Introduktion til Statistik

Forelæsning 4: Konfidensinterval for middelværdi (og varians)

Peder Bacher

DTU Compute, Dynamiske Systemer Bygning 303B, Rum 010 Danmarks Tekniske Universitet 2800 Lyngby – Danmark e-mail: pbac@dtu.dk

Forår 2021

Kapitel 3: Konfidensintervaller for én gruppe/stikprøve

Grundlæggende koncepter

- Population og tilfældig stikprøve
- Statistisk model
- Estimation (f.eks. $\hat{\mu}$ er estimat af μ)
- ullet Signifikansniveau lpha
- Konfidensintervaller (fanger rigtige prm. 1α af gangene)
- Stikprøvefordelinger (stikprøvegennemsnit (t) og empirisk varians (χ^2))
- Centrale grænseværdisætning

Specifikke metoder, én gruppe/stikprøve

- Konfidensinterval for middelværdi (t-fordeling)
- Konfidensinterval for varians (χ^2 -fordeling)

Chapter 3: One sample confidence intervals

General concepts

- Population and a random sample
- Statistical model
- Estimation (e.g. $\hat{\mu}$ is estimate of μ)
- ullet Significance level lpha
- Confidence intervals (Catches true value 1α times)
- Sampling distributions (sample mean (t) and sample valance (χ^2))
- Central Limit Theorem

Specific methods, one sample

- Confidence interval for the mean (t-distribution)
- Confidence interval for the variance (χ^2 -distribution)

Oversigt

- Fordelingen for gennemsnittet
 - *t*-fordelingen
- $oldsymbol{2}$ Konfidensintervallet for μ
 - Eksempel
- Oen statistiske sprogbrug og formelle ramme
- 4 Ikke-normale data, Central Grænseværdisætning (CLT)
- 5 Konfidensinterval for varians og standardafvigelse

Eksempel: Population og fordeling

Vi går nu på jagt efter μ og $\sigma!$

Stikprøveeksperiment 1

Eksperiment

Tag en stikprøve på n=10 observationer fra populationen.

Kan det passe, at der er 95% sandsynlighed for at intervallet beregnet på stikprøven ved

$$\bar{X} \pm 2.26 \cdot \frac{S}{\sqrt{10}}$$

indeholder populationens gennemsnit μ (dvs. middelværdien)?

Altså at følgende er sandt

$$P\left(\bar{X} - 2.26 \cdot \frac{S}{\sqrt{10}} < \mu < \bar{X} + 2.26 \cdot \frac{S}{\sqrt{10}}\right) = 0.95$$

Stikprøveeksperiment: Simulering af stikprøve og beregning af 95% konfidensinterval

```
## Middelnerdien
m11 <- 3
## Standardafvigelsen
sigma <- 1.8
## Stikprøvestørrelsen
n <- 10
## Simuler normalfordelte X i
x <- rnorm(n=n, mean=mu, sd=sigma)
## Se værdierne i den simulerede stikprøve
х
## Empirisk tæthed
hist(x, prob=TRUE, col='blue')
## Beregn stikprøvegennemsnittet bar\{x\} (sample mean)
mean(x)
## Beregn stikprøvestandardafvigelsen s (sample standard deviation)
sd(x)
## Beregn 95% konfidensintervallet
mean(x) - 2.26 * sd(x)/sqrt(n)
mean(x) + 2.26 * sd(x)/sqrt(n)
```

Stikprøveeksperiment 1: 100 simuleringer

Theorem 3.2: Fordeling for gennemsnit af normalfordelinger

(Stikprøve-) fordelingen for \bar{X}

Assume that $X_1, ..., X_n$ are independent and identically normally distributed random variables, $X_i \sim N(\mu, \sigma^2)$ and i = 1, ..., n, then:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \Rightarrow \quad \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Middelværdi og varians følger af regneregler

Theorem 2.40: Lineær funktion af normal distribuerede variable er også normalfordelt

Theorem 2.53: Middelværdien af \bar{X}

$$\mathsf{E}(\bar{X}) \ = \ \mathsf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \ = \ \frac{1}{n}\sum_{i=1}^{n}\mathsf{E}(X_{i}) \ = \ \frac{1}{n}\sum_{i=1}^{n}\mu \ = \ \frac{1}{n}n\mu \ = \ \mu$$

Theorem 2.53: Variansen for \bar{X}

$$Var(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$$

Spørgsmål om stikprøvegennemsnittet (socrative.com, room: PBAC)

Den ene pdf hører til X_i og den anden til \bar{X} . Hvad kan konkluderes (for n > 1)?

- A: Den sorte hører til X_i og den blå til \bar{X}
- ullet B: Den sorte hører til $ar{X}$ og den blå til X_i
- C: Det kan ikke afgøres
- D: Ved ikke

Svar A:

$$X_i \sim N(\mu, \sigma^2)$$
 og

$$ar{X} \sim N(\mu, rac{\sigma^2}{n})$$
 altså

$$\sigma_{\bar{X}} < \sigma_{X_i}$$

Eksempel: Simuler middelværdi og standardafvigelse af stikprøvegennemsnit

```
## Middelværdien
m11 <- 3
sigma <- 1.8
n <- 10
x <- rnorm(n=n, mean=mu, sd=sigma)
hist(x, prob=TRUE, col='blue')
## Berean stikprøvegennemsnittet (bar{x}: sample mean)
mean(x)
sd(x)
mat <- replicate(100, rnorm(n=n, mean=mu, sd=sigma))
xbar <- apply(mat, 2, mean)
## Nu har vi mange realiseringer af stikprøvegennemsnittet
## Se deres fordeling
hist(xbar, prob=TRUE, col='blue')
mean(xbar)
## og deres standardafvigelser
sd(xbar)
```

Standardiseret fejl vi begår, Corollary 3.3:

Når vi bruger \bar{X} som estimat for μ :

Så begår vi fejlen $\bar{X} - \mu$

Fordelingen for den standardiserede fejl vi begår:

Assume that X_1, \ldots, X_n are independent and identically normally distributed random variables, $X_i \sim N\left(\mu, \sigma^2\right)$ where $i=1,\ldots,n$, then:

$$Z = \frac{\bar{X} - \mu}{\sigma_{(\bar{X} - \mu)}} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1^2)$$

That is, the standardized sample mean Z follows a standard normal distribution.

Transformation til standard normalfordeling:

Pdf for gennemsnittet \bar{X} når $X_i \sim N(\mu, \sigma^2)$

Transformation til standard normalfordeling:

Pdf for *fejlen vi begår* $\bar{X} - \mu$ når $X_i \sim N(\mu, \sigma^2)$

Transformation til standard normalfordeling:

Pdf for den standardiserede fejl $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ når $X_i \sim N(\mu, \sigma^2)$

Standardiseret til *standard normalfordeling (noteres* $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1^2)$)

95% konfidensintervallet kan udledes således

95% konfidensinterval for μ :

$$P(z_{0.025} < Z < z_{0.975}) = 0.95$$

$$P\left(z_{0.025} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{0.975}\right) = 0.95 \qquad \Leftrightarrow$$

$$P\left(z_{0.025}\frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < z_{0.975}\frac{\sigma}{\sqrt{n}}\right) = 0.95 \qquad \Leftrightarrow$$

$$P\left(\bar{X} + z_{0.025} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{0.975} \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

1. simulering: Beregning af 95% konfidensinterval

Konfidensintervallet er omkring \bar{x} og fanger her μ

2. simulering: Beregning af 95% konfidensinterval

Konfidensintervallet er omkring \bar{x} og fanger her μ

2. simulering: Beregning af 99% konfidensinterval

99% konfidensintervallet er breddere end 95% konfidensintervallet (det skal fange μ oftere)

20 simuleringer: Beregning at 95% konfidensinterval

100 simuleringer: Beregning at 95% konfidensinterval

Spørgsmål om konfidensinterval (socrative.com, room: PBAC)

Hvis vi planlægger at beregne et 98% konfidensinterval for middelværdien, hvad er da sandsynligheden for at middelværdien *ikke* ligger inde i intervallet?

- A: 1%
- B: 2%
- C: 4%
- D: Den kender vi ikke
- E: Ved ikke

Svar B: Der er 2% for at vi ikke 'fanger' den rigtige middelværdi i 98% konfidensintervallet

Spørgsmål om konfidensinterval (socrative.com, room: PBAC)

Når vi så har udført eksperimentet og har stikprøven, ved vi da om middelværdien er indeholdt i det konfidensinterval vi har beregnet?

- A: Ja
- B: Nej
- C: Ved ikke

Svar B: Nej, vi ved ikke om vi har fanget den rigtige middelværdi, vi kender kun sandsynligheden for at fange den

Praktisk problem!!

Populationens standardafvigelse σ indgår i formlen og den kender vi ikke!!

Oplagt løsning:

Anvend stikprøvens standardafvigelse S som estimatet af σ i stedet for!

MEN MEN:

Så bryder den givne teori faktisk sammen!!

HELDIGVIS:

Der findes en heldigvis udvidet teori, der kan klare det!!

Theorem 3.4: More applicable extension of the same stuff: (kopi af Theorem 2.49)

t-fordelingen tager højde for usikkerheden i at bruge *s*:

Assume that X_1,\ldots,X_n are independent and identically normally distributed random variables, where $X_i\sim N\left(\mu,\sigma^2\right)$ and $i=1,\ldots,n$, then

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t$$

where t is the t-distribution with n-1 degrees of freedom.

t-fordelingen med 9 frihedsgrader (n = 10) og standardnormalfordelingen

DTU Compute

t-fordelingen med 29 frihedsgrader (n = 30) og standardnormalfordelingen

DTU Compute

Metodeboks 3.8: One-sample konfidensinterval for μ

Brug den rigtige t-fordeling til at lave konfidensintervallet:

For a sample x_1, \ldots, x_n the $100(1-\alpha)\%$ confidence interval is given by:

$$\bar{x} \pm t_{1-\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

where $t_{1-\alpha/2}$ is the $100(1-\alpha)\%$ quantile from the *t*-distribution with n-1 degrees of freedom.

Mest almindeligt med $\alpha = 0.05$:

The most commonly used is the 95%-confidence interval:

$$\bar{x} \pm t_{0.975} \cdot \frac{s}{\sqrt{n}}$$

Eksempel - Højde af 10 studerende

Stikprøve, n = 10:

168 161 167 179 184 166 198 187 191 179

Sample mean og standard deviation:

$$\bar{x} = 178$$

$$s = 12.21$$

Estimer population mean og standard deviation:

$$\hat{\mu} = 178$$

$$\hat{\sigma} = 12.21$$

Højde-eksempel, 95% konfidensinterval (CI)

```
## 97.5% fraktilen af t-fordelingen for n=10:
qt(p=0.975, df=9)
## [1] 2.26
```

Indsat i formlen

$$178 \pm 2.26 \cdot \frac{12.21}{\sqrt{10}}$$

giver det

$$178 \pm 8.74 = [169.3; 186.7]$$

Højde-eksempel, 99% Konfidensinterval (CI)

```
## 99.5% fraktilen af t-fordelingen for n=10:
qt(p=0.995, df=9)
## [1] 3.25
```

Indsat i formlen

$$178 \pm 3.25 \cdot \frac{12.21}{\sqrt{10}}$$

giver det

$$178 \pm 12.55 = [165.4;\ 190.6]$$

Der findes en R-funktion, der kan gøre det hele (med mere):

```
## Angiv data
x \leftarrow c(168,161,167,179,184,166,198,187,191,179)
## Beregn 99% konfidensinterval
t.test(x, conf.level=0.99)
##
##
    One Sample t-test
##
## data: x
## t = 46, df = 9, p-value = 5e-12
## alternative hypothesis: true mean is not equal to 0
  99 percent confidence interval:
   165 191
## sample estimates:
## mean of x
##
        178
```

Svar via socrative.com eller Socrative app. Room: PBAC

- Gennemsnit $\bar{x} = 14.4$, stikprøvens standardafvigelse s = 6, antal obs. er n = 9
- Formlen for konfidensintervallet er $\bar{x} \pm t_{0.975} \frac{s}{\sqrt{n}}$

Hvilket af intervallerne er det rigtige 95% konfidensinterval?

A: Turkise

B: Sorte C: Grønne D: Blå

Svar D: Blå. Fordi $t_{0.975} \frac{s}{\sqrt{n}} = 2.31 \frac{6}{\sqrt{9}} \approx 4.6$ så nedre grænse omkring 10.

Den formelle ramme for statistisk inferens

Fra bogen, kapitel 1:

- An observational unit is the single entity/level about which information is sought (e.g. a person) (Observationsenhed)
- The statistical population consists of all possible "measurements" on each observational unit (Population)
- The sample from a statistical population is the actual set of data collected.
 (Stikprøve)

Sprogbrug og koncepter:

- ullet μ og σ er parametre, som beskriver populationen
- \bar{x} er estimatet for μ (konkret udfald)
- \bar{X} er estimatoren for μ (nu set som stokastisk variabel)
- Begrebet 'statistic(s)' er en fællesbetegnelse for begge

Den formelle ramme for statistisk inferens - Eksempel

Fra bogen, kapitel 1, højdeeksempel

Vi måler højden for 10 tilfældige personer i Danmark

Stikprøven/The sample:

De 10 konkrete talværdier: x_1, \ldots, x_{10}

Populationen:

Højderne for alle mennesker i Danmark.

Observationsenheden:

En person

Statistisk inferens = Learning from data

Learning from data is learning about parameters of distributions that describe populations

Vigtigt i den forbindelse:

Stikprøven skal på meningsfuld vis være repræsentativ for en eller anden veldefineret population

Hvordan sikrer man det

Ved at sikre at stikprøven er fuldstændig tilfældig udtaget

Tilfældig stikprøveudtagning

Definition 3.11:

- A random sample from an (infinite) population: A set of observations $X_1, X_2, ..., X_n$ constitutes a random sample of size n from the infinite population f(x) if:
 - **1** Each X_i is a random variable whose distribution is given by f(x)
 - 2 These *n* random variables are independent

Hvad betyder det????

- Alle observationer skal komme fra den samme population
- ② De må IKKE dele information med hinanden (f.eks. hvis man havde udtaget hele familier i stedet for enkeltindivider)

Theorem 3.13: The Central Limit Theorem

Gennemsnittet af en tilfældig stikprøve følger altid en normalfordeling hvis n er stor nok:

Let \bar{X} be the mean of a random sample of size n taken from a population with mean μ and variance σ^2 , then

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

is a random variable whose distribution function approaches that of the standard normal distribution, $N(0,1^2)$, as $n\to\infty$

Dvs., hvis n er stor nok, kan vi (tilnærmelsesvist) antage:

$$rac{ar{x}-\mu}{\sigma/\sqrt{n}}\sim N(0,1^2)$$
 og $rac{ar{x}-\mu}{S/\sqrt{n}}\sim t$ ved t -fordelingen med $n-1$ frihedsgrader

```
## Stikpr@vest@rrelse
n <- 1
## Antal gentagelser
k <- 1000
## Simuler værdier og sæt i k x n
u <- matrix(runif(n=k*n, min=0, max=1), ncol=n)
## Se empirisk tæthed
hist(apply(u,1,mean), col='blue', main='n=1', xlab='Means', nclass=15, prob=TRUE, x</pre>
```



```
## Stikprgvestgrrelse
n <- 2
## Antal gentagelser
k <- 1000
## Simuler
u <- matrix(runif(n=k*n, min=0, max=1),ncol=n)
## Se empirisk tethed
hist(apply(u,1,mean), col='blue', main='n=2', xlab='Means', nclass=15, prob=TRUE, x</pre>
```



```
## Stikprgvestgrrelse
n <- 6
## Antal gentagelser
k <- 1000
## Simuler
u <- matrix(runif(n=k*n, min=0, max=1),ncol=n)
## Se empirisk tethed
hist(apply(u,1,mean), col='blue', main='n=6', xlab='Means', nclass=15, prob=TRUE, x</pre>
```



```
## Stikprøvestørrelse
n <- 30
## Antal gentagelser
k <- 1000
## Simuler
u <- matrix(runif(n=k*n, min=0, max=1),ncol=n)
## Se empirisk tæthed
hist(apply(u,1,mean), col='blue', main='n=30', xlab='Means', nclass=15, prob=TRUE,</pre>
```


Konsekvens af CLT:

Vores CI-metode virker OGSÅ for ikke-normale data:

Vi kan bruge konfidens-interval baseret på t-fordelingen i stort set alle situationer, blot n er "stor nok"

Hvad er "stor nok"?

Faktisk svært at svare præcist på, MEN:

- Tommelfingerregel: $n \ge 30$
- Selv for mindre n kan formlen være (næsten) gyldig for ikke-normale data.

Svar via socrative.com eller Socrative app. Room: PBAC

Er lydniveauet behageligt?

- A: Fino
- B: Nope, tal højere
- C: Nope, tal lavere
- D: Nope, der er bare dårlig lyd herinde

Svar via socrative.com eller Socrative app. Room: PBAC

Bør Peder klæde sig mere nydeligt?

- A: Ja, for den da! Det er grimt det tøj
- B: Nej, han ser faktisk rigtig checket ud
- C: Nej, det kan være lige meget med tøjet, han skal barbere sig og rede sit hår først
- D: Ved ikke, jeg har simpelthen været for optaget af statistikken til at lægge mærke til hans påklædning

Statistisk model

Statistisk model, se Remark 3.2

Der tages en stikprøve, som består af de stokastiske variable X_i hvor $i=1,\ldots,n$. Der opstilles følgende model

$$X_i \sim N(\mu, \sigma^2)$$
 and i.i.d., where $i = 1, \dots, n$

Dvs.

- ullet n observationer fra en normalfordelt population med parametre μ og σ
- observationerne er i.i.d.:
 - independent: de gøres uafhængigt af hinanden
 - identically distributed: de har samme fordeling

Stikprøvefordelingen for varians-estimatet (Theorem 2.56)

Variansestimater opfører sig som en χ^2 -fordeling:

Let

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

then:

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

is a random variable following the χ^2 -distribution with v=n-1 degrees of freedom.

χ^2 -fordelingen med v = 9 frihedsgrader

```
## Plot chi^2 txthedsfunktion med 9 frihedsgrader

## En sekvens af x vxrdier
x <- seq(0, 30, by = 0.1)
## Plot chi^2 txthedsfunktion
plot(x, dchisq(x, df = 9), type = 'l', ylab="f(x)")</pre>
```


Metode 3.18: Konfidensinterval for stikprøvevarians og stikprøvestandardafvigelse

Variansen:

A $100(1-\alpha)\%$ confidence interval for the variance σ^2 is:

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}};\;\frac{(n-1)s^2}{\chi^2_{\alpha/2}}\right]$$

where the quantiles come from a χ^2 -distribution with $\nu=n-1$ degrees of freedom.

Standardafvigelsen:

A $100(1-\alpha)\%$ confidence interval for the sample standard deviation $\hat{\sigma}$ is:

$$\left[\sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}}\right]$$

Eksempel

Produktion af tabletter

Vi producerer pulverblanding og tabletter deraf, så koncentrationen af det aktive stof i tabletterne skal være 1~mg/g med den mindst mulige spredning. En tilfældig stikprøve udtages, hvor vi måler mængden af aktivt stof.

Data:

En tilfældig stikprøve med n=20 tabletter er udtaget og fra denne får man:

$$\hat{\mu} = \bar{x} = 1.01, \ \hat{\sigma}^2 = s^2 = 0.07^2$$

95%-konfidensinterval for variansen - vi skal bruge χ^2 -fraktilerne:

$$\chi^2_{0.025} = 8.9065, \; \chi^2_{0.975} = 32.8523$$

2.5% og 97.5% fraktilerne i chi^2 fordelingen for n=20 qchisq(c(0.025, 0.975), df = 19)

Eksempel

Så konfidensintervallet for variansen σ^2 bliver:

$$\left[\frac{19 \cdot 0.7^2}{32.85}; \ \frac{19 \cdot 0.7^2}{8.907}\right] = [0.002834; \ 0.01045]$$

Og konfidensintervallet for standardafvigelsen σ bliver:

$$\left[\sqrt{0.002834};\ \sqrt{0.01045}\right] = [0.053;\ 0.102]$$

Højdeeksempel

Vi skal bruge χ^2 -fraktilerne med v = 9 frihedsgrader:

$$\chi^2_{0.025} = 2.700389, \; \chi^2_{0.975} = 19.022768$$

2.5% og 97.5% fraktilerne i chi^2 fordelingen for n=10 qchisq(c(0.025, 0.975), df = 9)

[1] 2.7 19.0

Så konfidensintervallet for højdens standardafvigelse σ bliver:

$$\left[\sqrt{\frac{9 \cdot 12.21^2}{19.022768}}; \sqrt{\frac{9 \cdot 12.21^2}{2.700389}}\right] = [8.4; 22.3]$$

Eksempel - Højde af 10 studerende - recap:

Stikprøve,
$$n = 10$$
:

168 161 167 179 184 166 198 187 191 179

Sample mean og standard deviation:

$$\bar{x} = 178$$

$$s = 12.21$$

NYT:**Konfidensinterval**, μ :

$$178 \pm 2.26 \cdot \frac{12.21}{\sqrt{10}} \Leftrightarrow [169.3; 186.7]$$

Estimer population mean og standard deviation:

$$\hat{\mu} = 178$$

$$\hat{\sigma} = 12.21$$

NYT:**Konfidensinterval**, σ :

Svar via socrative.com eller Socrative app. Room: PBAC

Hvilket af følgende udsagn er korrekt?

- A: Statistik er virkelig skod, jeg tror ikke det kan bruges til noget
- B: Statistik er altså øv, man skal bare sidde og sætte en masse tal ind i nogle dumme formler
- C: Jeg burde ligge under min dyne og blive frisk til at feste igennem i aften
- D: Statistik er virkelig fedt, det er fascinerende, at man ikke bare kan regne et estimat ud, men man kan også regne ud hvor præcist det er

Svar D