Algorithms

Lesson #4:

Dynamic Programming

(Based on slides by Prof. Dana Shapira)

- F(0)=0
- F(1)=1
- F(n)=F(n-1)+F(n-2)
- Write a recursive algorithm!
- What is its running time?

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Recursive equation:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

- Write a recursive algorithm!
- What is its running time?

Dynamic Programming Approach to Optimization Problems

- 1. Characterize structure of an optimal solution.
- 2. Recursively define value of an optimal solution.
- 3. Compute value of an optimal solution in bottom-up fashion.
- Construct an optimal solution from computed information.

- Two teams A and B play to see who is the first to win n games. In world series games n=4.
- Team A wins any particular game with probability q (same for all the games).
- What is the probability of A winning the tournament?

P(i,j) - The probability that A will win the tournament, given that it is missing i games to win and B is missing j games to win.

$$P(0,j)=1$$
 j>0
 $P(i,0)=0$ i>0
 $P(i,j)=q*P(i-1,j)+(1-q)*P(i,j-1)$ i>0 and j>0


```
P(i,j) {
   if i==0 return 1
   elseif j==0 return 0
   else return q*P(i-1,j)+(1-q)*P(i,j-1)
}
```

What is its running time?

Dynamic Programming

}

```
0
P(n,m) {
                                  1
                                           1/2
                                                3/4
                                                      7/8
                                                           15/16
  for (i=0; i\leq n; i++)
                                  2
                                      0
                                           1/4
                                                1/2
         T[0,i] = 1
  for(j=1; j≤m; j++)
         T[j,0] = 0
                                  3
                                      0
                                           1/8
  for (i=1; i \le n; i++)
                                  4
                                      0
                                           1/16
      for (j=1; j \le m; j++)
                                                           q=1/2
         T[i,j] = q*T[i-1,j] + (1-q)*T[i,j-1];
return T[n,m]
```

3

-Problem:

Given n matrices $M_1, M_2, ..., M_n$, compute the product $M_1M_2M_3...M_n$, where M_i has dimension $d_{i-1} \times d_i$, for i = 1,...,n.

-objective

compute $M_1, M_2, ..., M_n$ with the minimum number of scalar multiplications.

-Given matrices A with dimension p x q and B with dimension q x r, multiplication AB takes pqr scalar multiplications

-Problem: Parenthesize the product $M_1M_2...M_n$ in a way to minimize the number of scalar multiplications.

-Example:
$$M_1 --- 2 \times 5$$

$$M_2 - 5 \times 3$$

$$M_3 - - 3 \times 4$$

$$M_1(M_2M_3)$$
 --- 60 + 40 = 100 multiplications

$$(M_1M_2)M_3 --- 30 + 24 = 54$$
 multiplications

• Let m(i,j) be the number of multiplications performed using optimal parenthesis of $M_iM_{i+1}...M_{j-1}M_j$.

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{m(i,k) + m(k+1,j) + d_{i-1}d_kd_j\} & i < j \end{cases}$$

• Let S(i,j) be the optimal split point for $M_i...M_j$ (meaning S(i,j)=k means we split $(M_i...M_k)(M_{k+1}...M_j)$)

S(i,j) is needed to reconstruct the solution


```
MUL(i,j) {
    if (i==j) return 0;
    else{
          \mathbf{x} \leftarrow \infty
          for k=i to j-1
                    y \leftarrow MUL(i,k) + MUL(k+1,j) + d_{i-1}d_kd_i
                     if y < x {
                                         x\leftarrow y
                                         S(i,j) \leftarrow k
```

•What is its running time?

$$T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1)$$

$$T(n) = 2\sum_{k=1}^{n-1} T(k) + (n-1)$$

$$T(n-1) = 2\sum_{k=1}^{n-2} T(k) + (n-2)$$

$$T(n) - T(n-1) = 2T(n-1) + 1$$

$$T(n) = 3T(n-1) + 1 > 3T(n-1) > 3^2 T(n-2) > \dots > 3^k T(n-k)$$

-Example:
$$M_1 --- 2 \times 5$$

$$M_2 - 5 \times 3$$

$$M_3 - - 3 \times 4$$

m	1	2	3
1	0	30	54
2		0	60
3			0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{m(i,k) + m(k+1,j) + d_{i-1} d_k d_j\} & i < j \end{cases}$$

5	1	2	3

	1	2
		2


```
MUL(n) {
   for (i=1; i \le n; i++) m[i,i]=0;
   for (diff=1;diff≤n-1;diff++) {
         for (i=1; i \le n-diff; i++) {
                  j←i+diff
                  \mathbf{x} \leftarrow \infty
                  for (k=i;k\leq j-1;k++)
                           y \leftarrow m[i,k] + m[k+1,j] + d_{i-1}d_kd_i
                            if y < x {
                                     x\leftarrow y
                                     S(i,j) \leftarrow k
                  m[i,j]=x;
```

The Integer Knapsack Problem - again

· Problem -

Given $G_1,G_2,...,G_n$, each G_i with integer weight w_i and value v_i .

Maximize the profit out of the goods you can put in the knapsack with capacity C.

- $f_i \in \{0,1\}$ (can't cut goods in the middle)
- Maximize $\sum_{i=1}^{n} f_i v_i$
- Subject to $\sum_{i=1}^{n} f_i w_i \leq C$
- How can we solve this using DP?

- Let T[i,B] be the maximum profit achievable with goods $G_1,...,G_i$, under weight limit B
- We are interested in T[n,C]
- Recursive formula for T[i,B]:

$$T[i,B] = max(T[i-1,B], v_i + T[i-1,B-w_i])$$

Boundary constraints...

	 1	
C	 T	J

v	4	8	7	1	2	10
W	9	6	3	4	5	2

weight limit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
up to item																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	0	8	8	8	8	8	8	8	8	8	12
3	0	0	0	7	7	7	8	8	8	15	15	15	15	15	15	15
4	0	0	0	7	7	7	8	8	8	15	15	15	15	16	16	16
5	0	0	0	7	7	7	8	8	9	15	15	15	15	16	17	17
6	0	0	10	10	10	17	17	17	18	18	19	25	25	25	25	26

What is the running time?

Running time = $\Theta(\text{Size of the table})$

Size of the table = n*C

Is this polynomial time in the size of the input?

NO! Because the size of C in the input is $O(\log C)$!

"Pseudopolynomial"

The table just gives us the profit. How do we reconstruct the actual packing...?