Modeliranje strojev

električnih

8. LABORATORIJSKA VAJA

Ime in priimek: Jaka Ambruš

Datum in ura: sreda ob 14.00 Ocena poročila:

1. Merjenec, vezalni načrt

Merjenec:

Vezalni načrt:

Prikazan načrt je namenjen merjenju obremenilne karakteristike in se razlikuje od načrta 7. vaje saj je sklopljena gred.

2. uporabljeni instrumenti in nazivni podatki

Podatki o merjencu(trifazni asinhronski motor s kratkostično kletko) in dodatne opreme, ki smo jo uporabili:

Asinhronski motor - ELKO ELEKTROKOVINA	U _n : D/Y 400/460 V I _n : 10,5 A						
tip: T 132 SA2 IM B3	$P_n : D/Y 5,5/6,3 \text{ kW, } \cos \phi_n = 0,88,$						
(merjenec)	n _n : D/Y 2900/3490 1/min, f=50Hz						
Trifazni variak - Iskra tip TRN 312 št. 165	U: 3x380 V f = 50-60 Hz, S _n = 12 kVA						
Sinhronski generator (trifazni) - mecc alte Type: ET16F-130 No. 196206	U_n : 230/400 V $S_n = 5.5 \text{ kVA}$ f = 50Hz $\cos \phi_n = 0.8$ $n_n = 3000$						
Voltmeter - Unitest Hexagon 340 Cat-No. 93497							
Infragrelo – trifazno uporovno breme							
DIGITAL STROBOSCOPE	LT - Lutron DT-2269						
Watmeter - DIGITAL POWER ANALYZER	2100						
Štoparica							

Uporabljeni instrumenti:

- -Trifazni variak,
- -Sinhronski generator
- trifazni asinhronski motor
- -voltmeter
- -štoparica
- trifazno uporovno breme
- -watt-meter
- digitalni stroboskop(uporabili za merjenje N in t(s))

3. Rezultati

f _{sg} /Hz	<i>U</i> ₁ /V	I ₁ /A	P _{w1} /W	P _{w2} /W	P ₁ /W	N	t/s	f _{slip} /Hz	f _p /Hz	slip	n /vrt/min
49,9	400	4,45	1112	-542	570	1	8,9	0,1124	49,88764	0,00225	2994
49,81	399,5	4,45	1250	-341	909	3	15,7	0,1911	49,80892	0,00382	2988,6
49,71	400,3	4,68	1483	-162	1321	4	13,03	0,30698	49,693	0,00614	2982,6
49,61	400,6	4,93	1667	47	1714	7	17,34	0,40369	49,596	0,00807	2976,6
49,51	400,4	5,26	1893	266	2159	12	22,78	0,52678	49,473	0,01054	2970,6
49,4	399,4	5,59	2081	434	2515	15	23,78	0,63078	49,369	0,01262	2964
49,3	399,8	5,94	2250	587	2837	20	27,75	0,72072	49,279	0,01441	2958
49,2	398,3	6,35	2432	775	3207	25	30,16	0,82891	49,171	0,01658	2952
49,1	399,8	6,9	2689	910	3599	30	32,09	0,93487	49,065	0,01870	2946
48,99	399,9	7,19	2829	1050	3879	36	35,54	1,01294	48,987	0,02026	2939,4
48,89	399,1	7,56	2981	1190	4171	40	35,97	1,11204	48,888	0,02224	2933,4
48,8	399,3	7,96	3162	1261	4423	40	33,44	1,19617	48,804	0,02392	2928
48,69	399,1	8,31	3296	1445	4741	40	30,62	1,30634	48,693	0,02613	2921,4
48,6	399,2	8,69	3469	1578	5047	20	14,06	1,42248	48,577	0,02845	2916
48,5	398,4	9,	3590	1606	5196	40	26,72	1,49701	48,503	0,02994	2910
48,39	400,5	9,47	3796	1774	5570	40	24,75	1,61616	48,384	0,03232	2903,4
48,3	400,3	9,84	3949	1871	5820	40	23,22	1,72265	48,277	0,03445	2898
48,19	399,2	10,26	4111	2007	6118	40	21,46	1,8639	48,136	0,03728	2891,4
48,09	399,6	10,46	4190	2089	6279	40	20,78	1,9249	48,07507	0,03850	2885,4

Cos(fi)	P _{Cu1} /W	P _{dod} /W	P_{δ} /W	P _{Cu2} /W	P _{meh} /W	P ₂ /W	n	P _{izg} /W
0,185	42,773	5,002	375,325	0,843	374,482	176,682	0,31	393,318
0,295	42,773	5,002	714,325	2,73	711,595	513,795	0,565	395,205
0,407	47,309	5,533	1121,258	6,884	1114,374	916,574	0,694	404,426
0,501	52,499	6,14	1508,461	12,179	1496,282	1298,482	0,758	415,518
0,592	59,762	6,989	1945,349	20,495	1924,854	1727,054	0,8	431,946
0,65	67,496	7,894	2292,71	28,924	2263,786	2065,986	0,821	449,014
0,69	76,213	8,913	2604,974	37,549	2567,425	2369,625	0,835	467,375
0,732	87,097	10,186	2962,817	49,118	2913,699	2715,899	0,847	491,101
0,753	102,838	12,027	3337,235	62,398	3274,837	3077,037	0,855	521,963
0,779	111,664	13,059	3607,377	73,081	3534,296	3336,496	0,86	542,504
0,798	123,452	14,437	3886,211	86,432	3799,779	3601,979	0,864	569,021
0,803	136,861	16,006	4123,233	98,642	4024,591	3826,791	0,865	596,209
0,825	149,161	17,444	4427,495	115,676	4311,819	4114,019	0,868	626,981
0,84	163,115	19,076	4717,909	134,223	4583,686	4385,886	0,869	661,114
0,837	174,96	20,461	4853,679	145,32	4708,359	4510,559	0,868	685,441
0,848	193,711	22,654	5206,735	168,298	5038,437	4840,637	0,869	729,363
0,853	209,143	24,459	5439,498	187,407	5252,091	5054,291	0,868	765,709
0,862	227,378	26,591	5717,131	213,127	5504,004	5306,204	0,867	811,796
0,867	236,329	27,638	5868,133	225,915	5642,218	5444,418	0,867	834,582

Podani tabeli sta produkt izračunov in podatkov meritev, rad bi pripomnil, da sta bili tako veliki, da sem prvič uporabljal funkcijo obračanja strani, saj bi v pokončnem položaju zmanjkalo prostora.

Grafični prikaz obremenilne karakteristike s pomočjo programskega okolja Matlab:

Za primeren prikaz sem moral v programskem okolju z 10 pomnožiti cos(fi) in η , z 10^{-2} moč izgub in hitrost vrtenja z 10^{-3}

Izračuni:

Za prikaz celotnega postopka izračunov sem si izbral nazivno obremenitev: Podani začetni izmerjeni podatki:

f _{sg} /Hz	<i>U</i> ₁ /V	I ₁ /A	P _{w1} /W	P _{w2} /W	P ₁ /W	N	<i>n</i> /vrt/min
48,09	399,6	10,46	4190	2089	40	20,78	2885,4

Pri prejšnji vaji smo določili:

$$P_{Fe} = 146,9 \text{ W}$$

$$P_{tr,v} = 197,8 \text{ W}$$

$$R_{sn-t} = 1,44 \ Ohm$$

Uporabljene enačbe, ki sem jih s pomočjo drugih programov uporabljal za lažji izračun vseh vrednosti tabel v postopku izračuna vrednosti nazivne obremenitve:

$$f_{slip} = \frac{N}{t} = 1,925 \; Hz$$
, s pomočjp te vrednosti sem izračunal slip in fp:

$$f_p = 50Hz - f_{slip}$$

$$slip = \frac{60 \, f_{slip}}{n_s}$$

Faktor moči sem lahko izračunal že iz izmerjenih vrednosti:

$$\cos(fi) = \frac{P_1}{\sqrt{3} U_1 I_1} = 0.867$$

Prav tako sem iz že znanih vrednosti izračunal izgube v navitjih statorja in dodatne izgube:

$$P_{Cu1} = 1.5 I_1^2 R_{sp-t} = 236.3 W$$

$$P_{dod} = 0.005 P_{1n} \left(\frac{I_1}{I_{1n}}\right)^2 = 27.6 W$$

Moč zračne reže:

$$P_{\delta} = P_{1} - P_{Fe} - P_{dod} - P_{Cu1} = 5868 W$$

Izgube rotorskih navitij:

$$P_{Cu2} = P_{\delta} \text{ slip} = 225,92 W$$

Mehanska in oddana moč:

$$P_{meh} = P_{\delta}(1 - slip) = 5642,2 W$$

$$P_2 = P_{meh} - P_{tr,v} = 5444W$$

Ko seštejemo prej dobljene izgube dobimo moč izgub:

$$P_{izg} = P_{Fe} + P_{Cu1} + P_{Cu2} + P_{dod} + P_{tr,v} = 834,5 W$$

S pomočjo te vrednosti pa lahko končno izračunamo izkoristek:

$$\eta = 1 - \frac{P_{izg}}{P_1} = 834,5 W$$

5. Domača naloga

Na trifaznem asinhronskem motorju (P_n = 3,1kW | n_n = 1456 vrt/min | U_n = 177 V | f_n = 50 Hz | I_n = 14,6 A | $\cos \varphi_n$ = 0,8) so bile opravljene naslednje meritve:

- a) meritev upornosti posameznih faznih navitij, ki so med obratovanjem motorja vezana v zvezdo: $R_{U1-U2} = R_{V1-V2} = R_{W1-W2} = 0,225 \Omega$;
- b) preizkus prostega teka: $U_0 = 177 \text{ V}$, $I_0 = 8.9 \text{ A}$, $P_0 = 260 \text{ W}$, $P_{tv} = 40 \text{ W}$, $n_0 = 1499 \text{ vrt/min}$;
- c) obremenjen motor: $U_1 = 177 \text{ V}$, $I_1 = 12,2 \text{ A}$, $P_1 = 2500 \text{ W}$, n = 1470 vrt/min.
- Z indirektno metodo določite izkoristek motorja v izmerjenem obremenjenem stanju (c). Dodatne izgube v motorju upoštevajte kot 0,5 % prejete moči pri nazivnem toku.

(Rešitev: $\eta = 0.857$ | $P_{CuS} = 100.5$ W, $P_{Fe} = 159.9$ W, $P_{dod} = 12.5$ W, $P_{cuR} = 44.5$ W)

