Data Mining Cluster Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 5

Data Mining by Zhaonian Zou

5.5 Clustering Evaluation

5.5.1 What is Clustering Evaluation?

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
 - Lack of ground truth
- Then why do we want to evaluate them?
 - To avoid finding clusters in noise
 - To compare clustering algorithmsTo compare two sets of clusters

 - To compare two clusters

Different Aspects of Cluster Validation

- Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the
- Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels
- Evaluating how well the results of a cluster analysis fit the data without reference to external information.
 - Use only the data
- Comparing the results of two different sets of cluster analyses to determine which is better
- Determining the 'correct' number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or just individual clusters.

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels
 - Entropy
 - Internal Index: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
 - Relative Index: Used to compare two different clusterings or clusters.
- Often an external or internal index is used for this function, e.g., SSE or entropy
- Sometimes these are referred to as criteria instead of indices
 - However, sometimes criterion is the general strategy and index is the numerical measure that implements the criterion.

5.5 Clustering Evaluation

5.5.2 External Measures

External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute $p_{i,j}$, the 'probability' that a member of cluster j belongs to class i as follows: $p_{i,j} = m_{i,j}/m_{j,j}$, where m_i is the number of values in cluster j and $m_{i,j}$ is the number of values of class i in cluster j. Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_j = \sum_{i=1}^{n} p_{i,j} \log_{p_{i,j}}$, where the j is the number of classes. The total entropy for a set of cluster is calculated as the sum of the entropies of each cluster usighted by the size of each cluster, e_i , $e_i = \sum_{j=1}^{n_{i,j}} \frac{1}{m_{i,j}} e_{i,j}$, where m_j is the size of cluster j, K is the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^{K} \frac{m_i}{m_i} purity_j$.

5.5 Clustering Evaluation

5.5.3 Internal Measures

Correlation

Measuring Cluster Validity Via Correlation

- Two matrices
 - Proximity Matrix
 - "Incidence" Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

Corr = -0.9235

Corr = -0.5810

Using Similarity Matrix for Cluster Validation

 Order the similarity matrix with respect to cluster labels and inspect visually.

5.5 Clustering Evaluation5.5.3 Internal Measures SSE

Internal Measures: SSE

SSE curve for a more complicated data set

SSE of clusters found using K-means

5.5 Clustering Evaluation

5.5.3 Internal Measures

Cohesion and Separation

Internal Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE) $WSS = \sum\limits_{i} \sum\limits_{x \in C_i} (x m_i)^2$
 - Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_i| (m - m_i)^2$$
Where $|C_i|$ is the size of cluster.

- Where C is the size of cluster i

Internal Measures: Cohesion and Separation

Example: SSE

- BSS + WSS = constant

K=1 cluster:

 $WSS = (1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$

 $BSS = 4 \times (3-3)^2 = 0$ Total = 10 + 0 = 10

K=2 clusters:

 $WSS = (1-1.5)^2 + (2-1.5)^2 + (4-4.5)^2 + (5-4.5)^2 = 1$

 $BSS = 2 \times (3-1.5)^2 + 2 \times (4.5-3)^2 = 9$

Total = 1 + 9 = 10

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

cohesion

separation

5.5 Clustering Evaluation

5.5.3 Internal Measures

Silhouette Coefficient

Internal Measures: Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
 - Calculate **a** = average distance of *i* to the points in its cluster
 - Calculate b = min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

s = 1 - a/b if a < b, (or s = b/a - 1 if $a \ge b$, not the usual case)

- Typically between 0 and 1.
- The closer to 1 the better.

Can calculate the Average Silhouette width for a cluster or a clustering.

5.5 Clustering Evaluation

5.5.4 Evaluation Framework

Framework for Cluster Validity

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "atypical" a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random data or clusterings to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid

 These approaches are more complicated and harder to understand.
- For comparing the results of two different sets of cluster analyses, a framework is less necessary.
 - However, there is the question of whether the difference between two index values is significant

Statistical Framework for SSE

Example

- Compare SSE of 0.005 against three clusters in random data
- Histogram shows SSE of three clusters in 500 sets of random data points of size 100 distributed over the range 0.2 – 0.8 for x and y values

Statistical Framework for Correlation

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

Corr = -0.9235

Corr = -0.5810