

Simulated Data Generation Through Algorithmic Force Coefficient Estimation for AI-Based Robotic Projectile Launch Modeling

Sajiv Shah^{1*}, Ayaan Haque^{1*}, Fei Liu² (*equal contributions) ¹Saratoga High School, ²University of California, San Diego

Overview

Problem

- Launch modeling with physics-based models does not consider all dynamics, creating inaccuracies.
- Unknown aerodynamic force coefficients can only be estimated using expensive equipment.
- Using data-driven AI solutions requires large data pools.

Solution: FCE-NN

- Combine a small set of collected data with a large pool of generated data, which is derived from a physics-based simulator, and then use neural networks to model projectile flight trajectory.
- ArXiv: https://arxiv.org/abs/2105.12833; Code: https://github.com/ayaanzhaque/FCE-NN

Simulator Design

$$F_{g} = mg$$

$$F_{l} = C_{l} \frac{4}{3} (4\pi^{2} r^{3} s \rho v)$$

$$F_{d} = \frac{C_{d}}{2} A v^{2} \rho$$

$$v_{x} = \int_{0}^{t} \arctan(\frac{v_{y}}{v_{x}}) dt + \theta_{0}$$

$$v_{x} = \int_{0}^{t} (\frac{dv_{x}}{dt}) dt + v_{0} \cos(\theta_{0})$$

$$v_{y} = \int_{0}^{t} (\frac{dv_{y}}{dt}) dt + v_{0} \sin(\theta_{0})$$

$$\frac{dv_{x}}{dt} = -(a_{l} \sin(\theta) + a_{d} \cos(\theta))$$

$$x = \int_{0}^{t} (v_{x}) dt$$

- The ball is given an initial launch speed, angle, and distance.
- Based on these parameters we calculate the position of the ball using known forces and can determine its outcome.

Force Coefficient Estimation

• We iterate through 1000^2 combinations to estimate the coefficients which best model the experimental outcomes.

FCE-NN

- Experimental data is collected using the launcher and visibly assigning
- This data is fed into the coefficient estimator, which tunes the simulator to match the collected data.
- The simulator is then used to generate the simulated data set.
- Both the experimental and simulated datasets are fed into a neural network to generate launch predictions.

Neural Network

• Simple 3-layer forward-feed neural network for classification, 3 input nodes per launcher configuration, 2 output nodes for 2- and 3- point scores.

Robot

- Our launcher sits on top of a mobile robot.
- We vary launch parameters (angle, speed, and distance) electronically and use sensor data to confirm accuracy.

Results

Using Force Coefficient Estimation

- We generate outcomes for both a training and testing dataset using the simulator without the NN
- The accuracy decreased significantly on the testing set, as data outside of the training set is poorly modeled by FCE
- Figure shows accurate trajectories (right) and inaccurate trajectories (left)

\mathcal{D}_r Train/Test		Metr	Mean Dev 0.051	
	2pt Acc (%)	3pt Acc (%)		Median Dev
Training	100	92.31	0.051	0.058
Testing	92.86	85.71	0.283	0.124

Using FCE-NN

• We compare outcomes with various sizes of simulated data, and discover that with the optimal amount our overall accuracy increases significantly

\mathcal{D}_s Size	Metrics (Combined evaluation of \mathcal{D}_r and \mathcal{D}_s^T)			
	Overall Acc (%)	F1-3pt (%)	F1-2pt (%)	
0	44.29	4.17	66.66	
500	78.57	50.00	87.50	
600	87.14	70.83	91.67	
750	91.43	79.16	95.83	
900	98.56	95.83	100.00	
1000	95.71	91.67	95.83	
1250	92.85	87.50	91.67	

Conclusion

- We show that the neural network with additional data is able to accurately model and predict the outcome of both experimental and simulated configurations.
- Our future work will investigate advanced NN architectures as well as reverse-engineering NNs to derive force coefficients.