COASTAL ENGINEERING RESEARCH CENTER FORT BELVOIR VA F/G 13/2 MOVABLE-BED LABORATORY EXPERIMENTS COMPARING RADIATION STRESS A--ETC(U) APR 81 P VITALE CERC-WR-81-% NL AD-A101 918 UNCLASSIFIED | 04 | AD A 10.19 ...

I /

Movable-Bed Laboratory Experiments Comparing Radiation Stress and Energy Flux Factor as Predictors of Longshore Transport Rate

by Philip Vitale

MISCELLANEOUS REPORT NO. 81-4
APRIL 1981

JUL 2 4 1981

Approved for public release; distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS
COASTAL ENGINEERING
RESEARCH CENTER

Kingman Building
Fort Belvoir, Va. 22060
81 7 4 006

THE COM

Reprint or republication of any of this material shall give appropriate credit to the U+S. Army Coastal Engineering Research Center.

Limited free distribution within the inited States of single copies of this publication has been made ty this Center. Additional copies are available from:

National Technical Information Comple ATTV: Operations Timinion 5885 Fort Poyal Poyal Epringfield, Vinginia 20181

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

14.00

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
MR 81-4	11 /			
4. TITLE (md Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
MOVABLE-BED LABORATORY EXPERIMENTS		Miscellaneous Repart.		
RADIATION STRESS AND ENERGY FLUX F	ACTOR AS			
PREDICTORS OF LONGSHORE TRANSPORT	RATE	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(a)	•	8. CONTRACT OR GRANT NUMBER(*)		
\Philip Vitale \				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, YASK AREA & WORK UNIT NUMBERS		
Department of the Army		AREA & WORK UNIT NUMBERS		
Coastal Engineering Reserch Center	(CERRE-CS)	D31193		
Kingman Building, Fort Belvoir, Vi	rginia 22060			
11. CONTROLLING OFFICE NAME AND ADDRESS	: ,	12. REPORT DATE		
Department of the Army	· / /	Apr 14 1981		
Coastal Engineering Research Cente		13. NUMBER OF PAGES		
Kingman Building, Fort Belvoir, Vi		15. SECURITY CLASS. (of this report)		
14. MONITORING AGENCY NAME & ADDRESSIT BITTER	Troin controlling office)	UNCLASSIFIED		
ĺ				
į		15a. DECLASSIFICATION DOWNGRADING SCHEDULE		
1		SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release, distr	ibution unlimite	d•		
•				
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20. If different fro	m Report)		
	- ,	• •		
18. SUPPLEMENTARY NOTES		·		
		:		
J		:		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)			
	•			
Energy flux	Movable	-bed experiments		
Longshore transport ra		on stress		
1 .				
20. ABSTRACT (Continue on reverse side if necessary and	I identify by block number)			
The regular of three discourse	nol moughts but	labamahama harti i		
`The results of three-dimensio to empirically relate the longshor				
stress and the longshore energy				
with the longshore transport rate,				
		ty parameter also shows a		
strong influence on the longshore		parameter also shows d		
3	Λ			

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

JCL

PREFACE

This report is published to provide coastal engineers insight into the important coastal process of longshore transport along sandy beaches by presenting the results of three-dimensional movable-bed laboratory tests. It is hoped that future studies will expand on the analyses of the data in this report. The report was prepared under the nearshore sediment transport research program of the U.S. Army Coastal Engineering Research Center (CERC).

The report was written by Philip Vitale, Hydraulic Engineer, under the general supervision of Dr. R.M. Sorensen, Chief, Coastal Processes and Structures Branch, Research Division.

The author acknowledges C. Galvin, R.P. Savage, and R.P. Stafford for their assistance and advice in the design and operation of the experiment, and M.S. Bartolomei, S.L. Douglas, B. Keely, M. Koenig, M.W. Leffler, J.G. Tingler, J. Sullivan, K.P. Zirkle, and, in particular, L.O. Tornese for their help in collecting and analyzing the data.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

TED E. BISHOP
Colonel, Corps of Engineers
Commander and Director

GRARI
TIB

Congunced
Austribution/
Availability Codes
Avail and/or
Special

A

CONTENTS

	J	Page
	CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	7
	SYMBOLS AND DEFINITIONS	8
I	INTRODUCTION	11
II	EMPIRICAL RELATIONS	11 11 13 14 15
111	EXPERIMENTAL SETUP	15 17 20 21 21 25 25
IV	EXPERIMENTAL PROCEDURE	26 26 28 28 32
V	DATA 1. Hourly and Daily Data in Appendix A	33 33 33 35 35
VI	DATA ANALYSIS	35 36 36 37 38 41 42 42
VII	SUMMARY AND CONCLUSIONS	45
	LITERATURE CITED	46
APPENDIX		
A	HOURLY AND DAILY DATA	47
В	BEACH SURVEY DATA	62
C	PLOTTED BEACH PROFILES	67
D	SELECTED BREAKER BAR AND WATERLINE PHOTOS	76
E	HOURLY CYCLE CALCULATIONS	88
F	DATIV CYCLE CALCULATIONS	0.3

CONTENTS--Continued

TABLES

1	Locations of overhead cameras mounted on the catwalk	Page 24
2	Locations of dye injection by test number	25
3	Test cycle variables and data	32
4	Example of hourly and daily data tables in Appendix A	34
5	Test cycle calculations	36
6	Comparisons of tests 1 and 2	38
7	Daily cycle statistics	38
8	Test cycle statistics	41
	FIGURES	
1	Coordinate system for momentum flux derivation	11
2	Diagram of test basin setup	16
3	Photo of test basin setup	17
4	Photo of sand trap	18
5	Diagram of diffraction analysis used to determine the alongshore length of the test beach	19
6	Shore-normal profile of the test beach, sand trap, concrete aprons, and adjacent rubble	19
7	Coordinate system used for test beach with locations of wave gages	20
8	Diagram of eductor	22
9	Photo of weighing station	22
10	Diagram of sand feeder	23
11	Photo of sand feeder	23
12	Diagram of complete sand-moving system	24
13	Size distribution of sand used for all tests	25
14	Schematic diagram of the interrelationship of the three experimental cycles	26
15	Example of overhead photo	27

CONTENTS

FIGURES--Continued

16	Example of breaking wave	Page • 27
17	Example of strip-chart wave record	. 27
18	Example of surf zone photos	. 29
19	Example series of drainage photos	. 30
20	Example of bed-form photo	. 32
21	Determination of beach slope used to calculate the surf similarity parameter	. 37
22	Relation between longshore transport rate, I_{ℓ} , and radiation stress, S_{xy} , using daily cycle data	. 39
23	Relation between longshore transport rate, I_{ℓ} , and longshore energy flux factor, $P_{\ell b}$, using daily cycle data	. 40
24	Relation between longshore transport rate, I_{ℓ} , and radiation stress, S_{xy} , using test cycle data	. 41
25	Relation between longshore transport rate, I_{ℓ} , and longshore energy flux factor, $P_{\ell b}$, using test cycle data	. 42
26	Relation between K_s and the surf similarity parameter, ξ , using test cycle data	. 43
27	Relation between K_p and the surf similarity parameter, ξ , using test cycle data	. 43
28	Comparison of data in this report to past reports, using SPM Figure 4-36	. 44

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
•	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

The second secon

 $^{^{1}}$ To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.

SYMBOLS AND DEFINITIONS

- a' ratio of sand volume to total volume of a sand deposit
- b subscript for breaker
- C wave phase velocity
- Cg wave group velocity
- d water depth
- d_{50} median sand size
- E energy density
- $\mathbf{F}_{\mathbf{x}}$ flux of wave energy per alongshore distance
- g acceleration of gravity
- H wave height

- H average wave height
- H_{rms} root-mean-square wave height
- H_s significant wave height
- I_{ϱ} longshore transport rate in immersed weight per unit time
- i subscript for any point seaward of breaker zone
- $K_{\mathbf{p}}$ empirical coefficient relating $I_{\mathbf{\ell}}$ to $P_{\mathbf{\ell}b}$
- K_s empirical coefficient relation I_ℓ to S_{xy}
- k wave number = $2\pi/L$
- L wavelength
- n ratio of C_g to C
- o subscript for deepwater condition
- P_Q energy flux term
- $P_{\mbox{\it l}\, b}$ longshore energy flux factor as used in this report
- $P_{\mbox{\scriptsize LS}}$ longshore energy flux factor as used in the SPM
- Q longshore transport rate in volume per unit time
- R range of coordinate system defined in Figure 7

SYMBOLS AND DEFINITIONS--Continued

- r correlation coefficient
- S station of coordinate system defined in Figure 7
- S_{xv} radiation stress component (flux of y-momentum in x-direction)
- T wave period
- t time

- u onshore component of water particle velocity
- v alongshore component of water particle velocity
- x coordinate in onshore direction
- y coordinate in alongshore direction
- z coordinate in vertical direction
- α angle between wave crest and shoreline
- $\alpha_{\mbox{\scriptsize g}}$ $\,$ angle between wave generator and shoreline
- β angle of beach slope with horizontal
- η water surface elevation
- θ wave phase
- ξ surf similarity parameter as used in this report
- $\xi_{\rm h}$ surf similarity parameter as used in Kamphuis and Readshaw (1978)
- ρ mass density of water
- ρ_e mass density of sand
- ω angular frequency of wave = $2\pi/T$

MOVABLE-BED LABORATORY EXPERIMENTS COMPARING RADIATION STRESS AND ENERGY FLUX FACTOR AS PREDICTORS OF LONGSHORE TRANSPORT RATE

by Philip Vitale

I. INTRODUCTION

Three-dimensional movable-bed laboratory tests were conducted to compare radiation stress and energy flux factor as predictors of the longshore sediment transport rate. The tests were performed in the U.S. Army Coastal Engineering Research Center's (CERC) Shore Processes Test Basin (SPTB). This report presents derivations of the radiation stress and the energy flux factor, documents the experimental setup and procedure, tabulates most of the data, and performs the data analyses. Many photos were taken during the tests; however, only a few were used in the report. The complete set of test photos is available from CERC's Coastal Engineering Information and Analysis Center (CEIAC).

II. EMPIRICAL RELATIONS

The longshore transport data are related empirically to the two expressions representing wave conditions. One, radiation stress, is based on momentum flux, the other on energy flux. An important concept which is also used in the data analyses is the surf similarity parameter.

Momentum Flux.

The dependent variable studied here is the longshore transport rate caused by waves approaching the beach; therefore, the consequential momentum term is the onshore flux of alongshore momentum. The derivation of the term follows Longuet-Higgins (1970) which applies the concept of wave momentum flux to the generation of longshore currents.

The coordinate system used is shown in Figure 1. The y-axis is along the shoreline, the x-axis is normal to the shoreline and positive shoreward, and the z-axis originates at the stillwater level and is positive upward. Using this system, the onshore flux of alongshore momentum is the flux of y-momentum in the x-direction, S_{xy} . This term is one component of what is commonly called the radiation stress tensor.

Figure 1. Coordinate system for momentum flux derivation.

According to small-amplitude wave theory, the components of the water particle velocity in the x- and y-directions for a wave traveling at an angle, α , to the shoreline (Fig. 1) are, respectively,

$$u = \frac{H}{2} \frac{gT}{L} \frac{\cosh [k(z+d)]}{\cosh kd} \cos \theta \cos \alpha \qquad (1)$$

$$v = \frac{H}{2} \frac{gT}{L} \frac{\cosh [k(z+d)]}{\cosh kd} \cos \theta \sin \alpha$$
 (2)

where

H = wave height

g = acceleration of gravity

T = wave period

L = wavelength

d = water depth

k = wave number

 θ = wave phase.

The last two terms are defined as

$$k = \frac{2\pi}{L}$$

and

$$\theta = kx - \omega t$$

where t is time, and ω the wave angular frequency

$$\omega = \frac{2\pi}{T}$$

The y-momentum (alongshore momentum) per unit volume is ρv where ρ is the water mass density. The flux of this momentum in the x-direction (onshore) per unit alongshore distance and unit water depth is ρvu . Integrating over the water column and averaging over time produce the mean alongshore momentum flux in the x-direction per unit alongshore distance

$$S_{xy} = \int_{-d}^{\eta} \rho v u \, dz \tag{3}$$

where the overbar denotes the mean with respect to time and η the water surface elevation. Substituting equations (1) and (2) into (3) and dropping terms of higher than second order produce

$$S_{xy} = (\overline{E}C_g \cos \alpha) \frac{\sin \alpha}{C}$$
 (4)

where C is the wave phase velocity, C_{g} the wave group velocity, and \overline{E} the wave energy density

$$\overline{E} = \frac{\rho g H_{rms}^2}{8} \tag{5}$$

where H_{rms} is the root-mean-square (rms) wave height. The term in parentheses in equation (4) is the flux of wave energy per alongshore distance, F_{χ} , assuming straight and parallel bathymetric contours. When zero wave energy dissipation is assumed,

$$F_x = \overline{EC}_g \cos \alpha = \text{constant}$$
 (6)

In this report, dissipation is assumed to be zero up to the breaker zone; therefore, $F_{\rm X}$ is constant from deep water to the breaker zone. Since the ratio of sino to C is constant due to Snell's law, equation (4), which represents the alongshore wave momentum entering the surf zone, is constant seaward of the breaker zone.

Equation (4) can be revised for application of monochromatic waves, as in this report. For such wave conditions, the average wave height, \overline{H} , measured during the tests (and discussed later in Section IV) is equal to H_{rms} . By rewriting equation (4),

$$S_{xy} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right) \frac{\sin \alpha}{C}$$
 (7)

 S_{xy} is now defined for use with laboratory monochromatic wave data. Note that equation (4) is valid for any wave condition; equation (7) is valid only for conditions where \overline{H} equals H_{rms} .

Energy Flux.

In literature, the longshore transport rate has been empirically related most frequently to a term found by multiplying both sides of equation (4) by the wave phase velocity, C, to yield

$$P_{\ell} = (\overline{E}C_{g} \cos \alpha) \sin \alpha$$
 (8)

Unlike S_{xy} , P_ℓ is not constant seaward of the breaker line; therefore, specifying where P_ℓ is being calculated is necessary. This report, following convention, determines P_ℓ at the breaker line,

$$P_{lb} = (\overline{E}C_g \cos \alpha)_b \sin \alpha_b \tag{9}$$

representing the value of P_{ℓ} at the point closest to where the longshore transport is occurring. The subscript b denotes breaker values. The term

in parentheses in equation (9) has been shown to be constant (see eq. 6) seaward of the breaker line; therefore, subscript b may be replaced by i which represents any point seaward of the breaker line. Making this change, using equation (5), and letting H_{rms} equal \overline{H} for monochromatic waves, equation (9) becomes

$$P_{lb} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right)_i \sin \alpha_b \tag{10}$$

The Shore Protection Manual (SPM) (U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977) provides a term similar to $P_{\ell b}$ except that the wave height used is the significant height, $H_{\rm S}$. The term, called the longshore energy flux factor, is defined as

$$P_{ls} = \left(\frac{\rho g H_s^2}{8} C_g \cos \alpha \sin \alpha\right)_b \tag{11}$$

 $\rm P_{ls}$ is derived in Galvin and Schweppe (1980). The relationship between $\rm H_{rms}$ and $\rm H_{s}$ has been shown in Longuet-Higgins (1952) to be

$$H_s^2 = 2H_{rms}^2 \tag{12}$$

assuming a Rayleigh distribution of wave heights as well as a number of other conditions. Therefore,

$$P_{\ell b} = \frac{P_{\ell s}}{2} \tag{13}$$

Since P_{lb} and P_{ls} are essentially the same terms, this report uses the SPM terminology and refers to P_{lb} as the longshore energy flux factor.

3. Longshore Transport Rate.

The longshore transport rate, Q, given in the SPM in units of volume per unit time, is also commonly shown as $\,I_{\ell}$ with units of immersed weight per unit time. The relationship between the two is

$$I_{g} = (\rho_{s} - \rho) \text{ ga}^{t} Q \tag{14}$$

where ho_s is the mass density of sand and a' the ratio of sand volume to total volume of a sand deposit, which takes into account the sand porosity. For discussions of equation (14), see Komar and Inman (1970) and Galvin (1979). Since the laboratory tests described here measured I_{ℓ} directly, this term is used in most of the data analysis.

4. Empirical Relations.

The expressions derived in the preceding paragraphs are used to set up the following empirical relations

$$I_{\ell} = K_{p} P_{\ell b} \tag{15}$$

and

$$I_{\ell} = K_{S}S_{XY} \tag{16}$$

where $K_{\rm p}$ and $K_{\rm s}$ are coefficients to be determined from the test data in this report.

Equation (15) is based on the concept that the work done in moving the sand alongshore is proportional to the energy which approaches the beach. The units are consistent and $\, K_{\rm D} \,$ is dimensionless.

Equation (16) is based on the concept that the sand transported alongshore depends on the alongshore force exerted by the wave motion on the bed inside the surf zone. By the equation of motion, this force is related to the change of momentum inside the surf zone. The alongshore momentum, S_{xy} , enters the surf zone through the breaker line but cannot exit through the shoreline boundary. Therefore, the change in alongshore momentum is S_{xy} and equation (16) results. K_{s} has dimensions of length over time.

5. Surf Similarity Parameter.

Kamphuis and Readshaw (1978) showed that $K_{\rm p}$ and $K_{\rm s}$ are dependent upon the surf similarity parameter,

$$\xi_{\rm b} = \frac{\tan \beta}{\left(H_{\rm b}/L_{\rm o}\right)^{1/2}} \tag{17}$$

in which tan β is the beach slope, H_b the breaker height, and L_0 the deepwater (d/L > 1/2) wavelength. ξ_b reflects variations in beach shape, breaker type, and rate of energy dissipation. Using the results of laboratory tests, the following relationships were found by Kamphuis and Readshaw

$$K_p \simeq 0.7\xi_b$$
 for $0.4 < \xi_b < 1.4$ (18)

$$K_s \simeq 0.08\xi_b$$
 for $0.4 < \xi_b < 1.25$ (19)

For values of ξ_b higher than the upper limits, K_p and K_s become independent of $\xi_{b^{\bullet}}$

The surf similarity parameter is evaluated in this report to determine its effect on the longshore transport rate.

III. EXPERIMENTAL SETUP

This section discusses the setup in the SPTB (Figs. 2 and 3) and describes the wave generators, wave gages, and cameras and their positions. Also discussed are the sand-moving system, the method for measuring the longshore current velocity, and the size distribution of the sand used in the experiment. The design of the setup was based in large part on Fairchild (1970).

Figure 2. Diagram of test basin setup.

Figure 3. Photo of test basin setup.

1. Basin Layout.

A diagram of the basin setup is shown in Figure 2. The basin is 45.72 meters long, 30.48 meters wide, and 1.22 meters deep. The alongshore and the shore-normal directions of the sand beach were 7.62 and 11.45 meters, respectively. The backbeach was 3.05 meters in the shore-normal direction, but it was not part of the test beach.

Immediately downdrift of the beach was the sand trap, 0.91 meter wide and 12.7 centimeters deep (Fig. 4), used to catch the longshore transport.

Concrete aprons, 4.57 meters in the alongshore direction, were located on the downdrift side of the sand trap and on the updrift side of the beach. The updrift apron provided enough distance for the longshore current to develop between the updrift training wall and the beach. This phenomenon is discussed in Galvin and Eagleson (1965). The downdrift apron served two purposes—one as a platform for depositing the longshore transport that escaped the trap, the other as a surface on which the waves traveled to diminish diffraction effects since no downdrift training walls were used.

The major limitation in the experimental planning was the size of the SPTB, which permitted three wave generators, each 6.10 meters long, to be linked together and leave enough room to be rotated through various angles to the beach. The other limitation was the decision not to use downdrift training walls due to the wave reflection problem. When downdrift training walls are used, the wave energy, which is reflected off the beach at an angle in the downdrift direction, strikes the downdrift wall and is reflected back toward the updrift direction. The energy is then reflected by the updrift wall and the process repeats. The reflected wave energy is being trapped within the

Figure 4. Photo of sand trap.

two walls; this produces some complicated wave variability problems (e.g., see Fairchild, 1970). With no downdrift training walls, the reflected wave energy moves away from the beach area into the outer parts of the test basin where most of it is eventually dissipated by the rubble slope along the edge of the basin (Fig. 2). This, however, creates a problem with wave diffraction. The energy of the wave leaving the generator spreads laterally into still water and gradually decreases the wave height toward the updrift end of the wave crest.

To minimize the decrease in wave height over the test beach, it was designed using the diffraction diagram for a wave traveling past a semi-infinite breakwater from Figure 2-33 of the SPM. The period and angle used in the diffraction analysis were 3 seconds and 10°, respectively, since these values produced the maximum diffraction closest to the beach. The spreading of wave energy into the shadow of a breakwater is analogous to the spreading of wave energy into the area of the test basin downdrift of the generators. The diagram (Fig. 5) indicated that the alongshore length of the beach should be 7.62 meters. Most of the diffraction-caused decrease in wave height occurs over the downdrift concrete apron.

Rubble, ranging in size from 7.62 to 15.24 centimeters, was placed at several locations in the basin to absorb wave energy and provide gradual slopes between the concrete aprons and the basin floor. The beach, sand traps, concrete aprons, and adjacent rubble were all built to the same shorenormal profile (Fig. 6). This profile was based on Chesnutt's (1978) long-term two-dimensional tests in which waves were run onto a sand beach to determine profile response. After superposing several of Chesnutt's (1978)

Figure 5. Diagram of diffraction analysis used to determine the alongshore length of the test beach.

Figure 6. Shore-normal profile of the test beach, sand trap, concrete aprons, and adjacent rubble.

profiles run for 80 hours or more with wave periods similar to those used in this experiment, the shore-normal profile in Figure 6 was drawn as a compromise or average through the superposed profiles. This profile was used to lessen the onshore-offshore adjustment of the beach.

Figure 7 shows the coordinate system used for the test beach. The origin is at the updrift, shoreward corner of the beach. Ranges (in meters) are along the alongshore axis, and stations (in meters) along the shore-normal axis. Any point on the beach, or in the basin, can be described by a range-station pair.

Figure 7. Coordinate system used for test beach with locations of wave gages (R = range, S = station).

2. Generators.

The three piston-type 6.10 meter-long generators used in this experiment produced only monochromatic waves and are discussed in Stafford and Chesnutt (1977). The generators were set at four different angles--0°, 10° , 20° , and 30° --to the beach during the experiment. For each setting, an updrift training wall was built from the generator to the 1-foot depth. This allowed circulation past the wall to feed the longshore current. Figure 2 shows the setup of the four generators and training wall.

For the 10° and 20° tests, the training wall was curved to allow for wave refraction. However, since the wall stopped at the 1-foot depth, the curves

were small and considered not worth the construction effort. Therefore, the curve for the 30° tests was deleted and a straight training wall was used.

3. Sand-Moving System.

As the waves approached the beach at an angle, the sand moved in the downdrift direction. Most of it deposited in the sand trap. The sand which escaped the trap deposited either on the downdrift concrete apron or beyond the apron and rubble (covered to keep sand from being lost within it) onto the basin floor. This area is shown in Figure 2 as the supplementary deposition area. Although separate measurements of the sand deposited in each area were not taken, it is estimated that 80 to 95 percent of the longshore transport fell into the trap. The greater the transport rate and the suspended sediment, the greater was the amount of sand escaping the sand trap.

The trap was cleaned continually during a test using an eductor attached to a small centrifugal pump. Water was pumped through the eductor at high speed, creating a suction to pick up the sand (Fig. 8). The sand was pumped to the weighing station (Fig. 9), deposited in one of two bins, and weighed submerged. When divided by the appropriate time period, the value became the immersed weight longshore transport rate.

After the weighing, the sand was pumped, using another eductor, into a sand feeder. The sand feeder is a vertical cylinder open at both ends in which sand is introduced through the top and removed by waves through the bottom. A diagram and a photo of the feeder are given in Figures 10 and 11. The primary advantage of the feeder is that it permits waves to control the amount of sand introduced onto the beach. Savage (1961) discusses the feeder and its development.

In summary, the complete sand-moving system (Fig. 12) included the following:

- (a) A sand trap, a downdrift concrete apron, and a downdrift deposition area which trapped the sand;
- (b) a downdrift eductor-pump combination which moved the trapped sand to the weighing station;
 - (c) a weighing station which weighed the amount of sand moved;
- (d) an updrift eductor-pump combination which moved the sand from the weighing station to the sand feeder; and
 - (e) a sand feeder which redeposited the sand onto the beach.

4. Instruments.

Wave heights were measured using parallel-wire wave gages (see Fig. 7). Gages 1 and 2, located seaward of the toe of the beach, were used for all 15 tests. Gage 3, located over the beach, was used for tests 5 to 15. Gage 4A, located close to the breaker line, was used for tests 5 to 11. Beginning with test 12 for the remainder of the tests, gage 4A was adjusted to measure the breaker height and then renamed gage 4B.

Figure 8. Diagram of eductor.

Figure 9. Photo of weighing station.

Figure 10. Diagram of sand feeder.

Figure 11. Photo of sand feeder.

23

Figure 12. Diagram of complete sand-moving system.

Two cameras were mounted over the beach on the catwalk of the SPTB. One was a view camera with an adapter for taking 4- by 5-inch Polaroid black-and-white photos, and the other a standard 35-millimeter camera. The locations of the cameras are given in Table 1.

Other instruments used in the tests include standard hydraulic scales for weighing the sand, and a standard level and rod for surveying the beach after each test.

Table 1. Locations of overhead cameras mounted on the catwalk.

Locationl	Car	nera
	View (m)	35-mm (m)
Range	3.9	3.9
Station	4.9	4.7
Elevation above SWL	8.5	8.5

Accurate only to ± 0.1 meter.

5. Dye Injection.

Longshore current velocities for tests 5 to 15 were measured by injecting dye into the surf zone through a hose which ran from the sand feeder to a small stake in the surf zone. Dye was poured by hand into the top of the hose. Table 2 gives the locations of the dye injection by test numbers. The change in location of the stake in tests 7 to 10 was a procedural error and not planned for a special purpose. The dye injection procedure is discussed in detail in the next section.

Table 2. Locations of dye injection by test nu
--

Test Nos.	Dye injected	Dye timed	Dye timed	Timed distance
-	at range	from range	to range	traveled
<u> </u>	(m)	(m)	(m)	(m)
5 and 6	3.00	3.60	7.60	4.00
7 to 10	3.82	3.82	7.73	3.78
11 to 15	3.00	3.73	7.73	4.00

6. Sand Size.

Figure 13 shows the size distribution of the sand used for all 15 tests. The median diameter was 0.22 millimeter. The geometric standard deviation is defined as

$$\sigma_{g} = \frac{d_{16}^{1/2}}{d_{84}} \tag{20}$$

where d_{16} and d_{84} are the sand sizes at which 16 and 84 percent, respectively, of the sample is coarser. The value of σ_g for the sand used was 1.22. Figure 13 indicates that the sand was well sorted.

Figure 13. Size distribution of sand used for all tests.

IV. EXPERIMENTAL PROCEDURE

Each test was composed of three major data collection cycles: an hourly cycle, a daily cycle, and a test cycle. For example, wave heights were measured every hour (hourly cycle), water temperature was measured twice a day (daily cycle), and beach surveys were taken at the end of each test (test cycle). The typical test schedule was 4 hourly cycles daily for 6 days for a total of 24 run-hours per test. Tests 1 and 2, as discussed later, were exceptions to this schedule. Figure 14 is a schematic diagram of the interrelationship of the three cycles. Since waves were run every other day, a complete test took about 3 weeks.

Figure 14. Schematic diagram of the interrelationship of the three experimental cycles.

1. Hourly Cycle.

The various types of data collected in a typical hourly cycle are shown in Figure 14, along with an indication of time of collection. Before a new hour of run-time was started, photos of the beach were taken from overhead with both the 35-millimeter camera (Fig. 15) and the view camera. A reference rope in the alongshore direction at station 5 and painted arrows on the concrete at each station bordering the beach can be seen in Figure 15. Photos, such as shown in Figure 15, provide a record of the change in waterline and breaker bar throughout the tests. The waves were then turned on and usually, within 5 minutes of the start, an overhead photo of the breaking wave was taken with The angle between the breaking wave and the reference rope the view camera. was later measured from the photo to determine the breaking angle of the wave Note that this procedure assumes the alongshore direction (see Fig. 16). remained constant throughout the test. In actuality, however, the alongshore contours are changing, as evidenced in Figure 15.

After a run-time of 30 minutes, wave data were collected for 2 minutes. A sample strip-chart record is shown in Figure 17. The wave height was determined from this record. For a given length of wave record, a horizontal line was drawn along what appeared to be the average wave-crest elevation. A horizontal line was also drawn for the wave troughs. The distance between the two lines was measured to determine the average wave height, $\overline{\rm H}_{\bullet}$. This procedure assumes that a nearly uniform distribution of wave heights is produced by the monochromatic wave generators.

Figure 15. Example of overhead photo.

Figure 16. Example of photo of breaking wave.

Figure 17. Example of strip-chart wave record.

Immediately after the wave data were collected, dye was injected into the surf zone, as discussed in Section III, and the leading edge of the dye was timed over a distance of approximately 4 meters (see Table 2) to determine the longshore current velocity. Also recorded were the station at which the dye left the downdrift edge of the beach and the station at which the waves were breaking. Therefore, the determination of whether the dye moved offshore, along the breaker line, or onshore could be made. Most of the dye injections traveled along the breaker line.

During the hourly cycle, sand was continually picked up from the trap area and weighed when a bin was full. A complete record of the amount of sand moved in a given time period existed only at the end of the day after the waves had been stopped and all the remaining sand had been picked up and weighed. Therefore, the longshore transport rate can be given for a daily cycle or a test cycle only.

2. Daily Cycle.

At the start of every test day (see Fig. 14), the water temperature was recorded, the water level was corrected to 0.710 meter, the wave gages were calibrated, and a check of all equipment was made. The hourly cycles were then started. Four hourly cycles were usually completed each day.

Shortly before the waves were turned off at the end of the day, photos of the surf zone were taken from the side (see Fig. 18 for examples). After the waves were stopped, all the sand in the sand trap, on the downdrift concrete apron, and in the downdrift deposition area was moved to the weighing station and weighed. The day's longshore transport movement was then determined after the final weighing. This quantity, divided by the total number of run-hours, provided the immersed weight longshore transport rate for the day.

Test Cycle.

At the beginning of each test, new test values for the wave period, T, the generator angle, α_g , and the generator eccentricity, Ecc, were selected and set (Fig. 14). Ecc is half the distance the generator bulkhead moves. The combination of period and eccentricity produced a predicted wave height, using the calibration curve of the generators (see Fig. 2 in Fairchild, 1970). This guided the selection of T and Ecc but was not used for wave height determination.

The beach was regraded to the shore-normal profile (see Fig. 6) before each new test. This included raking the beach to remove all traces of ripples from the prior test. The basin was usually flooded to cover the entire beach and left over a weekend to allow the new beach to stabilize before the new test cycle began.

After the test was completed, the basin was drained in 10-centimeter increments, producing depth contours of 0, 10, 20, 30, 40, 50, and 60 centimeters. An overhead photo of the waterline was taken at each increment. An example series is shown in Figure 19. Surveys of the beach were then taken, using a standard level and rod, along ranges 1.5, 2, 3, 4, 5, 6, 7, and 7.6 meters. The elevation on each range was read at all major breaks in slope.

Figure 18. Example of surf zone photos.

Figure 19. Example series of drainage photos.

Finally, photos of the beach were taken at close range to document important bed forms, such as ripples and bars (Fig. 20).

Figure 20. Example of bed-form photo.

4. Range of Variables.

Table 3 gives the test variables for all 15 tests. Note that the 0.710- meter water depth and the sand were the same for all tests. The wave heights listed are the average of all the hourly measurements of gages 1 and 2 for each test.

Table 3. Test cycle variables and data.

Test Total No. run-time	Total run-time	Period	Generator angle	Water temperature	Wave height	Breaker angle	Longshore current	12.104
	(hr)	(a)	(degrees)	(°C.)	(cm)	(degrees)	(cm/s)	(N/s)
1	25	2.35	10	22.8	8.2	8	1	6,117
2	50	2.35	10	22.8	8.0	7		6,890
3	24	1.50	10	20.7	12.8	7		8,396
4	24	1.90	10	15.9	11.5	7		6,188
5	24	3.00	10	12.6	7.2	3	3	7,544
6	24	2.35	20	12.3	7.7	9	17	9,966
7	24	1.90	20	11.7	10.2	11	30	7,281
8	24	1.90	20	13.8	10.0	11	20	3,446
9	24	1.50	20	14.7	10.3	15	27	5,227
10	24	1.90	20	18.8	16.5	15	29	10,605
11	24	2.35	00	20.7	7.4	-5	0	892
12	24	2.35	30	23.1	8.1	20	28	16,328
13	24	3.00	30	23.2	6.9	15	7	11,941
14	24	3.00	30	19.4	15.6	30	23	32,938
15	24	1.90	30	16.1	15.1	19	40	25,502

Not available.

The data collected during the experiments are provided in Appendixes A to D. Appendix A contains the hourly and daily data for each test. Appendix B lists the beach survey data, which are plotted in Appendix C, taken after each test. Appendix D provides 35-millimeter photos of the beach taken during a test with the waves stopped.

1. Hourly and Daily Data in Appendix A.

Table 4 is an example of how the daily and hourly data are tabulated in Appendix A. Column 1 lists the run-time over which the data were collected. Run-time is defined as the cumulative time of wave operation from the beginning of the test. A run-time of 05 10 means that up to that point, waves had been run at the beach for a cumulative total of 5 hours and 10 minutes. This would be the case even if the first wave had been run 2 days before.

Column 2 lists the length of time (in minutes) waves were stopped to take overhead photos of the beach. The letters CFD or TC indicate that the testing was completed for the day or the test was completed. Between any two entries in column 2, the waves were run continuously. For example, from the beginning of the test at run-time 00 00 to run-time 01 00 (see Table 4), the waves were continuously run. At that point the waves were stopped for 5 minutes to take overhead photos of the beach. The waves were then restarted and run continuously until run-time 02 00.

Columns 3 and 4 list the water temperature and the water depth, respectively. These measurements were taken in the morning before the testing started and in the afternoon after the testing stopped.

Column 5 lists the immersed weight of sand moved during testing from the previous entry in the column. A value is always listed with a CFD or TC entry since it was only at the end of the day that the balance of sand not weighed during the time the waves were running could be picked up and weighed. In Table 4, the value of 4,227 immersed pounds of sand is the quantity of sand transported from run-hour 04 00 to 08 00. This column is not a cumulative listing of sand transported.

Columns 6, 7, 8, and 9 list the wave heights measured by gages 1, 2, 3, and 4A or 4B, respectively. Section III discusses the locations of these gages, which are shown in Figure 7. Column 10 lists the breaker angles measured from the Polaroid 4- by 5-inch photos of the breaking waves (see Fig. 16). Column 11 lists the longshore current velocity measured by dye injections, as discussed in Section III. Column 12 lists the breaker type, using the following code: sg, surging; p, plunging; c, collapsing; and sp, spilling. A double entry indicates both types of breakers were evident with the first type predominant.

Summary Data Table.

For a comparison of test conditions, Table 3 provides the average values of water temperature, wave height, wave breaker angle, longshore current velocity, and average longshore transport rate in immersed pounds per second for each test. Also included are the wave period and generator angle.

			PE#10	3.00 StC	7EST 1	GENEHAT	TOR ANGLE	. 30 DEGMEES	3		
me.	MINUTES	.,114	-ATER	IMME RSED		WAVE	HE I GHT		BHEAKER	LONGS#ORE CURRENT	BHEAK
	BTOPPED	CELS TUB	DEPTH CM	re I GMT LBS	GAGE 1	PAGE 5	GAGE S	G4GE #4/48	DEGREE 8	CH/S	1172
		22.7	71.0								
	_					7,6	7,1	7.1	15	•	\$6
	5				6.7	a. 0	7.3		15		86
	10				1.0	7,6	7.0	••1	1.0		86
	5					-			10		
	CF0	23.1	70.A 71.0	4239	6,8	7.4	4.7	4.0		•	86
		22.4	71.0		7,2	7.0	5,4	11.9	1•	•	86
	10				4. 7	٠,٥	6,1	11.0	1•	7	3 G
	10				••	•.•	•••		12	•	
	10				4,8	•.•	••0	11.9	13	•	86
	c#0	23.1	71.0	4227	7.1	•,•		11.1	1,	•	\$6
	•	23.6	71.0						15	•	86
	15				4,3	7,3	7.0	11.7	15	•	
	CF0	23.6	70.9	1661	4,2	7.0	7.0	12.2		•	86
		23.7	71.0		٠.٠	•.•	٠,٤	10.0	20	•	86
	10					-			14	•	86
	10				7.2	•,5	•,•	4.4	10	•	••
	10				7.1	•.4	•,•	9.4		10	36
	C#0	22.6	•••	3500	7.0	•.•	6.0	9,1	16	•	86
		23.5	71.0	3,00					10		
	10				7.1		4,5	4,5	••	•	86
	10				.,8	.,8		9,6	10	,	80
	10				4.5	4.7	5,0	0,0	15	7	80
					6.2	6.7	٠.٠	10,0	10	,	
	¢*0	55.0 55.0	71.0 71.0	3633		·					
	20				•.•	7.0	••1	6,4	16	5	\$(
					4,5	7.1	٠,٤	4,5	10	3	
	•0				5.*	7,4	7,3	7,5	14	•	80
	10								12		
	CF0	23.1	71.0 71.0	3789	5,0	4,2	1,2	8,0		•	\$6
	5				5.7	7.6	٠,5	•.•	13	•	80

CFD = testing completed for day; TC = testing completed.

3. Survey Data.

After each test, the SPTB was drained and the beach was surveyed. The distance and elevation pairs are listed in Appendix B and plotted in Appendix C. The elevation datum is the stillwater level (SWL), which corresponded to a 0.710-meter water depth.

4. Overhead Photos.

Every hour during testing, the waves were stopped to take an overhead 35-millimeter photo of the beach (see Fig. 15). The photos show the waterline, the longshore bar, and the swash zone. They are useful for a qualitative description of how the beach responded to the waves. Appendix D contains a series of photos for run-times 01 00, 08 00, 16 00, and 24 00.

VI. DATA ANALYSIS

This section includes the data analysis to determine the relations between ${\rm I}_{\ell}$ and ${\rm S}_{xy}$ and ${\rm I}_{\ell}$ and ${\rm P}_{\ell\,b^{\bullet}}$ The empirical coefficients found from these relations are then, in turn, related to the surf similarity parameter, ξ , which is adapted to the data collected. Also included is an explanation of the calculations of $S_{\chi\gamma}$, P_{lb} , ξ , and I_{l} , along with plots of the various relationships. The wave height used in the calculations is that measured at the toe of the beach (average of gages 1 and 2 wave heights). The breaker wave height, which would have been a better value, was not used for the following reasons. The wave height at the toe of the beach was measured for all 15 tests; the breaker height was not. Also, only one gage was used to measure breaker height, while two were used at the beach toe. The significant difference in height between waves measured at the two beach toe gages (see App. A) indicates that some wave height variability existed along the wave crest. Therefore, the average of the measurements at the two beach toe gages is probably a more reliable estimate of the entire wave passing the toe than the one gage measurement at the breaker is of the entire breaker wave. A comparison of the data in this report with past studies is shown in a Q versus P_{lb} graph.

Calculation of S_{xy}.

Equation (7)

$$S_{xy} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right) \frac{\sin \alpha}{C}$$

was used to calculate S_{xy} . Rearranging the equation,

$$S_{xy} = \frac{\rho g}{16} \overline{H}^2 n \sin 2\alpha \tag{21}$$

where n is the ratio $C_{\rm g}/C$ and a function of the water depth and wave period or length. $S_{\rm xy}$ was calculated at the toe of the beach by using the average of the wave heights measured at that location (see Fig. 7), and by using the generator angle for α . This was calculated for each set of wave data. Thus, for the standard 24-hour test, 24 values of $S_{\rm xy}$ were calculated (see App. E). The average of $S_{\rm xy}$ for each test is listed in Table 5.

Table 5. Test cycle calculations.

Test	Total run time	S _{xy}	Plb	I _k	K _s	K _p	ξ
	(hr)	(N/m)	(J/m/s)	(N/s)	(m/s)		
1	25	1.179	2.201	0.6116	0.5190	0.2779	0.6604
2	30	1.137	2.043	0.6889	0.6058	0.3373	0.6686
3	24	2.280	3.232	0.8396	0.3682	0.2598	0.3374
4	24	2.158	3.615	0.6188	0.2868	0.1712	0.4508
5	24	0.987	0.789	0.7544	0.7640	0.9557	0.8997
6	24	1.977	2.144	0.9966	0.5042	0.4648	0.6815
7	24	3.161	4.158	0.7281	0.2303	0.1751	0.4787
8	24	3.018	3.918	0.3446	0.1142	0.0880	0.4835
9	24	2.808	4.286	0.5227	0.1862	0.1220	0.3761
10	24	8.250	14.761	1.0605	0.1285	0.0718	0.3764
12	24	2.942	4.839	1.6328	0.5550	0.3374	0.6644
13	24	2.241	2.948	1.1941	0.5328	0.4051	0.9190
14	24	11.578	28.802	3.2938	0.2845	0.1144	0.6112
15	24	9.253	13.536	2.5502	0.2756	0.1884	0.3934

2. Calculation of P_{lb}.

Equation (10)

$$P_{lb} = \left(\frac{\rho g \overline{H}^2}{8} C_g \cos \alpha\right)_i \sin \alpha_b$$

was used to calculate P_{lb} . The term in the parentheses, like S_{xy} , was calculated at the toe of the beach. However, the sine term used the breaker angle as measured from the photos of the breaking waves. The breaker angle used in the calculation was the average of the breaker angles collected 30 minutes before and after the wave data were collected (see Fig. 14). P_{lb} was calculated for each set of wave data, 24 values of P_{lb} were calculated for the standard 24-hour test (see App. E). The average of P_{lb} for each test is listed in Table 5.

Calculation of ξ.

The surf similarity parameter of Kamphuis and Readshaw (1978) was presented in equation (17) as

$$\xi_{b} = \frac{\tan \beta}{\left(H_{b}/L_{o}\right)^{1/2}}$$

For the data in this report, a different surf similarity parameter is needed since $\overline{\mathbb{H}}$ will be substituted for \mathbb{H}_b , as discussed at the beginning of this section. Therefore, the surf similarity parameter in the following analysis is

$$\xi = \frac{\tan \beta}{\left(\overline{H}/L_{\rm O}\right)^{1/2}} \tag{22}$$

The same beach slope was used for all 15 tests and was determined as shown in Figure 21. A value of ξ was calculated for each test using the average \overline{H} for the entire test. These values are listed in Table 5.

Figure 21. Determination of beach slope used to calculate the surf similarity parameter.

4. Special Tests.

Three tests were performed under special circumstances. Test 2 was a repeat of test 1; test 8 was a repeat of test 7, except the sand feeder was moved shoreward; and test 11 was done with a generator angle of zero.

Tests 1 and 2 were both run with a period of 2.35 seconds, a generator angle of 10°, and a generator eccentricity of 5.97 centimeters. Test 1 ran for 25 hours, test 2 for 50 hours. A twofold comparison of the two tests was originally planned. The first 25 hours of test 2 data was to be compared to the test 1 data, and then, both sets of data were to be compared to the last 25 hours of test 2. Unfortunately, due to an experimental error, only the first 30 hours of the test 2 longshore transport data was collected accurately. Therefore, the only comparison made was test 1 to the first 30 hours of test 2. Reference to test 2 in the remainder of the report refers to the first 30 hours only. Appendix A contains all 50 hours of test 2 data.

Table 6 compares the results of the two tests. The differences listed give an indication of the repeatability of the data collection. The longshore transport rate changed by 12.6 percent, which is a significant variation. This is an inherent problem of longshore transport tests, indicating that some important unknown factors are at work.

Table 6. Comparison of tests 1 and 2.

Test	Total run-time (hr)	Avg H (cm)	Avg a _b (degrees)	I ₂	S _{xy}	P _{fb} (J/m/s)	
1	25	8.17	8	0.612	1.18	2.20	
2	30	8.03	7	v.689	1.14	2.04	
Pct difference1		-1.7	-12.5	+12.6	-3.4	-7.3	

Pct difference = (Test 1 - Test 2) 100.

Tests 7 and 8 were both run with a period of 1.90 seconds, a generator angle of 20° , and a generator eccentricity of 5.97 centimeters. The only difference was that the sand feeder, which was located at the SWL for all other tests, was moved shoreward 1.4 meters for test 8. The feeder was moved because the shoreline at the end of test 7 significantly angled shoreward toward the downdrift side of the beach. This can be seen in the test 7 photos in Appendix D. The feeder was moved shoreward to see if a straight shoreline resulted. It did, as the photos in Appendix D for test 8 show. Another major effect was the change in I $_{\chi}$ from 0.728 newton per second for test 7 to 0.345 newton per second for test 8, a decrease of 53 percent. Test 8 is excluded from the remaining data analyses.

Test 11 was run with a period of 2.35 seconds, a generator angle of 0°, and a generator eccentricity of 5.97 centimeters. The test was meant as a control to determine the amount of sand moved by the diffusion caused by breaking waves. This value of I_{ℓ} for test 11 was 0.089 newton per second. A comparable quantity of sand, 0.059 newton per second, also moved updrift. Test 11 is also excluded from the remaining data analyses.

5. Daily Cycle Graphs.

As discussed previously, longshore transport could be measured only on a daily cycle or test cycle basis. For the typical 24-hour test, six values of longshore transport rate were calculated. Each rate covered a period of 4 run-hours. During this time period, four values of S_{xy} and $P_{\ell b}$ were calculated, averaged, and related to the corresponding value of I_{ℓ} . These values are listed in Appendix F and plotted in Figures 22 and 23. Table 7 lists the important statistical parameters.

Table 7. Daily cycle statistics.

Relation	Figure r2		1	Least squares lines						
•	No.		Standard slope	Y-intercept	Through origin slope					
It versus Sxy	22	0.74	0.21	0.38	0.28					
I versus Plb	23	0.73	0.09 0.58 0.13							

The square of the correlation coefficients, r^2 , represents the fraction of the variation of I_{ℓ} about its mean which is explained by the abscissa term. r^2 for S_{xy} and $P_{\ell b}$ are 0.74 and 0.73, respectively. These numbers show that I_{ℓ} correlates well with both terms to approximately equal degrees. The least squares lines listed in Table 7 are in Figures 22 and 23, which also include the least squares lines calculated with the limitation that the lines pass through the origin. The slopes of these lines are 0.28 for the I_{ℓ} versus S_{xy} graph and 0.13 for the I_{ℓ} versus $P_{\ell b}$ graph.

Figure 22. Relation between longshore transport rate, I_{ℓ} , and radiation stress, S_{xy} , using daily cycle data (tests 8 and 11 excluded).

Figure 23. Relation between longshore transport rate, I_{ℓ} , and longshore energy flux factor, $P_{\ell b}$, using daily cycle data (tests 8 and 11 excluded).

6. Test Cycle Graphs.

The average longshore transport rate for each test was calculated and compared with the test average of S_{xy} and $P_{\ell b}.$ These values are listed in Table 5 and plotted in Figures 24 and 25. Statistical values are in Table 8. r^2 for I_{ℓ} versus S_{xy} and I_{ℓ} versus $P_{\ell b}$ are 0.72 and 0.74, respectively. As with the daily cycle calculations, I_{ℓ} is shown to correlate well with both terms to approximately equal degrees. Figures 24 and 25 include both the standard least squares line and the least squares line forced through the origin. The slopes of the latter lines are 0.26 for the I_{ℓ} versus S_{xy} graph and 0.13 for the I_{ℓ} versus $P_{\ell b}$ graph.

Table 8. Text cycle statistics.

Relation	Figure	r ²		Least squares	lines
	No •		Standard slope	Y-intercept	Through origin slope
I _l versus S _{xy}	24	0.72	0.21	0.40	0.26
I _l versus P _{lb}	25	0.74	0.09	0.58	0.13
K _s versus ξ	26	0.70	0.82	-0.07	
K _p versus ξ	27	0.56	0.89	-0.22	

Figure 24. Relation between longshore transport rate, I_{ℓ} , and radiation stress, $S_{\chi\gamma}$, using test cycle data (tests 8 and 11 excluded).

Figure 25. Relation between longshore transport rate, I_{ℓ} , and longshore energy flux factor, $P_{\ell b}$, using test cycle data (tests 8 and 11 excluded).

7. Surf Similarity Relation.

Figures 26 and 27 were drawn to test the dependence of $K_{\rm S}$ and $K_{\rm p}$ on ξ . Test numbers are indicated in the figures. Table 8 lists the statistics. The K terms were calculated using equations (15) and (16). These graphs show that K is far from being constant, as is commonly assumed, and that it is strongly related to ξ .

8. Comparison to Past Data.

The units of I_{ℓ} and $P_{\ell b}$ were converted to those used in the SPM and plotted in Figure 28, which is taken from Figure 4-36 of the SPM. The SPM figure was modified by shifting the x-axis to convert from $P_{\ell s}$ to $P_{\ell b}$. Equation (13) shows the relation between $P_{\ell b}$ and $P_{\ell s}$. Test numbers for the data points of this report are noted in Figure 28.

Two major observations are immediately apparent. The first is that the laboratory data in this report, as in laboratory data from past reports, have considerable scatter. Since the surf similarity parameter, ξ , in this report varies by a significant amount for the different tests, as shown in Figures 26 and 27, some scatter is expected. The surf similarity parameter, of course, does not explain all of the scatter in the laboratory data. There are still some laboratory and scale effects which are not yet understood.

Figure 26. Relation between $K_{_{S}}$ and the surf similarity parameter, ξ , using test cycle data (tests 8 and 11 excluded).

Figure 27. Relation between K_p and the surf similarity parameter, ξ , using test cycle data (tests 8 and 11 excluded).

Figure 28. Comparison of data in this report to past reports, using SPM Figure 4-36 (tests 8 and 11 excluded).

The second observation is that most of the data fall beneath the SPM curve connoting low values of K_p . Since the SPM curve is based on field data, mostly from Komar and Inman (1970), a possible explanation is that the field data were collected under conditions of higher values of ξ than those for the laboratory data. Kamphuis and Readshaw (1978) suggest that Komar and Inman's data were indeed collected under conditions of high ξ_b . It seems reasonable to assume that the ξ values were also high.

VII. SUMMARY AND CONCLUSIONS

An analysis of the radiation stress, S_{xy} , and the energy flux factor, $P_{\ell b}$, shows that both predict longshore transport rate, I_{ℓ} , to comparable degrees. Approximately 70 percent of the variance of I_{ℓ} about its mean is explained by each term. There appears to be no major advantage in choosing one over the other to predict the longshore transport rate. However, S_{xy} has the advantage of being constant seaward of the breaker zone while $P_{\ell b}$ is not. This makes the calculation of S_{xy} more convenient than $P_{\ell b}$, which must be determined at the breaker line. On the other hand, $P_{\ell b}$ has the advantage of having the same units as I_{ℓ} , which means that K_{p} is dimensionless.

The empirical coefficients, K_s and K_p , are far from constant although K_p is commonly assumed to be so in practice. Part of the variation of the coefficients can be related to the variation of the surf similarity parameter, ξ , as shown in Figures 26 and 27. These figures show that K_s and K_p will increase with ξ . The considerable scatter evident in Figure 28 can be partly explained by the relation between the empirical coefficients and ξ . The data in this report and past laboratory and field data are compared in Figure 28. The laboratory data generally predict lower values of I_{ℓ} for a given $P_{\ell b}$ compared to the field data. Part of this trend can be explained by the differences in the surf similarity parameters, assuming the field data were collected under conditions of high ξ . Also, laboratory and scale effects probably contribute to the lower laboratory transport rates. The relative importance of these factors is suggested as a subject of future research.

LITERATURE CITED

- CHESNUTT, C.B., "Analysis of Results from 10 Movable-Bed Experiments," Vol. VIII, MR 77-7, Laboratory Effects in Beach Studies, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1978.
- FAIRCHILD, J.C., "Laboratory Tests of Longshore Transport," *Proceedings of the 12th Conference on Coastal Engineering*, American Society of Civil Engineers, Vol. II, 1970, pp. 867-889.
- GALVIN, C.J., "Relation Between Immersed Weight and Volume Rates of Longshore Transport," TP 79-1, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., May 1979.
- GALVIN, C.J. Jr., and EAGLESON, P.S., "Experimental Study of Longshore Currents on a Plane Beach," TM-10, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Washington, D.C., Jan. 1965.
- GALVIN, C. and SCHWEPPE, C.R., "The SPM Energy Flux Method for Predicting Longshore Transport Rate," TP 80-4, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1980.
- KAMPHUIS, J.W., and READSHAW, J.S., "A Model Study of Alongshore Sediment Transport Rate," *Proceedings of the 16th Conference on Coastal Engineering*, American Society of Civil Engineers, Vol. II, 1978, pp. 1656-1674.
- KOMAR, P.D., and INMAN, D.L., "Longshore Sand Transport on Beaches," Journal of Geophysical Research, Vol. 75, No. 30, Oct. 1970, pp. 5914-5927.
- LONGUET-HIGGINS, M.S., "On the Statistical Distribution of the Height of Sea Waves, 1," Journal of Marine Research, Vol. 11, 1952, pp. 245-266.
- LONGUET-HIGGINS, M.S., "Longshore Currents Generated by Obliquely Incident Sea Waves," *Journal of Geophysical Research*, Vol. 75, No. 33, Nov. 1970, pp. 6778-6801.
- SAVAGE, R.P., "A Sand Feeder for Use in Laboratory Littoral Transport Studies," *The Annual Bulletin of the Beach Erosion Board*, Vol. 15, U.S. Army, Corps of Engineers, Washington, D.C., July 1961.
- STAFFORD, R.P., and CHESNUTT, C.B., "Procedures Used in 10 Movable-Bed Experiments," Vol. I, MR 77-7, Laboratory Effects in Beach Studies, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1977.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vols, I, II, and III, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, 1,262 pp.

APPENDIX A

HOURLY AND DAILY DATA

The data in this appendix are available on computer cards from CEIAC.

				PERIOD	2,35	SECONDS TEST	01 GENER	TOR ANGLE	10 OE	GKEE 8			
RUN	TIME	MINUTES.	-4168	MATER	IMMERBI	i.D	=AVE	HEIGHT			-	LONGSHORE	BREAKLR
	Ru	STOPPED	CELS INE	DEPTH	FBB REIGHT	GAGE 1	1	GAGE 3	G461 44		ANGLE DEGREES	CURRENT CM/8	TYPE
0	.0			71.0									
٥	30 40				•.•	10.0					•		
1	0	ÇFO	25.5	71.0	360						•		
1	10 32 0	C#D			412	9.0	•.•				•		
Š	0			71.0							•		
	25	43				10.0	6.2				-		
3	0 1 0 3 0					10.2							
4	10												
5	30	CF0			1376	9,0	7.0						
5	40					6.4	0,4				10		
6 6 7	0 35 40					9,2	٥,٥				•		
į		40				٧,٠	•,•						
,	3					10.2	•,•				•		
	0 7										,		
8	30	c+o			1810	9,8	.0						
•	9		22.5	71.0							•		
10	30					9.0	7,2				•		
11	*36 *5					0.4	7,2				•		
12		40				10.2	5,6				•		
13	\$ 30 0					10.0	•,2				•		
1 3	7										. 7		
14	30	CFO			2508	10.0	6,2						
14	30		28.5	71.0		9,2	8,0				•		
19	30					9,6	7,4				•		
10	30					9,6	7.4				•		
17	30	•0				11.0	44.5				•		
16	30 5					10.0					•		
50	30	C#D			3200	10.0	••0						
50	5		24.0	71.0							•		
21	30					10.0	5,6				_		
51 21	80					•,0	7.0				7		
55	0 5 50					10.2	•,•				7		
23		•0				,002	•,•				7		
53	30					10.0	5,8				•		
24 24	50 55					10.0	•.0				•		
25	0	*C			5040						•		
				P##100	2.35	SECONDS TEST	OF SENER	ATOR ANGLE	. 18 DE	GREEA			
	•		28.5	71.0						- 460			
ě	10					10.4	5,8				,		
1	10 30 22 30 5 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5										,		
1	30					10.4	5,8						
;	5 30					10.4					,		
3	30					10.0	.,4				•		
	•						•,•				•		
•	30					10.4	4,4						

CFD = testing completed for day; TC = testing completed.

7E87 08	CONT									
BUN TIME	HINUTES .	PATER	BEPTH	IMMERBED MEIGHT		HAVE HESONT		BREAKER	POHERHORE	BREAKER
M# #M	STOPPED.	CELSIUS	CH	F08	GAGE 1	640E S 840E 3	8466 44/48	DEGREES	CHRENT CH/B	14PE
9 0										
9 0 9 7 5 30								•		
• •	CFD		•	2525	10.4-	•••		•		
• 0 • 30 7 5 7 30			71.0		4,2	5,0		,		
ý 10 8 0					10.0	5,4		•		
8 30					10.0	•.2		•		
• 0	CFD	21.5	71.0	1044		•••				
1 30		****			9,2	•,2		7		
10 0 10 30					8.4	7,8		7		
11 30					9,4	•••		7		
12 30					4,4	• • •		•		
13 & 13 30								•		
14 0	CF0	21.5	71.0	5444	•.4	•,•				
14 2		2.17	, v		4,5			•		
19 2 15 30					10.0	•.4		•		
16 0 16 30 17 0					4.9	•.0		,		
17 2					***	♦.0				
17 30 18 0					4.4	•.0		,		
18 4					10.0	• • 9				
1 • 3 1 • 30					9.5	6,4		7		
30 0 30 0	CF0		71.0	2540-		•••				
20 S			- • -		٠.٤	•.4		,		
21 5 21 30					•.3	0,1		,		
55 12 55 0								•		
53 0 55 20 55 18					9.9	• • 4		•		
23 30					4.8	•,3		•		
24 0 24 3					-			10		
24 3 24 30 25 0	CF0			2844	4.4	** 7				
25 0 25 5		24.0	71.0					•		
25 30 26 5 26 30					7.5	•,•		•		
27 0					10.5	•,•		-		
27 \$ 27 30					9.0.	••1		•		
28 0 28 5								•		
27 30 28 0 28 5 28 30 28 35	•0				10.1	•,2		•		
29 35					4.7	•.•				
30 0	C#D			2754	•.7	•.4				
30 0 30 5		23.0	71.0					7		
31 0					4,7	*. 1				
31 30					•.0	7.1		•		
32 10								•		
33 0					4,5	7.2				
33 30	75				4,4	•,2		•		
30 5	′ >							•		
30 30 31 10 31 130 32 10 32 10 32 30 33 10 33 30 33 30 34 50 35 10 35 30	CFD	25.7	•. •		4.3	5,4				
35 10 35 30		201	71,0		4.9	• •		•		
30 0					6,7	7,3				
30 30					4,3	•,5		7		
37 9 37 30					•,•	•.•		7		
30 0					- • •	~, ~				
30 30	•5							•		

1681 08	CONT										
BUN TIME	MINUTES .	UATER TEMP	HATER DEPTH	IMMERAED WEIGHT		HAVE	HEIGHT IN		BREAKER Angle	LONGSHORE CURRENT	OREAKER TYPE
HR MH	0707-25	CELS 1U0	CM	LBS	SAGE 1	BASE 2	GAGE 3	BAGE 4A/48	DEGREES	CH/S	1176
39 0					10.8	5.7					
39 38					10.0	7.0			•		
40 0	CFD	23.5	71.0		***	-					
40 15 40 30					4,2	7,1			5		
41 0									5		
41 5 41 10 42 5 42 30					4,1 9,3	7.3			•		
43 0					4,,	7,0			,		
43 10 43 30 44 0	•0				4,4	7.6			•		
44 2					•.•	6.6			5		
45 0	CF0	24,5	71.0		,	•••					
45 5 45 30			•		9,8	5,4			•		
40 40					9.7	0,3			•		
47 0 47 8 47 30									,		
48 0					4,2	5,6			_		
48 30 49 0	50				9.1	5,9			•		
49 5	,,				9,3	6.9			•		
50 0	TC				***	•••					

			PERIOD	1.50 8	CONDS	0EHERA	TOR ANGLE	10 PROFEED			
0 0		22.5	71.0						•		
0 30	5				13.8	12.3			_		
1 30	_				13.1	11.6			•		
2 0 2 3 2 50 3 0 3 6 3 30	5				12.7	13.4			•		
3 0	€0				1447				•		
3 30	¢#0	22.0	70.9	2792	12.4	15,1			•		
4 0	• •	21.8	71.1	•					•		
4 30 5 0	5				13.1	14.0					
9 4 3 30					13.2	14.7			•		
• 0	5								•		
• 30 7 0	CFD	81.8	70.7		12.6	13,3					
7 0		\$1.0	71.0						,		
	, CF0	\$1.0	71.0	2752	13.0	12,4			·		
0 1 0		0.15	71.0						,		
# 10 * 0 * 1	5				11.0	13.4					
9 30					4,7	15,3			3		
10 3	110								•		
11 0	•				11.0	14,0			_		
11 30	C#0	21.0	70.9	3018	11.3	14.0			•		
12 0	• •	21.0 20.5	70.9 71.0	3010					_		
12 30	5				11.3	15.0			•		
13 5	•				13.2				•		
14 0	115				13.6	13,2			_		
14 30 15 0	•				11.4	10.0			•		
19 2					12.0	14.5			•		
10 0	C#D	20.2	70.9 71.0	5050	••••	• • • •					
10 0 10 3 10 30 11 0 11 5 11 3 0 12 0 12 0 12 0 13 0 13 0 13 0 13 0 13 0 14 0 14 0 15 0 15 0 16 0 17 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18			•		12.0	12,2			•		
17 0	5								,		
17 30					18.1	11.0			•		

1687 03	CONT									
RUN TIME HR MN	HINUTES STOPPED!	TEMP CELSIUS	HATER DEPTH CM	IMMERBED HEIGHT LOS	SAGE 1	HAVE HEIGHT CH GAGE 3	046E 4A/4B	BMEAKER Angle Degreeb	LONGSMORE CURRENT CM/8	PREAMER
18 0 18 3 18 30	100							,		
19 0 19 2 19 30	5				12.4	12,2		•		
50 0 50 0	C#D	18.0	71.0 71.0	5950	15.8	11.6				
20 3 20 30 21 0	5				13.1	13,2		10		
21 4 21 30 22 0 22 8 22 30	115				12.1	11.3		11		
22 8 23 30 23 0	5				12.9	11,8		•		
23 3 23 30 24 0	7c			2700	13.2	13.0		2		
			PFRIOD	1,40 950	TEST (GENERATOR ANGLE	10 DEGREES			
			• • •							
0 Q 0 4 0 30		15.0	71.0		•.6			•		
1 0	5					11.5		•		
2 0	115				10.4	13,2		•		
2 3 2 30 3 0 3 2	5				11.1	13.8		•		
3 30 4 0 4 0	CFD	15.0	71.0 71.0	2300	11.0	15.4				
4 30 5 0	5				11.9	10.2		•		
5 3 5 30 6 0	115				11.0	14,2		•		
6 30 7 0	,				10.8	13,8		•		
7 30	CFD.	15,8	70.9	2164	10.2	12.8		7		
8 0 8 11 8 30		14,4	71.0		11.0	12.5		•		
• 0 • 7 • 30	5				11.2	13.2		•		
10 0 10 \$ 10 \$0	115				10,0	12,7		7		
11 0 11 7 11 30	5				10.0	13,7		•		
12 0 12 0 12 0	CF0	15.2	71.0	1415				7		
12 30 13 0 13 5	•				10.3	12,3		•		
13 30 14 0 14 5	115				10.1	12.5		•		
14 30 15 0	9				*,*	12.0		•		
18 30 15 0 15 5 15 5 16 0 16 0 16 4 16 30 17 0 17 3 17 3 18 3 18 3 18 3 18 3 18 3 18 3	CF0	15.8 17.0	71.0 71.0	1896	4,5	12.8		•		
16 4 16 30 17 0	5				•.•	13,3		•		
17 3 17 30 18 0	110				4,4	11.0		•		
18 3 18 30	5				.,4	11,0		7		
20 O	CFD	19.5	71.0	1968	8,6	12.4		7		
20 0 20 3	• •	10.5	71.0 71.0		10.4	13.7		•		
21 0 21 3 21 30 22 0 22 4 23 30 23 0	5				10.4	12.4		•		
22 0	115							•		
23 0	5				8,5	11.3				

TEB7 04	CONT										
MUN TIME	MINUTES STOPPED!	MATER TEMP	HATER DEPTH	SEASHIT NET		C	MEIGHT M		BREAKER	LONGSHORE CURRENT	BREAKER Type
HR MN		CELSIUS	CH	L. 8.0	SAGE 1	5 3848	CAGE 3	8466 44/48	DEBREES	CH/8	****
23 3 23 30					0,1	11,0			•		
23 30 23 % 24 0	70	10.5	71.0	1720					•		
					7687 .	5					
			PERIOD	3,00	8EC0M08	SENERA	TOR ANGLE	10 DEGREES			
0 0 0 \$		14.0	71.0						4		
0 3g 1 0 1 8	5				•••	•,•	8,2	11.0			
1 30	•0				7.0	0,1	7,9	10.0	2		
2 30 3 0	5					7,0	7,9	9.8	2		
2 30 2 8						7.4	6,2	11.4	2		
4 0 4 3	C70	11.5	70.9 71.0	1835					_		
4 30 5 0	5				5,9	7.4	7.6	10.4	•		
5 10 6 0	115				••0	•,•	6,9	۹,8	1		
• 30					•.7	7,8	8.1	11.0	3		
7 0 7 3 7 30	5				• •	•			3		
8 0 8 0	C*D	11.5	70.9 71.0	2724	7.0	7,4	8.6	10.0			
5 2 6 30 9 0	5					9,0	10.2	10.4	1		
30					•.4	8.0	8,6	10.2	2		
10 0 10 4 10 30	65								•		
11 0	5				•••	4.2	•.1	10.0	٥.		
11 30 12 0 12 0	¢*0			2674	6,2	•.0	8.0	10.4	- •		
12 3		13.0	71.0		•.4	7.7	8.0	4.6	1		
13 0	5										
13 30 14 0 14 a	40				6.0	8. 0	8.2	4.2	5		
14 30	•				7,0	7,8	. 7.1	••0			
15 3 15 30	cFO	15.0	70. •	2370	٠,٤	1,2	0,3	9.7	4		
10 0 10 3		14.0	71.0	.,,,	~				2		
10 30	5				7.4	7.7	7,2	4.2	3	2	P=86
17 8 17 30 18 0	115				7.6	7,6	8.4	9.2		3	P+5G
18 30 18 30 19 0	5				6,4	6,7	4.1	4,4	,	5	P-16
19 3 19 30					4,5	8,5		10.0	•	3	
20 0 20 10 20 30	c#0	14.0	70.9 71.0	2788					3		
21 0	5				4,4	7,4	7.7	9.0		3	86
21 2 21 30	85				1.2	*,8	7.3	8.8	O		86
22 2 22 30					•••	7.8	8.1	٠,3	10	3	86
22 0 22 30 23 0 23 0 23 0	5				6.7	•.0	7.0	4.6	•	3	86
23 70	ŤC	13.0	70.4	5500	•••	-14	, , ,	*1*	3	,	••
				2,39 86	COMDS TEST 00	-	R ANGLE	89 DEGREES			
0 0 0 7 0 30			71.0						13		
1 0 1 2 1 30	•				10.1	5,7	7.4	10.0	•	17	•
1 30					•,•	5,4	7,3	8,0	-	15	•

TEST 00	CONT										
RUN TIME	MINUTES STOPPED!	PATER	MATER DEPTH	HEIGHT		•	HE EGHT		BREAKER	LONGSHORE	DRE AKER TYPE
HR MN		CELS IN	€#	LOG	GAGE 1	ÔVCE S	CAGE 3	84GE 4A/48	DEGREES	C#/8	
2 0	119								10		\$P•P
2 30 3 0 3 4	•				10.2	5,5	4,4	4,2	11	17	
3 30	6 70	19.5	71.0	3245	•,•	5.5	*,*	•,•		17	8P-P
4 0 4 3 4 30		11.9	71.0		•,•	٠,٠	7.8	•,•	11	1.	•
5 0 5 3 5 30	•				4,2	•.0	7.0	•.•	10	17	•
• 0	#10								,		_
6 30 7 0 7 5	•				4,5	٠,٠	7.1	4.4	,	14	•
7 30	\$FD	11.0	70.	3040	0,3	4.7	8,2	•.2	•	15	•
8 0 8 8 8 30		10,0	71.0		4.3	•.1	.,1	•.•	,	10	•
• 6 • 4 • 30	5				4,4	٠,٠	7.0	•.•	•	17	
10 0	•0								10		_
10 30 11 0 11 0	5				4,4	•.•	7,4	•.0	,	19	•
11 30	EFD	18.0	71.0	2000	1,4	•,1	4,5	•.•	•	19	•
12 6 12 5 12 30		18.0	71.0		٠,1	•,1	7.0	9.1	,	17	•
13 0	•								,		_
13 30 14 0 10 0	100				4,5	٠,٠	7,2	•.0	,	17	•
14 30	5				4,1	٠.0	7.2	*,*		1.	•
15 3 15 30 16 0	EFD	18.5	70.9	3304	8,8	•.•	4,5	8.8	•	10	•
10 0		14.0	71.0						11		
17 0	5				4,3	4,5	7.0	4,4	,	17	·
17 30 18 0 18 3	120				•,•	7.1	7.0	9.2	12	10	•
18 30	,				•,•	4,7	6,5	4.7	••	17	•
19 3 19 50 20 0	6 70	13.5	71.0	3564	4,3	4,4	7.0	4,7	•	10	•
20 0 20 5	.,,	18.5	71.0	,,,,					,		
20 30 21 0 21 6	•					4,5	7.0	8,4	11	10	•
21 30 22 0	•5				4,0	4.7		10,0		19	•
22 S 22 30 23 0	,				4,2	••1	6,5	•,7	7	1.	•
23 3 23 30	•				9,3	•.1	4.1	4.6	7	16	•
23 55	76	18.5	70,0	3294					•		
			PERIO	D 1,40 SE	TEST	07 GENER	ATOR ANGL	E 20 DEGREE			
		٠.,									
		٧,,	71.0		11.4	13,0	13.0	14,3	11	36	•
9 55	•								12		
1 30	0 0			2064	12.1	11.2	12.0		•	30	•
2 0 2 30 3 0 3 5	•				18.4	10,6	12,3		10	54	•
3 30					11.1	11,0	12.4		15	20	•
• 0	EFD	11.0	71.0 71.0	1000		-			10		
4 30 9 6 9 3 9 30	,				•,3	10,3	12.7			31	•
3 3 3 30				41.44	•.1	٠,٠	12.7		11	38	•
• 0	45			1130							

1207 07	CONT										
BON TIME	MINUTES;	141ER 78MP	HATER DEPTH	IMMERSED HEIGHT			HEIGHT		BREAKER	LONGSMORE	OREAKER TYPE
H A #W		CELSIUB	C.	L 88	8462 1	9191 \$	810[]	949E 44/49	060=168	C#/8	
• •					8,8	11.7	14.3		1•	33	•
7 30	•				4,*	11.0	11.3		10	38	•
8 0 8 3	CFD.	11.5	70.4 71.0	1214					•		
8 30	,				4,5	•,•	12.1	15.8		20	•
30 10	79				4	+,4	12.6	15.9	12	31	•
10 \$					4,7	11.2	13.6	15.0	12	30	•
11 0 11 4 11 30	•				9,7	4,2	14.0	15.6	10	33	,
12 0	ero	11.5	70.9 71.0	2234	·	•					
18 30 13 6	•				٠,٥	10,4	12.0		11	30	•
13 8 13 30 14 0	•0				10.0	10.4	13.1		1.0	24	•
14 30					4,4	11.2	15,4		11	32	P
15 0 15 4 15 30	•				4,4	4,4	12,5		11	24	
16 0	EPD	18.5	71.0 71.0	8010	•••	.,.					·
16 30 16 30	•				•.•	11.4	15.0		12	**	•
17 4 17 30	•0				♦,0	11.0	12.1		•	31	•
18 0 18 5 18 30					٠,٠	10,7	12.4		11	25	•
1 0 1 0 1 4	€ F D	18.5	71.0						12		
20 B	EPD	18.5	71.0	2046	*,*	•.•	12.4		••	24	•
20 0 20 4 20 30		18,5	71,0		4,3	10.1	12.0		18	85	•
21 0	3								11		
55 2 55 0 51 20	100				10.0	11.6	12,3		11	26	•
52 30 55 30	5				•.7	10.0	11.0			50	•
23 6 23 30 23 81					4,4	10,2	12.4	15.3	11 13	50	•
24 1	TE	18.5	71.0	1000					.,		
			PERIOD	1,90 00	TEST		ATOR ANGLE	E 20 DEGREE			
			_	.,							
0 6 0 5 0 30		18.5	71.0		10.4	11.7	٠,5	15.3	•	24	•
1 0	•								•		_
1 30 2 0 2 6	105				1,5	4,3	10.8	16.5	12	36	•
2 30 3 0 3 3 3 3	5				10.4	•.1	12.7	15.7		26	•
	€ P D	18.5	70.0 71.0	8304	4,7	*.3	11.9	15.0	11	23	•
		13.0	¥1.0		•,1	٠,٠	13.8	15.4	10	23	•
3 0	•								13		
4 30 5 0 5 3 3 6 4 6 30 7 0 7 3 7 10 6 0 8 3 6 3 6 3 7 3 7 10 8 3 8 3 8 3 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	•0				0,0	•,•	12.8	15,6	12	21	P-8P
30	5				0.2	11.5	12.4	15.0		20	•
7 3	(70	12.4	74.0	1224	7.2	10.6	11.0	13.*	11	20	•
3	, ,	18.9	70.0 71.0						•		_
9 0 9 4	•				7,0	11,2	11.0	15.3	12	1.	•
10	••				0.5	10,4	12.0	13.0		80	•
10 30					4,4	12.0	12.3	19.5	10	19	•

7E87 08	CONT										
RUN TIME	HINUTES STOPPEDI	MATER TEMP	MATER MT 450	HE IOM?			HE IGHT		are arer Amble	LONGSMORE CURRENT	OREAKER Type
HR MN		CELSIUS	g m	L08	BAGE 1	SAGE 2	GAGE 3	GAGE 4A/48	OLGREES	C#/8	****
11 0 11 4 11 30	•				•.•	12,5	13.0	14,6	11	16	•
	¢*•	14.0	70.4 71.0	1002					10		
12 30 13 0 13 3	•				1,4	18.0	12,0	14.9		17	•
13 30	•0				4.8	12,0	12.5	14.9	10	19	•
14 30 19 0	5				7.4	12,2	12,6	15,4	19	17	•
15 & 19 3e 14 0	(70	14.0	70.9	730	0.1	11.0	13,2	15.4	14	15	•
16 0 16 3 16 30 17 0	5	19.0	71.0	,	4,4	11.1	13,2	15,3	•	19	•
17 4					4,2	11,1	14.7	15.5	10	17	•
16 0 18 3 18 30	160				.,0	11.7	13.0	14,7	18	20	,
1 0 1 0 3 1 0 30	5				9,3	11.0	14.0	15,0	11	17	•
20 0 20 5	670	14.5	76.4 71.0	460		••••		,.		••	•
20 30 21 0	•				7.7	18,0	11,4	15.0	13	19	•
21 50	•				7.9	12,6	12.0	15,6	10	10	•
22 5 22 30 23 3 23 3	•				0,0	18,0	11.7	17.0	18	15	•
23 3 23 30 23 94					1,5	11.7	12.2	10,8	10 11	15	•
23 54	70	14.5	70,*	768	TEST 0	•			**		
			PE#100	1,50 8600	NDS T	GENERA	TOR AMBLE	20 DEGREES			
0 0 0 4 0 30		13.0	71.0						19		
1 0	•				•,•	18,0	11.0	11.4	15		
1 30 2 0 2 4	05				11.7	4,4	10.0	10.5	13	35	87-7
2 1p 3 0 3 3	•				12.0	4,4	11.0	12.6	13	40	87-7
3 10 4 0 4 0	E#D	13.5	71.0 71.0	8114	12-1	10,5	11.0	12.0	••	34	1907
4 30 9 0	,		71.0		11.2	٠,5	12.0	11.1	15	30	89-9
9 3 5 30					11.7	٠,٠	11.1	11.0	14	32	80-0
6 4 6 30	105				11.1	4,*	11.0	12.0	14	20	8P-P
7 0 7 3 7 30	•				10.0	•,•	10,4	13,4	1.0	27	3P-P
	CFD	14.5	70.4 71.0	1520			•••		10		
8 30 9 0 9 7	•				10.0	0,6	11.2	12.5		24	89-9
10 0	**				11.0	•.1	10.8	12,0	14	27	89-9
10 4 10 30 11 6 11 8	,				•,•	7,0	11,0	13.1	15	22	3 P
11 \$ 11 30 12 6	¢FD	14.5	71.4	1930	10.2	0,0	10,2	12,5	14	27	.,
12 0	÷. •	14.5	71.0 71.0	• • • •	•				14		
13 0	•				11.2	8,7	11.0	12.9	13	*3	.,
13 30	•0				11.0	•,•	11.5	13.2	15	31	••
[4] 10]0 15 0 [5 4	5				11.7	٠,٥	11.0	12.2	19	22	17
15 4 15 30 10 0 10 0	CP0	15.0	70:0 71:0	1904	10.0	•,•	10.7	13,7	••	27	**

7587 09	CONT										
RUN TIME	MINUTES Broppedi	PATER	HATER DEPTH	HMERSED THEIGHT			<i>HEIGHT</i> Ch		BREAKER	LONGSHORE CURRENT	BREAKER
48 Mb		ESTE 309	EM	L84	SAGE 1	6466 5	ORCE 3	646E 64/48	DEGREES	C=/8	
16 30 17 0	,				11.2		11.7	13.4	13	35	8P
17 4 17 30					11,3	10,0	11.9	13.1	14	24	SP
16 d 16 3 18 30	•				11,4	10.1	11.0	11.7	16	19	••
1 0 1 0 1 0 1 0 30	•								17		
50 0 50 0	CPD	15.5	71.0 71.0	1474	12.1	₹.0	11.4	11.0		10	**
20 30 21 0	•				11.5	7,0	11.0	12.0	15	24	37
21 4 21 30 22 0	£FD	19.5	71.0	804	11,4	4.3	11.6	10.1	15	36	ap
22 B	•	15.5	71.0						15		
22 30 23 6 23 7 21 30	•				11.1	1,1	18,1	10.0	15	10	•
23 34 23 34	TE	15.5	71.0	804	12.2	10.2	12.2	10,3	10	ži.	a P
				•••	TEST :	ı•					
		14.7	GOINSA	1.90 BEC	DMD8	GFNEBA	TOR ANGLE	20 DEGREES			
0 10		1447	71.0		14.4	18,3	17.1	18.9	11	20	,
1 0 1 3 1 30	•				15.3	10,0	18.3	13,4	14	27	
2 30	•0								14		•
3 0	•				14,3	17,1	17.6	15.3	10	26	•
3 30 4 0 4 0	EPD	19.5	70.9 71.0		15,3	10,2	10.4	15.2		27	•
4 30 5 0	1		·		14.7	18,0	18,3	14.1	16	34	•
9 4 9 30 6 0	100				13.4	17,4	17.0	14.2	16	27	•
6 4 6 30					15.3	17,7	14.2	19.0	16	26	P
7 3	,				15,6	17.9	14.9	14.2	17	2.	•
8 0	6°D	19,3	71.0 71.0			•••		,-,-		••	•
* 3g * 0 * 3	•				14.7	16,5	14.3	17.7	14	39	•
9 30	•				14.4	10,2	17.4	18.3	18	32	•
10 4 10 39 11 0	•				13.0	16,3	17.1	14.2	18	33	•
11 4 11 30 12 8	CF0	10.5	70,0	7756	14.7	17.4	10.0	10.2	14	32	•
12 0		19.4	71,0	V , S O	•				15		
13 3	•				15.3	17.3	17.1	10.0	10	31	•
13 30 14 0 14 #	70				14.4	10,0	10.4	10.4		35	•
14 30	•				15.0	21.0	17.4	17.1	14	50	•
19 30	EPD	19.0	70,1	3724	13.7	19,5	15.5	18,3	18	33	•
10 0 10 2 10 30		18,0	71.0						18		_
17 0	•				14.1	17.2	16.5	17.4	14	20	•
17 30 18 0 18 4	140				14,4	10,4	19,1	14.8	16	25	•
18 30 18 0 18 5	3				14.1	17.4	19.2	10.0		26	•
19 30	CPD	12.3	70.0	3350	13.7	20.7	16.0	19.7	14	29	•
20 0 20 1 20 1		17,8	71.0		15.9	17,5	17.1	10.5	16	27	,
20 30 21 0 21 3	•					*	• 1	•	16		•

TEST 18	CONT										
BUN TIME HM MH	MINUTES STOPPED!	PAIER TEMP CRLSIUS	DEPTH CH	IMMERSED REIGHT LBS	0 46E 1		HEIGHT CM BAGE 3	846E 44/48	DEGREER ANGLE DEGREER	LGNGSHORE CURRENT CH/8	OREAKER Type
21 30	41				14.3	19.2	17.0	10.3		87	•
55 30 55 8 55 0					13.7	10.5	18.2	17.9	17	27	•
22 A 22 36 23 3 23 3 23 10	•				14.6	10,0	10.2	10.5	10	34	•
!! !!	76	18.2	70.0	3760	• •	. •	****		19	•	
			PERIOD	2,39 860	TEST ONDS	11 05458	ATOR AMELE	DEGREE	•		
0 0		20.7	71.0						•7		
0 30 1 0 1 2	5				10.2	•.0	7,8	14.0		••	•
1 30	40				•,7	4,5	7.0	14.4		•7	•
2 35 2 35 2 53					4,4	5,2	4.6	13.0	••	•	•
3 0	18								-3		
3 30 4 0 4 0	EF0	20.0	71.0	445	4,2	4,7	10.0	14,*		•	•
33	•				4.1	5.2	٠,٠	13.0	-5	•	•
5 5 5 40					7,8	•.•	•.1	12.5	•3	•	•
• 0 • 4 • 30	11				10.2	4,*	1,4	14.6	-1	•	•
7 0 7 3 7 20	9				•.•	5,0	8,7	12.9	•5	•	
8 0	CPD	28.0 21.8	70. 4 71.0	840	***	,,,	•,	12,7		•	•
5 10 5 0	5				•.•	9.1	8,7	14.4	••	•	•
9 30 10 0	•				4,1	9,1	•,•	13.5	-3	•	•
10 4					•,0	4,6	٠,٥	13.4	••	•	•
11 0 11 3 11 30	10				4,6	5,2	8,7	14,6	-4	3	•
12 0 12 0 12 5	670	50.0	70.9 71.0	70	•••		•			•	
18 35					٠,٠	7.4	10.0	11.3	••	•	•
13 0 13 4 13 30	•				٠,,	٠.٠	4,4	13.7	-4	•	•
14 0 14 3 14 30	•				4,2	5,0	4,2	12.0	-3		
15 0	•								••		•
10 0	EFD	20.0	70.4 71.0	310	•,•	5.2	1,6	13.8		•	•
16 30 16 30	•				4,2	3,0	4 ,1	14.1	••	2	•
17 2					٠,٠	4,4	٠.٥	12.0	-6	·	•
10 0 10 0 10 30	•				1,5	5,2	4,2	12.0	••	,	•
18 30 19 0 19 3 19 30	5					4,6	•,•		•3		•
20 0 20 0	CPD	19.7	71.0 71.0	219	4,2	•,•	*,•	13.5		1	•
20 30	•				•,•	5,1	4.4	12.0	••	ŧ	•
21 0 21 4 21 33					٠,٠	4,4	٠,٥	12.5	•4	•	•
55 30 55 8	•				•,•	4,5	•,•	12.*	••	•	•
21 35 22 0 22 5 22 30 23 1 23 1	•				9, 1	1,4	4.2	12.0	-5	•	,
<u> </u>	70	20,2	70,0	200	***	71-	-,=		•4	•	•
			PE#100	2,39 860	7687 BOMD8	18 SEMER	TOR AMBLE	30 DEGREE)		
0 0 0 13	6 70	23.4	71.0								
0 15	J. D	27.1	¥1,0						21		

7887 18	CONT										
RUN TIME	HINUTES STOPPED!	BATER TRMP	MATER	HE IONT		MAYE	MESGNT CH		Breaker Anglé	LONGSMORE CURRENT	OREAKER 1492
MB MH		CELS 1UB	C#	LBB	SAGE 1	SAGE 2	0466 3	8462 44/48	DEGREEB	C#/8	
0 30 1 0	•				*.7	5,3	7.3	•••		50	•
1 30	23				1.5	1,4	0,1	•.•	21	25	•
2 30					10.3	4,5	.,7	4,5	22	23	•
3 0 3 1 3 30	10				10.6	4,7	••1	*.*	19	2.	•
4 0	CF0	28.0	71.0 71.0	5763		-	•		16		
4 30	•				10.3		7.5	11.0		85	•
5 30 6 0	55				10,3		•.•	•.•	21	21	•
4 5 30 7	,				4,5		4,4	*,*	24	20	•
7 3 7 30					10.5		4,2	4.3	17	20	•
8 0 8 0 8 4	6PO	23.0	70.4	5437					ží		
8 30 • 0	•				7,6	5,7	6.7	10.1		54	•
• 2 • 30 10 0	•				11.0	4,7	4.1	•.•	14	25	•
10 4					10.5	4,9	6,5	+.4	17	54	•
11 0 11 2 11 30	•5				10.3	5,2	6.1	4.2	45	24	•
12 0 12 0	EFO	23.1	70.4 71.0	5402		•			22		
1# 30 13 0	•				11.3	4,3	•.0	8,8	66	25	•
13 4 13 30 14 0	,				10.1	4,4	••1	1,4	10	53	•
14 3					11.4	4,9	5,4	9.1	10	29	•
15 0 15 3 15 30	70				٠,٠	1,3	•.0	6.4	22	33	•
10 0 10 0	e #0	23.4 23.6	70.9 71.0	5080	•••		•••	•••			·
16 3 16 30 17 0	10				9,3	4.4	.,•	8,4	22	5.	•
17 8 17 30 18 0	30				4,2	4,1	••1	0,2	\$5	37	•
1A 3 16 30					4.6	5,6	4.2	6.8	10	25	,
1	*2				4,4	4.0	6.3	*.*	21	40	•
50 B	69 0	23.0	71.0 71.0	9724	74.	•••	-1.5	•••	_	••	•
50 30	10				4.7	4,5	7.3	10.1	21	33	•
\$1 30 \$1 30	19				4,5	5,4	7.0	11.0	20	33	•
55 20 55 2					9.1	4,6	4,2	10.3	10	25	•
23 0 23 3 23 10	10				٠,5	3,0	4.2	4.6	1•	20	,
23 36 23 50 84 6	16	28.3	71.0	5775	***	-,-	V	***	50	••	•
			PE#100	1.00 SEC	0408 TEST	13 GENERA	TOR ANGLE	SO DEGREES			
: :		28.7	71.0								
0 4 0 30 1 0	,				•••	7,6	7.1	7.1	15	•	86
1 30	10				6.7	.0	7.3	6.4	15	•	80
2 43					6,1	7,6	7,0	**1	10	•	86
3 0 3 3 3 30	,				4.4	7,8	4.7	•.0	10	•	16
• •	670	23. i 28. 9	70.8 71.0	423*			,	***		•	••
4 3 6 36 3 0	10				7,2	7,0	5,+	11.0	1•	•	96
5 50					4.7	٠,٠	4.1	11.0	10	7	36

BUN TIME	HINUTES STOPPED I	TATES TEMP CELSIUS	HATER DEPTH	1885 D 1885			HE I GHT		OREAKER ANGLE	LONGSMORE	BREAKER TYPE
		es(\$100	CM	LBS	SAGE 1	èvel 5	GAGE 3	6462 44/48	DEGREES	CH/B	
• 32	10				4,4	•,•	•.0	11.0	18		
7 0 7 4 7 30	10								13	•	16
	c+0	23.1	V1.0	4227	7.1	٠,٠	4,4	11.1		•	•6
0 30 0 30	19				4,3	7,3	7.0	11.7	19	•	86
9 30 10 0	6 F D	23.0	70.4	1861 -	4.2	7.0	7.0	12.2	15	•	86
10 0 10 2 10 30		23.7	71.0						20		
11 0	10				4,4	•,•	4,2	10.0	14	•	86
11 30 12 0 12 5	10				7,2	•,\$	4,4	٠,٠	10	•	80
18 36 13 8 13 4	10				7.1	6,4	4,4	•.4		10	86
13 30 14 8	EF0	23.5	71.0	3500	7.0	*.*	4.0	4.1	10	•	86
14 0 14 4 10 30		23.5	71.0		7.1	٠,٥	4,5	•	10	•	••
19 0 15 3 15 30	10				6,6	•,•	•		16		86
16 0 16 # 16 30	10						6,4	4,6	19	,	86
17 0	10				6,5	•,7	3,4	•,•	18	7	96
17 30 18 8 18 0	€F0	22.0	71.0 71.0	3433	6,2	6.7	6,8	10.		,	86
16 5 18 30 19 0	žo.	1000			6,0	7.0	0,1	•.•	16	5	86
1 9 30					•.5	7,1	6,2	6,5	10	5	86
20 S 20 S	••				5,4	7,8	7,1	7,8	14		
21 9 21 30	10								12	•	86
\$\$ 0 \$\$ 0	€PD	23.1	71.0 71.0	3709	5,0	4,2	7.2	*,*		•	86
55 20 55 20 55 2	•				5.7	7,4	6,5	•,•	13	•	86
23 3 23 36 23 95 24 6					4,2	7,4	7.7	7,3	11	•	86
ii 'i	76	23.1	71.0	1000					11		
				3.00 SEC	0408	14 GENER	ATOR ANGLE	30 DEGREES	1		
0 G 0 10 0 30		21.5	71.0		13,2	17,4	14.7	17.0	21	••	_
1 0	10								20	33	•
	40				13.0	16,6	15,8	16,6	20	31	•
3 0	32				15.4	14.7	19.3	15.8	2)	27	•
3 30 4 6	e#0	20.4 20.4	70.4 71.0	10350	15.4	10.2	15,4	10,0	-,	40	•
4 10 5 0	10				10.1	16,8	11,4	19.2	20	24	•
5 30					14.4	17.0	12.6	10.0	27	21	,
• 0 • 30	10				15.0	10,2	12,0	10,0	2.		
6 30 7 0 7 6 7 30	••				15.4	17.7			31	21	•
9 0	C#0	10.0	70.9 71.0	10030	1747	1747	12,2	18.6		24	•
• 30	10				14.0	18.3	11.4	19,2	31	19	•
30 10 10 3	19				14,7	10,6	12.0	19.5	54	17	•
10 3 10 30 11 0	79				14.7	10,2	11.5	19.5	30	20	P
•••											

TEST 14	CONT										
BUN TIME	# NUTES 870PPED	"AIER TRMP	HATER	MEIGHT D			HEIGHT CH		BREAKER	LONGSHORE CURRENT	OREAKER TYPE
HØ MM		CELSIUS	Ç M	Ç00	SAGE 1	gage \$	CAGE 3	846E 44/48	DEGREES	C#/8	
11 3 11 30 12 0 18, 0	t#D	19.4	70.0 71.0	10001	14.4	10,0	12.3	10,6	30	10	•
12 30 13 0	10		•••		14.1	10.1	13.4	17.0	24	20	•
13 # 13 30 14 0	15				14.6	15.0	13,5	16.6	30	22	•
14 6	75				14.0	15,0	13.8	17.2	25	10	•
14 45 15 0 15 4 19 3a	19				14.7	19,2	13.5	10.5	54	10	•
10 0 10 0	₹ F D	19.1	71.0 71.0	10024	•	•			30	•	
16 30 17 0 17 4	10				13.0	14.8	12.0	17.4	30	24	•
17 30 18 0 18 3	15				15.4	15.*	12.6	17.0	38	52	•
18 30 19 0 19 3	75				14.1	17.7	13,5	10.0	33	21	P
19 10 20 0 20 0	CFD	19.2	70.4 71.0	10170	14.3	10.0	12.0	17.1	••	1.0	•
20 3 20 30	19	10.5	71.0		13.2	14,4	18.5	14.1	33	ee .	•
21 0 21 3 21 30 21 50	25				19.8	17.4	12.2	18.6	38	28	•
21 50	•								20		
22 4 23 0 23 4	45				14.3	14,2	12.0	10,0	31	81	•
25 16 23 50 24 6	70	17.4	70.4	11954	15.0	15,0	12.3	17.4	31	55	•
••	.,		•		1587	15			_		
			PER16	D 1,40 SEC	0408	6EME4	MATOR ANGL	t so DEGREE	•		
0 50	5		71.0		13.0	1 10,0	13.2	18.0	10	44	37+7
1 30	,				13,0	17.6	14.0	10,3	10	36	•
8 0 8 80 8 90	,								16		
3 3	195				12.6	17.6	15.3	10,3	20	••	87-7
4 0	C#D		71.0 71.0	7424	13.7	10,2	15,3	10,3		40	•
4 3 4 3 9 0	5				14.0	15,0	13.2	19.5	10	40	P+SP
3 30	•				13.4	17.0	12.4	19.8	16	35	PelP
6 4 6 30 7 0 7 3	90				13.4	16,4	13.5	10.0	17	30	Pesp
7 30	EPD		71.0	****	14,4	10,0	13.4	19.4	1•	36	Pear
8 3 8 30		10.0	71.0		13.2	17.0	10,0	10.*	10	36	P+1P
5 5 6	19										
9 30 10 0 10 4	•				13.9	14,0	13,0	17.1	10	39	P-8P
10 30 11 0	••				13,4	16,4	14,4	14.5	14	••	P-4P
11 4 11 30 12 0 12 0	(PD	10.0	71.0 71.0	7929	15,4	16,0	14,3	10.0	50	40	P=8P
12 39	_	19.5	71,0		12.0	17.0		19.0	10	••	Posp
13 0 13 3	•				15.2	15.0		19.4	10	44	P+3P
10 0	•				10.4	17.0		19,2	50	••	Polit
1					, - , -	1 * 4 *		1715			

1887 18	CONT										
RUN TIME	MINUTES STOPPEDI	MATER TEMP	HATER	IMMERBED WEIGHT			HEIGHT		BREAKER	LONGBHORE	BREAKER
MP MN		EEFEINE	EN.	F99	GAGE 1	5496 3	676E 3	8466 44/48	DEGREED	CH/B	1474
15 0	**										
19 4 19 30 10 0	EFL			5540	13.2	10,3		10.9	10	40	Posp
16 0	•	19.9	70.0	9924							
16 30 17 0	10				12.5	10,6	12,4	10,4	10		Pesp
17 3					18.0	10.8	10.7	19,7	18	61	P+4P
16 0	10								23		•
19 30	115				13.4	15.0	15.5	20.1		43	Pusp
19 30 20 0	EFD	10.5	70.9	**56	13.1	17,3	12.3	20.4	10	43	Pegp
20 0 20 2	•••	17.0	71.0	1174							
20 30 21 0	10				13.1	15.0		20.1	16	3*	P
21 3 21 30					12.0	10,5		80.4	10	40	•
55 0	80					-			20		
22 0 23 4 23 30 23 4 23 30 23 9	••				12.5	14,3		80.		**	•
ii					13.2	15,0		19,5	81	41	•
;; ;;	70	10.5	70.0	*#20					\$1		

APPENDIX B

BEACH SURVEY DATA

			TE	ST 1			
RANGE 1.5	RANGE 8.0	RANGE 3.0	RANGE 4,0	RANGE 5.0	RANGE	RANGE 7.0 .	RANGE 7,0
STA ELEV (H) (H)	(M) (M)	STA PLEV (M) (M)	BTA ELEV (m) (m)	814 ELEV (M) (M)	OTA ELEV (m) (m)	BTA ELEV (M) (M)	874 ELEV (#) (#)
0.00 .279 1.37 .150 1.02 .110 2.12 .149 2.73 .0.09 3.20 .0.09 3.43 .150 3.40 .0.00 4.30 .150 5.00 .150 6.00 .157 6.00 .157	0.00 .275 1.39 .135 1.79 .108 2.13 .120 2.05005 3.38005 3.08100 3.40100 3.40100 3.40100 3.40100 3.40100 3.40100 3.40100 3.40100 3.40100	0.00 .280 1.18 .100 1.49 .120 1.71 .090 2.19 .115 2.80005 3.15050 3.33115 3.07050 8.08155 8.00255 8.00255	0.00 .275 1.31 .135 1.00 .105 2.03 .120 2.70010 2.44005 3.10009 3.10009 3.70115 2.77215 5.88220 6.88330	0.00 .250 1.03 .150 2.02120 3.02120 3.00120 4.10120 4.10200 5.00255 6.04205 9.17450	0.00 .270 1.40 .140 1.63 .110 2.53010 3.17155 3.45170 3.70655 4.73250 6.20350 7.22350 8.23455 9.03465	0.00 .200 1.30 .130 1.03 .103 2.4003 2.40103 3.34103 3.63100 4.40105 5.2925 5.33228 7.91388 8.90498	0.00 .275 .81 .190 i.30 .150 i.54 .115 2.40010 3.00045 3.20040 4.38213 5.23240 5.60240
7.24 0.340 7.85 0.370 8.12 0.410 8.30 0.650 8.34 0.60 9.23 0.305 10.20 0.395 11.25 0.675	7.24125 7.64130 6.23405 6.25405 8.30470 9.33320 10.57225 11.93715	7:19 -, 223 7:89 -, 105 0:25 -, 225 0:00 -, 455 0:00 -, 455 0:00 -, 455 0:00 -, 455 0:00 -, 455 1:00 -, 455 1:00 -, 788	7.89185 8.81485 9.95375 11.99375 11.93725	9.97 -,569 11.60 -,675 11.93 -,720	0.03 m.a00 0.07 m.300 11.08 m.085 11.03 m.715	10-14010 11-10070 11-93719	7.33336 7.06326 9.46326 10.10366 11.63676 11.63713
			TE	ST 2 (after 25 ho	ure)		
MANGE 1.5	MANGE 2.0	RANGE 3.0	RANGE 4.0	RANGE 5,0	RANGE 0,0	MANGE F.O	RANGE 7.6
87A ELEV (H) (H)	#74 ELEV (H) (H)	BTA ELEV (M) (M)	STA ELEV (H) (H)	BIA ELEV (M) (M)	STA ELEV (M) (M)	\$14 ELEV (M) (M)	STA ELEV (H) (H)
0.00 .295 1.74 .115 2.15 .150 3.05005 3.75000 3.75000 3.75000 5.75000 5.75000 5.75000 5.76000 5.76000	6.08 .308 1.41 .103 2.10 .120 1.05 0.000 1.57 .000 1.60 .110 1.67 .000 1.67 .113 4.69 .113 4.69 .125 7.68 .245 4.08 .225 7.68 .285	0.00 315 1.95 .095 2.97005 3.17000 3.29875 3.44100 3.66005 4.33135 5.59830 6.98835 6.38835	0.00 .205 1.96 .195 2.98 .005 3.14 .100 3.01 .100 3.01 .105 6.40 .170 5.30 .235 8.70 .225 8.02 .400 9.40 .520	0.00 .200 1.00 .100 2.02 .100 2.02 .100 3.02 .200 3.70 .100 6.51 .100 5.07200 5.07255 8.23425 9.62535	0.00 .285 1.51 .155 1.74 .160 2.59 0.000 3.08115 3.47200 3.61095 4.45180 5.45180 5.45180 5.45180 8.35455 9.48520	0.00 .495 1.30 .100 1.40 .115 2.58 .095 3.08 .090 3.40 .100 3.40 .100 3.40 .100 3.40 .100 3.40 .100 3.40 .100 3.40 .100 3.40 .100	0.00 .300 1.48 .150 2.99 .005 3.19 .075 5.00 .009 5.00 .225 6.74 .310 6.03 .375 9.19 .575 9.19 .575 10.60 .775 10.60 .775 10.6
II.04 0.0FG IZ.01 0.FFG	9.48525 10.76635 21.98785	10-70640 11-86715	10.93	10.82000 11.07715 ET 2 (after 50 ho	10,40 -,660 11,48 -,710 urs)	10.73 *.645 11.61 *.705	RANGE 7,6
874 ELEV (H) (M)	874 ELEV	BTA ELEV (M) (M)	STA ELEV	BTA ELEV	STA ELEV	BTA ELEV	814 ELEV
0.08 .295 .50 .120 2.04 .154 2.17 .185 2.17 .185 2.19 .004 3.19 .050 3.20 .277 3.20 .277 3.21 .277 4.10 .130 3.21 .275 4.10 .275 4.10 .285 4.10 .285 4.10 .285 4.10 .285	0.00 .240 1.47 .130 2.12 .130 2.11 .100 3.71 .005 3.22 .100 3.72 .105 3.72 .	0.00 .210 1.50 .145 1.78 .120 2.14 .105 2.17085 3.10085 3.10080 3.3010 3.02070 5.2320 0.51345 11.00715	0.00 .209 .89 .195 1.63 .100 1.62 .105 2.17 .000 2.00 .000 2.00 .000 3.30 .000 5.30 .000 5.30 .000 5.40 .200 1.20 .200 1.20 .200 1.20 .200 1.20 .200	0.00 .288 	0.00 .285 .90 .205 1-61 .160 1.65 .165 2.93 0.00 2.90 .073 3.12 .105 3.72 .105 3.72 .105 3.10 .105 3.1	0.00 .840 .47 .140 1.40 .140 2.20 .055 2.42 .055 2.42 .055 3.27145 3.27145 3.27145 3.27145 3.27105 3.76	0.00 .300 1.24 .100 1.75 .175 1.65 .075 2.65 .005 3.16 .100 3.75 .200 6.75 .200 7.26 .333 8.50 .205 10.00 .205 10.0
			TE	जा 3			
RANGE 1.5 874 ELEV	#4MGE 8.0	#AMGE 3.0	RENGE 4.0	RANGE 5.0	RANGE 6.0 Sta flev	RANGE 7.0	PANGE T.S
(m) (m)	074 ELEV (H) (H)	#74 FLEV (#) (%)	874 ELEV (H) (H)	874 ELEV (M) (M)	(#) (#)	\$74 ELEV (#) (#)	STA ELEV
0.00 .27n 1.00 .295 2.30 .015 2.30 .045 3.20 .045 3.20 .045 3.20 .026 3.30 .120 4.10 .120 5.07 .200 5.07 .200 5.07 .200 6.70 .200	0.00 .310 1.00 .100 2.30 0.000 3.78 0.103 0.01 0.150 0.03 0.103 1.73 0.276 0.08 0.275 0.08 0.285 0.45 0.285 0.45 0.385 1.77 0.285 1.77 0.381 1.77 0.718	0.00 .315 1.08 .110 1.72 .080 2.72 0.000 3.71 .080 3.60 .110 3.00 .110 4.02 .093 4.10 .175 4.10 .175 5.17 .283 6.51 .285 7.19 .280 6.00 .110 6.94 .275 10.00 .250 11.85 0.710	0.00 .209 1.05 .115 2.27005 3.20080 3.41105 3.45083 4.40230 5.50240 6.23240 6.23240 6.26240 7.40285 7.20285 7.20285 7.20285 7.20285	0.00 .299 1.40 .130 2.10 .000 2.10 .000 2.40 0.000 3.11 0.073 3.13 0.113 3.10 0.003 4.78 0.200 5.29 0.203 5.20 0.213 6.37 0.203 6.30 0.203	0,00 .200 1.40 .115 1.51 .005 1.51 .005 1.71 .006 2.07 .000 3.000 3.00	0.00 .293 1.90 .130 1.95 .000 1.90 .005 3.75 .175 4.32 .175 4.32 .125 4.32 .125 4.37 .280 4.47 .283 6.74 .280 7.22 .189 9.23 .189 9.23 .189 9.23 .189	0.00 .310 1.47 .130 1.48 .103 1.90 0.000 2.90 -113 9.20 -123 9.20 -233 9.20 -243 7.70 -130 9.30 -263 9.30 -263

#44GE 1.9	R4460 8.0	RANGE 3.0	RANGE 4.0	#ANGE 5.0	-	RANGE 7.0	RANGE 7.0
874 ELEV (H) (H)	870 ELEV (M) (M)	BTA FLEV (M) (M)	BTA ELEV [M) (M)	814 ELEV (M) (M)	BTA ELEV (M) (M)	BIA ELEY (M) (M)	814 ELEY (M) (M)
0.00 .200 1.10 .159 1.36 .149	0.00 .265 1.42 .125 1.61 .095	0,00 ,275 25, 70, 1,41 ,135	0.40 .265 1.54 .139 1.44 .105	0.00 .295 .68 .230	1.30 .125	1.25 .115	1.20 .170
1.40 .109 2.11 .110 2.77 0.000	1.87 :095 2.10 :080 2.29 :085	1.01 ,000	1.71 .105 1.87 .090 2.80005	1.45 .119 2.07 .090 2.03005	1.35 .100 1.77 .000 2.14005 2.91075	1.20 .075 1.85 .015 2.00 p.000	1.24 .115 1.07 4.444 2.21445
3.00000 3.33059 4.34170	2.71003 3.04073 3.24040	3.09090 4.10119	2.84 a.085 3.19 e.105	2.95000 1.50120 4.07130 4.00190	3.42125	2.40070 3.10135 3.40075	3,20 -,070 3,47 -,140 4,24 -,188
4.05 0.110 9.87 0.229 7.00 0.289	4.28150 4.67103 5.44165	4.71119 5.37220 6.10200	5.00090 5.04095	4.05170	1.41045 4.21132 4.05200	1.76 m.145 4.16 m.165 4.65 m.170	4,73 +,175 5,23 +,235 6,10 +,230
\$.02665 10.26975	4,45250 7,47325 4,35410	7.03295 0.02435		0.00 0.270 7.05 0.200 7.88 0.230	4.05200 5.15200 5.75230 7.14200	5.17225 6.05230 6.72245	7.60275 6.00300 7.55509
11.73 +.309	4,20501 4,45550	10.34 529	9.97140 9.17170 9.49225 9.14220	8.63440 9.50145 9.92500	7.20255 7.81306 8.57438 9.15455	6.72 0.285 7,27 0,295 7,65 0,325 8,49 0,425	11.00700
	\$9.75 •.625 \$1.63 •.705 \$1.78 •.715		0.89 0.215 0.89 0.275 7.31 0.289	18.40020 11.61075 11.60705	4.76615 10.38676	7,00 -,460 7,56 -,515 7,86 -,540	
			7.73309 8.20339 8.48419			10.20585	
			9.94540 10.80540				
			11.00 0,700 TEX	ST 5			
RANGE 1.5	#44GE 8.0	#A46E 3.0	RANGE 4.0	RANGE 5.0	RANGE 0.0	MANGE 1.0	MANGE 7.0
BTA ELEV (H) (M)	#T4 ELEV (M) (M)	STA ELEV (M) (M)	BTA ELEV (M) '(M)	STA ELEV (M) (M)	BTA ELFY (H) (H)	#TA ELEV (M) (M)	BTA ELEV (H) (H)
0.00 .875 .95 .185	0.00 .275 .00 .185 1.52 .225	0.00 .200 .78 .175 1.85 .155	0.00 .280 .08 .175	0.00 .205 .00 .100 1.02 .235	0.00 .280 1.24 .209	0.00 .275 .97 .185 [.]0 .[85	1,00 .240
1.39 .185 2.07 .109 2.73 * 080	2.72003 4.00253 4.85204	2.76005 4.16280 4.98170	1.42 .190 1.74 .185 2.80010 3.45105	2.74010 3.45225 4.16220	2,05010 3.24090 4.00220	2.55010 3.20100 3.00190	1,44 :135 2,00 :040 2,43015 3,15040
3.78 *.285 4.68 *.205 5.47 *.405	9,58230 6.11270 6.94305	6.10245 6.80310 7.49310	4.14220 4.41175 5.89300	4.70105 5.00245 8.87330	4,88190 5,74260 0.80330	4.84[65 6.10240 6.76310	3,40145 4,40160 5,34215
4.85 0.370 4.85 0.300 7.48 0.330	7,62358 8,85475 11,42675	7.98305 9.43520 11.30085	4.22240 7.47310 8.80465	7.65310 8.50455 8.98470	7.60325 6.23376 6.80459	7.10295 6.08330 7.27488	6.10 0.229 6.60 0.279 7.60 0.505
8,79470 11,70709 11,84719	11.90719	11.70 718	7.51535 11.55706 11.07718	10.57435 11.04705	10.12540 11.50048 11.97768	10.44010	8,57428 18,88545 11,00718
,				ST 6	11107 01701		11,40 01714
RAMBE 1.5	RANGE 2:0	MANGE 3.0	RANGE #+0	RANGE 5.0	PANGE +.0	RANGE T.O	MANGE 7.6
874 ELEV (H) (H)	ETA ELEV (M) (M)	STA FLEV (M) (M)	MT4 ELEV (M) (M)	BTA ELEV (H) (H)	BTA ELEV (M) (M)	BTA ELEV (M) (M)	STA ELEV (M) (M)
0.00 .275 1.00 .174 1.85 .155	70 .215 1.10 .150	0.00 .285 1.00 .175 1.50 .155	0.00 .245 1.40 .145 2.30 .100	0:00 .285 1:80 :165 2:05 :105	0.00 .240 1.10 .160 1.80 .115	0.00 .240 1.30 .140 1.40 .140	1.30 .145 2.15 .055
3,10039	1.50 .150	050 .110 050 .07.5 050 .088	3.30065 4.00100	2.70005 3.00070 3.30073	2,00 0,015 3,20 0,078 3,40 0,155 3,65 0,105 4,35 0,100	3.40010 3.40075	2.85055 3.10113 3.30070
3,80089 8.80189 5.20239	3.30033 3.30100 3.73083	4.20140 0.70145 3.30233	3.80189 3.80229 5.80309	3.75185 4.40195 5.40215	7,18 *,237	3.00085 4.40133 5.10240	8,40 +.153 8,40 +.253 4,50 +.240
9.90246 5.70300 7.10339	9.09180 9.09203 9.70239	4,44 4,255 7,24 4,245 4,20 4,415 4,24 4,505	7.88409 8.80879 9.40578	0.30 0.201 7.40 0.375 0.80 0.475	0.10 0.200 7.10 0.300 7.00 0.375 0.90 0.005	9.05235 6.76125 6.30445	7,40365 8,88470 9,80550 19,60635
7,78 0.305 8,80 0.376 8,80 0.879	7.00323	7,20 -,305 10,10 -,305 11,10 -,075	11.48708	7,88 *.375 16.94 *.675 11.90 *.705	0.40 =.405 4.40 =.575 10.40 =.676 11.40 =.705	7.50535 10.70045 11.96703	11,00 -,785
7.00509	8.10405 8.40445 9.40515				11,00 -,705		
10.40690 11.40689 11.40719	10.30608						
			1723	т 7			
RANGE 1.5	PANGP #.0	#ANGE 3.0	RANGE 4.0	NANGE 9.0	RANGE 8.0	MANGE T,0	PANGE 7.4
STA FLEV (M) (M)	STA ELEY (H) (H)	#7# ELEV (H) (H)	STA ELFV (M) (N)	BTA ELEV	BTA ELEV (M) (M)	#TA ELEV (H) (H)	ETA ELEV
0.00 .209 1.93 .10n 2.02 .18n	0.00 .285 1.55 .110 2.05 .120	1.03 .005	0.60 .246 1.30 .150 1.34 .085	0.30 .295 1.23 .180 1.23 .095	0.00 .249	0.00 .800 .50 .210	.00 .275 .00 .255
2.38 .079 2.82020 3.90000	2.41025 3.18045 3.58055	2,70 -,030 3,30 -,070 4,11 -,130	2.13035 2.39045 2.63066	1.82015 2.41095 3.17080	1.72 .000	2.19 w.025 2.19 w.080 2.52 w.080	1.35 *.015 1.75 *.080 2.65 *.179
3.87308 4.18899 4.84149	3,45 -,125 4,27 -,085 4.84 -,159	4.40105 5.70260 6.46210	2.89085 3.38079 3.85155	3.28 v.100 3.42 v.155 4.61 v.170	2.46139 3.04118 3.38139	3.08165 3.83220 4.75205	3.0708% 3.09125 3.00100
4.91180 9.19189 9.89219	4.97 #.145 5485 #.245 6.62 #.258	7,24319 7,40340 0,77465	4.40	5.80220 5.80205 6.61240	4.74145 5.30445	5.23 0.245 5.89 0.225 6.76 0.296	5,17250 5,17250 5,41225
6.43245 6.82300 8.66345	7,43 -,348 8,48 -,430 9,08 -,489	9,00 .,495 10,00 .,580 11.00 -,668	0.10 0.195 0.67 0.265 7.61 0.305	7.28270 7.90320 8.68435	6,10 -,220 6,70 -,305 7,33 -,305	7.38300 8.39635 9.16500	4,32 •,225 6,88 •,290 7,67 •,329
9.0000 ₀ 10.00579 11.00649	14.00569 11.00650 12.05719	12.25 715	0.00360 0.03460 7.70369	4.55 +,838 10.27 +,619 11.60 +,670	8,81 +,429 8,98 +,499 9,53 +,555	11.00500	0,30420 7.00400 10,00570
12.49119			10.55639 11.60655 12.85715	18.85715	10,00990 11,00718 12,28718	18.20 715	11.00055 11.00700 18.85710

			160	. 12			
Ra40E 1.9	PANGY 8.0 BTA ELEV	MANGE 3.0 BIA ELET	MANGE 4,0 Sta Elev	RANGE 5.0 STA ELEV	RANGE 0.0 BIL ELEV	MANGE 7.0 BIA ELEV	RANGE 7.0 BTA ELEV
874 ELEV (M) (M)	(H) (H)	(H) (H)	(H) (H)	(M) (M)	(H) (H)	(H) (H)	(m) (m)
0.00 .240 .70 .815 1.65 .125	0.00 .290 .70 .208 1.31 .139	0.00 .300 1.18 .128 1.70 .130	0.00 .310 1.15 .135 1.37 .093	0.00 .310 1.57 .100 2.01 .095	0.00 .310 1.25 .135 1.60 .160	0.00 .26% .07 .100 1.07 .100	0,00 .298 .90 .198 1.20 .175
2.00 0.061 3.12 0.079 3.52 0.380	1.67 .179 2.55 0.000 3.10 0.005	2.50 .000 3.30000 3.52070	2.00 .095 2.25 .080 2.60 .065	2.01 .095 2.70 .010 3.10036 3.30060	2,40 ,003	2.48 0.000 3.05000 3.51175	1,75 .100 2,35 .005 2,78 =.000
4.05145	3.46078 3.78100	3.00130	3.42065 3.68070	3.42155 4.71 -,140	3.02070 3.01148 4.21170	4.09 0.145	3,17098
5.66 4.245 6.66 4.330 7.23 4.340	4.90156 4.90256 9.66259	5.92225 5.92225 6.00336	4.70 -:130 4.70 -:140 5.61 -:240	5.30200 5.82270 8.84310	5.00240 5.55230 6.43300	3.00830 3.35870 3.89830	3,77165 4.25160 4.87215 3.48260
7,80349 8,63470 4,35510	4,61 -,335 7,23 -,350 7,90 -,390	7.15345 7.71400 8.45430	6.19 0.220 6.40 0.330 7.42 0.380	7.74430 8.78460 9.40340	7.80375 7.93390 8.80491	6.70285 7.38350 8.07355	
*.85 *.505 10.53 *.010 10.70 *.850	8.78300 9.35305 18.00380	10.00 - 560 10.70 - 645	8.34410 7.30500 10.27610	10.24600 11.05670 11.65705	0.57 a.505 10.15 a.606 10.86 a.676	050 07.8 050 55.7 070 61.01	0.00265 7.97350 6.23364 6.62466
11.24670	11.30 -,040	11.02716	10.84650		11.40040	10.65620 11.20690 11.83705	9,37 *.490 9.62 *.540 10,40 *.605
11.93716	13.67 -,710					11107 01107	17.62620
			TE	5T 13			11.90709
MANGE 1.5	RANGE R.O	RANGE 3.0	RANGE 0.0	RANGE 5.0	RANGE 6.0	RANGE 7.0	RANGE 7,0
878 ELEV (m) (m)	STA ELEV (H) (H)	STA FLEY (M) (M)	STA ELFV (H) (H)	BTA ELEV (M) (M)	874 ELEV (M) (M)	#7# ELEV (M) (M)	STA - ELEV (H) (M)
0.00 .885 1.00 .17c 1.35 .150	0.00 .299 .00 .218 .02 .175	0.00 .310 .66 .160 1.59 .100	0.00 .310 .50 .245 .95 .175	0.00 .319 -0.00 .319 -0.00 .75	0.00 .315	0.00 .310 .82 .216 1.50 .130	0:00 .310 .00 .185 1.83 .085
1.43 .15n 1.44 .18n 1.80 .04g	1.10 .165 1.25 .165 1.32 .185 1.60 .055	2.09 .020 2.53075 2.72155	1.02 .100	.75 .185 1.37 .160 1.66 .090 2.46	1.24 .210 1.87 .130 2.48 .010 2.75030	2.26 .065 2.72 0.065 3.53 0.140	3.39003 3.39000
2.40 .004		3.62215	3.60 0.095 3.60 0.195 4.33 0.160		2.46085 3.04130 3.66255	4.42245	5,31220 6,28270 6,91310
3.58210 4.10215	2.49 = 050 2.77 = 130 3.13 = 200	9.62240 9.62240 6.43295		3.01 0.220 4.29 0.100 4.99 0.100 5.93 0.259	6.42140 5.13210	5.99 0.275 0.88 0.300 7.03 0.345	7,75340 8,77430
4,71809 5,52230 6,31280 6,92330	3.91215 4.45215 4.82200	7.46358 8.19430	1.65265 5.97260 6.45300 7.00335	6.22290 6.95325 7.57360	9.69290 8.76355 7.46365	0.87 e.470 7.50 e.541 10.35 e.615	18.42600
8.28 4.430	9.65240 6.49290 7.01330	0.19430 9.88580 10.19590 11.15655	7.40365 8.44455 7.37520	0.41 +,460 9.27 +,515 9.69 =,575 10.78 +,645	0.77490 9.56335 10.86618	11.38 -,665	
8.79 *.475 9.48 *.315 10.24 *.370	7,42 -,300 8,30 -,430 8,82 -,460	11.00 -,710	10.34600 11.85660 11.95710	10.78645 11.44645 11.45710	11.17070		
11,00 0.695	0,49 0,525 10,17 0,588 11,16 0,668		••••	• • • • •			
	11.03710		TEX	ST 14			
RANGE 1.9	RANGE #.0	RANGE 3.0	RANGE 4.0	#4NGE 5.0	RANGE 6.0	MANGE 7,0	#44GE 7.0
STR ELEV	BTA ELEV (m) (m)	BTA FLEV	BTA ELEV	BTA ELEV	STA ELEV (H) (H)	STA ELEV	BTA ELEV (M) {M}
0.00 .ERS	0.00 .290	0.00 .300	0.00 .305 0.00 .110	0.00 .510	0.00 .305	0.00 .305	0.00 .305
70 .000	.41 .115 .47 .015 1.16025	1.35075	1.37080 1.85115	1.15010 1.78050	13 .170 1.22 .020 1.82 +.040	1.72 .040 2.22 .040	1.92 .120 2.00 .010
1.26 .030	1.63 a.090 2.14 a.135	2.24200 3.24200 3.26220	2.10 0.180 3.00 0.200	2.21115 2.36165 3.23265	2.52110 2.81155 3.50240	2.95 e.135 3.65 e.140	3.00000
2.91200 3.58290 4.31255	2,42 -,225 3,59 -,208 4,24 -,240	3.93240 4.95245 5.80875	3.93310 4.87310 5.72325	4.02285	4,23 +,249 4,94 -,265	4.43210 5.16245 6.34375	4.01 +.130 4.44 +.210 4.04 +.310
5.63300 6.39300	4.92 4.255 5.65 4.270 6.58 4.290	5.74330 7.63385 8.82460	0.73 m.319 7.69 m.425 8.79 m.515	3.71390 8.67310 7.35360 8.19635	5.76369 6.30390 7.00320	6.98 =,355 8.06 =,425 8.98 =,680	6,97365 7,92620 8,74685
7.47 4.365 8.96 4.490	7,31 =,330 9,12 =,395 0,89 =,885	0.85555 10.91476 11.37719	9.70515 10.81688 11.45710	8.19435 9.32940 9.05530	7,72396 8,55445 9,40845	9.78860 11.01885 11.05678	9.93 0.540 10.47 0.590 11.45 0.631
9.90 0.550 10.44 0.640 11.27 0.665	10.51540	11.98 719	11.03 4.710	10.71 0.655	10.24556	11100 01010	11.04005
11.98710	11,20 -,085		-	11.95 -,715	11.43709		
#446E 1.5	RANGE 8.0	RANGE 5.0	#4MGE 4.0	ST 15	RANGE 6.0	RANGE 7,0	RANGE 7.0
874 ELEV (M) (M)	874 ELEV (W) (M)	874 FLFY	STA ELEV	BTA ELEV	BTA ELEV	\$14 ELEV (H) (H)	874 ELEV (M) (M)
0.00 .250	0.00 .289	0.00 .240	0.00 .289	0.00 .303	0.00 .275	0.00 .295	0.00 .300
1410 +140 1419 +100 1439 +099	.05 .175 .05 .135 1.05010	.63 .20% .63 .100 1.83 0.000	.85 .180 .85 .125 1.13 .120	.80 .200 .80 .115	1.00 .129 1.00 .085	1.30 .123 1.60 .105 2.60 .010	1.00 .100
2.09 0.036 2.60 0.099 3.35 0.209	2.46 •.090 3.35 •.230 3.92 •.231	2.24061 2.51070 2.95143	1.77 .015 3.00085 3.30155	3.42 .095 2.20 .015 3.35 0.075	2.01 0.000 2.75015 3.54078	3.34 4.080	2.34 .048 2.55 0.003 3.20 0.070
4.20239 5.50290 6.75310	4.00209 0.09300 0.99380	1.48	3.49309 3.78110 3.80140	3.43120 3.42080 4.00090	3.73120 3.40040 4.10045	3.62090	3,75 +.125 3,45 +.170
7,75369 8,75449	7.95400	9.17309 6.26305 6.70316 7.79370	0.55.0 EB.0 085.0 00.0	4-19130	0.90155 0.91236	4.29150 5.05180	4.70 - 180 4.70 - 180 6.41 - 283
11.15689	16.09949 11.10650 11.93693	0.70	7.82310 7.82340 8.75420	9.60 0.270 0.48 0.255 7.78 0.315	7.00329 8.75420 10.10000	0.43 0.240 7.47 0.339 6.78 0.415	8.00300 8.70450 9.98570
		0,00939 (0.07099 11.03709	(0.03 0.575 11.00 0.00 11.03 0.709	8.79426 4.46576 11.63480	11.03705	10.10901	11.07099
			*****	11.03005			

APPENDIX C

PLOTTED BEACH PROFILES

DATE 70CT77 CCTOC 70CT77 700177 70CT77 700177 70CT77 70CT77 Range 1.5 ន Я 3 8 얺 \$ 8 Station (meters) TEST 3 VERTICAL DATUM IS SML HORIZONTAL DATUM IS STATION O E SLEVATION (ţ 0 t-(H 0ATE 3AUG77 390077 1690977 1690077 3AU077 390077 1690977 1690077 Range . S 80 <u>5</u>. 80 2 % 38 12 Station (meters) TEST 2 (2 of 2) ELEVATION (M)
S 6 0 t

0A7E 290EC77 290EC77 290EC77 290EC77 290EC77 290EC77 290EC77 290EC77 15 8 ଖ â 2 ß 8 Station (meters) TEST 5 VERTICAL DATUM IS SWL HORIZONTAL ORTUM IS STATION O ELEVATIÓN (M) 2 0 ٦-DATE 16MOV77 16NOV77 18NOV77 18NOY77 18NOV77 16NOV77 16NOV77 16NOV77 Range 1.5 ន Station (meters) TEST 4 ELEVATION (M) 6 0

APPENDIX D

SELECTED BREAKER BAR AND WATERLINE PHOTOS

The following photos from 35-millimeter slides were taken at approximate run-hours 01, 08, 16, and 24. Figure 15 provides an explanation of features. The complete set of slides is available from CEIAC.

Figure D-3c.

Figure D-3d.

Figure D-4d.

Figure D-4c.

Figure D-5d.

Figure D-5c.

81

Figure D-7c.

Figure D-8d.

Figure D-8c.

Figure D-10c.

Figure D-10d.

Figure D-11d.

Figure D-11c.

87

APPENDIX E

HOURLY CYCLE CALCULATIONS

A listing of the program which calculates the values in this appendix, using the data in Appendix A, is available from CEIAC.

								HOURS Y CYCLE C	CALCULATION	•						
£81	BAVE	4740		HE 16H	9.0	AKFR	9 x 4	P.L.8	1881	A 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.40	> 4 8	HE I GHT	BREAKER	¥ ¥	874
		2	33	t	2	OF GREES	1/2	3/4/5		e e	2	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0664668	*/*	8/4/6
-	c ·	g :	0	3 ·	•	•	1.185	2.431		۰.	S C	13.2	12.3	•	2.266	3.703
	- ^	? ?		e ^	•	< -		2.21	~ ~	- ~	, M	2			2.197	* CO. P
	, -	, e	0.0	4.	•	٠ •	7000	2040	•	~	~	~			2.638	9.9.0
	3	30	Ç	٠,	•	c -	1.128	C11. ~	*	3 1	Š	5	9.7		2.676	4.750
-	•	4		9 . 6	10	•	. 965	5.095	• •	so d	c c	200	7.7		2.715	4.561
	••	c (~		•	e i	1.128	2.176	~ ~	•	7 0	7			0,000	7
	٠.	<u>.</u>	90	•	•	~	700	50100	n 🛩	•					24	9
		5 6	•	•	۰ ،	•	001.	2,120	n 🛩	•	5				7 - 180	
	•		•		•	τ (2.6	2 490		c	Š	-	7 . 7		2.394	2.75
					•	• •		100	•		30	-	14.0		2.232	2.338
	~	, e		~	•	٠.		2.21	•	~	34	-	15.0		2.412	2,577
	_	9	90	2.4		٠ •	1.244	156.	~		S	13.2	13.2		2.431	2.292
_		-		•	۰	: 4	1 . 304	. 64	50 (7	Ë,	7	9.0		1.688	1.592
		Ë		7.8	4	•	1.274	2.153	m (<u>.</u>	e i	~			5 · S · S	3.807
		20	•	1.	Œ	. «	1.274	2.450	,	2	0	~	7.5		2 0 0 N	V-4.5
		S.	,°,	٠٠	•	•	1.304	2.517	,	-	5	1 %	•		1.050	2.669
_	•	Š	101	•••	•	•	1.204	2.402	m 1	0.6	-		200			2.072
	•	Š	40.	9.0	•	•	1,214	2,053	٠,	_ (5.	2				060.5
-	٩	30	0	3.6	•	• •	1,072	1.684	m	2	٠ ٢	-	1 2 . 6		7.007	2026
-	7	Ë		7.0	^	. ~	1.120	1.907	n .	₹.	3 .		•			90.40
_	2	č	~ [0]	6.	^		1.244	2.103	-,	×.	2 :				971.7	Z • C C C
-	2	30	20,0	9.9	•	~	1.100	200.1	^	2	•	7.6	13.6		£050 3	1.370
_	Ž	ŝ	.01	•	•	•	1.214	2.053								
									9	٥	30	9,0	31.5		1.793	3.290
^	•	۶	4	4.5	-	•	1.156	1.066	•	-	č	0	13.2		2,243	3.604
٠,						~ •	9	- 955	•	~	Š	-	13.8	•	2.497	3.441
۰ ۸	٠.	5				٠.	2000	2.353		~	2	-	15.0		2.806	4.510
۰,	-				. «		281	2.25	•	3	č	-	16.2		3.179	5.109
۰,			9	•	•	. 4	30	2000	4	r	Š	=	14.2		2.557	4.100
, ~ ,	r	2	0	9	•	: «	1.544	20105	•	•	Š	0	4.5.		2.437	4.194
~	•	30	~	٠. ٤	•		. 965	1.748	9	•	c	70.	12.8		2.130	3.17
~	•	2	0.01	3.6	•	•	1.045	2.018	9	æ	~	-	12.5		2.378	200°7
~	•	2	٠ ا	٠.	•	. ~	1.274	2.459	3	•	5	7.	13.2		2.397	4.309
~	•	ž	~	٠.4	•	~	1.045	1.747	a	Ç	ć,	c .	12.7		2.075	3.571
~	c,	ŝ	3		~	_	1.150	1.955	3 1	_(0	0			2.262	N - 0 - 0
~	='	ç,	•	•	~	£	1.150	1.016	7 :	-	2 5	2			/CO. N	3.7.5
n . :	٠,	<u>ج</u> :	•	9	•	•	921.	2.043	9 4	-	٠ <u>٠</u>					
~ (-	9	3	•	.	•	921.	5.043	• <		5 5					****
~ ,		5 6	•	•	٠ .	•		9.9.	,			40	2.7		2.47	1007
		5 6		•	۰ ،	- ··	91.	7//5	. 4	-	5	•				
					•	٠.			3	10	2				1.709	2.706
u 1	•	5			٠ «	.,		1000	9		9		12.4		1,610	2.701
		5			•	~- •	7117		•	,6	20	0.	13.7		2.339	3,223
۰,	- 0	É				- •	1.072		9	~	20	10.	12.0		2.093	3.364
• ^	. 7				•	- •	2000	100	•	~	Š	\$ *	11.3		1.57	2,697
٠,	. ?	-		4	•	. •		146.6	•	~	Š		11.6		1,563	2.511
۰ ۸	7	30			•	٤ 5	27	2.4.0								
. ~	. 7	Š		. 4	0	•	141	2.681								
~	Š	30	,		•	•	100.	1.956								
~	₹.	Š.	10.2	4.6	•	•	1.244	5.690								
~ (2	e.	•	- (•	•	***	2.418								
~ 1	D 0	9 (-• -•	~:	•	•	1.171	2.120								
~	~	•		•	•	~	1.200									

No.				HE IGH
######################################	۸× ۵	*×		
### ### ### ### ### ### ### ### ### ##	7 1/2	1/2	DEGREES N/K	1/2
N		2 .764		
				1.074
				116.
######################################				2 0 5
######################################				1 1 1913
# P P P P P P P P P P P P P P P P P P P				1 2 .72
######################################				100
######################################				100
######################################				1 2 1.76
######################################				
######################################				
				05.
Name				256. 7
######################################				1,004
######################################				270.1
######################################				30001 7 6
######################################				146.
				470.1
######################################				
######################################				2 7 10.117
######################################				4 0 1.070
1				200.1
######################################				1 10 . 923
### ### ### ### ### ### ### ### ### ##				
				910"
				2.067
	•	•	•	
	2.041	2.041	100.2 11 01	01
	010	010	010	
	2,173	10 2.173	11 10 2:173	c-
				•
	1.039	0.030	0.00	•
		- 70 .		
	190.	7900	7400	~
	1. B. t. a.	1. B.t.		•
				- - -
	1.863	1,863	10 7 10863	- 0
	066.1	000-	1.990	6
	5 1 2	\$ 1.0°		•
	920	0.00	0.00	•

	0000		0000	•
	1.0.1			-
1				-
	Z-067	\$ 5.067	7.00%	•
	4.510	72 6.310	2 2 2 2 2 2	~
20 20 11.01 11.01 11.00 20 11.00 11.	2 300	2 200		
### ### ### ### ### ### ### #### #### ####	00343	0000	00000	
	2.041	100-6	100-6	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				.,
	1.939	1.0034	950°! !! ^	
6 12 13 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	1.700	1.700	1.700	100
		7		-
	****	AC 4.0 4	****	
	740	40	740	
1077		-	· · ·	•

	97	3/11/8	4.336	3.737	7.000	7.617	798	7.420	4.305	960*7	4.361	576.7	00247	1000		340	305	4.147	4.87	276.7	860.7	3.296	3.774		3.113	3.661	3,273	3.516	9.0	7.67.0	2.788	2,655	3.125	3.039	0.00	1.224	2 4 7	2.948	2.426	2.401	3.321	3.041	2.518	2.530		(10)
	×	X Z	2.511	3 4	2.68	4.735		4.735	2.612	2.750	2.646	2.681		110.0	2.578	2.750	2.6.5	2.576	2,821	2,928	2,612	2.156	2,346		9000	2.570	2.239	2,339		2.010	2.305	2.207	2.079	2000	****	2.204	501.	2.207	2.079	1 995	2,272	2.207	2.239	2.534	0 1 1 0	2 ()
	BREAKER	DE GAFF8	21 21																						15 15								15 20							12	-	18 14	٦٠		<u>.</u>	<u>-</u>
	HE 10HT				F . 4			10.8		٠. ٥	0 7	٠,٠	۳. ت	•		1				Ş.	5.8	α. 3	c.		7.6	e • •	7.6	4.6	•	0 4	•	7.3	0.4	4	r:						•	7.1	٧.٧	~	•	:
	GAGE	3	•		0	0	100	-		:	0	· ·	~ ·	•	- 0		•			•	ان ا	·.	5.		•		· •	2	~;	•	-	•	74	•	~	•	•			•		\$	2		٠ . د	
	DATA	2	6		2	c,	د د د د	, ,	9	20	5	Ş	٠	5.	5 5	5 5	- C	5	, P	-	39	5	ĕ,		30	30	2	30	Ç,	5 6		č	2	c M	Ç.	9 :	5 6	5	: 5	5	5	C	Ş	Š		Š
•	FAVE	Œ I	۰.	~	•	.	•	^	•	•	°-		2;	~					-		. 7	~	. 7		0	-	~	~	3 (r •	•	•	•	0	=:	-	7			-		-	2	~	χ.	ć
LCULATIO	1631		~:		~	~	~ :	2	~	~	2	12	~ :	~ :	2:	-:				: 2	2	~1	~1		=				<u>.</u>	<u>.</u>				13	=	=:	- ·	? :			=	-	=	~	_ :	=
MOURI Y CYCLE CALCULATIONS	976	8/1/5	026.4	00 m = 3	E - 0 E - 0	4.201	4.390	- CO	# 10 P	7,000	4,04	3.470	3,698	4,349	4.4.40	97; 7	4.645	00.0	1.5.5		9.0		5.5	•	11.725	13.591	12.084	14.715	5.6.91	15.54	16.148	14.923	13.935	13,951	0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12.00		157.71	440.4		20.41	16.525	15.207	10,148	010.71	14.380
	A X C	1 2	3.115	2.018	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2,609	2.974	2.625	K.675	45.0		2.317	2.596	2.946	2.809	8. BO	3.289	3	0.00		7 2 2 2	144.5	3,289		5.0.0	6.392	7.461	E . L .	2000	1000	8.493	8.341	8.043	7,708	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 3 0		177	201	5.74	6.697	8.955	8.241	2070	7.846	8.043
	BREAKER	SECREFS																							_	-	_				-		15 15													
	HE 16HT	1									- 4														18.3	18.0	17.1	18.2	C .	3 .		. 8	18.2									20.7	10.5	19.2		19.0
	# A V E #			- :	2	-	<u>`</u> -		- :		- 0		~	-	-	0	7	~ · ·	-			' ::	~		14.4		-	15.5	14.7	-			-	 	4		3 0		•	4			5.5		1.5.7	9.91
	4740	ı Z	2	e :	5 5	5	5	9	c .	5	6 6	-	Š	30	30	2	<u>ج</u>	<u>د</u>	0	7 6	ç .	; 5	Š		20	~	2	\$	Š.	9 -	5	-	Š	50	Ç,	5	E 4	5 5	5.5	5	5	, ,	Š	5	30	30
) X		0	6	•	*	•	• •	~ •	0	•	-1-	-	-	3	-	-	7	-	- 1	~	; ;	~~		•	-	~	~	3	•	•	•	•	٥		7.	- .			-			- 6		~	7
	1837		•	•	•	•	•	• (P 0	• (, 0	•	•	•	•	•	•	•	•	•	• •	· a	• •		9	-	2	2	-	2		-	2	10	0.	-	= :		2 :		2 :	-	-	0	-	2

	974	3/1/5	25,790	7	2		5.	2.87	4.06	1:1	9.14	2.2	5	9		10,	(,,	~ ~	0.0	2.5	1 . 47		•		7.04	4:1	2.69	3.16	3.59	2.12	2,25	2.81	. 0	99									~		2.0	1.72	12.660	2.81	3.87	
_	×	# / #	11,172			2		-	. 23	77.		5	5	6		6	8	- 6		90	3.	0	9		Š.	2	Š	2	=	ŝ	ž	S	50	۲.	-			5.	6	5:		: :	6	ڏِ '	4	5	8,242	8	3	
LEULATION	BREAKER	EGRER	27 28	•	~ ·		. ~	-	_	٠ -	•	•	· ·	~	•	~ :		0	0	~	~	m .	~ :	•	_	-	-	2	-	<u>ت</u> و	-	_	_	_	- i	· ·		- 6	· ·				•	-	- •	<u>-</u>	19 20	٠.	<u> </u>	
CYCLE FA	MF 1GHT 6AGE 2	£	17.4	:	: .	: 3	;	÷			÷	ė	į.		ċ.	÷	ċ.	;	٠.		ċ	3	٠.		÷	ë	÷	۲.	į	ċ	ζ.	į		:	:	:	:.	٠,	٠,	٠.	•	:	٥.				16.5	•	ċ	
¥ 1800	# A V E	3	1362	•	,	•	4	٠,	• •	3	,	3	3	ď	<u>.</u>	٠,	•	•	•	•9	•	•	•	4		4	•	•	Z	3	ς,	٠,	,*	٠,	٩,	٠,	٠,	₫,	٩.	٠.	٠,	٠,	٠.	٣,	,	٣,	2.0	্	~	
Ī	7174	Z	95																							S C	=	20	ç	30	Š	Š	<u>ج</u> .	Ş.	5.	5 .	5 :	5 -	2	5 5		C ,	Ç .	Š .	30	Š	۶.	Š	2	
	# A V A	: 1	•	-	~ -	٠.	•	•	•	•	•		=;													•	_	~	~	4	•	•	•	•													7			
	1691		=	=			: :		2	=	-	-	-	2	-	3	=	=	7	.	-	<u>=</u>	3	-	2		-	~	ï	2	ŗ	-		<u>.</u>	<u>-</u> :	<u>.</u> :	<u>.</u>	2 :	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>		r	15	~	~	~	~	

APPENDIX F

DAILY CYCLE CALCULATIONS

A listing of the program which calculates the values in this appendix, using the data in Appendix A, is available from CEIAC.

						16.6	9	7.7.6	*	•		·	9
1,	ž		=	S H	ď.	2	C OX	c	· ·	۲ ۱	:	2	L E
7.757 7.874 7.	3/4/5		8/2	\$/\$			1	Œ	3	3/4/5	8\z	S/1	
10 10 10 10 10 10 10 10	3	ž	8000	1753	1830	•	c	3	4.010	3.675	.7117	, 2364	1017
	2.254	24	2000	1200.	9522	< -	3 1	•	7.657	1.500	.3781		106
100 100	۲.	-	.5407	. u.B.19	2400	«	« (۲.	1.127	S	CEC.	7	66.
1015 1015	7.149	9	.5591	4.05	.2601	•	<u>.</u>	<u>•</u> •	2 4 4	200	2767.	3 4	
100 100	~	47	9.0	8,25.	0110	٠	- 6			9 0	67.46	744	
10 10 10 10 10 10 10 10	•	٠,	.67.6	105	5000	. •	`	3 3	95-1		2 2 4	0010	77
10 10 10 10 10 10 10 10	- 1				9.55	•	.	•	0770	50.00	2049	600	
10 10 10 10 10 10 10 10		` .		>	, , , ,	•	•	-	2.354	1.535	5965	2532	4
10				00.00		•	~	. •	700	451.0	6763	1665	
11.00		5 4	47.4		***	0	•	2	1002	2 A A S	4565	5071	160
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	- ^	r w	1001	1004	8511	•	ć	~	20000	3,037	. 4967	1001	1262
100 10 10 10 10 10 10 1	. ^			7 7 7	1284	•	~	7~	4.076	8000	4007	.1015	1001
# 1	. 3	- 2	3.44	1717	. 21.27	٢.	6	2	A.071	14,138	1.0045	5021.	0710
100 100	3	· •	2014	4557	7007	c -	~	÷	3 × 5 × 4	15.710	1.040.	.1277	1000
10 10 10 10 10 10 10 10	```	5	2216	41.58	0617	o-	•	Ş	A.596	15.27	10000	.1278	. 116
		5.5	.7475	. 1275	4262.	c	ó	7∼	A-156	15.166	1.1614	1671.	. 1766
1000 1000		~		9771.	.2559	2	c	3	1.50	Ø 0 0 € 3	1,1593	\$45B.	787
1000 1000		•	6147	.1725	2501	2	J	•	6559	7.644	1.644	3644	219
1000 1000		=	.7290	.3123	7961	~	•	^:	2.612	420.0	0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1	1029.	1770
		E,	. 6194	\$956.	.1012	2	~	£ ,	2.00	721.7	1.7474	55.55	60
10 10 10 10 10 10 10 10	<u>.</u>	940	4005.	.2505	1691	~ :	•	٠ ا	0.4.0	4.51	1 4 7 4 1	67.69	186
			, 5 a 5 ,	\$ 760.	4.5.	2:	λ.	3 :			2000		
1000 1000		3.5	. 6.7		0501		> 5	7 4	0.0	- d	1.00.	200	
10 10 10 10 10 10 10 10		7 0	6176		~ ~ ~ ~		•		2 - 0 - 0	000		44.4	7787
1	•		,	0000	3402.	=	0	. 7	2.175	070	21013	5005	1624
100	• •	, ,	C 40 C W	100	1.0.78	<u></u>		<u>.</u>	77,00	7.786	1,1222	,5234	400
100 100	•	9.0	7121	174	, A 3 8 0	-	« 	~	7.564	7.853	1.1704	.5160	0 7
1005, 5712 1007,	-	151	414	1963	7671	~	~	7₹	7.54	7.22	1.1514	.5182	5215
COLUMN	-	52	0009.	.7095	5115	5	c:	3 (10.504	25,913	3.1089	9766	1234
10 10 10 10 10 10 10 10	٠.		31.00.	0005.	. 3988	3	, c	ĸ .	12.50	30.657	20110	W : C	0
100.00 10	~	570	6616.	.4761		.		<u>^</u> :	000	30.612	2.280.5	5000	9.01
100.00	-	7∼	95 69.		0087.	2	<u>.</u> ,	e ;		0.0	70000		
	-	5	1.0206	.5554	.5120	3 5	-1	C .	200	10.05	3.14.4	1007	
1	ζ.	94	4040 T	.9057	. 4566	-	ζ'	3			2000	0000	
1991 - 1995 1991 - 1995 19	-	r c	1.0051	. 5269	. 5569	<u>.</u>	0 5	9 6		13.610	2.2938	9952	
100 1 100 1	£.	631	15421	1962.	\$922.	Ξ.	•				902.0		
19527 1736 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Š	E a	7500.	2514	6951.	C #	• •	~ -	447.0	00.00	2 44 4	7.07.	
15 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	3	99	. V 1.18	. 2524	1726	2 •	* 1	٠,			2000		
0070041 - MC***	3	-	.7512	-5435	. 1738		- 1	0.0		>DC . C .		D 1 C C .	
2000		ر ا و	1009	.2516	1010	7		;		1 3 4 3 %) D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,,,,,
7002	٠.	5	. 6227	5000	1587								
		<u>.</u>	.0.200	7002	. 1665								

Vitale, Philip
Movable-bed laboratory experiments comparing radiation stress and
energy flux factor as predictors of longshore transport rate / by
Philip Vitale.--Fort Belvoir, Va.: U.S. Army Coastal inhipneering [94] p. : ill. ; 27 cm.--(Miscellaneous report / U.S. Army Coastal Movable-bed laboratory experiments comparing radiation stress and to empirically relate the longshore sediment transport rate to the radiation stress and the longshore energy flux factor. Both correlate equally well with the longshore transport rate; the surf to empirically relate the longshore sediment transport rate to the radiation stress and the longshore energy flux factor. Both cor-Three-dimensional movable-bed laboratory test results are used Three-dimensional movable-bed laboratory test results are used similarity parameter also shows a strong influence on the rate.
1. Hydraulic models. 2. Movable beds. 3. Sediment transport.
4. Wave energy. 1. Title. 11. Series: Miscellaneous report 1. Hydraulic models. 2. Movable beds. 3. Sediment transport. Researen Center; Springtield, Va.: available from NTIS, 1981. relate equally well with the longshore transport rate; the surf similarity parameter also shows a strong influence on the rate. 4. Wave energy. I. Title. II. Series: Miscellaneous report (Coastal Engineering Research Center (U.S.)); no. 81-4. Engineering Research Center; no. 81-4) Bibliography: p. 45. Bibliography: p. 46. "April 1981." "April 1981." Vitale, Philip Sover title. Cover title. energy flux factor as predictors of longshore transport rate / by Philip Vicale.—Fort Belvoir, Va.: U.S. Army Gaszal Engineering Research Genter; Springfield, Va.: available from VIIS, 1981. [94] p.: ill: , 27 cm.—(Miscellaneous report / U.S. Army Gaszal Engineering Research Center; no. 81-4) [94] p. : iil. ; 27 m.--(Miscellaneous report / U.S. Army Coastal Movable-bed laboratory experiments comparing radiation stress and Movable-bed laboratory experiments comparing radiation stress and to empirically relate the longshore sediment transport rate to the to empirically relate the longshore sediment transport rate to the Philip Vitale. -- Fort Helveir, Va. : U.S. Army Coastal Engineering energy flux factor as predictors of longshore transport rate / by radiation stress and the longshore energy flux factor. Both correlate equally well with the longshore transport rate; the surf Both cor-Three-dimensional movable-bed laboratory test results are used Bibliography: p. -b. Three-dimensional movable-bed laboratory test results are used 3. Sediment transport. 1. Hydraulic models. 2. Mozable beds. 3. Sediment transport. relate equally well with the longshore transport rate; the suri similarity parameter also shows a strong influence on the rate. Research Center; Springfield, Va.: available from NTIS, 1981. similarity parameter also shows a strong influence on the rate. 1. Hydraulic models. 2. Movable beds. 3. Sediment transport 4. Wave energy. 1. Title. 11. Series: Miscellaneous report (Coastal Engineering Research Center (U.S.)); no. 81-4. TC203 4. Wave energy. I. Title. II. Series: Miscellaneous report radiation stress and the longshore energy flux factor. Engineering * .carch Center; no. 81-4) Bibliography: p. 46. "April 1981." Vitale, Philip Cover title. Cover title. "April 1981.

END

627

(Coastal Engineering Research Center (U.S.)); no. 81-4. TC203

627

(Coastal Engineering Research Center (U.S.)); no. 81-4. TC203