1 Exercise 1: Stability

1.1 Question 1.1

We have $x(t) = x_0$ and $\Theta(t) = \Theta^*$.

$$\frac{\mathrm{d}}{\mathrm{d}x}\omega = \eta * x_0 * (y^2 - y\Theta)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\omega = \eta * x_0 * (\omega^2 * x_0^2 - \omega * x_0 * \Theta^*)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\omega = \eta * x_0^2 * \omega * (\omega * x_0 - \Theta^*)$$

Fix point when $\frac{\mathrm{d}}{\mathrm{d}x}\omega = 0$

$$0 = \eta * x_0^2 * \omega * (\omega * x_0 - \Theta^*)$$
$$\Theta^* = \omega * x_0 = y$$

From this we can see that the ω is not bounded and diverges.

$$\Theta(t) = \frac{1}{\tau} * \int_{-\infty}^{t} y^{p}(s) \exp(-\frac{t-s}{\tau}) ds$$
$$\dot{\omega} = \eta * x * (y^{2} - y * \Theta)$$
$$\tau * \dot{\Theta}_{M} = -\Theta_{M} + y^{p}$$

Fix points if $\frac{d\omega}{dt} = 0$ and $\frac{d\Theta_M}{dt} = 0$

$$\Theta_{M} = y^{p} - \tau * \frac{d\Theta_{M}}{dt}$$

$$0 = \eta * x_{0} * (y^{2} - y * y^{p})$$

$$0 = \eta * x_{0} * y^{2} * (1 - y^{p-1})$$

$$0 = \eta * x_{0} * y^{2} * (1 - (\omega * x_{0})^{p-1})$$

$$\frac{1}{x_{0}^{p-1}} = \omega^{p-1}$$

And we see that for p > 1, ω converges to $\frac{1}{x_0}$, whereas for p = 1, ω converges to 0.

1.2 Question 1.2

Figure 1: After convergence, the weight is adjusted such that applying x_0 , $y = \omega$ and we observe that $\omega = \frac{1}{z}$, whereas z is the probability of $x_0 = 1$

1.3 Question 1.3

We have a linear neuron $y = \omega * x$

1.3.1 Show that $\Theta = \langle y^2 \rangle_x = z * y_0^2$

$$\Theta(t) = \frac{1}{\tau} * \int_{-\infty}^{t} y^{p}(s) \exp(-\frac{t-s}{\tau}) ds$$

$$\Theta(t) \approx \langle y^{p} \rangle_{t} \approx \langle y^{p} \rangle_{x}$$

$$\Theta(t) = \frac{1}{\tau} * y^{2} \int_{-\infty}^{t} exp(-\frac{t-s}{\tau}) ds$$

$$\Theta(t) = \frac{1}{\tau} * y^{2} * \left[\frac{\tau}{s} * \exp(-\frac{t-s}{\tau})\right]_{-\infty}^{t}$$

$$\Theta(t) = \frac{1}{\tau} * y^{2} = \langle y^{2} \rangle = \langle (\omega * x)^{2} \rangle$$

When applying an input x_0 with a probability of z, then the average at the output is $z * y_0$ where $y_0 = \omega * x_0$, as we can see in the last equation.

1.3.2 Show that $\langle \frac{d\omega}{dt} \rangle = \eta * z * x_0 * y_0^2 * (1 - z * y_0)$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \eta * x * (y^2 - y * \Theta)$$

$$\langle \frac{\mathrm{d}\omega}{\mathrm{d}t} \rangle = \langle \eta * x * (y^2 - y * \Theta) \rangle$$

$$\langle \frac{\mathrm{d}\omega}{\mathrm{d}t} \rangle = \eta * \langle x * (y^2 - y * z * y_0^2) \rangle$$

$$\langle \frac{\mathrm{d}\omega}{\mathrm{d}t} \rangle = \eta * z * x_0 * y_0^2 * (1 - z * y_0)$$

2 Question 2

2.1 Question 2.1

$$F(\omega) = \langle (\frac{y}{\sigma_y})^3 \rangle$$

$$\frac{\mathrm{d}F}{\mathrm{d}\omega}(\omega) = \langle \frac{\mathrm{d}d\omega}{(\frac{y}{\sigma_y})^3} \rangle$$

$$= \langle 3 * (\frac{y}{\sigma_y})^2 * \frac{\frac{\mathrm{d}y}{\mathrm{d}\omega} * \sigma_y - y * \frac{\mathrm{d}}{\mathrm{d}*\omega} \sigma_y}{\sigma_y^2} \rangle$$

$$= \langle 3 * (\frac{y^2}{\langle y^2 \rangle}) * \frac{x * \sigma_y - y * \frac{1}{\sigma_y} * \langle 2 * y * x \rangle}{\sigma_y^2} \rangle$$

$$= \langle \frac{3 * y^2 * x}{\sigma_y^3} - \frac{3 * y^3 * \langle y * x \rangle}{\sigma_y^5} \rangle$$

$$= \langle \frac{3 * y^2 * x}{\sigma_y^3} \rangle - \frac{\langle y^3 \rangle}{\langle y^2 \rangle} * \frac{\langle y * x \rangle}{\sigma_y^3}$$

 Θ is equal to $\frac{\langle y^3 \rangle}{\langle y^2 \rangle}$, therefore we can write:

$$= \frac{3}{\sigma_y^3} * \langle y^2 * x \rangle - \Theta * \langle x * y \rangle$$
$$= \frac{3}{\sigma_y^3} * \frac{1}{n} * \sum_{i=1}^{n} y^2 * x - \Theta * \frac{1}{n} * \sum_{i=1}^{n} x * y$$

This is the batch rule. We can transform this to an online rule:

$$= \frac{3}{\sigma_n^3} * y^2 * x - \Theta * x * y$$

From which we caldedude that $\frac{dF}{d\omega} \propto xy^2 - xy\Theta$

2.2 Question 2.2

Figure 2

2.3 Question 2.3

3 Question 3

Figure ?? and ?? are two examples of a receptive field formation in a BCM neuron. In both examples, it is clearly visible to which of the pixels the neuron is specialized. More discussion needed...

Receptive field after 5k, 70k, 110k and 150k iterations

Figure 3

Receptive field after 5k, 70k, 110k and 150k iterations

Figure 4