Indian Institute of Technology Mandi

भारतीय प्रौद्योगिकी संस्थान मण्डी कमांद, हिमाचल प्रदेश - 175075

MA-221(Numerical Analysis)
Course Instructor: Prof. Rajendra K. Ray
TA: Kajal Mittal
Lab Assignment-2
Date: 04/02/2025

Provide the code for the following problems:

- 1. Convert the following numbers into the other number systems:
 - (a) $(2655)_{10\to 16}$
 - (b) $(0.0101)_{2\to10}$
 - (c) $(.AAAA...)_{16\rightarrow 8}$
 - (d) $(347.623)_{8\to 2}$
- 2. As part of a laboratory experiment, a group of students needs to calculate the modulus of elasticity E, of a steel beam. An object of mass m = 0.491kg is suspended from one end of a beam whose length is l = 0.451m, width is a = 0.021m and thickness is b = 0.003m. The resulting deflection of the tip of the beam is measured to be d = 0.142m. Substituting these values into the formula

$$E = \frac{4mgl^3}{dab^3},$$

where $g = 9.81 m/s^2$ is the acceleration due to gravity, the students calculate

$$E = \frac{4(0.491)(9.81)(0.451)^3}{(0.142)(0.021)(0.003)^3} = 21.952 \times 10^9 N/m^2.$$

A standard table of properties of steel, however, indicates that the actual value should be $E = 30 \times 10^9 N/m^2$. Is the value calculated by the students within acceptable limits of the tabulated value?

- 3. A given calculation requires the value $\sqrt{7.1} \approx 2.66458$. The two most natural approaches to take would be chopping and rounding the number, producing $\sqrt{7.1} \approx 2.6$ and $\sqrt{7.1} \approx 2.7$, respectively, if we drop all the digits after second one. Calculate the absolute and relative error in both the cases.
- 4. Let $x_T = \pi$, $x_A = 3.1416$, $y_T = \frac{22}{7}$ and $y_A = 3.1429$. Calculate the relative error in x_A and y_A . Also calculate the relative error in-
 - (a) $x_A + y_A$
 - (b) $x_A y_A$
 - (c) $x_A.y_A$
 - (d) x_A/y_A
- 5. Find the condition number of the following functions:
 - (a) $f(x) = \sqrt{x}$, for all $x \in [0, \infty)$
 - (b) $f(x) = \frac{10}{1 x^2}$, for all $x \in \mathbb{R}$