

Grafos e Algoritmos Computacionais

Árvores

Prof. André Britto Modificada por Prof. Breno Piva

Um grafo conexo e acíclico é dito árvore.

Teorema: Um grafo G conexo é uma árvore se e somente se |EG| = |VG| - 1.

Prova: Decorre imediatamente das proposições A e B (aula de conexidade).

Corolário: Toda árvore não trivial tem pelo menos dois vértices de grau um.

Prova: (Técnica do caminho mais longo)

Teorema: As seguintes afirmações sobre um grafo *G* são equivalentes.

- (a) Gé uma árvore.
- (b) entre quaisquer dois vértices distintos de *G* existe um único caminho e *G* não tem laços.
- (c) *G* é acíclico e para qualquer aresta *a*, *a*∉*EG*, *G*+*a* contém exatamente um circuito (*a* liga dois vértices não adjacentes).
- (d) G é conexo e G-a é desconexo para qualquer aresta $a \in EG$.

Esquema de prova: Desejamos provar que:

(a)
$$\Rightarrow$$
 (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a)

$$(a) \Rightarrow (b)$$

G é árvore \Rightarrow acíclico \Rightarrow **não tem laços**

O restante da prova é por absurdo. Se G não tem nenhum caminho é uma contradição à conexidade. Suponha então que *G* tem dois caminhos.

 $(a) \Rightarrow (b)$ - continuação

P1 e P2 são dois caminhos distintos ligando u e v em G

- 1) P_1 e P_2 disjuntos $\Rightarrow P_1 P_2$ é ciclo \Rightarrow contradição

- $(b) \Rightarrow (c)$
- 1) **G** \acute{e} acíclico: Por absurdo \Rightarrow
- G não é acíclico \Rightarrow Seja C um ciclo de G. Então ou C é um laço ou entre dois vértices quaisquer de C existem dois caminhos, contradição.
- 2) G+a, $\forall a \in EG$, contém exatamente um circuito: Sejam $u \in v$ dois vértices não adjacentes em G. Por hipótese, em G existe um caminho P entre $u \in v$. Então P(u,a,v) é um ciclo em G. Suponha agora, por absurdo, que em G+a, exista mais de um circuito. Sejam $C_1 \in C_2$ dois desses circuitos em G+a. Seja $C = C_1-a \in C_1$ = C_2-a . Então $C \in C_1$ são dois caminho entre $U \in V \in G$, contradição.

$$(c) \Rightarrow (d)$$

- 1) **G** \acute{e} conexo: Por absurdo \Rightarrow
- G não é conexo $\Rightarrow G_1$ e G_2 componentes conexos de G. Acrescente a ligando G_1 a G_2 . Então, G+a não contém circuito, **contradição**.
- 2) *G-a* $oldsymbol{\in}$ **desconexo** $\forall a \in EG$: Por absurdo \Rightarrow
- a=(u,v)
- G-a conexo \Rightarrow caminho P de u a $v \Rightarrow P_{\bullet}(u,v)$ é ciclo Contradição à aciclicidade

$$(d) \Rightarrow (a)$$

Para provar que é árvore

Por absurdo ⇒

Ciclo C em G, a∈C, C-a é conexo ⇒ G-a é conexo
⇒ contradição

• Se T é uma árvore, um vértice em T tal que $g_{T}(v) = 1$ é dito **folha**. Os demais são denominados **vértices internos** T.

■ Floresta ⇒ Conjunto de árvores

Ex.:

F

- Denomina-se excentricidade de um vértice $v \in V$ ao valor máximo da distância entre v e w para todo $w \in V$.
- O centro de G é o subconjunto dos vértices de excentricidade mínima.
- O centro de um grafo pode possuir no mínimo um e no máximo n vértices.
- O centro de uma árvore pode possuir não mais que 2 vértices.

vértice	excentricidade
а	3
b	3
С	2
d	2
е	2
f	3
g	3

Lema: Seja T uma árvore com pelo menos 3 vértices. Seja T' a árvore obtida de T pela exclusão de todas as suas folhas. Então T e T' possuem o mesmo centro.

Prova: Observe inicialmente que se um vértice f de T é uma folha então f não pertence ao centro de T. Isto porque o vértice g adjacente a f possui necessariamente excentricidade uma unidade menor que a de f. Seja agora um vértice interior v de T. O vértice w, cuja distância a v é máxima, é necessariamente uma folha. Logo a exclusão de todas as folhas de T faz decrescer de uma unidade a excentricidade de cada um de seus vértices interiores.

Teorema: O centro de uma árvore T possui um ou dois vértices.

Prova: Se T possui até dois vértices o teorema é trivial. Caso contrário, aplicar repetidamente o lema anterior.

Uma árvore geradora num grafo Gé um subgrafo gerador H de G que é uma árvore.

Corolário

Todo grafo conexo contém uma árvore geradora.

Corolário

Todo grafo conexo contém uma árvore geradora.

Prova

Seja H o subgrafo gerador conexo minimal. Então H-a é desconexo para todo $a \in EH$. Pelo teorema anterior, H é árvore. $(d \Rightarrow a)_{\square}$

■ Uma árvore Té denominada enraizada quando algum vértice v∈VG é escolhido especial. Este vértice é denominado raiz da árvore T.

■ Seja ν um vértice pertencente ao caminho da raiz r a w, $\{r,w\} \in VT$, então dizemos que ν é **ancestral** de w ou que w é **descendente** de ν .

Ex.: a é ancestral de b e c descendente de r

- pai \Rightarrow (a pai de b) $(a,b) \in aT$
- **filho** \Rightarrow (*b* filho de *a*)
- **nível** \Rightarrow comprimento do caminho entre raiz e vértice Ex.: nivel(r) = 0, nivel(a) = 1, nivel(b) = 2.
 - Se w é filho de v, nivel(w) = nivel(v) + 1
- altura ⇒ valor máximo de nivel(v) ∀ v ∈ VT

Ex.:
$$altura(T) = 2$$

Seja T uma árvore enraizada. Uma **subárvore** T_{v} de T é uma árvore enraizada cuja raiz é v e definida pelo subgrafo gerado em T por v e pelos descendentes de v.

Ex.:

Exercícios Recomendados

- Bondy e Murty:
 - 1.6.4, 1.6.6, 1.6.10
 - 2.1.2, 2.1.4, 2.1.6.

Referências

- Seções 2.3 do Szwarcfiter, J. L., Grafos e Algoritmos Computacionais, Ed. Campus, 1983.
- Adaptado do material da Profa. Leila Silva
- Capítulo 2 do Bondy J. A. e Murty U. S. R., Graph Theory with Applications, Elsevier, 1976.