Microsoft Azure AZ-900(클라우드)

01. 클라우드 컴퓨팅 개념

키워드: "클라우드 서비스, 이점, 주요 용어", "공용, 개인 및 하이브리드 클라우드 모델", "IaaS(서비스형 인프라), PaaS(서비스형 플랫폼), Saas(서비스형 소프트웨어)"

- 클라우드 컴퓨팅
- 사용자의 직접적인 활발한 관리 없이 특히, 데이터 스토리지와 컴퓨팅 파워와 같은 컴퓨터 시스템 리소스를 필요 시바로 제공하는 것
- 컴퓨팅 파워: Linux 서버, 웹 애플리케이션
- 스토리지: 파일 및 데이터베이스
- 네트워킹: 클라우드 공급자, 회사 간의 보안 연결
- 분석: 원격 분석 및 성능 데이터 시각화
- 규모 경제
- 소규모 운영에 비해 대규모 운영에서 비용이 절감되고 효율성이 증가하는 것
- 클라우드 공급자는 대규모 비즈니스로서 규모의 경제가 제공하는 이점을 활용하고 고객에게 전달
- · CAPES, OPEX
- CAPES: 미래의 이윤을 창출하기 위해 지출한 비용
- OPEX: 제품, 비즈니스, 또는 시스템을 실행하기 위한 지속적인 비용
- 소비 기반 모델
- 선 결제 비용 X
- 비용이 많이 드는 인프라를 구입하고 관리할 필요 X
- 필요한 경우에만 추가 리소스에 대한 비용 지불 가능
- •클라우드 모델 유형
- 1. 공용 클라우드
- 클라우드 서비스 또는 호스팅 공급자가 소유
- 여러 조직과 사용자에게 리소스와 서비스를 제공
- 보안 네트워크 연결을 통해 접근
- 2. 프라이빗 클라우드
- 클라우드 리소스를 사용하는 조직이 소유하고 운영
- 조직내 데이터 센터에 클라우드 환경 구축
- 조직내 사용자에게 컴퓨팅 리소스에 대한 셀프 서비스 액세스 제공
- 조직은 자신들이 제공하는 서비스를 운영할 책임이 있음
- 3. 하이브리드 클라우드
- 공용 및 사설 클라우드를 결합하여 응용 프로그램이 가자 효율적인 위치에서 실행되도록 함
- 클라우드 서비스의 유형

- 서비스로서의 인프라스트럭처(IaaS)
- 대부분의 기본 클라우드 컴퓨팅 서비스 범주
- 클라우드 공급자의 서버, 가상 머신, 스토리지, 네트워크 및 운영 체제를 대여하여 종량제-IT 인프라 구축
- 인터넷을 통해 프로비저닝(:설계를 하는 일련의 과정) 및 관리하는 인스턴트(:VM) 컴퓨팅 인프라

• 서비] 시 큰 서 이	플랫폼(Paa	(2e
711 4	ニニエハコ	コジョロ は	1.)/

- 소프트웨어 응용 프로그램을 빌드, 테스트 및 배포하기 위한 환경 제공
- 기본 인프라 관리에 집중하지 않고도 응용 프로그램을 신속하게 만들 수 있도록 함

laaS	PaaS	SaaS
가장 유연한 클라우드 서비스. 고객이 애플리케이션의 하드웨어를 구성하고 관리합니다.	애플리케이션 개발에 집중합니다. 플랫폼 관리는 클라우드 공급자가 처리합니다.	종량제 가격 모델 사용자는 구독 모델에서 사용하는 소프트웨어에 대해 비용을 지불합니다.

• 서비스로서의 소프트웨어(SaaS)

- 최종 사용자를 위해 중앙에서 소프팅되고 관리되는 소프트웨어
- 사용자는 인터넷을 통해 클라우드 기반 앱에 연결하고 사용
- ex) Microsoft Office 365, 전자 메일 및 일정

02. Microsoft Azure 소개와 인프라아키텍처

키워드: "핵심 Azure 악키텐처 구성 요소 이해 및 설명"

- 핵심 Azure 아키텍처 구성 요소
- 개방형 클라우드 서비스 지원
- Linux 투자에 대한 가치 투자, 오픈소스 DevOps 포용
- 지리적 위치(Geographics)
- 데이터 상주 및 규정 준수 경계를 보존하는 개별 시장
- 둘 이상의 지역을 포함
- 고객데이터 및 애플리케이션을 근접하게 유지
- 미주, 유럽, 아시아 태평양, 중동 및 아프리카로 분류
- 지역(Region)
- 지역은 데이터 센터의 집합
- 유연성 및 확장성을 제공
- 데이터 보존을 준수
- 사용자와 가까운 지역 선택 가능
- 가용성을 고려하여 지역을 선택할 것
- 지역별로 독립적인 글로벌 서비스가 존재
- •지역 페어(Region Pair)
- 다른 지역과 쌍으로 연결
- Azure 구조상 데이터 센터를 483km 이상 분리
- 중요서비스는 페어로 연결된 지역으로 자동 복제 구현
- 정전 시 모든 지역페어내의 한 지역이 우선 복구됨
- 시스템 업데이트는 페어로 연결된 지역에 대해 동시가 아닌 순차적으로 시작
- 페어로 연결된 지역은 동일한 위치에 포함
- 가용성 집합
- 유지 관리 또는 하드웨어 오류 밠갱 시 응용 프로그램을 온라인 상태로 유지
 - UD(업데이트 도메인): 예약된 유지 관리, 성능 또는 보안 업데이트는 업데이트 도메인을 통해 순서가 정해짐
 - FD(오류 도메인): 데이터 센터의 하드웨어 이중화를 통해 오류 발생 시 워크로드를 물리적으로 분리

- 리소스 그룹
- 수명 주기를 공유하는 여러 리소스에 대한 컨테이너
- 리소스를 단일 관리 단위로 모음
- 리소스는 하나의 리소스 그룹에만 존재
- 리소스 수준에서 RBAC(역할 기반 액세스 제어)를 사용하여 보호
- Azure Resource Manager
- 자원 관리자를 통해 Azure 구독의 리소스를 생성, 업데이트 및 삭제할 수 있는 계층적 관리구조를 제공
- 리소스 및 리소스 그룹을 만들고, 구성하고, 관리하고 삭제
- 리소스 구성, 액세스 및 리소스를 제어
- 다양한 도구 및 SDK를 사용하여 관리를 자동화

03. Azure 핵심 서비스

키워드: "Azure 핵심 서비스 이해 및 설명"

- Azure 컴퓨팅 서비스
- 클라우드 기반 애플리케이션을 실행하기 위한 필요시 언제든 이용 가능한 컴퓨팅 서비스
- 디스크, 프로세서, 메모리, 네트워킹 및 운영체제와 같은 컴퓨팅 리소스를 제공
- 최소한의 시간으로 컴퓨팅 리소스 생성 및 사용 가능
- 다수의 주문형 서비스를 제공
- 종량제
- 가상 머신 서비스
- Azure VM: IaaS(서비스형 인프라)를 사용하여 클라우스에서 컴퓨팅 파워를 제공
- VM Scale Sets: VM의 개수를 자동 조정을 위해 설계, 작업부하분산 및 서비스 집중시 최적 성능제공
- App Services: 엔터프라이즈급 웹, 모바일 및 API 앱을 작성, 배포 및 확장할 수 있는 PaaS(서비스형 플랫폼) 서비스
- Functions: 이벤트를 기반으로 계산 작업을 수행
- 컨테이너 서비스
- 컨테이너는 가상화 환경을 제공하지만 가상 머신과 달리 운영체제를 관리하지 않음
- 컨테이너는 최소한의 부하로 동적으로 생성, 확장 및 중지될 수 있도록 설계됨
- Azure Container Instances: PaaS 제공환경으로 컨테이너를 Upload하여 자동으로 실행할 수 있는 서비스
- Azure Kubernetes Service: 복수의 컨테이너를 관리하기 위한 컨테이너 조율 서비스
- Azure 네트워크 서비스
- Azure Virtual Network를 통해 Azure 리소스 간의 안전한 통신을 제공
- Azure Load Balancer: 자동 크기 조정을 통해 애플리케이션 또는 리소스에 대한 고가용성 접근 제공
- VPN Gateway: 플랫폼 관리형태의 확장성 및 고가용성을 지원하는 애플리케이션 전송 컨트롤러
- Azure Apllication Gateway: 웹 애플리케이션에 대한 트래픽을 관리하는 요소
- Content Delivery Network: 이용자가 이용하는 지역의 웹 콘텐츠를 빠르고 안정적으로 이용할 수 있는 분산 서버 네트워크 요소

• Azure 다루는 데이터 범주

	스키마	데이터 관계	예제
구조적 데이터	동일한 데이터 필드 또는 속성을 사용하여 스키마를 준수	행과 열이 있는 관계형 데이터베이스 테이블로 저장가능	센서 데이터 및 재무 데이터
반구조적 데이터	비 체계적인 필드 및 속성이 포함된 임시 스키마를 사용	테이블, 행 및 열로 저장 불가능한 비관계형 또는 NoSQL 데이터	서적, 블로그, JSON, HTML 문서.
비구조적 데이터	지정된 스키마 또는 데이터 구조가 부재	비관계형 데이터 또는 Blob 데이터. Blob에 포함될 수 있는 데이터 유형 제한이 없음	PDF, JPG, 비디오.

• Azure 스토리지 서비스

laaS		PaaS		
다스크 •Azure laaS VM에 대한 영구 디스크. •Premium Storage. •디스크 옵션: SSD 기반 높은 IOPS, 낮은 대기 시간. •리프트 앤 시프트 작업.	파일 • SMB 및 REST 액세스. • 어디서나 액세스 가능. • 보안 액세스.	컨테이너 • 비구조적 데이터 - 텍스트 또는 이진. • 블록 Blob. • 페이지 Blob. • 추가 Blob.	테이블 • NoSQL 데이터 저장소 - 구조적 데이터. • 부하 기반의 동적크기 조정. • 페타바이트 규모의 데이터로 확장. • 빠른 키/값 조회.	규 • 메시지 저장 및 검색. • 확장성이 매우 높 음. • 메시지를 비동기 적으로 처리할 수 있음.

- Azure 데이터베이스 서비스
- Azure Cosmos DB: 처리량 및 스토리지를 탄력적이고 독립적으로 확장할 수 있는 전역 분산 데이터베이스 서비스
- Azure SQL Database: Microsoft SQL Server 데이터베이스 엔진의 관계형 데이터베이스(DaaS)
- Azure Database Migration: 최소 중단시간으로 다양한 데이터베이스 소스를 Azure 데이터 플랫폼으로 원활하게 옮길 수 있는 관리 서비스
- Azure 시장(SW Market)
- 시장에서 사용자들은 Microsoft 파트너, ISV(독립 소프트웨어 공급업체) 및 Azure용 솔루션 및 서비스를 제공하는 SW기업의 제품들을 검토하고 선택하여 이용가능
- Azure 고객, IT 전문가 및 클라우드 개발자는 인증된 서비스 공급자로부터 Azure 응용 프로그램 및 서비스를 검색, 시도, 구매 및 프로비저닝 할 수 있음

04. Azure 솔루션과 관리도구

키워드: "Azure 솔루션의 종류왁 관리도구"

- 사물 인터넷
- Azure IoT Central: IoT 자산의 대량연결, 모니터링 및 관리를 편리하게 이용할 수 있는 관리형 글로벌 IoT SaaS 솔루션
- Azure IoT Hub: IoT 애플리케이션과 관리되는 장치들 간의 양방향 통신을 위한 중앙 메시지 허브 역할
- 빅데이터 및 분석
- Azure SQL Data Warehouse: 페타바이트 크기의 대용량 데이터에서 복잡한 쿼리 수행하는 대규모 병렬 처리기반 엔터프라이즈 데이터 웨어하우스 서비스
- Azure HDInsight: 대기업을 위한 오픈소스 분석 서비스로서 방대한 양의 데이터를 더 쉽고 빠르며 비용 효율적으로 처리하는 클라우드 서비스
- Azure Data Lake Analytics: 빅데이터를 간소화하는 주문형 분석 작업 서비스 하드웨어를 배포하고 튜닝하는 대신 쿼리를 작성하여 데이터를 변환함으로서 중요 통찰력을 도출하는 서비스
- 인공지능
- Azure Machine Learning Service: 클라우드 기반 환경에서 기계 학습 기반의 개발, 학습, 테스트, 배포, 관리 및 추적에 사용
- Azure Machine Learning Studio: 코드를 작성하지 않고 Drag & Drop 방식으로 머신러닝 솔루션을 만들고 테스트 및 배포할 수 있는 공동 작업 기반의 시각적 작업 영역 제공하는 서비스
- 서버리스 컴퓨팅
- Azure Eunctions: 기본 플랫폼이나 인프라가 아닌 서비스를 실행하는 코드 이벤트를 기반으로 인프라를 생성
- Azure Logic Apps: 앱, 데이터, 시스템 및 서비스를 통합해야 하는 경우 작업, 비즈니스 프로세스 및 워크플로를 자동화하고 오케스트레이션하는 클라우드 서비스
- Azure Event Grid: 이벤트 이용의 균일성을 제공하기 위해 게시-구독 모델기반의 지능적 이벤트 라우팅 서비스
- Azure App Service
- 모든 플렛폼 또는 디바이스에 대한 웹 및 모바일 앱을 빠르고 쉽게 작성 가능

- 다양한 언어와 프레임워크 지원, DevOps 최적화, 고가용성을 갖춘 글로벌 슈모, SaaS 플랫폼 및 온-프레미스 데이터에 대한 연결, 보안 및 규정 준수, 애플리케이션 템플릿, Visual Studio 통합, API 및 모바일 기능, 서버리스 코드
- · Azure 관리 도구 종류
- Azure Portal, Azure PowerShell 및 Azure CLI, Azure Cloud Shell, Azure 모바일 앱, Azure REST API
- DevOps
- DevOps Services: 파이프라인, Git 리포지토리, Kanban 보드와 같은 부하 테스트를 포함하는 클라우드 기반의 공동 개발 작업 도구
- Azure DevTest Labs: 개발환경을 빠르게 테스트하는 서비스로서 클라우드에서 낭비를 최소화하고 비용을 절감
- Azure 어드바이저
- 배포된 Azure 리소스를 분석하고 가용성, 보안, 성능 및 비용을 개선하는 방법을 권장
- 사전 예방적이고 실행 가능한 맞춤식 모범 사례를 제시함으로서 현 업무에 반영가능
- 리소스의 성능, 보안 및 가용성을 향상
- Azure 비용을 절감할 수 있는 기회 검토

05. Azure 무료계정 작성과 로그인

키워드: "Azure 실습을 진행하기 위한 무료계정 생성에 대한 방법과 절차 학습"

- Microsoft Azure
- https://azure.microsoft.com/ko-kr/에 접속 -> 체험 계정 만들기
- Microsoft Passport 계정 또는 Github 계정을 통해 로그인 / 없을 경우, 새 전자메일 주소 받기 클릭
- 해외와 연동되는 카드정보 입력(자동 결제 X, 신분 확인용)

06. Azure Compute 서비스

키워드: "Azure Compute 서비스", "Azure VM 저장소 개요"

- Azure Compute 서비스
- 클라우드 상의 가상머신 서비스
- Azure에서 Compute 작업을 하는 서비스
- Web Server를 운영하거나 Application Server를 운영 시 사용
- 사용자가 VM을 직접 조작하므로 관리 프로세스에 관여
- Azure VM: IaaS의 대표적인 서비스로 워크로드를 수행하기에 가장 유연한 서비스 운영체제를 관리해야하며 사용자 가 직접운영
- VM Scale Sets: Azure VM Image를 이용하여 자동으로 확장 또는 축소
- App Services: 사용자는 소스파일만 업로드하면 알아서 동작하는 PaaS(서비스형 플랫폼) Web App, API App, Logic App, Function과 같은 서비스
- Functions: App Services의 하나로 이벤트를 기반으로 계산 작업을 수행
- Azure 가상머신
- 1. Azure VM을 사용 시 장점
- 데이터 센터를 확장하여 민첩성 향상
- 온 프레미스 데이터 센터 또는 다른 클라우드 제공 업체에서 워크로드를 마이그레이션
- 실제 운영 환경, 테스트 또는 개발 작업과 상관없이 이용
- 2. Azure VM을 사용할 때의 주요 차이점
- 2세대 Hyper-V VM에 대한 지원 없음
- MS 가상화 기술인 Hyper-V의 vhdx 가상 디스트 형식에 대한 지원 없음

- 동적 확장 또는 차이점 뽀관용 디스크에 대한 지원 없음
- 읽기 전용 VM 콘솔 액세스(미리보기의 직렬 콘솔)
- 3. 초당 계산된 요금 계산
- VM이 중지될 때 요금 계산 적용하지 않음
- Azure Storage의 VM 디스크에 대한 요금과 분리
- Azure VM과 Hyper-V 호환성
- 1. 1세대 가상 머신 저장소를 위한 지원
- VHD 고정 크기 형식만 지원(VHDX 없음)
- 최대 1TB의 운영제체 디스크
- 최대 1TB의 데이터 디스크
- 최대 64개의 데이터 디스크(G5)
- 2. 성능
- 최대 32개 코어
- 영구 디스크 당 최대 500 IOPS(프리미엄 저장소 없이)
- 로컬 SSD 저장소(프리미엄 저장소 없이는 영구적이지 않음)
- Azure VM 사이즈와 용도별 특징
- 범용(Av2, Dv2, DSv2, Dv3): 균형 작힌 CPU 대 메모리 비율
- 버스트 가능(B): 가끔 사용량이 급증하는 낮은 CPU 사용률
- 컴퓨팅 최적화(F, Fs, Fsv2): 높은 CPU 대 메모리 비율
- 메모리 최적화(Dv2, DSv2, Ev3, Esv3, G, GS, M): 높은 메모리 대 CPU 비율
- 스토리지 최적화(Ls): 고성능 디스크 I/O
- GPU(NC, NCv2, NCv3, ND, NV): GPU 지원
- 고성능 컴퓨팅(H): 가장 빠른 CPU 및 높은 처리량 RDMA 옵션
- Azure VM에 연결
- RDP로 Windows VM에 연결
- 포털에서 RDP 파일 다운로드
- VM을 만들 때 사용자 이름과 암호 설정
- 포털에서 암호 재설정
- Linux를 위해 SSH 사용 가능
- 가상 머신 중지
- 1. 할당 취소(Deallocated)
- CPU에 대한 과금 없음(저장소에 대해서는 과금)
- 정적 IP(공용 혹은 사설)를 사용하지 않은 경우 IP 주소가 유지되지 않음
- 포털 혹은 명령줄 도구를 통해 중지
- 2. 중지(Stopped)
- OS는 꺼지지만 계산에 대한 과금은 계속됨
- OS 내에서 혹은 명령 줄 도구(옵션)를 통해 중지
- 관리 및 비관리 디스크 개요
- 1. 관리 디스크(작성 시 스토리지 계정 불필요)
- Azure Virtual Machines에서 사용하는 대부분의 디스크
- Azure에서 필요한 모든 물리적 인프라를 관리하는 가상 하드디스크 마치 온-프레미스 서버의 물리디스크와 유사

- 하지만 가상화되어 있음
- 관리 디스크를 사용하는 겨웅 디스크 크기, 디스크 유형을 지정하고 디스크를 프로비저닝 고가용성, 가용성 집합 및 영역과 통합
- 사용 가능한 디스크 유형은 Ultra 디스크, 프리미엄 SSD(반도체 드라이브), 표준 SSd 및 표준 HDD
- 2. 관리되지 않는 디스크(작성 시 스토리지 계정 필요)
- VM에서 사용되는 전통적인 유형의 디스크
- 관리 디스크와 비교하여 모든 확장성과 관리 기능이 지원되지 않으므로 가상머신에 대한 데이터를 수동으로 설정하고 관리하는 경우에만 사용, 널리 사용되지 않음
- Azure VM 디스크 이동성
- 1. Azure 가상 디스크 파일
- .vhd 형식(.vhdx는 지원 X)
- 고정 유형(동적 지원되지 않음)
- 최대 4TB 크기(필요한 경우 멀티 디스크 볼륨 사용)
- 2. Azure 가상 디스크 이동성
- 업로드 및 다운로드
- 연결 및 분리
- 가져오기/ 내보내기 서비스(더 큰 디스크 크기용)
- 3. Azure 가상 디스크 파일 복사 및 스냅샷
- 관리 및 비관리 디스크(전체 스냅샷만 해당)
- Windows 및 Linux VM에서 스토리지 구성
- 1. 온-프레미스에서 사용하는 동일한 멀티 디스크 관리 도구 제공
- 서버 관리자(저장소 공간)
- Windows PowerShell(저장소 공간)
- LVM(Linux)
- mdadm(Linux)
- 2. 다중 디스크 볼륨 고려사항
- VM 크기에 따른 제한까지 집계된 I/O 처리량
- 4TB 디스크 크기 제한보다 큰 볼륨 지원
- 지원되는 최대 데이터 디스크 수는 Azure VM 크기에 따라 다름
- 컨테이너(Container)
- 애플리케이션의 코드를 관련 구성파일, 라이브러리 및 앱 실행에 필요한 종속성 요소와 함께 번들로 제공, 개발자와 IT 전문가는 여러 환경에서 애플리케이션을 원활하게 배포 가능
- 컨테이너와 가상머신 비교

컨테이너	가상머신	
	•호스트 OS를 공유하므로 OS를 부팅하거나 라이브러	
	리 로드 불필요	
•하나의 서버에서 다양한 운영체제 실행 가능, 물리적	•컨테이너를 훨씬 더 효율적, 경량 제작 가능	
리소스의 효율적 사용	•컨테이너화된 애플리케이션의 빠른 실행	
•신속한 서버 프로비저닝	•VM 시나리오와 비교해 애플리케이션의 더 많은	
	인스턴스를 머신에 맞출 수 있음	
	• 패치, 업데이트 등 유지 관리와 관련하여 오버헤드가 감소	

•각 VM은 OS 이미지, 라이브러리, 애플리케이션	•이식 가능, But 컨테이너를 운영 중인 운영체제로
등을 포함하므로 사이즈가 커질 수 있음	사용제한

- Azure 컨테이너 서비스
- Azure Container Instances: Azure가 관리하는 Container Cluster에 컨테이너 이미지를 업로드하여 자동으로 실행할 수 있는 PaaS 서비스
- Azure Kubernetes Service: 많은 수의 컨테이너를 관리하기 위한 컨테이너 오케스트레이터(조율) Azure VM에 Kubernetes Cluster를 구성해주며 Master Node는 Azure에서 무료로 제공

07. Azure Compute 서비스 실습

키워드: "Azure Compute 서비스 실습"

- 로그인 후 포털 메뉴 클릭
- 검색에 "가상 머신" 클릭 추가 가상 머신
- 리소스 그룹: myRGvm
- 가상 머신 이름: myvm
- 이미지: Windows Server 2016 Datacenter
- 사용자 계정 설정
- 공용 인바운드 포트: HTTP(80) 체크 추가
- 검토 + 만들기 만들기
- 리소스 배포 완료 후 리소스로 이동 클릭 연결(RDP) RDP 파일 다운로드

08. Azure 컨테이너 인스턴스배포 실습

키워드: "Azure 컨테이너 인스턴스배포 실습"

- Microsoft Azure Container Instances 컨테이너 인스턴스 만들기
- 리소스 그룹: myRGContainer
- 컨테이너 이름: mycontainer
- 이미지: microsoft/aci-helloworld
- 검토 + 만들기 클릭
- 네트워킹 DNS 이름 레이블: mycontainerdns 만들기
- 배포 완료 후 리소스로 이동 상태: 실행 중 확인 FQDN 복사 후 정상 작동 확인

09. Azure 가용성과 아키텍처 구성요소

키워드: "IT 인프라에서 가용성, 내결함성 관련 용어와 개념", "Azure 서비스 가용성을 극대화하기 위한 기술 및 아키텍처 구성요소 이해"

- · Mission-Critical vs Business-Critical
- 1. Mission-Critical
- 오동작 시 사람의 생명에 영향을 미치는 시스템, 서비스
- ex) 원자력 발전소 관제 시스템, 한공 관제 시스템, 119 응급 콜 센터

2. Business-Critical Environments

- 오동작 시 회사의 수익이나 생산성에 영향을 미치는 시스템, 서비스
- Intranet 전자결제시스템
- 전자상거래 사이트
- 가용성(Availability)
- 시스템에 오류가 발생해도 7일 24시간동안 사용자에게 지속적인 서비스를 제공하는 것
- 가용성(%) = (MY MF) * 100 / MY
 - * MY = 365 * 24 * 60(일년을 분으로 환산)
 - * MF: 일년 중 오류에 의해 서비스가 정지된 시간을 분으로 환산

ex) 1년 동안 총 서비스 다운이 52.5분이면 (525600-52.5) * 100/525600 = 99.990011415 ∴ 이 시스템이 제공하는 서비스의 가용성은 99.99%

• Five 9s

- Misson Critical: 99.999% 요구

- Business Critical: 99.9% - 99.99% 요구

가용성	년당 다운시간	주당 다운시간
99%	3.65일	1시간 41분
99.9%	8시간 45분	10분 5초
99.99%	52.5분	1분
99.999%	5.25분	6초

- MTBF(Mean Time Between of Failure)를 이용한 가용성 계산
- 가용성 = MTBF * 100 / (MTBF+MTTR)
- 만약 특정 시스템이 10,000시간동안 오류없이 동작하다 오류발생 후 복구하는 데 2시간이 소요되었다면 ex) 가용성 = 10000 * 100 / (10000+2) = 99.98%
- 가용성을 높이기 위해서는 신뢰성이 높은 하드웨어와 소프트웨어를 구해할 것
- 내결함성(Fault Tolerance)
- 시스템을 구성하는 하드웨어나 소프트웨어에 오류가 발생해도 지속적으로 서비스를 제공할 수 있는 능력
- 시스템 하드웨어의 내결함성
 - 하드디스크: RAID 1, 5
 - 네트워크 카드: Dual NIC or Network Teaming
 - 램: RAID Memory
 - 전원 공급 장치: UPS
- 소프트웨어의 내결함성
 - 운영제체 오류: 서버 클러스터
- 가용성 집합(Available Set)
- 가용성 집합에 포함된 각각의 가상 머신은 업데이트 도메인 및 장애 도메인에 할당
- Fault Domain(Rack): 오류에서 VM을 격리: Azure 데이터 센터 내의 여러 하드웨어에서 오류 발생 시에 워크로드 를 물리적으로 분리
- Update Domain: 호스트 업데이트로부터 VM을 격리
- 가용영역(Availability Zones)
- Azure 리전 내에서 물리적으로 위치 구분
- 가용성 세트를 한 단계 끌어올린 요소
- 독립적인 전원, 냉각 및 네트워크 기능을 갖춘 하나 이상의 데이터 센터를 포함
- 격리와 경계 역할을 수행
- 한 가용영역이 다운되면 다른 가용영역이 계속 작동
- 고가용성을 사용자가 관리함
- 가용성 옵션에 따른 Azure 토폴로지 구성

용어	의미	의도
지리적 위치 (Geography)	지정학적 경계 (규제, 세금)	고객 데이터는 고객의 지리적 위치에 유지 과세는 지리적 위치에 따라 다양함
지역 (Region)	하나 이상의 DC를 근접한 위치에 가지고 있는 사이트	지역 간 재해에 대한 고립 (예, 지진) 비동기식 복제를 위한 지역 지연 다른 지역의 계산 (compute)을 독립적으로 관리
Fault Domain	전원이나 네트워크와 같은 물리적 리소스를 공유하는 서버 집합 (랙)	다른 FD 간 상호 연관된 오류가 발생할 개연성을 낮춤 여러 FD 간 2개 이상의 인스턴스를 요구 하는 계산수행
Update Domain	VM내 SW요소가 동시에 업데이트되는 VM인스턴스의 그룹	한 번에 하나의 UD만 업데이트 여러 UD 간 2개 이상의 인스턴스를 요구하는 계산수행

- •리소스 그룹
- 동일한 수명주기를 갖는 리소스들의 묶음
- 리소스는 리소스 그룹으로 이동할 수 있음
- 리소스는 하나의 리소스 그룹에 소속됨
- 역할기반(RBAC)를 사용하여 리소스나 그룹별 레벨의 보안 유지

10. Azure Network 서비스

키워드: "Azure Network 서비스와 가상 네트워크"

- · Azure .네트워크
- Azure 내에 사설 네트워크를 만들고 조작할 수 있는 서비스
- SDN(Software Defined Network) 기반으로 동작하며 모든 네트워크는 격리
- Azure 가상머신 등 가상 네트워크 기능이 필요한 모든 리소스에서 구성가능
- On-premise와 연결하기 위한 기능 구현
- 부하분산 장치를 이용하여 여러 대의 서버로 부하 분산
- Azure 네트워크 서비스
- Azure Virtual Network: 논리적인 사설 네트워크를 구성할 수 있어 가상머신 같은 리소스간 보안된 통신을 제공
- Azure Load Balancer: 여러 대의 서버에 트래픽을 분산시켜 응용프로그램 또는 리소스에 대한 고가용성 접근을 제공
- VPN Gateway: On-premise 또는 다른 네트워크 센터로 네트워크를 확장시킬 수 있는 관리형 서비스로 고가용성 지원
- CDN(Content Delivery Network): 사용자에게 가장 가까운 지역에 컨텐트를 캐싱하여 웹 콘텐츠 전달하는 분산 서버 네트워크
- 가상 네트워크 소개
- 고객의 사설 혹은 공용 IP 주소로 서브넷 생성
- Bring your own DNS 혹은 Azure에서 제공되는 DNS 사용
- VPN and/or ExpressRoute로 하이브리드 연결 가능
- 자신의 네트워크의 논리적 표현
- 전용 사설 클라우드 전용 VNet 만들기
- VNet을 사용하여 데이터 센터를 안전하게 확장
- 하이브리드 클라우드 시나리오 사용

• 서브넷

- 가상 네트워크는 필요 시 하나 이상의 서브넷으로 분할 가능
- 서브넷은 네트워크를 물리적 장치 없이 논리적 분할을 제공
- 서브넷 분할은 네트워크 통신 성능을 높이고 보안구현을 쉽게 구성 관리
- 각 서브넷은 고유 주소 범위로 정의 되야함: Azure 내 다른 가상 네트워크와 주소범위 중복 불가
- 가상 네트워크 작성
- 필요 시 새 가상 네트워크 작성 가능
- 가상머신을 생성 시 가상 네트워크 추가
- 주소 공간을 정의해야하며 하나 이상의 서브넷이 필요
- 주소 공간이 겹치지 않도록 주의
- Azure 가상 네트워크의 필요성 결정
- 1. 가상 네트워크 및 Azure 리소스
- Azure VM, 가상머신 확장 집합, Azure Application Gateway, Azure App Service 환경, Azure Kubernetes 서비스
- 2. 가상 네트워크를 지원하는 리소스
- 지점 및 사이트 간 VPN, Azure Storage, SQL Database, Cosmos DB, SQL 데이터 웨어 하우스, PostgreSQL, MySQL, Service Bus, Event Hub

- 3. 가상 네트워크와 통합되지 않는 리소스
- Azure AD, 트래픽 관리자, 콘텐츠 전송 네트워크 및 컨테이너 레지스트리
- 도메인 이름-Resource Manager에서 구성
- 공용 IP는 옵션 사항으로 만들고 VM 혹은 로드 밸런서에 연결할 수 있음
- 로드 밸런서 당 최대 100대의 VM 지원
- ARM 모드에서 VM은 더 이상 클라우드 서비스에 배포되지 않고 가상 네트워크가 필요함
- NAT 규칙

포트 포워딩

- 공용 트래픽을 단일 VM의 내부 포트로 포워딩
- 부하 분산: 트래픽을 여러 VM의 내부 포트로 포워딩
- · Azure Load Balancer
- Azure에서 운영중인 VM, 어플리케이션, 컨테이너 서비스 등으로 유입되는 트래픽을 자동으로 분산처리하는 기능

- 전통적인 로드 밸런서의 기능
- 단일지점을 통해 서버에 연결
- 애플리케이션 환경을 분리
- 고가용성과 내결함성을 제공
- 탄력성과 확장성을 향상
- 로드밸런싱 개념
- 로드밸런싱 개념은 기존 온프레미스에서부터 존재

	L4 (네트워크)스위치		L7(어플리케이션)스위치
•	TCP와 SSL지원	•	HTTP와 HTTPS지원
•	클라이언트와 서버가 연결 중계	•	클라이언트 연결은 로드밸런서에서 종료되고 로드밸런서와 서버는 별도로 연결
	헤더 변경 없음	•	헤더변경가능
	프록시 프로토콜로 요청에 대해 소스 및 목적 지 IP주소,포트 추가	٠	요청이 어디서부터 건너왔는지 알려주는 해 더인 X-Forwarded-For 등 통해 클라이언트 IP 를 백엔드 인스턴스로 전달가능

- Layer7 로드밸런싱 플랫폼
- Azure Load Balancer는 새롭고 풍부한 기능을 가진 레이어7 로드밸런싱 플랫폼
- Azure에서 완전 관리0, 확장성, 높은 가용률을 보장
- 1개의 로드밸런서로 여러 애플리케이션에 대해 동시 분산 처리

11. Azure Network 서비스 실습

키워드: "Azure Network 서비스 실습"

- 가상 네트워크 - 추가 - 가상 네트워크 만들기

- 리소스 그룹: myRGVNet
- 이름: vnet
- IP 주소: 10.1.0.0/16
- 서브넷 추가 서브넷 이름: default / 주소 범위: 10.1.0.0/24 만들기
- 가상머신(vm1, vm2) 2개 만들기
- vm1, vm2 둘다 실행 후 cmd 창에 "ping vm2" 명령어를 통해 네트워크 통신 확인
- Powershell을 관리자 권한으로 실행 명령어 작성 방화벽 구성 명령어: New-NetFirewallRule - DisplayName "Allow ICMPv4-In" -Protocol ICMPv4

12. Azure Storage 서비스

키워드: "Azure Storage 서비스 학습"

- .Azure Storage 개요
- Azure Storage는 고객의 요구 사항을 충족하기 위해 내구성, 가용성 및 확장성에 의존하는 최신 애플리케이션을 위한 클라우드 스토리지 솔루션
- Azure Preminum Storage는 Azure Virtual Machines에서 실행되는 I/O 집약적 워크로드에 대해 지연 시간이 짧은 고성능 디스크 지원을 제공

• Azure 데이터 범주

	스키마	데이터 관계	예
정형 데이터	동일한 데이터 필드 또는 속성을 가진 스키마를 준수함	행과 열이 있는 관계형 데이터베이스 테이블로 저장할 수 있음.	인사 데이터 및 재무 데이터.
반정형 데이터	덜 체계화된 필드와 속성을 소유한 임시 스키마존재	테이블, 행 및 열로 저장할 수 없는 비관계형 또는 NoSQL 데이터	서적, 블로그, JSON, HTML 문서.
비정형 데이터	지정된 스키마 또는 데이터 구조가 없음	데이터 Blob의 종류에 대해 제한이 없는 비관계형 또는 Blob데이터	PDF, JPG, 비디오.word문서 등

• Azure Storage 특징

• Azure 스토리지 서비스

- 스토리지 계정
- Azure 내에 데이터를 저장하고 관리할 수 있는 서비스
- Blob(컨테이너), 파일, Queue, Table로 구성되어 있음
- Blob의 경우는 비정형 데이터를 저장할 수 있는 객체 스토리지임
- File의 경우는 SMB 3.0을 이용하여 가상 머신에 Mount 가능함
- Blob에는 가상머신의 Disk 파일도 저장 가능함(Unmanaged Disk)
- 작성된 스토리지 계정은 아래와 같은 도메인 이름을 가짐
- 관리디스크(Managed Disk)

성능 및 규모 관리 간소화

- 관리를 단순화하여 용량 확장 계획 실수를 방지하고 확장 용이
- 가상 머신 확장 집합이 있는 가상 머신과 직접 통합
- 클라우드에서 VM 마이징
- Azure에서 동일하거나 비슷한 용도로 사용할 가상머신은 배포 시 시작이미지로 공통 OS 이미지를 사용
- Capture된 VM은 사용자 정의된 이미지로 이미지 라이브러리에 저장하여 활용

13. Azure Storage 서비스 실습

키워드: "Azure Storage 서비스 실습"

- Microsoft Azure Container Instances 컨테이너 인스턴스 만들기
- 리소스 그룹: myRGContainer
- 컨테이너 이름: mycontainer
- 이미지: microsoft/aci-helloworld
- 검토 + 만들기 클릭
- 네트워킹 DNS 이름 레이블: mycontainerdns 만들기
- 배포 완료 후 리소스로 이동 상태: 실행 중 확인 FQDN 복사 후 정상 작동 확인

14. Azure Database 서비스

키워드: "Azure Database 서비스 학습"

- 관계형 데이터베이스(RDBMS) 정의
- 1969년 IBM의 연구원으로 있던 E.F.Codd 박사가 수학적 기초이론에 근거를 두고 고안한 것
- 데이터베이스는 최소한의 의미를 가지는 테이블들로 구성되며 그 테이블에 있는 필드들로 연결한 것
- Azure 데이터베이스
- Azure에서 데이터베이스를 관리해주는 PaaS 솔루션
- 기본적으로 고가용성을 지원함
- 기존 DBMS 관리도구를 이용하여 관리 가능
- · Azure 데이터베이스 서비스
- Azure Database for MySQL 서버: 오픈소스인 MySQL 엔진을 이용하는 관리형 서비스 Azure에서 안정적인 최신 버전을 자동으로 갱신하고 관리
- Azure SQL Database: Microsoft SQL Server DB 엔진을 사용하는 관계형 데이터베이스
- Azure Database for PostgreSQL 서버: 오픈소스인 PostgreSQL 엔진을 이용하는 관리형 서비스(DaaS)
- Azure Cosmos DB: 최신 앱 개발을 위한 완전 관리형 NoSQL 데이터베이스: Json 쿼리 언어로 SQL을 사용하는 쿼리를 작성하여 데이터를 조회 및 조작
- Azure Database Migration: 다양항 데이터베이스 소스를 Azure 데이터 플랫폼으로 이동할 수 있도록 관리형 서비스 제공(최소 서비스 중단시간)

• Azure 데이터베이스 이용 시 DBA의 역할 변화

15. Azure Database 서비스 실습

키워드: "Azure Database 서비스 실습"

- Microsoft Azure "SQL 데이터베이스" 선택 SQL 데이터베이스 만들기
- 리소스 그룹: myRGD
- 데이터베이스 이름: db1
- 서버 새로 만들기 서버이름 sqlserver[현재날짜] 위치: Korea Central 인증 방법: SQL 인증 사용
 - 서버 관리자 로그인: sqluser
- 검토+만들기 추가 설정 기존 데이터 사용: 샘플 검토+만들기 만들기
- 왼쪽 메뉴바 "쿼리 편집기(미리 보기)" 클릭 SQL Server 인증(계정 인증) 방화벽 설정 필요
- 홈 SQL 데이터베이스 db1 선택 서버 방화벽 설정 네트워킹 공용 액세스 방화벽 규칙 클라이언트 IPv4 주소 추가 저장 쿼리 편집기(미리 보기) 재로그인

16. Azure IoT 서비스

키워드: "사물인터넷(IoT) 정의 및 사례와 미래 전망, 문제점", "IoT 서비스, Azure IoT Hub"

- 사물 인터넷(IoT)
- 각종 기기에 센서와 통신을 사용하여 데이터를 수집, 저장, 분석하는 기술
- 소비자의 입장에서 보면, 이는 외국에 있어도 한국에 있는 집의 온도 조절 장치를 조정할 수 있다는 의미
- 기업의 입장에서 사물 인터넷은 고객을 유치하고 파트너를 확보할 수 있는 미래 기술 전망(엣지 컴퓨팅)를 제공할 뿐만 아니라 방대한 양의 데이터를 수집, 저장 및 분석할 수 있는 능력을 부여한다는 의미
- Azure IoT Central: IoT 자산의 대규모 연결, 모니터링 및 관리를 용이하게 하는 완전 관리형 글로벌 IoT SaaS 솔루션
- Azure IoT Hub: 클라우드에서 호스팅되는 관리형 서비스로, IoT 애플리케이션과 관리되는 디바이스 간의 양방향통신을 위한 중앙 메시지 허브 역할 제공
- 사물인터넷 IoT 사례
- 스마트 약병, 홈 IoT 서비스, 롤스로이스 항공 엔진, 자동 온도 조절장치, Philips 스마트 전구, 스마트 도어락, Kolibree 스마트 칫솔, 스마트 펫 피더, 자동차 추적장치, 물류 산업에 IoT를 적용한 DHL 등
- 사물인터넷 IoT의 기술 동향
- 하드웨어와 모듈/센서 부분
- 통신(연결) 서비스 부분
- 사물인터넷 IoT의 미래 전망
- 사물인터넷 시장은 약 7년 전부터 주목받기 시작해서 지금까지 높은 성장률을 보이고 있음
- 사물인터넷 IoT의 문제점
- 보안문제, 특정분야의 독과점, 기술의 악용

17. Azure IoT 서비스 실습

키워드: "Azure IoT 서비스 실습"

- Microsoft Azure -> IoT Hub -> 추가
- 리소스 그룹: myRGIoT
- IoT Hub 이름: myhubgroup[현재날짜] / 지역: Korea Central / 계층: 체험
- 검토+만들기 -> 만들기
- 리소스로 이동 -> 네비게이션바(디바이스 관리) -> 장치 클릭 -> 디바이스 추가 -> 디바이스 ID: myRaspberryPi -> 저장
- myRaspberryPi 클릭 -> 기본 연결 문자열 복사
- https://azure-samples.github.io/raspberry-pi-web-simulator/ 로 이동
- const connectionString 부분에서 이전에 복사한 기본 연결 문자열 붙여넣기 -> Run

18. Azure Big data와 Machine Learning 서비스

키워드: "Azure Big data와 Machine Learning 서비스"

- 빅데이터(Big Data)
- 기존 데이터베이스 관리도구로 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 넘어서 대량의 정형 또는 비정형 데이터 집합 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 의미
- 빅데이터를 활용함으로서 다변화되고 개인화된 현대사회와 구성원들이 개별적으로 맞춤형 정보를 제공, 관리, 분석 가능
- 인간이 간과하기 쉬운 정보들을 제공하여 판단 및 결정에 도움을 제공하는 도구로 활용 가능
- 빅데이터 활용사례
- 서울시 심야버스 노선도, 신용평가모델, 금융 신상품 개발
- · Azure 빅데이터 및 분석 서비스
- Azure SQL Data Warehouse: 대규모 병렬 처리를 활용하여 페타바이트 규모의 데이터에서 복잡한 쿼리를 신속 하게 실행 가능한 기업형 관리 서비스
- Azure HDInsight: 하둡파일 시스템을 기반으로 방대한 양의 데이터를 더 쉽고 빠르며 비용 효율적으로 처리하기 위한 관리형 오픈소스 분석 서비스
- Azure Data Lake Analytics: 빅데이터를 단순화하는 주문형 분석 작업 서비스 하드웨어를 배포하고 튜닝하는 대신 쿼리를 작성하여 데이터를 변환하고 중요한 통찰력을 추출에 활용 가능
- 기계학습(Machine Learning)
- 데이터를 구문 분석하고 해당 데이터를 통해 학습한 후 정보를 바탕으로 결정을 내리기 위해 학습한 내용을 적용 하는 알고리즘
- 머신러닝의 핵심기술: 표현과 일반화
- Azure 기계학습(Machine Learning) 서비스
- Azure Machine Learning Service: 기계학습 모델의 개발, 학습, 테스트, 배포, 관리 및 추적에 사용되는 클라우드 기반 환경을 제공
- Azure Machine Learning Studio: 코드를 작성할 필요 없이 끌어서 놓기 방식으로 기계학습 솔루션을 빌드, 테스트 및 배포할 수 있는 공동 작업 기반의 시각적 작업 영역을 제공함

19. Azure Serverless 서비스

키워드: "Azure Serverless 개념과 서비스 종류"

- 서버리스(Serverless) 컴퓨팅
- 사용자 입장에서 서버를 관리할 필요가 없음
- 개발자가 작성한 애플리케이션(기능)을 실행할 때 필요한 만큼만 정확하게 자원을 사용
- 로드 밸런싱도 서버부팅도 불필요
- 플랫폼이 모든 작업을 수행하고 이 기능이 실행된 횟수와 시간에 따라 비용이 청구됨
- 서버리스 컴퓨팅의 주요 이점

- 인프라 관리 제거, 동적 확장성, 더 빠른 출시, 더 효율적인 리소스 사용
- 서버리스 애플리케이션 패턴
- 개발자는 이미 친숙한 다양한 애플리케이션 패턴을 사용하여 서버리스 애플리케이션을 빌드함으로써 특정 요구 사항 및 비즈니스 요구 사항을 충족시킬 수 있음
- ex) 서버리스 함수, Kubernetes, 워크플로, 애플리케이션 환경, API 게이트웨이
- Azure 서버리스 컴퓨팅 서비스 종류
- Azure Functions: 기본 플랫폼이나 인프라를 구성하지 않고도 소스코드를 실행할 수 있는 서비스, 이벤트를 기반으로 운영
- Azure Logic Apps: 앱, 데이터, 시스템 및 서비스를 통합해서 작업, 비즈니스 프로세스 및 워크플로를 자동화하고 오케스트레이션하는 서비스
- Azure Event Grid: 균일한 이벤트 소비를 위해 게시-구독 모델을 사용하는 완전 관리형의 지능적인 이벤트 라우팅 서비스

20. Azure Serverless 서비스 실습(function 구현)

키워드: "Azure Serverless 서비스 실습"

- Microsoft Azure -> 함수 앱 검색 -> 새로 만들기
- 리소스 그룹: myRGFunction / 함수 앱 이름: function-[현재날짜] / 런타임 스택: .Net / 지역: Korea Central
- 검토 + 만들기 -> 만들기
- 리소스로 이동 -> 네비게이션 바(함수) -> 함수 클릭 -> 만들기 -> HTTP trigger -> 만들기
- 네비게이션 바(개발자) 코드+테스트 클릭 -> 함수 URL 가져오기 -> 클립보드 복사
- 새로운 브라우저 열기 후 붙여넣기 -> "This HTTP triggered function executed successfully. Pass a name in the query string or in the request body for a personalized response."가 뜨면 성공!
- 코드 맨 뒤에 &name=[자신의 이름] 입력 후 "Hello, [자신의 이름]. This HTTP triggered function executed successfully."가 뜨면 성공!
- 네비게이션 바(모니터) -> 로그 -> 브라우저에서 창을 2번 정도 다시 열기 -> 로그 창에 메시지가 뜨는지 확인

21. Azure DevOps 서비스

키워드: "Azure DevOps 정의, 장단점, 특징, 서비스"

- DevOps의 정의
- IT 서비스 제공 및 유지보수 시 개발자는 계속해서 새로운 것을 도입하고자 하지만 운영 관리자들은 안정성을 최우선으로 여기는 차이를 좁히기 위해 이들을 서로 잘 융합 시키고 의사소통을 원할하게 하기 위한 개발 방법론
- DevOps는 도구가 아니라 일을 이렇게 하자는 방법론
- DevOps Services: 파이프라인, Git 리포지토리, Kanban 보드 등 클라우드 기반의 자동 부하 테스트 기능을 지원 하는 공동 개발 작업 도구
- Azure DevTest Labs: 개발 및 운영 환경을 Azure에서 신속하게 구성해봄으로서 개발에 따르는 비용을 최소화 하는데 도움을 제공하는 서비스
- DevOps의 장점
- 개발팀과 운영팀 간의 의사소통 증가로 생산성 증대
- 한 곳에서 개발부터 검증, 배포까지 전체를 담당하게 되어 개발과 배포 속도가 빨라짐
- 구성원에게 개발 책임감과 코드의 소유권을 높여줘 개발 프로세스 간소화
- DevOps의 단점
- 다양한 팀이 모여 업무 역할이 변경되기 때문에 활성화 되기 위해서는 충분한 시간이 필요
- 코드를 자주 배포할 필요어가 없다면 비용만 늘어남
- 포괄적인 자동화 도구가 필요함
- DevOps의 특징
- 1. Cross Functional Team

- rkr 프로세스의(개발 ~ 배포 및 테스트까지) 담당자들을 하나의 팀으로 모으라는 뜻이다. 서비스 기획부터 개발 운영 테스트 배포 등 모든 제품 개발 프로세스를 하나의 팀에서 할 수 있도록 해야 한다는 것

2. Widely Shared Metrics

- 팀 구성원 모두가 알고 있는 단일 공유지표가 필요하다는 것
- 서비스를 개발만 하는 게 아니라 서비스가 운영에서 잘 돌아가고 있는지, 사용자의 반응은 어떤지를 측정할 수 있는 기준이 필요하다는 것

3. Automating repetitive tasks

- 반복적인 일들은 자동화
- 필요 시 CI/CD 도구들을 이용해서 빌드 배포-테스트 프로세스를 자동화하여 고도화된 서비스를 만들 여유와 시간을 확보하라는 것

4. Post Mortems

- "후처리"라는 의미로 장애나 이슈가 발생 시 개인적으로만 감당하는 것이 아닌 팀원들과 공유를 하여 문제해결을 신속히 객관적으로 처리하라는 의미

5. Regular Release

- 짧은 주기의 정기 배포를 통해서 뿌르게 서비스의 기능을 개선하고 고객들의 의견 및 제안을 반영하라는 의미
- DevOps의 주요 구성내용
- 1. 코드 리포지토리(Code repositories)
- 코드 수정내용 보관 및 타 개발자들이 변경된 코드 적용
- ex) Git, SVN
- 2. 아티팩트 리포지토리(Artifact repositories)
- 프로젝트 수행 시 만든 산출물(설계문서, .jar 파일 등)을 버전별로 보관
- ex) JFrog, Nexus Repository

3. CI/CD

- CI: Continuous Integration
- CD: Continuous Deploy or Continuous Delivery: 각각 지속적인 통합, 지속적인 배포를 의미
- 품질 관리를 위해 지속적인 빌드와 테스트 과정 지원과 지속적으로 배포 가능한 기능을 포함 ex) Jenkins, Travis CI
- 4. 컨테이너(Containers)
- 가상 환경에 접속한 후 해당 환경에 맞추어 세팅해주면 개별 시스템 별로 세팅해줄 필요없이 컨테이너에 맞춘대로 개별 시스템에 동일하게 세팅이 가능해짐
- ex) Docker, Microsoft Hyper-V

5. Configuration Management

- 서버, 컨테이너 릴리즈별 설정 관리
- ex) Puppet, Chef

22. Azure 마켓플레이스와 Advisor

키워드: "Azure 마켓플레이스와 Advisor의 기능"

- Azure 시장(Market)
- Microsoft 파트너, ISV(독립 소프트웨어 공급업체) 및 Azure용 솔루션 및 서비스를 제공받으려는 기업들이 이용할 수 있는 사이버 SW 시장
- Azure 고객, IT 전문가, 개발자는 인증된 서비스 공급자로부터 Azure 내에서 사용 및 구축 가능한 응용 프로그램

및 서비스를 구매

- 10.000여개가 넘는 다양한 제품 제공
- 지속적으로 성장 중인 시장
- Azure 어드바이저(Advisor)
- 배포된 Azure 리소스를 분석하고 가용성, 보안, 성능 및 비용을 개선하는 방법을 권장
- 사전 예방적이고 실행 가능한 특화된 모범 사례에 따른 권장사항 제시
- 리소스의 성능, 보안 및 가용성을 개선
- Azure 사용 비용을 절감
- Advisor 수행 화면
- 1. 사전 예방적이고 실행 가능하며 개인화된 모범 사례 권장사항을 확인
- 2. 전체 Azure 비용을 절감할 수 있는 기회를 판별하여 리소스의 성능, 모안 및 고가용성을 개선
- 3. 제안된 작업과 권장 사항 즉시 확인 가능

23. Azure 구독

키워드: "Azure 구독 소개, 구독 유형과 관리그룹"

- Azure 구독
- 구독은 요금 부과단위
- Azure 계정에 대한 접근을 인증하고 필요 권한을 부여
- 구독을 청구 및 액세스 제어의 기준으로 사용 가능
- 테넌트(Tenant)별로 단일 또는 다중 구독 소유가능

- 구독 유형
- 무료, 종량제 ,엔터프라이즈 계약, 학생, 계정에는 단일 구독 또는 다수의 구독이 포함가능
- 관리 그룹
- 관리 그룹에는 여러 Azure 구독이 포함
- 구독은 관리 그룹에 적용된 조건을 상속
- 단일 디렉터리에서 10,000개의 관리 그룹이 지원
- 관리 그룹 트리는 6개 수준까지 지원

24. Azure 구독 실습

키워드: "Azure 구독 실습"

- https://azure.microsoft.com/ko-kr/pricing/calculator/ -> 가상 머신 클릭 -> 생성된 가상 머신 보기
- https://azure.microsoft.com/ko-kr/pricing/calculator/ -> Bandwidth 클릭 -> 생성된 Bandwidth 보기
- https://azure.microsoft.com/ko-kr/pricing/calculator/ -> Application Gateway 클릭 -> 생성된 Application Gateway 보기
- https://azure.microsoft.com/ko-kr/pricing/calculator/ -> Storage Accounts 클릭 -> 생성된 Storage Accounts 보기
- 지역: Korea Central -> 비용 알아보기

25. Azure 비용계획과 관리

키워드: "Azure 비용계획과 관리"

- · Azure 제품 및 서비스 구매
- 1. 기업: Azure 서비스에 대해 결정된 금액을 연간 지불하도록 계약을 통해 이용
- 2. 웹으로 직접 구매: 웹으로 직접 구매하는 고객은 Azure 웹 사이트를 통해 Azure 서비스를 이용하고 보통 월 단위로 비용 지불
- 3. CSP(클라우드 솔루션 공급자): Azure 솔루션을 구축하기 위해 고용하는 Microsoft 파트너 회사. Azure 사용량에 대한 지불 및 청구는 고객의 CSP를 통해 청구 결재

- 비용에 영향을 주는 요인
- 1. 리소스 유형: 리소스 유형에 따라 상이
- 2. 서비스: 서비스 사용 요율 및 청구 기간은 엔터프라이즈, 웹 다이렉트 및 CSP 고객 간 차이 존재
- 3. 위치: Azure 인프라는 전 세계적으로 분산된 이유로 사용 비용은 Azure 제품, 서비스 및 리소스 제공 위치에 따라 다를 수 있음
- •청구 영역
- Azure CDN에서 제공하는 개체에 적용할 요율을 결정하는 데 사용되는 지리적 영역
- 대역폭은 Azuire 데이터 센터를 통해 송수신된 데이터
- 가격 계산기
- 서비스 선택 및 구성에 관련된 사용 비용의 자세한 예상금액을 할 수 있음
- TCO(총 소유 비용) 계산기
- Azure로 IT 서비스를 마이그레이션할 때 필요한 비용을 줄이기 위해 예상해보는 도구
- 보고서를 통해 온-프레미스 인프라 상태의 운영비용과 클라우드에서 인프라를 이용, 구축, 관리하는 데 소모되는 비용을 비교하는 정보를 제공
- 비용을 최소화하기 위한 권장절차

- Azure 비용 관리
- 보고, 데이터 보강, 예산, 경고, 권장 사항

26. Azure 비용계획과 관리 실습(TCO 계산기)

키워드: "Azure 비용계획과 관리 실습(TCO 계산기)"

- https://azure.microsoft.com/ko-kr/pricing/tco/calculator/
- 서버 워크로드 추가 -> 환경: Virtual Machine -> VM: 50 -> 최적화 기준: CPU
- 서버 워크로드 추가 -> 환경: Virtual Machine -> 운영체제: Linux -> VM: 50 -> 가상화: VMWare -> 코어: 8
- 데이터베이스 추가 -> 이름: 서버 스토리지 / 데이터베이스: Microsoft SQL / 환경: Virtual Machine / 코어: 10 대상: 10, 최대 동시 로그인: 50
- 스토리지 추가 -> 용량: 60 / Backup: 120 / Archive: 0 / 네트워킹: 15TB -> 다음
- 가정 조정 통화: 한국 원 -> 다음 -> 시간 범위: 3년 / 지역: 한국 중부 / 라이선스 프로그램: Default
- 다운로드 -> pdf 저장 -> 비용계획 알아보기