Chapter 4

Digital-to-Digital Conversion Techniques

- Line Coding
- Block Coding
- Scrambling

Line Coding

 Digital data is assumed to be stored in computer memory as sequences of bits

- Data Element
 - Smallest entity that can represent a piece of information (bit)
- Signal Element
 - Shortest unit (timewise) of a digital signal
- Let r = number of data elements carried by each signal element

Different r values

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

- Data Rate(aka Bit Rate)
 - Number of bits sent in 1 second (bps)
- Signal Rate (aka Pulse Rate, Modulation Rate, Baud Rate)
 - Number of signal elements sent in 1 second (baud)
- Goal: Increase data rate(increase speed) while decreasing signal rate (decrease bandwidth requirement)

$$S = c \times N \times (\frac{1}{r})$$

N-data rate c-case factor S-number of signal elements r-ratio of data element per signal element

Effective Bandwidth

- Finite compared to Absolute Bandwidth
- Baud Rate determines the required bandwidth
- For now: Bandwidth is proportional to Baud Rate

$$B_{min} = c \times N \times (\frac{1}{r})$$

$$N_{max} = \left(\frac{1}{c}\right) \times B \times r$$

Baseline Wandering

- Receiver calculates a running average of the received singal power – baseline
- Incoming signal is evaluated against baseline (to determine 1 or 0)
- Long sequence of 0's or 1's can cause a drift in the baseline
- Line coding scheme must prevent this

- Direct Current (DC) Components
 - Spectrum creates very low(near zero) frequencies when digital signal is constant for a while
 - Some systems cannot pass low frequencies
 - Some systems use electrical coupling
 - No DC component is desired
- Self-synchronization
 - Timing information is in the signal itself

- Built-in Error Detection
 - Signal has built-in error detection
- Immunity to Noise and Interference
 - Signal generated is immune to noise
- Complexity
 - Scheme should be simple

Line Coding Schemes

- Unipolar all signal levels are above or below time axis
 - NR7
- Polar signal levels are on both sides of the time axis
 - NRZ, RZ, biphase (Manchester and Differential Manchester)
- Bipolar three levels: positive, negative, zero; one signal level alternates between positive and negative

- AMI and pseudoternary
- Multilevel increase number of bits per baud
 - 2B/1Q, 8B/6T, and 4D-PAM5
- Multitransition
 - MI T-3

Unipolar NRZ

- Non-Return-to-Zero
- 1 positive voltage, 0 zero voltage

$$\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2$$

Normalized power

Polar NRZ

- NRZ-L (Level)
 - Level of voltage determines value of bit
- NRZ-I (Invert)
 - Change or lack of change in the level of the voltage determines the value of the bit (0 – no change)

O No inversion: Next bit is 0

Inversion: Next bit is 1

Polar RZ

- Midbit transition, solves sync problem of NRZ
- More complex, more bandwidth, no DC component

AC Hermocilla

Manchester/Differential Manchester

Midbit transtition for sync, twice the bandwidth of NRZ

AMI/Pseudoternary

- Alternate Mark Inversion
 - Neutral zero voltage 0, alternating (+) and (-) 1
- Pseudoternary reverse of AMI

Multilevel Schemes

- Encode a pattern of m data elements into a pattern of n signal elements
- 2^m data patters, Lⁿ signal patterns
- If 2^m = Lⁿ, each data pattern is encoded in one signal pattern
- If 2^m < Lⁿ, data elements occupy a subset of the signal patterns
- mBnL, pattern of m data elements is encoded in a pattern of n signal elements in which 2^m <= Lⁿ

2B1Q

- Two binary, one quaternary
- Used in DSL (Digital Subscriber Line)

	Previous level:	Previous level negative	
	positive		
T	Mane	Mout	

Next bits	Next level	Next level
00	+1	1
01	+3	-3
10	-1	+1
11	-3	+3

Transition table

First Semester 2012-2013

CMSC 137
Data Communications and Networking ICS-UPLB

JAC Hermocilla

8B6T

- Eight binary, six ternary
- Used in 100Base-4T, bandwidth 6N/8

4D-PAM5

- Four dimensional five-level pulse amplitude modulation
- Used in Gigabit LANs, uses 4 wires

First Semester 2012-2013

CMSC 137
Data Communications and Networking ICS-UPLB

Multiline Transmission: MLT-3

a. Typical case

b. Worse case

c. Transition states

Summary

Category	Scheme	Bandwidth (average)	Characteristics
Unipolar	NRZ	B = N/2	Costly, no self-synchronization if long 0s or 1s, DC
Unipolar	NRZ-L	B = N/2	No self-synchronization if long 0s or 1s, DC
	NRZ-I	B = N/2	No self-synchronization for long 0s, DC
	Biphase	B = N	Self-synchronization, no DC, high bandwidth
Bipolar	AMI	B = N/2	No self-synchronization for long 0s, DC
Multilevel	2B1Q	B = N/4	No self-synchronization for long same double bits
	8B6T	B = 3N/4	Self-synchronization, no DC
	4D-PAM5	B = N/8	Self-synchronization, no DC
Multiline	MLT-3	B = N/3	No self-synchronization for long 0s

Block Coding

- Redundancy to ensure synchronization and error detection
- Changes a block of m bits into a block of n bits, where n > m
- aka mB/nB encoding
- Involves division, substitution, and combination steps
- ex. 4B/5B (often combined with NRZ-I), 8B/10B

Block Coding

Combining n-bit groups into a stream

4B/5B and NRZ-I

Scrambling

- Bipolar AMI is most suitable for long-distance transmission (has narrow bandwidth and no DC component)
- However, long sequence of 0's disrupts synchronization

- Solution: substitute long sequences of 0's with a combination of other levels
- Scrambling is done at the same time as encoding
- ex. B8ZS and HDB3

B87S

- Bipolar with 8-zero substitution
- Eight consecutive zero-level voltages are replaced by a sequence **000VB0VB**
- V non-zero voltage violating the AMI rule
- B bipolar non-zero voltage
- Does not change the bit rate, balances (+) and (-) voltages, substitution may change the polarity of a 1

B8ZS

a. Previous level is positive.

b. Previous level is negative.

HDB3

- High-density bipolar 3-zero (HDB3)
- Four consecutive zero-level voltages are replaced with a sequence of **000V** or **B00V**
- Why two sequences? to maintain the even number of non-zero pulses after each substitution
 - If the number of nonzero pulses after the last substition is odd, 000V
 - If the number of nonzero pulses after the last substition is even, B00V

HDB3

Analog-to-Digital Conversion

- Signals from camera or microphone are analog
- Digitization converts analog data to digital data

- Pulse Code Modulation (PCM)
- Delta Modulation

First Semester 2012-2013

CMSC 137
Data Communications and Networking ICS-UPLB

- Sampling (aka Pulse Amplitude Modulation)
 - Analog signal is sampled within a certain time period (Sampling period)
 - ideal, natural, flat-top
 - Result is still an analog signal with nonitgral values
 - Sampling rate must be at least twice the highest frequency in the original signal

Sampling

SamplingRates

a. Nyquist rate sampling: $f_s = 2f$

b. Oversampling: $f_s = 4f$

c. Undersampling: $f_s = f$

Quantization

- Assume orig signal has instantaneous amplitudes between \mathbf{v}_{min} and \mathbf{v}_{max}
- Divide the range into L zones, each of height delta
 - delta = $(v_{max} v_{min}) / L$
- Assign quantized values of 0 to L-1 to the midpoint of each zone
- Approximate the value of the sample amplitude to the quantized values

Pulse Code Modulation

Quantization

Pulse Code Modulation

- Encoding
 - Each sample can be changed to an n_b-bit code word
 - Number of bits for each sample is determined from the number of quantization levels
 - If the number of quantization levels is L, the number of bits is $n_b = log_2 L$
- What is the bit rate needed to digitize human voice assuming 8 bits per sample?

- Sampling rate = $4000 \times 2 = 8000 \text{ samples/s}$ Bit rate = $8000 \times 8 = 64,000 \text{ bps} = 64 \text{ kbps}$
- Bandwidth required is n_h times the analog

Delta Modulation

 PCM finds the value of the signal amplitude for each sample; DM finds the change from the previous sample

Delta Modulation

TRANSMISSION MODES

- How to send the bits?
- Parallel
- Serial
 - Asynchronous
 - Synchronous
 - Isochronous

Parallel Transmission

Use n wires to send n bits of data

Serial Transmission

1 bit at a time

Asynchronous Transmission

- Timing of a signal is unimportant
- Uses "patterns" grouping of bit streams into bytes
- Start bit (0), Stop bit (1)
- No synch at byte level, but present in bit level

Asynchronous Transmission

Synchronous Transmission

- Bit stream combined into frames which may contain multiple bytes
- The receiver is responsible for decoding

Synchronous Transmission

Isochronous

- Multimedia data
- Guarantees that the data arrive at a fixed rate

Enjoy!:)