Data Exploration

Huiping Cao

Outline

- Types of data
- Data quality
- Measurement of proximity
- Data preprocess
- Data exploration
 - Summary statistics
 - Data visualization

The Iris dataset

- University of California at Irvine (UCI) Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/Iris
- 150 Iris flowers, 50 each from one of species: Setosa, Versicolour, and Virginica
- Sepals are the outer structure that protect the more fragile parts of the flower, such as the petals.
- 5 attributes
 - 1. sepal length in centimeters
 - 2. sepal width in centimeters
 - 3. petal length in centimeters
 - 4. petal width in centimeters
 - 5. class (Setosa, Versicolour, Virginica)

Summary Statistics

- Summary statistics are quantities such as the mean and standard deviation.
- They capture various characteristics of a large set of values with a single number or a small set of numbers.
- Example:
 - average household income
 - the fraction of college students who complete an undergraduate degree in four years

Descriptive statistics (1) - Frequency and mode

- Given a categorical attribute x which can take values $\{v_1, \dots, v_i, \dots, v_k\}$ and a set of m objects
- The frequency of a value v_i

$$frequency(v_i) = \frac{\text{number of objects with attribute value } v_i}{m}$$

■ The mode of a categorical attribute is the value that has the highest frequency.

Descriptive statistics (1) - Example

- A set of students who have an attribute class. The values of class can be freshman, sophomore, junior, and senior.
- The below table shows the number of students for each value of the class attributes.
- The mode of the *class* attribute is *freshman* with the highest frequency 0.33.

class	size	frequency	
freshman	200	0.33	
sophomore	160	0.27	
junior	130	0.22	
senior	110 0.18		

Descriptive statistics (2) - Percentile

- Given an ordinal or continuous attribute x and a number p between 0 and 100, the pth percentile x_p is a value of x such that p% of the observed values of x are less than x_p .
- Example: the 50th percentile is the value $x_{50\%}$ such that 50% of all values of x are less than $x_{50\%}$.
- Quartiles: Q1 (25th percentile), Q3 (75th percentile)
- Interquartile range: IQR = Q3 Q1

Descriptive statistics (2) - Example

 Percentiles for sepal length, sepal width, petal length, and petal width. (All values are in centimeters.)

Percentile	Sepal length	Sepal Width	Petal length	Petal width
0	4.3	2.0	1.0	0.1
10	4.8	2.5	1.4	0.2
20	5.0	2.7	1.5	0.2
30	5.2	2.8	1.7	0.4
40	5.6	3.0	3.9	1.2
50	5.8	3.0	4.4	1.3
60	6.1	3.1	4.6	1.5
70	6.3	3.2	5.0	1.8
80	6.6	3.4	5.4	1.9
90	6.9	3.6	5.8	2.2
100	7.9	4.4	6.9	2.5

Percentile example - Python code

```
# get a list from 0.0 to 1.0 with step 0.1
index = np.arange(0.0,1.1,0.1)
# [0.  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
print(index)
```

print the given percentile of all the columns

4□ > 4□ > 4□ > 4□ > 4□ > 1□

df.quantile(index)

Descriptive statistics (3) - Mean and Median

- Consider a set of m objects and an attribute x. Let $\{x_1, \dots, x_m\}$ be the attribute values of x for these m objects.
- Definitions

$$mean(x) = \bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$median(x) = \begin{cases} x_{r+1} & \text{if } m \text{ is odd, i.e., } m=2r+1\\ x_r & \text{if } m \text{ is even, i.e., } m=2r \end{cases}$$

Example - Symmetric vs. Skewed Data

2, 3, 3, 3, 4: Mean= 3; median = 3, mode = 3

2, 2, 3, 4: mean = 13/5=2.6; median = 2, mode: 2

Descriptive statistics (4) - Range and Variance

- Measures of spread
- Given an attribute x with a set of m values $\{x_1, \dots, x_m\}$, is defined as
- Definitions

$$range(x) = max(x) - min(x)$$

$$range(x) - s^2 - \frac{1}{m} \sum_{i=1}^{m} (x_i - x_i)^2$$

variance(x) =
$$s_x^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \bar{x})^2$$

Visualizing Descriptive Statistics

- Boxplot: graphic display of five-number summary.
- Histogram: x-axis are values, y-axis represent frequencies.
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane.

Boxplot

Boxplot for the unit price data for items sold at four branches of *AllElectronics* during a given time period.

Histogram

Histogram vs. Boxplot

They have the same: min, Q1, median, Q3, max However, the data distribution looks different.

Boxplot - Python code

Histogram - Python code

Scatter Plots and Data Correlation

- The scatter plot is used to:
 - provide a first look at bivariate data to see clusters and outliers
 - explore the possibility of correlation relationships
 - each pair of values is treated as a pair of coordinates and plotted as points in the plane

Data Correlation

- Two attributes, X, and Y, are correlated if one attribute implies the other.
- Correlations can be positive, negative, or null (uncorrelated)

How about these scatter plots?

Data Visualization 3D Scatter plot

https://pythonspot.com/3d-scatterplot/

Data Visualization Scatter plot of Iris dataset

import seaborn as sns
sns.pairplot(df)

Parallel coordinates

- Parallel coordinates have one coordinate axis for each attribute, but the different axes are parallel to each other.
- One object is represented as a line instead of one point.
- The value of each attribute of an object is mapped to a point on the coordinate axis associated with that attribute, and these points are then connected to form the line that represents the object.

References

- Chapter 2: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar (https://www-users.cs.umn.edu/~kumar001/ dmbook/index.php)
- Data Exploration: https://www-users.cs.umn.edu/
 ~kumar001/dmbook/data_exploration_1st_edition.pdf
- Chapter 2: Data Mining: Concepts and Techniques (3rd Edition) by Jiawei Han, Micheline Kamber, and Jian Pei (https://hanj.cs.illinois.edu/bk3/)