

WESTERN SYDNEY UNIVERSITY

Implementation of Leaky Integrate-and-Fire (LIF) Neurons

International Centre for Neuromorphic Systems (ICNS)

Prerequisites:

- ➤ Basic knowledge of digital circuit design (Practical lecture 1)
- ➤ Understanding one of the Hardware design languages (Verilog or VHDL) (Practical lecture 1)
- ➤ Basic knowledge of biological neurons (Introduction to Neuroscience 800230)
- ➤Understanding design a LIF neuron circuit using Verilog (lecture 1)

Contents:

- ➤ Pipeline parallel
- ➤Time multiplexing
- ➤Group work: Design a LIF neuron network using Time multiplexing and Pipeline parallel

Sequential Logic

- 2 storage mechanisms
 - positive feedback
 - charge-based

Latch versus Register

Latchstores data when clock is low

Registerstores data when clock rises

Maximum Clock Frequency

$$t_{clk-Q} + t_{p,comb} + t_{setup} = T$$

Also:

$$t_{cdreg} + t_{cdlogic} > t_{hold}$$

 t_{cd} : contamination delay = minimum delay

Clk-Q Delay

Setup Time

Pipelining is Natural!

- Laundry Example
- Sammy, Marc, Griffy, Albert each have one load of clothes to wash, dry, and fold
- Washer takes 30 minutes
- Dryer takes 30 minutes
- "Folder" takes 30 minutes
- "Stasher" takes 30 minutes to put clothes into drawers

- Sequential laundry takes 8 hours for 4 loads
- If they learned pipelining, how long would laundry take?

• Pipelined laundry takes 3.5 hours for 4 loads!

Pipelining Lessons

- Pipelining doesn't help latency of single task, it helps throughput of entire workload
- Multiple tasks operating simultaneously using different resources
- Potential speedup = Number pipe stages
- Pipeline rate limited by slowest pipeline stage
- Unbalanced lengths of pipe stages reduces speedup
- Time to "fill" pipeline and time to "drain" it reduces speedup
- Stall for Dependences

Why Pipeline?

- Suppose we execute 100 instructions
- Single Cycle Machine
 - 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
- Multicycle Machine
 - 10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst = 4600 ns
- Ideal pipelined machine
 - 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Pipelining

Reference

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 - b_1$		
2	$a_2 + b_2$	$ a_1 + b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1 + b_1)$
4	$a_4 + b_4$	$ a_3 + b_3 $	$\log(a_2+b_2)$
5	<i>a</i> ₅ + <i>b</i> ₅	$ a_4 + b_4 $	$\log(a_3+b_3)$

Pipelined

Time-multiplexing:

- FPGAs are much faster than biological neurons; a single operation on the FPGA will take only 5 nanoseconds, while a millisecond resolution is generally acceptable for neural simulations.
- Therefore, we can time-multiplex a single physical neuron to simulate many time-multiplexed (TM) neurons such that up to 200,000 TM neurons can be simulated, each one updated every millisecond.
- Using a pipelined architecture, the result of calculating one time step for a TM neuron only has to be available just before that neuron's turn comes around again. The time to compute a single neuron's output is thus not a limiting factor in the size of the network

Time-multiplexing:

Question and discussion time

Books and publications:

Verilog and FPGA:

https://west-sydney-primo.hosted.exlibrisgroup.com/permalink/f/afm582/UWS-ALMA2170487320001571

Analog VLSI: Circuits and Principles:

https://ezproxy.uws.edu.au/login?url=https://ieeexplore.ieee.org/book/6267299

Neuromorphic silicon neuron circuits:

https://ezproxy.uws.edu.au/login?url=https://www.frontiersin.org/articles/10.3389/fnins.2011.00073/full

Neuromorphic engineering systems and applications:

https://west-sydney-primo.hosted.exlibrisgroup.com/permalink/f/afm582/UWS-ALMA51173262710001571

Summary:

W

- > Design a pipelined LIF neuron circuit using the time-multiplexing approach
- > Simulate the neuron