Macroeconomía Internacional

Francisco Roldán IMF

September 2021

The views expressed herein are those of the authors and should not be attributed to the IMF its Executive Board, or its management.

Macro Internacional

1. Economías emergentes \neq economías avanzadas

	σ_{c}/σ_{y}		
	Poor	Emerging	Rich
All	1.1	0.98	0.87
Small	1.4	0.97	0.92
Medium	1.1	0.93	0.93
Large	1.1	1.1	0.84
Frants, Schmitt Crobé and Uriba (2020)			

Fuente: Schmitt-Grohé and Uribe (2020)

2. Excusa para métodos

Tres modelos

- 1. RBC con default (Arellano, 2008)
 - ... La deuda se paga con el valor presente del superávit, pero cuándo se paga la deuda?
- Modelos con rigideces nominales (Schmitt-Grohé y Uribe, 2016)
 - ... Tipo de cambio, externalidades de demanda
- 3. Deflación fisheriana y sudden stops (Bianchi, 2011)
 - . . . Cómo el precio del colateral amplifica la salida de capitales
 - Consistencia temporal
 - . Cómo escribir problemas de control óptimo de forma recursiva

Tres modelos

- 1. RBC con default (Arellano, 2008)
 - ... La deuda se paga con el valor presente del superávit, pero cuándo se paga la deuda?
- 2. Modelos con rigideces nominales (Schmitt-Grohé y Uribe, 2016)
 - ... Tipo de cambio, externalidades de demanda
- 3. Deflación fisheriana y sudden stops (Bianchi, 2011)
 - . . . Cómo el precio del colateral amplifica la salida de capitales
 - Consistencia temporal
 - . Cómo escribir problemas de control óptimo de forma recursiva

Tres modelos

- 1. RBC con default (Arellano, 2008)
 - ... La deuda se paga con el valor presente del superávit, pero cuándo se paga la deuda?
- 2. Modelos con rigideces nominales (Schmitt-Grohé y Uribe, 2016)
 - ... Tipo de cambio, externalidades de demanda
- 3. Deflación fisheriana y sudden stops (Bianchi, 2011)
 - ... Cómo el precio del colateral amplifica la salida de capitales

2

Tres modelos

- 1. RBC con default (Arellano, 2008)
 - ... La deuda se paga con el valor presente del superávit, pero cuándo se paga la deuda?
- 2. Modelos con rigideces nominales (Schmitt-Grohé y Uribe, 2016)
 - ... Tipo de cambio, externalidades de demanda
- Deflación fisheriana y sudden stops (Bianchi, 2011)
 - ... Cómo el precio del colateral amplifica la salida de capitales
- 4. Consistencia temporal (Chang, 1999)
 - ... Cómo escribir problemas de control óptimo de forma recursiva

- 1. Discusión no exhaustiva de la mecánica de los modelos
- 2. Foco en aplicación cuantitativa
 - . . . Códigos para resolver, simular, calibrar, graficar

Por qué?

- 3. Julia
 - Iteración en la función de valo:

- 1. Discusión no exhaustiva de la mecánica de los modelos
- 2. Foco en aplicación cuantitativa
 - ... Códigos para resolver, simular, calibrar, graficar

Por qué?

- 3. Julia
 - Iteración en la función de valor

- 1. Discusión no exhaustiva de la mecánica de los modelos
- 2. Foco en aplicación cuantitativa
 - Códigos para resolver, simular, calibrar, graficar

3. Julia

Iteración en la función de valor

- 1. Discusión no exhaustiva de la mecánica de los modelos
- 2. Foco en aplicación cuantitativa
 - ... Códigos para resolver, simular, calibrar, graficar

Por qué?

3. Julia

· Iteración en la función de valor

Organización

Nosotros

- Teóricas
 - · Modelos, algoritmos
- Prácticas
 - · Implementación en la compu

Ustedes

[No representation without taxation]

- Presentaciones cortas
- Guías de ejercicios

Organización

Nosotros

- Teóricas
 - Modelos, algoritmos
- Prácticas
 - · Implementación en la compu

Ustedes

[No representation without taxation]

- Presentaciones cortas
- · Guías de ejercicios

Hoy

· Repaso de programación dinámica

... McCall (1970)

. . . Problema de la torta

· Estructura de implementación numérica

Programación Dinámica:

Búsqueda

McCall (1970)

- · Un agente busca trabajo.
- Preferencias standard: utilidad u, descuento β .
- · Los trabajos son heterogéneos y sólo difieren en el salario que pagan.
- · Cada período llega una <mark>oferta</mark> de trabajo w $\stackrel{\mathit{iid}}{\sim} \mathsf{F}(\cdot)$
- \cdot Sólo se puede aceptar un trabajo. El agente recibe b mientras busca

Cómo decide el agente qué trabajo aceptar?

McCall (1970)

- · Un agente busca trabajo.
- Preferencias standard: utilidad u, descuento β .
- · Los trabajos son heterogéneos y sólo difieren en el salario que pagan.
- · Cada período llega una oferta de trabajo w $\stackrel{iid}{\sim} F(\cdot)$
- \cdot Sólo se puede aceptar un trabajo. El agente recibe b mientras busca
- · Cómo decide el agente qué trabajo aceptar?

McCall (1970) escrito difícil

Problema del agente:

$$V = \max_{\mathsf{T}} \mathbb{E}_0 \left[\sum_{t=0}^{\mathsf{T}-1} \beta^t u(b) + \sum_{t=\mathsf{T}}^{\infty} \beta^t u(w_{\mathsf{T}}) \right]$$
 sujeto a $w_t \stackrel{\textit{iid}}{\sim} F(\cdot)$
 T debe ser adaptado a $\mathcal{F}(\{w_t\})$

- Cómo elijo T? En qué conjunto vive T? Cuál es la CPO?

Problema del agente:

$$V = \max_{T} \mathbb{E}_0 \left[\sum_{t=0}^{T-1} \beta^t u(b) + \sum_{t=T}^{\infty} \beta^t u(w_T) \right]$$
 sujeto a $w_t \stackrel{iid}{\sim} F(\cdot)$
 T debe ser adaptado a $\mathcal{F}(\{w_t\})$

• T es una función de los salarios w_t sacados antes de T.

Cómo elijo T? En qué conjunto vive T? Cuál es la CPO?

Problema del agente:

$$V = \max_{T} \mathbb{E}_0 \left[\sum_{t=0}^{T-1} \beta^t u(b) + \sum_{t=T}^{\infty} \beta^t u(w_T) \right]$$
 sujeto a $w_t \stackrel{iid}{\sim} F(\cdot)$
 T debe ser adaptado a $\mathcal{F}(\{w_t\})$

- \cdot T es una función de los salarios w_t sacados antes de T.
- · Cómo elijo *T*? En qué conjunto vive *T*? Cuál es la CPO?

 \cdot En t, si todavía no acepté una oferta, $\operatorname{\mathsf{despu\acute{e}s}}$ de ver w_t

$$V_t = egin{cases} \sum_{j=0}^\infty eta^j u(w_t) & ext{si acepto} \ u(b) + eta \max_T \mathbb{E} \left[\sum_{j=0}^T eta^j u(b) + \sum_{j=T}^\infty eta^j u(w_T)
ight] & ext{si rechazo} \end{cases}$$

· Así que

$$V_t = \mathsf{max}\left\{u(b) + eta \mathbb{E}\left[V_{t+1}
ight], R(w_t)
ight\}$$

 \cdot MAGIA: V_t no depende de t dado w_t

 \cdot En t, si todavía no acepté una oferta, $\operatorname{\mathsf{despu\acute{e}s}}$ de ver w_t

$$V_t = \begin{cases} \sum_{j=0}^{\infty} \beta^j u(w_t) = R(w_t) & \text{si acepto} \\ u(b) + \beta \max_T \mathbb{E} \left[\sum_{j=0}^T \beta^j u(b) + \sum_{j=T}^{\infty} \beta^j u(w_T) \right] & \text{si rechazo} \end{cases}$$

· Así que

$$\mathsf{V}_t = \mathsf{max}\left\{ \mathsf{u}(b) + eta \mathbb{E}\left[\mathsf{V}_{t+1}
ight], \mathsf{R}(\mathsf{w}_t)
ight\}$$

· MAGIA: V_t no depende de t dado w_t

· En t, si todavía no acepté una oferta, después de ver w_t

$$V_t = \begin{cases} \sum_{j=0}^{\infty} \beta^j u(w_t) = R(w_t) & \text{si acepto} \\ u(b) + \beta \max_T \mathbb{E} \left[\sum_{j=0}^T \beta^j u(b) + \sum_{j=T}^{\infty} \beta^j u(w_T) \right] & \text{si rechazo} \end{cases}$$

· Así que

$$V_t = \mathsf{max}\left\{u(b) + eta \mathbb{E}\left[V_{t+1}
ight], \mathsf{R}(w_t)
ight\}$$

· MAGIA: V_t no depende de t dado w_t

· En t, si todavía no acepté una oferta, después de ver w_t

$$V_t = \begin{cases} \sum_{j=0}^{\infty} \beta^j u(w_t) = R(w_t) & \text{si acepto} \\ u(b) + \beta \max_T \mathbb{E} \left[\sum_{j=0}^T \beta^j u(b) + \sum_{j=T}^{\infty} \beta^j u(w_T) \right] & \text{si rechazo} \end{cases}$$

· Así que

$$oldsymbol{\mathsf{V}}_{t} = \mathsf{max}\left\{ \mathsf{u}(b) + eta \mathbb{E}\left[\mathsf{V}_{t+1}
ight], \mathsf{R}(w_{t})
ight\}$$

MAGIA: V_t no depende de t dado w_t

 \cdot En t, si todavía no acepté una oferta, $\operatorname{\mathsf{despu\acute{e}s}}$ de ver w_t

$$V_t = \begin{cases} \sum_{j=0}^{\infty} \beta^j u(w_t) = R(w_t) & \text{si acepto} \\ u(b) + \beta \max_T \mathbb{E} \left[\sum_{j=0}^T \beta^j u(b) + \sum_{j=T}^{\infty} \beta^j u(w_T) \right] & \text{si rechazo} \end{cases}$$

· Así que

$$\mathbf{V}_t = \max \left\{ u(b) + eta \mathbb{E}\left[\mathbf{V}_{t+1}
ight], R(w_t)
ight\}$$

• MAGIA: V_t no depende de t dado w_t

$$V(w_t) = \max \left\{ u(b) + eta \mathbb{E}\left[V(w_{t+1})\right], R(w_t)
ight\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w)$$

$$V(w_t) = \max \left\{ u(b) + eta \mathbb{E}\left[V(w_{t+1})\right], R(w_t)
ight\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w)$$

$$V(w_t) = \max \left\{ u(b) + eta \mathbb{E}\left[V(w_{t+1})\right], R(w_t)
ight\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \sum_{j=1}^{\infty} \beta^{j} u(w)$$

$$V(w_t) = \max \left\{ u(b) + eta \mathbb{E}\left[V(w_{t+1})\right], R(w_t)
ight\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \sum_{j=1}^{\infty} \beta^{j} u(w)$$
$$= u(w) + \beta \sum_{j=0}^{\infty} \beta^{j} u(w)$$

$$V(w_t) = \max \left\{ u(b) + \beta \mathbb{E} \left[V(w_{t+1}) \right], R(w_t) \right\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \sum_{j=1}^{\infty} \beta^{j} u(w)$$
$$= u(w) + \beta \sum_{j=0}^{\infty} \beta^{j} u(w)$$

$$V(w_t) = \max \left\{ u(b) + \beta \mathbb{E} \left[V(w_{t+1}) \right], R(w_t) \right\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \sum_{j=1}^{\infty} \beta^{j} u(w)$$
$$= u(w) + \beta \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \beta R(w)$$

$$V(w_t) = \max \left\{ u(b) + \beta \mathbb{E} \left[V(w_{t+1}) \right], R(w_t) \right\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \sum_{j=1}^{\infty} \beta^{j} u(w)$$
$$= u(w) + \beta \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \beta R(w)$$
$$= \frac{u(w)}{1 - \beta}$$

$$V(w_t) = \max \left\{ u(b) + \beta \mathbb{E}\left[V(w_{t+1})\right], R(w_t) \right\}$$

$$R(w) = \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \sum_{j=1}^{\infty} \beta^{j} u(w)$$
$$= u(w) + \beta \sum_{j=0}^{\infty} \beta^{j} u(w) = u(w) + \beta R(w)$$
$$= \frac{u(w)}{1 - \beta}$$

$$V(w) = \max \left\{ u(b) + \beta \int V(z)dF(z), \frac{u(w)}{1 - \beta} \right\}$$

$$V(w) = \max \left\{ u(b) + \beta \int V(z)dF(z), \frac{u(w)}{1-\beta} \right\}$$

- 1. Inicializar: $V^0(w) = 0$
- 2. Usar V^0 del lado derecho, obtener $V^1(w) = \max\left\{u(b) + 0, rac{u(w)}{1-eta}
 ight\}$
- 3. Usar V^1 del lado derecho, obtener V^2
- ... Iterar hasta que $|V^n-V^{(n-1)}| \leq \epsilon$ (distancia entre funciones

$$V(w) = \max \left\{ u(b) + \beta \int V(z)dF(z), \frac{u(w)}{1 - \beta} \right\}$$

- 1. Inicializar: $V^0(w) = 0$
- 2. Usar V^0 del lado derecho, obtener $V^1(w) = \max\left\{u(b) + 0, rac{u(w)}{1-eta}
 ight\}$
- 3. Usar V^1 del lado derecho, obtener V^2
- ... Iterar hasta que $|V^n-V^{(n-1)}| \leq \epsilon$ (distancia entre funciones

$$V(w) = \max \left\{ u(b) + \beta \int V(z)dF(z), \frac{u(w)}{1-\beta} \right\}$$

- 1. Inicializar: $V^0(w) = 0$
- 2. Usar V^0 del lado derecho, obtener $V^1(w) = \max\left\{u(b) + 0, \frac{u(w)}{1-\beta}\right\}$
- 3. Usar V^1 del lado derecho, obtener V^2
- ... Iterar hasta que $|V^n-V^{(n-1)}| \leq \epsilon$ (distancia entre funciones)

$$V(w) = \max \left\{ u(b) + \beta \int V(z)dF(z), \frac{u(w)}{1-\beta} \right\}$$

- 1. Inicializar: $V^0(w) = 0$
- 2. Usar V^0 del lado derecho, obtener $V^1(w) = \max\left\{u(b) + 0, rac{u(w)}{1-eta}
 ight\}$
- 3. Usar V^1 del lado derecho, obtener V^2
- ... Iterar hasta que $|V^n-V^{(n-1)}| \leq \epsilon$ (distancia entre funciones

$$V(w) = \max \left\{ u(b) + \beta \int V(z)dF(z), \frac{u(w)}{1 - \beta} \right\}$$

- 1. Inicializar: $V^0(w) = 0$
- 2. Usar V^0 del lado derecho, obtener $V^1(w)=\max\left\{u(b)+0,rac{u(w)}{1-eta}
 ight\}$
- 3. Usar V^1 del lado derecho, obtener V^2
- \ldots Iterar hasta que $|\mathsf{V}^n \mathsf{V}^{(n-1)}| \leq \epsilon$ (distancia entre funciones)

Programación Dinámica:
Consumo/ahorro

- \cdot Un agente tiene una torta de tamaño K
- Preferencias standard: utilidad u, descuento β

$$\begin{aligned} \max_{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0} \beta^{t} \mathsf{u}(c_{t}) \\ \mathsf{sujeto} \ \mathsf{a} \quad c_{t} + k_{t+1} = k_{t} \\ \quad k_{t+1} \geq 0 \end{aligned}$$

Y hagamos que
$$u(c)=rac{c^{1-\gamma}}{1-\gamma}$$

- \cdot Un agente tiene una torta de tamaño K
- Preferencias standard: utilidad u, descuento β

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
 sujeto a $c_t + k_{t+1} = k_t$ $k_{t+1} \geq 0$

• Y hagamos que $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$

CPOs

· Derivando contra c_t y k_{t+1}

$$\beta^t u'(c_t) = \lambda_t$$
$$\lambda_t = \lambda_{t+1}$$

· Así que

$$egin{aligned} u'(c_t) &= eta u'(c_{t+1}) \ &\Longrightarrow \ c_{t+1} &= eta^{rac{1}{2}} c_t \ &\Longrightarrow \ c_t &= c_0 \left(eta^{rac{1}{2}}
ight)^t \end{aligned}$$

CPOs

- Derivando contra c_t y k_{t+1}

$$\beta^t u'(c_t) = \lambda_t$$
$$\lambda_t = \lambda_{t+1}$$

- Así que

$$u'(c_t) = \beta u'(c_{t+1})$$

$$\implies c_{t+1} = \beta^{\frac{1}{\gamma}} c_t$$

$$\implies c_t = c_0 \left(\beta^{\frac{1}{\gamma}}\right)^t$$

CPOs

- Derivando contra c_t y k_{t+1}

$$\beta^t u'(c_t) = \lambda_t$$
$$\lambda_t = \lambda_{t+1}$$

- Así que

$$egin{aligned} oldsymbol{c_t^{-\gamma}} &= eta oldsymbol{c_{t+1}^{-\gamma}} \ \implies c_{t+1} &= eta^{rac{1}{\gamma}} c_t \ \Rightarrow c_t &= c_0 \left(eta^{rac{1}{\gamma}}
ight)^t \end{aligned}$$

CPOs

- Derivando contra c_t y k_{t+1}

$$eta^t u'(c_t) = \lambda_t$$
 $\lambda_t = \lambda_{t+1}$

- Así que

$$egin{aligned} oldsymbol{c_t^{-\gamma}} &= eta oldsymbol{c_{t+1}^{-\gamma}} \ \Longrightarrow oldsymbol{c_{t+1}} &= eta^{rac{1}{\gamma}} oldsymbol{c_t} \ \Rightarrow oldsymbol{c_t} &= oldsymbol{c_0} \left(eta^{rac{1}{\gamma}}
ight)^t \end{aligned}$$

CPOs

· Derivando contra c_t y k_{t+1}

$$\beta^{t}u'(c_{t}) = \lambda_{t}$$
$$\lambda_{t} = \lambda_{t+1}$$

Así que

$$egin{aligned} c_t^{-\gamma} &= eta c_{t+1}^{-\gamma} \ \implies c_{t+1} &= eta^{rac{1}{\gamma}} c_t \ \implies c_t &= c_0 \left(eta^{rac{1}{\gamma}}
ight)^t \end{aligned}$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s \implies k_0 = \sum_{t=0}^\infty c_t + \lim_{t \to \infty} k_t$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s \implies k_0 = \sum_{t=0}^\infty c_t + \lim_{t \to \infty} k_t$$

$$k_0 = \sum_{t=0}^{\infty} c_t = \sum_{t=0}^{\infty} c_0 \left(\varnothing^{\perp} \right)$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s \implies k_0 = \sum_{t=0}^\infty c_t + \lim_{t \to \infty} k_t$$

$$k_0 = \sum_{t=0}^{\infty} c_t = \sum_{t=0}^{\infty} c_0 \left(\beta^{\frac{1}{\gamma}} \right)^t$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s \implies k_0 = \sum_{t=0}^\infty c_t + \lim_{t \to \infty} k_t$$

$$k_0 = \sum_{t=0}^{\infty} c_t = \sum_{t=0}^{\infty} c_0 \left(\beta^{\frac{1}{\gamma}}\right)^t = c_0 \sum_{t=0}^{\infty} \left(\beta^{\frac{1}{\gamma}}\right)^t$$

Tenemos

$$c_t = c_0 \left(\beta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s \implies k_0 = \sum_{t=0}^\infty c_t + \lim_{t \to \infty} k_t$$

$$k_0 = \sum_{t=0}^{\infty} c_t = \sum_{t=0}^{\infty} c_0 \left(\beta^{\frac{1}{\gamma}} \right)^t = c_0 \sum_{t=0}^{\infty} \left(\beta^{\frac{1}{\gamma}} \right)^t = c_0 \frac{1}{1 - \beta^{\frac{1}{\gamma}}}$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s \implies k_0 = \sum_{t=0}^\infty c_t + \lim_{t \to \infty} k_t$$

$$k_0 = \sum_{t=0}^{\infty} c_t = \sum_{t=0}^{\infty} c_0 \left(\beta^{\frac{1}{\gamma}} \right)^t = c_0 \sum_{t=0}^{\infty} \left(\beta^{\frac{1}{\gamma}} \right)^t = c_0 \frac{1}{1 - \beta^{\frac{1}{\gamma}}}$$

Tenemos

$$c_t = c_0 \left(eta^{rac{1}{\gamma}}
ight)^t$$

У

$$c_t + k_{t+1} = k_t \implies k_{t+1} = k_t - c_t \implies k_{t+1} = k_0 - \sum_{s=0}^t c_s \implies k_0 = \sum_{t=0}^\infty c_t + \lim_{t \to \infty} k_t$$

$$k_{0} = \sum_{t=0}^{\infty} c_{t} = \sum_{t=0}^{\infty} c_{0} \left(\beta^{\frac{1}{\gamma}}\right)^{t} = c_{0} \sum_{t=0}^{\infty} \left(\beta^{\frac{1}{\gamma}}\right)^{t} = c_{0} \frac{1}{1 - \beta^{\frac{1}{\gamma}}}$$

Problema de la torta: a little knowledge of geometric sums. . .

Al final,

$$\begin{cases} c_{t} = c_{0} \left(\beta^{\frac{1}{\gamma}}\right)^{t} \\ k_{0} = \frac{c_{0}}{1 - \beta^{\frac{1}{\gamma}}} \end{cases} \implies c_{t} = k_{0} \left(1 - \beta^{\frac{1}{\gamma}}\right) \left(\beta^{\frac{1}{\gamma}}\right)^{t}$$

Problema de la torta: a little knowledge of geometric sums...

Al final,

$$\begin{cases} c_t = c_0 \left(\beta^{\frac{1}{\gamma}}\right)^t \\ k_0 = \frac{c_0}{1 - \beta^{\frac{1}{\gamma}}} \end{cases} \implies c_t = k_0 \left(1 - \beta^{\frac{1}{\gamma}}\right) \left(\beta^{\frac{1}{\gamma}}\right)^t$$

Problema de la torta: a little knowledge of geometric sums. . .

Al final,

$$\begin{cases} c_t = c_0 \left(\beta^{\frac{1}{\gamma}}\right)^t \\ k_0 = \frac{c_0}{1 - \beta^{\frac{1}{\gamma}}} \end{cases} \implies c_t = k_0 \left(1 - \beta^{\frac{1}{\gamma}}\right) \left(\beta^{\frac{1}{\gamma}}\right)^t \\ \text{Problema de la torta } (\beta = 0.96, \gamma = 2, k = 1) \end{cases}$$

Problema de la torta con

- La torta se va pudriendo: $k_{t+1} = (k_t c_t)(1+r)$ si r < 0
- \cdot Llega nueva torta: $k_{t+1} = k_t c_t + \mathsf{y}_{t+1}$
- · La nueva torta es aleatoria según una cadena de Markov F(y'|y)
- · Puedo pedir torta prestada: $k_{t+1} \geq \bar{k}$

$$\max_{c_t, k_{t+1}} \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight]$$
sujeto a $k_{t+1} + c_t = k_t (1+r) + y_t$ $k_{t+1} \geq ar{k}$

En general no tiene forma cerrada. .

Problema de la torta con

- · La torta se va pudriendo: $k_{t+1} = (k_t c_t)(1+r)$ si r < 0
- \cdot Llega nueva torta: $\mathit{k}_{t+1} = \mathit{k}_t \mathit{c}_t + \mathsf{y}_{t+1}$
- · La nueva torta es aleatoria según una cadena de Markov F(y'|y)
- · Puedo pedir torta prestada: $k_{t+1} \geq \bar{k}$

$$\max_{c_t, k_{t+1}} \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight]$$
sujeto a $k_{t+1} + c_t = k_t (1+r) + y_t$ $k_{t+1} \geq ar{k}$

En general no tiene forma cerrada. .

Problema de la torta con

- · La torta se va pudriendo: $k_{t+1} = (k_t c_t)(1 + r)$ si r < 0
- · Llega nueva torta: $k_{t+1} = k_t c_t + y_{t+1}$
- \cdot La nueva torta es aleatoria según una cadena de Markov F(y'|y)
- · Puedo pedir torta prestada: $k_{t+1} \geq \bar{k}$

$$\max_{c_t, k_{t+1}} \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight]$$
sujeto a $k_{t+1}+c_t=k_t(1+r)+y_t$ $k_{t+1} \geq ar{k}$

En general no tiene forma cerrada. .

Problema de la torta con

- · La torta se va pudriendo: $k_{t+1} = (k_t c_t)(1 + r)$ si r < 0
- · Llega nueva torta: $k_{t+1} = k_t c_t + y_{t+1}$
- · La nueva torta es aleatoria según una cadena de Markov F(y'|y)
- Puedo pedir torta prestada: $k_{t+1} \geq ar{k}$

$$\max_{c_t, k_{t+1}} \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight]$$
sujeto a $k_{t+1} + c_t = k_t (1+r) + \mathsf{y}_t$ $k_{t+1} \geq ar{k}$

En general no tiene forma cerrada...

Problema de la torta con

- · La torta se va pudriendo: $k_{t+1} = (k_t c_t)(1+r)$ si r < 0
- · Llega nueva torta: $k_{t+1} = k_t c_t + y_{t+1}$
- · La nueva torta es aleatoria según una cadena de Markov F(y'|y)
- · Puedo pedir torta prestada: $k_{t+1} \geq \bar{k}$

$$\max_{c_t, k_{t+1}} \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight]$$
sujeto a $k_{t+1} + c_t = k_t (1+r) + y_t$ $k_{t+1} \geq ar{k}$

En general no tiene forma cerrada...

Problema de la torta con

- · La torta se va pudriendo: $k_{t+1} = (k_t c_t)(1+r)$ si r < 0
- · Llega nueva torta: $k_{t+1} = k_t c_t + y_{t+1}$
- · La nueva torta es aleatoria según una cadena de Markov F(y'|y)
- · Puedo pedir torta prestada: $k_{t+1} \geq \bar{k}$

$$\max_{c_t, k_{t+1}} \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight]$$
sujeto a $k_{t+1} + c_t = k_t (1+r) + \mathsf{y}_t$ $k_{t+1} \geq ar{k}$

En general no tiene forma cerrada...

Problema de la torta con

- · La torta se va pudriendo: $k_{t+1} = (k_t c_t)(1+r)$ si r < 0
- · Llega nueva torta: $k_{t+1} = k_t c_t + y_{t+1}$
- · La nueva torta es aleatoria según una cadena de Markov F(y'|y)
- · Puedo pedir torta prestada: $k_{t+1} \geq \bar{k}$

$$\max_{c_t, k_{t+1}} \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight]$$
sujeto a $k_{t+1} + c_t = k_t (1+r) + y_t$ $k_{t+1} \geq ar{k}$

En general <mark>no tiene</mark> forma cerrada. . .

· Otra vez llamemos V_t al valor del problema en t

$$\begin{aligned} V_t &= \max_{c_{t+s}, k_{t+s}} \mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s u(c_{t+s}) \right] = \max_{c_t, k_{t+1}} u(c_t) + \mathbb{E}_t \left[V_{t+1} \right] \\ \text{sujeto a } k_{t+s+1} + c_{t+s} = k_{t+s} (1+r) + y_{t+s} \\ k_{t+s+1} &\geq \bar{k} \end{aligned}$$

 \cdot Otra vez llamemos V_t al valor del problema en t

$$egin{aligned} V_t &= \max_{c_{t+s}, k_{t+s}} \mathbb{E}_t \left[\sum_{s=0}^\infty eta^s u(c_{t+s})
ight] = \max_{c_t, k_{t+1}} u(c_t) + \mathbb{E}_t \left[V_{t+1}
ight] \ & ext{sujeto a } k_{t+s+1} + c_{t+s} = k_{t+s} (1+r) + y_{t+s} \ & ext{} k_{t+s+1} \geq ar{k} \end{aligned}$$

Otra vez llamemos V_t al valor del problema en t

$$egin{aligned} V_t &= \max_{c_{t+s}, k_{t+s}} \mathbb{E}_t \left[\sum_{s=0}^{\infty} eta^s u(c_{t+s})
ight] = \max_{c_t, k_{t+1}} u(c_t) + \mathbb{E}_t \left[V_{t+1}
ight] \ & ext{sujeto a } k_{t+s+1} + c_{t+s} = k_{t+s} (1+r) + y_{t+s} \ & k_{t+s+1} \geq ar{k} \end{aligned}$$

$$egin{aligned} v(k, \mathbf{y}) &= \max_{c, k'} u(c) + eta \mathbb{E}\left[v(k', \mathbf{y}') | \mathbf{y}
ight] \ & ext{sujeto a } c + k' = \mathbf{y} + k(1 + r) \ & k' \geq ar{k} \end{aligned}$$

$$egin{aligned} \mathbf{v}(\mathbf{k},\mathbf{y}) &= \max_{c,k'} u(c) + eta \mathbb{E}\left[\mathbf{v}(\mathbf{k}',\mathbf{y}')|\mathbf{y}
ight] \ & ext{sujeto a } c+k'=\mathbf{y}+k(\mathbf{1}+r) \ &k' \geq ar{k} \end{aligned}$$

$$\begin{aligned} v(k, \mathbf{y}) &= \max_{c, k'} u(c) + \beta \mathbb{E} \left[v(k', \mathbf{y}') | \mathbf{y} \right] \\ \text{sujeto a } c + k' &= \mathbf{y} + k(1 + r) \\ k' &\geq \bar{k} \end{aligned}$$

- · La función v es desconocida
- Podemos
 - 1. meter una f cualquiera del lado derecho (reemplazar v por f)
 - 2. usar la ec. de Bellman para encontrar una nueva j
 - 3. comparar la f que entró con la f que salió
 - 4. usar la f que salió del lado derecho

$$\begin{aligned} v(k, \mathbf{y}) &= \max_{c, k'} u(c) + \beta \mathbb{E} \left[v(k', \mathbf{y}') | \mathbf{y} \right] \\ \text{sujeto a } c + k' &= \mathbf{y} + k(1 + r) \\ k' &\geq \bar{k} \end{aligned}$$

- · La función v es desconocida
- Podemos
 - 1. meter una f cualquiera del lado derecho (reemplazar v por f)
 - 2. usar la ec. de Bellman para encontrar una nueva f
 - 3. comparar la f que entró con la f que salió
 - 4. usar la f que salió del lado derecho

$$egin{aligned} \mathbf{v}(\mathbf{k},\mathbf{y}) &= \max_{\mathbf{c},\mathbf{k}'} \mathbf{u}(\mathbf{c}) + \beta \mathbb{E}\left[\mathbf{v}(\mathbf{k}',\mathbf{y}')|\mathbf{y}
ight] \ & ext{sujeto a } \mathbf{c} + \mathbf{k}' = \mathbf{y} + \mathbf{k}(\mathbf{1} + \mathbf{r}) \ & ext{k}' \geq \bar{\mathbf{k}} \end{aligned}$$

- · La función v es desconocida
- Podemos
 - 1. meter una f cualquiera del lado derecho (reemplazar <math>v por f)
 - 2. usar la ec. de Bellman para encontrar una nueva f
 - 3. comparar la f que entró con la f que salió
 - 4. usar la f que salió del lado derecho

$$egin{aligned} \mathbf{v}(\mathbf{k},\mathbf{y}) &= \max_{\mathbf{c},\mathbf{k}'} \mathbf{u}(\mathbf{c}) + \beta \mathbb{E}\left[\mathbf{v}(\mathbf{k}',\mathbf{y}')|\mathbf{y}
ight] \ & ext{sujeto a } \mathbf{c} + \mathbf{k}' = \mathbf{y} + \mathbf{k}(\mathbf{1} + \mathbf{r}) \ & ext{k}' \geq \bar{\mathbf{k}} \end{aligned}$$

- · La función v es desconocida
- Podemos
 - 1. meter una f cualquiera del lado derecho (reemplazar <math>v por f)
 - 2. usar la ec. de Bellman para encontrar una nueva f
 - 3. comparar la f que entró con la f que salió
 - 4. usar la f que salió del lado derecho

Cierre

Cierre

Vimos

- · Programación dinámica
 - · Finding the state is an art
 - · Iterar sobre la ecuación de Bellman es 90% de un algoritmo
 - Por qué funciona?
- · El modelo de búsqueda más sencillo posible
- · El problema de la torta
 - ... si les hace acordar a otra cosa, vamos bien