ESC201T : Introduction to Electronics

Lecture 16: Bode Plots and Filters

B. Mazhari Dept. of EE, IIT Kanpur

Frequency Response

$$v_S(t) = v_{So}Cos(\omega t)$$

$$H(\omega) = \frac{V_O(\omega)}{V_S(\omega)}$$

$$H(\omega) = \frac{1}{1 + j\omega CR}$$

$$|H(\omega)| = \frac{1}{\sqrt{1 + \omega^2 C^2 R^2}}$$

$$\phi(\omega) = -\tan^{-1}(\omega CR)$$

Sketching of Transfer function

$$H(\omega) = \frac{10}{1+j\frac{\omega}{10^3}} \times \frac{1}{1+j\frac{\omega}{10^4}}$$

$$20\text{Log}_{10}(|H(\omega)|) = 20 - 10Log_{10}(1 + (\frac{\omega}{10^3})^2) - 10Log_{10}(1 + (\frac{\omega}{10^4})^2)$$

Phase Plot

$$\varphi(\omega) = -\tan^{-1}(\omega/\omega_0)$$

$$\varphi(\omega) = -\tan^{-1}(\omega/\omega_0) \qquad \omega \to 0, \phi \to 0 \quad \omega \to \infty, \phi \to -90^{\circ}$$
$$\omega = \omega_0, \phi \to -45^{\circ}$$

Sketching of Transfer function

$$H(\omega) = \frac{10}{1 + j\frac{\omega}{10^3}} \times \frac{1}{1 + j\frac{\omega}{10^4}} \times \frac{1}{1 + j\frac{\omega}{10^5}}$$

$$20\text{Log}_{10}(|H(\omega)|) = 20 - 10Log_{10}(1 + (\frac{\omega}{10^3})^2) - 10Log_{10}(1 + (\frac{\omega}{10^4})^2) - 10Log_{10}(1 + (\frac{\omega}{10^5})^2)$$

Phase Plot

$$H(\omega) = \frac{10}{1 + j\frac{\omega}{10^3}} \times \frac{1}{1 + j\frac{\omega}{10^4}} \qquad \omega \to 0, \phi \to 0 \quad \omega \to \infty, \phi \to -90^{\circ}$$
$$\omega = \omega_0, \phi \to -45^{\circ}$$

$$\omega \to 0, \phi \to 0 \quad \omega \to \infty, \phi \to -90^{\circ}$$

 $\omega = \omega_0, \phi \to -45^{\circ}$

$$\varphi(\omega) = -\tan^{-1}(\omega/10^3) - \tan^{-1}(\omega/10^4)$$

$$H(\omega) = (j\omega)^N$$

$$20\text{Log}_{10}(|H(\omega)|) = 20N \times Log_{10}(\omega)$$

Example

$$H(\omega) = \frac{V_O(\omega)}{V_S(\omega)}$$

$$H(\omega) = \frac{j\omega CR}{1 + j\omega CR}$$

$$H(\omega) = \frac{j(\omega/\omega_{3dB})}{1 + j(\omega/\omega_{3dB})}$$

$$\omega_{3dB} = \frac{1}{RC} ; f_{3dB} = \frac{1}{2\pi RC}$$

$$20\text{Log}_{10}(|H(\omega)|) = 20log_{10}(\frac{\omega}{\omega_{3dB}}) - 10log_{10}(1 + (\frac{\omega}{\omega_{3dB}})^{2})$$

$$\phi(\omega) = 90 - \tan^{-1}(\omega CR)$$

$$20\text{Log}_{10}(|H(\omega)|) = 20log_{10}(\frac{\omega}{\omega_{3dB}}) - 10log_{10}(1 + (\frac{\omega}{\omega_{3dB}})^2)$$

High Pass Filter

12.000

$$f_{3dB} = \frac{1}{2\pi RC} = 10^3 Hz$$

Bode Plot segments

Example:

$$H(\omega) = 200 \times j\omega \times \frac{1}{10 + j\omega} \times \frac{1}{100 + j\omega}$$

$$H(\omega) = 0.2 \times j\omega \times \frac{1}{1 + j\frac{\omega}{10}} \times \frac{1}{1 + j\frac{\omega}{100}}$$

Filter -pass a band of frequency and reject the remaining

3dB Frequency of single capacitor filters

$$\omega_{3dB} = \frac{1}{RC} = 10^3 \, rad \, / \, s$$

$$\omega_{3dB} = \frac{1}{R_1 \| R_2 C}$$

$$\omega_{3dB} = \frac{1}{\tau} = \frac{1}{R_{eq}C}$$

One can often tell the type of filter by looking at behavior at very low and very high frequencies and keeping in mind that capacitor offers very high impedance at low frequencies and very low impedance

at high frequencies

Bandpass Filter

$$f_2 \cong \frac{1}{2\pi R_1 C_1}$$
; $f_1 \cong \frac{1}{2\pi R_2 C_2}$

Example: Band Pass filter

$$f_2 \cong \frac{1}{2\pi R_1 C_1}$$
; $f_1 \cong \frac{1}{2\pi R_2 C_2}$

Band-Stop Filter

Will this work?

What kind of filter is this? 1u C1 R2 Vo 1k C2 + 1u 0.1k \bigset{R1} Low f High f R2 R2 0.1k \$R1 0.1k R1 Vo ~V_{in} Vo ~V_{in}

What does this circuit do?

R-L Circuits (Filters)

$$H(\omega) = \frac{V_O(\omega)}{V_S(\omega)}$$

$$H(\omega) = \frac{j\omega L}{R + j\omega L} = \frac{j(\omega/\omega_{3dB})}{1 + j(\omega/\omega_{3dB})}$$

$$\omega_{3dB} = \frac{R}{L}$$

R-L Circuits

$$H(\omega) = \frac{V_O(\omega)}{V_S(\omega)}$$

$$H(\omega) = \frac{R}{R + j\omega L} = \frac{1}{1 + j(\omega/\omega_{3dB})}$$

$$\omega_{3dB} = \frac{R}{L}$$

