Name: EWU ID:

Please follow these rules strictly:

- 1. Write your name and EWUID on EVERY page of your submission.
- 2. Verbal discussions with classmates are encouraged, but each student must independently write his/her own solutions, without referring to anybody else's solution.
- 3. The deadline is sharp. Late submissions will **NOT** be accepted (it is set on the Canvas system). Send in whatever you have by the deadline.
- 4. Submission must be computer typeset in the **PDF** format and sent to the Canvas system. I encourage you all to use the LATEX system for the typesetting, as what I am doing for this homework as well as the class slides. LATEX is a free software used by publishers for professional typesetting and are also used by nearly all the computer science and math professionals for paper writing.
- 5. Your submission PDF file must be named as: firstname_lastname_EWUID_cscd320_hw7.pdf
 - (1) We use the underline '_' not the dash '-'.
 - (2) All letters are in the lower case including your name and the filename's extend.
 - (3) If you have middle name(s), you don't have to put them into the submission's filename.
- 6. Sharing any content of this homework and its keys in any way with anyone who is not in this class of this quarter is NOT permitted.

Problem 1 (25 points). Trace the Dijkastra's algorithm to show the shortest paths from the vertex s to all the other vertices in the following connected directed graph. (See Figure 24.6 of CLRS, 3rd Ed. as an example.)

Problem 2 (25 points). Show the trace of the Bellman-Ford algorithm on the following directed graph, using vertex z as the source. In each pass, relax edges in the order of (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y). Show the d values after each pass. (A similar trace which starts from vertex s can be found in Figure 24.4 of CLRS, 3rd Ed., but in this homework problem you start from vertex z and also do not need to show the π values.)

CSCD320 Homework7, Winter 2024, Eastern Washington University, Spokane, Washington.

Name: EWU ID:

Problem 3 (25 points). Give an $O(|V| \cdot |E|)$ -time algorithm for computing the transitive closure of a directed graph G = (V, E). You can assume $|E| \ge |V|$.

Problem 4 (25 points). The Floyd-Warshall algorithm uses the matrix $D^{(0)}$ to find the all-pair shortest paths. That is, it uses $D^{(0)}$ to calculate the matrices $D^{(1)}, D^{(2)}, D^{(3)}, \ldots, D^{(n)}$, where each entry $d_{ij}^{(n)}$ in $D^{(n)}$ is the shortest distance from i to j, for every i and j, $1 \le i, j \le n$. Given the following example $D^{(0)}$, calculate $D^{(1)}, D^{(2)}, D^{(3)}$, and $D^{(4)}$. You don't have to show the details of the calculation, instead you can just show the content of each matrix of $D^{(1)}, D^{(2)}, D^{(3)}$, and $D^{(4)}$.

$$D^{(0)} = \begin{pmatrix} 0 & 5 & \infty & 3 \\ \infty & 0 & -1 & \infty \\ 6 & \infty & 0 & \infty \\ \infty & 2 & 7 & 0 \end{pmatrix}$$