SECOND SEMESTER 2022-2023

Course Handout Part II

Date: 16-01-2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CS F317

Course Title : Reinforcement Learning

Instructor-in-Charge : Dr. Paresh Saxena

Scope and Objectives:

Reinforcement Learning (RL) is based on the idea where we learn by interacting with our environment. It is a collection of machine learning techniques where agent(s) learn how to behave in an environment by performing actions and assessing the results. RL approach is building programs that learn how to predict and act in stochastic environment, based on past experience. This course will provide an overview to students on some of the fundamental ideas on which modern RL is built including markov decision processes, value functions, monte carlo estimation, dynamic programming, TLD methods, approximation methods, Actor-Critic methods, etc. This course will help students to understand and apply RL in several systems including video distribution systems, game development, IOT devices, robotics, clinical decision making, industrial process control, finance portfolio balancing, etc.

This subject aims to achieve the following goals:

- To provide students with the knowledge to structure a reinforcement learning problem.
- To introduce students to learn and apply basic RL algorithms for simple sequential decision-making problems in uncertain conditions
- To introduce students research and development work in reinforcement learning by interpreting state-of-the-art RL research and communicating their results.
- To provide knowledge to students to build a RL system that knows how to make automated decisions.
- To give students opportunities to understand the space of RL algorithms including Temporal Difference Learning, Monte Carlo, Q-Learning, approximation solution methods, A2C, A3C, etc.

Textbooks:

• Sutton, Richard S., and Andrew G. Barto. *Reinforcement learning: An introduction*. Second Edition, MIT press, 2018.

Reference Books:

• Wiering, Marco A., and Martijn Van Otterlo. "Reinforcement learning." *Adaptation, learning, and optimization* 12.3 (2012).

Course Plan:

Lecture No	Learning Outcomes	Topics to be covered	Chapter in			
			the Text Book			
1.2	T. Introduce	Internal and in the Delinform	Class			
1-2	To Introduce	Introduction to Reinforcement	Class			
	Reinforcement Learning, its limitations and scope.	Learning. A brief summary of the pre-requisites, mathematical	notes			
	its illintations and scope.					
and programming tools required. PART 1: Tabular Solution Methods						
3-4	To understand the		T1:Ch2			
	application of RL for	D 12. 11	11.0112			
	single-state Bandit	Bandit problems				
	problems.					
5-7	To introduce methods for	Einite Medicay Decision	T1:Ch3			
	solving finite markov	Finite Markov Decision				
	decision problems	Processes				
8-9	To understand the utility	Solution Methods: Dynamic	T1: Ch4			
	of DP (require perfect	,				
	model) in RL	Programming				
10-12	To understand and apply		T1:Ch5			
	Monte Carlo Methods	Solution Methods: Monte Carlo				
	(require only experience)	Methods				
	for RL					
13-18	To understand and apply		T1:Ch6,			
	the application of	Solution Methods: Temporal-	Ch7 and			
	Temporal Difference	Difference Learning	Class			
	Learning including Q-		notes			
10.22	learning and Sarsa for RL		T1 C1 0			
19-22	To develop a unified view of methods that		T1:Ch8			
		Planning and Learning with				
	require a model of the environment and methods	Planning and Learning with Tabular Methods				
	that can be used without a	Tabulai Wellious				
	model.					
PART 2: Approximate Solution Methods						
23-28	To apply RL for		T1:Ch9-			
	applications where most		Ch11 and			
	states encountered will		Class			
	never have been	Francisco C. C.	Notes			
	experienced exactly	Function approximation for				
	before. To apply on-	generalization				
	policy and off-policy					
	approximation of action					
	values.					
29-34	To understand and learn		Class			
	the reinforcement	Multi-agent reinforcement	Notes			
	learning in a multiagent	learning				
	setting		~-			
35-40	To understand the		Class			
	application of A2C and	Actor-Critic (A2C, A3C)	Notes			
	A3C (with multiple					
	independent agents)					

Evaluation Scheme:

Component	Duration (Minutes)	Weightage	Date&Time	Mode
Midsemester Test	90 Mins	35%	09/10/2024	Closed Book
Assignments	-	25% (5% will be evaluated before the mid-sem)	Details will be announced during the lecture sessions.	Open Book
Comprehensive Examination	180 Mins	40%	16/12/2024, AN	Closed Book

Chamber Consultation Hour: Consultation hours will be announced in the class.

Notices: All notices pertaining to this course will be displayed on the CMS.

Make-up Policy: The make-up policy will be in accordance with the AUGSD guidelines.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge