Artificial Intelligence 1

Assignment7: Propositional Logic

- Given Dec 8, Due Dec 18 -

Problem 7.1 (PL Concepts)

30 pt

Which of the following statements are true? In each case, give an informal argument why it is true or a counter-example.

- 1. Every satisfiable formula is valid.
- 2. Every valid formula is satisfiable.
- 3. If *A* is satisfiable, then $\neg A$ is unsatisfiable.
- 4. If $A \models B$, then $A \land C \models B \land C$.
- 5. Every admissible inference rule is derivable.
- 6. If \vdash is sound for \models and $\{A, B\} \vdash C$, then C is satisfiable if A and B are.

Solution:

- 1. Not true. Counter-example: p is satisfiable (put $\varphi(p) = T$) but not valid (falsified by $\varphi(p) = F$).
- 2. True. Assume *F* is valid. Then *F* is satisfied by all assignments. We know (This is a subtle step that can easily be overlooked.) that there is at least one assignment *a*. (Even if there are no propositional variables, we would still have the empty assignment.) So *a* must satisfy *F* and therefore *F* is satisfiable.
- 3. Not true. Counter-example: p is satisfiable (put $\varphi(p) = \mathbb{T}$), but $\neg p$ is also satisfiable (put $\varphi(p) = \mathbb{F}$).
- 4. True. Assume $A \models B$ (H) and an assignment φ such that $I_{\varphi}(A \land C) = T$ (A). We need to show that also $I_{\varphi}(A \land C) = T$ (G). By definition, (A) yields $I_{\varphi}(A) = T$ (A1) and $I_{\varphi}(C) = T$ (A2). By definition of (H), we obtain from (A1) that $I_{\varphi}(B) = T$ (B). Then we obtain (G) from its definition and (B) and (A2).
- 5. Not true. Counter-example: The empty derivation relation has no inference rules and thus no derivable formulas. Then any rule with non-empty set of assumptions is admissible. But no rule is derivable.
- 6. Not true. The assumptions do show that $A, B \models C$. So if we have an assignment that satisfies both A and B, then that assignment also satisfies C and thus C is satisfiable. But we only know that A and B are satisfiable by some assignments, not necessarily the same one. A counter-example, is A = p, $B = \neg p$, C any unsatisfiable formula. Then $A, B \models C$ holds (because there are no assignments that satisfy both A and B), and A and B but not C are satisfiable.

Problem 7.2 (Equivalence of CSP and SAT)

We consider

- CSPs (V, D, C) with finite domains as before
- SAT problems (V, A) where V is a set of propositional variables and A is a propositional formula over V.

30 pt

We will show that these problem classes are equivalent by reducing their instances to each other.

- 1. Given a SAT instance P = (V, A), define a CSP instance P' = (V', D', C') and two bijections
 - f mapping satisfying assignments of P to solutions of P'
 - f' the inverse of f

We already know that binary CSPs are equivalent to higher-order CSPs. Therefore, it is sufficient to give a higher-order CSP.

2. Given a CSP instance (V, D, C), define a SAT instance (V', A') and bijections as above

Solution:

- 1. We define P' by V' = V, $D_v = \{T, F\}$ for every $v \in V$, and $C = \{A\}$, i.e., C contains the single higher-order constraint that holds if an assignment to V' (seen as an propositional assignment to V) satisfies A. f and f' are the identity.
- 2. We define P' as follows. V' contains variables p'_{va} for every $v \in V$ and $a \in D_v$. The intuition behind p'_{va} is that v has value a. A' is the conjunction of the following formulas:
 - for all $v \in V$ with $D_v = \{a_1, ..., a_n\}$, the formula $p'_{va_1} \vee ... \vee p'_{va_n}$ (i.e., v must have at least one value)
 - for all $v \in V$, and $a, b \in D_v$ with $a \neq b$, the formula $p'_{va} \Rightarrow \neg p'_{vb}$ (i.e., v can have at most one value)
 - for all C_{vw} and $(a, b) \notin C_{vw}$, the formula $\neg (p'_{va} \land p'_{wb})$ (i.e., every constraint must be satisfied)

The bijection f maps a solution α of P to a A'-satisfying propositional assignment φ for V' as follows: for all v, a, we put $\varphi(p'_{va}) = T$ if $\alpha(v) = a$ and $\varphi(p'_{va}) = F$ otherwise.

The inverse bijection f' maps an A'-satisfying assignment φ to a solution α of P as follows: for all v we put $\alpha(v) = a$ where a is the unique value for which $\varphi(p'_{va}) = T$.

Problem 7.3 (Calculi Comparison)

60 pt

Prove (or disprove) the validity of the following formulae in i) Natural Deduction ii) Tableau and iii) Resolution.

- 1. $(P \land Q) \Rightarrow (P \lor Q)$ (to be done in the tutorial, not part of grading)
- 2. $((A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)) \Rightarrow C$
- 3. $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$

Solution: ND

1.	(1)	1	$(P \wedge Q)$	Assumption
	(2)	1	P	$\wedge E_{\ell}$ (on 1)
	(3)	1	$(P \lor Q)$	$\forall I_{\ell} \text{ (on 2)}$
	(4)		$(P \land Q) \Rightarrow (P \lor Q)$	$\Rightarrow I \text{ (on 1 and 3)}$

	(1)	1	$(A \lor B) \land ((A \Rightarrow C) \land (B \Rightarrow C))$	Assumption
	(2)	1	$(A \lor B)$	$\wedge E_{\ell}$ (on 1)
	(3)	1	$(A \Rightarrow C) \land (B \Rightarrow C)$	$\wedge E_r$ (on 1)
	(4)	1	$(A \Rightarrow C)$	$\wedge E_{\ell}$ (on 3)
	(5)	1	$(B \Rightarrow C)$	$\wedge E_r$ (on 3)
2.	(6)	1,6	A	Assumption
	(7)	1,6	C	$\Rightarrow E \text{ (on 4 and 6)}$
	(8)	1,8	В	Assumption
	(9)	1,8	C	$\Rightarrow E \text{ (on 5 and 8)}$
	(10)	1	C	∨ <i>E</i> (on 2, 7 and 9)
	(11)		$((A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)) \Rightarrow C$	$\Rightarrow I \text{ (on 1 and 10)}$

	(1)		$(P \lor \neg P)$	TND
	(2)	2	P	Assumption
	(3)	2,3	$(P \Rightarrow Q) \Rightarrow P)$	Assumption
	(4)	2	$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$	$\Rightarrow I \text{ (on 3 and 2)}$
	(5)	5	$\neg P$	Assumption
	(6)	5,6	$(P \Rightarrow Q) \Rightarrow P)$	Assumption
3.	(7)	5,6,7	P	Assumption
	(8)	5,6,7	F	FI (on 5 and 7)
	(9)	5,6,7	Q	FE (on 8)
	(10)	5,6	$P \Rightarrow Q$	$\Rightarrow I \text{ (on 7 and 9)}$
	(11)	5,6	P	\Rightarrow E (on 6 and 10)
	(12)	5	$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$	\Rightarrow I (on 6 and 11)
	(13)		$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$	∨ <i>E</i> (on 1, 4 and 12)

Solution: Tableau

	(1)	$(P \land Q) \Rightarrow (P \lor Q)^F$	
	(2)	$(P \wedge Q)^T$	(from 1)
	(3)	$(P \vee Q)^F$	(from 1)
1.	(4)	P^T	(from 2)
	(5)	Q^T	(from 2)
	(6)	P^F	(from 3)
		close on P	

	2.					
(1)	$((A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)) \Rightarrow C^F$					
(2)	$(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)^T$	(from 1)				
(3)	C^F					
(4)	$(A \lor B)^T$					
(5)	$(A \Rightarrow C)^T$	(from 2)				
(6)	$(B \Rightarrow C)^T$					
(7)	$A^T \mid B^T$	(split on 6)				
(0)	A^F C^T (split on 5) B^F C^T (split on 4) close on A close on C close on B close on C					
(8)	close on A close on C					
	$(1) ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P^{F}$ $(2) (P \Rightarrow Q) \Rightarrow P)^{T} (from 1)$ $(3) P^{F} (from 1)$ $(3) (from 1)$ $(from 1) (split on 2)$ $(5) P^{T} (from 4) close on P$ $(6) Q^{F} (from 4) close on P$					

Solution:

Resolution 1. $(P \land Q) \Rightarrow (P \lor Q)$: We negate and build a CNF:

$$(P \land Q) \land \neg (P \lor Q)$$

$$\equiv P \land Q \land \neg P \land \neg Q$$

yielding clauses $\{\boldsymbol{P}^T\}, \{\boldsymbol{Q}^T\}, \{\boldsymbol{P}^F\}, \{\boldsymbol{Q}^F\}$

Resolving the two red clauses yields {}.

2. $((A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)) \Rightarrow C$: We negate and build a CNF:

$$((A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)) \land \neg C$$

$$\equiv (A \lor B) \land (\neg A \lor C) \land (\neg B \lor C) \land \neg C$$

yielding clauses $\{A^T, B^T\}, \{A^F, C^T\}, \{B^F, C^T\}, \{C^F\}$. Resolving yields:

$$\begin{aligned} \{A^F, C^T\} + \{C^F\} &\Longrightarrow \{A^F\} \\ \{B^F, C^T\} + \{C^F\} &\Longrightarrow \{B^F\} \\ \{A^T, B^T\} + \{A^F\} &\Longrightarrow \{B^T\} \\ \{B^T\} + \{B^F\} &\Longrightarrow \{\} \end{aligned}$$

3. $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$: We negate and build a CNF:

$$\begin{split} &((P \Rightarrow Q) \Rightarrow P) \land \neg P \\ \equiv &(\neg(P \Rightarrow Q) \lor P) \land \neg P \\ \equiv &((P \land \neg Q) \lor P) \land \neg P \\ \equiv &((P \lor P) \land (\neg Q \lor P) \land \neg P \end{split}$$

yielding clauses $\{P^T\}$, $\{Q^F, P^T\}$, $\{P^F\}$. Resolving the two red clauses yields $\{\}$.