PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-283622

(43) Date of publication of application: 15.10.1999

(51)Int.Cl.

HO1M H01M 4/02

H01M 10/40

(21)Application number: 10-085566

(71)Applicant : SANYO ELECTRIC CO LTD

(22)Date of filing:

31.03.1998

(72)Inventor: SHOJI YOSHIHIRO

MIYAMOTO KIKUZO TAKAHASHI YASUFUMI

HONDA HIRONORI

TAKAHASHI MASATOSHI

MORIWAKI KAZUO

(54) NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery in which high load characteristics can be enhanced.

SOLUTION: A nonaqueous electrolyte battery comprises a negative electrode including a carbon material capable of storing or discharging lithium, a positive electrode using a material capable of storing or discharging lithium, using a material capable of storing or discharging lithium, and a nonaqueous electrolyte composed of a solvent and a solute. In the carbon material, a ratio of a peak intensity (I002) of the 002 plane to the peak intensity (I110) of the 110 plane measured by powder X-ray diffraction method using the Cu-Ka ray source is 250 or less.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-283622

(43)公開日 平成11年(1999)10月15日

(51) Int.Cl. ⁶	識別記号	FΙ					
HO1M 4/58	3	H01M 4	4/58				
4/02		4	4/02]	D		
10/40)	10	0/40				
		審査請求	未請求	請求項の数 4	OL	(全 6 頁)	
(21)出願番号	特贖平10-85566	(71)出顧人	000001889	9			_
			三洋電機	株式会社			
(22) 出顧日	平成10年(1998) 3月31日	大阪府守口市京阪本通2丁目5番5号			番5号		
		(72)発明者	小路 良	告			
			大阪府守I	口市京阪本通	2丁目 5	番5号 三	
		20,0	洋電機株	式会社内			
		(72)発明者	宮本 吉久	久三			
			大阪府守日	口市京阪本通	2丁目 5	番5号 三	
			洋電機株式	式会社内			
		(72)発明者	高橋康	文			
			大阪府守	口市京阪本通	2丁目5	番5号 三	
		4.4	洋電機株式	式会社内			
		(74)代理人	弁理士 5	安富 耕二	(外1名	i)	
					륉	終頁に続く	

(54) 【発明の名称】 非水電解液二次電池

(57)【要約】

【目的】 高負荷特性を向上させることができる非水電 解液電池の提供を目的とする。

【構成】 リチウムを吸蔵、放出可能な炭素材料を含む 負極と、リチウムを吸蔵、放出可能な材料を用いた正極 と、溶媒及び溶質からなる非水電解液とを備えた非水電 解液電池において、前記炭素材料が $Cu-K\alpha$ 線源を用 いた粉末X線回折法による002面のピーク強度(I002)と110面のピーク強度(I 110)の比(I 002 / I 110)が250以下であることを特徴とする。

負極充填密度(8/00)

【特許請求の範囲】

【請求項1】 リチウムを吸蔵、放出可能な炭素材料を含む負極と、リチウムを吸蔵、放出可能な材料を用いた正極と、溶媒及び溶質からなる非水電解液とを備えた非水電解液二次電池において、前記炭素材料が $Cu-K\alpha$ 線源を用いた粉末X線回折法による002面のピーク強度(I_{002})と110面のピーク強度(I_{110})が250以下であることを特徴とする非水電解液二次電池。

1

【請求項2】 前記負極の活物質充填密度が、1.3g 10/cc以上であることを特徴とする請求項1記載の非水電解液二次電池。

【請求項3】 前記炭素材料が黒鉛であることを特徴とする請求項1~2記載の非水電解液二次電池。

【請求項4】 前記黒鉛は、002面の層間距離 d 値が3.38 Å以下、且つ c 軸方向の結晶子の大きさL c 値が150 Å以上であることを特徴とする請求項3記載の非水電解液二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、炭素材料を用いた 負極と、正極と、溶媒及び溶質からなる非水電解液とを 備えた非水電解液二次電池において、負極に使用する炭 素材料を改良して高負荷特性を向上させた非水電解液二 次電池に関するものである。

[0002]

【従来の技術】近年、高出力、高電圧、高エネルギー密度を有する電池として、非水電解液二次電池が各種電子機器の電源として利用されるようになった。

【0003】そして、この種の非水電解液二次電池にお 30 いて、可撓性に優れ、充放電サイクルの繰り返しに伴う 苔状のリチウムが電析する恐れが無い負極材料として、 リチウムイオンの吸蔵、放出が可能な炭素材料を使用することが提案されている。

【0004】ところで、負極に炭素材料、特に黒鉛を使用した場合、負極集電体上には黒鉛結晶の炭素原子の正六角環が平面上に多数連なって網平面をつくり、その網平面が平行に積み重なるように積層され層間を形成する。そして、この黒鉛層間は負極集電体に対して平行に配置された状態となる。

【0005】従って、このような状態の負極では、黒鉛層間のエッジ面というものは、負極集電体上に平行になるように積層された網平面の周囲にしか存在しない。

【0006】ここで、リチウムイオンの吸蔵、放出は、この黒鉛層間のエッジ面から行われると考えられており、このエッジ面が多いほど、リチウムイオンの吸蔵、放出が容易に行うことが可能となり、大電流を得ることができると考えられる。

【0007】しかしながら、黒鉛を使用した場合、黒鉛 層間のエッジ面が網平面の広がりと共に減少していくの 50 で、高負荷特性が低下するという問題があった。

[0008]

【発明が解決しようとする課題】本発明は、上記問題点を解決するために、 $Cu-K\alpha$ 線源を用いた粉末X線回折法による002面のピーク強度(I_{002})と110面のピーク強度(I_{100})が250以下である炭素材料を用いることによって、高負荷特性が優れた非水電解液二次電池を提供するものである。

[0009]

【課題を解決するための手段】本発明の非水電解液二次電池は、リチウムを吸蔵、放出可能な炭素材料を含む負極と、リチウムを吸蔵、放出可能な材料を用いた正極と、溶媒及び溶質からなる非水電解液を備え、前記炭素材料がCu-Kα線源を用いた粉末X線回折法による002面のピーク強度(Ino)と110面のピーク強度(Ino)の比(Ioo2 / Ino)が250以下であることを特徴とする。

【0010】ここで、負極に使用される炭素材料にリチウムイオンが吸蔵される場合、リチウムイオンは炭素材20 料のエッジ面から吸蔵、放出されるため、このエッジ面が多数存在すれば、リチウムイオンの吸蔵が容易になり、高負荷特性が向上するものと考えられる。

【0011】そこで、本発明のようにX線回折における002面のピーク強度(I_{002})と110面のピーク強度(I_{100})の比(I_{002} $\angle I_{110}$)が250以下であれば、炭素材料のエッジ面が芯体の法線方向に向いている粒子の割合が増加すると考えられる。従って、炭素材料のエッジ面の増加と共に、リチウムイオンの吸蔵、放出がより容易に行うことができるので、高負荷特性が向上する。

【0012】又、負極の充填密度を1.3g/cc以上とすることで、上記効果をより一層発揮することができる。1.3g/cc未満では、充填密度が小さくなり、非水電解液自身の容量が低下するからである。

【0013】さらに、本発明の炭素材料は黒鉛であることを特徴とする。炭素材料が黒鉛であれば、002面のピーク強度(I_{100})と110面のピーク強度(I_{100})の比(I_{002} $/ I_{110}$)が250以下の場合、上記効果をより一層発揮することができる。

0 【0014】さらに、本発明でいう黒鉛とは、002面の層間距離d値が3.38Å以下、且つc軸方向の結晶子の大きさLc値が150Å以上である。黒鉛が上記のような数値範囲内であれば、より一層の効果を発揮するものである。

【0015】さらに、本発明における非水電解液二次電池において、その正極活物質は特に限定されないが、従来より使用されている公知の正極活物質を用いることができ、リチウムを吸蔵、放出できる材料として、例えば、マンガン、コバルト、ニッケル、バナジウム、ニオブの少なくとも1種を含む金属複合酸化物等を使用する

3

ことができる。具体的には、LiCoO2、LiNi O2、LiMn2O4等を使用することができる。

【0016】さらに、本発明における非水電解液二次電 池において、その溶媒は特に限定されないが、従来より 使用されている公知の溶媒を用いることができる。例え ば、エチレンカーボネート、プロピレンカーボネート、 ブチレンカーボネート、ビニレンカーボネート、シクロ ペンタノン、スルホラン、3-メチルスルホラン、2, 4-ジメチルスルホラン、3-メチル-1,3-オキサ ゾリジン-2-オン、y-ブチロラクトン、ジメチルカ ーボネート、ジエチルカーボネート、エチルメチルカー ボネート、メチルプロピルカーボネート、ブチルメチル カーボネート、エチルプロピルカーボネート、ブチルエ チルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテ トラヒドロフラン、1,3-ジオキソラン、酢酸メチ ル、酢酸エチル等の有機溶媒を1種又は2種以上組み合 わせて使用することができる。

【0017】そして、本発明における非水電解液二次電池において、上記のような溶媒に溶解させる溶質として 20は、例えば、LiPF。、LiBF。、LiClO。、LiCF。SO。、LiAsF。、LiN(CF。SO2)2、LiCF。(CF2)。SO。等のリチウム化合物を1種又は2種以上組み合わせて使用することができる。

【0018】さらに、本発明における非水電解液二次電池において、その結着剤は特に限定されないが、従来より使用されている公知の結着剤を用いることができ、例えば、スチレンーブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、と30ドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸を1種又は2種以上組み合わせて使用することができる。

【0019】さらに、本発明における非水電解液二次電池において、その増粘剤は特に限定されないが、従来より使用されている公知の増粘剤を用いることができ、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸塩、酸化スターチ、リン酸化スターチ、カゼイン等を1種又は2種以上組み合わせて使用することができる。

[0020]

【発明の実施の形態】 [実施例1]

[負極の作製] 炭素材料として平均粒径18μmの繊維 状黒鉛と、結着剤として水に分散させたスチレンーブタ ジエンゴム(SBR)のディスパージョン(固形分とし て48%)と、増粘剤としてカルボキシメチルセルロー ス(CMC)とを混合して負極合剤を作製した。尚、負 50 極の乾燥後の重量組成比を、繊維状黒鉛: SBR: CM C=100:3:2となるように調整した。

【0021】次に、上記負極合剤をドクターブレード法により、負極集電体としての銅箔の両面にそれぞれ厚さ 50μ mの活物質層を形成し、負極板を作製した。

【0022】さらに、上記負極板を圧縮し、活物質の充填密度を1.3g/ccに調整した。そして、充填密度を調整した負極板を110℃で2時間真空乾燥させて負極を得た。

【0023】尚、上記繊維状黒鉛の002面の面間隔d com 、c軸方向の結晶子の大きさLcはそれぞれ3.365Å、500Åであった。

【0024】又、上記負極板を $Cu-K\alpha$ 線源を用いた粉末X線回折法により、分析した結果、002面のピーク強度(I_{100})と110面のピーク強度(I_{110})の比(I_{002} / I_{110})は100であった。

【0025】 [正極の作製] 正極活物質として平均粒径 $5 \mu m O Li CoO_2$ 粉末と、導電剤として人造黒鉛粉末とを、重量比9:1 で混合して、正極合剤を作製した。この正極合剤と、ポリフッ化ビニリデンをN-メチルー2-ピロリドンに5重量%溶かした溶液とを、固形分重量比として、95:5 で混練し、正極スラリーを作製した。この正極スラリーをドクターブレード法により、正極集電体としてのアルミニウム箔の両面にそれぞれ厚さ $50 \mu m O$ 活物質層を形成した後、乾燥、圧延し、15 O で 2 時間真空乾燥して、正極板を作製した。尚、この正極板の活物質充填密度は、3.0 g/c c であった。

【0026】[電解液の作製] エチレンカーボネート (EC) と、ジエチルカーボネート(DEC) との体積 比が50:50の混合溶媒に、溶質としてLiPF6を 1モル/リットル溶かした溶液を非水電解液とした。

【0027】 [非水電解液二次電池の作製] 上記正極板と上記負極板との間にセパレータとしてポリプロピレン製の微多孔膜を介在させ、これらを渦巻状に巻回し、電池田内に収容させた後、この電池田内に上記非水電解液を注液して封口して非水電解液二次電池を作製した。

【0028】このようにして作製した非水電解液二次電池を本発明電池A1とする。

【0029】 [実施例2] 平均粒径 10μ m、002面の面間隔 d_{002} 、c軸方向の結晶子の大きさLcがそれぞれ3.362Å、450Åである繊維状黒鉛を用い、 $Cu-K\alpha$ 線源を用いた粉末X線回折法によるピーク強度の比(I_{002} / I_{110})が150である負極を使用する以外は、実施例1と同様に電池を作製した。この非水電解液二次電池を本発明電池A2とする。

【0030】 〔実施例3〕 平均粒径 20μ m、002面の面間隔 $d\infty$ 、c 軸方向の結晶子の大きさLcがそれぞれ3.375Å、300Åである塊状黒鉛を用い、 $Cu-K\alpha$ 線源を用いた粉末X線回折法によるピーク強度

の比(I_{∞} $/I_{\text{III}}$)が200である負極を使用する以外は、実施例1と同様に電池を作製した。この非水電解液二次電池を本発明電池A3とする。

【0031】 [実施例4] 平均粒径 18μ m、002面の面間隔 d_{002} 、c軸方向の結晶子の大きさLcがそれぞれ3.358Å、780Åである塊状黒鉛を用い、 $Cu-K\alpha$ 線源を用いた粉末X線回折法によるピーク強度の比(I_{002} / I_{110})が250である不居kを使用する以外は、実施例1と同様に電池を作製した。この非水電解液二次電池を本発明電池A3とする。

【0032】 [比較例1] 平均粒径 7μ m、002面の面間隔 d_{002} 、c軸方向の結晶子の大きさLcがそれぞれ3.350Å、1000Åである鱗片状黒鉛を用い、 $Cu-K\alpha$ 線源を用いた粉末X線回折法によるピーク強度の比(I_{002} / I_{110})が300である負極を使用する以外は、実施例1と同様に電池を作製した。この非水電解液二次電池を比較電池X1とする。

【0033】 〔比較例2〕 平均粒径 20μ m、002面の面間隔 $d\infty$ 、c軸方向の結晶子の大きさLcがそれぞれ3. 352Å、1000Åである鱗片状黒鉛を用い、 $Cu-K\alpha$ 線源を用いた粉末X線回折法によるピーク強度の比($I\infty$ / $I\infty$)が350である負極を使用する以外は、実施例1と同様に電池を作製した。この非水電解液二次電池を比較電池X2とする。

【0034】 〔実施例 $5\sim8$ 〕活物質の充填密度を1. 4g/ccに調整し、 $Cu-K\alpha$ 線源を用いた粉末X線回折法によるピーク強度の比(I_{002} / I_{100})が100、150、200、250である負極を使用する以外は、実施例1と同様に電池を作製した。この非水電解液二次電池を本発明電池 $A5\sim A8$ とする。

【0035】 [比較例 $3\sim5$] 活物質の充填密度を1. 4g/c c に調整し、 $Cu-K\alpha$ 線源を用いた粉末X線 回折法によるピーク強度の比(I_{100} / I_{110}) が30 0、350、400である負極を使用する以外は、比較例<math>1 と同様に電池を作製した。この非水電解液二次電池を比較電池 $X3\sim X5$ とする。

*【0036】 [実施例9~12] 活物質の充填密度を 1.5g/ccに調整し、Cu-Kα線源を用いた粉末 X線回折法によるピーク強度の比(Iω2 / I110)が1 00、150、200、250である負極を使用する以 外は、実施例1と同様に電池を作製した。この非水電解 液二次電池を本発明電池A9~A12とする。

6

【0037】 [比較例 $6\sim9$] 活物質の充填密度を1. 5 g/c c に調整し、C u - K α 線源を用いた粉末 X 線回折法によるピーク強度の比(I_{002} / I_{110})が30 0、350、400、450である負極を使用する以外は、比較例1 と同様に電池を作製した。この非水電解液二次電池を比較電池 X $6\sim$ X 9 とする。

【0038】 [実施例 $13\sim15$] 活物質の充填密度を 1.6g/ccに調整し、 $Cu-K\alpha$ 線源を用いた粉末 X線回折法によるピーク強度の比(I_{002} $/I_{110}$)が 150、200、250である負極を使用する以外は、実施例1と同様に電池を作製した。この非水電解液二次電池を本発明電池 $A13\sim A15$ とする。

【0039】 〔比較例10~13〕 活物質の充填密度を 20 1.6g/ccに調整し、Cu-Kα線源を用いた粉末 X線回折法によるピーク強度の比(I₀₀₂ / I₁₁₀)が3 00、350、400、450である負極を使用する以 外は、比較例1と同様に電池を作製した。この非水電解 液二次電池を比較電池X10~X13とする。

【0040】〈実験1〉上記本発明電池A1~A15及び比較電池X1~X13の室温での高負荷特性試験を行った。その結果を表1~4に示す。

【0041】負荷特性の試験条件は、室温(25℃)下で、それぞれ1350mA(=1C)の電流で4.1Vまで充電した後、4.1Vで定電圧充電し、1Cの電流で2.75Vまで放電させた時の放電容量をQ1(mAh)とし、2700mA(=2C)の電流で2.75Vまで放電させた時の放電容量をQ2(mAh)とし、放電容量比(Q2/Q1)(%)を求めた。

[0042]

【表1】

30	1 (201)				
	充填密度 (g/cc)	ピーク強度比 (I ₀₀₂ /I ₁₁₀)			
本発明電池 A1	1. 3	100	99		
本発明電池 A2	1. 3	150	99		
本発明電池 A3	1. 3	200	99		
本発明電池 A4	1. 3	250	98		
比較電池 X1	1. 3	300	93		
比較電池 X2	1. 3	350	93		

[0043]

【表2】

7

	1	r	
	充填密度 (g/cc)	ピーク強度比 (I ₀₀₂ /I ₁₁₀)	放電容量比(%) (2C/1C)
本発明電池 A5	1. 4	100	98
本発明電池 A6	1. 4	150	98
本発明電池 A7	1. 4	200	97
本発明電池 A8	1. 4	250	95
比較電池 X3	1. 4	300	88
比較電池 X4	1. 4	350	83
比較電池 X5	1. 4	400	83

[0044]

* *【表3】

	充填密度 (g/cc)	ピーク強度比 (I ₀₀₂ /I ₁₁₀)	放電容量比(%) (2C/1C)		
本発明電池 A9	1. 5	100	93		
本発明電池 A10	1. 5	150	92		
本発明電池 A11	1. 5	200	92		
本発明電池 A12	1. 5	250	90		
比較電池 X6	1. 5	300	76		
比較電池 X7	1. 5	350	59		
比較電池 X8	1. 5	400	46		
比較電池 X9	1. 5	450	45		

[0045]

※ ※【表4】

	充填密度 (g/cc)	ピーク強度比 (I ₀₀₂ /I ₁₁₀)	放電容量比(%) (2C/1C)
本発明電池 A13	1. 6	150	91
本発明電池 A14	1. 6	200	89
本発明電池 A15	1. 6	250	88
比較電池 X10	1. 6	300	7 1
比較電池 X11	1. 6	350	53
比較電池 X12	1. 6	400	38
比較電池 X13	1. 6	450	33

【0046】表 $1\sim4$ から明らかなように、 $Cu-K\alpha$ 線源を用いた粉末X線回折法によるピーク強度の比(I_{002} / I_{110})が250以下の負極を使用した本発明電池 $A1\sim A15$ は、比較電池 $X1\sim X13$ に比べて放電容量比が向上していることが分かる。即ち、本発明電池 $A1\sim A15$ は、2Cのような高率な放電でも十分な容量が得られている。

【0047】 〔比較例14~15〕活物質の充填密度を 50 電特性試験を行った。その結果を図1に示す。

1. 1 g/c c c、1. 2 g/c c c に調整し、C u-K α 線源を用いた粉末 X 線回折法によるピーク強度の比(I_{002} / I_{110})は2 5 0である負極を使用する以外は、比較例 1 と同様に電池を作製した。この非水電解液二次電池を比較電池 X 1 4、X 1 5 とする。

【0048】〈実験2〉上記本発明電池A4、A8、A12、A15及び比較電池X14、X15の室温での放電特性試験を行った。その結果を図1に示す。

【0049】放電特性の試験条件は、室温(25℃)下で、それぞれ1350mA(=1C)の電流で4.1Vまで充電した後、4.1Vで定電圧充電し、1Cの電流で2.75Vまで放電させ、その時の放電容量を測定した。

【0050】図1から明らかなように、活物質の充填密度が1.3g/cc以上の負極を使用した本発明電池は、比較電池に比べて、放電容量が高いことが分かる。これは、活物質の充填密度が1.3g/cc未満であれば、負極の活物資量が少なくて、十分な放電容量が得られないと考えられる。

【0051】上記のように、本発明では、活物質の充填密度が1.3g/cc以上の負極を使用することによって、より一層効果が発揮されていることが分かる。

* [0052]

【発明の効果】以上説明したように、本発明における非水電解液二次電池は、負極に使用する炭素材料として、 $Cu-K\alpha$ 線源を用いた粉末X線回折法による002面のピーク強度(I∞2)と110面のピーク強度

(Inc) の比(Incc / Incc) が250以下であるものを用いるようにしたため、炭素材料のエッジ面が芯体の法線方向に向いている粒子の割合が増加し、リチウムイオンの吸蔵、放出がより容易に行うことができ、高負10 荷特性の優れた非水電解液二次電池が得られるようになった。

【図面の簡単な説明】

【図1】負極充填密度と放電容量の関係を示す図である。

1400-1200-1200-X14-(mAh) 600-

【図1】

負極充填密度 (g/cc)

フロントページの続き

(72) 発明者 本田 浩則

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

200

1, 1

(72)発明者 高橋 昌利

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72)発明者 森脇 和郎

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内