Lec 1 衔接课

1.1 映射,有穷集,无穷集与等势

定义 1.1 (映射) 设 A 与 B 为两个集合, 若对任意 $x \in A$, 都能唯一地指定一个 $y \in B$ 与之对应, 则称从 A 到 B 的这种对应关系为映射, 记为 $f: A \to B$, 并称 x 为自变量, y = f(x) 为因变量.

A 称为映射 f 的定义域, A 在 f 映射下的像 $f(A) = \{f(x) \mid x \in A\} \subset B$ 称为 f 的值域.

我们在验证一个对应关系是否是映射时,或者说,验证一个映射是否良定 (well-defined) 时,需要验证两个条件:

- (1) 对任意 $x \in A$, 都能找到 $y \in B$ 与之对应.
- (2) 对任意 $x \in A$, 只能找到唯一的 $y \in B$ 与之对应.

前者称为映射的存在性,后者称为映射的唯一性.

我们将从数集到数集的映射称为函数, 在这门课之中, 我们几乎只考虑从实数集 \mathbb{R} 到实数 集 \mathbb{R} 的函数.

记号 对于映射

$$f: A \to B$$

$$x \mapsto f(x)$$

我们用 \to 表示映射的范围, $A \to B$ 表示该映射是从集合 A 到集合 B 的映射. \mapsto 表示映射的具体规则, $x \mapsto f(x)$ 表示 x 在该映射下对应 f(x).

定义 1.2 (单射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 满足: 对任意 $x_1, x_2 \in A$, 当 $x_1 \neq x_2$ 时, 有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射.

定义 1.3 (满射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 满足: 对任意 $y \in B$, 存在 $x \in A$, 使 得 f(x) = y, 则称 f 为从 A 到 B 的满射.

定义 1.4 (双射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 既是单射又是满射, 则称 f 为从 A 到 B 的双射. 也称为 A 与 B 之间存在一一对应关系.

例

$$f: [0,1] \to [0,1)$$

$$x \mapsto x, \qquad x \notin \left\{ \frac{1}{k} \mid k \in \mathbb{N}^+ \right\}$$

$$\frac{1}{k} \mapsto \frac{1}{k+1}, \qquad k \in \mathbb{N}^+$$

不难验证, f 为从 [0,1] 到 [0,1) 的双射. 我们将在后续证明之中使用该思想.

这个双射使用了类似希尔伯特酒店的操作:通过将某些元素映射到不同位置,展示了即使是"满"的区间也可以为新的元素腾出"空间".

下面两个命题建议同学们自己先尝试证明,以加深对双射的理解.

命题 1.1 双射存在逆映射, 且逆映射也是双射.

证明 设 $f: A \to B$ 为双射,则对任意 $y \in B$,存在唯一 $x \in A$,使得 f(x) = y. 定义映射 $g: B \to A$ 为:对任意 $y \in B$,有 g(y) = x,其中 x 为唯一满足 f(x) = y 的元素.则 g 为 f 的逆映射记为 f^{-1} .

下面我们证明 q 为双射.

- (1) g 为单射: 对任意 $y_1, y_2 \in B$, 当 $y_1 \neq y_2$ 时, 设 $x_1 = g(y_1), x_2 = g(y_2)$, 则 $f(x_1) = y_1 \neq y_2 = f(x_2)$, 由 f 为单射可知, $x_1 \neq x_2$, 即 $g(y_1) \neq g(y_2)$, 所以 g 为单射.
- (2) g 为满射: 对任意 $x \in A$, 设 y = f(x), 则 $y \in B$, 且 g(y) = g(f(x)) = x, 所以对任意 $x \in A$, 都存在 $y \in B$, 使得 g(y) = x, 所以 g 为满射.

命题 1.2 双射的复合仍为双射.

证明 设 $f: A \to B$ 与 $g: B \to C$ 均为双射,则对任意 $z \in C$,存在唯一 $y \in B$,使得 g(y) = z, 又对该 y,存在唯一 $x \in A$,使得 f(x) = y.定义映射 $h: A \to C$ 为:对任意 $x \in A$,有 h(x) = g(f(x)).则 h 为从 A 到 C 的映射. 我们常将 f 与 g 的复合记为 $g \circ f$,表示先用 f 作用 x,再用 g 作用 f(x),从而得到 g(f(x)).

下面我们证明h为双射.

- (1) h 为单射: 对任意 $x_1, x_2 \in A$, 当 $x_1 \neq x_2$ 时, 有 $f(x_1) \neq f(x_2)$, 设 $y_1 = f(x_1), y_2 = f(x_2)$, 则 $y_1 \neq y_2$, 又由 g 为单射可知, $g(y_1) \neq g(y_2)$, 即 $h(x_1) \neq h(x_2)$, 所以 h 为单射.
- (2) h 为满射: 对任意 $z \in C$, 存在唯一 $y \in B$, 使得 g(y) = z, 又对该 y, 存在唯一 $x \in A$, 使得 f(x) = y. 则 h(x) = g(f(x)) = g(y) = z. 所以对任意 $z \in C$, 都存在 $x \in A$, 使得 h(x) = z, 所以 h 为满射.

定义 1.5 (有穷集) 设 A 为一个集合, 称 A 为有穷集, 若存在自然数 n, 使得 A 与 $\{1,2,\cdots,n\}$ = $\{i \mid 1 \le i \le n, i \in \mathbb{N}\}$ 之间存在一一对应关系.

当 n=0 时, $\{1,2,\cdots,n\}=\emptyset$,此时有穷集称为空集.

定义 1.6 (等势) 设 A 与 B 为两个集合, 若存在从 A 到 B 的双射, 则称 A 与 B 等势. 也就是说, A 是有穷集等价于: 存在 $n \in \mathbb{N}$, 使得 A 与 $\{1, 2, \dots, n\}$ 等势.

记号 我们用 s.t. (such that) 来表示"使得", 用 i.e. (id est) 来表示"也就是说". 对于无穷集合, 我们给出两种定义方式:

定义 1.7 (无穷集) 设 A 为一个集合, 称 A 为无穷集, 若 A 不为有穷集.

定义 1.8 (无穷集) 设 A 为一个集合, 称 A 为无穷集, 若存在 A 的真子集 A', 使得 A 与 A' 等势. 下面我们先承认定义 1.7 是无穷集的定义, 证明上述两种定义方式是等价的.

证明 存在真子集与其等势一定是无穷集

考虑 A 满足:A 与某个真子集 A' 等势. 即 $\exists f: A \to A'$ 为双射. 使用反证法, 假设 A 为有穷集, 根据定义 1.5, 则 $\exists n \in \mathbb{N}$, s.t. A 与 $\{1, 2, \dots, n\}$ 等势, 即存在双射 $g: A \to \{1, 2, \dots, n\}$.

由命题 1.1 与命题 1.2, 可知 $g \circ f^{-1}: A' \to A \to \{1, 2, \dots, n\}$ 为双射. 又由 $A' \subset A$, 可推出 A' = A, 这与 A' 为 A 的真子集矛盾.

其中最后的部分, 我们总结为以下命题

命题 1.3 给定某个 n, 若存在 $f: A \to \{1, 2, \dots, n\}$ 为双射, 且对于 A 的某个子集 A', 存在 $\tilde{f}: A' \to \{1, 2, \dots, n\}$ 为双射, 则 A' = A.

该命题留作思考,这里给出助教的证明.

证明 我们归纳的给出证明, 当 n=0 时, $\{1,2,\cdots,n\}=\varnothing$, 而空集只能双射到空集: 若 $\mu:\varnothing\to S, S\neq\varnothing$, 则 $\exists s\in S$, 考虑 $\mu^{-1}(s)\in\varnothing$ 可知矛盾. 因此 $A=\varnothing$, $A'=\varnothing$, 所以 A'=A.

当 n = k 成立时, 即存在 $f: A \to \{1, 2, \dots, k\}$ 为双射, 且对于 A 的某个子集 A', 存在 $\tilde{f}: A' \to \{1, 2, \dots, k\}$ 为双射, 则 A' = A.

我们希望证明: 若存在 $g: B \to \{1, 2, \cdots, k+1\}$ 为双射, 且对于 B 的某个子集 B', 存在 $\tilde{g}: B' \to \{1, 2, \cdots, k+1\}$ 为双射, 则 B' = B.

取 $b = \tilde{g}^{-1}(k+1) \in B'$, 则 \tilde{g} 将 $B' \setminus \{b\}$ 映射到 $\{1, 2, \dots, k\}$ 上. $g(b) \in \{1, 2, \dots, k+1\}$, 不难证明存在双射 $\tau : \{1, 2, \dots, k+1\} \setminus \{g(b)\} \to \{1, 2, \dots, k\}$. 因此, 存在双射 $\tau \circ g : B \setminus \{b\} \to \{1, 2, \dots, k\}$, 且 $B' \setminus \{b\} \subset B \setminus \{b\}$, 由 n = k 时的归纳假设, 可知 $B' \setminus \{b\} = B \setminus \{b\}$, 从而 B' = B.

证明 无穷集一定存在真子集与其等势

即证明: 已知 A 是无穷集,则不存在 $n \in \mathbb{N}$, 使得 A 与 $\{1, 2, \dots, n\}$ 等势.

由 n=0 时的情况可知,A 非空,取 $a_1 \in A$,设 $A_1 = A \setminus \{a_1\}$,则 A_1 为 A 的真子集,且不为有穷集.于是 $A_1 \neq \emptyset$,取 $a_2 \in A_1$ ···· 依此类推,可得 A 的一个真子集列 $\{a_i\}_{i=1}^{\infty}$,两两不等.因此构造出双射:

$$f: A \to A_1$$

$$x \mapsto x, x \notin \{a_i\}_{i=1}^{\infty}$$

$$a_i \mapsto a_{i+1}, i = 1, 2, \cdots$$

由此可知, $A 与 A_1$ 等势.

接下来,我们以定义 1.8 作为无穷集的定义,证明上述两种定义方式是等价的.这个证明过程留作思考,这里给出助教的证明.

证明 A 存在等势真子集 $\Rightarrow A$ 不为有穷集

当 $A = \emptyset$ 时, A 不存在真子集.

当 $A \neq \emptyset$ 时, 设 $f: A \rightarrow A'$ 为双射, 其中 A' 为 A 的真子集. 取 $x_0 \in A \setminus A'$, 构造序列:

$$x_1 = f(x_0), x_2 = f(x_1), \dots, x_n = f(x_{n-1}), \dots$$

则有:

- (1) $x_i \in A' \subset A, i = 1, 2, \dots,$
- (2) $x_i \neq x_j, \forall i \neq j, i, j = 0, 1, 2, \cdots$

否则, 存在 $n, m \in \mathbb{N}, n > m \geqslant 0$, 使得 $x_n = x_m$, 则 $f(x_{n-1}) = f(x_{m-1})$, 由 f 为单射可知, $x_{n-1} = x_{m-1}$, 依此类推, 可知 $x_{n-k} = x_{m-k}$, $k = 1, 2, \dots, m$, 从而 $x_0 = x_{n-m} \in A'$, 这与 $x_0 \in A \setminus A'$ 矛盾.

由此得到了 A 的一个两两不同的无限子集 $\{x_i\}_{i=0}^{\infty}$.

 $\forall n \in \mathbb{N}^+, A$ 都不与 $\{1, 2, \dots, n\}$ 等势: 否则 $\exists n \in \mathbb{N}^+, g : A \to \{1, 2, \dots, n\}$. 考虑 $\{g(x_i)\}_{i=0}^{\infty}$ 两两不同, 且都属于 $\{1, 2, \dots, n\}$. 这就证明了 A 不是有穷集.

证明 A 存在等势真子集 $\leftarrow A$ 不为有穷集

这与上述定义1.7定义下的无穷集一定存在真子集与其等势的证明过程完全一样.