SEMANA: 17/04 AL 23/04 DE 2023

PRÁCTICA NRO. 1: ESTRUCTURAS LINEALES

OBJETIVO: Asignar identificadores válidos a las variables, así como desarrollar expresiones aritméticas para realizar un cálculo en la computadora, y expresiones lógicas a partir de un enunciado.

1. ¿Son válidos los siguientes identificadores?

Identificador	Si	No	Identificador	Si	No
a) Identificador			b) UnaVariable		
c) Indice\dos			d) a(b)		
e) Dos palabras			f) 12		
g) _			h) uno.dos		
i) 12horas			j) x		
k) hora12			l) π		
m) desviación			n) área		
o) año			p) area-rect		
q) from			r) x1		
s) var!			t)1		
u) 'var'			v) _x_		
w) import_from			x) x_x		

EJERCICIO 1: CÁLCULOS SIMPLES

2. Determinar el valor de las siguientes expresiones aritméticas:

a) 15 / 12

d) 123 / 100

b) 15.0 // 12

e) 123 // 100.0

c) 15 % 12

f) 123 % 100

3. Escribe la siguiente expresión aritmética como una expresión de computadora. La raíz cuadrada puede hacerse con la función sqrt() $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

4. Traduce las siguientes expresiones matemáticas a Python y evalúalas. Trata de utilizar el menor número de paréntesis posible.

a)
$$2 + (3 \cdot (6/2))$$

b)
$$\frac{4+6}{3}$$

c)
$$(4/2)^5$$

d)
$$(4/2)^{5+1}$$

e)
$$(-3)^2$$

f)
$$-(3^2)$$

5. ¿Qué resultados se muestran al evaluar estas expresiones?

$$>>> (1 < 2 < 3)$$
 and $(4 < 5)$

$$>> (1 < 2 < 4)$$
 and $(3 < 5)$

6. Obtener las expresiones booleanas equivalentes a los enunciados siguientes

Por ejemplo: "x" es mayor que "y" y "z", La respuesta es: x > y and x > z

"x" es menor que el promedio de "y" y "z" "x" está entre "y" y "z" incluyéndolos

"x" es positivo

"x" es un impar negativo

x, y, z son diferentes.

x, y, z son iguales.

SEMANA: 24/04 AL 30/04 DE 2023

PRÁCTICA NRO. 2: LECTURA - ESCRITURA- ESTRUCTURAS CONDICIONALES

OBJETIVO: Desarrollar un programa con estructuras selectivas o condicionales que controlan si una sentencia o lista de sentencias se ejecutan en función del cumplimiento o no de una condición.

EJERCICIO 1: CINEMÁTICA

Supongamos que pateamos una pelota desde el suelo de tal manera que la velocidad con que sale la pelota forma un ángulo con la horizontal de $b = 60^{\circ}$ y su rapidez es v = 6m/s. ¿Cuánto tiempo debemos esperar para que llegue a una altura h = 10 m?

EJERCICIO 2: TRIÁNGULOS

3 lados iguales

2 lados iguales 3 lados desiguales

Nota: crear 2 versiones de este ejercicio, el primero con condicionales simples y el segundo con condicionales anidados. Cuál considera usted es el más eficiente tomando como criterio el número de instrucciones que se lleven a cabo en cada programa.

La relación entre los lados (a, b, c) de un triángulo determinan su tipo. Escriba un programa que lea la longitud de los lados y determine el tipo de triángulo que forma.

ACTIVIDADES A REALIZAR

1. Análisis del Problema y Respuesta a las interrogantes.

Entradas. ¿Qué tengo?	Salidas. ¿Qué quiero?	Proceso. ¿Cómo lo hago?

EJERCICIO 3: VERIFICA LOS PROGRAMAS

1. Considere el siguiente programa de Python que imprime una línea de texto:

```
val = int(input())
if val < 10:
    if val != 5:
        print("A ", end='')
    else:
        val += 1</pre>
```

```
else:
    if val == 17:
       val += 10
    else:
       print("B ", end='')
print(val)
```

¿Qué imprimirá el programa si el usuario proporciona la siguiente entrada?

- (a) 3
- (b) 21
- (c) 5
- (d) 17
- (e) -5
- 2. Considere los siguientes dos programas que parecen muy similares:

```
n = int(input())
                                               n = int(input())
if n < 1000:
                                               if n < 1000:
    print('*', end='')
                                                   print('*', end='')
if n < 100:
                                               elif n < 100:
   print('*', end='')
                                                   print('*', end='')
if n < 10:
                                               elif n < 10:
    print('*', end='')
                                                   print('*', end='')
if n < 1:
                                               elif n < 1:
    print('*', end='')
                                                   print('*', end='')
print()
```

¿Cómo reaccionan los dos programas cuando el usuario proporciona las siguientes entradas?

- (a) 0
- (b) 5
- (c)75
- (d) 500
- (e) 1000

Escribe tus conclusiones.

3. Considere el siguiente fragmento de Código de Python:

```
# i, j, and k are numbers
if i < j:
    if j < k:
        i = j
    else:
        j = k
else:
    if j > k:
        j = i
    else:
        i = k
print("i =", i, " j =", j, " k =", k)
```

¿Qué imprimirá el código si las variables i, j y k tienen los siguientes valores?

- (a) i es 3, j es 5, y k es 7
- (b) i es 3, j es 7, y k es 5
- (c) i es 5, j es 3, y k es 7
- (d) i es 5, j es 7, y k es 3
- (e) i es 7, j es 3, y k es 5
- (f) i es 7, j es 5, y k es 3

SEMANA: 01/05 AL 07/05 DE 2023

PRÁCTICA NRO. 3: EJERCICIO DE LISTA SIMPLE & ESCALAS LINEALES

OBJETIVO: Desarrollar un programa basada en una lista simple con cantidad de elementos conocida con implementación de estadísticas básicas.

Ejercicio Escenario: Pacientes en Radiología

La Unidad de Radiología X-Ray realiza cuatro tipos de estudios radiológicos: Cabeza, Tórax, Columna y Extremidades. Con el objeto de estandarizar el precio de los estudios, se decide ajustarlos de acuerdo al valor de la Unidad Tributaria definida por el *SENIAT* cuyo valor para el año en curso se establece como una constante equivalente a 127 Bs por cada UT. La siguiente tabla muestra los costos de cada examen:

Estudio Realizado	Costo		
Cabeza	2.75 UT		
Tórax	2.50 UT		
Columna	5.25 UT		
Extremidades	2.25 UT		

Al final de una jornada de trabajo de la Unidad, se registra en una lista los datos de los **N** estudios realizados, donde para cada uno se tiene:

Cédula, Nombre y Edad del Paciente, y el Tipo de estudio realizado (1=Cabeza, 2=Tórax, 3=Columna, 4=Extremidades)

ENUNCIADO

Elabore un programa, que lea la lista con los datos registrados de los N estudios y determine e imprima:

Para cada Estudio:

✓ Nombre del Paciente, Monto en Bs. del estudio sin IVA, el monto del IVA (8%) y El Monto Total que canceló el paciente.

Para todos los Estudios:

- Suma total recaudada en Bs., sin tomar en cuenta el IVA, y el monto total en Bs. cobrados por IVA
- ✓ Promedio de Monto en Bs. sin IVA de los pacientes que se realizaron Estudios de Cabeza o Columna, y cuya edad sea mayor a 40 años.
- ✓ Porcentaje de Personas con edad comprendida entre 45 y 52 años

ACTIVIDADES A REALIZAR

1. Análisis del Problema y Respuesta a las interrogantes.

Entradas. ¿Qué tengo?	Salidas. ¿Qué quiero?	Proceso. ¿Cómo lo hago?

2. Ejecución y validación de resultados obtenidos.

Para validar el funcionamiento del programa, usaremos los siguientes datos:

Cantidad de Pacientes a Procesar: N = 5

CI	Nombre	Edad	Tipo de Estudio Realizado	Monto sin IVA	IVA (8%)	TOTAL
10923456	Pedro Gonzales	38	2	317.5	25.4	342.9
12431567	Ana Hernández	36	3	666.75	53.34	720.09
10196543	Carlos Martínez	45	1	349.25	27.94	377.19
25345678	Miguel Alcántara	12	4	285.75	22.86	308.61
4123456	Juan Morales	57	3	666.75	53.34	720.09

Total Recaudado sin IVA: 2286.00

Monto Total cobrado por IVA(8%): 182.88

Promedio de Monto en Bs. sin IVA de Estudios 1 o 3, con edad mayor a 40 años: 508.00

Porcentaje de Personas con edad comprendida entre 45 y 52 años: 20.0%

SEMANA: 08/05 AL 14/05 DE 2023

PRÁCTICA NRO. 4: ESTRUCTURAS REPETITIVAS

OBJETIVO: Desarrollar un programa que procese una lista de datos, empleando adecuadamente estructuras repetitivas, estructuras selectivas y herramientas de programación a fin de determinar estadísticas básicas para la lista de datos.

Analizando el Rendimiento Estudiantil

La Dirección de Asuntos Curriculares y Docencia de la Facultad de Ingeniería, desea elaborar un programa que determine el estatus de los N estudiantes que cursaron Computación I en el periodo 1-2022, para cada estudiante se suministra la siguiente información:

Nombre del estudiante, Edad y Nota final

Diseñe un programa que procese la información anterior y determine e imprima por consola lo siguiente:

Para cada estudiante:

1. Mensaje que indique el estatus del estudiante.

Para todos los estudiantes:

- 2. Promedio de edad de los estudiantes con estatus Excelente.
- 3. Porcentaje de estudiantes cuya nota final está entre 17 y 19 puntos.
- 4. Nombre del primer y último estudiante con nota final igual a 20.

Consideraciones: Para el estatus usaremos la siguiente tabla, para el límite inferior del rango no considere la igualdad:

Estatus
Deficiente
Regular
Bueno
Muy Bueno
Excelente

Excelente Muy bueno

Bueno

Actividades a Evaluar

1) La representación de los datos, según el enunciado, corresponde a una LISTA SIMPLE DE **NÚMERO DE DATOS:**

CONOCIDO □ DESCONOCIDO □

2) Realice el análisis del problema, dando respuesta a las siguientes interrogantes:

ENTRADA: ¿Qué Tengo? PROCESO: ¿Cómo lo Hago? SALIDA: ¿Qué Quiero Lograr?

PÁGINA 1 DE 2 MATERIAL DE APOYO A CLASES

3) Realice la corrida en frío o seguimiento del siguiente código (sin escribirlo en el computador) y complete la tabla de variables con los valores que irán tomando las variables si sigue las instrucciones paso a paso y escriba lo que debería aparecer en la pantalla si lo ejecutara en el computador:

```
p = input("Introduzca 1er dígito de su cédula?")
q = input("Introduzca último dígito de su cédula?")
for x in range(q, p + 1):
    if x % 2 == 0:
        s += x
    else:
        s -= x
    print(s)
```


PÁGINA 2 DE 2 MATERIAL DE APOYO A CLASES

Serie numérica

Dados N, Q y X, donde N y Q son valores numéricos enteros positivos, y X es un valor numérico real, desarrolle un programa que imprima y sume los N términos de la siguiente serie y el resultado de la sumatoria:

$$S = Q! - \frac{(X)^{2N-1}}{1-2+3}(7) + \frac{(Q+1)!(X)^{3N+2}}{1-2+3-4}(9) - \frac{(X)^{4N-3}}{1-2+3-4+5}(11) + \frac{(Q+2)!(X)^{5N+4}}{1-2+3-4+5-6}(13) - \cdots \ \forall \ |X| < 1$$

Análisis de la Serie:

Término Elemento	1	2	3	4	5	6	Fórmula General

MATERIAL DE APOYO A CLASES PÁGINA 3 DE 2