LÍMITES Y CONTINUIDAD

1º Bto. Sociales.

CONCEPTO DE LÍMITE DE UNA FUNCIÓN

Una función f(x) tiene por **límite** L en el punto x_0 , si a medida que x se acerca a x_0 , se verifica que las imágenes se aproximan a L. Se expresa:

$$\lim_{x \to x_0} f(x) = L$$

Si los valores que tomamos cercanos a x_0 son menores que x_0 estamos calculando el **límite lateral por la izquierda** y se representa: $\lim_{x \to \infty} f(x) = I$

 $\lim_{x \to x_0^-} f(x) = L$

Si los valores que tomamos cercanos a x_0 son mayores que x_0 estamos calculando el **límite lateral por la derecha** y se representa: $\lim_{x \to \infty} f(x) = L$

CONCEPTO DE LÍMITE DE UNA FUNCIÓN

Sea f(x) = 2x + 3. Vamos a darle valores a x cercanos a 1 y vamos a ver cómo se comporta f(x).

x→1 ⁻	0.9	0.99	0.999	0.9999	0.99999	 $\longrightarrow 1$
f(x)	4.8	4.98	4.998	4.9998	4.99998	 $\longrightarrow 5$

Cuando $x \rightarrow 1^-$ (por la izquierda) se cumple que $f(x) \rightarrow 5$.

x→1+	1.1	1.01	1.001	1.0001	1.00001	 $\longrightarrow 1$
f(x)	5.2	5.02	5.002	5.0002	5.00002	 \longrightarrow 5

Cuando $x \rightarrow 1^+$ (por la derecha) se cumple que $f(x) \rightarrow 5$.

Por lo tanto cuando $x \rightarrow 1$ se cumple que $f(x) \rightarrow 5$.

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

Calcula
$$\lim_{x\to 2} \frac{6x}{x-5}$$

x→2 ⁻	1.9	1.99	1.999	1.9999	1.99999	 $\longrightarrow 2$
f(x)	-3.67741	-3.96677	-3.99666	-3.99966	-3.99996	 $\longrightarrow -4$

x→2+	2.1	2.01	2.001	2.0001	2.00001	 $\longrightarrow 2$
f(x)	-4.34482	-4.03448	-4.00333	-4.00033	-4.00003	 ——→ – 4

$$\lim_{x \to 2^{-}} \frac{6x}{x - 5} = -4$$

$$\lim_{x \to 2^{+}} \frac{6x}{x - 5} = -4$$

$$\rightarrow \lim_{x \to 2^{+}} \frac{6x}{x - 5} = -4$$

LÍMITE INFINITO DE UNA FUNCIÓN

Calcula
$$\lim_{x\to 2} \frac{x}{x-2}$$

x→2 ⁻	1.9	1.99	1.999	1.9999	1.99999	 $\longrightarrow 2$
f(x)	-19	-199	-1999	-19999	-199999	 \longrightarrow $-\infty$

x→2+	2.1	2.01	2.001	2.0001	2.00001	 $\longrightarrow 2$
f(x)	21	201	2001	20001	200001	 $\longrightarrow +\infty$

$$\lim_{x \to 2^{-}} \frac{x}{x-2} = -\infty$$

$$\lim_{x \to 2^{+}} \frac{x}{x-2} = +\infty$$

$$\Rightarrow \exists \lim_{x \to 2} \frac{x}{x-2}$$

<u>LÍMITE DE UNA FUNCIÓN EN EL INFINITO</u>

Calcula
$$\lim_{x \to +\infty} \frac{1}{x}$$

x→+∞	100	1000	10000	100000	 $\longrightarrow + \infty$
f(x)	0.01	0.001	0.0001	0.00001	 $\longrightarrow 0$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

LÍMITE INFINITO DE UNA FUNCIÓN

Calcula
$$\lim_{x\to 0} \frac{1}{x^2}$$

x→0 ⁻	-0.1	-0.01	-0.001	-0.0001	 $\longrightarrow 0$
f(x)	100	10000	1000000	100000000	 $\longrightarrow +\infty$

x→0+	0.1	0.01	0.001	0.0001	 $\longrightarrow 0$
f(x)	100	10000	1000000	100000000	 —————————————————————————————————————

$$\lim_{x \to 2^{-}} \frac{1}{x^{2}} = +\infty$$

$$\lim_{x \to 2^{+}} \frac{1}{x^{2}} = +\infty$$

$$\to \lim_{x \to 2} \frac{1}{x^{2}} = +\infty$$

PROPIEDADES DE LOS LÍMITES

- Si una función tiene límite en un punto, éste es único.
- Si una función tiene límites laterales distintos en un punto, entonces no tiene límite en ese punto.
- Si f y g tienen límites en x_0 y k es un número se verifica que:

$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} k \cdot f(x) = k \cdot \lim_{x \to x_0} f(x)$
$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} (f \circ g)(x) = f \left(\lim_{x \to x_0} g(x) \right)$
$\lim_{x \to x_0} \left(\frac{f}{g} \right) (x) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \text{si } \lim_{x \to x_0} g(x) \neq 0$	$\lim_{x \to x_0} f(x)^{g(x)} = \left(\lim_{x \to x_0} f(x)\right)^{\lim_{x \to x_0} g(x)}$

CÁLCULO DE LÍMITES DE FUNCIONES

$$\lim_{x \to 2} \frac{6x}{x - 5} = -4$$
 f(2) = -4

$$f(2) = -4$$

Si existe la imagen de la función no definida a trozos en el punto en el que queremos calcular el límite, dicho límite será igual a la imagen por la función en el punto.

$$\lim_{x \to 3} \frac{x}{x+2} = \frac{3}{5}$$

$$\lim_{x\to 0}\frac{2x}{x^2-5}=0$$

$$\lim_{x \to -2} 3x^2 - 2 = 10$$

$$\lim_{x \to 5} 2^{x-3} = 4$$

CÁLCULO DE LÍMITES EN EL ∞ DE FUNCIONES

$$\lim_{x \to +\infty} 2x + 5 = +\infty$$

$$\lim_{x \to -\infty} 3^{x^2 - 1} = +\infty$$

$$\lim_{x \to +\infty} \frac{2x+5}{-3} = -\infty$$

$$\lim_{x \to -\infty} x^3 + x = -\infty$$

$$\lim_{x \to +\infty} \frac{3}{x^2 - 1} = 0$$

$$\lim_{x \to -\infty} 2^{\frac{1}{x-5}} = 1$$

$$\lim_{x \to +\infty} x^2 - 2x = +\infty$$

$$\lim_{x \to -\infty} (1 - x)^x = 0$$

CÁLCULO DE LÍMITES EN EL ∞ DE FUNCIONES

$$\lim_{x\to +\infty} 2x + 5$$

Tabla de ayuda para realizar límites en el infinito (k > 0):

$+\infty + \infty = +\infty$	$(+\infty) \cdot (+\infty) = +\infty$	$k^{+\infty} = +\infty k > 1$
$-\infty - \infty = -\infty$	$(+\infty)\cdot(+\infty)=+\infty$	
$\pm k + \infty = +\infty$	$(+\infty)\cdot(-\infty)=-\infty$	$k^{+\infty} = 0 k < 1$
	$(-\infty)\cdot(+\infty)=-\infty$	$(+\infty)^k = +\infty$
$\pm k - \infty = -\infty$	$(-\infty)\cdot(-\infty)=+\infty$	$(+\infty)^{-k}=0$
$k \cdot (+\infty) = +\infty$		
$k \cdot (-\infty) = -\infty$	$\frac{\pm k}{\pm \infty} = 0$	$(+\infty)^{+\infty} = +\infty$
$(-k)\cdot(+\infty)=-\infty$	∞	$(+\infty)^{-\infty}=0$
$(-k)\cdot(-\infty)=+\infty$		

EXPRESIONES INDETERMINADAS

Calcula
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

Si se sustituye aparece una expresión sin sentido del tipo $\frac{0}{0}$

Cuando al sustituir en una función para calcular el límite, el resultado no es un número real, surgen las expresiones indeterminadas o indeterminaciones.

Las indeterminaciones son $\frac{k}{0}, \frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 1^{\infty}, \infty^{0} \text{ y } 0^{0}$

EXPRESIONES INDETERMINADAS

Indeterminación del tipo $\frac{k}{0}$

Calcula
$$\lim_{x\to 1} \frac{1}{x^2-1}$$

Por lo tanto
$$\not\exists \lim_{x \to 1} \frac{1}{x^2 - 1}$$

Calcula
$$\lim_{x \to 1} \frac{1}{x^2 - 1}$$

Se hacen los límites laterales
$$\begin{cases} \lim_{x \to 1^-} \frac{1}{x^2 - 1} = -\infty \\ \lim_{x \to 1^+} \frac{1}{x^2 - 1} = +\infty \end{cases}$$

EXPRESIONES INDETERMINADAS

Indeterminación del tipo $\frac{0}{0}$

Calcula
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

Se simplifica:

$$\lim_{x \to 1} \frac{x-1}{x^2 - 1} \stackrel{\stackrel{0}{\longrightarrow}}{=} \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)} = \lim_{x \to 1} \frac{1}{(x+1)} = \frac{1}{2}$$

$$|| Cuidado!!! \lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0 = \lim_{x \to 1} \frac{x - 1}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{1}{(x + 1)} = \frac{1}{2}$$

EXPRESIONES INDETERMINADAS

Indeterminación del tipo $\frac{0}{\alpha}$

Calcula
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$$

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} \stackrel{\stackrel{0}{=}}{=} \lim_{x \to 1} \frac{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)}{\left(x - 1\right)\left(\sqrt{x} + 1\right)} = \lim_{x \to 1} \frac{\left(x - 1\right)}{\left(x - 1\right)\left(\sqrt{x} + 1\right)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

EXPRESIONES INDETERMINADAS

Indeterminación del tipo $\stackrel{\infty}{-}$

Calcula
$$\lim_{x \to +\infty} \frac{x^2 + 3}{x^3 + 1}$$

$$\lim_{x \to +\infty} \frac{x^2 + 3}{x^3 + 1} \stackrel{+\infty}{=} \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3}}{\frac{x^3 + 1}{x^3}} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{x^2 + \frac{3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{x^2 + \frac{3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{x^2 + \frac{3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{x^2 + \frac{3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{1}{x^3}}{x^3 + \frac{1}{x^3}}} = \lim_{x \to +\infty} \frac{x^2 + \frac{3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{3}{x^3 + \frac{3}{x^3 + \frac{3}{x^3}}}{\frac{x^3 + \frac{3}{x^3 + \frac$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{x} + \frac{3}{x^3}}{1 + \frac{1}{x^3}} = 0$$

EXPRESIONES INDETERMINADAS

Indeterminación del tipo $\frac{\infty}{\infty}$

Calcula
$$\lim_{x \to +\infty} \frac{x^2 + 3}{-x + 1}$$

$$\lim_{x \to +\infty} \frac{x^2 + 3}{-x + 1} \stackrel{\stackrel{+\infty}{\longrightarrow}}{=} \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^2}}{\frac{-x + 1}{x^2}} = \lim_{x \to +\infty} \frac{\frac{x^2}{x^2} + \frac{3}{x^2}}{\frac{-x}{x^2} + \frac{1}{x^2}} = \lim_{x \to +\infty} \frac{1 + \frac{3}{x^2}}{\frac{-1}{x} + \frac{1}{x^2}} \stackrel{\stackrel{1}{\longrightarrow}}{=} -\infty$$

EXPRESIONES INDETERMINADAS

Indeterminación del tipo $\frac{\infty}{\infty}$. REGLA

$$\lim_{x \to +\infty} \frac{x^2 + 3}{x^3 + 1} = 0$$
 Grado mayor Denominador = 0

$$\lim_{x \to +\infty} \frac{x^2 + 3}{-x + 1} = -\infty$$
 Grado mayor Numerador = $\pm \infty$

$$\lim_{x \to +\infty} \frac{x^2 + 3}{-x^2 + 1} = -1$$
 Grado igual = Cociente coeficientes mayor grado

EXPRESIONES INDETERMINADAS

Indeterminación del tipo $\frac{\infty}{\infty}$

Calcula
$$\lim_{x \to +\infty} \frac{x^2 + 3}{-x^2 + 1}$$

$$\lim_{x \to +\infty} \frac{x^2 + 3}{-x^2 + 1} \stackrel{\stackrel{+\infty}{=}}{=} \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^2}}{-x^2 + 1} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3}{x^2} + \frac{3}{x^2}}{-x^2 + 1} = \lim_{x \to +\infty} \frac{1 + \frac{3}{x^2}}{-1 + \frac{1}{x^2}} = -1$$

EXPRESIONES INDETERMINADAS

Indeterminación del tipo ∞-∞

Calcula
$$\lim_{x \to +\infty} \sqrt{x+1} - x$$

$$\lim_{x \to +\infty} \sqrt{x+1} - x \stackrel{\sim -\infty}{=} \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right) \cdot \left(\sqrt{x+1} + x\right)}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1}\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1}\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1} - x\right)^2 - x^2}{\sqrt{x+1} + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+1}$$

ASÍNTOTAS

Asíntota vertical.

Una función tiene una asíntota vertical en x = a si:

$$\lim_{x \to a} f(x) = \pm \infty$$

Ejemplo.

Hallar las asíntotas verticales de la función $f(x) = \frac{x+1}{x^2-1}$

$$x^{2} - 1 = 0 \to \begin{cases} x = -1 \to \lim_{x \to -1} \frac{x+1}{x^{2} - 1} = \lim_{x \to -1} \frac{x+1}{(x+1)(x-1)} = -\frac{1}{2} \to \text{NO A.V.} \\ x^{2} - 1 = 0 \to \begin{cases} x = 1 \to \lim_{x \to 1} \frac{x+1}{x^{2} - 1} = -\infty \\ x = 1 \to \lim_{x \to 1} \frac{x+1}{x^{2} - 1} \to \begin{cases} \lim_{x \to 1^{+}} \frac{x+1}{x^{2} - 1} = -\infty \\ \lim_{x \to 1^{+}} \frac{x+1}{x^{2} - 1} = +\infty \end{cases} \to \text{A.V. en } x = 1$$

ASÍNTOTAS

Asíntota oblicua.

Una función tiene una asíntota oblicua y = mx + n si se cumple:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = m \neq 0 \qquad \qquad n = \lim_{x \to \pm \infty} (f(x) - mx)$$

Ejemplo.

Hallar las asíntotas oblicuas de la función $f(x) = \frac{x^2 + 1}{x - 1}$

$$m = \lim_{x \to \pm \infty} \frac{\left(\frac{x^2 + 1}{x - 1}\right)}{x} = \lim_{x \to \pm \infty} \frac{x^2 + 1}{x(x - 1)} = \lim_{x \to \pm \infty} \frac{x^2 + 1}{x^2 - x} = 1$$

$$n = \lim_{x \to \pm \infty} \left(\frac{x^2 + 1}{x - 1} - x\right) = \lim_{x \to \pm \infty} \frac{x^2 + 1 - (x^2 - x)}{x - 1} = \lim_{x \to \pm \infty} \frac{1 + x}{x - 1} = 1$$

ASÍNTOTAS

Asíntota horizontal.

Una función tiene una asíntota horizontal y = b si se cumple:

$$\lim_{x\to\pm\infty}f(x)=b$$

Ejemplo.

Hallar las asíntotas horizontales de la función $f(x) = \frac{x+1}{x}$

$$\lim_{x \to -\infty} \frac{x+1}{x-1} = 1 \to A.H. \ y = 1 \text{ en } -\infty$$

$$\lim_{x \to +\infty} \frac{x+1}{x-1} = 1 \to A.H. \ y = 1 \text{ en } +\infty$$

$$\to y = 1 \text{ es } A.H. \text{ por los dos lados.}$$

ASÍNTOTAS

Hallar las asíntotas de la función $f(x) = \frac{x^2 + 1}{x^2 - 1}$

$$\frac{\mathbf{A}.\mathbf{V}.}{\mathbf{x}^{2}-1=0} \Rightarrow \begin{cases} \mathbf{x} = -1 \Rightarrow \lim_{x \to -1} \frac{\mathbf{x}^{2}+1}{\mathbf{x}^{2}-1} \Rightarrow \begin{cases} \lim_{x \to -1^{-1}} \frac{\mathbf{x}^{2}+1}{\mathbf{x}^{2}-1} = +\infty \\ \lim_{x \to -1^{+}} \frac{\mathbf{x}^{2}+1}{\mathbf{x}^{2}-1} = -\infty \end{cases} \Rightarrow \mathbf{A}.\mathbf{V}. \text{ en } \mathbf{x} = -1$$

$$\mathbf{A}.\mathbf{H}.$$

$$\mathbf{A}.\mathbf{H}.$$

$$\lim_{x \to +\infty} \frac{\mathbf{x}^{2}+1}{\mathbf{x}^{2}-1} = 1 \Rightarrow \mathbf{A}.\mathbf{H}. \text{ y = 1 en } -\infty$$

$$\lim_{x \to +\infty} \frac{\mathbf{x}^{2}+1}{\mathbf{x}^{2}-1} = 1 \Rightarrow \mathbf{A}.\mathbf{H}. \text{ y = 1 en } -\infty$$

$$\lim_{x \to +\infty} \frac{\mathbf{x}^{2}+1}{\mathbf{x}^{2}-1} = 1 \Rightarrow \mathbf{A}.\mathbf{H}. \text{ y = 1 en } +\infty$$

$$\mathbf{A}.\mathbf{O}. \text{ No tiene por tener horizontal por los dos lados.}$$

CONTINUIDAD DE UNA FUNCIÓN

Una función f(x) es **continua** en x = a si cumple que:

$$\exists \lim_{x \to a} f(x) = f(a)$$

Se tiene que cumplir que:

$$1^{\circ}$$
) $\exists \lim_{x \to a} f(x)$

$$2^{\circ}$$
) $\exists f(a)$

$$3^{\circ}$$
) $\lim_{x\to a} f(x) = f(a)$

Si no se cumple alguna de las condiciones se dice que f es discontinua en x = a.

CONTINUIDAD DE UNA FUNCIÓN

Tipos de discontinuidades:

Evitable.

De salto finito

De salto infinito

CONTINUIDAD DE UNA FUNCIÓN

Tipos de discontinuidades:

$$\exists \lim_{x \to a} f(x) \neq f(a)$$

Ejemplo:
$$f(x) = \frac{x-1}{x^2 - 1} \text{ en } x = 1$$

$$\lim_{x \to 1} \frac{x-1}{x^2 - 1} \stackrel{?}{=} \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)} = \lim_{x \to 1} \frac{1}{(x+1)} = \frac{1}{2}$$

$$\not\exists f(1)$$

f es discontinua evitable en x = 1.

CONTINUIDAD DE UNA FUNCIÓN

Tipos de discontinuidades:

De salto finito
$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$

Ejemplo: $f(x) = \begin{cases} x+1 & \text{si } x < 0 \\ x-1 & \text{si } x \ge 0 \end{cases}$ en x = 0

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+1) = 1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x-1) = -1$$

$$\rightarrow \lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x)$$

f es discontinua de salto finito en x = 0 y el salto es igual a 2.

CONTINUIDAD DE UNA FUNCIÓN

Tipos de discontinuidades:

De salto infinito
$$\lim_{x \to a^{-}} f(x) = \pm \infty$$
 o $\lim_{x \to a^{+}} f(x) = \pm \infty$

$$f(x) = \frac{1}{x^2 - 1}$$
 en $x = 1$

Ejemplo:
$$f(x) = \frac{1}{x^2 - 1} \text{ en } x = 1$$

$$\lim_{x \to 1^+} \frac{1}{x^2 - 1} = -\infty$$

$$\lim_{x \to 1^+} \frac{1}{x^2 - 1} = +\infty$$
Por lo tanto
$$\lim_{x \to 1} \frac{1}{x^2 - 1}$$

f es discontinua de salto infinito en x = 1.

CONTINUIDAD DE UNA FUNCIÓN

Estudia la continuidad de: $f(x) = \frac{x-1}{x^2-1}$

Estudia la continuidad de:
$$I(x) = \frac{1}{x^2 - 1}$$

$$\lim_{x \to -1^-} \frac{x - 1}{x^2 - 1} = -\infty$$

$$\lim_{x \to -1^+} \frac{x - 1}{x^2 - 1} = +\infty$$

$$\lim_{x \to -1^+} \frac{x - 1}{x^2 - 1} = +\infty$$

$$f \text{ es discontinua de salto infinito en } x = -1.$$

$$\lim_{x \to 1} \frac{x-1}{x^2-1} \stackrel{\stackrel{0}{\longrightarrow}}{=} \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)} = \lim_{x \to 1} \frac{1}{(x+1)} = \frac{1}{2} \right\} \xrightarrow{\text{f es discontinua evitable en}}$$

$$\not \exists f(1) \qquad f \text{ es continua en } \mathbb{R} - \{-1, 1\}$$

CONTINUIDAD EN UN INTERVALO

Una función se dice que es continua en un intervalo de los números reales si es continua en cada punto del intervalo.

$$f(x) = \frac{1}{x^2 - 1}$$

f es continua en $\mathbb{R} - \{-1, 1\}$

- f(x) es continua en el intervalo [2, 3] porque es continua en todos los punto de dicho intervalo.
- f(x) no es continua en el intervalo [0, 2] por no ser continua en el punto x = 1 que pertenece a dicho intervalo.