DIGITAL CIRCUITS

Week-2, Lecture-1 Introduction

Sneh Saurabh 7th August, 2018

Digital Circuits: Announcements/Revision

Digital Circuits Introduction

Analog System vs. Digital System (4)

- Quality of service
- Maintenance, Flexibility
- Delay (?)

Digital Systems (1)

 Digital Processing: Signal is processed in digital domain using software and hardware

DAC: Digital to Analog Converter

Digital Systems (2)

- Digital Systems are realized as chips
- Chips consists of Logic Gates (often millions of logic gates)
- Logic gates are made up of transistors

Why Analog Circuits are needed?

 Analog circuits are important since real signals are analog

 Some initial processing reduces the burden on Digital Signal Processing and overall more-efficient system is realized

Digital signals: "Digits"

y can taken values from a discrete set of values. For example: {0, 1, 2, 3, 4, 5, 6, 7} ■ In this example, signal is represented as: {4, 5, 4, 3, 4, 6, 7, 5, 3, 3, 4, 4, 3, ...,}

Why do we call it "Digital" signal?

 Any digital signal is represented in the form of a number or "digits"

- A number can be represented in many different ways
- In normal counting we use only "Decimal Numbers"
- Other number systems are possible

Digital signals: Decimal Number

What is a Decimal Number?

- Decimal Number consists of digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Decimal Number is said to be in "base 10"
 - > Ten digits are used
 - > 5723 = $5 \times 10^3 + 7 \times 10^2 + 2 \times 10^1 + 3 \times 10^0$ [Place value of each digit is in power of tens]

Digital signals: Binary Number

In Digital systems we use "Binary Number"

What is a Binary Number?

- Binary Number consists of digits {0, 1}
- Binary Number is said to be in "base 2"
 - > Two digits are used
 - $(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 9$ [Place value of each digit is in power of two]

Why are Binary Numbers used in Digital System?

- {0,1} can conveniently be represented as two voltage levels
- Easy to process binary numbers

Digital signals: In Zeros and Ones (Binary)

• In this example, signal is represented as: {4, 5, 4, 3, 4, 6, 7, 5, 3, 3, 4, 4, 3, ...,}

■ In this example, signal is represented in Binary number as: {100, 101, 100, 011, 100, 110, 111, 101, 011, 011, 100, 100, 011, ...,}

y can taken values from a discrete set of values. For example: {0, 1, 2, 3, 4, 5, 6, 7} In the following lectures we will deal with signals that can take values "0" or "1"

Two states of a Binary Number: Switch

Two states of a switch

Symbol for a switch

- Two states of a binary number can be represented by a switch
 - ON-state and OFF-state

- Assume that the switch is controlled by a variable x
 - If x = 0, switch is OFF or "Open"
 - If x = 1, switch is ON or "Closed"

Switch/Light bulb: Input/output

- Switch is used to control Light bulb
- Light bulb glows when current passes through it

Light bulb has two states

- OFF-state (does not glow) and ON-state (glows)
- The state of light bulb can be denoted by *L*

 \triangleright OFF-state: L=0

 \triangleright ON-state: L=1

- Switch is used to control the state of Light bulb
- In this system:

➤ Input: switch variable *x*

➤ Output: state of the light bulb *L*

Logic function: relationship between Input/output

- Derive a relationship between Input and Output
- When x = 0, then L = 0
- When x = 1, then L = 1

- L = x is the relationship between the input and the output
- L(x) = x
- L(x) is a *logic function*
- x is the input variable

Logic function: AND function

- Inputs are: (x_1, x_2)
- Output is: *L*
- Derive a relationship between Input and Output

- The light bulb will glow if switch " x_1 and x_2 " are closed
- L = 1 if $x_1 = 1$ **and** $x_2 = 1$, L = 0 otherwise
- $L(x_1, x_2) = x_1.x_2$

 Symbol "." is known as AND operator and is said to implement logical AND function

Logic function: OR function

- Inputs are: (x_1, x_2)
- Output is: *L*
- Derive a relationship between Input and Output

- The light bulb will glow if switch " x_1 or x_2 " are closed
- L = 1 if $x_1 = 1$ or $x_2 = 1$ or $x_1 = x_2 = 1$, L = 0 if $x_1 = x_2 = 0$
- $L(x_1, x_2) = x_1 + x_2$

 Symbol "+" is known as *OR operator* and is said to implement logical *OR* function

Logic function: Complex Logic

- AND and OR operations can be used to implement complex logic circuit/function/expression
- The light bulb will glow if switch " $(x_1 \ or \ x_2)$ and x_3 " are closed

- Inputs are: (x_1, x_2, x_3)
- Output is: L
- Derive a relationship between Inputs and Output

Logic function: Inversion/Complement/NOT

- Switch is connected in parallel with the light
- Current always flow through "low resistance path"
- Switch has infinite resistance when "OPEN"
- Switch has zero resistance when "CLOSED"
- Light bulb has some finite resistance

- When x = 0, then L = 1
- When x = 1, then L = 0

•
$$L = \bar{x} = x' = !x = \sim x$$

- L is the complement of x
- This is also known as NOT operation
- *x* is the *input variable*

Truth Table (1)

- Logic operations can also be defined in form of a table
- These tables are known as *TruthTables*

x	\overline{x}
0	1
1	0

x_1	x_2	$x_1.x_2$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Truth Table (2)

For 3 *variable* inputs, how many entries will be there in the truth table?

x_1	x_2	x_3	x_1, x_2, x_3	$x_1 + x_2 + x_3$
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	0	1
0	0	1	0	1
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Truth Table (3)

Question:

For N *variable* inputs, how many entries will be there in the truth table?

Answer:

Each input can take 2 values (0 and 1).

Total possibilities:

$$2 \times 2 \times 2 \dots N \text{ times} = 2^N$$

Inference:

- lacktriangle The number of entries increases exponentially with N
- Truth table representation of a function is feasible for small N
- For large N truth table representation will be too big and not feasible
- Other representations such as logic expression is more compact for large N