I. S. F. A. 2010-2011

Concours d'Entrée

DEUXIEME ÉPREUVE DE MATHÉMATIQUES

OPTION A

Durée : 4 heures

Calculatrice et ordinateur non autorisés

OBJECTIF ET REMARQUE:

On se propose, dans ce sujet, d'établir des liens entre les notions de convexité, de dérivation et de valeur moyenne pour des fonctions numériques de « une ou deux variable(s) ». Il inclut un barème indicatif par parties établi sur 100 points.

Notations:

- o R est le corps des nombres réels.
- o le **R**-espace vectoriel \mathbf{R}^2 est muni de ses normes usuelles $\| \cdot \|_1$ et $\| \cdot \|_2$ et, si $c \in \mathbf{R}^2$ et $r \in \mathbf{R}^+$, on note $B_1(c,r)$ (respectivement $B_2(c,r)$) la boule fermée de \mathbf{R}^2 de centre c et de rayon r, relativement à sa norme $\| \cdot \|_1$ (respectivement $\| \cdot \|_2$).
- o $S_2^+(\mathbf{R})$ désigne classiquement l'ensemble des matrices réelles symétriques S d'ordre 2 qui sont positives, c'est-à-dire vérifiant : $\forall X \in M_{2,1}(\mathbf{R})$ $^t X \times S \times X \ge 0$.
- o I et Ω désignent respectivement des parties non vides, convexes et ouvertes de \mathbf{R} et \mathbf{R}^2 . En particulier : $\forall (\omega_1,\omega_2) \in \Omega^2 \ \forall t \in [0,1] \ ((1-t).\omega_1+t.\omega_2) \in \Omega$.
 - o Si f est une application de Ω dans **R**, on dit que f est convexe si, et seulement si :

$$\forall (x,y) \in \Omega^2 \ \forall t \in [0,1] \ f((1-t).x+t.y) \le (1-t).f(x)+t.f(y)$$
.

- o Lorsque A est une partie ouverte de $\bf R$ ou de $\bf R^2$, on note, selon l'usage, $C^0(A, \bf R)$ (respectivement $C^2(A, \bf R)$) l'ensemble des applications continues (respectivement de classe C^2) de A dans $\bf R$.
- o En outre, si A est une partie ouverte de \mathbf{R} (respectivement de \mathbf{R}^2) et $f \in C^0(A,\mathbf{R})$, on dira que f est convexe en moyenne si, et seulement si :

$$\forall a \in A \ \forall r \in \mathbb{R}^+ \ [a-r,a+r] \subset A \Rightarrow \int_{a-r}^{a+r} f(t).dt \ge 2.r.f(a)$$

 $(\text{respectivement}: \ \forall a \in A \ \forall r \in \textbf{R}^+ \ B_2(a,r) \subset A \Rightarrow \iint_{B_2(a,r)} f(x,y).dx.dy \geq \pi.r^2.f(a)) \ .$

Enfin, on notera $C^{0+}(A,\mathbf{R})$ (respectivement $C^{2+}(A,\mathbf{R})$) l'ensemble des éléments de $C^0(A,\mathbf{R})$ (respectivement $C^2(A,\mathbf{R})$) qui sont convexes en moyenne.

PARTIE I : Convexité et convexité moyenne en dimension 1 (15 points).

Soit f une application de I dans **R**.

- 1/ On suppose que f est convexe.
 - a) Prouver que f est dérivable à droite en tout élément de I.
 - b) En déduire que $f \in C^0(I, \mathbf{R})$.
 - c) Prouver que $f \in C^{0+}(I, \mathbf{R})$.
- 2/ On suppose ici que $f \in C^2(I, \mathbf{R})$.
 - a) Montrer que f n'est pas convexe en moyenne si $a \in I$ et f''(a)<0.

(On pourra, par exemple, étudier les variations de la fonction de variable réelle g définie $par: g(x) = \int_{a}^{a+x} f(t).dt - 2.x.f(a).)$

b) Que peut-on déduire des questions antérieures ?

PARTIE II : Etude de $C^{0+}(\Omega, \mathbb{R})$ (24 points).

On considère, dans cette partie, une application f de Ω dans \mathbf{R} .

- 3/ Montrer que, si $(g,h) \in (C^{0+}(\Omega,\mathbf{R}))^2$ et $\alpha \in \mathbf{R}^+$, alors $(\alpha.g+h) \in C^{0+}(\Omega,\mathbf{R})$.
- 4/ Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de $C^{0+}(\Omega,\mathbf{R})$ qui converge uniformément sur toute partie compacte de \mathbf{R}^2 incluse dans Ω . Montrer que la limite de cette suite appartient à $C^{0+}(\Omega,\mathbf{R})$.
- 5/ On suppose ici que $\lambda \in \mathbf{R}^{+*}$, que $\mu \in \mathbf{R}^2$ et que ϕ est l'application de \mathbf{R}^2 dans \mathbf{R}^2 satisfaisant : $\forall (x,y) \in \mathbf{R}^2 \ \phi(x,y) = \lambda.(x,y) + \mu$.
 - a) Constater que ϕ est un C¹-difféomorphisme de \mathbf{R}^2 dans lui-même et préciser ϕ^{-1} .
 - b) Montrer que, si $\tilde{f} = f \circ \phi^{-1}$ et $\tilde{\Omega} = \phi(\Omega)$, alors $\tilde{\Omega}$ est une partie non vide, ouverte et convexe de \mathbf{R}^2 et que, de plus : $\tilde{f} \in C^{0+}(\tilde{\Omega}, \mathbf{R}) \Leftrightarrow f \in C^{0+}(\Omega, \mathbf{R})$.

PARTIE III : Convexité et convexité en moyenne en dimension 2 (20 points).

On considère encore une application convexe f, de Ω dans **R**, et un élément ω de Ω .

6/ Justifier l'existence d'un élément ρ de ${\bf R}^{+^*}$ tel que le domaine de définition de la fonction ϕ , de ${\bf R}^2$ dans ${\bf R}$, définie par

$$\varphi(x,y) = f(\rho.(x,y) + \omega) - f(\omega)$$

contienne $B_1((0,0),1)$.

- 7/ a) Prouver que le domaine de définition de φ est une partie ouverte et convexe de \mathbf{R}^2 .
 - b) Constater que φ est convexe.
- 8/ a) Montrer qu'il existe un nombre réel positif M tel que :

$$\forall (x,y) \!\in\! \boldsymbol{R}^2 \ \left\| (x,y) \right\|_{l} \!=\! 1 \ \Rightarrow \ \! \phi(x,y) \!\leq\! M \,.$$

b) Soient $u \in \mathbf{R}^2$ tel que $\|u\|_{_{\! I}} = 1$ et ψ l'application de [-1,1] dans \mathbf{R} par :

$$\forall t \in [-1,1] \quad \psi(t) = \varphi(t.u) .$$

 $\label{eq:convex} \mbox{V\'erifier que } \psi \mbox{ est convexe puis que : } \forall t {\in} [\text{-}1,1] \ \left| \psi(t) \right| {\leq} \ M. \left| t \right|.$

- 9/ En conclure que f est continue sur Ω .
- 10/ Démontrer enfin que $f \in C^{0+}(\Omega, \mathbf{R})$. (On pourra utiliser les coordonnées polaires.)

PARTIE IV : Laplacien et convexité en moyenne en dimension 2 (21 points).

On se propose, dans cette partie, d'établir une condition nécessaire et suffisante, portant sur un élément de $C^2(\Omega, \mathbf{R})$ pour qu'il appartienne à $C^{2+}(\Omega, \mathbf{R})$. A cet effet, on suppose que $f \in C^2(\Omega, \mathbf{R})$.

- 11/ Justifier qu'il soit légitime d'envisager l'application Δ de $C^2(\Omega, \mathbf{R})$ dans $C^0(\Omega, \mathbf{R})$ satisfaisant $\forall g \in C^2(\Omega, \mathbf{R}) \ \forall \omega \in \Omega \ \Delta(g)(\omega) = \frac{\partial^2 g}{\partial x^2}(\omega) + \frac{\partial^2 g}{\partial y^2}(\omega)$ et puis que celle-ci est linéaire.
 - 12/ Soient ω ∈ Ω et r∈ \mathbf{R}^{+*} tels que $B_2(\omega,r)$ ⊂ Ω .
 - a) Montrer que la fonction \hat{f} , de \mathbf{R}^2 dans \mathbf{R} , définie par $\hat{f}(z) = f(z+\omega) f(\omega)$ est de classe C^2 sur son domaine de définition puis que l'intégrale double $\iint_{B_2(0,r)} \hat{f}(x,y).dx.dy$ vaut :

$$\int_0^r \left(\frac{r^2 - \rho^2}{2} \cdot \int_0^{2\pi} \left[\frac{\partial \hat{f}}{\partial x} (\rho \cdot \cos \theta, \rho \cdot \sin \theta) \cdot \cos \theta + \frac{\partial \hat{f}}{\partial y} (\rho \cdot \cos \theta, \rho \cdot \sin \theta) \cdot \sin \theta \right] \cdot d\theta \right) \cdot d\rho \quad .$$

(On pourra invoquer une intégration par partie soigneusement justifiée.)

b) En déduire que :

$$\iint_{B_2(\omega,r)} f(x,y).dx.dy - \pi.r^2.f(\omega) = \int_0^r \left(\frac{r^2 - \rho^2}{2.\rho}.\iint_{B_2(\omega,\rho)} \Delta(f)(x,y).dx.dy\right).d\rho.$$

(On pourra exploiter la formule de Green-Riemann.)

13/ Conclure de ce qui précède que :

$$f \in C^{2+}(\Omega, \mathbf{R}) \Leftrightarrow \Lambda(f) \geq 0$$
.

PARTIE V : Convexité et matrices hessiennes en dimension 2 (20 points).

On suppose désormais que $f \in C^2(\Omega, \mathbf{R})$ et que H est l'application de Ω dans $M_2(\mathbf{R})$ définie par :

$$\forall \omega \in \Omega \ \ H(\omega) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(\omega) & \frac{\partial^2 f}{\partial x \partial y}(\omega) \\ \\ \frac{\partial^2 f}{\partial y \partial x}(\omega) & \frac{\partial^2 f}{\partial y^2}(\omega) \end{bmatrix}.$$

4

14/ Vérifier que, si $(\omega,\omega') \in \Omega^2$, alors il est licite de considérer l'application $f_{\omega,\omega'}$, de [0,1] dans \mathbf{R} , définie par : $\forall t \in [0,1]$ $f_{\omega,\omega'}(t) = f((1-t).\omega + t.\omega')$.

15/ Démontrer que f est convexe si, et seulement si, pour tout élément (ω,ω') de Ω^2 , $f_{\omega,\omega'}$ est convexe.

- 16/ Prouver que, si $(\omega,\omega')\in\Omega^2$, alors $f_{\omega,\omega'}$ est de classe C^2 puis préciser sa dérivée seconde.
- 17/ Conclure de ce qui précède que f est convexe si, et seulement si :

$$\forall \omega \in \Omega \ H(\omega) \in S_2^+(\mathbf{R}).$$

- 18/ a) Retrouver, grâce à la question antérieure, le résultat (établi au III 10/) :
 - si f est convexe, alors $f \in C^{2+}(\Omega, \mathbf{R})$.
 - b) Qu'en est-il de sa réciproque, « en général »?

- Fin -