Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement by Re-Synthesis

Karren Yang¹ Dejan Marković² Steven Krenn² Vasu Agrawal² Alexander Richard²

¹MIT ²Meta Reality Labs Research

karren@mit.edu {dejanmarkovic, stevenkrenn, vasuagrawal, richardalex}@fb.com

Introduction

Denoising Speech Signal

$$x(t) + n(t) = y(t)$$

- Using Visual Information as auxiliary signal
- Used Generative approach (VAE)

Approach

- Used Vector Quantized VAE (VQ-VAE)
- Discrete Representation

VQ-VAE

Approach

$$\mathbb{E}_{(\mathbf{S},\mathbf{S}',\mathbf{V})}||\mathbf{melspec}(\mathbf{S}) - \tilde{\mathcal{D}}(\mathbf{Z})||_2^2$$

Dataset

FaceStar

- Audio-visual dataset containing 10 hours of speech data from two speakers

AV Dataset	# Hours per Speaker	High- Quality Audio	Reliable Lip Motion	Unconstrained Natural Speech
GRID	0.8	1	/	Х
TCD-Timit	0.5	1	/	X
Lip2Wav	20	X	X	1
Facestar	5	✓	1	1

Results

Model			Facestar			Lip2Wav					
	PESQ ↑	STOI ↑	F-SNR ↑	MCD ↓	Mel- $\ell_2 \downarrow$	PESQ ↑	STOI ↑	F-SNR ↑	MCD ↓	Mel- $\ell_2 \downarrow$	
Demucs [8]	1.251	0.554	5.602	5.003	0.0106	1.383	0.672	7.644	4.724	0.0109	
AV-Masking [18]	1.257	0.593	5.991	5.184	0.0093	1.438	0.689	7.873	5.167	0.0093	
AV-Mapping [15]	1.332	0.626	2.802	4.885	0.0059	1.417	0.661	6.892	4.643	0.0062	
Ours	1.354	0.661	7.322	3.815	0.0056	1.482	0.740	8.801	4.072	0.0055	

Ours	GT recordings	Can not tell
4.1%	44.5%	51.4%
Ours	AV Encoder Decoder	Can not tell
73.3%	6.0%	20.7%
Ours	AV Masking	Can not tell
78.5%	5.7%	15.8%

Table 3. **Perceptual Evaluation**. Participants were presented two video clips and asked to tell which of the two sounds more natural.

	reverb + noise	only		
Model	+ interfering spkr	reverb + noise		
Vision-Only	0.0085			
Audio-Only	0.0091	0.0056		
No Auto-Regressive Module	0.0051	0.0036		
Full Model	0.0043	0.0033		

Table 4. **Ablation Results**. The values shown are the mean ℓ_2 errors between predicted and ground truth mel-spectrograms for ablation models trained on the Facestar dataset (Speaker 1); lower is better. See text for details.

Multi-Speaker Model

- Extend framework to multispeaker setting by adding a speaker identity encoder

Figure 4. **Multi-speaker model**. A speaker encoder is added to the pipeline from Figure 2. Restricting the size of the codebook forces the model to disentangle speech content and speaker identity as shown in [48].

	GRID Speaker							
	Sp. 1 (M)	Sp. 3 (M)	Sp. 11 (F)	Sp. 15 (F)				
Single-speaker model	0.00509	0.00794	0.00746	0.00781				
Multi-speaker model	0.00657	0.00909	0.00960	0.01594				
Multi-speaker model p	personalized t	o new speake	r with k minu	tes of data				
5 min	0.00481	0.00682	0.00625	0.00681				
12.5 min	0.00457	0.00620	0.00589	0.00655				
25 min	0.00443	0.00595	0.00570	0.00621				
50 min	0.00425	0.00561	0.00553	0.00596				

Voice Controllability

Figure 5. **Voice Transfer Examples.** By swapping the speaker code at the decoder stage, we can synthesize clean audio in a different target speaker's voice. Images shown are mel-spectrogram representations of audio. Note how the linguistic content (*i.e.*, vowels and fricatives) are carried over from the original male speaker, while the pitch and overtone structure are changed to that of the female speaker.

Visual Acoustic Matching

Changan Chen^{1,4} Ruohan Gao² Paul Calamia³ Kristen Grauman^{1,4}

¹University of Texas at Austin ²Stanford University ³Facebook Reality Labs ⁴Facebook AI Research

CVPR 2022, https://arxiv.org/pdf/2202.06875.pdf

Introduction

Target Space

Challenges

- Unpaired data
- Modelling different regions of the room
- Capture geometry and materials present in the scene

Approach

Datasets

- SoundSpaces-Speech Dataset
 - Synthetic Data on Matterport3D
 - RIR convolved with audio from LibriSpeech
 - 3D humanoid inserted at speaker location
- 2. AVSpeech
 - Subset of AVSpeech dataset
 - 3-10 seconds videos with single visible human speaker

Acoustic Alteration Process

Loss Function

$$\mathcal{L}_G = \sum_{k=0}^{N} (\mathcal{L}_{Adv}(G; D_k) + \lambda_1 \mathcal{L}_{FM}(G; D_k)) + \lambda_2 \mathcal{L}_{Mel}(G)$$

$$\mathcal{L}_D = \sum_{l=1}^{N} \mathcal{L}_{Adv}(D_k; G)$$

Evaluation Metric

- STFT Distance
- RT60 Error (RTE)
- Mean Opinion Score Error (MOSE)
- User Study

Results

		S	oundSpac	ces-Spee	Acoustic AVSpeech					
	Seen			Unseen			Seen		Unseen	
	STFT	RTE (s)	MOSE	STFT	RTE (s)	MOSE	RTE (s)	MOSE	RTE (s)	MOSE
Input audio	1.192	0.331	0.617	1.206	0.356	0.611	0.387	0.658	0.392	0.634
Blind Reverberator [64]	1.338	0.044	0.312	-	_	_	-	-	_	_
Image2Reverb [55]	2.538	0.293	0.508	2.318	0.317	0.518	20		_	_
AV U-Net [22]	0.638	0.095	0.353	0.658	0.118	0.367	0.156	0.570	0.188	0.540
AViTAR w/o visual	0.862	0.140	0.217	0.902	0.186	0.236	0.194	0.504	0.207	0.478
AViTAR	0.665	0.034	0.161	0.822	0.062	0.195	0.144	0.481	0.183	0.453

	SoundSpaces	AVSpeech
Input Speech	42.1% / 57.9 %	40.1% / 59.9 %
Image2Reverb [55]	25.9% / 74.1 %	-/-
AV U-Net [22]	29.8% / 70.2 %	27.2% / 72.8 %
AViTAR w/o visual	39.6% / 60.4 %	46.3% / 53.9 %

Qualitative Results

https://vision.cs.utexas.edu/projects/visual-acoustic-matching/

Self-supervised object detection from audio-visual correspondence

Triantafyllos Afouras^{1*†} Yuki M. Asano^{1*} Francois Fagan² Andrea Vedaldi² Florian Metze²

¹ Visual Geometry Group, University of Oxford

² Facebook AI

afourast@robots.ox.ac.uk

Object Detection

- Supervised
- Weakly-Supervised
- Unsupervised

Introduction

- Object Detection using Audio

Problems with audio-visual detection

- Not applicable to silent videos
- Only heatmap, No bounding box

Approach

Results

Selective Search* [94]

COCO-trained RPN*

Ours - self-boxes*

Ours - full

5.2

33.4

48.1

52.3

1.1

7.5

29.6

39.4

					Attent	ion [<mark>82</mark>]	36.	5 39.	5 29	9.9
					DMC	[44]	32.	8 38.	2 32	2.0
					DSOL	, [<mark>45</mark>]	38.	9 40.	9 48	3.7
					Ours		50.	6 47.	.5 52	2.4
			VGGS	ound		Audios	set		OnenIr	nages
	No labels?	mAP ₃₀	VGGS mAP ₅₀ i	ound mAP _[50:95:5]	mAP ₃₀	Audios mAP ₅₀ m	set AP _[50:95:5]	mAP ₃	OpenIn	nages mAP _{[50:9}
DD) [<mark>90</mark>]	No labels?	mAP ₃₀			mAP ₃₀			mAP ₃		_

2.8

19.0

27.8

44.3

0.4

4.1

14.1

28.0

0.1

0.8

4.8

9.6

Method

Sound of pixels [109]

Object t. Sound [7]

single-instr. multi-instr.

40.6

39.5

7.4

24.4

NA

39.9

2.1

11.1

NA

28.5

0.7

2.6

NA

7.6

cIoU-0.3

39.8

27.1

IoU-0.5 AUC

38.2

32.7

Method			VGGSound			Audioset			OpenImages		
	No labels?	mAP_{30}	mAP_{50} 1	$mAP_{[50:95:5]}$	mAP_{30}	mAP_{50} r	$nAP_{[50:95:5]}$	mAP_{30}	mAP_{50} n	$nAP_{[50:95:5]}$	
PCL (WSOD) [90]	X	54.9	27.7	7.6	39.0	17.5	4.4	37.9	14.5	3.5	
Ours - weak sup.	X	67.6	42.9	14.2	50.6	30.9	10.3	48.9	33.7	9.5	
Center Box*	/	29.6	5.6	1.5	15.1	3.5	0.7	20.7	4.2	0.8	

0.4

1.6

10.0

14.7