```
# step 1
survey <- readxl::read xlsx('05. 2024STB survey 80.xlsx')
colnames(survey) <- c(
  "Gender",
  "Age",
  "Grade",
  "Nationality",
  "Residential_Area",
  "Internet Usage Last Year",
  "Health_Satisfaction",
  "Income_Satisfaction",
  "Housing Satisfaction",
  "Family_Relationship_Satisfaction",
  "Social Relationship Satisfaction",
  "Leisure Satisfaction",
  "Overall_Life_Satisfaction",
  "Regular_Donation_Volunteer",
  "Donation_Amount_2023",
  "Volunteer Activities 2022",
  "Parent_Separation_Status",
  "Parent_Visit_Frequency_2023",
  "Parent_Call_Frequency_2023",
  "Lifetime Smoking Amount",
  "First_Smoking_Age",
  "Total_Smoking_Years",
  "Current_Smoking_Status",
  "Daily_Smoking_Amount",
  "Quit Smoking Attempts 1Year",
  "Future_Quit_Smoking_Plans",
  "Secondhand Smoke Exposure Hours",
  "Secondhand_Smoke_Exposure_Hours_Avg",
  "Alcohol_Frequency",
  "Drinks_Per_Session",
  "Heavy_Drinking_Frequency",
  "Inability to Stop Drinking",
  "Uncompleted_Tasks_Due_to_Alcohol",
  "Morning_After_Drinking_Frequency",
  "Alcohol_Regret_Frequency",
  "Blackout_Frequency",
  "Injury_Due_to_Alcohol",
  "Concerns_from_Others_about_Alcohol"
```

)

Convert column

```
# Convert 'Gender' column: "남자 男人" -> 1 (Male), "여자 女子" -> 2 (Female)
survey$Gender <- ifelse(survey$Gender == "남자 男人", 1,
                                 ifelse(survey$Gender == "여자 女子", 2, NA))
# step 2
 > # Frequency distribution for Gender
 > gender_freq <- table(survey$Gender)</pre>
 > gender_freq
  1 2
 33 47
# step 3
 > # Relative frequency distribution for Gender
 > gender_relative_freq <- prop.table(table(survey$Gender))</pre>
 > gender_relative_freq
 0.4125 0.5875
# step 4
> survey$Grade <- ifelse(survey$Grade == "2학년 / 2年級", 'Grade 2',

+ ifelse(survey$Grade == "3학년 / 3年级", 'Grade 3',

+ ifelse(survey$Grade == "4학년 / 4年级", 'Grade 4',

+ ifelse(survey$Grade == "5학년 / 5年级", 'Grade 5', NA))))
> gender_grade_crosstab <- table(survey$Gender, survey$Grade)</pre>
> gender_grade_crosstab
    Grade 2 Grade 3 Grade 4 Grade 5
14 7 12 0
9 14 23 1
# step 5
survey$Nationality <- ifelse(survey$Nationality == "한국 / 韓國", "Korea", ifelse(survey$Nationality == "중국 / 中國", "China", ifelse(survey$Nationality == "몽골", "Mongolia", NA)))
barplot(table(survey$Nationality),
        main = "Bar Plot for Nationality",
xlab = "Nationality",
ylab = "Frequency",
col = "lightblue")
```

Bar Plot for Nationality

step 6

Horizontal Bar Plot for Residential Area

step 7 "남자 男人"->1 (Male), "여자 女子"->2 (Female)

Bar Plot for Gender and Grade

step 8

```
grade_treq <- table(survey$Grade)
pie(grade_freq,
    main = "Pie Chart for Grade",
    col = rainbow(length(grade_freq)),
    labels = names(grade_freq))</pre>
```

Pie Chart for Grade


```
hist(as.numeric(survey$Age),
    main = "Histogram of Age",
    xlab = "Age",
    ylab = "Frequency",
    col = "lightblue")
```

Histogram of Age

Boxplot of Age by Grade

2 학년 학생의 연령 분포는 19세부터 26세까지 더 넓습니다. 평균 연령은 21세로 대부분의 학생이 이 연령에 속함을 나타냅니다. 사분위간 범위(IQR)가 커서 이 학년 수준에서 연령의 분산이 더 높습니다.

3 학년 학생의 연령은 22~23 세에 집중되어 있으며, 사분위수를 보면 학생의 연령이 주로 이 범위에 집중되어 있음을 알 수 있습니다. IQR은 상대적으로 작아서 이 학년에 연령 분포가 집중되어 있음을 나타냅니다.

4 학년의 연령은 3 학년의 연령과 유사하며 연령은 22 세에서 24 세 사이에 밀집되어 있으며 사분위수 범위가 약간 더 넓다는 것은 연령 분포가 3 학년보다 약간 더 분산되어 있음을 나타냅니다.

5 학년의 모든 학생은 26 세이며 연령 변화는 없습니다. 이는 모든 학생의 나이가 동일하고 모든 데이터 포인트가 동일하기 때문에 상자 그림이 IQR 없이 평평한 선으로 나타남을 의미합니다.

step 11

Scatter Plot of Age vs Grade

