Math 21C

Kouba

Discussion Sheet 7

1.) Graph each of the following equations in two-dimensional space.

a.)
$$y = 3$$

b.)
$$x = -2$$

c.)
$$y = x$$

a.)
$$y = 3$$
 b.) $x = -2$ c.) $y = x$ d.) $y = 3 - x$ e.) $y = x^3$

e.)
$$y = x^3$$

f.)
$$y = e$$

g.)
$$y = \ln x$$

h.)
$$y = \sqrt{x}$$

i.)
$$x = y^2$$

f.)
$$y = e^x$$
 g.) $y = \ln x$ h.) $y = \sqrt{x}$ i.) $x = y^2$ j.) $y = \frac{1}{x}$

2.) Sketch the level curves for each of the following equations (surfaces) using the following values of z: -3, -2, -1, 0, 1, 2, 3

a.)
$$z = y$$

b.)
$$z = 1 - x - y$$

c.)
$$z^2 = x^2 + y^2$$

a.)
$$z = y$$
 b.) $z = 1 - x - y$ c.) $z^2 = x^2 + y^2$ d.) $x^2 + y^2 + z^2 = 9$

3.) Sketch all three coordinate plane traces (i.e., x = 0, y = 0, and z = 0) for each of the following equations (surfaces).

a.)
$$x + 2y + 3z = 6$$
 b.) $z = x^2 + y^2$ c.) $z = y^2 - x^2$ d.) $z^2 = x^2 + y^2$

b.)
$$z = x^2 + y^2$$

c.)
$$z = y^2 - x^2$$

d.)
$$z^2 = x^2 + y$$

4.) Sketch in three-dimensional space each of the following equations (surfaces). Use intercepts, traces, and/or level curves, if necessary.

a.)
$$y = 3$$

b.)
$$x = -2$$

c.)
$$y = x$$

a.)
$$y = 3$$
 b.) $x = -2$ c.) $y = x$ d.) $y = 3 - x$ e.) $y = x^3$

e.)
$$y = x^3$$

f.)
$$y = e^x$$

$$g.) y = \ln x$$

h.)
$$y = \sqrt{x}$$

i.)
$$x = y^2$$

f.)
$$y = e^x$$
 g.) $y = \ln x$ h.) $y = \sqrt{x}$ i.) $x = y^2$ j.) $y = \frac{1}{x}$

k.)
$$x^2 + y^2 + z^2 = 4$$
 l.) $x + 2y + 3z = 6$ m.) $z = x^2 + y^2$ n.) $z^2 = x^2 + y^2$

1.)
$$x + 2y + 3z = 6$$

m.)
$$z = x^2 + y^2$$

n.)
$$z^2 = x^2 + y^2$$

o.)
$$z^2 = x^2 + y^2 - 1$$

o.)
$$z^2 = x^2 + y^2 - 1$$
 p.) $z^2 = x^2 + y^2 + 1$ q.) $z = y^2 - x^2$

q.)
$$z = y^2 - x^2$$

5.) a.) Consider the graph of $y = \ln(x-1)$ in the xy-plane. Find an equation for the surface created by revolving this graph about the

i.)
$$x$$
-axis.

ii.)
$$y$$
-axis.

b.) Consider the graph of $z = \sin x$ in the xz-plane. Find an equation for the surface created by revolving this graph about the

i.)
$$x$$
-axis.

ii.)
$$z$$
-axis.

6.) Determine and sketch the domain of each function in 2D-Space and find the range of each function.

a.)
$$z = 1 + x^2 + y^2$$

b.)
$$z = 1 - x^2 - y^2$$

c.)
$$z = 1 - x^2 + y^2$$

d.)
$$z = 1 - x - y$$

e.)
$$f(x,y) = \sqrt{1 - x - y}$$

a.)
$$z = 1 + x^2 + y^2$$
 b.) $z = 1 - x^2 - y^2$ c.) $z = 1 - x^2 + y^2$ d.) $z = 1 - x - y$ e.) $f(x, y) = \sqrt{1 - x - y}$ f.) $f(x, y) = \sqrt{1 - x^2 - y^2}$ g.) $f(x, y) = 5 + e^{-x^2 - y^2}$ h.) $f(x, y) = 3 - \sqrt{y - \ln x}$ i.) $z = 3\cos x + 4\sin y$ j.) $z = 2 - 5\sin(\ln y)$

i)
$$z = 3\cos x + 4\sin y$$

$$11. f(x,y) = 3$$

$$2 = 2 - 5\sin(\ln u)$$

k.)
$$z = \ln(25 - x^2 - y^2)$$
 l.) $f(x,y) = \ln(x^2 + y^2 - 25)$
m.) $f(x,y) = \frac{7}{x^2 - y}$ n.) $f(x,y) = \frac{7}{x^2 + y^2}$
o.) $f(x,y) = \frac{8}{2 + \sqrt{x - 2y}}$ p.) $f(x,y) = \frac{8}{2 - \ln(x + y)}$

o.)
$$f(x,y) = \frac{x-y}{8}$$
 p.) $f(x,y) = \frac{8}{2-\ln(x+y)}$

7.) Determine and sketch the domain of each function in 2D-Space.

a.)
$$f(x,y) = \ln(x^2 + y^2 - 4)$$
 b.) $f(x,y) = \ln(1 + x + y)$ c.) $f(x,y) = \frac{1}{4 - \sqrt{25 - x^2 - y^2}}$ d.) $f(x,y) = \sqrt{(x^2 - 4)(y^2 - 1)}$

****** ***** The following problem is for recreational purposes only.

8.) A snail is at the bottom of a well which is 100 feet deep. Each day the snail climbs up 7 feet and down 5 feet. In how many days will the snail reach the top of the well?