第1周讲稿

第一章 概率与概率空间

§1 引言

- 1. 随机数学的研究对象 确定性现象、随机现象 研究对象: 随机现象的统计规律性
- 2. 发展简史

概率论发展简史:

16世纪 欧洲学者开始研究赌博中的一些简单问题 (掷骰子、扑克等);

17 世纪中叶 Pascal, Fermat 等基于排列组合(组合数学)研究一些较为复杂赌博问题(得分问题,破产问题等);

1713 年第一个分水岭,J.Bernoulli(大数定律) \Rightarrow *De Moivre* (中心极限定理)(在简单

情形下,用他导出的 $n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$ 首次说明了正态分布的重要性,其一般结论后由 Laplace 给出)

1812 年第二个分水岭, P.S. Laplace《概率的分析理论》(给出了概率的古典定义,运用了 Laplace 变换,母函数及差分方差的方法,完成了组合计算到分析方法的过渡);其后的概率 主流,是推广和发展大数定律和中心极限定理; Chebyshev(1866年)⇒Liapunov(1901年(特征函数方法))

20 世纪, Khintchine, Kolmogorov, Levy, Wiener 等,特别是 1933 年的 Kolmogorov 的概率公理化体系的提出。

随机过程发展简史:

1900年(1905年)Bachelier (Einstein)的 Brown 运动的提出;

1907年 Markov 的 Markov 链 (1931年 Kolmogorov 的 Markov 过程);

1923 年 Wiener 的 Brown 运动的数学定义;

1934 年 Khintchine 的平稳过程;

1938年 Levy 的独立增量过程;

1951年 Ito 的随机积分, 1953年 Doob 的随机过程一般理论和鞅论。

随机过程的研究方法: 概率方法(轨道性质、停时、SDE等); 分析方法(测度论、半群、函数论、微分方程等)

§ 2 随机事件及其概率

- 1. 一些基本概念: 样本空间 Ω , 事件, 事件的运算与法则如何研究: 随机试验(两个条件)
 - ☆ 能正确写出恰当描述随机试验的样本空间;
 - ☆ 样本点和样本空间的选取并不是唯一的(但不管选取哪个,事件的概率是唯一

的),要选择容易计算概率的那一个样本空间;

☆ 同一样本空间可以表示不同的随机试验.

附:事件的四种关系,三种运算及运算法则:

☆ $\omega \in A \Leftrightarrow$ 事件 A 发生

☆ 运算法则:着重注意对偶律(De Morgan 律)

(1) 事件之间的四种关系

关系	符号	概率论	集合论
包含关系	$A \subset B$	事件 A 发生则事件 B 必发生	A 是 B 的子集
等价关系	A = B	事件 A 与事件 B 相等	A 与 B 相等
对立关系	A^c	事件 A 的对立事件 (或逆事件)	A 的余集
互斥关系	$AB = \phi$	事件A与事件B不能同时发生(互不相容)	A 与 B 无公共元素

(2) 事件之间的三种运算

运算	符号	概率论	集合论
事件的和(并)	$A \cup B$ ($\mathfrak{g}A + B$)	事件 A 与事件 B 至少有一个发	A 与 B 的并集
		生	
	$\bigcup_{i=1}^{n} A_{i}$	事件 A ₁ ,…,A _n 至少有一个发生	A_1, \dots, A_n 的并集
	i=1		
事件的积(交)	$A \cap B$ ($\mathfrak{g} AB$)	事件 A 与事件 B 同时发生	A 与 B 的交集
	$\bigcap_{i=1}^n A_i$	事件 A ₁ ,…,A _n 同时发生	A_1, \dots, A_n 的交集
 事件的差	$A-B$ (或 $A\setminus B$)	事件 A 发生而事件 B 不发生	A 与 B 的差集

(3) 事件的运算法则

交換律: $AB = BA$; $A \cup B = B \cup A$	结合律: $(A \cup B) \cup C = A \cup (B \cup C)$;
	(AB)C = A(BC)
分配律: $(A \cup B)C = AC \cup BC$	对偶律(De Morgan 律):
$(A \cap B) \cup C = (A \cup C)(B \cup C)$	$(A \bigcup B)^c = A^c \cap B^c; (A \cap B)^c = A^c \bigcup B^c$
	$(\bigcup_{i=1}^{n} A_{i})^{c} = \bigcap_{i=1}^{n} A_{i}^{c}; (\bigcap_{i=1}^{n} A_{i})^{c} = \bigcup_{i=1}^{n} A_{i}^{c}$
补元律: $AA^c = \phi; A \cup A^c = \Omega$	还原律: $(A^c)^c = A$
蕴涵律: 若 $AB = \phi$,则 $A \subset B^c$, $B \subset A^c$	分解律: 若 $A \subset B$,则 $B = A \cup A^c B$

差积转换律: $A-B=AB^c=A-AB$	吸收律: 若 $A \subset B$,则 $AB = A$; $A \cup B = B$
矛盾律: AA = φ	排中律: $A \bigcup A^c = \Omega$

- 2. 两类等可能概型: 古典概型与几何概型
 - ★ 古典概型的前提; 定义: $P(A) = \frac{\#A}{\#O}$, $A \in \mathcal{F}$;

工具:排列和组合数数,要注意分子分母数数时的一致性

★ 几何概型的前提; 定义:设 Ω 为可测区域, $A \in \mathscr{F}$ 且可测, $P(A) = \frac{L(A)}{L(\Omega)}$,

工具: 微积分求区域面积、体积等

例 1(摸球问题、抽签问题)袋中装有 α 个白球及 β 个黑球,

(1) 从袋中任取 a+b 个球, 试求所取的球恰含 a 个白球和 b 个黑球的概率($a \le \alpha, b \le \beta$).

$$\begin{bmatrix} \frac{C_{\alpha}^{a}C_{\beta}^{b}}{C_{\alpha+\beta}^{a+b}} \end{bmatrix}$$

例 2(约会问题) 两人相约于晚 7 点到 8 点间在某地会面,先到者等足 20 分钟便立即离去. 设两人的到达时刻在 7 点到 8 点间都是随机且等可能的. 求两人能会面的概率 p. 【 $\frac{5}{9}$ 】 例 3(Buffon 问题) 平面上画有一族相距为 a 的平行线. 向此平面投一长为 l (< a)的针. 求针与平行线相交的概率 p.

存在的问题:

★Bertrand 悖论 (在圆内任意作一弦,求其长超过圆内接正三角形边长的概率?) 问题的提法不确定,这里的"任意"至少有3种解释,相对于各自的解释,每种解法都正确。原因:当随机试验有无穷多个可能结果时,有时很难规定"等可能"这一概念。 ★抛硬币之例(书中例子介绍例1.3;例1.4,例1.5); ★有限样本空间的非古典概型例子。

§3 概率空间及概率的计算

1. 事件域的引入

定义: 事件族(Ω 的子集族) \mathcal{F} 称为 σ -域(也称为 σ -代数或事件体), 如果它满足下列条件:

- i) $\Omega \in \mathcal{F}$;
- ii) 若 $A \in \mathcal{F}$, 则 $A^c \in \mathcal{F}$;

iii) 若
$$A_1, A_2, \dots \in \mathcal{F}$$
,则 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$,

几个特殊的 σ -域介绍(例子)。

2. 概率的公理化定义

定义: 概率(也称为**概率测度**)P 为 F 上的非负值函数,即对每一事件 $A \in F$,都可定义一个数 P(A),满足下列条件:

(1) 非负性: 对一切
$$A \in \mathcal{F}$$
,有 $P(A) \ge 0$ (1.2)

(2) 规范性:
$$P(\Omega) = 1$$
. (1.3)

(3) 可数可加性: 若 $A_1, A_2, \dots \in \mathcal{F}$ 为一列两两互不相容的事件,则

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$
(1.4)

则称 P(A)为事件 A 的概率。试验的样本空间 Ω 、事件 σ -域 τ 及定义在 σ 上的概率 P 所构成的三元组 (Ω, τ, P) ,称为描述该随机试验的概率空间.

注 1) 如果 Ω 只包含n个点,则每个单点集 $\left\{\omega_{j}\right\}$ $j=1,2,\cdots,n$ 是一个基本事件,取 σ 为 Ω 的所有子集的全体,则对每个 $\left\{\omega_{j}\right\}$ 指定概率就足够了。因为对任意 $A \in \sigma$,我们有 $P(A) = \sum_{\alpha \in A} P(\omega)$ 。当基本事件都是等可能的情况下,我们进一步可推得

$$P(\{\omega_j\}) = \frac{1}{n}$$
 $j=1,2,\dots,n$

此时, $P(A) = \frac{\#A}{n}$ $(A \in \mathcal{F})$ 。由此可见古典概型仅仅是 Kolmogorov 模型中的一个非常小的子模型.

例(有限概率空间,但不等可能)从 $1,2,\cdots,100$ 中选取一数,取到不超过 50 的数的概率为 p,取到不超过 50 的数的概率为 3p,求取一数它为平方数的概率? 【 $\frac{16}{100}$ 】

- 2) 如果 Ω 包含可数个点,我们就不能对基本事件做等可能的假设,但仍然可以通过对每个基本事件 $\{\omega\}$ 指定概率,而得到概率 P。因为对任意 $A \in \mathcal{F}$ (其中 \mathcal{F} 为 Ω 的所有子集的全体),令 $P(A) = \sum P(\omega)$,就得到满足概率公理的概率测度 P 。
- 3) 如果 Ω 包含不可数多个点,每个单点集是一基本事件,虽然这时各单点集可能完全对称,它们出现的可能性也相同,但是这时我们不能简单地指定每个基本事件的概率,因为

这个值为零。更深层的原因是: 此时 F 一般不能取 Ω 的所有子集的全体,这相当于实分析中 "难测度问题"。

3. 概率的简单性质

性质 1 (求逆公式) 如果 $A \in \mathcal{F}$,则 $P(A^c) = 1 - P(A)$.

性质 2 (减法公式) 如果 $A, B \in \mathcal{F}$, 则 P(A-B) = P(A) - P(AB);

特别地, 当 $A \supset B$ 时, 有 P(A - B) = P(A) - P(B), 从而 $P(A) \ge P(B)$ (单调性). 性质 3 (一般的加法公式) 如果 $A, B \in \mathcal{F}$, 则

$$P(A \cup B) = P(A) + P(B) - P(AB) \le P(A) + P(B)$$

一般地,若 $A_1, A_2, \dots, A_n \in \mathcal{F}$,则

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_i)$$

例(匹配数问题)

解: 设 $A(i=1,2,\dots,n)$ 表示"第i个人拿到自己的作业",则匹配数为0的概率 q_0 为

$$q_0 = 1 - P\left(\bigcup_{i=1}^n A_i\right)$$
, 由于

$$P(A_i) = \frac{1}{n}, \forall i, \quad P(A_i A_j) = \frac{(n-2)!}{n!} = \frac{1}{n} \times \frac{1}{n-1}, \forall i \neq j,$$

$$P(A_i A_j A_k) = \frac{(n-3)!}{n!} = \frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2}, \forall i, j, k$$
互不相同,, $P(\bigcap_{i=1}^n A_i) = \frac{1}{n!}$;

故

$$P(\bigcup_{i=1}^{n} A_{i}) = \sum_{i} P(A_{i}) - \sum_{i < j} P(A_{i}A_{j}) + \sum_{i < j < k} P(A_{i}A_{j}A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i})$$

$$= C_{n}^{1} \frac{1}{n} - C_{n}^{2} \frac{(n-2)!}{n!} + C_{n}^{3} \frac{(n-3)!}{n!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

从而,
$$q_0 = 1 - P\left(\bigcup_{i=1}^n A_i\right) = \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \to e^{-1}$$

思考: 匹配数为 \mathbf{r} 的概率为 $\frac{1}{r!}\sum_{k=0}^{n-r}\frac{(-1)^k}{k!}$ 。

性质 4 (有限可加性) 若 $A_1, A_2, \cdots, A_n \in \mathcal{F}$ 为一列两两互不相容的事件,则

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right)$$

注:可数可加性⇒有限可加性;可数可加性与加法公式区别.

性质 5 (概率的下 (上) 连续性) 设 $\{A_n\}$ 是 \mathcal{F} 中的非减 (或非增) 事件序列(即 $A_n \in \mathcal{F}$, 并

且
$$A_n \subset A_{n+1}$$
 (或 $A_n \supset A_{n+1}$), $n = 1, 2, \cdots$) ,则

$$\lim_{n\to\infty}P(A_n)=P(\bigcup_{n=1}^{\infty}A_n)\qquad (\text{ if }\lim_{n\to\infty}P(A_n)=P(\bigcap_{n=1}^{\infty}A_n)\)$$

注: 可数可加性 ⇔ 有限可加性 + 概率的连续性(思考)

例 从(0,1) 中任取一数,它为 $\frac{1}{3}$ 的概率等于 0.

提示: 记 $A_n = \{ (0,1) \text{ 中任取一数, 它的前 n 位小数为} \underbrace{33\cdots 3}_n \}, A_n \downarrow A = \{ \frac{1}{3} \}, P(A_n) = \frac{1}{10^n} \}$

补充:事件序列的极限

设 $\{A_n\}$ 为样本空间 Ω 中的事件序列,

定义 $\{A_n\}$ 的上极限为: $\overline{\lim_{n\to\infty}}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k=\{\omega: \forall n\in N, \exists k\geq n, s.t.\omega\in A_k\}$;

$$\{A_n\}$$
的下极限为: $\lim_{n\to\infty}A_n=\bigcup_{k=0}^{\infty}\bigcap_{k=0}^{\infty}A_k$.

如果 $\overline{\lim_{n\to\infty}}A_n=\underline{\lim_{n\to\infty}}A_n$,则称事件序列 $\{A_n\}$ 的极限存在,记为 $\lim_{n\to\infty}A_n$,即

$$\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \underline{\lim}_{n\to\infty} A_n$$

结论:

(1) $\overline{\lim}_{n\to\infty} A_n = \{\omega : \omega$ 属于无穷多个 $A_n\}$;(即当且仅当有无穷个 A_n 发生)

 $\lim_{n\to\infty}A_n=\{\omega:\omega$ 属于几乎一切 $A_n\}=\{\omega:\omega$ 不属于 A_n 中的有限个 $\}$;(即当且仅当至

多有有限个A,不发生)

(2)
$$\lim_{n\to\infty} A_n \subset \overline{\lim}_{n\to\infty} A_n$$
;

(3)
$$\left(\underline{\lim}_{n\to\infty}A_n\right)^c = \overline{\lim}_{n\to\infty}A_n^c$$
, $\left(\overline{\lim}_{n\to\infty}A_n\right)^c = \underline{\lim}_{n\to\infty}A_n^c$;

$$(4) \lim_{n\to\infty}A_n = \begin{cases} \bigcup_{n=1}^{\infty}A_n, \quad \hbox{若}\{A_n\}$$
单调增;
$$\bigcap_{n=1}^{\infty}A_n, \quad \hbox{若}\{A_n\}$$
单调减.

例: 设 $A_n = \begin{cases} B, & \ddot{\pi} n = even; \\ C, & \ddot{\pi} n = odd. \end{cases}$ 求集列 $\{A_n\}$ 的上极限和下极限。

概率的连续性问题:

结论: 设 P 为定义在事件域 \mathcal{F} 上的满足 $P(\Omega)=1$ 且具有有限可加性的非负实值集合函数,则下列条件等价:

- (1) P 具有可数可加性 (即 P 为概率测度);
- (2) **P** 具有上连续性(见教材);
- (3) P 具有下连续性(见教材);

(4)
$$P$$
 在 ϕ 处连续,即若 $A_n \in \mathcal{F}$, $n=1,2,\cdots$, $A_n \supset A_{n+1}$ 且 $\bigcap_{n=1}^{\infty} A_n = \phi$,则 $\lim_{n \to \infty} P(A_n) = 0$;

(5)
$$P$$
 具有连续性,即若 $A_n \in \mathcal{F}$, $n = 1, 2, \cdots$ 且 $\lim_{n \to \infty} A_n$ 存在,则 $\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n)$.

复习: 有关排列组合的基本问题:

公式 1: n 个不同元素取 m 个的排列数为 A_n^m .

公式 2: n 个不同元素取 m 个的组合数为 C_n^m .

公式 3: $\{k_1 \uparrow a_1, k_2 \uparrow a_2, \dots, k_r \uparrow a_r \sharp n \uparrow n \uparrow n$ 不 不 素 所 作 的 排 列 数 $\}$

 $=\{n$ 个不同的元素分成各含 k_1 个, k_2 个,…, k_r 个的r个有序组的组合数 $\}=\frac{n!}{k_1!k_2!\cdots k_r!}$.

公式 4: $\{m \land T \in \mathbb{R}\}$ (每组数目不限)的组合数

 $=\{n$ 种元素允许任意重复取 m 个的排列数 $\}=n^{m}$.

= $\{n \text{ } m \text{ } n \text{$

$$=C_{m+n-1}^{n-1}=C_{m+n-1}^{m}.$$

公式 6: n 个不同元素取 m 个的圆排列数为 $\frac{A_n^m}{m}$.