CSCI 4511/6511 - Exam Prep 1

Instructions:

This is ungraded exam preparation.

1 Uniform-Cost Search

List the nodes in their **order of expansion** for UCS used to solve the following problem:

Edge weights are as marked. Ignore heuristic values.

For each node, include the *path* and the total *path cost* to each node.

Example (for one node): B , A \rightarrow B , 1

2 A* Search

List the nodes in their order of expansion for A* used to solve the following problem:

Edge weights are as marked. Heuristic values are indicated for each node. For each node, include the *path* and the total *path plus heuristic cost* to each node. Example (for one node): B, $A \rightarrow B$, 6

3 A* Search - Admissibility

For this problem, is the heuristic admissible? Why or why not.

4 Depth-Limited Search

Rewrite the Depth-First Search algorithm below to terminate in failure if the search tree is exhaustively searched to depth 6 (inclusive of the initial node) without reaching the goal.

Algorithm Depth-First Search

```
1: function Depth-First-Search(problem)
      node \leftarrow Node(State = problem.initial)
       frontier \leftarrow \text{LIFO stack}
3:
       frontier.Push(node)
4:
      while not Is-Empty (frontier) do
 5:
          node \leftarrow Pop(frontier)
6:
          if problem.Is-Goal (node.State) then
7:
              {f return}\ node
8:
          else if not Is-Cycle(node) then
9:
              for each child in Expand(problem, node) do
10:
                  frontier.Push(child)
11:
      {f return}\ failure
12:
```

5 A* Search - Consistency

Prove that the Manhattan distance heuristic used in the Pacman environment from Homework 1 is consistent.

