

天线与电波传播

郭璐

南京理工大学,电光学院通信工程系

2023年春季学期

Email: lu.guo@njust.edu.cn

第10章 电波传播的基础知识

- 10.1 概述
- 10.2 自由空间电波传播
- 10.3 电波传播的菲涅尔区

表 10-1-1 无线电波频段的划分

波段名	亚毫米波 (Sub-mm)	毫米波	厘米波	分米波	超短波 (Metric	短波	中波	长波	甚长波	特长波	超长波	极长波
		微波(MicroWave)			Wave)	(SW)	(MW)	(LW)	KKW	13 12 12	AB IN UX	
波长	0.1~1	1~10	1~10	10~100	1~10	10~100	100~1000	1~10	10~100	100~1000	$10^3 \sim 10^4$	104 km
λ	mm	mm	cm	em	m	m	m	km	km	km	km	以上
频率	3000~300	300~30	30~3	3000~300	300~30	30~3	3000~300	300~30	30~3	3000~300	300~30	30 Hz
f	GHz	GHz	GHz	MHz	MHz	MHz	kHz	kHz	kHz	Hz	Hz	以下
频段名		EHF	SHF	UHF	VHF	HF	MF	LF	VLF	ULF	SLF	ELF
		极高频	超高频	特高頻	甚高频	高频	中频	低频	甚低频	特低频	超低频	极低频

频段名称及典型业务									
名称	符号	频率	波段	波长	传播特性	主要用途			
甚低频	VLF	3-30KHz	甚长波	100-10 km	空间波为主	海岸潜艇通信;远距离通信;超远 距离导航			
低频	LF	30- 300KHz	长波	10- 1km	地波为主	越洋通信;中距离通信;地下岩层 通信;远距离导航			
中频	MF	0.3-3MHz	中波	1km- 100m	地波与天波	船用通信;业余无线电通信;移动 通信;中距离导航			
高频	HF	3-30MHz	短波	100m- 10m	天波与地波	远距离短波通信;国际定点通信			
甚高频	VHF	30- 300MHz	米波	10m- 1m	空间波	电离层散射(30-60MHz);流星余 迹通信;人造电离层通信(30- 144MHz);对空间飞行体通信;移 动通信			
特高频	UHF	0.3-3GHz	分米波	100- 10cm	空间波	小容量微波中继通信; (352-420MHz); 对流层散射通信(700-10000MHz); 中容量微波通信(1700-2400MHz)			
超高频	SHF	3-30GHz	厘米波	10- 1cm	空间波	大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz)			
极高频	EHF	30- 300GHz	毫米波	10- 1mm	空间波	在入大气层时的通信;波导通信			

电波传播特性同时取决于媒质结构特性和电波特征参量。对于一定频率和极化的电波与特定媒质条件相匹配,将具有某种占优势的传播方式。常用的电波传播方式分为:

地面波传播;天波传播;视距传播;

地面波传播

地波传播

无线电波沿着地球表面的传播就称为地波传播。主要用于低频及甚低频远距离无线电导航、标准频率和时间信号的广播、对潜通信等业务。其主要的传播特点是:传输损耗小,作用距离远;受电离层扰动影响小,传播情况稳定;有较强的穿透海水及土壤的能力;但大气燥声电平高,工作频带窄。

天波传播

视距传播

10.2 自由空间电波传播

不同的电波传播方式反映在不同传输媒质对电波传播的影响不同,带来的损耗不同。但是即使在自由空间传播,电波在传播的过程中的功率密度也不断衰减。为了便于对各种传播方式进行定量的比较,有必要先进行在自由空间传播的讨论。

自由空间传播损耗计算

设有一天线置 于自由空间, 在 上、距离为r的 $E = \frac{\sqrt{60P_rD}}{}$ 接收点处产生场 强为:

$$E = \frac{\sqrt{60P_r D}}{r}$$

自由空间传播损耗 (free space propagation loss) : 当发射天线与接收天线的方向 系数都为 $oldsymbol{1}$ 时,发射天线的辐射功率与接收天线的最佳接收功率的比值,记为 $oldsymbol{L}oldsymbol{0}$,

$$L_0 = 10 \lg \frac{P_r}{P_L} \qquad (dB)$$

D=1 的无方向 密度为

D=1 的无方向

当接收天线与来 其接收功率为

D=1 的 无 方向
性接收天线的
有效接收面积
$$A_e = \frac{\lambda^2}{4\pi}$$
 当接收天线与来
波极化匹配并与
负载阻抗匹配时 $P_L = S_{av}A_e = \left(\frac{\lambda}{4\pi r}\right)^2 P_r$

$$L_0$$
 (dB) = $10 \lg \frac{P_r}{P_L} = 20 \lg (\frac{4\pi r}{\lambda})$

$$L_0(dB) = 32.45 + 20 \lg f(MHz) + 20 \lg r(km)$$

= 121.98+20 \lg d(km) - 20 \lg \lambda(cm)

当电波频率提高1倍或传播距离增加1倍时,自由空间传播损耗分别增加6dB。

当波长 $\lambda=100$ m, 传播距离r=50km时,

$$L_0 = 76 \text{dB}$$

这是一个不小的数据。

电波在实际的媒质(信道)中传播时是有能量损耗的。 这种能量损耗可能是由于大气对电波的吸收或散射引起的, 也可能是由于电波绕过球形地面或障碍物的绕射而引起的。

信道的衰减因子A为

$$A = \frac{\left|E\right|}{\left|E_0\right|} \tag{10-2-8}$$

$$L_F = 20 \lg \frac{1}{A} = 20 \lg \frac{|E_0|}{|E|}$$
 (10-2-9)

路径传输损耗:

$$L_b = L_o + L_F$$
 dB

$$P_L = \left(\frac{\lambda}{4\pi r}\right)^2 A^2 G_L G_r P_{in} \qquad (10-2-12)$$

电道传输损耗:

$$L = L_0 + L_F - G_r - G_L (dB) (10-2-14)$$

例10-2-1(教材238页)

$$R + r_1 = R + r_0 + \lambda / 2$$

 $R + r_2 = R + r_0 + 2(\lambda / 2)$
 \vdots
 $R + r_n = R + r_0 + n(\lambda / 2)$

$$E_{1} > E_{2} > E_{3} > \cdots E_{n} > E_{n+1} > \cdots$$

$$E = E_{1} - E_{2} + E_{3} - E_{4} + \cdots$$

$$E = \frac{E_{1}}{2} + (\frac{E_{1}}{2} - E_{2} + \frac{E_{3}}{2}) + (\frac{E_{3}}{2} - E_{4} + \frac{E_{5}}{2}) + (\frac{E_{5}}{2} - E_{6} + \frac{E_{7}}{2}) + \cdots$$

$$E \approx \frac{E_{1}}{2}$$

上式给我们一个重要的启示,尽管在自由空间从波源辐射到观察点的电波,从波动光 学的观点看可以认为是通过许多菲涅尔区传播的,但起最重要作用的是第一菲涅尔区。

第一菲涅尔区半径的计算

$$\sqrt{F_1^2 + d_1^2} + \sqrt{F_1^2 + d_2^2} = d + \lambda/2$$

$$d_1 >> F_1$$
 $d_2 >> F_1$
 $F_1 = \sqrt{\frac{d_1 d_2 \lambda}{d}}$

$$F_{1\text{max}} = \frac{1}{2}\sqrt{d\lambda}$$

10.3 电波传播的菲涅尔区

实际上,划分菲涅尔半波带的球面是任意选取的,因此当球面半径变化时,尽管各菲涅尔区的尺寸也在变化,但是它们的几何定义不变。而它们的几何定义恰恰就是以AP两点为焦点的椭圆定义。如果考虑到以传播路径为轴线的旋转对称性,不同位置的同一菲涅尔半波带的外围轮廓线应是一个以收、发两点为焦点的旋转椭球。我们称第一菲涅尔椭球为电波传播的主要通道。

波长越短,第一菲涅尔区半径越小,对应的第一菲涅尔椭球越细长。对于波长非常 短的光学波段,椭球体更加细长,因而产生了光学中研究过的纯粹的射线传播。

由于电波传播的主要通道并不是一条直线,所以即使某凸出物并没有挡住收、发两点 间的几何射线,但是已进入了第一菲涅尔椭球,此时接收点的场强已经受到影响,该 收、发两点之间不能视为自由空间传播。而当凸出物未进入第一菲涅尔椭球,即电波 传播的主要通道,此时才可以认为该收、发两点之间被视为自由空间传播。

即使地面上的障碍物遮住收、发两点间的几何射线的情况下,由于电波传播的主要通道 未被全部遮挡住,因此接收点仍然可以收到信号,此种现象被称为电波具有绕射能力。在 地面上的障碍物高度一定的情况下,波长越长,电波传播的主要通道的横截面积越大,相 对遮挡面积就越小,接收点的场强越大,因此频率越低,绕射能力越强。

翎 翎!

