Nattapat Yuvasuta
 59070501028

 Nuttawut Kuadplod
 59070501029

 Niti Buesamae
 59070501047

 Panumas Wongsaeng
 59070501056

 Supadet Jomthepmala
 59070501069

Lab Report 5

2.1 From data in Steps 3 and 4, plot the per-connection throughputs (x_i) and its average as a function of the number of parallel TCP connections (n).

Number of Parallel TCP Connections to Client	Download throughputs (Mbps)	Average per-connection throughputs
1	94.1	94.1
2	47.6,56.9	52.2
3	41.4,31.8,31.8	35.0
4	25.8,24.3,23.9,24.1	24.5
5	23.4,23.2,19.0,19.1,19.4	20.8

(a) For the case of one session (Step 3), Is the throughput close to the middle link capacity? What is the percentage of throughput to the link capacity?

<u>Ans</u> Values are converge to the amount of 100 which is close to a middle link

(b) Explain how the per-connection throughputs you measured are related to the number of parallel TCP connections and the link capacity.

Ans Values will be decrease propotion to a number of TCP network connection

 Nattapat Yuvasuta
 59070501028

 Nuttawut Kuadplod
 59070501029

 Niti Buesamae
 59070501047

 Panumas Wongsaeng
 59070501056

 Supadet Jomthepmala
 59070501069

2.2 From data in Step 7, plot the per-connection throughputs (x and y) and its average as a function of the number of parallel TCP connections over the middle link (n).

#TCP Connections to Client 1	#TCP Connections to Client 2	Number of TCP Connections over the middle link	Download throughputs (Mbps)	Average p connection throughp
1	1	2	(55.0),(50.0)	52.5
1	3	4	(24.7), (23.9,23.8,23.9)	24.1
2	4	6	(18.0,18.1), (15.8,15.8,15.8,18.4)	17.0
3	5	8	(12.2,14.3,12.7),(12.0,11.8,11.8,11.8,14.8)	12.7
4	6	10	(10.1,10.4,10.0,10.4),(9.7,10.2,9.5,9.6,9.9,13.5)	10.3

(a) Do you observe the same behavior of per-connection throughput over the middle link as in 2.1(b) ? Explain.

Ans Yes, as two clients are on the same network.

(b) Which client gets higher total download throughput? Do they get a fair share of the middle link capacity? If not, Do you think this result will be a problem in a real-world situation?

<u>Ans</u> Both clients receive a fair share. This will result in situation that although 1st client use only a small amount of network but will still receive only a fraction of overall network throughput.