# Effects of Vessel Noise on Humpback Whales

Fabian Blasch

06/12/2022

#### Recall: Experiment Description and Data Generation

- Vessel approaches consisted of a typical whale-watch approach; transiting past a logging mother-calf pair at 100 m distance at slow speed
- Vessel noise was played through a transducer that was suspended from the side of the vessel to 1.5 m below the surface to mimic typical depth of propellers/shaft/exhaust of whale-watching vessels.
- ➤ The vessel noise imitation was set to different levels: control (124 dB), low (148 dB), medium (160 dB) and high (172 dB)



Figure 1: Experiment Design

Recall: Data

- ▶ The Data set contains 42 observations, for which there exist three entries per noise level. One before, one during and one after the whales were exposed to the synthetic vessel noises
- ► Three different measures were taken:
  - ▶ The respiration rate was calculated as the number of breaths per minute
  - ▶ The mean swim speed (m/s), calculated by dividing the distance traveled by the duration of a video recording
  - ▶ The proportion of time resting

#### Vairables and Transformations



Figure 2: Variables and Transformations

#### Models

- Proportion of time resting
  - Observations were weighted by the length of the observation period
  - The data used to calculate the weights was not available in the provided data set
  - ▶ Penalized quasi-likelihood (GLMM-PQL) to account for over dispersion
- Respiration rate
  - I MM
  - Estimated via restricted maximum likelihood
- ► Mean swim speed (m/s)
  - ► LMM
  - Estimated via restricted maximum likelihood
  - ▶ To account for autocorrelation within follows, the correlation was modeled with an AR1 process
- Log mean swim speed
  - ► LMM
  - Transformation in hopes of normally distributed residuals

| Model details                                                                                                    | Model    |
|------------------------------------------------------------------------------------------------------------------|----------|
| $\overline{\text{Proportion.time.logging} \sim \text{treatment*phase} + (1 \text{Individual}), \text{ weights}}$ | GLMM-PQL |
| Respiration.rate (breaths min $^{-1}) \sim$ treatment *phase + (1 Individual), method="REML"                     | LMM      |
| $Mean.swim.speed \ (m\ s^{\text{-}1}) \sim treatment*phase + (1 Individual),\ corr,\ method="REML"$              | LMM      |

#### Residual Diagnostics I



### Residual Diagnostics II



## Results: speed $\sim$ I(treatment) \* I(szenario)

 $\triangleright$  Sprogis et al. report: within high noise treatments, swim speed increased significantly by 33% from before to during vessel approaches (p = 0.007)

|                                      | Value  | Std.Error | DF | t-value | p-value |
|--------------------------------------|--------|-----------|----|---------|---------|
| (Intercept)                          | 0.339  | 0.068     | 73 | 5.019   | 0.000   |
| I(treatment)Medium                   | -0.080 | 0.095     | 39 | -0.838  | 0.407   |
| I(treatment)High                     | 0.013  | 0.092     | 39 | 0.139   | 0.890   |
| I(szenario)During                    | -0.013 | 0.066     | 73 | -0.201  | 0.841   |
| I(szenario)After                     | 0.037  | 0.067     | 73 | 0.546   | 0.587   |
| I(treatment)Medium:I(szenario)During | 0.057  | 0.094     | 73 | 0.611   | 0.543   |
| I(treatment)High:I(szenario)During   | 0.183  | 0.090     | 73 | 2.027   | 0.046   |
| I(treatment)Medium:I(szenario)After  | 0.055  | 0.093     | 73 | 0.594   | 0.554   |
| I(treatment)High:I(szenario)After    | 0.026  | 0.093     | 73 | 0.283   | 0.778   |

## Results: $logspeed \sim I(treatment) * I(szenario)$

|                                      | Value  | Std.Error | DF | t-value | p-value |
|--------------------------------------|--------|-----------|----|---------|---------|
| (Intercept)                          | -1.231 | 0.183     | 73 | -6.725  | 0.000   |
| I(treatment)Medium                   | -0.328 | 0.258     | 39 | -1.272  | 0.211   |
| I(treatment)High                     | -0.018 | 0.250     | 39 | -0.072  | 0.943   |
| I(szenario)During                    | -0.108 | 0.171     | 73 | -0.631  | 0.530   |
| I(szenario)After                     | 0.082  | 0.204     | 73 | 0.404   | 0.688   |
| I(treatment)Medium:I(szenario)During | 0.342  | 0.242     | 73 | 1.415   | 0.161   |
| I(treatment)High:I(szenario)During   | 0.508  | 0.233     | 73 | 2.175   | 0.033   |
| I(treatment)Medium:I(szenario)After  | 0.268  | 0.283     | 73 | 0.945   | 0.348   |
| I(treatment)High:I(szenario)After    | 0.020  | 0.281     | 73 | 0.070   | 0.944   |

#### Results: atem ~ I(treatment) \* I(szenario)

 $\blacktriangleright$  Sprogis et al. report: within the high treatments, the respiration rate from before to during vessel approaches increased significantly by 42% (p = 0.001)

|                                      | Value  | Std.Error | DF | t-value | p-value |
|--------------------------------------|--------|-----------|----|---------|---------|
| (Intercept)                          | 0.349  | 0.057     | 78 | 6.132   | 0.000   |
| I(treatment)Medium                   | -0.023 | 0.079     | 39 | -0.290  | 0.774   |
| I(treatment)High                     | -0.016 | 0.078     | 39 | -0.208  | 0.836   |
| I(szenario)During                    | -0.064 | 0.076     | 78 | -0.851  | 0.397   |
| I(szenario)After                     | 0.067  | 0.076     | 78 | 0.890   | 0.376   |
| I(treatment)Medium:I(szenario)During | 0.142  | 0.105     | 78 | 1.352   | 0.180   |
| I(treatment)High:I(szenario)During   | 0.302  | 0.103     | 78 | 2.921   | 0.005   |
| I(treatment)Medium:I(szenario)After  | -0.095 | 0.105     | 78 | -0.899  | 0.371   |
| I(treatment)High:I(szenario)After    | -0.098 | 0.103     | 78 | -0.946  | 0.347   |

#### Results: ruhezeit ~ I(treatment) \* I(szenario)

 Sprogis et al. report: within high noise treatments, the proportion of time resting from before to during vessel approaches decreased significantly (p = 0.02)

|                                      | Value  | Std.Error | DF | t-value | p-value |
|--------------------------------------|--------|-----------|----|---------|---------|
| (Intercept)                          | 2.381  | 0.623     | 78 | 3.821   | 0.000   |
| I(treatment)Medium                   | -0.787 | 0.786     | 39 | -1.000  | 0.323   |
| I(treatment)High                     | -0.350 | 0.809     | 39 | -0.433  | 0.668   |
| I(szenario)During                    | -0.027 | 0.810     | 78 | -0.033  | 0.974   |
| I(szenario)After                     | -1.023 | 0.706     | 78 | -1.449  | 0.151   |
| I(treatment)Medium:I(szenario)During | -0.775 | 0.979     | 78 | -0.792  | 0.431   |
| I(treatment)High:I(szenario)During   | -1.506 | 0.991     | 78 | -1.519  | 0.133   |
| I(treatment)Medium:I(szenario)After  | 0.714  | 0.910     | 78 | 0.785   | 0.435   |
| I(treatment)High:I(szenario)After    | -0.341 | 0.911     | 78 | -0.374  | 0.709   |