

Lab 3 - Naive Bayes Classifier

Author: Krishna Swaroop

181CO125, NITK Surathkal

Introduction

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption of conditional independence between every pair of features given the value of the class variable.

Dataset

The iris dataset is a classic and very easy multi-class classification dataset. The dataset is described below

Features	Quantity
Classes	3
Samples per Class	50
Samples Total	150
Dimensionality	4

The classes are numbered 0/1/2 and the features are real valued attributes

Naive Bayes Classifier

1) Import Libraries

```
from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pandas as pd
```

- 2) Load data

```
iris = load_iris()
X, y = load_iris(return_X_y=True)
```

Print first five values of numpy array to verify dataset values

```
print("Features of first five values are: ")
print(X[0:5])
print("Classes of first five values are: ", y[0:5])

Features of first five values are:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]]
Classes of first five values are: [0 0 0 0 0]
```

3) Split data

Use $train_test_split()$ to split the X and y to training and testing dataset. Here, 20% of the dataset is reserved to test our algorithm

```
X train, X test, y train, y test = train test split(X, y, test size = 0.20, random
```

4) Scale data proportionately

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X test = sc.transform(X test)
```

√ 5) Fit model

```
from sklearn.naive_bayes import GaussianNB
nvclassifier = GaussianNB()
nvclassifier.fit(X_train, y_train)
GaussianNB(priors=None, var_smoothing=1e-09)
```

- 6) Predict

7) Calculate Accuracy

Therefore, we can see that Naive Bayes gives an accuracy score of 93.33%