Metoda potpornih vektora

Support Vector Machines (SVM)

Metoda potpornih vektora

- Direktan pristup klasifikacionom problemu (kako to bi uradio inženjer – bez uvođenja probabilističkog modela)
- Razmatraćemo problem binarne klasifikacije
 - Imamo dve klase "pozitivnu" i "negativnu"
 - Svejedno je kako ćemo obeležiti klase (bitno nam je da ih razlikujemo)
 - Mi ćemo odabrati da "pozitivnu" klasu obeležimo sa $y=\pm 1$, a "negativnu" klasu obeležimo sa y=-1
- Granica odluke (koja razdvaja primere "pozitivne" klase od primera "negativne" klase) je hiperravan

Šta je hiperravan?

- Koncept u geometriji kojim se generalizuje koncept
- Deli *D*-dimenzionalni prostor na dva dela
- Hiperravan je podprostor dimenzije D-1
- Može se opisati linearnom jednačinom oblika:

$$f(x) = \theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_D x_D = 0$$

1-dimenzioni prostor:

- Tačka
- Deli pravu na 2 dela

2-dimenzioni prostor:

- Prava linija
- Deli ravan na dve poluravni

3-dimenzoni prostor:

- Ravan
- Deli prostor u dva poluprostora

Linearna separabilnost

- Razmatraćemo slučaj linearno separabilnih podataka
- (Klase možemo savršeno razdvojiti pomoću hiperravni)

Primeri linearno separabilnih podataka

Primeri podataka koji nisu linearno separabilni

Linearna separabilnost – formalnije

- Neka je data hiperravan opisana jednačinom $f(x) = \theta^T x = 0$
 - Za zelene tačke (koje smo obeležili sa $y^{(i)} = +1$) važi $f(x^{(i)}) > 0$
 - Za crvene tačke (koje smo obeležili sa $y^{(i)} = -1$) važi $f(x^{(i)}) < 0$
- Ako postoji takva hiperravan da za **sve** primere važi $y^{(i)} \cdot f(x^{(i)}) > 0$, podaci su linearno separabilni

Kako pronaći razdvajajuću hiperravan?

- Postoji beskonačno mnogo linija koje savršeno mogu da razdvoje dve klase
- Koju da odaberemo?
- Intuitivno, plava je najbolja jer je najudaljenija od primera obe klase
- Uzorak na kome treniramo je ograničen

Margina razdvajajuće hiperravni

- Obe razdvajajuće hiperravni savršeno klasifikuju (isti) skup podataka
- Ali hiperravan na slici levo ima veću marginu

- Margina razdvajajuće hiperravni je minimum rastojanja od te hiperravni do neke od tačaka skupa podataka
- Za datu hiperravan (npr. plava linija)
 - Pomeramo liniju paralelno na jednu stranu dok ne udari o prvi zeleni krug
 - Pomeramo liniju paralelno na drugu stranu dok ne udari o prvi crveni kvadrat
 - Rastojanje ovako dobijene dve linije (paralelne sa datom hiperravni) predstavlja marginu te hiperravni

SVM optimizacioni algoritam

 Među svim hiperravnima koje savršeno razdvajaju podatke na dve klase, pronaći onu sa najvećom marginom

Vektori potpore

• Vektori potpore su tačke $x^{(n)}$ najbliže hiperravni – kritične tačke koje određuju marginu

Vektori potpore

Pomeranje vektora potpore pomera granicu odluke

Pomeranje ostalih vektora ne utiče na granicu odluke

• Optimizacioni algoritam generiše parametre θ na taj način da samo vektori potpore utiču na njih