Lightweight Probabilistic Deep Networks

Team Members:

Eashan Gupta
Ankit
Kumar Saurav
160050045
160050057

Paper Used:

Lightweight Probabilistic Deep Networks

Results:

1. MNIST Database

Mode:	Accuracy:
Simple Softmax using conventional CNN	97.13
Using probabilistic output layer and only Dirichlet categorical classifier	97.57
Using ADF and Dirichlet distribution	97.58

2. CIFAR10 database

Mode:	Accuracy:
Simple Softmax using conventional CNN	53.71
Using probabilistic output layer and only Dirichlet categorical classifier	51.43
Using ADF and Dirichlet distribution	33.89

Basic Overview:

$$\begin{split} \mu_z^{(i)} &= E_{q(z^{(i-1)})}[f^{(i)}(z^{(i-1)};\theta^{(i)})] \\ v_z^{(i)} &= V_{q(z^{(i-1)})}[f^{(i)}(z^{(i-1)};\theta^{(i)})] \end{split}$$

Max-Pooling:

Use the formulas to derive the formulae.

For

$$C=max(A,B)$$

the formula comes out to be

$$\mu_C = \sqrt{\sigma_A^2 + \sigma_B^2} \cdot \phi(\alpha) + (\mu_A - \mu_B) \cdot \Phi(\alpha) + \mu_B$$

$$v_c = (\mu_A + \mu_B) \sqrt{\sigma_A^2 + \sigma_B^2} \cdot \phi(\alpha) + (\mu_A^2 + v_A) \cdot \Phi(\alpha) + (\mu_B^2 + v_B) \cdot (1 - \Phi(\alpha)) - \mu_C^2$$

Where

$$\alpha = \frac{(\mu_A - \mu_B)}{\sqrt{\sigma_A^2 + \sigma_B^2}}$$

Relu:

Y = max(0,X)

Given X is a Gaussian random variable with mean μ and standard deviation σ , the mean and variance of Y are given as follows:

$$\begin{split} \mu_{\text{relu}} &= \mu . \, \Phi \left(\, \mu / \sigma \, \right) + \, \sigma \, . \, \varphi \left(\, \mu / \sigma \, \right) \\ \nu_{\text{relu}} &= \left(\, \mu * \, \mu + \nu \, \right) . \, \Phi \left(\, \mu / \sigma \, \right) + \, \mu \, \, \sigma \, . \, \varphi \left(\, \mu / \sigma \, \right) - \, \mu_{\text{relu}} * \, \mu_{\text{relu}} \end{split}$$

 $\boldsymbol{\Phi}$, $\boldsymbol{\varphi}$ represents cdf and pdf of standard normal distribution respectively.

This is an activation layer used in the convolution neural nets and this formula was used for passing Relu nonlinearity in the means and variances of next layer based on previous layers.

Figure 1: ADF- Cross-entropy vs Entropy of MNIST data using Dirichlet Distribution and ADF CNN

Figure 2: ProbOut- Cross-entropy vs Entropy of MNIST data using Dirichlet Distribution and Simple CNN outputs

Figure 3: Softmax- Cross-entropy vs Entropy of MNIST data using Softmax categorical classification

Figure 4: ADF- Cross-entropy vs Entropy of CIFAR10 data using Dirichlet Distribution and ADF CNN

Figure 5: Output for ADF for MNIST database using epoch=10

Figure 6: ADF output for CIFAR10 database using epoch=10