Analysis of Unicorn Startups

Contents

1	Setup				
	1.1 Import Packages	1			
2	Data Preparation	1			
	2.1 Load Data	1			
	2.2 Data Cleaning	2			
	2.3 Prepare data	2			
	2.4 Preview data	2			
3	Descriptive Analysis	2			
	3.1 Distribution of Valuations across Different Industries	2			
	3.2 Distribution of Valuations across Different Countries	3			
4	Time-Based Analysis	5			
	4.1 Unicorn Growth Over Time	5			
	4.2 Years to Unicorn	6			

1 Setup

1.1 Import Packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import seaborn as sns
import re
```

2 Data Preparation

2.1 Load Data

2.2 Data Cleaning

```
def convert_years_months(s):
    m = re.match(r'(\d+)y?\s?(\d+)m?o?', s)
    return f'{m[1]}y{m[2]}m' if m else s

df['Years to Unicorn'] = df['Years to Unicorn'].apply(convert_years_months)
```

2.3 Prepare data

```
df['Unicorn Date'] = pd.to_datetime(df['Unicorn Date'])
df['Valuation ($B)'] = pd.to_numeric(df['Valuation ($B)'])
```

2.4 Preview data

```
df.head()
| Company | Valuation ($B) | Total Equity Funding ($) | Unicorn Date | Date Founded
→ | Years to Unicorn | Industry | Country
                                              | City
                                                         | Select Investors |

→ Years to Unicorn (Months)

I---+-----
                     350.0 |
| 0 | SpaceX
            1
                                          900000000 | Timestamp
                                                                 | (2012-12-01
→ 00:00:00) |
                      2002 | 10y3m | Enterprise Tech | United States |
→ Hawthorne
                | Opus Capital, RRE Ventures, Relay Ventures | 123 |
Hawthorn:

| 1 | ByteDance |
                    300.0 |
                                         8000000000 | Timestamp | (2017-04-07
                       2011 | 6y3m | Enterprise Tech
→ 00:00:00) |
                                                        | China
                                                                     | Beijing
→ | Breyer Capital, Parkway VC, TIME Ventures | 75 |
                 157.0 | 18000000000 | Timestamp | (2019-07-2015 | 4y6m | Industrials | United States | San
| 2 | OpenAI
                                                                | (2019-07-22
           - 1
→ 00:00:00) |
                                                           l 54 l
→ Francisco | Dynamo VC, Susa Ventures, Founders Fund
| 3 | Ant Group |
                     150.0 |
                                        19000000000 | Timestamp | (2017-01-01
→ 00:00:00) |
                        2014 | 3y | Financial Services | China
→ | Alibaba Group, CPP Investments, The Carlyle Group | 36 |
| 4 | Stripe
                        70.0 |
                                          9000000000 | Timestamp
                                                                | (2014-01-23
           - 1
→ 00:00:00) |
                        2009 | 5y
                                    | Consumer & Retail | United States | San
\hookrightarrow Francisco | Sequoia Capital China, ZhenFund, K2 Ventures | 60 |
```

3 Descriptive Analysis

3.1 Distribution of Valuations across Different Industries

	Industry	Valuation (\$B)
1	Enterprise Tech	1759.04
2	Financial Services	760.16
5	Industrials	678.55
0	Consumer & Retail	593.3
4	Healthcare & Life Sciences	398.45
7	Media & Entertainment	200.29
6	Insurance	117.06
8	West Palm Beach	3.0
3	Health	1.5

3.2 Distribution of Valuations across Different Countries

	Country	Valuation (\$B)
53	United States	2564.14
10	China	835.65
52	United Kingdom	197.35
24	India	172.07
43	Singapore	92.06
21	Germany	85.9
20	France	70.86
27	Israel	56.22
6	Canada	56.0
1	Australia	48.84
5	Brazil	34.13
45	South Korea	31.34
47	Sweden	29.42
36	Netherlands	24.46
35	Mexico	18.7
19	Finland	14.91
3	Belgium	11.95
42	Seychelles	11.8
26	Ireland	11.05
29	Japan	10.82

```
plt.figure(figsize=(12, 8))
plt.barh(country_valuation_df['Country'], country_valuation_df['Valuation ($B)'])
plt.title('Distribution of Valuations across Different Countries')
plt.xlabel('Total Valuation ($B)')
plt.ylabel('Countries')
plt.grid(axis='x', alpha=0.75)
plt.show()
```


4 Time-Based Analysis

4.1 Unicorn Growth Over Time

```
unicorn_count = df.groupby(df['Unicorn Date'].dt.year).size()
plt.figure(figsize=(12, 6))
plt.plot(unicorn_count.index, unicorn_count.values, marker='o')
plt.title('Number of Unicorns Created Each Year')
plt.xlabel('Year')
plt.ylabel('Number of Unicorns')
plt.ylabel('Number of Unicorns')
plt.xticks(unicorn_count.index, rotation=45)
plt.grid()
plt.show()
```


4.2 Years to Unicorn

```
# Function to convert "Years to Unicorn" into total months
def convert_years_to_months(years_str):
    if 'y' in years_str and 'm' in years_str:
        years, months = years_str.split('y')
       months = months.replace('m', '').strip()
        return int(years.strip()) * 12 + int(months)
    elif 'y' in years_str:
        years = years_str.replace('y', '').strip()
        return int(years) * 12
    elif 'm' in years_str:
       months = years_str.replace('mo', '').replace('m', '').strip()
       return int(months)
    else:
        return None
df['Years to Unicorn (Months)'] = df['Years to Unicorn'].apply(convert_years_to_months)
plt.figure(figsize=(12, 6))
plt.hist(df['Years to Unicorn (Months)'].dropna(), bins=30, color='skyblue')
plt.title('Distribution of Years to Unicorn')
plt.xlabel('Months to Unicorn')
plt.ylabel('Number of Unicorns')
plt.grid(axis='y', alpha=0.75)
plt.show()
```

