

INSIEMI E OPERAZIONI

(parte 4)

Stefania Bandini

RELAZIONI BINARIE

Una relazione binaria R tra due insiemi S e T è un insieme di coppie ordinate $\langle x,y\rangle$ con $x\in S$ e $y\in T$: $R\subseteq S\times T$).

Il dominio di R, indicato con dom(R), è l'insieme di tutti gli oggetti x tali che $\langle x,y\rangle\in R$ per qualche y.

Il codominio di R, indicato con codom(R), è l'insieme di tutti gli oggetti y tali che $\langle x,y\rangle\in R$ per qualche x.

L'unione del dominio e del codominio di una relazione R si chiama il *campo* di R oppure *estensione*.

ADECI STUDIO BIRDO CONTRA CONT

FONDAMENTI DELL'INFORMATICA

FUNZIONI

Tra le relazioni binarie, alcune hanno particolare importanza: le **funzioni** (o **applicazioni**) sono relazioni tra gli elementi di un insieme S e gli elementi di un insieme T tali che **ad ogni** elemento dell'insieme S corrisponde **al più** un elemento di T.

Una corrispondenza tra gli elementi di S e quelli di T è una funzione quando:

- 1. Ogni elemento di *S* (*dominio*) ha al più una corrispondenza in *T* (*codominio*)
- 2. (Ovvero) nessun elemento di *S* ha più di una corrispondenza in *T*

Formalmente: se $\langle a, b \rangle$, $\langle a, c \rangle \in R$ allora b = c

Se per ogni $a \in A$ esiste esattamente un $b \in B$ tale che $\langle a, b \rangle \in R$, allora R è una funzione totale

FUNZIONI

Una relazione R \subseteq S × T si dice *funzione* (o *applicazione*) se per ogni $x \in$ S esiste al massimo $un y \in$ T tale che $< x, y > \in$ R.

UNIVERSITA UNIVERSITA ONVIIM IQ OO 1 B

FONDAMENTI DELL'INFORMATICA

FUNZIONI

Sia f una relazione $f \subseteq S \times T$

f è una funzione se per ogni $x \in dom(f)$ esiste un unico y per cui $\langle x, y \rangle \in f$.

Se $x \in S$ è nel dominio di f allora si dice che f(x) è definito.

Se il dominio di f coincide con S si dice che f è totale, altrimenti f è detta

parziale.

Esempio

• Se U è l'insieme degli esseri umani, allora la relazione $R \subseteq U \times U$ che lega ogni individuo alla sua madre (biologica) è una funzione

ma R^{-1} non lo è

FUNZIONI PARZIALI VS. FUNZIONI TOTALI

Funzione PARZIALE

Ogni $a \in A$ è in relazione con al più un elemento di B, ma possono esistere elementi di A che *non* sono in relazione con nessun elemento di B (*i.e.*, la funzione non è definita) [definizione di funzione usata in questo corso]

Funzione TOTALE

Se per ogni a \in A esiste esattamente un b \in B tale che $\langle a,b \rangle \in$ R, allora R è una funzione totale

[definizione di funzione usata in analisi matematica]

RIFORMULAZIONE

Una relazione f ⊆ A × B è una funzione (parziale) se per ogni x ∈ dom(f)
esiste un unico y ∈ B tale che ⟨x,y⟩ ∈ f

f(x) denota tale elemento y

- Se z ∈ dom(f), allora si dice che f è definita in z
- Se A = dom(f) allora f è una funzione totale

NOTAZIONE

Se $f \subseteq A \times B$ è una funzione, scriviamo

 $f:A\rightarrow B$

In questo caso, $dom(f) \subseteq A \in codom(f) \subseteq B$

Al più un arco uscente da ogni elemento di dom(f) ⊆A

Al più un arco uscente da ogni elemento di dom(f) ⊆ A

Al più un arco uscente da ogni elemento di dom(f) ⊆ A

Al più un arco uscente da ogni elemento di dom(f) ⊆ A

Funzione totale

Uno ed un solo arco uscente da ogni elemento di dom(f) = A

Funzione totale

Uno ed un solo arco uscente da ogni elemento di dom(f) = A

FUNZIONI

Dati S e T, se f è una funzione da S in T scriviamo

$$f: S \mapsto T$$

per indicare che il dominio di f è contenuto in S e che il codominio di f è contenuto in T: $dom(f) \subseteq S$ e $codom(f) \subseteq T$.

Funzione iniettiva

Una funzione $f: S \mapsto T$ è *iniettiva* se per ogni $x,y \in S$ con $x \neq y$, $f(x) \neq f(y)$. Esempio

- La funzione $f: \mathbb{N} \to \mathbb{N}$ tale che f(x) = 2x è iniettiva
- La funzione che asegna ad ogni studente una matricola è iniettiva

FUNZIONE INIETTIVA

Una **funzione iniettiva** (detta anche **funzione ingettiva** oppure **iniezione**) è una funzione che porta **elementi distinti** del dominio in **elementi distinti** dell'immagine.

Formalmente, $f: A \to B$ è iniettiva sse per ogni $x, y \in A$, $x \neq y$ implica $f(x) \neq f(y)$

Funzione iniettiva

Al più un arco entrante in ogni elemento di $codom(f) \subseteq B$

Funzione iniettiva

Al più un arco entrante in ogni elemento di $codom(f) \subseteq B$

Funzione iniettiva

Al più un arco entrante in ogni elemento di $codom(f) \subseteq B$

FUNZIONE SURRIETTIVA

Una funzione da un insieme S a un insieme T si dice **suriettiva** (o **surgettiva**, o una **suriezione**) quando ogni elemento di T è immagine di **almeno un elemento** del dominio, ovvero quanto T = codom (f).

Funzione suriettiva

Una funzione è suriettiva se per ogni $y \in T$ esiste un x in S tale che f(x) = y, in tal caso f(S) = T. Esempio

- La funzione f : N → N tale che f(x) = 2x non è suriettiva
- La funzione che asegna ad ogni studente una matricola non è suriettiva

FUNZIONE SURIETTIVA

- Una funzione f : A → B è suriettiva quando ogni elemento di B è immagine di almeno un elemento di A
- ossia, quando B = codom(f)

f: $A \rightarrow B$ è suriettiva sse per ogni $y \in B$ esiste un $x \in A$ tale che f(x) = y

Funzione suriettiva

Almeno un arco entrante in ogni elemento di codom(f) = B

Funzione suriettiva

Almeno un arco entrante in ogni elemento di codom(f) = B

Funzione suriettiva

Almeno un arco entrante in **ogni** elemento di codom(f) = B

FUNZIONE BIUNIVOCA

Una **corrispondenza biunivoca** tra due insiemi *S* e *T* è una relazione binaria tra *S* e *T*, tale che ad ogni elemento di *S* corrisponda *uno ed un solo* elemento di *T*, e viceversa ad ogni elemento di *T* corrisponda uno ed un solo elemento di *S*.

Lo stesso concetto può anche essere espresso usando le funzioni: una funzione è una **biiettiva**, **bigettiva** o **biunivoca** se per ogni elemento y di T vi è uno e un solo elemento x di S tale che $f: S \longrightarrow T$.

Una tale funzione è detta anche bijezione o bigezione.

Una funzione è biiettiva se e solo se è contemporaneamente iniettiva e suriettiva.

FUNZIONE BIIETTIVA

 Una funzione f : A → B è biiettiva sse è iniettiva e suriettiva

Attenzione: f può non essere totale

- Ad ogni x ∈ dom(f) corrisponde esattamente un y ∈ B,
- ad ogni y ∈ B corrisponde esattamente un x ∈ dom(f)

Funzione bieettiva

Uno ed un solo arco entrante in ogni elemento di codom(f) = B

Funzione bieettiva

Uno ed un solo arco entrante in ogni elemento di codom(f) = B

Corrispondenza Biunivoca

Una corrispondenza biunivoca tra A e B è una relazione binaria $R \subseteq A \times B$ tale che ad ogni elemento di A corrisponde uno ed un solo elemento di B e viceversa, ad ogni elemento di B corrisponde uno ed un solo elemento di A

Tale R deve essere una funzione totale, iniettiva e suriettiva (funzione biunivoca o uno-a-uno)

FUNZIONE BIUNIVOCA

- Una corrispondenza biunivoca tra A e B è una relazione binaria R ⊆ A × B tale che:
 - ad ogni elemento di A corrisponde uno ed un solo elemento di B,
 - ad ogni elemento di B corrisponde uno ed un solo elemento di A
- Tale R deve essere una funzione.
 - totale
 - iniettiva
 - 3. suriettiva

(funzione biunivoca o uno-a-uno)

Funzione biunivoca

Ogni elemento di dom(f) = A è in relazione con un solo elemento di B Ogni elemento di codom(f) = B è in relazione con un solo elemento di A

ARIETÀ

Esistono relazioni (e funzioni) con più argomenti o operandi, in cui l'insieme di partenza è definito dal prodotto cartesiano di più insiemi

funzione unaria $f: A \rightarrow B$

funzione binaria $f: A_1 \times A_2 \rightarrow B$

funzione ternaria $f: A_1 \times A_2 \times A_3 \rightarrow B$

funzione n-aria $f: A_1 \times \cdots \times An \rightarrow B$

L'arietà di una relazione è il numero dei domini nel prodotto cartesiano.

FUNZIONI

Dominio: l'insieme su cui una funzione è definita.

Immagine/codominio: l'insieme di valori che una funzione assume, ovvero gli elementi b del codominio per i quali esiste almeno un elemento a del dominio A tale che f(a)=b

Funzione biiettiva: o corrispondenza biunivoca, è una funzione che a ogni elemento del dominio corrisponde uno e un solo elemento del codominio, e a ogni elemento del codominio corrisponde uno e un solo elemento del dominio.

Funzione suriettiva: quando l'immagine coincide con l'insieme all'interno del quale è definito il codominio.

Funzione iniettiva: quando elementi distinti del dominio hanno un'immagine distinta, cioè ogni elemento del codominio corrisponde a un solo o a nessun elemento del dominio.

una funzione allo stesso tempo iniettiva e suriettiva è biiettiva

RECAP

$f\colon X\mapsto Y$	se $x = y$ allora $f(x) = f(y)$
funzione iniettiva	se $f(x) = f(y)$ allora $x = y$,
funzione suriettiva	per ogni $y \in Y$, esiste un $x \in X$ tale che $f(x) = y$
funzione biettiva	suriettiva e iniettiva
funzione totale	dom(f) = X
formation a laterative service	hitania a nanda
funzione biunivoca	biiettiva e totale

Funzioni Parziali

Definizione: Siano A e B due insiemi, una funzione parziale $F:A\to B$ è un insieme di coppie $\langle a,b\rangle$ (con $a\in A$ e $b\in B$) in cui ogni elemento di A è in coppia con al più un elemento di B.

$$\forall a \in A((\exists b \in B \ \langle a, b \rangle \in F) \Rightarrow (\exists ! b \in B \ \langle a, b \rangle \in F))$$
 (funz. parziale)

Funzioni Totali

Definizione: Siano A e B due insiemi, una funzione totale $F:A\to B$ è una funzione parziale che associa ad ogni elemento di A un elemento di B.

$$\forall a \in A((\exists b \in B \ \langle a, b \rangle \in F) \Rightarrow (\exists! b \in B \ \langle a, b \rangle \in F))$$
 (funz. parziale)
 $\land A(\exists b \in B \ \langle a, b \rangle \in F)$ (associa ad ogni elemento di A uno di B)
 \equiv
 $\forall a \in A(\exists! b \in B \ \langle a, b \rangle \in F)$ (funz. totale)

Funzioni Iniettive

Definizione: Una funzione parziale $F:A\to B$ è iniettiva se per ogni $b\in Im(F)$ esiste al più un a tale che $\langle a,b\rangle\in F.$

$$\forall a \in A((\exists b \in B \ \langle a, b \rangle \in F) \Rightarrow (\exists ! b \in B \ \langle a, b \rangle \in F))$$
 (funz. parziale)
 $\land b \in B((\exists a \in A \ \langle a, b \rangle \in F) \Rightarrow (\exists ! a \in A \ \langle a, b \rangle \in F))$ (iniettività)

Funzioni Suriettive

Definizione: Una funzione parziale $F:A\to B$ è suriettiva se Im(F)=B. Formalizzazione:

$$\forall a \in A((\exists b \in B \ \langle a, b \rangle \in F) \Rightarrow (\exists ! b \in B \ \langle a, b \rangle \in F))$$
 (funz. parziale)
 $\land b \in B(\exists a \in A \ \langle a, b \rangle \in F)$ (suriettività)

Funzioni Biiettive

Definizione: Una funzione parziale $F:A\to B$ è biiettiva se è totale, iniettiva e suriettiva.

$$\forall a \in A(\exists!b \in B \ \langle a,b \rangle \in F) \qquad \text{(funz. totale)}$$

$$\forall b \in B((\exists a \in A \ \langle a,b \rangle \in F) \Rightarrow (\exists!a \in A \ \langle a,b \rangle \in F)) \qquad \text{(iniettività)}$$

$$\forall b \in B(\exists a \in A \ \langle a,b \rangle \in F) \qquad \text{(suriettività)}$$

$$\equiv$$

$$\forall a \in A(\exists!b \in B \ \langle a,b \rangle \in F) \qquad \text{(funz. totale)}$$

$$\land \forall b \in B(\exists!a \in A \ \langle a,b \rangle \in F) \qquad \text{(iniettività e suriettività)}$$

PUNTO FISSO

Un **punto fisso** per una funzione definita da un insieme in sé è un elemento coincidente con la sua immagine.

Un punto fisso per una funzione $f: S \rightarrow S$ definita su un insieme S è un elemento x in S tale che:

$$x = f(x)$$

ESEMPI

- La funzione op (opposto) ha un solo punto fisso
 (0)
- La funzione identità id : A → A dove id(x) = x per ogni x ∈ A ha tutti gli elementi di A come punti fissi
- La funzione doppio su N ha un solo punto fisso
 (0)
- La funzione $f: \mathbb{N} \rightarrow \mathbb{N}$ dove f(n)=n+1 non ha punti fissi

Operazioni

Sia A un insieme.

Una operazione (n-aria) su A è una funzione $A^n \rightarrow A$

L'operazione è totale sse la funzione è totale

FUNZIONE INVERSA

Una funzione $f:X\to Y$ si dice **invertibile** se esiste una funzione $g:Y\to X$ tale che

$$g(f(x))=x \ \ \text{per ogni} \ \ x\in X$$

$$f(g(y)) = y$$
 per ogni $y \in Y$

 f^{-1} mappa 3 in a poiché f mappa a in 3

Funzione inversa, composizione di funzioni

Una funzione $f: S \mapsto T$ ammette una funzione inversa $f^{-1}: T \mapsto S$ sse f è iniettiva.

f: A \rightarrow B dove f = { $\langle a,x \rangle$, $\langle b,y \rangle$, $\langle c,y \rangle$ }

Immagine inversa

f: A \rightarrow B dove f = { $\langle a,x \rangle$, $\langle b,y \rangle$, $\langle c,y \rangle$ } f¹: B \rightarrow A dove f¹ = { $\langle x,a \rangle$, $\langle y,b \rangle$, $\langle y,c \rangle$ }

Immagine inversa

f: A \rightarrow B dove f = { $\langle a,x \rangle$, $\langle b,y \rangle$, $\langle c,y \rangle$ } f¹: B \rightarrow A dove f¹ = { $\langle x,a \rangle$, $\langle y,b \rangle$, $\langle y,c \rangle$ }

Immagine Inversa

Sia $f: A \rightarrow B$ una funzione e $y \in B$

l'immagine inversa di f in y è

$$f^{-1}(y) = \{x \in A \mid f(x) = y\}$$

Nota

f è iniettiva sse per ogni $y \in B$, $f^{-1}(y)$ ha al più un elemento

Funzione Inversa

Una funzione $f: A \to B$ è invertibile se esiste una funzione $g: B \to A$ tale che per ogni $x \in A$ e ogni $y \in B$:

$$g(f(x)) = x$$
$$f(g(y)) = y$$

In questo caso, g è l'inverso di f e si rappresenta come f^{-1}

Proprietà di funzioni inverse

Sia $f: A \mapsto B$ invertibile, con funzione inversa f^{-1} :

- 1. f^{-1} è totale sse f è suriettiva;
- 2. f è totale sse f^{-1} è suriettiva.

COMPOSIZIONE DI FUNZIONI

La **composizione di funzioni** è l'applicazione di una funzione al risultato di un'altra funzione. Più precisamente, una funzione f tra due insiemi X e Y trasforma ogni elemento di X in uno di Y: in presenza di un'altra funzione g che trasforma ogni elemento di Y in un elemento di un altro insieme Z, si definisce la composizione di f e g come la funzione che trasforma ogni elemento di X in uno di Z usando prima f e poi g.

Formalmente, date due funzioni $f: X \to A$ e $g: B \to Z$ con $f(A) \subseteq B$ definiamo la

funzione composta

$$g \circ f : X \to Z$$

 $(g \circ f)(x) = g(f(x)) \ \forall x \in X$

A D O O C C

FONDAMENTI DELL'INFORMATICA

Composizione di Funzioni

La composizione di due funzioni si riferisce all'applicazione di una funzione al risultato di un'altra

Siano $f:A\to B$ e $g:B\to C$ due funzioni (notate l'insieme comune B) la funzione composta $g\circ f:A\to C$ è definita per ogni $x\in A$ da

$$(g \circ f)(x) = g(f(x))$$

 $(g \circ f)(x)$ è definita sse f(x) e g(f(x)) sono definite

$$(g \circ f)(x) = g(f(x))$$

$$(g \circ f)(x) = g(f(x))$$

1. $\operatorname{codom}(f) \subseteq \operatorname{dom}(g)$

Proprietà della composizione

La composizione è asociativa:

$$f\circ (g\circ h)=(f\circ g)\circ h$$

Se f e g sono entrambe iniettive, allora $f \circ g$ è iniettiva

Se f e g sono entrambe suriettive, allora $f \circ g$ è suriettiva

Se f e g sono entrambe invertibili, allora $f \circ g$ è invertibile $((g \circ f)^{-1} = f^{-1} \circ g^{-1})$

Composizione di funzioni

Date $f: S \mapsto T$ e $g: T \mapsto U$ la composizione di f e g è la funzione $g \circ f: S \mapsto U$ tale che $(g \circ f)(x) = g(f(x))$ per ogni $x \in S$.

La funzione composta $(g \circ f)(x)$ è definita sse sono definite entrambe g(f(x)) e f(x).

Proposizione 2. Siano $f: S \mapsto T$ e $g: T \mapsto Q$ invertibili. Allora $g \circ f$ è invertibile e la sua inversa è $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

FUNZIONE CARATTERISTICA

Nella teoria degli insiemi, se A è un sottoinsieme dell'insieme S, la funzione indicatrice, o funzione caratteristica di A è quella funzione da S all'insieme $\{0, 1\}$ che sull'elemento $x \in S$ vale 1 se X appartiene ad A, e vale 0 in caso contrario.

La funzione caratteristica di un insieme $S \subseteq A$ è la funzione $f_S : A \to \{0,1\}$ dove

$$f_S(x) = \begin{cases} 0 & x \notin S \\ 1 & x \in S \end{cases}$$

FUNZIONE CARATTERISTICA: ESEMPIO

Funzione caratteristica di sottoinsiemi

Sia U l' universo. La funzione caratteristica di un sottoinsieme $S\subseteq U$ è così definita:

$$f_S(x) = \begin{cases} 1 & \text{per } x \in S \\ 0 & \text{per } x \notin S. \end{cases}$$

Proposizione 3.

1.
$$f_{S \cap T} = f_S \times f_T$$
;

2.
$$f_{S \cup T} = f_S + f_T - f_S \times f_T$$
;

3.
$$f_{S \triangle T} = f_S + f_T - 2 \times f_S \times f_T$$
.

Proprietà delle funzioni

$f\colon X\mapsto Y$	se $x = y$ allora $f(x) = f(y)$
funzione iniettiva	se $f(x) = f(y)$ allora $x = y$,
funzione suriettiva	per ogni $y \in Y$, esiste un $x \in X$ tale che $f(x) = y$
funzione biettiva	suriettiva e iniettiva
funzione totale	dom(f) = X

A DEGLI STUDIO A ONALIM ICI DO C C A

FONDAMENTI DELL'INFORMATICA

Multinsiemi

Un multinsieme è una variante di un insieme dove gli elementi si possono ripetere

$$\{a, a, b, c, c, c\} \neq \{a, b, c\}$$

Formalmente, un multinsieme è una funzione da un insieme a $\mathbb N$

$$f:A\to\mathbb{N}$$

che sprime quante volte si ripete ogni elemento nel multinsieme $(A = \{a, b, c, d\})$

$$\{\langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 3 \rangle, \langle d, 0 \rangle\}$$

MULTINSIEME: ESEMPIO {{a,a,b,c,c,c}}

INSIEMI E OPERAZIONI

(parte 4)

END

PROPRIETA' DELLE RELAZIONI

Una relazione R definita su un insieme X è:

- riflessiva se $(x,x) \in R$, $\forall x \in X$, equivalentemente se $I_X \subset R$.
- simmetrica se $(x, y) \in R \implies (y, x) \in R$, equivalentemente se $R = R^t$.
- antisimmetrica se $(x, y) \in R$ e $(y, x) \in R$ \Rightarrow x = y, equivalentemente se $R \cap R^t \subset I_X$.
- transitiva se $(x, y) \in R$ e $(y, z) \in R \Rightarrow (x, z)$.

PROPRIETA' DELLE RELAZIONI

Sia
$$X = \{a, b, c\}$$
 e $R_i \subseteq X \times X$

- $R_1 = \{(a, a), (a, b), (b, a), (a, c)\}$ non riflessiva, non simmetrica, non transitiva, non antisimmetrica
- $R_2 = \{(a,a), (b,b), (c,c), (a,b), (b,a), (a,c)\}$ riflessiva, non simmetrica, non transitiva, non antisimmetrica
- $R_3 = \{(a, a), (b, b)\}$ non riflessiva, simmetrica, transitiva, antisimmetrica