CS312 Notes

August 20, 2024

Contents

1	$Th\epsilon$	eory Of Computation Introduction	1
	1.1	Automata (Automaton)	2
	1.2	Computability	2
	1.3	Complexity	2
	1.4	Problem Abstration	2
		1.4.1 Abstration of Data	3
		1.4.2 ¬ ^ V	3

1 Theory Of Computation Introduction

The 3 componenets of problem solving

- 1. Unknowns
- 2. Data
- 3. Conditions

To solve a problem we need to find a way of determining the unknowns from given data such that conditions of the problem are satisfied.

The traditional areas of the theory of computation (TOC)

- Automata
 - Provide problem solving devices
- Computability
 - Provide framework that can characterize devices by their computing power

- Complexity
 - Provide framework to classify problems acording to time/space complexity of the toold used to solve them

1.1 Automata (Automaton)

- Abstration of computing devices
- How much memory can be used?
- What operations can be performed?

1.2 Computability

- Study different computing models and identify the most powerful ones
- Range of problems
- Problems can be undecidable or uncomputatble
 - The halting problem

1.3 Complexity

- Computing problems range from easy to hard; sorting is easier than scheduling
- Question
 - What makes some problems computationally hard or others easy?

1.4 Problem Abstration

Data

• Abstracted as a word in a given alphabet

Conditions

• Abstracted as a set of words called a language

Unknowns

• A boolean variable: true if a word is in the language or false other wise

1.4.1 Abstration of Data

- Σ : alphabet, a finite, nonempty set of symbols
- Σ^* : all words of a finite length built up using Σ
- Rules: (1) the empty word (ϵ) is in Σ^* ; (2) if $w \in \Sigma^*$ and $a \in \Sigma$, then $aw \in \Sigma^*$, and (3) nothing else is in Σ^*

```
Example: If \Sigma = \{0,1\}, then \Sigma^* = \{\epsilon,0,1,00,01,10,11,000,001,010,011,\dots\}.
```

1. Valid C

```
int my_func() { return 1; };
int main() {
   int var = my_func(1,2,3,4,5,6,7);
   for (;;) {}
   // You cannot just simply change the syntax of a for loop
   for(;) {}
}
```

2. Invalid C++

```
int my_func() { return 1; };
int main() {
   int var = my_func(1,2,3,4,5,6,7);
   for (;;) {}
   // You cannot just simply change the syntax of a for loop
   for(;) {}
}
```

1.4.2 \neg $^{\circ}$ V