

信号检测与估计

线性调频脉冲雷达信号处理仿真

作	者	:	许晓明	学与	;	9161040G0734					
学	院	:		电光学	学院						
专	业	:	电	电子信息工程							
班	级	:		电信3班							
题	目	:	信	信号检测与估计							
			线性调频脉冲雷达信号处理仿真								
指导者:				顾纟	I						

目录

1	仿真	要求		1
2	线性	调频信号(LFM)原理		1
	2.1	线性调频脉冲雷达	 	1
	2.2	线性调频信号(LFM)	 	1
3	单目	标时的仿真情况		2
	3.1	LFM信号	 	2
	3.2	自相关函数	 	3
		3.2.1 自相关函数表达式及图像	 	3
		3.2.2 自相关函数相关参数	 	3
		3.2.3 误差情况分析	 	3
	3.3	回波信号	 	6
	3.4	脉冲压缩(匹配滤波)	 	6
		3.4.1 脉冲压缩表达式及图像	 	6
		3.4.2 脉压输出SNR及误差情况分析	 	7
		3.4.3 多普勒敏感与多普勒容限	 	8
	3.5	FFT相干积累	 	10
		3.5.1 FFT表达式及图像	 	10
		3.5.2 FFT输出SNR及误差情况分析	 	10
	3.6	距离模糊和速度模糊	 	10
		3.6.1 距离模糊	 	10
		3.6.2 速度模糊	 	19
4	双目	标时的仿真情况		20
	4.1	大目标旁瓣掩盖小目标	 	20
		4.1.1 大目标距离旁瓣掩盖小目标	 	20
		4.1.2 大目标速度旁瓣掩盖小目标		22
	4.2	距离分辨率与速度分辨率	 	22

		4.2.1	距离	分辨														22
		4.2.2	速度	分辨						•			 •	•		•		26
5	MA'	TLAB	程序代	弋码														2 8
	5.1	发射信	号与	自相关	逐数													28
	5.2	匹配滤	波与周	脉压输	j出信	噪日												30
	5.3	多普勒	J敏感-	与多普	勒容	限												33
	5.4	FFT .																34
	5.5	距离模	糊与	速度模	[糊 .													37
	5.6	双目标								•			 •			•		39
							插	冬										
	3.1	LFM信	号波	形情况	·					•		 			 			2
	3.2	自相关																4
	3.3	自相关	函数	相关参	*数-由	图包	象所	得							 			5
	3.4	自相关	函数	相关参	:数-N	IAT	LAE	3编	玛才						 			5
	3.5	回波波	形示	意图.											 			6
	3.6	脉冲压	缩前	后图像	₹										 			7
	3.7	通过滤	波器	的噪声	频谱	与信	号步	须谱	(-	平ブ	j)							8
	3.8	脉冲压	缩输出	出信噪	触.										 			8
	3.9	多普勒]敏感]	1														11
	3.10	多普勒																12
	3.11	多普勒]敏感:	3														13
	3.12	多普勒	J敏感	4														14
	3.13	多普勒	J敏感:	5														15
	3.14	多普勒	J敏感(16
	3.15	多普勒	性能	损失.														17
	3.16	FFT前	后图	像														17
	3.17	FFT输	j出信	嬠比.											 			18
	3.18	距离模	糊图	像														18
	3 19	距离模	糊时	测得的	1距离													18

3.20	速度模糊图像	19
3.21	速度模糊时测得的距离	20
4.1	大目标距离旁瓣遮住小目标	20
4.2	大小目标幅度大致相等时	21
4.3	大小目标距离、速度相差较大时	22
4.4	大目标速度旁瓣遮住小目标	23
4.5	距离上无法分辨	24
4.6	距离上可以分辨	25
4.7	速度上无法分辨	26
4.8	速度上可以分辨	27

一、仿真要求

仿真线性调频脉冲雷达的信号处理。

设线性调频带宽为34,单位为MHz,时宽为 $200\mu s$,占空比10%,雷达载频为10GHz,输入噪声为高斯白噪声。目标回波输入信噪比可变($-35dB\sim 10dB$),目标速度可变($0\sim 10000m/s$),目标距离可变($0\sim 10000m$),相干积累总时宽不大于100ms。

单目标时,给出回波视频表达式;脉压和FFT后的表达式;仿真LFM信号自相关函数,说明第一旁瓣高度,通过内插分析该自相关函数的4dB输出脉冲宽度;仿真给出脉压和FFT后的输出图形;通过仿真说明脉压输出和FFT输出的SNR;仿真说明脉压时多卜勒敏感现象和多卜勒容限及其性能损失(脉压主旁比与多卜勒的曲线);仿真说明距离模糊和速度模糊的情况。

双目标时,仿真出大目标旁瓣(距离和速度旁瓣)盖掩盖小目标的情况;仿真出距离分辨和速度分辨的情况。

二、线性调频信号(LFM)原理

2.1 线性调频脉冲雷达

雷达发射机产生雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。

当目标与雷达的相对距离为R,为了探测这个目标,雷达发射信号s(t),电磁波以光速C向四周传播,经过时间R/C后电磁波到达目标,照射到目标上的电磁波可写成: $s(t-\frac{R}{C})$ 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波可记为 $\sigma s(t-\frac{R}{C})$,其中 σ 为目标的雷达散射截面(RCS),反映目标对电磁波的散射能力,(在仿真中,我以目标幅度A代替 σ 进行仿真,即反射电磁波为 $As(t-\frac{R}{C})$)再经过时间R/C后,被雷达接收天线接收的信号为 $As(t-\frac{2R}{C})$ 。

脉冲压缩雷达可以同时提高雷达的作用距离和距离分辨率。这种雷达采用宽脉冲发射以提高发射的平均功率,因而有足够大的作用距离;而在接收时采用脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。

脉冲压缩雷达最常见的调制信号是线性调频(LFM)信号,接收时采用匹配滤波器压缩脉冲。

2.2 线性调频信号(LFM)

LFM信号的数学表达式为:

$$s(t) = \operatorname{rect}\left(\frac{t}{\tau}\right) e^{j2\pi\left(f_c t + \frac{K}{2}t^2\right)}$$
(2.1)

其中, $K = \frac{B}{\tau}$ 为调频斜率, $\mathrm{rect}(\frac{t}{\tau})$ 为矩形信号,满足

$$\operatorname{rect}(\frac{t}{\tau}) = \begin{cases} 1 & , & \left|\frac{t}{\tau}\right| \le 1\\ 0 & , & \text{ 其他} \end{cases}$$
 (2.2)

LFM信号又可表示为

$$s(t) = s'(t)e^{j2\pi f_c t}$$

$$s'(t) = \text{rect}(\frac{t}{\tau})e^{j\pi Kt^2}$$
(2.3)

s'(t), s(t)在傅里叶变换后具有相同的幅频特性,仅仅是载频不同,信号仿真时,可以用s'(t)进行模拟。

三、单目标时的仿真情况

3.1 LFM信号

利用补零的方式,产生线性调频脉冲信号,其波形见图3.1。

图 3.1 LFM信号波形情况

3.2 自相关函数

3.2.1 自相关函数表达式及图像

在信号处理中, 自相关函数的定义为

$$r(t) = \int_{-\infty}^{+\infty} s(t+\tau)s^*(\tau)d\tau = s(t) * s^*(-t)$$
(3.1)

因此LFM信号的自相关函数可通过卷积定理转换到频域处理

$$\begin{cases} R(\omega) = S(\omega) \cdot S^*(\omega) \\ r(t) = \mathscr{F}^{-1}[R(\omega)] \end{cases}$$
 (3.2)

同时,直接计算3.1,又可得

$$r(t) = \begin{cases} \frac{\sin(\pi K(\tau - t)t)}{\pi K t} e^{j2\pi f_c t} &, \quad 0 \le t \le \tau\\ \frac{\sin(\pi K(\tau + t)t)}{\pi K t} e^{j2\pi f_c t} &, \quad -\tau \le t \le 0 \end{cases}$$
(3.3)

整理,得

$$r(t) = \tau \frac{\sin(\pi K(\tau - |t|)t)}{\pi K t \tau} e^{j2\pi f_c t} \operatorname{rect}(\frac{t}{2\tau})$$
(3.4)

于是,自相关函数波形见图3.2。

3.2.2 自相关函数相关参数

查看仿真图数据,为了更好地找到4dB输出脉冲宽度,对自相关函数进行归一化处理,数据见图3.3。

由图中数据,得到表3.1

表 3.1

主瓣高度	62.67dB
旁瓣高度	49.19dB
主旁瓣比	13.48dB
4dB输出脉宽	$0.02943\mu s = 29.43ns$

编写matlab代码查找对应位置,数据见图3.4,表3.2

3.2.3 误差情况分析

由式(3.4), 当|t|远远小于 τ 时,可认为

$$r(t) \approx \tau \operatorname{Sa}(\pi K \tau t) \operatorname{rect}(\frac{t}{2\tau})$$
 (3.5)

对于辛格函数而言,其主瓣下降4dB对应的宽度与第一零点值大致相等,而式(3.5)的第一零点为 $t = \frac{1}{K\tau} = \frac{1}{\xi\tau} = 29.4118ns$ 。仿真得到的实际值与理论值相对误差为0.0071%

图 3.2 自相关函数波形

表 3.2

主瓣高度	62.6708dB
旁瓣高度	49.1931dB
主旁瓣比	13.4776dB
4dB输出脉宽	29.4139ns

图 3.3 自相关函数相关参数-由图像所得

Main_lobe_side_lobe_ratio	13.4776
max_4dB_Output_Pulse_Width	29.4139
max_Main_Lobe	62.6708
max Side Lobe	49.1931

图 3.4 自相关函数相关参数-MATLAB编码求得

3.3 回波信号

回波信号表达式为:

$$s_r(t) = \operatorname{Arect}(\frac{t}{T})e^{j2\pi\left((f_c + f_d)(t - t_r) + K(t - t_r)^2\right)}$$

= $As(t - t_r)e^{j2\pi f_d(t - t_r)}$ (3.6)

其中, t_r 为回波目标延时, $t_r = \frac{2R}{C}$; f_d 为多普勒频移, $f_d = \frac{2v}{\lambda}$ 。回波信号波形示意图见图3.5。

图 3.5 回波波形示意图

3.4 脉冲压缩(匹配滤波)

3.4.1 脉冲压缩表达式及图像

在白噪声背景下,所得输出信噪比最大的线性滤波器就是匹配滤波器,其冲击响应满 足为

$$h(t) = ks^*(T - t) \tag{3.7}$$

k为滤波器的相对放大量,可以取k=1。于是匹配滤波后的回波表达式为

$$s_h(t) = h(t) * s_r(t) = s_r^*(T - t) * s_r(t)$$
(3.8)

与自相关函数的情况大致相同,则其表达式可参见式(3.4)。

加入噪声后,脉冲压缩前后的图像见图3.6。

图 3.6 脉冲压缩前后图像

3.4.2 脉压输出SNR及误差情况分析

由于噪声带宽与信号带宽不一致,故通过低通滤波器调节,使得二者功率谱带宽大致相等,参见图3.7。从图中可以看到,通过低通滤波器后的噪声功率谱带宽与信号带宽大致相等。

对于LFM信号而言,脉冲压缩前的时宽 $\tau = T/10$,脉冲压缩后,由3.4,可知当|t|远远小于 τ 时,4dB时宽为1/B,于是,脉冲压缩增益理论值为

$$D_{theory} = \frac{\tau}{\frac{1}{B}} = B\tau = 680 = 28.3251 \text{dB}$$
 (3.9)

当输入信噪比 SNR_i 设定为-5dBs时,理论输出信噪比 $SNR_{othero}=23.3251$ dB。由图3.8 可知,其实际输出信噪比 $SNR_o=23.4692$ dB,相对误差为0.6178%。产生误差的原因可能是低通滤波器不能做到恰好滤去所有高频分量,以及信号、噪声功率谱带宽不完全相等。

图 3.7 通过滤波器的噪声频谱与信号频谱(平方)

图 3.8 脉冲压缩输出信噪比

3.4.3 多普勒敏感与多普勒容限

改变目标速度,记录脉压后的相关参数,得到记录表见表3.3。相应的实验仿真波形图 见图3.9 到图3.14。

可以看到,由于多普勒频移,脉压后的主瓣峰值下降,出现了多普勒敏感现象。

由表3.3,得到图3.15。从图中可以看出,随多普勒频率增大,脉压后主旁瓣比基本不变,线性调频连续波多普勒容限较大,其性能损失不十分明显。

表 3.3 多普勒性能损失情况

 目标速度	多普勒频率		脉压第一副瓣峰值	 主旁比
(m/s)	(KHz)	(dB)	(dB)	(dB)
0	0.00	62.6708	49.2186	13.4522
10	0.67	62.6682	49.2214	13.4468
20	1.33	62.6606	49.2098	13.4508
30	2.00	62.6629	49.2155	13.4474
40	2.67	62.6642	49.2276	13.4366
50	3.33	62.6605	49.2258	13.4347
60	4.00	62.6522	49.2094	13.4428
70	4.67	62.6573	49.2271	13.4302
80	5.33	62.6574	49.2352	13.4222
90	6.00	62.6524	49.2286	13.4238
100	6.67	62.6475	49.2197	13.4278
120	8.00	62.6502	49.2411	13.4091
140	9.33	62.6426	49.2339	13.4087
160	10.67	62.6428	49.2455	13.3973
180	12.00	62.6373	49.2463	13.3910
200	13.33	62.6350	49.2483	13.3867
220	14.67	62.6314	49.2569	13.3745
240	16.00	62.6269	49.2495	13.3774
260	17.33	62.6257	49.2664	13.3593
280	18.67	62.6186	49.2493	13.3693
300	20.00	62.6195	49.2741	13.3454
350	23.33	62.6095	49.2694	13.3401
400	26.67	62.5960	49.2845	13.3115
450	30.00	62.5938	49.2997	13.2941
500	33.33	62.5839	49.2890	13.2949
550	36.67	62.5701	49.3146	13.2555
600	40.00	62.5680	49.3239	13.2441
650	43.33	62.5582	49.3134	13.2448
700	46.67	62.5441	49.3433	13.2008
750	50.00	62.5421	49.3467	13.1954

目标速度	多普勒频率	脉压主瓣峰值	脉压第一副瓣峰值	主旁比
(m/s)	(KHz)	(dB)	(dB)	(dB)
800	53.33	62.5324	49.3466	13.1858
850	56.67	62.5180	49.3706	13.1474
900	60.00	62.5161	49.3680	13.1481
950	63.33	62.5066	49.3785	13.1281
1000	66.67	62.4914	49.3960	13.0954

3.5 FFT相干积累

3.5.1 FFT表达式及图像

FFT后的信号表达式为

$$S_{FFT}(\omega) = \int_{-\infty}^{+\infty} s_h(t)e^{j\omega t} dt$$
 (3.10)

在FFT之前,需要进行数据重排,FFT前后的信号图像见图3.16。

3.5.2 FFT输出SNR及误差情况分析

当设定相干积累时间15ms,即相干积累脉冲个数75个时,FFT的理论增益为

$$G_{theory} = 10 \lg(M) = 10 \lg(75) = 18.7506 dB$$
 (3.11)

设定输入信噪比 $SNR_i = -5$ dB,则FFT后的理论输出信噪比 $SNR_{othero} = G_{theory} + D_{theory} + SNR_i = 42.0757$ dB,由图3.17 可知,其实际输出信噪比 $SNR_o = 42.0473$,相对误差为0.0675%。产生误差的原因可能是匹配滤波本身存在的误差带来的影响。

3.6 距离模糊和速度模糊

3.6.1 距离模糊

系统的最大单周期测量距离为

$$R_{max} = \frac{CT}{2} = 30000m (3.12)$$

当距离大于30000m后,将无法辨别是第几个周期的回波,产生距离模糊。如图3.18 及图3.19 所示,雷达可测得的距离仅为单周期内的距离。

图 3.9 多普勒敏感1

图 3.10 多普勒敏感2

图 3.11 多普勒敏感3

图 3.12 多普勒敏感4

图 3.13 多普勒敏感5

图 3.14 多普勒敏感6

图 3.15 多普勒性能损失

图 3.16 FFT前后图像

图 3.17 FFT输出信噪比

图 3.18 距离模糊图像

 R1	2000
R1_Calculated	2.0007e+03
 R 2	32000
R2 Calculated	2.0007e+03

图 3.19 距离模糊时测得的距离

3.6.2 速度模糊

MTD雷达的多普勒单值测量区间为第一个完整多普勒周期,即 $\left[-\frac{f_r}{2},\frac{f_r}{2}\right]$, f_r 为脉冲重复频率。

当多普勒频移 f_d 绝对值大于 $\frac{f_r}{2}$,将因周期混叠使视在多普勒频移与实际值不符。 使得速度不模糊的最大多普勒频移 $f_d=\frac{f_r}{2}$,于是最大不模糊速度为

$$v = \frac{f_d \lambda}{2} = \frac{f_r \lambda}{4} = 37.5 m/s \tag{3.13}$$

即速度测量范围为 $-37.5m/s \le v \le 37.5m/s$ 。如图3.20 及图3.21 所示,超过这个范围的速度将产生混叠无法测出。

图 3.20 速度模糊图像

需要注意的是,在图3.21中,由于没有相应的换算(负多普勒频移无法直接体现),事实上是 v_2 的测量值错误了。

图 3.21 速度模糊时测得的距离

四、 双目标时的仿真情况

4.1 大目标旁瓣掩盖小目标

4.1.1 大目标距离旁瓣掩盖小目标

当两个目标幅度不同,速度相同且距离差值接近且比较巧合时,可能产生距离掩盖小目标的情况,如图4.1 所示。此时,两目标的幅度分别为8与1。

图 4.1 大目标距离旁瓣遮住小目标

而当两目标的幅度相同时,可以分辨出2个目标,如图4.2 所示。

图 4.2 大小目标幅度大致相等时

而当两目标的距离差距较大,也可以分辨出2个目标,如图4.3 所示。

图 4.3 大小目标距离、速度相差较大时

4.1.2 大目标速度旁瓣掩盖小目标

当两个目标幅度不同,距离相同且速度差值接近且比较巧合时,可能产生距离掩盖小目标的情况,如图4.4 所示。此时,两目标的幅度分别为8与1。

4.2 距离分辨率与速度分辨率

4.2.1 距离分辨

理论距离分辨率为

$$\Delta r = \frac{C}{2B} = 4.41178m \tag{4.1}$$

如图4.5 所示, 当距离差为4m时, 无法分辨两个目标。

而当距离差为6m时,如图4.6 所示,可以分辨出两个目标。

图 4.4 大目标速度旁瓣遮住小目标

图 4.5 距离上无法分辨

图 4.6 距离上可以分辨

4.2.2 速度分辨

理论上区分两个运动目标的最小多普勒频移为

$$\Delta f_d = \frac{1}{T_a} \tag{4.2}$$

即为相干积累时间的倒数,为了让速度分辨更明显,设置相干积累时间为10ms。则对应的速度分辨率为

$$\Delta v = \frac{\Delta f_d \lambda}{2} = 1.5 m/s \tag{4.3}$$

如图4.7 所示, 仿真中, 当速度差为1m/s时, 无法分辨两目标。

图 4.7 速度上无法分辨

而当速度差为3m/s时,如图4.8 所示,可以分辨出两个目标。

图 4.8 速度上可以分辨

五、 MATLAB程序代码

5.1 发射信号与自相关函数

```
clc;
2 clear;
                        %带宽
B=34e6;
  T=200e-6;
                          %周期
  D=10e-2;
                     %占空比
                     %载频
  Fc = 10e9;
  SNRi = -25;
                       %输入信噪比
  V=0;
                   %目标速度
  A=3;
                    %目标幅度
                 %目标距离
  R=0;
                    %相干积累时间
  t t = 10e - 3;
  %脉宽
  Tau=D*T;
                      %线性调频斜率
  K=B/Tau;
  Fs=2*B;
                     %采样频率
  Ts=1/Fs;
                     %采样周期
  C=3e8;
                     %光速C
  M=tt/T;
                     %脉冲重复个数
  \mathbb{N}=\mathbf{round}(T/Ts);
  t1=linspace(-Tau/2, Tau/2, N*D);
21
  t=linspace(-T/2,T/2,N);
  St_0 = \exp(2*j*pi*(+0.5*K*t1.^2));
  N1 = round(N*(1-D)/2);
  zero=zeros(1,N1);%补零
  St = [zero, St_0, zero];
  %LFM时域波形
27
   figure(1);
28
   subplot(2,1,1)
   plot(t*1e6, real(St));
30
   xlabel('时间 单位: us');
31
   title(,线性调频信号时域波形,);
32
   grid on; axis tight;
33
  %LFM频域波形
   f = linspace(-Fs/2, Fs/2, N);
35
   figure(1);
   \mathbf{subplot}(2,1,2)
```

```
fftshift(abs(fft(St)));
38
   St_FFT=fftshift(abs(fft(St)));
39
    \mathbf{plot} (f*1e-6,St_FFT);
40
   xlabel('频率 单位: MHz');
41
    title('线性调频信号幅频特性');
42
    grid on; axis tight;
43
  44
  Ht_0=fliplr(St);
45
  Ht=conj(Ht_0);
46
  Sot=conv(St, Ht);
  N2=2*N-1;
  t2 = linspace(-T, T, N2);
49
  Z0=abs(Sot);
  %自相关函数
51
   figure (2)
52
   subplot(2,1,1)
53
   plot (t2*1e6,Z0);
    axis([-21,21,-inf,inf]); grid on;
55
   xlabel('时间 单位: us');
56
    title('自相关函数');
57
  %自相关函数dB
58
   figure(2)
59
   subplot(2,1,2)
  Z1=20*log10(Z0);
61
   plot(t2*1e6,Z1);
62
    axis([-21,21,-inf,inf]); grid on;
63
    xlabel('时间 单位: us');
64
    title('自相关函数() dB');
65
  %自相关函数放大
    figure(3)
67
   subplot(2,1,1)
68
    plot (t2*1e6, Z1);
69
    axis([-0.1,0.1,-5,70]); grid on;
70
   xlabel('时间 单位: us');
71
    title('自相关函数() dB');
72
  %自相关函数放大2
73
   figure(3)
74
   subplot(2,1,2)
75
  Z0=Z0/\max(Z0);
  Z2=20*log10(Z0);
77
   plot (t2*1e6, Z2);
```

```
axis([-0.1,0.1,-5,1]); grid on;
79
    xlabel('时间 单位: us');
80
    title(',自相关函数(归一化)',);
81
   %查找自相关函数参数
83
    t_{-}find=linspace(-0.6e-6,0.6e-6,N*100);%插值范围
84
    Z_1=interp1(t2,Z1,t_find,'linear'); %内插值
85
    Z_2=interp1(t2,Z2,t_find,'linear'); %内插值
86
    range=double(-0.2*1e-6); [para1, para2] = find(t_find <= range);
87
    m_1_1 = \max(para2);
88
    range=double(0.2*1e-6); [para1, para2] = find(t_find <= range);
89
    m_1_2 = \max(para2);
90
    max_Main_Lobe=max(Z_1(:));%主瓣高度
91
    range=double(0.03*1e-6); [para1, para2] = find(t_find <= range);
92
    m_1_1 = \max(para2);
93
    range=double(0.06*1e-6); [para1, para2] = find(t_find <= range);
94
    m_1_2 = \max(para2);
    max_Side_Lobe=max(Z_1(m_1_1:m_1_2));%第一旁瓣
96
    Main_lobe_side_lobe_ratio=max_Main_Lobe-max_Side_Lobe;%主瓣旁瓣比
97
    range=double(-4); [para1, para2] = find(Z<sub>-2</sub>>=range);
98
    m_1_1 = \max(para2);
99
    m_1_2 = \min(para2);
100
    max_4dB_Output_Pulse_Width=(t_find(m_1_1)-t_find(m_1_2))*1e9;%dB输出带宽
```

5.2 匹配滤波与脉压输出信噪比

```
clc;
  clear;
^{3} B=34e6;
                     %带宽
  T=200e-6;
                       %周期
 D=10e-2;
                  %占空比
                  %载频
  Fc = 10e9;
  SNRi=-5;
                    %输入信噪比
  V=0:
                %目标速度
                 %目标幅度
  A=1;
  R = 4000;
                 %目标距离
  t t = 15e - 3;
                  %相干积累时间
  %脉宽
  Tau=D*T;
                    %线性调频斜率
 K=B/Tau;
14
  fs = 2*B;
                  %采样频率
                  %采样周期
  Ts=1/fs;
```

```
C = 3e8;
                       %光速C
  M=tt/T;
                       %脉冲重复个数
  \mathbb{N}=\mathbf{round}(T/Ts);
   t1 = linspace(-Tau/2, Tau/2, N*D);
21
  t_0 = linspace(-T/2, T/2, N);
22
  St_0 = \exp(j * pi * K * t1.^2);
23
  N1 = round(N*(1-D)/2);
24
  f = linspace(-fs/2, fs/2, N);
25
  zero=zeros(1,N1);%补零
  St = [St_0, zero, zero];
  St_repeat=repmat(St,1,M);
  29
  fd=2*V/(C/Fc);%多普勒频移
30
  i = 1:N*M;
31
  St_Dop=exp(2*j*pi*fd*Ts*i);%多普勒延时频移信号部分
  i = 1:N;
  St_Dop1=exp(2*j*pi*fd*Ts*i);
34
  t_Delay=2*R/C; %延时
  N_R=round(t_Delay/Ts);
36
   zero_left=zeros(1,N_R);
37
  zero_right=zeros(1,2*N1-N_R);
  St1=A*[zero_left,St_0,zero_right];
  St_00=A*[zero_left , St_repeat];
40
  i = 1:M*N;
41
  St_1(i) = St_0(i);
42
  St_M=St_1.*St_Dop;%带多普勒频移的信号
  t_1=linspace(-Tau/2, T-Tau/2, N);
  St_=St_**St_Dop1;
  figure(1)
  subplot (211);
47
  plot(t_1*1E6, real(St_));
  xlabel('时间 单位: us');
49
    title('信号LFM');
50
   grid on; axis tight;
51
  subplot(212);
  plot(t_1*1E6, real(St1));
  xlabel('时间 单位: us');
54
    title(['延时为',num2str(t_Delay*1e6),'\的回波信号mus']);
55
   grid on; axis tight;
56
  St_M_Gauss=randn(1, size(St_M,2))+j*randn(1, size(St_M,2));%产生白噪声
```

```
[filterB, filterA] = butter(12,0.5,'low');%20阶低通巴特沃斯滤波器
58
    [h,w]=freqz(filterB, filterA);
59
    St_M_Gauss=filter(filterB, filterA, St_M_Gauss);
60
   P_Ni=sum(abs(St_M_Gauss).^2)/length(St_M_Gauss);
   P_Si = P_Ni.*(10.^(SNRi/10));
   St_M_without = \mathbf{sqrt}(P_Si) * St_M;
   St_M_with=St_M_without+St_M_Gauss;
64
   figure (11);
65
   subplot(211);
66
   plot(fftshift(abs(fft(St_M_Gauss))).^2);
67
   title(,滤波后的白噪声功率谱,);
   subplot(212);
69
   plot(fftshift(abs(fft(St_M))).^2);
70
   title('信号功率谱');
71
  Ht_0 = \mathbf{fliplr}(St);
   Ht=conj(Ht_0);
   St_H_without=conv(St_M_without, Ht);
   St_H_Gauss=conv(St_M_Gauss, Ht);
   St_H_with=conv(St_M_with, Ht);
77
   P_So=max(abs(St_H_without).^2);
   P_{So_dB} = 10 * log 10 (P_{So});
   P_No=sum(abs(St_H_Gauss).^2)/length(St_H_Gauss);
   P_No_dB=10*log10(P_No);
   D_{\text{-thero}} = 10 * \log 10 \text{ (B*Tau)};
82
   SNRo_thero=D_thero+SNRi;
  SNRo=P_So_dB-P_No_dB;
  N2=N*M;
   t_{-}2 = linspace(0, T*(M+1), N2);
  N3=N*(M+1)-1;
   t_{-}3 = linspace(0, T*(M+1), N3);
   figure(2)
89
   subplot (211);
90
   plot(t_2*1E6, real(St_M_with));
91
   xlabel('时间 单位: us');
    title(,加入噪声的回波信号,);
93
    grid on; axis tight;
94
   subplot(212);
95
   plot(t_3*1E6, real(St_H_with));
   xlabel('时间 单位: us');
97
    title(,脉冲压缩后的信号,);
```

```
grid on; axis tight;
```

5.3 多普勒敏感与多普勒容限

```
clc;
  clear;
                       %带宽
  B = 34e6;
  T=200e-6;
                        %周期
  D=10e-2;
                   %占空比
  Fc = 10e9;
                   %载频
  SNRi = -25;
                      %输入信噪比
  V=1000;
                    %目标速度
  A=1;
                  %目标幅度
  R=0;
                %目标距离
                   %相干积累时间
  t t = 10e - 3;
  %脉宽
  Tau=D*T;
  K=B/Tau;
                     %线性调频斜率
  Fs=2*B;
                   %采样频率
  Ts=1/Fs;
                   %采样周期
  C=3e8:
                   %光速C
17
  M=tt/T;
                   %脉冲重复个数
  \mathbb{N}=\mathbf{round}(T/Ts);
  t1=linspace(-Tau/2, Tau/2, N*D);
21
  t=linspace(-T/2,T/2,N);
  St_0 = \exp(j * pi * K * t1.^2);
23
  N1 = round(N*(1-D)/2);
24
  zero=zeros(1,N1);%补零
25
  St = [zero, St_0, zero];
  27
  fd=2*V/(C/Fc);%多普勒频移
  St_Dop=exp(2*j*pi*fd.*t);%多普勒延时频移信号部分
29
  t_Delay=mod(2*R/C,T);
  N_R=round(t_Delay/Ts);
31
  zero_left=zeros(1,N1+N_R);
  zero_right = zeros(1, N1-N_R);
  St1=A*[zero_left,St_0,zero_right];
  St_M=St1.*St_Dop;
  Ht_0=\mathbf{fliplr}(St);
  Ht=conj(Ht_0);
```

```
Sot=conv(St_M, Ht);
39
  N2=2*N-1;
40
   t2 = linspace(-T, T, N2);
41
   Z0=abs(Sot);
   Z1=20*log10(Z0);
  %脉冲压缩图像放大
44
    figure(3)
45
    plot (t2*1e6,Z1);
46
    axis([-1,1,0,70]); grid on;
47
    xlabel('时间 单位: us');
48
    title('回波信号脉冲压缩后() dB');
49
   Z0=Z0/\max(Z0);
   Z2=20*log10(Z0);
51
  %查找相关参数
   range=double(-2*1e-6); [para1, para2] = find(t2 <= range);
   m_11_1 = \max(para2);
   range=double(2*1e-6); [para1, para2] = find(t2 <= range);
   m_1_2 = \max(para2);
56
   max_Main_Lobe=max(Z1(m_1_1:m_1_2));%主瓣高度
57
   range=double(0.3*1e-6); [para1, para2] = find(t2 <= range);
58
   m_1_1 = \max(para2);
59
   range=double(0.6*1e-6); [para1, para2] = find(t2 <= range);
60
   m_1_2 = \max(para2);
   max\_Side\_Lobe\_para1 = max(Z1(m\_1\_1:m\_1\_2));
62
   range=double(-0.6*1e-6); [para1, para2] = find(t2 <= range);
63
   m_1_1 = \max(para2);
   range=double(-0.3*1e-6); [para1, para2] = find(t2 <= range);
65
   m_1_2 = \max(para2);
   max\_Side\_Lobe\_para2=max(Z1(m\_1\_1:m\_1\_2));
   max_Side_Lobe=max([max_Side_Lobe_para1, max_Side_Lobe_para2]);%第一旁瓣
   range=double(-4); [para1, para2] = find(Z2 >= range);
69
   m_1_1 = \max(para2);
70
   m_1_2 = \min(para2);
71
   max_4dB_Output_Pulse_Width=(t2(m_1_1)-t2(m_1_2))*1e9;%4dB输出带宽
   Main_lobe_side_lobe_ratio=max_Main_Lobe-max_Side_Lobe;%脉压主旁比
   5.4 \text{ FFT}
   clc;
   clear;
                             %带宽
  B = 34e6;
  T=200e-6;
                               %周期
```

```
D=10e-2;
                     %占空比
  Fc=10e9;
                     %载频
                       %输入信噪比
  SNRi=-5;
  V=0;
                   %目标速度
                    %目标幅度
  A=1;
  R = 4000;
                    %目标距离
  t t = 15e - 3;
                     %相干积累时间
  %脉宽
  Tau=D*T;
  K=B/Tau;
                       %线性调频斜率
  fs = 2*B;
                     %采样频率
  Ts=1/fs;
                     %采样周期
  C = 3e8;
                     %光速C
  M=tt/T;
                     %脉冲重复个数
  \mathbb{N}=\mathbf{round}(T/Ts);
  t1 = linspace(-Tau/2, Tau/2, N*D);
  t_0 = linspace(-T/2, T/2, N);
22
  St_0 = \exp(j * pi * K * t1.^2);
  N1 = round(N*(1-D)/2);
24
  f = linspace(-fs/2, fs/2, N);
25
  zero=zeros(1,N1);%补零
  St = [zero, St_0, zero];
  28
  fd=2*V/(C/Fc);%多普勒频移
29
  i = 1:N*(M+1);
  St_Dop=exp(2*j*pi*fd*Ts*i);%多普勒延时频移信号部分
31
  t_Delay=2*R/C; %延时
  N_R=round(t_Delay/Ts);
  zero_left=zeros(1,N1+N_R);
  St_repeat=repmat(St,1,(M+1));
35
  St_1=A*[zero_left, St_repeat];
36
  St_1=St_1(:,1:(M+1)*N);
37
  St_M=St_1.*St_Dop;%带多普勒频移的信号
  t_1=linspace(0,T,N);
  St_M_Gauss=randn(1, size(St_M,2))+j*randn(1, size(St_M,2));%产生白噪声
40
   [filterB, filterA] = butter(12,0.5,'low');%20阶低通巴特沃斯滤波器
41
   [h,w]=freqz(filterB, filterA);
42
   St_M_Gauss=filter(filterB, filterA, St_M_Gauss);
43
44
   P_Ni=sum(abs(St_M_Gauss).^2)/length(St_M_Gauss);
45
```

```
P_Si = P_Ni . * (10.^(SNRi/10));
  St_M_without=sqrt(P_Si)*St_M;
47
  St_M_with=St_M_without+St_M_Gauss;
  Ht_0 = \mathbf{fliplr} (St);
  Ht=conj(Ht_0);
  St_H_without=conv(St_M_without, Ht);
52
  St_H_Gauss=conv(St_M_Gauss, Ht);
53
  St_H_with=conv(St_M_with, Ht);
54
  A_{thero} = 10 * \log 10 (B*Tau) + 10 * \log 10 (M);
  SNRo_thero=A_thero+SNRi;
  for r=1:M
58
  for h=1:N
59
  position = (r-1)*N+h+N*(1-D)/2;
60
   St_fft_arrange_without (h,r)=St_H_without (position);
61
   St_fft_arrange_Gauss(h,r)=St_H_Gauss(position);
   St_fft_arrange_with(h,r)=St_H_with(position);
63
  end
64
   end
65
  figure(5);
66
  subplot(211);
67
  mesh(1:M,1:N,abs(real(St_fft_arrange_with)));
  xlabel('距离门');
69
  ylabel('采样点');
   title(,脉冲压缩、数据重排后的信号,);
  for h=1:N
  St_{fft_{without}(h,:)} = abs(fft_{st_{fft_{arrange_{without}(h,:)}});
  St_{fft_{a}}Gauss(h,:) = abs(fft_{arrange_{a}}Gauss(h,:));
  St_{-}fft_{-}with(h,:) = abs(fft(St_{-}fft_{-}arrange_{-}with(h,:)));
76
  end
77
  figure(5);
78
  subplot (212);
  mesh(1:M, 1:N, (St_fft_with));
  xlabel('距离门');
  ylabel('采样点');
82
   title('后的信号FFT');
  A_So=max(max(St_fft_without));
  P_So=A_So^2;
  P_{-}So_{-}dB = 10*log10(P_{-}So);
```

```
87 P_No=sum(sum(abs(St_fft_Gauss.^2)))/(N*M);

88 P_No_dB=10*log10(P_No);

89 SNRo=P_So_dB-P_No_dB;
```

5.5 距离模糊与速度模糊

```
clc;
  clear;
  B = 34e6;
                        %带宽
  T=200e-6;
                        %周期
  D=10e-2;
                    %占空比
  Fc = 10e9;
                    %载频
  SNRi = -5:
                      %输入信噪比
  V1 = -25;
                     %目标速度1
  V2=50:
                  %速度2
  A=1;
                    %目标幅度
                    %距离1
  R1 = 2000;
  R2=32000;
                    %距离2
  t t = 20e - 3;
                    %相干积累时间
  14
  Tau=D*T:
                        %脉宽
15
  K=B/Tau;
                      %线性调频斜率
16
  fs = 2*B;
                    %采样频率
  Ts=1/fs;
                    %采样周期
  C=3e8:
                    %光速C
  M=tt/T;
                    %脉冲重复个数
  21
  \mathbb{N}=\mathbf{round}(T/Ts);
22
  t1=linspace(-Tau/2,Tau/2,N*D);
23
  t_0 = linspace(-T/2, T/2, N);
  St_0 = \exp(j * pi * K * t1.^2);
  N1 = round(N*(1-D)/2);
  f = linspace(-fs/2, fs/2, N);
27
  zero=zeros(1,N1);%补零
  St = [zero, St_0, zero];
  St_repeat=repmat(St,1,M+1);
  t_Delay1=2*R1/C;
                     t_Delay2=2*R2/C; %延时
  N_R1=round(t_Delay1/Ts); N_R2=round(t_Delay2/Ts);
  zero_left1=zeros(1,N1+N_R1); zero_left2=zeros(1,N1+N_R2);
34
  St1=A*[zero_left1, St_repeat];
                                   St2=A*[zero_left2, St_repeat];
  St1=St1(:,1:(M+1)*N); St2=St2(:,1:(M+1)*N);
```

```
fd1 = 2*V1/(C/Fc);
                      fd2=2*V2/(C/Fc);%多普勒频移
  i = 1:N*(M+1);
  St_Dop1=exp(2*j*pi*fd1*Ts*i);
                                     St_Dop2=exp(2*j*pi*fd2*Ts*i);%多普勒延时
     频移信号部分
                         St_M2=St2.* St_Dop2;%带多普勒频移的信号
  St_M1=St1.*St_Dop1;
40
  St_M_Gauss=randn(1, size(St_M1,2))+j*randn(1, size(St_M1,2));%产生白噪声
41
   [filterB, filterA] = butter(12,0.5,'low');%20阶低通巴特沃斯滤波器
42
   [h,w]=freqz(filterB, filterA);
43
   St_M_Gauss=filter(filterB, filterA, St_M_Gauss);
44
  St_M_with1=St_M1+St_M_Gauss;
                                 St_M_with2=St_M2+St_M_Gauss;
  Ht_0=\mathbf{fliplr}(St);
47
  Ht=conj(Ht_0);
48
  St_H_with1=conv(St_M_with1, Ht);
                                     St_H_with2=conv(St_M_with2, Ht);
49
  for r=1:M
51
  for h=1:N
  position = (r-1)*N+h+N*(1-D)/2;
  St_fft_arrange_with1(h,r)=St_H_with1(position);
  St_fft_arrange_with2(h,r)=St_H_with2(position);
55
  end
56
   end
  for h=1:N
59
  St_{fft_{with1}(h,:)} = (abs(fft_{arrange_{with1}(h,:))});
  St_{fft_with2}(h,:) = (abs(fft(St_{fft_arrange_with2}(h,:))));
61
  end
62
63
  figure(5);
  subplot (211);
  mesh(1:M, 1:N, (St_fft_with1));
  xlabel('距离门');
67
  ylabel('采样点');
68
  title(['距离为',num2str(R1),'的目标,后的情况mFFT']);
  subplot(212);
  mesh(1:M, 1:N, (St_fft_with 2));
  xlabel('距离门');
72
  ylabel('采样点');
73
  title(['距离为',num2str(R2),'的目标,后的情况mFFT']);
  [para1_1 para1_2] = \max(\max(St_fft_with1,[],2));
  R1_Calculated=para1_2/N*T*C/2;
```

```
[para2_1 para2_2] = \max(\max(St_fft_with2,[],2));
   R2_Calculated=para2_2/N*T*C/2;
78
79
   figure(6);
   subplot (211);
   \operatorname{mesh}(1:M, 1:N, (\operatorname{St}_{-}\operatorname{fft}_{-}\operatorname{with} 1));
   xlabel('距离门');
83
   ylabel('采样点');
84
   title(['速度为',num2str(V1),'m/的目标,后的情况sFFT']);
85
   subplot(212);
   \operatorname{mesh}(1:M, 1:N, (\operatorname{St}_{-}\operatorname{fft}_{-}\operatorname{with} 2));
   xlabel('距离门');
88
   ylabel('采样点');
89
   title(['速度为',num2str(V2),'m/的目标,后的情况sFFT']);
   [para1_1 para1_2]=max(max(St_fft_with1,[],1));
   V1_Calculated=para1_2/M*C/T/2/Fc;
   [para2_1 para2_2] = \max(\max(St_fft_with 2, [], 1));
   V2_Calculated=para2_2/M*C/T/2/Fc;
```

5.6 双目标

```
clc;
clear;
B=34e6;
                       %带宽
T=200e-6;
                       %周期
D=10e-2;
                   %占空比
Fc = 10e9;
                   %载频
SNRi=-5;
                     %输入信噪比
V1=20;
                   %目标速度1
V2=22;
                %速度2
A1 = 8;
                   %目标幅度
A2 = 8;
                %目标幅度
tt = 10e - 3;
                   %相干积累时间
%*****
          ******常数或中间参数**************
Tau=D*T;
                       %脉宽
K=B/Tau;
                     %线性调频斜率
fs = 2*B;
                   %采样频率
                   %采样周期
Ts=1/fs;
C=3e8;
                   %光速C
M=tt/T;
                   %脉冲重复个数
            *****线性调频信号***********
R1 = 60;
                 %距离1
```

```
R2 = 60;
                  %距离2
23
  N=round(T/Ts);
  t1=linspace(-Tau/2, Tau/2, N*D);
  t_0 = linspace(-T/2, T/2, N);
  St_0 = \exp(j * pi * K * t1.^2);
27
  N1 = round(N*(1-D)/2);
28
  f = linspace(-fs/2, fs/2, N);
29
  zero=zeros(1,N1);%补零
30
  St = [zero, St_0, zero];
  St_repeat=repmat(St,1,M+1);
33
                       t_Delay2=2*R2/C; %延时
  t_Delay1=2*R1/C;
34
  N_R1=round(t_Delay1/Ts); N_R2=round(t_Delay2/Ts);
35
  zero_left1=zeros(1,N1+N_R1); zero_left2=zeros(1,N1+N_R2);
  St1=A1*[zero_left1, St_repeat];
                                      St2=A2*[zero_left2, St_repeat];
  St1=St1(:,1:(M+1)*N);
                           St2=St2(:,1:(M+1)*N);
  fd1 = 2*V1/(C/Fc);
                       fd2=2*V2/(C/Fc);%多普勒频移
39
  i = 1:N*(M+1);
40
  St_Dop1=exp(2*j*pi*fd1*Ts*i);
                                     St_Dop2=exp(2*j*pi*fd2*Ts*i);%多普勒延时
41
     频移信号部分
  St_M=St1.*St_Dop1+St2.*St_Dop2;%带多普勒频移的信号
  St_M_Gauss=randn(1, size(St_M,2))+j*randn(1, size(St_M,2));%产生白噪声
   [filterB, filterA] = butter(12,0.5,'low');%20阶低通巴特沃斯滤波器
44
   [h,w]=freqz(filterB, filterA);
45
   St_M_Gauss=filter(filterB, filterA, St_M_Gauss);
46
  St_M_with=St_M+St_M_Gauss;
47
  Ht_0 = \mathbf{fliplr} (St);
  Ht=conj(Ht_0);
  St_H_with=conv(St_M_with, Ht);
51
  52
   for r=1:M
53
  for h=1:N
  position = (r-1)*N+h+N*(1-D)/2;
  St_{fft_{arrange_{with}}(h,r)=St_{H_{with}}(position);
  end
57
   end
58
  for h=1:N
  St_{-}fft_{-}with(h,:) = (abs(fft(St_{-}fft_{-}arrange_{-}with(h,:))));
```

```
end
62
   63
   k = 60;
64
   for h=1:k
        St_fft_with_chose(h,:)=St_fft_with(h,:);
   end
67
68
   69
   figure (6);
70
   subplot (311);
71
   \operatorname{mesh}(1:M, 1:k, (St_fft_with_chose));
   xlabel('距离门');
   ylabel('采样点');
   title([',距离差为',num2str(abs(R2-R1)),'的情况m']);
   figure(6);
   subplot(312);
77
   \operatorname{mesh}(1:M, 1:k, (St_fft_with_chose));
   view(-90,0);
79
   title([, 距离投影,]);
80
   subplot(313);
81
   \mathbf{mesh}(1:M, 1:k, (St_-fft_-with_-chose));
   view(0,0);
   title(['速度投影']);
85
   86
   figure(7);
87
   subplot (311);
88
   \operatorname{mesh}(1:M, 1:k, (St_fft_with_chose));
   xlabel('距离门');
   ylabel('采样点');
   title(['速度差为',num2str(abs(V2-V1)),'m/的情况s']);
   figure(7);
93
   subplot(312);
94
   \operatorname{mesh}(1:M, 1:k, (\operatorname{St}_{-}fft_{-}with_{-}chose));
   view(-90,0);
   title(['距离投影']);
   figure(7);
98
   subplot(313);
99
   \operatorname{mesh}(1:M, 1:k, (St_fft_with_chose));
100
   \mathbf{view}(0,0);
101
   title(['速度投影']);
```

```
103
   104
    figure(8);
105
    subplot(311);
106
    \operatorname{mesh}(1:M, 1:k, (St_fft_with_chose));
107
    xlabel('距离门');
108
    ylabel('采样点');
109
    title(['距离差',num2str(abs(R2-R1)),'m 速度差',num2str(abs(V2-V1)),'m/s']);
110
    figure(8);
111
    subplot(312);
112
   \operatorname{\mathbf{mesh}}(1:M, 1:k, (St_-fft_-with_-chose));
113
    view(-90,0);
114
    title([, 距离投影,]);
115
    figure(8);
116
    subplot(313);
117
   \operatorname{mesh}(1:M, 1:k, (St_fft_with_chose));
118
    \mathbf{view}(0,0);
    title(['速度投影']);
120
```