1) Calcular el centro de carga de la empresa de la que se adjuntan los planos:

Para Calcular el centro de cargas, primero debemos identificar todas las potencias activas que tenemos en el sistema. Luego conociendo la posición espacial de cada una, realizaremos el siguiente cálculo:

$$Xcc = \frac{(\sum_{i=1}^{n} Xi * Pi)}{Ptotal}$$

$$Ycc = \frac{(\sum_{i=1}^{n} Yi * Pi)}{Ptotal}$$

Nº	Carga	X (mts)	Y (mts)	Potencia (W)	
1	Servidor A	23,95	17,93	353,7	
2	Servidor B	23,95	29,73	353,7	
3	Ts Adm.(TS AUX)	21,91	2,91	86,7	
4	TS FRÍO	49,79	39,55	643	
5	TS BOMBAS	18,24	39,55	117,3	
6	TS SG	11,91	4,35	120,75	
CE	NTRO DE CARGA	Хсс	Ycc		
		32,49528788	28,47790735		

Observando el plano del Datacenter, podemos ver que el centro de cargas se ubica en la parte interior de la Planta.

2) Seleccione la potencia nominal del o los transformadores considerando un crecimiento futuro de los equipos no puntualizados de 15%.

En primera instancia haremos un estudio de todas las potencias que entran en juego antes de tomar una decisión de qué transformador elegir. Lo que sí ya podemos adelantar es que haremos la selección de dicho transformador, teniendo en cuenta las futuras ampliaciones de la planta.

Con crecimien to	Sala de servidore s (son 2)	TS de admin. (ts aux)	Equipos A.A. (2+1)	MEL (2+1)	BOMBAS AGUA (2+1)	BOMBAS POZO (2+1)	TS serv. grales	TOTAL
Potencia Aparente(kVA)	722	102	600	115	75,9	41,4	172,5	1828,8
Potencia Activa(kW)	707,56	86,7	528	92	60,72	33,12	120,75	1628,85
Potencia Reactiva(k VAr)	143,6761 859	53,7318 3414	284,9842 101	69	45,54	24,84	123,1896 404	744,961 8705
cos phi	0,98	0,85	0,88	0,8	0,8	0,8	0,7	
phi	0,200334 8423	,	0,494934 1263	0,643501 1088	0,643501 1088	0,643501 1088	0,795398 8302	

Hemos optado por instalar un único transformador de 2000 KVA, que cubrirá toda la demanda de la planta.

Vamos a seleccionar un transformador en Seco de la empresa *CAT S.A*, debido a que la instalación será dentro de la planta, y los Secos tienen un menor costo de mantenimiento que sus semejantes de aceite.

A continuación, se adjunta una imagen del catálogo del fabricante.

Transformadores Secos Encapsulados

→ Línea estándar con arrollamientos en Cobre

Tappings	± 2 x 2,5
Tensión Secundaria	400 - 231 V
Frecuencia	50 Hz
Grupo de Conexión	Dyn11
Ventilación	AN
Clase térmica	F
Grado de protección	IP 00 (hasta IP55)
Servicio h.s.n.m.	hasta 1000 m

En Clase 17,5 kV

Р	Po	Poc	Ucc	lo	Ruido	L	Н	P	Т	D	A	Peso
KVA	١	N		%	dB			m	ım			Kg
100	520	1800	6	2,1	58	1200	1100	680	600	100	40	952
125	570	2000	6	2	58	1220	1120	680	600	100	40	1040
160	640	2400	6	1,9	58	1240	1150	680	600	100	40	1080
200	720	2800	6	1,8	58	1270	1170	680	600	100	40	1170
250	830	3300	6	1,7	60	1300	1210	680	600	100	40	1310
315	960	3900	6	1,6	60	1340	1240	680	600	100	40	1430
400	1120	4700	6	1,5	60	1380	1300	900	800	130	45	1600
500	1300	5600	6	1,4	60	1440	1370	900	800	130	45	1880
630	1550	6800	6	1,3	62	1500	1440	900	800	130	45	2140
800	1850	8200	6	1,2	64	1580	1540	900	800	130	45	2550
1000	2200	9800	6	1,1	64	1650	1640	900	800	130	45	2930
1250	2600	11700	6	1	65	1730	1750	1120	1000	160	50	3510
1600	3150	14200	- 6	0.9	66	1850	1890	1120	1000	160	50	4330
2000	3700	16700	- 6	8,0	66	1920	2020	1120	1000	160	50	5150
2000	4300	19000	- 0	0,7	68	1970	2100	1120	1000	100	90	6320
3150	4900	22300	7	0,6	70	1980	2250	1120	1000	160	50	7730

3) Dimensionar esquemáticamente las salas internas para permitir alojar el centro de cómputos, administración, los tableros de MT y BT, UPSs, Generadores y transformadores.

4) Seleccionar los cables de BT desde el/los transformadores hasta el TGBT, desde el TGBT hasta el TS AA y desde el generador al TGBT.

Cableado

```
A) Trafo "T1" → TGBG = 9m
```

B) TGBT
$$\rightarrow$$
 TS AA = 3m + 26m + 12m + 10m + 4m = 55m

C) TGBT
$$\rightarrow$$
 Generador = 3m + 26m + 12m + 10m + 4m = 55m

Carga TS AA = 643 KW
$$\rightarrow$$
 $I = 643 \, KW / (380 \, V * \sqrt{3}) = 977 \, A$ Carga total = 1675 KW \rightarrow $I = 1675 \, KW / (380 \, V * \sqrt{3}) = 2545 \, A$

Separo los 2545 A en 10 cables de 254,5 A. Separo los 977 A en 4 cables de 244,25 A.

Da	itos eléctricos
Tip	oo de corriente: Alterna (CA)
Tip	oo de sistema: Trifásico
Tei	nsión del sistema: 380 V
Int A	ensidad en Amperios: 2545
Tij	po de cable
EX	ZHELLENT-XXI RZ1-K (AS)
Co	nstrucción: Tripolar
N.º	de cables por fase: 10
Int	ensidad por cable: 254.5 A
In	stalación
	oos de instalación: stalación al aire libre
Tei	mperatura ambiente: 20 °C
Ca	ble expuesto al sol: No
de	oo de bandejas o de tendido los cables: Horizontales rforadas
Ca	bles en contacto: Sí
Nú	mero de bandejas: 1
N.º	de circuitos adicionales: 0
-	ctor de corrección total:
0.7	•

SUPERFLEX/EVA MULTICONDUCTOR - 3 FASES + 1 NEUTRO AL 100%

Calibre	Sección	Diámetro del	Espesor	Diámetro	Peso total	Capa	cidad de corrie	nte A
AWG/kcmil	nominal mm²	conductor aprox.	aislación mm	exterior aprox.	2	Ducto enterrado (1) Temp. amb. 20 °C	Direct. enterrado (2) Temp. amb. 20 °C	Aire libre (3) Temp. amb. 40 °C
14	2,08	1,9	0,7	10,2	165	22	22	21
12	3,31	2,4	0,7	12,4	245	29	29	28
10	5,26	3,0	0,7	14,8	380	37	37	36
8	8,37	3,8	0,7	16,2	485	46	67	45
6	13,3	4,7	0,7	18,9	702	59	86	58
4	21,2	6,0	0,9	22,1	1.098	78	111	78
2	33,6	7,7	0,9	25,8	1.637	102	144	106
1	42,4	8,7	1,0	28,6	2.010	117	164	122
1/0	53,5	9,4	1,0	31,3	2.512	138	187	143
2/0	67,4	10,7	1,1	35,0	3.006	161	214	167
3/0	85,0	11,7	1,1	38,2	3.731	182	239	191
4/0	107	12,9	1,2	42,2	4.578	210	274	224
250	127	13,8	1,2	45,2	5.591	232	298	249
350	177	17,4	1,6	54,3	6.657	281	355	306
500	253	20,8	1,7	66,9	11.069	358	435	388

Elijo una sección de 253 mm² para no estar tan ajustado y verifico de forma teórica la corriente admisible por el conductor:

Factor de reducción para agrupamiento para 10 cables en 1 capa en bandeja perforada = 0,72 Factor de corrección por temperatura para cable tipo XLPE a 20°C = 1,19 Factor de simetría para 10 cables = 0,8

actor de potencia	0,8 🖨 Cos φ
aída de tensión m	áxima permisible
 Seleccionar porce 	entaje ————————————————————————————————————
○ Instalación indu	ustrial
	▽ %
O Viviendas y simila	ıres
	√ %
A medida	
	5 🖢 %

Datos eléctricos Tipo de corriente: Alterna (CA) Tipo de sistema: Trifásico Tensión del sistema: 380 V Intensidad en Amperios: 977 A Tipo de cable EXZHELLENT-XXI RZ1-K (AS) Construcción: Tripolar N.º de cables por fase: 4 Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0 Factor de corrección total:
Tipo de sistema: Trifásico Tensión del sistema: 380 V Intensidad en Amperios: 977 A Tipo de cable EXZHELLENT-XXI RZ1-K (AS) Construcción: Tripolar N.º de cables por fase: 4 Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Tensión del sistema: 380 V Intensidad en Amperios: 977 A Tipo de cable EXZHELLENT-XXI RZ1-K (AS) Construcción: Tripolar N.º de cables por fase: 4 Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Intensidad en Amperios: 977 A Tipo de cable EXZHELLENT-XXI RZ1-K (AS) Construcción: Tripolar N.º de cables por fase: 4 Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Tipo de cable EXZHELLENT-XXI RZ1-K (AS) Construcción: Tripolar N.º de cables por fase: 4 Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Construcción: Tripolar N.º de cables por fase: 4 Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Construcción: Tripolar N.º de cables por fase: 4 Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
N.º de cables por fase: 4 Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Intensidad por cable: 244.25 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandejas: 1 N.º de circuitos adicionales: 0
Número de bandejas: 1 N.º de circuitos adicionales: 0
N.º de circuitos adicionales: 0
Factor de corrección total:
0.85
Factor de carga: 96.43 %

SUPERFLEX/EVA MULTICONDUCTOR - 3 FASES + 1 NEUTRO + 1 TIERRA

	SUPERFLEXIEVE MIDLITICONDUCTOR - 3 FASES + 1 NEOTRO + 1 HERRA							
Calibre	Sección		Espesor	Diámetro	Peso total	Capa	cidad de corrie	nte A
AWG/kcmil	nominal	Diámetro del conductor aprox.	aislación	exterior aprox.	aprox.	Ducto enterrado (1) Temp. amb. 20 °C	Direct. enterrado (2) Temp. amb. 20 °C	Aire libre (3) Temp. amb. 40 °C
•	mm²	mm	mm	mm	kg/km			
14	2,08	1,9	0,7	12,0	232	22	22	21
12	3,31	2,4	0,7	13,1	304	29	29	28
10	5,26	3,0	0,7	14,9	421	37	37	36
8	8,37	3,8	0,7	18,7	655	46	67	45
6	13,3	4,7	0,7	21,3	941	59	86	58
4	21,2	6,0	0,9	24,3	1.291	78	111	78
2	33,6	7,7	0,9	29,2	2.080	102	144	106
1	42,4	8,7	1,0	34,4	2.628	117	164	122
1/0	53,5	9,4	1,0	37,4	3.200	138	187	143
2/0	67,4	10,7	1,1	40,1	3.944	161	214	167
3/0	85,0	11,7	1,1	45,3	5.159	182	239	191
4/0	107	12,9	1,2	46,8	5.934	210	274	224
250	127	13,8	1,2	49,6	6.769	232	298	249
350	177	17,4	1,6	61,5	9.482	281	355	306
500	253	20,8	1,7	74,7	14.627	358	435	388

Elijo una sección de 177 mm² para no estar tan ajustado y verifico de forma teórica la corriente admisible por el conductor:

Factor de reducción para agrupamiento para 4 cables en 1 capa en bandeja perforada = 0,77 Factor de corrección por temperatura para cable tipo XLPE a 20°C = 1,19 Factor de simetría para 4 cables = 1

Iz = 306 A * 0,77 * 1,19 * 1 = 280 A > 244,25 A

Datos eléctricos Tipo de corriente: Alterna (CA) Tipo de sistema: Trifásico Tensión del sistema: 380 V Intensidad en Amperios: 2545 Tipo de cable EXZHELLENT-XXI RZ1-K (AS) Construcción: Tripolar N.º de cables por fase: 10 Intensidad por cable: 254.5 A Instalación Tipos de instalación: Instalación al aire libre Temperatura ambiente: 20 °C Cable expuesto al sol: No Tipo de bandejas o de tendido de los cables: Horizontales perforadas Cables en contacto: Sí Número de bandeias: 1 N.º de circuitos adicionales: 0 Factor de corrección total: Factor de carga: 93.11 %

SUPERFLEX/EVA MULTICONDUCTOR - 3 FASES + 1 NEUTRO AL 100%

Calibre	Sección	Diámetro del	Espesor	Diámetro	Peso total aprox. kg/km	Capacidad de corriente A			
AWG/kcmil	nominal mm²	conductor aprox.	aislación mm	exterior aprox.		Ducto enterrado (1) Temp. amb. 20 °C	Direct. enterrado (2) Temp. amb. 20 °C	Aire libre (3) Temp. amb. 40 °C	
14	2,08	1,9	0,7	10,2	165	22	22	21	
12	3,31	2,4	0,7	12,4	245	29	29	28	
10	5,26	3,0	0,7	14,8	380	37	37	36	
8	8,37	3,8	0,7	16,2	485	46	67	45	
6	13,3	4,7	0,7	18,9	702	59	86	58	
4	21,2	6,0	0,9	22,1	1.098	78	111	78	
2	33,6	7,7	0,9	25,8	1.637	102	144	106	
1	42,4	8,7	1,0	28,6	2.010	117	164	122	
1/0	53,5	9,4	1,0	31,3	2.512	138	187	143	
2/0	67,4	10,7	1,1	35,0	3.006	161	214	167	
3/0	85,0	11,7	1,1	38,2	3.731	182	239	191	
4/0	107	12,9	1,2	42,2	4.578	210	274	224	
250	127	13,8	1,2	45,2	5.591	232	298	249	
350	177	17,4	1,6	54,3	6.657	281	355	306	
500	253	20,8	1,7	66,9	11.069	358	435	388	

Elijo una sección de 253 mm² para no estar tan ajustado y verifico de forma teórica la corriente admisible por el conductor:

Factor de reducción para agrupamiento para 10 cables en 1 capa en bandeja perforada = 0,72 Factor de corrección por temperatura para cable tipo XLPE a 20°C = 1,19 Factor de simetria para 10 cables = 0,8

5. Seleccionar los interruptores y protecciones a instalar en el TGBT.

Para la linea principal de la instalación, necesitamos una protección para una corriente nominal de 2545 A, para esto seleccionamos el siguiente interruptor automático.

Modelo: Masterpact NW32H10 - 3200 A - 4 Polos

Principal

mopai				
Gama de producto	Masterpact NW			
Tipo de producto o componente	Bastidor básico			
Nombre corto del dispositivo	Masterpact NW32 1000V			
Nombre del interruptor automático	Masterpact NW32HA10			
Número de polos	4P			
Posición de neutro	Izquierda			
Tipo de red	CA			
Código de poder de corte	H10			
Apto para seccionamiento	Sí acorde a IEC 60947-2			
Categoría de empleo	Category B			

Complementario

Frecuencia de red	50/60 Hz
Tipo de control	Pulsador
Tipo de montaje	Extraíble
Corriente nominal (In)	3200 A en 40 °C
[Ui] tensión asignada de aislamiento	1250 V CA 50/60 Hz acorde a IEC 60947-2
[Uimp] Tensión asignada de resistencia a los choques	12 kV acorde a IEC 60947-2
[lcm] capacidad nominal de cierre en cortocircuito	105 kA 1.150 V CA en 50/60 Hz
[Ue] tensión asignada de empleo	1.150 V CA 50/60 Hz acorde a IEC 60947-2
Poder de corte	50 kA Icu en 1.150 V CA 50/60 Hz acorde a IEC 60947-2
[lcs] poder de corte en servicio	50 kA en 1.150 V CA 50/60 Hz acorde a IEC 60947-2
Tipo de protección	Sin protección
Durabilidad mecánica	10000 cycles sin mantenimiento acorde a IEC 60947-2 20000 cycles con mantenimiento acorde a IEC 60947-2
Durabilidad eléctrica	500 cycles 1150 V CA 50/60 Hz sin mantenimiento acorde a IEC 60947-2

Como protecciones del TGBT elegimos utilizar relés diferenciales, los cuales tienen que soportar una corriente máx aproximada de 250 A, suponiendo que se pueden regular entre un 0.9 y 1.1 del valor y una sección máxima aproximada de 250mm2.

Optamos por una protección de marca ABB, del modelo TR160.

Características técnicas

	RD3M	RD3P
Frecuencia de alimentación	45-66 Hz	45-66 Hz
Filtrado en frecuencia	45150 Hz f = 400 HzT	45150 Hz f = 400 HzT
Tipo	A (hasta l∆n = 5A)	A (hasta l∆n = 5A)
Temperatura de funcionamiento	−25 °C +70 °C	−25 °C +70 °C
Potencia máx. absorbida	RD3M: <3,6 W	RD3P: <3,6 W
	RD3M-48: <600 mW	RD3P-48: <600 mW
Regulación umbral de intervención l∆n	0,03-0,1-0,3-0,5-1-2-3-5-10-30	0,03-0,1-0,3-0,5-1-2-3-5-10-30
Regulación umbral de intervención l∆t	0-0,06-0,2-0,3-0,5-1-2-3-5-10	0-0,06-0,2-0,3-0,5-1-2-3-5-10
Umbral de pre-alarma	60% I∆n	60% I∆n
Resistencia máx. conexión toroide-relé	3Ω	3Ω
Long. máx. conexión botón remoto-reset	15 m	15 m
Carga de los contactos de salida	8 A 250 Vac	8 A 250 Vac
Módulos	3	3
Grado de protección	IP20	IP20
Máx. sección cables terminales	2,5 mm ²	2,5 mm²

Tabla de selección de transformadores	TR1	TR2	TR3	TR4	TR4/A	TR160	TR160/A	TR5	TR5/A
Diámetro del transformador [mm]	35	60	80	110	110	160	160	210	210
Sección máx. de cable (4x) [mm²]	35	50	95	240	240	400	400	480	480
Intensidad máx. monitorizada (1x) [A]	75	85	160	400	400	250	250	630	630

6. Calcular la corriente de cortocircuito trifásica en el tablero de MT, en las barras de TGBT y en las barras del TS AA. Dibuje el esquema de impedancias equivalentes utilizadas.

Para calcular la corriente de cortocircuito trifásica, utilizaremos el método de las impedancias. Realizaremos el análisis en los tres puntos indicados. El circuito equivalente es el siguiente:

Impedancia de la acometida de distribución:

$$Zdist = \frac{13,2 \, KV}{250 \, MVA} = 0,767\Omega$$

$$Rdist = 0.1 * 0.767\Omega = 0.0767\Omega$$

$$Xdist = 0.995 * 0.767\Omega = 0.763\Omega$$

$$Zdist(BT) = \frac{Zdist}{a^2} = \frac{0.767\Omega}{33^2} = 7.04 * 10^{-4} \Omega$$

$$Rdist(BT) = \frac{Rdist}{a^2} = \frac{0,0767\Omega}{33^2} = 7,04 * 10^{-5} \Omega$$

$$Xdist(BT) = \frac{Xdist}{a^2} = \frac{0.763\Omega}{33^2} = 7 * 10^{-4} \Omega$$

ZC MT:

Cable de media tensión: (3x 400mm²) 101,12 mts. (Datos relevados de la instalación y los catálogos usados)

$$Rc\ MT = R\left(\frac{\Omega}{km}\right) * long(km) = 0.059 * 0.101 = 0.0059 \ \Omega$$

$$Xc\ MT = X\left(\frac{\Omega}{km}\right) * long(km) = 0,171 * 0,101 = 0,0172 \ \Omega$$

$$Zc\ MT = \sqrt{Rc\ MT^2 + Xc\ MT^2} = \sqrt{0.0059^2 + 0.0172^2} = 0.018\ \Omega$$

Z trafo:

Datos:

13,2/0,4KV 2000KVA Ucc= 6% Pcc= 16700W. (Datos relevados de la instalación y los catálogos usados)

$$Pcc \% = \frac{Pcc}{Sn(VA)} = \frac{16700W}{2000KVA} * 100 = 0.84 \%$$

$$Ztrafo = \frac{Ucc \%}{100} \frac{Ubt^2}{Sn} = \frac{6}{100} * \frac{0.4^2 KV}{2MVA} = 4.8 * 10^{-3} \Omega$$

$$Rtrafo = \frac{Pcc \%}{100} \frac{Ubt^2}{Sn} = \frac{0.84}{100} * \frac{0.4^2 \ KV}{2MVA} = 0.673 * 10^{-3} \ \Omega$$

$$Xtrafo = \sqrt{Ztrafo^2 - Rtrafo^2} = \sqrt{(0,0048)^2 - (0,00067)^2} = 4.7 * 10^{-3} \Omega$$

$$Ztrafo(MT) = a^2 * Ztrafo = 33 * 33 * + 4.8 * 10^{-3} \Omega = 5.22 \Omega$$

$$Rtrafo\ (MT) = \ a^2 * Rtrafo = 33 * 33 * 0,673 * 10^{-3} \ \Omega = 0,73 \ \Omega$$

$$Xtrafo\ (MT) = a^2 * Xtrafo = 33 * 33 * 4,7 * 10^{-3} \Omega = 5,11 \Omega$$

Zc BT1:

Cable de Baja Tensión: (253 mm²) 9 mts (Datos relevados de la instalación y los catálogos usados)

$$Rc\ BT1 = R\left(\frac{\Omega}{km}\right) * long(km) = 0.0643 * 0.009 = 0.00058\ \Omega$$

$$Xc\ BT1 = X\left(\frac{\Omega}{km}\right) * long(km) = 0.137 * 0.009 = 0.00123\ \Omega$$

$$Zc\ BT1 = \sqrt{Rc\ BT1^2 + Xc\ BT1^2} = \sqrt{0.00058^2 + 0.00123^2} = 0.00136\ \Omega$$

Zc BT2:

Cable de Baja Tensión: (177 mm²) 55 mts (Datos relevados de la instalación y los catálogos usados)

$$Rc\ BT2 = R\left(\frac{\Omega}{km}\right) * long(km) = 0.105 * 0.055 = 0.0057\ \Omega$$

$$Xc\ BT2 = X\left(\frac{\Omega}{km}\right) * long(km) = 0,137 * 0,055 = 0,0075\ \Omega$$

$$Zc\ BT2 = \sqrt{Rc\ BT2^2 + Xc\ BT2^2} = \sqrt{0.0057^2 + 0.0075^2} = 0.094\ \Omega$$

1- Cortocircuito en la celda de MT: (datos brindados por la distribuidora eléctrica)

$$Z1 = Zdist + Zc MT = (0.0767\Omega + j 0.763\Omega) + (0.0059 \Omega + j 0.0172 \Omega)$$

$$Z1 = (0.0826 + i 0.7802)\Omega = 0.78 < 84^{\circ}$$

$$Icc1 = \frac{1.1 U}{Z1} = \frac{1.1 * 13200V}{0.78} = 18.6 \text{ KA}$$

2- Cortocircuito en TGBT.

$$Z2 = 0.084 + j 0.79 = 0.79 < 84^{\circ}$$

$$Icc2 = \frac{1.1 U}{Z2} = \frac{1.1 * 13200V}{0.79} = 18.4 KA$$

3- Cortocircuito en TS AA: Z3= Z2 + Zc BT2

$$Z3 = 0.089 + i0.79 = 0.8 < 84^{\circ}$$

$$Icc3 = \frac{1,1 U}{Z3} = \frac{1,1 * 13200V}{0,8} = 18,1 KA$$

7. Seleccionar la/s UPS a instalar.

Para las dos salas de servidores, que requieren una potencia de 722 KVA, se selecciona la siguiente UPS.

8. Seleccionar el/los generadores a utilizar.

Model: C2000 D5 Frequency: 50 Fuel Type: Diesel

» Generator set data sheet 2062.5 kVA Standby

Our energy working for you.™

Spec sheet:			SS17-C	PGK							
Noise data sheet (Open/enclosed):			ND50-0	SHHP/ND50	-CSHHP						
Airflow data sheet:			AF50-H	AF50-HHP							
Derate data sheet (Open/enclosed):			DD50-O	SHHP/DD50	-CSHHP						
Transient data sheet:			RTF								
	Standb	y			Prime						
Fuel consumption	kVA (kV	V)		kVA (kW)							
Ratings	2062.5 ((1650)	755	3/2	1875 (15	500)	502	539			
Load	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full			
US gph	26.2	44.6	64.2	86.4	24.4	41.1	58.7	78.0			
						_		_			

L/hr	119	203	292	393	111	187	267	355
Engine			Standby	rating		Prime r	ating	
Engine manufacturer			Cummins	3		•		
Engine model			QSK60-0	33				
Configuration			Cast Iron	, 60° V16 C	ylinder			
Aspiration			Turbo Ch	arged and I	ow Tempe	rature After-	Cooled	
Gross engine power output, kWm			1789			1614		
BMEP at set rated load, kPa			2386			2158		
Bore, mm			159					
Stroke, mm			190					
Rated speed, rpm			1500					
Piston speed, m/s			9.5					
Compression ratio			14.5:1					
Lube oil capacity, L			Stdby 28	0 Prime/0	Cont 397			
Overspeed limit, rpm			1850 ±50)				
Regenerative power, kW			146					
Governor type			Electroni	С				
Starting voltage			24V Volts	s DC				
Fuel flow								
Maximum fuel flow, L/hr			1893					
Maximum fuel inlet restriction, mm Hg			203					
Maximum fuel inlet temperature (°C)			71					
Air			Ĺ					
Combustion air, m3/min			139			125		
Maximum air cleaner restriction, kPa			6.2					

9. Dimensionar el/los tablero de corrección de factor de potencia para obtener Cos ϕ 0,98 en el TGBT.

Se procede a calcular las potencias reactivas requeridas para llevar las cargas al factor de potencia deseado, aplicando la siguiente formula: Pcap = Pact (tan (PHI inic) - tan (PHI fin));

Inicial	Sala de servidores (son 2)	TS de admin. (ts aux)	Equipos A.A. (2+1)	MEL (2+1)	BOMBAS AGUA (2+1)	BOMBAS POZO (2+1)	TS Serv. Gen.	TOTAL	
Potencia Aparente (kVA)	380,000	85,000	300,000	100,000	66,000	36,000	150,000	1117,000	
Potencia Activa (kW)	372,400	72,250	264,000	80,000	52,800	28,800	105,000	975,250	
Potencia Reactiva (kVAr)	75,619	44,777	142,492	60,000	39,600	21,600	107,121	491,209	
cos phi	0,980	0,850	0,880	0,800	0,800	0,800	0,700		
phi	0,200	0,555	0,495	0,644	0,644	0,644	0,795		COS PHI (
calc T comp Qc (kVAr)	0,000	30,106	88,885	43,755	28,879	15,752	85,800	293,176	0,98

Con crecimiento	Sala de servidores (son 2)	TS de admin. (ts aux)	Equipos A.A. (2+1)	MEL (2+1)	BOMBAS AGUA (2+1)	BOMBAS POZO (2+1)	TS Serv. Gen.	TOTAL	
otencia Aparente (kVA)	722,000	102,000	600,000	115,000	75,900	41,400	172,500	1828,800	
Potencia Activa (kW)	707,560	86,700	528,000	92,000	60,720	33,120	120,750	1628,850	l
Potencia Reactiva (kVAr)	143,676	53,732	284,984	69,000	45,540	24,840	123,190	744,962	
cos phi	0,980	0,850	0,880	0,800	0,800	0,800	0,700		
phi	0,200	0,555	0,495	0,644	0,644	0,644	0,795		Ī
calc T comp Qc (kVAr)	0,000	36,127	177,769	50,319	33,210	18,115	98,670	414,210	ı

Debido a que los conductores ya fueron seleccionados, sumado a la posible ampliación de las cargas y el desconocimiento de la simultaneidad de las mismas, se decide implementar un Banco de Capacitores de Operación Automática del fabricante Siemens, el cual se conectara en la línea principal del TGBT.

			Serie Bam			
			MASTER			
			pinete tipo 8			
No. de Catálogo	Potencia (kVAR)	Voltaje (Volts)	Pasos (No x kVAR.)	Interruptor (Amps)	Catálogo Siemens	Dimensiones (mm)
BAM8MX-4075-05	75	(40113)	5 x 15	150	Olelliella	\(\text{timily}\)
BAM8MX-4090-06	90	1	6 x 15	175	l	
BAM8MX-4100-04	100		4 x 25	200	İ	
BAM8MX-4100-05	100		5 x 20	200	FXD	
BAM8MX-4120-04	120	İ	4 x 30	225		
BAM8MX-4120-06	120	İ	6 x 20	225	İ	
BAM8MX-4125-05	125		5 x 25	250	İ	
BAM8MX-4140-04	140		4 x 35	300		
BAM8MX-4140-07	140	i	7 x 20	300	Ī	
BAM8MX-4150-05	150	İ	5 x 30	300	1	
BAM8MX-4150-06	150	ĺ	6x 25	300	1	
BAM8MX-4160-04	160	l	4 x 40	300		
BAM8MX-4160-08	160		8 x 20	300		
BAM8MX-4175-05	175		5 x 35	400		
BAM8MX-4175-07	175		7 x 25	400	JXD	
BAM8MX-4180-03	180		3 X 60	400		
BAM8MX-4180-06	180	480	6 x 30	400		2286 x 600 x 500
BAM8MX-4200-04	200		4 x 50	400		
BAM8MX-4200-05	200		5 x 40	400		
BAM8MX-4200-08	200		8 x 25	400		
BAM8MX-4210-06	210		6 x 35	400		
BAM8MX-4210-07	210		7 x 30	400		
BAM8MX-4225-05	225		25 + 4 x 50	500		
BAM8MX-4240-06	240		6 x 40	500	[
BAM8MX-4250-05	250		5 x 5	500	LXD	
BAM8MX-4275-06	275		25 + 5 x 50	500	LAD	
BAM8MX-4300-05	300		5 x 60	600		
BAM8MX-4300-06	300		6 x 50	600		
BAM8MX-4350-07	350		7 x 50	700		
BAM8MX-360-06	360		6 x 60	700	LMX	
B.111010111101	100			200		
BAM8MX-4420-07	420		7 x 60	800		
BAM8MX-4480-08	480		8 x 60	1000	NXD	

- 10). Del TS SG se alimentan 4 extractores de aire que requieren una potencia en el eje de 6,2 HP, cada uno con arranque directo.
- a). Dimensionar cada motor adecuado para dicha aplicación.

Se requiere una potencia mecánica en el eje de 6,2 HP => 4,62kW

Datos eléctricos - SIMOTICS 1LEO - Serie Fundición de Hierro - 2 polos

TIP i

El torque nominal de un motor se puede calcular de una forma sencilla;

Torque (Nm) = Potencia (kW) x 9550 / Velocidad (rpm).

	Serie F	undición de	Hierro
Eficiencia		IE1	
Series		1LE0102	
Número de polos	2	4	6
Ventilación	Auto	ventilado (IC	411)
Grado de protección		IP55	
Aislamiento	Cla	se térmica 155	(F)
Utilización	Cla	se térmica 130	(B)
Tamaño constructivo		80 355	
Potencia nominal a 50 Hz		0,55 315 kW	1
Torque nominal a 50 Hz		2,6 2412 Nn	1

Datos	eléctric	os - 1LE0 - IE1 - 2-p	olos		(IE1 Fund			hierro	3000 (rpm 2-	polos,	380 V	50 Hz				
Potencia kW	Tamaño cons- tructivo	Código	Efi- ciencia		nominal Torque (Tn) Nm	Corriente en vacio A	Corriente nominal (In) A	Factor de po- tencia	100%	ficiencia a 75% decarga %	50%		rranque veces Tn	Máximo torque veces Tn	Momento de inercia kgm²	Clase de torque	Peso neto (IMB3) kg
				· · · · ·			220 V	/ 380	VY	70	,,,				Ng		ng .
0,75	80M	1LE0102-0DA22-14	IE 1	2800	2,6	1	1,84	0,86	72,1	73	71,1	5,1	2,3	2,7	0,0008	D	15
1,1	80M	1LE0102-0DA32-14	IE 1	2830	3,7	1,22	2,6	0,86	75	77,3	74,4	6	2,6	3,1	0,0010	E	17,5
1,5	905	1LE0102-0EA02-14	IE 1	2885	5	1,92	3,45	0,85	77,2	76,9	73,5	6,9	2,5	3,2	0,0017	F	22
2,2	90L	1LE0102-0EA42-14	IE 1	2885	7,3	2,26	4,8	0,87	79,7	80,5	78,1	7,5	2,7	3,4	0,0022	F	26
3	100L	1LE0102-1AA42-14	IE 1	2850	10	2,95	6,6	0,85	81,5	82,1	79,9	6,9	3	3,7	0,0033	F	33
4	112M	1LE0102-1BA22-14	IE 1	2910	13,1	3,95	8,6	0,85	83,1	83,7	81,5	7,8	2,9	4,2	0,0064	L	39
5,5	132S	1LE0102-1CA02-14	IE 1	2915	18	4,85	11,5	0,86	84,7	85,3	83,7	6,9	2	3,1	0,013	К	55
7,5	132S	1LE0102-1CA12-14	IE 1	2920	24,5	6,9	15,1	0,88	86	87,2	86,2	7,1	2	2,9	0,015	K	60
							380 V	/ 660	VY								
3		1LE0102-1AA43-34		2850	10	2,9	6,6	0,85	81,5	82,1	79,9	6,9	3	3,7	0,0033	F	33
4	112M	11F0102-1RA23-3_4	IE 1	2910	13,1	4	8,6	0.85	83.1	83.7	81.5	7.8	2.9	4.2	0.0064		3.9
5,5	132S	1LE0102-1CA03-34	IE 1	2915	18	5,3	11,5	0,86	84,7	85,3	83,7	6,9	2	3,1	0,013	K	55
7,5	1325	1LE0102-1CA13-34	IE 1	2920	24,5	6,2	15,1	0,88	86	87,2	86,2	7,1	2	2,9	0,015	К	60

Fcarga = (Pcarga / Pmotor)*100 = 4,62kW / 5,5kW = 84%
=>
$$\eta$$
 = 84,7 %

b). Dimensionar y seleccionar las protecciones y elementos de maniabra y control requeridos para los motores seleccionados.

Pelect = Pmec / η = 5,5 kW /0,847 = 6,493 kW Cos phi =0.82 => IL = Pelect / (cos phi * UL* $\sqrt{3}$) = 12,03 A Se procede entonces a seleccionar fusibles, contactores y relevos térmicos:

aM

Fusibles A.C.R. NH

Protección Normas Motores

VDE 0636 - DIN 43620 - IEC 60269

Fusibles tipo NH clase aM para protección de respaldo, tanto al motor como al contactor, relé y conductor de alimentación, sin operar frente a las rigurosas corrientes de arranque, siempre

alta velocidad,	frente a corrientes 10 veces In.	

iii opciai ii	crite a las
TIPO NH-	00 aM
Código	Amp
OM0006	6
OM0010	10
OM0016	16
OM0020	20
OM0025	25
OM0036	36
OM0040	40
OM0050	50
OM0063	63
F0M0080	80
F0M0100	100
FOLIO12F	125

F0M0160

Código	Amp
F6M0006	6
F6M0010	10
F6M0016	16
FOIVIUUZU	20
F6M0025	25
F6M0036	36
F6M0040	40
F6M0050	50
F6M0063	63
F6M0080	80
F6M0100	100
F6M0125	125
F6M0160	160

Código	-1 aM Amp		
F1M0063	63		
F1M0080	80		
F1M0100	100		
F1M0125	125		
F1M0160	160		
F1M0200	200		
F1M0224	224		
F1M0250	250		

TIPO NH	-2 aM
Código	Amp
F2M0160	160
F2M0200	200
F2M0224	224
F2M0250	250
F2M0315	315
F2M0355	355
F2M0400	400

Código	Amp
F3M0315	315
F3M0355	355
F3M0400	400
F3M0500	500
F3M0630	630

TIPO NH	-4 aM
Código	Amp
F4M0700	700
F4M0800	800
F4M1000	1000
F4M1250	1250

TIPO NH-	4a aM
Código	Amp
F5M0700	700
F5M0800	800
F5M1000	1000
F5M1250	1250

	ard power agory AC-3	ratings of 3-phase motors 50/60 Hz		Switch- aM fuses disconnector		ıs	Contactor	Thermal overload relay classe 10			
400/41	15 V	440 V		500 V		Reference "	Size	Rating	Reference ⁽¹⁾	reservice	oecong
P	le	P	le	P	le						range
kW	A	kW	A	kW	A			A			A
.06	0.2	0.06	0.19	-	-	GS1DD	10 x 38	2	LC1D09	LRD02	0.160.2
	_	0.09	0.28	-	_	GS1DD	10 x 38	2	LC1D09	LRD03	0.250.4
0.09	0.3	-	-	-	-						
1.12	0.44	0.12	0.37	-	-	GS1DD	10 x 38	2	LC1D09	LRD04	0.40.63
).18	0.6	0.18	0.55	-	-	the section of the section of	1000000			10-10-10	
	-	0.25	0.76	-	_	GS1DD	10 x 38	2	LC1D09	LRD05	0.631
25	0.85	-	-	0.37	0.88						
1.37	1.1	0.37	1	0.55	1.2			_			
0.55	1.5	0.55	1.36	0.75	1.5	GS1DD	10 x 38	2	LC1D09	LRD06	11.7
0.75	1.9	0.75	1.68	-	-						
	-	1.1	2.37	1.1	2.2	GS1DD	10 x 38	4	LC1D09	LRD07	1.62.5
1.1	2.7	-	-	1.5	2.9						
1.5	3.6	1.5	3.06	2.2	3.9	GS1DD	10 x 3B	4	LC1D09	LRD08	254
2.2	4.9	2.2	4.42	3	5.2	GS1DD	10 x 38	6	LC1D09	LRD10	46
3	6.5	3	5.77	4	6.8	GS1DD	10 x 38	В	LC1D09	LRD12	5.58
	8.5	4	7.9	5.5	9.2	GS1DD	10 x 38	10	LC1D09	LRD14	710
		0,0	10/1	-0.0	50.6	-00100	10-00	-10		-	Dan 10 -
.5	15.5	7.5	13.7	9	13.9	GS1DD	10 x 38	16	LC1D18	LRD21	1218
			-			00uP			101010	The same of	
_	40.4		20.4	44	47.0						

Fusible: F6M0016 REPROEL S.A.

Contactor: LC1D18 Schneider Electric S.A.

Relevo térmico: LRD21 Schneider Electric S.A.

c). Dibujar el esquema unifilar, trifilar y funcional.

0 Vca

d) Selección de arranque suave.

Combinations

Soft starters for asynchronous motors

Altistart 01 400 V power supply, type 1 coordination

Com	bine er	tner circuit break	er (light green column	s), contact	tor, and starter,	or switch/fuse (c	iark green colum	ns), contact	or, and sta	arter
Moto	r	Starter Class 10	Circuit breaker	Rating	Contactor	Switch or disconnect switch (base unit)	aM fuses Reference	Rating	I²t	Thermal overload relay
kW	Α			Α				Α	A²s	
И1		A1	Q1		KM1, KM2, KM3	3 Q2				F4
).37	0.98	ATS01N103FT	GV2ME05	1	LC1K06 or LC1D09	LS1D2531	DF2CA02	2	265	LR2K0306 LRD05
).55	1.5	ATS01N103FT	GV2ME06	1.6	LC1K06 or LC1D09	LS1D2531	DF2CA02	2	265	LR2K0307 LRD06
).75	2	ATS01N103FT	GV2ME07	2.5	LC1K06 or LC1D09	LS1D2531	DF2CA02	2	265	LR2K0308 LRD07
l.1	2.5	ATS01N103FT	GV2ME08	4	LC1K06 or LC1D09	LS1D2531	DF2CA04	4	265	LR2K0308 LRD08
		ATS01N206QN	GV2ME08	4	LC1K06 or LC1D09	LS1D2531	DF2CA04	4	265	LR2K0308 LRD08
L.5	3.5	ATS01N106FT	GV2ME08	4	LC1K06 or LC1D09	LS1D2531	DF2CA06	6	265	LR2K0310 LRD08
		ATS01N206QN	GV2ME08	4	LC1K06 or LC1D09	LS1D2531	DF2CA06	6	265	LR2K0310 LRD08
2.2	5	ATS01N106FT	GV2ME10	6.3	LC1K06 or LC1D09	LS1D2531	DF2CA08	8	265	LR2K0312 LRD10
		ATS01N206QN	GV2ME10	6.3	LC1K09 or LC1D09	LS1D2531	DF2CA08	8	265	LR2K0312 LRD10
3	6.5	ATS01N106FT	GV2ME14	9	LC1K09 or LC1D09	LS1D2531	DF2CA12	12	265	LR2K0314 LRD12
		ATS01N206QN	GV2ME14	9	LC1K09 or LC1D09	LS1D2531	DF2CA12	12	265	LR2K0314 LRD12
ı	8.4	ATS01N109FT	GV2ME14	9	LC1K09 or LC1D09	LS1D2531	DF2CA12	12	610	LR2K0316 LRD14
		ATS01N209QN	GV2ME14	9	LC1K09 or LC1D09	LS1D2531	DF2CA12	12	610	LR2K0316 LRD14
.5	11	ATS01N112FT	GV2ME16	13	LC1K12 or LC1D12	LS1D2531	DF2CA16	16	610	LR2K0321

11. Dimensionar las bombas de agua para lograr llenar un tanque de 500.000 lts de agua elevado a 40 metros de altura. El llenado integral debe lograrse en un máximo de 30 minutos. La configuración de las bombas debe ser de 2+1.

$$Q\left[\frac{m3}{seg}\right] = \frac{500.000 L \frac{dm3}{L} 0,001 \frac{m3}{dm3}}{30 \min 60 \frac{seg}{min}} = 0,277 \frac{m3}{seg}$$

$$P[W] = \frac{0.277 \frac{m3}{seg} 9800 \frac{N}{m3} 40 m}{0.50,95} = 230 KW$$

Dada la configuración 2+1, esta potencia se reparte en 2 motores

- 12) Dimensionar el tablero "TS Bombas" que alimentara las bombas calculadas en el punto anterior. El arranque debe ser estrella triangulo.
 - a. Proyectar el tablero de bombas, dimensionando los contactores y las protecciones de la bomba.

Primero que nada sacaremos los datos necesarios de la hoja de datos del transformador, adjuntada en el punto 11).

P = 200 KW. - P = 268,2 HP Cos phi = 0,88
$$\eta$$
 = 95,1% (a plena carga)
$$Pelect = \frac{Pmec}{\eta} = \frac{200 \ KW}{0,951} = 210,1 \ KW$$

$$IL = \frac{Pelect}{\sqrt{3} * UL * \cos phi} = 344,6 \ A$$

Ahora las corrientes de arranque estrella - triángulo:

$$Id = \frac{IL}{\sqrt{3}} = 198,9 A$$

$$Iy = \frac{IL}{3} = 144,8 A$$

Elegiremos los contactores y relevos térmicos de Schneider Electric S.A.

Para la corriente de línea utilizaremos el contactor: LC1F400, y el Relevo térmico:

LR9-F7379

Para la corriente Y utilizaremos el contactor: LC1D150

Para la corriente D utilizaremos el contactor: LC1F265

Para los fusibles de cortocircuito utilizaremos el F"M0355 de la empresa REPROEL S.A.

A continuación adjuntamos los catálogos de los elementos recién mencionados.

in cate	gory AC-3		3-phase m	otors 50/60	HZ	Switch- disconnector	aM fuse	s	Contactor	Thermal overli classe 10	oad relay
400/41		440 V		500 V		Reference ⁽¹⁾	Size	Rating	Reference (2)	Reference	range
Р	le	P	le	Р	le						
W	A	kW	A	kW	A			A			A
.06	0.2	0.06	0.19		_	GS1DD	10 x 38	2	LC1D09	LRD02	0.160.25
		0.09	0.28		-	GS1DD	10 x 38	2	LC1D09	LRD03	0.250.4
.09	0.3	0.12	-	-	-	GS1DD	10 x 38	2	LC1D09	LRD04	0.40.63
.18	0.44		0.37		_	GSTDD	10 x 30	-	LCIDUS	LRU04	0.40.63
.18	0.6	0.18	0.55	-	-	GS1DD	10 x 38	2	LC1D09	LRD05	0.631
25	0.85		-	0.37	0.88						
.37	1.1	0.37	1	0.55	1.2						
.55	1.5	0.55	1.36	0.75	1.5	GS1DD	10 x 38	2	LC1D09	LRD06	11.7
.75	1.9	0.75	1.68	-	-						
	-	1.1	2.37	1.1	2.2	GS1DD	10 x 38	4	LC1D09	LRD07	1.62.5
.1	2.7		-	1.5	2.9	COADD	40 55		1.04000	LDDGG	25.4
.5	3.6	1.5	3.06	2.2	3.9	GS1DD	10 x 38	4	LC1D09	LRD08	2.54
.2	4.9	2.2	4.42	3	5.2	GS1DD	10 x 38	6	LC1D09	LRD10	46
	6.5	3	5.77	4	6.8	GS1DD	10 x 38	8	LC1D09	LRD12	5.58
	8.5	4	7.9	5.5	9.2	GS1DD	10 x 38	10	LC1D09	LRD14	710
5	11.5	5.5	10.4	7.5	12.4	GS1DD	10 x 38	16	LC1D12	LRD16	913
.5	15.5	7.5	13.7	9	13.9	GS1DD	10 x 38	16	LC1D18	LRD21	1218
		9	16.9		-	GS+F	14 x 51	20	LC1D25	LRD21	1218
1	18.1 22	11	20.1	11 15	17.6 23	GS•F	14 x 51	25	LC1D25	LRD22	1624
5	29	15	26.5	18.5	28	GS+F	14 x 51	32	LC1D29	LRD32	2332
8.5	35	18.5	32.8	22	33	GSeF	14 x 51	40	LC1D32	LRD340	3040
2	41	22	39	30	44	GSeJ	22 x 58	50	LC1D50A	LRD350	3750
_	-	30	51.5	-	-	GS+J	22 x 58	80	LC1D65A	LRD365	4865
				37		GSeJ	22 x 58	80	LC1D65A	LRD365	4865
0	55	37	64	3/	53	GS+J	22 x 58	80	LC1D65A	LRD365	4865
_	- 55	- 01	-	45	64	GSeJ		80	LC1D95	LRD3361	5570
_							22 x 58				
7	66	45	76	-	_	GS+J	22 x 58	100	LC1D80	LRD3363	6380
_	-		_	55	78	GS+J	22 x 58	100	LC1D115	LR9D5367	60100
5	80				-	GS+J	22 x 58	100	LC1D95	LRD3365	8093
5	97	55	90	75	106	GS+L	TO	125		LR9D5369	90150
5	132	75	125	90	128	GS+L	TO	160	LC1D150	LR9D5369	90150
0	160	90	146	110	156	GSeN	T1	200	LC1F185	LR9F5371	132220
10	195	110	178	132	184	GSeN	T1	250	LOAFOOF	LR9F5371	132220
32	230	132	215	160	224	GS+QQ	T2	315	LC1F265	LR9F7375	200330
	-	160	256	-	-	GS•QQ	T2	315		LR9F7375	200330
60	280	200	321	200	280	GS+QQ	T2	400	LC1F330	LR9F7375	200330
	-	-	-	220	310	GS•QQ	T2	400	LC1F400	LR9F7375	200330
00	350	220	353	250	344	GS2S	тз	500	LC1F400	LR9F7379	300500
20	388	220	303	250	344	0020		DOM:	E011 400	ENSETS:	300300

Fusibles A.C.R. NH

Protección Normas

Motores

VDE 0636 - DIN 43620 - IEC 60269

Fusibles tipo NH clase aM para protección de respaldo, tanto al motor como al contactor, relé y conductor de alimentación, sin operar frente a las rigurosas corrientes de arranque, siempre

que estas no posean una duración exci alta velocidad, frente a corrientes 10 ve

TIPO NH-	00 aM
Código	Amp
F0M0006	6
F0M0010	10
F0M0016	16
F0M0020	20
F0M0025	25
F0M0036	36
F0M0040	40
F0M0050	50

TIPO NH	-0 aM
Código	Amp
F6M0006	6
F6M0010	10
F6M0016	16
F6M0020	20
F6M0025	25
F6M0036	36
F6M0040	40
F6M0050	50

TIPO NH	-1 aM
Código	Amp
F1M0063	63
F1M0080	80
F1M0100	100
F1M0125	125
F1M0160	160
F1M0200	200
F1M0224	224
F1M0250	250

Código	Amp
F2M0160	160
F2M0200	200
F2M0224	224
F2M0250	250
EDMANDE	215
F2M0355	355
121010100	400

b. Dibujar el plano trifilar del tablero y las cargas.

c. Plano funcional de cada Bomba:

- 13. Diseñar el TS Administración considerando:
- a. Debe contener al menos:
- i. 6 circuitos de tomas de uso general, con 2 reservas equipadas
- ii. 5 circuitos de iluminacion de uso general, y 2 reservas equipadas.
- b. Considerar las protecciones adecuadas contra contactos indirectos.
- c. Dibujar los planos unifilar, trifilar y topográfico.

Diagrama unifilar

Diagrama trifilar

<u>Diagrama topografico para un diferencial</u> <u>Alimentacion por bornes superior</u>

- 14. Suponiendosé una resistencia de puesta a tierra del centro de estrella del/los transformadores de 0,5 Ω y de la puesta a tierra de protección de 30 Ω .
 - **a.** Calcular la corriente de fuga a tierra de una falla a tierra aguas abajo del TS Administración, considerando una resistencia de falla de 1.500 Ω .

En primera instancia, vamos a mencionar que La red de protección es de tipo TT. El circuito descriptivo de esta instalación es la siguiente:

Para calcular la corriente de fuga (Id), despreciaremos las resistencias de los cables, por lo que en caso de falla, la corriente de fuga estará dada por:

$$I_d = \frac{U}{R_{falla} + R_a + R_b}$$

$$I_d = \frac{220 V}{(1500 + 0.5 + 30)\Omega} = 143.7 mA$$

b. Calcule la tensión de contacto a la que quedará sometida la carcasa del equipo averiado.

$$U_c = 143,7mA * 30\Omega = 4,3 V$$

c. Indique si la protección elegida actua, y detalle en que tiempo lo hace.

Observando la gráfica:

Zonas: 1-Imperceptible; 2-Perceptible; 3-Efectos reversibles (contracción muscular); 4-Posibles efectos irreversibles (C1: sin fibrilación cardíaca; C2: 5% de probabilidad de fibrilación; C3: 50% de probabilidad de fibrilación)

Podemos decir que para la Id calculada, el Diferencial actuará en menos de 100ms.

d. En caso que no funcione dicha protección, y una persona entre en contacto con la carcasa a potencial, ¿Qué corriente circulará a través de dicha persona?

Para esto, volvemos a calcular la corriente de fuga, tomando a la persona con una resistencia de valor general de 1000 Ω .

$$I_d = \frac{U}{(R_{persona}/./R_a) + R_b}$$

$$Id = \frac{220 V}{(29 + 0.5)\Omega} = 7.5 A$$

$$U_c = I_d * R_a = 7.5 A * 30\Omega = 217.72V$$

$$I_{persona} = \frac{U_c}{R_{persona}} = \frac{217.7 \text{ V}}{1000\Omega} = 217 \text{ mA}$$

Finalmente vemos, que la corriente que circulará es de 217mA.

- 16. Calcule la iluminación la sala de servidores, sabiendo que la altura del mismo es de 4 metros, los pisos técnicos son de color gris claro, el techo es de paneles de fibra aislante de color beige claro, y las paredes están pintadas de color blanco mate.
- a. Determine el nivel de iluminación a lograr.
- b. Enuncie las condiciones del local y explique los coeficientes considerados.
- c. Seleccione las lámparas y luminarias a utilizar, adjuntando su hoja de datos.
- d. Determine la cantidad de luminarias a instalar y su distribución.
- e. Divida las luminarias en circuitos de acuerdo a la reglamentación de la AEA y determine la traza del conductor de alimentación.
- a) Tomando en cuenta lo detallado en las normas iram en el siguiente cuadro:

Clases de tarea visual	Iluminación sobreplano de trabajo (lux)			
Visión ocasional solamente	100			
Tareas intermitentes ordinarias y fáciles, con contrastes fuertes.	100 a 300			
Tareas moderadamente criticas y prolongadas, con detalles medianos.	300 a 750			
Tareas severas y prolongadas y de poco contraste.	750 a 1500			
Tareas muy severas y prolongadas, con detalles minuciosos o muy poco contraste.	1500 a 3000			
Tareas excepcionales, difíciles o importantes	5000 a 10.000			

Tomo una iluminación media necesaria de 500 lux para tareas moderadas en la sala de servidores.

b)

Considerando que el plano de las iluminarias están a 50cm del techo, y tomando que el área de la sala de servidores es de 24,09m x 9,82m, calculo el indice.

$$\text{Indice del local} - \quad K = \frac{3*a*b}{(2*(h+0.85)*(a+b))} = \frac{3*24.09*9.82}{(2*(2.65+0.85)*(24.09+9.82))} = 3$$

Factor de mantenimiento – Ambiente limpio: 0.8

Factor de reflexión - Techo claro: 0.5

Factor de reflexión - Paredes claro: 0.5

Factor de reflexión - Suelo claro: 0.3

A partir de estos factores y con el siguiente cuadro de iluminación directa, obtengo el factor de utilización.

Tino do	Índice	Factor de utilización (η) Factor de reflexión del techo											
Tipo de aparato	del												
de local		0.8			0.7			0.5			0.3		0
alumbrado	k	Factor de reflexión de las paredes											
alumotado	100	0.5	0.3	0.1	0.5	0.3	0.1	0.5	0.3	0.1	0.3	0.1	0
٨	0.6	.66	.62	.60	.66	.62	.60	.65	.62	.59	.62	.59	.58
Λ	0.8	.75	.71	.68	.75	.71	.68	.74	.71	.68	.70	.68	.67
	1.0	.80	.76	.73	.80	.76	.73	.79	.76	.73	.76	.73	.72
	1.25	.85	.81	.80	.85	.81	.80	.84	.81	.78	.80	.78	.77
10 %	1.5	.88	.86	.82	.88	.85	.82	.88	.84	.82	.84	.82	.81
	2.0	.94	.90	.88	.93	.90	.88	.92	.89	.87	.88	.87	.85
	2.5	.96	.93	.92	.96	.93	.91	.94	.92	.90	.91	.89	.88
100 %	3.0	.99	.95	.94	.98	.95	.93	.96	.94	.92	.93	.91	.89
D _{max} = 0.7 H _m	4.0	1.01	.99	.96	1.00	.98	.96	.98	.97	.95	.95	.94	.92
fm .70 .75 .80	5.0	1.02	1.01	.99	1.01	1.00	.98	1.00	.98	.97	.97	.96	.94

Factor de utilización: .96 (k = 3; techo = 0.5; paredes = 0,5)

Calculo el flujo luminoso total:

$$FlujoT = \frac{E * S}{n * fm} = \frac{500 * 24.09 * 9.82}{0.96 * 0.8} = 154 K$$

c)

Tipo: BY218P

Potencia: 200W ,100W

Flujo Lumínico 18.000 lm, 9.000 lm

Eficiencia: 90lm/W,90lm/W

CCT: CW (6500K)

CRI: ≥ 75

Consistencia Color: < 5 SDCM

IP:IP20

Clasificación:Class I

Temperatura de trabajo: -20°C to +40°C (Ta35°C)

Vida útil:

25,000 hrs (L70) @Ta35°C

Optica: Wide Beam Narrow Beam (with reflector)

Voltaje de entrada: 220-240V, 50/60 Hz

Factor de potencia: ≥ 0.9

Diagramas Fotométricos

CÓDIGO	DESCRIPCIÓN
911401560221	BY218P LED180/CW PSU
911401560421	BY218P LED90/CW PSU

Dimensionesø:369mm/H:147mm

Dimensiones ø:277mm/H:139mm

d)

Calculo el numero de luminarias:

$$N = \frac{FlujoT}{n*FlujoL} = \frac{154 \, K}{1*9 \, K} = 17.11 = 18$$

e)

Dado que el numero de luminarias es mayor a 15, hay que separar la instalación en 2 circuitos.

