

Descriptive Statistics

Estimated time needed: 30 minutes

In this lab, you'll go over some hands-on exercises using Python.

Objectives

- · Import Libraries
- · Read in Data
- · Lab exercises and questions

Import Libraries

All Libraries required for this lab are listed below. The libraries pre-installed on Skills Network Labs are commented. If you run this notebook in a different environment, e.g. your desktop, you may need to uncomment and install certain libraries.

```
In [ ]:
```

```
#! mamba install pandas==1.3.3
#! mamba install numpy=1.21.2
#! mamba install matplotlib=3.4.3-y
```

Import the libraries we need for the lab

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pyplot
```

Read in the csv file from the URL using the request library

In [2]:

```
ratings_url = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDe
veloperSkillsNetwork-ST0151EN-SkillsNetwork/labs/teachingratings.csv'
ratings_df=pd.read_csv(ratings_url)
```

Data Description

Variable	Description
minority	Does the instructor belong to a minority (non-Caucasian) group?
age	The professor's age
gender	Indicating whether the instructor was male or female.
credits	Is the course a single-credit elective?
beauty	Rating of the instructor's physical appearance by a panel of six students averaged across the six panelists and standardized to have a mean of zero.
eval	Course overall teaching evaluation score, on a scale of 1 (very unsatisfactory) to 5 (excellent).
division	Is the course an upper or lower division course?
native	Is the instructor a native English speaker?
tenure	Is the instructor on a tenure track?
students	Number of students that participated in the evaluation.
allstudents	Number of students enrolled in the course.
prof	Indicating instructor identifier.

Display information about the dataset

- 1. Structure of the dataframe
- 2. Describe the dataset
- 3. Number of rows and columns

print out the first five rows of the data

1/1/22, 4:18 PM Descriptive_Stats

In [3]:

```
ratings_df.head()
```

Out[3]:

	minority	age	gender	credits	beauty	eval	division	native	tenure	students	allstud
0	yes	36	female	more	0.289916	4.3	upper	yes	yes	24	_
1	yes	36	female	more	0.289916	3.7	upper	yes	yes	86	
2	yes	36	female	more	0.289916	3.6	upper	yes	yes	76	
3	yes	36	female	more	0.289916	4.4	upper	yes	yes	77	
4	no	59	male	more	-0.737732	4.5	upper	yes	yes	17	

get information about each variable

In [4]:

```
ratings_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 463 entries, 0 to 462 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	minority	463 non-null	object
1	age	463 non-null	int64
2	gender	463 non-null	object
3	credits	463 non-null	object
4	beauty	463 non-null	float64
5	eval	463 non-null	float64
6	division	463 non-null	object
7	native	463 non-null	object
8	tenure	463 non-null	object
9	students	463 non-null	int64
10	allstudents	463 non-null	int64
11	prof	463 non-null	int64
12	PrimaryLast	463 non-null	int64
13	vismin	463 non-null	int64
14	female	463 non-null	int64
15	single_credit	463 non-null	int64
16	upper_division	463 non-null	int64
17	English_speaker	463 non-null	int64
18	tenured_prof	463 non-null	int64
d+vn	oc. float64/2) i	n+64/11) object	(6)

dtypes: float64(2), int64(11), object(6)

memory usage: 68.9+ KB

get the number of rows and columns - prints as (number of rows, number of columns)

```
In [5]:
```

```
ratings_df.shape
```

Out[5]:

(463, 19)

Lab Exercises

Can you identify whether the teachers' Rating data is a time series or crosssectional?

Print out the first ten rows of the data

- 1. Does it have a date or time variable? No it is not a time series dataset
- 2. Does it observe more than one teacher being rated? Yes it is cross-sectional dataset

The dataset is a Cross-sectional

In [6]:

```
ratings_df.head(10)
```

Out[6]:

	minority	age	gender	credits	beauty	eval	division	native	tenure	students	allstud
0	yes	36	female	more	0.289916	4.3	upper	yes	yes	24	
1	yes	36	female	more	0.289916	3.7	upper	yes	yes	86	
2	yes	36	female	more	0.289916	3.6	upper	yes	yes	76	
3	yes	36	female	more	0.289916	4.4	upper	yes	yes	77	
4	no	59	male	more	-0.737732	4.5	upper	yes	yes	17	
5	no	59	male	more	-0.737732	4.0	upper	yes	yes	35	
6	no	59	male	more	-0.737732	2.1	upper	yes	yes	39	
7	no	51	male	more	-0.571984	3.7	upper	yes	yes	55	
8	no	51	male	more	-0.571984	3.2	upper	yes	yes	111	
9	no	40	female	more	-0.677963	4.3	upper	yes	yes	40	
4											•

Find the mean, median, minimum, and maximum values for students

Find Mean value for students

```
In [7]:
ratings_df['students'].mean()
Out[7]:
36.62419006479482
Find the Median value for students
In [8]:
ratings_df['students'].median()
Out[8]:
23.0
Find the Minimum value for students
In [9]:
ratings_df['students'].min()
Out[9]:
5
Find the Maximum value for students
In [10]:
ratings_df['students'].max()
Out[10]:
380
```

Produce a descriptive statistics table

1/1/22, 4:18 PM Descriptive_Stats

In [11]:

```
ratings_df.describe()
```

Out[11]:

	age	beauty	eval	students	allstudents	prof	PrimaryLa
count	463.000000	4.630000e+02	463.000000	463.000000	463.000000	463.000000	463.0000
mean	48.365011	6.271140e-08	3.998272	36.624190	55.177106	45.434125	0.2030
std	9.802742	7.886477e-01	0.554866	45.018481	75.072800	27.508902	0.4026
min	29.000000	-1.450494e+00	2.100000	5.000000	8.000000	1.000000	0.0000
25%	42.000000	-6.562689e-01	3.600000	15.000000	19.000000	20.000000	0.0000
50%	48.000000	-6.801430e-02	4.000000	23.000000	29.000000	44.000000	0.0000
75%	57.000000	5.456024e-01	4.400000	40.000000	60.000000	70.500000	0.0000
max	73.000000	1.970023e+00	5.000000	380.000000	581.000000	94.000000	1.0000

Create a histogram of the beauty variable and briefly comment on the distribution of data

using the matplotlib library, create a histogram

In [12]:

```
pyplot.hist(ratings_df['beauty'])
```

Out[12]:

```
(array([16., 51., 94., 66., 94., 42., 29., 40., 11., 20.]),
array([-1.45049405, -1.10844234, -0.76639063, -0.42433892, -0.08228722,
        0.25976449, 0.6018162, 0.94386791, 1.28591962, 1.62797133,
        1.97002304]),
<BarContainer object of 10 artists>)
```


here are few conclusions from the histogram most of the data for beauty is around the -0.5 and 0 the distribution is skewed to the right therefore looking at the data we can say the mean is close to 0

Does average beauty score differ by gender? Produce the means and standard deviations for both male and female instructors.

Use a group by gender to view the mean scores of the beauty we can say that beauty scores differ by gender as the mean beauty score for women is higher than men

In [13]:

```
ratings_df.groupby('gender').agg({'beauty':['mean', 'std', 'var']}).reset_index()
```

Out[13]:

	gender	beauty					
		mean	std	var			
0	female	0.116109	0.81781	0.668813			
1	male	-0.084482	0.75713	0.573246			

Calculate the percentage of males and females that are tenured professors. Will you say that tenure status differ by gender?

First groupby to get the total sum

In [14]:

```
tenure_count = ratings_df[ratings_df.tenure == 'yes'].groupby('gender').agg({'tenure':
'count'}).reset_index()
```

Find the percentage

In [15]:

```
tenure_count['percentage'] = 100 * tenure_count.tenure/tenure_count.tenure.sum()
tenure_count
```

Out[15]:

	gender	tenure	percentage
0	female	145	40.166205
1	male	216	59.833795

Practice Questions

Question 1: Calculate the percentage of visible minorities are tenure professors. Will you say that tenure status differed if teacher was a visible minority?

In [16]:

```
## insert code here
tenure_count = ratings_df.groupby('minority').agg({'tenure':'count'}).reset_index()
tenure_count['percentage'] = 100* tenure_count.tenure/tenure_count.tenure.sum()
tenure_count
```

Out[16]:

	minority	tenure	percentage
0	no	399	86.177106
1	yes	64	13.822894

Double-click here for the solution.

Question 2: Does average age differ by tenure? Produce the means and standard deviations for both tenured and untenured professors.

In [19]:

```
## insert code here
ratings_df.groupby('tenure').agg({'age':['mean','std']}).reset_index
Out[19]:
<bound method DataFrame.reset_index of</pre>
                                                      age
tenure
        50.186275 6.946372
no
        47.850416 10.420056>
yes
```

Double-click here for the solution.

Question 3: Create a histogram for the age variable.

In [20]:

```
## insert code here
pyplot.hist(ratings_df['age'])
```

Out[20]:

```
(array([41., 37., 58., 48., 75., 74., 53., 69., 0., 8.]),
array([29., 33.4, 37.8, 42.2, 46.6, 51., 55.4, 59.8, 64.2, 68.6, 73.
]),
 <BarContainer object of 10 artists>)
```


Double-click here for the solution.

Question 4: What is the Median evaluation score for tenured Professors?

In [21]:

```
## insert code here
ratings_df[ratings_df['tenure']=='yes']['eval'].median()
```

Out[21]:

4.0

Double-click here for the solution.

Authors

1/1/22, 4:18 PM Descriptive_Stats

Aije Egwaikhide (https://www.linkedin.com/in/aije-egwaikhide/? utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id= SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkST0151ENSkillsNetwork20531532-2021-01-01) is a Data Scientist at IBM who holds a degree in Economics and Statistics from the University of Manitoba and a Post-grad in Business Analytics from St. Lawrence College, Kingston. She is a current employee of IBM where she started as a Junior Data Scientist at the Global Business Services (GBS) in 2018. Her main role was making meaning out of data for their Oil and Gas clients through basic statistics and advanced Machine Learning algorithms. The highlight of her time in GBS was creating a customized end-toend Machine learning and Statistics solution on optimizing operations in the Oil and Gas wells. She moved to the Cognitive Systems Group as a Senior Data Scientist where she will be providing the team with actionable insights using Data Science techniques and further improve processes through building machine learning solutions. She recently joined the IBM Developer Skills Network group where she brings her real-world experience to the courses she creates.

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-08-14	0.1	Aije Egwaikhide	Created the initial version of the lab

Copyright © 2020 IBM Corporation. This notebook and its source code are released under the terms of the MIT License (https://cognitiveclass.ai/mit-license/? utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id= SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkST0151ENSkillsNetwork20531532-2021-01-01)

