Deep Learning: Assignment Two

Aditi Nair (asn264) and Akash Shah (ass502)

April 4, 2017

1 Batch Normalization

1. Let $x_1,...x_n$ be scalar features. Then we define the mean μ_n as:

$$\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$$

and the variance σ_n^2 as:

$$\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_n)^2$$

Now to normalize the feature x_i (for $1 \le i \le n$), we compute:

$$\hat{x_i} = \frac{x_i - \mu_n}{\sigma_n}$$

Then for all $\hat{x_i}$, the expected value is 0:

$$\sum_{i=1}^{n} \hat{x_i} = \sum_{i=1}^{n} \frac{x_i - \mu_n}{\sigma_n} = \frac{1}{\sigma_n} \sum_{i=1}^{n} (x_i - \mu_n) = \frac{1}{\sigma_n} \left[\left(\sum_{i=1}^{n} x_i \right) - n \cdot \mu_n \right] = \frac{1}{\sigma_n} \left[\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i \right] = 0$$

Since $\sum_{i=1}^{n} \hat{x}_i = 0$, the expected value $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \hat{x}_i$ is also 0.

Then for all $\hat{x_i}$ the variance is 1 since:

$$\frac{1}{n} \sum_{i=1}^{n} (\hat{x}_i - \hat{\mu})^2 = \frac{1}{n} \sum_{i=1}^{n} (\hat{x}_i - 0)^2 = \frac{1}{n} \sum_{i=1}^{n} \hat{x}_i^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mu_n}{\sigma_n} \right)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{(x_i - \mu_n)^2}{\sigma_n^2} = \frac{1}{n \cdot \sigma_n^2} \sum_{i=1}^{n} (x_i - \mu_n)^2$$

$$= \frac{n}{n \cdot \sum_{i=1}^{n} (x_i - \mu_n)^2} \sum_{i=1}^{n} (x_i - \mu_n)^2 = 1$$

2. For scalar features $x_1, ... x_n$ the output of the BN module can be written as:

$$y_i = BN_{\gamma,\beta}(x_i) = \gamma \hat{x_i} + \beta$$

with

$$\hat{x_i} = \frac{x_i - \mu_n}{\sqrt{\sigma_n^2 + \epsilon}}$$

 μ_n and σ_n are defined as above. For numerical stability, the BN algorithm adds ϵ to σ_n^2 in the denominator before taking the square root.

GRADIENTFORMULAS

1.	
2.	
3.	
3	Variants of Pooling
1.	
2.	
3.	
	t-SNE
1. 2.	
5	Sentence Classification
5.1	ConvNet
5.2	RNN
5.3	Extra credit experiments of fastText
5.4	Extra credit question
6	Language Modeling

Convolution