$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

V everywhere on a spherical shell is a given constant, i.e. $V(R,\theta)=V_0$. There are no charges inside the sphere. Which terms do you expect to appear when finding V(inside)?

A. Many A_l terms (but no B_l 's)

B. Many B_l terms (but no A_l 's)

C. Just A_0

D. Just B_0

E. Something else!

The general solution for the electric potential in spherical coordinates with azimuthal symmetry (no ϕ dependence) is:

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Consider a metal sphere (constant potential in and on the sphere, remember). Which terms in the sum vanish outside the sphere? (Recall: $V \to 0$ as $r \to \infty$)

A. All the A_l 's

B. All the A_l 's except A_0

C. All the B_l 's

D. All the B_l 's except B_0

E. Something else

Given $V_0(\theta) = \sum_l C_l P_l(\cos \theta)$, we want to get to the integral:

$$\int_{-1}^{+1} P_l(u) P_m(u) du = \frac{2}{2+1} \text{ (for } l = m)$$

we can do this by multiplying both sides by:

A.
$$P_m(\cos\theta)$$

B.
$$P_m(\sin \theta)$$

C.
$$P_m(\cos\theta)\sin\theta$$

D.
$$P_m(\sin \theta) \cos \theta$$

$$E. P_m(\sin \theta) \sin \theta$$

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Suppose V on a spherical shell is:

$$V(R,\theta) = V_0 \left(1 + \cos^2 \theta \right)$$

Which terms do you expect to appear when finding **V(inside)**?

- A. Many A_l terms (but no B_l 's)
- B. Many B_l terms (but no A_l 's)
- C. Just A_0 and A_2
- D. Just B_0 and B_2
- E. Something else!

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Suppose V on a spherical shell is:

$$V(R,\theta) = V_0 \left(1 + \cos^2 \theta \right)$$

Which terms do you expect to appear when finding **V(outside)**?

- A. Many A_l terms (but no B_l 's)
- B. Many B_l terms (but no A_l 's)
- C. Just A_0 and A_2
- D. Just B_0 and B_2
- E. Something else!

How many boundary conditions (on the potential V) do you use to find V inside the spherical plastic shell?

A. 1

B. 2

C. 3

D. 4

E. It depends on $V_0(\theta)$

