

Compute:

- a. The marginal distributions p(x) and p(y).
- b. The conditional distributions $p(x|Y=y_1)$ and $p(y|X=x_3)$.

$$O(3) P(3) = \sum_{i} p(3|u_i)$$

$$Q(x) = \sum_{y \in Y} p(x, y)$$

$$\rho(\pi_1) = 0.01 + 0.05 + 0.1 = 0.16$$

$$p(x_4) = 0.1 + 0.01 + 0.05 = 0.22$$

 $p(x_5) = 0.1 + 0.2 + 0.04 = 0.34$

(i)
$$p(y) = \sum_{x \in x} p(x, y)$$

$$P(y_1) = 0.01 + 0.02 + 0.03 + 0.1 + 0.1 = 0.26$$

 $P(y_2) = 0.06 + 0.1 + 0.06 + 0.07 + 0.2 = 0.47$

b. i)
$$P(x|Y=y_1) \Rightarrow P(X=x_1|Y=y_1) = 0.01$$

 $P(X=x_1|Y=y_1) = 0.02$

$$P(X = x_1 | Y = y_1) = 0.02$$

 $P(X = x_3 | Y = y_1) = 0.03$

$$P(X = x_4|Y = y_1) = 0.1$$

 $P(X = x_5|Y = y_1) = 0.1$

ii)
$$P(Y|X=x_1) \Rightarrow P(Y=y_1, X=x_1) = 0.03$$

 $P(Y=y_2, X=x_1) = 0.05$

$$P(Y=y_3, X=x_3)=0.03$$

$$6.2$$
 Consider a mixture of two Gaussian distributions (illustrated in Figure 6.4),

$$0.4\,\mathcal{N}\left(\begin{bmatrix}10\\2\end{bmatrix}\,,\,\begin{bmatrix}1&0\\0&1\end{bmatrix}\right)+0.6\,\mathcal{N}\left(\begin{bmatrix}0\\0\end{bmatrix}\,,\,\begin{bmatrix}8.4&2.0\\2.0&1.7\end{bmatrix}\right).$$

- Compute the marginal distributions for each dimension.
- Compute the mean, mode and median for each marginal distribution.
- c. Compute the mean and mode for the two-dimensional distribution.

$$0.4 \, N \left[\left[\begin{array}{c} 10 \\ 2 \end{array} \right], \left[\begin{array}{c} 1 & O \\ 0 & 1 \end{array} \right] + 0.6 \, N \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 8.4 & 2.0 \\ 2.0 & 1.7 \end{array} \right] \right)$$

$$= X$$

$$M_{\alpha}(t) = E(exp(t'z))$$

$$= E(\exp(0.4t'X)) E(\exp(0.6t'Y)) \quad : \quad X \perp Y \leftarrow f(x,y) = g(x)h(y)$$

$$= \exp\left(\frac{1}{10.4} + 0.6 \text{My}\right) + \frac{1}{2} \left\{ (0.4) + \left(\frac{1}{10.4} + \left(\frac{1}{10.4}$$

$$\therefore A \sim N \left(\begin{bmatrix} 4 \\ 0.8 \end{bmatrix}, \begin{bmatrix} 3.184 & 0.72 \\ 0.72 & 0.712 \end{bmatrix} \right)$$

$$(\mu_1 - \mu_1)^2 > \frac{861^161^2}{(61^2 + 61^2)}$$

$$\frac{8 \times (8.4)^2}{1 + 8.4^2}$$

$$(10)^2 \frac{8 \times (8.4)}{1 + 8.4^2}$$

You have written a computer program that sometimes compiles and some-6.3 times not (code does not change). You decide to model the apparent stochasticity (success vs. no success) x of the compiler using a Bernoulli distribution with parameter μ :

$$p(x \mid \mu) = \mu^x (1 - \mu)^{1-x}, \quad x \in \{0, 1\}.$$

Choose a conjugate prior for the Bernoulli likelihood and compute the posterior distribution $p(\mu \mid x_1, \dots, x_N)$.

$$P(A) \propto A^{A-1} (1-A)^{b-1} \quad (a=1,b=1)$$

$$P(X_1, \dots, X_n | A) = \prod_{i=1}^n A^{X_i} (1-A)^{1-X_i}$$

There are two bags. The first bag contains four mangos and two apples; the

Your friend flips the coin (you cannot see the result), picks a fruit at random

second bag contains four mangos and four apples. We also have a biased coin, which shows "heads" with probability 0.6 and "tails" with probability 0.4. If the coin shows "heads". we pick a fruit at random from bag 1; otherwise we pick a fruit at random from bag 2.

from the corresponding bag, and presents you a mango. What is the probability that the mango was picked from bag 2?

Hint: Use Bayes' theorem.

$$\rho(s|m) = \frac{p(m|s)p(s)}{p(m)} \qquad p(m|s) = \frac{1}{2}$$

$$= \frac{\frac{1}{2} \times \frac{4}{70}}{\frac{8}{74}} \qquad p(m) = \frac{8}{14}$$

$$= \frac{1}{20} = 0.35$$

6.4

	6.5	5 Consider the time-series model																				
$oldsymbol{x}_{t+1} = oldsymbol{A} oldsymbol{x}_t + oldsymbol{w} \ , oldsymbol{w} \sim \mathcal{N}ig(oldsymbol{0}, oldsymbol{Q}ig)$																						
							y	t = 0	$Coldsymbol{x}_t$.	+ v,	\boldsymbol{v}	$\sim \mathcal{N}$	(0, <i>1</i>	$\mathbf{R})$,								
				$oldsymbol{w},oldsymbol{v} \ oldsymbol{\Sigma}_0 ig)$.		.i.d.	Gau	ssiar	noi	se va	riab	les. F	urth	er, a	ssun	ne th	at $p($	x_0	=			
						form	of p	$(\boldsymbol{x}_0, \boldsymbol{a})$	c_1, \dots	$.,oldsymbol{x}_T$)? Ju	ıstify	your	ans	wer ((you	do n	ot				
have to explicitly compute the joint distribution). b. Assume that $p(x_t y_1,, y_t) = \mathcal{N}(\mu_t, \Sigma_t)$.																						
		1. Compute $p(x_{t+1} y_1,, y_t)$.																				
			2.	Com	pute	$p(\boldsymbol{x}_t)$	$_{+1}, y$	$_{t+1}$	$\boldsymbol{y}_1,$	$\dots, oldsymbol{y}_t$	y_{t+1}	$=\hat{\boldsymbol{u}}$. Con	npute	e the	cond	ition	al _				
			0.	distr	ibuti	on p(x_{t+1}	$ y_1,$,1	y_{t+1}).	9	. 001	put	. the	corra						

$$V[X] = E[(X^{2}-2MX+M^{2})]$$

$$= E[X^{2}] - 2ME(X) + M^{2}$$

$$= E[X^{2}] - (E[X])^{2}$$

6.8

6.7 Prove the relationship in (6.45), which relates the pairwise difference between examples in a dataset with the raw-score expression for the variance.

Express the Bernoulli distribution in the natural parameter form of the ex-

6.9 Express the Binomial distribution as an exponential family distribution. Also express the Beta distribution is an exponential family distribution. Show that the product of the Beta and the Binomial distribution is also a member of the exponential family.

- a. By completing the square

 - b. By expressing the Gaussian in its exponential family form

The product of two Gaussians $\mathcal{N}(x \mid a, A)\mathcal{N}(x \mid b, B)$ is an unnormalized Gaussian distribution $c \mathcal{N}(\boldsymbol{x} | \boldsymbol{c}, \boldsymbol{C})$ with

Gaussian distribution
$$c\,\mathcal{N}ig(m{x}\,|\,m{c},\,m{C}ig)$$
 with $m{C}=(m{A}^{-1}+m{B}^{-1})^{-1}$

$$c = (2\pi)^{-\frac{D}{2}} |\mathbf{A} + \mathbf{B}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{a} - \mathbf{b})^{\top} (\mathbf{A} + \mathbf{B})^{-1} (\mathbf{a} - \mathbf{b})\right).$$

6.10 Derive the relationship in Section 6.5.2 in two ways:

$$1 + B$$

A + B, i.e., $c = \mathcal{N}(a \mid b, A + B) = \mathcal{N}(b \mid a, A + B)$.

Note that the normalizing constant
$$c$$
 itself can be considered a (normalized) Gaussian distribution either in a or in b with an "inflated" covariance matrix

 $c = C(A^{-1}a + B^{-1}b)$

6.11 Iterated Expectations.

Consider two random variables x, y with joint distribution p(x, y). Show that

$$\mathbb{E}_X[x] = \mathbb{E}_Y \big[\mathbb{E}_X[x \mid y] \big] .$$

Here, $\mathbb{E}_X[x \mid y]$ denotes the expected value of x under the conditional distribution $p(x \mid y)$.

where
$$y \in \mathbb{R}^E$$
, $A \in \mathbb{R}^{E \times D}$, $b \in \mathbb{R}^E$, and $w \sim \mathcal{N}(w | 0, Q)$ is indepen-

Furthermore, we have

dent Gaussian noise. "Independent" implies that x and w are independent random variables and that Q is diagonal.

6.12 Manipulation of Gaussian Random Variables.

a. Write down the likelihood $p(y \mid x)$.

b. The distribution $p(y) = \int p(y|x)p(x)dx$ is Gaussian. Compute the mean μ_y and the covariance Σ_y . Derive your result in detail.

Consider a Gaussian random variable $x \sim \mathcal{N}(x | \mu_x, \Sigma_x)$, where $x \in \mathbb{R}^D$.

y = Ax + b + w,

c. The random variable \boldsymbol{y} is being transformed according to the measurement mapping

$$z = Cy + v$$
,

where $z \in \mathbb{R}^F$, $C \in \mathbb{R}^{F \times E}$, and $v \sim \mathcal{N}(v \mid 0, R)$ is independent Gaussian (measurement) noise.

- Write down $p(\boldsymbol{z} \mid \boldsymbol{y})$.
- Compute p(z), i.e., the mean μ_z and the covariance Σ_z . Derive your result in detail.
- d. Now, a value \hat{y} is measured. Compute the posterior distribution $p(x \mid \hat{y})$. Hint for solution: This posterior is also Gaussian, i.e., we need to determine only its mean and covariance matrix. Start by explicitly computing the joint Gaussian p(x, y). This also requires us to compute the cross-covariances $\mathrm{Cov}_{x,y}[x,y]$ and $\mathrm{Cov}_{y,x}[y,x]$. Then apply the rules for Gaussian conditioning.

6.1	3 P 1	roba	bilit	y Int	egra	al Tra	ansf	orma	ation	ı										
	G	iven	ven a continuous random variable x , with cdf $F_x(x)$, show that the ran- om variable $y = F_x(x)$ is uniformly distributed.																	
				, , , , , , , , , , , , , , , , , , ,		2 (2)			, .		Duro									