5.4.0 End of Chapter Problems

Problem 1

Consider two random variables X and Y with joint PMF given in Table 5.4 Joint PMF of X and Y in Problem 1

	Y = 1	Y = 2
X = 1	$\frac{1}{3}$	$\frac{1}{12}$
X=2	$\frac{1}{6}$	0
X = 4	$\frac{1}{12}$	$\frac{1}{3}$

- a. Find $P(X \le 2, Y > 1)$.
- b. Find the marginal PMFs of \boldsymbol{X} and \boldsymbol{Y} .
- c. Find P(Y=2|X=1).
- d. Are X and Y independent?

Problem 2

Let X and Y be as defined in Problem 1. I define a new random variable Z=X-2Y.

- a. Find the PMF of Z.
- b. Find P(X = 2|Z = 0).

Problem 3

A box contains two coins: a regular coin and a biased coin with $P(H) = \frac{2}{3}$. I choose a coin at random and toss it once. I define the random variable X as a Bernoulli random

variable associated with this coin toss, i.e., X=1 if the result of the coin toss is heads and X=0 otherwise. Then I take the remaining coin in the box and toss it once. I define the random variable Y as a Bernoulli random variable associated with the second coin toss. Find the joint PMF of X and Y. Are X and Y independent?

Problem 4

Consider two random variables X and Y with joint PMF given by

$$P_{XY}(k,l) = rac{1}{2^{k+l}}, ext{for } k,l = 1,2,3,\dots$$

- a. Show that X and Y are independent and find the marginal PMFs of X and Y.
- b. Find $P(X^2 + Y^2 \le 10)$.

Problem 5

Let X and Y be as defined in Problem 1. Also, suppose that we are given that Y = 1.

- a. Find the conditional PMF of X given Y=1. That is, find $P_{X|Y}(x|1)$.
- b. Find E[X|Y=1].
- c. Find Var(X|Y=1).

Problem 6

The number of customers visiting a store in one hour has a Poisson distribution with mean $\lambda=10$. Each customer is a female with probability $p=\frac{3}{4}$ independent of other customers. Let X be the total number of customers in a one-hour interval and Y be the total number of female customers in the same interval. Find the joint PMF of X and Y.

Problem 7

Let $X \sim Geometric(p)$. Find Var(X) as follows: Find EX and EX^2 by conditioning on the result of the first "coin toss", and use $Var(X) = EX^2 - (EX)^2$.

Problem 8

Let X and Y be two independent Geometric(p) random variables. Find $E\left[\frac{X^2+Y^2}{XY}\right]$.

Problem 9

Consider the set of points in the set *C*:

$$C=\{(x,y)|x,y\in\mathbb{Z},x^2+|y|\leq 2\}.$$

Suppose that we pick a point (X,Y) from this set completely at random. Thus, each point has a probability of $\frac{1}{11}$ of being chosen.

- a. Find the joint and marginal PMFs of X and Y.
- b. Find the conditional PMF of X given Y = 1.
- c. Are X and Y independent?
- d. Find $E[XY^2]$.

Problem 10

Consider the set of points in the set *C*:

$$C=\{(x,y)|x,y\in\mathbb{Z},x^2+|y|\leq 2\}.$$

Suppose that we pick a point (X,Y) from this set completely at random. Thus, each point has a probability of $\frac{1}{11}$ of being chosen.

- a. Find E[X|Y=1].
- b. Find Var(X|Y=1).
- c. Find $E[X||Y| \le 1]$.
- d. Find $E[X^2||Y| \le 1]$.

Problem 11

The number of cars being repaired at a small repair shop has the following PMF:

$$P_N(n) = egin{cases} rac{1}{8} & ext{for } n=0 \ rac{1}{8} & ext{for } n=1 \ rac{1}{4} & ext{for } n=2 \ rac{1}{2} & ext{for } n=3 \ 0 & ext{otherwise} \end{cases}$$

Each car that is being repaired is a four-door car with probability $\frac{3}{4}$ and a two-door car with probability $\frac{1}{4}$, independently from other cars and independently from the number of cars being repaired. Let X be the number of four-door cars and Y be the number of two-door cars currently being repaired.

- a. Find the marginal PMFs of X and Y.
- b. Find the joint PMF of X and Y.
- c. Are X and Y independent?

Let X and Y be two independent random variables with PMFs

$$P_X(k) = P_Y(k) = \left\{ egin{array}{ll} rac{1}{5} & \quad ext{for } x=1,2,3,4,5 \ 0 & \quad ext{otherwise} \end{array}
ight.$$

Define Z = X - Y. Find the PMF of Z.

Problem 13

Consider two random variables X and Y with joint PMF given in Table 5.5 Table 5.5: Joint PMF of X and Y in Problem 13

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{6}$	1/8
X = 1	1/8	$\frac{1}{6}$	$\frac{1}{4}$

Define the random variable Z as Z = E[X|Y].

- a. Find the Marginal PMFs of X and Y.
- b. Find the conditional PMF of X, given Y=0 and Y=1, i.e., find $P_{X|Y}(x|0)$ and $P_{X|Y}(x|1)$.
- c. Find the PMF of Z.
- d. Find EZ, and check that EZ = EX.
- e. Find Var(Z).

Problem 14

Let X, Y, and Z=E[X|Y] be as in Problem 13. Define the random variable V as V=Var(X|Y).

- a. Find the PMF of V.
- b. Find EV.
- c. Check that Var(X) = EV + Var(Z).

Let N be the number of phone calls made by the customers of a phone company in a given hour. Suppose that $N \sim Poisson(\beta)$, where $\beta > 0$ is known. Let X_i be the length of the i'th phone call, for $i = 1, 2, \ldots, N$. We assume X_i 's are independent of each other and also independent of N. We further assume

$$X_i \sim Exponential(\lambda),$$

where $\lambda > 0$ is known. Let Y be the sum of the lengths of the phone calls, i.e.,

$$Y = \sum_{i=1}^{N} X_i.$$

Find EY and Var(Y).

Problem 16

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = egin{cases} rac{1}{2}e^{-x} + rac{cy}{(1+x)^2} & 0 \leq x, 0 \leq y \leq 1 \ 0 & ext{otherwise} \end{cases}$$

- a. Find the constant c.
- b. Find $P(0 \le X \le 1, 0 \le Y \le \frac{1}{2})$.
- c. Find $P(0 \le X \le 1)$.

Problem 17

Let *X* and *Y* be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \left\{ egin{array}{ll} e^{-xy} & & 1 \leq x \leq e, y > 0 \ & & \ 0 & & ext{otherwise} \end{array}
ight.$$

- a. Find the marginal PDFs, $f_X(x)$ and $f_Y(y)$.
- b. Write an integral to compute $P(0 \le Y \le 1, 1 \le X \le \sqrt{e})$.

Problem 18

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \left\{ egin{array}{ll} rac{1}{4}x^2 + rac{1}{6}y & -1 \leq x \leq 1, 0 \leq y \leq 2 \ 0 & ext{otherwise} \end{array}
ight.$$

- a. Find the marginal PDFs, $f_X(x)$ and $f_Y(y)$.
- b. Find P(X > 0, Y < 1).
- c. Find P(X > 0 or Y < 1).
- d. Find P(X > 0|Y < 1).
- e. Find P(X + Y > 0).

Let X and Y be two jointly continuous random variables with joint CDF

$$F_{XY}(x,y) = egin{cases} 1-e^{-x}-e^{-2y}+e^{-(x+2y)} & x,y>0 \ 0 & ext{otherwise} \end{cases}$$

- a. Find the joint PDF, $f_{XY}(x,y)$.
- b. Find P(X < 2Y).
- c. Are X and Y independent?

Problem 20

Let $X \sim N(0,1)$.

- a. Find the conditional PDF and CDF of X given X>0.
- b. Find E[X|X>0].
- c. Find Var(X|X>0).

Problem 21

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \left\{ egin{array}{ll} x^2 + rac{1}{3}y & -1 \leq x \leq 1, 0 \leq y \leq 1 \ 0 & ext{otherwise} \end{array}
ight.$$

For $0 \le y \le 1$, find the following:

a. The conditional PDF of X given Y = y.

- b. P(X > 0|Y = y). Does this value depend on y?
- c. Are X and Y independent?

Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \left\{ egin{array}{ll} rac{1}{2}x^2 + rac{2}{3}y & -1 \leq x \leq 1, 0 \leq y \leq 1 \ 0 & ext{otherwise} \end{array}
ight.$$

Find E[Y|X=0] and Var(Y|X=0).

Problem 23

Consider the set

$$E = \{(x,y)||x| + |y| \le 1\}.$$

Suppose that we choose a point (X,Y) uniformly at random in E. That is, the joint PDF of X and Y is given by

$$f_{XY}(x,y) = \left\{ egin{array}{ll} c & & (x,y) \in E \ & & \ 0 & & ext{otherwise} \end{array}
ight.$$

- a. Find the constant c.
- b. Find the marginal PDFs $f_X(x)$ and $f_Y(y)$.
- c. Find the conditional PDF of X given Y=y, where $-1 \le y \le 1$.
- d. Are \boldsymbol{X} and \boldsymbol{Y} independent?

Problem 24

Let *X* and *Y* be two independent Uniform(0,2) random variables. Find P(XY < 1).

Problem 25

Suppose $X \sim Exponential(1)$ and given X = x, Y is a uniform random variable in [0,x], i.e.,

$$Y|X=x \quad \sim \quad Uniform(0,x),$$

or equivalently

$$Y|X \sim Uniform(0,X).$$

- a. Find EY.
- b. Find Var(Y).

Let X and Y be two independent Uniform(0,1) random variables. Find

- a. E[XY]
- b. $E[e^{X+Y}]$
- c. $E[X^2 + Y^2 + XY]$
- d. $E[Ye^{XY}]$

Problem 27

Let X and Y be two independent Uniform(0,1) random variables, and $Z=\frac{X}{Y}$. Find the CDF and PDF of Z.

Problem 28

Let X and Y be two independent N(0,1) random variables, and U=X+Y.

- a. Find the conditional PDF of U given X=x, $f_{U\mid X}(u\mid x)$.
- b. Find the PDF of U, $f_U(u)$.
- c. Find the conditional PDF of X given U=u, $f_{X\mid U}(x\mid u)$.
- d. Find E[X|U=u], and Var(X|U=u).

Problem 29

Let X and Y be two independent standard normal random variables. Consider the point (X,Y) in the x-y plane. Let (R,Θ) be the corresponding polar coordinates as shown in Figure 5.11. The inverse transformation is given by

$$\left\{ \begin{aligned} X &= R\cos\Theta \\ Y &= R\sin\Theta \end{aligned} \right.$$

where, $R \geq 0$ and $-\pi < \Theta \leq \pi$. Find the joint PDF of R and Θ . Show that R and Θ are independent.

In Problem 29, suppose that X and Y are independent Uniform(0,1) random variables. Find the joint PDF of R and Θ . Are R and Θ independent?

Problem 31

Consider two random variables X and Y with joint PMF given in Table 5.6. Table 5.6: Joint PMF of X and Y in Problem 31

	Y = 0	Y = 1	Y=2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8
X = 1	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

Find Cov(X,Y) and $\rho(X,Y)$.

Problem 32

Let X and Y be two independent N(0,1) random variable and

$$Z = 11 - X + X^2Y,$$

$$W = 3 - Y.$$

Find Cov(Z, W).

Problem 33

Let X and Y be two random variables. Suppose that $\sigma_X^2=4$, and $\sigma_Y^2=9$. If we know that the two random variables Z=2X-Y and W=X+Y are independent, find Cov(X,Y) and $\rho(X,Y)$.

Problem 34

Let $X \sim Uniform(1,3)$ and $Y|X \sim Exponential(X)$. Find Cov(X,Y).

Problem 35

Let X and Y be two independent N(0,1) random variable and

$$Z = 7 + X + Y,$$

$$W = 1 + Y.$$

Find $\rho(Z, W)$.

Problem 36

Let X and Y be jointly normal random variables with parameters $\mu_X=-1$, $\sigma_X^2=4$, $\mu_Y=1$, $\sigma_Y^2=1$, and $\rho=-\frac{1}{2}$.

- a. Find $P(X + 2Y \le 3)$.
- b. Find Cov(X Y, X + 2Y).

Problem 37

Let X and Y be jointly normal random variables with parameters $\mu_X=1$, $\sigma_X^2=4$, $\mu_Y=1$, $\sigma_Y^2=1$, and $\rho=0$.

- a. Find P(X + 2Y > 4).
- b. Find $E[X^2Y^2]$.

Problem 38

Let X and Y be jointly normal random variables with parameters $\mu_X=2$, $\sigma_X^2=4$, $\mu_Y=1$, $\sigma_Y^2=9$, and $\rho=-\frac{1}{2}$.

a. Find E[Y|X=3].

- b. Find Var(Y|X=2).
- c. Find $P(X+2Y \le 5|X+Y=3)$.