Traffic Volume Model

Objective:

The notebook focuses on building machine learning models to predict **Total Traffic Volume** using a variety of features related to road characteristics, temporal factors, and vehicle data. The goal is to compare the performance of multiple models and select the best-performing one based on evaluation metrics.

Dataset Overview:

The dataset used contains:

- Road Information: road_name_encoded, location_encoded, suburb_encoded, speed_limit.
- **Temporal Features**: hour, day_of_week, month.
- **Speed Metrics**: average_speed, 85th_percentile_speed, maximum_speed.
- Target Variable: Total_Traffic_Volume.

Data Preprocessing:

- 1. Feature Selection:
- a) The key features for the models are:
 - i. Road and Location Information: Encoded columns for road_name, location, suburb.
 - ii. **Temporal Features**: Time-based features such as hour, day_of_week, month were used.
 - iii. **Speed Limit** and **Average Speed** were included to analyze their relationship with traffic volume.
 - iv. **Target Variable**: Total_Traffic_Volume.

2. Label Encoding:

 Categorical features like day_type was label-encoded to convert them into numerical format.

3. Train-Test Split:

• The dataset was split into 80% training and 20% testing sets using train_test_split.

Models Used and Their Performance:

- 1. Random Forest Regressor:
 - R² Score: 0.9272
 - Mean Absolute Error (MAE): 19.67
 - Root Mean Squared Error (RMSE): 48.55

• **Summary**: The Random Forest Regressor was the top performer, explaining 92.72% of the variance in the target variable. It also had the lowest MAE and RMSE among all models.

2. Gradient Boosting Regressor:

• R² Score: 0.6564

MAE: 60.38RMSE: 105.47

• **Summary**: Gradient Boosting had moderate performance. While its predictions were more accurate than some models, its R² score was significantly lower than Random Forest's, showing room for improvement.

3. Support Vector Regressor (SVR):

• R² Score: -0.0598

MAE: 85.66RMSE: 185.25

• **Summary**: SVR performed poorly with a negative R² score, indicating that it was not suitable for predicting traffic volume on this dataset without significant tuning.

4. K-Nearest Neighbors (KNN):

• R² Score: 0.9008

MAE: 25.14RMSE: 56.66

• **Summary**: KNN performed well, achieving an R² score close to Random Forest's performance. This model offers another strong option for predicting traffic volume, though its error metrics were slightly higher than Random Forest.

5. Ridge Regression:

R² Score: 0.0499
MAE: 104.13

RMSE: 175.40

• **Summary**: Ridge Regression showed low predictive power, with a very low R² score. This suggests that Ridge Regression was not a good fit for this dataset.

6. Lasso Regression:

R² Score: 0.05
MAE: 104.10
RMSE: 175.39

• **Summary**: Similar to Ridge Regression, Lasso performed poorly, showing low R² and high error metrics, making it an unsuitable model for this prediction task.

7. ElasticNet Regression:

R² Score: 0.0501
MAE: 104.10

RMSE: 175.39

 Summary: ElasticNet, a combination of Ridge and Lasso, performed similarly to its individual components. It didn't significantly improve predictions over Lasso or Ridge Regression.

8. Extra Trees Regressor:

• R² Score: 0.9230

MAE: 19.91RMSE: 49.93

• **Summary**: Extra Trees performed almost as well as Random Forest, with a slightly lower R² score and marginally higher RMSE. It can be considered a strong alternative to Random Forest.

9. CatBoost Regressor:

• R² Score: 0.9058

MAE: 28.60RMSE: 55.23

• **Summary**: CatBoost showed solid performance, with an R² score above 90%. However, its MAE and RMSE were higher than those of Random Forest and Extra Trees, making it slightly less accurate overall.

Model Comparison:

Top Performing Models:

 Random Forest Regressor (R²: 0.9272, MAE: 19.67, RMSE: 48.55) and Extra Trees Regressor (R²: 0.9230, MAE: 19.91, RMSE: 49.93) emerged as the best models for predicting traffic volume. These models had the highest R² scores and the lowest error rates.

Moderate Performance:

- K-Nearest Neighbors also performed well with an R² score of 0.9008, but it had higher MAE and RMSE compared to the top models.
- CatBoost performed decently with an R² score of 0.9058, but its error metrics were not as competitive as Random Forest or Extra Trees.

Underperforming Models:

• Support Vector Regressor (SVR), Ridge, Lasso, and ElasticNet performed poorly, with very low R² scores and high error metrics, indicating that these models are not suitable for this dataset.

Key Insights:

1. Feature Importance:

 Features such as road_name, location, suburb, and speed_limit were critical in predicting traffic volume. Temporal features like hour and day_of_week also significantly contributed to the model's ability to predict traffic volume.

2. Top Models:

• Random Forest and Extra Trees are the most effective models for this dataset, both explaining over 92% of the variance in traffic volume. They are well-suited for complex data with non-linear relationships.

3. Impact of Speed Metrics:

 Including speed limit and average speed as features allowed the models to account for traffic flow patterns, which further improved the accuracy of the predictions.

4. Poor Performance of Linear Models:

• Linear models such as **Ridge**, **Lasso**, and **ElasticNet** did not perform well. These models were unable to capture the non-linear relationships within the dataset, leading to poor predictions.