

Instituto de Ciências Exatas e Biológicas - ICEB

PROGRAMAÇÃO DE COMPUTADORES I - BCC701 Aula Teórica 10

Exercício 1

Análise Estatística

É comum, em ciência e engenharia, trabalharmos com grandes conjuntos de números, os quais são medidas de alguma propriedade em particular na qual estamos interessados. Um exemplo simples seriam as notas da primeira prova deste curso. Cada nota seria uma medida de quanto um estudante em particular aprendeu no curso até o momento.

Na maior parte do tempo, não estamos interessados em observar tão de perto cada uma das medidas efetuadas. Em vez disso, queremos sumarizar os resultados de um conjunto de medidas por meio de uns poucos números que nos indiquem bastante a respeito do conjunto de dados como um todo. Dois desses números são a média aritmética (a) e o desvio padrão (b) de um conjunto de medidas, dados pelas fórmulas:

$$\dot{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{a}$$

$$s = s \sqrt{\frac{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}}$$
 (b)

onde X_i é a amostra i de n amostras.

O desvio padrão é uma medida de espalhamento das medidas, quanto maior o desvio padrão, mais espalhados serão os valores do conjunto de medidas.

Exercício

Codifique um programa Scilab que calcule a média e o desvio padrão de um conjunto de valores positivos, não nulos, e inteiros, onde:

- não se conhece previamente a quantidade de valores do conjunto de medias; a entrada de dos será encerrada quando o usuário digitar um valor menor ou igual a zero;
- somente os valores positivos, não nulos e inteiros serão considerados. Caso o usuário digite um valor fracionário, o programa deverá repetir a entrada de dados até que um número correto seja inserido;
- o programa calculará a media aritmética e o desvio padrão somente se o conjunto de dados for maior ou igual a dois valores.

A seguir, dois exemplos de execução do programa.

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação – DECOM

Execução 1

CÁLCULO DA MÉDIA E DESVIO PADRÃO DE UM CONJUNTO DE AMOSTRAS

DIGITE UMA AMOSTRA: 2
DIGITE UMA AMOSTRA:-9

TÉRMINO DO PROGRAMA: AMOSTRAS INSUFICIENTES !

Execução 2

CÁLCULO DA MÉDIA E DESVIO PADRÃO DE UM CONJUNTO DE AMOSTRAS

DIGITE UMA AMOSTRA: 2 DIGITE UMA AMOSTRA:0

O VALOR É NULO OU FRACIONÁRIO - FAÇA NOVA ENTRADA!

DIGITE UMA AMOSTRA: 6.99

O VALOR É NULO OU FRACIONÁRIO - FAÇA NOVA ENTRADA!

DIGITE UMA AMOSTRA:5
DIGITE UMA AMOSTRA:9
DIGITE UMA AMOSTRA:1
DIGITE UMA AMOSTRA:2
DIGITE UMA AMOSTRA:4
DIGITE UMA AMOSTRA:-9

MÉDIA ARITMÉTICA : 3.833333 DESVIO PADRÃO : 2.926887

NÚMERO DE AMOSTRAS: 6

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Calculando o Dia do Ano

O dia do ano é o número de dias (incluindo o dia presente) desde o início de determinado ano. Ele varia de 1 a 365 para os anos ordinários e de 1 a 366 para os anos bissextos. Escreva um programa Scilab que leia um dia, um mês e um ano. A seguir, o programa deve calcular o dia do ano correspondente a esta data.

Solução

Para determinar o dia do ano, esse programa precisa somar o numero de dia em cada mês anterior ao mês corrente, mais o número de dias passados do mês corrente. Um laço **for** será utilizado para efetuar essa soma. Como o número de dias varia para cada mês, é preciso determinar o número correto de dias a serem adicionados em decorrência de cada mês.

Durante o ano bissexto, um dia a mais precisa ser adicionado ao dia do ano para qualquer mês corrente depois de fevereiro. Esse dia a mais contabiliza o dia 29 de fevereiro do ano bissexto. Portanto, para calcular corretamente o cálculo do dia do ano, precisamos determinar quais são bissextos. Segundo o calendário gregoriano, os anos bissextos são determinados pelas seguintes regras:

- 1. anos divisíveis por 400 são bissextos.
- 2. anos divisíveis por 100, mas não por 400, não são bissextos.
- 3. anos divisíveis por 4, mas não por 100 são bissextos.
- 4. nenhum outro ano é bissexto.

A seguir, dois exemplos de execução do programa.

Execução 1

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Execução 2

ESTE PROGRAMA CALCULA O DIA DO ANO PARA UMA DATA

DATA CORRENTE:

DIGITE O DIA CORRENTE (1-31): 15 DIGITE O MÊS CORRENTE (1-12): 05 DIGITE O ANO CORRENTE (aaaa): 1968

DATA: 15/ 5/1968
DIA DO ANO: 136

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Fatorial de um Número Inteiro

O fatorial de um número *n*, inteiro e não negativo, é calculado por:

$$n!=1*2*3*...*n$$

Codifique um programa Scilab que calcule o fatorial de um número *n*. O programa solicita uma entrada do valor de n para o usuário, e fica repetindo a solicitação enquanto o número fornecido for negativo ou fracionário. Lembre-se que por definição o fatorial de 0 é 1.

A seguir, um exemplo de execução do programa.

Execução

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Controle de Qualidade na Produção de Lingotes

Uma fábrica de alumínio produz certa quantidade lingotes diariamente. Cada lingote produzido é pesado e somente são aproveitados os lingotes com massa superior a 24.9 kg.

Escreva um programa Scilab para realizar essa tarefa, isto é, o programa deve ler a quantidade de lingotes produzidos, as massas desses lingotes e calcular os seguintes dados:

- O número de lingotes aproveitados
- A massa média dos lingotes aproveitados;
- A maior massa de um lingote aproveitado;

Observação: durante a leitura de uma massa é verificada se a massa não é negativa ou nula. Se isto ocorrer, a leitura é repetida até que seja fornecido um valor válido para a massa.

A seguir uma simulação da execução do programa:

Execução

```
=-=-=-=-=-=-
FÁBRICA DE ALUMÍNIO SERIADUS
=-=-=-=-=-=-=-
INFORME A QUANTIDADE DE LINGOTES PRODUZIDOS:
                                            8
DIGITE A MASSA DO LINGOTE (kg):
DIGITE A MASSA DO LINGOTE (kg):
                               24
DIGITE A MASSA DO LINGOTE (kg):
                               28
DIGITE A MASSA DO LINGOTE (kg):
                               23.9
DIGITE A MASSA DO LINGOTE (kg):
E R R O: MASSA NULA OU NEGATIVA !
DIGITE A MASSA DO LINGOTE (kg):
                               -1
E R R O: MASSA NULA OU NEGATIVA !
DIGITE A MASSA DO LINGOTE (kg):
                               24.99
DIGITE A MASSA DO LINGOTE (kg):
DIGITE A MASSA DO LINGOTE (kg):
                               22.98
DIGITE A MASSA DO LINGOTE (kg):
NÚMERTO DE LINGOTES APROVEITADOS: 5
MASSA MÉDIA DOS LINGOTES APROVEITADOS: 26.038 kg
MAIOR MASSA DE UM LINGOTE APROVEITADO: 28 kg
```


Instituto de Ciências Exatas e Biológicas – ICEB

Crescimento de Bactérias

Suponha que um biólogo efetue um experimento de medida da taxa de reprodução assexuada de um tipo específico de bactérias em diferentes meios de cultura. O experimento mostra que no Meio A as bactérias se reproduzem uma vez a cada 60 minutos, e uma vez a cada 90 minutos no Meio B. Assuma que uma única bactéria seja colocada em um meio de cultura no início do experimento. Escreva um programa para calcular o número de bactérias presentes em cada cultura em intervalos de três horas, do início do experimento até completar 24 horas.

A seguir uma simulação da execução do programa:

Execução

BACTÉRIAS Bernadette Rostenkowski Inc. Co. QUANTIDADE DE BACTÉRIAS NO MEIO A = 13 QUANTIDADE DE BACTÉRIAS NO MEIO b = 9

Instituto de Ciências Exatas e Biológicas – ICEB

Primos entre Si

Chamamos de <u>números</u> primos entre si (ou coprimos), um <u>conjunto</u> de números onde o único <u>divisor</u> comum a todos eles é o número <u>1</u>. (fonte Wikipédia).

Codifique um programa que faça a leitura de 2 números inteiros, verificando se esses são primos entre si.

A seguir, dois exemplos de execução do programa.

Execução 1

DIGITE O PRIMEIRO NÚMERO:	120
DIGITE O SEGUNDO NÚMERO:	60
120 E 60 NÃO SÃO PRIMOS EN	NTRE SI

Execução 2

DIGITE O PRIMEIRO NÚMERO:	11
DIGITE O SEGUNDO NÚMERO:	1535
11 E 1535 SÃO PRIMOS ENTRI	E SI

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Soma de Fibonacci

Codificar um programa que gere e imprima a soma dos N primeiros termos da Série de Fibonacci. O valor de N deve ser lido pelo teclado. Todos os valores tratados pelo programa são inteiros. Por exemplo, se os cinco primeiros termos da série são: 1, 1, 2, 3, 5, a soma desses termos é 12.

A seguir, um exemplo de execução do programa.

Execução

SOMA DOS n TERMOS DA SÉRIE DE FIBONACCI

QUANTIDADE DE TERMOS: 10

SOMATÓRIO DOS 10 PRIMEIROS TERMOS

DA SÉRIE DE FIBONACCI: 143

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

<u> LACICICIO O</u>

Somatório de uma Série

Codificar um programa que calcule e imprima o somatório abaixo com K parcelas. O valor de K (inteiro) e o valor de x (real) devem ser lidos pelo teclado.

$$S = \frac{x^{3}}{1} - \frac{x^{5}}{3^{3}} + \frac{x^{7}}{5^{3}} - \frac{x^{9}}{7^{3}} + L$$

A seguir, um exemplo de execução do programa.

Execução

SOMATÓRIO DA SÉRIE

DIGITE O NUMERO DE PARCELAS: 6
DIGITE O VALOR DA VARIAVEL X: 2

VALOR DO SOMATÓRIO: 3.00066

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Máximo Divisor Comum

Escreva um programa que calcule o m.d.c. (máximo divisor comum) entre dois números inteiros positivos quaisquer A e B fornecidos pelo usuário.

A seguir, um exemplo de execução do programa.

Exemplo

MÁXIMO DIVISOR COMUM
DIGITE O VALOR DE A: 544
DIGITE O VALOR DE B: 119
O MDC de 544 e 119 é: 17

Instituto de Ciências Exatas e Biológicas – ICEB

Teste de Número Primo

Escreva um programa que determine se um dado número N, fornecido pelo usuário, é primo ou não.

A seguir, um exemplo de execução do programa.

Exemplo

TESTE SE UM NÚMERO É PRIMO DIVISOR ATÉ A METADE DO NÚMERO DIGITE UM NÚMERO QUALQUER: 31

31 É PRIMO!