Обработка звуковых сигналов

Никита Красницкий

Чтение и воспроизведение аудиофайла для представления его в матлабе.

```
clear all
close all
[x, fs] = audioread('Sound2.m4a');
%sound(x, fs);
plot(x(:,1))
```



```
plot(x(:,2))
```


Делаю 100 делений звукового ряда по 2652 отчета. ПОсле чего возьму 100 fft и получу временную зависимость АЧХ

```
A = x(1:length(x));
N = length(x)/100;
xdiv = reshape(A, [N, 100]);
```

Такая строчка кода проиграет 20мой столбик (из 100) и нарисует его график

```
plot(xdiv(1:end,20));
```



```
%sound(2000*xdiv(1:end,20), 130*30);
```

100 Спектра

```
Xdiv = ifft(xdiv);
Xdivshift = fftshift(Xdiv);

F = linspace(-fs/2, fs/2, length(Xdivshift));
area(F, abs(Xdivshift(1:end, 1)))
xlim([0 2e3]);
ylim([0 0.02]);
title('1');
```



```
area(F, abs(Xdivshift(1:end, 2)))
xlim([0 2e3]);
ylim([0 0.02]);
title('2');
```



```
area(F, abs(Xdivshift(1:end, 3)))
xlim([0 2e3]);
ylim([0 0.02]);
title('3');
```



```
area(F, abs(Xdivshift(1:end, 4)))
xlim([0 2e3]);
ylim([0 0.02]);
title('4');
```



```
area(F, abs(Xdivshift(1:end, 8)))
xlim([0 2e3]);
ylim([0 0.02]);
title('8');
```



```
area(F, abs(Xdivshift(1:end, 16)))
xlim([0 2e3]);
ylim([0 0.02]);
title('16');
```



```
area(F, abs(Xdivshift(1:end, 70)))
xlim([0 2e3]);
ylim([0 0.02]);
title('70');
```


Находим "уровень" частоты 150 +/-10 (1335 - average sample)

```
BaseLevel(100) = 0;
for index = 1:100
    for n = 1300:1370
        BaseLevel(index) = BaseLevel(index) + Xdivshift(n,index);
    end
end
%plot(abs(BaseLevel));
```

???

```
for i = 1:50
    a = BaseLevel(i);
    BaseLevel(i) = BaseLevel(i+50);
    BaseLevel(i+50) = a;
end
plot(abs(BaseLevel));
title('Амплитуда первой гармоники со временем')
```


Нахождение и представление спектра

```
X = fft(x); area(abs(X)) % Пример непривычного вида
```


представление спектра в привычном виде

```
Xshift = fftshift(X);
F = linspace(-fs/2, fs/2, length(X)); % создает строку с числом єлементов равным числу элементов X
% начальное значение и кончено равны -fs/2 и fs/2
area(F, abs(Xshift))
xlim([-2e3 2e3]) % Ограничение до 2кГц - выше крыши для обертонов (гармоник)
grid on
title('Амплитудно Частотный Спектр')
ylabel('Модуль БПФ')
xlabel('Частота (Гц)')
```


Спектр в положительной области частот

```
Xpos = X([1:length(X)/2]);
Fpos = linspace(0, fs/2, length(Xpos));
area(Fpos, abs(Xpos))
xlim([0 1.5e3]) % Ограничение до 1.5к
grid on
hold on
title('Амплитудно Частотный Спектр')
ylabel('Модуль БПФ')
xlabel('Частота (Гц)')
```


Определим частоты каждой гармоники для продолжения анализа

```
[~, locs] = findpeaks(abs(Xpos), 'MinPeakHeight', 100, 'MinPeakDistance', 150);
Fpeaks = Fpos(locs);
plot(Fpeaks, abs(Xpos(locs)),'rv', 'MarkerFaceColor', 'r');
cellpeaks = cellstr(num2str(round(Fpeaks', -1)));
text(Fpeaks, abs(Xpos(locs)), cellpeaks, 'FontSize', 16);
hold off
```


Для анализа обертонов можно посмотреть какие ноты попутно звучат при извлечении основного звука.

Ноты	Суббконтр- октава	Контр- октава	Большая	Малая	Первая	Вторая	Третья	Четвертая	Пятая
до	16,35	32,70	65,41	130,82	261,63	523,26	1046,52	2093,04	4186,08
ДО диез	17,32	34,65	69,30	138,59	277,18	554,36	1108,72	2217,44	4434,88
PE	18,35	36,71	73,42	146,83	293,66	587,32	1174,64	2349,28	4698,56
РЕ диез	19,45	38,89	77,78	155,57	311,13	622,26	1244,52	2489,04	4978,08
МИ	20,60	41,20	82,41	164,82	329,63	659,26	1318,52	2637,04	5274,08
ФА	21,83	43,65	87,31	174,62	349,23	698,46	1396,92	2793,84	5587,68
ФА диез	23,12	46,25	92,50	185,00	369,99	739,98	1479,96	2959,92	5919,84
СОЛЬ	24,50	49,00	98,00	196,00	392,00	784,00	1568,00	3136,00	6272,00
СОЛЬ диез	25,96	51,91	103,83	207,65	415,30	830,60	1661,20	3322,40	6644,80
ЛЯ	27,50	55,00	110,00	220,00	440,00	880,00	1760,00	3520,00	7040,00
ЛЯ диез	29,14	58,27	116,54	233,08	466,16	932,32	1864,64	3729,28	7458,56
СИ	30,87	61,74	123,47	246,94	493,88	987,76	1975,52	3951,04	7902,08

```
X = fft(x);
plot(abs(X))
xlim([0 15.5e3])
```



```
Z = 1e-6*F.^2; % Синк на уровне первой гармоники Z(2,:) = Z(1,:); Z = Z.'; plot(F, Z) hold on plot(F, abs(X)) hold off title('2 Графики спектра звукового сигнала и нашей функции')
```



```
plot(F, Z)
hold on
plot(F, abs(X))
hold off
xlim([-fs/2 -fs/2+5.5e3])
ylim([0 6e3])
title('2 Наша функция в пределах первых гармоник')
```



```
X = X.*Z / 2000;
plot(F, abs(X))
xlim([-fs/2 -fs/2+5.5e3])
ylim([0 6e3])
title('2 Измененный спектр')
```


Изменяем амплитуды спектра звукового сигнала.

```
X = fft(x);
plot(abs(X))
xlim([0 15.5e3])
```



```
Z = 1e6*sinc((F) * 5.5e-3); % Синк на уровне первой гармоники Z(2,:) = Z(1,:); Z = Z.'; plot(F, Z) hold on plot(F, abs(X)) hold off title('Графики спектра звукового сигнала и нашей функции')
```



```
plot(F, Z)
hold on
plot(F, abs(X))
hold off
xlim([-fs/2 -fs/2+5.5e3])
ylim([0 бе3])
title('Наша функция в пределах первых гармоник')
```



```
X = X.*Z / 2000;
plot(F, abs(X))
xlim([-fs/2 -fs/2+5.5e3])
ylim([0 6e3])
title('Измененный спектр')
```



```
%X( X > length(X)/2) = X.*Z2;
%X(X<200) = 0;
%area(F, abs(X))
```

Обратное Преобразование Фурье. Возвращаем звук.

```
y = ifft(X);
y = real(y)
y = 265200x2 double
    0.0066
           -0.0415
    0.0246 0.0032
    0.0060 -0.0424
    0.0244
           0.0027
    0.0046
           -0.0433
    0.0238
           0.0022
    0.0046
           -0.0438
    0.0224
            0.0008
           -0.0442
    0.0044
    0.0217
           0.0001
sound(y, fs)
plot(y)
```

