Complex Analysis II Course Notes

Isaac Holt January 16, 2023

1 Mobius Transformations

Corollary 1.0.1. Any Mobius transformation is a bijection from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.

Let $T \in GL_2(\mathbb{C})$ and M_T be a Mobius transformation, then a point z is a fixed point of M_T if $M_T(z) = z$.

Lemma 1.0.2. Let $T \in GL_2(\mathbb{C})$. If $M_T : \mathbb{C} \to \mathbb{C}$ is not the identity map, then M_T has at most two fixed points in \mathbb{C} . If a Mobius transformation has three fixed points then it is the identity map.

Proof. Case 1: Suppose $M_T(\infty) = \infty$. From the definition, $M_T(z) = \frac{az+b}{cz+d}$, therefore c = 0. So $M_T(z) = \frac{a}{d}z + \frac{b}{d}$, with $a \neq 0, d \neq 0$ (since $\det T \neq 0$).

Such an affine linear map has at most one fixed point because:

- If $a \neq d$ then $\frac{a}{d}z + \frac{b}{d} = z \iff z = \frac{b}{d-a}$ so M_T has a unique fixed point.
- If a = d then $b \neq 0$ (since we assume M_T is not the identity). So $M_T(z) = z + \frac{b}{a}$ is a translation which has no fixed points.

Case 2: Suppose $M_T(\infty) \neq \infty$. Suppose $z_0 \in \mathbb{C}$ is such that $M_T(z_0) = z_0$. We have $M_T(z_0) = z_0 \iff \frac{az_0 + b}{cz_0 + d} = z_0 \iff cz_0^2 + (d - a)z_0 - b = 0$. This quadratic equation has at most two roots so there are at most two fixed points of M_T .

Definition 1.0.3. Given four distinct points $z_0, z_1, z_2, z_3 \in \mathbb{C}$, the cross-ratio of these points denoted $(z_0, z_1; z_2, z_3)$ is defined by

$$\frac{(z_0-z_2)(z_1-z_3)}{(z_0-z_3)(z_1-z_2)}$$

We extend the definition to the case where one of the points is ∞ by removing all differences involving that point e.g. $(\infty, z_0; z_2, z_3) = \frac{z_1 - z_3}{z_1 - z_2}$.

Theorem 1.0.4. (Three points theorem) Let z_1, z_2, z_3 and w_1, w_2, w_3 be two sets of three ordered points in $\hat{\mathbb{C}}$. Then there exists a unique Mobius transformation f such that $f(z_i) = w_i$ for every $i \in \{1, 2, 3\}$.

Proof. Existence:

We consider the functions $F(z)=(z,w_1;w_2,w_3)=\frac{(z-w_2)(w_1-w_3)}{(z-z_3)(w_1-w_2)}$ and $G(z)=\frac{(z-z_2)(z-z_3)}{(z-z_3)(z_1-z_2)}$. These are Mobius transformations with the properties that $F(w_1)=1$, $F(w_2)=0$, $F(w_3)=\infty$ and similarly, $G(z_1)=1$, $G(z_2)=0$, $G(z_3)=\infty$. Therefore $F^{-1}\circ G$ maps each z_i to w_i .

Uniqueness:

Assume that there are two such maps, say f_1 and f_2 . Then the Mobius transformation $H = f_1^{-1} \circ f_2$ satisfies $H(z_i) = z_i$.

This shows that H has three fixed points so, by Three Point Theorem, it must be the identity. Thus $f_1 = f_2$.

Proposition 1.0.5. Mobius transformations preserve the cross ratio. That is, if z_0, z_1, z_2, z_3 are four distinct points in $\hat{\mathbb{C}}$ and f is a Mobius transformation, then $(f(z_0), f(z_1); f(z_2), f(z_3)) = (z_0, z_1; z_2, z_3)$.

Proof. Let $w_i = f(z_i)$ for every $i \in \{1, 2, 3\}$. Let $F(z) = (z, w_1; w_2, w_3)$ and $G(z) = (z, z_1; z_2, z_3)$. Recall $F^{-1} \circ G$ maps z_i to w_i like f does. Since there is a unique Mobius transformation with this property, we have

$$f = F^{-1} \circ G$$

and

$$F \circ f = G$$

That is,
$$(f(z_0), w_1; w_2, w_3) = F \circ f(z_0) = G(z_0) = (z_0, z_1; z_2, z_3).$$

Remark. General strategy: to find Mobius transformation, find image of 3 points and use the fact that cross ratio is preserved. Plug known points into (*) and rearrange for $f(z_0)$.

1.1 The Riemann Sphere Revisited

Circles in $\hat{\mathbb{C}}$ correspond to circles in S^2 that don't pass through N (the North pole). Lines in $\hat{\mathbb{C}}$ correspond to circle in S^2 that pass through N.

Remark. Mobius transformations give all biholomorphic maps from S^2 to S^2 .

Remark. Stereographic projections are conformal.

1.2 Mobius transformations preserving the upper half plane and the unit disc

Notation: for a domain $D \subset \mathbb{C}$, let Mob(D) be the set of Mobius transformations f such that f(D) = D.

Proposition 1.2.1. (H2H) Every Mobius transformation mapping \mathbb{H} to \mathbb{H} ($\mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$) is of the form M_T with $T \in SL_2(\mathbb{R}) := \{T = () : a, b, c, d \in \mathbb{R}, \det T = 1\}$

Conversely, every such Mobius transformation maps \mathbb{H} to \mathbb{H} and hence a biholomorphism from \mathbb{H} to \mathbb{H} .

i.e. H2H: $f \in \text{Mob}(\mathbb{H}) \Leftrightarrow f = M_T \text{ with } T \in SL_2(\mathbb{R}).$

Remark. $T \to M_T$ gives a group homomorphism $SL_2(\mathbb{R}) \to Aut(\mathbb{H})$

Proof. Any Mobius transformation $f: \mathbb{H} \to \mathbb{H}$ must map $\partial \mathbb{H}$ to $\partial \mathbb{H}$. As $\partial \mathbb{H}$ is the real line, $f: \mathbb{R} \cup \infty \to \mathbb{R} \cup \infty$. So f must map the ordered set $\{1, 0, \infty\}$ to $\{x_1, x_2, x_3\}$ for some $x_i \in \mathbb{R} \cup \infty$.

We know that the cross ratio is preserved under a Mobius transformation:

$$(f(z), x_1; x_2, x_3) = \frac{(f(z) - x_2)(x_1 - x_3)}{(f(z) - x_3)(x_1 - x_2)} = \frac{z - 0}{1 - 0} = (z, 1; 0, \infty)$$

$$\Leftrightarrow (f(z) - x_2)(x_1 - x_3) = z(f(z) - x_3)(x_1 - x_2)$$

$$\Leftrightarrow f(z) = \frac{x_3(x_1 - x_2)z + x_2(x_3 - x_1)}{(x_1 - x_2)z + x_3 - x_1}$$

We see that the coefficients of T are real.

If $T \in GL_2(\mathbb{R})$ and z = x + iy then

$$Im(M_T(z)) = Im(\frac{az+b}{cz+d}) = Im(\frac{(az+b)(c\bar{z}+d)}{|cz+d|^2})$$
$$= Im(\frac{bc\bar{z}+adz}{(cz+d)}) = \frac{y \det T}{|cz+d|}$$

We have $z \in \mathbb{H} \Leftrightarrow y > 0$ so $M_T(z) \in H \Leftrightarrow T \in GL_2(\mathbb{R})$, $\det T > 0$. We can therefore replace T by a real matrix of determinant 1 by scaling T by a real number.

Proposition 1.2.2. (D2D): Every Mobius transformation from the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ to \mathbb{D} is of the form $T \in SU(1,1)$

Conversely, every such Mobius transformation maps \mathbb{D} to \mathbb{D} and hence gives a h biholopmorhpic automorphism of \mathbb{D} .

i.e.
$$f \in Mob(\mathbb{D}) \Leftrightarrow f = M_T, T \in SU(1,1)$$
.

Proof. (\Rightarrow): Let $M_T : \mathbb{D} \to \mathbb{D}$ be a Mobius transformation. The Cayley map H_C maps \mathbb{H} to \mathbb{D} . We have that $f = M_C^{-1} \circ M_T \circ M_C$ is a Mobius transformation from \mathbb{H} to \mathbb{H} . By proposition 4.20, we have $f = M_S$ where $S \in SL_2(\mathbb{R})$.

Hence $C^{-1}TC = S \in SL_2(\mathbb{R})$ by Lemma 4.4.

Let $S \in \mathbb{M}_2(\mathbb{R})$, det S = 1. Then $T = CSC^{-1}$. Evaluating this shows $T \in SU(1,1)$.

(\Leftarrow): If $T \in SU(1,1)$, then the same calculation in reverse shows that the matrix $S = C^{-1}TC \in SL_2(\mathbb{R})$. Then $M_S : \mathbb{H} \to \mathbb{H}$ is a Mobius transformation by proposition 4.20 (H2H), and the map $M_T := M_C \circ M_S \circ M_C^{-1}$ is a Mobius transformation from \mathbb{D} to \mathbb{D}

Remark. $T \to M_T$ gives a group homomorphism from SU(1,1) to $Aut(\mathbb{D})$.

Corollary 1.2.3. (D2D*):

1. Every Mobius transformation f from \mathbb{D} to \mathbb{D} can be written as

$$f(z) = e^{i\theta} \frac{z - z_0}{\bar{z}_0 z - 1}$$

for some angle θ and $z_0 \in \mathbb{D}$ where z_0 is the unique point in \mathbb{D} such that $f(z_0) = 0$.

2. Every Mobius transformation of the unit disc \mathbb{D} to \mathbb{D} for which f(0) = 0 are rotations about 0.

Proof. 1. By proposition D2D, we have

$$f(z) = \frac{az+b}{\bar{b}z+\bar{a}} = \frac{a(z+b/a)}{-\bar{a}((-\bar{b}/\bar{a})z-1)} = -\frac{a}{\bar{a}}\frac{z-(-b/a)}{(-\bar{b}/\bar{a})z-1}$$

So $z_0 = -\frac{b}{a}$. Since $|-\frac{a}{\hat{a}}| = 1$, $-\frac{a}{\hat{a}} = e^{i\theta}$ for some $\theta \in (-\pi, \pi]$.

$$|z_0|^2 - 1 = |-\frac{b}{a}|^2 - 1 = \frac{|b|^2}{|a|^2} - 1$$
. Now $1 = |a|^2 - |b|^2$ so $|z_0|^2 - 1 = \frac{-1}{|a|^2} < 0$ so $|z_0|^2 < 1$ and so $|z_0| < 1$.

2.
$$f(0) = 0 \Leftrightarrow e^{i\theta} \frac{0-z_0}{\bar{z_0} \cdot 0-1} = 0 \Leftrightarrow z_0 = 0 \Leftrightarrow f(z) = e^{i\theta} \frac{z-0}{0-1} = e^{-i\theta} z$$
. So f is a rotation.

Remark. The map $g(z) = \frac{z-z_0}{\bar{z_0}z-1}$ swaps z_0 and 0 and is an involution $(g \circ g = Id)$. Also, $z \to e^{i\theta}z$ is a rotation.

So every Mobius transformation from $\mathbb D$ to $\mathbb D$ is given by an involution followed by a rotation.

1.3 Finding biholomorphic maps between domains

To find a biholomorphism f between domains, we build f in various stages using simpler known maps.

Example 1.3.1. Find biholomorphism from $D = \{z \in \mathbb{D} : Im(z) < 0\}$ to \mathbb{H} . The Cayley Map M_C is a map from \mathbb{H} to \mathbb{D} , so $M_C^{-1} : \mathbb{D} \to \mathbb{H}$, $M_C^{-1}(z) = \frac{iz+i}{-z+1}$. To find the image of D under M_C^{-1} , consider how it acts on two segments of δD :

- Under M_C^{-1} , $-1 \to 0$, $0 \to i$ and $1 \to \infty$. Therefore the line segment from -1 to 1 through 0 is mapped to the positive imaginary axis.
- Under M_C^{-1} , $-i \to 1$, so the circular arc from -1 to 1 through -i is mapped to the positive real axis.

Now $-\frac{i}{2} \in D$ and $M_C^{-1}(-\frac{i}{2}) = \frac{4+3i}{5}$. The image of D under M_C^{-1} is $\Omega = \{w \in \mathbb{C} : 0 < Arg(w) < \frac{\pi}{2}\}$.

Now we find a biholomorphic map from Ω to \mathbb{H} . $g(z)=z^2$ satisfies this, as it doubles the argument of z.

So the map is $f = g \circ M_C^{-1}$, $f : D \to \mathbb{H}$.

2 Notions of convergence in complex analysis and power series

2.1 Pointwise and uniform convergence

Definition 2.1.1. Let (X, d_X) and (Y, d_Y) be two metric spaces. A sequence of functions $\{f_n\}_{n\in\mathbb{N}}: X\to Y$ converges pointwise (on X) to f if for every $x\in X$, the limit function $f(x):=\lim_{n\to\infty} f_n(x)$ exists in Y.

In other words, we have for every $x \in X$ and for every $\epsilon > 0$, for some $N \in \mathbb{N}$, for every n > N, $d_Y(f_n(x), f_n(x)) < \epsilon$. (Not that N depends on x).

Remark. For every $x \in X$, $f_n(x)$ is just a sequence of points in Y. The above definition is what we get by applying definition 2.11 (in notes) to the sequence $f_n(z)$.

Example 2.1.2. Let $f_n(z) = z^n$, $f_n : \mathbb{C} \to \mathbb{C}$. There are the following cases:

- 1. $z \in \mathbb{D}$. Let $\epsilon > 0$. Then $|z|^N < \epsilon$ for every $N > \frac{\log \epsilon}{\log |z|}$. So for every n > N we have $f_n(z) 0 = |z|^n < |z|^N \epsilon$, hence $\lim_{n \to \infty} f_n(z) = 0 \in \mathbb{D}$.
- 2. |z| = 1. The point z rotates around the unit circle $\delta \mathbb{D}$ by Arg(z) anticlockwise every iteration. For $z \neq 1$, this sequence doesn't converge. But for z = 1, $\lim_{n\to\infty} f_n(z) = \lim_{n\to\infty} 1 = 1$.
- 3. |z| > 1. The value of $|z|^n$ is unbounded so doesn't converge.

The sequence f_n doesn't converge pointwise on \mathbb{C} . But it is pointwise convergent on $\mathbb{D} \cup 1$ with limit function:

$$f(z) = \begin{cases} 0 & \text{if } z \in \mathbb{D} \\ 1 & \text{if } z = 1 \end{cases}$$
 (1)

Definition 2.1.3. Let (X, d_X) and (Y, d_Y) be two metric spaces. A sequence of functions $\{f_n\}_{n\in\mathbb{N}}: X\to Y$ converges uniformly (on X) to the limit function f if for every $\epsilon>0$ for some $N\in\mathbb{N}$, for every n>N, $d_Y(f_n(x),f(x))<\epsilon$ for every $x\in X$.

Theorem 2.1.4. Let (X, d_X) and (Y, d_Y) be two metric spaces and let $\{f_n\}_{n \in \mathbb{N}}$: $X \to Y$ be a sequence of functions that converges uniformly to f on X.

Then f is continuous on X.

Proof. Same as in Analysis I.

Lemma 2.1.5. let $\{f_n\}_{n\in\mathbb{N}}: X \to \mathbb{C}$ be a sequence of functions converging pointwise to a limit function f.

- 1. If $|f_n(x) f(x)| \le s_n$ for every $x \in X$ where $\{s_n\}_{n \in \mathbb{N}}$ is some sequence in $\mathbb{R} > 0$ (independent of x) with $\lim_{n \to \infty} s_n = 0$ then f_n converge uniformly to f on X.
- 2. If for some sequence $x_n \in X$, $|f_n(x_n) f(x_n)| \ge c$ for some positive constant c then f_n does not converge uniformly to f on X.

Theorem 2.1.6. (Weierstrass M-test): Let $f_n: X \to \mathbb{C}$ be a sequence of functions such that $|f_n(x)| \leq M_n$ for every $x \in X$ and $\sum_{n=1}^{\infty} M_n < \infty$.

Then $\sum_{n=1}^{\infty} f_n$ converges uniformly on X to some limit function $f: X \to \mathbb{C}$.

Theorem 2.1.7. Let a sequence of functions $f_n : [a,b] \to \mathbb{R}$ converge uniformly on an interval [a,b] to some function f, such that $\{f_n\}$ are all continuous. Then

$$\lim_{n \to \infty} \int_a^c f_n(x) dx = \int_a^c f(x) dx \text{ for every } c \in [a, b]$$

Definition 2.1.8. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions in a metric space X. f_n converges locally uniformly (on X) to the limit function f if for every $x \in X$, for some open set $U \subset X$ containing x, f_n converges uniformly to f on U.

Theorem 2.1.9. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions which converges locally uniformly on X to a limit function f. Then f is continuous on X.

Proof. For every $x \in X$, f_n converges uniformly on some open set U containing x. Hence f is continuous on U by theorem 5.5 (in notes). So f is continuous at x for every $x \in X$.

Remark. The limit of a locally uniform convergent sequence of holomorphic functions is again holomorphic.

Example 2.1.10. For every $w \in \mathbb{D}$, for some r < 1, $w \in B_r(0)$ and $B_r(0)$ is open. Then for every $z \in B_r(0)$, $|z|^n < r^n$ and $\lim_{n \to \infty} r_n = 0$. So by lemma 5.6 (in notes), with $s_n = r^n$, f_n converges uniformly to f in $B_r(0)$.

Remark. To prove that the limit function is conitnuous on all of \mathbb{D} , it is enough to prove locally uniform convergence on every ball $B_r(0)$, 0 < r < 1, in \mathbb{D} .

Theorem 2.1.11. Let X be a metric space and let $f_n: X \to \mathbb{C}$ be a sequence of continuous functions such that for any $y \in X$, there is an open $U \subset X$ containing y and constants $M_n > 0$ with $\sum_{n=1}^{\infty} M_n < \infty$ and $|f_n(x)| \leq M_n$ for every $x \in U$. Then $\sum_{n=1}^{\infty} f_n$ converges locally uniformly to a continuous function on X.

Proof. Given $y \in X$, the hypotheses of the theorem imply that for some constants $M_n > 0$, $|f_n(y)| \le M_n$ and $\sum_{n=1}^{\infty} M_n < \infty$.

$$|F_k(y)| = |\sum_{n=1}^k f_n(y)| \le \sum_{n=1}^\infty |f_n(y)| \le \sum_{n=1}^k M_n$$

As $k \to \infty$, the RHS $\sum_{n=1}^{k} M_n$ converges so it must be bounded, and let the upper bound by L. Thus for every k, $|F_k(y)| \le L$. So the sequence $(F_k(y))_k$ is bounded, hence it lies in some boundedd, closed ball in \mathbb{C} , which is compact by Heine-Borel.

Therefore there is a subsequence $(F_{k_j}(y))_{k_j}$ that converges to F(y).

Now, for $k_j > k$,

$$|F_{k_j}(y) - F_k(y)| = |\sum_{n=k+1}^{k_j} f_n(y)| \le \sum_{n=k+1}^{k_j} |f_n(y)| \le \sum_{n=k+1}^{k_j} M_n$$

Taking the limit as $j \to \infty$, both the LHS and RHS converge, and we get

$$|F(y) - F_k(y)| \le \sum_{n=k+1}^{\infty} M_n$$

Now taking the limit as $k \to \infty$, we get

$$\lim_{k \to \infty} |F(y) - F_k(y)| = 0$$

since the RHS tends to zero.

Repeating this for every $y, F_k \to F$ pointwise on X.

From the hypotheses of the theorem, we have that for every $y \in X$, for some open $U \subset X$ containing y and constants $M_n > 0$ with $\sum_{n=1}^{\infty} < \infty$ and $|f_n(x)| \leq M_n$ for every $x \in U$.

Then, for every $x \in U$ and for every L > k,

$$|F_L(x) - F_k(x)| = |\sum_{n=k+1}^{L} f_n(x)| = \sum_{n=k+1}^{L} |f_n(x)| \le \sum_{n=k+1}^{L} M_n$$

Taking the limit as $l \to \infty$:

$$|F(x) - F_k(x)| \le \sum_{n=k+1}^{\infty} M_n$$

for every $x \in U$.

 $\lim_{k\to\infty}\sum_{n=k+1}^{\infty}M_n=0$. So by lemma 5.6 (in notes), $F_k\to F$ uniformly on U. \square

2.2 Complex power series

Theorem 2.2.1. A complex power series is an expression of the form $\sum_{n=0}^{\infty} a_n (z-c)^n$, $a_n, c \in \mathbb{C}$. There are three cases:

- 1. $\sum_{n=0}^{\infty} a_n (z-c)^n$ converges only for z=c (R=0).
- 2. There exists R > 0 (radius of convergence) such that
 - $\sum_{n=0}^{\infty} a_n(z-c)^n$ converges absolutely for |z-c| < R (We call $B_R(c)$ the disc of convergence).
 - $\sum_{n=0}^{\infty} a_n(z-c)^n$ diverges for |z-c| > R (anything can happen on the circle |z-c| = R).

3. $\sum_{n=0}^{\infty} a_n(z-c)^n$ converges absolutely for every $z \in \mathbb{C}$ $(R=\infty)$.

Remark. Radius of convergence is usually determined via ratio test or root test.

Theorem 2.2.2. A power series $\sum_{n=0}^{\infty} a_n(z-c)^n$ with radius of convergence $0 < R < \infty$ converges uniformly on every ball $B_r(c)$ with 0 < r < R. This implies that the power series is locally uniformly convergent on its disc of convergence.

Proof. Follows via the M-test.

Remark. The power series do not converge uniformly in the entire disc of conergence $B_R(c)$.

Proposition 2.2.3. Let $\sum_{n=0}^{\infty} a_n(z-c)^n$ be a power series with radius of convergence $0 < R < \infty$. Then the formal derivatives and antiderivatives

$$\sum_{n=0}^{\infty} n a_n (z-c)^{n-1}$$

and

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-c)^{n+1}$$

have the same radius of convergence R.

Theorem 2.2.4. Let $\sum_{n=0}^{\infty} a_n(z-c)^n$ be a power series with radius of convergence $0 < R < \infty$ and let $f: B_R(c) \to \mathbb{C}$ be the resulting limit function. Then f is holomorphic on $B_R(c)$ with

$$f'(z) = \sum_{n=0}^{\infty} na_n(z-c)^{n-1}$$

for $z \in B_R(c)$.

Proof. Assume c = 0 (the general case for c is analogous).

$$f(z) - f(w) = \sum_{n=1}^{\infty} a_n(z^n - w^n) = \sum_{n=1}^{\infty} (z - w)q_n(z)$$

where $q_n(z) = \sum_{k=0}^{n-1} w^k z^{n-1-k}$.

So for $z \neq w$, let $h(z) := \frac{f(z) - f(w)}{z - w} = \sum_{n=1}^{\infty} a_n q_n(z)$ Given $z_0 \in B_R(0)$, let r < R such that $w, z_0 \in B_r(0)$. To apply the local M-test, we need constants M_n for this set $B_r(0)$ that bound the terms $a_nq_n(z)$ defining h. For $z \in B_r(0)$,

$$|a_n q_n(z)| = |a_n \sum_{k=0}^{n-1} w^k z^{n-1-k}| \le |a_n| \sum_{k=0}^{n-1} |w|^k |z|^{n-1-k} < |a_n| \sum_{k=0}^{n-1} r^{n-1} = n|a_n| r^{n-1}$$

So let $M_n = n|a_n|r^{n-1}$, then $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} n|a_n|r^{n-1}$ which converges by proposition 5.19 (in lecture notes).

The formal derivative $\sum_{n=1}^{\infty} n a_n r^{n-1}$ has radius of convergence R so converges absolutely on its disc of convergence $B_R(0)$. In particular, it converges at z=R. By the local M-test, the series defining h converges locally uniformly to a continuous function on $B_R(0)$. Hence

$$\lim_{z \to w} \frac{f(z) - f(w)}{z - w} = \lim_{h \to w} h(z) = h(w) = \sum_{n=1}^{\infty} a_n q_n(w) = \sum_{n=1}^{\infty} n a_n w^{n-1}$$

Corollary 2.2.5. A power series f as theorem 5.21 (in lecture notes) with positive radius of convergence R can be differentiated infinitely many times and

$$f^{(k)} := \sum_{n=1}^{\infty} k! \binom{n}{k} a_n (z-c)^{n-k}$$

for $z \in B_R(c)$

Corollary 2.2.6. A power series f as in theorem 5.21 (in lecture notes) with positive radius of convergence R has a holomorphic antiderivative $F: B_R(c) \to \mathbb{C}$, with F'(z) = f(z), defined by

$$F(z) := \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-c)^{n+1}$$

3 Complex integration over contours

3.1 Definition of contour integrals

Definition 3.1.1. For a continuous function $f:[a,b]\to\mathbb{C}$, with f(z)=u(z)+iv(z),

$$\int_{a}^{b} f(t)dt := \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt \in \mathbb{C}$$

Lemma 3.1.2.

- 1. Let f_1 and f_2 be continuous functions from [a, b] to \mathbb{C} . Then $\int_a^b (f_1(t) + f_2(t)) dt = \int_a^b f_1(t) dt + \int_a^b f_2(t) dt$.
- 2. For any complex number $c \in \mathbb{C}$ and continuous function $f:[a,b] \to \mathbb{C}$,

$$\int_{a}^{b} cf(t)dt = c \int_{a}^{b} f(t)dt$$

Definition 3.1.3. A smooth curve in \mathbb{C} is a continuously differentiable function $\gamma:[0,1]\to\mathbb{C}$ (i.e. differentiable with continuous derivative). More generally we can consider continuously differentiable curves $\gamma:[a,b]\to\mathbb{C}$. We say that such curves are C^1 .

Remark. We write $\gamma(t) = u(t) + iv(t)$ with $u, v : [a, b] \to \mathbb{R}$. Then the derivative γ' is defined as

$$\gamma'(t) := u'(t) + iv'(t)$$

At the endpoints, we demand that the one-sided derivative exists and is continuous from the one side:

$$\gamma'(b) := \lim_{h \to 0^{-}} \frac{u(b+h) - u(b)}{h} + i \lim_{h \to 0^{-}} \frac{v(b+h) - v(b)}{h}$$

exists and

$$\lim_{t \to b^{-}} \gamma'(t) = \gamma'(b)$$

Definition 3.1.4. Let $U \subset \mathbb{C}$ be an open set, and $f: U \to \mathbb{C}$ be a continuous function. Let $\gamma: [a,b] \to U$ be a C^1 curve. The integral of f along the curve γ is defined as

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Corollary 3.1.5. Properties of the integral along a curve:

1.
$$\int_{\gamma} (f_1(z) + f_2(z)) dz = \int_{\gamma} f_1(z) dz + \int_{\gamma} f_2(z) dz$$

2. For
$$c \in \mathbb{C}$$
, $\int_{\gamma} cf(z)dz = c \int_{\gamma} f(z)dz$

Proof. Easy

Definition 3.1.6. Given $\gamma:[a,b]\to\mathbb{C}$, the curve $(-\gamma):[-b,-a]\to\mathbb{C}$ is defined as

$$(-\gamma)(t) := \gamma(-t)$$

Then we have

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$$

Lemma 3.1.7. Let $U \subset \mathbb{C}$ be an open set, $f: U \to \mathbb{C}$ be continuous and $\gamma: [a,b] \to \mathbb{C}$ be a C^1 curve. If $\phi: [a',b'] \to [a,b]$ with $\phi(a') = a$ and $\phi(b') = b$ is continuously differentiable and we define $\delta: [a',b'] \to \mathbb{C}$, $\delta:=\gamma \circ \phi$, then

$$\int_{\gamma} f(z)dz = \int_{\delta} f(z)dz$$

Proof.

$$\int_{\delta} f(z)dz = \int_{a'}^{b'} f(\delta(t))\delta'(t)dt = \int_{a'}^{b'} f(\gamma(\phi(t)))(\gamma(\phi(t)))'dt$$
$$= \int_{a'}^{b'} f(\gamma(\phi(t)))\gamma'(\phi(t))\phi'(t)dt$$

With a change of variables $s = \phi(t)$, $ds = \phi'(t)dt$:

$$\int_{a'}^{b'} f(\gamma(\phi(t)))\gamma'(\phi(t))\phi'(t)dt = \int_{a}^{b} f(\gamma(s))\gamma'(s)ds = \int_{\gamma} f(z)dz$$

Definition 3.1.8. Let $\gamma:[a,b]\to\mathbb{C}$ be a curve and suppose there exist $a=a_0< a_1<\cdots< a_n=b$ such that the curves $\gamma_i:[a_{i-1},a_i]\to\mathbb{C}$, defined by $\gamma_i(t)=\gamma(t)$ for $t\in[a_{i-1},a_i]$ are C^1 curves. Then γ is a piecewise C^1 curve or contour.

For a contour γ above, a contour integral is defined as

$$\int_{\gamma} f(z)dz = \sum_{n=1}^{n} \int_{\gamma_i} f(z)dz$$

Definition 3.1.9. If $\gamma:[a,b]\to\mathbb{C}$ and $\delta:[c,d]\to\mathbb{C}$ are two contours with $\gamma(b)=\delta(c)$ the contour $\gamma\cup\delta:[a,b+d-c]\to\mathbb{C}$ is defined as

$$(\gamma \cup \delta)(t) := \begin{cases} \gamma(t) & \text{if } a \le t \le b \\ \delta(t) & \text{if } c \le t \le d \end{cases}$$

Then

$$\int_{\gamma \cup \delta} f(z) dz = \int_{\gamma} f(z) dz + \int_{\delta} f(z) dz$$

3.2 The fundamental theorem of calculus

Theorem 3.2.1. Let $U \in \mathbb{C}$ be an open set and let $F: U \to \mathbb{C}$ be holomorphic with continuous derivative f. Then for every contour $\gamma: [a, b] \to U$,

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

In particular, if γ is closed, so $\gamma(a) = \gamma(b)$, then

$$\int_{\gamma} f(z)dz = 0$$

Proof. First consider the case where γ is a C^1 curve. Let F = u + iv. Then

$$\int_{\gamma} f(z)dz = \int_{\gamma} F'(z)dz = \int_{a}^{b} F'(\gamma(t))\gamma'(t)dt = \int_{a}^{b} (F(\gamma(t)))'dt$$
$$= \int_{a}^{b} (u(\gamma(t)))'dt + i \int_{a}^{b} (v(\gamma(t)))'dt = [u(\gamma(t))]_{a}^{b} + i[v(\gamma(t))]_{a}^{b}$$
$$= u(\gamma(b)) - u(\gamma(b)) + i(v(\gamma(b)) - v(\gamma(b))) = F(\gamma(b)) - F(\gamma(a))$$

Now extend this proof to any contour.

Let $\gamma:[a,b]\to\mathbb{C}$ be a contour, then for some $a=a_0< a_1<\cdots< a_n=b$, the curves $\gamma_i:[a_{i-1},a_i]\to\mathbb{C},\ i=1,\cdots,n$, defined by $\gamma_i(t)=\gamma(t)$ for $t\in[a_{i-1},a_i]$ are C^1 curves. Then

$$\int_{\gamma} f(z)dz = \int_{\gamma} F'(z)dz = \sum_{i=1}^{n} \int_{\gamma_{i}} F'(z)dz$$

$$= \sum_{i=1}^{n} (F(\gamma(a_i)) - F(\gamma(a_{i-1}))) = F(\gamma(a_n)) - F(\gamma(a_0)) = F(\gamma(b)) - F(\gamma(a))$$

Remark. Under the hypotheses on F, the integral only depends on the endpoints of the curve.

Theorem 3.2.2. If $f:[a,b]\to\mathbb{R}$ is continuous,

$$\int_{a}^{b} f(t)dt \le \int_{a}^{b} \max_{t \in [a,b]} f(t)dt \le (b-a) \max_{t \in [a,b]}$$

Proof. From Analysis I.

Definition 3.2.3. Let $\gamma:[a,b]\to\mathbb{C}$ be a contour. The **length** of γ is defined as

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$$

Lemma 3.2.4. (The Estimation Lemma) Let $f:U\to\mathbb{C}$ be continuous and $\gamma:[a,b]\to U$ be a contour. Then

$$\left| \int_{\gamma} f(z) dz \right| \le L(\gamma) \sup_{\gamma} |f|$$

where $\sup_{\gamma} |f| := \sup\{|f(z)| : z \in \gamma\}.$

Proof. First prove that for a continuous function $g:[a,b]\to\mathbb{C}$,

$$\left| \int_{a}^{b} g(t)dt \right| \le \int_{a}^{b} |g(t)|dt$$

If we write $\int_a^b g(t)dt = re^{i\theta}$ with $r \ge 0$, then

$$\left| \int_{a}^{b} g(t)dt \right| = |re^{i\theta}| = r = \operatorname{Re}\left(e^{-i\theta} \int_{a}^{b} g(t)dt\right)$$

$$=\operatorname{Re}\left(\int_a^b g(t)e^{-i\theta}dt\right)=\int_a^b\operatorname{Re}(g(t)e^{-i\theta})dt\leq \int_a^b\left|e^{-i\theta}g(t)\right|dt=\int_a^b|g(t)|dt$$

Let $g(t) = f(\gamma(t))\gamma'(t)$, then

$$\left| \int_{\gamma} g(z)dz \right| = \left| \int_{a}^{b} f(\gamma(t))\gamma'(t)dt \right| \le \int_{a}^{b} \left| f(\gamma(t))\gamma'(t) \right| dt$$

Then

$$\int_{a}^{b} |f(\gamma(t))\gamma'(t)| dt \le \sup_{\gamma} |f| \int_{a}^{b} |\gamma'(t)| dt = L(\gamma) \sup_{\gamma} |f|$$

Theorem 3.2.5. (Converse to FTC) Let $f: D \to \mathbb{C}$ be continuous on a domain D. If $\int_{\gamma} f(z)dz = 0$ for every closed contour $\gamma \in D$, for some $F: D \to \mathbb{C}$, F'(z) = f(z).

Proof. Let $a_0 \in D$. For every $a_0 \neq w \in D$, let $\gamma(w)$ be a contour connecting a_0 to w and is contained in D.

Since D is a domain, it is path-connected, i.e. there is a smooth path γ_w connecting a_0 to w, therefore the collection of contours contained in D and connecting a_0 and W is non-empty. Let

$$F(w) := \int_{\gamma(w)} f(z)dz$$

Let $\tilde{\gamma}(w)$ be another contour that connects a_0 to w and is contained in D. Then let $c(w) = \gamma(w) \cup (-\tilde{\gamma}(w))$ that is obtained by moving through γ then through $\tilde{\gamma}$ in the opposite direction. Since c is a closed contour in D, $\int_C f(z)dz = 0$.

Then $0 = \int_C f(z)dz = \int_{\gamma(w)\cup(-\tilde{\gamma}(w))} f(z)dz = \int_{\gamma(w)} f(z)dz + \int_{-\tilde{\gamma}(w)} f(z)dz = \int_{\gamma(w)} f(z)dz - \int_{\tilde{\gamma}(w)} f(z)dz$. Hence

$$\int_{\gamma(w)} f(z)dz = \int_{\tilde{\gamma}(w)} f(z)dz$$

Therefore F does not depend on the contour chosen to join a_0 to w.

Now we claim F is holomorphic and we claim that F is holomorphic and $\forall z \in D, F'(z) = f(z) \Rightarrow \lim_{h\to 0} \frac{F(w+h)-F(w)}{h} = f(w)$.

To evaluate F(w+h) we need a contour joining a_0 to w+h contained in D. For every $w \in D$, let r > 0 such that $B_r(w) \subset D$. This ball must exist since D is open. Then for every $h \in \mathbb{C}$ with |h| < r consider the striaght line δ_h that connects w to w+h.

A parameterisation of this line is given by

$$\delta_h: [0,1] \to D, \quad \delta_h(t) = w + th$$

The contour $\gamma_w \cup \delta_h$ is contained in D. So

$$F(w+h) = \int_{\gamma_w \cup \delta_h} f(z)dz = \int_{\gamma_w} f(z)dz + \int_{\delta_h} f(z)dz = F(w) + \int_{\delta_h} f(z)dz$$
$$\int_{\delta_h} f(w)dz = f(w) \int_{\delta_h} dz = f(w) \int_0^1 h dt = hf(w)$$

We can rewrite the previous equation as

$$F(w+h) = F(w) + hf(w) + \int_{\delta_h} (f(z) - f(w))dz$$

For $h \neq 0$,

$$\left| \frac{F(w+h) - F(w)}{h} - f(w) \right| = \frac{1}{|h|} \left| \int_{\delta_h} (f(z) - f(w)) dz \right|$$

3.3 First Version of Cauchy's Theorem

Definition 3.3.1. A domain D is **starlike** if for some point $a_0 \in D$, for every $b \neq a_0 \in D$, the straight line connecting a_0 and b is contained in D.

Example 3.3.2.

- 1. \mathbb{C} is starlike.
- 2. The ball $B_r(a)$ is starlike.
- 3. Any convex set is starlike.

Example 3.3.3.

- 1. \mathbb{C}^* is not starlike, because a straight line between two points could through 0, and $0 \notin \mathbb{C}^*$.
- 2. Similarly, $B_r^{\star}(a) = B_r(a) \{a\}$ is not starlike.

Lemma 3.3.4. Let U be an open set and let $f: U \to \mathbb{C}$ be holomorphic. Then

$$\int_{\partial A} f(z)dz = 0$$

for every **triangle** Δ in U.

Remark. Here $\partial \Delta$ is the boundary of Δ , traversed anticlockwise.

Remark. Given any closed contour without a parameterisation given, we will assume that it is traversed anticlockwise.

Proof. First, split Δ into four triangles, $\Delta^{(1)}, \Delta^{(2)}, \Delta^{(3)}, \Delta^{(4)}$, using the midpoints of each side. Then

$$\int_{\partial \Delta} f(z)dz = \sum_{i=1}^{4} \int_{\partial \Delta^{(i)}} f(z)dz$$

Let Δ_1 be one of these four triangles which has the largest integral, then

$$\left| \int_{\partial \Delta} f(z) dz \right| \leq 4 \left| \int_{\partial \Delta_1} f(z) dz \right|$$

We then continue this procedure to produce a sequence of triangles

$$\Delta > \Delta_1 > \dots > \Delta_n > \dots$$

The length of Δ_1 , $L(\Delta_1)$ satisfies $L(\Delta_1) = \frac{1}{2}L(\Delta)$, therefore

$$L(\Delta_n) = \frac{1}{2}nL(\Delta) \Longrightarrow L(\Delta_n) \to \text{ as } n \to \infty$$

Also,

$$\bigcap_{n\in\mathbb{N}} \Delta_n = \{w\}$$

is a single point in D. Now, notice that

$$\int_{\partial \Delta_n} 1 dz = 0 = \int_{\partial \Delta_n} z dz$$

and that w, f(w), f'(w) are constants. Then sneakily,

$$\int_{\partial \Delta_n} f(z)dz = \int_{\partial \Delta_n} \left(f(z) - f(w) - (z - w)f'(w) \right)$$

Define the auxiliary function

$$g(z) = \begin{cases} \frac{f(z) - f(w)}{z - w} - f'(w) & \text{if } z \in D \setminus \{w\} \\ 0 & \text{if } z = w \end{cases}$$

which is continuous at z = w, so is continuous on D. So

$$\int_{\partial \Delta_n} f(z)dz = \int_{\partial \Delta_n} (z - w)g(z)dz$$

Now,

$$\left| \int_{\partial \Delta} f(z) dz \right| \le 4^n \left| \int_{\partial \Delta_n} f(z) dz \right| = 4^n \left| \int_{\partial \Delta_n} (z - w) g(z) dz \right|$$

Note

$$\sup_{z \in \partial \Delta_n} |z - w| \le L(\partial \Delta_n)$$

so by the Estimation Lemma,

$$\left| \int_{\partial \Delta} f(z) dz \right| \leq 4^n L(\partial \Delta_n) \sup_{z \in \partial \Delta_n} |(z - w)g(z)|$$

$$\leq 4^n L(\partial \Delta_n) \sup_{z \in \partial \Delta_n} |(z - w)| \sup_{z \in \partial \Delta_n} |g(z)|$$

$$\leq 4^n (L(\partial \Delta_n))^2 \sup_{z \in \partial \Delta_n} |g(z)|$$

$$= L(\Delta)^2 \sup_{z \in \partial \Delta_n} |g(z)|$$

As $n \to \infty$, $\sup_{z \in \partial \Delta_n} |g(z)| \to g(w) = 0$. This completes the proof.

Lemma 3.3.5. Let D be a starlike domain and $f:D\to\mathbb{C}$ be continuous. Then, if

$$\int_{\partial \Delta} f(z)dz = 0$$

for every $\Delta \subset D$, then for some $F: D \to \mathbb{C}$,

$$F'(z) = f(z) \quad \forall z \in D$$

Proof. Similar to the proof of converse of FTC.

Theorem 3.3.6. (Cauchy's Theorem for Starlike Domains - CTSD) Let D be a starlike domain and let $f: D \to \mathbb{C}$ be holomorphic. Then for every closed contour $\gamma \in D$,

$$\int_{\gamma} f(z)dz = 0$$

Proof. By Lemma 3.3.4,

$$\int_{\partial \Delta} f(z)dz = 0 \quad \forall \Delta \in D$$

By Lemma 3.3.5, f has a holomorphic antiderivative F. Then, by FTC,

$$\int_{\gamma} f(z)dz = 0 \quad \forall \text{ closed } \gamma \in D$$

Remark. The same result holds if f is holomorphic on D-S, where S is a finite set of points and f is continuous on D. We will need this in proofs but is not used much elsewhere.

Example 3.3.7. Consider

$$\int_{|z|=\frac{1}{2}} \frac{e^z(\sin z)^2}{e^{z^2}} dz$$

Because the function in the integral is holomorphic and $|z| = \frac{1}{2}$ is a closed contour, by CTSD, this integral is equal to 0.

3.4 Cauchy's integral formula

Theorem 3.4.1. (Cauchy's integral formula - CIF) Let $B_r(a)$ be a ball in \mathbb{C} and $f: B_r(a) \to \mathbb{C}$ be holomorphic. Then for every $w \in B_r(a)$,

$$f(w) = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{z-w} dz$$

where ρ is any real number with $|w - a| < \rho < r$.

Proof. Define an auxiliary function g by

$$g(z) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \neq w \\ f'(w) & \text{if } z = w \end{cases}$$

Note that g is continuous at z = w, and holomorphic elsewhere. By CTSD,

$$\int_{|z-a|=\rho} g(z)dz = 0$$

Therefore

$$\int_{|z-a|=\rho}\frac{f(z)}{z-w}dz=\int_{|z-a|=\rho}\frac{f(w)}{z-w}dz$$

Now,

$$\frac{1}{z - w} = \frac{1}{z - a + a - w}$$

$$= \frac{1}{(z - a)(1 - \frac{w - a}{z - a})}$$

$$= \frac{1}{z - a} \sum_{n=0}^{\infty} \left(\frac{w - a}{z - a}\right)^n$$

which converges uniformly, since $\left|\frac{w-a}{z-a}\right| = \left|\frac{w-a}{\rho}\right| < 1$. So we have

$$\int_{|z-a|=\rho} \frac{f(z)}{z-w} dz = f(w) \int_{|z-a|=\rho} \sum_{n=0}^{\infty} \frac{(w-a)^n}{(z-a)^{n+1}} dz$$
$$= \sum_{n=0}^{\infty} \left(f(w)(w-a)^n \int_{|z-a|=\rho} \frac{1}{(z-a)^{n+1}} dz \right)$$

The inner integral is equal to 0 except when n=0, when it's value is $2\pi i$. So

$$\int_{|z-a|=a} \frac{f(z)}{z-w} dz = f(w)(w-a)^{0} \cdot 2\pi i = 2\pi i \cdot f(w)$$

4 Features of holomorphic functions

Theorem 4.0.1. (Cauchy-Taylor theorem) Let U be an open set and $f: U \to \mathbb{C}$ be holomorphic on U. Then for every r > 0 such that $B_r(a) \subset U$, f has a power series converging on $B_r(a)$ given by

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

where

$$c_n = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{n+1}} dz$$

is a constant for every $0 < \rho < r$. This is the **Taylor series** of f about a.

Proof. By the CIF, for every w with $|w-a| < \rho$,

$$f(w) = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{z-w} dz$$

$$= \frac{1}{2\pi i} \int_{|z-a|=\rho} f(z) \sum_{n=0}^{\infty} \frac{(w-a)^n}{(z-a)^{n+1}} dz$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{n+1}} dz \right) (w-a)^n$$

$$= \sum_{n=0}^{\infty} c_n (w-a)^n$$

Theorem 4.0.2. (CIF for derivatives) Let $f: B_r(a) \to \mathbb{C}$ be holomorphic. Then for every $0 < \rho < r$,

$$\int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(a)$$

Proof. By Cauchy-Taylor, we have a convergent power series such that

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

where

$$c_n = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{n+1}} dz$$

But we also have (corollary 5.22 in lecture notes),

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Equating these two expressions for c_n completes the proof.

Remark. Combining theorem 7.1 (lecture notes) and theorem 7.2 (lecture notes), every holomorphic function f has power series

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

П

Remark. Cauchy-Taylor does not hold in real analysis. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

f is differentiable for $x \neq 0$. For x = 0,

$$f'(x) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}$$

$$\lim_{x \to 0^{-}} \frac{f(x)}{x} = \lim_{n \to 0^{-}} \frac{0}{x} = 0$$

and

$$\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{e^{-1/x}}{x} = \lim_{x \to 0^+} \frac{1/x}{e^{1/x}} = \lim_{y \to \infty} \frac{y}{e^y} = 0$$

so f'(0) = 0, hence f is differentiable on \mathbb{R} . But if f had a Taylor series at x = 0, then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = 0$$

around x = 0.

Corollary 4.0.3. (Holomorphic functions have infinitely many derivatives) If $f: U \to \mathbb{C}$ is holomorphic on an open set U then f has derivatives of all orders and each derivative is also holomorphic.

Proof. Since U is open, $\exists B_r(a) \subset U$ around a point z = a. But then by Cauchy-Taylor, f has a power series. By theorem 5.21 (lecture notes), this power series is holomorphic. By corollary 5.22 (lecture notes) we can term-by-term differentiate to get a power series for f'(z). By theorem 5.21 (lecture notes), f'(z) is holomorphic. This can be repeated indefinitely.

Remark. This is a huge difference between real and complex analysis. Let $f : \mathbb{R} \to \mathbb{R}$ by defined as

$$f_n(x) = |x|x^n$$

$$f'_n(0) = \lim_{x \to 0} \frac{f_n(x) - f_n(0)}{x - 0} = \lim_{x \to 0} |x|x^{n-1} = 0$$

 $f'_n(x) = (n+1)|x|x^{n-1}$ and $f^{(n)}(x) = c|x|$ which is not differentiable.

Theorem 4.0.4. (Morera's Theorem) Let $f: D \to \mathbb{C}$ be continuous on a domain D. If

$$\int_{\gamma} f(z)dz = 0 \quad \forall \text{ closed } \gamma \subset D$$

then f is holomorphic.

Proof. By the converse FTC, f has a holomorphic antiderivative $F: D \to \mathbb{C}$ such that $F'(z) = f(z) \quad \forall z \in D$. By corollary 7.6 (lecture notes), if F is holomorphic, its derivative f must be.