ELECTRICAL AND COMPUTER ENGINEERING

LINEAR CONTROL SYSTEMS

Course Code	PCEOT601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Core Math Courses	Course Type	Theory

Course Objectives:

- 1.To introduce various classical tools for analysis of linear control system in time and frequency domain.
- 2.To provide a fundamental knowledge of modern control system.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Control Systems, mathematical modelling and Transfer function Based Analysis Open loop and Closed loop control systems; Automatic control systems; Necessity and significance. (1 hour) Modelling of LTI systems: LTI Systems, Transfer function representation of differential equation in Laplace domain. Electrical, translational and rotational mechanical systems, DC servomotor modelling. (4 hours).	9
	Block diagram representation - block diagram reduction. Signal flow graph - Mason's gain formula. (4 hours)	
	Performance Analysis of Control Systems:	
2	Time domain analysis of control systems: Impulse and Step responses of first and second order systems - Pole dominance for higher order systems. Time domain specifications. Steady state error analysis and static error constants (5 hours)	13
	Characteristic equation. Routh stability criterion. (3 hours)	
	Root locus technique: Construction of Root locus - stability analysis-	

	effect of addition of poles and zeros; Effect of positive feedback systems	
	on Root locus. (5 hours)	
	Frequency domain analysis:	
	Bode Plot: Construction, Concept of gain margin and phase margin- stability analysis. (4 hours)	
3	Frequency domain specifications - correlation between time domain and frequency domain responses (Resonant peak and resonant frequency). (2 hours)	11
	Polar plot: Gain margin and phase margin, Stability analysis. (2 hours)	
	Nyquist stability criterion. Concept of Nichols Chart. (3 hours)	
	State space representation of systems:	
	Introduction to state-space modelling: State variables, state equations. State variable representation of electrical systems. (2 hours)	
	Relationship between State space and transfer function models: Derivation of transfer functions from state equations. Controllable, Observable and Diagonal/Jordan canonical forms.	
4	Introduction to similarity transformations (concept only).	
4	(4 hours)	11
	Solution of time invariant systems: Solution of time response of autonomous systems and forced systems. State transition matrix - computation using Method of Laplace Transform and Cayley Hamilton theorem. (4 hours)	
	Controllability & Observability: Definition, Kalman's test. (1 hour)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module,	
•	Total of 8 Questions, each	al of 8 Questions, each out of which 1 question should be answered.		
	• Each question can have a maximum of 3 sub		60	
	divisions.			
	(8x3 = 24marks)		(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	To represent continuous time systems in the classical domain.	K2				
CO2	Analyse the time domain responses of linear systems and predict and diagnose transient response parameters of the system for standard input functions.	K2				
СО3	Analyse dynamics systems for their performance and stability using Root locus and frequency response.	К3				
CO4	Represent and analyse dynamic systems using state-space.	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	2	1	2	1	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	2	1	2	1	3	3	3			3	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Modern Control Engineering	Katsuhiko Ogata	Pearson	5th edition, 2009
2	Control Systems Engineering	Norman S. Nise	Wiley	5th edition, 2009
3	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th edition, 2009

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Automatic Control Systems,	Kuo B. C,	Prentice Hall of India	9th edition,20 14
2	Control Systems Principles and Design	Gopal M.	Tata McGraw Hill.	4th edition, 2012
3	Modern Control Systems	Dorf R. C., Bishop R. H	Pearson Education India	12th edition, 2013

SEMESTER S6
COMPUTER COMMUNICATION & NETWORK SECURITY

Course Code	PCEOT602	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Program Core Theory

Course Objectives:

1. The syllabus is prepared with a view to equip the Engineering Graduates to learn basic concepts in data communication and network security.

Module No.	Syllabus Description	Contact Hours
	Data Transmission and Encoding Techniques	
	Digital-To-Digital Conversion: Line Coding Schemes: Unipolar, Polar,	
	Bipolar - Block Coding, Scrambling, Analog-To-Digital Conversion: Pulse	
1	Code Modulation, Delta Modulation - Digital-To-Analog Conversion: ASK,	
	FSK, PSK. Transmission Modes: Parallel and Serial Transmission,	9
	Asynchronous, Synchronous, Isochronous Transmission, Multiplexing -	
	TDM, FDM, WDM	
	Overview of Computer Communication	
	Introduction: - Types of Computer Networks, Network Software - Protocol	
	Hierarchies, Connection oriented and Connection less hierarchies, Reference	
	Models - ISO-OSI Reference Model, TCP/IP Reference Model -	
	Comparison of OSI and TCP/IP reference models.	
2	Physical Layer: - Guided Transmission Media- Twisted Pair, Coaxial and	
	Fiber Optics	10
	Data Link Layer: - design issues - Error Detection: Parity Check,	
	Checksum, CRC, Error Correction: Hamming code	
	- Flow Control: Stop-and-Wait, Go-Back-N, and Selective- Repeat. Multiple	
	Access Protocols: ALOHA, CSMA, CSMA/CD, Collision free protocols	

	Network Layer and Transport Layer	
	Network Layer Design Issues, Routing Algorithm - Optimality principle -	
	Flooding - Distance vector routing - Link state routing - Congestion Control	
_	Algorithms – General principles – Congestion prevention policies – Choke	
3	packets – Random Early Detection.	9
	Transport layer - transport services, elements of transport protocols,	
	introduction to UDP, introduction to TCP - TCP service model, TCP	
	segment header, TCP connection establishment and release	
	Network Security	
	Introduction to network security, principles of cryptography – symmetric key	
4	cryptography, public key cryptography, message integrity and digital	
	signatures, securing e-mail, securing TCP connections, IPSec, VPN,	8
	Firewalls and Intrusion detection systems	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the concepts of data transmission and apply signal encoding techniques and multiplexing in data transmission (Cognitive Knowledge:Apply)	К3
CO2	Discuss the basic concepts used in data communication and computer (Cognitive Knowledge: Understand)	К2
CO3	networking Describe the design issues and protocols in data link layer (Cognitive Knowledge: Understand)	К2
CO4	Familiarize with routing algorithms and transport layer protocols (Cognitive Knowledge: Understand)	К2
CO5	Understand the basics of network (Cognitive Knowledge: Understand)	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2							2
CO2	3	2	1									2
CO3	2	3	1	2	2							2
CO4	2	3	3	2	1							2
CO5	2	2	2	1	1							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networks	Andrew S. Tanenbaum and David J. Wetheral	Pearson	5/e,2019		
2	Computer Networking: A Top Down Approach	James F. Kurose and Keith W. Ross	Pearson	6/e,2013		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Behrouz A. Forouzan	Data Communications and Networking	Tata McGraw Hill	5/e,2017			
2	William Stallings	Computer Networking with Internet Protocols	Prentice-Hall	2004			
3	Fred Halsall	Computer Networking and the Internet		5/e			
4	F. Kurose and K. W. Ross	Computer Networking: A Top-Down Approach Featuring Internet	Pearson Education	6/e,2012			

	Video Links (NPTEL, SWAYAM)				
Module No. Link ID					
1	https://youtu.be/ifgs0uypC78?si=OQSgLGJFfDYJsfcd				
2	https://youtu.be/sG6WGvzmVaw?si=KyjOYVY9I7VADL1n				
3	https://youtu.be/OrkQNKqls?si=Ag8Sf3kBDkstci-9				
4	https://youtu.be/iTVyKbDCJrA?si=97T6ZfFdlUyC6ttt				

SEMESTER S6
DIGITAL PROTECTION OF POWER SYSTEMS

Course Code	РЕЕЕТ631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET501, PBEET604	Course Type	Theory

Course Objectives:

1. To deliver fundamental concepts to design various electronic circuits to implement various relaying functions.

Module No.	Syllabus Description	Contact Hours
	Introduction: Need for protective systems, Zones of protection, Current	
	transformers and voltage transformers (Electromagnetic and Capacitive	
	voltage transformers), Principle of operation of magneto optic CT/ PT,	
	effect on relaying philosophy.	9
	Relays: Over current relays - time-current characteristics of over current	
1	relays: definite time over current relays, inverse Definite Minimum time -	
	directional over current relays, current setting and time setting -	
	Numerical Problems - Differential relays: Operating and restraining	
	characteristics, types of differential relays, Distance relays: impedance	
	relays, reactance relays, mho relays (basic principles and characteristics	
	only)	
	Protection of Transmission Lines: Schemes of distance protection,	
	Differential line protection, Phase comparison line protection.	
	Protection of Bus-bar, Transformer and Generator & Motor: Types of	9
2	faults, differential protection: High impedance and low impedance	
	differential protection schemes, harmonic restraint relay, Restricted Earth	
	Fault Protection, frame leakage protection, stator and rotor protection	
	against various types of faults.	

3	Digital (Numerical) Relays: Basic Components of numerical Relays with block diagram, Processing Unit, Human machine Interface, Principle of operation, Comparison of numerical relays with electromechanical and static relays, Advantages of numerical relays - communication in protective relays (IEC 61850), Information handling with substation automation system (SAS) Signal Conditioning Subsystems: Surge Protection Circuits, Anti-aliasing filter, Conversion Subsystem, The Sampling Theorem, aliasing, Sample and Hold Circuit, Concept of analog to digital and digital to analog conversion, Idea of sliding window concept, Fourier, Discrete and fast Fourier transforms	9
4	Signal processing techniques: Sinusoidal wave based algorithms, Fourier Analysis based algorithms (half cycle and full cycle), Least squares based algorithm. Digital filters — Fundamentals of Infinite Impulse Response Filters, Finite Impulse Response filters, Filters with sine and cosine windows. Wide Area Protection and Measurement: Phasor Measurement Units, concept of synchronized sampling, Definition of wide-area protection, Architectures of wide-area protection, concept of Adaptive relaying, advantages of adaptive relaying and its application, Adaptive Differential protective scheme.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60
(8x3 =24marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the relay protection scheme suitable for overcurrent, differential and distance protection.	К3
CO2	Develop the protection scheme for bus bars, transformers, generators, motors and distribution systems using appropriate protective relays	К3
CO3	Illustrate the operation of a numerical relay.	K2
CO4	Explain signal processing methods and algorithms in digital protection	K2
CO5	Infer emerging protection schemes in power systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2									
CO2	3		2									
CO3	3		2									
CO4	3		2									
CO5	3		2									

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Digital Protection of Power System	A. T. Johns and S. K. Salman	Peter Peregrinus Ltd, UK	1995						
2	Computer Relaying for Power Systems	A. G. Phadke and James S. Thorpe	Research study press Ltd, John Wiley & Sons, Taunton, UK	1988						
3	Power System Protection and Switchgear	Badri Ram and D. N. Viswakarma	Tata McGraw Hill Education, Pvt Edition	2011						
4	Digital Signal Processing in Power System Protection and Control	Waldemar Rebizant	Springer Publication	2008						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/117/107/117107148/ (NPTEL lecture IIT Roorkee)								

SEMESTER S6 R-PROGRAMMING

Course Code	РЕЕОТ631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	GBEST204, PEEET413	Course Type	PE - Theory

Course Objectives:

- 1. Illustrate uses of conditional and iterative statements in R programs.
- 2. Write, test and debug R programs
- 3. Illustrate the use of Probability distributions and basic statistical functions.
- 4. Visualize different types of data
- 5. Comprehend regression modelling using R

Module No.	Syllabus Description						
	Introduction to R and Data Structures						
	The R Environment: Command Line Interface and Batch processing,						
	R Packages, Basic Concepts: Variables, Data Types.						
1	Data Structures: Vectors (vector operations and factor vectors), Lists						
	and their operations, Data Frames, Matrices and arrays, Control	9					
	Statements: Branching and looping (for loops, while loops, controlling						
	loops), Functions: Function as arguments, Named arguments						
	Data Handling and Transformation						
	Reading and Writing Data: Importing data from Text files and other						
	software, exporting data, importing data from databases (Database						
2	Connection packages), Handling Missing Data: NA, NULL						
	Data Manipulation: Combining data sets, Transformations, Binning	9					
	Data, Subsets, summarizing functions, Data Cleaning (Finding and						
	removing duplicates, Sorting)						

	Statistical Analysis with R			
_	Analysing Data: Summary statistics, Statistical Tests: Continuous			
3	Data, Discrete Data, Power	9		
	Probability Distributions: Common distributions (type arguments),			
	Probability distributions, Normal distributions			
	Data Visualization and Regression Models			
	Data Visualization: R Graphics (Overview, Customizing Charts,			
	Graphical parameters, Basic Graphics functions), Lattice Graphics			
4	(Lattice functions, Customizing Lattice Graphics), Ggplot			
-	Introduction to Regression Models: Building linear models (model	9		
	fitting, predict values using models, analysing the fit),			
	Refining the model, Generalized linear models (Logistic Regression,			
	Poisson Regression)			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Illustrate uses of conditional and iterative statements in R programs.	К3				
CO2	Write, test and debug R programs	К3				
CO3	Illustrate the use of Probability distributions and basic statistical functions.	К3				
CO4	Visualize different types of data	К3				
CO5	Comprehend regression modelling using R	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	3	-	-	-	-	-	-	2
CO2	3	3	3	-	3	-	-	-	-	-	-	3
CO3	3	2	1	1	1	-	-	-	-	-	-	1
CO4	3	2	2	2	2	-	-	-	-	-	-	2
CO5	3	3	-	-	2	-	-	-	-	-	-	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	R in a Nutshell	Joseph Adler	O'reilly	Second edition,2012					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	R for Everyone- Advanced analytics and graphics	Jared P Lander	Addison Wesley data analytics series, Pearson				
2	The art of R programming, A Tour of Statistical, Software Design	Norman matloff	O'reilly				
3	R in action, Data analysis and graphics with R	Robert Kabacoff	Manning				
4	Hands-on programming with R, Write your own functions and simulations,	Garret Grolemund	O'reilly				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.swayam2.ac.in/aic20_sp35/preview					
2	https://onlinecourses.swayam2.ac.in/aic20_sp35/preview					
3	https://archive.nptel.ac.in/courses/111/104/111104100/					
4	https://archive.nptel.ac.in/courses/111/104/111104100/					

HIGH VOLTAGE ENGINEERING

Course Code	РЕЕЕТ633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To introduce basic terms and techniques applicable to high voltage acand dc networks.
- **2.** To learn about generation of different type of High voltage waveforms, their measurement and analysis.

Module No.	Syllabus Description	
	Generation of High DC and AC Voltages-half-wave rectifier circuit-	
	Cockroft-Walton voltage multiplier circuit- Electrostatic generator-	
	Generation of high AC voltages-Cascaded Transformers-Series resonant	
1	circuit.	
	Generation of Impulse Voltages and Currents- Impulse voltage- Impulse	9
	generator circuits- Multistage impulse generator circuit- Construction of	
	impulse generator- Triggering of impulse generator-Impulse current	
	generation.	
	High Voltage Measurement Techniques -Measuring Spark Gaps - Sphere-	
	to-sphere Spark Gap -Rod-to-rod Spark Gap - Electrostatic Voltmeter-	
	Field Sensors - Electrically Short Sensors, Electrically Long Sensors,	
	Potential-free Probes, Generator-mode Sensors, Electro- optical and	
2	Magneto-optical Field Sensors - Voltage Dividers - Instrument	
	Transformers - Measurements of R.M.S. Value, Peak Value and	9
	Harmonics - Current Measurement	
	Dielectric measurements- Dissipation Factor and Capacitance, Insulation	
	Resistance, Conductivity, Dielectric System Response-Partial discharge	
	measuring technique- Requirements on a partial discharge measuring	

	system - Measuring systems for apparent charge - Partial discharge	
	measurements on high-voltage transformers, high-voltage cables, high-	
	voltage gas-insulated substations.	
	Classification of Voltages and Overvoltages-Origin of Overvoltages -	
	Representative Overvoltages- Performance Criterion –Withstand voltage.	
	Insulation Coordination Procedure- Determination of Representative	
	Voltages and Overvoltages-Continuous Power Frequency Voltage,	
	Temporary Overvoltages, Slow-Front Overvoltages, Fast-Front	
3	Overvoltages	
3	Determination of Coordination Withstand Voltage (Ucw)-Deterministic	
	Approach, Statistical Approach: Risk of Failure - Determination of	9
	Required Withstand Voltage (Urw)-Altitude Correction Factor, Safety	
	Factor (Ks)- Selection of Standard Withstand Voltage (Uw)- Surge	
	Arresters- Rated Voltage- Discharge Current- Impulse Current Tests-	
	Residual Voltages- Arrester Durability Requirements.	
	High voltage Testing of insulators, bushings, isolators, circuit breakers,	
	transformers, surge diverters, cables.	
	Insulation Systems for AC Voltages -Cables, bushings and transformers-	
	Insulation Systems for DC Voltages- Capacitors, HVDC bushings and	
4	Cables-Insulation Systems for Impulse Voltages -Electrical Stress and	
	Strength -Energy Storage -Impulse Capacitors (Energy Storage or Surge	9
	Capacitors)	
	Lightning Protection- Light and Laser Technology- X-ray Technology-	
	Electrostatic Particle Precipitation, Ionization- Spark plugs.	
	21001100111100101111111111111111111111	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify different high voltage and current waveform generation circuits.	K1
CO2	Implement different sensing & measurement techniques for high voltage and current measurement.	К3
CO3	Describe insulation coordination and surge arrestor design.	K2
CO4	Implement different testing methods for equipments and applications of HV systems.	К3
CO5	Explain the various technologies for lightning protection.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3											2
CO2	3											2
CO3	3						2					2
CO4	3						2					2
CO5	3						2					2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	High Voltage Engineering	C. L. Wadhwa	New Age International	2011			
2	High Voltage Engineering Fundamentals – Technology Applications	Andreas Kuchler	Springer	2018			
3	High Voltage Engineering	Naidu M. S. and Kamaraju V.	Tata Mc Graw Hill	2004			
4	High Voltage Engineering Fundamentals	Kuffel E. Zaengl S. and Kuffel J.	Elsevier India P Ltd	2005			

INTERNET OF THINGS

Course Code	PEEET634	CIE Marks	40
Teaching Hours/Week (L:	3:0:0:0	ESE Marks	60
T:P: R)			
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

1. This course aims to introduce IOT fundamentals.

Module No.	Syllabus Description	Contact Hours
1	Introduction to IoT technology: Definitions of IoT, Characteristics of IoT devices – power, computational constraints, IoT Architectural view – Middleware based architecture, Service oriented architecture, M2M Communication and IoT, Typical application areas of IoT technology (case studies of at least four domains) - Energy management and Smart grid, IoT for Home, Cities, Environment monitoring, Agriculture, Supply chain and customer monitoring	9
2	Components of IoT technology: Identification/Addressing - Electronic Product Codes, RFID, ubiquitous code, IPv4, IPv6. Sensors and Actuators*. IoT Hardware**, IoT Software – overview of Operating systems, Firmware, Middle ware, Application software used in IoT. Connectivity for IoT devices – characteristics.	9
3	Communication technologies for IoT: Zigbee - key features, architecture, limitations, Bluetooth technology - bluetooth stack, piconet, scatternet, limitations, Bluetooth Low Energy (key features, architecture, limitations), Wifi (IEEE 802.11) technology - key features, limitations, Cellular technology - GSM, 3G, 4GLTE (overview), features, limitations, LoRa technology - features, LoRaWAN architecture, 6LoWPAN - features, protocol stack, Narrow Band (NB- IoT) - features,	9

	applications, Sigfox – features, applications	
4	IoT Data Management: Storage technologies for IoT hardware – Volatile, Non-volatile, Embedded (MTP/OTP), external flash (NAND/NOR), DRAM, eflash, UFS, eMMC (overview of technologies). Cloud and IoT, Cloud computing – architecture, advantages of cloud computing, Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service (IaaS). Case study of commercial cloud computing platforms like - Microsoft Azure IoT Suite, Google Cloud's IoT Platform, IBM Watson IoT Platform. IoT analytics	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A		Part A Part B	
• 2 Ques	stions from each	• Each question carries 9 marks.	
module	e.	• Two questions will be given from each module, out	
• Total o	of 8 Questions, each	of which 1 question should be answered.	
carryin	ng 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
(8)	x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain in a concise manner the architecture of IoT	K2
CO2	Identify various hardware and software components used in IoT	К3
CO3	Discuss the various communication technologies and interfaces in IoT	K2
CO4	Describe the usage of modern technologies like cloud computing for data management in IoT	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2								2
CO2	3	2	2	2								2
CO3	3	2	2	1								2
CO4	3	2	2	1								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Internet of Things : Architecture and Design Principles"	Rajkamal	McGraw Hill (India) Private Limited.	2nd edition,20 22		
2	"Internet of Things (A Hands- on- Approach)"	Vijay Madisetti and Arshdeep Bahga	Orient Blackswan Private Limited - New Delhi	1st Edition,201 5		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Internet of things: A survey on enabling technologies, protocols, and applications	Al-Fuqaha	IEEE Communications Surveys & Tutorials	2015			
2	The Internet of Things	Samuel Greengard	The MIT Press Essential Knowledge series Paperback	March 20, 2015			
3	The Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems	Ovidu Vermesan and Peter Friess	River Publishers	1st Edition, 2013			
4	. Internet of Things - From Research and Innovation to Market Deployment	Peter Friess, Ovidiu Vermesan	River Publishers	1 st Edition,20 14			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://youtu.be/WUYAjxnwjU4?si=s58W-NKMrEQMaJ8m https://youtu.be/BXDxYh1EV2w?si=8oFtQB9vycC_c-t2				
2	https://youtu.be/z3VEZPwl5gA?si=tNuzG_By-KBU3ks_ https://youtu.be/SXz0XR68dwE?si=1tVN1g9FQcGp87li https://youtu.be/TvzgzO6xKrY?si=gYzJstW51MTNsgKj				
3	https://youtu.be/qko-f1VDhCM?si=0tWM_OHS395ESV_w https://youtu.be/d9QfVpCG00Y?si=qeHk8tPg_torr2yX https://youtu.be/1zQ8wbBozqI?si=7vOSHMt8OT3nQINO				
4	https://youtube.com/playlist?list=PLE7VH8RC_N3bpVn-e8QzOAHziEgmjQ2qE&si=rr5Fpuew5q9_Y4qg				

DIGITAL SIGNAL PROCESSING

Course Code	PEEET636	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET603/ PEEOT522	Course Type	Theory

Course Objectives:

1. To provide a thorough understanding of the realisation, design and analysis of DSP systems

Module No.	Syllabus Description				
1	Introduction to DSP and Discrete Fourier transform: Basic elements of DSP system. Advantages and applications. Review of Discrete-Time Fourier transform (DTFT) and its properties. Frequency domain sampling, Discrete Fourier transform (DFT) - DFT pair, properties of DFT, frequency response analysis of signals using the DFT, circular convolution using DFT, linear filtering based on DFT. Fast Fourier transform (FFT): Introduction, Radix -2 decimation in time FFT algorithm, Radix-2 decimation in frequency algorithm, IDFT using FFT algorithm.	10			
2	Realisation of Filters: Introduction to IIR and FIR systems. Structures for IIR Systems: Direct-Form Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice Structures for IIR Systems. Structures for FIR Systems: Direct-Form Structure, Cascade-Form	7			

	Structures, Lattice Structure. Linear Phase FIR filters.	
	Signal Flow Graphs and Transposed Structures.	
	Design of Digital Filters:	
	General considerations, Causality and its implications, characteristics of practical frequency selective filters.	
3	IIR filter design: Discrete time IIR filter from analog filter (Butterworth), IIR filter (LPF, HPF, BPF, BRF) design by Impulse Invariance, Bilinear transformation.	10
	FIR filter design: Structures of FIR filter, Linear phase FIR filter	
	Filter design using windowing techniques (Rectangular, Hanning, Hamming), frequency sampling Techniques.	
	Finite Word Length effects in Digital Filters:	
	Fixed point and floating-point number representations, Comparison, Truncation and Rounding errors.	
	Quantization noise, Derivation for quantization noise power, coefficient quantization error, Product quantization error.	
4	Overflow error, Round-off noise power. Limit cycle oscillations due to	
•	product round-off and overflow errors, signal scaling.	9
	Introduction to TMS320 Family:	
	Architecture, C24x CPU and other components; Assembly language	
	Instructions, Instruction Set summary, simple programs.	
	Design & Implementation and Filter Structures: MATLAB functions and TMS320 Implementation (Demo/Assignment only)	
	r	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module. Total of 8 Questions, each	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	
	carrying 3 marks	 Each question can have a maximum of 3 sub divisions. 	60
	(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse discrete-time systems using DFT	K2
CO2	Realise IIR and FIR filters	К3
CO3	Design of IIR and FIR filters	К3
CO4	Analyse effect of word length in digital filters	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	3	2	2	2	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	3	2	2	2	3	3	3			3	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Digital Signal Processing: Principles, Algorithm & Application	John G. Proakis Dimitris G. Manolakis	Pearson	4 th Edition					
2	Discrete-Time Signal Processing	A. Oppenheim and R. Schafer	Pearson-Prentice Hall	2 nd Edition					

	Reference Books									
Sl. No	Title of the Book	Name of the Publisher	Edition and Year							
1	Digital Signal processing-A Practical Approach	Emmanuel C. Ifeachor, and Barrie W. Jervis	Pearson Education	2 nd Edition						
2	Digital Signal Processing	S. Salivahanan, A. Vallavaraj, and C. Gnapriya	Tata Mcgraw Hill	2 nd Edition						

CLOUD COMPUTING

Course Code	PEEET637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	PE - Theory

Course Objectives:

- 1.To enable learners to understand the concepts of cloud computing and its enabling technologies
- 2. Familiarize with mainstream cloud computing platforms and the services they offer.
- 3.To enable learners to have a basic understanding of virtualization, cloud security and cloud-based programming

Module No.	Syllabus Description	Contact Hours
1	Traditional computing- Limitations. Overview of Computing Paradigms-Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing. NIST reference Model-Basic terminology and concepts. Cloud characteristics, benefits and challenges, Roles and Boundaries. Cloud delivery (service) models-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS),Software-as-a-Service (SaaS), XaaS (Anything-as-a-service)-Cloud deployment models- Public cloud, Community cloud, Private cloud, Hybrid cloud.	8
2	Introduction to virtualization-Virtualizing physical computing resources, Virtual Machines (Machine virtualization), Non-virtualized v/s Virtualized machine environments. Types of VMs- Process VM v/s System VM. Emulation, Interpretation and Binary translation. Virtualization layers. Hypervisors/VMM - Types of Hypervisors. Full Virtualization, Para Virtualization, Hardware-assisted virtualization, OS level virtualization. Basics of Network Virtualization, Storage Virtualization and Desktop Virtualization.	8

3	Resource provisioning techniques: Static and Dynamic Resource provisioning in cloud. Open Source Software platforms for Private Cloud: OpenStack, Eucalyptus, Open Nebula, Nimbus Popular public cloud platforms: AWS - AWS ecosystem, Compute services: EC2, Advanced compute services, Storage services: Amazon S3, Amazon EBS, Database services, other major services. Google Cloud: IaaS offerings- Compute Engine, Storage PaaS offerings-GAE. SaaS offerings. Microsoft Azure: Azure Platform Architecture, Hyper-V, Azure VM, Compute services, Storage services	11
4	Cloud programming: Parallel Computing and Programming Paradigms, Map Reduce – Hadoop Library from Apache, HDFS, Pig Latin Basics, Apache Spark Fundamentals of Cloud Security: Basic terms & concepts in security – Threat agents, Cloud security threat/risks, Trust. OS security – Virtual Machine security – Security of Virtualization – Security risk posed by Shared Images, Security risk posed by Management OS, Infrastructure security – Network Level, Host Level, Application Level, Security of the Physical systems, Identity and Access Management	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the various cloud computing models and services	K2
CO2	Demonstrate the significance of implementing virtualization techniques	K2
CO3	Explain about the different private cloud platforms, and the services offered by popular cloud service providers	К2
CO4	Apply appropriate cloud programming methods to solve big data problems	К3
CO5	Describe the need for security mechanisms in cloud	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											2
CO2	2	2	2									2
CO3	2		1		3				1		1	2
CO4	2	3	3	3	3							2
CO5	2	2										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cloud Computing: Concepts, Technology and Architecture	Thomas Erl, Zaigham Mahmood, Ricardo Puttini	Prentice Hall	2013			
2	Mastering Cloud Computing	Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi	McGraw Hill Education	2017			
3	Cloud Computing	Sandeep Bhowmik	Cambridge University Press	2017			

Reference Books						
Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Cloud Computing: Theory and Practice	Dan C. Marinescu	Morgan Kaufmann publications	2018			
Cloud Computing: Principles and Paradigms	Rajkumar Buyya, James Broberg, Andrzej M. Goscinski	Wiley	2013			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
Module - I	https://nptel.ac.in/courses/106105167					
Module - II	https://nptel.ac.in/courses/106104182					
	https://cloud.google.com/docs/					
Module - III	https://docs.aws.amazon.com/					
	https://learn.microsoft.com/en-us/azure/					
Module - IV	https://nptel.ac.in/courses/106105167					

OPTIMIZATION TECHNIQUES

Course Code	PEEET638	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	PE - Theory

Course Objectives:

1. The broad objective of the course is to introduce classical optimization, its need and techniques suitable for application in engineering problems

Module No.	Syllabus Description	Contact Hours
1	Motivation and introduction to optimization in engineering practice Properties of single variable functions and optimality criteria, Region elimination methods, Polynomial estimation methods - quadratic estimation, Bisection method, Newton raphson method, Secant method, Cubic search method Functions of several variables, optimality criteria, Direct search method, Hooke-Jeeves pattern search method, Powell's method,	11
2	Gradient search methods - Cauchy's method, Newton's method Formulation of linear programming models, Graphical solution in two variables, Standard form Simplex method, Duality, Dual simplex method - Karmarkar's method	9
3	Equality constrained problems - Lagrange multipliers - Kuhn Tucker conditions - Kuhn Tucker theorems - Saddlepoint conditions - Second order optimality conditions - Generalized Lagrangian multiplier method	10

	Transformation methods - Concept of penalty - penalty functions - Method of Multipliers	
4	Constrained direct search - simple direct search method - Complex method - Random search methods Linearization methods for constrained Problems - Successive linear problems - Separable programming - Method of feasible directions - Simplex extensions for linearly constrained problems - Generalized reduced gradient method	9

PS: Demonstrations of various techniques can be done using softwares like Scilab / Matlab / Octave or lower end softwares like Maxima

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	To evaluate the optimality criteria and methods for functions with single variable	K4			
CO2	To evaluate the optimality criteria and methods for functions with several variables	K4			
CO3	To understand and apply linear programming techniques for optimization	К3			
CO4	To explore optimization techniques for constrained problems	К3			
CO5	To explore search techniques and applications in optimization	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2	3						2
CO2	3	3			2	3						2
CO3	3	3			2	3						2
CO4	3	3			2	3						2
CO5	3	3			2	3						2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Engineering Optimization,	A Ravindran, K M	John Wiley and Sons	2006			
1	Methods and Applications	Ragsdell, G V Reklaitis	John Whey and Bons	2000			

	Reference Books							
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year				
1	Introduction to Linear Optimization	Dimitris Bertsimas, John N Tsitsiklis	Athena Scientific	1997				
2	Stories about Maxima and Minima	V M Tikhomirov	American Mathematical Society	1990				

MACHINE LEARNING

Course Code	PBEOT604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30Min.
Prerequisites (if any)	GYEST305, UCEST105	Course Type	PBL

Course Objectives:

- 1. To equip students with overall understanding of the underlying mathematical and algorithmic concepts of machine learning.
- 2. To understand and perform various data pre-processing and visualization in using various python libraries
- 3. To implement various machine learning algorithms using python.
- 4. To evaluate and optimize machine learning models for diverse applications

SYLLABUS

Module No.	Syllabus Description	Contact Hours		
	Mathematics for Machine LearningAssociation of two variables -			
	Discrete variables, Ordinal and Continuous variable, Probability calculus -			
1	Summary Statistics, probability distributions, Inductive statistics - Point			
1	estimation, Interval estimation, Hypothesis Testing - Basic definitions, t-			
	test,F-test, ANOVA			
	Introduction to machine learning algorithms - supervised vs.			
	unsupervised learning, regression and classification, linear discriminant			
2	analysis, decision trees, random forests, and bagging. Unsupervised -			
2	Principal Component Analysis, clustering algorithms, SVMs, re-sampling	9		
	methods: cross-validation and bootstrapping			
	Introduction to python for ML - essential python libraries and ML			
3	functions(NumPy, pandas, Matplotlib, SciKit-Learn), working with data sets	9		

	- data cleaning and pre-processing functions, Data visualization- bar, scatter, histogram, heatmaps.	
4	ML algorithm implementation with python - Linear Regression Simple and multiple linear regression, Model evaluation metrics: MSE, RMSE, R², Classification Algorithms - Logistic regression, k-Nearest Neighbours (k-NN), Decision Trees, Model evaluation metrics: accuracy, precision, recall, F1-score, Support Vector Machines (SVM), Ensemble methods (Random Forest, Gradient Boosting), Clustering Algorithms -K-means clustering, Hierarchical clustering.	9

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A • 2 Questions from each	Part B	Total
module.Total of 8 Questions,each carrying 2 marks	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 6 marks.	40
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Understand the relationships between different types of variables (discrete, ordinal, and continuous) using summary statistics and	K2
CO1	probability distributions, and perform hypothesis testing including t-tests and F-tests.	
	Apply different supervised and unsupervised machine learning algorithms	К3
CO2	(such as regression, classification, clustering, and dimensionality reduction) and their appropriate applications in solving real-world problems.	
CO3	Apply essential Python libraries (NumPy, Pandas, Matplotlib) to clean, preprocess, and visualize data sets, preparing data for machine learning applications.	К3
	Implement machine learning algorithms (such as linear regression,	К3
	logistic regression, k-Nearest Neighbors, Decision Trees, SVM, Random	110
CO4	Forest, Gradient Boosting, and clustering) in Python and evaluate their performance using relevant metrics.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	3	2										2
CO1												
	3	3	2	2								2
CO2												
	3	3	2									2
CO3												
	3	3	2	3								2
CO4												

Text Books

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Mathematics for Machine Learning	Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong	Cambridge University Press	1st Edition, 2020
2	Pattern Recognition and Machine Learning	Christopher M. Bishop	Springer	1st Edition, 2006
3	Python Data Science Handbook: Essential Tools for Working with Data	Jake VanderPlas	O'Reilly Media	1st Edition, 2016
4	Hands-On Machine Learning with Scikit- Learn, Keras, and TensorFlow	AurélienGéron	O'Reilly Media	2nd Edition, 2019
5	Introduction to Machine Learning with Python: A Guide for Data Scientists	Andreas C. Müller, Sarah Guido	O'Reilly Media	1st Edition, 2016

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc23_cs18/preview					
2	https://onlinecourses.nptel.ac.in/noc23_cs18/preview					
3	https://nptel.ac.in/courses/106105152					
4	https://nptel.ac.in/courses/106105152					

PBL Course Elements

L: Lecture		R: Project (1 Hr.)	, 2 Faculty Members
(3 Hrs.)	Tutorial	Practical	Presentation
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)
Group discussion	Project Analysis	Data Collection	Evaluation
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

• Active participation and individual contribution

Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project

Creativity in solutions and approaches

INTRODUCTION TO CONTROL SYSTEMS

Course Code	OEEET611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	_	Course Type	Theory

Course Objectives:

1. To introduce various classical tools for analysis of linear control system in time and frequency domain.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to Control Systems, mathematical modelling and Transfer function Based Analysis Open loop and Closed loop control systems; Automatic control systems; Necessity and significance. (1 hour) Modelling of LTI systems: LTI Systems, Transfer function representation of differential equation in Laplace domain. Electrical, translational and rotational mechanical systems, DC servomotor modelling. (4 hours). Block diagram representation - block diagram reduction. Signal flow graph - Mason's gain formula. (4 hours)	9
2	Performance Analysis of Control Systems: Time domain analysis of control systems: Impulse and Step responses of first and second order systems - Pole dominance for higher order systems. Time domain specifications. Steady state error analysis and static error constants (5 hours)	8

	Characteristic equation. Routh stability criterion. (3 hours)	
	Root Locus Analysis and Controllers:	
	Root locus technique: Construction of Root locus - stability analysis- effect of addition of poles and zeros; Effect of positive feedback systems on Root locus.	
3	(5 hours)	8
	Controller design: Types of controllers and their control action-proportional (P), integral (I), derivative (D), PID control. PID tuning using Ziegler-Nichols method. (3 hours)	
	Frequency domain analysis:	
	Bode Plot: Construction, Concept of gain margin and phase margin- stability analysis. (4 hours)	
4	Frequency domain specifications - correlation between time domain and frequency domain responses (Resonant peak and resonant frequency). (2 hours)	11
	Polar plot: Gain margin and phase margin, Stability analysis. (2 hours) Nyquist stability criterion. Concept of Nichols Chart. (3 hours)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To represent continuous time systems in the classical domain.	К2
CO2	Analyse the time domain responses of linear systems and predict and diagnose transient response parameters of the system for standard input functions.	K2
СОЗ	Analyse dynamics systems for their performance and stability using Root locus.	К3
CO4	Analyse dynamics systems for their performance and stability in frequency domain.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	2	1	2	1	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	3	2	2	2	3	3	3			3	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Control Systems Engineering	Norman S. Nise	Wiley	5th Edition, 2009			
2	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th Edition, 2009			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Automatic Control Systems,	Kuo B. C,	Prentice Hall of India	9th Edition,20 14				
2	Control Systems Principles and Design	Gopal M.	Tata McGraw Hill.	4th Edition, 2012				
3	Modern Control Systems	Dorf R. C., Bishop R. H Pearson Education India		12th Edition, 2013				
4	Modern Control Engineering	Katsuhiko Ogata	Pearson	5th Edition, 2009				

ENERGY MANAGEMENT

Course Code:	OEEET612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	OE

Course Objectives:

1. To apply energy conservation principles and management techniques to different energy conversion systems

SYLLABUS

Module No.	Syllabus Description		
	General aspects of energy management and energy audit: Energy		
	Management - Definition, General principles of energy management and		
	energy management planning		
1	Energy Audit: Definition, need, types and methodologies. Instruments for		
	energy audit, Energy audit report - Power quality audit	9	
	Energy conservation in buildings: ECBC code (basic aspects), Building		
	Management System (BMS).		
	Energy Efficiency in Electrical Utilities:		
	Electricity transmission and distribution system, cascade efficiency.		
	Lighting: Modern energy efficient light sources, life and efficacy		
	comparison with older light sources, energy conservation in lighting.		
	Motors: Development of energy efficient motors and the present status,		
2	techniques for improving energy efficiency, necessity for load matching		
2	and selection of motors for constant and variable loads.	9	
	Demand side Management: Introduction to DSM, benefits of DSM,		
	different techniques of DSM.		
	Power factor improvement, numerical examples.		
	Ancillary services: Introduction of ancillary services – Types of Ancillary		
	services		
	Energy Management in Electrical Utilities:		
3	Boilers: working principle - blow down, energy conservation opportunities	9	
	in boiler.		

	Steam: properties of steam, distribution losses, steam trapping. Identifying						
	opportunities for energy savings in steam distribution.						
	Furnace: General fuel economy measures, energy conservation						
	opportunities in furnaces.						
	HVAC system: Performance and saving opportunities in Refrigeration and						
	Air conditioning systems.						
	Heat Recovery Systems: Waste heat recovery system - Energy saving						
	opportunities.						
	Cogeneration: Types and schemes, optimal operation of cogeneration						
	plants, combined cycle electricity generation.						
	Energy Economics: Economic analysis: methods, cash flow model, time						
	value of money, evaluation of proposals, pay-back period, average rate of						
4	return method, internal rate of return method, present value method, life	9					
	cycle costing approach. Computer aided Energy Management Systems	9					
	(EMS).						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
2 Questions from each	Each question carries 9 marks.		
module.	Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3 sub	60	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Analyse the significance of energy management and auditing.	К2					
CO2	Discuss the energy efficiency and management of electrical loads.	K2					
CO3	Apply demand side management techniques	K2					
CO4	Explain the energy management opportunities in industries.	K2					
CO5	Compute the economic feasibility of the energy conservation measures	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1	1		1			
CO2	2		1	1		1	1					
CO3	2		1	1		1	1					
CO4	2		1	1		1	1					
CO5	2										2	

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Title of the Book Name of the Author/s								
1	Publications of Bureau of Energy Efficiency (BEE).									
2	Energy Management and Conservation Handbook	D. Yogi Goswami, Frank Kreith,	CRC Press	2007						
3	Energy management Hand Book	Wayne C. Turner	The Fairmount Press, Inc.	1997						
4	Energy Management and Conservation Handbook	D. Yogi Goswami, Frank Kreith	CRC Press	2007						
5	Industrial energy conservation	Charles M. Gottschalk	John Wiley & Sons	1996						

RENEWABLE ENERGY SYSTEMS

Course Code	ОЕЕЕТ613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	NIL	Course Type	OE - Theory

Course Objectives:

- 1. To understand energy scenario, energy sources and their utilization
- 2. To explore society's present needs and future energy demands
- 3. To study the principles of renewable energy conversion systems
- 4. To be exposed to energy conservation methods

SYLLABUS

Module No.	Syllabus Description						
1	Introduction: Principles of renewable energy; energy and sustainable development, fundamentals and social implications. Worldwide renewable energy availability, renewable energy availability in India, types of renewable energy. Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind (numerical problems); major problems associated with wind power, Basic components of wind energy conversion system (WECS); Classification of WECS- Horizontal axissingle, double and multi-blade system. Vertical axis - Savonius and Darrieus types.	9					
2	Solar Energy: Fundamentals; Solar Radiation; Estimation of solar radiation on horizontal and inclined surfaces; Solar radiation Measurements - Pyrheliometers, Pyranometer, Sunshine Recorder. Solar Thermal systems: concentrating and non-concentrating collectors - Flat						

	plate collectors; Solar tower electric power plant. Photovoltaic system for electric power generation – Classification of PV system - Principle of Solar cell, advantages, disadvantages and applications of solar photovoltaic system.	9
3	Biomass Energy: Introduction; Principle of biomass energy generation - Biofuels; Biomass Resources; Biomass conversion technologies-fixed dome type biogas plant; Urban waste to energy conversion; Biomass gasification (Downdraft). Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, classification of tidal power	9
4	Dcean Thermal Energy Conversion: Principle of working, classification, OTEC power stations in the world, environmental impacts associated with OTEC. Introduction to geothermal energy Green Energy: Introduction, Fuel cells: Classification of fuel cells – Hydrogen energy; Operating principles, Zero-energy Concepts. Benefits of	9
	hydrogen energy, hydrogen production technologies (electrolysis method only), hydrogen energy storage, applications of hydrogen energy, problem associated with hydrogen energy.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	A Part B	
 2 Questions from each module. Total of 8 Questions, each 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	
carrying 3 marks	Each question can have a maximum of 3 sub divisions.	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Describe the environmental aspects of renewable energy resources in comparison with various conventional energy systems, their prospects and limitations.	K1				
CO2	Understand the concepts of wind energy.	K1				
CO3	Describe the use of solar energy and the various components used in the energy production with respect to applications like-heating, cooling, desalination, power generation.	К2				
CO4	Understand the concept of biomass energy resources and conversion principles of tidal energy.	K2				
CO5	Acquire the basic knowledge of ocean thermal energy conversion. Understand the principle of green energy and hydrogen energy.	K 1				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2
CO5	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Non-conventional energy sources	G. D. Rai	Khanna	4 th edition 2023					
2	Renewable energy systems	Thomas E. Kissell, David M. Buchla, Thomas L. Floyd,	Pearson	2017					
3	Non-Conventional Energy Resources	Sawhney G. S.	PHI Learning	2012					
4	Renewable energy systems	Thomas E. Kissell, David M. Buchla, Thomas L. Floyd,	Pearson	Pearson 2017					

ELECTRICAL SIMULATION LAB

Course Code	PCEOL607	CIE Marks	50	
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50	
Credits	2	Exam Hours	2 Hrs.30 Min	
Prerequisites (if any)	Power systems/Linear Control systems (PCEOT503,PCEOT6 01)	Course Type	Lab	

Course Objectives:

- 1. To provide students with hands-on experience in simulating and analyzing various aspects of power systems through digital simulation
- **2.** To bridge the gap between theoretical knowledge and practical application of control system analysis and design techniques using digital simulation

Expt. No.	Experiments					
	POWER SYSTEMS					
1	Plot the IV and PV characteristics of a solar photovoltaic module and determine Maximum Power Point under uniform and partial shaded conditions					
2	Load Flow Analysis –Gauss-Siedel Method /Newton-Raphson Method/Fast Decoupled Method					
3	Reactive Power Compensation and power factor correction using capacitor bank					
4	Short Circuit Analysis – Symmetrical Faults and Unsymmetrical Faults					
5	Transmission Line Modelling (Basic Programming): ABCD constants					
6	Modelling of Over current relay for Power system protection					
	CONTROL SYSTEMS					
7	Determination of transfer function from block diagram of closed loop system and plot pole zero graph .					
8	Observe the performance of Step response of a second order system. Objective: Design a second order system (eg: RLC network) to analyse thefollowing:					

	A. The effect of damping factor (ξ : 0, <1,=1,>1) on the unit stepresponse using simulation study
	B. Verification of the delay time, rise time, peak overshoot and settlingtime with the theoretical values.
	Stability Analysis by Frequency Response Methods.
	Objective: Plot Bode plot or Nyquist plot of the given transferfunctions to analyse the following using simulation:
9	A. Determination of Gain Margin and Phase Margin
	B. Verification of GM and PM with the theoretical values
	C. The effect of controller gain K on the stability,
	D. The effect of the addition of poles and zeros on the given system
	Performance Analysis using Root-Locus Method.
	Objective: Plot the root locus of the given transfer function to analyse thefollowing using simulation:
10	A. Verification of the critical gain, wo with the theoretical values
	B. The effect of controller gain K on the stability
	C. The sensitivity analysis by giving small perturbations in given polesand zeros
	D. The effect of the addition of poles and zeros on the given system.
11	Design of lead/lag/lead lag compensator
12	Design of PI /PID controller and its effects on the feedback loop response

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Estimate various parameter of a power system network using different load flow techniques and fault analysis.	К3
CO2	Examine the performance of transmission lines and relays	K4
CO3	Examine the Time Domain and frequency domain response analysis of second order control systemsfor assessing the system stability and control action.	K4
CO4	Design compensator for unstable control systems in order to enhance the system response and stability.	К3
CO5	Design P, PI and PID controllers for continuous process control	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	1	1	1	3			
CO2	3	2	1	3		1	1	1	3			
CO3	3	2	1	3			1	1	3			
CO4	3	3	3	2		2	2		3	2		2
CO5	3	3	3	2		2	2		3	2		2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Power System Analysis	HadiSaadat	McGraw Hill	2/e,2002.				
2	Modern Power System Analysis	Kothari D. P. and I. J. Nagrath	ТМН	2/e ,2009				
3	Modern Control Systems,,	Richard C. Dorf and Robert H. Bishop	Pearson Education	Eleventh Edition,20 09.				
4	Control System Engineering,.	Nagarath I. J. and Gopal M.,	Wiley Eastern	, 2008				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab records