Chapter 1. (Part 1)

Algorithms: Efficiency, Analysis, and Order

경북대학교 배준현 교수

(joonion@knu.ac.kr)

Contents

- 1.1 Algorithms
- 1.2 The Importance of Developing Efficient Algorithms
- 1.3 Analysis of Algorithms
- 1.4 Order
- X.1 Recursion

- An algorithm is
 - a step-by-step *procedure* for solving a *problem*.
- A computer algorithm is
 - a *finite sequence* of *instructions* to solve a problem using a *computer*.

- A *problem* is
 - a question to which we seek an *answer*, to say, a *solution*.
- An *instance* of a problem:
 - A problem may contain variables, called parameters,
 - which are *not* assigned *specific values* in the statement of the problem.
 - An algorithmic problem is specified
 - by describing the *complete set of instances* it must work on and
 - what *properties* the *output* must have as a *result* of running on.

- An example of a *problem*:
 - Sort a list *S* of *n* numbers in *nondecreasing* order.
 - The *solution* of this problem is the numbers in sorted sequence.
- An *instance* of the problem:
 - n = 6, S = [10, 7, 11, 5, 13, 8].
- The *solution* to this *instance* of the problem:
 - S' = [5, 7, 8, 10, 11, 13]

- Another example of a *problem*:
 - Determine whether the number x is in the list S of n numbers.
 - The *solution* is
 - yes if x is in S, and no 0 if it is not in S.
- An *instance* of the problem:
 - n = 6, S = [10, 7, 11, 5, 13, 8], and x = 5.
- The *solution* to this instance of the problem:
 - yes, x is in S. and location = 4 if the location starts from 1.

- An *algorithm* for solving the previous problem:
 - Starting with the *first* item in *S*,
 - compare *x* with each item in *S* in sequence,
 - until *x* is found or until *S* is exhausted.
 - If x is found, answer *yes* by returning the location of x,
 - if x is not found, answer no by returning 0.

> 1.1 Algorithms

■ An *implementation* of the algorithm in C++:

```
#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, x, location;
    cin >> n;
    vector<int> S(n + 1);
    for (int i = 1; i <= n; i++)
        cin \gg S[i];
    cin >> x;
    location = 1;
    while (location <= n && S[location] != x)</pre>
        location++;
    if (location > n)
        location = 0;
    cout << location << endl;</pre>
```


Using a *pseudo-code* for writing an algorithm:

ALGORITHM 1.1: Sequential Search

```
typedef int keytype;
typedef int index;
void seqsearch(int n, const keytype S[], keytype x, index& location) {
    location = 1;
    while (location <= n && S[location] != x)
        location++;
    if (location > n)
        location = 0;
```


• *Testing* the algorithm:

```
int main() {
    int n, x, location, T;
    cin >> n;
    vector<int> S(n + 1);
    for (int i = 1; i <= n; i++)
        cin >> S[i];
    cin >> x;
    int *pS = \&S[0];
    seqsearch(n, pS, x, location);
    cout << location << endl;</pre>
```


- Compile and run the program with GNU Toolchain:
 - a.exe in Windows, a.out in Linux

```
1.1.1.in
                                            > g++ 1.1_SequentialSearch.cpp
  [Input]
                           [Output]
                                            > a.exe < 1.1.1.in
                                            4
                                                                  → Redirection
  10 7 11 5 13 8
                                            > a.exe < 1.1.2.in
                                            0
1.1.2.in
                                            > a.exe < 1.1.3.in > 1.1.3.out
  [Input]
                           [Output]
  10 7 11 5 13 8
  15
```


- Exercise: Adding Array Members
 - Problem:
 - *Add* all the numbers in the array *S* of *n* numbers.
 - Inputs:
 - positive integer *n*, array of numbers *S* indexed from 1 to *n*.
 - Outputs:
 - *sum*, the sum of the numbers in *S*.

ALGORITHM 1.2: Adding Array Members

```
int sum(int n, vector<int>& S)
    int result = 0;
    for (int i = 1; i <= n; i++)
        result += S[i];
    return result;
```

```
[Input]
                      [Output]
                      54
10 7 11 5 13 8
```


- Exercise: *Exchange Sort*
 - Problem:
 - Sort *n* keys in nondecreasing order.
 - Inputs:
 - positive integer *n*, array of keys *S* indexed from 1 to *n*.
 - Outputs:
 - the array *S* containing the keys in non-decreasing order.

ALGORITHM 1.3: Exchange Sort

```
void exchangesort(int n, vector<int>& S)
    for (int i = 1; i <= n; i++)
        for (int j = i + 1; j <= n; j++)
            if (S[i] > S[j])
                swap(S[i], S[j]);
                                                 → #include <utility>
```

```
[Input]
                       [Output]
                       5 7 8 10 11 13
10 7 11 5 13 8
```


- Exercise: *Matrix Multiplication*
 - Problem:
 - Determine the product of two $n \times n$ matrices.
 - Inputs:
 - a positive number *n*, two-dimensional arrays of numbers *A* and *B*,
 - each of which has both its *rows* and *columns* indexed from 1 to n.
 - Outputs:
 - a two-dimensional array of numbers C,
 - which has both its *rows* and *columns* indexed from 1 to n,
 - containing the *product* of *A* and *B*.

Matrix Multiplication

- If we have two 2 × 2 matrices, $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$,
 - then the product $C = A \times B$ is given by $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j}$.
- For example,

$$- \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \times \begin{bmatrix} 5 & 7 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 28 & 38 \\ 26 & 36 \end{bmatrix}.$$

• In general,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad \text{for } 1 \le i, j \le n.$$

ALGORITHM 1.4: Matrix Multiplication

```
typedef vector<vector<int>> matrix_t;
void matrixmult(int n, matrix_t A, matrix_t B, matrix_t& C)
                                                              → Call By Value
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++) {
                                                             → Call By Reference
            C[i][j] = 0;
            for (int k = 1; k <= n; k++)
                C[i][j] += A[i][k] * B[k][j];
```



```
int main() {
                                                     [Input]
                                                                      [Output]
    int n;
                                                                       28 38
    cin >> n;
                                                     2 3
    matrix_t A(n + 1, vector<int>(n + 1));
                                                                       26 36
    matrix_t B(n + 1, vector<int>(n + 1));
    matrix_t C(n + 1, vector<int>(n + 1));
                                                     5 7
    for (int i = 1; i <= n; i++)
                                                     6 8
        for (int j = 1; j <= n; j++)
            cin >> A[i][j];
                                                     [Input]
                                                                       [Output]
    for (int i = 1; i <= n; i++)
                                                                       43 53 54 37
        for (int j = 1; j <= n; j++)
                                                     1 2 3 4
                                                                       123 149 130 93
            cin >> B[i][j];
                                                     5 6 7 8
                                                                       95 110 44 41
    matrixmult(n, A, B, C);
                                                     9 1 2 3
                                                                       103 125 111 79
    for (int i = 1; i <= n; i++) {
                                                     4 5 6 7
        for (int j = 1; j <= n; j++)
                                                     8 9 1 2
            cout << C[i][j] << " ";</pre>
                                                     3 4 5 6
        cout << endl;</pre>
                                                     7 8 9 1
                                                     2 3 4 5
```


- Five *Properties* of Algorithms
 - Zero or more **inputs**.
 - One or more outputs.
 - Unambiguity.
 - Each *instruction* in an algorithm must be *clear enough* to follow.
 - Finiteness.
 - An algorithm *must terminate* after a finite number of steps.
 - Feasibility.
 - An algorithm *must be feasible* enough to be carried out.

- Comparing two algorithms for the same problem:
 - Problem:
 - Determine whether *x* is in the *sorted* array *S* of *n* keys.
 - Inputs:
 - positive integer n, a key x,
 - *sorted* (nondecreasing order) array of keys *S* indexed from 1 to *n*.
 - Outputs:
 - *location*, the location of x in S (0 if x is not in S).

ALGORITHM 1.5: Binary Search

```
void binsearch(int n, vector<int>& S, int x, int& location)
    int low, high, mid;
    low = 1; high = n;
    location = 0;
    while (low <= high && location == 0) {
        mid = (low + high) / 2;
        if (x == S[mid])
            location = mid;
        else if (x < S[mid])
            high = mid - 1;
        else // x > S[mid]
            low = mid + 1;
```



```
[Input]
                              [Output]
5 7 8 10 11 13
[Input]
                              [Output]
5 7 8 10 11 13
[Input]
                              [Output]
5 7 8 10 11 13
13
[Input]
                              [Output]
5 7 8 10 11 13
15
```


- Sequential Search .vs. Binary Search
 - Compare the number of comparisons
 - done by **Algorithm 1.1** (Sequential) and **Algorithm 1.5** (Binary).
 - If the array *S* contains 32 items and *x* is *not in* the array.
 - Algorithm 1.1 (Sequential Search): 32 comparisons.
 - Algorithm 1.5 (Binary Search): 6 comparisons *at most*.
 - In general, if *n* is a power of 2,
 - Sequential Search with *n* keys: *n* comparisons.
 - Binary Search with n keys: $\lg n + 1$ comparisons at most.

- The number of *comparisons*
 - done by Sequential Search and Binary Search
 - when *x* is larger than all the array items.

Array Size	Number of Comparisons by Sequential Search	Number of Comparisons by Binary Search
128	128	8
1,024	1,024	11
1,048,576	1,048,576	21
4,294,967,296	4,294,967,296	33

Problem:

- Compute the *n*th term of the **Fibonacci sequence**.
 - **-** 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ···

The Fibonacci Sequence

- is defined *recursively* as follows:
 - $-f_0 = 0$
 - $-f_1 = 1$
 - $-f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$.

ALGORITHM 1.6: (Recursive) *n*th Fibonacci Term

```
typedef unsigned long long LongInt;

LongInt fib(LongInt n)
{
   if (n <= 1)
      return n;
   else
      return fib(n - 1) + fib(n - 2);
}</pre>
```


- The *inefficiency* of the *recursive* algorithm:
 - The algorithm invokes fib(2) 3 times to calculate fib(5).
 - Let T(n) be the number of terms in the recursion tree: $T(n) > 2^{n/2}$.

- Developing an *efficient* algorithm:
 - We *do not* need to *recompute* the same value over and over again.
 - When a value is computed, we *save it* in an array. (*memoization*)
 - Then, we can *reuse the saved value* whenever we need it.

ALGORITHM 1.7: (Iterative) *n*th Fibonacci Term

```
typedef unsigned long long LongInt;
LongInt fib2(int n)
    vector<LongInt> F;
    if (n <= 1)
        return n;
    else {
        F.push back(0);
        F.push_back(1);
        for (int i = 2; i <= n; i++)
            F.push back(F[i - 1] + F[i - 2]);
        return F[n];
```


Any Questions?

