Universidad Nacional Autónoma de Honduras

Facultad de Ciencias

Escuela de Física Física General (FS-104)

Elaborado por: Instr. Arnold Chávez

Indicaciones

Resolver de forma clara y ordenada en hojas blancas 50 problemas del total que se presentan a continuación. La selección de los 50 problemas queda a criterio del intructor (a)

Despejes de variables (Elija 30 de 40)

Despeje para las variables solicitadas en las siguientes ecuaciones:

N°	Ecuación	Variable	N°	Ecuación	Variable
1	$\Delta x = x_2 - x_1$	x_2	2	$\bar{a} = \frac{v - v_o}{t}$	v
3	$v = v_o + at$	t	4	$m = \frac{y_2 - y_1}{x_2 - x_1}$	x_1
5	$\bar{v} = \frac{v + v_o}{2}$	v_o	6	$x = x_o + v_o t + \frac{1}{2}at^2$	a
7	$A_x = A\cos(\theta)$	A	8	$A = \pi r^2$	r
9	$d = \sqrt{x^2 + y^2}$	x	10	$v_y = v_{y_o} + a_y t$	a
11	$C_x = A\cos(\theta_A) - B\cos(\theta_B)$	$ heta_A$	12	$\theta = \tan^{-1}(v_y/v_x)$	v_x
13	$t = \sqrt{\frac{2y}{g}}$	y	14	$R = \frac{2v_o^2 sen(\theta)cos(\theta)}{g}$	g
15	$ec{V}=ec{A}+ec{B}$	$ec{B}$	16	$R_{\text{máx}} = \frac{v_o^2}{g}$	v_o
17	$N = mgcos(\theta)$	θ	18	$W = Fcos(\theta)d$	F
19	$W = \frac{1}{2}kx^2$ $K = \frac{1}{2}mv^2$	k	20	$x = \frac{(m_1 + m_2)g}{k}$	m_1
21	$K = \frac{1}{2}mv^2$	m	22	$p = p_o + \rho g h$	ho
23	$N = N_o e^{-\lambda t}$	λ	24	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	c
25	$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$	A_2	26	$x = \frac{2a}{T_1}$ $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$ $\frac{\Delta V}{V_o} = \beta \Delta T$	T_1
27	$L = L_o(1 + \alpha \Delta T)$	ΔT	28	$\frac{\Delta V}{V_o} = \beta \Delta T$	β
29	$c = \frac{Q}{m\Delta T}$	m	30	$c_{agua}m_{agua}\Delta T_{agua} + c_{al}m_{al}\Delta T_{al} = 0$	c_{al}
31	$c = \frac{Q}{m\Delta T}$ $T = \frac{k_1 d_2 T_1 + k_2 d_1 T_2}{k_1 d_2 + k_2 d_1}$	d_2	32	$W_{\rm isot\acute{e}rmico} = nRTln(V_2/V_1)$	V_2

N°	Ecuación	Variable	N°	Ecuación	Variable
33	$W_{\text{isobárico}} = p(V_2 - V_1)$	V_1	34	$n_1 sen(\theta_1) = n_2 sen(\theta_2)$	$ heta_1$
35	$E = \frac{1}{2}mv^2 + mgh$	h	36	$W = F_1 d + d(F_2 - F_3)$	F_3
37	$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$	d_i	38	$v = \sqrt{v_o^2 + 2ax - 2ax_0}$	a
39	$y = (v_o sen\theta)t - 1/2gt^2$	t	40	$p = \frac{F}{\pi r L}$	L

Uso de la calculadora (Elija 10 de 16)

Encuentre el valor de la variable dados los siguientes datos:

N°	Ecuación	Variables	N°	Ecuación	Variables
1	$V = \pi r^2 h$	r = 2, h = 1	2	$x = \frac{1}{2}gt^2$	g = 9.8, t = 2
3	$A_1V_1 = A_2V_2$	$V_1 = 3, A_2 = 1, V_2 = 4$	4	$p = \rho g h - \rho g h_o$	$g = 9.8, h_o = 0, \rho = 1, h = 1$
5	F = ma	m = 2, a = 2.2	6	$U = gmy_1$	$g = 9.8, m = 3, y_1 = 1$
7	$sen(\theta) = \frac{v_1}{v_2} sen(\alpha)$	$v_1 = 5, v_2 = 2, \alpha = 30$	8	$\tau = Frsen\phi$	$r = 1, F = 8, \phi = 45$
9	$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$	$d_o = 1.1, d_i = 3$	10	$x^2 = at^2$	a = 4.56, t = 2
11	$v = v_o + at$	$v = 5.43, v_o = 0, a = 4.2$	12	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	a = 1, y = 4, b = 2
13	$y = at^2 + bt + c$	a = 1, b = 2, c = 4, t = 1	14	$U = \frac{1}{2}kx^2$	U = 100, k = 33
15	$\omega = nTln(5)$	n = 1.21, T = 25	16	sen(3x) + cos(5x)	x = 2

Análisis Dimensional (Elija 5 de 9)

Demuestre si las ecuaciones son dimensionalmente correctas o no.

1.
$$t = \frac{a}{x}$$

$$4. \ v = \frac{d}{t}$$
$$5. \ A = \pi x^2$$

7.
$$x = at^2$$

$$2. \ t = xa$$

$$5. \ A = \pi x^2$$

8.
$$v = \frac{2a}{x}$$

3.
$$x = x_o + x_o t + \frac{1}{2}at^2$$

6.
$$V = \frac{1}{3}\pi x^2 h$$

$$9. \ t^3 = v^2 a$$

Conversión de Unidades (Elija 5 de 12)

Convierta las unidades que se le piden a continuación

- 1. 43 cm a m
- 4. $4.4 L a cm^3$
- 7. $3.3 \ cm^2 \ a \ pulg^2$
- 10. $37 \ km^3 \ a \ m^3$

- 2. $360\ h$ a min
- 5. 20 m a pulg
- 8. $78 \ kg/m^3 \ a \ g/cm^3$
- 11. $0.032 \ cm \ a \ pulg$

- 3. $10 \ m^3 \ a \ cm^3$
- 6. $120 \ km/h \ a \ m/s$
- 9. 3 años a minutos
- 12. $54 \ ft \ a \ cm$