Fig. 2: Momentum distribution when $\omega/\varepsilon_0=10.0, \gamma L/\varepsilon_0=1000.0$ after t=10000T evolution. The ratio of amplitude over frequency of shaking is $\gamma/\omega=100.0(1/L)$. In carrying out this calculation, matrices truncated to $n=-4,\cdots,4$ and $m=1,\cdots,6$ such that 54×54 in total. Time taking: about 1200s per plotting. We see that in this regime, momentum distribution at large p obey power law decaying, with power of around -1.2. Numerical fitting gives $\alpha=-1.41,-0.79,-1.68,-1.12,-1.13,-1.28$ for the plotting six cases, respectively.

Fig. 3: Momentum distribution when $\omega/\varepsilon_0=10.0$, $\gamma L/\varepsilon_0=1.0$ after t=10000T evolution. The ratio of amplitude over frequency of shaking is $\gamma/\omega=0.1(L^{-1})$. In carrying out this calculation, matrices truncated to $n=-4,\cdots,4$ and $m=1,\cdots,6$ such that 54×54 in total. Time taking: about 1200s per plotting. In this regime the power law decaying fashion is just like the ground state, with powers a little bit small than -4, around -3.9.

Fig. 4: Momentum distribution when $\omega/\varepsilon_0=0.1$, $\gamma L/\varepsilon_0=1.0$ after t=10000T evolution. The ratio of amplitude over frequency of shaking is $\gamma/\omega=10(L^{-1})$. In carrying out this calculation, matrices truncated to $n=-4,\cdots,4$ and $m=1,\cdots,10$ such that 90×90 in total. Time taking: about 8000s per plotting. We see that in this regime the power law decaying fashion is again deviates from that of what we start—4 power, becoming a fashion with the absolute value of power less than 1. Around -0.88 in the six cases plotted here.

