

Tadh OG_5259 Tadh_TriadT54207 prostaglandin_E_receptor_2 10 metacells TrH2 OG_5259 TrH2_TrispH2_010368-RA prostaglandin_E_receptor_2 metacells Hhon OG_5259 Hhon_g00585.t1 prostaglandin_E_receptor_2 metacells HoiH23 OG_5259 HoiH23_PIH23_009883-RA prostaglandin_E_receptor_2 10 metacells

Tadh OG_6492 Tadh_TriadT51521 neuropeptide_FF_receptor_2,tachykinin_receptor_3 10 metacells TrH2 OG_6492 TrH2_TrispH2_005270-RA neuropeptide_FF_receptor_2,tachykinin_receptor_3 10 metacells Hhon OG_6492 Hhon_g08599.t1 neuropeptide_FF_receptor_2,tachykinin_receptor_3 metacells HoiH23 OG_6492 HoiH23_PIH23_004717-RA neuropeptide_FF_receptor_2,tachykinin_receptor_3 10

metacells

wetacells

Hhon OG_8244 Hhon_g08681.t1

HoiH23 OG_8244 HoiH23_PIH23_008122-RA

Tadh OG_4957 Tadh_TriadT25549 $glutamate_metabotropic_receptor_3, glutamate_metabotropic_receptor_2$ 10 metacells TrH2 OG_4957 TrH2_TrispH2_001843-RA $glutamate_metabotropic_receptor_3, glutamate_metabotropic_receptor_2$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_4957 Hhon_g05852.t1 $glutamate_metabotropic_receptor_3, glutamate_metabotropic_receptor_2$ metacells HoiH23 OG_4957 HoiH23_PIH23_011793-RA $glutamate_metabotropic_receptor_3, glutamate_metabotropic_receptor_2$ 10 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells

Tadh OG_5460 Tadh_TriadT15553 relaxin_family_peptide_receptor_2 10 metacells TrH2 OG_5460 TrH2_TrispH2_006230-RA relaxin_family_peptide_receptor_2 metacells relaxin_family_peptide_receptor_2 Hhon | no data HoiH23 OG_5460 HoiH23_PIH23_007530-RA relaxin_family_peptide_receptor_2 10 metacells

Tadh OG_3039 Tadh_TriadT60495 _family_peptide_receptor_1,thyroid_stimulating_hormone_receptor,relaxin_family_peptide_ 2 metacells TrH2 OG_3039 TrH2_TrispH2_003003-RA _family_peptide_receptor_1,thyroid_stimulating_hormone_receptor,relaxin_family_peptide_ 10 ¬ **Hhon OG_3039** Hhon_g08018.t1 _family_peptide_receptor_1,thyroid_stimulating_hormone_receptor,relaxin_family_peptide_ metacells HoiH23 OG_3039 HoiH23_PIH23_007048-RA _family_peptide_receptor_1,thyroid_stimulating_hormone_receptor,relaxin_family_peptide_ 10 ¬ $^{-4} + ^{0} +$ metacells HoiH23 OG_3039 HoiH23_PIH23_011274-RA _family_peptide_receptor_1,thyroid_stimulating_hormone_receptor,relaxin_family_peptide_ HoiH23 OG_3039 HoiH23_PIH23_011236-RA _family_peptide_receptor_1,thyroid_stimulating_hormone_receptor,relaxin_family_peptide_ $^{-4} + ^{0} +$ metacells HoiH23 OG_3039 HoiH23_PIH23_009011-RA _family_peptide_receptor_1,thyroid_stimulating_hormone_receptor,relaxin_family_peptide_ metacells

Tadh OG_3040 Tadh_TriadT61214 relaxin_family_peptide_receptor_1 metacells Tadh OG_3040 Tadh_TriadT32302 relaxin_family_peptide_receptor_1 metacells TrH2 OG_3040 TrH2_TrispH2_007673-RA relaxin_family_peptide_receptor_1 metacells relaxin_family_peptide_receptor_1 Hhon | no data HoiH23 OG_3040 HoiH23_PIH23_005448-RA relaxin_family_peptide_receptor_1

Tadh_OG_3042 Tadh_TriadT61685 relaxin_family_peptide_receptor_2 TrH2_OG_3042 TrH2_TrispH2_008127-RA relaxin_family_peptide_receptor_2 Trelaxin_family_peptide_receptor_2 Hhon | no data relaxin_family_peptide_receptor_2 HoiH23 | no data

HoiH23 OG_3565 HoiH23_PIH23_009290-RA ne_choriogonadotropin_receptor,relaxin_family_peptide_receptor_1,lumican,leucine_rich_r 2 metacells HoiH23 OG_3565 HoiH23_PIH23_011058-RA metacells HoiH23 OG_3565 HoiH23_PIH23_010881-RA ne_choriogonadotropin_receptor,relaxin_family_peptide_receptor_1,lumican,leucine_rich_r $\begin{smallmatrix} & +4 \\ & +6$ metacells HoiH23 OG_3565 HoiH23_PIH23_010735-RA ne_choriogonadotropin_receptor,relaxin_family_peptide_receptor_1,lumican,leucine_rich_r $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells

Tadh OG_4284 Tadh_TriadT28568 $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells TrH2 OG_4284 TrH2_TrispH2_006906-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_4284 Hhon_g02705.t1 gamma_aminobutyric_acid_type_B_receptor_subunit_2 metacells HoiH23 OG_4284 HoiH23_PIH23_009833-RA $gamma_aminobutyric_acid_type_B_receptor_subunit_2$ 10 metacells

Tadh OG_4857
Tadh_TriadT56077

seceptor_2,pyroglutamylated_RFamide_peptide_receptor,tachykinin_receptor_2,neuropeptid

TriapH2_008512-RA

seceptor_2,pyroglutamylated_RFamide_peptide_receptor,tachykinin_receptor_2,neuropeptid

Metacells

TriapH2_008512-RA

seceptor_2,pyroglutamylated_RFamide_peptide_receptor,tachykinin_receptor_2,neuropeptid

Hhon | no data

Seceptor_2,pyroglutamylated_RFamide_peptide_receptor,tachykinin_receptor_2,neuropeptid

Hhon | no data

Seceptor_2,pyroglutamylated_RFamide_peptide_receptor,tachykinin_receptor_2,neuropeptid

HoiH23 | no data

Tadh OG_5096 Tadh_TriadT15905 $neuropeptide_FF_receptor_1, neuropeptide_FF_receptor_2, tachykinin_receptor_1$ 2 metacells TrH2 OG_5096 TrH2_TrispH2_009523-RA neuropeptide_FF_receptor_1,neuropeptide_FF_receptor_2,tachykinin_receptor_1 metacells **Hhon OG_5096** Hhon_g09718.t1 neuropeptide_FF_receptor_1,neuropeptide_FF_receptor_2,tachykinin_receptor_1 $^{-4}{}^{+}$ metacells HoiH23 OG_5096 HoiH23_PIH23_007263-RA $neuropeptide_FF_receptor_1, neuropeptide_FF_receptor_2, tachykinin_receptor_1$ 2

metacells

 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$

Tadh_TriadT11098 glutamate_metabotropic_receptor_3,glutamate_metabotropic_receptor_1 TrH2 OG_5404 TrH2_TrispH2_001842=RA glutamate_metabotropic_receptor_3,glutamate_metabotropic_receptor_1 metacells glutamate_metabotropic_receptor_3,glutamate_metabotropic_receptor_1 Hhon | no data

Tadh OG_6670 Tadh_TriadT30368 $trace_amine_associated_receptor_8, 5_hydroxytryptamine_receptor_1E$ 10 metacells TrH2 OG_6670 TrH2_TrispH2_010350-RA trace_amine_associated_receptor_8,5_hydroxytryptamine_receptor_1E 10 metacells **Hhon OG_6670** Hhon_g08716.t1 trace_amine_associated_receptor_8,5_hydroxytryptamine_receptor_1E $^{-4}{}^{+}$ metacells HoiH23 OG_6670 HoiH23_PIH23_011433-RA trace_amine_associated_receptor_8,5_hydroxytryptamine_receptor_1E

Tadh OG_7475 Tadh_TriadT55699 $his tamine_receptor_H2, dopamine_receptor_D5$ metacells TrH2 OG_7475 TrH2_TrispH2_001591-RA histamine_receptor_H2,dopamine_receptor_D5 10 $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_7475 Hhon_g08211.t1 histamine_receptor_H2,dopamine_receptor_D5 metacells HoiH23 OG_7475 HoiH23_PIH23_002794-RA $his tamine_receptor_H2, dopamine_receptor_D5$ metacells

TrH2 OG_8799 TrH2_TrispH2_011437_RA relaxin_family_peptide_receptor_2,cubilin metacells Hhon OG_8799 Hhon_g10511.t1 relaxin_family_peptide_receptor_2,cubilin relaxin_family_peptide_receptor_2,cubilin frequency in the company of the company of

histamine_receptor_H2 Tadh | no data TrH2 OG_10030 TrH2_TrispH2_002640-RA histamine_receptor_H2 $\begin{smallmatrix} 1&4&5&5&5&5&5&5\\ 2&5&5&5&5&5&5\\$ metacells Hhon OG_10030 Hhon_g01545.t1 histamine_receptor_H2 metacells HoiH23 OG_10030 HoiH23_PIH23_010279-RA histamine_receptor_H2 metacells

Tadh OG_10733 Tadh_TriadT55871 $adhesion_G_protein_coupled_receptor_L3$ metacells TrH2 OG_10733 TrH2_TrispH2_006681-RA $adhesion_G_protein_coupled_receptor_L3$ 10 metacells Hhon OG_10733 Hhon_g00888.t1 $adhesion_G_protein_coupled_receptor_L3$ metacells Hhon OG_10733 Hhon_g00889.t1 adhesion_G_protein_coupled_receptor_L3 10 -4 + 7525 + 27828 + 2484 + 2882 + 2metacells HoiH23 OG_10733 HoiH23_PIH23_006798-RA $adhesion_G_protein_coupled_receptor_L3$ $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells

Tadh_OG_10771 Tadh_TriadT15639 relaxin_family_peptide_receptor_2 TrH2 OG_10771 TrH2_OT7253_RA relaxin_family_peptide_receptor_2 metacells relaxin_family_peptide_receptor_2 Hhon | no data

Tadh_TriadT57663 ים והמין_ ווומעון ביוסט ein_coupled_receptor_L3,adhesion_G_protein_coupled_receptor_G4,adhesion_G_protein_ 10 ק 2 metacells TrH2 OG_3871 TrH2_TrispH2_004645-RA $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6$ metacells Hhon OG_3871 Hhon_g01812.t1 ا المان ا المان الم $^{-4}{}^{+}$ metacells HoiH23 OG_3871 HoiH23_PIH23_009268-RA ein_coupled_receptor_L3,adhesion_G_protein_coupled_receptor_G4,adhesion_G_protein_ 2 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells

Tadh OG_3871

Tadh OG_4420 Tadh_TriadT55385 aminobutyric_acid_type_B_receptor_subunit_1,gamma_aminobutyric_acid_type_B_receptor_subunit_1,gamma_aminobutyric_acid_type_b_receptor_subunit_1,ga 2 metacells TrH2 OG_4420 TrH2_TrispH2_004695-RA aminobutyric_acid_type_B_receptor_subunit_1,gamma_aminobutyric_acid_type_B_receptor_subunit_1 aminobutyric_acid_type_B_receptor_subunit_1,gamma_aminobutyric_acid_type_B_receptor Hhon | no data HoiH23 OG_4420 HoiH23_PIH23_010723-RA aminobutyric_acid_type_B_receptor_subunit_1,gamma_aminobutyric_acid_type_B_receptor_subunit_1.

Tadh OG_4524 Tadh_TriadT28807 ф 2 metacells TrH2 OG_4524 TrH2_TrispH2_009585-RA testis_associated_actin_remodelling_kinase_2,testis_associated_actin_remodelling_kinase_10_ ф $\begin{smallmatrix} 1&4&5&5&5&5&6\\ 1&4&5&5&5&6\\ 1&4&5&5&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\ 1&4&5&6&6&6&6\\$ metacells Hhon OG_4524 Hhon_g02301.t1 testis_associated_actin_remodelling_kinase_2,testis_associated_actin_remodelling_kinase_10_ ф metacells HoiH23 OG_4524

HoiH23_PIH23_005552-RA

testis_associated_actin_remodelling_kinase_2,testis_associated_actin_remodelling_kinas

Tadh OG_4697 Tadh_TriadT59557 netabotropic_receptor_4,glutamate_metabotropic_receptor_7,glutamate_metabotropic_rece 2 metacells TrH2 OG_4697 TrH2_TrispH2_010123-RA netabotropic_receptor_4,glutamate_metabotropic_receptor_7,glutamate_metabotropic_rece Hhon OG_4697 Hhon_g11145.t1 netabotropic_receptor_4,glutamate_metabotropic_receptor_7,glutamate_metabotropic_rece metacells HoiH23 OG_4697 HoiH23_PIH23_010638-RA etabotropic_receptor_4,glutamate_metabotropic_receptor_7,glutamate_metabotropic_rece $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells HoiH23 OG_4697 HoiH23_PIH23_010637-RA netabotropic_receptor_4,glutamate_metabotropic_receptor_7,glutamate_metabotropic_rece 2 $\begin{smallmatrix} & +4 \\ & +6$

Tadh OG_4745 Tadh_TriadT59519 somatostatin_receptor_1,neuropeptides_B_and_W_receptor_2 10 metacells TrH2 OG_4745 TrH2_TrispH2_009406-RA $somatostatin_receptor_1, neuropeptides_B_and_W_receptor_2$ 10 metacells somatostatin_receptor_1,neuropeptides_B_and_W_receptor_2 Hhon | no data HoiH23 OG_4745 HoiH23_PIH23_006268-RA $somatostatin_receptor_1, neuropeptides_B_and_W_receptor_2$ 10 $^{-4} + ^{0} +$ metacells HoiH23 OG_4745 HoiH23_PIH23_010056-RA $somatostatin_receptor_1, neuropeptides_B_and_W_receptor_2$ 10 HoiH23 OG_4745 HoiH23_PIH23_011063-RA $somatostatin_receptor_1, neuropeptides_B_and_W_receptor_2$ 10 metacells HoiH23 OG_4745 HoiH23_PIH23_010057-RA somatostatin_receptor_1,neuropeptides_B_and_W_receptor_2 $\begin{smallmatrix} & +4 \\ & +6$

opioid_receptor_kappa_1,G_protein_coupled_receptor_21 Tadh | no data TrH2 OG_5203 TrH2_TrispH2_004138-RA $opioid_receptor_kappa_1, G_protein_coupled_receptor_21$ 10 metacells Hhon OG_5203 Hhon_g01680.t1 opioid_receptor_kappa_1,G_protein_coupled_receptor_21 metacells HoiH23 OG_5203 HoiH23_PIH23_003635-RA opioid_receptor_kappa_1,G_protein_coupled_receptor_21 10 metacells

Tadh OG_6157 Tadh_TriadT15459 histamine_receptor_H2 10 metacells TrH2 OG_6157 TrH2_TrispH2_001978-RA histamine_receptor_H2 metacells Hhon OG_6157 Hhon_g00793.t1 histamine_receptor_H2 metacells HoiH23 OG_6157 HoiH23_PIH23_007746-RA histamine_receptor_H2 10 metacells

Tadh OG_6186 Tadh_TriadT60377 $somatostatin_receptor_5, somatostatin_receptor_2, opsin_4$ metacells TrH2 OG_6186 TrH2_TrispH2_010971-RA $somatostatin_receptor_5, somatostatin_receptor_2, opsin_4$ 10 -metacells **Hhon OG_6186** Hhon_g08455.t1 somatostatin_receptor_5,somatostatin_receptor_2,opsin_4 -4 + 7055 + 6052 + 60metacells Hhon OG_6186 Hhon_g08456.t1 somatostatin_receptor_5,somatostatin_receptor_2,opsin_4 10 metacells HoiH23 OG_6186 HoiH23_PIH23_007564-RA $somatostatin_receptor_5, somatostatin_receptor_2, opsin_4$ -4 + 655 + 624 + 644 + 636 + 624 + 624 + 624 + 624 + 624 + 644 +metacells

Tadh OG_6348 Tadh_TriadT56600 relaxin_family_peptide_receptor_2,relaxin_family_peptide_receptor_1 10 metacells TrH2 OG_6348 TrH2_TrispH2_005870-RA relaxin_family_peptide_receptor_2,relaxin_family_peptide_receptor_1 10 metacells **Hhon OG_6348** Hhon_g07568.t1 relaxin_family_peptide_receptor_2,relaxin_family_peptide_receptor_1 $^{-4}{}^{+}$ metacells HoiH23 OG_6348 HoiH23_PIH23_009099-RA relaxin_family_peptide_receptor_2,relaxin_family_peptide_receptor_1 10 metacells

Tadh OG_6410 Tadh_wf_g3864.t1 $glutamate_metabotropic_receptor_3, calcium_sensing_receptor$ metacells TrH2 OG_6410 TrH2_TrispH2_008575-RA $glutamate_metabotropic_receptor_3, calcium_sensing_receptor$ 10 metacells **Hhon OG_6410** Hhon_g08398.t1 $glutamate_metabotropic_receptor_3, calcium_sensing_receptor$ metacells HoiH23 OG_6410 HoiH23_PIH23_005656-RA $glutamate_metabotropic_receptor_3, calcium_sensing_receptor$ metacells

Tadh OG_6482 Tadh_wf_g9560.t1 10 metacells **Tadh OG_6482** Tadh_wf_g9559.t1 10 metacells TrH2 OG_6482 TrH2_TrispH2_009482-RA metacells TrH2 OG_6482 TrH2_TrispH2_011478-RA 10 metacells **Hhon OG_6482** Hhon_g10969.t1 metacells HoiH23 OG_6482 HoiH23_PIH23_011006-RA metacells

Tadh_G_6716 Tadh_TriadT60613 relaxin_family_peptide_receptor_1 Trt2 OG_6716 Trt2_Trispht2_011651-RA relaxin_family_peptide_receptor_1 metacells relaxin_family_peptide_receptor_1 relaxin_family_peptide_receptor_1 Hhon | no data

Tadh OG_6832 Tadh_TriadT55852 ${\bf G_protein_coupled_receptor_161,} adrenoceptor_beta_2$ 10 metacells TrH2 OG_6832 TrH2_TrispH2_010480-RA G_protein_coupled_receptor_161,adrenoceptor_beta_2 10 metacells Hhon OG_6832 Hhon_g00907.t1 G_protein_coupled_receptor_161,adrenoceptor_beta_2 metacells HoiH23 OG_6832 HoiH23_PIH23_009408-RA G_protein_coupled_receptor_161,adrenoceptor_beta_2 10 metacells

Tadh OG_7055 Tadh_TriadT57434 I_peptide_receptor_3,thyroid_stimulating_hormone_receptor,follicle_stimulating_hormone ф 2 -00-0-101-1010-10 metacells TrH2 OG_7055 TrH2_TrispH2_005454-RA I_peptide_receptor_3,thyroid_stimulating_hormone_receptor,follicle_stimulating_hormone metacells Hhon OG_7055 Hhon_g09990.t1 I_peptide_receptor_3,thyroid_stimulating_hormone_receptor,follicle_stimulating_hormone_ $^{-4}{}^{+}$ metacells HoiH23 OG_7055 HoiH23_PIH23_007888-RA I_peptide_receptor_3,thyroid_stimulating_hormone_receptor,follicle_stimulating_hormone 2

Tadh OG_7398
Tadh_TriadT55500
aminobutyric_acid_type_B_receptor_subunit_2,gamma_aminobutyric_acid_type_B_receptor_subunit_2.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_acid_type_B_receptor_subunit_3.gamma_aminobutyric_aci

 $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$

Tadh OG_7796 Tadh_TriadT50028 cyclin_dependent_kinase_14 10 metacells TrH2 OG_7796 TrH2_TrispH2_001228-RA cyclin_dependent_kinase_14 metacells Hhon OG_7796 Hhon_g04137.t1 cyclin_dependent_kinase_14 metacells HoiH23 OG_7796 HoiH23_PIH23_003063-RA cyclin_dependent_kinase_14 10 metacells

Tadh OG_8260 Tadh_TriadT33970 histamine_receptor_H2,5_hydroxytryptamine_receptor_4 10 metacells TrH2 OG_8260 TrH2_TrispH2_010189-RA histamine_receptor_H2,5_hydroxytryptamine_receptor_4 10 metacells Hhon OG_8260 Hhon_g05113.t1 histamine_receptor_H2,5_hydroxytryptamine_receptor_4 metacells HoiH23 OG_8260 HoiH23_PIH23_008391-RA $his tamine_receptor_H2, 5_hydroxytryptamine_receptor_4$ metacells

Tadh OG_8494 Tadh_TriadT62091 led_receptor_19,hypocretin_receptor_2,G_protein_coupled_receptor_84,cholinergic_recep 2 metacells TrH2 OG_8494 TrH2_TrispH2_007566-RA led_receptor_19,hypocretin_receptor_2,G_protein_coupled_receptor_84,cholinergic_recep Hhon OG_8494 Hhon_g06504.t1 led_receptor_19,hypocretin_receptor_2,G_protein_coupled_receptor_84,cholinergic_recep metacells Hhon OG_8494 Hhon_g06505.t1 led_receptor_19,hypocretin_receptor_2,G_protein_coupled_receptor_84,cholinergic_recep metacells led_receptor_19,hypocretin_receptor_2,G_protein_coupled_receptor_84,cholinergic_recep HoiH23 | no data

$calcium_calmodulin_dependent_protein_kinase_II_delta$ Tadh | no data TrH2 OG_8606 TrH2_TrispH2_009489-RA $calcium_calmodulin_dependent_protein_kinase_II_delta$ 10 metacells **Hhon OG_8606** Hhon_g07025.t1 calcium_calmodulin_dependent_protein_kinase_ll_delta metacells HoiH23 OG_8606 HoiH23_PIH23_009894-RA $calcium_calmodulin_dependent_protein_kinase_II_delta$ metacells

Tadh OG_8651 Tadh_TriadT60482 adrenoceptor_alpha_1A 10 metacells TrH2 OG_8651 TrH2_TrispH2_002993-RA adrenoceptor_alpha_1A metacells Hhon OG_8651 Hhon_g03896.t1 adrenoceptor_alpha_1A metacells HoiH23 OG_8651 HoiH23_PIH23_004882-RA adrenoceptor_alpha_1A 10 metacells

Tadh OG_8751 Tadh_TriadT61720 5_hydroxytryptamine_receptor_6,adrenoceptor_alpha_1A,adenosine_A1_receptor 2 metacells TrH2 OG_8751 TrH2_TrispH2_011013-RA 5_hydroxytryptamine_receptor_6,adrenoceptor_alpha_1A,adenosine_A1_receptor_10 ¬ metacells Hhon OG_8751 Hhon_g11529.t1 5_hydroxytryptamine_receptor_6,adrenoceptor_alpha_1A,adenosine_A1_receptor $^{-4}{}^{+}$ metacells 5_hydroxytryptamine_receptor_6,adrenoceptor_alpha_1A,adenosine_A1_receptor HoiH23 | no data

Tadh OG_9243
Tadh_wf_g7613.t1

eptor_5,trace_amine_associated_receptor_1,olfactory_receptor_family_51_subfamily_B_m

metacells

TrH2 OG_9243
TrH2_TrispH2_006526=RA

eptor_5,trace_amine_associated_receptor_1,olfactory_receptor_family_51_subfamily_B_m

metacells

metacells

metacells

metacells

metacells

metacells

neuropeptide_FF_receptor_1 TrH2 OG_9364 TrH2 TrispH2_010623-RA neuropeptide_FF_receptor_1 metacells Hhon OG_9364 Hhon_g04570.t1 neuropeptide_FF_receptor_1 metacells HoiH23_OG_9364 HoiH23_OG_9364 HoiH23_PIH23_003405-RA neuropeptide_FF_receptor_1

Tadh OG_9940 Tadh_TriadT57366 2 metacells TrH2 OG_9940 TrH2_TrispH2_005100-RA matostatin_receptor_1,pyroglutamylated_RFamide_peptide_receptor,neuropeptide_FF_rece Hhon OG_9940 Hhon_g11044.t1 matostatin_receptor_1,pyroglutamylated_RFamide_peptide_receptor,neuropeptide_FF_rece $^{-4}{}^{+}$ metacells HoiH23 OG_9940 HoiH23_PIH23_001363-RA matostatin_receptor_1,pyroglutamylated_RFamide_peptide_receptor,neuropeptide_FF_rece $^{-4} \\ \text{$^{+2}$} \\ \text{$^{+2}$ metacells

Tadh_oG_10548 Tadh_wf_g9552.t1 5_hydroxytryptamine_receptor_1D metacells TrH2 OG_10548 TrH2_TrispH2_011185-RA 5_hydroxytryptamine_receptor_1D metacells 5_hydroxytryptamine_receptor_1D Hhon | no data