Analyse

Calcul asymptotique

Question 1/26

$$u_n = \Omega(v_n)$$

Définition avec les suites si (v_n) ne s'annule pas

Réponse 1/26

$$\exists (\mu_n), \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ u_n = \mu_n v_n$$

Avec (μ_n) minorée

Question 2/26

$$u_n = \mathcal{O}(1)$$

Réponse 2/26

 (u_n) est borné

Question 3/26

$$u_n \sim v_n$$

Réponse 3/26

$$u_n = v_n + o(v_n)$$

Question 4/26

$$u_n = \Omega(v_n)$$
 Définition avec O

Réponse 4/26

$$v_n = \mathcal{O}(u_n)$$

Question 5/26

Formule de Stirling

Réponse 5/26

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Question 6/26

$$u_n \sim u_n'$$
$$a \in \mathbb{R}$$

Réponse 6/26

$$u_n^a \sim v_n^a$$

Question 7/26

$$u_n \sim u_n' \wedge v_n \sim v_n'$$

Réponse 7/26

$$u_n v_n \sim u_n' v_n'$$

Question 8/26

$$u_n = \Theta(v_n)$$

Définition avec un encadrement

Réponse 8/26

$$\exists (M, M') \in (\mathbb{R}_+)^2, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0$$
$$M|v_n| \leqslant |u_n| \leqslant M'|v_n|$$

Question 9/26

Transitivité de o et O

Réponse 9/26

$$u_n = O(v_n) \land v_n = O(w_n) \Rightarrow u_n = O(w_n)$$

$$u_n = o(v_n) \land v_n = o(w_n) \Rightarrow u_n = o(w_n)$$

$$u_n = o(v_n) \land v_n = O(w_n) \Rightarrow u_n = o(w_n)$$

$$u_n = O(v_n) \land v_n = o(w_n) \Rightarrow u_n = o(w_n)$$

Question 10/26

Implication entre o et O

Réponse 10/26

$$u_n = o(v_n) \Rightarrow u_n = O(v_n)$$

Question 11/26

$$u_n = o(1)$$

Réponse 11/26

 (u_n) tend vers 0

Question 12/26

$$u_n = \Theta(v_n)$$

Définition avec O et Ω

Réponse 12/26

$$u_n = \mathcal{O}(v_n) \wedge u_n = \Omega(v_n)$$

Question 13/26

$$u_n \sim u_n' \wedge v_n \sim v_n'$$
$$u_n = o(v_n)$$

Réponse 13/26

$$u_n' = o(v_n')$$

Question 14/26

$$u_n = o(v_n)$$

Définition avec les suites

Réponse 14/26

$$\exists (\varepsilon_n), \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ u_n = \varepsilon_n v_n$$

Avec $\lim_{n \to \infty} (\varepsilon_n) = 0$

Question 15/26

$$u_n = \Theta(v_n)$$
 Définition avec les suites

Réponse 15/26

$$\exists (\mu_n), \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ u_n = \mu_n v_n$$

Avec $\forall n \in \mathbb{N}, \ 0 < \varepsilon \leqslant \mu_n \leqslant M$

Question 16/26

$$u_n = o(v_n)$$

Définition avec un epsilon

Réponse 16/26

$$\forall \varepsilon \in \mathbb{R}_+, \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, |u_n| \leqslant \varepsilon |v_n|$$

Question 17/26

Equivalent d'un polynôme P de degré $d = \deg(P)$ et de monôme dominant $a_d X^d$

Réponse 17/26

$$P(n) \sim a_d n^d$$

Question 18/26

$$u_n = \Omega(v_n)$$

Définition avec un minorant

Réponse 18/26

$$\exists M \in \mathbb{R}_+, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |u_n| \geqslant M|v_n|$$

Question 19/26

$$u_n \sim u_n' \wedge v_n \sim v_n'$$

Avec (v_n) qui ne s'annule pas à partir d'un certain rang

Réponse 19/26

$$\frac{u_n}{v_n} \sim \frac{u_n'}{v_n'}$$

Question 20/26

Sommes de o et O

Réponse 20/26

$$u_n = o(w_n) \land v_n = o(w_n) \Rightarrow u_n + v_n = o(w_n)$$

$$u_n = O(w_n) \land v_n = O(w_n) \Rightarrow u_n + v_n = O(w_n)$$

$$u_n = o(w_n) \land v_n = O(w_n) \Rightarrow u_n + v_n = O(w_n)$$

$$u_n = O(w_n) \land v_n = o(w_n) \Rightarrow u_n + v_n = O(w_n)$$

Question 21/26

$$u_n = O(v_n)$$

Définition avec un majorant

Réponse 21/26

$$\exists M \in \mathbb{R}_+, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |u_n| \leqslant M|v_n|$$

Question 22/26

$$u_n = O(v_n)$$

Définition avec les suites

Réponse 22/26

$$\exists (\mu_n), \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ u_n = \mu_n v_n$$

Avec (μ_n) bornée

Question 23/26

Équivalents classiques

Réponse 23/26
$\ln(1+x) \sim x$
$e^x - 1 \sim x$

Pour $a \neq 0$

 $\sin(x) \sim x$

 $\cos(x) - 1 \sim -\frac{x^2}{2}$

$$e^{x} - 1 \sim x$$
Pour $a \neq 0$

$$(1+x)^{a} - 1 \sim ax$$

$$ch(x) - 1 \sim \frac{x^2}{2}$$

$$th(x) \sim x$$

 $\tan(x) \sim x$

 $sh(x) \sim x$

$$\sigma$$

 $\arctan(x) \sim x$

$$th(x) \sim x$$

$$\arcsin(x) \sim x$$

$$x$$

Question 24/26

$$u_n = \ell + \mathrm{o}(1)$$

Réponse 24/26

$$\lim_{n\to\infty}(u_n)=\ell$$

Question 25/26

Produits de o et O

Réponse 25/26

$$u_n = o(w_n) \land v_n = o(x_n) \Rightarrow u_n v_n = o(w_n x_n)$$

$$u_n = O(w_n) \land v_n = o(x_n) \Rightarrow u_n v_n = o(w_n x_n)$$

$$u_n = o(w_n) \land v_n = O(x_n) \Rightarrow u_n v_n = o(w_n x_n)$$

$$u_n = O(w_n) \land v_n = O(x_n) \Rightarrow u_n v_n = O(w_n x_n)$$

$$w_n o(x_n) = o(w_n x_n)$$

$$w_n O(x_n) = O(w_n x_n)$$

Question 26/26

$$u_n \sim v_n$$

Réponse 26/26

$$\lim_{n \to \infty} \left(\frac{u_n}{v_n} \right) = 1$$