Chapitre 12

II Exercice 2

Table des matières

I Exercice 3	1
II Exercice 2	1
III Exercice 6	2
IV Exercice 7	2
V Exercice 12	2
VI Exercice 19	3
VII Exercice 20	3
VIII Exercice 10	4
IX Exercice 15	5

Première partie

Exercice 3

```
Soit f: \mathbb{C}_* \to \mathbb{R}_* un isomorphisme. i^2 = -1 donc f(i^2) = f(-1) donc f(i)^2 = f(-1) (-1)^2 = 1 donc f\left((-1)^2\right) = f(1) = 1 donc f(-1)^2 = 1 donc f(-1) = \pm 1 Or, f(-1) = 1 \iff f(-1) = f(1) \iff -1 = 1: une contradiction Donc, \underbrace{f(i)^2}_{>0} = -1 une contradiction aussi
```

Deuxième partie

Exercice 2

 $1. \ "i \implies ii"$

$$\forall a, b \in G, (ab)^2 = abab$$
$$= aabb$$
$$= a^2b^2$$

" $ii \implies i$ "

$$\forall (a,b) \in G^2, abab = a^2b^2$$

$$\operatorname{donc} bab = ab^2$$

$$\operatorname{donc} ba = ab$$

V Exercice 12

$$\forall a,b \in G, (a,b)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$$
 " $iii \implies i$ "
$$\forall a,b \in G, ab = \left(b^{-1}a^{-1}\right)^{-1} = \left(b^{-1}\right)^{-1} = ba$$
 2. Soit $a,b \in G$
$$- (a,b)^2 = e$$

$$- a^2b^2 = e \cdot e = e$$
 Donc, $(a,b)^2 = a^2b^2$ donc G est abélien

Troisième partie

Exercice 6

$$\langle 1 \rangle = \mathbb{Z}$$
 à prouver avec $\mathbb{Z} \subset \langle 1 \rangle \subset \mathbb{Z}$ $\langle 2 \rangle = 2\mathbb{Z}$

Quatrième partie

Exercice 7

Soit $f:(\mathbb{Q},+)\to(\mathbb{Q}_*,\times)$ un isomorphisme.

On pose

$$\begin{cases} a = f^{-1}(2) \in \mathbb{Q} \\ b = \frac{a}{2} \in \mathbb{Q} \end{cases}$$

Domme a=2b, on a $2=f(a)=f(b+b)=f(b)\times f(b)=f(b)^2$ Donc, $f(b)=\pm\sqrt{2}$. Or, $f(b)\in\mathbb{Q}_*$. 4

Cinquième partie

Exercice 12

 $G \cap \mathbb{R}_*^+ \neq \emptyset$ minoré par 0 donc a existe

1.
$$a = \min(G \cap \mathbb{R}^+_*)$$
. On adapte l'exercice 5. Soit $g \in G$ On pose $q = \left\lfloor \frac{g}{a} \right\rfloor \in \mathbb{Z}$ et $r = g - qa \in G$ Or, $q \leqslant \frac{g}{a}$ donc $aq \leqslant g$ donc $r \geqslant 0$
$$\frac{g}{a} < q + 1 \text{ donc } g < aq + a \text{ donc } r < a$$
 Si $r > 0$, alors
$$\begin{cases} r \in G \cap \mathbb{R}^+_* \\ r < a \leqslant r : \text{ une contradiction } \not \in G \text{ donc } g = aq \text{ avec } q \in \mathbb{Z} \text{ donc } g \in a\mathbb{Z} \text{ donc } g \in a\mathbb{Z} \text{ donc } g \in a\mathbb{Z} \text{ donc } g = a\mathbb{Z} \text{ donc }$$

2. Soit $g \in G \cap \mathbb{R}_*^+$. Comme $a \notin (G \cap \mathbb{R}_*^+), g \neq a$

Or, $g \geqslant a$ donc g > a donc g ne minore pas $G \cap \mathbb{R}_*^+$ donc il existe $g_1 \in G \cap \mathbb{R}_*^+$ tel que

De cette façon, on fabrique une suite (g_n) strictement décroissante minorée par a. Donc

$$(g_n)$$
 converge. On pose $\ell = \lim_{n \to +\infty} g_n$
Donc $\underbrace{g_{n+1} - g_n}_{\in G} \xrightarrow[n \to +\infty]{} \ell - \ell = 0$

On vient de trouver une suite $(g_{n+1}-g_n)_{n\in\mathbb{N}_*}$ de G qui converge vers 0. Donc a=0 Soit I=]a,b[et $g\in G$ tel que 0< g< b-a

On pose
$$n = \begin{bmatrix} a \\ g \end{bmatrix}$$
. On a donc

$$n \leqslant \frac{a}{g} < n+1$$

donc $ng \leqslant a < g(n+1)$.

$$g(n+1) = ng + g \leqslant a + g < a+b-a < b$$

donc $(n+1) \in]a,b[\cap G]$

Sixième partie

Exercice 19

Soit $a \in A \setminus \{0\}$

$$f: A \longrightarrow A$$
$$x \longmapsto ax$$

 $1 \in \operatorname{Im}(f)$?

— Soient $x, y \in A$

$$f(x+y) = a(x+y)ax + ay = f(x) + f(y)$$

donc f est un endomorphisme de (A, +)

Soit $x \in A$

$$x \in \text{Ker}(f) \iff f(x) = 0$$

 $\iff ax = 0$
 $\iff a = 0 \text{ ou } x = 0$
 $\iff x = 0$

 $Ker(f) = \{0\}$ donc f est injective. Comme A est fini, f est bijective donc $Im = A \ni 1$

Septième partie

Exercice 20

Analyse: Soit $\mathbb{K} = (\{0, 1, a, b\}, +, \times)$ un corps à 4 éléments.

+	0	1	a	b	
0	0	1	a	b	
1	1	b 0	0	a	
a	a	0	b 1	1	
b	b	a a	1	0	

×	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

$$a^{2} = b \neq 1$$

$$b^{2} = a \neq 1$$

$$\implies -1 \notin \{0, a, b\}$$

$$\implies -1 = 1$$

$$\implies 1 + 1 = 0$$

$$a + a = a(1+1)$$
$$= a \times 0$$
$$= 0$$

Donc, $\mathbb{K} = \{0, 1, a, a^{-1}\}$: le sous-corps engendré par a

+	0	1	a	a^{-1}
0	0	1	a	a^{-1}
1	1	0	a^{-1}	a
a	a	a^{-1}	0	1
a^{-1}	a^{-1}	a	1	0

×	0	1	a	a^{-1}
0	0	0	0	0
1	0	1	a	a^{-1}
a	0	a	a^{-1}	1
a^{-1}	0	a^{-1}	1	a

Synthèse : Il faut vérifier que

- + est associative
 × est associative
- la distributivité

Huitième partie

Exercice 10

$$\mathbb{Z}[i] = \{a + ib \mid (a, b) \in \mathbb{Z}^2\}$$

 $-- \ \mathbb{Z}[i] \subset \mathbb{C}$

IX Exercice 15

— Soient $u, v \in \mathbb{Z}[i]$. On pose u = a + ib et v = c + id avec $(a, b, c, d) \in \mathbb{Z}^4$.

$$u+v = \underbrace{(a+c)}_{\in \mathbb{Z}} + i \underbrace{(b+d)}_{\in \mathbb{Z}} \in \mathbb{Z}[i]$$
$$uv = \underbrace{(ac-bd)}_{\in \mathbb{Z}} + i \underbrace{(ad+bc)}_{\in \mathbb{Z}} \in \mathbb{Z}[i]$$

$$-u = -a - ib \in \mathbb{Z}[i]$$

$$0 = 0 + i \times 0 \in \mathbb{Z}[i]$$

$$= 1 + i \times 0 \in \mathbb{Z}[i]$$

$$\begin{split} & - \text{ Soit } u \in \mathbb{Z}[i]^{\times}. \text{ On sait qu'il existe } v \in \mathbb{Z}[i] \text{ tel que } uv = 1. \\ & \text{Donc, } |u|^2 |v|^2 = |uv|^2 = 1^2 = 1 \\ & \text{Comme } u \in \mathbb{Z}[i], |u|^2 = \mathfrak{Re}(u)^2 + \mathfrak{Im}(u)^2 \in \mathbb{N} \\ & \text{De même, } |v|^2 \in \mathbb{N} \\ & \text{Donc, } |u|^2 = 1. \\ & \text{On pose } u = a + ib, (a, b) \in \mathbb{Z}^2. \text{ On a } a^2 + b^2 = 1 \\ & \text{donc } \begin{cases} 0 \leqslant a^2 \leqslant 1 \\ 0 \leqslant b^2 \leqslant 1 \end{cases} \\ & \text{Donc, } \begin{cases} a^2 \in \{0, 1\} \\ b^2 \in \{0, 1\} \\ a^2 + b^2 = 1 \end{cases} \\ & \text{Donc, } u \in \{\pm i, \pm 1\} \end{cases}$$

$$1^{-1} = 1 \in \mathbb{Z}[i]$$
$$(-1)^{-1} = -1 \in \mathbb{Z}[i]$$
$$i^{-1} = -i \in \mathbb{Z}[i]$$
$$(-i)^{-1} = i \in \mathbb{Z}[i]$$

Autre méthode $u \in \mathbb{Z}[i] \setminus \{0\}$. u = a + ib avec $a, b \in \mathbb{Z}$.

$$\frac{1}{u} \in \mathbb{Z}[i] \iff \frac{1}{a+ib} \in \mathbb{Z}[i]$$

$$\iff \frac{a-ib}{a^2-b^2} \in \mathbb{Z}[i]$$

$$\iff \begin{cases} \frac{a}{a^2+b^2} \in \mathbb{Z} \\ \frac{-b}{a^2+b^2} \in \mathbb{Z} \end{cases}$$

$$\iff \begin{cases} a^2+b^2 \mid a \\ a^2+b^2 \mid b \end{cases}$$

$$\implies \begin{cases} a^2+b^2 \leqslant |a| \\ a^2+b^2 \leqslant |b| \end{cases}$$

$$\implies \begin{cases} a \in \{0,1,-1\} \\ b \in \{0,1,-1\} \\ a^2+b^2 = 1 \end{cases}$$

Neuvième partie

Exercice 15

 $f:\mathbb{C}\longrightarrow\mathbb{C}$ morphisme d'anneaux $f_{\mathbb{R}}=\mathrm{id}_{\mathbb{R}}$

IX Exercice 15

Soit $z \in \mathbb{C}$. On pose z = a + ib, $(a, b) \in \mathbb{R}^2$

$$f(z) = f(a+ib)$$

$$= f(a) + f(ib)$$

$$= a + f(i)f(b)$$

$$= a + bf(i)$$

$$i^2=-1$$
donc $f\left(i^2\right)=f(-1)=-1$ donc $f(i)^2=-1$ donc $f(i)\in\{i,-i\}$ Donc $f\in\{\mathrm{id}_{\mathbb C},z\mapsto\overline{z}\}$