Algebra: Internal Exam-3 (Total Marks - 16)

PARTA

- 1. State fundamental theorem of finitely generated Abelian group. (1 mark)
- 2. Define maximal ideal and give an example. (1 mark)

PART B (Answer all questions from 3 to 6 and any two questions 7, 8 and 9)

- 3. Find all maximal ideal of $\mathbb{Z}_8 \times \mathbb{Z}_{30}$. (1 mark)
- 4. Let R be a commutative ring and suppose that A is an ideal of R. Let $N(A) = \{x \in R : x^n \in A \text{ for some } n\}$. Prove
 - a. N(A) is an ideal of R which contains A. (3 marks)
 - b. N(N(A)) = N(A). (2 marks)

The ideal N(A) is often called the radical of A.

- 5. Is $\{(2,1),(4,1)\}$ a basis for $\mathbb{Z}\times\mathbb{Z}$? Prove your assertion. (1 mark)
- 6. Show that if G and G' are free abelian groups, then $G \times G'$ is free abelian. (3 marks)
- 7. Show that $\phi: \mathbb{C} \to \mathbb{R}$ given by $\phi(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ for $a, b \in R$ gives an isomorphism of \mathbb{C} with the subring $\phi(\mathbb{C})$ of $M_2(R)$. (2 marks)
- 8. Is $Q[X]/\langle x^2 6x + 6 \rangle$ a field? Why?. (2marks)
- 9. Let $R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}_2 \right\}$ with ordinary matrix addition and multiplication modulo 2. Show that $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} r : r \in R \right\}$ is not an ideal of R. (2 marks)

Algebra: Assignment Exam (Total Marks - 8)

Answer all questions.

1. Which of the following is an irreducible factor of $x^{12} - 1$ over Q.

(a.)
$$x^8 + x^4 + 1$$

(b.)
$$x^4 + 1$$

(c.)
$$x^4 - x^2 + 1$$

(b.)
$$x^4 + 1$$

(d.) $x^5 - x^4 + x^3 - x^2 + x - 1$.

- (2 marks)
- 2. Find all prime ideals and all maximal ideals of \mathbb{Z}_6 (1 mark).
- 3. Determine whether the polynomial $8x^3 + 6x^2 9x + 24$ in $\mathbb{Z}[X]$ satisfies an Eisenstein criterion for irreducibility over Q. (1 mark)
- 4. Mark true/false with justification.
 - a. \mathbb{Q} is an ideal in \mathbb{R} . (1 mark)
 - b. A maximal ideal of a ring R is an ideal that is not contained in any other ideal of R. (1 mark)
 - c. The only ideals of a field F is $\{0\}$ and F itself. (1 mark)
 - d. The intersection of two prime ideals is prime ideal. (1 mark)