Precise Definition of Limit with Non-Linear Functions

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about x_0 for which |f(x) - L| was less than ϵ was symmetric about x_0 and we could take δ to be half the length of that interval. When such symmetry is absent, as it usually is, we can take δ to be the distance from x_0 to the interval's *nearer* endpoint.

EXAMPLE 4 For the limit $\lim_{x\to 5} \sqrt{x-1} = 2$, find a $\delta > 0$ that works for $\epsilon = 1$. That is, find a $\delta > 0$ such that for all x

$$0 < |x - 5| < \delta$$
 \Rightarrow $|\sqrt{x - 1} - 2| < 1$.

Solution We organize the search into two steps, as discussed below.

1. Solve the inequality $|\sqrt{x-1}-2| < 1$ to find an interval containing $x_0 = 5$ on which the inequality holds for all $x \neq x_0$.

$$|\sqrt{x-1} - 2| < 1$$

$$-1 < \sqrt{x-1} - 2 < 1$$

$$1 < \sqrt{x-1} < 3$$

$$1 < x-1 < 9$$

$$2 < x < 10$$

The inequality holds for all x in the open interval (2, 10), so it holds for all $x \neq 5$ in this interval as well.

2. Find a value of $\delta > 0$ to place the centered interval $5 - \delta < x < 5 + \delta$ (centered at $x_0 = 5$) inside the interval (2, 10). The distance from 5 to the nearer endpoint of (2, 10) is 3 (Figure 2.21). If we take $\delta = 3$ or any smaller positive number, then the inequality $0 < |x - 5| < \delta$ will automatically place x between 2 and 10 to make $|\sqrt{x - 1} - 2| < 1$ (Figure 2.22):

$$0 < |x - 5| < 3 \implies |\sqrt{x - 1} - 2| < 1.$$

FIGURE 2.21 An open interval of radius 3 about $x_0 = 5$ will lie inside the open interval (2, 10).

FIGURE 2.22 The function and intervals in Example 4.

NOT TO SCALE

How to Find Algebraically a δ for a Given f, L, x_0 , and $\epsilon > 0$

The process of finding a $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$

can be accomplished in two steps.

- 1. Solve the inequality $|f(x) L| < \epsilon$ to find an open interval (a, b) containing x_0 on which the inequality holds for all $x \neq x_0$.
- Find a value of δ > 0 that places the open interval (x₀ − δ, x₀ + δ) centered at x₀ inside the interval (a, b). The inequality |f(x) − L| < ε will hold for all x ≠ x₀ in this δ-interval.

FIGURE 2.23 An interval containing x = 2 so that the function in Example 5 satisfies $|f(x) - 4| < \epsilon$.

EXAMPLE 5 Prove that $\lim_{x\to 2} f(x) = 4$ if

$$f(x) = \begin{cases} x^2, & x \neq 2 \\ 1, & x = 2. \end{cases}$$

Solution Our task is to show that given $\epsilon > 0$ there exists a $\delta > 0$ such that for all x

$$0 < |x - 2| < \delta \implies |f(x) - 4| < \epsilon$$
.

1. Solve the inequality $|f(x) - 4| < \epsilon$ to find an open interval containing $x_0 = 2$ on which the inequality holds for all $x \neq x_0$.

For $x \neq x_0 = 2$, we have $f(x) = x^2$, and the inequality to solve is $|x^2 - 4| < \epsilon$:

$$\begin{aligned} |x^2-4| &< \epsilon \\ -\epsilon &< x^2-4 < \epsilon \\ 4-\epsilon &< x^2 < 4+\epsilon \\ \sqrt{4-\epsilon} &< |x| < \sqrt{4+\epsilon} \end{aligned} \qquad \begin{array}{l} \text{Assumes } \epsilon < 4; \text{ see below.} \\ \text{An open interval about } x_0 = 2 \\ \text{that solves the inequality} \end{aligned}$$

The inequality $|f(x) - 4| < \epsilon$ holds for all $x \neq 2$ in the open interval $(\sqrt{4 - \epsilon}, \sqrt{4 + \epsilon})$ (Figure 2.23).

2. Find a value of $\delta > 0$ that places the centered interval $(2 - \delta, 2 + \delta)$ inside the interval $(\sqrt{4 - \epsilon}, \sqrt{4 + \epsilon})$.

Take δ to be the distance from $x_0=2$ to the nearer endpoint of $\left(\sqrt{4-\epsilon},\sqrt{4+\epsilon}\right)$. In other words, take $\delta=\min\left\{2-\sqrt{4-\epsilon},\sqrt{4+\epsilon}-2\right\}$, the *minimum* (the smaller) of the two numbers $2-\sqrt{4-\epsilon}$ and $\sqrt{4+\epsilon}-2$. If δ has this or any smaller positive value, the inequality $0<|x-2|<\delta$ will automatically place x between $\sqrt{4-\epsilon}$ and $\sqrt{4+\epsilon}$ to make $|f(x)-4|<\epsilon$. For all x,

$$0 < |x-2| < \delta \implies |f(x)-4| < \epsilon.$$

This completes the proof for $\epsilon < 4$.

If $\epsilon \ge 4$, then we take δ to be the distance from $x_0 = 2$ to the nearer endpoint of the interval $(0, \sqrt{4 + \epsilon})$. In other words, take $\delta = \min \{2, \sqrt{4 + \epsilon} - 2\}$. (See Figure 2.23.)