Miami '09 - Kontsarch I
Geom 6 Alg aspeck of WCF
Today: Hyperhaller geometry + other things
lattice 1 = Zd I'm local south
1=25 u & paramete spro.
For youric u get a fan D: [= > Z (diesn't stag the same - there are some malls)
where does this appear?
DAGGine structures Bassymptotic of SYZ collapse (u/Yon?)
- 1'2\
(5 vs y gange to (6 vs y gange to (7 3- Loig (8) Alg-Alana + DT Herrent for 3C7
PAG-thony of DT INVANIET, for 3C7.
Suppose Xx, family of CY infolds (any dis.)
Je, ge cymetric
C->0 munual degeneration of complex muli-
Ham (Xz, 9=) = 1.
TN D Josi
B ding B=n= ding X

Gross-Siebert generalise to higher devenous 5.t its
for amy form original metric / physics where trees
are gradient flows.

we need to solve real Marge-Ampère egés.

no explicit formulas in general. CALEPIAN X - hyper habler-infolds. I mkeginble 3 ((,a) (espolex,

symplexity = co)

symplexity (agrangian

generic files Lagrangian

Belian variety (dispersion) ~7 7 affine duder. For variety. [) server Re(I') II-rank dim B=Zn (sJE ?)

Sp(2n, Z) K R2n 8; & H. (6/20/12) metric, films prosing polaress ansi soi nomi kahler form on 3. ase Y= K3 1-parameter family of offere structures, manely was real by years wheney

here, hy.	4 tras
noncompted example: S	liberg-with curve.
Fu: 42 - x2-	u ell-curum. a son dody
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5
	halls for
U 1	malls for given 4. polak 4.
- "The property of the propert	Jrung -
Ta, : x> x(1-:	x
y> y()-	× 30°)
\wedge	2 7 1 1, 2 7, 3
$(x_z)^{-1}$	1,1 3,2 2,1 60.
(X, Z)	() 7, 14)
(sym +	·

3 DE CY aufold M (M) . I will of intermediate Tacobsons

elfos. pt 3 (M, E)/=2, 13 + 13 (4. II)

pseudo

M. Mioveski (+++-) by yee ke ble melin