Proyecciones Vol. 17, Nº 1, pp. 13-21, July 1998 Universidad Católica del Norte Antofagasta - Chile

DOI: 10.22199/S07160917.1998.0001.00002

MÉTRIQUES DE LORENTZ ZOLL SUR LA SURFACE DE DE SITTER

BOUCETTA MOHAMED Universite Cadi Ayyad, Marrakech-Maroc

Abstract

In this paper, we will built a Lorentzian surfaces (S,g) homeomorphe but not isometric to de Sitter surface and whose all geodesics of space type are periodic with the same length 2π . This gives lorentzian analogue to Zoll surfaces.

1. Introduction

L'une des propriétés remarquables de la sphère (S^n, can) , munie de sa métrique riemannienne canonique, est que toutes les géodésiques de celle-ci sont périodiques et de même longueur 2π . Dans [3], Zoll a construit une surface de révolution homéomorphe à la sphère S^2 et munie d'une métrique riemannienne non isométrique à la métrique canonique et dont toutes les géodésiques sont périodiques et de même longueur.

Les métriques de Zoll sur la sphère S^2 ont suscité l'intérét des mathématiciens au début de ce siécle et ont donné naissance à beaucoup de problèmes mathématiques dont la plupart sont encore ouverts (voir [2] pp.11).

L'analogue lorentzien de la sphère euclidienne S^n est l'espace de de Sitter défini comme suit. Dans l'espace de Minkowski de dimension n+1 (avec la métrique lorentzienne plate donnée par $< x, x >= x_0^2 + \ldots + x_{n-1}^2 - x_n^2$), c'est l'hyperboloïde à une nappe d'équation < x, x >= 1, munie de la métrique induite qui est bien sûr de type (n,1). Pour cette métrique, les géodésiques de type espace sont fermées et de même longueur 2π .

L'espace de de Sitter ainsi défini sera noté (L^n, can) .

Généralisant et imitant la construction de Zoll, nous allons établir le théorème suivant:

Théorème 1.1 : Il existe une surface Lorentzienne (S,g) vérifiant les propriétés suivantes:

- 1- S est homéomorphe à la surface de de Sitter L^2 .
- 2- Toutes les géodésiques de type espace de g sont périodiques et de même longueur 2π .
 - 3- (S, g) n'est pas isométrique à (L^2, can) .

Les métriques de Lorentz-Zoll sur la surface de de Sitter, construite dans le théorème ci-dessus, permettrons d'énoncer l'analogue lorentzien des proplèmes soulevés par les métriques de Zoll et, peut être, aideront à mieux comprendre ces derniers.

Le reste de ce papier sera consacré à la démonstration du théorème ci-dessus et se déroulera selon le plan suivant:

- Construire une surface lorentzienne (S, g) homéomorphe à L^2 .
- Donner une condition suffisante pour que les géodésiques de type espace de (S,g) soient fermées et de même longueur.
- Montrer que cette condition peut être réalisée sans que (S,g) ne soit isométriques à (L^2, can) .

2. Construction de (S,g)

La surface de de Sitter est une surface de révolution obtenue par rotation autour de l'axe Oz de la réunion des graphes des deux fonctions $h_i^0(r) =$ $(-1)^{i+1}\sqrt{r^2-1}$ (i=1,2) et $r\geq 1$. On construira S de la même manière.

Soient h_1 et h_2 deux fonctions définies sur $[1, +\infty[$, à valeurs dans $^+$, de classe C^{∞} et telles que, pour i = 1, 2, on a:

- $i) h_i(1) = 0,$
- (ii) $\lim_{r\to\infty} h_i(r) = +\infty$ et $\lim_{r\to 1} h'_i(r) = +\infty$, (iii) $h'_i > 1$.

On pose, pour i = 1, 2,

$$S_i = \left\{ (x, y, z) \in D / z = (-1)^{i+1} h_i (\sqrt{x^2 + y^2}) \right\},$$

avec
$$D = \left\{ (x, y, z) \in \sqrt[3]{x^2 + y^2} \ge 1 \right\}$$

avec $D=\left\{(x,y,z)\in^3\sqrt{x^2+y^2}\geq 1\right\}.$ $S=S_1\cup S_2$ est une surface de révolution homéomorphe à la surface de de Sitter L^2 et les coordonnées pôlaires permettent de définir sur S privée de l'équateur deux cartes locales (U_i, Φ_i) (i = 1, 2).

On pose

$$U_i = \left\{ (x, y, z) \in D \ / \ x^2 + y^2 > 1; \ z = (-1)^{i+1} h_i(\sqrt{x^2 + y^2}) \right\}$$

et $\Phi_i: U_i \longrightarrow \mathbf{R}^2$ avec $\Phi_i(x,y,z) = (r,\theta) \ r = \sqrt{x^2 + y^2}$ et θ est la mesure principale de l'angle entre le vecteur (x, y, 0) et le premier vecteur de la base canonique de \mathbb{R}^3).

Soit $can = dx^2 + dy^2 - dz^2$ la métrique lorentzienne plate de ${\bf R}^3$. Soit

Un calcul simple montre que, dans les cartes loclaes (U_i, Φ_i) (i = 1, 2), la métrique g s'écrit

$$g = \left[1 - (h_i')^2\right] dr^2 + r^2 d\theta^2 \tag{1}$$

La condition iii) imposée aux fonctions h_i assure que g est de signature (1,1). (S,g) est donc une surface lorentzienne.

3. Condition suffisante pour que les géodésiques de type espace de (S,g) soient fermées et de même longueur

On se place dans le système de coordonnées (r, θ) défini ci-dessus.

Les symboles de Christoffel de la connexion de Levi-Civita associée à g sont donnés par

$$\begin{split} \Gamma^r_{rr} &= \frac{-h'_i h''_i}{1 - h'^2_i} \;\; ; \quad \ \Gamma^r_{r\theta} = \Gamma^r_{\theta r} = 0 \;\; ; \quad \ \Gamma^r_{\theta \theta} = \frac{-r}{1 - h'^2_i} \end{split}$$

$$\Gamma^\theta_{rr} = \Gamma^\theta_{\theta \theta} = 0 \;\; ; \;\; \Gamma^\theta_{r\theta} = \Gamma^\theta_{\theta r} = \frac{1}{r}$$

Soit $\Psi: t \longmapsto (r(t), \theta(t))$ une géodésique de type espace et paramétrée par la longueur d'arc. Ψ vérifie les équations

$$\begin{cases} \frac{d^2r}{dt^2} - \frac{r}{1 - h_i'^2} \left(\frac{d\theta}{dt}\right)^2 - \frac{h_i' h_i''}{1 - h_i'^2} \left(\frac{dr}{dt}\right)^2 = 0, & (2) \\ \frac{d^2\theta}{dt^2} + \frac{2}{r} \frac{dr}{dt} \frac{d\theta}{dt} = 0, & (3) \\ \left[1 - (h_i')^2\right] \left(\frac{dr}{dt}\right)^2 + r^2 \left(\frac{d\theta}{dt}\right)^2 = 1. & (4) \end{cases}$$

L'équation (3) s'écrit aussi

$$\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right) = 0$$

et il existe donc une constante a_i , qui dépend de l'ouvert U_i , telle que

$$r^2 \frac{d\theta}{dt} = a_i \tag{5}$$

le long de la géodésique Ψ . On retrouve, comme dans le cas euclidien, l'intégrale de Clairaut.

Par un argument de continuité on déduit que $a_1 = a_2$.

De la relation (4) et puisque $1 - (h'_i)^2 < 0$, on aura $r^2 \left(\frac{d\theta}{dt}\right)^2 > 1$, et en vertu de (5), on déduit que

$$1 \le r(t) \le a \tag{6}$$

avec $a = |a_i|$.

Géométriquement, la relation (6) exprime le fait que la géodésique Ψ est comprise entre les sections de S par les deux plans $z=(-1)^{i+1}h_i(a),$ (i=1,2). Ψ touche ces plans lorsque r atteint ses valeurs maximales. En effet, si t_0 est l'instant où r atteint une valeur maximale, $\frac{dr}{dt}(t_0)=0$ et en remplaçant dans (4), on obtient $(\frac{d\theta}{dt}(t_0))^2=[r(t_0)]^{-2}$. Finalement on remplace dans (5) et on obtient que $a_i^2=r^2(t_0)$.

On remarque que, si $a=1, \Psi$ est la section de S par le plan z=0 (équateur). C'est alors une géodésique fermée de longueur 2π .

On suppose désormais que a > 1.

On suppose que, à l'instant t=0, Ψ est sur le plan z=0. Soit t_1 l'instant où Ψ rencontre la section de S par le plan $z=h_1(a)$ en un point m_1 , soit t_2 l'instant où Ψ repasse par l'équateur en un point m_0 et soit t_3 l'instant où Psi rencontre la section de S par le plan $z=-h_2(a)$ en un point m_2 . Dans ce qui suit, on se propose de calculer la longueur du segment géodésique $[m_1, m_2]$ et la variation de l'angle entre m_1 et m_2 .

En vertu de (4) et (5), on obtient que, dans U_i

$$\frac{d\theta}{dt} = \frac{a_i}{r^2},\tag{7}$$

$$\frac{dr}{dt} = \frac{\epsilon}{r} \left(\frac{r^2 - a^2}{1 - (h_i')^2} \right)^{\frac{1}{2}}, \tag{8}$$

$$\frac{d\theta}{dr} = \epsilon \frac{a_i}{r} \left(\frac{1 - (h_i')^2}{r^2 - a^2} \right)^{\frac{1}{2}}, \tag{9}$$

où ϵ est le signe de $\frac{dr}{dt}$.

En séparant les variables dans (8) et en utilisant le fait que, entre t_1 et t_2 , $\frac{dr}{dt} < 0$, on obtient que la longueur du segment géodésique entre m_1 et m_0 est donnée par

$$l_1 = \int_1^a r \left(\frac{1 - (h_i')^2}{r^2 - a^2} \right)^{\frac{1}{2}} dr.$$

En utilisant (9), on obtient la variation d'angle entre m_1 et m_0 par

$$heta_1 = \int_1^a rac{a}{r} \left(rac{1-(h_i')^2}{r^2-a^2}
ight)^{rac{1}{2}} dr.$$

En calculant, de la même manière, la longueur du segment géodésique $[m_0, m_2]$ et la variation d'angle entre m_0 et m_2 , on obtient que la longueur

du segment géodésique $[m_1, m_2]$ est donnée par

$$l = \int_{1}^{a} r \frac{((h'_{1})^{2} - 1)^{\frac{1}{2}} + ((h'_{2})^{2} - 1)^{\frac{1}{2}}}{(a^{2} - r^{2})^{\frac{1}{2}}} dr, \tag{10}$$

et que la variation d'angle entre m_1 et m_2 est donnée par

La variation de l'angle θ entre les points m_1 et m_2 est donnée par

$$\theta = \int_{1}^{a} \frac{a}{r} \frac{((h'_{1})^{2} - 1)^{\frac{1}{2}} + ((h'_{2})^{2} - 1)^{\frac{1}{2}}}{(a^{2} - r^{2})^{\frac{1}{2}}} dr$$

Il est clair que ces deux intégrales sont convergentes au voisinage de a.

Nous avons établi donc le lemme suivant:

Lemme 3.1 : Pour que les géodésiques de type espace de (S, g) soient fermées il suffit que, pour tout a > 1,

$$\int_{1}^{a} \frac{a}{r} \frac{((h'_{1})^{2} - 1)^{\frac{1}{2}} + ((h'_{2})^{2} - 1)^{\frac{1}{2}}}{(a^{2} - r^{2})^{\frac{1}{2}}} dr = \pi.$$
 (11)

A priori, cette condition ne garantit pas que les géodésiques soient de même longueur.

On pose

$$H = (h_1^{\prime 2} - 1)^{\frac{1}{2}} + (h_2^{\prime 2} - 1)^{\frac{1}{2}}.$$

Si on effectue le changement de variable $\frac{1}{r^2} = 1 - x$ et si on pose

$$rH(r) = 2\Phi(x),$$

La relation (11) s'écrit alors

$$\int_0^\alpha \frac{\Phi(x)}{\sqrt{\alpha - x}} dx = \pi \tag{12}$$

avec $\frac{1}{a^2} = 1 - \alpha$. Si on pose $x = \alpha u$, la relation (12) s'écrit donc

$$\int_0^1 \frac{\Phi(\alpha u)}{\sqrt{1-u}} \sqrt{\alpha} du = \pi. \tag{13}$$

Il est connu que $\int_0^1 \frac{du}{\sqrt{u(1-u)}} = \pi$. Donc, si on prend pour $\Phi(x) = \frac{1}{\sqrt{x}}$, la relation (13) sera vérifiée et on aura

$$(h_1^{\prime 2} - 1)^{\frac{1}{2}} + (h_2^{\prime 2} - 1)^{\frac{1}{2}} = \frac{2}{\sqrt{r^2 - 1}}.$$
 (14)

Remarque. Les fonctions $h_1(r) = h_2(r) = \sqrt{r^2 - 1}$ vérifient (14) et dans ce cas (S, g) n'est autre que la surface de de Sitter (L^2, can) .

Nous allons maintenant montrer que, si h_1 et h_2 vérifient (14), les géodésiques sont de même longueur 2π . Pour cela, nous allons établir que la longueur du segement $[m_1, m_2]$ est égale à π .

D'après (10) et puisque h_1 et h_2 vérifient (14), on aura que la longueur du segement géodésique $[m_1, m_2]$ est donnée par

$$l = \int_{1}^{a} \frac{2r}{\sqrt{r^2 - 1\sqrt{a^2 - r^2}}} dr.$$

Si on pose $u = a^2 - r^2$, on obtient

$$l = \int_0^\alpha \frac{du}{\sqrt{u(\alpha - u)}}$$

avec $\alpha = a^2 - 1$. En posant $u = \alpha x$, on obtient

$$l = \int_0^1 \frac{dx}{\sqrt{x(1-x)}} = \pi.$$

Nous avons établi donc le lemme suivant:

Pour que les géodésiques de type espace de (S,g) soient fermées et de même longueur 2π , il suffit que

$$(h_1^{\prime 2} - 1)^{\frac{1}{2}} + (h_2^{\prime 2} - 1)^{\frac{1}{2}} = \frac{2}{\sqrt{r^2 - 1}}.$$
 (14)

4. Exemples de fonctions h_1 et h_2 vérifiant (14).

On pose, pour i = 1, 2,

$$(h_i'^2 - 1)^{\frac{1}{2}} = \frac{1}{\sqrt{r^2 - 1}} + (-1)^i \lambda(r).$$

Pour que ces deux équations aient un sens, il faut que, pour i = 1, 2,

$$\frac{1}{\sqrt{r^2 - 1}} + (-1)^i \lambda(r) > 0.$$

Il est facile de voir que, si on prend $\lambda(r) = kr^{-2}$ avec 0 < k < 2, ces deux inégalités sont vérifiées et on obtient

$$h_i(r) = \int_1^r \left[\left(\frac{1}{\sqrt{u^2 - 1}} + (-1)^i \frac{k}{u^2} \right)^2 + 1 \right]^{\frac{1}{2}} du$$

avec i = 1, 2 et 0 < k < 2.

Ces deux fonctions vérifient les conditions i), ii) et iii) énoncées au debut et (S,g) ainsi construite vérifie, d'après le lemme, les conditions 1 et 2 du théorème.

Finalement, pour montrer que (S, g) n'est pas isométrique à (L^2, can) , on va calculer la courbure sectionnelle de (S, g).

On se place dans l'ouvert U_i muni des coordonnées (r, θ) .

Un calcul direct nous donne que la courbure sectionnelle en un point $m=(r,\theta)$ est donnée par la formule

$$K(m) = -\frac{1}{r} \frac{h_i' h_i''}{(1 - h_i'^2)^2}.$$

En remplaçant h_i par son expression, on obtient

$$K(r,\theta) = \frac{(r^2 - 1)^{-\frac{3}{2}} + (-1)^i 2kr^{-4}}{\left[(r^2 - 1)^{-\frac{1}{2}} + (-1)^i kr^{-2} \right]^3}.$$

On remarque que, pour k=0, (S,g) n'est autre que la surface de de Sitter (L^2,can) et on retrouve le fait que sa courbure est constante est égale à 1

Pour 0 < k < 2, la courbure de (S,g) n'est pas constante et par suite (S,g) n'est pas isométrique à (L^2, can) .

References

- [1] Berger, M.: Lectures on Geodesic in Riemannian Geometry. Bombay: Tata Institute of F.R. (1965).
- [2] L.Pesse, A.: Manifold all of whose Geodesics are Closed. Spriger-Verlag, Berlin Heidelberg New York (1978).
- [3] Zoll,O.: Uber Flachen mit Scharen geschlossener geodatischer Linien. Math. Ann. 57,108-133 (1903).

Received: November 20, 1997.

Presented by: Aziz El Kacimi

Boucetta Mohamed

Faculté des Sciences et Techniques Gueliz Universite Cadi Ayyad BP 618 Marrakech Maroc