ALA 03 24.04.2014

Jonathan Siems, 6533519, Gruppe 12 Tronje Krabbe, 6435002, Gruppe 9

24. April 2014

Die Unstetigkeitsstellen von f befinden sich bei x=2 und x=6.

b)

Sei $x_0 \in D(g)$ So muss für jede Folge $(x_n)_{n \in \mathbb{N}}$ mit

$$\lim_{n\to\infty} x_n = x_0$$

gelten:

$$\lim_{n \to \infty} g(x_n) = g(x_0)$$

Angenommen, $x_0 \in \mathbb{Z}$. Dann gilt aber:

$$\lim_{n \to \infty} g(x_n) = x_0 - \lim_{n \to \infty} \lfloor x_n \rfloor = x_0 - (x_0 - 1) = 1$$

Und:

$$q(x_0) = x_0 - |x_0| = x_0 - x_0 = 0$$

Demnach ist g nicht in x_0 stetig, wenn $x_0 \in \mathbb{Z}$. Liegt x_0 nicht in der Menge der ganzen Zahlen, sähe die obere Gleichung so aus:

$$g(x_0) = x_0 - \lfloor x_0 \rfloor = x_0 - (x_0 - 1) = 1$$

2. a)

$$\lim_{n \to \infty} \left(\frac{\sqrt{3n^2 - 2n + 5} - \sqrt{n}}{\sqrt{n^2 - n + 1} + 4n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{n}{n} \cdot \frac{\sqrt{3 - \frac{2}{n} + \frac{5}{n^2}} - \sqrt{\frac{1}{n^2}}}{\sqrt{1 - \frac{1}{n} + \frac{1}{n^2}} + 4} \right)$$

$$\stackrel{*}{=} \frac{\sqrt{\lim_{n \to \infty} 3 - \frac{2}{n} + \frac{5}{n^2}} - \sqrt{\lim_{n \to \infty} \frac{1}{n^2}}}{\sqrt{\lim_{n \to \infty} 1 - \frac{1}{n} + \frac{1}{n^2}} + 4}$$

$$= \frac{\sqrt{3}}{5}$$

* an dieser Stelle wurde benutzt, dass die Wurzelfunktion stetig ist.

b)

$$\lim_{n \to \infty} \left(\cos \left(\frac{\sqrt{10n^2 - n} - n}{2n + 3} \right) \right)$$

$$\stackrel{*}{=} \qquad \cos \left(\lim_{n \to \infty} \left(\frac{\sqrt{10n^2 - n} - n}{2n + 3} \right) \right)$$

$$= \qquad \cos \left(\lim_{n \to \infty} \left(\frac{n}{n} \cdot \frac{\sqrt{10 - \frac{1}{n}} - \frac{n}{n}}{2 + \frac{3}{n}} \right) \right)$$

$$\stackrel{**}{=} \qquad \cos \left(\frac{\sqrt{\lim_{n \to \infty} 10 - \frac{1}{n}} - 1}{\lim_{n \to \infty} 2 + \frac{3}{n}} \right)$$

$$= \qquad \cos \left(\frac{\sqrt{10} - 1}{2} \right)$$

3.

Wir wollen zeigen, dass $g(f(x_n)) \to g(f(x_0))$ gilt, somit die Nacheinanderausführung stetiger Funktionen ebenfalls stetig ist. x_n und x_0 befinden sich für $x_n \to x_0$ beide in der Definitionsmenge von $g \circ f$. Da f an der Stelle x_0 stetig ist folgt $f(x_n) \to f(x_0)$. Da g an der Stelle $f(x_0)$ stetig ist gilt somit:

$$g(f(x_n)) \to g(f(x_0))$$
.

4.

$$\lim_{n \to 0} (f(x)) = \lim_{n \to 0} \left(\left(\cos \left(\frac{1}{x} \right) \right) = \cos(\infty) \right)$$

Geht $x \to 0$ wird unser Wert für $\cos(\frac{1}{x}) \Rightarrow \cos(\infty)$, somit fängt die Funktion an, immer schneller zu alternieren. (Die Periode von Cosinus bleibt immer konstant). Somit ist die Funktion an der Stelle $x_0 = 0$ nicht stetig.

^{*} an dieser Stelle wurde benutzt, dass die Cosinusfunktion stetig ist

 $[\]ast\ast$ an dieser Stelle wurde benutzt, dass die Wurzelfunktion stetig ist.

$$\lim_{n\to 0}(g(x))=\lim_{n\to 0}\left(x\cdot\cos\frac{1}{x}\right)=0$$

Geht $x\to 0$ nimmt $\left(\left(\cos\left(\frac{1}{x}\right)\right)$ auch hier wieder den wert $\cos(\infty)$ an, das verknüpfpte x allerdings nimmt den Wert 0 an, somit geht der ganze Funktionswert ebenfalls gegen 0.

Darum ist diese Funktion an der Stelle x = 0 stetig.