Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (original) A circuit for sensing an input supply voltage and providing				
2	a desired output voltage, the circuit comprising:				
3	a voltage sensing circuit, configured to sense, at least at a predetermined time, a				
4	value of the input supply voltage and provide a voltage indication signal based on the supply				
5	voltage, so sensed;				
6	a control circuit, responsive to said voltage indication signal, that generates a				
7	control signal; and				
8	a switching element having a control terminal that receives said control signal;				
9	said control signal being different for different first and second values of said				
10	supply voltage, so sensed, wherein				
11	said first value of said supply voltage, so sensed, is different from said desired				
12	output voltage, and				
13	said control signal is in the form of a pulse train for switching said switching				
14	element for said first value of said supply voltage, so sensed.				
1	2. (original) The circuit of claim 1 wherein said predetermined time is at				
2	power-on.				
1	3. (original) The circuit of claim 1 wherein said desired output voltage				
2	is used to power motors and logic in a hard disk drive.				
1	4. (original) The circuit of claim 1 wherein said first value of said				
2	sensed supply voltage is lower than said second value of said sensed supply voltage.				
1	5. (original) The circuit of claim 1 wherein:				

2	S	said sec	cond value of s	said sensed supply voltage is equal to said desired output		
3	voltage; and					
4	S	said control signal is in the form of a fixed level for said second value of said				
5	supply voltage,	so sen	sed.			
1		5 .	(original)	The circuit of claim 5 wherein said fixed level is such as to		
2	keep said switching element in an ON state.					
1	. 7	7.	(original)	The circuit of claim 5 wherein said fixed level is such as to		
2	keep said switching element in an OFF state.					
1	8	3.	(original)	The circuit of claim 1, and further comprising a second		
2	switching eleme	ent hav	ing a control to	erminal, and wherein:		
3	said control circuit is further configured to provide a second control signal based					
4	on the supply voltage, so sensed, to said control terminal of said second switching element; and					
5				gnal is such as to maintain said second switching element in		
6		ON state for one of said first and second values of said supply voltage and in an OFF state for				
7				ues of said supply voltage.		
1	ģ	€.	(original)	The circuit of claim 8, and further comprising a third		
2	switching element having a control terminal, and wherein:					
3	S	said co	ntrol circuit is	further configured to provide a third control signal based on		
4	the supply voltage, so sensed, to said control terminal of said third switching element; and					
5	said third control signal is a pulse train for switching said third switching element					
6	for one of said	for one of said first and second values of said supply voltage, and a fixed level for the other of				
7	said first and se	cond v	alues of said s	upply voltage.		
1	.1	10.	(original)	A chipset for a hard disk drive comprising:		
2	t	he circ	cuit of claim 1;	and		
3				t powered by said desired output voltage from said circuit.		
				• •		

1	11. (original) A hard disk drive comprising:						
2	the circuit of claim 1;						
3	a magnetic disk;						
4	a spindle motor connected to said disk to rotate said disk upon the application of						
5	power;						
6	a head for reading and writing data from and to said disk;						
7	a head motor connected to move said head across said disk upon the application						
8	of power; and						
9	a motor control circuit coupled to said spindle motor and said head motor to						
10	control the application of power to said spindle motor and said head motor;						
11	at least one of said spindle motor, a head motor, and motor control circuit						
12	receiving power supplied by said circuit.						
1	12. (currently amended) A circuit for powering a hard disk drive, the circuit						
2	comprising:						
3	a voltage sensing circuit, configured to sense, at least at a predetermined time, a						
4	single supply voltage at an one input node and provide a voltage indication signal based on the						
5	supply voltage, so sensed;						
6	at least one DC-DC conversion circuit, connected to said input node and to an						
7	output node, for converting said single supply voltage, so sensed, to a different desired output						
8	voltage and providing said different voltage on said output node; and						
9	a control circuit, coupled to said voltage sensing circuit and to said DC-DC						
10	conversion circuit for controlling said DC-DC conversion circuit depending on said supply						
11	voltage, so sensed.						
1	13. (currently amended) A circuit for powering a hard disk drive, the circuit						
2	comprising:						

3	a voltage sensing circuit, configured to sense, at least at a predetermined time, a		
4	single supply voltage at an one input node and provide a voltage indication signal based on the		
5	supply voltage, so sensed;		
6	at least one DC-DC conversion circuit, connected to said input node and to an		
7	output node, for converting said single supply voltage, so sensed, to a different desired output		
8	voltage and providing said different voltage on said output node;		
9	a switchable pass-through path between said input node and said output node; and		
10	a control circuit, coupled to said voltage sensing circuit, said DC-DC conversion		
11	circuit, and said switchable pass-through path;		
12.	said control circuit controlling said DC-DC conversion circuit and said switchable		
13	pass-through path so that:		
14	when said voltage indication signal indicates that said single supply		
15	voltage is different from said desired output voltage, said control circuit		
16	enables said DC-DC conversion circuit to supply said different		
17	voltage on said output node, and		
18	prevents said pass-through path from passing said supply voltage		
19	to said output node; and		
20	when said voltage indication signal indicates that said supply voltage is		
21	equal to said desired output voltage, said control circuit		
22	prevents said DC-DC conversion circuit from supplying said		
23	different voltage on said output node, and		
24	allows said pass-through path to pass said supply voltage to said		
25	output node.		
1	14 (aviation) The simple of alains 12 and assigned autout maltage		
1	14. (original) The circuit of claim 13 wherein said desired output voltage		
2	is greater than said voltage sensed at said input node.		
1	15. (original) The circuit of claim 13 wherein said desired output voltage		
2	is less than said voltage sensed at said input node.		

1	16. (original) The circuit of claim 13 wherein said DC-DC conversion				
2	circuit is a switching regulator.				
1	17. (original) The circuit of claim 13 wherein said control circuit				
2	prevents said DC-DC conversion circuit from supplying said different voltage on said output				
3	node by disabling said DC-DC conversion circuit.				
1	18. (original) The circuit of claim 13 wherein said DC-DC conversion				
2	circuit includes a switching element that is also located in said pass-through path.				
1	19. (original) A hard disk drive comprising:				
2	a magnetic disk;				
3	a spindle motor connected to said disk to rotate said disk upon the application of				
4	power;				
5	a head for reading and writing data from and to said disk;				
6	a head motor connected to move said head across said disk upon the application				
7	of power; and				
8	a motor control circuit coupled to said spindle motor and said head motor to				
9	control the application of power to said spindle motor and said head motor;				
10	power distribution circuitry for connection to a power source solely through a				
11	two-pin connection to the power source, said connection providing a supply voltage between a				
12	voltage supply node and a ground node, said power distribution circuitry including:				
13	a voltage sensing circuit, configured to sense, at least at a predetermined time,				
14	said supply voltage and provide a voltage indication signal based on the supply voltage, so				
15	sensed;				
16	at least one DC-DC conversion circuit, connected to said voltage supply node and				
17	to an output node, for converting said supply voltage, so sensed, to a different desired output				
18	voltage and providing said different voltage on said output node; and				
	i				

19	a control circuit, coupled to said voltage sensing circuit and to said DC-DC				
20	conversion circuit for controlling said DC-DC conversion circuit depending on said supply				
21	voltage, so sensed.				
1	20. (original) The circuit of claim 19 wherein:				
2	said voltage supply node is at 5 volts;				
3	at least one component of said hard disk drive requires a voltage greater than 5				
4	volts; and				
5	said DC-DC conversion circuit includes a switching regulator that converts 5				
6	volts to a higher voltage.				
1	21. (original) The circuit of claim 19 wherein:				
2	said voltage supply node is at 12 volts;				
3	no components of said hard disk drive require a voltage greater than a				
4	predetermined voltage that is less than 12 volts; and				
5	said DC-DC conversion circuit includes a switching regulator that converts 12				
6	volts to a voltage that is less than 12 volts.				
1	22. (original) The circuit of claim 19 wherein:				
2	said voltage supply node is at 12 volts;				
3	no components of said hard disk drive require a voltage greater than a				
4	predetermined voltage that is less than 12 volts; and				
5	said DC-DC conversion circuit includes a linear regulator that converts 12 volts to				
6	a voltage that is less than 12 volts.				