BCMM I: Final 2006

June 22, 2006

ID#: Name:

- 1. 次のそれぞれの命題が真ならば証明し、偽ならばその命題の否定を書きそれを証明 せよ。ただし、 $A = \mathbf{R} \setminus \{-1\} = \{x \mid (x \in \mathbf{R}) \land (x \neq -1)\}$ 。
 - (a) $(\forall x \in A)(\exists y \in A)[xy + x + y = 0].$

(b) $(\exists x \in A)(\forall y \in A)[xy + x + y = 0].$

2. 集合 A, B, C について、次を Venn 図を使わずに証明せよ。

$$(A \cap B) \cup C = A \cup C \Leftrightarrow A \cup C \subseteq B \cup C.$$

- $3.\ f:X o Y,\, g:Y o Z$ を写像、 $h=g\circ f:X o Z\, (x \mapsto g(f(x)))$ とする。
 - (a) f と g が共に全射ならば、h は全射であることを示せ。

(b) h が単射ならば f は単射で、かつ $g_{|f(X)}$ (g の定義域を f(X) に制限したもの) も単射であることを示せ。

(c) $A \subseteq X$ とするとき $f^{-1}(f(A)) \supseteq A$ であることを示せ。

(d) h が単射ならば、 $A \subseteq X$ に対して常に $f^{-1}(f(A)) = A$ であることを示せ。

4. 集合 A 上の関係 \sim が同値関係であるとする。すなわち、(i) $(\forall a \in A)[a \sim a]$, (ii) $(\forall a \in A)(\forall b \in A)[a \sim b \Rightarrow b \sim a]$, (iii) $(\forall a \in A)(\forall b \in A)(\forall c \in A)[(a \sim b) \land (b \sim c) \Rightarrow (a \sim c)]$ を満たしているとする。 $c \in \mathbf{Z}$ に対して、 $[c] = \{x \mid (x \in A) \land (c \sim x)\}$ とすると、次が成立することを証明せよ。

$$(\forall a \in A)(\forall b \in A)[[a] \cap [b] \neq \emptyset \Rightarrow [a] = [b]].$$

- 5. Q^+ は正の有理数全体の集合を表すものとする。
 - (a) $|Q^+| \le |N \times N|$ であることを示せ。

(b) $|N \times N| = |N|$ であることと、Cantor-Bernstein の定理を用いて $|Q^+| = |N|$ であることを示せ。

6. 実数直線上の閉区間 [0,1] と \mathbf{R} の濃度は等しいことを示せ。

- 7. A, B, C, D を集合とする。
 - (a) |A|=|C| かつ |B|=|D| ならば $|A\times B|=|C\times D|$ であることを示せ。

(b) |A| = |C| かつ $|A \times B| = |C \times D|$ であっても、|B| = |D| とは限らないことを示せ。

- 8. $m, n \in \mathbb{Z}$ のとき、 $\langle m, n \rangle = \{mx + ny \mid x, y \in \mathbb{Z}\}$ とする。
 - (a) $\langle 21, 56 \rangle = \{7z \mid z \in \mathbf{Z}\}$ であるこことを示せ。

(b) $d = \gcd\{m, n\}$ とすると、 $\langle m, n \rangle = \{dz \mid z \in \mathbf{Z}\}$ であるこことを示せ。

(c) $\phi: \mathbf{Z} \to \mathbf{Z}_3 \times \mathbf{Z}_8 \ (x \mapsto ([x]_3, [x]_8))$ は全射であることを示せ。

Message 欄: 「ホームページ掲載不可」の場合は明記のこと

- (1) この授業について。特に改善点について。
- (2) ICU の教育一般について。特に改善点について。

BCMM I: Final 2006 Solutions

June 22, 2006

- 1. 次のそれぞれの命題が真ならば証明し、偽ならばその命題の否定を書きそれを証明せよ。ただし、 $A = \mathbf{R} \setminus \{-1\} = \{x \mid (x \in \mathbf{R}) \land (x \neq -1)\}$ 。 (5pts x 2 = 10 pts)
 - (a) $(\forall x \in A)(\exists y \in A)[xy + x + y = 0].$

解. $x \neq -1$ のとき y = -x/(x+1) とする。 $x \neq -1$ だから $y \in \mathbf{R}$ 。かつ、y = -1 とすると、x = x+1 となって矛盾。従って、 $y \in A$ かつ、

$$x \cdot \frac{-x}{x+1} + x + \frac{-x}{x+1} = \frac{-x^2 + x^2 + x - x}{x+1} = 0.$$

従って真である。

(b) $(\exists x \in A)(\forall y \in A)[xy + x + y = 0].$

解. 条件を満たす $x\in A$ が存在したとする。 $y=0\in A$ とすると x=0 とならなければならないが、 $x=0,y=1\in A$ とすると、 $xy+x+y\neq 0$ 。従って真ではない。この否定は

 $\neg(\exists x \in A)(\forall y \in A)[xy + x + y = 0] = (\forall x \in A)(\exists y \in A)[xy + x + y \neq 0].$

 $x \neq 0$ のときは、y = 0、x = 0 のときは、y = 1 とすれば いずれの場合も $xy + x + y \neq 0$ であるのでこの命題は真である。

2. 集合 A, B, C について、次を Venn 図を使わずに証明せよ。

$$(A \cap B) \cup C = A \cup C \Leftrightarrow A \cup C \subseteq B \cup C.$$

解. まず、 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ である。

 \Rightarrow : $A \cup C = (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \subseteq B \cup C$.

 $\Leftarrow: A \cup C \subseteq B \cup C \text{ とする}$ $A \cup C \subseteq A \cup C \text{ だから}$

$$(A \cup C) \cap (B \cup C) \subseteq A \cup C \subseteq (A \cup C) \cap (B \cup C)$$

となり、 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C) = A \cup C$ となる。

 $3. f: X \to Y, g: Y \to Z$ を写像、 $h = g \circ f: X \to Z (x \mapsto g(f(x)))$ とする。

(5pts x 4 = 20 pts)

(10 pts)

- (a) f と g が共に全射ならば、h は全射であることを示せ。 解. $z \in Z$ に対して、 $x \in X$ で h(x) = z となるものが常に存在する事を示す。 まず $g: Y \to Z$ が全射だから、g(y) = z となる $y \in Y$ が存在する。 $f: X \to Y$ が全射だから、その y に対して、f(x) = y となる $x \in X$ が存在する。従って、 $h(x) = (g \circ f)(x) = g(f(x)) = g(y) = z$ となり、主張が得られた。
- (b) h が単射ならば f は単射で、かつ $g_{|f(X)}$ (g の定義域を f(X) に制限したもの)も単射であることを示せ。

解. まず $f: X \to Y$ が単射であることを示す。 $f(x) = f(x') \ (x, x' \in X)$ とする。すると h(x) = g(f(x)) = g(f(x')) = h(x) となる。ここで、 $h: X \to Z$ は仮定から単射だから、h(x) = h(x') より x = x' を得る。従って、 $f: X \to Y$ は単射である。 ▼に $g_{|f(X)}: f(X) \to Z$ が単射であることを示す。 $g_{|f(X)}(y) = g_{|f(X)}(y') \ (y, y' \in f(X))$ とする。 $y, y \in f(X)$ だから y = f(x), y' = f(x') となる $x, x' \in X$ が存在する。すると、 $h(x) = g(f(x)) = g(y) = g_{|f(X)}(y) = g_{|f(X)}(y') = g(y') = g(f(x')) = h(x')$. ここで、 $h: X \to Z$ は単射だから x = x' を得る。従って y = f(x) = f(x') = y' となる。 $g_{|f(X)}(y) = g_{|f(X)}(y') \ (y, y' \in f(X))$ から y = y' が得られたから、 $g_{|f(X)}: f(X) \to Z$ は単射であることが示された。

- (c) $A \subseteq X$ とするとき $f^{-1}(f(A)) \supseteq A$ であることを示せ。 解. $a \in A$ とする。 $f(a) \in f(A)$ だから $a \in f^{-1}(f(A)) = \{x \mid (x \in X) \land (f(x) \in f(A))\}$. 従って、 $A \subseteq f^{-1}(f(A))$ が示された。
- (d) h が単射ならば、 $A \subseteq X$ に対して常に $f^{-1}(f(A)) = A$ であることを示せ。解. 一般的に $A \subseteq f^{-1}(f(A))$ が (c) で示されているので、 $f^{-1}(f(A)) \subseteq A$ を示せば よい。 $x \in f^{-1}(f(A))$ とする。 $f^{-1}(f(A))$ の定義より $f(x) \in f(A)$ 。従って $a \in A \subseteq X$ で f(x) = f(a) となるものが存在する。仮定より $h: X \to Z$ は単射である。しかし、(b) により $f: X \to Y$ は単射である。従って、f(x) = f(a), $x, a \in X$ より $x = a \in A$ となる。従って、 $f^{-1}(f(A)) \subseteq A$ である。これから、最初に述べたように、 $f^{-1}(f(A)) = A$ を得る。
- 4. 集合 A 上の関係 \sim が同値関係であるとする。すなわち、(i) $(\forall a \in A)[a \sim a]$, (ii) $(\forall a \in A)(\forall b \in A)[a \sim b \Rightarrow b \sim a]$, (iii) $(\forall a \in A)(\forall b \in A)(\forall c \in A)[a \sim b) \land (b \sim c) \Rightarrow (a \sim c)]$ を満たしているとする。 $c \in \mathbf{Z}$ に対して、 $[c] = \{x \mid (x \in A) \land (c \sim x)\}$ とすると、次が成立することを証明せよ。

$$(\forall a \in A)(\forall b \in A)[[a] \cap [b] \neq \emptyset \Rightarrow [a] = [b]].$$

解. $[a] \cap [b] \neq \emptyset$ だから $\exists c \in [a] \cap [b]$ である。これより $c \in [a]$ かつ $c \in [b]$ である。a,b は任意だから $c \in [a] \Rightarrow [c] = [a]$ を示せば、[c] = [b] も成立し [a] = [c] = [b] となるので、 $c \in [a] \Rightarrow [c] = [a]$ を示せばよい。まず $c \in [a]$ と [a] の定義より $a \sim c$ 、また (ii) より $c \sim a$ も成立する。 $x \in [c]$ とすると、定義より $c \sim x$ 。従って (iii) より $a \sim x$ 。これは、 $x \in [a]$ を意味する。 $x \in [c]$ は任意だから、 $[c] \subseteq [a]$ 。次に $x \in [a]$ とする。[a] の定義より $a \sim x$ 。 $c \sim a$ だったから (iii) より $c \sim x$ となり $x \in [c]$ が示された。 $x \in [a]$ は任意だった から $[a] \subseteq [c]$ となる。従って、[c] = [a] を得、上に述べたことより [a] = [b] が成立する。

- 5. \mathbf{Q}^+ は正の有理数全体の集合を表すものとする。 (5pts x 2 = 10 pts)
 - (a) $|Q^+| \leq |N \times N|$ であることを示せ。解. $x \in Q^+$ とする。すると $x = n(x)/d(x), n(x), d(x) \in N$ かつ $\gcd\{n(x), d(x)\} = 1$ と一通りに書くことができる。従って、 $f: Q^+ \to N \times N$ $(x \mapsto (n(x), d(x))$ と定義すると、f は写像である。(n(x) は numerator (分子) から取ったもので、d(x) は denominator (分母) から名前を付けたものです。最大公約数を 1 にしておけば、一通り にかけます。x = n/d = n'/d' とすると、nd' = n'd となり、 $d \mid nd'$ かつ $\gcd\{d, n\} = 1$ より $d \mid d'$ 。同様に $d' \mid d$ となり、これより d = d' となります。すると、n = n' も得られます。) さて、 $g: N \times N \to Q^+$ $((n, d) \mapsto n/d)$)とすると、 $g \circ f = id_{Q^+}$ を得ま
 - (b) $|N \times N| = |N|$ であることと、Cantor-Bernstein の定理を用いて $|Q^+| = |N|$ であることを示せ。

す。 $id_{{m O}^+}$ は単射だから、f は単射。従って、 $|{m Q}^+| \leq |{m N} \times {m N}|$ である。

解. $h: \mathbf{N} \to \mathbf{Q}^+ (x \mapsto x)$ とするとこれは、単射だから、 $|\mathbf{N}| \le |\mathbf{Q}^+|$ 。従って、(a) と、 $|\mathbf{N} \times \mathbf{N}| = |\mathbf{N}|$ を用いると、

$$|N| \le |Q^+| \le |N \times N| = |N|.$$

従って、Cantor-Bernstein の定理より $|m{Q}^+| = |m{N}|$ を得る。

6. 実数直線上の閉区間 [0,1] と \mathbf{R} の濃度は等しいことを示せ。 (10 pts) 解. $f:[0,1] \to \mathbf{R} (x \mapsto x)$ は単射だから、 $|[0,1]| \le |\mathbf{R}|$ 。

$$g: \mathbf{R} \to [0,1] \ (x \mapsto \frac{1}{\pi} \arctan(x) + \frac{1}{2})$$

とする。 $g'(x) = \frac{1}{\pi(1+x^2)} > 0$ だから、g は単調増加だから、g は単射。従って、 $|\mathbf{R}| \leq |[0,1]|$ である。Cantor-Bernstein の定理によって、実数直線上の閉区間 [0,1] と \mathbf{R} の濃度は等しいことが分かった。

7. A, B, C, D を集合とする。

 $(5pts \times 2 = 10 pts)$

(a) |A| = |C| かつ |B| = |D| ならば $|A \times B| = |C \times D|$ であることを示せ。 解. 仮定より、 $f: A \to C, g: B \to D$ 二つの全単射が存在する。そこで、

$$h: A \times B \to C \times D ((a,b) \mapsto (f(a),g(b)))$$

とする。これは、全単射であることを示せばよい。

まず、 $c \in C$, $d \in D$ とすると、 $f: A \to C$, $g: B \to D$ が全射であることより、f(a) = c, g(b) = d となる $a \in A$, $b \in B$ が存在する。すると、h(a,b) = (f(a),g(b)) = (c,d)。 $c \in C$, $d \in D$ は任意だから h は全射である。

 $h(a,b)=h(a',b'),\ a,a'\in A,\ b,b'\in B$ とする。(f(a),g(b))=h(a,b)=h(a',b')=(f(a'),g(b')) より f(a)=f(a') かつ g(b)=g(b') を得る。f,g は共に単射だから、a=a' かつ b=b' を得る。従って、(a,b)=(a',b')。これは、h が単射であることを示す。

したがって、 $h: A \times B \to C \times D$ は全単射で、 $|A \times B| = |C \times D|$ を得る。

- (b) |A| = |C| かつ $|A \times B| = |C \times D|$ であっても、|B| = |D| とは限らないことを示せ。解. A = C = D = N, $B = \{1\}$ とすると、|A| = |C|。また、 $f: N \times \{1\} \to N((n,1) \mapsto n)$ は、全単射だから、 $|A \times B| = |N| = |N \times N| = |C \times D|$ 。($|N \times N| = |N|$ を用いた。)したがって、条件を満たすが、 $B = \{1\}$ から D = N に全単射は存在しない。
- 8. $m, n \in \mathbb{Z}$ のとき、 $\langle m, n \rangle = \{mx + ny \mid x, y \in \mathbb{Z}\}$ とする。 (6 pts + 7 pts x 2 = 20 pts)
 - (a) $\langle 21,56 \rangle = \{7z \mid z \in \mathbf{Z}\}$ であるこことを示せ。解. $w \in \langle 21,56 \rangle$ とすると、w = 21x + 56y = 7(3x + 8y) である、従って、z = 3x + 8y とすると、 $w \in \{7z \mid z \in \mathbf{Z}\}$ であることが分かる。w は任意だから、 $\langle 21,56 \rangle \subseteq \{7z \mid z \in \mathbf{Z}\}$ 。逆に $w = 7z, z \in \mathbf{Z}$ とすると、 $3 \cdot 3 + 8(-1) = 1$ だから、 $w = (3 \cdot 3 + 8(-1))7z = 21 \cdot 3z + 56 \cdot (-z) \in \langle 21,56 \rangle$ 従って、 $\langle 21,56 \rangle \supseteq \{7z \mid z \in \mathbf{Z}\}$ 。上で示したこととあわせると、 $\langle 21,56 \rangle = \{7z \mid z \in \mathbf{Z}\}$ であることが示せた。
 - (b) $d=\gcd\{m,n\}$ とすると、 $\langle m,n\rangle=\{dz\mid z\in \mathbf{Z}\}$ であるこことを示せ。 $m=dm',\ n=dn'$ となる $m',n'\in \mathbf{Z}$ が存在する。 $w\in\langle m,n\rangle$ とすると、w=mx+ny=d(m'x+n'y) である、従って、z=m'x+n'y とすると、 $w\in\{dz\mid z\in \mathbf{Z}\}$ であることが分かる。w は任意だから、 $\langle m,n\rangle\subseteq\{dz\mid z\in \mathbf{Z}\}$ 。逆に w=dz、 $z\in \mathbf{Z}$ とする。d は最大公約数だから、d=mx+ny となる $x,y\in \mathbf{Z}$ が存在する。 $w=dz=(mx+ny)z=m\cdot xz+n\cdot yz\in\langle m,n\rangle$ 。 従って、 $\langle m,n\rangle\supseteq\{dz\mid z\in \mathbf{Z}\}$ 。上で示したこととあわせると、 $\langle m,n\rangle=\{dz\mid z\in \mathbf{Z}\}$ であることが示せた。
 - (c) $\phi: \mathbf{Z} \to \mathbf{Z}_3 \times \mathbf{Z}_8 \ (x \mapsto ([x]_3, [x]_8))$ は全射であることを示せ。 解. $3 \cdot 3 + 8(-1) = 1$ だから $a, b \in \mathbf{Z}$ とする。x = 9b - 8a とすると、 $[x]_3 = [-8a]_3 = [a]_3$ かつ $[x]_8 = [9b]_8 = [b]_8$ 。これは、 $\phi(x) = ([a]_3, [b]_8)$ で $a, b \in \mathbf{Z}$ は任意だったから、 ϕ は全射である。

Grade: Quiz 20% + Mid 20% + Final 40% + Recitation 20% (演習は解いた問題、提出したもの (18%) にほんの少し (2%) Mini Test 1 回, Comment Sheet 提出回数 (6回) を加えます。) Final および提出物は土曜日以降取りに来れば返却します。(6/26-29, 7/10-14 は不在) 9/1 以降は研究室前の椅子の上に置いておきます。

専門の数学の最初のコースはどうでしたか。楽しめましたか。お疲れ様。