

Carnegie Mellon University

Tepper School of Business

46-886: Machine Learning Fundamentals

Amr Farahat

Recommender Systems: Application to MovieLens Dataset

Much of this slide deck is derived/borrowed from course material I've co-taught at MIT

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>

MovieLens Dataset

- We will work instead with the MovieLens dataset
 - o 6,040 users
 - 3,900 movies
 - 1,000,209 ratings of movies
- On average, each user rated 166 of the 3,900 movies (4.2%)
 - The goal is to predict/infer/estimate ratings of the other 95.8% user-movie pairings
 - Need to estimate 22,555,791 missing user ratings

MovieLens Data

n: # of observations (n = 1,000,209)

	rating	userID	movieID	date
1	5	1	1193	2000-12-31 17:12:40
2	3	1	661	2000-12-31 17:35:09
3	3	1	914	2000-12-31 17:32:48
4	4	1	3408	2000-12-31 17:04:35
5	5	1	2355	2001-01-06 18:38:11
6	3	1	1197	2000-12-31 17:37:48
7	5	1	1287	2000-12-31 17:33:59
8	5	1	2804	2000-12-31 17:11:59
9	4	1	594	2000-12-31 17:37:48
10	4	1	919	2000-12-31 17:22:48
11	5	1	595	2001-01-06 18:37:48
12	4	1	938	2000-12-31 17:29:12
13	4	1	2398	2000-12-31 17:38:01
14	4	1	2918	2000-12-31 17:35:24
15	5	1	1035	2000-12-31 17:29:13
16	4	1	2791	2000-12-31 17:36:28
1000205	1	6040	1091	2000-04-25 22:35:41
1000206	5	6040	1094	2000-04-25 19:21:27
1000207	5	6040	562	2000-04-25 19:19:06
1000208	4	6040	1096	2000-04-25 22:20:48
1000209	4	6040	1097	2000-04-25 22:19:29

Implementation: Python's LightFm Package (Optional)

Ideal for neighborhood-based Collaborative Filtering

- https://making.lyst.com/lightfm/docs/home.html
- https://github.com/lyst/lightfm/blob/master/examples/quickstart/quickstart.ipynb

Implementation: R's SoftImpute Package (Optional)

Ideal for model-based Collaborative Filtering

```
library(softImpute)

# The training and test data have 3 columns: user id, movie id, ratings

mat <- Incomplete(train [,1], train [,2], train [,3])

fit <- softImpute(mat, rank.max=9, lambda=0, maxit=1000)

fit$u: gives the user-archetype combinations

fit$v * fit$d: gives the archetype-movie ratings

pred <- impute(fit, test[, 1], test[, 2])

} test-set

predictions</pre>
```

The following analysis is based on the softimpute package

Movie-Archetype Ratings

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]
[1,]	-0.010285232	6.956747e-03	-6.044632e-03	-1.289385e-02	1.574182e-02	2.227203e-02	1.707377e-02	1.977146e-02	-1.087540e-02
[2,]	-0.012344893	6.105412e-03	-6.572170e-03	5.094671e-03	2.240189e-02	-2.220966e-02	2.139380e-03	1.111205e-02	-5.284898e-03
[3,]	-0.010258076	2.449277e-02	1.835016e-03	1.336783e-02	6.813315e-03	-1.195719e-02	-1.190039e-02	8.282133e-03	6.439084e-03
[4,]	-0.006645143	1.238735e-02	-2.273594e-02	2.068818e-02	-2.364472e-03	-1.668273e-02	7.594584e-03	9.782163e-03	1.519675e-02
[5,]	-0.012251521	-1.145180e-02	-1.912628e-03	-1.364508e-02	-1.101168e-02	2.131751e-02	3.487680e-03	-6.096829e-03	1.380375e-02
[6,]	-0.012154679	5.379816e-03	2.531307e-03	6.138166e-03	4.464902e-02	3.451502e-03	7.005278e-03	1.567645e-04	-1.353828e-02
[7,]	-0.006511135	2.066783e-02	-3.972466e-03	1.285268e-02	2.398443e-03	-2.171474e-02	2.511292e-02	2.528996e-02	2.519582e-02
[8,]	-0.013592265	1.266743e-03	8.825011e-03	-3.575442e-02	-1.048578e-02	-5.233410e-03	1.850059e-02	6.996654e-03	1.801823e-02
[9,]	-0.011316615	1.005654e-02	-1.044946e-03	-2.322501e-02	-2.651104e-03	-8.045379e-05	-2.005455e-03	7.769253e-03	1.120376e-02
[10,]	-0.020120629	-9.499954e-03	2.092072e-02	2.156243e-04	1.281555e-02	7.191000e-03	2.399823e-03	3.773381e-03	6.424719e-03
[11,]	-0.011467069	5.962614e-03	2.508387e-03	-2.527401e-02	-6.866954e-03	6.121569e-03	-1.706545e-02	6.369188e-03	-1.531428e-02
[12,]	-0.008781337	7.993272e-03	-1.896017e-02	6.992801e-03	-1.207661e-02	-6.258294e-03	2.156462e-03	-4.593993e-03	-5.866125e-03
[13,]	-0.010064586	8.218105e-03	-1.266595e-03	1.456695e-02	5.331772e-03	-3.059282e-03	1.212330e-02	1.248064e-02	1.288025e-02
[14,]	-0.007630269	4.145655e-03	-2.127939e-02	-3.183541e-03	-5.485976e-03	-2.680324e-03	1.010888e-02	-1.539796e-02	2.457152e-03
[15,]	-0.010456894	1.755345e-02	1.430709e-02	-1.393102e-02	3.778003e-03	-1.148099e-02	5.170825e-03	3.189222e-03	-7.059932e-03
[16,]	-0.007264796	1.080755e-02	-6.762122e-03	-7.456529e-03	-2.870412e-03	2.272647e-02	1.607834e-02	-2.736593e-02	5.981621e-03
[17,]	-0.018684556	-1.382709e-02	6.696824e-03	1.781394e-03	-1.009749e-02	3.304828e-04	6.866780e-03	1.548684e-03	1.388230e-02
[18,]	-0.017681834	-8.977174e-03	5.932550e-04	1.641735e-03	1.354223e-02	8.720808e-03	-1.010710e-02	6.330836e-03	1.819685e-02
[19,]	-0.015832864	9.103966e-03	1.551252e-02	9.194664e-03	1.266139e-03	4.235855e-03	-1.851253e-02	-3.604855e-03	-7.856964e-03
[20,]	-0.007794994	2.018210e-02	-4.841692e-03	1.922852e-03	-1.397836e-02	-1.293446e-02	1.864254e-02	3.685368e-03	1.234879e-02
[21,]	-0.005758456	1.154898e-02	2.651461e-03	5.077005e-03	-1.244090e-02	2.343798e-02	6.655368e-03	-1.490443e-02	2.825629e-02
[22,]	-0.013520195	3.198393e-03	1.229410e-02	-3.984148e-03	-1.320959e-02	6.984560e-03	-1.844733e-02	7.871633e-03	-1.888646e-03

- The table $S_{a,m}$ has:
 - 9 rows corresponding to the archetypes created by the model
 - 3,900 columns corresponding to the movies
 - Non-integer values—positive or negative
- Hard to interpret results and define archetypes "in words"

Aggregation by Movie Genre

 For interpretability, we can classify movies in different genres and report the average rating per archetype-genre pair

Archetype	Action	Adventure	Comedy	Documentary	Fantasy	Horror	Musical	Romance	Sci-Fi	Thriller
Archetype 1	-4.46	-4.35	-3.92	-2.78	-4.66	-2.99	-4.63	-4.14	-4.44	-4.33
Archetype 2	3.48	2.38	-0.14	-5	2.95	-0.68	-1.23	-1.66	2.34	0.75
Archetype 3	-3.9	-3.32	-2.43	0.25	-2.8	-4.62	0.42	-1.11	-2.4	-2.41
Archetype 4	-2.24	-2.56	0.37	1.19	-1.55	-1.69	-1.64	1.64	-3.05	-0.54
Archetype 5	-0.86	0.51	0.95	-1.99	0.53	-5	3.13	2.76	-3.48	-1.43
Archetype 6	1.67	-0.7	-1.39	-1.01	-3.35	-1.24	-4.26	0.11	-0.5	1.92
Archetype 7	-3.58	-4.32	4.91	-3.3	-2.95	-0.15	-3.41	0.17	-4.64	-3.7
Archetype 8	0.38	1.48	-1.79	-0.71	2.08	2.6	1.54	0.17	2.4	-0.69
Archetype 9	-3.66	-3.14	0.2	-0.71	-5	1.82	0.89	-2.14	-3.84	-1.01

- Interpretation:
 - Archetype 2 seems oriented toward action/adventure/fantasy/SciFi
 - Archetype 7 seems focused on comedy exclusively
 - o Etc.

Model Quality on the Test Set

- We use the observed user-movie ratings to assess model performance leveraging the usual metrics of fit
- 1. R²: how well the model fits the observed user-movie ratings
 - Defined as in linear regression
- 2. MAE: Mean Absolute Error

MAE =
$$\frac{1}{N} \left(\sum_{\text{all test pairs } (u,m)} |w_{u,1}S_{1,m} + w_{u,2}S_{2,m} + \dots + w_{u,9}S_{9,m} - \text{OBSR}_{u,m}| \right)$$

3. RMSE: Root-Mean-Square Error

RMSE =
$$\sqrt{\frac{1}{N} \left(\sum_{\text{all test pairs } (u,m)} (w_{u,1}S_{1,m} + w_{u,2}S_{2,m} + \dots + w_{u,9}S_{9,m} - \text{OBSR}_{u,m})^2 \right)}$$

Results: MovieLens Ratings Prediction

- Results of our collaborative filtering model on the test set:
 - o Fit of 32.4%, as measured by the R²
 - Average error of 0.70–0.91 (on a ratings scale of 1 to 5), as measured by the MAE and RMSE

Model	R ²	MAE	RMSE
Collaborative Filtering Model	0.324	0.700	0.908

- As a point of reference, Netflix's Cinematch algorithm reported an RMSE of 0.952
 - If we were competing for the Netflix prize, these results would have achieved a 4.62% RMSE improvement

Number of Archetypal Users

- How many "archetypal users" should we use in the collaborative filtering model?
 - If we have too few archetypal users, the predictions will be too rough—we will
 not capture important patterns in the data
 - If we have too many archetypal users, the model will be overfit to the training set—resulting in poor out-of-sample performance
- We will use cross-validation to select the value of k that yields the best prediction on unseen data
 - \circ For each value of k, perform 10-fold cross-validation*
 - \circ Record the average R² using the current value of k. Call it **AvgR2**
 - \circ Choose the value of k that yields the highest value of **AvgR2**

^{*}Please don't confuse the k from k-fold cross-validation to the number of archetypes k

Cross-Validation Results

An Ensemble Model

Additional Data

- Our Collaborative Filtering model has leveraged data on user-movie ratings to "reconstruct" missing data
- But we have access to additional data on the movies
 - Genre (out of 18 genres): Action, Adventure, ..., Western
- And we also have access to additional data on the users
 - Gender
 - Age
 - Occupation (out of 21 categories): Administrator, Artist, ..., Writer
 - Zip code—hence estimates of income, rural/urban living, etc.
- Last, recall that we know the date and time of each movie rating

Ensemble Learning

- How can we make use of this additional information?
- Approach 1: Forget about collaborative filtering, just use your favorite method (linear regression, CART, random forests, etc.)
- Approach 2: Combine the collaborative filtering (CF) model into another method (linear regression, CART, random forests, etc.)
 - Use the CF output as an <u>additional</u> independent variable!
 - \circ For instance, let $CF_{u,m}$ be the predicted rating of user-movie pair (u,m) using our CF model. Then consider the following regression model:

$$R_{u,m} = \beta_0 + \beta_1 \cdot CF_{u,m} + \underset{\text{of movie data}}{\text{linear model}} + \underset{\text{of user data}}{\text{linear model}}$$

An ensemble model combines different predictive methods

Extended Training Data

k: # of independent variables (k = 51); n: # of observations (n = 990, 206)

	ratina	wdav	mon v	vear	hour	AaeRanae	Jobacademic	Jobwriter	Male	MedianIncome	Urban R	egionMidwest	RegionWest	Action .	Wester	'n	CF
1	5	0		2000	17	1	0	0	0	63015	1	1	0	0 .			1.390944
2	3	ã		2000	17	1	0	ã	õ	63015	1	1	a	0.			3.707804
3	3	ã		2000	17	1	α	a	ő	63015	1	1	a	ă.			.757499
4	4	a		2000	17	1	Ø	a	0	63015	1	1	a	0.			.604990
	-	Č		2001	18	1		0	0	63015	1	1	0	α.			1.100613
3	2	0		2001	17	1	0	0	0	63015	1	1	0	0.			1.787918
7	2	0		2000		1	ŏ	0	0	63015	1	1	0	1 .			
/ 9	2	0			17	1	α	0	_		1	1	0	1.			2.715198
8	5	0		2000	17	1	0	0	0	63015	1	1	0				3.789038
9	4	0		2000	17	1	0	0	0	63015	1	1	0	0.			.363013
10	4	0		2000	17	1	0	0	0	63015	1	1	0				.954122
11	5	6		2001	18	1	0	0	0	63015	1	1	0	0.		0 4	
12	4	0	12 2	2000	17	1	0	0	0	63015	1	1	0	0.		0 B	3.205334
13	4	0	12 2	2000	17	1	0	0	0	63015	1	1	0	0.		0 B	3.547938
14	4	0	12 2	2000	17	1	0	0	0	63015	1	1	0	0.		0 3	3.602538
15	5	0	12 2	2000	17	1	0	0	0	63015	1	1	0	0.		0 4	1.933145
14 15 16	4	0	12 2	2000	17	1	0	0	0	63015	1	1	0	0.		0 2	2.667993
1000205	1	2	4 7	2000	22	25	0	0	1	44031	1	0	0	0.		0 h	. 000000
1000206	5	2		2000	19	25	0	ő	1	44031	1	0	ă	<i>0</i> .		_	3.980936
1000207	5	2		2000	19	25	0	ă	1	44031	1	0	ă	ŏ .		ø E	
1000201	4	2		2000	22	25	0	ő	1	44031	1	Ø	ã	0.		_	3.616338
1000200	1	2		2000	22	25	0	ø	1	44031	1	0	0	Ø .			3.436217
1000203	4		4 4	2000	22	23	v	v	1	44031	1	0	V	v .	• •	۲	·.430217

Dependent variable

Date/time data

User data

Movie data

CF prediction

Linear Regression: Results

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        8.403e-01 1.097e-02 76.635 < 2e-16 ***
                                             3.910 9.25e-05 ***
wday1
                        1.254e -02 3.208e -03
                        1.236e -02 3.557e -03 3.475 0.000510 ***
wday6
                        1.130e -02 1.015e -02 1.114 0.265465
∎on2
                       -3.734e-02 7.809e-03 -4.781 1.74e-06 ***
mon12
                       -7.206e-02 4.712e-03 -15.294 < 2e-16 ***
year2001
                       -8.974e-02 6.368e-03 -14.091 < 2e-16 ***
year2002
year2003
                       -1.625e-01 1.694e-02 -9.597 < 2e-16 ***
hour1
                        9.275e -03 5.992e -03
                                             1.548 0.121661
                                             1.626 0.103914
hour23
                        8.898e -03 5.472e -03
                        1.967e-03 9.164e-05 21.468 < 2e-16 ***
AgeRange
Jobacademic
                       -7.570e-03 3.602e-03 -2.102 0.035575 *
Jobwriter
                       -2.685e-02 4.081e-03 -6.579 4.75e-11 ***
Male
                       -2.214e-02 2.195e-03 -10.090 < 2e-16 ***
Urban
                        1.837e -02 3.655e -03
                                             5.025 5.04e-07 ***
Action
                       -5.835e-02 2.553e-03 -22.850 < 2e-16 ***
                        4.015e-02 3.715e-03 10.809 < 2e-16 ***
War
CF
                        7.741e-01 1.101e-03 703.120 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0 8935 on 990126 degrees of freedom
Multiple R-squared: (0.3604)
                                   Adjusted R-squared: 0.3604
F-statistic: 7062 on 79 and 990126 DF, p-value: < 2.2e-16
```

- We knew we would do at least as well as CF on the training set
- In fact, we observe an improvement in the model fit
 - Increase of in-sample R² from
 0.33 to 0.36
- What about out-of-sample performance?

Updated Prediction Results

 The ensemble model enhances predictive performance, as compared to "just" the collaborative filtering model

Model	R ²	MAE	RMSE		
Collaborative Filtering Model	0.324	0.700	0.908		
Ensemble Model	0.358	0.698	0.885		

- Recall that Netflix's Cinematch reported an RMSE of 0.952
 - These results would have achieved a 7.04% RMSE improvement
- Ensemble models are often winners in machine learning contests
 - For instance, the winners of the Netflix Prize merged their teams and used their different models to create an ensemble model