

# Planificación de Procesos

# **DIAGRAMA DE 5 ESTADOS**



- Aprovechar RAM + uso efectivo de la CPU
- Podemos pasar a disco procesos bloqueados que estén en memoria



## **DIAGRAMA DE 7 ESTADOS**



#### **CONCEPTOS Y CLASIFICACIÓN**

El planificador (o scheduler) tiene como objetivo asignar procesos para ser ejecutados en la CPU (administrando diferentes colas: READY – BLOCKED) de forma que cumplan los objetivos del sistema.

Tiempo de respuesta

Eficiencia CPU

Según que tan frecuente debe tomar decisiones, podemos diferenciar 3 tipos de planificadores:

Extra
Largo
plazo
Mediano
plazo
Mediano
plazo
Mediano
plazo

#### PLANIFICADOR LARGO PLAZO

- Debe tomar la decisión de si se agregará un nuevo proceso al conjunto de procesos que están activos
- Se ejecuta cuando un nuevo proceso es creado.
  - O Decide en qué momento se puede cargar un nuevo proceso

Proceso finaliza -> disminuye grado multiprogramación

Monitoreo uso CPU -> cierto tiempo CPU IDLE

Job alta prioridad

Decide qué job será aceptado y convertido en proceso



#### **PLANIFICADOR LARGO PLAZO**

Controla el grado de multiprogramación del sistema



Brindar un servicio satisfactorio a los procesos LISTOS

#### PLANIFICADOR MEDIANO PLAZO

- Debe realizar operaciones de swapping (intercambio) -> IN/OUT
- Debe tomar la decisión de si es necesario suspender un proceso -> almacenamiento secundario. También debe decidir cuándo volver a cargar en RAM un proceso suspendido
- Modifica el grado de multiprogramación -> tratando de lograr una buena mezcla de procesos CPU/IO BOUND
  - SWAP IN -> aumento
  - SWAP OUT -> disminución



#### **PLANIFICADOR MEDIANO PLAZO**

Ejemplos:

Muchos procesos IO BOUND

Todos bloqueados -> CPU IDLE

Suspender procesos + cargar procesos CPU BOUND desde swap

Muchos procesos
CPU BOUND

Mal uso dispositivos

Suspender procesos + cargar procesos IO BOUND desde swap

Proceso mayor prioridad + sin RAM Suspender un proceso y cargar al de > prioridad

Proceso suspendido se está por desbloquear + RAM libre

Cargar proceso en RAM para acelerar su vuelta en ejecución

#### **PLANIFICADOR CORTO PLAZO**

- Comprende la decisión de a cuál de los procesos que en un momento se encuentran cargados en RAM listos para ejecutarse se le asignará CPU
- Se ejecuta con mayor frecuencia que el resto -> debe tomar buenas decisiones + el overhead debe ser mínimo
- Es invocado cuando ocurre un evento que libera a la CPU o que provee la oportunidad de seleccionar otro proceso más "prioritario". Eventos a tener en cuenta:
  - Interrupciones de I/O
  - Llamadas al sistema
  - Señales

#### **PLANIFICADORES Y DIAGRAMA DE ESTADOS**



PLANIFICADOR MEDIANO PLAZO
PLANIFICADOR CORTO PLAZO

PLANIFICADOR LARGO PLAZO

### **CRITERIOS**

Orientados al usuario

Orientados al sistema

Tiempo de respuesta

Predictibilidad

Cumplimiento de deadlines

**Utilización CPU** 

Throughput

Respetar prioridades

Utilización de recursos

Tiempo de espera

Tiempo de ejecución

Justicia

#### **TIPO DE PLANIFICADOR (CORTO PLAZO)**

Dependiendo de qué eventos tenga en cuenta un algoritmo de planificación de corto plazo se clasificará en :

- Con desalojo / Apropiativo / Preemptive
- Sin desalojo / No apropiativo / Non preemptive / Cooperativo

# Eventos a tener en cuenta (eventos de replanificación)

Siempre a tener en cuenta:

- → Proceso finaliza (Running -> Finished)
- → Proceso se bloquea (Running -> Blocked)
- Proceso cede voluntariamente CPU (Running -> Ready)

#### Pueden ser considerados

- → Proceso recibe evento esperado (Blocked -> Ready)
- → Proceso nuevo (Syscall : New -> Ready)
- Interrupción por timer

Puede convenir elegir otro proceso

LIBERADA

#### **TIPO DE PLANIFICADOR (CORTO PLAZO)**

Los planificadores que sólo tienen en cuenta los eventos que son obligatorios (los que liberan a la CPU) son llamados **Sin desalojo / No apropiativos / Non preemptive / Cooperativos** ya que esperan a que el proceso le devuelva el control al SO para elegir otro proceso a ejecutar.

Los planificadores que además de considerar los eventos obligatorios consideran <u>al menos UNO</u> del resto de los eventos son llamados **Con desalojo / Apropiativo / Preemptive** ya que pueden interrumpir la ejecución de un proceso (desalojarlo de CPU -> vuelta a READY) para ejecutar otro más prioritario

# Preguntas?

