Task-1

R - 3.2

Firstly, we need to find on intersection point. (For example in base 2 in logarithmic function)

 $8 \times \log_2 n = 2 n^2$

4 log21 = 1

For all n= no=16, 8nlog2n ≤2n2

So, A = O(B) implying that A is better in the consuming.

R-3.9

 $d(n) = O(f(n)) \implies for all n \ge n_0$ $d(n) \le f(n)$

By multiplying both sides by a constant a>0,

we get $a.d(n) \leq a.f(n)$

By ignoring a, we have O(af(n)) = O(f(n)), Then,

 $a \cdot d(n) = O(a \cdot f(n)) = O(f(n)) \implies a \cdot d(n) = O(f(n))$

R-3.17

Take $N_0 = 1$ and k = 33. Then, for all $n \ge N_0 = 1$ $(n+1)^5 \le 33 \cdot n^5$. This means $(n+1)^5 = O(n^5)$

Also note that we can ignore all terms except n^5 in $(n+1)^5 = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1$. This means $O(n^5) = O(6+1)^5$

R - 3.18

Take k=3, for all $n \ge n_0$ Since $2^{n+1} = 2 \cdot 2^n \le 3 \cdot 2^n$, we have $2^{n+1} = O(2^n)$

R-3,20

To find sufficiently large $n \ge n_0$ and constant k $n^2 = n \cdot \log n$ $n = \log n$

For example in base 2:

n = 1k. log_n

Taking $n_0 = 4$ and k=2, we have $4 = 2 \cdot \log_2 4$ for all $n \ge n_0 = 2$, $n \ge 2 \log_2 n$ ($n=8 \implies 8 > 2 \log_2 8$) $n^2 = \Lambda(n \log n)$

Task-2

R - 3.15

- (\Rightarrow) Assume that f(n) = O(g(n)), This means that for all $n \ge n_0$ $f(n) \le k \cdot g(n)$ for some k > 0 for all $n \ge n_0$ $g(n) \ge \frac{1}{k} \cdot f(n)$ note that $\frac{1}{k} > 0$ This means $g(n) = \Omega(f(n))$
- (\Leftarrow) Assume that $g(n) = \Lambda(f(n))$. This means that for all $n \ge n$, $g(n) \ge k \cdot f(n)$ for some k > 0 for all $n \ge n$, $f(n) \le \frac{1}{k} \cdot g(n)$ note that $\frac{1}{k} > 0$ This means f(n) = O(g(n))

R-3.25

def example 3(S):

$$n = len(S)$$
 $total = O$
 C_2

for j in range(n):

 C_3
 $C_4 \cap C_5$
 $total + = S[k]$
 $C_5 \cdot n(n+1)$
 C_6

return total

Let the time consuming function in terms of n be f(n) $f(n) = C_5 \frac{n^2}{2} + (2c_4 + c_5) \frac{n}{2} + c_1 + c_2 + c_3$ By ignoring all terms except n^2 $O(f(n)) = O(\frac{c_5}{2}n^2) = O(n^2) \text{ note that } \frac{c_5}{2} \text{ is also ignored}$ $O(f(n)) = O(n^2)$

R - 3.27

lef example 5 (A,B):	cost:
e_	Ci
n = len(A) $count = 0$	Cr
for i in ronge(n):	C_3
	C4 N
total=0 for j in range(n):	C5N
(1+i)	C6 N2
for k in range (1+i) total += k	$C_{1} \cap \left(\frac{\cap (n+1)}{2}\right)$
if B[i] = = total:	C & V
count += 1	

return count

Time consuming in terms of n: $f(n) = \frac{C_7}{2} (n^3 + n^2) + C_6 n^2 + (c_4 + c_5 + c_8) n + c_4 + c_2 + c_3$ Ignoring all terms except n^3 and ignoring $\frac{C_7}{2}$,
we have $O(f(n)) = O(n^3)$ Time consuming is associated with $n^3 \Rightarrow O(n^3)$

Task-4

R-3.33

Claim: $O(n\log n)$ is always faster than $O(n^2)$ for sufficently large $n \ge n_0 = 100$.

To check this.

When n2100, claim is false:

Assume that O(n2)=kn2 for some k>0

Take $N = 10^2$

$$10^2 \log 10^2 = k \cdot 10^4 \implies k = \frac{1}{50}$$

When Bob's time method is 50n2

$$10\log 10 > \frac{1}{50}(0) (n = 10)$$

Bob's method runs faster, so the claim is false.

When 'n > 100, claim is true:

Take
$$N = 10^3$$
 $10^3 \log 10^3 < \frac{1}{50} \cdot 10^6$

Al's method rus faster, so the claim is true.