Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/

Kernel Methods for regression and classification

Many ideas/slides attributable to: Dan Sheldon (U.Mass.) James, Witten, Hastie, Tibshirani (

Prof. Mike Hughes

James, Witten, Hastie, Tibshirani (ISL/ESL books)

Objectives for Day 19: Kernels

Big idea: Use kernel functions (similarity function with special properties) to obtain flexible high-dimensional feature transformations without explicit features

- From linear regression (LR) to kernelized LR
- What is a kernel function?
 - Basic properties
 - Example: Polynomial kernel
 - Example: Squared Exponential kernel
- Kernels for classification
 - Logistic Regression
 - SVMs

Task: Regression & Classification

Supervised Learning

Unsupervised Learning

Reinforcement Learning y is a numeric variable e.g. sales in \$\$

Keys to Regression Success

- Feature transformation + linear model
- Penalized weights to avoid overfitting

Can fit **linear** functions to **nonlinear** features

A nonlinear function of x:

$$\hat{y}(x_i) = \theta_0 + \theta_1 x_i + \theta_2 x_i^2 + \theta_3 x_i^3$$

Can be written as a linear function of
$$\phi(x_i)=[1 \ x_i \ x_i^2 \ x_i^3]$$

$$\hat{y}(x_i)=\sum_{g=1}^4 \theta_g \phi_g(x_i)=\theta^T \phi(x_i)$$

"Linear regression" means linear in the parameters (weights, biases)

Features can be arbitrary transforms of raw data

What feature transform to use?

- Anything that works for your data!
 - sin / cos for periodic data
 - polynomials for high-order dependencies

$$\phi(x_i) = [1 \ x_i \ x_i^2 \dots]$$

interactions between feature dimensions

$$\phi(x_i) = [1 \ x_{i1}x_{i2} \ x_{i3}x_{i4} \dots]$$

Many other choices possible

Review: Linear Regression

Prediction: Linear transform of G-dim features

$$\hat{y}(x_i, \theta) = \theta^T \phi(x_i) = \sum_{g=1}^G \theta_g \cdot \phi(x_i)_g$$

Training: Solve optimization problem

$$\min_{\theta} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2 + \text{L2 penalty (optional)}$$

Problems with high-dim features

Feature transformation + linear model

How expensive is this transformation? (Runtime and storage)

Thought Experiment

• Suppose that the optimal weight vector can be exactly constructed via a *linear combination* of the training set feature vectors

$$\theta^* = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \ldots + \alpha_N \phi(x_N)$$

Each alpha is a **scalar**

Each feature vector is a **vector of size G**

Justification?

Is optimal theta a linear combo of feature vectors?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$\theta_t \leftarrow \theta_{t-1} - \eta \cdot \frac{d}{d\theta} loss(y_n, \theta^T \phi(x_n))$$

Let's simplify this via chain rule!

Justification?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$\theta_t \leftarrow \theta_{t-1} - \eta \cdot \frac{d}{da} loss(y_n, a) \cdot \frac{d}{d\theta} \theta^T \phi(x_n)$$
scalar scalar Vector of size G

Justification?

Stochastic gradient descent, with 1 example per batch, can be seen as creating optimal weight vector of this form

- Starting with all zero vector
- In each step, adding a weight * feature vector

Each update step:

$$\theta_t \leftarrow \theta_{t-1} - \eta \cdot \frac{d}{da} loss(y_n, a) \cdot \phi(x_n)$$
scalar scalar Vector of size G
(simplified)

How to Predict in this thought experiment

$$\theta^* = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \ldots + \alpha_N \phi(x_N)$$

Prediction:

$$\hat{y}(x_i, \theta) = \theta^T \phi(x_i)$$

$$\hat{y}(x_i, \theta^*) = \left(\sum_{n=1}^N \alpha_n \phi(x_n)\right)^T \phi(x_i)$$

How to Predict in this thought experiment

$$\theta^* = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \ldots + \alpha_N \phi(x_N)$$

Prediction:

$$\hat{y}(x_i, \theta) = \theta^T \phi(x_i) +$$

$$\hat{y}(x_i, \theta^*) = \sum_{n=1}^{N} \alpha_n \phi(x_n)^T \phi(x_i)$$
Inner product

Inner product of test feature vector with each training feature!

Kernel Function

$$k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

Input: any two vectors x_i and x_j

Output: scalar real

Interpretation: similarity function for x_i and x_j

Properties:

Larger output values mean i and j are more similar Symmetric

Kernelized Linear Regression

Prediction:

$$\hat{y}(x_i, \alpha, \{x_n\}_{n=1}^N) = \sum_{n=1}^N \alpha_n k(x_n, x_i)$$
= X

Training

$$\min_{\alpha} \sum_{n=1}^{N} \left(y_n - \hat{y}(x_n, \alpha, X) \right)^2$$

Can do all needed operations with only access to kernel (no feature vectors)

Compare: Linear Regression

Prediction: Linear transform of G-dim features

$$\hat{y}(x_i, \theta) = \theta^T \phi(x_i) = \sum_{g=1}^G \theta_g \cdot \phi(x_i)_g$$

Training: Solve optimization problem

$$\min_{\theta} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2 + \text{L2 penalty (optional)}$$

Why is kernel trick good idea?

Before:

Training problem optimized vector of size G Prediction cost:

scales linearly with G (num. high-dim features)

After:

Training problem optimized vector of size N Prediction cost:

scales linearly with N (num. train examples) requires N evaluations of kernel

So we get some saving in runtime/storage if G is bigger than N AND we can compute k faster than inner product

Example: From Features to Kernels

$$x = [x_1 \ x_2] \qquad z = [z_1 \ z_2]$$

$$\phi(x) = [1 \ x_1^2 \ x_2^2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \sqrt{2}x_1x_2]$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2$$

Compare:

What is relationship between these two functions defined above?

$$k(x,z)$$
 $\phi(x)^T \phi(z)$

Example: From Features to Kernels

$$x = [x_1 \ x_2] \qquad z = [z_1 \ z_2]$$

$$\phi(x) = [1 \ x_1^2 \ x_2^2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \sqrt{2}x_1x_2]$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2$$

Compare:

What is relationship between these two functions defined above?

$$k(x,z) = \phi(x)^T \phi(z)$$

Punchline: Can sometimes find **faster** ways to compute high-dim. inner product

Cost comparison

$$x = [x_1 \ x_2] \qquad z = [z_1 \ z_2]$$

$$\phi(x) = [1 \ x_1^2 \ x_2^2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \sqrt{2}x_1x_2]$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2$$

Compare:

Number of add and multiply ops to compute $\phi(x)^{T}\phi(z)$

Number of add and multiply ops to compute k(x,z)

Example:

Kernel cheaper than inner product

$$x = [x_1 \ x_2]$$

$$\phi(x) = [1 \ x_1^2 \ x_2^2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \sqrt{2}x_1x_2]$$

$$k(x,z) = (1 + x_1 z_1 + x_2 z_2)^2$$
 $z = [z_1 \ z_2]$

Compare:

Number of add and multiply ops to compute $\phi(x)^T \phi(z)$

6 multiply and 5 add

Number of add and multiply ops to compute k(x, z)

3 multiply (include square) and 2 add

Squared Exponential Kernel

Assume x is a scalar

$$k(x,z) = e^{-(x-z)^2}$$

Also called "radial basis function (RBF)" kernel

Squared Exponential Kernel

Assume x is a scalar

$$k(x,z) = e^{-(x-z)^{2}}$$

$$= e^{-x^{2}-z^{2}+2xz}$$

$$= e^{-x^{2}}e^{-z^{2}}e^{2xz}$$

Recall: Taylor series for e^x

$$e^x = \sum_{k=0}^{\infty} \frac{1}{k!} x^k = 1 + x + \frac{1}{2} x^2 + \dots$$

$$e^{2xz} = \sum_{k=0}^{\infty} \frac{2^k}{k!} x^k z^k$$

Squared Exponential Kernel

$$k(x,z) = e^{-(x-z)^{2}}$$

$$= e^{-x^{2}-z^{2}+2xz}$$

$$= e^{-x^{2}}e^{-z^{2}}\left(\sum_{k=0}^{\infty}\sqrt{\frac{2^{k}}{k!}}x^{k}\right)\left(\sum_{k=0}^{\infty}\sqrt{\frac{2^{k}}{k!}}z^{k}\right)$$

$$= \phi(x)^{T}\phi(z)$$

Corresponds to an INFINITE DIMENSIONAL feature vector

$$\phi(x) = \left[\sqrt{\frac{2^0}{0!}} x^0 e^{-x^2} \quad \sqrt{\frac{2^1}{1!}} x^1 e^{-x^2} \quad \dots \quad \sqrt{\frac{2^k}{k!}} x^k e^{-x^2} \quad \dots \quad \right]$$

Kernelized Regression Demo

Linear Regression

```
clf = sklearn.linear_model.LinearRegression()
clf.fit(x_train, y_train)
plot_model(x_test, clf)
```


Kernel Matrix for training set

• K: N x N symmetric matrix

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) \dots k(x_1, x_N) \\ k(x_2, x_1) & k(x_2, x_2) \dots k(x_2, x_N) \\ \vdots & & & \\ k(x_N, x_1) & k(x_N, x_2) \dots k(x_N, x_N) \end{bmatrix}$$

Linear Regression with Kernel

100 training examples in x_train 505 test examples in x_test

```
def linear kernel(X, Z):
    Compute dot product between each row of X and each row of Z
    1.1.1
   m1, = X.shape
   m2, = Z.shape
   K = np.zeros((m1, m2))
    for i in range(m1):
        for j in range(m2):
           K[i,j] = np.dot(X[i,:], Z[j,:])
    return K
K_train = linear_kernel(x_train, x_train) + le-10 * np.eye(N) # see note below
K test = linear kernel(x test, x train)
print("Shape of K train: %s" % str(K train.shape))
print("Shape of K test: %s" % str(K test.shape))
Shape of K train: (100, 100)
```

Shape of K test: (505, 100)

Linear Regression with Kernel

```
clf = sklearn.linear_model.LinearRegression()
clf.fit(K_train, y_train)
plot_model(K_test, clf)
```


Polynomial Kernel, deg. 5

Polynomial Kernel, deg. 12

Gaussian kernel (aka sq. exp.)

Kernel Regression in sklearn

sklearn.kernel_ridge.KernelRidge

class sklearn.kernel_ridge. KernelRidge (alpha=1, kernel='linear', gamma=None, degree=3,
coef0=1, kernel_params=None)
[source]

fit (X, y=None, sample_weight=None)

[source]

Demo will use

Fit Kernel Ridge regression model

kernel='precomputed'

Parameters: X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data. If kernel == "precomputed" this is instead a precomputed kernel matrix, shape = [n_samples, n_samples].

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values

sample_weight : float or array-like of shape [n_samples]

Individual weights for each sample, ignored if None is passed.

Returns: self : returns an instance of self.

Can kernelize any linear model

Regression: Prediction

$$\hat{y}(x_i, \alpha, \{x_n\}_{n=1}^N) = \sum_{n=1}^N \alpha_n k(x_n, x_i)$$

Logistic Regression: Prediction

$$p(Y_i = 1|x_i) = \sigma(\hat{y}(x_i, \alpha, X))$$

Training for kernelized versions of

- * Linear Regression
- * Logistic Regression

$$\min_{\alpha} \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \alpha, X))^2$$

$$\min_{\alpha} \sum_{n=1}^{N} \log_{-\log}(y_n, \sigma(\hat{y}(x_n, \alpha, X)))$$

SVMs: Prediction

$$\hat{y}(x_i) = w^T x_i + b$$

Make binary prediction via hard threshold

$$\begin{cases} 1 & \text{if } \hat{y}(x_i) \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

SVMs and Kernels: Prediction

$$\hat{y}(x_i) = \sum_{n=1}^{N} \alpha_n k(x_n, x_i)$$

Make binary prediction via hard threshold

$$\begin{cases} 1 & \text{if } \hat{y}(x_i) \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Efficient training algorithms using modern quadratic programming solve the dual optimization problem of SVM soft margin problem

Support vectors are often small fraction of all examples

Support vectors defined by **non-zero alpha** in kernel view

Data points i with non-zero weight α_i :

- Points with minimum margin (on optimized boundary)
- Points which violate margin constraint, but are still correctly classified
- Points which are misclassified

For all other training data, features have *no impact* on learned weight vector

SVM + Squared Exponential Kernel

Support vectors (green) for data separable by radial basis function kernels, and non-linear margin boundaries

Kernel Unit Objectives

Big idea: Use kernel functions (similarity function with special properties) to obtain flexible high-dimensional feature transformations without explicit features

- From linear regression (LR) to kernelized LR
- What is a kernel function?
 - Basic properties
 - Example: Polynomial kernel
 - Example: Squared Exponential kernel
- Kernels for classification
 - Logistic Regression
 - SVMs