Exercise 5: (Laws of Logic)

1.

$$\begin{split} F \wedge (F \vee G) &\equiv F \\ \Leftrightarrow (F \wedge F) \vee (F \wedge G) &\equiv F \\ \Leftrightarrow F \vee (F \wedge G) &\equiv F \end{split} \qquad \text{see part 2}$$

So the truth table for both formulae looks like this:

F G	$F \vee G$	$F \wedge (F \vee G)$
0 0	0	0
0 1	1	0
1 0	1	1
1 1	1	1
	'	

2.

$$F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$$

F G H	$G \vee H$	$F \wedge (G \vee H)$	$F \wedge G$	$F \wedge H$	$(F \wedge G) \vee (F \wedge H)$
0 0 0	0	0	0	0	0
$0\ 0\ 1$	1	0	0	0	0
0 1 0	1	0	0	0	0
0 1 1	1	0	0	0	0
$1 \ 0 \ 0$	0	0	0	0	0
101	1	1	0	1	1
1 1 0	1	1	1	0	1
1 1 1	1	1	1	1	1

$$F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$$

F G H	$G \wedge H$	$F \vee (G \wedge H)$	$F \vee G$	$F \vee H$	$(F \vee G) \wedge (F \vee H)$
0 0 0	0	0	0	0	0
$0\ 0\ 1$	0	0	0	1	0
$0\ 1\ 0$	0	0	1	0	0
0 1 1	1	1	1	1	1
$1 \ 0 \ 0$	0	1	1	1	1
101	0	1	1	1	1
1 1 0	0	1	1	1	1
1 1 1	1	1	1	1	1

3.

0.1

1 0

1 1

1

1

1

$$\begin{array}{c|c|c} \neg (F \wedge G) \equiv \neg F \vee \neg G \\ \hline F \ G \ | \ F \wedge G \ | \ \neg F \vee \neg G \\ \hline 0 \ 0 \ | \ 0 \ | \ 1 \\ 0 \ 1 \ | \ 0 \ | \ 1 \\ 1 \ 0 \ | \ 0 \ | \ 1 \\ 1 \ 1 \ | \ 1 \ | \ 0 \\ \hline \neg (F \vee G) \equiv \neg F \wedge \neg G \\ \hline \hline 0 \ 0 \ | \ 0 \ | \ 1 \\ \hline \end{array}$$

Exercise 6: (Two proofs)

0

0

0

Show $F_1 = (A \vee \neg (B \wedge A)) \wedge (C \vee (D \vee C)) = C \vee D = F_2$

(a) by truth table

(4) 55 01 401	1 00010					
A B C D	$ \neg (B \land A)$	$A \vee \neg (B \wedge A) = G_1$	$D \lor C$	$C \vee (D \vee C) = G_2$	$F_1 = G_1 \wedge G_2$	$F_2 = C \vee D$
0 0 0 0	1	1	0	0	0	0
$0\ 0\ 0\ 1$	1	1	1	1	1	1
$0\ 0\ 1\ 0$	1	1	1	1	1	1
$0\ 0\ 1\ 1$	1	1	1	1	1	1
$0\ 1\ 0\ 0$	1	1	0	0	0	0
$0\ 1\ 0\ 1$	1	1	1	1	1	1
0 1 1 0	1	1	1	1	1	1
$0\ 1\ 1\ 1$	1	1	1	1	1	1
$1\ 0\ 0\ 0$	1	1	0	0	0	0
$1 \ 0 \ 0 \ 1$	1	1	1	1	1	1
1 0 1 0	1	1	1	1	1	1
$1\ 0\ 1\ 1$	1	1	1	1	1	1
$1\ 1\ 0\ 0$	0	1	0	0	0	0
1 1 0 1	0	1	1	1	1	1
1 1 1 0	0	1	1	1	1	1
1111	0	1	1	1	1	1

(b) by transformation

$$F_1 = (A \vee \neg (B \wedge A)) \wedge (C \vee (D \vee C))$$

$$\stackrel{deMorgan}{=} (A \vee (\neg B \vee \neg A)) \wedge (C \vee (D \vee C))$$

$$\stackrel{Assoc.}{=} (A \vee \neg B \vee \neg A) \wedge (C \vee D \vee C)$$

$$\stackrel{Idemp.}{=} (A \vee \neg B \vee \neg A) \wedge (C \vee D)$$

$$= C \lor D = F_2$$

Exercise 7: (CNF and DNF)

$$F = (\neg A \implies B) \lor ((A \lor \neg C) \Leftrightarrow B)$$

$$= (\neg \neg A \lor B) \lor (((A \land \neg C) \land B) \lor (\neg (A \land \neg C) \land \neg B))$$
1.
Replace Double negations
$$\Leftrightarrow (A \lor B) \lor (((A \land \neg C) \land B) \lor (\neg (A \land \neg C) \land \neg B))$$
Apply De Morgan's rules
$$\Leftrightarrow A \lor B \lor (A \land \neg C \land B) \lor ((\neg A \lor C) \land \neg B)$$
2.
DNF
$$\Leftrightarrow A \lor B \lor (A \land \neg C \land B) \lor (\neg A \land B) \lor (C \land \neg B)$$
CNF
$$\Leftrightarrow A \lor B \lor (((A \land \neg C \land B) \lor (\neg A \lor C)) \land (\neg B \lor (A \land \neg C \land B)))$$

$$\Leftrightarrow A \lor B \lor (((A \land \neg C \land B) \lor (\neg A \lor C)) \land (\neg B \lor (A \land \neg C \land B)))$$

$$\Leftrightarrow A \lor B \lor (((A \lor (\neg A \lor C)) \land (B \lor (\neg A \lor C)) \land (\neg C \lor (\neg A \lor C)) \land ((\neg B \lor A) \land (\neg B \lor C) \land (\neg B \lor B)))$$

$$\Leftrightarrow A \lor B \lor ((B \lor \neg A \lor C) \land (\neg B \lor A) \land (\neg B \lor C))$$

$$\Leftrightarrow A \lor (B \lor B \lor \neg A \lor C) \land (B \lor \neg B \lor A) \land (B \lor \neg B \lor C))$$

$$Tautology$$

$$Tautology$$

$$\Rightarrow A \lor (B \lor B \lor \neg A \lor C) = 1$$

$$Tautology$$

Exercise 8: (Switch and or)

No solution.