Analytic Geometry

DEF (Dot Product) The dot product between two vectors u **DEF** (Distance between a point and a line) The distance beand v is defined as

$$u^{\top}v = u_1v_1 + u_2v_2 + \ldots + u_nv_n = \sum_{i=1}^{n} u_iv_i$$

DEF (Bilinearity) The dot product is bilinear, i.e. for any vectors u, v, w and scalar a,

$$au^{\top}v = au^{\top}v = u^{\top}av$$
$$u + v^{\top}w = u^{\top}w + v^{\top}w$$
$$w^{\top}u + v = w^{\top}u + w^{\top}v$$

DEF (Commutativity) The dot product is commutative, i.e. $u^{\top}v = v^{\top}u$

DEF (Inner Product) The inner product between two vectors u and v is defined as

$$\langle u, v \rangle$$

Dot product is a special case of inner product.

DEF (ℓ_2 Norm) The ℓ_2 norm of a vector v is defined as

$$||v||_2 = \sqrt{v^\top v} = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

Also called the Euclidean norm.

DEF (ℓ_2 properties) For all vectors u, v and scalar a,

- The ℓ_2 norm is non-negative, i.e. $||v||_2 \ge 0$.
- $||au||_2 = |a| ||u||_2$ for any scalar a.
- $||u||_2$ is zero if and only if u is the zero vector.
- The triangle inequality holds, i.e. $||u+v||_2 \le ||u||_2 +$
- $||x y||_2 = ||y x||_2$, also called symmetry. $||u + v||_2^2 = ||u||_2^2 + 2u^\top v + ||v||_2^2$
- $\cos \theta = \frac{u^{\top} v}{\|u\|_2 \|v\|_2}$ (can be proved using the law of cosines)

THM (Cauchy-Schwarz Inequality) For any vectors u, v, the following inequality holds:

$$|\langle u, v \rangle| \leq ||u||_2 ||v||_2$$

DEF (*Line*) A line is a set of points

$$\{x: x = u + tv \text{ for some } t \in \mathbb{R}\}$$

where u is a point on the line and $v \neq 0$ is the direction vector.

DEF (*Plane*) A plane is a set of points

$$\{x: v^{\top}x - u = 0\}$$

where v is the normal vector to the plane and u is the shift from the origin.

DEF (*Projection*) The vector $||u||_2 \cos \theta \frac{v}{||v||_2}$ is a projection of

DEF (Distance between a point and a plane) The distance between a point z and a plane $v^{\top}x - u = 0$ is given by

$$\frac{|v^\top z - u|}{\|v\|_2}$$

tween a point z and a line x = u + tv is given by

$$\left\|z - u - \frac{z - u^{\top}v}{\left\|v\right\|_{2}^{2}}v\right\|_{2}$$

DEF (Singular Value Decomposition (SVD)) The SVD of a matrix X is $U\Sigma V^T$, where $U^{\top}U = I, V^{\top}V = I$ and Σ is a diagonal matrix:

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \end{bmatrix}$$

and $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$.

THM (*Eckart-Young Theorem*) Let $\Sigma_k = \text{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0)$ where $k \leq d$. The matrix $U\Sigma_k V^T$ is the optimal solution to the following problem:

$$\min_{\hat{X}} \left\| X - \hat{X} \right\|_{F} \text{ s.t. } \operatorname{rank}(\hat{X}) \leq k$$

The matrices $Z = U\Sigma_k$ and $W = V^T$ are the optimal solution

$$\min_{Z,W} \|X - ZW\|_F \text{ s.t. } Z \in \mathbb{R}^{n \times k}, W \in \mathbb{R}^{k \times d}$$

Calculus

DEF (*Derivative*) The derivative of a function $f: \mathbb{R} \to \mathbb{R}$ at x_0 is defined as:

$$(D_x f)(x_0) = \left(\frac{d}{dx}f\right)(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

DEF (Directional Derivative) The directional derivative of a function $f: \mathbb{R}^d \to \mathbb{R}$ along the direction v at $x_0 \in \mathbb{R}^d$ is defined

$$(D_v f)(x_0) = \lim_{h \to 0} \frac{f(x_0 + hv) - f(x_0)}{h}$$

DEF (Partial Derivative) The partial derivative is a directional derivative along the direction of coordinate axes. For a function $f: \mathbb{R}^d \to \mathbb{R}$, the partial derivative with respect to the *i*-th coordinate is denoted as:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_d) - f(x_1, \dots, x_i, \dots, x_d)}{h}$$

DEF (Gradient) The gradient of a function is the vector consisting of all partial derivatives denoted by ∇f or $\frac{\partial f}{\partial x}$. For a function $f: \mathbb{R}^d \to \mathbb{R}$,

EX (Gradient Identities)

- Given a function $f(a) = b^{\top} a$, $(\nabla f)(a) = b$ Given a function $f(a) = \|a\|_2^2$, $(\nabla f)(a) = 2a$

EX (*Hessian*) The Hessian of a function $f: \mathbb{R}^d \to \mathbb{R}$ is the matrix of second partial derivatives:

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 x_d} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d x_1} & \frac{\partial^2 f}{\partial x_d x_2} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}$$

EX (Hessian Example) Given a function $f(x,y) = x^2 - y^2$, the Hessian is:x:

$$\nabla^2 f = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

The 2 indicates that it looks like a cup along the x-axis and the -2 indicates that it looks like an upside-down cup along the y-axis.

Optimisation

DEF (*Minimum*) The minimum of a function $f: \mathbb{R}^d \to \mathbb{R}$ is written as $\min_x f(x)$, and has the property that $\min_x f(x) \le f(y)$ for all $y \in \mathbb{R}^d$. The value x^* such that $f(x^*) = \min_x f(x)$ is called the minimizer.

DEF (*Convexity*) A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if for any $0 \le \alpha \le 1$, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

In general,

$$f(\sum_{i=1}^{k} \alpha_i x_i) \le \sum_{i=1}^{k} \alpha_i f(x_i)$$

DEF (*Concavity*) A function f is concave if -f is convex.

THM (First Order Condition (Convexity)) If f is convex then, • $f(x) \ge f(y) + \nabla f(y)^{\top} (x - y)$

DEF (*Positive Semidefinite*) A matrix A is positive semidefinite if for all vectors $v \neq 0$ we have $v^{\top} A v \geq 0$. Also written as $A \succeq 0$.

THM (Convex Function Implies Positive Semidefinite Hessian) If f is convex, then $\nabla^2 f(x) \succeq 0$.

DEF (*Positive Definite*) A matrix A is positive definite if for all vectors $v \neq 0$ we have $v^{\top} A v > 0$. Also written as $A \succ 0$.

DEF (Affine) A function f is affine if f(x) = Ax + b for some matrix A and vector b.

THM (Affine Transform Preservation) If f is convex, then g(x) = f(Ax + b) is also convex.

THM (Non-negative Weighted Sum) If $f_1, f_2, ..., f_k$ are convex functions, then $f(x) = \sum_{i=1}^k \beta_i f_i(x)$ is convex for all $\beta_i > 0$.

EX (Gradient of Quadratic Form) $\nabla_x(x^\top Ax) = (A + A^\top)x$

DEF (Strictly Convex) A function $f : \mathbb{R}^d \to \mathbb{R}$ is called strictly if for $0 \le \alpha \le y$ we have

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

for any $x \neq y$.

DEF (First Order Condition (Strict Convexity)) If f is strictly convex then,

•
$$f(x) > f(y) + \nabla f(y)^{\top} (x - y)$$

THM (*Unique Minimizer*) If f is strictly convex, then f has a unique minimizer.

THM (Jensen's Inequality) If a function f is convex,

$$f(\mathbb{E}_{x \sim p}[x]) \le \mathbb{E}_{x \sim p}[f(x)]$$

DEF (*Gradient Descent*) The gradient descent algorithm is given by

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

where η is the learning rate/step size.

DEF (Convergence) Given $\epsilon > 0$, we say that an algorithm converges to a point x^* if

$$f(x_t) - f(x^*) \le \epsilon$$

DEF (*Convergence Rate*) The convergence rate of an algorithm is the rate at which the algorithm converges to the optimal point. There are three types of convergence rates:

- Sublinear: $f(x_t) f(x^*) \le \frac{c}{t^2} \ (\epsilon = O(\frac{1}{t^2}), t = O(\frac{1}{\sqrt{\epsilon}}))$
- Linear: $f(x_t) f(x^*) \le cr^t \ (\epsilon = O(r^t), t = O(\log \frac{1}{\epsilon}))$
- Quadratic: $f(x_t) f(x^*) \le cr^{2^t} (\epsilon = O(r^{2^t}), t = O(\log \log \frac{1}{2}))$

Where 0 < r < 1.

DEF (Subgradient) A subgradient at x is a vector g that satisfies

$$f(y) \ge f(x) + g^{\top}(y - x)$$

for any y, and the set of subgradients at x is denoted as $\partial f(x)$. $\nabla f(x) \in \partial f(x)$ if f is differentiable at x. In other words subgradients are tangents that are below the function.

EX (Constrained Optimisation Problem) An example of a constrained optimisation problem is

$$\min_{x} x^2 \text{ s.t. } -2.5 \le x \le -0.5$$

DEF (Feasible Solution) A feasible solution is a point that satisfies all the constraints.

 ${f DEF}$ (Lagrangian) If you have an optimisation problem of the form

$$\min_{x} f(x)$$
 s.t. $h(x) \le 0$

the **Lagrangian** is defined as

$$f(x) + \lambda h(x)$$

for some $\lambda \geq 0$ (Lagrange multiplier).

ALG (Solving the Lagrangian)

• Solve $g(\lambda) = \min_{x} [f(x) + \lambda h(x)]$

- Find $\hat{\lambda}$ such that $\min_x [f(x) + \hat{\lambda}h(x)]$ gives a feasible solution
- Suppose \hat{x} is the solution to the above, and $x^* = \arg\min_{x:h(x)<0} f(x)$ (the optimal solution), then

$$f(\hat{x}) = f(\hat{x}) + \hat{\lambda}h(\hat{x}) \le f(x^*) + \hat{\lambda}h(x^*) \le f(x^*)$$

Probability

DEF (Gaussian Distribution) We write $x \sim \mathcal{N}(\mu, \Sigma)$ to denote that x is a random variable with mean μ and covariance Σ . It means that the probability density function of x is given by

$$p(x) = \frac{1}{2\pi^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

DEF (Statistical Independence) Two variables x and y are independent if

$$p(x,y) = p(x)p(y)$$

Equivalently,

$$p(x|y) = p(x)$$

. The independence of x and y is denoted by $x \perp y$. **DEF** (Statistical Independence [general]) If $\{x_1, \ldots, x_n\} \perp \{y_1, \ldots, y_m\}$ then

$$p(x_1, \cdots, x_n, y_1, \cdots, y_m) = p(x_1, \cdots, x_n)p(y_1, \cdots, y_m)$$

EX (Factorisation of a joint distribution) Suppose $x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}$. If $\{x, y\} \perp z$ then

$$p(x, y, z) = p(x, y)p(z)$$

The original joint distribution (of size $|\mathcal{X}| \times |\mathcal{Y}| \times |\mathcal{Z}|$) can be factorised into two distributions of size $|\mathcal{X}| \times |\mathcal{Y}|$ and $|\mathcal{Z}|$.

DEF (Mutual Independence) A set of variables $\{x_1, \ldots, x_n\}$ are mutually independent if

$$p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i)$$

DEF (*Pairwise Independence*) A set of variables $\{x_1, \ldots, x_n\}$ are pairwise independent if

$$p(x_i, x_j) = p(x_i)p(x_j)$$

for all $i \neq j$.

THM (Mutual Independence implies Pairwise Independence) If a set of variables $\{x_1, \ldots, x_n\}$ are mutually independent, then they are pairwise independent. Converse is not true!

DEF (Conditional Independence) The variables x and y are conditionally independent given z if

$$p(x, y|z) = p(x|z)p(y|z)$$

This is denoted by $x \perp y|z$.

DEF (Marginilisation) The marginal distribution of x is obtained by summing out all other variables.

$$p(x) = \sum_{y} p(x, y)$$
$$p(x|z) = \sum_{y} p(x, y|z)$$
$$p(x, y|z) = p(x|z)p(y|z)$$

DEF (*Bayes Rule*) Bayes rule is a way to invert conditional probabilities.

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

DEF (*Chain Rule*) Any joint distribution can be factorised into a product of conditional distributions.

$$p(x_1, \dots, x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)\cdots p(x_n|x_1, \dots, x_{n-1})$$

DEF ((directed) Graph Representation) A directed graph is a set of nodes connected by edges. Each vertex is a random variable and each edge represents a direct dependency. It is directed and acyclic (DAG). A distribution factorises according to the graph if

$$p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i|\text{parents}(x_i))$$

DEF (Graph structures)

• Chain $x \perp z|y$

• Common cause $x \perp z|y$

• v-structure $x \perp z$ but $x \not\perp z|y$

$$x \longrightarrow y \longrightarrow z$$

Training Expectation Maximisation

DEF (K-means Distortion)

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

DEF (*K*-means Steps) Randomly initialise $\mu_{k=1,...,K} \to \text{Minimise } J$ with respect to $r_{nk} \to \text{Minimise } J$ with respect to $\mu_k \to \text{Repeat}$

DEF (K-means Solutions)

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}, r_{nk} = \mathbb{I}(k = \arg\min_j ||x_n - \mu_j||^2)$$

DEF (GMM Probabilities)

$$p(z_k = 1) = \pi_k, p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}, p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}$$

DEF (Kullback-Leibler Divergence)

$$KL(p||q) = \mathbb{E}_{x \sim p} \left[\log \frac{p(x)}{q(x)} \right] = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$