Wprowadzenie do Sztucznej Inteligencji (WSI). Notatki wygenerowane automatycznie ze slajdów. ©2022 Robert Nowak. Wszelkie prawa zastrzeżone.

Wprowadzenie

Teoria gier - dział matematyki i ekonomii. Nagrody Nobla:

- 1994 (Nash, Selten, Harsanyi)
- 1996 (Vickrey, Mirrleesem)
- 2005 (Scheling, Aumann)
- 2007 (Hurwicz, Maskin, Myerson)

Będziemy się zajmować grami:

- w postaci ekstensywnej,
- o sumie stałej (o sumie zerowej),
- · sprawiedliwymi,
- dwuosobowymi,
- o skończonym czasie rozgrywki.

Poszukiwanie strategii w takich grach jest problemem przeszukiwania przestrzeni.

Plan wykładu

- Definicje
- Algorytmy dla dwuosobowych gier deterministycznych z pełną informacja
 - Przegląd wyczerpujący
 - Algorytm MiniMax
 - Algorytm $\alpha \beta$
- Algorytmy dla dwuosobowych gier niedeterministycznych

Gry dwuosobowe

Podział ze względu na czas (kolejność) podejmowania decyzji:

- gry w postaci strategicznej (normalnej)
 gracze podejmują decyzje jednocześnie, bez wiedzy o decyzjach innych uczestników
- gry w postaci ekstensywnej (rozwiniętej)
 gracze podejmują decyzje sekwencyjnie, mając określone informacje o decyzjach

Gry o sumie zerowej

Gry o sumie zerowej - zysk gracza oznacza strate oponenta, interesy graczy są dokładnie przeciwstawne.

	Deterministyczne	Hazardowe
Informacja pełna	szachywarcabygo	tryktrak (backgammon)monopoly
Informacja niepełna	• statki	brydżpokerscrabble

Deterministyczne gry dwuosobowe

- Dwaj przeciwnicy
- wykonują posunięcia naprzemiennie
- na przebieg gry nie wpływa element losowy
- stan gry jest znany obu przeciwnikom
- koniec gry ma przypisany wynik jest to liczba rzeczywista nazywana wypłatą

Cel:

- dla gracza rozpoczynającego (nazywanego Max) maksymalizacja wypłaty
- dla oponenta (nazywanego Min) minimalizacja wypłaty

Deterministyczna gra dwuosobowa: model

$$\langle S, P, s_0, T, w \rangle$$

gdzie:

- $s \in S$ to stan i informacja kto wykonuje ruch, , np. ustawienie figur na szachownicy
- $p \in P$ funkcja następnika, reprezentuje ruchy (posunięcia w grze), $p:S \to S$ lista lista stanów spełniających reguły gry
- $s_0 \in S$ to stan początkowy, np. ustawienie początkowe figur na szachownicy
- $T \subseteq S$ -to zbiór stanów terminalnych, np. mat w szachach
- w to funkcja wypłaty zdefiniowana dla stanów terminalnych $s \in T$, np.

$$w(s) = \begin{cases} 1 & \text{zwycięstwo gracza} \\ 0 & \text{remis} \\ -1 & \text{przegrana} \end{cases}$$

Drzewo gry kółko i krzyżyk

Do wyznaczania następnego ruchu gracze mogą wykorzystywać graf acykliczny (nazywany drzewem gry) zbudowany na podstawie modelu. Optymalne strategie można wyszukać w tym grafie.

Przykład: gra w zapałki

Zasady gry:

- $\bullet\,$ początkowo istnieje jedna grupa Nzapałek
- gracze na przemian dzielą dowolną grupę na nierówne części
- przegrywa gracz, który nie może wykonać ruchu

Przegląd wyczerpujący

Gracz wybiera ruch zapewniający największą wypłatę przy założeniu, że przeciwnik gra optymalnie.

Wprowadzenie do Sztucznej Inteligencji (WSI). Notatki wygenerowane automatycznie ze slajdów. ©2022 Robert Nowak. Wszelkie prawa zastrzeżone.

Dane wejściowe: drzewo gry, w(s) dla $s \in T$

```
Algorithm 1: Przegląd wyczerpujący
 def MinimaxFull(s)
                                                                              // początkowo s=s_0
 if s \in T then
  return w(s)
                                                                   // wezeł terminalny, wypłata
 \mathbf{end}
 U := successors(s)
 \mathbf{for}\ u\ in\ U\ \mathbf{do}
  w(u) = MinimaxFull(u)
 \mathbf{end}
 if max-move then
                                                                               // ruch gracza Max
    return max(w(u))
 else
    return min(w(u))
 end
```

Przykład: przegląd wyczerpujący dla gry w zapałki

```
Wypłaty dla gry w 7 zapałek, w(x) = \begin{cases} 1 & \text{wygrywa gracz} \\ -1 & \text{wygrywa oponent} \end{cases}
```


Przegląd wyczerpujący - własności

- Znajduje optymalną strategię, gdy przeciwnik gra optymalnie.
- Złożoność czasowa $O(b^N)$, gdzie b maksymalne rozgałęzienie drzewa, N maksymalna wysokość drzewa
- \bullet Wysokość drzewa nie przekracza 2N, gdzie N liczba poprawnych konfiguracji
- dla gry w szachy $b \approx 35, N \approx 100$ dokładne rozwiązanie nieosiągalne

algorytm MiniMax, założenia

Podobny do przeglądu wyczerpującego, ale:

- nie reprezentuje pełnego drzewa gry, stany potomne są analizowane niezależnie
 - oszczędza czas, bo nie bada, czy czy do stanu dochodzi inna, wcześniej rozważana, sekwencja ruchów

Wprowadzenie do Sztucznej Inteligencji (WSI). Notatki wygenerowane automatycznie ze slajdów. ©2022 Robert Nowak. Wszelkie prawa zastrzeżone.

- może wielokrotnie analizować te same stany,
- graf acykliczny jest teraz drzewem
- pozwala analizować ścieżki o ograniczonej długości.

Wymaga dostarczenia funkcji oceny stanu h(s)

$$h(s) = \begin{cases} w(s) & \text{dla } s \in T \\ \text{heurystyka} & \text{dla pozostałych} \end{cases}$$

Heurystyczna funkcja oceny sytuacji w grze

Przykład heurystyki dla gry kółko i krzyżyk to suma liczba punktów za pola zgodnie z macierzą:

3	2	3
2	4	2
3	2	3

Macierz pokazuje w ilu konfiguracjach potencjalnie bierze udział dane pole.

gracz Max gra kółkiem, gracz Min gra krzyżykiem.

Algorytm Minimax

Gracz wybiera ruch zapewniający największą wypłatę, patrząc na d ruchów naprzód, zakładając, że przeciwnik gra optymalnie.

Algorithm 2: Algorytm minimax

```
\mathbf{def} Minimax(s,d)
                                                           // d - głębokość przeszukiwania
if s \in T or d = 0 then
return h(s)
                                                                  // heurystyka lub wypłata
\mathbf{end}
U := successors(s)
for u in U do
   w(u) = Minimax(u, d-1)
end
if Max-move then
                                                                          // ruch gracza Max
   return max(w(u))
else
   return min(w(u))
end
```

Algorytm Minimax, przykład

Źródło: wikipedia

Algorytm Minimax z funkcją odcięcia $\alpha - \beta$

- Jeżeli analizowana ścieżka ma wybór gorszy niż obecnie najlepszy dla innej ścieżki, to nie ma sensu jej analizować.
- taka strategia pozwala wyeliminować średnio połowę ścieżek przy przeszukiwaniu

Oznaczenia:

- α najlepszy obecnie wybór dla Max
- β najlepszy obecnie wybór dla Min

Algorytm $\alpha - \beta$

```
Algorithm 3: Algorytm Minimax \alpha - \beta
                                                                                         // \alpha = -\infty, \beta = +\infty
 def AlfaBeta(s,d,\alpha,\beta)
 if s \in T or d = 0 then
  return h(s)
                                                                                 // heurystyka lub wypłata
 \overline{\mathbf{e}}
 U := successors(s)
 if Max-move then
                                                                                           // ruch gracza Max
     for u in U do
         \alpha := \max(\alpha, AlfaBeta(u, d-1, \alpha, \beta))
         if \alpha \geqslant \beta then
          | return \beta
         end
     end
     return \alpha
 {f else}
                                                             // analogicznie dla oponenta, gracza Min
 end
```


Algorytm $\alpha - \beta$, przykład (2)

Algorytm $\alpha - \beta$, przykład (4)

Deterministyczne gry dwuosobowe, algorytmy wspomagające

- iteracyjne pogłębianie
- heurystyki określające kolejność analizy ruchu
- heurystyki określające dokładność oszacowania wartości stanu
- książka otwarć
- książka zamknięć

Deterministyczne gry dwuosobowe, stan obecny

- Warcaby: 1994 program Chinook wygrał z mistrzem świata. Program używał wstępnie obliczone końcówki gry dla 444'000'000'000 pozycji.
- Szachy: 1997 komputer DeepBlue pokonał arcymistrza świata w sześciu partiach, wynik meczu $3\frac{1}{2}:2\frac{1}{2}$. DeepBlue wykorzystywał algorytm $\alpha-\beta$, obliczenia na klastrze zawierającym 30 CPU i specjalizowane układy do gry w szachy.
- Go: 2016, program AlphaGo wygrał 4:1 z jednym z najlepszych zawodowych graczy. Wykorzystuje sztuczne sieci neuronowe i klaster z 1920 CPU i 280 GPU.
- AlphaGo Zero w 2017 r program wygrał 100:0 z AlphaGo. AlphaGo Zero uczył się grając sam ze sobą.
 Używa TPU (Tensor Processing Unit), procesory wspierające sprzętowo operacje charakterystyczne dla sieci neuronowych.

Gry a poszukiwania

Przeszukiwanie	Gry	
 nie ma przeciwnika heurystyki pomagają znaleźć rozwiązanie optymalne 	 są przeciwnicy rozwiązanie to strategia gry, odpowiedź na każde działanie przeciwnika 	

Zagadnienia związane z implementacją

Struktura danych do reprezentacji gry często stosuje wzorzec Virtual Proxy, (leniwe tworzenie, tworzenie przy pierwszym użyciu).

Gry niedeterministyczne z pełną informacją

Algorytm uśredniony MiniMax(Expected MiniMax)

- drzewo ma węzły losowe
- wypłata dla węzłów losowych uwzględnia prawdopodobieństwo

$$w(n) = \Sigma P(s) * w(s)$$

Gry dwuosobowe o sumie zerowej - uwagi

Gry niedeterministyczne z pełną informacją - uwagi

- węzły losowe zwiększają wysokość drzewa
- dla wysokich drzew wartość sprawdzania wprzód maleje, bo prawdopodobieństwo osiągnięcia danego węzła maleje
- odcinanie $\alpha-\beta$ mniej efektywne

• Program TDGammon (gra w backgammon) ma przeszukiwanie na głębokość 2 i ma poziom mistrza świata

Gry z niepełną informacją:

• gry z niepełną informacją – obliczanie prawdopodobieństwa każdego rozdania)

Gry w postaci strategicznej (normalnej)

Gracze podejmują decyzje jednocześnie, bez wiedzy o decyzjach innych uczestników. Opis to k macierzy wypłat, k - liczba graczy.

		Gracz 1	
		strategia A	strategia B
Gracz 2	strategia A	wypł. gracz 1, wypł. gracz 2	
Gracz 2	strategia B		

Przykład: polowanie na jelenia (Stag Hunt)

		Myśliwy 1	
		Jeleń	Zając
Myśliwy 2	Jeleń	2,2	0,1
	Zając	1,0	1,1

Gry w postaci strategicznej (2)

Przykład: Papier-Kamień-Nożyczki

		Gracz 1		
		Papier	Kamień	Nożyczki
Gracz 2	Papier	0, 0	1,-1	-1, 1
Gracz z	Kamień	-1, 1	0, 0	1,-1
	Nożyczki	1,-1	-1, 1	0, 0

Przykład: dylemat więźnia

		Więzień 1	
		Zeznaje	Milczy
Więzień 2	Zeznaje	-5, -5	-10, 0
	Milczy	0, -10	-1, -1

Lektura: 'Sztuczna Inteligencja dla Inżynierów', wydawnictwo Politechniki Warszawskiej, 2022.

Dziękuję