

KEE/JE – Jaderné elektrárny

Plzeň, 2014

2. přednáška

Stav jaderné energetiky v zemích G8

Stát	Současný počet reaktorů	Instalovaný výkon (MW)	Podíl JE na celkové výrobě státu v r. 2005	Budoucnost jaderných elektráren v zemi
USA	103	99 200	19 %	plánováno nejméně 13 nových reaktorů
Rusko	31	21 700	16 %	plánováno 30 nových reaktorů
Francie	59	63 400	79 %	plánován 1 nový reaktor + obnova stávajících
Japonsko	56	47 800	29 %	plánováno 12 nových reaktorů
Anglie	23	11 900	20 %	blíže nespecifikovaný rozvoj
Kanada	15	12 600	16 %	zatím rozvoj neplánuje, plánuje náhradu "jádro za jádro"
Německo	17	20 300	31 %	postupný útlum do roku 2021
Itálie	0	0	0 %	možný návrat k jaderné energetice

- Podle základního jaderného procesu, který probíhá v jaderném zařízení, lze jaderné reaktory rozdělit na dvě základní skupiny:
 - Štěpné jaderné reaktory Štěpení těžkých jader
 - Termojaderné reaktory Syntéza lehkých jader
 - Další skupinu tvoří tzv. hybridní reaktory

- Podle průměrné energie neutronů při štěpení dělíme reaktory obvykle na tři typy:
 - Tepelné
 - Pomalé reaktory pracují s neutrony s energií ~ 0.025 eV
 - Střední
 - Střední reaktory pracují s neutrony s energií $\sim 10^2 \text{ eV}$
 - Rychlé
 - Střední reaktory pracují s neutrony s energií > 10⁵ eV

- Podle dalšího hlediska dělíme reaktory na:
 - Reaktory s tuhým palivem (tyče, desky, trubky)
 - Reaktory s tekutým palivem (suspenze, roztok)
- V reaktorech se používá nejčastěji přírodního nebo obohaceného uranu
 - Nízké, asi do 5% 235U
 - Střední
 - Vysoké (nad 90% 235U)

- □ Jako palivo se nejčastěji používá:
 - Přírodní kovový uran
 - Kysličníku uranu U0₂
 - Karbid uranu UC

 V perspektivních transmutačních systémech (ADTT -Accelerator driven transmutation technology) se uvažuje použít palivo ve formě roztavených fluoridů

- Podle druhu moderátoru třídíme pouze tepelné reaktory a to na:
 - Reaktory s tuhým moderátorem (grafit, Be, BeO, UC),
 - Reaktory s kapalným moderátorem (H₂0, D₂0, organické látky).

- Podle uspořádání paliva a moderátoru v aktivní zóně (hledisko je kombinací předcházejících dvou) dělíme reaktory na:
 - Homogenní (mají palivo rovnoměrně rozptýleno nebo rozpuštěno v moderátoru),
 - Heterogenní (reaktory s blokovým uspořádáním paliva).

- Podle použitého chladiva rozeznáváme reaktory chlazené:
 - □ Plynem (CO₂, helium, vodní pára, vzduch),
 - Kapalinou (H₂0, D₂0, organické látky),
 - □ Tekutými kovy (sodík, NaK), roztavenými (tekutými) solemi (UF₄).

- Podle účelového hlediska (je univerzálnější) můžeme reaktory rozdělit na čtyři skupiny:
 - Energetické pro výrobu tepelné nebo elektrické energie
 - Experimentální pro ověření zvolené koncepce energetických jaderných zařízení
 - Výzkumné pro experimentální práce v oblasti neutronové a reaktorové fyziky
 - Speciální např. množivé, chemické, dvojúčelové, transmutační a pod.

- Jaderné reaktory, které produkují nové palivo, tzv.
 množivé nebo plodivé reaktory, se obvykle dělí na:
 - Breedery
 - Konvertory (vyrábí se palivo odlišné od paliva používaného pro provoz reaktoru: $238U \rightarrow 239Pu$, $232Th \rightarrow 233U$).

- Další speciální hlediska pro klasifikaci:
 - Reaktorová nádoba (tlaková nádoba, tlakové trubky),
 - Poloha palivových článků v aktivní zóně (horizontální, vertikální)
 - Typ reaktorové mříže (čtvercová, trojúhelníková,...) a jiné.

- Z uvedeného rozboru hledisek je zřejmé, že je možné teoreticky vytvořit veliký počet kombinací.
 Ovšem pouze některé z nich se dají realizovat
- Štěpný tepelný jaderný reaktor je ve světě zatím nejrozšířenější, v současné době je základem i naší jaderné energetiky

Rozdělení jednotlivých typů energetických jaderných reaktorů do jejich generací

První reaktor – Chicago Pile 1

- Chicago Pile I
- Součást projektu Manhattan (1942-1946)
- Pro utajení vybudován pod tribunou opuštěného stadionu
- Kritického stavu bylo dosaženo grafitovými bloky moderátoru
- První člověkem udržovaná řetězová reakce po dobu 28 minut
- •Vznik pojmu "SCRAM"

První reaktor – Chicago Pile 1

Provozované reaktory celosvětově

Typ reaktoru	Chladivo	Moderátor	Obohacení paliva	Příklady
GCR	CO ₂	С	0,7 % (přírodní)	Magnox, UNGG
AGR	CO ₂	С	2,5 - 3,5 %	Magnox II. generace
HWGCR	CO ₂	D ₂ O	0,7 % (přírodní)	A-1,EL-4
PHWR	D ₂ O	D ₂ O	0,7 % (přírodní)	EC6
HWLWR	H ₂ O	D ₂ O	2,2 - 2,5 %	ACR1000
BWR	H ₂ O	H ₂ O	< 5%	ABWR, KERENA
PWR	H ₂ O	H ₂ O	< 5%	VVER, AP1000, EPR
LWGR	H ₂ O	С	2,2 - 2,4 %	RBMK

GCR (Gas Cooled Reactor)

- Tepelný, plynem chlazený, grafitem moderovaný reaktor, chlazený zpravidla oxidem uhličitým CO₂
- S jeho vývojem nejvíce pokročila Velká Británie a Japonsko, ale tyty typové bloky se dnes již nestaví a více méně dosluhují
- První britská jaderná elektrárna v Calder Hallu byla vybavena tímto typem reaktoru
- Konstrukce reaktoru umožňuje výměnu paliva za provozu

GCR

- Kompaktní palivové články tvoří tyče z kovového přírodního uranu, pokryté oxidem hořčíku (magnesium oxid = Magnox)
- Aktivní zóna ve tvaru svislého válce se skládá z grafitových bloků a prochází jí několik tisíc svislých kanálů - do každého se nad sebou umisťuje několik palivových tyčí.
- Celá aktivní zóna je uzavřena v kulové ocelové tlakové nádobě, která je obestavěna silným betonovým stíněním.

GCR - Přenos tepla a výroba elektřiny

- Chladící plyn proudí kanály kolem palivových tyčí, ohřívá se a je veden do parogenerátorů, ve kterých předává své teplo vodě sekundárního okruhu.
- Ochlazený plyn ženou dmychadla zpět do reaktoru,
 pára vzniklá v parogenerátorech pohání turbínu
 připojenou na generátor elektrického napětí

GCR (AGCR, GCHWR, Magnox)

GCR

- Příklad 600MW reaktoru
 - Palivo přírodní kovový uran
 - Rozměry aktivní zóny 14m průměr x 8m výška
 - □ Tlak plynu v reaktoru 2,75 MPa
 - □ Teplota plynu na výstupu z reaktoru 400°C
 - Účinnost elektrárny 25,8%
 - Množství paliva v reaktoru 595 tun uranu

AGR

- Advanced Gas Cooled Graphite Moderated Reactor
- Tepelný, plynem chlazený, grafitem moderovaný reaktor, chlazený oxidem uhličitým CO₂
- Využívá se výhradně ve Velké Británii
- Velmi podobný reaktoru GCR

AGR

AGR

- Příklad 600MW reaktoru
 - Palivo uran ve formě UO₂ s obohacením 2,3% ²³⁵U
 - Rozměry aktivní zóny 9,1m průměr x 8,5m výška
 - Tlak plynu v reaktoru 5,5 Mpa
 - Teplota plynu na výstupu z reaktoru 650°C

- A-1 (Atomová elektrárna 1)
 - Tepelný, plynem chlazený, těžkou vodou moderovaný reaktor.
 - Byl vyvíjen v Československu a postaven pouze v elektrárně v Jaslovských Bohunicích
 - Dnes již není v provozu. Byl vyvíjen tak, aby byl schopen pracovat s neobohaceným uranem (podobně jako CANDU)

HWGCR - AZ

- Kovový uran pokrytý slitinou hořčíku a berylia tvoří palivový proutek.
- Palivové články jsou složeny zhruba ze sedmdesáti palivových proutků.
- Základem aktivní zóny je válcová nádoba z hliníkové slitiny naplněná těžkou vodou, v níž jsou svisle vedeny palivové kanály.
- Každý kanál obsahuje jeden palivový článek chlazený proudícím oxidem uhličitým.

HWGCR - AZ

- Celá aktivní zóna je umístěna v tlakové nádobě, jejíž konstrukce umožňuje výměnu paliva během provozu reaktoru.
- Těžká voda musí být chlazena v samostatném okruhu, aby její teplota zůstala stále nízká (podobně jako u reaktorů CANDU).

- Přenos tepla a výroba elektřiny
 - Chladící plyn je dmychadly hnán kolem palivových článků, ohřívá se a proudí do parogenerátorů.
 - V nich předává své teplo obyčejné vodě v odděleném okruhu.
 - Vzniklá pára je hnána na turbíny, které jsou připojeny na turbíny generující elektrický proud

- □ Reaktor 103MW
 - Palivo přírodní kovový uran
 - Rozměry aktivní zóny 3,56m průměr x 4m výška
 - □ Tlak chladícího plynu na výstupu z reaktoru 5,4 MPa
 - □ Teplota chladícího plynu na výstupu z reaktoru 426°C
 - Účinnost elektrárny 18,5%
 - Množství paliva v reaktoru 23,1 tun uranu
 - Teplota těžké vody moderátoru 65°C

- Tepelný těžkovodní reaktor chlazený vodou
- CANDU CANada Deuterium Uranium
- Kontinuální výměna paliva kanálový reaktor
- Původně chladivo i moderátor D₂O

- Reaktor vyvinutý pro štěpení přírodního uranu
- Kanada se tak chtěla vyhnout potřebě obohacování,
 které bylo náročné jak technologicky tak energeticky
- Druhá generace má jako chladivo lehkou vodu nutno palivo lehce obohatit (ACR1000)
- Postupně se reaktor rozšířil i mimo Kanadu Indie,
 Pákistán, Argentina, Rumunsko

PHWR, HWLWR - AZ

- Válečky z UO₂ uzavřené v krátkých trubkách ze slitiny zirkonia tvoří palivové tyčky, z nichž se sestavuje palivový článek
- Základem konstrukce aktivní zóny je nádoba tvaru ležícího válce (tzv. Calandria), která má v sobě vodorovné průduchy pro umístění tlakových trubek ze zirkoniové slitiny

PHWR, HWLWR - AZ

- Do nádoby je napuštěn těžkovodní moderátor, který musí být chlazen speciálním okruhem, aby jeho teplota zůstala stále nízká (moderační schopnost se snižuje s teplotou)
- V tlakových trubkách jsou zasunuty palivové články a kolem nich proudí chladící těžká voda

- Přenos tepla a výroba elektřiny
 - Chladící voda proudí kanály kolem palivových tyčí, ohřívá se a je vedena do parogenerátorů, ve kterých předává své teplo vodě sekundárního okruhu.
 - Ochlazenou vodu ženou čerpadla zpět do reaktoru, pára vzniklá v parogenerátorech pohání turbínu připojenou na generátor elektrického napětí.

- Příklad 600MW reaktoru
 - Palivo přírodní kovový uran
 - Rozměry aktivní zóny 7m průměr x 5,9m délka
 - Tlak chladící těžké vody na výstupu z reaktoru 9,3 MPa
 - Teplota chladící těžké vody na výstupu z reaktoru 305°C
 - □ Účinnost elektrárny 30,1%
 - Množství paliva v reaktoru 117 tun UO₂
 - Teplota těžké vody moderátoru 30°C

Děkuji za pozornost

