

Лекция 4

Эрмитов оператор

Содержание лекции:

В настоящей лекции мы рассматриваем частный, но очень важный случай оператора, который обладает свойством эрмитовости. Данный тип оператров часто всречается в различных приложениях, а его теория позволяет быстро получить важные свойства эрмитовых и симметрических матриц. Этими свойствами мы будем широко пользоваться в дальнейшем.

Ключевые слова:

Сопряженный оператор, эрмитовски сопряженный оператор, матрица сопряженного оператора, самосопряженный оператор, эрмитов оператор, спектр и собственные векторы эрмитова оператора, спектральная теорема для эрмитова оператора.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

4.1 Сопряженный оператор

Nota bene Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - эндоморфизм пространства $X(\Bbbk)$. Напомним, что сопряженным к φ называется линейный оператор $\varphi^* \in \operatorname{End}_{\Bbbk}(X^*)$, определяемый следующим образом:

$$\forall x \in X(\mathbb{k}), \quad \forall f \in X^*(\mathbb{k}) \quad f(\varphi x) = (\varphi^* f)(x).$$

Операция сопряжения обладает следующими свойствами:

- аддитивность: $(\varphi + \psi)^* = \varphi^* + \psi^*$;
- однородность: $(\lambda \varphi)^* = \lambda \varphi^*$;
- контравариантность: $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$;
- инволютивность: $(\varphi^*)^* = \varphi$.

Из данных свойств, в частности, следует, что для данного оператора φ сопряженный ему определяется единственным образом.

Лемма 4.1. Пусть $\{e_j\}_{j=1}^n$ - базис пространства $X_E(\mathbb{k})$ и A_{φ} - матрица оператора φ в этом базисе. Тогда в сопряженном к $\{e_j\}_{j=1}^n$ базисе пространства $X^*(\mathbb{k})$ матрица φ^* будет иметь вид A^T :

$$\varphi \leftrightarrow A_{\varphi} \quad \Rightarrow \quad \varphi^* \leftrightarrow A_{\varphi^*} = A_{\varphi}^T.$$

4.2 Эрмитовски сопряженный оператор

Оператор $\varphi^{\dagger} \in \operatorname{End}_{\Bbbk}(X_E)$ называется **эрмитовски сопряженным** к оператору φ , если он обладает следующим свойством:

$$\langle x, \varphi y \rangle = \langle \varphi^{\dagger} x, y \rangle.$$

Теорема 4.1. (существования) Для любого оператора $\varphi \in \operatorname{End}_{\Bbbk}(X_E)$ существует единственный эрмитовски сопряженный оператор φ^{\dagger} .

Действительно, с использованием изоморфизма $\sigma: X_E \to X_E^*$ указанное выше условие можно переформулировать, именно:

$$\langle x, \varphi y \rangle = \sigma(x)(\varphi y) = [(\varphi^* \circ \sigma)x](y),$$
$$\langle \varphi^{\dagger} x, y \rangle = \sigma(\varphi^{\dagger} x)(y) = [(\sigma \circ \varphi^{\dagger})x](y),$$

откуда сразу следует

$$\varphi^{\dagger} = \sigma^{-1} \circ \varphi^* \circ \sigma,$$

где φ^* сопряжен к φ . Из его единственности следует единственность φ^\dagger .

ЭРМИТОВ ОПЕРАТОР

Nota bene Свойства операции эрмитовского сопряжения теже, что и свойства операции сопряжения.

Лемма 4.2. Пусть $\{e_j\}_{j=1}^n$ - базис евклидова пространства $X_E(\Bbbk)$ и G - его матрица Грама. Тогда если A_φ - матрица оператора φ в этом базисе, то матрица φ^\dagger будет имеет вид

$$A_{\omega^{\dagger}} = G^{-1}A^{\dagger}G, \quad A^{\dagger} = \bar{A}^{T}.$$

▶

По определению скалярного произведения:

$$\langle x, \varphi y \rangle = \xi^{\dagger} G(A_{\varphi} \eta) = (\xi^{\dagger} G A_{\varphi} G^{-1}) G \eta = (G^{-1} A_{\varphi}^{\dagger} G \xi)^{\dagger} G \eta = \langle \varphi^{\dagger} x, y \rangle.$$

4

4.3 Эрмитовский оператор

Оператор, обладающий свойством $\varphi^{\dagger}=\varphi$ называется **самосопряженным**, если $\Bbbk=\mathbb{R}$ и **эрмитовским**, если $\Bbbk=\mathbb{C}.$

 $Nota\ bene$ Матрицы самосопряженного φ и эрмитовского ψ операторов обладают соответственно свойствами:

$$A_{\varphi}^T = A_{\varphi}, \quad B_{\psi}^{\dagger} = B_{\psi}.$$

Пример 4.1. Примеры матрицы A самосопряженного оператора и матрицы B эрмитовского оператора:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 2i \\ -2i & 5 \end{pmatrix}.$$

Nota bene В случае вещественного поля \mathbb{R} операции \dagger и T совпадают.

4.4 Спектральные свойства эрмитова оператора

Лемма 4.3. Все собстденные значения эрмитова оператора φ вещественны.

Пусть λ - собственное значение φ и x - соответствующий собственный вектор. Тогда

$$\langle \varphi x, x \rangle = \overline{\lambda} \, \langle x, x \rangle \,, \quad \langle x, \varphi x \rangle = \lambda \, \langle x, x \rangle \quad \Rightarrow \quad \overline{\lambda} = \lambda$$

4

ЭРМИТОВ ОПЕРАТОР

Лемма 4.4. Собственные векторы эрмитова оператора, отвечающие различным собственным значениям, ортогональны:

$$\varphi x_1 = \lambda_1 x_1, \quad \varphi x_2 = \lambda_2 x_2, \quad \lambda_1 \neq \lambda_2 \quad \Rightarrow \quad x_1 \perp x_2.$$

Действительно,

$$\langle \varphi x_1, x_2 \rangle = \langle x_1, \varphi x_2 \rangle \quad \Rightarrow \quad \langle \lambda_1 x_1, x_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle$$
$$\lambda_1 \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle, \quad \overline{\lambda}_2 = \lambda_2, \quad \Rightarrow$$
$$(\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = 0 \quad \Rightarrow \quad \langle x_1, x_2 \rangle = 0.$$

Лемма 4.5. Если L - инвариантное подпространство эрмитова оператора φ , тогда L^{\perp} - также инвариантное подпространство.

Пусть $x \in L$ и $y \in L^{\perp}$, тогда

$$0 = \langle \varphi x, y \rangle = \langle x, \varphi y \rangle = 0 \quad \Rightarrow \quad \varphi y \in L^{\perp}.$$

Теорема 4.2. Эрмитов оператор φ явяется оператором скалярнго типа.

Покажем, что собсвенные векторы φ образуют базис $X_E(\mathbb{C})$. Проведем доказательство от противного: пусть $\{x_j\}_{j=1}^m$ - максимальный ЛНЗ набор:

$$\varphi x_j = \lambda_j x_j, \quad j = 1 \dots m \quad m < n = \dim_{\mathbb{C}} X_E.$$

Пусть далее

$$L = \langle x_1, x_2, \dots, x_m \rangle_{\mathbb{C}}, \quad M = L^{\perp}, \quad \varphi_M : M \to M$$

Так как M -инвариантное подпространство φ , существует по крайней мере один вектор $\tilde{x} \in M$, такой что

$$\varphi_M \tilde{x} = \tilde{\lambda} \tilde{x}.$$

Но $\tilde{x}\perp L$ и значит $\{x_1,x_2,\ldots,x_m,\tilde{x}\}$ - ЛНЗ. Противоречие.

Теорема 4.3. (Спектральная теорема для эрмитова оператора) Пусть $\varphi: X_E \to X_E$ - эрмитов оператор и $\{e_j\}_{j=1}^n$ - ОНБ X_E , состоящий из собственных векторов φ , тогда:

$$\varphi(*) = \sum_{i=1}^{n} \lambda_i \langle *, e_i \rangle e_i, \quad \lambda_i \in \mathbb{R}$$