程式人雜誌

Programmer

讀書做善事、寫書做公益-歡迎程式人認養專欄或捐出您的網誌

參考價: NT 50 元,如果您喜歡本雜誌,請將書款捐贈公益團體

羅慧夫顱顏基金會 彰化銀行 (009) 帳號: 5234-01-41778-800

愛心收

條碼

程式人雜誌

2015 年 7 月

本期焦點:向 Nand2Tetris 學習電腦硬體設計

程式人雜誌

- 前言
 - 編輯小語
 - 授權聲明
- 本期焦點: 向 Nand2Tetris 學習電腦硬體設計
 - Nand2Tetris -- 教您設計整台電腦的一門課
 - Nand2Tetris 硬體部份 -- 從邏輯閘到處理器
 - Nand2Tetris 第一週 -- 自製邏輯元件
 - Nand2Tetris 第二週 -- 自製算術元件
 - Nand2Tetris 第三週 -- 自製記憶元件
 - Nand2Tetris 第四週 -- 學習機器語言
 - Nand2Tetris 第五週 -- 自製處理器與電腦
- 雜誌訊息
 - 讀者訂閱
 - 投稿須知
 - 參與編輯

• 公益資訊

前言

編輯小語

最近小編發現了一個很棒的網路公開課,是 coursera 課程網站上的 From Nand to Tetris / Part I 這門課,於是我去修了這門課並作了習題,這是我真正修習的第一門網路公開課。

這門課程是教授學生如何從一個最基礎的 nand 邏輯閘開始,一路往上建構出所有基礎元件,像是 and, or, xor, not, MUX, DMUX, Adder, Memory 等等,接著建構出 CPU 與整台電腦,然後再學習如何在建構出這台電腦上的『組譯器、編譯器、作業系統』等等,最後在這個具備軟硬體的電腦上寫一個小型的方塊遊戲。

我覺得這門課非常棒,因此小編將整個修課的過程與心得分享給大家,也利用這個機會將這門『神級課程』介紹給大家認識。

---- (「少年科技人雜誌」與「程式人雜誌」編輯 - 陳鍾誠)

授權聲明

本雜誌許多資料修改自維基百科,採用創作共用:姓名標示、相同方式分享授權,若您想要修改本書產生衍生著作時,至少應該遵守下列授權條件:

- 1. 標示原作者姓名(包含該文章作者,若有來自維基百科的部份也請一併標示)。
- 2. 採用 創作共用: 姓名標示、相同方式分享 的方式公開衍生著作。

另外、當本雜誌中有文章或素材並非採用 姓名標示、相同方式分享 時,將會在該文章或素材 後面標示其授權,此時該文章將以該標示的方式授權釋出,請修改者注意這些授權標示,以 避免產生侵權糾紛。

例如有些文章可能不希望被作為「商業性使用」,此時就可能會採用創作共用:[姓名標示、非商業性、相同方式分享]的授權,此時您就不應當將該文章用於商業用途上。

最後、懇請勿移除公益捐贈的相關描述,以便讓愛心得以持續散播!

在本期雜誌中,我們還使用了 nand2tetris 課程中的大量習題與程式,這些習題乃是教科書 "The Elements of Computing Systems", by Nisan and Schocken, MIT Press 的習題,這些習題與程式採用 GNU GPL (General Public License) 授權 ,請務必遵照 GPL 的授權使用這些內容,以避免發生侵權事件。

另外、本期內容中某些截圖來自 nand2tetris 投影片 ,該文件並未聲明採用何種授權,使用時

請注意這點,避免侵權。在此我們僅按著作權法中的合理使用原則,擷取幾張圖片,若您是該作品擁有者且認為此擷取行為不妥,請告訴我們,我們會配合移除。

本期焦點: 向 Nand2Tetris 學習電腦硬體設計

Nand2Tetris -- 教您設計整台電腦的一門課

在上個月的『少年科技人雜誌』當中,我紀錄了自己修習 nand2tetris 這門 Coursera 網站上 MOOC 課程的過程,並且試圖將一台電腦從下到上設計所需要的基本知識講述清楚。

但是、由於 nand2tetris 網站上的下列聲明, 我決定不把自己的作業程式碼刊登出來。

Code Posting Policy

We developed this course and made all its materials freely availa ble because we want to help people learn applied computer science on their own terms. We believe that students and self-learners w ho set out to do the hardware and software projects should have t he benefit and challenge of doing original work, without seeing p ublished solutions. Therefore, we request that you don't post solutions publicly on the web, e.g. in blogs or forums. If your course instructor or organizer creates a private space in which work can be shared outside the public domain, that's fine. Likewise, you can share your work with others using a password-protected space, if it's permitted by the specific course in which you are enrolled.

Please use your judgment and help ensure that many more students, like you, will not be denied the thrill of original work and sel f-discovery.

Thx Noam Nisan and Shimon Schocken

雖然如此,不過網路上已經有不少 nand2tetris 作業的程式碼,您只要 在 google 中打入 nand2tetris github 就可以找到這些作業了。

但是,對於程式人而言,有文章卻沒有程式可以對照閱讀,畢竟是個遺憾!

有鑑於此,我決定將自己在 nand2tetris 的作業改寫,從 nand2tetris 自製的硬體描述語言 HackHDL 改寫為 Verilog ,這樣不僅沒有公佈作業答案,也順便讓大家能夠瞭解如何用真正的 硬體描述語言來設計處理器與整台電腦的方法,因此我們決定在本期當中用 Verilog 版的 nand2tetris 來說明電腦硬體的設計原理。

希望這樣的作法會對想要瞭解電腦硬體設計的程式人會有所幫助!

現在,就讓我們展開這趟旅程吧!

Nand2Tetris 硬體部份 -- 從邏輯閘到處理器

在 nand2tetris 的硬體部份,也就是課程 Part I 的作業上面,企圖導引學員從一個 nand 閘開始,一路經過 and, or, not, mux, dmux, adder, ALU, register, memory, CPU 到整台電腦,以便讓學習者能完整的理解一台電腦,並且自己動手實作出來。

以下是nand2tetris 的硬體部份的作業內容安排。

The Hack chip-set and hardware platform

Elementary logic gates

- Nand
- Not done
- And
- · Or
- Xor
- Mux
- Dmux
- Not16
- And16
- or16
- Mux16
- Or8Way
- Mux4Way16
- Mux8Way16
- DMux4Way
- DMux8Way

Combinational chips

- HalfAdder
- FullAdder
- Add16
- Inc16
- ALU

done

Sequential chips

- DFF
- . Bit
- Register
- RAM8
- RAM64
- RAM512
- RAM4K
- RAM16K
- · PC

done

Computer Architecture

- Memory
- CPU
- Computer

this lecture

圖、nand2tetris 硬體部份的作業內容

Nand2tetris 課程中採用的硬體描述語言是課程專用的 HackHDL,其軟體也是為該課程專門設計的 HardEmulator,但是在本期雜誌中,我們將改用 Verilog 來實作。

如果您想瞭解如何用 HackHDL 實作,您可以參考以下這位修過 nand2tetris 的 havivha 同學在 github 上公佈的作業解答。

• https://github.com/havivha/Nand2Tetris

如果您想要先瞭解 nand2tetrix 課程背後所需要的基本知識,請參考上個月的少年科技人雜誌。

• NandToTetrix 慕課記 -- 從邏輯閘到方塊遊戲

如果您想學習 verilog 語法,或者瞭解如何用 verilog 設計其他處理器,也可以參考筆者的下列書籍與網頁。

- 陳鍾誠/教科書/計算機結構
- 免費電子書: Verilog 電路設計

在本期雜誌中,我們將學習如何用 verilog 設計出 nand2tetris 中的處理器 HackCPU 與整台電腦

HackComputer •

現在、請跟著我一起重新體會『如何用 Verilog 重新詮釋 nand2tetris 硬體部份的課程』吧!

Nand2Tetris 第一週 -- 自製邏輯元件

我們將第一週的習題主要部份放在 gate.v, gate16.v 與 mux.v 這些 verilog 程式檔中,然後再分別寫測試檔去測試這些程式。

我們使用的測試工具是 icarus verilog。

基本邏輯閘

程式模組: gate.v

```
module Nand(input a, b, output out);
  nand gl(out, a, b);
endmodule
```

```
module Not(input in, output out);
  Nand gl(in, in, out);
endmodule
module Or (input a, b, output out);
 Not g1(a, nota);
 Not g2(b, notb);
  Nand g3 (nota, notb, out);
endmodule
module Xor(input a, b, output out);
 Nand g1 (a, b, AnandB);
 Or g2(a, b, AorB);
  And g3 (AnandB, AorB, out);
endmodule
```

```
module And (input a, b, output out);
  Nand g1(a, b, AnandB);
  Nand g2 (AnandB, AnandB, out);
endmodule
module Or8Way(input[7:0] in, output out);
  Or g1(in[7], in[6], or76);
  Or g2(in[5], in[4], or54);
  Or g3(in[3], in[2], or32):
  Or g4(in[1], in[0], or10);
  Or g5 (or 76, or 54, or 74);
  Or g6 (or32, or10, or30):
 Or g7 (or74, or30, out):
endmodule
```

測試程式: gate_test.v

```
`include "gate.v"
module main;
reg a, b;
wire abNand, aNot, abAnd, abOr, abXor;
Not gl(a, aNot);
Nand g2(a, b, abNand);
And g3(a, b, abAnd);
Or g4(a, b, abOr);
Xor g5(a, b, abXor);
initial
begin
  $monitor("%4dns a=%d b=%d aNot=%d abNand=%d abAnd=%d abOr=%d ab
Xor=%d", $stime, a, b, aNot, abNand, abAnd, abOr, abXor);
```

```
a = 0;
  b = 0;
end
always #50 begin
 a = a+1;
end
always #100 begin
  b = b+1;
end
initial #500 $finish;
endmodule
```

測試結果

```
D:\Dropbox\cccweb\db\n2t\iverilog gate test.v -o gate test
D:\Dropbox\cccweb\db\n2t>vvp gate test
   Ons a=0 b=0 aNot=1 abNand=1 abAnd=0 abOr=0 abXor=0
  50 \text{ns} a=1 b=0 aNot=0 abNand=1 abAnd=0 ab0r=1 abXor=1
 100 \text{ns} a=0 b=1 aNot=1 abNand=1 abAnd=0 ab0r=1 abXor=1
 150 \text{ns} a=1 b=1 aNot=0 abNand=0 abAnd=1 ab0r=1 abXor=0
 200 \text{ns} a=0 b=0 aNot=1 abNand=1 abAnd=0 ab0r=0 abXor=0
 250ns a=1 b=0 aNot=0 abNand=1 abAnd=0 ab0r=1 abXor=1
 300ns a=0 b=1 aNot=1 abNand=1 abAnd=0 ab0r=1 abXor=1
 350ns a=1 b=1 aNot=0 abNand=0 abAnd=1 ab0r=1 abXor=0
 400ns a=0 b=0 aNot=1 abNand=1 abAnd=0 ab0r=0 abXor=0
 450ns a=1 b=0 aNot=0 abNand=1 abAnd=0 ab0r=1 abXor=1
 500 \text{ns} a=0 b=1 aNot=1 abNand=1 abAnd=0 ab0r=1 abXor=1
```

16 位元邏輯閘

程式模組: gate16.v

```
`include "gate.v"
module Not16(input[15:0] in, output[15:0] out);
  Not g15(in[15], out[15]);
  Not g14(in[14], out[14]);
  Not g13(in[13], out[13]);
  Not g12(in[12], out[12]);
  Not gl1(in[11], out[11]);
  Not g10(in[10], out[10]):
  Not g09(in[9], out[9]):
  Not g08(in[8], out[8]):
  Not g07(in[7], out[7]):
  Not g06(in[6], out[6]);
```

```
Not g05(in[5], out[5]):
 Not g04(in[4], out[4]);
 Not g03(in[3], out[3]):
 Not g02(in[2], out[2]);
 Not g01(in[1], out[1]);
 Not g00(in[0], out[0]):
endmodule
module And16(input[15:0] a, b, output[15:0] out);
 And g15 (a[15], b[15], out[15]):
 And g14(a[14], b[14], out[14]):
 And g13 (a[13], b[13], out[13]):
 And g12(a[12], b[12], out[12]):
 And g11(a[11], b[11], out[11]):
 And g10(a[10], b[10], out[10]):
 And g09(a[9], b[9], out[9]):
```

```
And g08(a[8], b[8], out[8]):
  And g07(a[7], b[7], out[7]):
  And g06(a[6], b[6], out[6]):
  And g05(a[5], b[5], out[5]):
  And g04(a[4], b[4], out[4]):
  And g03(a[3], b[3], out[3]):
  And g02(a[2], b[2], out[2]):
  And g01(a[1], b[1], out[1]):
 And g00(a[0], b[0], out[0]):
endmodule
module Or16(input[15:0] a, b, output[15:0] out);
  Or g15(a[15], b[15], out[15]);
  Or g14(a[14], b[14], out[14]):
  Or g13(a[13], b[13], out[13]):
 Or g12 (a[12], b[12], out[12]);
```

```
Or g11(a[11], b[11], out[11]);
 Or g10(a[10], b[10], out[10]);
 Or g09(a[9], b[9], out[9]);
 Or g08(a[8], b[8], out[8]);
 Or g07(a[7], b[7], out[7]);
 Or g06(a[6], b[6], out[6]);
 Or g05(a[5], b[5], out[5]);
 Or g04(a[4], b[4], out[4]):
 Or g03(a[3], b[3], out[3]);
 Or g02(a[2], b[2], out[2]);
 Or g01(a[1], b[1], out[1]);
 Or g00(a[0], b[0], out[0]);
endmodule
```

```
`include "gate16.v"
module main;
reg [15:0] a, b;
wire [15:0] aNot, abAnd, abOr;
Not16 g1(a, aNot);
And16 g2(a, b, abAnd);
0r16 g3(a, b, ab0r);
initial
begin
  monitor("a = \%b\nb = \%b\not = \%b\nor = \%b", a, b, aNot,
abAnd, abOr);
 a = 16'b0011;
```

```
b = 16' b0101;
    $finish;
 end
 endmodule
測試結果
```

```
D:\Dropbox\cccweb\db\n2t\iverilog gate16 test.v -o gate16 test
D:\Dropbox\cccweb\db\n2t>vvp gate16 test
  =0000000000000011
  =0000000000000101
not=111111111111100
and=0000000000000001
or =000000000000111
```

多工器與解多工器 (MUX and DMUX)

程式模組: mux.v

```
`include "gate16.v"
module Mux(input a, b, sel, output out);
 Not g1(sel, nsel);
 And g2(a, nsel, o1):
 And g3(b, sel, o2):
 Or g4(o1, o2, out);
endmodule
module DMux(input in, sel, output a, b);
 Not g1(sel, nsel);
 And g2 (nsel, in, a);
 And g3(sel, in, b);
```

```
endmodule
module Mux16(input[15:0] a, b, input sel, output[15:0] out);
 Mux g15(a[15], b[15], sel, out[15]);
 Mux g14(a[14], b[14], sel, out[14]);
 Mux g13(a[13], b[13], sel, out[13]):
 Mux g12(a[12], b[12], sel, out[12]);
 Mux gl1(a[11], b[11], sel, out[11]);
 Mux g10(a[10], b[10], sel, out[10]);
 Mux g09(a[9], b[9], sel, out[9]);
 Mux g08(a[8], b[8], se1, out[8]):
 Mux g07(a[7], b[7], sel, out[7]);
 Mux g06(a[6], b[6], sel, out[6]):
 Mux g05(a[5], b[5], sel, out[5]):
 Mux g04(a[4], b[4], sel, out[4]):
 Mux g03(a[3], b[3], se1, out[3]);
```

```
Mux g02(a[2], b[2], se1, out[2]);
 Mux g01(a[1], b[1], sel, out[1]);
 Mux g00(a[0], b[0], sel, out[0]):
endmodule
module Mux4Way16(input[15:0] a, b, c, d, input[1:0] sel, output[15:0]
] out);
 wire [15:0] outab, outcd;
 Mux16 g1(a, b, se1[0], outab);
 Mux16 g2(c, d, sel[0], outcd):
 Mux16 g3 (outab, outcd, sel[1], out);
endmodule
module Mux8Way16(input[15:0] a, b, c, d, e, f, g, h, input[2:0] sel, out
put[15:0] out);
 wire [15:0] outad, outeh;
```

```
Mux4Way16 g1(a, b, c, d, sel[1:0], outad);
 Mux4Way16 g2(e, f, g, h, sel[1:0], outeh);
 Mux16 g3 (outad, outeh, se1[2], out):
endmodule
module DMux4Way(input in, input[1:0] sel, output a, b, c, d);
 Not gl(sel[1], nsell):
 Not g2(se1[0], nse10);
 And g3 (nsell, nsell, sello);
 And g4 (nsel1, sel[0], sel01);
 And g5(sel[1], nsel0, sell0);
 And g6(se1[1], se1[0], se111):
 DMux g7 (in, se100, d0, a);
 DMux g8(in, se101, d1, b);
 DMux g9(in, sell1, d2, d);
 DMux g10(in, se110, d3, c);
```

```
endmodule
module DMux8Way(input in, input[2:0] sel, output a, b, c, d, e, f, g, h)
  Not g1(se1[2], nse12);
 And g2(in, se1[2], s2h):
 And g3(in, nse12, s21);
  DMux4Way g4(s2h, sel[1:0], e, f, g, h);
  DMux4Way g5(s21, se1[1:0], a, b, c, d);
endmodule
```

測試程式: mux_test.v

```
include "mux.v"

module main;
```

```
reg[15:0] a, b, c, d, e, f, g, h;
reg[2:0] sel;
wire[15:0] mux2, mux4, mux8;
wire mux01, dmux0, dmux1;
       g1(1'b0, 1'b1, se1[2], mux01);
Mux
        g2(a[0], se1[2], dmux0, dmux1);
DMux
      g4(a, b, se1[0], mux2);
Mux16
Mux4Way16 g5(a, b, c, d, sel[1:0], mux4);
Mux8Way16 g6(a, b, c, d, e, f, g, h, se1[2:0], mux8);
initial
begin
  $monitor("%4dns sel=%d mux2=%x mux4=%x mux8=%x", $stime, sel, m
ux2, mux4, mux8);
  a = 16' h0:
```

```
b = 16' h1;
  c = 16' h2;
  d = 16' h3;
  e = 16' h4;
 f = 16' h5;
  g = 16' h6;
 h = 16' h7;
    se1 = 0;
end
always #50 begin
  sel=sel+1;
end
initial #500 $finish;
```

endmodule

測試結果

```
D:\Dropbox\cccweb\db\n2t\iverilog mux test.v -o mux test
D:\Dropbox\cccweb\db\n2t>vvp mux test
     Ons sel=0 mix2=0000 mix4=0000 mix8=0000
   50 \text{ns} \text{ sel} = 1 \text{ mux} 2 = 0001 \text{ mux} 4 = 0001 \text{ mux} 8 = 0001
 100 \text{ns} \text{ se} 1 = 2 \text{ mir} 2 = 0000 \text{ mir} 4 = 0002 \text{ mir} 8 = 0002
 150 \text{ns} \text{ se} 1=3 \text{ mux} 2=0001 \text{ mux} 4=0003 \text{ mux} 8=0003
 200 \text{ns} \text{ se} = 4 \text{ mix} = 20000 \text{ mix} = 40000 \text{ mix} = 80004
 250 \text{ns} \text{ se} = 1 = 5 \text{ mix} = 2 = 0001 \text{ mix} = 4 = 0001 \text{ mix} = 8 = 0005
 300 \text{ns} \text{ sel=} 6 \text{ mir} 2 = 0000 \text{ mir} 4 = 0002 \text{ mir} 8 = 0006
 350 \text{ns} \text{ se} 1 = 7 \text{ mix} 2 = 0001 \text{ mix} 4 = 0003 \text{ mix} 8 = 0007
 400 \text{ns} \text{ sel} = 0 \text{ mix} 2 = 0000 \text{ mix} 4 = 0000 \text{ mix} 8 = 0000
```

450ns sel=1 mux2=0001 mux4=0001 mux8=0001 500ns sel=2 mux2=0000 mux4=0002 mux8=0002

結語

這些閘的設計並不太困難,原理部份請參考下列文章或數位邏輯教科書。

• 少年科技人雜誌 / 2015年6月號 / Nand2Tetris 第 1 週 -- 布林函數

module HalfAdder(input a, b, output sum, carry);

Nand2Tetris 第二週 -- 自製算術元件

算術元件部份包含『半加器、全加器、16位元加法器與 ALU 等等』,我們的 verilog 版模組與測試程式如下所示。

程式模組: alu.v

```
`include "mux.v"
```

```
Xor g1(a, b, sum);
 And g2(a, b, carry);
endmodule
module FullAdder(input a, b, c, output sum, carry);
 wire s1, c1, c2:
 Xor g1 (a, b, s1);
 Xor g2(s1, c, sum);
 And g3(a, b, c1):
 And g4(s1, c, c2);
 Xor g5(c2, c1, carry);
endmodule
module Add16(input[15:0] a, b, output[15:0] out);
 wire [15:0] c:
 FullAdder g01(a[0], b[0], 1'b0, out[0], c[0]);
```

```
FullAdder g02(a[1], b[1], c[0], out[1], c[1]);
 FullAdder g03(a[2], b[2], c[1], out[2], c[2]);
 FullAdder g04(a[3], b[3], c[2], out[3], c[3]);
 FullAdder g05(a[4], b[4], c[3], out[4], c[4]);
 FullAdder g06(a[5], b[5], c[4],
                                  out [5], c[5];
 FullAdder g07(a[6], b[6], c[5], out[6], c[6]);
 FullAdder g08(a[7], b[7], c[6], out[7], c[7]);
 FullAdder g09(a[8], b[8], c[7], out[8], c[8]);
 FullAdder g10(a[9], b[9], c[8], out[9], c[9]);
 FullAdder gl1(a[10], b[10], c[9], out[10], c[10]);
 FullAdder g12(a[11], b[11], c[10], out[11], c[11]);
 FullAdder g13(a[12], b[12], c[11], out[12], c[12]);
 FullAdder g14(a[13], b[13], c[12], out[13], c[13]);
 FullAdder g15(a[14], b[14], c[13], out[14], c[14]);
 FullAdder g16(a[15], b[15], c[14], out[15], c[15]);
endmodule
```

```
module Inc16(input[15:0] in, output[15:0] out);
  Add16 g1(in, 16'h1, out);
endmodule
// x[16], y[16], // 16-bit inputs
// zx, // zero the x input?
// nx, // negate the x input?
// zy, // zero the y input?
// ny, // negate the y input?
   f, // compute out = x + y (if 1) or x & y (if 0)
// no; // negate the out output?
// out[16], zr, ng; // zr:zero, ng:negative
module ALU(input[15:0] x, y, input zx, nx, zy, ny, f, no, output[15:0]
 out, output zr, ng);
```

```
wire[15:0] x1, notx1, x2, y1, noty1, y2, andxy, addxy, o1, noto
1, o2:
  wire orLow, orHigh, notzr;
 Mux16 g1(x, 16'b0, zx, x1); // if (zx == 1) set x = 0
 Not16 g2(x1, notx1);
 Mux16 g3(x1, notx1, nx, x2); // if (nx == 1) set x = !x
 Mux16 g4(y, 16'b0, zy, y1); // if (zy == 1) set y = 0
 Not 16 \text{ g5}(y1, \text{ not } y1);
 Mux16 g6(y1, noty1, ny, y2); // if (ny == 1) set y = !y
 Add16 g7(x2, y2, addxy); // addxy = x + y
 And 16 g8 (x2, y2, and xy); // and xy = x & y
 Mux16 g9 (andxy, addxy, f, o1); // if (f == 1) set out = x + y
```

```
else set out = x \& y
 Not16 g10(o1, noto1):
 Mux16 g11 (o1, noto1, no, o2); // if (no == 1) set out = !out
 // o2 就是 out, 但必須中間節點才能再次當作輸入, 所以先用 o2。
 And 16 g12 (o2, o2, out):
 Or8Way g13 (out[7:0], orLow); // orLow = Or (out[0..7]);
 Or8Way g14(out[15:8], orHigh); // orHigh = Or(out[8..15]);
 Or g15 (orLow, orHigh, notzr); // nzr = Or (out [0..15]);
 Not g16 (notzr, zr); // zr = !nzr
 And g17(o2[15], o2[15], ng); // ng = out[15]
 And16 g18 (o2, o2, out):
endmodule
```

測試程式: gate_test.v

```
`include "alu.v"
module main;
reg signed[15:0] x, y;
reg zx, nx, zy, ny, f, no;
wire signed[15:0] out;
wire zr, ng;
ALU alul(x, y, zx, nx, zy, ny, f, no, out, zr, ng);
initial
begin
  $monitor("%4dns x=%d y=%d zx=%b nx=%b zy=%b ny=%b f=%b no=%b ou
t=%d zr=%b ng=%b", $stime, x, y, zx, nx, zy, ny, f, no, out, zr,
ng);
    x = 9:
```

```
y = 15;
    zx = 0;
   nx = 0;
    zy = 0;
   ny = 0;
   f = 0;
   no = 0;
end
always #320 begin
  zx = zx+1;
end
always #160 begin
 nx = nx+1;
```

end

```
always #80 begin
 zy = zy+1;
end
always #40 begin
 ny = ny+1;
end
always #20 begin
 f = f+1;
end
always #10 begin
 no = no+1;
end
```

```
initial #640 $finish;
endmodule
```

```
測試結果
```

```
D:\Dropbox\cccweb\db\n2t\iverilog alu test.v -o alu test
D:\Dropbox\cccweb\db\n2t>vvp alu test
            9 y= 15 zx=0 nx=0 zy=0 ny=0 f=0 no=0 out=
    0 \text{ns} \text{ x} =
zr=0 ng=0
  10 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 0 \text{ z} y = 0 \text{ n} y = 0 \text{ f} = 0 \text{ n} o = 1 \text{ o} u t = -10
zr=0 ng=1
  20ns x= 9 y= 15 zx=0 nx=0 zy=0 ny=0 f=1 no=0 out=
                                                                                24
zr=0 ng=0
```

```
30 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 0 \text{ z} y = 0 \text{ n} y = 0 \text{ f} = 1 \text{ no} = 1 \text{ out} = -25
zr=0 ng=1
  40 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 0 \text{ z} y = 0 \text{ n} y = 1 \text{ f} = 0 \text{ no} = 0 \text{ out} = 0
zr=1 ng=0
  50 \text{ns} \text{ x} =
                  9 y= 15 zx=0 nx=0 zy=0 ny=1 f=0 no=1 out=
                                                                                        -1
zr=0 ng=1
  60 \text{ns} \text{ x} =
             9 y= 15 zx=0 nx=0 zy=0 ny=1 f=1 no=0 out=
                                                                                        -7
zr=0 ng=1
  70 \text{ns} \text{ x} =
             9 y= 15 zx=0 nx=0 zy=0 ny=1 f=1 no=1 out=
                                                                                         6
zr=0 ng=0
  80 \text{ns} \text{ x} =
                   9 y= 15 zx=0 nx=0 zy=1 ny=0 f=0 no=0 out=
                                                                                         ()
zr=1 ng=0
  90 \text{ns} \text{ x} =
                   9 y= 15 zx=0 nx=0 zy=1 ny=0 f=0 no=1 out=
                                                                                        -1
zr=0 ng=1
100ns x= 9 y= 15 zx=0 nx=0 zy=1 ny=0 f=1 no=0 out=
zr=0 ng=0
```

```
110ns x = 9 y = 15 zx = 0 nx = 0 zy = 1 ny = 0 f = 1 no = 1 out = -10
zr=0 ng=1
 120ns x= 9 y= 15 zx=0 nx=0 zy=1 ny=1 f=0 no=0 out=
zr=0 ng=0
 130 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 0 \text{ z} y = 1 \text{ n} y = 1 \text{ f} = 0 \text{ n} o = 1 \text{ o} u t = -10
zr=0 ng=1
 140 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 0 \text{ z} y = 1 \text{ n} y = 1 \text{ f} = 1 \text{ n} o = 0 \text{ o} u t = 0
                                                                                                    8
zr=0 ng=0
 150ns x= 9 y= 15 zx=0 nx=0 zy=1 ny=1 f=1 no=1 out=
                                                                                                   -9
zr=0 ng=1
 160 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 1 \text{ z} y = 0 \text{ n} y = 0 \text{ f} = 0 \text{ n} o = 0 \text{ out} = 0
                                                                                                    6
zr=0 ng=0
 170 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 1 \text{ z} y = 0 \text{ n} y = 0 \text{ f} = 0 \text{ n} o = 1 \text{ out} = 0
                                                                                                   -7
zr=0 ng=1
 180ns x= 9 y= 15 zx=0 nx=1 zy=0 ny=0 f=1 no=0 out=
                                                                                                    5
zr=0 ng=0
```

```
190ns x = 9 y = 15 zx = 0 nx = 1 zy = 0 ny = 0 f = 1 no = 1 out f = -6
zr=0 ng=1
 200 \text{ns} \text{ x} = 9 \text{ y} = 15 \text{ z} \text{x} = 0 \text{ n} \text{x} = 1 \text{ z} \text{y} = 0 \text{ n} \text{y} = 1 \text{ f} = 0 \text{ no} = 0 \text{ out} = -16
zr=0 ng=1
 210 \text{ns} \ \text{x} =
                           9 \text{ y} = 15 \text{ zx} = 0 \text{ nx} = 1 \text{ zy} = 0 \text{ ny} = 1 \text{ f} = 0 \text{ no} = 1 \text{ out} = 15
zr=0 ng=0
 220 \text{ns} \text{ x} =
                   9 \text{ y} = 15 \text{ zx} = 0 \text{ nx} = 1 \text{ zy} = 0 \text{ ny} = 1 \text{ f} = 1 \text{ no} = 0 \text{ out} = -26
zr=0 ng=1
 230 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 1 \text{ z} y = 0 \text{ n} y = 1 \text{ f} = 1 \text{ n} o = 1 \text{ o} u t = 0
                                                                                                                             25
zr=0 ng=0
 240 \text{ns} \text{ x} =
                           9 y= 15 zx=0 nx=1 zy=1 ny=0 f=0 no=0 out=
                                                                                                                                ()
zr=1 ng=0
 250 \text{ns} \text{ x} =
                            9 \text{ y} = 15 \text{ zx} = 0 \text{ nx} = 1 \text{ zy} = 1 \text{ ny} = 0 \text{ f} = 0 \text{ no} = 1 \text{ out} = -1
zr=0 ng=1
 260 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 0 \text{ n} x = 1 \text{ z} y = 1 \text{ n} y = 0 \text{ f} = 1 \text{ n} o = 0 \text{ o} u t = -10
zr=0 ng=1
```

270ns x=	9 y=	15 zx=0 r	nx=1 zy=1	ny=0 f=1	no=1	out=	9	1
zr=0 ng=0								
280ns x=	9 y=	15 zx=0 r	nx=1 zy=1	ny=1 f=0	no=0	out=	-10	
zr=0 ng=1								
290ns x=	9 y=	15 zx=0 r	nx=1 zy=1	ny=1 f=0	no=1	out=	9	
zr=0 ng=0								
300ns x=	9 y=	15 zx=0 r	nx=1 zy=1	ny=1 f=1	no=0	out=	-11	
zr=0 ng=1								
310ns x=	9 y=	15 zx=0 r	nx=1 $zy=1$	ny=1 f=1	no=1	out=	10	
zr=0 ng=0								
320ns x=	9 y=	15 zx=1 r	nx=0 $zy=0$	ny=0 f=0	no=0	out=	0	
zr=1 ng=0								
330ns x=	9 y=	15 zx=1 r	nx=0 $zy=0$	ny=0 f=0	no=1	out=	-1	
zr=0 ng=1								
340ns x=	9 y=	15 zx=1 r	nx=0 $zy=0$	ny=0 f=1	no=0	out=	15	
zr=0 ng=0								

```
350 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 1 \text{ n} x = 0 \text{ z} y = 0 \text{ n} y = 0 \text{ f} = 1 \text{ n} o = 1 \text{ o} u t = -16
zr=0 ng=1
 360 \text{ns} \text{ x} = 9 \text{ y} = 15 \text{ z} \text{x} = 1 \text{ n} \text{x} = 0 \text{ z} \text{y} = 0 \text{ n} \text{y} = 1 \text{ f} = 0 \text{ no} = 0 \text{ out} = 0
zr=1 ng=0
 370 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 1 \text{ n} x = 0 \text{ z} y = 0 \text{ n} y = 1 \text{ f} = 0 \text{ n} o = 1 \text{ o} u t = 0
                                                                                                              -1
zr=0 ng=1
 380 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 1 \text{ n} x = 0 \text{ z} y = 0 \text{ n} y = 1 \text{ f} = 1 \text{ n} o = 0 \text{ o} u t = -16
zr=0 ng=1
 390ns x= 9 y= 15 zx=1 nx=0 zy=0 ny=1 f=1 no=1 out= 15
zr=0 ng=0
 400ns x= 9 y= 15 zx=1 nx=0 zy=1 ny=0 f=0 no=0 out=
                                                                                                                ()
zr=1 ng=0
 410 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 1 \text{ n} x = 0 \text{ z} y = 1 \text{ n} y = 0 \text{ f} = 0 \text{ n} o = 1 \text{ out} = 0
                                                                                                              -1
zr=0 ng=1
 420ns x= 9 y= 15 zx=1 nx=0 zy=1 ny=0 f=1 no=0 out=
zr=1 ng=0
```

430ns x=	9 y=	15 zx=1 nx=0 zy=1 ny=0 f=1 no=1 out=	-1
zr=0 ng=1			
440ns x=	9 y=	15 zx=1 nx=0 zy=1 ny=1 f=0 no=0 out=	0
zr=1 ng=0			
450ns x=	9 y=	15 zx=1 nx=0 zy=1 ny=1 f=0 no=1 out=	-1
zr=0 ng=1			
460ns x=	9 y=	15 zx=1 nx=0 zy=1 ny=1 f=1 no=0 out=	-1
zr=0 ng=1			
470ns x=	9 y=	15 zx=1 nx=0 zy=1 ny=1 f=1 no=1 out=	0
zr=1 ng=0			
480ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=0 f=0 no=0 out=	15
zr=0 ng=0			
490ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=0 f=0 no=1 out=	-16
zr=0 ng=1			
500ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=0 f=1 no=0 out=	14
zr=0 ng=0			

510ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=	=0 f=1 no=1 out=	-15
zr=0 ng=1				
520ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=	=1 f=0 no=0 out=	-16
zr=0 ng=1				
530ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=	=1 f=0 no=1 out=	15
zr=0 ng=0				
540ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=	=1 f=1 no=0 out=	-17
zr=0 ng=1				
550ns x=	9 y=	15 zx=1 nx=1 zy=0 ny=	=1 f=1 no=1 out=	16
zr=0 ng=0				
560ns x=	9 y=	15 zx=1 nx=1 zy=1 ny=	=0 f=0 no=0 out=	0
zr=1 ng=0				
570ns x=	9 y=	15 zx=1 nx=1 zy=1 ny=	=0 f=0 no=1 out=	-1
zr=0 ng=1				
580ns x=	9 y=	15 zx=1 nx=1 zy=1 ny=	=0 f=1 no=0 out=	-1
zr=0 ng=1				

```
590 \text{ns} \text{ x} = 9 \text{ y} = 15 \text{ z} \text{x} = 1 \text{ n} \text{x} = 1 \text{ z} \text{y} = 1 \text{ n} \text{y} = 0 \text{ f} = 1 \text{ no} = 1 \text{ out} = 0
zr=1 ng=0
                600 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 1 \text{ n} x = 1 \text{ z} y = 1 \text{ n} y = 1 \text{ f} = 0 \text{ n} o = 0 \text{ out} = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -1
zr=0 ng=1
              610 \text{ns} \text{ x} =
                                                                                                                                                                                                      9 \text{ y} = 15 \text{ zx} = 1 \text{ nx} = 1 \text{ zy} = 1 \text{ ny} = 1 \text{ f} = 0 \text{ no} = 1 \text{ out} = 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ()
zr=1 ng=0
              620 \text{ns} \text{ x} =
                                                                                                                                                                                                    9 \text{ y} = 15 \text{ zx} = 1 \text{ nx} = 1 \text{ zy} = 1 \text{ ny} = 1 \text{ f} = 1 \text{ no} = 0 \text{ out} = 1 \text{ no} = 1 \text{ out} = 1 \text{ no} = 1 \text{ no}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -2
zr=0 ng=1
              630 \text{ns } x = 9 \text{ y} = 15 \text{ z} x = 1 \text{ n} x = 1 \text{ z} y = 1 \text{ n} y = 1 \text{ f} = 1 \text{ n} o = 1 \text{ out} = 1 \text{
zr=0 ng=0
              640ns x= 9 y= 15 zx=0 nx=0 zy=0 ny=0 f=0 no=0 out=
zr=0 ng=0
```

結語

算術邏輯單元的原理請參考下列文件:

• 少年科技人雜誌 / 2015年6月號 / Nand2Tetris 第二週 -- 布林算術

Nand2Tetris 第三週 -- 自製記憶元件

記憶元件部份包含『單位元記憶、16位元暫存器、程式計數器 PC、RAM、ROM』等等,我們的 verilog 版模組與測試程式如下所示。

程式模組: memory.v

/* nand2tetris 的要求應該用下列方式實作,但是由於這樣元件太多會導致 icarus 編譯失敗,

出現下列訊息:

D:\Dropbox\cccweb\db\n2t>iverilog ram_test.v -o ram_test

This application has requested the Runtime to terminate it in an unusual way.

```
Please contact the application's support team for more informatio
n.
所以我們在記憶體容量大的時候改用 verilog 的陣列型寫法,這樣就不會
當機了。 */
`include "alu.v"
module DFF (input in, clock, load, output out);
 reg q;
   assign out = q;
  always @(posedge clock) begin
     if (load) q = in:
  end
endmodule
module Bit(input in, clock, load, output out);
```

```
DFF dff1(in, clock, load, out);
endmodule
module Register(input[15:0] in, input clock, load, output[15:0] o
ut):
  Bit g01(in[15], clock, load, out[15]);
  Bit g02(in[14], clock, load, out[14]);
  Bit g03(in[13], clock, load, out[13]);
  Bit g04(in[12], clock, load, out[12]);
  Bit g05(in[11], clock, load, out[11]);
  Bit g06(in[10], clock, load, out[10]);
  Bit g07(in[9], clock, load, out[9]);
  Bit g08(in[8], clock, load, out[8]);
  Bit g09(in[7], clock, load, out[7]):
  Bit g10(in[6], clock, load, out[6]);
  Bit g11(in[5], clock, load, out[5]);
```

```
Bit g12(in[4], clock, load, out[4]);
  Bit g13(in[3], clock, load, out[3]);
  Bit g14(in[2], clock, load, out[2]);
  Bit g15(in[1], clock, load, out[1]);
 Bit g16(in[0], clock, load, out[0]);
endmodule
module PC(input[15:0] in, input clock, load, inc, reset, output[15]
:0] out):
 wire[15:0] if1, if2, if3, oInc, o;
  Or gl(load, inc, loadInc);
  Or g2(loadInc, reset, loadIncReset);
  Inc16 inc1(o, oInc):
  And 16 g3 (o, o, out);
```

```
Mux16 g4(o, oInc, inc, if1);
  Mux16 g5(if1, in, load, if2);
  Mux16 g6(if2, 16'b0, reset, if3);
  Register regl(if3, clock, loadIncReset, o);
endmodule
module RAM8(input[15:0] in, input clock, load, input[2:0] address
, output[15:0] out);
 wire [15:0] o0, o1, o2, o3, o4, o5, o6, o7:
  DMux8Way g0(1'b1, address, E0, E1, E2, E3, E4, E5, E6, E7);
  And a0(load, E0, L0); Register r0(in, clock, L0, o0);
  And al(load, El, Ll); Register rl(in, clock, Ll, ol);
```

```
And a2(load, E2, L2); Register r2(in, clock, L2, o2);
 And a3(load, E3, L3); Register r3(in, clock, L3, o3);
 And a4(load, E4, L4); Register r4(in, clock, L4, o4);
 And a5 (load, E5, L5); Register r5 (in, clock, L5, o5);
 And a6 (load, E6, L6); Register r6 (in, clock, L6, o6);
 And a7 (load, E7, L7); Register r7 (in, clock, L7, o7);
 Mux8Way16 g1(o0, o1, o2, o3, o4, o5, o6, o7, address, out);
endmodule
module RAM64(input[15:0] in, input clock, load, input[5:0] address
s, output[15:0] out);
 wire [15:0] o0, o1, o2, o3, o4, o5, o6, o7;
 DMux8Way g0(1'b1, address[5:3], E0, E1, E2, E3, E4, E5, E6, E7)
```

```
And a0(load, E0, L0); RAM8 m0(in, clock, L0, address[2:0], o0)
And al (load, El, Ll); RAM8 ml(in, clock, Ll, address[2:0], ol)
And a2(load, E2, L2); RAM8 m2(in, clock, L2, address[2:0], o2)
And a3(load, E3, L3); RAM8 m3(in, clock, L3, address[2:0], o3)
And a4(load, E4, L4); RAM8 m4(in, clock, L4, address[2:0], o4)
And a5(load, E5, L5); RAM8 m5(in, clock, L5, address[2:0], o5)
And a6 (load, E6, L6); RAM8 m6 (in, clock, L6, address[2:0], o6)
And a7 (load, E7, L7); RAM8 m7 (in, clock, L7, address[2:0], o7)
```

```
Mux8Way16 g1 (o0, o1, o2, o3, o4, o5, o6, o7, address[5:3], out)
endmodule
module ROM32K(input[14:0] address, output[15:0] out);
 reg[15:0] m[0:2**14-1];
  assign out = m[address];
endmodule
module RAM8K(input[15:0] in, input clock, load, input[12:0] addre
ss, output[15:0] out);
 reg[15:0] m[0:2**12-1];
```

```
assign out = m[address];
  always @(posedge clock) begin
   if (load) m[address] = in;
  end
endmodule
module RAM16K(input[15:0] in, input clock, load, input[13:0] addr
ess, output[15:0] out);
 reg[15:0] m[0:2**13-1];
  assign out = m[address];
  always @(posedge clock) begin
   if (load) m[address] = in:
  end
```

$end modu\, 1\, e$

測試程式: ram_test.v

```
`include "memory.v"
module main;
reg[15:0] in;
reg load, clock;
reg[13:0] address;
wire[15:0] out;
RAM16K m(in, clock, load, address, out);
initial
begin
```

```
clock=0;
  $monitor("%4dns in=%d clock=%d load=%d address=%d out=%d", $sti
me, in, clock, load, address, out);
   #10 in=3; load=1; address=5;
   #10 load=0;
   #10 $finish;
end
always #2 begin
  clock=~clock:
end
endmodule
```

```
D:\Dropbox\cccweb\db\n2t>iverilog ram test.v -o ram test
```

		_	
D:\Dropbox\cc	cweb\db\n2t>vvp ram_t	est	
Ons in=	x clock=0 load=x add	ress= x out=	X
2ns in=	x clock=1 load=x add	ress= x out=	X
4ns in=	x clock=0 load=x add	ress= x out=	X
6ns in=	x clock=1 load=x add	ress= x out=	X
8ns in=	x clock=0 load=x add	ress= x out=	X

3 clock=1 load=1 address=

3 clock=0 load=1 address=

3 clock=1 load=1 address=

3 clock=0 load=1 address=

3 clock=1 load=1 address=

3 clock=0 load=0 address=

3 clock=1 load=0 address=

5 out=

5 out =

5 out=

5 out =

5 out =

5 out=

5 out=

3

3

3

10ns in=

12ns in=

14ns in=

16ns in=

18ns in=

20ns in=

22ns in=

```
      24ns in=
      3 clock=0 load=0 address=
      5 out=
      3

      26ns in=
      3 clock=1 load=0 address=
      5 out=
      3

      28ns in=
      3 clock=0 load=0 address=
      5 out=
      3

      30ns in=
      3 clock=1 load=0 address=
      5 out=
      3
```

另外我們針對 PC 這個元件也單獨進行測試,測試程式與結果如下。

測試程式: PC_test.v

```
include "memory.v"
module main;
reg[15:0] in;
reg load, inc, reset, clock;
wire[15:0] out;
PC pc(in, clock, load, inc, reset, out);
```

```
initial
begin
  clock = 0;
  $monitor("%4dns clock=%d in=%d reset=%d inc=%d load=%d out=%d",
$stime, clock, in, reset, inc, load, out);
    inc = 0; load = 0; reset=0; in=7;
    #10 reset=1; inc=1;
   #10 reset=0:
   #10 reset=0;
    #30 inc = 0: load=1:
    #30 \ load = 0; inc=1;
    #30 $finish;
end
always #2 begin
```

```
clock = clock + 1;
end
```

測試結果

```
D:\Dropbox\cccweb\db\n2t\iverilog pc test.v -o pc test
D:\Dropbox\cccweb\db\n2t>vvp pc test
  Ons clock=0 in= 7 reset=0 inc=0 load=0 out=
                                                  X
  2ns clock=1 in= 7 reset=0 inc=0 load=0 out=
                                                  X
  4ns clock=0 in= 7 reset=0 inc=0 load=0 out=
                                                  X
  6ns clock=1 in=
                    7 reset=0 inc=0 load=0 out=
                                                  X
  8ns_clock=0 in=
                    7 reset=0 inc=0 load=0 out=
                                                  X
 10ns clock=1 in= 7 reset=1 inc=1 load=0 out=
                                                  X
 12ns clock=0 in= 7 reset=1 inc=1 load=0 out=
                                                  X
 14ns clock=1 in= 7 reset=1 inc=1 load=0 out=
                                                  ()
```

16ns clock=0	in= 7	reset=1	inc=1	load=0	out=	0	
18ns clock=1	in= 7	reset=1	inc=1	load=0	out=	0	
20ns clock=0	in= 7	reset=0	inc=1	load=0	out=	0	
22ns clock=1	in= 7	reset=0	inc=1	load=0	out=	1	
24ns clock=0	in= 7	reset=0	inc=1	load=0	out=	1	
26ns clock=1	in= 7	reset=0	inc=1	load=0	out=	2	
28ns clock=0	in= 7	reset=0	inc=1	load=0	out=	2	
30ns clock=1	in= 7	reset=0	inc=1	load=0	out=	3	
32ns clock=0	in= 7	reset=0	inc=1	load=0	out=	3	
34ns clock=1	in= 7	reset=0	inc=1	load=0	out=	4	
36ns clock=0	in= 7	reset=0	inc=1	load=0	out=	4	
38ns clock=1	in= 7	reset=0	inc=1	load=0	out=	5	
40ns clock=0	in= 7	reset=0	inc=1	load=0	out=	5	
42ns clock=1	in= 7	reset=0	inc=1	load=0	out=	6	
44ns clock=0	in= 7	reset=0	inc=1	load=0	out=	6	
46ns clock=1	in= 7	reset=0	inc=1	load=0	out=	7	

48ns clock=0 i	in= 7	reset=0	inc=1	load=0	out=	7
50ns clock=1 i	in= 7	reset=0	inc=1	load=0	out=	8
52ns clock=0 i	in= 7	reset=0	inc=1	load=0	out=	8
54ns clock=1 i	in= 7	reset=0	inc=1	load=0	out=	9
56ns clock=0 i	in= 7	reset=0	inc=1	load=0	out=	9
58ns clock=1 i	in= 7	reset=0	inc=1	load=0	out=	10
60ns clock=0 i	in=7	reset=0	inc=0	load=1	out=	10
62ns clock=1 i	in=7	reset=0	inc=0	load=1	out=	7
64ns clock=0 i	in= 7	reset=0	inc=0	load=1	out=	7
66ns clock=1 i	in= 7	reset=0	inc=0	load=1	out=	7
68ns clock=0 i	in= 7	reset=0	inc=0	load=1	out=	7
70ns clock=1 i	in= 7	reset=0	inc=0	load=1	out=	7
72ns clock=0 i	in= 7	reset=0	inc=0	load=1	out=	7
74ns clock=1 i	in= 7	reset=0	inc=0	load=1	out=	7
76ns clock=0 i	in= 7	reset=0	inc=0	load=1	out=	7
78ns clock=1 i	in=7	reset=0	inc=0	load=1	out=	7

80ns	clock=0	in=	7	reset=0	inc=0	load=1	out=	7	
82ns	clock=1	in=	7	reset=0	inc=0	load=1	out=	7	
84ns	clock=0	in=	7	reset=0	inc=0	load=1	out=	7	
86ns	clock=1	in=	7	reset=0	inc=0	load=1	out=	7	
88ns	clock=0	in=	7	reset=0	inc=0	load=1	out=	7	
90ns	clock=1	in=	7	reset=0	inc=1	load=0	out=	7	
92ns	clock=0	in=	7	reset=0	inc=1	load=0	out=	7	
94ns	clock=1	in=	7	reset=0	inc=1	load=0	out=	8	
96ns	clock=0	in=	7	reset=0	inc=1	load=0	out=	8	
98ns	clock=1	in=	7	reset=0	inc=1	load=0	out=	9	
100ns	clock=0	in=	7	reset=0	inc=1	load=0	out=	9	
102ns	clock=1	in=	7	reset=0	inc=1	load=0	out=	10	
104ns	clock=0	in=	7	reset=0	inc=1	load=0	out=	10	
106ns	clock=1	in=	7	reset=0	inc=1	load=0	out=	11	
108ns	clock=0	in=	7	reset=0	inc=1	load=0	out=	11	
110ns	clock=1	in=	7	reset=0	inc=1	load=0	out=	12	

```
      112ns clock=0 in=
      7 reset=0 inc=1 load=0 out=
      12

      114ns clock=1 in=
      7 reset=0 inc=1 load=0 out=
      13

      116ns clock=0 in=
      7 reset=0 inc=1 load=0 out=
      13

      118ns clock=1 in=
      7 reset=0 inc=1 load=0 out=
      14

      120ns clock=0 in=
      7 reset=0 inc=1 load=0 out=
      14
```

結語

記憶單元的原理請參考下列文件:

• 少年科技人雜誌 / 2015年6月號 / Nand2Tetris 第 3 週 -- 記憶體

Nand2Tetris 第四週 -- 學習機器語言

關於第四週的學習機器語言部份,是要我們設計 HackComputer 的兩個組合語言程式,一個是控制鍵盤與畫面的 Fill.asm ,另一個是計算乘法的 Mult.asm。

為了避免公佈答案,在此我只寫下我在這兩個程式所採用的算法虛擬碼,以下是 Fill.asm 的高階虛擬碼。

```
forever
  arr = SCREEN
  for (i=0; i<8192; i++) {
    if (*KBD != 0)
      arr[i] = -1
    else
      arr[i] = 0
  goto forever;
```

以下是較接近組合語言的低階虛擬碼,此虛擬和上面的並不完全一致,因為我有進一步簡化過。

```
arr = SCREEN
n=8192
i=0
```

```
FOREVER:
LOOP:
  if (i==n) goto ENDLOOP
  if (*KBD != 0)
    arr[i] = 0: // 0x0000
  else
    arr[i] = -1: // 0xFFFF
 i++:
ENDLOOP:
  goto FOREVER
```

```
組合語言:Mult.asm
```

```
// Multiplies RO and R1 and stores the result in R2.
// (RO, R1, R2 refer to RAM[0], RAM[1], and RAM[2], respectively.
)
```

```
// Put your code here.

a = 0

LOOP:

if (a <= 0) goto EXIT

a=a-1;

R2 = R2 + R1;
goto LOOP
```

在寫好組合語言程式 Fill.asm 與 Mult.asm 之後,您可以使用 nand2tetris 所提供的 CPUEmulator 來執行並驗證您寫出來的組合語言程式。

結語

組合語言單元的原理請參考下列文件:

• 少年科技人雜誌 / 2015年6月號 / Nand2Tetris 第 4 週 -- 機器語言

Nand2Tetris 第五週 -- 自製處理器與電腦

本週的作業是設計處理器 HackCPU 與電腦 HackComputer,其中還包含了可以與週邊連接的記憶體部份。Verilog 版的設計如下:

程式模組: computer.v

```
`include "memory.v"
module Memory(input[15:0] in, input clock, load, input[14:0] addr
ess, output[15:0] out):
 wire 15:0 outM, outS, outK, outSK:
  Not g1 (address[14], N14):
  And g2 (N14, load, Mload);
  And g3 (address[14], load, Sload):
```

```
RAM16K ram16k(in, clock, Mload, address[13:0], outM);
 RAM8K screen(in, clock, Sload, address[12:0], outS);
 Register keyboard (16'h0F0F, clock, 1'b0, outK);
 Mux16 g4(outM, outSK, address[14], out);
 Mux16 g5 (outS, outK, address[13], outSK);
endmodule
module CPU(input[15:0] inM, I, input clock, reset, output[15:0] o
utM, output writeM, output[14:0] addressM, pc);
 wire[15:0] Ain, Aout, AorM, ALUout, Dout, pcOut, addressMOut;
 Or gl(ng, zr, ngzr); // ngzr = (ng|zr)
 Not g2(ngzr, g); // g = out > 0 = !(ng|zr); ng = out < 0;
zr = 0.11t = 0
 And g3(ng, I[2], passLT); // ngLT = (ng&LT)
 And g4(zr, I[1], passEQ); // zrEQ = (zr&EQ)
```

```
And g5(g, I[0], passGT); // gGT = (g&GT)
 Or g6(passLT, passEQ, passLE);
 Or g7(passLE, passGT, pass);
 And g8(I[15], pass, PCload); // PCload = I15&J
 // ALU
 Mux16 g9 (Aout, inM, I[12], AorM); // Mux ALU in : cAorM = I[12]
 ALU alu (Dout, AorM, I[11], I[10], I[9], I[8], I[7], I[6], ALUou
t, zr, ng);
 PC pc1 (Aout, clock, PCload, 1'bl, reset, pcOut);
   assign pc = pcOut[14:0];
 // A register
```

```
Not g10(I[15], Atype);
 And g11(I[15], I[5], AluToA); // AluToA = I[15]&d1
 Or g12 (Atype, AluToA, Aload):
 Mux16 g13(I, ALUout, AluToA, Ain); // se1=I[15]
 Register A(Ain, clock, Aload, Aout);
 // D register
 And g14(I[15], I[4], D1oad); // A1oad = I[15]&d2
 Register D(ALUout, clock, Dload, Dout);
 // output
   assign addressM = Aout[14:0];
 And g16(I[15], I[3], writeM); // writeM = I[15] & d3
 And16 g17 (ALUout, ALUout, outM);
endmodule
```

```
module Computer (input clock, reset);
 wire[15:0] inM, outM, I;
   wire[14:0] addressM, pc;
 Memory ram(inM, !clock, loadM, addressM, outM);
 ROM32K rom(pc, I):
 CPU cpu(outM, I, clock, reset, inM, loadM, addressM, pc);
endmodule
```

測試程式: computer_test.v

```
`include "computer.v"

module main;
reg reset, clock;
```

```
Computer c(clock, reset):
integer i;
initial
begin
  $readmemb("sum. hack", c. rom. m);
  for (i=0; i < 32; i=i+1) begin
    $\display(\'\%4x: \%x'', i, c.rom.m[i]);
  end
  $monitor("%4dns clock=%d pc=%d I=%d A=%d D=%d M=%d", $stime, cl
ock, c.pc, c.I, c.addressM, c.cpu.Dout, c.outM);
    clock = 0:
    #10 reset=1:
   #30 reset=0:
```

```
end
 always #5 begin
   clock = clock + 1;
 end
 initial #1800 $finish;
 endmodule
輸入檔: sum.hack
```

```
0000000000010000 // (LOOP) @i
11111110000010000 // D=M // D=i
0000000000001010 // @10
1110010011010000 // D=D-A // D = i - 10
0000000000010010 // @END
1110001100000001 // D; JGT // If (i-100) > 0 goto END
00000000000010000 // @i
11111110000010000 // D=M // D=i
00000000000010001 // @sum
11111000010001000 // M=D+M // sum += i
0000000000010000 // @i
1111110111001000 // M=M+1 // i++
000000000000000000000 // @LOOP
1110101010000111 // 0; JMP // Got LOOP
0000000000010010 // (END) @END
1110101010000111 // 0; JMP // Infinite loop
```

測試結果

```
WARNING: computer test. v:12: $readmemb(sum. hack): Not enough word
s in the file for the requested range [0:16383].
00000000: 0010
00000001: efc8
00000002: 0011
00000003: ea88
00000004: 0010
00000005: fc10
00000006: 000a
00000007: e4d0
00000008: 0012
00000009: e301
0000000a: 0010
0000000b: fc10
```

0000000c:	0011
0000000d:	f088
0000000e:	0010
0000000f:	fdc8
00000010:	0004
00000011:	ea87
00000012:	0012
00000013:	ea87
00000014:	XXXX
00000015:	XXXX
00000016:	XXXX
00000017:	XXXX
00000018:	XXXX
00000019:	XXXX
0000001a:	XXXX
0000001b:	XXXX

```
0000001c: xxxx
0000001d: xxxx
0000001e: xxxx
0000001f: xxxx
  Ons clock=0 pc= x I= x A= x D= x M=
                                                  X
  5 \text{ns clock=1 pc=} \quad \text{x I=} \quad \text{x A=} \quad \text{x D=} \quad \text{x M=}
                                                   X
 10 \text{ns clock} = 0 \text{ pc} = \text{x I} = \text{x A} = \text{x D} = \text{x M} = 0
                                                   X
 15ns clock=1 pc= 0 I= 16 A= x D= x M=
                                                   X
 20ns clock=0 pc= 0 I= 16 A= x D= x M=
                                                   X
 25ns clock=1 pc= 0 I= 16 A= 16 D= x M=
                                                   X
 30ns clock=0 pc= 0 I= 16 A= 16 D= x M=
                                                   X
 35ns clock=1 pc= 0 I= 16 A= 16 D= x M=
                                                   X
 40ns clock=0 pc= 0 I= 16 A= 16 D= x M=
                                                   X
 45ns clock=1 pc= 1 I=61384 A= 16 D= x M=
                                                   X
 50ns clock=0 pc= 1 I=61384 A= 16 D= x M=
 55ns clock=1 pc= 2 I= 17 A= 16 D= x M=
```

60ns	clock=0	pc=	2	I=	17	A=	16	D=	X	M=	1
65ns	clock=1	pc=	3	I=600)40	A=	17	D=	X	M=	X
70ns	clock=0	pc=	3	I=600)40	A=	17	D=	X	M=	0
75ns	clock=1	pc=	4	I=	16	A=	17	D=	X	M=	0
80ns	clock=0	pc=	4	I=	16	A=	17	D=	X	M=	0
85ns	clock=1	pc=	5	I=645	528	A=	16	D=	X	M=	1
90ns	clock=0	pc=	5	I=645	528	A=	16	D=	X	M=	1
95ns	clock=1	pc=	6	I=	10	A=	16	D=	1	M=	1
100ns	clock=0	pc=	6	I=	10	A=	16	D=	1	M=	1
105ns	clock=1	pc=	7	I=585	576	A=	10	D=	1	M=	X
110ns	clock=0	pc=	7	I=585	576	A=	10	D=	1	M=	X
115ns	clock=1	pc=	8	I=	18	A=	10	D=6552	27	M=	X
120ns	clock=0	pc=	8	I=	18	A=	10	D=6552	27	M=	X
125ns	clock=1	pc=	9	I=581	13	A=	18	D=6552	27	M=	X
130ns	clock=0	pc=	9	I=581	13	A=	18	D=6552	27	M=	X
135ns	clock=1	pc=	10	I=	16	A=	18	D=6552	27	M=	X

140ns clock=0	pc= 10) I=	16	A=	18	D=65527	7 M=	X
145ns clock=1	pc= 11	I=645	528	A=	16	D=65527	7 M=	1
150ns clock=0	pc= 11	I=645	528	A=	16	D=65527	7 M=	1
155ns clock=1	pc= 12	; I=	17	A=	16	D=]	M=	1
160ns clock=0	pc= 12	; I=	17	A=	16	D=]	M=	1
165ns clock=1	pc= 13	I=615	576	A=	17	D=]	M=	0
170ns clock=0	pc= 13	I=615	576	A=	17	D=]	M=	1
175ns clock=1	pc= 14	. I=	16	A=	17	D=]	M=	1
180ns clock=0	pc= 14	: I=	16	A=	17	D=]	M=	1
185ns clock=1	pc= 15	I=649	968	A=	16	D=]	M=	1
190ns clock=0	pc= 15	I=649	968	A=	16	D=]	M=	2
195ns clock=1	pc= 16	i = 1	4	A=	16	D=]	M=	2
200ns clock=0	pc= 16	i = 1	4	A=	16	D=]	M=	2
205ns clock=1	pc= 17	I=600)39	A=	4	D= 1	M=	X
210ns clock=0	pc= 17	' I=600)39	A=	4	D=]	M=	X
215ns clock=1	pc= 4	: I=	16	A=	4	D=]	M=	X

220ns clock=0 pc=	= 4	I= 16	A= 4	D= 1	M=	X
225ns clock=1 pc=	= 5	I=64528	A= 16	D= 1	M=	2
230ns clock=0 pc=	= 5	I=64528	A= 16	D= 1	M=	2
235ns clock=1 pc=	= 6	I= 10	A= 16	D= 2	M=	2
240ns clock=0 pc=	= 6	I= 10	A= 16	D= 2	M=	2
245ns clock=1 pc=	= 7	I=58576	A= 10	D= 2	M=	X
250ns clock=0 pc=	= 7	I=58576	A= 10	D= 2	M=	X
255ns clock=1 pc=	= 8	I= 18	A= 10	D=65528	M=	X
260ns clock=0 pc=	= 8	I= 18	A= 10	D=65528	M=	X
265ns clock=1 pc=	= 9	I=58113	A= 18	D=65528	M=	X
270ns clock=0 pc=	= 9	I=58113	A= 18	D=65528	M=	X
275ns clock=1 pc=	= 10	I= 16	A= 18	D=65528	M=	X
280ns clock=0 pc=	= 10	I= 16	A= 18	D=65528	M=	X
285ns clock=1 pc=	= 11	I=64528	A= 16	D=65528	M=	2
290ns clock=0 pc=	= 11	I=64528	A= 16	D=65528	M=	2
295ns clock=1 pc=	= 12	I= 17	A= 16	D= 2	M=	2

300ns clock=0	pc=	12	I=	17	A=	16	D=	2 N	<u>/[</u> =	2
305ns clock=1	pc=	13	I=615	576	A=	17	D=	2 N	<u>/[=</u>	1
310ns clock=0	pc=	13	I=615	576	A=	17	D=	2 N	<u>/[=</u>	3
315ns clock=1	pc=	14	I=	16	A=	17	D=	2 N	<u>/[=</u>	3
320ns clock=0	pc=	14	I=	16	A=	17	D=	2 N	<u>/[=</u>	3
325ns clock=1	pc=	15	I=649	968	A=	16	D=	2 N	<u>/[=</u>	2
330ns clock=0	pc=	15	I=649	968	A=	16	D=	2 N	<u>/[=</u>	3
335ns clock=1	pc=	16	I =	4	A=	16	D=	2 N	<u>/</u> =	3
340ns clock=0	pc=	16	I =	4	A=	16	D=	2 N	<u>/</u> =	3
345ns clock=1	pc=	17	I=600)39	A=	4	D=	2 N	<u>/[=</u>	X
350ns clock=0	pc=	17	I=600)39	A=	4	D=	2 N	<u>/[=</u>	X
355ns clock=1	pc=	4	I =	16	A=	4	D=	2 N	<u>/[=</u>	X
360ns clock=0	pc=	4	I =	16	A=	4	D=	2 N	<u>/[=</u>	X
365ns clock=1	pc=	5	I=645	528	A=	16	D=	2 N	M=	3
370ns clock=0	pc=	5	I=645	528	A=	16	D=	2 N	M=	3
375ns clock=1	pc=	6	I=	10	A=	16	D=	3 N	M=	3

380ns clock=0	pc= 6	I=	10	A=	16	D=	3	M=	3
385ns clock=1	pc= 7	I=585	576	A=	10	D=	3	M=	X
390ns clock=0	pc= 7	I=585	576	A=	10	D=	3	M=	X
395ns clock=1	pc= 8	I=	18	A=	10	D=6552	9	M=	X
400ns clock=0	pc= 8	I=	18	A=	10	D=6552	9	M=	X
405ns clock=1	pc= 9	I=581	113	A=	18	D=6552	9	M=	X
410ns clock=0	pc= 9	I=581	113	A=	18	D=6552	9	M=	X
415ns clock=1	pc= 10	I=	16	A=	18	D=6552	9	M=	X
420ns clock=0	pc= 10	I=	16	A=	18	D=6552	9	M=	X
425ns clock=1	pc= 11	I=645	528	A=	16	D=6552	9	M=	3
430ns clock=0	pc= 11	I=645	528	A=	16	D=6552	9	M=	3
435ns clock=1	pc= 12	I=	17	A=	16	D=	3	M=	3
440ns clock=0	pc= 12	I=	17	A=	16	D=	3	M=	3
445ns clock=1	pc= 13	I=615	576	A=	17	D=	3	M=	3
450ns clock=0	pc= 13	I=615	576	A=	17	D=	3	M=	6
455ns clock=1	pc= 14	I=	16	A=	17	D=	3	M=	6

460ns clock=0) pc=	14	I=	16	A=	17	D=	3 1	M=	6
465ns clock=1	l pc=	15	I=649	68	A=	16	D=	3 1	M=	3
470ns clock=0) pc=	15	I=649	68	A=	16	D=	3 1	V[=	4
475ns clock=1	l pc=	16	I=	4	A=	16	D=	3 1	M=	4
480ns clock=0) pc=	16	I=	4	A=	16	D=	3 1	M=	4
485ns clock=1	l pc=	17	I=600	39	A=	4	D=	3 1	M=	X
490ns clock=0) pc=	17	I=600	39	A=	4	D=	3 1	M=	X
495ns clock=	l pc=	4	I=	16	A=	4	D=	3 1	M=	X
500ns clock=0) pc=	4	I=	16	A=	4	D=	3 1	M=	X
505ns clock=	l pc=	5	I=645	28	A=	16	D=	3 1	M=	4
510ns clock=0) pc=	5	I=645	28	A=	16	D=	3 1	M=	4
515ns clock=	l pc=	6	I=	10	A=	16	D=	4 1	M=	4
520ns clock=0) pc=	6	I=	10	A=	16	D=	4 1	M=	4
525ns clock=	l pc=	7	I=585	76	A=	10	D=	4 1	M=	X
530ns clock=0) pc=	7	I=585	76	A=	10	D=	4 1	M=	X
535ns clock=	l pc=	8	I=	18	A=	10	D=6553	80 1	M=	X

540ns clc	ock=0	pc=	8	I=	18	A=	10	D=6553	30	M=	X
545ns clc	ock=1	pc=	9	I=581	13	A=	18	D=6553	30	M=	X
550ns clc	ock=0	pc=	9	I=581	13	A=	18	D=6553	30	M=	X
555ns clc	ock=1	pc=	10	I=	16	A=	18	D=6553	30	M=	X
560ns clc	ock=0	pc=	10	I=	16	A=	18	D=6553	30	M=	X
565ns clc	ck=1	pc=	11	I=645	528	A=	16	D=6553	30	M=	4
570ns clc	ock=0	pc=	11	I=645	528	A=	16	D=6553	30	M=	4
575ns clc	ck=1	pc=	12	I=	17	A=	16	D=	4	M=	4
580ns clc	ock=0	pc=	12	I=	17	A=	16	D=	4	M=	4
585ns clc	ck=1	pc=	13	I=615	576	A=	17	D=	4	M=	6
590ns clc	ock=0	pc=	13	I=615	576	A=	17	D=	4	M=	10
595ns clc	ck=1	pc=	14	I=	16	A=	17	D=	4	M=	10
600ns clc	ock=0	pc=	14	I=	16	A=	17	D=	4	M=	10
605ns clc	ck=1	pc=	15	I=649	968	A=	16	D=	4	M=	4
610ns clc	ock=0	pc=	15	I=649	968	A=	16	D=	4	M=	5
615ns clc	ock=1	pc=	16	I=	4	A=	16	D=	4	M=	5

620ns	clock=0	pc=	16	I =	4	A=	16	D=	4	M=	5
625ns	clock=1	pc=	17	I=600)39	A=	4	D=	4	M=	X
630ns	clock=0	pc=	17	I=600)39	A=	4	D=	4	M=	X
635ns	clock=1	pc=	4	I=	16	A=	4	D=	4	M=	X
640ns	clock=0	pc=	4	I=	16	A=	4	D=	4	M=	X
645ns	clock=1	pc=	5	I=645	528	A=	16	D=	4	M=	5
650ns	clock=0	pc=	5	I=645	528	A=	16	D=	4	M=	5
655ns	clock=1	pc=	6	I=	10	A=	16	D=	5	M=	5
660ns	clock=0	pc=	6	I=	10	A=	16	D=	5	M=	5
665ns	clock=1	pc=	7	I=585	576	A=	10	D=	5	M=	X
670ns	clock=0	pc=	7	I=585	576	A=	10	D=	5	M=	X
675ns	clock=1	pc=	8	I=	18	A=	10	D=6553	31	M=	X
680ns	clock=0	pc=	8	I=	18	A=	10	D=6553	31	M=	X
685ns	clock=1	pc=	9	I=581	13	A=	18	D=6553	31	M=	X
690ns	clock=0	pc=	9	I=581	13	A=	18	D=6553	31	M=	X
695ns	clock=1	pc=	10	I=	16	A=	18	D=6553	31	M=	X

700ns clock=0 pc=	10 I= 16	3 A=	18 D=6553	31 M=	X
705ns clock=1 pc=	11 I=64528	} A=	16 D=6553	31 M=	5
710ns clock=0 pc=	11 I=64528	} A=	16 D=6553	31 M=	5
715ns clock=1 pc=	12 I= 17	7 A=	16 D=	5 M=	5
720ns clock=0 pc=	12 I= 17	7 A=	16 D=	5 M=	5
725ns clock=1 pc=	13 I=61576	3 A=	17 D=	5 M=	10
730ns clock=0 pc=	13 I=61576	3 A=	17 D=	5 M=	15
735ns clock=1 pc=	14 I= 16	3 A=	17 D=	5 M=	15
740ns clock=0 pc=	14 I= 16	3 A=	17 D=	5 M=	15
745ns clock=1 pc=	15 I=64968	} A=	16 D=	5 M=	5
750ns clock=0 pc=	15 I=64968	} A=	16 D=	5 M=	6
755ns clock=1 pc=	16 I= 4	4 A=	16 D=	5 M=	6
760ns clock=0 pc=	16 I= 4	4 A=	16 D=	5 M=	6
765ns clock=1 pc=	17 I=60039) A=	4 D=	5 M=	X
770ns clock=0 pc=	17 I=60039) A=	4 D=	5 M=	X
775ns clock=1 pc=	4 I= 16	3 A=	4 D=	5 M=	X

780ns clock=0 p	$_{\text{oc}}=$ 4	I= 16	A=	4 D=	5 M=	X
785ns clock=1 p	oc= 5	I=64528	A= 1	16 D=	5 M=	6
790ns clock=0 p	oc= 5	I=64528	A= 1	16 D=	5 M=	6
795ns clock=1 p	oc= 6	I= 10	A= 1	16 D=	6 M=	6
800ns clock=0 p	oc= 6	I= 10	A= 1	16 D=	6 M=	6
805ns clock=1 p	oc= 7	I=58576	A= 1	10 D=	6 M=	X
810ns clock=0 p	oc= 7	I=58576	A= 1	10 D=	6 M=	X
815ns clock=1 p	oc= 8	I= 18	A= 1	10 D=6553	2 M=	X
820ns clock=0 p	oc= 8	I= 18	A= 1	10 D=6553	2 M=	X
825ns clock=1 p	oc= 9	I=58113	A= 1	18 D=6553	32 M=	X
830ns clock=0 p	oc= 9	I=58113	A= 1	18 D=6553	32 M=	X
835ns clock=1 p	oc= 10	I= 16	A= 1	18 D=6553	32 M=	X
840ns clock=0 p	oc= 10	I= 16	A= 1	18 D=6553	32 M=	X
845ns clock=1 p	oc= 11	I=64528	A= 1	l6 D=6553	32 M=	6
850ns clock=0 p	oc= 11	I=64528	A= 1	l6 D=6553	2 M=	6
855ns clock=1 p	oc=12	I= 17	A= 1	16 D=	6 M=	6

860ns clock=0 pc=	12 I= 17 A=	16 D= 6 M=	= 6
865ns clock=1 pc=	13 I=61576 A=	17 D= 6 M	= 15
870ns clock=0 pc=	13 I=61576 A=	17 D= 6 M=	= 21
875ns clock=1 pc=	14 I= 16 A=	17 D= 6 M=	= 21
880ns clock=0 pc=	14 I= 16 A=	17 D= 6 M=	= 21
885ns clock=1 pc=	15 I=64968 A=	16 D= 6 M=	= 6
890ns clock=0 pc=	15 I=64968 A=	16 D= 6 M=	= 7
895ns clock=1 pc=	16 I= 4 A=	16 D= 6 M=	= 7
900ns clock=0 pc=	16 I= 4 A=	16 D= 6 M=	= 7
905ns clock=1 pc=	17 I=60039 A=	4 D= 6 M=	= X
910ns clock=0 pc=	17 I=60039 A=	4 D= 6 M=	= X
915ns clock=1 pc=	4 I= 16 A=	4 D= 6 M=	= X
920ns clock=0 pc=	4 I= 16 A=	4 D= 6 M=	= X
925ns clock=1 pc=	5 I=64528 A=	16 D= 6 M=	= 7
930ns clock=0 pc=	5 I=64528 A=	16 D= 6 M=	= 7
935ns clock=1 pc=	6 I= 10 A=	16 D= 7 M=	= 7

940ns	clock=0	pc=	6	I=	10	A=	16	D=	7	M=	7	
945ns	clock=1	pc=	7	I=585	576	A=	10	D=	7	M=	X	
950ns	clock=0	pc=	7	I=585	576	A=	10	D=	7	M=	X	
955ns	clock=1	pc=	8	I=	18	A=	10	D=6553	33	M=	X	
960ns	clock=0	pc=	8	I=	18	A=	10	D=6553	33	M=	X	
965ns	clock=1	pc=	9	I=581	13	A=	18	D=6553	33	M=	X	
970ns	clock=0	pc=	9	I=581	13	A=	18	D=6553	33	M=	X	
975ns	clock=1	pc=	10	I=	16	A=	18	D=6553	33	M=	X	
980ns	clock=0	pc=	10	I=	16	A=	18	D=6553	33	M=	X	
985ns	clock=1	pc=	11	I=645	528	A=	16	D=6553	33	M=	7	
990ns	clock=0	pc=	11	I=645	528	A=	16	D=6553	33	M=	7	
995ns	clock=1	pc=	12	I=	17	A=	16	D=	7	M=	7	
1000ns	clock=0	pc=	12	I=	17	A=	16	D=	7	M=	7	
1005ns	clock=1	pc=	13	I=615	576	A=	17	D=	7	M=	21	
1010ns	clock=0	pc=	13	I=615	576	A=	17	D=	7	M=	28	
1015ns	clock=1	pc=	14	I=	16	A=	17	D=	7	M=	28	

1020ns	clock=0	pc=	14	I=	16	A=	17	D=	7	M=	28	
1025ns	clock=1	pc=	15	I=64	968	A=	16	D=	7	M=	7	
1030ns	clock=0	pc=	15	I=64	968	A=	16	D=	7	M=	8	
1035ns	clock=1	pc=	16	I=	4	A=	16	D=	7	M=	8	
1040ns	clock=0	pc=	16	I=	4	A=	16	D=	7	M=	8	
1045ns	clock=1	pc=	17	I=60	039	A=	4	D=	7	M=	X	
1050ns	clock=0	pc=	17	I=60	039	A=	4	D=	7	M=	X	
1055ns	clock=1	pc=	4	I=	16	A=	4	D=	7	M=	X	
1060ns	clock=0	pc=	4	I=	16	A=	4	D=	7	M=	X	
1065ns	clock=1	pc=	5	I=64	528	A=	16	D=	7	M=	8	
1070ns	clock=0	pc=	5	I=64	528	A=	16	D=	7	M=	8	
1075ns	clock=1	pc=	6	I=	10	A=	16	D=	8	M=	8	
1080ns	clock=0	pc=	6	I=	10	A=	16	D=	8	M=	8	
1085ns	clock=1	pc=	7	I=58	3576	A=	10	D=	8	M=	X	
1090ns	clock=0	pc=	7	I=58	3576	A=	10	D=	8	M=	X	
1095ns	clock=1	pc=	8	I=	18	A=	10	D=6553	4	M=	X	

1100ns	clock=0	pc=	8	I=	18	A=	10	D=65534	_ M=	X	
1105ns	clock=1	pc=	9	I=58	113	A=	18	D=65534	_ M=	X	
1110ns	clock=0	pc=	9	I=58	113	A=	18	D=65534	_ M=	X	
1115ns	clock=1	pc=	10	I=	16	A=	18	D=65534	_ M=	X	
1120ns	clock=0	pc=	10	I=	16	A=	18	D=65534	_ M=	X	
1125ns	clock=1	pc=	11	I=648	528	A=	16	D=65534	_ M=	8	
1130ns	clock=0	pc=	11	I=648	528	A=	16	D=65534	_ M=	8	
1135ns	clock=1	pc=	12	I=	17	A=	16	D= 8	8 M=	8	
1140ns	clock=0	pc=	12	I=	17	A=	16	D= 8	8 M=	8	
1145ns	clock=1	pc=	13	I=615	576	A=	17	D= 8	8 M=	28	
1150ns	clock=0	pc=	13	I=615	576	A=	17	D= 8	8 M=	36	
1155ns	clock=1	pc=	14	I=	16	A=	17	D= 8	8 M=	36	
1160ns	clock=0	pc=	14	I=	16	A=	17	D= 8	8 M=	36	
1165ns	clock=1	pc=	15	I=649	968	A=	16	D= 8	8 M=	8	
1170ns	clock=0	pc=	15	I=649	968	A=	16	D= 8	8 M=	9	
1175ns	clock=1	pc=	16	I=	4	A=	16	D= 8	8 M=	9	

1180ns	clock=0	pc=	16	I=	4	A=	16	D=	8	M=	9
1185ns	clock=1	pc=	17	I=60	039	A=	4	D=	8	M=	X
1190ns	clock=0	pc=	17	I=60	039	A=	4	D=	8	M=	X
1195ns	clock=1	pc=	4	I=	16	A=	4	D=	8	M=	X
1200ns	clock=0	pc=	4	I=	16	A=	4	D=	8	M=	X
1205ns	clock=1	pc=	5	I=64	528	A=	16	D=	8	M=	9
1210ns	clock=0	pc=	5	I=64	528	A=	16	D=	8	M=	9
1215ns	clock=1	pc=	6	I=	10	A=	16	D=	9	M=	9
1220ns	clock=0	pc=	6	I=	10	A=	16	D=	9	M=	9
1225ns	clock=1	pc=	7	I=58	576	A=	10	D=	9	M=	X
1230ns	clock=0	pc=	7	I=58	576	A=	10	D=	9	M=	X
1235ns	clock=1	pc=	8	I =	18	A=	10	D=6553	35	M=	X
1240ns	clock=0	pc=	8	I=	18	A=	10	D=6553	35	M=	X
1245ns	clock=1	pc=	9	I=58	113	A=	18	D=6553	35	M=	X
1250ns	clock=0	pc=	9	I=58	113	A=	18	D=6553	35	M=	X
1255ns	clock=1	pc=	10	I=	16	A=	18	D=6553	35	M=	X

1260ns clo	ck=0	pc=	10	I=	16	A=	18	D=6553	35	M=	X
1265ns clo	ck=1	pc=	11	I=645	528	A=	16	D=6553	35	M=	9
1270ns clo	ck=0	pc=	11	I=645	528	A=	16	D=6553	35	M=	9
1275ns clo	ck=1	pc=	12	I=	17	A=	16	D=	9	M=	9
1280ns clo	ck=0	pc=	12	I=	17	A=	16	D=	9	M=	9
1285ns clo	ck=1	pc=	13	I=615	576	A=	17	D=	9	M=	36
1290ns clo	ck=0	pc=	13	I=615	576	A=	17	D=	9	M=	45
1295ns clo	ck=1	pc=	14	I=	16	A=	17	D=	9	M=	45
1300ns clo	ck=0	pc=	14	I =	16	A=	17	D=	9	M=	45
1305ns clo	ck=1	pc=	15	I=649	968	A=	16	D=	9	M=	9
1310ns clo	ck=0	pc=	15	I=649	968	A=	16	D=	9	M=	10
1315ns clo	ck=1	pc=	16	I =	4	A=	16	D=	9	M=	10
1320ns clo	ck=0	pc=	16	I=	4	A=	16	D=	9	M=	10
1325ns clo	ck=1	pc=	17	I=600	039	A=	4	D=	9	M=	X
1330ns clo	ck=0	pc=	17	I=600)39	A=	4	D=	9	M=	X
1335ns clo	ck=1	pc=	4	I =	16	A=	4	D=	9	M=	X

1340ns	clock=0	pc=	4	I=	16	A=	4	D=	9	M=	X
1345ns	clock=1	pc=	5	I=64	528	A=	16	D=	9	M=	10
1350ns	clock=0	pc=	5	I=648	528	A=	16	D=	9	M=	10
1355ns	clock=1	pc=	6	I=	10	A=	16	D=	10	M=	10
1360ns	clock=0	pc=	6	I=	10	A=	16	D=	10	M=	10
1365ns	clock=1	pc=	7	I=585	576	A=	10	D=	10	M=	X
1370ns	clock=0	pc=	7	I=585	576	A=	10	D=	10	M=	X
1375ns	clock=1	pc=	8	I=	18	A=	10	D=	0	M=	X
1380ns	clock=0	pc=	8	I=	18	A=	10	D=	0	M=	X
1385ns	clock=1	pc=	9	I=58	113	A=	18	D=	0	M=	X
1390ns	clock=0	pc=	9	I=58	113	A=	18	D=	0	M=	X
1395ns	clock=1	pc=	10	I=	16	A=	18	D=	0	M=	X
1400ns	clock=0	pc=	10	I=	16	A=	18	D=	0	M=	X
1405ns	clock=1	pc=	11	I=64	528	A=	16	D=	0	M=	10
1410ns	clock=0	pc=	11	I=64	528	A=	16	D=	0	M=	10
1415ns	clock=1	pc=	12	I=	17	A=	16	D=	10	M=	10

1420ns	clock=0	pc=	12	I =	17	A=	16	D=	10 M=	10
1425ns	clock=1	pc=	13	I=61	576	A=	17	D=	10 M=	45
1430ns	clock=0	pc=	13	I=61	576	A=	17	D=	10 M=	55
1435ns	clock=1	pc=	14	I =	16	A=	17	D=	10 M=	55
1440ns	clock=0	pc=	14	I =	16	A=	17	D=	10 M=	55
1445ns	clock=1	pc=	15	I=649	968	A=	16	D=	10 M=	10
1450ns	clock=0	pc=	15	I=649	968	A=	16	D=	10 M=	11
1455ns	clock=1	pc=	16	I =	4	A=	16	D=	10 M=	11
1460ns	clock=0	pc=	16	I =	4	A=	16	D=	10 M=	11
1465ns	clock=1	pc=	17	I=60	039	A=	4	D=	10 M=	X
1470ns	clock=0	pc=	17	I=60	039	A=	4	D=	10 M=	X
1475ns	clock=1	pc=	4	I =	16	A=	4	D=	10 M=	X
1480ns	clock=0	pc=	4	I =	16	A=	4	D=	10 M=	X
1485ns	clock=1	pc=	5	I=64.	528	A=	16	D=	10 M=	11
1490ns	clock=0	pc=	5	I=64.	528	A=	16	D=	10 M=	11
1495ns	clock=1	pc=	6	I =	10	A=	16	D=	11 M=	11

1500ns	clock=0	pc=	6	I=	10	A=	16	D=	11	M=	11
1505ns	clock=1	pc=	7	I=585	576	A=	10	D=	11	M=	X
1510ns	clock=0	pc=	7	I=585	576	A=	10	D=	11	M=	X
1515ns	clock=1	pc=	8	I=	18	A=	10	D=	1	M=	X
1520ns	clock=0	pc=	8	I=	18	A=	10	D=	1	M=	X
1525ns	clock=1	pc=	9	I=581	113	A=	18	D=	1	M=	X
1530ns	clock=0	pc=	9	I=581	113	A=	18	D=	1	M=	X
1535ns	clock=1	pc=	18	I=	18	A=	18	D=	1	M=	X
1540ns	clock=0	pc=	18	I=	18	A=	18	D=	1	M=	X
1545ns	clock=1	pc=	19	I=600)39	A=	18	D=	1	M=	X
1550ns	clock=0	pc=	19	I=600)39	A=	18	D=	1	M=	X
1555ns	clock=1	pc=	18	I=	18	A=	18	D=	1	M=	X
1560ns	clock=0	pc=	18	I=	18	A=	18	D=	1	M=	X
1565ns	clock=1	pc=	19	I=600)39	A=	18	D=	1	M=	X
1570ns	clock=0	pc=	19	I=600)39	A=	18	D=	1	M=	X
1575ns	clock=1	pc=	18	I=	18	A=	18	D=	1	M=	X

1580ns	clock=0	pc=	18	I=	18	A=	18	D=	1	M=	X
1585ns	clock=1	pc=	19	I=600	039	A=	18	D=	1	M=	X
1590ns	clock=0	pc=	19	I=600	039	A=	18	D=	1	M=	X
1595ns	clock=1	pc=	18	I=	18	A=	18	D=	1	M=	X
1600ns	clock=0	pc=	18	I=	18	A=	18	D=	1	M=	X
1605ns	clock=1	pc=	19	I=600	039	A=	18	D=	1	V[=	X
1610ns	clock=0	pc=	19	I=600	039	A=	18	D=	1	M=	X
1615ns	clock=1	pc=	18	I=	18	A=	18	D=	1	M=	X
1620ns	clock=0	pc=	18	I=	18	A=	18	D=	1	M=	X
1625ns	clock=1	pc=	19	I=600	039	A=	18	D=	1	M=	X
1630ns	clock=0	pc=	19	I=600	039	A=	18	D=	1	M=	X
1635ns	clock=1	pc=	18	I=	18	A=	18	D=	1	M=	X
1640ns	clock=0	pc=	18	I=	18	A=	18	D=	1	M=	X
1645ns	clock=1	pc=	19	I=600	039	A=	18	D=	1	M=	X
1650ns	clock=0	pc=	19	I=600	039	A=	18	D=	1	M=	X
1655ns	clock=1	pc=	18	I=	18	A=	18	D=	1	M=	X

1660ns	clock=0	pc=	18	I=	18	A=	18	D=	1]	<u>/[=</u>	X	
1665ns	clock=1	pc=	19	I=600	039	A=	18	D=	1]	<u>/[=</u>	X	
1670ns	clock=0	pc=	19	I=600	039	A=	18	D=	1]	<u>/[=</u>	X	
1675ns	clock=1	pc=	18	I=	18	A=	18	D=	1]	<u>/[=</u>	X	
1680ns	clock=0	pc=	18	I=	18	A=	18	D=	1]	<u>/[=</u>	X	
1685ns	clock=1	pc=	19	I=600	039	A=	18	D=	1]	<u>/[=</u>	X	
1690ns	clock=0	pc=	19	I=600	039	A=	18	D=	1]	<u>/[=</u>	X	
1695ns	clock=1	pc=	18	I=	18	A=	18	D=	1 1	<u>/[=</u>	X	
1700ns	clock=0	pc=	18	I=	18	A=	18	D=	1 1	<u>/[=</u>	X	
1705ns	clock=1	pc=	19	I=600	039	A=	18	D=	1 1	<u>/[=</u>	X	
1710ns	clock=0	pc=	19	I=600	039	A=	18	D=	1 1	<u>/[=</u>	X	
1715ns	clock=1	pc=	18	I=	18	A=	18	D=	1 1	<u>/[=</u>	X	
1720ns	clock=0	pc=	18	I=	18	A=	18	D=	1 1	<u>/[=</u>	X	
1725ns	clock=1	pc=	19	I=600	039	A=	18	D=	1 1	M=	X	
1730ns	clock=0	pc=	19	I=600	039	A=	18	D=	1 1	M=	X	
1735ns	clock=1	pc=	18	I=	18	A=	18	D=	1]	<u>/[=</u>	X	

```
1740ns clock=0 pc= 18 I= 18 A= 18 D=
                                       1 M=
                                             X
1745ns clock=1 pc= 19 I=60039 A= 18 D= 1 M=
                                             X
1750ns clock=0 pc= 19 I=60039 A= 18 D=
                                      1 M=
                                             X
1755ns clock=1 pc= 18 I= 18 A= 18 D=
                                      1 M=
                                             X
1760ns clock=0 pc= 18 I= 18 A= 18 D=
                                      1 M=
                                             X
1765ns clock=1 pc= 19 I=60039 A= 18 D=
                                      1 M=
                                             X
1770ns clock=0 pc= 19 I=60039 A= 18 D=
                                      1 M=
                                             X
1775ns clock=1 pc= 18 I= 18 A= 18 D=
                                      1 M=
                                             X
1780ns clock=0 pc= 18 I= 18 A= 18 D=
                                      1 M=
                                             X
1785ns clock=1 pc= 19 I=60039 A= 18 D=
                                       1 M=
                                             X
1790ns clock=0 pc= 19 I=60039 A= 18 D=
                                      1 M=
                                             X
1795ns clock=1 pc= 18 I= 18 A= 18 D= 1 M=
                                             X
1800ns clock=0 pc= 18 I= 18 A= 18 D=
                                      1 M=
                                             X
```

結語

您可以看到上述的輸出當中有55這個數字,這代表1+...+10=55的計算結果是正確的,也就

是處理器可以正常的執行 sum.hack 程式了。

雜誌訊息

讀者訂閱

程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌,如果您願意成為本雜誌的專欄作家,請加入程式人雜誌社團一同共襄盛舉。

我們透過發行這本雜誌,希望讓大家可以讀到想讀的書,學到想學的技術,同時也讓寫作的 朋友的作品能產生良好價值 - 那就是讓讀者根據雜誌的價值捐款給慈善團體。讀雜誌做公 益也不需要有壓力,您不需要每讀一本就急著去捐款,您可以讀了十本再捐,或者使用固定 的月捐款方式,當成是雜誌訂閱費,或者是季捐款、一年捐一次等都 OK!甚至是單純當個讀 者我們也都很歡迎!

本雜誌每期參考價:NT 50元,如果您喜歡本雜誌,請將書款捐贈公益團體。例如可捐贈給「羅慧夫顱顏基金會 彰化銀行(009)帳號:5234-01-41778-800」。(若匯款要加註可用「程式人雜誌」五個字)

投稿須知

給專欄寫作者:做公益不需要有壓力。如果您願意撰寫專欄,您可以輕鬆的寫,如果當月的稿件出不來,我們會安排其他稿件上場。

給網誌捐贈者:如果您沒時間寫專欄或投稿,沒關係,只要將您的網誌以[創作共用的「姓名標示、非商業性、相同方式分享」授權]並通知我們,我們會自動從中選取需要的文章進行編輯,放入適當的雜誌當中出刊。

給文章投稿者:程式人雜誌非常歡迎您加入作者的行列,如果您想撰寫任何文章或投稿,請用 markdown 或 LibreOffice 編輯好您的稿件,並於每個月25日前投稿到程式人雜誌社團的檔案區,我們會盡可能將稿件編入隔月1號出版程式人雜誌當中,也歡迎您到社團中與我們一同討論。

如果您要投稿給程式人雜誌,我們最希望的格式是採用 markdown 的格式撰寫,然後將所有檔接壓縮為 zip 上傳到社團檔案區給我們,如您想學習 markdown 的撰寫出版方式,可以參考 [看影片學 markdown 編輯出版流程] 一文。

如果您無法採用 markdown 的方式撰寫,也可以直接給我們您的稿件,像是 MS. Word 的 doc 檔或 LibreOffice 的 odt 檔都可以,我們 會將這些稿件改寫為 markdown 之後編入雜誌當中。

參與編輯

您也可以擔任程式人雜誌的編輯,甚至創造一個全新的公益雜誌,我們誠摯的邀請您加入「開放公益出版」的行列,如果您想擔任編輯或創造新雜誌,也歡迎到程式人雜誌社團來與我們討論相關事宜。

公益資訊

公益團體	聯絡資訊	服務對象	捐款帳號
財團法人羅慧夫顱	http://www.nncf.org/ lynn@nncf.org 02-27190408分機 232	顱顏患者 (如唇顎裂、小耳 症或其他罕見顱顏缺陷)	銀行: 009 彰化 銀行民生分行 帳號: 5234-01- 41778-800
社團法人台灣省兒	http://www.cyga.org/ cyga99@gmail.com	單親、隔代教養.弱勢及一	銀行:新光銀行 戶名:台灣省兒 童少年成長協會

童少年成長協會	04-23058005	般家庭之兒童青少年	帳號: 103-
			0912-10-
			000212-0