

Anindita(Dita) Nath

NLU(Speech) Intern PhD.(CS) Candidate, University of Texas at El Paso

Utilizing Prosody to Predict Turns in Medical Conversations

Goal

• Build models using prosody to improve turn-taking in automatic medical transcriptions, eventually to build a better version of the existing transcriber(s).

Prosody In General

- Non-verbal features of speech, not what but *how* words are spoken
- Pitch, volume, speech duration, etc.
- Used to detect speech activities, turns, start or end of speech, emotion(s).

Project Background

- Develop system that automatically transcribes medical conversations to:
 - ✓ relieve physicians/caregivers from the documentation burden increasing their efficiency.
 - ✓ extend functionality to extract and summarize information.
- Existing speech recognizer:
 - ✓ Lower Frame Rate LSTM Acoustic Model:
 - ✓ LSTM based Voice Activity Detector
 - ✓ Speaker ID : LSTM based D-vector embedding for speaker voice

Motivation

- Human-Human conversations have overlapping speech, untimed pauses, etc., yet turn-taking happens spontaneously.
- Not all turns in the existing auto-transcripts are properly aligned or correctly detected.
- Difficult to predict/assign Speaker IDs to short turns.
- Time to think beyond just the words.
- Related literature shows that prosody:
 - ✓ is useful in predicting turns in dialogs at speech-onset or at pauses.
 - ✓ has universal utility across languages and speech genres like taskoriented face-to-face dialogs, general telephonic conversations, etc.

Related Works

- Ward et al.² used only prosody (*pitch, volume,* etc.) without any lexical annotation to build a general continuous TensorFlow LSTM RNN model to successfully predict:
 - ✓ whether a speaker will yield/hold turn after a pause and at the speech onset.
 - ✓ whether a speaker will continue speaking over a certain future window (0-250ms to 0-3s).

	after a 250fffs pause			after a 500ms pause		
Instances	3,405	7,546		2,079	4,608	
% Hold	59.8%	58.8%		57.6%	57.6%	
Model	Skantze	Replica	Ours	Skantze	Replica	Ours
Shift: Precision	0.726	0.776	0.784	0.711	0.780	0.800
Shift: Recall	0.703	0.528	0.601	0.738	0.549	0.660
Shift: F-measure	0.714	0.628	0.680	0.724	0.644	0.720
Hold: Precision	0.805	0.730	0.759	0.802	0.727	0.778
Hold: Recall	0.822	0.893	0.884	0.780	0.886	0.879
Hold: F -measure	0.813	0.803	0.817	0.791	0.799	0.825
Hold/Sł	nift Predi	ction Res	ults-En	glish Ma	ptask	

Prediction	English		Japanese		
Window	MAE	% reduction	MAE	% reduction	
0 to 250ms	0.11	67%	0.21	38%	
0 to 500ms	0.19	42%	0.30	12%	
0 to 1s	0.27	18%	0.36	-6%	
0 to 2s	0.34	-3%	0.40	-18%	
0 to 3s	0.36	-9%	0.41	-21%	
baseline	0.33		0.34		

Data

- Audio Set:
 - ✓ Recorded face-to-face medical conversations
 - ✓ Not professional quality
 - ✓ Approx. 36k dialogs (Doctor-Patient)
 - ✓ Remaining data is either doctor dictations (single speaker) or multiparty conversations (Doctor-Patient-Caregiver).
 - ✓ Typical duration is 8-10 minutes, sometimes as long as 45-60mins.
 - ✓ Mono (single channel), .wav audios
- Transcripts:
 - ✓ .stm files
 - ✓ 1 for each audio
 - ✓ Long gaps: mostly not silence

WAV.all/100002.wav DR 100002 0.130612 18.5959 all right and then we close it it is working and we ignore it all right so we were saying that your A1c is a little higher UH UH this UH this month UH specifically it's in

WAV.all/100002.wav DR 100002 29.5306 30.8694 days ago from Quest WAV.all/100002.wav PT 100002 30.902 30.9673 yeah WAV.all/100002.wav DR 100002 32.0776 35.2939 the Alc was eight point three usually it's in the 7s

Feature Set

- 6 low-level extracted prosodic features:
 - ✓ Absolute pitch (log Hz)
 - ✓ Relative pitch (z-normalized pitch)
 - ✓ Volume (energy in dB)
 - ✓ Cepstral Flux
 - ✓ Speaking frame (from pitch)
 - ✓ Speaking frame (from energy)
- Features are extracted for every 50ms window across the entire audio.
- Pitch Tracker: YAAPT algorithm⁴
 Cepstral Flux: James Lyons's Mel Frequency Cepstral Coefficient implementation³
- Future set will be extended to include mid-level prosodic features from UTEP's Mid-Level Toolkit³.

Key Methodology

- Adapted model²:
 - ✓ Labels: Turn-Ends as 1, rest 0
 - ✓ Feature Vector:

 1min=1200 frames, each
 50ms
 - ✓ Prediction Window: 1 (i.e. 50ms, next time step)
 - ✓ Predict turn-ends
 - ✓ Model: Many-to-Many LSTM RNN
 - ✓ Implementation: TensorFlow
 - ✓ Programming Language: Python

Variations

- Ongoing Work (Baseline Prosody Models): Many-to-Many LSTM with Target Delay:
 - I. Introduce target delay, future context
 - II. Extend feature vector to include features from the present frame,
 - as well as the past and future frames.
 - ire maines.

• Future Plans:

Compare and combine performance of:

- I. Prosody models
- II. Speaker ID models

III. Include mid-level features

III. Language Model based turn predictions

References

- [1] Chung-Cheng Chiu et al. "Speech recognition for medical conversations," Interspeech,2018.
- [2] Ward et al., "Turn-taking Predictions across Languages and Genres using an LSTM Recurrent Neural Network," IEEE Spoken Language Technology Workshop (SLT), 2018
- [3] Mid-level Toolkit(Python Version), https://github.com/anath2110/prosodyMonsterPython.git
 [4] Stephen A. Zahorian and Hongbing Hu, "A spectral/temporal method for robust fundamental frequency tracking," J. Acoust. Soc. Am. 123(6), June 2008