Let $A \in \mathbb{R}^{m \times n}$. Show that $\ker(A)$ and $\operatorname{Im}(A)$ are subspaces of \mathbb{R}^n and \mathbb{R}^m , respectively.

Solution:

To show:

- 1. $\ker(A) \subset \mathbb{F}^n$ subspace
- 2. $\operatorname{Im}(A) \subset \mathbb{F}^m$ subspace

Proof:

- 1. a) $A \cdot 0 = 0 \in \ker(A)$, thus nonempty
 - b) For i=1,2 let $\lambda_i\in\mathbb{F},\ v_i\in\ker(A)$, then by linearity $A(\lambda_1v_1+\lambda_2v_2)=\lambda_1\underbrace{Av_1}_{=0}+\lambda_2\underbrace{Av_2}_{=0}=0$ $\Rightarrow \ \lambda_1v_1+\lambda_2v_2\in\ker(A)$
- 2. a) $A \cdot 0 = 0 \in Im(A)$, thus nonempty
 - b) For i=1,2 let $\lambda_i\in\mathbb{F}$, $w_i\in\operatorname{Im}(A)$, then

$$\exists v_1, v_2 \in \mathbb{F}^n : w_1 = Av_1, w_2 = Av_2 \\ \Rightarrow \lambda_1 w_1 + \lambda_2 w_2 = \lambda_1 Av_1 + \lambda_2 Av_2 = A(\lambda_1 v_1 + \lambda_2 v_2) \\ \Rightarrow \lambda_1 w_1 + \lambda_2 w_2 \in Im(A)$$