In the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Previously presented) A mechanism for preventing ESD damage to a electronic device comprising at least one connection area having a plurality of pads (P_1 to P_n) arranged sequentially for mounting to an integrated circuit, and a plurality of fanout signal lines (F_1 to F_n) extending from the pads (P_1 to P_n) respectively, the pads P_1 and P_n disposed on outermost sides of the connection area, the mechanism comprising:

a plurality of ESD protection device (ES₁ to ES_n) configured corresponding to the fan-out signal lines (F_1 to F_n);

wherein, impedances of the ESD protection devices ES_1 and ES_n are smaller than impedances of the other ESD protection devices ES_2 to ES_{n-1} .

- 2. (Original) The mechanism as claimed in claim 1, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and equivalent channel widths of the ESD protection devices ES₁ and ES_n are longer than equivalent channel widths of the other ESD protection devices ES₂ to ES_{n-1}.
- 3. (Previously presented) A mechanism for preventing ESD damage to a electronic device comprising at least one connection area having a plurality of pads (P_1 to P_n) arranged sequentially for mounting to an integrated circuit, and a plurality of fanout signal lines (F_1 to F_n) extending from the pads (P_1 to P_n) respectively, the pads P_1 and P_n disposed on outermost sides of the connection area, the mechanism comprising:

a plurality of ESD protection device (ES₁ to ES_n) configured corresponding to the fan-out signal lines (F_1 to F_n);

wherein, impedances of the ESD protection devices ES_1 to ES_j gradually increase and impedances of the ESD protection devices ES_{j+1} to ES_n gradually decrease, 1 < j < n.

- 4. (Original) The mechanism as claimed in claim 3, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure, equivalent channel widths of the ESD protection devices ES₁ to ES_j gradually decrease, and equivalent channel widths of the ESD protection devices ES_{j+1} to ES_n gradually increase.
- 5. (Previously presented) A mechanism for preventing ESD damage to a electronic device comprising at least one connection area having a plurality of pads (P_1 to P_n) arranged sequentially for mounting to an integrated circuit, and a plurality of fanout signal lines (F_1 to F_n) extending from the pads (P_1 to P_n) respectively, the pads P_1 and P_n disposed on outermost sides of the connection area, the mechanism comprising:

a plurality of ESD protection device (ES $_1$ to ES $_n$) configured corresponding to the fan-out signal lines (F $_1$ to F $_n$);

wherein, an impedance of one ESD protection device ES_k is different from impedances of the other ESD protection devices, $1 \le k \le n$.

- 6. (Original) The mechanism as claimed in claim 5, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and an equivalent channel width of the ESD protection device ES_k is different from equivalent channel widths of the other ESD protection devices.
 - 7. (Previously presented) A liquid crystal display panel, comprising: a pixel array;

at least one connection area having a plurality of pads (P_1 to P_n) arranged sequentially for mounting to an integrated circuit, wherein the pads P_1 and P_n are disposed on outermost sides of the connection area;

a plurality of fan-out signal lines (F_1 to F_n) extending from the pads (P_1 to P_n) respectively; and

a plurality of ESD protection devices (ES₁ to ES_n) configured corresponding to the fan-out signal lines (F_1 to F_n);

wherein, impedances of the ESD protection devices ES_1 and ES_n are smaller than impedances of the other ESD protection devices ES_2 to ES_{n-1} .

8. (Original) The liquid crystal display panel as claimed in claim 7, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and equivalent channel widths of the ESD protection devices ES_1 and ES_n are longer than equivalent channel widths of the other ESD protection devices ES_2 to ES_{n-1} .

- 9. (Original) The liquid crystal display panel as claimed in claim 8, wherein the equivalent channel widths of the ESD protection devices ES_1 to ES_j gradually decrease, and the equivalent channel widths of the ESD protection devices ES_{j+1} to ES_n gradually increase, 1 < j < n.
 - 10. (Previously presented) A liquid crystal display panel, comprising: a pixel array;

at least one connection area having a plurality of pads (P_1 to P_n) arranged sequentially for mounting to an integrated circuit, wherein the pads P_1 and P_n are disposed on outermost sides of the connection area;

a plurality of fan-out signal lines (F_1 to F_n) extending from the pads (P_1 to P_n) respectively; and

a plurality of ESD protection device (ES₁ to ES_n) configured corresponding to the fan-out signal lines (F_1 to F_n);

wherein, an impedance of one ESD protection device ES_k is different from impedances of the other ESD protection devices, $1 \le k \le n$.

- 11. (Original) The liquid crystal display panel as claimed in claim 10, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and an equivalent channel width of the ESD protection device ES_k is different from equivalent channel widths of the other ESD protection devices.
- 12. (New) The liquid crystal display panel as claimed in claim 10, wherein each ESD protection device comprises at least one element having a MOS transistor circuit

structure and equivalent channel widths of the ESD protection devices ES_1 and ES_n are longer than equivalent channel widths of the other ESD protection devices ES_2 to ES_{n-1} .

13. (New) The liquid crystal display panel as claimed in claim 12, wherein the equivalent channel widths of the ESD protection devices ES_1 to ES_j gradually decrease, and the equivalent channel widths of the ESD protection devices ES_{j+1} to ES_n gradually increase, 1 < j < n.