UNIVERSITÉ DE MONTRÉAL

DEVOIR 1

PAR
CHENGZONG JIANG (20122046)
MICHAEL PLANTE (20182677)
VANESSA THIBAULT-SOUCY (20126808)
JAYDAN ALADRO (20152077)

BACCALAURÉAT EN INFORMATIQUE FACULTÉ DE L'ÉDUCATION PERMANENTE

TRAVAIL PRÉSENTÉ À GENA HAHN DANS LE CADRE DU COURS IFT 2105 INTRODUCTION À L'INFORMATIQUE THÉORIQUE

25 JANVIER 2021

Question 1

$$(L^*)^* = L^*$$

$$\begin{array}{l} \forall L \in \Sigma^*, \, (L^*)^* = L^* \\ \text{Donc } \forall L \in \Sigma^*, \, (L^*)^* \subseteq L^* \iff (L^*)^* \supseteq L^* \end{array}$$

Par définition, on sait que $L \subseteq L^*$, car L^* est une concaténation de tous les mots d'un langage L, pour tout langage L. Cela implique donc que $(L^*)^*$ est une concaténation de L^* avec lui-même. Comme $(L^*)^*$ contient un mot w_k , où $k \ge 0$, alors $w_k \in L^*$. On peut dire que $L^* \subseteq (L^*)^*$.

Ainsi, $(L^*)^* \supseteq L^*$ est vrai.

Supposons un mot $w \in (L^*)^*$, ou $w = w_1...w_n$ pour $n \ge 0$, où chaque $w_i \in w$, avec $0 \le i \le n$, $w_i \in L^*$. Nous pouvons alors réécrire chaque w_i comme $w_i = w_{i1}...w_{in}$, où chaque $w_{ij} \in w_i$, avec $0 \le j \le n$, $w_{ij} \in L$. Cela montre que $w = w_{11}...w_{1n}...w_{nn} \in L$.

On peut donc voir que w est la concaténation d'un nombre fini de mots du langage L, qui est concaténer avec lui-même pour former L^* , qui est ensuite concaténé pour former $(L^*)^*$.

Ceci démontre que $(L^*)^* \subseteq L^*$ est vrai.

 \therefore Par preuve directe, nous avons montré que $(L^*)^* = L^*$.

Question 2

```
Pour un alphabet \Sigma=\{\}. Si L=\{\epsilon\}, nous avons que L^2=L. Comme L^2=L\cdot L=\{\epsilon\epsilon\}=\{\epsilon\}. Ainsi, L^2=L. Si L=\{\emptyset\},\ L^2=L\cdot L=\{\emptyset\emptyset\}=\{\emptyset\}. Ainsi, L^2=L.
```

Sachant que L^2 est la concaténation du langage L avec lui-même deux fois, il n'existe pas une infinité de langage sur un même alphabet tel que $L^2 = L$. En effet, si $L = \{a\}, L^2 = \{aa\}, L \neq L^2$.

Question 3

Montrons par induction que pour tout k > 0, $L^k = L$ avec k = *:

- Le cas de base est k=2. Nous avons $L^k=L$ pour k=2. $L^2=L$ est vrai.
- On suppose que pour k=*, l'équation $L^k=L$ est vraie. Montrons alors le cas pour k+1 que : $L^{k+1}=L$ est vraie.

$$L^{k+1} = L^k \cdot L$$

$$= L \cdot L \quad \text{car } L^k = L \text{ par hypothèse d'induction}$$

$$= L^2$$

$$= L \quad \text{car } L^2 = L$$

— Donc $L^{k+1} = L$. On peut conclure par induction que $L^k = L$ pour k = *.