Örnek 1) Serbest uyartımlı bir jeneratör 1500 rpm hızla dönerken ve uyartım akımı $I_f=3A$ iken endüvisinde indüklenen emk $E_a=160V$ 'tur (doyma ihmal edilecektir).

- a) $I_f = 2.5A$ uyartım akımı ve 1500 rpm hızda indüklenen endüvi gerilimini,
- b) 2A uyartım akımı ve 1600 rpm de indüklenen endüvi gerilimini hesaplayınız.

Çözüm:

a) Verilen ilk çalışma şartından, ilgili katsayılar türetilebilir:

$$E_a=K_e\cdot\phi\cdot n$$
; doyma ihmal edildiğinden $\phi=K_\phi\cdot I_f$; $K\triangleq K_e\cdot K_\phi$ yazılırsa
$$E_a=K\cdot I_f\cdot n$$
; $160=K\cdot 3\cdot 1500$; $K=0.0355$

 $I_f = 2.5A$ için uyarlanmış E_a ifadesi kullanılarak;

$$E_{a.2.5} = K \cdot I_f \cdot n = 0.0355 \cdot 2.5 \cdot 1500 = 133.3 V$$

a) Benzer yaklaşım ile

$$E_{a,2} = K \cdot I_f \cdot n = 0.0355 \cdot 2 \cdot 1600 = 113.77 V$$

veya basit orantı ile de bulunabilir:

$$\frac{160}{E_{a,2}} = \frac{k \cdot 1500 \cdot 3}{k \cdot 1600 \cdot 2} \quad ise \quad E_{a,2} = \frac{160 \cdot 1600 \cdot 2}{1500 \cdot 3} = 113.77 \, V$$

Örnek 2) 50kW, 240V serbest uyartımlı bir doğru akım jeneratörün endüvi direnci Ra=0.02 Ω 'dur. Jeneratör anma yükünde anma gerilimini üretir.

- a) Anma yükündeki endüvi emk'i ve endüvi akımını hesaplayınız.
- b) Eğer çıkış gerilimi 240 V'ta sabit tutulup, yük gücü 45kW'a düşürülürse bunun için gerekli olan endüvi emk'ini bulunuz.
- c) Eğer terminal gerilimi 243 V ve indüklenen emk 247 V ise yükün gücü nedir?

a)

$$I_a = \frac{P}{V} = \frac{50000}{240} = 208.33 \, A$$
; $E_a = V + I_a \cdot R_a = 240 + 208.33 \cdot 0.02 = 244.16 \, V$

b) İkinci durumda;

$$I_a = \frac{P}{V} = \frac{45000}{240} = 187.5 A$$
; $E_a = V + I_a \cdot R_a = 240 + 187.5 \cdot 0.02 = 243.75 V$

c)

$$E_a = V + I_a \cdot R_a$$
 ise $I_a = \frac{E_a - V}{R_a} = \frac{247 - 243}{0.02} = 200 A$
 $P = V \cdot I_a = 243 \cdot 200 = 48.6 \ kW$

Örnek 3) 10kW, 120V'luk DA Seri generatörün seri alan sargısı direnci 0.05 Ω 'dur.

- a) Anma gerilim ve akımında indüklenen endüvi emk'i 132V ise endüvi direncini bulunuz.
- b) Jeneratör, nominal uç geriliminde ve nominal yükün %60'ı oranında yüklü iken üretilen endüvi emk'ini bulunuz.
- c) 131V endüvi emk'i ile jeneratör 8kW güç ürettiğini kabul ederek, terminal gerilimini bulunuz.

Çözüm:

a)

$$I_a = \frac{P}{V} = \frac{10000}{120} = 83.33 \, A \, Nominal \, degerlerden \, hesaplanan \, bu \, nominal \, akımdır.$$

$$E_a = V + I_a \cdot (R_a + R_s)$$
; $132 = 120 + 83.33(R_a + 0.05)$; $R_a = 0.094 \Omega$

b) %60 yüklü olmak demek;

$$I_a = 0.6 \cdot I_{an} = 0.6 \cdot 83.33 = 50 A$$
 $E_a = V + I_a \cdot (R_a + R_s)$; $E_a = 120 + 50(0.094 + 0.05) = 122 V$

Örnek 4) 240V'luk bir DA şönt jeneratörün endüvi direnci 0.1Ω ve şönt alan sargısı direnci 50Ω 'dur. Jeneratör bir yükü beslerken endüvide indüklenen emk 255V, çıkış gerilimi 240 V'tur. Jeneratörün çıkış gücünü ve verimini hesaplayınız (Mekanik kayıpları ihmal ediniz).

$$I_f = \frac{V}{R_{\$}} = \frac{240}{50} = 4.8 \text{ A}$$

$$E_a = V + I_a \cdot R_a$$
; $255 = 240 + I_a \cdot 0.1$; $I_a = 150 A$

Endüvi akımı; hem şönt uyarma devresini ve hem de yükü besler:

$$I_a = I_f + I_L$$
; $I_L = 150 - 4.8 = 145.2 A$

Çıkış gücü (yük üzerindeki)
$$P_L = V \cdot I_L = 240 \cdot 145.2 = 34848 \, W$$

Mekanik kayıplar ihmal edildiğinde, endüvi gücü giriş gücüne eşit olur:

$$P_m \cong P_a = E_a \cdot I_a = 255 \cdot 150 = 38250 W$$

$$\eta = \frac{P_L}{P_m} \cdot 100 = \frac{34848}{38250} \cdot 100 = \%91$$

Örnek 5) 600V, 100kW'lık uzun şönt bağlı bir DA kompund jeneratörünün seri uyarma sargısı direnci 0.025 Ω ve şönt uyarma sargısı direnci 210 Ω 'dur. Jeneratörün nominal çıkış gücünü üretirken giriş gücü 104 kW'tır (mekanik kayıplar ihmal edilecektir). Endüvi direncini bulunuz.

$$I_L = \frac{P_L}{V} = \frac{100000}{600} = 166.7 \, V$$

$$I_f = \frac{V}{R_s} = \frac{600}{210} = 2.85 \text{ A}$$

Uzun şönt bağlantısında;

$$I_a = I_f + I_L = 166.7 + 2.85 = 169.5 A$$

Mekanik kayıplar ihmal edildiğinde, endüvi gücü giriş gücüne eşit olur:

$$P_m = 104000 \cong P_a = E_a \cdot I_a \; ; \; E_a = \frac{104000}{169.5} = 613.5 V$$

$$R_a + R_s = \frac{E_a - V}{I_a} = \frac{613.5 - 600}{169.5} = 0.079 \Omega$$

$$R_a = 0.079 - 0.025 = 0.054 \Omega$$

Örnek 6)

Yukarıda bağlantı şeması verilen Doğru Akım Şönt Dinamonun anma değerleri:

40kW, 240V'tur. Endüvi iç direnci R_a =0.1 Ohm, Şönt alan sargısı direnci R_f =50 Ohm'dur. Dinamo R_L yükünü beslerken iç emk E_q =255V, çıkış gerilimi V_L ise 240 Volttur. Dinamonun

- a) Endüvi akımı Ia yı [10 puan],
- b) Şönt uyartım sargısı akımı I_f yi [10 puan],
- c) Yük akımı I_L yi [20 puan],
- d) Yüke verilen Çıkış gücünü P_e yi [20 puan],
- e) Mekanik kayıpları (sürtünme ve vantilasyon kayıpları) ihmal ederek gerekli Mekanik güç P_m yi [20 puan] ve
- f) Verimi (η) [20 puan],

bulunuz.

ÇÖZÜM:

a) Dinamonun endüvi devresi Kirkhoff çevre denklemi;

 $\boldsymbol{E}_{\boldsymbol{q}} = \boldsymbol{V}_{\!\scriptscriptstyle L} + \boldsymbol{I}_{\scriptscriptstyle a} \cdot \boldsymbol{R}_{\scriptscriptstyle a}$ dir. Buradan

$$I_a = \frac{E_q - V_L}{R_a} = \frac{255 - 240}{0.1} = 150A$$
 olarak bulunur.

b) Uyarma sargısı üzerindeki gerilim ve sargı direnci değerlendirilirse

$$I_f = \frac{V_L}{R_f} = \frac{240}{50} = 4.8A$$
 olarak bulunur.

c) Uyarma sargısının C ucu için Kirkhoff akım denklemi $I_a = I_f + I_L$ yazılır. Buradan

$$I_{L} = I_{a} - I_{f} = 150 - 4.8 = 145.2A$$
 olarak bulunur.

- d) Yük üzerindeki elektrik gücü $P_e = V_L \cdot I_L = 240 \cdot 145.2 = 34848W$ olur.
- e) Dinamoya verilen mekanik güç, mekanik kayıplar (sürtünme ve vantilasyon kayıpları) ile elektrik enerjisine dönüşen gücün toplamıdır: $P_m = P_{s+v} + P_a$

Mekanik kayıplar ($P_{\scriptscriptstyle s+\nu}\cong 0$) ihmal edildiği için $\,P_{\scriptscriptstyle m}=P_{\scriptscriptstyle a}\,\text{olacaktır}.$

$$P_a = E_q \cdot I_a = 255 \cdot 150 = 38250 \text{W}$$
 olur. Dolayısıyla $P_m = 38250 \text{W}$ olacaktır.

f)
$$\eta = \frac{P_e}{P_m} \cdot 100 = \frac{34848}{38250} \cdot 100 = \%91$$
 olur.

Örnek 7) Endüvi direnci 1 Ohm olan şönt motor sabit 220 V ile çalıştırıldığında 950 rmp hızda dönemekte ve 5 A endüvi akımı çekmektedir. Motor yüklenip endüvi sargısından 10 A geçtiği anda devir sayısı ne olur? (rpm; İngilizce devir/dakika anlamına gelmektedir)

Endüvi çevresinde Kirchoff gerilim yasası uygulanırsa;

$$V = I_a \cdot R_a + E_g = I_a \cdot R_a + K_e \cdot \phi_m \cdot n$$

bu şartları kullanarak, zaten sabit olupta bilinmeyen

$$(K_e \cdot \phi_m) = \frac{V - I_a \cdot R_a}{n} = \frac{220 - 5 \cdot 1}{950} = 0.23 \quad [V/(\text{dev}/\text{dak})]$$

bulunur.

Sorunun ikinci aşamasında yeni devir sayısı bulunmalıdır: Aynı bağıntıdan n çekilirse:

$$n = {V - I_a \cdot R_a \over (K_a \cdot \phi_m)} = {220 - 10 \cdot 1 \over 0.23} = 913$$
 [rpm]

Örnek 8) Şönt sargı direncini 440 Ohm olarak alıp, Örnek 7 deki iki çalışma noktası için verimi hesaplayınız. Sürtünme ve vantilasyon kayıpları ihmal edilecektir.

İlk durumda giren elektrik gücü:

$$P_e = \frac{V^2}{R_s} + V \cdot I_a = \frac{220^2}{440} + 220 \cdot 5 = 1210$$
 [W]

Mekanik güç ise:

$$\begin{split} &P_{m} = E_{q} \cdot I_{a} = [(K_{e} \cdot \phi_{m}) \cdot n] \cdot I_{a} = 0.23 \cdot 950 \cdot 5 = 1092.5 \quad [W] \\ &\eta = \frac{P_{\text{crikiş}}}{P_{\text{kiris}}} = \frac{P_{m}}{P_{e}} = \frac{1092.5}{1210} = 0.9029 = \%90.29 \end{split}$$

Yüklenmiş ikinci durum için:

$$\begin{split} P_{e2} &= \frac{V^2}{R_{_{\$}}} + V \cdot I_{_{a2}} = \frac{220^2}{440} + 220 \cdot 10 = 2320 \quad [W] \\ P_{m2} &= E_{_{q2}} \cdot I_{_{a2}} = [(K_{_{e}} \cdot \phi_{_{m}}) \cdot n_{_{2}}] \cdot I_{_{a2}} = 0.23 \cdot 913 \cdot 10 = 2100 \quad [W] \\ \eta &= \frac{P_{_{m}}}{P_{_{a}}} = \frac{2100}{2320} = 0.9051 = \%90.51 \end{split}$$

Bu örnekten görüleceği üzere motor verimi yüklenme ile değişmektedir. Tabiatta verim 1 noktada maksimuma erişir, diğer noktalarda hep daha küçük kalır.

Örnek 9) Sabit hızla döndürülen serbest uyartımlı bir DA Dinamosunda, endüvi direnci 1 Ohm olan şönt motor terminalindeki yük direncini 10A ile beslerken yük direnci üzerinde 220 V gerilim bulunmaktadır. Yük direnci değiştirilip yük akımı 20 A yapılırsa yük üzerindeki gerilim ne olur? Serbest uyartımlı dinamonun uyartım akımı değiştirilmiyor, dolayısı ile manyetik akı sabit kalmaktadır.

Endüvi çevresinde Kirchoff gerilim yasası uygulanırsa;

$$E_q = I_a \cdot R_a + V = 10 \cdot 1 + 220 = 230 \quad [V]$$
 (*)

Bu ifadenin motordakinden az farklı olduğuna dikkat ediniz.

 $E_q = K_e \cdot \phi_m \cdot n = sabittir$. Çünkü uyartım akımı ve devir sayısı değiştirilmemektedir.

Yük akımı 20A 'e çıktığı durum için (*) ifadesinden:

$$E_q = I_a \cdot R_a + V \quad ; \quad V = E_q - I_a \cdot R_a \quad ; \quad V_{yeni} = E_q - I_{a_yeni} \cdot R_a = 230 - 20 \cdot 1 = 210 \quad [V]$$
 olarak bulunur.

Örnek 10) 4 Kutuplu bir DA Makinesinin endüvi yarıçapı 12.5 cm ve etkin iletken uzunluğu 25 cm'dir. Kutuplar endüvi yüzeyinin %75'ini örtmektedir. Endüvi sargısında 33 bobin ve her bobinde 7 sarım mevcuttur. Endüvi 33 olukludur. Her bir kutup altındaki ortalama akı yoğunluğu 0.75T'dır.

- 1) Endüvide basit büklümlü sargı uygulanmış olması halinde;
 - a) K_t moment katsayısını hesaplayınız.
 - b) Endüvinin 1000 rpm'de dönmesi halinde endüvide indüklenen emk'yı hesaplayınız.
 - c) Endüvi akımı 400A olduğu durumda, bobin akımını ve endüvide indüklenen momenti bulunuz
 - d) Aynı akım için endüvide indüklenen gücü bulunuz.
- 2) Endüvide basit dalgalı sargı uygulanması halinde (a)-(d) yi tekrarlayınız (Bobin akımının aynı kabul edilecektir).

Çözüm 1a)

$$K_t = \frac{Z \cdot p}{2\pi a} \qquad Z = 2 \cdot W \cdot N_c = 2 \cdot 33 \cdot 7 = 462 \quad , \quad basit \ b\ddot{u}kl\ddot{u}ml\ddot{u} \ sargıda \ 2a = 2p = 4$$

$$K_t = \frac{462 \cdot 2}{2\pi 2} = 73.53 \quad \left[\frac{Newton \cdot metre}{Weber \cdot Amper}\right]$$

1b)

$$\phi = A_p \cdot B \qquad A_p = \alpha_i \cdot A = 0.75 \cdot \left(\frac{2\pi \cdot 0.125 \cdot 0.25}{4}\right) = 36.8 \cdot 10^{-3} \ m^2$$

$$\phi = A_p \cdot B = 36.8 \cdot 10^{-3} \cdot 0.75 = 0.0276 \ Wb$$

$$K_e = \frac{\pi}{30} \cdot K_t = \frac{\pi}{30} \cdot 73.53 = 7.7 \left[\frac{Volt}{Weber \cdot Amper}\right]$$

$$E_a = K_e \cdot \phi \cdot n = 7.7 \cdot 0.0276 \cdot 1000 = 212.5 V$$

1c)

$$i = I_{bobin} = \frac{I_a}{2a} = \frac{400}{4} = 100 A$$

 $T = K_t \cdot \phi \cdot I_a = 73.53 \cdot 0.0276 \cdot 400 = 811.8 \, Nm$

1d)

$$P_a = E_a \cdot I_a = 212.5 \cdot 400 = 85 \, kW$$

2a)

basit dalgalı sargıda 2a = 2; a = 1

$$K_t = \frac{462 \cdot 2}{2\pi 1} = 147.06 \left[\frac{Newton \cdot metre}{Weber \cdot Amper} \right]$$

2b)

$$K_e = \frac{\pi}{30} \cdot K_t = \frac{\pi}{30} \cdot 147.06 = 15.4 \left[\frac{Volt}{Weber \cdot Amper} \right]$$

$$E_a = K_e \cdot \phi \cdot n = 15.4 \cdot 0.0276 \cdot 1000 = 425 V$$

2c)

$$i = I_{bobin} = 100 A = \frac{I_a}{2a}$$
; $I_a = 2 \cdot i = 2 \cdot 100 = 200 A$

$$T = K_t \cdot \phi \cdot I_a = 147.06 \cdot 0.0276 \cdot 200 = 811.8 \, Nm$$

2d)

$$P_a = E_a \cdot I_a = 425 \cdot 200 = 85 \, kW$$

Örnek 11) 220V, 7 hp'lik seri bağlı bir DA motoru bir fanı sürmekte ve 300 rpm'de dönerken 220V'luk kaynaktan 25A çekmektedir (Bu esnada endüvi devresine seri bir reosta bulunmamaktadır Rae=0 Ω). Fanın oluşturduğu mekanik yük hızın karesi ile orantılıdır. Endüvi direci Ra=0.6 Ω ve seri uyarma sargısı direnci Rs=0.4 Ω 'dur. Endüvi reaksiyonu ve mekanik kayıplar ihmal edilecektir.

- a) Belirtilen çalışma noktası için (300 rpm) fana aktarılan güç ve momenti belirleyiniz.
- **b)** Hızı 200 rpm'ye düşürmek için endüvi devresine Rae reostası ilave edilecektir. Reosta direncini ve fana aktarılan gücü belirleyiniz.

(a)
$$E_a = V - I_a (R_a + R_s + R_{ae})$$

$$E_a = 220 - 25(0.6 + 0.4 + 0) = 195 V$$

$$P_a = E_a \cdot I_a = 195 \cdot 25 = 4880 \text{ W veya } \frac{4880}{746} = 6.54 \text{ hp}$$

Mekanik kayıplar ihmal edildiğinden;

$$T = \frac{P_a}{\omega} = \frac{4880}{2\pi \frac{300}{60}} = 155.2 \ Nm$$

(b)

$$\begin{split} T &= K_t \cdot \phi \cdot I_a \; ; \; seri\; uyartımda \; \phi \triangleq K_1 \cdot I_f \; ; \; seri\; olduğundan \; I_f = I_a \; ; \; \phi = K_1 \cdot I_a \\ T &= K_t \cdot (K_1 \cdot I_a) \cdot I_a \; ; \; K_s \triangleq K_t \cdot K_1 \; ; \quad T = K_s \cdot I_a^2 \; ; \; 155.2 = K_s \cdot 25^2 \; ; \; K_s = 0.248 \\ T|_{200\; rpm} &= \left(\frac{200}{300}\right)^2 \cdot 155.2 = 68.98 \; Nm \end{split}$$

Seri motor dış karakteristiği;

$$\omega = \frac{V}{\sqrt{K_s}\sqrt{T}} - \frac{R_a + R_s + R_{ae}}{K_s}$$

$$2\pi \frac{200}{60} = \frac{220}{\sqrt{0.248}\sqrt{68.98}} - \frac{0.6 + 0.4 + R_{ae}}{K_s} \quad ; \quad R_{ae} = 7\Omega$$

$$P = T \cdot \omega = 68.98 \cdot 2\pi \frac{200}{60} = 1444 \, W \, veya \, \frac{1444}{746} = 1.94 \, hp$$

$$Veya \qquad T = K_s \cdot I_a^2 \; ; \; 68.98 = 0.248 \cdot I_a^2 \; ; \quad I_a = 16.68 \, A$$

$$E_a = K_s \cdot I_a \cdot \omega = 0.248 \cdot 16.68 \cdot 2\pi \frac{200}{60} = 86.57 \, V$$

$$E_a = V - I_a (R_a + R_s + R_{ae})$$

$$86.57 = 220 - 16.68(0.6 + 0.4 + R_{ae}) \; ; \quad R_{ae} = 7\Omega$$

$$P_a = E_a \cdot I_a = 86.57 \cdot 16.68 = 1444 \, W \, veya \, \frac{1444}{746} = 1.94 \, hp$$