

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application.

1. (Previously Presented) A compound of formula (I):

wherein R₁ and R₂ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxy C₁-C₆ alkyl, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and a group of formula (II):

R₃ is (a) phenyl; (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, said cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halogen, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano,

cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO_nR' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof; with the provisos that (1) R₁ and R₂ are not simultaneously hydrogen; (2) when R₃ is unsubstituted phenyl, R₁ and R₂ are not simultaneously methyl; and (3) when R₁ or R₂ is alkyl, R₃ is not a phenyl group substituted with a halogen or a cyclic group having at least one 5-membered heterocyclic ring substituted with a halogen.

2. (Previously Presented) The compound of claim 1, wherein R₃ is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO_nR' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof.

3. (Original) The compound of claim 2, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; and R₃ is phenyl; or a pharmaceutically acceptable salt thereof.

4. (Original) The compound of claim 3, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, carboxyl, formyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; or a pharmaceutically acceptable salt thereof.

5. (Previously Presented) A compound of formula (I):

wherein R₁ is hydroxymethyl, carboxyl, formyl, or a group of formula (II):

R₂ is hydrogen;

and R₃ is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxycarbonyl, C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO_nR'

wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl;

or a pharmaceutically acceptable salt thereof.

6. (Original) The compound of claim 5, wherein R₁ is hydroxymethyl; or a pharmaceutically acceptable salt thereof.

7. (Original) The compound of claim 5, wherein R₁ is carboxyl; or a pharmaceutically acceptable salt thereof.

8. (Original) The compound of claim 5, wherein R₁ is formyl; or a pharmaceutically acceptable salt thereof.

9. (Original) The compound of claim 5, wherein R₁ is a group of formula (II); or a pharmaceutically acceptable salt thereof.

10. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound or a pharmaceutically acceptable salt of claim 1.

11. (Original) The pharmaceutical composition of claim 10, further including an antineoplastic alkylating agent.

12. (Previously Presented) The pharmaceutical composition of claim 10, wherein the pharmaceutically acceptable carrier is polyethylene glycol.

13. (Previously Presented) The pharmaceutical composition of claim 11, wherein the antineoplastic alkylating agent is a chloroethylating agent.

14. (Previously Presented) The pharmaceutical composition of claim 11, wherein the antineoplastic alkylating agent is a methylating agent.

15. (Previously Presented) The pharmaceutical composition of claim 11, wherein the antineoplastic alkylating agent is selected from the group consisting of lomustine, carmustine, semustine, nimustine, fotomustine, mitozolomide, clomesone, temozolomide, dacarbazine, procarbazine, streptozocin, and combinations thereof.

16. (Currently Amended) A method of enhancing the chemotherapeutic treatment of tumor cells in a mammal with an antineoplastic alkylating agent that causes cytotoxic lesions at the O⁶ -position of guanine,DNA guanine residues, which method comprises administering to the mammal an effective amount of a compound or a pharmaceutically acceptable salt of

claim 1 and administering to the mammal an effective amount of an antineoplastic alkylating agent which causes cytotoxic lesions at the O^6 -position of guanine.

17. (Original) The method of claim 16, wherein R_3 is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C_1 - C_6 alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C_1 - C_6 , C_3 - C_8 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, aryloxy, acyloxy, acyloxy C_1 - C_6 alkyl, amino, monoalkylamino wherein the alkyl is C_1 - C_6 , dialkylamino wherein the alkyl is C_1 - C_6 , acylamino, ureido, thioureido, carboxy, carboxy C_1 - C_6 alkyl, azido, cyano, cyano C_1 - C_6 alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C_1 - C_6 , aminoalkyl wherein the alkyl is C_1 - C_6 , and SO_nR' wherein $n=0, 1, 2$ or 3 , R' is H, a C_1 - C_6 alkyl or aryl; or a pharmaceutically acceptable salt thereof.

18-30. (Canceled)

31. (Currently Amended) A method for treating tumor cells in a mammal comprising administering to the mammal an amount effective to reduce the O^6 -alkylguanine-DNA alkyltransferase activity in the mammal of a compound or a pharmaceutically acceptable salt of claim 1 and administering to the mammal an effective amount of an antineoplastic alkylating agent which causes cytotoxic lesions at the O^6 -position of guanine.DNA guanine residues.

32. (Original) The method of claim 31, wherein R_3 is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C_1 - C_6 alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C_1 - C_6 , C_3 - C_8 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy C_1 - C_6 alkyl, aryloxy, acyloxy, acyloxy C_1 - C_6 alkyl, amino, monoalkylamino wherein the alkyl is C_1 - C_6 , dialkylamino wherein the alkyl is C_1 - C_6 , acylamino, ureido, thioureido, carboxy, carboxy C_1 - C_6 alkyl, azido, cyano, cyano C_1 - C_6 alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C_1 - C_6 , aminoalkyl wherein the alkyl is C_1 - C_6 , and SO_nR' wherein $n=0, 1, 2$ or 3 , R' is H, a C_1 - C_6 alkyl or aryl; or a pharmaceutically acceptable salt thereof.

C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO_nR' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof.

33-39. (Canceled)

40. (Currently Amended) A method of inhibiting the reaction of O⁶ -alkylguanine-DNA-alkyltransferase with an alkylated DNA comprising reacting *in vitro* the O⁶ -alkylguanine-DNA-alkyltransferase with the compound of claim 1 or a pharmaceutically acceptable salt thereof.

41. (Original) The method of claim 40, wherein R₃ is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO_nR' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof.

42-48. (Canceled)

49. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound or a pharmaceutically acceptable salt of claim 5.

50. (Previously Presented) The pharmaceutical composition of claim 49, further including an antineoplastic alkylating agent.

51. (Previously Presented) The pharmaceutical composition of claim 49, wherein the pharmaceutically acceptable carrier is polyethylene glycol.

52. (Previously Presented) The pharmaceutical composition of claim 50, wherein the antineoplastic alkylating agent is a chloroethylating agent.

53. (Previously Presented) The pharmaceutical composition of claim 50, wherein the antineoplastic alkylating agent is a methylating agent.

54. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound or a pharmaceutically acceptable salt of claim 9.

55. (Previously Presented) The pharmaceutical composition of claim 54, further including an antineoplastic alkylating agent.

56. (Previously Presented) The pharmaceutical composition of claim 54, wherein the pharmaceutically acceptable carrier is polyethylene glycol.

57. (Previously Presented) The pharmaceutical composition of claim 55, wherein the antineoplastic alkylating agent is a chloroethylating agent.

58. (Previously Presented) The pharmaceutical composition of claim 55, wherein the antineoplastic alkylating agent is a methylating agent.

59. (Currently Amended) A method of enhancing the chemotherapeutic treatment of tumor cells in a mammal with an antineoplastic alkylating agent that causes cytotoxic lesions at the O^6 -position of guanine,DNA guanine residues, which method comprises administering to the mammal an effective amount of a compound or a pharmaceutically acceptable salt of claim 5.

60. (Currently Amended) A method for treating tumor cells in a mammal comprising administering to the mammal an amount effective to reduce the O^6 -alkylguanine-DNA alkyltransferase activity in the mammal of a compound or a pharmaceutically acceptable salt

of claim 5 and administering to the mammal an effective amount of an antineoplastic alkylating agent which causes cytotoxic lesions at the O^6 -position of guanine,DNA guanine residues.

61. (Currently Amended) A method of inhibiting the reaction of O^6 -alkylguanine-DNA-alkyltransferase with an alkylated DNA comprising reacting *in vitro* the O^6 -alkylguanine-DNA-alkyltransferase with the compound of claim 5 or a pharmaceutically acceptable salt thereof.

62. (Currently Amended) A method of enhancing the chemotherapeutic treatment of tumor cells in a mammal with an antineoplastic alkylating agent that causes cytotoxic lesions at the O^6 -position of guanine,DNA guanine residues, which method comprises administering to the mammal an effective amount of a compound or a pharmaceutically acceptable salt of claim 9.

63. (Currently Amended) A method for treating tumor cells in a mammal comprising administering to the mammal an amount effective to reduce the O^6 -alkylguanine-DNA alkyltransferase activity in the mammal of a compound or a pharmaceutically acceptable salt of claim 9 and administering to the mammal an effective amount of an antineoplastic alkylating agent which causes cytotoxic lesions at the O^6 -position of guanine,DNA guanine residues.

64. (Currently Amended) A method of inhibiting the reaction of O^6 -alkylguanine-DNA-alkyltransferase with an alkylated DNA comprising reacting *in vitro* the O^6 -alkylguanine-DNA-alkyltransferase with the compound of claim 9 or a pharmaceutically acceptable salt thereof.