

Merchant & Gould F C Inventor: Gill, et al. Docket No.: 7500, 360US01 Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES Attorney Name John J Grosens Phone No. '612 371 5265 : Sheet 2 of 12

Products	$p(D)^{2}p(C)p(D)p(C)^{2}f_{ij}f_{ij}^{3}$	2p(D) A(C) p(D) Sash	$p(D)^{2}p(C)p(D)p(C)^{2}f_{11}^{2}f_{3}^{2}$	Denominator=sum of above
R3(12,16)	$p(D)p(C)f_{lb}$	$p(D)^{t}p(C)$	$p(\overline{D})p(C)f_{l_2}$	
R2(16)	$p(\overline{D})p(\overline{C}) p(\overline{D})p(\overline{C})f_{k}$	p(D)p(C)p(D)	$16 16 \int I_{16}^{2} \qquad p(D)p(C)f_{12} \qquad p(\overline{D})p(\overline{C})$	
R, (12)	p(D)p(C)	12.16 Zfizfis $p(D)p(\overline{C})p(\overline{D})$ $p(D)p(\overline{C})p(\overline{D})$	$p(D)p(C)f_{ij}$	
P(M)	f12 ²	2/12/16	£16"	
M	12.12 122	12.16	9191	

Table 1: Calculation of the components of the likelihood ratio for an example where 3 replicates show evidence of spurious bands and allele drop-out.

Fig.

Inventor: Gill, et al.
Docket No. 7500 360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phone No. 612 371 5265
Sheet 3 of 12

		<u> </u>	1		
	Froducts	$2f_{e}f_{h}f_{e}^{\prime}p(D)^{3}p(D)p(C)^{2}p(Sr)^{4}$	2 Cale a D) 4 a C Dal End a Car of a Long	- Jack - Kalkar Parishar + Manshar	$2f_{s}^{s}f_{s}f_{s}(D)^{s}\rho(D)\rho(C)^{s}\rho(S_{s})^{s}$
Berge	20-27	p(St).	$P(D)^2 P(C) P(St)^2$		$P(D)p(D)p(C)f_{*}p(St)$
R ₁ =abc	D(D) D(C) (D(Se)	- 1	P(S) $P(S)$ $P(S)$ $P(S)$ $P(S)$	$ p(D) ^2$ $p(C)$ $f(p(S))$	real services
P(M)	25.65	26.6	. 6	2fsfc	
Z	ap	ac		pc	

Table 2: Derivation of equation 12. Note that $p(\overline{St})$ only appears once when $M_J=bc$ and $R_J=abc$ because b must be in part or wholly

Fig. 4

Inventor: Gill, et al.

Docket No.: 7500.360US01

Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES

Attorney Name John J Gresens

Phone No. 612 371 5265

Sheet 4 of 12

Testing the robustness of the F designation: The F designation is conservative provided that the expression $\frac{1}{\left[1 + \frac{1 - 2p(D)}{2p(D)} f_a\right]} = 0.0 \text{ (from equation 7)}.$

Allele frequencies (f_a) 0.02, 0.05, 0.10 and 0.20 are tested. Generally the F designation is conservative provided p(D)>0.5.

Fig. 5

Merchant & Gudul C Inventor: Gill, et al. Docket No.: 7500.360US01 Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES Attorney Name John J Gresens Phone No. 612 371 5265 Sheet 5 of 12 Merchant & Gould I

from equation 9 (called the scaling Evaluation of

function). When n (the number of replicates where the genotype is ab) is greater than or equal to 2 and $R_1 = a$, then the $LR \square 1/2f_a f_b$. When n=1, $1/2f_a$ would be used which is always conservative. In fig 2a p(C)=0.3; $f_a=f_b=0.1$.

Fig. 6a

Docket No.: 7500.360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES
Attorney Name John J Gresens
Phone Ne 612 371 5255
Sheet 6 of 12

The 3 dimensional model showing the relationships between p(C) and p(D) when $f_a=0.1$. The scaling function $\Box I.0$ for moderate and low values of p(C) and for all intermediate values of p(D).

Fig. 6b

Inventor: Gill, et al.

Docket No.: 7500.360US01

Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES

Attorney Name John J Gresens
Phone No * 612 371 5265*

Sheet 7 of 12

Provided that the scaling function $\frac{1}{f_a \left[2 + \frac{f_b p(D) p(C)}{p(D) p(C)} + \frac{f_b p(C)}{2 p(D) p(D) p(C)} \right]} \ge 1.0$

(from equation 10) then $1/2f_b$ is conservative. Allele frequencies are $f_a=f_b=0.02,0.05,0.1,0.2$ respectively and

Fig. 7a

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES
Attorney Name John J Gresens
Phone No *512 371 5265.
Sheet 8 of 12

3- dimensional graph to show the combined effect of p(D) and p(C) when f_a =0.10. The critical point where the scaling function >1 is reached when p(C)<0.9 and p(D)<0.9.

Fig. 7b

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phone No 61€ 371 5265
Sheet 9 of 12

Fig. 8a

Inventor: Gill, et al.

Docket No.: 7500.360US01

Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES

Attorney Name John J Gresens

Phone No. 612 371 5265

Sheet 10 of 12

When $f_0=.1$, the LRO1 when p(D)<0.5 and p(C)<0.3.

Fig. 8b

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF DNA SAMPLES
Attorney Name John J Gresens
Phone Ne 612 371 5265
Sheet 11 of 12

(equation 12) v. p(St) for several levels of p(D) ranging from 0.1 – 0.9. p(C)=0.3 and fa=fb=fc=0.1.

Fig. 9

Inventor: Gill, et al.
Docket No.: 7500.360US01
Title: IMPROVEMENTS IN AND RELATING TO ANALYSIS OF
DNA SAMPLES
Attorney Name John J Gresens
Phone No 612 372 5265
Sheet 12 of 12

(a)d	Amelo	D198433	0181359	56861179	HUMTH01	D193433 0331369 D6961179 MUMTHO1 HUMWWRA31/A D2619361 HUMFIRMA (FGA) D166590 D18361 D251338	02619369	HUMFIERA	(FOA)	D165539	D18351	D251338
P(D N.)	0.40	0.60	0.60	0.66		0.62						
P(D H.)					0.32		0.36	0.20		0.44	0.32	0.20
PIO HES)			1		0.04		0.62	0,66		0.40	0.34	0.70

0.64 0.32 0.58

Fig. 10