

<u>Course</u> > <u>Section 4: The Big S...</u> > <u>4.2 Assessment: Th...</u> > Questions 1 and 2: ...

Questions 1 and 2: Insurance rates, part 1

Use the information below as you answer this 6-part question.

An insurance company offers a one-year term life insurance policy that pays \$150,000 in the event of death within one year. The premium (annual cost) for this policy for a 50 year old female is \$1,150. Suppose that in the event of a claim, the company forfeits the premium and loses a total of \$150,000, and if there is no claim the company gains the premium amount of \$1,150. The company plans to sell 1,000 policies to this demographic.

Question 1a

1.0/1.0 point (graded)

The death_prob data frame contains information about the estimated probability of death within 1 year (prob) for different ages and sexes.

Use death_prob to determine the death probability of a 50 year old female, p.

Explanation

The probability can be calculated using the following code:

```
p <- death_prob %>%
  filter(sex == "Female" & age == "50") %>%
  pull(prob)
p
```

Submit

You have used 1 of 10 attempts

Question 1b

1.0/1.0 point (graded)

The loss in the event of the policy holder's death is -\$150,000 and the gain if the policy holder remains alive is the premium \$1,150.

What is the expected value of the company's net profit on one policy for a 50 year old female?

Explanation

The expected value can be calculated using the following code:

```
a <- -150000
b <- 1150
mu <- a*p + b*(1-p)
mu
```

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Question 1c

1.0/1.0 point (graded)

Calculate the standard error of the profit on one policy for a 50 year old female.

8523 **✓** Answer: 8527

Explanation

The standard error can be calculated using the following code:

```
sigma <- abs(b-a) * sqrt(p*(1-p))
sigma
```

Submit

You have used 1 of 10 attempts

Question 1d

1.0/1.0 point (graded)

What is the expected value of the company's profit over all 1,000 policies for 50 year old females?

667832

✓ Answer: 667378

667832

Explanation

The expected value can be calculated using the following code:

n <- 1000 n*mu

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Question 1e

1.0/1.0 point (graded)

What is the standard error of the sum of the expected value over all 1,000 policies for 50 year old females?

269532

✓ Answer: 269658

269532

Explanation

The standard error can be calculated using the following code:

sqrt(n) * sigma

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Question 1f

1.0/1.0 point (graded)

Use the Central Limit Theorem to calculate the probability that the insurance company loses money on this set of 1,000 policies.

Explanation

The probability can be calculated using the following code:

```
pnorm(0, n*mu, sqrt(n)*sigma)
```

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

50 year old males have a different probability of death than 50 year old females. We will calculate a profitable premium for 50 year old males in the following four-part question.

Question 2a

1.0/1.0 point (graded)

Use death prob to determine the probability of death within one year for a 50 year old male.

0.00501

Explanation

The probability can be calculated using the following code:

```
p_male <- death_prob %>%
  filter(sex == "Male" & age == "50") %>%
  pull(prob)
p_male
```

Submit

You have used 1 of 10 attempts

Question 2b

1.0/1.0 point (graded)

Suppose the company wants its expected profits from 1,000 50 year old males with \$150,000 life insurance policies to be \$700,000. Use the formula for expected value of the sum of draws with the following values and solve for the premium b:

$$E[S] = \mu_S = 700000$$

$$n = 1000$$

$$p = \text{death probability of age 50 male}$$

$$a = 150000$$

$$b = \text{premium}$$

What premium should be charged?

1459 **Answer:** 1459

Explanation

Start with the formula for expected value of the sum and solve for *b*:

$$\mu_{S} = n (ap + b (1 - p))$$

$$\frac{\mu_{S}}{\frac{n}{n}} = ap + b (1 - p)$$

$$\frac{\frac{\mu_{S}}{n} - ap}{1 - p} = b$$

Then substitute known values for μ_S , n, a, p using the following code:

```
p <- p_male
mu_sum <- 700000
n <- 1000
a <- -150000
b <- (mu_sum/n-a*p)/(1-p)
b</pre>
```

Submit

You have used 2 of 10 attempts

1 Answers are displayed within the problem

Question 2c

1.0/1.0 point (graded)

Using the new 50 year old male premium rate, calculate the standard error of the sum of 1,000 premiums.

338161 **✓** Answer: 338262

Explanation

The standard error can be calculated using the following code:

```
sigma_sum <- sqrt(n)*abs(b-a)*sqrt(p*(1-p))
sigma_sum</pre>
```

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Question 2d

1.0/1.0 point (graded)

What is the probability of losing money on a series of 1,000 policies to 50 year old males? Use the Central Limit Theorem.

0.0192

✓ Answer: 0.0193

0.0192

Explanation

The probability can be calculated using the following code:

pnorm(0, mu_sum, sigma_sum)

Submit

You have used 2 of 10 attempts