Robustesse de l'apprentissage machine face au bruit

Noé Aubin-Cadot

22 février 2020

But

<u>But</u>: Déterminer à quel point l'apprentissage machine est robuste en présence de bruit.

Plan

Plan:

- 1. Trouver des données.
- 2. Préparer les données.
- 3. Visualiser les données.
- 4. Apprentissage machine sur les données.

Trouver des données

On considère les données digits de Scikit-learn :

- source X = images.
- but $y = \text{chiffres } \{0, 1, 2, ..., 9\}.$

Ces données contiennent 1797 images de 8×8 pixels monochromes de 4 bits, i.e. à valeurs en $\{0, 1, 2, ..., 15\}$.

Préparer les données

On normalise les pixels pour qu'ils soient à valeurs *décimales* [0, 1] au lieu qu'ils soient à valeurs *entières* {0, 1, 2, ..., 15}. Ensuite on ajoute du bruit gaussien aux pixels. Si le pixel vaut > 1, on l'égalise à 1 et s'il vaut < 0 on l'égalise à 0.

Visualiser les données

Le bruit dépend uniquement de l'écart-type σ :

Visualiser les données

Plus le bruit est grand, moins l'apprentissage machine sera performant. Voici l'analyse en composantes principales (PCA) des données bruitées pour $\sigma \in \{0.0, 0.1, 0.2, ..., 1.1\}$:

On scinde les données (X, y) en deux sous-ensembles :

- 75%: entraînement (**X**_{train}, **y**_{train}), 1347 images.
- 25%: $test(\mathbf{X}_{test}, \mathbf{y}_{test})$, 450 images.

On entraîne un classificateur sur les données d'entraînement et on évalue ses résultats sur les données de test.

On peut essayer divers classificateurs scikit-learn e.g. KNN, BNG, BNB, SVM, lbfgs, liblinear, RFC, Perceptron, SGDC, DTC, etc.

Scores d'apprentissage sur les images non bruitées (i.e. $\sigma = 0$) :

Nom	Train	Test
KNN	100.0%	98.2%
BNG	87.6%	85.6%
BNB	86.3%	87.3%
SVM	99.2%	98.2%
lbf	98.4%	96.2%
lib	97.8%	96.7%
RFC	100.0%	93.6%
Per	97.2%	95.1%
SGD	98.5%	96.0%
DTC	100.0%	85.1%

Matrice de confusion (i, j) = (réel, prédit) pour classificateur SVM sur les données non bruitées :

	0	1	2	3	4	5	6	7	8	9
0	39	0	0	0	0	0	0	0	0	0
1	0	37	0	0	0	0	0	0	0	0
2	0	0	43	0	0	0	0	0	0	0
3	0	0	0	45	0	1	0	0	0	0
4	0	0	0	0	49	0	0	0	1	0
5	0	0	0	0	0	48	1	0	0	0
6	0	0	0	0	0	1	51	0	0	0
7	0	0	0	0	0	0	0	38	0	0
8	0	2	0	1	0	0	0	0	42	0
9	0	0	0	0	0	1	0	0	0	50

8 mauvaises classifications sur 450 prédictions.

On ajoute maintenant du bruit aux images.

Deux manières intéressantes d'étudier la robustesse de l'apprentissage machine face au bruit :

- 1. Bruiter \mathbf{X}_{test} mais non $\mathbf{X}_{\text{train}}$.
- 2. Bruiter \mathbf{X}_{test} et $\mathbf{X}_{\text{train}}$.

Pour X_{test} bruité mais X_{train} non bruité l'algorithme KNN (k = 1) est le plus robuste face au bruit :

On peut regarder sur un plus grand domaine pour σ :

Quand $\sigma \to \infty$, les scores tendent à 1 chance sur 10 :

Pour $\sigma = 0$, le score de KNN était de 98.22%. Pour σ petit, les scores de KNN suivent $f(\sigma) = 0.9822/(1 + 4\sigma^4)$:

1. X_{test} bruité mais X_{train} non bruité

Pour $\sigma \le 1/\sqrt{2}$ le score suit $f(\sigma) = 0.9822/(1+4\sigma^4)$, pour $\sigma \ge 1/\sqrt{2}$ le score suit $f(\sigma) = (0.9822-0.1)/(1+2\sigma^2)+0.1$:

Maintenant on bruite \mathbf{X}_{test} et \mathbf{X}_{train} . KNN ne domine plus les scores. Ici c'est SVM qui domine :

On peut regarder sur un plus grand domaine :

Et sur un domaine encore plus grand :

Pour σ petit il est difficile de *fitter* une fonction sur les scores de SVM :

Pour σ grand il est tout aussi difficile de *fitter* une fonction sur les scores de SVM :

