GYRE Stellar Model (GSM) Format

GSM-format files store data describing a stellar model in an HDF5-format file. The attributes of the root group contain global stellar parameters, while 1-D datasets contained within the root group specify the structure data on a grid of n points extending from center to surface. These attributes and datasets are defined as follows:

Variable	Object name	(A)ttribute /	Object datatype	Definition
		(D)ataset		
R_*	R_star	A	H5T_IEEE_F64LE	Stellar radius (cm)
M_*	M_star	A	H5T_IEEE_F64LE	Stellar mass (g)
L_*	L_star	A	H5T_IEEE_F64LE	Stellar luminosity $(erg s^{-1})$
n	n	A	H5T_STD_I64LE	Number of grid points
r	r	D	H5T_IEEE_F64LE	Radius (cm)
w	w	D	H5T_IEEE_F64LE	$M_r/(M_*-M_r)$
p	p	D	H5T_IEEE_F64LE	Total pressure $(dyn cm^{-2})$
T	Т	D	H5T_IEEE_F64LE	Temperature (K)
ρ	rho	D	H5T_IEEE_F64LE	Density $(g cm^{-2})$
∇	nabla	D	H5T_IEEE_F64LE	$\mathrm{d} \ln T / \mathrm{d} \ln p$
N^2	N2	D	H5T_IEEE_F64LE	Brunt-Väisälä frequency squared (s^{-2})
Γ_1	Gamma_1	D	H5T_IEEE_F64LE	$(\partial \ln p / \partial \ln \rho)_{\mathrm{ad}}$
$ abla_{ m ad}$	nabla	D	H5T_IEEE_F64LE	$(diff \ln T/\mathrm{d} \ln p)_{\mathrm{ad}}$
δ	delta	D	H5T_IEEE_F64LE	$-(\partial \ln \rho/\partial \ln T)_p$
ϵ	epsilon	D	H5T_IEEE_F64LE	energy generation rate (erg s^{-1} g ⁻¹)
ϵ_T	epsilon_T	D	H5T_IEEE_F64LE	$(\partial \ln \epsilon / \partial \ln T)_{\rho}$
$\epsilon_{ ho}$	epsilon_rho	D	H5T_IEEE_F64LE	$(\partial \ln \epsilon / \partial \ln \rho)_T$
κ	kappa	D	H5T_IEEE_F64LE	opacity $(\text{cm}^2\text{g}^{-1})$
κ_T	kappa_T	D	H5T_IEEE_F64LE	$(\partial \ln \kappa / \partial \ln T)_{\rho}$
$\kappa_{ ho}$	kappa_rho	D	H5T_IEEE_F64LE	$(\partial \ln \kappa / \partial \ln \rho)_T$
$\Omega_{ m rot}$	Omega_rot	D	H5T_IEEE_F64LE	Rotation angular velocity $(rad s^{-1})$