1. Organs of the Respiratory System

a. Label the parts of the upper respiratory tract by placing the numbers of the structures by the correct labels.

<u>11</u> Conchae	_14 Nasopharynx
7 Epiglottis	_2 Nostril
_18 Laryngopharynx	_ 5 Oral cavity
8 Larynx	<u>16</u> Oropharynx
<u>17</u> Lingual tonsil	_ 3 Palate, hard
_1 Nasal cavity	_4 Palate, soft

9 Bı	ronchiole	8	_ Bronchus, tertiary	_ 5	_ Pleural cavity
6 Bı	ronchus. primary	_1	_ Larynx	_2	_ Trachea
7 Bı	ronchus. secondary	4	_ Parietal pleura	_ 3	_ Visceral pleura
	3 4 5 6 7		2		
bronchio Diaphraç	ble	10/1/			
	e words that complete the se	entenc	- -		
	s the nasal cavity via the				
	, and it is2 ,3_				
	4 as it flows over the na				
	nbranes. Mucus and entrap	•			
	are moved by5 to t	he			
6	and are swallowed.		6) <u>Pharynx</u>		
Write the	e names of the structures the	at mato	ch the statements in the s	spaces at the	e right.
	nings allowing air to enter no	ose.	<u>Nostrils</u>		
1) Open	ior chamber of nose.		Nasal cavity		
 Open Interior 	ior chamber of nose. rates oral and nasal cavities.	r	_		
 Open Interior Separ 			<u>Palate</u>		

		b) Air-filled cavities in skull bones.	Sinuses		
		7) Lymphoid tissue in upper pharynx.	Pharyngeal tonsils		
		8) Lymphoid tissue at junction of pharynx and			
		oral cavity.	Palatine tonsils		
		9) Cartilaginous boxlike structure containing			
		vocal folds.	Larynx		
		10) Opening between vocal folds.	Glottis		
		11) Cartilage forming Adam's apple.	Thyroid cartilage		
		12) Flops over larynx opening in swallowing.	Epiglottis		
		13) Windpipe extending from larynx to bronchi.	Trachea		
		14) Bronchi that enter lungs.	Primary bronchi		
		15) Support walls of bronchial tree passageways			
		larger than bronchioles.	Cartilagenous rings		
		16) Lines air passageways larger than bronchioles.	Ciliated epithelium		
		17) Tiny air sacs at ends of alveolar ducts.	Alveoli		
		18) Membrane covering outer surface of lung.	Visceral pleura		
		19) Membrane lining inner wall of thorax.	Parietal pleura		
		20) Potential space between pleurae.	Pleural cavity		
2	D.	o athing			
۷.	ы	reathing			
	a.	Write the words that complete the sentences in the	e spaces at the right.		
		Air flows into the lungs during1 and out of	1) Inspiration		
		the lungs during2 During breathing, air	2) Expiration		
		flows from an area of3 pressure to an area	3) Higher		
		of4 pressure. Contraction of the5	4) Lower		
		and the6 muscles causes an increase in the	5) <u>Diaphragm</u>		
		7 of the lungs, which decreases the air	6) External intercostal		
		8 within the lungs. Air flows into the lungs	7) <u>Volume</u>		
		because of the9 atmospheric pressure.	8) <u>Pressure</u>		
		When the muscles of inspiration relax, the	9) <u>Higher</u>		
		10 of the lungs is decreased, which in-	10) Volume		
		creases the air11 within the lungs. Air	11) Pressure		
		flows out of the lungs because of the12 air	12) <u>Higher</u>		
	,	pressure within the lungs.	(77)		
	b.	Indicate whether each statement is true (T) or false			
		T Negative pressure in the pleural cavity is ne	ecessary for inspiration.		
		T Surfactant prevents collapse of alveoli.			
		T Forceful expiration involves contraction of	abdominal and internal intercostal muscles.		
		T Pneumothorax causes collapse of a lung.	1 1 1 1 1 6 1 1		
		T Breathing exchanges air between the atmosp	onere and the alveoli of the lungs.		

3. Respiratory Volumes

Match the respiratory volumes with the statements.

- 1) Expiratory reserve volume
- 2) Inspiratory reserve volume
- 3) Residual volume
- <u>4</u> Volume of air exhaled in quiet expiration.
- **3** Air that always remains in the lungs.
- _1__ Volume forcefully exhaled after quiet expiration.
- **2** Volume forcefully inhaled after quiet inspiration.
- **6** Maximum volume forcefully exhaled after maximum forceful inspiration.
- 4 Averages about 500 ml.
- **5** Averages about 5,800 ml.

4. Control of Breathing

Write the terms that match the statements in the spaces at the right.

1)	Locations of respiration control centers.	Medulla oblongata
		Pons
2)	Controls forceful expirations.	Medullary expiratory center
3)	Coordinates the depth and length of inspiration.	Pons respiratory center
4)	Controls normal rhythmic breathing.	Medullary respiratory center

4) Tidal volume

6) Vital capacity

5) Total lung capacity

5. Factors Influencing Breathing

Indicate whether each statement is true (T) or false (F).

- __T__ A fever increases the breathing rate.
- **F** The respiratory center detects blood levels of carbon dioxide and oxygen.
- T An increase in the blood H⁺ concentration increases the breathing rate.
- **F** A mild increase in blood oxygen concentration decreases the breathing rate.
- T An increase in blood CO₂ concentration increases the breathing rate.
- F Higher brain centers can permanently override the action of the respiratory center.
- T Chemoreceptors for blood oxygen are located in the carotid and aortic bodies.
- T A very low blood oxygen concentration increases the breathing rate.

6. Gas Exchange

	Wri	te the words that complete the sentences in the spa	ces	at the right.		
	The	e exchange of respiratory gases occurs by	1)	Diffusion		
		_1 In comparison to the air in the alveoli,	2)	Oxygen		
	blo	od returning to the lungs has a lower concen-	3)	Carbon dioxide		
	trat	ion of2 and a higher concentration of	4)	Lungs (alveoli)		
		_3 Therefore, oxygen diffuses from the	5)	Blood		
		$_{4}$ into the $_{5}$, and carbon dioxide	6)	Blood		
	diff	ruses from the6 into the7	7)	Lungs (alveoli)		
	Blo	od leaving the lungs is8rich and	8)	Oxygen		
		_9poor.	9)	Carbon dioxide		
		In comparison to concentrations in tissue	10)	Carbon dioxide		
	cell	s, blood entering tissue capillaries has a lower	11)	Oxygen		
	con	centration of10 and a higher concen-	12)	Blood		
	trat	ion of11 Therefore, oxygen diffuses	13)	Tissue cells		
	fror	n the12 into the13 , and car-	14)	Tissue cells		
	bon	dioxide diffuses from the14 into the	15)	Blood		
		_15 Blood leaving tissue capillaries is	16)	Carbon dioxide		
		_16rich and17poor.	17)	Oxygen		
7.	Tra	ansport of Respiratory Gases				
	a.	Write the terms that match the statements in the sp	aces	at the right.		
		1) Compound in which most oxygen is transported	ł.	Oxyhemoglobin		
		2) Cell in which most oxygen is transported.		Erythrocyte		
		3) Compound in which most CO_2 is carried.		Bicarbonate ion		
		4) Combination of hemoglobin and CO ₂ .		Carbaminohemoglobin		
	5) Enzyme speeding up reaction of CO ₂ and H ₂ O to		O			
	form carbonic acid.			Carbonic anhydrase		
		6) Cell in which most carbonic acid is formed.		Erythrocyte		
b. Indicate whether each statement is true (T) or false (F).						
		\underline{T} Hemoglobin can carry both O_2 and CO_2 at the	e sar	ne time.		
	T Oxygenated blood carries some carbon dioxide.					
	Deoxygenated blood carries some oxygen.					
	Hemoglobin loads or unloads oxygen, depending on the surrounding oxygen concentration.					
	\overline{T} Blood loads or unloads CO_2 depending upon the surrounding carbon dioxide concentration					

8. Disorders of the Respiratory System

Write the disorders that match the statements in the spaces at the right.

1) Accumulation of fluid in the lungs. Pulmonary edema 2) Inflammation of the bronchi. **Bronchitis** 3) Rupture of alveoli due to exposure to airborne irritants. **Emphysema** 4) Acute inflammation of alveoli due to viral or bacterial infection. Pneumonia 5) Collapse of alveoli in infants due to an insufficient amount of surfactant. Respiratory distress syndrome 6) Wheezing, labored breathing due to constriction of bronchioles. **Asthma** 7) Viral disease characterized by fever, chills, aches, and coldlike symptoms. <u>Influenza</u> 8) Disorder characterized by a reduction of the respiratory surface area and decrease in the expiratory reserve volume. **Emphysema**

9. Clinical Applications

blood clot.

9) Inflammation of nasal membranes.

10) Blockage of artery in lung by a transported

a. One treatment for hyperventilation is having the patient breathe into a paper bag. How does this reestablish normal breathing? As CO₂ increases and O₂ decreases in the bag, rebreathing the air in the bag decreases O₂ and increases CO₂ concentrations in blood to normal levels, returning respiration rates to normal.

Cold

Pulmonary embolism

b. A newborn infant, born a month early, is having difficulty breathing and is placed under an O₂ hood. What is the probable problem? Insufficient surfactant
 Should the infant receive pure oxygen or an oxygen-carbon dioxide mixture? O₂ -CO₂ mixture
 Explain. An O₂ - CO₂ mixture can supply additional oxygen while stimulating normal breathing. Also, pure O₂ may cause damage to the eyes (retinopathy of prematurity).