Formulaire d'opérations sur la limite de suites

Soient (u_n) et (v_n) des suites à valeurs réelles. Soient $\lambda, l, l' \in \mathbb{R}$.

$\lim_{n\to+\infty}(u_n+v_n)$	$\lim_{n\to+\infty}u_n=l$	$\lim_{n\to+\infty}u_n=+\infty$	$\lim_{n\to+\infty}u_n=-\infty$
$\lim_{n\to+\infty}\nu_n=l'$	l + l'	+∞	$-\infty$
$\lim_{n\to+\infty}v_n=+\infty$	+∞	+∞	forme indéterminée
$\lim_{n \to +\infty} \nu_n = -\infty$	$-\infty$	forme indéterminée	$-\infty$

$\lim_{n\to+\infty}(\lambda u_n)$	$\lim_{n\to+\infty}u_n=l$	$\lim_{n\to+\infty}u_n=+\infty$	$\lim_{n\to+\infty}u_n=-\infty$
$\lambda > 0$	λl	+∞	$-\infty$
$\lambda < 0$	λl	$-\infty$	+∞
$\lambda = 0$	0	0	0

$\lim_{n\to+\infty}(u_n.v_n)$	$\lim_{n \to +\infty} u_n = l \neq 0$	$\lim_{n\to+\infty}u_n=0$	$\lim_{n\to+\infty}u_n=+\infty$	$\lim_{n\to+\infty}u_n=-\infty$
$\lim_{n \to +\infty} v_n = l' \neq 0$	1.1'	0	$+\infty \text{ si } l' > 0$ $-\infty \text{ si } l' < 0$	$-\infty$ si $l' > 0$ $+\infty$ si $l' < 0$
$\lim_{n\to+\infty}\nu_n=0$	0	0	forme indéterminée	forme indéterminée
$\lim_{n \to +\infty} v_n = +\infty$	$+\infty$ si $l > 0$ $-\infty$ si $l < 0$	forme indéterminée	+∞	-∞
$\lim_{n \to +\infty} v_n = -\infty$	$-\infty \operatorname{si} l > 0$ $+\infty \operatorname{si} l < 0$	forme indéterminée	-∞	+∞

$\lim_{\mathbf{n}\to+\infty}\frac{\mathbf{u_n}}{\mathbf{v_n}}$	$\lim_{n\to+\infty}u_n=l\neq0$	$\lim_{n\to+\infty}u_n=0$	$\lim_{n\to+\infty}u_n=+\infty$	$\lim_{n\to +\infty} u_n = -\infty$
$\lim_{n \to +\infty} \nu_n = l' \neq 0$	$\frac{l}{l'}$	0	$+\infty \operatorname{si} l' > 0$ $-\infty \operatorname{si} l' < 0$	$-\infty \operatorname{si} l' > 0$ $+\infty \operatorname{si} l' < 0$
$\lim_{n\to+\infty}\nu_n=0$	±∞(*)	forme indéterminée	±∞(*)	±∞(*)
$\lim_{n \to +\infty} \nu_n = +\infty$	0	0	forme indéterminée	forme indéterminée
$\lim_{n \to +\infty} \nu_n = -\infty$	0	0	forme indéterminée	forme indéterminée

^(*) La règle des signes donne le signe de la limite du quotient.