Pre-Tutorial (To be completed by student before attending tutorial session)

1. Consider the following automaton that accepts the language ab^*

Generate a Right Linear Grammar for the automaton.

Solution:

P:
$$\{ 9_1 \longrightarrow b9_1 \mid a9_0$$
 $9_2 \longrightarrow a9_1 \mid b9_0 \mid a9_2 \mid b9_2$
 $9_0 \longrightarrow \in 3$

2. Write the Left Linear Grammar for the above Finite Automaton. What did you ob Explain.

Solution:

$$P = \{ 2i \longrightarrow 2ib / 2oa$$

$$2i \longrightarrow 2ib / 2oa$$

Here from right linear grammar, the change in left grammar is only o in productions.

palar de los destas

3. Write Left-Linear Grammar that generates the language L (bbb*aaaa*)

$$P = \{S \rightarrow bb \mid AaaaB\}$$
 $\{S \rightarrow Abb \mid Baaa \mid bbb \}$
 $A \rightarrow bA \mid E \Rightarrow A \rightarrow bbb \mid E \Rightarrow B \rightarrow aB \mid E \Rightarrow B \rightarrow$

left linear grammar:

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Find a regular grammar for the language over $\{a,b\}$ where the number of a's in any string is divisible by 3.

Solution:

1= (aga)*

C= ({90,91,92,934, {a,64P,90) P= { 20 -> 620 a9, 1 € 21->6916/a92 9, -> 62, ag, 23 → 69s agile 4

Let L_1 and L_2 be two languages with $L_1 \subseteq L_2$. In what condition L_2 must be a regular language?

Solution:

for L= Lz both liand La are regular languages. For LICLz, there is no condition for 12 to be a regular or non-regular Because here there is no condition on 4. so, Lich is regular and le is also regular language.

80

Course Title THEORY OF COMPUTATION Course Code(s) 23MT2014

ACADEMIC YEAR: 2024-25 Page 80 of 261 80 3. Let $L=\{w\in\{0,1\}^*: n_0(w)=n_1(w)\}$, is L regular? If you find it to be not 3. Let $L=\{w\in\{0,1\}^*: n_0(w)=n_1(w)\}$ prove it. Here $n_0(w)=\mathrm{count}$ of zeros in w, and $n_1(w)=\mathrm{count}$ of 1''s in w

L. [01, 0, 0101, 1100, 001011, --- 3

By using applications of pumping lemma

Step1:

let, constant no 4

policy - c Step2: Z= xyz uvw 1212n

where, luvi ≤n 14121

5. 1100. A5A

uv ω | uv| ≤ η = 2 ≤ 4 ν.

14121 2 1211

civiu EL 1-0,1,2,3,----

1=0-> @ 1(1500 = 100 EL

Lis not regular.

Course Title THEORY OF COMPUTATION

Course Code(s) 23MT2014

ACADEMIC YEAR: 2024-25 Page 81 of 261

Tuto" a F	6	Student D	2,00030642
Date	Plany	Student Name	s'Alidite.

4. Is the language $L=\{a^nb^n:n\geq 0\}$ a regular language? If you find it to be not a regular language prove it. Write each step.

solution:

MARTHAN DARY) - 8

urse Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25

Course Code(s)

Page 82 of 261 82

5. Consider the grammar: $S \rightarrow aS \mid bA$, $A \rightarrow bA \mid \varepsilon$. Is it a regular grammar determine whether it is right linear. it to be a regular grammar determine whether it is right linear or left linear or

Solution:

so, it	is	Right	regular	grammas.
--------	----	-------	---------	----------

Post-Tutorial (To be carried out by student after attending tutorial session)

Consider the grammar: $S \to aS \mid bS \mid \varepsilon$. Is it a regular grammar? If you find it to be regular, determine its type. Write the language generated by the grammar.

ution:

Let $L_1=\{a^n\colon n>0\}$ and $L_2=\{b^n\colon n>0\}$ be two regular languages. Consider another language L_3 where $L_3=L_1\cup L_2$. Is L_3 a regular language? Explain.

olution:

If Li oxisti is a regular language.

Le is a regular language.

If Li and he are regular languages, then

Les: Liule is regular language.

Les: Land is regular language.

Les: Land is regular language.

Les: Land is regular language.

3. Consider the language $L=\{a^n: n \ is \ even\}$. Is L a regular language?

$$P = \{S \rightarrow \alpha A | \epsilon$$

 $A \rightarrow \alpha B$
 $B \rightarrow \alpha A | \epsilon$

": It is regular language (TXV/TX)

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation		
processed to	Marks Secured: out of 50		
	Full Name of the Evaluator:		
	Signature of the Evaluator Date of		
(group)	Evaluation:		