Solutions to Exercise Sheet 2

A: Warm-up questions

- 1. (a) $P(A) = P(\{1, 2\}) = P(\{1\} \cup \{2\}) = P(\{1\}) + P(\{2\}) = 1/2 + 1/4 = 3/4$.
 - (b) $P(X = 1|X \in A) = P(X = 1|A) = \frac{P(X=1 \text{ and } X \in A)}{P(X \in A)} = \frac{1/2}{3/4} = 2/3$
- 2. (a) It's given directly in the table : P(X = 2, Y = 1) = 1/12.
 - (b) We need to sum up all entries in columns one and two of the two-way table: P(X = 1 or X = 2) = 1/8 + 1/8 + 1/4 + 1/12 + 1/6 = 18/24 = 3/4.
 - (c) Dividing the marginal probability mass function for X by the probability of $X \in A$: we obtain $\frac{x}{P(X = x | X \in A)} \frac{1}{2/3} \frac{2}{1/3}$ undefined Note that $P(X = 1 | X \in A) = 2/3$ from this table just as calculated above.
 - (d) Summing over the first row yields the maringal pmf for Y as P(Y=1) = 1/8 + 1/12 + 0 = 5/24.
 - (e) Similarly to (c) above, we divide the joint probability mass function by the marginal probability mass function for Y evaluated at y = 1:

$$\begin{array}{c|cccc} x & 1 & 2 & 3 \\ \hline P(X = x | Y = 1) & 3/5 & 2/5 & 0 \\ \end{array}$$

3. Joint probability table

				X_2	
		0	1	2	3
	0	0	10/36	14/36	1/36
X_1	1	2/36	8/36	0	0
	2	1/36	1 10/36 8/36 0	0	0

Marginals: $p_1(x_1) = 25/36, 10/36, 1/36$ for $x_1 = 0, 1, 2$

 $p_2(x_2) = 3/36, 18/36, 14/36, 1/36$ for $x_2 = 0, 1, 2, 3$

Conditionals: $p_{1|2}(x_1|x_2=1) = 10/18, 8/18, 0 \text{ for } x_1=0,1,2$

 $p_{2|1}(x_2|x_1=1) = 2/10, 8/10, 0, 0 \text{ for } x_2=0,1,2,3$

 $p(x_1, x_2) = p_1(x_1)p_2(x_2)$ fails for $(x_1, x_2) = (1, 1)$ for example, so not independent. Means $\mu_1 = 12/36$, $\mu_2 = 49/36$; variances $\sigma_1^2 = 360/36^2$, $\sigma_2^2 = 587/36^2$; covariance $\sigma_{12} = -300/36^2$; correlation $\rho = -0.65 \neq 0$, so X_1 and X_2 are correlated.

B: Questions to hand in

1. (a) Let *D* denote the event that the widget is defective and let *A* denote the event that is was made in factory A.

$$P(D) = \dots = 0.15$$

(b) This asks about a probability conditioned "the other way around" relative to the given probabilities and this was emphasized in lectures as the main use of Bayes' theorem.

$$P(\bar{A}|D) = \dots = 1/9$$

(c) Let C denote the event that the widget was made using the new type of production line.

$$P(\bar{D}) = \dots = \frac{523}{600} > (1 - 3/20) = \frac{510}{600}$$

2. (a) Students can use the appendix of the lecture notes where the expectation of a $\operatorname{Gam}(\alpha,\beta)$ is given as $\frac{\alpha}{\beta}$. Hence, $\mathbb{E}[Y|X=x]=10(x+1)$.

(b)

$$\mathbb{E}[Y] = \dots = 160$$

(c)

$$\mathbb{E}[2X^3 + 2X^2 - \frac{1}{5}YX^2] = \dots = 0$$

3. (a) as discussed in letcures...

Explanations need to include English sentences to attract marks. Writing down nothing but a formula does not constitute an explanation.

(b)

$$\mathbb{E}[S|C=0] = \dots = 406$$

 $\mathbb{E}[S|C=1] = \dots = 609$
 $\mathbb{E}[S|C \ge 2] = \dots = 2015$

(c)

$$\mathbb{E}[S] = \dots = 537.20$$

C: Exam Practice Questions

later