Changing the plot type

ggvis Layers

- ► In ggplot2 you use **geom** functions to determine the type of plot that you create
- In ggvis you can use layer functions
- N.B. Not all geoms are currently available as layers

So far, you seen two layer functions: layer_points() and layer_histograms(). There are many other layers, and they can be roughly categorised into two types:

- Simple, which include primitives like points, lines and rectangles.
- Compound, which combine data transformations with one or more simple layers.

All layer functions use the plural, not the singular.

Think the verb, not the noun: Im going to layer some points onto my plot.

Function	Description
layer_points	Adds data as points
layer_histograms	Adds data as a histogram
layer_boxplots	Draws as a boxplot
layer_lines	Adds data as lines
layer_smooths	Adds a smoothing line
layer_paths	Joins data as a single path
layer_text	Adds text
layer_model_predictions	Adds lines for model predictions, such as Im

Simple layers

There are five simple layers:

- 1. Points -layer_points
- 2. Paths and polygons, layer_paths().
- 3. Filled Areas layer_ribbons()
- 4. Rectangles layer_rects()
- 5. Text layer_text()

1. Points, layer_points()
properties: x, y, shape, stroke, fill,
strokeOpacity, fillOpacity, and opacity.

```
mtcars %>%
   ggvis(~wt, ~mpg) %>%
   layer_points()
```

2. Paths and polygons, layer_paths().

```
df \leftarrow data.frame(x = 1:10,
       v = runif(10)
df %>%
    ggvis(~x, ~y) %>%
    layer_paths()
```

If you supply a fill, youll get a polygon

```
t <- seq(0, 2 * pi, length = 100)
df \leftarrow data.frame(x = sin(t), y = cos(t))
df %>%
    ggvis(~x, ~y) %>%
    layer_paths(fill := "red")
```

3. Filled areas, layer_ribbons()

Use properties y and y2 to control the extent of the area.

```
df <- data.frame(x = 1:10,
        y = runif(10))
df %>%
        ggvis(~x, ~y) %>%
        layer_ribbons()
```

4. Rectangles, layer_rects().

The location and size of the rectangle is controlled by the x, x2, y and y2 properties.

```
set.seed(1014)
df \leftarrow data.frame(x1 = runif(5), x2 = runif(5),
         y1 = runif(5), y2 = runif(5)
df %>% ggvis(~x1, ~y1,
           x2 = x2, y2 = y2,
           fillOpacity := 0.1) %>%
       layer_rects()
```

5. Text, layer_text()...

The text layer has many new options to control the apperance of the text:

- text (the label),
- dx and dy (margin in pixels between text and anchor point),
- angle (rotate the text),
- font (font name) and fontSize (size in pixels),
- fontWeight (e.g. bold or normal),
- fontStyle (e.g. italic or normal.)

```
df %>%
  ggvis(~x, ~y, text := ~label) %>%
  layer_text(fontSize := 50)
```

```
df %>%
    ggvis(~x, ~y, text := ~label) %>%
    layer_text(angle := 45)
```

Compound layers

The four most common compound layers are:

- 1. layer_paths()
- 2. layer_histograms()
- 3. layer_polygons()
- 4. layer_smooths()

layer_lines() which automatically orders by the x variable:

```
t < - seq(0, 2 * pi, length = 20)
df \leftarrow data.frame(x = sin(t), y = cos(t))
df %>%
   ggvis(~x, ~y) %>%
   layer_paths()
```

Compound layers

```
df %>%
   ggvis(~x, ~y) %>%
   layer_lines()
```

```
layer_lines() is equivalent to arrange() +
layer_paths():
```

```
df %>%
   ggvis(~x, ~y) %>%
   arrange(x) %>%
   layer_paths()
```

layer_histograms() and layer_freqpolys()

- layer_histograms() and layer_freqpolys() which allows you to explore the distribution of continuous.
- ▶ Both layers first bin the data with compute_bin() then display the results with either rects or lines.

```
mtcars %>%
    ggvis(~mpg) %>%
    layer_histograms()

# Guessing width = 1
# range / 24
```

```
# Or equivalently
binned <- mtcars %>% compute_bin(~mpg)
  Guessing width = 1
 range / 24
binned %>% ggvis(x = ~xmin_,
        x2 = xmax_,
        y2 = 0, y = count_,
        fill := "black") %>%
 layer_rects()
```

Compound Layers

layer_smooths() fits a smooth model to the data, and displays predictions with a line.

Its used to highlight the trend in noisy data:

```
mtcars %>%
   ggvis(~wt, ~mpg) %>%
   layer_smooths()
```

You can control the degree of *wiggliness* with the span parameter:

```
span <- input_slider(0.2, 1, value = 0.75)
mtcars %>%
    ggvis(~wt, ~mpg) %>%
    layer_smooths(span = span)
```

Vignette

You can learn more about layers in the layers vignette.