DEVOIR SURVEILLÉ N°8: CORRIGÉ

Problème 1 – Polynômes de Bernoulli - D'après ENAC 1995

Partie I -

- **1. a.** On montre que d est injective et surjective.
 - **Injectivité** Soit $P \in \ker \varphi$. Donc P est un polynôme constant. Il existe donc $\lambda \in \mathbb{R}$ tel que $P = \lambda$. Comme $P \in E$, on en déduit $\int_0^1 \lambda dx = 0$ i.e. $\lambda = 0$. Ainsi P = 0.
 - **Surjectivité** Soit $P \in \mathbb{K}[X]$. Comme D est clairement surjective, il existe $Q \in \mathbb{K}[X]$ tel que D(Q) = P. Posons $\lambda = \int_0^1 Q(t) dt$. Alors $Q \lambda \in E$ et $D(Q \lambda) = P$. Ainsi d est surjective.

Remarque. On peut raisonner de manière plus conceptuelle. E est un hyperplan de $\mathbb{R}[X]$ en tant que noyau de la forme linéaire non nulle $P \in \mathbb{R}[X] \mapsto \int_0^1 P(t) \, dt$. Clairement, $\operatorname{Ker} D = \mathbb{R}_0[X] = \operatorname{vect}(1)$ donc $\operatorname{Ker} D$ est une droite vectorielle de $\mathbb{R}[X]$ non incluse dans l'hyperplan E: on sait alors que E et $\operatorname{Ker} D$ sont supplémentaires dans $\mathbb{R}[X]$. Un théorème du cours permet alors d'affirmer que D induit un isomorphisme de E sur E D. Mais il est clair que E E E E E0 induit un isomorphisme.

- **b.** Soit $(P, Q) \in \mathbb{R}[X]^2$.
 - Supposons que $P = \Phi(Q)$. Alors $P \in E$ puisque Φ est une application de $\mathbb{R}[X]$ dans E. De plus, $P' = d(P) = d \circ \Phi(Q) = Q$ puisque $\Phi = d^{-1}$.
 - Supposons que $P \in E$ et P' = Q. Alors Q = P' = d(P) donc $\Phi(Q) = \Phi \circ d(P) = P$.
- 2. a. Non. Il suffit de prendre P=1. On trouve $\Phi(P)=X-\frac{1}{2}$ et donc $\Phi(P)(0)=-\frac{1}{2}$ tandis que $\Phi(P(0))=\Phi(1)=X-\frac{1}{2}$.
 - **b.** Non. Il suffit à nouveau de prendre P=1. On trouve $\Phi(P)=X-\frac{1}{2}$ et donc $\Phi(P)(1-X)=\frac{1}{2}-X$ tandis que $\Phi(P(1-X))=\Phi(1)=X-\frac{1}{2}$.
- 3. a. On a $B_1'=B_0$ et donc il existe $\lambda\in\mathbb{R}$ tel que $B_1=X+\lambda$. De plus, $\int_0^1B_1(t)dt=0$ donc $\lambda=-\frac{1}{2}$. D'où

$$B_1 = X - \frac{1}{2}$$

De même, $B_2'=B_1$ et donc il existe $\mu\in\mathbb{R}$ tel que $B_2=\frac{1}{2}X^2-\frac{1}{2}X+\mu$. De plus, $\int_0^1B_2(t)dt=0$ donc $\mu=\frac{1}{12}$. D'où

$$B_2 = \frac{1}{2}X^2 - \frac{1}{2}X + \frac{1}{12}$$

b. Remarquons tout d'abord que $B_n \in E$ pour $n \ge 1$. De plus, pour tout $n \in \mathbb{N}$, $B_{n+1} = \varphi(B_n)$ et donc $B'_{n+1} = B_n$. Soit $n \ge 2$. On a :

$$B_n(1) - B_n(0) = \int_0^1 B'_n(t)dt = \int_0^1 B_{n-1}(t)dt = 0$$

 $car B_{n-1} \in E$.

4. a. On a $P_{n+1} = (-1)^{n+1} B_{n+1} (1-X)$ et donc

$$P_{n+1}' = (-1)^{n+2}B_{n+1}'(1-X) = (-1)^nB_n(1-X) = P_n$$

b. D'après la question précédente, il suffit donc de montrer que $P_{n+1} \in E$ pour tout $n \in \mathbb{N}$. Or pour tout $n \in \mathbb{N}$

$$\int_{0}^{1} P_{n+1}(t)dt = (-1)^{n} \int_{0}^{1} B_{n+1}(1-t)dt = (-1)^{n} \int_{0}^{1} B_{n+1}(t)dt = 0$$

 $car B_n \in E pour n \geqslant 1.$

c. On a $P_0 = B_0 = 1$. De plus, $P_{n+1} = \varphi(P_n)$ et $B_{n+1} = \varphi(B_n)$ pour tout $n \in \mathbb{N}$. On en déduit donc par récurrence que $P_n = B_n$ pour tout $n \in \mathbb{N}$. Ainsi

$$\forall n \in \mathbb{N}, B_n(1-X) = (-1)^n B_n(X)$$

5. a. Soit $n \in \mathbb{N}$. En dérivant l'expression définissant Q_{n+1} , on obtient :

$$Q'_{n+1} = p^n \sum_{k=0}^{p-1} \frac{1}{p} B'_{n+1} \left(\frac{X+k}{p} \right) = p^{n-1} \sum_{k=0}^{p-1} B_n \left(\frac{X+k}{p} \right) = Q_n$$

Vérifions que $Q_{n+1} \in E$:

$$\int_{0}^{1} Q_{n+1}(t)dt = p^{n} \sum_{k=0}^{p-1} \int_{0}^{1} B_{n+1} \left(\frac{t+k}{p} \right) dt$$

En effectuant le changement de variable $\mathfrak{u}=\frac{t+k}{p}$ dans chaque intégrale, on obtient :

$$\int_{0}^{1} Q_{n+1}(t)dt = p^{n} \sum_{k=0}^{p-1} \int_{\frac{k}{n}}^{\frac{k+1}{p}} B_{n+1}(u)pdu = p^{n+1} \int_{0}^{1} B_{n+1}(u)du = 0$$

en utilisant la relation de Chasles et car $B_{n+1} \in E$. Ainsi $Q'_{n+1} = Q_n$ et $Q_{n+1} \in E$ donc $Q_{n+1} = \varphi(Q_n)$ d'après **I.1.b**.

- **b.** On a $Q_0 = B_0 = 1$. Comme $Q_{n+1} = \varphi(Q_n)$ et $B_{n+1} = \varphi(B_n)$ pour tout $n \in \mathbb{N}$, on conclut par récurrence que pour tout $n \in \mathbb{N}$, $Q_n = B_n$. On a ainsi la relation demandée.
- **6. a.** Soit $n \in \mathbb{N}$. On a $R'_{n+1} = B'_{n+1}(X+1) B'_{n+1}(X) = B_n(X+1) B_n(X) = R_n$
 - $\textbf{b.} \ \operatorname{Soit} \, n \in \mathbb{N}^*. \, R_n(0) = B_{n+1}(1) B_{n+1}(0) = 0 \ \operatorname{car} \, n+1 \geqslant 2.$
 - **c.** On a $R_0=1=\frac{X^0}{0!}$. Supposons que $R_n=\frac{X^n}{n!}$ pour un certain $n\in\mathbb{N}$. Puisque $R'_{n+1}=R_n$, il existe $\lambda\in\mathbb{R}$ tel que $R_{n+1}=\frac{X^{n+1}}{(n+1)!}+\lambda$. Or $R_{n+1}(0)=0$ car $n+1\in\mathbb{N}^*$. Ainsi $\lambda=0$ puis $R_{n+1}=\frac{X^{n+1}}{(n+1)!}$. Par récurrence, $R_n=\frac{X^n}{n!}$ pour tout $n\in\mathbb{N}$.
 - d. D'après la question précédente :

$$\sum_{k=1}^{m} k^{n} = n! \sum_{k=1}^{m} R_{n}(k) = n! \sum_{k=1}^{m} B_{n+1}(k+1) - B_{n+1}(k) = n! (B_{n+1}(m+1) - B_{n+1}(1))$$

par télescopage.

Partie II -

1. a. Comme deg $B_0=0$ et que $B_{n+1}'=B_n$ pour tout $n\in\mathbb{N}$, on en déduit par récurrence que $B_n^{(k)}=B_{n-k}$ pour $0\leqslant k\leqslant n$ et que $B_n^{(k)}=0$ pour k>n. D'après la formule de Taylor appliquée à B_n en 0, on a :

$$B_n = \sum_{k=0}^n \frac{B_n^{(k)}(0)}{k!} X^k = \sum_{k=0}^n \frac{B_{n-k}(0)}{k!} X^k = \sum_{k=0}^n \frac{b_{n-k}}{k!} X^k$$

Remarque. On peut aussi raisonner par récurrence. La formule à démontrer est clairement vraie pour n=0. On suppose alors qu'il existe $n\in\mathbb{N}$ tel que $B_n=\sum_{k=0}^nb_{n-k}\frac{X^k}{k!}$. Puisque $B'_{n+1}=B_n$, il existe $C\in\mathbb{R}$ tel que $B_{n+1}=C+\sum_{k=0}^nb_{n-k}\frac{X^{k+1}}{(k+1)!}$. En réindexant, on a également $B_{n+1}=C+\sum_{k=1}^{n+1}b_{n+1-k}\frac{X^k}{k!}$. En évaluant en 0, il vient $C=B_{n+1}(0)=b_{n+1}$ de sorte que $B_{n+1}=\sum_{k=0}^{n+1}b_{n+1-k}\frac{X^k}{k!}$. Ceci permet d'achever la récurrence.

b. Comme $B_0 = 1$, on a clairement $b_0 = 1$.

Soit $n \in \mathbb{N}^*$. En intégrant la relation précédente entre 0 et 1, on a :

$$\int_0^1 B_n(t)dt = \sum_{k=0}^n \frac{b_{n-k}}{(k+1)!}$$

Or pour $n \ge 1$, $B_n \in E$ car $B_n = \varphi(B_{n-1})$ donc $\int_0^1 B_n(t) dt = 0$. En isolant le terme d'indice k = 0 de la somme, on en déduit :

$$b_n = -\sum_{k=1}^n \frac{b_{n-k}}{(k+1)!}$$

- **c.** Soit $m \in \mathbb{N}^*$. D'après la question **I.4.c**, on a $B_{2m+1}(1-X) = -B_{2m+1}(X)$. En substituant 0 à X, on obtient $B_{2m+1}(1) = -B_{2m+1}(0)$. Mais comme $2m+1 \geqslant 2$, on a $B_{2m+1}(0) = B_{2m+1}(1)$ d'après la question **I.3.b**. Ainsi $b_{2m+1} = B_{2m+1}(0) = 0$.
- **2. a.** En choisissant p = 2 et en substituant 0 à X dans la relation de la question **I.5.b**, on obtient :

$$B_n(0) = 2^{n-1} \left[B_n(0) + B_n\left(\frac{1}{2}\right) \right]$$

et donc

$$B_n\left(\frac{1}{2}\right) = \frac{b_n\left(1 - 2^{n-1}\right)}{2^{n-1}}$$

b. En choisissant p = 3 et en substituant 0 à X dans la relation de la question **I.5.b**, on obtient :

$$B_n(0) = 3^{n-1} \left[B_n(0) + B_n \left(\frac{1}{3} \right) + B_n \left(\frac{2}{3} \right) \right]$$

Mais comme $B_n(1-X)=(-1)^nB_n(X)$, on obtient en substituant $\frac{1}{3}$ à $X:B_n\left(\frac{2}{3}\right)=B_n\left(\frac{1}{3}\right)$ car n est pair. Par conséquent

$$B_n\left(\frac{1}{3}\right) = \frac{b_n\left(1 - 3^{n-1}\right)}{2 \times 3^{n-1}}$$

De même, en choisissant p = 4 et en substituant 0 à X dans la relation de la question **I.5.b**, on obtient :

$$B_n(0) = 4^{n-1} \left[B_n(0) + B_n\left(\frac{1}{4}\right) + B_n\left(\frac{1}{2}\right) + B_n\left(\frac{3}{4}\right) \right]$$

Or on a vu plus haut que $2^{n-1}\left[B_n(0)+B_n\left(\frac{1}{2}\right)\right]=b_n$. De plus, pour les mêmes raisons que précédemment $B_n\left(\frac{1}{4}\right)=B_n\left(\frac{3}{4}\right)$. Par conséquent

$$B_{n}\left(\frac{1}{4}\right) = \frac{b_{n}\left(1 - 2^{n-1}\right)}{2 \times 4^{n-1}}$$

Enfin, en choisissant p = 6 et en substituant 0 à X dans la relation de la question **I.5.b**, on obtient :

$$B_n(0) = 6^{n-1} \left[B_n(0) + B_n\left(\frac{1}{6}\right) + B_n\left(\frac{1}{3}\right) + B_n\left(\frac{1}{2}\right) + B_n\left(\frac{2}{3}\right) + B_n\left(\frac{5}{6}\right) \right]$$

On a vu précédemment que $3^{n-1}\left[B_n(0)+B_n\left(\frac{1}{3}\right)+B_n\left(\frac{2}{3}\right)\right]=b_n$ et on a encore $B_n\left(\frac{1}{6}\right)=B_n\left(\frac{5}{6}\right)$. Par conséquent

$$B_n\left(\frac{1}{6}\right) = \frac{b_n\left(1 + 6^{n-1} - 2^{n-1} - 3^{n-1}\right)}{2 \times 6^{n-1}}$$

- 3. a. Il suffit de prendre m = 1.
 - **b.** Comme $(-1)^m B_{2m-1}$ est la dérivée de $(-1)^m B_{2m}$, $(-1)^m B_{2m}$ est strictement croissante sur $\left[0,\frac{1}{2}\right]$ et elle est également continue sur cet intervalle. De plus, d'après la question **II.2.a**, $B_{2m}(0)$ et $B_{2m}\left(\frac{1}{2}\right)$ sont de signes opposés donc $(-1)^m B_{2m}$ s'annule une unique fois sur $\left[0,\frac{1}{2}\right]$ en un réel α_m en vertu du théorème de la bijection monotone.

	0	$\alpha_{\mathfrak{m}}$	$\frac{1}{2}$
$(-1)^{m}B_{2m-1}$		+	
(−1) ^m B _{2m}	$B_{2m}(0) < 0$	Ŏ	$B_{2m}(1/2) < 0$

c. $(-1)^m B_{2m}$ est donc négative puis positive sur $\left[0,\frac{1}{2}\right]$. De plus, $(-1)^m B_{2m}$ ne s'annule qu'une fois sur $\left[0,\frac{1}{2}\right]$. Puisque $(-1)^m B_{2m}$ est la dérivée de $(-1)^m B_{2m+1}$, $(-1)^m B_{2m+1}$ est strictement décroissante puis strictement croissante sur $\left[0,\frac{1}{2}\right]$. On en déduit que $(-1)^{m+1} B_{2m+1}$ est strictement croissante puis strictement décroissante sur $\left[0,\frac{1}{2}\right]$. Comme 2m+1 est impair, on a $B_{2m+1}(0)=B_{2m+1}\left(\frac{1}{2}\right)=0$. Ainsi $(-1)^{m+1} B_{2m+1}$ est strictement positive sur $\left[0,\frac{1}{2}\right]$.

	0	α_{m}	1/2
$(-1)^{m}B_{2m}$		- 0	+
$(-1)^{m}B_{2m+1}$	0	$(-1)^m B_{2m+1}(\alpha_m$	0
$(-1)^{m+1}B_{2m+1}$	$(-1)^{m+1}B_{2m+1}(\alpha_m)$		

d. Soit l'hypothèse de récurrence :

$$HR(m): (-1)^m B_{2m-1}$$
 est strictement positive sur $]0, \frac{1}{2}[.»$

On a vu à la question **II.3.a** que HR(1) est vraie. Les questions **II.3.b** et **II.3.c** prouvent que $HR(m) \Rightarrow HR(m+1)$. On en conclut que HR(m) est vraie pour tout $m \in \mathbb{N}^*$.

Mais la question II.3.b prouve alors que $(-1)^m B_{2m}$ s'annule une unique fois sur $]0, \frac{1}{2}[$ pour tout $m \in \mathbb{N}^*$.

e. On sait que

$$\begin{split} B_{2m}\left(\frac{1}{6}\right) &= \frac{b_{2m}\left(1 + 6^{2m-1} - 2^{2m-1} - 3^{2m-1}\right)}{2 \times 6^{2m-1}} \\ B_{2m}\left(\frac{1}{4}\right) &= \frac{b_{2m}\left(1 - 2^{2m-1}\right)}{2 \times 4^{2m-1}} \end{split}$$

Or

$$2^{2m-1} + 3^{2m-1} \le 3^{2m-1} + 3^{2m-1} = 2 \times 3^{2m-1} \le 2^{2m-1} \times 6^{2m-1} = 6^{2m-1}$$

 $donc~1+6^{2m-1}-2^{2m-1}-3^{2m-1}\geqslant 1>0.~De~m{\hat e}me,~1-2^{2m-1}<0~de~sorte~que~B_{2m}\left(\frac{1}{6}\right)~et~B_{2m}\left(\frac{1}{4}\right)~sont~de~signes~opposés.~Comme~B_{2m}~est~continue~sur~\left[0,\frac{1}{2}\right],~on~en~d{\acute e}duit~que~\theta_m\in\left]\frac{1}{4},\frac{1}{6}\left[.\right.$

4. a. La fonction $(-1)^m B_{2m}$ est strictement croissante sur $\left[0, \frac{1}{2}\right]$. De plus,

$$\left| B_{2m} \left(\frac{1}{2} \right) \right| = |b_{2m}| \frac{2^{2m-1} - 1}{2^{2m-1}} \le |b_{2m}|$$

pour $m \geqslant 1$ car, dans ce cas, $2^{2m-1}-1 \geqslant 0$. Les variations de $(-1)^m B_{2m}$ permettent donc de déduire que le maximum de $|B_{2m}|$ est atteint en 0 et vaut $|b_{2m}|$. Le résultat est encore valable pour m=0 puisque B_0 est constante égale à b_0 .

b. On a $B_{2m}(1-t)=B_{2m}(t)$ pour tout $t\in\mathbb{R}$. Les variations de $(-1)^mB_{2m}$ sur $\left[\frac{1}{2},1\right]$ se déduisent donc de celles sur $\left[0,\frac{1}{2}\right]$: ainsi $|B_{2m}|$ atteint sa borne supérieure sur [0,1] en 0 et en 1 et celle-ci vaut $|b_{2m}|$.

Partie III -

- 1. def integrale(P) :
 ^^Ireturn sum([P[k]/(k+1) for k in range(len(P))])
- 2. def primitive(P) :
 ^^Ireturn [0]+[P[k]/(k+1) for k in range(len(P))]

```
3. def phi(P) :
        Q=primitive(P)
        ^^IQ[0]=—integrale(Q)
        ^^Ireturn Q

4. def B(n) :
        ^^Ires=[[1]]
        ^^Ifor _ in range(n) :
        ^^I^^Ires.append(phi(res[-1]))
        ^^Ireturn res
```