

WDM Overlay of APON with EPON

- a carrier's perspective

Nicholas J. Frigo & Cedric F. Lam

Optical Systems Research Dept., AT&T Labs - Research
200 S. Laurel Ave., Middletown, NJ 07748, USA

Wavelength Allocation in ITU-T Rec. G.983.3

AT&T Labs-Research

The Value of Fiber Plant

AT&T Labs-Research

Estimated Cost per Building to Deploy Fiber in a Passive Optical Network

\$ per building	Outside Plant	Labor	ONU	OLT	Total Cost
Aerial	4,161	3,787	4,435	1,247	\$13,630
Exist Conduit	4,161	4,436	4,435	1,247	\$14,279
Trench	4,161	14,199	4,435	1,247	\$24,042
New Conduit	4,161	26,299	4,435	1,247	\$36,142

Source: Merrill Lynch, Corning Cable Systems

Low Cost Coarse WDM Technology

AT&T Labs-Research

- ◆ DWDM:
 - High-cost, high-capacity
 - Core network technology
- ◆ CWDM:
 - Low-cost, moderate-capacity
 - Suitable for metro & access
(i.e.: the FIRST MILE)

CWDM Usage

- ◆ 10GBASE-LX4 (IEEE802.3ae):
 - Low cost CWDM parallel PHY standard for 10Gb/s Ethernet
 - 20nm bands centered at: 1290, 1310, 1330 & 1350nm
- ◆ De facto standard:
 - 20nm bands centered at 1491, 1511, 1531, 1551nm...

Wavelength Accuracy Requirements

AT&T Labs-Research

- ◆ ITU-T 983.3 standard temp requirements.
 - OLT: 5 to 40°C
 - Indoor ONU: -5 to 45°C
 - Outdoor ONU: -45 to 45°C
- ◆ DFB laser accuracy
 - temp coefficient: 0.08nm/°C
⇒ 7.2nm over 90°C for uncooled DFB
- ◆ Athermal thin film CWDM
 - temp coefficient: 2pm/°C ⇒ 1.8nm over 90°C
- ◆ Use 10nm band with 20nm separation
 - 15 available bands between 1300nm and 1600nm

Cost Considerations

AT&T Labs-Research

- ◆ DWDM.
 - ITU grid DFB laser: \$1,000
 - DWDM Mux-Demux: \$200 - \$500 per wavelength
 - Temperature control required.
- ◆ CWDM
 - Uncooled DFB: \$50 - \$100
 - CWDM: \$50-100 per wavelength

Fiber plant costs at least ~\$14,000 per user...

- ◆ Need a standard for “plug-N-play” CWDM technology

Emerging Low Cost WDM Components ...

AT&T Labs-Research

- Gratings
- Thin films
- Planar waveguide circuits

... Overlaying APON with EPON

AT&T Labs-Research

Pave the way for diverse future services.

- 2 PONs for 1 infrastructure
 - Low cost CWDM (band sorter) overlay
 - \$ band sorter << \$ ONU << \$ fiber
- Flexible service provisioning
 - e.g. video overlay in other bands like in ITU-T Rec. 983.3

Which One to Choose?

AT&T Labs-Research

Option 1: band sorter

Option 2: ITU-T Rec. G.983.3

Option 3: de facto CWDM standard

Power Budget Consideration

AT&T Labs-Research

- ◆ ITU-T REC 983.3
 - class B: 25dB between OLT and ONU
 - class C: 30dB between OLT and ONU
- ◆ CWDM:
 - Extra wavelength filters add additional loss
 - 8dB (4dB mux + 4dB demux) CWDM loss (average value for commercial 8 band CWDM devices)
 - EPON/GbE (1.25Gb/s) requires 3dB more power than 622Mbps APON
 - Amplification over 200-300nm wide optical band is not easy
- ◆ Solutions:
 - Apply higher power LDs (lasers are getting better everyday!)
 - Use APD detectors (10 to 15dB gain)
 - Use FEC (~10dB gain)
 - Reduce splitting ratio
 - Reduce fiber reach

