

Professor:
Fernando Antonio Mota Trinta
Paulo Antonio Rego Leal

DEPARTAMENTO DE COMPUTAÇÃO

Contextualização

Fonte: vcloudnews

Contextualização e mais dados

- · Mais de 4 bilhões de usuários na internet
 - 5 bi de usuários únicos de celular no mundo
 - Mais de 334 milhões de smartphones foram vendidos em 2018

Dos dados no mundo hoje foram 90% produzidos nos últimos dois anos

E mais dados...

- Facebook
 - 1B de usuários, 1,13 Trilhões de "likes", 219B de fotos e 140.3B de relacionamentos
- Youtube
 - 100 horas de vídeos adicionado a cada minuto
- Yahoo!
 - + de 650M de usuários, 11B visitas a páginas/mês
- Flick
 - + de 5B de fotos

- Twitter
 - 80 TB e 1B de tweets por dia
- Boeing
 - 640 TB gerados em um voo transatlântico
- Wal-Mart
 - 2,5 PB e 1 milhão de transações/hora
- LHC CERN
 - 15 Petabytes por ano

Comportamento

1990s 2010s

Dados x Informação

 "Extracting Value from Chaos" - a informação mundial está dobrando a cada 2 anos - 1.8 zettabytes foram criados em 2011, crescendo mais que a lei de Moore.

Contextualização

- Grande quantidades de dados geram desafios
 - Armazenamento...
 - Processamento...
 - Análise...

- BigData & Data Analytics
 - ciência de examinar os dados brutos com a finalidade de tirar conclusões sobre essa informação...
 - Dados analisados são valiosos hoje

Big Data (Definição dos 4V's)

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

IBM.

Big Data

- Definição
 - Big data é alto volume, grande velocidade, e/ou grande variedade de informações que demandam formas inovadoras e economicamente viáveis de processar informações/dados, a fim de possibilitar melhoria de inferências, tomada de decisão e automação de processos. (Gartner 2012)

Big Data

A habilidade de alcançar grande Valor através de ideias/conhecimentos obtidos com análise de dados

Exemplos

Exemplos

Dengue Watch: Heat Map

observatóri@dadengue

Menções à dengue no Twitter no mês de fev/2011

Clique nos pontos do mapa para informações Cidades: 11 Tweets: 59 População: 1925450 Tx. Inc. Méd : 1 5334e-04

Cidade	Pop.	Tweets	Tx.Inc
Betim	377547	14	1.8230e-04
Brumadinho	34013	1	1.4289e-04
Contagem	603048	22	1.7922e-04
Ibirite	159026	4	1.2110e-04
Itabira	109551	6	2.7305e-04
Itauna	85396	1	5.2124e-05
Joao Monlevade	73451	4	2.7146e-04
Matozinhos	32973	1	1.4765e-04
Ribeirao das Neves	296376	2	2.6665e-05
Sabara	126219	3	1.1399e-04
Santa Barbara	27850	1	1.7627e-04

Campos de Aplicação

- Sistemas de Recomendação
- Processamento de Linguagem Natural
- Data Warehousing
- Pesquisa de Mercado
- Análise Financeira
- Máquinas de inferência
- Processamento de Vídeo/Imagens
- Análise de Logs

Campos de Aplicação

- Ciências da Saúde
- Gestão governamental
- Redes Sociais
- Telecomunicações

Como armazenar e processar este grande volume de dados?

Computação em Nuvem

"Grandes poderes trazem grandes responsabilidades!"

- O grande volume de dados demanda
- Grande poder de processamento
- Paralelizar e Distribuir tarefas
- Facilidade de processamento

Computação em Nuvem

- Para tratar problemas de larga escala, idealmente não gostaríamos de se preocupar com:
 - · Paralelização e distribuição automática
 - Tolerância a falhas
 - Escalonamento de I/O
 - Monitoramento de tarefas
- Então é necessário se adequar a um modo de facilitar o uso da nuvem para tarefas de manipulação de dados

Modelo de Programação para Nuvem

- Forma, abordagem ou maneira específica de como se programar, dentro do contexto de uma aplicação ou domínio
 - Abstrações adequadas
 - Eficiência
- Duas abordagens:
 - Estender um modelo existente
 - Propor um novo modelo

- Um modelo de programação e uma implementação associada para processamento e geração de grandes conjuntos de dados
 - Inspirado pelas primitivas map e reduce encontrados na Lisp e em outras linguagens funcionais
- Permite paralelizar grandes computações facilmente e usar re-execução como mecanismo para tolerância a falhas

Map/Reduce - História

- Originalmente desenvolvido pela Google
 - Jeffrey Dean e Sanjay Ghemawat
 - MapReduce: Simplified Data Processing on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design and Implementation (December 2004)
- Usado no Search Engine para tratar a quantidade de dados a serem processados

Map/Reduce - Ideia Geral

- Divida uma tarefa que deve processar um grande conjunto de dados em partes
- · Cada parte deve ser responsável por uma parte pequena do conjunto
- Cada parte é independente
- Após o término do processamento das partes individuais, junte os resultados das partes

MAP:

- Toma-se uma tarefa complexa ou custosa
- Quebra tal tarefa em sub-problemas menores
- Delega a resolução desta tarefas a nós distribuídos

REDUCE:

- Coleta as respostas dos nós distribuídos
- Agrega tais respostas em uma saída que representa a solução do problema complexo

Apache Hadoop

- Inspirado em iniciativas da Google
 - BigTable e Map/Reduce
- Criado por Doug Cutting em 2002
 - Criador do Lucene

Hadoop

Um framework open-source de propósito geral, orientado a processamento em lote/offline, de uso intensivo de dados (I/O intensive) utilizado para criação de aplicações que processam uma grande quantidade de dados.

O que seria Grande?

- 25K máquinas
- Dezenas de clusters
- 3 Pb de dados
- 10000 jobs/semana

Quem usa mais

http://wiki.apache.org/hadoop/PoweredBy

O Hadoop não é...

... Um banco de dados relacional

... Um sistema online de processamento de transações

... Um sistema de armazenamento estruturado de qualquer tipo

Hadoop x Relacional

Hadoop	Relacional
Pares de chave/valor	Tabelas
Informa-se como processar dados	Informa-se como se deseja obter os dados (SQL)
Offline/Lote	Online/Tempo Real
Escalabilidade Horizontal	Escalabilidade Vertical

Hadoop - Módulos principais

- Hadoop Common
 - Utilitários que suportam os outros módulos.
- Sistema distribuído de arquivos
 - Hadoop Distributed File System (HDFS)
 - Provê acesso de alta velocidade aos dados
- Hadoop YARN (Yet Another Resource Negotiator)
 - Framework para escalonamento de tarefas e gerenciamento de recursos do cluster
- Modelo de programação MapReduce
 - Framework baseado em YARN para facilitar a escrita de aplicações que processam de maneira paralela e distribuída grande quantidade de dados

Hadoop

Hadoop - Ideia geral

- Um job MapReduce divide os dados de entrada em blocos independentes que são processados pelos Maps de maneira totalmente paralelizada.
- O framework ordena a saída dos Maps, que servem como entrada para os Reduces.
- Geralmente tanto os dados de entrada quanto de saída do job são armazenados no sistema de arquivo.
- O framework cuida do escalonamento e monitoramento das tarefas, reexecutando-as em casos de falhas.

HDFS

- Dados são replicados e distribuídos em vários nós
 - Fator de replicação: 3
- Projetado para arquivos grandes
 - Terabytes
- Orientado a blocos
- Comandos a lá Linux
 - Is, cp, mv, rm, etc

HDFS

HDFS Architecture

NameNode

- Gerente do HDFS
 - Um cluster HDFS consiste em um único NameNode, que gerencia o namespace do sistema de arquivos e regula o acesso a arquivos pelos clientes.
 - Determina o mapeamento de blocos para os DataNodes.
- · O NameNode é o árbitro e o repositório de todos os metadados do HDFS.
 - O sistema é projetado de tal forma que os dados do usuário nunca passam pelo NameNode.
 - Recomenda-se n\u00e3o executar jobs nesse servidor.

DataNode

- São responsáveis por atender solicitações de leitura e gravação dos clientes do sistema de arquivos.
- Armazena os blocos de arquivos
 - Executam a criação, exclusão e replicação de blocos sob instruções do NameNode.
 - Não armazena arquivos contíguos
- Informa dados do bloco ao NameNode

Secondary NameNode

- Sua principal função é obter pontos de verificação dos metadados do sistema de arquivos presentes no Namenode.
- É um auxiliar do Namenode, não é um Namenode de backup.
- Em caso de falha, o Namenode pode reiniciar mais rapidamente por causa dos pontos de verificação.
 - · Além de minimizar a perda de dados em caso de falha do NameNode.

Secondary NameNode

- fsimage: é uma snapshot do sistema de arquivos quando o Namenode started
- Edit logs: É a sequência de alterações feitas no sistema de arquivos após o Namenode ser iniciado

HDFS

Block Replication

Namenode (Filename, numReplicas, block-ids, ...) /users/sameerp/data/part-0, r:2, {1,3}, ... /users/sameerp/data/part-1, r:3, {2,4,5}, ...

Datanodes

HDFS

NameNode

File Block Mappings:

/user/aaron/data1.txt -> 1, 2, 3 /user/aaron/data2.txt -> 4, 5 /user/andrew/data3.txt -> 6, 7

DataNode(s)

3	7
	6
(5)	

Hadoop Overview Datanodes Datanode Volume Failures Snapshot Startup Progress Utilities

HDFS

Overview 's1:9820' (active)

Started:	Thu May 02 23:55:00 -0300 2019
Version:	3.1.2, r1019dde65bcf12e05ef48ac71e84550d589e5d9a
Compiled:	Mon Jan 28 22:39:00 -0300 2019 by sunilg from branch-3.1.2
Cluster ID:	CID-da52724a-2f58-48cf-9594-fbf71a58755d
Block Pool ID:	BP-1899065243-192.168.122.75-1556740026467

Summary

Security is off.

Safemode is off.

52 files and directories, 34 blocks (34 replicated blocks, 0 erasure coded block groups) = 86 total filesystem object(s).

Heap Memory used 24.32 MB of 43.98 MB Heap Memory. Max Heap Memory is 483.38 MB.

Non Heap Memory used 47.52 MB of 48.56 MB Committed Non Heap Memory. Max Non Heap Memory is <unbounded>.

Configured Capacity:	117.36 GB
Configured Remote Capacity:	0 B
DFS Used:	40.42 MB (0.03%)
Non DFS Used:	12.94 GB

HDFS

Non DFS Used:	12.94 GB
DFS Remaining:	98.34 GB (83.79%)
Block Pool Used:	40.42 MB (0.03%)
DataNodes usages% (Min/Median/Max/stdDev):	0.03% / 0.03% / 0.03% / 0.00%
Live Nodes	3 (Decommissioned: 0, In Maintenance: 0)
Dead Nodes	0 (Decommissioned: 0, In Maintenance: 0)
Decommissioning Nodes	0
Entering Maintenance Nodes	0
Total Datanode Volume Failures	0 (0 B)
Number of Under-Replicated Blocks	8
Number of Blocks Pending Deletion	0
Block Deletion Start Time	Thu May 02 23:55:00 -0300 2019
Last Checkpoint Time	Thu May 02 23:55:02 -0300 2019

NameNode Journal Status

Current transaction ID: 594

Journal Manager State

FileJournalManager(root=/opt/hdfs/namenode) EditLogFileOutputStream(/opt/hdfs/namenode/current/edits_inprogress_00000000000000594)

NameNode Storage

Storage Directory	Туре	State
/opt/hdfs/namenode	IMAGE_AND_EDITS	Active

HDFS

Datanode Information

✓s2:9866 (192.168.122.76:9866)

✓s3:9866 (192.168.122.77:9866) http://s3:9864 2s 4m 39.12 GB Showing 1 to 3 of 3 entries

2s

4m

http://s2:9864

39.12 GB

34

34

13.47 MB (0.03%)

13.47 MB (0.03%)

3.1.2

3.1.2

Next

Hadoop

- MapReduce e HDFS são executados nos mesmos nós.
 - Isso permite que o framework escalone as tarefas para os nós que contenham os dados, resultado em uma alta largura de banda agregada em todo o cluster.
- Hadoop trabalha com modos de cluster:
 - Standalone: modo menos usado. Apenas para MapReduce acessando arquivos locais.
 - Pseudo-distributed: usado para desenvolvimento/ estudo. Os daemons rodam na mesma máquina.
 - Fully-distributed: usado em produção. Os daemons são distribuídos e executados em máquinas do cluster.

Coisas Boas

- Tolerância a falhas
 - · Sistema ativo mesmo no caso de falha de alguns nós
- Self-Healing
 - Auto balanceamento dos arquivos
- Escalável
 - Adição de novos nós do cluster

Coisas Boas

- Código Aberto
 - Comunidade ativa
 - Apoio de grandes corporações
- Economia
 - Software livre
 - Uso de máquinas convencionais
- Separação da Lógica de Negócios
 - Trabalho duro fica com o Hadoop

Coisas não tão Boas

- Único nó mestre
 - Ponto crítico de falha
- Paralelização de aplicações
 - Problemas não paralelizáveis
 - Processamento de arquivos pequenos
 - Muito processamento & poucos dados

Map/Reduce

- Base na programação funcional
 - Manipulação de dados (tipicamente listas)
 - Funções que transformam dados
- · Modelo de Programação proposto pelo Google
 - Duas funções básicas: MAP e REDUCE

Map/Reduce

- MAP:
 - Toma-se uma tarefa complexa ou custosa
 - Quebra tal tarefa em sub-problemas menores
 - Delega a resolução desta tarefas a nós distribuídos (workers)
- REDUCE:
 - Coleta as respostas dos workers
 - Agrega tais respostas em uma saída que representa a solução do problema complexo

Apache Hadoop

- Divide arquivos
 - Em geral, blocos de 128MB
- Usa pares de chave/valor
- Mappers
 - filtram e transformam o dado de entrada
- Reducers
 - Agregam a saída dos mappers

Importante premissa

- MOVE-SE CÓDIGO, NÃO DADOS
 - Arquivos são grandes, código não
 - Rede é um gargalo

Clássico Exemplo

- Word Count
 - · Contar o número de ocorrência de uma palavra em um arquivo

Fernando Antonio Mota Trinta Ian Gabriel Braga Trinta Ivana Régia Braga

Map(K1,V1)

- (o, "Fernando Antonio Mota Trinta")
- (29, "Ian Gabriel Braga Trinta")
- (53, "Ivana Régia Braga")

Map list(K2,V2)

- ("Fernando", 1)
- (" Antonio", 1)
- (" Mota ", 1)
- ("Trinta", 1)
- (" lan ", 1)
- (" Gabriel ", 1)
- (" Braga ", 1)
- ("Trinta", 1)
- (" Ivana ", 1)
- (" Régia ", 1)
- (" Braga ", 1)

Reduce (K2, list(V2))

- ("Fernando", 1)
- (" Antonio", 1)
- (" Mota ", 1)
- ("Trinta", (1,1))
- (" lan ", 1)
- (" Gabriel ", 1)
- (" Braga ", (1,1))
- (" Ivana ", 1)
- (" Régia ", 1)

Reduce list(V3,K3)

- ("Fernando", 1)
- (" Antonio", 1)
- (" Mota ", 1)
- ("Trinta", 2)
- (" lan ", 1)
- (" Gabriel ", 1)
- (" Braga ", 2)
- (" Ivana ", 1)
- (" Régia ", 1)


```
public class SimpleWordCount
  extends Configured implements Tool {
  public static class MapClass
   extends Mapper<Object, Text, Text, IntWritable> {
  public static class Reduce
   extends Reducer<Text, IntWritable, Text, IntWritable> {
  public int run(String[] args) throws Exception { ... }
  public static void main(String[] args) { ... }
```



```
public static class MapClass
  extends Mapper<Object, Text, Text, IntWritable> {
  private static final IntWritable ONE = new IntWritable(1L);
  private Text word = new Text();
  @Override
  protected void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    StringTokenizer st = new StringTokenizer(value.toString());
   while (st.hasMoreTokens()) {
      word.set(st.nextToken());
      context.write(word, ONE);
```



```
public static class Reduce
  extends Reducer<Text, IntWritable, Text, IntWritable> {
  private IntWritable count = new IntWritable();
 @Override
  protected void reduce(Text key, Iterable<IntWritable> values,
                        Context context)
    throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable value : values) {
      sum += value.get();
    count.set(sum);
    context.write(key, count);
```



```
public int run(String[] args) throws Exception {
  Configuration conf = getConf();
  Job job = new Job(conf, "Counting Words");
  job.setJarByClass(SimpleWordCount.class);
  job.setMapperClass(MapClass.class);
  job.setReducerClass(Reduce.class);
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(Text.class);
 FileInputFormat.setInputPaths(job, new Path(args[0]));
  FileOutputFormat.setOutputPath(job, new Path(args[1]));
  return job.waitForCompletion(true) ? 0 : 1;
```


Particionamento

- Decisão de quais chaves vão para qual reducer
- Mundo ideal
 - Distribuição uniforme entre reducers
- Evitar a sobrecarga de um único reducer

Melhorando o Desempenho

- Combinando localmente
- Reduzir o processo de agregação nos mappers
 - Aka "Local Reduce"

		# pares k/v agregados
Sem combinação	("Maria", 1)	1000
Com combinação	("Maria", 1000)	1

Arquitetura Hadoop YARN

Resource Manager

- Nó principal do YARN, responsável por fazer o inventário de recursos disponíveis no cluster e executar vários serviços críticos, sendo o mais importante deles o Scheduler.
- Scheduler aloca recursos para executar os jobs. Mas não monitora ou rastreia o status/ progresso do aplicativo.
 - · Não garante reinício das tarefas caso falhem.
- Funciona em conjunto com um NodeManager por nó e o ApplicationMaster por aplicativo.

NodeManagers

- Os NodeManagers recebem instruções do ResourceManager e gerenciam recursos disponíveis em um único nó.
- ApplicationMasters são responsáveis por negociar recursos com o ResourceManager e por trabalhar com os NodeManagers para iniciar os contêineres.
 - Ele gerencia o ciclo de vida da aplicação.
 - Cada aplicativo tem um ApplicationMaster.

YARN

All Applications

Logged in as: dr.who

Apps Submitted	Apps Pending	Apps Running	Apps Comp	pleted C	ontainers Running	Memory Us	sed Men	nory Total	Memory Re	eserved	VCores	Jsed	VCores Total	VCore	Reserved
0	0	0	0	0	_	0 B	4.50 (SB	0 B		0	2	24	0	
luster Nodes N	1etrics														
Active Nodes	Dec	commissioning Node	es	Decomi	missioned Nodes	Lo:	st Nodes	Un	healthy Node:	S	Reboo	ted Node	es	Shutdown	Nodes
3	0		0			0		0		0		0			
cheduler Metri	cs														
Scheduler	Туре	Scheduling R	tesource Type		Minimum A	llocation		Maximu	m Allocation			Maximur	m Cluster Appl	ication Prio	rity
Capacity Schedul	er [me	mory-mb (unit=Mi),	vcores]	<	memory:128, vCore	es:1>	<memo< td=""><td>ory:1536, vo</td><td>Cores:4></td><td></td><td>0</td><td></td><td></td><td></td><td></td></memo<>	ory:1536, vo	Cores:4>		0				
Show 20 ▼ entri	es												Search:		
				FinishTime	State FinalStatus	Running	Allocated	Allocated	Reserved CPU	Reserved	% of	% of	Progress	Tracking	Blacklister

Nodes of the cluster

Logged in as: dr.who

 Cluster
About Nodes Node Labels Applications
NEW NEW_SAVING SUBMITTED ACCEPTED RUNNING FINISHED FAILED KILLED
Scheduler
→ Tools

Apps Submitte	ed A	Apps Pending	Apps Running	Apps Completed	Containers Running	Memory Used	Memory To	otal Memory	Reserved	VCores Used	VCores Total	al VCores I	Reserved
0	0		0	0	0	0 B	4.50 GB	0 B		0	24	0	
Cluster Nodes N	Netrics												
Active No	des	De	commissioning Node	S	Decommissioned Nodes	Lost	Nodes	Unhealthy Nod	es	Rebooted I	Nodes	Shutdown No	odes
3	0 0		0		0 0		0	0					
Scheduler Metri	CS	_									_		
Sched	uler Type		Scheduling	Resource Type	Minimum	Allocation		Maximum Allocation		N	Maximum Cluster Ap	pplication Priority	
Capacity Schedu	Capacity Scheduler [memory-mb (unit=Mi), vcores]		<memory:128, vcores:1=""> <memory:1536, vcores:4=""></memory:1536,></memory:128,>				0						
Show 20 ▼ entr	ies										Sea	arch:	
Node Labels -	Rack \$	Node State ≎	Node Address ≎	Node HTTP Address \$	Last health-update \$	Health-report \$	Containers \$	Allocation Tags \$	Mem Used ≎	Mem Avail ≎	VCores Used ≎	VCores Avail ≎	Version <
	/default- rack	RUNNING	s2:39651	s2:8042	Sex mai 03 00:00:36 -0300 2019		0		0 B	1.50 GB	0	8	3.1.2
	/default- rack	RUNNING	s1:43139	s1:8042	Sex mai 03 00:00:39 -0300 2019		0		0 B	1.50 GB	0	8	3.1.2
	/default- rack	RUNNING	s3:36623	s3:8042	Sex mai 03 00:00:36 -0300 2019		0		0 B	1.50 GB	0	8	3.1.2

Ecossistema Hadoop

Dúvidas?

