```
import numpy as np
import pandas as pd
import seaborn as sns
```

load dataset

```
df=pd.read_csv("/content/Mall_Customers.csv")
df.head()
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	7
0	1	Male	19	15	39	
1	2	Male	21	15	81	
2	3	Female	20	16	6	
3	4	Female	23	16	77	
4	5	Female	31	17	40	

chech missing values

check catogrical values

```
df._get_numeric_data()
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	1
0	1	19	15	39	
1	2	21	15	81	
2	3	20	16	6	
3	4	23	16	77	
4	5	31	17	40	
195	196	35	120	79	
196	197	45	126	28	
197	198	32	126	74	
198	199	32	137	18	
199	200	30	137	83	
nape					
(200,	5)				

df.shape

(200, 5)

univariant analysis

sns.barplot(df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f916e84a490>

sns.jointplot(df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f916dddf250>

bivariant analysis

sns.barplot(df.Age,df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f916b4737d0>

sns.jointplot(df.Age,df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f916b487810>

multi varient analysis

sns.pairplot(df)

statistics values

≝ 100 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

CustomerID Age Annual Income (k\$) Spending Score (1-100)

- scale the data

from sklearn.preprocessing import MinMaxScaler
scalar=MinMaxScaler()
df_new1=df.iloc[:, :-1]

df_new1

	CustomerID	Gender	Age	Annual Income (k\$)
0	1	Male	19	15
1	2	Male	21	15
2	3	Female	20	16
3	4	Female	23	16
4	5	Female	31	17
195	196	Female	35	120
				100

split depandent and indepandent variable

```
x=df_new1
y=df['Spending Score (1-100)']
```

split test and train data

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

build clustering algorithm model

from sklearn.neighbors import KNeighborsClassifier

knn=KNeighborsClassifier

predict the data

```
knn.fit(x_train,y_train)
pred=knn.predict(x_test)
```

evaluate our model

from sklearn.metrics import accuracy_score,confusion_matrix
accuracy_score(y_test,pred)
confusion_matrix(y_test,pred)

Colab paid products - Cancel contracts here

✓ 0s completed at 11:55 AM

×