Matrix Theory

University of Chinese Academy of Sciences Spring 2024

Congying Han

Homework 3

Chenkai GUO

2024.4.4

1. 设矩阵 $S \in C^{m \times n}$ 列满秩, 给定 C^m 上的一种向量范数 $||\cdot||$, 证明:

$$||x||_s = ||Sx|| \quad (\forall x \in C^n)$$

是 C^n 上的向量范数。

解,由题可得,根据向量范数的性质,依次证明:①非负性:当x = 0时,显然 $||x||_s = ||S \cdot 0|| = 0$

当 $x \neq \mathbf{0}$ 时,因为 S 列满秩,所以 $Sx \neq \mathbf{0}$,故 $||x||_s = ||Sx|| > 0$

②齐次性: 取 $\forall a \in K, x \in C^n$, 有: $||ax||_s = ||S \cdot ax|| = a||Sx||$

③三角不等式: 取 $\forall x, y \in C^n$, 有:

$$||x + y||_s = ||S(x + y)|| = ||Sx + Sy|| \le ||Sx|| + ||Sy||$$

2. 设可逆方阵 $S \in C^{n \times n}$,且知 $\|x\|_s = \|Sx\|_2$ 是 \mathbb{R}^n 上的向量范数。若 $\|A\|_s$ 表示 $\mathbb{R}^{n \times n}$ 上从属于向量范数 $\|x\|_s$ 的矩阵范数,试导出 $\|A\|_s$ 与矩阵 2-范数之间的关系式。解,根据从属范数的定义有:

$$||A||_s = \max_{||x||=1} ||Ax||_s = \max_{||x||=1} ||SAx||_2 = ||SA||_2$$

3. 证明: $A \in C^{n \times n}$, $B \in C^{n \times n}$, 若对某种矩阵范数有 $\|B\| < \frac{1}{\|A^{-1}\|}$, 则 A + B 可逆。解,根据 Cauchy-Schwartz 不等式可得:

$$||-A^{-1}B|| = ||A^{-1}B|| \le ||A^{-1}|| \cdot ||B|| < ||A^{-1}|| \cdot \frac{1}{||A^{-1}||} = 1$$

构造序列 $S_k = I + E + E^2 + \cdots + E^k, k = -A^{-1}B$, 利用等比求和公式则有:

$$S_k = \sum_{i=0}^{k} E^k = (I - E)^{-1} = (I + A^{-1}B)^{-1}$$

故可得矩阵 $I + A^{-1}B$ 可逆, 因此有:

$$A + B = A \cdot (I + A^{-1}B)$$

又因为 A 是可逆矩阵,可逆矩阵的乘积一定为可逆矩阵,故矩阵 A+B 为可逆矩阵,证毕

(实际上,上述构造序列法即为 Von Neumann 引理内容)