ASSIGNMENT-11

U19CS012

1.) Design and Implement <u>MOD-12 Counter</u> in Multisim using JK Flip-Flops.

A.) Solution:

A MOD-12 Counter would be having 12 Valid States from 0 [0000] to 11 [1011].

We will make 4-Bit Full Counter [0-15] and Try to Reduce Valid States to 12[0-11] using Additional NAND Gate that will take Clear All Bits as the Value in Counter turns out to be 12 [1100] i.e. When First Two Bits Become One, we will Clear all Bits.

The Concept is Similar to MOD-7 Counter Implemented Earlier in Practical 11.

B.) Implementation:

1.) Valid State: 0 [0000]

2.) Valid State: 1 [0001]

3.) Valid State: 2 [0010]

4.) Valid State: 3 [0011]

5.) Valid State: 4 [0100]

6.) Valid State: 5 [0101]

7.) Valid State: 6 [0110]

8.) Valid State: 7 [0111]

9.) Valid State: 8 [1000]

10.) Valid State: 9 [1001]

11.) Valid State: 10 [1010]

12.) Valid State: 11 [1011]

Cycle Starts Repeating Again

13.) Valid State: 12 [1100] -> 0 [0000]

14.) Valid State: 13 [1101] -> 1 [0001]

15.) Valid State: 14 [1110] -> 2 [0010]

16.) Valid State: 15 [1111] -> 3 [0011]

And the Loop Continues...

2.) Design and Implement <u>3-BIT Gray Code UP Synchronous Counter</u> in Multisim using JK Flip-Flops and Logic Gates.

1.) Gray Code State: 000 [0]

2.) Gray Code State: 001 [1]

3.) Gray Code State: 011 [3]

4.) Gray Code State: 010 [2]

5.) Gray Code State: 110 [6]

6.) Gray Code State: 111 [7]

7.) Gray Code State: 101 [5]

8.) Gray Code State: 100 [4]

3.) Design and Implement <u>Bidirectional Shift Registers Using Mode</u> <u>Control</u> in Multisim using JK Flip-Flops and Logic Gates.

A1.) Implementation:

Mode Control: 0 -> Shift LEFT Register

1.) State 1: 0001

2.) State 2: 0011

3.) State 3: 0111

4.) State 4: 1111

A2.) Implementation:

Mode Control: 1 -> Shift Right Register

1.) State 1: 1000

2.) State 2: 1100

3.) State 3: 1110

4.) State 4: 1111

D.) **CONCLUSION**:

We have <u>Successfully Implemented</u> MOD-12 Counter, Synchronous Gray Counter and Bi-directional Shift Registers [Using Mode Control] with the Help of <u>JK Flip-flop and Logic Gates</u> and **verified** our **MULTISIM Outputs** and **Results** from Theoretical Knowledge of these Circuits taught in DELD Classes.