30.12.2015 2, אינפי 9-10 מספר

- תנו דוגמה לפונקציה f(x,y) רציפה בכל נקודה, גזירה לפיxולפי נקודה, רציפה בכל לא דיפרנציאבילית פס. שם.
- בסיוון (1,1) בכיוון (0,0) בכיוון (1,1) בכל נקודה, גזירה ב־f(x,y) בכיוון (1,1) בסיוון (1,1) אבל (1,1) אבל לא דיפרנציאבילית שם. $\frac{\partial f}{\partial (\hat{1},\hat{1})} = -\frac{\partial f}{\partial (\hat{1},1)}$
 - $f(x,y)=\sqrt[3]{x^2y}$ בכיוון ב־ $f(x,y)=\sqrt[3]{x^2y}$ בכיוון של הפונקציה בכיוון 3.
- ם בתחום היא חסומה ההגדרה לפי שטח 0" ושל האינטגרל הכפול שאם פונקציה f(x,y) היא חסומה בתחום . $\int\int_D f(x,y)=0$ אז D
- 5. הוכיחו שלכל תחום D במיושר 1 הוא השטח של $\int \int_D 1$ הוא בהגדרת במיושר 5. הוכיחו שלכל תחום $\int \int_D 1$ האינטגרל במיושר 2. $\{(x,y) \mid 4x^2+9y^2 \le 25\}$ האינטגרל כנפח. השתמשו בעובדה הזאת כדי לחשב את שטח האליפסה $2x = r\cos\theta$, $3y = r\sin\theta$ לשם כך החליפו קואורדינטות:
- , אהו חלק של מישור, את שטח התחום המוגדר על ידי $\{(x,y,z)\mid x^2+y^2\leq z^2,\ z=\frac{x}{2}+4\}$ אהו חלק של מישור, . $x^2+y^2=z^2$ אמוגבל על ידי החרוט $x^2+y^2=z^2$ מהי הצורה שלו?)
 - .8. חשבו את שטח התחום $\{(x,y) \mid 2 \le xy \le 3, \ x \le y \le 3x\}$ בעזרת החלפת 8.
- תלות תלוי בנקודה, הוקטור (x,y) כמובן, במישור נסמן (כמקובל) ב־ \vec{r} את הוקטור לנקודה (x,y) במישור נסמן (כמקובל) פלא מופיעה בסימון הזה.)
- $(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u})$ כאשר עושים החלפת קואורדינטות $x=x(u,v), \ y=y(u,v)$ מסמנים ב $(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial v})$ את הוקטור מינים $(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v})$.
 - א. הסבירו כמיטב יכולתכם את המשמעות הגיאומטרית של שני הוקטורים האלה.
 - ב. כתבו את $\frac{\partial \vec{r}}{\partial r}$ ואת במקרה של קואורדינטות ב. כתבו את ב.
- ג. החלפת משתנים $\frac{\partial \vec{r}}{\partial v}$ ו ב $\frac{\partial \vec{r}}{\partial u}$ אורתוגונלית" אורתוגונלית $x=x(u,v),\ y=y(u,v)$ ניצבים לכל החלפת הוכיחו שההחלפה בקואורדינטות קטביות היא אורתוגונלית.
- $|x| = |x| \frac{\partial (x,y)}{\partial (u,v)}| = |x| \frac{\partial \vec{r}}{\partial u}|x| \times |x| \frac{\partial \vec{r}}{\partial v}|x|$ היא אורתוגונלית אז $|x| = x(u,v), \ y = y(u,v)$ הראו שהדבר אכן נכון בקואורדינטות קטביות.
- ה. תנו דוגמה להחלפת קואורדינטות ליניארית שהיא אורתוגונלית, ואינה הזהות או מינוס הזהות. תנו גם דוגמה להחלפה ליניארית שאינה אורתוגונלית. איך נקראת החלפת קואורדינטות ליניארית עם דטרמיננט ± 1 ?

.10