San Francisco Restuarants' Inspection Data Analysis

Resham Vyas, Sindhuja Ambadasugari & Shruthi Bhat

24 August 2017

Introduction

The Health Department has developed an inspection report and scoring system. After conducting an inspection of the facility, the Health Inspector calculates a score based on the violations observed. Violations can fall into: 1.high risk category 2.moderate risk category 3.low risk category

Violations that are directly related to the transmission of food borne illnesses, the adulteration of food products and the contamination of food-contact surfaces fall into high risk category

Records specific violations that are of a moderate risk to the public health and safety fall into moderate risk category.

Record violations that are low risk or have no immediate risk to the public health and safety fall into low risk category.

The score card that will be issued by the inspector is maintained at the food establishment and is available to the public in this dataset.

Field names and it's description:

Field Name	Data Type	Description	
business id	string	Unique identifier for the business. For many cities, this may be the license number.	
	-		
business_name	string	Common name of the business.	
business_address	string	Street address of the business. Example: 706 Mission St.	
business_city	string	City of the business. This field must be included if the file contains businesses from multiple cities.	
business_state	string	State or province for the business. In the U.S. this should be the two-letter code for the state.	
business_postal_code	string	Zip code or other postal code.	
business_latitude	number	Latitude of the business. This field must be a valid WGS 84 latitude. Example: 37.7859547	
business_longitude	number	Longitude of the business. This field must be a valid WGS 84 longitude. Example: -122.4024658	
business_location	Location	For geospatial API capabilities or for geocode addresses this <u>Location datatyne</u> column is needed: - (87):785947,-122.4004559 - (87):785947,-122.4004559 - (87):785947,-122.4004559	
business_phone_number	string	Phone number for a business including country specific dialing information. Example: +14159083801	
inspection_id	string	A unique identifier for a given inspection	
inspection_date	date	Date of the inspection in YYYY-MM-DD format. Example: 2015-08-22	
inspection_score	number	Calculated inspection score, may be either graded (0-5, 0-100), or cumulative, and this should be defined in your feed metadata.	
inspection_result	string	For jurididuces that do not applies a score, this suffice properates the non-numeric result of the inspection, for example Plass or Fall. The <u>combant LMSS</u> standard requires this field to contain 4 characters or fewer. For broader use of LIVES data, we suggest shortened terms for this field. If inspections are <u>unspecting</u> . This value must be provided.	
inspection_description	string	Single line description containing details on the outcome of an inspection.	
inspection_type	string	String representing the type of inspection. Must be one of: initial, routine, follow-up, complaint	
violation_id	string	A unique identifier for a given violation	

violation_description	string	One line description of the violation. If violation data is provided then this field is required
violation_code	string	Code for the violation. It is recommended that this be based on the FDA Food Code. However, municipalities can decide to use pre-existing codes for this field.
violation_critical	boolean	Describes whether the violation is critical (i.e., if it would cause the restaurant to fail their inspection) Must be one of: true, false

Motivation:

Eating out is a way of life in the busy city of San Fransisco. Be it hanging out for fun or saving time from cooking at home , most people do eat at restaurants either once in a while or more frequently. We will analyze the available restaurants data to make certain data based findings

Data Source

URL: https://data.sfgov.org/Health-and-Social-Services/Restaurant-Scores-LIVES-Standard/pyih-qa8i/data

Individual restaurant performance over years

1.Find The restuarants that have been performing consistently well from 2014 to 2016 2.Find the restuarants that have been inconsistent but improving from 2014 to 2016 3.Find the restuarants that been been worsened from 2014 to 2016

```
setwd("/Users/shruthi/RWorkspace/")
# Read the Data
raw data = read.csv("Restaurant Scores - LIVES Standard.csv")
# Choose the columns needed for the analysis
YoY_data = raw_data[c(2,12,13)]
# Choose the dates column and chnage format
dates <- YoY_data$inspection_date</pre>
tmp <- as.Date(dates,'%m/%d/%Y')</pre>
year = format(tmp,'%Y')
# Add the year column to the data frame
YoY_data$inspection_year = year
# Reorder the data columns and remove previous date column
YoY data = YoY data [c(1,4,3)]
# Remove the NAs from inspection scores column
YoY data = YoY data[complete.cases(YoY data[,3]), ]
# Group the data by business and year
library(dplyr)
```

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
YoY_summary = group_by(YoY_data, business_name, inspection_year)
YoY_summary = summarize(YoY_summary, avg_score =
mean(inspection score))
# Represent the data in the form of a table
library(reshape)
##
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
##
##
       rename
YoY_table = cast(YoY_summary, business_name ~ inspection_year, value =
"avg score")
# Remove the NAs from 2014-2016. 2017 has too many NAs. Removing them
would mean excluding lot of important information.
YoY_table = YoY_table[complete.cases(YoY_table[,2:4]), ]
# Considering only data 2014-2016
YoY_table = YoY_table[c(1:4)]
# Finding variance of the restaurant scores over time
library(matrixStats)
##
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
##
##
       count
YoY_table$variance = rowVars(data.matrix(YoY_table[,2:4]))
# Choosing the rows/restaurants with 0 variance
YoY consistent = YoY table[YoY table$variance == 0, ]
YoY consistent
```

##	hucinoss namo	2014	2015	
## 2016	business_name	2014	2015	
## 85	Acme Bread Company	100	100	
100	• •			
## 134	Alex Gourmet Burrito	100	100	
100				
## 228	ARGONNE ALTERNATIVE ELEMENTARY SCHO	100	100	
100	ATOT (CART 14) RAYCIDE RREUC [145102]	100	100	
## 262 100	AT&T - (CART 14) BAYSIDE BREWS [145102]	100	100	
## 279	AT&T - (CART 35) DOGGIE DINER [145122]	100	100	
100	/// (C//// 33) 200012 21/12/ [1/3122]	100	100	
## 367	AT&T PARK - ANCHOR PLAZA	100	100	
100				
## 397	AT&T PARK - MARGARITA CART (P 10)	100	100	
100				
## 416	Auntie Anne's Pretzels	97	97	
97 ## 479	Bar Tartine	100	100	
100	bai fai tille	100	100	
## 493	BASK	100	100	
100				
## 546	Beluga Restaurant	100	100	
100				
## 572	BHL	100	100	
100 ## 573	BHUK Burger	100	100	
100	bnok burger	100	100	
## 658	Borderlands Cafe	100	100	
100				
## 805	CAFE INTERNATIONAL	96	96	
96				
## 898	Cane Rosso	100	100	
100 ## 966	Converente De Matevera	100	100	
100	Cerveceria De Mateveza	100	100	
## 1025	Chile Lindo	96	96	
96				
## 1039	Chinese Education Center Elementary School	100	100	
100				
## 1040	Chinese Hospital	100	100	
100 ## 1118	CLEVELAND ELEMENTARY SCHOOL	100	100	
100	CLEVELAND ELEMENTARY SCHOOL	100	100	
## 1129	Coastside Farms and Specialties	100	100	
100	55.55.55.55.55.55.55.55.55.55.55.55.55.			
## 1179	COSTCO WHOLESALE	96	96	
96				
## 1194	Cowgirl Creamery/Artisan Cheese	100	100	
100				

## 1234	Crystal Jade Jiang Nan	100	100
100	East & West Gourmet Food	100	100
100	Eclipse Cafe	100	100
100 ## 1504	Escape from New York Pizza	100	100
100 ## 1512	Esther's German Bakery	100	100
100 ## 1609	flourChylde Bakery	100	100
100			
## 1638 98	Four Star Theatre - Snack Bar	98	98
## 1651	FRANK MCCOPPIN ELEMENTARY SCHOOL	100	100
100 ## 1689	G. L. Alfieri, LLC	100	100
100			
## 1798 100	Golden Gate Meat Co	100	100
## 1944	Happy Lounge	100	100
100 ## 2003	Hilton Financial District	100	100
100	HIILOH FINANCIAI DISCIICL	100	100
## 2004	Hilton Financial District- Banquet & Catering	100	100
100 ## 2005	Hilton Financial District- Restaurant Seven Fifty	100	100
100			
## 2006 100	Hilton Financial District-Flute Coffee and Wine Bar	100	100
## 2032	Home Maid Ravioli Co Inc	100	100
100 ## 2039	Hon's Wun Tun House	98	98
98	non 3 wan ran nouse	50	50
## 2080 84	Hotwok Express, Inc	84	84
## 2105	Humphry Slocombe	100	100
100 ## 2118	Hyatt Regency - Main Kitchen, Employees Cafeteria	100	100
100	nyact Regency - Main Ricchen, Employees Careteria	100	100
## 2173	International Hotel Senior Housing, Inc	100	100
100 ## 2283	Joey & Pat's Bakery & Coffee Shop	100	100
100			
## 2315 100	JUNIPERO SERRA ELEMENTARY SCHOOL	100	100
## 2343	Kara's Cupcakes Inc.	100	100
100 ## 2367	KEY ELEMENTARY SCHOOL	100	100
100	=== 36,1662		

## 2454 94	La Corneta	94	94
## 2507	Ladle and Leaf	100	100
100 ## 2630 98	LITTLE HENRY'S	98	98
## 2786 100	Mariposa Baking Co., Inc.	100	100
## 2808 100	MARTIN L. KING MIDDLE SCHOOL	100	100
## 2884 90	Mi Lindo Peru'	90	90
## 2885 88	Mi Pueblito Market	88	88
## 2896 100	Miette	100	100
## 2903 100	Mikes Grocery & Liquor	100	100
## 2965 94	Mojo Bicycle Cafe	94	94
## 3011 100	Moyo's Yogurt	100	100
## 3041 100	MV Taurus	100	100
## 3228 100	Oceanview Market and Deli	100	100
## 3242	OMI Senior Center	100	100
100 ## 3260	Onigilly LLC	100	100
100 ## 3429 100	Pepples Donuts	100	100
## 3443	PETE'S UNOCAL 76	100	100
100 ## 3543	POPEYES-GENEVA & MISSION	92	92
92 ## 3560	Prather Ranch Meat Co.	100	100
100 ## 3594 98	PUERTO ALEGRE NO. 2	98	98
## 3608 100	QUICK N EASY INDIAN FOODS	100	100
## 3610 100	Quick-N-Ezee Indian Foods	100	100
## 3666 100	Regency Club 18th Floor	100	100
## 3715 98	Ritz-Carlton SF - Bakery	98	98
## 3718 96	Ritz-Carlton SF - Employee Cafeteria	96	96

```
## 3929
                                              Schilling & Co. 100
                                                                     100
100
## 3953
                                   SELF-HELP FOR THE ELDERLY
                                                               100
                                                                     100
100
## 4043
                                                     Sidekick 100
                                                                     100
100
## 4146
                                                      SPRESSA 100
                                                                     100
100
                                             Stanley Steamers
## 4177
                                                               100
                                                                     100
100
## 4255
                                                Subway #61240
                                                               100
                                                                     100
100
## 4333
                                                Sushi In, LLC
                                                                93
                                                                      93
93
## 4380
                                                     T-WE TEA 100
                                                                     100
100
## 4494
                                                  Ten Ren Tea
                                                                96
                                                                      96
96
## 4706
                                              The Sweet House 100
                                                                     100
100
## 4719
                                  The Village Market & Pizza
                                                               96
                                                                      96
96
## 4796
                                                   Toyose INC 100
                                                                     100
100
## 4879
                                                      Upcider
                                                                96
                                                                      96
96
## 4996
                                       Western Sunset Market
                                                               100
                                                                     100
100
## 5132
          Zaida T. Rodriguez (ZTR) Child Development Center 100
                                                                    100
100
##
        variance
## 85
               0
## 134
               0
## 228
               0
## 262
               0
## 279
               0
## 367
               0
## 397
               0
## 416
               0
## 479
               0
## 493
               0
## 546
## 572
               0
## 573
               0
## 658
               0
## 805
               0
## 898
               0
## 966
               0
## 1025
               0
## 1039
```

	1040	0		
	1118	0		
##	1129	0		
##	1179	0		
##	1194	0		
##	1234	0		
##	1400	0		
	1416	0		
	1504	0		
	1512	0		
	1609	0		
	1638	0		
	1651	0		
	1689	0		
	1798	0		
	1944	0		
	2003	0		
	2004	0		
	2005	0		
	2006			
		0		
	2032	0		
	2039	0		
	2080	0		
	2105	0		
	2118	0		
	2173	0		
	2283	0		
	2315	0		
	2343	0		
	2367	0		
	2454	0		
	2507	0		
	2630	0		
	2786	0		
	2808	0		
	2884	0		
	2885	0		
	2896	0		
	2903	0		
##	2965	0		
	3011	0		
##	3041	0		
##	3228	0		
##	3242	0		
	3260	0		
	3429	0		
	3443	0		
	3543	0		
	3560	0		
	3594	0		
11.11	JJJ 1	-		

```
0
## 3608
## 3610
              0
## 3666
              0
## 3715
              0
## 3718
              0
## 3929
              0
## 3953
              0
## 4043
              0
## 4146
## 4177
## 4255
              0
## 4333
              0
## 4380
              0
## 4494
              0
## 4706
              0
## 4719
              0
## 4796
              0
## 4879
              0
## 4996
## 5132
              0
```

All the restaurants that have 0 variance are the ones which are doing good. There are no restaurants that are consistently bad.

```
#Choosing the top 50 rows/restaurants with highest variance
YoY_inconsistent = YoY_table[order(-YoY_table$variance), ][1:50,]
```

YoY_inconsistent

##	business_name	2014	2015
2016			
## 74	ABC Bakery Cafe	46.00000	94.00000
72.00000			
## 4583	The Crew	96.00000	61.00000
100.00000			
## 1840	Gourmet Kitchen	55.00000	92.00000
92.00000			
## 4900	Velo Rouge Cafe	98.00000	66.00000
98.00000			
## 5118	Yummy Dim Sum & Fast Food, LLC	50.00000	82.00000
81.00000			100 0000
## 2732	M.Y. China	90.00000	100.00000
66.00000			
## 4980	WE BE SUSHI	98.00000	82.00000
65.00000	DACTI THAT DECTAMBANT O DAD	05 00000	F.4. 00000
## 492	BASIL THAI RESTAURANT & BAR	85.00000	54.00000
77.00000	The Dell	02 00000	62 00000
## 4542	The Bell	92.00000	62.00000
85.28571	\\\\.	02 00000	62 00000
## 4941	Volcano Kitchen	92.80000	62.00000
83.00000			

## 659	Borodudur Restaurant	90.00000	96.00000
67.00000 ## 1809	Golden River Restaurant	73.60000	81.00000
52.00000 ## 1590	First Cake	58.91304	79.00000
88.00000 ## 63	A La Turca	90.00000	86.00000
63.00000 ## 3425	Penang Garden Restaurant	69.00000	94.00000
94.00000 ## 4862	Uncle Cafe	82.00000	76.00000
55.00000 ## 206	Another Cafe	98.00000	70.00000
87.85714 ## 2045	Hong Kong Lounge	90.00000	79.38462
61.94444 ## 1835	Gourment Noodle House	93.66667	98.00000
71.61538 ## 1102	City View Restaurant	96.00000	84.00000
68.00000 ## 1762	Glide Memorial Church	87.00000	72.00000
100.00000 ## 5010	Whitcomb Hotel Bar & Grill	72.00000	100.00000
85.00000 ## 534	Begoni Bistro	96.00000	74.00000
70.00000 ## 4406	Tai Chi Restaurant	72.00000	58.00000
86.00000 ## 798	Cafe Europa	96.00000	94.00000
71.00000 ## 3846	SAJJ Street Eats	71.00000	93.00000
96.00000 ## 1861	Great Eastern Restaurant	70.00000	76.00000
96.00000 ## 2373	Khan Toke Thai House	65.37500	90.00000
68.00000 ## 4091	Sodini's Restaurant	72.00000	65.00000
91.00000 ## 1794	Golden Gate Dim Sum Seafood	92.00000	90.00000
68.00000 ## 1937	Happy Cafe	90.00000	92.00000
68.00000 ## 3497	Piraat Pizza	70.00000	94.00000
92.00000 ## 5116	Yummy Bakery & Restaurant	86.00000	68.00000
94.00000 ## 1021	Chico's Grill	85.00000	65.00000
90.00000 ## 3006	MOULIN ROUGE	94.00000	69.00000
89.00000			

```
## 831
                                   CAFE PICARO 93.00000
                                                           96.00000
72.00000
## 5067
                              Wow Naan-N-Curry 75.00000
                                                           64.00000
90.00000
## 2058
                            Horizon Restaurant 86.00000
                                                           63.00000
85.00000
## 2696
                                    Love Berry 96.00000
                                                           96.00000
73,60000
                               Olea Restaurant 86.00000
                                                           93.00000
## 3237
68.00000
           Sodexo at Academy of Art University 76.00000 100.00000
## 4089
96.00000
## 3460
                                   Pho Express 96.00000
                                                          88.00000
71.00000
## 4438
                     Taqueria El Buen Sabor #2 100.00000
                                                          75.00000
92,00000
## 464
                                   Bamboo Asia 79.00000 100.00000
77.00000
                                   Les Joulins 53.00000
## 2582
                                                          77.00000
72.00000
## 4321
                                 Supreme Pizza 100.00000
                                                           96.00000
76.61538
## 1081
                             Chutney USA, Inc. 69.00000
                                                           82.00000
94.00000
                                   Jade Garden 76.00000
## 2224
                                                          83.00000
59.00000
## 1501 Equinox Fitness SC San Francisco, Inc. 76.00000
                                                          92.00000
100.00000
## 3775
                                     Ruby Skye 78.00000 94.00000
70.00000
##
        variance
## 74
        577.3333
## 4583 460.3333
## 1840 456.3333
## 4900 341.3333
## 5118 331.0000
## 2732 305.3333
## 4980 272.3333
## 492 259.0000
## 4542 247.8844
## 4941 247.6133
## 659 234.3333
## 1809 227.0533
## 1590 221.7561
## 63
        212.3333
## 3425 208.3333
## 4862 201.0000
## 206 200.9592
## 2045 200.6600
## 1835 200.1975
```

```
## 1102 197.3333
## 1762 196.3333
## 5010 196.3333
## 534 196.0000
## 4406 196.0000
## 798 193.0000
## 3846 186.3333
## 1861 185.3333
## 2373 182.8802
## 4091 181.0000
## 1794 177.3333
## 1937 177.3333
## 3497 177.3333
## 5116 177.3333
## 1021 175.0000
## 3006 175,0000
## 831 171.0000
## 5067 170.3333
## 2058 169.0000
## 2696 167.2533
## 3237 166.3333
## 4089 165.3333
## 3460 163.0000
## 4438 163.0000
## 464 162.3333
## 2582 160.3333
## 4321 156.4339
## 1081 156.3333
## 2224 152.3333
## 1501 149.3333
## 3775 149.3333
# Choosing restaurants that have improved YoY
YoY_inconsistent_good = subset(YoY_inconsistent,
YoY inconsistent$\`2015\` > YoY inconsistent$\`2014\` &
YoY_inconsistent$`2016` > YoY_inconsistent$`2015`)
YoY_inconsistent_good
##
                                  business name
                                                    2014 2015 2016
variance
## 1590
                                     First Cake 58.91304
                                                           79
                                                                 88
221.7561
## 3846
                               SAJJ Street Eats 71.00000
                                                           93
                                                                 96
186.3333
                    Great Eastern Restaurant 70.00000
## 1861
                                                           76
                                                                 96
185.3333
                              Chutney USA, Inc. 69.00000
## 1081
                                                           82
                                                                 94
156.3333
## 1501 Equinox Fitness SC San Francisco, Inc. 76.00000
                                                           92 100
```

```
# There are 6 out of 50 which have improved considerably YoY
#Choosing restaurants that worsened YoY
YoY_inconsistent_bad = subset(YoY_inconsistent, YoY_inconsistent$2015
< YoY_inconsistent$`2014` & YoY_inconsistent$`2016` <</pre>
YoY inconsistent$\(^2015\)
YoY inconsistent bad
##
                     business_name 2014
                                            2015
                                                     2016 variance
## 4980
                       WE BE SUSHI 98 82.00000 65.00000 272.3333
## 63
                        A La Turca 90 86.00000 63.00000 212.3333
## 4862
                        Uncle Cafe 82 76.00000 55.00000 201.0000
                  Hong Kong Lounge 90 79.38462 61.94444 200.6600
## 2045
## 1102
              City View Restaurant 96 84.00000 68.00000 197.3333
                     Begoni Bistro 96 74.00000 70.00000 196.0000
## 534
## 798
                       Cafe Europa 96 94.00000 71.00000 193.0000
## 1794 Golden Gate Dim Sum Seafood 92 90.00000 68.00000 177.3333
## 3460
                       Pho Express 96 88.00000 71.00000 163.0000
## 4321
                     Supreme Pizza 100 96.00000 76.61538 156.4339
# There are 7 out of 50 which have dropped considerably YoY
```

Finding:

- 1.Restuarants that have been performing consistently well from 2014 to 2016 are Totally 50 restuarants have been doing well over the years. Top three are Acme Bread Company, Alex Gourmet Burrito and ARGONNE ALTERNATIVE ELEMENTARY SCHO.
- 2.Restuarants that have been inconsistent but improving from 2014 to 2016 are Totally 6 restuarants have improved over the years and top three are First Cake, SAJJ Street Eats and Great Eastern Restaurant
- 3.Restuarants that been been worsened from 2014 to 2016 -Totally 7 restuarants have worsened over the years and top three are WE BE SUSHI, A La Turca and Uncle Cafe.

Consistency based on location

Find the areas in the SF city where the restuarants have been doing consistently well and worsened over years?

```
setwd("/Users/shruthi/RWorkspace/")
# Read the Data
pin_data = read.csv("/Users/shruthi/RWorkspace/Restaurant_Scores_-
_LIVES_Standard.csv")
# Choose the columns needed for the analysis
pin_data =
pin_data[c("business_postal_code", "inspection_date", "inspection_score")
```

```
1
# Choose the dates column and chnage format
dates <- pin data$inspection date
tmp <- as.Date(dates,'%m/%d/%Y')</pre>
year = format(tmp,'%Y')
# Add the year column to the data frame
pin_data$inspection_year = year
# Reorder the data columns and remove previous date column
pin_data = pin_data[c(1,4,3)]
# Remove the NAs from inspection scores column
pin_data = pin_data[complete.cases(pin_data[,3]), ]
# Group the data by pin and year
library(dplyr)
pin_summary = group_by(pin_data, business_postal_code, inspection_year)
pin_summary = summarize(pin_summary, avg_score =
round(mean(inspection_score)))
# Represent the data in the form of a table
library(reshape)
pin_table = cast(pin_summary, business_postal_code ~ inspection_year,
value = "avg score")
# Remove NAs once again (Since it is the form of table, we remove pins
with no score during any year)
pin_table = pin_table[complete.cases(pin_table[,2:5]), ]
pin_table
##
      business postal code 2014 2015 2016 2017
## 1
                             88
                                  90
                                       88
                                             94
## 9
                     94102
                             85
                                  86
                                       85
                                             88
## 10
                     94103
                                       85
                             87
                                  85
                                             87
## 12
                     94104
                             89
                                  93
                                       85
                                             89
## 14
                     94107
                             91
                                  90
                                       92
                                             88
## 15
                     94108
                             83
                                  86
                                       83
                                             82
## 16
                     94109
                             86
                                  82
                                       82
                                             87
## 17
                     94110
                             89
                                  88
                                       88
                                             90
## 19
                     94111
                             89
                                  91
                                       86
                                             90
## 20
                     94112
                             89
                                  88
                                       85
                                             89
## 21
                     94114
                             87
                                       92
                                  86
                                             90
## 22
                     94115
                             87
                                  84
                                       87
                                             81
## 23
                             86
                                             90
                     94116
                                  88
                                       86
## 24
                     94117
                             89
                                  84
                                       89
                                             92
## 25
                     94118
                             89
                                  87
                                       83
                                             82
## 27
                     94121
                             86
                                  84
                                       81
                                            92
```

```
## 28
                     94122
                             83 82
                                       85
                                            89
## 30
                                       92
                     94124
                             90
                                  89
                                            96
## 34
                     94131
                             91
                                  93
                                       87
                                            86
## 35
                     94132
                             92
                                  93
                                       88
                                            88
## 36
                     94133
                             82
                                  83
                                       84
                                            83
## 37
                     94134
                             88
                                  88
                                       82
                                            82
# Finding variance of the scores over time
pin table$variance = rowVars(data.matrix(pin table[,2:5]))
# Choosing the rows/pins with 0 variance
pin_consistent = pin_table[pin_table$variance == 0, ]
pin consistent
## [1] business postal code 2014
                                                 2015
## [4] 2016
                                                 variance
## <0 rows> (or 0-length row.names)
# No pin codes with 0 variance
# Choosing rows/pins that have improved YoY
pin_inconsistent_good = subset(pin_table, pin_table$`2015` >
pin table$`2014` & pin table$`2016` > pin table$`2015` &
pin_table$`2017`>pin_table$`2016`)
pin inconsistent good
## [1] business postal code 2014
                                                 2015
## [4] 2016
                                                 variance
## <0 rows> (or 0-length row.names)
# There are no pin codes which have improved YoY
# Choosing rows/pins that worsened YoY
pin inconsistent bad = subset(pin table, pin table$`2015` <</pre>
pin_table$`2014` & pin_table$`2016` < pin_table$`2015` &</pre>
pin table$`2017`< pin_table$`2016`)</pre>
pin inconsistent bad
##
      business_postal_code 2014 2015 2016 2017 variance
## 25
                     94118
                             89
                                  87 83
                                            82 10.91667
# There are 1 pin code which has dropped considerably YoY
# Aggregating the scores of pins over all years
aggregate_pin_summary = pin_data[c(1,3)]
aggregate_pin_summary$len <-</pre>
nchar(as.character(aggregate_pin_summary$business_postal_code))
aggregate pin summary =
aggregate_pin_summary[(aggregate_pin_summary$len==5),]
aggregate_pin_summary = group_by(aggregate_pin_summary,
business postal code)
```

```
aggregate_pin_summary = summarize(aggregate_pin_summary, avg_score =
mean(inspection_score))
library (ggplot2)
ggplot(aggregate_pin_summary, aes(x=business_postal_code, y=avg_score))
+
    geom_bar(stat='identity', width=0.5, fill = "#FF6666") + labs(y =
"Inspection Score", x = "Postal Codes", title = "Inspection Scores for
different Postal Codes")+
    coord_flip()+theme(text = element_text(size=7), axis.text.x =
element_text(angle=0, hjust=1))
```

Inspection Scores for different Postal Codes

Finding:

The best area in the SF bay area to eat out based on three year data is Hayward(94545) and San Bruno(94066)

The worst area to eat out is Daly City(94014)

Inspection score distribution

For the past three years what is the inspection score distribution like for SF Restuarants?

```
setwd("/Users/shruthi/RWorkspace/")
# Read the Data
raw_data = read.csv("/Users/shruthi/RWorkspace/Restaurant_Scores_-
LIVES Standard.csv")
# Choose the columns needed for the analysis
inspec data =
raw_data[c("business_id","inspection_score","inspection_date")]
# Choose the dates column and change format
dates <- inspec data$inspection date</pre>
dates <- as.Date(dates,'%m/%d/%Y')</pre>
year = format(dates,'%Y')
# Add the date, year column to the data frame
inspec_data$inspection_date = dates
inspec data$inspection year = year
# Remove the NAs/blanks from inspection scores column
inspec_data = inspec_data[complete.cases(inspec_data[,2]), ]
# Group the data by business and date
library(dplyr)
inspec summary = group by(inspec data, business id, inspection date)
inspec_summary = summarize(inspec_summary, avg_score =
mean(inspection_score))
# Create a frequency table for inspection scores
inspec_table = table(inspec_summary$avg_score)
# Plot the inspection scores
plot(inspec_table, xlab = "Inspection Score", ylab = "Frequency", main
= "Inspection Score Distribution")
```

Inspection Score Distribution


```
#inspec_summary =
inspec_summary[!duplicated(inspec_summary$inspection_score),]
```

Finding:

Over the three years, more number of restuarants have scored 96 and 100.

Violation description distribution

For the past three years what is the inspection score distribution like for SF restuarants?

```
setwd("/Users/shruthi/RWorkspace/")
# Read the Data
raw_data = read.csv("/Users/shruthi/RWorkspace/Restaurant_Scores_-
_LIVES_Standard.csv")
# Choose the columns needed for the analysis
violation_data = raw_data["violation_description"]
# Remove the NAs/blanks from inspection scores column
violation_data = violation_data[complete.cases(violation_data[,1]), ]
# Group the data by business and date
```

```
# library(dplyr)
# inspec summary = group by(inspec data, business id, inspection date)
# inspec_summary = summarize(inspec_summary, avg_score =
mean(inspection score))
# Create a frequency table for inspection scores
violation table = table(violation data)
# Sort the table based on frequencies and plot the frequencies for top
10 violations
violation df = as.data.frame(violation table)
violation_df = violation_df[(violation_df\subseteq violation_data != ""),]
violation_sorted = violation_df[order(-violation_df$Freq),]
library (ggplot2)
ggplot(violation_sorted[1:10,], aes(x=violation_data, y=Freq)) +
  geom_bar(stat='identity') + labs(y = "Frequency", x = "Violation")
Descriptions", title = "Distribution of Violation Descriptions")+
  coord_flip()+theme(text = element_text(size=10), axis.text.x =
element_text(angle=0, hjust=1))
```

Distribution of Viola

Finding: Over the past three years, the violation that was committed most by the SF restuarants is 'Unclean or degraded floors, walls or ceilings'

For a score of 100, what are the violations?

Even though a restaurant scores 100 there could be different types of violations. Here we are trying to find the various violations committed by the restuarants in the past three years

```
setwd("/Users/shruthi/RWorkspace/")
# Read the Data
raw_data = read.csv("/Users/shruthi/RWorkspace/Restaurant_Scores_-
LIVES Standard.csv")
# Choose the columns needed for the analysis
topscore data = raw data[c("inspection score",
"violation_description")]
# Choose the data where inspection score is 100 and no blanks
topscore data = topscore data[complete.cases(topscore data[,1]), ]
topscore data = topscore data[topscore data$inspection score == 100,]
topscore_data = topscore_data[topscore_data$violation_description !=
"",]
# Create a frequency table for violation descriptions
topscore_table = table(topscore_data$violation_description)
# Sort the table based on frequencies
topscore df = as.data.frame(topscore table)
colnames(topscore df) = c("Violation Description", "Frequency")
topscore sorted = topscore df[order(-topscore df$Frequency),]
head(topscore_sorted)
##
                                                   Violation
Description
## 22
                      Inadequate and inaccessible handwashing
facilities
## 37
                                  Moderate risk food holding
temperature
## 68 Wiping cloths not clean or properly stored or inadequate
sanitizer
## 31
                 Inadequately cleaned or sanitized food contact
surfaces
## 38
                                        Moderate risk vermin
infestation
## 14
                                                   Improper food
storage
## Frequency
## 22
             11
## 37
             11
## 68
```

##	31	5				
##	38	5				
##	14	4				

Finding:

The top 2 violations committed by restuarants who have scored 100 are 'Inadequate and inaccessible handwashing facilities' and 'Moderate risk food holding temperature'.

Conclusion:

Based on our exploratory analysis we found out that even though all the restuarants have made the violation of not having convenient hand washing facility, other high risk violations have been found less. Although it is safe to eat in most areas in SF, the best restuarants to dine out are in the areas of Hayward and San Bruno and the worst area to eat would be Daly City.