Álgebra homológica, día 6

Alexey Beshenov (cadadr@gmail.com)

15 de agosto de 2016

1. Funtores derivados como δ -funtores universales

Hasta este punto hemos estudiado sucesiones exactas en categorías abelianas y funtores exactos. Las sucesiones exactas permiten de construir objetos a partir de objetos más sencillos. Por ejemplo, una sucesión exacta corta en una categoría abeliana **A**

$$0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$$

es en cierto sentido una decomposición del objeto M en objetos K y N. Si F es un funtor aditivo exacto $A \rightarrow B$, la sucesión exacta de arriba induce otra sucesión exacta en B

$$0 \to F(K) \to F(M) \to F(N) \to 0$$

y entonces el objeto F(M) consiste de F(K) y F(N). Todo se vuelve más complicado (y más interesante) cuando F no es exacto. Si F es exacto por la derecha pero no es exacto por la izquierda, tenemos una sucesión exacta

???
$$\rightarrow F(K) \rightarrow F(M) \rightarrow F(N) \rightarrow 0$$

dónde el morfismo $F(K) \to F(M)$ no es necesariamente mono. Afortunadamente, bajo ciertas hipótesis, existe un modo natural y universal de continuar la sucesión exacta de arriba: vamos a tener una sucesión exacta larga en **B**

$$\cdots \rightarrow L_2F(K) \rightarrow L_2F(M) \rightarrow L_2F(N) \xrightarrow{\delta_2} L_1F(K) \rightarrow L_1F(M) \rightarrow L_1F(N) \xrightarrow{\delta_1} F(K) \rightarrow F(M) \rightarrow F(N) \rightarrow 0$$

Aquí los $L_nF: \mathbf{A} \to \mathbf{B}$ son los **funtores derivados por la izquierda** de F. En particular, para n=0 tenemos $L_0F \cong F$. Los morfismos en la última sucesión exacta están inducidos por los morfismos de la sucesión $K \to M \to N$, y los $\delta_n: L_nF(N) \to L_{n-1}F(K)$ son ciertos morfismos especiales llamados **morfismos de conexión**.

De la misma manera, si $F \colon \mathbf{A} \to \mathbf{B}$ es un funtor aditivo exacto por la derecha, entonces cada sucesión exacta en \mathbf{A} produce una sucesión exacta en \mathbf{B}

$$0 \to F(K) \to F(M) \to F(N) \xrightarrow{\delta^0} R^1 F(K) \to R^1 F(M) \to R^1 F(N) \xrightarrow{\delta^1} R^2 F(K) \to R^2 F(M) \to R^2 F(N) \to \cdots$$

Aquí los $R^n F : \mathbf{A} \to \mathbf{B}$ son los **funtores derivados por la derecha** del funtor F. En particular, para n = 0 tenemos $R^0 F \cong F$.

Sobre la categoría R-**Mód**, para cada funtor exacto por la derecha (por ejemplo $- \otimes_R M$) existen funtores derivados por la izquierda $L_n F$ y para cada funtor exacto por la izquierda F (por ejemplo $\underline{\text{Hom}}_R(M, -)$) existen funtores derivados por la derecha $R^n F$. Antes de desarrollar el cálculo de funtores derivados, demos las definiciones generales.

- **1.1. Definición.** Un δ -funtor izquierdo (o homológico) (T_n , δ_n) consiste en los siguientes datos.
 - Una colección de funtores aditivos T_n : $\mathbf{A} \to \mathbf{B}$ para n = 0, 1, 2, ...
 - Morfismos δ_n : $T_n(N) \to T_{n-1}(K)$ para n = 1, 2, 3, ... y para cada sucesión exacta corta en **A**

$$(*) 0 \to K \to M \to N \to 0$$

Y se piden las siguientes propiedades:

■ Cada sucesión exacta corta (*) induce una sucesión exacta larga en B

$$\cdots \to T_2(K) \to T_2(M) \to T_2(N) \xrightarrow{\delta_2} T_1(K) \to T_1(M) \to T_1(N) \xrightarrow{\delta_1} T_0(K) \to T_0(M) \to T_0(N) \to 0$$

• Las sucesiones exactas largas son naturales: cada diagrama conmutativo con filas exactas

$$0 \longrightarrow K \longrightarrow M \longrightarrow N \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow K' \longrightarrow M' \longrightarrow N' \longrightarrow 0$$

induce un diagrama conmutativo

$$\cdots \xrightarrow{\delta_2} T_1(K) \longrightarrow T_1(M) \longrightarrow T_1(N) \xrightarrow{\delta_1} T_0(K) \longrightarrow T_0(M) \longrightarrow T_0(N) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \xrightarrow{\delta_2} T_1(K') \longrightarrow T_1(M') \longrightarrow T_1(N') \xrightarrow{\delta_1} T_0(K') \longrightarrow T_0(M') \longrightarrow T_0(N') \longrightarrow 0$$

1.2. Definición. Sea $F: \mathbf{A} \to \mathbf{B}$ un funtor aditivo exacto por la derecha. Entonces sus **funtores derivados por la izquierda** forman un δ -funtor izquierdo (L_nF, δ_n) tal que $L_0F \cong F$ y que satisface la siguiente propiedad universal. Para cualquier otro δ -funtor izquierdo (T_n, ∂_n) una transformación natural $T_0 \Rightarrow L_0F$ se extiende de modo único a transformaciones naturales $T_n \Rightarrow L_nF$ para n > 0 que conmutan con los δ_n y ∂_n :

1.3. Observación. Para cada funtor aditivo exacto por la derecha $F: \mathbf{A} \to \mathbf{B}$, si sus funtores derivados por la izquierda L_nF existen, son únicos salvo isomorfismo.

Demostración. Si (L_n^1F, δ_n^1) y (L_n^2F, δ_n^2) son dos funtores derivados de F, tenemos transformaciones naturales únicas $L_n^1F \Rightarrow L_n^2F$ y $L_n^2F \Rightarrow L_n^1F$ y las composiciones $L_n^1F \Rightarrow L_n^2F \Rightarrow L_n^1F$ y $L_n^2F \Rightarrow L_n^2F \Rightarrow L_n^2F$ deben ser las transformaciones identidad. Entonces $L_n^1F \cong L_n^2F$.

Las definiciones para δ -funtores derechos son las mismas, solo que las flechas van en la otra dirección:

- **1.4. Definición.** Un δ -funtor derecho (o cohomológico) (T^n, δ^n) consiste en los siguientes datos.
 - Una colección de funtores aditivos T^n : $\mathbf{A} \to \mathbf{B}$ para n = 0, 1, 2, ...
 - Morfismos $\delta^n \colon T^n(N) \to T^{n+1}(K)$ para $n=0,1,2,\ldots$ y para cada sucesión exacta corta en **A**

$$(*) 0 \to K \to M \to N \to 0$$

Y se piden las siguientes propiedades:

■ Cada sucesión exacta corta (*) induce una sucesión exacta larga en B

$$0 \to T^0(K) \to T^0(M) \to T^0(N) \xrightarrow{\delta^0} T^1(K) \to T^1(M) \to T^1(N) \xrightarrow{\delta^1} T^2(K) \to T^2(M) \to T^2(N) \to \cdots$$

■ Las sucesiones exactas largas son naturales: cada diagrama conmutativo con filas exactas

$$0 \longrightarrow K \longrightarrow M \longrightarrow N \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow K' \longrightarrow M' \longrightarrow N' \longrightarrow 0$$

induce un diagrama conmutativo

$$0 \longrightarrow T^{0}(K) \longrightarrow T^{0}(M) \longrightarrow T^{0}(N) \xrightarrow{\delta^{0}} T^{1}(K) \longrightarrow T^{1}(M) \longrightarrow T^{1}(N) \xrightarrow{\delta^{1}} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow T^{0}(K') \longrightarrow T^{0}(M') \longrightarrow T^{0}(N') \xrightarrow{\delta^{0}} T^{1}(K') \longrightarrow T^{1}(M') \longrightarrow T^{1}(N') \xrightarrow{\delta^{1}} \cdots$$

1.5. Definición. Sea $F: \mathbf{A} \to \mathbf{B}$ un funtor aditivo exacto por la izquierda. Entonces sus **funtores derivados por la derecha** forman un δ -funtor derecho (R^nF, δ^n) tal que $R^0F \cong F$ y que satisface la siguiente propiedad universal. Para cualquier otro δ -funtor derecho (T^n, ∂^n) una transformación natural $R^0F \Rightarrow T^0$ se extiende de modo único a transformaciones naturales $R^nF \Rightarrow T^n$ para n > 0 que conmutan con los δ^n y ∂^n :

$$0 \longrightarrow R^{0}F(K) \longrightarrow R^{0}F(M) \longrightarrow R^{0}F(N) \xrightarrow{\delta^{0}} R^{1}F(K) \longrightarrow R^{1}F(M) \longrightarrow R^{1}F(N) \xrightarrow{\delta^{1}} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

1.6. Observación. Para cada funtor exacto por la izquierda $F: \mathbf{A} \to \mathbf{B}$, si sus funtores derivados por la derecha R^nF existen, son únicos salvo isomorfismo.

Las sucesiones exactas con L_nF y R^nF nos dan inmediatamente el siguiente resultado:

- **1.7. Observación.** Sea $F: \mathbf{A} \to \mathbf{B}$ es un funtor exacto por la derecha. Supongamos que sus funtores derivados L_nF existen. Entonces las siguientes condiciones son equivalentes:
 - 1) F es exacto.

- 2) $L_1F = 0$.
- 3) $L_n F = 0$ para cada n > 0.

Sea $F: \mathbf{A} \to \mathbf{B}$ es un funtor exacto por la izquierda. Supongamos que sus funtores derivados R^nF existen. Entonces las siguientes condiciones son equivalentes:

- 1) F es exacto.
- 2) $R^1F = 0$.
- 3) $R^n F = 0$ para cada n > 0.

Demostración. Por ejemplo, en el caso de los funtores derivados por la izquierda, tenemos 2) \Rightarrow 1): si $L_1F = 0$, entonces cada sucesión exacta corta

$$0 \to K \to M \to N \to 0$$

induce el siguiente diagrama con filas exactas

$$\cdots \longrightarrow L_1 F(N) \xrightarrow{\delta_1} L_0 F(K) \longrightarrow L_0 F(M) \longrightarrow L_0 F(N) \longrightarrow 0$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$F(K) \longrightarrow F(M) \longrightarrow F(N) \longrightarrow 0$$

pero $L_1F=0$, y por lo tanto $F(K)\to F(M)$ es mono. Esto demuestra que F es también exacto por la izquierda.

Luego, tenemos la implicación trivial 3) \Rightarrow 2). Y en fin, 1) \Rightarrow 3): si F es exacto, entonces se ve que poniendo $L_0F := F$ y $L_n := 0$ para n > 0 se obtiene un δ -funtor universal.

La definición de δ -funtore universal implica en particular la siguiente

1.8. Observación.

1) Sean $F,G: \mathbf{A} \to \mathbf{B}$ dos funtores aditivos exactos por la derecha. Supongamos que sus funtores derivados L_nF y L_nG existen. Entonces una transformación natural $F \Rightarrow G$ induce transformaciones naturales $L_nF \Rightarrow L_nG$ tales que cada diagrama conmutativo con filas exactas

induce el diagrama conmutativo con filas exactas

2) Sean $F, G: \mathbf{A} \to \mathbf{B}$ dos funtores aditivos exactos por la izquierda. Supongamos que sus funtores derivados $R^n F$ y $R^n G$ existen. Entonces una transformación natural $F \Rightarrow G$ induce transformaciones naturales $R^n F \Rightarrow R^n G$ tales que cada diagrama conmutativo con filas exactas

induce el diagrama conmutativo con filas exactas

El término " δ -funtor" fue introducido por Grothendieck en el artículo de Tohoku (1957), pero esta noción ya estaba tácita en el libro de texto de Cartan y Eilenberg (publicado en 1956, pero el trabajo había empezado mucho tiempo antes).

2. Teorema de Grothendieck sobre δ -funtores borrables

Como hemos visto, los funtores derivados $L_nF: \mathbf{A} \to \mathbf{B}$ y $R^nF: \mathbf{A} \to \mathbf{B}$ tienen propiedades muy naturales y útiles para estudiar sucesiones exactas. El único problema es que todavía no sabemos si los funtores derivados existen. El modo más común de construirlos son resoluciones proyectivas e inyectivas, que

existen bajo ciertas hipótesis sobre la categoría abelana **A**. También vamos a necesitar más construcciones relacionadas con complejos de (co)cadenas. Terminamos esta parte con un criterio útil de universalidad de δ -funtores.

2.1. Definición. Un δ -funtor izquierdo $(E_{\bullet}, \delta_{\bullet})$ es **borrable** si para cada n > 0 y cada $M \in \mathbf{A}$ existe un epimorfismo $N \twoheadrightarrow M$ (¡no necesariamente único!) tal que $E_n(N) = 0$.

Un δ -funtor derecho (E^{\bullet} , δ^{\bullet}) es **borrable** si para cada n > 0 y cada $M \in \mathbf{A}$ existe un monomorfismo $M \rightarrow N$ (¡no necesariamente único!) tal que $E^n(N) = 0$.

2.2. Proposición (Grothendieck). Sea $(E_{\bullet}, \delta_{\bullet})$ un δ -funtor izquierdo borrable. Entonces $(E_{\bullet}, \delta_{\bullet})$ es universal. Sea $(E^{\bullet}, \delta^{\bullet})$ un δ -funtor derecho borrable. Entonces $(E^{\bullet}, \delta^{\bullet})$ es universal.

Demostración. Vamos a ver la parte con los funtores izquierdos. Sea $(T_{\bullet}, \partial_{\bullet})$ otro δ-funtor izquierdo. Tenemos que ver que una transformación natural $f_0 \colon T_0 \Rightarrow E_0$ se extiende de modo único a transformaciones naturales $f_n \colon T_n \Rightarrow E_n$ que conmutan con δ y ∂ . La construcción es inductiva: suponemos que para i < n tenemos transformaciones $f_i \colon T_i \Rightarrow E_i$ y construimos $f_n \colon T_n \Rightarrow E_n$.

Sea $M \in \mathbf{A}$ cualquier objeto. Ya que E_n es borrable, existe un epimorfismo $N \twoheadrightarrow M$ tal que $E_n(N) = 0$. Sea K el núcleo de este epimorfismo:

$$0 \to K \rightarrowtail N \twoheadrightarrow M \to 0$$

 $(E_{\bullet}, \delta_{\bullet})$ y $(T_{\bullet}, \delta_{\bullet})$ son δ -funtores, de donde tenemos el diagrama conmutativo con filas exactas

$$\cdots \longrightarrow T_n(K) \longrightarrow T_n(N) \longrightarrow T_n(M) \xrightarrow{\partial_n} T_{n-1}(K) \longrightarrow T_{n-1}(N) \longrightarrow T_{n-1}(M) \longrightarrow \cdots$$

$$\downarrow ? \qquad \qquad \downarrow f_{n-1,K} \qquad \downarrow f_{n-1,N} \qquad \downarrow f_{n-1,M}$$

$$\cdots \longrightarrow E_n(K) \longrightarrow E_n(N) \longrightarrow E_n(M) \xrightarrow{\delta_n} E_{n-1}(K) \longrightarrow E_{n-1}(N) \longrightarrow E_{n-1}(M) \longrightarrow \cdots$$

Y como $E_n(N) = 0$, se sigue que $E_n(M)$ es el núcleo del morfismo $E_{n-1}(K) \to E_{n-1}(N)$. Luego, la composición $T_n(M) \xrightarrow{\partial_n} T_{n-1}(K) \xrightarrow{f_{n-1},K} E_{n-1}(K) \to E_{n-1}(N)$ es 0, y entonces por la propiedad universal del núcleo existe un morfísmo único $f_{n,M}^K \colon T_n(M) \to E_n(M)$ tal que el diagrama es conmutativo.

Tenemos que ver que nuestra elección del epimorfismo N woheadrightarrow M tal que $E_n(N) = 0$ no afecta el resultado. Sean $N_1 woheadrightarrow M$ y $N_2 woheadrightarrow M$ dos epimorfismos tales que $E_n(N_1) = E_n(N_2) = 0$. Tenemos dos sucesiones exactas

$$0 \longrightarrow K_1 \longrightarrow N_1 \longrightarrow M \longrightarrow 0$$
$$0 \longrightarrow K_2 \longrightarrow N_2 \longrightarrow M \longrightarrow 0$$

Sea $N := N_1 \oplus N_2$. Entonces $E_n(N) = E_n(N_1 \oplus N_2) = E_n(N_1) \oplus E_n(N_2) = 0$, y tenemos un epimorfismo $N \twoheadrightarrow M$. Para i = 1, 2 hay diagrams commutativos con filas exactas

$$0 \longrightarrow K_i \longrightarrow N_i \longrightarrow M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow K \longrightarrow N \longrightarrow M \longrightarrow 0$$

Notamos que la sucesión exacta

$$E_n(N) \to E_n(M) \xrightarrow{\delta_n} E_{n-1}$$

y $E_n(N)=0$ implican que δ_n es un monomorfismo. El diagrama de arriba induce a su vez el siguiente diagrama

Aquí la cara de arriba es conmutativa porque $(T_{\bullet},\partial_{\bullet})$ es un δ -funtor y la cara de abajo es conmutativa porque $(E_{\bullet},\delta_{\bullet})$ es un δ -funtor; la cara frontal y la cara posterior conmutan por la construcción de los morfismos f_n ; la cara a la derecha es conmutativa porque f_{n-1} es natural por nuestra hipótesis de inducción. En el diagrama se ve que $\delta_n \circ f_{n,M}^{K_i} = \delta_n \circ f_{n,M}^{K}$, de donde $f_{n,M}^{K_i} = f_{n,M}^{K}$, ya que δ_n es un monomorfismo. Hemos demostrado que los morfismos $f_{n,M}$ construidos a partir de K_1 y K_2 coinciden:

$$f_{n,M}^{K_1} = f_{n,M}^{K_2} = f_{n,M}^{K}$$

En conclusión, la elección del epimorfismo $N \twoheadrightarrow M$ tal que $E_n(N) = 0$ no afecta el resultado.

Ahora veamos por qué los morfismos $f_{n,M}$: $T_n(M) \to E_n(M)$ definen una transformación natural de funtores. Consideremos el diagrama conmutativo con filas exactas

Tenemos el diagrama

Aquí sabemos que todo es conmutativo, excepto la cara a la derecha, cuya conmutatividad tenemos que verificar. Pero por la conmutatividad de otras caras, se ve que

$$\delta_n \circ f_{n,M_2} \circ T_n(\phi) = \delta_n \circ E_n(\phi) \circ f_{n,M_1}.$$

Pero δ_n es un monomorfismo, y así

$$f_{n,M_2} \circ T_n(\phi) = E_n(\phi) \circ f_{n,M_1}.$$

La palabra "borrable" es mi traducción literal del término francés "effaçable" que también viene del artículo de Tohoku (en inglés se usa el mismo término: "effaceable").