Bayesian Learning

- Bayes Theorem
- MAP, ML hypotheses
- MAP learners
- Minimum description length principle
- Bayes optimal classifier
- Naive Bayes learner
- Example: Learning over text data
- Bayesian belief networks
- Expectation Maximization algorithm

Two Roles for Bayesian Methods

Provides practical learning algorithms:

- Naive Bayes learning
- Bayesian belief network learning
- Combine prior knowledge (prior probabilities) with observed data
- Requires prior probabilities

Provides useful conceptual framework

- Provides "gold standard" for evaluating other learning algorithms
- Additional insight into Occam's razor

Bayes Theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

Choosing Hypotheses

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Generally want the most probable hypothesis given the training data

 $Maximum\ a\ posteriori\ hypothesis\ h_{MAP}$:

$$\begin{aligned} h_{MAP} &= \arg\max_{h \in H} P(h|D) \\ &= \arg\max_{h \in H} \frac{P(D|h)P(h)}{P(D)} \\ &= \arg\max_{h \in H} P(D|h)P(h) \end{aligned}$$

If assume $P(h_i) = P(h_j)$ then can further simplify, and choose the $Maximum\ likelihood\ (ML)$ hypothesis

$$h_{ML} = \arg\max_{h_i \in H} P(D|h_i)$$

Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.

$$P(cancer) = P(\neg cancer) = P(+|cancer) = P(-|cancer) = P(+|\neg cancer) = P(-|\neg cancer|) =$$

Basic Formulas for Probabilities

• Product Rule: probability $P(A \land B)$ of a conjunction of two events A and B:

$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

• Sum Rule: probability of a disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$
$$= P(A) + P(B)$$

if A and B are mut. ex.

• Theorem of total probability: if events A_1, \ldots, A_n are mutually exclusive with $\sum_{i=1}^n P(A_i) = 1$, then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \operatorname*{argmax}_{h \in H} P(h|D)$$

Relation to Concept Learning

Consider our usual concept learning task

- instance space X, hypothesis space H, training examples D
- consider the FINDS learning algorithm (outputs most specific hypothesis from the version space $VS_{H,D}$)

What would Bayes rule produce as the MAP hypothesis?

Does FindS output a MAP hypothesis??

Relation to Concept Learning

Assume fixed set of instances $\langle x_1, \ldots, x_m \rangle$ Assume D is the set of classifications $D = \langle c(x_1), \ldots, c(x_m) \rangle$ Choose P(D|h)

- P(D|h) = 1 if h consistent with D
- P(D|h) = 0 otherwise

Choose P(h) to be uniform distribution

•
$$P(h) = \frac{1}{|H|}$$
 for all h in H

Then,

$$P(h|D) = \begin{cases} \frac{1}{|VS_{H,D}|} & \text{if } h \text{ is consistent with } D\\ 0 & \text{otherwise} \end{cases}$$

Characterizing Learning Algorithms by Equivalent MAP Learners

Equivalent Bayesian inference system

Learning A Real Valued Function

Consider any real-valued target function fTraining examples $\langle x_i, d_i \rangle$, where d_i is noisy training value

- $\bullet \ d_i = f(x_i) + e_i$
- e_i is random variable (noise) drawn independently for each x_i according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of squared errors:

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Learning A Real Valued Function

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} p(D|h)$$

$$= \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} p(d_i|h)$$

$$= \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{d_i - h(x_i)}{\sigma})^2}$$

Maximize natural log of this instead...

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2$$

$$= \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} -\frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2$$

$$= \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} - (d_i - h(x_i))^2$$

$$= \underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

$$= \underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Minimum Description Length Principle

Occam's razor: prefer the shortest hypothesis

MDL: prefer the hypothesis h that minimizes

$$h_{MDL} = \underset{h \in H}{\operatorname{argmin}} L_{C_1}(h) + L_{C_2}(D|h)$$

where $L_C(x)$ is the description length of x under encoding C

Example: H = decision trees, D = training data labels

- $L_{C_1}(h)$ is # bits to describe tree h
- $L_{C_2}(D|h)$ is # bits to describe D given h
 - Note $L_{C_2}(D|h) = 0$ if examples classified perfectly by h. Need only describe exceptions
- Hence h_{MDL} trades off tree size for training errors

Minimum Description Length Principle

Fact from information theory:

The optimal (shortest expected coding length) code for an event with probability p is $-\log_2 p$ bits.

$$\begin{aligned} h_{MAP} &= \arg\max_{h \in H} P(D|h)P(h) \\ &= \arg\max_{h \in H} \log_2 P(D|h) + \log_2 P(h) \\ &= \arg\min_{h \in H} - \log_2 P(D|h) - \log_2 P(h) \end{aligned}$$

Interpret as follows:

- $-\log_2 P(h)$ is length of h under optimal code
- $-\log_2 P(D|h)$ is length of D given h under optimal code
- \rightarrow prefer the hypothesis that minimizes length(h) + length(misclassifications)
- $\rightarrow h_{MAP}$ is Occam's h
- $\rightarrow h_{ML}$ is Occam's h when the prior is uninformative

Most Probable Classification of New Instances

So far we've sought the most probable hypothesis given the data D (i.e., h_{MAP})

Given new instance x, what is its most probable classification?

 \rightarrow If predictions are not mut. ex. then $h_{MAP}(x)$ is not the most probable classification!

Consider:

• Three possible hypotheses:

$$P(h_1|D) = .4, P(h_2|D) = .3, P(h_3|D) = .3$$

 \bullet Given new instance x,

$$h_1(x) = +, h_2(x) = -, h_3(x) = -$$

• What's most probable classification of x?

Bayes Optimal Classifier

$$= \arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j|h_i) P(h_i|D)$$

Example:

$$P(h_1|D) = .4, \ P(-|h_1) = 0, \ P(+|h_1) = 1$$

 $P(h_2|D) = .3, \ P(-|h_2) = 1, \ P(+|h_2) = 0$
 $P(h_3|D) = .3, \ P(-|h_3) = 1, \ P(+|h_3) = 0$

therefore

$$\sum_{\substack{h_i \in H}} P(+|h_i)P(h_i|D) = .4$$
$$\sum_{\substack{h_i \in H}} P(-|h_i)P(h_i|D) = .6$$

and

$$\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j|h_i)P(h_i|D) = -$$

Problem: Can be too expensive if |H| large or infinite.

Naive Bayes Classifier

One of the most practical learning methods.

When to use

- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification
- When you need a quick and dirty solution from scratch.

Naive Bayes Classifier

Assume target function $f: X \to V$, where each instance x described by attributes $\langle a_1, a_2 \dots a_n \rangle$.

Most probable value of f(x) is:

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}|a_{1}, a_{2} \dots a_{n})$$

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, a_{2} \dots a_{n}|v_{j})P(v_{j})}{P(a_{1}, a_{2} \dots a_{n})}$$

$$= \underset{v_{j} \in V}{\operatorname{argmax}} P(a_{1}, a_{2} \dots a_{n}|v_{j})P(v_{j})$$

$$v_{j} \in V$$

Naive Bayes assumption:

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

which gives

Naive Bayes classifier: $v_{NB} =$

$$= \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \underset{i}{\operatorname{II}} P(a_i|v_j)$$

Naive Bayes Algorithm

Naive_Bayes_Learn(examples)

For each possible target value v_j

$$\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$$

For each attribute value a_i of each attribute a

$$\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$$

Classify_New_Instance(x)

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

Naive Bayes: Example

Consider Play Tennis again, and new instance $\langle Outlk = sun, Temp = cool, Humid = high,$ $Wind = strong \rangle$

Want to compute:

$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \underset{i}{\operatorname{II}} P(a_i | v_j)$$

$$P(y) \ P(sun|y) \ P(cool|y) \ P(high|y) \times$$

$$P(strong|y) = .005$$

$$P(n) \ P(sun|n) \ P(cool|n) \ P(high|n) \times$$

$$P(strong|n) = .021$$

$$\rightarrow v_{NB} = n$$

Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

- ...but it works surprisingly well anyway.
- Don't need estimated posteriors $\hat{P}(v_j|x)$ to be correct; need only that

$$\underset{v_j \in V}{\operatorname{argmax}} \hat{P}(v_j) \underset{i}{\Pi} \hat{P}(a_i | v_j) =$$

$$= \underset{v_j \in V}{\operatorname{argmax}} P(v_j) P(a_1 \dots, a_n | v_j)$$

• see [Domingos & Pazzani, 1996] for analysis

Naive Bayes: Subtleties

2. what if none of the training instances with target value v_j have attribute value a_i ? Then

$$\hat{P}(a_i|v_j) = 0$$
, and...
 $\hat{P}(v_j) \prod_i \hat{P}(a_i|v_j) = 0$

Typical solution is Bayesian estimate for $\hat{P}(a_i|v_j)$

$$\hat{P}(a_i|v_j) \leftarrow \frac{n_c + mp}{n + m}$$

where

- n is number of training examples for which $v = v_j$,
- n_c number of examples for which $v = v_j$ and $a = a_i$
- p is prior estimate for $\hat{P}(a_i|v_j)$
- m is weight given to prior (i.e. number of "virtual" examples)

Learning to Classify Text

E.g.:

- Learn which news articles are of interest
- Learn to classify web pages by topic

Naive Bayes is among most effective (1st generation) learning algorithms.

What attributes shall we use to represent text documents?

Learning to Classify Text

Target concept

 $Interesting?:Document \rightarrow \{+,-\}$

- 1. Represent each document by vector of words
 - one attribute per word position in document
- 2. Learning: Use training examples to estimate
 - $\bullet P(+)$
 - $\bullet P(-)$
 - $\bullet P(doc|+)$
 - $\bullet P(doc|-)$

Naive Bayes conditional independence assumption

$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k|v_j)$$

where $P(a_i = w_k | v_j)$ is probability that word in position i is w_k , given v_j

Also assume position independence:

$$P(a_i = w_k | v_j) = P(a_m = w_k | v_j), \forall i, m$$

Twenty NewsGroups

Given 1000 training documents from each group, learn to classify new documents according to which newsgroup it came from.

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

alt.atheism
soc.religion.christian
talk.religion.misc
talk.politics.mideast
talk.politics.misc
talk.politics.misc

sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.edu!ogicse!uwm.edu

From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year's biggest and worst (opinion)...

Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most obvious candidate for pleasant surprise is Alex Zhitnik. He came highly touted as a defensive defenseman, but he's clearly much more than that. Great skater and hard shot (though wish he were more accurate). In fact, he pretty much allowed the Kings to trade away that huge defensive liability Paul Coffey. Kelly Hrudey is only the biggest disappointment if you thought he was any good to begin with. But, at best, he's only a mediocre goaltender. A better choice would be Tomas Sandstrom, though not through any fault of his own, but because some thugs in Toronto decided

$Learn_naive_Bayes_text(Examples, V)$

For each target value v_j in V do

- $docs_j \leftarrow \text{subset of } Examples \text{ for which the }$ target value is v_j
- $P(v_j) \leftarrow \frac{|docs_j|}{|Examples|}$
- $Text_j \leftarrow$ a single document created by concatenating all members of $docs_j$
- $n \leftarrow \text{total number of words in } Text_j$ (counting duplicate words multiple times)
- for each word w_k in Vocabulary
 - $-n_k \leftarrow \text{number of times word } w_k \text{ occurs}$ in $Text_j$
 - $-P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$

Classify_naive_Bayes_text(Doc)

- $positions \leftarrow$ all word positions in Doc that contain tokens found in Vocabulary
- Return v_{NB} , where

$$v_{NB} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}) \underset{i \in positions}{\Pi} P(a_{i}|v_{j})$$

Bayesian Belief Networks

Also called Bayes Nets. Interesting because:

- Naive Bayes assumption of conditional independence too restrictive
- But it's intractable without some such assumptions...
- Bayesian Belief networks describe conditional independence among *subsets* of variables
- → allows combining prior knowledge about (in)dependencies among variables with observed training data

Conditional Independence

Definition: X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if

$$(\forall x_i, y_j, z_k) P(X = x_i | Y = y_j, Z = z_k) =$$

= $P(X = x_i | Z = z_k)$

More compactly, we write

$$P(X|Y,Z) = P(X|Z)$$

Example: Thunder is conditionally independent of Rain, given Lightning

$$P(Thunder|Rain, Lightning) =$$
 $= P(Thunder|Lightning)$

Naive Bayes uses cond. indep. to justify

$$P(X,Y|Z) = P(X|Y,Z)P(Y|Z)$$
$$= P(X|Z)P(Y|Z)$$

Bayesian Belief Network

Network represents a set of conditional independence assertions:

- Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors.
- Directed acyclic graph

Bayesian Belief Network

Represents joint probability distribution over all variables

- e.g., $P(Storm, BusTourGroup, \dots, ForestFire)$
- in general,

$$P(y_1, \dots, y_n) = \prod_{i=1}^n P(y_i | Parents(Y_i))$$

where $Parents(Y_i)$ denotes immediate predecessors of Y_i in graph

• so, joint distribution is fully defined by graph, plus the $P(y_i|Parents(Y_i))$

Inference in Bayesian Networks

How can one infer the (probabilities of) values of one or more network variables, given observed values of others?

- Bayes net contains all the information needed to make this inference using repeated application of the axioms of probability theory.
- If only one variable with unknown value, easy to infer it
- In general case, problem is NP hard

In practice, can succeed in many cases

- Exact inference methods work well for some (sparse) network structures
- Monte Carlo methods "simulate" the network randomly to calculate approximate solutions

Learning of Bayesian Networks

Several variants of this learning task

- Network structure might be known or unknown
- Training examples might provide values of all network variables, or just some

If structure known and observe all variables

• Then it's easy as training a Naive Bayes classifier

Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observe ForestFire, Storm,
BusTourGroup, Thunder, but not Lightning,
Campfire...

- Similar to training neural network with hidden units
- In fact, can learn network conditional probability tables using gradient ascent!
- Converge to network h that (locally) maximizes P(D|h)

Gradient Ascent for Bayes Nets

Let w_{ijk} denote one entry in the conditional probability table for variable Y_i in the network

$$w_{ijk} = P(Y_i = y_{ij} | Parents(Y_i) =$$
= the list u_{ik} of values)

e.g., if $Y_i = Campfire$, then u_{ik} might be $\langle Storm = T, BusTourGroup = F \rangle$

Perform gradient ascent by repeatedly

1. update all w_{ijk} using training data D

$$w_{ijk} \leftarrow w_{ijk} + \eta \sum_{d \in D} \frac{P_h(y_{ij}, u_{ik}|d)}{w_{ijk}}$$

- 2. then, renormalize the w_{ijk} to assure
 - $\bullet \ \Sigma_j \ w_{ijk} = 1$
 - $0 \le w_{ijk} \le 1$

More on Learning Bayes Nets

EM algorithm can also be used. Repeatedly:

- 1. Calculate probabilities of unobserved variables, assuming h
- 2. Calculate new w_{ijk} to maximize $E[\ln P(D|h)]$ where D now includes both observed and (calculated probabilities of) unobserved variables

When structure unknown...

- Can use greedy search to add/substract edges and nodes
- Active research topic

Summary: Bayesian Belief Networks

- Combine prior knowledge with observed data
- Impact of prior knowledge (when correct!) is to lower the sample complexity
- Active research area
 - Extend from boolean to real-valued variables
 - Parameterized distributions instead of tables
 - Extend to first-order instead of propositional systems
 - More effective inference methods

— ...

Expectation Maximization (EM)

When to use:

- Data is only partially observable
- Unsupervised clustering (target value unobservable)
- Supervised learning (some instance attributes unobservable)

Some uses:

- Train Bayesian Belief Networks
- Unsupervised clustering (AUTOCLASS)
- Learning Hidden Markov Models
- Learning parameters of any stochastic process.

Generating Data from Mixture of k Gaussians

Each instance x generated by

- 1. Choosing one of the k Gaussians with uniform probability
- 2. Generating an instance at random according to that Gaussian

EM for Estimating k Means

Given:

- Instances from X generated by mixture of k Gaussian distributions
- Unknown means $\langle \mu_1, \dots, \mu_k \rangle$ of the k Gaussians
- Don't know which instance x_i was generated by which Gaussian

Determine:

• Maximum likelihood estimates of $\langle \mu_1, \dots, \mu_k \rangle$

Think of full description of each instance as $y_i = \langle x_i, z_{i1}, z_{i2} \rangle$, where

- z_{ij} is 1 if x_i generated by jth Gaussian
- x_i observable
- z_{ij} unobservable

EM for Estimating k Means

EM Algorithm: Pick random initial $h = \langle \mu_1, \mu_2 \rangle$, then iterate

E step: Calculate the expected value $E[z_{ij}]$ of each hidden variable z_{ij} , assuming the current hypothesis $h = \langle \mu_1, \mu_2 \rangle$ holds.

$$E[z_{ij}] = \frac{p(x = x_i | \mu = \mu_j)}{\sum_{n=1}^{2} p(x = x_i | \mu = \mu_n)}$$
$$= \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^{2} e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$

M step: Calculate a new maximum likelihood hypothesis $h' = \langle \mu'_1, \mu'_2 \rangle$, assuming the value taken on by each hidden variable z_{ij} is its expected value $E[z_{ij}]$ calculated above. Replace $h = \langle \mu_1, \mu_2 \rangle$ by $h' = \langle \mu'_1, \mu'_2 \rangle$.

$$\mu_j \leftarrow \frac{\sum_{i=1}^m E[z_{ij}] \ x_i}{\sum_{i=1}^m E[z_{ij}]}$$

EM Algorithm

Converges to local maximum likelihood h and provides estimates of hidden variables z_{ij} In fact, local maximum in $E[\ln P(Y|h)]$

- ullet Y is complete (observable plus unobservable variables) data
- Expected value is taken over possible values of unobserved variables in Y

General EM Method

Define likelihood function Q(h'|h) which calculates $Y = X \cup Z$ using observed X and current parameters h to estimate Z

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h,X]$$

EM Algorithm:

Estimation (E) step: Calculate Q(h'|h) using the current hypothesis h and the observed data X to estimate the probability distribution over Y.

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h,X]$$

Maximization (M) step: Replace hypothesis h by the hypothesis h' that maximizes this Q function.

$$h \leftarrow \operatorname*{argmax}_{h'} Q(h'|h)$$