Análisis de encuestas de hogares con R

# Análisis de encuestas de hogares con R Modulo 6: Modelos lineales generalizados

CEPAL - Unidad de Estadísticas Sociales

Lectura de las bases de datos y definición del diseño muestral.

```
library(srvyr)
library(survey)
encuesta <- readRDS("../Data/encuesta.rds")</pre>
data("BigCity", package = "TeachingSampling")
diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = wk,
    nest = T
```

#### Creación de nuevas variables.

Análisis de encuestas de hogares con R

Las nuevas variables son definidas de la siguiente forma.

```
diseno <- diseno %>% mutate(
   pobreza = ifelse(Poverty != "NotPoor", 1, 0),
   desempleo = ifelse(Employment == "Unemployed", 1, 0))
```

#### Tablas de doble entrada para el tamaño

Análisis de encuestas de hogares con R

#### El cálculo de tablas de doble entrada las obtenemos con así:

```
(tab_pobreza_sexo <- svyby(~factor(pobreza), ~Sex,
    FUN = svytotal, design = as.svrepdesign(diseno),
    se=F, na.rm=T, ci=T, keep.var=TRUE))</pre>
```

| Sex    |        | factor(pobreza)0 | factor(pobreza)1 | se1  | se2  |  |
|--------|--------|------------------|------------------|------|------|--|
| Female | Female | 48366            | 30824            | 2411 | 2916 |  |
| Male   | Male   | 43032            | 28044            | 2522 | 3095 |  |

### Tablas de doble entrada para el tamaño

Análisis de encuestas de hogares con R

Sin embargo para la estimación de tamaños más simples podemos emplear la función.

```
(tab <- svytable(~pobreza + Sex, design = diseno))</pre>
```

| pobreza/Sex | Female | Male  |
|-------------|--------|-------|
| 0           | 48366  | 43032 |
| 1           | 30824  | 28044 |

#### Tablas de doble entrada para el proporción

Análisis de encuestas de hogares con R

Al hacer uso de la función svymean es posible estimar al proporciones.

```
(tab_pobreza_sexo <- svyby(~factor(pobreza), ~Sex,
    FUN = svymean, design = as.svrepdesign(diseno),
    se=F, na.rm=T, ci=T, keep.var=TRUE))</pre>
```

|        | Sex    | factor(pobreza)0 | factor(pobreza)1 | se1    | se2    |
|--------|--------|------------------|------------------|--------|--------|
| Female | Female | 0.6108           | 0.3892           | 0.0316 | 0.0316 |
| Male   | Male   | 0.6054           | 0.3946           | 0.0366 | 0.0366 |

## Tablas de doble entrada para el proporción

Análisis de encuestas de hogares con R

En forma alternativa es posible usar la función prop.table del paquete base.

prop.table(tab, margin = 2)

| Female | Male             |
|--------|------------------|
| 0.6108 | 0.6054           |
| 0.3892 | 0.3946           |
|        | 0.6108<br>0.3892 |

Estas diferentes formas de proceder son de mucha importancia al momento de hacer uso de pruebas de independencia en tablas cruzadas.

Análisis de encuestas de hogares con R

$$\hat{\pi}_{rc} = \frac{n_{r+}}{n_{++}} \times \frac{n_{+c}}{n_{++}}$$

$$\chi^2_{pearsom} = n_{++} \times \sum_r \sum_c \left( \frac{\left(p_{rc} - \hat{\pi}_{rc}\right)^2}{\hat{\pi}_{rc}} \right)$$

$$G^2 = 2 \times n_{++} \times \sum_r \sum_c p_{cr} \times \ln\left(\frac{p_{rc}}{\hat{\pi}_{rc}}\right)$$

donde, R es el número de filas y C representa el número de columnas, la prueba tiene  $(R-1)\times(C-1)$  grados de libertad.

Análisis de encuestas de hogares con R

$$\chi^2_{(R-S)} = \chi^2_{(Pearson)}/\textit{GDEFF}$$

$$G_{(R-S)}^2 = G^2/GDEFF$$

con GDEFF el efecto generalizado del diseño, esta dado por

$$\textit{GDEFF} = \frac{{\sum\nolimits_r {\sum\nolimits_c {(1 - {\rho _{rc}})} {{d^2}\left( {{\rho _{rc}}} \right) - \sum\nolimits_r {(1 - {\rho _{r+}})} } } {d^2\left( {{\rho _{r+}}} \right) - \sum\nolimits_c {(1 - {\rho _{+c}})} } } {d^2\left( {{\rho _{+c}}} \right)}$$

Análisis de encuestas de hogares con R

$$F_{R-S,Pearson} = \chi_{R-S}^2 / [(R-1)(C-1)] \sim F_{(R-1)(C-1),(R-1)(C-1)df}$$

$$F_{R-S,LRT} = G_{R-S}^2 / (C-1) \sim F_{(C-1),df}$$

donde C es el número de columnas de la tabla cruzada

```
summary(tab, statistic = "Chisq")
```

```
## Sex
## pobreza Female Male
## 0 48366 43032
## 1 30824 28044
##
## Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## X-squared = 0.077, df = 1, p-value = 0.8
```

```
summary(tab, statistic = "F")
```

```
## Sex
## pobreza Female Male
## 0 48366 43032
## 1 30824 28044
##
## Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## F = 0.056, ndf = 1, ddf = 119, p-value = 0.8
```

#### Estadístico de Wald

Análisis de encuestas de hogares con R

$$Q_{wald} = \hat{oldsymbol{Y}}^t \left( oldsymbol{H} \hat{oldsymbol{V}} \left( \hat{oldsymbol{N}} 
ight) oldsymbol{H}^t 
ight)^{-1} \, \hat{oldsymbol{Y}}$$

donde,

$$\hat{\mathbf{Y}} = (\hat{\mathsf{N}} - \mathsf{E})$$

es un vector de  $R \times C$  de diferencias entre los recuentos de celdas observadas y esperadas, esto es,  $\hat{N}_{rc} - E_{rc}$ 

La matriz  $\hat{HV}(\hat{N})H^t$ , representa la matriz de varianza-covarianza estimada para el vector de diferencias.

#### Estadístico de Wald

Análisis de encuestas de hogares con R

La matriz  $\boldsymbol{H}$  es la inversa de la matriz  $\boldsymbol{J}$  dada por:

$$m{J} = -\left[rac{\delta^2 \ln PL(m{B})}{\delta^2 m{B}}
ight] \mid m{B} = \hat{m{B}}$$

$$\sum_{b}\sum_{a}\sum_{i}x_{hai}^{t}x_{hai}w_{hai}\hat{\pi}_{hai}\left(\boldsymbol{B}\right)\left(1-\hat{\pi}_{hai}\left(\boldsymbol{B}\right)\right)$$

Bajo la hipótesis nula, el estadístico

$$Q_{wald} \sim \chi^2_{(R-1)\times(C-1)}$$

#### Estadístico de Wald

$$F_{wald} = Q_{wald} imes rac{df - (R-1)(C-1) + 1}{(R-1)(C-1)df} \sim F_{(R-1)(C-1),df - (R-1)(C-1) + 1}$$

```
summary(tab, statistic = "Wald")
```

```
## Sex
## pobreza Female Male
## 0 48366 43032
## 1 30824 28044
##
## Design-based Wald test of association
##
## data: NextMethod()
## F = 0.056, ndf = 1, ddf = 119, p-value = 0.8
```

## Prueba de independencia adjWald

```
summary(tab, statistic = "adjWald")
```

```
## Sex
## pobreza Female Male
## 0 48366 43032
## 1 30824 28044
##
## Design-based Wald test of association
##
## data: NextMethod()
## F = 0.056, ndf = 1, ddf = 119, p-value = 0.8
```

#### Prueba de independencia lincom

```
summary(tab, statistic = "lincom")
```

```
## Sex
## pobreza Female Male
## 0 48366 43032
## 1 30824 28044
##
## Pearson's X^2: asymptotic exact distribution
##
## data: NextMethod()
## X-squared = 0.077, p-value = 0.8
```

# Prueba de independencia saddlepoint

```
summary(tab, statistic = "saddlepoint")
```

```
## Sex
## pobreza Female Male
## 0 48366 43032
## 1 30824 28044
##
## Pearson's X^2: saddlepoint approximation
##
## data: NextMethod()
## X-squared = 0.077, p-value = 0.8
```

Análisis de encuestas de hogares con R

$$\log(p_{ijk}) = \mu + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY},$$

donde:

lacksquare  $p_{ijk}=$  la proporción esperada en la celda bajo el modelo.

Análisis de encuestas de hogares con R

$$\log(p_{ijk}) = \mu + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY},$$

donde:

- $p_{ijk} =$ la proporción esperada en la celda bajo el modelo.
- $\blacksquare \ \mu = \log(p_0) = \frac{1}{\# \ de \ celdas}$

```
Análisis de
encuestas de
hogares con R
```

```
mod1 <- svyloglin(~pobreza+Sex + pobreza:Sex , dise
(s1 <- summary(mod1))</pre>
```

```
## Loglinear model: svyloglin(~pobreza + Sex + pobrez

## coef se p

## pobreza1 0.219673 0.06778 0.001192

## Sex1 0.052843 0.01625 0.001145

## pobreza1:Sex1 0.005583 0.02350 0.812175
```

```
Análisis de
encuestas de
hogares con R
```

```
mod2 <- svyloglin(~pobreza+Sex, diseno)
(s2 <- summary(mod2))</pre>
```

```
## Loglinear model: svyloglin(~pobreza + Sex, diseno)
## coef se p
## pobreza1 0.21997 0.06752 0.0011230
## Sex1 0.05405 0.01577 0.0006076
```

Análisis de encuestas de hogares con R

Medaante un análisis de varianza es posible comparar los dos modelos.

```
anova(mod1, mod2)
```

```
## Analysis of Deviance Table
## Model 1: y ~ pobreza + Sex
## Model 2: y ~ pobreza + Sex + pobreza:Sex
## Deviance= 0.07719 p= 0.8126
## Score= 0.07719 p= 0.8126
```

# Modelo de regresión logistica

Análisis de encuestas de hogares con R

$$g(\pi(x)) = logit(\pi(x))$$

Luego,

$$z = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = B_0 + B_1x_1 + \dots + B_px_p$$

$$\hat{\pi}(\mathbf{x}) = \frac{\exp\left(\mathbf{X}\hat{\mathbf{B}}\right)}{1 - \exp\left(\mathbf{X}\hat{\mathbf{B}}\right)} = \frac{\exp\left(\hat{B}_0 + \hat{B}_1x_1 + \dots + \hat{B}x_p\right)}{1 - \exp\left(\hat{B}_0 + \hat{B}_1x_1 + \dots + \hat{B}x_p\right)}$$

$$PL(\mathbf{B} \mid X) = \prod_{i=1}^{n} \left\{ \pi(x_i)^{y_i} (1 - \pi(x_i))^{1-y_i} \right\}^{w_i}$$

# Modelo de regresión logística

$$\pi\left(x_i
ight) = rac{\exp\left(x_ioldsymbol{B}
ight)}{1 - \exp\left(x_ioldsymbol{B}
ight)}$$
 $var\left(\hat{oldsymbol{B}}
ight) = oldsymbol{J}^{-1}var\left(S\left(\hat{oldsymbol{B}}
ight)
ight)oldsymbol{J}^{-1}$ 

# Modelo de regresión logistica

$$S\left(B
ight) = \sum_{h} \sum_{a} \sum_{i} w_{hai} oldsymbol{D}_{hai}^{t} \left[\left(\pi_{hai}\left(oldsymbol{B}
ight)\right) \left(1 - \pi_{hai}\left(oldsymbol{B}
ight)
ight)
ight]^{-1} \left(y_{hai} - \pi_{hai}\left(oldsymbol{B}
ight)
ight)$$
 $D_{hai} = rac{\delta\left(\pi_{hai}\left(oldsymbol{B}
ight)
ight)}{\delta B_{j}}$ 
donde  $j = 0, \dots, p$ 

# Prueba de Wald para los parámetros del modelo

$$G = -2 \ln \left[ rac{L \left( \hat{eta}_{MLE} 
ight)_{reduced}}{L \left( \hat{eta}_{MLE} 
ight)_{full}} 
ight]$$
  $\hat{\psi} = \exp \left( \hat{B}_1 
ight)$ 

$$CI(\psi) = \exp\left(\hat{B}_{j} \pm t_{df,1-\frac{\alpha}{2}}se\left(\hat{B}_{j}\right)\right)$$

# Tablas de contingencia

Análisis de encuestas de hogares con R

Proporción de persona en condición de pobreza por sex

| Sex            | pobreza          | se     | ci_l             | ci_u |
|----------------|------------------|--------|------------------|------|
| Female<br>Male | 0.3892<br>0.3946 | 0.0020 | 0.3273<br>0.3228 | 00   |
|                |                  |        |                  |      |

Proporción de persona en condición de pobreza por Zone.

| Zone  | pobreza | se     | ci_l   | ci_u   |
|-------|---------|--------|--------|--------|
| Rural | 0.4485  | 0.0561 | 0.3386 | 0.5585 |
| Urban | 0.3394  | 0.0320 | 0.2766 | 0.4022 |

### Tablas de contingencia

Análisis de encuestas de hogares con R

#### Proporción de persona en condición de pobreza por Región

| Region    | pobreza | se     | ci_l   | ci_u   |
|-----------|---------|--------|--------|--------|
| Norte     | 0.3590  | 0.0555 | 0.2502 | 0.4677 |
| Sur       | 0.3438  | 0.0435 | 0.2586 | 0.4291 |
| Centro    | 0.3654  | 0.0786 | 0.2113 | 0.5195 |
| Occidente | 0.4008  | 0.0467 | 0.3092 | 0.4924 |
| Oriente   | 0.4518  | 0.0886 | 0.2781 | 0.6255 |

```
## Pearson's X^2: Rao & Scott adjustment
pobreza_sex <- svychisq(
  formula = ~pobreza + Sex, design = diseno)
tidy( pobreza_sex) %>% select(-method)
```

| ndf | ddf | statistic | p.value |
|-----|-----|-----------|---------|
| 1   | 119 | 0.0565    | 0.8126  |

```
pobreza_Zona <- svychisq(
   formula = ~pobreza + Zone, design = diseno)
tidy(pobreza_Zona) %>% select(-method)
```

| ndf | ddf | statistic | p.value |
|-----|-----|-----------|---------|
| 1   | 119 | 2.954     | 0.0883  |

```
pobreza_Region <- svychisq(
   formula = ~pobreza + Region, design = diseno)
tidy(pobreza_Region) %>% select(-method)
```

| ndf   | ddf | statistic | p.value |
|-------|-----|-----------|---------|
| 3.008 | 358 | 0.4879    | 0.6914  |

## Modelo log lineal ajustado

```
mod_loglin <- svyglm(
  pobreza ~ Sex + Zone + Region,
  family=quasibinomial, design=diseno)
tidy(mod_loglin)</pre>
```

| term            | estimate | std.error | statistic | p.value |
|-----------------|----------|-----------|-----------|---------|
| (Intercept)     | -0.4082  | 0.2640    | -1.5464   | 0.1248  |
| SexMale         | 0.0086   | 0.0915    | 0.0945    | 0.9249  |
| ZoneUrban       | -0.4378  | 0.2418    | -1.8106   | 0.0729  |
| RegionSur       | 0.0063   | 0.3140    | 0.0201    | 0.9840  |
| RegionCentro    | 0.1915   | 0.4279    | 0.4476    | 0.6553  |
| RegionOccidente | 0.2319   | 0.3144    | 0.7377    | 0.4622  |
| RegionOriente   | 0.3699   | 0.4259    | 0.8686    | 0.3869  |

#### Plot de la distribución de los betas



# Modelo log lineal ajustado

Análisis de encuestas de hogares con R Intervalos de confianza para los coeficientes del modelo.

```
bind_cols(
  data.frame(exp_estimado = exp(coef(mod_loglin))),
  as.data.frame(exp(confint(mod_loglin)))
)
```

|                 | exp_estimado | 2.5 %  | 97.5 % |
|-----------------|--------------|--------|--------|
| (Intercept)     | 0.6648       | 0.3941 | 1.122  |
| SexMale         | 1.0087       | 0.8414 | 1.209  |
| ZoneUrban       | 0.6454       | 0.3997 | 1.042  |
| RegionSur       | 1.0063       | 0.5402 | 1.875  |
| RegionCentro    | 1.2111       | 0.5188 | 2.827  |
| RegionOccidente | 1.2611       | 0.6764 | 2.351  |
| RegionOriente   | 1.4476       | 0.6226 | 3.366  |

```
Estadístico de Wald sobre los parámetros
           La significancia de la variables se obtiene como:
Análisis de
encuestas de
hogares con R
             regTermTest(model = mod loglin, ~Sex)
          ## Wald test for Sex
               in svyglm(formula = pobreza ~ Sex + Zone + Region
                   family = quasibinomial)
```

```
## F = 0.00893 on 1 and 113 df: p = 0.92
 regTermTest(model = mod loglin, ~Zone)
```

```
## Wald test for Zone
##
   in svyglm(formula = pobreza ~ Sex + Zone + Region
##
       family = quasibinomial)
```

## F = 3.278 on 1 and 113 df: p = 0.073

## Estadístico de Wald sobre los parámetros

Análisis de encuestas de hogares con R

regTermTest(model = mod loglin, ~Region)

```
## Wald test for Region
## in svyglm(formula = pobreza ~ Sex + Zone + Region
## family = quasibinomial)
## F = 0.3654 on 4 and 113 df: p= 0.83
```

Análisis de encuestas de hogares con R

Para evaluar los efectos de la variable en el modelo:



### Modelo log lineal ajustado con interacciones

Análisis de encuestas de hogares con R

tab\_mod %>% slice(1:6)

| term                    | estimate | std.error | statistic | p.value |
|-------------------------|----------|-----------|-----------|---------|
| ZoneUrban               | -0.4248  | 0.2562    | -1.6580   | 0.1002  |
| (Intercept)             | -0.4289  | 0.2849    | -1.5055   | 0.1351  |
| SexMale:RegionSur       | 0.2871   | 0.2774    | 1.0348    | 0.3031  |
| RegionOriente           | 0.3843   | 0.4279    | 0.8980    | 0.3712  |
| RegionOccidente         | 0.3342   | 0.3783    | 0.8835    | 0.3790  |
| SexMale:RegionOccidente | -0.2302  | 0.2868    | -0.8026   | 0.4240  |

## Modelo log lineal ajustado con interacciones

Análisis de encuestas de hogares con R

tab\_mod %>% slice(7:12)

| term                             | estimate | std.error | statistic | p.value |
|----------------------------------|----------|-----------|-----------|---------|
| D : C :                          | 0.0466   | 0.4560    | 0.5400    | 0.5007  |
| RegionCentro                     | 0.2466   | 0.4560    | 0.5408    | 0.5897  |
| SexMale:RegionCentro             | -0.1162  | 0.2791    | -0.4162   | 0.6781  |
| RegionSur                        | -0.1325  | 0.3464    | -0.3825   | 0.7028  |
| SexMale                          | 0.0478   | 0.1994    | 0.2399    | 0.8109  |
| SexMale:RegionOriente            | -0.0304  | 0.2878    | -0.1057   | 0.9161  |
| ${\sf SexMale:} {\sf ZoneUrban}$ | -0.0154  | 0.1872    | -0.0824   | 0.9345  |

#### Plot de la distribución de los betas



## Modelo log lineal ajustado

Análisis de encuestas de hogares con R Intervalo de confianza para los parámetros.

|                         | exp_estimado | 2.5 %  | 97.5 % |
|-------------------------|--------------|--------|--------|
| (Intercept)             | 0.6512       | 0.3702 | 1.145  |
| SexMale                 | 1.0490       | 0.7065 | 1.557  |
| ZoneUrban               | 0.6539       | 0.3935 | 1.087  |
| RegionSur               | 0.8759       | 0.4408 | 1.740  |
| RegionCentro            | 1.2797       | 0.5183 | 3.160  |
| RegionOccidente         | 1.3968       | 0.6599 | 2.957  |
| RegionOriente           | 1.4685       | 0.6288 | 3.430  |
| SexMale:ZoneUrban       | 0.9847       | 0.6795 | 1.427  |
| SexMale:RegionSur       | 1.3325       | 0.7689 | 2.309  |
| SexMale:RegionCentro    | 0.8903       | 0.5120 | 1.548  |
| SexMale:RegionOccidente | 0.7944       | 0.4499 | 1.403  |
| SexMale:RegionOriente   | 0.9701       | 0.5484 | 1.716  |

```
Análisis de encuestas de hogares con R

Análisis de encuestas de hogares con R

Evaluando las varianles en el modelo

regTermTest(model = mod_loglin_int, ~Sex)

## Wald test for Sex
## in svyglm(formula = pobreza ~ Sex + Zone + Region ## design = diseno, family = quasibinomial)
```

## design = diseno, family = quasibinomial)
## F = 0.05753 on 1 and 108 df: p= 0.81

```
regTermTest(model = mod_loglin_int, ~Zone)
```

```
## Wald test for Zone
## in svyglm(formula = pobreza ~ Sex + Zone + Region
## design = diseno, family = quasibinomial)
## F = 2.749 on 1 and 108 df: p= 0.1
```

### Estadístico de Wald sobre los parámetros

Análisis de encuestas de hogares con R

##

Evaluando las variable región en el modelo

```
## Wald test for Region
## in svyglm(formula = pobreza ~ Sex + Zone + Region
```

design = diseno, family = quasibinomial)

regTermTest(model = mod loglin int, ~Region)

## F = 0.8999 on 4 and 108 df: p = 0.47

```
Estadístico de Wald sobre los parámetros

Análisis de encuestas de hogares con R

Evaluando la interacción de los modelos.

regTermTest(model = mod_loglin_int, ~Sex:Zone)

## Wald test for Sex:Zone
## in svyglm(formula = pobreza ~ Sex + Zone + Region ## design = diseno, family = quasibinomial)
```

```
## design = diseno, family = quasibinomial)
## F = 0.006789 on 1 and 108 df: p= 0.93
```

regTermTest(model = mod\_loglin\_int, ~Sex:Region)

```
## Wald test for Sex:Region
## in svyglm(formula = pobreza ~ Sex + Zone + Region
## design = diseno, family = quasibinomial)
```

## F = 1.058 on 4 and 108 df: p = 0.38

Análisis de encuestas de hogares con R

Evaluando los efectos en el modelo.

```
effe sex <- effect plot(mod loglin int,
                        pred = Sex.
                        interval = TRUE
effe Zona <-effect plot(mod loglin int,
                        pred = Zone,
                        interval = TRUE)
effe_Region <- effect_plot(mod_loglin_int,
                           pred = Region,
                           interval = TRUE)
(effe_sex |effe_Zona)/effe_Region
```



# Modelo log lineal ajustado con Q\_Weighting

Análisis de encuestas de hogares con R

Realizando el modelo con los QWeighting

```
fit wgt <- lm(wk ~ Sex + Zone + Region ,
              data = encuesta)
wgt_hat <- predict(fit_wgt)</pre>
encuesta %<>% mutate(wk2 = wk/wgt_hat)
diseno_qwgt <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU.
    weights = wk2,
   nest = T
```

## Modelo log lineal ajustado con Q\_Weighting

Análisis de encuestas de hogares con R

Defiendo la variable pobreza dentro de la base de datos.

## Modelo log lineal ajustado con Q\_Weighting

| term            | estimate | std.error | statistic | p.value |
|-----------------|----------|-----------|-----------|---------|
| (Intercept)     | -0.4644  | 0.2630    | -1.7656   | 0.0802  |
| SexMale         | 0.0241   | 0.0883    | 0.2726    | 0.7857  |
| ZoneUrban       | -0.3445  | 0.2311    | -1.4903   | 0.1389  |
| RegionSur       | -0.0041  | 0.3116    | -0.0130   | 0.9896  |
| RegionCentro    | 0.1613   | 0.4270    | 0.3778    | 0.7063  |
| RegionOccidente | 0.2424   | 0.3147    | 0.7705    | 0.4426  |
| RegionOriente   | 0.3937   | 0.4319    | 0.9115    | 0.3639  |
|                 |          |           |           |         |

#### Plot de la distribución de los betas



## Modelo log lineal ajustado

|                 | exp_estimado | 2.5 %  | 97.5 % |
|-----------------|--------------|--------|--------|
| (Intercept)     | 0.6285       | 0.3732 | 1.058  |
| SexMale         | 1.0244       | 0.8600 | 1.220  |
| ZoneUrban       | 0.7086       | 0.4482 | 1.120  |
| RegionSur       | 0.9960       | 0.5371 | 1.847  |
| RegionCentro    | 1.1750       | 0.5043 | 2.738  |
| RegionOccidente | 1.2744       | 0.6832 | 2.377  |
| RegionOriente   | 1.4824       | 0.6301 | 3.488  |

# Estadístico de Wald sobre los parámetros

regTermTest(model = mod\_loglin\_qwgt, ~Sex)

Análisis de encuestas de

hogares con R

```
## Wald test for Sex
   in svyglm(formula = pobreza ~ Sex + Zone + Region
##
##
      family = quasibinomial)
## F = 0.0743 on 1 and 113 df: p = 0.79
 regTermTest(model = mod_loglin_qwgt, ~Zone)
## Wald test for Zone
    in svyglm(formula = pobreza ~ Sex + Zone + Region
      family = quasibinomial)
##
## F = 2.221 on 1 and 113 df: p = 0.14
```

## Estadístico de Wald sobre los parámetros

```
regTermTest(model = mod_loglin_qwgt, ~Region)
```

```
## Wald test for Region
## in svyglm(formula = pobreza ~ Sex + Zone + Region
## family = quasibinomial)
## F = 0.4156 on 4 and 113 df: p= 0.8
```

```
effe_sex <- effect_plot(mod_loglin_qwgt,</pre>
                         pred = Sex,
                          interval = TRUE)
effe_Zona <-effect_plot(mod_loglin_qwgt,</pre>
                         pred = Zone,
                          interval = TRUE)
effe Region <- effect plot(mod loglin qwgt,
                             pred = Region,
                             interval = TRUE)
(effe sex |effe Zona)/effe Region
```



## ¡Gracias!

Análisis de encuestas de hogares con R

::: yellow *Email*: andres.gutierrez@cepal.org :::