Analysis of residuals

Scatter diagram usually helps us understand whether a simple linear regression model is appropriate. When scatter diagram is not enough, we first fit the simple linear regression model and then analyze the residuals $Y_i - (\hat{\alpha} + \hat{\beta}x_i)$. We calculate the "standardized residuals" as follows:

$$\frac{Y_i - (\hat{\alpha} + \hat{\beta}x_i)}{\sqrt{SS_e/(n-2)}}$$

When the simple linear regression model is correct, the standardized residuals are approximately independent standard normal random variables, and should be randomly distributed above and below 0 with about 95 percent of their values being between -2 and +2. In addition, a plot of the standardized residuals should not indicate any distinct pattern. Indeed, any indication of a distinct pattern should make us suspicious about the validity of the assumed simple linear regression model. (See the plots on pages 381 and 382 of textbook.)

Transforming to linearity

In many cases, a linear regression is not appropriate. In such cases, if the form of the relationship can be determined, it is sometimes possible to transform it into a linear form. For instance, in certain applications it is known that W(t), the amplitude of a signal a time t after its origination, is approximately related to t by the functional form

$$W_t \approx c \exp(-dt)$$

so that

$$\log W_t \approx \log c - dt$$

or

$$\log W_t = \log c - dt + \epsilon$$

or

$$Y_t = \alpha + \beta t + \epsilon$$

The regression parameters α and β would then be estimated by the usual least squares approach and the original functional relationships can be predicted from

$$W_t \approx \exp(\hat{\alpha} + \hat{\beta}t)$$

Example

Consider the following scatter diagram. The relationship appears to be

$$W_x \approx c \exp(dx)$$

Using $Y_x = \log W_x$ we have the following plot

A simple linear regression model is now fitted: $\hat{\alpha} = 10.03$ and $\hat{\beta} = 1.99$. Thus,

$$W_x \approx \exp(10.03 + 1.99x)$$

Weighted least squares

Sometimes the variance of a response is not constant but depends on the value of x. then the regression parameters α and β should be estimated by minimizing a weighted sum of squares. That is, if

$$V(Y_i) = \frac{\sigma^2}{w_i}$$

then to estimate the regression parameters, we minimize

$$\frac{1}{\sigma^2} \sum_{i=1}^n w_i \left(Y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2$$

That is, we minimize

$$\sum_{i=1}^{n} w_i (Y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

We try to choose an appropriate set of weights and then use them in the above expression.