<u>OPENCLASSROOMS</u>

Projet 3 : Concevez une application au service de la santé publique

Anissa TALEB Mai 2023

AGRAS

BON OU MAUVAIS GRAS?

Objectif:

- ⇒ distinguer les aliments contenant de bon gras du mauvais gras :
- Taux Acide Gras (gras saturé)
- Ratio Oméga 6/ Oméga 3
- Nutriscore

Sommair:

Partie 1: Importation des librairies et de jeu de données

Partie 2 : Inspection de qualité de jeu de données

Partie 3 : Nettoyage de jeu de données

Partie 4 : Analyse exploratoire

Partie 5 : Présentation de l'idée d'application

Partie 1: Importation de librairies et de jeu de données

Importation des librairies : Pandas

Numpy

Matplotlib

Seaborn

SciPy

sklearn

source de dataSet: données Open Food Facts

Partie 2 : Inspection de qualité de jeu de données

code	url	creator	created_t	created_datetime	last_modified_t	last_modified_datetime	product_name	generic_
0 000000003087	http://world- fr.openfoodfacts.org/produit/0000	openfoodfacts- contributors	1474103866	2016-09- 17T09:17:46Z	1474103893	2016-09-17T09:18:13Z	Farine de blé noir	

Nombre de lignes 320772 Nombre de colonnes : 162

Valeurs nulles +++++

Nombre des valeurs manquants :					
df.isnull().sum()					
code	23				
url	23				
creator	2				
created_t	3				
created_datetime	9				
<u> </u>					
carbon-footprint_100g	320504				
nutrition-score-fr_100g	99562				
nutrition-score-uk_100g	99562				
glycemic-index_100g	320772				
water-hardness_100g Length: 162, dtype: int64	320772				

```
df.dtypes
                            object
code
url
                             object
                            object
creator
                            object
created t
created_datetime
                            object
carbon-footprint 100g
                           float64
nutrition-score-fr 100g
                           float64
nutrition-score-uk_100g
                           float64
glycemic-index 100g
                           float64
water-hardness 100g
                           float64
Length: 162, dtype: object
```

Pas conversion de type d'objets nécessaire

Sélection sur les colonnes :

- uniquement celles en rapport avec l'acide gras + Nutriscore FR
- Éliminer celles qui n'ont aucune valeure renseignée

Sélection sur les lignes:

- Suppression des produits sans nom: aucun intérêt métier
- uniquement individus ayant au moins 5 observations statistiques renseignées

Gestion de valeurs aberrantes :

- Taux supérieur à 100 dans 100 grammes de nutriment
 - ⇒ Transformer les valeurs supérieures à 100 en NaN.

Gestion de valeurs aberrantes :

Visualisation de répartition des valeurs par catégorie

Gestion de valeurs aberrantes :

Visualisation de répartition des valeurs par catégorie

Gestion de valeurs aberrantes :

Visualisation de répartition des valeurs par catégorie

⇒Correctes! donc atypiques!

Gestion de valeurs nulles :

- Déterminer la valeur monounsaturated-fat_100g et polyunsaturated-fat_100g à partir de la relation : fat_100g = saturated-fat_100g + monounsaturated-fat_100g + polyunsaturated-fat_100g
- Déterminer la valeur de Omega 9 omega-9-fat_100g = monounsaturated-fat_100g
- Remplacer les NaN par la moyenne de chaque catégorie

Gestion de valeurs nulles :

dfP3.isnull().sum()	
nutrition_grade_fr	93
pnns_groups_1	0
product_name	4
fat_100g	0
saturated-fat_100g	0
monounsaturated-fat_100g	20
polyunsaturated-fat_100g	18
omega-3-fat_100g	456
omega-6-fat_100g	654
omega-9-fat_100g	756
trans-fat_100g	472
cholesterol_100g	381
dtype: int64	

```
dfP3.isnull().sum()
nutrition_grade_fr
                            91
pnns_groups_1
product name
fat 100g
saturated-fat_100g
monounsaturated-fat 100g
polyunsaturated-fat_100g
omega-3-fat 100g
                            12
omega-6-fat_100g
                            21
omega-9-fat_100g
trans-fat_100g
cholesterol 100g
dtype: int64
```

Analyse univariée :

4 catégories de 10 ⇒ ¾ de total

Analyse univariée :

les catégories c et d sont celles les mieux présentés

Analyse univariée :

=> +++produits avec taux élevé d'acide gras (100%)

Analyse univariée :

++++produits avec taux très bas d'acide gras saturé

Analyse univariée :

=> ++++produits avec taux bas d'acide gras insaturé

Analyse univariée :

=> ++++produits avec taux bas de cholestérol

Analyse univariée :

=> ++++produits avec taux bas d'acide gras trans

Analyse univariée :

⇒ La distribution des variables
 quantitatives ne suit pas une loi
 normal ⇒ Pas de test ANOVA

Analyse bivariée:

=>Les mesures de tendance centrale de taux d'acide gras par catégorie ne sont pas stables d'une catégorie à une autre.

Analyse bivariée:

=> homogènes malgré les points atypiques présents dans certaines catégories spécifiques.

Analyse bivariée:

=> +++ 'Fat and sauce' et 'Salty snacks'

Analyse bivariée:

=> +++ 'Fat and sauce' et 'Salty snacks'

Analyse bivariée:

=> le cholestérol === aliments gras

Analyse bivariée:

- -> 'fat and sauce' et 'salty snacks' beaucoup variation
 - + ratio très élevé!

Analyse bivariée:

⇒ 'fat and sauce' et 'salty snacks' sont celles qui contiennent le plus d'AG saturés et d'AG insaturés

→ + ratio oméga 6/oméga 3 est très élevé!

Carte thermique de corrélation :

=> pas corrélation détecter entre le cholestérol/AG Trans et les autres indicateurs.

Analyse bivariée:

=> Corrélation mise en évidence notamment pour les petites valeurs de fat _100g

=> Cette relation est perturbée au niveau des valeurs atypiques!

Analyse bivariée:

=> Corrélation perturbée au niveau des valeurs atypiques!

Analyse en composantes principales (ACP):

=> Le premier plan factoriel couvre environ 70% de variance

Analyse en composantes principales (ACP):

Analyse en composantes principales (ACP):

L'axe F1 mesure le taux d'acide gras en général, et F2 le taux de cholestérol et acide trans

•

Analyse en composantes principales (ACP):

L'axe F3 reflète le taux d'AG trans, et F4 le taux d'AG saturé . Les deux marqueurs du mauvais gras.

Analyse en composantes principales (ACP):

- ⇒ 'fat and sauce' et 'salty snacks' sont celles qui contiennent le plus de variance en terme de gras
- + transfat/cholestérol
- ⇒ essentiellement du mauvais gras

Partie 5 : Présentation de l'idée d'application

Faisabilité de projet :

Partie 5 : Présentation de l'idée d'application

Merci pour votre attention:)

Gestion de valeurs aberrantes :

Visualisation de répartition des valeurs par catégorie

⇒Correctes!

Gestion de valeurs aberrantes :

Visualisation de répartition des valeurs par catégorie

⇒Correctes!

