Introduction and Asymptotic Analysis

E. Han S. Jain W. Suksompong

School of Computing National University of Singapore

CS3230 Lec01b; Thu, 16 Jan 2025

Overview

Introduction

Problem-Solving Example: Fibonacci

Model of Computation: RAM

Asymptotic Analysis

Big O (upper bound)

 Ω (lower bound)

New notation Θ (tight bound)

Little-o and ω

Taking Limits

Wrapping-Up

Algorithm

Algorithm

"A sequence of unambiguous and executable instructions for solving a problem (given a valid input, obtain a valid output)"

Algorithm

Algorithm

"A sequence of unambiguous and executable instructions for solving a problem (given a valid input, obtain a valid output)"

Let's elaborate:

- ► What are the valid inputs?
- What is the meaning of unambiguous instructions?
- ▶ What is the meaning of executable instructions?
- ► Are all algorithms deterministic?
- Do all algorithms terminate?

Details

We assume that the algorithm does not need to concern itself with invalid input, e.g., for Fib(n) later, we will assume that n will always be a non-negative Integer

Unambiguous instructions: precisely stated, no room for doubt

Instructions should be executable (implementable) on the target machine, i.e., no magic

*Deterministic: Most of the time, we expect each instruction to be deterministic, though in some cases we allow randomness or nondeterminism (we will talk about randomness/nondeterminism when we deal with them)

*Termination: The algorithm should terminate after finitely many instructions are executed (exception: case by case, explictly stated)

Pseudocode

We can give an algorithm already written as a program in a particular programming language, pros and cons:

- Unambiguous (unless we do not understand that language)
- Clear
- Quite tedious
- Harder to understand

Pseudocode

We can give an algorithm already written as a program in a particular programming language, pros and cons:

- Unambiguous (unless we do not understand that language)
- Clear
- Quite tedious
- Harder to understand

Alternative: Pseudocode (we will use this going forward)

- ► Slightly informal
- ► Still precise enough to understand exactly what instructions are, and how to implement it in some programming language

An Example

In Python (source code)

$$A = [(1, 2, 3), (4, 5, 6)]$$
[*zip(*A)]

Do you know what is this?

An Example

In Python (source code)

$$A = [(1, 2, 3), (4, 5, 6)]$$

[*zip(*A)]

Do you know what is this?

In Pseudocode:

An Example

In Python (source code)

$$A = [(1, 2, 3), (4, 5, 6)]$$

[*zip(*A)]

Do you know what is this?

In Pseudocode:

Given a 2D matrix of size $n \times m$, transpose it into an $m \times n$ matrix

Some Properties of Good Algorithms

There can be many possible algorithms for solving a problem

Given the choices, we prefer:

- Correctness (the most important property)
- Efficiency (time/space/resources)
- Generality: Applicable to a wide range of inputs and not dependent on a particular computer/device
- Usability as a 'subroutine' for other problems
- ▶ Simplicity: so that it is easy to code, understand, debug, etc.
- ▶ Well documented (easy to understand and to extend it)

Some objectives may have trade-offs: simplicity vs efficiency

Design and Analysis of Algorithms

Designing an algorithm is both science and art You need to know the relevant techniques But you also need creativity, intuition, perseverance

There is no formula for designing a good efficient algorithm Every new problem may need a fresh approach So, learn lots of techniques/strategies/paradigms By observing the properties of a problem and using the techniques, one can often design a good algorithm for the given problem

Paradigms

- Complete Search (for example, using brute force, backtracking, branch and bound)
- ► Divide and Conquer (D&C)
- Dynamic Programming (DP)
- Greedy Algorithm
- Deterministic versus non-deterministic strategies
- ► Iterative Improvement

Problem-Solving

The general steps:

- 1. Understand the problem
- 2. Design a method to solve the problem
- 3. Convert it into an algorithm/pseudocode
- 4. Choose data structures
- 5. Prove correctness of the algorithm
- Analyze the complexity of the algorithm (time/space/resources needed)
- 7. PS: Implement that correct and efficient algorithm

Fibonacci Numbers

- ightharpoonup *Fib*(0) = 0
- ightharpoonup *Fib*(1) = 1
- For n > 1, Fib(n) = Fib(n-1) + Fib(n-2)
- ► First 10 terms: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Problem: Given n as input, compute Fib(n)

Fibonacci Numbers

- ightharpoonup *Fib*(0) = 0
- ightharpoonup *Fib*(1) = 1
- For n > 1, Fib(n) = Fib(n-1) + Fib(n-2)
- ► First 10 terms: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Problem: Given n as input, compute Fib(n)

We will look at two algorithms:

- ► Recursive algorithm
- ► Iterative algorithm

PS: Yes, there are other (faster) algorithms

Recursive algorithm to compute Fib(n)

```
define Fib(n)
  if n <= 1
    return n
  else
    return Fib(n-1)+Fib(n-2)</pre>
```

Simple, direct recursive implementation from the Fib(n) definition

Problem Solving - with recursive Fib(n)

Given
$$K$$
 ($1 \le K \le 45$) output $Fib(K-1)$ and $Fib(K)$

If you implement above using your favourite programming language, using the algorithm given in the previous slide, it is likely to take too much time (we will discuss more on this later)

Iterative algorithm to compute Fib(n)

```
define IFib(n)
  if n <= 1
    return n
  else
    prev2 = 0
    prev1 = 1
    for i = 2 to n
      temp = prev1
      prev1 = prev1+prev2
      prev2 = temp
  return prev1
```

Problem Solving - with iterative IFib(n)

Given
$$K$$
 ($1 \le K \le 45$) output $Fib(K-1)$ and $Fib(K)$

Even if your computer is slow, above is likely to give answer quickly. Why?

Analysis of an Algorithm

We analyze the resources needed by an algorithm:

- ▶ Time in this course, we will mostly concentrate on time
- ▶ Space in this course, we assume all data fits in memory

Analysis of an Algorithm

We analyze the resources needed by an algorithm:

- ▶ Time in this course, we will mostly concentrate on time
- ▶ Space in this course, we assume all data fits in memory

Sometimes, we do trade-offs:

- ▶ If space is not an issue, most of the time, we sacrifice (or use more) space to gain faster time
- ► For some applications (e.g., Big Data), we may have to sacrifice time so that we are able to process the data

Analysis of an Algorithm

We analyze the resources needed by an algorithm:

- ▶ Time in this course, we will mostly concentrate on time
- ▶ Space in this course, we assume all data fits in memory

Sometimes, we do trade-offs:

- ▶ If space is not an issue, most of the time, we sacrifice (or use more) space to gain faster time
- ► For some applications (e.g., Big Data), we may have to sacrifice time so that we are able to process the data

Actual time needed to run an algorithm depends on the machine used, and this is not easy to calculate/measure

Model of Computation: RAM

Random-Access Machine (RAM) model is simple and close to how real computers work:

- ► Each instruction takes a constant amount of time: fetch the instruction, execute, store back the results in the memory
- We count the number of basic instructions needed
- ▶ The time complexity is based on input size (more details soon)

RAM, Continued

- Word is basic unit of memory In this course, you can usually assume each number (or relevant item) can be stored in one word
- ▶ RAM is an array of words, storing instructions and data It takes one unit of time to access any word (this is important)
- ► Each arithmetic or logical operation (+, -, *, /, mod, AND, OR, NOT, etc) takes a constant amount of time (note: exponent operation is not constant time see Divide and Conquer lecture later)
- Details of word size and different time taken by different instructions are important, but USUALLY do not have a large impact; so we usually ignore it, unless it makes a difference
- ► We need to be careful: when numbers are very large (and thus cannot fit in one word), the complexity depends on the number of bits/words needed to store the number

For our Fib(n) and IFib(n) analysis

For large n, Fib(n), can be very large

To address the above, one can consider computing the Fibonacci numbers modulo some m (for example $2^{wordsize}$)

We omit this detail in our first analysis to simplify discussion

```
define Fib(n)
  if n <= 1
    return n
  else
    return Fib(n-1)+Fib(n-2)</pre>
```

```
define Fib(n)
  if n <= 1
    return n
  else
    return Fib(n-1)+Fib(n-2)</pre>
```

This 'brute force' Fib(n) is bad

Let T(n) be the number of operations done by Fib(n)

```
define Fib(n)
  if n <= 1
    return n
  else
    return Fib(n-1)+Fib(n-2)</pre>
```

This 'brute force' Fib(n) is bad

define Fib(n)
 if n <= 1
 return n
 else
 return Fib(n-1)+Fib(n-2)</pre>

This 'brute force' Fib(n) is bad

Let T(n) be the number of operations done by Fib(n)

$$T(0) = T(1) = 2$$

(if+return)
For $n \ge 2$, $T(n) =$
 $T(n-1) + T(n-2) + 8$
(if+else+two function calls+add+two subtractions, return)

operations done by Fib(n)

define Fib(n)
 if n <= 1
 return n
 else
 return Fib(n-1)+Fib(n-2)</pre>

This 'brute force' Fib(n) is bad

T(0) = T(1) = 2(if+return) For $n \ge 2$, T(n) = T(n-1) + T(n-2) + 8(if+else+two function calls+add+two subtractions, return)

Let T(n) be the number of

So
$$T(n) \geq Fib(n)$$

define Fib(n)
 if n <= 1
 return n
 else
 return Fib(n-1)+Fib(n-2)</pre>

This 'brute force' Fib(n) is bad

Let T(n) be the number of operations done by Fib(n)

$$T(0) = T(1) = 2$$

(if+return)
For $n \ge 2$, $T(n) =$
 $T(n-1) + T(n-2) + 8$
(if+else+two function calls+add+two subtractions, return)

So
$$T(n) \geq Fib(n)$$

We can show that $Fib(n) \geq 2^{\frac{n-2}{2}}$ (How?) T(n) is exponential in n


```
Fib(1) = 1
Notice that for n \ge 2, (including n \ge 3)
Fib(n) = Fib(n-1) + Fib(n-2),
```

$$Fib(1) = 1$$

Notice that for $n \ge 2$, (including $n \ge 3$)
 $Fib(n) = Fib(n-1) + Fib(n-2)$,
 $Fib(n) \ge Fib(n-2) + Fib(n-2)$,

```
Fib(1) = 1
Notice that for n \ge 2, (including n \ge 3)
Fib(n) = Fib(n-1) + Fib(n-2),
Fib(n) \ge Fib(n-2) + Fib(n-2),
Fib(n) \ge 2 \cdot Fib(n-2),
i.e., after two terms, the value of Fib(n) will at least double, i.e., Fib(1), Fib(3), Fib(5), Fib(7), Fib(9), ... = 1, 2, 5, 13, 34, ...
```

$$Fib(1) = 1$$

Notice that for $n \ge 2$, (including $n \ge 3$)
 $Fib(n) = Fib(n-1) + Fib(n-2)$,
 $Fib(n) \ge Fib(n-2) + Fib(n-2)$,

$$Fib(n) \ge 2 \cdot Fib(n-2)$$
, i.e., after two terms, the value of $Fib(n)$ will at least double, i.e., $Fib(1)$, $Fib(3)$, $Fib(5)$, $Fib(7)$, $Fib(9)$, ... = 1, 2, 5, 13, 34, ...

Between 1 to n, there are $\lceil \frac{n-2}{2} \rceil$ doubling steps This takes care of odd vs even n cases

Hence
$$Fib(n) \ge 2^{(n-2)/2}$$

Analysis of iterative algorithm to compute Fib(n)

```
define IFib(n)
  if n \le 1
    return n
  else
    prev2 = 0
    prev1 = 1
    for i = 2 to n
      temp = prev1
      prev1 = prev1+prev2
      prev2 = temp
  return prev1
```

This is 'Dynamic Programming' (DP) (to be revisited later)

Analysis of iterative algorithm to compute Fib(n)

```
define IFib(n)
  if n \le 1
    return n
  else
    prev2 = 0
    prev1 = 1
    for i = 2 to n
      temp = prev1
      prev1 = prev1+prev2
      prev2 = temp
  return prev1
```

This is 'Dynamic Programming' (DP) (to be revisited later)

For
$$n \ge 2$$
, $T(n) \approx 4 + (n-1) * 5 + 1$ (if+else+two assignments $+ (n-1)$ iterations, each takes ≈ 5 steps +return)

So
$$T(n) \approx 5n$$
, linear in n

This is much faster than the recursive version that runs exponential in *n*

Actual Running Time

Running Time of an Algorithm

- We often give the running time in terms of the size of the input (usually parameter n)
- Size of the input can be the number of items (e.g., sorting n Integers) or length of inputs coded in binary (e.g., Integer n in Fib(n) requires log n bits encoding details in the second half)

Running Time of an Algorithm

- We often give the running time in terms of the size of the input (usually parameter n)
- Size of the input can be the number of items (e.g., sorting n Integers) or length of inputs coded in binary (e.g., Integer n in Fib(n) requires log n bits encoding details in the second half)
- We usually perform these analysis:
 - Worst-case analysis: T(n) is the <u>maximum</u> time needed for any input of size (at most) n
 - Average-case analysis: T(n) is the expected time taken over all inputs of size n; either all inputs are equally probable, or we know the probability distribution over the inputs of size n
 - We usually do not consider best-case analysis, as inputs that trigger best-case are usually not the typical ones

Running Time of an Algorithm

- We often give the running time in terms of the size of the input (usually parameter n)
- Size of the input can be the number of items (e.g., sorting n Integers) or length of inputs coded in binary (e.g., Integer n in Fib(n) requires log n bits encoding details in the second half)
- We usually perform these analysis:
 - Worst-case analysis: T(n) is the <u>maximum</u> time needed for any input of size (at most) n
 - Average-case analysis: T(n) is the expected time taken over all inputs of size n; either all inputs are equally probable, or we know the probability distribution over the inputs of size n
 - We usually do not consider best-case analysis, as inputs that trigger best-case are usually not the typical ones
- ▶ It is difficult to compute the exact number of operations (as seen earlier), thus we often give upper bounds instead

Which algorithm is more efficient?

Algorithm 1:

Algorithm 2:

$$T1(n) = 100n + 1000$$

$$T2(n)=n^2+5$$

Which algorithm is more efficient?

Algorithm 1: Algorithm 2:

$$T1(n) = 100n + 1000$$
 $T2(n) = n^2 + 5$

The answer is 'it depends' (see helper Excel file)

Algorithm 2 can be more efficient on small n, i.e., when n < 110

Algorithm 1 is more efficient on large n, especially when $n \ge 110$ (this is more important)

Which algorithm is more efficient?

Algorithm 1: Algorithm 2:

$$T1(n) = 100n + 1000$$
 $T2(n) = n^2 + 5$

The answer is 'it depends' (see helper Excel file)

Algorithm 2 can be more efficient on small n, i.e., when n < 110

Algorithm 1 is more efficient on large n, especially when $n \ge 110$ (this is more important)

Time complexity is MORE IMPORTANT for large-sized input, thus we only compare for asymptotically large values of input size

Asymptotic Analysis

Why we do not measure the actual run time:

- Different machines have different speeds,
 i.e., new gaming desktop is fast vs 10-years old laptop is slow
- ▶ Different programming languages have different runtimes, i.e., C++ is fast vs Python is slow

Asymptotic Analysis

Why we do not measure the actual run time:

- Different machines have different speeds,
 i.e., new gaming desktop is fast vs 10-years old laptop is slow
- ▶ Different programming languages have different runtimes, i.e., C++ is fast vs Python is slow

We prefer to do asymptotic analysis:

- ► For large inputs, how does the runtime behave?
- Comparison of algorithms is based on the asymptotic analysis
- ► We often ignore lower terms and constant multiplicative factors in the asymptotic analysis

Most common asymptotic notation: Big O (upper bound)

For the following discussion on asymptotics, assume f and g are functions of one parameter n

 $f \in O(g)$ if there exists constant c > 0 and $n_0 > 0$ such that for all $n \ge n_0 : 0 \le f(n) \le c \cdot g(n)$

Interpretation: g is an upper bound on f

Most common asymptotic notation: Big O (upper bound)

For the following discussion on asymptotics, assume f and g are functions of one parameter n

 $f \in O(g)$ if there exists constant c > 0 and $n_0 > 0$ such that for all $n \ge n_0 : 0 \le f(n) \le c \cdot g(n)$

Interpretation: g is an upper bound on f

 $O(g) = \{f : \text{ there exists constant } c > 0 \text{ and } n_0 > 0 \text{ such that for all } n \ge n_0, 0 \le f(n) \le c \cdot g(n)\}$

We sometimes also write f = O(g), though not 100% correct

We frequently write f(n) = O(g(n)), though technically, n should not have been used (there can be more than one parameter)

Similarly for other asymptotic notations; PS: we accept all versions

Pictorial interpretation of Big O notation

Big O notation is an upper bound notation So, saying f(n) is at least O(g(n)) is not correct

Example: $100n + 1000 \in O(n^2)$

Example: $100n + 1000 \in O(n^2)$

▶ $0 \le 100n + 1000$ (for any positive *n*)

Example: $100n + 1000 \in O(n^2)$

- ▶ $0 \le 100n + 1000$ (for any positive *n*)
- $0 \le 100n + 1000 \le 101n$ (for $n \ge 1000$)

Example: $100n + 1000 \in O(n^2)$

- ▶ $0 \le 100n + 1000$ (for any positive n)
- $0 \le 100n + 1000 \le 101n$ (for $n \ge 1000$)
- ▶ $0 \le 100n + 1000 \le 101n \le 101n^2$ (for $n \ge 1000$) i.e., we can set c = 101 and $n_0 = 1000$

Hence, $100n + 1000 \in O(n^2)$

Example: $100n + 1000 \in O(n^2)$

- ▶ $0 \le 100n + 1000$ (for any positive n)
- $0 \le 100n + 1000 \le 101n$ (for $n \ge 1000$)
- ▶ $0 \le 100n + 1000 \le 101n \le 101n^2$ (for $n \ge 1000$) i.e., we can set c = 101 and $n_0 = 1000$

Hence, $100n + 1000 \in O(n^2)$

But is this upper bound tight?

Example: $100n + 1000 \in O(n^2)$

- ▶ $0 \le 100n + 1000$ (for any positive n)
- $0 \le 100n + 1000 \le 101n \text{ (for } n \ge 1000)$
- ▶ $0 \le 100n + 1000 \le 101n \le 101n^2$ (for $n \ge 1000$) i.e., we can set c = 101 and $n_0 = 1000$

Hence, $100n + 1000 \in O(n^2)$

But is this upper bound tight?

No, we can also show that $100n+1000\in O(n)$ using the same c=101 and $n_0=1000$

Is this the only c and n_0 to show that $100n + 1000 \in O(n^2)$?

Example: $100n + 1000 \in O(n^2)$

- ▶ $0 \le 100n + 1000$ (for any positive n)
- $0 \le 100n + 1000 \le 101n \text{ (for } n \ge 1000)$
- ▶ $0 \le 100n + 1000 \le 101n \le 101n^2$ (for $n \ge 1000$) i.e., we can set c = 101 and $n_0 = 1000$

Hence, $100n + 1000 \in O(n^2)$

But is this upper bound tight?

No, we can also show that $100n + 1000 \in O(n)$ using the same c = 101 and $n_0 = 1000$

Is this the only c and n_0 to show that $100n + 1000 \in O(n^2)$? No, we can also show that $100n + 1000 \in O(n^2)$ with:

c = 101 and $n_0 = 1001$ (or any larger n_0),

c = 1100 (or any larger c) and $n_0 = 1$, etc.

Let
$$f(n) = 10n^3 + 5n + 15$$
 and $g(n) = n^4$

We want to prove that $f(n) \in O(g(n))$ by showing that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$

What should be the appropriate c and n_0 ? (there are > 1 answers)

- A). c = 2, $n_0 = 10$
- B). c = 1, $n_0 = 11$
- C). c = 5, $n_0 = 1$
- D). c = 1, $n_0 = 10$

Reminder: $f(n) = 10n^3 + 5n + 15$ and $g(n) = n^4$ We want to show that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Option C). c = 5, $n_0 = 1$ is incorrect, e.g., for $n = n_0 = 1$: f(1) = 30; $5 \cdot g(1) = 5 \cdot 1 = 5$; so $f(n) > c \cdot g(n)$

Reminder: $f(n) = 10n^3 + 5n + 15$ and $g(n) = n^4$ We want to show that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$ Option C). c = 5, $n_0 = 1$ **is incorrect**, e.g., for $n = n_0 = 1$: f(1) = 30; $5 \cdot g(1) = 5 \cdot 1 = 5$; so $f(n) > c \cdot g(n)$

Reminder: $f(n) = 10n^3 + 5n + 15$ and $g(n) = n^4$ We want to show that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Option C). c = 5, $n_0 = 1$ is incorrect, e.g., for $n = n_0 = 1$: f(1) = 30; $5 \cdot g(1) = 5 \cdot 1 = 5$; so $f(n) > c \cdot g(n)$

Option D). c = 1, $n_0 = 10$ **is incorrect**, e.g., for $n = n_0 = 10$: $f(10) = 10\,065$; $1 \cdot g(10) = 1 \cdot 10\,000 = 10\,000$; so $f(n) > c \cdot g(n)$

Option A). c = 2, $n_0 = 10$ is **correct**, i.e., for $n \ge 10$, we have: $10n^3 + (5n + 15) \le 10n^3 + (20n) \le 10n^3 + (10n^3) \le 2n^4$


```
Reminder: f(n) = 10n^3 + 5n + 15 and g(n) = n^4
We want to show that 0 \le f(n) \le c \cdot g(n) for all n \ge n_0
```

Option C).
$$c = 5$$
, $n_0 = 1$ is incorrect, e.g., for $n = n_0 = 1$: $f(1) = 30$; $5 \cdot g(1) = 5 \cdot 1 = 5$; so $f(n) > c \cdot g(n)$

Option D).
$$c = 1$$
, $n_0 = 10$ **is incorrect**, e.g., for $n = n_0 = 10$: $f(10) = 10\,065$; $1 \cdot g(10) = 1 \cdot 10\,000 = 10\,000$; so $f(n) > c \cdot g(n)$

Option A).
$$c = 2$$
, $n_0 = 10$ **is correct**, i.e., for $n \ge 10$, we have: $10n^3 + (5n + 15) \le 10n^3 + (20n) \le 10n^3 + (10n^3) \le 2n^4$

Option B). c=1, $n_0=11$ **is correct**, i.e., for $n \ge 11$, we have: $10 \cdot 11^3 + 5 \cdot 11 + 15 \le 11 \cdot 11^3$ $5 \cdot 11 + 15 \le 11^3$ (the gap will grow with larger $n \ge 10.0641$) Tips: set c=1 and n_0 to be a large value; see if the gap grows

New notation Ω (lower bound)

 $f \in \Omega(g)$ if there exists constant c>0 and $n_0>0$ such that for all $n \geq n_0: 0 \leq c \cdot g(n) \leq f(n)$

Interpretation: g is a lower bound on f

Example: $n^2 \in \Omega(100n+1000)$ We swap f(n) and g(n) from the earlier Big O example This is the complementary property of asymptotic notations

Example: $n^2 \in \Omega(100n+1000)$ We swap f(n) and g(n) from the earlier Big O example This is the complementary property of asymptotic notations

▶ $0 \le \frac{1}{101} \cdot (100n + 1000) \le n^2$ for $n \ge 1000$ i.e., we can set $c = \frac{1}{101}$ and $n_0 = 1000$ just set this c to be the reciprocal of the c in Big O analysis

Example: $n^2 \in \Omega(100n+1000)$ We swap f(n) and g(n) from the earlier Big O example This is the complementary property of asymptotic notations

▶ $0 \le \frac{1}{101} \cdot (100n + 1000) \le n^2$ for $n \ge 1000$ i.e., we can set $c = \frac{1}{101}$ and $n_0 = 1000$ just set this c to be the reciprocal of the c in Big O analysis

Again, there are many other possible c and n_0

Example: $n^2 \in \Omega(100n+1000)$ We swap f(n) and g(n) from the earlier Big O example This is the complementary property of asymptotic notations

▶ $0 \le \frac{1}{101} \cdot (100n + 1000) \le n^2$ for $n \ge 1000$ i.e., we can set $c = \frac{1}{101}$ and $n_0 = 1000$ just set this c to be the reciprocal of the c in Big O analysis

Again, there are many other possible c and n_0

PS: We usually have f(n) as the more complex function and g(n) to be the simpler one, i.e., $7n^2 + 5n + 77 \in \Omega(n^2)$

Pictorial interpretation of Ω -notation

New notation Θ (tight bound)

 $f \in \Theta(g)$ if there exists constants $c_1, c_2 > 0$ and $n_0 > 0$ such that for all $n \ge n_0 : 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$

Interpretation: g is a tight bound on f

We will frequently do Θ analysis in CS3230

Θ-notation (tight bound)

Example: $10n^2 + n \in \Theta(n^2)$

Θ-notation (tight bound)

Example: $10n^2 + n \in \Theta(n^2)$

▶ $0 \le \frac{1}{2}n^2 \le (10n^2 + n) \le 11n^2$ for $n \ge 2$ i.e., $c_1 = \frac{1}{2}$, $c_2 = 11$, and $n_0 = 2$ again, these are not the only valid constants c_1 , c_2 , and n_0

Hence, $10n^2 + n \in \Theta(n^2)$

Pictorial interpretation of Θ -notation

O, Ω , and Θ

$$\Theta(g) = O(g) \cap \Omega(g)$$

Little-o (strict upper bound)

 $f \in o(g)$ if **for any constant** c > 0, there exists $n_0 > 0$ such that for all $n \ge n_0 : 0 \le f(n) < c \cdot g(n)$ (notice **for any constant** c > 0 instead of **there exists constant** c > 0, and c = 0 instead of c = 0)

PS: some textbooks define Little-o using $\leq c \cdot g(n)$ instead of $\langle c \cdot g(n) \rangle$.

This will only change the chosen c and/or n_0

Little-o (strict upper bound)

 $f \in o(g)$ if **for any constant** c > 0, there exists $n_0 > 0$ such that for all $n \ge n_0 : 0 \le f(n) < c \cdot g(n)$ (notice **for any constant** c > 0 instead of **there exists constant** c > 0, and c = 0 instead of c = 0)

PS: some textbooks define Little-o using $\leq c \cdot g(n)$ instead of $< c \cdot g(n)$.

This will only change the chosen c and/or n_0

Example: $n \in o(n^2)$

For any constant c>0, let $n_0=1+\frac{1}{c}$ (for 0< c<1, setting, $n_0=1+\lceil\frac{1}{c}\rceil$, and for $c\geq 1$, setting $n_0=2$ is also ok)

Then, for $n \ge n_0$, $n < c \cdot n^2$

Little-o (strict upper bound)

 $f \in o(g)$ if **for any constant** c > 0, there exists $n_0 > 0$ such that for all $n \ge n_0 : 0 \le f(n) < c \cdot g(n)$ (notice **for any constant** c > 0 instead of **there exists constant** c > 0, and c = c instead of c = c)

PS: some textbooks define Little-o using $\leq c \cdot g(n)$ instead of $< c \cdot g(n)$.

This will only change the chosen c and/or n_0

Example: $n \in o(n^2)$ For any constant c > 0, let $n_0 = 1 + \frac{1}{c}$ (for 0 < c < 1, setting, $n_0 = 1 + \lceil \frac{1}{c} \rceil$, and for $c \ge 1$, setting $n_0 = 2$ is also ok) Then, for $n \ge n_0$, $n < c \cdot n^2$

But $n^2 - n \notin o(n^2)$ Let's say we pick $c = \frac{1}{2}$ (just need to show one counterexample), for any n_0 and large enough n (that is, $n > max(2, n_0)$) we have: $n^2 - n > \frac{1}{2}n^2$, because

 $\frac{1}{2}n^2 > n, \text{ that is }$ $n^2 > 2n$

ω (strict lower bound)

 $f \in \omega(g)$ if **for any constant** c > 0, there exists $n_0 > 0$ such that for all $n \ge n_0 : 0 \le c \cdot g(n) < f(n)$

Example: $n^2 - 36 \in \omega(n)$ For any constant c > 0, let $n_0 > \sqrt{36} + c$, Then, for $n \ge n_0$, $0 \le c \cdot n < n^2 - 36$

Asymptotic Notation: Taking Limits

Assume f(n), g(n) > 0, we have:

▶
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) \in O(g(n))$$

▶
$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) \in \Theta(g(n))$$

It is easier to show o, Θ , ω using limits

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\Rightarrow f(n)\in o(g(n))$$

Proof:

By definition of limit, $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$, means $\forall \epsilon>0, \exists n_0>0$, such that $\forall n\geq n_0$, $\frac{f(n)}{g(n)}<\epsilon$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\Rightarrow f(n)\in o(g(n))$$

Proof:

By definition of limit, $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$, means $\forall \epsilon>0, \exists n_0>0$, such that $\forall n\geq n_0$, $\frac{f(n)}{g(n)}<\epsilon$

Hence, for any constant c>0 (i.e., we can set $c=\epsilon$), $\exists n_0>0$, such that $\forall n\geq n_0$, $f(n)<\epsilon\cdot g(n)$, i.e., $f(n)< c\cdot g(n)$, $f(n)\in o(g(n))$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\Rightarrow f(n)\in o(g(n))$$

Proof:

By definition of limit, $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$, means $\forall \epsilon>0, \exists n_0>0$, such that $\forall n\geq n_0$, $\frac{f(n)}{g(n)}<\epsilon$

Hence, for any constant c>0 (i.e., we can set $c=\epsilon$), $\exists n_0>0$, such that $\forall n\geq n_0$, $f(n)<\epsilon\cdot g(n)$, i.e., $f(n)< c\cdot g(n)$, $f(n)\in o(g(n))$

We will prove at least one other during Tut01

Example

By limit, show that
$$n^6 + 233n^2 \in \omega(n^2)$$

$$\lim_{n\to\infty} \frac{n^6+233n^2}{n^2} = \lim_{n\to\infty} \frac{n^4+233}{1} = \infty \Rightarrow f(n) \in \omega(g(n))$$

Asymptotic Notation: Some Properties

- ► Reflexivity: For O, Ω, and Θ, f(n) ∈ O(f(n)), similarly for Ω and Θ
- ► Transitivity: For all five: O, Ω, Θ, o , and ω $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ implies $f(n) \in O(h(n))$
- Symmetry: $f(n) \in \Theta(g(n))$ iff $g(n) \in \Theta(f(n))$
- Complementary: $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$ $f(n) \in o(g(n))$ iff $g(n) \in \omega(f(n))$

We will prove some of these during Tut01

See Asymptotic_Analysis-Useful_Facts.pdf for math refresher

Acknowledgement

The slides are modified from previous editions of this course and similar course elsewhere.

List of credits: Surender Baswana, Arnab Bhattacharyya, Diptarka Chakraborty, Erik D. Demaine, Steven Halim, Sanjay Jain, Lee Wee Sun, Charles E. Leiserson, Leong Hon Wai, Warut Suksompong, Ken Sung, Chang Yi-Jun.