T3: Balança de Jolly

Objetivos

Determinação da aceleração da gravidade.

Determinação da constante elástica da mola da balança de Jolly.

Introdução

Quando se exerce uma força sobre uma mola de comprimento natural (x_0) , a mola atua no sentido de recuperar novamente o seu comprimento natural, exercendo uma força, \vec{F}_m , proporcional à deformação $X = \left|x_f - x_0\right|$, no sentido da posição de equilíbrio. Essa força é traduzida pela Lei de Hooke:

$$\vec{F} = -k X \hat{i}$$
 Eq. 1

onde k é a constante elástica da mola.

Figura 1

Ao suspendermos um corpo de massa m numa mola vertical de comprimento natural x_0 , (Figura 1a) produz-se nesta um alongamento $X = x_1 - x_0$ (Figura 1b). Nesta situação, o sistema atinge uma nova situação de equilíbrio x_1 , sendo nula a resultante das forças aplicadas ao corpo.

$$\vec{P} + \vec{F}_{m} = \vec{0}$$
 Eq. 2

$$mg = k(x_1 - x_0)$$
 Eq. 3

Se o corpo suspenso na mola elástica for ligeiramente deslocado da sua nova posição de equilíbrio, x_2 , o conjunto realiza um movimento oscilatório com um período de oscilação, T. A partir das leis da dinâmica¹ (ver apêndice) prova-se que no regime de pequenas amplitudes de oscilação, o período T depende da constante elástica da mola, k, e da massa do corpo, m:

¹ ver anexo deste trabalho

$$T=2\pi\sqrt{\frac{m}{k}}$$
 Eq. 4

Atendendo a que o corpo oscila em torno da posição de equilíbrio x_1 , é possível obter uma relação entre o período de oscilação, T, e o alongamento, $x_1 - x_0$, utilizando as Eqs. (3) e (4):

$$T = 2\pi \sqrt{\frac{x_I - x_o}{g}}$$
 Eq. 5

Preparação do trabalho

- a) Represente as forças que atuam no corpo suspenso na respetiva posição de equilíbrio (Figura 1b).
- b) Sabendo que as grandezas físicas que variam durante a experiência são a massa do corpo suspenso, m, o deslocamento x_1 - x_0 e o período de oscilação, T, linearize cada uma das expressões Eq. 4 e Eq.5 com o objetivo de determinar respetivamente a constante elástica da mola, k, e a aceleração da gravidade, g.

Procedimento experimental

Nota: Todos os valores medidos deverão ser registados na folha a entregar ao docente (no final deste protocolo) e numa folha de cálculo (Excel)

(tenha em atenção os algarismos significativos das grandezas)

- Determine experimentalmente a massa dos 8 corpos disponíveis para esta experiência.
- d) Meça o comprimento, x_0 , da mola em equilíbrio (Figura 2).
- e) Coloque um corpo (comece pelo de menor massa) na extremidade da mola. Quando o conjunto estiver em equilíbrio, meça o comprimento x_1 (ver Figura 2).
- f) Afaste <u>ligeiramente</u> o corpo da posição de equilíbrio (x_2 na Figura 2) de modo a que o corpo realize um movimento oscilatório de <u>pequena amplitude</u> em torno da posição de equilíbrio x_1 . Meça o tempo de 10 oscilações completas (T_{10}^i).

Figura 2

g) Repita as alíneas e) e f) para um total de 8 das restantes massas disponíveis.

Análise e discussão dos resultados

h) Determine, para cada massa, o valor mais provável do tempo de 10 oscilações e o seu erro $\overline{T}_{10} \pm \Delta \overline{T}_{10}$. De seguida calcule os respetivos períodos de oscilação $\overline{T} \pm \Delta \overline{T}$. Registe os valores.

- i) Linearize os resultados experimentais, de acordo com a alínea b) e utilizando o Excel, com o objetivo de determinar a aceleração da gravidade (Eq. 4) e preencha a tabela abaixo. Represente graficamente os valores na folha de cálculo.
- j) Determine os parâmetros da reta média, pelo método dos MDQ utilizando as funções respetivas da calculadora e posteriormente verifique os resultados obtidos com o Excel. Escreva a equação da reta na forma y = $(m\pm\Delta m)x + (b\pm\Delta b)$ e trace-a no gráfico anterior (utilize a função "linha de tendência" ou "trendline" do Excel). Registe os valores.

ob	X≡	Y≡
os	/	/
=		
de		
da		
าล		

- k) Determine, a partir dos parâmetros da reta, o valor da aceleração da gravidade e o respetivo erro $(g \pm \Delta g)$. Registe os valores.
- l) A partir da Eq. 4 e do corpo de maior massa (Tabela 1), obtenha uma estimativa para a constante da mola e respetivo erro $(k \pm \Delta k)$.
- m) Calcule a precisão dos resultados obtidos nas duas alíneas anteriores.
- n) Verifique se a sua estimativa de $g\pm\Delta g$ pode ser considerada exata (considere o valor esperado de g=9.8065 m/s².
- o) Identifique e explique as possíveis fontes de erro existentes durante a realização experimental (e/ou cálculos efetuados) que possam justificar um eventual desfasamento entre o resultado experimental e o valor esperado de g.

Questões suplementares

- p) Verifique que a equação (A6) do anexo é solução da equação (A5) (considerando $\omega^2 = k/m$).
- q) Discuta em qual dos métodos, o estático ou dinâmico, descritos respetivamente pelas equações Eq.3 e Eq.4, a massa da mola terá maior influência na exatidão do resultado experimental de k.

Bibliografia

R.A. Serway, Physics for Scientists and Engineers with Modern Physics, 2000, Saunders College Publishing. Giancoli, D.C., *Physics: principles with applications*, 5^a edição, Prentice Hall, New Jersey, 1998, 1096 pp.

Folha a entregar ao docente

Toma a chiregal ao aocente						
Corpo	m ±	x ₀ ±	X ₁ ±	<i>x</i> ₁ - <i>x</i> ₀ ±		$T \pm \Delta T$
Согро	/	/	/	/	/	/
1						
2						
3						
4						
5						
6						
7						
8						

	т	Δm	b	Δb	r ²	g	Δg
	/	/	/	/		/	/
Valores "brutos"							
Valores corretamente apresentados							

Tabela 1

Turma:	Grupo	Data:	Alunos presentes:	

Apêndice A

No caso de um corpo suspenso de uma mola elástica estar a oscilar em torno da posição de equilíbrio x_1 (Figura 2), as forças que nele atuam quando se encontra numa determinada posição x_2 são o seu peso, \vec{P} , e a força exercida pela mola, \vec{F}_m (desprezando a massa da mola). A aplicação da segunda lei de Newton ($\Sigma \vec{F} = m\vec{a}$) a este caso permite escrever:

$$\vec{P} + \vec{F}_m = m\vec{a}$$
 Eq. A1

ou seja:

$$mg - k(x_2 - x_o) = m\frac{d^2x_2}{dt^2}$$
 Eq. A2

Recorrendo a $mg = k(x_1 - x_o)$ (eq. 3) e efetuando uma troca de variáveis ($X = x_2 - x_1$), em que X não é mais do que o deslocamento relativamente à posição de equilíbrio, obtém-se:

$$\frac{d^2X}{dt^2} + \frac{k}{m}X = 0$$
 Eq. A3

uma vez que é válida a seguinte igualdade:

$$\frac{d^2X}{dt^2} = \frac{d^2x_2}{dt^2} - \frac{d^2x_1}{dt^2} = \frac{d^2x_2}{dt^2}$$
 Eq. A4

pois x₁ é constante ao longo do tempo.

Fazendo $\omega^2=k/m$, em que ω é a frequência angular do movimento, pode-se escrever:

$$\frac{d^2X}{dt^2} + \omega^2 X = 0$$
 Eq. A5

A solução desta equação diferencial é uma função do tipo:

$$X = A\sin(\omega t + \alpha)$$
 Eq. A6

com duas constantes arbitrárias, a amplitude A e a fase inicial lpha do movimento harmónico simples (ver Figura 11-9) 2 .

Partindo de $\omega = \frac{2\pi}{T}$ podemos expressar o período de oscilação, T, do corpo como:

$$T=2\pi\sqrt{\frac{m}{k}}$$
 Eq. A7

² p. 317, em Giancoli (1998)