

Song Recognition Using Audio Fingerprinting

Varun Khatri, Lukas Dillingham, Ziqi Chen

Department of Electrical and Computer Engineering

Audio Fingerprinting

- How does it work?
 - Use semantic features? No
 - Use non-semantic features? Yes
- Require something that is
 - Compressed
 - Unique
 - Invariant to degradation
 - Invariant to effects

Algorithm

Compare hashes from song clip with

database

Count number of matches

Fingerprinting & Matching

Fingerprinting

Matching

simple slide and compare

Hash tables for quick searching hashes consist of:

- Frequency of the anchor
- Frequency of the point
- Delta time between the anchor and the point

Hash table generation

Table[$f_{anchor1}$] = $f_{target\ zone\ point}$ + $\frac{\Delta t}{100}$

Results

Histograms of offset times for hash matches

(a) Correct song

Tables of hash search results:

Comparing a clip of "Bistro Fada" with different noise levels to itself and three other songs.

Indexes:

- Ratio: no. of matches / total no. of hashes in clip;
- Histogram Max: max value of histogram for each comparison

	-3 dB SNR	
Name	Ratio	Histogram Max
Bistro Fada	0.0651	40
Kamaloka	0.0091	6
Goodbye Pork Pie Hat	0.0115	6
The Star Boys	0.0429	22

	1 dB SNR	
Name	Ratio	Histogram Max
Bistro Fada	0.0857	65
Kamaloka	0.0111	8
Goodbye Pork Pie Hat	0.0121	7
The Star Boys	0.0656	26

	7 dB SNR	
Name	Ratio	Histogram Max
Bistro Fada	0.1797	99
Kamaloka	0.0124	5
Goodbye Pork Pie Hat	0.0183	5
The Star Boys	0.1217	37

	15 dB SNR	
Name	Ratio	Histogram Max
Bistro Fada	0.4645	136
Kamaloka	0.0561	6
Goodbye Pork Pie Hat	0.0508	11
The Star Boys	0.2787	40

	Original Song	
Name	Ratio	Histogram Max
Bistro Fada	0.6285	187
Kamaloka	0.0714	7
Goodbye Pork Pie Hat	0.0766	13
The Star Boys	0.3075	36

References

Wang, A. (2003, October). An Industrial Strength Audio Search Algorithm. In *ISMIR* (Vol. 2003, pp. 7-13).

Müller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, applications. Springer. pp. 360-370.