

CONVERGENCE OF PETER-WEYL TRUNCATIONS OF COMPACT QUANTUM GROUPS

MALTE LEIMBACH RADBOUD UNIVERSITY NIJMEGEN

QUANTUM GROUPS SEMINAR, DEC 16, 2024

Outline

1. Motivation: Spectral triples and spectral truncations

2. Background: Compact quantum metric spaces

3. Peter-Weyl truncations of compact quantum groups

4. Outlook: Fourier truncations

Definition. A spectral triple is a triple (A, H, D) consisting of a Hilbert space H, a unital *-algebra $A \subseteq \mathcal{B}(H)$ and an essentially self-adjoint operator $D: H \supseteq \mathrm{Dom}(D) \to H$ such that

- $[D, a] \in \mathcal{B}(H)$, for all $a \in \mathcal{A}$,
- $(D+i)^{-1} \in \mathcal{K}(H)$.

Definition. A spectral triple is a triple (A, H, D) consisting of a Hilbert space H, a unital *-algebra $A \subseteq \mathcal{B}(H)$ and an essentially self-adjoint operator $D: H \supseteq \mathrm{Dom}(D) \to H$ such that

- $[D, a] \in \mathcal{B}(H)$, for all $a \in \mathcal{A}$,
- $(D+i)^{-1} \in \mathcal{K}(H)$.

Example. $(C^{\infty}(M), L^{2}(S_{M}), D_{M})$, where

- M compact Riemannian spin manifold,
- S_M spinor bundle,
- D_M spin Dirac operator.

Definition. A spectral triple is a triple (A, H, D) consisting of a Hilbert space H, a unital *-algebra $A \subseteq \mathcal{B}(H)$ and an essentially self-adjoint operator $D: H \supseteq \mathrm{Dom}(D) \to H$ such that

- $[D, a] \in \mathcal{B}(H)$, for all $a \in \mathcal{A}$,
- $(D+i)^{-1} \in \mathcal{K}(H)$.

Example. $(C^{\infty}(M), L^{2}(S_{M}), D_{M})$, where

- M compact Riemannian spin manifold,
- S_M spinor bundle,
- D_M spin Dirac operator.

Theorem [CONNES '96-'13]. If (A, H, D) is a *commutative* unital spectral triple (+ extra structure and conditions), then

$$(\mathcal{A}, H, D) = (C^{\infty}(M), L^{2}(S_{M}), D_{M}).$$

Proposition [CONNES]. Let *M* be a compact Riemannian spin manifold. Then:

$$d_{\mathsf{M}}(x,y) = \sup_{\|[D_{\mathsf{M}},f]\| \leqslant 1} |f(x) - f(y)|$$

Proposition [CONNES]. Let *M* be a compact Riemannian spin manifold. Then:

$$d_{\mathsf{M}}(x,y) = \sup_{\|[D_{\mathsf{M}},f]\| \leqslant 1} |f(x) - f(y)|$$

Idea of proof.

Proposition [CONNES]. Let *M* be a compact Riemannian spin manifold. Then:

$$d_{\mathsf{M}}(x,y) = \sup_{\|[D_{\mathsf{M}},f]\| \leqslant 1} |f(x) - f(y)|$$

Idea of proof.

" \geqslant " follows from $\|[D_M,f]\| = \operatorname{Lip}_{d_M}(f)$.

Proposition [CONNES]. Let *M* be a compact Riemannian spin manifold. Then:

$$d_{\mathsf{M}}(x,y) = \sup_{\|[D_{\mathsf{M}},f]\| \leqslant 1} |f(x) - f(y)|$$

Idea of proof.

"
$$\geqslant$$
" follows from $\|[D_M,f]\| = \operatorname{Lip}_{d_M}(f)$.

"
$$\leq$$
" by taking $f(z) := d_M(x, z)$.

Proposition [CONNES]. Let *M* be a compact Riemannian spin manifold. Then:

$$d_{\mathsf{M}}(x,y) = \sup_{\|[D_{\mathsf{M}},f]\| \leqslant 1} |f(x) - f(y)|$$

Idea of proof.

"
$$\geqslant$$
" follows from $\|[D_M,f]\| = \operatorname{Lip}_{d_M}(f)$.

" \leq " by taking $f(z) := d_M(x, z)$.

Definition. Let (A, H, D) be a unital spectral triple. Then the *Monge–Kantorovich distance* on the state space S(A) is defined as

$$d^{\|[D,\cdot]\|}(\mu,\nu) := \sup_{\|[D,a]\| \le 1} |\mu(a) - \nu(a)|.$$

[CONNES-VAN SUIJLEKOM '20]

• Spectral triple (A, H, D).

[CONNES-VAN SUIJLEKOM '20]

- Spectral triple (A, H, D).
- Obstruction on spectral resolution of D:
 - \rightsquigarrow Spectral projection $P = P^2 = P^* \in \mathcal{B}(H)$.
 - \rightsquigarrow Spectral truncation (PAP, PH, PDP).

[CONNES-VAN SUIJLEKOM '20]

- Spectral triple (A, H, D).
- Obstruction on spectral resolution of D:
 - \rightsquigarrow Spectral projection $P = P^2 = P^* \in \mathcal{B}(H)$.
 - $\leadsto \textit{Spectral truncation (PAP, PH, PDP)}.$

NB.

[CONNES-VAN SUIJLEKOM '20]

- Spectral triple (A, H, D).
- Obstruction on spectral resolution of D:
 - \rightsquigarrow Spectral projection $P = P^2 = P^* \in \mathcal{B}(H)$.
 - \rightsquigarrow Spectral truncation (PAP, PH, PDP).

NB.

- $PAP \subseteq B(PH)$ is an operator system:
 - $I^{PH} \in PAP$,
 - $(PAP)^* = PAP$.

[CONNES-VAN SUIJLEKOM '20]

- Spectral triple (A, H, D).
- Obstruction on spectral resolution of D:
 - \rightsquigarrow Spectral projection $P = P^2 = P^* \in \mathcal{B}(H)$.
 - \rightsquigarrow Spectral truncation (PAP, PH, PDP).

NB.

- $PAP \subseteq B(PH)$ is an operator system:
 - $I^{PH} \in PAP$,
 - $(PAP)^* = PAP$.
- States on PAP and distance $d^{\|[PDP, \cdot]\|}$ make sense.

[CONNES-VAN SUIJLEKOM '20]

- Spectral triple (A, H, D).
- Obstruction on spectral resolution of *D*:

$$\leadsto$$
 Spectral projection $P = P^2 = P^* \in \mathcal{B}(H)$.

 $\rightsquigarrow \textit{Spectral truncation (PAP, PH, PDP)}.$

NB.

- $PAP \subseteq B(PH)$ is an operator system:
 - $I^{PH} \in PAP$.
 - $(PAP)^* = PAP$.
- States on PAP and distance $d^{\|[PDP,\cdot]\|}$ make sense.

Question. Do spectral truncations converge, as $P \rightarrow I^H$?

Examples

Examples

- Spectral truncations of \mathbb{T} [van Suijlekom, Hekkelman].
- Spectral truncations of groups with polynomial growth [TOYOTA].
- Peter-Weyl truncations of compact groups [GAUDILLOT-ESTRADA-VAN SUIJLEKOM].
- Fourier truncations of \mathbb{T} [VAN SUIJLEKOM].
- Fourier truncations of ergodic coactions of compact matrix quantum groups [RIEFFEL].

Background: Compact quantum metric spaces

Definition. An (extended) seminorm $L_X: X \to [0, \infty]$ on an operator system X, such that $\mathrm{Dom}(L_X) := \{x \in X \mid L_X(x) < \infty\}$ is dense in X, $L_X(x^*) = L_X(x)$, for all $x \in X$, and $L_X(\mathbf{1}_X) = 0$ is called a *slip-norm*.

Definition. An (extended) seminorm $L_X: X \to [0, \infty]$ on an operator system X, such that $\mathrm{Dom}(L_X) := \{x \in X \mid L_X(x) < \infty\}$ is dense in X, $L_X(x^*) = L_X(x)$, for all $x \in X$, and $L_X(\mathbf{1}_X) = 0$ is called a *slip-norm*. It is a *lip-norm*, if the induced *Monge–Kantorovich* distance

$$d^{L_{\mathsf{X}}}(\phi,\psi) := \sup_{L_{\mathsf{X}}(\mathsf{X}) \leqslant 1} |\phi(\mathsf{X}) - \psi(\mathsf{X})|$$

on S(X) metrizes the weak*-topology.

Definition. An (extended) seminorm $L_X: X \to [0, \infty]$ on an operator system X, such that $\mathrm{Dom}(L_X) := \{x \in X \mid L_X(x) < \infty\}$ is dense in X, $L_X(x^*) = L_X(x)$, for all $x \in X$, and $L_X(\mathbf{1}_X) = 0$ is called a *slip-norm*. It is a *lip-norm*, if the induced *Monge–Kantorovich* distance

$$d^{L_{\mathsf{X}}}(\phi,\psi) := \sup_{L_{\mathsf{X}}(\mathsf{X}) \leq 1} |\phi(\mathsf{X}) - \psi(\mathsf{X})|$$

on S(X) metrizes the weak*-topology.

Definition [RIEFFEL]. An operator system X with a lip-norm L_X is called a compact quantum metric space (CQMS).

Definition. An (extended) seminorm $L_X: X \to [0, \infty]$ on an operator system X, such that $\mathrm{Dom}(L_X) := \{x \in X \mid L_X(x) < \infty\}$ is dense in X, $L_X(x^*) = L_X(x)$, for all $x \in X$, and $L_X(\mathbf{1}_X) = 0$ is called a *slip-norm*. It is a *lip-norm*, if the induced *Monge–Kantorovich* distance

$$d^{L_{\mathbf{X}}}(\phi,\psi) := \sup_{L_{\mathbf{X}}(\mathbf{X}) \leq 1} |\phi(\mathbf{X}) - \psi(\mathbf{X})|$$

on S(X) metrizes the weak*-topology.

Definition [RIEFFEL]. An operator system X with a lip-norm L_X is called a compact quantum metric space (CQMS).

Definition. Let (X, L_X) , (Y, L_Y) be CQMS. A *morphism* is a ucp map $\Phi : X \to Y$ such that $L_Y(\Phi(X)) \leq CL_X(X)$.

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition [CONNES-VAN SUIJLEKOM]. The Gromov-Hausdorff distance is

$$\begin{split} \operatorname{dist}_{\operatorname{GH}}((X,L_X),(Y,L_Y)) &:= \operatorname{dist}_{\operatorname{GH}}(\mathcal{S}(X),\mathcal{S}(Y)) \\ &:= \inf_{d \text{ metric on } \mathcal{S}(X) \sqcup \mathcal{S}(Y)} \operatorname{dist}_{\operatorname{H}}^d(\mathcal{S}(X),\mathcal{S}(Y)). \end{split}$$

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition [CONNES-VAN SUIJLEKOM]. The Gromov-Hausdorff distance is

$$\begin{split} \operatorname{dist}_{\operatorname{GH}}((X,L_X),(Y,L_Y)) &:= \operatorname{dist}_{\operatorname{GH}}(\mathcal{S}(X),\mathcal{S}(Y)) \\ &:= \inf_{d \text{ metric on } \mathcal{S}(X) \sqcup \mathcal{S}(Y)} \operatorname{dist}_{\operatorname{H}}^d(\mathcal{S}(X),\mathcal{S}(Y)). \end{split}$$

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition. A lip-norm L on $X \oplus Y$ is admissible if $L|_X = L_X$ and $L|_Y = L_Y$.

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition. A lip-norm L on $X \oplus Y$ is admissible if $L|_X = L_X$ and $L|_Y = L_Y$.

Definition [RIEFFEL]. The quantum Gromov–Hausdorff distance is

$$\operatorname{dist}^{\operatorname{q}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)):=\inf_{L\text{ admissible}}\operatorname{dist}^{dL}_{\operatorname{H}}(\mathcal{S}(X),\mathcal{S}(Y)).$$

Quantum Gromov-Hausdorff distance

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition. A lip-norm L on $X \oplus Y$ is admissible if $L|_X = L_X$ and $L|_Y = L_Y$.

Definition [RIEFFEL]. The quantum Gromov–Hausdorff distance is

$$\operatorname{dist}^{\operatorname{q}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)):=\inf_{L\text{ admissible}}\operatorname{dist}^{dL}_{\operatorname{H}}(\mathcal{S}(X),\mathcal{S}(Y)).$$

Remark. $dist_{GH} \leq dist_{GH}^{q}$.

Quantum Gromov-Hausdorff distance

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition. A lip-norm L on $X \oplus Y$ is admissible if $L|_X = L_X$ and $L|_Y = L_Y$.

Definition [RIEFFEL]. The quantum Gromov–Hausdorff distance is

$$\operatorname{dist}^{\operatorname{q}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)):=\inf_{L\text{ admissible}}\operatorname{dist}^{dL}_{\operatorname{H}}(\mathcal{S}(X),\mathcal{S}(Y)).$$

Remark. $\mathrm{dist}_{\mathrm{GH}} \leqslant \mathrm{dist}_{\mathrm{GH}}^q$. But the distances $\mathrm{dist}_{\mathrm{GH}}$ and $\mathrm{dist}_{\mathrm{GH}}^q$ are not equivalent [KAAD-KYED '23].

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition [KERR-LI]. The complete Gromov-Hausdorff distance is

$$\operatorname{dist}^{\operatorname{s}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)):=\inf_{L\text{ admissible }\sup_{n\in\mathbb{N}}}\operatorname{dist}^{d^{L,n}}_{\operatorname{H}}(\mathcal{S}_n(X),\mathcal{S}_n(Y)).$$

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition [KERR-LI]. The complete Gromov-Hausdorff distance is

$$\operatorname{dist}^{\operatorname{s}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)):=\inf_{L\text{ admissible }\sup_{n\in\mathbb{N}}}\operatorname{dist}^{d^{L,n}}_{\operatorname{H}}(\mathcal{S}_n(X),\mathcal{S}_n(Y)).$$

Remark. $\operatorname{dist}_{\operatorname{GH}} \leq \operatorname{dist}_{\operatorname{GH}}^{\operatorname{q}} \leq \operatorname{dist}_{\operatorname{GH}}^{\operatorname{s}}$.

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition [KERR-LI]. The complete Gromov-Hausdorff distance is

$$\operatorname{dist}^{\operatorname{s}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)):=\inf_{\substack{L\text{ admissible}\\n\in\mathbb{N}}}\sup_{n\in\mathbb{N}}\operatorname{dist}^{d^{L,n}}_{\operatorname{H}}(\mathcal{S}_n(X),\mathcal{S}_n(Y)).$$

Remark. $dist_{GH} \leq dist_{GH}^{q} \leq dist_{GH}^{s}$.

Theorem [KERR]. Assume that the lip-norms L_X , L_Y are closed (i.e. $\mathrm{Dom}_1(L)$ closed in X_{sa}). Then $\mathrm{dist}^{\mathrm{s}}_{\mathrm{GH}}((X,L_X),(Y,L_Y))=\mathrm{o}$ if and only if there is a bi-lip-isometric unital complete order isomorphism $X\to Y$.

Let (X, L_X) , (Y, L_Y) be compact quantum metric spaces.

Definition [KERR-LI]. The complete Gromov-Hausdorff distance is

$$\operatorname{dist}^{\operatorname{s}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)):=\inf_{\substack{L\text{ admissible}\\n\in\mathbb{N}}}\sup_{n\in\mathbb{N}}\operatorname{dist}^{d^{L,n}}_{\operatorname{H}}(\mathcal{S}_n(X),\mathcal{S}_n(Y)).$$

Remark. $dist_{GH} \leq dist_{GH}^{q} \leq dist_{GH}^{s}$.

Theorem [KERR]. Assume that the lip-norms L_X , L_Y are closed (i.e. $\mathrm{Dom}_1(L)$ closed in X_{sa}). Then $\mathrm{dist}^{\mathrm{s}}_{\mathrm{GH}}((X,L_X),(Y,L_Y))=0$ if and only if there is a bi-lip-isometric unital complete order isomorphism $X\to Y$.

Theorem [KERR-LI]. The set of isometry classes (appropriately defined using closures of lip-norms) of compact quantum metric spaces with $\operatorname{dist}_{GH}^{s}$ is a complete metric space.

Control of complete Gromov–Hausdorff distance

Control of complete Gromov–Hausdorff distance

Proposition [RIEFFEL '04, (KERR '03), VAN SUIJLEKOM '21, KAAD-KYED '22]. Let (X, L_X) and (Y, L_Y) be CQMS, $\varepsilon >$ 0. Suppose that there are lip-norm contractive morphisms $\tau : X \to Y$ and $\sigma : Y \to X$ such that

$$\|\sigma\tau(\mathbf{x}) - \mathbf{x}\| \leqslant \varepsilon L_{\mathsf{X}}(\mathbf{x})$$
 and $\|\tau\sigma(\mathbf{y}) - \mathbf{y}\| \leqslant \varepsilon L_{\mathsf{Y}}(\mathbf{y})$.

Then $\operatorname{dist}^{\operatorname{s}}_{\operatorname{GH}}((X,L_X),(Y,L_Y)) \leqslant \varepsilon$.

• G compact group with bi-invariant metric d(pg, ph) = d(gp, hp) = d(g, h).

- G compact group with bi-invariant metric d(pg, ph) = d(gp, hp) = d(g, h).
- $W_q\xi(h):=\xi(g^{-1}h)$, $V_q\xi(h):=\xi(hg)$, for all $\xi\in L^2(G)$, $g,h\in G$.

- G compact group with bi-invariant metric d(pg, ph) = d(gp, hp) = d(g, h).
- $W_a\xi(h):=\xi(g^{-1}h)$, $V_a\xi(h):=\xi(hg)$, for all $\xi\in L^2(G)$, $g,h\in G$.
- Actions of G on $C(G) \subseteq \mathcal{B}(L^2(G))$:

$$\lambda_g \mathsf{M}_f := \mathsf{W}_g \mathsf{M}_f \mathsf{W}_q^* = \mathsf{M}_{f(g^{-1}\cdot)}, \quad \rho_g \mathsf{M}_f := \mathsf{V}_g \mathsf{M}_f \mathsf{V}_q^* = \mathsf{M}_{f(\cdot g)}$$

- G compact group with bi-invariant metric d(pg, ph) = d(gp, hp) = d(g, h).
- $W_q\xi(h):=\xi(g^{-1}h)$, $V_q\xi(h):=\xi(hg)$, for all $\xi\in L^2(G)$, $g,h\in G$.
- Actions of G on $C(G) \subseteq \mathcal{B}(L^2(G))$:

$$\lambda_g \mathsf{M}_f := \mathsf{W}_g \mathsf{M}_f \mathsf{W}_g^* = \mathsf{M}_{f(g^{-1}\cdot)}, \quad \rho_g \mathsf{M}_f := \mathsf{V}_g \mathsf{M}_f \mathsf{V}_g^* = \mathsf{M}_{f(\cdot g)}$$

• W_g , V_g are block-diagonal for Peter–Weyl decomposition:

$$L^{2}(G) = \bigoplus_{\gamma \in \widehat{G}} H_{\gamma} \otimes \overline{H_{\gamma}}$$

- G compact group with bi-invariant metric d(pg, ph) = d(gp, hp) = d(g, h).
- $W_q\xi(h) := \xi(g^{-1}h), V_q\xi(h) := \xi(hg), \text{ for all } \xi \in L^2(G), g, h \in G.$
- Actions of G on $C(G) \subseteq \mathcal{B}(L^2(G))$:

$$\lambda_g \mathsf{M}_f := \mathsf{W}_g \mathsf{M}_f \mathsf{W}_g^* = \mathsf{M}_{f(g^{-1}\cdot)}, \quad \rho_g \mathsf{M}_f := \mathsf{V}_g \mathsf{M}_f \mathsf{V}_g^* = \mathsf{M}_{f(\cdot g)}$$

• W_q , V_q are block-diagonal for Peter–Weyl decomposition:

$$L^{2}(G) = \bigoplus_{\gamma \in \hat{G}} H_{\gamma} \otimes \overline{H_{\gamma}}$$

• $P_{\Lambda} \in \mathcal{B}(L^2(G))$ orthogonal projection to $L^2(G)_{\Lambda} := \bigoplus_{\gamma \in \Lambda} H_{\gamma} \otimes \overline{H_{\gamma}}$, for $\Lambda \subseteq Irr(G)$ (finite).

• Set $C(G)^{(\Lambda)} := P_{\Lambda}C(G)P_{\Lambda} \subseteq \mathcal{B}(L^{2}(G)_{\Lambda})$.

- Set $C(G)^{(\Lambda)} := P_{\Lambda}C(G)P_{\Lambda} \subseteq \mathcal{B}(L^{2}(G)_{\Lambda})$.
- The Lipschitz constant can be recovered using the actions λ , ρ :

$$\operatorname{Lip}(f) = \sup_{g \neq h} \frac{\|\lambda_g(f) - \lambda_h(f)\|}{d(g, h)} = \sup_{g \neq h} \frac{\|\rho_g(f) - \rho_h(f)\|}{d(g, h)}$$

$$= :\|f\|_{\lambda}$$

- Set $C(G)^{(\Lambda)} := P_{\Lambda}C(G)P_{\Lambda} \subseteq \mathcal{B}(L^{2}(G)_{\Lambda})$.
- The Lipschitz constant can be recovered using the actions λ , ρ :

$$\operatorname{Lip}(f) = \sup_{g \neq h} \frac{\|\lambda_g(f) - \lambda_h(f)\|}{d(g, h)} = \sup_{g \neq h} \frac{\|\rho_g(f) - \rho_h(f)\|}{d(g, h)}$$

$$= :\|f\|_{\lambda}$$

• Setting $\|\cdot\|_{\lambda,\rho}:=\max\{\|\cdot\|_{\lambda},\|\cdot\|_{\rho}\}$ makes sense on $\mathcal{B}(\mathrm{L}^2(G))$.

- Set $C(G)^{(\Lambda)} := P_{\Lambda}C(G)P_{\Lambda} \subseteq \mathcal{B}(L^{2}(G)_{\Lambda})$.
- The Lipschitz constant can be recovered using the actions λ , ρ :

$$\operatorname{Lip}(f) = \sup_{g \neq h} \frac{\|\lambda_g(f) - \lambda_h(f)\|}{d(g, h)} = \sup_{g \neq h} \frac{\|\rho_g(f) - \rho_h(f)\|}{d(g, h)}$$

$$= : \|f\|_{\lambda}$$

- Setting $\|\cdot\|_{\lambda,\rho} := \max\{\|\cdot\|_{\lambda}, \|\cdot\|_{\rho}\}$ makes sense on $\mathcal{B}(L^2(G))$.
- The restriction of $\|\cdot\|_{\lambda,\rho}$ to $C(G)^{(\Lambda)}$ defines a Lip-norm.

- Set $C(G)^{(\Lambda)} := P_{\Lambda}C(G)P_{\Lambda} \subseteq \mathcal{B}(L^{2}(G)_{\Lambda})$.
- The Lipschitz constant can be recovered using the actions λ , ρ :

$$\operatorname{Lip}(f) = \sup_{g \neq h} \frac{\|\lambda_g(f) - \lambda_h(f)\|}{d(g, h)} = \sup_{g \neq h} \frac{\|\rho_g(f) - \rho_h(f)\|}{d(g, h)}$$

$$= :\|f\|_{\lambda}$$

- Setting $\|\cdot\|_{\lambda,\rho} := \max\{\|\cdot\|_{\lambda}, \|\cdot\|_{\rho}\}$ makes sense on $\mathcal{B}(L^2(G))$.
- The restriction of $\|\cdot\|_{\lambda,\rho}$ to $C(G)^{(\Lambda)}$ defines a Lip-norm.

Theorem [GAUDILLOT-ESTRADA-VAN SUIJLEKOM]. The net of metric spaces $(\mathcal{S}(\mathrm{C}(G)^{(\Lambda)}), d^{\|\cdot\|_{\lambda,\rho}})_{\Lambda\subseteq\mathrm{Irr}(G), |\Lambda|<\infty}$ converges to $(\mathcal{S}(\mathrm{C}(G)), d^{\|\cdot\|_{\lambda,\rho}})$ in Gromov–Hausdorff distance.

Definition [Woronowicz]. A compact quantum group is a separable unital C*-algebra A ("= $C(\mathbb{G})$ ") together with a unital *-homomorphism $\Delta: A \to A \otimes A$ such that

- $(\Delta \otimes \mathbf{I}^A)\Delta = (\mathbf{I}^A \otimes \Delta)\Delta$.
 - $\bullet \ \overline{\operatorname{span}}((\textbf{1}_{A} \otimes \textbf{A})\Delta(\textbf{A})) = \overline{\operatorname{span}}((\textbf{A} \otimes \textbf{1}_{\textbf{A}})\Delta(\textbf{A})) = \textbf{A} \otimes \textbf{A}.$

Definition [WORONOWICZ]. A compact quantum group is a separable unital C^* -algebra A ("= $C(\mathbb{G})$ ") together with a unital *-homomorphism

- $\Delta: A \rightarrow A \otimes A$ such that
 - $(\Delta \otimes I^A)\Delta = (I^A \otimes \Delta)\Delta$,
 - $\overline{\operatorname{span}}((\mathbf{1}_A \otimes A)\Delta(A)) = \overline{\operatorname{span}}((A \otimes \mathbf{1}_A)\Delta(A)) = A \otimes A.$

Examples.

Definition [WORONOWICZ]. A compact quantum group is a separable unital C^* -algebra A ("= $C(\mathbb{G})$ ") together with a unital *-homomorphism

- $\Delta: A \rightarrow A \otimes A$ such that
 - $(\Delta \otimes I^A)\Delta = (I^A \otimes \Delta)\Delta$,
 - $\overline{\operatorname{span}}((\mathbf{1}_A \otimes A)\Delta(A)) = \overline{\operatorname{span}}((A \otimes \mathbf{1}_A)\Delta(A)) = A \otimes A.$

Examples.

• G compact group, A := C(G), $\Delta : C(G) \to C(G) \otimes C(G) \cong C(G \times G)$, $\Delta(f)(x,y) = f(xy)$.

Definition [Woronowicz]. A compact quantum group is a separable unital C^* -algebra A ("= $C(\mathbb{G})$ ") together with a unital *-homomorphism $\Delta: A \to A \otimes A$ such that

- $(\Delta \otimes I^A)\Delta = (I^A \otimes \Delta)\Delta$,
- $\overline{\operatorname{span}}((\mathbf{1}_A \otimes A)\Delta(A)) = \overline{\operatorname{span}}((A \otimes \mathbf{1}_A)\Delta(A)) = A \otimes A.$

Examples.

- G compact group, A := C(G), $\Delta : C(G) \to C(G) \otimes C(G) \cong C(G \times G)$, $\Delta(f)(x,y) = f(xy)$.
- Γ discrete group, $A := C_r^*(\Gamma) = \overline{L^1(\Gamma)}^{\|\cdot\|_r}$, $\Delta(\lambda_\gamma) = \lambda_\gamma \otimes \lambda_\gamma \in C_r^*(\Gamma) \otimes C_r^*(\Gamma) \cong C_r^*(\Gamma \times \Gamma)$.

- All our quantum groups are assumed coamenable, i.e.
 - the counit $\epsilon : A \to \mathbb{C}$ is a state,

•
$$(\epsilon \otimes I^{A})\Delta(a) = (I^{A} \otimes \epsilon)\Delta(a) = a$$
,

- and the *Haar state* $h : A \to \mathbb{C}$ is <u>faithful</u>,
 - $(h \otimes I^{A})\Delta(a) = (I^{A} \otimes h)\Delta(a) = h(a)\mathbf{1}_{A}$.

- All our quantum groups are assumed coamenable, i.e.
 - the counit $\epsilon : A \to \mathbb{C}$ is a state,

•
$$(\epsilon \otimes I^A)\Delta(a) = (I^A \otimes \epsilon)\Delta(a) = a$$
,

- and the *Haar state* $h : A \to \mathbb{C}$ is <u>faithful</u>,
 - $(h \otimes I^{A})\Delta(a) = (I^{A} \otimes h)\Delta(a) = h(a)\mathbf{1}_{A}$.
- Set $H := L^2(\mathbb{G}) := GNS(A, h)$.
 - \rightsquigarrow **NB.** $A \subseteq \mathcal{B}(H)$.

- All our quantum groups are assumed coamenable, i.e.
 - the counit $\epsilon : A \to \mathbb{C}$ is a state,

•
$$(\epsilon \otimes I^A)\Delta(a) = (I^A \otimes \epsilon)\Delta(a) = a$$
,

- and the *Haar state* $h: A \to \mathbb{C}$ is <u>faithful</u>,
 - $(h \otimes I^{A})\Delta(a) = (I^{A} \otimes h)\Delta(a) = h(a)\mathbf{1}_{A}$.
- Set $H := L^2(\mathbb{G}) := GNS(A, h)$.

$$\rightsquigarrow$$
 NB. $A \subseteq \mathcal{B}(H)$.

• The comultiplication $\Delta: A \to A \otimes A$ is implemented by the multiplicative unitaries $W, V \in \mathcal{B}(H \otimes H)$:

$$\Delta(a) = W(a \otimes \mathbf{1}_{A})W^{*} = V(\mathbf{1}_{A} \otimes a)V^{*}$$

Theorem ["Peter-Weyl decomposition"]. The Hilbert space H and the multiplicative unitaries W,V decompose as $W=\bigoplus_{\gamma\in \mathrm{Irr}(\mathbb{G})}u^{\gamma}$, $V=\bigoplus_{\gamma\in \mathrm{Irr}(\mathbb{G})}u^{\overline{\gamma}}$ and

$$H = \bigoplus_{\gamma \in \operatorname{Irr}(\mathbb{G})} H_{\gamma} \otimes \overline{H_{\gamma}}.$$

Theorem ["Peter–Weyl decomposition"]. The Hilbert space H and the multiplicative unitaries W,V decompose as $W=\bigoplus_{\gamma\in \mathrm{Irr}(\mathbb{G})}u^{\gamma}$, $V=\bigoplus_{\gamma\in \mathrm{Irr}(\mathbb{G})}u^{\overline{\gamma}}$ and

$$H = \bigoplus_{\gamma \in \operatorname{Irr}(\mathbb{G})} H_{\gamma} \otimes \overline{H_{\gamma}}.$$

Corollary. For the orthogonal projections $P: H \to H_{\gamma} \otimes \overline{H_{\gamma}}$, $\gamma \in Irr(\mathbb{G})$, we have

$$[W, P_{\gamma} \otimes I^H] = [V, I^H \otimes P_{\gamma}] = 0.$$

Theorem ["Peter-Weyl decomposition"]. The Hilbert space H and the multiplicative unitaries W,V decompose as $W=\bigoplus_{\gamma\in \mathrm{Irr}(\mathbb{G})}u^{\gamma}$, $V=\bigoplus_{\gamma\in \mathrm{Irr}(\mathbb{G})}u^{\overline{\gamma}}$ and

$$H = \bigoplus_{\gamma \in \operatorname{Irr}(\mathbb{G})} H_{\gamma} \otimes \overline{H_{\gamma}}.$$

Corollary. For the orthogonal projections $P: H \to H_{\gamma} \otimes \overline{H_{\gamma}}$, $\gamma \in Irr(\mathbb{G})$, we have

$$[W, P_{\gamma} \otimes I^H] = [V, I^H \otimes P_{\gamma}] = 0.$$

Definition. For $\Lambda \subseteq \operatorname{Irr}(\mathbb{G})$, $P_{\Lambda} := \bigoplus_{\gamma \in \Lambda} P_{\gamma}$, define

$$A^{(\Lambda)} := P_{\Lambda}AP_{\Lambda} \subseteq \mathcal{B}(P_{\Lambda}H).$$

Induced coactions

Induced coactions

Denote by $\tau: A \to A^{(\Lambda)}$, $\tau(a) := P_{\Lambda}aP_{\Lambda}$ the compression map.

Induced coactions

Denote by $\tau: A \to A^{(\Lambda)}$, $\tau(a) := P_{\Lambda}aP_{\Lambda}$ the compression map.

Theorem. The comultiplication $\Delta : A \to A \otimes A$ induces coactions $\alpha : A^{(\Lambda)} \to A^{(\Lambda)} \otimes A$, $\beta : A^{(\Lambda)} \to A \otimes A^{(\Lambda)}$:

$$(\tau \otimes \mathbf{I}^{\mathbf{A}})\Delta = \alpha \tau \text{ and } (\mathbf{I}^{\mathbf{A}} \otimes \tau)\Delta = \beta \tau.$$

- α , β cocommute: $(\beta \otimes I^A)\alpha = (I^A \otimes \alpha)\beta$.
- α , β are ergodic: $(A^{\Lambda})^{\alpha} = \mathbb{C}\mathbf{1}_{A^{(\Lambda)}}$, for the fixed point set

$$(\mathbf{A}^{\Lambda})^{\alpha} := \{ \mathbf{X} \in \mathbf{A}^{(\Lambda)} \mid \alpha(\mathbf{X}) = \mathbf{X} \otimes \mathbf{1}_{\mathbf{A}} \}.$$

Let $L_A: A \to [0, \infty]$ be a lip-norm, which is *regular* (i.e. $Dom(L_A) \supseteq \mathcal{O}(\mathbb{G})$) and *bi-invariant*, i.e.

$$L_{\mathsf{A}}((\mathsf{I}\otimes\mu)\Delta(a))\leqslant L_{\mathsf{A}}(a)$$

$$L_{\mathsf{A}}((\mu\otimes\mathsf{I})\Delta(a))\leqslant L_{\mathsf{A}}(a),$$

for all $a \in A$, $\mu \in \mathcal{S}(A)$.

Let $L_A: A \to [0, \infty]$ be a lip-norm, which is *regular* (i.e. $\mathrm{Dom}(L_A) \supseteq \mathcal{O}(\mathbb{G})$) and *bi-invariant*, i.e.

$$L_{\mathsf{A}}((\mathsf{I}\otimes\mu)\Delta(a))\leqslant L_{\mathsf{A}}(a)$$

$$L_{\mathsf{A}}((\mu\otimes\mathsf{I})\Delta(a))\leqslant L_{\mathsf{A}}(a),$$

for all $a \in A$, $\mu \in \mathcal{S}(A)$.

Proposition [RIEFFEL, LI]. Invariant regular lip-norms exist.

Let $L_A: A \to [0, \infty]$ be a lip-norm, which is *regular* (i.e. $\mathrm{Dom}(L_A) \supseteq \mathcal{O}(\mathbb{G})$) and *bi-invariant*, i.e.

$$L_{\mathsf{A}}((\mathbb{I}\otimes\mu)\Delta(a))\leqslant L_{\mathsf{A}}(a)$$

$$L_{\mathsf{A}}((\mu\otimes\mathbb{I})\Delta(a))\leqslant L_{\mathsf{A}}(a),$$

for all $a \in A$, $\mu \in \mathcal{S}(A)$.

Proposition [RIEFFEL, LI]. Invariant regular lip-norms exist.

Example. $(C(G), Lip_d)$, where

- · G compact group,
- d bi-invariant metric: d(gh, gh') = d(hg, h'g) = d(h, h').

Lemma. There is an induced slip-norm $L_{A(\Lambda)}^{\alpha}$, which is invariant, i.e.:

$$L_{A^{(\Lambda)}}^{\alpha}((\mathbf{I}^{A^{(\Lambda)}}\otimes\mu)\alpha(\mathbf{X}))\leqslant L_{A^{(\Lambda)}}^{\alpha}(\mathbf{X}),$$

for all $x \in A^{(\Lambda)}$, $\mu \in \mathcal{S}(A)$. Namely,

$$L_{\mathsf{A}^{(\Lambda)}}^{\alpha}(\mathbf{X}) := \sup_{\phi \in \mathcal{S}(\mathsf{A}^{(\Lambda)})} L_{\mathsf{A}}((\phi \otimes \mathbf{I}^{\mathsf{A}})\alpha(\mathbf{X})).$$

Lemma. There is an induced slip-norm $L^{\alpha}_{A(\Lambda)}$, which is invariant, i.e.:

$$L_{\mathbf{A}^{(\Lambda)}}^{\alpha}((\mathbf{I}^{\mathbf{A}^{(\Lambda)}}\otimes\mu)\alpha(\mathbf{X}))\leqslant L_{\mathbf{A}^{(\Lambda)}}^{\alpha}(\mathbf{X}),$$

for all $x \in A^{(\Lambda)}$, $\mu \in \mathcal{S}(A)$. Namely,

$$L_{\mathsf{A}^{(\Lambda)}}^{\alpha}(\mathbf{X}) := \sup_{\phi \in \mathcal{S}(\mathsf{A}^{(\Lambda)})} L_{\mathsf{A}}((\phi \otimes \mathbf{I}^{\mathsf{A}})\alpha(\mathbf{X})).$$

Theorem. The slip-norm $L_{A^{(\Lambda)}}^{\alpha}$ is a regular lip-norm on $A^{(\Lambda)}$. Analogously for $L_{A^{(\Lambda)}}^{\beta}$ and $L_{A^{(\Lambda)}}^{\alpha,\beta} := \max\{L_{A^{(\Lambda)}}^{\alpha}, L_{A^{(\Lambda)}}^{\beta}\}$.

Lemma. There is an induced slip-norm $L_{A^{(\Lambda)}}^{\alpha}$, which is invariant, i.e.:

$$L_{A^{(\Lambda)}}^{\alpha}((\mathbf{I}^{A^{(\Lambda)}}\otimes\mu)\alpha(\mathbf{X}))\leqslant L_{A^{(\Lambda)}}^{\alpha}(\mathbf{X}),$$

for all $x \in A^{(\Lambda)}$, $\mu \in \mathcal{S}(A)$. Namely,

$$L_{\mathsf{A}^{(\Lambda)}}^{\alpha}(\mathbf{X}) := \sup_{\phi \in \mathcal{S}(\mathsf{A}^{(\Lambda)})} L_{\mathsf{A}}((\phi \otimes \mathbf{I}^{\mathsf{A}})\alpha(\mathbf{X})).$$

Theorem. The slip-norm $L^{\alpha}_{A^{(\Lambda)}}$ is a regular *lip-norm* on $A^{(\Lambda)}$. Analogously for $L^{\beta}_{A^{(\Lambda)}}$ and $L^{\alpha,\beta}_{A^{(\Lambda)}} := \max\{L^{\alpha}_{A^{(\Lambda)}}, L^{\beta}_{A^{(\Lambda)}}\}$.

Proof by ergodicity of the coactions on $A^{(\Lambda)}$ and a theorem of Li's.

Corollary. The *Peter–Weyl truncation* $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta})$ is a compact quantum metric space with bi-invariant lip-norm $L_{A^{(\Lambda)}}^{\alpha,\beta}$.

Corollary. The *Peter–Weyl truncation* $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta})$ is a compact quantum metric space with bi-invariant lip-norm $L_{A^{(\Lambda)}}^{\alpha,\beta}$.

Question. Convergence $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta}) \rightarrow (A, L_A)$?

Corollary. The *Peter-Weyl truncation* $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta})$ is a compact quantum metric space with bi-invariant lip-norm $L_{A^{(\Lambda)}}^{\alpha,\beta}$.

Question. Convergence $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta}) \rightarrow (A, L_A)$?

• Need lip-norm contractive ucp maps $\tau: A \leftrightarrow A^{(\Lambda)}: \sigma$, such that

$$\|\sigma \tau(a) - a\| \leqslant \varepsilon L_{\mathsf{A}}(a) \text{ and } \|\tau \sigma(x) - x\| \leqslant \varepsilon L_{\mathsf{A}(\Lambda)}^{\alpha,\beta}(x).$$

Corollary. The *Peter-Weyl truncation* $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta})$ is a compact quantum metric space with bi-invariant lip-norm $L_{A^{(\Lambda)}}^{\alpha,\beta}$.

Question. Convergence $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta}) \rightarrow (A, L_A)$?

• Need lip-norm contractive ucp maps $\tau: A \leftrightarrow A^{(\Lambda)}: \sigma$, such that

$$\|\sigma\tau(a)-a\|\leqslant \varepsilon L_{\mathsf{A}}(a) \text{ and } \|\tau\sigma(\mathsf{X})-\mathsf{X}\|\leqslant \varepsilon L_{\mathsf{A}^{(\Lambda)}}^{\alpha,\beta}(\mathsf{X}).$$

• Candidates for σ :

$$\sigma^{\phi}(\mathbf{X}) := (\phi \otimes \mathbf{I}^{\mathsf{A}})\alpha(\mathbf{X}),$$

for all $x \in A^{(\Lambda)}$ and appropriate $\phi \in \mathcal{S}(A^{(\Lambda)})$.

Corollary. The *Peter-Weyl truncation* $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta})$ is a compact quantum metric space with bi-invariant lip-norm $L_{A^{(\Lambda)}}^{\alpha,\beta}$.

Question. Convergence $(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta}) \rightarrow (A, L_A)$?

• Need lip-norm contractive ucp maps $\tau: A \leftrightarrow A^{(\Lambda)}: \sigma$, such that

$$\|\sigma \tau(a) - a\| \leqslant \varepsilon L_{\mathsf{A}}(a) \text{ and } \|\tau \sigma(x) - x\| \leqslant \varepsilon L_{\mathsf{A}(\Lambda)}^{\alpha,\beta}(x).$$

• Candidates for σ :

$$\sigma^{\phi}(\mathbf{X}) := (\phi \otimes \mathbf{I}^{\mathsf{A}})\alpha(\mathbf{X}),$$

for all $x \in A^{(\Lambda)}$ and appropriate $\phi \in \mathcal{S}(A^{(\Lambda)})$.

•
$$\sigma^{\phi}\tau(a) = (\tau^*\phi \otimes \mathbf{I}^{\mathsf{A}})\Delta(a)$$
, $\tau\sigma^{\phi}(\mathbf{X}) = (\phi \otimes \tau)\alpha(\mathbf{X})$.

Focus on $\sigma^{\phi}\tau(a)=(\tau^*\phi\otimes \mathbf{I}^{\mathbf{A}})\alpha(a)=\tau^*\phi(a_{(\mathbf{O})})a_{(\mathbf{1})}$.

NB. $\tau^* : \mathcal{S}(A^{(\Lambda)}) \hookrightarrow \mathcal{S}(A)$.

Focus on $\sigma^{\phi}\tau(a) = (\tau^*\phi \otimes \mathbf{I}^{\mathsf{A}})\alpha(a) = \tau^*\phi(a_{(\mathsf{O})})a_{(\mathsf{1})}$.

NB. $\tau^* : \mathcal{S}(A^{(\Lambda)}) \hookrightarrow \mathcal{S}(A)$.

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a)$$
 (*)

Focus on $\sigma^{\phi}\tau(a)=(\tau^*\phi\otimes \mathbf{I}^{\mathsf{A}})\alpha(a)=\tau^*\phi(a_{(\mathsf{o})})a_{(\mathsf{1})}$.

NB. $\tau^* : \mathcal{S}(A^{(\Lambda)}) \hookrightarrow \mathcal{S}(A)$.

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a)$$
 (*)

Corollary. For all $a \in A$, $\phi \in \mathcal{S}(A^{(\Lambda)})$, the following holds:

$$\|\sigma^{\phi}\tau(a) - a\| = \|\tau^*\phi(a_{(0)})a_{(1)} - \epsilon(a_{(0)})a_{(1)}\| \leq 2d^{L_A}(\tau^*\phi, \epsilon)L_A(a)$$

Focus on $\sigma^{\phi}\tau(a) = (\tau^*\phi \otimes \mathbf{I}^{\mathsf{A}})\alpha(a) = \tau^*\phi(a_{(0)})a_{(1)}$.

NB. $\tau^* : \mathcal{S}(A^{(\Lambda)}) \hookrightarrow \mathcal{S}(A)$.

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a)$$
 (*)

Corollary. For all $a \in A$, $\phi \in \mathcal{S}(A^{(\Lambda)})$, the following holds:

$$\|\sigma^{\phi}\tau(a) - a\| = \|\tau^*\phi(a_{(\mathsf{o})})a_{(\mathsf{1})} - \epsilon(a_{(\mathsf{o})})a_{(\mathsf{1})}\| \leqslant 2d^{\mathsf{L}_{\mathsf{A}}}(\tau^*\phi, \epsilon)\mathsf{L}_{\mathsf{A}}(a)$$

Corollary. Let $\varepsilon > 0$. Then there is $\Lambda \subseteq \widehat{\mathbb{G}}$ finite, $\phi \in \mathcal{S}(A^{(\Lambda)})$ such that $\|\sigma^{\phi}\tau(\mathbf{a})-\mathbf{a}\|\leqslant \varepsilon \mathbf{L}_{\Delta}(\mathbf{a}).$

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a)$$
 (*)

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a) \tag{*}$$

Proof.

• By Kadison function representation and Fubini for slice maps:

$$\|\phi(\boldsymbol{a}_{(\mathsf{o})})\boldsymbol{a}_{(\mathsf{1})}\| \leqslant 2 \sup_{\boldsymbol{\theta} \in \mathcal{S}(\boldsymbol{A})} |\phi(\boldsymbol{a}_{(\mathsf{o})})\boldsymbol{\theta}(\boldsymbol{a}_{(\mathsf{1})})|,$$

for all $a \in A$, $\phi \in A^*$.

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a) \tag{*}$$

Proof.

• By Kadison function representation and Fubini for slice maps:

$$\|\phi(a_{(\mathsf{o})})a_{(\mathsf{1})}\| \leqslant 2 \sup_{\theta \in \mathcal{S}(\mathsf{A})} |\phi(a_{(\mathsf{o})})\theta(a_{(\mathsf{1})})|,$$

for all $a \in A$, $\phi \in A^*$.

• Recall: $d^{L_A}(\mu, \nu) := \sup_{b \in A \setminus \mathbb{C}_{\mathbf{1}_A}} \frac{|(\mu - \nu)(b)|}{L_A(b)}$.

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a)$$
 (*)

Proof.

• By Kadison function representation and Fubini for slice maps:

$$\|\phi(\mathbf{a}_{(\mathsf{o})})\mathbf{a}_{(\mathsf{1})}\| \leqslant 2 \sup_{\theta \in \mathcal{S}(\mathbf{A})} |\phi(\mathbf{a}_{(\mathsf{o})})\theta(\mathbf{a}_{(\mathsf{1})})|,$$

for all $a \in A$. $\phi \in A^*$.

• Recall: $d^{L_A}(\mu, \nu) := \sup_{b \in A \setminus \mathbb{C} \mathbf{1}_A} \frac{|(\mu - \nu)(b)|}{|L_A(b)|}$. Therefore,

$$\|(\mu - \nu)(a_{(\mathsf{o})})a_{(\mathsf{1})}\| \leqslant 2 \sup_{\theta \in \mathcal{S}(\mathsf{A})} |(\mu - \nu)(a_{(\mathsf{o})}\theta(a_{(\mathsf{1})}))|$$

$$\leqslant 2 \sup_{\theta \in \mathcal{S}(A)} \mathsf{L}_{\mathsf{A}}(a_{(\mathsf{O})}\theta(a_{(\mathsf{1})})) d^{\mathsf{L}_{\mathsf{A}}}(\mu,\nu) \leqslant 2\mathsf{L}_{\mathsf{A}}(a) d^{\mathsf{L}_{\mathsf{A}}}(\mu,\nu).$$

Slice map lemma. For all $\mu, \nu \in \mathcal{S}(A)$, the following holds:

$$\|\mu(a_{(0)})a_{(1)} - \nu(a_{(0)})a_{(1)}\| \le 2d^{L_A}(\mu,\nu)L_A(a)$$
 (*)

Proof.

• By Kadison function representation and Fubini for slice maps:

$$\|\phi(a_{(\mathsf{o})})a_{(\mathsf{1})}\|\leqslant 2\sup_{\theta\in\mathcal{S}(\mathsf{A})}|\phi(a_{(\mathsf{o})})\theta(a_{(\mathsf{1})})|,$$

for all $a \in A$, $\phi \in A^*$.

• Recall: $d^{L_A}(\mu, \nu) := \sup_{b \in A \setminus \mathbb{C} \mathbf{1}_A} \frac{|(\mu - \nu)(b)|}{|L_A(b)|}$. Therefore,

$$\|(\mu - \nu)(a_{(0)})a_{(1)}\| \le 2 \sup_{\theta \in S(A)} |(\mu - \nu)(a_{(0)}\theta(a_{(1)}))|$$

$$\leqslant 2 \sup_{\theta \in \mathcal{S}(A)} \mathsf{L}_{\mathsf{A}}(a_{(\mathsf{O})}\theta(a_{(\mathsf{1})})) d^{\mathsf{L}_{\mathsf{A}}}(\mu, \nu) \leqslant 2\mathsf{L}_{\mathsf{A}}(a) d^{\mathsf{L}_{\mathsf{A}}}(\mu, \nu).$$

Convergence of Peter-Weyl truncations

Convergence of Peter-Weyl truncations

Theorem [L]. Let \mathbb{G} be a coamenable CQG and L_A a bi-invariant regular lip-norm on $A = \mathrm{C}(\mathbb{G})$. Then the Peter-Weyl truncations convergence in complete Gromov-Hausdorff distance, along the net of (finite) subsets $\Lambda \subseteq \mathrm{Irr}(\mathbb{G})$:

$$(A^{(\Lambda)}, L_{A^{(\Lambda)}}^{\alpha,\beta}) \stackrel{\Lambda}{\rightarrow} (A, L_A)$$

arXiv:2409.16698

Outlook: Fourier truncations

Fourier truncations

Fourier truncations

Definition. Let $\Lambda \subseteq \widehat{\mathbb{G}}$ such that $\overline{\Lambda} = \Lambda$ and $\mathbf{1} \in \Lambda$. Then the operator system $C(\mathbb{G})_{(\Lambda)} := \bigoplus_{\gamma \in \Lambda} \mathbb{C}[\mathbb{G}]^{\gamma} \subseteq C(\mathbb{G})$ is called a *Fourier truncation* of \mathbb{G} .

Fourier truncations

Definition. Let $\Lambda \subseteq \widehat{\mathbb{G}}$ such that $\overline{\Lambda} = \Lambda$ and $\mathbf{1} \in \Lambda$. Then the operator system $C(\mathbb{G})_{(\Lambda)} := \bigoplus_{\gamma \in \Lambda} \mathbb{C}[\mathbb{G}]^{\gamma} \subseteq C(\mathbb{G})$ is called a *Fourier truncation* of \mathbb{G} .

Theorem [RIEFFEL]. Let \mathbb{G} be a coamenable compact matrix quantum group and L a right-invariant regular lip-norm on $A = C(\mathbb{G})$. Then the following sequence of Fourier truncations converges in quantum Gromov–Hausdorff distance:

$$(A_{(\Lambda^{\otimes n})}, L|_{A_{(\Lambda^{\otimes n})}}) \stackrel{n \to \infty}{\longrightarrow} (A, L)$$

Duality

Duality

Proposition [CONNES-VAN SUIJLEKOM, FARENICK]. The operator systems $C(\mathbb{T}^1)^{(N)}$ and $C(\mathbb{T}^1)_{(N)}$ are dual.

Proposition [CONNES-VAN SUIJLEKOM, FARENICK]. The operator systems $C(\mathbb{T}^1)^{(N)}$ and $C(\mathbb{T}^1)_{(N)}$ are dual.

Proof.

Proposition [CONNES-VAN SUIJLEKOM, FARENICK]. The operator systems $C(\mathbb{T}^1)^{(N)}$ and $C(\mathbb{T}^1)_{(N)}$ are dual.

Proof. The duality is given by:

$$((t_{i-j})_{i,j},(\ldots,\mathsf{o},f_{-N+1},\ldots,f_{N-1},\mathsf{o},\ldots)):=\sum_{k=-N+1}^{N-1}t_kf_k$$

Proposition [Connes-van Suijlekom,Farenick]. The operator systems $C(\mathbb{T}^1)^{(N)}$ and $C(\mathbb{T}^1)_{(N)}$ are dual.

Proof.

The duality is given by:

$$((t_{i-j})_{i,j},(\ldots,\mathsf{O},f_{-N+1},\ldots,f_{N-1},\mathsf{O},\ldots)):=\sum_{k=-N+1}^{N-1}t_kf_k$$

Complete positivity of this pairing follows from the *operator valued* Fejér–Riesz lemma.

Proposition [Connes-van Suijlekom,Farenick]. The operator systems $C(\mathbb{T}^1)^{(N)}$ and $C(\mathbb{T}^1)_{(N)}$ are dual.

Proof.

The duality is given by:

$$((t_{i-j})_{i,j},(\ldots,\mathsf{O},f_{-N+1},\ldots,f_{N-1},\mathsf{O},\ldots)):=\sum_{k=-N+1}^{N-1}t_kf_k$$

Complete positivity of this pairing follows from the *operator valued* Fejér–Riesz lemma.

Proposition [CONNES-VAN SUIJLEKOM, FARENICK]. The operator systems $\mathrm{C}(\mathbb{T}^1)^{(N)}$ and $\mathrm{C}(\mathbb{T}^1)_{(N)}$ are dual.

Proof.

The duality is given by:

$$((t_{i-j})_{i,j},(\ldots,\mathsf{O},f_{-N+1},\ldots,f_{N-1},\mathsf{O},\ldots)):=\sum_{k=-N+1}^{N-1}t_kf_k$$

Complete positivity of this pairing follows from the *operator valued* Fejér–Riesz lemma.

NB. Fejér-Riesz lemma not available for many groups other than \mathbb{T}^1 .

Definition. Let X be an operator system. A C^* -extension is a C^* -algebra B together with a unital complete order embedding $\iota: X \hookrightarrow B$ such that $B = C^*(\iota(X))$. The *injective envelope* $(C^*_{\mathrm{env}}(X), \iota)$ is the unique C^* -extension of X such that any ucp map $\phi: C^*_{\mathrm{env}}(X) \to B$ is a unital complete order embedding if and only if $\phi \circ \iota$ is.

Definition. Let X be an operator system. A C^* -extension is a C^* -algebra B together with a unital complete order embedding $\iota: X \hookrightarrow B$ such that $B = C^*(\iota(X))$. The *injective envelope* $(C^*_{\text{env}}(X), \iota)$ is the unique C^* -extension of X such that any ucp map $\phi: C^*_{\text{env}}(X) \to B$ is a unital complete order embedding if and only if $\phi \circ \iota$ is.

Remark. If X generates a simple C^* -algebra this is the C^* -envelope.

Definition. Let X be an operator system. A C^* -extension is a C^* -algebra B together with a unital complete order embedding $\iota: X \hookrightarrow B$ such that $B = C^*(\iota(X))$. The *injective envelope* $(C^*_{\text{env}}(X), \iota)$ is the unique C^* -extension of X such that any ucp map $\phi: C^*_{\text{env}}(X) \to B$ is a unital complete order embedding if and only if $\phi \circ \iota$ is.

Remark. If X generates a simple C^* -algebra this is the C^* -envelope.

Definition [CONNES-VAN SUIJLEKOM]. The *propagation number* $\operatorname{prop}(X)$ is the smallest integer $n \geqslant 1$ such that products of n elements of $\iota(X)$ span a dense subset of $\operatorname{C}^*_{\operatorname{env}}(X)$.

Definition. Let X be an operator system. A C^* -extension is a C^* -algebra B together with a unital complete order embedding $\iota: X \hookrightarrow B$ such that $B = C^*(\iota(X))$. The *injective envelope* $(C^*_{\mathrm{env}}(X), \iota)$ is the unique C^* -extension of X such that any ucp map $\phi: C^*_{\mathrm{env}}(X) \to B$ is a unital complete order embedding if and only if $\phi \circ \iota$ is.

Remark. If X generates a simple C^* -algebra this is the C^* -envelope.

Definition [CONNES-VAN SUIJLEKOM]. The *propagation number* $\operatorname{prop}(X)$ is the smallest integer $n \geqslant 1$ such that products of n elements of $\iota(X)$ span a dense subset of $\operatorname{C}^*_{\operatorname{env}}(X)$.

Proposition [CONNES-VAN SUIJLEKOM, L-VAN SUIJLEKOM]. For all $d \ge 1$, we have $C^*_{\text{env}}(C(\mathbb{T}^d)^{(\Lambda)}) = \mathcal{B}(P_{\Lambda}L^2(S_{\mathbb{T}^d}))$ and $\text{prop}(C(\mathbb{T}^d)^{(\Lambda)}) = 2$.

Question. What are the propagation numbers of the operator systems $C(\mathbb{G})^{(\Lambda)}$?

Question. What are the propagation numbers of the operator systems $C(\mathbb{G})^{(\Lambda)}$?

Question. What is the relation of spectral/Peter-Weyl and Fourier truncations?

Question. What are the propagation numbers of the operator systems $C(\mathbb{G})^{(\Lambda)}$?

Question. What is the relation of spectral/Peter-Weyl and Fourier truncations?

(Current project: Relate the question about duality of the operator systems $C(\mathbb{G})^{(\Lambda)}$ and $C(\mathbb{G})_{(\Lambda)}$ to the *extension problem* of positive definite functions on (finite) subsets of (discrete) groups.)

Question. What are the propagation numbers of the operator systems $C(\mathbb{G})^{(\Lambda)}$?

Question. What is the relation of spectral/Peter-Weyl and Fourier truncations?

(Current project: Relate the question about duality of the operator systems $C(\mathbb{G})^{(\Lambda)}$ and $C(\mathbb{G})_{(\Lambda)}$ to the *extension problem* of positive definite functions on (finite) subsets of (discrete) groups.)

Question. Peter-Weyl truncations of quantum homogeneous spaces?