Département de Mathématiques

TD de MTH101 N° 1: Espaces vectoriels et applications linéaires

- 1. Soit $E = \mathbb{R}^2$, montrer que (E, +, .) est un \mathbb{R} -espace vectoriel.
- 2. Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, l'ensemble des applications de \mathbb{R} dans \mathbb{R} , montrer que (E, +, .) est un \mathbb{R} -espace vectoriel et que F_1 et F_2 sont deux sev de E supplémentaires dans E où F_1 (resp. F_2) est l'ensemble des applications paires (resp. impaires) de \mathbb{R} dans \mathbb{R} et $\forall f, g \in E$, $\forall x \in \mathbb{R}$, (f+g)(x) = f(x) + g(x), $(\alpha.f)(x) = \alpha f(x)$.
- 3. On considère le \mathbb{R} -ev \mathbb{R}^n et pour tout $n \geq 2$ on pose $x = {}^t(x_1, x_2, \cdots, x_n) \in \mathbb{R}^n$. On considère les sous-ensembles suivants: $E_1 = \{x \in \mathbb{R}^n; x_1 = 0\}, E_2 = \{x \in \mathbb{R}^n; x_1 = 1\}, E_3 = \{x \in \mathbb{R}^n; x_1 = x_2\}, E_4 = \{x \in \mathbb{R}^n; x_1x_2 = 0\}, E_5 = \{x \in \mathbb{R}^n; x_1 = x_2 = 0\}, E_6 = \{x \in \mathbb{R}^n; x_1 + x_2 + \cdots + x_n = 0\}$ et $E_7 = \{x \in \mathbb{R}^n; x_1 + x_2 = 1\}$. Pour tout $i = 1, \dots, 7, E_i$ est -il un sous-espace de \mathbb{R}^n ? Dans l'affirmative, donner en une base et sa dimension.
- 4. Etudier chacun des systèmes, S = (u, v, w), suivants et déterminer leur rang (en fonction du paramètre α s'il y a lieu): $i. \ u = {}^t(5, -3, 1), \ v = {}^t(1, -2, 1)$ et $w = {}^t(3, 1, -3)$ $ii. \ u = {}^t(\alpha, 1, 1), \ v = {}^t(1, \alpha, 1)$ et $w = {}^t(1, 1, \alpha)$.
- 5. Montrer que l'ensemble $F = \{(x, y, z) \in \mathbb{C}^3 \mid x + y + z = 0 \text{ et } x + iy z = 0\}$ est un sev de \mathbb{C}^3 , et en déterminer une base et la dimension.
- 6. On considère l'espace vectoriel \mathbb{R}^4 sur \mathbb{R} . Soit $G = \{t(x,y,z,t) \in \mathbb{R}^4; x+2y-z=t\}$. Montrer que G est un sous-espace vectoriel de \mathbb{R}^4 . Déterminer une base de G et donner sa dimension. Soient s = t(1,0,1,0), u = t(0,1,0,2), v = t(1,1,1,2) et $w = t(3,1,3,2) \in \mathbb{R}^4$. Montrer que le système (s,u,v,w) est lié. Soit F le sous-espace vectoriel engendré par (s,u,v,w). Donner une base de F. Comparer F et G.
- 7. Montrer que les applications suivantes sont linéaires :
 - (a) $f: \mathbb{R}^3 \to \mathbb{R}^2$, définie par f(x, y, z) = (2x y, x + y z)
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}^3$, définie par f(x, y, z) = (-x + y + z, x y + z, x + y z)
- 8. Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ une application linéaire donnée par f(x,y,z,t) = (x+z,x+t,y+z,y+t)
 - (a) Trouver une base de l'image de f et le rang de f.
 - (b) Trouver une base du noyau de f et sa dimension.
 - (c) Montrer que f n'est pas un isomorphisme.
- 9. Soient E un espace vectoriel sur le corps commutatif \mathbb{K} , de dimension finie sur \mathbb{K} . Soient F et G deux sous-espaces vectoriels de E.
 - (a) Montrer que $F+G=\{x+y/x\in F \text{ et }y\in G\}$ est un sous-espace vectoriel de E contenant $F\cup G$.
 - (b) Soit $f: F \times G \to E$ par f(x,y) = x + y. Montrer que f est linéaire et trouveer Kerf et Imf. En utilisant la relation $dim_{\mathbb{K}}(F \times G) = dim_{\mathbb{K}}(F) + dim_{\mathbb{K}}(G)$, retrouver le résultat $dim_{\mathbb{K}}(F+G) + dim_{\mathbb{K}}(F\cap G) = dim_{\mathbb{K}}(F) + dim_{\mathbb{K}}(G)$.
- 10. Soit E un K-ev de dimension finie. Montrer que pour tout endomorphisme f de E, on a: $(Im f = Im f^2) \Leftrightarrow (E = Ker f \oplus Im f)$.

11.	11. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^3 ?		
	(a) $W_1 = \{(a, b, 0); a, b \in \mathbb{R}\}$		
	(b) $W_2 = \{(a, b, c); a \ge 0, b, c \in \mathbb{R}\}$		
	(c) $W_3 = \{(a, b, c) \in \mathbb{R}^3; a + b + c = 0\}$		
	(d) $W_4 = \{(a, b, c) \in \mathbb{Q}^3\}.$		
12.	12. Les affirmations suivantes sont-elles correctes?		
	(a) Le vecteur $u=(2,-5,3)\in\mathbb{R}^3$ est combinaison linéaire des vecteu $v_2=(2,-4,-1)$ et $v_3=(1,-5,7)$.		
	(b) Tout vecteur de \mathbb{R}^3 est combinaison linéaire de vecteurs $e_1 = (1, 2, 3)$ $e_3 = (0, 0, 1)$.		
	(c) Le plan $z = 0$ de \mathbb{R}^3 est engendré par $v = (2, 3, 0)$ et $w = \left(\frac{1}{6}, \frac{1}{4}, 0\right)$). 🗆	
13.	13. Soit E un espace vectoriel de dimension 7 et soient V et W deux sous de dimensions respectives 4 et 5. Est-il possible que $V \cap W$ soit de dim	-espaces vectoriels ension	
	1? 2? 3? 4? 5?		
14. Dans l'espace vectoriel \mathbb{R}^3 , indiquer la famille de vecteurs qui constituent une base.			
	(a) $x_1 = (1, 2, -1), x_2 = (-2, 1, 1), x_3 = (1, -1, 2)$		
	(b) $x_1 = (1, 2, 3), x_2 = (2, -1, 1), x_3 = (1, 0, 1) x_4 = (0, 1, 1)$		
	(c) $x_1 = (1, -1, 0), x_2 = (1, 0, 1), x_3 = (1, 2, 3)$		
	(d) Indiquer la valeur de $t \in \mathbb{R}$ pour laquelle les vecteurs $(1,0,t)$, $(1,1,t)$ une base de \mathbb{R}^3 .	et $(t, 0, 1)$ forment	
	A: t = -1 $B: t = 1$ $C: t = 0$		
	(e) Parmi les application suivantes, dire laquellle est linéaire $A: f(x,y) = (x+1,y+1)$ $B: g(x,y) = (3x-y,0)$ $C: h(x)$	(x,y,z) = (x,xyz,z)	
	(f) Soit l'espace vectoriel $E = \mathbb{R}^3$. On note $\mathcal{B} = (e_1, e_2, e_3)$ sa base l'endomorphisme de E , $(x, y, z) \mapsto (x + 3z, 0, y - 2z)$. Dire laquell	canonique. Soit f	
	suivantes est vraie. $A = f(a) = a + 2a + f(a) = 0$		
	$A: f(e_1) = e_1 + 3e_3, \ f(e_2) = 0, \ f(e_3) = e_2 - 2e_3$ $B: f(e_1) = e_1, \ f(e_2) = e_3, \ f(e_3) = 3e_1 - 2e_3$		
	$C: Ker \ f = \{0\}$		
	(g) Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^3 définie par $f(x,y) = (2x+y, x-1)$ laquelle des propositions suivantes est le $Ker\ f$	y, x - y). Indiquer	
	$A: \{(0,0)\}$ $B: Vect(1,1)$ $C: Vect((2,1,1),(1,-1,1))$	\ T 1	
	(h) Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^3 définie par $f(x,y) = (2x+y,x-1)$ laquelle des propositions suivantes est le $Im\ f$ $A: Vect((0,1,0))$ $B: Vect((2,1,1),(1,-1,-1))$ $C: \mathbb{R}^3$	y, x-y). Indiquer	
	(i) Soit E un espace vectoriel sur \mathbb{K} de dimension finie, soit $B = (v_1, \cdots, v_n)$	\dots, v_n) une famille	
	de n vecteurs de E . Dans ce qui suit, j désigne un entier entre 1 bonne proposition		
	$A: Si\ B$ est libre alors $B\ \{v_j\}$ est libre		
	$B: Si B$ est liée alors $B - \{v_j\}$ est liée		
	$C: \text{Si } B \text{ est li\'ee alors } B - \{v_j\} \text{ est libre}$		