

Space Out Hackathon

Team Musk's Children

Challenge Statements

1C. End-Effector

2B. Battery Sizing

End-Effector (1C)

The end-effector is one of the most important components in a rover as it handles moving objects such as rocks to conduct experiments which is usually the main objective of sending a rover to another planet.

However, most concepts of end-effectors tries to replicate the human hands as it is the easiest thing that we could take inspiration from for the robot to take and move things around.

The human-hand is a source of inspiration, but robots have a harder time in managing the force to handle brittle objects.

Solution

As such, this is the design of the end-effector that we have come up with:

How it Works

Protective casing for picked-up objects

Moving rollers to pick up objects

For typing: fitted with miniature camera module

Simulation

As stated in basket statement 2B, these are the power usage of the rover which will be required the rover to run continuously for 2 hours:

- 1. Main Processor (5V, 4W)
- 2. 2 Microprocessors (5V, 2W each)
- 3. 11 Sensors (3.3V, 2.25mW each)
- 4. 4 Motors (12V, 12W each)

Initial Calculations

	Main Processor	Microprocessor	Sensors	Motors		Amount
Voltage (V)	5	5	3.3	12	Main	1
Power Rating (W)	4	2	0.00225	12	Micro	2
Current (A)	0.8	0.4	0.000682	1	Sensors	11
					Motors	4
Max Wh	56.02475					
Requirement for 2 hours	112.0495					
Max Current	5.6075					

In the initial calculations, all the components of the Rover were assumed to be running at maximum power for 2 hours straight. This gives us that the rover needs a 112 Wh battery to last for 2 hours with a current rating of roughly 6A

Assumptions

- Main Processor, Microprocessors and Sensors will be running at all times albeit not at maximum power
- Robot uses its motors for 80% of the duration in the 2 hour course (assuming 50% flat terrain and 50% rugged terrain)
- The rover uses 75% of the motor's maximum power to run on flat terrain and max power on rugged terrain

Final Calculations

Realistic Assumptions	Main Processor	Microprocessor	Sensors	Motors (Flat)	Motors (Rugged)
Voltage (V)	5	5	3.3	12	12
Power Rating (W)	2	1	0.00225	8	12
Current (A)	0.4	0.2	0.000682	0.666666667	1
the state of the s					
Requirement for 2 hours	88.0495				
Max Current	4.8075				

Using the assumptions made, the rover battery size was able to be downsized to only 88 Wh with a 5A rating. With contingency in mind, a 100Wh battery would be a great fit for the rover.

Examples of Battery

In general, a 100Wh battery should be lighter than a 120Wh battery. However, the examples found show otherwise:

Citations

Battery Examples:

- 1. https://www.batteryspace.com/custom-li-ion-18650-battery-12v-10-05ah-regulated-120wh-7a-rate-ncr18650b.a spx
- 2. https://www.batteryspace.com/nimhbatterypack12v84ah100whfordiydivinglightofsalvo9amp.aspx

Research:

- A. Aichhorn, M. Greenleaf, H. Li and J. Zheng, "A cost effective battery sizing strategy based on a detailed battery lifetime model and an economic energy management strategy," 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 1-8, doi: 10.1109/PESGM.2012.6345103.
- Akpolat, Alper & Yang, Yongheng & Blaabjerg, F. & Dursun, Erkan & Kuzucuoglu, Ahmet. (2020). Li-ion-based Battery Pack Designing and Sizing for Electric Vehicles under Different Road Conditions. 10.1109/SEST48500.2020.9203196.
- 3. Dubey, Venketech & Crowder, Richard. (2004). Grasping and Control Issues in Adaptive End Effectors. 2. 10.1115/DETC2004-57126.

Thank you!