Hoja de Referencia Series **Temporales**

Por Marcelo Moreno Porras - Universidad Rev Juan Carlos The Econometrics Cheat Sheet Project

Conceptos básicos

Definiciones

Serie temporal - sucesión de observaciones ordenadas en el tiempo con una frecuencia fija.

Dado el formato de una serie temporal:

- Punto en el tiempo (stock) se registra un único valor para cada período.
- Agregado (flujo) los valores representan totales o promedios a lo largo del período.
- Rango/intervalo (OHLC) cada período registra múltiples estadísticas, como min, max, open, close.

Proceso estocástico - es una secuencia de variables aleatorias que están indexadas en el tiempo.

Componentes de una serie temporal

- Tendencia movimiento general a l/p de una serie.
- Variaciones estacionales oscilaciones periódicas producidas en un período igual o inferior al año, y pueden ser fácilmente identificadas en diferentes años (usualmente resultado de la climatología).
- mayor al año (son resultado del ciclo económico).
- Variaciones residuales movimientos que no siguen t7. Tamaño de datos. El número de observaciones una oscilación periódica identificable (eventos irreg.)

Tipos de modelos de series temporales

• Modelos estáticos - la relación entre y y x es contemporánea. Conceptualmente:

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

• Modelos de rezagos distribuidos - la relación entre y y x no es contemporánea. Conceptualmente:

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \dots + \beta_s x_{t-(s-1)} + u_t$$

El efecto acumulado a largo plazo en y cuando Δx es:
 $\beta_1 + \beta_2 + \dots + \beta_s$

• Modelos dinámicos - rezagos de la variable dependiente (endogeneidad). Conceptualmente:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \dots + \beta_s y_{t-s} + u_t$$

• Combinación de lo anterior, como modelos de rezagos distribuidos racionales (rezagos distribuidos + dinámicos).

Supuestos y propiedades

Supuestos MCO bajo series temporales

Bajo estos supuestos, los estimadores de los parámetros MCO presentarán buenas propiedades. Supuestos Gauss-Markov extendidos en series temporales:

- t1. Linealidad de parámetros y dependencia débil.
 - a. y_t debe ser una función lineal de β .
 - b. El proceso estocástico $\{(x_t, y_t): t = 1, 2, \dots, T\}$ es estacionario y débilmente dependiente.
- t2. No colinealidad perfecta.
 - No hay variables independientes que sean constantes: $Var(x_i) \neq 0, \forall i = 1, \dots, k$
 - No hay una relación lineal exacta entre variables independientes.
- t3. Media condicional cero y correlación cero.
 - a. No hay errores sistemáticos: $E(u \mid x_1, \dots, x_k) =$ $E(u) = 0 \rightarrow exogeneidad fuerte$ (a implica b).
 - b. No hay variables relevantes no incluidas en el modelo: $Cov(x_i, u) = 0, \forall i = 1, \dots, k \rightarrow exogeneidad$ débil.
- t4. **Homocedasticidad**. La variabilidad de los resid. es igual para cualquier nivel de x: $Var(u \mid x_1, \dots, x_k) = \sigma_u^2$
- t5. No autocorrelación. Los residuos no contienen información sobre otros residuos:

$$Corr(u_t, u_s \mid x_1, \dots, x_k) = 0, \ \forall t \neq s$$

- Ciclo oscilaciones periódicas producidas en un periodo t6. Normalidad. Los residuos son independientes e idénticamente distribuidos (i.i.d.): $u \sim \mathcal{N}(0, \sigma_u^2)$
 - disponibles debe ser mayor a (k+1) parámetros a estimar. (Ya satisfecho bajo situaciones asintóticas)

Propiedades asintóticas de MCO

Bajo los supuestos del modelo econométrico y el Teorema Central del Límite:

- De t1 a t3a: MCO es insesgado. $E(\hat{\beta}_i) = \beta_i$
- De t1 a t3: MCO es consistente. $plim(\hat{\beta}_i) = \beta_i$ (a t3b sin t3a, exogeneidad débil, insesg. y consistente).
- De t1 a t5: normalidad asintótica de MCO (entonces, t6 es necesariamente satisfecho): $u \sim \mathcal{N}(0, \sigma_u^2)$
- De t1 a t5: estimador insesgado de σ_n^2 . $E(\hat{\sigma}_n^2) = \sigma_n^2$
- De t1 a t5: MCO es MELI (Mejor Estimador Lineal Insesgado, BLUE en inglés) or eficiente.
- De t1 a t6: contrastes de hipótesis e intervalos de confianza son fiables.

Tendencia y estacionalidad

Regresión espuria - es cuando la relación entre u v x es debida a factores que afectan a y y que tienen correlación con x, $Corr(x_i, u) \neq 0$. Es el incumplimiento de t3.

Tendencia

Dos series temporales pueden tener la misma (o contraria) tendencia, lo que lleva a altos niveles de correlación. Esto provoca una falsa apariencia de causalidad, el problema es regresión espuria. Dado el modelo:

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

donde:

$$y_t = \alpha_0 + \alpha_1 \text{Tendencia} + v_t$$

 $x_t = \gamma_0 + \gamma_1 \text{Tendencia} + v_t$

Añadir una tendencia al modelo puede resolver el problema:

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 \text{Tendencia} + u_t$$

Una tendencia puede ser lineal o no lineal (cuadrática, cúbica, exponencial, etc.)

Otra manera, es hacer uso del filtro Hodrick-Prescott y extraer la tendencia y el componente cíclico.

Estacionalidad

Una serie temporal puede $_{\bullet}y$ manifestar estacionalidad. Esto es, que la serie está sujeta a variaciones estacionales o patrones usualmente relacionados al clima

Por ejemplo, el PIB (negro) es usualmente mayor en verano y menor en invierno. Serie ajustada estacionalmente (rojo discontinuo) en comparación.

• La regresión de series de tiempo que presentan estacionalidad puede conducir a resultados espurios.

Un ajuste estacional sencillo es crear variables estacionales binarias y añadirlas al modelo. Por ejemplo, una serie trimestral (Qq_t son variables binarias):

 $y_t = \beta_0 + \beta_1 Q 2_t + \beta_2 Q 3_t + \beta_3 Q 4_t + \beta_4 x_{1t} + \dots + \beta_k x_{kt} + u_t$ Otro método es ajustar estacionalmente (sa) las variables, y entonces, hacer la regresión con las variables ajustadas: $z_t = \beta_0 + \beta_1 Q 2_t + \beta_2 Q 3_t + \beta_3 Q 4_t + v_t \rightarrow \hat{v}_t + E(z_t) = \hat{z}_t^{sa}$ $\hat{y}_{t}^{sa} = \beta_{0} + \beta_{1}\hat{x}_{1t}^{sa} + \dots + \beta_{k}\hat{x}_{kt}^{sa} + u_{t}$

Hay métodos mucho mejores y complejos para ajustar estacionalmente, como el X-13ARIMA-SEATS.

Autocorrelación

El residuo de cualquier observación, u_t , está correlacionado con el residuo de cualquier otra observación. Las observaciones no son independientes. Incumplimiento de t5.

$$Corr(u_t, u_s \mid x_1, \dots, x_k) = Corr(u_t, u_s) \neq 0, \ \forall t \neq s$$

Consecuencias

- Estimadores MCO son insesgados.
- Estimadores MCO son consistentes.
- MCO ya no es eficiente, pero sigue siendo ELI (Estimador Lineal Insesgado).
- La estimación de la varianza de los estimadores es sesgada: la construcción de intervalos de confianza v contraste de hipótesis no son fiables.

Detección

Gráficos de dispersión - patrones en u_{t-1} vs. u_t .

Correlograma - función de • Eje Y: correlación. autocorrelación (FAC) y el • Eje X: núm. de retardo.

FAC parcial (FACP).

- **Proceso MA**(q). FAC: sólo los q primeros coeficientes son significativos, el resto se anulan bruscamente. FACP: decrecimiento rápido exponencial atenuado u ondas sinusoidales.
- **Proceso** AR(p). FAC: decrecimiento rápido exponencial atenuado u ondas sinusoidales. FACP: sólo los p primeros coeficientes son significativos, el resto se anulan bruscamente.

• **Proceso ARMA**(p,q). FAC y FACP: los coeficientes no se anulan bruscamente y presentan un decrecimiento

Si los coeficientes de la FAC no decaen rápidamente, hav claro indicio de falta de estacionariedad en media.

Contrastes - Generalmente, H_0 : No autocorrelación. Suponiendo que u_t sigue un proceso AR(1):

$$u_t = \rho_1 u_{t-1} + \varepsilon_t$$

donde ε_t es ruido blanco.

• Prueba t AR(1) (regresores exógenos):

$$t = \frac{\hat{\rho}_1}{\operatorname{ee}(\hat{\rho}_1)} \sim t_{T-k-1,\alpha/2}$$

 H_1 : Autocorrelación de orden uno, AR(1).

• Estadístico Durbin-Watson (regresores exógenos y normalidad de residuos):

hormandad de residuos):
$$d = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{n} \hat{u}_t^2} \approx 2 \cdot (1 - \hat{\rho}_1)$$
 Donde $0 \le d \le 4$

 H_1 : Autocorrelación de orden uno, AR(1).

$$\begin{array}{c|c|c|c} d = & 0 & 2 & 4 \\ \hline \rho \approx & 1 & 0 & -1 \end{array}$$

• h de Durbin (regresores endógenos):

$$h = \hat{\rho} \cdot \sqrt{\frac{T}{1 - T \cdot v}}$$

donde v es la varianza estimada del coeficiente asociado a la variable endógena.

 H_1 : Autocorrelación de orden uno, AR(1).

- Prueba Breusch-Godfrey (regresores endógenos): puede detectar procesos MA(q) y AR(p) (ε_t ruido b.):
 - MA(q): $u_t = \varepsilon_t m_1 u_{t-1} \cdots m_q u_{t-q}$
- AR(p): $u_t = \rho_1 u_{t-1} + \cdots + \rho_p u_{t-p} + \varepsilon_t$

Bajo H_0 : No autocorrelación:

$$T \cdot R_{\hat{u}_t}^2 \sim_a \chi_q^2$$
 or $T \cdot R_{\hat{u}_t}^2 \sim_a \chi_p^2$

 H_1 : Autocorrelación de orden q (ó p).

• Prueba Ljung-Box Q:

 H_1 : Autocorrelación hasta orden h.

Corrección

- Usar MCO con un estimador de la matriz de varianzascovarianzas robusto a la heterocedasticidad y autocorrelación (HAC), por ejemplo, la propuesta de Newev-West.
- Usar Mínimos Cuadrados Generalizados (MCG). Suponiendo $y_t = \beta_0 + \beta_1 x_t + u_t$, con $u_t = \rho u_{t-1} + \varepsilon_t$, donde $|\rho| < 1$ y ε_t es ruido blanco.
- Si ρ es conocido, usar modelo cuasi-diferenciado: $y_t - \rho y_{t-1} = \beta_0 (1 - \rho) + \beta_1 (x_t - \rho x_{t-1}) + u_t - \rho u_{t-1}$ $y_t^* = \beta_0^* + \beta_1' x_t^* + \varepsilon_t$

donde $\beta'_1 = \beta_1$; y estimarlo por MCO.

- Si ρ es **desconocido**, estimarlo -por ejemplo- el método iterativo de Cochrane-Orcutt (el método de Prais-Winsten también es bueno):
 - 1. Obtener \hat{u}_t del modelo original.
 - 2. Estimar $\hat{u}_t = \rho \hat{u}_{t-1} + \varepsilon_t$ y obtener $\hat{\rho}$.
 - 3. Crear un modelo cuasi-diferenciado: $y_t - \hat{\rho}y_{t-1} = \beta_0(1-\hat{\rho}) + \beta_1(x_t - \hat{\rho}x_{t-1}) + u_t - \hat{\rho}u_{t-1}$ $y_t^* = \beta_0^* + \beta_1' x_t^* + \varepsilon_t$
 - donde $\beta'_1 = \beta_1$; y estimarlo por MCO.
 - 4. Obtener $\hat{u}_t^* = y_t (\hat{\beta}_0^* + \hat{\beta}_1' x_t) \neq y_t (\hat{\beta}_0^* + \hat{\beta}_1' x_t^*)$.
 - 5. Repetir desde el paso 2. El algoritmo termina cuando los parámetros estimados varían muy poco entre iteraciones.
- Si no se arregla, buscar **fuerte dependencia** en la serie.

Suavizado exponencial

Dado $\{y_t\}$, la serie suavizada $\{f_t\}$:

$$f_t = \alpha y_t + (1 - \alpha) f_{t-1}$$

donde $0 < \alpha < 1$ es el factor de suavizado y $f_0 = y_0$.

Predicciones

Dos tipos de predicciones:

- Valor medio de y para un valor específico de x.
- Valor individual de y para un valor específico de x.

U de Theil - compara los resultados pronosticados con los de la previsión con datos históricos mínimos.

$$U = \sqrt{\frac{\sum_{t=1}^{T-1} \left(\frac{\hat{y}_{t+1} - y_{t+1}}{y_t}\right)^2}{\sum_{t=1}^{T-1} \left(\frac{y_{t+1} - y_t}{y_t}\right)^2}}$$

- < 1: La predicción es mejor que adivinar.
- = 1: La predicción es tan buena como adivinar.
- > 1: La predicción es peor que adivinar.

Estacionariedad

La estacionariedad permite reconocer relaciones – inalteradas en el tiempo— entre variables.

- **Proceso estacionario** (estacionariedad estricta) la distribución de probabilidad conjunta del proceso permanece inalterada al desplazarse h periodos.
- Proceso no estacionario por ejemplo, una serie con tendencia, donde al menos la media cambia con el tiempo.
- Proceso estacionario en covarianza es una forma más débil de estacionariedad:
 - $E(x_t)$ es constante. $Var(x_t)$ es constante.
 - Para cualquier $t, h \ge 1$, $Cov(x_t, x_{t+h})$ depende sólo de h, no de t.

Dependencia débil

La dependencia débil reemplaza el supuesto de muestreo aleatorio en series temporales.

- Un proceso estacionario $\{x_t\}$ es **débilmente dependiente** cuando x_t y x_{t+h} son casi independientes a medida que h aumenta sin límite.
- Un proceso estacionario en covarianza es **débilmente dependiente** si la correlación entre x_t y x_{t+h} tiende a 0 lo suficientemente rápido cuando $h \to \infty$ (no están asintóticamente correlacionados).

Los procesos débilmente dependientes se llaman integrados de orden cero, I(0). Algunos ejemplos:

• Media móvil - $\{x_t\}$ es una media móvil de orden q, MA(q):

$$x_t = e_t + m_1 e_{t-1} + \dots + m_q e_{t-q}$$
donde $\{e_t: t=0,1,\dots,T\}$ es una secuencia i.i.d. con media cero y varianza σ_e^2 .

• **Proceso autorregresivo** - $\{x_t\}$ es un proceso autorregresivo de orden p, AR(p):

$$x_t = \rho_1 x_{t-1} + \dots + \rho_p x_{t-p} + e_t$$
donde $\{e_t : t = 1, 2, \dots, T\}$ es una secuencia i.i.d. con media cero y varianza σ_e^2 .

Condición de estabilidad: si $1 - \rho_1 z - \cdots - \rho_p z^p = 0$ para |z| > 1, entonces $\{x_t\}$ es un proceso AR(p) débilmente dependiente. Para AR(1), la condición es: $|\rho_1| < 1$.

• Proceso ARMA - es una combinación de los dos anteriores; $\{x_t\}$ es un ARMA(p,q):

$$x_t = e_t + m_1 e_{t-1} + \dots + m_q e_{t-q} + \rho_1 x_{t-1} + \dots + \rho_p x_{t-p}$$

Raíces unitarias

Un proceso es integrado de orden d, I(d), si al aplicar diferencias d veces hace al proceso estacionario.

Cuando $d \ge 1$, se dice que el proceso tiene **raíz unitaria**. Un proceso tiene una raíz unitaria cuando no se cumple la condición de estabilidad (hay raíces en el círculo unitario).

Dependencia fuerte

Generalmente, las series económicas son fuertemente persistentes. Algunos ejemplos de **raíz unitaria** I(1):

• Paseo aleatorio - un proceso AR(1) con $\rho_1 = 1$.

$$y_t = y_{t-1} + e_t$$

donde $\{e_t : t = 1, 2, ..., T\}$ es una secuencia *i.i.d.* con media cero y varianza σ_e^2 .

• Paseo aleatorio con deriva - un proceso AR(1) con $\rho_1 = 1$ y una constante.

$$y_t = \beta_0 + y_{t-1} + e_t$$

donde $\{e_t : t = 1, 2, ..., T\}$ es una secuencia *i.i.d.* con media cero y varianza σ_e^2 .

Contrastes de raíz unitaria

Contraste	H_0	Rechazar H_0
ADF	I(1)	tau < Valor crítico
KPSS	I(0) nivel	mu > Valor crítico
	I(0) tendencia	tau > Valor crítico
Phillips-Perron	I(1)	Z-tau < Val. crítico
Zivot-Andrews	I(1)	tau < Valor crítico

De raíz unitaria a dependencia débil

Integrado de **orden uno**, I(1), significa que **la primera diferencia** del proceso es **débilmente dependiente** ó I(0) (y usualmente, estacionaria). Sea $\{y_t\}$ un paseo aleatorio:

$$\Delta y_t = y_t - y_{t-1} = e_t$$
donde $\{e_t\} = \{\Delta y_t\}$ es i.i.d.
Nota:

- La primera diferencia elimina su tendencia.
- El logaritmo de una serie estabiliza su varianza.

e Viving

De raíz unitaria a cambio porcentual

Cuando una serie I(1) es estrictamente positiva, a menudo se utilizan logaritmos antes de diferenciar para aproximar cambios porcentuales:

$$\Delta \log(y_t) = \log(y_t) - \log(y_{t-1}) \approx \frac{y_t - y_{t-1}}{y_{t-1}}$$

Ergodicidad

Un proceso estrictamente estacionario $\{y_t\}$ es **ergódico** si los promedios temporales convergen a sus promedios muestrales (esperanzas). Esto suele garantizarse mediante una **mezcla fuerte** (strong mixing), que implica independencia asintótica de eventos lejanos.

$$\frac{1}{T}\sum_{t=1}^{T} y_t \xrightarrow{a} \mathrm{E}(y_t)$$

Sin ello, los momentos muestrales pueden no reflejar los momentos poblacionales. Los estimadores son inconsistentes.

Cointegración

Dos series I(1) están **cointegradas** si una combinación lineal de ellas es I(0). Una regresión entre ellas no es espuria, sino que refleja una relación de **largo plazo**. Las variables cointegradas comparten una tendencia estocástica común. Por ejemplo, $\{x_t\}$ y $\{y_t\}$ son I(1), pero $y_t - \beta x_t = u_t$ donde $\{u_t\}$ es I(0). (β es el parámetro cointegrador).

Contraste de cointegración

- 1. Estimar $y_t = \alpha + \beta x_t + \varepsilon_t$ y obtener $\hat{\varepsilon}_t$.
- 2. Realizar el ADF sobre $\hat{\varepsilon}_t$ con una distribución especial. El resultado del contraste es equivalente a:
 - H_0 : $\beta = 0$ (no cointegración)
 - H_1 : $\beta \neq 0$ (cointegración)

si el estadístico de contraste > valor crítico, rechazar H_0 .

Heterocedasticidad en series temp.

Afecta al supuesto t4, lo que lleva a que MCO no sea eficiente.

Usar contrastes como el Breusch-Pagan o White, donde H_0 : No heterocedasticidad. Para que los contrastes funcionen, no ha de existir **autocorrelación**.

ARCH

Un modelo de heteroced. condicional autorreg. (ARCH) se usa para analizar una forma de heteroced. dinámica, donde la varianza del error sigue un proceso AR(p).

Dado el modelo: $y_t = \beta_0 + \beta_1 z_t + u_t$ donde, hay AR(1) y heterocedasticidad:

$$E(u_t^2 \mid u_{t-1}) = \alpha_0 + \alpha_1 u_{t-1}^2$$

GARCH

Un modelo ARCH general (GARCH) es similar a ARCH, pero la varianza del error sigue un proceso ARMA(p,q).