ANALOG CIRCUITS DESIGN

AE7: Power stages at low frequencies

Course overview

- 1. Introduction
- 2. The bipolar transistor
- 3. Push-pull stage
- 4. Classes of operation
- 5. Class D amplifier
- 6. Heatsink calculation

1. Introduction: inside the 741 operational amplifier

Source: http://www.righto.com/2015/10/inside-ubiquitous-741-op-amp-circuits.html

1. Introduction: system overview

2. The bipolar transistor

Current source (IC) controlled by a voltage (VBE) provided VCE > 300~400mV

$$IC = Is \left(exp \left(\frac{VBE}{Vt} \right) - 1 \right)$$

$$VBE \approx Vt \ ln\left(\frac{IC}{IS}\right) \approx 0,6V$$

PNP & NPN: same behaviour, but voltages and currents are in the opposite direction

3. Push-pull output stage: operation

Q_{NPN} and Q_{PNP} are complementary transistors

3. Push-pull output stage: efficiency

Assumption: symetric supply VCC = |VSS|

- Power delivered to the load:
- Efficiency

$$P_{RL} = \frac{(V_{RLpk})^2}{2 \cdot RL}$$

$$\eta = \frac{P_{RL}}{P_{supply}} = \frac{\pi \cdot V_{RLpk}}{4 \cdot VCC}$$

P_{supply} = P_{VCC} + P_{VSS}

$$P_{supply} = 2 \ VCC \ \frac{V_{RLpk}}{\pi \ RL}$$

3. Push-pull output stage: power losses

General methodology:
$$\Sigma^{P}$$
 supply = P RL + P transistor(s) + ϵ

power stage only

the rest of the circuit (may usually be neglected)

Power dissipated when the input signal is a sine wave (for 2 transistors):

$$\mathsf{P}_{diss} = \frac{2 \cdot \mathsf{VCC} \cdot \mathsf{V}_{\mathsf{RLpk}}}{\pi \cdot \mathsf{RL}} - \frac{\mathsf{V}_{\mathsf{RLpk}}^{}}{2 \cdot \mathsf{RL}} \qquad \text{reaches maximum at} \quad \mathsf{V}_{\mathsf{RLpk}} = \frac{2 \cdot \mathsf{VCC}}{\pi}$$

$$P_{diss(max)} = \frac{2 \cdot VCC^2}{\pi^2 \cdot RL}$$

≈ 40% of maximum P_{RL}

3. Push-pull output stage: power losses

4. Class of operation

Class A, AB, B limited or bad efficiency due to simultaneous presence of voltage and current on the active device

Class D switching operation cancels losses in active devices

5. Class-D amplifiers: operation

switch open: non-zero voltage, zero current switch closed: non-zero current, zero voltage

no dissipated power, 100% efficiency

5. Class-D amplifiers: more realistic example

12

6. Heathsink calculation: thermal model

6. Heathsink calculation: thermal-electrical model

Power ← Current

Temperature ← Voltage

Thermal resistance ← Resistance

$$T_{j}-T_{a}=P_{diss}\sum Rth$$

$$Rth_{s,a}=rac{T_{j}-T_{a}}{P_{diss}}-Rth_{j,c}-Rth_{c,i}-Rth_{i,s}$$
 (Rth_{c,a} neglected)

6. Heathsink calculation: mechanical considerations

Thermal resistance depends on profile type and dimension:

Mounting a transistor on the heatsink:

6. Heathsink calculation: voltage regulator example

Symbol	Parameter		Value	Unit
VI	DC input voltage	for V _O = 5 to 18V	35	V
		for V _O = 24V	40	v
lo	Output current		Internally limited	
P _D	Power dissipation		Internally limited	
TSTG	Storage temperature range		-65 to 150	°C
TOP	Operating junction temperature range		0 to 150	°C

Table 3. Thermal data

Symbol	Parameter	TO-220	Unit	
R _{thJC}	Thermal resistance junction-case	5	°C/W	
R _{thJA}	Thermal resistance junction-ambient	50	°C/W	

Ambient temperature: Ta = 30°c

Pdiss
$$_{max} = (13.5 - 5) \times 2 = 17W$$

Without heathsink:

$$T_j = Pdiss \times Rth_{j,a} + Ta = 880^{\circ}C!!!!$$

Heathsink calculation: (no insulator)

$$T_j - T_a = P_{diss} \left(\frac{Rth_{j,c}}{r} + Rth_{c,s} + Rth_{s,a} \right)$$

Hint: limit Tj to 120°C, Rth_{c,s} = 0.2°C/W (thermoconductive grease)

 Σ Rth = 5.3°C/W \rightarrow no practical solution since that yields Rth_{s,a} = 0.1°C/W

6. Heathsink calculation: voltage regulator example

41.6 x 25 x 63.5mm 3°C/W

$$\sum$$
 Rth = 8.2°C/W \rightarrow Pdiss _{max} = 11W

- → reduce current downto ≈1.3A max
- → reduce input voltage downto 10.5V
- → use another regulator (TO3 case)

6. Heathsink calculation: audio amplifier example

TDA7294 100W class-AB audio amplifier

Pout =
$$100W \rightarrow Pdiss_{max} = 40W$$

THERMAL DATA

Symbol	Description		Value	Unit
R _{th j-case}	Thermal Resistance Junction-case	Max	1.5	°C/W

Heathsink calculation: (no insulator)

$$T_j - T_a = P_{diss} (Rth_{j,c} + Rth_{c,s} + Rth_{s,a})$$

Hint: limit Tj to 120°C,

Rth_{c.s} = 0.2°C/W (thermoconductive grease)

$$\sum$$
 Rth = 2.25°C/W \rightarrow Rth_{s.a} = 0.55°C/W

Forced air: ≈70mm

Passive: ≈250mm

Passive Cooled (Red)