- 1. (多选) 已知 P 是棱长为 2 的正方体 $ABCD A_1B_1C_1D_1$ 表面上的动点,M,N 分别是线段 B_1C 和 C_1C 的中点,点 Q 满足 $\overrightarrow{MQ} = \lambda \overrightarrow{MN}$ ($0 \le \lambda \le 1$),且 $A_1P \perp DQ$,设 P 的轨迹围成的图形为多边形 Ω ,则
 - A. Ω 为平行四边形
 - B. 存在 λ ,使得 Ω 的面积为 $\sqrt{22}$
 - C. 存在 λ ,使得 Ω 和底面 *ABCD* 的夹角为 $\frac{\pi}{3}$
 - D. 点 B 和 Ω 形成的多面体的体积不变

- (1) 证明: 平面 ABC ⊥ 平面 ACC₁A;
- (2) 若直线 A_1B 与平面 ABC 所成角为 60° ,求平面 A_1B_1C 与平面 ABC 夹角的余弦值。

- 1. (多选) 已知 P 是棱长为 2 的正方体 $ABCD A_1B_1C_1D_1$ 表面上的动点,M,N 分别是线段 B_1C 和 C_1C 的中点, 点 Q 满足 $\overrightarrow{MQ} = \lambda \overrightarrow{MN}$ $(0 \le \lambda \le 1)$, 且 $A_1P \perp DQ$, 设 P 的轨迹围成的图形为多边形 Ω , 则
 - A. Ω 为平行四边形 🗸
 - B. 存在 λ ,使得 Ω 的面积为 $\sqrt{22}$ \vee

C. 存在 λ , 使得 Ω 和底面 ABCD 的夹角为 $\frac{\pi}{3}$

D. 点 B 和 Ω 形成的多面体的体积不变

4+ (1-1)2

1 12-24+5

 $A_1B_1C_1 + A_1B = A_1C = A_1A = 2$, $BA \perp BC$, BA = BC. 2. 在三棱柱 ABC

(1) 证明: **₹ 面µ¾**C ⊥ 平面 ACC₁A;

 A_1B 与平面 ABC 所成角为 60° ,求平面 A_1B_1C 与平面 ABC 夹角的余弦值。

4. (多选) 设数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$,且对任意正整数 n, a_{2n-1} , a_{2n} , a_{2n+1} 成等比数列, a_{2n} 等差数列,则

$$A. a_n \in \mathbb{N}^*$$

B.
$$\sqrt{a_{2n-1}} \in \mathbb{Q}$$

$$C.\sum_{k=1}^n \frac{1}{a_k} < 3$$

$$D. \sum_{k=1}^{9} a_{2k} = 330$$

$$\frac{1}{\left|\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\right|}=\frac{1}{2}+\frac{2}{2}\cdot\frac{1}{\left|\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\right|}$$

- 3. 已知数列 $\{a_n\}$ 满足 $a_1=2$, $a_{n+1}=\frac{1}{1-a_n}$,则 $\{a_n\}$ 的前 25 项和为
 - A. 2

B. 12

C. 13

D. 14

4. (多选) 设数列
$$\{a_n\}$$
 满足 $a_1 = 1$, $a_2 = 2$, 且对任意正整数 n . a_{2n-1} , a_{2n} , a_{2n+1} 成等比数列, a_{2n} , a_{2n+1} , a_{2n+2} 成 等差数列, 则

A. $a_n \in \mathbb{N}^*$
B. $\sqrt{a_{2n-1}} \notin \mathbb{Q}$
 $a_1 = 1$
 $a_2 = a_{1n-1}$
 $a_2 = a_{1n-1}$
 $a_3 = a_{1n-1}$
 $a_4 = a_{1n-1}$
 $a_4 = a_{1n-1}$
 $a_5 = a_{1n-1}$
 $a_{1n-1} = a_{1n-1}$
 a_{1n-1}

6. 若对任意的 $n \in \mathbb{N}^*$, $\frac{n}{n+1} + \frac{1}{k \cdot 2^n} < 1$,求 k 的取值范围。

来 的 取 個 犯 目 。
$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1)^{\frac{1}{2}} + b(n+1) + c \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b_{n+1} c \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha_{n}^{2} + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{3} = \left[\alpha(n+1) + b \right]^{\frac{1}{2}} - \left[\alpha(n+1) + b \right]^{\frac{1}{2}}.$$

7. 已知 F_1 , F_2 是椭圆 Ω 的两个焦点,P 是椭圆 Ω 上一点, $\triangle PF_1F_2$ 的内切圆的圆心为 Q。若 $5\overrightarrow{QF_1}+3\overrightarrow{QF_2}+3\overrightarrow{QP}=$ $\vec{0}$,则椭圆 Ω 的离心率为

- 8. (多选) 已知曲线 $G: \frac{x|x|}{4} \frac{y|y|}{2} = 1$,则:
 - A. 点 $(\sqrt{2}, -1)$ 在曲线 G 上

 - C. 直线 $\sqrt{2}x 2y = 0$ 与曲线 G 无交点

 - D. 当直线 $\sqrt{2}x 2y + m = 0$ 与曲线 G 有两个公共点时,m 的取值范围为 (

- 9. 已知 $\triangle DEF$ 的顶点 E 在 x 轴上, $F\left(\frac{1}{4},0\right)$, |DF|=|EF|,且边 DE 的中点 M 在 y 轴上,设 D 的轨迹为曲线 Γ .
 - (1) 求 Γ 的方程;
 - (2) 若正三角形 ABC 的三个顶点都在 Γ 上,且直线 AB 的倾斜角为 45° ,求 |AB|.

10. 已知椭圆 $E: \frac{x^2}{4} + y^2 = 1$. 设 l: x - 2y = 0. 过点 P(2,1) 的直线与椭圆 E 交于 C,D 两点,问直线 l 上是否存在 定点 Q,使得 $k_{QC} \cdot k_{QD}$ 为定值。若存在,求出 Q 的坐标;若不存在,请说明理由。

- 11. 线段 MN 的长度为 3,端点 M,N 分别在 y 轴和 x 轴上运动,点 E 满足 $\overrightarrow{ME}=2\overrightarrow{EN}$,记点 E 的轨迹为曲线 C.
 - (1) 求曲线 C 的方程;
 - (2) 曲线 C 与 x 轴的左右两个交点分别为 A, B, P 为 C 上异于 A, B 的点,过点 D(1,0) 分别作直线 l_1 // AP,直线 l_2 // BP,其中 l_1 与曲线 C 交于点 G,H 两点, l_2 交直线 x=-1 于点 R,点 I 满足 $|\overrightarrow{DG}|\overrightarrow{IH}=|\overrightarrow{DH}|\overrightarrow{IG}$.
 - (i) 求点 I 的轨迹方程;
 - (ii) △IDR 的面积是否有最小值?若存在,求出最小值;若不存在,请说明理由。

- 12. 设抛物线 $E: y^2 = 4x$ 上有三点 A, B, C, 且 $\triangle ABC$ 的垂心为 E 的焦点 F。
 - (1) 若 A(0,0), 求 $\triangle ABC$ 的面积;
 - (2) 证明: *FA*·*FB* 为定值。

= $(a^{2}-1)(b^{2}-1)+4ab+(b^{2}-1)(c^{2}-1)+4bc+(c^{2}-1)(a^{2}-1)+4ac$

$$= \int + 4(ab + bc + ac) + a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2} - 2(a^{2}+b^{2}+c^{2})$$

$$= \int + 4(ab + bc + ac) + a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2} - 2(a^{2}+b^{2}+c^{2})$$

$$= \int + 4(ab + bc + ac) + a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2} - 2(a^{2}+b^{2}+c^{2})$$

$$= \int + 4(ab + bc + ac) + a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2} - 2(a^{2}+b^{2}+c^{2})$$

$$= \int + 4(ab + bc + ac) + a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2} - 2(a^{2}+b^{2}+c^{2})$$

$$= \int + 4(ab + bc + ac) + a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2} - 2(a^{2}+b^{2}+c^{2})$$

$$= \int + 4(ab + bc + ac) + a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2} - 2(a^{2}+b^{2}+c^{2})$$

FA · BC = FB·AC = FC·AB = 0

$$(a^{2}-1)(c^{2}-b^{2})+2a\cdot 2(c-b)=0$$

$$\Rightarrow (a^{2}-1)(c+b)+4a=0 = a^{2}c+a^{2}b-b+4a=0.$$

$$(b^{2}-1)(a+c)+4b=(c^{2}-1)(a+b)+4c=0$$

$$ab^{2}+cb^{2}-a-c+4b=0$$

$$5(a-b)+c(a-b)(a+b)+ab(a-b)$$

 $-\frac{2(a+b+c)}{2} = \frac{1}{4}c+\frac$

$$\Rightarrow \frac{abc+(a+b+c)=0}{\sqrt{a+b+c}}$$

