SIGNAL TRANSFORMATIONS

Time Shifting

- Shifting the Independent variable such that x(t-t_o)
- Right Shift if t_o > 0, means the signal is delayed
- In other words, if we start moving on the time axis in the direction of increasing time, that is from left to right, x(t) will come first than x(t-t_o)
- \triangleright Left Shift if $t_0 < 0$, means the signal is advanced
- In other words, if we start moving on the time axis in the direction of increasing time, that is from left to right, x(t) will come later than $x(t+t_0)$

Time Shifting

Time Shifting

Discrete Time

- \rightarrow x[n-n_o]:
- Right Shift if: $n_o > 0$
- > Left Shift if: $n_o < 0$

Time Reversal

- Reversing the Independent variable
- Always rotate the signal by 180° about the vertical axis
- Always shift the signal first if required

Time Reversal

Discrete time

Time Scaling – Continuous Time

- X(t/2) means expansion of signal in time (Playing audio signal at half speed)
- X(2t) means compression of signal in time (Playing audio signal at 2x speed)

Figure Credit: EE102A:Signal Processing and Linear Systems I; Stanford; Robert Gray

Time Scaling – Discrete Time

- Given a signal x[n]
 - x[n/2] means expansion of signal in time
 - x[2n] means compression of signal in time

Signal Scaling - Image

Image size h/2 x w/2 – obtained by sampling at 2n

Image size 2h x 2w – obtained by sampling at n/2

Image size h x w

Signal Weighting

- Scaling the dependent variable
- > Amplification: 2x(t)
- \rightarrow Attenuation: 0.5x(t)

Scaling the dependent variable

- Amplification:2x[n]
- Attenuation:
 0.5x[n]

Signal Weighting

Consider the signal
$$x(t)$$

Sketch the signal $y(t) = x(2t+3)$

Approach-1

Approach-2

$$x(t) \longrightarrow 2x(-2t-2)$$

Remember: Shift before you scale or invert!!

END