

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

DET5058 – DIGITAL ELECTRONICS (DEE)

9 March 2018 3.00pm - 5.00pm (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 6 pages (5 pages with 4 questions and 1 page for appendix).
- 2. Answer ALL questions. All necessary working steps must be shown.
- 3. Write all your answers in the answer booklet provided.

QUESTION 1 [25 Marks]

a) Provide FOUR analog quantities that are normally converted into digital signals.

[4 marks]

b) Name the **FOUR** component that completes a computer system.

[4 marks]

c) One of the advantage of digital systems over analog systems is "digital systems are less affected by noise". Explain why.

[2 marks]

- d) Convert the BCD number 00110111100001100001 into:
 - (i) Decimal
 - (ii) Binary
 - (iii) Octal
 - (iv) Hexadecimal
 - (v) Gray

[10 marks]

- e) Given 100011112 and 111100112 are both in 2's complement form.
 - (i) Add the numbers in 8-bit 2's complement form.

[2 marks]

(ii) State whether overflow occurred or not. Support your statement through redoing the addition in decimal and evaluating the addition result.

[3 marks]

QUESTION 2 [40 Marks]

Given a Boolean expression $X = \overline{ABC} \cdot \overline{AB} + \overline{BC} \cdot \overline{BCD}$, solve the following questions.

a) Draw the logic diagram of the Boolean expression.

[7 marks]

b) Prove that the expression can be reduced to $X = A\overline{B} + BC + BD$ by using rules of Boolean algebra.

[8 marks]

c) Provide the truth table for the Boolean expression.

[5 marks]

d) Based on the provided truth table, provide the standard SOP expression in terms of algebraic function.

[3 marks]

e) Assuming don't care condition exist, where $d(A, B, C, D) = \sum m(0, 1, 2, 3)$, state whether the Boolean expression can be further reduced as compared to reduced expression in (b). You may apply Karnaugh map to prove your statement.

[7 marks]

f) Implement the reduced Boolean expression in (e) using NAND gates only.

[4 marks]

g) Draw the output waveform for the output expression based on the given input waveforms in Figure 1. Ignore don't care conditions introduced in question (e).

\boldsymbol{A}	•	! ! !			1 1 1 1	
В					-	
C) 			
D						
	t_0	t_I	t_2	t ₃	<i>t</i> 4	

[6 marks]

Continued...

QUESTION 3 [20 Marks]

a) Complete the truth table representing full subtractor below. Note that, A - B = D.

Bin	A	В	Bout	D
0	0	0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0	0	1		
_ 0	1	0		
0	1	1		
1	0	0		 ·
1	0	1		- <u>-</u> -
1	1	0		
1	1	1		

[8 marks]

b) Name the combinational logic represented by the circuit diagram in Figure 2, and produce the output expression for the combinational logic.

[5 marks]

QUESTION 3 (Continued)

c) Based on your answer in (b), draw the output waveform Y, based on the given input waveforms in Figure 3.

Figure 3

[7 marks]

QUESTION 4 [15 Marks]

a) Name the latches/flip-flops represented by the logic symbol in Figure 4.

[6 marks]

b) If the latches/flip-flops in Figure 4 is arranged as in Figure 5, draw the output waveforms of Q_1 , \overline{Q}_1 , Q_2 , \overline{Q}_2 and Q_3 , \overline{Q}_3 , based on the given input waveforms in Figure 6. Assume all latches/flip-flops are initially LOW.

[9 marks]

End of Page.

APPENDIX: RULES OF BOOLEAN ALGEBRA

1.
$$A + 0 = A$$

2.
$$A+1=1$$

3.
$$A \cdot 0 = 0$$

$$4. \qquad A \cdot 1 = A$$

$$5. \qquad A+A=A$$

$$6. \qquad A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

$$9. \qquad \stackrel{=}{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A+B)(A+C) = A+BC$$