TUTORIAL . 6 .
1) Explain Pumping Lemma with help of diagram & prov
that given language is not a rigular language.
Pumping lemma statis that for a sufficiently long string accepted by FSM, there exist a substring at the designing of the string
times & is still accepted by FGM.
D= (0, \(\Sigma\), \(\delta\),
ie al az am > m > n for i=12,3 m
ie at least a states coincide as there are only n state
$\frac{\alpha_{j+1} \cdots \alpha_{k}}{\Rightarrow (q_{0})} \xrightarrow{\alpha_{1} \alpha_{2} \cdots \alpha_{j}} (q_{j} = q_{k}) \xrightarrow{q_{k+1} \cdots q_{m}} (q_{m})$
iii) Thus there are a integers j & k such that $0 \le j \le k \le n$ & $q_j = q_k$
We observe that
a since j'< k the string aj+1 ak is of the length of at least 1.
B k≤n, the length is not more than n.

No of states = 3

No of symbols = 5 ie a1 a2 a3 a4 a5

If j& k coincide:

string !

So j<k & aj+1....ak. ie az, az, 94 (there exist, at · least one)

& k ≤ n

be the string can be expeated any no of times and is still accepted by FSM.

We wondude,

- (i) if qm is in final state f & an ... am is L(m) then al.... aj akti.... am is also in L(m)
- (ii). We can go around the loop i no of times
 ie [a1...aj.laj+1...ak) lk...am for i>0

Case 2: word: $0(0011)^{i}1$ where $1uv1 \le n$ uv v w $|v| \ge 1$

If i= & Resulting = 0 0011 0011 1 is not in L sta

If i = 3

Resulting = 0 0011 0011 00111 wi not in L

str

so L does not follow pumping lemma. : L & not regular language.

b). L= {ambn | gcd [m,n)=13

→ Assume L= { a^m bⁿ | gcd (m,n)=13 vs a regular language. ②. It would follow pumping lemma.

3. Word of the language = a a(a b)bbbb m=3 n=5

 $\frac{\text{Case 1:}}{\text{If } i=2} \quad \frac{\text{aa}}{u} \left(\frac{\text{ab}}{v}\right)^{i} \frac{\text{bbbb}}{w}$ |v| > 1

hisulting str = aa ab ab bbbb u not in language If i = 4

Resulting str = aa ab ab ab ab bbbb is not in language (ase 2: a (aab bb) bb.

If i = 2 a aabbb aabbb bb is not in language so L does not follow pumping lemma ie L is not a regular language

hele: saying it is regular FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING
$c) \cdot L = \{ 0^{2n} \mid n > 1 \}$
→ Assume L= {0 th n > 13 is a regular language. D. It would follow pumping lemma.
3. Word of language = $(000)^i$ $n = 2$ $ v \le n$ [ase]: If $i = 2$
Resulting str = 0000000 is not in language $\longrightarrow \mathbb{D}$
Resulting st. = 0000000000 vi in language.
Word of language = $00(0)'0$
Case 1: Il i= 2
Resulting str = 00 000 & not in language $\longrightarrow 2$
Resulting str = 00 0000000 is not in language -> 3
1 will with the will conclude I does not follow
pumping lemma : Lu hot a regular language.
a.Ja.
Ju zr
my = (25 a) 20 -5.x-15" (20
20 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Scanned by CamScanner

d). L= {02n+1 | n > 0 }.

GE.C

 \rightarrow Assume $L = \{0^{2n+1} \mid n > 0 \}$ is a regular language, It follows pumping lemma.

O. Word of the language: 90000 where n=3.

Resulting str = 000000000 U not in language L

Word of language: (000)'00 where n=3 $uv \le 3$ $|v| \ge 1$

Case 1: If i = 2Resulting str = 0000000 us not in language L If i = 4

Resulting. str = 000 000 000 000 00 16 not in language L ie L does not follow pumping lemma Lis not regular language. example of the xoll "end as a subsect the

nound yourness of the

a dend of this tanguage , ada bicaca

and the string = an ab absence we not un t

I'm dan is 22222 dada dalar ginda gintlinus

when of language = a (ante) cccc uv & n W =1

Jan 7 1 1 5 8

Resulting str = a aabcaabccccc is not in h.

Resulting str - anabe and a cace to not in L

Thus I does not fallow pumping limma So it is not regular language

p. L= 2an | n > 03

→ DAssume L= {a^|n > 03 is a regular language. D' It follows pumping lemma.

 $w \notin W$ and of language $\hat{J} = \underbrace{a | \underline{a} \underline{a} \underline{a} | \underline{a}}_{u}$ n = 5

If i = 0.2 hesulting string = aaaaaaaa us' in language L.

Resulting string = a aaa a a a a a i in language L

FA vi given:

language is regular.

g). L= {ww w ∈ (0, b)* }
→ DAssume language L= {ww w ∈ (a, h)* } is a regular language ① It follows pumping lemma.
Word of language $w = \frac{a \cdot b \cdot a \cdot b}{a \cdot b \cdot a \cdot b}$. $w = \frac{a^{5}}{a} \cdot \frac{a^{5}}{a} \cdot \frac{a^{5}}{b} \cdot \frac{b \cdot a^{5}}{b} \cdot \frac{ y > 0}{ xy \le 0}$
$\frac{(axe \ 1: \ T) x = 2}{w = a^5 a^n a^{n-x-n} b a^n b}$ $w = a^{n+n} b a^n b$
Since x >0, a ^{n+x} b a ⁿ b u not of the form wrw L does not following pumping lumma L is not a rigular language
h) L={x x & palindrome, x ∈ (0,1)*} → ① Assume L={x x & palindrome, x ∈ (0,1)*} & a regular languag ② It follows pumping lumma
Word of language = $\frac{(11)01110}{u \times w}$
(ase i : 9) i = 2
w = 0111111 01110 w not in language L
L does not follow pumping lemma
Lis not a xigular language

- i). Lz equal no of o's and 1's.
- → Assume L= Equal no of 0's & 1's 15 a regular language © It follows pumping lemma.
 - (1) word of the language = $\frac{00(11)001011}{u v w}$ accepted by fsm.

V = 3

W = 00 111111 00 1011 W not in L

- : It doesn't follow pumping lemma
- .. It is not a regular language.
- j). L= {a p w prime }

→ Asoume L= {a^p | p is prime 3 is a regular language It follows pumping limma.

 $W = \underline{\alpha(\alpha \alpha) \alpha \alpha} \qquad p = 5 \qquad uv \leq p$ $uv \quad w \qquad |v| > 1$

(ase 1: If i= 2. W = a a a a a a a a a a a b in language L

 $w = \frac{a(a)}{u} \frac{aaa}{v}$

Case 1: If i= 2 w = a aaa a aaa a w not in Language L It doesn't follow pumping Limma:. Not a regular language

- e). Disoribe the language generated:
 - 5 → aasb
 - S > A
 - A + cAdd
 - A > cd.

aaaaccddd b b

aacdb

:. L = { a c c d d b l m, n > 1}. li the language generated.

3). Eliminate € productions from:
a). 5 → aSa bSb e
∴ s + asa bsb aa bb. s + €
b) - A - a Bb bBa
B -> ab bB E
: A → aBb / bBa
$B \rightarrow aB \mid bB \mid a \mid b \cdot \mid b \rightarrow \epsilon$
4) · Eliminate unit productions:
5 → Aa B
$A \rightarrow a bc B$
$\beta \rightarrow A \mid bb$.
S -> Aa bb a bc S -> B
$A \rightarrow a \mid b \in \mid bb \mid A \rightarrow B$
$B \rightarrow bb a bc B \rightarrow A$
5) · lonsider (FG, G= (V, S, P, S) where V= {S, A, B}
$\Sigma = \{0,1\}$ and $P = \{S \rightarrow A IB IIA B II $
$A \rightarrow 0$
$B \rightarrow BB$
Remove useless symbols.
e & unt production as well??
e & unt production as well??

If: <u>Step.</u>1: Remove ∈ productions - No ∈ productions present

> $\frac{\text{Step 2}}{S \rightarrow A \text{ 11 B} | \text{ 11 A} | \text{ 11 } | \text{ BB}}$ S → B $A \rightarrow O$ B → BB

Generating symbols: $G = \{0, A, 1\}$ $G = \{0, A, S\}$

c) Construct CFG without null production.

5 > a | Ab | aBa

A → b | ∈

B -> b | A.

s - alAblaBalblaa

 $A \rightarrow b$

A → E

B - blA

:. β → ∈