Guia 1

April 17, 2021

1 Teoría de Errores

[1]: import numpy as np import matplotlib.pyplot as plt

1.1

Consigna

Si a y b son los valores que tienen dos magnitudes y \overline{a} y \overline{b} son los valores medidos de dichas magnitudes, obtener para cad una de ellas:

- 1. El error absoluto, el error relativo y una cota para el error relativo.
- 2. Obtener el $e_{r(a+b)}$ con estos datos:

$$a = 2, \overline{a} = 2.01, b = 3, \overline{b} = 3.02$$

- 3. Calcular el $e_{r(a-b)}$ con los datos de b).
- 4. Obtener el $e_{r(a,b)}$ cuando:

$$a = 2, \overline{a} = 2.02, b = 1, \overline{b} = 1.6$$

Redondear los resultados con 2 decimales.

Resolución

1.

Error Absoluto:

$$e_a = x - \overline{x}$$

Cota:

$$|e_a| \leq \Delta_a$$

se redondea hacia arriba obteniendo algo de la forma

$$\Delta_a = 0.d_1 \cdot 10^{-t}, d_1 \ge 1$$

Error Relativo:

$$e_r = \frac{x - \overline{x}}{x}, x \neq 0$$

Error Relativo Porcentual:

$$e_{r\%} = \frac{x - \overline{x}}{x} \cdot 100, x \neq 0$$

2.

```
[2]: # Datos
a = 2
b = 3
aMedido = 2.01
bMedido = 3.02
x = a + b
xMedido = aMedido + bMedido
```

- [3]: calcularErrorRelativo = lambda x, xMedido: (x * xMedido) / x
- [4]: errorRelativo_2 = calcularErrorRelativo(x, xMedido)
 errorRelativo_2
- [4]: 5.02999999999999

3.

- [6]: errorRelativo_3 = calcularErrorRelativo(x, xMedido) errorRelativo_3
- [6]: -1.01000000000000002

4.

- [8]: errorRelativo_4 = calcularErrorRelativo(x, xMedido)
 np.round(errorRelativo_4, 2)
- [8]: 3.23