A Diversity-Aware Memetic Algorithm for the Linear Ordering Problem: Improving Best-Known Solutions for Standard Benchmarks

Supplementary Material

Lázaro Lugo ¹, Carlos Segura², Gara Miranda³

¹⁻²Centro de Investigación en Matemáticas (CIMAT), Área de Computación, Callejón Jalisco s/n,

Mineral de Valenciana, Guanajuato, Guanajuato 36240, Mexico,

³Departamento de Ingeniería Informática y de Sistemas. Universidad de La Laguna. Avda. Astrofísico

Francisco Sánchez, s/n. 38200. San Cristóbal de La Laguna. Santa Cruz de Tenerife. España.

{¹lazaro.perez, ²carlos.segura}@cimat.mx, ³gmiranda@ull.edu.es

This supplementary material provides details on the results obtained with ILSr, MAr, CD-RVNS and MA-EDM. The algorithms were run for a period of four hours with nine instance packages: IO, MB, SGB, Spec, RandB, RandA1, RandA2, xLOLIB and xLOLIB2. The following tables show, for each method and instance, the best result attained and the best-known solution (BKS) prior to this research. Additionally, in the case of MA-EDM, the mean and worst solutions are also shown. The cases where the BKS is attained are shown in bold face. Moreover, those cases where a new BKS is found are indicated with an asterisk. Note that MA-EDM allowed the generation of 293 new BKSs. Note that for each instance the BKS generated in this research is available in the repository https://github.com/carlossegurag/LOP_MA-EDM in the BKS.zip file.

List of Tables

1	Experimental result with IO package $(1/2)$	2
2	Experimental result with IO package $(2/2)$	3
3	Experimental result with MB package	4
4	Experimental result with SGB package	5
5	Experimental result with RandB package (1/2)	6
6	Experimental result with RandB package (2/2)	7
7	Experimental result with Spec package	8
8	Experimental result with RandA1 package $(1/2)$	9
9	Experimental result with RandA1 package $(2/2)$	10
10	Experimental result with RandA2 package $(1/2)$	11
11	Experimental result with RandA2 package $(2/2)$	12
12	Experimental result with xLOLIB package (1/3)	13
13	Experimental result with xLOLIB package $(2/3)$	14
14	Experimental result with xLOLIB package (3/3)	15
15	Experimental result with xLOLIB2 package (1/10)	16
16	Experimental result with xLOLIB2 package (2/10)	17
17	Experimental result with xLOLIB2 package (3/10)	18
18	Experimental result with xLOLIB2 package (4/10)	19
19	1 0 (/ /	20
20	Experimental result with xLOLIB2 package (6/10)	21
21	Experimental result with xLOLIB2 package (7/10)	22
22	Experimental result with xLOLIB2 package (8/10)	23
23		24
24	Experimental result with xLOLIB2 package (10/10)	25

			10(1/2)	2)			
Instance	m ILSr	MAr	CD-RVNS		MA-EDM		Best
	l l						Knowns
	Best	Best	Best	Mean	Best	Worst	
N-be75eec	236464	236464	236464	236464	236464	236464	236464
N-be75np	716994	716994	716994	716994	716994	716994	716994
N-be75oi	111171	111171	111171	1111171	1111171	1111171	111171
N-be75tot	980516	980516	980516	980516	980516	980516	980516
N-stabu 70	362512	362512	362512	362512	362512	362512	362512
N-stabu 74	541393	541393	541393	541393	541393	541393	541393
N-stabu75	553303	553303	553303	553303	553303	553303	553303
N-t59b11xx	209320	209320	209320	209320	209320	209320	209320
N-t59d11xx	147354	147354	147354	147354	147354	147354	147354
N-t59f11xx	122520	122520	122520	122520	122520	122520	122520
N-t59i11xx	8261545	8261545	8261545	8261545	8261545	8261545	8261545
N-t59n11xx	20928	20928	20928	20928	20928	20928	20928
N-t65b11xx	356758	356758	356758	356758	356758	356758	356758
N-t65d11xx	237739	237739	237739	237739	237739	237739	237739
N-t65f11xx	217295	217295	217295	217295	217295	217295	217295
N-t65i11xx	14469163	14469163	14469163	14469163	14469163	14469163	14469163
N-t65111xx	16719	16719	16719	16719	16719	16719	16719
N-t65n11xx	32157	32157	32157	32157	32157	32157	32157
N-t65w11xx	138181029	138181029	138181029	138181029	138181029	138181029	138181029
N-t69r11xx	771149	771149	771149	771149	771149	771149	771149
N-t70b11xx	528419	528419	528419	528419	528419	528419	528419
N-t70d11xx	376725	376725	376725	371597	376725	366469	376725
N-t70d11xxb	366469	366469	366469	366469	366469	366469	366469
N-t70f11xx	360336	360336	360336	360336	360336	360336	360336
N-t70i11xx	24785782	24785782	24785782	24785782	24785782	24785782	24785782
N-t70k11xx	60659200	60659200	60659200	60659200	60659200	60659200	60659200
N-t70111xx	25253	25253	25253	25253	25253	25253	25253
N-t70n11xx	52704	52704	52704	52704	52704	52704	52704
N-t70u11xx	21716400	21716400	21716400	21716400	21716400	21716400	21716400
N-t70w11xx	224319954	224319954	224319954	224319954	224319954	224319954	224319954
N-t70x11xx	283808865	283808865	283808865	283808865	283808865	283808865	283808865
N-t74d11xx	266089	266089	266089	566089	266089	266089	266089

Table 1: Experimental result with IO package (1/2)

			IO(2/2)	2)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	
N-t75d11xx	578304	578304	578304	578304	578304	578304	578304
N-t75e11xx	2739219	2739219	2739219	2739219	2739219	2739219	2739219
N-t75i11xx	63567735	63567735	63567735	63567735	63567735	63567735	63567735
N-t75k11xx	108844	108844	108844	108844	108844	108844	108844
N-t75n11xx	93777	93777	93777	93777	93777	93777	93777
N-t75u11xx	52708323	52708323	52708323	52708323	52708323	52708323	52708323
N-tiw $56n54$	91554	91554	91554	91554	91554	91554	91554
N-tiw $56n58$	125224	125224	125224	125224	125224	125224	125224
N-tiw56n62	176715	176715	176715	176715	176715	176715	176715
N-tiw 56 n 66	226547	226547	226547	226547	226547	226547	226547
N-tiw56n67	226033	226033	226033	226033	226033	226033	226033
N-tiw56n72	365146	365146	365146	365146	365146	365146	365146
N-tiw56r54	102948	102948	102948	102948	102948	102948	102948
N-tiw56r58	129568	129568	129568	129568	129568	129568	129568
N-tiw56r66	209491	209491	209491	209491	209491	209491	209491
N-tiw56r67	222810	222810	222810	222810	222810	222810	222810
N-tiw56r72	270663	270663	270663	270663	270663	270663	270663
N-usa79	1813986	1813986	1813986	1813986	1813986	1813986	1813986

Table 2: Experimental result with IO package (2/2)

			\mathbf{M}	В			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
	D (D (D (1.6	D (TT7 ,	Known
N. 400 0	Best	Best	Best	Mean	Best	Worst	4 1505
N-r100a2	145270	145270	145270	145270.0	145270	145270	14527
N-r100b2	143271	143271	143271	143271.0	143271	143271	14327
N-r100c2	141702	141702	141702	141702.0	141702	141702	14170
N-r100d2	142630	142630	142630	142630.0	142630	142630	14263
N-r100e2	147416	147416	147416	147416.0	147416	147416	14741
N-r150a0	360978	360978	360978	360978.0	360978	360978	36097
N-r150a1	349251	349251	349251	349251.0	349251	349251	34925
N-r150b0	367635	367635	367635	367635.0	367635	367635	36763
N-r150b1	347627	347627	347627	347627.0	347627	347627	34762
N-r150c0	363895	363895	363895	363895.0	363895	363895	36389
N-r150c1	346492	346492	346492	346492.0	346492	346492	34649
N-r150d0	363180	363180	363180	363180.0	363180	363180	36318
N-r150d1	348902	348902	348902	348902.0	348902	348902	34890
N-r150e0	367181	367181	367181	367181.0	367181	367181	36718
N-r150e1	349910	349910	349910	349910.0	349910	349910	34991
N-r200a0	654604	654604	654604	654604.0	654604	654604	65460
N-r200a1	616399	616399	616399	616399.0	616399	616399	61639
N-r200b0	651237	651237	651237	651237.0	651237	651237	$\boldsymbol{65123}$
N-r200b1	622112	622112	622112	622112.0	622112	622112	62211
N-r200c0	657441	657441	657441	657441.0	657441	657441	65744
N-r200c1	611956	611956	611956	611956.0	611956	611956	61195
N-r200d0	654375	654375	654375	654375.0	654375	654375	65437
N-r200d1	616617	616617	616617	616617.0	616617	616617	61661
N-r200e0	645207	645207	645207	645207.0	645207	645207	64520
N-r200e1	611306	611306	611306	611306.0	611306	611306	61130
N-r250a0	1019120	1019120	1019120	1019120.0	1019120	1019120	101912
N-r250b0	1013737	1013737	1013737	1013737.0	1013737	1013737	101373
N-r250c0	1010961	1010961	1010961	1010961.0	1010961	1010961	101096
N-r250d0	1015041	1015041	1015041	1015041.0	1015041	1015041	101504
N-r250e0	1008267	1008267	1008267	1008267.0	1008267	1008267	100826

Table 3: Experimental result with MB package $\,$

			SGI	3			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
				14		II7 4	Knowns
37 1 55 04	Best	Best	Best	Mean	Best	Worst	2521122
N-sgb 75.01	2724126	2724126	2724126	2724126.0	2724126	2724126	2724126
N-sgb 75.02	2616392	2616392	2616392	2616392.0	2616392	2616392	2616392
N-sgb 75.03	2747384	2747384	2747384	2747384.0	2747384	2747384	2747384
N-sgb 75.04	2734169	2734169	2734169	2734169.0	2734169	2734169	2734169
N-sgb 75.05	2707863	2707863	2707863	2707863.0	2707863	2707863	2707863
N-sgb 75.06	2707280	2707280	2707280	2707280.0	2707280	2707280	2707280
N-sgb75.07	2727928	2727928	2727928	2727928.0	2727928	2727928	2727928
N-sgb75.08	2712837	2712837	2712837	2712837.0	2712837	2712837	2712837
N-sgb75.09	2687364	2687364	2687364	2687364.0	2687364	2687364	2687364
N-sgb 75.10	2733387	2733387	2733387	2733387.0	2733387	2733387	2733387
N-sgb75.11	2732686	2732686	2732686	2732686.0	2732686	2732686	2732686
N-sgb75.12	2692548	2692548	2692548	2692548.0	2692548	2692548	2692548
N-sgb75.13	2714591	2714591	2714591	2714591.0	2714591	2714591	2714591
N-sgb75.14	2733926	2733926	2733926	2733926.0	2733926	2733926	2733926
N-sgb75.15	2732810	2732810	2732810	2732810.0	2732810	2732810	2732810
N-sgb75.16	2747797	2747797	2747797	2747797.0	2747797	2747797	2747797
N-sgb75.17	2747864	2747864	2747864	2747864.0	2747864	2747864	2747864
N-sgb75.18	2579344	2579344	2579344	2579344.0	2579344	2579344	2579344
N-sgb75.19	2736221	2736221	2736221	2736221.0	2736221	2736221	2736221
N-sgb75.20	2732021	2732021	2732021	2732021.0	2732021	2732021	2732021
N-sgb75.21	2740289	2740289	2740289	2740289.0	2740289	2740289	2740289
N-sgb75.22	2710122	2710122	2710122	2710122.0	2710122	2710122	2710122
N-sgb75.23	2720981	2720981	2720981	2720981.0	2720981	2720981	2720981
N-sgb75.24	2743879	2743879	2743879	2743879.0	2743879	2743879	2743879
N-sgb75.25	2731542	2731542	2731542	2731542.0	2731542	2731542	2731542
	2.01012	2.01012	2.01012	2101012.0	2,01012	2101012	2101012

Table 4: Experimental result with SGB package

			RandB(1/2)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
	Best	Best	Best	Mean	Best	Worst	Knowns
N-p40-01	29457	29457	29457	29457.0	29457	29457	29457
N-p40-02	27482	27482	$\boldsymbol{27482}$	27482.0	27482	27482	27482
N-p40-03	28061	28061	28061	28061.0	28061	28061	28061
N-p40-04	28740	28740	28740	28740.0	28740	28740	28740
N-p40-05	27450	27450	27450	27450.0	27450	27450	27450
N-p40-06	29164	29164	29164	29164.0	29164	29164	29164
N-p40-07	28379	28379	28379	28379.0	28379	28379	28379
N-p40-08	28267	28267	$\boldsymbol{28267}$	28267.0	28267	28267	28267
N-p40-09	30578	30578	30578	30578.0	30578	30578	30578
N-p40-10	31737	31737	31737	31737.0	31737	31737	31737
N-p40-11	30658	30658	30658	30658.0	30658	30658	30658
N-p40-12	30986	30986	30986	30986.0	30986	30986	30986
N-p40-13	33903	33903	33903	33903.0	33903	33903	33903
N-p40-14	34078	34078	34078	34078.0	34078	34078	34078
N-p40-15	34659	34659	34659	34659.0	34659	34659	34659
N-p40-16	36044	36044	36044	36044.0	36044	36044	36044
N-p40-17	38201	38201	38201	38201.0	38201	38201	38201
N-p40-18	37562	37562	37562	37562.0	$\boldsymbol{37562}$	37562	37562
N-p40-19	38956	38956	38956	38956.0	38956	38956	38956
N-p40-20	39658	39658	39658	39658.0	39658	39658	39658
N-p44-01	35948	35948	35948	35948.0	35948	35948	35948
N-p44-02	35314	35314	35314	35314.0	35314	35314	35314
N-p44-03	34335	34335	34335	34335.0	34335	34335	34335
N-p44-04	33551	33551	33551	33551.0	33551	33551	33551
N-p44-05	34827	34827	34827	34827.0	34827	34827	34827
N-p44-06	33962	33962	33962	33962.0	33962	33962	33962
N-p44-07	33171	33171	33171	33171.0	33171	33171	33171
N-p44-08	34127	34127	34127	34127.0	34127	34127	34127
N-p44-09	33403	33403	33403	33403.0	33403	33403	33403
N-p44-10	33778	33778	33778	33778.0	33778	33778	33778
N-p44-11	34016	34016	34016	34016.0	34016	34016	34016
N-p44-12	33850	33850	33850	33850.0	33850	33850	33850
N-p44-13	35385	35385	35385	35385.0	35385	35385	35385
N-p44-14	35801	35801	35801	35801.0	35801	35801	35801
N-p44-15	33827	33827	33827	33827.0	33827	33827	33827
N-p44-16	36188	36188	36188	36188.0	36188	36188	36188
N-p44-17	35454	35454	35454	35454.0	35454	35454	35454
N-p44-18	36669	36669	36669	36669.0	36669	36669	36669
N-p44-19	36436	36436	36436	36436.0	36436	36436	36436
N-p44-20	37438	37438	37438	37438.0	37438	37438	37438
N-p44-21	37786	37786	37786	37786.0	37786	37786	37786
N-p44-22	36722	36722	36722	36722.0	36722	36722	36722
N-p44-23	36605	36605	36605	36605.0	36605	36605	36605
N-p44-24	38286	38286	38286	38286.0	38286	38286	38286
N-p44-25	38129	38129	38129	38129.0	38129	38129	38129

Table 5: Experimental result with RandB package (1/2)

			RandB((2/2)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
	Best	Best	Best	Mean	Best	Worst	Knowns
N-p44-26	39107	39107	39107	39107.0	39107	39107	39107
N-p44-27	39170	39170	39170	39170.0	39170	39170	39170
N-p44-28	40264	40264	40264.0	40264.0	40264	40264	40264
N-p44-29	41819	41819	41819.0	41819.0	41819	41819	41819
N-p44-30	40387	40387	40387.0	40387.0	40387	40387	40387
N-p44-31	43817	43817	43817.0	43817.0	43817	43817	43817
N-p44-32	42545	42545	42545.0	42545.0	42545	42545	42545
N-p44-33	42355	$\boldsymbol{42355}$	42355.0	42355.0	42355	42355	42355
N-p44-34	44988	44988	44988.0	44988.0	44988	44988	44988
N-p44-35	44114	44114	44114.0	44114.0	44114	44114	44114
N-p44-36	45575	45575	45575.0	45575.0	45575	45575	45575
N-p44-37	45297	45297	45297.0	45297.0	45297	45297	45297
N-p44-38	47414	47414	47414.0	47414.0	47414	47414	47414
N-p44-39	48979	48979	48979.0	48979.0	48979	48979	48979
N-p44-40	47774	47774	47774.0	47774.0	47774	47774	47774
N-p44-41	48137	48137	48137.0	48137.0	48137	48137	48137
N-p44-42	49511	49511	49511.0	49511.0	49511	49511	49511
N-p44-43	51014	51014	51014.0	51014.0	51014	51014	51014
N-p44-44	51949	51949	51949.0	51949.0	51949	51949	51949
N-p44-45	$\bf 52857$	$\bf 52857$	52857.0	52857.0	$\bf 52857$	52857	$\bf 52857$
N-p44-46	52776	52776	52776.0	52776.0	$\bf 52776$	52776	52776
N-p44-47	$\bf 54122$	$\boldsymbol{54122}$	54122.0	54122.0	$\bf 54122$	54122	$\bf 54122$
N-p44-48	54355	54355	54355.0	54355.0	54355	54355	54355
N-p44-49	57279	57279	57279.0	57279.0	57279	57279	57279
N-p44-50	56444	56444	56444.0	56444.0	56444	56444	56444
N-p50-01	44667	44667	44667.0	44667.0	44667	44667	44667
N-p50-02	43835	43835	43835.0	43835.0	43835	43835	43835
N-p50-03	44256	44256	44256.0	44256.0	44256	44256	44256
N-p50-04	43928	43928	43928.0	43928.0	43928	43928	43928
N-p50-05	42907	42907	42907.0	42907.0	42907	42907	42907
N-p50-06	42325	42325	42325.0	42325.0	$\boldsymbol{42325}$	42325	42325
N-p50-07	42640	42640	42640.0	42640.0	42640	42640	42640
N-p50-08	42666	42666	42666.0	42666.0	42666	42666	42666
N-p50-09	43711	43711	43711.0	43711.0	43711	43711	43711
N-p50-10	43575	43575	43575.0	43575.0	43575	43575	43575
N-p50-11	43527	43527	43527.0	43527.0	$\boldsymbol{43527}$	43527	43527
N-p50-12	42809	42809	42809.0	42809.0	42809	42809	42809
N-p50-13	43169	43169	43169.0	43169.0	43169	43169	43169
N-p50-14	44519	44519	44519.0	44519.0	44519	44519	44519
N-p50-15	44866	44866	44866.0	44866.0	44866	44866	44866
N-p50-16	45310	45310	45310.0	45310.0	45310	45310	45310
N-p50-17	46011	46011	46011.0	46011.0	46011	46011	46011
N-p50-18	46897	46897	46897.0	46897.0	46897	46897	46897
N-p50-19	47212	47212	47212.0	47212.0	47212	47212	47212
N-p50-20	46779	46779	46779.0	46779.0	46779	46779	46779
11 POU-20	10110	10110	10.10.0	10110.0	10110	10110	10110

Table 6: Experimental result with RandB package (2/2)

			Spe	ec			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
	Best	Best	Best	Mean	Best	Worst	Knowns
N-atp111	$\frac{Dest}{1495}$	$\frac{\textit{Dest}}{1495}$	1495	$\frac{Mean}{1495.0}$	$\frac{Dest}{1495}$	$\frac{77075i}{1495}$	1495
N-atp111 N-atp134	1495 1797*	1495 1797*	1 493 1796	1495.0 1797.0	1495 1797*	1495 1797	1 495 1796
N-atp154 N-atp163	2075*	2075*	2075*	2075.0	2075*	2075	2073
-	$\frac{2075}{172}$	$\frac{2075}{172}$	$\frac{2075}{172}$	$\frac{2075.0}{172.0}$	$\frac{2075}{172}$	$\frac{2075}{172}$	$\frac{2073}{172}$
N-atp24	$\frac{172}{2713*}$	2713*	2708		2713*	$\frac{172}{2707}$	
N-atp452				2709.3			2710
N-atp48	483	483	483	483.0	483	483	483
N-atp66	761	761	761	761.0	761	761	761
N-atp76	934	934	934	934.0	934	934	934
N-econ36	548574	548574	548574	548574.0	548574	548574	548574
N-econ43	667369	667369	667369	667369.0	667369	667369	667369
N-econ47	828816	828816	828816	828816.0	828816	828816	828816
N-econ58	1221888	1221888	1221888	1221888.0	1221888	1221888	1221888
N-econ59	1209683	1209683	1209683	1209683.0	1209683	1209683	1209683
N-econ61	1218023	1218023	1218023	1218023.0	1218023	1218023	1218023
N-econ62	1235677	1235677	1235677	1235677.0	1235677	1235677	1235677
N-econ64	1272461	1272461	1272461	1272461.0	1272461	1272461	1272461
N-econ67	1388317	1388317	1388317	1388317.0	1388317	1388317	1388317
N-econ68	1438378	1438378	1438378	1438378.0	1438378	1438378	1438378
N-econ71	1558292	1558292	1558292	1558292.0	1558292	1558292	1558292
N-econ72	1835631	1835631	1835631	1835631.0	1835631	1835631	1835631
N-econ73	2046112	2046112	2046112	2046112.0	2046112	2046112	2046112
N-econ76	2649134	2649134	2649134	2649134.0	2649134	2649134	2649134
N-econ77	2674732	2674732	2674732	2674732.0	2674732	2674732	2674732
N-EX1	449	449	449	449.0	449	449	449
N-EX2	441	441	441	441.0	441	441	441
N-EX3	438	438	438	438.0	438	438	438
N-EX4	390	390	390	390.0	390	390	390
N-EX5	405	405	405	405.0	405	405	405
N-EX6	395	395	395	395.0	395	395	395
N-pal11	35	35	35	35.0	35	35	35
N-pal13	57	57	57	57.0	57	57	57
N-pal19	107	107	107	107.0	107	107	107
N-pal23	161	161	161	161.0	161	161	161
N-pal27	${\bf 252}$	252	252	252.0	252	252	${\bf 252}$
N-pal31	285	285	285	285.0	285	285	285
N-pal43	543	543	543	543.0	543	543	543
N-pal55	1045	1045	1045	1045.0	1045	1045	1045

Table 7: Experimental result with Spec package

			RandA1(1	/2)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		$\begin{array}{c} \operatorname{Best} \\ \operatorname{Knowns} \end{array}$
	Best	Best	Best	Mean	Best	Worst	Tthowns
N-t1d100.01	106852	106852	106852	106852.0	106852	106852	106852
N-t1d100.02	105916	105947	105947	105947.0	105947	105947	105947
N-t1d100.03	109819	109819	109819	109819.0	109819	109819	109819
N-t1d100.04	109252	109252	109252	109252.0	109252	109252	109252
N-t1d100.05	108859	108859	108859	108859.0	108859	108859	108859
N-t1d100.06	108201	108201	108201	108201.0	108201	108201	108201
N-t1d100.07	108803	108803	108803	108803.0	108803	108803	108803
N-t1d100.08	107480	107480	107480	107480.0	107480	107480	107480
N-t1d100.09	108549	108549	108549	108549.0	108549	108549	108549
N-t1d100.10	108771	108771	108771	108771.0	108771	108771	108771
N-t1d100.11	107920	107920	107920	107920.0	107920	107920	107920
N-t1d100.12	108389	108389	108389	108389.0	108389	108389	108389
N-t1d100.13	$\boldsymbol{108702}$	$\boldsymbol{108702}$	$\boldsymbol{108702}$	108702.0	$\boldsymbol{108702}$	108702	108702
N-t1d100.14	105583	105583	105583	105583.0	105583	105583	105583
N-t1d100.15	108667	108667	108667	108667.0	108667	108667	108667
N-t1d100.16	107426	107426	107426	107426.0	107426	107426	107426
N-t1d100.17	$\boldsymbol{105612}$	$\boldsymbol{105612}$	$\boldsymbol{105612}$	105612.0	$\boldsymbol{105612}$	105612	105612
N-t1d100.18	107861	107861	107861	107861.0	107861	107861	107861
N-t1d100.19	108026	$\boldsymbol{108026}$	$\boldsymbol{108026}$	108026.0	108026	108026	108026
N-t1d100.20	109968	109968	109968	109968.0	109968	109968	109968
N-t1d100.21	107255	107255	107255	107255.0	107255	107255	107255
N-t1d100.22	$\boldsymbol{108250}$	108250	108250	108250.0	$\boldsymbol{108250}$	108250	108250
N-t1d100.23	106146	106146	106146	106146.0	106146	106146	106146
N-t1d100.24	108782	108782	108782	108782.0	108782	108782	108782
N-t1d100.25	106933	106933	106933	106933.0	106933	106933	106933
N-t1d150.01	235056	235056	235056	235056.0	235056	235056	235056
N-t1d150.02	234421	234421	234421	234421.0	234421	234421	234421
N-t1d150.03	236319	236319	236319	236319.0	236319	236319	236319
N-t1d150.04	234506	234510	234510	234510.0	234510	234510	234510
N-t1d150.05	234571	234601	234601	234601.0	234601	234601	234601
N-t1d150.06	234465	234465	234465	234465.0	234465	234465	234465
N-t1d150.07	235282	235283	235283	235283.0	235283	235283	235283
N-t1d150.08	237230	237230	237230	237230.0	237230	237230	237230
N-t1d150.09	237253	237253	237245	237253.0	237253	237253	237253
N-t1d150.10	234821	234821	234821	234821.0	234821	234821	234821
N-t1d150.11	234157	234157	234157	234157.0	234157	234157	234157
N-t1d150.12	236318	236318	236318	236318.0	236318	236318	236318
N-t1d150.13	237116	237116	237116	237116.0	237116	237116	237116
N-t1d150.14	234453	234453	234453	234453.0	234453	234453	234453
N-t1d150.15	232058	232065	232045	232065.0	232065	232065	232065
N-t1d150.16	232948	232948	232948	232948.0	232948	232948	232948
N-t1d150.17	236656	236656	236656	236656.0	236656	236656	236656
N-t1d150.18	234348	234348	234305	234348.0	234348	234348	234348
N-t1d150.19	234994	234994	234994	234994.0	234994	234994	234994
N-t1d150.20	235385	235411	235411	235411.0	235411	235411	235411
N-t1d150.21	233988*	233988*	233988*	233988.0	233988*	233988	233980
N-t1d150.22	235372	235415	235415	235415.0	235415	235415	235415
N-t1d150.23	233492	233492	233492	233492.0	233492	233492	233492
N-t1d150.24	236016	236016	236016	236016.0	236016	236016	236016
N-t1d150.25	236428	236428	236428	236428.0	236428	236428	236428
N-t1d200.01	410992*	410992*	410992*	410992.0	410992*	410992	410871

Table 8: Experimental result with RandA1 package (1/2)

			RandA1	(2/2)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
	Best	Best	Best	Mean	Best	Worst	Knowns
N-t1d200.02	$\frac{Dest}{407733}$	$\frac{Dest}{407733}$	$\frac{Dest}{407733}$	$\frac{Mean}{407735.0}$	407735*	$\frac{0.073t}{407735}$	407729
N-t1d200.02 N-t1d200.03	407420	407420	407417	407419.9	407420	407417	407420
N-t1d200.03 N-t1d200.04	409988	410120*	410067	410120.0	410120*	410120	410101
N-t1d200.04 N-t1d200.05	411398	410120 411522	411481	410120.0 411521.4	410120 411522	411516	410101 411522
N-t1d200.06	406451	411322 406451	406451	406451.0	411322 406451	406451	406451
N-t1d200.00 N-t1d200.07	400431 412242	400451 412482	400431 412482	400431.0 412482.0	400451 412482	412482	400431 412482
N-t1d200.07 N-t1d200.08	408844	412482	408902	412482.0 408952.0	412482	408952	408850
N-t1d200.08 N-t1d200.09	409308	408932 409308	408902 409308	409308.0	408932 409308	409308	409308
	409308	409308	406439		409308		
N-t1d200.10 N-t1d200.11		400457 410239	400459 410239	$406451.5 \\ 410239.0$	400437 410239	406439	406453 410239
	410181				410239	410239	
N-t1d200.12	412818	412831	412831	412838.0		412838	412831
N-t1d200.13	409000	409270*	409270*	409270.0	409270*	409270	409234
N-t1d200.14	408865	408879	408865	408879.0	408879	408879	408879
N-t1d200.15	409059	409073*	409049	409073.0	409073*	409073	409061
N-t1d200.16	408054	408059	408059	408059.0	408059	408059	408059
N-t1d200.17	410280	410280	410280	410280.0	410280	410280	410280
N-t1d200.18	407730	407822*	407735	407822.0	407822*	407822	407709
N-t1d200.19	412876	412947	412947	412947.0	412947	412947	412947
N-t1d200.20	406418	406420	406418	406425.0	406425*	406425	406418
N-t1d200.21	408034	408037	408037	408037.0	408037	408037	408037
N-t1d200.22	407333	407459*	407459*	407455.0	407459*	407339	407333
N-t1d200.23	408550	408552	408542	408552.0	408552	408552	408552
N-t1d200.24	410576	410583	410547	410582.8	410583	410576	410583
N-t1d200.25	406467	406478 *	406476	406478.0	406478*	406478	406356
N-t1d500.1	2420621	2423064	2422232	2410577.1	2423457*	2403190	2402357
N-t1d500.10	2405717	2407330	2405802	2407148.5	2407443*	2406883	2404420
N-t1d500.11	2415955	2418530	2416807	2418476.1	2418845*	2417749	2416286
N-t1d500.12	2401800	2403350	2403110	2403572.2	2403988*	2403190	2402581
N-t1d500.13	2403550	2407315	2405528	2406907.9	2407348*	2406344	2405118
N-t1d500.14	2408886	2411486	2409864	2411351.1	2411584*	2411056	2410693
N-t1d500.15	2411460	2413857	2412944	2413599.3	2413942*	2413113	2411718
N-t1d500.16	2415327	2417733	2416699	2417744.6	2418236*	2416905	2416067
N-t1d500.17	2401254	2404243	2402214	2403854.4	2404510*	2403275	2401800
N-t1d500.18	2420621	2423064	2422232	2423073.9	2423457*	2422444	2421159
N-t1d500.19	2402596	2405384	2404686	2405247.0	2405574*	2405036	2404029
N-t1d500.2	2412885	2416037	2414921	2409774.4	2416247*	2404066	2411570
N-t1d500.20	2412885	2416037	2414921	2416035.1	2416247*	2415557	2414713
N-t1d500.21	2405348	2407467	2406234	2407399.8	2407797*	2407165	2405615
N-t1d500.22	2407797	2410264	2408238	2410296.8	2410562*	2410054	2408164
N-t1d500.23	2407507	2409944	2408703	2409867.3	2410106*	2409379	2408689
N-t1d500.24	2402201	2404576	2403394	2404446.6	2404715*	2404066	2402712
N-t1d500.25	2404316	2406897	2406314	2407037.9	2407443*	2406667	2405718
N-t1d500.3	2404614	2406541	2405103	2406420.0	2406736*	2405893	2404784
N-t1d500.4	2412715	2415948	2415141	2415795.7	2416394*	2415117	2413600
N-t1d500.4 N-t1d500.5	2391129	2393353	2392286	2393046.9	2393369*	2392585	2391486
N-t1d500.6	2397808	2402017	2400672	2401737.8	2402033*	2401277	2399394
N-t1d500.7	2398619	2402017	2400072	2401663.3	2402033 2402100*	2401211	2400739
N-t1d500.7 N-t1d500.8	2413674	2415149	2414089	2401005.5	2402100	2401090	2413108
N-t1d500.8 N-t1d500.9	2415074 2405670	2413149 2408454	2414089	2413233.3	2415545*	2414982	2413108

Table 9: Experimental result with RandA1 package (2/2)

			RandA2(1/	'2)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	11110 11115
N-t2d100.01	25362	25362	25362	25362	25362	25362	25362
N-t2d100.02	28326	28326	28326	28326	28326	28326	28326
N-t2d100.03	25886	25886	25886	25886	25886	25886	25886
N-t2d100.04	26076	26076	26076	26076	26076	26076	26076
N-t2d100.05	25118	25118	25118	25118	25118	25118	25118
N-t2d100.06	25380	25380	25380	25380	25380	25380	25380
N-t2d100.07	27144	27144	27144	27144	27144	27144	27144
N-t2d100.08	23784	23784	23784	23784	23784	23784	23784
N-t2d100.09	27752	27752	$\boldsymbol{27752}$	27752	$\boldsymbol{27752}$	27752	27752
N-t2d100.10	26690	26690	26690	26690	26690	26690	26690
N-t2d100.11	25106	25106	25106	25106	25106	25106	25106
N-t2d100.12	26782	26782	26782	26782	$\boldsymbol{26782}$	26782	26782
N-t2d100.13	27878	27878	27878	27878	27878	27878	27878
N-t2d100.14	25878	25878	25878	25878	25878	25878	25878
N-t2d100.15	24232	24232	24232	24232	24232	24232	24232
N-t2d100.16	28206	28206	28206	28206	28206	28206	28206
N-t2d100.17	26704	26704	26704	26704	26704	26704	26704
N-t2d100.18	26928	26928	26928	26928	26928	26928	26928
N-t2d100.19	28760	28760	28760	28760	28760	28760	28760
N-t2d100.20	25220	25220	$\boldsymbol{25220}$	25220	$\boldsymbol{25220}$	25220	25220
N-t2d100.21	24452	24452	$\boldsymbol{24452}$	24452	$\boldsymbol{24452}$	24452	24452
N-t2d100.22	27230	27230	$\boldsymbol{27230}$	27230	27230	27230	27230
N-t2d100.23	25588	25588	25588	25588	25588	25588	25588
N-t2d100.24	24800	24800	24800	24800	24800	24800	24800
N-t2d100.25	23742	23742	$\boldsymbol{23742}$	23742	23742	23742	23742
N-t2d150.01	76041	76041	76041	76041	76041	76041	76041
N-t2d150.02	$\boldsymbol{73624}$	$\boldsymbol{73624}$	$\boldsymbol{73624}$	73624	73624	73624	73624
N-t2d150.03	69705	69705	69705	69705	69705	69705	69705
N-t2d150.04	73963	73963	73963	73963	73963	73963	73963
N-t2d150.05	79723	79723	79723	79723	79723	79723	79723
N-t2d150.06	75440	75440	75440	75440	75440	75440	75440
N-t2d150.07	73858	73858	73858	73858	73858	73858	73858
N-t2d150.08	67463	67463	$\boldsymbol{67463}$	67463	67463	67463	67463
N-t2d150.09	70739	70739	70739	70739	70739	70739	70739
N-t2d150.10	69029	69029	69029	69029	69029	69029	69029
N-t2d150.11	72800	72800	72800	72800	72800	72800	72800
N-t2d150.12	72181	72181	72181	72181	72181	72181	72181
N-t2d150.13	74580	74580	74580	74580	74580	74580	74580
N-t2d150.14	68132	68132	68132	68132	68132	68132	68132
N-t2d150.15	76831	76831	76831	76831	76831	76831	76831
N-t2d150.16	72018	72018	72018	72018	72018	72018	72018
N-t2d150.17	70185	70185	70185	70185	70185	70185	70185
N-t2d150.18	73191	73191	73191	73191	73191	73191	73191
N-t2d150.19	75958	75958	75958	75958	75958	75958	75958
N-t2d150.20	67370	67370	67370	67370	67370	67370	67370
N-t2d150.21	70297	70297	70297	70297	70297	70297	70297
N-t2d150.21	69287	69287	69287	69287	69287	69287	69287
N-t2d150.23	74799	74799	74799	74799	74799	74799	74799
N-t2d150.24	70063	70063	70063	70063	70063	70063	70063
11-620130.24	70003	70003	10003	10003	10003	10000	10003

Table 10: Experimental result with RandA2 package (1/2)

			RandA2(2/	'2)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
	Best	Best	Best	Mean	Best	Worst	Knowns
N-t2d150.25	73853	73853	73853	73853	73853	73853	73853
N-t2d200.01	147740	147742*	147742*	147742	147742*	147742	147740
N-t2d200.02	144218	144218	144218	144218	144218	144218	144218
N-t2d200.03	141378	141378	141378	141378	141378	141378	141378
N-t2d200.04	150874	150878*	150878*	150878	150878*	150878	150870
N-t2d200.05	150236	150236	150236	150236	150236	150236	150236
N-t2d200.06	141254	141254	141254	141254	141254	141254	141254
N-t2d200.07	149752	149752	149752	149752	149752	149752	149752
N-t2d200.08	149910	149910	149910	149910	149910	149910	149910
N-t2d200.09	141956	141958	141958	141958	141958	141958	141958
N-t2d200.10	149628	149630*	149628	149630	149630*	149630	149628
N-t2d200.11	147542*	147542*	147542*	147542	147542*	147542	147540
N-t2d200.12	152470	152470	152470	152470	152470	152470	152470
N-t2d200.13	137614	137618	137618	137618	137618	137618	137618
N-t2d200.14	144382	144384	144384	144384	144384	144384	144384
N-t2d200.15	140442	140442	140442	140442	140442	140442	140442
N-t2d200.16	147446	147448	147448	147448	147448	147448	147448
N-t2d200.17	131874	131874	131874	131874	131874	131874	131874
N-t2d200.18	151196	151196	151196	151196	151196	151196	151196
N-t2d200.19	137314	137314	137314	137314	137314	137314	137314
N-t2d200.20	146508	146508	146508	146508	146508	146508	146508
N-t2d200.21	143562	143568	143568	143568	143568	143568	143568
N-t2d200.22	146920	146920	146920	146920	146920	146920	146920
N-t2d200.23	145034	145034	145034	145034	145034	145034	145034
N-t2d200.24	151258	151260	151260	151260	151260	151260	151260
N-t2d200.25	149128	149128	149128	149128	149128	149128	149128

Table 11: Experimental result with RandA2 package (2/2)

			xLOLIB (1/3	1/3)			
Instance		MAr	CD-BVNS		MA-EDM		Best
COTTO		141741			WILL-LIM		$_{ m Knowns}$
	Best	Best	Best	Mean	Best	Worst	
$N-be75eec_150$	3482801	3482828	3480977	3482828.0	3482828	3482828	3482828
$N-be75eec_250$	8897352	8894356	8896252	8902490.7	8903348*	8901591	8900531
$ m N\text{-}be75np_150$	7174993	7176535	7173646	7182660.0	7182660	7182660	7182660
$N-be75np_250$	17823806	17823574	17819152	17829273.0	17833911*	17823816	17822571
$N-be75oi_150$	2246217	2246853	2246853	2246853.0	2246853	2246853	2246853
$N-be75oi_250$	5911278	5912761*	5912632	5912761.0	5912761*	5912761	5912445
$N-be75tot_150$	12288727	12288855*	12288749	12288855.0	12288855*	12288855	12288727
$N-be75tot_250$	30993884	31003354	30976006	31007026.5	31007081*	31005447	30998382
$N-stabu1_150$	2875732	2875732	2873715	2875732.0	2875732	2875732	2875732
$N-stabu1_250$	7746680	7747611	7741250	7748319.4	7748569*	7747642	7747599
$N-stabu2_150$	4328513	4328514*	4327960	4328514.0	4328514*	4328514	4327870
$N-stabu2_250$	11508886	11512427	11501141	11520381.2	11520387*	11520380	11516097
$N-stabu3_150$	4510414	4510445	4510445	4510445.0	4510445	4510445	4510445
$N-stabu3_250$	11906428	11909920	11903836	11913660.0	11914130*	11909417	11909920
$\text{N-t59b}11\text{xx}_150$	3239395	3239550	3239495	3239550.0	3239550	3239550	3239550
$N-t59b11xx_250$	8417060	8419535*	8411100	8419525.8	8419535*	8419480	8411760
$N-t59d11xx_150$	1462606	1462697*	1462490	1462697.0	1462697*	1462697	1462418
$N-t59d11xx_250$	3843273	3843566	3842549	3844637.0	3844651*	3844511	3843003
N-t59f11xx_150	1543224	1543733	1542952	1543733.0	1543733	1543733	1543733
$N-t59f11xx_250$	3992830	3995886*	3993566	3995886.0	3995886*	3995886	3995868
$\text{N-t}59\text{n}11\text{xx_1}50$	318998	319001*	319001*	319001.0	319001*	319001	318951
$\text{N-t}59\text{n}11\text{xx}_250$	825127	825676	824913	825773.8	825827*	825637	825023
$\text{N-t65b}11\text{xx}_150$	6454355	6454818	6455861	6455861.0	6455861	6455861	6455861
$\rm N\text{-}t65b11xx_250$	17268711	17276667*	17272709	17276667.0	17276667*	17276667	17275227
$N-t65d11xx_{-}150$	3559347	3559437*	3559347	3559437.0	3559437*	3559437	3559347
$N-t65d11xx_250$	9353295	9357339	9352659	9359469.0	9359469*	9359469	9353593
$N-t65f11xx_150$	3159573	3159655	3160165*	3160165.0	3160165*	3160165	3159326
N-t65f11xx_250	8414986	8416795	8414292	8420489.2	8421279*	8419386	8417742
$\text{N-t65}111\text{xx}_150$	253411	253417	253283	253417.0	253417	253417	253417
$\text{N-t65}111\text{xx}_250$	968999	666580	666605	667334.7	667403*	667233	666915
$\text{N-t}65\text{n}11\text{xx}_150$	550856	550893	550579	550893.0	550893	550893	550893

Table 12: Experimental result with xLOLIB package (1/3)

			xLOLIB (2/3	3 (2/3)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	
$N-t65n11xx_250$	1431353	1431578	1430961	1432130.0	1432130*	1432130	1430863
$N-t69r11xx_150$	11857804	11855957	11858249	11858249.0	11858249	11858249	11858249
$N-t69r11xx_250$	31831109	31839590*	31769801	31839590.0	31839590*	31839590	31822418
$N-t70b11xx_150$	9644574	9649316*	9649316*	9649316.0	9649316*	9649316	9645830
$N-t70b11xx_250$	25409706	25416607	25407713	25416607.0	25416607	25416607	25416607
$N-t70d11xn_150$	5825590	5825719	5822429	5825947.0	5825947	5825947	5825947
$\rm N\text{-}t70d11xn_250$	15207756	15216164	15198002	15216669.1	15216680*	15216354	15211056
$N-t70d11xx_150$	6174117	6174178	6174178	6174178.0	6174178	6174178	6174178
$N-t70d11xx_250$	16048192	16051624^*	16041208	16051624.0	16051624*	16051624	16043251
N-t70f11xx_150	5150097	5150097	5150097	5150097.0	5150097	5150097	5150097
$N-t70f11xx_250$	13589879	13597149	13586212	13602640.8	13602981*	13598786	13598786
$N-t70111xx_{-}150$	436853	436863	436882	436882.0	436882	436882	436882
$N-t70111xx_250$	1114063	1114488	1114150	1114689.0	1114689*	1114689	1114166
$N-t70n11xx_150$	948900	948913	948896	948913.0	948913	948913	948913
$N-t70n11xx_250$	2445246	2446502	2443540	2447000.2	2447203*	2446330	2445125
$N-t74d11xx_150$	9395864	9396044	9394710	9396044.0	9396044	9396044	9396044
$N-t74d11xx_250$	24443800	24447256	24438349	24450865.7	24451465*	24450269	24445112
$N-t75d11xx_150$	9645000	9645000*	9639371	9645000.0	9645000*	9645000	9642140
$N-t75d11xx_250$	25036633	25052186	25042929	25055635.1	25056847*	25053274	25048727
$N-t75e11xx_150$	41569005	41571407	41571407	41571407.0	41571407	41571407	41571407
$N-t75e11xx_250$	106898101	106920648	106860905	106921191.5	106923099*	106920648	106912899
$N-t75k11xx_150$	1541574	1541596	1541596	1541596.0	1541596	1541596	1541596
$N-t75k11xx_250$	4095112	4096192	4092410	4096793.0	4098580*	4096192	4094732
$N-t75n11xx_150$	1743083	1743094	1741831	1743094.0	1743094	1743094	1743094
$N-t75n11xx_250$	4527802	4529018	4523448	4529853.0	4529853	4529853	4529853
$\operatorname{N-tiw56n54_150}$	837941	837945	837945	837945.0	837945	837945	837945
$\mathrm{N\text{-}tiw}56n54.250$	2099884	2099740	2097780	2100665.0	2100929*	2100245	2099727
$N-tiw56n58_150$	1155384	1155392	1155392	1155392.0	1155392	1155392	1155392
$N-tiw56n58_250$	2906394	2907509*	2903550	2907442.0	2907509*	2907218	2906751

Table 13: Experimental result with xLOLIB package (2/3)

Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	
N-tiw56n62_150	1627175	1627400*	1626921	1627400.0	1627400*	1627400	1626528
$N-tiw56n62_250$	4144366	4145046	4143770	4145731.0	4145968*	4145133	4145747
$N-tiw56n66_150$	2107607	2107619	2107619	2107619.0	2107619	2107619	2107619
$N-tiw56n66_250$	5370621	5371757	5367156	5372792.2	5373238*	5372378	5371157
$N-tiw56n67_150$	2372892	2372945	2372926	2372945.0	2372945	2372945	2372945
$N-tiw56n67_250$	6325349	6326881	6326461	6326849.9	6326881	6326415	6326881
$N-tiw56n72_150$	4135864	4135952	4135952	4135952.0	4135952	4135952	4135952
$N-tiw56n72_250$	11154261	11154588	11152941	11157360.6	11157434^*	11156871	11156640
$N\text{-}tiw56r54_150$	958274	958277*	958277*	958277.0	958277*	958277	958060
$N\text{-}tiw56r54_250$	2388162	2388508	2388437	2389642.5	2389735*	2389156	2388072
$\hbox{N-tiw} 56r58_150$	1219295	1219295	1219043	1219295.0	1219295	1219295	1219295
$N-tiw56r58_250$	3060034	3060523	3061002	3061873.7	3061948*	3061394	3060787
$\hbox{N-tiw} 56r66_150$	1940728	1940755	1940755	1940755.0	1940755	1940755	1940755
$N\text{-}tiw56r66_250$	4948142	4949614	4947805	4950408.7	4950654*	4950204	4948268
$N-tiw56r67_{-}150$	2058021	2057730	2056745	2058095.0	2058095*	2058095	2057237
$N\text{-}tiw56r67_250$	5292284	5293543	5290921	5293917.6	5293925*	5293785	5293543
$N\text{-}tiw56r72_150$	2823758	2823758	2824014*	2824014.0	2824014^*	2824014	2823758
N-tiw56r79.250	7452408	7454049	7457700	7458261.0	7458261*	7458261	7457217

Table 14: Experimental result with xLOLIB package (3/3)

			xTOLIB2 $(1/10)$	$2\ (1/10)$			
	11 0	A 1 A	אוויזים כוט		אנתם אונ		Best
Instance	ILSF	MAT	CD-KV NS		MA-EDM		Knowns
	Best	Best	Best	Mean	Best	Worst	
N-be75eec_1000	122559313	122829974	122446836	122852580.8	122927794*	122747549	122183020
$N-be75eec_300$	12417321	12427692	12413618	12435484.4	12437701*	12430693	12401915
$N-be75eec_500$	33396302	33421853	33376827	33454550.6	33464804^*	33442222	33335021
$N-be75eec_{-}750$	71549643	71656978	71475604	71706969.0	71724346*	71685477	71335951
$N-be75np_1000$	246911024	247605196	246808042	247717842.3	247827883*	247610781	245965411
$N-be75np_300$	26102788	26121007	26103943	26126616.2	26127625*	26125710	26058695
$N-be75np_500$	66861007	66936681	66796026	66954666.9	66991918*	66918144	66706038
N-be75np750	142604680	142912740	142495442	142960348.3	143015205*	142916133	142235433
$N-be75oi_1000$	95238461	95497576	95270382	95533297.7	95603686*	95210530	95107894
$N-be75oi_300$	9398390	9402938	9394172	9405553.0	9407042*	9404684	9389582
$N-be75oi_500$	25369064	25400317	25356187	25416401.4	25423876*	25409588	25344958
$N-be75oi_750$	57514793	57612199	57528761	57650504.9	57667942*	57622546	57446206
$\operatorname{N-be75tot_1000}$	421935738	422994922	421786261	423082071.7	423334547*	422902654	420848949
$N-be75tot_300$	43772491	43788425	43784847	43822819.3	43838792*	43804764	43728689
$N-be75tot_{-}500$	114142084	114282182	113975456	114349941.0	114378983*	114312964	113769897
N-be75tot750	247257313	247773969	247154651	247869600.7	248035898*	247763502	246647833
$N-stabu70_1000$	100970352	101220135	100841471	101250031.3	101281394*	101167680	100678451
$N-stabu70_300$	9998137	9997159	9984345	10004745.6	10007371*	9999127	9980631
$N-stabu70_{-}500$	27279696	27293837	27253279	27310907.6	27329658*	27295333	27206945
N-stabu70750	58447453	58536741	58372134	58575871.1	58591596^*	58556879	58260994
$N-stabu74_1000$	151551303	151884961	151547644	151915503.5	151995659*	151858596	151099343
$N-stabu74_300$	15036590	15035171	15022700	15040369.7	15045552*	15038580	15007346
$N-stabu74_500$	41179954	41202108	41161043	41243725.4	41255113*	41213355	41098723
N-stabu74750	87802725	87970020	87658155	87993462.9	88032483*	87961461	87467424
$N-stabu75_1000$	156818862	157314529	156887508	157409878.0	157509324^*	157340067	156432889
$N-stabu75_{-300}$	15573204	15590606	15592232	15593175.4	15594987*	15591886	15561023
$N-stabu75_{-}500$	42732861	42754239	42659815	42796081.1	42811288*	42776106	42671550
N-stabu75750	90850756	90999962	90744546	91027049.9	91056055*	90981042	90599301
N-t59b11xx_1000	102212770	102460630	102162215	102500204.0	102552395^*	102452815	101988220
$N-t59b11xx_300$	10407550	10410360	10391075	10417921.3	10418775*	10414710	10400625
N-t59b11xx_500	27715530	27758360	27674730	27758145.2	27765885*	27745290	27630465
$N-t59b11xx_750$	59999365	60094250	59956710	60115934.3	60155665*	60062470	59760540

Table 15: Experimental result with xLOLIB2 package (1/10)

			XLOLIB	$\times \text{LOLIB2} (2/10)$			
Instance	15.11	MAr	CD-BVNS		MA-EDM		Best
TIPOGITO	1071	14.1.4.1	CD-10110		IVICA-LIA		$_{ m Knowns}$
	Best	Best	Best	Mean	Best	Worst	
$N-t59d11xx_1000$	50909272	51012543	50899170	51029512.1	51047439*	50999626	50832719
$N-t59d11xx_300$	5035050	5034335	5027453	5037089.8	5037176*	5036529	5025078
$N-t59d11xx_500$	13271368	13287421	13253280	13288988.9	13294224*	13285317	13246941
N-t59d11xx750	29899128	29937634	29867228	29948276.7	29957553*	29938351	29824157
N-t59f11xx_1000	49292682	49438854	49286166	49428373.7	49448787*	49406462	49213897
N-t59f11xx_300	5072978	5076210	5062886	5076707.7	5076782*	5075720	5070127
N-t59f11xx-500	13482981	13498529	13467557	13499881.1	13506538*	13496746	13437621
N-t59f11xx_750	29111297	29174966	29090660	29171883.0	29192928*	29154681	29041799
$\text{N-t}59\text{i}11\text{xx}_1000$	3479421399	3488448681	3479518877	3489701453.0	3491553089*	3487565188	3471997519
$N-t59i11xx_300$	360725987	360874820	360469832	360873412.8	360944548*	360841288	360306443
N-t59i11xx_500	938485352	939587430	936685193	939927318.2	940518070*	939545063	936090712
N-t59i11xx_750	2069312019	2072848283	2067523396	2073537273.0	2074252863*	2072794399	2062282459
N-t59n11xx_1000	9583958	9610670	9584187	9613480.5	9617008*	9608430	9569747
N-t59n11xx_300	1006450	1006889	1005872	1007056.0	1007084*	1006985	1004921
$\text{N-t}59\text{n}11\text{xx}_500$	2615489	2617757	2611640	2619518.3	2620832*	2618184	2610904
N-t59n11xx_750	5678403	5692367	5678537	5691964.7	5695531^*	5689263	5667969
$\text{N-t65b}11\text{xx}_1000$	223109574	223668744	222817023	223767668.4	223853241*	223678436	222403731
$N-t65b11xx_300$	22160907	22173081	22150452	22176604.2	22177266*	22175553	22149491
$\text{N-t65b}11\text{xx}_500$	59823290	59838132	59730424	59864273.5	59888768*	59829694	59610554
$\mathrm{N-t65b11xx_750}$	129665747	129960120	129597766	130011100.5	130054912*	129960156	129443488
$N-t65d11xx_1000$	116978480	117323346	116926434	117324718.0	117373026*	117266541	116725645
$N-t65d11xx_300$	11882249	11885049	11869279	11885049.0	11885049*	11885049	11864597
N-t65d11xx_500	31785256	31816578	31734060	31829133.1	31838356*	31814223	31716674
N-t65d11xx750	67814379	67927668	67772458	67959475.3	67998198*	67930289	67649620
$N-t65f11xx_1000$	108445234	108691075	108432808	108707409.4	108745492*	108625811	108197222
$\text{N-t}65f11\text{xx}_300$	11182424	11178165	11167900	11185022.4	11186549*	11182717	11166902
N-t65f11xx-500	29334620	29355436	29319694	29365313.1	29384561*	29352943	29285209
N-t65f11xx_750	63313832	63440862	63303238	63462685.1	63496233*	63446390	63208271
$N-t65i11xx_1000$	8412439298	8438291042	8415366771	8439201476.0	8442803555*	8434640122	8390948152
$N-t65i11xx_300$	863474432	863717981	863367092	864182290.4	864223106*	864119642	862881768
$\text{N-t65i}11\text{xx}_500$	2250753512	2250524485	2247172698	2254133973.0	2255031024^{*}	2252729837	2244382489
$\mathrm{N-t65i11xx_750}$	4936200301	4947029597	4932086947	4948989053.0	4951075948*	4946904400	4929127538
$N-t65111xx_1000$	8694887	8713052	8699818	8720585.9	8724685*	8707403	8668534

Table 16: Experimental result with xLOLIB2 package (2/10)

			xLOLIB2	(3/10)			
							Best
Instance	m ILSr	m MAr	CD-RVNS		MA-EDM		Knowns
	Best	Best	Best	Mean	Best	Worst	
$N-t65111xx_300$	827768	828160	828437	828622.2	828676*	828506	827462
$N-t65111xx_{-}500$	2331872	2334892	2332503	2335894.3	2336198*	2335511	2328136
$N-t65111xx_{-}750$	4926635	4934030	4925112	4942390.0	4944869*	4940006	4917873
N-t65n11xx_1000	17082517	17124223	17086500	17130091.0	17138665*	17122140	17044635
$\text{N-t}65\text{n}11\text{xx}_300$	1789450	1789535	1788219	1790346.7	1790515*	1789951	1788165
$\text{N-t}65\text{n}11\text{xx}_500$	4658276	4662020	4657418	4665895.2	4667547*	4661210	4651136
$\text{N-t}65\text{n}11\text{xx_7}50$	10063186	10085422	10062414	10089400.0	10094359*	10083620	10042759
$\text{N-t65w}11\text{xx}_1000$	71817133120	71991703501	71799433807	72014229542.0	72045429648*	71978376860	71696369800
$\text{N-t65w}11\text{xx}_300$	7343019786	7346235806	7340659787	7347871994.0	7349114518*	7345297557	7339707255
$\text{N-t65w}11\text{xx}_500$	19412378960	19431447324	19395736616	19438924494.0	19444171547*	19433680736	19371907957
$\mathrm{N\text{-}t65w}11\mathrm{xx_750}$	41834939327	41903636638	41852336040	41928347153.0	41955222364*	41900545919	41737976722
$\text{N-t}69\text{r}11\text{xx}_1000$	398128340	399227189	397900139	399371590.9	399611905*	399157995	397093542
$N-t69r11xx_300$	41128694	41122616	41089608	41155344.1	41156777*	41143931	41051301
$N-t69r11xx_500$	108901441	109001028	108705348	109044209.5	109076028*	109004463	108552960
N-t69r11xx750	236321099	237007331	236171374	237066953.2	237138462*	236861899	235618981
$N-t70b11xx_1000$	313527570	314282716	313456613	314417699.8	314603886*	314246936	312618951
$\text{N-t70b}11\text{xx}_300$	31659994	31665993	31647814	31675733.9	31677663*	31672759	31628508
$\text{N-t70b}11\text{xx}_500$	84481194	84583174	84396309	84597176.8	84625101*	84562604	84271904
$\text{N-t70b}11\text{xx}_750$	182130904	182502859	182100517	182552898.1	182775821*	182451239	181536910
$N-t70d11xxb_1000$	194204267	194803249	194285943	194843832.5	194905650*	194748187	193829282
$N-t70d11xxb_300$	19640203	19650988	19637886	19661386.9	19661816*	19658053	19620114
$N-t70d11xxb_500$	52196483	52266442	52094664	52279476.8	52284020*	52270374	52016871
$N-t70d11xxb_750$	112386024	112586940	112284758	112611223.7	112657346*	112533372	112175736
$N-t70d11xx_1000$	204859762	205396106	204651907	205451303.3	205598204*	205324210	204397975
N-t70d11xx300	20833494	20845761	20836694	20850307.5	20852769*	20849988	20804250
$\text{N-t70d}11\text{xx}_500$	55508957	55521572	55463592	55536933.5	55570973*	55515795	55349813
$N-t70d11xx_750$	118528593	118752867	118528627	118815315.6	118893744*	118714030	118269267
$N-t70f11xx_1000$	177893727	178421743	178045876	178387875.1	178466412*	178283192	177714930
$N-t70f11xx_300$	17965823	17976463	17961818	17977488.4	17977681*	17977467	17936682
$N-t70f11xx_500$	47928637	47963119	47871077	47988430.4	48017411*	47964776	47857287
N-t70f11xx750	103634607	103726462	103603925	103762113.6	103826457*	103704427	103368757
$N-t70i11xx_1000$	13041003568	13077477719	13049060752	13080399907.0	13086612063*	13072356795	13019571398

Table 17: Experimental result with xLOLIB2 package (3/10)

			xLOLI	$\times \text{LOLIB2}$ (4/10)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	
$N-t70i11xx_300$	1350576340	1350238189	1348814709	1351006837.0	1351074324*	1350617271	1347488506
N-t70i11xx500	3494521056	3499300909	3492965171	3500249159.0	3502053016*	3499271035	3486936667
N-t70i11xx_750	7627662119	7643792788	7627935088	7646344502.0	7649725442*	7642933090	7611464838
$N-t70k11xx_1000$	28436310100	28502636900	28417078800	28510238560.0	28520983800*	28499462200	28351747000
$N-t70k11xx_300$	2910886300	2912185400	2909092900	2913836290.0	2914281600*	2912700200	2906605200
$N-t70k11xx_500$	7705758400	7714231500	7698481500	7717323677.0	7717672700*	7716705300	7688243300
N-t70k11xx750	16675120300	16714762200	16675762200	16716364877.0	16728003100*	16707339600	16654285500
$N-t70111xx_1000$	14175746	14225022	14174531	14230871.8	14240524*	14215540	14118116
$N-t70111xx_{-}300$	1431650	1431835	1430304	1432451.9	1432455^*	1432361	1429357
$\text{N-t70}111\text{xx}_500$	3804575	3809049	3802844	3813086.2	3816527*	3810483	3800456
$N-t70111xx_{-}750$	7907514	7922328	7893062	7932155.6	*892768*	7926652	7870995
N-t70n11xx_1000	28931698	29007238	28939633	29020331.3	29033001*	28988800	29863606
$N-t70n11xx_300$	3059672	3060136	3058719	3062980.9	3063032^*	3062850	3053791
$\text{N}t70\text{n}11\text{xx}_500$	7961052	7975663	7960326	7978342.2	*982676*	7970498	7949514
N-t70n11xx_750	17000357	17029076	16985984	17030514.9	17039695*	17021683	16959052
$\mathrm{N-t70u11xx_1000}$	10244497800	10277808400	10251040900	10276181580.0	10282938500*	10270644300	10228859000
$N-t70u11xx_300$	1055712900	1056161000	1055028600	1056958027.0	1057062400*	1056550800	1054204000
$N-t70u11xx_500$	2761255200	2765293200	2760797800	2766288930.0	2767279900*	2764347700	2753258600
$\text{N-t70u}11\text{xx}_750$	5944147400	5957373300	5943347000	5958779663.0	5961840000*	5955670100	5936431800
$\mathrm{N-t70w11xx_1000}$	$1.17\mathrm{E}{+}11$	1.18E + 11	1.17E + 11	117688000000.0	117747387403*	1.18E + 11	1.17E + 11
N-t70w11xx_300	11940163732	11942655050	11928909221	11946633381.0	11947013574*	11942944314	11924272532
N-t70w11xx500	31542574475	31565638089	31502354129	31581653988.0	31596828947*	31568839302	31482656885
$\mathrm{N-t70w11xx_750}$	68170858705	68292441681	68146062321	68324882248.0	68352970427*	68273617661	68013529104
$N-t70x11xx_1000$	$1.45E{+}11$	1.45E + 11	1.45E + 11	145323000000.0	145370973672*	1.45E + 11	$1.45E{+}11$
$N-t70x11xx_300$	14719220350	14726741712	14712227195	14735022229.0	14737647379*	14731330483	14699161134
$\text{N-t70x}11\text{xx}_500$	38919637251	38941502149	38876338800	38955146462.0	38967606631*	38939665359	38846619405
$\mathrm{N-t70x11xx_750}$	84083749929	84274008468	84053512988	84301946129.0	84327965913*	84235795159	83877382884
$N-t74d11xx_1000$	311497753	312347307	311466944	312361758.8	312508883*	312272023	310738504
$N-t74d11xx_300$	31749417	31765334	31728051	31766526.9	31767090*	31766209	31692802
$N-t74d11xx_{-}500$	84441846	84564061	84373882	84555918.7	84589925*	84519172	84276952
N-t74d11xx_750	180439669	180736324	180293591	180738044.2	180821368*	180637450	180000000

Table 18: Experimental result with xLOLIB2 package (4/10)

			XLOLII	imes LOLIB2~(5/10)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	
$N-t75d11xx_1000$	319923602	320620498	319686291	320687432.2	320810536*	320569292	319087189
$N-t75d11xx_300$	32672457	32684363	32682229	32713497.0	32716899*	32697338	32626939
N-t75d11xx500	86702236	09080898	86658407	86853941.6	86902644*	86811851	86590015
$N-t75d11xx_750$	184775055	185041508	184616755	185102647.2	185166486*	185034105	184396164
$\text{N-t75e}11\text{xx}_1000$	1390652726	1394516921	1391350244	1395188808.0	1395787333*	1394350104	1388110876
$N-t75e11xx_300$	145291379	145342830	145240142	145388485.0	145389799*	145368236	145044286
$\text{N-t75e}11\text{xx}_500$	375221255	375875577	375079119	375998123.4	376164905*	375788639	374756997
$\text{N-t75e}11\text{xx}_750$	820542677	821770639	819893062	822020679.6	822729527*	821332526	818104894
$N-t75i11xx_1000$	36377318906	36477624028	36400810586	36489114423.0	36517061955*	36397197099	36319330625
N-t75i11xx_300	3777931329	3779722489	3776274067	3780409372.0	3781259509*	3779624110	3771954709
N-t75i11xx_500	9769630182	9783010018	9763817929	9784784528.0	9787845059*	9782287849	9733195049
N-t75i11xx_750	21272896646	21324947331	21266871380	21333205657.0	21340353901*	21327356169	21233222778
$\text{N-t}75\text{k}11\text{xx}_1000$	52093878	52230180	52089492	52240840.4	52258096*	52211871	52008325
$N-t75k11xx_300$	5334310	5337418	5330837	5338285.6	5339512*	5335698	5329666
$N-t75k11xx_500$	14193531	14209411	14170116	14212354.5	14221041*	14208469	14159503
$\mathrm{N-t75k11xx_750}$	30508004	30581911	30489573	30582887.2	30587815*	30573627	30431677
$\text{N-t75} \text{n} 11 \text{xx_1000}$	54054213	54183806	54005597	54207180.8	54234000*	54167882	53916364
$N-t75n11xx_300$	5765502	5769817	5769051	5771730.2	5774492*	5768984	5767516
$N-t75n11xx_500$	14955291	14968523	14924508	14973935.5	14977389*	14971660	14882254
$\rm N\text{-}t75n11xx_750$	31892118	31952179	31855865	31966212.5	31978710*	31948901	31793642
$\text{N-t}75\text{u}11\text{xx}_1000$	29606447567	29701873032	29624931094	29698827656.0	29713770054*	29682629117	29557647434
$N-t75u11xx_300$	3082764924	3084283182	3084538916	3085710694.0	3086347621*	3084775898	3081481709
$\rm N\text{-}t75u11xx_500$	8078682291	8086981033	8074923712	8089482986.0	8092091464^*	8086862896	8062758937
N-t75u11xx750	17312248797	17346821361	17311414635	17350730525.0	17358027725*	17343353805	17292801492
$\operatorname{N-tiw56n54_1000}$	25868323	25945788	25877293	25948797.0	25958420*	25937166	25823018
$\mathrm{N\text{-}tiw}56n54.300$	2661218	2662176	2656014	2662901.8	2663017*	2662737	2654641
$\mathrm{N\text{-}tiw}56n54\text{-}500$	6981693	6989337	6976693	6990598.1	6992459*	6868869	6973683
$\mathrm{N\text{-}tiw}56\mathrm{n}54\text{-}750$	15149156	15167731	15147197	15174793.9	15180472*	15169676	15123184
$N-tiw56n58_1000$	35329052	35434044	35367053	35435038.4	35451676*	35419804	35281101
$N\text{-}tiw56n58_300$	3610392	3608360	3606504	3611986.7	3612583*	3611258	3603597
N-tiw56n58_500	9538741	9544092	9528842	9549175.8	9553212*	9545481	9513598

Table 19: Experimental result with xLOLIB2 package (5/10)

	Best	CITACOTA	07266906	50477519	5148045	13560366	29427585	65543988	6673467	17629994	38223009	75645448	7684860	20583929	44623467	130000246	13180215	35188140	76855797	29147432	2989753	7880480	17095151	36886320	3757785	9956130	21591768	60577648	6179233	16283320	35321403	66272465	6852120
		117	707105E0	50635764	5156369	13611566	29527619	65830541	6692546	17681561	38349291	76051436	7706736	20644054	44815540	130660580	13204673	35323354	77247178	29281522	2993462	7910216	17143706	37014123	3768678	9989371	21674500	60798290	6194883	16324590	35409726	66619103	6866350
	MA-EDM	7	Dest	50132188	5157281*	13626382*	29552470*	65899344*	6694726*	17689122*	38393658*	76101128*	7707409*	20656350*	44858816*	130838722*	13215574^*	35345596*	77300418*	29300654*	2994898*	7914629*	17162918*	37078259*	3770407*	9996792*	21690937*	60883657*	6197206*	16335662^*	35461293*	66667742*	6869832*
2(6/10)		16.	Mean 20720462 E	20120493.3 50664050 5	5156641 9	13622236.5	29541394.8	65875291.4	6693976.5	17684544.5	38378651.8	76071745.9	7707344.7	20652392.0	44835645.2	130749969.7	13211662.7	35340511.2	77264112.1	29291193.6	2994639.7	7912960.8	17154080.3	37057372.4	3769741.6	9994283.3	21682925.6	60843422.3	6196357.8	16329910.5	35442993.9	66639206.8	6869518.5
xLOLIB2 (6/10	CD-RVNS	7 - 0	Dest 90669017	50544571	5150365	13581896	29452692	65707371	6684195	17652313	38264295	75788550	7683945	20596761	44705057	130328098	13189011	35246396	77130734	29200964	2992150	7891085	17110034	36979687	3761863	9969375	21635031	60649049	6181289	16288804	35351795	66429580	6862830
	MAr	7	Dest 90717409	50671308	5155991	13614512	29526813	65842469	6689351	17680466	38361330	76047706	7703338	20647552	44824030	130695652	13207674	35336639	77239295	29287259	2994605	7910768	17144400	37033069	3766357	9987949	21674696	60816372	6194544	16322138	35424577	66615342	6868211
	m ILSr	7	Dest	20083103 50520543	5153820	13593539	29466021	65664806	6687156	17660922	38309119	75869805	7694850	20625090	44742798	130468008	13198369	35282092	77148447	29201789	2992061	7902026	17116834	36955996	3766202	9973891	21635041	60646477	6191289	16310785	35367393	66425836	6864076
	Instance		M +:58.150 750	,	i		$\mathrm{N\text{-}tiw}56\mathrm{n}62_750$	$N-tiw56n66_1000$	$\text{N-tiw}56\text{n}66_300$	$\text{N-tiw}56n66_500$	$\mathrm{N\text{-}tiw}56n66_750$	$N-tiw56n67_1000$	$\operatorname{N-tiw56n67_300}$	$\operatorname{N-tiw56n67_500}$	$\mathrm{N\text{-}tiw56n67_750}$	$\operatorname{N-tiw56n72_1000}$	$\text{N-tiw}56\text{n}72_300$	$\operatorname{N-tiw56n72_500}$	$\mathrm{N\text{-}tiw56n72_750}$	$\operatorname{N-tiw56r54_1000}$			$\mathrm{N\text{-}tiw}56\mathrm{r}54_750$	$\operatorname{N-tiw56r58_1000}$	$\rm N\text{-}tiw56r58\text{-}300$	$\hbox{N-tiw} 56 \hbox{r} 58_500$	$\hbox{N-tiw} 56 \hbox{r} 58_750$	$\operatorname{N-tiw56r66_1000}$	$N-tiw56r66_300$		$\mathrm{N\text{-}tiw}56\mathrm{r}66\text{-}750$	$\mathrm{N\text{-}tiw}56\mathrm{r}67\text{-}1000$	$\hbox{N-tiw}56\hbox{r}67_300$

Table 20: Experimental result with xLOLIB2 package (6/10)

			XLOLI	xLOLIB2 (7/10)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best
	r.	t.	r -	<i>y</i> (r.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KIIOWIIS
	Best	Best	Best	Mean	Best	Worst	
$\rm N\text{-}tiw56r67\text{-}500$	18027170	18041420	17992376	18045432.8	18055055*	18033787	17971377
$\mathrm{N\text{-}tiw}56\mathrm{r}67\text{-}750$	39689353	39786469	39652440	39795397.5	*90680868	39769396	39570834
$\operatorname{N-tiw56r72_1000}$	87804818	88047508	87776563	88079818.1	88102798*	88049208	87558976
$\text{N-tiw}56\text{r}72_300$	8984191	8989289	8986533	8990800.2	8993229*	9986868	8974248
$\text{N-tiw}56\text{r}72_500$	23684722	23720686	23675131	23713829.1	23730810*	23702537	23635996
$\mathrm{N\text{-}tiw}56\mathrm{r}72_750$	51664228	51737164	51591322	51747697.8	51762990*	51735507	51520889
$N-usa79_{-}1000$	273206638	274071961	273218606	274211280.4	274403942*	274024890	272318160
$N-usa79_{-300}$	28545122	28551348	28549169	28569177.1	28569678*	28568061	28509942
$N-usa79_{-}500$	76117382	76205458	76070053	76228241.2	76246074^*	76203456	75962230
$N-usa79_750$	157782483	158017748	157568014	158080225.1	158187746*	157991564	157251449
N-t70k11xx_750	16675120300	16714762200	16675762200	16716364877.0	16728003100*	16707339600	16654285500
$N-t70111xx_1000$	14175746	14225022	14174531	14230871.8	14240524^*	14215540	14118116
$N-t70111xx_300$	1431650	1431835	1430304	1432451.9	1432455^*	1432361	1429357
$\text{N-t70}111\text{xx}_500$	3804575	3809049	3802844	3813086.2	3816527*	3810483	3800456
$N-t70111xx_{-}750$	7907514	7922328	7893062	7932155.6	7937768*	7926652	7870995
N-t70n11xx_1000	28931698	29007238	28939633	29020331.3	29033001*	28988800	29863606
$N-t70n11xx_300$	3059672	3060136	3058719	3062980.9	3063032^*	3062850	3053791
$N-t70n11xx_{-}500$	7961052	7975663	7960326	7978342.2	*982676*	7970498	7949514
N-t70n11xx_750	17000357	17029076	16985984	17030514.9	17039695*	17021683	16959052
$N-t70u11xx_1000$	10244497800	10277808400	10251040900	10276181580.0	10282938500*	10270644300	10228859000
$N-t70u11xx_300$	1055712900	1056161000	1055028600	1056958027.0	1057062400*	1056550800	1054204000
$N-t70u11xx_500$	2761255200	2765293200	2760797800	2766288930.0	2767279900*	2764347700	2753258600
$\mathrm{N-t70u11xx_750}$	5944147400	5957373300	5943347000	5958779663.0	5961840000*	5955670100	5936431800
$N-t70w11xx_1000$	1.17E + 11	1.18E + 11	1.17E + 11	1176880000000.0	117747387403*	1.18E + 11	1.17E + 11
$N-t70w11xx_300$	11940163732	11942655050	11928909221	11946633381.0	11947013574*	11942944314	11924272532
$\text{N-t70w}11\text{xx}_500$	31542574475	31565638089	31502354129	31581653988.0	31596828947*	31568839302	31482656885
$N-t70w11xx_750$	68170858705	68292441681	68146062321	68324882248.0	68352970427*	68273617661	68013529104
$N-t70x11xx_1000$	1.45E + 11	1.45E + 11	1.45E + 11	145323000000.0	145370973672*	1.45E + 11	1.45E + 11
$N-t70x11xx_300$	14719220350	14726741712	14712227195	14735022229.0	14737647379*	14731330483	14699161134
$\text{N-t70x}11\text{xx}_500$	38919637251	38941502149	38876338800	38955146462.0	38967606631*	38939665359	38846619405
$\text{N-t70x}11\text{xx}_750$	84083749929	84274008468	84053512988	84301946129.0	84327965913*	84235795159	83877382884
$N-t74d11xx_1000$	311497753	312347307	311466944	312361758.8	312508883*	312272023	310738504

Table 21: Experimental result with xLOLIB2 package (7/10)

			XLOLII	xLOLIB2 (8/10)			
Instance	Į.	MAr	CD_BVNS		MA-EDW		Best
TIBOGITO	1071	17.77			MAT-LINIA		Knowns
	Best	Best	Best	Mean	Best	Worst	
$N-t74d11xx_300$	31749417	31765334	31728051	31766526.9	31767090*	31766209	31692802
N-t74d11xx_500	84441846	84564061	84373882	84555918.7	84589925*	84519172	84276952
$N-t74d11xx_{-}750$	180439669	180736324	180293591	180738044.2	180821368*	180637450	180000000
$N-t75d11xx_{-}1000$	319923602	320620498	319686291	320687432.2	320810536*	320569292	319087189
$N-t75d11xx_300$	32672457	32684363	32682229	32713497.0	32716899*	32697338	32626939
$N-t75d11xx_{-}500$	86702236	86808060	86658407	86853941.6	86902644^*	86811851	86590015
N-t75d11xx750	184775055	185041508	184616755	185102647.2	185166486*	185034105	184396164
$\text{N-t75e}11\text{xx}_1000$	1390652726	1394516921	1391350244	1395188808.0	1395787333*	1394350104	1388110876
$N-t75e11xx_300$	145291379	145342830	145240142	145388485.0	145389799*	145368236	145044286
$\text{N-t75e}11\text{xx}_500$	375221255	375875577	375079119	375998123.4	376164905*	375788639	374756997
$\text{N-t75e}11\text{xx_750}$	820542677	821770639	819893062	822020679.6	822729527*	821332526	818104894
$N-t75i11xx_1000$	36377318906	36477624028	36400810586	36489114423.0	36517061955*	36397197099	36319330625
$\text{N-t75i}11\text{xx}_300$	3777931329	3779722489	3776274067	3780409372.0	3781259509*	3779624110	3771954709
$\text{N-t75i}11\text{xx}_500$	9769630182	9783010018	9763817929	9784784528.0	9787845059*	9782287849	9733195049
$\text{N-t75i}11\text{xx}_750$	21272896646	21324947331	21266871380	21333205657.0	21340353901*	21327356169	21233222778
$N-t75k11xx_1000$	52093878	52230180	52089492	52240840.4	52258096*	52211871	52008325
$N-t75k11xx_300$	5334310	5337418	5330837	5338285.6	5339512*	5335698	5329666
$N-t75k11xx_500$	14193531	14209411	14170116	14212354.5	14221041*	14208469	14159503
$N-t75k11xx_750$	30508004	30581911	30489573	30582887.2	30587815*	30573627	30431677
$\text{N-t75} \text{n} 11 \text{xx}_1000$	54054213	54183806	54005597	54207180.8	54234000*	54167882	53916364
$\text{N-t}75\text{n}11\text{xx}_300$	5765502	5769817	5769051	5771730.2	5774492*	5768984	5767516
N-t75 n 11 xx - 500	14955291	14968523	14924508	14973935.5	14977389*	14971660	14882254
N-t75n11xx_750	31892118	31952179	31855865	31966212.5	31978710*	31948901	31793642
$\mathrm{N-t75u11xx_1000}$	29606447567	29701873032	29624931094	29698827656.0	29713770054*	29682629117	29557647434
$N-t75u11xx_300$	3082764924	3084283182	3084538916	3085710694.0	3086347621*	3084775898	3081481709
N-t75u11xx_500	8078682291	8086981033	8074923712	8089482986.0	8092091464*	8086862896	8062758937
$N-t75u11xx_750$	17312248797	17346821361	17311414635	17350730525.0	17358027725*	17343353805	17292801492
$\mathrm{N\text{-}tiw}56n54\text{-}1000$	25868323	25945788	25877293	25948797.0	25958420*	25937166	25823018
$N\text{-}tiw56n54_300$	2661218	2662176	2656014	2662901.8	2663017*	2662737	2654641
$\mathrm{N\text{-}tiw}56n54\text{-}500$	6981693	6989337	6976693	6990598.1	6992459*	6868869	6973683
N-tiw56n54_750	15149156	15167731	15147197	15174793.9	15180472*	15169676	15123184

Table 22: Experimental result with xLOLIB2 package (8/10)

			xLOLIB2 (9/10	2 (9/10)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	
$N-tiw56n58_1000$	35329052	35434044	35367053	35435038.4	35451676*	35419804	35281101
$\text{N-tiw}56\text{n}58_300$	3610392	3608360	3606504	3611986.7	3612583*	3611258	3603597
$\text{N-tiw}56\text{n}58_500$	9538741	9544092	9528842	9549175.8	9553212*	9545481	9513598
$\mathrm{N\text{-}tiw56n58_750}$	20683105	20717493	20668017	20720453.5	20732188*	20710559	20633749
$N-tiw56n62_1000$	50529543	50671308	50544571	50664050.5	50682462*	50635764	50477512
$\text{N-tiw}56\text{n}62_300$	5153820	5155991	5150365	5156641.9	5157281*	5156369	5148045
- 1	13593539	13614512	13581896	13622236.5	13626382*	13611566	13560366
$\mathrm{N\text{-}tiw}56\mathrm{n}62_750$	29466021	29526813	29452692	29541394.8	29552470*	29527619	29427585
$N-tiw56n66_1000$	65664806	65842469	65707371	65875291.4	65899344*	65830541	65543988
$\mathrm{N\text{-}tiw}56n66_300$	6687156	6689351	6684195	6693976.5	6694726*	6692546	6673467
$\mathrm{N\text{-}tiw}56n66\text{-}500$	17660922	17680466	17652313	17684544.5	17689122*	17681561	17629994
$\mathrm{N\text{-}tiw}56n66_750$	38309119	38361330	38264295	38378651.8	38393658*	38349291	38223009
$N-tiw56n67_1000$	75869805	76047706	75788550	76071745.9	76101128*	76051436	75645448
$\text{N-tiw}56\text{n}67_300$	7694850	7703338	7683945	7707344.7	7707409*	7706736	7684860
$\mathrm{N\text{-}tiw}56n67\text{-}500$	20625090	20647552	20596761	20652392.0	20656350*	20644054	20583929
$\mathrm{N\text{-}tiw}56\mathrm{n}67\text{-}750$	44742798	44824030	44705057	44835645.2	44858816*	44815540	44623467
$N-tiw56n72_1000$	130468008	130695652	130328098	130749969.7	130838722*	130660580	130000246
$\text{N-tiw}56\text{n}72_300$	13198369	13207674	13189011	13211662.7	13215574*	13204673	13180215
$\text{N-tiw}56\text{n}72_500$	35282092	35336639	35246396	35340511.2	35345596*	35323354	35188140
$\mathrm{N\text{-}tiw}56\mathrm{n}72\text{-}750$	77148447	77239295	77130734	77264112.1	77300418*	77247178	76855797
$\operatorname{N-tiw56r54_1000}$	29201789	29287259	29200964	29291193.6	29300654*	29281522	29147432
N-tiw 56r 54-300	2992061	2994605	2992150	2994639.7	2994898*	2993462	2989753
$\operatorname{N-tiw56r54_500}$	7902026	7910768	7891085	7912960.8	7914629*	7910216	7880480
$\mathrm{N\text{-}tiw}56\mathrm{r}54_750$	17116834	17144400	17110034	17154080.3	17162918*	17143706	17095151
$\hbox{N-tiw} 56 \hbox{r} 58_1000$	36955996	37033069	36979687	37057372.4	37078259*	37014123	36886320
$\hbox{N-tiw}56r58_300$	3766202	3766357	3761863	3769741.6	3770407*	3768678	3757785
$\hbox{N-tiw} 56 \hbox{r} 58_500$	9973891	9987949	9969375	9994283.3	9996792*	9989371	9956130

Table 23: Experimental result with xLOLIB2 package (9/10)

			$ ext{xLOLIB2} \; (10/10)$	(10/10)			
Instance	ILSr	MAr	CD-RVNS		MA-EDM		Best Knowns
	Best	Best	Best	Mean	Best	Worst	
$\mathrm{N\text{-}tiw}56\mathrm{r}58_750$	21635041	21674696	21635031	21682925.6	21690937*	21674500	21591768
$\operatorname{N-tiw56r66_1000}$	60646477	60816372	60649049	60843422.3	60883657*	60798290	60577648
$\operatorname{N-tiw56r66_300}$	6191289	6194544	6181289	6196357.8	6197206*	6194883	6179233
$\mathrm{N\text{-}tiw}56\mathrm{r}66\text{-}500$	16310785	16322138	16288804	16329910.5	16335662*	16324590	16283320
$\mathrm{N\text{-}tiw}56\mathrm{r}66\text{-}750$	35367393	35424577	35351795	35442993.9	35461293*	35409726	35321403
$\operatorname{N-tiw56r67_1000}$	66425836	66615342	66429580	66639206.8	66667742*	66619103	66272465
$\mathrm{N\text{-}tiw}56\mathrm{r}67\text{-}300$	6864076	6868211	6862830	6869518.5	6869832*	6866350	6852120
$\mathrm{N\text{-}tiw}56\mathrm{r}67\text{-}500$	18027170	18041420	17992376	18045432.8	18055055*	18033787	17971377
$\mathrm{N\text{-}tiw}56\mathrm{r}67\text{-}750$	39689353	39786469	39652440	39795397.5	*90680868	39769396	39570834
$\operatorname{N-tiw56r72_1000}$	87804818	88047508	87776563	88079818.1	88102798*	88049208	87558976
$\text{N-tiw}56\text{r}72_300$	8984191	8989289	8986533	8990800.2	8993229*	9986868	8974248
$\mathrm{N\text{-}tiw}56\mathrm{r}72\text{-}500$	23684722	23720686	23675131	23713829.1	23730810*	23702537	23635996
$\mathrm{N\text{-}tiw}56\mathrm{r}72\text{-}750$	51664228	51737164	51591322	51747697.8	51762990*	51735507	51520889
$N-usa79_1000$	273206638	274071961	273218606	274211280.4	274403942*	274024890	272318160
$N-usa79_{-300}$	28545122	28551348	28549169	28569177.1	28569678*	28568061	28509942
$N-usa79_{-}500$	76117382	76205458	76070053	76228241.2	76246074^*	76203456	75962230
N-usa79_750	157782483	158017748	157568014	158080225.1	158187746*	157991564	157251449

Table 24: Experimental result with xLOLIB2 package (10/10)

1 Diversity and fitness performance figures for a representative instance of each LOLIB package

The following figures show the performance of the algorithms with a randomly instance selected from the LOLIB packages: IO, MB, RandA1, RandA2, RandB, SGB, Spec and xLOLIB. These figures show the diversity behavior in Mar and MA-EDM population algorithms, as well as the evolution of the fitness every ten minutes when running each algorithm for four hours. These figures complement the information presented in the experimental study section of the main paper. As we can see in the nexts figures the MA-EDM present a diversity thorough treatment in contrast with the MAr which does not have any explicit diversity treatment. On the other hand we can assert that in the fitness evolution figures the MA-EDM always have better performance than the others algorithms studied in this research. These results are similar to those shown in the main document results section.

Figure 1: Diversity behaviour in MA-EDM and MAr algorithms and fitness evolution in ten minutes for all the study algorithms through four hours of executions for one representative instance: N-usa79 from IO, N-r250e0 from MB and N-t1d500.25 from RandA1, N-t2d200.25 from RandA2, N-p50-20 from RandB, N-sgb75.25 from SGB,N-atp452 from Spec and N-be75eec_250 from xLOLIB