NMC Problem Set #56

ONESHOT MATH GROUP

Oct. 15, 2023

Welcome!

Problem set delivered to you by the great Niko (in exchange for pancakes). Harder problems are marked with chilies (), in case you want to challenge yourself.

Have fun! Note: New variants on these problems may be released throughout the week. Remember to check back once in a while!

§1 Algebra

A1. Hazard Duty Pay!

Given a positive integer n, let M(n) be the largest integer m such that

$$\binom{m}{n-1} > \binom{m-1}{n}.$$

Evaluate
$$\lim_{n\to\infty} \frac{M(n)}{n}$$
.

§2 Combinatorics

C1. (A...?) End Credits!

Let $X = \{1, 2, ..., n\}$, and let $k \in X$. Show that there are exactly $k \cdot n^{n-1}$ functions $f: X \to X$ such that for every $x \in X$, there is a $j \ge 0$ such that $f^j(x) \le k$. (Note that f^j is the jth iterate of f).

C2. ($\nearrow \times$ Open) Trust!

Is it necessarily true that, when played perfectly, $5 \times 5 \times 5$ tic-tac-toe ends in a draw? (5 in a row to win)

§3 Geometry

A line in the plane of a triangle T is called an equalizer if it divides T into two regions having equal area and equal perimeter. Find positive integers a > b > c, with a as small as possible, such that there exists a triangle with side lengths a, b, c that has exactly two equalizers.

G2. Dam! Dam! Dam!

What is the maximum number of rational points that can be on a circle in \mathbb{R}^2 whose center is not a rational point?

¹i'm sorry

² clearly i dislike geo hehe

§4 Number Theory

N1. (5) Kissy Face Emoji!

Let B(n) be the number of ones in the base two expression of the positive integer n. For example, $B(6) = B(110_2) = 2$ and $B(15) = B(1111_2) = 4$. Determine whether or not

$$k = \exp\left(\sum_{n=1}^{\infty} \frac{B(n)}{n(n+1)}\right)$$

is rational.

a) Compute e^k .

N2. (*) God Don't Like Ugly!

Let $\delta(x)$ be the greatest odd divisor of the positive integer x. Show that, for all positive integers x,

$$\left| \sum_{n=1}^{x} \frac{\delta(n)}{n} - \frac{2x}{3} \right| < 1.$$