Find the Point

Consider two points, $p=(p_x,p_y)$ and $q=(q_x,q_y)$. We consider the inversion or point reflection, $r=(r_x,r_y)$, of point p across point q to be a 180° rotation of point p around q.

Given n sets of points p and q, find r for each pair of points and print two space-separated integers denoting the respective values of r_x and r_y on a new line.

Input Format

The first line contains an integer, n, denoting the number of sets of points.

Each of the n subsequent lines contains four space-separated integers describing the respective values of p_x , p_y , q_x , and q_y defining points $p=(p_x,p_y)$ and $q=(q_x,q_y)$.

Constraints

- $1 \le n \le 15$
- $-100 \le p_x, p_y, q_x, q_y \le 100$

Output Format

For each pair of points p and q, print the corresponding respective values of r_x and r_y as two space-separated integers on a new line.

Sample Input

2 0011 1122

Sample Output

2 2 3 3

Explanation

The graphs below depict points p, q, and r for the n=2 points given as Sample Input:

1.

Thus, we print r_x and r_y as $2\ 2$ on a new line.

Thus, we print r_x and r_y as ${\color{red}3}{3}$ on a new line.