Q1: Are lake and terrestrial primary productivity coherent?

Jonathan Walter, Grace Wilkinson, Rachel Fleck, Michael Pace 4/17/2019

This document organizes for openness and reproducibility analyses of the temporal coherence of interannual variation in lake primary productivity with terrestrial primary productivity in the landscape surrounding the lake.

Data import

coh.chlaXmaxndvi<-NULL

```
Data produced in 'ms1_prep.Rmd' are loaded.
load("/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/RData files/ms1_analysis_inprogress1.RDat
any(sapply(analysislakes$lakedata, function(x){any(is.infinite(x))}))
## [1] FALSE
any(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## [1] FALSE
which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## named integer(0)
analysislakes$lakeinfo[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),]
## [1] lagoslakeid
                          gnis_name
                                            nhd_lat
## [4] nhd_long
                          lake_area_ha
                                            lake_perim_meters
## [7] nhd_ftype
                          nhd_fcode
                                            hu4_zoneid
## [10] hu12_zoneid
                          state zoneid
                                            elevation m
## [13] start
                          end
## <0 rows> (or 0-length row.names)
# image(accndvi)
# points(lakepts.prj[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),])
dbuff[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))]
## numeric(0)
analysislakes$lakeinfo<-analysislakes$lakeinfo[!sapply(analysislakes$lakedata, function(x){any(is.na(x)
analysislakes$lakedata<-analysislakes$lakedata[!sapply(analysislakes$lakedata, function(x){any(is.na(x)
source("~/GitHub/AquaTerrSynch/AnalysisCode/bandtest_coh.R")
tsranges < -rbind(c(2,4),c(4,Inf),c(2,Inf))
coh.chlaXaccndvi<-NULL
```

```
for(lind in 1:length(analysislakes$lakedata)){
  lakedat.ii<-cleandat(analysislakes$lakedata[[lind]], as.numeric(colnames(analysislakes$lakedata[[lind
  chlaXaccndvi<-coh(lakedat.ii[1,], lakedat.ii[2,], as.numeric(colnames(analysislakes$lakedata[[lind]])</pre>
                     norm="powall", sigmethod="fast", nrand=10000)
  chlaXmaxndvi<-coh(lakedat.ii[1,], lakedat.ii[3,], as.numeric(colnames(analysislakes$lakedata[[lind]])</pre>
                     norm="powall", sigmethod="fast", nrand=10000)
  for(rind in 1:nrow(tsranges)){
    chlaXaccndvi<-bandtest.coh(chlaXaccndvi, tsranges[rind,])</pre>
    chlaXmaxndvi<-bandtest.coh(chlaXmaxndvi, tsranges[rind,])</pre>
  coh.chlaXaccndvi<-rbind(coh.chlaXaccndvi, c(t(as.matrix(chlaXaccndvi$bandp[,3:5]))))</pre>
  coh.chlaXmaxndvi<-rbind(coh.chlaXmaxndvi, c(t(as.matrix(chlaXmaxndvi$bandp[,3:5]))))</pre>
}
coh.chlaXaccndvi<-as.data.frame(coh.chlaXaccndvi)</pre>
coh.chlaXmaxndvi<-as.data.frame(coh.chlaXmaxndvi)</pre>
colnames(coh.chlaXaccndvi)<-paste0("accndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",</pre>
colnames(coh.chlaXmaxndvi)<-paste0("maxndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",</pre>
coh.chlaXaccndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
coh.chlaXmaxndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
#short timescales
hist(coh.chlaXaccndvi$accndvicoh.ts1, main="Accumulated NDVI, short timescales", xlab="Coherence", ylab
```

Accumulated NDVI, short timescales

hist(coh.chlaXmaxndvi\$maxndvicoh.ts1, main="Maximum NDVI, short timescales", xlab="Coherence", ylab="Fr

Maximum NDVI, short timescales

```
25
-requency
     20
     15
     10
     2
     0
            0.0
                             0.2
                                               0.4
                                                                0.6
                                                                                 8.0
                                          Coherence
quantile(coh.chlaXaccndvi$accndvicoh.ts1)
           0%
                     25%
                                 50%
                                            75%
                                                       100%
## 0.03540956 0.24309615 0.39391782 0.52458761 0.81625251
quantile(coh.chlaXmaxndvi$maxndvicoh.ts1)
                      25%
                                            75%
## 0.04514692 0.25124895 0.35877767 0.50983226 0.77145899
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts1<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.05921053
sum(coh.chlaXmaxndvi$maxndvip.ts1<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.05921053
print(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts1<alpha]/pi) #only pattern is that la
## [1] 0.70415901 0.33224850 -0.97156054 -0.04413595 0.56356061 -0.86709075
## [7] -0.05260276  0.12416199  0.92429361
print(coh.chlaXmaxndvi$maxndviphi.ts1[coh.chlaXmaxndvi$maxndvip.ts1<alpha]/pi)</pre>
## [1] -0.1573764 -0.8240104 -0.7892870 -0.7185325 -0.9310910 -0.8435071
## [7] -0.2280369 0.5324496 -0.2123467
phicls<-c(-1,-.75,-0.25,0.25,0.75,1)
hist(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts1<0.2]/pi, main="Accumulated NDVI, sho
```

Accumulated NDVI, short timescales

#hist(coh.chlaXmaxndvi\$maxndviphi.ts1[coh.chlaXmaxndvi\$maxndvip.ts1<0.2]/pi, main="Maximum NDVI, short
#long timescales
hist(coh.chlaXaccndvi\$accndvicoh.ts2, main="Accumulated NDVI, long timescales", xlab="Coherence", ylab=</pre>

Accumulated NDVI, long timescales

Maximum NDVI, long timescales


```
quantile(coh.chlaXaccndvi$accndvicoh.ts2)
                   25%
                                        75%
                                                  100%
## 0.06700155 0.38228617 0.60468470 0.79725568 0.97780892
quantile(coh.chlaXmaxndvi$maxndvicoh.ts2)
##
          0%
                   25%
                              50%
                                        75%
                                                  100%
## 0.04123391 0.38061632 0.65820308 0.81106846 0.96962207
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts2<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.04605263
sum(coh.chlaXmaxndvi$maxndvip.ts2<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.05263158
print(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<alpha]/pi)</pre>
## [7] 0.89471121
print(coh.chlaXmaxndvi$maxndviphi.ts2[coh.chlaXmaxndvi$maxndvip.ts2<alpha]/pi)</pre>
## [1] 0.69982097 -0.97179292 -0.04190360 0.02097044 -0.67004320 -0.58501674
## [7] -0.31373024 -0.33804686
```

hist(coh.chlaXaccndvi\$accndviphi.ts1[coh.chlaXaccndvi\$accndvip.ts2<0.2]/pi, main="Accumulated NDVI, lon

Accumulated NDVI, long timescales

#hist(coh.chlaXmaxndvi\$maxndviphi.ts1[coh.chlaXmaxndvi\$maxndvicoh.ts2>0.6]/pi, main="Maximum NDVI, shor states<-readOGR("~/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp")

```
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp", layer: "statesp020
## with 2895 features
## It has 9 fields
## Integer64 fields read as strings: STATESP020 DAY_ADM YEAR_ADM
getstates<-c("Minnesota", "Iowa", "Wisconsin", "Illinois", "Missouri", "Michigan", "Indiana", "Ohio", "lagosstates<-states[states@data$STATE %in% getstates,]

plot(lagosstates, main="Lakes selected for analysis")
points(analysislakes$lakeinfo$nhd_long, analysislakes$lakeinfo$nhd_lat, pch=16, cex=1, col="blue")</pre>
```

Lakes selected for analysis


```
cohplotdata<-left_join(analysislakes$lakeinfo, coh.chlaXaccndvi, by="lagoslakeid")
pal<-viridis(100)
par(mar=c(1,0,2,0))
plot(lagosstates, main="Lakes by short timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata$accndvicoh.tcolorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)</pre>
```

Lakes by short timescale coherence


```
plot(lagosstates, main="Lakes by long timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata$accndvicoh.t
colorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)
```

Lakes by long timescale coherence

#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag #agriculture -- is 500m buffer best? Other options include 100m buffer (probably too small) and hu12 wa # pct.ag<-lagosne_select(table="buffer500m.lulc", vars=c("lagoslakeid","buffer500m_nlcd2001_pct_82","bu pct.ag<-lagosne_select(table="hu12.lulc", vars=c("hu12_zoneid","hu12_nlcd2001_pct_82","hu12_nlcd2006_pc pct.ag<-pct.ag[pct.ag\$hu12_zoneid %in% analysislakes\$lakeinfo\$hu12_zoneid,] pct.ag.avg<-data.frame(hu12_zoneid=pct.ag\$hu12_zoneid, pct.ag=rowMeans(pct.ag[,2:4])) #depth depth<-lagosne_select(table="lakes_limno", vars=c("lagoslakeid", "maxdepth"))</pre> depth<-depth[depth\$lagoslakeid %in% analysislakes\$lakeinfo\$lagoslakeid,] #use max depth because it's mo #qrowing season Chlorophyll-a chla<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid","samplemonth","chla"))</pre> chla<-chla[chla\$lagoslakeid %in% analysislakes\$lakeinfo\$lagoslakeid,]</pre> gs.chla<-chla[chla\$samplemonth %in% 5:9,] avg.chla<-aggregate(chla ~ lagoslakeid, data=gs.chla, FUN=mean, na.rm=T)</pre> #Chlorophyll-a TSI class $\#TSI(CHL) = 9.81 \ln(CHL) + 30.6$ tsi.chl<-data.frame(lagoslakeid=avg.chla\$lagoslakeid, tsi=9.81 * log(avg.chla\$chla) + 30.6) tsi.chl\$tsi.cat<-rep("lake",nrow(tsi.chl))</pre>

tsi.chl\$tsi.cat[tsi.chl\$tsi < 40]<-"oligotrophic"

```
tsi.chl$tsi.cat[tsi.chl$tsi >=40 & tsi.chl$tsi < 50]<-"mesotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=50 & tsi.chl$tsi < 70]<-"eutrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >= 70] <-"hypereutrophic"</pre>
#huc2 and huc4 watershed codes
huc_codes<-read.csv("/Users/jonathanwalter/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", colC
states<-lagosne_select(table="state", vars=c("state_zoneid","state_name"))</pre>
predictors<-analysislakes$lakeinfo</pre>
predictors$tslength<-predictors$end-predictors$start+1</pre>
predictors<-left join(predictors, depth, by="lagoslakeid")</pre>
predictors<-left_join(predictors, pct.ag.avg, by="hu12_zoneid")</pre>
## Warning: Column `hu12_zoneid` joining factors with different levels,
## coercing to character vector
predictors<-left_join(predictors, avg.chla, by="lagoslakeid")</pre>
predictors<-left_join(predictors, tsi.chl, by="lagoslakeid")</pre>
predictors<-left_join(predictors, states, by="state_zoneid")</pre>
## Warning: Column `state_zoneid` joining factors with different levels,
## coercing to character vector
#predictors<-left_join(predictors, huc_codes, by="hu4_zoneid")</pre>
for(nn in 1:ncol(predictors)){
  if(is.factor(predictors[,nn])){
    predictors[,nn]<-factor(predictors[,nn])</pre>
  }
}
str(predictors)
                  152 obs. of 21 variables:
## 'data.frame':
## $ lagoslakeid
                     : int 211 249 618 906 969 1109 1505 2062 2714 2851 ...
                      : chr NA NA "Butternut Lake" "Sparkling Lake" ...
## $ gnis_name
## $ nhd_lat
                        : num 44.5 43.7 45.9 46 45.8 ...
## $ nhd_long
                        : num
                              -73.3 -73.4 -89 -89.7 -89.3 ...
## $ lake_area_ha
                       : num 113496.4 30 504.7 63.7 210.2 ...
## $ lake_perim_meters: num 1042251 3494 13134 3777 9402 ...
## $ nhd_ftype
                      : int 390 390 390 390 390 390 390 390 390 ...
## $ nhd_fcode
                      : int 39004 39004 39004 39004 39004 39004 39004 39004 39004 ...
## $ hu4_zoneid : Factor w/ 28 levels "HU4_10","HU4_12",..: 17 17 11 8 12 10 10 10 10 10 ... 
## $ hu12_zoneid : chr "HU12_17646" "HU12_16835" "HU12_13309" "HU12_13098" ...
                               "State_17" "State_5" "State_9" "State_9" ...
## $ state_zoneid
                       : chr
## $ elevation_m
                       : num 28.8 28.2 514.5 494.7 503.3 ...
## $ start
                      : num 1989 1990 1993 1989 1994 ...
                       : num 2010 2010 2013 2011 2013 ...
## $ end
## $ tslength
                       : num 22 21 21 23 20 21 18 21 21 21 ...
## $ maxdepth
                      : num 97 NA 12.8 20 11.6 ...
## $ pct.ag
                        : num 2.5298 0.4199 0.0976 0.3029 6.6886 ...
```

```
## $ chla : num 5.39 7.94 2.44 1.86 2.04 ...
## $ tsi : num 47.1 50.9 39.4 36.7 37.6 ...
## $ tsi.cat : chr "mesotrophic" "eutrophic" "oligotrophic" "oligotrophic" ...
## $ state_name : Factor w/ 10 levels "Maine", "Michigan", ..: 9 6 10 10 10 2 2 2 2 2 2 ...
hist(predictors$lake_area_ha)
```

Histogram of predictors\$lake_area_ha

hist(log10(predictors\$lake_area_ha))

Histogram of log10(predictors\$lake_area_ha)

hist(predictors\$lake_perim_meters)

Histogram of predictors\$lake_perim_meters

hist(log10(predictors\$lake_perim_meters))

Histogram of log10(predictors\$lake_perim_meters)

log10(predictors\$lake_perim_meters)

```
table(predictors$nhd_fcode)
```

```
## ## 39000 39004 39009 39010 39012 43601
## 1 123 17 4 6 1
```

table(predictors\$hu12_zoneid)

```
##
     HU12_148 HU12_1494 HU12_15183 HU12_15197 HU12_15280 HU12_15296
##
##
  HU12_15315 HU12_15329 HU12_1537 HU12_15856 HU12_16122 HU12_16125
##
##
   HU12 1615
              HU12_1621 HU12_16347 HU12_16746 HU12_16747 HU12_16749
##
##
  HU12_16835 HU12_16882 HU12_17143 HU12_17178 HU12_17235 HU12_17379
##
##
  HU12_17401 HU12_17407 HU12_17433 HU12_17477 HU12_17488 HU12_17504
  HU12_17512 HU12_17513 HU12_17515 HU12_17541 HU12_17646 HU12_17651
##
##
##
  HU12_17655 HU12_1802 HU12_18174 HU12_1819
                                                HU12_1828 HU12_18730
##
##
   HU12_1896 HU12_19726
                          HU12_1980 HU12_19842 HU12_20279
##
   HU12_2200
               HU12_2239
                          HU12_2350
                                     HU12_2410
                                                HU12 2412
##
##
   HU12 4337
               HU12 4347
##
                           HU12 442
                                      HU12 488
                                                  HU12 509
                                                             HU12 542
##
##
     HU12_581
                HU12_829
##
```

hist(predictors\$elevation_m)

Histogram of predictors\$elevation_m

hist(predictors\$maxdepth)

Histogram of predictors\$maxdepth

hist(log10(predictors\$maxdepth))

Histogram of log10(predictors\$maxdepth)

hist(predictors\$pct.ag)

Histogram of predictors\$pct.ag

hist(log10(predictors\$pct.ag))

Histogram of log10(predictors\$pct.ag)

hist(predictors\$chla)

Histogram of predictors\$chla

hist(log10(predictors\$chla))

Histogram of log10(predictors\$chla)

hist(predictors\$tsi)

Histogram of predictors\$tsi


```
table(predictors$tsi.cat)
##
        eutrophic hypereutrophic
##
                                                    oligotrophic
                                      mesotrophic
##
predictors$log10_lake_area_ha<-log10(predictors$lake_area_ha)</pre>
predictors$log10_lake_perim_meters<-log10(predictors$lake_perim_meters)</pre>
predictors$log10_maxdepth<-log10(predictors$maxdepth)</pre>
predictors$log10_pct.ag<-log10(predictors$pct.ag+1)</pre>
predictors$log10_chla<-log10(predictors$chla)</pre>
modvars.accndvi<-left_join(predictors, coh.chlaXaccndvi, by="lagoslakeid")</pre>
modvars.accndvi$nhd_ftype<-factor(modvars.accndvi$nhd_ftype)</pre>
modvars.accndvi$tsi.cat<-factor(modvars.accndvi$tsi.cat)</pre>
modvars.accndvi$tslength<-modvars.accndvi$end-modvars.accndvi$start + 1
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvismaxdepth),]
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$pct.ag),]</pre>
modvars.accndvi.phist<-modvars.accndvi[modvars.accndvi$accndvip.ts1<0.2,]
modvars.accndvi.philt<-modvars.accndvi[modvars.accndvi$accndvip.ts2<0.2,]
#short timescales
gls.coh.accndvi.st<-gls(accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                         data=modvars.accndvi,
                         correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.st)
## Generalized least squares fit by REML
```

Model: accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +

log10_chla + tsi

```
##
    Data: modvars.accndvi
##
          ATC
                    BIC
                          logLik
    -34.86545 -5.449022 27.43272
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
  Parameter estimate(s):
##
       range
## 0.02637732
##
## Coefficients:
##
                             Value Std.Error
                                                 t-value p-value
                         0.3780751 0.13387883 2.8240093 0.0054
## (Intercept)
## log10_maxdepth
                        -0.0064893 0.05970988 -0.1086801 0.9136
## log10_lake_area_ha
                         0.0067299 0.02452810 0.2743734 0.7842
## log10_pct.ag
                         0.0599450 0.03049924 1.9654601 0.0513
## log10_chla
                        -0.0399933 0.09500935 -0.4209404 0.6744
## tsi.cathypereutrophic -0.0802583 0.12799397 -0.6270472 0.5316
## tsi.catmesotrophic
                        -0.0104314 0.06229034 -0.1674635 0.8672
                        -0.0022963 0.09664989 -0.0237586 0.9811
## tsi.catoligotrophic
##
## Correlation:
##
                        (Intr) lg10_m l10__ lg10_. lg10_c ts.cth ts.ctm
## log10 maxdepth
                        -0.334
## log10_lake_area_ha
                        -0.121 -0.614
## log10_pct.ag
                        -0.039 -0.175 0.181
## log10_chla
                        -0.885 0.169 -0.052 -0.128
## tsi.cathypereutrophic 0.365 0.080 -0.064 -0.160 -0.454
                        -0.800 0.028 0.062 -0.054 0.834 -0.337
## tsi.catmesotrophic
## tsi.catoligotrophic -0.826 0.030 0.044 -0.086 0.902 -0.386 0.860
##
## Standardized residuals:
          Min
                                  Med
                                               Q3
## -1.88930497 -0.68232316 -0.00388693 0.76108472 2.52612247
## Residual standard error: 0.1847216
## Degrees of freedom: 148 total; 140 residual
suppressWarnings(dredge.coh.accndvi.st<-dredge(gls.coh.accndvi.st, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.st))
## Global model call: gls(model = accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha +
      log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi,
##
      correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
      (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc delta
## 1 0.3878
                                                        3 40.107 -74.0 0.00
## 9 0.3541
                                               0.04997 4 38.977 -69.7 4.37
## 2 0.4144 -0.03251
                                                        4 38.096 -67.9 6.14
## 5 0.3616
                                    0.02281
                                                        4 38.043 -67.8 6.24
## 3 0.3840
                            0.00165
                                                        4 37.069 -65.9 8.19
```

```
## 10 0.3851 -0.04156
                                              0.05461 5 37.243 -64.1 9.99
##
     weight
      0.815
## 1
## 9
      0.092
## 2
      0.038
## 5
      0.036
## 3
      0.014
## 10 0.006
## Models ranked by AICc(x)
gls.phi.accndvi.st<-gls(cos(accndviphi.ts1) ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log1
                       data=modvars.accndvi.phist,
                       correlation=corExp(form = ~ nhd_lat + nhd_long)) #remove ftype b/c only lakes
summary(gls.phi.accndvi.st)
## Generalized least squares fit by REML
    Model: cos(accndviphi.ts1) ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
                                                                                        log10_chla
##
    Data: modvars.accndvi.phist
         AIC
##
                  BIC
                         logLik
    75.62843 85.44781 -28.81422
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
  Parameter estimate(s):
##
##
      range
## 0.1175311
##
## Coefficients:
##
                           Value Std.Error
                                             t-value p-value
## (Intercept)
                       0.1557571 1.3530049 0.1151194 0.9094
## log10_maxdepth
                      0.2331647 0.4601153 0.5067528 0.6174
## log10_pct.ag
                      0.3375757 0.3076398 1.0973083 0.2844
## log10_chla
                      -0.2348224 0.7343608 -0.3197643 0.7522
## tsi.catmesotrophic -0.5072231 0.5577661 -0.9093832 0.3730
## tsi.catoligotrophic -0.3037483 0.8258868 -0.3677844 0.7165
##
## Correlation:
##
                      (Intr) lg10_m l10___ lg10_. lg10_c ts.ctm
## log10 maxdepth
                      -0.476
## log10_lake_area_ha -0.320 -0.437
## log10_pct.ag
                      -0.235 0.098 0.009
## log10_chla
                      -0.853 0.438 -0.030 0.083
## tsi.catmesotrophic -0.808 0.219 0.170 0.037 0.791
## tsi.catoligotrophic -0.784  0.272  0.011  0.046  0.883  0.889
##
## Standardized residuals:
          Min
                       Q1
                                              Q3
                                                        Max
                                 Med
## -1.62466317 -0.64963316 0.02210254 0.78296527
                                                 1.46238879
##
## Residual standard error: 0.7207362
```

Degrees of freedom: 29 total; 22 residual

```
suppressWarnings(dredge.phi.accndvi.st<-dredge(gls.phi.accndvi.st, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.phi.accndvi.st))
## Global model call: gls(model = cos(accndviphi.ts1) ~ log10_maxdepth + log10_lake_area_ha +
       log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.phist,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
         (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc
##
## 1
      0.21630
                                                          3 -29.959 66.9
                                       0.3238
## 5 -0.17910
                                                          4 -29.667 69.0
## 9
      0.02983
                                                  0.3004 4 -29.755 69.2
## 2
     0.30200 -0.1132
                                                          4 -30.195 70.1
## 3 -0.24650
                               0.1793
                                                          4 -30.261 70.2
## 13 -0.41000
                                       0.3492
                                                  0.3224 5 -29.386 71.4
##
     delta weight
      0.00 0.462
## 1
## 5
      2.12 0.160
## 9
      2.30 0.146
## 2
      3.18 0.094
## 3
      3.31 0.088
## 13 4.50 0.049
## Models ranked by AICc(x)
#long timescales
gls.coh.accndvi.lt<-gls(accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                        data=modvars.accndvi,
                        correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.lt)
## Generalized least squares fit by REML
     Model: accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
##
                                                                                       log10_chla + tsi
     Data: modvars.accndvi
##
         AIC
                   BIC
##
                          logLik
     49.63532 79.05175 -14.81766
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
##
   Parameter estimate(s):
##
        range
## 0.01090697
## Coefficients:
##
                              Value Std.Error t-value p-value
## (Intercept)
                         0.6922566 0.18000001 3.845870 0.0002
## log10_maxdepth
                        -0.1049311 0.07857613 -1.335407 0.1839
## log10_lake_area_ha
                         0.0192790 0.03276030 0.588485
                                                         0.5572
## log10_pct.ag
                         0.0134578 0.03998785 0.336546 0.7370
## log10_chla
                        -0.0604638 0.12783712 -0.472976 0.6370
## tsi.cathypereutrophic -0.1157395 0.17123018 -0.675929
                                                         0.5002
## tsi.catmesotrophic
                         -0.0467804 0.08449234 -0.553665
                                                         0.5807
## tsi.catoligotrophic
                         0.0384610 0.13075777 0.294139 0.7691
```

```
##
## Correlation:
##
                         (Intr) lg10_m l10__ lg10_. lg10_c ts.cth ts.ctm
                         -0.329
## log10_maxdepth
## log10_lake_area_ha
                         -0.124 -0.617
## log10_pct.ag
                         -0.032 -0.184 0.179
## log10 chla
                         -0.891 0.178 -0.050 -0.124
## tsi.cathypereutrophic 0.371 0.072 -0.063 -0.160 -0.456
## tsi.catmesotrophic
                         -0.806   0.038   0.066   -0.044   0.827   -0.333
## tsi.catoligotrophic
                         -0.836  0.040  0.049  -0.077  0.903  -0.388  0.854
## Standardized residuals:
         Min
                      Q1
                                            Q3
                                                      Max
                                Med
## -1.9726454 -0.7675194 0.1494407 0.7859815 1.7504324
## Residual standard error: 0.2470175
## Degrees of freedom: 148 total; 140 residual
suppressWarnings(dredge.coh.accndvi.lt<-dredge(gls.coh.accndvi.lt, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.lt))
## Global model call: gls(model = accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha +
##
       log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
##
      (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc delta
                                                         3 -4.621 15.4 0.00
## 1 0.5654
## 2 0.6098 -0.05450
                                                         4 -6.104 20.5 5.08
## 5 0.6149
                                    -0.04338
                                                         4 -6.261 20.8 5.39
## 9 0.5668
                                              -0.002248 4 -6.968 22.2 6.81
## 3 0.5789
                          -0.005868
                                                         4 -7.341 23.0 7.55
## 6 0.7015 -0.07061
                                    -0.06897
                                                         5 -7.347 25.1 9.71
##
    weight
## 1 0.826
## 2 0.065
## 5 0.056
## 9 0.027
## 3 0.019
## 6 0.006
## Models ranked by AICc(x)
gls.phi.accndvi.lt<-gls(cos(accndviphi.ts2) ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log1
                        data=modvars.accndvi.philt,
                        correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.phi.accndvi.lt)
## Generalized least squares fit by REML
    Model: cos(accndviphi.ts2) ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
##
                                                                                             log10 chla
##
    Data: modvars.accndvi.philt
##
          AIC
                   BIC
                          logLik
    64.75967 74.16037 -23.37983
##
##
```

```
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
     range
## 3.997892
##
## Coefficients:
##
                          Value Std.Error
                                          t-value p-value
## (Intercept)
                      -3.873933 1.0447684 -3.707935 0.0013
## log10_maxdepth
                       0.278713 0.2813057 0.990782 0.3331
## log10_pct.ag
                      -0.225035 0.3011773 -0.747183 0.4632
## log10_chla
                       1.989585 0.7443527 2.672906 0.0142
## tsi.catmesotrophic
                       0.933829 0.4902553 1.904781 0.0706
## tsi.catoligotrophic 2.338714 0.6105442 3.830540 0.0010
##
## Correlation:
##
                      (Intr) lg10_m l10___ lg10_. lg10_c ts.ctm
## log10_maxdepth
                      -0.343
## log10_lake_area_ha -0.161 -0.221
## log10_pct.ag
                      -0.172 0.121 -0.174
## log10_chla
                      -0.803 0.123 -0.100 0.064
## tsi.catmesotrophic -0.710 -0.010 -0.062 0.125
                                                 0.825
## tsi.catoligotrophic -0.756 -0.013  0.103 -0.026  0.856  0.901
##
## Standardized residuals:
##
                                          QЗ
                                                    Max
         Min
                     01
                              Med
## -1.6622861 -0.9233702 -0.2285615 0.4186192 1.5661025
##
## Residual standard error: 0.9602299
## Degrees of freedom: 28 total; 21 residual
suppressWarnings(dredge.phi.accndvi.lt<-dredge(gls.phi.accndvi.lt, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.phi.accndvi.lt))
## Global model call: gls(model = cos(accndviphi.ts2) ~ log10_maxdepth + log10_lake_area_ha +
      log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.philt,
##
##
      correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
##
        (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag tsi.cat df logLik
## 1
      0.02521
                                                               3 - 29.788
## 20 -3.61700 1.9150
                              0.6653
                                                              7 -23.610
## 3 -0.59900
                              0.2778
                                                               4 -29.301
## 5 -0.38600
                                     0.3624
                                                               4 -29.360
## 9
                                                               4 - 29.573
      0.21070
                                               -0.3133
                                                               4 -29.624
## 2 -0.17250 0.2997
##
     AICc delta weight
## 1 66.6 0.00 0.303
## 20 66.8 0.24 0.268
## 3 68.3 1.77 0.125
## 5 68.5 1.88 0.118
```

```
## 9 68.9 2.31 0.095
## 2 69.0 2.41 0.091
## Models ranked by AICc(x)
```

That turned up astonishingly little, so now try breaking down by region. The regions are: 1) Missouri; 2) Minnesota, Wisconsin, and Michigan; 3) Pennsylvania, New York, Rhode Island, Vermont, New Hampshire, Maine.

```
#Region 1: Missouri
modvars.accndvi.r1<-modvars.accndvi[modvars.accndvi$state_name=="Missouri",]
\# modvars.accndvi.philt.r1<-modvars.accndvi.philt[modvars.accndvi.philt$state_name=="Missouri",]
\# moduars.accndvi.phist.r1<-moduars.accndvi.phist[moduars.accndvi.phist$state_name=="Missouri",]
#short timescales
gls.coh.accndvi.st<-gls(accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                        data=modvars.accndvi.r1,
                        correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.st)
## Generalized least squares fit by REML
    Model: accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
                                                                                        log10_chla + tsi
##
    Data: modvars.accndvi.r1
##
          AIC
                   BIC
                         logLik
     8.995435 18.43983 5.502282
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
   Parameter estimate(s):
##
##
        range
## 0.04237466
##
## Coefficients:
##
                              Value Std.Error
                                                 t-value p-value
## (Intercept)
                          0.5274299 0.3418418 1.5429064
                                                          0.1393
## log10_maxdepth
                          0.0825125 0.2176013 0.3791915
                                                          0.7088
## log10_lake_area_ha
                         -0.0881376 0.0564694 -1.5608041
## log10_pct.ag
                         -0.0043755 0.0739419 -0.0591742
                                                          0.9534
## log10_chla
                         -0.0246044 0.1913508 -0.1285829
                                                          0.8990
## tsi.cathypereutrophic -0.2698166 0.1904339 -1.4168520
                                                          0.1727
## tsi.catmesotrophic
                         -0.0511146 0.1455996 -0.3510631
                                                          0.7294
## tsi.catoligotrophic
                         -0.0690611 0.2003904 -0.3446327 0.7342
##
##
   Correlation:
                         (Intr) lg10_m l10___ lg10_. lg10_c ts.cth ts.ctm
## log10_maxdepth
                         -0.738
## log10_lake_area_ha
                          0.320 - 0.704
## log10_pct.ag
                         -0.039 -0.161
                                       0.575
## log10_chla
                         -0.753 0.377 -0.414 -0.379
## tsi.cathypereutrophic 0.162 0.119
                                        0.077 0.182 -0.488
## tsi.catmesotrophic
                         -0.361 -0.099 0.138 -0.005 0.517 -0.299
## tsi.catoligotrophic
                         -0.529 -0.044 0.133 0.093 0.681 -0.396
## Standardized residuals:
##
             Min
                            Q1
                                                        QЗ
                                         Med
                                                                     Max
```

```
## -1.8764938490 -0.5841693937 -0.0005826097 0.6383170091 1.4584586195
##
## Residual standard error: 0.1487541
## Degrees of freedom: 27 total; 19 residual
suppressWarnings(dredge.coh.accndvi.st<-dredge(gls.coh.accndvi.st, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.st))
## Global model call: gls(model = accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha +
       log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.r1,
##
      correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
      (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc delta
##
## 1 0.3637
                                                        3 10.280 -13.5 0.00
## 3 0.5223
                          -0.06426
                                                        4 10.105 -10.4 3.12
## 5 0.4597
                                    -0.07548
                                                        4 9.309 -8.8 4.72
## 2 0.4658 -0.08931
                                                        4 9.294 -8.8 4.75
## 9 0.3261
                                                0.0479 4 8.663 -7.5 6.01
## 7 0.3727
                          -0.08780 0.16280
                                                        5 9.689 -6.5 7.00
##
    weight
## 1 0.677
## 3 0.142
## 5 0.064
## 2 0.063
## 9 0.034
## 7 0.020
## Models ranked by AICc(x)
#long timescales
gls.coh.accndvi.lt<-gls(accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                        data=modvars.accndvi.r1,
                        correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.lt)
## Generalized least squares fit by REML
     Model: accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
                                                                                     log10_chla + tsi
##
    Data: modvars.accndvi.r1
##
         AIC
                  BIC
                        logLik
##
     30.68938 40.13377 -5.34469
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
         range
## 0.0007748676
##
## Coefficients:
##
                             Value Std.Error
                                                t-value p-value
## (Intercept)
                         0.8410986 0.6033686 1.3940045 0.1794
## log10_maxdepth
                        -0.2114190 0.3837089 -0.5509880 0.5881
## log10_lake_area_ha
                         0.0493772 0.0984220 0.5016886 0.6217
## log10_pct.ag
                         0.0197342 0.1279348 0.1542520 0.8790
```

```
## log10_chla
                        -0.1216361 0.3352222 -0.3628521 0.7207
## tsi.cathypereutrophic -0.2031081 0.3289865 -0.6173754 0.5443
## tsi.catmesotrophic
                        -0.4459652 0.2516045 -1.7724848 0.0923
## tsi.catoligotrophic
                        -0.0753487 0.3413207 -0.2207564 0.8276
## Correlation:
                        (Intr) lg10_m l10___ lg10_. lg10_c ts.cth ts.ctm
## log10_maxdepth
                        -0.750
                         0.341 -0.711
## log10_lake_area_ha
                        -0.027 -0.167 0.577
## log10_pct.ag
## log10_chla
                        -0.760 0.397 -0.430 -0.384
## tsi.cathypereutrophic 0.163 0.111 0.081 0.185 -0.486
## tsi.catmesotrophic -0.361 -0.087 0.128 -0.009 0.517 -0.301
## tsi.catoligotrophic -0.562 -0.019 0.121 0.087 0.715 -0.412 0.606
## Standardized residuals:
##
                                               QЗ
                       Q1
                                  Med
## -1.46764955 -0.48581053 -0.07318649 0.64200328 1.65345475
## Residual standard error: 0.2568536
## Degrees of freedom: 27 total; 19 residual
suppressWarnings(dredge.coh.accndvi.lt<-dredge(gls.coh.accndvi.lt, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.lt))
## Global model call: gls(model = accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha +
##
      log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.r1,
      correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
      (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag tsi.cat df logLik
## 1 0.5211
                                                                3 - 2.790
## 5 0.5767
                                   -0.04332
                                                                4 - 3.413
## 2 0.4388 0.07277
                                                                4 -3.840
## 9 0.5195
                                                                4 -4.380
                                              0.002141
## 3 0.4430
                           0.03212
                                                                4 -4.675
                                                             + 6 -1.805
## 17 0.5668
     AICc delta weight
## 1 12.6 0.00 0.748
## 5 16.6 4.02 0.100
## 2 17.5 4.87 0.065
## 9 18.6 5.95 0.038
## 3 19.2 6.54 0.028
## 17 19.8 7.19 0.021
## Models ranked by AICc(x)
#Region 2: Minnesota, Wisconsin, Michigan
modvars.accndvi.r2<-modvars.accndvi[modvars.accndvi$state_name %in% c("Minnesota","Wisconsin","Michigan
#short timescales
gls.coh.accndvi.st<-gls(accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                       data=modvars.accndvi.r2,
```

```
correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.st)
## Generalized least squares fit by REML
##
     Model: accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
                                                                                       log10_chla + tsi
##
     Data: modvars.accndvi.r2
##
          AIC
                  BIC
                        logLik
     8.735372 31.91025 5.632314
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
  Parameter estimate(s):
##
       range
## 0.03129037
##
## Coefficients:
##
                              Value Std.Error
                                                  t-value p-value
## (Intercept)
                         0.28607581 0.21299322 1.3431217 0.1833
## log10_maxdepth
                        -0.01689086 0.09430048 -0.1791174 0.8583
## log10_lake_area_ha
                         0.06013256 0.04140631 1.4522560 0.1506
## log10_pct.ag
                         0.02030745 0.04630595 0.4385494 0.6622
## log10_chla
                        -0.01032580 0.14007796 -0.0737147 0.9414
## tsi.cathypereutrophic -0.00039694 0.18263045 -0.0021734 0.9983
## tsi.catmesotrophic
                        -0.01328850 0.09828536 -0.1352033 0.8928
## tsi.catoligotrophic
                         0.02026451 0.14423173 0.1404997 0.8886
##
## Correlation:
                         (Intr) lg10_m l10___ lg10_. lg10_c ts.cth ts.ctm
##
## log10_maxdepth
                        -0.333
## log10_lake_area_ha
                        -0.261 -0.455
## log10_pct.ag
                        -0.036 -0.228 -0.014
                        -0.897 0.191 0.062 -0.025
## log10_chla
## tsi.cathypereutrophic 0.400 0.083 -0.137 -0.270 -0.484
## tsi.catmesotrophic
                        -0.786 -0.003 0.097 0.008 0.827 -0.327
## tsi.catoligotrophic -0.794 -0.019 0.076 -0.002 0.887 -0.381 0.902
##
## Standardized residuals:
##
         Min
                     Q1
                               Med
                                            Q3
## -1.9480579 -0.6731269 0.1071575 0.7101748 2.1282868
## Residual standard error: 0.2018212
## Degrees of freedom: 83 total; 75 residual
suppressWarnings(dredge.coh.accndvi.st<-dredge(gls.coh.accndvi.st, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.st))
## Global model call: gls(model = accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha +
##
       log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.r2,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
      (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc delta
```

```
## 1 0.4071
                                                        3 15.926 -25.5 0.00
## 3 0.2663
                           0.06561
                                                        4 15.247 -22.0 3.57
## 5 0.3337
                                   0.068010
                                                        4 14.656 -20.8 4.75
## 2 0.4299 -0.03222
                                                        4 14.042 -19.6 5.98
## 9 0.3804
                                               0.03362 4 13.986 -19.5 6.09
## 7 0.2641
                           0.06413 0.004766
                                                        5 13.599 -16.4 9.13
    weight
## 1 0.730
## 3 0.123
## 5 0.068
## 2 0.037
## 9 0.035
## 7 0.008
## Models ranked by AICc(x)
#long timescales
gls.coh.accndvi.lt<-gls(accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                       data=modvars.accndvi.r2,
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.lt)
## Generalized least squares fit by REML
    Model: accndvicoh.ts2 ~ log10 maxdepth + log10 lake area ha + log10 pct.ag +
                                                                                      log10 chla + tsi
##
    Data: modvars.accndvi.r2
##
         AIC
                  BIC
                         logLik
    39.57158 62.74646 -9.785788
##
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
       range
## 0.01094399
## Coefficients:
                             Value Std.Error
                                                 t-value p-value
## (Intercept)
                         0.4022266 0.26538113 1.5156565 0.1338
## log10_maxdepth
                         0.0448547 0.11078985 0.4048633 0.6867
## log10_lake_area_ha
                        -0.0025275 0.05026837 -0.0502804 0.9600
## log10_pct.ag
                        -0.0083418 0.05285305 -0.1578303 0.8750
## log10 chla
                         0.0801777 0.17277591 0.4640562 0.6440
## tsi.cathypereutrophic -0.0686111 0.22077203 -0.3107779 0.7568
## tsi.catmesotrophic
                         0.0978619 0.12262431 0.7980632 0.4274
## tsi.catoligotrophic
                         0.1745667 0.17842440 0.9783794 0.3310
##
## Correlation:
##
                        (Intr) lg10_m l10___ lg10_. lg10_c ts.cth ts.ctm
## log10_maxdepth
                        -0.324
## log10_lake_area_ha
                        -0.287 - 0.458
## log10_pct.ag
                        -0.048 -0.221 0.000
## log10_chla
                        -0.906 0.201 0.088 -0.002
## tsi.cathypereutrophic 0.416 0.068 -0.149 -0.274 -0.495
## tsi.catmesotrophic
                        -0.801 0.006 0.131 0.031 0.824 -0.331
                      -0.813 0.000 0.099 0.018 0.892 -0.392 0.896
## tsi.catoligotrophic
## Standardized residuals:
```

```
Med
                      Q1
## -2.0877939 -0.7435957 0.1885692 0.6979656 1.8033777
## Residual standard error: 0.2429035
## Degrees of freedom: 83 total; 75 residual
suppressWarnings(dredge.coh.accndvi.lt<-dredge(gls.coh.accndvi.lt, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.lt))
## Global model call: gls(model = accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha +
##
       log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.r2,
       correlation = corExp(form = ~nhd_lat + nhd_long))
##
## Model selection table
      (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc delta
## 1 0.5859
                                                        3 -0.205 6.7 0.00
## 2 0.6417 -0.08064
                                                        4 -1.198 10.9 4.19
## 5 0.4983
                                    0.08116
                                                        4 -1.298 11.1 4.39
## 9 0.5908
                                             -0.006597 4 -2.297 13.1 6.39
## 3 0.5584
                            0.01266
                                                        4 -2.421 13.4 6.64
## 6 0.5954 -0.06707
                                    0.03417
                                                        5 -2.585 15.9 9.23
   weight
## 1 0.757
## 2 0.093
## 5 0.084
## 9 0.031
## 3 0.027
## 6 0.007
## Models ranked by AICc(x)
#Region 2: Minnesota, Wisconsin, Michigan
modvars.accndvi.r3<-modvars.accndvi[modvars.accndvi$state_name %in% c("Pennsylvania","New York","Rhode
#short timescales
gls.coh.accndvi.st<-gls(accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                        data=modvars.accndvi.r3,
                        correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.st)
## Generalized least squares fit by REML
    Model: accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
##
                                                                                       log10_chla + tsi
##
    Data: modvars.accndvi.r3
##
         AIC
                  BIC
                        logLik
##
    9.164191 22.07008 4.417904
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
        range
## 0.003779199
## Coefficients:
```

```
t-value p-value
##
                            Value Std.Error
                       0.21241634 0.26294047 0.8078496 0.4253
## (Intercept)
## log10 maxdepth
                       0.03208964 0.09960645 0.3221643 0.7495
## log10_lake_area_ha -0.00426500 0.04508113 -0.0946071
                                                         0.9252
## log10_pct.ag
                       0.10384655 0.09153875 1.1344545
## log10_chla
                       0.09041243 0.23645366 0.3823685 0.7048
                       0.01669973 0.11205213 0.1490354 0.8825
## tsi.catmesotrophic
## tsi.catoligotrophic 0.00182967 0.20486674 0.0089310 0.9929
##
## Correlation:
##
                      (Intr) lg10_m l10___ lg10_. lg10_c ts.ctm
## log10_maxdepth
                      -0.322
## log10_lake_area_ha
                       0.065 - 0.720
## log10_pct.ag
                       0.229 -0.181 0.217
## log10_chla
                      -0.924 0.248 -0.229 -0.404
## tsi.catmesotrophic -0.812 0.052 -0.088 -0.264 0.829
## tsi.catoligotrophic -0.891 0.144 -0.081 -0.251 0.891 0.827
##
## Standardized residuals:
          Min
                                               Q3
## -1.66726060 -0.68761196 0.01185272 0.64105237 1.85204595
## Residual standard error: 0.1713488
## Degrees of freedom: 38 total; 31 residual
suppressWarnings(dredge.coh.accndvi.st<-dredge(gls.coh.accndvi.st, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.st))
## Global model call: gls(model = accndvicoh.ts1 ~ log10_maxdepth + log10_lake_area_ha +
##
      log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.r3,
##
      correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
       (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc delta
## 1 0.3585
                                                       3 12.262 -17.8 0.00
## 9 0.3097
                                               0.1318 4 12.069 -14.9 2.89
## 2 0.2662 0.1125
                                                       4 11.579 -13.9 3.87
## 5 0.3384
                                    0.0173
                                                       4 10.493 -11.8 6.04
## 3 0.3411
                          0.007171
                                                       4 9.690 -10.2 7.65
## 10 0.2586 0.0720
                                               0.1096 5 10.880 -9.9 7.93
##
     weight
## 1
     0.681
## 9
     0.160
## 2 0.098
## 5
      0.033
## 3
      0.015
## 10 0.013
## Models ranked by AICc(x)
#long timescales
gls.coh.accndvi.lt<-gls(accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag + log10_chl
                       data=modvars.accndvi.r3,
                        correlation=corExp(form = ~ nhd_lat + nhd_long))
```

```
summary(gls.coh.accndvi.lt)
## Generalized least squares fit by REML
    Model: accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha + log10_pct.ag +
                                                                                    log10_chla + tsi
##
    Data: modvars.accndvi.r3
##
         ATC
                  BIC
                         logLik
##
    35.08597 47.99186 -8.542985
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd lat + nhd long
## Parameter estimate(s):
       range
## 0.03300913
##
## Coefficients:
##
                           Value Std.Error
                                             t-value p-value
## (Intercept)
                       0.8880316 0.4131097 2.1496266 0.0395
## log10_maxdepth
                      -0.1846762 0.1587917 -1.1630088 0.2537
## log10_pct.ag
                       0.0055346 0.1420425 0.0389647 0.9692
## log10_chla
                      -0.1337809 0.3610361 -0.3705470
                                                     0.7135
## tsi.catmesotrophic -0.1366497 0.1713489 -0.7974937 0.4312
## tsi.catoligotrophic -0.0227148 0.3098206 -0.0733160 0.9420
## Correlation:
##
                      (Intr) lg10_m l10___ lg10_. lg10_c ts.ctm
## log10 maxdepth
                      -0.373
## log10_lake_area_ha 0.080 -0.699
## log10_pct.ag
                       0.195 -0.153 0.217
## log10_chla
                      -0.917 0.275 -0.246 -0.386
## tsi.catmesotrophic -0.813 0.067 -0.091 -0.272
## tsi.catoligotrophic -0.884  0.178 -0.107 -0.240  0.897
                                                        0.837
## Standardized residuals:
                       Q1
                                 Med
                                              Q3
                                                         Max
## -1.65144556 -0.74932722 0.06598187 0.72630229 1.51875534
## Residual standard error: 0.2651477
## Degrees of freedom: 38 total; 31 residual
suppressWarnings(dredge.coh.accndvi.lt<-dredge(gls.coh.accndvi.lt, beta="sd")) #intercept only is best
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.lt))
## Global model call: gls(model = accndvicoh.ts2 ~ log10_maxdepth + log10_lake_area_ha +
      log10_pct.ag + log10_chla + tsi.cat, data = modvars.accndvi.r3,
##
      correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
      (Int) 110_chl 110_lak_are_ha 110_mxd 110_pct.ag df logLik AICc delta
                                                      3 -3.900 14.5 0.00
## 1 0.5536
## 5 0.7727
                                  -0.1840
                                                      4 -3.728 16.7 2.16
## 9 0.5605
                                            -0.01839 4 -5.046 19.3 4.80
```