

TERMINOLOGÍA

TERMINOLOGÍA

Diagrama esquemático:

Esquema de las interconexiones de los elementos del circuito.

LAYOUT:

Diseño de la placa PCB donde vemos las huellas y las pistas.

TERMINOLOGÍA

PAD: Zona de contacto del PCB con el componente.

- Through-hole: Circulares con área para soldar y agujero
- SMD: Rectangulares solo en la cara TOP para soldar.

HUELLA: Diseño de los pads para un componente en particular. Se pueden usar las estándar del propio programa de diseño o crear una desde 0.

TERMINOLOGÍA

- **Soldermask:** Capa de soldadura
- Silkscreen: Capa de serigrafía
- **NET/Rat/Traza:** Línea que comunica dos componentes en el esquema o a la hora del diseño del PCB.
- **Via:** Agujero que conecta diferentes capas de una PCB para conectar distintos elementos.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL ESQUEMA

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL ESQUEMA

Es importante proporcionar la suficiente **información sobre cada componente**: Nombre, valor, tipo, huella...

Que sea un esquema organizado ayuda a la posterior diseño de PCB y montaje de la placa, se debe intentar que la señal vaya **de izquierda a derecha** separando cada módulo del circuito, como pueden ser alimentación, alta/baja frecuencia, alta/baja potencia, salidas...

Que se parezca al resultado final deseado del PCB

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL ESQUEMA

Hay que **evitar el cruce de señales** dentro de lo posible y asegurarse de que queda claro qué está conectado con qué.

Ajustarse a la cuadrícula del grid y emplear buses pueden clarificar el esquema.

Usar conectores globales para GND, Vcc... para evitar pistas largas.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

Realizar las colocación de componentes comenzando por los de entrada y salida, teniendo en cuenta la posición en la que tienen que quedar dispuestos.

Al igual que en el esquema, intentamos colocarlos por bloques lógicos para minimizar las trazas y evitar posibles problemas parasitos.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

Las pistas deben tener un **ancho de pista** determinado según la corriente máxima que vayan a soportar, aproximadamente:

- Ancho Pista	Corriente máxima
. 4mm	10A
· 2mm	5A
. 1,5mm	4A
. 1mm	3A
. 0,5mm	2A
. 0,2mm	0.5A (500mA)

En las señales digitales es raro que se superen los 500 mA, por ejemplo, en la salida de un Arduino tendremos máximo 40 mA, en raspberry 16 mA...

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

La **separación mínima entre pistas** depende de la diferencia de tensión máxima entre las dos pistas. En caso de tensiones de trabajo digitales (5-10V), la separación mínima será de 0.3mm.

Dif. de Potencial en Voltios Separación en mm	
DDP < 50	0.5
50 < DDP < 100	0.7
100 < DDP < 170	1
180 < DDP < 250	1.2
250 < DDP < 500	3

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

Se deben hacer coincidir las pistas con la rejilla del programa de diseño o con una inclinación de 45° y los puntos de soldadura con las intersecciones entre las líneas.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

No se deben realizar pistas con ángulos de 90°, se suavizaran las curvas con ángulos de 135°. Y lo mismo con las intersecciones entre 3 pistas.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

Los puntos de soldadura serán circulares con un diámetro de, al menos, el doble del ancho de la pista

Todos los componentes se colocarán paralelos a los bordes de las placas.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

No se pasarán pistas entre los terminales de componentes activos como transistores o tiristores... Pero si se podra hacer con componentes pasivos.

Se debe prever la sujeción de la placa a una caja o chasis, por lo que habrá que dejar espacio para el taladro en las esquinas de la placa.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

Se debe dejar una o dos décimas de pulgada de patilla entre el cuerpo de los componentes y el punto de soldadura.

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

Para facilitar la soldadura, se deben evitar grandes áreas de cobre, para que no se extiendan la soldadura y provoque cortocircuitos

RECOMENDACIONES Y NORMAS A LA HORA DE DISEÑAR EL LAYOUT

Cuando haya que unir nodos cercanos, siempre hay que intentar minimizar los tramos de pista que llegan a un mismo punto para evitar que al soldar una se desuelde otra.

