

Theories of Computation: Assignment 2

due on Fri 14 March, 12:00

Suzie is a colleague of yours, studying the first year of their Computer Science degree at Birmingham. Because of this, Suzie learned about digital logic during their first semester.

Suzie writes a context-free grammar to generate logical expressions over the alphabet $\Sigma = \{0, 1, ., +, \neg, (,)\}$. They represent this CFG in Backus-Naur Form as follows:

$$\Rightarrow A ::= 0 \mid 1 \mid (A+A) \mid (A \cdot A) \mid \neg A$$

Note that, for clairity, Suzie's grammar uses $\neg A$ to mean the negation of the logical expression A, instead of \overline{A} as taught in *Computer Systems & Professional Practice*.

Given any expression E generated by the grammar, Suzie defines the *depth* of E as the *number of triangles in the longest branch* of its derivation tree *minus 1*. For example, the depth of 1 is 0, the depth of $\neg 0$ is 1, and the depth of (0 + (0 + 0)) is 2.

Exercise 1. Draw a derivation tree for the expression $((0.1) + \neg (0.0))$ and, by doing so, deduce the depth of the expression. [3 points]

Suzie writes an algorithm for computing the depth n of an expression generated by their grammar. When given an expression of depth $n \le 10$, it returns an answer in $8n^3 + 8$ milliseconds; for trees of higher depth, it returns an answer in $2n + n^2 + 18$ milliseconds.

Exercise 2. Show that Suzie's depth-checking algorithm is in the complexity class $O(n^2)$. [3 points]

Suzie realises that there is a relationship between the depth of an expression and the total number of Boolean symbols (0's and 1's) in that expression.

Exercise 3. Prove, using structural induction, that the total number of Boolean symbols in a given expression E generated by Suzie's CFG is at most 2^n , where n is the depth of E. [4 points]

When you submit, look for the word 'Submitted!' - otherwise, you may have not submitted properly.

Assignment 2 2