彪哥带你学强化学习

17.深入理解PPO算法

DEEPLY UNDERSTAND REINFORCEMENT LEARNING

讲师: 韩路彪

PPO算法:理论基础同TRPO算法,训练过程上的优化

TRPO算法的回顾

maximize
$$\hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right]$$

subject to $\hat{\mathbb{E}}_t \left[\text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right] \leq \delta.$

共轭梯度法求解

问题

- 计算复杂(依赖二阶优化)
- 无法用于噪声模型 (如dropout)
- 无法用于参数共享模型

核心思想:限制新旧策略变化不要太大

思路一:自适应KL惩罚系数

使用梯度下降法优化目标函数

$$\underset{\theta}{\text{maximize}} \, \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t - \beta \text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right]$$

自适应调整惩罚系数β

Compute
$$d = \hat{\mathbb{E}}_t[\mathrm{KL}[\pi_{\theta_{\mathrm{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]]$$

- If
$$d < d_{\text{targ}}/1.5$$
, $\beta \leftarrow \beta/2$

- If
$$d > d_{\text{targ}} \times 1.5$$
, $\beta \leftarrow \beta \times 2$

d_{targ}: 超参数

效果不佳

思路二:裁切代理目标

定义为概率比 $r_t(\theta)$

原TRPO优化目标

maximize

$$\hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right]$$

subject to
$$\hat{\mathbb{E}}_t[\mathrm{KL}[\pi_{\theta_{\mathrm{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]] \leq \delta.$$

PPO优化目标函数

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

PPO算法

论文测试结果

algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Adaptive KL $d_{\text{targ}} = 0.003$	0.68
Adaptive KL $d_{\text{targ}} = 0.01$	0.74
Adaptive KL $d_{\text{targ}} = 0.03$	0.71
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

PPO算法

clip方法的裁切图

clip方法举例

π(a s)	0.6							
ε	0.2		_					
			Α	2		A	-2	
πnew(a s)	r	r_clip	rA	r_clipA	Lclip	rA	r_clipA	Lclip
0.1	0.17	0.8	0.33	1.6	0.33	-0.33	-1.6	-1.6
0.2	0.33	0.8	0.67	1.6	0.67	-0.67	-1.6	-1.6
0.3	0.50	0.8	1	1.6	1	-1	-1.6	-1.6
0.4	0.67	0.8	1.33	1.6	1.33	-1.33	-1.6	-1.6
0.5	0.83	0.833	1.67	1.6667	1.67	-1.67	-1.67	-1.67
0.6	1.00	1	2	2	2	-2	-2	-2
0.7	1.17	1.167	2.33	2.3333	2.33	-2.33	-2.33	-2.33
0.8	1.33	1.2	2.67	2.4	2.4	-2.67	-2.4	-2.67
0.9	1.50	1.2	3	2.4	2.4	-3	-2.4	-3

clip方法举例

π(a s)	0.6								
ε	0.2								
			Α		2		Α	-2	
πnew(a s)	r	r_clip	rA		r_clipA	Lclip	rA	r_clipA	Lclip
0.1	0.17	0.8	0.	33	1.6	0.33	-0.33	-1.6	-1.6
0.2	0.33	0.8	0.	67	1.6	0.67	-0.67	-1.6	-1.6
0.3	0.50	0.8		1	1.6	1	-1	-1.6	-1.6
0.4	0.67	0.8	1.	33	1.6	1.33	-1.33	-1.6	-1.6
0.5	0.83	0.833	1.	67	1.6667	1.67	-1.67	-1.67	-1.67
0.6	1.00	1		2	2	2	-2	-2	-2
0.7	1.17	1.167	2.	33	2.3333	2.33	-2.33	-2.33	-2.33
0.8	1.33	1.2	2.	67	2.4	2.4	-2.67	-2.4	-2.67
0.9	1.50	1.2		3	2.4	2.4	-3	-2.4	-3

PPO算法

一个隐藏问题:新策略 $\pi_{new}(a|s)$ 在更新策略前怎么计算出来的?

鸡生蛋?蛋生鸡?

解决方法:一批数据(比如一条轨迹)多轮更新

一批数据更新的过程:

- 1. 采样一批数据
- 2. 计算样本里边的所有(s,a)对的概率 $\pi_{old}(a|s)$
- 3. 做多轮更新(一般3到10轮)
 - ① 用现在的参数计算样本里边的所有(s,a)对的概率 $\pi_{new}(a|s)$
 - ② 用 $\pi_{old}(a|s)$ (每次不变)和 $\pi_{new}(a|s)$ 计算比例r , 并计算损失函数-L
 - ③ 梯度下降更新θ

实际计算 $r(\theta)$ 时,常使用对数概率 log $\pi(a|s)$ 避免数值问题: $r(\theta) = \exp(\log \pi_n \exp(a|s) - \log \pi_o \log(a|s))$