Consultation for Exam—2 by Roman Avdeev

2022/2023. Вариант 1. Задача 1. Определите все значения, которые может принимать размерность ядра линейного оператора $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ при условии, что в пересечении ядра и образа содержится вектор v = (1, 0, -1, 2).

Пусть вектор $v = e_1$

Очевидно, что

 $\dim \ker \varphi \geqslant 1$

 $\dim \operatorname{Im} \varphi \geqslant 1$

 $\dim \ker \varphi + \dim \operatorname{Im} \, \varphi = 4$

 $\dim \ker \varphi = 3$

Дополним e_1 до базиса

$$e_2 = (0, 1, 0, 0)$$

$$e_3 = (0, 0, 1, 0)$$

$$e_4 = (0, 0, 0, 1)$$

Теперь в базисе $e = (e_1, e_2, e_3, e_4)$ построим матрицу линейного отображения

Рассмотрим несколько случаев

1. $\dim \ker \varphi = 1 \Rightarrow \dim \operatorname{Im} \varphi = 3$

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. $\dim \ker \varphi = 2 \Rightarrow \dim \operatorname{Im} \varphi = 2$

$$A(\varphi, \mathbf{e}) \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

3. $\dim \ker \varphi = 3 \Rightarrow \dim \operatorname{Im} \varphi = 1$

2022/2023. Вариант 1. Задача 2. Приведите пример неопределённой квадратичной формы $Q:\mathbb{R}^3 \to \mathbb{R}$, принимающей отрицательные значения на всех ненулевых векторах подпространства $\{(x,y,z)\in\mathbb{R}^3\mid x+y-2z=0\}$. Ответ представьте в стандартном виде многочлена 2-й степени от координат x,y,z

Положим, что $U = \{(x, y, z) \in \mathbb{R}^3 | x + y - 2z = 0\}$

Возьмем базис $e = (e_1, e_2, e_3)$, такой что

$$e_1 = (1, -1, 0)$$

 $e_2 = (2, 0, 1)$
 $e_3 = (1, 0, 0)$

В этом базисе квадратичная форма имеет матрицу

$$B(Q, \mathbf{e}) = \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Она будет неопредел
нной, так как в матрице присутствуют -1 и 1

Ограничим Q на данное подпространство U

$$Q|_{U} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}$$

Пусть C — матрица перехода от стандартного базиса к базису $\mathfrak e$, тогда C имеет вид

$$C = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Тогда, B' — матрица формы Q в стандартном базисе, причем

$$B' = (C^{-1})^T B C^{-1},$$

из этой матрицы мы получим требуемый многочлен

Пример.

$$Q(x, y, z) = -x^2 - y^2 - z^2 + (x + 2 - 2z)^2$$

$$Q(0, 0, 1) = 3 \ge 0$$

2022/2023. Вариант 1. Задача 3. В евклидовом пространстве \mathbb{R}^3 со стандартным скалярным произведением даны векторы

$$u_1 = (1, -1, 2), u_2 = (1, 1, -1), u_3 = (1, 0, -1)$$

Обозначим через v_1,v_2,v_3 ортогональные проекции вектора v=(5,3,-1) на подпространства $u_1^\perp,u_2^\perp,u_3^\perp$ соответственно. Найдите объём параллелепипеда, натянутого на векторы v_1,v_2,v_3

$$\operatorname{pr}_{u_i^{\perp}}v = v - \operatorname{ort}_{u_i^{\perp}}v = v - \operatorname{pr}_{\langle u_i \rangle}v = v - \frac{(v, u_i)}{(u_i, u_i)}u_i$$

Применяя эту формулу получим три вектора

Далее считаем объем трехмерного параллелепипеда по формуле (например, как определитель матрицы $3\times 3)^1$

¹Рома не дорешал :)

2022/2023. Вариант 1. Задача 4. Приведите пример недиагонализуемого линейного оператора φ в \mathbb{R}^2 , для которого оператор $\varphi^2+3\varphi$ диагонализуем.

Возьмем жорданову клетку

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \Rightarrow A^2 + 3A = \begin{pmatrix} \lambda^2 & 2\lambda \\ 0 & \lambda^2 \end{pmatrix} + \begin{pmatrix} 3\lambda & 3 \\ 0 & 3\lambda \end{pmatrix} = \begin{pmatrix} \lambda^2 + 3\lambda & 2\lambda + 3 \\ 0 & \lambda^2 + 3\lambda \end{pmatrix}$$

При $2\lambda+3=0$ получаем диагонализуемый линейный оператор, то есть $\lambda=-\frac{3}{2}$

2022/2023. Вариант 1. Задача 5. Вставьте вместо звёздочки, ромбика и кружочка подходящие числа таким образом, чтобы линейный оператор $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$, имеющий в стандартном базисе матрицу

был ортогональным. Найдите ортонормированный базис, в котором матрица оператора φ имеет канонический вид, и выпишите эту матрицу. Укажите ось и угол поворота, определяемого оператором φ .

Столбцы (строки) этой матрицы должны образовывать ортонормированный базис

$$2/3 \cdot \star \cdot \frac{2}{9} + \frac{4}{9} = 0 \Longrightarrow \star = -\frac{1}{3}$$

$$\diamond = -\frac{2}{3}$$

$$\circ = -\frac{1}{3}$$

2022/2023. Вариант 1. Задача 6. Существует ли матрица $A\in \mathrm{Mat}_{2\times 3}(\mathbb{R})$ ранга 2 со следующими свойствами:

1) одно из сингулярных значений матрицы A равно $\sqrt{10};$

2) ближайшая к A по норме Фробениуса матрица ранга 1 есть $B = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix}$?

Если существует, то предъявите такую матрицу.

Представим матрицу B в виде произведения столбца на строку и нормируем

$$B = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \end{pmatrix} = \sqrt{30} \begin{pmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{pmatrix} \sqrt{30} \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$

Значит, существует требуемая матрица A, так как $\sqrt{10} < \sqrt{30}$

$$A = u_1 \sigma_1 v_1^T + u_2 \sigma_2 v_2^T$$

= $B + u_2 \sigma_2 v_2^T$

Тогда пусть $\sigma_2 = \sqrt{10}$

Выберем u_2 и v_2 так

$$u_2 = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$
$$v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$$

Остается только перемножить и сложить по формуле

2022/2023. Вариант 1. Задача 7. Найдите прямоугольную декартову систему координат в \mathbb{R}^3 (выражение старых координат через новые), в которой уравнение поверхности

$$3x^2 + 2y^2 - 4xz - 4y + 7 = 0$$

имеет канонический вид. Укажите этот вид, определите тип поверхности и нарисуйте её эскиз.

Выделяем квадратичную форму

$$(x,y,z): \begin{pmatrix} 3 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & 0 \end{pmatrix}$$

Ограничиваем ее

$$(x,z):\begin{pmatrix} 3 & -2 \\ -2 & 0 \end{pmatrix}$$

А дальше ничего никто не сказал:)