Stanford University ACM Team Notebook (2014-15)

Table of Contents

Combinatorial optimization

```
Min-cost max-flow (C++)
```

- Push-relabel max-flow (C++)
- Min-cost matching (C++)
 Max bipartite matching (C++)
 Global min cut (C++) Max bipartite matching (C+6)
 Global min cut (C++)
 Graph cut inference (C++)

Geometry

- 8. Convex hull (C++)
 9. Miscellaneous geon
- Miscellaneous geometry (C++)
 Java geometry (Java)
 3D geometry (Java)
 Slow Delaunay triangulation (C++)

Numerical algorithms

- 13. Number theoretic algorithms (modular. Chinese remainder. linear Diophantine) (C++)
 14. Systems of linear equations, matrix inverse, determinant (C++)
 15. Reduced row echelon form, matrix rank (C++)
 16. East Fourier transform (C++)
 17. Simplex algorithm (C++)
 17. Simplex algorithm (C++)

Graph algorithms

- 18. Fast Dijkstra's al19. Strongly connect20. Eulerian Path (C
- - Eulerian Path (C++

Data structures

- 21. Suffix arrays (C++)
 22. Binary Indexed Tree
 23. Union-Find Set (C/C++)
 24. KD-tree (C++)
 25. Splay Tree (C++)
 26. Lazy Segment Tree (Ja
 27. Lowest Common Ance

- Lazy Segment Tree (Java)

Miscellaneous

- Longest increasing subsequence (C++)

- Knuth-Morris-Pratt (C++)

Dinic.cc 1/35

// Adjacency List implementation of Dinic's blocking flow algorithm. // This is very fast in practice, and only loses to push-relabel flow. if (amt == 0) continue; for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) { e->flow += ant; G[e->to][e->index].flow -= amt; maximum flow value
 To obtain the actual flow values, look at all edges with capacity > 0 (zero capacity edges are residual edges). void AddEdge(int from, int to, int cap) {
 G(from).usb back(Edge(from, to, cap, 0, G[to].size()));
 if (from == to) G[from].lose(size() index);
 G[to].ush_back(Edge(to, from, 0, 0, G[from].size() - 1)); struct Edge {
 int from, to, cap, flow, index;
 int from, int to, int cap, int flow, int index) :
 from(from), to(to), cap(cap), flow(flow), index(index) {}
} int head = 0, tail = 0;
(tail+1) = 5;
while (head < tail) {
 int x = Q[head+4];
 for (int i = 0; i < G[x].size(); i++) {
 sege &e = G[x][i];
 if (ladde to) && e.cap - e.flow > 0) {
 dad[e.to] & sG[x][i];
 Q[tail+1] = e.tc;
 Q[tail+1] = e.tc; long long BlockingFlow(int s, int t) {
fill(dad.begin(), dad.end(), (Edge *) NULL);
dad[s] = &G[0][0] - 1; Dinic(int N) : N(N), G(N), dad(N), Q(N) {} - graph, constructed using AddEdge() const int INF = 2000000000; vector<vector<Edge> > G; vector<Edge *> dad; vector<int> 0; if (!dad[t]) return 0; totflow += amt; #include <cmath>
#include <vector>
#include <iostream>
#include <queue> // Running time: // O(|V|^2 |E|) using namespace std; } return totflow; struct Dinic {
 int N; // - sin // OUTPUT: // - max // - To // cap // INPUT: // - gro // - sou

```
long long GetMaxFlow(int s, int t) {
    long torflow = 0;
    while (long long flow = BlockingFlow(s, t))
    torflow == flow;
    return tofflow;
};
```

MinCostMaxFlow.cc 2/35

```
// Implementation of min cost max flow algorithm using adjacency
// matrix (Edmonds and Karp 1972). This implementation keeps track of
// forward reverse edges separately (so you can set cap[i][i]] !=
// copil[i]). For a regular max flow, set all edge costs to 0.
                                                                                            // funning time, O(|V|^{\prime}2) cost per augmentation max flow: O(|V|^{\prime}3) augmentations // min cost max flow: O(|V|^{\prime}4^{*}*{\it MAX\_EDGE\_COST}) augmentations

    (maximum flow value, minimum cost value)
    To obtain the actual flow, look at positive values only.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \label{eq:mincostMaxFlow(int N):} N(N), cap(N, VL(N)), flow(N, VL(N)), flow(N, VL(N)), flow(N), dist(N), dist(N), width(N), dad(N) <math display="inline">\{\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    void AddEdge(int from, int to, L cap, L cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 L Dijkstra(int s, int t) {
fill(found.begin(), found.end(), false);
fill(dist.begin(), dist.end(), INF);
fill(width.begin(), didth.end(), 0);
                                                                                                                                                                                                                                graph, constructed using AddEdge()sourcesink
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           const L INF = numeric_limits<L>::max() / 4;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     typedef vector/int> VI;
typedef vector/VI> VVI;
typedef long long L;
typedef vector(L) VL;
typedef vector(VL) VL;
typedef vector(NL) VL;
typedef pair/int, int> PII;
typedef vector(PII> VPII;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        struct MinCostMaxFlow {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            int N;
VVL cap, flow, cost;
VI found;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               VL dist, pi, width;
VPII dad;
                                                                                                                                                                                                                                                                                                                                                                                                                 #include <cmath>
#include <vector>
#include <iostream>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 dist[s] = 0;
width[s] = INF;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              while (s != -1)
                                                                                                                                                                                                                                                                                                   //
// OUTPUT:
```

PushRelabel.cc 3/35

```
// Adjacency List implementation of FIFO push relabel maximum flow with the gap relabeling heuristic. This implementation is right with the gap relabeling heuristic. This implementation is right front-faulkerson. It solves random problems with 10000 vertices and 1000000 eages in a few seconds, though it is possible to construct test cases that anning time:

| Running time:
| C(|V|/3) |
| INPUT:
| graph, constructed using AddEdge()
| - source around flow values, look at all edges with anning time:
| OUTPUT:
| OUTPUT:
| To obtain the actual flow values, look at all edges with affine vactors
| To obtain the actual flow values, look at all edges with affine constructed using namespace std:
| Typedef long long LL;
| Struct Edge (inf from, inf to, inf cap, inf flow, index(index) { inf Nim Nim Nim Nim Volo), cap(cap), flow(flow), index(index) { inf Nim Volo vectorill excess; vectorill excess; vectorill excess; vectorill excess; vectorill, excess; vectorill, excess; vectorill, out; attive, count; queuecintly Qi
```

```
PushBelabel(int N) : N(N), G(N), excess(N), dist(N), attive(N), count(27N) ()

oid addige(first from, int conf. int conf. ()

of (*ron_) jush back(fige(from, to, con., o, of (*ron_) size().));

if (from_) jush back(fige(from, to, con., o, of (*ron_) size().));

if (fort) jush back(fige(from, to, con., o, of (*ron_) size().));

oid fige(fige) fige(fige) fige();

if (dist(=from) < dist([c.to] | fige() | fig
```

MinCostMatching.cc 4/35

```
)
for (int j = 0; j < n; j++) {
for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       // construct primal solution satisfying complementary slackness laste = V(f_0, -1); but the = V(f_0, -1); int mated = 0; in this = 0; i on; i++) { for (int i = 0; i on; j++) { for (int i = 0; i on; j++) { if (mate[j] = -1) continue; if (fabs(cot[i][j] - u[j] - v[j]) < 1e-10) {
                                                                          // This is an O(n^2) implementation of a shortest augmenting path // algorithm for finding min cost perfect matchings in dense // graphs. In practice, it solves 1000×1000 problems in around 1 // second.
                                                                                                                                                                                                         \cos(i) (i) = cost for pairing left node i with right node j lmate[i] = index of right node that left node i pairs with Rmate[j] = index of left node that right node j pairs with
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // construct dual feasible solution
VD ((n);
VD ((n);
For (int i = 0; i < n; i++) {
For (int j = 1; j < n; j++) (i = 1; j < n; j++) (i = min(u[i], cost[i][j]);
For (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);
                          // Min cost bipartite matching via shortest augmenting paths
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // repeat until primal solution is feasible
while (mated < n) {</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // initialize Dijkstra
fill(dad.begin(), dad.end(), .1);
fill(sen.begin(), sen.end(), 0);
for (int k = 0; k < n; k++)
dist[k] = cost[s][k] - u[s] - v[k];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     // find closest
j = -1;
for (int k = 0; k < n; k++) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // find an unmatched Left node
int s = 0;
while (Lmate[s] != -1) s++;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        int n = int(cost.size());
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Lmate[i] = j;
Rmate[j] = i;
mated++;
                                                                                                                                                                                                                                                                                                                                                                                                                            #include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             int j = 0;
while (true) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       VD dist(n);
VI dad(n);
VI seen(n);
```

```
if (seen[k]) continue;
} if (j == -1 | | dist[k] < dist[j]) j = k;
} seen[j] = 1;

// terminotion condition
if (Rmate[j] = -1) break;
// re(ar ne paper)s

const int i = Bmate[j];
for (int k = 0; k < n; k++) {
    if (seep[k]) continue;
    const double new dist = dist[j] + cost[i][k] - u[i] - v[k];
    if (dist[k]) new dist;
    if (mist[k]) new dist[k])
    if dist[k] new dist[k]
    if dist[k]
    if
```

MaxBipartiteMatching.cc 5/35

```
// This code performs maximum bipartite matching.
// Running time: O(|E| |V|) -- often much faster in practice
// Running time: O(|E| |V|) -- often much faster in practice
// OUTPUT: w[i][j] = edge between row node i .1 if unassigned
// OUTPUT: w[i] = assignment for row node i, -1 if unassigned
function returns number of matches made
#include <vector:
// typede vector:int> VI;
typede vec
```

MinCut.cc 6/35

```
last = -1;
for (int ] = 1; j < N; j++)
if (ladded[j] && (last = -1 || w[j] > w[last])) last = j;
if (i == phase-1) {
  for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j];
  for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];
  used[last] = true;</pre>
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                cut.push_back(last);
if (best_weight == -1 || w[last] < best_weight) {</pre>
                                                                                                                                                                                                       // OUTPUT: // - (min cut value, nodes in half of min cut)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   for (int phase = N-1; phase >= 0; phase--) {
VI w = waights[0];
VI added = used;
int prev, last = 0;
for (int i = 0; i < phase; i++) {
prev = last;
                                                                                                                                                           - graph, constructed using AddEdge()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             return make_pair(best_weight, best_cut);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    pair.int, VI> GetMinCut(VVI &weights) {
  int N = weights.size();
  VI used(N), cut, best_cut;
  int best_weight = -1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        } else {
  for (int j = 0; j < N; j++)
  w[j] += weights[last][j];
  added[last] = true;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  best_cut = cut;
best_weight = w[last];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    const int INF = 1000000000;
                                                                                                                                                                                                                                                                                                                                                                                                                                           typedef vector<int> VI;
typedef vector<VI> VVI;
                                                                                                                                                                                                                                                                                #include <cmath>
#include <vector>
#include <iostream>
                                                                                                                                                                                                                                                                                                                                                                                            using namespace std;
                                               // Running time:
// 0(|V|^3)
                                                                                                                              // INPUT:
```

GraphCutInference.cc 7/35

```
/// To use this code, create a GraphCutInference object, and call the
// DoInference() method. To perform maximization instead of minimization,
// ensure that #define MAXIMIZATION is enabled.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                phi\_\{ij\}(\theta,\theta) \, + \, phi\_\{ij\}(1,1) \, <= \, phi\_\{ij\}(\theta,1) \, + \, phi\_\{ij\}(1,\theta) \quad (*)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   // INPUT: phi -- a matrix such that phi[i][i][u][v] = phi_{i}(i)(u, v)
// x = phi_{i}(u)
// x = vector where the optimal solution will be stored
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          // This can also be used to solve maximization problems where the // direction of the inequality in (\ast) is reversed.
                                                                                                                                                        sum\_i \ psi\_i(x[i]) \\ + sum\_\{i < j\} \ phi\_\{ij\}(x[i], x[j])
// Special-purpose {0,1} combinatorial optimization solver for
// problems of the following by a reduction to graph cuts:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  int DoInference(const WWVI &phi, const WI &psi, VI &x) { int M = phi.size(); cap = VVI(M+2, VI(M+2)); VI b(W); VI b(W); int c = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                int Augment(int s, int t, int a) {
    reached[s] = 1;
    if (s == t) return a;
    for (int k = 0; k < N; k++) {
        if (reached[k]) continue;
    if (int a a min(a, cap[s][k] - flow[s][k])) {
        if (int b = Augment(k, t, aa)) {
            flow[s][k] += b;
            flow[s][k] = b;

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \ensuremath{{//}}\xspace /\ensuremath{{//}}\xspace comment out following line for minimization \ensuremath{{\rm H}}\xspace define \ensuremath{{\rm MAXIMIZATION}}\xspace
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                int totflow = 0;
while (int ant = Augment(s, t, INF)) {
    totflow += ant;
    fill(reached.begin(), reached.end(), 0);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       // OUTPUT: value of the optimal solution
                                                                                                                                                                                                                                                                                                                                                                            psi\_i : {0, 1} --> R
phi\_\{ij\} : {0, 1} × {0, 1} --> R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       int GetMaxFlow(int s, int t) {
  N = cap.size();
  flow = VVI(N, VI(N));
  reached = VI(N);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<VVI> VVVI;
typedef vector<VVI> VWVI;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        const int INF = 1000000000;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          struct GraphCutInference {
                                                                                                                                                               minimize
x[1]...x[n] in {0,1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            #include <vector>
#include <iostream>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                return totflow;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WI cap, flow;
VI reached;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   }
return 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // such that
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ~ <sub>~</sub>
                                                                                                                                                                                                                                                                                                                              // where
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             int N;
```

```
for (int i = 0; i < M; i++) {
    cl = 0; i < M; i++) {
    cl = psi[i][1] - psi[i][0];
    cl = psi[i][1] - psi[i][0];
    for (int j = 0; j < i; j++)
    for [i][1][1][1] - phi[i][1][1] - phi[i][1][1];
    for (int j = bit; j < M; j++) {
        for (int j = bit; i][0][1] - phi[i][1][0][0];
    pli = phi[i][1][0][0] - phi[i][1][0][0];
    cl = phi[i][1][0][0]].</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  int score = GetMaxFlow(N, N+1);
fill(reached.begin(), reached.end(), 0);
Augment(M, N+1, INF);
x = VI(N);
for (int i = 0; i < N; i++) x[i] = reached[i] ? 0 : 1;
Score += C;
##ifdef MAXIMIZATION</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       int numcases; cin > numcases; for (int caseno = 0; caseno < numcases; caseno ++) { int c, d, v; cin >> c >> d >> v; cin >> c >> d >> v;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       cout << graph.DoInference(phi, psi, x) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      VWVVI phi(c+d, VVVI(c+d, VVI(2, VI(2))));
VVI psi(c+d, VI(2));
for (int i = 0; i < v; i++) {</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             // solver for "Cat vs. Dog" from NWERC 2008
                                                                                                                                                                                                                                                                         #ifdef MAXIMIZATION
for (int i = 0; i < M; i++) {
for (int j = i+1; j < M; j++)
cap[i][j] *= -1;
b[i] *= -1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for (int i = 0; i < M; i++) {
   if (b[i] >= 0) {
      cap[M][i] = b[i];
   } else {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          cin >> p >> u >> q >> v;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             if (p == 'C') {
    phi[u][c+v][0][0]+;
    phi[c+v][u][0][0]+;
    phi[c+v][u][0][0]+;
    phi[v][c+v][u][1]+;
    phi[c+u][v][1]]+;

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 cap[i][M+1] = -b[i];
c += b[i];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GraphCutInference graph;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     return score;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             score *= -1;
#endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              char p, q;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    int u, v;
                                                                                                                                                                                                                                                                                                                                                                                             c *= -1;
#endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 int main() {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         return 0;
```

ConvexHull.cc 8/35

```
bool between(const PT &a, const PT &b, const PT &C) { return (fabs(area2(a,b,c)) < FPS && (a.x-b.x) <= 0 && (a.y-b.y)*(c.y-b.y) <= 0);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    void ConvexHull(vector.PT> &pts) {
    sort(pts.begin(), pts.end());
    ptr.erase(unique(pts.begin()), pts.end());
    ptr.erase(unique(pts.begin()), pts.end());
    vector.PT> up, di;
    for (int i = 0; i < pts.size(); i++) {
        while (up.size() > 1 && area2(uplup.size()-2], up.back(), pts[i]) >= 0) up.pop_back();
        while (dis.eise() > 1 && area2(dn[dn.size()-2], dn.back(), pts[i]) <= 0) dn.pop_back();
        dh.push_back(pts[i]);
        dh.push_back(pts[i]);
</pre>
                                                                                                                                                                                                                                                                                                                                                                                      IMPUT: a vector of input points, unordered, OUTPUT: a vector of points in the convex hull, counterclockwise, starting with Dottommost/Leftmost point
// Compute the 2D convex hull of a set of points using the monotone chain // algorithm. Eliminate redundant points from the hull if REMOVE_REDUNDANT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ##fdef REMOVE_REDNINDANT
if (pts.size() <= 2) return;
dn.clean() = 2;
dn.push_back((pts[0]);
dn.push_back((pts[0]);
for (int i = 2; i < pts.size(); i++) {
    if (between(dnf.nisze()-2), dn[dn.size()-1], pts[i])) dn.pop_back();
    dn.push_back(pts[i]);</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; } T area2(PT a, PT b, PT c) { return cross(a,b) + cross(b,c) + cross(c,a);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     pts = dn; \label{eq:pts} for (int i = (int) up.size() - 2; i >= 1; i--) pts.push_back(up[i]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
    dn[0] = dn.back();
    dn.pop_back();
                                                                                                                                                                                                                                                                 // Running time: O(n log n)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            #define REMOVE_REDUNDANT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     #ifdef REMOVE_REDUNDANT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        #include <cstdio>
#include <cassert>
#include <vector>
#include <algorithm>
#include <canth>
#include <conth>
#include <
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       using namespace std;
                                                                                                                                    #defined.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    pts = dn;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       #endif
```

Geometry.cc 9/35

```
// C++ routines for computational geometry.
```

```
// determine if tines from a to b and c to d are parallel or collinear
bool tinesParalle[Pr a, PT b, Pr c, Pr d) {
return fabs(cross(b-a, c-d)) < FPS;</p>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       // determine if Line segment from a to b intersects with
// Line segment from c to d
// Line segment from c to d
if (LinesCollinear(a, b, c, d)) {
   if (LinesCollinear(a, b, c, d)) {
     if (dist2(a, c) c Fee | dist2(b, d) c Fee |
        if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // compure distance between point (\kappa, y, z) and plane ax+by+cz=d double DistancePointPlane(double x, double y, double z, double b, double c, double d)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 double x, y;
PT() {
PT(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   // project point c onto line segment through a and b Projectedointsegment(pra, pT b, pT c) { double r = dot(b-a,b-a); r = dot(c-a,b-a); r = dot(c-a,b-a) r; r = dot(c-a,b-a)/r; r = dot(c-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
    return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // project point c onto line through a and b
// assuming a != b
projectPointLine(PT a, PT b, PT c) {
return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ਓ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     bool LinesCollinear(PT a, PT b, PT c, PT c
return LinesParallel(a, b, c, d)
&& fabs(cross(a-b, a-c)) < EPS
&& fabs(cross(c-d, c-a)) < EPS;
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
                                                                                                                                                                                                                                                                                                                                                                                                                                              using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              double INF = 1e100;
double EPS = 1e-12;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    struct PT {
```

```
return this:
return this:
return this:
return this:
return this:
return this:

// compute intersection of line passing through or and b
// compute intersection of line passing through or and b
// compute intersection exist; // or segment intersection, corek if
// compute sosing through or and d, samung that unique
// intersection exist; // or segment intersection, corek if
// compute intersection exist; // or segment intersection, corek if
// compute cortex of core as a d action of line passing through or and b
// compute cortex of core; // of/corsolo, 0):

// compute cortex of core if the passing through or and b
// compute cortex of core if the passing through or and p
// compute cortex of core if the or and or if or the mainting points
// compute cortex of cortex given by pr c) {

c=cie+x)2;

// compute cortex of cortex given by pr c) {

c=cie+x)2;

// compute cortex of cortex given by pr c) {

c=cie+x)2;

// compute cortex of cortex given by the mainting points
// where the if is possible connect that find on "weather test using
// where the if is possible connect that find on "weather test using
// where the if is possible connect that find on "weather"
// where the if is possible connect that find on "weather"
// where the if is possible connect that find on "weather"
// where the if is possible connect that find on "weather"
// where the if is possible connect that find on "weather"
// where the if is possible connect that find on "weather"
// contained on the connect that is not ne boundary of a polygon
// feetge ontimeted of contained weather find on the with
// contained on the connect that of the interval of contained on the possible connect and the ordins of the connect that connect that return files
// connection of line through points a ond b with
// connection of line through points a ond b with
// connection of contained connection of line through points a ond b with
// connection of line through points a ond b with
// connection of line through points on bold polygon
// wetgen of the intersecti
```

```
// expected: 1 1 1 0

cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "

<< SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " "

<< SegmentsIntersect(PT(0,0), PT(2,4), PT(2,1), PT(-2,1)) << " " "

<< SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          // tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector(PT) &p) {
  for (int i = 0; i < p. size(); i++) {
    for (int k = 11; k < p. size(); k++) {
    int j = (i+1) % p. size();
    int i = 1 || j == k) continue;
    int (segmentsIntersect(p[i], p[i]), p[k], p[i]))
</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // expected: 0 0 1

cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "

<< LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "

<< LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
// expected: 1 0 1
cerr << Linesparalle(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
<< Linesparalle(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
<< Linesparalle(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // expected: (5,2) (7.5,3) (2.5,1)
cerr << ProjectPolirtSegment(PT(-5,-2), PT(10,4), PT(3,7)) << " " << ProjectPolirtSegment(PT(-5,-3), PT(10,4), PT(3,7)) << " " << ProjectPolirtSegment(PT(-5,-3), PT(10,4), PT(3,7)) << " " << ProjectPolirtSegment(PT(-5,-2), PT(2.5,1), PT(3,7)) << " " << ProjectPolirtSegment(PT(-5,-2), PT(2.5,1), PT(3,7)) << " " << ProjectPolirtSegment(PT(-5,-2), PT(2.5,1), PT(3,7)) << " " << ProjectPolirtSegment(PT(-5,-2), PT(-5,-2), PT(-5,-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              // expected: (5,2)
cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        T ComputeCentroid(const vector<PT> &p) {
    PT (c0, 1);
    PT (c0, 1);
    for (int i = 0; i < p. size(); i++) {
        int j = (i, 1); x, p.size(); i++) {
        int j = (i, 1); x, p.size(); y, p.size(); i+1);
        c = c + (p[i]+p[j])*(p[i].x*p[j].y, p[j].y*p[i].y);</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // expected: 6.78903
cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   // expected: (-5,2)
cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     double ComputeArea(const vector<PT> &p)
    return fabs(ComputeSignedArea(p));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   // expected: (-5,2)
cerr << RotateCCW90(PT(2,5)) << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // expected: (5,-2)
cerr << RotateCW90(PT(2,5)) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      return false;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 return area / 2.0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             return c / scale;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  return true;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      int main() {
```

return ret;

JavaGeometry.java 10/35

```
// In this example, we read an input file containing three lines, each
// containing an even number of doubles, separated by commans. The first two
// Lines represent the coordinates of two polygons, given in counter-clockwise
// (or clockwise) order, which we will call "4" and "8". The last line
// contains a list of points, p[1], p[2], ...
// Our goal is to determine:
// (1) whether 8 - A is a single closed shape (as opposed to multiple shapes)
// (2) the area of 8 - A
// (3) whether each p[i] is in the interior of 8 - A
// (3) whether each p[i] is in the interior of 8 - A
// (4) whether each p[i] have a considered by the interior of B - A
// (5) the area of 8 - A
// (6) He is a singular.
```

```
// make an array of doubles from a string
static doubs[] readounts(Strings) {
    String[] arr = s.trim().split("\ls+");
    double[] ret = new double[arr.length];
    for (int i = 0; i < arr.length; i++) ret[i] = Double.parseDouble(arr[i]);
    return ret;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // compute area of polygon
static double computebygonArea(ArrayList<Point2D.Double> points) {
    artic double lorse preferolygonArea(ArrayList<Point2D.Double[points.size()]);
    double area = 0;
    for (int i = 0; i < prs.length; i++){
        int i = 0; i < prs.length;
        int i = 0; v > prs.length;
        int i = prs[i].x * prs[i].y - prs[i].x* prs[i].y;

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                // compute the area of an Area object containing several disjoint polygons
static double computeArea(Area area) {
double totArea = 0;
PathIterator iter = area.getPathIterator(null);
ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>();
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // make an Area object from the coordinates of a polygon static Area makeArea(obuble[] pts) {
    Path2D.obuble p = new Path2D.obuble();
    p.movelo(pts[0], pts[1]);
    for (int i = 2; i < pts.length; i += 2) p.lineTo(pts[i], pts[i+1]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      while (liter.isDone()) {
double[] buffee = new double[6];
switch (iter.currentSegmen(funfer)) {
  case PathIterator.SEG_MOVETO:
  case PathIterator.SEG_LINETO:
  points.add(new Point2D.Double(buffer[0], buffer[1]));
  break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                // (1) determine whether B - A is a single closed shape (as
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         // notice that the main() throws an Exception -- necessary to \gamma/ avoid wrapping the Scanner object for file reading in a \gamma/ try ( . . . ) catch block. public static void main(String angs[]) throws Exception (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Scanner scanner = new Scanner(new File("input.txt"));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            double[] pointsA = readPoints(scanner.nextLine());
double.] pointsB = readPoints(scanner.nextLine());
Area areaA = makeArea(pointsA);
Area areaB = makeArea(pointsB);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               // also,
// Scanner scanner = new Scanner (System.in);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           totArea += computePolygonArea(points);
points.clear();
break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          case PathIterator.SEG_CLOSE:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      areaB.exclusiveOr (areaA);
areaB.add (areaA);
areaB.intersect (areaA);
                                                                       the area.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    return Math.abs(area)/2;
The area is 25.0
Point belongs to the area.
Point does not belong to t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           areaB.subtract(areaA);
                                                                                                                                                                                                                                                                                 public class JavaGeometry {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      return new Area(p);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  iter.next();
                                                                                                                                      import java.util.*;
import java.awt.geom.*;
import java.io.*;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 return totArea;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     p.closePath();
```

Geom3D.java 11/35

int main()

```
double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1) + (pz-z1)*(z2-z1)) / pd2;
x = x1 + u * (x2 - x1);
y = y1 + u * (y2 - y1);
z = z1 + u * (y2 - y1);
if (type = sEGMENT && u < 0) {
    x = x1;
    x = x1;
    y = y1;
    x = x2;
    y = y2;
    x = x2;
    x
```

Delaunay.cc 12/35

```
// Stow but simple Delaungy triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
// Running time: O(n*4)
// INPUT: x[] = x-coordinates
// OUTPUT: triples = a vector containing m triples of indices
// OUTPUT: triples = a vector containing m triples of indices
// OUTPUT: triples = a vector containing m triples of indices
// OUTPUT: triple {
    int i j, k;
    int i j, k;
    int i j, k;
    int i j, k;
    int i = 0; i < n; i+t)
// Vector(triple) ret;
    int i = 0; i < n; i+t)
// Vector(triple) ret;
// Vector(triple) ret
```

Euclid.cc 13/35

```
// Chinese remainder theorem: find z such that

// Z % X[i] = g[i] for all i. Note that the solution is

// unique modulo M = Lcm_i (X[i]). Return (z,M). On

// foilure, M = -1. Note that we do not require the a[i]'s

// to be relatively prime.

PII chinese_remainder_theorem(const VI &x, const VI &a) {

PII ret = make_pair(a[0], X[0]);

for (int i = 1, i < x.size(); i++) {

ret = chinese_remainder_theorem(ret.second, ret.first, X[i], a[i]);

if (ret.second == -1) break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // expected: 95 45
VI sols = modulan_linear_equation_solver(14, 30, 100);
for (int i = 0; i < (int) sols.size(); i++) cout << sols[i] << " ";
cout << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             int xs[] = {3, 5, 7, 4, 6};
int as[] = {2, 3, 2, 3, 5};
int as[] = {1, 2, 3, 3, 5};
int test = chinese_remainder_theorem(VI (xs, xs+3), VI(as, as+3));
cout << ret_first << " " << ret_second << rend;
ret_ = chinese_remainder_theorem (VI(xs+3, xs+5), VI(as+3, as+5));
cout << ret_first << " " << ret_second << end1;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // computes x and y such that ax + by = c; on failure, x = y = -1 void linear diophantine(int a, int b, int c, int &x, int &y) { int a = gcd(a,b); int a = gcd(a,b);
                                                                                                         // Chinese remainder theorem (special case): find z such that // z x = a, z x y = b. Here, z is unique modulo H = Lem(x,y). PII (Althrese, remainder—theorem (int x, int a, int y, int b) { int a = x tender equild(x, y, z, t), int a = x x tender equild(x, y, z, t), int a = x x tender equild(x, y, z, t), if x = x x tender equild(x, y, z, t), if x = x x tender equild(x, y, z, t), if x = x x tender equild(x, y, z, t), if x = x x tender equild(x, y, z, t), if x = x x tender equild(x, y, z, t), if x = x x tender equild(x, y, z, t), if x = x x tender equild(x, y, z, z, x, z, y, t), if x = x x tender equild(x, y, z, z, z, z, z, z, z, z).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                int x, y;
int d = extended_euclid(14, 30, x, y);
cout << d << " " << x << " " << y << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     x = c/d * mod_inverse(a/d, b/d);
y = (c-a*x)/b;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 linear_diophantine(7, 2, 5, x, y);
cout << x << " " << y << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // expected: 8
cout << mod_inverse(8, 9) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // expected: 2
cout << gcd(14, 30) << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     // expected: 2 -2 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     // expected: 23 56
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                // expected: 5 -15
return mod(x,n);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           x = y = -1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       return ret;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              int main() {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  } else
```

GaussJordan.cc 14/35

```
// Gauss-Jordan elimination with full pivoting.
//
// Uses:
// (1) solving systems of linear equations (AX=B)
// (2) inverting matrices (AX=I)
```

```
for (int i = 0; i < n; i++) {
    int p i = -1, kk = -1;
    for (int i = 0; i < n; i++) if (lipiv[j])
    for (int k = 0; k < n; k++) if (lipiv[k])
    if (p = -1 | fabs(a[j][k]) > fabs(a[j][pk])) { pj = j; pk = k; }
    if (fabs(a[j][pk]) < EPS) { cerr << "Matrix is singular." << endl; exit(0); }
    inv[pk]++;
    swap(a[pj], a[pk]);
    swap(b[pj], b[pk]);
    swap(b[pj], b[pk]);
    if (pj = pk) det *= -1;
    irow[j] = pk)</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) { for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          T c = 1.0 / a[pk][pk];

det *= a[pk][pk];

a[pk][pk] = 1.9;

for (int p = 0; p < n; p++) a[pk][p] *= c;

for (int p = 0; p < n; p++) b[pk][p] *= c;

for (int p = 0; p < n; p++) b[pk][p] *= c;

for (int p = 0; p < n; p++) b[pk][p] *= c;

for (int p = 0; q < n; q++) a[p][q] = a[pk][q] * c;

for (int q = 0; q < n; q++) a[p][q] = a[pk][q] * c;

for (int q = 0; q < m; q++) b[p][q] = b[pk][q] * c;
                                                                                                                                                                 X = an nxm matrix (stored in b[l][]) A^{\prime}\{-1\} = an nxn matrix (stored in a[l][]) returns determinant of a[][]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // expected: -0.233333 0.166667 0.133333 0.0666667 // 0.166667 0.166667 0.333333 -0.333333
(3) computing determinants of square matrices
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // expected: 60
cout << "Determinant: " << det << endl;</pre>
                                                                                         a[][] = an nxn matrix
b[][] = an nxm matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              T Gausslordan(VVT &a, VVT &b) {
    const int n = a.size();
    const int m = b[0].size();
    VI inow(n), icol(n), ipiv(n);
    T det = 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       double det = GaussJordan(a, b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                             typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
                                                                                                                                                                                                                                                                                                                                                                                                                const double EPS = 1e-10;
                                         // Running time: O(n^3)
                                                                                                                                                                                                                                                                #include <iostream>
#include <vector>
#include <cmath>
                                                                                                                                                                                                                                                                                                                                                                   using namespace std;
                                                                    // INPUT: a[][]
// OUTPUT: X
// OUTPUT: X
// return
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              return det;
```

ReducedRowEchelonForm.cc 15/35

```
// Reduced row echelon form via Gauss Jandan elimination
// Reduced row echelon form via Gauss Jandan elimination
// With partial privation Triving This can be used for computing
// Running time: O(n^3)
// INPUT: a[1[1] = an nxm matrix (stored in a[1]))
// INPUT: a[1[1] = an nxm matrix (stored in a[1]))
// INPUT: a[1[1] = an nxm matrix (stored in a[1]))
// Introduced comath

using namespace std;

const double EPSILON = ie-10;
typedef wector</r>
// Expected fouchle T;
typedef vector</r>
// Yur = a[0].size();
intr n = a[0].size();
intr n = a[1].size();
for (int i = 0; i < m; i++) a[1][i] = t * a[1][i];
for (int i = 0; i < m; i++) a[1][i] = t * a[1][i];

/ This introduced intr
```

int rank = rref (a);

FFT_new.cpp 16/35

```
// out: output array
// stei: (SET TO 1) (used internally)
// stei: length of the input/output (MUST BE A POWER OF 2)
// dir: either plus or minus one (direction of the FFT)
// Aftr: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \lsum_{ij} = \lsum_{ij
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       cpx r = a * b.bar();
return cpx(r.a / b.modsq(), r.b / b.modsq());
                                                                                                                                                                                                                                                                                                                                                                                        cpx(){}
cpx(double aa):a(aa){}
cpx(double aa, double bb):a(aa),b(bb){}
double a;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FFT(in, out, step * 2, size / 2, dir);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return cpx(cos(theta),sin(theta));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                return cpx(a.a + b.a, a.b + b.b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           const double two_pi = 4 * acos(0);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     cpx operator +(cpx a, cpx b) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   cpx operator /(cpx a, cpx b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     cpx operator *(cpx a, cpx b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       double modsq(void) const
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  return a * a + b * b;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        return cpx(a, -b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      input array
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         if(size < 1) return;
if(size == 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             cpx bar(void) const
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            cpx EXP(double theta)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      out[0] = in[0];
return;
#include <cassert>
#include <cstdio>
#include <cmath>
                                                                                                                                                                                                                                                                     struct cpx
```

```
cpx even = out[i];
cpx od = out[i] + size / 2];
out[i] = even + EPV[dir* two_pi * i / size) * odd;
out[i] = size / 2] = even + EPV[dir* two_pi * (i + size / 2) / size) * odd;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                // Usage:

// f[0...N-1] and g[0..N-1] are numbers
// f[0...N-1] and g[0..N-1] are numbers
// f[0...N-1] and g[0..N-1]
// f[0...N-1]
// fin = sum of f[R]g[n-k] (k = 0, ... N-1).
// here, the tindex is cyclic, f[-1] = f[N-1], f[-2] = f[N-2], etc.
// the convolution theorem soys H[n] = f[n]g[n] feament-wise product).
// To compute h[1] in Q(N log N) time, do the following:
// 1. Compute F and G (pass dir = 1 as the argument).
// Get H by taking the inverse FFI (use dir = -1 as the argument)
// a. Get H by taking the inverse FFI (use dir = -1 as the argument)
// and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        printf("If rows come in identical pairs, then everything works.\n");
FFT(in + step, out + size / 2, step * 2, size / 2, dir); for(int i = 0 ; i < size / 2 ; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             cpx a[8] = {0, 1, cpx(1,3), cpx(0,5), 1, 0, 2, 0};
cpx b[8] = {1, cpx(0,-2), cpx(0,1), 3, -1, -3, 1, -2};
cpx A[8];
cpx A[8];
cpx B[8];
fpx B[8];

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          printf("%7.21f%7.21f", aconvb[i].a, aconvb[i].b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             aconvbi = aconvbi + a[j] * b[(8 + i - j) % 8];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          printf("%7.21f%7.21f", aconvbi.a, aconvbi.b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      printf("%7.21f%7.21f", A[i].a, A[i].b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      printf("%7.21f%7.21f", Ai.a, Ai.b);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              cpx Ai(0,0);
for(int j = 0 ; j < 8 ; j++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        cpx Ag[8];
for(int i = 0; i < 8; i++)
Ag[1] = A[1] * B[1];
px a aconvb[8];
for(int i = 0; i < 8; i++)
aconvb[i] = aconvb[i] / 8;
for(int i = 0; i < 8; i++)
aconvb[i] = 0; i < 8; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          cpx aconvbi(0,0);
for(int j = 0 ; j < 8 ; j++)</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for(int i = 0; i < 8; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           printf("\n");
for(int i = 0 ; i < 8 ; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       printf("\n");
for(int i = 0 ; i < 8 ; i++)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   printf("\n");
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       printf("\n");
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   int main(void)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            return 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                            ~
```

Simplex.cc 17/35

```
for (int i = 0; i < m; i++) if (B[i] == -1) {
    int s = -1;
    for (int i = 0; j < n; j++)
    if (s == -1 || D[i][i] < D[i][s] || D[i][s] && N[j] < N[s]) s = j;
    for (int i = 0; j < n; j++)
    if (1Simplex(2)) return numeric_limits</pre>
}

if (1Simplex(2)) return numeric_limits
**Sub(n);

for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];

for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];

const int n = 3;

boughe _A[n][n] = {
        (5, -1, 0, 0),
        (4, -1, 0, 0),
        (5, -1, 0, 0),
        (4, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (7, -5, 0, 0),
        (7, -5, 0, 0),
        (7, -5, 0, 0),
        (7, -5, 0, 0),
        (8, -1, 0, 0),
        (9, -1, 0, 0),
        (9, -1, 0, 0),
        (9, -1, 0, 0),
        (1, -1, 0, 0),
        (1, -1, 0, 0),
        (2, -1, 0, 0),
        (2, -1, 0, 0),
        (3, -1, 0, 0),
        (4, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
        (5, -1, 0, 0),
```

FastDijkstra.cc 18/35

```
// Implementation of Dijkstra's algorithm using adjacency lists
// and priority queue for efficiency.
// and priority queue for efficiency.
// Running time: O(|E| Log |V|)
## Include scatio.h>
using namespace std;

## include scatio.h>

## include scatio.h>
## include scatio.h>
## include scatio.h>
## include scatio.h>
## include scatio.h>
## include scatio.h>
## include scatio.h>
## include scatio.h>
## include scatio.h>
## include scatio.h
```

```
while (lo_empty()){
    PID = Q.top();
    PID = Q.top();
    if (p.second == t) break;
    Q.pop();
    int here = p.second;
    int here = p.second;
    if (dist[here] + it->first < daist[it->second]){
        if dist[here] + it->first < daist[it->second]);
        dai[it->second] = here;
        dai[it->second] = here;
        dai[it->second] = here;
        printf ("Md\n", dist[l));
    }
    printf ("Md\n", dist[l));
    if (dist[it]);
    if (dist[it]);
```

SCC.cc 19/35

EulerianPath.cc 20/35

```
struct Edge;
struct Edge
{
  int next vertex;
  iter reverse_edge;
  Edge(int next_vertex)
```

```
inext_vertex(next_vertex)

{
};

const int max_vertices = ;
int num vertices;

listcedge > adj[max_vertices];  // adjacency List
vectorcint> path;

while(adj[v].size() > 0)

{
  int vn = adj[v].front().next_vertex;
  adj(v].pop_front();
  find_path(vn);
  }
} path.push_back(v);
}

void add_edge(int a, int b)
{
  iter ita = adj[a].begin();
  ita-reverse_edge = ita);
}
```

SuffixArray.cc 21/35

```
| Suffixe array construction in O(L Lago'2 L) time. Routine for | Suffixe array construction in O(L Lago'2 L) time. | Suffixe array in O(Lago L) time. | Suffixes | Such in O(Lago L) time. | Suffixes | Suffixed Such in O(Lago L) time list of sorted suffixes. | Suffixed Such in O(Lago L) | Suffixed Suffixed Such in O(Lago L) | Suffixed Such in O(Lago L)
```

```
// Expected output: 0 5 1 6 2 3 4
// (int i = 0; i < v.size(); i++) cout << v[i] << " ";
cout << endl;
cout << suffix.LongestCommonPrefix(0, 2) << endl;
                                                                                                                                                                                                              // bobocel is the 0'th suffix
// obocel is the 1'st suffix
// occl is the 1'st suffix
// cel is the 5'th suffix
// cel is the 3'nd suffix
// el is the 3'nd suffix
// list the 4'th suffix
SuffixArray suffix("bobocal");
vector<int> = suffix.GetSuffixArray();
j += 1 << k;
len += 1 << k;
                                       }
}
return len;
                                                                                                                                                                      int main() {
```

BIT.cc 22/35

```
#include ciostreams
using namespace std;
#define LOGSZ 17
int tree[(1<<LOGSZ)+1];
int N = (1<<LOGSZ);
// add v to value at x
void set(int x, int v) {
    while(x = n) {
        tree[x] += v;
        x += (x & -x);
    }

// get cumulative sum up to and including x
int get(int x) {
    int ree[x] += v;
    x += (x & -x);
    }

// get cumulative sum up to and including x
int get(int x) {
    int get(int x) {
        int int feel x) += v;
        x += (x & -x);
    }

// get cumulative sum up to and including x
int get(int x) {
    int get(int x) {
        int int s = 0;
        while(x) {
        int int x = 0, mask = N;
        int int x = 0, mask |
        int int x = idx + mask;
        int int x = idx + mask;
        int x = idx + mask;
```

UnionFind.cc 23/35

```
//union-find set: the vector/array contains the parent of each node in find forecor sints C, in t f(rector sints C, in t f(relume (C(x)=x) x: C(x)=x) f(x) in f(x) f
```

KDTree.cc 24/35

```
- constructs from n points in 0(n \, \text{Lg^2}\, z) time - handles nearest-neighbor query in 0(\text{Lg}\, n) if points are well distributed - worst case for nearest-neighbor may be linear in pathological case
/\!\!/ A straightforward, but probably sub-optimal KD-tree implmentation that's // probably good enough for most things (current it's a 2D-tree)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      // squared distance between a point and this bbox, 0 if inside intpe distance(const point &p) {
    if (p. x < x0) {
        if (p. y < y0) }
        if (p. y < y0) }
    if (p. y > y1) return pdist2(point(x0, y0), p);
    else if (p. y > y1) return pdist2(point(x0, y1), p);
    else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    bbox() : x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       return pdist2(point(x1, y0), p);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // computes bounding box from a bunch of points void compute(const vector-points &v) {
  for (int i = 0; i < v. size(); ++i) {
    x0 = min(x0, v[i].x); x1 = max(x1, v[i].x); y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ntype x, y; point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric_limits<ntype>::max();
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // point structure for 2D-tree, can be extended to 3D
                                                                                                                                        // - handles nearest-neighbor query in U(1g n)
// - worst case for nearest-neighbor may be [ti
// Somny Chan, Stanford University, April 2009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 bool operator == (const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           // squared distance between points
ntype pdist2(const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // sorts points on x-coordinate
bool on_x(const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    // sorts points on y-coordinate
bool on_y(const point &a, const point &b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ntype dx = a.x-b.x, dy = a.y-b.y;
return dx*dx + dy*dy;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return a.x == b.x && a.y == b.y;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          // bounding box for a set of points struct bbox
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              else if (p.x > x1) {
if (p.y < y0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ntype x0, x1, y0, y1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            return a.y < b.y;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     return a.x < b.x;
                                                                                                                                                                                                                                                                                                                                          #include <iostream>
#include <vector>
#include <limits>
#include <cstdlib>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           struct point {
```

```
// split on x if the bbox is wider than high (not best heuristic...) if (bound.XI-bound.XN >= bound.XI-bound.XN) sort(vy.begin(), vp.end(), on_X); // orherwise split on y-coordinate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              // constructs a kd-tree from a points (copied here, as it sorts them)
kdtree(const vectorypoint> &vp) {
    vectorypoint> v(vb.begin(), vp.end());
    root = new kdnode();
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // recursive search method returns squared distance to nearest point
htype search(kdnode *node, const point &p)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                // divide by taking half the array for each child // (not best performance if many duplicates in the middle) int half = up.size()/2; vector/copint vi(yp.begin(), vp.begin()+half); vector/copint vi(yp.begin(), vp.begin()); first = new Knhode(); first.construct(vl); second = new Knhode(); second->construct(vl);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             if (node-)leaf) {
    // commented special case tells a point not to find itself
    if (p == node-)pt) return sentry;
    else
    else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         kdnode() : leaf(false), first(0), second(0) {}
~kdnode() { if (first) delete first; if (second) delete second; }
                                                                                                                                                                                                                                                                                                                                                                                               // true if this is a leaf node (has one point)
// the single point of this is a leaf
// bounding box for set of points in children
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             /// intersect a point with this node (returns squared distance)
mtype intersect(const point &p) {
return bound.distance(p);
else if (p.y > y1) return pdist2(point(x1, y1), p);
else
                                                                                                               return pdist2(point(p.x, y0), p);
return pdist2(point(p.x, y1), p);
return 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        // recursively builds a kd-tree from a given cloud of points
void construct(vectorcpoint> &vp)
                                                                                                                                                                                                                                                                                                           \ensuremath{{//}} stores a single node of the kd-tree, either internal or leaf struct kdnode
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // if we're down to one point, then we're a leaf node
if (wp.size() ==1) {
    leaf = true;
    pt = vp[0];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // simple kd-tree class to hold the tree and handle queries struct kdtree
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     kdnode *first, *second; // two children of this kd-node
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            // compute bounding box for points at this
bound.compute(vp);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  sort(vp.begin(), vp.end(), on_y);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                return pdist2(p, node->pt);
                                                ~kdtree() { delete root; }
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                root->construct(v);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         kdnode *root;
                                                                                                                                                                                                                                                                                                                                                                                                                              point pt;
bbox bound;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               }
else {
                                                                                                                                                                                                                                                                                                                                                                                                      bool leaf;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        >>
```

```
ntype brisst = node->first->interset(p);

Intype becond = node->second->interset(p);

// choose the side with the closest bounding box to search first
// (note that the other side is also searched if needed)

if (brisst < basech(node->first, p);

If (brisst < basech(node->second, p);

If (thirst < best)

best = min(best, search(node->second, p);

If (thirst < best)

best = min(best, search(node->first, p));

// squared distance to the nearest

ntype nearest(const point &p) {

// squared distance to the nearest

ntype nearest(const point &p) {

// squared distance to the nearest

ntype nearest(const point &p) {

// query some random points for a kd-tree

vector(point> vp;

for (int i = 0; i < lag; +1) {

// query some points

// query some
```

splay.cpp 25/35

```
#include <cstdio>
#include <cstdio>
#include <cstdio>
sing namespace std;

const int N_MAX = 130010;

const int oo = 0x3f3f3f5;

struct Node

{
   Node *ch[2], *pre;
   int val, size;
   Node *allochode(int val)
   static int freePos = 0;
   Node *x = &nodePool[freePos ++];
   x-val = val, x-visiuned = false;
   x-vsize = 1;
   x-vsize = 1;
   x-vsize = v-vch[0]-vsize + v.x

inline void update(Node *x)

x-vsize = x-vch[0]-vsize + x-vch[1]-vsize + 1;
```

```
x-pre = y-pre;
if(y-pre != mul)
y-pre-xch[y == y-pre-xch[1]] = x;
y-xch[(c] = x-ych[c];
if(x-xch[c] != nul);
x-xch[c] := y;
x-xch[c] = y;
y-y-pre = x;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Node *makeTree(Node *p, int 1, int r) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if(x == y->ch[0])
    rotate(y, 1), rotate(x, 1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  if(x == y->ch[1])
    rotate(y, 0), rotate(x, 0);
else
    rotate(x, 1), rotate(x, 0);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    rotate(x, 0), rotate(x, 1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     if(x->pre->pre == p)
rotate(x, x == x->pre->ch[0]);
else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Node *y = x->pre, *z = y->pre;
if(y == z->ch[0])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                pushDown(now);
int tmp = now->ch[0]->size + 1;
if(tmp == k)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    break;
else if(tmp < k)
now = now->ch[1], k -= tmp;
else
                                                                                                                                                                                                                                                                                            inline void rotate(Node *x, int c)
inline void makeTurned(Node *x)
                                                                                                                             inline void pushDown(Node *x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     void select(int k, Node *fa)
{
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       void splay(Node *x, Node *p)
                                               return;
swap(x->ch[0], x->ch[1]);
x->isTurned ^= 1;
                                                                                                                                                                                         makeTurned(x->ch[0]);
makeTurned(x->ch[1]);
x->isTurned ^= 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                now = now -> ch[0];
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       while(x->pre != p)
                                                                                                                                                                                                                                                                                                                            Node *y = x -> pre;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Node *now = root;
while(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                }
splay(now, fa);
                                                                                                                                                             if(x->isTurned)
                           if(x == null)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         if(y == root)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     update(x);
}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         root = x;
```

```
if(1 > n') if(1 >
```

SegmentTreeLazy.java 26/35

```
public class SegmentTreeRangeUpdate {
    public long[] lasef;
    public Long[] lupdate;
    public long[] lupdate;
    public long[] lupdate;
    public segmentTreeRangeUpdate(int[] list) {
        configite = list.length;
        lasf = new long[4/list.length];
        update = new long[4/list.length];
        update = new long[4/list.length];
        update = new long[4/list.length];
        update = new long[4/list.length];
        lif(begin == end)
        lif(begin == end)
        list[begin];
        int mid = (begin+end)/2;
        luild(2 * curr + 1, mid+1, end, list);
        build(2 * curr + 1, mid+1, end, list);
        build(2 * curr + 1, mid+1, end, list);
        leaf[curr] = leaf[2*curr] + leaf[2*curr+1];
        leaf[curr] = leaf[2*curr] + leaf[2*curr+1];
        luddate(int begin, int tend, int tend, int tend, int val)
        if(tBegin >= begin && tend == end)
        leaf[curr] += (Math.min(end,tEnd)-Math.max(begin,the leaf)
        int mid = (tBegin-tend)
        leaf[curr] += val;
        leaf[curr] -= begin && tend == end)
        if(mid >= begin && tend == end)
        if(mid >= begin && tend == end)
        if(tEnd >= begin && mid, begin, end, val);
        if(tEnd >= begin && mid, lacel, rend)
        if(tEnd >=
```

```
public long query(int begin, int end) {
    return query(1,0,origSize-1,begin,end);
}

bublic long query(int curr, int tBegin, int tEnd, int begin, int end)
    if(tBegin & tend < end)
    if(tBegin > begin & tend < end)
    if(valete[curr] + e(tEnd-tBegin+1) * update[curr];
    if(2*curr ) + e(tEnd-tBegin+1) * update[curr];
    leaf[curr] + e(tEnd-tBegin+1) + update[curr];
    leaf[curr] + e(tEnd-tBegin+1) * update[curr];
    if(2*curr < update_length);
    if(2*curr < update_length);
    update[2*curr] + = update[curr];
    if(2*curr < update_length);
    update[2*curr] + = update[curr];
    update[2*curr] + = update[curr];
    update[2*curr] + = update[curr];
    int mid = (tBegin+tEnd)/2;
    int mid = (tBegin+tBegin+tBegin+tBegin+tBegin+tBegin+tBegin+tBegin+tBegin+tBegin+tBegin+tBegin+
```

LCA.cc 27/35

```
const int max modes, log_max_modes;
int num_nodes, log_num_nodes, root;
vectorative childree[max_modes];

vectorative childree[max_modes];

int A[max_modes][log_max_modes+1];

// fight of mode is not the root

int lumx_modes]

// fight of mode is not the root

int lumx_modes]

if (n = 1 < 0)

if (n > 1 < 0)

if (n >
```

LongestIncreasingSubsequence.cc 28/35

```
// Given a list of numbers of length n, this routine extracts a
// Longest increasing subsequence.
// Running time: O(n Log n)
// Running time: O(n Log n)
// Running time: O(n Log n)
// DUTPUT: a vector of integers
// OUTPUT: a vector of integers
// OUTPUT: a vector of integers
// Longestime containing the longest increasing subsequence
#include categorithm>
using namespace std;
typedef vector-cint> VII;
```

Dates.cc 29/35

```
// Routines for performing computations on dates. In these routines, // months are expressed as integers from 1 to 12, days are expressed // integers.
// converts from 1 to 31, and years are expressed as 4-digit
// converts oregorion date to integer (Julian day number)
// converts Gregorion date to integer (Julian day number)
// converts Gregorion date to integer (Julian day number)
// converts freeger (Julian day number) to Gregorian date: month/day/year
// converts integer (Julian day number) to Gregorian date: month/day/year
// int date fort jd, int &m, int & ji int &
```

LogLan.java 30/35

```
String predstring = "(" + PREDA + "(" + space + PREDA + ")*)";
String predsame = "(" + LA + space + predstring + "" + NAM + ")";
String preds = "(" + Predstring + "(" + space + A + space + A - rpace + Dredstring + ")*)";
String predclaim = "(" + predname + space + BA + space + preds + "|" + DA + space +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   s.compareTo(t) < 0 if s < t, Lexicographically s, sindeoff "apple" in s s. indeoff "apple") returns indeo of "first occurrence of "apple" in s s. LostIndeoff "apple") returns index of Lost occurrence of "apple" in s s.replace(c, d) replaces occurrences of character c with d s. startWith(imple) returns (s, indeoff("apple") = 0) s. startWith(imple) returns (s, indeoff("apple") = 0) s. inclosperGase() returns q new lowerTuppercased string
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           end of Java string
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          // In this problem, each sertence consists of multiple lines, where the last 
// Line is terminated by a period. The cade below reads lines until 
// encountering a line whose final character is a ''.' Note the use of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       preds + "";

String verbpred = "(" + MOD + space + predstring + ")";

String statement = "(" + predname + space + verbpred + space + predname + "|" + predname + space + verbpred + ")";

String sentence = "(" + statement + "|" + predclaim + ")";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 String A = "([aeiou])";
String C = "([a-28& raciou])";
String MOD = "(g" + A +")";
String BA = "(d" + A + ")";
String DA = "(d" + A +")";
String MA = "([a-2]*" + A +")";
String PREDA = "(" + C + C + A + C + C + A + C + C + A + ")";
                                                                                                                                                                                                                                                /// In this problem, we are given a regular language, whose rules can be
// inferred directly from the code. For each sentence in the input, we must
// determine whether the sentence matches the regular expression or not. The
// code consists of (1) building the regular expression (which is fairly
// complex) and (2) using the regex to match sentences.
// Code which demonstrates the use of Java's regular expression libraries. 
 // This is a solution for
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Integer.parseInt(s) converts s to an integer (32-bit) Long.parseLong(s) converts s to a Long (64-bit) Double.parseDouble(s) converts s to a double
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       s.Length() to get Length of string
s.charAt() to extract characters from a Java string
s.trim() to remove whitespace from the beginning and o
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              content ();
sentence = (sentence + " " + s.nextLine()).trim();
if (sentence.equals("#")) return;
if (sentence.charAt(sentence.length()-1) == '.') break;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  // s.length() to get length of string
// s.charAt() to extract characters from a Java s
// s.trim() to remove whitespace from the beginni
// Other useful String manipulation methods include
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         String regex = BuildRegex();
Pattern pattern = Pattern.compile (regex);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     public static void main (String args[]){
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Scanner s = new Scanner(System.in);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             public static String BuildRegex (){
   String space = " +";
                                                                                                                             Loglan: a logical language
http://acm.uva.es/p/v1/134.html
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  return "^" + sentence + "$";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     String sentence = "";
while (true){
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 import java.util.*;
import java.util.regex.*;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 while (true) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               public class LogLan {
```

Primes.cc 31/35

10.cpp 32/35

```
#include clostream>
#include clomanip>
using namespace std;
int main()
```

string a = (string) "The example above illustrates the general technique for assembling "+
"the table with a minimum of flas. The privinciple is that of the overall search: "+
"most of the work was alleady done in getting to the current position, so very "+

int main()

```
// Output a specific number of digits past the decimal point,
// in this case 5
cout.seff(as::#kad); cout << setprecision(5);
cout (< 180.0/7.0 << end];
cout.wiseff(as::#kad); cout << end];
// Output the decimal point and trailing zeros
cut.seff(as::showpoint);
// Output the decimal point of trailing zeros
cout.seff(as::showpoint);
// Output a '+' before positive values
cout.seff(as::showpoint);
// Output a' '+' before positive values
cout.seff(as::showpos);
// Output numerical values in hexadecimal
cout.wiseff(as::showpos);
// Output numerical values in hexadecimal
cout << hex << 100 << " " << 1000 << " " << 1000 << end];
```

KMP.cpp 33/35

```
Searches for the string w in the string s (of length k). Returns the \theta-bosed index of the first match (k if no match is found). Algorithm runs in O(k) time.
                                                                                                                                                                                                                                                                                                                                                                                                                                                 iffw[i-1] == w[j]) { t[i] = j+1; i++; j++; } else if(j > 0) j = t[j]; else { t[i] = 0; i++; }
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            i++;
if(i == w.length()) return m;
                                                                                                                                                                                                                                                                                    /oid buildTable(string% w, VI& t)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 int KMP(string& s, string& w)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              m += i-t[i];
if(i > 0) i = t[i];
}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  buildTable(w, t);
while(m+i < s.length())</pre>
                                                                                                                                                                                                                                                                                                                           t = VI(w.length());
int i = 2, j = 0;
t[0] = -1; t[1] = 0;
                                                                                                                                                                                                                                                                                                                                                                                                             while(i < w.length())
                                                                                                                                                                                                                                           typedef vector<int> VI;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   if(w[i] == s[m+i])
                                                                                                              #include <iostream>
#include <string>
#include <vector>
                                                                                                                                                                                                  using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  return s.length();
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       int m = 0, i = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 VI t;
```

```
"little needs to be done in leaving it. The only minor complication is that the "+
"logic which is correct late in the string erroneously gives non-proper"+
"substrings at the beginning. This necessitates some initialization code.";
string b = "table";
int p = KMP(a, b);
cout << p << "," << a.substr(p, b.length()) << " " << end1;
```

LatLong.cpp 34/35

```
Converts from rectangular coordinates to latitude/longitude and vice versa. Uses degrees (not radians). ^{\prime\prime}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B = convert(A);
cout << B.r << " " << B.lat << " " << B.lon << endl;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       rect P;

P. x = Q.*cos(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);

P. y = Q.*cin(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);

P. z = Q.**sin(Q.lat*M_PI/180);
                                                                                                                                                                                                                                                                                                                                                                                                                                     11 Q;
Q.n = sqrt(P.x*P.x*P.y*P.y*P.y*P.z*P.z);
Q.lat = 189/M Pt*ssin(P.z*/Q.p);
Q.lon = 186/M_PI*scos(P.x/sqrt(P.x*P.x*P.y*P.y));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           A = convert(B);
cout << A.x << " " << A.y << " " << A.z << endl;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A.x = -1.0; A.y = 2.0; A.z = -3.0;
                                                                                                                                                                                                                                 double r, lat, lon;
                                                                                                                                              using namespace std;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                rect convert(11& Q)
                                                                                  #include <iostream>
#include <cmath>
                                                                                                                                                                                                                                                                                                                                                                                                      11 convert(rect& P)
                                                                                                                                                                                                                                                                                                                                   double x, y, z;
                                                                                                                                                                                                                                                                                            struct rect
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       return Q;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   return P;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            int main()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      rect A;
11 B;
                                                                                                                                                                                       struct 11
```

EmacsSettings.txt 35/35

```
(global-set-key "VC-x\C-p" (lambda() (interactive) (other-window -1)) ) (global-set-key "VC-x\C-p" (ther-window) (global-set-key "VC-x\C-o" other-window) (global-set-key "VC-x\C-o" other-window) (global-set-key "VC-x\C-o" other-window) (global-set-key "VC-x\C-o" other-window)
```

```
(global-set-key "W+," 'beginning-or-burter)
(global-set-key "W-e" 'goto-line)
(global-set-key "W-e" 'compare-windows)
(tool-bar-mode 0)
(scroll-bar-mode 1)
(show-paren-mode 1)
(show-paren-mode 1)
(stow-paren-mode 1)
(custom-set-variables
(custom-set-variables
)
(compare-ignore-witespace t)
```

Generated by GNU Enscript 1.6.5.90.

	Theoretical	Theoretical Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i} i = \frac{n(n+1)}{2}, \sum_{i} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0.$	
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{n=1}^{\infty} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{\infty} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{m=1}^{m-1} i^m = \frac{1}{m+1} \sum_{m=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	i=1 $i=1$
Sdns	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{c} c^{i} = \frac{c}{c-1}, c \neq 1, \sum_{i=0}^{c} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{c} c^{i} = \frac{1}{1-c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{c} i c^{i} = \frac{n c^{i+z} - (n+1) c^{i+z} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{c} i c^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$\liminf_{n\to\infty}a_n$	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $\frac{H}{H} = \sum_{i=1}^{n} \frac{1}{\sum_{i=1}^{n} i H_i} \frac{n(n+1)}{H_i} \frac{n(n-1)}{H_i}$
$\lim_{n\to\infty} a_n$	$\lim_{n\to\infty} \sup\{a_i \mid i \ge n, i \in \mathbb{N}\}.$	$n_n - \sum_{i=1}^{n} \frac{1}{i}, \sum_{i=1}^{n} \frac{m_i - 2}{i} - 4$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {n \choose n} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$2. \sum_{k=0}^{n} \binom{n}{k}$
${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	6. $\binom{n}{k}\binom{m}{k} = \frac{n}{k}\binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n}{k} + \binom{k-1}{k-1}$, 7. $\sum_{k}\binom{r+k}{k} = \binom{r+n+1}{n}$,
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1,2,,n\}$ with k ascents.	9. $\sum_{k=0}^{n} \binom{n}{k}$
$\langle\!\langle {}^n_k \rangle\!\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{1} = 1$,
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	13. $\binom{n}{k} =$
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!,$)!, 15. $\binom{n}{2} = (n-1)!H_{n-1},$	1) H_{n-1} , 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,
18. $\binom{n}{k} = (n-1)^n$	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \binom{n}{n-1}$	$ = \binom{n}{2} $
22. $\binom{n}{0} = \binom{n}{n-1} = 1,$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{n-1-k},$	$n - 1 - k$, $24. \left\langle n \right\rangle = (k+1) \left\langle n - 1 \right\rangle + (n-k) \left\langle n - 1 \right\rangle$,
25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$		26. $\binom{n}{1} > 2^n - n - 1$, $27. \binom{n}{2} > 3^n - (n+1)2^n + \binom{n+1}{2}$,

		Theoretical	Theoretical Computer Science Cheat Sheet
		Definitions	Series
f(n)	f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0.$	$\sum_{i} i = \frac{n(n+1)}{2}, \sum_{i} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$
f(n)	$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0.$	
f(n):	$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{n=1}^{\infty} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{\infty} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right] $
f(n)	f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{n=1}^{n-1} i^m = \frac{1}{m+1} \sum_{m=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
ni i	$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	i=1 $i=1$
	Sdns	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{c^4} c^4 = \frac{1}{c-1}, c \neq 1, \sum_{i=0}^{c^4} c^4 = \frac{1}{1-c}, \sum_{i=1}^{c^4} c^4 = \frac{1}{1-c}, c < 1, c = 1, \dots, n$
	inf S	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{c} i c^{i} = \frac{n c^{cr+z} - (n+1) c^{rr+} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{c} i c^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
lir	$\lim_{n\to\infty} a_n$	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $H = \sum_{n=1}^{n} \frac{1}{n} - \sum_{i=1}^{n} \frac{n(n+1)}{n}H - \frac{n(n-1)}{n}$
lim n-	$\limsup_{n\to\infty} a_n$	$\lim_{n\to\infty} \sup\{a_i \mid i \ge n, i \in \mathbb{N}\}.$	$\lim_{i=1} \frac{1}{i} = \sum_{i=1}^{n+1} \frac{1}{2} = \sum_{i=1}^{n+1} \frac{1}{2}$
	$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1} H_i = (n+1)H_n - n, \sum_{i=1} {n \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
		Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$, $\binom{n}{n-1}$, $\binom{n}{n-1}$, $\binom{n}{n-1}$
	${n \brace k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	6. $\binom{n}{m}\binom{m}{k} = \frac{1}{k}\binom{n-1}{k-1}$, 7. $\sum_{n}\binom{r+k}{k} = \binom{r}{k}\binom{r+k-1}{k-1}$, 7. $\sum_{n}\binom{r+k}{k} = \binom{r+n+1}{n}$,
	$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	8. $\sum_{k=0}^{n} {n \choose k} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose n-k} = {r+s \choose n},$
	$\binom{n}{k}$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{k} = 1$,
	C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14.	$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	11, $15. \begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)$	2 2
18.	$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$		$ 1 = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}, \textbf{20.} \sum_{n=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, \textbf{21.} C_n = \frac{1}{n+1} \binom{2n}{n}, $
22.	22. $\binom{n}{0} = \binom{n}{n-1} = 1,$	1	$n - 1 - k$, $24. \left\langle n \right\rangle = (k+1) \left\langle n - 1 \right\rangle + (n-k) \left\langle n - 1 \right\rangle$, $k - 1$,
25.	$\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \mathbf{i} \\ 0 & \mathbf{c} \end{cases}$	if $k = 0$, 26. $\binom{n}{1}$	$ > = 2^n - n - 1, $ 27.
28. 3	$e^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle$		29. $\binom{n}{m} \ge \sum_{k=0}^{m} \binom{n+1}{k} (m+1-k)^n (-1)^k,$ 30. $m! \binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{k}{n-m},$
$31.\ \langle$	$\binom{n}{m} = \sum_{n=0}^{n} \left\{$	$ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $	32. $\binom{n}{0} = 1,$ 33. $\binom{n}{n} = 0$ for $n \neq 0,$
34.	$\binom{n}{k} = (k+1)$	34. $\binom{n}{k} = (k+1) \binom{n-1}{k} + (2n-1-k) \binom{n-1}{k-1}$,	
36.	$\left\{ x \atop x-n \right\} = \sum_{k=1}^{n}$	36. $ \begin{cases} x \\ x-n \end{cases} = \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle \left(x+n-1-k \right), $	37. ${n+1 \brace m+1} = \sum_{k} {n \choose k} {k \brack k} = \sum_{k=0}^{n} {k \brack m} {m+1}^{n-k}$

Trees	Every tree with n vertices has $n-1$	edges. Kraft inequal- ity: If the deaths	of the leaves of a binary tree are	$d_1, \dots, d_n:$ $\sum_{i=1}^{n} 2^{-d_i} < 1.$	i=1 and equality holds	only if every in- ternal node has 2 sons.		ons: h sides of the equa-	ides over all i for	Dam Down states Over an a ron
\(\frac{1}{2} \cdot \cdo					$\binom{n+n}{n+k} \binom{m+k}{k}$,			Generating function 1. Multiply bot	tion by x^i .	The Diller court
		41.	43. $ \left[\begin{array}{c} m+n+1 \\ m \end{array} \right] = \sum_{k=0}^{m}$	45. $(n-m)!\binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{n-1}$	${n+k\brack k}, \qquad 47. \ {n\brack n-m}=\sum_k{m-n\choose m+k}{n\choose k}$		Recurrences	1(T(n) - 3T(n/2) = n)	3(T(n/2) - 3T(n/4) = n/2)	
2		40. $\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$	42. ${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$	44. $\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, 4$	$ \binom{n}{n-m} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \begin{bmatrix} m \\ m+k \end{bmatrix} $	$ \binom{n}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} $		aster method: $(n) = aT(n/b) + f(n), a \ge 1, b > 1$	If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$	than
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	39. $\begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \left\langle \left\langle n \right\rangle \right\rangle \left\langle \left\langle x+k \right\rangle \right\rangle$								

$\frac{1(T(n) - 3(T(n/2))}{3(T(n/2))}$	(o/m/)[-u - solo	$3^{2} \cdot s_{2} = \frac{1}{2} (T(2) - \frac{1}{2})$ Let $m = \log_{2} n$.	we get $I(n) = 3^m$ $T(n) = n^k$ where l Summing the right	m_1
Master method: $T(n) = aT(n/b) + f(n), a \ge 1, b > 1$ If $\exists c > 0$ and that $f(n) = O(n\log_k a^{-c})$	then $T(n) = \Theta(n^{\log_b a}).$	If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n).$	If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log b} a^{+\epsilon})$, and $\exists c < 1$ such that $af(n/b) \le cf(n)$	for large n , then

Substitution (example): Consider the $T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$ $T(n) = \Theta(f(n)).$ following recurrence

Let $u_i=t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get $\frac{t_{i+1}}{2^{i+1}}=\frac{2^i}{2^{i+1}}+\frac{t_i}{2^i}.$ Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i$, $t_1 = 1$.

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider $u_{i+1} = \frac{1}{2} + u_i, \quad u_1 = \frac{1}{2},$ Substituting we find

Rewrite so that all terms involving ${\cal T}$ are on the left side $T(n) = 3\overline{T}(n/2) + n, \quad T(1) = 1.$ T(n) - 3T(n/2) = n.

the following recurrence

Now expand the recurrence, and choose a factor which makes the left side "tele-

Summing the left side $^{m}T(1)=T(n)-3^{m}=$ $^{2}k=\log_{2}3\approx1.58496.$ It side we get -3T(1) = 2

 $= 2n(c^{(k-1)\log_c n} - 1)$ $\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$ $= 2n(c^{\log_2 n} - 1)$ Let $c = \frac{3}{2}$. Then we have $n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited $T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$ history ones (example): Consider $= 2n^k - 2n,$

 $T_{i+1} - T_i = 1 + \sum_{j=0}^i T_j - 1 - \sum_{j=0}^{i-1} T_j$ $T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$ Subtracting we find Note that

And so $T_{i+1} = 2T_i = 2^{i+1}$. $=T_i$.

2. Sum both sides over all i for which the equation is valid.

Choose a generating function G(x). Usually G(x) = ∑_{i=0}^x xⁱg.
 Rewrite the equation in terms of the generating function G(x).
 Solve for G(x).
 The coefficient of xⁱ in G(x) is g_i.
 Example:

 $g_{i+1} = 2g_i + 1, \quad g_0 = 0.$

Multiply and sum: $\sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x): $\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \geq 0} x^i.$

Simplify: $\frac{G(x)}{G(x)} = 2G(x) + \frac{1}{1-x}.$

 $G(x) = \frac{x}{(1-x)(1-2x)}$ Solve for G(x):

Expand this using partial fractions: $G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x} \right)$

 $= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$

 $= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$

So $g_i = 2^i - 1$.

			Theoretical Computer Science Cheat Sheet	zience Cheat	Sheet
	$\pi \approx 3.14159$,	$e \approx 2.7$	$\approx 2.71828, \qquad \gamma \approx 0.57721,$	$\phi = \frac{1+\sqrt{5}}{2} \approx 1$	$\approx 1.61803, \qquad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$
i	2^i	p_i	General		Probability
1	2	2	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	$idd \ i \neq 1$):	Continuous distributions: If
2	4	က	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$B_4 = -\frac{1}{30}$,	$\Pr[a < X < b] = \int^b p(x) dx,$
က	∞	2	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{3}{66}.$. 99	J_a
4	16	7	ğ	mula:	X. If
20	32	11	$\log_b x = \frac{\log_a x}{1 - \frac{1}{2}}, \frac{-b \pm \sqrt{1 - \frac{1}{2}}}{1 - \frac{1}{2}}$	$-b \pm \sqrt{b^2 - 4ac}$	$\Pr[X < a] = P(a),$
9	64	13		2a	then P is the distribution function of X . If
7	128	17	Euler's number e:		P and p both exist then
×	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	+ 0	$P(a) \equiv \int_a^a n(x) dx$
6	512	23	$\lim_{x \to \infty} \left(1 + \frac{x}{x}\right)^n = e^x.$. x	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$
10	1,024	29	$n \to \infty$ $n \to \infty$ $n \to \infty$ $n \to \infty$	n+1	Expectation: If X is discrete
11	2,048	31	$(1+\frac{\pi}{n}) < e < (1+\frac{\pi}{n})$		$E[g(X)] = \sum g(x) \Pr[X = x].$
12	4,096	37	$(1+\frac{1}{n})^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	$-O\left(\frac{1}{n^3}\right)$.	Tr X continuous then
13	8,192	41	Harmonic numbers:	` ::/	
14	16,384	43	$1, \frac{3}{5}, \frac{11}{6}, \frac{25}{19}, \frac{137}{60}, \frac{49}{90}, \frac{363}{146}, \frac{761}{980}, \frac{7129}{960}, \dots$	1 7129	$E[g(A)] = \int_{-\infty} g(x)p(x) dx = \int_{-\infty} g(x) dF(x).$
15	32,768	47	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	. 0707 . 0	Variance, standard deviation:
16	65,536	53	$\ln n < H_n < \ln n + 1,$	1,	$VAR[X] = E[X^2] - E[X]^2,$
17	131,072	59	$H_{\cdot \cdot} = \ln n + \alpha + O\left(\frac{1}{2}\right)$		$\sigma = \sqrt{\mathrm{VAR}[X]}$.
18	262,144	61		./.	For events A and B :
19	524,288	29	Factorial, Stirling's approximation:	ation:	$\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$
20	1,048,576	7.1	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	362880,	$\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$
21	2,097,152	73		(1))	iff A and B are independent.
22	4,194,304	42	$n! = \sqrt{2\pi n \left(\frac{\pi}{e}\right)} \left(1 + \Theta\left(\frac{\pi}{n}\right)\right).$	$\left(\frac{\bar{n}}{n}\right)$.	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[A \land B]}$
23	8,388,608	83	Ackermann's function and inverse:	rerse:	$\operatorname{Fr}_{\operatorname{con}} = \operatorname{Pr}[B]$
24	16,777,216	88	(2)	i = 1	For random variables A and I : $\mathbb{E}[X, V] = \mathbb{E}[X] \cdot \mathbb{E}[V]$
25	33,554,432	97	$a(i,j) = \begin{cases} a(i-1,2) & j=1\\ a(i-1,a(i,i-1)) & i,i > \end{cases}$	j = 1	E[X : I] = E[X] : E[X]; if X and Y are independent.
0 70	104,100,004	101	$\alpha(i) \equiv \min\{i \mid \alpha(i, i) > i\}$		$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y],$
7.7.	134,217,728	103	$a(s) = \min_{x \in X} f(x,y) = sf.$		$\mathbb{E}[cX] = c\mathbb{E}[X].$
07	700,499,490	101	Dinomal discribution:		Bayes' theorem:
20	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k},$	q=1-p,	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\Pr[B]}$
31 23	9 147 483 648	197	n (n) t n-t	ث.	$\sum_{j=1}^{n} \Pr[A_j] \Pr[B A_j]$
32	4,294,967,296	131	$E[A] = \sum_{k=1}^{\infty} k \binom{k}{p} p^{-q} = np.$	= np.	Inclusion-exclusion: $\frac{n}{n}$
	Pascal's Triangle		Poisson distribution:		$\Pr\left[\bigvee X_i\right] = \sum \Pr[X_i] +$
	1		$\Pr[X = k] = \frac{e^{-\lambda \lambda^{\kappa}}}{n!}, \text{E}[$	$-, \mathbb{E}[X] = \lambda.$	n = 1 $n = 1$ $k = 1$
	111		Normal (Gaussian) distribution:	:uc	$\sum (-1)^{k+1} \sum \Pr\left[\bigwedge X_{i_j} ight].$
	121		$\frac{1}{(x-u)^2/2\sigma^2}$		$k=2$ $i_s < \cdots < i_k$ $j=1$
	1 3 3 1		$p(x) = \frac{p(X)}{\sqrt{2\pi}\sigma}e^{-\frac{(X-Y)^2}{2\pi}}, E[A] = \mu.$	$E[A] = \mu$.	Moment inequalities:
	14641		The "coupon collector": We are given a	are given a	$\Pr\left[X \geq \lambda \operatorname{E}[X]\right] \leq \frac{1}{\lambda},$
	15101051		random coupon each day, and there are n	there are n	$ \mathbf{P}_{\mathbf{r}}[X - \mathbf{E}[X] > \lambda, \sigma] < \frac{1}{1}$
	1615201561		tion of coupons is uniform. The expected	he expected	$\int_{-\infty}^{\infty} \frac{1}{ x ^{n+1}} = \frac{1}{ x ^{n+1}} =$
	1 7 21 35 35 21 7 1	1	number of days to pass before we to col-	e we to col-	Pr[$X = k$] = pq^{k-1} , $q = 1 - p$,
,	1 8 28 90 70 90 28 8 1	2.1	rect an n types is		
J)	1 9 36 84 126 126 84 36 9 1	8691	nH_n .		$\mathbb{E}[X] = \sum kpq^{k-1} = \frac{1}{\omega}.$
10 45	1 10 45 120 210 252 210 120 45 10 1	20 45 10 1			k=1 P

Theoretical	Theoretical Computer Science Cheat Sheet	
Trigonometry	Matrices	More Trig.
(0,1)	Multiplication: $C = A \cdot B, c_{i,j} = \sum_{a_{i,k}} a_{i,k} b_{k,j}.$	
$A = \begin{pmatrix} C & & & & \\ & & & & \\ & & & & \\ & & & &$	Determinants: $\det A \neq 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B,$	$A \begin{pmatrix} h \\ h \end{pmatrix}$ Law of cosines:
B (0,-1)	$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$	$c^2 = a^2 + b^2 - 2ab\cos C.$ Area:
r yunagurean turorent: $C^2 = A^2 + B^2.$ Definitions:	2×2 and 3×3 determinant: $\begin{vmatrix} a & b \\ a & b \end{vmatrix} = ad - bc.$	$A = \frac{1}{2}hc,$
$ in a = A/C, \cos a = B/C, $ $ sc a = C/A, \sec a = C/B, $ $ sin a A \cos a $	$\begin{bmatrix} a & b & c \\ d & b & c \\ d & b & i \\ \end{bmatrix} = g \begin{bmatrix} c & d \\ b & c \\ \end{bmatrix} - h \begin{bmatrix} a & c \\ d & f \\ \end{bmatrix} + i \begin{bmatrix} a & b \\ d & e \\ \end{bmatrix}$	$= \frac{1}{2} \frac{do \sin C}{\sin A \sin B}$ $= \frac{c^2 \sin A \sin B}{2 \sin C}$ Heron's formula:
~ ~	5	$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$ $s = \frac{1}{2}(a + b + c).$
$\frac{1}{2}AD$, $A+B+C$.	$\operatorname{perm} A = \sum_{i=1}^{n} a_{i,\pi(i)}.$	$s_a = s - a,$ $s_b = s - b,$
$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$	Hyperbolic Functions	$s_c = s - c.$
$\sin^2 x + \cos^2 x$	Definitions: $e^x - e^{-x}$ $e^x + e^{-x}$	More identities: $\sqrt{1-\cos x}$
$1 + \tan^2 x = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$,		$\sin\frac{x}{2} = \sqrt{\frac{2}{1 + \cos x}},$
	$e^x + e^{-x}$, coth $x = \frac{1}{1}$	$\cos\frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$
$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$	$\cosh x$	$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$	+	$= \frac{1 - \cos x}{\sin x},$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$	$\coth^{2} x - \operatorname{csch}^{2} x = 1, \sinh(-x) = -\sinh x,$ $\cosh(-x) - \cosh x + \cosh(-x) - \cosh x$	$=\frac{1+\cos x}{1+\cos x},$
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$	$c \cosh y$	$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$
$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$	$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$	$= \frac{1 + \cos x}{\sin x},$
$\sin 2x = 2\sin x \cos x, \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x},$	$\sinh 2x = 2\sinh x\cosh x,$	$= \frac{\sin x}{1 - \cos x},$
$\cos 2x = \cos^2 x - \sin^2 x$, $\cos 2x = 2\cos^2 x - 1$,	2a	$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$
$\cos 2x = 1 - 2\sin^2 x,$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$	$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$ $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx \qquad n \in \mathbb{Z}.$	$\cos x = \frac{e^{ix} + e^{-ix}}{2},$
$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x},$ $\cot 2x = \frac{\cot^2 x - 1}{2 \cot x},$	$2\sinh^2 \frac{x}{2} = \cosh x - 1, 2\cosh^2 \frac{x}{2} = \cosh x + 1.$	$\tan x = -i \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}},$
$\sin(x+y)\sin(x-y) = \sin^{2}x - \sin^{2}y,$ $\cos(x+y)\cos(x-y) = \cos^{2}x - \sin^{2}y.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= -i\frac{e^{-ix} - 1}{e^{2ix} + 1},$ $\sinh ix$
Euler's equation: $e^{ix} = \cos x + i \sin x, \qquad e^{i\pi} = -1.$	2 2 2 3 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\sin x = \frac{i}{i},$ $\cos x = \cosh ix,$
v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\tan x = \frac{\tanh ix}{i}.$

																																												-1		
	neory	Notation:		_	c(G) Number of components	~				3		Λ_n Complete graph K	$r(k,\ell)$ Ramsey number			(* * *) not all * * and * and	(x, y, z), not an x, y and z zero.	$(x, y, z) = (cx, cy, cz)$ $vc \neq v$.	an	(x,y) $(x,y,1)$	y = mx + b $(m, -1, b)$	x = c (1, 0, $-c$) Distance formula L_c and L_c	metric:	$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$	$\begin{pmatrix} \sqrt{(\omega_1 - \omega_0)} & \sqrt{(y_1 - y_0)} \\ \sqrt{(w_1 - \omega_0)} & \sqrt{(y_1 + y_0)} & -w_0 \end{bmatrix}^{1/p}$	([$\lim_{p \to \infty} \left[x_1 - x_0 ^p + y_1 - y_0 ^p \right] \cdots$	Area of triangle (x_0, y_0) , (x_1, y_1)	and (x_2, y_2) :	$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.	Angle formed by three points:	•	(x_2, y_2)	£22	(0 0) 6. (x; 11.)	(x, y) 1 (x_1, y_1) (x_2, y_2)	$\cos \theta = \frac{(-1.91) (-2.92)}{\ell_1 \ell_2}$.	two	and (x_1, y_1) :	$\begin{vmatrix} x & y & 1 \end{vmatrix}$	$\begin{vmatrix} x_0 & y_0 & 1 \\ x_0 & y_0 & 1 \end{vmatrix} = 0.$	$ x_1 y_1 1$	Area of circle, volume of sphere: $A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$		If I have seen farther than others, it is because I have stood on the	shoulders of giants. - Issac Newton
Theoretical Computer Science Cheat Sheet	Graph Theory	142	An edge connecting a ver-	tex to itself.	Each edge has a direction.	Graph with no loops or	A cognopolation	A walk with distinct edges.	A trail with distinct	vertices.		a path between any two	ver	t A maximal connected subgraph.	A connected acyclic graph.	A tree with no root.	Directed acyclic graph.	Graph with a trail visiting		an Graph with a cycle visiting	A set of edges whose re-	moval increases the num-	ber of components.	A minimal cut.	¥ .	ed A graph connected with the removal of any $k=1$	vertices.	$\forall S \subseteq V, S \neq \emptyset$ we have	$k \cdot c(G - S) \le S $.	A graph where all vertices have degree k .	A k-regular spanning	subgraph.	A set of edges, no two of which are adjacent.	A set of vertices, all of	which are adjacent.	A set of vertices, none of	winch are adjacent. er A set of vertices which		Planar graph A graph which can be em-	beded in the plane.	Plane graph An embedding of a planar	втари.	$\sum_{n \in V} \deg(v) = 2m.$	If G is planar then $n-m+f=2$, so	$f \le 2n - 4$, $m \le 3n - 6$.	Any planar graph has a vertex with degree < 5.
etical Com		Definitions	Loop		Directed	Simple	TAZAR	Trail	Path		Connected			Component	Tree	Free tree	DAG	Eulerian	Hamiltoni	патилопиан	Cart	a c		Cut-set	Cut edge	k-Connected		k- $Tough$	1. D1	k-kegwar	k-Factor		Matching	Clique		Ind. set	Vertex cover		Planar gra		Plane grap			If G is plan	√I V	Any plana gree < 5.
Theor	Number Theory	The Chinese remainder theorem: There ex-	ists a number C such that:	$G \equiv r_1 \mod m_1$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$C \equiv r_n \mod m_n$	if m_i and m_i are relatively prime for $i \neq i$.	Enlar's function: $\phi(x)$ is the number of	positive integers less than x relatively	prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime fac-	torization of x then	$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1}(p_i - 1).$	i=1	Euler's theorem: If a and b are relatively	prime then	$1 \equiv a^{\varphi(b)} \mod b$.	Fermat's theorem:	$1 \equiv a^{p-1} \bmod p.$	The Euclidean algorithm: if $a > b$ are in-	tegers then	$\gcd(a,b) = \gcd(a \bmod b,b).$	To TT	If $\prod_{i=1}^{n} p_i$ is the prime factorization of x	$S(x) - \sum_{i=1}^{n} A_i$	$C(x) = \sum_{d x} a = \prod_{i=1} p_i - 1$.	Perfect Numbers: x is an even nerfect mim-	ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.	Wilson's theorem: n is a prime iff	$(n-1)! \equiv -1 \mod n.$	Möbius inversion: if $i = 1$.	u(i) = 0 if i is not square-free.	$\mu^{(t)} = \begin{pmatrix} (-1)^r & \text{if } i \text{ is the product of} \\ x & \text{distinct raisons} \end{pmatrix}$	To discusse printes.	$G(a) \equiv \sum F(d)$.	$\frac{d a }{d a }$	then	$F(a) = \sum \mu(d)G\left(\frac{a}{A}\right).$	$\frac{a a}{a}$	Prime numbers:	$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$		$+O\left(\frac{\overline{n}}{\ln n}\right),$	$\pi(n) = \frac{n}{1 - 1} + \frac{n}{1 - 1} + \frac{2!n}{1 - 1}$	$\ln n \pmod{(\ln n)^2}$	$+O\left(\frac{n}{(\ln n)^4}\right).$

Wallis' identity: $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \dots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \dots}$		
	Calculus	ns
	Derivatives: $\frac{d(cu)}{1} = \frac{du}{c} \qquad 2 \frac{d(u+v)}{1} = \frac{du}{1} + \frac{dv}{1}$	$+\frac{dv}{dt}$ 3. $\frac{d(uv)}{dt} = u\frac{dv}{dt} + v\frac{du}{dt}$
	$\frac{dx}{dx} - \frac{dx'}{dx}, \qquad -\frac{1}{2}$	$u(\frac{dv}{dx})$
$2 + \frac{5 + \frac{52}{2 + \frac{72}{2 + \cdots}}}{2 + \frac{72}{2 + \cdots}}$		$\frac{n}{s} = \frac{1}{n}$
$+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$	9. $\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$	10. $\frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$
	11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$	12. $\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$
Sharp's series: $2 \cdot 3 \cdot 2^3 \cdot 2 \cdot 4 \cdot 5 \cdot 2^5$	13. $\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$,	14. $\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx},$
$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^{1} \cdot 3} + \frac{1}{3^{2} \cdot 5} - \frac{1}{3^{3} \cdot 7} + \cdots \right)$	15. $\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$	16. $\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx},$
	17. $\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$	18. $\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx},$
$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$ $\frac{\pi^2}{6} = \frac{\pi^2}{1^2} + \frac{1}{9^2} + \frac{1}{\pi^2} + \frac{1}{\pi^2} + \cdots$	19. $\frac{d(\arccos u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$	20. $\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$
	21. $\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$,	22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$,
П	23. $\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$,	24. $\frac{d(\coth u)}{dx} = -\cosh^2 u \frac{du}{dx},$
tions of x . We can break down $N(x)/D(x)$ using partial fraction expan-	25. $\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx},$	26. $\frac{d(\operatorname{csch} u)}{du} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$
	27. $\frac{d(\arcsin u)}{d\sigma} = \frac{1}{\sqrt{1 + \alpha^2}} \frac{du}{d\sigma},$	28. $\frac{d(\operatorname{arccosh} u)}{dr} = \frac{1}{\sqrt{a^2 - 1}} \frac{du}{dr},$
If by D , obtaining $\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$	29. $\frac{d(\arctan h u)}{dr} = \frac{1}{1 - u^2} \frac{du}{dr},$	30. $\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$
n that of e follow-	31. $\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u/2}} \frac{du}{dx},$	32. $\frac{d(\operatorname{arccsch} u)}{dr} = \frac{-1}{ u \cdot (1 \pm n)^2} \frac{du}{dr}$.
	Integrals:	
$(x-a)\overrightarrow{D}(x) = \overline{x-a} + \overline{\overrightarrow{D}(x)},$	1. $\int cu dx = c \int u dx,$	2. $\int (u+v) dx = \int u dx + \int v dx$,
where $A = \begin{bmatrix} N(x) \\ D(x) \end{bmatrix}_{x=a}.$	3. $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1,$	4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,
N'(x)	$6. \int \frac{dx}{1+x^2} = \arctan x,$	7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$
$\int_{m} D(x) = \sum_{k=0} \frac{(x-a)^{m-k}}{(x-a)^{m-k}} + \frac{(x-a)^{m}}{D(x)},$	8. $\int \sin x dx = -\cos x,$	$9. \int \cos x dx = \sin x,$
where $A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$	$10. \int_{r} \tan x dx = -\ln \cos x ,$	11. $\int \cot x dx = \ln \cos x ,$
The reasonable man adapts himself to the world; the unreasonable persists in trying	12. $\int \sec x dx = \ln \sec x + \tan x ,$	13. $\int \csc x dx = \ln \csc x + \cot x ,$
to adapt the world to himself. Therefore all progress depends on the unreasonable. George Bernard Shaw	14. $\int \arcsin\frac{x}{a} dx = \arcsin\frac{x}{a} + \sqrt{a^2 - x^2},$	a > 0,

	Theoretical Computer Science Cheat Sheet	Theor
	Calculus Cont.	Calculus Co
15.	15. $\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, a > 0,$ 16. $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), a > 0,$	62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0,$
17.	17. $\int \sin^2(ax)dx = \frac{1}{2\pi}(ax - \sin(ax)\cos(ax)),$ 18. $\int \cos^2(ax)dx = \frac{1}{2\pi}(ax + \sin(ax)\cos(ax)),$	64. $\int \frac{x dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 + a^2},$
19.	19. $\int \sec^2 x dx = \tan x,$	$\int_{C} \frac{dr}{dr} = \int_{C} \frac{1}{\int_{C} \frac{1}{2ar} + \int_{C} \frac{1}{2ar}} \ln \frac{2ax + \frac{1}{2ar}}{\frac{1}{2ar}}$
21.	21. $\int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx$, 22. $\int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x dx$,	$ 66. \int \frac{ax^2 + bx + c}{ax^2 + bx + c} = \begin{cases} \sqrt{\sqrt{3 - 4ac}} & acc = 2 \\ 2 & 2 \end{cases}$
23.	23 $\int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx$, $n \neq 1$, 24. $\int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x dx$, $n \neq 1$,	$\left(\begin{array}{c c} 1 & \ln 2ax + b + 2 \\ \hline \end{array}\right)$
25.	25. $\int \sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx$, $n \neq 1$,	$67. \int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \sqrt{a} & \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax}{h^2} \end{cases}$
26.	$26. \int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x dx, n \neq 1, 27. \int \sinh x dx = \cosh x, 28. \int \cosh x dx = \sinh x,$	68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{b} \sqrt{ax^2 + bx}$
29.	29. $\int \tanh x dx = \ln \cosh x , \text{ 30.} \int \coth x dx = \ln \sinh x , \text{ 31.} \int \operatorname{sech} x dx = \arctan \sinh x, \text{ 32.} \int \operatorname{csch} x dx = \ln \tanh \frac{x}{2} ,$	4a
33.	33. $\int \sinh^2 x dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$, 34. $\int \cosh^2 x dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, 35. $\int \operatorname{sech}^2 x dx = \tanh x$,	69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{0}{2a}$
36.	$36. \int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, a > 0, \qquad 37. \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln a^2 - x^2 ,$	$\int_{C} \frac{dx}{dx} = \left(\frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2}}{\sqrt{c}} \right \right)$
38.	38. $\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0. \end{cases}$	70. $\int \frac{x\sqrt{ax^2 + bx + c}}{x\sqrt{ax^2 + bx + c}} = \begin{cases} 1 & bx \\ \sqrt{-c} & \arcsin \frac{bx}{ x \sqrt{b}} \end{cases}$
39.	39. $\int \frac{dx}{\sqrt{a^2+r^2}} = \ln\left(x+\sqrt{a^2+x^2}\right), a>0,$	71. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)$
40.	40. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, a > 0, $ 41. $\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, a > 0, $	72. $\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^r$
42.	42. $\int (a^2 - x^2)^{3/2} dx = \frac{\pi}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2 + \frac{3a^4}{8} \arcsin \frac{\pi}{a}}, a > 0,$	73. $\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1}$
43.	$43 \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, a > 0, \qquad 44. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right , \qquad 45. \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$	74. $\int x^n e^{ax} dx = \frac{x^n e^n}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$
46.	$ \ln \left x + \sqrt{a^2 \pm x^2} \right , \qquad 47. \int \frac{1}{\sqrt{x}} $	75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{x^n \cos y}{n+1} - \frac{x}{(n+1)^n} \right)$
48.	48. $\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left \frac{x}{a + bx} \right $, 49. $\int x\sqrt{a + bx} dx = \frac{2(3bx - 2a)(a + bx)^{3/2}}{15b^2}$,	76. $\int x^n (\ln ax)^m dx = \frac{x}{n+1} (\ln ax)^m - \frac{m}{n+1}$
50.	$50. \int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx, \qquad 51. \int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right , a > 0,$	II
52.		$x^2 + x^{\pm}$ $x^3 + 3x^2 + x^{\pm}$
54.	54. $\int x^2 \sqrt{a^2 - x^2} dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, a > 0, $ 55. $\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$	$x^{4} = x^{4} + 6x^{2} + 7x^{2} + x^{1} = x^{5} = x^{5} + 15x^{4} + 25x^{3} + 10x^{2} + x^{1} = x^{5} = x^{5} + 15x^{4} + 25x^{3} + 10x^{2} + x^{1} = x^{2} = x^{2} + 10x^{2} + x^{2} + 10x^{2} + x^{2} = x^{2} + 10x^{2} + x^{2} + 10x^{2} + x^{2} = x^{2} + 10x^{2} + x^{2} + x^$
56.	$57. \int \frac{x^2}{\sqrt{a^2}}$	$ \frac{x^{\overline{1}}}{x^{\overline{2}}} = x^1 \qquad x^{\underline{1}} $
58.	58. $\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right , $ 59. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{ x }, $ $a > 0,$	$x^3 + 3x^2 + 2x^1$ $x^4 + 6x^3 + 11x^2 + 6x^1$
.09	60. $\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3}(x^2 \pm a^2)^{3/2}, \qquad \qquad$	$x^5 +$

Theoretical C	Theoretical Computer Science Cheat Sheet	heet
Calculus Cont.		Finite Calculus
62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0, \qquad 63. \int$	$\sqrt{\frac{dx}{x^2\sqrt{x^2 \pm a^2}}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$	Difference, shift operators: $\Delta f(x) = f(x+1) - f(x),$
65. $\int \frac{v}{dv}$	65. $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$	E f(x) = f(x+1). Fundamental Theorem:
$66. \int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} & \text{arctan } \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	$\left \frac{r-4ac}{r-4ac}\right , \text{ if } b^2 > 4ac,$ $\left \frac{r-4ac}{r-4ac}\right , \text{ if } b^2 < 4ac,$	$\begin{split} f(x) &= \Delta F(x) \Leftrightarrow \sum_{i} f(x) \delta x = F(x) + C. \\ \sum_{a} f(x) \delta x &= \sum_{i=a}^{b-1} f(i). \end{split}$
67. $\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln\left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} & \arcsin\frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$	$\frac{c^2 + bx + c}{c}, \text{if } a > 0,$ $\text{if } a < 0,$	Dimensions: $\begin{split} \Delta(cu) &= c\Delta u, & \Delta(u+v) = \Delta u + \Delta v, \\ \Delta(uv) &= u\Delta v + Ev\Delta u, \\ \Delta(x^{\mu}) &= nx^{\mu-1}, \end{split}$
68. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a}.$	$\frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\begin{array}{ll} \Delta(H_x) = x^{-1}, & \Delta(2^x) = 2^x, \\ \Delta(c^x) = (c-1)c^x, & \Delta\binom{x}{m} = \binom{x}{m-1}. \\ \text{Sums:} \end{array}$
69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\frac{dx}{z + bx + c},$	$\sum cu \delta x = c \sum u \delta x,$ $\sum (u+v) \delta x = \sum u \delta x + \sum v \delta x,$
70. $\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} -\frac{1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{ x - bx + 2c} \end{cases}$	$\frac{\overline{c} + bx + 2c}{c + bx + 2c}, \text{if } c > 0,$ $\text{if } c < 0,$	$\sum u\Delta v \delta x = uv - \sum \mathbf{E} v \Delta u \delta x,$ $\sum x^{\mu} \delta x = \frac{x^{n+1}}{m+1}, \qquad \sum x^{-1} \delta x = H_x,$ $\sum c^{x} \delta x = \frac{c^{x}}{c^{x}}, \qquad \sum \left(\begin{array}{c} x \end{array} \right) \delta x = \left(\begin{array}{c} x \end{array} \right).$
71. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$		- F
72. $\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx,$	ax) dx,	$x^{\underline{0}} = 1,$ $x^{\underline{n}} = \frac{1}{\sqrt{1 + (1 + 1)^{-1}}}, n < 0,$
73. $\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$,	(x) dx,	$(x+1)\cdots(x+ n)$ $x^{n+m} = x^{m}(x-m)^{n}.$
74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$		Rising Factorial Powers: $x^{\overline{n}} = x(x+1)\cdots(x+n-1), n>0,$
75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$		$x^{\overline{0}} = 1,$ $\frac{n\overline{n}}{n} = 1,$ $\frac{n}{n} = 1,$
76. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	$\ln ax)^{m-1} dx.$	$x = (x-1)\cdots(x- n), n > 0,$ $x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$
$x^1 = x^{-1} = x^{-1}$	x r	Conversion: $x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x-n+1)^{\overline{n}}$

 $x^n = \sum_{k=1}^n \left\{ n \right\} x^k = \sum_{k=1}^n \left\{ n \right\} (-1)^{n-k} x^{\overline{k}},$ $x^n = \sum_{k=1}^n \left[n \right] (-1)^{n-k} x^k,$

 $x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}.$

 $x^{\overline{n}} = (-1)^{n}(x+1)^{-1},$ $x^{\overline{n}} = (-1)^{n}(-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$ $= 1/(x-1)^{-\underline{n}},$

 $x^{\frac{x^{7}}{7}-x^{7}}$ $x^{3}-3x^{7}+x^{7}$ $x^{4}-6x^{3}+7x^{7}-x^{7}$ $x^{5}-15x^{4}+25x^{3}-10x^{2}+x^{7}$