Multiple Linear Regression

The data is located in the file: 'real_estate_price_size_year.csv'.

In this exercise, the dependent variable is 'price', while the independent variables are 'size' and 'year'.

Import the relevant libraries

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import statsmodels.api as sm
  import seaborn as sns
  sns.set()
```

Load the data

	price	size	year
count	100.000000	100.000000	100.000000
mean	292289.470160	853.024200	2012.600000
std	77051.727525	297.941951	4.729021
min	154282.128000	479.750000	2006.000000
25%	234280.148000	643.330000	2009.000000
50%	280590.716000	696.405000	2015.000000
75%	335723.696000	1029.322500	2018.000000
max	500681.128000	1842.510000	2018.000000

Create the regression

Declare the dependent and the independent variables

```
In [5]: y = data['price']
x1 = data[['size','year']]
```

Regression

 $x = sm.add_constant(x1)$

```
results = sm.OLS(y,x).fit()
          results.summary()
                               OLS Regression Results
Out[6]:
              Dep. Variable:
                                        price
                                                     R-squared:
                                                                    0.776
                    Model:
                                         OLS
                                                Adj. R-squared:
                                                                    0.772
                   Method:
                                 Least Squares
                                                     F-statistic:
                                                                    168.5
                      Date: Wed, 28 Sep 2022 Prob (F-statistic): 2.77e-32
                      Time:
                                                Log-Likelihood:
                                                                  -1191.7
                                     18:48:29
                                                                       97.
```

No. Ol	servations:	100			AIC:	2389.
D	f Residuals:	97			BIC:	2397.
	Df Model:	2				
Covai	iance Type:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
					-	
const	-5.772e+06	1.58e+06	-3.647	0.000	-8.91e+06	-2.63e+06

785.896 3.711 0.000

2.250	Durbin-Watson:	10.083	Omnibus:
3.678	Jarque-Bera (JB):	0.006	Prob(Omnibus):
0.159	Prob(JB):	0.095	Skew:
9.41e+05	Cond. No.	2.080	Kurtosis:

2916.7853

Notes:

year

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1357.000

4476.571

[2] The condition number is large, 9.41e+05. This might indicate that there are strong multicollinearity or other numerical problems.