JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGY UNIVERSITY, MYSURU.

Department of Computer Science and Engineering. IV Semester C Section: Test-1

THEORY OF COMPUTATION

Duration: 1Hrs

Date: 06.05.2023

Max. Marks:20

NOTE: Answer all the questions

Q.NO	CO	CD	PI	QUESTION	MARKS
1.a	CO1	L3	1.7.1	Define Deterministic finite automata (DFA). Design DFA to accepts set of string either start with 01 or ends with 01 over the alphabet {0,1}.	06
1.b	COI	L3	1.7.1	Write subset construction algorithm with an example	04
2.a	COI	L3	1.7.1	Convert the following automata to DFA. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06
2.b	COI	LI	1.6.1	$ \begin{array}{c cccc} r & \{s\} & \{p\} \\ \hline *_s & \Phi & \{p\} \\ \hline \end{array} $ Define the following:	
		D1	1.0.1	a) Automata with output and without output. b) Difference between DFA and NFA	04
				OR	
3.a	COI	Li	1.6.1	Write the formal definition for the following terms with an example a) Alphabet. b) Language. c) Symbol.	04
3.b	COI	L3	1.7.1	Define NFA. Consider the following NFA	
		100	140	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06
				i) Convert the automation to a DFA.	

JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGY UNIVERSITY, MYSURU.

Department of Computer Science and Engineering. IV Semester: Test-III

THEORY OF COMPUTATION

Duration: 1Hrs

Date: 08.07.2023

Max. Marks:20

Q.NO	со	CO CD PI QUESTION				
1.a	CO41	L3	1.7.1	Pesign Pushdown automata for the following languages. ii) L= { a ⁿ b ⁿ : n≥ 0} L= {WCW ^R : W ∈ {a, b}*	06	
1.b	CO4	LI	1.6.1	Define the following terms i) Deterministic Pushdown automata ii) Language of PDA	04	
2.	CO3 L3 Define useless production and Simplify the following grammar $S \rightarrow aA \mid aBB \\ A \rightarrow aaA \mid \mathcal{E} \\ B \rightarrow bB \mid bbC \\ C \rightarrow B$		10			
				OR		
3.	соз	L3	1.7.1	Define Chomsky normal form(CNF) and convert the following grammar to CNF S→AAA B A→aA B B→ €	10	

Course	Outcome: At the end of the course the students will have the ability to
CO-1	Design automata for given regular languages.
CO-2	Define Regular expression and check its equivalence among automata.
CO-3	Write grammar for context free languages and parse the given input.
CO-4	Design pushdown Automata and show the equivalence of CFG and PDA
CO-5	Apply the techniques of Turing machine, decidability and intractability of Computational problems.

	PI's
1.6.1.	Apply engineering fundamentals
1.7.1	Apply theory and principles of computer science and engineering to solve an engineering problem

Levels	Cognitive Domain
L1	Remembering
L2	Understanding

JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGY UNIVERSITY, MYSURU.

Department of Computer Science and Engineering.

IV Semester: Test-2

THEORY OF COMPUTATION

Duration: 1Hrs

Date: 14.06.2023

Max. Marks:20

NOTE: Answer all the questions

Q.NO	co	CD	PI	QUESTION	MARKS
1.a	CO2	L3	1.7.1	Write regular expression for the following (0) (0) i) Set of string 0's and 1's having no two consecutive zeros ii) Set of strings of 0's and 1's whose lengths are multiples of 3.	06
1.b	CO2	L3	1.7.1	Obtain the regular expression for the following DFA using state elimination method. Oct 1 O	04
2.a	CO3	L3	1.7.1	Design Context free grammar for the following languages. i) L= { a ⁿ b ⁿ : n > 0} ii) L= { ab(bbaa) ⁿ bba(ba) ⁿ : n>=0}	06
2.b	CO3	LI	1.6.1	Write formal definition for the following i) Regular expression. ii) Context free grammar.	04
	Т	-		OR Consider the grammar	and the second
3.a	CO3	L3	1.7.1	E → +EE *EE -EE x y Find the leftmost and rightmost derivation for the input string +*-xyxy and write derivation tree.	06
3.b	CO3	L3	1.7.1	Define Ambiguous grammar. Show that the following grammar is ambiguous S → AB aaB A → a Aa B → b	04

Course	Outcome: At the end of the course the students will have the ability to
CO-1	Design automata for given regular languages.
CO-2	Define Regular expression, and check its equivalence among automata.
CO-3	Write grammars for context free languages and parse the given input.
CO-4	Design pushdown Automata and show the equivalence of CFG and PDA
CO-5	Apply the techniques of Turing machine, decidability and intractability of Computational problems.

	PI's
1.6.1.	Apply engineering fundamentals
1.7.1	Apply theory and principles of computer science and engineering to
	solve an engineering problem

Levels	Cognitive Domain
LI	Remembering
L2	Understanding
L3	Applying

JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGY UNIVERSITY, MYSURU

IV Semester BE Degree Examination Department of Computer Science and Engineering THEORY OF COMPUTATION

Duration: 3 Hrs

Max. Marks:100

NOTE: Answer all the questions. Part- B has internal choice.

PART - A

Q.NO	со	CD	PI	QUESTION	MARKS
1.	CO5	Applying	2.3.1	Define deterministic finite automata. Design DFA to accept the set of string having even number of a's and odd number of b's. Compute the extended transition function for input string "ababb".	10
2.a	соз	Applying	1.4.1	Define regular expression. Write regular expression for the set of string of 0's and 1's having no two consecutive zeros.	04
2.b	CO4	Analyzing	1.4.1	Prove that every language defined by regular expression is also defined by finite automata.	06
3.	CO3	Applying	1.4.1	Write context free grammar for the following languages $L = \{ a^i b^j c^k \colon i+j=k \ , \ i \ge 0, \ j \ge 0 \}$ Also write left most, right most derivation and derivation tree for the input string "aabbcccc".	10
4.	CO5	Applying	2.3.1	Construct a pushdown automata that accepts the following language $L=\{\ w: w\in \{a,\ b\}^*\ and\ n_a(w)=n_b(w)\}$ Write the instantaneous description for the input string "aababb".	10
5.	CO5	Applying	2.3.1	Construct Turing machine to accept the even length of palindrome over {a, b}*, also write its transition diagram and give instantaneous description for the input "abba".	10

PART - B

Q.NO	со	CD	PI		QUESTION						MARKS	
6.a	CO1	Remember	1.4.1	Defir i) iii)	automata					04		
6.b	CO2	Applying	1.4.1	Con'	onvert the following FA. δ ε A {B, D} B α C α D α •E α			0 {A} {C} @		1 (E) (B)	06	
					OF	R						
7.a	CO2	Applying	1.4.1	Con	Convert the fol		ollow	0 { qo , o	,	fA. 1 { qq	0}	04
7.b	CO2	Applying	1.4.1	Min algo	orithn	e follom.		DFA O B D F D F	by usin	g ta	ible filling	06

8	CO4	Analyzing	1.4.1	State a regular is not re	10					
				0	R					
				followin	Obtain the regular expression for the following DFA using state elimination technique.					
9.a	CO3	Applying	1.4.1		δ	0	1	06		
3.a	003	Applying	1.4.1		- > q₀	q ₁	q ₀			
				7	q ₁	q ₁	q ₂			
					*q2	q ₁	q ₀			
9.b	CO2	Applying	1.4.1	Conver into ε-N	_	ar expression	(a + b*)*ba	04		
10.a	CO3	Remember	1.4.1	followin	Define ambiguous grammar, show that the following grammar is ambiguous. $S \rightarrow aS \mid aSbS \mid \epsilon$					
10.b	соз	Understanding	1.4.1			plication of lain any one in		06		
	1			C	DR					
11.a	соз	Applying	1.4.1	followin S → aS	Define Chomsky normal form. Convert the following grammar to CNF. S → aSb ab Aa A → aab					
11.b	CO3	Applying	1.4.1	gramm S → a/ A → B	Eliminate all ϵ -production from the following grammar. $S \to aAa \mid AB$ $A \to BS \mid aBa \mid \epsilon$ $B \to aB \mid \epsilon$					
12.a	CO1	Remembering	1.4.1	Define i) ii)	the following Language		automata.	06		

12.b	CO4	Applying	1.4.1	Construct a PDA for the following Grammar. $S \to 0S1 \mid A$ $A \to 0A1 \mid S \mid \epsilon$	04	
OR						
13				Design the deterministic pushdown automata for the following language		
	CO5	Applying	2.3.1	L= { a ⁿ c ^m b ⁿ : n≥1, m ≥2 }	10	
			` .	And also show the instantaneous description for the input string "		
14	CO1	Understanding	1.4.1	Define Turing machine. With a neat diagram, explain the multitape Turing machine.	10	
OR						
15	CO1	understanding	1.4.1	Write short notes on the following: i) Multi stack Turing machine. ii) Post correspondence problem.	10	

Course Outcome: At the end of the course the students will have the ability to				
CO-1	Understand and explain the concepts of Automata Theory and formal Language.			
CO-2	Apply the concepts of theoretical foundations of computing to show the equivalence among different notations of regular and context free languages.			
CO-3	Analyze the given language and formulate regular expressions and context free grammars.			
CO-4	Identify the class of languages based on Chomsky hierarchy to prove the membership of regular and context free languages.			
CO-5	1			

Performance Indicator:

1.4.1	Apply theory and principles of computer science and engineering to	
	solve an engineering problem	
2.3.1	Able to apply computer engineering principles to formulate modules of	
	a system with required applicability and performance.	