Scalable Smoothing in High-Dimensions with BART

Ryan Yee

University of Wisconsin-Madison

JSM 2024

Motivating Example

- **Goal:** estimate P(make) for an NBA player given:
 - ► Player, position, size (height and weight)
 - Location

Review of BART

- **Problem:** non-parametric regression: $y_n \sim \mathcal{N}\left(f(\mathbf{x}_n), \sigma\right)$
- Main Idea: approximate f(x) with step-function (i.e., tree)

- © Ideal for modeling nonlinear data with complex interactions
- Do not need to specify the functional form of f
- © Bayesian approach facilitates uncertainty quantification

BART on Motivating Example

• Goal: given covariates (x, z), output a smooth function in z

- Goal: given covariates (x, z), output a smooth function in z
 - ▶ Note: if $z \not\subset x$: targeted smoothing, if $z \subset x$: piecewise continuous

- Goal: given covariates (x, z), output a smooth function in z
 - ▶ Note: if $\mathbf{z} \not\subset \mathbf{x}$: targeted smoothing, if $\mathbf{z} \subset \mathbf{x}$: piecewise continuous
- Our contribution: a scalable smoothing BART
 - ► Split on **x**, output function in **z**:

$$\sum_{d=1}^{D} \beta_d \cdot h(\omega_d^{\top} \mathbf{z} + b_d)$$

- ▶ If $h(\cdot) = \sqrt{2}\cos(\cdot)$: random Fourier feature GP approximation
- ▶ If $\omega_j \sim \mathcal{N}(0, 1/\rho)$, $\rho \sim \pi_\rho$, $\pi_\rho \sim \mathsf{DP}(\alpha, F_0)$: infinite mixture of GPs
- ▶ If $h(\cdot) = tanh(\cdot)$; ReLU(·); $\sigma(\cdot)$: single-layer random neural network

- Goal: given covariates (x, z), output a smooth function in z
 - ▶ Note: if $\mathbf{z} \not\subset \mathbf{x}$: targeted smoothing, if $\mathbf{z} \subset \mathbf{x}$: piecewise continuous
- Our contribution: a scalable smoothing BART
 - ► Split on **x**, output function in **z**:

$$\sum_{d=1}^D \beta_d \cdot h(\omega_d^\top \mathbf{z} + b_d)$$

- ▶ If $h(\cdot) = \sqrt{2}\cos(\cdot)$: random Fourier feature GP approximation
- ▶ If $\omega_j \sim \mathcal{N}(0, 1/\rho)$, $\rho \sim \pi_\rho$, $\pi_\rho \sim \mathsf{DP}(\alpha, F_0)$: infinite mixture of GPs
- ▶ If $h(\cdot) = \tanh(\cdot)$; ReLU(·); $\sigma(\cdot)$: single-layer random neural network
- Previous authors have taken similar approaches:
 - ▶ BART with B-splines (Low-Kam et. al., 2015)
 - ► Treed Gaussian processes (Gramacy and Lee, 2007)
 - ▶ BART with targeted smoothing (Starling et. al., 2020)
 - ► GP-BART (Maia et. al., 2024)

BART Metropolis-within-Gibbs Sampler

- BART updates tree in two steps:
 - 1. Tree structure via Metropolis-Hastings
 - 2. Leaf parameters via conjugate-normal update

BART Metropolis-within-Gibbs Sampler

- BART updates tree in two steps:
 - 1. Tree structure via Metropolis-Hastings
 - 2. Leaf parameters via conjugate-normal update
- New output function: $\sum_{d=1}^{D} \beta_d \cdot h(\omega_d^{\top} \mathbf{z} + b_d)$
- ullet Key Idea: separate input weights $\Theta=(\omega,\mathbf{b})$ and output weights eta

BART Metropolis-within-Gibbs Sampler

- BART updates tree in two steps:
 - 1. Tree structure via Metropolis-Hastings
 - 2. Leaf parameters via conjugate-normal update
- New output function: $\sum_{d=1}^{D} \beta_d \cdot h(\omega_d^{\top} \mathbf{z} + b_d)$
- **Key Idea:** separate input weights $\Theta = (\omega, \mathbf{b})$ and output weights $oldsymbol{eta}$

- ullet Treat Θ as part of the tree structure and update via MCMC
- ullet Place conjugate-normal prior on eta and update accordingly

Illustrative Example

$$f(x) = \mathbb{1}(x \le -0.5)(-2x) + \mathbb{1}(-0.5 < x \le 10)\sin(5x) + \mathbb{1}(0 < x \le 0.5)(x+1)^2 + \mathbb{1}(x > 0.5)\log x + \epsilon$$

Motivating Example

Motivating Example

Key Takeaways

- Introduced extendable framework for computationally scalable and representationally flexible continuous-response BART model
 - ▶ Ridge functions facilitate scalability without sacrificing flexibility
 - Minimal changes to sampler offer extensibility
- Predictive performance competitive with BART
 - Improved function recovery and tighter pointwise credible intervals on piecewise-continuous test function
 - Comparable to BART on motivating example despite imposing restrictive continuity assumptions
- Work in progress: posterior contraction

Key Takeaways

- Introduced extendable framework for computationally scalable and representationally flexible continuous-response BART model
 - ► Ridge functions facilitate scalability without sacrificing flexibility
 - Minimal changes to sampler offer extensibility
- Predictive performance competitive with BART
 - ► Improved function recovery and tighter pointwise credible intervals on piecewise-continuous test function
 - Comparable to BART on motivating example despite imposing restrictive continuity assumptions
- Work in progress: posterior contraction

Thanks!

Email: ryee2@wisc.edu

Website: https://ryanyee3.github.io