FRC 566.020 — Spectral Modes and Relaxation in UCC October 2025

H. Servat

DOI: 10.5281/zenodo.17443465

Abstract

We linearize the UCC evolution for $u = \ln C$ around a stationary equilibrium and derive modal relaxation rates $\tau_n = 1/(D_C \lambda_n)$ from the Laplace spectrum. We connect these to measured μ -level oscillations and quantify approach to coherence equilibria.

1. Setup and linearization

Let u solve $\partial_t u = D_C \Delta u + S_C$ on Ω with (N)/(D) BCs. Suppose u_* is stationary: $D_C \Delta u_* + S_C = 0$. Linearize $u = u_* + v$. Then v satisfies $\partial_t v = D_C \Delta v$ to first order (inhomogeneity absorbed by u_*).

Theorem 1 (Spectral decomposition). Let $\{-\Delta\phi_n = \lambda_n\phi_n\}$ be the Laplacian eigenbasis under (N)/(D). Then the solution admits $v(t,\cdot) = \sum_n a_n e^{-D_C \lambda_n t} \phi_n(\cdot)$ with relaxation times $\tau_n = 1/(D_C \lambda_n)$.

Sketch. Expand in eigenfunctions; coefficients evolve by $\dot{a}_n = -D_C \lambda_n a_n$.

2. Assumptions and implications

- Ω bounded with C^1 boundary; standard spectral theory; $\lambda_0 = 0$ for (N), $\lambda_1 > 0$ for (D).
- For (N), the mean mode is conserved; relaxation governed by λ_1 .
- For (D), all modes decay; τ_1 sets the slowest timescale.

3. Link to μ -level oscillations

In FRC, observed coherence oscillations decompose into modal contributions with frequencies/decays controlled by $\{\lambda_n\}$. Measuring τ_n recovers D_C and domain scales.

4. Numerical demo

We include a 1D example on [0,1] showing exponential decay of modes and estimating τ_n from data.

5. Reproducibility

Run python code/566.020/spectral_modes_demo.py; artifacts in artifacts/566.020/.