	Run Time
	What factors affect the speed of the software?
a	CPU Sound
2)	Amount of RAM
3	CPU Speed Amount of RAM Compiler ((++ is faster than Java)
	Algothrim used } We control, dependent on application Amount of input }
	Big-O Notation
	Used by computer scientists to denote fastest growing term in algebraic calculation of exact run time
la	$O(n^2)$
(s	$O(n^2)$ $15n + n \log n = O(n \log n)$ Ignore constants in high term O(n)
22)	50 n° = 0(1) constant
6)	$50n^{\circ} = 0(1)$ constant $n \times n = n^{3}$, $O(n^{3})$ n + n = 2n, $O(n)n \times n \times n = n^{3}, O(n^{3})$
٥	n+n=2n, $O(n)$
d)	$n \times n \times n \times n^3$, $O(n^3)$
7.1	NAM 1 6 9 R6 9 (4/74) Dimber of Sparches
	MM. LS = 8, BS = 4 (74) LS = 32, BS = 6 (26) Linear: n/2 LS = 64, BS = 7 (77)
Biany, BS	LJ = 04, D> - 7 (C)
and the	

Run Time of Popular

Sorting and Searching Algorithms

Algorithm	Run Time
Bubble Sort	$O(n^2)$
Selection Sort	$O(n^2)$
Linear Search	O(n)
Binary Search	O(log n)

Changes in your input size *n* can make a BIG difference in the run time of your algorithm!

log n	n	n^2
2	4	16
4	16	256
5	32	1,024
7	128	16,384
9	512	262,144

CSC 205 Worksheet on Run-Time Analysis

1. Suppose by careful measurement we have discovered a function that describes the precise running time of some algorithm. For each of the following such functions, describe the algorithmic running time in *Big-O* notation.

a.
$$3n^2 + 3n + 7$$

b. $(5 + n) + (3 + \log n)$
c. $(5n + 4) / 6$

2. For each of the following program skeletons, describe the algorithmic execution time as a function of n using the Big-O Notation.

3. Calculate the average number of checks you would need to make of an array of each of the following sizes using the linear and binary search algorithms:

- a. 16
- b. 64
- c. 128