

(11) Publication number: 11134713

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 09298477

(51) Intl. Cl.: G11B 7/24 G11B 7/24

(22) Application date: 30.10.97

(30) Priority:

(43) Date of application 21.05.99 publication:

(84) Designated contracting states: (71) Applicant: NEC CORP

(72) Inventor: OKUBO SHUICHI

(74) Representative:

(54) OPTICAL INFORMATION RECORDING MEDIUM

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a phase transition type optical disk which lessens cross erasure and is excellent in repeating characteristics by successively laminating a dielectric layer, lower reflection layer, dielectric layer, recording layer, dielectric layer and upper reflection layer on a substrate and using at least one kind of the metals selected from Au, Al, Ti, Cu and Cr or their alloys for the reflection layer.

SOLUTION: The constitution obtd. by successively laminating the dielectric layer 2, the lower reflection layer 3, the dielectric layer 4, the recording-layer-5, the-dielectric -

layer 6 and the upper reflection layer 7 on the substrate 1 is adopted for the recording medium 10. The dielectric layer 2 suppresses the thermal deformation of the substrate 1 by heating up of the lower reflection layer 3 at the time of recording. The lower reflection layer 3 acts to suppress the cross erasure by making the absorptance at the time the recording layer 5 is in an amorphous state lower than the absorptance at the time the recording layer is in a crystalline state. Materials or metallic materials having a high refractive index and having a small coefft. attenuation are usable for the lower reflection laver 3.

COPYRIGHT: (C)1999,JPO

