TD 2

TD - Séries de Fourier

Amphi A

Exercice 1

Calculez les coefficients de Fourier (exponentiels et trigonométriques) de $f: x \mapsto 2e^{-3ix} + 3e^{2017ix}$ et $g: x \mapsto \cos(x)^3 - 2\sin(2x)$.

Exercice 2

Soit f une fonction 2π periodique. On note $(c_n)_{n\in\mathbb{Z}}$ ses coefficients de Fourier exponentiels, $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 1}$ ses coefficients de Fourier trigonométriques.

- **1.** Montrez que si f est paire, alors $b_n = 0$ pour tout $n \in \mathbb{N}^*$ et que si f est impaire, alors $a_n = 0$ pour tout $n \in \mathbb{N}$.
- 2. Que dire des coefficients exponentiels dans chacun de ces deux cas, si l'on suppose en plus que f est à valeurs réelles?
- **3.** On suppose que f est $2\pi/N$ périodique, pour un entier $N \in \mathbb{N}^*$. Montrez que pour tout $n \in \mathbb{Z}$,

$$n \not\equiv 0 \bmod N \Longrightarrow c_n = 0$$

4. On suppose f continue. Montrez la réciproque des questions 1 et 3.

Exercice 3

Déterminez les solutions 2π -périodiques de l'équation différentielle

$$y''(x) + e^{ix}y(x) = 0$$

Exercice 4

Soit $f \in \mathcal{C}^0([0, 2\pi], \mathbb{C})$ telle que $\forall n \in \mathbb{Z}, \left| \int_0^{2\pi} f(t)e^{int}dt \right| \leq 2^{-|n|}$. Montrez que f est de classe \mathcal{C}^{∞} .

Exercice 5: Signal en dents de scie.

On considère la fonction f, 2π -périodique définie par $\begin{cases} f(0) = 0 \\ \forall t \in]0, 2\pi[, f(t) = \pi - t \end{cases}$

- 1. Calculez les coefficients de Fourier exponentiels de f. En déduire les coefficients de Fourier trigonométriques de f.
- 2. Écrire la somme partielle d'ordre n de la série de Fourier de f.
- 3. Montrez que pour tout $x \in]0, 2\pi[$, $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi x}{2}$
- **4.** Montrez que $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- 5. On considère F, la primitive de f nulle en 0. Montrez que F est 2π -périodique, continue et \mathcal{C}^1 par morceaux.
- **6.** Calculez les coefficients de Fourier de F.
- 7. Montrez que $\zeta(4) = \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Exercice 6: Signal triangulaire.

En considérant la fonction f, 2π -périodique définie par $\forall t \in [-\pi, \pi], f(t) = \pi - 2|t|$, montrez (en vous inspirant de l'exercice 5)

$$\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 et $\zeta(4) = \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$

Exercice 7: Théorème de Fejer.

Soit $f: \mathbb{R} \to \mathbb{C}$, continue, 2π -périodique. On note $S_n(f)$ la somme partielle d'ordre n de la série de Fourier de f. On rappelle que le noyau de Dirichlet est défini par $D_n(x) = \sum_{k=-n}^n e^{kix}$ pour $x \in \mathbb{R}$ et que pour

 $x \notin 2\pi \mathbb{Z}$ on a $D_n(x) = \frac{\sin((n+\frac{1}{2})x)}{\sin \frac{x}{2}}$. On rappelle que l'on a alors $S_n(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t) D_n(x-t) dt$.

On défini pour $n \geq 1$

$$\sigma_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) K_n(x-t) dt$$

où $K_n = \frac{1}{n} \sum_{k=0}^{n-1} D_k$ est le noyau de Fejer.

- 1. Montrez que K_n vérifie les propriétés suivantes:
 - (i) pour $n \in \mathbb{N}^*$ et $x \notin 2\pi \mathbb{Z}$, $K_n(x) = \frac{\sin^2(\frac{nx}{2})}{n\sin^2(\frac{x}{2})}$.
 - (ii) K_n est 2π -périodique, paire, positive.
 - (iii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n = 1.$
 - (iv) $\forall \epsilon \in]0, \pi[, \int_{\epsilon}^{\pi} K_n \xrightarrow[n \to \infty]{} 0.$
- **2.** Montrez que $\sigma_n(f)$ converge uniformément vers f sur \mathbb{R} .

───

Exercice 8: Phénomène de Gibbs.

On reprend la fonction f de l'exercice 5. On note $S_n(f)$ la somme partielle d'ordre n de sa série de Fourier.

- 1. Montrez que $S_n(f)\left(\frac{\pi}{n}\right) \xrightarrow[n\to\infty]{} 2\int_0^{\pi} \frac{\sin(x)}{x} dx$.
- **2.** On donne $2\int_0^{\pi} \frac{\sin(x)}{x} dx \simeq 3.7$. Interprétez.

Exercice 9

Soit $\lambda \in \mathbb{R}$. Trouvez toutes les fonctions $f(2\pi)$ -périodiques, dérivables sur \mathbb{R} vérifiant

$$\forall t \in \mathbb{R}, \ f'(t) = f(t+\lambda) \tag{1}$$

Exercice 10: (*).

Soit f une fonction de classe C^{∞} sur \mathbb{R} , 2π -périodique, de moyenne nulle. Montrez que f'' + f admet au moins 4 zéros sur $[0, 2\pi]$

