

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年12 月19 日 (19.12.2002)

PCT

(10) 国際公開番号 WO 02/101124 A1

(51) 国際特許分類?:

- - -

WO 02/101124 A1

(21) 国際出願番号:

PCT/JP02/05624

C30B 29/38

(22) 国際出願日:

2002年6月6日 (06.06.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

P-347918

2001年6月6日(06.06.2001) PI

(71) 出願人 (米国を除く全ての指定国について): アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン (AMMONO SP.ZO.O.) [PL/PL1: 00-377 ワルシャワ チェルヴォネゴ・クシ

ジャ2/31番 Warsaw (PL). 日亜化学工業株式会社 (NICHIA CORPORATION) [JP/JP]; 〒774-8601 徳島県 阿南市上中町岡491番地100 Tokushima (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): ドヴィリニスキロベルト (DWILINSKI,Robert) [PL/PL]; 01-875 ワルシャワ ウーリツァ・ズグルポヴァニャ・ジミヤ 2 3/1 2 番 Warsaw (PL). ドラジニスキロマン(DORADZINSKI,Roman) [PL/PL]; 02-793 ワルシャワウーリツァ・ベルグラズカ 4/1 1 5 番 Warsaw (PL). ガルチニスキ イエジ (GARCZYNSKI,Jerzy) [PL/PL]; 05-092 ウオミャンキ ウーリツァ・バチニスキェゴ 2 0 / 7 番 Lomianki (PL). シェシュプトフスキレシェック (SIERZPUTOWSKI,Leszek) [PL/US]; 07083-7944 ニュージャージー州 ユニオン ハンティ

[続葉有]

(54) Title: METHOD AND EQUIPMENT FOR MANUFACTURING ALUMINUM NITRIDE BULK SINGLE CRYSTAL

(54) 発明の名称: 窒化アルミニウムバルク単結晶の製造法及び生産設備

(57) Abstract: A method of manufacturing aluminum nitride bulk single crystal for providing aluminum nitride bulk single crystal by using supercritical ammonia by an autoclave (1) for producing supercritical solvent having a convection controller (2) installed therein, comprising the steps of forming the supercritical solvent containing alkali metal ion in the autoclave, dissolving feed stock in the solvent to produce supercritical solution, and crystallizing aluminum nitride on a seed surface simultaneously or individually, wherein the autoclave is loaded in a furnace unit (4) having a heating device (5) or a cooling device (6), whereby, since the crystallization of the bulk single crystal of the aluminum nitride thus obtained is excellent, the bulk single crystal can be applied as an optical element substrate such as a laser diode utilizing a nitride semiconductor.

O2/101124 A

ングトン・ロード3 0 4番 NJ (US). 神原康雄 (KAN-BARA, Yasuo) [JP/JP]; 〒774-8601 徳島県 阿南市 上中町岡491番地100日亜化学工業株式会社内 Tokushima (JP).

- (74) 代理人: 青山 葆, 外(AOYAMA,Tamotsu et al.); 〒 540-0001 大阪府 大阪市中央区 城見 1 丁目 3 番 7 号 I M P ピル 青山特許事務所 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG. BR. BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM. DZ. EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID. II. IN. IS. JP. KE, KG, KR, KZ, LC, LK, LR, LS, LT, I I'. IX

- OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約:

本発明は、超臨界アンモニアを用いて窒化アルミニウムのバルク単結晶を得るために、オートクレーブ中に、アルカリ金属イオンを含有する超臨界溶媒を形成し、これに、フィードストックを溶解して超臨界溶液を生成し、同時あるいは個別にシード面に窒化アルミニウムを結晶化させるものである。この方法は、対流管理装置(2)が設置された超臨界溶媒を生成するためのオートクレーブ(1)を用いて実施される。前記オートクレーブは、加熱装置(5)または冷却装置(6)を備えた炉ユニット(4)に投入される。このように得られた窒化アルミニウムのバルク単結晶は、結晶性が良いため、窒化物半導体を利用するレーザーダイオードなどのような光学素子基板として応用できる。

明 細 書

窒化アルミニウムバルク単結晶の製造法

5 技術分野

本発明は、超臨界溶液からシード上に結晶させることによって、窒化アルミニウムのバルク単結晶を成長する方法並びに窒化アルミニウムのバルク単結晶の製造設備に関する。特に超臨界アンモニアを利用する技術によって、窒化アルミニウムのバルク単結晶の成長を可能とするものである。

10

背景技術

室化物を応用する電子光学機器は、一般的に堆積する室化物層と異なるサファイア基板あるいは炭化珪素の基板の上に造られている(ヘテロエピタキシ法)が、 異種基板上のエピ成長には品質的に自ずと限界ある。

15 そこで、GaNだけでなくAlNのバルク単結晶の製造方法の提供が望まれて いる。GaNバルク単結晶を製造する方法として気相ハロゲンを利用するエピタ クシー法(HVPE)["Optical patterning of GaN films" M.K.Kelly, O.Ambacher, Appl. Phys. Lett. 69 (12) (1996) and "Fabrication of thin-film InGaN light-emitting diode membranes" W. S. Wrong, T. Sands, Appl. Phys. Lett. 20 75 (10) (1999)]、高圧窒素を用いるHNP法["Prospects for high-pressure crystal growth of III-V nitrides" S, Porowski et al., Inst. Phys. Conf. Series, 137, 369 (1998)]、成長工程の温度と圧力を低下する ために、超臨界アンモニアを利用するアンモノ法["Ammono method of BN, AlN, and GaN synthesis and crystal growth" R Dwilinski et al., Proc. EGW-3, 25 Warsaw, June 22-24, 1998, MRS Internet Journal of Nitride Semiconductor Research]および、["Crystal Growth of gallium nitride in supercritical ammonia" J. W. Kolis et al., J. Cryst. Growth 222, 431-434 (2001)]が提案さ れている。

ところで、A1Nバルク単結晶については、D. PETERSが超臨界アンモ

10

15.

20

25

ニアを用いてアルミニウム金属から窒化アルミニウムの結晶を形成する方法 (Journal of Crystal Growth 104(1990)411-418) を提案したが、パッケージ用 の微小な結晶が得られたに過ぎない。そこで、近年、エピ成長用途にはY. Shi等がSi C基板上にA1N緩衝層を介してA1N単結晶を昇華法で成長させる 方法を成功させるに至っている(MIJ-NSR Vol. 6, Art. 5)。 しかしながら、気相成長法はあくまでも非平衡化学であるから、結晶の品質向上には自ずと限界がある。他方、半導体を用いる光学素子の寿命特性は、主に転位 密度を含む活性層の結晶性に依存する。A1N基板を応用するレーザダイオード の場合は、GaN層の転位密度を106/cm²以下に低減することが好ましいが、それは従来の方法では大変困難である。

発明の開示・

そこで、本発明の第1の目的は、シード上に窒化アルミニウムのバルク単結晶 を形成することができる方法および装置を提供することにある。

また、本発明の第2の目的は光学素子の基板として品質上に応用できる窒化物 のバルク結晶を成長させることにある。

この目的は、アルカリ金属イオンを含有する超臨界溶媒が存在するオートクレープの中にフィードストックを溶解し、超臨界溶液を作り、溶解温度より高い温度または溶解圧力より低い圧力において、溶液から窒化アルミニウムをシード面に結晶させることを特徴とする窒化アルミニウムのバルク単結晶を成長方法によって達成された。

上記目的を達成するための本発明の第1の構成は、アンモノ塩基性(ammonobasic)を付与する1種または複数のミネラライザーを含む超臨界アンモニア溶媒中で化学輸送が起き、窒化アルミニウムの単結晶成長を得ることができる、アンモノ塩基性結晶成長に関するもので、

窒化アルミニウムのバルク単結晶を得る方法であって、オートクレーブ内でアルミニウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する 超臨界溶媒の中に溶解し、窒化アルミニウムの溶解度が負の温度係数を有する超 臨界溶液を供給し、上記超臨界溶液から窒化アルミニウムの溶解度の負の温度係

20

数を利用してオートクレープ内に配置されたシード面のみに窒化アルミニウムの 結晶を選択的に成長されることを特徴とする方法にある。

また、本発明は、窒化アルミニウムのバルク単結晶を得る方法であって、オートクレイブ内でアルミニウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、窒化アルミニウムの溶解度が正の圧力係数を有する超臨界溶液を供給し、上記超臨界溶液から窒化アルミニウムの溶解度の正の圧力係数を利用してオートクレープ内に配置されたシード面のみに窒化アルミニウムの結晶を選択的に成長されることを特徴とする方法を提供するものである。

10 第1の構成において、窒化アルミニウムを溶解する超臨界溶液を供給する工程は、水晶の水熱合成法法と異なり、その原料となる窒化アルミニウムは天然に存在しない。そこで、本件発明では、HVPE法や他の化学方法、酸化アルミニウムの酸化還元法または窒化法で、合成したA1Nを使用する。特にA1N粉体の焼結体は極めて高い充填密度が得られるので、好ましいフィードストックである。

第1の構成において、第2の結晶化を行う工程はシード面に選択的結晶化を行わせることが肝要である。そこで、本件発明の第2の構成は窒化アルミニウムのバルク単結晶を結晶化させる方法であって、アンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、窒化アルミニウムの溶解度が負の温度係数を有する超臨界溶液を、少なくともオートクレーブ内のシードの配置された領域において、所定の温度に上昇または所定の圧力に低下させて超臨界溶液の溶解度をシードに対する過飽和領域であって、自発的結晶化が起こらない濃度以下に調節してオートクレーブ内に配置されたシード面のみに窒化アルミニウムの結晶を選択的に成長されることを特徴とする方法を提供するものである。

第2の構成においては、オートクレーブ内に溶解領域と結晶化領域という2つの領域を同時形成する場合は、シードに対する超臨界溶液の過飽和の管理を溶解温度と結晶化温度の調整によって行われるのが好ましい。そして、結晶化領域の温度を400~600℃の温度に設定するが制御が容易であり、オートクレーブ内に溶解領域と結晶化領域の温度差を150℃以下、好ましくは100℃以下に

10

15

20

25

保持することにより制御が容易である。また、シードに対する超臨界溶液の過飽和調整はオートクレーブ内に低温の溶解領域と高温の結晶化領域を区分するバッフルを1または複数設け、溶解領域と結晶化領域の対流量を調整により行われるのがよい。さらに、オートクレーブ中に特定の温度差を有する溶解領域と結晶化領域という2つの領域を形成する場合は、シードに対する超臨界溶液の過飽和調整は、シードの総面積を上回る総面積を有するA1N結晶として投与されるアルミニウム含有フィードストックを利用するのがよい。

なお、上記第1の構成において、前記アルカリ金属のイオンがアルカリ金属またはハロゲン物質を含有しないミネラライザーの形で投与され、アルカリ金属イオンとしては、Li⁺, Na⁺, K⁺ から選ばれる1種または2種が選ばれる。また、超臨界溶媒に溶解されるアルミニウム含有フィードストックは窒化アルミニウムが好ましいが、超臨界溶液に溶解可能なアルミニウム化合物を生成できるアルミニウム前駆体を使用することもできる。

また、本発明方法はアンモノ塩基性 (ammonobasic) 反応に基づくものであるが、アルミニウム含有フィードストックがHVPEで形成されたAINまたは化学反応で形成されたAINで、例えば塩素を本来的に含むものであってもアンモノ塩基性超臨界反応を害しない限り問題はない。

上記第2の構成を利用する場合は、フィードストックとして超臨界アンモニア 溶媒に対し平衡反応で溶解する窒化アルミニウムまたはその前駆体を用いるもの であるが、超臨界アンモニア溶媒に対し不可逆的に反応するアルミニウムメタル と組み合わて用いてもよいが、結晶化の平衡反応を害しないように過剰量の溶解 を避けるのがよい。

前記のフィードストックとしては窒化アルミニウムを用いると平衡反応であるから、結晶化の反応制御が容易である。その場合は、シードとしてA1N単結晶を用い、選択成長を行わせるために良品質なシードを用いるのがよい。

本発明は、上記第1の溶解工程と第2の結晶化工程を同時に、かつオートクレープ内で分離して行う方法として次の第3の構成を提供するものである。すなわち、窒化アルミニウムのバルク単結晶を得る方法であって、オートクレープ中にアルカリ金属イオンを含有する超臨界アンモニア溶媒を形成し、該超臨界アンモ

10

15

20

25

ニア溶媒中にアルミニウム含有フィードストックを溶解させ、超臨界溶媒へのアルミニウム含有フィードストックの溶解時より高温および/またはより低圧の条件において上記フィードストックの溶解した超臨界溶液から窒化アルミニウムをシード面に結晶させることを特徴とする方法を提供するものである。

第3の構成においては、アルミニウム含有フィードストックの溶解工程とは別個に、超臨界溶液をより高温および/またはより低圧に移動させる工程を備えるのがよい。また、オートクレーブ中に温度差を有する少なくとも2つの領域を同時形成し、アルミニウム含有フィードストックを低温の溶解領域に配置し、シードを高温の結晶化領域に配置することにより実施される。溶解領域と結晶化領域の温度差は、超臨界溶液内の化学輸送を確保する範囲に設定される必要があり、超臨界溶液内の化学輸送を主どして対流によって行われることができる。通常、溶解領域と結晶化領域の温度差は1℃以上である。好ましくは5~150℃であり、さらに好ましくは100℃以下である。

本発明において、窒化アルミニウムは、用途に応じてドナー、アクセプタまたは磁気性のドープを含有できる。超臨界溶媒は以下のように定義され、NH。またはその誘導体を含み、ミネラライザーとしてアルカリ金属イオン、少なくともナトリウムまたはカリウムのイオンを含有する。他方、アルミニウム含有フィードストックは主に窒化アルミニウムまたはその前駆体で構成され、前駆体はアルミニウムを含有するアジド、イミド、アミドイミド、アミド、冰素化物等から選らばれ、以下のように定義される。

本発明において、シードはAlNであるのがよいが、酸素を含まない格子定数の近い六方晶または両面体構造であるのがよい。例えば、SiC、GaNなどの単結晶を用いることができる。シードの表面欠陥密度は 10^6 / cm² 以下のものを使用するのが好ましい。他のシードとしては異種基板、例えば導電性基板上にAlNを結晶させることができるので、使用用途が広がる。その候補として、用途に応じて a_0 軸の格子定数が $2.8\sim3.6$ である体心立方結晶系の M_0 、W、六方最密充填結晶系の α -Hf、 α -Zr、正方晶系ダイアモンド、WC構造結晶系WC、 W_2 C、ZnO構造結晶系 α -SiC、TaN、NbN、AlN、六方晶(P6/mmm)系AgB2、AuB2、HFB2、六方晶(P6 $_3$ /mm

10

15

20

25

c) $\Re \gamma - MoC$ 、 $\epsilon - MbN$ から選択される。体心立方晶のMo、Wは [1, 1] 方向から切り出してシードとして用いるのが良い。

本発明において、窒化アルミニウムの結晶化は100~800℃範囲で行うことができるが、好ましくは400~600℃の温度で行われるのがよい。また、窒化アルミニウムの結晶化は100~10000barで行うことができるが、1000~5500bar、好ましくは1500~3000barの圧力で行われるのがよい。

超臨界溶媒内のアルカリ金属イオンの濃度はフィードストック及び窒化アルミニウムの特定溶解度を確保できるように調整され、超臨界溶液内の他の成分に対するアルカリ金属イオンのモル比は1:200~1:2であるが、好ましくは1:100~1:5、より好ましく1:20~1:8の範囲以内に管理するのがよい。

なお、本発明は、アンモノ塩基性(ammono-basic)を付与する1種または複数のミネラライザーを含む超臨界アンモニア溶媒中で化学輸送が起き、窒化アルミニウムの単結晶成長を得る、アンモノ塩基性結晶成長技術に関するものであり、極めてオリジナリテイの高い技術であるため、本件発明において使用される以下の用語は、以下の本件明細書で定義された意味に解すべきである。

窒化アルミニウムとは、上記アンモノ塩基性結晶成長技術に反しない限り、不 純物を含むことができる。

室化アルミニウムのバルク単結晶とは、MOCVDまたはHVPE等のエピ成長方法によりLED又はLDのような光および電子デバイスを形成することができる窒化アルミニウム単結晶基板を意味する。サファイア基板上に成長させる場合はバッファ層必須であるが、A1N基板を用いるとバッファ層なしで良質の気相成長膜を成長させる事ができる。本発明方法で得られるA1N基板は半値幅が2分(120arcsec)以下、好ましくは1分以下となる。サファイア基板上にA1Nを成長させたものが半値幅4分であるので、品質の向上は極めて優れる。

また、A1N基板は200nmまで光吸収がない。GaN基板は短波長域である365nmを吸収するので、A1N基板は、UV-LEDの基板として光出力アップが望める。また、A1N基板は放熱性がいいため、パワーデバイスに適す

10

15

20

25

る基板となる。さらに、A1N基板を用いれば、高混晶のA1GaNの成長が可能となり、レーザ素子であれば、縦方向の閉じ込めが良くなる。

窒化アルミニウムの前駆物質とは、窒化アルミニウムの代替フィードストックとして用いられるものであって、少なくともアルミニウム、要すればアルカリ金属、XIII族元素、窒素および/又は水素を含む物質またはその混合物であって、金属A1、その合金または金属間化合物、その水素化物、アミド類、イミド類、アミドーイミド類、アジド類であって、以下に定義する超臨界アンモニア溶媒に溶解可能なアルミニウム化合物を形成できるものをいう。

アルミニウム含有フィードストックとは、窒化アルミニウムまたはその前駆物 質をいう。

超臨界アンモニア溶媒とは、少なくともアンモニアを含み、超臨界アンモニア 溶媒は窒化アルミニウムを溶解させるための1種または複数のアルカリ金属イオ ンを含むものと理解する。

ミネラライザーとは、超臨界アンモニア溶媒に窒化アルミニウムを溶解させる ための1種または複数のアルカリ金属イオンを供給するものをいい、明細書には 具体例が示されている。

アルミニウム含有フィードストックの溶解とは、上記フィードストックが超臨界溶媒に対し溶解性アルミニウム化合物、例えばアルミニウム錯体化合物の形態をとる可逆性または非可逆性の過程をいう。アルミニウム錯体化合物とは NH_3 又はその誘導体 NH_2 、 NH^2 のような配位子がアルミニウムを配位中心として取り囲む錯体化合物を意味する。

超臨界アンモニア溶液とは、上記超臨界アンモニア溶媒とアルミニウム含有フィードストックの溶解から生ずる溶解性アルミニウム化合物を意味する。我々は経験よれば、十分な高温高圧では固体の窒化アルミニウムと超臨界溶液との間に平衡関係が存在することを予測でき、したがって、溶解性窒化アルミニウムの溶解度は固体の窒化アルミニウムの存在下で上記溶解性アルミニウム化合物の平衡濃度と定義することができる。かかる工程では、この平衡は温度および/または圧力の変化によりシフトさせることができる。

溶解度の負の温度係数とは、他の全てのパラメータを保持するとき溶解度が温

10

15

20

25

度の 減少関数 (monotonically decreasing function) で表されることを意味し、同様に、溶解度の正の圧力係数とは、他の全てのパラメータを保持するとき溶解度が温度の 増加関数で表されることを意味する。 我々は、超臨界アンモニア溶媒における窒化アルミニウムの溶解度は少なくとも400から600℃に渡る温度領域、そして1から5. 5 Kbarの圧力範囲で負の温度係数および正の圧力係数を有すると考えている。

室化アルミニウムに対する超臨界アンモニア溶液の過飽和とは、上記超臨界アンモニア溶液中での可溶性ガリウム化合物の濃度が平衡状態の濃度、すなわち溶解度より高い事を意味する。閉鎖系では窒化アルミニウムの溶解の場合、このような過飽和は溶解度の負の温度係数または正の圧力係数に従い、温度の増加または圧力の減少により到達させることができる。

超臨界アンモニア溶液における窒化アルミニウムの化学輸送とは、アルミニウム含有フィードストックまたは窒化アルミニウムの溶解、可溶性アルミニウム化合物または錯化合物の超臨界アンモニア溶液を通しての移動、過飽和超臨界アンモニア溶液からの窒化アルミニウムの結晶化を含む、連続工程をいい、一般に化学輸送工程は温度勾配、圧力勾配、濃度勾配、溶解したフィードストックと結晶化した生成物の化学的又は物理的に異なる性質などの、ある駆動力により行われる。本件発明方法により窒化アルミニウムのバルク単結晶をえることができるが、上記化学輸送は溶解工程と結晶化工程を別々の領域で行い、結晶化領域を溶解領域より高い温度に維持することにより達成するのが好ましい。

シードとは本件明細書の中で例示してあるが、窒化アルミニウムの結晶化を行 う領域を提供するものであり、結晶の成長品質を支配するので、成長させる結晶 と同質で、品質の良いものが選ばれる。

目発的結晶化(Spontaneous crystallization)とは、過飽和の超臨界アンモニア溶液から窒化アルミニウムの核形成 及び成長がオートクレーブ内でいずれのサイトにも起こる、望ましくない工程をいい、シード表面での異なる方向性の成長(disoriented growth)を含む。他のパラメータが一定であれば、温度上昇に伴い、溶解限界とともに自発的結晶化限界は、図9のように、減少する傾向にある。

10

15

20

25

シードへの選択的結晶化とは、自発的成長なく、結晶化がシード上で行われる 工程をいう。バルク単結晶の成長には欠かせない実現すべき工程であり、本件発 明方法の1つでもある。

オートクレーブとは形態を問わず、アンモノ塩基性結晶成長を行うための閉鎖 系反応室をいう。また、本発明で使用するA1Nペレットとは粉末を成形し、焼成したものをいい、極めて高い密度のもの、例えば、99.8%のものが入手可能である。

なお、本件発明の実施例ではオートクレーブ内の温度分布は超臨界アンモニア の存在しない、空のオートクレーブで測定したもので、実際の超臨界温度ではな い。また、圧力は直接測定をおこなったか最初に導入したアンモニアの量および オートクレーブの温度、容積から計算により決定したものである。

上記方法を実施するにあたっては、以下の装置を使用するのが好ましい。すなわち、本発明は超臨界溶媒を生成するオートクレーブ1を有する設備であって、前記オートクレーブには対流管理装置2が設置され、加熱装置5または冷却装置6を備えた炉ユニット4に投入されることを特徴とする窒化アルミニウムのバルク単結晶の生産設備を提供するものでもある。

上記炉ユニット4は、オートクレーブ1の結晶化領域14に相当する、加熱装置5を備えた高温領域およびオートクレーブ1の溶解領域13に相当する、加熱装置5または冷却装置6を備えた低温領域を有するかまたは上記炉ユニット4は、オートクレーブ1の結晶化領域14に相当する、加熱装置5または冷却装置6を備えた高温領域およびオートクレーブ1の溶解領域13に相当する、加熱装5または冷却装置6を備えた低温領域を有する。対流管理装置2は、結晶化領域14と溶解領域13を区分し、中心あるいは周囲に穴のある横型バッフル12一枚又は教校で構成される。オートクレーブ1内には、フィードストック16を溶解領域13に、シード17を結晶化領域14に配置し、13と14領域間の超臨界溶液の対流を管理装置2によって設定するように構成される。溶解領域13は横型バッフル12の上位に、結晶化領域14は横型バッフル12の下位にあることを特徴とする。

15

図面の簡単な説明

図1は、実施例①、p=const.において、時間経過によるオートクレープ内の温度変化を表すグラフである。

図2は、実施例②、T=const.において、時間経過によるオートクレーブ内の圧力変化を表すグラフである。

図3は、実施例③、固定容量において、時間経過によるオートクレーブ内の 温度変化を表すグラフである。

図4は、実施例④において、時間経過によるオートクレーブ内の温度変化を表すグラフである。

10 図 5 、実施例⑤において、時間経過によるオートクレーブ内の温度変化を表 すグラフである。

図6は、実施例のオートクレープと炉ユニットの断図である。

図7は、窒化アルミニウムのバルク単結晶を生産する設備の概要図である。

図8は、実施例®において、時間経過によるオートクレーブ内の温度変化を 示すグラフである。

図9は、超臨界アンモニア中における溶解限界と自発結晶化限界の温度依存性を示すグラフである。

発明を実施するための最良の形態

本発明方法においては、フィードストックの溶解工程と、シード面に窒化アルミニウム結晶の成長が行われる高温または低圧条件に超臨界溶を移動させる工程を分けることができる。または、オートクレープ中に温度差を有する少なくとも2つの領域に区分し、アルミニウム含有フィードストックを低温の溶解領域に、シードを高温の結晶化領域に配置することも可能である。溶解領域と結晶化領域間の温度差を対流によって行われる超臨界溶液内の化学輸送が可能となる範囲に設定するが、前記の溶解領域と結晶化領域間の温度差が1℃以上である。窒化アルミニウムは、ドナー、アクセプター、磁気性のドープなどを含有することができる。超臨界溶媒にはアルカリ金属(少なくともカリウム)のイオンを含有するNH3またはその誘導体を用いることができる。フィードストックには、主に窒化

10

15

20

25

アルミニウムまたはアジド、イミド、アミドイミド、アミド、水素化物等の中から選べられる A 1 N前駆体を用いることができる。シードは少なくともアルミニウムまたはその他の族番号13(IUPAC、1989)元素を含む窒化物の結晶層を有し、その結晶層の表面欠陥密度が 10^6 / cm^2 以下であるのが望ましい。

窒化アルミニウムの結晶化が温度400~600℃、圧力1500~3000 barの条件で行われ、超臨界溶媒におけるアルカリ金属イオンの濃度はフィードストックと窒化アルミニウムの適当な溶解度を確保できるように調整され、超臨界溶媒内の他の成分に対するアルカリ金属イオンのモル比が1:200~1:2 の範囲に管理される。

室化アルミニウムの単結晶を生産する設備は、対流管理装置を備えた超臨界溶媒を生成するオートクレーブ及びオートクレーブが配置される加熱・冷却措置を備えた1台または数台の炉ユニットで構成される。炉ユニットにはオートクレーブの結晶化領域に相当する加熱措置を備えた高温領域とオートクレーブの溶解領域に相当する加熱・冷却装置を備えた低温領域がある。または加熱・冷却装置を備えた高温領域と加熱・冷却装置を備えた低温領域を有する炉ユニットも利用できる。上記の対流管理装置とは、結晶化領域と溶解領域を区分するように、中心あるいは周囲に穴のある横型バッフルの一枚または数枚で造るすることができる。オートクレープ内にフィードストックを溶解領域に配置し、シードを結晶化領域に配置する。溶解領域と結晶化領域間の超臨界溶液の対流は前記の装置によって管理される。溶解領域は横型バッフルの上位に、結晶化領域は横型バッフルの下位に位置する。

最良のA1Nバルク単結晶としては、欠陥密度が約10⁴/cm²であり、表面(0002)に対するX線測定の半値幅が60arcsec以下のものをえることができ、それを用いる半導体素子の適切な品質と寿命特性を確保できる。

A1Nは、アルカリ金属あるいはその化合物(KNH_2 等)を含有する NH_3 において、良い溶解度を示す。その傾向は、超臨界溶媒内の $\Lambda1N$ の溶解度は 400 Cから 600 Cの温度と 1.0 から 3.5 k b a r の圧力との関数として表示すると、所定のモル濃度のアルカリ金属イオンを含む超臨界アンモニア溶液中で、溶解度は圧力の増加関数(正の圧力係数)であり、温度の減少関数(負の温

10

15

20

度係数)であることを示す。この関係を利用し、溶解度の高い条件で窒化アルミ ニウムの溶解を行い、溶解度が低い条件で結晶させることによって、AlNのバ ルク単結晶を成長することができる。この負の温度係数は、温度差が生じた場合 において窒化アルミニウムの化学輸送が低温の溶解領域から高温の結晶化領域へ 行われることを意味する。また、他のアルミニウム化合物もA1N錯体の供給源 として使用できる。次に、加熱などのような条件変化を適切に行い、窒化アルミ ニウムに対して過飽和溶液をつくることによって、シード面に結晶が成長する。 本発明の方法は、シード面に窒化アルミニウムのバルク単結晶の成長を可能にし、 AlNまたはSiC等の結晶からなるシード上にバルク単結晶層として得られる AlNの化学量論的な成長に繋がる。前記の単結晶は、アルカリ金属イオンを含 有する超臨界溶液内に成長されるので、得られた単結晶も0.1 p p m以上のア ルカリ金属を含む。また、設備の腐食を防ぐ超臨界溶液の塩基性を保持するため に、意図的に溶媒にハロゲン物質を投与しないのである。更に、AlNのバルク 単結晶に濃度10¹⁷~10²¹/cm³のドナー(Si, O等)、アクセプタ - (Mg, Zn等)、磁気物質 (Mn, Cr等) をドープすることができる。ド ープによって窒化アルミニウムの光学・電気・磁気の特性が変えられる。その他 の物理的な特性において、成長されたA1Nのバルク単結晶表面の欠陥密度が1 0⁵ / cm² 以下、好ましくは10⁵ / cm² 以下、より好ましくは10⁴ / c m² 以下である。また、(0002) 面に対するX線の半値幅は600 arcsec以 下、好ましくは300arcsec以下、より好ましくは60arcsec以下である。最良 のバルクGaN単結晶は、欠陥密度が約104/cm2以下、表面(00·02) に対するX線測定の半値幅が60arcsec以下で成長することができる。

実施例

25 容積10.9 cm³ の高圧オートクレーブ[H. Jacobs, D. Schmidt, Current Topics in Material Science, vol.8, ed. E. Kaldis (north-Holland, Amsterdam, 19810, 381設計) に坩堝2台を導入して使用する。フィードストックとしてHVPE法で生成さられたA1N薄板、A1N粉体焼結品(徳山ソーダ製)を用いることができる。

10

シードとして、HVPE法で得られたA1N、GaN、そしてSiCを用いることができる。

超臨界状態のアンモニア溶液の形成及び結晶化方法として、以下の例が示される。なお、 T_1 を除き、 T_2 ~ T_5 は400~600 $\mathbb C$ の範囲に設定することができる。

①オートクレーブに純度4Nの金属カリウムを0.72 g投与する。さらにアンモニアを4.81 g投与した後、オートクレーブを密閉し、次の温度管理(図2)により超臨界アンモニア溶液を形成する。すなわち、 T_2 までに加熱し、オートクレープ内の圧力を2 kbarとする。数日後、温度を T_4 までに加熱し、圧力を2 kbarに保持した状態で更に数日間放置し、結晶化させる(図1)。

②オートクレーブに純度4Nの金属カリウムを0.82g投与した。さらにアンモニアを5.43g投与した後、オートクレーブを密閉し、オートクレーブを炉に投入し、500℃までに加熱し、オートクレーブ内の圧力は3.5kbarとし、超臨界アンモニア溶液を形成する。数日後、圧力を2kbarに低下し、温度を500℃で保持した状態で更に数日間放置し、結晶化させる(図2)。

②容積35.6 c m³ の高圧オートクレーブ1 (図6) にHVPE法で得られ A1Nを溶解領域13と結晶化領域14に同量に分けてから配置し、純度4Nの 金属カリウムを2.4 g 加えた。次ぎにアンモニア (5N) を15.9 g 投与し, オートクレーブ1を密閉し、炉ユニット4に入れて、T3までに加熱し、オートクレーブ内の圧力は約2 kbarとする。1日後、結晶化領域14の温度をT4まで に増加し、溶解領域13の温度をT2までに低下させ、この状態のオートクレーブ1を更に6日間放置する (図4)。

⑤容積 3.6 cm^3 の高圧オートクレーブ 1 (図 6) の容解領域 1.3 chvpe 法で得られた A.1 N からなるフォードストックを配置し、純度 4 N の金属カリウムを 0.4.7 g 加えた。結晶化領域 1.4 k に同じ HVPE 法で得られ A.1 N シード

10

15

20

25

を配置した。次ぎにアンモニア($5\,\mathrm{N}$)を $1\,6.5\,\mathrm{g}$ 投与し、オートクレーブ1を密閉した。オートクレーブ1を炉ユニット4に入れて、 T_4 までに加熱した。オートクレーブ内の圧力は約 $3\,\mathrm{kbar}$ であった。 $1\,\mathrm{H}$ 後、溶解領域 $1\,3\,\mathrm{olage}$ を $3\,\mathrm{st}$ でに低下し、結晶化領域 $1\,4\,\mathrm{olage}$ を T_5 までに増加した。この状態のオートクレーブを更に $8\,\mathrm{H}$ 間放置する(図 $5\,\mathrm{loage}$)。

⑥容積35.6 c m³ の高圧オートクレーブ1の溶解領域13にHVPE法で得られたA1N板からなるフォードストックを配置し、結晶化領域14にHVPE法で得られたのG a N結晶シードを配置した。更に純度3Nの金属リチウムを0.41g加えた。次ぎにアンモニア(5N)を14.4g投与し、オートクレーブを密閉した。オートクレーブを炉ユニットに入れて、結晶化領域の温度を T_5 までに増加し、溶解領域の温度を T_3 までに増加した。得られる圧力は約2.6kbarであった。この状態のオートクレーブを8日間放置する(図8)。

本発明に関わる方法は超臨界溶媒内に窒化アルミニウムのバルク単結晶を生産 する設備を利用して実施されている。この設備の主な部分は超臨界溶媒を生成す るオートクレーブ1とオートクレーブ1の中にある超臨界溶液内の化学輸送を可 能とする管理装置2で構成されている。上記のオートクレーブ1を加熱措置5ま たは冷却装置6を備えた炉(2台)ユニット4の室内3に投入し、炉ユニット4 に対して一定の位置を保つために、ボルトの固定装置7で固定する。 炉ユニット 4を炉床8に設置し、炉ユニット4と炉床8の周囲に巻かれたスチールテープ9 で固定される。炉床8と炉ユニット4を回転台10に設置し、特定の角度でピン 固定装置11で固定することによって、オートクレーブ1内の対流種類と対流速 度を管理することができる。炉ユニット4に投入されたオートクレーブ1内の超 臨界溶液の対流を、結晶化領域14と溶解領域13を区分し、中心あるいは周囲 に穴のある横型バッフル12ー枚又は数枚で構成される対流管理装置2によって 設定する。オートクレーブ1内の両領域の温度を、炉ユニット4に設置された制 御装置15によって、100℃~800℃の範囲内に設定する。炉ユニット4の 低温領域に相当するオートクレープ1内の溶解領域13は、横型バッフル12の 上位に位置され、その領域13内にフィードストック16を配置する。炉ユニッ ト4の高温領域に相当するオートクレープ内の結晶化領域14は横型バッフル1

2の下位に位置される。この領域14にシード17が配置されるが、その配置の 位置を対流の上流と下流が交差する場所の下位に設定する。

産業上の利用の可能性

5 このように得られた窒化アルミニウムのバルク単結晶は、結晶性が良いため、 窒化物半導体を利用するレーザダイオードなどのような光学素子の基板として応 用できるのである。例えば、A1N基板/アンドープA1GaN/Si-A1G aN/アンドープA1GaN/Mg-GaNとしたエピ構造を形成し、A1N基 板側から光取り込みを行えばA1GaNのA1の混晶が高ければより短波長の光 感度が上がる。360nm程度の短波長のみならずA1_{0.5}Ga_{0.5}Nであれば、 280nmまでの光感度がある。これは基板がA1Nだから可能な高混晶であり GaN基板では困難な値である。

10

15

請求の範囲

- 1. 窒化アルミニウムのバルク単結晶を得る方法であって、オートクレイブ中に アルカリ金属イオンを含有する超臨界アンモニア溶媒を形成し、該超臨界アンモニア溶媒中にアルミニウム含有フィードストックを溶解させ、超臨界溶媒へのアルミニウム含有フィードストックの溶解時より高温および/またはより低圧の条件において上記フィードストックの溶解した超臨界溶液から窒化アルミニウムをシード面に結晶させることを特徴とする方法。
- 2. フィードストックの溶解工程とは別個に、超臨界溶液をより高温および/またはより低圧に移動させる工程を備える請求項1記載の方法。
 - 3. オートクレイブ中に温度差を有する少なくとも2つの領域を同時形成し、アルミニウム含有フィードストックを低温の溶解領域に配置し、シードを高温の結晶化領域に配置することを特徴とする請求項1記載の方法。
 - 4. 溶解領域と結晶化領域の温度差は、超臨界溶液内の化学輸送を確保する範囲 に設定されることを特徴とする請求項3記載の方法。
 - 5. 超臨界溶液内の化学輸送は主として対流によって行われることを特徴とする 請求項4記載の方法。
 - 6. 溶解領域と結晶化領域の温度差は1℃以上であることを特徴とする請求項4 記載の方法。
- 20 7. 窒化アルミニウムはドナー、アクセプタまたは磁気性のドープを含有できる ことを特徴とする請求項1記載の方法。
 - 8. 超臨界溶媒はNH。またはその誘導体を含有することを特徴とする請求項1 記載の方法。
- 9. 超臨界溶媒は少なくともナトリウムまたはカリウムのイオンを含有すること 25 を特徴とする請求項1記載の方法。
 - 10. アルミニウム含有フィードストックは主に窒化アルミニウムまたはその前駆体で構成されることを特徴とする請求項1記載の方法。
 - 11. 前駆体はアルミニウムを含有するアジド、イミド、アミドイミド、アミド、 水素化物から選べられることを特徴とする請求項10記載の方法。

- 12.シードは少なくともアルミニウムまたは他のIII族元素を含む窒化物の結晶層を有する請求項1記載の方法。
- 13. シードが有する窒化アルミニウムの結晶層における表面欠陥密度は 10^6 $/ cm^2$ 以下であることを特徴とする請求項 1 記載の方法。
- 5 14. 窒化アルミニウムの結晶化は400~600℃の温度で行われることを特徴とする請求項1記載の方法。
 - 15. 窒化アルミニウムの結晶化は1000~5500bar、好ましくは1500~3000barの圧力で行われることを特徴とする請求項1記載の方法。
- 16. 超臨界溶媒内のアルカリ金属イオンの濃度はフィードストック及び窒化ア ルミニウムの特定溶解度を確保できるように調整されることを特徴とする請求項 1記載の方法。
 - 17. 超臨界溶液内の他の成分に対するアルカリ金属イオンのモル比を1:200~1:2、好ましくは1:100~1:5、より好ましく1:20~1:8の範囲以内に管理する請求項1記載の方法。
- 18. 超臨界溶媒を生成するオートクレーブ1を有する設備であって、前記オートクレーブには対流管理装置2が設置され、加熱装置5または冷却装置6を備えた炉ユニット4に投入されることを特徴とする窒化アルミニウムのバルク単結晶の生産設備。
- 19. 炉ユニット4は、オートクレーブ1の結晶化領域14に相当する、加熱装 20 置5を備えた高温領域およびオートクレーブ1の溶解領域13に相当する、加熱 装置5または冷却装置6を備えた低温領域を有する請求項18記載の設備。
 - 20. 炉ユニット4は、オートクレーブ1の結晶化領域14に相当する、加熱装置5または冷却装置6を備えた高温領域およびオートクレーブ1の溶解領域13に相当する、加熱装5または冷却装置6を備えた低温領域を有する請求項18記載の設備。
 - 21. 対流管理装置2は、結晶化領域14と溶解領域13を区分し、中心あるいは周囲に穴のある横型バッフル12-枚又は数枚で構成される請求項18記載の設備。
 - 22. オートクレープ1内には、フィードストック16を溶解領域13に、シー

ド17を結晶化領域14に配置し、13と14領域間の超臨界溶液の対流を管理 装置2によって設定する請求項18記載の設備。

- 23. 溶解領域13は横型バッフル12の上位に、結晶化領域14は横型バッフル12の下位にあることを特徴とする請求項21記載の設備。
- 5 24. 窒化アルミニウムのバルク単結晶を得る方法であって、オートクレイブ内でアルミニウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、窒化アルミニウムの溶解度が負の温度係数を有する超臨界溶液を供給し、上記超臨界溶液から窒化アルミニウムの溶解度の負の温度係数を利用してオートクレーブ内に配置されたシード面のみに窒化アルミニウムの結晶を選択的に成長されることを特徴とする方法。
 - 25. 窒化アルミニウムのバルク単結晶を得る方法であって、オートクレイブ内でアルミニウム含有フィードストックをアンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、窒化アルミニウムの溶解度が正の圧力係数を有する超臨界溶液を供給し、上記超臨界溶液から窒化アルミニウムの溶解度の正の圧力係数を利用してオートクレーブ内に配置されたシード面のみに窒化アルミニウムの結晶を選択的に成長されることを特徴とする方法。
 - 26. 前記アルカリ金属のイオンがアルカリ金属またはハロゲン物質を含有しないミネラライザーの形で投与されることを特徴とする請求項24または25記載の方法。
- 20 27. アルカリ金属イオンがLi⁺, Na⁺, K⁺ から選ばれる1種または2種 以上を含む請求項26記載の方法。
 - 28. 超臨界溶媒に溶解されるアルミニウム含有フィードストックは窒化アルミニウムまたは超臨界溶液に溶解可能なアルミニウム化合物を生成できるアルミニウム前駆体からなることを特徴とする請求項24または25記載の方法。
- 29. アルミニウム含有フィードストックがHVPEで形成されたA1Nまたは その他の化学反応で形成されたA1Nで、アンモノ塩基性超臨界反応を害しない 元素を含む請求項24または25記載の方法。
 - 30. アルミニウム含有フィードストックが超臨界アンモニア溶媒に対し平衡反応で溶解する窒化アルミニウムと超臨界アンモニア溶媒に対し不可逆的に反応す

. 10

15

に対し不可逆的に反応するアルミニウムメタルとの組み合わせにより形成される 請求項24または25記載の方法。

- 31. 前記フィードストックがA1N焼結体である請求項24または25記載の 方法。
- 5 32. 前記のシードはA1N単結晶であることを特徴とする請求項24または2 5記載の方法。
 - 33. 窒化アルミニウムのバルク単結晶を結晶化させる方法であって、アンモニアとアルカリ金属イオンを含有する超臨界溶媒の中に溶解し、窒化アルミニウムの溶解度が負の温度係数を有する超臨界溶液を、少なくともオートクレーブ内のシードの配置された領域において、所定の温度に上昇または所定の圧力に低下させて超臨界溶液の溶解度をシードに対する過飽和領域であって、自発的結晶化が起こらない濃度以下に調節してオートクレープ内に配置されたシード面のみに窒化アルミニウムの結晶を選択的に成長されることを特徴とする方法。
 - 34. オートクレーブ内に溶解領域と結晶化領域という2つの領域を同時形成し、 シードに対する超臨界溶液の過飽和の管理を溶解温度と結晶化温度の調整によっ て行われることを特徴とする請求項33記載の方法。
 - 35. 結晶化領域の温度を400~600℃の温度に設定することを特徴とする 請求項34記載の方法。
- 36. オートクレーブ内に溶解領域と結晶化領域という2つの領域を同時形成し、
 領域間の温度差を150℃以下、好ましくは100℃以下に保持することを特徴とする請求項34記載の方法。
 - 37.シードに対する超臨界溶液の過飽和調整が低温の溶解領域と高温の結晶化 領域を区分するバッフルを1または複数設け、溶解領域と結晶化領域の対流量を 調整により行われることを特徴とする請求項34記載の方法。
- 25 38. オートクレイプ中に特定の温度差を有する溶解領域と結晶化領域という 2 つの領域を形成し、シードに対する超臨界溶液の過飽和調整は、シードの総面積を上回る総面積を有する Al N結晶として投与されるアルミニウム含有フィードストックを利用することによって行われることを特徴とする請求項 34 記載の方法。

図8

PCT/JP02/05624

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF JECT MATTER Int.Cl ⁷ C30b. / 38			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C30B1/00-35/00			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2002 Kokai Jitsuyo Shinan Koho 1971-2002 Jitsuyo Shinan Toroku Koho 1996-2002			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app		Relevant to claim No.
A	Douglas R. KETCHUM et al., Cr gallium nitride in supercriti of Crystal Growth. 3 January, Vol.222, Pages 431 to 434	cal ammonia. Journal	1-38
· A	R. DWILINSKI et al., AMMONO method of GaN and AlN production. Diamond and Related Materials. 1998, Vol.7, No.9, pages 1348 to 1350		
		•••	
İ			
Further documents are listed in the continuation of Box C. See patent family annex.			
* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to			
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing "X"		understand the principle or theory und	lerlying the invention
date considered novel or cannot be considered to involve an inventive step when the document is taken alone			
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such			p when the document is
means "P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed			
Date of the actual completion of the international search 16 August, 2002 (16.08.02) Date of mailing of the international search report 03 September, 2002 (03.09.02)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer	
Facsimile No.		Telephone No.	

発明の属する分野の分類(国際特許分類(IPC)) Int. C1. C30B29/38 調査を行った分野 調査を行った最小限資料(国際特許分類 (IPC)) Int. Cl. ' C30B1/00-35/00 最小限资料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-2002年 日本国登録実用新案公報 1994-2002年 日本国実用新案登録公報 1996-2002年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS ONLINE 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 Douglas R. KETCHUM et al. Crystal growth of gallium nitride Α 1-38 in supercritical ammonia. Journal of Crystal Growth. 3 Jan. 2001, Vol. 222, pp. 431-434 R. DWILINSKI et al. AMMONO method of GaN and AlN production. Α -1-38Diamond and Related Materials. 1998, Vol. 7, No. 9, pp. 1348-1350 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公安されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に旨及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 16.08.02 03.09.02 国際調査機関の名称及びあて先 特許庁審査官 (権限のある職員) 4 G 2927 日本国特許庁 (ISA/JP) 平塚 政宏 郵便番号100-8915 東京都千代田区間が関三丁目4番3号 電話番号 03-3581-1101 内線 3416