#### Support Vector Machine

Il-Chul Moon
Dept. of Industrial and Systems Engineering
KAIST

icmoon@kaist.ac.kr

# Weekly Objectives

- Learn the support vector machine classifier
  - Understand the maximum margin idea of the SVM
  - Understand the formulation of the optimization problem
- Learn the soft-margin and penalization
  - Know how to add the penalization term
  - Understand the difference between the log-loss and the hinge-loss
- Learn the kernel trick
  - Understand the primal problem and the dual problem of SVM
  - Know the types of kernels
  - Understand how to apply the kernel trick to SVM and logistic regression

#### **SOFT MARGIN**

#### "Error" Cases in SVM

- Data points that are
  - Impossible to classify with a linear decision boundary
- So called, "error" cases...
- How to manage these?
  - Option 1
    - Make decision boundary more complex
    - Go to non-linear
    - Any problem?
  - Option 2
    - Admit there will be an "error"
    - Represent the error in our problem formulation.
    - Try to reduce the error as well.
    - Any problem?



# "Error" Handling in SVM

- How to handle
- Option 1)
  - Counting the error cases and reduce the counts
  - $min_{w,b}||w|| + C \times \#_{error}$  $s.t.(wx_j + b)y_j \ge 1, \forall j$
  - Any problem?
- Option 2)
  - Introduce a slack variable
    - $\xi_j > 1$  when mis-classified
  - $min_{w,b} ||w|| + C \sum_{j} \xi_{j}$   $s.t. (wx_{j} + b)y_{j} \ge 1 - \xi_{j}, \forall j$  $\xi_{j} \ge 0, \forall j$
  - Any problem?
- *C* = trade-off parameter



### Soft-Margin SVM

- $min_{w,b}||w|| + C \sum_{j} \xi_{j}$  s.t.  $(wx_{j} + b)y_{j} \ge 1 - \xi_{j}, \forall j$  $\xi_{j} \ge 0, \forall j$
- We soften the constraints
  - By adding a slack variable
- Instead, we penalize the misclassification cases in the objective function
  - $C\sum_{j}\xi_{j}$
- How to recover the hardmargin SVM?



### Comparison to Logistic Regression

- Loss function
  - $\xi_j = loss(f(x_j), y_j)$
- SVM loss function: Hinge Loss

• 
$$\xi_j = (1 - (wx_j + b)y_j)_+$$

 Logistic Regression loss function: Log Loss

• 
$$\hat{\theta} = argmax_{\theta} \sum_{1 \leq i \leq N} log(P(Y_i|X_i;\theta))$$

$$= argmax_{\theta} \sum_{1 \leq i \leq N} \{Y_i X_i \theta - log(1 + e^{X_i \theta})\}$$

• 
$$\xi_j = -\log\left(P(Y_j|X_j, w, b)\right) = \log\left(1 + e^{(wx_j+b)y_j}\right)$$

- Which loss function is preferable?
  - Around the decision boundary?
  - Overall place?





#### Strength of the Loss Function

•  $min_{w,b,\xi_j} ||w|| + C \sum_j \xi_j$ s.t.  $(wx_j + b)y_j \ge 1 - \xi_j, \forall j$  $\xi_j \ge 0, \forall j$ 

- Let's implement the model
- How does the decision boundary evolves over the variations of C?

