Sets, Patterns, and Fourier Decay

Jacob Denson

March 28, 2022

Fourier Analysis and Patterns in Sets

- ▶ What can one learn about the geometry of a compact set $E \subset \mathbb{T}^d$ via analytical properties of probability measures μ supported on E?
- A set E has Hausdorff dimension s if for any t < s, E supports a probability measure μ_t with

$$\sum_{k\neq 0} |\widehat{\mu}_t(k)|^2 |k|^{t-d} < \infty.$$

- A set has Fourier Dimension s if it supports μ_t with $|\widehat{\mu}_t(k)| \lesssim |k|^{-t/2}$ for all k.
- ▶ $\dim_{\mathbb{F}}(E) \leq \dim_{\mathbb{H}}(E)$.

Pattern Avoidance

- ▶ If dim(E) is large, does E 'contain patterns'.
- ▶ Basic Example: If dim(E) is large, are there $m_1, \ldots, m_n \in \mathbb{Z}$ and distinct $x_1, \ldots, x_n \in E$ such that $m_1x_1 + \cdots + m_nx_n = 0$? (Can large sets be linearly independent over \mathbb{Q})
- ▶ (Keleti, 1999) There is $E \subset \mathbb{T}$ with $\dim_{\mathbb{H}}(E) = 1$ such that for any m_1, \ldots, m_n and distinct $x_1, \ldots, x_n \in E$, $m_1x_1 + \cdots + m_nx_n \neq 0$.
- If $\dim_{\mathbb{F}}(E) > 0$, there is $n, m_1, \dots, m_n \in \mathbb{Z}$ and distinct $x_1, \dots, x_n \in E$ such that $m_1x_1 + \dots + m_nx_n = 0$.
- If $\dim_{\mathbb{F}}(E) > 2/n$, then there are m_1, \ldots, m_n and distinct $x_1, \ldots, x_n \in E$ such that $m_1x_1 + \cdots + m_nx_n = 0$.

Independent Sets

- (Rudin, 1960): There exists $E \subset \mathbb{T}$ and a finite Borel measure μ with supp $(\mu) \subset E$ such that E is independent but $|\widehat{\mu}(k)| \to 0$ as $|k| \to \infty$.
- ► (Körner, 2007): There exists independent *E* supporting measures converging to zero as 'fast as possible'.
- ▶ (Körner, 2009): There exists $E \subset \mathbb{T}$ with $\dim_{\mathbb{F}}(E) = 1/(n-1)$ such that E avoids solutions to all n-term linear equations.

Arithmetic Progressions $(x_1 - 2x_2 + x_3 = 0)$

- (Łaba and Pramanik, 2007): For some small $\varepsilon > 0$, if $|\widehat{\mu}(k)| \leq C_1 |k|^{-(1-\varepsilon)/2}$ and $\mu((x,x+r)) \leq C_2 r^{\alpha}$ for appropriate C_1 , C_2 , and α , supp(μ) contains arithmetic progressions.
- Schmerkin, 2015): There is $E \subset \mathbb{T}$ avoiding arithmetic progressions with $\dim_{\mathbb{F}}(E) = 1$.
- ► (Liang and Pramanik, 2020): Generalized Schmerkin's construction to all translation-invariant patterns.

Fourier Dimension and Nonlinear Patterns

• (Henriot and Łaba and Pramanik, 2015): For certain linear maps A_1, \ldots, A_n and polynomials Q, there is $\varepsilon > 0$ such that if $E \subset \mathbb{T}$ and $\dim_{\mathbb{F}}(E) \geq 1 - \varepsilon$, E contains a family of points of the form

$$\{x, x + A_1y, \dots, x + A_{n-1}y, x + A_ny + Q(y)\}.$$

The pattern $\{x, x + t, x + t^2\}$ is *not* covered.

- (Fraser and Guo and Pramanik, 2019): If $\deg(f) > 1$ and f(0) = 0, then patterns of the form $\{x, x + t, x + f(t)\}$ exist in $\sup p(\mu)$ if μ satisfies explicit estimates ala Łaba and Pramanik.
- ▶ (Kuca, Orponen, Sahlsten, Preprint 2021): If $E \subset \mathbb{T}^2$ and $\dim_{\mathbb{H}}(E) \geq 2 \varepsilon$, then E contains solutions to $y_2 x_2 = (y_1 x_1)^2$ for distinct $x, y \in E$.

Sets Avoiding Nonlinear Patterns for Hausdorff Dimension

▶ Find large $E \subset \mathbb{T}^d$ such that for distinct $x_1, \ldots, x_n \in E$,

$$x_n \neq f(x_1,\ldots,x_{n-1}).$$

Author	Property of f	$dim_{\mathbb{H}}(X)$
Mathé (2017)	A degree r polynomial	d/r
Fraser Pramanik (2019)	f is C^1	1/(n-1)
D. Pramanik Zahl (2020)	f Lipschitz	1/(n-1)
D. (2020)	$f = g \circ \pi$ where the linear map $\pi : \mathbb{R}^{n-1} \to \mathbb{R}^{m-1}$	1/(m-1)
	map $\pi:\mathbb{R}^{n-1} o\mathbb{R}^{m-1}$	
	is is surjective	

Can we modify these constructions to obtain Salem sets?

Main Result

Theorem

Suppose $f(x_1, ..., x_{n-1})$ is C^{d+1} , and for each $1 \le i \le n-1$,

$$D_{x_k}f=\left(\frac{\partial f_i}{\partial x_{kj}}\right)$$

is invertible. Then there exists $E \subset \mathbb{T}^d$ with

$$dim_{\mathbb{F}}(E) = \beta = \frac{d}{n-3/4}$$

avoiding solutions to $x_n = f(x_1, \dots, x_{n-1})$.

▶ (Fraser and Pramanik, 2016) obtains a set $E \subset \mathbb{R}$ with

$$\dim_{\mathbb{H}}(E) = \frac{d}{n-1}.$$

Aside: Baire Categories vs Probabilities

- Result actually show that a *generic* set E with Fourier dimension $s \le \beta$ avoids solutions to the equation $x_n = f(x_1, \dots, x_{n-1})$.
- ▶ (Schmerkin, 2017): For any $y_1, \ldots, y_n \in \mathbb{T}^2$, a random set of dimension s > (dn (d+1))/n will almost surely contain a translated, dilated copy of $\{y_1, \ldots, y_n\}$.
- A generic set of dimension

$$\frac{dn-(d+1)}{n-1/2}$$

avoids translated, dilated copies of $\{y_1, \ldots, y_n\}$.

► Thus Baire category and probabilistic notions of 'almost everywhere' do not correspond for sets of dimension

$$\frac{dn-(d+1)}{n} < s \le \frac{dn-(d+1)}{n-1/2}$$

Technical Reduction

Theorem holds if we can prove that for any disjoint intervals $I_1, \ldots, I_n \subset \mathbb{T}^d$, there exists arbitrarily large sets $S = \{x_1, \ldots, x_N\}$ such that if $\delta = N^{-1/\beta}$,

- ▶ If $x_i \in I_i \cap N_{\delta}(S)$ for $1 \leq i \leq n$, $x_n \neq f(x_1, \dots, x_{n-1})$.
- ▶ For any $|\xi| \leq 1/\delta$,

$$\left|\frac{1}{N}\sum_{i}e^{2\pi i\xi\cdot x_{i}}\right|\ll N^{-1/2}$$

The Construction

- ▶ For $1 \le i \le n$, let $\{X_{i1}, \dots, X_{iM}\}$ be independently selected from I_i .
- ► Let

$$\mathcal{B} = \left\{ j_n : \begin{array}{c} |X_{nj_n} - f(X_{1j_1}, \dots, X_{n-1, j_{n-1}})| \le \delta \\ \text{for some } j_1, \dots, j_{n-1} \end{array} \right\}.$$

- ► Take $S = \{X_{ij}\} \{X_{nj} : j \in \mathcal{B}\}.$
- ▶ Set N = #(S).
- ▶ Then $\mathcal{N}_{\delta}(S)$ avoids solutions to $x_n = f(x_1, \dots, x_{n-1})$.

Goal

► If

$$Y_{\xi} = \frac{1}{N} \sum_{x \in S} e^{2\pi i \xi \cdot x},$$

then $|Y_{\xi}| \ll N^{-1/2}$.

- ▶ Step 1: $|Y_{\xi} \mathbb{E} Y_{\xi}| \ll N^{-1/2}$ with large probability.
- Step 2: $|\mathbb{E} Y_{\varepsilon}| \ll N^{-1/2}$.
- ▶ Step 1 is obtained through concentration inequalities.
- Step 2 is obtained through oscillatory integral estimates.

Concentration Inequalities

- ▶ If $Y = f(X_1, ..., X_N)$, where $X_1, ..., X_N$ are independent, and have 'equal influence' on Y, then $|Y \mathbb{E}| Y | \lesssim \sqrt{N}$ with high probability.
- ▶ **Hoeffding's Inequality** If $|X_i| \le A_i$ for each i, and

$$Y + X_1 + \cdots + X_N$$
,

then $|X_1 + \cdots + X_N| \lesssim (A_1^2 + \cdots + A_N^2)^{1/2}$ with high probability.

McDiarmid's Inequality If

$$|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,x_i',\ldots,x_n)|\leq A_i$$

then $|Y - \mathbb{E} Y| \lesssim (A_1^2 + \cdots + A_N^2)^{1/2}$ with high probability.

Bounding $\mathbb{E} Y_{\xi}$

We have

$$\mathbb{E}(Y_{\xi}) = \int_{\mathbb{T}^d} \psi(x_n) e^{2\pi i \xi \cdot x_n} d \mathbb{P}(x_n),$$

where $d \mathbb{P}(x) = \mathbb{P}(j \in \mathcal{B}|X_{nj} = x)$ and $\psi \in C^{\infty}(\mathbb{T}^d)$.

▶ If $\beta \le d/(n-3/4)$,

$$d \mathbb{P}(x) = M^{n-1}|f^{-1}(B_{\delta}(x))| + O(N^{-1/2}),$$

SO

$$\mathbb{E}(Y_{\xi}) = M^{n-1} \int_{B_{r}(0)} \int_{\mathbb{T}^{d(n-1)}} \psi(y, v) e^{2\pi i \xi \cdot (f(y) - v)} dy dv + O(N^{-1/2}).$$

Linear Result

▶ Difficulties of estimating $\mathbb{E}(Y_{\xi})$ can be eliminated if $d\mathbf{P}(x)$ is independant of x (so $\mathbb{E}(Y_{\xi}) = 0$ for all $\xi \neq 0$). This is true, for instance, if there is some linearity in the equation.

Theorem

Suppose f is Lipschitz. Then there exists $E \subset \mathbb{T}^d$ with

$$dim_{\mathbb{F}}(E) = \frac{d}{n-1}$$

avoiding solutions to the equation

$$x_n - x_{n-1} = f(x_1, \ldots, x_{n-2}).$$

▶ One application of this is a higher dimensional generalization of Körner's result on sets avoiding n term linear equations.

In Progress: Subsets of Curves Avoiding Isosceles Triangles

- If $\gamma:[0,1]\to\mathbb{T}^d$ is a smooth curve with γ' non-vanishing, then the result we discussed shows there is $E\subset[0,1]$ with $\dim_{\mathbb{F}}(E)=4/9$ such that $\gamma(E)$ does not contain the vertices of an isosceles triangle.
- ▶ (Fraser Pramanik 2019) show there exists $E \subset [0,1]$ with $\dim_{\mathbb{H}}(E) = 1/2$ such that $\gamma(E)$ does not contain the vertices of an isosceles triangle.
- If γ has non-vanishing curvature, can one find E such that $\dim_{\mathbb{F}}(\gamma(E)) = 4/9$?