CMSC 277: Homework #2

Jesse Farmer

13 Obctober 2005

1. Recall the definition of $\operatorname{Subst}_{\theta,\gamma}:\operatorname{Form}_{P}\to\operatorname{Form}_{P}$. If $v:P\to\{0,1\}$ is a truth assignment such that $\bar{v}(\gamma)=\bar{v}(\theta)$ then $\bar{v}(\varphi)=\operatorname{Subst}_{\theta,\gamma}(\varphi)$ for all $\varphi\in\operatorname{Form}_{P}$.

For notatinal convenience denote \bar{v} by w and $\mathrm{Subst}_{\theta,\gamma}$ by S. Define

$$X = \{ \varphi \in \text{Form}_{\mathbf{P}} \mid w(\varphi) = w(S(\varphi)) \}$$

We proceed by induction. For the base case we wish to show that $P \subseteq X$. So let $\varphi \in X$ and recall that by definition $w(\varphi) = v(\varphi)$. Either $\varphi = \gamma$ or $\varphi \neq \gamma$. If the former is the case then

$$w(\varphi) = w(\gamma) = w(\theta) = w(S(\varphi))$$

and hence $\varphi \in X$. If the latter is the case then $w(\varphi) = w(S(\varphi))$ directly from the definition of S. Now let $\varphi \in X$. To show that X is closed under h_{\neg} first assume $\gamma = (\neg \varphi)$. Then

$$w(\neg \varphi) = w(\gamma) = w(\theta) = w(S(\neg \varphi))$$

and hence $(\neg \varphi) \in \text{Form}_{P}$. If $\gamma \neq (\neg \varphi)$ then we have the following:

$$w(S(\neg \varphi)) = w[(\neg S(\varphi))]$$

$$= \neg w(S(\varphi))$$

$$= \neg w(\varphi)$$

$$= w(\neg \varphi)$$

where $\neg: \{0,1\} \to \{0,1\}$ is the map such that $\neg 0 = 1$ and $\neg 1 = 0$. Hence $(\neg \varphi) \in X$.

The remainder of the proof essentially follows mutatis mutandis. Let $\varphi, \psi \in X$. First assume $\gamma = (\varphi \diamond \psi)$. Then

$$w(\varphi \diamond \psi) = w(\gamma) = w(\theta) = w(S(\varphi \diamond \gamma))$$

so that $(\varphi \diamond \psi) \in X$. Otherwise we have the following:

$$w(S(\varphi \diamond \psi)) = w[(S(\varphi) \diamond S(\psi))]$$

$$= \diamond (w(S(\varphi)), w(S(\psi)))$$

$$= \diamond (w(\varphi), w(\psi))$$

$$= w((\varphi \diamond \psi))$$

where $\diamond: \{0,1\}^2 \to \{0,1\}$ is defined according to the behavior of w with respect to \diamond . In either case, $(\varphi \diamond \psi) \in X$. Since $X \subseteq \text{Form}_{P}$ by hypothesis and X is inductive, it follows that $X = \text{Form}_{P}$ and the proposition is proven.

2. Let $\operatorname{Form}_{\bar{P}} = G(L^*, P, \{h_{\neg}, h_{\lor}, h_{\land}\})$ and let Dual be defined as in the problem. Show that $\operatorname{Dual}(\varphi)$ is semantically equivalent to $\neg \varphi$ for all $\varphi \in \operatorname{Form}_{\bar{P}}$.

Define

$$X = \{ \varphi \in \operatorname{Form}_{\bar{\mathbf{P}}} \mid \ \operatorname{Dual}(\varphi) \text{ is semantically equivalent to } \neg \varphi \}$$

We will show that X is inductive. First, note that $P \subseteq X$ directly from the definition of Dual. So assume $\varphi, \psi \in X$. By the previous exercise we have that substituting a formula for something with which it is semantically equivalent preserves semantic equivalence. Writing \equiv for semantic equivalence we have

$$\mathrm{Dual}(\neg\varphi) \equiv \neg\,\mathrm{Dual}(\varphi) \equiv \neg(\neg\varphi) \equiv \varphi$$

which follow by definition of Dual, the inductive hypothesis, and from the proof in class that $\neg\neg\varphi$ is syntactically equivalent to φ plus soundness and completeness, respectively.

Similarly, by deMorgan's laws as proven in class,

$$\mathrm{Dual}(\varphi \vee \psi) \equiv \mathrm{Dual}(\varphi) \wedge \mathrm{Dual}(\psi) \equiv \neg \varphi \wedge \neg \psi \equiv \neg (\varphi \vee \psi)$$

It follows mutatis mutandis for h_{\wedge} , and hence $X = \text{Form}_{\bar{P}}$.

- 3. (a) Show that the following are equivalent for $\Gamma_1, \Gamma_2 \subseteq \text{Form}_P$:
 - i. Γ_1 and Γ_2 are semantically equivalent.
 - ii. For all $\theta \in \text{Form}_{P}$, $\Gamma_{1} \vDash \theta$ if and only if $\Gamma_{2} \vDash \theta$.

That the latter implies the former is trivial, since if it holds for all $\theta \in \text{Form}_{P}$ it certainly holds for subsets of Form_P. Define

$$X = \{\theta \in \text{Form}_{P} \mid \text{If } \Gamma_{1}, \Gamma_{2} \text{ are semantically equivalent then } \Gamma_{1} \vDash \theta \text{ if and only if } \Gamma_{2} \vDash \theta.\}$$

I'm not sure where to go from here. The inductive steps seems easy enough, e.g., if $\varphi, \psi \in X$ then $\Gamma_1 \vDash \varphi \land \psi$ implies $\Gamma_1 \vDash \varphi$ and $\Gamma_1 v Dash \psi$. Hence by the inductive hypothesis $\Gamma_2 \vDash \varphi$ and $\Gamma_2 v Dash \psi$, so that $\Gamma_2 \vDash \varphi \land \psi$. Why this holds for the base case, however, I don't know.

- (b) Show that if Γ is finite then Γ has an independent semantically equivalent subset.
 - We proceed by induction on the size of Γ . If $|\Gamma| = 0$ then the statement is vacuously true, so let $|\Gamma| = k$ for some finite k. If Γ is independent then we are done, so assume there exists φ such that $\Gamma \setminus \{\varphi\} \models \varphi$. By the inductive hypothesis there exists $\Gamma_0 \subseteq \Gamma \setminus \{\varphi\}$ such that Γ_0 is independent and semantically equivalent to $\Gamma \setminus \{\varphi\}$. But $\Gamma \setminus \varphi$ is semantically equivalent to Γ since $\Gamma \setminus \varphi \models \Gamma$ by hypothesis and $\Gamma \models \Gamma \setminus \{\varphi\}$ trivially. Therefore Γ_0 is independent and semantically equivalent to Γ .
- (c) Show that there exists a set P and an infinite set $\Gamma \subseteq \text{Form}_P$ which has no independent semantically equivalent subset.
- 4. Let $P = \{A_1, \ldots, A_7\}$. Show that there exists a boolean function $f : \{0,1\}^7 \to \{0,1\}$ such that $Depth(\varphi) \geq 5$ for all $\varphi \in Form_P$ with $B_{\varphi} = f$.

Recall that the map $\varphi \mapsto B_{\varphi}$ is surjective from Form_P to the set of all boolean functions over P.

Consider all formulas with $\operatorname{Depth}(\varphi) \leq 4$. In general for a formula with depth n there will be 2^n possible positions for atomic formulas, so that for |P|=7 there are $7^{(2^4)} \cdot 3^15$ formulas of depth at most 4 (since any formula of depth less than 4 can incrase their depth by using $A=(A \wedge A)$), where 3^15 is counting the use of the connectives. There are $2^{(2^7)}$ boolean functions in all. Hence there are at most $7^{(2^4)} \cdot 3^15$ functions represented by these elements. Since $7^{(2^4)} \cdot 3^15 < 2^{(2^7)}$ it follows that there must exist at least one function which can be represented only by a formula of depth at least 5.

5. Let P be a set not containing the symbols $(, \neg, \land, \lor, and \rightarrow. Let L = P \cup \{(, \neg, \land, \lor, \rightarrow\}. Define a unary function <math>h_{\neg}$ and binary functions h_{\land} , h_{\lor} , and h_{\rightarrow} on L^* as follows:

$$h_{\neg}(\varphi) = (\neg \varphi)$$

$$h_{\wedge}(\varphi, \psi) = (\varphi \wedge \psi)$$

$$h_{\vee}(\varphi, \psi) = (\varphi \vee \psi)$$

$$h_{\rightarrow}(\varphi, \psi) = (\varphi \rightarrow \psi)$$

Show that (L^*, P, \mathcal{H}) is free where $\mathcal{H} = \{h_{\neg}, h_{\wedge}, h_{\vee}, h_{\rightarrow}\}.$

Let $S = \{\neg, \land, \lor, \rightarrow\}$. Define $K : L^* \to \mathbb{Z}$ as follows. For $\diamond \in S$ let $K(\diamond) = -1$ and K(() = 1. For all other symbols $\varphi \in L$ let $K(\varphi) = 0$. Let $K(\lambda) = 0$ and for $\sigma \in L^*$ let $K(\sigma) = \sum_{i=1}^{|\sigma|} K(\sigma(i))$. In other words, we are going to exploit the fact that in this language there are as many left parantheses as there are connectives in a well-formed formula.

Lemma 0.1. $K(\varphi) = 0$ for all $\varphi \in \text{Form}_{P}$.

Proof. We proceed by induction. Define

$$X = \{ \varphi \in \text{Form}_{P} \mid K(\varphi) = 0 \}$$

Certainly $P \subset \varphi$ since K(A) = 0 for all $A \in P$. Let $\varphi, \psi \in X$. Then

$$K((\neg \varphi) = K(() + K(\neg) + K(\varphi)$$
$$= 1 + -1 + K(\varphi)$$
$$= 0$$

For $\diamond \in \{\lor, \land, \rightarrow\},\$

$$K((\varphi \diamond \psi) = K(() + K(\varphi) + K(\diamond) + K(\psi)$$
$$= 1 + K(\varphi) + -1 + K(\psi)$$
$$= 0$$

Since $X \subseteq \text{Form}_{P}$ and X is inductive, $X = \text{Form}_{P}$. This means all well-formed formulas have the same number of left parentheses as connectives.

Here is a second lemma.

Lemma 0.2. If $\varphi \in \text{Form}_P$ and $\lambda \neq \sigma \subset \varphi$ then either $K(\sigma) \leq -1$ or σ ends in a connective.

Proof. We cannot simply say that $K(\sigma) \leq -1$ for all proper initial segments because then things such as $(\neg$ would become well-formed formulas, which we do not want. Let X be the set of all $\varphi \in \text{Form}_P$ satisfying this property. This is trivially satisfied by elements of P since the only proper initial segments are λ and $K(\lambda) = 0$.

Let $\varphi \in \text{Form}_P$. Then $\sigma \in \{(, (\neg, (\neg \tau)\} \text{ where } \tau \subset \varphi. \text{ If } \sigma = (\text{ then } K(\sigma) = -1. \text{ If } \sigma = (\neg \text{ then } \sigma \text{ ends in a connective. If } \tau \text{ does not end in a connective then } K(\tau) \leq -1 \text{ by hypothesis and hence } K(\sigma) = K(() + K(\neg) + K(\tau) \leq -1. \text{ Otherwise, } \sigma \text{ ends in a connective since } \tau \text{ does.}$

The proofs for binary connetives, \diamond , is the same. If $\varphi, \psi \in X$ then one must consider σ as one of (, $(\tau, (\varphi \diamond, \text{ or } (\varphi \diamond \tau' \text{ where } \tau \subset \varphi \text{ and } \tau' \subset \varphi)$. The same analysis proves that either there are too few connectives in σ or σ ends in a connective.

Hence $\varphi \in \text{Form}_P$ is a well-formed formula if and only if it has the same number of left parentheses as connectives and does not end in a connective. Together these two lemmas prove that no proper initial segment of a well-formed formula is itself a well-formed formula. From this the injectivity of the various functions in the definition of a free generating system follows since we have that $\varphi, \psi \in \text{Form}_P$ implies $\varphi \not\subset \psi$ (and $\lambda \notin \text{Form}_P$.