

APARNA B. S

Department of Science and Humanities

SEQUENCES AND SERIES

Aparna B. S

Department of Science and Humanities

PES UNIVERSITY ONLINE

Class Content

- Basic concepts and definitions
- Sequences of real numbers
- Limit of a sequence
- Convergence and Divergence of a sequence
- Examples using the definition of Limit

PES UNIVERSITY ONLINE

Basic Concepts and Definitions

 $1. \\ Sequences \ play \ an \ important \ role \ in \ many \ areas \ of \ Engineering$

- 1. Sequences play an important role in many areas of Engineering
- 2. Enables understanding patterns in numbers.

- $1.\mathsf{Sequences}$ play an important role in many areas of Engineering
- 2. Enables understanding patterns in numbers.
- $\ensuremath{\mathsf{3}}.$ Helps in understanding convergence or a sequence of numbers.

- 1. Sequences play an important role in many areas of Engineering
- 2. Enables understanding patterns in numbers.
- 3. Helps in understanding convergence or a sequence of numbers.
- 4. Lays a foundation for understanding series of terms.

- 1. Sequences play an important role in many areas of Engineering
- 2. Enables understanding patterns in numbers.
- 3. Helps in understanding convergence or a sequence of numbers.
- 4. Lays a foundation for understanding series of terms.
- 5. Helps in deciding the convergence or divergence of a series.

PES UNIVERSITY ONLINE

Sequence of real numbers

1.A sequence is merely a collection of numbers that are assigned a specific order.

PES UNIVERSITY ONLINE

Sequence of real numbers

- 1.A sequence is merely a collection of numbers that are assigned a specific order.
- 2. List/Collection could be a finite or an infinite list.

For example: $\{2, 4, 6, 8, 10\}$ is a finite sequence.

 $\{1,2,3,4,\cdots\infty\}$ is an infinite sequence.

PES UNIVERSITY ONLINE

Sequence of real numbers

- 1.A sequence is merely a collection of numbers that are assigned a specific order.
- 2. List/Collection could be a finite or an infinite list. For example: $\{2,4,6,8,10\}$ is a finite sequence. $\{1,2,3,4,\cdots\infty\}$ is an infinite sequence.
- 3. $\{a_1, a_2, a_3, \cdots\}$ is a sequence.

PES UNIVERSITY ONLINE

Sequence of real numbers

- 1.A sequence is merely a collection of numbers that are assigned a specific order.
- 2. List/Collection could be a finite or an infinite list. For example: $\{2,4,6,8,10\}$ is a finite sequence. $\{1,2,3,4,\cdots\infty\}$ is an infinite sequence.
- 3. $\{a_1, a_2, a_3, \cdots\}$ is a sequence.

PES UNIVERSITY ONLINE

Sequence of real numbers

In this course, we study sequences of real numbers, where the index set I is the set of natural numbers \mathbb{N} .

1. Collection of numbers is indexed by natural numbers.

PES UNIVERSITY ONLINE

Sequence of real numbers

In this course, we study sequences of real numbers, where the index set I is the set of natural numbers \mathbb{N} .

- 1. Collection of numbers is indexed by natural numbers.
- 2. Sequence of terms are denoted by (a_i) or $\langle a_i \rangle$ or $\{a_n\}_{n=1}^{n=\infty}$.

PES UNIVERSITY ONLINE

Sequence of real numbers

In this course, we study sequences of real numbers, where the index set I is the set of natural numbers \mathbb{N} .

- 1. Collection of numbers is indexed by natural numbers.
- 2. Sequence of terms are denoted by (a_i) or (a_i) or $\{a_n\}_{n=1}^{n=\infty}$.
- 3. Each $a_i \in \mathbb{I}$ where $\mathbb{I} \in \mathbb{N}$ or $\mathbb{I} \in \mathbb{R}$ or $\mathbb{I} \in \mathbb{C}$

PES UNIVERSITY ONLINE

Sequence of real numbers

In this course, we study sequences of real numbers, where the index set I is the set of natural numbers \mathbb{N} .

- 1. Collection of numbers is indexed by natural numbers.
- 2. Sequence of terms are denoted by (a_i) or (a_i) or $\{a_n\}_{n=1}^{n=\infty}$.
- 3. Each $a_i \in \mathbb{I}$ where $\mathbb{I} \in \mathbb{N}$ or $\mathbb{I} \in \mathbb{R}$ or $\mathbb{I} \in \mathbb{C}$
- ** The sequence of real numbers $\{a_n\}$ need not begin with the index n=1.

PES UNIVERSITY ONLINE

Sequence of real numbers

$$\left\{ \frac{1}{n} \right\}_{n=1}^{n=\infty} = \left\{ \underbrace{1}_{\text{when n=1}}, \underbrace{\frac{1}{2}}_{\text{when n=2}}, \underbrace{\frac{1}{3}}_{\text{when n=3}}, \underbrace{\frac{1}{4}}_{\text{when n=4}}, \cdots \right\}.$$

$$\left\{ \frac{n^2 + 1}{2n + 3} \right\}_{n=0}^{n=\infty} = \left\{ \underbrace{\frac{1}{3}}_{\text{when n=0 when n=1 when n=2 when n=3}}, \underbrace{\frac{5}{7}}_{\text{yhen n=2 when n=3}}, \underbrace{\frac{10}{9}}_{\text{yhen n=3}}, \cdots \right\}.$$

$$\left\{ \begin{array}{l} \{a_n\} = \{n^{th} \text{digit of 'e' }\} = \\ \\ \left\{ \begin{array}{l} 2 \\ \text{first digit of 'e' second digit of 'e' third digit of 'e' fourth digit of 'e'} \end{array} \right\}. \end{aligned} \right.$$

PES UNIVERSITY ONLINE

Sequence of real numbers

$$\left\{ \frac{1}{n} \right\}_{n=1}^{n=\infty} = \left\{ \underbrace{1}_{\text{when n=1}}, \underbrace{\frac{1}{2}}_{\text{when n=2}}, \underbrace{\frac{1}{3}}_{\text{when n=3}}, \underbrace{\frac{1}{4}}_{\text{when n=4}}, \cdots \right\}.$$

$$\left\{ \frac{n^2 + 1}{2n + 3} \right\}_{n=0}^{n=\infty} = \left\{ \underbrace{\frac{1}{3}}_{\text{when n=0 when n=1 when n=2 when n=3}}, \underbrace{\frac{5}{7}}_{\text{yhen n=2 when n=3}}, \underbrace{\frac{10}{9}}_{\text{yhen n=3}}, \cdots \right\}.$$

$$\left\{ \begin{array}{l} \{a_n\} = \{n^{th} \text{digit of 'e' }\} = \\ \\ \left\{ \begin{array}{l} 2 \\ \text{first digit of 'e' second digit of 'e' third digit of 'e' fourth digit of 'e'} \end{array} \right\}. \end{aligned} \right.$$

PES UNIVERSITY ONLINE

Sequence of real numbers

$$\left\{ \frac{1}{n} \right\}_{n=1}^{n=\infty} = \left\{ \underbrace{1}_{\text{when n=1}}, \underbrace{\frac{1}{2}}_{\text{when n=2}}, \underbrace{\frac{1}{3}}_{\text{when n=3}}, \underbrace{\frac{1}{4}}_{\text{when n=4}}, \cdots \right\}.$$

$$\left\{ \frac{n^2 + 1}{2n + 3} \right\}_{n=0}^{n=\infty} = \left\{ \underbrace{\frac{1}{3}}_{\text{when n=0 when n=1 when n=2 when n=3}}, \underbrace{\frac{5}{7}}_{\text{yhen n=2 when n=3}}, \underbrace{\frac{10}{9}}_{\text{yhen n=3}}, \cdots \right\}.$$

$$\left\{ \begin{array}{l} \{a_n\} = \{n^{th} \text{digit of 'e' }\} = \\ \\ \left\{ \begin{array}{l} 2 \\ \text{first digit of 'e' second digit of 'e' third digit of 'e' fourth digit of 'e'} \end{array} \right\}. \end{aligned} \right.$$

PES UNIVERSITY ONLINE

Sequence of real numbers

$$\left\{ \frac{1}{n} \right\}_{n=1}^{n=\infty} = \left\{ \underbrace{1}_{\text{when n=1}}, \underbrace{\frac{1}{2}}_{\text{when n=2}}, \underbrace{\frac{1}{3}}_{\text{when n=3}}, \underbrace{\frac{1}{4}}_{\text{when n=4}}, \cdots \right\}.$$

$$\left\{ \frac{n^2 + 1}{2n + 3} \right\}_{n=0}^{n=\infty} = \left\{ \underbrace{\frac{1}{3}}_{\text{when n=0 when n=1 when n=2 when n=3}}, \underbrace{\frac{5}{7}}_{\text{yhen n=2 when n=3}}, \underbrace{\frac{10}{9}}_{\text{yhen n=3}}, \cdots \right\}.$$

$$\left\{ \begin{array}{l} \{a_n\} = \{n^{th} \text{digit of 'e' }\} = \\ \\ \left\{ \begin{array}{l} 2 \\ \text{first digit of 'e' second digit of 'e' third digit of 'e' fourth digit of 'e'} \end{array} \right\}. \end{aligned} \right.$$

PES UNIVERSITY ONLINE

Sequence of real numbers

Some questions to ponder over :

1. Does a general term of a sequece exist ?

PES UNIVERSITY ONLINE

Sequence of real numbers

Some questions to ponder over :

- 1. Does a general term of a sequece exist ?
- 2. To what limiting value does a sequence tend to ?

PES UNIVERSITY ONLINE

Sequence of real numbers

Some questions to ponder over :

- 1. Does a general term of a sequece exist?
- 2. To what limiting value does a sequence tend to ?
- 3. Can we say that the terms of a sequence are bounded by a set of numbers ?

PES UNIVERSITY ONLINE

Sequence of real numbers

Some questions to ponder over :

- 1. Does a general term of a sequece exist?
- 2. To what limiting value does a sequence tend to ?
- 3. Can we say that the terms of a sequence are bounded by a set of numbers ?

Is the sequence increasing / decreasing ?

Sequence of real numbers

Alternatively,

Sequence of real numbers

DEFINITION (Sequence)

A real sequence is an assignment of a real number f(n), to each natural number $n = 1, 2, 3, \cdots$.

Alternatively,

Sequence of real numbers

DEFINITION (Sequence)

A real sequence is an assignment of a real number f(n), to each natural number $n = 1, 2, 3, \cdots$.

Alternatively,

Real sequence:

A function whose domain is the set \mathbb{N} of natural numbers and the range is a subset of \mathbb{R} .

PES UNIVERSITY ONLINE

Sequence of real numbers

DEFINITION (Sequence)

A real sequence is an assignment of a real number f(n), to each natural number $n = 1, 2, 3, \cdots$.

Alternatively,

Real sequence:

A function whose domain is the set \mathbb{N} of natural numbers and the range is a subset of \mathbb{R} .

 n^{th} term of a sequence is specified

 \Rightarrow Any number of terms of the sequence can be generated

Sequence of real numbers

DEFINITION (Range of a Sequence)

The set of all distinct terms of a sequence is called its range.

For example:

1. If
$$x_n = (-1)^n$$
, $n \in \mathbb{N}$, then $x_n = \{-1, 1, -1, 1, -1, \cdots\}$
The range of the sequence $x_n = \{-1, 1\}$ is a finite set.

PES UNIVERSITY ONLINE

Sequence of real numbers

DEFINITION (Range of a Sequence)

The set of all distinct terms of a sequence is called its range.

For example:

1. If $x_n = (-1)^n$, $n \in \mathbb{N}$, then $x_n = \{-1, 1, -1, 1, -1, \cdots\}$ The range of the sequence $x_n = \{-1, 1\}$ is a finite set.

DEFINITION (Constant sequence)

A sequence x_n defined by $x_n = c \ \forall n \in \mathbb{N}$, where c is any real number is called a constant sequence.

PES UNIVERSITY ONLINE

Sequence of real numbers

DEFINITION (Range of a Sequence)

The set of all distinct terms of a sequence is called its range.

For example:

1. If $x_n = (-1)^n$, $n \in \mathbb{N}$, then $x_n = \{-1, 1, -1, 1, -1, \cdots\}$ The range of the sequence $x_n = \{-1, 1\}$ is a finite set.

DEFINITION (Constant sequence)

A sequence x_n defined by $x_n = c \ \forall n \in \mathbb{N}$, where c is any real number is called a constant sequence.

PES UNIVERSITY ONLINE

Sequence of real numbers

DEFINITION (Range of a Sequence)

The set of all distinct terms of a sequence is called its range.

For example:

1. If $x_n = (-1)^n$, $n \in \mathbb{N}$, then $x_n = \{-1, 1, -1, 1, -1, \cdots\}$ The range of the sequence $x_n = \{-1, 1\}$ is a finite set.

DEFINITION (Constant sequence)

A sequence x_n defined by $x_n = c \ \forall n \in \mathbb{N}$, where c is any real number is called a constant sequence.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

Limit of a sequence:

DEFINITION (Limit of a Sequence)

A sequence $\{a_n\}$ is said to converge to a limit I if for every $\epsilon > 0$ there exists a natural number N such that $|a_n - I| < \epsilon$ for all n > N.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

Limit of a sequence:

DEFINITION (Limit of a Sequence)

A sequence $\{a_n\}$ is said to converge to a limit I if for every $\epsilon > 0$ there exists a natural number N such that $|a_n - I| < \epsilon$ for all n > N.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

Limit of a sequence:

DEFINITION (Limit of a Sequence)

A sequence $\{a_n\}$ is said to converge to a limit I if for every $\epsilon > 0$ there exists a natural number N such that $|a_n - I| < \epsilon$ for all n > N.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

Limit of a sequence:

DEFINITION (Limit of a Sequence)

A sequence $\{a_n\}$ is said to converge to a limit I if for every $\epsilon > 0$ there exists a natural number N such that $|a_n - I| < \epsilon$ for all n > N.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

- 1. Asserts that given any $\epsilon>0$, however small, all the terms of the sequence, except the first ${\it N}-1$ terms, lie in the interval $({\it I}-\epsilon,{\it I}+\epsilon)$.
- 2. The first N-1 terms of the sequence, may be scattered anywhere.
- 3. The choice of $\epsilon > 0$ decides the number of terms that are left ouside of the interval $(I \epsilon, I + \epsilon)$.
- 4. Smaller the value of ϵ , larger will be the number of terms that remain outside of the interval $(I \epsilon, I + \epsilon)$.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

- 1. Asserts that given any $\epsilon>0$, however small, all the terms of the se**f** quence, except the first N-1 terms, lie in the interval $(I-\epsilon,I+\epsilon)$.
- 2. The first N-1 terms of the sequence, may be scattered anywhere.
- 3. The choice of $\epsilon > 0$ decides the number of terms that are left ouside of the interval $(I \epsilon, I + \epsilon)$.
- 4. Smaller the value of ϵ , larger will be the number of terms that remain outside of the interval $(I \epsilon, I + \epsilon)$.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

- 1. Asserts that given any $\epsilon>0$, however small, all the terms of the sequence, except the first N-1 terms, lie in the interval $(I-\epsilon,I+\epsilon)$.
- 2. The first N-1 terms of the sequence, may be scattered anywhere.
- 3. The choice of $\epsilon > 0$ decides the number of terms that are left ouside of the interval $(I \epsilon, I + \epsilon)$.
- 4. Smaller the value of ϵ , larger will be the number of terms that remain outside of the interval $(I \epsilon, I + \epsilon)$.

PES UNIVERSITY ONLINE

Limit of a Real Sequence

- 1. Asserts that given any $\epsilon>0$, however small, all the terms of the sequence, except the first N-1 terms, lie in the interval $(I-\epsilon,I+\epsilon)$.
- 2. The first N-1 terms of the sequence, may be scattered anywhere.
- 3. The choice of $\epsilon > 0$ decides the number of terms that are left ouside of the interval $(I \epsilon, I + \epsilon)$.
- 4. Smaller the value of ϵ , larger will be the number of terms that remain outside of the interval $(I \epsilon, I + \epsilon)$.

Convergence of a sequence of real numbers

DEFINITION (Convergent sequence)

If $\lim_{n\to\infty} a_n = l$, we say that the sequence $\{a_n\}$ converges to the limit l.

Convergence of a sequence of real numbers

DEFINITION (Convergent sequence)

If $\lim_{n\to\infty} a_n = l$, we say that the sequence $\{a_n\}$ converges to the limit l.

Convergence of a sequence of real numbers

DEFINITION (Convergent sequence)

If $\lim_{n\to\infty} a_n = l$, we say that the sequence $\{a_n\}$ converges to the limit l.

Convergence of a sequence of real numbers

DEFINITION (Convergent sequence)

If $\lim_{n\to\infty} a_n = l$, we say that the sequence $\{a_n\}$ converges to the limit l.

PES UNIVERSITY ONLINE

Divergence of a sequence and examples

DEFINITION (Divergence of a sequence)

If
$$\lim_{n\to\infty} a_n = +\infty$$
 or $-\infty$, we say that the sequence $\{a_n\}$ diverges.

- ▶ The sequence $\{n\}$ diverges to ∞ .
 - For $\lim_{n \to \infty} n = +\infty$
- ► The sequence $\{n^3\}$ diverges to ∞ .

For
$$\lim_{n\to\infty} n^3 = +\infty$$

PES UNIVERSITY ONLINE

Divergence of a sequence and examples

DEFINITION (Divergence of a sequence)

If
$$\lim_{n\to\infty} a_n = +\infty$$
 or $-\infty$, we say that the sequence $\{a_n\}$ diverges.

- ▶ The sequence $\{n\}$ diverges to ∞ .
 - For $\lim_{n \to \infty} n = +\infty$
- ► The sequence $\{n^3\}$ diverges to ∞ .

For
$$\lim_{n\to\infty} n^3 = +\infty$$

PES UNIVERSITY ONLINE

Divergence of a sequence and examples

DEFINITION (Divergence of a sequence)

If
$$\lim_{n\to\infty} a_n = +\infty$$
 or $-\infty$, we say that the sequence $\{a_n\}$ diverges.

- ▶ The sequence $\{n\}$ diverges to ∞ .
 - For $\lim_{n \to \infty} n = +\infty$
- ► The sequence $\{n^3\}$ diverges to ∞ .

For
$$\lim_{n\to\infty} n^3 = +\infty$$

PES UNIVERSITY ONLINE

Divergence of a sequence and examples

DEFINITION (Divergence of a sequence)

If
$$\lim_{n\to\infty} a_n = +\infty$$
 or $-\infty$, we say that the sequence $\{a_n\}$ diverges.

- ▶ The sequence $\{n\}$ diverges to ∞ .
 - For $\lim_{n\to\infty} n = +\infty$
- ► The sequence $\{n^3\}$ diverges to ∞ .

For
$$\lim_{n\to\infty} n^3 = +\infty$$

Examples of Convergent sequences

- ▶ The sequence $\left\{\frac{1}{n}\right\}$ is a convergent sequence.
 - For, $\lim_{x \to 0} \frac{1}{x} = 0$, a finite quantity.
- ► The sequence $\left\{\frac{1}{n^2}\right\}$ is a convergent sequence. For, $\lim_{n\to\infty}\frac{1}{n^2}=0$, a finite quantity.

For,
$$\displaystyle \lim_{n o \infty} rac{1}{n^2} = 0$$
, a finite quantity

Examples of Convergent sequences

- ▶ The sequence $\left\{\frac{1}{n}\right\}$ is a convergent sequence.
 - For, $\lim_{x \to 0} \frac{1}{x} = 0$, a finite quantity.
- ► The sequence $\left\{\frac{1}{n^2}\right\}$ is a convergent sequence. For, $\lim_{n\to\infty}\frac{1}{n^2}=0$, a finite quantity.

For,
$$\displaystyle \lim_{n o \infty} rac{1}{n^2} = 0$$
, a finite quantity

Examples of Convergent sequences

- ▶ The sequence $\left\{\frac{1}{n}\right\}$ is a convergent sequence.
 - For, $\lim_{x \to 0} \frac{1}{x} = 0$, a finite quantity.
- ► The sequence $\left\{\frac{1}{n^2}\right\}$ is a convergent sequence. For, $\lim_{n\to\infty}\frac{1}{n^2}=0$, a finite quantity.

For,
$$\displaystyle \lim_{n o \infty} rac{1}{n^2} = 0$$
, a finite quantity

Examples of Convergent sequences

- ▶ The sequence $\left\{\frac{1}{n}\right\}$ is a convergent sequence.
 - For, $\lim_{x \to 0} \frac{1}{x} = 0$, a finite quantity.
- ► The sequence $\left\{\frac{1}{n^2}\right\}$ is a convergent sequence. For, $\lim_{n\to\infty}\frac{1}{n^2}=0$, a finite quantity.

For,
$$\displaystyle \lim_{n o \infty} rac{1}{n^2} = 0$$
, a finite quantity

Problems:

i)
$$\{1, 2, 3, 4, \dots \}$$
 = $\{n\}$

2)
$$\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots, \infty\} = \{\frac{1}{n}, \frac{1}{n}\}$$

The term: $\frac{1}{n}$

3)
$$\{2n-1\}$$
 sequence ... $\{n=1,2...\infty\}$ $\{1,3,5,7,...\infty\}$

4)
$$\frac{2}{n} \frac{n+1}{n} \stackrel{?}{\rightarrow} 2$$
 and $a_1 = \frac{1+1}{1} = 2$, $a_2 = \frac{2+1}{2} = \frac{3}{2}$, $a_3 = \frac{4}{3}$

$$9$$
 $\{2, \frac{3}{2}, \frac{4}{3}, \dots \infty\}$

5)
$$\left\{ \frac{-1}{1}, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \dots, \infty \right\}$$

The term $= \left\{ (-1)^n, \frac{1}{n} \right\} \rightarrow \text{sequence}$

6) $\begin{cases} 2, 2, 2 \dots \infty \end{cases}$ constant sequence n^{th} term = 2 $sequence \begin{cases} sequence \end{cases} = \begin{cases} 23 \end{cases}$

Scapence is convergent, divergent or oscillatory.... $\frac{5}{n}\frac{1}{3} = \frac{5}{1}, \frac{1}{2}, \frac{1}{3} \dots \infty = \frac{5}{n}$

It an = It
$$\perp$$
 = 0
 $n + \infty$ $n + \infty$ converges to zero
2) $\frac{2n+1}{n}$... sequence .? convergent or divergent n^{th} term $\frac{2}{n}$ and $\frac{2}{n}$ and $\frac{2}{n}$ is the n^{th} term $\frac{2}{n}$ and $\frac{2}{n}$ and $\frac{2}{n}$ $\frac{$

3)
$$\begin{cases} \frac{3n-4}{7n+3} \end{cases}$$
; $a_n = \frac{3n-4}{7n+3}$

$$tt a_n = tt \frac{3n-4}{7n+3} = -\frac{4}{3} \frac{3}{7}$$

4)
$$\begin{cases} 2 & n \\ 3 & n \end{cases}$$
 $a_n = n \Rightarrow ut \quad a_n = ut \quad a_n = \infty$

$$\Rightarrow \text{ Given Sequence diverges to } + \infty$$
5) $\frac{5-n}{2}$; $a_n = -\frac{n}{2} \Rightarrow \text{ It } a_n = \text{ It } -\frac{n}{2} = -\infty$

=) Given sequence diverges to -a

THANK YOU

Aparna B. S

Department of Science and Humanities

aparnabs@pes.edu