

A PyTorch-Native Auto-Parallel Framework for *Ease of Use*

veScale Team

ByteDance

About Me

Hongyu Zhu

Received my PhD degree from University of Toronto (advisor: Gennady Pekhimenko)

Joined ByteDance AML group in 2022.3

Currently working on LLM training frameworks

- Why veScale
- What is veScale
- Preliminary Results of veScale
- Future of veScale

Why veScale

Company:

100s~1000s New Models Each Week

Industrial Training Framework

Only Performance

Ease of Use

But Current Frameworks are Hard to Use

Not Automated Intertwined System Not PyTorch and Model Design **Enough GradBuffer Defrag** nn.Linear **AllReduce Overlag** ColumnParallelLinear **Distributed** Hard to Debu **k**point **Intertwined Bugs** AAAAA Heavy Maintainance Effort

But Current Frameworks are Hard to Use

A PyTorch-Native Auto-Parallel Framework for *Ease of Use*

- Why veScale
- What is veScale
- Preliminary Results of veScale
- Future of veScale

What is veScale

PyTorch-Native Model (Zero Code Change) on a Single Device

- Why veScale
- What is veScale
- Preliminary Results of veScale
- Future of veScale

Preliminary Results of veScale Simple API of nD Parallel Training (WIP)

```
Pvthon ▼
   1 ### user provides model on single device
  2 from internal_model/huggingface.transformers import AutoConfig, AutoModel
   3 config = AutoConfig.from_pretrained('/path/to/config')
  4 import vescale
  5 model = AutoModel.from_config(config)
  7 ### vescale creates nD parallel plan
     plan = vescale.generate_plan(model, settings_and_constraints, ...)
     ### vescale creates nD parallel model
     model, optimizer, ... = vescale.parallelize(plan, model, optimizer_fn, ...)
  12
     ### vescale loads nD parallel model
     vescale.load("/path", { "plan": plan, "model" : model, "optimizer" : optimizer)
     ### user trains nD parallel model as if on single device
      for batch in dataloader:
         loss = model(batch)
         loss.backward()
         optimizer.step()
         optimizer.zero_grad()
     ### vescale saves nD parallel model
  vescale.save("/path", { "plan": plan, "model" : model, "optimizer" : optimizer })
```

Zero Code Change of Model

Zero Code Change of Training Loop

nD Parallel Training in 5 LoC

Preliminary Results of veScale

Bitwise Correctness of 4D Parallel Training

Preliminary Results of veScale

Bitwise Correctness of 4D Parallel Training

Preliminary Results of veScale

Decent Performance of TP (WIP)

- Why veScale
- What is veScale
- Preliminary Results of veScale
- Future of veScale

Future of veScale

Company: 100s~1000s New Models Each Week

Impact!

Open Source Community: Everyone

"A Promising Work!"

- -- AWS AI Lab
 - -- Octol Al
 - -- Boson Al

"An Ambitious Work!"

- -- Llama Training Lead
- -- PyTorch Training Lead

"But Many Effort Ahead; Long-Term Effort Ahead ..." -- Llama Training Lead

What's next for veScale

- Better eager-mode n-D parallelism
 - Ease of use & performance

- Better fsdp2
 - Performance & fsdp2+pp+tp
- Compile mode for performance
- Auto-planner

Future Challenges

"800" Operator Support for PyTorch

Bitwise Correctness for "nD Parallel"

"Easy to Use" vs "High Performance"

Acknowledgement

(random order)

[Leaders] Li-wen Chang, Yanghua Peng, Haibin Lin, Xin

[Contributers] Xinyi Di, Jiawei Wu, Hongyu Zhu, Ziang Song, Jiacheng Yang, Youjie Li

[Collaborators] Minji Han, Chengji Yao, Chenyuan Wang, Yan Xu, Changming Yu, Wenlei Bao, Hao Gong, Ming Zhang, Ningxin Zheng, Xuanrun Zhang

Open Source for All

vescale.xyz