# **CHAPTER FOUR**

Interpolation and Polynomial Approximation

## Objectives

• Lagrange Approximation

 Estimating a missing function value by taking a weighted average of known values for neighboring points.

$$\bullet m = \frac{y_1 - y_0}{x_1 - x_0}$$

$$\bullet \ y = m(x - x_0) + y_0$$

• 
$$Y = P(x) = y_0 + (y_1 - y_0) \frac{x - x_0}{x_1 - x_0}$$

• 
$$P(x_0) = y_0 + (y_1 - y_0)(0) = y_0$$

• 
$$P(x_1) = y_0 + (y_1 - y_0)(1) = y_1$$



• 
$$y = P_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

$$L_{1,0}(x) \quad L_{1,1}(x)$$

• 
$$P_1(x) = y_0 L_{1,0}(x) + y_1 L_{1,1}(x)$$
  
 $L_{1,0}(x_0) = 1$   $L_{1,1}(x_0) = 0$   $\Rightarrow P_1(x_0) = y_0$   
 $L_{1,0}(x_1) = 0$   $L_{1,1}(x_1) = 1$   $\Rightarrow P_1(x_1) = y_1$ 

• 
$$P_1(x) = \sum_{k=0}^{1} y_k L_{1,k}(x)$$

• If  $P_1(x)$  used to approximate f(x) over interval  $[x_0, x_1]$ , we call the process **interpolation**.

• If  $x < x_0$  (or  $x_1 < x$ ) then using  $P_1(x)$  called **extrapolation**.

Generalization : Polynomial of degree (N)

• 
$$P_N(x) = \sum_{k=0}^{N} y_k L_{N,k}(x)$$

• 
$$L_{N,k}(x) = \frac{(x-x_0)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}$$

• 
$$L_{N,k}(x) = \frac{\prod_{j=0}^{N} (x-x_j)}{\prod_{j=0}^{N} (x_k-x_j)}$$

$$= \frac{\int_{j=0}^{N} (x_k-x_j)}{\prod_{j=0}^{N} (x_k-x_j)}$$

#### Lagrange Approximation - Example

• Let  $\mathbf{y}=f(x)=\cos(x)$  over [0.0 , 1.2]. And use  $x_0=0$  ,  $x_1=0.4$  ,  $x_2=0.8$  ,  $x_3=1.2$ 

to construct cubic interpolation poly  $P_3(x)$ .

• 
$$P_3(x) = y_0 \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} + y_1 \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} + y_1 \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}$$

$$y_2 \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} + y_3 \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}$$

### Lagrange Approximation – Example (cont'd)

• 
$$y_0 = \cos(0.0) = 1.0$$

$$\cdot y_1 = \cos(0.4) = 0.921061$$

$$y_2 = \cos(0.8) = 0.696707$$

$$y_3 = \cos(1.2) = 0.362358$$

• 
$$P_3(x) = -2.604167(x - 0.4)(x - 0.8)(x - 1.2) + 7.195789(x - 0.0)(x - 0.8)(x - 1.2)$$

$$-5.443021(x-0.0)(x-0.4)(x-1.2) + 0.943641(x-0.0)(x-0.4)(x-0.8)$$

### Lagrange Approximation – Example (cont'd)



Figure 4.12 (a) The quadratic approximation polynomial  $y = P_2(x)$  based on the nodes  $x_0 = 0.0$ ,  $x_1 = 0.6$ , and  $x_2 = 1.2$ . (b) The cubic approximation polynomial  $y = P_3(x)$  based on the nodes  $x_0 = 0.0$ ,  $x_1 = 0.4$ ,  $x_2 = 0.8$ , and  $x_3 = 1.2$ .

#### References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

