基于知识蒸馏的联邦相互学习

2021年1月12日

背景

Algorithm 1: 朴素联邦学习算法

Input: 带有各自不同数据的用户群体 $c_i \in C$,服务器 S,一个打算共同训练的模型 M

Result: 最终训练好的模型 M' 1 在服务器 S 上初始化模型 M;

2 while 全局模型 M 还未达到某个精确度 do

- $\mathbf{3}$ 各个用户将服务器上的模型 M^t 下载到它们本地;
- 4 各个用户利用各自的数据训练模型,更新模型, $m_i^t \leftarrow train_i(M^t)$;
- 5 | 各个用户将各自的 m_i^t 上传到服务器 S 上;

7 end

问题

- 1. 如果用户数据分布不均匀,训练效果不好,收敛过程复杂
- 2. 这种情况下最后只能有一个训练好的模型,用户和用户之间的模型个性化不够

解决方案

Algorithm 2: 基于知识蒸馏的联邦相互学习

Input: 带有各自不同数据 d_i 和不同模型 m_i ,但是训练目标一致的用户群体 $c_i \in C$,服务器 S ,一个用作共同训练媒介的模型 M ,一个先验模型 N ,用户各自贡献出的公共数据集 $Dataset_{pub}$ (不需要 label)

Result: 用户各自最终训练好的模型 m_i'

- 1 在服务器 S 上初始化模型 M, N;
- 2 将用户各自贡献出的公共数据集的一部分 $Dataset_{pub}^{part}$ 送入 N 中,获得软标签;
- 3 将 Dataset^{part} 和生成的软标签分给每个用户,扩充数据集;
- 4 while 各个用户的模型 m_i 还未达到某个精确度 do
- 5 各个用户将服务器上的模型 M^t 下载到本地 M_i^t ;
- 6 将公共数据集的剩余部分 $Dataset_{pub}^{res}$ 中一部分用作 M_i^t 和 m_i^t 的前向传播,获得结果 res_M 和 res_m ;
- 7 相互计算 res_M 和 res_m 的 KL 散度,得到 $L_{KL,M\to m}$ 和 $L_{KL,m\to M}$;
- 8 各个用户利用各自的数据训练模型 m_i^t , 得到损失 $L_{m,ori}$;
- 9 根据以上损失反向传播和更新参数: $M_i^{t+1} \leftarrow Update(M_i^t, L_{KL,M\to m});$ $m_i^{t+1} \leftarrow Update(m_i^t, L_{ori} + L_{KL,m\to M});$
- 10 各个用户将各自的 M_i^{t+1} 上传到服务器 S 上;
- 11 服务器将模型的参数平均,即 $M^{t+1} \leftarrow \frac{1}{n} \sum_{n} M_i^{t+1}$;
- 12 end

效果说明

测试数据集: Mnist, Cifar10, Fashion Mnist

- 收敛加速:同朴素的联邦学习相比,收敛时精度变化不大,但是收敛稳定性增加
- 用户的模型可以不相同: 同 FedAmp 相比, 训练更快速计算量更小