Generalized spectral characterization of signed bipartite graphs

Songlin Guo^a Wei Wang^{b*} Lele Li^a

^a School of General Education, Wanjiang University of Technology, Ma'anshan 243031, P. R. China
^bSchool of Mathematics, Physics and Finance, Anhui Polytechnic University, Wuhu 241000, P. R. China

Abstract

Let Σ be an *n*-vertex controllable or almost controllable signed bipartite graph, and let Δ_{Σ} denote the discriminant of its characteristic polynomial $\chi(\Sigma; x)$. We prove that if (i) the integer $2^{-\lfloor n/2 \rfloor} \sqrt{\Delta_{\Sigma}}$ is squarefree, and (ii) the constant term (even *n*) or linear coefficient (odd *n*) of $\chi(\Sigma; x)$ is ± 1 , then Σ is determined by its generalized spectrum. This result extends a recent theorem of Ji, Wang, and Zhang [Electron. J. Combin. 32 (2025), #P2.18], which established a similar criterion for signed trees with irreducible characteristic polynomials.

Keywords: signed bipartite graph; generalized spectrum; discriminant; determined by spectrum.

Mathematics Subject Classification: 05C50

1 Introduction

A signed graph Σ is a pair (G, σ) , where G is a simple graph and σ is a mapping from its edge set E(G) to $\{+1, -1\}$. The adjacency matrix $A(\Sigma) = (a_{ij})$ of a signed graph $\Sigma = (G, \sigma)$ is defined by:

$$a_{ij} = \begin{cases} \sigma(ij) & \text{if } i \text{ and } j \text{ are adjacent;} \\ 0 & \text{otherwise.} \end{cases}$$

Two signed graphs Σ_1 and Σ_2 are said to be generalized cospectral [7] if their adjacency matrices $A(\Sigma_1)$ and $A(\Sigma_2)$ satisfy:

1.
$$det(xI - A(\Sigma_1)) = det(xI - A(\Sigma_2))$$
 and

2.
$$\det(xI - (J - I - A(\Sigma_1))) = \det(xI - (J - I - A(\Sigma_2))),$$

^{*}Corresponding author. Email address: wangwei.math@gmail.com

where I is the identity matrix, J is the all-ones matrix, and $(J - I - A(\Sigma_1))$ formally denotes the 'complement' of Σ_1 . A signed graph Σ is determined by its generalized spectrum (DGS) [7] if every signed graph generalized cospectral with Σ is isomorphic to it.

For convenience, we say a signed graph Σ is reducible (resp. irreducible) if its characteristic polynomial $\chi(\Sigma; x)$, which is $\det(xI - A(\Sigma))$, is reducible (resp. irreducible) over \mathbb{Q} . We use Δ_{Σ} to denote the discriminant of $\chi(\Sigma; x)$. Recently, Ji, Wang and Zhang [7] obtained a simple criterion for a signed tree to be DGS. We state it in a slightly different but essentially equivalent form.

Theorem 1 ([7]). Let Σ be an n-vertex $(n \geq 2)$ irreducible signed tree. If $2^{-n/2}\sqrt{\Delta_{\Sigma}}$ is an odd squarefree integer, then Σ is DGS.

We note that the order n is necessarily even in Theorem 1 by the irreducibility assumption. Indeed, if Σ is a signed tree (or more generally, a signed bipartite graph) whose order is odd, then it is not difficult to see that $A(\Sigma)$ is singular and hence $\chi(\Sigma; x)$ has x a factor. Furthermore, since for any signed tree Σ , the constant term of its characteristic polynomial $\chi(\Sigma; x)$ belongs to $\{0, 1, -1\}$, the irreducibility assumption in Theorem 1 clearly implies that the constant term of $\chi(\Sigma; x)$ is ± 1 .

At the end of [7], Ji et al. proposed the following question for further study.

Question 1 ([7]). How can Theorem 1 be generalized to signed bipartite graphs?

In the same paper, Ji et al. realized that some essential difficulties will inevitably appear when we try to generalize Theorem 1 to signed bipartite graphs. They also reported a 'counterexample' indicating that Theorem 7 in that paper, which is the main tool to prove Theorem 1, does not hold without the irreducibility assumption of Σ , even if Σ is controllable. Thus it is not clear how to generalize Theorem 1 to reducible signed trees (which include all signed trees with 2k + 1 vertices).

In this paper, we employ a new approach to give an answer to Question 1. The main result of this paper is the following theorem.

Theorem 2. Let Σ be an n-vertex controllable or almost controllable signed bipartite graph. Assume that the coefficient of the constant term (n even) or linear term (n odd) of $\chi(\Sigma; x)$ is ± 1 . If $2^{-n/2}\sqrt{\Delta_{\Sigma}}$ is squarefree, then Σ is DGS.

Compared with Theorem 1, Theorem 2 has broader applicability and subsumes Theorem 1 as a special case. Note that Theorem 2 no longer requires the oddness condition explicitly, since we will prove that the value $2^{-n/2}\sqrt{\Delta_{\Sigma}}$ must be odd when squarefree.

2 Preliminaries

We first recall some basic notations. Let Σ be an *n*-vertex signed graph. The walk-matrix of Σ is defined as:

$$W(\Sigma) := [e, Ae, \dots, A^{n-1}e],$$

where e is the all-ones vector and A is the adjacency matrix of Σ . We say Σ is controllable (resp. almost controllable) if $\operatorname{rank}(W(\Sigma)) = n$ (resp. $\operatorname{rank}(W(\Sigma)) = n - 1$).

2.1 Totally isotropic subspace in generalized cospectrality

An orthogonal matrix Q is called regular if it satisfies Qe = e. The following theorem states that for controllable or almost controllable signed graphs, generalized cospectrality can be characterized by a regular orthogonal matrix with rational entries. The result was usually stated and proved in the setting of unsigned graphs; nevertheless, the original proofs are still valid for signed graphs.

Theorem 3 ([2, 3, 11]). Let Σ and Γ be two signed graphs with n vertices. Then Σ and Γ are generalized cospectral if and only if there exists a regular orthogonal matrix Q such that

$$Q^{\mathrm{T}}A(\Sigma)Q = A(\Gamma). \tag{1}$$

Moreover,

- (i) if Σ is controllable then $Q^{\mathrm{T}} = W(\Gamma)(W(\Sigma))^{-1}$ and hence Q is unique and rational.
- (ii) if Σ is almost controllable then Eq. (1) has exactly two solutions for Q, both of which are rational.

Let $\mathrm{RO}_n(\mathbb{Q})$ and $\mathrm{S}_n(\mathbb{Z})$ denote the sets of all $n \times n$ rational regular orthogonal matrices and all $n \times n$ symmetric integer matrices, respectively. For a signed graph Σ , we define

$$Q(\Sigma) = \{ Q \in RO_n(\mathbb{Q}) : Q^T A(\Sigma) Q \in S_n(\mathbb{Z}) \}.$$

For a matrix $Q \in O_n(\mathbb{Q})$, its level, denoted by $\ell(Q)$ (or simply write it as ℓ), is defined as the smallest positive integer k such that kQ is an integer matrix. Clearly, matrices in $RO_n(\mathbb{Q})$ with level 1 are precisely the permutation matrices. The following observation is standard and frequently used to show a graph (or a signed graph) to be DGS.

Lemma 1. Let Σ be a controllable or almost controllable signed graph. If each matrix $Q \in \mathcal{Q}(\Sigma)$ has level 1 then Σ is DGS.

Remark 1. For almost controllable (signed) graphs, Lemma 1 is only applicable for those that have a nontrivial automorphism. Indeed, if Σ is almost controllable but has no nontrivial automorphism, then $\mathcal{Q}(\Sigma)$ contains a non-permutation matrix and hence the condition of Lemma 1 fails.

Let p be a prime. We consider the n-dimensional vector space \mathbb{F}_p^n over the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, consisting of all column vectors $(x_1, x_2, ..., x_n)^{\mathrm{T}}$ with components $x_i \in \mathbb{F}_p$. This space is endowed with the standard inner product defined by $\langle u, v \rangle = u^{\mathrm{T}}v$. Two vectors $u, v \in \mathbb{F}_p^n$ are called orthogonal, denoted by $u \perp v$, if $u^{\mathrm{T}}v = 0$. Similarly, two subspaces U and V are orthogonal, denoted by $U \perp V$, if $u \perp v$ for any $u \in U$ and $v \in V$. A nonzero vector $u \in \mathbb{F}_p^n$ is isotropic if $u \perp u$, i.e., $u^{\mathrm{T}}u = 0$. For a subspace V of \mathbb{F}_p^n , the orthogonal space of V is

$$V^{\perp} = \{ u \in \mathbb{F}_p^n : v^{\mathrm{T}} u = 0 \text{ for every } v \in V \}.$$

A subspace V of \mathbb{F}_p^n is totally isotropic [8] if $V \subset V^{\perp}$, i.e., every pair of vectors in V are orthogonal.

Let M be an $n \times n$ matrix over \mathbb{F}_p . We identify M with the linear transformation $x \mapsto Mx$ for $x \in \mathbb{F}_p^n$. A subspace V of \mathbb{F}_p^n is M-invariant if $Mx \in V$ for any $x \in V$.

Lemma 2 ([9]). Let $\chi(M;x) \in \mathbb{F}_p[x]$ be the characteristic polynomial of M and

$$\chi(M;x) = \phi_1^{r_1}(x)\phi_2^{r_2}(x)\cdots\phi_k^{r_k}(x),$$

be the standard factorization of $\chi(M;x)$. Let U be an M-invariant subspace and denote $V_i = \ker \phi_i^{r_i}(M), i = 1, \ldots, k$. Then

- (i) if $\phi_i(x)$ is a simple factor (i.e., $r_i = 1$), then $U \cap V_i = 0$;
- (ii) if $U \cap \ker \phi_i^{r_i}(M)$ is nonzero, then $U \cap \ker \phi_i(M)$ is also nonzero;
- (iii) $U = \bigoplus (U \cap V_i)$, where the summation is taken over all subscripts i satisfying $r_i \geq 2$.

Suppose that $Q \in \mathcal{Q}(\Sigma)$ such that $\ell := \ell(Q) > 1$. We define

$$\hat{Q} = \ell \cdot Q \in \mathbb{Z}^{n \times n}.$$

Let $M \in \mathbb{Z}^{n \times n}$ be an integer matrix and p be a fixed prime. We use $\operatorname{col}_p(M)$ and $\ker_p(M)$ to denote the column space and null space (or kernel), which are subspaces of \mathbb{F}_p^n .

Lemma 3 ([9]). For any prime factor p of $\ell(Q)$, the space $\operatorname{col}_p(\hat{Q})$ is nonzero, totally isotropic and A-invariant.

The following proposition is immediate from Lemmas 2 and 3.

Proposition 1. For any prime factor p of $\ell(Q)$, the characteristic polynomial $\chi(A;x)$ has a multiple factor $\phi(x)$ such that

$$\operatorname{col}(\hat{Q}) \cap \ker \phi(A) \neq 0, \ over \, \mathbb{F}_p.$$

Proposition 2 ([9]). Let p be an odd prime factor of $\ell(Q)$ and $\phi(x) \in \mathbb{Z}[x]$ satisfy the conclusion of Proposition 1. Then we have

$$p^{\deg \phi(x)+1} \mid \det \phi(A)$$
.

2.2 Resultant and discriminant

For a monic polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \in Z[x]$, the discriminant of f(x) is defined as:

$$\Delta(f) = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)^2,$$

where $\alpha_1, \ldots, \alpha_n$ are the roots of f(x) in \mathbb{C} . The resultant of f and its derivative f', denoted by $\operatorname{Res}(f, f')$, is the determinant of the $(2n-1) \times (2n-1)$ Sylvester matrix

$$S(f,f') = \begin{pmatrix} 1 & a_{n-1} & \cdots & \cdots & \cdots & a_0 \\ & 1 & a_{n-1} & \cdots & \cdots & \cdots & a_0 \\ & & \cdots & \cdots & \cdots & \cdots & a_0 \\ & & 1 & a_{n-1} & \cdots & \cdots & a_0 \\ & & 1 & a_{n-1} & \cdots & \cdots & a_0 \\ & & & n & (n-1)a_{n-1} & \cdots & a_1 \\ & & & \cdots & \cdots & \cdots & a_1 \\ & & & \cdots & \cdots & \cdots & \cdots \\ & & & & n & (n-1)a_{n-1} & \cdots & a_1 \end{pmatrix}. \quad (2)$$

It is known that $\Delta(f) = \pm \text{Res}(f, f')$ and hence $\Delta(f)$ is an integer.

Lemma 4 ([10]). Let p be a prime and $f(x) \in \mathbb{Z}[x]$ be a monic polynomial. Then f(x) has a multiple factor over \mathbb{F}_p if and only if $p|\Delta(f)$.

Let $M \in S_n(\mathbb{Z})$, we use Δ_M to denote $\Delta(\chi(M;x))$, the discriminant of $\chi(M;x)$. For two polynomial $f(x), g(x) \in \mathbb{Z}[x]$ and an integer q, we denote $f(x) \equiv g(x) \pmod{q}$ if all corresponding coefficients of f and g are congruent modulo q. The following three lemmas were obtained by Wang and Yu [4, Theorem 3.3, Lemma 4.3, and Lemma 4.4]):

Lemma 5 ([4]). Let $M \in S_n(\mathbb{Z})$ and Q be a rational orthogonal matrix such that $Q^TMQ \in S_n(\mathbb{Z})$. Then any prime factor of $\ell(Q)$ is a factor of Δ_M .

Lemma 6 ([4]). Let $M \in S_n(\mathbb{Z})$ and p be any odd prime. If $p \mid \Delta_M$ but $p^2 \nmid \Delta_M$, then there exists an integer λ_0 and a polynomial $\varphi(x)$ with integer coefficients such that $\chi(M;x) \equiv (x - \lambda_0)^2 \varphi(x) \pmod{p}$, where $\varphi(x)$ is squarefree over \mathbb{Z}_p and $\varphi(\lambda_0) \not\equiv 0 \pmod{p}$.

Lemma 7 ([4]). Let $M \in S_n(\mathbb{Z})$ and p be any odd prime. Suppose that $\chi(M;x) \equiv (x - \lambda_0)^2 \varphi(x) \pmod{p}$ for some $\lambda_0 \in \mathbb{Z}$ and $\varphi(x) \in \mathbb{Z}[x]$, where $\varphi(x)$ is squarefree over \mathbb{F}_p and $\varphi(\lambda_0) \not\equiv 0 \pmod{p}$. Then the equation

$$\chi(M; x)u(x) \equiv \chi'(M; x)v(x) \pmod{p^2}$$

has a solution $(u(x), v(x)) \in (\mathbb{Z}[x])^2$ with:

- (i) $u(x), v(x) \not\equiv 0 \pmod{p}$;
- (ii) $\deg(u(x)) < n 1 = \deg(\chi'(M; x));$
- (iii) $\deg(v(x)) < n = \deg(\chi(M; x)),$
- if and only if $p^2 \mid \det(M \lambda_0 I)$.

Remark 2. Under the assumption of this lemma, the truth of $p^2 \mid \det(M - \lambda_0 I)$ does not depend on the choice of λ_0 in its residue class, i.e., for any λ_1 and λ_2 such that $\lambda_1 \equiv \lambda_2 \equiv \lambda_0 \pmod{p}$, $p^2 \mid \det(M - \lambda_1 I)$ if and only if $p^2 \mid \det(M - \lambda_2 I)$. This can be easily seen from the conclusion of Lemma 7 since the existence of a solution (u, v) satisfying the given conditions clearly does not depend on the choice of λ_0 in its residue class.

Let M be a nonsingular $n \times n$ integer matrix. It is well-known that there exist two unimodular matrices U and V such that UMV is a diagonal matrix $S = \operatorname{diag}(d_1, d_2, \ldots, d_n)$, where the diagonal entries d_1, \ldots, d_n are positive integers with $d_i \mid d_{i+1}$ for $i = 1, 2, \ldots, n$. The matrix S is unique and is called the Smith normal form of M; the diagonal entries are called the invariant factor of M. We summarize some basic properties of a matrix using its invariant factors.

Lemma 8. Let p be any prime. For an integral matrix M with invariant factors d_1, d_2, \ldots, d_n . We have

- (i) $p^{n-\operatorname{rank}_p(M)} \mid \det M;$
- (ii) $\det(M) = \pm d_1 d_2 \dots d_n$;
- (iii) $\operatorname{rank}_{p} M = \max\{i : p \nmid d_{i}\};$
- (iv) $Mx \equiv 0 \pmod{p^2}$ has a solution $x \not\equiv 0 \pmod{p}$ if and only if $p^2 \mid d_n$.

Lemma 9. Let p be a prime and $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a monic polynomial over \mathbb{F}_p . Then $\deg \gcd(f, f') = \dim \ker S(f, f') = (2n-1) - \operatorname{rank}_p S(f, f')$.

Proof. Let

$$u(x) = u_0 x^{n-2} + u_1 x^{n-3} + \dots + u_0$$
, and $v(x) = v_{n-1} x^{n-1} + v_{n-2} x^{n-2} + \dots + v_0$.

We consider the equation

$$f(x)u(x) - f'(x)v(x) = 0 \text{ with variables } (u, v).$$
(3)

Let $g(x) = \frac{f(x)}{d(x)}$ and $h(x) = \frac{f'(x)}{d(x)}$ where $d(x) = \gcd(f(x), f'(x))$. Then the equation f(x)u(x) - f'(x)v(x) = 0 reduces to

$$g(x)u(x) = h(x)v(x). (4)$$

Noting that g(x) and h(x) are coprime, the solution (u,v) of Eq. (4) has the form (u,v) = (h(x)r(x), g(x)r(x)) for some $r(x) \in \mathbb{F}_p[x]$. Let $k = \deg d(x)$. To satisfy the restrictions of degrees of u(x) and v(x), we need (and only need) $\deg r(x) \leq k-1$. This means that the solution space of Eq. (4) (or equivalently Eq. (3)) has dimension k.

Write $\eta = (u_{n-2}, u_{n-3}, \dots, u_0, v_{n-1}, v_{n-2}, \dots, v_0)$ and S = S(f, f'). Then Eq. (3) is equivalent to $S^T \eta = 0$. This means that the solution subspace of Eq. (3) is isomorphic to $\ker S(f, f')$. It follows that $\dim \ker S(f, f') = k = \deg \gcd(f, f')$. This completes the proof.

Proposition 3. Let f(x) be a monic polynomial with integer coefficients. Then $\Delta(f) \not\equiv 2 \pmod{4}$.

Proof. Let $f(x) = \phi_1^{r_1}(x)\phi_2^{r_2}(x)\cdots\phi_k^{r_k}(x)$ be the standard factorization of f(x) over \mathbb{F}_2 . We claim that, over \mathbb{F}_2 ,

$$\gcd(f, f') = \phi_1^{s_1}(x)\phi_2^{s_2}(x)\cdots\phi_k^{s_k}(x),$$

where

$$s_i = \begin{cases} r_i & r_i \text{ even;} \\ r_i - 1 & r_i \text{ odd.} \end{cases}$$

Indeed, if some r_i , say r_1 is odd, then we have $r_1 \equiv 1 \pmod{2}$ and hence

$$f'(x) = \phi_1^{r_1 - 1}(x) \left(\prod_{j=2}^k \phi_j^{r_j}(x) \right) + \phi_1^{r_1}(x) \left(\prod_{j=2}^k \phi_j^{r_j}(x) \right)' \text{ over } \mathbb{F}_2,$$

which implies that the multiplicity of the factor $\phi_1(x)$ in f'(x) is exactly $r_1 - 1$. Thus, in this case, the multiplicity of $\phi_1(x)$ in $\gcd(f, f')$ is $r_1 - 1$. However, if r_1 is even, i.e., $r_1 \equiv 0 \pmod{2}$, then over \mathbb{F}_2 , we have $(\phi_1^{r_1}(x))' = 0$ and hence

$$f'(x) = \phi_1^{r_1}(x) \left(\prod_{j=2}^k \phi_j^{r_j}(x) \right)'$$
 over \mathbb{F}_2 ,

which implies that the multiplicity of $\phi_1(x)$ in gcd(f, f') is r_1 . This proves the claim. It follows that the degree of gcd(f, f') must be even as each multiplicity s_i is even.

Let $S \in \mathbb{Z}^{(2n-1)\times(2n-1)}$ be the Sylvester matrix of f and f'. Suppose to the contrary that $\Delta(f) \equiv 2 \pmod{4}$, or equivalently, $\det S \equiv 2 \pmod{4}$. Then, by Lemma (ii), we see that S has exactly one invariant factor that is even, that is, $\operatorname{rank}_2 S = 2n - 2$. But this implies $\deg \gcd(f, f') = 1$ by Lemma 9, contradicting the established fact that the degree of $\gcd(f, f')$ is always even. This completes the proof of Proposition 3.

3 Proof of Theorem 2

For convenience, we define

$$\delta = \delta(n) = \lceil n/2 \rceil - \lfloor n/2 \rfloor = \begin{cases} 0 & n \text{ even;} \\ 1 & n \text{ odd.} \end{cases}$$

Let Σ be an *n*-vertex controllable or almost controllable signed graph such that $c_{\delta} = \pm 1$, where c_{δ} is the coefficient of the term x^{δ} in $\chi(\Sigma; x)$. As Σ is bipartite, we may write the adjacency matrix $A = A(\Sigma)$ in the form

$$A = \begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix},$$

where B is an $s \times (n-s)$ matrix with $s \leq \lfloor n/2 \rfloor$. We claim that the equality must hold. Indeed, if $s < \lfloor n/2 \rfloor$ then we have $\operatorname{rank}(A) = 2\operatorname{rank}(B) \leq 2(\lfloor n/2 \rfloor - 1) \leq n-2$, which implies that 0 is a multiple eigenvalue of A. This contradicts the requirement that $c_{\delta} = \pm 1$.

Lemma 10.
$$\chi(A;x) = x^{\delta}\chi(BB^{T};x^{2}) = x^{-\delta}\chi(B^{T}B;x^{2}).$$

Proof. From the identity

$$\begin{pmatrix} xI_{\lfloor n/2\rfloor} & -B \\ -B^{\mathrm{T}} & xI_{\lceil n/2\rceil} \end{pmatrix} \begin{pmatrix} I_{\lfloor n/2\rfloor} & 0 \\ \frac{1}{x}B^{\mathrm{T}} & I_{\lceil n/2\rceil} \end{pmatrix} = \begin{pmatrix} xI_{\lfloor n/2\rfloor} - \frac{1}{x}BB^{\mathrm{T}} & -B \\ 0 & xI_{\lceil n/2\rceil} \end{pmatrix},$$

we obtain

$$\det\begin{pmatrix} xI_{\lfloor n/2\rfloor} & -B \\ -B^{\mathrm{T}} & xI_{\lceil n/2\rceil} \end{pmatrix} = \det\begin{pmatrix} xI_{\lfloor n/2\rfloor} - \frac{1}{x}BB^{\mathrm{T}} & -B \\ 0 & xI_{\lceil n/2\rceil} \end{pmatrix} = x^{-\lfloor n/2\rfloor} \det(x^2I - BB^{\mathrm{T}})x^{\lceil n/2\rceil},$$

i.e., $\chi(A;x) = x^{\delta}\chi(BB^{T};x^{2})$. Similarly, by the identity

$$\begin{pmatrix} xI_{\lfloor n/2\rfloor} & -B \\ -B^{\mathrm{T}} & xI_{\lceil n/2\rceil} \end{pmatrix} \begin{pmatrix} I_{\lfloor n/2\rfloor} & \frac{1}{x}B \\ 0 & I_{\lceil n/2\rceil} \end{pmatrix} = \begin{pmatrix} xI_{\lfloor n/2\rfloor} & 0 \\ -B^{\mathrm{T}} & xI_{\lceil n/2\rceil} - \frac{1}{x}B^{\mathrm{T}}B \end{pmatrix},$$

we obtain $\chi(A;x) = x^{-\delta}\chi(B^TB;x^2)$. This completes the proof.

The following basic connection between Δ_A and $\Delta_{BB^{\mathrm{T}}}$ was obtained by Ji et al. [7] for the case that n is even. We include the short proof for completeness.

Lemma 11 ([7]).
$$\Delta_A = 4^{\lfloor n/2 \rfloor} \Delta_{BB^{\mathrm{T}}}^2$$
 and hence $2^{-\lfloor n/2 \rfloor} \sqrt{\Delta_A} = \Delta_{BB^{\mathrm{T}}}$.

Proof. By Lemma 10, we have $\chi(A;x) = x^{\delta}\chi(BB^{\mathrm{T}};x^2)$. Denote $m = \lfloor n/2 \rfloor$ and let the spectrum of BB^{T} be $\mathrm{spec}(BB^{\mathrm{T}}) = \{\lambda_1^2, \ldots, \lambda_m^2\}$. Then we have

$$\operatorname{spec}(A) = \begin{cases} \{\lambda_1, \dots, \lambda_m\} \cup \{-\lambda_1, \dots, -\lambda_m\} & n \text{ even;} \\ \{\lambda_1, \dots, \lambda_m\} \cup \{-\lambda_1, \dots, -\lambda_m\} \cup \{0\} & n \text{ odd.} \end{cases}$$
 (5)

First consider the case that n is even. Then, we have

$$\Delta_{A} = \prod_{1 \leq i < j \leq m} (\lambda_{j} - \lambda_{i})^{2} \prod_{1 \leq i < j \leq m} (-\lambda_{j} + \lambda_{i})^{2} \prod_{\substack{1 \leq i \leq m \\ 1 \leq j \leq m}} (-\lambda_{j} - \lambda_{i})^{2}$$

$$= \left(\prod_{1 \leq i < j \leq m} (\lambda_{j} - \lambda_{i})^{2}\right)^{2} \left(\prod_{1 \leq i \leq m} (2\lambda_{i})^{2}\right) \left(\prod_{1 \leq i < j \leq m} (\lambda_{j} + \lambda_{i})\right)^{2}$$

$$= 4^{m} \prod_{1 \leq i \leq m} \lambda_{i}^{2} \left(\prod_{1 \leq i < j \leq m} (\lambda_{j}^{2} - \lambda_{i}^{2})^{2}\right)^{2}$$

$$= 4^{m} \det(BB^{T}) \Delta_{BB^{T}}^{2}. \tag{6}$$

Noting that $\det(BB^{\mathrm{T}}) = \pm \det A = \pm c_0 = \pm 1$ and $\det(BB^{\mathrm{T}}) = (\det(B))^2 \geq 0$, we must have $\det(BB^{\mathrm{T}}) = 1$ and hence Eq. (6) reduces to $\Delta_A = 4^m \Delta_{BB^{\mathrm{T}}}^2$. This proves the lemma for the even case.

Now we consider the case that n is odd. Denote $R = 4^m \det(BB^T) \Delta_{BB^T}^2$, which is the result of Δ_A for the even case. From Eq. (5), it is not difficult to see that for odd n,

$$\Delta_A = R \times \left(\prod_{1 \le i \le m} \lambda_i^2\right)^2 = 4^m \left(\det(BB^{\mathrm{T}})\right)^3 \Delta_{BB^{\mathrm{T}}}^2. \tag{7}$$

Recall that the coefficient of the linear term in $\chi(A;x)$ is ± 1 . Differentiating both sides of the equation $\chi(A;x) = x \cdot \chi(BB^{\mathrm{T}};x^2)$ and evaluating at x = 0 gives $\chi(BB^{\mathrm{T}};0) = \pm 1$, i.e., $\det(BB^{\mathrm{T}}) = \pm 1$. As BB^{T} is positive semidefinite, we must have $\det(BB)^{\mathrm{T}} \geq 0$ and hence $\det(BB^{\mathrm{T}}) = 1$. Thus, Eq. (7) also reduces to $\Delta_A = 4^m \Delta_{BB^{\mathrm{T}}}^2$. This completes the proof. \Box

Let Q be any matrix in $\mathcal{Q}(\Sigma)$. We shall prove Theorem 2 by establishing the following two propositions.

Proposition 4. If $\ell(Q)$ is even then so is $\Delta_{BB^{\mathrm{T}}}$.

Proposition 5. If p is an odd prime factor of $\ell(Q)$ then $p^2 \mid \Delta_{BB^T}$.

The proofs of these Propositions 4 and 5 will be presented in the following two subsections. It turns out that Theorem 2 is an easy consequence of these two propositions.

Proof of Theorem 2 Suppose that $2^{-\lfloor n/2\rfloor}\sqrt{\Delta_{\Sigma}}$ is squarefree. Let Q be any matrix in $Q(\Sigma)$. By Lemma 11, $\Delta_{BB^{\mathrm{T}}} = 2^{-\lfloor n/2\rfloor}\sqrt{\Delta_{\Sigma}}$ and hence is squarefree. In particular, $4 \nmid \Delta_{BB^{\mathrm{T}}}$, i.e., $\Delta_{BB^{\mathrm{T}}} \not\equiv 0 \pmod 4$. By Proposition 3, $\Delta_{BB^{\mathrm{T}}} \not\equiv 2 \pmod 4$. It follows that $\Delta_{BB^{\mathrm{T}}} \equiv 0, 1 \pmod 4$, i.e., $\Delta_{BB^{\mathrm{T}}}$ is odd. Proposition 4 implies that $\ell(Q)$ must be odd. Moreover, as $\Delta_{BB^{\mathrm{T}}}$ is squarefree, Proposition 5 implies that $\ell(Q)$ has no odd prime factor. Thus, $\ell(Q) = 1$ and hence Σ is DGS by Lemma 1. This completes the proof of Theorem 2.

Remark 3. As a byproduct of the proof of Theorem 2, we note that if Σ is almost controllable and satisfies the conditions of Theorem 2, then $\mathcal{Q}(\Sigma)$ contains only permutation matrix and hence Σ must have a nontrivial automorphism.

3.1 The case p = 2

The main aim of this subsection is to prove Proposition 4. We fix p=2 here, and for simplicity, we omit the subscript p for some notations. For example, col(M) means $col_2(M)$, which is a subspace of \mathbb{F}_2^n . Let $v \in \mathbb{Z}^n$ be an integer vector and V be a subspace of \mathbb{F}_2^n . By slight abuse of notation, we write $v \in V$ to mean that the reduction of v modulo 2 lies in V.

Lemma 12 ([6]). Suppose $Q \in \mathcal{Q}(\Sigma)$ with even level. Then for any integer vector $q \in \operatorname{col}(\hat{Q}) \subset \mathbb{F}_2^n$ and any nonnegative integer k, we have $q^T A^k q \equiv 0 \pmod{4}$.

In the following, we always assume $\ell(Q)$ is even. Thus, by Lemma 3 for p=2, we know that $\operatorname{col}(\hat{Q})$ is a nonzero and totally isotropic A-invariant subspace. It follows from Lemma 2 that the characteristic polynomial $\chi(A;x) \in \mathbb{F}_2[x]$ has a multiple factor $\phi(x)$ such that

$$\operatorname{col}(\hat{Q}) \cap \ker \phi(A) \neq 0.$$

We shall show that $\phi(x)$ is also a multiple factor of $\chi(BB^{\mathrm{T}};x)$, which clearly completes the Proposition 4 by Lemma 15. We first show that $\phi(x)$ is indeed a factor of $\chi(BB^{\mathrm{T}};x)$.

Lemma 13. $\phi(x) \mid \chi(BB^{\mathrm{T}}; x) \text{ and } \phi(0) = 1 \text{ over } \mathbb{F}_2.$

Proof. Since we are working over \mathbb{F}_2 , we have $f(x^2) = f^2(x)$ when f is a polynomial. Thus, the first equality in Lemma 10 becomes $\chi(A;x) = x^{\delta}(\chi(BB^T;x))^2$. Noting that $\delta \leq 1$ and $\phi(x)$ is a multiple factor of $\chi(A;x)$, we must have $\phi(x) \mid \chi(BB^T;x)$. It remains to show that $\phi(0) = 1$. Suppose to the contrary that $\phi(0) = 0$. Since $\phi(x)$ is a multiple factor of $\chi(A;x)$ (over \mathbb{F}_2), we see that the coefficients of the constant term and the linear term in $\chi(A;x)$ are both 0 over \mathbb{F}_2 , i.e., both are even as ordinary integers. But this contradicts the requirement that $c_{\delta} = \pm 1$. Thus, $\phi(0) = 1$ and the proof is complete.

Lemma 14. There exist two vectors $u \in \mathbb{F}_2^{\lfloor n/2 \rfloor}$ and $v \in \mathbb{F}_2^{\lceil n/2 \rceil}$ such that $Bv \neq 0$ and $\begin{pmatrix} u \\ v \end{pmatrix} \in \operatorname{col}(\hat{Q}) \cap \ker \phi(A)$.

Proof. Let $q = (q_1, \ldots, q_n)^{\mathrm{T}} \in \mathbb{F}_2^n$ be any nonzero vector in $\operatorname{col}(\hat{Q}) \cap \ker \phi(A)$. Denote $u = (q_1, q_2, \ldots, q_{\lfloor n/2 \rfloor})^{\mathrm{T}}$ and $v = (q_{\lfloor n/2 \rfloor + 1}, \ldots, q_{n-1}, q_n)^{\mathrm{T}}$.

Claim 1: $Aq \in col(\hat{Q}) \cap \ker \phi(A)$ and $Aq \neq 0$.

The first assertion should be clear as both $\operatorname{col}(Q)$ and $\ker \phi(A)$ are A-invariant. It remains to show $Aq \neq 0$. Suppose to the contrary that Aq = 0. Then we have $\phi(A)q = \phi(0)q$. By Lemma 13, we have $\phi(0)q = q$ and hence is nonzero. But clearly, $\phi(A)q = 0$. This is a contradiction and hence Claim 1 follows.

Claim 2: If u = 0 then $Bv \neq 0$.

As
$$A = \begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix}$$
 and $q = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ v \end{pmatrix}$, we see that $Aq = \begin{pmatrix} Bv \\ 0 \end{pmatrix}$. Thus, by Claim 1, $Bv \neq 0$ and hence Claim 2 follows.

By Claim 2, to complete the proof of Lemma 14, it suffices to consider the case that $u \neq 0$ and Bv = 0 hold simultaneously. Now let $\tilde{q} = Aq$ and let $\tilde{u} \in \mathbb{F}_2^{\lfloor n/2 \rfloor}$ and $\tilde{v} \in \mathbb{F}_2^{\lceil n/2 \rceil}$

such that $\tilde{q} = \begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix}$. Then we have

$$\begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix} = \begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} Bv \\ B^{\mathrm{T}}u \end{pmatrix} = \begin{pmatrix} 0 \\ B^{\mathrm{T}}u \end{pmatrix}.$$

Now we show that \tilde{u} (which is 0) and \tilde{v} satisfy all requirements of Lemma 14. By Claim 1, we know that \tilde{q} is a nonzero vector in $\operatorname{col}(\hat{Q}) \cap \ker \phi(A)$. Consequently, using Claim 2 for the vector $\tilde{q} = \begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix} = \begin{pmatrix} 0 \\ \tilde{v} \end{pmatrix}$, we obtain that $B\tilde{v} \neq 0$. This completes the proof of Lemma 14.

Lemma 15. $\phi^2(x) \mid \chi(BB^T; x) \text{ over } \mathbb{F}_2$.

Proof. Suppose to the contrary that $\phi^2(x) \nmid \chi(BB^T; x)$. Then Lemma 13 implies that $\phi(x)$ is a simple factor of $\chi(BB^T; x)$. According to Lemma 14, there exists a vector $q = \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{Z}^n$ such that $Bv \not\equiv 0 \pmod{2}$ and the reduction of q over \mathbb{F}_2 lies in $\operatorname{col}(\hat{Q}) \cap \ker \phi(A)$.

Claim 1: $u, Bv \in \ker \phi(BB^{T})$, i.e., $\phi(BB^{T})u \equiv \phi(BB^{T})Bv \equiv 0 \pmod{2}$.

Since $f(x^2) \equiv f^2(x) \pmod{2}$ for any $f \in \mathbb{Z}[x]$, we have

$$\phi(A^2) \begin{pmatrix} u \\ v \end{pmatrix} \equiv \phi(A)\phi(A) \begin{pmatrix} u \\ v \end{pmatrix} \equiv 0 \pmod{2}.$$

On the other hand, noting that $A^2 = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}^2 = \begin{pmatrix} BB^T & 0 \\ 0 & B^TB \end{pmatrix}$, we obtain

$$\phi(A^2) \begin{pmatrix} u \\ v \end{pmatrix} \equiv \begin{pmatrix} \phi(BB^{\mathrm{T}}) & 0 \\ 0 & \phi(B^{\mathrm{T}}B) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \equiv \begin{pmatrix} \phi(BB^{\mathrm{T}})u \\ \phi(B^{\mathrm{T}}B)v \end{pmatrix} \pmod{2}.$$

It follows that $\phi(BB^{\mathrm{T}})u \equiv 0 \pmod{2}$.

Note that $\begin{pmatrix} Bv \\ B^{\mathrm{T}}u \end{pmatrix} = \begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = Aq \in \ker \phi(A)$. The same argument indicates that $\phi(BB^{\mathrm{T}})(Bv) \equiv 0 \pmod{2}$. Claim 1 follows.

Since the irreducible polynomial $\phi(x)$ is a simple factor of $\chi(BB^T; x)$, we see that $\dim \ker \phi(A) = \deg \phi(x)$ and $\ker \phi(A)$ is a cyclic subspace generated by any nonzero vector in it. Let $d = \deg \phi(x)$. Note that $Bv \neq 0$. Then it follows from Claim 1 that (over \mathbb{F}_2)

$$\ker \phi(BB^{\mathrm{T}}) = \operatorname{span}\{Bv, (BB^{\mathrm{T}})Bv, \dots, (BB^{\mathrm{T}})^{d-1}Bv\}$$
 (8)

and

$$\ker \phi(BB^{T}) = \operatorname{span}\{u, (BB^{T})u, \dots, (BB^{T})^{d-1}u\} \text{ when } u \neq 0.$$
 (9)

Claim 2: $\ker \phi(BB^{\mathrm{T}})$ is totally isotropic.

We first consider the case that $u \equiv 0 \pmod{2}$. As $\binom{0}{v} \in \operatorname{col}(\hat{Q})$, Lemma 12 implies that, for any $k \geq 0$,

$$(0^{\mathrm{T}}, v^{\mathrm{T}}) \begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix}^{2k} \begin{pmatrix} 0 \\ v \end{pmatrix} \equiv 0 \pmod{4}, \text{ i.e., } v^{\mathrm{T}} (B^{\mathrm{T}} B)^k v \equiv 0 \pmod{4}. \tag{10}$$

Note that $Bv, (BB^{T})Bv, \ldots, (BB^{T})$ constitute a basis of ker $\phi(BB^{T})$. To show that ker $\phi(BB^{T})$ is totally isotropic, it suffices to show that any two vectors α and β in the basis, say $\alpha = (BB^{T})^{i}Bv$ and $\beta = (BB^{T})^{j}Bv$, are orthogonal over \mathbb{F}_{2} . Direct computation shows that

$$\alpha^{T}\beta = ((BB^{T})^{i}Bv)^{T}(BB^{T})^{j}Bv) = v^{T}(B^{T}B)^{i+j+1}v.$$

Thus, by Eq. (10), we have $\alpha^{T}\beta \equiv 0 \pmod{4}$, which clearly implies $\alpha^{T}\beta \equiv 0 \pmod{2}$, or equivalently, $\alpha \perp \beta$ over \mathbb{F}_2 . This proves Claim 2 for the case that $u \equiv 0 \pmod{2}$.

Now assume $u \not\equiv 0 \pmod{2}$. By Eqs. (8) and (9), it suffice to show that

$$(BB^{\mathrm{T}})^{i}u \perp (BB^{\mathrm{T}})^{j}Bv$$
, over \mathbb{F}_{2} , for any $i, j \geq 0$. (11)

As $\binom{u}{v} \in \operatorname{col}(\hat{Q})$, Lemma 12 implies that, for any $k \geq 0$,

$$(u^{\mathsf{T}}, v^{\mathsf{T}}) \begin{pmatrix} 0 & B \\ B^{\mathsf{T}} & 0 \end{pmatrix}^{2k+1} \begin{pmatrix} u \\ v \end{pmatrix} = (u^{\mathsf{T}}, v^{\mathsf{T}}) \begin{pmatrix} (BB^{\mathsf{T}})^k & 0 \\ 0 & (B^{\mathsf{T}}B)^k \end{pmatrix} \begin{pmatrix} Bv \\ B^{\mathsf{T}}u \end{pmatrix} \equiv 0 \pmod{4},$$

i.e., $u^{\mathrm{T}}(BB^{\mathrm{T}})^k B v + v^{\mathrm{T}}(B^{\mathrm{T}}B)^k B^{\mathrm{T}}u \equiv 0 \pmod{4}$. Since the two additive terms on the left-hand side are equal (as can be seen by taking the transpose of one term), we obtain $u^{\mathrm{T}}(BB^{\mathrm{T}})^k B v \equiv 0 \pmod{2}$. Taking k = i + j, it follows that

$$((BB^{T})^{i}u)^{T}(BB^{T})^{j}Bv = u^{T}(BB^{T})^{i+j}Bv \equiv 0 \pmod{2},$$

that is, Eq. (11) holds. This completes the proof of Claim 2.

Let $M = BB^{\mathrm{T}}$ and $U = \ker \phi(M)$. Clearly U is M-invariant. By Claim 2, U is totally isotropic. As $\phi(x)$ is a simple factor of $\chi(M;x)$, we find that $U \cap \ker \phi(M) = 0$ by Lemma 2. This is a contradiction as $U = \ker \phi(M)$ and is nonzero. The proof of Lemma 15 is complete.

Proof of Proposition 4 Let $f = \chi(BB^{\mathrm{T}}; x) \in \mathbb{F}_2[x]$. We know from Lemma 15, that $\phi(x)$ is a multiple factor of f(x) over \mathbb{F}_2 . Thus, Lemma 4 implies that $2 \mid \Delta(f)$, completing the proof.

3.2 The case p is odd

The main aim of this subsection is to prove Proposition 5 by contradiction.

Proof of Proposition 5 Suppose to the contrary that there exists an odd prime p such that $p \mid \ell(Q)$ but $p^2 \nmid \Delta_{BB^{\mathrm{T}}}$. Then by Lemma 5, we have $p \mid \Delta_A$. On the other hand, we know from Lemma 11 that $\Delta_A = 4^{\lfloor n/2 \rfloor} \Delta_{BB^{\mathrm{T}}}^2$. Thus, $p \mid \Delta_{BB^{\mathrm{T}}}$ as p is an odd prime. It follows from Lemma 6 that there exists an integer λ_0 and a polynomial $\phi(x)$ such that $\chi(BB^{\mathrm{T}};x) = (x-\lambda_0)^2 \varphi(x)$ over \mathbb{F}_p . Noting that $\chi(A;x) = x^{\delta} \chi(BB^{\mathrm{T}};x^2)$ by Lemma 10, we obtain $\chi(A;x) = x^{\delta}(x^2 - \lambda_0)^2 \varphi(x^2)$. Denote $\psi(x) = x^{\delta} \varphi(x^2)$. Then we can write

$$\chi(A;x) = (x^2 - \lambda_0)^2 \psi(x) \text{ over } \mathbb{F}_p.$$
(12)

Since the constant term or linear coefficient of $\chi(A; x)$ is ± 1 (and hence nonzero modulo p), we find from Eq. (12) that $\lambda_0 \not\equiv 0 \pmod{p}$. Let S be the Sylvester matrix of $\chi(A; x)$ and

its derivative $\chi'(A; x)$. Noting that $p^2 \nmid \Delta_{BB^{\mathrm{T}}}$ and $\Delta_A = 4^{\lfloor n/2 \rfloor} \Delta_{BB^{\mathrm{T}}}^2$, we obtain $p^3 \nmid \Delta_A$, or equivalently, $p^3 \nmid \det S$. It follows from Lemma 8 that dim ker $S \leq 2$ over \mathbb{F}_p . Consequently, by Lemma 9, we obtain

$$\deg \gcd(\chi(A; x), \chi'(A; x)) = \dim \ker S \le 2.$$

Therefore, we see from Eq. (12) that $\psi(x)$ is squarefree and coprime to $(x^2 - \lambda_0)$, since otherwise the polynomial $\gcd(\chi(A;x),\chi'(A;x))$ would have degree at least 3, a contradiction.

Claim: $p^2 \mid \det(\lambda_0 I - BB^{\mathrm{T}})$.

We prove the Claim by considering two cases:

Case 1: $x^2 - \lambda_0$ is irreducible over \mathbb{F}_p .

As $A^2 = \operatorname{diag}(BB^{\mathrm{T}}, B^{\mathrm{T}}B)$, we find that $\chi(A^2; x) = \chi(BB^{\mathrm{T}}; x)\chi(B^{\mathrm{T}}B; x)$ and hence

$$\chi(A^2; \lambda_0) = \chi(BB^{\mathrm{T}}; \lambda_0) \chi(B^{\mathrm{T}}B; \lambda_0). \tag{13}$$

By Lemma 10, we have $\chi(B^{\mathrm{T}}B;x^2) = (x^2)^{\delta}\chi(BB^{\mathrm{T}};x^2)$, i.e., $\chi(B^{\mathrm{T}}B;x) = x^{\delta}\chi(BB^{\mathrm{T}};x)$. Taking $x = \lambda_0$, we obtain $\chi(B^{\mathrm{T}}B;\lambda_0) = \lambda_0^{\delta}\chi(BB^{\mathrm{T}};\lambda_0)$. Noting that $\lambda_0 \neq 0 \pmod{p}$, we find that, for any $k \geq 1$,

$$p^k \mid \chi(BB^{\mathrm{T}}; \lambda_0) \text{ if and only if } p^k \mid \chi(B^{\mathrm{T}}B; \lambda_0).$$
 (14)

On the other hand, since $\psi(x)$ is squarefree coprime to $x^2 - \lambda_0$, we see that $\phi(x) = (x^2 - \lambda_0)$ is the only multiple factor of $\chi(A; x)$. It follows from Proposition 2 that $p^3 \mid \det \phi(A)$, i.e., $p^3 \mid \chi(A^2; \lambda_0)$. This, combining with Eq. (13) and Eq. (14) for k = 2, leads to $p^2 \mid \chi(BB^T; \lambda_0)$. Case 2: $x^2 - \lambda_0$ is reducible over \mathbb{F}_p , i.e., $x^2 - \lambda_0 \equiv (x - \lambda_1)(x + \lambda_1) \pmod{p}$ for some $\lambda_1 \in \mathbb{Z}$.

According to Remark 2, the truth of the Claim does not dependent on the choice of λ_0 in its residue class modulo p. Consequently, since $\lambda_0 \equiv \lambda_1^2 \pmod{p}$, we may safely assume $\lambda_0 = \lambda_1^2$. It follows from Lemma 10 that

$$\chi(A; \lambda_1) = \lambda_1^{\delta} \chi(BB^{\mathrm{T}}; \lambda_0) \text{ and } \chi(A; -\lambda_1) = (-\lambda_1)^{\delta} \chi(BB^{\mathrm{T}}; \lambda_0).$$
 (15)

As $\lambda_0 \not\equiv 0 \pmod{p}$, we see that $\lambda_1 \not\equiv 0 \pmod{p}$. Note that $\chi(A;x)$ has exactly two multiple factors $\phi_1(x) = x - \lambda_1$ and $\phi_2(x) = x + \lambda_1$. It follows from Proposition 2 that $p^2 \mid \det \phi_1(A)$ or $p^2 \mid \det \phi_2(A)$. Nevertheless, either implies $p^2 \mid \chi(BB^T; \lambda_0)$ according to Eq. (15).

This proves the Claim. By Lemma 7, the equation

$$\chi(BB^{\mathrm{T}};x)u(x) \equiv \chi(BB^{\mathrm{T}};x)'v(x) \pmod{p^2}$$

has a solution $(u(x), v(x)) \in (\mathbb{Z}[x])^2$ satisfying:

$$u(x),v(x)\not\equiv 0\pmod p,\ \deg(u(x))<\lfloor n/2\rfloor-1,\ \mathrm{and}\ \deg(v)<\lfloor n/2\rfloor.$$

Let S be the Sylvester matrix of $\chi(BB^{\mathrm{T}};x)$ and its derivative $\chi'(BB^{\mathrm{T}};x)$. Using a similar argument as in the proof of Lemma 9, the existence of a solution (u,v) described above means that the linear equations $S^{\mathrm{T}}\eta \equiv 0 \pmod{p^2}$ has a solution $\eta \not\equiv 0 \pmod{p}$.

On the other hand, as $p^2 \nmid \Delta_{BB^T}$ and $\Delta_{BB^T} = \pm \det S^T$, we have $p^2 \nmid \det S^T$. Consequently, $p^2 \nmid d_n$, where d_n denotes the last invariant of S^T . This contradicts Lemma 8 (iv) and hence completes the proof of Proposition 5.

4 Examples

In this section, we present some examples to illustrate Theorem 2. All computations were performed using Wolfram Mathematica.

Example 1: Let n = 13 and Σ be the signed bipartite graph with adjacency matrix as follows:

We obtain the factorization of $\chi(A;x)$ over \mathbb{Q} :

$$-x\left(x^{12}-24x^{10}+194x^8-679x^6+1022x^4-496x^2+1\right)$$

along with

$$\det W(\Sigma) = 2^6 \times 11^3 \times 3413 \times 697913,$$

and

$$2^{-n/2}\sqrt{\Delta_{\Sigma}} = 107 \times 15259 \times 12978894869.$$

By Theorem 2, we conclude that Σ is DGS.

Example 2: Let n = 14 and Σ be the controllable signed bipartite graph with adjacency matrix as follows:

The characteristic polynomial $\chi(A;x)$ factors over \mathbb{Q} as:

$$(x^7 - x^6 - 6x^5 + 4x^4 + 9x^3 - 4x^2 - 3x + 1)(x^7 + x^6 - 6x^5 - 4x^4 + 9x^3 + 4x^2 - 3x - 1),$$

with det $W(\Sigma) = 2^{14}$ and $2^{-n/2}\sqrt{\Delta_{\Sigma}} = 17 \times 23 \times 64879$. We observe that this case does not satisfy the conditions of Theorem 1. However, by Theorem 2, we conclude that Σ is DGS.

Example 3: Let n=14 and Σ be the almost controllable signed bipartite graph with adjacency matrix as follows:

The characteristic polynomial $\chi(A;x)$ factors over \mathbb{Q} as:

$$(x-1)(x+1)(x^{12}-15x^{10}+75x^8-151x^6+111x^4-23x^2+1)$$

with rank $W(\Sigma)=13$ and $2^{-n/2}\sqrt{\Delta_{\Sigma}}=13\times 45953\times 106501$. By Theorem 2, we conclude that Σ is DGS.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant No. 12001006) and Wuhu Science and Technology Project, China (Grant No. 2024kj015).

References

- [1] C. D. Godsil, Controllable subsets in graphs, Ann. Comb. 16 (2012) 733–744.
- [2] C. R. Johnson, M. Newman, A note on cospectral graphs, J. Combin. Theory, Ser. B, 28 (1980) 96–103.
- [3] W. Wang, C.-X. Xu, A sufficient condition for a family of graphs being determined by their generalized spectra, European J. Combin. 27 (6) (2006) 826–840.
- [4] W. Wang, T. Yu, Square-free discriminants of matrices and the generalized spectral characterizations of graphs, arXiv:1608.01144.
- [5] W. Wang, A simple arithmetic criterion for graphs being determined by their generalized spectra, J. Combin. Theory, Ser. B, 122 (2017) 438–451.
- [6] W. Wang, Generalized spectral characterization revisited, Electron. J. Combin. 20 (2013) #P4.
- [7] Y. Ji, W. Wang, H. Zhang, Generalized spectral characterization of signed trees, Electron. J. Combin. 32 (2025), #P2.18.
- [8] P. L. Babai, P. Frankl, Linear Algebra Methods in Combinatorics, Version 2.2, Department of Computer Science, University of Chicago, 2022.
- [9] S. Guo, W. Wang, W. Wang, Primary decomposition theorem and generalized spectral characterization of graphs, arXiv:2504.12932.
- [10] S. Lang, Algebra, Springer-Verlag, New York, 2002.
- [11] W. Wang, F. Liu, W. Wang, Generalized spectral characterizations of almost controllable graphs, European J. Combin. 96 (2021) 103348.