一般社団法人 軽金属学会 第124回春期大会プログラム

期:2013年5月18日(土)~19日(日)

大会会場:富山大学 五福キャンパス 共通教育棟,黒田講堂

懇親会会場:ホテルグランテラス富山(旧 名鉄トヤマホテル)(JR富山駅正面出口(南口)から徒歩5分)

講演セッション・行事一覧

講演会場での発表者の許可を 得ない撮影はご遠慮下さい。

第1日目:2013年5月18日(土)

会場	第	1会場	角	92会場	穿	第3会場	第	94会場			第5会場		第6会場		第7会場	3
時間		C13		C12		D11		C21			A21		D21		B21	
9:00 ~ 10:20				腐食& 面改質1	マグネシウム1		組織制御1		紅	且織制御7		がまび塑性 エプロセス		复合材料 発泡材料		
	座長 講演	上谷保裕 1 ~ 4	座長 講演	境 昌宏 25 ~ 28	座長 講演	渡邊千尋 49 ~ 52	座長 講演		74	座長 講演	竹田真帆人 97 ~ 100	座長 講演	鈴木真由美 123 ~ 126	座長 講演	久保田 147 ~	
10:20 ~ 10:30								休	憩							
10:30 ~ 11:50		状付与 n工2		腐食& 面改質2	マグ	゚ネシウム2	組	織制御	2	絍	1織制御8	J	7学特性1		复合材料 発泡材料	
10.00	座長 講演	田中宏和 5 ~ 8	座長 講演	大谷良行 29 ~ 32	座長 講演	廣澤渉一 53 ~ 56	座長 講演	高木身 75 ~		座長 講演	三浦博己 101 ~ 104	座長 講演	一谷幸司 127 ~ 130	座長 講演	小橋 151 ~	
11:50 ~ 12:40						星	食 /	女性会	員 の	会(A2	23)					
12:40 ~ 14:10						ポスターも	ヹ゚゚ゕゔ ョ	ン(共通	敎	う棟 ノ	入口,廊下)					
14:10 ~ 14:20								休	憩							
14:20 ~ 15:30					7	定時総会·돼	里事会	·表彰:	忧(黒	田講의	堂 大ホール)					
15:30 ~ 15:40								休	憩							
15:40 ~ 16:30		軽金属学会賞受賞講演「アルミと共に」 北陸職業能力開発大学校校長 富山大学名誉教授 池野 進 君(黒田講堂 大ホール)														
16:30 ~ 16:40								休	憩							
16:40 ~ 17:30		市民フォーラム「現代医療は何処にむかうのか?」 富山大学長 遠藤 俊郎 氏(黒田講堂 大ホール)														
17:30 ~ 18:00								移	<u></u> 助							
18:00 ~ 20:00								懇親	会							

第2日目:2013年5月19日(日)

会場	第1会場	第2会場	第3会場	第4会場	第5会場	第6会場	第7会場
時間	C13	C12	D11	C21	A21	D21	B21
9:00 ~ 10:20	形状付与 加工3	腐食& 表面改質3	マグネシウム3	組織制御3	組織制御9	力学特性2	テーマセッション2 アルミニウム合金の 加工限界への 挑戦 1
	座長 高山善匡	座長 阿相英孝	座長 千野靖正	座長 江戸正和	座長 吉原伸二	座長 山田浩之	座長 宇都宮裕
	講演 9 ~ 12	講演 33 ~ 36	講演 57 ~ 60		講演 105 ~ 108	講演 131 ~ 134	講演 155 ~ 158
10:20 ~ 10:30				休憩		T	
10:30 ~ 12:10	分析·測定/ 溶解·凝固· 鋳造1	チタン1	マグネシウム4	組織制御4	テーマセッション1 材料組織における 不均質性の制御と 高機能軽金属材料 の創製1	力学特性3	テーマセッション2 アルミニウム合金の 加工限界への 挑戦 2
	座長 坂口信人		座長 山崎倫昭	座長 安藤 誠	座長 柴柳敏哉	座長 戸田裕之	座長 大津雅亮
	講演 13 ~ 17	講演 37 ~ 41	講演 61 ~ 65			講演 135 ~ 139	講演 159 ~ 163
12:10 ~ 13:00				昼食 / 若手の会		T	
13:00 ~ 14:40	溶解·凝固· 鋳造2	チタン2	マグネシウム5	組織制御5	テーマセッション1 材料組織における 不均質性の制御と 高機能軽金属材料 の創製2	力学特性4	テーマセッション2 アルミニウム合金の 加工限界への 挑戦 3(~13:40)
	座長 西田進一	座長 上田恭介	座長 糸井貴臣	座長 井 誠一郎	座長 藤井英俊	座長 小椋 智	座長 飯塚高志
	講演 18 ~ 22					講演 140 ~ 144	講演 164 ~ 165
14:40 ~ 14:50				休憩			
14:50 ~ 16:10	溶解·凝固· 鋳造3 (~15:30)	チタン3 (~15:30)		組織制御6	粉末冶金	力学特性5 (~15:30)	
D#A /-	講演 23 ~ 24	座長 仲井正昭 講演 47 ~ 48			座長 久米裕二 講演 119 ~ 122 国独纲类体 富山制	座長 浅野峰生 講演 145 ~ 146	

見学会(5月17日(金)12:30~17:30)三協立山㈱三協アルミ社射水工場,日本高周波鋼業㈱富山製造所,富山新港周辺の観光スポット機器・カタログ展示(5月18日(土),19日(日)) 黒田講堂1F会議室 北陸支部幹事企業による企画展示(5月18日(土),19日(日)) 黒田講堂1F会議室

	第1日目 2013年5月18日(土)						
	第1会場(C13)	第2会場(C12)	第3会場(D11)	第4会場(C21)			
	形状付与加工1	腐食&表面改質1	マグネシウム1	組織制御1			
	上谷保裕(富山県立大)	境 昌宏(室蘭工業大)	渡邊千尋(金沢大)	芹澤 愛(大阪大)			
	1 Al合金への摩擦摩耗による摩耗変質層の形成機構/名古屋工大 ○(学)金子祐也, 佐藤 尚, 渡辺義見	25 プレコートフィン材の親水持続性に及ぼす下 地皮膜の影響/ 神戸製鋼 ○館山慶太, 太田陽介, 豊田祐介	49 NaCl水溶液中におけるMg-13%Li合金の腐 食特性に及ぼすAl添加の影響/ 都立産技 高専 ○松澤和夫, (学)野本朝輝, 富山 高専 井上 誠	71 一定のMg+Si濃度をもつAl-Mg-Si合金の低温時効でのナノクラスタ形成に及ぼすMg/Si比の影響/東工大○(院)金聖寧,手塚裕康,小林郁夫,里達雄			
9:00~ 10:20	2 フラックスレスろう付の接合状態に及ぼす雰囲気ガス種の影響/ 三菱アルミ ○三宅秀幸, 江戸正和, 大陽日酸 野村祐司, 天野宏紀	26 下地表面処理によるシリカ親水層の粗面化 への影響/ 神戸製鋼 ○太田陽介, 館 山慶太, 豊田祐介	50 ショトピーニングしたAZ31Mg合金の亀裂 進展挙動/ 千葉工大 ○船見国男, 野 田雅史	72 3次元アトムプローブを用いたAI-Mg-Si系合金の2段時効処理材のクラスタ解析/ 神戸製鋼 ○有賀康博, 高木康夫, コベルコ科研 常石英雅, 小塚雅也, 東工大 里達雄			
	3 アルミニウムのろうの流動におよぼす継手形状の影響/ 住友軽金属 ○田中宏和, デンソー 伊藤智弘	27 酢酸の孔食抑制効果に及ぼすpHの影響/ 古河スカイ ○大谷良行, 兒島洋一	51 Mg-Al-Ca系合金の鋳造割れ性におよぼす 凝固挙動の影響/ 富山大 ○(院)丹羽浩 成, 才川清二, 寺山清志, 北陸職能開 大 池野 進	73 Al-Mg-Si系合金の機械的性質におよぼす 室温時効および予備時効の影響/ 神戸製 鋼 ○高木康夫, 有賀康博, 東工大 里 達雄			
	4 Al-Si系合金ろうの流動係数に及ぼすろう材 Si粒径の影響/ 住友軽金属 ○田中寿 和, 田中宏和	28 アルミニウム合金の定露点型サイクル腐食 試験における付着塩の影響/ 古河スカイ ○島田隆登志, 大谷良行, 本川幸翁, 兒島洋一	52 金型鋳造したMg-10~14%AI系合金の時効 硬化に及ぼす溶質量の影響/ 富山大 ○ (院)佐々木涼太, (院)南 和希, 才川清 二, 寺山清志, 北陸職能開大 池野 進, アーレスティ 武田 秀	74 Al-Mg-Si系合金のベークハード性に及ぼす 予備時効の昇温速度とその前後の自然時 効の影響/ 神戸製鋼 ○宍戸久郎, 松 本克史, 有賀康博			
	## A H (040)	休憩(10:20		**** 4 人担 (204)			
	第1会場(C13)	第2会場(C12)	第3会場(D11)	第4会場(C21)			
	形状付与加工2	腐食&表面改質2	マグネシウム2	組織制御2			
	田中宏和(住友軽金属)	大谷良行(古河スカイ)	廣澤渉一(横浜国立大)	高木康夫(神戸製鋼)			
	5 パルスYAGレーザによる純チタンとオーステ ナイト系ステンレス鋼の異材溶接性/ 日本	29 食塩水溶液中のAl-Cuガルバニック対の分類の場合の解析 / 宮藤工士 世刊修	53 AM90マグネシウム合金のT5熱処理におけ	75 473K時効したAg/Cuを含むAl-Mg2Si合金に おける時効知識のTEM知察 / 富山士 〇			
	ナイト系ステンレス鋼の異材溶接性/ 日本 大 ○(学)泉秀太朗, 朝比奈敏勝, 加藤 数良	極曲線とその解析/ 室蘭工大 世利修 美, ○(学)村上 大	る析出挙動/ 富山大 ○(院)星野良太, 才川清二, 寺山清志, 北陸職能開大 池 野 進, 石川工試 藤井 要, アーレス	おける時効組織のTEM観察/ 富山大 ○ (院)大江喜久, 東北大 中村純也, 北陸 職能大 池野 進, 富山大 松田健二			

	第1会場(C13)	第2会場(C12)	第3会場(D11)	第4会場(C21)
	形状付与加工2	腐食&表面改質2	マグネシウム2	組織制御2
	田中宏和(住友軽金属)	大谷良行(古河スカイ)	廣澤渉一(横浜国立大)	高木康夫(神戸製鋼)
	5 パルスYAGレーザによる純チタンとオーステナイト系ステンレス鋼の異材溶接性/ 日本大 ○(学)泉秀太朗, 朝比奈敏勝, 加藤数良	29 食塩水溶液中のAl-Cuガルバニック対の分極曲線とその解析/ 室蘭工大 世利修 美, ○(学)村上 大	53 AM90マグネシウム合金のT5熱処理における析出挙動/ 富山大 ○(院)星野良太, 才川清二, 寺山清志, 北陸職能開大 池 野 進, 石川工試 藤井 要, アーレス ティ 武田 秀	75 473K時効したAg/Cuを含むAl-Mg2Si合金に おける時効組織のTEM観察/ 富山大 ○ (院)大江喜久, 東北大 中村純也, 北陸 職能大 池野 進, 富山大 松田健二
10:30 <u>~</u> 11:50	±	30 純アルミニウム1050とCFRPとのガルバニック 腐食に及ぼす硫酸陽極酸化処理の影響/ 室蘭工大 ○境 昌宏, (学)坂本千波, (院)和田拓也	54 砂型鋳造したMg-Al系マグネシウム合金の 不連続析出に及ぼす時効温度の影響/ 富山大 ○(院)白谷将宏, (院)南 和希, 富山大 才川清二, 寺山清志, 北陸職能 開大 池野 進	76 673Kで時効したCu/Ag添加Al-Mg-Si合金における析出物の観察/ 富山大 ○(院)肥田慎太郎, (院)渡辺克己, 北陸能職大池野 進, 富山大 松田健二
	75052アルミニウム合金薄板を用いた突合せ 摩擦シーム接合継手の機械的性質に及ぼ す工具径の影響/ 日本大 ○(院)中井川 秀敏, 日東制機 背尾直彦, 日本大 野 本光輝, 加藤数良	31 白色系陽極酸化皮膜の色差に及ぼす電解 処理条件の影響/ アイシン軽金属 ○吉 田 新, 吉田朋夫, 新村 仁, 村上 哲	55 Mg-Al系合金の不連続析出挙動とうロ組織/金沢大○(院)竹下哲史,渡邊千尋,門前亮—	77 Al-1.0mass%Mg2Ge合金の時効組織に対するCu、Ag添加の影響/ 富山大 ○(院)松 浦圭祐, (院)村上友忠, 北陸職能開大 池野 進, 富山大 松田健二
	8 摩擦撹拌を利用した5052アルミニウム合金/ 工業用純チタン箔材の拡散接合/ 宇都宮 大 ○(院)細川 光, 高山善匡, 渡部英 男	32 陽極酸化皮膜の耐食性に及ぼす封孔処理 条件の影響/ アイシン軽金属 ○金谷庸 平, 吉田朋夫, 新村 仁, 村上 哲	56 マグネシウム切削/ 芝浦工大 ○小川 誠, 東京都立高専 松澤和夫, 嵯峨常生	78 Al-Mg合金における時効析出過程と析出粒子の構造および形態/ 横浜国立大 ○森彩花, 竹田真帆人, 福井紘一郎

第1日目 2013年5月18日(土)

	第1日日 2013年5月18日(工)						
	第5会場(A21)	第6会場(D21)	第7会場(B21)				
	組織制御7	変形および塑性加工プロセス	複合材料・発泡材料1				
	竹田真帆人(横浜国立大)	鈴木真由美(富山県立大)	久保田正広(日本大)				
	97 直接焼入れしたAl-10%Si-0.3%Mg系合金の	123 異なる加工焼鈍プロセスが純アルミニウムの	147 チタン基板表面への異材接合用多孔質層				
	時効硬化挙動および微細組織/ 富山大	低温変形に与える影響/ 首都大東京 〇	形成プロセス/ 名古屋大 〇小橋 眞,				
	(院)森岡竜一, (院)香村祥太, ○才川清	(学)佐藤義光, 法政大 (院)石渡 薫,	(学)新井勇太, 金武直幸				
	二, 松田健二, 寺山清志, 北陸職能開	首都大東京 北薗幸一, 宇宙研 川合伸					
	大 池野 進, アーレスティ 柳原恵美,武田 秀	明, 佐藤英一					
	田 万 98 直接焼入れしたAl-10%Si-(0.3,0.6,1.2)%Mg	124 中間粒径から成る6XXX系アルミニウム合金	148 純鉄粉を複合化したアルミニウム基磁性材				
	系合金の時効硬化挙動/ 富山大 〇(院)	の熱間延性低下の要因/ 香川高専 〇伊	料の作製/ 名古屋大 ○久米裕二,				
9:00~	香村祥太, (院)森岡竜一, 才川清二,	藤 勉, 新日鉄住金 佐賀 誠	(院)曽我部岳, 小橋 眞, 金武直幸				
10:20	松田健二, 寺山清志, 北陸職能開大 池						
	野 進, アーレスティ 柳原恵美,武田						
	秀	105 4					
	99 Mg含有量の異なるAl-10%Si-X%Mg系ダイカ スト鋳物の時効硬化挙動/ 富山大 ○(院)	125 マルチパスFSP を施した7075アルミニウム合 金のパス境界域と機械的特性/ 茨城大	149 Mg及びZnの増粘効果により作製した発泡アルミニウム合金のミクロ組織と強度/ 早稲				
	○ 本のでは、	○(院)松田 裕, 伊藤吾朗, 本橋嘉信,	田大 〇鈴木進補, (院)福井貴明, (院)				
	松田健二, 寺山清志, 北陸職能開大 池	茨城県工技セ 行武栄太郎	野中由實				
	野 進, アーレスティ 柳原恵美, 武田 秀	100000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	71 72				
	100 Al-Mg-Cu合金の急速時効硬化挙動および	100 おはりたは、ナマッニーウェ人人のよいの本	150 超音速フリージェットPVDによるAIN膜の体積				
	100 AI-Mg-Cu合金の急速時効硬化季勤ねよび Ag添加の影響/ 東京工大 ○(院)三原麻	126 放射光を使ったアルミニウム合金のすべり変 形解析/ 豊橋技科大 ○小林正和,	150 超音速ブリーシェットPVDによるAIN展の体積 抵抗率/芝浦工大 ○(院)前野由香里,				
	未,里達雄,小林郁夫	(院)藤田裕希、戸田裕之、デンマークエ	湯本敦史, 永山勝久, 工学院大 丹羽直				
	//(工 定鄰) 1 (Fillip)(科大シュミットソーレン	毅				
		付入。シュミットノーレン	教				
		休憩(10:20~10:30)	教				
	第5会場(A21)	休憩(10:20~10:30) 第6会場(D21)	第7会場(B21)				
	組織制御8	休憩(10:20~10:30)	45				
	組織制御8 三浦博己(電気通信大)	休憩(10:20~10:30) 第6会場(D21) 力学特性1 一谷幸司(古河スカイ)	第7会場(B21) 複合材料·発泡材料2 小橋 眞(名古屋大)				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす	休憩(10:20∼10:30) 第6会場 (D21) 力学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラ	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属	休憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす	休憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院)石川浩太, 李文				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正	休憩(10:20~10:30) 第6会場 (D21) 力学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,福井大 桑水流理, 東大生研 吉川暢宏	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院)石川浩太, 李文 煕, 崔龍範, 杉尾健次郎, 松木一弘				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/	休憩(10:20~10:30) 第6会場 (D21) 力学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦, 福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院)石川浩太, 李文 煕, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正	休憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦, 福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院)石川浩太, 李文 煕, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大				
10:20	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/	 休憩(10:20~10:30) 第6会場 (D21) 力学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小 	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院)石川浩太, 李文 煕, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ				
10:30~ 11:50	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/	株憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生,	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院)石川浩太, 李文 煕, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也	休憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生, 竹内晃久	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也 103 Zrを添加した導電用アルミニウムの焼鈍軟	休憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生,竹内晃久 129 X線回折援用粒界粒界趋跡法によるアルミ	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす 不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也	休憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生, 竹内晃久	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広 153 遠心力混合粉末法によるAl-TiO₂光触媒傾 斜機能材料の開発/名古屋工大 ○(学)				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす不純物の固溶・析出の影響/ 住友軽金属○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也 103 Zrを添加した導電用アルミニウムの焼鈍軟 化に伴う組織変化/ 茨城大 ○(院)山田	株憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦, 福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生, 竹内晃久 129 X線回折援用粒界粒子追跡法によるアルミニウム合金の疲労き裂進展挙動解析/ 豊橋技科大 ○(院)李卉, (院)水関康晴, 戸田裕之, JASRI 上杉健太朗, 竹内晃	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす不純物の固溶・析出の影響/ 住友軽金属○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也 103 Zrを添加した導電用アルミニウムの焼鈍軟 化に伴う組織変化/ 茨城大 ○(院)山田	休憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦,福井大 桑水流理,東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信,○戸田裕之,小林正和,JASRI 上杉健太朗,鈴木芳生,竹内晃久 129 X線回折援用粒界粒子追跡法によるアルミニウム合金の疲労き裂進展挙動解析/ 豊橋技科大 ○(院)李卉,(院)水関康晴,	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広 153 遠心力混合粉末法によるAl-TiO ₂ 光触媒傾 斜機能材料の開発/名古屋工大 ○(学)				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす不純物の固溶・析出の影響/ 住友軽金属○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也 103 Zrを添加した導電用アルミニウムの焼鈍軟 化に伴う組織変化/ 茨城大 ○(院)山田	株憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦, 福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生, 竹内晃久 129 X線回折援用粒界粒子追跡法によるアルミニウム合金の疲労き裂進展挙動解析/ 豊橋技科大 ○(院)李卉, (院)水関康晴, 戸田裕之, JASRI 上杉健太朗, 竹内晃	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院)石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広 153 遠心力混合粉末法によるAl-TiO ₂ 光触媒傾 斜機能材料の開発/名古屋工大 ○(学) 前田純弥, 佐藤 尚, 渡辺義見				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也 103 Zrを添加した導電用アルミニウムの焼鈍軟 化に伴う組織変化/ 茨城大 ○(院)山田隆一,(院)伊偉, 伊藤吾朗 104 TRC法で作製した3XXX系合金の再結晶挙動に及ぼす冷間圧延率の影響/ 三菱アル	株憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦, 福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生, 竹内晃久 129 X線回折援用粒界粒子追跡法によるアルミニウム合金の疲労き裂進展挙動解析/ 豊橋技科大 ○(院)率卉, (院)水関康晴, 戸田裕之, JASRI 上杉健太朗, 竹内晃久, 鈴木芳生,豊橋技科大 小林正和 130 X線回折を用いた結晶粒界3D抽出技術の高精度化/ 豊橋技科大 ○(学)田辺靖	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広 153 遠心力混合粉末法によるAl-TiO₂光触媒傾 斜機能材料の開発/名古屋工大 ○(学) 前田純弥, 佐藤 尚, 渡辺義見				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす不純物の固溶・析出の影響/ 住友軽金属○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也 103 Zrを添加した導電用アルミニウムの焼鈍軟 化に伴う組織変化/ 茨城大 ○(院)山田隆一,(院)伊偉, 伊藤吾朗	株憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦, 福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生, 竹内晃人 129 X線回折援用粒界粒子追跡法によるアルミニウム合金の疲労き裂進展挙動解析/ 豊橋技科大 ○(院)李卉, (院)水関康晴, 戸田裕之, JASRI 上杉健太朗, 竹内晃久, 鈴木芳生,豊橋技科大 小林正和 130 X線回折を用いた結晶粒界3D抽出技術の高精度化/ 豊橋技科大 ○(学)田辺靖人, (院)神子貴信, 戸田裕之, JASRI	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広 153 遠心力混合粉末法によるAl-TiO₂光触媒傾 斜機能材料の開発/名古屋工大 ○(学) 前田純弥, 佐藤 尚, 渡辺義見 154 Fe-Mn-Si-Cr形状記憶合金繊維を用いたAl 基複合材料の開発/名古屋工大 ○(学) 山村晃大, 渡辺義見, 佐藤 尚, 小宮				
	組織制御8 三浦博己(電気通信大) 101 純アルミニウムの回復・再結晶速度に及ぼす不純物の固溶・析出の影響/ 住友軽金属 ○吉田英雄, 大久保喜正 102 1050アルミニウムの圧延に伴う結晶回転/ 兵庫県立大 ○山本厚之, (学)加芝将也 103 Zrを添加した導電用アルミニウムの焼鈍軟 化に伴う組織変化/ 茨城大 ○(院)山田隆一,(院)伊偉, 伊藤吾朗 104 TRC法で作製した3XXX系合金の再結晶挙動に及ぼす冷間圧延率の影響/ 三菱アル	株憩(10:20~10:30) 第6会場 (D21) カ学特性1 一谷幸司(古河スカイ) 127 最大気孔率断面での平均応力に基づくプラトー応力の推定/ 芝浦工大 ○宇都宮登雄, 群馬大 (院)山口 亮, 半谷禎彦, 福井大 桑水流理, 東大生研 吉川暢宏 128 X線回折援用粒界追跡法によるアルミニウム合金の結晶学的変形挙動の解析/ 豊橋技科大 (院)神子貴信, ○戸田裕之, 小林正和, JASRI 上杉健太朗, 鈴木芳生, 竹内晃久 129 X線回折援用粒界粒子追跡法によるアルミニウム合金の疲労き裂進展挙動解析/ 豊橋技科大 ○(院)率卉, (院)水関康晴, 戸田裕之, JASRI 上杉健太朗, 竹内晃久, 鈴木芳生,豊橋技科大 小林正和 130 X線回折を用いた結晶粒界3D抽出技術の高精度化/ 豊橋技科大 ○(学)田辺靖	第7会場 (B21) 複合材料・発泡材料2 小橋 眞(名古屋大) 151 放電焼結法による硼化チタン/アルミニウム 複合材料の作製と電気伝導特性評価/ 広 島大 ○佐々木元, (院) 石川浩太, 李文 熙, 崔龍範, 杉尾健次郎, 松木一弘 152 MA-SPSプロセスによるアルミニウム基アップ グレードリサイクル材料の特性/ 日本大 ○(院)渡辺涼太郎, 久保田正広 153 遠心力混合粉末法によるAl-TiO ₂ 光触媒傾 斜機能材料の開発/名古屋工大 ○(学) 前田純弥, 佐藤 尚, 渡辺義見				

第2日目 2013年5月19日(日)

	第1会場(C13)	第2会場(C12)	第3会場(D11)	第4会場(C21)
	形状付与加工3	腐食&表面改質3	マグネシウム3	組織制御3
	高山善匡(宇都宮大)	阿相英孝(工学院大)	千野靖正(産総研)	江戸正和(三菱アルミ)
	9 摩擦攪拌接合による超電導線のAI複合化/ 古河スカイ ○境 利郎, 岡田俊哉, 上野	33 NaCl水溶液中におけるMg-AlおよびMg-Al- Ca系マグネシウム合金の腐食特性に及ぼす	57 金型を用いた降温MDF-AZ61Mg合金の組織と機構的性質(素語士)	79 アルミニウムの加工組織に及ぼす溶質元素 の影響/ NIMS ○井誠一郎, 江村 聡,
	武河 70.7 ○現 利邸, 岡田俊成, 上野 誠三, 古河電工 杉本昌弘	Ca未マケインリム音楽の腐食特性に及は 9 β 相および γ 相の影響/ 富山大 ○砂田	織と機械的性質/ 電通大 ○三浦博己, (院)松本洸太	の影響/ NIMS O升級一郎, 江州 聡, 土谷浩一, 九州大 光原昌寿, 波多 聰
		聡, (院)齋藤康紀, (院)下野恭平, (院)	(Purpartitus)	
		堀実穂子. 才川清二	TO ME OF THE OF A A BOWLE AS A STATE OF THE OWN AS A STATE OF THE	00.11.00.0.0.0.0.1.1.1.1.4.1.1.1.1.1.1.1
	10 摩擦攪拌接合時の初期条件が高強度アルミニウム合金継手の機械的性質に及ぼす影	34 Mg-AlおよびMg-Zn系マグネシウム合金の 腐食特性に及ぼす析出の影響/ 富山大	58 Mg-Gd-Y-Zn系合金押出し材のミクロ組織と 耐熱性に及ぼすMn添加の影響/ 長岡技	80 A1100合金における結晶粒径が引張り変形 中の転位増殖挙動に及ぼす影響/ 兵庫
9:00~	響/ 日本大 ○(院)荒深純一, (院)古市	(院)堀実穂子, 才川清二, ○砂田 聡,	科大 ○(院)片岡翔平, (学)五十嵐諒,	県立大 〇足立大樹, 東工大 宮嶋陽司,
10:20	英樹, 加藤数良, 野本光輝	寺山清志, 北陸職能開大 池野 進,	本間智之, 鎌土重晴	JASRI 佐藤眞直
	11 DCAD加工社の廃墟に拉にかけて外毛効束	アーレスティ 武田 秀	50 M Al C- M ダーガランウェムムの押山柱	01 亚表が光が、圧焼診験法が用いた知嫌知索
	11 ECAP加工材の摩擦圧接における継手効率 に及ぼす圧接条件の影響/ 芝浦工大 ○	35 耐熱マグネシウム合金AS31の腐食特性に及 ぼすミクロ組織の影響/ 富山大 ○(院)姉	59 Mg-Al-Ca-Mn系マグネシウム合金の押出特 性/ 三協立山 ○松本泰誠、 清水和紀、	81 平面ひずみ圧縮試験法を用いた組織観察 に関する考察/ 住友軽金属 ○田中宏
	(院)肥澤拓也, (学)後藤由揮, 青木孝	川雅樹, (院)堀実穂子, 才川清二, 砂	花木 悟, 長岡技科大 鎌土重晴	樹,長井康礼
	史朗,日本大 加藤数良, (院)梅島一哉	田 聡, 寺山清志, 北陸職能開大 池野		
	12 Ti-6Al-4Vの線形摩擦接合継手接合部のミ	進 36 銚子及び宮古島におけるAZ91Dマグネシウ	60 Mg-Al-Ca-Mn系希薄合金のミクロ組織と機	82 粒界過剰体積の第一原理計算とナノ結晶ア
	クロ組織変化/ IHI ○尾崎智道, 渡辺	ム合金塗装材の20年間の大気暴露試験結	械的性質に及ぼす圧延条件の影響/ 長	ルミニウムの粒界エネルギー/ 大阪府大
	康介, 大岩直貴, 黒木康徳	果/ JWTC ○紺野晃弘, アート1 西中	岡技科大 ○(院)栗原拓也,鎌土重晴	○上杉徳照, 東 健司
		一仁, 富士工業 千崎 学, 元産総研 梅原博行		
		休憩(10:20		
	第1会場(C13)	第2会場(C12)	第3会場(D11)	第4会場(C21)
	分析・測定/溶解・凝固・鋳造1 坂口信人(住友軽金属)	チタン1 三浦永理(兵庫県立大)	マグネシウム4 山崎倫昭(熊本大)	組織制御4 安藤 誠(古河スカイ)
	13 アルミニウム中のチタンカーバイド量測定法	37 引張応力下におけるTi-20mass%Mo合金中	61 冷却速度の異なるAM90マグネシウム合金の	
	の検討/ 古河スカイ 〇清水ゆかり、本	のω析出相の成長/ 金沢大 ○(院)河井	鋳造組織および機械的特性/ 富山大 〇	合金の時効硬化挙動とTEM観察/ 富山
	川幸翁	竜太郎, (院)大河原祥一, 渡邊千尋,	(院)佐々木涼太, 才川清二, 寺山清志,	大 〇(院)西 将伴, (院)三浦直也, (院)
		門前亮一	北陸職能開大 池野 進, アーレスティ 武 田 秀	渡邊克己, アイシン軽金属 吉田朋夫, 村上 哲, 北陸職能大 池野 進, 富山
			33	大 松田健二
	14 X線CTおよびガス分析を用いたダイカスト製	38 次世代航空機用α+β型チタン合金の疲労	62 Mg-Al-Si系合金の組織および耐熱特性/	84 423K時効したCuおよびAgを含む7000系ア
	品の内部品質評価/ 道総研工業試験場 板橋孝至, ○高橋英徳	特性に及ぼす摩擦攪拌接合の影響/ 東 北大 ○仲井正昭, 新家光雄, 稗田純	富山大 ○(院)重長泰弘, (院)南 和希, 才川清二, 寺山清志, 北陸職能開大 池	ルミニウム合金における時効析出組織の TEM観察/ 富山大 ○(院)渡邊克己, ア
	似而争至, ○向個天心	子, 趙研, (学)小峯和也, 大阪大 藤井	野進、アーレスティ武田秀	イシン軽金属 吉田朋夫, 村上 哲, 北
		英俊, 森貞好昭, 神戸製鋼 伊藤良規,	, , , , , , , , , , , , , , , , , , , ,	陸能開大 池野 進, 富山大 松田健二
10:30~		今野 昴,逸見義男,大山英人, 川崎重工 阿部 渉		
12:10	15 70 - 1 2		CO 叶共常//	0F F000 7 7 2 2 - h) A A) 2 ky ky ky rt til fill
	15 双ロールキャスターによるクラッド材の作製 / 大阪工大 ○羽賀俊雄, (院)石原拓	39 Ti-8~10Mn-1Fe-3Al合金の時効挙動と引 張特性/関西大 ○池田勝彦, 上田正	63 時効硬化型AZ91合金をベースとしたダイカ スト材のクリープ特性に及ぼす微細組織の	85 7000系アルミニウム合金における時効析出物に及ぼす製造条件の影響/ アイシン軽
	也	人,(院)富田祐介,(学)谷口雄亮,(学)猪	影響/ 長岡技科大 ○本間智之, 太田	金属 〇西川知志, 吉田朋夫, 村上 哲
		瀬健太, 大同特殊鋼 鷲見芳紀	宗貴、富山大 才川清二、アーレスティ	
			榊原勝弥, 武田 秀, 長岡技科大 鎌土 重晴	
	16 Al-Mg-Si系合金の鋳造割れ性に及ぼす微	40 水素を活用したインプロセス組織構造制御	64 Mg-Y-Zn希薄固溶体のクリープ律速機構の	86 7000系アルミニウム合金における引張特性
	量添加元素の影響/ 富山大 (学)岡澤	による純チタンの高次機能化/大阪大〇	温度依存性/ 富山県立大 〇鈴木真由	に及ぼす時効析出物の影響/ アイシン軽
	玄,(院)丹羽浩成, ○才川清二, 寺山清 志, 北陸職能開大 池野 進	(院)三本嵩哲, 李樹豊, 梅田純子, 近 藤勝義	美,(学)村田泰之	金属 ○吉田朋夫, 村上 哲
	17 Al-10%Si-0.3%Mg系合金の凝固過程に及ぼ	41 チタン中における希土類酸化物の溶解/析	65 Mg-Zn-Y延性二相合金のクリープ特性値に	87 Al-Zn-Mg-Cu合金の粒界破断に対する結
	すFeおよびMn添加の影響/ 富山大 ○	出挙動∕ 東北大 ○上田恭介, (学)神崎	関する理論とモデリングによる検討/ 日本	晶方位と粒界近傍の組織/ 富山大 ○
	(院)森田佳祐, 才川清二, 寺山清志, 北陸職能開大 池野 進, アーレスティ 柳	文兵, 成島尚之	大 ○(院)渡邉貴久,藤原雅美,高木秀 有,九州大 東田賢二,熊本大 河村能	(院)三浦直也,(院)渡邊克己,アイシン軽 金属 吉田朋夫,村上 哲,富山県立大
	原恵美, 武田 秀		有, 九州八 宋山真二, 熙本八 何刊 ti 人	上谷保裕, 北陸能職大 池野 進, 富山
	·			大 松田健二

		第2日目 2013年5月19日(日)	
	第5会場(A21)	第6会場(D21)	第7会場(B21)
	組織制御9	力学特性2	T2:アルミニウム合金の加工限界への挑戦 II 1
	吉原伸二(神戸製鋼)	山田浩之(防衛大)	宇都宮裕(大阪大)
	105 6N01アルミニウム合金押出形材の機械的性質に及ぼす冷却速度の影響/ 三協立山○加門真一, 高井俊宏, 川北浩二	131 湿潤大気環境中におけるマグネシウム合金 の耐水素脆化特性/ 茨城大 ○(院)國井 健生, 伊藤吾朗, 熊本大 山崎倫昭, 河村能人	155 摩擦撹拌インクリメンタルフォーミングにおける加工部の温度測定/ 福井大 ○大津雅亮,(学) 加尾卓也
9:00~ 10:20	106 6000系アルミニウム合金における衝撃特性 に及ぼすミクロ組織の影響/ アイシン軽金 属 ○柴田果林, 吉田朋夫, 村上 哲	132 Al-Mg合金の水素脆化特性に及ぼす熱処 理の影響/ 古河スカイ ○鹿川隆廣, 一 谷幸司, 小山克己	156 摩擦撹拌インクリメンタルフォーミングにおける工具と板材の相対速度が成形性に及ぼす 影響/ 福井大 ○大津雅亮, (院)片山 陽介
10.20	107 溶体処理化後温間鍛造した6000系アルミ合金の機械的特性と組織/ 本田技術研究所 ○塩月克彦, 九州工業大 中村克昭	133 極限的に水素を低減させたアルミニウム合金の力学特性/ 豊橋技科大(院)稲森隆晃,○戸田裕之,大阪大学 堀川敬太郎,JASRI 上杉健太朗,竹内晃久,鈴木芳生,豊橋技科大 小林正和	157 摩擦撹拌インクリメンタルフォーミングを受けたA5052板のエンボス加工/ 京都工芸繊維大 ○飯塚高志, 福井大 大津雅亮,京都工芸繊維大 (学)鎌谷章生
	108 冷間鍛造した6000系アルミニウム合金の結 晶粒組織に及ぼすひずみ量の影響/ 日 本軽金属 ○邢劼, 松元佳佑, 日軽金ア クト 谷津倉政仁, 日本軽金属 穴見敏也	134 アルミニウム製ヒステリシスダンパを使用した 制震ブレースの開発/ 日本軽金属 ○池 田修一, 理研軽金属 石川博光	158 摩擦撹拌インクリメンタルフォーミング法による発泡アルミニウム表面への緻密層形成/ 大阪大 ○松本 良, (院)鶴岡裕之, 福井大 大津雅亮, 大阪大 宇都宮裕
		休憩(10:20~10:30)	
	第5会場(A21)	第6会場(D21)	第7会場(B21)
	T1:材料組織における不均質性の制御と 高機能軽金属材料の創製1 柴柳敏哉(富山大)	力学特性3 戸田裕之(豊橋技科大)	T2:アルミニウム合金の加工限界への挑戦 II 2 大津雅亮(福井大)
	109【基調講演】摩擦攪拌粉末プロセス(FSPP) による継手の高機能化/大阪大 ○藤井 英俊	135 水素ボンベバルブハウジング用 6000系アル ミニウム合金の開発/ 日本軽金属 ○路 志勇, 邢劼, 穴見敏也, 茨城大 伊藤 吾朗	
	110 過剰にMgを含むAl-Mg ₂ Si合金の時効硬化 挙動に及ぼすHPT加工の影響/ 富山大 ○(院)丸野 瞬、松田健二, 才川清二, 横浜国大 廣澤渉一, 濱岡 巧, 九州大 堀田善治, 李昇原, 京都大 寺田大将	136 Al-5.7%Zn-2.5%Mg系合金中の水素挙動に 及ぼすFe, Si, Cuの影響/ 茨城大 ○(院) 小塚健司, 伊藤吾朗, 神戸製鋼 中井 学	160 脱膜型潤滑プレコートによる自動車用板材 の成形性向上/ 住友軽金属 ○上田 薫, 初野圭一郎, 戸谷友貴
10.30~	111 to (0) - (=0110+1)) (D.5) (0.5) (0.5)	137 過剰Si型Al-Mg-Si合金の湿潤大気中および	161 低熱伝導性アルミニウム合金連鋳材の基本
10:30~ 12:10	111 加工後に473K時効した過剰マグネシウム型 Al-Mg ₂ Si合金のTEM観察/ 富山大 ○ (院)小川友里恵, 松田健二, 北陸能開大 池野 進, YKK 吉村泰治, 喜多和彦	高圧水素ガス中での引張特性/ 茨城大 〇(院)寺田将也, (院)早瀬弘章, 伊藤吾 朗, 日本軽金属 路志勇	的な薄板成形性/ 京都工芸繊維大 ○飯 塚高志, (院)井渓僚

昼食 / 若手の会(B21)(12:10~13:00)

久, 大阪大 堀川敬太郎

139 湿潤環境下で予疲労変形を受けた7075ア

吾朗

の湿潤大気中での変形に伴う挙動/ 茨城

大 ○(院)水庭 彰, (院)渡壁尚仁, 伊藤

ルミニウム合金の衝撃引張特性/ 防衛大

○山田浩之, (院)鶴留正樹, 小笠原永

金板の変形特性の測定と材料モデリング/

東京農工大 ○(学)川口順平, 桑原利

163 5000系アルミニウム合金板の引張試験とバ

ルジ成形のFEM解析/ 群馬大 〇西田進

一, (院) 籾山武蔵, 東京農工大 桑原利

彦, 神戸製鋼 櫻井健夫

彦, 神戸製鋼 櫻井健夫

クロ組織変化/ 富山大 ○古井光明, 會

113 熱間非対称圧延したZK60マグネシウム合金

阪府大 ○井上博史, (院)堀内惇平

板の集合組織・微細組織と関連特性/ 大

田哲夫

第2日目 2013年5月19日(日)

第3会場(D11)

第4会場(C21)

第2会場(C12)

第1会場(C13)

	第1会場(C13)	第2会場(C12)	第3会場(D11)	第4会場(C21)
	溶解·凝固·鋳造2 西田進一(群馬大)	チタン2 上田恭介(東北大)	マグネシウム5 糸井貴臣(千葉大)	組織制御5 井 誠一郎(物材機構)
	18 Al-17%Si合金の凝固組織に及ぼす冷却速度および過冷度の影響/ 日本軽金属 ○山元泉実, 鈴木 聡, 磯部智洋, 岡田浩	42 電子ビーム積層造形法を用いた一方向孔を 有する多孔質構造体の作製と力学機能制御 /大阪大 ○芹澤 愛, 池尾直子, 石本 卓也, 中野貴由	66 不燃・高強度マグネシウム合金の発火温度 と機械的特性/ 熊本大 ○河村能人, 山 崎倫昭	88 ARB加工により作製された超微細粒Al- 0.5%Si-0.5%Ge合金の析出過程/ 岡山理 科大 〇中川惠友, 金谷輝人, 京都大 辻 伸泰, 寺田大将, 岡山理科大 (学) 田中裕治, (学)森田泰央
	19 多角形ロータ回転処理した過共晶Al-Si- Cu-Mg合金の凝固組織/ 富山大 (学)杉 村祐介, 富山県立大 ○上谷保裕, 三協 立山 渡辺 亨, 北陸職能開大 池野 進, 富山大 松田健二	抗とデバイ温度のNb濃度依存性/ 大阪大	67 Microstructure and porosity of flame- 欠構 resistant Mg-Ca-Al-Y alloys heat-treated in air/ 熊本大 〇ハドリン ジェイソン, 河村能人	89 超微細粒・時効硬化型アルミニウム合金の 強化機構の並立とその合金設計指導原理 の確立/ 横浜国大 ○廣澤渉一, 濱岡 巧, 九州大 堀田善治, 富山大 松田 健二, 京都大 寺田大将
13:00~ 14:40	20 断熱急冷式連続鋳造法で作製した共晶系 Al-Si合金の組織と機械的性質/ 三協立 山 ○渡辺 亨, 高木英俊	44 Evaluation of in vitro biocompatibility of 欠構 binary Ti-Cr alloys/ 東北大 ○(院)ワン ムハンマドイクタブ, 新家光雄, 仲井正 昭, 稗田純子, 趙研, 北見工大 (学) 平野満大, 大津直史	68 LPSO形Mg-Zn-Y系合金の組織と機械的特性に及ぼすCa添加の效果/ 熊本大 ○金鍾鉉, 河村能人	90 巨大ひずみ加工により作製した超微細粒 A6061合金の時効挙動と力学特性/ 京都 大 ○寺田大将, (学)金田用真, 九州大 堀田善治, 富山大 松田健二, 横浜国大 濱岡 巧, 廣澤渉一, 京都大 辻 伸泰
	21 Al-Mg-Si合金のシャルピー衝撃特性に及ぼ すシワー組織の影響/三協立山 ○土肥正 芳, 高木英俊	45 Ti-Nb-Ta-Zr合金酸化膜の被膜剥離強度と 界面組織/兵庫県立大 ○三浦永理, (学)水嶋恵介, 名古屋工大 塚本英明, 佐藤 尚, 渡辺義見, 春日敏宏, 東北 大 新家光雄	69 473Kで時効したMg-2.9at.%Y合金における 析出組織のHRTEM観察/ 富山大 ○(院) 松岡祐輝, (院)中川大輔, (院)渡邊克 己, 才川清二, 北陸職能開大 池野 進, 富山大 松田健二	91 Strengthening of Al 2024 alloy by high- pressure torsion and subsequent aging/ Kyushu Univ. ○Intan Fadhlina Mohamed, 李昇原,堀田善治
	22 高濃度鉄を含むAl-Mg-Si系合金の溝ロール圧延による鉄系化合物相の微細化と機械的性質/ 東京工大 〇(院)谷 知記,(院)ポンピスッチナンジャッギリス, 手塚裕康, 小林郁夫, 里 達雄, 物材機構 高森 晋, 大澤嘉昭	46 生体用 β 型チタン合金の表面形状とゾルゲル法により作製したハイドロキシアパタイト膜の密着強度との関係/ 東北大 ○(院)松原綾香, 新家光雄, 稗田純子, 仲井正昭, 趙研	70 異なるRE濃度のMg-Gd-Y合金における時 効析出組織のHRTEM観察/ 富山大 (院) 中川大輔, 東北大 中村純也, Universite de Rouen W.Lefebvre, 富山大 才川清二, 北陸職能開大 池野 進, 富 山大 ○松田健二	92 Influence of HPT Processing and Post-HPT Aging on Microstructure and Mechanical Properties of Al-Zn alloy/Kyushu Univ. 〇アハマドアリアルハミヂ, 堀田善治,横浜国大 廣澤渉一, 富山大 松田健二, 京都大 寺田大将
	77.1 A IB (0.10)	休憩(14:40		#F 4 A IB (004)
	第1会場 (C13) 溶解·凝固·鋳造3	第2会場(C12) チタン3	第3会場(D11)	第4会場(C21) 組織制御6
	原田陽平(東京工業大)	仲井正昭(東北大)		寺田大将(京都大)
	23 T5熱処理したAl-10%Si-0.3%Mg系合金における凝固組織のFE-SEM観察/ 富山大○(院)青島剛士, (院)森田佳祐, 才川清二, 寺山清志, 北陸職能開大 池野進, アーレスティ 柳原恵美, 武田 秀	47 MA-SPS法を用いたチタン基蓄光材料の特性/ 日本大 ○(院)池谷 洵, 久保田正広, 内田 暁		93 アルミニウム合金 HPT 加工材の高強度化 に及ぼすひずみ量の影響/ 豊田中研 〇 倉本 繁, 青井一郎, 古田忠彦
14:50~ 16:10	24 MnおよびFeを微量含有したAl-10%Si-Mg 系ダイカスト鋳物の機械的性質/ アーレス ティ ○柳原恵美, 武田 秀, 富山大 才 川清二, 松田健二, 北陸職能開大 池野 進	48 Ti-X合金(X=Mo、Nb、V、W、Ta)におけるMo 当量の第一原理計算/ 大阪府大 ○上杉 徳照,(院)宮前 将, 東健司		94 Al-Zn-Mg-Cu-Cr 系合金 HPT 加工材の機械的特性/ 豊田中研 ○青井一郎, 倉本 繁, 古田忠彦
				95 圧縮ねじり加工によるAl-Fe系晶出物微細化 における試料高さの影響/ 名古屋大 〇 (院)内田 圭, 久米裕二, 小橋 眞, 金 武直幸, 日軽金アクト 岡庭 茂
				96 摩擦撹拌スポット接合法による陽極酸化処理したA6063アルミニウム合金の継手特性/富山工技セ 〇冨田正吾, 柿内茂樹, 山岸英樹, 川田工業 寶田良春, 富山大 長柄毅一

第2日目 2013年5月19日(日)

	第5会場(A21)	第6会場(D21)	第7会場(B21)
	T1:材料組織における不均質性の制御と 高機能軽金属材料の創製2	力学特性4	T2:アルミニウム合金の加工限界への挑戦 II 3
	藤井英俊(大阪大)	小椋 智(大阪大)	飯塚高志(京都工芸繊維大)
	114 連続繰り返し曲げ加工および摩擦ロール表面処理による表面組織制御と材料特性/ 宇都宮大 ○高山善匡	140 高周波誘導加熱装置を用いたAZ91Eマグネ シウム合金の溶体化処理/ 山梨大 ○ (院)徳原智彦, 中山栄浩, 丸眞熱処理工 業 若尾博明, 坂本潔大	のダイクエンチング/ 大阪大 ○(院)田在
13:00 ~ 14:40	115 アルミニウム合金板のレーザ局所加熱時に おける温度分布と硬さ分布の数値シミュレー ション/ 富山大 ○(院)森田大貴, 柴柳 敏哉	141 Al-0.3%Mg-0.5%Si合金のクリープ特性に及 ぼすMn添加の影響/ 古河スカイ ○安藤 誠, 鈴木義和, 新倉昭男, 茨城大学 伊藤吾朗	165 アルミニウム合金板材の高強度化に及ぼす 加工プロセスと熱処理の影響/ 千葉工大 〇野田雅史, 船見国男, 鉄道総研 森 久史, 千葉工大 楠原宏章
	116 MgB2/Al-Mg-Si複合材料の200℃における 時効挙動/ 富山大 ○(院)川本幸弥, 松 田健二, 西村克彦, NIFS 菱沼良光, 北陸職能開大 池野 進	142 Al-Mn系合金の機械的性質に及ぼすCuおよびMgの影響/古河スカイ ○大菅広岳, 北脇高太郎, 林 稔, 新倉昭男	
	117 Ni基合金めっきで被覆したAlの加熱による 表層組織変化/ 宇都宮大 ○山本篤史郎	143 Al-Mg-Si系合金の曲げ加工性におよぼす 時効析出物の影響/ 住友軽金属 ○中西 英貴, 浅野峰生, 吉田英雄	
	118 AZ91合金の電気化学特性におよぼすAlスパッタ膜被覆の影響/ 富山大 ○(院)石橋陽亮, 砂田 聡, 野瀬正照	144 1200アルミニウムにおけるH2X調質後の延性に及ぼす均質化処理条件の影響/ 神戸製鋼 ○金田大輔, 小林一徳, 梅田秀俊	
		休憩(14:40~14:50)	

	第5会場(A21)	第6会場(D21)	第7会場(B21)
	粉末冶金 久米裕二(名古屋大)	力学特性5 浅野峰生(住友軽金属)	
	119 摩擦圧接によったAZ91Dマグネシウム合金 切削屑の固化成形体の組織と機械的性質 / 日大 ○(院)菅谷 樹, 加藤数良, 野 本光輝	145 ADC12の鋳巣からの低サイクル疲労き裂発 生挙動/ 福井大 ○桑水流理, (学)高 橋一将, (院) 曾根大輔, 群馬大 半谷禎 彦, 芝浦工大 宇都宮登雄, ホクダイ 北 原総一郎	
14:50~ 16:10	120 純チタン変態を利用した放電焼結による材質制御/ 広島大 ○松木一弘, 崔龍範, 佐々木元	146 6061-T6材の微視的疲労き裂の進展挙動解析/ 神戸製鋼 ○志鎌隆広, 吉原伸二, 関西大 高橋可昌, 九州大 野口博司	
	121 MA-SPSプロセスによるMg-Si系合金の特性 / 日本大 ○久保田正広, 慶尚大 (院) 崔太榮, 日本大 (院)渡辺涼太郎, 慶尚 大 林水根		
	122 アルミニウム基磁性材料の磁気特性に及ぼ すメカニカルアロイング処理およびメカニカ ルミリング処理の影響/ 日本大 ○(院)渡 邉 隆, 久保田正広, 新妻清純, 慶尚大 (院)成俸鶴, 林水根		

第1日目 2013年5月18日(土)

	;	ポスターセッション(共通教育棟 ノ			
P01 リバース4D材料エンジニアリングの ためのイメージベースシミュレーション:アルミニウム中の水素ミクロポアの 影響/豊橋技科大○(院)松山智彦,戸田裕之,JASRI上杉健太郎,竹内晃久,鈴木芳生,豊橋 技科大小林正和	P09 スピノーダル分解を利用した超微細粒・時効硬化型Al-MgおよびAl-Ag合金の強化機構の並立/ 横浜国大 ○(院)後藤 航, 濱岡 巧,廣澤渉一,九州大 堀田善治,李昇原,富山大 松田健二,京都大 寺田大将	P17 押出加工した超伝導MgB2/AZ91 複合材料の組織観察/ 富山大 ○(院)東海大輔, (院)川本幸弥, 西村克彦, 北陸職能開大 池野 進, 富山大 松田健二	P25 AA5454-Oアルミニウム合金圧 延材の重ね摩擦撹拌接合/ Univ. of Ulsan ○權湧率, Shin Young Co., Ltd., J.D.Seo	P33 長周期積層構造型Mg-Zn-Y 系急速凝固薄帯固化成形材 の組織と機械的特性に及ぼす 第四元素添加の影響/ 熊本 大 ○(院)良井優太, 山崎倫 昭, 河村能人	P41 多段階電解により作製したマグネシウムアノード酸化皮膜の構造と耐食性/ 工学院大 ○(院)諸貫修一, (学)相澤祐香, 阿相英孝, 栗本鐵工所森陽一, 閣師昭彦, 廖金孫, 工学院大小野幸子
形成/ 九州工業大 ○(院)王文琴, 九州工業大 山口富子, 西尾一政	からの水素放出/ 茨城大 ○(院) 小山僚人, 伊藤吾朗	P18 マグネシウム合金上への化成処理・ SAM複合皮膜作製と耐食性評価/ 名古屋大 ()院)永田 章, 黒田 健介, 興戸正純	炭素複合材の微細組織と機械 的性質/ KITECH ○宋濫, 李光鎮	金鋳造材における共晶Si粒子 の分布状態の評価/ 山梨大 ○(院)猿渡直洋, 中山栄浩	富山大 〇(院)辻原智成, 富山 県立大 上谷保裕, 富山大 松 田健二, 北陸職能開大 池野 進
P03 Al-25%Siの半凝固ダイカスト/ 大阪工業大 ()院)豊田健吾, 布施宏, 羽賀俊雄	P11 簡単な高温プレス加工によるAZ91 鋳造板材の強度及び延性の向上/ 首都大東京 ○(院)三ツ石圭佑, 北薗幸一, 東京大 (院)加藤茂樹	の水素侵入挙動/ 茨城大 ○ (院)渡壁尚仁, (院)中野雅彦,	P27 AA5052 − H32薄板摩擦攪拌接 合部の性質に及ぼすツール形 状と工程条件の影響/ KITECH ○李光鎮, 宋濫	P35 473KにおけるMn,Fe添加した Al-Mg-Si合金における析出物 のTEM観察/ 富山大 ○(院) 范 小京, 北陸職能開大 池 野 進, 富山大 松田健二	
P04 純AIパイプとAI-4mass%Cu合金基材を用いた方向性気孔を有するポーラスAI-Cu合金の作製/ 早稲田大(院)林田達郎, 鈴木進補, (院)市川淳一, (学)豊山竜史	P12 Al-5%Mg合金の高温延性に及ぼす 液体Sn接触の影響/ 大阪大 ○ (院)菅 仁志, 堀川敬太郎, 谷 垣健一, 小林秀敏	P20 高真空環境で作製した超高純度アルミニウムからの水素放出挙動/ 大阪大 ○(院)中尾拡史, 堀川敬 太郎, 谷垣健一, 小林秀敏	ミクロ組織に対するAl,Zn量の影	および機械的性質に及ぼす押 出し温度の影響/ 長岡技科 大 ○(院)山村勇貴, IHI 尾	P44 アルミニウム合金の摩擦誘起反応による表層組織変化/ 宇都宮大 ○(院)小池拓馬, 高山善国, 山本篤史郎, 渡部英男
P05 AZ80Mg合金の降温多軸鍛造における型鍛造法の検討/ 電気通信大 ○(院)清野哲史, 三浦博己	P13 高速押出し可能な高強度Mg-Al- Ca-Mn系希薄合金の開発/ 長岡 技科大 ○(学)中田大貴, 鎌土重 晴	P21 473K時効したAM60マグネシウム合金の時効硬化に対するMn量の影響/富山大○(院)土屋大樹,(院)松岡祐輝,(院)渡辺克己,アーレスティ柳原恵美,武田秀,富山大 才川清二,北陸職能開大 池野 進 富山大 松田健二	P29 FRSP後温度勾配焼なましされた 1050アルミニウム板材表面層の 集合組織解析/ 宇都宮大 ○ (学)荒川卓弥, (院)濱野龍 一, 高山善匡, 渡部英男, 山本篤史郎	の組織と機械的特性/ 熊本	P45 フラックス法によるマグネシウム合金上へのリン酸カルシウム系皮膜の作製/芝浦工大 ○(学)山本恵里奈, 石崎貴裕
による組織と機械的性質/ 電気通信大 ○(院)木村圭佑, (卒)渡邉弘 太郎, 三浦博己	弘, 野田雅史, 船見国男	再利用によるポーラスアルミニウム の作製/ 群馬大 ○鈴木良祐	P30 タンデム式縦型高速双ロール キャスト法と熱間圧延接合法で 作製した4045/3003アルミニウム 合金クラッド材の組織と引張特性 に及ぼす熱処理の影響/東京 工大 ○(院)筒井あかり,(院) 中村亮司,原田陽平,熊井 真次,大阪工大 羽賀俊雄, 古河スカイ 寺山和子,新倉昭 男	りAZ31マグネシウム合金に形成される集合組織と初期集合組織と初期集合組織と初期集合組織の関係/横浜国大○(院)朴亨均,金珍旭,岡安和人,福富洋志	P46 AZ31マグネシウム合金の衝撃靱性評価/ 神戸大 ○(院)川 智明, (院)長尾昌樹, 向井敏司
P07 CO₂レーザマシンを用いたアルミニウム板の集合組織制御/ 成蹊大 ○ (院)又吉祐子, 酒井 孝, アマダ金英俊, 小山純一	た5000系アルミニウム合金の成形限 界予測/ 群馬大 ○(院)栗原亮 典, (院)籾山武蔵, 西田進一, 渡利久規	その組織/ 京都大 ○院 朴明 験, 寺田大将, Schlumberger technology corp. Manuel Marya, 京都大 辻 伸泰	いた77Kにおける繰り返し疲労挙動と転位組織/金沢大 〇(院)若松祐伍, 渡邊千尋, 門前亮一	1.2mass%Mg2Ge合金に見られる析出物のTEM観察/ 富山大 (院)村上友忠,○(院)松浦圭祐, (院)渡邊克己, 北陸職能開大 池野 進, 富山大松田健二	
P08 成形ロールを付きロールキャスター によるAI合金板の作製/ 大阪工業 大 ○川窪俊行, 森本健斗, 羽 賀俊雄	P16 増肉を目的とした遊星ロールによる 縮管成形のFEM解析/ 群馬大 ○(院)神山博貴, (院)川端大介, 西田進一, 渡利久規	P24 Al-1.0mass%Mg₂Si合金の時効析出 に及ぼすCu+Ag添加の影響/ 富 山大 ○(院)徳田桃子, (院)大江 喜久, 東北大 中村純也, 北陸 職能開大 池野 進, 富山大 松 田健二	材におけるキンク変形帯伝播挙動/熊本大 ○(院)養毛 健, 山崎倫昭, 河村能人, 大阪	P40 不燃・高強度マグネシウム合金 の耐食性/ 熊本大 ○三嶋 亮洋, 山崎倫昭, 河村能人	