

计算机安全与维护

Windows系统数据安全与维护

中国传探日子

本章内容提要

- 磁盘、分区和卷
- NTFS的恢复支持
- 误删除数据的手工恢复
- 数据备份方案
- 加密文件系统 (EFS) 的安全性

计算机硬件组成回顾——节选自优秀学生作业

计算机硬件组成回顾——节选自优秀学生作业

计算机硬件组成回顾——节选自优秀学生作业

存储介质(设备)

- 储存信息的硬件设备
 - 利用电能方式存储信息的设备如: 各式存储器, 如各式随机存取存储器 (RAM)、只读存储器 (ROM)等
 - 利用磁能方式存储信息的设备如: 硬盘、软盘、磁带、磁 芯存储器、磁泡存储器
 - 利用光学方式存储信息的设备如: CD或DVD
 - 利用磁光方式存储信息的设备如: MO (磁光盘)
 - 利用其他实体物如纸卡、纸带等存储信息的设备如: 打孔卡、打孔带等

持久化存储 VS. 非持久化存储

- 是否在断电后可以继续保存数据(信息)
- 典型代表设备
 - 持久化存储: 硬盘、U盘、光盘
 - · 非持久化存储:内存、CPU缓存

是否可擦除 (反复读写)

- 硬件限制
 - 光盘
- (操作)系统限制
 - 手机操作系统所驻留的存储介质

访问存储介质的硬件接口标准

- 硬件(直连)接口
 - USB
 - IDE (电子集成驱动器)
 - SATA (串行ATA)
 - SCSI (小型计算机系统接口)
 - FC (光纤通道)
 - SAS (串行连接SCSI, 向下兼容SATA)

PC

服务器

访问存储介质的硬件接口标准

- 网络接口
 - NAS
 - SAN

操作系统与硬件设备

- BIOS 与 UEFI
 - 先于操作系统启动, 引导操作系统启动
 - 低阶"操作系统"
- 操作系统的设备驱动
 - 针对不同类型设备开发和运行对应的设备驱动程序,负责管理硬件设备

- 在PC启动的过程中, BIOS担负着初始化硬件, 检测硬件功能, 以及引导操作系统的责任
 - · 在早期, BIOS还提供一套运行时的服务程序给操作系统及应用程序使用
- BIOS程序存放于一个掉电后内容不会丢失的 只读存储器中,系统加电时处理器的第一条指 令的地址会被定位到BIOS的存储器中,便于 使初始化程序得到执行

- BIOS的升级换代 技术
- 支持32位或64位 运行模式
- 功能更多,容错和纠错特性更强

- · Windows对可持久化存储设备的统一命名
- 基本磁盘
 - 大多数个人计算机都配置为基本磁盘,该 类型最易于管理
- 动态磁盘
 - · 面向高级用户和IT专业人员

基本磁盘

- 使用主分区、扩展分区和逻辑驱动器来组织数据
- 格式化的分区也称为卷 (术语"卷"和"分区"通常互换使用)
- 在大多数Windows PC版本中,基本磁盘可以有四个主分区或 三个主分区和一个扩展分区。扩展分区可以包含多个逻辑驱动器(最多支持128个逻辑驱动器)
- 基本磁盘上的分区不能与其他分区共享或拆分数据
- 基本磁盘上的每个分区都是该磁盘上的一个独立的实体

动态磁盘

- 动态磁盘可以包含大量的动态卷(大约2000个),其功能类似于基本磁盘上使用的主分区
- 在 Windows 的某些版本中,可以将多个独立的动态硬盘合并为一个动态卷(称为分卷),将数据拆分到多个硬盘(称为分拆)以提高性能,或者在多个硬盘之间复制数据(称为镜像)以提高可靠性

分区和逻辑驱动器

- 分区(有时也称为卷)是硬盘上的一个区域,可以使用文件系统进行格式化并使用字母表的字母标识。例如,大多数 Windows 计算机上的驱动器 C 就是一个分区
- · Windows系统只能安装在主分区上
- 扩展分区是解决基本磁盘可以含有的主分区数量限制的方法。它是一个可以容纳一个或多个逻辑驱动器的容器。除不能用于启动操作系统之外,逻辑驱动器的功能与主分区的功能相似

格式化磁盘和驱动器

- 硬盘是计算机上的主要存储设备,使用前需要 进行格式化
- · 格式化磁盘是指使用文件系统配置磁盘,以便 Windows 能够在磁盘上存储信息
- 在格式化硬盘之前,必须先在上面创建一个或 多个分区
- "快速格式化"是一种格式化选项,它能够在硬盘上创建新文件表,但不会完全覆盖或擦除磁盘。快速格式化比普通格式化快得多,后者会完全擦除硬盘上现有的所有数据。

中国传播日子

分区和卷

- 分区是硬盘上的一个区域,能够进行格式化并分配有驱动器号。在基本磁盘(个人计算机上最常见的磁盘类型)上,卷是格式化的主分区或逻辑驱动器
- 系统分区通常标记为字母 C。字母 A 和 B 留给可移动驱动器或软盘驱动器。某些计算机将硬盘分区为单个分区,这样整个硬盘就用字母 C 表示。其他计算机可能有一个包含恢复工具的附加分区,以免 C 分区上的信息被损坏或不可用

GPT磁盘与MBR磁盘

- GPT(Globally Unique Identifier Partition Table Format)一种由基于 Itanium 计算机中的可扩展固件接口(EFI) 使用的磁盘分区架构
 - 允许每个磁盘有多达128个分区,支持高达18EB的卷大小,允许将主磁盘分区表和备份磁盘分区表用于冗余,还支持唯一的磁盘和分区ID(GUID)
- MBR(Master Boot Record)磁盘
 - 最大卷为2TB
 - 每个磁盘最多4个主分区(或3个主分区,1个扩展分区和 无限制的逻辑驱动器)

本章内容提要

- 磁盘、分区和卷
- NTFS的恢复支持
- 误删除数据的手工恢复
- 数据备份方案
- 加密文件系统 (EFS) 的安全性

- NTFS的恢复支持可确保,如果发生断电或者系统失败,文件操作不会遗留在未完成的状态,磁盘卷的结构仍然完好无损,无需运行磁盘修复工具
- NTFS使用一种事务处理方案实现可恢复性,确保即使对于非常大的磁盘,磁盘的恢复也会绝对快速,恢复过程仅限于文件系统数据

- 文件系统设计的演变
 - 一谨慎写 (careful write) 文件系统
 - 对写操作进行排序
 - 即使系统失败,整个卷仍然处于一致和可用的 状态
 - 一延迟写 (lazy write) 文件系统
 - 把文件的修改写到缓存中, 再刷新到磁盘
 - 使性能提高,但是风险更高

- 可恢复的文件系统
 - —超过谨慎写文件系统的保险性,获得延迟写文件系统的性能优势
 - 一使用最初为事务处理发展起来的日志技术确保卷的 一致性
 - —NTFS可恢复性确保其卷结构不会被破坏
 - 一在一次直写操作或者缓存刷新以后,用户数据将是一致的,并且立即可以使用

• 日志记录

- 日志文件服务 (LFS)
- 日志记录类型
 - 一更新记录
 - 每一条记录包含重做信息和撤销信息
 - 创建, 删除, 扩充, 截短, 设置文件信息, 重命名, 改变文件的安全性
 - 一检查点记录
 - 周期性的写入检查点记录
 - 用于回滚系统设置信息

• 恢复

- 一恢复过程依赖NTFS在内存中维护的两张表
 - 事务表 (记录启动但是未提交的事务)
 - 脏页表 (记录缓存中页面的未被写到磁盘上的修改信息)
- —NTFS扫描日志文件三遍
 - 分析扫描
 - 重做扫描
 - -撤销扫描

• 分析扫描

• 重做扫描

• 撤销扫描

- NTFS的坏簇恢复
 - —NTFS动态的替换掉包含坏扇区的簇, 跟踪记录这一坏簇, 以后不会重用
 - 一容错卷
 - -恢复数据
 - 替换掉坏扇区
 - 一非容错卷
 - 不能恢复数据
 - NTFS执行簇重映射,数据丢失

- 自我恢复
 - —SET_REPAIR_ENABLED
 - 开启卷的自我恢复功能
 - —SET_REPAIR_WARN_ABOUT_DATA_LOSS
 - 如果文件不能完全恢复,是否通知用户
 - —SET_REPAIR_DISABLED_AND_BUGCHECK_O N_CORRUPTION
 - 系统崩溃抛出0x24错误

本章内容提要

- 磁盘、分区和卷
- NTFS的恢复支持
- 误删除数据的手工恢复
- 数据备份方案
- 加密文件系统 (EFS) 的安全性

误删除数据的手工恢复

• 数据手工恢复的两种形式

—硬恢复

- 硬盘出现物理性损伤,导致普通用户不能取出 里面的数据,通过修理硬件的同时保留和恢复 里面的数据

--软恢复

- 硬盘本身没有物理损伤,由于人为或者病毒破坏造成数据丢失,通过软件进行数据恢复
- 本节介绍通过winHex软件进行数据软恢复的方法

误删除数据的手工恢复

• WinHex介绍

- —十六进制编辑软件
- 一完善的分区管理功能和文件管理功能
- —自动分析分区链和文件簇链,对硬盘进行不同方式不同程度的备份,甚至克隆整个硬盘
- —编辑任何一种文件类型的二进制内容
- 一磁盘编辑器可以编辑物理磁盘或逻辑磁盘的任意 扇区

误删除数据的手工恢复

• WinHex主界面

• 可以选择对整个硬盘或者单独的分区进行恢复

• 界面的各部分信息类型

- 通过WinHex查看硬盘的MBR
 - MBR 是位于: 0 扇区 (逻辑扇区), 大小为 512 bytes
 - 一在 MBR 里的后 64 个字节里是磁盘的分区表结构,可定义 4 个分区,每个分区 16 bytes,从 0x1be ~ 0x1fe 共 64 bytes

位置(hex)	大小 (bytes)	描述
000 - 162	354 bytes	硬盘 MBR 引导记录(代码区)
162 - 1BD	92 bytes	MBR 数据区域
1BE - 1CD	16 bytes	分区表 1
1CE - 1DD	16 bytes	分区表 2
1DE - 1ED	16 bytes	分区表 3
1EE - 1FD	16 bytes	分区表 4
1FE - 1FF	2 bytes	MBR 标志(55AA)

• 磁盘分区表结构

位置 (hex)	大小 (bytes)	意义	描述	
1BE	1	分区的启动标志	80 = 可启动分区	
100	1	77 (20)/24/79/103	00 = 不可启动区	
			1BF = heads, 起始 heads (1 个 bytes)	
1BF - 1C1	3	分区的起始扇区	sector, 低 6 bits 表示起始 sector, 这里只用该节字的低 6 bits 来表示 sector	
			cylinder, 1C0 的高 2 btis 加上 1C1 的 8 bits 组成 10 bits 表示起始 cylinder	
1C2	1	文件系统	如: 07 表示 ntfs 系统,详见: <u>文件系统</u>	
1C3 - 1C5	3	分区的结束扇区	其意义和起始扇区一致	
1C6 - 1C9	4	此分区前扇区数	这 4 bytes 表示此分区前有多少扇区(<mark>实际上等于此分区的起始扇区号),</mark> 以 little- endian 排列的。	
1CA - 1CD	4	此分区扇区数	数 这 4 bytes 用来表示此分区共有多少扇区,同样是以 little-endian 排列的。	

• 以第一分区表为例

可启动分区000001BF 000001BE 80 起始 header 号 000001C0 21 起始 sector 号 000001C1 00 起始 cylinder 号000001C2 NTFS格式 000001C3 DF 结束 header 号 000001C4 13 结束 sector 号 000001C5 0C 结束 cylinder 号 000001C6 00080000 此分区前的扇区总数 000001CA 00200300 此分区的扇区总数

- 通过计算就可以转到对应的扇区进行处理
- 在需要编辑的位置右键开始对选块进行选择

• 使用填充数据或者复制剪贴板的数据来对选定的数据块进行修改

Fill with hex values	Passes:	A <u>d</u> d
Simple pseudo-random numbers	Pass #1	De <u>l</u> ete
Range: 0 to 255 (0255)		< 0x <u>0</u> 0
Simulate encrypted data		< <u>D</u> oD
Cryptogr. secure pseudo-random (slow)		. 200

本章内容提要

- 磁盘、分区和卷
- NTFS的恢复支持
- 误删除数据的手工恢复
- 数据备份方案
- 加密文件系统 (EFS) 的安全性

- 数据备份对于个人和企业用户都是至关重要的,数据本身的脆弱性或者丢失或者损坏会直接的威胁到用户的利益
- 目前威胁数据安全的因素
 - 一系统的漏洞
 - —系统的硬件故障
 - —人为的操作失误
 - —供电系统故障
 - —网络的非法访问

- 正常备份模式
 - —优点是可以自动筛选备份文件
 - 一缺点是效率不高,费时
 - 一对需要备份的文件在文件属性中标记为存档,当执行备份操作时,对标记过的文件进行备份操作,备份之后自动取消"存档"属性
 - 一若文件没有被改动过,则在备份时会自动跳过

- 副本备份模式
 - 优点是备份快速
 - 缺点是备份的方式是非智能的
 - 一只是简单的将备份的目标文件复制下来,作为副本添加到备份文件中
 - 采用副本备份模式执行备份操作后,目标文件的"存档"属性不受影响

- 增量备份模式
 - 一优点是有针对性,速度快
 - 一缺点是备份的数据份数较多
 - 一对于需要反复修改的文件比如设计图或者文档等, 增量备份是最佳的备份方式
 - —对发生变化的文件根据修改的顺序依次进行备份

- 差异备份模式
 - --优点是恢复速度快
 - 一缺点是占用空间
 - 一差异备份和增量备份在第一次使用时都需要配合 完整的普通备份,针对新建或修改的文件
 - 一若文件自上次完整备份后曾被更新过,接下来每次做差异备份时,都会被备份,直到下次完整备份
 - —差异备份的大小会随时间不断增加

- 每日备份模式
 - 一优点是无需干预,自动备份
 - 一缺点是占用空间
 - —每日备份模式省去了手动备份重要文件的操作,添加计划任务就可以
 - —每日备份模式的目标是当天创建或修改的文件

- Windows 自带的备份工具
- 在系统的"控制面板"中"备份和还原"选项

中国传探出学

• 备份和还原的主界面,点击"更改设置"进行备份的设置

位置:	(D:)	● 立即輸份(B)
	78.83 GB 可用,共 98.63 GB	
	备份大小: 80.49 MB	
	❤ 管理空间(M)	
下一次备份:	2013/2/24 19:00	
上一次备份:	2013/2/19 16:34	
内容:	库中的文件和所选用户的个人文件夹	
计划:	每星期日的 19:00	
	❤ 更改设置(C)	
可以还原在当前	位置备份的文件。	还原我的文件(R
💡 还原所有用户	的文件(A)	

- 选择备份数据的位置,可以选择上传到网络服务器
- 下一步选择需要备份的目标文件

选择要保存备份的位置 建议将每份保存到外部硬盘上。整份目标选择指常 您希望备份哪些内容? 保存备份的位置(B): 让 Windows 选择(推荐) 备份目标 可用空间 总大小 Windows 将备份保存在库、重图和默认 Windows 文件夹中的数据文件。将定期备份这些项目。 Windows 如何选择要备份的文件? 本地磁盘 (D:) 98.63 GB 78.83 GB 本地磁盘 (E:) 21.41 GB 96.68 GB 让稅远禪 可以远择库和文件夹,以及是否在备份中包含系统映像。将定期备份所远项目。 刷新(R) 保存在网络上(V)...

• 选择备份的数据

您希望备份哪些内容?

选中要包含在备份中的项目对应的复选框。 默认情况下从备份中排除哪些文件?

■ 包括驱动器 系统保留, (C:), (D:) 的系统映像(S)

选定备份位置不支持创建系统映像。

中国传棋日子

• 添加备份计划

您希望多久备份一次?

根据您在下面设置的计划,会将自上次备份后已更改的文件和新创建的文件添加到备份中。

▼ 按计划运行备份(推荐)(S)

频率(H):	毎周
哪一天(W):	星期日 ▼
时间(T):	19:00 ▼

• 备份文件保存在指定的磁盘中

本章内容提要

- 磁盘、分区和卷
- NTFS的恢复支持
- 误删除数据的手工恢复
- 数据备份方案
- ·加密文件系统 (EFS) 的安全性

- EFS的安全性依赖于密码学支持。当一个文件被加密时,EFS为执行此次加密的用户账户分配一对私钥/公钥,以便在加密过程中使用
- 一个文件被加密时,EFS为该文件生成一个随机数,作为文件加密密钥(FEK)
- ·加密算法: DES算法的更强变形
- Windows 2000: DESX
- Windows XP及以上: DESX, 3DES, AES

• 使用windows对话框来加密文件

高级属性
为该文件夹选择您想要的设置。 当您在"属性"对话框中单击"确定"或"应用"时,系统 会询问您是否将这些更改同时应用于所有子文件夹和文件。
存档和索引属性
□ 可以存档文件夹 (A) ☑ 除了文件属性外,还允许索引此文件夹中文件的内容 (I)
压缩或加密属性
□ 压缩内容以便节省磁盘空间(C)
□ 加密内容以便保护数据 (E) 详细信息 (D)
确定

• EFS的架构

- NTFS驱动程序碰到加密文件时,调用EFS的函数,依赖于Advapi32.dll导出的EncryptFile Windows API函数
- LSASS(本地安全权威子系统)不仅负责管理登陆会话,而且处理与EFS密钥相关的杂务, Lsasrv(LSASS的本地安全权威服务器)组件在监听远过程调用 (RPC) 请求,使用CryptoAPI中的函数来解密此FEK
- CryptoAPI包含了密码服务提供者 (CSP) DLL, 使得各种密码服务为应用程序所使用

• EFS信息格式和密钥项格式

• 加密过程

- 一应用程序请求将数据写到一个加密文件中
- -NTFS把数据放在文件系统缓存中
- 一缓存管理器延迟把数据写到磁盘
- —NTFS请求EFS驱动程序,把将要写到磁盘上的文件 内容进行加密
- —NTFS将加密的文件写到磁盘上

• 解密过程

- —NTFS识别加密的文件发送请求到EFS驱动程序
- —EFS返回DDF(数据解密域)传递到EFS服务器
- —EFS服务器返回用户的私钥并解密DDF获得FEK
- —EFS服务器传递FEK到EFS驱动程序
- —EFS驱动程序利用FEK解密程序需要的文件部分

- 加密文件的备份
 - 一备份工具不必具备解密文件数据的能力,在其备份过程中无需解密文件数据
 - 一备份工具使用EFS API函数 OpenEncryptedFileRaw,ReadEncryptedFileRaw,WriteEncryptedFileRaw和CloseEncryptedFileRaw来访问一个文件的加密内容

- 复制加密文件
 - 一当加密文件被复制时,系统并不解密文件再重新加密文件到指定的地址,仅仅拷贝加密的数据和EFS 交换数据流到指定的地址
 - —复制的地址必须支持加密文件格式,如果不支持, EFS交换数据流将丢失,导致文件只能以非加密的 形式被复制

· 实验一通过界面EFS加密文件

test.txt		2012/2// 11:32	文本文档	0 KB
	查看(V)	,		
	排序方式(O)	→		
	分组依据(P)	→		
	刷新(E)			
	MOSTI(L)			
	自定义文件夹(F)			
	彩占別占(P)			
	粘贴快捷方式(S)			
	撤消 重命名(U)	Ctrl+Z		
	共享(H)	→		
5	共享文件央同步	→		
	新建(W)	·		
r	属性(R)			
	112124			

• 点击"高级"按钮

test.txt 厘包	± X
常规 安全	详细信息 以前的版本
	test. txt
文件类型:	文本文档(txt)
打开方式:	■ 记事本 更改(C)
位置:	D:\test
大小:	0 字节
占用空间:	0 字节
创建时间:	2013年2月4日,11:32:43
修改时间:	2013年2月4日,11:32:43
访问时间:	2013年2月4日,11:32:43
属性:	□ 只读 (B) □ 隐藏 (H) □ 高級 (D)
	确定 取消 应用(A)

• 在"加密内容以便保护数据"选项前勾选

高級属性	
□ 为该文件夹选择您想要的设置。	
文件属性	
☑ 可以存档文件 (A) ☑ 除了文件属性外,还允许索引此文件的内容 (E)	
压缩或加密属性	
□ 压缩内容以便节省磁盘空间(C)	
☑ 加密内容以便保护数据(E) 详细信息(D)	
确定 取消	

• 点击确定后,根据需求选择加密的方式,点击"确定"

加密警告	X
<u> </u>	正在加密处于未加密文件夹中的某个文件。如果此文件被修 改,编辑软件可能会存储一个临时的、未加密的文件副本。 若要确保在父文件夹中创建的文件被加密,请加密父文件 夹。
	您希望做什么?
	○ 加密文件及其父文件表 (推荐) (P)◎ 只加密文件 (B)
□ 始约	冬只加密文件 (A)

• 加密后的文件颜色发生变化

名称	修改日期	类型	大小
test.txt	2013/2/4 11:32	文本文档	0 KB

• 实验二备份文件加密证书和密钥

• 证书导出,选择导出的格式

导出向导	凡允净加工本 。
导出文件格 可以用 ²	式 不同的文件格式导出证书。
选择要任	使用的格式:
01	ER 编码二进制 X.509(CER)(D)
O 2	Saxe64 编码 X.509 (.CER.) (S.)
© t	加密消息语法标准 - PRCS #7 证书(.P7B)(C)
[□如果可能,则数据包括证书路径中的所有证书(I)
@ ·	个人信息交換 - PNCS #12(FPX)(P)
[■ 如果可能,则数据包括证书路径中的所有证书(U)
[□ 如果导出成功,静除私钥 (x)
	□ 导出所有扩展属性 (A)
01	ticrosoft 序列化证书存储(SST)(T)
了解证书文	性格式的详细信息
	(上一步(0)) 下一步(0) > 取消

• 填写密码和导出证书的文件名

证书导出向导	证书导出向导
密码 要保证安全,您必须用密码保护私钥。	要导出的文件 指定要导出的文件名。
輸入并确认密码。 密码(P): (XXX) 輸入并确认密码(必需)(C): ●●●●	文件名(F): text 浏览(B)
〈上一步 ②)下一步 ③) 〉 取消	〈上一步(8) 下一步(8) 〉 取消

• 导出的证书文件

• 实验三导入备份的加密密钥

• 导入选择的证书文件

要导入的	9 文件 妻导入的文件。			
-	名(7):		Charles	_
360	Vzerz\doczati ago\Doc	uments\test.piz	浏览 (8)	
注题	: 用下列格式可以在一	个文件中存储一个以上证书:		
-	ト人信息交換- PBCS #1	2 (. PFX, . P12)		
t	I密消息语法标准- FSC	S #7 证书(P7B)		
	ierosoft 序列化证书符	F値(SST)		
了解证	文件格式的详细信息			
		〈上一步 (3) [7	- 45 on 3 P	EŘ.

• 输入导出时输入的密码, 选择证书导入的位置

E书导入向导	X
黎码 为了保证安全,已用密码保护私钥。	
为私钥键入密码。	
密码 (P):	
□ 倉用强私網保护。如果启用这个选项,每次应用程序使用私铜时,您都会 得到提示(E)。	
■ 标志此密網为可导出的密網。这將允许您在稱后备份或倚輪密網 (M)。	
☑ 包括所有扩展属性 (A) ÷	
了解保护私籍的更多信息	
〈上一步(3) 下一步(6) 〉 取消	

《者恁可以为证书指定一个位置。
存储(0)
)
测览 (6)
(100,000)

• 确定设置无误后,点击"完成"

