Depth Estimation with Monocular Camera

Camera Calibration

Output:

One intrinsic camera parameter (*A* or *K*), and *n* extrinsic camera parameters (*R* and *T*)

OpenCV: solvePnP

Finds an object pose from 3D-2D point correspondences.

C++: bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int flags=ITERATIVE)

Camera Calibration among Cameras

Estimating depth with stereo

- Stereo: shape from "motion" between two views
- What we need:
 - Info on camera pose ("calibration")
 - Image point correspondences

Depth Estimation with Monocular Camera

• To estimate depth, one camera seems not enough

Depth Estimation with Monocular Camera

- To estimate depth, one camera seems not enough
- But, for some applications, it will become possible ex. ADAS:
 - Relative pose of cameras to the ground plane is fixed
 - The objects (vehicles or pedestrians) must be on the ground plane

Figure 2: Schematic diagram of the imaging geometry (see text).

- Assume camera is calibrated. $s\widetilde{m} = A[R \mid t]M$
- 1. find the intersection of a ray and the ground plane
 - transform a 2D point in image to a 3D ray (with intrinsic parameters)
 - find the intersection (a 3D point) of the ray and the ground plane (with extrinsic parameters)

• Assume camera is calibrated.

$$S \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- 2. using homography between image plane and the ground plane
 - estimate the homography with at least 4 points
 - transform the coordinate in image to the coordinate on the 3D ground plane

• Assume camera is calibrated.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- 2. using homography between image plane and the ground plane
 - estimate the homography with at least 4 points
 - transform the coordinate in image to the coordinate on the 3D ground plane

- Assume camera is calibrated.
- 3. using image geometry for dash cam (Mobileye)

$$Z = \frac{fH}{y}$$

Error Analysis

 3. using image geometry for dash cam (Mobileye)

The error in range Z_{err} due to an error of n pixels in location of the contact point is:

$$Z = \frac{fH}{y}$$

$$Z_{err} = Z_n - Z = \frac{fH}{y+n} - Z = \frac{fH}{\frac{fH}{Z} + n} = \frac{nZ^2}{fH + nZ}$$
 (3)

Typically $n \approx 1$ and fH >> nZ so we get:

$$Z_{err} \approx \frac{nZ^2}{fH}$$
 (4)