Sage Reference Manual

Release 7.2

The Sage Development Team

CONTENTS

1	User Inter	face	3		
2	Graphics				
3	Mathemat	ics	7		
	3.1 Pare	nts, Elements and Categories	7		
	3.2 Stan	dard Rings and Fields	7		
	3.3 Line	ar Algebra	7		
	3.4 Othe	r Algebraic Structures	7		
	3.5 Disc	rete Mathematics	8		
	3.6 Calc	ulus	8		
	3.7 Geor	metry and Topology	8		
	3.8 Num	ber Theory, Algebraic Geometry	8		
	3.9 Logi	с	9		
	3.10 Prob	ability and Statistics	9		
	3.11 Misc	rellaneous	9		
4	Programm	ing	11		
		faces	11		
5	Conseq Information				

Welcome to Sage's Reference Manual!

This manual is a thematic index of all of Sage's features. It also contains many examples that illustrate their use, all of them systematically tested with each release.

Enjoy Sage!

CONTENTS 1

2 CONTENTS

ONE

USER INTERFACE

- Command Line Interface (REPL)
- Web Notebook

TWO

GRAPHICS

- 2D Graphics
- 3D Graphics

THREE

MATHEMATICS

3.1 Parents, Elements and Categories

- · Basic Infrastructure
- Coercion
- · Categories
- Base Classes for Rings and Related Objects

3.2 Standard Rings and Fields

- Integers, Rationals, etc.
- Real and Complex Numbers
- Finite Rings and Fields
- Algebraic Numbers
- Polynomials
- Formal Power Series
- Function Fields
- p-Adic Numbers
- Quaternion Algebras

3.3 Linear Algebra

- Matrices and Spaces of Matrices
- Vectors and Modules
- Tensors on free modules of finite rank

3.4 Other Algebraic Structures

• Monoids

- Groups
- · Semirings
- Algebras

3.5 Discrete Mathematics

- · Combinatorics
- · Graph Theory
- Quivers
- · Matroid Theory
- · Discrete Dynamics
- · Coding Theory
- Game Theory

3.6 Calculus

- Symbolic Calculus
- Mathematical Constants
- · Elementary and Special Functions
- Asymptotic Expansions (experimental)

3.7 Geometry and Topology

- · Combinatorial Geometry
- · Cell Complexes and their Homology
- · Differential Forms
- · Manifolds
- · Parametrized Surfaces
- Knot Theory

3.8 Number Theory, Algebraic Geometry

- Diophantine approximation
- Quadratic Forms
- L-Functions
- Schemes
- Elliptic, Plane, and Hyperelliptic Curves

- Arithmetic Subgroups of SL_2(Z)
- General Hecke Algebras and Hecke Modules
- Modular Symbols
- Modular Forms
- Modular Forms for Hecke Triangle Groups
- Modular Abelian Varieties
- Miscellaneous Modular-Form-Related Modules

3.9 Logic

- Symbolic Logic
- SAT solvers

3.10 Probability and Statistics

- Probability
- Statistics
- Quantitative Finance

3.11 Miscellaneous

- Cryptography
- Numerical Optimization
- Databases
- Games

3.9. Logic 9

FOUR

PROGRAMMING

- Data Structures
- Utilities
- Test Framework
- Parallel Computing

4.1 Interfaces

- Interpreter Interfaces
- C/C++ Library Interfaces

FIVE

GENERAL INFORMATION

- History and License
- genindex
- modindex
- search

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.