

Automatic Control

PID CONTROL APPLICATION - OPEN-SOURCE AUTOPILOT

How can we apply?

Another formulation of PID Control [1]

- PID control = serial connection of PI control and PD control
 - To design PID control, we can design PI and PD control separately.

Another formulation of PID Control [2]

+: 비례 이득 결정 후, 적분/미분 이득은 이에 대한 비율로 결정 가능

$$D(s) = K_p + \frac{K_I}{s} + K_D s = K_p (1 + \frac{1}{T_i s} + T_d s)$$
where $T_i = \frac{K_p}{K_I} \& T_d = \frac{K_D}{K_p}$

Example: Open-source autopilot SW "Ardupilot"

- Simple Overview of ArduPilot Operation
 - https://ardupilot.org/copter/docs/common-basic-operation.html

Example: Open-source autopilot SW "Ardupilot"

https://ardupilot.org/copter/docs/tuning.html

A block diagram of multicopter attitude control

Example: Open-source autopilot SW "Ardupilot"

- https://ardupilot.org/copter/docs/tuning.html
- 멀티콥터형 VTOL: 각 축의 K_p에 대한 K_D와 K_I의 상대적 비율 확인!

Example: Open-source autopilot SW "Ardupilot"

- https://ardupilot.org/plane/docs/tuning-quickstart.html
- 고정익 (Plane): 각 축의 K_p에 대한 K_D와 K_I의 상대적 비율 확인!

Example: Open-source autopilot SW "PX4"

- Multicopter Control Architecture
 - https://docs.px4.io/main/en/flight_stack/controller_diagrams.html

Example: Open-source autopilot SW "PX4"

- Multicopter Angular Rate Controller
 - https://docs.px4.io/main/en/flight_stack/controller_diagrams.html

Example: Open-source autopilot SW "PX4"

- Multicopter Angular Rate Controller
- PI-D control: 피드백 신호에만 미분 동작 수행 (PID 제어기 변형)
 - 기준 신호에 대해 미분 X → 미분 폭주 회피

[그림 6-45] PI-D 제어

$$u(t) = K_p \left[\beta r(t) - y(t) + \frac{1}{T_i} \int e(t) dt - T_d \frac{d}{dt} y_f(t) \right]$$

❖ Example: Open-source autopilot SW "PX4"

- https://docs.px4.io/main/ko/config mc/pid tuning guide multicopter basic.html
- 멀티콥터형 VTOL: K_p 에 대한 K_D 와 K_T 의 상대적 비율/최대치 확인!

Example: Open-source autopilot SW "PX4"

https://docs.px4.io/main/ko/config_mc/pid_tuning_guide_multicopter_basic.html

The PID values can be adjusted as follows:

- P (proportional) or K gain:
 - increase this for more responsiveness
 - reduce if the response is overshooting and/or oscillating (up to a certain point increasing the D gain also helps).
- D (derivative) gain:
 - this can be increased to dampen overshoots and oscillations
 - increase this only as much as needed, as it amplifies noise (and can lead to hot motors)
- I (integral) gain:
 - used to reduce steady-state error
 - if too low, the response might never reach the setpoint (e.g. in wind)
 - if too high, slow oscillations can occur

https://images.app.goo.gl/RHjKcJDWGgi4hKBp7

Automatic Control

ANTI-WINDUP CONTROL (적분 누적 방지법)

Integrator Anti-windup (적분 누적 방지)

❖ 적분제어의 문제점

- 대부분의 시스템에서 구동기의 입력값에 한계 존재
- 계속되는 적분 과정으로 한계값 이상의 입력이 요구
 - 입력 포화 → 적분 제어 중지 → 과도응답이 느려지는 현상 발생

❖ 적분 누적 방지 원리

■ 제어 신호와 구동기 신호의 차이를 피드백 하여 제어 → 적분 누적 방지

[그림 6-41] 적분 누적 방지를 위한 제어기

$$u_{c} = -\frac{K_{a}}{s\,T_{i}}(\,u_{c} - u\,) + \left(1 + \frac{1}{s\,T_{i}}\,\right)\!K_{p}e$$

[참고] 한수희 외, 실감나게 배우는 제어공학, 한빛아카데미

Integrator Anti-windup (적분 누적 방지)

❖ 예제

■ 적분기 시스템에 대하여 anti-windup을 위한 피드백을 설계하시오.

[그림 6-42] 적분 누적 방지를 위한 적분기

[그림 6-43] 계단 응답에 나타난 적분 누적 방지 효과

▶ K가 클수록 제어입력 포화 시간 감소

[그림 6-44] 제어 입력에 나타난 적분 누적 방지 효과

Integrator Anti-windup (적분 누적 방지)

❖ [IFAC] Newsletter - April 2024

Fabulous Control Cartoon

We are pleased to share the second control cartoon in 2024.

It reminds us **not to underestimate windup** in PID control. ;-)

Many thanks to Brian Douglas for preparing the cartoon and for supporting its distribution by IFAC.

<u>https://www.ifac-</u> <u>control.org/publications/cartoons</u>

9. PID Control Integrator Anti-windup (적분 누적 방지)

Another my favorite cartoon

2nd Order Response Curves

It turns out settling time depends on the dynamics of the system and ink viscosity

Summary

9. PID Control

PID control application - open-source autopilot

- Another formulation of PID control
- Intro to PID gain setup & tuning for open-source autopilot SW (Ardupilot/PX4)

Integrator Anti-windup

- 구동기는 항상 제한 범위가 있다!
 - → 구동기 제한 시 **적분기에 대한 입력** 줄여주자!

Thank You!

Automatic Control

