Project Design Phase-II

Solution Requirements (Functional & Non- functional)

Date	6.11.2022
Team ID	PNT2022TMID46328
Project Name	Estimation of crop yield using data analytics
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Uploading the dataset	In this project we have uploaded crop_production dataset. Display the Manage Uploads page for the Data Set that will receive the data
FR-2	Preparation of dataset	Data collection. Relevant data is gathered from operational systems, data warehouses, data lakes and other data sources. • Uploading data.(dataset) • Cleaning data (prepare data). • Analysing and interpreting (exploration). • Visualizing data (dashboard creation).
FR-3	Exploratory Data Analysis	Exploratory Data Analysis (EDA) is an approach to analyze the data using visual techniques. It is used to discover trends, patterns, or to check assumptions with the help of statistical summary and graphical representations.
FR-4	Building a ML model	 Contextualize machine learning in your organization. Explore the data and choose the type of algorithm. Prepare and clean the dataset. Split the prepared dataset and perform cross validation. Perform machine learning optimization. Deploy the model.
FR-5	Model Evaluation	Model evaluation is the process of using different evaluation metrics to understand a machine learning model's performance, as well as its strengths and weaknesses. Model evaluation is important to assess the efficacy of a model during initial research phases, and it also plays a role in model monitoring

FR-6	Data Pre-Processing	Data preprocessing, a component of data preparation, describes any type of processing performed on raw data to prepare it for another data processing procedure. It has traditionally been an important preliminary step for the data mining process. The dataset consists of attributes Moisture, rainfall,
		Average, Humidity, Mean Temp, max Temp, Min temp, alkaline, sandy, chalky, clay, millet, yield, Outcomes. We
		will be using the .csv to perform the pre-processing.
FR-7	Prediction Output	Predictive analytics is the process of using data analytics to make predictions based on data. This process uses data along with analysis, statistics, and machine learning techniques to create a predictive model for forecasting future events.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Its easy to understand the yields crop production dats.
		It helps the farmers to monitor the health of the crops in
		real time, create predictive analysis related to future yield.
NFR-2	Security	Data security functions to prevent data breaches, reduce
		risk of data exposure and ensure the ongoing safe and
		secure use of private data by minimizing exposure risk.
NFR-3	Reliability	The reliability of the data determines whether or not
	_	businesses can make good decisions with it. If the data is
		unreliable, It cannot be trusted, which makes it useless to
		the organizations
NFR-4	Performance	Regularly evaluating the performance of our organization
		can help us understand how much progress we're making
		toward our goals. A performance analysis is a tool you can
		use to check important metrics of crop yield for very month
		or year and make plans for adjustment and improvement.
NFR-5	Availability	Data availability in crop yield prediction is a term used by
		computer storage, manufacturers and storage service
		providers to describe how data should be available at the
		required level of performance in situations of predicting
		data used for crop yield ranching from normal through
		disastrous.

NFR	k-6	Scalability	The use of technology in agriculture has increased in
			recent year and data analytics is one such trend that has
			penetrated into the agriculture field being used for
			management of crop yield and monitoring crop health.