Computational Statistics - Lab 03

Annalena Erhard (anner218) and Maximilian Pfundstein (maxpf364) 2019-01-26

Contents

1	Question 1: Cluster Sampling	1
2	Question 2: Different distributions	4
3	Source Code	5

1 Question 1: Cluster Sampling

An opinion pool is assumed to be performed in several locations of Sweden by sending interviewers to this location. Of course, it is unreasonable from the financial point of view to visit each city. Instead, a decision was done to use random sampling without replacement with the probabilities proportional to the number of inhabitants of the city to select 20 cities. Explore the file population.xls. Note that names in bold are counties, not cities.

Task: Import necessary information to R.

Municipality	Population
Botkyrka	81195
Danderyd	31150
Ekerö	25095
Haninge	76237
Huddinge	95798
Järfälla	65295

Task: Use a uniform random number generator to create a function that selects 1 city from the whole list by the probability scheme offered above (do not use standard sampling functions present in R).

```
# Implementation Max
seed = 12345

get_city_by_urn_wo = function(city_pool) {

    # We take the cumulative sum and then runif from 1 to max(cumulative sum).

    # This way we respect the proportions. As we need every intermediate result,

    # we use a loop
    cumulative_pop_sum = 0

for (i in 1:nrow(city_pool)) {
        cumulative_pop_sum = cumulative_pop_sum + city_pool$Population[i]
        city_pool$CumSum[i] = cumulative_pop_sum
    }

# Now we get a random value between 1 to max(cumulative sum). As larger muni-
```

```
# cipalities have larger ranges, this works as expected
selection =
   floor(runif(n = 1, min = 1, max = city_pool$CumSum[nrow(city_pool)]))

# Return the first city which has a greater CumSum than the selection
return(city_pool[city_pool$CumSum > selection,][1, c(1, 2)])
}
```

Task: Use the function you have created in step 2 as follows:

- a. Apply it to the list of all cities and select one city
- b. Remove this city from the list
- c. Apply this function again to the updated list of the cities
- d. Remove this city from the list
- e. ... and so on until you get exactly 20 cities.

Answer: We will combine all of these steps in one function. We're lazy.

```
get_n_cities = function(data, n) {

# Create a copy to not touch the original data.
city_pool = data
selected_cities = data.frame()

# As long as we don't have n samples, get one and remove it from the pool,
# as we sample without replacement
while(nrow(selected_cities) < n) {
    selected_city = get_city_by_urn_wo(city_pool)
    selected_cities = rbind(selected_cities, selected_city)
    city_pool = city_pool[!rownames(city_pool) %in% rownames(selected_cities),]
}

return(selected_cities)
}
sample = get_n_cities(data, 20)</pre>
```

Task: Run the program. Which cities were selected? What can you say about the size of the selected cities?

Answer:

The following cities were selected:

```
##
       Municipality Population
## 115
         Simrishamn
                          19328
          Östersund
## 261
                          59136
## 89
          Västervik
                          36290
## 150
            Härryda
                          34007
## 253 Örnsköldsvik
                          55128
## 20
                          63014
               Täby
## 285
              Luleå
                          73950
## 34
          Östhammar
                          21391
## 4
            Haninge
                          76237
## 182
               Åmål
                          12434
## 269
         Skellefteå
                          71770
## 43
           Vingåker
                           8911
## 39
           Nyköping
                          51209
```

##	1	Botkyrka	81195
##	125	Åstorp	14667
##	229	Malung-Sälen	10408
##	221	Västerås	135936
##	8	Nacka	88085
##	124	Ystad	28109
##	16	Stockholm	829417

It can be seen, that mostly cities with a population greater than the mean (32009.25) were drawn.

Task : Plot one histogram showing the size of all cities of the country. Plot another histogram showing the size of the 20 selected cities. Conclusions?

Histogram of selected cities

Histogram of all cities

Answer: We see that both histograms have a similar shape. This means that our sampling function is taking the size of the city into account and we created a similar distribution with a smaller subset. That is exactly what we needed to perform the opinion pool.

2 Question 2: Different distributions

The double exponential (Laplace) distribution is given by formula

$$DE(\mu,\alpha) = \frac{\alpha}{2}e^{-\alpha|x-\mu|}$$

Task: Write a code generating double exponential distribution DE(0,1) from Unif(0,1) by using the inverse CDF method. Explain how you obtained that code step by step. Generate 10000 random numbers from this distribution, plot the histogram and comment whether the result looks reasonable.

Answer: What we are going to do is we sample from unif(0,1) and take the results and put it into the quantile function of DE(0,1). As we take the definition from Laplace Distribution (Wikipedia) for the quantile function we have to keep in mind that $\alpha = \frac{1}{b}$. As we want to use this for any function, we will take any quantile function as in input to our function. Let's first define our quantile function with $\mu = 0$, $\alpha = 1$ and thus $b = \frac{1}{1} = 1$ as well:

$$Q(p) = F^{-1}(p) = \mu - b * sng(p - 0.5) * ln(1 - 2|p - 0.5|)$$

With the above defined variables we obtain:

$$Q(p|\mu, b) = Q(p|0, 1) = -sng(p - 0.5) * ln(1 - 2|p - 0.5|)$$

Where sgn is the Sign Function (Wikipedia).

Task: Use the Acceptance/rejection method with DE(0,1) as a majorizing density to generate $\mathcal{N}(0,1)$ variables. Explain step by step how this was done. How did you choose constant c in this method? Generate 2000 random numbers $\mathcal{N}(0,1)$ using your code and plot the histogram. Compute the average rejection rate R in the acceptance/rejection procedure. What is the expected rejection rate ER and how close is it to R? Generate 2000 numbers from $\mathcal{N}(0,1)$ using standard rnorm() procedure, plot the histogram and compare the obtained two histograms.

3 Source Code

```
knitr::opts_chunk$set(echo = TRUE, cache = FALSE, include = TRUE, eval = TRUE)
library(knitr)
library(readxl)
library(ggplot2)
# reading the data in -----
data = read.csv("population.csv", sep = ";", encoding = "latin1")
kable(head(data))
# Implementation Max
seed = 12345
get_city_by_urn_wo = function(city_pool) {
 \# We take the cumulative sum and then runif from 1 to max(cumulative sum).
 # This way we respect the proportions. As we need every intermediate result,
 # we use a loop
 cumulative_pop_sum = 0
 for (i in 1:nrow(city_pool)) {
   cumulative_pop_sum = cumulative_pop_sum + city_pool$Population[i]
    city_pool$CumSum[i] = cumulative_pop_sum
 }
 # Now we get a random value between 1 to max(cumulative sum). As larger muni-
 # cipalities have larger ranges, this works as expected
 selection =
   floor(runif(n = 1, min = 1, max = city_pool$CumSum[nrow(city_pool)]))
 # Return the first city which has a greater CumSum than the selection
 return(city_pool[city_pool$CumSum > selection,][1, c(1, 2)])
}
# Comments:
# - Why n if the function is supposed to select one?
# - This does not take into account that cities with a bigger population are more
```

```
# likely to be selected
# - round() somestimes rounds downwards, sometimes upwards, for correct partitioning
# floor() or ceil() is better
# - Setting the seed for each drawing will result in the same number every time
# if the external seed supplier does not change it!
sample_wo_replacement = function(n, data, seed){
  samples = numeric()
  i = 1
  while (length(samples) < n) {</pre>
   set.seed(seed)
    a = round(runif(n = 1, min = 1, max = nrow(data)))
    while (a %in% samples) {
       set.seed(seed)
       a = round(runif(n = 1, min = 1, max = nrow(data)))
     samples[i] = a
     i = i+1
 }
 return(samples)
}
get_n_cities = function(data, n) {
  # Create a copy to not touch the original data.
  city_pool = data
  selected_cities = data.frame()
  # As long as we don't have n samples, get one and remove it from the pool,
  # as we sample without replacement
  while(nrow(selected_cities) < n) {</pre>
   selected_city = get_city_by_urn_wo(city_pool)
   selected_cities = rbind(selected_cities, selected_city)
   city_pool = city_pool[!rownames(city_pool) %in% rownames(selected_cities),]
  }
 return(selected_cities)
}
sample = get_n_cities(data, 20)
city_pool = data
selected_cities = data.frame()
selected_city_id = sample_wo_replacement(1, all_cities, 12345)
selected_cities = rbind(city_pool[selected_city_id,])
city_pool = all_cities[-selected_city,]
```

```
while (length(selected_cities) < 21) {
    selected_city_id = sample_wo_replacement(1, all_cities, 12345)
    all_cities = all_cities[-selected_city,]
    selected_cities = c(selected_cities, selected_city)
}

print(selected_cities)

sample

ggplot(sample)+
    geom_histogram(aes(x = Population), bins = nrow(sample), color = "black", fill = "#FFC300") +
    ggtitle("Histogram of selected cities")

ggplot(data)+
    geom_histogram(aes(x = Population), bins = nrow(data), color = "#FFC300", fill = "#FFC300") +
    ggtitle("Histogram of all cities")</pre>
```