CLAIMS

What is claimed is:

1. A compound of formula 1:

wherein

5

10

15

20

25

n is 1 or 2;

m is 1 or 2;

R¹ is H, (Ci_{-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, wherein each of said (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl are optionally substituted with from one to three halogen atoms;

R² is selected from -CH₂-R²⁰, -NH-R²⁰, -O-R²⁰, -S-R²⁰, -SO-R²⁰, -SO₂-R²⁰, -CH₂O-R²⁰, and -O-X-R²⁰, wherein

X is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (Ci_{-3}) alkyl; and

R²⁰ is (C₆ or Cio)aryl or **Het**, wherein said (C₆ or C₁₀)aryl or **Het** is optionally substituted with R²⁰⁰; wherein

 R^{200} is one to four substituents each independently selected from H, halogen, cyano, $(\mathsf{C}_{1.6})\mathsf{alkyl},\ (\mathsf{C}_{3.7})\mathsf{cycloalkyl},\ \mathsf{aryl-(C}_{1.6})\mathsf{alkyl-,}$ aryl, **Het**, oxo, thioxo, -OR 201 , -SR 201 , -SOR 201 , -SO $_2\mathsf{R}^{201}$, -N(R $^{202})\mathsf{R}^{201}$, and -CON(R $^{202})\mathsf{R}^{201}$; wherein each of said alkyl, cycloalkyl, aryl and **Het** is optionally further substituted with **p2000**.

R²⁰¹ in each case is independently selected from H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, aryl, -CO-(Ci₋₆)alkyl and -CO-O-(C₁₋₆)alkyl, wherein each of said alkyl and aryl is optionally further substituted with R²⁰⁰⁰;

 R^{202} in each case is independently selected from H and (C_{1-6})alkyl; R^{2000} in each case is one to three substituents each independently selected from halogen, aryl, Het, -OR 2001 , -SR 2001 , -SOR 2001 , -SO $_2$ R 2001 , cyano, -N(R 2002)(R 2001), and R 2003 , wherein said aryl

and **Het** are optionally substituted with one, two or three substituents each independently selected from (C_{1-6}) alkyl and $-O-(C_{1-6})$ alkyl;

 R^{2001} in each case is independently selected from aryl, aryl-(C ₁₋₆)alkyl-, -C(O)-R ²⁰⁰³, -C(O)O-R ²⁰⁰³, -CON(R ²⁰⁰²X R²⁰⁰⁴) and R²⁰⁰⁴;

 R^{2002} in each case is independently selected from H and (C_{1-8}) alkyl; R^{2003} in each case is independently selected from (C_{1-8}) alkyl,

 (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl-(C-].₄)alkyl- are each optionally substituted with one to three substituents each independently selected from (C_{1-3}) alkyl; and

R²⁰⁰⁴ in each case is independently selected from H and R²⁰⁰³;

R³ is (C₁₋₈)alkyl, (C₃₋₇)cycloalkyl or (C₃₋₇)cycloalkyl-(C₁₋₃)alkyl-, each optionally substituted with one or more substituents each independently selected from (C₁₋₆)alkyl, (C₂₋₆)alkenyl, halogen, cyano, -OR³⁰, -SR³⁰, -C(=O)OR³⁰, -C(=O)NH₂, -C(=O)NH(C₁₋₆)alkyl, -C(=O)N((C₁₋₆)alkyl)₂, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, aryl, and aryl(Ci₁₋₆)alkyl-, wherein R³⁰ is H, (C₁₋₆)alkyl, aryl, or aryl(Ci₁₋₆)alkyl-; is selected from B, B-C(=O)-, B-O-C(=O)-, B-N(R⁵¹)-C(=O)-; B-N(R⁵¹)-C(=S)-, B-SO₂ and B-N(R⁵¹)-SO₂; wherein B is selected

- (i) (C₁₋io)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO^^alkyl, -OH, halogen, -OC(=O)(C₁₋₆)alkyl, -O(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂;
- (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- $(C_{1\cdot4})$ alkyl-, each optionally substituted with one or more substituents each selected independently from (Ci_{-6}) alkyl, halogen, -COOH, -COO(C₁₋₆)alkyl, -OH, -O(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂;
- (iii) aryl or aryl(d ₋₆)alkyl-, each optionally substituted with one or more substituents each selected independently from (Ci₋₆)alkyl,

10

15

20

from:

25

15

20

25

30

-OH, -NH ₂ , -NH(C ₁₋₆)alkyl, -N((C ₁₋₆)alkyl) ₂ , -C(=O)NH ₂ ,
-C(=O)NH(C $_{1-6}$)alkyl and -C(=O)N((C $_{1-6}$)alkyl) $_2$;
The surface (Ot) and the second of the seco

- (iv) Het or Het-(Ci _6)alkyl-, each optionally substituted with one or more substituents each selected independently from (C-t_6)alkyl, -OH, -NH₂, -NH(C ₁₋₆)alkyl, -N((C ₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C ₁₋₆)alkyl and -C(=O)N((Ci _6)alkyl)₂; and
- (v) (C_{2'6})alkenyl, or (C₂₋₆)alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

R⁵¹ is selected from H and (C₁₋₆)alkyl;

10 Y is H or (C_{1-6}) alkyl;

R⁴ and R⁶ are each independently selected from H, $(C_{1.6})$ alkyl, -O- $(C_{1.6})$ alkyl, $(C_{3.7})$ cycloalkyl, $(C_{3.7})$ cycloalkyl- $(Ci_{.6})$ alkyl-, aryl, **Het**, and aryl- $(Ci_{.6})$ alkyl-; wherein said $(C_{1.6})$ alkyl, -O- $(C_{1.6})$ alkyl, $(C_{3.7})$ cycloalkyl- $(Ci_{.6})$ alkyl-, aryl and aryl- $(C_{1.6})$ alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, $(C_{1.6})$ alkyl, hydroxy, cyano, O- $(C_{1.6})$ alkyl, $-NH_2$, $-NH(C_{1.4})$ alkyl, $-N((C_{1.4})$ alkyl)₂, -CO- NH_2 , -CO- $NH(C_{1.4})$ alkyl, -CO- $NH(C_{1.4})$ alkyl)₂, -CO- NH_2 , -CO- $NH(C_{1.4})$ alkyl, or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (Ci₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(Ci₋₆)alkyl;

with the proviso that when:

R⁵ is B-O-C(=O)- or B-N(R^{s1})-C(=O)-, wherein
R⁵¹ is H; and
B is selected from (Ci.i _Oalkyl, (C₃₋₇)cycloalkyl, and
(C₃₋₇)cycloalkyl-(C₁₋₄)alkyl,

10

15

20

- a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, di- or tri-substituted with (d _a)alkyl; and
- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono- or di-substituted with substituents selected from hydroxy and O-(C_{1.4})alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or trisubstituted with halogen; and
- d) wherein in each of said cycloalkyl groups being A-, 5-, 6- or 7-membered, one (for the A-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered) -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the Oatom is linked to the -O-C(=O) or -N(R51)-C(=O) group via at least two carbon atoms; and

R2 is O-R20: then

R20 cannot be

wherein

 R^{200a} is H, halogen, (C₁₋₄)alkyl, -OH, -O-(C ₁₋₄)alkyl, -NH ₂, -NH(C ₁₋₄)alkyl or-N((C 1-4)alkyl) 2;

 R^{200b} , R^{200c} are each independently halogen, cyano, (C_{14}) alkyl, -O-(C $_{1-4}$)alkyl, -S-(C $_{1-4}$)alkyl, -SO-(C $_{1-4}$)alkyl, or -SO $_2$ -(C $_{1-4}$)alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either R200b or R200c (but not both at the same time) may also be H; or

R^{200a} and R^{200b} or

 R^{200a} and R^{200c} may be covalently bonded to form, together with the two C-atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH 2-groups not being directly linked to each other may be replaced each independently by -O- or NRa wherein Ra is H or (C14)alkyl, and

30

15

25

30

wherein said carbo- or heterocyclic ring is optionally mono- or di-substituted with (C₁₋₄)alkyl; and

 $_{\rm R}$ $^{2}_{\rm 00003}$ $_{\rm js}$ $_{\rm R}$ $^{2}_{\rm 0003}, -N({\rm R}$ $^{2}_{\rm 0002}){\rm COR}$ $^{2}_{\rm 0003}, -N({\rm R}$ $^{2002})({\rm R}$ $^{$

5 R²⁰⁰² is H or methyl;

R²⁰⁰³ is (Ci ₋₈)alkyl, (C₃₋₇)cycloalkyl or (C₃₋₇)cycloalkyl-(C ₁₋₄)alkyl-, wherein said (C₃₋₇)cycloalkyl and (C₃₋₇)cycloalkyl-(C ₁₋₄)alkyl- are optionally mono-, di-, or tri-substituted with (C ₁₋₃)alkyl; and R²⁰⁰⁴ is H or R²⁰⁰³;

wherein Het is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic; or a diastereomer thereof or a salt thereof.

2. The compound according to claim 1 wherein

n is 1 or 2;

20 m is 1 or 2;

R1 is H_1 (Ci₋₆)alkyl, (C₂₋₆)alkenyl, or (C₂₋₆)alky nyl, wherein each of said (C₁₋₆)alkyl, (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl are optionally substituted with from one to three halogen atoms;

R2 is selected from -CH $_2$ -R20, -NH-R $_2$ 0, -O-R $_2$ 0, -S-R $_2$ 0, -SO-R $_2$ 0, -SO $_2$ -R20, -CH $_2$ O-R $_2$ 0, and -O-X-R $_2$ 0, wherein

X is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and

 $\rm R^{20}$ is (C $_{6}$ or Cio)aryl or Het, wherein said (C $_{6}$ or Cio)aryl or Het is optionally substituted with $\rm R^{200}$; wherein

R²⁰⁰ is one to four substituents each independently selected from H, halogen, cyano, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl-(C₁₋₆)alkyl-, aryl, Het, oxo, thioxo, -OR ²⁰¹, -SR ²⁰¹, -SOR ²⁰¹, -SO $_2$ R²⁰¹, -N(R ²⁰²)R²⁰¹, and -CON(R ²⁰²)R²⁰¹; wherein each of said alkyl, cycloalkyl, aryl and Het is optionally further substituted with n²⁰⁰⁰.

		R ²⁰¹ in each case is independently selected from H, (C ₁₋₆)alkyl,				
		(C_{2-6}) alkenyl, aryl, -CO- (C_{1-6}) alkyl and -CO-O- (C_{1-6}) alkyl,				
		wherein each of said alkyl and aryl is optionally further				
		substituted with R ²⁰⁰⁰ ;				
5		R ²⁰² in each case is independently selected from H and (C _{1-e})alkyl;				
		R ²⁰⁰⁰ in each case is one to three substituents each independently				
		selected from halogen, aryl, Het, -OR ²⁰⁰¹ , -SR ²⁰⁰¹ , -SOR ²⁰⁰¹ ,				
		-SO ₂ R ²⁰⁰¹ , cyano, -N(R ²⁰⁰²)(R ²⁰⁰¹), and R ²⁰⁰³ , wherein said aryl				
		and Het are optionally substituted with one, two or three				
10		substituents each independently selected from (Ci -6)alkyl and				
		-O-(C ₁₋₆)alkyl;				
		R ²⁰⁰¹ in each case is independently selected from aryl, aryl-(Ci ₋₆)alkyl-,				
		-C(O)-R ²⁰⁰³ , -C(O)O-R ²⁰⁰³ , -CON(R ²⁰⁰² XR ²⁰⁰⁴) and R ²⁰⁰⁴ ;				
		R ²⁰⁰² in each case is independently selected from H and (C ₁₋₆)alkyl;				
15		R ²⁰⁰³ in each case is independently selected from (C ₁₋₈)alkyl,				
		(C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said				
		(C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are each				
		optionally substituted with one to three substituents each				
		independently selected from (C ₁₋₃)alkyl; and				
20		R ²⁰⁰⁴ in each case is independently selected from H and R ²⁰⁰³ ;				
	R^3	is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl-, each				
		optionally substituted with one or more substituents each				
		independently selected from (C_{1-6}) alkyl, (C_{2-6}) alkenyl, halogen, cyano,				
		-OR ³⁰ , -SR ³⁰ , -C(=O)OR ³⁰ , -C(=O)NH ₂ , -C(=O)NH(C ₁₋₆)alkyl,				
25		-C(=O)N((C $_{1-6}$)alkyl) $_2$, -NH $_2$, -NH(C $_{1-6}$)alkyl, -N((C $_{1-6}$)alkyl) $_2$, aryl, and				
		aryl(C ₁₋₆)alkyl-, wherein R ³⁰ is H, (C ₁₋₆)alkyl, aryl, or aryKC^alkyl-;				
	R ⁵	is selected from B, B-C(=O)-, B-O-C(=O)-, B-N(R ⁵¹)-C(=O)-;				
		B-N(R ⁵¹)-C(=S)-, B-SO ₂ - and B-N(R ⁵¹)-SO ₂ -; wherein B is selected				
		from:				
30		(i) (Ci-io)alkyl optionally substituted with one or more substituents				
		each selected independently from -COOH, -COO(C 1-6)alkyl,				
		-OH, halogen, -OC(=O)(C ₁₋₆)alkyl, -O(Ci ₋₆)alkyl, -NH ₂ ,				
		-NH(C ₁₋₆)alkyl, -N((C ₁₋₆)alkyl) ₂ , -C(=O)NH ₂ , -C(=O)NH(C ₁₋₆)alkyl				
		and -C(=O)N((C ₁₋₆)alkyl) ₂ ;				

15

20

25

30

(ii) _.	(C ₃₋₇)cycloalkyl, or (C ₃₋₇)cycloalkyl-(C ₁₋₄)alkyl-, each optionally
	substituted with one or more substituents each selected
	independently from (Ci ₋₆)alkyl, halogen, -COOH,
	-COOfCuOalkyl, -OH, -O(C ₁₋₆)alkyl, -NH ₂ ,-NH(C ₁₋₆)alkyl,
	-N((C_{1-6})alkyl) $_2$, -C(=O)NH $_{21}$ -C(=O)NH(C_{1-6})alkyl and
•	-C(=O)N((C ₁₋₆)alkyl)2;
(iii)	aryl or aryl(C ₁₋₆)alkyl-, each optionally substituted with one or
	more substituents each selected independently from (C_{1-6}) alkyl,
	-OH, -NH ₂ , -NH(C, a)alkyl, -N((C, a)alkyl) ₂ , -C(=O)NH ₂ ,

more substituents each selected independently from (C₁₋₆)alky
-OH, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂,

10
-C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂;

(iv) **Het** or Het-(C₁₋₆)alkyl-, each optionally substituted with one or

Het or Het-(C₁₋₆)alkyl-, each optionally substituted with one or more substituents each selected independently from (Ci₋₆)alkyl, -OH, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(Ci₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂; and

(v) (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

R⁵¹ is selected from H and (C₁₋₆)alkyl;

Y is H or (C₁₋₆)alkyl;

R⁴ and R⁶ are each independently selected from H, (C_{1-6}) alkyl, -O-(d _6)alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl-(C _{1-6})alkyl-, aryl, **Het**, and aryl-(C _{1-6})alkyl-; wherein said (C_{1-6}) alkyl, -O-(C _{1-6})alkyl, (C_{3-7}) cycloalkyl-, (C _{3-7})cycloalkyl-, aryl and aryl-(Ci _6)alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O-(Ci _6)alkyl, -NH₂, -NH(C _{1-4})alkyl, -N((C _1-4)alkyl)₂, -CO-NH _2, -CO-NH(C^{\Lambda})alkyl, -CO-N((C _1-4)alkyl)₂, -COOH, and -COO(C _1-6)alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C_{1.6})alkyl,

hydroxy, cyano, 0-(C $_{1-6}$) alkyl, -NH $_2$, -NH(C $_{1-4}$) alkyl, -N((C $_{1-4}$) alkyl) $_2$, -CO-NH $_2$, -CO-NH(C $_{1-4}$) alkyl, -CO-N((C $_{1-4}$) alkyl) $_2$, -COOH, and -COO(C $_{1-6}$) alkyl;

with the proviso that when:

5 R⁵ is B-O-C(=O)- or B-N(R^{51})-C(=O)-, wherein

R51 is H; and

B is selected from (C_{1-10}) alkyl, (C_{3-7}) cycloalkyl, and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl,

- a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, di- or tri-substituted with (Ci₋₃)alkyl; and
- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono- or di-substituted with substituents selected from hydroxy and O-(C_{1,4})alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or trisubstituted with halogen; and
- d) wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the A-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered) -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the Oatom is linked to the -O-C(=O) or -N(R⁵¹)-C(=O) group via at least two carbon atoms; and

R² is O-R²⁰; then R²⁰ cannot be

25 wherein

 ${\rm R^{200a}\ is\ H,\ halogen,\ (C_{1-4})alkyl,\ -O+(C_{1-4})alkyl,\ -NH_{2},\ -NH(C_{1-4})alkyl} \\ {\rm or\ -N((C_{1-4})alkyl)_{2};}$

R^{200b}, R^{200c} are each independently halogen, cyano, (C₁₋₄)alkyl, -O-(C₁₋₄)alkyl, -S-(C₁₋₄)alkyl, -SO-(C₁₋₄)alkyl, or -SO₂-(C₁₋₄)alkyl, wherein each of said alkyl groups is optionally substituted with

30

10

15

10

15

20

from one to three halogen atoms; and either R^{200b} or R^{200c} (but not both at the same time) may also be H; or

R^{200a} and R^{200b} or

R^{200a} and R^{200c} may be covalently bonded to form, together with the two C-atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH ₂-groups not being directly linked to each other may be replaced each independently by -O- or N R^a wherein R^a is H or (C_{1.4})alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or di-substituted with (Ci ₋₄)alkyl; and

 $_{\rm R}$ 2000a $_{\rm js}$ $_{\rm R}$ 2003 $_{\rm j}$.N(RaOO $_{\rm 2}$)C0 $_{\rm R}$ 200 $_{\rm 3,1-N}$ (R2OO $_{\rm 2}$)CO0 R2OO3, -N(R 2004), or -N(R 2002)CON(R 2002)(R 2004), wherein

R²⁰⁰² is H or methyl;

R²⁰⁰³ is (Ci $_{.8}$)alkyl, (C $_{3-7}$)cycloalkyl or (C $_{3-7}$)cycloalkyl-(C $_{1}$ ^)alkyl-, wherein said (C $_{3-7}$)cycloalkyl and (C $_{3-7}$)cycloalkyl-(C $_{1-4}$)alkyl- are optionally mono-, di-, or tri-substituted with (C $_{1-3}$)alkyl; and R²⁰⁰⁴ is H or R²⁰⁰³;

and with the further proviso that when:

 R^5 is B-O-C(=O)- and B is selected from methyl and 1,1-dimethylethyl; and R^3 is 1,1-dimethylethyl; and

R1 is ethenyl; and

the group -N(R 4)R6 is selected from:

25 ; ther

R² is not selected from:

20

25

wherein Het is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic; or a diastereomer thereof or a salt thereof.

- The compound according to one or more of the preceding claims wherein R⁵ is selected from B-C(O)-, B-O-C(O)-, and B-N(R⁵¹)-C(=0)-; wherein B and R⁵¹ are defined as in claim 1.
 - 4. The compound according to claim 3 wherein R⁵¹ is H and B is selected from:
- (i) (C₁₋₇)alkyl optionally substituted with one or two or three substituents each independently selected from fluoro, chloro, bromo, hydroxy, methoxy and ethoxy; or optionally substituted with -COOCH₃;
 - (ii) (C₃₋₇)cycloalkyl, or (Cs-^cycloalkyl-methyl-, each optionally substituted with one or two substituents each independently selected from methyl, ethyl, hydroxy, methoxy and ethoxy;
 - (iii) benzyl; and
 - (iv) Het, wherein Het comprises a 3-, A-, 5-, 6-, or 7-membered heterocyle having one to four heteroatoms each independently selected from O,
 N, and S, which may be saturated or unsaturated or aromatic.

5. The compound according to one or more of the preceding claims wherein Y is H.

6. The compound according to one or more of the preceding claims wherein R³ is (Ci_{_8})alkyl or (C₃₋₇)cycloalkyl, the (Ci_{_8})alkyl being optionally substituted with

hydroxy, (C₁₋₆)alkoxy or -C(=O)OR 30 , wherein R 30 is (C₁₋₆)alkyl or aryl(C₁₋₆)alkyl-.

- 7. The compound according to one or more of the preceding claims wherein R² is selected from -O-R²⁰, -S-R²⁰, and -O-X-R²⁰, wherein R²⁰ and X are defined as in claim 1.
 - 8. The compound according to claim 7 wherein R^2 is -O-X-R ²⁰, wherein X is (C_3) alkynyl and R^{20} is $(C_6$ or $C_{10})$ aryl.

9. The compound according to claim 7 wherein R^2 is -O-R 20 , wherein R^{20} is

wherein

 $_{\rm R}$ 200d $_{\rm js}$ –O $_{\rm R}$ 201 $_{\rm jwnereln}$ · $_{\rm R}$ 201 $_{\rm js}$ (C $_{\rm 1_6)a}$ $|_{\rm k\,y}$ $|_{\rm ;}$

15 R²⁰⁰⁶ is H or -OR ²⁰¹, wherein R²⁰¹ is (C_{1-6}) alkyl; and R^{200f} is (C_{1-6}) alkyl, halogen, -SR ²⁰¹, -SO ₂R²⁰¹, or -OR ²⁰¹, wherein R²⁰¹ is (C_{1-6}) alkyl optionally further substituted with (C_{3-7}) cycloalkyl or phenyl.

- 10. The compound according to claim 9 wherein R^{200d} is -OR ²⁰¹ wherein R²⁰¹ is ethyl.
 - 11. The compound according to claim 7 wherein R2 is -O-R 20, wherein R20 is

wherein

- one of A, D, and E represents a S atom and the other two of A, D, and E represent C atoms;
 - represents a single bond between a C atom and an S atom, and
 represents a single bond or a double bond between two C atoms; provided

15

20

25

30

that each C atom is bonded by one double bond; $R^{200g} \text{ is H or -OR}^{201}, \text{ wherein } R^{201} \text{ is } (C_{1-6}) \text{alkyl or } (C_{2-6}) \text{alkenyl; and} \\ R^{200h} \text{ is one or two substituents each independently selected from H, cyano,} \\ (C_{1-6}) \text{alkyl and -SO}_{2^-} (C_{1-6}) \text{alkyl; wherein each } R^{200h} \text{ is bonded to a C atom} \\ \text{which would otherwise bear a hydrogen atom.}$

- 12. The compound according to one or more of the preceding claims wherein n is 1.
- 10 13. The compound according to one or more of the preceding claims wherein R^1 is (C_2-6) alkenyl or (C_2-6) alkyl.
 - 14. The compound according to one or more of the preceding claims wherein m is 2.
 - 15. The compound according to one or more of the preceding claims wherein:
 - (i) R⁴ and R⁶ are each independently selected from H, (Ci. ₆)alkyl, -O-(Ci ₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)cycloalkyl-(C ₁₋₆)alkyl-, aryl and aryl-(Ci. ₆)alkyl-; wherein said (Ci ₋₆)alkyl, -O-(C-t₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)cycloalkyl-, aryl and aryl-(Ci ₋₆)alkyl- are each optionally substituted with one to three substituents each independently selected from halogen, (Ci ₋₆)alkyl, hydroxy, cyano, O-(Ci ₋₆)alkyl, -COOH, and -COO(C ₁₋₆)alkyl; or
 - (ii) R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (Ci₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl.

	16.	The compound according to claim 1 wherein:		
		n	is 1 or 2;	
		m	is 1 or 2;	
		R^1	is H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, wherein said (Ci_{-6}) alkyl,	
5			(C ₂₋₆)alkenyl, or (C ₂₋₆)alkynyl are optionally substituted with from one to	
•			three halogen atoms;	
		\mathbb{R}^2	is selected from -CH ₂ -R ²⁰ , -NH-R ²⁰ , -O-R ²⁰ , -S-R ²⁰ , -SO-R ²⁰ , -SO ₂ -R ²⁰ ,	
			-CH ₂ O-R ²⁰ , and -O-X-R ²⁰ , wherein	
			X is (C ₂₋₃)alkenyl, (C ₂₋₃)alkynyl, or (C ₁₋₃)alkyl; and	
10			R ²⁰ is (C ₆ or Cio)aryl or Het, wherein said (C ₆ or Ci daryl or Het is	
			optionally mono-, di-, tri- or tetra-substituted with R ²⁰⁰ , wherein	
			each R ²⁰⁰ is independently selected from H, halogen, cyano,	
			(Ci ₋₆)alkyl, (C ₃₋₇)cycloalkyl, aryl-(Ci. ₆)alkyl-, aryl, Het, oxo,	
			thioxo, -OR 201 , -SR 201 , -SOR 201 , -SO $_2R^{201}$, -N(R 202)R 201 , and	
15			-CON(R ²⁰²)R ²⁰¹ ; wherein each of said alkyl, cycloalkyl, aryl and	
			Het is optionally further substituted with R ²⁰⁰⁰ ;	
			R ²⁰¹ in each case is independently selected from H, (C ₁₋₆)alkyl, aryl,	
			-CO-(Ci ₋₆)alkyl and -CO-O-(C ₁₋₆)alkyl, wherein each of said alkyl	
	٠		and aryl is optionally further substituted with R ²⁰⁰⁰ ;	
20			R ²⁰² is H or (Ci.β)alkyl;	
			R ²⁰⁰⁰ is one to three substituents each independently selected from	
			halogen, aryl, Het, -OR ²⁰⁰¹ , -SR ²⁰⁰¹ , -SOR ²⁰⁰¹ , -SO ₂ R ²⁰⁰¹ , cyano,	
			-N($R^{2002}XR^{2001}$), and R^{2003} , wherein said aryl and Het are	
			optionally substituted with one, two or three substituents	
25			, selected from (Ci ₋₆)alkyl and -O-(C ₁₋₆)alkyl;	
			R ²⁰⁰¹ in each case is independently selected from aryl, aryl-(C _{1.6})alkyl-,	
			-C(O)-R 2003 , -C(O)O-R 2003 , -CON(R 2002 XR 2004) and R 2004 ;	
			R ²⁰⁰² is H or (Ci-β)alkyl;	
			R^{2003} is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-,	
30			wherein said (C ₃₋₇)cycloalkyl and (C ₃₋₇)cycloalkyl-(Ci ₋₄)alkyl- are	
			optionally mono-, di-, or tri-substituted with (Ci ₋₃)alkyl; and	
			R ²⁰⁰⁴ is H or R ²⁰⁰³ ;	
		R^3	is (C $_{1-8}$)alkyl, (C $_{3-7}$)cycloalkyl or (C $_{3-7}$)cycloalkyl-(Ci $_{-3}$)alkyl-, each	
			optionally substituted with one or more substituents independently	

		selecte	d from (C _{1.6})alkyl, (C ₂₋₆)alkenyl, halogen, cyano, -OR ³⁰ , -SR ³⁰ ,			
		-C(=O)OR ³⁰ , -C(=O)NH ₂ , -C(=O)NH(C ₁₋₆)alkyl, C(=O)N((C ₁₋₆)alkyl) ₂ ,				
		-NH ₂ , -	NH(C $_{1-8}$)alkyl, -N((C $_{1-6}$)alkyl) $_2$, aryl, and aryl(C $_{1-8}$)alkyl-, wherein			
		R ³⁰ is I	H, (C, ₋₆)alkyl, aryl, or aryl(C ₁₋₆)alkyl-;			
5	R ⁵	is selec	cted from B, B-C(=O)-, B-O-C(=O)-, B-N(R 51)-C(=O)-;			
		B-N(R ⁵¹)-C(=S)-, B-SO ₂ - and B-N(R ⁵¹)-SO ₂ -; wherein B is selected				
		from:				
		(i)	(C-i-io)alkyl optionally substituted with one or more substituents			
			each selected independently from -COOH, -COO(C 1-6)alkyl,			
10			-OH, halogen, -OC(=O)(C _{1.6})alkyl, -O(C _{1.6})alkyl, -NH ₂ ,			
			-NH(C _{1.6})alkyl, -N((C _{1.6})alkyl) ₂ , -C(=O)NH ₂ , -C(=O)NH(C _{1.6})alkyl			
			and -C(=O)N((C ₁₋₆)alkyl) ₂ ;			
		(ii)	(C ₃₋₇)cycloalkyl, or (C ₃₋₇)cycloalkyl-(C ₁₋₄)alkyl-, each optionally			
			substituted with one or more substituents each selected			
15			independently from (d ₋₆)alkyl, halogen, -COOH,			
			-COO(Ci ₋₆)alkyl, -OH, -O(C ₁₋₆)alkyl, -NH ₂ , -NH(C ₁₋₆)alkyl,			
			-N((C ₁₋₆)alkyl) ₂ , -C(=O)NH ₂ , -C(=O)NH(C ₁₋₆)alkyl and			
			C(=O)N((C ₁₋₆)alkyl) ₂ ;			
		(iii)	aryl or aryl(C ₁₋₆)alkyl-, each optionally substituted with one or			
20			more substituents each selected independently from (C-1_6)alkyl,			
			-OH, -NH ₂ , -NH(C ₁₋₆)alkyl, -N((C ₁₋₆)alkyl) ₂ , -C(=O)NH ₂ ,			
			-C(=O)NH(C ₁₋₆)alkyl and C(=O)N((C ₁₋₆)alkyl) ₂ ;			
		(iv)	Het or Het-(C 1.6)alkyl-, each optionally substituted with one or			
			more substituents each selected independently from (C _{1-β})alkyl,			
25			-OH, -NH ₂ , -NH(C ₁₋₆)alkyl, -N((C ₁₋₆)alkyl) ₂ , -C(=O)NH ₂ ,			
			-C(=O)NH(C $_{1-6}$)alkyl and C(=O)N((C $_{1-6}$)alkyl) $_2$; and			
		(v)	(C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, each optionally substituted with 1			
			to 3 halogens; and wherein			
		R ⁵¹ is	selected from H and (C ₁₋₆)alkyl;			
30	Υ	is H or	· (Ci ₋₆)alkyl;			
	R4 and	R ⁶ are	each independently selected from H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl,			
		(C ₃₋₇)c	ycloalkyl-(Ci $_{-6}$)alkyl-, aryl, Het, and aryl-(C $_{1-6}$)alkyl-; wherein said			
		(C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and				
		aryl-(C	$_{\mbox{\scriptsize 1-6}}$)alkyl- are optionally substituted with one or more substituents			

independently, selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl) $_2$, -CO-NH $_2$, -CO-NH (C_{1-4}) alkyl, -CO-N((C_{1-4}) alkyl) $_2$, -COOH, and -COO (C_{1-6}) alkyl; or

5

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, said heterocycle and heteropolycycle optionally containing from one to three further heteroatoms independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one or more substituents independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(d₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C^{\Lambda})alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl;

15

10

with the proviso that when:

R⁵ is B-O-C(=O)- or B-N(R⁵¹)-C(=O)-, wherein

R51 is H; and

B is selected from (C_{1-10}) alkyl, (C_{3-7}) cycloalkyl, and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl,

20

25

30

- a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, di- or tri-substituted with (C_{1,3})alkyl; and
- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono- or di-substituted with substituents selected from hydroxy and O-(C-|.₄)alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or trisubstituted with halogen; and
- d) wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the 4-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered) -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the O-atom is linked to the -0-C(=0) or -N(R⁵¹)-C(=O) group via at least two carbon atoms; and

R2 is O-R20; then

R²⁰ cannot be

wherein

 R^{200a} is H, halogen, (C_{1-4}) alkyl, -OH, -O- (C_{1-4}) alkyl, -NH₂, -NHCd^alkyl or -N((C_{1-4}) alkyl)₂;

R^{200b}, R^{200c} are each independently halogen, cyano, (C₁₋₄)alkyl,
-O-(C₁₋₄)alkyl, -S-(C₁₋₄)alkyl, -SO-(C₁₋₄)alkyl, or-SO ₂-(C₁₋₄)alkyl,
wherein each of said alkyl groups is optionally substituted with
from one to three halogen atoms; and either R^{200b} or R^{200c} (but
not both at the same time) may also be H; or

R^{200a} and R^{200b} or

R^{200a} and R^{200c} may be covalently bonded to form, together with the two C-atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH₂-groups not being directly linked to each other may be replaced each independently by -O- or NR^a wherein R^a is H or (C₁₋₄)alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or di-substituted with (C₁₋₄)alkyl; and

R 2000a js R 2003] -N(R 2002)COR 2003] -N(R 2002)COR 2003; -N(R 2002)(R 2004), α | -N(R 2002)CON(R 2002)(R 2004), wherein

R²⁰⁰² is H or methyl;

 $\rm R^{2003}$ is (C₁₋₈)alkyl, (C₃₋₇)cycloalkyl or (C₃₋₇)cycloalkyl-(C $_{1-4}$)alkyl wherein said (C₃₋₇)cycloalkyl and (C₃₋₇)cycloalkyl-(C $_{1-4}$)alkyl- are optionally mono-, di-, or tri-substituted with (d $_{-3}$)alkyl; and

R²⁰⁰⁴ is H or R²⁰⁰³;

wherein Het is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S,

30

5

10

15

20

15

said heteropolycycle being saturated, unsaturated or aromatic; or a diastereomer thereof or a salt thereof.

- 17. The compound according to claim 1 wherein:
- 5 R⁵ is selected from B-C(=O)-, B-O-C(=O)-, and B-NH-C(=O)-; wherein B is selected from:
 - (i) (C $_{1-10}$)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C $_{1-6}$)alkyl, -OH, halogen, -OC(=O)(C $_{1-6}$)alkyl, -O(C $_{1-6}$)alkyl, -NH $_2$, -NH(C $_{1-6}$)alkyl, -N((C $_{1-6}$)alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH(C $_{1-6}$)alkyl and -C(=O)N((C $_{1-6}$)alkyl) $_2$;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently from (Ci_{-6}) alkyl, halogen, -COOH, -COO(Ci_{-6})alkyl, -OH, -O(C_{1-6})alkyl, -NH $_2$, -NH (C_{1-6}) alkyl, -N((C_{1-6}) alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N((C_{1-6}) alkyl) $_2$;
 - aryl or aryl(C $_{1-6}$)alkyl-, each optionally substituted with one or more substituents each selected independently from (C $_{1-6}$)alkyl, -OH, -NH $_2$, -NH(C $_{1-6}$)alkyl, -N((C $_{1-6}$)alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH(C $_{1-6}$)alkyl and -C(=O)N((C $_{1-6}$)alkyl) $_2$;
- 20 (iv) **Het** or Het-(Ci ₋₆)alkyl-, each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, -OH, -NH₂, -NH(Ci ₋₆)alkyl, -N((C ₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C ₁₋₆)alkyl and -C(=O)N((C ₁₋₆)alkyl)₂;
 - Y is H;
- is (C₁₋₈)alkyl or (C₃₋₇)cycloalkyl, each of which are optionally substituted with one or more substituents each independently selected from (C₁₋₆)alkyl, -OR ³⁰, and -C(=O)OR ³⁰, wherein R³⁰ is H, (C₁₋₆)alkyl, or aryl(C₁₋₈)alkyl-;
 - R^2 is -O-X- R^{20} , wherein X is (C₃)alkynyl and R^{20} is (C₆ or C₁₀)aryl; or
- 30 R² is -O-R²⁰ wherein R²⁰ is

10

15

25

30

wherein

 R^{200d} is $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl;

 R^{200e} is H or -OR 201 , wherein R^{201} is (C_{1.6})alkyl; and

 R^{200f} is (C_{1-6}) alkyl, halogen, -SR²⁰¹, -SO₂R²⁰¹, or -OR²⁰¹, wherein R²⁰¹ is (C_{1-6}) alkyl optionally further substituted with (C_{3-7}) cycloalkyl or phenyl:

or R²⁰ is

wherein

one of A, D, and E represents a S atom and the other two of A, D, and E represent C atoms;

— represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond; R^{200g} is H or $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl or (C_{2-6}) alkenyl; and R^{200h} is one or two substituents each independently selected from H, cyano, (C_{1-6}) alkyl and $-SO_{2^{\circ}}(C_{1-6})$ alkyl; wherein each R^{200h} is bonded to a C atom which would otherwise bear a hydrogen atom;

 R^1 is (C_{2-6}) alkenyl or (C_{2-6}) alkyl;

20 n is 1;

m is 2: and

R⁴ and R⁶ are each independently selected from H, (Ci_{-6}) alkyl, -O- (Ci_{-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl-; wherein said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are optionally substituted with one to three substituents independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O-(C-(C-(C)-(C

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three further heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated

heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (Ci_{-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-4}) alkyl, -N $((C_{1-4})$ alkyl) $_2$,-COOH, and -COO (C_{1-6}) alkyl;

- 5 or a diastereomer thereof or a salt thereof.
 - 18. A pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound according to one or more of claims 1 to 17, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.
 - 19. The pharmaceutical composition according to claim 18 additionally comprising a therapeutically effective amount of at least one other antiviral agent.
- 15 20. A method of treating or preventing a hepatitis C viral infection in a mammal by administering to the mammal an anti-hepatitis C virally effective amount of a compound according to one or more of claims 1 to 17, a pharmaceutically acceptable salt thereof, or a composition thereof.
- 20 21. Use of a compound according to one or more of claims 1 to 17, or a pharmaceutically acceptable salt thereof, for the treatment or prevention of hepatitis C viral infection in a mammal.
- Use of a compound according to one or more of claims 1 to 17, or a
 pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment or prevention of hepatitis C viral infection in a mammal.
- A method of inhibiting the replication of hepatitis C virus by exposing the virus to a hepatitis C viral NS3 protease inhibiting amount of the compound according to one or more of claims 1 to 17, or a pharmaceutically acceptable salt thereof.

- 24. Use of a compound according to one or more of claims 1 to 17, or a pharmaceutically acceptable salt thereof, to inhibit the replication of hepatitis C virus.
- 5 25. An article of manufacture comprising a composition effective to treat an HCV infection or to inhibit the NS3 protease of HCV; and packaging material comprising a label which indicates that the composition can be used to treat infection by the hepatitis C virus; wherein the composition comprises a compound according to one or more of claims 1 to 17 or a pharmaceutically acceptable salt thereof.
 - 26. A process for the preparation of a compound according to one or more of claims 1 to 17, comprising:
 - a) reacting a compound of formula (II):

wherein R^4 , R^6 and m are defined as in claim 1, with a strong base so as to form the corresponding amide anion and

b) reacting an azalactone of formula (III):

$$\begin{array}{c|c}
R^{5} & R^{3} & R^{1} \\
\hline
 & O & (CH_{2})_{n}
\end{array}$$
(III)

20

wherein R^1 , R^2 , R^3 , R^s , Y and n are defined as in claim 1, with the amide anion formed in step a).

27. An azalactone intermediate compound of formula (111):

$$R^{5} \bigvee_{Y}^{R^{3}} \bigvee_{O}^{N} \bigvee_{O}^{N} \bigvee_{(CH_{2})_{n}}^{R^{1}}$$
(III)

wherein R^1 , R^2 , R^3 , R^5 , Y and n are defined as in claim 1.

5 28. Use of the azalactone intermediate compound according to claim 27 in the preparation of an HCV NS3 protease inhibitor peptide analog.