Lecture 5:

Power series: A power series in a series of the form $\sum_{n=0}^{11/24/2021} a_n(x-x_0)^n, \text{ where } x_0 \in \mathbb{R}, \text{ and } x \in \mathbb{R},$ $n=0 \quad \text{around } x_0.$

Remark! Since the framformation $X = x - x_0$ reduces a power series around x_0 to a power series around 0, it is sufficient to consider the series x_0 an x_0 . Example: x_0 x_0

Theorem: We have (a) If $\lesssim a_n x^n$ converges for some $x = x, \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x| < |x_1|$. (b) If $\sum_{n=0}^{\infty} a_n x^n$ diverges for $x = x_2$, then it diverges for all $x \in \mathbb{R}$ satisfying $|x| > |x_2|$

Proof: We first show that the statements (a) and (b) are equivalent. That in, ta) (=> (b). Assume (a), and let $x = x_2$ be such that $\sum_{n=1}^{\infty} a_n x_2^n$ Claim: $\sum a_n x^n$ diverges for all x satisfying | Suppose that $\exists x_3$ such that $|x_3| > |x_2|$ and $\sum_{n=1}^{\infty} a_n x_n^n$ converges. $\sum_{n=0}^{\infty} Q_n \chi_3^n$ converges. By (a), San och converges -1231

Pay (a), se o for all oc satistying

Since $\stackrel{\circ}{\succeq}$ an x^n diverges at x_2 . Here, $(a) = \frac{1}{2}(b)$, Next we prove that (b) =>(a): Suppose that >, anxn Converges for some $x = x_1 \neq 0$.

Claim: $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for all $x \in \mathbb{R}$ $\sum_{n=0}^{\infty} a_n x^n$ satisfying $|x| \leq |x_n|$ Suppose that $\exists x_2$ satisfying $|x_2| < |x_1|$ such that $\sum_{n=0}^{\infty} a_n x_2^n \text{ diverges. Ry (b), } \sum_{n=0}^{\infty} a_n x_1^n \frac{-|x_2|}{|x_2||x_2|}$ $n = 0 \text{ diverges for all } x \text{ satisfying } -|x_1| \text{ o } |x_2||x_1|$ $|x| > |x_2|.$

This is a contradiction to the fact that $\underset{n=0}{\text{2}}$ an x^n converges at $x=x_1$. \therefore (b) \Rightarrow (a). Since (a) and (b) are equivalent, so we prove part(a) only. Proof of (a); Let x, \$\pm\$0 and suppose that $\sum a_n x_n^n$ converges. Put $y_n = a_n x_n^n \quad \forall n > 0$. Then, we have \(\gamma_n\) in convergent. i. I M70 such that bounded $|y_n| = |a_n x_1^n| < M \quad \forall n \gg 0.$

Let $x \in \mathbb{R}$ such that $|x| < |x_1|$.

Let $x = \frac{|x|}{|x_1|}$ and clearly, x < 1.

Now, $|a_n x^n| = |a_n| |x^n| |x_1|^n = |a_n x^n| |x_n|^n < x^n M$ Since 0 < x < 1, so $\sum_{n=0}^{\infty} x^n$ converges.

By comparison test, $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely. x = 0

Definition (Radius of convergence): For every power servies \(\sum \an \chi^n \) there exists a unique R satisfying $0 \le R \le \infty$ such that the series converges absolutely if $|x| \le R$ and diverges if |x| > R. Lonverges YXER

Theorem: Consider the power series $\sum_{n=1}^{\infty} a_n x^n$. Let $\beta = \limsup_{n \to \infty} \sqrt{|a_n|}$ and let $R = \frac{1}{\beta}$. (We define R = 0 if $\beta = \infty$ and $R = \infty$ if $\beta = 0$). Then (a) $\sum_{n = 0}^{\infty} x^n$ converges absolutely for |x| < R. (b) $\sum_{n = 0}^{\infty} a_n x^n$ diverges for |x| > R. © No conclusion if |x| = R. Proof: Let $x_n = a_n x^n$. Then, $\sqrt[n]{|x_n|} = |x| - \sqrt[n]{|a_n|}$

By Root test, $\sum_{n} x_n = \sum_{n} a_n x^n$ converges absolutely if $\lim \sup n = 0$ $\sum_{n=0}^{\infty} (1, n)$ But limsup $\sqrt{12n1} = \lim \sup |x|$. $\sqrt{|a_n|} = |x| \beta$. .. $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely if $|x|\beta < 1$, $|x-\beta| < 1$, $|x-\beta| < 1$, $|x-\beta| < 1$. Again, by Root test $\sum_{n=0}^{\infty} a_n x^n$ diverges for $|x|\beta > 1$, $|x-\beta| < 1$. Also, by Root test, there is no conclusion if $|x|\beta = 1$, $|x-\beta| < 1$. It at in, if $|x| = \frac{1}{\beta} = R$.

Thm: consider the power series \leq , an x^n Suppose that $\beta = \lim_{n \to \infty} \frac{q_{n+1}}{a_n} = \sum_{n=0}^{\infty} R = \frac{1}{\beta}$. (we define R=0 if $B=\infty$ and $R=\infty$ if B=0). Then, (a) $\sum_{n=0}^{\infty} a_n x^n$ converges for 1x1 < R6) San xn diverges for 121 > R © No conclusion if |x| = R. Proof. The proof readily follows using the Ratio test.

Example: The power series $\sum_{n=0}^{\infty} \frac{x^n}{n^n}$ converge if and only if $x \in [-1, 1]$.

Solution: If x = 0, then the given series converges. Let $x \neq 0$, $x \in \mathbb{R}$. Let $a_n = \frac{1}{n^2}$. Now, $\beta = \lim_{n \to \infty} \left| \frac{2n+1}{an} \right| = \lim_{n \to \infty} \frac{n^{\gamma}}{(n+1)^{\gamma}} = 1$. The radius of convergence of $\sum \frac{\chi^n}{n^2}$ in R=1. $\sum \frac{\chi^n}{n^2}$ converges $\forall \chi \in (-1,1)$ m=0 [12/ ≤ 1] m=0 and it diverges $\forall \chi \in (-\infty,-1) \cup (1,\infty)$.

Now, we check the convergence of $\sum_{n=0}^{\infty} \frac{x^n}{n^n}$ at the end points x=-1 and x=1.

If |x|=1, then $\sum_{n=0}^{\infty} \left|\frac{x^n}{n^2}\right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$, which in convergent,

 $\sum_{n=0}^{\infty} \frac{x^n}{n^2} \text{ is convergent if and only if } x \in [-1,1].$

.

Example: For the power series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 4^n} (x-1)^n$, the radius of convergence in 4 and the interval of convergence in C-3,5]. Solution: $a_n = \frac{(-1)^n}{n \cdot 4^n}$, $\forall n \ge 1$. $\beta = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{(n+1)} \frac{a_{n+1}}{4^{n+1}} \right| = \frac{1}{4}$... Radium of convergence, $R = \frac{1}{13} = 4$ The series converges absolutely if 12-1/24, that in, if $x \in (-3, 5)$.

Also, the series diverges if $x \in (-\infty, -3) \cup (5, \infty)$. Next, we need to check the convergence at the end points x = -3 and x = 5.

If x = -3, then $\sum_{n=1}^{\infty} \frac{c_{-1}}{n \cdot 4^n} (x_{-1})^n = \sum_{n=1}^{\infty} \frac{1}{n}$, which $\chi = 5$, then $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 4^n} (x-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ i. The inverval of Lonvergence in /-