CHOMSKY CLASSIFICATION OF GRAMMARS

https://www.tutorialspoint.com/automata_theory/chomsky_classification_of_grammars.htm

Copyright © tutorialspoint.com

Advertisements

According to Noam Chomosky, there are four types of grammars - Type o, Type 1, Type 2, and Type 3. The following table shows how they differ from each other -

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Туре о	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

Take a look at the following illustration. It shows the scope of each type of grammar -

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form $X \to a$ or $X \to aY$

where $X, Y \in N$ Nonterminal

and $\mathbf{a} \in \mathbf{T} Terminal$

The rule $\mathbf{S} \to \mathbf{\epsilon}$ is allowed if \mathbf{S} does not appear on the right side of any rule.

Example

```
X \rightarrow \varepsilon

X \rightarrow a \mid aY

Y \rightarrow b
```

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form $A \rightarrow \gamma$

where $A \in N$ Nonterminal

and $\gamma \in T \cup N * String of terminals and non-terminals$.

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

```
S \rightarrow X a X \rightarrow a X \rightarrow aX X \rightarrow abc X \rightarrow \epsilon
```

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form

$$\alpha A \beta \rightarrow \alpha \gamma \beta$$

where $\mathbf{A} \in \mathbf{N} \ Non - terminal$

and $\alpha, \beta, \gamma \in T \cup N*$ Stringsofterminals and non-terminals

The strings α and β may be empty, but γ must be non-empty.

The rule $S \to \varepsilon$ is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.

Example

 $AB \rightarrow AbBc$ $A \rightarrow bcA$

 $B \rightarrow b$

Type - o Grammar

Type-o grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of $\alpha \to \beta$ where α is a string of terminals and nonterminals with at least one non-terminal and α cannot be null. β is a string of terminals and non-terminals.

Example

S → ACaB Bc → acB

CB → DB

aD → Db