

Introduction to Deep Learning (I2DL)

Exercise 10: Semantic Segmentation

Overview

Exam

- Exercise 9 Recap
 - Case study of an older submitted solution

- Semantic Segmentation
 - Loss Function
 - Architecture and Upsampling
 - Transfer Learning

Exam

- Final decision: exam is on-site
 - No retake exam this semester
 - No online or oral alternatives.
 - Bonus will be transferred to any future version of this class
- Exam relevant content
 - Lectures
 - Exercises including optional notebooks
- Timeline before the exam
 - 3 weeks: past exam questions
 - 1 week: seating and room plans

Exercise 9 Leaderboard

Leaderboard: Submission 7

Rank	User	Score	Pass
#1	w1415	1341.26	~
#2	w1567	1324.23	v
# 3	w1636	1323.31	V
#4	w1417	1292.13	V
# 5	w1698	1181.84	V
#6	w1357	1150.91	V
# 7	w1341	1137.86	V
#8	w1679	1126.85	~
#9	w1533	1110.28	v
¥10	w1258	1026.55	V
¥11	w1493	1017.47	V
#12	w1553	997.85	V
#13	w1574	952.09	V
‡14	w1832	949.91	v
#15	w1496	941.40	V

Summer Semester 2020 Leaderboard

Leaderboard: Submission 9

Rank	User	Score	Pass
#1	s0672	942.66	¥
#2	s0463	940.88	*
#3	s0770	792.80	,
#4	s0303	722.08	/
#5	s0587	689.02	×
#6	s0747	656.89	·
#7	s0555	654.95	,
#8	s0400	615.63	/
#9	s0322	607.35	₹
#10	s0288	602.19	*

Case Study: Model

```
self.model = nn.Sequential(
   nn.Conv2d(1, 32, (3, 3), stride=1, padding=2)
   # nn.BatchNorm2d(32),
    # nn.Dropout2d(0.2),
   nn.PReLU(),
    nn.MaxPool2d(3),
    nn.Conv2d(32, 64, (3, 3), stride=1, padding=2),
    # nn.BatchNorm2d(64),
    # nn.Dropout2d(),
   nn.PReLU(),
    nn.MaxPool2d(3, stride=2),
   nn.Conv2d(64, 64, (3, 3), stride=1, padding=1)
   # nn.BatchNorm2d(64),
   # nn.Dropout2d(0.3)
   nn.PReLU(),
    nn.MaxPool2d(2, stride=2),
   nn.Conv2d(64, 128, (2, 2), stride=1, padding=1)
   # nn.BatchNorm2d(128),
   # nn.Dropout2d(0.3)
   nn.PReLU(),
```

Classic ConvNet architecture:

- Feature extraction
- Classification

```
Flatten(),
nn.Linear(10368, 256),
# nn.BatchNormld(256),
nn.Dropout(0.1),
nn.PReLU(),
nn.Linear(256, 30),
```

Case Study: Model Summary

```
#!pip install torchsummary
import torchsummary
torchsummary.summary(model, (1, 96, 96))
```

Param #	Output Shape	Layer (type)
320	[-1, 32, 98, 98]	Conv2d-1
1	[-1, 32, 98, 98]	PReLU-2
6	[-1, 32, 32, 32]	MaxPool2d-3
18,496	[-1, 64, 34, 34]	Conv2d-4
	[-1, 64, 34, 34]	PReLU-5
6	[-1, 64, 16, 16]	MaxPool2d-6
36,928	[-1, 64, 16, 16]	Conv2d-7
1	[-1, 64, 16, 16]	PReLU-8
6	[-1, 64, 8, 8]	MaxPool2d-9
32,896	[-1, 128, 9, 9]	Conv2d-10
	[-1, 128, 9, 9]	PReLU-11
([-1, 10368]	Flatten-12
2,654,464	[-1, 256]	Linear-13
6	[-1, 256]	Dropout-14
1	[-1, 256]	PReLU-15
7,716	[-1, 30]	Linear-16

```
Total params: 2,750,819
Trainable params: 2,750,819
Non-trainable params: 0

Input size (MB): 0.04
Forward/backward pass size (MB): 6.72
Params size (MB): 10.49
Estimated Total Size (MB): 17.25
```

```
Flatten(),
nn.Linear(10368, 256),
# nn.BatchNorm1d(256),
nn.Dropout(0.1),
nn.PReLU(),
nn.Linear(256, 30),
```

 $(9\times9\times128 = 10368)$

Case Study: Smaller Linear Layer?

- 1. Convolutional layer to reduce size to 1x1
 - Here: 9x9 kernel, 128 filters, no padding
 - => 1×1×128 = 128

- Here: 9x9 kernel => 128
- Disadvantage: lose spatial relations

Case Study: With 1x1 Conv 128 -> 16

```
# After adding 1x1 layers
# nn.Conv2d(128, 16, (1, 1), stride=1, padding=0),
# Flatten(),
# nn.Linear(9*9*16, 256),
torchsummary.summary(model, (1, 96, 96))
```

Param #	Output Shape	Layer (type)	
320	[-1, 32, 98, 98]	Conv2d-1	
1	[-1, 32, 98, 98]	PReLU-2	
Θ	[-1, 32, 32, 32]	MaxPool2d-3	
18,496	[-1, 64, 34, 34]	Conv2d-4	
1	[-1, 64, 34, 34]	PReLU-5	
0	[-1, 64, 16, 16]	MaxPool2d-6	
36,928	[-1, 64, 16, 16]	Conv2d-7	
1	[-1, 64, 16, 16]	PReLU-8	
Θ	[-1, 64, 8, 8]	MaxPool2d-9	
32,896	[-1, 128, 9, 9]	Conv2d-10	
1	[-1, 128, 9, 9]	PReLU-11	
2,064	[-1, 16, 9, 9]	Conv2d-12	
Θ	[-1, 1296]	Flatten-13	
332,032	[-1, 256]	Linear-14	
Θ	[-1, 256]	Dropout-15	
1	[-1, 256]	PReLU-16	
7,710	[-1, 30]	Linear-17	

```
Total params: 430,451
Trainable params: 430,451
Non-trainable params: 0

Input size (MB): 0.04
Forward/backward pass size (MB): 6.66
Params size (MB): 1.64
Estimated Total Size (MB): 8.34
```

Next steps:

Make deeper and use residual connection to make it train

Case Study: Hyperparameters

```
hparams = {
    "lr": 0.0001,
    "batch_size": 512,
    # TODO: if you have any model arguments/hparams, define them here
}
```

- Default learning rate
- Experiment with batch normalization / Dropout
- Forms of ReLU activations (PReLu, ELU)
- Appropriate weight initialization for (P)ReLus

Semantic Segmentation

Input: (3, w, h) RGB image

Output: (23, w, h) segmentation map with scores for every class in every pixel

Labels & Samples

Label Explanation

object class	R	G	В	Colour
void	0	0	0	
building	128	0	0	
grass	0	128	0	
tree	128	128	0	

• Samples

Metrics: Loss Function

Averaged per pixel cross-entropy loss

```
for (inputs, targets) in train_data[0:4]:
    inputs, targets = inputs, targets
    outputs = dummy model(inputs.unsqueeze(0))

loss = torch.nn.CrossEntropyLoss(ignore_index=-1, reduction='mean')

losses = loss(outputs, targets.unsqueeze(0))
    print(losses)
```

• **ignore_index** (*int*, *optional*) – Specifies a target value that is ignored and does not contribute to the input gradient. When <code>size_average</code> is <code>True</code>, the loss is averaged over non-ignored targets.

Metrics: Accuracy

Only consider pixels which are not "void"

```
def evaluate model(model):
    test scores = []
    model.eval()
    for inputs, targets in test loader:
        inputs, targets = inputs.to(device), targets.to(device)
        outputs = model.forward(inputs)
         , preds = torch.max(outputs, 1)
        targets mask = targets >= 0
        test scores.append(np.mean((preds == targets)[targets mask].data.cpu().numpy()))
    return np.mean(test scores)
print("Test accuracy: {:.3f}".format(evaluate model(dummy model)))
```

Semantic Segmentation Task

Input shape: (N, num_channels, H, W)
 Output shape: (N, num_classed, H, W)

Goal: Get features at different spatial resolutions

Naive Solution

- Keep dimensionality constant throughout the network
- Use increasing filter sizes

Issue:

Increased memory consumption

- Filter size would be the same e.g., 128 filters a (64x3x3) -> 73k params
- But we have to save inputs and outputs for every layer e.g., 128 filters a (64xWxH) -> millions of params!

Excursion: Receptive Field (RF)

 Region in input space a feature in a CNN is looking at

E.g., after 2 (5x5) convolutions with stride 1 we have a receptive field of 9x9
 (RF after first conv: 5
 RF after second conv: 5+4)

Coming from Classification

- Use (strided) convolutions and pooling to increase the receptive field
- Bilinear/nearest upsampling to input resolution

Convolution H × W H/4 × W/4 H/8 × W/8 H/16 × W/16 H/32 × W/32 H × W

Better Solution: Autoencoder-like

- Slowly reduce size -> slowly increase size
- Different from fully connected
 - Pooling -> Upsampling
 - Strided convolution -> Transposed convolution
- Combine with normal convolutions, bn, dropout, etc.

Transposed Convolutions

Upsampling with learnable parameters

- Output size computation:
 - Regular conv layer: $out = \frac{(in - kernel + 2 * pad)}{stride} + 1$
 - Transpose convolution for multiples of 2

$$out = (in - 1) * stride - 2 * pad + kernel$$

(more info here: https://github.com/vdumoulin/conv_arithmetic)

Are transpose convolutions superior?

- Short answer
 - no, not always
- Issues?
 - possible checkerboard artifacts for general image generation, see https://distill.pub/2016/deconv-checkerboard/

- Learned alternative
 - Upsampling layer + regular convolution

How to compete/get results quickly?

Transfer Learning!

- Possible solutions
 - "The Oldschool"
 - Take pretrained Encoder, set up decoder and only train decoder
 - Encoder candidates: AlexNet, MobileNets
 - The Lazy
 - Take a fully pretrained network and adjust outputs

Good luck & see you next week