# MAT351 Tutorial 4

#### PARTIAL DIFFERENTIAL EQUATIONS

WRITTEN BY

### DAVID KNAPIK

 $University\ of\ Toronto\\ david.knapik@mail.utoronto.ca$ 



### Properties of (one-dimensional) diffusions

Recall that last week we dealt with the solution formula for the diffusion equation  $u_t = ku_{xx}$  on the whole real line. This week, we shall not use such formula, and rather consider properties that can be derived without an explicit solution formula.

**Theorem 1.0.1** (Maximum Principle, Strauss). If u(x,t) satisfies the diffusion equation in a rectangle (say,  $0 \le x \le l$ ,  $0 \le t \le T$ ) in space-time, then the maximum value of u(x,t) is assumed either initially (t=0) or on the lateral sides (x=0) or (x=0).

*Remark.* The minimum value has the same property; it too can be attained only on the bottom or the lateral sides.

The Maximum Principle implies the following:

**Theorem 1.0.2** (Uniqueness). The solution to

$$\begin{cases} u_t - ku_{xx} = f(x,t) & \text{for } 0 < x < l, t > 0 \\ u(x,0) = \phi(x) \\ u(0,t) = g(t) & u(l,t) = h(t) \end{cases}$$

is unique (if it exists).

#### Strauss 2.3.2

Consider a solution of the diffusion equation  $u_t = u_{xx}$  in  $\{0 \le x \le l, 0 \le t < \infty\}$ .

(A) Let M(T) = the maximum of u(x,t) in the closed rectangle  $\{0 \le x \le l, 0 \le t \le T\}$ . Does M(T) increase or decrease as a function of T?

M(T) increases as a function of T. Suppose  $T_1 < T_2$ . Since by max principle the max is on the bottom or lateral sides, if the values of u on the extended lateral portion of the rectangle for  $T_2$  are less than the max on the rectangle  $\{0 \le x \le l, 0 \le t \le T_1\}$ , then there is no change. If the value on the extended lateral portion is greater than the max on the  $T_1$  rectangle, then the max has increased.

(B) Let m(T) = the minimum of u(x,t) in the closed rectangle  $\{0 \le x \le l, 0 \le t \le T\}$ . Does m(T) increase or decrease as a function of T?

m(T) decreases as a function of T. Suppose  $T_1 < T_2$ . Since by the minimum principle the min is on the bottom or lateral sides, if the values of u on the extended lateral portion of the rectangle for  $T_2$  are greater than the min on the rectangle  $\{0 \le x \le l, 0 \le t \le T_1\}$ , then there is no change. If the value on the extended lateral portion is less than the min on the  $T_1$  rectangle, then the min has decreased.

#### Strauss 2.3.4

Consider the diffusion equation  $u_t = u_{xx}$  in  $\{0 < x < 1, 0 < t < \infty\}$  with u(0,t) = u(1,t) = 0 and u(x,0) = 4x(1-x).

(A) Show that 
$$0 < u(x,t) < 1$$
 for all  $t > 0$  and  $0 < x < 1$ .

By the Maximum Principle, the max value of u must occur either initially (t = 0) or on the lateral sides (x = 0 or x = 1). Well, u(x,0) = 4x(1-x) which has greatest value u(1/2,0) = 1. On the other hand, u(0,t) = u(1,t) = 0 (so u is zero on the lateral sides). Hence we conclude that u(x,t) < 1 for all t > 0 and 0 < x < 1.

Similarly, since u = 0 on the lateral sides and minimum value at time t = 0 is 0, by the Minimum Principle, we have that u(x,t) > 0 for all t > 0 and 0 < x < 1.

(B) Show that 
$$u(x,t) = u(1-x,t)$$
 for all  $t \ge 0$  and  $0 \le x \le 1$ .

Let v(x,t) := u(1-x,t). Note that  $0 < x < 1 \to 0 < 1-x < 1 \to -1 < -x < 0 \to 0 < x < 1$ . Now, by the chain rule:

$$\frac{\partial}{\partial t}v(x,t) = \frac{\partial}{\partial t}u(1-x,t) = u_t$$

$$\frac{\partial}{\partial x}v(x,t) = \frac{\partial}{\partial x}u(1-x,t) = -u_x$$

$$\frac{\partial^2}{\partial x^2}v(x,t) = \frac{\partial^2}{\partial x^2}u(1-x,t) = u_{xx}$$

Hence we have that  $v_t = v_{xx}$  for 0 < x < 1, t > 0. Moreover:

$$\begin{cases} v(x,0) = u(1-x,0) = 4(1-x)(1-(1-x)) = 4x(1-x) \\ v(0,t) = u(1,t) = 0 \\ v(1,t) = u(0,t) = 0 \end{cases}$$

So v is a solution to the diffusion equation with the same initial data and boundary conditions as u. By uniqueness we are done.

(C) Use the energy method to show that  $\int_0^1 u^2 dx$  is a strictly decreasing function of t.

We have that

$$\frac{d}{dt} \int_0^1 u^2 dx = 2 \int_0^1 u(x,t) u_t(x,t) dx$$

$$= 2 \int_0^1 u(x,t) u_{xx}(x,t) dx \quad (u_t = u_{xx})$$

$$= 2u(x,t) u_x(x,t)|_{x=0}^{x=1} - 2 \int_0^1 u_x(x,t) u_x(x,t) dx \quad (\text{IBP})$$

$$= -2 \int_0^1 (u_x(x,t))^2 dx \quad (u(0,t) = u(1,t) = 0)$$

$$:= -2\mathcal{I}$$

I claim that  $\mathcal{I} > 0$ . Indeed, if  $\mathcal{I} = 0$  then by the Vanishing theorem we have that  $u_x(x,t) = 0$ . So then for each t, u(x,t) is a constant (say k) in x. Since u(0,t) = 0, k must be 0. This contradicts part A (that 0 < u(x,t) < 1 for all t > 0 and 0 < x < 1). In conclusion,  $\int_0^1 u^2 dx$  is a strictly decreasing function of t.

#### Strauss 2.3.5

The purpose of this exercise is to show that the maximum principle is not true for the equation  $u_t = xu_{xx}$ , which has a variable coefficient. Verify that  $u = -2xt - x^2$  is a solution. Find the location of its maximum in the closed rectangle  $\{-2 \le x \le 2, 0 \le t \le 1\}$ 

First since  $u_t = -2x$ ,  $u_x = -2t - 2x$ ,  $u_{xx} = -2$ , we have that  $u_t = xu_{xx}$ .

Now, let  $R := \{-2 \le x \le 2, 0 \le t \le 1\}$ . To find the maximum first check critical point; so want  $u_t = u_x = 0$  i.e. the point (0,0) with value u(0,0) = 0. Now we check each of the sides of R:

- u(-2,t) = 4t 4, which has highest value at t = 1, u(-2,1) = 0.
- u(2,t) = -4t 4, which has highest value at t = 0, u(2,0) = -4.
- $u(x,0) = -x^2$ , which has highest value at x = 0, u(0,0) = 0.
- $u(x,1) = -2x x^2$ , which has highest value at x = -1, u(-1,1) = 1.

So, the location of the maximum in closed rectangle R is at (-1,1), which is on the top of R. Hence the maximum principle does not hold.

# **Bibliography**

[1] W. Strauss, Partial Differential Equations: An Introduction, 2nd edition, Wiley