Задание 1

NT 1) Dermy and equil a
$$ER^{A}$$
 RER^{A} mo $\frac{\partial(R^{A})}{\partial x} = a$;

 $gex \cdot be: a^{T}x - |\alpha \cdot a_{1} \cdot a_{1}|^{2}x$
 $\frac{\partial(A^{T}x)}{\partial x} = \begin{pmatrix} 2(\Xi a_{1}x) \\ \Xi a_{1}x \\ 2(\Xi a_{1}x) \end{pmatrix} = \begin{pmatrix} a_{1} \\ \Xi a_{1}x \\ 2(\Xi a_{1}x) \end{pmatrix} = a$

2) Dermy and easily $A \in R$ man $A \in R^{A}$ mo $\frac{\partial(Ax)}{\partial x} = A$;

 $gex \cdot be: \begin{cases} a_{1} \cdot a_{2} \cdot a_{1}x \\ a_{1} \cdot a_{2}x \\ a_{2}x \\ a_{3}x \\ a_{4}x \\ a_{5}x \\ a_{5}x$

4) Row me, smo occur
$$X \in \mathbb{R}^{n}$$
, mo $\frac{2\|X\|^{2}}{2X} = dX$

1) $X(I)^{2} = 2I^{2} + ... + 2II^{2}$, morga $\frac{2\|X\|^{2}}{2X} = \frac{dX}{2XI}$

5) Row me, smo easing g - example as $g \cdot x$ in nog $g(x)$ nonumalimate representation of $g(x) = g(x)$ and $g(x) = g(x)$, $g(x) =$

Задание 3

N3) Dana obyranował выборка

- шетодоги нашиський кварратов паетраить

$$\frac{g}{y} = \frac{1}{4} = \frac{1}{4} = 0$$

- постраить шерень того не вида шетодай риди- регрессии с парашетрам регумеризации $\lambda = 1$.

Temerue: 1) Muk- memog: Cocmabileeur mamping X u bermop y: X = | 1 1 1 1 | 1 | y = | 4 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 6 | | $\begin{bmatrix} 5 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} 16 \\ 2 \\ 14 \end{bmatrix} \implies \beta = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ JR.O., mogent: 1-2+42 2) pugni-papercine: gue d=1 nony raeur $X^{T}X + \lambda J = \begin{bmatrix} 6 & 1 & 3 \\ 1 & 4 & 1 \end{bmatrix}$ Pemare pergraphysolaning o enemary nopuly $yp \cdot u^{T}X + \lambda J \beta = X^{T}y$, naregumen III.o., mogens: 3/2 - 1/2 x + 5/2 x

N9 Дана обучающая выборка

27	0	1	0	2	2	2	9	3
22	-1	0	0	0	1	0	1	d
y	0	P	0	0	D	1	1	1

1) Методон минейного дискр акамиза дия капидого классо построить дискр. фло и записать уре разремеющей повти

d) Методом кварь дискр. анамура построенть дискр. ран. Изобразить точ-ки и резрешениямие поверхности.

$$\hat{P}_{1} = \hat{P}_{2} = \hat{P}_{3} = \hat{P}_{1} + \hat{P}_{2} = \hat{P}_{2}$$

$$\sum_{0}^{-1} = \begin{pmatrix} a & -2 \\ -2 & 4 \end{pmatrix} \sum_{1}^{-1} = \begin{pmatrix} 4/3 & -2/3 \\ -2/3 & 4/9 \end{pmatrix} \sum_{1}^{-1} = \begin{pmatrix} 8/5 & -6/5 \\ -6/5 & 12/5 \end{pmatrix}$$

$$\delta_{0}(x) = \frac{8}{5}x_{1} - \frac{6}{5}x_{2} - \frac{4}{5} + \ln \frac{5}{6}$$

$$\delta_{1}(x) = \frac{18}{5}x_{1} - \frac{6}{5}x_{2} - \frac{24}{5} + \ln \frac{3}{6}$$
where there gives prove the second of the second

$$\delta_0(x) = \delta_1(x) - passense passense passense de $-4 - \ln \frac{\pi}{3} = 0$$$

2)
$$\delta_0(x) = -\frac{1}{2} \ln \frac{1}{2} \left(-\frac{1}{2} \right) \left(\frac{1}{2} \cdot 1 \cdot x_2 \right) \left(-\frac{1}{2} \cdot \frac{1}{4} \right) \left(\frac{x_1}{x_2} \right) \right) \ln \frac{5}{8} =$$

$$= \times - x_1^2 - 3x_2^2 + 2x_1 x_2 + 2x_3 - 4x_2 - x_4 \ln \frac{5}{8}$$

$$\delta_1(x) = -\frac{1}{2} \ln \frac{3}{4} + \left(-\frac{3}{3} \right) x_1^2 - \frac{3}{3} x_2^2 + \frac{3}{3} x_1 x_2 + \frac{10}{3} x_3 - \frac{3}{3} z_2 - \frac{14}{3} + \ln \frac{3}{8}$$

$$\frac{\delta_0(x) = \delta_1(x) - paspelserouse nosepanoens}{\frac{1}{3}x_1 + \frac{4}{3}x_2 - \frac{14}{3}x_1 + \frac{4}{3}x_2 - \frac{14}{3}x_1 + \frac{1}{3}x_2 - \frac{14}{3}x_1 + \frac{1}{3}x_2 - \frac{14}{3}x_2 - \frac{14}{3}x_1 + \frac{1}{3}x_2 - \frac{14}{3}x_1 + \frac{1}{3}x_2 - \frac{14}{3}x_2 - \frac{14}{3}x_1 + \frac{1}{3}x_2 - \frac{1}{3}x_1 + \frac{1}{3}x_1 + \frac{1}{3}x_2 - \frac{1}{3}x_1 + \frac{1}{3}x_1 + \frac{1}{3}x_2 - \frac{1}{3}x_1 + \frac{1}{$$

Задание 15

$$N15$$
 dans objective botopes. $X_1 = 0$ of $X_2 = 0$ of $X_3 = 0$ of $X_4 = 1$ of

Lewerece 1 Pr 1 x2=1/4=17=1 $P_{1}\{Y=0 \mid X_{1}=1, X_{2}=1\} = \frac{P_{1}\{X_{1}=1 \mid Y=0\} P_{1}\{X_{2}=1 \mid Y=0\} P_{1}\{X_{2}=1 \mid Y=0\}}{P_{1}\{X_{1}=1, X_{2}=1\}} = \frac{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{2}$

Omben: \$ 5.