Reduction of the Position Bias via Multi-Level Learning for Activity Recognition

#417

Aomar Osmani **Massinissa Hamidi** LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

we consider configurations where a collection \mathcal{S} of M sensors, denoted $\{s_1, \dots, s_M\}$, is deployed on the object of interest (e.g., human body) at the positions $\{p_1, \dots, p_M\}$.

we consider configurations where a collection \mathcal{S} of M sensors, denoted $\{s_1,\ldots,s_M\}$, is deployed on the object of interest (e.g., human body) at the positions $\{p_1,\ldots,p_M\}$.

Each sensor s_i generates a stream $\mathbf{x}^i = (x_1^i, x_2^i, \dots)$ of observations of a certain modality such as acceleration or gravity.

- Acc, Gyr, Mag, etc.;
- Time-series;

Segmentation (segment size, overlapping coefficient, etc.);

Generally, we cast this problem as a sequence classification task (using, e.g., neural networks, responsible for extracting relevant characteristics from the signal, etc.;

LSTMs are used to model the temporal dependencies of the signal;

Bias Induced by the Sensor's Position

Bias Induced by the Sensor's Position

Abstraction of the sensor's position

Abstraction of the Sensor's Position

Abstraction of the Sensor's Position

The goal is to build a transformation through which each sensor Wilfin the ability to **disentangle** the intertwined data streams between the **local** and **universal** component by projecting them into two distinct representations and . z_A z_P

Explicit separation of the components of the latent representation:

dSprites dataset

Implicit separation (or decomposition) of the components of the latent representations using the $\beta\text{-VAE}$

$$L(\theta, \varphi; x, z) = \mathbb{E}_{q_{\varphi}}(z|x)[\log p_{\theta}(x|z)] - \beta D_{KL}(q_{\varphi}(z|x)||p(z))$$

Imposing a particular structure to the learned representations:

$$L(\theta, \varphi; x, z) = \mathbb{E}_{q_{\varphi}}(z|x)[\log p_{\theta}(x|z)] - \beta D_{KL}(q_{\varphi}(z|x)||p(z)) - \alpha D_{KL}(q_{\varphi}(z)||p(z))$$

Imposing a particular structure to the learned representations:

 $L(\theta, \varphi; x, z) = \mathbb{E}_{q_{\varphi}}(z|x)[\log p_{\theta}(x|z)] - \beta D_{KL}(q_{\varphi}(z|x)||p(z))$

 $-\alpha D_{KL}(q_{\varphi}(z)||p(z))$

Constraint imposing sparsity of the learned representations

Reconstruction error

Divergence between the posterior distribution and the target structure

Local learners

- specific to each position of the sensor deployment
- decomposition of signal/data into position-specific and universal (mutualizable) components

Local learners

- specific to each position of the sensor deployment
- decomposition of signal/data into position-specific and universal (mutualizable) components

The objective of the local learner L_p can be formalized as the expected loss over the data distribution of the position p:

$$f_p(w_p) = \mathbb{E}_{\xi_p}[\tilde{f}_p(w_p; \xi_p)]$$

where ξ_p is a random data sample drawn according to the distribution of position p and $\tilde{f}_p(w_p;\xi_p)$ is a loss function corresponding to this sample while are the learner's weights. w_p

Local learners

- specific to each position of the sensor deployment
- decomposition of signal/data into position-specific and universal (mutualizable) components

Referential (central) learner

- conciliation of the different perspectives

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) := \sum_{p=1}^M \alpha_p \times f_p(w_p) \right\} with \sum_{p=1}^M \alpha_p = 1$$

Local learners

- specific to each position of the sensor deployment
- decomposition of signal/data into position-specific and universal (mutualizable) components

Referential (central) learner

- conciliation of the different perspectives
- alignment of the universal representations

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) := \sum_{p=1}^M \alpha_p \times f_p(w_p) \right\} with \sum_{p=1}^M \alpha_p = 1$$

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \frac{1}{M} \sum_{p=1}^M F_p(w_p) \right\}, \, F_p(w_p) = \min_{w \in \mathbb{R}^d} \left\{ f_p(w_p) + \lambda R(z_{iA}, z_A^{(t)}) \right\}$$

Local learners

- specific to each position of the sensor deployment
- decomposition of signal/data into position-specific and universal (mutualizable) components

Referential (central) learner

- conciliation of the different perspectives
- alignment of the universal representations

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) := \sum_{p=1}^M \alpha_p \times f_p(w_p) \right\} with \sum_{p=1}^M \alpha_p = 1$$

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \frac{1}{M} \sum_{p=1}^M F_p(w_p) \right\}, F_p(w_p) = \min_{w \in \mathbb{R}^d} \left\{ f_p(w_p) + \lambda R(z_{iA}, z_A^{(t)}) \right\}$$

Initialization of referential learner weights and their distribution to local learners

At the step t of communication round, each local learner independently runs τ_p iterations of the local solver, e.g., stochastic gradient descent, starting from the current global model $L_p^{(t,0)}$ until the step $L_p^{(t,\tau_p)}$ to optimize its own local objective (see the black arrows).

$$w^{(t+1,0)} - w^{(t,0)} = \sum_{p=1}^{M} \alpha_p \Delta_p^{(t)} = -\sum_{p=1}^{M} \alpha_p \cdot \eta \sum_{k=0}^{\tau_p - 1} g_p(w_p^{(t,k)})$$

where $w_p^{(t,k)}$ denotes client p's model after the k-th local update in the t-th communication round and $\Delta_p^{(t)} = w_p^{(t,\tau_p)} - w_p^{(t,0)}$ denotes the cumulative local progress made by client p at round t. η is the client learning rate and g_p represents the stochastic gradient over a mini-batch of B samples.

Experiments

Experimental Evaluation

(i) Evaluation of the data decomposition process

Model	HHAR	Fusion	SHL
DeepConvLSTM	$70.1 \scriptstyle{\pm .0018}$	$68.5 \scriptstyle{\pm .002}$	$65.3 \scriptstyle{\pm .0206}$
DeepSense	$72.0 \scriptstyle{\pm .0022}$	$69.1 \scriptstyle{\pm .0017}$	$66.5 {\scriptstyle \pm .006}$
AttnSense	$76.2 \scriptstyle{\pm .0074}$	$70.3 \scriptstyle{\pm .0027}$	$68.4 \pm .03$
Feature fusion	$72.9 \scriptstyle{\pm .004}$	$68.7 \pm .001$	$66.8 \scriptstyle{\pm .009}$
Corr. align.	$75.8 \scriptstyle{\pm .0014}$	$70.2 \scriptstyle{\pm .04}$	$69.1 \scriptstyle{\pm .015}$
Proposed	$78.3 \scriptstyle{\pm .0045}$	$72.8 \scriptstyle{\pm .002}$	$74.5 \scriptstyle{\pm .0133}$

(ii) Performances comparison

(iii) Inference configurations

Experimental Setup

- Representative datasets
 - SHL, HHAR, Fusion datasets;
 - Multimodal and multilocation sensor data;
- Baselines
 - DeepConvLSTM, DeepSense, AttnSense
 - Feature fusion, Correlation alignment
- Performance evaluation
 - Meta-segmented cross-validation
 - F1-score

Topology of the wearable sensors deployment in a real-world application

Experimental Setup

- Representative datasets
 - SHL, HHAR, Fusion datasets;
 - Multimodal and multilocation sensor data;
- Baselines
 - DeepConvLSTM, DeepSense, AttnSense
 - Feature fusion, Correlation alignment
- Performance evaluation
 - Meta-segmented cross-validation
 - F1-score

Topology of the wearable sensors deployment in a real-world application

Experimental Evaluation

(i) Evaluation of the data decomposition process

Model	HHAR	Fusion	SHL
DeepConvLSTM	70.1±.0018	68.5±.002	65.3±.0206
DeepSense	$72.0 \scriptstyle{\pm .0022}$	$69.1 \scriptstyle{\pm .0017}$	$66.5 {\scriptstyle \pm .006}$
AttnSense	$76.2 \scriptstyle{\pm .0074}$	$70.3 \scriptstyle{\pm .0027}$	$68.4 \pm .03$
Feature fusion	$72.9 \pm .004$	$68.7 \pm .001$	$66.8 \pm .009$
Corr. align.	$75.8 \scriptstyle{\pm .0014}$	$70.2 \scriptstyle{\pm .04}$	$69.1 \scriptstyle{\pm .015}$
Proposed	78.3±.0045	72.8±.002	$74.5 \scriptstyle{\pm .0133}$

(ii) Performances comparison

(iii) Inference configurations

Evaluation of the Data Decomposition Process

Evaluation of the Data Decomposition Process

Evaluation of the Data Decomposition Process

Experimental Evaluation

(i) Evaluation of the data decomposition process

\mathbf{Model}	HHAR	Fusion	SHL
DeepConvLSTM	$70.1 \scriptstyle{\pm .0018}$	$68.5 \pm .002$	$65.3 \scriptstyle{\pm .0206}$
DeepSense	$72.0 \scriptstyle{\pm .0022}$	$69.1 \scriptstyle{\pm .0017}$	$66.5 {\scriptstyle \pm .006}$
AttnSense	$76.2 \scriptstyle{\pm .0074}$	$70.3 \scriptstyle{\pm .0027}$	$68.4 \pm .03$
Feature fusion	$72.9 \scriptstyle{\pm .004}$	$68.7 \pm .001$	$66.8 \pm .009$
Corr. align.	$75.8 \scriptstyle{\pm .0014}$	$70.2 \scriptstyle{\pm .04}$	$69.1 \scriptstyle{\pm .015}$
Proposed	$78.3 \scriptstyle{\pm .0045}$	$72.8 \scriptstyle{\pm .002}$	$74.5 \scriptstyle{\pm .0133}$

(ii) Performances comparison

(iii) Inference configurations

Performance Comparison

Model	HHAR	Fusion	SHL
DeepConvLSTM	$70.1 \scriptstyle{\pm .0018}$	$68.5 \pm .002$	$65.3 \scriptstyle{\pm .0206}$
DeepSense	$72.0 \scriptstyle{\pm .0022}$	$69.1 \scriptstyle{\pm .0017}$	$66.5 {\scriptstyle \pm .006}$
AttnSense	$76.2 \scriptstyle{\pm .0074}$	$70.3 \scriptstyle{\pm .0027}$	$68.4 \pm .03$
Feature fusion	$72.9 \scriptstyle{\pm .004}$	$68.7 \scriptstyle{\pm .001}$	$66.8 \pm .009$
Corr. align.	$75.8 \scriptstyle{\pm .0014}$	$70.2 \pm .04$	$69.1 \scriptstyle{\pm .015}$
Proposed	$78.3 \scriptstyle{\pm .0045}$	72.8±.002	$74.5 \scriptstyle{\pm .0133}$

Performance Comparison

Model	HHAR	Fusion	SHL
DeepConvLSTM	$70.1 \scriptstyle{\pm .0018}$	$68.5 {\scriptstyle \pm .002}$	$65.3 \scriptstyle{\pm .0206}$
DeepSense	$72.0 \scriptstyle{\pm .0022}$	$69.1 \pm .0017$	$66.5 \pm .006$
AttnSense	$76.2 \scriptstyle{\pm .0074}$	$70.3 \scriptstyle{\pm .0027}$	$68.4 \pm .03$
Feature fusion	$72.9 \scriptstyle{\pm .004}$	$68.7 \pm .001$	$66.8 \pm .009$
Corr. align.	$75.8 \scriptstyle{\pm .0014}$	$70.2 \pm .04$	$69.1 \pm .015$
Proposed	78.3±.0045	$72.8 \scriptstyle{\pm .002}$	$74.5 \scriptstyle{\pm .0133}$

Performance Comparison

Model	HHAR	Fusion	SHL
DeepConvLSTM	$70.1 \scriptstyle{\pm .0018}$	$68.5 \scriptstyle{\pm .002}$	$65.3 \scriptstyle{\pm .0206}$
DeepSense	$72.0 \scriptstyle{\pm .0022}$	$69.1 \scriptstyle{\pm .0017}$	$66.5 {\scriptstyle \pm .006}$
AttnSense	$76.2 \scriptstyle{\pm .0074}$	$70.3 \scriptstyle{\pm .0027}$	$68.4 \pm .03$
Feature fusion	$72.9 \scriptstyle{\pm .004}$	$68.7 \scriptstyle{\pm .001}$	$66.8 \scriptstyle{\pm .009}$
Corr. align.	$75.8 \scriptstyle{\pm .0014}$	$70.2 \pm .04$	$69.1 \scriptstyle{\pm .015}$
Proposed	$78.3 \scriptstyle{\pm .0045}$	$72.8 \scriptstyle{\pm .002}$	$74.5 \scriptstyle{\pm .0133}$

Experimental Evaluation

(i) Evaluation of the data decomposition process

Model	HHAR	Fusion	SHL
DeepConvLSTM	70.1±.0018	68.5±.002	65.3±.0206
DeepSense	$72.0 \scriptstyle{\pm .0022}$	$69.1 \scriptstyle{\pm .0017}$	$66.5 \scriptstyle{\pm .006}$
AttnSense	$76.2 \scriptstyle{\pm .0074}$	$70.3 \scriptstyle{\pm .0027}$	$68.4 \pm .03$
Feature fusion	$72.9 \pm .004$	$68.7 \pm .001$	$66.8 \pm .009$
Corr. align.	$75.8 \scriptstyle{\pm .0014}$	$70.2 \scriptstyle{\pm .04}$	$69.1 \scriptstyle{\pm .015}$
Proposed	$78.3 \scriptstyle{\pm .0045}$	72.8±.002	$74.5 \scriptstyle{\pm .0133}$

(ii) Performances comparison

(iii) Inference configurations

		Recognition Performances±std.					
Config.	Bag	Hand	Hips	Torso			
Baseline (no sep.)	$63.79 \pm .0089$	$63.86 \pm .0014$	$65.70 \pm .0126$	$60.61 \pm .0072$			
Universal comp.							
w/o conciliation	$66.17 \pm .0224$	$65.26 \pm .0147$	$66.12 \pm .0035$	$62.47 \pm .013$			
w/ conciliation	$66.97 \pm .016$	$67.8 \pm .0015$	$67.84 \pm .0354$	$63.12 \pm .01$			
Posspecific comp.							
w/o conciliation	$64.2 \pm .3$	$66.17 \pm .007$	$67.9 \pm .0026$	$61.32 \pm .087$			
w/ conciliation	$65.66 \pm .029$	$68.94 \pm .03$	$70.45 \pm .07$	$61.15 \pm .029$			

(b) $z_A; z_{Hand}$

(c) $z_A; z_{Bag}$

(d) $z_A; z_{Hips}$

	Recognition Performances±std.					
Config.	Bag	Hand	Hips	Torso		
Baseline (no sep.)	$63.79 \pm .0089$	$63.86 \pm .0014$	$65.70 \pm .0126$	$60.61 \pm .0072$		
Universal comp.			1			
w/o conciliation	$66.17 \pm .0224$	$65.26 \pm .0147$	$66.12 \pm .0035$	$62.47 \pm .013$		
w/ conciliation	$66.97 \pm .016$	$67.8 \pm .0015$	$67.84 \pm .0354$	$63.12 \pm .01$		
Posspecific comp.						
w/o conciliation	$64.2 \pm .3$	$66.17 \pm .007$	$67.9 \pm .0026$	$61.32 \pm .087$		
w/ conciliation	$65.66 \pm .029$	$68.94 \pm .03$	$70.45 \pm .07$	$61.15 \pm .029$		

(b) $z_A; z_{Hand}$

(d) $z_A; z_{Hips}$

		Recognition Per	formances±std	
Config.	$\overline{}$ Bag	Hand	Hips	Torso
Baseline (no sep.)	$63.79 \pm .0089$	$63.86 \pm .0014$	$65.70 \pm .0126$	$60.61 \pm .0072$
Universal comp.				
w/o conciliation	$66.17 \pm .0224$	$65.26 \pm .0147$	$66.12 \pm .0035$	$62.47 \pm .013$
w/ conciliation	$66.97 \pm .016$	$67.8 \pm .0015$	$67.84 \pm .0354$	$63.12 \pm .01$
Posspecific comp.			l	
w/o conciliation	$64.2 \pm .3$	$66.17 \pm .007$	$67.9 \pm .0026$	$61.32 \pm .087$
w/ conciliation	$65.66 \pm .029$	$68.94 \pm .03$	$70.45 \pm .07$	$61.15 \pm .029$

(b) $z_A; z_{Hand}$

(c) $z_A; z_{Bag}$

(d) $z_A; z_{Hips}$

	Recognition Performances±std.				
Config.	Bag	Hand	Hips	Torso	
Baseline (no sep.)	$63.79 \pm .0089$	$63.86 \pm .0014$	$65.70 \pm .0126$	$60.61 \pm .0072$	
Universal comp.					
w/o conciliation	$66.17 \pm .0224$	$65.26 \pm .0147$	$66.12 \pm .0035$	$62.47 \pm .013$	
w/ conciliation	$66.97 \pm .016$	$67.8 \pm .0015$	$67.84 \pm .0354$	$63.12 \pm .01$	
Posspecific comp.					
w/o conciliation w/ conciliation	$64.2 \pm .3$ $65.66 \pm .029$			$61.32 \pm .087$ $61.15 \pm .029$	

(d) $z_A; z_{Hips}$

	Recognition Performances±std.					
Config.	Bag	Hand	Hips	Torso		
Baseline (no sep.)	$63.79 \pm .0089$	$63.86 \pm .0014$	$65.70 \pm .0126$	$60.61 \pm .0072$		
Universal comp.						
w/o conciliation	$66.17 \pm .0224$	$65.26 \pm .0147$	$66.12 \pm .0035$	$62.47 \pm .013$		
w/ conciliation	$66.97 \pm .016$	$67.8 \pm .0015$	$67.84 \pm .0354$	$63.12 \pm .01$		
Posspecific comp.						
w/o conciliation	$64.2 \pm .3$	$66.17 \pm .007$	$67.9 \pm .0026$	$61.32 \pm .087$		
w/ conciliation	$65.66 \pm .029$	$68.94 \pm .03$	$70.45 \pm .07$	$61.15 \pm .029$		

(a) $z_A; z_{Torso}$

(b) $z_A; z_{Hand}$

(c) $z_A; z_{Bag}$

(d) $z_A; z_{Hips}$

Basic Suitable Inference Configurations

Config.	Best Config.	$Recogn.\ Perf. \pm std.$	$mean \pm std.$
Baselines			
Concat. fusion	-	-	$60.24 \pm .014$
Corr. Alignment	-	-	$63.79 \pm .032$
Activities			
Still	$z_{hi};z_t$	85.77 ± 0.016	83.26 ± 0.7
Walk	$z_A; z_{ha}$	88.54 ± 0.07	86.74 ± 0.058
Run	z_{ha}	90.51 ± 0.016	89.46 ± 0.03
Bike	$z_A;z_{hi}$	85.62 ± 0.2	83.22 ± 0.086
Car	$z_A; z_{ha}$	78.24 ± 0.058	77.14 ± 0.2
Bus	z_{ha}	78.08 ± 0.022	75.17 ± 0.004
Train	$z_{hi};z_{hi}$	76.13 ± 0.175	74.88 ± 0.08
Subway	$z_A;z_{ha};z_t$	75.89 ± 0.009	74.07 ± 0.006

Basic Suitable Inference Configurations

Config.	$Best\ Config.$	Recogn. Perf. $\pm std$.	$mean \pm std.$
Baselines			
Concat. fusion	-	-	$60.24 \pm .014$
Corr. Alignment	-	-	$63.79 \pm .032$
Activities			
Still	$z_{hi};z_t$	85.77 ± 0.016	83.26 ± 0.7
Walk	$z_A;z_{ha}$	88.54 ± 0.07	86.74 ± 0.058
Run	z_{ha}	90.51 ± 0.016	89.46 ± 0.03
Bike	$z_A;z_{hi}$	85.62 ± 0.2	83.22 ± 0.086
Car	$z_A; z_{ha}$	78.24 ± 0.058	77.14 ± 0.2
Bus	z_{ha}	78.08 ± 0.022	75.17 ± 0.004
Train	$z_{hi};z_{hi}$	76.13 ± 0.175	74.88 ± 0.08
Subway	$z_A;z_{ha};z_t$	75.89 ± 0.009	74.07 ± 0.006

Basic Suitable Inference Configurations

Config.	Best Config.	$Recogn.\ Perf. \pm std.$	$mean \pm std.$
Baselines			
Concat. fusion	-	-	$60.24 \pm .014$
Corr. Alignment	-	-	$63.79 \pm .032$
Activities			
Still	$z_{hi};z_t$	85.77 ± 0.016	83.26 ± 0.7
Walk	$z_A; z_{ha}$	88.54 ± 0.07	86.74 ± 0.058
Run	z_{ha}	90.51 ± 0.016	89.46 ± 0.03
Bike	$z_A;z_{hi}$	85.62 ± 0.2	83.22 ± 0.086
Car	$z_A; z_{ha}$	78.24 ± 0.058	77.14 ± 0.2
Bus	z_{ha}	78.08 ± 0.022	75.17 ± 0.004
Train	$z_{hi};z_{hi}$	76.13 ± 0.175	74.88 ± 0.08
Subway	$z_A; z_{ha}; z_t$	75.89 ± 0.009	74.07 ± 0.006

Summary

- Sensors distributed in various positions of the space provide rich perspectives that need to be leveraged properly during learning process.
- The information conveyed by these perspectives are not of the same nature: e.g., Sensor's Position Bias induce different types of information.
- The proposed approach is able to abstract this bias by decomposing the sensory signals into universal and position-specific components.

contact: hamidi@lipn.univ-paris13.fr ao@lipn.univ-paris13.fr LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

contact: hamidi@lipn.univ-paris13.fr ao@lipn.univ-paris13.fr LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

西南交通大學 Southwest Jiaotong University

MAY, 16-19 CHENGDU, CHINA

