hw3

Wen Fan(wf85), Zhidong Liu(zl479), Siyu Zhu(sz432)

March 2016

1 Functional Dependencies

• $A += B + \Leftrightarrow A \to B \text{ and } B \to A$

Solution:

Proof from left to right hand:

Because $A \to A$, $A \subseteq A += B+$. $A \subseteq B+ \Rightarrow B \to A$.

Because $B \to B$, $B \subseteq B + = A + B \subseteq A + A \to B$.

Proof from right to left hand:

 $\forall K \in B^+, B \to K, A \to B \Rightarrow A \to B \to K, A \to K, K \in A^+$. Therefore, $B^+ \subset A^+$

Same reason as above, $A^+ \subseteq B^+$

$$B^+ \subset A^+, A^+ \subset B^+ \Rightarrow A^+ = B^+$$

• $X \rightarrow Y \Leftrightarrow X$ is a key of $\pi_{XY}(R)$

Solution:

Proof from left to right hand:

 $\forall Tuples \ t_1, t_2 \in \pi_{XY} R(t_1 = t_2 \text{ allowed}), \ \pi_X(t_1) = \pi_X(t_2) \Rightarrow \pi_Y(t_1) = \pi_Y(t_2).$ We can combine X and Y, then $\pi_X(t_1) = \pi_X(t_2) \Rightarrow \pi_{XY}(t_1) = \pi_{XY}(t_2)$. Because of the property of the set relation, $\pi_X(t_1) = \pi_X(t_2) \Rightarrow t_1 = t_2$. Therefore, according to the definition of key, X is a key of $\pi_{XY}(R)$. Proof from right to left hand:

 $\forall Tuples \ t_1, t_2 \in R(t_1 = t_2 \text{ allowed}), \text{ if } \pi_X(t_1) = \pi_X(t_2), \text{ then } t_1 = t_2 \Rightarrow \pi_Y(t_1) = \pi_Y(t_2). \text{ According to the definition of FD}, X \to Y.$

• $A \cap B = X(X \neq empty)$, R with $A \cup B$, $X \to B \Rightarrow R = \pi_A(R) \bowtie \pi_B(R)$ Solution:

Assume the attributes in A except from X is A_r , the attributes in B except from X is B_r .

Prove that $\pi_A(R) \bowtie \pi_B(R) \subseteq R$:

$$\forall$$
 Tuple $t \in \pi_A(R) \bowtie \pi_B(R), \exists t_1 \in R, t_2 \in R \text{ and } \pi_X(t_1) = \pi_X(t_2)$

$$t = \pi_{XA_n}(t_1) \bowtie \pi_{XB_n}(t_2) \tag{1}$$

Because $X \to B$ and $\pi_X(t_1) = \pi_X(t_2)$, $\pi_B(t_1) = \pi_B(t_2) \Rightarrow \pi_{B_r}(t_1) = \pi_{B_r}(t_2)$. Then (1) becomes:

$$t = \pi_{XA_r}(t_1) \bowtie \pi_{XB_r}(t_2) = \pi_{XA_r}(t_1) + \pi_{B_r}(t_2) = \pi_{XA_r}(t_1) + \pi_{B_r}(t_1)$$

```
=\pi_{XA_rB_r}(t_1)=\pi_{A\cup B}(t1)=t1 Therefore \forall Tuple t\in\pi_A(R)\bowtie\pi_B(R),\ \exists t_1\in R, t=t_1\Rightarrow\pi_A(R)\bowtie\pi_B(R)\subseteq R Prove that R\subseteq\pi_A(R)\bowtie\pi_B(R): \forall Tuple t\in R, according to the definition of natural join, t=\pi_A(t)\bowtie\pi_B(t)\in\pi_A(R)\bowtie\pi_B(R). To sum up, R=\pi_A(R)\bowtie\pi_B(R).
```

2 ER Diagram

Figure 1: ER Diagram

Note: Evaluation Event is a weak entity depending on Contract, so its ID is underlined with dash lines.

3 Normal Forms

• Solution

No, it is not always beneficial. Decomposition can bring the following problems

1. Some queries require a join 2. May lose information if not careful 3. Checking FDs may require a join

• Solution

only appears on the LHS of the FDs, so A must be in the key. Since that we can get E and H from $A\rightarrow EH$, the key does not contain E or H. From $B\rightarrow CDF$ and $CDE\rightarrow BGF$, we know that in order to $get(key)^+=ABCDEFGH$, the key must contain either B or CD (containing both of them will cause a superkey). Computing the attribute closures $(AB)^+$ and $(ACD)^+$, we can verify that both AB and ACD are keys of R. By the property of minimality, they are the only keys of R.

• Solution

BCNF: Functional dependency $B \to CDF$ holds for R. By the Reflexivity of Armstrong's Axiom, $CDF \to F$. Based on the Transitivity, $B \to F$. That is, $B \to F \in F^+$ (Suppose F^+ is the closure of the set of functional dependencies). However, neither " $F \in B$ " nor "B contains a key for R" holds here. So by the definition of BCNF, R is not in BCNF. 3NF: Still use the example above. For functional dependency $B \to F$, F is neither in key AB nor in key ACD. So R is not in 3NF.

• Solution

The minimal cover G of set $F = B \rightarrow CDF, A \rightarrow EH, CDE \rightarrow BGF$ is:

$$G = B \rightarrow C, B \rightarrow D, B \rightarrow F, A \rightarrow E, A \rightarrow H, CDE \rightarrow B, CDE \rightarrow G$$

According to the definition of 3NF, we first identify that $B \to F$ violates 3NF so we decompose to ABCDEGH, BF. Then $A \to E$ is identified to violate 3NF, so ABCDEGH is decomposed to ABCDGH and AE. Also, $A \to H$ violates 3NF, ABCDGH is decomposed to ABCDG and AH. At this point, $CDE \to B$ and $CDE \to G$ are not preserved, so we need to add CBDE and CDEG to schema. Finally, the decomposition of R into 3NF is: ABCDG, AH, AE, BF, CBDE, CDEG.