Day 1: Using Force as a Vectors and doing some problems

Ahmed Saad Sabit

April 19, 2021

0.1 Frame Break

0.1 Right Angled Triangle - The Triangle with a $90^{\circ}.$

0.2 Frame Break

0.2 Trig Because of some ratio of the right angled triangle we can say that,

$$\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$$

$$\cos\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$

0.3 Frame Break

0.3 Measuring Angles

Figure 0.1: Right Angled Triangle

Figure 0.2: Comaparison

This means that,

$$180^{\circ} = \pi \text{ radians}$$

The reason we use radian can be shown when needed.

0.4 Frame Break

0.4 The fact $\alpha+\beta+\gamma=180^\circ=\pi~$ If you add all angles inside a triangle, the sum will always be $180^\circ.$

Figure 0.3: Summing up angles

$$\alpha + \beta + \gamma = 180^{\circ} = \pi$$

For a right angle triangle, $\gamma = 90^{\circ} = \frac{\pi}{2}$, hence,

$$\alpha + \beta + 90^{\circ} = 180^{\circ}$$

$$\alpha + \beta = 90^{\circ}$$

0.5 Frame Break

Newton's Second Law: $\vec{F} = m\vec{a}$

Figure 0.4: If you push a block

0.6 Frame Break

N2L

Figure 0.5: The movement will be in the same direction

The movement is Acceleration. Acceleration is increase/decrease in speed overtime.

$$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}$$

0.7 Frame Break

A required relation of angles α and β .

Figure 0.6:

0.8 Frame Break

 $r \sin \beta$ $r \cos \beta$ β α 90° $r \sin \alpha$

Figure 0.7:

This actually shows us that,

$$r\sin\alpha=r\cos\beta$$

$$r\cos\alpha=r\sin\beta$$
 Because $\alpha+\beta=90^\circ,\ \beta=90^\circ-\alpha.$ Hence,
$$r\sin\alpha=r\cos(90^\circ-\alpha)$$

$$r\cos\alpha = r\sin(90^\circ - \alpha)$$

$$\sin(90^{\circ} - \alpha) = \cos \alpha$$
$$\cos(90^{\circ} - \alpha) = \sin \alpha$$

0.9 Frame Break

Warm Up: Cosine Law — For Vector We will use vectors very often in physics, so it is better we try it out before starting. At first, vectors can be added in this way,

Vectors can be added, like,

$$\vec{a} + \vec{b}$$

Which looks like one vector is put infront of another.

0.10 Frame Break

Vector Triangle for Cosine Law If there is a side a and b, then assuming the third side is c, the Law of cosine is to find the length of c using the lengths of a and b, and the angle a and b makes.

The easiest solution can be found using \vec{a} and \vec{b} vector methods. We know

angle θ between a and b

0.11 Frame Break

Now let us have a triangle with side \vec{a} and \vec{b} , then the third side is obviously $\vec{b}-\vec{a}$. This is same as we saw in last frame. Now, let the third side be $\vec{c}=\vec{b}-\vec{a}$, then can we find a scalar solution for the length of vector \vec{c} ?

$$\vec{c} = \vec{b} - \vec{a}$$
$$(\vec{c})^2 = \left(\vec{b} - \vec{a}\right)^2$$
$$\vec{c} \cdot \vec{c} = \vec{a} \cdot \vec{a} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b}$$

Now, $\vec{a} \cdot \vec{b}$, is the dot product. And for a dot product,

$$\vec{a} \cdot \vec{b} = |a| |b| \cos \theta$$

And if,

$$\vec{a} \cdot \vec{a} = |a||a|\cos(0)$$

Figure 0.8: Sine Law

Because \vec{a} makes 0° with itself. Hence, we have,

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

So, we have found length of third side,

$$c = \sqrt{a^2 + b^2 - 2ab\cos\theta}$$

0.12 Frame Break

Sine Law The $\sin \alpha$ Law: For a triangle, with lowercase denoting the angle and the uppercase the opposite side, the sides and angle follow the relation respect to the circumcircle is that,

$$\frac{a}{\sin A} \, = \, \frac{c}{\sin C} \, = \, \frac{d}{\sin D} \, = \, 2r$$

Proof: Let $\triangle ACD$ be the required triangle, we want to build a relation between the length of the sides and the opposite angles to them motivated from the fact that the opposite angle being large making the side project a larger length.

0.13 Frame Break

0.14 Frame Break

Let Γ be the circumcircle of $\triangle ACD$ and we draw a diameter DE that passes through the center of Γ which is point O.

Figure 0.9: Sine Law

 $\triangle ECD$ is a Right Angled Triangle because it meets the *Semi-circle* and thus,

$$\sin \angle CED = \frac{\bar{CD}}{\bar{ED}}$$

Using the Arc and Angle Theorem we can see that

$$\angle CED = \angle CAD = \angle A$$

As we know that DE = 2r we are left to show that,

$$\sin \angle CED = \frac{\bar{CD}}{\bar{ED}}$$

$$\sin \angle A = \frac{a}{2r}$$

$$\frac{a}{\sin A} = 2r$$
(1)

And this can be again and again be proved for all the three remaining sides,

$$\frac{a}{\sin A} = \frac{c}{\sin C} = \frac{d}{\sin D} = 2r \tag{3}$$

And we are done with the proof.

0.15 Frame Break

Problem 1: The General Problem of Force

Problem. 1. There is a system made of an incline with two masses attached with string as shown. One is m_1 another is m_2 , gravity works \vec{g} . Find the acceleration of both bodies m_1 and m_2 .

Figure 0.10: Problem 1 Diagram

0.16 Frame Break

Problem 1: The General Problem of Force

Problem. 2. There is a system made of an incline with two masses attached with string as shown. One is m_1 another is m_2 , gravity works \vec{g} . Find the acceleration of both bodies m_1 and m_2 .

Figure 0.11: Problem 1 Diagram

he main force is caused by Gravity The rope can pull the m_2 and slow down m_1 when it tries to fall down. here is possibility that too much pull be m_2 can cause the m_1 to lift off the ground, instead of falling down. We have to be careful about all the possibilities.

0.17 Frame Break

This is the approach

- Find all the forces, it's the tricky part.
- Find the acceleration from the force using $\vec{F}=m\vec{a}$. i

0.18 Frame Break

Problem 1: Find All the forces

Figure 0.12: Sorry for this exploded word size.

We will start isolating the force on the bodies m_1 and m_2 .

0.19 Frame Break

Problem 1: Let us find the forces on m_2 first

Figure 0.13:

0.20 Frame Break

Problem 1: Let us find the forces on m_1 then

Figure 0.14:

0.21 Frame Break

What is T?

- T is the Tension force, the "Tan" (in Bengali) because of the rope.
- \bullet T is same for the whole rope, otherwise a non zero force on the rope would occur.

0.22 Frame Break

Let us look the total force on m_2 Note that motion of the body m_2 is constrained (limited) in the incline.

Figure 0.15:

Thus, there force on m_2 can only work along the incline. This is force is made from 2 components.

0.23 Frame Break

Figure 0.16:

0.24 Frame Break

Figure 0.17:

$$\alpha + \beta = 90^{\circ}$$

And you can note that the projection of the m_2g vector has similar angles.

0.25 Frame Break

On m_2

- We don't need the perpendicular force components.
- Because the block m_2 is constrained to move along the incline.
- So the force perpendicular to the motion are useless.

Figure 0.18:

0.26 Frame Break

Sign Conventions for Problem We will consider the sign convention so that,

- If m_1 falls down, then the motion is in positive direction.
- If m_1 lifts up, the the motion is in negative direction.
- m_1 falling down means that m_2 will lift up along the ramp. This motion, where m_2 will lift up along the inline/ramp, means the motion is "Positive".

Figure 0.19:

0.27 Frame Break

The force by gravity, parallel to the direction of possible motion,

$$m_2 g \cos \beta = m_2 g \sin \alpha = F_g$$

This is what we need.

Figure 0.20:

0.28 Frame Break

Now, the total force on m_2 ,

$$T-F_g$$

This total force can let us know about the acceleration of the m_2 using F = ma.

$$m_2 a_2 = T - F_g$$

Figure 0.21:

0.29 Frame Break

Now, we need the total force on m_1 .

0.30 Frame Break

The gravity pulls by m_1g and the tension pulls against T, so total force,

$$m_1 a_1 = m_1 g - T$$

Figure 0.22:

0.31 Frame Break

We have built up two equations,

$$m_1 a_1 = m_1 g - T$$

$$m_2 a_2 = T - m_2 g \sin \alpha$$

- $\bullet~$ There are 2 equations
- But there are 3 unknowns. They are, a_1, a_2, T .

This system of equation can only be solved if, The number of Unknown variable match with the number of equations.

This means,

We need another equation

Figure 0.23:

0.32 Frame Break

Please look at a_1 and a_2 , note that, because of the string, both of the blocks m_1 and m_2 should together, in the same motion. Because, if one is faster than the other, the rope will resist that. So we shall have $a_1 = a_2$.

Figure 0.24:

0.33 Frame Break

Answer final Now using the fact $a_1 = a_2 = a$,

$$m_1 a = m_1 g - T$$

$$m_2 a = T - m_2 g \sin \alpha$$

To solve this equations,

- $T = m_2 a + m_2 g \sin \alpha$
- Put this in second equation, $m_1 a = m_1 g (m_2 a + m_2 g \sin \alpha)$.
- Solve this for, a, you will have, $m_1g m_2g\sin\alpha = (m_1 + m_2)a$
- We have, $a = \frac{g(m_1 m_2 \sin \alpha)}{m_1 + m_2}$

Note that, if $m_1 > m_2 \sin \alpha$, then a > 0, which means a is positive and the acceleration is positive, which follows the convention m_1 falling down is positive. Hence,

$$a = \frac{g(m_1 - m_2 \sin \alpha)}{m_1 + m_2}$$

0.34 Frame Break

Add something to Problem 1 Text What is the Acceleration if there is friction?

Figure 0.25:

The friction is to oppose motion.

0.35 Frame Break

- Now, we find the required equations.
- $m_2a = T m_2g\sin\alpha F_f$.
- $m_1 a = m_1 g T$.
- Friction is always $F_f=\mu N$, where N is the Normal component of force. Normal force is the force that the incline gives perpendicularly to the block
- Normal force is discussed in next frame.

Figure 0.26:

Frame Break 0.36

We need friction force F_f . The normal force is the perpendicular projection of the gravitational force.

- There is no ability to move perpendicular to the inclination.
- So the force is balanced along the perp \bot . Hence, the $N=m_2g\cos\alpha$.
- Friction is, $F_f = \mu N$, here, μ is the friction coefficient. .

$$F_f = m_2 g \mu \cos \alpha$$

Figure 0.27:

0.37 Frame Break

The equations that we had,

- $m_2 a = T m_2 g \sin \alpha F_f = T m_2 g \sin \alpha (m_2 g \mu \cos \alpha)$.
- $m_1a = m_1g T$.
- Please note that this equation only hold if there is motion where m_2 lifts up. Otherwise the sign of friction will change.

Similarly solving we get, only for positive motion case,

$$a = \frac{g(m_1 - m_2 \sin \alpha - m_2 \mu \cos \alpha)}{m_1 + m_2}$$

0.38 Frame Break

If the motion is reversed,

Figure 0.28:

Figure 0.29:

We need to write the equation again. Because the direction of friction will change for different motion, where m_2 falls down along the rame. We have to write,

- $m_2a = -T + m_2g\sin\alpha F_f$.
 - $m_1 a = T m_1 g$.

This is solved to get,

$$a = \frac{g(m_2 \sin \alpha - m_2 \mu \cos \alpha - m_1)}{m_1 + m_2}$$

0.39 Frame Break

For 2 cases of friction, we have

$$a = \frac{g(m_2 \sin \alpha - m_2 \mu \cos \alpha - m_1)}{m_1 + m_2}$$

$$a = \frac{g(m_1 - m_2 \sin \alpha - m_2 \mu \cos \alpha)}{m_1 + m_2}$$

These are two cases, first for m_2 getting down, second for m_2 getting up. We can define the condition of getting up, down, or resting in position because of friction.

To m_2 get down, we need,

$$m_2 \sin \alpha - m_2 \mu \cos \alpha - m_1 > 0$$
 \rightarrow $m_1 - m_2 \sin \alpha + m_2 \mu \cos \alpha < 0$

For m_2 get up, we need,

$$m_1 - m_2 \sin \alpha - m_2 \mu \cos \alpha > 0$$

0.40 Frame Break

Problem 2

Problem. 3. There is a ring of radius R and there is a bead that can move along the circle of the ring. The ring rotates in ω angular speed, find a position of the bead in which case it stays in *rest*.

This position we are going to define with the angle θ respect to rotation axis.

Figure 0.30:

0.41 Frame Break

 $\bf Idea~1.~$ If anything is in a constant velocity or rest, then the total force on it is zero

Because F=ma, if a is a=0, then there is a constant velocity or it is zero. Because,

Figure 0.31: We will isolate the forces.

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} \rightarrow a = 0$$
 means $v = \text{const}$

0.42 Frame Break

Problem 2: Force

- θ^c is $90^\circ \theta$.
- F_C is the Centrifugal force $F_C = m\omega^2 r$, where r is distance from axis.
- The motion of the bead is constrained along the tangent; if there is a component of force along the tanget, the bead will move.
- Projection of gravity on the tangent is $mg\sin\theta$. .
- Projection of Centrifugal force F_C on the tangent is $F_C \cos \theta$.
- From the diagram evidently two projection are opposite to each other.

25

0.43. FRAME BREAK

Figure 0.32:

ω

0.43 Frame Break

Problem 2: Close look at the forces.

Figure 0.33: A closer look

0.44 Frame Break

Problem 2: Centrifugal Force We need the Radius of Rotation, which is found

in the figures, we calculate it,

$$r=R\sin\theta$$

Using these,

$$F_c = m\omega^2 r = m\omega^2 R \sin \theta$$

Figure 0.34:

0.45 Frame Break

Problem 2: Balance force for Stationary condition We need total force 0,

$$mg\sin\theta - \left(m\omega^2R\sin\theta\right)\cos\theta = 0$$

$$g\sin\theta = \omega^2 R\cos\theta\sin\theta$$

And we have,

$$\cos\theta = \frac{g}{\omega^2 R}$$

The angle θ is,

$$\theta = \cos^{-1}\left(\frac{g}{\omega^2 R}\right)$$

0.46 Frame Break

Rotational Mechanics (Quick) $\,$ Torque

Torque is rotational force.

Like force, Torque causes acceleration of rotation,

$$\tau = I\alpha$$

Where, I is Moment of Inertia, which is like Mass for rotating bodies. I depends on the Geometry and Mass of the system.

$$\tau = r \times F$$

Figure 0.35:

0.47 Frame Break

Extending Torque Idea In case the F makes an angle with the radius vector r, we have to add a $\sin\theta$ factor for the perpendicular projection,

$$\tau = r \times F \sin \theta$$

Figure 0.36:

Idea 2. Most of the rules of Force can be used for Torque too, for example, torque is balanced too.

0.48 Frame Break

Angular Momentum Like the momentum we learned few minutes ago, angular momentum is also like that,

$$p = mv$$

And similarly

$$L=I\omega$$

Where I is known, and ω is Angular Speed.

Please note that these are vector, but we don't need the vector law for Angular Dynamcics right now.

0.49 Frame Break

Problem 3: Some Idea on Torque using last Idea

Problem. 4. Three rods are connected by hinges to each other, the outermost ones are hinged to a ceiling at point A, and B, the distance between these are equal of a rod. A weight is hanged at C, find the minimum force applied at D to keep the system in Balance.

Figure 0.37:

0.50 Frame Break

If there is no force, then

Figure 0.38:

Figure 0.39:

Please note, for the pivot B, if we can stop rotation by axis of B, then the system can be balanced.

0.51 Frame Break

We need to know the shapes angles

Figure 0.40:

0.52 Frame Break

Finding angles for Problem 3 This is sure that,

$$L\sin\theta = \frac{1}{2}L$$

Thus,

$$\theta = 30^{\circ}$$

From here,

$$\alpha = 90^{\circ} - \theta = 60^{\circ}$$

Now, the angle that the mg vector makes with the left side of the rod is,

$$90^{\circ} + \alpha = 90^{\circ} + 60^{\circ} = 150^{\circ}$$

So, angle $m\vec{g}$ makes with the left rod is 150° .

Figure 0.41:

0.53 Frame Break

Torque balance rules for Problem 3.

Like force balance, we have to invoke Torque balance, because,

- Force balance is similar to Torque Balance
- In this problem, we need to apply force at D, and if you notice, the motion of D is like the rotation of right rod pivoting B.
- To balance the system, we need to balance the Rotation.

0.54 Frame Break

So, the torque on the left side of the rod,

$$\tau = mgL\sin\left(150^{\circ}\right)$$

And $\sin 150^{\circ} = \frac{1}{2}$, hence,

$$\tau = \frac{mg}{2}L$$

I have something to add here too,

- In the mg force vector, some force is \bot perpendicular to the rod (prjection)
- Some force is along the rod.

The force components that are along the rod are uimportant, because they pull the left rod and do nothing.

0.55 Frame Break

Final thoughts on Problem 3 Now we add some logic. If left side has torque τ where $\tau=\frac{mg}{2}L$, then if we apply the same torque

on the right side, then we have a torque balance, which will also balance the system, hence, on the right side, we also apply a torque τ' which is,

$$\tau' = \frac{mg}{2}I$$

And $\tau = FL$, thus,

$$F = \frac{mg}{2}$$

This force is perpendicular to the rod, and solely works to balance the system, without any component along the rod, hence, no force is wasted and $F=\frac{mg}{2}$ is the minimum force possible.

$$F = \frac{mg}{2}$$

0.56 Frame Break

Problem 3 Solution $F = \frac{mg}{2}$

Figure 0.42: