

All Roads Lead to UD: Converting Stanford and Penn Parses to English Universal Dependencies with Multilayer Annotations

SIYAO PENG & AMIR ZELDES

{sp1184, amir.zeldes}@georgetown.edu

LAW-MWE-CxG-2018 @ COLING, Santa Fe, NM

Overview

- Universal Dependencies (UD) provides treebanks in 50+ languages with a unified scheme (Nivre et al. 2017)
- UD still being revised (now v2.2), older Stanford Dependencies (SD) frozen
- SD2UD conversion more reliable than gold constituent2UD by around 10%
- Head/label error rates: 1.73%/1.38% for pure SD & 0.45%/0.42% for multilayer
- Annotating in SD and converting into latest UD allows stable corpus annotation; access to additional annotations almost eliminates conversion errors

Corpora Georgetown University Multilayer Corpus (GUM) (Zeldes 2017) Documents Tokens 101 1,174 Tokens 85k 250k (8) news, interviews, how-to, travel, academic, bios, fiction & forums Scheme SD, coref, entities, discourse parsing & more Georgetown University Multilayer Corpus (Bies et al. 2012, Silveira et al. 2014) 1,174 (5) blogs, e-mail, newsgroups, online answers & reviews Constituent trees

Configurable rule-based conversion from SD to UD

- Three steps:
- 1. Pull information from other annotation layers (if available, e.g. in GUM)
- 2. Main rule-based conversion consisting of ~100 rules applied in order

3. Attaching punctuation using Udapi API (Popel et al. 2017)

• Examples of conversion rule	dobj					
attributes	relations	actions	saw #1	me -	and #2	Kim #3
func=/dobj/	none	#1:func=obj	_ ,	bj 🖊 🔪	Co	c /1
func=/.*/;func=/^cc\$/;func=/^conj\$/	#1>#2;#1>#3	#3>#2			conj	/
func=/prep/;pos=/^W.*/;func=/pcomp/	#1>#3;#3>#2	#2:func=pobj;	#1>#2;#	2>#3;#3	3:func=r	cmod

Using Multilayer Annotations

- Knowing entity type is crucial:
 - All proper names are annotated as nn (noun compound modifier) in SD
- Organization vs. person distinguishes compound vs. flat in UD:
 - compound: headed NP with internal structure, e.g. World Bank
 - flat: headless multi-word expressions, e.g. person names, Frank Bank

- Exception: organization names can be headless, e.g. Wells Fargo.
- Coreference is informative for determining dislocation:
- Dislocated node is coreferent with a dependent of the same verb:

- TEI annotations provide disfluency information:
 - reparandum: the head of an 'aborted' part that is attached to its repair
 - TEI XML tag <sic> denotes errors in GUM; convert dep inside an error and governed from outside into reparandum

- An unsolved problem: *orphan*
- Promoted orphan dominates the child of missing coordinate parents
- No current annotation helps in distinguishing orphan from dep

Results: Top 3 errors by conversion scenario

scenario	head errs		l	lab errs	
C2UD	84	nsubj	130	obl	
(gold)	82	nmod	74	nmod	
	71	conj	62	conj	
SD	37	flat	37	flat	
(pure)	10	nmod	8	obl	
	8	appos	7	nsubj	
SD	8	compound	9	compound	
(multi)	6	nmod	7	obl	
	6	flat	6	nmod	

 Other labels are rare but systematically wrong: dislocated, reparandum, goeswith are absent in C2UD

Cross-corpora comparison: non-projectivity

		C2UD	UD V2.2 (corrected)	
	EWT	0.34%	0.46%	
		C2UD	UD V2.2 (from SD multi)	original SD
ľ	GUM	0.29%	0.79%	0.63%

- Non-projectivity is more frequent in GUM, 'native dependencies', than in EWT, 'native constituents'
- Low non-projectivity for gold EWT UD may be due to genre differences or reflex of C2UD

Future work

- GUM continues to grow look for version 5 in winter!
- Plans to use more annotation layers, e.g. using the RST purpose annotation to differentiate adverbial clause (advcl) from controlled to-infinitives (xcomp)
- Figure out what to do with *orphan…* ⊗

available

QR scan:

e-poster

References

- Bies, A. et al. 2012. *English Web Treebank*. Linguistic Data Consortium, Technical Report LDC2012T13, Philadelphia, PA.
- Nivre, J. et al. 2017. *Universal Dependencies 2.0*. Charles University.
- Popel, M. et al. 2017. Udapi: Universal API for universal dependencies. *UDW2017*, 96–101.
- Silveira, N. et al. 2014. A gold standard dependency corpus for English. In *Proc. LREC-2014*. Reykjavik, 2897–2904.
- Zeldes, A. 2017. The GUM corpus: Creating multilayer resources in the classroom. *Language Resources and Evaluation* 51(3), 581–612.
- Converter code: https://corpling.uis.georgetown.edu/depedit/
- GUM corpus: http://corpling.uis.georgetown.edu/gum/
- conversions: https://github.com/gucorpling/GUM_UD_LAW2018