Experiment No-2 Date:
Page No.

Polarisation of Light & Brewster's Angle Aim-To determine Brewster's angle for given pair of media using polarised monochromatic light Formula used-Snell's Law -Bequester?s Louis -OB = tan' 1/2 FAGRAGE -1. error = Mexperimental value - experted value/x100 expected value Calculationsi) Brewster's angle = 10,1+10,1 = 158.11 + 1-58.11

Date:

Observations & Calculations -

S. No.	Medium	Ш,	Material	112	0,0	020	Brewster's angle (vietual experiment)	Brewster's angle (expected)	% evror
1.			Topaz	1.607	58.1	-58-1	58.1	58. 106	0.010
2.	Aie-	1.0	Crownglass	1.52	56.7	-56.7	56.7	56.659	0.072
3.	Air		flint glass	1.57	57.5	-57.5	57.5	57.505	0.008

Table I Determination of Brewster's angle from wirtual experiment

Fig. Palarisation of light due to enflection.

I and indicate polarisations parallel and perpendicular to the plane of incidence.

ASHOKA Page No. $\frac{10.1 + 10.1}{2} = \frac{156.71 + 1 - 56.71}{2}$ (ii) = |57.51+1-57.51 10,+10,1 (iii) (i) Medium - Air (u=1) Material - Tapaz (u=1.607) (ii) Medium - Tapaz (µ=1.607) Material - Air (1) $\mu_2 = 1 = 0.622$ Expected Bruster's Angle $tan^{-1}(u_2) = tan^{-1}(1.607) = 58.106$ for (i) (uz) = tan (0.622) = 31.881 for (ii) tant

	Error - 1. error = experimental value - expected value x1 expected value							
(i)	7. error = 58.1-58.106 × 100 = 0.0107. 58.106							
(ii)	7. error = 56.7 - 56.659 X100 = 6.0727 56.659							
(iii)	7. error = 57.5 - 57.505 x100 = 0.008%. 57.505							

_ ASHOKA Page No.

Optical Breadboard.

Fig 2. Experimental setup for determination of Brewster's angle

S. No.	Medium	Material	1/2/14, set in visualisation tool	Brewster's angle (virtual exp)	Brewster's angle (expected)	Sum Ogi + Ogi	Brewsterls Angle (Viscolisation tool)	Sum 032+062
1	Air	Topaz	1.607	58.1	58.106	89.987	58.11	89.99
2	Tupaz	Air	0.622	NA	31.881	1	31.88	(1)

Table 2 Brewster's angle

from visualisation toal.

ASHOKA Date: Page No. As per the experiment, the Brewster's angle for a given media and material using polarised light is