



### 14.2: Fractional crystallization (direct trc)

The Table shows the REE concentrations in a tonalitic magma (ppm), as well as the partition coefficients for crystallizing mineral phases.

|    | Concentration | Partition coefficients |      |        |  |  |  |
|----|---------------|------------------------|------|--------|--|--|--|
|    | Source H34    | Pl                     | Amp  | Ilm    |  |  |  |
| La | 32.04         | 0.4                    | 0.74 | 0.005  |  |  |  |
| Ce | 61.9          | 0.27                   | 1.52 | 0.006  |  |  |  |
| Nd | 25.75         | 0.21                   | 4.26 | 0.0075 |  |  |  |
| Sm | 3.97          | 0.13                   | 7.77 | 0.01   |  |  |  |
| Eu | 0.966         | 2.15                   | 5.14 | 0.007  |  |  |  |
| Gd | 2.3           | 0.097                  | 10   | 0.017  |  |  |  |
| Dy | 1.16          | 0.064                  | 13   | 0.028  |  |  |  |
| Er | 0.46          | 0.055                  | 12   | 0.035  |  |  |  |
| Yb | 0.37          | 0.049                  | 8.4  | 0.075  |  |  |  |
| Lu | 0.057         | 0.046                  | 6    | 0.1    |  |  |  |

ttg\_a.data

A differentiated magma is generated by 30% fractional crystallization of a parental magma (H34); the cumulate consists of plagioclase, hornblende and ilmenite.

- Calculate the differentiated magma composition for a cumulate made up of 49 % plagioclase, 49 % hornblende, and 2 % ilmenite.
- By means of the *GCDkit* function *spider*, plot chondrite-normalized REE patterns (using normalization values after *Boynton 1984*).



#### 14.2: Fractional crystallization (direct trc)

Rayleigh equation:

$$C_L = C_0 F^{(D-1)}$$

Eq. [11.5]

where bulk distribution coefficient D for element  $\alpha$ :

$$D_{\alpha} = \sum_{i=1}^{n} m_{i} K_{D\alpha}^{i/L}$$
 Eq. [10.4]

From definition of *D*, instantaneous solid:

$$C_{S.inst} = DC_L$$
 Eq. [11.8], CORRECTED

CORRECTED FROM THE BOOK

The bulk solid:

$$C_{S.bulk} = C_0 \frac{1 - F^D}{1 - F}$$
 Eq. [11.9]



## 15.1: Fractional crystallization (reversed Ex. 14.2)

Table contains trace-element compositions of two tonalites, a primitive WR1 and a differentiated WR2, together with corresponding partition coefficients for the relevant rock-forming minerals.

|    | WR1   | WR2   | Pl    | Amp  | Ilm    |
|----|-------|-------|-------|------|--------|
| La | 32.04 | 1.224 | 0.4   | 0.74 | 0.005  |
| Ce | 61.9  | 2.270 | 0.27  | 1.52 | 0.006  |
| Nd | 25.75 | 1.170 | 0.21  | 4.26 | 0.0075 |
| Sm | 3.97  | 0.158 | 0.13  | 7.77 | 0.01   |
| Eu | 0.966 | 0.320 | 2.15  | 5.14 | 0.007  |
| Gd | 2.3   | 0.119 | 0.097 | 10   | 0.017  |
| Dy | 1.16  | 0.085 | 0.064 | 13   | 0.028  |
| Er | 0.46  | 0.057 | 0.055 | 12   | 0.035  |
| Yb | 0.37  | 0.101 | 0.049 | 8.4  | 0.075  |
| Lu | 0.057 | 0.025 | 0.046 | 6    | 0.1    |



Let's assume that WR1 and WR2 represent pure compositions of a tonalitic melt differentiating by Rayleigh-type fractional crystallization.

• Using the least-square method, estimate the modal composition of the cumulate and the degree of fractional crystallization.



### 15.1: Fractional crystallization (reversed Ex. 14.2)

From Rayleigh equation [11.5]:

$$C_L = C_0 F^{(D-1)}$$

$$\ln\left(\frac{C_L}{C_0}\right)_i = (D_i - 1)\ln F = \sum_{i=1}^n \left(\left(K_{D_i}^{i/L} - 1\right)m_i\right)\ln F \quad \text{Eq. [12.1]}$$

Defining the unknown as a vector of length *n*:

$$\overrightarrow{\boldsymbol{M}} = \begin{pmatrix} m_1 \ln F \\ m_2 \ln F \\ \vdots \\ m_n \ln F \end{pmatrix}$$

Eq. [12.2]

Matrix of partition coefficients (less one):

$$\overline{\overline{D}} = \begin{pmatrix} K_{D_1}^{1/L} - 1 & \dots & K_{D_1}^{n/L} - 1 \\ \vdots & \ddots & \vdots \\ K_{D_p}^{1/L} - 1 & \dots & K_{D_p}^{n/L} - 1 \end{pmatrix}$$

Eq. [12.3]



#### 15.1: Fractional crystallization (reversed Ex. 14.2)

Defining vector of left hand sides in Eq. 12.1:

$$\overrightarrow{C_{v}} = \begin{pmatrix} \ln\left(\frac{C_{L}^{1}}{C_{0}^{1}}\right) \\ \vdots \\ \ln\left(\frac{C_{L}^{p}}{C_{0}^{p}}\right) \end{pmatrix}$$

Eq. [12.4]

We can rewrite the Eq. 12.1 in a matrix form and solve by least squares:

Then: 
$$\sum \overrightarrow{M} = \sum_{i=1}^{n} m_i \ln F = \ln F$$

Least-squares method is in R implemented by the function <code>lsfit</code> setting <code>intercept</code> = <code>FALSE</code>, so that the model passes through the origin.

$$\overrightarrow{C_v} = \overrightarrow{\overline{D}} \times \overrightarrow{M}$$

Eq. [12.5]

$$F = e^{\sum \overrightarrow{M}}$$

Eq. [12.7]

$$\begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_n \end{pmatrix} = \frac{\overrightarrow{M}}{\ln F}$$

Eq. [12.8]



Accessories and saturation exercises



### 14.5 (completed): Saturation models for accessory minerals



The file contains major-element and Zr contents in Boggy Plain Suite of the Lachlan Fold Belt (New South Wales, Australia) [Wyborn, 1983; OzChem compilation http://www.ga.gov.au]

Doggy\_plain\_data.data

Based on the Watson and Harrison's (1983) zircon saturation model, in *GCDkit*:

- Plot a binary graph SiO<sub>2</sub> vs. Zr for the Boggy Plain Suite showing the inflected trend characteristic of the saturation in zircon
- Plot a binary graph of M vs. Zr (ppm) with superimposed isotherms of zircon saturation temperatures in °C [Eq. (13.3)].
- Plot a binary plot SiO<sub>2</sub> vs. Zr saturation temperature in °C for the same



# 14.5 (completed): Saturation models for accessory minerals

Saturation equation (Watson & Harrison 1983):

$$ln\left(\frac{c_{Zrn}^{Zr}}{\left(C_{L}^{Zr}\right)_{sat}}\right) = -3.80 - 0.85(M - 1) + \frac{12900}{T}$$

Eq. [13.1]

Which can be transformed to

$$c_{Zrn}^{Zr}$$
 = 497644 ppm (49.7 wt. %)

$$\left(C_L^{Zr}\right)_{sat} = \frac{C_{Zrn}^{Zr}}{e^{\left(-3.80 - 0.85(M - 1) + \frac{12900}{T}\right)}}$$

GCDkit saturation plugin:

Returns a matrix with columns:

$$M = \frac{Na + K + 2Ca}{Al \times Si}$$