



# Module 1: Introduction to Data Structures

Lifna C.S, Richa Sharma, Sujata Khandaskar Faculty Incharge for CSC 703 Department of Computer Engineering VES Institute of Technology, Mumbai





# **Prerequisites**

Knowledge of C Programming Language



# University of Mumbai

# **Text / Reference Books**

#### **Text Books:**

- 1. Aaron M Tenenbaum, Yedidyah Langsam, Moshe J Augenstein, "Data Structures Using C", Pearson Publication.
- 2. Reema Thareja, "Data Structures using C", Oxford Press.
- 3. Richard F. Gilberg and Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", 2nd Edition, CENGAGE Learning.
- 4. Jean Paul Tremblay, P. G. Sorenson, "Introduction to Data Structure and Its Applications", McGraw-Hill Higher Education
- 5. Data Structures Using C, ISRD Group, 2nd Edition, Tata McGraw-Hill







#### **Reference Books:**

- Prof. P. S. Deshpande, Prof. O. G. Kakde, "C and Data Structures", DreamTech press.
- E. Balagurusamy, "Data Structure Using C", Tata McGraw-Hill Education India.
- Rajesh K Shukla, "Data Structures using C and C++", Wiley-India 3.
- GAV PAI, "Data Structures", Schaum's Outlines.
- Robert Kruse, C. L. Tondo, Bruce Leung, "Data Structures and Program Design in C", Pearson Edition





#### What are Data Structures?

★ A data structure is a particular way of organizing data in a computer so that it can be used effectively.

★ In other words, a data structure is a way of organizing all data items that considers not only the elements stored but also their relationship to each other





## Program = Algorithms + Data Structures

- ★ An **algorithm** is a set of instruction or a step by step procedure written to carry out certain tasks or solve a particular function.
- ★ A data structure is the way of organizing the data with their logical relationship retained.



#### Classification of Data Structures









#### **Linear Data Structure**

- ★ A data structure is called **linear** if all of its elements are arranged in the linear order.
- ★ In linear data structures, the elements are stored in **non-hierarchical way** where each element has the successors and predecessors except the first and last element.

•





#### **Static Data Structure**

★ In Static data structure the size of the structure is **fixed**.

★ The content of the data structure can be modified but without changing the memory space allocated to it.

.





### **Dynamic Data Structure**

★ In Dynamic data structure the **size of the structure in not fixed** and can be modified during the operations performed on it.

★ Dynamic data structures are designed to facilitate change of data structures in the run time.



# **Array**



- ★ An array is a collection of **similar type of data items** and each data item is called an element of the array. The data type of the element may be any valid data type like char, int, float or double.
- ★ The elements of array share the **same variable name** but each one carries a different index number known as **subscript**. The array can be one dimensional, two dimensional or multidimensional.



#### **Linked List**



- ★ Linked list is a linear data structure which is used to maintain a list in the memory.
- ★ It can be seen as the collection of nodes stored at non-contiguous memory locations.
- ★ Each node of the list pointer to its adjacent node.





# Stack



★ Stack is a **linear list** in which insertion and deletions are allowed only at one end, called **top**.



★ A stack is an **Abstract Data Type (ADT)**, can be implemented in most of the programming languages. It is named as stack because it behaves like a real-world stack, for **example:** - **piles of plates or deck of cards etc.** 



### Queue



- ★ Queue is a linear list in which elements can be inserted only at one end called **rear** and deleted only at the other end called **front**.
- ★ It is an abstract data structure, similar to stack. Queue is opened at both end therefore it follows **First-In-First-Out** (**FIFO**) methodology for storing the data items





#### **Non Linear Data Structures**



★ This data structure does not form a sequence i.e. each item or element is connected with two or more other items in a non-linear arrangement.

★ The data elements are not arranged in sequential structure.



#### Non Linear Data Structures - Trees



★ Trees are multilevel data structures with a hierarchical relationship among its elements known as nodes.

★ The bottommost nodes in the hierarchy are called leaf node while the topmost node is called root node.
★ Each node contains pointers to point adjacent nodes

★ Tree data structure is based on the parent-child relationship among the nodes.

★ Each node in the tree can have more than one children except the leaf nodes whereas each node can have atmost one parent except the root node



## Non Linear Data Structures - Graphs



★ Graphs can be defined as the **pictorial representation of the set of elements** (represented by vertices)
connected by the links known as edges.

★ A graph is different from tree in the sense that a graph can have cycle while the tree can not have the one