Nicholas Ha

JAN 2019

CONTENTS

Introduction

- Background
- Goals

Project A: Work at LANL's particle accelerator: (2 summers)*

Project B: LQG-based control design for jet (class final assignment)

Intro

Well-rounded and curious, desire to work on challenging problems, with interest and expertise in control systems and autonomous systems.

Education

- MSEE: Intelligent Systems, Robotics and Control
- BSEE: controls, signal processing, machine learning
- Also 2 years as ME, took Statics, Dynamics, Solid Mechanics, Thermo, and Numerical Methods
- Goal: broad knowledge base and mathematical ability

Design projects

- Arduino based: Vibration Table, Grand PrIEEE, Quadcopter, cycling computer
- Other: Hyperloop Pod, Intro MAE design class

Industry experiences:

 Developing missile launchers, improving lasers for photolithography, and steering particle accelerators for isotope production

Hands-on, passionate, and driven

Voluntary Projects:

High-school

RC Blimp, Science Olympiad

Undergrad:

- Cycling computer
- Quadcopter
- Hyperloop Pod Team
- Grand Priee —

'Hands-on' grad classes

"Most Spectacular Failure (\$500)" – San Jose Tech Challenge 2012

Grand PriEEE

Career Preferences/Goals

Long-term goal: conduct impactful work in aerospace, transportation, sustainability

Short-term goals:

- Work on an ambitious team
- Wear different hats to learn many skills
- Get familiar with standard platforms and procedures, gain more domain knowledge

Project A: LANL

Particle accelerator bombards circular target with pulses of protons following raster sequence of concentric circles

Goals:

- Ensure beam follows reference behavior (estimation and control design)
- 2. Determine the ideal reference behavior: (optimization problem)

Make these improvements with minimal interference to accelerator operation

Temperature simulation on beam window

Main IPF beamline components

Project Outcomes Overview

Before:	Goal	Results	
Fault Detector: based on actuator inputs	Fault Trigger based on actual failure mode	Accurately simulated temperature to use as a fault condition	Proof-of- concept in Simulink completed
Monitoring: multiple sensors giving (x,y) and intensity data	Capture key characteristics of beam	MLE algorithm for size and center location of each "circular pulse" of beam	
Control: is done open-loop → performance can slowly drift away from nominal	Closed loop control of circle size and center location	Circle size: control by updating the estimate of system parameters. Center location: PI (Proportional Integral) controller	
Optimization: Hand chosen beam parameters for baseline	Better choice of beam parameters	Method for improving baseline parameters	Subject of MS Thesis

Fast Protect, Monitoring, And Control

Status:

- Proof-of-concept for all algorithms in Simulink/Matlab
- Test-benches for Simulink and ModelSim are ready

APPROACH

Fast-protect Trigger

Goal: prevent overheating of target window

My simplified model: beam on - dT/dt linear w.r.t. current

beam off - Newtons law of cooling

Performance:

Monitoring

Problem:

- Given \sim 62 (x, y) samples
- Estimate circle parameters: size and center location

Approach: least squares MLE

Performance: With 0.1mm noise in (x, y) per sample and 62 points: accuracy in A < 0.02 mm

$$Y = A \times (wx + \psi) + C = A \sin wx \cos \psi - A \cos wx \sin \psi + Cx + noise$$

$$Y = A \times (then X = (A^TA)^{-1} A^T \times (then X)^{-1} A^T \times (then$$

Setup for least squares MLE

Control

Goals: minimize steady state error for

- 1. circle size
- 2. center location

Approach: note that transients are negligible

- Retain OL design but adaptively correct the gain
- 2. PI controller

Results:

Steady state errors minimized

Plant Model

Project B: Control design for jet

Problem: design yaw rate damper while preserving a certain normal flight characteristic

- damping ratio zeta > 0.35, with
- natural frequency Wn < 1.0 rad/s

Approach: structured LQG design

Results: vs Matlab demo using root locus,

- Better damping
- More complex yet more structured and generalizable approach

The LTI system

$$\dot{x}(t) = \begin{bmatrix} -.0558 & -.9968 & .0802 & .0415 \\ .598 & -.115 & -.0318 & 0 \\ -3.05 & .388 & -.4650 & 0 \\ 0 & 0.0805 & 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} .00729 & 0 \\ -0.475 & 0.00775 \\ 0.153 & 0.143 \\ 0 & 0 \end{bmatrix} u(t)$$

is a simplified trim model of a Boeing 747 during cruise flight. The four states are

 x_1 : side-slip angle,

 x_2 : yaw rate,

 x_3 : roll rate, and

 x_4 : bank angle.

The two inputs are

 u_1 : rudder deflection, and

 u_2 : aileron deflection.

State space model

Open-loop responses

Classical approach

Blue = open loop

LQG approach

- 1. Select same feedback path
- 2. Put into desired form
- 3. Design basic controller
- 4. If not sufficient, design controller that's forced to have a zero
 - Design for plant with added zero, then transfer it to the controller

Given the LTI system

$$\dot{x} = Ax + B_u u + B_w w,$$

$$y = C_y x + D_{yw} w,$$

$$z = C_z x + D_{zu} u,$$

and the observer-based controller

$$\dot{\hat{x}} = A\hat{x} + B_u u + F(\hat{y} - y),
\hat{y} = C_y \hat{x},
u = K\hat{x}.$$

compute (K, F) that stabilize the closed loop system and minimize the cost function

$$J := \lim_{t \to \infty} E\left[z(t)^T z(t)\right].$$

LQG problem formulation

LQG design

- 1. Put into desired form
 - 1. A and B are given. Determine the other matrices
- 2. Select which terms of these matrices will affect damping
- 3. Determine **q/r** ratio to achieve desired damping ratio

Results

Controller Transfer Function

2.34 s -----(s+0.2)

907

SUMMARY

Strong foundation + willingness to learn makes me highly qualified for many teams

Willing to use any of my knowledge and skills to get the job done

Enthusiastic and passionate about doing challenging and impactful work