Characters and Diversification

April 16, 2009

Outline

- Combining models for diversification and character evolution
- Older approaches to the problem
- BiSSE

Outline

- Combining models for diversification and character evolution
- Older approaches to the problem
- BiSSE

Combining models

- Lineage diversification: birth-death models
- Character evolution: Brownian motion
- Combine these two: Branching random walks

Pie and Weitz 2005

Moving beyond the "null"

- Is there a relationship between characters and lineage diversification
- For example, might some trait values be associated with higher rates of net diversification?
- Testing key innovations, etc.

Outline

- Combining models for diversification and character evolution
- Older approaches to the problem
- BiSSE

Diversity of Sister Clades

What is the expected distribution for n_1 and n_2 under BD?

Probability of a split at one node

$$\frac{2}{n-1} \quad k \neq n-k$$

$$Pr[(k,n-k)] = \frac{1}{n-1} \quad k=n-k$$

 st Under any ERM model, including BD

Sister-clade Comparisons

- Compare pairs of sister clades, where one clade has the trait of interest and the other does not
- Under ERM, either clade is equally likely to be the larger of the two
- Use binomial test to evaluate significance

Binomial Probability

$$Pr(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

x = number of "successes" n = number of trials (sister pairs) p = 0.5 (Pr[success] under H_o)

ML test of multiple rates

- Compare models where some parts of the tree have distinct speciation and/or extinction rates
- If you have likelihoods and the number of parameters, you can compare these models

Model 1: b_1 , d_1 InL = -124.5

Model 2: b_1 , d_1 , b_2 , d_2 InL = -114.1

Compare with likelihood ratio test or AIC

17

Outline

- Combining models for diversification and character evolution
- Older approaches to the problem
- BiSSE

BiSSE

- Binary state speciation and extinction
- Maddison et al. 2007

The BiSSE Model Speciation rate Extinction rate State 0 λ_0 μ_0 State I λ_1 μ_1

Fitting the BiSSE model

FIGURE 1. Calculation of the probabilities (D) of the observed tree and character states, along a branch of the tree. We assume that we know the D's for time t on the branch and attempt to calculate them for time $t+\Delta t$.

How well does BiSSE work?

Summary: BiSSE

- Requires accurate tree, trait data for all living species
- Assumes diversification under variable rate birth-death model
- Can test whether certain character states affect speciation, extinction, or both

Outline

- Combining models for diversification and character evolution
- Older approaches to the problem
- BiSSE