Advanced Machine Learning

Halim BENHABILES, Ph.D

Associate professor

DSLS Team, H&E Dept., JUNIA ISEN Lille

CNRS UMR-8520 IEMN

Tél.: 33 (0)3 20 30 40 27

halim.benhabiles@junia.com

halim.benhabiles@iemn.fr

- Activation function $\sigma(x)$ for **hidden layers**
 - Linear (identity) $\rightarrow x$
 - Exponential $\rightarrow e^x$
 - Elu (exponential linear unit) $\rightarrow \begin{cases} x & \text{if } x > 0 \\ \alpha(e^x 1) & \text{else} \end{cases}$
 - Selu (scaled Elu) \rightarrow scale * Elu(x)
 - Relu (rectified linear unit) $\rightarrow \max(x,0)$
 - Sigmoid $\rightarrow \frac{1}{1+e^{-x}}$
 - Hard_sigmoid $\rightarrow \begin{cases} 0 & if \ x < -2.5 \\ 1 & if \ x > 2.5 \\ 0.2x + 0.5 & if \ -2.5 \le x \le 2.5 \end{cases}$
 - Tanh $\rightarrow \frac{e^x e^{-x}}{e^x + e^{-x}}$
 - Softplus $\rightarrow \log(e^x + 1)$
 - Softsign $\rightarrow \frac{x}{|x|+1}$

- Activation function $\sigma(x)$ for **hidden layers**
 - Linear (identity) $\rightarrow x$
 - Exponential $\rightarrow e^x$
 - Elu (exponential linear unit) $\rightarrow \begin{cases} x & \text{if } x > 0 \\ \alpha(e^x 1) & \text{else} \end{cases}$
 - Selu (scaled Elu) \rightarrow scale * Elu(x)
 - Relu (rectified linear unit) \rightarrow max(x,0)
 - Sigmoid $\rightarrow \frac{1}{1+e^{-x}}$

• Hard_sigmoid
$$\rightarrow \begin{cases} 0 & if \ x < -2.5 \\ 1 & if \ x > 2.5 \\ 0.2x + 0.5 & if \ -2.5 \le x \le 2.5 \end{cases}$$

- Tanh $\rightarrow \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Softplus $\rightarrow \log(e^x + 1)$
- Softsign $\rightarrow \frac{x}{|x|+1}$

Most used → relu, elu, sigmoid

Softmax function for output layer → Transform ouput values into probabilities with sum=1 over the layer

https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d

- Setting number of layers and nodes / layer (no exact answer problem dependent)
 - Input layer → identical to the shape of your data
 - Output layer → number of classes to fix for classification problem
 - Hidden layers
 - Large number of layers for non linear data (time and memory limitation)
 - The first hidden layer smaller than the input layer
 - Decreasing size of layers until to reach the output (very often power of 2)

Detecting Potential Adverse Drug Reactions Using a Deep Neural Network Model - https://www.jmir.org/2019/2/e11016/pdf

<u>Optimizer</u> (the way

to update weights)

SGD

RMSprop

<u>Adam</u>

Adamax

Nadam

Adagrad

Adadelta

Stochastic Gradient Descent

$$w_{ij} = w_{ij} - \eta * \delta_j * x_i$$

Root Mean Square propagation

$$w_{ij}=w_{ij}-(\frac{\eta}{\sqrt{v_t+\epsilon}}*\delta_j), \text{ where}$$

$$v_t=\beta v_{t-1}+(1-\beta)*\delta_t^2, \beta$$
= 0.9, v_0 = 0

Adaptive Moment Optimization

$$w_{ij} = w_{ij} - \eta(\frac{m_t}{\sqrt{v_t} + \epsilon})$$
, where

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) * \delta_t, \beta_1 = 0.9, m_0 = 0$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) * \delta_t^2, \beta_2 = 0.999, v_0 = 0$$

Variants of Adam

Adaptive Subgradient optimization

$$w_{ij} = w_{ij} - (\frac{\eta}{\sqrt{\Delta_t^2 + \epsilon}} * \delta_j)$$
, where

$$\Delta_t^2 = \sum_{\tau=1}^t \delta_\tau^2$$

Variant of Adagrad

Figure 2: Convergence trajectories of training and testing accuracy for SB and LB methods

Table 2: Performance of small-batch (SB) and large-batch (LB) variants of ADAM on the 6 networks listed in Table 1

	Training Accuracy		Testing Accuracy	
Network Name	SB	LB	SB	LB
$\overline{F_1}$	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$	$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$	$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$	$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$
C_2	$99.99\% \pm 0.04\%$	$99.99 \pm 0.01\%$	$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$	$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$	$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$

https://stats.stackexchange.com/questions/164876/what-is-the-trade-off-between-batch-size-and-number-of-iterations-to-train-a-neu

- Batch normalization
 - Comes after each dense hidden layer

https://www.youtube.com/watch?v=dXB-KQYkzNU

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift - https://arxiv.org/pdf/1502.03167v3.pdf

- Dropout function
 - Comes after batch normalization

Dropout: A Simple Way to Prevent Neural Networks from Overfitting - http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Decreasing probability p through layers. From 0.8- 0.95 → 0.1

- Build an MLP to solve the hand written digits problem
 - Use MNIST dataset

- Build an MLP to solve the hand written digits problem
 - Use MNIST dataset

```
import tensorflow as tf
import numpy as np
from tensorflow.keras.utils import to_categorical
# Load data
mnist = tf.keras.datasets.mnist
# the data, split between train and validation sets
(x train, y train), (x validation, y validation) = mnist.load data()
# convert images into one dimension from 28x28 pixels
x_{train} = x_{train.reshape}(60000, 784)
x validation = x validation.reshape(10000, 784)
x train = x train.astype('float32')
x_validation = x_validation.astype('float32')
# normalize into [0,1]
x train /= 255
x validation /= 255
print('train samples', x_train.shape)
print('test samples', x_validation.shape)
print('train label samples', y_train.shape)
print('test label samples', y_validation.shape)
```

Save your best model during training and keep history of training metrics

```
from tensorflow.keras.callbacks import ModelCheckpoint

checkpointer = ModelCheckpoint(filepath='model.hdf5', monitor='val_loss', verbose=1, save_best_only=True)

# compile the model with adam
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# train model with fit for 10 epochs
history = model.fit(x_train, y_train, validation_data = (x_validation, y_validation),epochs=10,callbacks = [checkpointer])
```

- Using the categorical cross entropy loss 'categorical_crossentropy'
 https://keras.io/api/losses/probabilistic losses/#categoricalcrossentropy-class
 - Transform your label data in one hot representation

```
# if we want to use categorical_crossentropy loss instead of sparse we have to convert the "y" labels
from tensorflow.keras.utils import to_categorical

y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)

y_validation = tf.keras.utils.to_categorical(y_test, num_classes=10)
```

Show training and validation curves

```
from matplotlib import pyplot as plt

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.show()

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.show()
```


Load model and test it on an image

```
from tensorflow.keras.models import load_model
model = load_model('model.hdf5')
```


- Give the performance of your MLP model (same architecture) by
 - Using the categorical cross entropy loss 'categorical_crossentropy'
 https://keras.io/api/losses/probabilistic losses/#categoricalcrossentropy-class
 - Testing three batch sizes: 16, 32, 64
 - Testing two optimizers: SGD, ADAM
 - with/without batch normalization and dropout
 - Show training and validation accuracy/loss curves for each scenario
- If your machine is not equipped with a GPU
 - Use the online Google Colaboratory platform. In the "Edit" option activate a GPU https://colab.research.google.com/notebooks/intro.ipynb?hl=en

