Technical Assessment (Part 1)

Research Objectives

Predicting the risk of severe illness or death from COVID-19

Determining the severity of factors on COVID-19 fatalities

Data Structure and Exploratory Data Analysis (EDA)

Key insights derived from the analysis of **Independent Features** Dataset: COVID-19 ML models selected Tools/Libraries used data exploration(Fatal cases in Toronto selected Outcomes): EDA (Pandas, Supervised – Higher likelihood Age, Sex, Seaborn (Catplot, Patient level data Labeled training Classification in older age group Distplot, Boxplot, data is available NumPy Classification -Hospitalization Males have a Last updated: Machine Learning Target variable is higher probability history, Source of February 2023 categorical (Fatal (Scikit-learn) than women Infection vs. Non-Fatal) Patients with **Evaluation/metrics** 397.089 entries. Region ,Incubation Base model hospitalization (Scikit-learn) Logistic Regression 15 columns history are more days likely Target column Source of infection Random Forest Identified: less likely due to Classification, "Outcome" XGBoost close contact

Supervised Machine Learning Classification Workflow

Conclusion

The utilization of labeled training data holds promise in identifying valuable patterns and correlations

The model's potential to prioritize healthcare resources by predicting COVID-19 patient risk levels is significant

The exploration of influential factors may provide crucial insights into COVID-19 fatalities, guiding informed intervention strategies.

Continuous monitoring and proactive model updates are imperative for adapting to evolving COVID-19 patient outcomes