Satellite Navigation Systems

Purpose

- Uses of Navigation Systems
 - Location
 - Navigation
 - Tracking
 - Mapping
 - Timing
- The original satellite navigation systems were developed for military use
 - o U.S. GPS
 - Russian GLONASS

Early Navigation System Accuracy

- 1950's: Land-Based Systems
 - Master-Slave configuration
 - Master sends a fixed pulse signal
 - Slaves follow after a specified delay period
 - Determine location based on reception delays
- 1960's: Satellite-Based Systems
 - Doppler shift tracking
 - Satellites transmit on known frequencies
 - Receiver calculates Doppler shift from each satellite
 - Determines location based on shift set
 - USNO constantly observed satellite orbits and instructed satellites to update their ephemeris
 - Approximately 50 microsecond timing synchronization

ACCURACY OF NAVIGATION SYSTEMS

Navigation Signal Timing and Ranging (NAVSTAR)

- 1974: First test satellite launched
- 1978: Block I GPS
- 1985: Airplane crash leads to U.S. announcement of civilian GPS use
- 1989: Magellan produces first handheld GPS for \$3,000
- 1990: Block II GPS, Selective Availability introduced
- 1991: GPS used heavily in the Gulf War
- 2000: Selective Availability ended
- 2004: Qualcomm tests mobile phone GPS system
- 2005: IIR civilian GPS launched
- 2018: First GPS III satellite launched by Air Force

Modern Navigation Systems Hierarchy

- Core Satellite Navigation Systems
 - Global Coverage
 - Reasonable Accuracy
- Global Satellite Based Augmentation Systems (SBAS)
 - Global Coverage
 - Increase Accuracy
- Region-based SBAS and Satellite Navigation Systems
 - Limited Coverage
 - Accuracy Variable
- Continental Scale Augmentation Systems
 - Supplementary Systems
 - Designed to Increase Local Accuracy
 - Designed for Specific Scenario

Global Navigation Satellite Systems (GNSS)

- Designed to provide geospatial positioning information worldwide to small electronic receivers
- Currently four operational GNSS systems
 - U.S. Global Positioning System (GPS)
 - Russian Global Navigation Satellite System (GLONASS)
 - Chinese BeiDou Navigation Satellite Syster (BDS)
 - European Union's Galileo Satellite System (GSS)
- Global Indian Navigation System (GINS) in development
- UK post-Brexit system under consideration

GPS

- 6 Orbital planes
- 24 Satellites + Spare 55° Inclination Angle
- Altitude 20,200km

Galileo

- 3 Orbital planes
- 27 Satellites + 3 Spares
- 56° Inclination Angle
- Altitude 23,616km

GLONASS

- 3 Orbital planes
- 21 Satellites + 3 Spares
- 64.8° Inclination Angle
- Altitude 19,100km

The GPS Satellite System

- 18 30 MEO satellites distributed across multiple orbital planes
 - o 20,000 km orbits
 - 12 hour orbital periods
- GPS coverage is guaranteed up to 3,000 km above the earth's surface
 - o Coverage is possible up to 36,000 km
- Signals are right-hand circularly polarized

https://upload.wikimedia.org/wikipedia/com mons/b/b4/Comparison_satellite_navigation orbits.svq

Operational Overview

- The satellite sends
 - Current position
 - Future positions
 - Timestamp
- The receiver combines this information from multiple satellites to solve for its location algebraically through a process called trilateration
- Various entities provide additional satellite or earth-based services which enhance the capabilities of GNSS

True-Range Multilateration

- Technique for determining location using the distances from known points
- Unlike triangulation, trilateration is not based on the angles relative to known points
- GNSS systems use time-of-arrival based measurements
 - Receiver knows each satellite's position at time of transmission
 - Receiver solves for distances using spherical geometry

Trilateration

1 If you know you are distance X from satellite 1, you could be anywhere on the circle (a sphere in three-dimensional space).

2 If you also know you are distance Y from satellite 2, then you can only be at one of the two places where the circles intersect

3 If you also know you are distance Z from satellite 3, then there is only one place you can be: where the three circles intersect. A fourth satellite synchronizes time between satellite and receiver clocks.

GNSS Signals

- Legacy Signals
 - L1 C\A 1575.42 MHz
- Modernized Signals
 - L2C 1227.60 MHz
 - o L5 1176.45 MHz
 - L1C 1575.42 MHz
- Restricted Signals
 - Encrypted
 - Published frequencies and chip rates
 - o Civilian codeless and semi-codeless access supported
- Also known as the coarse/acquisition (C/A) code and the restricted precision
 (P) code

Signal Structure

- Older Satellites use binary phase-shift keying (BPSK)
- Newer satellites use binary offset carrier (BOC)
 - o In-phase and quadrature components are modulate by separate bit streams
- Bits are sent using spread spectrum phase modulation
 - Signal bandwidth is intentionally increased
 - Offers better SNR and reduced interference
- Limited frequencies used
- Ranging codes distinguish satellites
 - Code Division Multiple Access
 - Pseudorandom Binary Sequence

Binary Offset Carrier Modulation

- Transmitted signal is multiplied by a sub-carrier frequency ≥ chip rate
- Signal spectrum is divided into two parts: Split-Spectrum
- BPSK has a sinc-function shaped spectrum
 - Spectral energy is concentrated around the carrier frequency
- BOC is split-spectrum
 - Two main lobes separated from the carrier frequency
 - Low energy around the carrier frequency

Signal Spectrum

Signal Power Spectral Density

Code Division Multiple Access (CDMA)

- GPS uses Gold Codes
- Gold codes are strongly autocorrelated only when closely aligned
 - Bounded small cross-correlations within a set
 - Useful when multiple devices use the same frequency range
- Gold codes are designed to be highly orthogonal to one another
- A set of Gold codes are balanced
 - The number of 1's and 0's differs by only one
- Can be generated using a linear feedback shift register
- Other systems use different schemes
 - GLONASS uses FDMA

Coarse/Acquisition Codes

- Gold codes
 - Period of 1023 chips
 - Repeats every 1 millisecond
- C/A codes are generated by selectively delaying one of two LFSR streams
- The streams are XOR

$$C/A_i(t) = A(t) \oplus B(t-D_i)$$

C/A code is XOR with 50 bit/s navigation message

Precision Codes

- Similar to C/A codes
 - Same structure, but with a period of 10,230 chips
 - Longer code, eliminating range ambiguity
 - Non Unique PRN sequence
- P-code sequence is public
 - Code is XOR with W-code before transmission
- W-code applied to P-code approximately 20 times slower than chip rate
 - Makes semi-codeless tracking of P-code possible
- Transmitted on the same frequency as C/A, but 90° out of phase

Navigation Messages

- Navigation messages are transmitted at 50 bits/s
- All messages contain a parity-based error correction code
 - Chance of undetected error: 5.96 x 10⁻⁸
 - Protects against single and double bit errors
 - Detects all burst errors ≤ 24 bits
- Navigation packets may consist of:
 - Date
 - Time
 - Satellite Status
 - Ephemeris
 - Almanac

Signal Modulation

- Codes are modulated onto the carrier by multiplication with the code states.
- Each shift from +1 to -1, or from -1 to +1 causes a corresponding phase shift of 180° in the carrier

Code Timing

- Positional uncertainty is a result of large chip spacing
- Chip spacing is the primary method of atmospheric error correction and determining the doppler shift

Signal Reception

- A search for the correct:
 - Frequency
 - 5 KHz Doppler effect variation
 - Code frequency deviation possible, 1540 possible offsets
 - Code Phase Space
 - Due to high code orthogonality
 - 2,046 possible offsets
 - PRN Number Space
 - Current PRN numbers range from 1 to 66

What does signal acquisition look like?

- Simple search technique
 - Compute dot product of received signal and locally generated signal replicas
 - If the signal with highest magnitude is about a certain threshold, begin tracking
- More advanced techniques utilize the properties of the DFT

Selective Availability (SA)

- Adds intentional, time varying errors of up to 100 meters to public GPS signals
- Errors are pseudorandomly generated
 - Keys are restricted to the U.S. Military and its allies
 - In addition, a daily key is required
- Differential GPS
 - SA errors across an area are relatively equal
 - A fixed station with known position can determine SA error values and issue corrections
- Selective availability is not possible on new civilian GPS satellites
 - However, other GPS interference techniques such as spoofing are still possible

Satellite Sources of Error

- Satellite Clock Drift
- Satellite Geometry Shading
 - Satellites at tight angles interfere with one another
- Selective Availability
 - Controlled by the military
- Upper Atmosphere Distortion
 - Angle dependent
 - Primarily deflection phenomena
- Lower Atmosphere Distortion
 - Worse closer to the horizon line
 - o Primarily delay phenomena

- Satellite Orbital Uncertainty
 - Ephemeris data is only updated every 4 hours

Receiver Sources of Error

- Receiver Clock Drift
 - Typically quartz crystal clocks
- Multipath Interference
 - Urban Canyon
 - Multipath effects are minimal and unlikely to converge when moving
- Limited satellite availability
 - Satellites grouped together in the sky provide less useful information
 - Error correction is harder
 - Captured by dilution of precision factor
- Poor Hardware Design
 - Common with GPS Units
- Relativistic discrepancy between sender and receiver clocks.
 - Corrected for using a delay locked loop

GPS Spoofing

- In June 2017, numerous ships in the Black
 Sea complained of GPS anomalies
 - GPS transpositioned ships dozens of miles from their location
- Spoofing during NATO military exercises have led to ship collisions
- Spoofing in Syria by the Russian military hindered the operation of airports across the country

Differential Correction

- Uses the known distances between two or more receivers to correct for errors
- Synchronize two receivers and combine their error correction codes
- Assumes errors are roughly equivalent between receivers

Differential Correction Systems

- Wide Area Augmentation System (WAAS)
 - Federal Aviation Administration
 - Real-Time, satellite system
 - Designed to improve positioning at U.S. runways
 - Approximately 7 meter accuracy
- Differential Global Positioning System (DGPS)
 - Coast Guard
 - Real-Time, 285-325 KHz radio beacon system
 - Designed for navigation at sea near U.S. coasts
 - Approximately 10 meter accuracy
- Online Positioning User Service (OPUS)
 - National Geodetic Survey
 - Post-Processed, radio beacon system
 - Users upload GPS data to online database and receive corrected results

Modern GPS Signal Improvements

- Additional carrier signal
 - Designed to be easy to acquire
 - Dataless, exists only to make acquisition easier
 - Boosts correlator signal power levels
- Forward Error Correction (FEC)
 - Coded to the NAV message
- Civil-Moderate codes
 - P-Code systems that are unencrypted and designed for civilian use
- Improved CNAV messaging format
 - Higher-precision representation
 - Pseudo-packetized
 - Alert flags for satellite trust
- Military M-Code will replace P-Code
 - No published information
 - Transmitted from high-gain directional antenna

Antenna Design Improvements

• GPS uses in the space service volume rely on the GPS transmitter sidelobes for reception

Legacy vs. Improved Panel - L1

	Edge of Earth (EOE) (dB)	EOE out to 20 deg		EOE out to 23 deg	
		Magnitude (dB)	Reduction (dB)	Magnitude (dB)	Reduction (dB)
Legacy Panel	+15	+4 to -5	-11 to -20	-2 to -19	-17 to -34
Improved Panel	+16	+9 to +5	-7 to -11	+2 to -4	-14 to -20
Change from Legacy to Improved		+5 to +10		+4 to +15	

Legacy Antenna Pattern – L1

Average IIR L1 roll pattern, Phi cuts every 10 deg

Improved Antenna Pattern – L1

Average IIR-M L1 roll pattern, Phi cuts every 10 deg

Commercial GNSS Receivers

- GPS receivers and GNSS receivers are not the same thing
 - GPS receivers may only be compatible with NAVSTAR (U.S. GPS)
- GNSS receivers can use information from multiple constellations
 - Increased power consumption
 - Wide receiver bandwidth requirements
 - Increased cost
- GPS services (primarily timing) are used as part of the backend for many services
 - Cell tower timing and synchronization
 - Stock trader timing

Capabilities of Commercial Systems

- Modern units measure the C/A code with approximately 10 nanosecond accuracy
 - Corresponds to worst case error of 3 meters
 - Note that with the higher bitrate P-code this corresponds to a 30 centimeter worst case error
- Coordinating Committee for Multilateral Export Controls
 - 18,000 meters AND speed above 1,900 km/h
 - Designed to make COTS construction of ICBMs harder

GPS for Timing

- "The poor man's atomic clock"
- Most GPS receivers can output a 1 pps clock signal
- Units often have configurable clock output channels
- Most receivers architectures are based on the 48 MHz PLL reference design

