ActiveX control objects.

3

CLAIMS

_	<u> </u>
1 2	1. A method of creating one or more real-time interactive control and
3	communication software objects for use in connection with a computer and a machine
4	which communicate according to a standard communication protocol for process control,
5	the method comprising:
6	producing a display module which displays a graphical representation of a user
7	interface of the machine on a display of the computer;
8	associating the graphical representation of the user interface with at least one
9	control signal;
10	producing a control module to examine the graphical representation of the user
11	interface and the associated control signal;
12	producing a communication module to communicate the associated control signal
13	using the standard communication protocol for process control;
14	producing a framework module to interconnect functionally the display module,
15	the control module, and the communication module; and
16	merging the framework module, the display module, the control module, and the
17	communication module to create the one or more real-time interactive control and
18	communication software objects.
1	2. The method of claim 1 wherein the step of producing the communication module
2	comprises producing the communication module to communicate using the standard
3	communication protocol for process control which comprises the Object linking and
4	embedding for Process Control (OPC) protocol.
1	3. The method of claim 1 wherein the merging step comprises merging to create the
2	one or more real-time interactive control and communication software objects which
3	comprise objects insertable using standard object insertion techniques.
1	4. The method of claim 1 wherein the merging step comprises merging to create the
2	real-time interactive control and communication software objects which comprise

1/3 7

- 1 5. The method of claim 1 wherein the step of producing the control module
- 2 comprises producing the control module to examine the graphical representation of the
- 3 user interface and the associated control signal periodically.
- 1 6. The method of claim 1 wherein the step of producing the control module
- 2 comprises producing the control module to examine the graphical representation of the
- 3 user interface and the associated control signal when a change in the graphical
- 4 representation of the user interface is detected.
- 1 7. The method of claim 1 wherein the step of producing the control module
- 2 comprises producing the control module to examine the graphical representation of the
- 3 user interface and the associated control signal when a change in the associated control
- 4 signal is detected.
- 1 8. The method of claim 1 wherein at least one of the producing steps comprises
- 2 utilizing a pre-fabricated software module.
- 1 9. The method of claim 1 wherein the step of producing the display module
- 2 comprises producing the display module which displays the graphical representation of
- 3 the user interface of the machine utilizing a pre-fabricated software image of the
- 4 graphical representation.
- 1 10. The method of claim 1 wherein the merging step comprises compiling the
- 2 framework module into a compiled module and linking the compiled module with the
- 3 display module, the control module, and the communication module to create the one or
- 4 more real-time interactive control and communication software objects.
- 1 11. The method of claim 1 wherein the merging step comprises interpreting the
- 2 framework module, the display module, the control module, and the communication
- 3 module to create the one or more real-time interactive control and communication
- 4 software objects.
- 1 12. A computer-readable medium on which is stored a computer program for creating
- 2 one or more real-time interactive control and communication software objects for use in
- 3 connection with a computer and a machine which communicate according to a standard
- 4 communication protocol for process control, the computer program comprising
- 5 instructions, which, when executed by a computer, perform the steps of:

o 1. - 5

- producing a display module which displays a graphical representation of a user interface of the machine on a display of the computer;
- associating the graphical representation of the user interface with at least one control signal;
- producing a control module to examine the graphical representation of the user interface and the associated control signal;
- producing a communication module to communicate the associated control signal using the standard communication protocol for process control;
- producing a framework module to interconnect functionally the display module, the control module, and the communication module; and
- merging the framework module, the display module, the control module, and the
 communication module to create the one or more real-time interactive control and
 communication software objects.
 - 1 13. The computer-readable medium of claim 12, wherein the communication module
 - 2 communicates using the Object linking and embedding for Process Control (OPC)
 - 3 protocol.
 - 1 14. The computer-readable medium of claim 12, wherein the real-time interactive
 - 2 control and communication software objects comprise objects insertable using standard
 - 3 object insertion techniques.
 - 1 15. The computer-readable medium of claim 12, wherein the real-time interactive
 - 2 control and communication software objects comprise ActiveX control objects.
 - 1 16. The computer-readable medium of claim 12, wherein the control module
 - 2 examines the graphical representation of the user interface and the associated control
 - 3 signal periodically.
 - 1 17. The computer-readable medium of claim 12, wherein the control module
 - 2 examines the graphical representation of the user interface and the associated control
 - 3 signal when a change in the graphical representation of the user interface is detected.
 - 1 18. The computer-readable medium of claim 12, wherein the control module
 - 2 examines the graphical representation of the user interface and the associated control
 - 3 signal when a change in the associated control signal is detected.

, ,, ,

- 1 19. The computer-readable medium of claim 12 wherein the display module utilizes a
- 2 pre-fabricated software image of the graphical representation.
- 1 20. The computer-readable medium of claim 12 wherein the framework module is
- 2 compiled and linked with the display module, the control module, and the communication
- 3 module to create the one or more real-time interactive control and communication
- 4 software objects.
- 1 21. The computer-readable medium of claim 12 wherein the framework module, the
- 2 display module, the control module, and the communication module are interpreted to
- 3 create the one or more real-time interactive control and communication software objects.