Diffusion Maps

Máster Universitario en Ciencia de Datos - Métodos Funcionales en Aprendizaje Automático

Ángela Fernández Pascual

Escuela Politécnica Superior Universidad Autónoma de Madrid

Academic Year 2021/22

Contents

- Diffusion Maps
- Motivation: Diffusion Processes
- 3 Diffusion Maps Algorithm
- **4** Density Influence
- **6** Tips on Practical Use
- **6** Out-of-sample Extension
- References

Diffusion Maps

Diffusion Maps

Method Non-linear Spectral Dimensionality Reduction method.

Goal To describe properly the geometry of the data, i.e. to find a good distance in the original sample space that characterized well the relation between the points.

New data representation that will capture the main structure of the data in a few dimensions while preserving the local structure of the original data, i.e, reducing the sample distance to a Euclidean distance.

Main assumption The manifold metric can be approximated by the **diffusion distance** of a **Markov process** whose transition matrix is defined by an adequate normalization of the similarity matrix.

Continuous-Discrete Dictionary

Continuous version		Discrete version	
$ \mathcal{P} $	operator	P	matrix
f	function	\mathbf{v}	vector
$\phi_{\ell}(\mathbf{x}^{(i)})$	eigenfunction	$(\phi_\ell)_i$	eigenvector
\int	integral	\sum	summation

Motivation: Diffusion Processes

Diffusion Processes (I)

Diffusion (physical context)

The process by which a gas moves from regions of high density to regions of lower density according to the relative pressure of each region.

The diffusion equation is usually written:

$$\frac{\partial \chi}{\partial t} = c \nabla^2 \chi.$$

Diffusion (graph context)

The diffusion will be a model of spread across the graph.

Examples:

- The spread of an idea in a social network.
- The spread of a disease across some region.

Diffusion Processes (II)

Assumption Undirected weighted graph, with w_{ij} the similarity between vertex i and j.

The degree of each vertex is $d_i = \sum_i w_{ij}$.

Definition Let be χ_i a fluid or substance located in the nodes of the graph that flows from vertex j to an adjacent vertex i with a rate $c(\chi_i - \chi_i)$.

Diffusion constant: \boxed{c} .

Diffusion Processes (III)- Gas Diffusion Equation

- Flow in a short period of time: $c(\chi_i \chi_i)dt$
- χ_i changes in a ratio:

$$\frac{\partial \chi_i}{\partial t} = c \sum_j w_{ij} (\chi_j - \chi_i)$$

$$= c \sum_j w_{ij} \chi_j - c \chi_i \sum_j w_{ij}$$

$$= c \sum_j w_{ij} \chi_j - c \chi_i d_i$$

$$= c \sum_j (w_{ij} - \delta_{ij} d_i) \chi_j.$$

• Matrix notation: $\frac{d\chi}{dt} = c(\mathbf{W} - \mathbf{D})\chi$.

Diffusion Processes (IV)- Laplacian Graph

Laplacian matrix

$$\mathbf{L} = \mathbf{D} - \mathbf{W}$$

We can then rewrite:

$$\frac{\partial \chi}{\partial t} + c\mathbf{L}\chi = 0.$$

We have arrived to the gas diffusion process equation (assuming $\mathbf{L} \approx \Delta = \nabla^2$).

Diffusion Processes (V)- Equation Solution

• Eigendecomposition of L:

$$\mathbf{L}\phi_i = \lambda_i \phi_i.$$

• $\{\phi_i\}$ form an orthonormal basis, so:

$$\chi(t) = \sum_{i} w_i(t)\phi_i,$$

being $w_i(t)$ the coefficients to define χ depending on time t.

• Replacing in the diffusion equation:

$$\frac{\partial (\sum_{i} w_{i}(t)\phi_{i})}{\partial t} + c\mathbf{L} \sum_{i} w_{i}(t)\phi_{i} = \sum_{i} \left(\frac{\partial w_{i}(t)}{\partial t} + c\lambda_{i}w_{i}(t)\right)\phi_{i} = 0.$$

Diffusion Processes (VI)- Equation Solution

Rewritten equation
$$\frac{\partial w_i(t)}{\partial t} + c\lambda_i w_i(t) = 0$$

Solution $w_i(t) = w_i(0)e^{c\lambda_i t}$.

The flux can be determined under some initial conditions $w_i(0)$, just computing the eigendecomposition of L.

Diffusion Maps is a particular type of diffusion process that can be used to study the underlying relationship between points in a data set.

Diffusion Maps Algorithm

Defining Diffusion Coordinates: Building a Graph

- Starting sample: $\mathscr{S} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}.$
- A diffusion process over the data ⇒ Random Walk over a graph.
- First step: to build a symmetric weighted graph.

Affinity matrix

In terms of a kernel matrix **K** which results from a kernel operator $\mathcal{K}: \mathscr{S} \times \mathscr{S} \to \mathbb{R}$, defining the matrix entries as $k_{ij} = \mathcal{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$.

Properties:

- Symmetric: $k_{ij} = k_{ji}$.
- Positive: $k_{ii} \geq 0$.
- Positive semi-definite: $\mathbf{x}^{(i)\top}\mathbf{K}\mathbf{x}^{(i)} \geq 0 \quad \forall \mathbf{x}^{(i)} \in \mathscr{S}$.
- How to chose the kernel? It depends on the concrete problem.
 - \Rightarrow Usual choice: Gaussian kernel defined as $k_{ij} = e^{\frac{-\|\mathbf{x}^{(i)} \mathbf{x}^{(j)}\|^2}{2\sigma^2}}$.

Notebook

Building a Graph

Random Walk over the graph (I)

- We need to build now a **Markov Chain** (MC) over the graph.
- In particular, we build a random walk.
 - It defines a local relationship between points in the graph providing a structure to the data.

Normalized Graph Laplacian construction

We define a **transition probability** from the affinity matrix.

• Degree of each node in the graph as:

$$d_i = \sum_{i \in \mathscr{S}} k_{ij}.$$

2 Transition probability \equiv normalized kernel:

$$p_{ij} = rac{k_{ij}}{d_i}.$$

Random Walk over the graph (II)

Is this transition probability of the random walk well-defined?

- **1** $P \ge 0$
- $\sum_{j} p_{ij} = \frac{\sum_{j} k_{ij}}{d_i} = \frac{d_i}{d_i} = 1.$

- $P \equiv$ probability of arriving from *i* to *j* in one step.
- $\mathbf{P}^{T} = (p_{ii}^{T}) \equiv \text{probability of arriving from } i \text{ to } j \text{ in } T \text{ steps.}$
- *T*: scale.
 - Running the process far away in time (with a higher *t*) lets us integrate the local geometry, so the structure of the data is revealed at different scales.

Notebook

Random Walk over the graph: Transition Probability and steps

Random Walk over the graph (III)

Stationary Distribution of the MC: $\pi_i = \frac{a_i}{\sum_k d_k}$

$$\pi_i = \frac{d_i}{\sum_k d_k}$$

Properties of π_i

We can prove that it is **stationary**:

$$\sum_{i} \pi_{i} p_{ij} = \sum_{i} \frac{d_{i}}{\sum_{k} d_{k}} \frac{k_{ij}}{d_{i}} = \sum_{i} \frac{k_{ij}}{\sum_{k} d_{k}} = \frac{d_{j}}{\sum_{k} d_{k}} = \pi_{j}.$$

It is a **reversible** chain, as it satisfies the balance equations:

$$\pi_i p_{ij} = \frac{d_i}{\sum d_k} \frac{k_{ij}}{d_i} = \frac{k_{ij}}{\sum d_k} = \frac{k_{ji}}{\sum d_k} = \frac{d_j}{\sum d_k} \frac{k_{ji}}{d_j} = \pi_j p_{ji}.$$

- The chain is **irreducible**, as the graph is connected.
- The chain is aperiodic: $g(\mathbf{x}^{(i)}) = \gcd\{\tau > 1 : p_{ii}^{\tau} > 0\} = 1 \ \forall i$.
- The MC es **ergodic**.

Notebook

Random Walk over the graph: MC Distribution $\boldsymbol{\pi}$

Diffusion Distance (I)

Final objective To find a good distance in the original sample space that is reduced to a Euclidean distance. Possible distance Based on the previous Markov chain.

$$\begin{split} \boxed{ \mathcal{D}_{r}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) } &= \| p_{i.}^{T} - p_{j.}^{T} \|_{(1/\pi)}^{2} = \sum_{k} \frac{\left(p_{ik}^{T} - p_{jk}^{T} \right)^{2}}{\pi_{k}} \\ &= \sum_{k} \frac{(p_{ik}^{T})^{2} + (p_{jk}^{T})^{2} - 2p_{ik}^{T}p_{jk}^{T}}{\pi_{k}} = \sum_{k} \frac{p_{ik}^{T}p_{ik}^{T} + p_{jk}^{T}p_{jk}^{T} - p_{ik}^{T}p_{jk}^{T} - p_{jk}^{T}p_{ik}^{T}}{\pi_{k}} \\ &= \sum_{k} \frac{1}{\pi_{k}} \left(p_{ik}^{T}p_{ki}^{T}\frac{\pi_{k}}{\pi_{i}} + p_{jk}^{T}p_{kj}^{T}\frac{\pi_{k}}{\pi_{j}} - p_{ik}^{T}p_{kj}^{T}\frac{\pi_{k}}{\pi_{j}} - p_{jk}^{T}p_{ki}^{T}\frac{\pi_{k}}{\pi_{i}} \right) \\ &= \frac{1}{\pi_{i}} \sum_{k} p_{ik}^{T}p_{ki}^{T} + \frac{1}{\pi_{j}} \sum_{k} p_{jk}^{T}p_{kj}^{T} - \frac{1}{\pi_{j}} \sum_{k} p_{ik}^{T}p_{kj}^{T} - \frac{1}{\pi_{i}} \sum_{k} p_{jk}^{T}p_{ki}^{T} \\ &= \frac{p_{ii}^{2i}}{\pi_{i}} - p_{ji}^{2i}}{\pi_{i}} + \frac{p_{jj}^{2j} - p_{ij}^{2j}}{\pi_{i}}. \end{split}$$

Diffusion Distance (II)

We will call this distance **Diffusion Distance**.

Properties of the Diffusion Distance

- $\mathbf{0} \ \mathcal{D}_{T}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ is symmetric.
- **2** $\mathcal{D}_r(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ satisfies the triangle inequality.
- \Rightarrow It is a semi-metric.
- \Rightarrow If $k_{ij} > 0 \ \forall i, j$, it is a metric.
- 3 It is robust to noise (calculated as an average of all the paths of length τ).

The diffusion distance measures the connectivity between two points in the dataset after 2τ steps.

Intuition: $\mathcal{D}_{\tau}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ small if there exist a lot of paths that connect $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$

 \Rightarrow when $p_{ij}^{2\tau}$ and $p_{ji}^{2\tau}$ are high.

Spectral Theory (I)

Theorem (Spectral Theorem)

Any symmetric matrix $\mathbf{A} \in \mathbb{R}^n \times \mathbb{R}^n$ can be reduced to an orthonormal basis determined by a diagonal matrix, i.e., $\mathbf{A} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}'$, where

- $\Lambda = diag\{\lambda_0, \lambda_1, \dots, \lambda_N\}$, with λ_ℓ the eigenvalues of Λ ,
- $\Phi = (\phi_0, \cdots, \phi_N)$, with ϕ_ℓ the eigenvectors of **A**.
- ! Our Markov matrix **P** is not symmetric.
- \rightarrow Let's consider its conjugated matrix A:

$$a_{ij} = rac{\sqrt{\pi_i}}{\sqrt{\pi_j}} p_{ij} = rac{\sqrt{\pi_i}}{\sqrt{\pi_j}} rac{k_{ij}}{d_i} = rac{\sqrt{rac{d_i}{\sum d_k}}}{\sqrt{rac{d_j}{\sum d_k}}} rac{k_{ij}}{d_i} = rac{k_{ij}}{\sqrt{d_i}\sqrt{d_j}}$$

Spectral Theory (II)

Applying the Spectral Theorem over **A**: $a_{ij} = \sum \lambda_{\ell}(\phi_{\ell})_i(\phi_{\ell})_j$

$$a_{ij} = \sum_{\ell \geq 0} \lambda_{\ell}(\phi_{\ell})_{i}(\phi_{\ell})_{j}$$

- $\{\lambda_\ell\}_{\ell>0}$, eigenvalues of **A**
- $\{\phi_\ell\}_{\ell>0}$, eigenvector of **A**.
- $\lambda_0 = 1$ corresponds to the eigenvector $\phi_0 = \sqrt{\pi}$.

$$(\mathbf{A}\sqrt{\pi})_i = \sum_j a_{ij}\sqrt{\pi_j} = \sum_j \frac{\sqrt{\pi_i}}{\sqrt{\pi_j}} p_{ij}\sqrt{\pi_j} = \sqrt{\pi_i} \sum_j p_{ij} = \sqrt{\pi_i} \mathbf{1} = \sqrt{\pi_i} \quad \forall i.$$

Spectral Theory (III)

• **P** rewritten:

$$p_{ij} = \frac{\sqrt{\pi_j}}{\sqrt{\pi_i}} a(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \frac{\sqrt{\pi_j}}{\sqrt{\pi_i}} \sum_{\ell \ge 0} \lambda_\ell (\phi_\ell)_i (\phi_\ell)_j = \sum_{\ell \ge 0} \lambda_\ell \frac{(\phi_\ell)_i}{\sqrt{\pi_i}} (\phi_\ell)_j \sqrt{\pi_j}.$$

 \Rightarrow Eigendecomposition of **P** for any τ -steps:

$$p_{ij} = \sum_{\ell \ge 0} \lambda_{\ell}^{\mathsf{T}}(\psi_{\ell})_i(\varphi_{\ell})_j,$$

where
$$(\psi_{\ell})_i = \frac{(\phi_{\ell})_i}{\sqrt{\pi_i}}$$
 and $(\varphi_{\ell})_j = (\phi_{\ell})_j \sqrt{\pi_j}$.

- $\lambda_0 = 1$ discarded also for **P**.
- The other eigenvalues will satisfy $|\lambda_{\ell}| < 1 \ \forall \ell \geq 1$.

$$\begin{split} \boxed{\mathcal{D}_{r}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})} &= \|p_{ik}^{T} - p_{jk}^{T}\|_{(1/\pi)}^{2} = \sum_{k} \frac{\left(p_{ik}^{T} - p_{jk}^{T}\right)^{2}}{\pi_{k}} \\ &= \sum_{k} \frac{\left(\sum_{\ell \geq 0} \lambda_{\ell}^{T}(\psi_{\ell})_{i}(\varphi_{\ell})_{k} - \sum_{\ell \geq 0} \lambda_{\ell}^{T}(\psi_{\ell})_{j}(\varphi_{\ell})_{k}\right)^{2}}{\pi_{k}} \\ &= \sum_{k} \frac{\sum_{\ell \geq 0} \lambda_{\ell}^{2r}\left((\psi_{\ell})_{i} - (\psi_{\ell})_{j}\right)^{2}\left(\varphi_{\ell}\right)_{k}^{2}}{\pi_{k}} = \sum_{\ell \geq 0} \lambda_{\ell}^{2r}\left((\psi_{\ell})_{i} - (\psi_{\ell})_{j}\right)^{2} \sum_{k} \frac{(\varphi_{\ell})_{k}^{2}}{\pi_{k}} \\ &= \sum_{\ell \geq 0} \lambda_{\ell}^{2r}\left((\psi_{\ell})_{i} - (\psi_{\ell})_{j}\right)^{2} \sum_{k} \frac{((\phi_{\ell})_{k}\sqrt{\pi_{k}})^{2}}{\pi_{k}} \\ &= \sum_{\ell \geq 0} \lambda_{\ell}^{2r}\left((\psi_{\ell})_{i} - (\psi_{\ell})_{j}\right)^{2} \left[\sum_{\ell \geq 0} \lambda_{\ell}^{2r}\left((\psi_{\ell})_{i} - (\psi_{\ell})_{j}\right)^{2}\right]. \end{split}$$

Diffusion Coordinates

- Dimensionality Reduction: $\lambda_{\ell} \to 0$ when ℓ grows (small contribution to the Diffusion Distance).
 - Given a precision δ , we work with:

$$\bar{M} = s(\delta, \tau) = \max\{\ell \in \mathbb{N} \text{ s.t. } |\lambda_{\ell}|^{\tau} > \delta |\lambda_1|^{\tau}\}.$$

- $\ell = 0$ is omitted as ψ_0 is constant.
- Diffusion distance approximation:

$$\mathcal{D}_r(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) pprox \sum_{\ell>1}^{\bar{M}} \lambda_\ell^{2r} \left((\psi_\ell)_i - (\psi_\ell)_j \right)^2.$$

Diffusion Coordinates

They are the natural coordinates for representing the original sample, and they are defined as:

$$oldsymbol{\Psi}_{\scriptscriptstyle T}\!(\mathbf{x}) = egin{pmatrix} \lambda_1^{\scriptscriptstyle T} \psi_1(\mathbf{x}) \ dots \ \lambda_{\scriptscriptstyle M}^{\scriptscriptstyle T} \psi_{\scriptscriptstyle ar{M}}(\mathbf{x}) \end{pmatrix}.$$

Diffusion Maps

We call **Diffusion Map** to the family $\{\Psi_T\}_{T\in\mathbb{N}}$.

• These maps embed the data into the Euclidean space $\mathbb{R}^{\bar{M}}$:

$$\begin{split} \| \boldsymbol{\Psi}_{r}(\mathbf{x}^{(i)}) - \boldsymbol{\Psi}_{r}(\mathbf{x}^{(j)}) \| &= \sum_{\ell \geq 1}^{\bar{M}} \lambda_{\ell}^{2r} \left((\psi_{\ell})_{i} - (\psi_{\ell})_{j} \right)^{2} \\ &\approx \mathcal{D}_{r}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sum_{\ell \geq 1}^{\bar{M}} \lambda_{\ell}^{2r} \left((\psi_{\ell})_{i} - (\psi_{\ell})_{j} \right)^{2} + \sum_{\ell \geq \bar{M}}^{N} \lambda_{\ell}^{2r} \left((\psi_{\ell})_{i} - (\psi_{\ell})_{j} \right)^{2}. \end{split}$$

20/36

Original Data ${\mathscr S}$

• Kernel definition:

$$\mathbf{K} = \{k_{ij}\} = \left\{e^{\frac{-\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2}{2\sigma^2}}\right\}.$$

• Transition Probability Matrix definition:

$$p_{ij} = \left(\frac{k_{ij}}{d_i}\right) = \left(\frac{k_{ij}}{\sum_j k_{ij}}\right).$$

• Diffusion Distance:

$$\mathcal{D}_{r}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \|p_{i\cdot}^{r} - p_{j\cdot}^{r}\|_{(^{1}/\pi)}^{2}$$

$$= \frac{p_{ii}^{2r} - p_{ji}^{2r}}{\pi_{i}} + \frac{p_{jj}^{2r} - p_{ij}^{2r}}{\pi_{j}}.$$

• Spectral Theory:

$$\begin{aligned} p_{ij}^{\mathsf{T}} &= \sum_{\ell \geq 0} \lambda_{\ell}^{\mathsf{T}}(\psi_{\ell})_{i}(\varphi_{\ell})_{j} \\ &\to \mathcal{D}_{\mathsf{T}}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sum_{\ell=0}^{\mathsf{M}} \lambda_{\ell}^{2\mathsf{T}} \left((\psi_{\ell})_{i} - (\psi_{\ell})_{j} \right)^{2}. \end{aligned}$$

Dimensionality Reduction:

$$\bar{M} = \max\{\ell \in \mathbb{N} \text{ s.t. } |\lambda_{\ell}|^{T} > \delta |\lambda_{1}|^{T}\}.$$

Diffusion Coordinates Definition:

$$\Psi_{\scriptscriptstyle T}(\mathbf{x}) = egin{pmatrix} \lambda_1^{\scriptscriptstyle T} \psi_1(\mathbf{x}) \ dots \ \lambda_{\scriptscriptstyle ar{M}}^{\scriptscriptstyle T} \psi_{\scriptscriptstyle ar{M}}(\mathbf{x}) \end{pmatrix}.$$

Euclidean Distances over the embedding space:

$$\begin{split} \|\Psi_{\tau}(\mathbf{x}^{(i)}) - \Psi_{\tau}(\mathbf{x}^{(j)})\| &= \sum_{\ell \geq 1}^{\bar{M}} \lambda_{\ell}^{2\tau} \left((\psi_{\ell})_i - (\psi_{\ell})_j \right)^2 \\ &\approx \mathcal{D}_{\tau}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}). \end{split}$$

Density Influence

Density Influence

- The distribution of the sample data affects how the similarity matrix captures the local geometry of the data.
- The density is measured by the degree of the graph **D**.
- We introduce a new parameter $\alpha \in [0,1]$.
- Steps for normalizing:
 - **1** Define α -dependent density normalized matrix:

$$k_{ij}^{(lpha)}=rac{k_{ij}}{d_i^lpha d_j^lpha}.$$

Oclassical normalization:

$$p_{ij}^{(lpha)} = rac{k_{ij}^{(lpha)}}{d_i^{(lpha)}}.$$

Density Influence - Importance of $\boldsymbol{\alpha}$

$$\nabla_{\alpha} f = \frac{\Delta (f \mathbf{d}^{1-\alpha})}{\mathbf{d}^{1-\alpha}} - \frac{\Delta (\mathbf{d}^{1-\alpha})}{\mathbf{d}^{1-\alpha}} f$$

$$\alpha = 1 \ \nabla_1 \equiv \Delta$$

ightarrow DM captures the underlying geometry without interference from the sample's density ${f d}$.

$$\alpha = 0 \ \nabla_0 f = \frac{\Delta(f\mathbf{d})}{\mathbf{d}} - \frac{\Delta(\mathbf{d})}{\mathbf{d}} f$$

 \rightarrow **d** influences how the diffusion coordinates capture the underlying geometry, unless **d** is uniform ($\nabla_0 = \Delta$).

Tips on Practical Use

Tips on Practical Use (I)

- The scale must be the same over all the features \rightarrow Scale the data ($\mu = 0, \sigma = 1$).
- ② Good hyper-parameter selection.

Affinity Matrix

• Gaussian kernel:

$$k_{ij} = e^{\frac{-\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2}{2\sigma^2}}.$$

• σ is crucial, it can be chose as a distance percentile (ρ):

$$\sigma = p_{\rho}(\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|)$$

- Usual ρ :
 - Median.
 - Maximum.

Tips on Practical Use (II)

Reduced dimension

For a given step τ :

$$\bar{M} = s(\delta, T) = \max\{\ell \in \mathbb{N} \text{ s.t. } |\lambda_{\ell}|^{T} > \delta |\lambda_{1}|^{T}\}.$$

Number of steps

By default, $\tau = 1$.

Density influence

By default, $\alpha = 1$.

Out-of-sample Extension

DM Advantages and Disadvantages

Advantages

- Powerful
- Elegant

Disadvantages

- Costly eigenanalysis of the transition matrix.
- The extension to new, unseen points (out-of-sample points) is not possible.

The Nyström Formula

- **Nyström**: approximate the eigenfunctions $\phi_j(\mathbf{x}^{(i)})$ of a symmetric and positive semidefinite kernel from the eigenvectors $(\phi_i)_i$ of a sample-based kernel matrix.
 - ⇒ It maintains the eigenvalue and eigenvector convergence as the number of sample patterns grows.
- The Nyström Formula:

$$v_j(\mathbf{y}) = \frac{1}{\lambda_j} \sum_{i=1}^n v_j(\mathbf{x}^{(i)}) \mathcal{K}(\mathbf{y}, \mathbf{x}^{(i)})$$

The Nyström Formula applied to DM (I)

- Nyström approximates the DM embedding of new patterns
 - \Rightarrow No need to repeat the eigendecomposition of **P** over the training sample.
- Problem: **P** is not symmetric.
- \Rightarrow Let's use its conjugate matrix **A**.
- λ_j and $\phi_j(\mathbf{x}^{(i)})$: eigenvalues and eigenfunctions of **A** of the sample data.
- Eigenvector extension for a new point **x**:

$$\phi_j(\mathbf{x}) = \frac{1}{\lambda_j} \sum_{i=1}^N \phi_j(\mathbf{x}^{(i)}) a(\mathbf{x}, \mathbf{x}^{(i)}).$$

The Nyström Formula applied to DM (II)

Recall

- $a(\mathbf{x}, \mathbf{x}^{(i)}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{y})} \mathbf{P}(\mathbf{x}, \mathbf{x}^{(i)}).$
 - Eigenvalues: (λ_{ℓ}) .
 - Eigenvectors: (ϕ_{ℓ}) .
- **P** left eigenvector: $(\psi_{\ell})_i = \frac{(\phi_{\ell})_i}{\sqrt{\pi_i}}$
- **P** right eigenvector: $(\varphi_{\ell})_j = (\phi_{\ell})_j \sqrt{\pi_j}$

The Nyström Formula applied to DM (III)

• Nyström formula for a new x yields:

$$\psi_{j}(\mathbf{x}) = \frac{\phi_{j}(\mathbf{x})}{\sqrt{\pi(\mathbf{x})}} = \frac{1}{\sqrt{\pi(\mathbf{x})}} \left(\frac{1}{\lambda_{j}} \sum_{i=1}^{N} \phi_{j}(\mathbf{x}^{(i)}) a(\mathbf{x}, \mathbf{x}^{(i)}) \right)$$

$$= \frac{1}{\lambda_{j}} \sum_{i=1}^{N} \phi_{j}(\mathbf{x}^{(i)}) \frac{a(\mathbf{x}, \mathbf{x}^{(i)})}{\sqrt{\pi(\mathbf{x})}} = \frac{1}{\lambda_{j}} \sum_{i=1}^{N} \phi_{j}(\mathbf{x}^{(i)}) \frac{\mathbf{P}(\mathbf{x}, \mathbf{x}^{(i)})}{\sqrt{\pi(\mathbf{x}^{(i)})}}$$

$$= \frac{1}{\lambda_{j}} \sum_{i=1}^{N} \psi_{j}(\mathbf{x}^{(i)}) \mathbf{P}(\mathbf{x}, \mathbf{x}^{(i)}).$$

- \Rightarrow The Nyström formula can be applied almost in its original form to **P**.
- Moreover, this formulation is also valid for any α parameter value used to compute any of our $\mathbf{P}^{(\alpha)}$ matrices to be used in DM.

References

References

- Coifman, R. R., Lafon, S. (2006). Diffusion maps. Applied and computational harmonic analysis, 21(1), 5-30
- Nadler, B., Lafon, S., Coifman, R. R., Kevrekidis, I. G. (2006). Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis, 21(1), 113-127.
- Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., Zucker, S. W. (2005).
 Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the national academy of sciences, 102(21), 7426-7431.

