AMENDMENTS TO THE CLAIMS

1. (Original) A phosphine compound of formula (1),

$$(R^{6})p$$
 $(R^{7})q$
 R^{5}
 R^{4}
 $(R^{8})r$
 $R^{9})s$
 R^{1}

wherein R^1 is a hydrogen atom, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted; R^2 and R^3 are each, the same or different, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted; R^4 and R^5 are each, the same or different, a hydrogen atom, an alkyl group, a cycloalkyl group or a phenyl group which may be substituted; R^6 , R^7 , R^8 and R^9 are each, the same or different, an alkyl group, a cycloalkyl group, a phenyl group which may be substituted, an alkoxyl group, a dialkylamino group, a halogen atom, a benzyl group, a naphthyl group or a halogenated alkyl group; R^6 and R^7 , or R^8 and R^9 each may be combined to form, a fused ring, a trimethylene group, a tetramethylene group or a methylenedioxy group; p, q, r and s are each an integer of from 0 to 5; and p + q, and r + s are each in the range of from 0 to 5.

- **2.** (Original) A palladium-phosphine complex which can be obtained by reacting the phosphine compound of claim 1 with a palladium compound.
- **3. (Original)** The palladium-phosphine complex of claim 2, wherein the palladium compound is a palladium salt or a palladium complex in which the valency of palladium is 4, 2 or 0.

4. (Currently amended) A method of manufacturing method of an unsaturated compound or an aromatic compound which comprises reacting a compound of formula (3) or (4) below:

$$\begin{array}{c|c}
 & Ar^{1}(X^{1})m^{1} & (3) \\
 & R^{101} & R^{121} \\
 & & X^{11}
\end{array}$$
(4)

wherein, in formula (3), Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group and m¹ is an integer of 1 to 4, and,

in formula (4), R¹⁰¹, R¹¹¹ and R¹²¹ are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; X¹¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group,

with a compound, of formula (5) or (6) below,

$$\begin{array}{c|cccc}
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & &$$

wherein, in formula (5), Ar² is an aryl group which may be substituted or a heteroaryl group which may be substituted; X² is B(OR¹³)(OR¹⁴), Sn(R¹⁵)₃, MgX, ZnX, Al(R¹⁵)₂ or Li, and,

in formula (6), R¹⁰, R¹¹ and R¹² are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; R¹⁰ and R¹² may be combined to form a single bond, forming together with the existing double bond a triple bond; X³ is a hydrogen atom, B(OR¹³)(OR¹⁴), Sn(R¹⁵)₃, MgX, ZnX, Al(R¹⁵)₂ or Li; R¹³ and R¹⁴ are each, the same or different, a hydrogen atom, an alkyl group, or, combined to form an ethylene group or a 1,2-dimethylethylene group; R¹⁵ is an alkyl group, and X is a chlorine atom, a bromine atom or an iodine atom.

to give a compound of formula (7), (8), (9) or (10),

wherein Ar¹, Ar², R¹⁰, R¹¹, R¹², R¹⁰¹, R¹¹¹ and R¹²¹ are as defined above and m² is an integer of 1 to 4, and

wherein the reaction is conducted in the presence of the by the use of palladiumphosphine complexes complex of mentioned in claim 2 as a catalyst.

5. (Currently amended) A <u>method of manufacturing method of an unsaturated compound or an aromatic compound which comprises reacting a compound of formula (3) or (4) below:</u>

$$Ar^{I}(X^{I})m^{I} \qquad (3)$$

$$R^{101}$$
 R^{121}
 X^{11}
 X^{11}
 X^{11}

wherein, in formula (3), Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group and m¹ is an integer of 1 to 4, and,

in formula (4), R¹⁰¹, R¹¹¹ and R¹²¹ are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; X¹¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group.

with a compound, of formula (5) or (6) below,

wherein, in formula (5), Ar² is an aryl group which may be substituted or a heteroaryl group which may be substituted; X² is B(OR¹³)(OR¹⁴), Sn(R¹⁵)₃, MgX, ZnX, Al(R¹⁵)₂ or Li, and,

in formula (6), R¹⁰, R¹¹ and R¹² are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; R¹⁰ and R¹² may be combined to form a single bond, forming together with the existing double bond a triple bond; X³ is a hydrogen atom, B(OR¹³)(OR¹⁴), Sn(R¹⁵)₃, MgX, ZnX, Al(R¹⁵)₂ or Li; R¹³ and R¹⁴ are each, the same or different, a hydrogen atom, an alkyl group, or, combined to form an ethylene group or a 1,2-dimethylethylene group; R¹⁵ is an alkyl group, and X is a chlorine atom, a bromine atom or an iodine atom,

to give a compound of formula (7), (8), (9) or (10),

wherein Ar^1 , Ar^2 , R^{10} , R^{11} , R^{12} , R^{101} , R^{111} and R^{121} are as defined above and m^2 is an integer of 1 to 4, and

wherein the reaction is conducted in the presence of by the use of the phosphine compound mentioned inof claim 1 and a palladium compound as catalysts.

6. (Cancelled)

7. (Currently amended) A method of manufacturing an unsaturated compound or an aromatic compound method of claim 4, which comprises reacting a compound of formula (3) or (4) below,

wherein, in formula (3), Ar^1 is an aryl group which may be substituted or a heteroaryl group which may be substituted; X^1 is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group and m^1 is an integer of from 1 to 4, and,

in formula (4), R¹⁰¹, R¹¹¹ and R¹²¹ are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; X¹¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group,

with an oxygen compound or a nitrogen compound of formula (11) below,

$$R^{16}$$
-QH (11)

wherein R¹⁶ is an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted; Q is an oxygen atom,

wherein R¹⁷, R¹⁸ and R¹⁹ are each a hydrogen atom, an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted; and R¹⁶ and R¹⁷ may be combined to form a divalent aromatic ring which may be substituted, to give a compound of formula (12) or (13) below,

$$\begin{array}{c}
R^{101} \\
\hline
\end{array}$$

$$\begin{array}{c}
R^{121} \\
\end{array}$$
(13)

(12)

 R^{111} QR¹⁶

 $Ar^{1}(QR^{16})m^{3}$

wherein Ar^1 , Q, R^{16} , R^{101} , R^{111} and R^{121} are as defined above and m^3 is an integer of 1 to 4, and

wherein the reaction is conducted in the presence of the palladium-phosphine complex of claim 2 as a catalyst.

8. (Currently amended) The A method of manufacturing an unsaturated compound or an aromatic compound method of claim 4, which comprises reacting an aromatic compound of formula (3),

$$Ar^{1}(X^{1})_{m}^{1} \qquad (3)$$

wherein Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group, and m¹ is an integer of from 1 to 4, with a carbonyl compound or a cyano compound of formula (14),

$$R^{18}$$
-CH₂- R^{19} (14)

wherein R^{18} is a hydrogen atom, CO_2R^{20} , $C(=O)R^{21}$ or a cyano group; R^{19} is CO_2R^{22} , $C(=O)R^{23}$ or a cyano group; R^{20} , R^{21} , R^{22} and R^{23} are each an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted, to give a compound of formula (15),

$$R^{18}$$
 (15)

wherein Ar¹, R¹⁸ and R¹⁹ are as defined above and m⁴ is an integer of 1 to 4, and wherein the reaction is conducted in the presence of the palladium-phosphine complex of claim 2 as a catalyst.

9. (Currently amended) — The A method of manufacturing an unsaturated compound or an aromatic compound method of claim 4, which comprises reacting an aromatic compound of formula (3),

$$Ar^{1}(X^{1})_{m}^{1} \qquad (3)$$

wherein Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group; and m¹ is an integer of from 1 to 4, with carbon monoxide and an alcohol of formula (16),

$$R^{24}OH$$
 (16)

wherein R²⁴ is an alkyl group, to give a carboxylic ester of formula (17),

$$Ar^{1}(CO_{2}R^{24})m^{5}$$
 (17)

wherein Ar¹ and R²⁴ are as defined above and m⁵ is an integer of 1 to 4, and

wherein the reaction is conducted in the presence of the palladium-phosphine

complex of claim 2 as a catalyst.

10. (Currently amended) The <u>method of manufacturing an method of unsaturated compounds compound</u>, as <u>claimed</u> in claim 4, which comprises carrying out the reaction in the presence of a base.

11. (Cancelled)

12. (New) A method of manufacturing an unsaturated compound or an aromatic compound which comprises reacting a compound of formula (3) or (4) below,

$$\begin{array}{c|c}
 & \text{Ar}^{1}(X^{1})m^{1} & (3) \\
 & R^{101} & R^{121} \\
 & R^{111} & X^{11} & (4)
\end{array}$$

wherein, in formula (3), Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group and m¹ is an integer of from 1 to 4, and,

in formula (4), R¹⁰¹, R¹¹¹ and R¹²¹ are each, the same or different, a hydrogen atom, an alkyl group, an aryl group which may be substituted, a heteroaryl group which may be substituted, an alkoxycarbonyl group or a cyano group; X¹¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a para-toluenesulfonyloxy group,

with an oxygen compound or a nitrogen compound of formula (11) below,

$$R^{16}$$
-QH (11)

wherein R¹⁶ is an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted; Q is an oxygen atom,

$$R^{17}$$
 $O=C-R^{18}$ R^{19} N N or N

wherein R¹⁷, R¹⁸ and R¹⁹ are each a hydrogen atom, an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted; and R¹⁶ and R¹⁷ may be combined to form a divalent aromatic ring which may be substituted, to give a compound of formula (12) or (13) below,

$$R^{101}$$
 R^{121} QR^{16} (13)

£ 18 14 14:

wherein Ar^1 , Q, R^{16} , R^{101} , R^{111} and R^{121} are as defined above and m^3 is an integer of 1 to 4, and

wherein the reaction is conducted in the presence of the phosphine compound of claim 1 and a palladium compound as catalysts.

13. (New) A method of manufacturing an unsaturated compound or an aromatic compound which comprises reacting an aromatic compound of formula (3),

$$Ar^{1}(X^{1})_{m}^{1}$$
 (3)

wherein Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group, and m¹ is an integer of from 1 to 4, with a carbonyl compound or a cyano compound of formula (14),

$$R^{18}$$
-CH₂- R^{19} (14)

wherein R^{18} is a hydrogen atom, CO_2R^{20} , $C(=O)R^{21}$ or a cyano group; R^{19} is CO_2R^{22} , $C(=O)R^{23}$ or a cyano group; R^{20} , R^{21} , R^{22} and R^{23} are each an alkyl group, an aryl group which may be substituted or a heteroaryl group which may be substituted, to give a compound of formula (15),

$$R^{18}$$
 (15)

wherein Ar¹, R¹⁸ and R¹⁹ are as defined above and m⁴ is an integer of 1 to 4, and wherein the reaction is conducted in the presence of the phosphine compound of claim 1 and a palladium compound as catalysts.

को सम क

14. (New) A method of manufacturing an unsaturated compound or an aromatic compound which comprises reacting an aromatic compound of formula (3),

$$Ar^{1}(X^{1})_{m}^{1} \qquad (3)$$

wherein Ar¹ is an aryl group which may be substituted or a heteroaryl group which may be substituted; X¹ is a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, a methanesulfonyloxy group or a paratoluenesulfonyloxy group; and m¹ is an integer of from 1 to 4, with carbon monoxide and an alcohol of formula (16),

$$R^{24}OH$$
 (16)

wherein R²⁴ is an alkyl group, to give a carboxylic ester of formula (17),

$$Ar^{1}(CO_{2}R^{24})m^{5}$$
 (17)

wherein Ar¹ and R²⁴ are as defined above and m⁵ is an integer of 1 to 4, and wherein the reaction is conducted in the presence of the phosphine compound of claim 1 and a palladium compound as catalysts.