4510 INSTRUCTION SET

Instruction Timing

Note that the number of cycles depends on the speed setting of the processor: Some instructions take more or fewer cycles when the processor is running at full-speed, or a C65 compatibility 3.5MHz speed, or at C64 compatibility 1MHz/2MHz speed. More detailed information on this is listed under each each instruction's information, but the high-level view is:

- When the processor is running at 1MHz, all instructions take at least two cycles, and dummy cycles are re-inserted into Read-Modify-Write instructions, so that all instructions take exactly the same number of cycles as on a 6502.
- The Read-Modify-Write instructions and all instructions that read a value from memory all require an extra cycle when operating at full speed, to allow signals to propagate within the processor.
- The Read-Modify-Write instructions require an additional cycle if the operand is \$D019, as the dummy write is performed in this case. This is to improve compatibility with C64 software that frequently uses this "bug" of the 6502 to more rapidly acknowledge VIC-II interrupts.
- Page-crossing and branch-taking penalties do not apply when the processor is running at full speed.
- Many instructions require fewer cycles when the processor is running at full speed, as generally most non-bus cycles are removed. For example, Pushing and Pulling values to and from the stack requires only 2 cycles, instead of the 4 that that the 6502 requires for these instructions.

Opcode Table

The coloured cells indicate an extended 45GS02 Opcode. A Q pseudo register opcode is marked blue, a base-page indirect Z indexed opcode that can use 32-bit pointers is cyan.

	\$x0	\$x1	\$x2
\$0x	size cyc OPC mode	size <i>cyc</i> QOP Q mode	size <i>cyc</i> FARQ Q lbpZ

The letters attached to the cycle count have the following meaning:

	Meaning
b	Add one cycle if branch is taken.
	Add one more cycle if branch taken crosses a page boundary.
d	Subtract one cycle when CPU is at 3.5MHz.
	Add one cycle if clock speed is at 40 MHz.
m	Subtract non-bus cycles when at 40MHz.
р	Add one cycle if indexing crosses a page boundary.
r	Add one cycle if clock speed is at 40 MHz.
S	Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

Opcode Table 4510/45GS02

		\$x0		\$v1		\$ _v 2	_	\$x3		\$v1		\$x5		Av2	\$x7
	,	φχυ	_	ФХІ	_	ΦΧΖ	_	φχυ	_	ΦX4-		ФХЭ		ΦΧΟ	ΦΧ/
\$0x	1	BRK imp	2	ORÁ bpiX	1	CLE imp	!	SEE imp	2	TSB ^{3r}	2 Q	ORA bp	2 Q	ASL bp	RMB0
\$1x	2	BPL rel	2	ORA ibpY	2 Q	<i>5rp</i> ORA ibpZ	3	3b BPL relfar	2	TRB bp	2	ORA bpX	2 Q	ASL bpX	2 4rb RMB0 bp 2 4rb RMB1 bp
\$2x	5	JSR 5s	2	AND Srp	5	JSR 5r	5	JSR	2	BIT 3r	2	AND 3r	2	ROL 4r	RMB2 ^{4r}
\$3x	2	BMI rel	2	AND ibpY	2 Q	<i>5rp</i> AND ibpZ	3	3b BMI relfar	2	BIT bpX	2	AND bpX	2 Q	ROL bpX	2 RMB3 bp
\$4x	1	RTI imp	2	EOR 5r bpiX	1	NEG acc	1 Q	ASR acc	2 Q	ASR bp 4r	2 Q	EOR 3r	2 Q	LSR bp 4r	2 RMB3 bp 2 RMB4 bp 2 RMB5 bp 2 4r RMB5 bp 2
\$5x	2	BVC rel	2	EOR ibpY	2 Q	<i>5rp</i> EOR ibpZ	3	BVC relfar	2 Q	ASR bpX	2	EOR bpX	2 Q	LSR bpX	RMB5 bp
\$6x	1	RTS imp	2	ADC 5r bpiX	2	RTS 4	3	BSR relfar	2	STZ bp 3	2 Q	ADC 3r	2 Q	ROR bp 5r	2 RMB6 bp 2 Ar RMB7 bp
\$7x	2	BVS rel	2	ADC ibpY	2 Q	5rp ADC ibpZ	3	3b BVS relfar	2	STZ bpX 3	2	ADC bpX	2 Q	5rmdp ROR bpX	2 RMB7 bp
\$8x	2	BRA rel	2	STA bpiX	2	STA op	Э	BRA relfar	2	STY bp	2 Q	STA bp	2	STX	SMB0 ^{4r}
\$9x	2	BCC rel	2	STA ibpY	2 Q	STA 5p	3	BCC relfar	2	STY bpX	2	STA bpX	2	STX bpY	2 SMB 1 4r
\$Ax	2	LDY 2	2	LDA bpiX	2	LDX 2	2	LDZ 2	2	LDY 3r	2	LDA 3r	2	LDX 3r	SMB2
\$Bx	2	BCS ^{2b} rel	2	LDA ibpY	2 Q	<i>5rp</i> LDA ibpZ	3	BCS relfar	2	LDY bpX	2	LDA bpX	2	LDX bpY	² SMB3 bp
\$Cx	2	CPY 2	2	CMP bpiX	2	CPZ 2	2	7 mdr DEW bp	2	CPY 3r	2 Q	CMP 3r	2 Q	5 mdr DEC bp	2 SMB3 bp 2 SMB4 bp
\$Dx	2	BNE rel	2	CMP ibpY	2 Q	CMP ibpZ	3	BNE relfar	2	CPZ 3r	2	CMP bpX	2 Q	5 mdrp DEC bpX	SMB5 bp
\$Ex	2	CPX imm 2	2	SBC bpiX	2	6rmp LDA ispY	2	7 mdr INW bp	2	CPX bp	2 Q	SBC 3r	2 Q	5 mdr INC bp	SMB6 bp
\$Fx	2	BEQ ^{2b}	2	SBC ibpY	2 Q	5rp SBC ibpZ	3	BEQ relfar	3	5m PHW im 16	2	SBC bpX	2 Q	5dmrp INC bpX	2 SMB5 bp 2 SMB6 bp 2 SMB7 bp

Opcode Table 4510/45GS02

_						,0		_	4510/						,
	\$x8		\$x9		\$xA		\$xB		\$xC		\$xD		\$xE	\$xF	
1	PHP imp	2	ORA 2	1 Q	ASL acc	1	TSY imp	3	TSB abs	3 Q	ORA abs	3 Q	ASL abs	3 Orb BBRO bpr8 3 5b BBR 1 bpr8	\$0x
1	CLC Imp	3	ORA absY	1 Q	INC acc	1	INZ imp	3	TRB abs	3	ORA absX	3 Q	ASL absX	3 5b BBR 1 bpr8	\$1x
	PLP 4m	2	AND 2	0	ROL		TYS '	5 O	BIT abs	5 O	AND 4r	5 Q	ROL 5r	BBR2	\$2x
1	SEC imp	3	AND absY	1 Q	DEC acc	1	DEZ imp	3	BIT absX	3	AND absX	3 Q	ROL absX	3 4b BBR3 bpr8	\$3x
1	PHA imp	2	EOR 2	1 Q	LSR acc	1	TAZ imp	3	JMP abs	3 Q	EOR 4r	3 Q	LSR abs	3 4b BBR3 bpr8 3 4rb BBR4 bpr8	\$4x
1	CLI imp	3	EOR absY	1	PHY imp	1	TAB imp	1	MAP imp	3	EOR absX	3 Q	5rp LSR absX	5 Arb BBR5 bpr8 5 BBR6 bpr8 5 BBR7 bpr8 5 Abr	\$5x
1	PLA imp	2	ADC 2	1 Q	ROR acc	1	TZA imp	3	JMP 5r ind	3 Q	ADC 4r	3 Q	ROR obs	3 4rb BBR6 bpr8	\$6x
1	SEI imp	3	ADC absY	1	PLY imp	1	TBA imp	3	6mp JMP indX	3	ADC absX	3 Q	5rmdp ROR absX	3 4br BBR7 bpr8	\$7x
1	DEY 's	_	BIT	'	TXA		STY absX	J	STY	0	STA 4		STX	BBS0	\$8x
1	TYA imp	3	STA 4p absY	I	TXS	5	STX 4p	3	STZ abs	3	STA 4p absX	3	STZ 4p absX	3 4br BBS 1 bpr8	\$9x
1	TAY imp	2	LDA imm	1	TAX imp	3	LDZ abs	3	LDY abs	3 Q	LDA abs	3	LDX abs	3 4br BBS2 bpr8 3 4br BBS3 bpr8	\$Ax
1	CLV Imp	3	LDA absY	1	TSX imp	3	LDZ absX	3	LDY absX	3	LDA absX	3	LDX absY	3 4br BBS3 bpr8	\$Bx
	INY 1s	2	CMP 2	ı	DEX 1s	5	ASW abs	5	CPY 4r	5	CMP ^{4r}	5	DEC abo	BBS4	\$Cx
1	CLD imp	3	CMP absY	1	3m PHX imp	1	3 _m PHZ imp	3	CPZ 4r	3	CMP absX	3 Q	6mdrp DEC absX	3 4br BBS5 bpr8	\$Dx
1	INX imp	2	SBC 2	1	EOM 1	3	5 rmd ROW abs	3	CPX abs	3 Q	SBC abs	3 Q	6dmr INC abs	3 4br BBS5 bpr8 3 4br BBS6 bpr8	\$Ex
1	SED 1 s	3	SBC absY	1	PLX imp	1	PLZ imp	3	7 m PHW abs	3	SBC absX	3 Q	6drp INC absX	3 4br BBS7 bpr8	\$Fx

ADC

This instruction adds the argument and the Carry Flag to the contents of the Accumulator Register. If the D flag is set, then the addition is performed using Binary Coded Decimal.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The V flag will be set if the result has a different sign to both of the arguments, otherwise it will be cleared. If the flag is set, this indicates that a signed overflow has occurred.
- The C flag will be set if the unsigned result is >255, or >99 if the D flag is set.

ADC : Add with car $A \leftarrow A + M + C$	rry				4510
			N Z I C	D \	/ E
Addressing Mode	Assembly	Code	Bytes Cy	/cles	3
(indirect,X)	ADC (\$nn,X)	61	2	5	r
base-page	ADC \$nn	65	2	3	r
immediate 8bit	ADC #\$nn	69	2	2	
absolute	ADC \$nnnn	6D	3	4	r
(indirect),Y	ADC (\$nn),Y	71	2	5	pr
(indirect),Z	ADC (\$nn),Z	72	2	5	pr
base-page,X	ADC \$nn,X	75	2	3	r
absolute,Y	ADC \$nnnn,Y	79	3	4	r
absolute,X	ADC \$nnnn,X	7D	3	4	r

p Add one cycle if indexing crosses a page boundary.

AND

This instruction performs a binary AND operation of the argument with the accumulator, and stores the result in the accumulator. Only bits that were already set in the accumulator, and that are set in the argument will be set in the accumulator on completion.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

AND : Binary AND A ← A AND M					4510
A A AAAD M			NZI	C D V	/ E
			+ + ·		
Addressing Mode	Assembly	Code	Bytes (Cycle	s
(indirect,X)	AND (\$nn,X)	21	2	5	pr
base-page	AND \$nn	25	2	3	r
immediate 8bit	AND #\$nn	29	2	2	
absolute	AND \$nnnn	2D	3	4	r
(indirect),Y	AND (\$nn),Y	31	2	5	pr
(indirect),Z	AND (\$nn),Z	32	2	5	pr
base-page,X	AND \$nn,X	35	2	4	pr
absolute,Y	AND \$nnnn,Y	39	3	4	r
absolute,X	AND \$nnnn,X	3D	3	4	pr

p Add one cycle if indexing crosses a page boundary.

ASL

This instruction shifts either the Accumulator or contents of the provided memory location one bit left. Bit 0 will be set to zero, and the bit 7 will be shifted out into the Carry Flag

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 7 of the value was set, prior to being shifted.

r Add one cycle if clock speed is at 40 MHz.

ASL : Arithmetic Shift Left Memory or Accumulator 45 $A \leftarrow A \ll 1 \text{ or } M \leftarrow M \ll 1$							
A — A « I OI W — W	1		NZI				
			+ + ·	_			
Addressing Mode		Code	Bytes	Cycle	S		
base-page	ASL \$nn	06	2	4	r		
accumulator	ASL A	0A	1	1	s		
absolute	ASL \$nnnn	0E	3	5	r		
base-page,X	ASL \$nn,X	16	2	4	r		
absolute,X	ASL \$nnnn,X	1E	3	5	pr		

p Add one cycle if indexing crosses a page boundary.

ASR

This instruction shifts either the Accumulator or contents of the provided memory location one bit right. Bit 7 is considered to be a sign bit, and is preserved. The contents of bit 0 will be shifted out into the Carry Flag

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 0 of the value was set, prior to being shifted.

ASR : Arithmetic Sl		4510		
$A \leftarrow A >> 1 \ or \ M \leftarrow$	M >> 1			
			NZICD	
			+ + · + ·	
		_	_	
Addressing Mode	Assembly	Code	Bytes Cycle	es
Addressing Mode accumulator	Assembly ASR A	Code 43	Bytes Cycle	<i>s</i>
			Bytes Cycle 1 1 2 4	

 $p\,\mathrm{Add}$ one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

ASW

This instruction shifts a 16-bit value in memory left one bit.

For example, if location \$1234 contained \$87 and location \$1235 contained \$A9, ASW \$1234 would result in location \$1234 containing \$0E and location \$1235 containing \$53, and the Carry Flag being set.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 7 of the upper byte was set, prior to being shifted, otherwise it will be cleared.

ASW : Arithmetic S $M \leftarrow M \ll 1$			4510		
m v m v			N Z I + + ·		
Addressing Mode	Assembly	Code	Bytes	Cycle	s
absolute	ASW \$nnnn	СВ	3	7	dmr

d Subtract one cycle when CPU is at 3.5MHz.

BBRO

This instruction branches to the indicated address if bit 0 is clear in the indicated base-page memory location.

BBRO : Branch on Binom $M(0)=0 \implies PC \leftarrow F$	4510		
	,		N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBR0 \$nn,\$rr	0F	3 0 ^{br}

 $[\]it b$ Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

 $[\]it m$ Subtract non-bus cycles when at 40MHz.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

BBR 1

This instruction branches to the indicated address if bit 1 is clear in the indicated base-page memory location.

BBR1 : Branch on Bit 1 Reset $M(1)=0 \Longrightarrow PC \leftarrow PC + R8$								
(.)			N Z I C D V E					
Addressing Mode	Assembly	Code	Bytes Cycles					
base-page+rel	BBR1 \$nn,\$rr	1F	3 5 ^b					

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BBR₂

This instruction branches to the indicated address if bit 2 is clear in the indicated base-page memory location.

BBR2 : Branch on B $M(2)=0 \Longrightarrow PC \leftarrow F$			4510
(=)			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBR2 \$nn,\$rr	2F	3 5 ^b

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BBR3

This instruction branches to the indicated address if bit 3 is clear in the indicated base-page memory location.

BBR3 : Branch on Bi $M(3)=0 \Longrightarrow PC \leftarrow P$			4510
<i>M</i> (3)=0 → 1 C ← 1	C + K0		NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBR3 \$nn,\$rr	3F	3 4 ^b

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BBR4

This instruction branches to the indicated address if bit 4 is clear in the indicated base-page memory location.

	BBR4 : Branch on Bit 4 Reset $M(4)=0 \Longrightarrow PC \leftarrow PC + R8$		
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBR4 \$nn,\$rr	4F	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

BBR5

This instruction branches to the indicated address if bit 5 is clear in the indicated base-page memory location.

BBR5 : Branch on Bit 5 Reset $M(5)=0 \Longrightarrow PC \leftarrow PC + R8$		4510	
	- ,		NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBR5 \$nn,\$rr	5F	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BBR6

This instruction branches to the indicated address if bit 6 is clear in the indicated base-page memory location.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

BBR6 : Branch on B $M(6)=0 \Longrightarrow PC \leftarrow F$			4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBR6 \$nn,\$rr	6F	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

BBR7

This instruction branches to the indicated address if bit 7 is clear in the indicated base-page memory location.

BBR7 : Branch on Bit 7 Reset $M(7)=0 \Longrightarrow PC \leftarrow PC + R8$			4510
(N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBR7 \$nn,\$rr	7F	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

BBSO

This instruction branches to the indicated address if bit 0 is set in the indicated base-page memory location.

BBS0 : Branch on Bit 0 Set $M(0)=1 \Longrightarrow PC \leftarrow PC + R8$			4510
()			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBS0 \$nn,\$rr	8F	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

BBS₁

This instruction branches to the indicated address if bit 1 is set in the indicated base-page memory location.

BBS1 : Branch on Bit 1 Set $M(1)=1 \Longrightarrow PC \leftarrow PC + R8$			4510
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBS1 \$nn,\$rr	9F	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

BBS₂

This instruction branches to the indicated address if bit 2 is set in the indicated base-page memory location.

BBS2 : Branch on Bit 2 Set $M(2)=1 \Longrightarrow PC \leftarrow PC + R8$		4510
		NZICDVE
Addressing Mode Assembly	Code	Bytes Cycles
base-page+rel BBS2 \$nn,\$	Srr AF	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BBS3

This instruction branches to the indicated address if bit 3 is set in the indicated base-page memory location.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

BBS3 : Branch on B	it 3 Set		4510
$M(3)=1 \Longrightarrow PC \leftarrow F$	PC + R8		
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBS3 \$nn,\$rr	BF	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

BBS4

This instruction branches to the indicated address if bit 4 is set in the indicated base-page memory location.

BBS4 : Branch on Bit 4 Set $M(4)=1 \Longrightarrow PC \leftarrow PC + R8$		4510	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBS4 \$nn,\$rr	CF	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

BBS5

This instruction branches to the indicated address if bit 5 is set in the indicated base-page memory location.

BBS5 : Branch on Bit 5 Set $M(5)=1 \Longrightarrow PC \leftarrow PC + R8$		4510	
(NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBS5 \$nn,\$rr	DF	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

BBS₆

This instruction branches to the indicated address if bit 6 is set in the indicated base-page memory location.

	BBS6 : Branch on Bit 6 Set $M(6)=1 \Longrightarrow PC \leftarrow PC + R8$		
(6)			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBS6 \$nn,\$rr	EF	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BBS7

This instruction branches to the indicated address if bit 7 is set in the indicated base-page memory location.

BBS7 : Branch on B			4510
$M(7)=1 \Longrightarrow PC \leftarrow F$	PC + R8		NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page+rel	BBS7 \$nn,\$rr	FF	3 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BCC

This instruction branches to the indicated address if the Carry Flag is clear.

r Add one cycle if clock speed is at 40 MHz.

r Add one cycle if clock speed is at 40 MHz.

BCC : Branch on Carry Flag Clear					4510
$C=0 \Longrightarrow PC \leftarrow PC$	$+$ R8 or PC \leftarrow	PC + R16			
			NZI	CDV	√ E
Addressing Mode	Assembly	Code	Bytes	Cycle	s
relative	BCC \$rr	90	2	2	b
16-bit relative	BCC \$rrrr	93	3	3	b

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BCS

This instruction branches to the indicated address if the Carry Flag is set.

BCS : Branch on Co	45	10		
$C=1 \Longrightarrow PC \leftarrow PC$				
			NZICDVE	E
				.
Addressing Mode	Assembly	Code	Bytes Cycles	
relative	BCS \$rr	В0	2 2 ^b	
16-bit relative	BCS \$rrrr	В3	3 3 ^b	

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BEQ

This instruction branches to the indicated address if the Zero Flag is set. BEQ stands for branch if equal, because a CMP will result in the zero flag being set if the operants are equal.

BEQ : Branch on Zero Flag Set				4510
$Z=1 \Longrightarrow PC \leftarrow PC$	$+$ R8 or PC \leftarrow F	PC + R16		
			NZIC	
Addressing Mode	Assembly	Code	Bytes C	
Addressing Mode relative	Assembly BEQ \$rr	Code F0	Bytes C	

 $[\]overline{b}$ Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BIT

This instruction is used to test the bits stored in a memory location or the immediate argument of the opcode.

Bits 6 and 7 of the memory location's contents are directly copied into the Overflow Flag and Negative Flag. The Zero Flag is set or cleared based on the result of performing the binary AND of the Accumulator Register and the contents of the indicated memory location.

The immediate test will set the N and V flags with valid states (treating the argument as the memory value), which was not the case with the earlier 65C02 implementation.

Side effects

- The N flag will be set if the bit 7 of the memory location is set, otherwise it will be cleared.
- The V flag will be set if the bit 6 of the memory location is set, otherwise it will be cleared.
- The Z flag will be set if the result of A AND M is zero, otherwise it will be cleared.

BIT : Perform Bit Test $A \leftarrow M(7), V \leftarrow M(6), Z \leftarrow A \land AND M$					4510
	,,		N Z I (
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page	BIT \$nn	24	2	3	r
absolute	BIT \$nnnn	2C	3	4	r
base-page,X	BIT \$nn,X	34	2	3	pr
absolute,X	BIT \$nnnn,X	3C	3	4	pr
immediate 8bit	BIT #\$nn	89	2	2	

p Add one cycle if indexing crosses a page boundary.

BMI

This instruction branches to the indicated address if the Negative Flag is set. BMI stands for branch on minus.

r Add one cycle if clock speed is at 40 MHz.

	BMI : Branch on Negative Flag Set $N=1 \Longrightarrow PC \leftarrow PC + R8 \ or \ PC \leftarrow PC + R16$				
			N Z I		_
Addressing Mode	Assembly	Code	Bytes	Cycles	3
relative	BMI \$rr	30	2	2	r
16-bit relative	BMI \$rrrr	33	3	3	b

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BNE

This instruction branches to the indicated address if the Zero Flag is clear. BNE stands for Branch if not equal, because a CMP will result in the zero flag being cleared if the operants are not equal.

BNE : Branch on Ze	BNE : Branch on Zero Flag Clear			4510
$Z=0 \Longrightarrow PC \leftarrow PC$	$+$ R8 or PC \leftarrow I	PC + R16		
			NZIC	DVE
Addressing Mode	Assembly	Code	Bytes Cy	cles
	DVIE &			<u> </u>
relative	BNE \$rr	D0	2	2 °

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BPL

This instruction branches to the indicated address if the Negative Flag is clear. BPL stands for branch on plus.

BPL : Branch on Ne	BPL : Branch on Negative Flag Clear			
$N=0 \Longrightarrow PC \leftarrow PC$	$+ R8 \ or \ PC \leftarrow F$	PC + R16		
			NZICDVE	
Addressing Mode	Assembly	Code	Bytes Cycles	
				1
relative	BPL \$rr	10	2 2 <i>b</i>	

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

BRA

This instruction branches to the indicated address.

BRA: Branch Uncor	BRA: Branch Unconditionally				4510
$PC \leftarrow PC + R8 \ or \ Pc$	$C \leftarrow PC + R16$	5			
			ΝΖΙ	CDV	√ E
Addressing Mode	Assembly	Code	Bytes		
Addressing Mode relative	Assembly BRA \$rr	Code 80			

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BRK

The break command causes the microprocessor to go through an interrupt sequence under program control. The address of the BRK instruction + 2 is pushed to the stack along with the status register with the Break flag set. This allows the interrupt service routine to distinguish between IRQ events and BRK events. For example:

PLA ; load status
PHA ; restore stack
AND #\$10 ; mask break flag
BNE DO_BREAK ; -> it was a BRK

... ; else continue with IRQ server

Cite from: MCS6500 Microcomputer Family Programming Manual, January 1976, Second Edition, MOS Technology Inc., Page 144:

"The BRK is a single byte instruction and its addressing mode is Implied."

There are debates, that BRK could be seen as a two byte instruction with the addressing mode immediate, where the operand byte is discarded. The byte following the BRK could then be used as a call argument for the break handler. Commodore however used the BRK, as stated in the manual, as a single byte instruction, which breaks into the ML monitor, if present. These builtin monitors decremented the stacked PC, so that it could be used to return or jump directly to the code byte after the BRK.

BRK : Break to Inter	rupt		4510
STACK \leftarrow PC + 2; PC	$C \leftarrow (\$FFFE)$		
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	BRK	00	1 7

BSR

This instruction branches to the indicated address, saving the address of the following instruction on the stack, so that the routine can be returned from using an RTS instruction.

This instruction is helpful for using relocatable code, as it provides a relative-addressed alternative to JSR.

BSR : Branch Sub-Routine 4510 STACK \leftarrow PC + len(V), PC \leftarrow PC + V					
	,		NZICDVE		
Addressing Mode	Assembly	Code	Bytes Cycles		
16-bit relative	BSR \$rrrr	63	3 3 ^b		

 $[\]emph{b}$ Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BVC

This instruction branches to the indicated address if the Overflow (V) Flag is clear.

BVC : Branch on Ov $V=0 \Longrightarrow PC \leftarrow PC$		4510		
		,	NZICD	
Addressing Mode	Assembly	Code	Bytes Cycl	es
relative	BVC \$rr	50	2 2	b
16-bit relative	BVC \$rrrr	53	3 3	b

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

BVS

This instruction branches to the indicated address if the Overflow (V) Flag is set.

BVS : Branch on Overflow Flag Set $V=1 \Longrightarrow PC \leftarrow PC + R8 \ or \ PC \leftarrow PC + R16$				4510
			NZICD	
Addressing Mode	Assembly	Code	Bytes Cycle	es
relative	BVS \$rr	70	2 2	b
16-bit relative	BVS \$rrrr	73	3 3	b

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

CLC

This instruction clears the Carry Flag.

Side effects

• The C flag is cleared.

CLC : Clear Carry I $C \leftarrow 0$	4510		
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	CLC	18	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CLD

This instruction clears the Decimal Flag. Arithmetic operations will use normal binary arithmetic, instead of Binary-Coded Decimal (BCD).

Side effects

• The D flag is cleared.

CLD : Clear Decima	al Flag				4510
D ← 0					
			NZI		
				. +	
Addressing Mode	Assembly	Code	Bytes	Cycle	es
implied	CLD	D8	1	1	s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CLE

This instruction clears the Extended Stack Disable Flag. This causes the stack to be able to exceed 256 bytes in length, by allowing the processor to modify the value of the high byte of the stack address (SPH).

Side effects

• The E flag is cleared.

CLE : Clear Extend $E \leftarrow 0$	ed Stack Disal	ole Flag	4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	CLE	02	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CLI

This instruction clears the Interrupt Disable Flag. Interrupts will now be able to occur.

Side effects

• The I flag is cleared.

CLI: Clear Interru	ot Disable Flag		4510
1 ← 0			NZICDVE
			+
Addressing Mode	Assembly	Code	Bytes Cycles
implied	CH	58	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CLV

This instruction clears the Overflow Flag.

Side effects

• The V flag is cleared.

CLV : Clear Overflood $\lor \leftarrow 0$	w Flag		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	CIV	В8	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

CMP

This instruction performs A-M, and sets the processor flags accordingly, but does not modify the contents of the Accumulator Register.

- The N flag will be set if the result of A-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of A-M is zero or positive, i.e., if A is not less than M, otherwise it will be cleared.
- The Z flag will be set if the result of A-M is zero, otherwise it will be cleared.

CMP : Compare Accumulator $N,C,Z \leftarrow [A-M]$				4.	510
			NZIC	D V	E
			+ + · +		
Addressing Mode	Assembly	Code	Bytes C	ycles	
(indirect,X)	CMP (\$nn,X)	C1	2	5	pr
base-page	CMP \$nn	C5	2	3	r
immediate 8bit	CMP #\$nn	C9	2	2	
absolute	CMP \$nnnn	CD	3	4	r
(indirect),Y	CMP (\$nn),Y	D1	2	5	pr
(indirect),Z	CMP (\$nn),Z	D2	2	5	pr
base-page,X	CMP \$nn,X	D5	2	3	pr
absolute,Y	CMP \$nnnn,Y	D9	3	4	pr
absolute,X	CMP \$nnnn,X	DD	3	4	pr

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

This instruction performs X-M, and sets the processor flags accordingly, but does not modify the contents of the Accumulator Register.

Side effects

- The N flag will be set if the result of X-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of X-M is zero or positive, i.e., if X is not less than M, otherwise it will be cleared.
- The Z flag will be set if the result of X-M is zero, otherwise it will be cleared.

CPX : Compare X R N,C,Z \Leftarrow [X - M]	Register				4510
			N Z I C	_	
Addressing Mode	Assembly	Code	Bytes C	Sycle	s
immediate 8bit	CPX #\$nn	E0	2	2	
base-page	CPX \$nn	E4	2	3	r
absolute	CPX \$nnnn	EC	3	4	r

r Add one cycle if clock speed is at 40 MHz.

CPY

This instruction performs Y-M, and sets the processor flags accordingly, but does not modify the contents of the Accumulator Register.

- The N flag will be set if the result of Y-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of Y-M is zero or positive, i.e., if Y is not less than M, otherwise it will be cleared.
- ullet The Z flag will be set if the result of Y M is zero, otherwise it will be cleared.

CPY : Compare Y R $N,C,Z \leftarrow [Y - M]$	legister				4510
			N Z I		
				-	
Addressing Mode	•	Code	Bytes	Cycle	S
immediate 8bit	CPY #\$nn			$\overline{}$	
Immediate obit	CPT #\$nn	C0	2	2	
base-page	CPY \$nn	C4	2	3	r

r Add one cycle if clock speed is at 40 MHz.

CPZ

This instruction performs Z-M, and sets the processor flags accordingly, but does not modify the contents of the Accumulator Register.

Side effects

- The N flag will be set if the result of $\mathsf{Z}-\mathsf{M}$ is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of Z-M is zero or positive, i.e., if Z is not less than M, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result of Z M is zero, otherwise it will be cleared.

CPZ : Compare Z R N,C,Z \Leftarrow [Z - M]	egister		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
immediate 8bit	CPZ #\$nn	C2	2 2
immediate 8bit base-page	CPZ #\$nn CPZ \$nn	C2 D4	$egin{array}{ccccc} 2 & 2 & & & & & & & & & & & & & & & & $

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

DEC

This instruction decrements the Accumulator Register or indicated memory location.

Side effects

• The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.

• The Z flag will be set if the result is zero, otherwise it will be cleared.

DEC : Decrement $A \leftarrow A - 1 \ or \ M \leftarrow B$	M – 1				4510
			N Z I (
Addressing Mode	Assembly	Code	Bytes (Cycle	es
accumulator	DEC A	3A	1	1	s
base-page	DEC \$nn	C6	2	5	dmr
absolute	DEC \$nnnn	CE	3	6	dmr
base-page,X	DEC \$nn,X	D6	2	5	dmpr
absolute,X	DEC \$nnnn,X	DE	3	6	dmpr

d Subtract one cycle when CPU is at 3.5MHz.

- p Add one cycle if indexing crosses a page boundary.
- $\it r$ Add one cycle if clock speed is at 40 MHz.
- s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

DEW

This instruction decrements the indicated memory word in the Base Page. The low numbered address contains the least significant bits. For example, if memory location \$12 contains \$78 and memory location \$13 contains \$56, the instruction DEW \$12 would cause memory location \$12 to be set to \$77.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

DEW : Decrement A $M16 \leftarrow M16 - 1$				4510	
			N Z I + + ·		
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page	DEW \$nn	C3	2	7	dmr

d Subtract one cycle when CPU is at 3.5MHz.

 \ensuremath{m} Subtract non-bus cycles when at 40MHz.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

 $[\]it m$ Subtract non-bus cycles when at 40MHz.

DEX

This instruction decrements the X Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

DEX : Decrement X	Register		4510
$X \leftarrow X - 1$			N 7 1 0 D V 5
			NZICDVE
			+ + · · · · ·
Addressing Mode	Assembly	Code	Bytes Cycles
implied	DEX	CA	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

DEY

This instruction decrements the Y Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

DEZ

This instruction decrements the Z Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

DEZ : Decrement Z $Z \leftarrow Z - 1$	Register		451	10
			NZICDVE	
Addressing Mode	Assembly	Code	Bytes Cycles	
implied	DEZ	3B	1 1 s	

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

EOM

In contrast with the 6502, the NOP instruction on the 45GS02 performs two additional roles when in 4502 mode.

First, indicate the end of a memory mapping sequence caused by a MAP instruction, allowing interrupts to occur again.

Second, it instructs the processor that if the following instruction uses Base-Page Indirect Z Indexed addressing, that the processor should use a 32-bit pointer instead of a 16-bit 6502 style pointer. Such 32-bit addresses are unaffected by C64, C65 or MEGA65 memory banking. This allows fast and easy access to the entire address space of the MEGA65 without having to perform or be aware of any banking, or using the DMA controller. This addressing mode causes a two cycle penalty, caused by the time required to read the extra two bytes of the pointer.

NOTE: please take care if you use EOM/NOP after a Hypervisor Call for delay, as this might change your next instruction. CLV can be used as an alternative.

Side effects

Removes the prohibition on all interrupts caused by the the MAP instruction, allowing Non-Maskable Interrupts to again occur, and IRQ interrupts, if the Interrupt Disable Flag is not set.

EOM: End of Mapp	ing Sequence	e / No-Operation						4	510
Special			N	7	ı	С	D	v	E
				_	-		_	-	_
Addressing Mode	Assembly	Code	В	yte	s	C	ycl	es	
implied	FOM	FΑ		1			1		s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

EOR

This instruction performs a binary exclusive–OR operation of the argument with the accumulator, and stores the result in the accumulator. Only bits that were already set in the accumulator, or that are set in the argument will be set in the accumulator on completion, but not both.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

EOR : Binary Exclusive OR $A \leftarrow A \ XOR \ M$					4510
			NZI	CD	V E
Addressing Mode	Assembly	Code	Bytes	Cycle	s
(indirect,X)	EOR (\$nn,X)	41	2	5	r
base-page	EOR \$nn	45	2	3	r
immediate 8bit	EOR #\$nn	49	2	2	
absolute	EOR \$nnnn	4D	3	4	r
(indirect),Y	EOR (\$nn),Y	51	2	5	pr
(indirect),Z	EOR (\$nn),Z	52	2	5	pr
base-page,X	EOR \$nn,X	55	2	3	p
absolute,Y	EOR \$nnnn,Y	59	3	4	pr
absolute,X	EOR \$nnnn,X	5D	3	4	pr

p Add one cycle if indexing crosses a page boundary.

INC

This instruction increments the Accumulator Register or indicated memory location.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

r Add one cycle if clock speed is at 40 MHz.

INC : Increment Memory or Accumulator $A \leftarrow A + 1$ or $M \leftarrow M + 1$					4510
			NZI	C D V	/ E
Addressing Mode	Assembly	Code	Bytes	Cycle	s
accumulator	INC A	1A	1	1	s
base-page	INC \$nn	E6	2	5	dmr
absolute	INC \$nnnn	EE	3	6	dmr
base-page,X	INC \$nn,X	F6	2	5	dmpr
absolute,X	INC \$nnnn,X	FE	3	6	dpr

d Subtract one cycle when CPU is at 3.5MHz.

INW

This instruction increments the indicated memory word in the Base Page. The low numbered address contains the least significant bits. For example, if memory location \$12 contains \$78 and memory location \$13 contains \$56, the instruction INW \$12 would cause memory location \$12 to be set to \$79.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

INW : Increment Mo M16 ← M16 + 1	emory Word		4510
W10 \(\tau \) W10 \(\tau \)			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	INW \$nn	E3	2 7 ^{dmr}

d Subtract one cycle when CPU is at 3.5MHz.

 $\it m$ Subtract non-bus cycles when at 40MHz.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

m Subtract non-bus cycles when at 40MHz.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

This instruction increments the X Register, i.e., adds 1 to it.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

INX : Increment X R	egister		4510
X ← X + 1			
			NZICDVE
			+ + · · · · ·
Addressing Mode	Assembly	Code	Bytes Cycles
implied	INX	E8	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

INY

This instruction increments the Y Register, i.e., adds 1 to it.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

INZ

This instruction increments the Z Register, i.e., adds 1 to it.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

JMP

This instruction sets the Program Counter (PC) Register to the address indicated by the instruction, causing execution to continue from that address.

JMP: Jump to Addi PC \leftarrow M2:M1	JMP : Jump to Address PC ← M2:M1				4510
			N Z I	C D \	/ E
Addressing Mode	Assembly	Code	Bytes	Cycle	s
absolute	JMP \$nnnn	4C	3	3	
absolute (indirect)	JMP \$nnnn JMP (\$nnnn)	4C 6C	3 3	3 5	r

 $\it m$ Subtract non-bus cycles when at 40MHz.

JSR

This instruction saves the address of the instruction following the JSR instruction onto the stack, and then sets the Program Counter (PC) Register to the address indicated by the instruction, causing execution to continue from that address. Because the return address has been saved on the stack, the RTS instruction can be used to return from the called sub-routine and resume execution following the JSR instruction.

NOTE: This instruction actually pushes the address of the last byte of the JSR instruction onto the stack. The RTS instruction naturally is aware of this, and increments the address on popping it from the stack, before setting the Program Counter (PC) register.

 $[\]ensuremath{p}\xspace$ Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

JSR: Jump to Sub-IPC \leftarrow M2:M1, STAC			4510		
, , ,			N Z I	C D \	√ E
Addressing Mode	Assembly	Code	Bytes	Cycle	s
absolute	JSR \$nnnn	20	3	5	
(indirect)	JSR (\$nnnn)	22	3	5	r
(indirect,X)	JSR (\$nnnn,X)	23	3	5	pr

p Add one cycle if indexing crosses a page boundary.

LDA

This instruction loads the Accumulator Register with the indicated value, or with the contents of the indicated location.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

LDA: Load Accumulator A M					4510
A V M			N Z I C	D \	/ E
Addressing Mode	Assembly	Code	Bytes C	ycle	s
(indirect,X)	LDA (\$nn,X)	A1	2	5	pr
base-page	LDA \$nn	A5	2	3	r
immediate 8bit	LDA #\$nn	A9	2	2	
absolute	LDA \$nnnn	AD	3	4	r
(indirect),Y	LDA (\$nn),Y	B1	2	5	pr
(indirect),Z	LDA (\$nn),Z	B2	2	5	pr
base-page,X	LDA \$nn,X	B5	2	3	pr
absolute,Y	LDA \$nnnn,Y	В9	3	4	pr
absolute,X	LDA \$nnnn,X	BD	3	4	pr
(immediate,SP),Y	LDA (\$nn,SP),Y	E2	2	6	mpr

m Subtract non-bus cycles when at 40MHz.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

LDX

This instruction loads the X Register with the indicated value, or with the contents of the indicated location.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

LDX : Load X Regis $X \leftarrow M$			4510		
			N Z I (C D '	√ E
Addressing Mode	Assembly	Code	Bytes (Cycle	s
immediate 8bit	LDX #\$nn	A2	2	2	
base-page	LDX \$nn	A6	2	3	r
absolute	LDX \$nnnn	AE	3	4	r
base-page,Y	LDX \$nn,Y	В6	2	5	pr
absolute,Y	LDX \$nnnn,Y	BE	3	4	pr

p Add one cycle if indexing crosses a page boundary.

LDY

This instruction loads the Y Register with the indicated value, or with the contents of the indicated location.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

r Add one cycle if clock speed is at 40 MHz.

LDY : Load Y Regist $Y \leftarrow M$	ter				4510
			NZI		
			+ + ·		
Addressing Mode	Assembly	Code	Bytes	Cycle	s
immediate 8bit	LDY #\$nn	Α0	2	2	
base-page	LDY \$nn	A4	2	3	r
absolute	LDY \$nnnn	AC	3	4	r
base-page,X	LDY \$nn,X	B4	2	3	pr
absolute,X	LDY \$nnnn,X	BC	3	4	pr

p Add one cycle if indexing crosses a page boundary.

LDZ

This instruction loads the Z Register with the indicated value, or with the contents of the indicated location.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

LDZ : Load Z Regist	4510		
$Z \leftarrow M$			
			NZICDVE
			+ + · · · · ·
Addressing Mode	Assembly	Code	Bytes Cycles
Addressing Mode immediate 8bit	Assembly LDZ #\$nn	Code A3	Bytes Cycles 2 2

 $[\]overline{p}$ Add one cycle if indexing crosses a page boundary.

LSR

This instruction shifts either the Accumulator or contents of the provided memory location one bit right. Bit 7 will be set to zero, and the bit 0 will be shifted out into the Carry Flag

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

r Add one cycle if clock speed is at 40 MHz.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 0 of the value was set, prior to being shifted.

LSR: Logical Shift $A \leftarrow A \gg 1$, $C \leftarrow A(0)$			4510		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	, , , , , , , , , , , , , , , , , , , ,	N Z I (
Addressing Mode	Assembly	Code	Bytes (Cycle	s
base-page	LSR \$nn	46	2	4	r
accumulator	LSR A	4A	1	1	s
absolute	LSR \$nnnn	4E	3	5	r
base-page,X	LSR \$nn,X	56	2	3	pr
absolute,X	LSR \$nnnn,X	5E	3	5	pr

p Add one cycle if indexing crosses a page boundary.

MAP

This instruction sets the C65 or MEGA65 style memory map, depending on the values in the Accumulator, X, Y and Z registers.

Care should be taken to ensure that after the execution of an MAP instruction that appropriate memory is mapped at the location of the following instruction. Failure to do so will result in unpredictable results.

Further information on this instruction is available in Appendix K.

- The memory map is immediately changed to that requested.
- All interrupts, including Non-Maskable Interrupts (NMIs) are blocked from occurring until an EOM (NOP) instruction is encountered.

r Add one cycle if clock speed is at 40 MHz.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

MAP : Set Memory Special	Мар		4510
1			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	MAP	5C	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

NEG

This instruction replaces the contents of the Accumulator Register with the twoscomplement of the contents of the Accumulator Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

NEG : Negate Accu $A \leftarrow (A XOR \$FF) +$			4510
(NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
accumulator	NEG A	42	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

ORA

This instruction performs a binary OR operation of the argument with the accumulator, and stores the result in the accumulator. Only bits that were already set in the accumulator, or that are set in the argument will be set in the accumulator on completion, or both.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result is zero, otherwise it will be cleared.

ORA : Binary OR A ← A OR M			4	510
A ← A OR M			NZICDV	E
			+ + · · · ·	•
Addressing Mode	Assembly	Code	Bytes Cycles	
(indirect,X)	ORA (\$nn,X)	01	2 6	pr
base-page	ORA \$nn	05	2 3	r
immediate 8bit	ORA #\$nn	09	2 2	
absolute	ORA \$nnnn	0D	3 4	r
(indirect),Y	ORA (\$nn),Y	11	2 5	pr
(indirect),Z	ORA (\$nn),Z	12	2 5	pr
base-page,X	ORA \$nn,X	15	2 3	r
absolute,Y	ORA \$nnnn,Y	19	3 4	r
absolute,X	ORA \$nnnn,X	1D	3 4	pr

p Add one cycle if indexing crosses a page boundary.

PHA

This instruction pushes the contents of the Accumulator Register onto the stack, and decrements the value of the Stack Pointer by 1.

PHA : Push Accumus STACK \leftarrow A, SP \leftarrow S	•	onto the Stack		4510
, , , , , , , , , , , , , , , , , , , ,				C D V E
Addressing Mode	Assembly	Code	Bytes	Cycles
implied	PHA	48	1	2

PHP

This instruction pushes the contents of the Processor Flags onto the stack, and decrements the value of the Stack Pointer by 1.

PHP : Push Process STACK \leftarrow P, SP \leftarrow SI	•	he Stack	4510
,			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	PHP	08	1 2

r Add one cycle if clock speed is at 40 MHz.

PHW

This instruction pushes either a 16-bit literal value or the memory word indicated onto the stack, and decrements the value of the Stack Pointer by 2.

PHW : Push Word onto the Stack				4	510
STACK \leftarrow M1:M2, SF	$P \leftarrow SP - 2$				
			NZIC	C D V	E
					•
Addressing Mode	Assembly	Code	Bytes (·
Addressing Mode immediate 16bit	Assembly PHW #\$nnnn	Code		Cycles	\overline{m}

m Subtract non-bus cycles when at 40MHz.

PHX

This instruction pushes the contents of the X Register onto the stack, and decrements the value of the Stack Pointer by 1.

PHX : Push X Regis STACK ← X, SP ← S		ack			4510
			N Z I		
Addressing Mode	Assembly	Code	Bytes	Cycle	es
implied	PHX	DA	1	3	m

 \overline{m} Subtract non-bus cycles when at 40MHz.

PHY

This instruction pushes the contents of the Y Register onto the stack, and decrements the value of the Stack Pointer by 1.

PHY: Push Y Regist		ack	4510
$ STACK \leftarrow Y, SP \leftarrow SF$	P – 1		
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles

PHZ

This instruction pushes the contents of the Z Register onto the stack, and decrements the value of the Stack Pointer by 1.

PHZ : Push Z Regist STACK \leftarrow z, SP \leftarrow SF		ack			4	510
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			N Z I		-	_
Addressing Mode	Assembly	Code	Bytes	Сус	les	
implied	PHZ	DB	1	3	5	m

m Subtract non-bus cycles when at 40MHz.

PLA

This instruction replaces the contents of the Accumulator Register with the top value from the stack, and increments the value of the Stack Pointer by 1.

PLA : Pull Accumule A \leftarrow STACK, SP \leftarrow S	-	rom the Stack			45	510
,			N Z I + + ·			- 1
Addressing Mode	Assembly	Code	Bytes	Сус	les	
implied	PLA	68	1	4	r	n

m Subtract non-bus cycles when at 40MHz.

PLP

This instruction replaces the contents of the Processor Flags with the top value from the stack, and increments the value of the Stack Pointer by 1.

NOTE: This instruction does NOT replace the Extended Stack Disable Flag (E Flag), or the Software Interrupt Flag (B Flag)

PLP : Pull Processor	Flags from th	e Stack						4	510
$A \leftarrow STACK, SP \leftarrow S$	P + 1								
			N	Z	I	С	D	٧	E
			+	+	+	+	+	+	•
Addressing Mode	Assembly	Code	В	yte	s	C	ycl	es	
implied	PLP	28		1			4		m

 \overline{m} Subtract non-bus cycles when at 40MHz.

PLX

This instruction replaces the contents of the X Register with the top value from the stack, and increments the value of the Stack Pointer by 1.

PLX : Pull X Registe $X \leftarrow STACK$, $SP \leftarrow S$		ck			4510
	·		N Z I + + ·		
Addressing Mode	Assembly	Code	Bytes	_	
implied	PLX	FA	1	4	m

m Subtract non-bus cycles when at 40MHz.

PLY

This instruction replaces the contents of the Y Register with the top value from the stack, and increments the value of the Stack Pointer by 1.

PLY : Pull Y Register $Y \leftarrow STACK$, $SP \leftarrow STACK$		c k			4510
·			N Z I + + ·		
Addressing Mode	Assembly	Code	Bytes	Cycl	es
implied	PLY	7A	1	4	m

m Subtract non-bus cycles when at 40MHz.

PLZ

This instruction replaces the contents of the Z Register with the top value from the stack, and increments the value of the Stack Pointer by 1.

PLZ : Pull Z Register $Z \leftarrow STACK$, $SP \leftarrow STACK$		k			4510
,			N Z I + + ·		
Addressing Mode	Assembly	Code	Bytes	Cycle	es
implied	PLZ	FB	1	4	m

 $\it m$ Subtract non-bus cycles when at 40MHz.

RMBO

This instruction clears bit zero of the indicated address. No flags are modified, regardless of the result.

RMB0 : Reset Bit 0 $M(0) \leftarrow 0$	in Base Page		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	RMB0 \$nn	07	2 4 br

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

RMB₁

This instruction clears bit 1 of the indicated address. No flags are modified, regardless of the result.

RMB1 : Reset Bit 1 M(1) ← 0	in Base Page		4510
,,,(,),			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	RMB1 \$nn	17	2 4 ^{br}

b Add one cycle if branch is taken.

Add one more cycle if branch taken crosses a page boundary.

RMB2

This instruction clears bit 2 of the indicated address. No flags are modified, regardless of the result.

RMB2 : Reset Bit 2 $M(2) \leftarrow 0$	in Base Page		4510
,,,(<u>z</u>) ,			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	RMB2 \$nn	27	2 4 ^r

r Add one cycle if clock speed is at 40 MHz.

r Add one cycle if clock speed is at 40 MHz.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

RMB3

This instruction clears bit 3 of the indicated address. No flags are modified, regardless of the result.

RMB3 : Reset Bit 3 $M(3) \leftarrow 0$	in Base Page				4510
			N Z I		
Addressing Mode	Assembly	Code	Bytes	Cycle	es
base-page	RMB3 \$nn	37	2	4	r

r Add one cycle if clock speed is at 40 MHz.

RMB4

This instruction clears bit 4 of the indicated address. No flags are modified, regardless of the result.

RMB4: Reset Bit 4	in Base Page		4510
M(4) ← 0			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	RMB4 \$nn	47	2 4 ^r

r Add one cycle if clock speed is at 40 MHz.

RMB5

This instruction clears bit 5 of the indicated address. No flags are modified, regardless of the result.

RMB5 : Reset Bit 5 M(5) ← 0	in Base Page		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	RMB5 \$nn	57	2 4 ^r

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

RMB6

This instruction clears bit 6 of the indicated address. No flags are modified, regardless of the result.

RMB6 : Reset Bit 6 $M(6) \leftarrow 0$	in Base Page		4510
/vi(0) \ 0			NZICDVE
Addressing Mode	Accombly.	Code	Bytes Cycles
base-page	RMB6 \$nn	67	2 5 ^r

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

RMB7

This instruction clears bit 7 of the indicated address. No flags are modified, regardless of the result.

RMB7 : Reset Bit 7 M(7) ← 0	in Base Page		4510
/M(/) ← 0			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	RMB7 \$nn	77	2 4 ^r

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

ROL

This instruction shifts either the Accumulator or contents of the provided memory location one bit left. Bit 0 will be set to the current value of the Carry Flag, and the bit 7 will be shifted out into the Carry Flag

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 7 of the value was set, prior to being shifted.

ROL : Rotate Left M $M \leftarrow M \ll 1$, $C \leftarrow M($		mulator			4510
,	,, , ,		NZI	CDV	/ E
			+ + ·	+ ·	
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page	ROL \$nn	26	2	4	r
accumulator	ROL A	2A	1	1	s
absolute	ROL \$nnnn	2E	3	5	r
base-page,X	ROL \$nn,X	36	2	5	pr
absolute,X	ROL \$nnnn,X	3E	3	5	pr

p Add one cycle if indexing crosses a page boundary.

ROR

This instruction shifts either the Accumulator or contents of the provided memory location one bit right. Bit 7 will be set to the current value of the Carry Flag, and the bit 0 will be shifted out into the Carry Flag

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 7 of the value was set, prior to being shifted.

ROR : Rotate Right Memory or Accumulator $M \leftarrow M \gg 1$, $C \leftarrow M(0)$, $M(7) \leftarrow C$				4510	
	- ,, (. ,		NZI	-	
			+ + ·	+ ·	
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page	ROR \$nn	66	2	5	r
accumulator	ROR A	6A	1	1	s
absolute	ROR \$nnnn	6E	3	6	r
base-page,X	ROR \$nn,X	76	2	5	dmpr
absolute,X	ROR \$nnnn,X	7E	3	5	dmpr

d Subtract one cycle when CPU is at 3.5MHz.

r Add one cycle if clock speed is at 40 MHz.

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

 $[\]ensuremath{m}$ Subtract non-bus cycles when at 40MHz.

 $[\]ensuremath{p}\xspace$ Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

 $[\]emph{s}$ Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

ROW

This instruction rotates the contents of the indicated memory word one bit left. Bit 0 of the low byte will be set to the current value of the Carry Flag, and the bit 7 of the high byte will be shifted out into the Carry Flag

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 7 of the upper byte was set, prior to being shifted.

	ROW : Rotate Word Left $M2:M1 \leftarrow M2:M1 \ll 1$, $C \leftarrow M2(7)$, $M1(0) \leftarrow C$			•	4510
	.,	(0)	N Z I (_
Addressing Mode	Assembly	Code	Bytes (Cycles	5
absolute	ROW \$nnnn	EB	3	5	dmr

d Subtract one cycle when CPU is at 3.5MHz.

RT

This instruction pops the processor flags from the stack, and then pops the Program Counter (PC) register from the stack, allowing an interrupted program to resume.

- The 6502 Processor Flags are restored from the stack.
- Neither the B (Software Interrupt) nor E (Extended Stack) flags are set by this instruction.

 $\it m$ Subtract non-bus cycles when at 40MHz.

m Subtract non-bus cycles when at 40MHz.

r Add one cycle if clock speed is at 40 MHz.

RTS

This instruction adds an optional argument to the Stack Pointer (SP) Register, and then pops the Program Counter (PC) register from the stack, allowing a routine to return to its caller.

	RTS : Return From Subroutine PC \leftarrow STACK or PC \leftarrow STACK + M, SP \leftarrow SP $-$ 2				4510
	ŕ		N Z I	C D \	_
Addressing Mode	Assembly	Code	Bytes	Cycle	s
implied	RTS	60	1	6	m
immediate 8bit	RTS #\$nn	62	2	4	

m Subtract non-bus cycles when at 40MHz.

SBC

This instruction performs A-M-1+C, and sets the processor flags accordingly. The result is stored in the Accumulator Register.

NOTE: If the D flag is set, then the addition is performed using binary Coded Decimal.

- The N flag will be set if the result of A-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of A-M is zero or positive, i.e., if A is not less than M. otherwise it will be cleared.
- The V flag will be set if the result has a different sign to both of the arguments, otherwise it will be cleared. If the flag is set, this indicates that a signed overflow has occurred.
- The Z flag will be set if the result of $\mathsf{A}-\mathsf{M}$ is zero, otherwise it will be cleared.

SBC : Subtract With Carry $A \leftarrow -M - 1 + C$					4510
/(NZI	CDV	/ E
Addressing Mode	Assembly	Code	Bytes	Cycle	s ·
(indirect,X)	SBC (\$nn,X)	E1	2	3	mp
base-page	SBC \$nn	E5	2	3	r
immediate 8bit	SBC #\$nn	E9	2	2	
absolute	SBC \$nnnn	ED	3	4	r
(indirect),Y	SBC (\$nn),Y	F1	2	3	pr
(indirect),Z	SBC (\$nn),Z	F2	2	5	pr
base-page,X	SBC \$nn,X	F5	2	3	pr
absolute,Y	SBC \$nnnn,Y	F9	3	4	pr
absolute,X	SBC \$nnnn,X	FD	3	4	pr

m Subtract non-bus cycles when at 40MHz.

SEC

This instruction sets the Carry Flag.

Side effects

• The C flag is set.

SEC : Set Carry Fla	9		4510
C ← 1			NZICDVE
			+
Addressing Mode	Assembly	Code	Bytes Cycles
implied	SEC	38	1 1 s

 $[\]it s$ Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

SED

This instruction sets the Decimal Flag. Binary arithmetic will now use Binary-Coded Decimal (BCD) mode.

NOTE: The C64's interrupt handler does not clear the Decimal Flag, which makes it dangerous to set the Decimal Flag without first setting the Interrupt Disable Flag.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

• The D flag is set.

SED : Set Decimal I $D \leftarrow 1$	-lag		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	SED	F8	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

SEE

This instruction sets the Extended Stack Disable Flag. This causes the stack to operate as on the 6502, i.e., limited to a single page of memory. The page of memory in which the stack is located can still be modified by setting the Stack Pointer High (SPH) Register.

Side effects

• The E flag is set.

SEE : Set Extended Stack Disable Flag $F \leftarrow 1$ 45				4510	
			N Z I		
Addressing Mode	Assembly	Code	Bytes	Cycle	es
implied	SEE	03	1	1	s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

SEI

This instruction sets the Interrupt Disable Flag. Normal (IRQ) interrupts will no longer be able to occur. Non-Maskable Interrupts (NMI) will continue to occur, as their name suggests.

Side effects

• The I flag is set.

SEI : Set Interrupt [Disable Flag		4510
1 ← 1			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
implied	SEI	78	1 1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

SMBO

This instruction sets bit zero of the indicated address. No flags are modified, regardless of the result.

SMB0 : Set Bit 0 in Base Page $M(0) \leftarrow 1$			4510
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB0 \$nn	87	2 4 ^r

r Add one cycle if clock speed is at 40 MHz.

SMB₁

This instruction sets bit 1 of the indicated address. No flags are modified, regardless of the result.

SMB1 : Set Bit 1 in $M(1) \leftarrow 1$	Base Page		4510
(.)			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB1 \$nn	97	2 4 ^r

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

SMB2

This instruction sets bit 2 of the indicated address. No flags are modified, regardless of the result.

SMB2 : Set Bit 2 in $M(2) \leftarrow 1$	Base Page		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB2 \$nn	A7	2 4 ^r

r Add one cycle if clock speed is at 40 MHz.

SMB3

This instruction sets bit 3 of the indicated address. No flags are modified, regardless of the result.

SMB3 : Set Bit 3 in Base Page $M(3) \leftarrow 1$			4510
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB3 \$nn	В7	2 4 ^r

r Add one cycle if clock speed is at 40 MHz.

SMB4

This instruction sets bit 4 of the indicated address. No flags are modified, regardless of the result.

SMB4 : Set Bit 4 in $M(4) \leftarrow 1$	Base Page		4510
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB4 \$nn	C7	2 4 ^r

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

SMB5

This instruction sets bit 5 of the indicated address. No flags are modified, regardless of the result.

SMB5 : Set Bit 5 in $M(5) \leftarrow 1$	Base Page		4510
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB5 \$nn	D7	2 4 ^r

r Add one cycle if clock speed is at 40 MHz.

SMB₆

This instruction sets bit 6 of the indicated address. No flags are modified, regardless of the result.

SMB6 : Set Bit 6 in M(6) ← 1	Base Page		4510
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB6 \$nn	E7	2 4 ^r

r Add one cycle if clock speed is at 40 MHz.

SMB7

This instruction sets bit 7 of the indicated address. No flags are modified, regardless of the result.

SMB7 : Set Bit 7 in $M(7) \leftarrow 1$	Base Page		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	SMB7 \$nn	F7	2 4 ^r

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

STA

This instruction stores the contents of the Accumulator Register into the indicated location.

STA : Store Accum M ← A	ulator				4510
$M \leftarrow A$			NZI	C D	V E
Addressing Mode	Assembly	Code	Bytes	Cycle	 s
(indirect,X)	STA (\$nn,X)	81	2	5	p
(immediate,SP),Y	STA (\$nn,SP),Y	82	2	6	p
base-page	STA \$nn	85	2	3	
absolute	STA \$nnnn	8D	3	4	
(indirect),Y	STA (\$nn),Y	91	2	5	p
(indirect),Z	STA (\$nn),Z	92	2	5	p
base-page,X	STA \$nn,X	95	2	3	p
absolute,Y	STA \$nnnn,Y	99	3	4	p
absolute,X	STA \$nnnn,X	9D	3	4	p

p Add one cycle if indexing crosses a page boundary.

STX

This instruction stores the contents of the X Register into the indicated location.

STX : Store X Regis $M \leftarrow X$	ster			4510
, m () A			NZIC	
Addressing Mode	Assembly	Code	Bytes Cy	_
base-page	STX \$nn	86	2	3
absolute	STX \$nnnn	8E	3	4
base-page,Y	STX \$nn,Y	96	2	3 ^p
absolute,Y	STX \$nnnn,Y		3	

p Add one cycle if indexing crosses a page boundary.

STY

This instruction stores the contents of the Y Register into the indicated location.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ter				4510
			N Z I	C D	V E
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page	STY \$nn	84	2	3	
absolute,X	STY \$nnnn,X	8B	3	4	p
absolute	STY \$nnnn	8C	3	4	
base-page,X	STY \$nn,X	94	2	3	p

p Add one cycle if indexing crosses a page boundary.

STZ

This instruction stores the contents of the Z Register into the indicated location.

STZ : Store Z Regis $M \leftarrow Z$	ter			4510
$M \leftarrow Z$			N Z I C	
Addressing Mode	Assembly	Code	Bytes Cy	/cles
base-page	STZ \$nn	64	2	3
base-page,X	STZ \$nn,X	74	2	3
absolute	STZ \$nnnn	9C	3	4
absolute,X	STZ \$nnnn,X	9F	3	1 p

 $[\]overline{p}$ Add one cycle if indexing crosses a page boundary.

TAB

This instruction sets the Base Page register to the contents of the Accumulator Register. This allows the relocation of the 6502's Zero-Page into any page of memory.

TAB : Transfer Accumulator into Base Page Register $B \leftarrow A$					4510
			N Z I		
Addressing Mode	Assembly	Code	Bytes	Cycl	es
implied	TAB	5B	1	1	s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TAX

This instruction loads the X Register with the contents of the Accumulator Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TAX : Transfer Accu X ← A	nsfer Accumulator Register into the X Register			
			NZICD	
Addressing Mode		Code	Bytes Cyc	les
implied	TAX	AA	1 1	s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TAY

This instruction loads the Y Register with the contents of the Accumulator Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TAY: Transfer Accu	ımulator Regis	ster into the Y	Register			4	510
$Y \leftarrow A$							
			ΝΖΙ	С	D	V	E
			+ + ·	•	•	•	•
Addressing Mode	Assembly	Code	Bytes	Cy	/cl	es	
implied	TAY	A8	1		1		s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TAZ

This instruction loads the Z Register with the contents of the $\mbox{\sc Accumulator}$ Register.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TAZ : Transfer Accu $Z \leftarrow A$	ccumulator Register into the Z Register				4510
			ΝΖΙ		
			+ + ·		
Addressing Mode	Assembly	Code	Bytes	Cycl	es
implied	TAZ	4B	1	1	s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TBA

This instruction loads the Accumulator Register with the contents of the Base Page Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TBA : Transfer Base $A \leftarrow B$	Page Registe	er into the Accı	umulator	4510
				CDVE
			+ + ·	
Addressing Mode	Assembly	Code	Bytes	Cycles
implied	TBA	7B	1	1 8

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TRB

This instruction performs a binary AND of the negation of the Accumulator Register and the indicated memory location, storing the result there. That is, any bits set in the Accumulator Register will be reset in the indicated memory location.

It also performs a test for any bits in common between the accumulator and indicated memory location. This can be used to construct simple shared-memory multi-processor systems, by providing an atomic means of setting a semaphore or acquiring a lock.

The Z flag will be set if the binary AND of the Accumulator Register and contents
of the indicated memory location prior are zero, prior to the execution of the
instruction.

TRB: Test and Rese			4510
$M \leftarrow M AND (NOT A)$)		NZICDVE
			. +
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	TRB \$nn	14	2 5 ^r
absolute	TRB \$nnnn	1C	3 4 ^r

r Add one cycle if clock speed is at 40 MHz.

TSB

This instruction performs a binary OR of the Accumulator Register and the indicated memory location, storing the result there. That is, any bits set in the Accumulator Register will be set in the indicated memory location.

It also performs a test for any bits in common between the accumulator and indicated memory location. This can be used to construct simple shared-memory multi-processor systems, by providing an atomic means of setting a semaphore or acquiring a lock.

Side effects

The Z flag will be set if the binary AND of the Accumulator Register and contents
of the indicated memory location prior are zero, prior to the execution of the
instruction.

TSB: Test and Set I M ← M OR A	Bit		4510
			NZICDVE
Addressing Mode	Assembly	Code	Bytes Cycles
base-page	TSB \$nn	04	2 3 ^r
absolute	TSB \$nnnn	0C	3 5 ^r

r Add one cycle if clock speed is at 40 MHz.

TSX

This instruction loads the X Register with the contents of the Stack Pointer Low (SPL) Register.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TSX : Transfer Stac $X \leftarrow SPL$	k Pointer Lo	Low Register into the X Register				
			NZICD			
			+ + · · ·			
Addressing Mode	Assembly	Code	Bytes Cycl	es		
implied	TSX	BA	1 1	s		

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TSY

This instruction loads the Y Register with the contents of the Stack Pointer High (SPH) Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TSY: Transfer Stac	k Pointer High	Register into	the Y Register	4510
Y ← SPH			NZICD	VE
			+ + · · ·	1
Addressing Mode	Assembly	Code	Bytes Cyc	les
implied	TSY	0B	1 1	s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TXA

This instruction loads the Accumulator Register with the contents of the X Register.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TXA : Transfer X Re $A \leftarrow X$	gister into the Accumulator Register			
				CDVE
			+ + ·	
Addressing Mode	Assembly	Code	Bytes	Cycles
implied	TXA	8A	1	1 s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TXS

This instruction sets the low byte of the Stack Pointer (SPL) register to the contents of the X Register.

TXS : Transfer X Re $SPL \leftarrow X$	gister into S	tack Pointer Low Re	4510		
			N Z I		
Addressing Mode	Assembly	Code	Bytes	Cycl	es
implied	TXS	9A	1	1	s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TYA

This instruction loads the Accumulator Register with the contents of the Y Register.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TYA : Transfer Y Register into the Accumulator Register $A \leftarrow Y$						4	510	
A ← 1			N :	ΖI	С	D	٧	E
			+	+ ·				•
Addressing Mode	Assembly	Code	Ву	tes	C	ycl	es	
implied	TYA	98		1		1		s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TYS

This instruction sets the high byte of the Stack Pointer (SPH) register to the contents of the Y Register. This allows changing the memory page where the stack is located (if the Extended Stack Disable Flag (E) is set), or else allows setting the current Stack Pointer to any page in memory, if the Extended Stack Disable Flag (E) is clear.

TYS: Transfer Y Re SPH \leftarrow Y	Y Register into Stack Pointer High Register					4	510
			N Z I	_	_	-	_
Addressing Mode	Assembly	Code	Bytes	Су	/cle	es	
implied	TYS	2B	1		1	8	S

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

TZA

This instruction loads the Accumulator Register with the contents of the Z Register.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

TZA : Transfer Z Register into the Accumulator Register $A \leftarrow 7$					4	510
A ~ Z			ΝΖΙ		-	
			+ + ·		٠	
Addressing Mode	Assembly	Code	Bytes	Cycl	es	
implied	TZA	6B	1	1		s

s Instruction requires 2 cycles when CPU is run at 1MHz or 2MHz.

45GS02 COMPOUND INSTRUCTIONS

As the 4510 has no unallocated opcodes, the 45GS02 uses compound instructions to implement its extension. These compound instructions consist of one or more single byte instructions placed immediately before a conventional instruction. These prefixes instruct the 45GS02 to treat the following instruction differently, as described in Chapter/Appendix K on page K-3.

You can find them highlighted in the 4510 Opcode Table (see Chapter/Appendix L on page L-60)

ADC

This instruction adds the argument and the Carry Flag to the contents of the Accumulator Register. If the D flag is set, then the addition is performed using Binary Coded Decimal

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The V flag will be set if the result has a different sign to both of the arguments, otherwise it will be cleared. If the flag is set, this indicates that a signed overflow has occurred.
- The C flag will be set if the unsigned result is >255, or >99 if the D flag is set.

i Add one cycle if clock speed is at 40 MHz.

ADCO

This instruction adds the argument and the Carry Flag to the contents of the 32-bit Q Pseudo Register.

NOTE: the indicated memory location is treated as the first byte of a 32-bit little-endian value.

NOTE: If the D flag is set, the operation is undefined and subject to change.

Side effects

• The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The V flag will be set if the result has a different sign to both of the arguments, otherwise it will be cleared. If the flag is set, this indicates that a signed overflow has occurred.
- The C flag will be set if the unsigned result is $\geq 2^{32}$.

ADCQ : Add with carry Quad $Q \leftarrow Q + M + C$					5GS02
			N Z I		
			+ + ·	+ · -	+ •
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page quad	ADCQ \$nn	42 42 65	4	8	r
absolute quad	ADCQ \$nnnn	42 42 6D	5	9	r
(indirect quad)	ADCQ (\$nn)	42 42 72	4	10	ipr
[indirect quad]	ADCQ [\$nn]	42 42 EA 72	5	13	ipr

i Add one cycle if clock speed is at 40 MHz.

AND

This instruction performs a binary AND operation of the argument with the accumulator, and stores the result in the accumulator. Only bits that were already set in the accumulator, and that are set in the argument will be set in the accumulator on completion.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

AND : Binary AND A ← A AND M			45GS02
$A \leftarrow A AND M$			NZICDVE
			+ + · · · · ·
Addressing Mode	Assembly	Code	Bytes Cycles
[indirect],Z	AND [\$nn],Z	EA 32	3 7 ^{ipr}

i Add one cycle if clock speed is at 40 MHz.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

 $p\,\mathrm{Add}$ one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

ANDQ

This instruction performs a binary AND operation of the argument with the Q pseudo register, and stores the result in the accumulator. Only bits that were already set in the Q pseudo register, and that are set in the argument will be set in the Q pseudo register on completion.

NOTE: the indicated memory location is treated as the first byte of a 32-bit littleendian value.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

ANDQ : Binary AND ○ ← ○ AND M	Quad			4	5GS02
Q ← Q AND M			N Z I		. –
Addressing Mode	Assembly	Code		Cycles	
base-page quad	ANDQ \$nn	42 42 25	4	8	r
absolute quad	ANDQ \$nnnn	42 42 2D	5	9	r
(indirect quad)	ANDQ (\$nn)	42 42 32	4	10	ipr
[indirect quad]	ANDQ [\$nn]	42 42 EA 32	5	13	ipr

i Add one cycle if clock speed is at 40 MHz.

ASLQ

This instruction shifts either the Q pseudo-register or contents of the provided memory location and following three one bit left, treating them as holding a little-endian 32-bit value. Bit 0 will be set to zero, and the bit 31 will be shifted out into the Carry Flag

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 31 of the value was set, prior to being shifted, otherwise it will be cleared.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

ASLQ : Arithmetic $Q \leftarrow Q << 1 \ or \ M \leftarrow$		4	5GS02		
			NZI	CDV	/ E
			+ + ·	+ · ·	•
Addressing Mode	Assembly	Code	Bytes	Cycles	5
base-page quad	ASLQ \$nn	42 42 06	4	12	dmr
Q Pseudo Register	ASLQ Q	42 42 0A	3	3	
absolute quad	ASLQ \$nnnn	42 42 0E	5	13	dmr
base-page quad,X	ASLQ \$nn,X	42 42 16	4	12	dmpr
absolute quad,X	ASLQ \$nnnn,X	42 42 1E	5	13	dmpr

d Subtract one cycle when CPU is at 3.5MHz.

m Subtract non-bus cycles when at 40MHz.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

ASRQ

This instruction shifts either the Q pseudo-register or contents of the provided memory location and following three one bit right, treating them as holding a little-endian 32-bit value. Bit 31 is considered to be a sign bit, and is preserved. The content of bit 0 will be shifted out into the Carry Flag

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 0 of the value was set, prior to being shifted, otherwise
 it will be cleared.

ASRQ : Arithmetic Shift Right Quad				4	5GS02
$Q \leftarrow Q >> 1 \ or \ M \leftarrow$	-M>>1				
			ΝΖΙ	CDV	/ E
			+ + ·	+ · ·	•
Addressing Mode	Assembly	Code	Bytes	Cycles	\$
	Assembly ASRQ Q	Code 42 42 43	Bytes 3	Cycles 3	5
					dmr $dmpr$

d Subtract one cycle when CPU is at 3.5MHz.

 $\it m$ Subtract non-bus cycles when at 40MHz.

 $p\,\mathrm{Add}$ one cycle if indexing crosses a page boundary.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

BITQ

This instruction is used to test the bits stored in a memory location and following three, treating them as holding a little-endian 32-bit value. Bits 30 and 31 of the memory location's contents are directly copied into the Overflow Flag and Negative Flag. The Zero Flag is set or cleared based on the result of performing the binary AND of the Q Register and the contents of the indicated memory location.

Side effects

- The N flag will be set if the bit 31 of the memory location is set, otherwise it will be cleared.
- The V flag will be set if the bit 30 of the memory location is set, otherwise it will be cleared.
- The Z flag will be set if the result of Q AND M is zero, otherwise it will be cleared.

BITQ : Perform Bit 7	BITQ : Perform Bit Test Quad				15GS02	
$N \leftarrow M(31), V \leftarrow M(30), Z \leftarrow Q \text{ AND } M$						
			ΝΖΙ	CD	V E	
			+ + ·		+ •	
Addressing Mode	Assembly	Code	Bytes	Cycle	s	
base-page quad	BITQ \$nn	42 42 24	4	8	r	
absolute quad	BITQ \$nnnn	42 42 2C	5	9	r	

r Add one cycle if clock speed is at 40 MHz.

CMP

This instruction performs A-M, and sets the processor flags accordingly, but does not modify the contents of the Accumulator Register.

- The N flag will be set if the result of A-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of A-M is zero or positive, i.e., if A is not less than M, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result of A M is zero, otherwise it will be cleared.

CMP : Compare Accumulator 4. $N,C,Z \leftarrow [A-M]$				45	GS02	
,,,,,,,			N Z I + + ·	-	-	_
Addressing Mode	Assembly	Code	Bytes	_		
[indirect],Z	CMP [\$nn],Z	EA D2	3	7		ipr

i Add one cycle if clock speed is at 40 MHz.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

CMPQ

This instruction performs Q-M, and sets the processor flags accordingly, but does not modify the contents of the Q Register.

NOTE: the indicated memory location is treated as the first byte of a 32-bit little-endian value.

Side effects

- The N flag will be set if the result of A-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of A-M is zero or positive, i.e., if A is not less than M, otherwise it will be cleared.
- ullet The Z flag will be set if the result of A M is zero, otherwise it will be cleared.

CMPQ : Compare Q Pseudo Register				4	45GS02
$N,C,Z \leftarrow [Q - M]$			N Z I + + ·		
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page quad	CMPQ \$nn	42 42 C5	4	8	r
absolute quad	CMPQ \$nnnn	42 42 CD	5	9	r
(indirect quad)	CMPQ (\$nn)	42 42 D2	4	10	ipr
[indirect quad]	CMPQ [\$nn]	42 42 EA D2	5	13	ipr

i Add one cycle if clock speed is at 40 MHz.

 $p\,\mathrm{Add}$ one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

DEQ

This instruction decrements the Q psuedo register or indicated memory location.

NOTE: the indicated memory location is treated as the first byte of a 32-bit littleendian value.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

DEQ : Decrement Q $Q \leftarrow Q - 1 \ or \ M \leftarrow$		4	5GS02		
				C D \	_
Addressing Mode	Assembly	Code	Bytes	Cycles	5
Q Pseudo Register	DEQ Q	42 42 3A	3	3	
base-page quad	DEQ \$nn	42 42 C6	4	12	dmr
absolute quad	DEQ \$nnnn	42 42 CE	5	13	dmr
base-page quad,X	DEQ \$nn,X	42 42 D6	4	12	dmpr
absolute quad,X	DEQ \$nnnn,X	42 42 DE	5	13	dmpr

d Subtract one cycle when CPU is at 3.5MHz.

EOR

This instruction performs a binary exclusive–OR operation of the argument with the accumulator, and stores the result in the accumulator. Only bits that were already set in the accumulator, or that are set in the argument will be set in the accumulator on completion, but not both.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result is zero, otherwise it will be cleared.

m Subtract non-bus cycles when at 40MHz.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

EOR : Binary Exclusive OR $A \leftarrow A \ XOR \ M$					45	GS02
$A \leftarrow A \land OR M$			ΝΖΙ	C D	V	E
			+ + ·			
Addressing Mode	Assembly	Code	Bytes	Cycl	es	
[indirect],Z	EOR [\$nn],Z	EA 52	3	7		ipr

i Add one cycle if clock speed is at 40 MHz.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

EORQ

This instruction performs a binary exclusive–OR operation of the argument with the Q pseudo register, and stores the result in the Q pseudo register. Only bits that were already set in the Q pseudo register, or that are set in the argument will be set in the accumulator on completion, but not bits that were set in both.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

EORQ : Binary Exclu	ısive OR Quad			4	5GS02
$Q \leftarrow Q XOR M$					
			NZI	CDV	' E
			+ + ·		•
Addressing Mode	Assembly	Code	Bytes	Cycles	5
base-page quad	EORQ \$nn	42 42 45	4	8	r
absolute quad	EORQ \$nnnn	42 42 4D	5	9	r
(indirect quad)	EORQ (\$nn)	42 42 52	4	10	ipr
[indirect quad]	EORQ [\$nn]	42 42 EA 52	5	13	ipr

i Add one cycle if clock speed is at 40 MHz.

INO

This instruction increments the Q pseudo register or indicated memory location.

Note that the indicated memory location is treated as the first byte of a 32-bit little-endian value.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

INQ : Increment Me $Q \leftarrow Q + 1 \text{ or } M \leftarrow R$		4	5GS02		
				CDV	_
			+ + ·		•
Addressing Mode	Assembly	Code	Bytes	Cycles	5
Q Pseudo Register	INQ Q	42 42 1A	3	3	
base-page quad	INQ \$nn	42 42 E6	4	13	dmr
absolute quad	INQ \$nnnn	42 42 EE	5	14	dmr
base-page quad,X	INQ \$nn,X	42 42 F6	4	13	dmpr
absolute quad,X	INQ \$nnnn,X	42 42 FE	5	14	dpr

d Subtract one cycle when CPU is at 3.5MHz.

LDA

This instruction loads the Accumulator Register with the indicated value, or with the contents of the indicated location.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

LDA : Load Accumu A ← M	45GS02		
			NZICDVE
			+ + · · · · ·
Addressing Mode	Assembly	Code	Bytes Cycles
[indirect],Z	LDA [\$nn],Z	EA B2	3 7 ^{ipr}

i Add one cycle if clock speed is at 40 MHz.

 $\ensuremath{p}\xspace$ Add one cycle if indexing crosses a page boundary.

 $\it r$ Add one cycle if clock speed is at 40 MHz.

 $[\]it m$ Subtract non-bus cycles when at 40MHz.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

LDQ

This instruction loads the Q pseudo register with the indicated value, or with the contents of the indicated location. As the Q register is an alias for A, X, Y and Z used together, this operation will set those four registers. A contains the least significant bits, X the next least significant, then Y, and Z contains the most significant bits.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

LDQ : Load Q Pseudo Register				4	5GS02
$Q \leftarrow M$					
			NZI		_
			+ + ·		•
Addressing Mode	Assembly	Code	Bytes	Cycle	s
base-page quad	LDQ \$nn	42 42 A5	4	8	r
absolute quad	LDQ \$nnnn	42 42 AD	5	9	r
(indirect quad),Z	LDQ (\$nn),Z	42 42 B2	4	10	ipr
[indirect quad],Z	LDQ [\$nn],Z	42 42 EA B2	5	13	ipr

i Add one cycle if clock speed is at 40 MHz.

LSRQ

This instruction shifts either the Q pseudo register or contents of the provided memory location one bit right. Bit 31 will be set to zero, and the bit 0 will be shifted out into the Carry Flag.

Note that the memory address is treated as the first address of a little-endian encoded 32-bit value.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 0 of the value was set, prior to being shifted, otherwise it will be cleared.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

LSRQ : Logical Shift $Q \leftarrow Q \gg 1$, $C \leftarrow A(0)$		4	5GS02		
,	•		NZI	CDV	/ E
			+ + ·	+ · ·	•
Addressing Mode	Assembly	Code	Bytes	Cycles	5
base-page quad	LSRQ \$nn	42 42 46	4	12	dmr
Q Pseudo Register	LSRQ Q	42 42 4A	3	3	
absolute quad	LSRQ \$nnnn	42 42 4E	5	13	dmr
base-page quad,X	LSRQ \$nn,X	42 42 56	4	12	dmpr
absolute quad,X	LSRQ \$nnnn,X	42 42 5E	5	13	dmpr

d Subtract one cycle when CPU is at 3.5MHz.

ORA

This instruction performs a binary OR operation of the argument with the accumulator, and stores the result in the accumulator. Only bits that were already set in the accumulator, or that are set in the argument will be set in the accumulator on completion, or both.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- $\bullet\,$ The Z flag will be set if the result is zero, otherwise it will be cleared.

ORA : Binary OR A ← A OR M			45GS02
AVACKM			NZICDVE
			+ + · · · · ·
Addressing Mode	Assembly	Code	Bytes Cycles
[indirect],Z	ORA [\$nn],Z	EA 12	3 7 ^{ipr}

i Add one cycle if clock speed is at 40 MHz.

 $[\]it m$ Subtract non-bus cycles when at 40MHz.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

ORQ

This instruction performs a binary QR operation of the argument with the Q pseudo register, and stores the result in the Q pseudo register. Only bits that were already set in the Q pseudo register, or that are set in the argument, or both, will be set in the Q pseudo register on completion.

Note that this operation treats the memory address as the first address of a 32-bit little-endian value. That is, the memory address and the three following will be used.

Side effects

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.

ORQ : Binary OR Quad				45	5GS02
$Q \leftarrow Q ORM$					
				CDV	_
			+ + ·		
Addressing Mode	Assembly	Code	Bytes	Cycles	
base-page quad	ORQ \$nn	42 42 05	4	8	r
absolute quad	ORQ \$nnnn	42 42 0D	5	9	r
(indirect quad)	ORQ (\$nn)	42 42 12	4	10	pr
[indirect quad]	ORQ [\$nn]	42 42 EA 12	5	13	pr

p Add one cycle if indexing crosses a page boundary.

RESQ

These extended opcodes are reserved, and their function is undefined and subject to change in future revisions of the 45GS02. They should therefore not be used in any program.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

RESQ: Reserved extended opcode	
--------------------------------	--

UNDFFINED

NZICDVE

45GS02

Addressing Mode	Assembly	Code	Bytes	Cycles	S
(indirect quad,X)	RESQ (\$nn,X)	42 42 01	4	10	ipr
(indirect quad),Y	RESQ (\$nn),Y	42 42 11	4	10	ipr
base-page quad,X	RESQ \$nn,X	42 42 15	4	8	pr
absolute quad,Y	RESQ \$nnnn,Y	42 42 19	5	9	pr
absolute quad,X	RESQ \$nnnn,X	42 42 1D	5	9	pr
(indirect quad,X)	RESQ (\$nn,X)	42 42 21	4	10	ir
(indirect quad),Y	RESQ (\$nn),Ý	42 42 31	4	10	ipr
base-page quad,X	RESQ \$nn,X	42 42 34	4	8	pr
base-page quad,X	RESQ \$nn,X	42 42 35	4	8	pr
absolute quad,Y	RESQ \$nnnn,Y	42 42 39	5	10	pr
absolute quad,X	RESQ \$nnnn,X	42 42 3C	5	9	pr
absolute quad,X	RESQ \$nnnn,X	42 42 3D	5	10	pr
(indirect quad,X)	RESQ (\$nn,X)	42 42 41	4	10	ipr
(indirect quad),Y	RESQ (\$nn),Ý	42 42 51	4	10	ipr
base-page quad,X	RESQ \$nn,X	42 42 55	4	8	pr
absolute quad,Y	RESQ \$nnnn,Y	42 42 59	5	9	pr
absolute quad,X	RESQ \$nnnn,X	42 42 5D	5	9	pr
(indirect quad,X)	RESQ (\$nn,X)	42 42 61	4	10	ir
(indirect quad),Y	RESQ (\$nn),Ý	42 42 71	4	10	ipr
base-page quad,X	RESQ \$nn,X	42 42 75	4	8	pr
absolute quad,Y	RESQ \$nnnn,Y	42 42 79	5	10	pr
absolute quad,X	RESQ \$nnnn,X	42 42 7D	5	10	pr

i Add one cycle if clock speed is at 40 MHz.

ROLQ

This instruction shifts either the Q pseudo register or contents of the provided memory location one bit left. Bit 0 will be set to the current value of the Carry Flag, and the bit 31 will be shifted out into the Carry Flag.

NOTE: The memory address is treated as the first address of a little-endian encoded 32-bit value.

p Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 31 of the value was set, prior to being shifted, otherwise it will be cleared.

ROLQ : Rotate Left Quad $M \leftarrow M \ll 1, C \leftarrow M(31), M(0) \leftarrow C$				4	5GS02
				C D V	
Addressing Mode	Assembly	Code	Bytes	Cycles	5
base-page quad	ROLQ \$nn	42 42 26	4	12	dmr
Q Pseudo Register	ROLQ Q	42 42 2A	3	3	
absolute quad	ROLQ \$nnnn	42 42 2E	5	13	dmr
base-page quad,X	ROLQ \$nn,X	42 42 36	4	12	dmpr
absolute quad,X	ROLQ \$nnnn,X	42 42 3E	5	13	dmpr

d Subtract one cycle when CPU is at 3.5MHz.

RORO

This instruction shifts either the Q pseudo register or contents of the provided memory location one bit right. Bit 31 will be set to the current value of the Carry Flag, and the bit 0 will be shifted out into the Carry Flag

Note that the address is treated as the first address of a little-endian 32-bit value.

- The N flag will be set if the result is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The Z flag will be set if the result is zero, otherwise it will be cleared.
- The C flag will be set if bit 31 of the value was set, prior to being shifted, otherwise it will be cleared.

m Subtract non-bus cycles when at 40MHz.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

RORQ : Rotate Righ $M \leftarrow M \gg 1$, $C \leftarrow M($		4	5GS02		
,	, , ,		NZI		_
			+ + ·	+ · ·	•
Addressing Mode	Assembly	Code	Bytes	Cycles	5
base-page quad	RORQ \$nn	42 42 66	4	12	dmr
Q Pseudo Register	RORQ Q	42 42 6A	3	3	
absolute quad	RORQ \$nnnn	42 42 6E	5	13	dmr
base-page quad,X	RORQ \$nn,X	42 42 76	4	12	dmpr
absolute quad,X	RORQ \$nnnn,X	42 42 7E	5	13	dmpr

 $\it d$ Subtract one cycle when CPU is at 3.5MHz.

 $\it m$ Subtract non-bus cycles when at 40MHz.

p Add one cycle if indexing crosses a page boundary.

r Add one cycle if clock speed is at 40 MHz.

RSVQ

These extended opcodes are reserved, and their function is undefined and subject to change in future revisions of the 45GS02. They should therefore not be used in any program.

RSVQ: Reserved extended opcode 45GS02 **UNDFFINED** NZICDVE Code **Addressing Mode** Assembly **Bytes Cycles** RSVQ (\$nn,X) 42 42 81 (indirect quad,X) 4 10 RSVQ (\$nn,SP),Y ip(indirect quad,SP),Y 42 42 82 4 10 (indirect quad),Y RSVQ (\$nn),Y 42 42 91 4 10 ipbase-page quad,X RSVQ \$nn.X 42 42 95 4 8 pabsolute quad,Y RSVO \$nnnn.Y 42 42 99 5 9 pabsolute quad,X RSVQ \$nnnn.X 42 42 9D 5 9 p(indirect auad,X) RSVQ (\$nn,X) 42 42 A1 4 10 ipr(indirect quad,X) RSVQ (\$nn,X) 42 42 C1 4 10 ipr(indirect quad),Y RSVQ (\$nn),Y 42 42 D1 4 10 base-page quad,X RSVQ \$nn,X 42 42 D5 4 8 absolute auad,Y RSVQ \$nnnn,Y 5 9 pr42 42 D9 5 RSVQ \$nnnn.X 9 prabsolute auad,X 42 42 DD (indirect quad,X) RSVQ (\$nn,X) 42 42 E1 4 10 ipripr(indirect quad),Y RSVQ (\$nn),Y 42 42 F1 4 10 base-page quad,X RSVQ \$nn.X 42 42 F5 4 8 prabsolute quad,Y RSVQ \$nnnn.Y 42 42 F9 5 8 prprabsolute quad,X RSVQ \$nnnn,X 42 42 FD 5

SBC

This instruction performs A-M-1+C, and sets the processor flags accordingly. The result is stored in the Accumulator Register.

 ${\tt NOTE: If the \ D \ flag \ is \ set, \ then \ the \ addition \ is \ performed \ using \ binary \ Coded \ Decimal.}$

- The N flag will be set if the result of A-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of A-M is zero or positive, i.e., if A is not less than M, otherwise it will be cleared.
- The V flag will be set if the result has a different sign to both of the arguments, otherwise it will be cleared. If the flag is set, this indicates that a signed overflow has occurred.

i Add one cycle if clock speed is at 40 MHz.

 $[\]ensuremath{p}$ Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

• The Z flag will be set if the result of A-M is zero, otherwise it will be cleared.

SBC : Subtract With Carry A ← − M − 1 + C			45GS02
			N Z I C D V E
Addressing Mode	Assembly	Code	Bytes Cycles
[indirect],Z	SBC [\$nn],Z	EA F2	3 0

SBCQ

This instruction performs Q-M-1+C, and sets the processor flags accordingly. The result is stored in the Q pseudo register.

NOTE: the indicated memory location is treated as the first byte of a 32-bit little-endian value.

NOTE: If the D flag is set, the operation is undefined and subject to change.

- The N flag will be set if the result of A-M is negative, i.e. has it's most significant bit set, otherwise it will be cleared.
- The C flag will be set if the result of A-M is zero or positive, i.e., if A is not less than M, otherwise it will be cleared.
- The V flag will be set if the result has a different sign to both of the arguments, otherwise it will be cleared. If the flag is set, this indicates that a signed overflow has occurred.
- ullet The Z flag will be set if the result of A M is zero, otherwise it will be cleared.

SBCQ : Subtract W $Q \leftarrow Q - M - 1 + Q$		4	5GS02		
·			N Z I	C D V	_
Addressing Mode	Assembly	Code	Bytes	Cycles	5
base-page quad	SBCQ \$nn	42 42 E5	4	8	r
absolute quad	SBCQ \$nnnn	42 42 ED	5	9	r
(indirect quad)	SBCQ (\$nn)	42 42 F2	4	10	ipr
[indirect quad]	SBCQ [\$nn]	42 42 EA F2	5	13	ipr

 $[\]it i$ Add one cycle if clock speed is at 40 MHz.

 $[\]ensuremath{p}\xspace$ Add one cycle if indexing crosses a page boundary.

 $[\]it r$ Add one cycle if clock speed is at 40 MHz.

STA

This instruction stores the contents of the Accumulator Register into the indicated location.

STA : Store Accumulator $M \leftarrow A$					45G	S02
			N Z I			
Addressing Mode	Assembly	Code	Bytes	Cycle	es	
[indirect],Z	STA [\$nn],Z	EA 92	3	8	ip	

i Add one cycle if clock speed is at 40 MHz.

STQ

This instruction stores the contents of the Q pseudo register into the indicated location.

As Q is composed of A, X, Y and Z, this means that these four registers will be written to the indicated memory location through to the indicated memory location plus 3, respectively.

STQ : Store Q $M \leftarrow A, M+1 \leftarrow X, M+2 \leftarrow Y, M+3 \leftarrow Z$				4	5GS02
	,,,,,,	· -		CDV	_
Addressing Mode	Assembly	Code	Bytes	Cycles	
base-page quad	STQ \$nn	42 42 85	4	8	
absolute quad	STQ \$nnnn	42 42 8D	5	9	
(indirect quad)	STQ (\$nn)	42 42 92	4	10	ip
[indirect quad]	STQ [\$nn]	42 42 EA 92	5	13	ip

i Add one cycle if clock speed is at 40 MHz.

p Add one cycle if indexing crosses a page boundary.

 $p\,\mathrm{Add}$ one cycle if indexing crosses a page boundary.