	Lab 4 log-Antilog-Amplifier
	Lab 4 Log - Antilog - Amplifier
1.	The values were plotted wing Python on Jupyten Notebook.
2.	For Diode D1:
	Saturation Current (Is) = 4.097e ⁻⁰⁹ A
	3+31 5 x 10 ft
	For Diode D2:
	Saturation Current (Is) = 4.994e^09A
	(101) a) - 19-7) a) No = 12-V
3,	ITSPICE model file created
	V4 = -91 (11) +02
4.	
	$I_{D} = I_{S} \left(e^{\sqrt{D}/nV_{T}} - I \right) \approx 43.44.09 = 10$
	1 000 1184 1820 25 00 = (9.17) N V N = 10
	I = I e
	$V_{2} = hV_{T} \left(ln \left(I_{2} \right) - ln \left(I_{5} \right) \right)$
	11/2 + 1tol - = + 1 = 1+
	$ln(I_D) = V_D/nV_F + ln(I_S)$
	from plotting the graphs >
for I	Vd = 0.5V Id = 1-192e ⁻⁰⁴ A
	$V_{d} = 0.6V$ $I_{d} = 9.315e^{-04}A$
for D	2 Vd = 0.5V Id = 1.698 e -04 A
	Vd = 0.6V Id = 1.368 e -03 A

1	PAGEN	10.			
L	DATE	/	1	1	1

for D_1 , $R = V_{in}$ (Id)man

Vin = +15 V Id = 9.315 X 10-4 A

=> R = 15 = 1.6103 x 104 1 9.315 X104

= 16.103 K.J.

 $T_{D} = V_{in}$ $V_{out} = -V_{D}$

Vouts = nV_ (lm (IsR) - lm (Vin))

Voute = - a In (Vin) + az

 $a_1 = h_1 V_T = 0.048645$ $a_2 = h_1 V_T \ln(I_s R) = -0.356259677911 00091$

Let $R_1 = 10 \text{ K}$ from circuit Vout $2 = -V_{\text{out}1} + 2V_{\text{b}1}$ $= a_1 \ln(V_{\text{in}}) - a_2 + 2V_{\text{b}1}$

 \Rightarrow $V_{b_1} = \frac{\alpha_2}{2} = -0.178129838$

Diode Characteristics: In(Id) vs Vd

Linear Fit of In(Id) vs Vd for D1

Linear Fit of In(Id) vs Vd for D2

