

Ambiente e tipos de algoritmos Prof^a Simone Dominico

- Paradigma: Procedural ou Imperativo
 - Solução implementada através de ações, executadas sequencialmente
 - Conceitos: variáveis, atribuição, sequenciação
- Baseada nos princípios da Programação Estruturada
- Linguagem de programação que usaremos: Python

SOLUÇÃO DE PROBLEMAS

SOLUÇÃO DE PROBLEMAS

- Parte-Teórica.
- 1. Ler atentamente o enunciado, visando a sua compreensão.
- Analisar detalhadamente:
 - 1. Que resultados devem ser obtidos;
 - 2. Que dados são fornecidos;
 - 3. Que procedimentos devem ser realizados para a solução do problema.
- 3. Construir o algoritmo
 - Simular a sua execução ("teste de mesa").
- 5. Traduzir o algoritmo em um programa Python
- 1. Compilar, executar e testar exaustivamente o programa, modificando até que os resultados obtidos correspondam com o previsto.

- Propriedades:
 - possui um estado inicial;
 - contém uma sequência lógica e finita de ações (comandos), claras e precisas, com fluxo de execução baseado em:
 - sequência;
 - seleção condicional (seleção de ações);
 - iteração (repetição de ações);
 - o possui dados de entrada;
 - produz dados de saída corretos;
 - possui estado final previsível;
 - deve ser eficaz.

- Propriedades:
 - possui um estado inicial;
 - contém uma sequência lógica e finita de ações (comandos), claras e precisas, com fluxo de execução baseado em:
 - sequência;
 - seleção condicional (seleção de ações)
 - iteração (repetição de ações);
 - possui dados de entrada;
 - produz dados de saída corretos;
 - possui estado final previsível;
 - deve ser eficaz.

ALGORITMOS — FLUXOGRAMA

- Diagrama de Blocos,
 Diagrama de Fluxo ou
 Fluxograma
 - Um método simples de retratar os passos de um procedimento numa sequência logicamente ordenada

ALGORITMOS - FLUXOGRAMA

 E se houver necessidade de tomada de decisão?

ALGORITMOS — FLUXOGRAMA

 E se houver necessidade de tomada de decisão?

ALGORITMOS — FLUXOGRAMA

ALGORITMOS NUMÉRICOS

Seja a equação de 2o grau:

$$ax^2 + bx + c = 0$$

As soluções são:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sendo:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

EXEMPLO DE ALGORITMO NUMÉRICO.

PSEUDOCÓDIGO

- Também conhecido como "Linguagem Estruturada" ou "Portugol".
- Fortemente precisa, quase uma linguagem de programação real.

Considere o problema a seguir

Escreva um algoritmo para calcular a área de uma mesa retangular qualquer, considerando que os comprimentos da base e da altura são fornecidos pelo usuário

1. Ler atentamente o enunciado, visando a sua compreensão da forma mais completa possível

Escreva um algoritmo para calcular a área de uma mesa retangular qualquer, considerando que os comprimentos da base e da altura são fornecidos pelo usuário

- 2. Analisar detalhadamente:
 - a. que resultados devem ser obtidos?
 - b. que dados são fornecidos?
 - c. que procedimentos devem ser realizados para a
 - d. solução do problema?

- 2. Analisar detalhadamente:
 - a. que resultados devem ser obtidos?
 - Cálculo da área da mesa
 - b. que dados são fornecidos?
 - i. Valores para base e altura
 - c. que procedimentos devem ser realizados para a solução do problema?
 - i. Área é igual a base x altura

- 3. Construir o algoritmo
 - a) Estado Inicial
 - b) Estado Final
 - c) Dados de Entrada
 - d) Dados de Saída
 - e) Sequência lógica e finita de ações

- 3. Construir o algoritmo
 - a) Estado Inicial A área da mesa não é conhecida
 - b) Estado Final A área da mesa é conhecida
 - c) Dados de Entrada Base e Altura da mesa
 - d) Dados de Saída Área da mesa
 - e) Sequência lógica e finita de ações Fluxograma e Pseudocódigo

4. Construir o algoritmo

Duas possibilidades de representação

Fluxograma


```
Pseudocódigo

Algoritmo

Inicio
    inteiro a, b, b;
    escreva("Digite o valor de a:")
    leia(a)
    escreva("Digite o valor de b:")
    leia(b)
    c = a + b;
    escreva("O valor de C é: ", c)

FIM
```

Fluxograma

- Variáveis
 - b (base)
 - o h (altura)
 - o area (área)
- Operações de entrada e saída
 - Lê (Ler dados do usuário)
 - Imprime (Mostrar dados ao usuário)
- Operações aritméticas
 - * (multiplicação)
- Manipulação de variáveis
 - ← (atribuição de valor)

Fluxograma

Algum problema em relação a entrada do usuário?

Quais valores o usuário pode informar?

Inicialmente assumimos usuários bem comportados, mas não vai ser sempre assim

Pseudocódigo

- Variáveis
 - b (base)
 - h (altura)
 - o area (área)
- Operações de entrada e saída
 - Lê (Ler dados do usuário)
 - Imprime (Mostrar dados ao usuário)
- Operações aritméticas
 - * (multiplicação)
- Manipulação de variáveis
 - ← (atribuição de valor)

```
Pseudocódigo

Algoritmo

Inicio
   inteiro b, h, area;
   escreva("Digite o valor da base:")
   leia(b)
   escreva("Digite o valor da altura:")
   leia(h)
   area = b + h;
   escreva("A area é: ", area)

FIM
```

Pseudocódigo vs Fluxograma

```
Pseudocódigo

Algoritmo

Inicio
    inteiro b, h, area;
    escreva("Digite o valor da base:")
    leia(b)
    escreva("Digite o valor da altura:")
    leia(h)
    area = b + h;
    escreva("A area é: ", area)

FIM
```


Resolvendo o Problema (retomando)

- 4. Simular a sua execução ("teste de mesa")
 - Simular fluxo/sequência da execução
 - Controlar os valores das variáveis
 - No nosso exemplo: b, h, area
 - Gerar entradas do usuário
 - Analisar as saídas

Resolvendo o Problema (retomando)

Proposta

Escreva um algoritmo para calcular a área e o perímetro de uma circunferência. O usuário deverá informar o raio apenas.

- Siga os passos descritos nessa aula para formular uma solução para o problema acima
- Dicas
 - Pi é uma constante aproximada (3.1415), não é uma variável
 - Área da circunferência
 - = $a=\pi \cdot r^2$
- Perímetro da circunferência
 - \circ p=2· π ·r

Linguagens de programação: Conceitos, conceituação, classificação e paradigmas de linguagens de programação.

Conceito

- Uma LP é uma ferramenta utilizada para escrever programas.
- As primeiras linguagens de programação eram muito simples.
 - o linguagem de máquina
- Com o avanço dos computadores e a necessidade de se desenvolver aplicações mais complexas, as LPs passaram a ser mais robustas.
 - o C, C++, JAVA

Conceito

- Exemplo 1:
- Linguagem de alto
- nível

```
int A, B;
int main()
{
     A = 2;
     B = 1;
     A = A + B;
}
```

- Exemplo 2:
- Linguagem de baixo nível

MOV AX,0002 MOV BX,0001 ADD AX,BX

Conceito

- As linguagens de programação surgiram da necessidade de tornar o processo de desenvolvimento de software mais produtivo.
- Processo de desenvolvimento de software:
 - Especificação de requisitos;
 - Projeto do software;
 - Implementação;
 - Validação;
 - Manutenção.

Classificação

- Linguagem de máquina
 - Linguagem que a máquina é capaz de "entender" sem precisar ser traduzida.
 - Programas em linguagens de máquina são compostos por sequências de bits.
 - **Ex.:** 000110110
 - As sequências de bits referem-se a instruções e dados a serem executados.

Classificação

- Linguagem simbólica
 - Refere-se a uma abstração sobre as instruções e os dados.
 - As instruções são representadas por um "rótulo" simbólico que denota o verbo definido pela instrução.
 - Ex.: MOV AX, 0003
 - Um dado pode ser especificado diretamente na instrução ou pelo endereço de memória onde o dado é armazenado.
 - O endereço é denotado por um rótulo arbitrário definido pelo programador.
 - Programas em linguagem simbólica precisam ser traduzidos para outro equivalente em linguagem de máquina.
 - Os tradutores são chamados de montadores (assemblers).
 - Con Fesa tino de linguagem é utilizada em casos extremos onde é

Classificação

- Linguagem de alto nível
 - Em uma LP de alto nível o grau de abstração é bem alto, próximo ao modo de o ser humano pensar.
 - Nas LPs de alto nível os programadores trabalham com o conceito de comando e não de instruções de máquina, como acontece em LPs de baixo nível.
 - Um único comando em uma LP de alto nível pode se referir a vários comandos em uma LP de baixo nível.
 - O acesso à memória é realizado por meio de variáveis e constantes.
 - Os programas escritos em LPs de alto nível precisam ser traduzidos ou interpretados para serem executados.

LINGUAGEM C

Do código-fonte ao programa executável

```
#include <stdio.h>

main()
{
    printf("Meu primeiro Progration printf("INFO1040\n");
    printf("Instituto de Information printf("Instituto printf("Institu
```

Programa em linguagem de programação (código fonte)

Compilador (ambiente de desenvolvimento)

Programa em linguagem de máquina (executável)

ESTRUTURA BÁSICA NA LINGUAGEM C

```
#include <stdio.h>
                                                    Chamada às bibliotecas
                                                    → stdio.h é usada para
                                                       imprimir em tela
main()
                                                    Função principal, main()
                                                    → primeira função a ser
                                                       executada
                                                    → chaves delimitam o
                                                       corpo da função
```

ADICIONANDO UM INSTRUÇÃO NA LINGUAGEM C

```
#include <stdio.h>
main()
                                                   A função printf é usada
    printf("Hello World.");
                                                   para imprimir em tela.
                             execution time : 0.043 s
  Process returned 12 (0xC)
  Press any key to continue.
                                                          Informações
                                                          adicionais (tempo
                                                          de execução, etc)
```

ADICIONANDO OUTRA INSTRUÇÃO NA LINGUAGEM C

```
#include <stdio.h>
main()
  printf("Hello World.");
  printf("inf 01040.");
```

Hello World.inf 01040

FORMATANDO A SAÍDA NA LINGUAGEM C

```
#include <stdio.h>

main()
{
    printf("Hello World.\n");
    printf("inf 01040.");
}
```

O "\n" efetua uma quebra de linha sempre que utilizado.

Deve estar entre as aspas duplas do *printf*

Hello World. inf 01040

FORMATANDO A SAÍDA NA LINGUAGEM C

```
#include <stdio.h>
main()
  printf("\nHello \nWorld.\n\n");
  printf("inf \n01040.");
              Hello
              World.
```

PSEUDOCÓDIGO X C

```
Pseudocódigo

Algoritmo

Inicio
inteiro a, b, b;
escreva("Digite o valor de a:")
leia(a)
escreva("Digite o valor de b:")
leia(b)
c = a + b;
escreva("O valor de C é: ", c)

FIM
```

Ambiente de desenvolvimento

- https://www.tutorialspoint.com/compile_c_online.php Compilador online
 - É necessário salvar o arquivo em no computador para conseguir executar em outro
 - https://www.onlinegdb.com/online_c_compiler
- Visual Studio + compilador C tutorial:
 - https://www.javatpoint.com/how-to-run-a-c-program-in-visual-studio-c ode