Introduction

Regression models for counting processes are often specified by modeling the *intensity*:

$$\lambda_i(t) = Y_i(t)\alpha(t|X_i).$$

Here $\lambda_i(t)$ is the intensity process for subject i, $Y_i(t) = \mathbb{I}(U_i > t)$ is the at-risk process, $\alpha(t|X_i)$ is the subject-specific hazard, and X_i is a vector of covariates for subject i. Censoring and truncation are assumed independent of the time to event. Equivalently, $\alpha(t|X_i)$ is the same hazard that would be observed in their absence. While potentially time-dependent, the covariates should be *predictable*, meaning that their value is known immediately prior to the occurrence of an event or censoring $X_i(t) = X_i(t-)$.

Relative Rate Model

In a relative rate model:

$$\alpha(t|X_i) = \alpha_0(t)r(X_i;\beta).$$

Here $\alpha_0(t)$ is an unspecified baseline hazard, $r(X_i; \beta)$ is the relative rate function for a subject with covariate vector X_i , and β is a vector of regression coefficients. $r(0; \beta)$ is normalized such that the relative rate for a subject with the null covariate vector is one:

$$r(0; \beta) = 1.$$

 $r(X_i; \beta)$ is the hazard ratio, comparing a subject with covariate X_i to baseline:

$$r(X_i; \beta) = \frac{\alpha(t|X_i)}{\alpha_0(t)}.$$

2.1 Partial Likelihood

Let $\tau_1 < \cdots < \tau_K$ denote the distinct observed event times, and let $\mathcal{R}_k = \mathcal{R}(\tau_k)$ denote the risk set, consisting of the of those subjects who remain at risk for an event at time τ_k . Suppose subject i in fact experiences an event at time τ_k . The partial likelihood contribution of subject i is the probability that subject i experienced the event given that some subject in \mathcal{R}_k experienced an event:

$$L_i(\beta) = \frac{\alpha(\tau_k|X_i)}{\sum_{i \in \mathcal{R}_k} \alpha(\tau_k|X_i)} = \frac{\alpha_0(\tau_k)r(X_i;\beta)}{\sum_{i \in \mathcal{R}_k} \alpha_0(\tau_k)r(X_i;\beta)} = \frac{r(X_i;\beta)}{\sum_{i \in \mathcal{R}_k} r(X_i;\beta)}.$$

The overall **partial likelihood** is:

$$L(\beta) = \prod_{k=1}^{K} \frac{r(X_k; \beta)}{\sum_{j \in \mathcal{R}_k} r(X_j; \beta)},$$
(2.1.1)

where X_k is the covariate vector for the subject who experiences the event at time k.

Although suppressed for simplicity, here and subsequently, if $X_i(t)$ is time-varying, then $X_i = X_i(\tau_k)$. For instance, in the partial likelihood:

$$L(\beta) = \prod_{k=1}^{K} \frac{r\{X_i(\tau_k); \beta\}}{\sum_{j \in \mathcal{R}_k} r\{X_j(\tau_k); \beta\}}.$$

The partial log likelihood is:

$$\ell(\beta) = \sum_{k=1}^{K} \left[\ln r(X_k; \beta) - \ln \left\{ \sum_{j \in \mathcal{R}_k} r(X_j; \beta) \right\} \right].$$

Specializing to the **Cox model**:

$$r(X_k; \beta) = \exp(X_k \beta),$$

the partial log likelihood takes the form:

$$\ell(\beta) = \sum_{k=1}^{K} \left\{ X_k \beta - \ln \left(\sum_{j \in \mathcal{R}_k} e^{X_j \beta} \right) \right\}. \tag{2.1.2}$$

2.2 Partial Score

The partial score equation for the Cox model is:

$$\mathcal{U}_{\beta} = \sum_{k=1}^{K} \left\{ X_k - \frac{\sum_{j \in \mathcal{R}_k} X_j e^{X_j \beta}}{\sum_{j \in \mathcal{R}_k} e^{X_j \beta}} \right\}, \tag{2.2.3}$$

which follows directly from taking the gradient of (2.1.2).

Proposition 2.2.1. The partial score equation from the Cox model is expressible as:

$$\mathcal{U}_{\beta}(\tau) = \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ X_{i} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \right\} dN_{i}(s).$$

Proof. Starting from the counting process representation:

$$\sum_{i=1}^{n} \int_{0}^{\tau} \left\{ X_{i} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \right\} dN_{i}(s)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} \left\{ X_{i} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \right\} \mathbb{I}(U_{i} = \tau_{k}, \delta_{i} = 1).$$

Assuming only a single individual experiences an event at each time point, only the individual whose event time is τ_k contributes to the sum over i. Therefore:

$$\sum_{i=1}^{n} \sum_{k=1}^{K} \left\{ X_{i} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \right\} \mathbb{I}(U_{i} = \tau_{k}, \delta_{i} = 1)$$

$$= \sum_{k=1}^{K} \left\{ X_{k} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(\tau_{k}) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(\tau_{k}) e^{X_{j}\beta}} \right\} = \sum_{k=1}^{K} \left\{ X_{k} - \frac{\sum_{j \in \mathcal{R}_{k}} X_{j} e^{X_{j}\beta}}{\sum_{j \in \mathcal{R}_{k}} e^{X_{j}\beta}} \right\}.$$

Proposition 2.2.2. The partial score equation from the Cox model is expressible as:

$$\mathcal{U}_{\beta}(\tau) = \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ X_{i} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \right\} dM_{i}(s),$$

where $M_i(s) = N_i(s) - \int_0^s Y_i(s)\alpha_0(s)e^{X_i\beta}ds$ is the counting process martingale.

Proof. Substituting $dN_i(s) = dM_i(s) + Y_i(s)\alpha_0(s)e^{X_i\beta}ds$ into the previous counting process expression for $\mathcal{U}_{\beta}(\tau)$:

$$\mathcal{U}_{\beta}(\tau) = \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ X_{i} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \right\} \left\{ dM_{i}(s) + Y_{i}(s) \alpha_{0}(s) e^{X_{i}\beta} ds \right\}.$$

The conclusion follows if the second term that arises from distributing the differential is identically zero. To see this:

$$\sum_{i=1}^{n} \int_{0}^{\tau} \left\{ X_{i} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \right\} Y_{i}(s) \alpha_{0}(s) e^{X_{i}\beta} ds$$

$$= \int_{0}^{\tau} \alpha_{0}(s) \left\{ \sum_{i=1}^{n} X_{i} Y_{i}(s) e^{X_{i}\beta} - \frac{\sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta}}{\sum_{j=1}^{n} Y_{j}(s) e^{X_{j}\beta}} \sum_{i=1}^{n} Y_{i}(s) e^{X_{i}\beta} \right\} ds$$

$$= \int_{0}^{\tau} \alpha_{0}(s) \left\{ \sum_{i=1}^{n} X_{i} Y_{i}(s) e^{X_{i}\beta} - \sum_{j=1}^{n} X_{j} Y_{j}(s) e^{X_{j}\beta} \right\} ds = 0.$$

2.3 Partial Information

Proposition 2.3.3. The partial information for β from the Cox model is:

$$\mathcal{I}_{\beta\beta'} = \sum_{k=1}^{K} \left\{ \frac{\sum_{j \in \mathcal{R}_k} X_j^{\otimes 2} e^{X_j \beta}}{\sum_{j \in \mathcal{R}_k} e^{X_j \beta}} - \frac{\left(\sum_{j \in \mathcal{R}_k} X_j e^{X_j \beta}\right)^{\otimes 2}}{\left(\sum_{j \in \mathcal{R}_k} e^{X_j \beta}\right)^2} \right\}.$$

Proof. Finding the Hessian of (2.1.2) with respect to β :

$$\mathcal{H}_{\beta\beta'} = -\sum_{k=1}^{K} \left\{ \frac{\sum_{j \in \mathcal{R}_k} X_j^{\otimes 2} e^{X_j \beta}}{\sum_{j \in \mathcal{R}_k} e^{X_j \beta}} - \frac{\left(\sum_{j \in \mathcal{R}_k} X_j e^{X_j \beta}\right)^{\otimes 2}}{\left(\sum_{j \in \mathcal{R}_k} e^{X_j \beta}\right)^2} \right\}.$$

Since $\mathcal{H}_{\beta\beta'}$ does not depend on (U_i, δ_i) , the expected information:

$$\mathcal{I}_{etaeta'} = -\mathbb{E}ig(\mathcal{H}_{etaeta'}ig) = -\mathcal{H}_{etaeta'}.$$

Corollary 2.3.1. The partial information for β from the Cox model is:

$$\mathcal{I}_{\beta\beta'} = \int_0^\tau \nu(s) dN(s),$$

where:

$$\nu(s) = \frac{\sum_{i=1}^{n} X_i^{\otimes 2} Y_i(s) e^{X_i \beta}}{\sum_{i=1}^{n} Y_i(s) e^{X_i \beta}} - \frac{\left\{\sum_{i=1}^{n} X_i Y_i(s) e^{X_i \beta}\right\}^{\otimes 2}}{\left\{\sum_{i=1}^{n} Y_i(s) e^{X_i \beta}\right\}^2}$$

and $\tau \geq \tau_K$, the last observed event.

Proposition 2.3.4. The predictable variation of the partial score equation form the Cox model is:

$$\langle \mathcal{U}_{\beta}(\tau) \rangle = \int_{0}^{\tau} \nu(s) \left\{ \sum_{i=1}^{n} Y_{i}(s) e^{X_{i}\beta} \right\} \alpha_{0}(s) ds.$$

Proof. Introduce the notation:

$$S^{(0)}(s) = \sum_{i=1}^{n} Y_i(s)e^{X_i\beta}, \quad S^{(1)}(s) = \sum_{i=1}^{n} X_iY_i(s)e^{X_i\beta}, \quad S^{(2)}(s) = \sum_{i=1}^{n} X_i^{\otimes 2}Y_i(s)e^{X_i\beta}.$$

Define the predictable process:

$$H_i(s) = X_i - \frac{S^{(1)}(s)}{S^{(0)}(s)},$$

such that the partial score of the Cox model is:

$$\mathcal{U}_{\beta}(\tau) = \sum_{i=1}^{n} \int_{0}^{\tau} H_{i}(s) dM_{i}(s).$$

Since the counting process martingales of independent subjects are orthogonal, the predictable variation of $\mathcal{U}_{\beta}(\tau)$ is:

$$\langle \mathcal{U}_{\beta}(\tau) \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{0}^{\tau} H_{i}(s) \otimes H_{j}(s) d\langle M_{i}, M_{j} \rangle(s)$$
$$= \sum_{i=1}^{n} \int_{0}^{\tau} H_{i}^{\otimes 2}(s) d\langle M_{i} \rangle(s) = \sum_{i=1}^{n} \int_{0}^{\tau} H_{i}^{\otimes 2}(s) \lambda_{i}(s) ds,$$

where $\lambda_i(s) = Y_i(s)\alpha(s|X_i) = Y_i(s)\alpha_0(s)e^{X_i\beta}$ is the intensity process for subject *i*. Expanding the outer product of the predictable process:

$$\langle \mathcal{U}_{\beta}(\tau) \rangle = \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ X_{i}^{\otimes 2} + \frac{\{S^{(1)}\}^{\otimes 2}}{\{S^{(0)}\}^{2}} - 2 \frac{X_{i} \otimes S^{(1)}}{S^{(0)}} \right\} \alpha_{0}(s) Y_{i}(s) e^{X_{i}\beta} ds.$$

Bringing the sum inside the integral:

$$\begin{split} \langle \mathcal{U}_{\beta}(\tau) \rangle &= \int_{0}^{\tau} \left\{ S^{(2)} + S^{(0)} \frac{\{S^{(1)}\}^{\otimes 2}}{\{S^{(0)}\}^{2}} - 2 \frac{\{S^{(1)}\}^{\otimes 2}}{S^{(0)}} \right\} \alpha_{0}(s) ds \\ &= \int_{0}^{\tau} \left\{ S^{(2)} - \frac{\{S^{(1)}\}^{\otimes 2}}{S^{(0)}} \right\} \alpha_{0}(s) ds = \int_{0}^{\tau} \left\{ \frac{S^{(2)}}{S^{(0)}} - \frac{\{S^{(1)}\}^{\otimes 2}}{\{S^{(0)}\}^{2}} \right\} S^{(0)} \cdot \alpha_{0}(s) ds. \end{split}$$

Proposition 2.3.5. The difference between the partial information of the Cox model and the predictable variation of the partial score is a mean-zero martingale:

$$\mathcal{I}_{\beta\beta'}(\tau) - \langle \mathcal{U}_{\beta}(\tau) \rangle = \int_0^{\tau} \nu(s) dM(s)$$

Proof. Writing $dN(s) = \lambda(s)ds + dM(s)$:

$$\mathcal{I}(\tau) = \int_0^\tau \nu(s) dN(s) = \int_0^\tau \nu(s) \lambda(s) ds + \int_0^\tau \nu(s) dM(s).$$

Expanding the overall intensity:

$$\int_0^\tau \nu(s)\lambda(s)ds = \int_0^\tau \nu(s) \left\{ \sum_{i=1}^n \lambda_i(s) \right\} ds = \int_0^\tau \nu(s) \left\{ \sum_{i=1}^n Y_i(s)\alpha_0(s)e^{X_i\beta} \right\} ds$$
$$= \int_0^\tau \nu(s) \left\{ \sum_{i=1}^n Y_i(s)e^{X_i\beta} \right\} \alpha_0(s)ds = \langle \mathcal{U}_\beta(\tau) \rangle.$$

Corollary 2.3.2. In particular, the partial information is the expectation of the predictable variation of the partial score:

$$\mathcal{I}_{\beta\beta'}(\tau) = \mathbb{E}\langle \mathcal{U}_{\beta}(\tau) \rangle.$$

•

Updated: Dec 2020

2.4 Asymptotics

Theorem 2.4.1. Under regularity conditions, the maximum partial likelihood estimator of $\hat{\beta}$ from the Cox model is consistent and asymptotically normal:

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(0, i_{\beta\beta'}^{-1}),$$

where $i_{\beta\beta'}$ is the limit in probability of the information matrix:

$$n^{-1}\mathcal{I}_{\beta\beta'}(\tau) \xrightarrow{p} i_{\beta\beta'},$$

and may be estimated via:

$$\hat{i}_{\beta\beta'} = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \left[\frac{\sum_{i=1}^{n} X_{i}^{\otimes 2} Y_{i}(s) e^{X_{i}\beta}}{\sum_{i=1}^{n} Y_{i}(s) e^{X_{i}\beta}} - \frac{\left\{ \sum_{i=1}^{n} X_{i} Y_{i}(s) e^{X_{i}\beta} \right\}^{\otimes 2}}{\left\{ \sum_{i=1}^{n} Y_{i}(s) e^{X_{i}\beta} \right\}^{2}} \right] dN_{i}(s).$$

See [1] (VII.2.2).

2.5 Inference

Inference on β may proceed via the standard Wald, score, and likelihood ratio statistics, each of which is asymptotically χ^2 with dim(β) degrees of freedom.

• Wald statistic:

$$T_W = (\hat{\beta} - \beta_0)' \mathcal{I}(\hat{\beta}) (\hat{\beta} - \beta_0).$$

• Score statistic:

$$T_S = \mathcal{U}(\beta_0)'\mathcal{I}^{-1}(\beta_0)\mathcal{U}(\beta_0).$$

• Likelihood ratio statistic:

$$T_{LR} = 2\{\ell(\hat{\beta}) - \ell(\beta_0)\}.$$

2.6 Tied Events

Suppose d_k events occur at time τ_k , and let $\mathcal{D}_k \subseteq \mathcal{R}_k$ denote the indices of those subjects who experience events. Breslow's partial likelihood takes the form:

$$L(\beta) = \prod_{k=1}^{K} \frac{\exp\left(\sum_{i \in \mathcal{D}_k} X_i \beta\right)}{\left(\sum_{j \in \mathcal{R}_k} e^{X_j \beta}\right)^{d_k}}$$

Breslow's partial likelihood is simplest to implement and performs well when the number of ties is few. *Efron's partial likelihood* is more accurate but more complex:

$$L(\beta) = \prod_{k=1}^{K} \frac{\exp\left(\sum_{i \in \mathcal{D}_k} X_i \beta\right)}{\prod_{j=1}^{d_k} \sum_{j^* \in \mathcal{R}_k} e^{X_{j^*} \beta} - \frac{j-1}{d_k} \sum_{j^* \in \mathcal{D}_k} e^{X_{j^*} \beta}}.$$

An exact partial likelihood is available, but is computationally intensive and not necessitated unless there are few subjects and few ties. By default, R's coxph function uses Efron's partial likelihood.

2.7 Adjusted Hazard and Survival Curves

Recall that, in the absence of covariates, the Nelson-Aalen estimator of the cumulative hazard is:

$$\hat{A}(\tau) = \int_0^{\tau} \frac{dN(t)}{Y(t)} = \int_0^{\tau} \frac{dN(t)}{\sum_{i=1}^n Y_i(t)}.$$

Under the relative rate model, Breslow's estimate of the baseline cumulative hazard is:

$$\hat{A}_0(t) = \int_0^{\tau} \frac{dN(t)}{\sum_{i=1}^n Y_i(t) r(X_i; \beta)} = \sum_{\{k: \tau_k \le t\}} \frac{dN(\tau_k)}{\sum_{j \in \mathcal{R}_k} r(X_j; \beta)}.$$

For a given covariate vector X_{new} , the predicted cumulative hazard curve is:

$$\hat{A}(t|X_{\text{new}}) = \hat{A}_0(t)r(X_{\text{new}}; \hat{\beta}).$$

Similarly, the predicted survival curve is:

$$\hat{S}(t|X_{\text{new}}) = \prod_{u \le t} \left\{ 1 - d\hat{A}(u|X_{\text{new}}) \right\} = \prod_{\{k: \tau_k \le t\}} \left\{ 1 - \frac{r(X_{\text{new}}; \hat{\beta}) \cdot dN(\tau_k)}{\sum_{j \in \mathcal{R}_k} r(X_j; \beta)} \right\}.$$

2.8 Martingale Residuals

Definition 2.8.1. The **cumulative intensity process** for a subject with covariate process $X_i(t)$ is:

$$\Lambda_i(t) = \Lambda(t, X_i) = \int_0^t Y_i(s)\alpha(s|X_i)ds = \int_0^t Y_i(s)r(X_i; \beta) \cdot \alpha_0(s)ds.$$

Breslow's estimate of the cumulative intensity process is:

$$\hat{\Lambda}_i(t) = \int_0^t Y_i(s) r(X_i; \hat{\beta}) \cdot d\hat{A}_0(s) = \sum_{\{k: \tau_k \le t\}} \frac{Y_i(\tau_k) r(X_i; \hat{\beta})}{\sum_{j \in \mathcal{R}_k} r(X_j; \hat{\beta})}$$

7

Definition 2.8.2. The martingale residual process is:

$$\hat{M}_i(t) = N_i(t) - \hat{\Lambda}_i(t).$$

The martingale residuals typically refer to the collection of residuals \hat{M}_i evaluated at the end of study follow-up τ .

Additive Rate Models

For an additive rate model, the intensity process takes the form:

$$\lambda_i(t) = Y_i(t) \left\{ \beta_0(t) + \beta_1(t) X_{1i}(t) + \dots + \beta_J(t) X_{Ji}(t) \right\} \equiv Y_i(t) \left\{ X_i(t) \beta(t) \right\}.$$

- Estimation focuses on the cumulative regression functions $B_j(t) = \int_0^t \beta_j(t) dt$. The regression functions $\beta_j(t)$ may be estimated from the cumulative functions via kernel smoothing.
- The additive rate model allows each regression function $\beta_j(t)$ to change across time, and is fully non-parametric. This flexibility is in contrast to the Cox model, which suppose the effect of a covariate on the relative rate is constant over time.
- Linearity allows the additive model to easily accommodate measurement error or omission of key covariates. In contrast, the Cox model is non-collapsible, and may provide misleading estimates under measurement error or omitted covariates.

Parametric Models

In parametric counting process models, a parametric form is placed on the subjectspecific hazard rate. The intensity takes the form:

$$\lambda_i(t) = Y_i(t)\alpha_i(t;\theta).$$

4.1 Likelihood

Let $0 = \tau_1 < \cdots < \tau_K = \tau$ denote a partition of the observation period $[0, \tau]$ into increments of length dt. The full likelihood of the data \mathcal{D} expressible as:

$$L(\mathcal{D}) = \prod_{k=0}^{K-1} \mathbb{P} \{ \mathcal{D}_k | \mathscr{F}_{\tau_k -} \},$$

where \mathcal{D}_k is the data occurring in the interval $[\tau_k, \tau_k + dt) = [\tau_k, \tau_{k+1})$, and \mathscr{F}_{τ_k} is the observed data immediately before time τ_k . Partition $\mathcal{D}_k = \mathcal{E}_k \cup \mathcal{R}_k$ where \mathcal{E}_k is the data

on events, occurring in the interval $[\tau_k, \tau_{k+1})$, and \mathcal{R}_k is the remaining data. Then the full likelihood decomposes as:

$$L(\mathcal{D}) = \prod_{k=0}^{K-1} \mathbb{P} \big\{ \mathcal{E}_k | \mathscr{F}_{\tau_k -} \big\} \cdot \mathbb{P} \big\{ \mathcal{R}_k | \mathcal{E}_k, \mathscr{F}_{\tau_k -} \big\}.$$

In partial likelihood, the contribution of the remaining data $\mathbb{P}\{\mathcal{R}_k|\mathcal{E}_k, \mathscr{F}_{\tau_k-}\}$ is omitted, and inference is based on:

$$L(\mathcal{D}) = \prod_{k=0}^{K-1} \mathbb{P} \big\{ \mathcal{E}_k | \mathscr{F}_{\tau_k -} \big\}$$

For event-time data with subject-specific intensity $\lambda_i(t)$, the partial likelihood is:

$$L(\mathcal{D}) = \lim_{dt \to 0} \prod_{k=0}^{K-1} \mathbb{P}\{dN_i(t) = 1 | \mathscr{F}_{\tau_k} - \}^{dN_k(t)} \mathbb{P}\{dN(t) = 0 | \mathscr{F}_{\tau_k} - \}^{1-dN(t)}$$

$$= \prod_{u \le \tau} \left\{ \prod_{i=1}^n \lambda_i(t)^{dN_i(t)} \right\} \left\{ 1 - \lambda(t) dt \right\}^{1-dN(t)}$$

$$= \left\{ \prod_{i=1}^n \prod_{u \le \tau} \lambda_i(t)^{dN_i(t)} \right\} \cdot \exp\left\{ - \int_0^\tau \lambda(t) dt \right\}.$$

where $\lambda(t) = \sum_{i=1}^{n} \lambda_i(t)$ and $dN(t) = \sum_{i=1}^{n} dN_i(t)$ are the aggregated intensity and counting process increments. The log partial likelihood is:

$$\ell(\mathcal{D}) = \sum_{i=1}^{n} \left\{ \int_{0}^{\tau} \ln \lambda_i(t) dN_i(t) \right\} - \int_{0}^{\tau} \lambda(t) dt.$$
 (4.1.4)

4.2 Asymptotics

Suppose $\lambda_i(t) = \lambda_i(t; \theta)$ is parameterized by θ . Taking the gradient of (4.1.4) with respect to θ , the score vector is:

$$\mathcal{U}_{\theta}(\tau) = \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \cdot dN_{i}(t) - \int_{0}^{\tau} \frac{\partial}{\partial \theta} \lambda(t;\theta) \cdot dt$$

Proposition 4.2.1. \mathcal{U}_{θ} is expressible as a mean-zero martingale:

$$\mathcal{U}_{\theta}(\tau) = \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \ln \lambda_{i}(t; \theta) \cdot dM_{i}(t).$$

Created: Nov 2020 9

Proof. Using $dN_i(t) = dM_i(t) + \lambda_i(t;\theta)dt$, the first term of the score vector is:

$$\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \cdot dN_{i}(t)$$

$$= \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \cdot dM_{i}(t) + \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \cdot \lambda_{i}(t;\theta) dt.$$

Moving the derivative in the second term past the logarithm:

$$\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \cdot \lambda_{i}(t;\theta) dt = \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\frac{\partial}{\partial \theta} \lambda_{i}(t;\theta)}{\lambda_{i}(t;\theta)} \cdot \lambda_{i}(t;\theta) dt$$
$$= \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \lambda_{i}(t;\theta) dt = \int_{0}^{\tau} \frac{\partial}{\partial \theta} \lambda(t;\theta) dt.$$

Overall:

$$\mathcal{U}_{\theta}(\tau) = \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \cdot dM_{i}(t) + \int_{0}^{\tau} \frac{\partial}{\partial \theta} \lambda(t;\theta) dt - \int_{0}^{\tau} \frac{\partial}{\partial \theta} \lambda(t;\theta) dt.$$

Corollary 4.2.1. Using orthogonality of the martingales for independent subjects:

$$\langle \mathcal{U}_{\theta}(\tau) \rangle = \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \right\}^{\otimes 2} \cdot \lambda_{i}(t;\theta) dt.$$

The observed information is:

$$\mathcal{I}_{\theta\theta'}(\tau) = -\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot dN_{i}(t) + \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \lambda(t;\theta) \cdot dt.$$

Proposition 4.2.2. The difference between the observed information at the predictable variation of the score vector is a mean-zero martingale:

$$\mathcal{I}_{\theta\theta'}(\tau) - \langle \mathcal{U}_{\theta}(\tau) \rangle = -\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot dM_{i}(t).$$

Proof. Substituting $dN_i(t) = dM_i(t) + \lambda_i(t;\theta)dt$ into the observed information, the first term becomes:

$$\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot dN_{i}(t)$$

$$= \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot dM_{i}(t) + \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot \lambda_{i}(t;\theta) dt.$$

Moving derivatives past the logarithm in the second term:

$$\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot \lambda_{i}(t;\theta) dt$$

$$= \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta'} \left\{ \frac{\frac{\partial}{\partial \theta} \lambda_{i}(t;\theta)}{\lambda_{i}(t;\theta)} \right\} \cdot \lambda_{i}(t;\theta) dt$$

$$= \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ \frac{\lambda_{i}(t;\theta) \cdot \frac{\partial^{2}}{\partial \theta \partial \theta'} \lambda_{i}(t;\theta) - \frac{\partial}{\partial \theta} \lambda_{i}(t;\theta) \frac{\partial}{\partial \theta'} \lambda_{i}(t;\theta)}{\lambda_{i}^{2}(t;\theta)} \right\} \cdot \lambda_{i}(t;\theta) dt$$

$$= \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \lambda_{i}(t;\theta) dt - \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ \frac{\frac{\partial}{\partial \theta} \lambda_{i}(t;\theta) \frac{\partial}{\partial \theta'} \lambda_{i}(t;\theta)}{\lambda_{i}^{2}(t;\theta)} \right\} \cdot \lambda_{i}(t;\theta) dt$$

$$= \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \lambda(t;\theta) dt - \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \right\}^{\otimes 2} \cdot \lambda_{i}(t;\theta) dt$$

Overall:

$$\mathcal{I}_{\theta\theta'}(\tau) = -\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot dM_{i}(t)
- \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \lambda(t;\theta) dt + \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \right\}^{\otimes 2} \cdot \lambda_{i}(t;\theta) dt
+ \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \lambda(t;\theta) dt
= -\sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial^{2}}{\partial \theta \partial \theta'} \ln \lambda_{i}(t;\theta) \cdot dM_{i}(t) + \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ \frac{\partial}{\partial \theta} \ln \lambda_{i}(t;\theta) \right\}^{\otimes 2} \cdot \lambda_{i}(t;\theta) dt.$$

Conclude by identifying the second term as the predictable variation of the score.

Theorem 4.2.1. Under regularity conditions, the maximum (partial) likelihood estimator from a counting process model is consistent and asymptotically normal:

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} N(0, i_{\theta\theta'}^{-1}),$$

where $i_{\theta\theta'}$ is the limit in probability of the information matrix:

$$n^{-1}\mathcal{I}_{\theta\theta'}(\tau) \xrightarrow{p} i_{\theta\theta'},$$

and may be estimated via:

$$\hat{i}_{\theta\theta'} = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \left\{ \frac{\partial}{\partial \theta} \ln \lambda_{i}(t; \theta) \right\}^{\otimes 2} dN_{i}(t).$$

See [1] VI.1.2. \Box

4.3 Poisson Regression

Example 4.3.1. Consider the intensity process:

$$\lambda_i(t;\theta) = Y_i(t)\alpha_0(t;\theta)e^{X_i\beta}.$$

Let $0 = \tau_1 < \cdots < \tau_K = \tau$ denote a partition of the observation period $[0, \tau]$ and suppose the baseline hazard is piecewise-constant:

$$\alpha_0(t;\theta) = \sum_{k=1}^K \theta_k \mathbb{I}_{[\tau_k, \tau_{k+1})}(t)$$

To form the partial likelihood, define:

$$E_{ik} = \int_0^\tau \mathbb{I}_{[\tau_k, \tau_{k+1})}(t) dN_i(t)$$

as the number of events subject i experienced in interval $[\tau_k, \tau_{k+1})$, and define:

$$R_{ik} = \int_0^\tau \mathbb{I}_{[\tau_k, \tau_{k+1})}(t) Y_i(t) dt$$

as the duration of the $[\tau_k, \tau_{k+1}]$ over which subject i was at risk.

Observe that the integrated intensity for subject i is expressible as:

$$\int_0^\tau \lambda_i(t;\theta)dt = \int_0^\tau Y_i(t) \left(\sum_{k=1}^K \theta_k \mathbb{I}_{[\tau_k,\tau_{k+1})}\right) e^{X_i\beta}dt$$
$$= \sum_{k=1}^K \theta_k e^{X_i\beta} \int_0^\tau \mathbb{I}_{[\tau_k,\tau_{k+1})} Y_i(t)dt = \sum_{k=1}^K \theta_k e^{X_i\beta} R_{ik}.$$

Now the partial likelihood is expressible as:

$$L(\theta, \beta) = \left\{ \prod_{i=1}^{n} \prod_{k=1}^{K} (\theta_k e^{X_i \beta} R_{ik})^{E_{ik}} \right\} \exp \left\{ -\sum_{i=1}^{n} \sum_{k=1}^{K} \theta_k e^{X_i \beta} R_{ik} \right\}$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{K} \left\{ (\theta_k e^{X_i \beta} R_{ik})^{E_{ik}} e^{-(\theta_k e^{X_i \beta} R_{ik})} \right\} = \prod_{i=1}^{n} \prod_{k=1}^{K} \left\{ \mu_{ik}^{E_{ik}} e^{-\mu_{ik}} \right\}.$$

This likelihood is proportional to a Poisson likelihood on E_{ik} with regression function:

$$\ln \mu_{ik} = \ln \theta_k + X_i \beta + \ln R_{ik}.$$

To fit this model, K tuples of pseudo-data $\{(E_{ik}, R_{ik}, X_i)\}_{k=1}^K$ are generated for each subject i, one tuple for each interval, and a Poisson GLM is specified, with logarithmic link function and offset $\ln R_{ik}$.

References

[1] PK Andersen et al. Statistical Models Based on Counting Processes. 2nd. Springer-Verlag, 1997.