MATD49-Estatística não paramétrica Testes para k amostras

Testes para k amostras independentes

- Em geral são extensões dos testes de 2 amostras;
- Úteis quando as suposições paramétricas não forem atendidas;
- Não exigem que as k amostras sejam de mesmo tamanho.
- Verificam se as k amostras foram extraídas ou não da mesma população ou de populações idênticas;
- Os dados geralmente seguem a seguinte estrutura:

Amostras ou Grupos					
1	2		k		
X ₁₁	X ₂₁		X_{k1}		
X_{12}	X_{22}		X_{k2}		
:	:	٠	:		
X_{1n_1}	X_{2n_2}		X_{kn_k}		

Teste de Kruskal-Wallis

Introdução

- É uma extensão do teste de Mann-Whitney (soma dos postos de Wilcoxon), i.e. para k=2 populações, este teste é equivalente ao teste de Wilcoxon da soma de postos;
- É equivalente ao teste de Mantel-Haenszel aplicado aos postos dos dados;
- Pode ser interpretado como a versão não-paramétrica do teste F da ANOVA com 1 fator;
- Não leva em consideração formas específicas de distribuição;
- Deseja-se testar se *k* amostras aleatórias(possivelmente tamanhos diferentes) de uma v.a. possuem a mesma distribuição.

Pressupostos:

- As amostras são aleatórias e independentes entre si;
- A escala de mensuração é no mínimo ordinal.

Hipóteses do teste:

- *H*₀ : Todas as *k* populações têm funções de distribuição idênticas.
- H₁: Pelo menos uma das populações difere das demais.

Construção do teste I

- Considere a i-ésima amostra aleatória de tamanho n_i : $X_{i1}, X_{i2}, \ldots, X_{in_i}, i = 1, 2, \ldots, k$.
- Seja N o número total de observações: $N = \sum_{i=1}^{\kappa} n_i$.

Os dados podem ser organizados em colunas:

Amostra 1	Amostra 2		Amostra k
X_{11}	X ₂₁		X_{k1}
X_{12}	X_{22}		X_{k2}
÷	:	٠	:
X_{1n_1}	X_{2n_2}		X_{kn_k}

Construção do teste II

- Atribua posto 1 à menor observação do total de N observações, posto 2 a segunda menor, e assim por diante, até a maior de todas as N observações, que recebe posto N (quando não há empates).
- Quando há observações iguais, calcular a média dos postos.
- Sejam :
 - R_{ij} o posto da observação de X_{ij} .
 - R_{i} a soma dos postos da i—ésima amostra:

$$R_{i\cdot} = \sum_{j=1}^{n_i} R_{ij}, \ i = 1, 2, \dots, k,$$

• e R.. a média geral dos postos:

$$R_{\cdot \cdot} = \frac{\sum_{i=1}^{k} R_{i \cdot}}{N}. \tag{1}$$

• Se não há empates, teremos que a soma total de postos(numerador de (1)) é a soma de uma PA e portanto $R_{\cdot \cdot \cdot} = (N+1)/2$.

Estatística de teste I

A estatística de teste T é definida como:

$$T = \frac{1}{S^2} \left(\sum_{i=1}^k \frac{R_{i \cdot}^2}{n_i} - \frac{N(N+1)^2}{4} \right),$$

em que
$$S^2=rac{1}{N-1}\left(\sum_{i,j}R_{ij}^2-rac{N(N+1)^2}{4}
ight).$$

- Esta estatística mede a razão entre :
 - A soma diferenças quadráticas das médias dos tratamentos para a média geral (soma de quadrados entre tratamentos) e
 - As diferenças quadráticas dos postos em relação à média geral (quadrado médio total, variância);

Estatística de teste II

• Se não há empates, teremos que $S^2 = N(N+1)/12$ e a estatística de teste reduz a:

$$T = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_{i}^{2}}{n_{i}} - 3(N+1);$$

- A distribuição exata de T é tabelada (veja [Conover, 1996], Tabela A8) para k=3 e $n_i \leq 5$ (no caso sem empates). No entanto, a distribuição exata é complexa e nos demais casos utiliza-se uma aproximação de T por a qui-quadrado com k-1 graus de liberdade;
- Rejeita H_0 ao nível α se T for maior que o quantil $1-\alpha$ (dos valores tabelados ou da χ^2_{k-1}).

Comparações múltiplas

- Se rejeitarmos a hipótese nula no teste de Kruskal-Wallis, é necessário realizar comparações múltiplas para detectar quais pares de populações podem ser considerados diferentes.
- As populações *i* e *j* são consideradas diferentes se a seguinte inequação é satisfeita:

$$\left|\frac{R_{i\bullet}}{n_i} - \frac{R_{j\bullet}}{n_j}\right| > t_{1-\alpha/2} \left(S^2 \frac{N-1-T}{N-k}\right)^{1/2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)^{1/2},$$

em que R_i . e R_j . são as somas dos postos das amostras i e j, respectivamente, $t_{1-\alpha/2}$ é o quantil $(1-\alpha/2)$ da distribuição t-Student com (N-k) graus de liberdade.

• que é equivalente ao intervalo:

$$\left[\left(\frac{R_{i\bullet}}{n_i} - \frac{R_{j\bullet}}{n_j}\right) \pm t_{1-\alpha/2} \left(S^2 \frac{N-1-T}{N-k}\right)^{1/2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)^{1/2}\right]$$

não conter o zero;

Aspecto computacional

No R: Pode ser realizado pelo pacote kruskal.test ou pelo pacote PMCMRplus

No SAS: Há duas formas para realizar o teste de Kruskal-Wallis. Ou com o comando para o teste da soma de postos de Wilcoxon (NPAR1WAY) ou através do teste de Mantel-Haenszel.

```
/*Abordagem 1: NPAR1WAY*/
PROC NPAR1WAY DATA=dados WILCOXON DSCF;
CLASS tratamento;
VAR resposta;
EXACT;
RUN;
/*Abordagem 2: via Mantel-Haenszel*/
PROC FREQ DATA=database;
TABLES tratamento*resposta /
CMH2 SCORES=RANK;
RUN;
```

IME-UFBA

Exemplo 1

Verificar a influência do fator *Idade* sobre a variável *tempo* (*em dias*) *para conseguir um emprego*, considerando as seguintes amostras:

Acima de 40 anos	Entre 25 e 40	Abaixo de 25
63	33	25
20	42	31
43	27	6
58	28	14
	51	18

Ao nível de 5% de significância, é possível afirmar que o fator *idade* tem influência sobre o *tempo para encontrar trabalho*?

Exemplo 2 - [Korosteleva, 2014]

Em uma competição de arco e flecha, 3 competidores disputam o primeiro lugar, que será definido estatisticamente. A pontuação por acerto pode ser 10 para o círculo menor, 5 a 9 para os círculos intermediários e 1 a 4 para os círculos mais externos. Cada competidor tem direito a 10 flechas. Decida se houve ganhador, ou se todos obtiveram o mesmo desempenho, com base nos dados abaixo.

Monic	Monica		Bob		
Pontuação	Posto	Pontuação	Posto	Pontuação	Posto
3	6.5	2	4	1	1.5
4	10.5	2	4	1	1.5
4	10.5	3	6.5	2	4
5	16	4	10.5	4	10.5
5	16	4	10.5	4	10.5
5	16	5	16	5	16
10	22	10	22	10	22
10	22	10	22	10	22
				10	22

Exemplo 3 - [Beall, 1942]

Este exemplo contem dados de contagem de insetos sobreviventes após expostos a 6 tipos de inseticidas (A,B C, D, E, F) e deseja-se avaliar se existe diferença em suas eficácias. Os dados foram coletados por [Beall, 1942] e podem ser obtidos no pacote datasets do R: datasets::InsectSprays. Apenas ilustrativamente, a contagem, médias e desvios-padrão são apresentadas na tabela abaixo:

Inseticida	N	Média	Desv.Pad.
A	174	14.50	4.72
В	184	15.33	4.27
C	25	2.08	1.98
D	59	4.92	2.50
Е	42	3.50	1.73
F	200	16.67	6.21

Decida ao nível 5% se há diferença entre os inseticidas.

Testes para k amostras relacionadas

Introdução I

Estrutura geral dos dados:

Amostras	Tratamentos				
(Blocos)	1	2		С	
1	X_{11}	X_{12}		X_{1c}	
:	:	:	٠		
k	X_{k1}	X_{k2}		X_{kc}	

Tabela 1: Estrutura geral dos dados nos testes de k amostras relacionadas.

- Outra forma é observar k unidades em c períodos de tempos. Neste caso teríamos um estudo de medidas repetidas, como acontece em avaliações do tipo antes e depois da intervenção na mesma unidade amostral;
- Estes testes são versões não-paramétricas da análise da variância com blocos completamente casualizados;

Introdução II

- Relembre que as seguintes condições devem ser satisfeitas para que possamos analisar um conjunto de dados utilizando análise de variância (ANOVA), também chamada de teste F:
 - As observações devem ser independentes e extraídas de populações normais;
 - As populações devem ter a mesma variância (homocedasticidade);
 - Os efeitos devem ser aditivos.
- Se estas condições forem satisfeitas, os testes não-paramétricos geralmente são uma alternativa viável para a análise, pois não exigem normalidade ou igualdade das variâncias e são aplicáveis a amostras de menores;
- Para amostras pequenas, mesmo que as condições do teste F sejam satisfeitas, sua aplicação não é recomendável;
- Falaremos do teste Q de Cochran e do teste de Friedman.

Teste Q de Cochran

Introdução

- Este teste é uma extensão do teste de McNemar para *k* amostras relacionadas, que chamaremos de *blocos*;
- Não avalia a extensão da mudança, apenas se a mudança ocorreu;
- Avalia se houve ou não sucesso na aplicação dos c tratamentos nos k blocos.

Pressupostos:

- A variável de interesse é dicotômica;
- As categorias das variáveis explicativas (blocos e tratamentos) são mutuamente excludentes;
- ullet Cada um dos k tratamentos são aplicados independentemente para cada um dos c blocos;
- Em amostras muito pequenas não pode ser utilizado;
- Utiliza frequências e não os postos.

Estrutura geral dos dados

- Seja X_{ij} váriável aleatória dicotômica(1=sucesso ou 0=fracasso) representando o resultado para o tratamento j no grupo i. O valor $n=\sum_{i,j}X_{ij}$ representa o número total de 1's na tabela.
- Os resultados são apresentados em forma de tabela com *k* linhas, representando os blocos, e *c* colunas, representando os tratamentos:
 - R_i . é o total da linha i, i = 1, 2, ..., k;
 - $C_{\cdot j}$ é o total da coluna $j, j = 1, 2, \dots, c$.
- Os dados podem então ser organizados como na tabela a seguir:

Amostras	Tratamentos				Total
(Blocos)	1	2		С	IULai
1	X ₁₁	X ₁₂		X_{1c}	R_{1} .
:	:	:	٠.	:	:
k	X_{k1}	X_{k2}		X_{kc}	R_{k} .
Totais	C. ₁	C. ₂		C. _c	n

Hipotéses do teste

Hipótese nula:

 $H_0: p_1 = p_2 = \ldots = p_c$, i.e. os tratamentos são igualmente eficazes.

Hipótese alternativa:

 $H_1: p_{j_1} \neq p_{j_2}$, para algum tratamento j_1 e j_2 , i.e. ao menos 1 tratamento é diferente dos demais.

Estatística de teste e regra de decisão

A estatística de teste T é definida por:

$$Q = c(c-1)\frac{\sum_{j=1}^{c} \left(C_{\cdot j} - \frac{n}{c}\right)^{2}}{\sum_{i=1}^{k} R_{i \cdot} (c - R_{i \cdot})} = \frac{c(c-1)\sum_{j=1}^{c} C_{\cdot j}^{2} - (c-1)n^{2}}{cn - \sum_{i=1}^{k} R_{i \cdot}^{2}}$$

Sob H_0 , Q tem distribuição aproximadamente Qui-Quadrado com c-1 graus de liberdade.

Decisão do teste:

- Rejeita-se H_0 ao nível de significância α se o valor da estatística Q for maior do que o quantil 1α da distribuição Qui-Quadrado com c 1 graus de liberdade.
- Se H₀ é rejeitada, comparações entre os tratamentos podem ser feita usando o teste de McNemar.

Aspecto computacional

No R:

```
qcochran.test<-function(db.test, pcut=NA, alpha=0.05, OnlyPrint=TRUE)
# db.test: data.frame com c colunas e (trats)
# e k linhas(blocos) .
# pcut: Ponto de corte se db.test for composto por proporcoes.
# Se especificado, o R categoriza os dados de db.test em
# 1 se maior ou igual pcut e 0 se menor que pcut
# alpha: Nivel de significancia do teste.
# OnlyPrint: Se TRUE apenas imprime os resultados.
# Se FALSE imprime e devolve uma lista com os resultados.</pre>
```

No SAS: a sintaxe é a mesma que o teste de McNemar.

```
PROC FREQ data = tabela_dados ;
TABLES trat1*trat2*trat3 /AGREE;
WEIGHT cont;
RUN;
```

Exemplo 1 - [Conover, 1996], adaptado

Três modelos preditivos (A, B e C) foram utilizados para prever os resultados de jogos de basquete colegial. Doze jogos foram selecionados de forma aleatória e o resultado da previsão de cada modelo é apresentado na tabela ao lado usando 1 para previsão correta (sucesso) e 0 para previsão errada (fracasso).

Verifique todos os modelos são igualmente eficazes na capacidade de prever os resultados dos jogos de basquete. Considere $\alpha = 5\%$.

lama	N	/lodel	0	Total
Jogo	Α	В	С	TOLAI
1	1	1	1	3
2	1	1	1	3
3	0	1	0	1
4	1	1	0	2
5	0	0	0	0
6	1	1	1	3
7	1	1	1	3
8	1	1	0	2
9	0	0	1	1
10	0	1	0	1
11	1	1	1	3
12	1	1	1	3
Total	8	10	7	25

Exemplo 2 - [Agresti, 2007]

46 pacientes foram tratados com 3 drogas diferentes para uma doença crônica e a resposta foi contabilizada como favorável(F) ou desfavorável (U).

	Orog	a			Orog	a	
Α	В	С	Freq	Α	В	С	Freq
F	F	F	6	U	F	F	2
F	F	U	16	U	F	U	4
F	U	F	2	U	U	F	6
F	U	U	4	U	U	U	6

Avalie a eficácia dos tratamentos.

Teste de Friedman

Introdução I

• É uma extensão do teste dos sinais de Wilcoxon, logo, também utiliza os postos das observações. É também um caso especial do teste de Mantel-Haenszel geral, o qual vimos anteriormente o caso $k \times 2$:

- É útil para estudos de medidas repetidas ou delineamento em blocos;
- Neste tipo de estudo, observa-se o mesmo grupo de indivíduos sob cada um das k tratamentos, ou então formam-se conjuntos de indivíduos homogêneos que são alocados aleatoriamente a cada um dos tratamentos;
- É uma alternativa não paramétrica para a ANOVA com blocos casualizados;
- O teste examina os postos (ranks) dos dados em cada tratamento para determinar se as distribuições das variáveis são provenientes da mesma população.

Introdução II

Suposições:

- A variável de interesse é medida no mínimo em escala ordinal;
- Os blocos são independentes, i.e. a variabilidade dentro de um bloco não influencia os resultados de outro bloco.
- Em cada bloco (amostra), as observações podem ser ordenadas de acordo com algum critério de interesse.

Dados:

- Consistem de b vetores aleatórios independentes k-variados $(X_{i1}, X_{i2}, ..., X_{ik})$, chamados blocos (ou amostras), i = 1, ..., b.
- A variável aleatória X_{ij} representa a observação associada ao bloco i e ao tratamento j. Os dados podem ser organizados na mesma forma da Tabela 1 que foi ilustrada também para o teste de Cochran.

Construção do teste

- Atribuir postos de 1 a k para as observações do bloco i, i = 1, 2, ..., b, ditos R_{ij} ;
- Em caso de empates, atribuir a média dos postos;
- A soma dos postos para cada tratamento, R.i, é definida por:

$$R_{\cdot j} = \sum_{i=1}^{b} R_{ij}$$
, para todo $j = 1, 2, \dots, k$

• Teremos assim uma nova tabela de postos:

Amostras	Tratamentos				
(Blocos)	1	2		k	
1	X_{11}	X_{12}		X_{1k}	
:	:	:	٠	:	
b	X_{b1}	X_{b2}		X_{bk}	
Total	-	-	-		

Postos					
1	2		k		
R ₁₁	R_{12}		R_{1k}		
:	:	٠	:		
R_{b1}	R_{b2}		R_{bk}		
R. ₁	R. ₂		$R_{\cdot k}$		

Hipóteses do teste

Hipótese nula:

 H_0 : Os tratamentos produzem o mesmo efeito.

Hipótese alternativa:

 H_1 : Pelo menos um dos tratamentos apresenta efeito diferente dos demais.

Estatística de teste I

 Diferente do teste de Kruskal-Wallis, aqui temos postos 1,..., k para cada bloco. Logo, a soma total dos postos, se não há empates, será b vezes a soma de uma PA de k termos.

A média geral dos postos será então:

$$R_{\cdot \cdot} = \frac{1}{k} b \left(\frac{k(k+1)}{2} \right) = \frac{b(k+1)}{2};$$

• No caso sem empates, Friedman propôs a estatística do teste como:

$$T_1 = \frac{12}{bk(k+1)} \sum_{j=1}^k \left(R_{\cdot j} - \frac{b(k+1)}{2} \right)^2$$
$$= \frac{12}{bk(k+1)} \sum_{j=1}^k R_{\cdot j}^2 - 3b(k+1),$$

Note que, assim como no teste de Kruskal-Wallis, esta estatística também está relacionada com a soma das diferenças quadráticas das médias dos tratamentos para a média geral.

Estatística de teste II

- Se há empates, um ajustamento na estatística T_1 precisa ser feito:
 - Seja A_1 a soma dos quadrados dos postos: $A_1 = \sum_{i=1}^{b} \sum_{j=1}^{n} [R_{ij}]^2$;
 - Calcule o fator de correção dado por: $C_1 = bk(k+1)^2/4$;
- Então, a estatística T_1 , modificada na presença de empates, é:

$$T_1^* = \frac{(k-1)\left(\sum_{j=1}^k R_{ij}^2 - bC_1\right)}{A_1 - C_1}$$

$$= \frac{(k-1)\sum_{j=1}^k \left(R_{ij} - \frac{b(k+1)}{2}\right)^2}{A_1 - C_1};$$

- A distribuição exata de T_1 e T_1^* é difícil ser encontrada e uma aproximação é comumente usada;
- T_1 e T_1^* têm, sob H_0 distr. aprox. Qui-quadrado com (k-1) graus de liberdade;

Estatística de teste III

• Uma estatística alternativa é a estatística dos experimentos em blocos ao acaso na ANOVA calculada sobre os postos $R(X_{ii})$:

$$T_2 = \frac{(b-1)T_1}{b(k-1)-T_1};$$

• A estatística T_2 tem, aproximadamente, distribuição F com $k_1=(k-1)$ e $k_2=(b-1)(k-1)$ graus de liberdade.

Decisão do teste:

- Fixado α , rejeitamos H_0 se T_1 exceder o quantil (1α) da distribuição Qui-quadrado com (k 1) graus de liberdade.
- De maneira similar, rejeitamos H_0 ao nível de significância α se T_2 exceder o quantil $(1-\alpha)$ da distribuição F com $k_1=(k-1)$ e $k_2=(b-1)(k-1)$ graus de liberdade.

Comparações múltiplas

 Ao rejeitarmos a hipótese nula no teste de Friedman, faremos comparações múltiplas para detectar quais pares de tratamentos podem ser considerados diferentes.

- Considere dois tratamentos i e j, para todo $i \neq j$ e $i, j = 1 \dots, k$.
- Os tratamentos i e j são considerados diferentes se

$$|R_{ij} - R_{ii}| > t_{1-\alpha/2} \left[\frac{2(bA_1 - \sum R_{ij}^2)}{(b-1)(k-1)} \right]^{1/2},$$

em que $t_{1-\alpha/2}$ é o quantil $(1-\alpha/2)$ da distribuição t-Student com (b-1)(k-1) graus de liberdade.

• Alternativamente, a equação $|R_{ij} - R_{ii}|$ pode ser expressa com uma função de T_1 :

$$|R_{ij} - R_{ii}| > t_{1-\alpha/2} \left[\frac{(A_1 - C_1)2b}{(b-1)(k-1)} \left(1 - \frac{T_1}{b(k-1)} \right) \right]^{1/2}.$$

Aspecto computacional

No R:

```
friedman.test(resp, trat, bloco)
friedman.test(resp ~ trat | bloco, data)
```

No SAS: Há duas formas de se realizar o teste de Friedman: utilizando o teste de *Cochran-Mantel-Haenszel* para os escores, já que os testes são equivalentes, ou utilizando a estatística T_2 , isto é, construindo uma ANOVA para os postos:

```
/*Abordagem 1: via CHM*/
PROC FREQ DATA=database;
TABLES bloco*trat*resp /
        CMH2 SCORES=RANK;
RUN:
/*Abordagem 2: ANOVA DOS POSTOS:*/
PROC RANK;
BY bloco:
VAR resp;
RANKS varrank;
RUN:
PROC ANOVA;
CLASS bloco trat;
MODEL varrank = bloco trat:
RUN:
```

Exemplo 1

Um teste de consumo de combustível envolvendo carros produzidos por três fabricantes foi realizado e os resultados, em quilômetros por litro de combustível estão apresentados na tabela abaixo. Estabelecer e testar a hipótese adequada. Considere $\alpha=5\%$.

Modelo	Fabricante			
	G	F	С	
Pequeno	9.0	11.3	10.6	
Médio- 6 cil.	9.4	10.9	10.2	
Médio- 8 cil.	8.1	8.6	9.1	
Grande-8 cil.	8.3	8.6	8.8	
Esporte	8.2	9.2	9.5	

Exemplo 2 - [Lehmann and D'abrera, 2006]

Num estudo sobre hipnose, 8 sujeitos tiveram a tensão elétrica na superfície da pele medida (em milivolts) em 4 situações emocionais distintas: *medo, alegria,tristeza* e *calma*. Avalie se existe diferença na tensão entre os diferentes estados emocionais.

Sujeito	Medo	Alegria	Tristeza	Calma
1	23.1	22.7	22.5	22.6
2	57.6	53.2	53.7	53.1
3	10.5	9.7	10.8	8.3
4	23.6	19.6	21.1	21.6
5	11.9	13.8	13.7	13.3
6	54.6	47.1	39.2	37.0
7	21.0	13.6	13.7	14.8
8	20.3	23.6	16.3	14.8

Exemplo 3 - Velocidades de atletas

6 atletas de ciclismo tiveram suas velocidades médias calculadas ao longo de 4 trechos de uma prova. Avalie se algum atleta se destacou dos demais.

	Trecho					
Atleta	A	В	С	D		
1	32.60	36.40	29.50	29.40		
2	42.70	47.10	32.90	40.00		
3	35.30	40.10	33.60	35.00		
4	35.20	40.30	35.70	40.00		
5	33.20	34.30	33.20	34.00		
6	33.10	34.40	33.10	34.10		

Acknowledgements

Agradecemos ao prof. Anderson Ara pela disponibilização de seu material didático, no qual nos baseamos para a elaboração destes slides. Alguns trechos desta apresentação são replicados de seu material.

Referências I

Agresti, A. (2007).

An introduction to categorical data analysis.

Wiley-Interscience.

Beall, G. (1942).

The transformation of data from entomological field experiments so that the analysis of variance becomes applicable.

Biometrika, 32:243.

Conover, W. J. (1996).

Practical nonparametric statistics.

John Wiley and sons, 3 ed. edition.

Korosteleva, O. (2014).

Nonparametric methods in statistics with SAS applications.

Crc Press.

Referências II

Lehmann, E. L. and D'abrera, H. J. M. (2006). Nonparametrics: statistical methods based on ranks. Springer.