Coordinación de Cálculo III y Cálculo Avanzado para el Módulo Básico de Ingeniería

Control 2 Cálculo Avanzado, Forma B 9 de mayo de 2022

- 1. Un esquiador se encuentra en un cerro cuya superficie es el gráfico de una función diferenciable, digamos $f: \mathbb{R}^2 \to \mathbb{R}$ tal que f(x,y) = z. El esquiador ha comprobado que sus coordenadas en el plano xy son (1,2), más aún, ha logrado comprobar que:
 - I la pendiente cuando se mueve en dirección a (2,3) es 2, y que
 - II la pendiente cuando se mueve en dirección a (2,1) es -2.
 - a) Determine $\nabla f(1,2)$.
 - b) Determine la pendiente cuando se mueve en dirección a (3,5).
 - c) Si el esquiador de pronto se transforma en escalador. ¿Cuál sería la dirección en la que debería ir para subir la mayor pendiente?

Solución. Primero veamos que si el esquiador se mueve en dirección a (2,3) entonces su vector director será

$$D_1 := (2,3) - (1,2) = (1,1),$$

y análogamente si se mueve en dirección a (2,1) su vector director será

$$D_2 := (2,1) - (1,2) = (1,-1).$$

Normalizando los vectores directores se obtienen

$$d_1 := \frac{D_1}{||D_1||} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

$$d_2 := \frac{D_2}{||D_2||} = \left(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right),$$

y por hipótesis que

$$\frac{\partial f(1,2)}{\partial d_1} = f'((1,2), d_1) = 2$$

$$\frac{\partial f(1,2)}{\partial d_2} = f'((1,2), d_2) = -2$$

(1 punto)

a) Sean $\alpha, \beta \in \mathbb{R}$ tales que

$$\nabla f(1,2) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

Como f es diferenciable sabemos que tales α, β existen, más aun, se tiene que

$$2 = f'((1,2), d_1) = \nabla f(1,2) = {\binom{\alpha}{\beta}} \cdot d_1$$

-2 = $f'((1,2), d_2) = \nabla f(1,2) = {\binom{\alpha}{\beta}} \cdot d_2$.

Resolviendo el sistema de ecuaciones anterior se obtiene que

$$\nabla f(1,2) = \begin{pmatrix} 0 \\ 2^{3/2} \end{pmatrix}$$

.

(2 puntos)

b) Sean $D_3 = (3,5) - (1,2) = (2,3)$ y

$$d_3 = \frac{D_3}{||D_3||} = \frac{1}{\sqrt{13}} \begin{pmatrix} 2\\3 \end{pmatrix}.$$

Sigue que la derivada direccional en dirección a (3,5)

$$f'((1,2), d_3) = \nabla f(1,2) \cdot d_3 = 3\sqrt{\frac{8}{13}}.$$

(1,5 puntos)

c) Cuando el esquiador decide escalar en la dirección con más pendiente debe escoger necesariamente la dirección en la que la derivada direccional es máxima. Por otro lado sabemos que si ||d|| = 1

$$f'((1,2),d) = \nabla f(1,2) \cdot d,$$

y como

$$v \cdot w = ||v|| \cdot ||w|| \cos(\theta),$$

donde θ es el ángulo entre v y w, sigue que el producto punto entre vectores se maximiza cuando el ángulo entre ellos es tal que $\cos(\theta)$ se maximiza, o bien, cuando $\theta=0$.

De lo anterior se concluye que la dirección d normalizada que maximiza la derivada direccional debe ser

$$d = \frac{\nabla f(1,2)}{||\nabla f(1,2)||} = \begin{pmatrix} 0\\1 \end{pmatrix}.$$

(1,5 puntos)

2. Una función u definida por una ecuación de la forma $u = xyf(\sqrt{x^2 + y^2})$, donde $f: \mathbb{R}^2 \to \mathbb{R}$ es diferenciable. Probar que u satisface una ecuación de la forma:

$$yu_x + xu_y = u(x, y)G(x, y)$$

Solución.

$$\frac{\partial u}{\partial x} = yf(\sqrt{x^2 - y^2}) + xyf'(\sqrt{x^2 - y^2}) \cdot \frac{x}{\sqrt{x^2 - y^2}} / \cdot 7 \, (\mathbf{1}, \mathbf{5} \, \mathbf{puntos})$$

$$y\frac{\partial u}{\partial x} = y^2 f(\sqrt{x^2 - y^2}) + \frac{x^2 y^2}{\sqrt{x^2 - y^2}} f'(\sqrt{x^2 - y^2})$$

$$\frac{\partial u}{\partial y} = xf(\sqrt{x^2 - y^2}) - xyf'(\sqrt{x^2 - y^2}) \cdot \frac{y}{\sqrt{x^2 - y^2}} / \cdot 7 \, (\mathbf{1}, \mathbf{5} \, \mathbf{puntos})$$

$$x\frac{\partial u}{\partial x} = x^2 f(\sqrt{x^2 - y^2}) - \frac{x^2 y^2}{\sqrt{x^2 - y^2}} f'(\sqrt{x^2 - y^2})$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = (x^2 + y^2) f(\sqrt{x^2 - y^2})$$

$$= \frac{x^2 + y^2}{xy} u(x, y) \, (\mathbf{2} \, \mathbf{puntos})$$

$$G(x, y) = \frac{x^2 + y^2}{xy} \, (\mathbf{1} \, \mathbf{punto})$$

Luego, como g no nula y diferenciable en 0, f es una función diferenciable en \mathbb{R}^2 (0,5 puntos). Y como es diferenciable en \mathbb{R}^2 también es continua (1 punto)

3. Considerar la función $f: \mathbb{R}^2 \to \mathbb{R}^2$, definida por:

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{\sin(x+y)}, & \text{si } x \neq -y\\ 2x, & x = -y \end{cases}$$

Sugerencia: estudiar la diferenciabilidad función $g: \mathbb{R} \to \mathbb{R}$:

$$g(x) = \begin{cases} \frac{\operatorname{sen}(x)}{x}, & \text{si } x \neq 0 \\ 1, & x = 0 \end{cases}$$

- Estudiar la continuidad de f en (a, a), para algún $a \in \mathbb{R}$.
- if es diferenciable en (0,0)?

Solución. Según la sugerencia tenemos que g es diferenciable en $\mathbb{R}\setminus\{0\}$ por álgebra de funciones $(\mathbf{0}, \mathbf{5} \, \mathbf{puntos})$. En x=0:

$$\lim_{h \to 0} \frac{\frac{\operatorname{sen}(h)}{h} - 1}{h} = \lim_{h \to 0} \frac{\operatorname{sen}(h) - h}{h^2} \underbrace{= \lim_{h \to 0} \frac{\cos(h) - 1}{2h}}_{\text{por la regla de L'Hôpital}} = 0 \left(\mathbf{1} \text{ punto} \right)$$

Luego g es diferenciable en 0 también y además $g(x) \neq 0, \forall x \in \mathbb{R} \ (\mathbf{1} \mathbf{punto})$. Notar que:

$$f(x,y) = \begin{cases} \frac{x-y}{\frac{\sin(x+y)}{x+y}}, & \text{si } x \neq -y\\ \frac{x-y}{1}, & x = -y \end{cases} = \frac{x-y}{g(x+y)} (\mathbf{2} \text{ puntos})$$

Luego, como g no nula y diferenciable en 0, f es una función diferenciable en \mathbb{R}^2 (0, 5 puntos). Y como es diferenciable en \mathbb{R}^2 también es continua (1 punto)