Exercício 1 Encontre um ciclo hamiltoniano em cada grafo abaixo:

Exercício 2 Mostre que nenhum dos grafos a seguir contém um ciclo hamiltoniano

Tecremo: Seja Com ciclo Hamiltoniano do grafe Gr. Entado C, considerado como subarato, todos es virtios têm graviqual a 2. reoremen de Ore:

Se G= (VIE) é un grafo simples, com n713 vértices oge setis faz &(v) +&(w) 7/n para todo por de vértices não adjacontes v,w, então Gré Homiltoniano

Teorema de Dirac

Se Gi=(U,E) è un grato simples) com n?3 vértions e S(V)> vi/2, ViEV enta0 Gi é Hamiltoniano.

teoremo:

Se G=(V,E) é Hamiltoniana então YSEV, não vazio, o subgrafo de G obtido remover do os vértices de S passi; vo máximo IsI componentes conexas

lembre-se: p > g = ~q > ~p.

Posa responder as questões vones usor a últime teoreme pais ele é da ferma GH => condição ... ~ condição => ~GH.

a) Escolho S=16,dy

3 componentes

b) Escolha S={b, c, f,j,m,p}

7 conposates, mas

Exercício 3 Determine se cada grafo a seguir contém um ciclo hamiltoniano ou não. Se existir um ciclo hamiltoniano, exiba-o. Caso contrário, dê um argumento que prove que não existe um ciclo hamiltoniano.

Exercício 4 Dê um exemplo de um grafo que tem um ciclo euleriano mas não contém um ciclo hamiltoniano.

ciclo Euleriae: ciclo ge contém todas as aostas uma única nez.

Para ver ge não pessui ciclo Hamilteniano, Leve S=Lis. **Exercício 5** Dê um exemplo de um grafo que tem um ciclo euleriano e um ciclo hamiltoniano que não são idênticos.

Euleriano:

Ha milderias.

Exercício 6 Para que valores de m e n o grafo do Exercício 7 da Lista 2 contém um ciclo hamiltoniano?

Para cosos diferences, derenos on seguinte estruturo:

Ao tiror v1, v2, v3, v4, Jenes & co-porentes

corexas o gre contradit a condição suficionde pora grafes Hamiltonianos.

Exercício 7 Quando o grafo bipartido completo $K_{m,n}$ contém um ciclo hamiltoniano?

Só terà un grafo hamiltenione quando m=n, mas m=n +1.

I) Se note iriones contrarior on condição recessórios de Grafes Homiltonianes

II) como Kom é regular, tedos os grows são i guaris, isso sotisfore as condições suficientes de Grafe Homiltoniano (texema

de Ore e Dirac).

Exercício 8 Mostre que o ciclo (e,b,a,c,d,e) é uma solução para o Problema do Caixeiro Viajante para o grafo a seguir:

Problema de Caixeiro Viajande: coneco de un porte, percorro outros pentes e volte de orde come cei con o menos custo possível.

No problema ver porte deinicio e fin é a vértice "é" e grero possor polos vértices orbic, el como menor custo pessível.

Portante, gaerenes no goafe, a nerce ciclo Hamiltoniano

Esse problema não possui abordages:
muito bases. contudo teras duas possibilidades:

1) contor todos os arcles Hamiltonianes
(15-1)!/2 = 12 por não ser dirigido)

2) método do melhor vizinho.

Aplicado e rétado do rellor vizinho pora todos es vértices, vereres ge obteros o ciclo en rervello.

s) Posa a: e retter vizinho é c: o retter vizinho de c é d: o retter vizinho de d é e (não podros voltas posa c): o rettos vizinho do e é sívião podres rettos posa c, ren posa d). o rettor rizinho de b é a (fechasos a cida).

se repetirnes isso pare todas os vérticos obterenes o aicle en vernelho. Come o grafo não é dirigido, le, b, a, c, d, e) é sellição.

Exercício 9 No xadrez, o movimento do cavalo consiste em se mover duas casas horizontalmente ou verticalmente e daí mover uma casa na direção perpendicular. A partir disso, definimos o grafo GK_n , um grafo com $n \times n$ vértices, cada um representando uma casa do tabuleiro $n \times n$. As arestas deste grafo seguem a seguinte regra: dois vértices estão ligados por uma aresta se for possível fazer um movimento de cavalo entre as casas representadas. Veja como fica GK_4 :

Encontre um ciclo hamiltoniano em GK_6 .


```
# Importando novamente as biblio import networkx as nx import matplotlib.pyplot as plt
     # Inicializar o grafo
G = nx.Graph()
     knight_moves = [(2, 1), (2, -1), (-2, 1), (-2, -1), (1, 2), (1, -2), (-1, 2), (-1, -2)]
     # Configurar a visualização
plt.figure(figsize=(8, 8))
pos = \{(x, y): (x, y) \text{ for } x \text{ in range}(1, N+1) \text{ for } y \text{ in range}(1, N+1)\}
     # Desenhar o grafo com posições baseadas nas coordenadas do tabuleiro
nx.draw(G, pos, with_labels=True, node_color="lightblue", node_size=500, font_size=8, font_color="black", edge_color="gray")
plt.title("Grafo dos movimentos do cavalo num tabuleiro 6x6")
plt.show()
```

As permutações de $\{1,2,,n\}$ podem ser arrumadas em uma sequência tal que permutações adjacentes
$p: p_1,, p_n,$ $q: q_1,, q_n$
satisfaçam $p_i \neq q_i$, para $i = 1,, n$?
Rodemos modelas da seguinte moneira: As permutações são os vérticas. Se as permutações farem diferentes, traco-os uma aesta.
As permutações são as vérticas.
Se as permitações forem diferentes, tracoros
una oresta.
Ne desafio seria encontror un ciclo Homiltoniono resse grafo. O número de arestas seá 41.
Hamiltoniono resse grato.
Q nu mero de arestos secá Mi.

 $\bf Exercício~10$ Descreva um modelo gráfico apropriado para resolver o seguinte problema:

1	Exercício 11 Resolva o problema do exercício anterior para $n=1,2,3,4.$
	nel trivial.

por todos os vértices uma única vez. (Um caminho hamiltoniano começa e termina em vértices diferentes.)
Exercício 12 Responda às perguntas:
(a) Se um grafo tem um ciclo hamiltoniano, ele deve ter um caminho hamiltoniano? Explique.
(b) O grafo do Exercício 3 (b) desta lista tem um caminho hamiltoniano?
(c) Para que valores de m e n o grafo do Exercício 7 da Lista 2 tem um caminho
hamiltoniano?
a) sin. Seja a ciclo Hamilteniara: da, az, ax, a,). Se retirormes a resta (ax, as, Jerenos o cominho Hamilteniaro da, az, ax)
da, az, ax, a,). Se retirormes a resta
Kar, ais, Jerenos o cominho Honilterioro
(a, az, ax)
b) sim. da, e, b, f, g, c, d)
0 b
c d
f de la female
m vertices
$n \text{ vertices} $: \cdot .
· · ·
Possui un cominho Hamiltoniano para
m, nell.
VA ₁ NGIV.

 ${\bf Definição}.$ Um $caminho \ hamiltoniano \ {\bf em}$ um grafo G é um caminho simples que passa