Week 8: MDP and Value Iteration

COMP90054 – Al Planning for Autonomy

Key concepts

- Markov Decision Processes (MDPs)
- Solving MDPs:
 - Value Iteration

Classical Planning vs. MDPs

Classical Planning	Markov Decision Processes (MDPs)	
Set of states S	Set of states S	
Initial state s_0	Initial state s_0	
Action A(s)	Action A(s)	
Transition function $s' = f(a, s)$	Transition probabilities $P_a(s' s)$ Non-	deterministic
Goals $S_G \subseteq S$	Reward function r(s, a, s') (positive or	
Action costs c(a, s)	negative)	
	Discount factor $0 \le \gamma \le 1$ (prefer shorter plans over longer plans)	

Solution: Minimise the cost

maximise the reward

Thao Le

7

Task 1: Model the Grid MDP example with a formal discounted-reward

S,
$$s_0$$
, $A(s)$, $P_a(s'|s)$, $r(s, a, s')$, γ
 $S = \{0, 2, 3\}$, $y = \{0, 2, 3\}$, $y = \{0, 2, 3\}$

So = $\{0, 0\}$
 $A = \{North, South, East, West\}$

Avoid

Task 1: Model the Grid MDP example with a formal discounted-reward MDP model $s, s_0, A(s), P_a(s'|s), r(s, a, s'), \gamma$

Task 1: Model the Grid MDP example with a formal discounted-reward MDP model

Solving MDPs?

Bellman equations

For discounted-reward MDPs the Bellman equation is defined recursively as:

05451 $C = Q(s,a) = \sum_{s' \in S} P_a(s'|s) \left[r(s,a,s') + \gamma V(s') \right]$ immediate discounted guture reward of action a

 $V(s) = \max_{a \in A(s)} Q(s, a)$ expected value of being in states and ading optimally

Solving MDPs? Value Iteration

- Set V_0 to arbitrary value function; e.g., $V_0(s) = 0$ for all s.
- Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Consider two football-playing robots: Messi and Suarez.

They play a simple two-player cooperate game of football, and you need to write a controller for them. Each player can pass the ball or can shoot at goal.

The football game can be modelled as a discounted-reward MDP with three states: Messi, Suarez (denoting who has the ball), and Scored (denoting that a goal has been scored); and the following action descriptions:

- If Messi shoots, he has 0.2 chance of scoring a goal and a 0.8 chance of the ball going to Suarez. Shooting towards the goal incurs a cost of 2 (or a reward of -2).
- If Suarez shoots, he has 0.6 chance of scoring a goal and a 0.4 chance of the ball going to Messi. Shooting towards the goal incurs a cost of 2 (or a reward of -2).
- If either player passes, the ball will reach its intended target with a probability of 1.0. Passing the ball incurs a cost 1 (or a reward of -1).
- If a goal is scored, the only action is to return the ball to Messi, which has a probability of 1.0 and has a reward of 2. Thus the reward for scoring is modelled by giving a reward of 2 when **leaving** the goal state.

The following diagram shows the transition probabilities and rewards:

Thao Le

9

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0			
V(Suarez)	0			
V(Scored)	0			

Iteration 0: Set $V_0(s) = 0$ for all s

The following diagram shows the transition probabilities and rewards:

$$\gamma = 1$$
 Sof Messi, Sweed, Swarez}

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0			
V(Scored)	0			

Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

s = Messi

s' = Suarez/Scored

a = shoot/pass \checkmark

Iteration 1:
$$V_1(Messi) = -1$$

• shoot

 $V_1(Messi) = -1$

• shoot

 $V_2(Messi) = -1$

• shoot

 $V_1(Messi) = -1$

• shoot

 $V_2(Messi) = -1$

• pass

 $V_2(Messi) = -1$

• pass

• pass

 $V_2(Messi) = -1$

• pass

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0	-1		
V(Scored)	0			

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

r = 2Scored Shoot P(0.6) Shoot P(0.2) r = -2Shoot P(0.8) r = -2Pass P(1.0) Messi Suarez Shoot P(0.4)

s = Suarez

s' = Messi/Scored

Return P(1.0)

a = shoot/pass

Iteration 1:
$$V_1(Suarez)$$

• shoot $V_1(Suarez)$

• shoot $V_2(Suarez)$

• shoot $V_3(Suarez)$

• $V_3(Suarez)$

+ Pshoot (Messi | Sharez)
$$\left[r \left(\text{Sharez, shoot, Messi} \right) + Y Vo \left(\text{Messi} \right) \right]$$

= -1.2 + -0.8 = -2

Ppass (Messi | Swarez) [r (Swarez, pass, Messi) + & Vo (Messi)] pass $1 \times [-1 + 1 \times 0] = (1)$ Than Le

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0	-1		
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 1: $V_1(Scored)$

return

The following diagram shows the transition probabilities and rewards:

s = Scored

s' = Messi

a = return

$$\gamma = 1$$

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1		
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 2: $V_2(Messi)$

• shoot

pass

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 2: $V_2(Suarez)$

shoot

pass

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2	1	

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 2: $V_2(Scored)$

return

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2	1	

Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2	1)	

Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	-2.2
V(Scored)	0	2	1	O

Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 3: $V_3(Scored)$

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	-2.2
V(Scored)	0	2	1	0

The following diagram shows the transition probabilities and rewards:

If we only have 3 iterations, what actions did we take to maximise the reward?

Messi Pass Suarez Shoot Scored Return

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	-2.2
V(Scored)	0	2	1	0

When to stop the iteration?

The iteration is stopped when Δ reaches some pre-defined threshold θ

(when the largest change in the values between iterations is "small enough")

