CLAIMS:

1. An electroluminescent device comprising a cathode, an anode, and therebetween a layer containing a host material and an ethynyl compound of Formula (1):

5

in an amount sufficient to stabilize the device wherein A and B represent independently selected fused carbocyclic ring groups.

10

- 2. The device of claim 1 wherein at least one of the ring groups is an anthracene group.
- 3. The device of claim 1 wherein at least one of the ring groups is a phenanthrene group.
 - 4. The device of claim 1 wherein at least one of the ring groups is a naphthalene group.

20 5. The device of cl

- 5. The device of claim 1 wherein A represents an anthracene group and B represents a naphthalene group.
- 6. The device of claim 1 wherein A and B represent independently selected anthracene groups.

25

7. The device of claim 1 wherein the device emits green light.

- 8. The device of claim 1 wherein the ethynyl compound comprises at least six aromatic rings.
- 5 9. The device of claim 8 wherein the ethynyl compound comprises at least eight aromatic rings.
 - 10. The device of claim 9 wherein the wherein ethynyl compound is represented by Formula (2):

10

$$(\mathbf{v})_{\mathbf{m}}$$

$$(\mathbf{v})_{\mathbf{m}}$$

$$(\mathbf{v})_{\mathbf{m}}$$

$$(\mathbf{v})_{\mathbf{m}}$$

$$(\mathbf{v})_{\mathbf{m}}$$

$$(\mathbf{v})_{\mathbf{m}}$$

$$(\mathbf{v})_{\mathbf{m}}$$

$$(\mathbf{v})_{\mathbf{m}}$$

wherein:

each v independently represents a substituent, provided adjacent substituents may combine to form rings;

m is 0-4; and

v₁ and v₂ independently represent hydrogen or a substituent.

11. The device of Claim 10 wherein v_1 and v_2 represent independently selected aromatic ring groups.

20

- 12. The device of claim 10 wherein v_1 and v_2 represent independently selected phenyl ring groups.
- 13. The device of claim 1 wherein the host material is represented by
 5 Formula (3a):

$$W_2$$
 W_3
 W_4
 W_{10}
 W_5
 W_6
 W_6
 W_6
 W_8
 W_8
 W_8

wherein:

w₁-w₁₀ independently represent hydrogen or an independently selected substituent, provided that two adjacent substituents can combine to form rings.

- 14. The device of Claim 13 wherein w₉ and w₁₀ represent a naphthyl group and a biphenyl group, respectively.
- 15. The device of Claim 1 wherein the host material comprises 9,10-di-(2-naphthyl)anthracene, 2-t-butyl-9,10-di-(2-naphthyl)anthracene, 9-(4-biphenyl)-10-(2-naphthyl)anthracene or a combination thereof 9-(4-biphenyl)-10-(1-naphthyl)anthracene.
- 20 16. The device of claim 1 wherein the host material is tris(8-quinolinolato)aluminum (III).
 - 17. The device of claim 1 wherein the layer contains a third material which emits light.

- 18. The device of claim 17 a wherein the third material emits green light.
- 5 19. The device of claim 17 wherein the third material is a quinacridone compound.
 - 20. The device of claim 17 wherein the third material is represented by Formula (4),

10

wherein:

 s_1 – s_{10} independently represent hydrogen or an independently selected substituent, provide adjacent substituents may combine to form rings; and

 s_{11} and s_{12} independently represent an alkyl group or an aromatic group.

- 21. The device of claim 20 wherein $s_1 s_{10}$ represent hydrogen, and s_{11} and s_{12} each represent an independently selected phenyl group.
- The device of claim 17 wherein the third material is a coumarin compound.
 - 23. The device of claim 17 wherein the third material is represented by Formula (5),

$$w_{13}$$
 w_{14}
 w_{15}
 w_{17}
 w_{17}
 w_{12}
 w_{14}
 w_{15}
 w_{17}
 w

wherein:

 w_{11} and w_{12} represent an independently selected substituent, provided w_{11} and w_{12} may combine with each other or with w_{13} or w_{14} to form a ring;

 w_{13} - w_{16} independently represent hydrogen or an independently selected substituent, provided adjacent substituents may combine to form rings; and

 \mathbf{w}_{17} represents the atoms necessary to complete an heteroaromatic ring.

24. The device of claim 23 wherein the third material is represented by Formula (5), wherein:

 w_{11} and w_{13} as well as w_{12} and w_{14} combine to form independently selected saturated rings, which may be further substituted; and

 w_{17} represents the atoms necessary to complete a 2-benzothiazoyl group.

- 15 25. The device of claim 1 wherein the compound of Formula (1) is present at a level of between 0.5 and 20% by weight of the layer.
 - 26. The device of claim 1 wherein the compound of Formula (1) is present at a level of between 0.5 and 8% by weight of the layer.

27. The device of claim 17 wherein the third material is present at a level of between 0.5 and 10% by weight of the light-emitting layer.

20

- 28. A display comprising the electroluminescent device of claim 1.
- 29. The device of claim 1 wherein white light is produced either directly or by using filters.

- 30. An area lighting device comprising the electroluminescent device of claim 1.
- 31. A process for emitting light comprising applying a potential across the device of claim 1.