

National University Of Computer & Emerging Sciences

Department	Department of Computer Science	Dept. Code	CS
Course Title	Calculus and Analytical Geometry	Course Code	MT 1003
Pre-requisite(s)	None	Credit Hrs.	3

PLO	Program Learning Outcome (PLO) Statement	Level	Tools
01	Ability to apply knowledge of mathematics,	E	Q, A, M,
	science and engineering fundamentals and an		F
	engineering		
	Specialization to the solution of complex		
	engineering problems.		
I = Introduction, R = Reinforcement, E = Evaluation.			
A = Assignment, O = Ouiz, M = Midterm, F = Final, L = Lab, P = Project, W = Written Report.			

CLO	Course Learning Outcome (CLO)	Domain	Taxonom y level	PLO	Tools
01	Define the ideas of derivatives and anti- derivatives (integrals) using the concept of limits & continuity and sigma	Cognitive	C1	PLO-1	M, F, A, Q
02	Translate the learning of vector calculus and analytical geometry in multiple dimensions	Cognitive	C1	PLO-1	F, A, Q
03	Apply derivatives and integrals for solving different problems arising in computer sciences.	Cognitive	C1	PLO-1	M, F, A, Q

Text Book(s)	Title	Calculus Early Transcendental 10 th Edition	
	Author	Howard Anton, IRl Bivens, Stephen Davis	
	Publisher	JOHN WILEY	
Ref. Book(s)	S) Title Calculus & Analytical Geometry 9 th Edition		
	Author	George B. Thomas, Ross L. Finney	
	Publisher		
	Title	Calculus Early Transcendental 8th Edition	
Author		James Stewart	
	Publisher	Thomson, 2008	

7	Moole	Contents/Tonics	Evansisas/Questions	CIO
١ ١	Week	Contents/Topics	Exercises/Questions	CLO

1	Interval, Inequality, Relation and Functions vertical line test, Piecewise, Absolute value, Introduction to functions Domain and Range, One-One and onto function. Symmetry ,Even/odd function, Asymptote	0.1 (1-04, 7-10, 27,28)	-	
2	Concepts of limit. Evaluation of limits. Continuity and points of discontinuity. Types of discontinuity.	1.1 (1-16) 1.2 (1-32) 1.5 (1-6,11-22, 29,30,35,36)	01	
3	Rules and techniques of differentiation.	2.3 (1-24, 41-47)	01	
4	Product and quotient rule. Derivative of trigonometric and logarithm function, Chain rule	2.4 (1-24) 2.5 (1-24) 2.6 (7-40)	01	
5	Implicit differentiation. Indeterminate forms, L' Hospital Rule	3.1 (3-18,25-28) 3.6 (7-45)	01	
6	OFF			
7	Concavity, Increasing and Decreasing. Relative Extreme (1st and 2nd derivative test) Absolute Maxima and Minima	4.1 (15-30) 4.2 (7-12, 25-36) 4.4 (7-16)	03	
8	Application of derivatives, Role's and Mean Value's Theorem.	3.4 (10-20), 4.8 (1-8)	03	
9	Riemann sums and definite integral	5.5 (13-24)	01	
10	Area bounded by the curves. Volume by Disk and washer method	6.1 (1-18), 6.2 (1-26)	03	
11	Mid-Term			
12	Techniques of integration, Basic Integration, Integration by parts Reduction formula, Trigonometric substitution	7.1 (1-30), 7.2 (1-30, 61,62,63) 7.4 (1-25,37-48)	01	
13	Integration of Rational function by Partial fraction, $u= tan(x/2)$ substitution, Improper integrals.	7.5 (9-30), 7.6 (65-70) 7.8 (3-32)	01	
14	Parametric equations of lines in 3D, Plane in 3-space	11.5 (3-10,15-22,29-34)		
15	Distance Problems involving planes, Intersecting planes.	11.6 (11-20, 41-48)	02	
16	Revision			

Commented [1]: Chapter 2 will take only 1 lecture and Ex 2.3, 2.4, 2.5 and 2.6 can be given as an assignment. As students are having 6th week off due to Mid-Term 1, it is suggested to assign chapter 2 before that so that they can have a week off to do that.

Commented [2]: Ex: 3.4 is the application of derivatives and the exercise will be given as an assignment after completing chapter 3. (Ex: 3.4 will not be discussed in class)

Marks Distribution:

Mid-Term	30
Assignment	10
Quiz	10
Final	50
Total	100