Heart Disease Prevention

By Alejandro Harrison

Business Overview

- ► Heart disease is leading cause of death in US (CDC)
- Coronary heart disease (CHD) most common type
- Hospital looks at variety of factors
- ▶ Identify risk of CHD

Method

- ► Use of classification models
- ▶ Pick best one
- ► Able to identify subjects at risk for CHD
- ▶ What is classification?

Classification

- Process of dividing data into classes or categories
- ► Can be used to predict future values
- ➤ Yes/no for risk of CHD

The Data

- ► Framingham Heart Study
- ► Started in 1948
- ► Long term, ongoing study
- ▶ Used by more than 1200 scientific journals
- ▶ Identifies factors that lead to Cardiovascular disease

Data Continued

- ▶ Dataset had 4133 entries
- ▶ Demographic, behavioral and medical
- ► Age, sex, cholesterol, etc
- ▶ 1 yes/no factor for CHD risk

Data	columns (total 1	6 columns):	
#	Column	Non-Null Count	Dtype
0	male	4133 non-null	int64
1	age	4133 non-null	int64
2	education	4133 non-null	int64
3	currentSmoker	4133 non-null	int64
4	cigsPerDay	4133 non-null	float64
5	BPMeds	4133 non-null	float64
6	prevalentStroke	4133 non-null	int64
7	prevalentHyp	4133 non-null	int64
8	diabetes	4133 non-null	int64
9	totChol	4133 non-null	float64
10	sysBP	4133 non-null	float64
11	diaBP	4133 non-null	float64
12	BMI	4133 non-null	float64
13	heartRate	4133 non-null	float64
14	glucose	4133 non-null	float64
15	TenYearCHD	4133 non-null	int64

Models

- ▶ Build initial models then improve
- ► Logistic Regression
- Decision Tree
- ► Random Forest

Logistic Regression

- Want to predict a binary outcome
- Involves fitting data to an S shaped curve
- ► Values fall between 0-1 range
- ▶ 0 and 1 represent binary choices/categories

Decision Tree

- ► All possible outcomes and decisions
- Multiple branches and multiple outcomes
- ► E.g. smoking
- Decision reached and data categorized

Random Forest

- Creates random samples from data
- Individual decision trees made for each sample
- Compares all tree predictions together
- ► Majority vote for best prediction

Best Model

- ► Found that our best algorithm was Random Forest
- Addresses lack of randomness in decision trees
- ► Room for interpretability
- ► Results split into classification report, confusion matrix and feature importance sections

Classification Report

- Measures quality of predictions
- Precision, recall, f1 score
- Out of total predicted at risk CHD, how many were actually at risk(precision)
- Out of actual total at risk CHD, how many at risk CHD predictions were correct (recall)
- ► How accurate is our model (F1 score)

	precision	recall	f1-score	support	
0 1	0.92 0.26	0.66 0.67	0.76 0.37	877 157	
accuracy macro avg weighted avg	0.59 0.82	0.66 0.66	0.66 0.57 0.71	1034 1034 1034	

Classification Report Continued

- Precision was at 26%, which is similar to our initial model.
- ▶ Recall was at 67%, which is a 40% improvement from the initial model
- Our model had an f1 score of 37%, which is a 7% improvement from the initial model.

	precision	recall	f1-score	support	
0	0.92 0.26	0.66 0.67	0.76 0.37	877 > 157	
accuracy	0.20	0.07	0.66	1034	
macro avg	0.59 0.82	0.66 0.66	0.57 0.71	1034 1034	
	0.02	0.00	3172	2034	

Confusion Matrix

- ► 575 patients were correctly predicted as not being at risk for CHD (TN)
- 52 patients were wrongly predicted as not being at risk for CHD (FN)
- 302 patients were wrongly predicted as being at risk for CHD (FP)
- ► 105 patients were correctly predicted as being at risk for CHD (TP)
- ▶ 62 more instances of true positives
- ▶ 62 less instances of false negatives

Feature Importance

- How useful is each variable in predicting target variable
- Most indicative feature of whether someone is at risk for CHD was age
- Other important features included :
 - Systolic and diastolic blood pressure (sysBP and diaBP)
 - History of high blood pressure (prevalentHyp)
 - ► Total cholesterol level (totChol)

Results

- ► Best model was Random Forest
- Showed Increases in true positives
- ► Showed decreases in false negatives
- ► Age was most indicative factor of CHD risk

Recommendations

- Run entirely new model with only the top important features
- Screen earlier in adulthood for high blood pressure and high cholesterol
- Screening earlier allows for treatment of risk factors preventing heart disease