Sussanne 76 -> 3, 4, 7, 8, 11

Pig 76: 53,4,7,8,113

Give Output signals

Find the Booken upprosion of:

@ Exercise 3

$$P = 1$$
 $P = 1$ $Q = 1$ $Q = 0$ $P = 0$ $P = 1$

PA-QVZ

@ Exercise 4

(PMQ)V(7(QMR))

Write I/o table for

@ Exercise 3:

P	2	r	7 <i>9</i>	(P179)	(P179)Vr)
T	T	T	F	F	T
1	T	F	F	F	F
T	F	T	T	\mathcal{T}	ア
T	F	F	T	7	T
F	T	T	F	F	7
F	T	F	F	F	F
F	F	1	T	F	T
F	P	P	1	F	F

8) Exercise 4

P	2	1	79	PVq	911	(7(911)	(DV9)V/1(911	7
T	ナ	7	F	T	<i>T</i>	F	7	
T	T	H	F	+	¥	F	7	
T	۴	۲	T	+	L	T	7	
7	F	F	T	+	F	F		
F	T	1	F	7	7	F	7	
F	T	11	F	T	L	F	7	
F	F	1	1	F	F	T	T	,
F	F	۴	1	F	F	F	F	

Pág 76 {17,19,28,31,34} Construct Circuits For (1) (P170) V(2P1R)

Construct a Boolean expression and

circuit for:

Use the properties listed in Theorem 2.1.1 to show that each pair of circuits in 26–29 have the same input/output table. (Find the Boolean expressions for the circuits and show that they are logically equivalent when regarded as statement forms.)

(PAQ)V(PA~Q) V (~PA~Q) = PV~Q

For the circuits corresponding to the Boolean expressions in each of 30 and 31 there is an equivalent circuit with at most two logic gates. Find such a circuit.

(3) Show that the following logical equivstences hold for the Dierce arrow I, where P I Q = v/PVQ)

c) PAQ = (PJP) I (QVQ)

PAR = (PJP) J (QVQ)

= ~(~(PVP)) V ~(QVQ) -> Definition of V

= ~(~(PVP)) A ~(~(QVQ) -> Double Complementation

= (PVP) A(QVQ) -> Double Complementation

= PAQ -> Idempotentlaw