# SZÁMÍTÓGÉPES ALKALMAZÁSOK HARDVER-SZOFTVER-HÁLÓZAT

# Soós Sándor

Nyugat-magyarországi Egyetem Simonyi Károly Műszaki, Faanyagtudományi és Művészeti Kar Informatikai és Gazdasági Intézet soossandor@inf.nyme.hu

Sopron, 2015.

# Tartalomjegyzék.

# Tartalomjegyzék

| 1.           | Hardver-Szoftver                                              |
|--------------|---------------------------------------------------------------|
|              | 1.1. A számítógép hardver-szoftver felépítése                 |
|              | 1.2. A szoftver                                               |
|              | 1.3. Operációs rendszer                                       |
| 2.           | Hálózatok                                                     |
|              | 2.1. A hálózatok előnyei                                      |
|              | 2.2. Hálózatok osztályozása                                   |
|              | 2.3. Hálózatok működése                                       |
| $\mathbf{M}$ | iről lesz szó a mai órán?.                                    |
|              | • A hardver és szoftver rendszer modellje                     |
|              | $\bullet$ A szoftver összetevői, a szoftverfejlesztés fázisai |
|              | $\bullet$ A gépi kódú és az assembly programozás lényege      |
|              | • Magas szintű programnyelvek csoportosítása                  |
|              | $\bullet$ A szintaktika és a szemantika fogalma               |
|              | $\bullet$ Az operációs rendszer és rendszer-közeli szoftver   |
|              | • Az ismert operációs rendszerek jellemzői                    |
|              | • Az operációs rendszer csatlakozási és kezelői felülete      |
|              | $\bullet$ A felhasználók csoportosítása és jellemzőik         |
|              | • Virtualizáció                                               |
|              | • Számítógépek összekapcsolása                                |
|              | $\bullet$ A hálózatok előnyei, jellemző topológiák            |
|              | • Hálózatok osztályozása                                      |
|              | • Hálózati topológiák                                         |
|              | $\bullet$ Hálózatok működése, alapszolgáltatások              |
|              | • A hálózatok ISO-OSI modellje                                |
|              | • Gyakori hálózati szolgáltatások                             |
|              | • Az intranet fogalma                                         |

2

. . . . 12

| Felhasználói Interfész       |
|------------------------------|
| Alkalmazói Programrendszer   |
| Alkalmazói Programinterfész  |
| Adatbázis kezelő rendszer    |
| Operációs rendszer interfész |
| Operációs rendszer           |
| Hardver interfész            |
| Hardver                      |

# 1. Hardver-Szoftver

# 1.1. A számítógép hardver-szoftver felépítése

A számítógép hardver-szoftver felépítése.

- A múlt órán beszéltünk a hardverről
- Most következik a szoftver

#### 1.2. A szoftver

#### A szoftver.

- Mi a különbség a program és a szoftver között?
- Miből áll a szoftver?
  - programmodulok
  - rendszerdokumentáció, fejlesztői dokumentáció
  - konfigurációs adatok, és ezeket tároló fájlok
  - felhasználói dokumentáció
  - a szoftver bevezetését és használatát támogató eszközök: weblap, fórum, oktatóanyagok, demók, stb.
- Ezt mindig figyelembe kell venni, ha szoftvert készítünk, vagy vásárolunk

#### A szoftverfejlesztés fázisai.

- 1. szoftverspecifikáció (Mit csináljon a szoftver?)
- 2. szoftvertervezés (A rendszer megtervezése)
- 3. implementáció (A programkód előállítása)
- 4. tesztelés, validáció (A program helyességének ellenőrzése, bizonyítása)
- 5. szoftverevolúció (üzemeltetés, továbbfejlesztés)

| gépi kód: | 10011100                                                                                   | 0000101000110000 | 0000101000110001 |  |  |
|-----------|--------------------------------------------------------------------------------------------|------------------|------------------|--|--|
| assembly: | ADD                                                                                        | adat1            | adat2            |  |  |
| Pascal:   | $\mathrm{adat}1 := \mathrm{adat}1 + \mathrm{adat}2;$                                       |                  |                  |  |  |
| C:        | $\mathrm{adat}1 = \mathrm{adat}1 + \mathrm{adat}2;$                                        |                  |                  |  |  |
| Basic:    | $\operatorname{LET} \operatorname{adat} 1 = \operatorname{adat} 1 + \operatorname{adat} 2$ |                  |                  |  |  |
| Java:     | adat1 = adat1 + adat2;                                                                     |                  |                  |  |  |

# A programozás szintjei.

- gépi kódú programozás (bitek)
- assembly programozás (szimbolikus kódok, mnemonik)
  - assembly nyelv: a programozási nyelv
  - assembl<br/>er: az assembly nyelvű fordító program assembly nyelvű forráskó<br/>d $\Rightarrow$ gépi kód
- magasszintű programozási nyelvek ("mondatok")

#### A programozás szintjei - Példa.

#### Magasszintű programnyelvek.

- Imperatív (procedurális) programnyelvek
  - a programozónak le kell írnia a végrehajtandó algoritmust
    - \* FORTRAN 1954
    - \* ALGOL 60 1960
    - \* COBOL -1959
    - \* BASIC 1964
    - \* PASCAL 1968
    - \* C 1974
- Funkcionális (logikai) programnyelvek
  - nem a megoldást írja le a programozó, hanem a feladat logikai/matematika modelljét, a kielégítendő szabályokat
  - -ezek után a feltett kérdésekre automatikusan tud válaszolni a program
    - \* Prolog
    - \* LISP
- Szimulációs nyelvek

- a feladat statisztikai modelljéből kiindulva kísérletezi ki a megoldást
  - \* GPSS
  - \* Simula 67
  - \* TUTSIM
  - \* ASYST
- Grafikus programozást biztosító nyelvek
  - két- és háromdimenziós ábrák előállításához szükséges paraméterezhető rajzelemek az elemi utasítások
    - \* LabVIEW
    - \* VisSim
- Adatbázis-kezelő nyelvek
  - az adatbázis-kezelő szerverek programozását lehetővé tevő nyelvek
    - \* SQL
    - \* Progress
- Objektum alapú és objektum-orientált nyelvek
  - a feladat modelljét objektumokkal, ezek kapcsolataival és a hozzájuk köthető eseményekkel írják le
    - \* Smalltalk
    - \* Eiffel
    - \* C++
    - \* Java
    - \* Delphi (Object Pascal)
    - \* C#

## A programozási nyelvek definiálása.

- A számítógéppel való kommunikációhoz teljesen egyértelműen kell definiálni a szabályokat
- A programozási nyelveket két szinten definiáljuk:
  - 1. Szintaktika, szintaxis
    - nyelvtani szabályok
    - megmondja, hogy melyek a helyes programok
    - a fordítóprogram el tudja dönteni, hogy melyek a szintaktikailag helyes programok, hiba esetén jelzi ezeket
  - 2. Szemantika

- jelentés, tartalom
- meghatározza, hogy a szintaktikailag helyes programok mit jelentenek
- szemantikai hiba esetén nem kapunk hibaüzenetet, de a program nem azt csinálja, amit várunk tőle

## 1.3. Operációs rendszer

#### Operációs rendszer és rendszerközeli szoftverek.

- operációs rendszernek (rendszerszoftvernek) nevezzük azoknak a gyári programoknak az összességét, mely a számítógépes eszközök és a hálózat működését, az erőforrások elosztását és igénybevételét vezérlik (pl: DOS, UNIX, WINDOWS..., NOVELL NETWARE, Mac OS, stb.)
- rendszerközeli szoftvernek nevezzük azoknak a gyári programoknak összességét, melyek általános és gyakran szükséges szolgáltatásokkal az operációs rendszerhez tartozó programokat kiegészítik (pl. Total Commander)
- nincs éles határ a két kategória között
- Miért nevezzük operációs rendszernek?

#### Operációs rendszerek.

- MS-DOS (Disk Operating System, 1981-): egyfeladatos, egyfelhasználós (single user, single tasking), assembly-ben írták, parancsnyelv bázisú, interpreteres (a kapott utasítást azonnal végrehajtja, ha nem hibás a parancs)
- Windows (1985-): eredetileg egyfelhasználós, többfeladatos (multitasking), újabb változatai (XP-től kezdve) már többfelhasználósak (multiuser) assemblyben és C-ben írták, grafikus bázisú (ikonok, menü, egér, ...)
- UNIX (1973-), Linux (1991-): többfelhasználós, többfeladatos, C-ben írták, nyílt (nyilvános) forráskódú, parancsnyelv bázisú; a PC-ktől a nagyszámítógépekig használt operációs rendszer.

## Az operációs rendszer környezete.

- Három csatlakozási felületet kell megvalósítani (OS = Operating Sytem):
  - 1. OS Felhasználók (kezelők)
  - 2. OS Alkalmazások (programok)
  - 3. OS Hardver

- Fő feladata virtuális gép(ek) megvalósítása és működtetése
- Mit nevezünk virtuális gépnek?

#### OS – Felhasználók – Felhasználói felület.

- Ember gép kapcsolat
  - tájékoztatni kell a felhasználót a gép működéséről
  - lehetővé kell tenni a beavatkozást
- Kezelni kell az ehhez szükséges eszközöket
  - képernyő, billentyűzet, egér, hangeszközök, egyéb be-kimeneti eszközök
- A felhasználók nem egyformák:
  - "egyszerű" felhasználók
  - alkalmazás fejlesztők, programozók
  - rendszermenedzserek, rendszergazdák

#### Kezelői felület / Egyszerű felhasználók.

- elsősorban programokat futtatnak, a felhasználói programokkal kerülnek kapcsolatba, az operációs rendszerrel kevésbé
- a legfontosabb operációs rendszer szolgáltatás számukra a fájlrendszer
- bizonyos megbízhatóságot, biztonságot elvárnak, cserébe hajlandók bizonyos szabályokat követni, pl. bejelentkezés, jogosultságok, stb.
- számukra az operációs rendszer lehetőséget ad programok és adatok tárolására, használatára
- az egyszerű felhasználók számára a legfontosabb operációs rendszer szolgáltatások:
  - bejelentkezés
  - fájlok, adatok kezelése
  - programok áttekintése
  - programok futtatása
  - programok párhuzamos futtatása
  - programok leállítása (kilövése)

#### Kezelői felület / Alkalmazásfejlesztők.

- $\bullet$ természetesen a programozók egyben "egyszerű" felhasználók is, de ezen felül. . .
- elsősorban programokat írnak, tesztelnek, elemeznek
- az operációs rendszer programozói felületét ismerik, bizonyos mértékig a belső működését is
- többnyire speciális fejlesztői környezeteket használnak
- szükségük van az operációs rendszer szolgáltatásaira ahhoz, hogy adatokat, statisztikákat kapjanak a rendszer állapotáról (memória, erőforrások kihasználtsága, stb.)
- az alkalmazásfejlesztők számára a legfontosabb operációs rendszer szolgáltatások:
  - API-k (Application Programming Interface) a különböző rendszer erőforrások programozásához
  - programok futtatása különböző módokon (debug)

#### Kezelői felület / Rendszermenedzserek.

- természetesen a rendszermenedzserek egyben "egyszerű" felhasználók is, de ezen felül...
- Feladataik:
  - az operációs rendszer telepítése, konfigurálása
  - Adminisztráció: felhasználók, jogosultságok, más erőforrások
  - Hangolás: a rendszer teljesítményét befolyásoló paraméterek figyelése és beállítása
  - Felügyelet: hibák észlelése, elhárítása, log fájlok ellenőrzése, kezelése
  - Biztonsági mentések rendszeres készítése
- részletesen ismerik a rendszert
- olyan eszközökre van szükségük, amelyekre a többi felhasználónak nincs szüksége és ők nem is érhetik el azokat

#### Különböző felhasználói felületek.

- A felhasználók különböző csoportokba tartozhatnak (egyszerű felhasználó, programozó, rendszergazda)
- Egy felhasználó több csoportba is tartozhat
- A felhasználók felkészültsége, tapasztalata is nagyon eltérő lehet
- Ugyanaz a felhasználó is többféle felületet igényel az eltérő feladatokhoz
- Akkor milyen a jó felhasználói felület?
  - sokféle
  - jól paraméterezhető
  - karakteres-grafikus
- Melyik operációs rendszer tudja mindezt?
- Biztos, hogy egyetlen operációs rendszert kell használnunk?
- Hogyan használhatunk több operációs rendszert egy számítógépen?

#### Virtualizáció.

- Napjainkban az informatika talán leggyakrabban emlegetett fogalma, technológiája
- Nagyon sokféle dolgot értünk alatta
- "A virtualizáció számítástechnikai kifejezés, számítógépi erőforrások különböző absztrakcióinak gyűjtőneve"
- Mit lehet virtualizálni egy számítógépben?
  - egyes hardvereszközöket:
    - \* virtuális memória
    - \* virtuális nyomtató
    - \* tároló virtualizáció, virtuális kötetek, fájlrendszerek
  - egy teljes számítógépet:
    - \* szervervirtualizáció virtuális szerver
    - $\ast$ desktop virtualizáció virtuális munka<br/>állomás, operációs rendszer
- Cloud Computing (erről külön fogunk beszélni)

# 2. Hálózatok

## 2.1. A hálózatok előnyei

#### A hálózatok előnyei.

- Erőforrások megosztása, közös használata
  - Milyen erőforrásokat oszthatunk meg?
    - \* nyomtató, plotter, szkenner, ...
    - \* háttértárak
    - \* processzor
    - \* hálózat
    - \* alkalmazások
    - \* adatok, adatbázisok
  - Ezáltal csökkentjük a rendszerben lévő redundanciát!
- Erőforrások többszörözése, biztonság
  - háttértárak, RAID
  - hálózat
  - adatok, adatbázisok
  - ez növeli a redundanciát!
- Kommunikáció, online szolgáltatások elérése

# 2.2. Hálózatok osztályozása

#### Hálózatok osztályozása méret szerint.

- LAN (Local Area Network / Helyi Hálózat)
  - kis kiterjedésű, épületen belül
  - nagy sebességű: 10-100-1000 Mbps
- MAN (Metropolitan Area Network / Nagyvárosi Hálózat)
  - nagyobb kiterjedésű, két telephely között, egy városon belül
  - sebessége általában kisebb, mint a LAN esetében
  - tipikusan LAN hálózatokat kapcsol össze
- WAN (Wide Area Network / Nagy Kiterjedésű Hálózat)
  - nagy kiterjedésű, városok közötti, országokat, kontinenseket átívelő

Ez a hagyományos felosztás, ma már csak nagyon speciális esetekben van értelme saját MAN, vagy WAN hálózatot építeni az internet használata helyett.



# Hálózati topológiák.

- 1. Bus (sín) topológia
  - minden eszköz egy közös bus-ra csatlakozik
  - minden eszköznek van egy egyedi címe, a csomagot ezzel címezzük meg
  - minden eszköz megkap minden csomagot, kiválasztja a neki szólót
  - $\bullet\,$ speciális lezáró elem kell a kábel végére, hogy ne verődjenek vissza a csomagok
  - ha bárhol megsérül a kábel, az egész hálózat leáll

# 2. Csillag topológia

 $\bullet$ minden eszköz közvetlenül a központban lévő szerverrel van összekapcsolva





- ha egy kábel megsérül, az csak egy munkaállomást érint
- a központ meghibásodásakor a teljes hálózat leáll

# 3. Gyűrű topológia

- minden eszköz két szomszéddal áll kapcsolatban, a gyűrűnek nincsen végpontja
- $\bullet$ a csomagok egy irányban haladnak körbe a gyűrűben, amíg el nem érik a címzettet
- $\bullet\,$ ha egy helyen megsérül a kábel, akkor a teljes hálózat leáll

# 4. Fa topológia

- az eszközök fastruktúrában vannak rendezve
- az egyes ágakat alhálózatoknak nevezzük

| Privát IP címtartományok   | Tartomány kezdete | Tartomány vége  | Címek száma |
|----------------------------|-------------------|-----------------|-------------|
| 24 bites tömb (/8 prefix)  | 10.0.0.0          | 10.255.255.255  | 16 777 216  |
| 20 bites tömb (/12 prefix) | 172.16.0.0        | 172.31.255.255  | 1 048 576   |
| 16 bites tömb (/16 prefix) | 192.168.0.0       | 192.168.255.255 | 65 536      |

- aktív eszközök irányítják a csomagokat
- $\bullet\,$ nagy hálózatok is kialakíthatók hatékonyan
- ha megsérül egy kábel, egy egész alhálózat elérhetetlenné válik

#### 2.3. Hálózatok működése

#### Hálózati címek, IP-címek.

- A különböző hálózati rendszerek eltérő kommunikációs és azonosítási módokat használtak
- Mára szinte teljesen egyeduralkodóvá vált az Internet Protocol (IP) használata
- Minden Internet Protocol segítségével kommunikáló eszközt egy egyedi IP-cím azonosít
- Kétféle IP-cím szabvány:
  - IPv4
    - $\ast$ 32 bites egész szám, 4 darab (0-255 közötti) szám pontokkal elválasztva
    - \* 4 milliárd lehetséges IP-cím
  - IPv6
    - \* 128 bites egész szám, 8 darab 16 bites szám kettőspontokkal elválasztva, tizenhatos számrendszerben (hexa)
    - \* Hány lehetséges IP-cím van?  $2^{128} = 3, 2 \times 10^{38}$

#### IPv4 "régi" típusú IP-címek.

- $\bullet\,$  A 4 milliárd IP cím bőségesen elegendőnek tűnt, mára azonban elfogyóban vannak
- Nem adunk minden eszköznek önálló IP-címet:

# IPv6 "új" típusú IP-címek.

- 1994-ben vált szabvánnyá
- Gyakorlatilag korlátlan címtartomány
- Minden elképzelhető eszköz egyedi IP-címet kaphat
- A két rendszer párhuzamosan élhet egymás mellett
- Példák IPv6 címekre:
  - fe80:0000:0000:0000:0202:b3ff:fe1e:8329
  - fe80:0:0:0:202:b3ff:fe1e:8329, elhagyhatjuk a vezető nullákat
  - fe80::202:b3ff:fe1e:8329, elhagyhatjuk az egymás melletti 0 tagokat, de csak egyszer!
  - Most még szokatlanok ezek a számok, de meg fogunk barátkozni velük!

## Névszolgáltatás – DNS.

- Az IP-címek emberi szem számára nehezen kezelhetők
- Megoldás: domain nevek és DNS Domain Name Service
- Hierarchikus adatbázis
- Fa struktúrájú domain nevek
- Sok ezer szerver tárol (domain név IP-cím) párokat
- Minden szerver a maga tartományának adatait tárolja és tartja karban
- Ha ismerünk egy domain nevet, akkor
  - megkérdezünk egy DNS szervert, hogy milyen IP-cím tartozik hozzá
  - vagy tudja, és visszaadja
  - vagy azt tudja, hogy melyik másik DNS szervertől kell megkérdezni, és továbbítja a kérést
  - így néhány lépés után megkapjuk a választ
  - a valóságban kicsit bonyolultabb a dolog, de ez az alapelv

#### A hálózati kommunikáció szabványos modellje.

- ISO-OSI hétrétegű modellje
- Szabványokban definiálja két hálózati eszköz kommunikációjának módját
- ISO: International Organization for Standardization, Nemzetközi Szabványügyi Szervezet (iso görögül egyenlőt jelent)
- OSI: Open Systems Interconnection Reference Model, Nyílt rendszerek Összekapcsolása, referencia modell
  - az internet működésének technikai alapja
  - minden eszköz összekapcsolható minden más eszközzel
  - Hogyan lehetséges ez?
    - \* 7 szintre osztja a hálózati kommunikációt
    - \* minden szint működését szabványok rögzítik
    - \* minden szint csak a közvetlenül alatta és felette lévő réteggel kommunikálhat, nem léphet át más szintekre

#### ISO-OSI példa: Vállalati kommunikáció.

#### ISO-OSI hétrétegű modell.

#### Alkalmazások, protokollok és az egyes OSI rétegek.

## Miért jó, ha megismerünk egy ilyen rendszert.

- Jobban átlátjuk, hogy mi történik a háttérben, amikor szörfölünk az interneten
- Jobban értjük, amikor aláírjuk a szerződést az internet szolgáltatóval
- Példa arra, hogy hogyan lehet megtervezni egy nagy rendszert
- Ezt az elvet felhasználhatjuk máshol is
- Példaként lásd a vállalati kommunikációról szóló példát!





| Réteg              | Fontos példa                                                                           | TCP/IP készlet                                          | SS7                                    | AppleTalk készlet                                                                |
|--------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|
| 7 - Alkalmazás     | HL7, Modbus, SIP                                                                       | HTTP,<br>SMTP,SMPP<br>SNMP, FTP,<br>Telnet, NFS,<br>NTP | ISUP,<br>INAP,<br>MAP,<br>TUP,<br>TCAP | AFP, PAP                                                                         |
| 6 - Megjelenési    | TDI, ASCII, EBCDIC,<br>MIDI, MPEG                                                      | XDR, SSL, TLS                                           |                                        | AFP, PAP                                                                         |
| 5 - Viszonylati    | Named Pipes,<br>NetBIOS, SAP, SDP                                                      | Viszonylat<br>kiépítés TCP-<br>vel                      |                                        | ASP, ADSP, ZIP                                                                   |
| 4 - Átviteli       | NetBEUI                                                                                | TCP, UDP,<br>RTP, SCTP                                  |                                        | ATP, NBP, AEP,<br>RTMP                                                           |
| 3 - Hálózati       | NetBEUI, Q.931                                                                         | IP, ICMP,<br>IPsec, ARP,<br>RIP, BGP,<br>OSPF           | MTP-3,<br>SCCP                         | DDP                                                                              |
| 2 - Adatkapcsolati | Ethernet, Token ring,<br>FDDI, PPP, HDLC,<br>Q.921, Frame Relay,<br>ATM, Fibre Channel |                                                         | MTP-2                                  | LocalTalk, TokenTalk, EtherTalk, Apple Remote Access, PPP                        |
| 1 - Fizikai        | RS-232, V.35, V.34,<br>Q.911, T1, E1,<br>10BASE-T, 100Base-<br>TX, ISDN, SONET,<br>DSL |                                                         | MTP-1                                  | Localtalk árnyékolt,<br>Localtalk<br>árnyékolás nélküli<br>kábelen<br>(PhoneNet) |

#### Hálózati szolgáltatások.

- Hagyományos szolgáltatások:
  - Elektronikus levelezés
  - FTP File Transfer Protocol
  - News, newsgroups Hírcsoportok
  - Gopher A www előfutára, hierarchikus menürendszerben tette elérhetővé az internetes tartalmakat
  - WWW World Wide Web
- Manapság minden hagyományos szolgáltatást magába olvasztott a World Wide Web
- Szinte minden szolgáltatást egyetlen böngésző programból érünk el
- Az e-mail és az FTP maradt használatban részben a www-tól függetlenül is, de ezeknek is megvan a webes megfelelőjük
- Új szolgáltatások:
  - Azonnali üzenetküldés
  - Videó átvitel
  - Távkonferencia
  - Keresés
  - Szemantikus web
  - Web2 Web 2.0
  - Cloud computing Számítási felhő
  - Internet of Things (IoT) Tárgyak Internete

- ...

#### Heterogén hálózatok.

- Egy hagyományos vállalati rendszer 10 évvel ezelőtt:
  - belső vállalati hálózat:
    - \* megosztott szerverek, nyomtatók, stb.
    - \* belső kommunikáció, levelezés
    - \* elektronikus faliújság
    - \* céges telefonkönyv, a menza étlapja, hírek, megosztott fájlokban a szervereken
  - egyes gépeken, vagy minden gépen van internet hozzáférés is:

- \* webes keresés
- \* kommunikáció, chat, Skype, stb.
- \* a cég honlapja
- \* partnerek honlapjai, egyéb internetes szolgáltatások
- A cég informatikusai üzemeltetnek egy belső hálózatot a munkatársak számára, esetleg belépési lehetőséggel a partnercégek munkatársai számára
- Ehhez kitalálnak, megvalósítanak és üzemeltetnek különböző egyedi megoldásokat

#### Intranet.

- Ötlet: Miért kell más megoldásokat használnunk a belső hálózaton, mint amit az interneten használunk?
- Hagyomány: az internet elterjedése előtt épültek ki a helyi hálózatok egyedi technikákkal, más protokollokat használva
- Intranet: olyan belső hálózat, ami ugyanazokat a módszereket, hardver és szoftver eszközöket használja, mint az interneten
  - TCP-IP protokoll a hálózati eszközök közötti kommunikációhoz
  - HTTP protokoll a hipertext dokumentumok továbbításához
  - A munkaállomásokon böngésző program fut
  - A szervereken webszerver, levelezőszerver, FTP szerver fut
  - Kommunikációhoz használhatjuk az e-mailt, chat-et, Skype-ot, MSN-t stb.
- Mi választja el a külső és a belső hálózatot?
  - Tűzfal Firewall

#### Befejezés.

Köszönöm a figyelmet!