Clustering

Sayani Gupta

16/06/2021

Contents

1	Hov	w the time series plot of the designs look like for different sample sizes?	1
	1.1	Number of obervations per combination is 4	1
	1.2	Number of obervations per combination is 10	3
	1.3	Number of obervations per combination is 50	4
2	Sim	nulation: 4 datasets with 2 designs	F
	2.1	Generate 2 time series from varx	F
	2.2	Generate 2 time series from varall	Ę
	2.3	How do they look?	6
		Compute quantiles of conditional distributions	
		Hierarchical clustering based on pairwise distances	
		Multi-dimensional scaling with hierarchical clusters	
3	Rep	peat with 3 designs (for varying sample size)	Ę

1 How the time series plot of the designs look like for different sample sizes?

```
set.seed(9999)
nx_val = 2 # number of x-axis levels
nfacet_val = 3 # number of facet levels
w1_val = 3 # increment in mean
w2_val = 0 # increment in sd
mean_val = 0 # mean of normal distribution of starting combination
sd_val = 1 # sd of normal distribution of starting combination
```

1.1 Number of obervations per combination is 4

```
ntimes_val = 4
```

Table 1: Simulated data across combination of categories (left) and manipulated time series format (right)

$_{ m id}$ _facet	id_x	sim_data	id_facet	id_x	sim_data	$index_old$	index_new	time
1	1	1.0840991	1	1	1.0840991	1	1	1
1	1	0.8431089	1	2	5.9038161	5	17	2
1	1	0.4943890	2	1	7.4203744	9	10	3
1	1	-0.7730161	2	2	8.5834288	13	3	4
1	2	5.9038161	3	1	11.8207616	17	19	5
1	2	3.9088839	3	2	15.4918386	21	12	6
1	2	2.0369233	1	1	0.8431089	2	5	7
1	2	2.8117113	1	2	3.9088839	6	21	8
2	1	7.4203744	2	1	6.9864382	10	14	9
2	1	6.9864382	2	2	8.5708607	14	7	10
2	1	5.5500595	3	1	14.3329026	18	23	11
2	1	7.0716663	3	2	15.9084482	22	16	12
2	2	8.5834288	1	1	0.4943890	3	9	13
2	2	8.5708607	1	2	2.0369233	7	2	14
2	2	8.8833411	2	1	5.5500595	11	18	15
2	2	8.7014611	2	2	8.8833411	15	11	16
3	1	11.8207616	3	1	11.7010540	19	4	17
3	1	14.3329026	3	2	15.1561588	23	20	18
3	1	11.7010540	1	1	-0.7730161	4	13	19
3	1	13.7342014	1	2	2.8117113	8	6	20
3	2	15.4918386	2	1	7.0716663	12	22	21
3	2	15.9084482	2	2	8.7014611	16	15	22
3	2	15.1561588	3	1	13.7342014	20	8	23
3	2	14.8834948	3	2	14.8834948	24	24	24

1.2 Number of obervations per combination is 10

ntimes_val = 10 # number of observations per combination

1.3 Number of obervations per combination is 50

ntimes_val = 95 # number of observations per combination

2 Simulation: 4 datasets with 2 designs

Generate 4 series, two from design varf and another two from varall and see if clustering happens properly through the approaches

2.1 Generate 2 time series from varx

```
data1_varf <- sim_panel(
    nx = nx_val, nfacet = nfacet_val,
    ntimes = ntimes_val,
    # sim_dist = sim_varf_normal(2, 3, 5, 10, 5, 5)
    sim_dist = sim_varf_normal(2, 3, 0, 1, 5, 0)
) %>% unnest(data)

data2_varf <- sim_panel(
    nx = nx_val, nfacet = nfacet_val,
    ntimes = ntimes_val,
    # sim_dist = sim_varf_normal(2, 3, 5, 10, 5, 5)
    sim_dist = sim_varf_normal(2, 3, 0, 1, 2, 0)
) %>% unnest(data)
```

2.2 Generate 2 time series from varall

```
data1_varall <- sim_panel(
  nx = nx_val, nfacet = nfacet_val,</pre>
```

```
ntimes = ntimes_val,
# sim_dist = sim_varf_normal(2, 3, 5, 10, 5, 5)
sim_dist = sim_varall_normal(2, 3, 0, 1, 5, 0)
) %>% unnest(data)

data2_varall <- sim_panel(
    nx = nx_val, nfacet = nfacet_val,
    ntimes = ntimes_val,
# sim_dist = sim_varf_normal(2, 3, 5, 10, 5, 5)
sim_dist = sim_varall_normal(2, 3, 0, 1, 2, 0)
) %>% unnest(data)
```

2.3 How do they look?

2.4 Compute quantiles of conditional distributions

2.5 JS Pairwise distances between data sets

```
data_q_wide <- data_q %>%
  pivot_wider(names_from = data_type,
              values_from = sim_data_quantile) %>%
  select(-c(1,2))
ndata <- data_q %>% distinct(data_type) %>% pull(data_type)
ldata <- length(ndata)</pre>
lcomb <- nx_val*nfacet_val</pre>
dist_data <- map(1:ldata, function(x){ # first data</pre>
  map(1:ldata, function(y){ # 2nd data
    map(1:lcomb, function(z){ # number of combinations nx*nfacet
    JS(
        prob = quantile_prob_val,
        unlist(data_q_wide[z,x]),
        unlist(data_q_wide[z,y])
      ) %>% as_tibble()
  })%>% bind_rows(.id = "combinations")
})%>% bind_rows(.id = "data_type1")
}) %>% bind_rows(.id = "data_type2")
```

${\bf 2.6} \quad {\bf Hierarchical\ clustering\ based\ on\ pairwise\ distances}$

d stats::hclust (*, "complete")

2.7 Multi-dimensional scaling with hierarchical clusters

3 Repeat with 3 designs (for varying sample size)

varf and varall - 100 obs each combination and varx with 10 and 50 observation per combination taken

