FICHE DE COURS 23

Système de points matériels et Solide en rotation pure

Ce que je dois être capable de faire après avoir appris mon cours

Donner la définition mathématique d'un solide indéformable.
Décomposer le mouvement d'un solide en un mouvement de translation et un mouvement de rotation.
Énoncer les propriétés d'un mouvement de translation pure et d'un mouvement de rotation pure.
Déterminer mathématiquement la position du centre de masse d'un système de N points matériels.
Relier la quantité de mouvement totale d'un système de points matériels à la masse totale et à la vitesse du centre de masse.
Définir le moment d'inertie par rapport à un axe fixe d'un système de points matériels ou d'un solide.
Relier le moment cinétique d'un solide en rotation au moment d'inertie et à la vitesse angulaire.
Démontrer la loi de Huygens.
Relier l'énergie cinétique d'un solide en rotation pure au moment cinétique et à la vitesse angulaire.
Distinguer les forces intérieures des forces extérieures s'exerçant sur un ensemble de points matériels. et montrer que la résultante des forces intérieures est nulle.
Montrer que le moment résultant des forces intérieures est nul.
Définir la notion de couple.
Exprimer le moment du poids d'un système de points matériels et savoir que son point d'application est le centre de masse du système.
Définir puis énoncer les propriétés d'une liaison idéale.
Énoncer et utiliser le théorème de la résultante cinétique pour un système de points matériels ou un solide en rotation pure.
Énoncer et utiliser le théorème du moment cinétique pour un système de points matériels ou un solide en rotation pure.
Énoncer et utiliser les théorèmes de la puissance et de l'énergie cinétique pour un système de points matériels ou un solide en rotation pure.
Montrer que dans le cas d'un solide indéformable la puissance des forces intérieures est nulle.
Relier la puissance des forces extérieures au moment des forces extérieures et à la vitesse angulaire dans le cas d'un solide en rotation pure.
Établir l'expression de l'énergie potentielle associée à un couple de torsion

Les relations sur lesquelles je m'appuie pour développer mes calculs

 \square Centre de masse :

$$\overrightarrow{OG} = \frac{1}{m_{\text{tot}}} \sum_{i=1}^{N} m_i \overrightarrow{OM_i}$$

 $\hfill \square$ Quantité de mouvement totale :

$$\overrightarrow{p_{\mathrm{tot}}} = m_{\mathrm{tot}} \overrightarrow{v}(G/\mathcal{R})$$

☐ Moment cinétique et moment d'inertie pour un solide en rotation pure :

$$\mathcal{L}_{\Delta} = J_{\Delta}\dot{\theta} \qquad \text{et} \qquad J_{\Delta} = \sum_{i=1}^{N} m_i r_i^2 = \int_{P \in \mathcal{S}} r^2(P) dm(P)$$

 \Box Formule de Huygens :

$$J_{\Delta} = J_{\Delta_G} + md^2$$

☐ Énergie cinétique et moment cinétique :

$$E_c = rac{1}{2}J_{\Delta}\dot{ heta}^2$$
 et $E_c = rac{1}{2}\mathcal{L}_{\Delta}\dot{ heta}$

 $\hfill \square$ Théorème de la résultante cinétique (TRC) :

$$\left. \frac{\mathrm{d} \overrightarrow{p}_{\mathrm{tot}}}{\mathrm{d}t} \right|_{\mathcal{R}_g} = \overrightarrow{F_{\mathrm{ext}}}$$

 $\hfill \square$ Théorème du moment cinétique (TMC) :

$$\frac{d\overrightarrow{\mathcal{L}_A}}{dt}\bigg|_{\mathcal{R}_g} = \overrightarrow{\mathcal{M}_{A,\text{ext}}} \quad \text{ou} \quad \left[\frac{d\mathcal{L}_\Delta}{dt}\bigg|_{\mathcal{R}_g} = \mathcal{M}_{\Delta,\text{ext}} \right]$$

☐ Théorème de la puissance cinétique (TPC) et de l'énergie cinétique (TEC) :

$$\frac{\mathrm{d}E_c}{\mathrm{d}t}\Big|_{\mathcal{R}_g} = \mathcal{P}_{\mathrm{int}} + \mathcal{P}_{\mathrm{ext}} \qquad \text{et} \qquad \left[\begin{array}{c} \Delta E_c \\ I \to F \end{array} \middle|_{\mathcal{R}_g} = W_{int} + W_{ext} \\ I \to F \end{array} \right]$$

☐ Lien entre moment et puissance d'une force extérieure pour un solide en rotation autour d'un axe fixe :

$$\mathcal{P}_{ext} = \mathcal{M}_{\Delta,ext} imes \dot{ heta}$$