Group FTR

Week 7: Deliverables

Team Details

Name	Email	Country	College/Company	Specialization
Fabian Umeh	Fabianumeh335@gmail.com	UK	Teesside University	Data Science
Rukevwe Ovuowo	rovuowo@gmail.com	Nigeria	GBG Data science Academy	Data Science
Olutayo Oladeinbo	oladeinboolutayo@yahoo.com	UK	Teesside University	Data Science

Problem statement

Churn rate is a marketing metric that describes the number of customers who leave a business over a specific time. Every user is assigned a prediction value that estimates their state of churn at any given time.

Business Understanding

Browsing behaviour Historical purchase data among other information It factors in our unique and proprietary predictions of how long a user will remain a customer. This score is updated every day for all users who have a minimum of one conversion. The values assigned are between 1 and 5.

Project lifecycle

Two weeks—deadline (1/09/2022)

Data intake report

Name: Customer Churn score prediction

Report date: 18/08/2022

Internship Batch: LISUM11: 30

Version:<1.0>

Data intake by: Fabian Umeh, Rukevwe Ovuowo, and Olutayo Oladeinbo

Data intake reviewer: Group members

Data storage location: Github

Tabular data details:

Total number of observations: 36992

Total number of files: 1 Total number of features: 25 Base format of the file: .csv Size of the data: 8.3 MB

PROBLEMS IN DATA

1.1 Missing values:

Some values in columns such as [region_category, preferred_offer_types, points_in_wallet], appears to be missing.

1.2 Approach:

• The region category was encoded as follows:

City - 3

Town - 2

Village – 1

And as such, missing values were filled with the non-extreme value (2) for town.

- The points_in_wallet column had a relatively small percentage of missing values, and these values were filled using the average of the collected samples.
- The Preferred offer type column was encoded as follows:

Offer - 1

Without offer -0

And as such the few missing values were replaced with no offers.

data.info()

C <class 'pandas.core.frame.DataFrame'>
RangeIndex: 36992 entries, 0 to 36991
Data columns (total 25 columns):

#	Column	Non-No	ull Count	Dtype		
0	customer_id		non-null	object		
1	Name	36992	non-null	object		
2	age	36992	non-null	int64		
3	gender	36992	non-null	object		
4	security_no	36992	non-null	object		
5	region_category	31564	non-null	object		
6	membership_category	36992	non-null	object		
7	joining_date	36992	non-null	object		
8	<pre>joined_through_referral</pre>	36992	non-null	object		
9	referral_id	36992	non-null	object		
10	preferred_offer_types	36704	non-null	object		
11	medium_of_operation	36992	non-null	object		
12	internet_option	36992	non-null	object		
13	last_visit_time	36992	non-null	object		
14	days_since_last_login	36992	non-null	int64		
15	avg_time_spent	36992	non-null	float64		
16	avg_transaction_value	36992	non-null	float64		
17	avg_frequency_login_days	36992	non-null	object		
18	points_in_wallet	33549	non-null	float64		
19	used_special_discount	36992	non-null	object		
20	offer_application_preference	36992	non-null	object		
21	past_complaint	36992	non-null	object		
22	complaint_status	36992	non-null	object		
23	feedback	36992	non-null	object		
24	churn_risk_score	36992	non-null	int64		
dtypes: float64(3), int64(3), object(19)						
_	ry usage: 7.1+ MB					

2.1 String Error:

The data type in the average frequency login days column was supposed to be 'int' but rather contained some string value 'Error', which was further removed.

2.2 Approach:

The average frequency login days column keeps record of the average days the company site is visited by a customer. So ideally 'Error', most likely represent 0 login days was replaced as such.

Inspection of avg_frequency_login_days for posible anomaly:

From findings, the column contains 'int' and 'str' values, and as a result was not considered by the describe function above.

3.1 Negative values:

Some columns contained negative values, which appeared to be anomalous and were further excluded from the analysis.

3.2 Approach:

The negative (anomalous) values were few and were excluded from the analysis.

Check and removal of negative values (anomalous values):

```
#code to check for the negative values in the Dataframe we noticed from the describe function
     anom = data[['avg_time_spent','days_since_last_login','points_in_wallet','churn_risk_score','avg_frequency_login_days']].min(axis=0)
     anom[anom < 0]
 C→ avg_time_spent
                                -2814.109110
    days_since_last_login
points_in_wallet
                                  -999,000000
     churn risk score
                                    -1.000000
     avg_frequency_login_days
     dtype: float64
[ ] #code to remove negative values in the avg_time_spent column
     data = data.drop(data[data['avg_time_spent'] < 0].index).copy()</pre>
     #code to remove negative values in the avg_time_spent column
     data = data.drop(data[data['days_since_last_login'] < 0].index).copy()</pre>
     #code to remove negative values in the avg time spent column
     data = data.drop(data[data['points_in_wallet'] < 0].index).copy()</pre>
     #code to remove negative values in the avg_time_spent column
     data = data.drop(data[data['churn_risk_score'] < 0].index).copy()</pre>
     #code to remove negative values in the avg_time_spent column
     new\_data = data.drop(data[data['avg\_frequency\_login\_days'] < \emptyset].index).copy()
```

4.1 Duplicate check:

Duplicate check:

```
[ ] print('counting duplicates')
  len(new_data) - len(new_data.drop_duplicates())

counting duplicates
```