What's cooking?

Baojie Zhang

Xi'an Shiyou University

2021-01-16

Overview

Problem Description

Data Analysis

Data Preprocessing

Models and predictions

Problem Description

Problem Description

Data Analysis

data analysis

Data Preprocessing

TFiDF Vectorizer similar dishes

Models and predictions

Problem Description

Data Analysis

Data Preprocessing

Models and predictions

Problem Description

Problem Description

Problem Description

Data Analysis

Data Preprocessing

Models and predictions

Problen

This time The Kaggle topic is What's cooking?

The subject requirements are asks to predict the category of a dish's cuisine given a list of its ingredients. There are three data sets:train.json,test.json,sample_submission.csv

Table 1: Data description

	-	
Name	Description	Attribute
train.json	training set(the type of cuisine, and	Data: id, cuisine,
	the list of ingredients of each recipe)	ingredients
test.json	Test set(predict the cuisine type	Data:id,ingredients
	of the list ingredients)	
sample_submission.csv	a sample submission file in the format	Data:id,cuisine

Data Analysis

data analysis

Data Preprocessing

Models and predictions

Data Analysis

data analysis

Problem Description

Data Analysis

data analysis

Data Preprocessing

Models and predictions

Table 2: Data

	id	cuisine	ingredients
0	10259	greek	'romaine lettuce', 'black olives', 'grape tom
1	25693	southern_us	'plain flour', 'ground pepper', 'salt', 'toma
2	20130	filipino	'eggs', 'pepper', 'salt', 'mayonaise', 'cooki
3	22213	indian	'water', 'vegetable oil', 'wheat', 'salt'
4	13162	indian	'black pepper', 'shallots', 'cornflour', 'cay

- There are 39774 data in the training set.
 There are 9944 data in the test set.
- Data is imported as DataFrame object, each recipe is a separate line.
- There are no missing values in the training set.

data analysis

Problem Description

Data Analysis

data analysis

Data Preprocessing

Models and predictions

■ The percentage of dishes from each country in the total training set:

image1:The percentage of dishes

Data Analysis

data analysis

Data Preprocessing

Models and predictions

■ The following results are obtained by sorting and sorting the data of ingredients:

Table 3: Data

id	cuisine	id	cuisine	id	cuisine
salt	18049	sugar	6434	pepper	4438
onions	797	garlic cloves	6237	vegetable oil	4385
olive oil	7972	butter	4848	eggs	3388
water	7457	ground black pepper	4785	soy sauce	3296
garlic	7380	all-purpose flour	4632	kosher salt	3113

We can also get the dish label from the training set,as follows: 'greek', 'southern_us', 'filipino', 'indian', 'jamaican', 'spanish', 'italian', 'mexican', 'chinese', 'british', 'thai', 'vietnamese', 'cajun_creole', 'brazilian', 'french', 'japanese', 'irish', 'korean', 'moroccan', 'russian'

Data Analysis

Data Preprocessing

TFiDF Vectorizer similar dishes

Models and predictions

Data Preprocessing

Data Preprocessing

Problem Description

Data Analysis

Data Preprocessing

TFiDF Vectorizer similar dishes

Models and predictions

First process the string:

■ To remove everything except a-z and A-Z and to make list element a string element.

Table 4: Data

id	cuisine	ingredients
0	greek	romaine lettuce black olive grape tomato garli
1	southern_us	plain flour pepper salt tomato black pepper
2	filipino	egg pepper salt mayonaise cooking oil green ch
3	indian	water vegetable oil wheat salt
4	indian	black pepper shallot cornflour cayenne pepper

TFiDF Vectorizer

Problem Description

Data Analysis

Data Preprocessing

TFiDF Vectorizer

similar dishes

Models and predictions

TFiDF Vectorizer on the processed data:

■ Use TFiDF Vectorizer to evaluate the importance of each dish of vegetable raw materials

```
605)
(O,
               0.006881830426943897
    1598)
(O,
               0.004922916349018388
    1217)
(O,
               0.009471373982023997
    515)
(O,
               0.004407654548451798
    697)
(O,
               0.0059309209813973975
    2003)
               0.008325482704302814
(O,
    1947)
(O,
               0.008325482704302814
    783)
(O,
               0.00751245990409849
(O,
    1727)
               0.004922916349018388
    532)
(O,
               0.006366568626377306
    734)
(O,
               0.005220677348656123
    1670)
(0,
               0.009471373982023997
    1673)
(O,
               0.016660637478518942
    2134)
(O,
               0.013763660853887794
(O,
    945)
               0.013763660853887794
(O.
    110)
               0.004922916349018388
    700)
               0.006366568626377306
(O,
    357)
               0.006366568626377306
(O,
```

image4:TFiDF

similar dishes

Problem Description

Data Analysis

Data Preprocessing

TFiDF Vectorizer

gimilar dighas

Models and predictions

More similar dishes and visualize dishes:

From this picture, We can notice there are 3 clusters of cuisines.

Data Analysis

Data Preprocessing

Models and predictions

Models and predictions

Model

Problem Description

Data Analysis

Data Preprocessing

Models and predictions

Use Linear SVC model for prediction:

■ best_score:0.7857898061559815

