Bayesian Inference in e-sport matches

Bayesian Computation Project

Presentation of the game

• 2 teams

Assymetric game for the 2 teams

No determined duration for a match

Presentation of the dataset

- All matches since 2014
- For each match is given:
 - Tournament
 - Regional
 - International
 - 2 opponent teams
 - Winner
 - Duration of the match
 - Year/Split of the match

Goal

- Given a match:
 - Predict winner
 - Predict duration
- Issues:
 - Is the duration predictable?
 - Do we have enough data?

Summary

- 1. Prediction of the winner of a match
 - 1. Logit Model
 - 1. Posterior
 - 2. Sampling Methods / Predictions
 - 3. Inflence of Time scale and Training Set
 - 2. Logit Model for International events
 - 1. Model
 - 2. Predictions
- 2. Prediction of the duration of a match
 - 1. Basic models
 - 1. Gaussian
 - 2. Gamma
 - 3. Skewed Gaussian
 - 2. Injection of Logit Model for duration prediction
 - 1. Model
 - 2. Predictions

Prediction of the winner of a match

Logit Parametric Model

Excluding international tournaments

• « Force » f_i for each team, Δ bias

Probability of i winning against j:

•
$$p_{ij} = logit^{-1}(f_i - f_j + \Delta)$$

Logit Model:

•
$$p_{ij} = \frac{e^{f_i + \Delta}}{e^{f_i + \Delta} + e^{f_j}}$$

Parameters

- *m* teams
- Parameter:

•
$$\theta = \begin{pmatrix} f_1 \\ f_2 \\ \dots \\ f_m \\ \Delta \end{pmatrix}$$
 « log-odds »

- $(f_i)_{1 \le i \le m}$ « force » of each team
- Δ bias for the blue side

Variables

- Pairs $(y_{i,j}, X_{i,j})$
 - $y_{i,j} \in \{0,1\}$ outcome of the match
 - $X_{i,j} = \left(\delta_{k,(i,j,m+1)}\right)_{(m+1)\times 1}$
 - $X_{i,j_{m+1}} = 1$ = Bias of Blue side
- Classification Task:
 - Predict outcome of matches

A Bayesian Linear Model

•
$$f(D|\theta) = \prod_{k=1}^{n} f(y_k|\theta, x_k)$$

- We have linear dependency:
 - $y_k \sim B(logit^{-1}(\theta^T x_k))$; $y_k = 1 = blue \ side \ win$
 - $x_k = X_{i,j} = \left(\delta_{k,(i,j,m+1)}\right)_{k \times 1}$; team i vs j
- Then we have:

•
$$p(y_k | \theta, x_k = X_{i,j}) = \left(\frac{1}{1 + e^{-(f_i - f_j + \Delta)}}\right)^{y_k} \cdot \left(1 - \frac{1}{1 + e^{-(f_i - f_j + \Delta)}}\right)^{1 - y_k}$$

Prior

- Gaussian Prior
 - $\theta_i \sim N(\mu_i, \sigma_i^2)$
 - Choice:
 - $\mu_{1 \le i \le m} = \mu_0$; μ_0 not relevant
 - μ_{m+1} =0 ; game well-balanced
 - $\sigma_{1 \le i \le m} = 4$; flexible model
 - $\sigma_{m+1} = 1$; stronger intuition for the bias

Posterior

- $f(\theta|D) = f(D|\theta)f(\theta)$
- $\theta_{bayes} = E(\theta|D) = \int_{\theta} f(\theta|D)d\theta$
- $\theta_{(m+1)\times 1}$
- Shape of the posterior:

Shape of the posterior

• A lot of symmetric dimensions:

Shape of the posterior

• Few assymetric dimensions:

• Therefore, $\theta_{bayes} \neq \theta_{MLE}$

Fitting Methods used

• Laplace Approximation : $\theta = \theta_{MLE}$

• Importance Sampling : $\theta = \theta_{bayes}$

• Metropolis-Hastings : $\theta = \theta_{bayes}$

Coded in Python

Predictor

• We get θ^* fitting our model

- Given $x_k = X_{i,j}$ we estimate y_k :
 - $f_i^* f_i^* + \Delta^* \ge 0 \Longrightarrow \hat{y}_k = 1$
 - $\hat{y}_k = 0$ else
- « Accuracy » displayed by my algorithms for n matches:

•
$$A_{\%} = \frac{\#\{k \in \llbracket 1,n \rrbracket | \hat{y}_k = y_k\}}{n}$$
. 100 ; $n = len(Validation\ Set)$

Laplace Approximation

- Approximation of the curve by a Gaussian density
- Find $\theta^* = argmax_{\theta} f(\theta|D)$ by gradient descent
 - (also works with $\log(f(\theta|D))$
- Approximate Covariance Matrix by inverse of log-curvature:

•
$$Cov^* = (-\nabla^2(\log(f))|_{\theta^*})^{-1}$$

• Then $(\theta|D) \sim N(\theta^*, Cov^*)$

Backtracking Line-Search Gradient Descent

- Optimize choice of step by making sure we go down enough :
 - θ_n initial point; λ_0 initial step-size; E function to optimize; (α, β)
 - At each step:
 - Initialize $\lambda = \lambda_0$
 - Candidate is $\theta_c = \theta_n \lambda \nabla E(\theta_n)$
 - Accepted if $E(\theta_c) \le E(\theta_n) \lambda \alpha \|\nabla E(\theta_n)\|_2^2$; $\theta_{n+1} = \theta_c$
 - If rejected, $\lambda = \beta \lambda$

Laplace Approximation on Gaussian Example

Laplace Approximation on Posterior

LA on symmetric dimension

LA on assymetric dimension

Laplace Predictions

Predictions of winners by split in EULCS (2015-2017)
Training Set 1/2

Importance Sampling

- Goal: compute expectation of a random variable given its density
- Based on proposal distribution $h(\theta)$, like RS Sampling
- Principle:
 - $h(\theta)$ proposal we can sample from ; $f(\theta|D)$ our target density
 - Sample θ_i from h
 - Compute weight $p_i = \frac{f(\theta|D)}{h(\theta)}$
 - Estimator of Expectation:
 - $E(\theta \sim f(\theta|D)) \approx \frac{\sum_{i} p_{i} \theta_{i}}{\sum_{i} p_{i}}$

IS Predictions

Predictions of winners by split in EULCS (2015-2017)

Training Set $\frac{1}{2}$ N = 15000

Metropolis-Hastings

- Goal : Compute expectation by sampling from a density $f(\theta)$
- Build Markov Chain with respect to density and a proposal
 - θ_0 initiation; λ step-size
 - At each step n:
 - Compute $\theta_c = \theta_n + \lambda \eta_n$; $\eta_n \sim N(0,1)$ for example
 - Accept θ_c with probability $p_c = min\left\{\frac{f(\theta_c)}{f(\theta_n)}, 1\right\}$
 - If accepted $\theta_{n+1} = \theta_c$
 - Else $\theta_{n+1} = \theta_n$
 - We have sampled $\{\theta_n\}_{n_0 \le n \le N}$ from f
 - n_0 far enough, for independence

Some results with MH Sampling

- Sampling on a Gaussian of parameters ([0,1,4,9,16], identity):
- $\theta_0 = [1,15,-3,-4,5]$; $n_0 = N/2$
- $\theta_{baves}^1 = [0.8604, 14.8307, -3.1712, -3.7282, 5.0553]$
 - $\lambda = 0.001$; 40000 epochs
- $\theta_{bayes}^2 = [0.8660, 7.2102, 0.2559, 2.6136, 11.3700]$
 - $\lambda = 0.01$; 40000 epochs
- $\theta_{bayes}^3 = [-0.2776, 1.4215, 4.0391, 8.4282, 15.4884]$
 - $\lambda = 0.05$; 40000 epochs
- $\theta_{baves}^4 = [-0.1525, 1.1469, 3.9139, 9.0190, 15.9634]$
 - $\lambda = 0.1$; 40000 epochs
- $\theta_{baves}^5 = [-0.0008, 0.9551, 4.0527, 8.9214, 15.7864]$
 - $\lambda = 0.1$; 100000 epochs
- $\theta_{bayes}^6 = [-0.0693, 0.9115, 4.0223, 9,0129, 15.9835]$
 - $\lambda = 0.08$; 100000 epochs

MH Predictions

Predictions of winners by split in EULCS (2015-2017)
Training Set 1/2

Metropolis-adjusted Langevin

- Same idea than MH
- Difference of candidate and acceptance probability

•
$$\theta_c = \theta_n + \frac{\lambda^2}{2} \nabla [\log(f(\theta))] + \lambda \eta_n$$

•
$$p_c = min\left\{\frac{f(\theta_c)\pi(\theta_n|\theta_c)}{f(\theta_n)\pi(\theta_c|\theta_n)}, 1\right\}$$
;

• with
$$\pi(\theta_1|\theta_2) = \alpha e^{-\frac{1}{\lambda^2} \left\| \theta_1 - \theta_2 - \frac{\lambda^2}{2} \nabla \left[\log(f(\theta_2)) \right] \right\|_2^2}$$

Some results with Langevin MH

- Sampling on a Gaussian of parameters ([0,1,4,9,16], identity):
- $\theta_0 = [1,15,-3,-4,5]$; $n_0 = N/2$
- $\theta_{bayes}^1 = [0.8796, 12.1070, -1.6991, -1.0497, 7.9802]$
 - $\lambda = 0.1$; 100 epochs
- $\theta_{bayes}^2 = [-0.2568, 1.1059, 3.7440, 8.7557, 15.7393]$
 - $\lambda = 1$; 100 epochs
- $\theta_{baves}^3 = [-0.0004, 1.0256, 4.0052, 8.9841, 15.9989]$
 - $\lambda = 1$; 10000 epochs
- $\theta_{baves}^4 = [-0.1454, 1.1070, 3.9868, 8.9793, 15.9867]$
 - $\lambda = 0.2$; 20000 epochs
- $\theta_{bayes}^5 = [-0.0204, 0.9513, 4.0375, 8.9850, 15.9587]$
 - $\lambda = 0.5$; 20000 epochs
- $\theta_{baves}^6 = [0.0003, 1.0045, 4.0029, 9,0069, 15.9955]$
 - $\lambda = 1$; 50000 epochs

Advantages of Langevin

Moves quicker to high density zones

Good management of anisotropic zones

Slows down and increases accuracy in flat zones / extrema

<u>BUT</u> slower epochs than MH

Langevin MH Predictions

Predictions of winners by split in EULCS (2015-2017)
Training Set 1/2

Interpretation of results

- EULCS 2015 Spring Split:
- Estimated θ_{bayes} :
 - $\left\{f_{i_{bayes}}\right\}_{1 \leq i \leq m}$ =[['EL', -0.06315812011347757], ['GIA', -0.5012171478884524], ['CW', 0.013228694659806372], ['SK', 1.6127797646398627], ['GMB', 0.654502158438717], ['MYM', -0.6741420566171826], ['ROC', -0.34513280133045615], ['FNC', 1.434772313332971], ['UOL', 0.9247568739344932], ['H2K', 1.219724556163784]]
 - Δ_{bayes} =0.41554176
- Interpretation: « force » for each team
- The game is not well balanced : $p(y_{ij}=1 | f_i=f_j) \approx 0.6$

Differences MH // Langevin

Langevin MH Step-size $\lambda = 0.1$

MH Step-size $\lambda = 0.2$

$$\theta^* \approx (2,0)$$
 Initiation $\theta_0 = (10,10)$
$$5000 \ epochs$$
 Logit Model for Prediction of the winner - Langevin MH Sampling

Comparison of algorithms

- Our posterior is :
 - Monomodal
 - Close to 0
- MH Methods are quite slow
- Laplace is quicker and more reliable
- IS is the fastest

Influence of Training Set

• Fact : Data has regularity in time

• Is there a best size for training set?

• Periodic or random ?

Training Set: Region LCK (different splits)

Periodic Training Set $\{\#TS = n/i\}_{2 \le i \le 13}$ MH Sampling
500 epochs

Random Training Set $\{\#TS = n/i\}_{2 \le i \le 13}$ MH Sampling
500 epochs

Training Set: Region EULCS (different splits)

Periodic Training Set $\{\#TS = n/i\}_{2 \le i \le 11}$ MH Sampling
500 epochs

Random Training Set $\{\#TS=n/i\}_{2\leq i\leq 13}$ MH Sampling
500 epochs

Influence of time scale

- Many time scales
 - Split
 - k Years ; $1 \le k \le 4$
- Not much data :
 - $10 \le m \le 15$ teams per split
 - $100 \le n \le 200$ matches per split; 2 teams per match
- ⇒Temporal variation of data // Quantity of data ?

Time Scale Comparison

Different time scale predictions for 4 regions

(1 split; 1,2,3,4,5 years) Training Set 1/10IS Sampling; N = 15000

Predictions for international tournaments

Is our model relevant for international tournaments?

Predictions by year in international tournaments (2015-2017)

Training Set 1/10 IS Sampling; N = 15000

Parameters

- m_1 teams ; m_2 regions
- Parameter:

$$\bullet \ \theta = \begin{pmatrix} f_1 \\ f_2 \\ \cdots \\ f_{m_1} \\ F_1 \\ \cdots \\ F_{m_2} \\ \wedge \end{pmatrix} \text{ "log-odds "}$$

- $(f_i)_{1 \le i \le m_1}$ « force » for each team
- $(F_j)_{1 \le j \le m_2}$ « force » for each region
- Δ bias for the blue side

Model

$$\begin{array}{l} \bullet \;\; x_k = X_{i_1,j_1,i_2,j_2} = \left(\delta_{k,(i_1,j_1,i_2,j_2,m_1+m_2+1)} \right)_{(m_1+m_2+1)\times 1} \\ \bullet \;\; (\text{team}\; i_1 \; \text{from region}\; j_1) \; \text{vs}\; (i_2 \; \text{from}\; j_2) \\ \end{array}$$

- Parametric: $y_k \sim B(logit^{-1}(\theta^T x_k))$
- $p_{i_1j_1i_2j_2} = logit^{-1}(f_{i_1} f_{i_2} + F_{j_1} F_{j_2} + \Delta)$
- Regions quite heterogeneous; model should fit

Predictions from new model

Accuracy

Predictions per year in international tournaments

(2015-2017) Training Set 1/7 Langevin MH Sampling ; 500 Epochs

Accuracy per year // #Epochs

(10,20,50,100,500) (2015-2017) Training Set 1/7 Langevin MH Sampling

Prediction of the duration of a match

Prediction of match duration

Useful for bets

Possible to predict?

Some teams play faster than others

May depend on level difference between teams

Distribution of durations

Duration of matches
All years, all regions

Parametric model

- Expectation :
 - $\mu_{ij} = \alpha_i + \alpha_j + \mu_0$
 - $\{\alpha_i\}$ parameter for each team
 - μ_0 global expectation
- Parametric model:
 - $t_{ij} \sim L(\mu_{ij}, A)$

Variables

- Pairs $(t_{i,j}, X_{i,j})$
 - $t_{i,j} \in \mathbb{R}_+$ outcome : duration of the match
 - $X_{i,j} = (\delta_{k,(i,j,m+1,m+2)})_{(m+2)\times 1}$
 - $X_{i,j_{m+1}} = 1$ ~ Global mean
 - $X_{i,j_{m+2}} = 1$ ~ Variance
 - For skewed Normal:
 - $X_{i,j_{m+3}} = 1$ = Skewness

Predictor

• Once fitted, we estimate:

•
$$\hat{t}_{ij} = \alpha_{i_{bayes}} + \alpha_{j_{bayes}} + \mu_{0_{bayes}}$$

- Error:
 - $MSE = 1/n \sum_{1}^{n} (t_{ij} \hat{t}_{ij})^2$
 - Compared to variance

Gaussian Model

• $t_{ij} \sim N(\alpha_i + \alpha_j + \mu_0, \sigma)$; σ identical for each team

$$\bullet \ \theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \\ \mu_0 \\ \sigma \end{pmatrix}$$

Fitted using Langevin MH Sampling or IS

Gaussian predictions

Distribution of durations Langevin MH Sampled

Fitted Estimator

• θ_{bayes} = [1.57-0.239 0.038-0.423 1.71-1.33-0.47 0.28 0.005-0.392 0.342-1.44-0.946 2.08 1.020 0.235 35.3 6.38]

• MSE = 45.12

• Var = 43.34

• For EULCS, 2015; IS Sampled

Interpretation

• $|\alpha_i| < 2$; $\mu_0 \approx 35$

ullet No correlation between parameters $lpha_i$ and t_{ij}

• Distribution peak at μ_0

Gamma Model

•
$$t_{ij} \sim Gamma\left(k, \frac{\alpha_i + \alpha_j + \mu_0}{k}\right)$$

$$\bullet \ \theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \\ \mu_0 \\ k \end{pmatrix}$$

•
$$\mu_{ij} = k \cdot \frac{\alpha_i + \alpha_j + \mu_0}{k} = \alpha_i + \alpha_j + \mu_0$$

Fitted by Langevin MH Sampling

Gamma predictions

Distribution of durations Langevin MH Sampled

Errors on 2 Sets

- Error on training set:
 - $MSE_{1.2} = 53.43$, 43.34
 - $Var_{1.2} = 53.91$, 43.37
- Error on validation set:
 - $MSE_{1.2} = 57.21$, 68.16
 - $Var_{1.2} = 57.23$, 68.77

No correlation between parameters and estimated quantity

Skewed Gaussian Model

- $t_{ij} \sim SkewedGaussian(\alpha_i + \alpha_j + \mu_0, \omega, \varepsilon)$
- $\alpha_i + \alpha_j + \mu_0$ is max likelihood and not expectation

$$\bullet \ \theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_m \\ \mu_0 \\ \omega \\ \varepsilon \end{pmatrix}$$

- $\mu_{ij}=\alpha_i+\alpha_j+\mu_0+\omegarac{arepsilon}{\sqrt{1+arepsilon^2}}\sqrt{rac{2}{\pi}}$, Expectation
- Fitted by Langevin MH Sampling, MH Sampling

Skewed Gaussian Predictions

EULCS, 2015

EULCS, 2014-2018

Distribution of durations MH Sampled

Errors on 2 Sets

- Error on training set :
 - $MSE_{1.2} = 67.81$, 68.11
 - $Var_{1.2} = 71.21, 72.70$
- Error on Validation Set :
 - $MSE_{1.2} = 47.57$, 72.28
 - $Var_{1.2} = 48.32$, 72.84
- Best model so far

Langevin // MH Sampling

Step-size : 0,1 ; 0,1 600 Epochs

Step-size : 0,1 ; 0,1 300 Epochs

Injection of Logit Results in Skewed Gaussian

- Intuition: Difference of « force » has an influence
- Model:

•
$$\mu_{ij} = \alpha_i + \alpha_j + \mu_0 + \kappa \left| f_{i_{bayes}} - f_{j_{bayes}} + \Delta_{bayes} \right|$$

• We expect $\kappa < 0$

Skewed Gaussian with forces

•
$$\mu_{ij} = \alpha_i + \alpha_j + \mu_0 + \kappa |f_i^* - f_j^* + \Delta^*|$$

- $t_{ij} \sim SkewedGaussian(\mu_{ij}, \omega, \varepsilon)$
- $\alpha_i + \alpha_j + \mu_0$ is max likelihood and not expectation

$$\bullet \ \theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \\ \mu_0 \\ \omega \\ \varepsilon \\ \kappa \end{pmatrix}$$

• Expectation :

$$\theta_{bayes} = \alpha_{i_{bayes}} + \alpha_{j_{bayes}} + \mu_{0_{bayes}} + \kappa_{bayes} \left| f_i^* - f_j^* + \Delta^* \right| + \omega_{bayes} \frac{\varepsilon_{bayes}}{\sqrt{1 + \varepsilon_{bayes}^2}} \sqrt{\frac{2}{\pi}}$$

Fitted by Langevin MH Sampling

Skewed Gaussian with forces Predictions

Errors on 2 Sets

- Error on training set :
 - $MSE_{1.2} = 58.90$, 61.78
 - $Var_{1.2} = 63.85$, 66.96
- Error on Validation Set :
 - $MSE_{1.2} = 59.07$, 59.16
 - $Var_{1.2} = 63.86$, 64.70

• Best model, but not much influence of force parameters

Influence of Force Parameters

