Symmetry 9

https://github.com/heptagons/lenses 2024/1/13

Abstract

Symmetry 9

1 Rhombi

Rhombus	θ_1	θ_2	Area	Symmetry
a	$\alpha/2$	$2\alpha/2$	$\sin(\alpha)$	$R_3(\frac{1}{2},1)$
b	$\beta/2$	$4\beta/2$	$\sin(2\beta)$	$R_5(\frac{1}{2},2)$
c	$2\beta/2$	$3\beta/2$	$\sin(eta)$	$R_5(1,\frac{3}{2})$
d	$\gamma/2$	$6\gamma/2$	$\sin(3\gamma)$	$R_7(\frac{1}{2},3)$
e	$2\gamma/2$	$5\gamma/2$	$\sin(\gamma)$	$R_7(1,\frac{5}{2})$
f	$3\gamma/2$	$4\gamma/2$	$\sin(2\gamma)$	$R_7(\frac{3}{2},2)$
g	$\delta/2$	$8\delta/2$	$\sin(4\delta)$	$R_9(\frac{1}{2},4)$
h	$2\delta/2$	$7\delta/2$	$\sin(\delta)$	$R_9(1, \frac{7}{2})$
a	$3\delta/2$	$6\delta/2$	$\sin(3\delta) = \sin(\alpha)$	$R_9(\frac{3}{2},3)$
i	$4\delta/2$	$5\delta/2$	$\sin(2\delta)$	$R_9(2, \frac{5}{2})$

Table 1: Rhombi for symmetries $\{3,5,7,9\}$ internal angles $\theta_1 < \theta_2$ $(\theta_1 + \theta_2 = \pi)$ and areas. $\alpha = 2\pi/3$, $\beta = 2\pi/5$, $\gamma = 2\pi/7$ and $\delta = 2\pi/9$ $(3\delta = \alpha)$.

1.1 Stars from rhombi

Figure 1: The symmetry 9 four rhombi $\{h, i, a, g\}$ produce the four stars $\{S_G, S_H, S_I, S_J\}$ respectively with areas $\{9(h+i+a+g), 9(h+i+a), 9(h+i), 9h\}$.

2 Hexagons

2.1 Hexagons from stars

Figure 2 show the disposition of the symmetry 9 four stars $\{S_G, S_H, S_I, S_J\}$. We denote the 18 vertices of every star as $\{X_0, X_1, ..., X_{17}\}$ where $X = \{G, H, I, J\}$. Only some vertices are labeled in the figure. First we make coincident at vertice O all the vertices G_0, H_0, I_0, J_0 . With the center at O we rotate star S_H to make coincident vertices G_{17} and H_{17} . Similarly we rotate stars S_I and S_J to make coincident vertices G_{17} and $G_{$

First we add three new edges (in red) joining the stars S_G and S_H vertices: $\overline{G_3H_2}$, $\overline{G_5H_4}$ and $\overline{G_7H_6}$ dissecting the red region into four hexagons, two of them essentially different. The three consective angles of the two hexagons are shown: (1,4,4) and (3,4,2).

Then we add three new edges (in orange) joining the stars S_H and S_I vertices: $\overline{H_3I_2}$, $\overline{H_5I_4}$ and $\overline{H_7I_6}$ dissecting the orange region into four hexagons, two of them new. The three consective angles of the the two hexagons are show: (1,5,3) and (3,3,3).

Finally we add three more edges (in green) joining the stars S_I and S_J vertices: $\overline{I_3J_2}$, $\overline{I_5J_4}$ and $\overline{I_7J_6}$ dissecting the green region into four hexagons, two of them new. The three consective angles of the the two hexagons are show: (1,6,2) and (2,5,2).

The three consecutive angles of the hexagons are of the form (a, b, c) where a + b + c = 9. Table 2

Figure 2: Symmetry 9 stars $\{S_G, S_H, S_I, S_J\}$ dissected with vectors to get symmetry-9 hexagonal hexagons.

Hexagon	a	b	\mathbf{c}	Details
$H_9(1,1)$	1	1	7	self-intersecting
$H_9(1,2)$	1	2	6	Lense H^+
$H_9(1,3)$	1	3	5	Lense \boldsymbol{H}
$H_9(1,4)$	1	4	4	Lense G
$H_9(2,2)$	2	2	5	Lense J
$H_9(2,3)$	2	3	4	Lense I
$H_9(3,3)$	3	3	3	Lense \mathbf{A} equal to $H_3(1,1)$

Table 2: Symmetry 9 hexagons with angles factors $a \leq b \leq c$.