$10_{73} \ (K10a_3)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{42} - u^{41} + \dots + u^2 + b, -11u^{42} - 26u^{41} + \dots + 2a + 15, u^{43} + 3u^{42} + \dots - 3u - 1 \rangle$$

 $I_2^u = \langle b, a^2 - a + 1, u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{42} - u^{41} + \dots + u^2 + b, \ -11u^{42} - 26u^{41} + \dots + 2a + 15, \ u^{43} + 3u^{42} + \dots - 3u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1^{1}}{2}u^{42} + 13u^{41} + \dots - 13u - \frac{15}{2} \\ u^{42} + u^{41} + \dots - u^{3} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{42} - u^{41} + \dots + u + \frac{1}{2} \\ u^{11} - 3u^{9} - 2u^{8} + 4u^{7} + 4u^{6} - u^{5} - 4u^{4} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 5u^{42} + 11u^{41} + \dots - 11u - 6 \\ \frac{3}{2}u^{42} + 3u^{41} + \dots - 2u - \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{11}{2}u^{42} + 11u^{41} + \dots - 11u - \frac{13}{2} \\ u^{41} + 2u^{40} + \dots - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-6u^{42} 15u^{41} + \cdots + 19u + 13$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_8	$u^{43} + 2u^{42} + \dots + 4u^2 - 1$
c_2	$u^{43} - 23u^{42} + \dots + 3u - 1$
c_3, c_6	$u^{43} + 3u^{42} + \dots - 3u - 1$
C4	$u^{43} + 15u^{42} + \dots - 136u - 16$
c_5, c_9	$u^{43} - u^{42} + \dots + 8u - 4$
c_7	$u^{43} - 2u^{42} + \dots + 54u - 9$
c_{10}	$u^{43} + 20u^{42} + \dots + 8u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_8	$y^{43} + 20y^{42} + \dots + 8y - 1$
c_2	$y^{43} - 3y^{42} + \dots + 23y - 1$
c_3, c_6	$y^{43} - 23y^{42} + \dots + 3y - 1$
C4	$y^{43} + 23y^{42} + \dots + 4128y - 256$
c_5, c_9	$y^{43} + 15y^{42} + \dots - 136y - 16$
c_7	$y^{43} - 4y^{42} + \dots + 2520y - 81$
c_{10}	$y^{43} + 8y^{42} + \dots + 140y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.702205 + 0.692426I		
a = -0.216763 + 1.063530I	-5.79250 + 1.33127I	-3.13829 - 0.68119I
b = -0.000164 - 0.427737I		
u = -0.702205 - 0.692426I		
a = -0.216763 - 1.063530I	-5.79250 - 1.33127I	-3.13829 + 0.68119I
b = -0.000164 + 0.427737I		
u = -0.781262 + 0.586254I		
a = 0.083513 - 0.751531I	-2.37041 - 2.31340I	1.61332 + 3.65794I
b = -0.318284 + 0.078334I		
u = -0.781262 - 0.586254I		
a = 0.083513 + 0.751531I	-2.37041 + 2.31340I	1.61332 - 3.65794I
b = -0.318284 - 0.078334I		
u = 0.983429 + 0.401988I		
a = -0.18299 + 1.51178I	0.117899 + 0.694763I	2.77512 - 0.93635I
b = 0.95580 - 1.21635I		
u = 0.983429 - 0.401988I		
a = -0.18299 - 1.51178I	0.117899 - 0.694763I	2.77512 + 0.93635I
b = 0.95580 + 1.21635I		
u = -0.856054 + 0.662832I		
a = -0.459912 + 0.582589I	-5.34910 - 6.48185I	-1.72488 + 7.04551I
b = 0.671689 - 0.315858I		
u = -0.856054 - 0.662832I		
a = -0.459912 - 0.582589I	-5.34910 + 6.48185I	-1.72488 - 7.04551I
b = 0.671689 + 0.315858I		
u = -0.225042 + 0.862192I		
a = -0.295884 - 0.330542I	-1.69061 + 8.49752I	0.86281 - 6.51033I
b = 1.27608 - 1.18759I		
u = -0.225042 - 0.862192I		
a = -0.295884 + 0.330542I	-1.69061 - 8.49752I	0.86281 + 6.51033I
b = 1.27608 + 1.18759I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.344780 + 0.758252I		
a = -0.130381 - 0.811333I	-4.05606 + 1.05891I	-2.88403 - 0.52575I
b = 0.921218 - 0.514197I		
u = -0.344780 - 0.758252I		
a = -0.130381 + 0.811333I	-4.05606 - 1.05891I	-2.88403 + 0.52575I
b = 0.921218 + 0.514197I		
u = -0.199953 + 0.800457I		
a = 0.051467 + 0.372242I	0.47003 + 3.49797I	3.95877 - 2.64358I
b = -0.93072 + 1.17107I		
u = -0.199953 - 0.800457I		
a = 0.051467 - 0.372242I	0.47003 - 3.49797I	3.95877 + 2.64358I
b = -0.93072 - 1.17107I		
u = 1.178400 + 0.107020I		
a = 0.396216 - 0.024715I	0.86535 + 1.34877I	0.663414 + 0.523198I
b = -0.090847 - 0.484893I		
u = 1.178400 - 0.107020I		
a = 0.396216 + 0.024715I	0.86535 - 1.34877I	0.663414 - 0.523198I
b = -0.090847 + 0.484893I		
u = -1.113040 + 0.411275I		
a = -1.45881 + 1.05016I	3.14686 - 0.23394I	6.25545 + 1.76917I
b = -0.432177 - 1.242820I		
u = -1.113040 - 0.411275I		
a = -1.45881 - 1.05016I	3.14686 + 0.23394I	6.25545 - 1.76917I
b = -0.432177 + 1.242820I		
u = 1.140070 + 0.437496I		
a = -0.80318 - 1.92969I	4.51030 + 2.45703I	9.07720 - 1.39524I
b = -0.35123 + 1.92571I		
u = 1.140070 - 0.437496I		
a = -0.80318 + 1.92969I	4.51030 - 2.45703I	9.07720 + 1.39524I
b = -0.35123 - 1.92571I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.126240 + 0.485857I		
a = 0.62977 + 2.31079I	2.59778 + 7.42216I	5.67783 - 6.16302I
b = 0.62085 - 2.17017I		
u = 1.126240 - 0.485857I		
a = 0.62977 - 2.31079I	2.59778 - 7.42216I	5.67783 + 6.16302I
b = 0.62085 + 2.17017I		
u = -1.139980 + 0.455119I		
a = 1.12604 - 1.46501I	4.38701 - 5.48645I	8.10083 + 6.46210I
b = 0.68367 + 1.40137I		
u = -1.139980 - 0.455119I		
a = 1.12604 + 1.46501I	4.38701 + 5.48645I	8.10083 - 6.46210I
b = 0.68367 - 1.40137I		
u = 0.769344		
a = -0.716816	1.12210	9.24310
b = 0.736269		
u = -1.116400 + 0.556388I		
a = -0.04192 + 1.41433I	-1.77735 - 6.01104I	0. + 4.92263I
b = -1.30408 - 1.10564I		
u = -1.116400 - 0.556388I		
a = -0.04192 - 1.41433I	-1.77735 + 6.01104I	0 4.92263I
b = -1.30408 + 1.10564I		
u = 1.207770 + 0.337329I		
a = -1.27016 - 1.08338I	4.74199 + 0.21154I	9.28481 + 0.I
b = 0.27337 + 1.44443I		
u = 1.207770 - 0.337329I		
a = -1.27016 + 1.08338I	4.74199 - 0.21154I	9.28481 + 0.I
b = 0.27337 - 1.44443I		
u = 0.596984 + 0.406248I		
a = 1.37593 - 0.78349I	-1.01538 + 2.84865I	1.39768 - 5.43636I
b = -1.384640 - 0.071781I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.596984 - 0.406248I		
a = 1.37593 + 0.78349I	-1.01538 - 2.84865I	1.39768 + 5.43636I
b = -1.384640 + 0.071781I		
u = 1.253070 + 0.301863I		
a = 1.51757 + 0.68122I	3.01994 - 4.67918I	0. + 5.37573I
b = -0.561583 - 1.231910I		
u = 1.253070 - 0.301863I		
a = 1.51757 - 0.68122I	3.01994 + 4.67918I	0 5.37573I
b = -0.561583 + 1.231910I		
u = -1.177230 + 0.535254I		
a = 0.33951 - 2.06230I	3.34693 - 8.44363I	0
b = 1.28426 + 1.59104I		
u = -1.177230 - 0.535254I		
a = 0.33951 + 2.06230I	3.34693 + 8.44363I	0
b = 1.28426 - 1.59104I		
u = -0.674002 + 0.118500I		
a = -0.26643 - 1.82830I	0.77235 - 2.35753I	-0.15632 + 5.03988I
b = -0.006255 - 0.381927I		
u = -0.674002 - 0.118500I		
a = -0.26643 + 1.82830I	0.77235 + 2.35753I	-0.15632 - 5.03988I
b = -0.006255 + 0.381927I		
u = -1.191540 + 0.559537I		
a = -0.06666 + 2.26638I	1.20075 - 13.70690I	0
b = -1.51037 - 1.66131I		
u = -1.191540 - 0.559537I		
a = -0.06666 - 2.26638I	1.20075 + 13.70690I	0
b = -1.51037 + 1.66131I		
u = -0.025551 + 0.621606I		
a = -0.721932 + 0.454368I	1.39154 + 1.44262I	5.16219 - 3.23191I
b = 0.017381 + 1.186670I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.025551 - 0.621606I		
a = -0.721932 - 0.454368I	1.39154 - 1.44262I	5.16219 + 3.23191I
b = 0.017381 - 1.186670I		
u = 0.176403 + 0.591173I		
a = 1.253380 - 0.348319I	-0.03125 - 3.16118I	2.63487 + 2.30647I
b = -0.682100 - 1.225820I		
u = 0.176403 - 0.591173I		
a = 1.253380 + 0.348319I	-0.03125 + 3.16118I	2.63487 - 2.30647I
b = -0.682100 + 1.225820I		

II.
$$I_2^u = \langle b, a^2 - a + 1, u - 1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ a \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4a + 7

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_{10}	$u^2 - u + 1$
c_2, c_3	$(u+1)^2$
c_4, c_5, c_9	u^2
c ₆	$(u-1)^2$
c ₈	$u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_7, c_8 c_{10}	$y^2 + y + 1$	
c_2, c_3, c_6	$(y-1)^2$	
c_4, c_5, c_9	y^2	

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	0.500000 + 0.866025I	1.64493 - 2.02988I	9.00000 + 3.46410I
b =	0		
u =	1.00000		
a =	0.500000 - 0.866025I	1.64493 + 2.02988I	9.00000 - 3.46410I
b =	0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^2 - u + 1)(u^{43} + 2u^{42} + \dots + 4u^2 - 1) $
c_2	$((u+1)^2)(u^{43}-23u^{42}+\cdots+3u-1)$
<i>C</i> 3	$((u+1)^2)(u^{43}+3u^{42}+\cdots-3u-1)$
C4	$u^2(u^{43} + 15u^{42} + \dots - 136u - 16)$
c_5, c_9	$u^2(u^{43} - u^{42} + \dots + 8u - 4)$
c_6	$((u-1)^2)(u^{43} + 3u^{42} + \dots - 3u - 1)$
<i>c</i> ₇	$(u^2 - u + 1)(u^{43} - 2u^{42} + \dots + 54u - 9)$
<i>C</i> ₈	$(u^2 + u + 1)(u^{43} + 2u^{42} + \dots + 4u^2 - 1)$
c_{10}	$(u^2 - u + 1)(u^{43} + 20u^{42} + \dots + 8u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_8	$(y^2 + y + 1)(y^{43} + 20y^{42} + \dots + 8y - 1)$
c_2	$((y-1)^2)(y^{43} - 3y^{42} + \dots + 23y - 1)$
c_3, c_6	$((y-1)^2)(y^{43}-23y^{42}+\cdots+3y-1)$
c_4	$y^{2}(y^{43} + 23y^{42} + \dots + 4128y - 256)$
c_5, c_9	$y^2(y^{43} + 15y^{42} + \dots - 136y - 16)$
c_7	$(y^2 + y + 1)(y^{43} - 4y^{42} + \dots + 2520y - 81)$
c_{10}	$(y^2 + y + 1)(y^{43} + 8y^{42} + \dots + 140y - 1)$