

Microcontroller based Industrial Applications - Project

BY: VISWANAD RAM R REG NO: 23BEC0143-VIT STUDENT

PROBLEM STATEMENT:

Develop a Arduino-UNO based automatic water level detecting system for dam and indication of water level in dam .

SCOPE OF SOLUTION:

Basically making a connection with ultrasonic sensor and RGB LEDs with Arduino Uno so that the ultrasonic sensor can detect the water level by distance calculation and makes a indication by LEDs. the Arduino UNO acts as a intermediator for communication between LEDs and sensors.

REQUIRED COMPONENTS: (Tinkercad software)

Name	Quantity	Component
Uarduino	1	Arduino Uno R3
DIST1	1	Ultrasonic Distance Sensor (4-pin)
D1	1	Green LED
D2	1	Blue LED
D3	1	Red LED
R1	1	220 Ω Resistor
R2 R3	2	0.22 kΩ Resistor

SIMULATED CIRCUIT:

GERBER FILE:


```
CODE FOR SOLUTION:
// HC-SR04 Pins
#define TRIG_PIN 9
#define ECHO PIN 10
// LED Pins
#define GREEN LED 2
#define BLUE_LED 3
#define RED_LED 4
void setup() {
 Serial.begin(9600);
// Setup sensor pins
 pinMode(TRIG_PIN, OUTPUT);
 pinMode(ECHO PIN, INPUT);
// Setup LED pins
 pinMode(GREEN LED, OUTPUT);
 pinMode(BLUE LED, OUTPUT);
 pinMode(RED_LED, OUTPUT);
}
void loop() {
```

```
// Triggering the sensor
digitalWrite(TRIG_PIN, LOW);
delayMicroseconds(2);
digitalWrite(TRIG PIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIG PIN, LOW);
// Receiving the echo
long duration = pulseIn(ECHO PIN, HIGH);
float distance = duration * 0.034 / 2;
// Print distance to Serial Monitor
Serial.print("Distance: ");
Serial.print(distance);
Serial.println(" cm");
// Turn off all LEDs first
digitalWrite(GREEN LED, LOW);
digitalWrite(BLUE LED, LOW);
digitalWrite(RED_LED, LOW);
// Water Level Indication Logic
if (distance < 20) {
 digitalWrite(GREEN LED, HIGH); // High water level
```

```
} else if (distance >= 20 && distance < 30) {
    digitalWrite(BLUE_LED, HIGH); // Medium water level
} else {
    digitalWrite(RED_LED, HIGH); // Low water level
}

delay(1000); // Wait 1 second before next reading
}</pre>
```