EK-VAXV2-HB-002

VAX Maintenance Handbook

VAX-11/780

1983 Edition

Prepared by Educational Services of Digital Equipment Corporation Copyright ©1982, 1983 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC	EduSystem	RSTS
DECnet	IAS	RSX
DECsystem-10	MINC-11	TOPS-10
DECSYSTEM-20	OMNIBUS	UNIBUS
DECwriter	OS/8	VAX
DIBOL	PDP	VMS
digital	PDT	VT

CONTENTS

CHAPTER 1	INTRODUCTION	
Introduction		3
VAX-11/780 Hardy	vare Manuals	4
CHAPTER 2	HARDWARE DIAGRAMS	
VAX-11/780 Block	Diagram	7
KA780 CPU Modul	e Utilization Chart	8
KA780 CPU Block	Diagram	9
SBI Control Low B	its (SBL) Block Diagram	0
SBI Control High B	its (SBH) Block Diagram	1
	rix Block Diagram	
Cache Data Matrix	Block Diagram	3
	Data-Matrix Block Diagram	
Translation-Buffer	Address-Matrix Block Diagram	5
	Block Diagram	
	Block Diagram	
	agram	
	k Diagram	
	ore (WCS) Block Diagram	
	re (PCS) Block Diagram	
	ock Diagram	
	Soard Block Diagram23	
	elerator (FPA) Block Diagram	
	tem ID Register Jumpers	
	ers	

CHAPTER 3 MICROCODE

Control Store Field Map	. 	29
Microcode Routines That Support Console Software		
Starting Addresses	. 	30
Microcode Branch Enable Functions		31
Microtrap Vectors	. 	33
Microcode Memory Control Functions		34
Scratch Pad Operation	. .	35
Control ROM Field Definitions	. 	36
System Microcode Macros	. 	49
FPA Control Word Fields	. .	73
FPA Control ROM Field Definitions		74
CHAPTER 4 CONSOLE		
CIB Q-Bus Registers (Lower)		85
CIB Q-Bus Registers (Upper)		
Explanation of Version Numbers for Console Booting		87
Console Help File		88
Console Abbreviation Rules		90
Error Message Help File		
Console Remote Access Help File		94
Microdebugger Help File		
LSI-11 Console ODT Commands		97
Console Subsystem Configuration		99
KD11-F Module Jumper Configuration		100
MSV-11B Module Jumper Configuration		101
M9400-YE Cable Connections		102
DLV11 Jumper Configuration		103
DLV11-E Jumper Configuration		104
O-Bus Signal Description		
Console Root/Troubleshooting Flow		

CHAPTER 5 INTERNAL REGISTERS

Processor Register Addresses	117
Processor Register Bit Configurations	118
ID-Bus Map	126
ID-Bus Register Bit Configurations	133
Silo Register Interpretation	156
Microcode Machine Check Error Logout	159
Double Error Halt	
V-Bus Channel Configuration	161
V-Bus Directory	162
CHAPTER 6 SYSTEM BACKPLANE INTERCONNE	CT (SBI)
SBI Configuration	183
SBI Parity Field Configuration	184
SBI Information Transfer Formats	185
SBI Field Description	187
SBI I/O Register Addressing and Interrupt Vector Generation	
SBI Faults (Adapter Configuration Register)	
SBI Configuration Rules for TR Selection	
SBI Signals, Backplane Pins	194
CHAPTER 7 SBI NEXUS	
Memory Configuration Register A	197
Memory Configuration Register B	198
Memory Configuration Register C	199
Memory Array Addresses	200
MS780 Configuration for Rev H Backpanel	
MS780A Module Utilization	
MS780C Module Utilization	
Memory Block Diagram	
Memory I/O Data Logic	
UBA Address Space and C/A Format	007
UBA Registers	208

SBI to UNIBUS Control Address Translation	212
UNIBUS to SBI Address Translation	213
Addresses and Vectors for UNIBUS Devices	214
Floating Vectors and Floating Addresses	215
UNIBUS Configuration	217
DW780 (UBS) Block Diagram	218
Simplified Flow of Major Control Functions Within the UBA \dots	219
Standard and Modified UNIBUS Pin Assignments	
UNIBUS Signal Descriptions	221
DW780 Module Utilization	223
MBA Registers - Base Addresses and Bit Configurations	
RH780 (MBA) Backpanel Jumper Configuration	228
MASSBUS Disk Drive Register Address Calculation Chart	. 229
MASSBUS Signal Cable Pin Assignments	. 230
RH780 Module Utilization Chart	
MBA (RH780) Block Diagram	
MA780 Multiport Memory Registers	235
MA780 Array Addresses	
MA780C Jumpers	
MA780A Jumpers	
MA780 Backplane Data	
M8210 Memory Array Card Mnemonics	
M8212 Data Path/ECC Card Mnemonics	. 244
MA780 Multiport Memory Block Diagram	. 246
MA780 Multiport Memory Interface Module (M8258)	
Block Diagram	. 247
MA780 Multiport Memory Controller Module (M8259)	
Block Diagram	. 248
MA780 Multiport Memory Array Timing and Control Module	
(M8260) Block Diagram	. 249
MA780 Multiport Memory Synchronizer Module (M8261)	
Block Diagram	. 250
MA780 Multiport Memory Invalidate Map Data Path	
Block Diagram	
MA780 Multiport Memory Interlock Arbiter Block Diagram	. 252
MA780 Multiport Memory Data Path/ECC Module (M8212)	
Plack Diagram	252

DR780 Registers					
DR780 TR Arbitration Jumper and Wirewrap Selection					
DR780 Backplane					
DR780 Block Diagrams					
SBI Control (DSC) M8296	9			
Control Board	d (DCB) M829726	0			
Microprocesso	or (DUP) M8298	1			
Silo Module (DSM) M8299	2			
C1780 Registers		3			
C1780 Backplane Ju	ımpers	5			
C1780 Block Diagra	ım	6			
CHAPTER 8	PROCESSOR-SPECIFIC DIAGNOSTICS				
Microdiagnostic Mo	onitor Commands	1			
_	eudo-Instruction Definitions				
_	ntrol ROM Field Definitions				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_			
CHAPTER 9	MISCELLANEOUS				
VAX-11/780 Integ	rated Circuit Diagrams	5			
	Bit Shifter Chip with Tristate Output				
26S10 Bus Tr	ansceiver Chip	6			
74LS181 AL	U Chip	7			
74182 Looka	head Carry Chip	8			
74LS670 4 X	4 Register File Chip	9			
82\$23, 82\$12	23 256-Bit Bipolar PROM Chip 340	0			
85S68 64-Bit	Edge-Triggered D-Type Register File Chip				
with Tristate	Outputs	1			
	our-Bit Tristate Backplane Interconnect				
	hip				
	34: Bit ROM Chip				
	uffer Chip				
	rator Chip				
	upt Chip				
	col Chip				
DC005 Transceiver Chip					

CHAPTER 1 INTRODUCTION **CHAPTER 2** HARDWARE DIAGRAMS **CHAPTER 3** MICROCODE **CHAPTER 4 CONSOLE CHAPTER 5 INTERNAL REGISTERS CHAPTER 6** SYSTEM BACKPLANE INTERCONNECT **CHAPTER 7 SBI NEXUS CHAPTER 8** PROCESSOR-SPECIFIC DIAGNOSTICS **CHAPTER 9 MISCELLANEOUS**

CHAPTER 1 INTRODUCTION

INTRODUCTION

The purpose of the <u>VAX Maintenance Handbook</u> is to provide a compact, quick-reference source of troubleshooting, maintenance, operating, and programming information that is frequently referenced by DIGITAL field service, manufacturing, training, and engineering personnel.

This second volume of the \underline{VAX} Maintenance $\underline{Handbook}$ is devoted exclusively to information on the $\underline{VAX-11/780}$ processor.

VAX-11/780 HARDWARE MANUALS

Title	Document Number
VAX-11/780 Power System Technical Description	EK-PS780-TD-001
VAX-11/780 System Installation Manual	EK-S1980-IN-001
DS780 Diagnostic System User's Guide	EK-DS780-UG-001
DS780 Diagnostic System Technical Description	EK-DS780-TD-002
FP780 Floating-Point Processor Technical Description	EK-FP780-TD-001
REP05/REP06 Subsystem Technical Documentation	EK-REP06-TD-001
VAX-11/780 Central Processor Technical Description	EK-KA780-TD-001
VAX-11/780 Memory System Technical Description	EK-MS780-TD-00
DW780 UNIBUS Adapter Technical Description	EK-DW780-TD-001
KC780 Console Interface Technical Description	EK-KC780-TD-001
VAX-11/780 Software Handbook	EBØ8126
VAX-11/780 Architecture Handbook	EBØ7466
VAX-11/780 Multiport Memory Subsystem	E7-MA780-TD-001
DR780 General Purpose Interface User's Guide	EK-DR780-UG-001
VAX-11/780 TB, Cache, SBI Control Technical Description	EK-MM780-TD
VAX-11/780 RH780 Technical Description Manual	EK-RH780-TD
VAX Diagnostic System User's Guide	EK-VX11D-UG-001

Hardcopy manuals can be ordered from:

Digital Equipment Corporation 444 Whitney Street Northboro, MA 01532

Attention: Printing and Circulation Services (NR2/M15) Customer Services Section

For information concerning microfiche libraries, contact:

Digital Equipment Corporation Micropublishing (E46) 12 Crosby Drive Bedford, MA Ø1730

CHAPTER 2 HARDWARE DIAGRAMS

VAX-11/780 BLOCK DIAGRAM

KA780 CPU MODULE UTILIZATION CHART

	MODULE UTILIZATION KA780				
29	M8236	CIB			
28	M8289	FCT	•		
27	M8288	FAD	•		
26	M8287	FML	•		
25	M8286	FMH	•		
24	M8285	FNM	•		
23	M8235	USC			
22	M8234	PCS			
21					
20	M8233 or M8238	WCS			
19					
18	M8233 or M8238	ocs	•		
17					
16	M8232	CLK			
15	M8231	ICL			
14	M8230	CEH			
13	M8229	DAP			
12	M8228	DCP			
11	M8227	DDP			
10	M8226	DEP			
9	M8225	DBP			
8	M8224	IRC			
7	M8223	IDP			
6	M8222	ТВМ			
5	M8221	CDM			
4	M8220	CAM			
3	M8219	SBH			
2	M8218	SBL			
1	M8237	TRS			
	WHEN NOT INSTALLED USE BLANK MODULE 7014103				

TK-8346

12

TK 0333

CDMR

CDMU

20

KA780 TR AND SYSTEM ID REGISTER JUMPERS

SYSTEM IDENTIFICATION REGISTER (SID)

KA780 WCS JUMPERS

	WCS Slo Jll	t 20					iona t 18	1 W C	S	
	vv	тт	RR	NN	LL	FF	DD	вв	z	х
Ø-1K		I	I	I			I	I	I	
1-2K 2-3K		I		I	I		I		I	I
3-4K 4-5K	 T	 T	I	I	I		 T	I T	I	I
5-6K	I	Ī	Ī		I	Î	Î	Ī		I
6-7K 7-8K	I	I 	ī	I	I I	I	I 		I	I

	PCS Slot J12		22		
	L	J	F	D	В
Ø-4K	I				

NOTES:

- Addresses Ø-4K are reserved for PCS.
 M8233 starting addresses are in 1K increments.
 M8238 starting addresses are in 2K increments and begin on even boundaries only.

CHAPTER 3 MICROCODE

CONTROL STORE FIELD MAP

15 14 13 12 11 10 09 08 07 06 05 04 03	02 01 00
EALU JMP	
31 30 29 28 27 26 25 24 23 22 21 20 19	18 17 16
IEK MSC VAK FEK SCK CCK EBM	X SMX
1 47 46 45 44 43 42 41 40 39 38 37 36 35	34 33 32
ADS: MCT/CID FS: SPO	PCK !
	, , ,
*	50 49 48;
KMX SI/ACM OK	SGN
	,,
*	66 65 64;
DT RMX; BEN ACF ALU	SUB :
~	
95 94 93 92 91 90 89 88 87 86 85 84 83	82 81 80

MICROCODE ROUTINES THAT SUPPORT CONSOLE SOFTWARE STARTING ADDRESSES

"CONSOLE MICRO-CODE"

```
:MICRO-CODE ROUTINES TO SUPPORT CONSOLE SOFTWARE.
:ROUTINES EXPECT DATA IN RXOB, AND IN ID[71],ID[72]
:AND THEY RETURN DATA IN TXOB, STATUS IN ID[D.SV],
:AND ADDITIONAL INFORMATION IN ID[73].
:PC IS USED WHENEVER RIS IS REFERENCED.
:NO EFFORT IS MADE TO SAVE INTERNAL REGISTERS.
```

;INFORMATION AND PARAMETERS NEEDED FROM THE CONSOLE, ;ARE LOADED IN ID(RXDB) AND ID[11], ID[12]. ;RESULTING DATA IS LOADED IN ID[1XDB] AND ID[13], ;AND STATUS INFORMATION IS LOADED IN ID[D.SV].

ROUTINE:	START-ADDRESS:	PARAMETERS: (* MEANS SUPPLIED BY CONSOLE)
EXAMINE MEMORY	120	ID[T1]=BYTE/WORD/LONG-PARAMETER * ID[RXD8]=VIRTUAL ADDRESS * ID[TXD8]=MEWDRY DATA ID[T3]=PHYSICAL ADDRESS ID[T3]=STATUS-CODE
DEPOSIT MEMORY	121	ID[T1]=BYTE/WORD/LONG-PARAMETER * ID[R1D8]=VIRTUAL ADDRESS * ID[T2]=MEMORY DATA * ID[TXD8]=PHYSICAL ADDRESS ID[D.SV]=STATUS-CODE
EXAM.GEN.REG.	122	ID[RXDB]=REGISTER NUMBER • ID[TXDB]=REGISTER DATA
DEPO.GEN.REG.	123	ID[RXDB]=REGISTER NUMBER • ID[T2]=REGISTER DATA •
EXAM.PROC.REG.	124	ID[RXDB]=REGISTER NUMBER * ID[TXDB]=REGISTER DATA
DEP.PROC.REG.	125	ID[RXDB]=REGISTER NUMBER • ID[T2]=REGISTER DATA •
CONTINUE	127	
QUAD-CLEAR	129	ID[RXDB]=QUAD-ADDRESS .
SBI-UNJAM	12A	

BEN	Name	UPC<03>	UPC<02>	UCP<01>	UPC<00>
10	uTrap Vector	uVECT<3>	uVECT<2>	uVECT<1>	uVECT<0>
11	Last Reference	-PSL <fpd></fpd>	Nested Error	Wr Chk* -Intlk	-Read+ Intlk
12	EALU CC	EALU N	EALU Z	SC.ne.0	Sign Src
13					
14	SC $\emptyset = Zero$ $2 = 1-31$ $1 = Neg$ $3 = .gt.$	Ø	SC<9:8> .ne.0	SC.gt.0	SC<9:5> .ne.0
15	ALU1-0 (previous cycle)	Rlog Empty	ALU<1:0> .eq.0	ALU<01>	ALU<00>
16	STATE7-4	STATE<7>	STATE<6>	STATE<5>	STATE<4>
17	STATE3-0	STATE<3>	STATE<2>	STATE<1>	STATE<0>
18	D Bytes	D<31:24> .ne.0	D<23:16> .ne.Ø	D<15:8> .ne.0	D<7:0> .ne.0
19	D3-Ø	D<03>	D<02>	D<01>	D<00>
1 A	PSL CC	PSL <n></n>	PSL <z></z>	PSL <v></v>	PSL <c></c>
1B	ALU CC	ALU N	ALU Z	IR<Ø>	ALU C31
BEN	Name UPC<04	UPC<03>	UPC<02>	UPC<01>	UPC<00>
1C	PSL Mode -VAMX<	1> -VAMX<3Ø>	-Console Mode	-PSL <is>* -PSL<cm></cm></is>	Kernel Mode
1D	Translation PTE -Valid	Data Aligned	Ø	TB Miss + Access Viol.	TB Miss + lst Modify
1 E					
1 F					

MICROTRAP VECTORS

Number	Function
100	System Initialization
101	Unaligned Data Trap
102	Page Trap
103	Modify Bit
104	Protection Violation
105	Translation Buffer Miss
106	Reserved Floating Operand
107	Translation Buffer Parity Error
108	Cache Parity Error
109	Reserved
10A	Reserved
10B	Reserved
1ØC	RDS Error
10D	Timeout or Error Confirm
10E	Odd Address Error
10F	Control Store Parity Error

MICROCODE MEMORY CONTROL FUNCTIONS

```
--- trap on
Y = utrap on condition
                                                 * = utrap on condition unless MSC/
SECOND.REF on RETRY.NO.TRAP
                                                   N = do not utrap on condition
                                                   - = hardware behaviour undefined.
                                                         ucode must prevent condition
               R N N N N N N N Y N N TEST.RCHK
N N N N N N N N N N MEM.NOP
W N N N N N N N N Y N N TEST.WCHK
0 0000 0 V 0 0001 0 V 0 0010 0 V 0 0011 0 V
0 1000 0;V; R; R;Y;Y Y * * N Y Y Y Y; READ.V.RCHK
0 1001 0;V; R; [N;Y N - - N - Y Y Y; READ.V.NOCHK
0 1010 0 V R W Y Y Y Y Y Y Y Y READ.V. WCHK
0 1011 0 V R IB Y Y Y Y Y Y Y Y Y Y Y READ.V. IBCHK
0 1100 0'V' R' R'N'N N N N N Y N N N READ.V.NEWPC 0 1101 0'V'!R' N'Y N - - N - Y Y Y Y LOCKREAD.V.NOCHK 0 1110 0'V'!R' W'Y'!Y Y - - Y - Y Y Y Y LOCKREAD.V.WCHK 0 1111 0' | | |
1 0000 0; HOLD 'N'N N N N N N N N N SBI.HOLD
1 0031 0; 'UNJAM'N'N N N N N N N SBI.HOLD-UNJAM
1 0010 0(P):INVAL'N'N N N N N N N N N INVALIDATE
1 0011 0(P) VAL 'N'N N N N N N N N VALIDATE
  0100 0 P EXTWR NN N N N N N N Y EXTWRITE.P
1 0101 0(P) W NNNNNNNNN Y WRITE.P
  0110 0
               IW NNNNNNNNNY LOCKWRITE.P
1 0111 0 P
1 1000 0;
1 1001 0 P
              R NNNNNNNNYY READ.P
1 1011 0 P; ISR | N N N N N N N N Y | READ. INT. SUM
1 1100 0;
1 1101 0 P
               IR NNNNNNNNYY LOCKREAD.P
1 1110 0:
1 1111 0:1
              R NNNNNNNNNN ALLOW. IB. READ
O XXXX 1!
                       IN N N N N N N N N N; NO MEMORY OPERATION
1 XXXX 1 | I R | N N N N N N N N N N N DEFAULT: ALLOW IB READ
Abort Ref on Trap? A A A
                                 A A A R A (A=anv R=read)
```

: ACF. ACM. ADS. ALU. AMX"

Machine definition

. TOC

```
37
```

RBMX=7

```
.100
                Machine definition
                                      2 BEN. BMX*
BEN/=<76:72>..DEFAULT=0
                                IBRANCH ENABLE
        NOP=0
                                INO BRANCH
        7 = 1
                                2 ALD 7
        ROR=2
                                :LA<1>. PSL<C>. LA<0>
        C31 = 3
                                # ALU C31. 0
        TRC-ROM=4
                                SOUTPUT OF EXTENDED IRC-ROM
        TB 0=5
                                ITS O READY ?
        ACCEL=6
                                CODE FROM ACCELERATOR
        DATA.TYPE=8
                                *(VAX MODE) *. ASRC+VSRC. ASRC+O+D
                                    O--NORMAL, 1--QUAD OR DOUBLE
                                    2--FIELD. 3--ADDRESS
        END.DP1=8
                                :(-11 MODE) *. O CLASS. J CLASS+DM27
                                I(VAX HODE) *. IR<2:1>
        TR2-1=9
                                : (-11 MODE) *. SM47+SM57+DM47+DM57. DST R=PC
        PC.MODES=9
                                : (VAX MODE) MODE.LSS.ASTLVL. *. *
        RETHOA
        SRC.PC=OA
                                : (-11 MODE) SRC R=PC
        IB.TEST=0B
                                : 0--TR MISS. 1--ERROR
                                : 2--STALL. 3--DATA OK
        MULEOC
                                :SC.NE.O. D<1:0>
        SIGNS#0D
                                :Q<31>. D.NE.O. D<31>
        INTERRUPT=0E
                                JAC LOW, INTERNAL INTERRUPT, INT REQ
                                10. D BYTE O VALID DIGIT, D2-0 NEG SIGN
       DECIMAL=OF
        IITRAP=10
                                IMICROTRAP DISPATCH VECTOR
        LAST.REF=11
                                :-FPD. NESTED ERROR. LOW TWO BITS:
                                ; 0--READ INTERLOCK, 1--READ, READ CHK
                                : 2--WRITE, 3--READ, WRITE CHK
       FALUE12
                                FALU N. FALU Z. SC.NEO.O. SS
        SC=14
                                :SC<9:8>.NE.O. SC.GT.O. SC<9:5>.NE.O
        ALU1-0=15
                                :RLOG EMPTY, ALU<1:0>=0, ALU<1>, ALU<0>
                                : (ALU BITS FROM PREVIOUS STATE)
       STATE7-4=16
                                :STATE <7:4>
       STATE3-0=17
                                1STATE <3:0>
       D.BYTES=18
                                #BYTES 3. 2. 1. 0 OF D.NE.O
       D3-0=19
                                ;D<3:0>
        PSL.CC=1A
                                IN, Z, V, C OF PSL
        ALU=1B
                                JALU N. ALU Z. IR<0>. ALU C31
        PSL.MODE=1C
                                :=VA<31:30>. =CONSOLE. IS+CM. KERNEL
       TB.TEST=1D
                                :PTE VALID. ALIGNED. QUAD. +
                                ; 0--TRANSLATION OK, 1--WR CHK AND M=0
                                : 2--ACCESS VIOLATION. 3--TB MISS
BMX/=<84:82>
                                JBMX TO ALU
                                :A 0 IN THE BIT SELECTED BY SC<4:0>
        MASK#0
        PC.OR.LB=1
                                ; LB UNLESS R=PC, THEN PC
        PACKED.FL=2
                                PACKED FLOATING
        LB=3
        LC=4
        PC=5
        KMX=6
```

D OR G

```
CCK/=<22:20> DEFAULTED *CONDITION CODES
                                     thate . * = PESERVED OPERATION, "ALU SIGN" AND "AMY SIGN" APE SIZE DEPENDENT
                                     .....
                                                                                COMPATIBILITY MODE PSI.
       NODEO
       LOAD HACCES
                                                                ivici
                                                                                         7.
                                                                                                  1 V I
       SFT.V=2
                                                                           ...
                                                                                         -
                        ..VALIDITY=<V1>;
                                                                11101
                                                                                                  . . .
       N_AMX_Z_TST_VC_VC=3
                                     1 AMX STGN I Z. and. (ALU. eg. 0) I V I C I AMX STGN I Z. and. (ALU. eg. 0) I V I C
                        ..VALIDITY=<VO>: *
       ROR=4
                                                    *
                                                               I & I & I ALU STON I
                                                                                      ALU AC O
                                                                                                  I O I AMYCON I
       NZ ALULYC 0=5
                                     . ALU STON I
                                                    ALII ea 0
                                                                I O I O I ALU STON I
                                                                                                  10101
                                                                                      ALU.eq.0
       NZ_ALU.VC_VC=6
                        .. VALIDITY=<V1>: ALU SIGN I
                                                    Aldi.eg.0
                                                                ivici
                                                                                                  i i
                        ..VALIDITY=<VO>:
       C AMYOS
                                                                1 1 1
                                                                                                  I V I AMYCOS I
       INST.DEP=7
                                                              Instruction dependent
                                     .
CID/=<45:42>
                            :CONSOLE & ID BUS CONTROL IF FS/1
       NOD=1
                            DEFAULT. ALLOW AUTO IN READ
       ACK=5
                            ISET CONSOLE ACKNOWLEGE FLAG
       CONTE7
                            CLEAR CONSOLE MODE
       READ SC=9
                            PREAD ID BUS REG SELECTED BY SC
       READ_KMX=OH
                            :READ TO BUS REG SELECTED BY UKMX
       WRITE.SC=0D
                            :WRITE REG SELECTED BY SC
       WRITE-KMX=OF
                            INRITE REG SELECTED BY HKMX
DK/=<91:88>..DEFAULT=0
       NOP=0
                            :DEFAULT, HOLD
       LEFT2=1
                            :DOUBLE SHIFT LEFT
       RIGHT2=2
                            IDOUBLE SHIFT RIGHT
       DIV=4
                            : IF NOT ALU CRY. SHIFT LEFT
                            : ELSE LOAD FROM SHF
       LEFT#5
                            SHIFT LEFT
       RIGHT=6
                            SHIFT RIGHT
       SHFER
                            LOAD SHE MUX. INTEGER FORMAT
       SHF.FL=9
                            :LOAD SHE MUX. UNPACKED FLOATING FORMAT
       ACCEL=0A
                            LOAD ACCELERATOR DATA FROM DF BUS
       BYTE.SWAP=08
                            *REFLECT BYTES AROUND BIT 16
       Q=0C
                            :LOAD Q THRU DAL
       DAL.SC=0D
                            ILDAD DALISCI
       DAL SV=OF
                            LOAD DALISHE VALL
       CLR=OF
                            LOAD ZEROS
DT/=<79:78>..DEFAULT=0
                            DATA TYPE
                            CONTROLS AMX SIGN/ZERO EXTENDER. SHE AMOUNT.
                            CONDITION CODE SETTING. AND MEMORY REFERENCES
       LONG=0
                            DEFAULT
       WORD=1
       BYTE=2
       INST.DEP=3
                            :INSTRUCTION DEPENDENT -
                            SANY OF ABOVE, OR QUAD/DOUBLE
```

```
ၽွ
```

```
. TOC
                Machine definition
                                     : FALU. FRMX. FEK. FS. TEK. IBC"
FALD/=<15:13>
                                TEXPONENT ALU
        A = 0
        00=1
        ANDNOTE2
        0 = 3
        A+R=4
        A-B=5
        4+1=6
        NARS.4-8=7
                                :-ABS(A-B)
FRMY/=<19:18>
                                SEBMX TO EALU
       FF=0
                                DEFAULT
        KMX=1
        AMX.EXP=2
        SHF. VAL=3
                                SHIFT VALUE
FEK/=<24:24>..DEFAULT=0
                                :FE REGISTER CONTROL
        NOP=0
                                ; DEFAULT, HOLD
        LOAD=1
FS/=<42:42>
                                :FUNCTION SELECT FOR 43-46
        MCT=0
                                :ENABLE MEMORY CONTROL
        CID=1
                                :ENABLE ID BUS AND CONSOLE CONTROL
IEK/=<31:30>
                                INTERRUPT AND EXCEPTION ACKNOWLEDGE
        NOP=0
        ISTR=1
                                :STROBE INTERRUPT REQUESTS
        IACK=2
                                INTERRUPT ACKNOWLEDGE
        EACK=3
                                :EXCEPTION ACKNOWLEDGE
IBC/=<95:92>..DEFAULT=0
                                :IBUF CONTROL FUNCTIONS
        NOP=0
                                : DEFAULT
        STOPE1
       FLUSH=2
                                :FLUSH IB AND LOAD IBA
        START=3
       CLR.0.1=4
                                :CLEAR BYTES 0.1 (-11 OPCODE)
        CLR.2.3=5
                                CLEAR BYTES 2,3 (-11 ISTREAM DATA)
        BDEST=7
                                :TRANSFER BRANCH DISPLACEMENT
        CLR.0=0C
                                CLEAR BYTE 0 (VAX OPCODE)
       CLR . 1 = 0D
                                ;CLEAR BYTE 1 (VAX SPECIFIER)
       CLR.0-3=0E
                                CLEAR BYTES 0-3 (-11 OP & DATA)
       CLR.1-5.COND=OF
                                CLEAR BYTES 1-5 CONDITIONALLY
                                ; IF THERE IS NO SPECIFIER EVALUATION,
                                : CLEAR NOTHING. IF A SELF-CONTAINED
                                ; SPECIFIER, CLEAR IT. IF IMMEDIATE,
                                : ABSOLUTE, OR DISPLACEMENT, CLEAR THE
```

; ISTREAM LITERAL.

```
. TOC
                Machine definition
                                      * ID ADDE. JM
ID.ADDR/=<63:58>
                                : ID BUS ADDRESS
        TRUESO
                                • PD
                                         :SPECIFIER/LITERAL DATA FROM IB
        DAY . TIME = 1
                                : HD+kB
                                        CURRENT TIME OF DAY ....
                                         : MUST READ UNTIL STOPS CHANGING
        SVS TD=3
                                • PD
                                         SYSTEM IDENTIFICATION
        RYCS=4
                                *RD+WP *CONSOLE RECIEVE CONTROL /STATUS
        RXDB=5
                                • RI)
                                         CONSOLE RECIEVE DATA BUFFER
                                         : (TO-ID PECISTER)
        TXCS=6
                                :RD+WR :CONSOLE TRANSMIT CONTROL/STATUS
        TYDB=7
                                * W D
                                         CONSOLE TRANSMIT DATA BUFFER
                                         : (FROM-ID REGISTER)
        DO-8
                                         :DATA PATH D/Q REGISTERS (MAINT ONLY)
                                . WR
        NYT DEREG
                                         SINTERVAL CLOCK NEXT PERIOD REGISTER
        CLK - CS=0A
                                *RD+WR *INTERVAL CLOCK CONTROL/STATUS
        INTERVAL=OB
                                * PD
                                         CURRENT INTERVAL COUNT
        CES=0C
                                :RD+WR :CPH FREDR/STATUS
        VECTOR=00
                                :RD+WR :EXCEPTION & INTERRUPT CONTROL
        STREAF
                                :RD+WR :SOFTWARE INTERRUPT REGISTER
        PSL=OF
                                #HD+WR :PROCESSOR STATUS LONGWORD
        TRUF=10
                                         :TRANSLATION BUFFER DATA
        TREPOS 12
                                         TR FRENCRISTATUS O
        TRER1=13
                                         TH ERROR/STATUS 1
        ACC . 0=14
                                         :ACCELERATOR REGISTER #0
        ACC . 1=15
                                         *ACCELERATOR REGISTER #1
        ACC . 2=16
                                         :ACCELERATOR REGISTER #2
        ACC-CS=17
                                         ACCELERATOR CONTROL/STATUS
        SIL0=18
                                         :NEXT ITEM FROM SBI HISTORY
                                         SBI FRROR REGISTER
        SRI_ERR=19
        TIME.ADDR=1A
                                         SBI TIMEOUT ADDRESS
        FAULT=18
                                         :FAULT/STATUS
        COMP=1C
                                         SBI SILO COMPARATOR
        MAINT=1D
                                         ISBI MAINTENANCE
        PARITY=1E
                                         CACHE PARITY
        USTACK=20
                                         :MICROSTACK
        UBREAK=21
                                         :MICRO BREAK
```

2 % R

:WRITING WCS COUNTS ADDRESS

WCS.ADDR=22 WCS.DATA=23

```
4
```

. NOCREF

```
; ID BUS ADDRESSES CONTINUED. ADDRESSES 24-3F ARE RAM LOCATIONS
                                       ; PROCESS SPACE O BASE REGISTER
        P08R=24
        P1BR=25
                                        PROCESS SPACE 1 BASE REGISTER
        SBR=26
                                        SYSTEM SPACE HASE REGISTER
                                       KERNEL STACK POINTER
        KSP=28
       ESP=29
                                        ; EXEC STACK POINTER
                                        ; SUPERVISOR STACK POINTER
        SSP=2A
                                       JUSER STACK POINTER
        USP=2B
                                       INTERRUPT STACK POINTER
        ISP=2C
       FPDA=2D
       D.SV=2E
       0.SV=2F
                                       GENERAL TEMPS
       T0 = 30
       T1=31
       T2=32
       T3=33
       T4=34
       T5=35
       T6=36
       T7=37
       T8=38
       T9=39
       PCBB=3A
                                        PROCESS CONTROL BLOCK BASE
       SCBB=3B
                                       SYSTEM CONTROL BLOCK BASE
       POLR=3C
                                       ; PROCESS O LENGTH REGISTER
                                       ;PRUCESS 1 LENGTH REGISTER
       P1LR=30
       SLR=3E
                                       SYSTEM LENGTH REGISTER
.CREF
                                       :NEXT MICRO WORD ADDRESS
J/=<12:0>,.NEXTADDRESS
```

(TF) ** * * MACHINE - DEPENDENT!!

.4000=2C

1?

```
.FFF1=2D
                         (AF) ** ** ** MACHINE - DEPENDENT!!
                 ;-15
.19=2E
.FFF9=2F
                 125
                         (AF)
                 3-7
                         (AF)
                         (MH,JL,TF)
.FFFF=30
                 ;-1
.88=31
                         (AF)
                 1136
.3030=32
                         (TF)
                 ;?
.F0=33
                         (TF)
                 ;240
.C0=34
                         (TF,MH)
                 ;192
.6=35
                         (CM,JL,TF)
                 16
.9=36
                 19
                         (CM)
.FFF6=37
                 1-10
                         (CM)
.FFF5=38
                 7-11
                         (CM)
.1A=39
                         (CM, AF, TF)
                 126
.24=3A
                 ;36
                         (CM,MH)
.1B=3B
                 127
                         (CM, AF, TF)
.FFFC=3C
                 ; -4
                         (CM, TF, MH)
.A=3D
                         (AF,MH)
                 ;10
.7E=3E
                         (AF,TF)
                 1126
SPARE=3F
```

;

```
MCT/#CA7:A2>..DFFAULT#3F
                                         MEMORY CONTROL
       TEST. RCHK#00
                                         ITEST TRUE WITH READ CHECK
        MEM.NOPEO2
                                         INFITHER CPU NOR IN GETS MEM CYCLE
       TEST WCHK =04
                                         TTEST TRUE WITH WRITE CHECK
       WRITE . V . NOCHK=OA
                                        IMPITE. INHIBIT TRAPS
       WRITE.V.WCHK#OC
                                         IWRITE, NORMAL VARIETY
       LOCK MRITE . V . XCHK=OF
                                         SINTERLOCK WRITE, VIRTUAL ADDRESS
       READ. V. RCHK=10
                                         IRFAD. NORMAL VARIETY
       READ. V. NOCHK#12
                                         IREAD. INHIBIT TRAPS
       READ. V. WCHKE14
                                         PREAD FOR MODIEY
                                         IREAD. CHECK CONTROLLED BY IBUFFER
       READ. V. TRCHK#16
       READ. V. NEWPC=18
                                         BEGIN NEW INSTRUCTION STREAM
                                         : DATA COES TO INSTRUCTION BUFFER
       LOCKREAD. V. NOCHK#1A
                                         :INTERLOCK READ. INHIBIT CHECK
       LOCKREAD. V. WCHK=1C
                                         FINTERLOCK READ. NORMAL VARIETY
                                         ISTOP ALL SET ACTIVITY
        SBI.HOLD=20
        SBI . HOLD+UNJAM=22
                                         RESET SBI
        INVALIDATE=24
                                         ICLEAR CACHE ENTRIES
        VALIDATE=26
                                         :MICRODIAGNOSTIC FORCE VALID
        FYTHRITE . P=28
                                         SEXTENDED WRITE TO CLEAR MOS ERRORS
       WRITE.P#2A
                                         IWRITE. PHYSICAL
       LOCKWRITE.P=2E
                                         :INTERLOCK WRITE, PHYSICAL
       READ.P=32
                                         READ, PHYSICAL
                                         INTERRUPT SUMMARY READ
       READ, INT. SUME 36
       LOCKREAD. P=3A
                                         INTERLOCK READ. PHYSICAL
       ALLOW.IB.READ=3E
                                         GIVE IB A CYCLE IF IT WANTS ONE
```

MSC/=<29:26>,.DEFAULT=0 NOP=0

CHK.FLT.OPR=02 CHK.DDL.ADDR=03 IRD=04 LOAD.STATE=05 LOAD.ACC.CC=06 READ.RLOG=07 CLR.FPD=08 SET.FPD=09 CLR.NEST.ERR=0A SET.NEST.ERR=0A

SECUND.REF=0C RETRY.NO.TRAP=0D

RETRY.TRAP=0E INH.CM.ADDR=0F ;DEFAULT
;CREATE NEW PSL FOR CHM
;UTRAP IF AUU<15>=1, AUU<14:7>=0
;THIS STATE IS INSTRUCTION DECODE

;(AND POP RLOG STACK)
;CLEAR PSL<FPD> BIT
;SET SAME
;CLR NESTED ERROR FLAG IN CPU STATUS
;SET SAME
;OF UNALIGNED DATA REFERENCE
;APPLY SAVED CONTEXT, INHIBIT TRAPS
;APPLY SAVED CONTEXT TO THIS REF

:ALLOW USE OF FULL 32-BIT ADDRESS

:TAKE CONDITION CODES FROM ACCELERATOR

```
. TOC
                Machine definition : PCK, QK, RAMX, RBMX*
PCK/=<34:32>,.DEFAULT=0
                                ; ADDRESS COUNT CONTROL
                                DEFAULT
        NOP=0
        PC_VA=1
        PC_IBA=2
        VA+4=3
                                ; VA_VA+4
                                JPC_PC+1
        PC+1=4
        PC+2=5
                                ;PC_PC+2
        PC+4=6
                                PC_PC+4
        PC+N=7
                                *PC_PC+N. N IS DETERMINED BY INSTR BUFFER
QK/=<54:51>..DEFAULT=0
        NOP=0
                                DEFAULT, HOLD
        LEFT2=1
                                ; DOUBLE SHIFT LEFT 2
        RIGHT2=2
                                ; DOUBLE SHIFT RIGHT 2
        LEFT=5
        RIGHT=6
        SHF=8
                                ; LOAD SHF, INTEGER FORMAT
        SHF.FL=9
                                ; LOAD SHE, UNPACKED FLOATING FORMAT
        DEC.CON=OA
                                ; DECIMAL CONSTANT = 6'S IN EACH NIBBLE
                                FOR WHICH ALU CRY OUT IS FALSE
        ACCEL=0B
                                ; LOAD ACCELERATOR DATA FROM DE BUS
        D=0C
        ID=0E
                                LOAD ID BUS
                                LOAD ZERO
        CLR=0F
RAMX/=<77:77>,.DEFAULT=0
                                DATA PATH MIXER TO AMX
        D=0
                                ; DEFAULT
        Q=1
RBMX/=<77:77>
                                DATA PATH MIXER TO BMX. SAME BIT AS RAMX
        Q=0
        D=1
```

```
. TOC
                Machine definition
                                    : SCK, SGN, SHF, SI, SMX"
SCK/=<23:23>..DEFAULT=0
                                SC REGISTER CONTROL
        NOP=0
                                ; DEFAULT, HOLD
        LOAD=1
                                :LUAD SMX<09:00>
SGN/=<50:48>,.DEFAULT=0
                                SIGN CONTROLS
        NOP=0
                                : DEFAULT
        LOAD.SS=1
                                ; SS_ALU<15>
        SS.FROM.SD=2
                                :SS_SD
        NOT.SD≃3
                                ;SD_NOT SD
                                :SD_SS
        SD.FROM.SS=4
        SS.XOR.ALU=5
                                :SD_ALU<15>, SS_SS.XDR.ALU<15>
        ADD.SUB=6
                                ;SD_ALU<15>, SS_SS.XUR.ALU<15>.XOR.IR<1>
        CLR.SD+SS=7
                                CLEAR BOTH
SHF/=<87:85>,.DEFAULT=0
                                ; ALU SHIFTER CONTROLS
        ALU=0
                                DEFAULT, SHF_ALU
        LEFT=1
                                ; SHF_ALU(L1), INSERT SI CNTL
        RIGHT=2
                                SHF_ALU(R1). INSERT SI CNTL
        ALU.DT=3
                                ;SHF_ALU(DT: LO,L1,L2,L3), INSERT 0
                                ;SHF_ALU(R2), INSERT SI CNTL
        RIGHT2=4
        LEFT3=5
                                ;SHF_ALU(L3)
SI/=<57:55>,.DEFAULT=3
                                SHIFT INPUT CONTROLS
                                        SHF
                                                D
                                                        Q
                                        ---
                                                        ALU C31
        DIVD=0
                                        PSL<N> Q31
                                        ALU 31 Q0
                                                        Q31
        ASHR=1
        ASHL=2
                                        0
                                                0
                                                        D31
                                        0
                                                        0
        ZERO=3
                                                0
        SPARE=4
:
                                        Q31
                                                Q31
                                                        ALU C31
        DIV=5
        MUL+=6
                                        0
                                                ALU 0,1 0
        MUL-=7
                                        1
                                                ALU 0,1 1
SMX/=<17:16>
                                ; MIXER TO SC
                                :EALU <9:0>
        EALU=0
        FE=1
                                ;FE<9:0>
        ALU=2
                                ;ALU<09:00>
```

;ALU<14:07>

46

ALU.EXP=3

```
.TOC
                Machine definition
                                       : SPO, SPO.AC, SPO.ACN, SPO.ACN11, SPO.R®
SPO/=<41:35>..DEFAULT=0
                                         SCRATCH PAD OPCODE, 7 BITS
        NOPEO
                                         : DEFAULT
        LOAD.LC.SC=6
                                         ;LUAD LC, ADR=SC[03:00]
        WRITE.RC.SC=7
                                         SWRITE RC. ADR=SC[03:00]
SPO.AC/E<41:38>
                                         34 FUNCTION BITS OF SPO FIELD
        LOAD.LAB=1
                                         LOAD LA, LB FROM R(ACN)
        LOAD.LA=2
                                         ILOAD LA_RN. HOLD LB
        WRITE.RAB=3
                                         #WRITE RA, RB (ACN)
SPO.ACN/=<37:35>
                                 JAC NUMBER IN SPO FIELD
                                 ZVAX MODE
                                                 RA
                                                                  RB
        SP1.SP1=0
                                                 SP1 R
                                                                  SP1 R
                                 : 0
        SP2.SP2=1
                                 : 1
                                                 SP2 R
                                                                  SP2 R
        SP2.SP1=2
                                 12
                                                 SP2 R
                                                                 SP1 R
        PRN=3
                                 ; 3
                                                 PRN
                                                                  PRN
        PRN+1=4
                                 ; 4
                                                 PRN+1
                                                                  PRN+1
        SC=5
                                 :5
                                                 SC<03:00>
                                                                  SC<03:00>
        SP1+1=6
                                         SP1 P+1
                                                         SP1 R+1
SPO.ACN11/=<37:35>
                                 ;AC NUMBER IN SPO FIELD -- 11 MODE
                                 :-11 MODE
                                                    RA
        SRC.SRC=0
                                    0
                                                 SRC R
                                                                  SRC R
        DST.DST=1
                                    1
                                                 DST R
                                                                  DST R
        DST.SRC=2
                                 ,
                                    2
                                                 DST R
                                                                 SRC R
        SRC.SRC=3
                                    3
                                                 SRC R
                                                                  SRC R
        SRC.OR.1=4
                                                 SRC R .OR. 1
                                                                 SRC R .OR. 1
        SC≃5
                                     5
                                                 SC<03:00>
                                                                 SC<03:00>
SPO.R/=<41:39>
                                 SCRATCH PAD FUNCS WITH LOW 4 BITS OF SP AS ADR
                                 LOAD LC. ADRESPO.RN
        LOAD.LC=2
        WRITE.RC=3
                                 :WRITE RC
        LOAD.LAB=4
                                 LOAD LA. LB
        WRITE, RAB=5
                                 ; WRITE RA, RB
        LOAD.LAB1.WRITE.RC=6
                                 ; LOAD LA, LB[R1], AND WRITE RC[RN]
        LOAD.LC.WRITE.RAB1=7
                                 ;LOAD LC(RN), AND WRITE RA, RB[R1]
```

```
.TOC
                Machine definition
                                    : SPO.RAB, SPO.RC, SUB, VAK"
SPO.RAB/=<38:35>
                                ; RA/RB LOCATIONS
        R0=0
        R1=1
        R2=2
        R3=3
        R4=4
        R5=5
        R6=6
        R7=7
        AP=0C
                                ;R12 = ARGUMENT LIST POINTER
        FP=0D
                                :R13 = STACK FRAME POINTER
        SP=0E
                                :R14 = STACK POINTER
        R15=0F
                                :R15 = PC, TO SOFTWARE, SCRATCH TO UCODE
SPO.RC/=<38:35>
                                ;RC LOCATIONS
        T0=0
        T1=1
        T2=2
        T3=3
        T4=4
        T5=5
        T6=6
        T7=7
        LC.SV=8
                                MEM MGMT SAVES LC HERE
        VA.SV=9
        PTE. VA=OA
        PTE.PA=0B
        PC.SV=0C
        SC.SV=0D
        VA.REF=0E
        MBIT. VA=OF
        PTE.MASK=OF
SUB/=<65:64>,.DEFAULT=0
                                SUBROUTINE CONTROL
        NOP=0
                                ; DEFAULT
                                PUSH UPC OF THIS MICROINSTRUCTION
        CALL=1
                                ; ONTO USTACK
        RET=2
                                ;"OR" TOP OF USTACK TO UPC
                                ; AND POP USTACK
                                REPLACE LOW 8 BITS OF NEXT
        SPEC=3
                                : UPC WITH SPECIFIER DECODE FROM
                                ; INSTRUCTION BUFFER
VAK/=<25:25>..DEFAULT=0
        NOP=0
                                :DEFAULT
        LOAD=1
                                LOAD VA
```

8

.TOC " Machine definition : Validity checks"

.SET/VO=<.NOT[<NATIVE>]>
.SET/V1=<NATIVE>

.TOC "		Macro	definition		: Regions"	
		; +	0	0k to	I I I I I PCS	
		; ;	4095	 4k		
.SET/W	CSR1L=100 CSR1H=113 CSR2L=120 CSR2H=17F	F ; ; 0 ;	,.	4k l l to l	 - DEC'S WCS region -	Note : 1140 to 11FF 1 the FPLA trap address region
	CSR3L=180	1 +	6144		User or G&H WCS	
.SET/#	CSR3H=1BF 1C0	; +	7167	7 k	i I I	•
;	1FF	;	8191	l to l l Bk	User wCS 	

"RAMX/D, AMX/RAMX, BMX/LC, ALU/A-B-1"
"RAMX/D, AMX/RAMX, RBMX/Q, BMX/RBMX, ALU/A-B"

"RAMX/D,AMX/RAMX,RBMX/Q,BMX/RBMX,ALU/A-B-1"
"RAMX/D,AMX/RAMX.OXT.DT/01,ALU/A"

"RAMX/D,AMX/RAMX.OXT,DT/01,KMX/02,BMX/KMX,ALU/A+B"
"ALU/A+B.AMX/RAMX.OXT,DT/01,RAMX/D,BMX/LC"

"ALU/A+B,AMX/RAMX.OXT.DT/e1,RAMX/D,BMX/RBMX,RBMX/Q"
"RAMX/D.AMX/RAMX.OXT.DT/e1,KMX/e2,BMX/KMX,ALU/A-B"

TOC

5

AT 11 -1

ALU OLA)

ALU O+D

ALIC DADA1

ALU_D-LC-1

ALU_D.OXT[] ALU_D.OXT[]+K[]

ALU_D.0XT[]+LC ALU_D.0XT[]+0

ALU_D. 0XT()-K[]

ALU_D-Q ALU_D-Q-1 Macro definition

. Penister transfer macros"

"AMY/RAMY.OXT.DT/LONG.RBMX/D.BMX/RBMX.ALU/A+B"

"AMX/RAMX.OXT.DT/LONG.RBMX/D.BMY/RBMY.ALU/A+R+1"

"AMY / DAMY OUT DT/LONG . ALU/NOTA"

"AMY / PAMY . OYT . DT / LONG . ALU/A"

```
O-LITYO O ULIA
                                 "RAMX/D.AMX/RAMX.OXT.DT/01.RBMX/Q.BMX/RBMX.ALU/A=R"
ALU D OXTEL AND KILL
                                 "HAMX/D. AMX/RAMX.OXT.DT/81.KMX/82.HMX/KMX.ALII/AND"
ALU_D_OXT[]_ANDNOT K[]
                                 "ALU/ANDNOT.AMX/RAMX.OXT.DT/01.RAMX/D.RMX/KMX.KMX/02"
O SO LITTO O ULA
                                 "RAMX/D.AMX/RAMX.OXT.DT/01.BMX/RBMX.ALU/OR"
ALU_D_AND_KIT
                                 "RAMX/D.AMX/RAMX,KMX/01.BMX/KMX.ALU/AND"
ALU D. AND MASK
                                 "RAMX/D.AMX/RAMX, BMX/MASK, ALU/AND"
ALU_D_ANDNOT_KIL
                                 "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/ANDNOT"
ALU_D.ANDNOT.MASK
                                 "RAMX/D.AMX/RAMX.BMX/MASK.ALU/ANDNOT"
ALU.D. ANDNOT.O.
                                 "RAMX/D.AMX/RAMX, RBMX/Q.BMX/RBMX.ALU/ANDNOT"
ALU D OP KIT
                                 "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/DR"
ALII D. DR. LC
                                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/OR"
ALU_D.OR.Q
                                 "RAMX/D.AMX/RAMX, RBMX/Q.BMX/RBMX.ALU/OR"
ALU_D.OR.RC[]
                                 "RAMX/D.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/01.BMX/LC.ALU/OR"
ALU D OPNOT MASK
                                 "RAMX/D.AMX/RAMX, BMX/MASK.ALU/ORNOT"
ALU D. SYT[1
                                 "RAMX/D.AMX/RAMX.SXT.DT/01.ALU/A"
ALU_D_SXT[]+K[]
                                 "RAMX/D.AMX/RAMX.SXT.DT/01.KMX/02.BMX/KMX.ALU/A+B"
ALU_D.SXT[]+G
                                 "RAMX/D, AMX/RAMX, SXT, DT/01, BMX/RBMX, ALU/A+B"
ALU_D.SXT[].ANDNOT.K[]
                                 "RAMX/D.AMX/RAMX.SXT.DT/01.ALU/ANDNOT.BMX/KMX.KMX/02"
ALU_D_SXT[].AND_K[]
                                 "RAMX/D.AMX/RAMX.SXT.DT/81.KMX/82.BMX/KMX.ALU/AND"
ALU_D.XOR.KII
                                 "RAMX/D.AMX/RAMX.KMX/R1.PMX/KMX.ALU/XOR"
ALU_D.XOR.LC
                                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/XOR"
ALU_D.XOR.Q
                                 "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/XOR"
ALU_D_XOR_RC[]
                                 "RAMX/D.AMX/RAMX.SPD.R/LOAD.LC.SPO.RC/@1.8MX/LC.ALU/XOR"
ALU D YOR RIT
                                 "RAMX/D.AMX/RAMX, SPO.R/LOAD.LAB, SPO.RAB/01, BMX/LB.ALU/XOR"
ALU_DITKIT
                                 "RAMX/D.AMX/RAMX,KMX/82.BMX/KMX.ALU/81"
ALU_DIILB
                                 "ALU/@1.AMX/RAMX.RAMX/D.BMX/LB"
ALU_D[]LC
                                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/R1"
ALU_DIIQ
                                 "RAMX/D.AMX/RAMX, RBMX/Q.BMX/RBMX, ALU/01"
ALU KIT
                                 "KMX/@1,BMX/KMX.ALU/B"
ALU_LA
                                 "AMX/LA.ALU/A"
ALU_LA+K[]
                                 "AMX/LA,KMX/@1,BMX/KMX.ALU/A+B"
ALU-LA+K[]+1
                                 "ALU/A+B+1.AMX/LA.BMX/KMX.KMX/A1"
ALU_LA+K[].RLOG
                                 "AMX/LA,KMX/01,BMX/KMX,ALU/A+B,RLOG"
ALU LA+LB
                                 "AMX/LA.BMX/LB.ALU/A+B"
ALU_LA+LC
                                 "ALU/A+B.AMX/LA.BMX/LC"
ALU_LA+LC+1
                                 "ALU/A+B+1.AMX/LA.BMX/LC"
ALU_LA+LC+PSL.C
                                 "ALU/A+B+PSL.C.AMX/LA.BMX/LC"
ALU_LA+Q
                                 "ALU/A+B.AMX/LA.BMX/RBMX.RBMX/Q"
ALUL LA+D
                                 "AMX/LA.RBMX/D.BMX/RBMX.ALII/A=B"
ALU_LA-D-1
                                 "AMX/LA, RBMX/D, BMX/RBMX, ALU/A-B-1"
ALU_LA-K[]
                                 "AMX/LA.KMX/@1.BMX/KMX.ALU/A-B"
ALU_LA-K[]-1
                                 "AMX/LA.KMX/@1.BMX/KMX.ALU/A-B-1"
ALU_LA-K[].RLDG
                                 "AMX/LA,KMX/01,BMX/KMX,ALU/A-B,RLOG"
ALULIA-LC
                                 "ALU/A-B.AMX/LA.BMX/LC"
ALU_LA-Q
                                 "ALU/A-B.AMX/LA.BMX/RBMX.RBMX/Q"
ALU_LA-Q-1
                                 "ALU/A-B-1, AMX/LA, BMX/RBMX, RBMX/Q"
ALU_LA.AND.K[]
                                 "AMX/LA.KMX/@1,BMX/KMX,ALU/AND"
ALU_LA.AND.LC
                                 "ALU/AND.AMX/LA.BMX/LC"
ALU_LA.ANDNOT.K()
                                 "AMX/LA,KMX/91,BMX/KMX,ALU/ANDNOT"
ALU_LA.ANDNOT.MASK
                                 "AMX/LA, BMX/MASK, ALU/ANDNOT"
```

```
"ALU/OR.AMX/LA.BMX/KMX.KMX/01"
ALU_LA.OR.K[]
ALU_LA.XOR.LC
                                  "AMX/LA.BMX/LC.ALU/XOR"
                                  "AMX/LA, RBMX/D, BMX/RBMX, ALU/@1"
ALU_LA[]D
                                  "AMX/LA.BMX/LB.ALU/#1"
ALU_LA[]LB
                                  "AMX/LA, RBMX/Q, BMX/RBMX, ALU/01"
ALU_LA[]Q
                                  "BMX/LB.ALU/B"
ALU_LB
                                  "BMX/LC.ALU/B"
ALU_LC
                                  "ALU/NOTA.AMX/RAMX.RAMX/D"
ALU_NOT.D
                                  "BMX/KMX.KMX/01.ALU/ORNOT.AMX/RAMX.UXT.DT/LONG"
ALU_NOT.K[]
                                 "SPO.R/LDAD.LC,SPO.RC/01,BMX/LC,AMX/RAMX.OXT,DT/LONG,ALU/ORNOT"
ALU_NOT.RC[]
                                  "BMX/PACKED.FL,ALU/B"
ALU_PACK.FP
                                  "BMX/PC.ALU/B"
ALU_PC
                                  "RAMX/Q.AMX/RAMX.ALU/A"
ALU_Q
                                  "RBMX/Q,BMX/RBMX,ALU/B"
ALU_Q(B)
                                  "RAMX/Q, AMX/RAMX, KMX/01, BMX/KMX, ALU/A+B"
ALU_Q+K[]
                                  "ALU/A+B+1, AMX/RAMX, RAMX/Q, BMX/KMX, KMX/@1"
ALU_Q+K[]+1
                                  "RAMX/Q.AMX/RAMX.BMX/LB.ALU/A+B"
ALU_Q+LB
                                  "RAMX/Q.AMX/RAMX.BMX/LB.ALU/A+B+1"
ALU_Q+LB+1
                                  "RAMX/Q, AMX/RAMX, BMX/LC, ALU/A+B"
ALU_Q+LC
                                  "ALU/A+B+1.AMX/RAMX.RAMX/Q.BMX/LC"
ALU_Q+LC+1
                                  "ALU/A+B+PSL.C, AMX/RAMX, RAMX/Q, BMX/LC"
ALU_Q+LC+PSL.C
                                  "ALUZA+R.AMX/RAMX.RAMX/Q.BMX/MASK"
ALU_Q+MASK
                                  "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/A-B"
ALU_Q-D
                                  "ALU/A-B-1, AMX/RAMX, RAMX/Q, BMX/RBMX, RBMX/D"
ALU_Q-D-1
                                  "RAMX/Q, AMX/RAMX, KMX/81, BMX/KMX, ALU/A-B"
ALU_Q-K[]
                                  "RAMX/Q.AMX/RAMX.BMX/LB.ALU/A-B"
ALU_Q-LB
                                  "RAMX/Q.AMX/RAMX.BMX/LC.ALU/A-B"
ALU_Q-LC
                                  "ALU/A-B-1, AMX/RAMX, RAMX/Q, BMX/MASK"
ALU_Q-MASK-1
                                  "RAMX/Q.AMX/RAMX.OXT.DT/01.ALU/A"
ALU_Q.OXT[]
                                  "ALU/A+B, AMX/RAMX.OXT, DT/01, BMX/RBMX, RBMX/D, RAMX/Q"
ALU_Q.OXT[]+D
                                  "ALU/A+B+1, AMX/RAMX.OXT, DT/01, BMX/RBMX, RAMX/Q, RBMX/D"
ALU_Q. 0XT[]+D+1
                                  "ALU/A+B, AMX/RAMX.OXT, DT/@1, RAMX/Q, BMX/KMX, KMX/@2"
ALU_Q.OXT[]+K[]
                                  "ALU/A-B.RAMX/Q.AMX/RAMX.OXT.DT/01,BMX/RBMX"
ALU_Q.OXT[]-D
                                  "ALU/A-R.AMX/RAMX_OXT.DT/@1.RAMX/Q.BMX/KMX,KMX/@2"
ALU_Q.OXT[]-K[]
                                  "ALU/ANDNOT.AMX/RAMX.OXT.DT/01,RAMX/Q,BMX/KMX,KMX/02"
ALU_Q.OXT[].ANDNOT.K[]
                                  "ALU/OR, AMX/RAMX.OXT, DT/01, RAMX/G, BMX/KMX, KMX/02"
ALU_Q.OXT[].OR.K[]
                                  "ALU/DR.AMX/RAMX.OXT.DT/81.RAMX/Q.BMX/RBMX,RBMX/D"
ALU_Q.OXT[].OR.D
                                  "ANX/RAMX.RAMX/Q.BMX/RBMX.RBMX/D.ALU/AND"
ALU_Q.AND.D
                                  "RAMX/Q.AMX/RAMX.KMX/91.BMX/KMX.ALU/AND"
ALU_Q.AND.K[]
                                  "RAMX/Q, AMX/RAMX, KMX/01, BMX/KMX, ALU/ANDNOT"
ALU_Q.ANDNOT.K[]
                                  "RAMX/Q.AMX/RAMX.BMX/MASK.ALU/ANDNOT"
ALU_Q.ANDNOT.MASK
                                  "ALU/ANDNOT, AMX/RAMX, RAMX/Q. BMX/LB, SPO. R/LOAD. LAB, SPO. RAB/91"
ALU_Q.ANDNOT.R[]
ALU_Q.OR.K[]
                                  "RAMX/Q.AMX/RAMX.KMX/01.BMX/KMX.ALU/OR"
                                  "RAMX/Q.AMX/RAMX.BMX/LC.ALU/OR"
ALU_Q.OR.LC
                                  "ALU/ORNOT, AMX/RAMX, RAMX/Q, BMX/KMX, KMX/81"
ALU_Q.ORNOT.K[]
                                  "ALU/A, AMX/RAMX.SXT, DT/01.RAMX/Q"
ALU_Q.SXT[]
                                  "RAMX/Q, AMX/RAMX.SXT, DT/01, KMX/02, BMX/KMX, ALU/A+B"
ALU_Q.SXT[]+K[]
                                  "RAMX/G, AMX/RAMX, SXT, DT/01, BMX/LB, ALU/A+B"
ALU_Q.SXT[]+LB
                                  "RAMX/Q, AMX/RAMX, SXT, DT/01, BMX/LB, ALU/A+B+1"
ALU_Q.SXT()+LB+1
ALU_G.SXT[]+PC
                                  "RAMX/Q.AMX/RAMX.SXT.DT/01.BMX/PC.ALU/A+B"
```

```
ALU_Q.SXT[].ANDNOT.K[]
                                 "ALU/ANDNOT, AMX/RAMX.SXT, RAMX/Q, BMX/KMX, KMX/82, DT/81"
                                 "RAMX/Q,AMX/RAMX,BMX/RBMX,RBMX/D,ALU/XOR"
ALU_Q.XOR.D
ALU_Q.XOR.K[]
                                 "RAMX/Q,AMX/RAMX,KMX/@1,BMX/KMX,ALU/XOR"
                                 "RAMX/Q,AMX/kAMX,BMX/LC,ALU/XOR"
ALU_Q.XOR.LC
ALU_Q.XOR.RC[]
                                 "RAMX/Q, AMX/RAMX, SPO.R/LOAD.LC, SPO.RC/01, BMX/LC, ALU/XOR"
                                 "RAMX/Q,AMX/RAMX,RBMX/D,BMX/RBMX,ALU/@1"
ALU_Q[]D
ALU_R(DST)
                                 "SPO.AC/LOAD.LAB.SPO.ACN11/DST.DST.AMX/LA.ALU/A"
                                 "SPO.AC/LOAD.LAB,SPO.ACN/SC,AMX/LA,KMX/01,BMX/KMX,ALU/ANDNOT"
ALU_R(SC).ANDNOT.K[]
ALU_R(SP1)+K[].RLOG
                                 "SPO.AC/LOAD.LAB, SPO.ACN/SP1.SP1, AMX/LA, KMX/A1, BMX/KMX, ALU/A+B.RLOG"
                                 "SPO/LOAD.LC.SC, BMX/LC, ALU/B"
ALU_RC(SC)
ALU_RC[]
                                 "SPO.R/LOAD.LC,SPO.RC/@1,BMX/LC,ALU/B"
                                 "BMX/0, ALU/B, MSC/READ. RLOG"
ALU_RLOG
ALU_R[]
                                 "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,ALU/A"
                                 "SPO.R/LOAD.LAB,SPO.RAB/81,AMX/LA,KMX/82,BMX/KMX,ALU/A-8"
ALU_R[]-K[]
ALU_R[].AND.K[]
                                 "SPO.R/LOAD.LAB,SPO.RAB/81,AMX/LA,KMX/82,BMX/KMX,ALU/AND"
                                 "SPO.R/LOAD.LAB, SPO.RAB/@1, AMX/LA, BMX/LC, ALU/AND"
ALU_RL1.AND.LC
                                 "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,KMX/@2,BMX/KMX,ALU/ANDNOT"
ALU_R[].ANDNOT.K[]
ALU_R[].ANDNOT.MASK
                                 "SPO.R/LOAD.LAB.SPO.RAB/@1,AMX/LA,BMX/MASK,ALU/ANDNOT"
                                 "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,KMX/@2,BMX/KMX,ALU/OR"
ALU_R[].OR.K[]
ALU_R[].ORNOT.K[]
                                 "ALU/ORNOT,AMX/LA.BMX/KMX.SPO.R/LOAD.LAB,SPO.RAB/@1,KMX/@2"
                                 "SPO.R/LOAD.LAB,SPO.RAB/#1,AMX/LA,KMX/#2,BMX/KMX,ALU/XOR"
ALU_R[].XOR.K[]
                                 "VAK/NOP, MCT/WRITE.P, DT/@1, DK/NOP"
CACHE.P_D[]
CACHE[]_D
                                 "VAK/NOP, MCT/WRITE.V. WCHK, MSC/01, DK/NOP"
CACHE_D(QUAD)
                                 "MCT/EXTWRITE.P.LONG, VAK/NOP, DK/NOP"
CACHE_D.INST.DEP
                                 "VAK/NOP, MCT/WRITE.V. WCHK, DT/INST.DEP, DK/NOP"
CACHE_D[]
                                 "VAK/NOP, MCT/WRITE.V. WCHK, DT/@1, DK/NOP"
CACHE_D().LK
                                 "VAK/NOP, MCT/LOCKWRITE. V. XCHK, DT/81, DK/NOP"
CACHE_D[].NOCHK
                                 "VAK/NOP, MCT/WRITE.V.NOCHK, DT/@1, DK/NOP"
D&Q_D+Q
                                 "RAMX/D,AMX/RAMX,RBMX/Q,BMX/RBMX,ALU/A+B,SHF/ALU,DK/SHF,QK/SHF"
                                 "BMX/PC.ALU/B.SHF/ALU.DK/SHF.SPO.R/WRITE.RC.SPO.RC/01"
D&RC[]_PC
                                 "VAK/LOAD, SHF/ALU, DK/SHF"
D&VA_ALU
                                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/A+E.VAK/LOAD.SHF/ALU.DK/SHF"
D&VA_D+LC
                                 "D_D+Q, VAK/LOAD"
D&VA_D+Q
D&VA_D+K[]
                                 "RAMX/D,AMX/RAMX,KMX/01,BMX/KMX,ALU/A-B,VAK/LOAD,SHF/ALU,DK/SHF"
D&VA_LA
                                 "AMX/LA.ALU/A.VAK/LOAD.SHF/ALU.DK/SHF"
DEVA_LB
                                 "BMX/LB.ALU/B.VAK/LOAD.SHF/ALU.DK/SHF"
                                 "RAMX/Q.AMX/RAMX.ALU/A.VAK/LOAD.DK/Q"
D&VA_Q
D&VA_Q+LB.PC
                                 "RAMX/Q.AMX/RAMX,BMX/PC.OR.LB,ALU/A+B,VAK/LOAD,SHF/ALU,DK/SHF"
D[]_CACHE
                                 "VAK/NOP, MCT/READ. V. RCHK, DT/@1, DK/NOP"
                                 "VAK/NOP, MCT/READ. V. IBCHK, DT/01. DK/NOP"
D[]_CACHE.IBCHK
                                 "VAK/NOP, MCT/LOCKREAD. V. WCHK, DT/81, DK/NOP"
D[]_CACHE.LK
                                 "VAK/NOP, MCT/READ. V. NOCHK, DT/01, DK/NOP"
D[]_CACHE.NOCHK
                                 "VAK/NOP.MCT/READ.P.DT/@1.DK/NOP"
D()_CACHE.P
                                 "VAK/NOP, MCT/READ. V. WCHK, DT/01, DK/NOP"
D[]_CACHE. WCHK
```

```
0_0
                                  "DK/CLR"
D_0+K[]+1
                                  "AMX/RAMX.OXT.DT/LONG.KMX/01.BMX/KMX.ALU/A+B+1.SHF/ALU.DK/SHF"
D_0+LC+1
                                  "AMX/RAMX.OXT.DT/LONG.BMX/LC.ALU/A+B+1.SHF/ALU.DK/SHF"
D_0-D
                                  "AMX/RAMX.OXT.DT/LONG.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU.DK/SHF"
D_0-K[]
                                  "AMX/RAMX.OXT.DT/LONG.KMX/81.BMX/KMX.ALU/A-B.SHF/ALU.DK/SHF"
                                  "AMX/RAMX.OXT.DT/LONG.RPMX/Q.BMX/RBMX.ALU/A-B.SHF/ALU.DK/SHF"
D_0-0
D_0-0-1
                                  "ALU_0-0-1.D_ALU"
D_ACCEL&SYNC
                                  "DK/ACCEL.ACE/SYNC"
D_ALU
                                  "SHF/ALU.DK/SHF"
D_ALU(FRAC)
                                  "SHF/ALU.DK/SHF.FL"
D_ALU.LEFT
                                  "SHF/LEFT.DK/SHF"
D_ALU.LEFT2
                                  "SHF/ALU.DT.DT/LONG.DK/SHF"
D_ALU.LEFT3
                                  "SHF/LEFT3.DK/SHF"
D_ALU.RIGHT
                                  "SHF/RIGHT.DK/SHF"
                                  "SHF/RIGHT2, DK/SHF"
D_ALU.RIGHT2
D_BLANK
                                  "D_K[_20]"
                                  "VAK/NOP, MCT/READ, V. IBCHK, DT/INST. DEP, DK/NOP"
D_CACHE.INST.DEP
D_CACHE.LK[]
                                  "VAK/NOP.MCT/LOCKREAD.V.WCHK.MSC/81.DK/NOP"
                                  "VAK/NOP.MCT/READ.V.WCHK.MSC/81.DK/NOP"
D_CACHE.WCHK[]
D_CACHE[]
                                  "VAK/NOP, MCT/READ. V. RCHK, MSC/01, DK/NOP"
D_D(FRAC)
                                  "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.DK/SHF.FL"
D_D+K[]
                                  "RAMX/D, AMX/RAMX, KMX/@1, BMX/KMX, ALU/A+B, SHF/ALU, DK/SHF"
                                  "RAMX/D, AMX/RAMX, KMX/@1, BMX/KMX, ALU/A+B+1, SHF/ALU, DK/SHF"
D_D+K[]+1
                                  "RAMX/D.AMX/RAMX,BMX/LB.ALU/A+B.SHF/ALU,DK/SHF"
D_-D+LB
D_D+LC
                                  "RAMX/D, AMX/RAMX, BMX/LC, ALU/A+B, SHF/ALU, DK/SHF"
D_D+LC+PSL .C
                                  "RAMX/D.AMX/RAMX.BMX/LC.ALU/A+B+PSL.C.SHF/ALU.DK/SHF"
D_D+Q
                                  "RAMX/D, AMX/RAMX, RBMX/Q, BMX/RPMX, ALU/A+B, SHF/ALU, DK/SHF"
                                  "RAMX/D, AMX/RAMX, RBMX/Q, BMX/RBMX, ALU/A+B+1, SHF/ALU, DK/SHF"
D = D + Q + 1
                                  "RAMX/D.AMX/RAMX,KMX/81,BMX/KMX,ALU/A-B,SHF/ALU,DK/SHF"
D_D-K ( )
D - D-LC
                                  "RAMX/D.AMX/RAMX.BMX/LC.ALU/A-B.SHF/ALU.DK/SHF"
                                  "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/A-B.SHF/ALU.DK/SHF"
D_D-Q
D_D-Q-1
                                  "RAMX/D,AMX/RAMX,RBMX/Q,BMX/RBMX,ALU/A-B-1,SHF/ALU,DK/SHF"
                                  "RAMX/D.AMX/RAMX.OXT.DT/@1,ALU/A.SHF/ALU.DK/SHF"
D_D_OXT[]
                                  "RAMX/D, AMX/RAMX.OXT, DT/01, KMX/02, BMX/KMX, ALU/A+B, SHF/ALU, DK/SHF"
D_D. 0XT()+K()
                                  "ALU/A+B.AMX/RAMX.OXT.DT/@1.BMX/RBMX.RBMX/Q.D_ALU"
D_D_OXT[]+Q
D_D.OXT[]+Q+1
                                  "RAMX/D.AMX/RAMX.OXT.DT/01.BMX/RBMX.ALU/A+B+1.D_ALU"
                                  "RAMX/D, AMX/RAMX.OXT, DT/01, KMX/02, BMX/KMX, ALU/ANDNOT, SHF/ALU, DK/SHF*
D_D.OXT[].ANDNOT.K[]
                                  "RAMX/D.AMX/RAMX.OXT.DT/P1.RBMX/Q.BMX/RBMX.ALU/OR.SHF/ALU.DK/SHF"
D_D.OXT[].OR.Q
                                  "DK/SHF.ALU/XOR.SHF/ALU.AMX/RAMX.OXT.RAMX/D.DT/01.RBMX/Q.BMX/RBMX"
D_D_OXT[]_XOR_Q
                                  "RAMX/D, AMX/RAMX.OXT, DT/01, SPO. F/LOAD.LC, SPO. RC/02, BMX/LC, ALU/XOR, SHF/ALU, DK/SHF"
D_D.OXT[].XCR.RC[]
                                  "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/AND.SHF/ALU.DK/SHF"
D_D_AND_K(1)
                                  "RAMX/D, AMX/KAMX, KMX/01, BMX/KMX, ALU/AND, SHF/ALU, DT, DT/LONG, DK/SHF"
D_D.AND.K[].LEFT2
                                  "HAMX/D.AMX/RAMX.KMX/01.BMX/KMX.ALU/AND.SHF/RIGHT.DK/SHF"
D_D.AND.K[].RIGHT
D_D.AND.LC
                                  "RAMX/D, AMX/RAMX, BMX/LC, ALU/AND, SHF/ALU, DK/SHF"
                                  "RAMX/D.AMX/RAMX.BMX/MASK.ALU/AND.SHF/ALU.DK/SHF"
U_D.AND.MASK
                                  "PAMX/D, AMX/RAMX, RBMX/Q, BMX/RBMX, ALU/AND, SHF/ALU, DK/SHF"
U_D.AND.Q
                                  "RAMX/D, AMX/PAMX, SPO.R/LOAD.LC, SPO.RC/01, BMX/LC, ALU/AND, SHF/ALU, DK/SHF"
D_D.AND.RC[]
D_D.ANDNOT.K[]
                                  "RAMX/D.AMX/RAMX.KMX/Q1.BMX/KMX.ALU/ANDNOT.SHF/ALU.DK/SHF"
                                  "RAMX/D, AMX/RAMX, BMX/LC, ALU/ANDNOT, SHF/ALU, DK/SHF"
D_D_ANDNOT_LC
D_D.ANDNOT.PSWZ
                                  "DK/SHF.ALU/ANDNOT.AMX/RAMX.RAMX/D.BMX/KMX,KMX/.4.SHF/ALU"
                                  "RAMX/D, AMX/RAMX, RBMX/Q, BMX/RBMX, ALU/ANDNOT, SHF/ALU, DK/SHF"
D_D.ANDNOT.Q
```

D_Q

```
O. D. ANDNOT. RC[]
                                 "RAMX/D.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/01.BMX/LC.ALU/ANDNOT.SHF/ALU.DK/SHF"
                                 "DK/LEFT"
D D LEFT
D_D_LEFT2
                                 "DK/LEFT2"
                                 "D D OR K(-301"
D_D.OR.ASCII
D_D_DR_KET
                                 "RAMX/D.AMX/RAMX.KMX/81.8MX/KMX.ALU/OR.SHF/ALU.DK/SHF"
O_D.OR.PSWC
                                 "DK/SHF.ALU/OR.AMY/RAMY.RAMY/D.BMY/KMY.KMY/.1.SHF/ALU"
D_D_OR_PSWV
                                 "DK/SHF.ALU/OR.AMX/RAMX.RAMX/D.BMX/KMX.KMX/.2.SHF/ALU"
                                 "RAMY/D.AMY/RAMY.RBMX/Q.BMX/RBMY.ALU/OR.SHF/ALU.DK/SHF"
D. D. DR. O
                                 "RAMX/D.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/81.BMX/LC.ALU/OR.SHF/ALU.DK/SHF"
D_D.OR.RC[]
                                 "ALUZOR AMX/RAMX RAMX/D.BMX/D.B.SPO.R/LOAD.LAB.SPO.RAB/61.DK/SHF"
D.D.OR.R11
D_D.ORNOT.MASK
                                 "PANY /D. AMY / PANY . BMY / MASK . AT.U / OPNOT . SHE / AT.U . DK / SHE"
                                 "DK/RIGHT"
D.D.RIGHT
D_D.RIGHT(B)
                                 "RBMX/D.BMX/RBMX.ALU/B.SHF/RIGHT.DK/SHF"
                                 "DK/RIGHT2"
D. D. RIGHT?
D_D.SWAP
                                 "DK/BYTE.SWAP"
D.D.SXT[1
                                 "RAMX/D.AMX/RAMX.SXT.DT/01.ALU/A.SHF/ALU.DK/SHF"
D_D.SXT[].RIGHT
                                 "RAMX/D.AMX/RAMX.SXT.DT/01.ALU/A.SHF/RIGHT.DK/SHF"
                                 "RAMY/D.AMY/RAMY.KMY/01.BMY/KMY.ALU/YOR.SHF/ALU.DK/SHF"
D_D_XOR_K()
D_D.XOR.LC
                                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/XOR.SHF/ALU.DK/SHF"
D_D.XOR.Q
                                 "RAMX/D, AMX/RAMX, RBMX/O, BMX/RBMX, ALU/XOR, SHF/ALU, DK/SHF"
D_DAL.NORM
                                 "DK / DAT. SV"
                                 "DK/DAL-SC"
D. DAL. SC
D_D(1K[1
                                 "RAMX/D.AMX/RAMX.KMX/02.BMX/KMX.ALU/01.SHF/ALU.DK/SHF"
D_D[]MASK
                                 "RAMX/D.AMX/RAMX.BMX/MASK.ALU/@1.SHF/ALU.DK/SHF"
D_D[1Q
                                 "RAMX/D, AMX/RAMX, RBMX/O, BMX/RBMX, ALU/@1, SHF/ALU, DK/SHF"
                                 "MCT/READ.INT.SUM.DK/NOP"
D_INT.SUM
D.K [ ]
                                 "KMX/81.BMX/KMX.ALU/B.SHE/ALU.DK/SHE"
                                 "KMX/@1.BMX/KMX.ALU/B.SHF/RIGHT.DK/SHF"
D_K[].RIGHT
D_K[].RIGHT2
                                 "KMX/81,BMX/KMX,ALU/B,SHF/RIGHT2,DK/SHF"
D_LA
                                 "AMX/LA.ALU/A.SHF/ALU.DK/SHF"
                                 "AMY/LA.ALU/A.SHF/ALU.DK/SHF.FL"
D_LA(FRAC)
                                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/A+B+PSL.C.SHF/ALU.DK/SHF"
D_LA+D+PSL.C
D_LA-D
                                 "DK/SHF.ALU/A-B.AMX/LA.BMX/RBMX.RBMX/D.SHF/ALU"
D_LA-K[]
                                 "AMX/LA.KMX/e1.BMX/KMX.ALU/A-B.SHF/ALU.DK/SHF"
                                 "AMX/LA.KMX/@1.BMX/KMX.ALU/AND.SHF/ALU.DK/SHF"
D_LA.AND.K[]
D_LA.RIGHT
                                 "AMX/LA.ALU/A.SHF/RIGHT.DK/SHF"
D_LB
                                 "BMX/LB.ALU/B.SHF/ALU.DK/SHF"
D_LB.PC
                                 "BMX/PC.OR.LB.ALU/B.SHF/ALU.DK/SHF"
D_LC
                                 "BMX/LC.ALU/B.SHF/ALU.DK/SHF"
D_LC(FRAC)
                                 "BMX/LC.ALU/B.SHF/ALU.DK/SHF.FL"
D_NOT.D
                                 "RAMX/D.AMX/RAMX.ALU/NOTA.SHF/ALU.DK/SHF"
D_NOT.K[]
                                 "KMX/01.BMX/KMX.AMX/RAMX.OXT.DT/LONG.ALU/ORNOT.SHF/ALU.DK/SHF"
D_NOT.MASK
                                 "BMX/MASK,AMX/RAMX.OXT,DT/LONG,ALU/ORNOT,SHF/ALU,DK/SHF"
D_NOT_Q
                                 "RAMX/Q.AMX/RAMX.ALU/NOTA.SHF/ALU.DK/SHF"
                                 "LA_RA[@1],AMX/LA,ALU/NOTA,D_ALU"
D_NOT.R[]
D_PACK.FP
                                 "BMX/PACKED_FL.ALU/B.SHF/ALU.DK/SHF"
D_PACK.FP.LEFT
                                 "BMX/PACKED.FL.ALU/B.SHF/LEFT.DK/SHF"
D_PC
                                 "BMX/PC.ALU/B.SHF/ALU.DK/SHF"
                                 "BMX/PC, ALU/B, SHF/LEFT, DK/SHF"
D_PC.LEFT
                                 "DK/Q"
```

```
D_Q(FRAC)
                                 "RAMX/Q.AMX/RAMX.ALU/A.SHF/ALU.DK/SHF.FL"
D_Q+D
                                 "RAMX/Q,AMX/RAMX,RBMX/D,BMX/RBMX,ALU/A+B,SHF/ALU,DK/SHF"
                                 "RAMX/Q.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A+B.SHF/ALU.DK/SHF"
D_Q+K[]
D_Q+LB
                                 "RAMX/Q.AMX/RAMX.BMX/LB.ALU/A+B.SHF/ALU.DK/SHF"
D_Q+PC
                                 "RAMX/Q, AMX/RAMX, BMX/PC, ALU/A+B, SHF/ALU, DK/SHF"
D_Q = D
                                 "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/A=B.SHF/ALU.DK/SHF"
                                 "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/A-B-1.SHF/ALU.DK/SHF"
D_Q-D-1
D_Q-K[]
                                 "RAMX/Q, AMX/RAMX, KMX/01, BMX/KMX, ALU/A-B, SHF/ALU, DK/SHF"
D_Q-K[]-1
                                 "RAMX/Q.AMX/RAMX.KMX/R1.BMX/KMX.ALU/A-B-1.SHF/ALU.DK/SHF"
                                 "RAMX/Q.AMX/RAMX.BMX/O.MSC/READ.RLOG.ALU/A-B.SHF/ALU.DK/SHF"
D_Q-PCSV
D_Q. 0XT[]
                                 "RAMX/Q, AMX/RAMX. OXT, DT/81, ALU/A, SHF/ALU, DK/SHF"
D_Q.AND.K[]
                                 "RAMX/Q.AMX/RAMX.KMX/@1.BMX/KMX.ALU/AND.SHF/ALU.DK/SHF"
                                 "RAMX/Q, AMX/RAMX, BMX/LC, ALU/AND, SHF/ALU, DK/SHF"
D_Q.AND.LC
D_Q.AND.MASK
                                 "RAMX/Q, AMX/PAMX, BMX/MASK, ALU/AND, SHF/ALU, DK/SHF"
                                 "RAMX/Q, AMX/RAMX, SPO.R/LOAD.LC, SPO.RC/91, BMX/LC, ALU/AND, SHF/ALU, DK/SHF"
D_Q.AND.RC[]
                                 "RAMX/Q, AMX/RAMX, RBMX/D, BMX/RBMX, ALU/ANDNOT, SHF/ALU, DK/SHF"
D_G.ANDNOT.D
D_Q.ANDNOT.K[]
                                 "RAMX/Q.AMX/RAMX.KMX/01.BMX/KMX.ALU/ANDNOT.SHF/ALU.DK/SHF"
                                 "RAMX/Q.AMX/RAMX.BMX/MASK.ALU/ANDNOT.SHF/ALU.DK/SHF"
D_Q.ANDNOT.MASK
D_Q.ANDNOT.PSWC
                                 "DK/SHF, ALU/ANDNOT, AMX/RAMX, RAMX/Q, BMX/KMX, KMX/.1, SHF/ALU"
D_Q.ANDNOT.PSWN
                                 "DK/SHF.ALU/ANDNOT.AMX/RAMX, kAMX/Q, BMX/KMX, KMX/.B, SHF/ALU"
D_Q.ANDNOT.PSWZ
                                 "DK/SHF, ALU/ANDNOT, AMX/RAMX, RAMX/Q, BMX/KMX, KMX/.4, SHF/ALU"
D_Q.LEFT
                                 "RAMX/Q.AMX/RAMX.ALU/A.SHF/LEFT.DK/SHF"
D_Q.OR.K[]
                                 "RAMX/Q, AMX/RAMX, KMX/01, BMX/KMX, ALU/OR, SHF/ALU, DK/SHF"
D_Q.OR.PSWC
                                 "DK/SHF.ALU/OR.AMX/RAMX.RAMX/Q.BMX/KMX.KMX/.1.SHF/ALU"
D_Q.OR.RC[]
                                 "RAMX/Q.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/01.BMX/LC.ALU/OR.SHF/ALU.DK/SHF"
D_Q_ORNOT_MASK
                                 "RAMX/O.AMX/RAMX.BMX/MASK.ALU/ORNOT.SHF/ALU.DK/SHF"
D_Q.RIGHT
                                 "RAMX/Q.AMX/RAMX.ALU/A.SHF/RIGHT.DK/SHF"
D_O.RIGHT2
                                 "RAMX/Q, AMX/RAMX, ALU/A, SHF/RIGHT2, DK/SHF"
D_Q.SXT[]
                                 "RAMX/Q.AMX/RAMX.SXT.DT/01.ALU/A.SHF/ALU.DK/SHF"
                                 "RAMX/Q, AMX/RAMX, SPO.R/LOAD.LC, SPO.RC/@1, BMX/LC, ALU/XOR, SHF/ALU, DK/SHF"
D_Q.XOR.RC[]
D_Q[]D
                                 "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/01.SHF/ALU.DK/SHF"
D_Q[]K[]
                                 "ALU/01,SHF/ALU,DK/SHF,BMX/KMX,KMX/02,AMX/RAMX,RAMX/Q"
D_Q[]MASK
                                 "RAMX/Q.AMX/RAMX.BMX/MASK.ALU/01.SHF/ALU.DK/SHF"
                                 "SPO.AC/LOAD.LAB,SPO.ACN/PRN+1,AMX/LA,ALU/A,SHF/ALU,DK/SHF"
D_R(PRN+1)
D_R(SC)
                                 "SPO_AC/LOAD_LAB.SPO_ACN/SC.AMX/LA.ALU/A.SHF/ALU.DK/SHF"
                                 "SPO.AC/LOAD.LAB,SPO.ACN/SP1+1,AMX/LA,ALU/A,SHF/ALU,DK/SHF"
D_R(SP1+1)
D_RC(SC)
                                 "SPO/LOAD.LC.SC.BMX/LC.ALU/B.SHF/ALU.DK/SHF"
                                 "SPO.R/LOAD.LC,SPO.RC/@1,BMX/LC,ALU/B,SHF/ALU,DK/SHF"
D_RC[]
                                 "BMX/O.MSC/READ.RLOG.ALU/B.SHF/ALU.DK/SHF"
D_RLOG
                                 "BMX/O.MSC/READ.RLOG.ALU/B.SHF/RIGHT.DK/SHF"
D_RLOG.RIGHT
D_R[]
                                 "SPO.R/LOAD.LAB,SPO.RAB/01,AMX/LA,ALU/A,SHF/ALU,DK/SHF"
                                 "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.ALU/A.SHF/ALU.DK/SHF.FL"
D_R[](FRAC)
                                 "SPO.R/LOAD.LAB, SPO.RAB/01, AMX/LA, KMX/02, BMX/KMX, ALU/AND, SHF/ALU, DK/SHF"
D_R[].AND.K[]
                                 "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,KMX/@2,BMX/KMX,ALU/OR,SHF/ALU,DK/SHF"
D_R[].OR.K[]
                                 "LAB_R[@1],AMX/LA,BMX/KMX,KMX/@2,ALU/ORNOT,D_ALU"
D_R[].ORNOT.K[]
                                 "RAMX/D.AMX/RAMX.EBMX/AMX.EXP.EALU/B"
EALU_D(EXP)
                                 "EBMX/FE.EALU/B"
EALU_FE
                                 "KMX/01,EBMX/KMX,EALU/B"
EALU_K[]
                                 "SPO.R/LOAD.LAB, SPO.RAB/@1, AMX/LA, EBMX/AMX.EXP, EALU/B"
EALU_R[](EXP)
```

```
FALU_SC
                                 WEALH/A#
                                 "FRMX/FF.FALU/A+R"
EALU_SC+FE
EALU_SC+K[]
                                 "KMX/R1.EBMX/KMX.EALU/A+B"
                                 "ERMX/FE.EALU/A-B"
FALIL SCOFF
EALU_SC-K[]
                                 "KMX/01.EBMX/KMX.EALU/A-B"
EALU_SC.ANDNOT.K[]
                                 "KMX/81,EBMX/KMX,EALU/ANDNOT"
FALU_STATE
                                 "FALU/A.MSC/LOAD.STATE"
FEESC KIT
                                 "KMX/A1.EBMX/KMX.EALU/B.FEK/LOAD.SMX/EALU.SCK/LOAD"
FE_O(A)
                                 "AMX/RAMX.OXT.DT/LONG.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE D(EXP)
                                 "RAMX/D.AMX/RAMX.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE_EALU
                                 *FEK/LOAD*
FE_K[]
                                 "KMX/01.EBMX/KMX.EALU/B.FEK/LOAD"
FE_LA(EXP)
                                 "AMX/LA.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE_NABS(SC-FE)
                                 "EALU/NABS.A-B.EBMX/FE.FEK/LOAD"
                                 "AMX/LA.EBMX/AMX.EXP.EALU/NABS.A-B.FEK/LOAD"
FE_NABS(SC+LA(EXP))
                                 "RAMX/Q.AMX/RAMX.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE_Q(EXP)
                                 "SPO.R/LOAD.LAB,SPO.RAB/01,AMX/LA,EBMX/AMX.EXP,EALU/B,FEK/LOAD"
FE_R(1(EXP)
                                 "FALU/A.FEK/LOAD"
FE-SC
                                 "FALU/A+1.FEK/LOAD"
FF SC+1
FE_SC+FE
                                 "EBMX/FE, EALU/A+B, FEK/LOAD"
FE_SC+K[]
                                 "KMX/01,EBMX/KMX,EALU/A+B,FEK/LOAD"
                                 "AMX/LA.EBMX/AMX.EXP.EALU/A+B.FEK/LOAD"
FE_SC+LA(EXP)
FF SC-FF
                                 "EBMX/FE, EALU/A-B, FEK/LOAD"
                                 "KMX/@1.EBMX/KMX.EALU/A-B.FEK/LOAD"
FE_SC=K(1
FE_SC-LA(EXP)
                                 "AMX/LA,EBMX/AMX.EXP,EALU/A-B,FEK/LOAD"
                                 "EBMX/SHF. VAL, EALU/A-B, FEK/LOAD"
FE_SC+SHE.VAL
                                 "EBMX/FE, EALU/ANDNOT, FEK/LOAD"
FE_SC.ANDNOT.FE
FE_SC.ANDNOT.K[]
                                 "KMX/@1.EBMX/KMX.EALU/ANDNOT.FEK/LOAD"
FE_SC.OR.K[]
                                 "EALU/OR, EBMX/KMX, KMX/e1, FEK/LOAD"
FE_SHF.VAL
                                 "EBMX/SHF.VAL.EALU/B.FEK/LOAD"
FE_STATE
                                 "MSC/LOAD.STATE, EALU/A, FEK/LOAD"
ID(SC)_D
                                 "CID/WRITE.SC"
                                 "CID/WRITE.KMX, ID. ADDR/01"
D_[]DI
                                 "CID/WRITE.KMX.ADS/IBA.KMX/SP1.CON"
ID_DENO.SYNC
ID_D.SYNC
                                 "CID/WRITE.KMX, ADS/IBA, KMX/SP1.CON, ACF/SYNC"
                                 "KMX/01"
K[]
LAB_R(DST)
                                 "SPO.AC/LOAD.LAB,SPO.ACN11/DST.DST"
LAB_R(PRN)
                                 "SPO.AC/LOAD.LAB.SPO.ACN/PRN"
LAB_R(PRN+1)
                                 "SPO.AC/LOAD.LAB,SPO.ACN/PRN+1"
                                 "SPO.AC/LOAD.LAB.SPO.ACN/SC"
LAB_R(SC)
LAB_R(SP1)
                                 "SPO.AC/LOAD.LAB,SPO.ACN/SP1.SP1"
LAB_R(SP1+1)
                                 "SPO.AC/LOAD.LAB.SPO.ACN/SP1+1"
LAB_R1&RC[]_0
                                 "ALU_O(A), LAB_R1&RC[@1]_ALU"
                                 "ALU/A+B+1,AMX/RAMX.OXT,DT/LONG,BMX/LC,SPO.R/LOAD.LAB1.WRITE.RC,SPO.RC/@1,SHF/ALU"
LAB_R1&RC[]_0+LC+1
LAB_R1&RC[]_0-D
                                 "SPU.R/LOAD.LAB1.WRITE.RC,SPO.RC/01,ALU/A-B,AMX/RAMX.OXT,DT/LONG,BMX/RBMX,RBMX/D,SHF/ALU"
                                 "SPO.R/LOAD.LAB1.WRITE.RC.SPO.RC/01,SHF/ALU"
LAB_R1&RC()_ALU
```

```
"SPO BYLDAD LARL WRITE RC.SPO.RC/R1.SHF/RIGHT2"
LAB RIGROLL ALU, RIGHT2
                                 "ALU D+LC . LAB - R1 & RC [ 91 1 - ALU"
LAB RISRCII-D+LC
                                 "ALU D OYTIG21-KIG31 LAB RISRCIG11-ALU"
LAB DIERCII D OXTII+KII
                                 "ALU O-KIR21 LAR RISECIRII-ALU"
LAB RIARCII Q-KII
                                 "SPO.R/LOAD.LAB.SPO.RAB/01"
LAB.RII
                                 "SPO. AC/LOAD. LAB. SPO. ACN11/DST-SRC"
LA RIDSTIALB-RISEC)
IA D(SD2)ELB P(SD1)
                                 "SDO AC/LOAD LAB SDO ACN/SP2 SP1"
                                 "SPO ACZIDAD LA SPO RABZA1"
LA PATT
LC RC(SC)
                                 "SPO/LOAD.LC.SC"
                                 "SPO.R/LOAD.LC.SPO.RC/81"
LC_RC[]
                                 "AMX/LA.BMX/LB.ALU/A+B.SHF/LEFT.SPO.R/LOAD.LC.WRITE.RAB1.SPO.RC/01"
LC_RC[]&R1_(LA+LB)_LEFT
                                "AMY/LA BMY/LB ALU/A+B+PSL C SHF/LFFT SPO R/LOAD LC WRITE RAB1 SPO RC/01"
LC RC[] ER1 _ (LA+LB+PSL_C) - LFFT
                                 "AMX/LA BMX/LB ALU/A+B RLOG SHF/LEFT SPO R/LOAD LC WRITE RAB1 SPO RC/61"
IC DOLLEDS (LASILE DLOG) LEFT
                                 "AMX/LA.BMX/LB.ALU/A-B.SHF/LEFT.SPO.R/LOAD.LC.WRITE.RAB1,SPO.RC/01"
LC PCIIARI (LA-LB) LEFT
                                 "AMY/LA BMY/LB ALU/A-B RLOG SHF/LEFT SPO R/LOAD LC WRITE RABI SPO RC/01"
LC_RC[16R1_(LA=LB_RLOG)_LEFT
                                 "SPO. R/LOAD LC. WRITE RABI.SPO.RC/81.SHE/ALU"
IC PCILERI ALII
                                 "ALU_D.LC_RCIBILER1_ALU"
LC.RC[]&R1_D
                                 "SPO.R/LOAD.LC.WRITE.RAB1.SPO.RC/01.SHF/ALU.ALU/A+B.AMX/LA.BMX/KMX.KMX/02"
IC PCITERT LASKIT
                                 "ALII LA-KIR21.I.C RCIR11ER1...ALU"
LC RC[]ER1 LA-K[]
                                 "ALU_LB.LC_RC[01]&R1_ALU"
LC_RC[]&R1_LB
                                 "SPO.R/LOAD.LC.WRITE.RAB1.SPG.RC/01.SHF/ALU.ALU/A.AMX/RAMX.RAMX/Q"
LC_RC[]&R1_Q
                                 *CCK/NZ ALU.VC VC*
NEZ ALU
NAZ ALU. VAC-0
                                 "CCK/NZ_ALU.VC_O"
                                 "CCK/N_AMX.Z_TST.VC_VC"
N_AMX.Z_TST
PC&VA_ALU
                                 "VAK/LOAD.PCK/PC_VA"
                                 "RAMX/D.AMX/RAMX.ALU/A.VAK/LOAD.PCK/PC_VA"
PC&VA_D
                                 "RAMX/D.AMX/RAMX.KMX/81.BMX/KMX.ALU/A+B.VAK/LOAD.PCK/PC_VA"
DCEVA D+K[]
                                 "RAMX/D.AMX/RAMX.KMX/81.BMX/KMX.ALU/A-B.VAK/LOAD.PCK/PC_VA"
PCEVA D-KIT
                                 "RAMY/D.AMY/RAMY.RMY/PC.ALU/A-B.VAK/LOAD.PCK/PC_VA"
PC&VA_D-PC
                                 "RAMX/D.AMX/RAMX_OXT.DT/01.ALU/A,VAK/LOAD.PCK/PC_VA"
PCEVA_D.OXT[]
                                "RAMX/D.AMX/RAMX.OXT.DT/R1.BMX/PC.ALU/A+B.VAK/LOAD.PCK/PC_VA"
DCEVA D. OXT[1+PC
                                 "RAMX/D.AMX/RAMX.SXT,DT/01.BMX/PC.ALU/A+B.VAK/LOAD.PCK/PC_VA"
PCEVA D. SXT[1+PC
                                 "KMX/81.BMX/KMX.ALU/B.VAK/LOAD.PCK/PC_VA"
PC&VA_K[]
                                 "BMY/DC.ALU/B.VAK/LOAD.PCK/PC_VA"
PC&VA_PC
                                 "RAMX/Q,AMX/RAMX,ALU/A,VAK/LOAD,PCK/PC_VA"
PC&VA_Q
                                 "RAMX/Q.AMX/RAMX.BMX/PC.ALU/A+B.VAK/LOAD.PCK/PC_VA"
PC&VA_Q+PC
                                 "RAMX/Q, AMX/RAMX, RBMX/D, BMX/RBMX, ALU/A+B, VAK/LOAD, PCK/PC_VA"
PCEVA_Q=D
                                 "RAMX/Q.AMX/RAMX.KMX/81,BMX/KMX,ALU/A-B,VAK/LOAD,PCK/PC_VA"
PC&VA_Q-K[]
                                 "RAMX/Q.AMX/RAMX.SXT.DT/01.BMX/PC.ALU/A+B.VAK/LOAD.PCK/PC_VA"
PCEVA_Q.SXT[]+PC
                                 "SPO_R/LOAD_LC.SPO_RC/#1,BMX/LC.ALU/B,VAK/LOAD.PCK/PC_VA"
PC&VA_RC[]
                                "SPO.R/LOAD.LAB,SPO.RAB/01,AMX/LA,KMX/02,BMX/KMX,ALU/ANDNOT,VAK/LOAD,PCK/PC_VA"
PC&VA_R[].ANDNOT.K[]
                                 "PCK/PC+1"
PC_PC+1
                                 "PCK/PC+2"
PC_PC+2
                                 "PCK/PC+4"
PC_PC+4
                                 *PCK/PC+N*
PC-PC+N
                                 "ALU/A+B, VAK/LOAD, PCK/PC_VA, BMX/PC, AMX/RAMX, RAMX/Q"
PC_Q+PC
                                 "PCK/PC_VA"
PC_VA
```

```
PC_VIBA
                                  "PCK/PC_IBA"
PSL<C>_AMX0
                                  "CCK/C_AMXO"
Q&VA_ALU
                                  "VAK/LOAD, SHF/ALU, QK/SHF"
QEVA_D
                                  "RAMX/D, AMX/RAMX, ALU/A, VAK/LOAD, SHF/ALU, QK/SHF"
Q&VA_D+LC
                                  "RAMX/D, AMX/RAMX, BMX/LC, ALU/A+B, VAK/LOAD, SHF/ALU, QK/SHF"
OEVA_LA
                                  "AMX/LA,ALU/A,VAK/LOAD,SHF/ALU,QK/SHF"
Q&VA_Q+LB.PC
                                  "RAMX/Q,AMX/RAMX,BMX/PC.OR.LP,ALU/A+B,VAK/LOAD,SHF/ALU,QK/SHF"
QD_(Q+LB)D.RIGHT2
                                  "ALU_Q+LB,Q_ALU.RIGHT2.D_D.RIGHT2"
QD_(Q+LC)D.RIGHT2
                                  "ALU_Q+LC,Q_ALU.RIGHT2,D_D.RIGHT2"
QD_(Q-LB)D.RIGHT2
                                  "ALU_Q-LB,Q_ALU.RIGHT2,D_D.RIGHT2"
QD_(Q-LC)D.RIGHT2
                                  "ALU_G-LC,G_ALU,RIGHT2,D_D.RIGHT2"
QD_QD.RIGHT2
                                  "ALU_Q,Q_ALU.RIGHT2.D_D.RIGHT2"
                                  "GK/CLR"
0_0
Q_0+LC+1
                                  "ALU/A+B+1,AMX/RAMX.OXT.DT/LONG.SHF/ALU.QK/SHF.BMX/LC"
Q_0+MASK+1
                                  "AMX/RAMX.OXT,DT/LONG,BMX/MASK,ALU/A+B+1,SHF/ALU,QK/SHF"
Q_O+PC.RLOG
                                  "AMX/RAMX.OXT,DT/LONG,BMX/PC,ALU/A+B.RLOG,SHF/ALU,QK/SHF"
Q_0-D
                                  "AMX/RAMX.OXT,DT/LONG,RBMX/D,BMX/RBMX,ALU/A-B,SHF/ALU,QK/SHF"
0_0-K[]
                                  "AMX/RAMX.OXT,DT/LONG,KMX/@1,BMX/KMX,ALU/A=B,SHF/ALU,QK/SHF"
0_0-LC
                                  "AMX/RAMX.OXT,DT/LONG,BMX/LC,ALU/A-B,SHF/ALU,QK/SHF"
0-0-0
                                  "AMX/RAMX.OXT,DT/LONG,RBMX/Q,BMX/RBMX,ALU/A-B,SHF/ALU,QK/SHF"
Q_ACCEL&SYNC
                                  "QK/ACCEL, ACF/SYNC"
U_ALU
                                  "SHF/ALU,QK/SHF"
Q_ALU(FRAC)
                                  "SHF/ALU, QK/SHF.FL"
Q_ALU.LEFT
                                  "SHF/LEFT,QK/SHF"
Q_ALU.LEFT2
                                  "SHF/ALU.DT,DT/LONG,QK/SHF"
                                  "QK/SHF,SHF/LEFT3"
Q_ALU.LEFT3
Q_ALU.RIGHT
                                  "SHF/RIGHT, QK/SHF"
                                  "SHF/RIGHT2,QK/SHF"
Q_ALU.RIGHT2
Q_D
                                  "QK/D"
Q_D(FRAC)(B)
                                  "RBMX/D,BMX/RBMX,ALU/B,SHF/ALU,QK/SHF.FL"
Q_D+K[]
                                 "RAMX/D, AMX/RAMX, KMX/@1, BMX/KMX, ALU/A+B, SHF/ALU, QK/SHF"
Q_D+K[]+1
                                  "RAMX/D,AMX/RAMX,KMX/01,BMX/KMX,ALU/A+B+1,SHF/ALU,QK/SHF"
Q_D+K[].LEFT
                                  "RAMX/D, AMX/RAMX, KMX/R1, BMX/KMX, ALU/A+B, SHF/LEFT, QK/SHF"
Q_D+LC
                                  "RAMX/D, AMX/RAMX, BMX/LC, ALU/A+B, SHF/ALU, QK/SHF"
Q_D-K[]
                                  "RAMX/D,AMX/RAMX,KMX/01,BMX/KMX,ALU/A-B,SHF/ALU,QK/SHF"
Q_D-LC
                                  "RAMX/D, AMX/RAMX, BMX/LC, ALU/A-B, SHF/ALU, QK/SHF"
0_D-0
                                  "RAMX/D, AMX/RAMX, RBMX/Q, BMX/RBMX, ALU/A-B, SHF/ALU, QK/SHF"
0_D.OXT[]
                                  "RAMX/D, AMX/RAMX.OXT, DT/@1, ALU/A, SHF/ALU, QK/SHF"
Q_D.OXT[]+K[].LEFT
                                  "RAMX/D,AMX/RAMX.OXT,DT/01,KMX/02,BMX/KMX,ALU/A+B,SHF/LEFT,QK/SHF"
Q_D.OXT[].OR.PACK.FP
                                  "RAMX/D, AMX/RAMX.OXT, DT/@1, BMX/PACKED.FL, ALU/OR, QK/SHF"
Q_D.AND.K[]
                                  "RAMX/D,AMX/RAMX,KMX/01,BMX/KMX,ALU/AND,SHF/ALU,QK/SHF"
Q_D.AND.K[].RIGHT
                                  "RAMX/D, AMX/RAMX, KMX/@1, BMX/KMX, ALU/AND, SHF/RIGHT, QK/SHF"
Q_D.AND.K[].RIGHT2
                                  "RAMX/D, AMX/RAMX, KMX/81, BMX/KMX, ALU/AND, SHF/RIGHT2, QK/SHF"
Q_D.AND.RC[]
                                  "RAMX/D,AMX/RAMX,SPO.R/LOAD.LC,SPO.RC/01,BMX/LC,ALU/AND,SHF/ALU.QK/SHF"
Q_D.ANDNOT.RC[]
                                  "RAMX/D,AMX/RAMX,SPO.R/LOAD.LC,SPO.RC/@1,BMX/LC,ALU/ANDNOT,SHF/ALU,QK/SHF"
Q_D.LEFT3
                                  "RAMX/D, AMX/RAMX, ALU/A, SHF/LEFT3, QK/SHF"
0_D.OR.K[]
                                  "RAMX/D, AMX/RAMX, KMX/@1, BMX/KMX, ALU/OR, SHF/ALU, QK/SHF"
```

```
"RAMX/D.AMX/RAMX,SPO.R/LOAD.LC,SPO.RC/@1,BMX/LC,ALU/OR,SHF/ALU,QK/SHF"
Q_D,OR.RC[]
                                  "RAMX/D.AMX/RAMX.ALU/A.SHF/RIGHT.QK/SHF"
G_D.RIGHT
                                  "RAMX/D.AMX/RAMX.ALU/A.SHF/RIGHT2.QK/SHF"
Q_D.RIGHT2
                                  "RAMX/D, AMX/RAMX.SXT, DT/01, ALU/A, SHF/ALU. QK/SHF"
Q_D.SXT[]
                                  "QK/SHF.ALU/XDR.AMX/RAMX.RAMX/D.BMX/RBMX,RBMX/Q.SHF/ALU"
Q_D.XOR.Q
                                  "QK/DEC.CON"
Q_DEC.CON
Q_IB_BDEST
                                  "IBC/BDEST, QK/ID, MCT/ALLOW. IB. READ"
Q_IB.DATA
                                  "QK/ID.MCT/ALLOW.IB.READ"
Q_ID(SC)
                                  "CID/READ.SC, QK/ID"
Q_ID()
                                  "CID/READ.KMX.ID.ADDR/@1.QK/ID"
                                  "KMX/01.BMX/KMX,ALU/B,SHF/ALU,QK/SHF"
Q_K[]
                                  "AMX/RAMX_OXT.DT/LONG,KMX/#1.BMX/KMX.ALU/A+B+1.SHF/ALU,QK/SHF"
0_K[]+1
                                  "KMX/01.BMX/KMX.ALU/B.SHF/ALU.DT.DT/INST.DEP.QK/SHF"
Q_K[].CTX
Q_K[].RIGHT
                                  "KMX/01, BMX/KMX, ALU/B, SHF/RIGHT, QK/SHF"
                                  "KMX/01.BMX/KMX.ALU/B.SHF/RIGHT2.QK/SHF"
Q_K[1.RIGHT2
Q_LA
                                  "AMX/LA, ALU/A, SHF/ALU, QK/SHF"
Q_LA+K[]
                                  "AMX/LA.KMX/01.BMX/KMX.ALU/A+B.SHF/ALU.QK/SHF"
Q_LA+Q
                                  "AMX/LA, RBMX/Q, BMX/RBMX, ALU/A+B, SHF/ALU, QK/SHF"
Q - I.A - K [ ]
                                  "AMX/LA.KMX/@1.BMX/KMX.ALU/A-B.SHF/ALU.QK/SHF"
Q_LA.AND.K()
                                  "AMX/LA.KMX/01.BMX/KMX.ALU/AND.SHF/ALU.QK/SHF"
                                  "AMX/LA, SPO.R/LOAD.LC, SPO.RC/01, BMX/LC, ALU/ANDNOT, SHF/ALU, QK/SHF"
Q_LA.ANDNUT.RC[]
Q_LB
                                  "BMX/LB.ALU/B.SHF/ALU.QK/SHF"
                                  "BMX/LC.ALU/B.SHF/ALU.QK/SHF"
Q_LC
Q_NOT.Q
                                  "RAMX/Q.AMX/RAMX.ALU/NOTA.SHF/ALU.QK/SHF"
                                  "LA_RA[01], AMX/LA, ALU/NOTA, Q_ALU"
Q_NOT.R()
Q_PACK.FP
                                  "BMX/PACKED.FL, ALU/B, SHF/ALU, OK/SHF"
                                  "BMY/PC.ALU/B.SHF/ALU.OK/SHF"
O_PC
Q_Q(FRAC)
                                  "RAMX/Q, AMX/RAMX, ALU/A, SHF/ALU, QK/SHF.FL"
                                  "RBMX/Q.BMX/RBMX.ALU/B.SHF/ALU.QK/SHF.FL"
Q_Q(FRAC)(B)
                                  "RAMX/Q, AMX/RAMX, RBMX/D, BMX/RBMX, ALU/A+B, SHF/ALU, QK/SHF"
0_0+D
                                  "RAMX/Q.AMX/RAMX.KMX/01.BMX/KMX.ALU/A+B.SHF/ALU.QK/SHF"
Q_Q+K[]
                                  "RAMX/Q, AMX/RAMX, KMX/01, BMX/KMX, ALU/A+B+1, SHF/ALU, QK/SHF"
Q_Q+K[]+1
                                 "RAMX/Q.AMX/RAMX.BMX/LC.ALU/A+B.SHF/ALU.QK/SHF"
0 - 0 + I_1C
Q_Q+PC
                                 "RAMX/Q.AMX/RAMX.BMX/PC.ALU/A+B.SHF/ALU.QK/SHF"
                                  "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU.QK/SHF"
0_0-0
                                 "RAMX/Q, AMX/RAMX, RBMX/D, BMX/RBMX, ALU/A-B-1, SHF/ALU, QK/SHF"
0_0-D-1
                                 "RAMX/Q.AMX/RAMX.KMX/01.BMX/KMX.ALU/A-B.SHF/ALU.QK/SHF"
Q_Q=K ( )
                                 "RAMX/Q.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A-B-1.SHF/ALU.QK/SHF"
Q_Q-K[]-1
                                 "RAMX/Q.AMX/RAMX.BMX/LC.ALU/A-B.SHF/ALU.QK/SHF"
0_0-LC
                                 "RAMX/Q.AMX/RAMX.BMX/LC.ALU/A-B-1.SHF/ALU.QK/SHF"
0_0-LC-1
                                  "RAMX/Q.AMX/RAMX.BMX/MASK.ALU/A-B-1.SHF/ALU.QK/SHF"
Q_Q-MASK-1
                                  "RAMX/Q, AMX/RAMX.OXT.DT/e1.KMX/e2.BMX/KMX, ALU/A-B, SHF/ALU, QK/SHF"
Q_Q_0XT[]-K[]
Q_Q.OXT[].LEFT
                                 "RAMX/Q.AMX/RAMX.OXT.DT/01.ALU/A.SHF/LEFT.QK/SHF"
                                 "RAMX/Q.AMX/RAMX.OXT.DT/01.RBMX/D.BMX/RBMX.ALU/OR.SHF/ALU.QK/SHF"
Q_Q.OXT[].OR.D
Q_Q.AND.K[]
                                 "RAMX/O.AMX/RAMX.KMX/@1.BMX/KMX.ALU/AND.SHF/ALU.QK/SHF"
                                 "RAMX/Q.AMX/RAMX.KMX/@1.BMX/KMX.ALU/AND.SHF/RIGHT2.QK/SHF"
Q_Q_AND_K[]_RIGHT2
                                 "RAMX/Q, AMX/RAMX, KMX/01, BMX/KMX, ALU/AND, SHF/RIGHT, QK/SHF"
Q_Q.AND.K[].RIGHT
                                 "RAMX/Q.AMX/RAMX.SPC.R/LOAD.LAB.SPC.RAB/01.BMX/LB.ALU/AND.SHF/ALU.QK/SHF"
Q_Q.AND.R[]
                                  "HAMX/Q, AMX/RAMX, SPO. R/LOAD. LC. SPO. RC/01, BMX/LC, ALU/AND, SHF/ALU, QK/SHF"
Q_Q.AND.RC[]
                                  "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/ANDNOT.SHF/ALU.QK/SHF"
Q_Q.ANDNOT.D
                                  "RAMX/Q,AMX/RAMX,KMX/01.BMX/KMX,ALU/ANDNOT,SHF/ALU,QK/SHF"
Q.Q.ANDNOT.K[]
```

```
Q_Q.ANDNOT.RC[]
                                 "RAMX/O.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/01,BMX/LC.ALU/ANDNOT.SHF/ALU.QK/SHF"
O O LEFT
                                 MOKALEETS.
Q_Q.LEFT2
                                 "OK/LEET2"
0.0.08 K11
                                 "RAMX/Q.AMX/RAMX.KMX/R1.HMX/KMX.ALU/DR.SHF/ALU.OK/SHF"
O O ORNOT MASK
                                 "RAMX/Q.AMX/RAMX.BMX/MASK.ALU/ORNOT.SHE/ALU.OK/SHE"
Q_Q_RIGHT
                                 "OK / RIGHT"
Q_Q_RIGHT2
                                 MOK / PICHTON
0-0-SXT[]
                                 "RAMX/Q.AMX/RAMX.SXT.DT/R1.ALU/A.SHF/ALU.QK/SHF"
O O YOR KIL
                                 "RAMX/Q.AMX/RAMX.KMX/R1.RMX/KMX.AT.U/YOR.SHF/AT.U.OK/SHF"
Q R(PRN). ANDNOT. Q
                                 "SPO.AC/LOAD.LAB.SPO.ACN/PRN.AMX/LA.RBMX/Q.BMX/RHMX.ALU/ANDNOT.SHF/ALU.QK/SHF"
Q_R(PRN+1)
                                 "SPO.AC/LOAD.LAB.SPO.ACN/PRN+1.AMX/LA.ALU/A.SHF/ALU.GK/SHF"
Q.R(PRN+1).AND.Q
                                 "SPO.AC/LOAD.LAB.SPO.ACN/PRN+1,AMX/LA,RBMX/Q,BMX/RBMX,ALU/AND,SHF/ALU,QK/SHF"
Q_R(SC)
                                 "ALUZA SHEZALU AMXZLA SPO ACZLOAD LAB SPO ACNZSC UKZSHE"
Q_R(SRC!1).AND.K()
                                 "SPO_AC/LOAD_LAB.SPO_ACN11/SRC.OR.1.AMX/LA.KMX/01.BMX/KMX.ALU/AND.SHF/ALU.OK/SHF"
Q_RC(SC)
                                 "ALU/B.SHE/ALU.BMX/LC.SPO/LOAD.LC.SC.QK/SHE"
0.8011
                                 "SPO.R/LUAD.LC.SPO.RC/01.BMX/LC.ALU/B.SHF/ALU.QK/SHF"
Q_RC[](FRAC)
                                 "SPO.R/LOAD.LC.SPO.RC/81.BMX/LC.ALU/B.SHF/ALU.OK/SHF.FL"
0-811
                                 "SPO.R/LOAD.LAB.SPO.RAB/81.AMX/LA.ALU/A.SHF/ALU.QK/SHF"
Q_R(1(FRAC)
                                 "SPO.R/LUAD.LAB.SPO.RAB/@1.AMX/LA.ALU/A.SHF/ALU.UK/SHF.FL"
Q_R(1.AND.K(1
                                 "SPO.R/LOAD.LAB.SPO.RAB/81.AMX/LA.KMX/82.BMX/KMX.ALU/AND.SHF/ALU.QK/SHF"
Q_R[]_AND_K[]_RIGHT
                                 "SPO.R/LOAD.LAB,SPO.RAB/01.AMX/LA,ALU/AND,BMX/KMX,KMX/02.SHF/RIGHT.QK/SHF"
Q_R[].ANDNOT.K[]
                                 "SPO.R/LOAD.LAB.SPO.RAB/91.AMX/LA.KMX/92.BMX/KMX.ALU/ANDNOT.SHF/ALU.QK/SHF"
Q_R[]_OR_K[]
                                 "ALU/OR, AMX/LA, SPO.R/LOAD, LAB, SPO.RAB/01, BMX/KMX, KMX/02, QK/SHF"
Q_SC
                                 "ALU/B.BMX/KMX.KMX/SC.SHF/ALU.OK/SHF"
Q_SHF
                                 "QK/SHF"
R(DST)_ALU
                                 "SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN11/DST.DST"
R(DST)_D
                                 "RAMX/D, AMX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE_RAB, SPO. ACN11/DST.DST"
R(DST)_D.SXT[].RIGHT
                                 "RAMX/D, AMX/RAMX_SXT, DT/01.ALU/A, SHF/RIGHT, SPO. AC/WRITE, RAB, SPO. ACN11/DST.DST"
R(PRN)_0+D.RLOG
                                 "ALU/A+B.RLOG.BMX/RBMX.RBMX/D.AMX/RAMX.OXT.DT/LONG.R(PRN)_ALU"
R(PRN)_ALU
                                 "SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN"
R(PRN)_D
                                 "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN"
R(PRN)_D+K[].RLOG
                                 "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A+B.RLOG.DT/LONG.R(PRN)_ALU"
R(PRN)_D=K[]_RLOG
                                 "RAMX/D, AMX/RAMX, KMX/e1, BMX/KMX, ALU/A-B, RLOG, DT/LONG, R(PRN)_ALU"
R(PRN)_D.OR.Q
                                 "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/OR.R(PRN)_ALU"
R(PRN)_D[]Q
                                 "RAMX/D, AMX/RAMX, RBMX/Q, BMX/RBMX, ALU/@1, R(PRN)_ALU"
R(PRN)_K[]
                                 "KMX/01.BMX/KMX.ALU/B.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN"
R(PRN)_LA+K[].RLOG
                                 "AMX/LA, KMX/91, BMX/KMX, ALU/A+B, RLOG, DT/LONG, R(PRN)_ALU"
R(PRN)_LA+Q
                                 "AMX/LA,RBMX/Q,BMX/RBMX,ALU/A+B,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/PRN"
R(PRN)_LA-K[]_RLOG
                                 "AMX/LA.KMX/01.BMX/KMX.ALU/A-B.RLOG.DT/LONG.R(PRN)_ALU"
R(PRN)_LA[]MASK
                                 "AMX/LA, BMX/MASK, ALU/01, SHF/ALU, SPO.AC/WRITE.RAB, SPO.ACN/PRN"
R(PRN)_LC
                                 "BMX/LC, ALU/B, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/PRN"
R(PRN)_PACK.FP
                                 "BMX/PACKED.FL.ALU/B.SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/PRN"
R(PRN)_Q
                                 "RAMX/Q, AMX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE, RAB, SPO. ACN/PRN"
R(PRN)_Q+K[].RLOG
                                 "RAMX/Q.AMX/RAMX.KMX/#1.BMX/KMX.ALU/A+B.RLOG.DT/LONG.R(PRN)_ALU"
                                 "RAMX/Q.AMX/RAMX.KMX/01.BMX/KMX.ALU/A-B.RLOG.DT/LONG.R(PRN)_ALU"
R(PRN)_Q-K[].RLOG
                                 "SHF/ALU, SPO.AC/WRITE.RAB, SPO.ACN/PRN+1"
R(PRN+1)_ALU
R(PRN+1)_D
                                 "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN+1"
                                 "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/OR.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN+1"
R(PRN+1)_D.OR.Q
```

```
"KMX/81,BMX/KMX,ALU/B,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/PRN+1"
R(PRN+1)_K[]
                                 "AMX/LA, ALU/A, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/PRN+1"
R(PRN+1)_LA
R(PRN+1)_LC
                                 "BMX/LC.ALU/B.SHF/ALU.SPO.AC/WRITE.RAB,SPO.ACN/PRN+1"
                                 "RAMX/Q, AMX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/PRN+1"
R(PRN+1)_Q
R(SC)_ALU
                                 "SHE/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SC"
                                 "RAMX/D, AMX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/SC"
R(SC)_D
R(SC)_K[]
                                 "KMX/@1,BMX/KMX,ALU/B,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/SC"
                                 "AMX/LA.ALU/A.SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/SC"
R(SC)_LA
                                 "AMX/LA.RBMX/D.BMX/RBMX, ALU/A+B, SHF/ALU, SPO.AC/WRITE.RAB, SPO.ACN/SC"
R(SC)_LA+D
                                 "AMX/LA, RBMX/D, BMX/RBMX, ALU/A-B, SHF/ALU, SPO. AC/WRITE.RAB, SPO. ACN/SC"
R(SC)_LA-D
R(SC)_LC
                                 "ALU_LC.R(SC)_ALU"
                                 "RAMX/Q, AMX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/SC"
R(SC)_Q
                                 "SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/SP1. SP1"
R(SP1)_ALU
                                 "RAMX/D, AMX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/SP1. SP1"
R(SP1)_D
                                 "KMX/91,BMX/KMX,ALU/B,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/SP1.SP1"
R(SP1)_K[]
                                 "BMX/PACKED.FL, ALU/B, SHF/ALU, SPO. AC/WRITE.RAB, SPO. ACN/SP1.SP1"
R(SP1)_PACK.FP
                                 "RAMX/Q.AMX/RAMX,ALU/A,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/SP1.SP1"
R(SP1)_0
                                 "BMX/LC, ALU/B, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN/SP1+1"
R(SP1+1)_LC
                                 "RAMX/Q.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SP1+1"
R(SP1+1)_Q
                                 "SHF/ALU, SPO.AC/WRITE.RAB, SPO.ACN11/SRC.OR.1"
R(SRC!1)_ALU
                                 "RBMX/D, BMX/RBMX, ALU/B, SHF/ALU, SPO.AC/WRITE.RAB, SPO.ACN11/SRC.OR.1"
R(SRC!1)_D(B)
                                 "SHF/ALU, SPO.AC/WRITE.RAB, SPO.ACN11/SHC.SRC"
R(SRC)_ALU
                                 "RAMX/D, AMX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN11/SRC. SRC"
R(SRC)_D
                                 "RBMX/D.BMX/RBMX,ALU/B,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN11/SRC.SRC"
R(SRC)_D(B)
                                 "RAMX/D, AMX/RAMX, KMX/81, BMX/KMX, ALU/A+B. RLOG, DT/WORD, R(SRC)_ALU"
R(SRC)_D+K[].RLOG
                                 "RAMX/D,AMX/RAMX,KMX/01,BMX/KMX,ALU/A-B.RLOG,DT/WORD,R(SRC)_ALU"
R(SRC)_D-K[].RLOG
                                 "BMX/LC.ALU/B.R(SRC)_ALU"
R(SRC)_LC
                                 "RAMX/Q, ANX/RAMX, ALU/A, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN11/SRC. SRC"
R(SRC)_Q
                                 "SPO.R/WRITE.RAB,SPO.RAB/R6,RAMX/D,AMX/RAMX,KMX/01,BMX/KMX,ALU/A+B.RLOG,SHF/ALU"
R6_D+K[].RLDG
                                 "AMX/LA, BMX/KMX, KMX/01, ALU/A+B.RLOG, DT/WORD, SHF/ALU, SPO.R/WRITE.RAB, SPO.RAB/R6"
R6_LA+K[].RLOG
                                 "AMX/LA,BMX/KMX,KMX/01,ALU/A-B.RLOG,DT/WORD,SHF/ALU,SPO.R/WRITE.RAB,SPO.RAB/R6"
R6_LA-K[].RLOG
                                 "ALU_O=LC.RC(SC)_ALU"
RC(SC)_0-LC
                                 "SHF/ALU.SPO/WRITE.RC.SC"
RC(SC)_ALU
                                 "SPO/WRITE.RC.SC.SHF/RIGHT"
RC(SC)_ALU.RIGHT
                                 "ALU_D,RC(SC)_ALU"
RC(SC)_D
RC(SC)_Q
                                 "ALU_Q.RC(SC)_ALU"
                                 "RAMX/D.AMX/RAMX, RBMX/Q.BMX/RBMX, ALU/A+B, VAK/LOAD, SHF/ALU, SPO.R/WRITE.RC, SPO.RC/81"
RC[]&VA_D+Q
                                 "AMX/PAMX.OXT,DT/LONG,ALU/A,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[]_0
                                 "AMX/RAMX.OXT.DT/LONG,KMX/02,BMX/KMX,ALU/A+B+1,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[]_0+K[]+1
                                 "AMX/RAMX.OXT,DT/LONG,BMX/LC,ALU/A+B+1,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[1_0+LC+1
                                 "AMX/RAMX.OXT.DT/LONG.BMX/MASK.ALU/A+B+1,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[1_0+MASK+1
                                 "AMX/RAMX.OXT.DT/LONG.BMX/MASK.ALU/A+R+1.SHF/RIGHT2.SPO.R/WRITE.RC.SPO.RC/01"
RC(1_0+MASK+1_RIGHT2
                                 "AMX/RAMX.OXT,DT/LONG,RBMX/D,BMX/RBMX,ALU/A-B,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[]_0-D
                                 "SHF/ALU, SPO.R/WRITE.RC, SPO.RC/@1"
RC[]_ALU
```

```
63
```

```
RC[]_ALU_LEFT
                                 "SHF/LEFT.SPO.R/WRITE.RC.SPO.RC/01"
PC[]_ALH_LEFT2
                                 "SPO_R/WRITE.RC.SPO.RC/01.SHF/ALU.DT.DT/LONG"
RC[] ALU LEFTS
                                 "SPO.R/WRITE.RC.SPO.RC/01.SHF/LEFT3"
RC[]_ALU_RIGHT
                                 "SHF/RIGHT.SPO.R/WRITE.RC.SPO.RC/91"
RC[]_ALU_RIGHT2
                                 "SHF/RIGHT2.SPO.R/WRITE.RC.SPO.RC/01"
RC()_D
                                 "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/01"
RC(1_D(8)
                                 "RBMX/D.BMX/RBMX,ALU/B,SHF/ALU,SPO.R/WRITE.RC,SPU.RC/01"
RCf1_D+Kf1
                                 "RAMX/D.AMX/RAMX.BMX/KMX.KMX/02.ALU/A+B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/01"
RC[]_D-K[]
                                 "RAMX/D.AMX/RAMX.BMX/KMX.KMX/82.ALU/A=B.SHF/ALU.SPO.B/WRITE.RC.SPO.RC/81"
RC[]_D.OXT[]
                                 "RAMX/D.AMX/RAMX, OXT, DT/@2, ALU/A, SHF/ALU, SPO.R/WRITE.RC, SPO.RC/@1"
RC()_D.AND.K()
                                 "RAMX/D.AMX/RAMX.BMX/KMX.KMX/82.ALU/AND.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/81"
RC[]_D.AND.MASK
                                 "RAMX/D.AMX/RAMX.BMX/MASK.ALU/AND.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/81"
RC[1_D_ANDNOT_Q
                                 "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/ANDNOT.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_D.CTX
                                 "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.DT.DT/INST.DEP.SPO.R/WRITE.RC.SPO.RC/61"
RC[1_D.LFFT
                                 "RAMX/D.AMX/RAMX.ALU/A.SHF/LEFT.SPO.R/WRITE.RC.SPU.RC/01"
RC[]_D.LEFT3
                                 "RAMX/D.AMX/RAMX.ALU/A.SHF/LEFT3.SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_D.OR.K[]
                                 "RAMX/D.AMX/RAMX.KMX/02.BMX/KMX.ALU/OR.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/01"
RC()_D.OR.Q
                                 "PAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/OR.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/01"
RC[]_D.ORNOT.K[]
                                 "SPO.RC/01.SPO.R/WRITE.RC.ALU/ORNOT.AMX/RAMX.RAMX/D.BMX/KMX.KMX/02.SHF/ALU"
RC()_D.SXT()
                                 "RAMX/D.AMX/RAMX.SXT,DT/@2,ALU/A,SHF/ALU,SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_K[]
                                 "KMX/02,BMX/KMX,ALU/B,SHF/ALU,SPO_R/WRITE_RC.SPO_RC/01"
RC[]_K[]+1
                                 "AMX/RAMX.OXT.DT/LONG,KMX/02,BMX/KMX.ALU/A+B+1,SHF/ALU.SPO.R/WRITE.RC.SPO.RC/01"
PC(1_K[1_LEFT2
                                 "KMX/92,BMX/KMX,ALU/B,SHF/ALU.DT.DT/LONG.SPO.R/WRITE.RC.SPO.RC/m1"
RC[]_K[]_LEFT3
                                 "KMX/02,BMX/KMX,ALU/B.SHF/LEFT3.SPO.R/WRITE.RC.SPO.RC/01"
RC[]_K[].RIGHT2
                                 "KMX/02.BMX/KMX.ALU/B.SHF/RIGHT2.SPO.R/WRITE.RC.SPO.RC/01"
RC[]_LA
                                 "AMX/LA, ALU/A, SHF/ALU, SPO.R/WRITE.RC, SPO.RC/01"
RC[]_LA+LB.CTX
                                 "AMX/LA.BMX/LB.ALU/A+B.SHF/ALU.DT.DT/INST.DEP.SPO.R/WRITE.RC.SPO.RC/01"
RC[]_LA=K[]
                                 "AMX/LA,KMX/02,BMX/KMX,ALU/A-B,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[]_LA.AND.K[]
                                 "ALU_LA.AND.K(#21.RC[#11_ALU"
RC[]_LA.CTX
                                 "AMX/LA, ALU/A, SHF/ALU.DT, DT/INST.DEP.SPO.R/WRITE.KC, SPO.RC/01"
RC[]_LB
                                 "BMX/LB.ALU/B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_LB_LEFT
                                 "BMX/LB.ALU/B,SHF/LEFT,SPO.R/WRITE.RC.SPO.RC/01"
RC[]_LC
                                 "BMX/LC.ALU/B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/R1"
RC[]_NOT_Q
                                 "RAMX/Q, AMX/RAMX, ALU/NOTA, RC[01]_ALU"
RC[]_PACK.FP
                                 "BMX/PACKED.FL,ALU/B,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[]_PC
                                 "BMX/PC.ALU/B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/#1"
RC[1_Q
                                 "RAMX/Q,AMX/RAMX,ALU/A,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/@1"
RC[]_Q+1
                                 "ALU_0+Q+1.RC[@1]_ALU"
RC[]_Q+K[]
                                 "RAMX/Q, AMX/RAMX, BMX/KMX, KMX/e2, ALU/A+B, SHF/ALU, SPO. R/WRITE.RC, SPO. RC/e1"
RC[]_Q+LC
                                 "ALU/A+B,RAMX/Q,AMX/RAMX,BMX/LC,SPO.R/WRITE.RC,SPO.RC/@1"
RC[]_0+PC
                                 "PAMX/Q,AMX/RAMX,BMX/PC,ALU/A+B,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/@1"
RC[]_0+PC+1
                                 "RAMX/Q, AMX/RAMX, BMX/PC, ALU/A+B+1, SHF/ALU, SPO.R/WRITE.RC, SPO.RC/@1"
RC[]_Q-K[]
                                 "RAMX/Q,AMX/RAMX,BMX/KMX,KMX/@2,ALU/A-B,SHF/ALU,SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_Q-LC
                                 "ALU/A-B,RAMX/Q,AMX/RAMX,BMX/LC,SPO.R/WRITE.RC,SPO.RC/@1"
RC[]_Q-MASK-1
                                 "RAMX/Q,AMX/RAMX,BMX/MASK,ALU/A-B-1,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/@1"
RC[]_Q.OXT[]
                                 "RAMX/Q.AMX/RAMX.OXT.DT/@2.ALU/A.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
                                 "RAMX/Q.AMX/RAMX,BMX/KMX,KMX/02.ALU/AND,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[]_Q.AND.K[]
RC[]_Q.ANDNOT.K[]
                                 "RAMX/Q,AMX/RAMX,BMX/KMX,KMX/02,ALU/ANDNOT,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/01"
RC[]_Q.LEFT
                                 "RAMX/Q.AMX/RAMX.ALU/A.SHF/LEFT.SPO.R/WRITE.RC.SPO.RC/@1"
RC()_Q.LEFT3
                                 "RAMX/Q, AMX/RAMX, ALU/A, SHF/LEFT3, SPO.R/WRITE.RC, SPO.RC/01"
```

```
RC(1_Q.RIGHT
                                 "DAMY/O AMY/DAMY.ALU/A SHE/DICHT SPO D/WRITE.RC.SPO.RC/A1"
PC[1 G.RIGHT2
                                 "ALU G.SHE/RIGHT2.SPO.R/WRITE.RC.SPO.RC/81"
                                 "RAMX/O.AMX/RAMX.SXT.DT/92.ALU/A.SHF/ALU.SPO.R/WRITE_RC-SPO_RC/91"
RC[] Q.SXT[]
                                 MANY/O MSC/READ BLOG ALU/B SHE/RIGHT SPO R/WRITE HC SPO RC/81"
PCCI PLOC PICHT
RETEVA LA+KET
                                 "AMX/LA.KMX/82.8MX/KMX.ALU/A+h.VAK/LOAD.SHF/ALU.SPG.R/WRITE.RAB.SPG.RAB/91"
RILA-KILA-KILA
                                 MANY/I A KNY/02 RMY/KNY ALII/A-R VAK/LOAD SHF/ALII.SPO.R/WRITE RAB.SPO.RAR/01"
                                 "AMY/LA KMY/92 BMY/KMY ALU/A=R RLOG DT/LONG VAK/LGAD SHF/ALU SPO R/MRITE RAR SPO RAR/81"
RILEVA_LA-KIL-RLOG
                                 MDAMY/G AMY/DAMY KMY/AD DMY/KMY ATTI/A-B VAK/TOAD SOO D/MOTTE BAR.SOO BAR/ATT
R[]&VA_Q=K[]
                                 MSDO D/WRITE DAR SDO RABIAS AMY/PAMY OYT DT/LONG ALU/A SHE/ALUM
0.119
                                 "AMY / PAMY OYT DT/LONG BMY/LB.ALU/A+B+1.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/81"
D [ 1 | OALBA1
                                 "AMX/RAMX.OXT.DT/LONG.BMX/KMX.KMX/.1.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/81"
P [ 1 0 - 1
                                 "AMX/RAMX.OXT.DT/LONG.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[1 0=D
                                 "AMY/RAMY OXT DT/LONG.KMY/92.BMY/KMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/91"
R[1_0=K[1
                                 HAMY JOANY DAY DAYLONG BRYZER ALUZA-R SHEZALU SPO RZWRITE RAR SPO RARZALI
R[]_0-LB
                                 "AMX/RAMX.OXT.DT/LONG.RBMX/Q.BMX/RBMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/#1"
R(1 0-0
                                 "SHE/ALIL.SPO.R/WRITE.RAB.SPO.RAB/81"
RILLALU
                                 "SPO.R/WRITE.RAB.SPO.RAB/81.SHF/LEFT"
RIL ALU. LEFT
R(1-ALU.LEFT3
                                 "SPO RIWRITE RABISPO RABIAL SHEZUFFT3"
R(1_ALU.RIGHT
                                 MCHE/DICHT SDD D/WDITE DAR SDD DAR/RIM
                                 "SDO RIWRITE DAR SPO RABIAL SHEIRIGHT2"
RIL ALU.RIGHT2
R(1_D
                                 "SPO. R/WRITE RAB.SPO. RAB/R1 . RAMX/D. AMX/RAMX. ALU/A.SHF/ALU"
                                 "SPO.R/WRITE.RAB.SPO.PAB/01,RAMX/D.AMX/RAMX,KMX/02,BMX/KMX.ALU/A+B.SHF/ALU"
R [ ] . D+K [ ]
R [ ] _ D + Q
                                 "SPO.P/WRITE.PAR.SPO.RAR/R1.RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/A+B.SHF/ALU"
                                 "SPO.R/WRITE.RAB.SPO.RAB/81.RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/A+B+1.SHF/ALU"
R(1_D+Q+1
                                 "SPU.A/WRITE.RAB.SPO.RAB/R1.RAMX/D.AMX/RAMX,KMX/R2.BMX/KMX.ALU/A-B.SHF/ALU"
R [ ] _ D = K [ ]
                                 "ALU_D=LC=1.R[01]_ALU"
R[1_D-LC-1
                                 "SPO.R/WRITE.RAB.SPO.RAB/#1.RAMX/D.AMX/RAMX/RBMX/Q.BMX/RBMX.ALU/A-B.SHF/ALU"
R11 0-0
                                 "SPO_R/WRITE_RAB.SPO_RAB/81.ALU/AND.AMX/RAMX.RAMX/D.BMX/KMX.KMX/82.SHF/ALU"
RII_D.AND.KII
                                 "SPO_K/WPITE_RAB,SPO_RAB/01.ALU/OR,AMX/RAMX,RAMX/D.BMX/LC.SHF/ALU"
R[]_D.OR.LC
                                 "SPO.R/WRITE.RAB.SPO.RAB/R1.ALU/OR.AMX/RAMX/RAMX/D.BMX/PACKED.FL.SHF/ALU"
RIL D.OR. PACK. FP.
                                 "SPO.R/WRITE RAB.SPO.RAB/81, HAMX/D.AMX/RAMX, RBMX/Q.BMX/RBMX.ALU/OR.SHF/ALU"
R [ ] . D . OR . O
                                 "BMX/KMX.KMX/@2.ALU/B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[1_K[1
                                 "SPO_R/WRITE.RAB.SPO_RAB/@1.AMX/LA.ALU/A.SHF/ALU"
A.I. CIR
                                 "AMX/LA, RBMX/D, BMX/RBMX, ALU/A+E, SHF/ALU, SPO.R/WRITE.RAB.SPO.RAB/@1"
RII_LA+D
                                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/A+B+1.SHF/ALU.SPO.R/WRITE_RAB.SPO.RAB/#1"
R[1.LA+D+1
                                 "AMX/LA.BMX/KMX.KMX/@2.ALU/A+B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[1_LA+K[]
                                 "AMX/LA.BMX/KMX.KMX/R2.ALU/A+B+1.R[R1]_ALU"
RI1 LA+K[1+1
                                 "ANY/LA BMX/KMX KMX/Q2 ALU/A+B RLOG DT/LONG SHF/ALU SPO R/WRITE RAB SPO RAB/#1"
R[]_LA+K[].RLOG
                                 "AMX/LA.BMX/LC.ALU/A+B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/01"
R[]_LA+LC
R[]_LA+MASK+1
                                 "AMY/LA BMY/MASK ALU/A+B+1 B(811 ALU"
                                 "AMX/LA.RBMX/Q.BMX/RBMX.ALU/A+B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R()_LA+Q
                                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
RII_LA-D
                                 "AMX/LA.BMX/KMX.KMX/02.ALU/A=B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/01"
R[]_LA-K[]
                                 "AMX/LA.BMX/KMX,KMX/02.ALU/A-B.RLOG.DT/LONG.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/01"
RII_LA-KII.RLOG
                                 "ALU/A-B-1.AMX/LA.BMX/MASK.SPO.R/WRITE.RAB.SPO.RAB/@1.SHF/ALU"
R[]_LA-MASK-1
                                 "AMX/LA.RBMX/Q.BMX/RBMX.ALU/A-B.SHF/ALU.SPO.R/WRITE_RAB.SPO.RAB/@1"
R [ 1 _ LA = Q
                                "AMX/LA, BMX/KMX, KMX/02, ALU/AND, SHF/ALU, SPO.R/WRITE. RAB. SPO. RAB/01"
R[]_LA.AND.K[]
                                "AMX/LA.RBMX/D.BMX/RBMX.ALU/OP.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/01"
R[]_LA.OR.D
                                 "AMX/LA.BMX/MASK.ALU/ORNOT.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/01"
R[]_LA.ORNOT.MASK
```

```
65
```

```
R[]_LB
                                 "BMX/LB.ALU/B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/01"
RII LC
                                 "HMX/LC.ALU/B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/81"
RID_LC.RIGHT
                                 "BMX/LC.ALU/B.SHF/RIGHT.SPO.H/WRITE.RAB.SPO.RAB/A1"
RIL NOT-0
                                 "AMX/RAMX.OXT.DT/LONG.ALU/NOTA.R[81]_ALU"
RII_NOT.D
                                 "RAMX/D.AMX/RAMX.ALU/NOTA.R[@1]_ALU"
RII NOT-MASK
                                 "BMX/MASK,AMX/RAMX.OXT.DT/LONG.ALU/ORNOT.SHF/ALU.SPO.R/WRITE.RAB,SPO.RAB/#1"
RII_NOT.Q
                                 "RAMX/Q.AMX/RAMX.ALU/NOTA.R[@1]_ALU"
REL PACK FP
                                 "BMX/PACKED_FL,ALU/B,SHF/ALU,SPO.R/WRITE.RAB,SPO.RAB/#1"
R[]_0
                                 "SPO.R/WRITE.RAB.SPO.RAB/01.RAMX/Q.AMX/RAMX.ALU/A.SHF/ALU"
R[]_Q+1
                                 "ALU_0+0+1.R[@11 ALU"
                                 "SPO.R/WRITE.PAB.SPO.RAB/@1.ALU/A+B+1.BMX/KMX.KMX/.4.AMX/RAMX.RAMX/Q.SHF/ALU"
R (1_0+5
R[1_Q+K[]
                                 "SPO_R/WRITE_RAB.SPO_RAB/@1.RAMX/Q.AMX/RAMX.BMX/KMX.KMX/@2.ALU/A+B.SHF/ALU"
RII_Q+LP
                                 "SPU.P/WRITE.RAB,SPO.RAB/e1,ALU/A+B,AMX/RAMX,BMX/LB,RAMX/Q,SHF/ALU"
R[1_Q+LC
                                 "SPO.R/WRITE.RAB.SPO.RAB/01,RAMX/Q,AMX/RAMX,BMX/LC,ALU/A+B,SHF/ALU"
R [ 1 _ 0 = D
                                 "SPO.R/WRITE.RAB.SPO.RAB/01.RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU"
R[1_Q-D-1
                                 "SPO.R/WRITE.RAB.SPO.RAB/@1,ALU/A-B-1,AMX/RAMX,RAMX/Q,BMX/RBMX,RBMX/D,SHF/ALU"
R[]_Q-K[]
                                 "SPO.F/WRITE.RAB.SPO.RAB/61.RAMX/Q.AMX/RAMX.BMX/KMX,KMX/62.ALU/A-B.SHF/ALU"
R[]_Q=K[].RLOG
                                 "RAMX/Q.AMX/RAMX.BMX/KMX.KMX/02.ALU/A-B.RLOG.DT/LONG.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/01"
R11_0=LC
                                 "SPO.R/WRITE.RAB.SPO.RAB/01.RAMX/Q,AMX/RAMX,BMX/LC.ALU/A-B.SHF/ALU"
RII_Q.AND.K[]
                                 "ALU/AND, SPO.R/WRITE.RAB, SPO.RAB/@1, AMX/RAMX, RAMX/Q, BMX/KMX, KMX/@2"
R[]_G.ANDNOT.K[]
                                 "SPO.R/WRITE.RAB.SPO.RAB/01,ALU/ANDNOT.AMX/RAMX,RAMX/Q.BMX/KMX,KMX/02,5HF/ALU"
R[]_Q.OR.D
                                 "SPO.R/WRITE.RAP,SPO.RAB/A1,ALU/OR,AMX/RAMX,RAMX/Q,BMX/RBMX,RBMX/D,SHF/ALU"
R[]_Q.DRNOT.K[]
                                 "SPO.R/WRITE.RAB.SPO.RAB/01.RAMX/Q.AMX/RAMX.BMX/KMX.KMX/02.ALU/ORNOT.SHF/ALU"
RII_Q_RIGHT.1
                                 "ALU_O.SHF/RIGHT,SPO.R/WRITE.RAB,SPO.RAB/@1"
R[]_RLOG.RIGHT.1
                                 "BMX/0.MSC/READ.RLOG.ALU/B.SHF/RIGHT.SPO.R/WRITE.RAB.SPO.RAB/@1"
SCESTATE_STATE-R()(EXP)
                                 "LAB_R[@1],AMX/LA,EBMX/AMX.EXP,MSC/LOAD.STATE,EALU/A-B,SMX/EALU,SCK/LOAD"
SC-O(A)
                                 "AMX/RAMX.OXT.DT/LONG.EBMX/AMX.EXP.EALU/B.SMX/EALU.SCK/LOAD"
SC_0-K[]
                                 "BMX/KMX.KMX/@1.AMX/RAMX.OXT.DT/LONG.ALU/A-B.SMX/ALU.SCK/LOAD"
SC_ALU
                                 "SMX/ALU.SCK/LDAD"
SC_ALU(EXP)
                                 "SMX/ALU.EXP,SCK/LOAD"
SC_D
                                 "RAMX/D,AMX/RAMX,ALU/A,SMX/ALU,SCK/LOAD"
SC_D(EXP)
                                 "RAMX/D, AMX/RAMX, ALU/A, SMX/ALU, EXP, SCK/LOAD"
SC_D(EXP)(A)
                                 "RAMX/D.AMX/RAMX.EBMX/AMX.EXP.EALU/B.SMX/EALU.SCK/LOAD"
SC_D(EXP)(B)
                                 "RBMX/D,BMX/RBMX,ALU/B.SMX/ALU.EXP,SCK/LOAD"
SC_D-K[]
                                 "RAMX/D,AMX/RAMX,KMX/@1,BMX/KMX,ALU/A-B,SMX/ALU,SCK/LOAD"
SC_D.OXT[]-K[]
                                 "RAMX/D, AMX/RAMX.OXT.DT/e1.KMX/e2,BMX/KMX.ALU/A-B,SMX/ALU,SCK/LOAD"
SC_D_OXT[].XOR.K[]
                                 "RAMX/D, AMX/RAMX.OXT, DT/@1, BMX/KMX, KMX/@2, ALU/XOR, SC_ALU"
SC_D.AND.K[]
                                 "RAMX/D, AMX/RAMX, KMX/01, BMX/KMX, ALU/AND, SMX/ALU, SCK/LOAD"
SC_D.OR.K[]
                                 "RAMX/D,AMX/RAMX,KMX/01,BMX/KMX,ALU/OR,SMX/ALU,SCK/LOAD"
SC_D.SXT[]
                                 "RAMX/D, AMX/RAMX.SXT, DT/01, ALU/A, SMX/ALU, SCK/LOAD"
SC_EALU
                                 "SMX/EALU, SCK/LOAD"
SC_FE
                                 "SMX/FE.SCK/LOAD"
                                 "KMX/@1,EBMX/KMX,EALU/B,SMX/EALU,SCK/LOAD"
SC_K[]
SC_K[].ALU
                                 "KMX/@1,BMX/KMX,ALU/B,SMX/ALU,SCK/LOAD"
                                 "AMX/LA,ALU/A,SMX/ALU,SCK/LOAD"
SC_LA
SC_LA.AND.K[]
                                 "AMX/LA,KMX/@1,BMX/KMX,ALU/AND,SMX/ALU,SCK/LOAD"
SC_LC(EXP)
                                 "BMX/LC, ALU/B, SMX/ALU.EXP, SCK/LOAD"
                                 "EBMX/FE, EALU/NABS, A-B, SMX/EALU, SCK/LOAD"
SC_NABS(SC-FE)
SC_PSLADDR
                                 "SMX/EALU, EBMX/KMX, SCK/LOAD, KMX/.F, EALU/B"
```

```
SC_Q
                                 "RAMX/Q, AMX/RAMX, ALU/A, SMX/ALU, SCK/LOAD"
SC_C(EXP)
                                 "RAMX/Q.AMX/RAMX.EBMX/AMX.EXP.EALU/B.SMX/EALU.SCK/LOAD"
SC_Q(EXP)(B)
                                 "RBMX/Q,BMX/RBMX,ALU/B,SMX/ALU,EXP,SCK/LOAD"
SC_Q+K[]
                                 "RAMX/Q.AMX/RAMX,BMX/KMX,KMX/01,ALU/A+B,SMX/ALU,SCK/LOAD"
SC_Q-K[]
                                 "RAMX/Q.AMX/RAMX.BMX/KMX.KMX/01.ALU/A-B.SMX/ALU.SCK/LOAD"
SC_Q.AND.K[]
                                 "RAMX/Q,AMX/RAMX,BMX/KMX,KMX/01,ALU/AND,SMX/ALU,SCK/LOAD"
SC-Q.OR.K[]
                                 "RAMX/Q.AMX/RAMX.BMX/KMX.KMX/81.ALU/OR.SMX/ALU.SCK/LOAD"
SC_Q.SXT[]
                                 "RAMX/Q, AMX/RAMX, SXT, DT/01, ALU/A, SMX/ALU, SCK/LOAD"
SC_RC[]
                                 "SPO.R/LOAD.LC, SPO.RC/01, BMX/LC, ALU/B, SMX/ALU, SCK/LOAD"
                                 "SPO.R/LOAD.LC.SPO.RC/R1.BMX/LC.ALU/B.SMX/ALU.EXP.SCK/LOAD"
SC_RC[](EXP)
SC_R[]
                                 "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,ALU/A,SMX/ALU,SCK/LOAD"
                                 "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.ALU/A.SMX/ALU.EXP.SCK/LOAD"
SC_R[](EXP)
SC_R[].AND.K[]
                                 "ALU/AND, AMX/LA, SPO.R/LOAD.LAB, SPO.RAB/@1, BMX/KMX, KMX/@2, SMX/ALU, SCK/LOAD"
SC_SC+1
                                 "EALU/A+1.SMX/EALU.SCK/LOAD"
                                 "EALU/A+B.EBMX/AMX.EXP.SMX/EALU.SCK/LOAD.AMX/RAMX,RAMX/Q"
SC_SC+EXP(Q)(A)
SC_SC+FE
                                 "EBMX/FE, EALU/A+B, SMX/EALU, SCK/LOAD"
SC_SC+K[]
                                 "KMX/91.EBMX/KMX.EALU/A+B.SMX/EALU.SCK/LOAD"
SC_SC+SHF.VAL
                                 "EALU/A+B, EBMX/SHF. VAL, SMX/EALU, SCK/LOAD"
SC_SC-FE
                                 "EBMX/FE.EALU/A-B.SMX/EALU.SCK/LOAD"
                                 "KMX/01.EBMX/KMX.EALU/A-B.SMX/EALU.SCK/LOAD"
SC_SC-K[]
SC_SC-SHF.VAL
                                 "EBMX/SHF.VAL, EALU/A-B, SMX/EALU, SCK/LOAD"
                                 "EBMX/FE.EALU/ANDNOT.SMX/EALU.SCK/LOAD"
SC_SC.ANDNOT.FE
                                 "KMX/01,EBMX/KMX,EALU/ANDNOT,SMX/EALU.SCK/LOAD"
SC_SC.ANDNOT.K[]
SC_SC.OR.K[]
                                 "KMX/@1.EBMX/KMX.EALU/OR.SMX/EALU.SCK/LOAD"
SC_SHF.VAL
                                 "EBMX/SHF.VAL, EALU/B, SMX/EALU, SCK/LOAD"
SC_STATE
                                 "EALU/A.MSC/LOAD.STATE.SMX/EALU.SCK/LOAD"
                                 "EALU/ANDNOT, EBMX/KMX, MSC/LOAD, STATE, SMX/EALU, SCK/LOAD, KMX/@1"
SC_STATE.ANDNOT.K[]
SC_STATE.OR.K[]
                                 "EALU/OR.EBMX/KMX.MSC/LOAD.STATE.SMX/EALU.SCK/LOAD.KMX/01"
                                 "SGN/NOT.SD"
SD_NOT.SD
SD_SS
                                 "SGN/SD.FROM.SS"
                                 "SGN/CLR.SD+SS"
SS_0&SD_0
SS_ALU15
                                 "SGN/LOAD.SS"
SS_SD
                                 "SGN/SS.FROM.SD"
SS_SS.XOR.ALU15&SD_ALU15
                                 "SGN/SS.XOR.ALU"
                                 "AMX/RAMX.OXT.DT/LONG.EBMX/AMX.EXP.EALU/B.MSC/LOAD.STATE"
STATE_O(A)
STATE_AMX.EXP
                                 "EBMX/AMX.EXP.EALU/B.MSC/LOAD.STATE"
STATE_D(EXP)
                                 "RAMX/D.AMX/RAMX.EBMX/AMX.EXP.EALU/B.MSC/LOAD.STATE"
STATE_FE
                                 "EBMX/FE, EALU/B, MSC/LOAD. STATE"
                                                                           PEDITPO STATES
STATE_FIRST
                                 "STATE_K[ZERO]"
STATE_INNEROBJ
                                 "STATE_K[.1]"
                                                                          :MATCHC STATES
STATE_INNERSRC
                                 "STATE_K[.3]"
STATE_K[]
                                 "KMX/01,EBMX/KMX,EALU/B,MSC/LOAD.STATE"
                                 "STATE_K[ZERO]"
STATE_OUTER
                                 "STATE_K[.80]"
STATE_PREDEC
                                 "RAMX/Q, AMX/RAMX, EBMX/AMX. EXP, EALU/B, MSC/LOAD. STATE"
STATE_Q(EXP)
STATE_SC.VIA.KMX
                                 "MSC/LOAD.STATE.EALU/B.EBMX/KMX.KMX/SC"
                                 "STATE_K[.4]"
                                                                          ISKPC STATES
STATE_SKPLONG
STATE_STATE+1
                                 "EALU/A+1.MSC/LOAD.STATE"
                                 "EBMX/FE, EALU/A+B, MSC/LOAD.STATE"
STATE_STATE+FE
STATE_STATE+K[]
                                 "KMX/01.EBMX/KMX.EALU/A+B.MSC/LOAD.STATE"
```

```
STATE_STATE-FE
                                 "EBMX/FE, EALU/A-B, MSC/LOAD. STATE"
                                 "KMX/01,EBMX/KMX,EALU/A-B,MSC/LOAD.STATE"
STATE_STATE-K()
                                 "STATE_STATE.ANDNOT.K[.4]"
STATE_STATE.AN.SKPLONG
STATE_STATE.AN.5TOO
                                 "STATE_STATE.ANDNOT.K[.3F]"
STATE_STATE.AN.6TO4
                                 "STATE_STATE.ANDNOT.K[.7F]"
STATE_STATE.AN.DESTDBL
                                 "STATE_STATE.ANDNOT.K(.6)"
                                 "STATE_STATE.ANDNOT.K[.7F]"
STATE_STATE.AN.NOTPREDEC
STATE_STATE.AN.PREDECZERO
                                 "STATE_STATE.ANDNOT.K(.CO)"
STATE_STATE.ANDNOT.FE
                                 "EBMX/FE, EALU/ANDNOT, MSC/LOAD.STATE"
                                 "KMX/@1,EBMX/KMX,EALU/ANDNOT,MSC/LOAD.STATE"
STATE_STATE.ANDNOT.K[]
                                 "MSC/LOAD.STATE, EBMX/SHF. VAL, EALU/ANDNOT"
STATE_STATE.ANDNOT.SHF.VAL
                                 "EALU/OR, EBMX/FE, MSC/LOAD.STATE"
STATE_STATE.OR.FE
                                 "KMX/@1,EBMX/KMX,EALU/OR,MSC/LOAD.STATE"
STATE_STATE.OR.K[]
STATE_STATE.OR.ADJINP
                                 "STATE_STATE.OR.K[.3]"
STATE_STATE.OR.DEST
                                 "STATE_STATE.OR.K[.4]"
STATE_STATE.OR.DESTDBL
                                 "STATE_STATE.OR.K[.6]"
STATE_STATE.OR.FILL
                                 "STATE_STATE.OR.K[.7]"
                                 "STATE_STATE.OR.K[.60]"
STATE_STATE.OR.FLOAT
STATE_STATE.OR.MOVE
                                 "STATE_STATE_OP.K[.50]"
                                 "STATE_STATE.OR.K[.1]"
STATE_STATE.OR.PATT1
                                 "STATE_STATE.OR.K[.2]"
STATE_STATE.OR.PATT2
SWAPD
                                 "DK/BYTE.SWAP"
VA_ALU
                                 "VAK/LOAD"
VA_D
                                 "RAMX/D, AMX/RAMX, ALU/A, VAK/LOAD"
VA_D+K[]
                                 "RAMX/D.AMX/RAMX,KMX/01,BMX/KMX,ALU/A+B.VAK/LOAD"
VA_D+LC
                                 "RAMX/D, AMX/RAMX, BMX/LC, ALU/A+B, VAK/LOAD"
                                 "RAMX/D, AMX/RAMX, RBMX/Q, BMX/RBMX, ALU/A+B, VAK/LOAD"
VA_D+Q
VA_D. 0XT[]+Q
                                 "RAMX/D, AMX/RAMX, OXT, DT/@1, BMX/RBMX, ALU/A+B, VAK/LOAD"
VA_D.ANDNOT.K[]
                                 "RAMX/D.AMX/RAMX.BMX/KMX.KMX/01.ALU/ANDNOT.VAK/LOAD"
VA_K[]
                                 "KMX/@1,BMX/KMX,ALU/B,VAK/LOAD"
                                 "AMX/LA.ALU/A.VAK/LOAD"
VA_LA
VA_LA+D
                                 "AMX/LA,RBMX/D,BMX/RBMX,ALU/A+B,VAK/LOAD"
VA_LA+K[]
                                 "AMX/LA,BMX/KMX,KMX/01,ALU/A+B,VAK/LOAD"
VA_LA+K[]+1
                                 "AMX/LA,BMX/KMX,KMX/@1,ALU/A+B+1,VAK/LOAD"
VA_LA+PC
                                 "AMX/LA,BMX/PC,ALU/A+B,VAK/LOAD"
VA_LA+0
                                 "AMX/LA,RBMX/Q,BMX/RBMX,ALU/A+B,VAK/LOAD"
VA_LA-D
                                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/A-B.VAK/LOAD"
                                 "AMX/LA,BMX/KMX,KMX/@1,ALU/A-B,VAK/LOAD"
VA_LA-K[]
VA_LA-K[]-1
                                 "AMX/LA,BMX/KMX,KMX/@1,ALU/A~B-1,VAK/LOAD"
VA_LA-Q
                                 "VAK/LOAD, ALU/A-B, AMX/LA, BMX/RBMX, RBMX/Q, SHF/ALU"
VA_LA.AND.LC
                                 "AMX/LA,BMX/LC,ALU/AND,VAK/LUAD"
VA_LA.ANDNOT.K[]
                                 "AMX/LA,BMX/KMX,KMX/@1,ALU/ANDNOT,VAK/LOAD"
VA_LB+D.OXT
                                 "BMX/LB,ALU/A+B,AMX/RAMX.OXT,DT/8YTE,VAK/LOAD"
VA_PC
                                 "BMX/PC,ALU/B,VAK/LOAD"
VA_Q
                                 "RAMX/Q, AMX/RAMX, ALU/A, VAK/LOAD"
VA_Q+D
                                 "VAK/LOAD, ALU/A+B, AMX/RAMX, BMX/RBMX, RAMX/Q, RBMX/D, SHF/ALU"
VA_Q+K[]
                                 "RAMX/G, AMX/RAMX, KMX/@1, BMX/KMX, ALU/A+B, VAK/LOAD"
VA_Q+LB
                                 "RAMX/Q,AMX/RAMX,BMX/LB,ALU/A+E,VAK/LOAD"
VA_Q+LB.PC
                                 "RAMX/Q, AMX/RAMX, BMX/PC.OR.LE, ALU/A+B, VAK/LOAD"
```

```
VA_Q+LC
                                 "RAMX/Q,AMX/RAMX,BMX/LC,ALU/A+B,VAK/LOAD"
VA_Q+PC
                                 "RAMX/Q.AMX/RAMX.BMX/PC.ALU/A+P.VAK/LOAD"
VA_Q-K[]
                                 "RAMX/Q,AMX/RAMX,KMX/01,BMX/KMX,ALU/A-B,VAK/LOAD"
VA_Q-LB
                                 "RAMX/Q, AMX/RAMX, BMX/LB, ALU/A-B, VAK/LOAD"
VA_Q.ANDNOT.K[]
                                 "RAMX/Q.AMX/RAMX.KMX/@1.BMX/KMX.ALU/ANDNOT.VAK/LOAD"
                                 "SPO.R/LOAD.LC,SPO.RC/R1,BMX/LC,ALU/B,VAK/LOAD"
VA_RC[]
VA_R()
                                 "SPU.R/LOAD.LAB, SPO.RAB/#1, AMX/LA, ALU/A, VAK/LOAD"
                                 "PCK/VA+4"
VA_VA+4
.TOC
                Macro definition
                                       : Non-transfer macros*
B.FORK
                                 "LAB_R(SP1), QK/ID, CLR. IB. COND, PC_PC+N, SUB/SPEC, J/B. FORK"
BYTE
                                 "DT/BYTE"
C.FORK
                                 "SUB/SPEC.J/C.FORK"
CACHE. INVALIDATE
                                 "MCT/INVALIDATE, VAK/NOP"
CALL
                                 "SUB/CALL"
                                 "CALL.J/01"
CALL[]
CHK.FLT.OPR
                                 "MSC/CHK.FLT.OPR"
CHK.ODD.ADDR
                                 "MSC/CHK.ODD.ADDR"
                                 "CCK/LOAD.UBCC"
CLK_UBCC
                                 "MSC/CLR.FPD"
CLR.FPD
CLR. IB. COND
                                 "IBC/CLR.1-5.COND"
CLR.IB.OPC
                                 "IBC/CLR.O, IEK/ISTR"
CLR.IB.SPEC
                                 "IBC/CLR.1"
                                 "IBC/CLR.O.1.IEK/ISTR"
CLR.IB0-1
                                                          :DISCARD -11 INSTR & OPERAND
CLP. 1B0-3
                                 "IBC/CLR.0-3"
                                 "IBC/CLR.2.3"
                                                          :11 MODE DISCARD ISTREAM OPERAND
CLR.IB2-3
                                                          :2ND PART OF Q/D IMMEDIATE
CLR.IB2-5
                                 "IBC/CLR.1-5.COND"
                                 "MSC/CLR.NEST.ERR"
CLR_NEST_ERR
CLR.SD&SS
                                 "SGN/CLR.SD+SS"
E.FORK
                                 "SUB/SPEC, J/E.FORK"
                                 "IEK/EACK"
EXCEPT.ACK
FLUSH. IB
                                 "IBC/FLUSH, VAK/LOAD, IEK/ISTR"
G.FORK
                                 "SUB/SPEC, J/G. FORK"
INHIBIT.IB
                                 "MCT/MEM.NOP"
INTRPT.ACK
                                 "TEK/TACK"
INTRPT.STROBE
                                 "IEK/ISTR"
IRD
                                 "IRDO, CLK. UBCC, IRD1, SUB/SPEC, J/A. FORK"
                                 "LA_R(DST)&LB_R(SRC),D_LB.PC,VAK/LOAD,Q_IB.DATA,SC_K(.10],PCK/PC+N,MSC/IRD,SUB/SPEC,J/DPO"
IRD.11
IRDO
                                 "LA_R(SP2)&LB_R(SP1),D&VA_LB,SC_ALU(EXP),FE_LA(EXP),SS_ALU15"
                                 "MSC/IRD.QK/ID.MCT/ALLOW.IB.READ.IBC/CLR.1-5.COND.PCK/PC+N"
IRD1
```

LOAD.ACC.CC	"MSC/LOAD.ACC.CC"
LOAD.IB	"VAK/NOP.MCT/READ.V.NEWPC"
LOAD.IB.11	"VAK/NOP, MCT/READ.V.NEWPC"
LONG	"DT/LONG"
MEMORY.NOP	"MCT/MEM.NOP"
MUL.OXT	"SI/MUL+,SC_SC-K[.1],BEN/MUL"
MUL.1XT	"SI/MUL-,SC_SC-K[.1],BEN/MUL"
MULM.DONE	"D_D.RIGHT2,SI/MUL-,INTRPT.STROBE"
MULP.DONE	"D_D.RIGHT2,SI/MUL+,INTRPT.STROBE"
POLY.DONE	"ACF/CONTROL, ACM/POLY.DONE"
RETURNO	"SUB/RET,J/O"
RETURN1	"SUB/RET, J/1"
RETURN10	"SUB/RET,J/10"
RETURN100	"SUB/RET,J/100"
RETURN10C	"SUB/RET, J/10C"
RETURN10E	"SUB/RET,J/10E"
RETURN12	"SUB/RET,J/12"
RETUPN18	"SUB/RET,J/18"
PETURN1F	"SUB/RET,J/1F"
RETURN2	"SUB/RET,J/2"
RETURN20	"SUB/RET,J/20"
RETURN24	"SUB/PET,J/24"
RETURN3	"SUB/RET,J/3"
RETURN4	"SUB/RET,J/4"
PETURN40	"SUB/RET, J/40"
RETURN60	"SUB/PET,J/60"
RETURN61	"SUB/RET,J/61"
RETURN8	"SUB/RET,J/8"
RETURN9	"SUB/RET, J/9"
RETURNF	"SUB/RET, J/OF"
RETURN[]	"SUB/RET,J/01"

```
SET.CC(BYTE)
                                 "CCK/INST.DEP, DT/BYTE"
SET.CC(INST)
                                 "CCK/INST.DEP,DT/INST.DEP"
SET.CC(LONG)
                                 "CCK/INST.DEP.DT/LONG"
SET.CC(ROR)
                                 "CCK/ROR"
SET.CC(WORD)
                                 "CCK/INST.DEP.DT/WORD"
SET.FPD
                                 "MSC/SET.FPD"
                                 "MSC/SET.NEST.ERR"
SET.NEST.FRR
SET.PSL.C(AMX)
                                 "CCK/C_AMXO"
                                 "CCK/SET.V"
SET.V
SPEC
                                 "LAB_R(SP1).Q_IB.DATA.CLR.IB.COND.PC_PC+N.MCT/ALLOW.IB.READ.SUB/SPEC.J/C.FORK"
SPECG
                                 "LAB_R(SP1),Q_IB.DATA,CLR.IB.COND.PC_PC+N.MCT/ALLOW.IB.READ,SUB/SPEC.J/G.FORK"
                                 "IBC/START"
START. IB
                                 "IBC/STOP"
STOP. IB
TEST.TB.RCHK
                                 "MCT/TEST.RCHK, VAK/NOP"
TEST.TB.WCHK
                                 "MCT/TEST.WCHK, VAK/NOP"
TRAP.ACC[]
                                 "ACF/TRAP.ACM/01"
WORD
                                 "DT/WORD"
WRITE.DEST
                                 "LAB_R(SP1),QK/ID.CLR.IB.COND.PC_PC+N.SUB/SPEC.J/WRD"
WRITE.G.DEST
                                 "LAB_R(SP1), QK/ID,CLR.IB.COND,PC_PC+N,SUB/SPEC,J/WRG"
```

.TOC "	Macro definition	1	ranch	enable	macros*	
AC.LOW?		"BEN/INTE	RRUPT	1,33/3	t #	
ACC.SYNC?		"BEN/ACCE		1.33/3		
ACCEL?		"BEN/ACCE		,,03,	•	
ALIGNED?		"BEN/TB.T		;.J5/1	7 *	
ALU.N?		"BEN/ALU"		3.34/0		
ALU1-07		"BEN/ALU1		,,04/0	''	
ALU?		"BEN/ALU"				
		DEW/ ABO				
BCDSGN?		"BEN/DECI	MAL"	1,32/2		
C31?		"BEN/C31"				
CONSOLE.MODE?		"BEN/PSL.		;,J5/1	.в*	
					· -	
D(1)?		"BEN/MUL"				
D.B0?		"BEN/D.BY	TES*	1.34/0	E"	
D.B1?		"BEN/D.BY	TES"	1.34/0	D *	
D.827		"BEN/D.BY	TES"	1.34/0		
D.BYTES?		"BEN/D.BY	TES"	. ,		
D.NE.0?		"BEN/SIGN	s"	1.33/5	" :PREFERED	FORM
007		"BEN/D3-0		3.J4/C		
D2-07		"BEN/D3-0		1.14/0		
D2?		"BEN/D3-0		1.34/0		
D3-07		"BEN/D3-0		,,,,,,	-	
D317		"BEN/SIGN		1.33/6		
D3?		"BEN/D3-0		;,J4/C		
DATA.TYPE?		"BEN/DATA			•	
DBL?		"BEN/DATA				
		55.,, 5	••••			
EALU.N?		"BEN/EALU		1.J4/0	7 *	
EALU.Z?		"BEN/EALU		;.J4/C		
EALU?		"BEN/EALU		,,04,		
END.DP1?		"BEN/END.				
		021172110				
FPD?		"BEN/LAST	.REF"	;,,14/0	7"	
IB.TEST?		"BEN/IB.T	EST*			
INT?		"BEN/INTE				
INTERRUPT.REQ?		"BEN/INTE				
IRO.C31?		"BEN/ALU"		,,03,		
IRO?		"BEN/ALU"		1.J4/C	n *	
IR1?		"BEN/IR2-		1.33/6		
IR2-17		"BEN/IR2-		,,,,,,,	•	
		DE 07 1 1 2 -	•			
LAST.REF?		"BEN/LAST	.REF			
MODE.LSS.ASTLVL	?	"BEN/REI"		:.J3/3		
MUL?	•	"BEN/MUL"		,,,,,,,		
		SEAT HOL				

FPA CONTROL WORD FIELDS


```
:FIELDS ARRANGED FROM HI TO LO ORDER BITS
.RTOL
.HEXADECIMAL
                                :NEXT ADDRESS DEFAULT IS THE FOLLOWING
NAD/=0.9.39.+
                                :MICRO WORD
                                :BRANCH ENABLE
BEN/=0.3.36,D
        NOP=C
                                :DEFAULT
        38171=1
                                :SEE TABLE FOR EXPLANATION
        5EN2=2
        BEN3=3
        BEN4=4
        BEN5=5
        BEN6=6
        BEN7=7
AMXC/=2.2.34.D
                                :EALU A INPUT
        LA=0
                                :SEL LA TO FALU
                                :SEL LB TO EALU
        LB=1
        PR=2
                                :SEL PR TO EALU
        COND=3
                                :ADD. COMDITIONAL
BMXC/=0.2.32.D
                                :EALU B INPUT
        NK=0
                                :ROM NORWALIZATION CONSTANT
                                ;X REGISTER
        XR = 1
        #80=2
                                :RESTORE EXCESS 80(16) NOTATION
        LB=3
                                :SEL LB TO EALU
                               :EALU CONTROLS
EALUC/=0.2,30,0
```

74

```
2 = 0
                                  : PASS AM 'Y
        \Delta - E = 1
                                  :AMX MINUS BMX
        4+P=2
                                  :AMX PLUS STAX
        KSFE=S
                                  :FALU=3FF
FPSYNC/=0.1.29.D
                                  SYNC TO CRU
        NOPEO
        FPS=1
                                  :ASSERT FREYNO
MCTL/=0.1.28.D
        NOR=0
        CNT = 1
                                  : START A MULTIPLY
EAC/=0.4,24.D
                                  :EXPONENT PROCESSOR CONTROLS
        NOP=0
        LDXS=1
                                  : POLY ARG EXP REG GETS EALU
        1088=2
                                  : PRODUCT EXP REG GETS FAILE
        PR.XR=3
                                  : LOAD PR & XR
        LDB:4
                                  : LB GETS BUS R
        XR.LS=5
                                  : LB GETS BUS, XR GETS EALU
        PR. LE=6
                                  : LB_BUS, PR EALU
        PR.XR.LE=7
                                  ; LB_BUS, PP&XR EALU
        LDA=8
                                  ; LA_BUS A
        XR.LA=9
                                  ; LA_BUS. XR EALU
        PR.LA=OA
                                  ; LA_BUS, PR EALU
        PR.XR.LA=0B
                                  ; LA BUS. PREXR EALU
        LDA5=00
                                  : LA_BUS A, LB BUS B
        XR.AB=0D
```

; LA_BUS A, LB_BUS B, XR EALU

; LA_BUS A, LB_BUS B, PR_EALU

75

PR.AE=DE

LD.ALL=OF

```
NOP=0
                                 :ENABLE STALL
        WAIT=1
                                 :MISCELLANEOUS CONTROLS
MSC/=C,3,20,D
        NOP=0
                                 :POLY ADD FOR SIGN PROCESSOR
        P.ADD=1
                                 :SET ERROR BLT FOR RESRVD OPND
        MC = 2
                                 :CLEAR REMAINDER REGISTER
        RR.0=3
                                 : ERROR CONDITIONS
        CC = 4
                                 :LOAD SIGN OF X FOR POLY
        LDSX=5
                                 :INSTRUCTION BRANCH 0
        IR0=6
                                 :INSTRUCTION BRANCH 1
        IR1=7
                                 :NORMALIZER REGESTER
NRC/=3.2.18.D
        NOP=3
                                 :SHIFT LEFT (NORMALIZE)
        SL=2
                                 :LCAD BUS A, BUS B
        LD=0
                                 :FPA SCRATCH PAD CONTROLS
SCR/=0,2,16,D
                                 :REGISTER ADDRESS FROM CPU
        CPU=0
                                 ;SP2+1,PRN+1
        DPR.R=1
                                 :SP1.SP2
        R.R=2
                                 :PRN+1. PRN
        DP=3
```

WAIT/=0,1,23,D

76

```
: DATA SOURCE FOR BUS A AND BUS B
BSC/=8,4,12,D
                                 :INTEGER PRODUCT HI TO BUS A
        INTH=3
        NL=4
                                 :NSHFL TO BUS A. BUS A TO BUS B
        NH=5
                                 :NSHFH & EXP TO BUS A. A TO B
        PO=6
                                 :PROD/QUOTH TO BUS A. P/QL TO BUS B
                                 :INTEGER PRODU TO BUS A
        INTL=7
                                 :ID BUS TO BUS A. B
        ID=8
        LR=9
                                 ; IBUF DATA REGISTER TO BUS
        ID.RB=OA
                                 :ID TO BUS A. RB TO BUS B
        R=0B
                                 :RA TO BUS A. RB TO BUS B
        FAL.X=0C
                                 :HARDWARE DETERMINED
        FAL. LH=OD
                                 :FALUL TO BUS A. FALUH TO BUS B
        FAL.HL=CE
                                 : FALUH TO BUS A. FALUL TO BUS B
FADC/=0C.4.8,D
                                 :FRACTION PROCESSOR CONTROLS
        AR = 0
                                 ; LOAD AR1, ARO
        BR1=1
                                 : LOAD BR1
        AR1=2
                                 :LCAD AR1
        R1 = 3
                                 :LOAD AR1. BR1
        5R = 4
                                 :LOAD BR1.ERO
        ER0=5
                                 :LOAD BRO
        AR0=6
                                 :LOAD ARD
        RC = 7
                                 :LOAD BRO, ARO
        LD=8
                                 ; LOAD AR. BR
                                 :HARDWARE DETERMINED ADD/SUB
        A.B=OA
        A = 00
                                 :OUTPUT AR
        3=0D
                                 :OUTPUT BR
SGNC/=0,3,5,D
                                 :SIGN LATCH CONTROLS
        NOP ± 0
                                 :SIGN LATCHES UNCHANGED
        LDSA=1
                                 ; BUS A(15) TO SA
        A.5NA=2
                                 :IF SUB, SA<- NOT SA : ELSE SA <- SA
```

:RESULT SIGN TO SA

A.RES=3

```
105=5
                                :BUS A(15) TO SA BUS 3(15) TO SB
        A.E=6
                                :SE TO SA
        A.XOR.X=7
                                 :SA XOR x TO SA
LRR/=0.1.4.5
                                 :REMAINDER REGISTER CONTROLS
        NDP = 0
        LD.RR≃1
                                 :LOAD REMAINDER REGISTER
OPLD/=6,4,0,D
                                 :MULTIPLIER OPERAND CONTROLS
        NOP=6
        MC = 1
                                 :LOAD MULTIPLICAND
        MC1 = 2
                                 :LOAD UPPER HALF OF MULTIPLICAND
        Mc.P0=4
                                 :LOAD DP LOW HALVES
        MC0=5
                                 :LOAD LOWER HALF OF MULTIPLICAND
        LDR.R=8
                                 :LOAD ALL FOR R-R
        MCI.MP1=0A
                                 :LOAD M'CAND INTEGER&MULTIPLIER HIGH FRACTION
        MCI=0B
                                 :LOAD MULTIPLICAND INTEGER
                                 :LOAD MULTIPLIER
        MP=0C
        MP0=0D
                                 :LOAD LOASE HALF OF MULTIPLIER
                                 :LOAD MULTIPLIER. HIGH FRACTION
        MP1=0F
                                 :CONTROL INITIALIZATION
        INIT=OF
                         BEN TABLE
        UADRS<2>
                        UADRS<1>
                                         UADRS<0>
: BEN
; 0
                                         0
                                               (NOP)
        0
```

;BUS B(15) TO SB

78

LDSB=4

```
79
```

FLOAT H

IRBR1 L

```
; 1
                                         IRBRO L (OPCODE BRANCH)
; 2
        SWR H
                         SWR H
                                          SWR H
                                                  (NORMALIZATION SHIFT WITHIN RANGE)
: 3
        RSV H
                         B=0 H
                                          A = 0 H
                                                  (ZEROES AND RESERVED OPERANDS)
:4
        POLY DONE L
                         CPSYNC H
                                          FLOAT H (SYNCHRONIZATION WITH CPU)
;5
        (A OR B)=0 H
                         SUB*ED<2 H
                                          SUB+DOUBLE*ED>8 H
                                                                   (EXP. DIFF.)
:6
        0
                         ٥
                                         MUL/DIV DONE H
: 7
        0
                         [PR=0+PR<9>] L PR<8> H (OVER/UNDERFLOW IN POLY)
        "TRANSFER MACRO DEFINITIONS"
AR PROD
                         "BSC/PO.FADC/AR"
BEORK
                         "MSC/IR1, NAD '100, WAIT/WAIT"
BUS 0
                         "BSC/NL.EALUC/K3FF.AMXC/PR"
CPU_ANSH
                         "5MXC/NK.BSC/NH.AMXC/PR.EALUC/A"
CPU_ANSL
                         "BMXC/NK, 6SC/NL, AMXC/PR, EALUC/A"
EALU PR
                         "AMXC/PR.EALUC/A"
EALU PR-XR
                         "AMXC/PR.BMXC/XR.EALUC/A-B"
ERCH
                         "MSC/CC"
                         "SCR/R.R.FADC/R1.MSC/IRO.ESC/R.SGNC/LDS.OPLD/LDR.R.EAC/LDAB"
FDA. IRD
FPSYNC
                         "FPSYNC/FPS"
                         "NAD/OAS.EALUC/3.FADC/LD.SGNC/A.RES.BSC/NH.OPLD/INIT.MSC/RR.O"
IRO
LA&PR_LB
                         "BSC/NH, AMXC/LB, EALUC/A, SAC/PR, LA"
LASPR PR-K
                         "AMXC/PR.EALUC/A+B.5MKC/#80.BSC/NH.EAC/PR.LA"
                         "EALUC/KSFF.ETXC.NK.BSC/NH.EAC/LDA.SGNC/A.RES.AMXC/PR"
LASSA_0
                         "EALUC/KSEF.EVXC/NK.BSC/NH.EAC/LDA.AMXC/PR"
LA_0
E4_LB
                         "AMXC/LB. BMXC/LB.EALUC/A.BSC/NH.EAC/LDA"
                         "AMXC/PR.EALUC/A.BMXC/LB.BSC/NH.EAC/LDA"
LA PR
LA PR+K
                         "AMXC/PR.EALUC/A+B.EMXC/#80.BSC/NH.EAC/LDA"
LA_PR-K
                         "AMXC/PR.EALUC/A-B.EMXC/#80.BSC/NH.EAC/LDA"
                         "EALUC/KEEF, BMKC/NK.BSC/NL.EAC/LDB.SGNC/LDSB"
L5. 0
                         "AMXC/PR.EALUC/A.BMXC/LB.ESC/NH.EAC/LDB"
LB_PR
```

```
LOAD, AO
                         "FADC/ARD, OPLD/MCO"
                         "FADC/AR1, EAC/LDA, SGNC/LDSA, OPLD/LDR.R"
LCAD.A1
                         "FADC/BR.EAC LDE.SGNC/LDSB.OPLD/MP"
LOAD.B
                         "FADC/SRO.CP_D/MPO"
LOAD. BO
                         "FADC/BR1.EAC/LDE.SGNC/LDSB.OPLD/MCI.MP1"
LCAD.B1
                         "BSC/ID, FADC/BR1, EAC/LDB, SGNC/LDSB"
LOAD, COEFH
                         "BSC/ID.FADC:BRO"
LOAD.COEFL
                         "SGNC/LDS.FADC/R1.EAC/LDAB.OPLD/LDR.R"
LCAD.MR
                         "BSC/R.SCR/DPR.R.FADC/RO"
LCAD.2DB
                         "RSC/NL.CPLD/MCO"
MCO NSHFL
MC1 NSHFH
                         "BSC/NH.OPLD. MC1"
MODNT
                         "MCTL/CNT"
                         "BSC/FAL.HL.FADC/B,OPLD/MC"
MC_ER
MINIT
                         "OPLD/INIT"
                         "BEN/0"
NOP
                         "EAC/LDP?.SGNC/A.RES.BSC/NH.MSC/CC.EALUC/A+B.AMXC/PR.BMXC/NK"
NORM, PO
                         "EAC/LDPR.SCNC/A.RES.ESC/NH.MSC/P.ADD.EALUC/A+B.AMXC/PR.BMXC/NK"
NORM.SUM
                         "FADC/A.SSC FAL.HL,NRC/LD"
NR AR
                         "FADC/B.BSC/FAL.HL.NRC/LD"
NR BR
                         "FADC/A.S.ESC/FAL.X.NRC/LD"
NR FAD
                         "BSC/PO.NEC/LD"
NR PECO
NR_QUGT
                         "BSC/PO.NFC/ED"
                         "MSC/P.ADD
POLY.ADD
                         "AMXC/LB.S.AKC/LB.EALUC/A-B.EAC/LDPR"
PR. 0
                         "AMXC/COMB.E1LUC/A.EAC/LDER"
PR CCND
                         "BMXC/#80.FALLC/k3FF.EAC/LDPR"
PR K
                         "AMXC/LALEALUC/ALEAC/LDPR"
PR_LA
                         "AMXC/LA.EALUC/A+S.EMXC/#80.EAC/LDPR"
PR LA+K
                         "AMXC/LA, BING LE, EALUC/A+B, EAC/LDPR"
PR LA+LB
                         "AMXC/LA, EGTC/NA, EALUC/A+B, EAC/LDPR"
PR LA+NROM
                         "AMXC/LB.EALUC/A.EAC/LDFR"
```

"AMXC/PR. EALUC/A+B. BMXC/#80, BSC/NH. EAC/LDB"

LB PR-K

PR_LE

TRANSFER MACRO DEFINITIONS

```
PR LB+K
                         "AMXC/LB.EALGC/A+B.BMXC/#80.EAC/LDPR"
PR LB-K
                         "AMXC/LB. FALUC/ A-B. EMXC/#80.EAC/LDPR"
PR LB-XR
                         "AMXC/LB.EMNC NR.EALUC/A-B.EAC/LDPR"
PR PR+K
                         "ANXC/PR.BMXC/#60.EALUC/A+B.EAC/LDPR"
PR FR+NROM
                         "AMXC/PR FORO NE FAIUC/A+B. FAC/LOPR"
PR PR+XR
                         "AMXC/PR BAD C/XR FALUC/A+B FAC/LOPR"
PR PR-K
                         "AMXC/PR. SMXC/#80.EALUC/A-B.EAC/LDPR"
PP UNDR
                         "EAC/LDPR.EALUC/KSFF"
PR NR+LB
                         "FAC/LDPP.AMXC/LB.EMXC/XR.EALUC/A+B"
58 NR
                         "1RR/ID.RS"
RS.
                         "MSC/MO"
SA SA.XGR.SUB
                         "SGNC/ALSNA"
SA SA.XCR.SX
                         "SGNC/A.XOR.X"
SA SB
                         "SGNC/A.B"
                         "SGNC/A.RES"
SASR
SX SA
                         "MSC/LDS/"
WAIT
                         "WAIT/WAIT"
XR_LA
                         "AMXC/LA. EALUC/A. EAC/LDXR"
```

"BRANCH MACRO DEFINITIONS"

(A.OR.B).0?	"BEN/5"
CPSYNC?	"BEN/4"
DIV.DONE?	"BEN/6"
ERROR?	"BEN/7"
EXP.DIFF?	"BEN/5"
FLOAT?	"BEN/4"
MUL.DONE?	"BEN/6"
DPCODE?	"BEN/1"
SWR?	"BEN/2"
ZERDES?	"BEN/3"
POLY.DONE?	"BEN/4"

CHAPTER 4 CONSOLE

CIB Q-BUS REGISTERS (LOWER)

BASE ADDRESS ON M8236: W1 INSTALLED - 1730XX W1 REMOVED - 1630XX

TK-0204

CIB Q-BUS REGISTERS (UPPER)

EXPLANATION OF VERSION NUMBERS FOR CONSOLE BOOTING

When WCS has been reloaded, the console terminal prints out revision status, for example:

VER: PCS=01 WCS=0E-10 FPLA=0E CON=V07-00-L KE780 PRESENT

The PCS code refers to the revision number of the programmed control store (ROM). The WCS (writable control store) code contains two numbers. The primary version number (in this case, $\emptyset E$) refers to the FPLA number that is required for this WCS version. The secondary version number (in this case, $1\emptyset$) refers to the version of WCS that has been loaded.

The FPLA (field programmable logic array) code refers to the FPLA chip revision that is currently installed in the VAX-11/780 CPU. This chip causes the microprocessor to retrieve microwords from WCS instead of from PCS when specific locations are addressed.

The CON (console) code refers to the revision number of the console software that has been loaded into the LSI-11 memory.

Two types of mismatch may occur. If the WCS revision does not match the FPLA revision, the console program issues a warning. If the WCS revision does not match the PCS revision, however, the mismatch is fatal.

CONSOLE HELP FILE

'NEXT <NUMBER>

```
VAX-11/780 CONSOLE HELF FILE
                                              REV. 8 March 29, 1982
              ALL COMMANDS ARE TERMINATED BY CARRIAGE RETURN.
SYNTAX:
           'EXAMINE' AND 'DEPOSIT' «QUAL» SWITCHES FOR ADDRESS SPACE :
                        '/P' = PHYSICAL MEMORY(THE DEFAULT)
'/V' = VIRTUAL MEMORY
'/I' = INTERNAL(PROCESSOR) REGISTERS
'/G' = GENERAL REGISTERS 0 THRU F(RO THRU PC)
                        '/VB' = VBUS REGISTERS
            '/ID' = IDBUS REGISTERS
'EXAMINE' AND 'DEPOSIT' <QUAL> SWITCHES FOR DATA-LENGTH :
                        '/B' = BYTE (8 BITS)
'/W' = WORD (2 BYTES)
                        1/L1
                       '/L' = LONGWORD (2 WORDS)
'/Q' = QUADWORD (4 WORDS)
            <aDDR> is a <number>, or one of the following symbolic address
                        'RO,R1,R2,...,R11,AP,FP,SP,PC' (GENERAL REGISTERS)
                        'PSL' = PROCESSOR STATUS WORD
                                = LAST ADDRESS
            ** = LMSI HUINESS

'+' = ADDRESS FOLLOWING 'LAST'(*) ADDRESS

'-' = ADDRESS PRECEEDING 'LAST'(*) ADDRESS

'@' = USES LAST EXAMINE/DEPOSIT DATA FOR ADDRESS

(NUMBER) = STRING OF DIGITS IN CURRENT DEFAULT RADIX,
           OR STRING OF DIGITS PREFIXED WITH A DEFAULT RADIX
           OVERRIDE (%O FOR OCTAL, %X FOR HEX).
                                                           -BOOTS THE CPU FROM DEFAULT DEVICE
'ROOT'
                                                           -TAKES THE FIRST THREE ALPHANUMERIC
'BOOT <DEVNAM>'
                                                            CHARS OF <DEVNAM>, AND EXECUTES THE
                                                           INDIRECT FILE (<DEVNAM>ROO.CMD'
-ENABLE NORMAL (NO STEP) MODE
-CLEAR 'STOP ON MICRO-MATCH' ENA
'CLEAR STEP'
'CLEAR SOMM'
                                                             NOTE: ID REGISTER 21 IS THE
                                                             MICRO-MATCH REGISTER.
                                                          -ISSUES A CONTINUE TO THE ISP
-DEPOSIT <DATA> TO <ADDRESS>
ACOUNT FAILE?
'DEPOSITE/<SWITCH(ES)>3 <ADDR> <DATA>'
                                                           -ENABLES CONSOLE SOFTWARE TO ACCESS
ENABLE DX1:
                                                             FLOPPY DRIVE 1 ON THOSE SYSTEMS WITH
                                                             DUAL FLOPPIES.
                                                           -DISPLAY CONTENTS OF <ADDRESS>
-EXAMINE INSTRUCTION REG(IR). DISPLAYS
OP-CODE, SPECIFIER, EXECUTION POINT
'EXAMINET/<SWITCH(ES)>J <ADDR> '
'EXAMINE IR'
                                                           COUNTER
-HALTS THE ISP
-PRINTS THIS FILE
-INITIALIZES THE CPU
-CAUSES CONSOLE TO BEGIN COMMAND
LINKING, CONSOLE FRINTS REVERSED
PROMPT TO INDICATE LINKING, ALL
COMMANDS TYPED BY USER WHILE LINKING
APE STORED IN AN INDIRECT COMMAND
                                                             COUNTER
'HALT'
'HELP'
'INITIALIZE'
'LINK'
                                                             ARE STORED IN AN INDIRECT COMMAND
FILE FOR LATER EXECUTION. CONTROL-C
                                                             TERMINATES LINKING. (SEE PERFORM)
'LOADE/START:<ADDR>3 <FILENAME>'
                                                          -LOAD FILE TO MAIN MEMORY, STARTING AT
                                                           ADDRESS OF OR <ADDR> IF SPECIFIED
                                                           -LOAD FILE SPECIFIED TO WCS
'LOAD/WCS <FILENAME>'
                                                            -<NUMBER> STEP CYCLES ARE DONE, TYPE
```

CONSOLE HELP FILE (CONT)

	OF STEP DEPENDS ON LAST 'SET STEP'
'PERFORM'	COMMAND -EXECUTE A FILE OF LINKED COMMANDS -PREVIOUSLY GENERATED VIA A 'LINK'
'QCLEAR <address>'</address>	COMMANDDOES A QUAD CLEAR TO <address>,WHICH IS FORCED TO A QUAD WORD BOUNDARY.</address>
'REBOOT' 'REPEAT <any-console-command>'</any-console-command>	(CLEARS ECC ERRORS) -CAUSES A CONSOLE SOFTWARE RELOAD -CAUSES THE CONSOLE TO REPEATEDLY EXECUTE THE <console-command>, UNTIL STOPPED BY A CONTROL-C ("C).</console-command>
'SET CLOCK SLOW'	-SET CPU CLOCK FREQ TO SLOW.
'SET CLOCK FAST'	-SET CPU CLOCK FREQ TO FAST
SET CLOCK NORMAL'	-SET CPU CLOCK FRER TO NORMAL -SET CONSOLE DEFAULTS
<pre>'SET DEFAULT <option>[,,<option>]'</option></option></pre>	NOTE: <options> ARE:</options>
	OCTAL, HEX, PHYSICAL, VIRTUAL, INTERNAL
	GENERAL, VBUS, IDBUS, BYTE, WORD, LONG, QUAD
'SET RELOCATION: <number>'</number>	-PUT <number> INTO CONSOLE RELOCATION REGISTER, RELOCATION REGISTER IS ADDED TO EFFECTIVE ADDRESS OF</number>
	PHYSICAL AND VIRTUAL EXAMINES AND
'SET SOMM'	DEPOSITS. -SET 'STOP ON MICRO-MATCH' ENABLE
'SET STEP BUS'	-ENABLE SINGLE BUS CYCLE CLOCK MODE
SET STEP INSTRUCTION	-ENABLES SINGLE INSTRUCTION MODE
'SET STEP STATE'	-ENABLE SINGLE TIME STATE CLOCK MODE
'SET TERMINAL FILL: <number>'</number>	-SET FILL COUNT FOR # OF BLANKS
	WRITTEN TO THE TERMINAL AFTER <crlf> -PUT CONSOLE TERMINAL INTO 'PROGRAM I/O' MODE</crlf>
'SHO₩'	-SHOWS CONSOLE AND CPU STATE
'SHOW VERSION'	-SHOWS VERSIONS OF MICROCODE AND CONSOLE
'START <address>'</address>	-INITIALIZES THE CPU,DEPOSITS <address></address>
grill inchicos.	TO PC, ISSUES A CONTINUE TO THE ISP.
'TEST'	-RUNS MICRO-DIAGNOSTICS
'TEST/COM'	-LOADS MICRO-DIAGNOSTICS, AWAITS
	COMMANDS
'UNJAM'	-UNJAMS THE SBI
'WCS'	-CALLS MICRO-DEBUGGER, WCS MICRO- DEBUGGER FLOPPY MUST BE INSERTED
	IN CS1. ELSE, "FILE NOT FOUND" ERROR.
	(FOR DEBUGGER HELF, INSERT WCS DEBUG
	FLOPPY, THEN TYPE '@WCSMON.HLP')
'WAIT DONE'	-WHEN EXECUTED FROM AN INDIRECT
	COMMAND FILE, THIS COMMAND WILL CAUSE
	COMMAND FILE EXECUTION TO STOP UNTIL: A) A 'DONE' SIGNAL IS RECEIVED FROM
	THE PROGRAM RUNNING IN THE VAX
	(COMMAND FILE EXECUTION WILL
	CONTINUE), QR
	B) THE VAX-11/780 HALTS, OR OPER-
	ATOR TYPES A CONTROL-C (^C:
	COMMAND FILE EXECUTION WILL TERMINATE).
(^P'(CONTROL-P)	-PUT CONSOLE TERMINAL INTO 'CONSOLE
,	I/O' MODE
	(UNLESS MODE SWITCH IN 'DISABLE')
'@ <filename>'</filename>	-PROCESS AN INDIRECT COMMAND FILE

CONSOLE ABBREVIATION RULES

```
VAX-11/780 CONSOLE ABBREVIATION RULES REV-6
                                                        12-AFR-79
 THIS FILE SHOWS THE SHORTEST UNIQUE COMMAND AND QUALIFIER STRINGS.
                                      SHORTEST ABBREVIATION RECOGNIZED
         COMMAND
                                                'B'
'CL SO'
 'BOOT'
 'CLEAR SOMM'
                                                CL S'
                                                101
 'CONTINUE'
 'DEPOSIT <ADDRESS> <DATA>'
                                                'D <ADDRESS> <DATA>'
                                                'EN DX1:
 'ENABLE DX1:'
                                                'E <ADDRESS>'
 'EXAMINE <ADDRESS>'
 THALT?
 'HELP'
                                                'HE'
                                                'I'
 'INITIALIZE'
                                                'LI'
 'LINK'
 'LOAD <FILENAME>'
'NEXT <NUMBER>'
                                               'L <FILENAME>'
'N <NUMBER>'
                                                101
 'FERFORM'
 'QCLEAR <ADDRESS>'
'REBOOT'
                                                'Q <ADDRESS>'
                                                'REB'
                                               'R <CONSOLE-COMMAND>'
'SE C F'
'SE C S'
 'REPEAT <CONSOLE-COMMAND>'
 'SET CLOCK FAST'
'SET CLOCK SLOW'
'SET CLOCK NORMAL'
                                                'SE C N'
'SE R:<NUMBER>'
 'SET RELOCATION: < NUMBER>'
 'SET SOMM'
                                               'SE SO'
 'SET STEP STATE'
                                                'SE S S'
 'SET STEP INSTRUCTION'
                                               'SE S I'
'SE T F: NUMBER>'
 'SET TERMINAL FILL: NUMBER>'
'SET TERMINAL PROGRAM'
'SET DEFAULT <OPTION-LIST>'
                                               'SE T PR' .
'SE D <OPTION-LIST>'
                                                'SH'
 'SHOW'
 'SHOW VERSION'
                                                'SH V'
 'START <ADDRESS>'
                                                'S <ADDRESS>'
 TEST
 'UNJAM'
                                                'U'
 WAIT DONE
                                                'WA D'
 'WCS'
                                                /W/
 '@<FILENAME>'
                                                '@<FILENAME>'
                                    SHORTEST ABBREVIATION RECOGNIZED
         QUALIFIERS
 /BYTE
                                               /B
 /WORD
                                                /W
 /LONG
                                                /L
 /QUAD
 /OCTAL
 /HEX
 /PHYSICAL
 /VIRTUAL
                                                /V
 /INTERNAL
                                                /I
 /GENERAL
                                                /G
 /VBUS
                                                /VB
 /IDBUS
                                                /10
 /WCS
                                               /WC
 /NEXT: <NUMBER>
                                               /N:<NUMBER>
 /COMMAND
                                               ZC.
 /START:<ADDRESS>
                                                /S:<ADDRESS>
```

ERROR MESSAGE HELP FILE

!VAX-11/780 ERROR MESSAGE HELP FILE REV-4 12-AR-79 ! THIS FILE LISTS ALL THE POSSIRLE CONSOLE ERROR MESSAGES, INDICATING ! CAUSE, AND POSSIRLE CORRECTIVE PROCEDURES (IF NOT SELF-EXPLANATORY)			
SYNTACTIC ERRORS :	!		
! ?' <text-string>' IS INCOMPLETE</text-string>	! THE <text-string> IS NOT A COMPLETE ! CONSOLE COMMAND</text-string>		
! ?' <text-string>' IS INCORRECT</text-string>	! THE <text-string> IS NOT RECOGNIZED ! AS A VALID COMMAND</text-string>		
?FILE NAME ERR	! A <file-name> GIVEN WITH A COMMAND ! CAN NOT BE TRANSLATED TO RAD50, ! (<file-name> IS INVALID.)</file-name></file-name>		
?IND-COM ERR	! THE CONSOLE DETECTED AN ERROR IN THE ! FORMAT OF AN INDIRECT COMMAND FILE. ! POSSIBLE ERRORS ARE: 1) MORE THAN 80 ! CHARACTERS IN AN INDIRECT COMMAND LINE ! OR 2) A COMMAND LINE DID NOT END ! WITH A CARRIGE RETURN AND LINE FEED.		
! COMMAND-GENERATED ERRORS :	!		
?FILE NOT FOUND	A <file-name> GIVEN WITH A 'LOAD' OR '@' COMMAND DOES NOT MATCH ANY FILE ON THE CURRENTLY LOADED FLOPPY DISC. CAN ALSO BE GENERATED BY 'HELP','BOOT', OR AN ATTEMPTED WCS LOAD IF HELP FILE, BOOT FILE, OR WCS FILE IS MISSING FROM FLOPPY.</file-name>		
?NO CPU RESPONSE	CONSOLE TIMED-OUT WAITING FOR A RESPONSE FROM CPU. (RETRY, INDICATES POSSIBLE CPU-RELATED HARDWARE FAULT.)		
? CCPU NOT IN CONSOLE WAIT LOOP, COMMAND ABORTED	A CONSOLE COMMAND REQUIRING ASSISTANCE FROM THE CPU WAS ISSUED WHILE THE CPU WAS NOT IN THE COMSOLE SERVICE LOOP. (HALT CPU; RE-ISSUE COMMAND.)		
? CCPU CLK STOP, COMMAND ABORTED	A CONSOLE COMMAND THAT REQUIRES THE CPU CLOCK TO BE RUNNING WAS ISSUED WHILE THE CLOCK WAS STOPPED. (CLEAR STEP MODE; RE-ISSUE COMMAND.)		
?CANT DISABLE BOTH FLOPPIES, ! FUNCTION ABORTED	AN ATTEMPT WAS MADE TO DISABLE BOTH THE REMOTE AND LOCAL FLOPPY.		
####################################			
! FLOPPY-GENERATED ERRORS :			
PFLOPPY ERR, CODE=X	THE CONSOLE FLOPPY DRIVER DETECTED AN ERROR. CODES ARE AS FOLLOWS: (CODES ALWAYS PRINTED IN HEX RADIX) CODE-1 FLOPPY HARDWARE ERROR (CRC.PARITY.FTC) CODE-2 FILE NOT FOUND CODE-3 FLOPPY DRIVER QUEUE OVERFLOW CODE-4 CONSOLE SOFTWARE REQUESTED AN ILLEGAL SECTOR NUMBER		

ERROR MESSAGE HELP FILE (CONT)

?FLOFPY NOT READY	! THE CONSOLE FLOPPY DRIVE FAILED TO ! BECOME READY WHEN BOOTING. (RETRY.)
?NO BOOT ON FLOPPY	! CONSOLE ATTEMPTED TO BOOT FROM A ! FLOPPY THAT DOES NOT CONTAIN A VALID ! BOOT BLOCK. (CHANGE FLOPPY DISK.)
	! A FLOPPY ERROR WAS DETECTED WHILE ! ATTEMPTING A CONSOLE BOOT. (RETRY)
MICRO-ROUTINE ERRORS :	•
?MIC-ERR ON FUNCTION	A MICRO-ERROR OCCURRED IN THE CPU HILLE SERVICING A CONSOLE REQUEST. SBI ERROR REGISTERS ARE DUMPED AFTER THIS MESSAGE IS PRINTED. (ACTION DEPENDANT ON ERROR.)
?INT-REG ERR	! A MICRO-ERROR OCCURRED WHILE ATTEMP- ! TING TO REFERENCE A CPU INTERNAL ! (PROCESSOR) REGISTER. AN ILLEGAL ! ADDRESS WILL CAUSE THIS ERROR.
?MICRO-ERR, CODE=X	! AN UNRECOGNIZED MICRO-ERROR OCCURRED. ! THE CODE RETURNED BY THE CPU IS NOT IN ! THE RANGE OF RECOGNIZED ERROR CODES. ! 'X' IS THE CODE THAT WAS RETURNED BY ! THE CPU.
THEM-MAN FAULT,CODE=XX	! A VIRTUAL EXAMINE OR DEPOSIT CAUSED ! AN ERROR IN THE MEMORY MANAGEMENT ! HICRO-ROUITINE. 'XX' IS A ONE BYTE ! ERROR CODE RETURNED BY THE ROUTINE, ! WITH THE FOLLOWING BIT ASSIGNMENTS: ! BIT 0 = LENGTH VIOLATION(BITS NUMBERED FROM RIGHT) ! BIT 1 = FAULT WAS ON A PTE REFERENCE ! BIT 2 = WRITE OR MODIFY INTENT ! BIT 3 = ACCESS VIOLATION ! BITS 4 THRU 7 SHOULD BE IGNORED
! CPU FAULT-GENERATED ERRORS :	!
?INT-STK INVLD	! THE CPU HALTED BECAUSE THE INTERRUPT ! STACK WAS MARKED INVALID.
PCPU DBLE-ERR HLT	! A MACHINE CHECK OCCURRED BEFORE A ! PREVIOUS MACHINE CHECK HAD BEEN ! HANDLED, CAUSING THE CPU TO EXECUTE ! A 'DOUBLE ERROR' HALT. (EXAMINE ID REG ! 30-35 (HEX): DATA INDICATES CAUSE OF ! MACHINE CHECK .)
! ?ILL I/E VEC	! THE CPU DETECTED AN ILLEGAL INTERRUPT/ ! EXCEPTION VECTOR.
?NO USR WCS	! CPU DETECTED AN INTERRUPT/EXCEPTION ! VECTOR TO USER WCS AND NO USER WCS ! EXISTS.
?CHM ERR	! A CHANGE MODE INSTRUCTION WAS ATTEMP- ! TED FROM THE INTERRUPT STACK.

ERROR MESSAGE HELP FILE (CONT)

! INT PENDING ! ! !	! THIS IS NOT ACTUALLY AN ERROR, BUT ! INDICATES THAT AN ERROR WAS PENDING AT THE TIME THAT A CONSOLE-REQUESTED ! HALT WAS PERFORMED. CONTINUE CPU TO ! CLEAR INTERRUPT.
! ?MICRO-MACHINE TIME OUT ! ! !	! INDICATES THAT THE VAX-11/780 MICRO- ! MACHINE HAS FAILED TO STROBE INTER- ! RUPTS WITHIN THE MAXIMUM TIME PERIOD ! ALLOWED.
! VERSION MISMATCH ERRORS :	!
?WARNING-WCS & FPLA VER MISMATCH	! THE MICROCODE IN WCS IS NOT COMPATIBLE ! WITH THE FPLA. THIS MESSAGE IS PRINTED ! ON EACH ISP START OR CONTINUE, BUT NO ! OTHER ACTION TAKEN BY CONSOLE.
! ?FATAL-WCS & PCS VER MISMATCH !	! THE MICROCODE IN PCS IS NOT COMPATIBLE ! WITH THAT IN WCS. ISP START AND CON- ! TINUE ARE DISABLED BY CONSOLE.
?REMOTE ACCESS NOT SUPPORTED	! ENTERS A 'REMOTE' POSITION, AND THE REMOTE SUPPORT SOFTWARE ROUTINES ARE NOT INCLUDED IN THE CONSOLE.
! CONSOLE-GENERATED ERRORS :	!
	! THE CONSOLE TOOK A TIME-OUT TRAP. ! CONSOLE WILL RESTART.
! ?UNEXPECTED TRAP ! MOUNT CONSOLE FLOPPY, THEN TYPE ^C	! CONSOLE TRAPPED TO AN UNUSED VECTOR. ! CONSOLE REBOOTS WHEN OC TYPED.
?Q-BLKD' !	! CONSOLE'S TERMINAL OUTPUT QUEUE IS BLOCKED. CONSOLE WILL REBOOT.

CONSOLE REMOTE ACCESS HELP FILE

UAX-11/780 CONSOLE - REMOTE ACCESS HELP FILE REV-02 26-JUL-78

'ENABLE TALK' -ESTABLISH TERMINAL TO TERMINAL COMMUNICATION BETWEEN LOCAL AND REMOTE TERMINAL, KEYS STRUCK ON ONE TERMINAL ARE PRINTED ON THE OTHER. CONTROL-P TERMINATES TALK. -CAUSES CHARACTERS TYPED IN TALK MODE TO BE ECHOED BACK TO THE DRIGINATING TERMINAL. 'ENABLE ECHO' 'ENABLE LOCAL COPY' -CAUSES THE LOCAL TERMINAL TO GET A COPY OF OF OUTPUT BEING SENT TO REMOTE TERMINAL.

'ENABLE LOCAL CONTROL '-ALLOWS LOCAL TERMINAL TO CONTROL SYSTEM WHEN CONSOLE SWITCH IS IN REMOTE POSITION(S). DIS-ABLED BY A CONTROL-P FROM THE REMOTE TERMINAL.
'ENABLE CARRIER ERROR '-CAUSE CONSOLE TO PRINT '?CARRIER LOST' WHEN A LOSS OF CARRIER IS DETECTED AT REMOTE INTERFACE. -INHIBITS ECHO OF CHARACTERS TYPED IN TALK MODE. 'DISABLE ECHO' 'DISABLE LOCAL COPY' -DISABLE LOCAL TERMINAL FROM RECEIVING COPY OF OUTPUT TO REMOTE TERMINAL. 'DISABLE CARRIER ERROR'-CAUSES CONSOLE TO INHIBIT PRINTING OF CARRIER LOST MESSAGE WHEN LOSS OF CARRIER DETECTED. 'ENABLE LOCAL FLOFFY' -(AFFECTS PROTOCOL OPERATION ONLY) ON AN ATTEMPT TO OPEN A FILE, THE DIRECTORY OF LOCAL FLOPPY WILL BE SEARCHED FIRST. IF FILE IS NOT FOUND, 'REMOTE' FLOFFY'S DIRECTORY IS SEARCHED FOR FILE. 'DISABLE LOCAL FLOFFY '-(AFFECTS PROTOCOL OPERATION ONLY) ON AN ATTEMPT TO OPEN A FILE, THE FILE IS SEARCHED FOR ON THE 'REMOTE' FLOPPY ONLY. 'DISABLE REMOTE FLOPPY'-ON AN ATTEMPT TO OPEN A FILE, ONLY THE DIRECTORY OF THE LOCAL FLOFPY WILL BE SEARCHED.

AND 'DISABLE LOCAL FLOPPY' ARE MUTUALLY EXCLUSIVE.
'ENABLE REMOTE FLOPPY' -ALLOWS THE DIRECTORY OF THE 'REMOTE' FLOPPY TO BE

SEARCHED ON AN ATTEMPT TO OPEN A FILE.

THIS COMMAND

MICRODEBUGGER HELP FILE

MICRO-DEBUGGER HELP FILE REV 2.0, April 13, 1982

DEBUGGER COMMANDS (ALL TERMINATED BY CARRIAGE RETURN)

'E/P <ADDRESS>' -EXAMINE PHYSICAL MEMORY 'E/ID <ADDRESS>' -EXAMINE ID BUS REGISTER

'F <ADDRESS>' -EXAMINE WCS LOCATION, DISPLAY ALL FIELDS

'E <ADDRESS> <FIELDNAME-1>,<FIELDNAME-2>,,,,<FIELDNAME-N>

EXAMINE WCS LOCATION, DISPLAY ONLY FIELDS

THE FIELDS SPECIFIED.

NOTE: <FIELDNAMES> = ACF, ACM, ADS, ALU, BEN, BMX, CCK, CID, DK, DT, EAL

EBM, FEK, FS, IBC, IEK, UJM, KMX, MCT, MSC, PCK, QK RMX,SCK,SGN,SHF,SI,SMX,SPO,USU,VAK

'E RA <ADDRESS>' -EXAMINE AN RA REGISTER

'E RC <ADDRESS>' -EXAMINE AN RC REGISTER

'E <SYMBOLIC-NAME>' -EXAMINE ONE OF THE SYMBOLICALLY NAMED

REGISTERS

NOTE: <SYMBOLIC-NAMES> = DR, FER, IBA, LA, LB, LC, Q, RL, SC, SR, UPC

'D/P <ADDRESS> <DATA>' -DEPOSIT <DATA> TO PHYSICAL MEMORY

'D/ID <ADDRESS> <DATA>' -DEPOSIT <DATA> TO ID BUS REGSITER

'D <ADDRESS> <FIELDNAME-1> <DATA-1>,<FIELDNAME-2> <DATA-2>,..... -DEPOSIT TO WCS LOCATION, PUTTING <DATA-1>

INTO <FIELDNAME-1>, ETC. UNSPECIFIED FIELDS

ARE UNCHANGED.

NOTE: THE '/Z' QUALIFIER MAY BE USED TO CAUSE ALL UNSPECIFIED FIELDS TO BE CLEARED.

'D RA <ADDRESS> <DATA>' -DEPOSIT <DATA> TO AN RA REGISTER

'D RC <ADDRESS> <DATA>' -DEPOSIT <DATA> TO AN RC REGISTER

'D <SYMBOLIC-NAME> <DATA>' -DEPOSIT <DATA> TO ONE OF THE SYMBOLICALLY NAMED REGISTERS(SEE LIST ABOVE).

NOTE: DEPOSITS TO THE RLOG STACK(RL) ARE NOT SUPPORTED.

'CONTINUE' -RESUME MICRO-INSTRUCTION EXECUTION AS SPECIFIED BY CONTENTS OF MICRO-PC(UPC)

'START <ADDRESS>' -START MICRO-SEQUENCER AT <ADDRESS>.

'HALT' -HALT THE MICRO-SEQUENCER

'SET SOMM' -SET THE 'STOP ON MICRO-MATCH' ENABLE

-CLEAR THE 'STOP ON MICRO-MATCH' ENABLE 'CLEAR SOMM'

'SET STEP' -ENABLE SINGLE MICRO-INSTRUCTION STEP MODE.

START OR CONTINUE WILL ALLOW ONE MICRO-

INSTRUCTION TO EXECUTE, THEN HALT THE MICRO-SEQUENCER.

-DISABLE SINGLE MICRO-INSTRUCTION STEP MODE. 'CLEAR STEP'

MICRODEBUGGER HELP FILE (CONT)

'OPEN <FILENAME>' -OPEN SPECIFIED FILE ON FLOPPY DRIVE O

'OPEN DX1:<FILENAME>' -OPEN SPECIFIED FILE ON FLOPPY DRIVE 1
NOTE: 'OPEN' IS USED TO SPECIFY A FILE CONTAINING THE MICRO-CODE
CURRENTLY LOADED IN THE MCS PORTION OF THE CONTROL STORE.
(ADDRESSES 1000(16) & UP IN THE CONTROL STORE)
THIS FILE WILL BE USED FOR ALL EXAMINES OF THE WCS,
SINCE THE WCS IS NOT DIRECTLY READABLE.

'RETURN' -RETURN TO THE CONSOLE PROGRAM.

> I/O NOT USE THE RETURN COMMAND UNLESS THE CONSOLE FLOPPY IS IN CS1. TO RETURN TO THE CONSOLE PROGRAM, REMOVE THE WCS DEBUG FLOPPY, INSERT THE CONSOLE FLOPPY, THEN TYPE 'RETURN <CR>'.

LSI-11 CONSOLE ODT COMMANDS

Format	Description		
RETURN	Close opened location and accept next command.		
LINE FEED	Close current location; open next sequential location.		
or]	Open previous location.		
or -	Take contents of opened location, index by opened location plus 2, and open that location.		
@	Take contents of opened location as an absolute address and open that location.		
r/	Open location r.		
/	Open last location.		
\$n or Rn	Open general register n (\emptyset -7) or S (PS register).		
r; G or rG	Go to location \mathbf{r} , initialize the bus, and start program.		
nL	Execute bootstrap loader using \boldsymbol{n} as device CSR address.		
;P or P	Proceed with program execution.		
RUBOUT or DELete	Erase previous character. Response is a backslash \setminus (134) each time RUBOUT is entered.		
М	Maintenance. Display of an internal CPU register follows the M command. Only the last digit displayed is significant, indicating how the CPU entered the Halt (ODT) mode, as follows:		
	Last Digit Halt Source		
	\emptyset or 4 HALT instruction or BHALT L bus signal asserted.		
	1 or 5 Bus error occurred while getting device interrupt vector.		

LSI-11 CONSOLE ODT COMMANDS (CONT)

	Last Digit	Halt Source
	2 or 6	Bus error occurred while doing memory refresh.
	3	Double bus error occurred (stack was nonexistent value).
	4	Reserved instruction trap occurred (nonexistent micro-PC address occurred on internal CPU bus).
	7	A combination of 1, 2, and 4 occurred.
CTRL-SHIFT-S		Eacturing tests only. Escape this unction by typing NULL and @ (000 and

CONSOLE SUBSYSTEM CONFIGURATION

TK-0192

JUMPER	IN/OUT	RESULT
W1	_	RESIDENT MEMORY AT A BANK 0
W2	1	RESIDENT MEMORY AT A BANK 0
W3	_	LTC INTERRUPT ENABLED
W4	-	MEMORY REFRESH ENABLED
W5	_	POWER UP AT 173000
W6	ŀ	POWER UP AT 173000
W7 & W8		PRECONFIGURED*
W9	_	ENABLE REPLY FROM RESIDENT MEMORY
W10	1	DISABLE REPLY FROM RESIDENT MEMORY DURING REFRESH
W11	1	ENABLE ON BOARD MEMORY SELECT

^{*}FACTORY CONFIGURED DO NOT CHANGE (W7 & W8)

MSV-11B MODULE JUMPER CONFIGURATION

M94(JU-YE	BC05L-10	васкра	anei
Red Stripe Left, Smooth	J1		J8	Red Stripe Down, Ribbed
		BC05L-10		
Side Up	J2		J 7	Side to Backpanel

Configuration of RXV-11 (M7946)

Should be preconfigured for:

MOACO VE

Address: 177170-177172

Vector: 264

Ribbon cable should be installed with red stripe toward center of module.

DLV11 JUMPER CONFIGURATION

JUMPER	IN/OUT	RESULT
NP		NO PARITY
2SB	l l	1 STOP BIT
NB2	-	8 DATA BITS
NB1	-	8 DATA BITS
PEV	X	DON'T CARE PARITY EVEN/ODD
FEH	-	NO HALT ON FRAMING ERROR
EIA	-	NO EIA OPERATION
FR3	-	SELECTS 300 BAUD
FR2	_	SELECTS 300 BAUD
FR1	1	SELECTS 300 BAUD
CL4-CL0	1	20 MA ACTIVE XMIT. & RECEIVE

VECTOR JUMPERS SET TO 60-64 V7=1, V6=1, V5=-, V4=1, V3=1

ADDRESS JUMPERS SET TO 177560-177566 A12=-, A11=-, A10=-, A9=-, A8=-, A7=I, A6=-, A5=-, A4=-, A3=I

TK-0701

DLV11-E JUMPER CONFIGURATION

DLV IIE

R3 R2 R1 R0

I - I
T3 T2 T1 T0

I - I
A12 A11 A10 A9 A8 A7 A6 A5 A4 A3

I I - I I I - I

V8 V7 V6 V5 V4 V3

- I I - I

1 2 P -E PB BG C C1

- - - - - I

S S1 H -B B -FR -FD RS

- - - I - I I I

FB M M1

TK-0726

TK-0718

Q-BUS SIGNAL DESCRIPTION

1/O Transfer Control Signals	
Name	Description
BSYNC L	Synchronize - The bus master (LSI-11 processor) asserts BSYNC L to indicate that it has placed an address on BDAL <15:00> L. The transfer is in progress until BSYNC L is negated.
BDIN L	Data Input - The LSI-11 asserts BDIN L for two types of operations:
	 When it is asserted during BSYNC L time, BDIN L specifies an input transfer with respect to the proces- sor. It requires BRPLY L as a response. The proces- sor asserts BDIN L when it is ready to accept data from the slave device.
	When the processor asserts BDIN L without BSYNC L, it is requesting an interrupt vector from an interrupting device.
BDOUT L	Data Output - When the LSI-11 processor asserts BDOUT L, valid data is on the bus for an output transfer from the processor to an I/O slave device. The slave device deskews BDOUT L (pauses) before latching the data. The slave device responding to the BDOUT L signal must assert BRPLY L to complete the transfer.

Q-BUS SIGNAL DESCRIPTION (CONT)

	I/O Transfer Control Signals
Name	Description
BWTBT L	Write/Byte - The LSI-11 processor uses BWTBT L to control bus cycles in two ways:
	 The processor asserts BWTBT L on the leading edge of BSYNC L to indicate that an output sequence (DATO or DATOB) is to follow.
	The processor asserts BWTBT L together with BDOUT L, on a DATOB cycle, for byte addressing.
BRPLY L	Reply - A slave device asserts BRPLY L in response to BDIN L and BDOUT L on data transfers and in response to BIAKO L during interrupt transfers. BRPLY indicates that the slave has asserted input data on the bus, accepted output data from the bus, or asserted an interrupt vector on the bus.
	Interrupt Control Signals
BIRQ L	Interrupt Request - A device asserts this signal when its interrupt enable and interrupt request flip-flops are set. BIRQ L informs the processor that a device has data to send to the processor (input) or that the device is ready to accept output data from the processor. If the processor's PS word bit 7 is 0, the processor responds by acknowledging the request, asserting BDIN L and BIAKO L.
BIAKO L and BIAKI L	Interrupt Acknowledge Output and Interrupt Acknowledge Input - The processor asserts this signal in response to an interrupt request (BIRQ L). The processor asserts BIAKO L which is routed via the Q bus to the BIAKI L pin of the first device on the bus. If this device is requesting an interrupt (asserting BIRQ L), it will block the passing of BIAKO L to the next device and then place the interrupt vector on the bus. At the same time the device will negate BIRQ L and assert BRPLY L. If the device is not asserting BIRQ L, it passes BIAKI L to the next device via its own BIAKO L pin and the BIAKI L pin of the lower priority device.
	Address and Data Signals
BDAL <15:00> L	These 16 lines form the data/address path. Address information is first placed on the bus by the bus master (processor). The processor then either receives input data from or transmits output data to the addressed slave device or memory location over the same 16 bus lines.
BBS7 L	Bank 7 Select - The bus master asserts BBS7 L when an address in the upper 4K bank (address in the 28K-32K range) is placed on the bus. BSYNC L is then asserted, and BBS7 L remains active for the duration of the addressing portion of the bus cycle.

Q-BUS SIGNAL DESCRIPTION (CONT)

	Initialization, Power Fail Signals
Name	Description
врок н	Power OK - The power supply asserts this signal when primary power is normal. If BPOK H is negated during processor operation, the processor initiates a power fail trap sequence.
BDCOK H	DC Power OK - The power supply asserts this signal when there is sufficient dc voltage available to sustain reliable system operation.
BINIT L	Initialize - The processor asserts BINIT L to initialize or clear all devices connected to the Q bus. The signal is generated in response to a power up condition (the negated condition of BDCOK H).
	Halt and Refresh Signals
BHALT L	Processor Halt - When BHALT L is asserted, the processor responds by halting normal program execution. External interrupts are ignored, but memory refresh interrupts are enabled if W4 on the processor module is removed. When the processor is in the halt state, it executes the ODT microcode, invoking console device (terminal) operation.
BREF L	Memory Refresh - This signal can be asserted by a processor microcode- generated refresh interrupt sequence (when enabled) or by an external device. BREF L forces all dynamic MOS memory units to be activated for each BSYNC L/BDIN L bus transaction.

If the console program does not start and run properly when the VAX-11/780 system is powered up, and a problem in the console subsystem is suspected, proceed as follows.

Action

Response

Turn dc off. Turn ac off.

Push HALT/ENABLE switch down (HALT).

down (nabi).

Turn ac on.

Turn dc on.

DC ON (LED on LSI-11 control panel)

173000

@ (printed on terminal)
RUN (light flashes)

If the responses are incorrect, go to the Console DC ON Flowchart.

Examine location 173000

173000/000137

(type 173000/).

_

Ø37776/XXXXXX

Examine location 037776 (type 037776/).

If the response is not correct, go to the Examine 173000

Push HALT/ENABLE switch up (ENABLE).

Ensure that diskette ZZ-ESZAB is installed properly in the floppy disk drive.

Type 140200G.

Flowchart.

BOOT

This command executes the ROM resident quick check console subsystem diagnostics. On successful completion of these tests, the ROM code boots the console program from the floppy disk. If the boot fails, go to the 140200G Console Boot Failure Flowchart. The program listing for the ROM resident diagnostics (ESKAA.DOC) should be referenced when using this flowchart.

CONSOLE DC ON FLOWCHART

DC ON, RUN LIGHT FLASH, AND/OR 173000 PRINTOUT DID NOT OCCUR

EXAMINE 173000 FLOWCHART

LOCATION 173000 OR LOCATION 037776 DID NOT RESPOND CORRECTLY

140200G CONSOLE BOOT FAILURE FLOWCHART

REPLACE FAILING

				VERIFY THAT REF	aceu	WORKING.	MEMORY. (NOTE CPU MAY BE BAD)
	"141236 OR 141262 @" OR "	R2 CONTAINS FAILING A		IS WORKING CORI	RECTLY AT		
	"140332 TO "141076	THE CPU TEST FAILED. REPLACE THE CPU				NOT WORKING.	CHECK CONFIGURATION
		VERIFY THAT FLOPPY	CLOSED. TH	E DRIVE IS BROKE	N. RUN DZRXA	AND DZRXB DIAG	NOSTICS
	"FLOPPY NOT READY"	DOOR IS CLOSED	-				
			NOT CLOSE	D. CORRECT PRO	BLEM		
		TRY ANOTHER DOES IT		IRST DISKETTE IS E	THER BAD OR	THE WRONG ONE	
	"NO BOOT ON VOLUME"		-				
WHAT WAS PRINTED?		E FLOPPY CAME READY. T DID NOT READ	NO, THE DE	RIVE IS BROKEN, RU	N DZRXA AND	DZRXB DIAGNOST	ICS
	"FLOPPY ERROR" A E	BLOCK	NOTHING P	RINTED	BAD CPU		
		ALT CPU. HAT WAS PRINTED					
			(@ XXXXXX	DAD CPU OR BAD CIB.		S (ESKAA.DOC). URRENT LOCATION	N + 2
	"000104 OR "000002	THE LTC SWITCH IS OF		V BY THE LTC SWIT	СН		
		S STILL ASSERTED 9L OR BDAL10 IS ASSER	TED				
		E BUS ERROR HAS OCCU PE 173000G, AND THEN F			NG PROCEDURE		
	"XXXXXX BAD CPU	SEE LISTINGS (ESKAA.	DOC), XXXXX	X = CURRENT LOC	:ATION + 2		

CONSOLE POWER TROUBLESHOOTING FLOWCHART

CONSOLE DC POWER FAILURE

CONSOLE TERMINAL TROUBLESHOOTING FLOWCHART

CONSOLE TERMINAL FAILURE

If using the flowcharts fails to help locate a problem, run the RXDP package diagnostics (diskette AS-F824C-MC).

Function

•	
VDVA	DLV-llE Test
VDVC	DLV-11F Test
VKAA	LSI-11 CPU Test
VKAB	LSI-ll EIS Instruction Test
VKAE	DLV-ll Test
VKAF	DRV11 Test
ZKMA	Memory Test
ZLAC	LA36 Test
ZRXA	RXll Disk Exerciser
ZRXB	RX11 Interface Tests

Program Name

The following figure shows the flow of events in the LSI-ll boot sequence.

LSI-11 BOOT AT 173000 FLOWCHART, PART 1

114

CHAPTER 5 INTERNAL REGISTERS

PROCESSOR REGISTER ADDRESSES

HEX	DEC			
00	0	KSP	Kernel stack pointer	
01	1	ESP	Executive stack pointer	
02	2	SSP	Supervisor stack pointer	
03	3	USP	User stack pointer	
04	4	ISP	Interrupt stack pointer	
05 06	5 6	reserved reserved		
07	7	reserved		
08	8	POBR	PO base register	
09	9	POLR	PO length register	
0A	10	PlBR	Pl base register	
0B	11	PILR	Pl length register	
0C	12	SBR	System base register	
0D	13	SLR	System length register	
0E 0F	14 15	reserved		
10	16	reserved PCBB	Process control block base	
11	17	SCBB	System control block base	
12	18	IPL	Interrupt priority level	
13	19	ASTR	AST level register	
14	20	SIRR	Software interrupt request register	WO
15	21	SISR	Software interrupt summary register	
16	22	reserved		
17 18	23	reserved ICCS	Interval clock control/status	
19	25	NICR	Next interval count register	WO
lA	26	ICR	Interval count register	RO
1B	27	TODR	Time of day register	
1¢	28	reserved	,	
1D	29	reserved		
1E	30	reserved		
1F 20	31	reserved RXCS	Console receive control/status	
21	33	RXDB	Console receive control/status Console receive data buffer	RO
22	34	TXCS	Console transmit control/status	NO
23	35	TXDB	Console transmit data buffer	WO
24	36	reserved		
25	37	reserved		
26 27	38	reserved reserved		
28	40	ACCS	Accelerator control/status	
29	41	ACCR	Accelerator reserved	
2A	42	reserved		
2B	43	reserved		
2C	44	WCSA	Writable control store address	
2D	45 46	WCSD	Writable control store data	
2E 2F	40	reserved reserved		
30	48	SBIFS	SBI fault/status	
31	49	SBIS	SBI silo	RO
32	50	SBISC	SBI silo comparator	
33	51	SBIMT	SBI maintenance	
34	52	SBIER	SBI error register	
35	53 54	SBITA	SBI timeout address	RO
36 37	55	SBIQC reserved	SBI quadword clear	WO
38	56	MME	Memory management enable	
39	57	TBIA	Translation buffer invalidate all	WO
3A	58	TBIS	Translation buffer invalidate single	WO
3B	59	reserved		
3C	60	MBRK	Microprogram breakpoint	
3D	61	PMR	Performance monitor register	
3E 3F	62 63	SID reserved	System identification	RO
31	, 05	reserved		

8 08 POBR 24 PO BASE REGISTER

RESERVED OPERAND FAULT IF VLA < 2**31

10 DA PIBR 25 PI BASE REGISTER

RESERVED OPERAND FAULT IF VLA < 2**31 - 2**21

9 09 POLR 3C PO LENGTH REGISTER

LENGTH OF POPT IN LONGWORDS

11 OB PILR 3D PI LENGTH REGISTER

2**21 - LENGTH OF P1PT IN LONGWORDS

13 OD SLR 3E SYSTEM LENGTH REGISTER

LENGTH OF SPT IN LONGWORDS
RESERVED OPERAND FAULT IF MBZ ≠0

TK-0709

REG. # DEC. HEX NAME ID*

19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31		ONTROL BLOCK BASE	3A	PCBB	10	16
MBZ PHYSICAL LONGWORD ADDRESS OF PCB 17 11 SCBB 3B SYSTEM CONTROL BLOCK BASE RESERVED OPERAND FAULT IF MBZ ≠ 0. 31 30 29 MBZ PHYSICAL PAGE ADDRESS OF SCB 18 12 IPLR OF INTERRUPT PRIORITY LEVEL REGISTER 31 05 04 MBZ PS 19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 MBZ	00.04.0	ERAND FAULT IF MBZ ≠ 0.				
17 11 SCBB 3B SYSTEM CONTROL BLOCK BASE RESERVED OPERAND FAULT IF MBZ ≠ 0. 31 30 29 MBZ PHYSICAL PAGE ADDRESS OF SCB 18 12 IPLR OF INTERRUPT PRIORITY LEVEL REGISTER 31 05 04 MBZ PS 19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 MBZ	02 01 0					
RESERVED OPERAND FAULT IF MBZ ≠ 0. 31 30 29 MBZ PHYSICAL PAGE ADDRESS OF SCB 18 12 IPLR OF INTERRUPT PRIORITY LEVEL REGISTER 31 05 04 MBZ PS 19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 00 MBZ	MBZ	PHYSICAL LONGWORD ADDRESS OF PCB				
RESERVED OPERAND FAULT IF MBZ ≠ 0. 31 30 29 MBZ PHYSICAL PAGE ADDRESS OF SCB 18 12 IPLR OF INTERRUPT PRIORITY LEVEL REGISTER 31 05 04 MBZ PS 19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 00 MBZ						
31 30 29 MBZ		NTROL BLOCK BASE	3B	SCBB	11	17
MBZ PHYSICAL PAGE ADDRESS OF SCB 18 12 IPLR OF INTERRUPT PRIORITY LEVEL REGISTER 31 05 04 MBZ PS 19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 MBZ		ERAND FAULT IF MBZ ≠ 0.				
18 12 IPLR OF INTERRUPT PRIORITY LEVEL REGISTER 31 05 04 MBZ PS 19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 MBZ 12 0C SBR 26 SYSTEM BASE REGISTER	02 01 00					
31 05 04 MBZ PS 19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 00 MBZ	MBZ	PHYSICAL PAGE ADDRESS OF SCB				
19 13 ASTR OC AST LEVEL REGISTER RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 MBZ 12 OC SBR 26 SYSTEM BASE REGISTER	. 00		OF	IPLR	12	18
RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ≠ 0. 31 MBZ 12 OC SBR 26 SYSTEM BASE REGISTER	SL<20:16>	MBZ				
12 OC SBR 26 SYSTEM BASE REGISTER	03 02 00	ERAND FAULT IF NOT VALID I.E., MBZ ≠ 0.	0 C	ASTR	13	19
	ASTLVI	MBZ				
RESERVED OPERAND FAULT IF MBZ ≠ 0. 31 30 29 MBZ PHYSICAL LONGWORD ADDRESS	02 01 0 MB2	ERAND FAULT IF MBZ ≠ 0.	26	SBR	ос	12

TK-0711

REG.# DEC HEX NAME ID# 32 20 RXCS 04 CONSOLE RECEIVE CONTROL/STATUS 08 07 06 05 00 IE MBZ MBZ DONE 33 21 RXDB 05 CONSOLE RECEIVE DATA BUFFER RESERVED OPERAND FAULT IF WRITTEN 24 23 16 15 08 07 00 BYTE 3 BYTE 2 BYTE 1 BYTE 0 READ ONLY 34 22 TXCS 06 CONSOLE TRANSMIT CONTROL/STATUS 31 08 07 06 05 MBZ MBZ READY 35 23 TXDB 07 CONSOLE TRANSMIT DATA BUFFER RESERVED OPERAND FAULT IF READ 24 23 1615 08 07 00 BYTE 3 BYTE2 BYTE 1 BYTE 0 WRITE ONLY TK-0707

TK-0708

REG.# DEC HEX NAME ID#

48 30 SBIFS 1B SBI FAULT/STATUS

49 31 SBIS 18 SBI SILO

50: 32 SBISC 1C SBI SILO COMPARATOR

*CLEARED ON ANY WRITE TO SBISC

51 33 SBIMT 1D SBI MAINTENANCE

TK-0705

54 36 SBIQC SBI QUAD CLEAR

RESERVED OPERAND FAULT IF READ RESERVED OPREAND FAULT IF MBZ $\neq 0$

 3130 29
 03 02
 00

 MBZ
 PHYSICAL QUADWORD ADDRESS
 MBZ

WRITE ONLY

REG DEC		NAME	ID#					
56	38	мме		MEMORY MANAGE WRITE 1 ALSO CAUS 31		INVALID	O1 OC	
							MM	E
57	39	ТВІА		TRANSLATION BU RESERVED OPERANI 31		E ALL	00)
					М	BZ		
					WRITE	ONLY		
58	3A	TBIS		TRANSLATION BURESERVED OPERAN		E SINGL	E 00	,
					VIRTUAL	ADDRES	s	
				· · · · · · · · · · · · · · · · · · ·	WRITI	ONLY		•
60	3C	MBRK	21	MICROPROGRAM 31	BREAKPOINT	131	2 00 MICRO PROGRAM ADDRESS	
61	3D	PMR	0C	PERFORMANCE M		ER		
				31			01 00	1
					MBZ	<u> </u>		ļ
							PMI	Ε
62	3E	SID	03	SYSTEM IDENTIFI RESERVED OPERANI 31 24	D FAULT IF WRITE	514 1	211 00	
				SYSTEM TYPE	ECO LEVEL	MFG PLANT	SYSTEM SERIAL NUMBER	Ì
					READ	ONLY	TK-0704	

REG.NAME	REG.ID NO.	INT.REG.NO.	31/15	30/14	29/13	28/12	27/11	26/10	25/09	24/08	23/07	22/06	21/05	20/04	19/03	18/02	17/01	16/00
IBUF	00					ata Byte	3		•				D	ata Byte	2			
			31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	l					ata Byte	1		•				D	ata Byte	0			
			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1						_				ı							
DAY.TIME	01	1B TODR	31	30	29	ime Byte 28	3 27	26	25	24	23	22	T 21	me Byte 20	19	18	17	16
	}		15 I	14	T 13	ime Byte	1 11	10	1 9	l 8	7	l 6	T	me Byte	0	l 2		l 0
	I		15	14	13	12	L ''	10		•		0	5		L			1
SYS.ID	03	3E SID				Type								CO Leve				
			31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ECO Level		Plar						Se	erial Num	ber					
			15	14	13	12	11	10	9	8		6	5	4	3	2	1	0
RXCS	04	20 RXCS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IIACS	04	20 NAC3			-			-	<u> </u>					ļ .				
			0	0	0	0	0	0	0	0	Done	Intrpt Enable	0	0	0	0	0	О
	T																	
RXDB	05	21 RXDB	31	30		ata Byte 28	3 27	26	25	24	23	22	21 21	ata Byte 20	2 19	18	17	16
					C	ata Byte	1	L					D	ata Byte	0			
	1		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

REG. NAME	REG. ID NO.	INT. REG. NO.	31/15	30/14	29/13	28/12	27/11	26/10	25/09	24/08	23/07	22/06	21/05	20/04	19/03	18/02	17/01	16/00
TXCS	06	22 TXCS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	Ready	Intrpt Enable	0	0	0	0	0	0
TXDB	07	23 TXDB	31	30	29	Data Byte	e 3 27	26	25	24	23	22	21	ata Byte	19	18	17	16
			15	14	13	Data Byte	e 1 11	10	9	8	7	6	5 5	ata Byte 4	3	2	1_1	0
DQ	08		31	30	29	28	27	26	D(rea 25	ad) Q(w	rite) 23	22	21	20	19	18	17	16
			15	14	13	12	11	10	D(re	ad) Q(w	rite)	6	5	4	3	2	1	1 0
NXT. PER	09	19 NICR	31	30	29	28	27	26	Ne 25	xt Interv	al 23	22	21	20	19	18	17	16
			15	14	13	12	11	10	9	ext Interv	ral 7	6	5	4	3	2	1	0
CLK.CS	0A	18 ICCS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Error	0	0	0	0	0	0	0	Intrpt Req	Intrpt Enable	Single Clock	Xfer	0	0	0	Rur
INTERVAL	ОВ	1A ICR	31	l 30	29	28	27	26	Coun 25	t (micros	econds)	1 22	21	20	19	1 18	17	16
			15	14	13	12	11	10		t (micros		6	5	4	3	2	1	0

REG. NAME	REG. ID NO.	INT. REG. NO.	31/15	30/14	29/13	28/12	27/11	26/10	25/09	24/08	23/07	22/06	21/05	20/04	19/03	18/02	17/01	16/00
TBERO	12		0	0	0	0	0	0	0	0	0	0	0	Replace Both	Force G1	Replace G0	Force G1	TB Misc G0
			FS	ADS		ast Refe		мст о	1ВWСНК	AR	TB G1	Hit G0	0		Force T Parity Er			Mem Man En
TBER1	13		0	0	0	0	0	0	0	0	0	0	0	1D2	TB Parity	Error Bit	QD2	QD1
			0D0	1A2	B Parity	Error B	its 0A2	0A1	0A0	CP TB PE	0	Last TP Wrp	0	Bad IPA	Miss	IPA PE	Prot E	Auto L
ACC.MN	16		Write Trp Ad	0	0	0	0	0	0	0				Trap Ad	dress			
			Write µBreak	Micro Match	0	0	0	0	0					break (w Address				
ACC.CS	17	28 ACCS	Error	0	0	0	Resrvd Oprand	0	0	0	0	0	0	0	0	0	0	0
			Accel Enable	0	0	0	0	0	0	0	0	0	0	0	Acc 0	elerator T	ype 0	1 1
SILO	18	31 SBIS	After Fault	SBI Intik	4	3	SBII	D 1	0	2	SBI TA	AG 0	M3/B31	SBI M2/B30		M0/B28		BI CNF 0
			15	14	13	12	11	10	9	SBI TI	R 7	6	5	4	3	2	1 1	0
SBI.ERR	19	34 SBIER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			RDS Int En	CRD	RDS	CP TO	CP TO ST1	CP TO STO	0	CP Err CNF	IB RDS	IB TO	IB TO ST1	IB TO STO	IB Err CNF	Mult Error	Not Busy	0

REG. NAME	REG. ID NO.	INT. REG. NO.	31/15	30/14	29/13	28/12	27/11	26/10	25/09	24/08	23/07	22/06	21/05	20/04	19/03	18/02	17/01	16/00
USTACK	20		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•						12	11	10	Co 9	ntrol St	ore Addi	ess 6	5	4	3	2	1	0
UBREAK	21	3C MBRK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			0	0	0	12	11	10	9 Co	ntrol St	ore Addi	ess 6	5	4	3	2	1	0
WCS ADDR.	22	2C WCSA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Invert Parity		od 3 unter	12	11	10	9	8	Contro 7	ol Store	Address 5	4	3	2	1	0
WCS DATA	23	2D WCSD	Data 31	Data 30	Data 29	Data 28	Data 27	Data 26	Data 25	Data 24	Data 23	Data 22	Data 21	Data 20	Data 19	Data 18	Data 17	Dat 16
			Data 15	Data 14	Data 13	Data 12	Data 11	Data 10	Data 9	Data 8	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Dat 0

ID-BUS MAP (CONT)

Name	Addr	IR No.	Symb		Name	Addr	IR No.	Symb
POBR	24	08	POBR		T2	32		
P1BR	25	0A	P1BR		Т3	33		
SBR	26	OC.	SBR		T4	34		
KSP	28	00	KSP		T5	35		
ESP	29	01	ESP		T6	36		
SSP	2A	02	SSP		T7	37		
USP	2B	03	USP		Т8	38		
ISP	2C	04	ISP		Т9	39		
FPDA	2D				PCBB	3A	10	PCBI
D. SV	2E				SCBB	3B	11	SCBI
Q. SV	2F				POLR	3C	09	POLE
TO	30				P1LR	3D	08	P1LF
T1	31				SLR	3E	OD	SLR
				1457	.BIN			

ID#: 00	NAME: IBUF			
Bit Fields	Description			
<31:00>	Data in Instruction Buffer Bytes <3:0>			
	Read Only Located on M8223 (IDPL)			
ID#: Øl	NAME: TIME OF DAY			
Bit Fields	Description			
<31:00>	32 bit counter 100 Hertz rate			
	Read/Write Located on M8224 (IRCN)			
ID#: 03	NAME: SYSTEM ID			
Bit Fields	Description			
<31:24>	System Type			
	Ø1=VAX-11/78Ø			
<23:15>	ECO Level			
<14:12>	Manufacturing Plant			
<11:00>	System Serial Number			
	Read Only Selected by jumpers on backpanel Read from M8236 CIBC,D,E			
ID#: 04	NAME: RXCS			
Bit Fields	Description			
<07>	Done			
	Set by console software signifying data available in RXDB			
	Read Only			
<06>	Interrupt Enable			
	Allows interrupt when Done set			
	Read/Write			
	Located on M8236 (CIBE)			

ID#: Ø5	NAME: RXDB		
Bit Fields	Description		
<31:0>	Data from Console Subsystem		
	Read Only Located on M8236 (CIBC,D,E)		
ID#: Ø6	NAME: TXCS		
Bit Fields	Description		
<07>	Ready		
	Set by console to indicate ready to receive data		
	Read Only		
<06>	Interrupt Enable		
	Allows interrupt when Ready set		
	Read/Write Located on M8236 (CIBE)		
ID#: 07	NAME: TXDB		
Bit Fields	Description		
<31:0>	Data to console subsystem		
	Write Only Located on M8236 (CIBC,D,E)		
ID#: Ø8	NAME: DQ		
Bit Fields	Description		
<31:00>	Read: D Register Write: Q Register		
	Read/Write Located on: <7:00> M8228 (DCPC) <15:08> M8227 (DDPC) <31:16> M8226 (DEPL,M)		

ID#: Ø9	NAME: NEXT INTERVAL COUNTER			
Bit Fields	Description			
<31:00>	Data loaded into interval counter on overflow or XFER bit in CLK CONTL REG			
	Write Only <31:16> M8230 (CEHP) <15:00> M8231 (ICLS)			
ID#: ØA	NAME: INTERVAL CLOCK STATUS			
Bit Fields	Description			
<15>	Error			
	Over run second overflow before first serviced.			
	Read/Write 1 to clear			
<07>	Interrupt Request			
	Set when counter overflows			
	Read/Write 1 to clear			
<06>	Interrupt Enable			
	Enables interrupt on overflow			
	Read/Write			
<05>	Single CLK			
	Advance counter on step			
	Write Only			
<04>	XFER			
	Forces next interval to counter			
	Write Only			
<00>	RUN			
	Allows counter to increment at 1 microsecond rate			
	Read/Write			
	Located on M8231 (ICLS)			

ID#: ØB	NAME: INTERVAL COUNTER				
Bit Fields	Description				
<31:00>	32 Bit Up Counter				
	At 1 microsecond rate				
	Read Only <31:16> M8230 (CEHP) <15:00> M8231 (ICLS)				
ID#: ØC	NAME: CPU ERROR STATUS (CES)				
Bit Fields	Description				
<16>	Nested Error				
	Used by Memory Management Microcode				
	Read Only Located on M8230 (CEHP)				
<15>	Control Store Parity Error Summary				
	"OR" of Control Store Parity Error Bits				
	Read Only Located on M8231 (ICLS)				
<14:12>	Control Store Parity Error Bits				
	<14>=Group 2 <13>=Group 1 <12>=Group 0				
	Read Only Located on M8231 (ICLS)				
<11>	E ALU N				
<10>	E ALU Z				
<09>	ALU N				
<08>	ALU Z				
<07>	ALU C31				
	Read/Write Located on M8231 (ICLS)				

<06:04>	Arithmetic Trap Code 7=Decimal Divide by Ø 6=Decimal Overflow 5=Float Underflow 4=Float Divide by Ø 3=Float Overflow 2=Integer divide by Ø 1=Integer Overflow Ø=No Trap Pending Read/Write
	Located on M8231 (ICLS)
<03>	Performance Monitor Enable
	Loaded or read by microcode
	Read/Write Located on M8231 (ICLS)
<02:01>	AST Level
	Used to deliver AST SIR during RET
	Read/Write Located on M8231 (ICLS)
ID#: ØD	NAME: VECTOR
ID#: ØD Bit Fields	NAME: VECTOR Description
Bit Fields	Description
Bit Fields	Description Prior Valid Indicates at least one bit was set in last
Bit Fields	Description Prior Valid Indicates at least one bit was set in last priority field Read Only
Bit Fields	Description Prior Valid Indicates at least one bit was set in last priority field Read Only Located on M8230 (CEHP)
Bit Fields	Description Prior Valid Indicates at least one bit was set in last priority field Read Only Located on M8230 (CEHP) Priority Priority encoded value of bits <31:16> of
Bit Fields	Description Prior Valid Indicates at least one bit was set in last priority field Read Only Located on M8230 (CEHP) Priority Priority encoded value of bits <31:16> of bit mask last written into vector register Read Only
Bit Fields <25> <24:21>	Description Prior Valid Indicates at least one bit was set in last priority field Read Only Located on M8230 (CEHP) Priority Priority encoded value of bits <31:16> of bit mask last written into vector register Read Only Located on M8230 (CEHP)

<08:00>	Vector			
	Hardware generated vector			
	Read Only Located on M8231 (CEHJ)			
ID#: ØE	NAME: SOFTWARE INTERRUPT REGISTER			
Bit Fields	Description			
<20:16>	Interrupt Priority Level Pending			
	Level of highest interrupt active at last interrupt strobe time			
	Read Only Located on M8230 (ICLS)			
<15:01>	Software Interrupt Register			
	Pending software interrupt flags			
	Read/Write Located on M8231 (ICLS)			
ID#: ØF	NAME: PROCESSOR STATUS LONGWORD			
Bit Fields	Description			
<31>	Compatibility Mode			
	CPU executing PDP-11 mode instructions			
	Read/Write Located on M8230 (CEHP)			
<30>	Trace Pending			
	At end of an instruction and if trace pending equal a trace trap is initiated			
	Read/Write Located on M8230 (CEHP)			
<27>	First Part Done			
	Microcode sets this bit at defined points within certain instructions, stating that instruction may be restarted from that point if an interrupt of instruction occurs.			
	Read/Write Located on M8230 (CEHP)			

<26>	Interrupt Stack
	Indicates CP operating on interrupt stack
	Read/Write Located on M8230 (CEHP)
<25:24>	Current Mode
	Current operating mode of software 3=USER 2=SUPERVISOR 1=EXECUTIVE Ø=KERNEL
	Read/Write Located on M8230 (CEHP)
<23:22>	Previous Mode
	Previous operating mode (before change mode instruction) 3=User 2=Supervisor 1=Executive 0=Kernel
	Read/Write Located on M823Ø (CEHP)
<20:16>	Interrupt Priority Level
	Current interrupt priority level of CPU
	Read/Write Located on M8230
<07>	Enable decimal overflow exceptions
<06>	Enable floating underflow exceptions
<05>	Enable integer overflow exceptions
	Read/Write Located on M8231 (ICLS)
< Ø 4 >	T bit
	Results in setting Trace Pending
<03>	N bit
<02>	Z bit
<01>	v bit

<00>	C bit				
	Read/W Locate	rite d on M82	31 (ICL	5)	
[D#: 10	NAME: TRANSLATION BUFFER DATA REGISTER				
Bit Fields	Description				
<31>	Valid				
	Allows TB hits with VA<13:9> and 31 used as index and address<30:14> equals VA MUX<30:14>				
	Write Locate	Only d on M82	20 (CAM	7)	
<30:27>	Protection	Code			
	Define	Protect	ion of i	Address	
	0000 0001 0001 0010 0011 0100 0101 0111 1000 1001 1010 1011 1100 1101 1110	Kernel * Unpredi R/W RØ R/W	Exec * ctable * R/W R/W RØ RØ R/W RØ RØ RØ RØ RØ R/W RØ RØ RØ R/W RØ	Super * * R/W * R/W RØ RØ RØ RØ RØ RØ RØ	# * * * * * * * * * * * * * * * * * * *
<26>	R/W R RØ R Write Locate Modify Notes	d on M82 a modifi	e 20 (CAMV	7)	
	Write Locate	Only d on M82	2Ø (CAM	<i>I</i>)	

<20:0>	Page Frame Number				
	When translation occurs these bits become page numbers, i.e., PA<29:09>				
	Write Only Located on M8222 (TBME)				
ID#: 12	NAME: T BUFF REG Ø				
Bit Fields	Description				
<20:18>	Force Replace				
	Directs TB writes to defined groups 20=Write Both 19=Force Replace Group 1 18=Force Replace Group 0				
	Read/Write Located on M8222 (TBME)				
<17:16>	Force Miss				
	Force TB miss on defined group 17=Group 1 16=Group Ø				
	Read/Write Located on M8222 (TBME)				
<15:08>	Last Reference				
	Data on last non-nop memory reference <15> Status of uFS bit <14> Status of uADS bit <13:10> Status of uMCT field <09> 1 means IB WCHK existed on an IB reference <08> 1 means reference delayed one cycle by IB auto reload				
	Read Only Located on M8222 (TBME)				
<07:06>	TB Hit				
	Indicate which group was a TB hit 7=Group 1 6=Group Ø				
	Read Only Located on M8222 (TBME)				

```
<04:01>
               Force TB Parity Error
                      Allows bad parity to be generated
                         No errors
                         No errors
                      1
                         Group Ø Data Byte Ø
                      3
                               Ø
                               Ø
                      4
                                             2
                      5
                               1
                                             Ø
                      6
                                             1
                               1
                      7
                      8
                                  Address Byte Ø
                              Ø
                      9
                               Ø
                      Α
                               Ø
                                                2
                      В
                                                Ø
                               1
                      С
                               1
                                                1
                      D
                               1
                                                2
                      Ε
                         No errors
                      F
                         No errors
                      Read/Write
                      Located on M8222 (TBME)
 <00>
                MME
                      Enable Memory Management
                      Read/Write
                      Located on M8222 (TBME)
ID#: 13
                NAME: TBUFF REG 1
Bit Fields
                     Description
<20:09>
                TB Parity Error Status
                20=1 Group 1
                              Data Byte 2
                19=1
                           1
                18=1
                17=1
                       н
                           Ø
                                 *
                                      **
                                          2
                16=1
                           Ø
                                          1
                15=1
                            Ø
                                          Ø
                14=1
                            1 Address Byte
                13=1
                           1
                12=1
                       н
                11=1
                           Ø
                                            2
                10=1
                            Ø
                                            1
                 9=1
                     Read/Any Write Clears
                     Located on M8222 (TBME)
```

<08>	CP TB Parity Error			
	Indicate TB microtrap has been requested			
	Read/Any Write Clears Located on M8222 (TBME)			
<06>	Last TB Write Pulse			
:	Indicates which TB group was last written Ø=Group Ø l=Group l Both - Unpredictable			
	Read Only Located on M8222 (TBME)			
< 04 >	Bad IPA			
	Contents of IPA are not meaningful			
	Read Only Located on M8222 (TBME)			
<03:00>	IPA Info			
	Status of last load from IPA 3=1 TB miss on load 2=1 TB parity error 1=1 Protection violation or miss 0=1 Automatic hardware initiated load Read Only Located on M8222 (TBME)			
ID#: 16	NAME: ACCELERATOR MAINTENANCE			
Bit Fields	Description			
<31>	Write Trap Address			
:	When set clocks trap address register			
	Write Only Located on M8286 (FMHR)			
<23:16>	Trap Address			
	Use to form ROM address on ACC trap			
	Read/Write Located on M8286 (FMHR)			

<15>	Write Micro Match
	Setting clocks micro match register from bits <8:0> of this register
	Write Only Located on M8287 (FMLP)
<14>	Micro Match
	Indicates a micro match has occured
	Read Only Located on M8287 (FMLP)
<08:00>	Micro Break/Current Address
	Writes micro break register Reads current micro program counter
	Read/Write Located on M8287 (FMLP)
ID#: 17	NAME: ACCELERATOR CONTROL STATUS
Bit Fields	Description
<31>	Error
	Read/Any write to this register will clear Located on M8286 (FMHR)
<27>	Reserved Operand
	Minus zero error
	Read Only Located on M8286 (FMHR)
<15>	Accelerator Enable 1=Enable Accelerator Ø=Disable Accelerator
	Read/Write Located on M8287 (FMLP)
<03:00>	Accelerator type
	01=FPA
	Read Only Located on M8287 (FMLP)

ID#: 18	NAME: SILO				
Bit Fields	Description				
	16 location SILO used to store SBI activity				
<31>	After Fault				
	First entry after fault cleared				
	Read Only Located on M8219 (SBHJ)				
<30>	SBI Interlock				
	Read Only Located on M8219 (SBHJ)				
<29:25>	SBI ID<4:0>				
	Read Only Located on M8219 (SBHJ)				
<24:22>	SBI TAG<2:0>				
	Read Only Located on M8219 (SBHJ)				
<21:18>	SBI MASK<3:0> or SBI <b31:b28></b31:b28>				
	Silo written with SBI <b31:b28> when SBI TAG equals command address. Otherwise SBI <m3:m0> are written</m3:m0></b31:b28>				
	Read Only Located on M8219 (SBHJ)				
<17:16>	SBI CNF<1:0>				
	Read Only Located on M8219 (SBHJ)				
<15:00>	SBI TR<15:00>				
	Read Only Located on M8237 (TRSF)				
ID#: 19	NAME: SBI ERROR REGISTER				
Bit Fields	Description				
<15>	RDS Interrupt Enable				
	Enable interrupt for RDS errors				
	Read/Write Located on M8218 (SBLH)				

```
<14>
               CRD
                     Received corrected read data from memory
                     Read/Write 1 to clear
                     Located on M8218 (SBLH)
<13>
               RDS
                     Received read data substitute from memory
                     Read/Write 1 to clear
                     Located on M8218 (SBLH)
<12:10>
               CP Timeout Status
                     12=1 Timeout for CP requested cycle
                     а
                        а
                            No device response
                     Ø
                        1
                            Device busy
                     1
                            Waiting for read data
                     1
                        1
                            Impossible code
                     12 - Read/Write 1 to clear
                     Also clears bits<11:10>, 08, 02
                     <11:10> Read Only
                     Located on M8218 (SBLH)
<8>
               CP SBI Error Confirmation
                     Set when CP requested cycle receives error
                    confirmation to command address transfer
                     Read Only
                    Write 1 to bit 12 to clear
                     Located on M8218 (SBLH)
< 07>
               IB RDS
                     Read data substitute for IB data
                     Read/Write 1 to clear
                     Located on M8218 (SBLF)
< 06:04>
               IB Timeout Status
                     Ø6=1 Timeout for IB requested cycle
                     Ø5
                        04
                     Ø
                         Ø
                               No device response
                     Ø
                         1
                               Device busy
                               Waiting for read data
                     1
                         Ø
                               Impossible code
                     6 - Read/Write 1 to clear
                    Also clears bits<5:3>
                     Ø5:04 - Read Only
                     Located on M8218 (SBLE)
```

<03>	IB SBI Error Confirmation			
	Set when IB requested cycle receives error confirmation			
	Read Only Write 1 to bit 6 to clear Located on M8218 (SBLF)			
<02>	Multiple CP Error			
	Set with pending CP timeout or CP SBI error confirmation not serviced			
	Read Only Write 1 to bit 12 to clear Located on M8218 (SBLF)			
<01>	SBI Not Busy			
	Read Only Located on M8218 (SBLF)			
ID#: 1A	NAME: TIMEOUT ADDRESS			
Bit Fields	Description			
	Latches physical address on SBI timeout; will not latch for IB data timeouts			
	Read Only Latched until CP timeout Error bit (SBI ERR REG bit 12)=1			
<31:30>	Mode 31 30 0 0 Kernel 0 1 Executive 1 0 Supervisor 1 1 User			
<29>	Located on M8219 (SBHJ) Protection Check			
(29)	Equal Ø for references not subject to hardware protection check			
	Located on M8219 (SBHJ)			
<27:00>	Physical Address			
.3.7227	<27:00>=PA<29:02>			
	Located on <27:16> (SBHH,J) <16:00> (SBLF,H)			

ID#: 1B	NAME: SBI FAULT STATUS REGISTER			
Bit Fields	Description			
<31>	Parity Fault			
	SBI Parity Fault			
	Read Only Located on M8219 (SBHJ)			
<29>	Unexpected Read Data Fault			
	Read Only Located on M8219 (SBHJ)			
<27>	Multiple Transmitter Fault			
	Read Only Located on M8219 (SBHJ)			
<26>	Transmitter During Fault			
	Read Only Located on M8219 (SBHJ)			
<25>	Error First Pass			
	Set by microcode first time through fault handling code; used to note double errors			
	Read/Write Located on M8219 (SBHJ)			
<24>	Spare			
	Read/Write Located on M8219 (SBHJ)			
<19>	Fault Latch			
	Set from SBI fault			
	Read/Write 1 to clear Located on M8219 (SBHH)			
<18>	Fault Interrupt Enable			
	Interrupt on SBI fault enable			
	Read/Write Located on M8219 (SBHH)			
<17>	SBI Fault Signal			
	Read Only Located on M8219 (SBHH)			

<16>	Fault Silo Lock			
	Indicates SBI Silo locked from SBI fault			
	Read Only Write 1 to bit 19 to clear Located on M8219 (SBHH)			
ID#: 1C	NAME: SILO COMPARATOR			
Bit Fields	Description			
	Allows lock of silo on predetermined data other than fault			
<31>	Comp Silo Lock			
	A. Lock unconditional (see bit 29) Locks when counter (bits 19:16) equals F			
	B. Conditional lock Lock when certain conditions exist. Comparator looks at SBI. When match, compare signal is generated which allows counter to increment.			
	When counter equals F, silo will lock			
	Unlock by writing number equals F into counter			
	Read Only Clear by writing number not equal F to counter Located on M8219 (SBHJ)			
<3Ø>	Silo Lock Interrupt Enable			
	Read/Write Located on M8219 (SBHJ)			
<29>	Lock Unconditional			
	Enables silo lock when counter equals F			
	Read/Write Located on M8219 (SBHJ)			
<28:27>	Conditional Lock Codes			
	28 27 Ø Ø No compare Ø 1 ID only 1 Ø ID TAG 1 1 ID TAG, command function or mask			
	Read/Write Located on M8219 (SBHJ)			

<26:23>	Compare Command or Mask<3:0>
	Read/Write Located on M8219 (SBHJ) (SBHH)
<22:20>	Compare Tag<2:0>
	Read/Write Located on M8219 (SBHH)
<19:16>	Count Field<3:0>
	When equals F, allows silo lock
	Read/Write Located on M8219 (SBHH)
ID#: 1D	NAME: MAINTENANCE REGISTER
Bit Fields	Description
<31>	Force PØ Reversal on SBI
	Read/Write Located on M8219 (SBHJ)
<30>	Force Write Sequence Fault
	Read/Write Located on M8219 (SBHJ)
<29>	Force Unexpected Read Data Fault
	Causes transmit of SBI TAG=0, Maintenance ID, Undefined Data, good parity for unexpected read data in a selected nexus
	Read/Write Located on M8219 (SBHJ)
<28>	Force Multiple Transmitter Fault
<27:23>	Maintenance ID<4:0>
	Used to force unexpected read data faults
	Read/Write Located on M8219 (SBHJ) (SBHH)
<22>	Force SBI Invalidate
	Forces writes done by CPU on SBI to become cache invalidates
	Read/Write Located on M8219 (SBHH)

```
<21>
                Enable SBI Invalidate
                      Allows SBI writes to invalidate cache
                      Must be =1 for normal operation
                      Read/Write
                      Located on M8219 (SBHH)
 <20:17>
                Reverse Cache Parity
                      20
                         19
                             18
                                 17
                                       Reverse Parity
                      Ø
                          Ø
                              а
                                       No P
                                  Ø
                      Ø
                          Ø
                              Ø
                                       Group 1
                                                Byte A
                                                        Address
                      Ø
                                                        Address
                          Ø
                              1
                                  Ø
                                       Group 1 Byte B
                      Ø
                          Ø
                              1
                                  1
                                       Group 1 Byte C
                                                         Address
                                       Group Ø
                      Ø
                          1
                              Ø
                                                Byte A
                                                         Address
                      ø
                                       Group Ø Byte B
                          1
                              Ø
                                  1
                                                         Address
                      Ø
                                       Group Ø Byte C
                          1
                              1
                                  Ø
                                                         Address
                      Ø
                          1
                              1
                                  1
                                       Unused
                      1
                          Ø
                              Ø
                                  Ø
                                       Group 1
                                                Byte 3
                                                         Data
                      1
                          Ø
                              Ø
                                  1
                                       Group 1
                                                Byte 2
                                                         Data
                      1
                          Ø
                              1
                                  Ø
                                       Group 1
                                                 Byte 1
                                                          Data
                      1
                          Ø
                              1
                                       Group 1
                                                 Byte Ø
                                  1
                                                         Data
                                                Byte 3
                      1
                          1
                              Ø
                                       Group Ø
                                                         Data
                      1
                          1
                              Ø
                                  1
                                       Group Ø Byte 2
                      1
                              1
                                       Group Ø Byte 1
                          1
                                  Ø
                                                         Data
                                       Group Ø Byte Ø Data
                      Read/Write
                      Located on M8219 (SBHH)
<16:15>
                Force Cache Miss
                      16 15
                      øø
                              No miss forced
                        1
                              Force miss Group 1
                      1
                              Force miss Group Ø
                      1
                         1
                              Force miss Groups 0,1
                      Read/Write
                      Located on <16> M8219 (SBHH)
                                 <15> M8218 (SBLH)
 <14:13>
                Cache Replacement
                      14 13
                             Random
                             Group 1 always
                             Group Ø always
                      1
                      1
                         1
                             Undefined
                      Read/Write
                      Located on M8218 (SBLH)
```

<12>	Disable SBI			
	When set, no SBI cycles will be started			
	Read/Write Located on M8218 (SBLH)			
<11>	Force Pl Reversal on SBI			
	Read/Write Located on M8218 (SBLH)			
<10:09>	Cache Match			
	10=1 Group 1 cache match 09=1 Group 0 cache match			
	Read Only Located on M8218 (SBLH)			
<08>	Force Timeout			
	Forces read timeouts			
	Read/Write Located on M8218 (SBLH)			
ID#: 1E	NAME: CACHE PARITY ERROR REGISTER			
Bit Fields	Description			
<15:14>	Error Bit Bit 15 14			
	Ø 1 No error			
	1 Ø IB read reference caused error			
	1 1 CP read reference caused error			
	15 Read/write 1 clears entire register located on M8218 (SBLH)			
	14 Read only. Located on M8218 (SBLH)			

<13:06>	Data Parity O.K.				
	If set, parity O.K., bit 15 must be set for meaningful information				
	13 Parity OK CDM Group 1 Byte 0 12 " " " " 1 " 1 11 " " " 1 " 2 10 " " " 1 " 3 9 " " " 0 " 0 8 " " " 0 " 1 7 " " " 0 " 3				
	Read Only Located on M8218 <13:8> (SBLH) <7:6> (SBLF)				
<05:00>	Address Parity O.K.				
	If set, parity O.K., bit 15 must be set for meaningful information				
	5 Parity OK CAM Group Ø Byte Ø 4 """ " Ø " 1 3 """ " Ø " 2 2 """ " 1 " Ø 1 """ " 1 " 1				
	Read Only Located on M8218 (SBLF)				
ID#: 20	NAME: USTACK				
Bit Fields	Description				
<15:00>	Reading pops top address from micro stack Writing pushes address on micro stack				
	<15:00> = Control Store Address<15:00>				
	Read/Write Located on M8235 (USCD)				
ID#: 21	NAME: UBREAK				
Bit Fields	Description				
<12:00>	Data used to compare micro PC for scope sync or stopping system clock when SOMM set				
	Read/Write Located on M8235 (USCD)				

ID#: 22	NAME: WCS ADDRESS
Bit Fields	Description
<15>	Invert Parity
	When set inverts WCS parity
	Read/Write Located on M8235 (USCD)
<14:13>	Modulo 3 Counter
	Counter used to point to which 32 bit quantity of WCS is to be written
	Read/Write Located on M8235 (USCD)
<12:00>	Control Store Address
	Use to address WCS for writing
	Read/Write
	Located on M8235 (USCD)
ID#: 23	NAME: WCS DATA
Bit Fields	Description
Bit Fields <31:00>	Description Data
	-
	Data
<31:00>	Data Used to write data into WCS Number of WCS Boards Present Ø=1 Ø-1K Present
<31:00>	Data Used to write data into WCS Number of WCS Boards Present 0=1 0-1K Present 1= 1-2K "
<31:00>	Data Used to write data into WCS Number of WCS Boards Present 0=1 0-1K Present 1= 1-2K " 2= 2-3K " 3= 3-4K "
<31:00>	Data Used to write data into WCS Number of WCS Boards Present 0=1 0-1K Present 1= 1-2K " 2= 2-3K " 3= 3-4K " 4= 4-5K "
<31:00>	Data Used to write data into WCS Number of WCS Boards Present 0=1 0-1K Present 1= 1-2K " 2= 2-3K " 3= 3-4K " 4= 4-5K " 5= 5-6K " 6= 6-7K "
<31:00>	Data Used to write data into WCS Number of WCS Boards Present 0=1 0-1K Present 1= 1-2K " 2= 2-3K " 3= 3-4K " 4= 4-5K " 5= 5-6K "
<31:00>	Data Used to write data into WCS Number of WCS Boards Present 0=1 0-1K Present 1= 1-2K " 2= 2-3K " 3= 3-4K " 4= 4-5K " 5= 5-6K " 6= 6-7K " 7= 7-8K " <31:8>Write Only
<31:00>	Data Used to write data into WCS Number of WCS Boards Present 0=1 0-1K Present 1= 1-2K " 2= 2-3K " 3= 3-4K " 4= 4-5K " 5= 5-6K " 6= 6-7K " 7= 7-8K "

ID#	Name	
24	PØBR	All Registers <31:00>
25	P1BR	, i
26	SBR	<31:24> M823Ø CEHN
		<23:16> M823Ø CEHM
28	KSP	<15:08> M8231 ICLR
29	ESP	<07:00> M8231 ICLP
2A	SSP	
2B	USP	
2C	ISP	ID registers 24 through 2F are
2D	FPDA	stored in A temps on CEHK, ICLL
2E	D.SY	
2 F	Q.SY	
30	TØ	
31	Tl	ID registers 30 through 3E are
32	T2	stored in B temps on CEHK, ICLL
33	Т3	
34	T4	
35	T5	
36	T6	All registers are Read/Write
37	T7	
38	T8	
39	Т9	
3A	PCBB	
3B	SCBB	
3C	PØLR	
3D	PllR	
3E	SLR	

SILO REGISTER INTERPRETATION

The SBI silo is a read only register file that provides temporary storage of various SBI signals for the last 16 SBI cycles.

The assertion of fault by any nexus locks the silo, sets fault silo lock in the fault register, and makes the data available through the silo register. The silo may also be locked through the use of the SBI comparator register, but comp silo lock will set in the comparator register rather than fault silo lock.

Examining the silo register when the silo is not locked will result in all zeros being returned.

Following is a breakdown of the silo register and a description of the various fields.

AFTER Fault Set for first entry after fault clears. (31)

SBI Interlock The interlock line is asserted by the

(INTLK 30) commander nexus when issuing the interlock read and then by memory when asserting the ACK confirmation.

Identifier Field Identifies the logical source or destination (ID 29:25) of information, depending on the TAG type.

TAG Type ID

Command address Source
Write data Source
Interrupt summary read Source
Read data Destination

ID code corresponds to the TR line at which the device operates.

ID Code	Device	TR
00001	Memory Adapter 1	1
00011	UNIBUS Adapter 1	3
01000	MASSBUS Adapter 1	8
01001	MASSBUS Adapter 2	9
10000	Processor	16

TAG Field Defines the transmit or receive information (TAG 24:22) types.

TAG Type

000 Read Data
011 Command Address
101 Write Data
110 Interrupt Summary Read

SILO REGISTER INTERPRETATION (CONT)

Function Field (F 21:18)

Used with command address TAG to specify the command type. Silo bits 21:18 are written with function bits B31:B28 when the SBI specified a command address, otherwise SBI mask bits are written here.

Function	Function
Code	Definition
~~~	D
0000	Reserved
0001	Read Masked
0010	Write Masked
0011	Reserved
0100	Interlock Read Masked
0101	Reserved
0110	Reserved
0111	Interlock Write Masked
1000	Extended Read
1001	Reserved
1010	Reserved
1011	Extended Write Maskked
1100	Reserved
1101	Reserved
1110	Reserved
1111	Reserved

Mask Field (M 21:18) Primary function: Specify particular data bytes of an addressed location for an operation.

Mask	Byte
0001	Ø
0010	1
0100	2
1000	3

Mask

Second function: Specify particular read data types during a read.

0000	Read Dat	:a								
0001	Correcte	Corrected Read Data								
0010	Read Dat	a Substitute								
00	No response	(N/R) or unasserted								
Øl	Acknowledge	(ACK)								
11	Error	(ERR)								
10	Busy									
NOTE:	: No response	e is normal when there	is							

Confirmation Code (C 17:16)

NOTE: No response is normal when there is no activity on SBI.

Arbitration Field  $\,$  Indicates the TR devices that are requesting (TR Lines 15:00)  $\,$  access to and control of the SBI.

Data Type

#### SILO REGISTER INTERPRETATION (CONT)

Example of Interpreting a Deposit Byte:

D/B 500 AA

The following would appear in the silo register if it was locked.

R E/ID 18

Cycles	Silo	Bit Breakdown				
Cl	ID00000018 20C80001	ID = CPU, TAG = C/A, FUN = WRITE MASK, TR = HOLD				
C2	ID00000018 21440000	ID = CPU, TAG = WRITE DATA, MASK = BYTE $\emptyset$				
C3	ID00000018 00010000	CNF = ACK				
C4	ID00000018 00010000	CNF = ACK				

These cycles correspond to the following figure.



TK-0080

#### MICROCODE MACHINE CHECK ERROR LOGOUT

At any machine check, the error handling microcode attempts to log out the following information. Ordinarily, it appears on the stack as shown, but if a double error halt occurs, the operator can find the same information in the ID-bus temporaries. This information is VAX-11/780 specific, of course, and does not apply to other members of the family.

Data	Memory Location	ID Location	Notes
Byte Count Summary Parameter CPU Error Status Trapped UPC VA/VIBA D register TB ERR Ø TB ERR I Timeout Address Parity SBI Error PC	(SP) (SP)+4 (SP)+8 (SP)+12 (SP)+16 (SP)+20 (SP)+24 (SP)+28 (SP)+32 (SP)+36 (SP)+40 (SP)+44	None 10 (30) T1 (31) T2 (32) T3 (33) T4 (34) T5 (35) T6 (36) T7 (37) T8 (38) T9 (39) None	40(dec) = 28 (hex) See below See CES register format Microcode error location Virtual address See TBERØ format See TBERI format Physical addr/4 See PARITY format See SBI.ERR format
PSL	(SP)+48	None	

The summary parameter is a longword. Byte 1 is a flag, which is nonzero if a CP timeout or CP error confirmation interrupt was pending at the time the machine check occurred. The interrupt, if any, has been cleared. Byte zero indentifies the type of machine check:

- 00 CP Read Timeout or Error Confirmation Fault
- 02 CP Translation Buffer Parity Error Fault
- 03 CP Cache Parity Error Fault
- 05 CP Read Data Substitute Fault
- ØA IB Translation Buffer Parity Error Fault ØC IB Read Data Substitute Fault
- ØD IB Read Timeout or Error Confirmation Fault
- ØF IB Cache Parity Error Fault
- F1 Control Store Parity Error Abort
- F2 CP Translation Buffer Parity Error Abort
- F3 CP Cache Parity Error Abort F0 CP Read Timeout or Error Confirmation Abort
- F5 CP Read Data Substitute Abort F6 Microcode "not supposed to get here" abort

[&]quot;IB" refers to memory reads generated by the instruction buffer in the process of prefetching the instruction stream. In these cases, the address stored at (SP)+16 is from VIBA. "CP" refers to memory references explicitly requested by microcode and whose address comes from VA.

#### **DOUBLE ERROR HALT**

The CPU will halt if it finds on entry to the error handling microcode that EFP is set.

The information on the first error will be in ID[30-39] and U-STACK (trapped microaddresses). Unpredictable on CS parity errors.

The information on the second error will be in the associated error/status registers.

The CPU will be halted after leaving a double error halt code in  ${\tt ID[D.SV]}$  =  ${\tt ID(2E)}$ .

		ID No.
SUMMARY PARA.	ТØ	30
CES	T1	31
TRAPPED UPC	T2	32
VA/VIBA	Т3	33
D-REG	T4	34
TBERØ	<b>T</b> 5	35
TBER1	Т6	36
TIME.ADDR	Т7	37
PARITY	Т8	38
SBI.ERR	Т9	39

#### V-BUS CHANNEL CONFIGURATION



#### **V-BUS DIRECTORY**

CHAN	Я ] T ( ЧЕХ )	AIT (DETAL)	ن ه د	MODULE	1.5.	SIGNAL NAME
		( , , , , , , , , , , , , , , , , , , ,				
9.0	(4,173,4	95550	USCF	M8235	CPTR	USCF UPCSV PP H
99	PAKE	Ø 11 11 11 11 11 11 11 11 11 11 11 11 11	USCF	MA235	CPTØ	USCF UPCSV R1 H
90	3.1.3.2	20005	USCF	MA235	CPTB	USCF UPCSV 02 H
00	rva3	01013	USCF	MA235	CPTP	USCF UPCSV 03 H
66	4994	akkita	USCE	M8235	CPTO	USCF UPCSV 04 H
99	4.445	22415	USCF	M8235	CPTR	USCF UPCSV 05 H
80	00.46	1216 36	USCF	M8235	CPTA	USCF UPCSV 06 H
ИИ	W197	и <b>лин7</b>	USCF	M8235	CPTP	USCF UPCSV 07 H
ve	0.468	appla	USCF	MA235	CPTP	USCF UPCSV Ø8 H
00	4.449	2 3211	USCF	M8235	CPTG	USCF UPCSV 09 H
00	MOMA	34615	USCF	MB 235	CPTO	USCF UPCSV 10 H
60	0-10-4	27213	USCF	M8235	CPTØ	USCF UPCSV 11 H
ve	PARC	พทอ14	USCF	M8235	CPTA	USCF UPCSV 12 H
N 6	0.100	(44)(415)	115 C B	MB235	CPTX	USCR STALL H
66	NUME	0 1016	USCB	M8235	CPTX	USCR UTRAP H
66	UNUF	00017	USCJ	MA235	CPTX	USCJ ECO DISPATCH 06 H
00	N212	25878	USCE	M8235	CPT1	USCE ID BUS XCVR EN L
00	0211	0.4021	USCE	M8235	CPT3	USCE CS WR (31:00) H
00	816N	00922	USCE	M8235	CPT3	USCE CS WR (63:32) H
00	0113	07023	USCE	M8235	CPT3	USCE CS WR (95:64) H
v a	Øa14	0.1024	USCE	M8235	CPTX	USCE WCS WR CYCLE H
NO.	0015	03025	USCE	M8235	CPT1	USCE WCS MEM AVAIL L
40	2416	NNB26	USCL	MA235	CPTX	FCTX ACC OVERRIDE L
69	4017	44457	USCY	M8235	CPTX	USCH IBUF FN (07:00) L
v a	ad18	03030	USCN	M8235	CPTX	۵
00	Wa19	<b>00031</b>	USCN	M8235	CPTX	ÎCLK ALU Z (1) H
UB	41911A	02432	USC∿	MA 235	CFTX	DCPA LARR H
66	001B	94433	USC∿	M8235	CPTX	0
00	001 <b>C</b>	44434	USCN	M8235	CPTX	E
00	NV1D	00035	USCN	M8235	CPTX	F
68	MULE	00036	USCN	M8235	CPTX	ACCA UBP H
00	031F	PUU37	USC∾	M8235	CPTX	J
89	9509	NP 940	HSCN	MA235	CPTX	K
MP	4451	20241	USCN	M8235	CPTX	CEHR PSL C BIT H
00	2543	24242	USCN	48235	CPTX	TCLK ALU C (1) H
00	4423	20043	USCN	M8235	CPTX	N
9.0	6224	0.4.3.6.6		40375		_
80 80	9924	00344	USCN	M8235	CPTX	P
86	0025 0026	03045 00046	USCN	M8235	CPTX	ACCA UB1 H
80	4425	00047	USC N	M8235 M8235	CPT X	S T
00	NUSA	#205P	USCN	MA235	CDIX	DCPA LAUI H
00	9459	94951	USCN	M8235	CPTX	v
00	ASGN	20052	USCN	M8235	CPTX	x
88	6658	a4953	USCN	M8235	CPTX	Y

```
00
         005C
                  00054
                           USCN
                                    M8235
                                             CPTX
                                                      ACCA UB2 H
                                                      CEHE UTRAP VECT Ø H
00
         0020
                  00055
                           USCN
                                    M8235
                                             CPTX
00
                  94456
         992E
                                             CPTX
                                                      TBMD LAST REF CODE 1 H
                           USCN
                                    M8235
Иа
                                    M8235
                                             CPTX
                                                      DAPD SS(1) H
         002F
                  90957
                           USCN
Øa
         0930
                  99969
                           USCN
                                    M8235
                                             CPTX
                                                      DD
00
                                             CPTX
                                                      CEHE UTRAP VECT 1 H
         0031
                  16099
                                    M8235
                           USCN
80
         0032
                  00062
                           USCN
                                    MAZZS
                                             CPTX
                                                      TBMD LAST REF CODE P H
иа
         0033
                  00063
                                             CPTX
                                                      DDPS SC N.E. 0 H
                           USCN
                                    MA235
99
                                             CPTX
         2234
                  00064
                           USCN
                                    M8235
                                                      J.I
Øē
                                                      CEHE UTRAP VECT 2 H
         0035
                  20065
                           USCN
                                    M8235
                                             CPTX
00
         9636
                  99966
                           USCN
                                    M8235
                                             CPTX
                                                      CEHF NESTED ERR (1) H
80
                                             CPTX
         9917
                  00067
                           USCN
                                    M8235
00
                           USCN
                                    M8235
                                             CPTX
                  99979
         0038
                                                      NN
90
         0039
                  00071
                           USCN
                                    M8235
                                             CPTX
                                                      CEHE UTRAP VECT 3 H
                                             CPTX
                                                      CEHH FPD BIT L
90
         003A
                  00072
                           USCN
                                    M8235
                                             CPTX
иа
         0038
                  00073
                           USCN
                                    M8235
                                                      ICLK EALU N (1) H
00
         903C
                  99974
                           USCN
                                    M8235
                                             CPTX
                                                      TT
90
                                             CPTX
         0030
                  00075
                           USCN
                                    M8235
                                                      USCN BEN EN (18:14) H
90
                                             CPTX
         903E
                  00076
                                    M8235
                           USCN
                                                      USCN BEN EN (1F11C) H
Øø
         BARF
                  00077
                           USCN
                                    M8235
                                             CPTX
                                                      USCN BEN EN (13:10) H
00
         4440
                  00100
                           USCN
                                    M8235
                                             CPTX
                                                      USCN BEN EN (07:00) H
00
                                             CPTX
         0941
                  00101
                           USCN
                                    M8235
                                                      USCN BEN EN (ØF:08) H
90
         0042
                  00102
                           USCP
                                    M8235
                                             CPTX
                                                      USCP BRBITA(1F:1C) H
         2043
                           USCP
                                             CPTX
                                                      ICLE BRBITO(18:14) H
                  00103
                                    MA235
                                             CPTX
99
         0944
                  00104
                           USCP
                                    M8235
                                                      ICLE BRBITO(0F:08) H
8 a
         0045
                  00105
                           USCP
                                    M8235
                                             CPTX
                                                      USCP BRBIT1(1F:1C) H
00
                           USCP
                                             CPTX
                                                      ICLE BRBIT1(18:14) H
ICLE BRBIT1(0F:08) H
         0046
                  84186
                                    M8235
88
                                             CPTY
         0047
                           USCP
                  84147
                                    MAZZE
Øa
         0048
                  00110
                           USCP
                                    M8235
                                             CPTX
                                                      USCP BRBITZ(1F:1C) H
00
         9949
                  00111
                           USCP
                                    M8235
                                             CPTX
                                                      ICLE BRBIT2(18:14) H
00
         664A
                  00112
                           USCP
                                    MR235
                                             CPTX
                                                      ICLE BRBITZ(OF:08) H
00
         994R
                  00113
                           USCP
                                    M8235
                                             CPTX
                                                      USCP BRBIT3(1F:1C) H
00
         004C
                  00114
                           USCP
                                    M8235
                                             CPTX
                                                      ICLE BRBIT3(18:14) H
99
         MAAD
                  00115
                           USCP
                                    M8235
                                             CPTX
                                                      USCP BRBIT4(1F:1C) H
                                             CPT3
40
         ABUF
                           USCH
                                                      USCH SYNC PULSE H
                  00116
                                    M8235
90
         GGUF
                                             CPTØ
                                                      CIBN D MAINT RTN H
                  00117
                           USCJ
                                    M8235
60
         0050
                  00120
                           USCJ
                                             CPTX
                                    M8235
                                                      USCJ INIT (1) H
90
         0051
                  00121
                           USCJ
                                             CPTX
                                                      USCJ STALL (1) H
USCJ UTRAP (1) H
                                    M8235
80
         8852
                  00122
                           USCJ
                                    M8235
                                             CPTX
90
         0053
                  00123
                           USCJ
                                             CPTX
                                    MAZIS
                                                      USCJ UECO (1) H
99
         0054
                  00124
                           USCJ
                                    M8235
                                             CPTX
                                                      USCJ MAINT RET (1) H
                                             CPTX
99
         0055
                                                      USCJ PRIOR 8 L
                  00125
                          USCJ
                                    M8235
80
         0056
                  99126
                           USCJ
                                    M8235
                                             CPTX
                                                      USCJ PRIOR 1 L
99
         9957
                  00127
                          USCJ
                                             CPTX
                                                      USCJ PRIOR 2
                                    MA235
```

99	0058	04130	USC™	M8235	CPT2	USCM	BUF	UPC	99	н
00	0059	00131	USCH	M8235	CPT2	USCM	BUF	UPC	01	н
88	885A	00132	USCM	M8235	CPT2	USC⊭	BUF	UPC	92	н
89	0055	00133	USCM	MA235	CPT2	USCM	BUF	UPC	93	н
88	005C	90134	USCH	M8235	CPT2	USCM	ŖUF	UPC	<b>v4</b>	н
89	985D	00135	USCM	M8235	CPT2	USCM	BUF	HPC	95	H
99	905E	00136	USCM	M8235	CPT2	USCM	BUF	UPC	96	н
89	005F	00137	USCM	M8235	CPT2	USCM	BUF	UPC	97	н
88	0060	00140	USCM	M8235	CPTZ	USCM	BUF	UPC	P8	н
00	0061	00141	USCM	M8235	CPT2	USCM	AUF	UPC	79	H
Ø Ø	0062	00142	USCM	M8235	CPT2	USCM	BUF	UPC	10	μ
66	9963	00143	USCM	M8235	CPT2	USCM	BUF	UPC	11	F
99	8864	00144	USCM	M8235	CPT2	USCM	BUF	UPC	12	н
99	0065	00145	USCX	M8235	CPTX	RESER	-			
80	0066	PP146	USCX	M8235	CPTX	RESER				
96	0067	00147	USCX	M8235	CPTX	RESER				

_						
CHAN	BIT	BIT	DWG	MODULE	T.S.	SIGNAL NAME
	(HEX)	(OCTAL)				
91	0000	00000	CEHE	M8230	CPTX	PCSC PAR ERR (95:64) H
91	9991	00001	CEHE	M8230	CPTX	PCSC PAR ERR (63:32) H
01	9995	20040	CEHE	M8230	CPTX	PCSC PAR ERR (31:00) H
01	P003	90993	CEHE	M8230	CPTX	SRLP PAR ERR TRAP L
61	0004	00004	CEHE	M8230	CPTX	TRMM PROT UTRAP L
91	0005	00005	CEHF	M8230	CPTX	CEHF IRD STATE H
01	0006	94996	CEHF	M8230	CPTX	CEHF READ RLOG H
91	0007	00007	CEHF	M8230	CPTX	CEHF LOAD STATE H
Ø1	0008	00010	CEHF	M8230	CPTX	CEHF CLR UWORD (1) H
01	0000	00011	CEHP	M8230	CPTX	ICLS EN ID XCEIV L
01	ROOA	00012	CEHA	M8230	CPTX	DEPM BMX31 L
01	8998	09013	CEHA	M8230	CPTX	DDPD BMX15 L
•.	B******	0.4613	CEMA		Crix	DOPO SMAIS E
61	000C	00014	CEHA	M8230	CPTX	DCPD BMX07 L
01	8880	04015	CEHA	M823Ø	CPTX	DEPD AMX31 L
01	000E	04016	CEHA	M8230	CPTX	DDPR AMX15 L
01	000F	00017	CEHA	M8230	CPTX	DCPD AMXØ7 L
<b>0</b> 1	9919	02020	CEHA	M8230	CPTX	DEPK ALU BUFF31 L
01	0011	09051	CEHA	M8230	CPTX	DCPL ALU CARRY31 L
01	8812	64655	CEHA	M8230	CPTX	DCPL ALU CARRYIS L
01	0013	04053	CEHA	M8230	CPTX	DCPL ALU CARRYOT L
-1	6013	8141053	CEMA	MOESW	C-11	OCPL ALU CARRYDY L
01	0014	09024	CEHA	M8230	CPTX	CEHA ALU BUFF17 L
01	0015	00025	CEHA	M8230	CPTX	CEHA ALU BUFF16 L
91	0016	95958	CEHA	M8230	CPTX	CEHA ALU BUFF15 L
01	0017	00027	CEHA	M8230	CPTX	CEHA ALU BUFF07 L
01	0018	00030	CEHA	M6530	CPTX	DEPN ALU(30:18)=0 L
01	0010	00031	CEHA	M8230	CPTX	DDPF ALU(15:08)=0 L
01	001A	00032	CEHA	M8230	CPTX	DCPF ALU(07:00)=0 L
01	001A	00033	CEMA	M8230	CPTX	BUS ALU BYTE2,3 A=B H
01	991C	00034	CEHA	M8230	CPTX	BUS ALU BYTE1 A=B H
01	021D	00035	CEHA	M8230	CPTX	BUS ALU BYTEØ A=B H
01	W01E	00036	CEHB	M8230	CPTX	DCPA AMXOR L
Ø1	001F	00037	CEHB	M8230	CPTX	DAPB AUALUSA PLUS B L
•						
01	9959	86646	CEHB	M8230	CPTX	DAPB AUALUEA MINUS B L
01	0021	60041	CEHC	M8230	CPTX	DDPN EALUØ9 H
01	0055	00042	CEHC	M8238	CPTX	DDPN EALUØ8 H
01	<b>0</b> 023	00043	CEHC	M823@	CPTX	ACCX NDATA H
61	0024	00044	CEHC	M8230	CPTX	ACCX ZDATA H
Øi	0025	00045	CEHC	M8230	CPTX	ACCX VDATA H
61	0059	24946	CEHC	M8230	CPTX	ACCX CDATA H
øi	0027	00047	CEHD	M8230	CPTX	CEHD SECOND REF H
-•	20E1	20041	500		U- 1 A	CENT DECOND REF II
01	8500	00050	CEHD	M8230	CPTX	SBLT STALL L
01	9929	00051	CEHD	M8230	CPTX	IRCJ DQ CONT H
91	0024	00052	CEHD	M8230	CPTX	IRCJ FLOAT H
01	9590	00053	CEHD	M8230	CPTX	IRCJ WORD CONT H
	2000	J		-0E36	C- 1 A	2.100 HONO CONT H

61	MASC	94954	CEHD	M8230	CPTX	IRCJ BYTE CONT H
01	DOSNA	PA455	CEHD	M8230	CPTX	TRMW SAVE CONTEXT H
Øi	BOSE	NUN56	CEHE	M8230	CPTX	DOPS FLOAT NZERO H
01	MUZF	04057	CEHE	M8230	CPTX	USCB CLR UTRAP L
- •	•		•	0.00		
Ø1	4430	99969	CEHR	M8230	CPTX	DCPH VA02(1) H
Ø i	4431	24461	CEHR	M8234	CPTX	DCPJ VA01(1) H
01	0032	88862	CEHR	MA230	CPTX	DCPJ VARR(1) H
				M8230	CPTX	TRHW EN CHODADES H
01	0033	00063	CEHE	-023W	CPIX	TEMM EN CHUDADES H
<b>9</b> 1	0034	00064	CEHE	MB230	CPTX	TRMN PAGE EDGE H
Ø 1	0035	00065	CEHE	M#230	CPTX	TRMW EN UNALIGN TRAP H
01	0036	BUBBB	CEHE	M8230	CPTX	SPLM TIMEOUT TRAP L
91	0037	00067	CEHE	M8230	CPTX	SBLR RDS TRAP L
01	9938	00070	CEHE	M8230	CPTX	THMW TH PAR UTRAP L
01	0039	99971	CEHE	M8230	CPTX	TRMM MISS UTRAP L
01	0034	00072	CEHE	M8230	CPTX	THMM MBIT UTRAP L
01	003B	00073	CEHE	M8230	CPTX	CEHE CS PE TRAP H
•		00013	CLIIC		C- 12	CERE CO FE TRAF H
01	003C	00074	CEHX	M8230	CPTX	RESERVED
Øi	003D	00075	CEHX	M8230	CPTX	RESERVED
01	003E	00076	CEHX	M8230	CPTX	RESERVED
01	UØ3F	00077	CEHX	M8230	CPTX	RESERVED

CHAN	BIT (HEX)	BIT (OCTAL)	DWG	MODULE	T.S.	SIGNAL NAME
82 82 82 82	0000 0001 0002 0003	88883 88885 88881 88888	DAPA DAPA DAPA DAPA	M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX	IRCF OPC0 H IRCF OPC1 H IRCF OPC2 H IRCF OPC3 H
92 92 92	0004 0005 0006 0007	89894 89885 89886 89887	DAPA DAPA DAPA	M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX	IRCF OPC4 H IRCF OPC5 H IRCF OPC6 H IRCF OPC7 H
85 85 85	0008 0009 000A 0008	00010 00011 00012 00013	DAPX DAPX DAPX DAPC	M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX	CEMD MEMREF DT=8 H CEMD MEMREF DT=LFDG H RESERVED RESERVED
82 82 82	###C ###D ###E #########################	00014 #3015 04016 89017	DAPC DAPC DAPC DAPD	M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX	IRCE BYTE CONT H IRCE WORD CONT H IRCE LFDQ CONT H IRCH PC REG H
82 82 82	0010 0011 0012 0013	00020 00021 00022 00023	DAPF DAPF DAPF	M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX	RESERVED IRCE SP1 CON2 H IRCE SP1 CON1 H IRCE SP1 CON8 H
82 82 82	0014 0015 0016 0017	00024 00025 00026 00027	DAPX DAPD DAPF DPAF	MB229 MB229 MB229 MB229	CPTX CPTX CPTX CPTX	DAPB RLOG UPDATE H CEHF READ RLOG H RESERVED RESERVED
92 92 92	0018 0019 0014 0018	0030 00031 00032 00033	DAPX DAPX DAPX DAPL	M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX	RESERVED RESERVED RESERVED IDPN SP1 ADRØ L
02 02 02	001C 001D 001E	80934 80935 80836	DAPL DAPL DAPL	M8229 M8229 M8229	CPTX CPTX CPTX	IDPN SP1 ADR1 L IDPN SP1 ADR2 L IDPN SP1 ADR3 L
82 82 82	001F 0020 0021 0022	00037 00040 00041 00042	DAPL DAPL DAPL	M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX	IDPN SP2 ADRO L IDPN SP2 ADR1 L IDPN SP2 ADR2 L IDPN SP2 ADR3 L
82 82 82	0024 0024 0025 0026 0027	00043 00044 00045 00046 00047	DAPL DAPL DAPL DAPL DAPX	M8229 M8229 M8229 M8229 M8229	CPTX CPTX CPTX CPTX CPTX	IDPN PRN 0 L IDPN PRN 1 L IDPN PRN 2 L IDPN PRN 3 L RESERVED

CHAN	BIT (HEX)	BIT (OCTAL)	DWG	MODULE	T.5.	SIGNAL NAME
92 92 92	8588 8828 8828 8888	00050 00051 00052 00053	ICLT ICLA ICLA ICLA	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	MCSC WCS EVEN PAR H SBLM TIMO CNF INTR L SBHL FAULT INTR H SBHE SBI ALERT R H
85 85 85	992C 992D 992E 992F	00054 00055 00056 00057	ICLA ICLA ICLA	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	SBLM CRD ROS INTR L SBMK COMP INTR H SBME SBI REGT R H SBME SBI REGG R H
<b>8</b> 2 82 82	0030 0031 0032	00060 00061 00062 00063	ICLA ICLB ICLB	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	SBHE SBI REOS R H SBHE SBI REO4 R H ICLB IPL ACT 4 H ICLB IPL ACT 3 H
02 02 02	0034 0035 0036 0037	<b>99964</b> 99965 99966 99967	ICLB ICLB ICLB ICLC	M6231 M6231 M6231 M6231	CPTX CPTX CPTX CPTX	ICLB IPL ACT 2 H ICLB IPL ACT 1 H ICLB IPL ACT 0 H CEHJ PRIOR 3 H
05 65 65	0038 0039 003A 003B	00070 00071 00072 00073	ICTC ICTC ICTC	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	CEMJ PRIOR 2 M CEMJ PRIOR 1 M CEMJ PRIOR 0 M CEMR INTR REQ L
85 85 85	443C 443D 443E 443F	00874 00075 00076 00077	ICLD ICLD ICLD	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	CIBS CNSL RCV INTR H CIBS CNSL XMIT INTR H CEHC TRAP CODE2 (1) H CEHC TRAP CODE1 (1) H
85 85 85	0040 0041 0042 0043	00100 00101 00102 00103	ICLD ICLD ICLD	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	CEHC TRAP CODE® (1) H CEHP ID30 H IRCE STALL+SVC L CION HALT REG H
85 85 85	0044 0045 0046 0047	00104 00105 00106 00107	ICLE ICLE ICLE	MA231 MB231 MB231 MB231	CPTX CPTX CPTX CPTX	RESERVED DDPS BRANCH3 H DEPV BR BIT3 H DDPS BRANCH2 H
85 85 85 85	0049 0049 004A 004B	00110 00111 00112 00113	ICLE ICLE ICLE	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	DBPV BR BIT2 H DDPS BRANCH1 H DBPV BR BIT1 H DDPS BRANCHR H
02 02 02	0040 0040 004E 004F	09114 00115 00116 09117	ICLE ICLE ICLE	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	DBPV BR BITØ H IRCH BRC1 H IRCH BRCØ H IRCF OPC Ø H
85 85 85	0050 0051 0052 0053	00120 00121 00122 00123	ICL? ICL? ICLE	M8231 M8231 M8231 M8231	CPTX CPTX CPTX CPTX	TRCH READ OP H RESERVED ICLE REM BEMX S2 H ICLE REM BEMX S1 H

02	0054	00124	ICLE	M8231	CPTX	ICLE REM BEMX 30 H
92	0055	00125	ICLH	M8231	CPTX	ICLH ID TO PSL H
02	0056	00126	ICLH	M8231	CPTX	ICLH ID TO VECT L
02	0057	99127	ICLH	M8231	CPTX	ICLK ID TO CES H
•					U. 12	1004 10 10 000 4
62	0058	00130	ICLH	M8231	CPTY	ICLH ID TO ATMP L
Ø 2	0059	00131	ICLH	M8231	CPTX	ICLH ID TO BTHP L
92	005A	00132	ICLH	M8231	CPTX	ICLH IDM \$2 L
82	0058	00133			•	
• •	מכמש	40133	ICLH	M8231	CPTX	ICLH IDM S1 L
<b>a</b> -	2254	***				
92	985C	00134	ICLH	M8231	CPTX	ICLH IDM SØ L
92	0950	90135	ICLJ	M8231	CPTX	DDPR 8005 (1) H
92	UNSE	00136	ICLJ	M8231	CPTX	DDPR \$C04 (1) H
92	005F	00137	ICLJ	M8231	CPTX	DDPR \$C03 (1) H
02	0060	90149	ICLJ	M8231	CPTX	0000 0000 445 11
Ø2	9961	-			-	DDPR 8C02 (1) H
92		00141	ICLJ	M8231	CPTX	DDPR SCØ1 (1) H
	0065	00142	ICLJ	M8231	CPTX	DDPR \$C00 (1) H
92	0063	PU143	ICLJ	M8231	CPTX	ICLJ D TO ID L
02	PU64	99144	ICLJ	M8231	CPTX	ICLJ ID TO O L
65	0065	00145	ICLK	M8231	CPTX	DOPN EALURY H
02	0066	00146	ICLK	M8231	CPTX	DDPN EALUSO L
02	9967	99147	ICLX			
- 5	6 N P /	nn147	ICEX	M8231	CPTX	RESERVED

CHAN	HEX)	BIT (OCTAL)	₽₩G	MODULE	1.5.	SIGNAL NAME
03 03 03	0002 0002 0003	00000 00001 00002 00073	TEMD TBMD TBMD TBMS	48222 48222 48222 48222 48222	CPTX CPTX CPTX CPT2	TRMD D TO MD L TRMD MASK TO MD L TRMD EN ID DRIVERS L TRMS CPTØ L
03 03 03	4444 4435 4446 4447	04004 04005 00006 04007	TRMF TRMC TRMC	M8222 2558M 2558M 2558M	CPTX CPTX CPTX CPTX	TRMF GRP 0 NP L TRMF GRP 1 NP L CAMU TB GRP 0 MATCH H CAMU TB GRP 1 MATCH H
03 03 03	8998 8999 8994 8998	00010 00012 00013	18MU 18MU 18MW 18MX	M8222 M8222 M8222 M8222	CPTX CPTX CPTX CPTX	CEHE CMODO ADRS TRAP L CEME PAGE TRAP H CEME CS PAR ERR H RESERVED
03 03 03	44AC 44AD 64AE 84AE	00014 00015 00016 00017	TRMN TRMN TBMX TBMU	M8222 M8222 M8222 M8222	CPTX CPTX CPTX CPTX	USCR ABORT CYCLE H IPCH IR WRITE CHK H RESERVED TBMU CANCEL L
03 03 03	0010 0011 0012 0013	00020 00021 00023	TBMK TBMK TBMK TBMC	5558M 5558M 5558M 5558M	CPTX CPTX CPTX CPTX	SBLB SBI PA 09 L SBLB SBI PA 10 L SPLB SBI PA 11 L TBMC ENABLE IA H
03 03 03	0014 0015 0016 0017	09024 90025 90926 90927	TBMX TBMX TBMX TBMW	M8222 M8222 M8222 M8222	CPTX CPTX CPTX CPTX	RESERVED RESERVED SBLS IB ERR LTH H SBLT STALL L
03 03 03	0018 0019 001A 001B	0033 0033 00033	TBMX TBMX TBMX TBMD	MR222 M8222 M8222 M8222	CPTX CPTX CPTX CPTX	RESERVED RESERVED RESERVED CAMV MODIFY L
03 03 03	0010 0010 001E 001F	00034 00035 00036 00037	T8M8 T8M8 T8M8 T8M8	\$\$\$\$# \$\$\$\$# \$\$\$\$# \$\$\$\$#	CPTX CPTX CPTX CPTX	CAMV PROTECT CODE 0 L CAMV PROTECT CODE 1 L CAMV PROTECT CODE 2 L CAMV PROTECT CODE 3 L
03 03 03 03	0023 0023	00040 00041 00042 00043	IDPA IDPA IDPA IDPA	M8223 M8223 M8223 M8223	CPT0 CPT0 CPT0	IDPA BUF B0-7(1) H IDPA BUF B0-6(1) H IDPA BUF B0-5(1) H IDPA BUF B0-4(1) H
03 03 03	0024 0025 0026 0027	PAB44 PAB46 PAB46 PAB47	IDPA IDPA IDPA IDPA	M8223 M8223 M8223 M8223	CPT0 CPT0 CPT0 CPT0	IDPA BUF B0-3(1) H IDPA BUF B0-2(1) H IDPA BUF B0-1(1) H IDPA BUF B0-0(1) H

03 03 03	850N 850N 850N	01450 60751 00052 00653	IDPA IDPA IDPA IDPA	M8223 M8223 M8223 M8223	CPT0 CPT0 CPT0 CPT0	IDPA BUF B1=7(1) H IDPA BUF B1=6(1) H IDPA BUF B1=5(1) H IDPA BUF B1=4(1) H
03 03 03 03	002C 002C 002E 002F	иря54 ирн55 иря56 иря57	JDPA JDPA JDPA JDPA	M8223 M8223 M8223 M8223	CPT0 CPT0 CPT0 CPT0	IDPA BUF B1=3(1) H IDPA BUF B1=2(1) H IDPA BUF B1=1(1) H IDPA BUF B1=0(1) H
03 03 03	4434 4431 4432 4433	00060 00063 00063	IDPH IDPH IDPH IDPH	M8223 M8223 M8223 M8223	CPTØ CPTØ CPTØ CPTØ	IDPH IBC 3(1) H IDPH IBC 2(1) H IDPH IBC 1(1) H IDPH IBC 0(1) H
03 03 03	0035 0036 0037	00065 00065 00066 00067	IDPH IDPH IDPA IDPA	M8223 M8223 M8223 M8223	CPTX CPTX CPTO CPTX	IDPH CLP @ L IRCE SAVE H IDPA VAX H IDPA DST R MODE H
03 03 03	0038 0039 003A 003B	00070 00071 00072 00073	IDPJ IDPX IDPJ IDPJ	M8223 M8223 M8223 M8223	CPTX CPTX CPTO CPTX	SBLR IB READ DATA L RESERVED IDPJ COUNT H IDPJ FLUSH L
03 03 03 03	003C 003D 003E 003F	00074 00075 00076 00077	IDPJ IDPJ IDPJ IDPJ	M8223 M8223 M8223 M8223	CPTX CPTX CPTX CPTX	IDPJ B5 VAL(1) H IDPJ B4 VAL(1) H IDPJ B3 VAL(0) H IDPJ B2 VAL(0) H
03 03 03	0040 0041 0042 0043	00100 00101 00102 00103	LODI MADI MADI MADI	M8223 M8223 M8223 M8223	CPTX CPTX CPTX CPTX	IRCD PC MODE H IRCD SEL LONG L IRCD SEL WORD L IRCD SEL BYTE H
03 03 03 03	0044 0045 0046 0047	00104 00105 00106 00107	IDPM IDPM IDPL IDPX	M8223 M8223 M8223 M8223	CPTX CPTX CPTX CPTX	IRCE CTX 3 L IRCE CTX 2 L IDPL ID BUS XCVR EN L RESERVED
03 03 03 03	0048 0049 004A 004B	00110 00111 00112 00113	IDPM IDPM IDPM IDPM	M8223 M8223 M8223 M8223	CPTX CPTX CPTX CPTX	IDPM 8 DELTA PC 2 H IDPM 16 BIT 8 DEST L IDPM 8 DEST H IDPM B DELTA PC 1 H
03 03 03 03	004C 004D 004E 004F	00114 00115 00116 00117	IDPM IDPM IDPM IDPM	M8223 M8223 M8223 M8223	CPTX CPTX CPTX CPTX	IDPM VAXSL L IDPM B DELTA PC O H TBMX VA O1 H TBMX VA OO H
03 03 03	0050 0051 0052 0053	00120 00121 00122 00123	IRCH IRCH IRCC IRCX	M8224 M8224 M8224 M8224	CPTX CPTX CPTX CPTX	TBMX TB ERR L TBMX TB MISS L CEHH FPD BIT L RESERVED

CHAN	BIT (HEX)	BIT (OCTAL)	D₩G	MODULE	T.S.	SIGNAL NAME
03	0054	00124	IRCE	M8224	CPTX	IRCE IB ADVANCE H
03	0055	00125	IRCJ	M8224	CPTX	IRCJ SP2 CON 1 H
03	0056	00126	IRCJ	M8224	CPTX	IRCJ SP2 CON 0 H
03	0057	00127	IRCM	M8224	CPTX	IRCM DATA EN L
03	0058	00130	IRCE	M8224	CPTO	ICLD SERVICE H ICLD SERVICE BIT 0 H ICLD SERVICE BIT 1 H ICLD SERVICE BIT 2 H
03	0059	00131	IRCE	M8224	CPTO	
03	005A	00132	IRCE	M8224	CPTO	
03	005B	00133	IRCE	M8224	CPTO	
03	005C	00134	IRCC	M8224	CPTO	IRCC EXEC CT 0 H IRCC EXEC CT 1 H IRCC EXEC CT 2 H RESERVED
03	005D	00135	IRCC	M8224	CPTO	
03	005E	00136	IRCC	M8224	CPTO	
03	005F	00137	IRCX	M8224	CPTO	

CHAN	BIT	BIT DWG (OCTAL)	MODULE	T.S.	SIGNAL NAME
04	9999	00000 CAMP	M822A	CPTX	TBMX FORCE ERR 2 L
04	9991	00001 CAMP	M8228		TBMX FORCE ERR 1 L
94	9995	BRBB2 CAMP	M8220		TBMX FORCE ERR Ø L
04	0003	00003 CAMB	M8220		SBHF REV PAR FIELD 3 H
				•	
94	0004	00004 CAMB	M8220	CPTX	SBHF REV PAR FIELD 2 H
94	0905	00005 CAMB	M8220		SBHF REV PAR FIELD 1 H
04	PA06	00007 CAMB	M822Ø		SBHF REV PAR FIELD Ø H
04	8007	00007 CAMS	M8220	CPTX	CAMS GØ ADR PAR 2 OD H
04	9998	00010 CAMS	M8220	CPTX	CAMS GO ADR PAR 1 OD H
84	0009	MMM11 CAMS	M8220	CPTX	CAMS GO ADR PAR O OD H
94	0004	00012 CAMT	M822A	CPTX	CAMT G1 ADR PAR 2 OD H
04	0008	00013 CAMT	M8220	CPTX	CAMT G1 ADR PAR 1 OD H
84	9995	00014 CAMT	M822A	CPTX (	CAMT G1 ADR PAR 8 OD H
04	0000	00015 CAMV	M8220	CPTX (	CAMV TB PAR 2 H
94	BABE	09016 CAMU	M822#	CPTX (	CAMU TB PAR 1 H
04	PROF	08017 CAMU	M822Ø	CPTX (	CAMU TB PAR Ø H
94	0018	00020 CAMK	M8226	CPTX (	CAMK G1 MATCH H
04	0011	00021 CAMK	M8220		CAMK GØ MATCH H
04	8012	96855 CWWb	M8220	CPTX :	SBLN SBI MISS DATA G1 H
94	0013	NON23 CAMP	M8220	CPTX :	SBLN SBI MISS DATA GB M
94	4014	00024 CAMM	M8220	CPT3	CAMM CPT3 B H
94	0015	00025 CAMM	M8220	CPT2	CAMM CPT2 8 H
94	PØ16	88856 CAMM	M8228	CPT1	CAMM CPT1 B L
94	0017	09027 CAMM	M8220	CPT1	CAMM CPT1 B H
94	0018	00030 CAMP	M8220	CPTX	CAMP G1 WRITE ENABLE H
04	0019	00031 CAMP	M8220	CPTX	CAMP GØ WRITE ENABLE H
04	001A	00032 CAMP	9558H		SBHN FORCE MISS G1 H
04	0018	00033 CAMP	M8220	CPTX	SBHF FORCE MISS GØ H
04	001C	00034 CAMX	M822@		RESERVED
04	0010	00035 CAMB	M822A		CAMB LATCH VALID BIT H
94	001E	BNB36 CAMX	M8220		TBMX FORCE ERR 3 L
04	001F	00037 CAMB	M8220	CPTX	SBHF REV PAR FIELD 3 L
04	0320	00040 CAML	M8220		CAML G1 BYTE 2 PAR OD H
94	0021	00041 CAML	M8220		CAML G1 BYTE 2 PAR EV H
94	6655	90942 CAML	M8220		CAML G1 BYTE 1 PAR OD H
04	6053	0,0043 CAML	M8220	CPTX	CAML G1 BYTE 1 PAR EV H
04	0024	00044 CAML	M8220	CPTX	CAML G1 BYTE Ø PAR OD H
84	0025	00045 CAML	M8220		CAML GI BYTE Ø PAR EV H
84	0026	00046 CAML	M8220		CAML GO BYTE 2 PAR OD H
84	8827	BOR47 CAML	M8220		CAML GO BYTE 2 PAR EV H

CHAN	BIT (HEX)	BIT (OCTAL)	DWG	MODULE	1.5.	SIGNAL NAME
04	0028	00050	CAML	M8220	CPTX	CAML GO BYTE 1 PAR OD H
84	4429	00051	CAML	M8220	CPTX	CAML GO BYTE 1 PAR EV H
04	9924	00052	CAML	M8220	CPTX	CAML GO BYTE O PAR OD H
64	002B	00053	CAML	M8220	CPTX	CAML GO BYTE O PAR EV H
	•				•	
04	002C	00054	CAMB	M822P	CPTX	CAMB TAG PAR 2 EVEN H
04	W650	09055	CAMB	M8220	CPTX	CAMB TAG PAR 1 EVEN H
94	032E	00056	CAMB	MB22A	CPTX	CAMB TAG PAR Ø EVEN H
04	002F	00057	CAMB	M8220	CPT1	CAMB PA LATCH 12 H
84	0030	00060	CAMB	M8220	CPT1	CAMB PA LATCH 13 H
94	0031	P9961	CAMB	M8220	CPTI	CAMB PA LATCH 14 H
04	4932	99965	CAMB	M822W	CPT1	CAMB PA LATCH 15 H
94	0033	09963	CAMB	M8220	CPT1	CAMB PA LATCH 16 H
<b>a.</b>						
94	0034	90964	CAMB	M8220	CPT1	CAMB PA LATCH 17 H
04	2035	au 065	CAMB	M822W	CPT1	CAMB PA LATCH 18 H
04	9036	00066	CAMB	M822A	CPT1	CAMB PA LATCH 19 H
04	0037	00067	CAMB	M8224	CPT1	CAMB PA LATCH 20 H
04	9938	00070	CAMB	M8228	CPT1	CAMB PA LATCH 21 H
04	0039	00071	CAMB	M8220	CPT1	CAMB PA LATCH 22 H
94	003A	09072	CAMB	M8228	CPT1	CAMB PA LATCH 23 H
04	003B	00073	CAMB	M8220	CPT1	CAMB PA LATCH 24 H
84	003C	00074	CAMB	M8220	CPT1	CAMB PA LATCH 25 H
94	ØØ30	00075	CAMB	M8220	CPT1	CAMB PA LATCH 26 H
84	003E	00076	CAMB	M822P	CPT1	CAMB PA LATCH 27 H
04	003F	00077	CAMB	M8220	CPT1	CAMB PA LATCH 28 H
84	9949	00100	CDMX	M8221	CPTX	RESERVED
04	0041	00101	CDMX	M8221	CPTX	RESERVED
84	6942	00102	CDMX	M8221	CPTX	RESERVED
84	6043	00103	CDMU	M8221	CPT2	COMU CPT2 H
84	9944	96194	COMU	M8221	CPT1	RESERVED
94	0045	00105	CDMU	M8221	CPT1	RESERVED
84	0046	00106	CDMU	M8221	CPT1	CDMU CPT1 A L
94	0047	00107	CDMU	M8221	CPT1	CDMU CPT1 A H
94	9948	00110	COMT	M8221	CPTX	TBMD EN COM DATA L
94	0049	00111	CDMS	M8221	CPTX	COMS G1 B3 PAR ODD H
64	004A	00112	CDMS	M8221	CPTX	CDMS G1 B3 PAR EVEN H
94	0048	00113	CDMS	M8221	CPTX	CDMS G1 B2 PAR ODD H
84	004C	00114	CDMS	M8221	CPTX	CDMS G1 B2 PAR EVEN H
04	994D	00115	CDMS	M8221	CPTX	CDMS G1 B1 PAR ODD H
94	004E	00116	COMS	M8221	CPTX	COMS G1 B1 PAR EVEN H
04	004F	00117	CDMS	M8221	CPTX	CDMS G1 BP PAR ODD H

04 84 84	0050 0051 0052	00120 00121 00122	CDMS CDMR CDMR	M8221 M8221 M8221	CPTX CPTX CPTX	CDMS G1 B0 P CDMR G0 B3 P CDMR G0 B3 P	AR ODD H AR EVEN H
84	0053	00123	COMR	M8221	CPTX	CDMR GØ B2 P	AR ODD H
84	0054	00124	CDMR	M8221	CPTX	CDMR G@ B2 F	AR EVEN H
94	0055	00125	COMR	M8221	CPTX		PAR ODD H
94	0056	00126	COMR	M8221	CPTX		PAR EVEN H
84	0057	00127	COMR	M8221	CPTX	COMR GØ BØ	PAR ODD H
84	0058	00130	CDMR	M8221	CPTX	COMP GØ BØ F	PAR EVEN H
04	9059	00131	CDMX	M8221	CPTX	RESERVED	
04	005A	00132	CDMX	M8221	CPTX	RESERVED	
04	0058	00133	CDMH	M8221	CPT1	COMH ADDR L	ATCH 11 H
84	905C	00134	СДМН	M8221	CPT1		ATCH 10 H
04	005D	00135	CDMH	M8221	CPT1		ATCH 9 H
04	005E	00136	CDMH	M8221	CPT1	COMH ADDR L	
94	005F	00137	CDMH	M8221	CPT1	COMH ADDR L	ATCH 7 H
64	8069	00140	CDMH	M8221	CPT1	COMH ADDR L	
94	0061	00141	CDMH	M8221	CPTI	COMH ADDR L	
94	8645	99142	CDMH	M8221	CPT1	COMH ADDR L	
04	0063	00143	COMH	M8221	CPT1	COMH ADDR L	ATCH 3 H
84	0064	00144	CDMH	M8221	CPT1	COMH ADDR LA	
94	0065	00145	CDMB	M8221	CPTX	SBHF REV PAR	
94	9966	00146	CDMB	M8221	CPTX	SBHF REV PAR	
94	9967	00147	CDMB	M8221	CPTX	SAHF REV PAR	! 1 L
84	9868	00150	COMB	M8221	CPTX	SBHF REV PAR	
94	8869	00151	COMB	M8221	CPT3	CAMP G1 WRIT	
94	006A	00152	CDMB	M8221	CPT3	CAMP GO WRIT	TE ENABLE H
04	8868	00153	CDMX	M8221	CPTX	RESERVED	
84	9960	00154	CDMA	M8221	CPT2	COMA MASK 3	
<b>0</b> 4	0060	00155	CDMA	M8221	CPT2		H
04	906E	00156	CDMA	M8221	CPT2	CDMA MASK 1	H
04	006F	00157	CDMA	M8221	CPT2	CDMA MASK Ø	н

_						
CHAN	BIT	BIT	D₩G	MODULE	T.S.	SIGNAL NAME
	(HEX)	(OCTAL)				
05	9969	00000	SBLH	M8218	CPTX	SBHP EN ID DRIVERS L
85	0001	00001	SBLF	M8218	CPTX	SBHP ID ADDR 2 L
05	BBBS	29890	SBLF	MB218	CPTX	SBHP ID ADDR 1 L
95	0003	03003	SBLE	M8218	CPTX	TBMC ENABLE IA H
_						
05	9094	80984	38L3	M8218	CPTX	SBLS ADRS LATCH 29 H
05	0005	00005	SBLS	M8218	CPTX	IDPJ IB REG H
95	9996	00006	SBLP	M8218	CPTX	SBLP MD TO D L
<b>0</b> 5	0007	00007	SBLF	M8218	CPTX	SBHP ID ADDR Ø L
05	4008	00010				
95	9999		SBLM	M8218	CPTX	SBHN CRD L
05		00011	SBLP	M8218	CPTX	TBMN BUF UMCT Ø L
95	9994	00615	SBLP	M8218	CPTX	TBMN BUF UMCT 1 L
<b>6</b> 2	9998	00013	SBLP	M8218	CPTX	TBMN BUF UMCT 2 L
05	MANC	00014	SBLP	M8218	CPTX	TBMN BUF UMCT 3 L
05	ONNO	00015	SBLP	M8218	CPTX	TBMN BUF UADS L
<b>0</b> 5	PPBE	00016	SBLP	M8218	CPTX	TBMN BUF UFS L
05	COOF	02017	SRLM	M8218	CPTX	SBHN RDS L
					•	
-						
<b>0</b> 5	0010	00056	SBLR	M8218	CPTX	SBHM SET INVALID L
95	0011	00021	SBLE	M8218	CPTX	SBHM SET SBI CYCLE H
<b>05</b>	0012	49955	SBLL	M8218	CPTX	SBHR SEND DATA H
05	0013	00023	SBLE	M8218	CPTX	SBHM ANY READ DATA L
05	0014	00024	SBLK	M8218	CPTX	SBLK LATCH TIMO REG L
05	0015	00025	SBLD	M8218	CPTX	THU CANCEL L
05	0016	00026	SBLW	M8218	CPTX	CLKL SYS INIT B L
<b>95</b>	9217	04027	SBLR	M8218	CPTX	SBLR FORCE SBI L
•					C. 12	00CK 7 0KCL 001 C
<b>6</b> 5	9418	00030	SBLX	M8218	CPTX	RESERVED
05	0019	00031	SBLX	M8218	CPTX	RESERVED
05	901A	00032	SBLC	M8218	CPTX	SBLC WRITE DATA 00 H
05	001B	00033	SBLC	M8218	CPTX	SBLC WRITE DATA 01 H
<b>0</b> 5	2216	0007#				
Ø5	Pelc	00034	SBLC	M8218	CPTX	SBLC WRITE DATA 02 H
Ø5	001D	00035	SBLC	M8218	CPTX	SELC WRITE DATA 03 H
05	001E	00036	SBLC	M8218	CPTX	SELC WRITE DATA 04 H
w 5	POIF	00037	SBLC	M8218	CPTX	SBLC WRITE DATA 05 H
05	0020	00040	881 C	M8318	CBTV	
05	9929 9921		SBLC	M8218	CPTX	SBLC WRITE DATA 06 H
Ø5	8855	00041 00042	SBLC SBLC	M8218 M8218	CPTX CPTX	SBLC WRITE DATA 07 H
<b>85</b>	0023	00043	SBLC	M8218	CPTX	
	3063	20043	JOLU	10E 10	CFIA	SBLC WRITE DATA 09 H
Ø5	P924	00044	SBLC	M8218	CPTX	SBLC WRITE DATA 10 H
05	0025	99945	SBLC	M8218	CPTX	SBLC WRITE DATA 11 H
<b>0</b> 5	0026	00046	SBLC	M8218	CPTX	SBLC WRITE DATA 12 H
05	0027	00047	SBLC	M8218	CPTX	SBLC WRITE DATA 13 H
-		,			U	COSC MUSIC DAIR 13 H
	_					
05	9058	09050	SBLC	M8218	CPTX	SBLC WRITE DATA 14 H
05	0059	00051	SBLC	M8218	CPTX	SBLC WRITE DATA 15 H
85	465V	94952	SBLC	M8218	CPTX	TBMD EN SBI DATA L
<b>0</b> 5	465B	00053	SBLC	M8218	CPTX	BUS MD BYTE Ø PAR H

05	9650	04054	SBLC	M8218	CPTX	BUS MD BYTE 1 PAR H
05	NASD	00055	SBLS	M8218	CPTX	SBLS SELECT SBI ADR L
05					CPTX	ICLB IPL ACT Ø L
	BASE	00056	SBLA	M8218		
Ø5	002F	00057	SBLA	M8218	CPTX	ICLB IPL ACT 1 L
05	9030	99969	SBHB	M8219	CPT3	SBHB WRITE DATA 16 H
05					CPT3	
	9931	00061	\$8H8	M8219		SBHB WRITE DATA 17 H
<b>0</b> 5	0032	00062	SBHB	M8219	CPT3	SBHB WRITE DATA 18 H
05	0033	00063	88HB	M8219	CPT3	SBHB WRITE DATA 19 H
<b>85</b>	0034	00064	SBHB	M8219	CPT3	SBHB WRITE DATA 20 H
					_	
85	0035	00065	88 HB	M8219	CPT3	SBHB WRITE DATA 21 H
05	0036	00066	SBHB	MB219	CPT3	SBHB WRITE DATA 22 H
95	0037	00067	SBHB	M8219	CPT3	SBHB WRITE DATA 23 H
05	0038	00070	\$8H8	M8219	CPT3	SBHB WRITE DATA 24 H
95	0039					
		00071	SBHB	M8219	CPT3	SBHB WRITE DATA 25 H
<b>0</b> 5	003A	00072	SBHB	M8219	CPT3	SBHB WRITE DATA 26 H
<b>0</b> 5	0038	00073	SBHB	M8219	CPT3	SBHB WRITE DATA 27 H
95	003C	00074	SBHB	M8219	CPT3	SBHB WRITE DATA 28 H
<b>0</b> 5	603D	00075	\$8H8	M8219	CPT3	SBHB WRITE DATA 29 H
05	003E	00076	SBHB	M8219	CPT3	SBHB WRITE DATA 30 H
95	903F	00077	SBHB	M8219	CPT3	SBHB WRITE DATA 31 H
05	0040	00100	SBHB	M8219	CPT1	SBHB RECEIVE MASK Ø H
05	0041	90101	88H8	M8219	CPT1	SBHB RECEIVE MASK 1 H
Ø5				M8219		
	0042	00102	SBHB		CPT1	SBHB RECEIVE MASK 2 H
Ø5	0043	00103	SBHB	M8219	CPT1	SBHB RECEIVE MASK 3 H
95	0844	00104	SBHD	M8219	CPTX	BUS MD BYTE 2 PAR H
05	0045	00105	SBHD	M8219	CPTX	BUS MD BYTE 3 PAR H
05						
	9946	00106	SBHA	M8219	CPTX	SBHA BUFFER FULL L
05	8247	00107	SBHL	M8219	CPTX	SBLE LATE EXPECT RD L
85	0048	00110	SBHE	M8219	CPTX	SBLE REC PAR 0 H
Ø5	0049	00111	SBHE	M8219	CPTX	SBLE REC PAR 1 H
05						
	0044	00112	SBHE	M8219	CPTX	SBLE REC PAR 2 H
05	0048	00113	SBHE	M8219	CPTX	SBLE REC PAR 3 H
05	004C	03114	SBHM	M8219	CPTX	TR SEL 1 L
05	0040	00115	SBHM	M8219	CPTX	TR SEL 2 L
05	004E	00116	SBHM	M8219	CPTX	TR SEL 4 L
Ø5	884F	00117	SBHM		CPTX	
	## T	0011/	30 mm	M8219	CFIA	TR SEL 8 L
Ø5	0050	00120	SBHR	M8219	CPTX	TRMN BUF UMCT Ø L
<b>Ø</b> 5	0051	00121	SBHR	M8219	CPTX	TBMN BUF UMCT 1 L
95	0052	00122	SBHR	M8219	CPTX	TBMN BUF UMCT 2 L
85	0053	00123	SBHR	M8219	CPTX	TBMN BUF UMCT 3 L
- 3	6623	40153	3000	OE 1 4	CFIA	TOWN DUF UMCT 3 L
95	0054	00124	SBHR	M8219	CPTX	TBMN BUF UADS L
<b>9</b> 5	0055	00125	SBHR	M8219	CPTX	TBMN BUF UFS L
05	0056	00126	SBHM	M8219	CPTØ	SBHM SELECT SBI ADRS L
85	0057	00127	SBHR	M8219	CPTX	SBHR TRANS ENABLE L
	-031	1-1	0000	UE 1 7		TERM TORNE BURDEC 5

CHAN	BIT (HEX)	BIT (OCTAL)	DWG	MODULE	T.S.	SIGNAL NAME
05	9058	00130	SBHD	M8219	CPTX	TBMD EN SBI DATA L
<b>0</b> 5	0059	00131	SBHE	M8219	CPTX	SPLE TRANS PAR L
05	005A	00132	SBHR	M8219	CPTX	SBLL TRANSMIT CA H
05	0058	00133	SBHM	M8219	CPTX	CEHH CUR MODE Ø H
05	005C	00134	SBHS	M8219	CPTX	CLKL SYS INIT B L
85	005D	00135	SBHM	M8219	CPTX	CEHH CUR MODE 1 H
85	005E	00136	SBHM	M8219	CPTX	TRMN DIS PROT L
<b>0</b> 5	005F	00137	SBHX	M8219	CPTX	RESERVED
85	0960	00140	SBHX	M8219	CPTX	RESERVED
95	0061	00141	SBHX	M8219	CPTX	RESERVED
<b>0</b> 5	0062	00142	SBHX	M8219	CPTX	RESERVED
<b>8</b> 5	0063	00143	SBHX	M8219	CPTX	RESERVED
05	0064	00144	SBHX	M8219	CPTX	RESERVED
95	0065	00145	SBHX	M8219	CPTX	RESERVED
05	0066	00146	SBHX	M8219	CPTX	RESERVED
05	0067	00147	SBHX	M8219	CPTX	RESERVED
85	9968	09150	SBHX	M8219	CPTX	RESERVED
05	0069	00151	SBHX	M8219	CPTX	RESERVED
85	006A	00152	SBHX	M8219	CPTX	RESERVED
05	0068	00153	SBHX	M8219	CPTX	RESERVED
85	006C	00154	SBHX	M8219	CPTX	RESERVED
05	006D	00155	SBHX	M8219	CPTX	RESERVED
05	006E	00156	SBHX	M8219	CPTX	RESERVED
85	006F	00157	SBHX	M8219	CPTX	RESERVED

# **V-BUS DIRECTORY (CONT)**

CHAN	BIT (HEX)	BIT (OCTAL)	D₩G	MODULE	T.S.	SIGNAL NAME
86 86 86	0000 0001 2002 0003	00000 00001 00002 00003	FCTP FCTC FCTH	M8269 M8289 M8289 M8289	CPTX CPTX CPTX CPTX	DAPL ACC RA CONTEXT Ø H DAPL ACC RA CONTEXT 1 H FCTC CLR RR L FCTH CP SYNC H
06 06 06	0004 0005 0006 0007	00004 00005 00006 00007	FNME FCTJ FCTC FCTC	M8289 M8289 M8289 M8289	CPTX CPTX CPTX CPTX	FNME BUS_EXP L FCTJ ACC N DATA H FCTC ACC Z DATA H FCTC ACC V DATA H
06 06 06	8000 9000 4000 8000	00010 00011 00012 00013	FNMT FNMT FNMT FNMT	M8289 M8289 M8289 M8289	CPT3 CPT3 CPT3 CPT3	FCTD RA ADRS 3 L FCTD RA ADRS 2 L FCTD RA ADRS 1 L FCTD RA ADRS 0 L
06 06 06	000C 000D 000E 000F	04014 09015 00016 00017	FNMT FNMT FNMT	M8289 M8289 M8289 M8289	CPT3 CPT3 CPT3 CPT3	FCTP RB ADRS 3 L FCTP RB ADRS 2 L FCTP RB ADRS 1 L FCTP RB ADRS 0 L
06 06 06	0010 0011 0012 0013	09020 09021 00022 00023	XXXX XXXX FNMT FNMT	M8289 M8289 M8289 M8289	CPTX CPTX CPTX CPTX	RESERVED RESERVED EALU C & L FCTE COMPL L
96 96 96	0214 0015 0016 0017	00024 00025 00026 00027	FNMT FNMT FNMT	M8289 M8289 M8289 M8289	CPTX CPTX CPTX CPTX	FADA SPC (0) H FNMS EALU CIN L FCTC SEL NORM H RESERVED
86 86	0018 0019 0014	04939 09031 04032	FNMT FNMT FNMT	M8288 M8288 M8288	CPT2 CPT2 CPT2	FCTN LOAD ARG H FCTN LOAD ARI H FCTN LOAD ARX H
06 06 06	0018 001C 001D 001E	00034 00034 00035 00036	FNMT FNMT FNMT	M8288 M8288 M8288 M8288	CPT2 CPT0 CPTX	FCTN LOAD BRS H FCTN LOAD BRS H FADS BUS_FAD L RESERVED
96 96	001F 0020 0021	00040 00040 00041	FNMT FNMT FNMT	M8288 M8288 M8288	CPTX CPT1 CPT3	RESERVED  FCTN FAMX EN Ø L  FCTA A GT B H
96 96	0023 0023 0024 0025	99942 99943 99944 99945	FNMT FNMT FNMT FNMT	M8288 M8288 M8288 M8288	CPT3 CPT3 CPT1 CPT1	FCTN SHF MUX EN1 L FCTN SHF MUX ENR L  FCTN FALU FUNC SEL 2 M FCTN FALU FUNC SEL 1 H
86 86	9026 9027	00046 00047	FNMT FNMT	M8288 M8288	CPT1 CPT1	FCTN FALU FUNC SEL 0 H FCTN FAMX SEL 1 H

# **V-BUS DIRECTORY (CONT)**

86	8928	66626	FNMT	M8228	CPT3	FCTF BHF COUNT 5	H
96	9929	00051	FNMT	M8228	CPT3	FCTF SHF COUNT 4	H
96	9924	00052	FNMT	M8228	CPT3	FCTF SHF COUNT 3	H
96	0028	00053	FNHT	8528M	CPT3	FCTF SHF COUNT 2	н
86	0020	00054	FNMT	M8228	CPT3	FCTF SHF COUNT 1	н
96	6650	00055	FNMT	M8228	CPT3	FCTF SHF COUNT @	H
96	992E	00056	FNMT	M8228	CPT3	FCTN FALU CARRY I	N H
86	AAZF	00057	FNMT	MAZZA	CPT1	FOTH FAMY SEL R H	

# CHAPTER 6 SYSTEM BACKPLANE INTERCONNECT

# **SBI CONFIGURATION**



TK-0077

# **SBI PARITY FIELD CONFIGURATION**



# **SBI INFORMATION TRANSFER FORMATS**

#### READ DATA FORMAT

TAG		MASK	
P1P0 0 0 0	ID	0000	DATA BITS

# CORRECTED READ DATA FORMAT

1	TAG		MASK	
P1P0 0	0 0	ID	0 0 0 1	DATA BITS

#### READ DATA SUBSTITUTE FORMAT

TAG		MASK	
P1P0 0 0 0	ID	0010	DATA BITS

#### INTERRUPT SUMMARY RESPONSE FORMAT

	TAG		MASK				
P ₁ P	000	ΔI	0000	DATA	0	DATA	0

#### COMMAND ADDRESS FORMAT FOR READ MASKED

TAG	_	MASK I	FUNCTION	
P1P0 0 1 1	ΙD		0 0 0 1	ADDRESS BITS

#### COMMAND ADDRESS FORMAT FOR WRITE MASKED

TAG		MASK	FUNCTION	ı
P1P0 0 1 1	ID		0 0 1 0	ADDRESS BITS

TK-0723

# SBI INFORMATION TRANSFER FORMATS (CONT)

COMMAND ADDRES			RLOCK READ MAS	SKED	
TAG	MASK	FUNCTION			
P1P0 0 1 1 ID		0 1 0 0		ADDRESS BITS	
00141110 100000	C 500M	AT FOR INTER	N OOK WEITE MA	OVED	
COMMAND ADDRES		AL FUR INTER	CLUCK WRITE MA	ISKEU	
P1P0 0 1 1 ID		0 1 1 1		ADDRESS BITS	
COMMAND ADDRES		AT FOR EXTER	NDED READ		
P ₁ P ₀ 0 1 1 ID		1 0 0 0		ADDRESS BITS	
COMMAND ADDRES		AT FOR EXTEN	NDED WRITE MAS	SKED	
P ₁ P ₀ 0 1 1 ID		1 0 1 1		ADDRESS BITS	
WRITE DATA FORM	AT MASK				
P ₁ P ₀ 1 0 1 ID		BYTE 3	BYTE 2	BYTE 1	BYTE 0
INTERRUPT SUMMA	ARY REA	D FORMAT			
P ₁ P ₀ 1 1 0 ID	0000	0000000	00000000	00000000	0 0000
					REQ <7:4>

# **SBI FIELD DESCRIPTION**

Field	Description								
Arbitration Group									
Arbitration Field [TR (15:00)]	Establishes a fixed priority among nexus for access to and control of the information transfer path.								
Information Transfer Group									
Information Field [B (31:00)]	Bidirectional lines that transfer data, com- mand/address, and interrupt information between nexus.								
Mask Field [M (3:00)D]	Primary function: encoded to indicate a particular byte within the 32-bit information field [B (31:00)].								
	Secondary function: in conjunction with the tag field, indicates a particular type of read data.								
Identifier Field [ID (4:0)]	Identifies the logical source or destination of information contained in B (31:00).								
Tag Field [TAG (2:0)]	Defines the transmit or receive information types and the interpretation of the content of the ID and information fields.								
Function Field [F (3:0)]	Specifies the command code, in conjunction with the tag field. This field is part of the 32-bit information field.								
Parity Field [P (1:0)]	Provides even parity for all information transfer path fields.								
Response Group									
Confirmation Field [CNF (1:0)]	Encoded by a receiving nexus to specify one of four response types and indicate its capability to respond to the transmitter's request.								
Fault Field (FAULT)	A cumulative error line to the CPU that indicates one of several errors stored in the transmitting nexus fault register, and the associated SBI cycle in which the error occurred.								

# SBI FIELD DESCRIPTION (CONT)

Field	Description
Interrupt Request Group	
Request Field [REQ (7:4)]	Allows a nexus to request an interrupt to service a con- dition requiring CPU intervention. Each request line represents a level of nexus request priority.
Alert Field (ALERT)	A cumulative status line that allows those nexus not equipped with an interrupt mechanism to indicate a change in power or operating conditions.
Control Group	
Clock Field (CLOCK)	Six control lines that provide the clock signals necessary to synchronize SBI activity.
Fail Field (FAIL)	A single line from the restart nexus to provide a restart signal to the CPU to initiate a system restart operation.
Dead Field (DEAD)	A single line to the CPU to indicate an impending clock circuit or SBI terminating network power failure.
Unjam Field (UNJAM)	A single line from the CPU to attached nexus that in- itiates a restore operation.
Interlock Field (INTLK)	A single line that provides coordination among nexus responding to certain read/write commands to ensure exclusive access to shared data structures.

15

2001E000

8007800

OPHYSICAL ADDRESS) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SBI ADDRESS 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

		1	øø	Ø	e	0	ø	ø	Ø	Ø	ø	Ø	e	Т		1	R#						REGI	STER	ADD	RESS	Ι
TR# (Base	10)		/sical lress ex)		A	BI ddre Hex)																					
ø		200	00000	,	8	0000	00																				
1		200	02000	,	8	0008	ØØ																				
2		200	04000		8	0010	00																				
3		200	196999		8	0018	ØØ																				
4		200	08000		8	0020	00																				
5		200	000A00	۱ ا	8	0028	00			SBI	D	evi	ce	۷e	ctor	Gene	rat	ion									
6		200	10C000	'	8	ØØ3Ø	00			8	_	7	6		5	4		3	2	,	1	R	,				
7		200	ØEØØØ	ŀ	8	ØØ38	00			1		REQ LEV				TR	NO	٠.			ø	e	,				
8		200	10000	١	8	0040	ØØ			LEV	_		_		L					Ь	1						
9		200	12000		8	ØØ48	00			LEV	5	= 1	9 1														
10		200	14000	۱	8	ØØ5Ø	00			LEV																	
11		200	16000		8	ØØ58	ØØ																				
12		200	18000	١	8	0060	ØØ																				
13	1	200	1A000	١.	8	ØØ68	ØØ																				
14		200	10000		8	0070	ØØ																				

# SBI FAULTS (ADAPTER CONFIGURATION REGISTER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0	09 08 07 06 05 04 03 02 01 00
	NEXUS TYPE CODE
PAR URD MXT PWR OVR FLT FLT FLT DWN TMP WSQ ISQ XMT PWR FLT FLT FLT UP	000 X X X X X MEMORY 0010 00 0 0 MBA 0010 1 0 0 0 UBA 0 0010 1 0 0 1 1
31 — PARITY FAULT 30 — WRITE SEQUENCE FAULT 29 — UNEXPECTED READ DATA FAULT 28 — INTERLOCK SEQUENCE FAULT	00101010 2 00101011 3 010000YY* MA780 00110000 DR780
<ul> <li>27 — MULTIPLE TRANSMITTER FAULT</li> <li>26 — TRANSMITTER DURING CYCLE THAT         CAUSED FAULT</li> <li>23 — POWER DOWN</li> <li>22 — POWER UP</li> </ul>	*YY = PORT NUMBER
21 — OVER TEMPERATURE	

TK-0695

#### SBI CONFIGURATION RULES FOR TR SELECTION

The following rules are suggested for selecting TR levels for NEXUS on the SBI. They apply to VAX-11/780 and VAX-11/782 systems. These rules are guidelines; deviation may be desirable and, in some cases, necessary.

- The TR level of a device determines its relative priority in competing for SBI access. High TR levels mean low priority. TR 1 is the highest priority and TR 15 the lowest to which any NEXUS (other than the CPU) may be assigned.
- 2. The standard order of assigning devices to TR levels is:

```
o All MS78Øs
```

- o All MA780-Cs
- o All DW780s
- o All RH780s o DR780
- o DR780
- o CPU

The default TR assignments currently used by manufacturing are:

```
= TR 1
First MS780
First MA780 port
                          = TR 2
First DW780
                          = TR 3
First RH780 (for disks)
                          = TR 8
                         = TR 9
Second RH780 (for tapes)
DR78Ø
                          = TR 13
CI78Ø
                          = TR 14
CPU
                          = TR 16 (the implied TR level)
```

These defaults should cover most VAX-11/780 systems. Large systems, as well as some applications, will require field changes to TR levels.

When selecting TR levels for complex systems, you should try to minimize latency effects (such as data lates) in memory access. Therefore, always give memory controllers the lowest TR levels and assign the CPU to TR 16. RH780s and DW780s for peripheral devices should be assigned TR levels based on the sensitivity of the devices (or device controllers) to memory latency.

- 3. One to two MS780s per system. Interleaving with MS780s requires consecutive TR levels as well as equal amounts of memory in the even/odd pair; consecutive TR levels are strongly suggested even without interleaving. When a MS780-A and MS780-C controller reside on the same system, the MS780-C should be assigned the lowest TR level.
- Zero to four MA780-Cs per system. TR levels must be consecutive. A given MA780 must have the same TR on all SBIs. MS780 memory controllers should always have lower TRs than MA780-C memory ports.
- 5. One to four DW780s per system.

#### SBI CONFIGURATION RULES FOR TR SELECTION (CONT)

6. Zero to four RH780s per system. In general, RH780s used for disks should have higher priority than RH780s used only for tapes. The main criterion for allocating devices to RH780s and RH780s to TRs is the relative sensitivity of the device to memory latency. Since the RH780 has less than one disk sector of buffering, the memory latency requirement is determined (slightly pessimistically) by the device data rate:

```
      RPØ7 at 2.2 Mbyte/sec
      3.64 microsec/quadword

      RPØ7 at 1.3
      6.15 microsec/quadword

      RMØ3, RMØ5, RM8Ø
      6.67 microsec/quadword

      RPØ4/5/6
      10.00 microsec/quadword

      TU78 at 6250 BPI
      10.24 microsec/quadword

      TU77 at 1600 BPI
      40.00 microsec/quadword

      TE16 at 1600 BPI
      >100.00 microsec/quadword

      TE16 at 1600 BPI
      >100.00 microsec/quadword
```

These figures define the average response time requirement as seen from the device. Due to RH780 buffering, RH780 devices can withstand an occasional memory response time of nearly three times the average figure just given without causing a data late.

The RP07 at 2.2 megabytes per second requirement is high enough that only interleaved MS780 memory can be used. It is not expected to function on a VAX-11/782 or a VAX-11/780 with MA780 unless the application prevents RP07 I/O from accessing the MA780 address space.

In determining the TR level for RH780s with more than one type of device, only the memory response time requirement of the fastest device on the RH780s needs to be considered.

7. Zero to one DR780 per system. It is suggested that DR780 pairs that are used to interconnect VAX-11/780 systems use the same TR assignment in each VAX-11/780.

The data rate of the DR780 may be set as low as 156 kilobytes per second or as high as 8 megabytes per second depending on the attributes of the connected device. 156 kilobytes per second is slower than a TU77, while 8 megabytes per second is faster than any current VAX-11/780 memory will support.

Since the DR780 is synchronous and not fully buffered, it may experience data lates. The only solutions are faster (interleaved) memory, prevention of concurrent I/O from other devices on the SBI (usually not practical), and decreasing the DR780 data rate setting.

 One CI780 per system. It is suggested that for a CI network, the same TR level be assigned to each CI780.

The CI780 is synchronous and fast (8.75 megabytes per second peak), but it is fully buffered. Therefore, CI780 should have the highest TR number (lowest priority) of any device other than the CPU.

One CPU. Only one CPU per SBI is supported, and it must be at (implied) TR 16.

#### SBI CONFIGURATION RULES FOR TR SELECTION (CONT)

10. These TR selection rules are mainly useful when configuring VAX-11/780 and VAX-11/782 systems with many fast peripheral devices. On systems with little I/O activity, the SBI and memory will be so lightly loaded that TR selection has little importance. On the other hand, when the memory demand greatly exceeds the capacity of the SBI and the memory, TR selection will not make the memory cycle faster.

TR selection is important for any system with aggregate bandwidth of concurrently active DMA devices above two megabytes per second.

- 11. If you run out of TR levels, you need another VAX-11/780.
- 12. The following example illustrates these guidelines for a large VAX-11/78Ø system consisting of: two MS78Ø-Cs, two MA78Ø-Cs, two DR78Øs, three RH78Øs, and one CI78Ø.

Device	TR
MS780-C	1
MS780-C	2
MA780-C	3
MA780-C	4
DW780	5
DW78Ø	6
RH780	8
RH78Ø	9
RH78Ø	10
CI78Ø	14

1	A	В	c	D	Е	F
Al				BUS SBI DEAD L		BUS SBI INTLK
A2	+ 5 V	+ 5 V	+ 5 V	+ 5 V	+ 5 V	+ 5 V
Bl	BUS SBI BOO L		BUS SBI B20 L	BUS SBI MO L	BUS SBI REQ4 L	BUS SBI TROO
В2				·		
C1	BUS SBI B01 L		BUS SBI B21 L	BUS SBI M1 L	BUS SBI REQ5 L	BUS SBI TR01
C2	GND		GND	GND	GND	GND
Dl	BUS SBI B02 L		BUS SBI B22 L	BUS SBI M2 L	BUS SBI REQ6 L	BUS SBI TR02 +12 V
D2			BUS SBI B23 L	BUS SBI M3 L	BUS SBI REQ7 L	BUS SBI TRO3
E1	BUS SBI B03 L					BUS SBI IRUS
E 2					BUS SBI TP H	1
F1 F2		BUS SBI Bl2 L		BUS SBI PO L	BUS SBI TP L	BUS SBI TRO4
H1	GND	GND	GND	GND	GND	GND
H2	GND	BUS SBI B13 L	GND	BUS SBI Pl L	BUS SBI PCLK H	BUS SBI TRO5
Jl		BUS SBI B14 L		BUS SBI SPARE 0	BUS SBI PCLK L	BUS SBP TP06
J2		BUS SBI B15 L		BUS SBI SPARE 1	BUS SBI PDCLK H	BUS SBI TR07
Κĺ			į		- 5 V	
K 2					BUS SBI PDCLK L	
L1						
L2		- 5 V			, .	Dug
M1	BUS SBI B04 L		BUS SBI B24 L	BUS SBI TAGO L	BUS SBI MPl L	BUS SBI TR08
M 2	DUG GD 7 DO5 1		DUG CDI DOE I	BUS SBI TAG1 L	BUS SBI MP2 L	BUS SBI TRO9
N1	BUS SBI B05 L	2112	BUS SBI B25 L GND	GND	GND	GND
N 2 P 1	GND BUS SBI B06 L	GND	BUS SBI B26 L	BUS SBI TAG2 L	BUS SBI UNJAM L	BUS SBI TR10
P1 P2	BUS SBI BOO L		BUS SBI B27 L	BUS SBI IDO L	BUS SBI ALERT L	BUS SBI TR11
R1	803 381 B07 E		BUS SB1 B27 E	500 551 150 2	505 021 112111 2	
R2						
SI	+12 V			ľ		1
S2	BUS SBI B08 L	BUS SBI B16 L	BUS SBI B28 L	BUS SBI ID1 L	BUS SBI CNFO L	BUS SBI TR12
Tl	GND	GND	GND	GND	GND	GND
Т2	BUS SBI B09 L	BUS SBI B17 L	BUS SBI B29 L	BUS SBI ID2 L	BUS SBI CNF1 L	BUS SBI TR13
Ul	BUS SBI BlO L	BUS SBI B18 L	BUS SBI B30 L	BUS SBI ID3 L	BUS SBI FAULT L	BUS SBI TR14
U2	BUS SBI Bll L	BUS SBI B19 L	BUS SBI B31 L	BUS SBI ID4 L	. 5 37	BUS SBI TR15 + 5 V
V1	+ 5 V	+ 5 V	+ 5 V	+ 5 V	+ 5 V	+ 5 V
V2			BUS SBI FAIL L			
			•	•		

# CHAPTER 7 SBI NEXUS



BOARDS PLUGGED INTO BACKPLANE

TK-0777C



WRITABLE STARTING ADDRESS



TK-0777A

# **MEMORY ARRAY ADDRESSES**

Array	M8211 Size	Address Range	M8210 Size	Address Range
1	64 K	Ø- FFFF	256 K	Ø- 3FFFF
2	128 K	10000-1FFFF	512 K	40000- 7FFFF
3	192 K	20000-2FFFF	768 K	80000- BFFFF
4	256 K	30000-3FFFF	1024 K	CØØØØ- FFFFF
5	32Ø K	40000-4FFFF	128Ø K	100000-13FFFF
6	384 K	50000-5FFFF	1536 K	140000-17FFFF
7	448 K	60000-6FFFF	1792 K	180000-1BFFFF
8	512 K	70000-7FFFF	2048 K	1C0000-1FFFFF
9	576 K	80000-8FFFF	23Ø4 K	200000-23FFFF
10	640 K	90000-9FFFF	2560 K	240000-27FFFF
11	704 K	A0000-AFFFF	2816 K	280000-2BFFFF
12	768 K	BØØØØ-BFFFF	3Ø72 K	2CØØØØ-2FFFFF
13	832 K	CØØØØ-CFFFF	3328 K	300000-33FFFF
14	896 K	DØØØØ-DFFFF	3584 K	340000-37FFFF
15	96Ø K	E0000-EFFFF	3840 K	380000-3BFFFF
16	1024 K	FØØØØ-FFFFF	4096 K	3CØØØØ-3FFFFF

# Memory Starting Address Jumpers

Во	undary	Address	
Ø		000000	
4	MEG	400000	
8	MEG	800000	
12	MEG	CØØØØØ	

W1-W5 Spare

F2Ø U2

201

b

W6

TR#

9

10

11

12

1.3

14

15

⁻ Standard for Memory 2

# **MS780A MODULE UTILIZATION**

20	M8214	MSB	
19	M8213	MCN	
18	M8212	MDT	
17	M8211	MAY	
16	M8211	MAY	
15	M8211	MAY	*
14	M8211	MAY	*
13	M8211	MAY	*
12	M8211	MAY	*
11	M8211	MAY	*
10	M8211	MAY	*
9	M8211	MAY	*
8	M8211	MAY	*
7	M8211	MAY	*
6	M8211	MAY	*
5	M8211	MAY	*
4	M8211	MAY	*
3	M8211	MAY	*
2	M8211	MAY	*
1	M9Ø4Ø	TRM	*

^{*} When not installed, use blank module 7014103.

# **MS780C MODULE UTILIZATION**

20	M8214	MSB	
19	M8213	MCN	
18	M8212	MDT	
17	M8210	MAY	
16	M821Ø	MAY	
15	M821Ø	MAY	*
14	M821Ø	MAY	*
13	M821Ø	MAY	*
12	M821Ø	MAY	*
11	M821Ø	MAY	*
10	M821Ø	MAY	*
9	M8210	MAY	*
8	M8210	MAY	*
7	M821Ø	MAY	*
6	M821Ø	MAY	*
5	M8210	MAY	*
4	M821Ø	MAY	*
3	M821Ø	MAY	*
2	M8210	MAY	*
1	M9Ø4Ø	TRM	*

^{*} When not installed, use blank module 7014103.

204

TK-0180

205

MCNC,D,K

TIMING & CONTROL

FROM CYCLE STROBES & TIMING

# **MEMORY I/O DATA LOGIC**



TK-0636

# **UBA ADDRESS SPACE AND C/A FORMAT**

SBI C/A Format for UBA Register Access

	3 0	31	_ 27							_		_			15		10		0
	MASK	FUNC	$T_1$	0		0		0	۸	0	0	0	0	0	0	TR	0	REGISTER OFFSET	$\neg$
Į	<3:0>	<3:0>	Ľ	Ľ	Ľ	Ľ	Ŭ	Ľ	Ů	Ŭ	Ľ	Ŭ	Ŭ	Ľ	Ľ	NUMBER	Ľ	(SBI ADDRESS)	

TK-0320

	Base Addresses										
TR Num Base 10	Base Address (Physical hex)	SBI Address (hex)	TR Num Base 10	Base Address (Physical hex)	SBI Address (hex)						
		[	8	20010000	8004000						
1	20002000	8000800	9	20012000	8004800						
2	20004000	8001000	10	20014000	8005000						
3	20006000	8001800	11	20016000	8005800						
4	20008000	8002000	12	20018000	8006000						
5	2000A000	8002800	13	2001A000	8006800						
6	2000C000	8003000	14	2001C000	8007000						
7	2000E000	8003800	15	2001E000	8007800						

# Register Offsets

UBA Reg	Byte Address (Physical hex)	SBI Address (hex)	UBA Reg	Byte Address (Physical hex)	SBI Address (hex)
CNFGR	000	000			
UBACR	004	001		l .	
UBASR	008	002	DPR 14	078	01E
DCR	00C	003	<b>DPR</b> 15	07C	01F
FMER	010	004	Reserved	080	020
FUBAR	014	005			
FMER	018	006			
FUBAR	01C	007	Reserved	7EC	1FF
BRSVR 0	020	008	MR 0	800	200
BRSVR I	024	009	MR I	804	201
BRSVR 2	028	00A			
BRSVR 3	02C	00B			
BRRVR 4	030	00C	MR 494	FB8	3EE
BRRVR 5	034	00D	MR 495	FBC	3EF
BRRVR 6	038	00E	Reserved	FCO	3F0
BRRVR 7	03C	00F			
DPR 0	040	010	Reserved	FFC	3FF
DPR I	044	011			

#### **UBA REGISTERS**

# **UBA STATUS REGISTER, BIT CONFIGURATION**



TK-0121

#### **UBA DIAGNOSTIC CONTROL REGISTER, BIT CONFIGURATION**



#### **UBA REGISTERS**

# **UBA CONFIGURATION REGISTER, BIT CONFIGURATION**



TK-0119

#### **UBA CONTROL REGISTER, BIT CONFIGURATION**



TK-0120

#### **UBA REGISTERS (CONT)**

# **UBA FAILED MAP ENTRY REGISTER, BIT CONFIGURATION**



#### **UBA FAILED UNIBUS ADDRESS REGISTER, BIT CONFIGURATION**



# UBA BUFFER SELECTION VERIFICATION REGISTER, BIT CONFIGURATION



NOTE:

THE INFORMATION FOUND IN THESE REGISTERS IS MEANINGFUL ONLY IF A CORRESPONDING ERROR BIT IS FOUND IN THE UBA STATUS REGISTER.

# **UBA REGISTERS (CONT)**

# UBA BR RECEIVE VECTOR REGISTER, BIT CONFIGURATION



# **UBA DATA PATH REGISTER, BIT CONFIGURATION**



#### **UBA MAP REGISTER, BIT CONFIGURATION**



TK-0052

```
DW780 Configuration
                                                                   ii
                                                           dd
                                                                            nn
                                                                                     tt
                                                                                         vv
                                                                                                   for REV A Backpanel
                                                           CC
                                                                   hh
                                                                        kk
                                                                            mm
                                                                                pp
                                                                                     SS
                                                                                         uu
      W1
          W2
                                            W10 W11 W12 W13 W14 W15
                                                                                                   Configuration for
                                                                                                   REV -- Backpanel
                                         W9 W10 W11 W12 W13 W14
      TR Arbitration
                                                          UNIBUS Address
      Level
                                                          Space Select
                               USIC
                                       USIC
                USIC
                       USIC
                                                                                USID
                                                                                           USID
               TR
                       TR
                               TR
                                       TR
               SEL
                       SEL
                               SEL
                                       SEL
                                                                     Signal
                                                                                Adapter
                                                                                           Adapter
      Signal
      Name
                Α
                        В
                               С
                                       D
                                                                      Name
                                                                                            L
                L
                               L
                                       L
                                                Wire Wrap
DØ1R2 to
      TR#
               W3
                       W4
                               W5
                                       W6
                                                                     Adapter#
                                                                                           W1
                                                 FØ1C1
                                                                                            __ *
                                                                      Ø
                _-
                                                                                --
                                                 FØ1D1
                                                                                Ι
               Ι
                        --
14-3
                                                 FØ1E1
                                                                      2
                                                                                           Ι
                                                                      3
                                                                                Ι
                                                                                           Ι
                Ι
                                       --
                                                 FØ1F2
                                                 FØ1H2
                                                 FØ1J1
                                                 FØ1J2
                                                                      Interrupt Level
                --
                                                 FØ1M1
                                                                      Selection
                                                                      Signal Name
                                                 FØ1N1
      10
                                                 FØ1P1
               Ι
                                                                                           UAIF
      11
                                                 FØ1P2
                                                                                UAIF
      12
                                                 FØ1S2
                                                                                            SBI
                Ι
                       Ι
                                                                                SBI
                                                                                            PRI
      13
                                                 FØ1T2
                                                                                PRI
                __
      14
               Ι
                                                 FØ1U1
                                                                                JMP
                                                                                           JMP
      15
                                                 FØ1U2
                                                                                 Ø
                                                                                            L
                                                                                W7
                                                                                           W8
```

ISR#

5

6

7

--

Ι

I

__ *

Ι

Ī

211

^{*} Normal for first DW780

# SBI TO UNIBUS CONTROL ADDRESS TRANSLATION

#### SBI COMMAND ADDRESS FORMAT



# **UNIBUS TO SBI ADDRESS TRANSLATION**



213

# ADDRESSES AND VECTORS FOR UNIBUS DEVICES

UBA No.	Device	UNIBUS Address (Octal)	VAX-11/78Ø Physical Address (Hex)	Vector (Octal)
Ø	CR11	777160	2013FE70	230
	DR11B/DR11W	772410	2013F508	124
	DMC11/DMR11	Float		Float
	DZ11	Float		Float
	KMC11	Float		Float
	LP11 Ø	777514	2013FF4C	200
	LP11 1	764004	2013E804	17Ø
	LP11 2	764014	2013E80C	174
	LP11 3	764024	2013E814	27Ø
	LPA11	770460	2013F130	Float
	RK711	777440	2013FF20	21Ø
	RL211	774400	2013F900	160

 ${\tt NOTE:}$  Floating addresses and vectors are according to PDP-11 convention.

#### FLOATING VECTORS AND FLOATING ADDRESSES

Floating Vectors (Start at 300 and Proceed Upwards)

Device	Vector Size
DC11	10
DL11-A,-B	10*
DP11	10
DM11-AA	10*
DN11	4
DM11-BB	4
DR11-A	10
DR11-C	10
PA611 Reader	4
PA611 Punch	4
LPD11	
DT11	10*
DX11	10*
DL11C,D,E	10*
DJ11	10*
DH11	10**
GT40	10
LPS11	30*
DQ11	10**
KW11-W	10*
DU11	10*
DUP11	10*
DV11-Data	10*
DV11-Modem Control	4
LK11-A	
DWUN	
DMC-11	
DZ11	
DWR7Ø	
LPP11	
VMV21	
VMV31	
VTVØ1	
KMC11	
RL11/RLV11***	
RXØ2	
TS11	
LPA11-K	
IP11/IP300	
 DMP11-AD	

^{*} The vector for the device of this type must always be on a (10) octal boundary. (No switch or jumper connection for vector bit  $2 \cdot$ )

^{**} The device can have either a M7830 or M7821 interrupt control module. However, it should always be on a (10) octal boundary.

^{***} Only for second or later device.

## FLOATING VECTORS AND FLOATING ADDRESSES (CONT)

Floating Addresses (Default Address If Nothing Precedes it)

			VAX-11/780*
Rank	Device	Address (Octal)	Physical Address (Hex)
 1	DJ11	760010	2013E008
2	DH11	760020	2013E010
3	DQ11	760030	2013E018
4	DU11	760040	2013E020
5	DUP11	760050	2013E028
6	LK11-A	760060	2013E030
7	DMC11/DMR11	760070	2013E038
8	DZ11	760100	2013E040
9	DWR7Ø	760110	2013E048
10	LPP11	760120	2013E050
11	VMV21	760130	2013E058
12	VMV31	760140	2013E060
13	KMC11	760150	2013E068
14	RL11/RLV11**	760160	2013E070
15	DMP11	760170	2013E078

^{*} This address applies to the UBA at TR3.

NOTE: Floating register space begins at address 760010. One 8-byte (10 octal) gap must be left for every device type with floating registers that is not present. In addition, an 8-byte gap must be left after the registers for each device type that is present. Register alignment requirements must be preserved.

^{**} Only for second or later device.

## **UNIBUS CONFIGURATION**



Pin	Standard Signal	Modified Signal	Pin	Standard Modified Signal Signal		Pin	Standard Signal	Modified Signal
AAl	INIT L	INIT L	API	GROUND	P0*	BH1	A01 L	A01 L
AA2	+5 V	+5 V	AP2	BBSY L	BBSY L	BH2	A00 L	A00 L
AB1	INTR L	INTR L	ARI	GROUND	BAT BACKUP +15 V	BJI	A03 L	A03 L
AB2	GROUND	TEST POINT	AR2	SACK L	SACK L	BJ2	A02 L	A02 L
AC1	D00 L	D00 L	AS1	GROUND	BAT BACKUP +15 V	<b>BK</b> 1	A05 L	A05 L
AC2	GROUND	GROUND	AS2	NPR L	NPR L	BK2	A04 L	A04 L
ADI	D02 L	D02 L	ATI	GROUND	GROUND	BLI	A07 L	A07 L
AD2	D01 L	D01 L	AT2	BR7 L	BR7 L	BL2	A06 L	A06 L
AE1	D04 L	D04 L	<b>A</b> U1	NPG H	+20 V	BMI	A09 L	A09 L
AE2	D03 L	D03 L	AU2	BR6 L	BR6 L	BM2	A08 L	A08 L
AFI	D06 L	D06 L	AV l	BG7 H	+20 V	BN1	AllL	All L
AF2	D05 L	D05 L	AV2	GROUND	+20 V	BN2	A10 L	A10 L
AH1	D08 L	D08 L	BAI	BG6 H	SPARE	BP1	A13 L	A13 L
AH2	D07 L	D07 L	BA2	+5 V	+5 V	BP2	A12 L	A12 L
AJ1	DIOL	D10 L	BB1	BG5 H	SPARE	BR1	A15 L	A15 L
AJ2	D09 L	D09 L	BB2	GROUND	TEST POINT	BR2	A14 L	A14 L
AKI	D12 L	D12 L	BC1	BR5 L	BR5 L	BS1	A17 L	A17 L
AK2	D11 L	DILL	BC2	GROUND	GROUND	BS2	A16 L	A16 L
AL1	D14 L	DI4 L	BD1	GROUND	BAT BACKUP +5 V	BT1	GROUND	GROUND
AL2	D13 L	D13 L	BD2	BR4 L	BR4 L	BT2	CLL	CIL
AM1	PA L	PA L	BET	GROUND	INT SSYN*	BU1	SSYN L	SSYN L
AM2	D15 L	D15 L	BE2	BG4 H	PAR: DET*	BU2	COL	CO L
AN1	GROUND	P1*	BF1	ACLO L	ACLO L	BV1	MSYN L	MSYN L
AN2	PB L	PB L	BF2	DCLO L	DCLO L	BV2	GROUND	-5 V

^{*}Pins used by parity control module.

# **UNIBUS SIGNAL DESCRIPTIONS**

Signal Line	Description
Data Transfer Group	
Address Lines [SA (17:00)]	These lines are used by the master device to select the slave (actually a unique memory or device register address). SA (17:01) specifies a unique 16-bit word; SA00 specifies a byte within the word.
Data Lines [D (15:00)]	These lines transfer information between master and slave.
Control (Ç1, C0)	These signals are coded by the master device to control the slave in one of the four possible data transfer oper- ations specified below. Note that the transfer direction is always designated with respect to the master device.
C1 C0 0 0	Data In (DATI): a data word or byte transferred into the master from the slave.
0 1	Data In Pause (DATIP): similar to DATI except that it is always followed by a DATO/B to the same location.
1 0	Data Out (DATO): a data word is transferred out of the master to the slave.
1 1	Data Out Byte (DATOB): identical to DATO except a byte is transferred instead of a full word.
Parity A-B (PA, PB)	These signals transfer Unibus parity information. PA is currently unused and not asserted. PB, when true, indicates a device parity error.
Master Synchronization (MSYN)	MSYN is asserted by the master to indicate to the slave that valid address and control information (and data on a DATO or DATOB) is present on the bus.
Slave Synchronization (SSYN)	SSYN is asserted by the slave. On a DATO it indicates that the slave has latched the write data. On a DATI/P it indicates that the slave has asserted read data on the Unibus.
Interrupt (INTR)	This signal is asserted by an interrupting device, after it becomes bus master, to inform the UBA that an interrupt is to be performed, and that the interrupt vector is present on the D lines. INTR is negated upon receipt of the assertion of SSYN by the UBA at the end of the transaction. INTR may be asserted only by a device that obtained bus mastership under the authority of a BG signal.
Priority Arbitration Group	
Bus Request (BR7-BR4)	These signals are used by peripheral devices to request control of the bus for an interrupt operation.
Bus Grant (BG7-BG4)	These signals form the CPU and UBA response to a bus request. Only one of the four will be asserted at any time.

# **UNIBUS SIGNAL DESCRIPTIONS (CONT)**

Signal Line	Description
Priority Arbitration Group (Cont)	
Nonprocessor Request (NPR)	This is a bus request from a device for a transfer not requiring CPU intervention (i.e., DMA).
Nonprocessor Grant (NPG)	This is the grant in response to an NPR.
Selection Acknowledge (SACK)	SACK is asserted by a bus-requesting device after hav- ing received a grant. Bus control passes to this device when the current bus master completes its operation.
Bus Busy (BBSY)	BBSY indicates that the data lines of the bus are in use. It is asserted by the Unibus master.
Initialization Group	
Initialize (INIT)	This signal is asserted by the terminator board (UBT) when DC LO is asserted on the Unibus, and it stays asserted for 10 ms following the negation of DC LO.
AC Line Low (AC LO)	This is an anticipatory signal that warns of an impend- ing power failure. AC LO initiates the power fail trap sequence and may also be issued in peripheral devices to terminate operations in preparation for power loss.
DC Line Low (DC LO)	This signal is available from each system power supply and remains clear as long as all dc voltages are within the specified limits. If an out-of-voltage condition oc- curs, DC LO is asserted.

# **DW780 MODULE UTILIZATION CHART**

	TYPICAL CONFIGURATION									
6	5	4	3	2	1					
B L A N K	B L A N K	UAI	U M D	U C B	⊃ s -					
M O D U L E	M O D U L E	M 8 2 7 3	M 8 2 7 2	M 8 2 7 1	M 8 2 7 0					

## **MBA REGISTERS**

MBA Register Base Address as a Function of TR Number

	Base	
TR	Address	SBI
Num	(Physical	Address
Base 10	Hex)	(Hex)
1	20002000	8000800
2	20004000	8001000
3	20006000	8001800
4	20008000	8002000
5	2000A000	8002800
6	20000000	8003000
7	2000E000	8003800
8	20010000	8004000
9	20012000	8004800
10	20014000	8005000
11	20016000	8005800
12	20018000	8006000
13	2001A000	8006800
14	20010000	8007000
15	2001E000	8007800

#### MBA CONFIGURATION/STATUS REGISTER



## MBA CONTROL REGISTER



NOTE: ALL BITS ARE READ/WRITE EXCEPT INITIALIZE WHICH ALWAYS READS AS 0

## **MBA REGISTERS (CONT)**

## **MBA STATUS REGISTER**



NOTE: WRITE 1 TO CLEAR BITS IN THIS REGISTER EXCEPT BITS 31 AND 16, WHICH ARE READ ONLY.

TK-0698

## **MBA VIRTUAL ADDRESS REGISTER**



# **MBA REGISTERS (CONT)**

## **MBA BYTE COUNT REGISTER**



## **MBA DIAGNOSTIC REGISTER**



# **MBA REGISTERS (CONT)**

## **MBA MAP REGISTER**



TK-0715

#### COMMAND/ADDRESS REGISTER (CAR)



*The CAR is read-only, and is only valid when DT BUSY is set. This register contains the value of bits 31 through 00 of the SBI during the command/address portion of the MBA's next data transfer.

											bb aa						RH780 Configuration for REV A Backpanel
Wl	W2	W3	W4	<b>W</b> 5	W6	W7	W8	W9	Wlø	W11	W12						l
*	*	*	*		*	*		*	*	*	*	*	*				Configuration for REV Backpanel
W1	W2	W3	W4		W5	W6		W7	W8	w9	Wlø	W11	W12				1

TR Arbitration Level

Interrupt Level Selection

Signal Name	MBA TR SEL D	MBA TR SEL C	MBA TR SEL B	MBA TR SEL A	_ Wire Wrap	Signal Name	MBA Intr Code 1	MBA INTR Code Ø H
TR#	W1	W2	<b>W</b> 3	W4	Bus SBI TRXX L from FØ2Fl to	BR#	<b>W</b> 5	W6
1					FØ2C1	4		
2				I	FØ2D1	5		I *
3			1		FØ2E1	6	1	
4			I	I	FØ2F2	7	I	I
5		I			FØ2H2		•	
6		I		I	FØ2J1			
7		I	1		FØ2J2			
8		1	I	I *	FØ2M1			
9	I				FØ2N1			
10	I			I	FØ2P1			
11	I		I		FØ2P2			
12	I		I	I	FØ2S2	W7 - W12	SPARES	
13	I	I			FØ2T2			
14	I	I		I	FØ2U1			
15	I	I	1		FØ2U2			

^{*} Normal for first RH780

# MASSBUS DISK DRIVE REGISTER ADDRESS CALCULATION CHART

REGI:		DRIVE TYPE			DRIVE NUMBER							
HEX	OCTAL	RP (DISK)	RM (DISK)	TE (TAPE)	0	1	2	3	4	5	6	7
	0	CSI	RMCS1	CS1	0	80	100	180	200	280	300	380
1 1	1 1	DS	RMDS	DS	4	84	104	184	204	284	304	384
2	2	ER1	RMER1	ER	8	88	108	188	208	288	308	388
3	3	MR	RMMR1	MR	c	8C	10C	18C	20C	28C	30C	38C
4	4	AS	RMAS	AS	10	90	110	190	210	290	310	390
5	5	DA	RMDA	FC	14	94	114	194	214	294	314	394
6	6	DT	RMDT	DT	18	98	118	198	218	298	318	398
7	7	LA	RMLA	cx	1C	9C	11C	19C	21C	29C	31C	39C
8	10	SN	RMSN	SN	20	A0	120	1A0	220	2A0	320	3A0
9	11	OFF	RMOF	TC	24	A4	124	1A4	224	2A4	324	3A4
A	12	DCA	RMOC		28	A8	128	1A8	228	2A8	328	3A8
В	13	CCA	RMNR		2C	AC	12C	1AC	22C	2AC	32C	3AC
l c	14	ER2	RMMR2		30	BO	130	1B0	230	2B0	330	3B0
Ď	15	ER3	RMER2		34	B4	134	1B4	234	2B4	334	3B4
ΙĒ	16	ECCPOS	RMEC1		38	88	138	188	238	288	338	3B8
F	17	ECCPAT	RMEC2		3C	BC	13C	1BC	23C	2BC	33C	звс
•	•				•	•	•	•	•	•	•	•
•			1		•	•	•	•	•	•	•	•
l	1	l			•	•	•	•	•	•	•	•
1F	37	1	}		7C	FC	17C	1FC	27C	2FC	37C	3FC

MBA BA	MBA BASE PHYSICAL ADDRESS TRANSLATION															
16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
				0	М	1										

DS M = MAP REG SELECT

TR

= SET IF EXTERNAL REGISTER

RS

BYTE

TK-8347

DS = DRIVE SELECT #

RS = REGISTER SELECT

= ZERO

# MASSBUS SIGNAL CABLE PIN ASSIGNMENTS

Massbus Signal Cable Designations

massous	2 fallum	Cable	Designa	tions
		_		

Cable	Pi	n*	Polarity	Designation
Massbus				T
Cable A	A	1	-	MASS DOO
	_ в	2	+	L
	С	3	+	MASS D01
	D	4		
	E	5	-	MASS D02
	F	6	+	<u> </u>
	н	7	+	MASS D03
		8		
	K	9	-	MASS D04
	L	10	+	
	M	11 12	+	MASS D05
	P	13		MASS COO
	R	14	+	MASS COO
	S	15	1	MASS COL
	Ť	16	_	1.11.100
	l ii	17	-	MASS CO2
	v	18	+	
	w	19	+	MASS CO3
	x	20	-	
	Y	21	-	MASS CO4
	Z	22	+	
	AA	23	+	MASS CO5
	BB	24		
	cc	25	-	MASS SCLK
	DD	26	+	
	EE	27	+	MASS RS3
	FF	28		<del></del>
	НН	29	+	MASS ATTN
		30	-	
	KK	31	-	MASS RS4
	LL	32	+	
	MM	33	-	MASS CTOD
	NN	34	+	14466 116:11
	PP	35	+	MASS WCLK
	RR	36	<u>-</u>	MASS RUN
	SS	37	1 *	MASS KUN
	TT	38	<del></del>	CDARE
	UU	39	<b>_</b>	SPARE GND
	VV	40	l	I GND

## Massbus Signal Cable Designations

Cable	Pir	1*	Polarity	Designation
Massbus				
Cable B	A	1	-	MASS DO6
	В	2	+	İ
	С	3	+	MASS D07
	D	4		i
	E	5	-	MASS D08
	F	6	l +	
	Н	7	+	MASS D09
	J	8		
	K	9	-	MASS D10
	L	10	+	
	М	11	+	MASS D11
	N	12	-	<u> </u>
	P	13	-	MASS CO6
	R	14	+	
	S	15	+	MASS C07
	T	16	-	<del></del>
	U	17	-	MASS C08
	V	18	+	
	W	19	+	MASS C09
	X	20		<b></b>
	Y	21	-	MASS C10
	Z	22	+	1
	AA	23	) †	MASS C11
	BB	24		MASS EXC
	CC	25	1 .	MASSEAL
	DD EE	26 27	<del>                                     </del>	MASS RSO
	FF	28		MASS KSU
	HH	29	+	MASS EBL
	)) ))	30	l '	MASS EDE
	KK	31		MASS RS1
	LL	32	+	
	MM	33	<del>  -</del>	MASS RS2
	NN	34	l ₊	
	PP	35	+	MASS INIT
	RR	36	-	
	SS	37	+	MASS SP1
	TT	38	- 1	1
	บบ	39		SPARE
	vv	40		GND

Note: Massbus cables are to be installed per markings on the cable.

^{*}Alternate pin designation schemes

# MASSBUS SIGNAL CABLE PIN ASSIGNMENTS (CONT)

Massbus Signal Cable Designations

Cable	Pi	n*	Polarity	Designation
M	<del>                                     </del>			
Massbus Cable C	A	١,	_	MASS D12
Cable C	B	2	+	MA33 D12
	C	3	+	MASS D13
	Ď	4		MASS DIS
	E	5	-	MASS D14
	F	6	+	
	Н	7	+	MASS D15
	J	8	- 1	
	K	9	-	MASS D16
	L	10	+	L
	М	11	+	MASS D17
	N	12		
	P	13	-	MASS DPA
	R	14	<u> </u>	
	S	15	+	MASS C12
	T	16		MASS C13
	U V	17 18		MASS C13
	W	19	+	MASS C14
	X	20	Ţ	MA33 C14
	Ŷ	21	<u> </u>	MASS C15
	ż	22	+	MASS C15
	ĀĀ	23	+	MASS CPA
	ВВ	24	-	Mario er i
	cc	25	-	MASS OCC
	DD	26	+	
	EE	27	+	MASS DS0
	FF	28	-	
	НН	29	+	MASS TRA
	IJ	30	-	
	KK	31	-	MASS DS1
	LL	32	+	
	MM	33	-	MASS DS2
	NN	34	+	
	PP	35	+	MASS DEM
	RR	36		
	SS	37	+	MASS SP2
	TT	38	<u> </u>	
	บบ	39	Н	MASS FAIL
	VV	40		GND

^{*}Alternate pin designation schemes

# **RH780 MODULE UTILIZATION CHART**

TYPICAL CONFIGURATION						
6	5	4	3	2	1	
B L A N K	BLANK	M C P	M D P	M " R	<b>M</b> S -	
MODULE	M O D D L E	M 8 2 7 8	M 8 2 7 7	M 8 2 7 6	M 8 2 7 5	

TK-0719

233



#### PORT CONFIGURATION REGISTER 2000X000 MPI



#### PORT INTERFACE CONTROL REGISTER 2000X004 MPI



## PORT CONTROLLER STATUS REGISTER 2000X008 MPC

31	27	1 23	19	15	111	07	00
		υ	0 0 0 0		0		U U U
ADMI XMT CMD DUR ABORT FLT MULT ADMI XMTR GRNT		ED EX ADMI B31 H ARR H NO C/A ON ADMI WHEN		NTLK SINGLE STEP		SLF ADM INVAL PTY EN INV	ERR
FLT PAR EI	RR ADMI	ADMI REQSTD B27 L		LOST IN PRO	ACPTD	MULT XMTR FLT	EN

TR. NO.	X=
1	2
2	4
3	6
4	8

#### PORT INVALIDATION CONTROL REGISTER 2000X00C MPC 25 24 23 22 21 20 19 18 17 ID ID ID ID ID ID ID ΙD 0 ARRAY SIZE 15 14 13 10 6 5 STARTING ADDRESS <26:16> 12 11 CACHED CACHE DEVICE IDENT. FORCED BIT ARRAY ERROR REGISTER 2000X010 MAT 0 **ERROR SYNDRONE** - ERROR ADDRESS IVDT INH HI ERR MAP CRD ERR LOG PTY TAG RATE REQ





## CONFIGURATION STATUS REGISTER 1 2000X018 MPS



TK-3395

X=

2

4

6

8



#### INTERPORT INTERRUPT REQUEST REGISTER 2000X020 MPS 27 TO PRT 3 TO PRT 1 FROM PRT 3 FROM PRT 2 FROM PRT 1 FROM PRT 0 TO PRT 2 TO PRT 0 TO FROM FROM FROM FROM FROM FROM FROM PRT 2 | PRT 0 | PRT 2 PRTO PRT2 PRTO PRT2 PRTO 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 FROM FROM FROM FROM FROM FROM FROM PRT 3 PRT 1 PRT 1 PRT 3 PRT 1 PRT 3 PRT 1

INTERPORT INTERRU	IPT ENABLE REGIST	TER 2000X024 MPS					
31	27	23	19	15	_ 11	D71	03 00
	1 1 1 1 1	T , , , , , , , , , , ,		7 1 1	1 1 1 1		
TO PRT 3	TO PRT 2	TO PRT 1	TO PRT 0	FOR PRT 3	FOR PRT 2	FOR PRT 1	FOR PRT 0
<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del>┍┸╌┰┸</del> ┸┯┹	
FROM FROM	FROM FROM	FROM FROM	FROM FROM	FROM FROM	FROM FROM FR	OM FROM I	ROM FROM
	PRT3   PRT1				PRT3   PRT1   PR		PRT 3   PRT 1
FROM FROM						FROM FROM	
PRT 2 PRT 0	PRT 2 PRT	0 PRT 2 PRT 0	PRT2 PRT0	PRT2 PRT0	PRT 2 PRT 0	PRT 2 PRT 0	PRT 2 PRT 0

TR NO.	X=	
1	2	
2	4	
3	6	
4	8	

# **MA780 ARRAY ADDRESSES**

Array	M8210	Address	Rang	e
1	256K	ø	-	3FFFF
2	512K	40000	-	7FFFF
3	768K	80000	-	BFFFF
4	1024K	C0000	-	FFFFF
5	128ØK	100000	-	13FFFF
6	1536K	140000	-	17FFFF
7	1792K	180000	-	1BFFFF
8	2048K	100000	-	1FFFFF

## **MA780C JUMPERS**

W7 W8 W9 W1Ø W11 W12 W13 W14 W15 W16 W17 W18 W19 W2Ø W1 W2 W3 W4 W5 W6 R т U х z В D J T D J t. N D

SBI TR Level Jumpers

Standard Port Interface Slots 3 and 4

Optional Port Interface Slots 1 and 2

TR	1	Jump	er		Wire Wrap		Jumper			
Level	W17	W18	W19	W20	FØ3H1 to	W4	<b>W</b> 3	W2	W1	FØ2H1 to
1	-	-	_	-	FØ3C1		_	-	-	FØ2C1
2	-	-	_	I	FØ3D1 *	_	-	-	I	FØ2D1
3	-	_	I	_	FØ3E1	_	-	1	-	FØ2E1 *
4	-	-	I	I	FØ3F2	-	-	I	I	FØ2F2
5	} -	I	-	_	FØ3H2	-	I	-	-	FØ2H2
6	1 -	I	-	I	FØ3J1	_	1	-	I	FØ2J1
7	-	I	I	-	FØ3J2	-	I	I	-	FØ2J2
8	-	I	I	I	FØ3M1	-	1	I	I	FØ2M1
9	I	_	-	-	FØ3N1	I	-	-	-	FØ2N1
10	I	-	-	I	FØ3P1	1	_	-	I	FØ2P1
11	I	-	I	-	FØ3P2	I	-	I	-	FØ2P2
12	I	-	1	I	FØ3S2	I	-	I	I	F#252
13	I	I	-	-	FØ3T2	I	I	-	-	FØ2T2
14	I	I	-	I	FØ3U1	I	I	-	I	FØ2U1
15	1	I	I	-	FØ3U2	I	I	1	-	FØ2U2

The memory that contains the ROM bootstrap must be at TR 1.

- MA780(s) must have the next highest SBI priority, that is, lowest TR number. MS780(s) have the next highest. RH780(s) have the next highest. RH780(s) have the next highest.
- o ٥

If a MS780 contains the ROM bootstrap, it must be at TR 1. If MS780 memories are on the system and are to be interleaved, the second MS780 must be at the next even TR number past the last MA780 TR.

#### Interrupt Level Jumpers

Interport Interrupt Level	Error Interrupt Level	Standard Port Slots 3 and 4 W16	Optional Port Slots 1 and 2 W5
4 6	5 7	- * I	ī

I = Jumper inserted.

^{- =} No jumper. * = Standard configuration.

## **MA780A JUMPERS**

W1 W2 W3 W4 W5 W6 W7 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W8 W9 N N D R T U В D R Т J L N Х Z В D v

Memory Starting Address Jumpers (Used Only on Power-Up)

Strap Name	Port SA23	Ø SA22	Por SA23	t 1 SA22	Port SA23	2 SA22	Port SA23	3 SA22
Jumper	W19	W20	W15	W16	W11	W12	W7	W8
ØMB 16MB	I	I	I	I	I	I	I	I
20MB 24MB	- I	I -	_ _ I	Ī -	-	Ī	- I	I

Multiport Number Jumpers (Number Visible on Control Panel)

Signal	Set Multiport 1	Set Multiport 0
Jumper	W1	W2
Ø	I	I
1	-	I
2	I	-
3	1 -	- 1

I = Jumper inserted.
- = No jumper.
* = Standard configuration.

## MA780 BACKPLANE DATA



## **M8210 MEMORY ARRAY CARD MNEMONICS**

The following table shows the cross-correlation between the mnemonic when the card is used in the MS780 main memory and the MA780 multiport memory subsystem of the VAX-11/780 system. The M8210 array card, in addition to its identical memory storage function in both memories, is used (one card) as the invalidate map of the multiport memory.

As Array Card in MS780 Main Memory	As Array Card in MA780 Multiport Memory Pin	As Invalidate Map in MA780 Multiport Memory Pin
BUS ENAB ARRAY OUT H	EL1 MATJ ARY OUT EN H	EL1 MPSK INVAL OUT EN H
	ELI MAIS ARI OUI EN II	AJI BUS INVAL DAT PØØ H
BUS MOS DAT COO H		
BUS MOS DAT CØ1 H		AH2 BUS INVAL DAT PØ1 H
BUS MOS DAT CØ2 H		AF1 BUS INVAL DAT PØ2 H
BUS MOS DAT CØ3 H		AE1 BUS INVAL DAT PØ3 H
BUS MOS DAT CØ4 H		DL1 BUS INVAL DAT PØ4 H
BUS MOS DAT CØ5 H		EB1 BUS INVAL DAT PØ5 H
BUS MOS DAT CØ6 H		DP2 BUS INVAL DAT PØ6 H
BUS MOS DAT CØ7 H		DR2 BUS INVAL DAT PØ7 H
BUS MOS DAT LØØ H		AN1 BUS INVAL DAT BOO L
BUS MOS DAT LØ1 H		AM1 BUS INVAL DAT BØ1 L
BUS MOS DAT LØ2 H		AL1 BUS INVAL DAT BØ2 L
BUS MOS DAT LØ3 H		AK1 BUS INVAL DAT BØ3 L
BUS MOS DAT LØ4 H		BA1 BUS INVAL DAT B04 L
BUS MOS DAT LØ5 H		AV2 BUS INVAL DAT BØ5 L
BUS MOS DAT LØ6 H		AU1 BUS INVAL DAT BØ6 L
BUS MOS DAT LØ7 H		ARI BUS INVAL DAT BØ7 L
BUS MOS DAT LØ8 H		BE1 BUS INVAL DAT BØ8 L
BUS MOS DAT LØ9 H		BD1 BUS INVAL DAT B09 L
BUS MOS DAT LIØ H		BC1 BUS INVAL DAT BIØ L
BUS MOS DAT LID H		
		BB1 BUS INVAL DAT B11 L
BUS MOS DAT L12 H		BK1 BUS INVAL DAT B12 L
BUS MOS DAT L13 H		BJ1 BUS INVAL DAT B13 L
BUS MOS DAT L14 H		BH2 BUS INVAL DAT B14 L
BUS MOS DAT L15 H		BF1 BUS INVAL DAT B15 L
BUS MOS DAT L16 H		BP1 BUS INVAL DAT B16 L
BUS MOS DAT L17 H		BN1 BUS INVAL DAT B17 L
BUS MOS DAT L18 H		BM1 BUS INVAL DAT B18 L
BUS MOS DAT L19 H		BL1 BUS INVAL DAT B19 L
BUS MOS DAT L20 H		BV2 BUS INVAL DAT B20 L
BUS MOS DAT L21 H		BU2 BUS INVAL DAT B21 L
BUS MOS DAT L22 H		BS1 BUS INVAL DAT B22 L
BUS MOS DAT L23 H		DR1 BUS INVAL DAT B23 L
BUS MOS DAT L24 H		CK2 BUS INVAL DAT B24 L
BUS MOS DAT L25 H		CJ2 BUS INVAL DAT B25 L
BUS MOS DAT L26 H		CM1 BUS INVAL DAT B26 L
BUS MOS DAT L27 H		CK1 BUS INVAL DAT B27 L
BUS MOS DAT L28 H		BH2 BUS INVAL DAT B28 L
BUS MOS DAT L29 H		CF2 BUS INVAL DAT B29 L
BUS MOS DAT L30 H		CE2 BUS INVAL DAT B30 L
BUS MOS DAT L31 H		CD2 BUS INVAL DAT B31 L
BUS MOS DAT UØØ H		DV2 BUS INVAL DAT B32 L
BUS MOS DAT UØ1 H		DU2 BUS INVAL DAT B33 L
BUS MOS DAT UØ2 H		DT2 BUS INVAL DAT B34 L
BUS MOS DAT UØ3 H		DS2 BUS INVAL DAT B34 L
BUS MOS DAT UØ4 H		
BUS MOS DAT UØ5 H		ED1 BUS INVAL DAT B36 L
		EE1 BUS INVAL DAT B37 L
BUS MOS DAT UØ6 H		EF2 BUS INVAL DAT B38 L
BUS MOS DAT UM7 H		EH2 BUS INVAL DAT B39 L
BUS MOS DAT UØ8 H		EJ2 BUS INVAL DAT B40 L
BUS MOS DAT UØ9 H		EK2 BUS INVAL DAT B41 L
BUS MOS DAT U10 H		EL2 BUS INVAL DAT B42 L
BUS MOS DAT U11 H		EM2 BUS INVAL DAT B43 L

# **M8210 MEMORY ARRAY CARD MNEMONICS (CONT)**

As Array Card in MS78 Main Memory	AS Array Card in MA780  Multiport Memory Pin  CD1 GND FR1 BUS 16K CHIP L FS1 BUS 4K CHIP L FS2 BUS 4K CHIP L FS2 BUS PRES BIT 07 H CJ1 MATJ ARY CAS L DB1 MATR INIT H CL1 MATJ ARY CAS L DB1 MATA ARY ADR 14 H DB2 MATA ARY ADR 16 H CV2 MATA ARY ADR 02 H DJ2 MATA ARY ADR 03 H DB2 MATA ARY ADR 06 H DC2 MATA ARY ADR 08 H DC3 MATA ARY ADR 18 H DC1 MATA ARY ADR 19 H CC2 MATA ARY ADR 10 H DC1 MATA ARY ADR 11 H DD1 MATA ARY ADR 15 H CM2 MATA ARY ADR 15 H CM2 MATA ARY ADR 15 H CM2 MATA ARY ADR 16 H CM2 MATA ARY ADR 17 H CM2 MATA ARY ADR 18 H CM1 MATA ARY ADR 18 H CM2 MATA ARY ADR 18 H CM3 MATA ARY ADR 18 H CM1 MATA ARY ADR 18 H CM2 MATA ARY ADR 18 H CM3 MATA ARY ADR 18 H CM1 MATA ARY ADR 18 H CM2 MATA ARY ADR 18 H CM1 MATA ARY ADR 18 H CM2 MATA ARY ADR 18 H CM3 MATA REF CYC H	As Invalidate Map in MA780 Multiport Memory Pin
BUS MOS DAT U12 H		ER2 BUS INVAL DAT B44 L
BUS MOS DAT U13 H		ES2 BUS INVAL DAT B45 L
BUS MOS DAT U14 H		EP2 BUS INVAL DAT B46 L
BUS MOS DAT U15 H		EF1 BUS INVAL DAT B47 L
BUS MOS DAT U16 H		EV2 BUS INVAL DAT B48 L
BUS MOS DAT U17 H		EU1 BUS INVAL DAT B49 L
BUS MOS DAT U18 H		EU2 BUS INVAL DAT B50 L
BUS MOS DAT U19 H		ET2 BUS INVAL DAT B51 L
BUS MOS DAT UZU H		FUZ BUS INVAL DAT B52 L
BUS MUS DAT UZI H		FRO DUC INVAL DAT DEA I
BUS MUS DAT UZZ H		PPO DUC INVAL DAT DEE I
BUS MOS DAT 1124 H		FD2 BUS INVAL DAT BS5 L
BUS MOS DAT U25 H		FD1 BUS INVAL DAT B57 I
RUS MOS DAT U26 H		FM2 BUS INVAL DAT B58 L
BUS MOS DAT U27 H		FL2 BUS INVAL DAT B59 L
BUS MOS DAT U28 H		FU2 BUS INVAL DAT B60 L
BUS MOS DAT U29 H		FV2 BUS INVAL DAT B61 L
BUS MOS DAT U30 H		FT2 BUS INVAL DAT B62 L
BUS MOS DAT U31 H		FS2 BUS INVAL DAT B63 L
BUS OUT SEL L	CD1 GND	CD1 GND
MAY CHIP 16K L	FR1 BUS 16K CHIP L	FRI BUS 16K CHIP L
MAY CHIP 4K L	FS1 BUS 4K CHIP L	FS1 BUS 4K CHIP L
MAY IN 15 L	FB2 BUS PRES BIT 07 H	FB2 INVAL MAP PRES L
MCNB CAS L	CJ1 MATJ ARY CAS L	CJI MPSK INVAL CAS L
MCNB INIT H	DBI MATR INIT H	DBI MATR INIT H
MCNB MUX CNIKL H	CLI MATJ ARY MUX CNTRL H	CLI MBSK INVAL MUX CNIKE E
MCND ADV DVT U	DAI MATA ADV ADD 14 U	DES MATA ADV ADD 14 H
MCND ARI EXI II	DAI MATA ARI ADA 14 H	DAI MATA ARI ADR 14 G
MCND ARY ADR 01 H	CV2 MATA ARY ADR 02 H	CV2 MATA ARY ADR 02 H
MCND ARY ADR 03 H	D.T.2 MATA ARY ADR 03 H	DIO MATA ARY ADR 03 H
MCND ARY ADR Ø4 H	DH2 MATA ARY ADR 04 H	DH2 MATA ARY ADR 04 H
MCND ARY ADR Ø5 H	CT2 MATA ARY ADR 05 H	CT2 MATA ARY ADR 05 H
MCND ARY ADR Ø6 H	DK2 MATA ARY ADR 06 H	DK2 MATA ARY ADR 06 H
MCND ARY ADR Ø7 H	DF1 MATA ARY ADR Ø8 H	DF1 MATA ARY ADR 08 H
MCND ARY ADR Ø8 H	DF2 MATA ARY ADR Ø9 H	DF2 MATA ARY ADR 09 H
MCND ARY ADR Ø9 H	CR2 MATA ARY ADR 10 H	CR2 MATA ARY ADR 10 H
MCND ARY ADR 10 H	CS2 MATA ARY ADR 11 H	CS2 MATA ARY ADR 11 H
MCND ARY ADR 11 H	DD1 MATA ARY ADR 12 H	DD1 MATA ARY ADR 12 H
MCND ARY ADR 12 H	DE1 MATA ARY ADR 13 H	DE1 MATA ARY ADR 13 H
MCND ARY ADR 13 H	DM2 MATA ARY ADR 15 H	DM2 MATA ARY ADR 15 H
MCND ARY ADR 15 H	CMZ MATA ARY ADR 16 H	CMZ GND
MCND ARY ADR 1/ H	CF2 MATA ARY ADR 1/ H	CFZ GND
MUND YEA YEE 10 11	CLZ MATA ARY AUR 18 H	CN1 CND
MCNU PDA CC I	DC1 MATA ADV ADD 07 H	DOI MATA ARY ADR 67 H
MCND PAS I	CDI MATT ADV DAG I	CDI MDSK INVAL BAS I
MCND DEE CAC R	DII MATE DEF CVC H	D.I. MPSK INVAL REF CYC H

## M8212 DATA PATH/ECC CARD MNEMONICS

The following table of signal mnemonics for the M8212 data path/ECC shows the cross-correlation between the mnemonic when the card is used in the M5780 main memory and the MA780 multiport memory subsystem of the VAX-11/780 system. The M8212 serves an identical function in both memories.

```
As Used in MS780
                                                     As Used in MA780
 Main Memory
                                                     Multiport Memory
 MCNA ARY RD EN H
                                                    DU1 MATK ARY RD EN H
EB1 MATJ CYC CLR L
MCNA CLR L
MCNL FRC CHK 2 H
MCNL FRC CHK 3 H
MCNL FRC CHK 4 H
                                                   FN1 MATD FRC CHK 2 H
                                                   FM1 MATD FRC CHK 3 H
FL1 MATD FRC CHK 4 H
FK2 MATD FRC CHK 5 H
FK1 MATD FRC CHK 6 H
FJ1 MATR FRC CHK 7 H
 MCNL FRC CHK 5 H
 MCNL FRC CHK 6 H
 MCNL FRC CHK 7 H
 MDTC SYN 2 H
MDTE FULL WR EN H
                                                    FD1 MDTA SYN 2 H
                                                     DJ2
                                                   CM1 MATH ADR ON BUS L
CL1 MATH DAT ON BUS L
DR1 BUS ADMI EXT H
 MSBH ADR O BUS L
 MSBH DAT O BUS L
 MSBJ FL EXT H
 MSBJ FL WR H
                                                    DP1 BUS ADMI B29 H
                                                    DS1 SUB ADMI B29 H
AA1 BUS ADMI B00 H
AB2 BUS ADMI B01 H
 BUS CMD ARY H
 BUS FL INF 00 H
 BUS FL INF Ø1 H
                                                    AD2 BUS ADMI B01 H
AD2 BUS ADMI B02 H
AE2 BUS ADMI B03 H
AF2 BUS ADMI B05 H
AJ2 BUS ADMI B05 H
AK2 BUS ADMI B06 H
AL2 BUS ADMI B07 H
 BUS FL INF 02 H
 BUS FL INF Ø3 H
 BUS FL INF Ø4 H
 BUS FL INF Ø5 H
BUS FL INF Ø6 H
 BUS FL INF 07 H
 BUS FL INF Ø8 H
                                                    AM2 BUS ADMI BØ8 H
                                                   AR2 BUS ADMI B09 H
AV2 BUS ADMI B10 H
BA1 BUS ADMI B11 H
BB2 BUS ADMI B12 H
BD2 BUS ADMI B13 H
 BUS FL INF 09 H
 BUS FL INF 10 H
BUS FL INF 11 H
 BUS FL INF 12 H
 BUS FL INF 13 H
 BUS FL INF 14 H
                                                   BE2 BUS ADMI B14 H
BK2 BUS ADMI B15 H
 BUS FL INF 15 H
```

# **M8212 DATA PATH/ECC CARD MNEMONICS (CONT)**

As Used in MS780 Main Memory	As Used in MA780 Multiport Memory
BUS FL INF 16 H	BM2 BUS ADMI B16 H
BUS FL INF 17 H	BP2 BUS ADMI B17 H
BUS FL INF 18 H	BR2 BUS ADMI B18 H
BUS FL INF 19 H	BS1 BUS ADMI B19 H
BUS FL INF 20 H	BV2 BUS ADMI B20 H
BUS FL INF 21 H	CAl BUS ADMI B21 H
BUS FL INF 22 H	CB2 BUS ADMI B22 H
BUS FL INF 23 H	CE2 BUS ADMI B23 H
BUS FL INF 24 H	CF2 BUS ADMI B24 H
BUS FL INF 25 H	CH2 BUS ADMI B25 H
BUS FL INF 26 H	CJ2 BUS ADMI B26 H
BUS FL INF 27 H	CK2 BUS ADMI B27 H
BUS FL INF 28 H	CL2 BUS ADMI B28 H
BUS FL INF 29 H	CM2 BUS ADMI B29 H
BUS FL INF 30 H	CR1 BUS ADMI B3Ø H
BUS FL INF 31 H	CR2 BUS ADMI B31 H
BUS FL MSK Ø H	DM2 BUS ADMI MSK Ø H
BUS FL MSK 1 H	DL1 BUS ADMI MSK 1 H
BUS FL MSK 2 H	DK2 BUS ADMI MSK 2 H
BUS FL MSK 3 H	DL2 BUS ADMI MSK 3 H
BUS X PAR 1 H	DK1 BUS ADMI P1 H













TK-3448

## **DR780 REGISTERS**

#### **DCR ADDRESS REGISTER**



#### DCR READ REGISTER



ВІТ	FUNCTION	BIT	FUNCTION
31	PARITY FAULT	19	PACKET INTERRUPT
30	WRITE SEQUENCE FAULT	18	ABORT
29	UNEXPECTED READ DATA	17	HALT
28	UNUSED	13	CORRECTED READ DATA
27	MULTIPLE TRANSMITTER FAULT	15	READ DATA SUBSTITUTE
26	TRANSMITTER DURING FAULT	14	COMMAND/ADDRESS TIME OUT ID1
25	UNUSED	13	READ DATA EXPECTED TIME OUT ID1
24	EXTERNAL ABORT	12	RECIEVED ERROR CONFIRMATION ID1
23	POWER DOWN	11	DATA INTERCONNECT STALL
22	POWER UP	10	COMMAND/ADDRESS TIME OUT ID2
21	UNUSED	9	READ DATA EXPECTED TIME OUT ID2
20	INTERRUPT ENABLE	8	RECIEVED ERROR CONFIRMATION ID2
•DC	B = CONTROL CODE	7 → 0	30 (16) ADAPTER TYPE CODE

# **DR780 REGISTERS (CONT)**

#### **DCR WRITE REGISTER**



#### **DR780 UTILITY REGISTER**



### DR780 TR ARBITRATION JUMPER AND WIREWRAP SELECTION

Signal Name	TR SELD L	TR SELC L	TR SELB L	TR SELA L	Wirewrap FØ2L2 To
TR No.	W4	W3	<b>W</b> 2	Wl	
1					FØ2C1
2 3			I	I 	FØ2D1 FØ2E1
<b>4</b> 5		 T	I	I 	FØ2F2 FØ2H2
6 7		Ī		I	FØ2J1
8		I I	I	I	FØ2J2 FØ2M1
9 10	I I			I	FØ2N1 FØ2P1
11 12	I T		I I	 I	FØ2P2 FØ2S2
13	Ī	I		 T	FØ2T2
14 15	Ĭ	Ī	I	1 	FØ2U1 FØ2U2
16	I	Ī	I	I	

TR Level Jumper - TR arbitration level jumpers for the first DR780 are W4 and W3, for a TR number of 13. TR arbitration level jumpers for the second DR780 are W4, W3, and W1, for a TR number of 14.

TR Wirewrap – Wirewrap BUS SBI TRXX L for the first DR780 from F02L2 to F02T2. Wirewrap BUS SBI TRXX L for the second DR780 from F02L2 to F02U1.

DI Clock Jumper Select - If the DR780 is to be the clock source for the DI, then jumper W8 on the backpanel should be installed anywhere from W9 through W12 (these jumpers not used by the DR780). If the customer's device is to be the source of the DDI clock, then install the jumper on W8.

MSEL Jumper Select - Install the jumper at W7 if the DR780 is not going to perform DDI arbitration, or be its master. If the DR780 is to be the master device, the jumper should be installed on any pins from W9 through W12.

# **DR780 BACKPLANE**



TK-5157

# **DR780 BACKPLANE (CONT)**

	1	2	3	4	5	6
	M8296	M8297	M8298	M8299		M9046
Α	DSC	DCB	DUP	DSM		DDIP
В						
С						
D						
E						
F						

(VIEW FROM SIDE 2)

TK-8348

## **DR780 BLOCK DIAGRAMS**

#### SBI CONTROL (DSC) M8296



## **DR780 BLOCK DIAGRAMS (CONT)**

#### **CONTROL BOARD (DCB) M8297**



## DR780 BLOCK DIAGRAMS (CONT)

## MICROPROCESSOR (DUP) M8298



## **DR780 BLOCK DIAGRAMS (CONT)**

#### SILO MODULE (DSM) M8299



### **CI780 REGISTERS**





3130 292827 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00	MAINTENANCE ADDRESS 2001C014
MAINTENANCE CONTROL STORE ADDRESS <12:00>	

3130 2928 2726 2524 2322 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01	
	MAINTENANCE DATA
MAINTENANCE CONTROL STORE DATA <31:00>	2001C018

NOTES:

TK-8538

^{1.} ADDRESSES SHOWN ARE FOR A CI780 AT TR14.

#### CI780 REGISTERS (CONT)



TK-8539



DETAIL D SCALE: NONE

NC = NO CONNECTION

TK-6541

# CHAPTER 8 PROCESSOR-SPECIFIC DIAGNOSTICS

### Command/Flag

#### Description

DIAGNOSE

Initializes the program control flags, and starts microdiagnostic execution at test number one.

Valid qualifiers are:

/TEST: <NUMBER> -- Dispatch to the test number specified (do not execute any prior tests) and loop on the test indefinitely.

/SECTION: <NUMBER> -- Dispatch to the section number specified (do not execute any prior sections) and loop on the section indefinitely.

/PASS: <NUMBER> -- Execute the microdiagnostics the specified number of passes before returning to the console. If the number is ~1, execute the microdiagnostics indefinitely.

/CONTINUE -- This switch is used with the /TEST or /SECT switch to automatically continue after the specified test of section has been reached.

/TEST: <N> <M> -- Dispatch to test <N>, execute tests <N> through <M> (inclusive), and return to command mode.

/SECT: <N> <M> -- Dispatch to section <N>, execute sections <N> through <M> (inclusive), and return to command mode.

#### NOTE

In the above to variations of the "/TEST" and "/SECTION" qualifiers, the value of <N> must be less than or equal to <M>. If <M> is less than <N>, testing will start at <N> and continue to the end.

### NOTE

/TEST and /SECT cannot be specified simultaneously.

## Examples:

#### DIAG/TEST:2F

Dispatch to test number 2F and execute it indefinitely.

## DIAG/SECT:B

Dispatch to section number B and execute it indefinitely.

#### DIAG/PASS:-1

Execute all of the micro diagnostics indefinitely.

DIAG/TEST: 2F/CONT

Dispatch to test 2F and start execution

of the remaining tests.

CONTINUE Continues microdiagnostic execution

without changing the program control

flags.

Set and Clear Flags

SET/CLEAR FLAG HD Sets (or clears) the Halt on Error

Detection flag.

SET/CLEAR FLAG HI Sets (or clears) the Halt on Error

Isolation flag.

SET/CLEAR FLAG LOOP Sets (or clears) the Loop on Error flag.

SET/CLEAR FLAG NER Sets (or clears) the No Error Report

flag.

SET/CLEAR FLAG BELL Sets (or clears) the Bell on Error flag.

SET/CLEAR FLAG ERABT Sets (or clears) the Error Abort flag.

CLEAR FLAG LS Clears the Loop on Special Section flag.

(Note that this flag cannot be set.)

CLEAR LT FLAG Clears the Loop on Special Test flag.

(Note that this flag cannot be set.)

SET/CLEAR FLAG ALL

Sets (or clears) all of the previous

flags.

SET/CLEAR SOMM

Sets (or clears) the Stop on Micro Match

bit.

SET/CLEAR SOMM: <ADDRESS> Loads address into Micromatch Register

and sets (or clears) the stop on

Micromatch bit.

SET/CLEAR FP: <ADDRESS > Loads <ADDRESS > into the FPA micro sync

register.

SET STEP STATE

Sets the CPU clock to single time state.

SET STEP BUS

Sets the CPU clock to single bus cycle.

Both the SET STEP STATE and SET STEP BUS commands cause the monitor to enter step mode. Step mode types the current clock state or the UPC value, and waits for terminal input. If a space is typed, the clock is triggered and the current UPC value is typed out. If any other character is entered, step mode is exited.

SET STEP INSTRUCTION

Sets the hardware Single Instruction flag and returns to the monitor. When the hardcore tests are invoked, the current value of the Test PC (TPC) is typed.

monitor waits for terminal input. If a space is typed, the current pseudo instruction is executed and the current value of the TPC is typed. If any other character is typed, step mode is exited.

SET CLOCK FAST

Sets the CPU clock speed to the fast margin.

SET CLOCK SLOW

Sets the CPU clock speed to the slow margin.

SET CLOCK NORMAL

Sets the CPU clock speed to normal.

SET CLOCK EXTERNAL

Sets the CPU clock for an external oscillator.

Examine Commands

The following examine commands cause the current microinstruction to be executed before the examine is performed, if it is the first examine since entering the monitor command mode. All successive examines do not execute any additional microinstructions. ID Bus registers T1-T8 are destroyed during the examines, except for the ID Bus and VBus examines. All of the following examines, except V Bus, advance the clock to CPTO before executing the command.

EXAMINE ID: <ADDRESS> Displays the contents of the ID BUS

Register specified by <ADDRESS>.

EXAMINE VBUS:<CHANNEL>
Displays the contents of the VBUS
channel specified by <CHANNEL>. Bit
Ø is at the right side of the

display.

EXAMINE RA:<ADDRESS> Displays the contents of the RA

Scratch Pad specified by <ADDRESS>.

EXAMINE RC:<ADDRESS> Displays the contents of the RC

Scratch Pad specified by <ADDRESS>.

EXAMINE SBI: <ADDRESS> Displays the contents of the SBI

address.

EXAMINE LA Displays the contents of the LA

Latch

EXAMINE LC Displays the contents of the LC

Latch.

EXAMINE DR Displays the contents of the D

Register. (Do not use ID address when examining D register; use

EXAMINE DR command.)

EXAMINE QR Displays the contents of the Q

Register.

EXAMINE SC Displays the contents of the SC

register.

EXAMINE FE Displays the contents of the FE

Register.

EXAMINE VA Displays the contents of the VA

Register.

EXAMINE PC Registers the contents of the

Program Counter.

the examine command, except that the

data to be deposited must be

supplied by the user.

DEPOSIT ID: <ADDRESS> <DATA>

DEPOSIT RA: <ADDRESS> <DATA>

DEPOSIT RC: <ADDRESS> <DATA>

DEPOSIT LA: <DATA>

DEPOSIT LC: <DATA>

DEPOSIT DR: <DATA>

DEPOSIT OR: <DATA>

DEPOSIT SC: <DATA>

DEPOSIT FE: <DATA>

DEPOSIT VA: <DATA>

DEPOSIT PA: <DATA>

DEPOSIT SBI: <DATA>

REPEAT <COMMAND STRING>

#### BLKMIC

Move the <WORD COUNT> number of 96-bit microwords from the <SCR ADDRESS>, indexed by <SCR INDEX>, to the WCS starting at <WCS ADDRESS>, indexed by <WCS ADDRESS INDEX>. If an <SCR INDEX> is specified, the <SCR ADDRESS> is indexed by six PDP-11 words (i.e., 96 bits).

If the <WCS ADDRESS> starts with an alpha character, the <WCS ADDRESS> is used as a pointer to a table in the LSI-ll memory. Otherwise, it is used as a physical WCS address.

For example, if the current value of the index is 2,  $14_8$  ( $\langle SCR |$  INDEX $\rangle$  * 6) would be added to the  $\langle SCR |$  ADDRESS $\rangle$  to find the first 96-bit microword to load into the WCS.

#### CHKPNT

CHKPNT [<PASS ADDRESS>], [<FAIL ADDRESS>]

If the error flag, set during a COMPARE instruction (see CMPXXX instructions), is zero, go to the <PASS ADDRESS>. If the error flag is not zero, go to the <FAIL ADDRESS>. If neither a pass or fail address is specified, go to the next instruction in line.

The address of the next instruction is typed. These addresses appear on the typed line named TRACE:.

### CLOCK

CLOCK <TIMES>

Step the system clock <TIMES> number of single time states. If <TIMES> is evenly divisible by four, single bus cycles are executed for each four <TIMES>.

#### CMPCA

CMPCA [<MODE>], <REGISTER>, <DST ADDRESS>, [<DST ADDRESS
INDEX>]

Compares the contents of the console register specified by <REGISTER> with the contents of the location specified by <DST ADDRESS>, indexed by <DST ADDRESS INDEX>.

If the <MODE> argument is false, set the error flag. If the <MODE> argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the register used in the compare is the ID Bus register that was read in the most recent READID instruction.

#### CMPCAD

Compare by the contents of the console registers specified by <REGISTER> and <REGISTER>+2 with the contents of the registers specified by <DST ADDRESS> and <DST ADJRESS>+2, indexed by <DST ADDRESS INDEX>.

If the <MODE> argument is false, set the error flag. If the <MODE> argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the register used in the compare is the ID Bus register that was read in the most recent READID instruction.

## CMPCAM

CMPCAM [<MODE>], <REGISTER>, <MASK ADDRESS>, [<MASK ADDRESS
INDEX>], <DST ADDRESS>, [<DST ADDRESS INDEX>]

Take the contents of the console register specified by <REGISTER>, mask it with the contents of the <MASK ADDRESS>, indexed by <MASK ADDRESS INDEX>, and compare it with the contents of <DST ADDRESS>, indexed by <DST ADDRESS INDEX>.

If the <MODE> argument is false, set the error flag. If the <MODE> argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the register used in the compare is the ID Bus register that was read in the most recent READIN instruction.

The mask is performed by taking the contents of <MASK ADDRESS>, indexed by <MASK ADDRESS INDEX>, complimenting it, and bit clearing the contents of <REGISTER> with it.

#### CMPCMD

CMPCMD [<MODE>], <REGISTER>, <MASK ADDRESS>, [<MASK ADDRESS

INDEX>], <DST ADDRESS>, [<DST ADDRESS INDEX>]

Take the contents of the console registers specified by <REGISTER> and <REGISTER>+2, mask it with the contents of <MASK ADDRESS> and <MASK ADDRESS>+2, indexed by <MASK ADDRESS INDEX>, and compare it with the contents of <DST ADDRESS> and <DST ADDRESS>+2, indexed by <DST ADDRESS INDEX>.

If the <MODE> argument is false, set the error flag. If the <MODE> argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the register used in the compare is the ID Bus register that was read in the most recent READIN instruction.

The mask is performed by taking the contents of <MASK ADDRESS> and <MASK ADDRESS>+2, indexed by <MASK ADDRESS INDEX>, complementing it, and bit clearing the contents of <REGISTER> and <REGISTER>+2.

## CMPPCSV

CMPPCSV <DST ADDRESS>, [<DST ADDRESS INDEX>]

Compare the contents of the PC Save register with the contents of the location specified by <DST ADDRESS>, indexed by <DST ADDRESS INDEX>. If the contents are not equal, set the error flag.

## ENDLOOP

#### ENDLOOP (INDEX NAME)

Add the increment value of <INDEX NAME> (see LOOP instruction) to the current value of the index specified by <INDEX NAME>. Compare the current value with the last value (specified in the LOOP instruction). If the current value is less than or equal to the last value, go to the instruction following the most recent LOOP instruction. Otherwise, go to the next sequential instruction.

#### ERRLOOP

#### ERRLOOP

Save the address of the next instruction. If an error is detected, and the Loop or Error flag is set (ref. subsection 4.5), execution is restarted at this saved address after the IFERROR instruction is executed.

#### FETCH

FETCH <WCS ADDRESS>, [<WCS ADDRESS INDEX>], [<WCS ROM NOP>]

If <WCS ADDRESS> is a numeric string, execute a maintenance return to the location specified by <WCS ADDRESS>, indexed by <WCS ADDRESS INDEX>. If <WCS ADDRESS> is an alpha-numeric string, execute a maintenance return to the location specified by the contents of <WCS ADDRESS>, indexed by <WCS ADDRESS INDEX>. If <ROM NOP> is specified, clear bit > of the MCR register during the maintenance return.

#### FLTONE

FLTONE <DST ADDRESS>, <INDEX NAME>

Generate a 32-bit word of all zeros. Insert a logic one in the bit postion specified by the current value minus one of <INDEX NAME>, and load this word into the location specified by <DST ADDRESS> and <DST ADDRESS>+2.

#### FLTZRO

FLTZRO <DST ADDRESS>, <INDEX NAME>

Generate a 32-bit word of all logic ones. Insert a zero in the bit position specified by the current value minus one of <INDEX NAME>, and load this word into the location specified by <DST ADDRESS> and <DST ADDRESS>+2.

#### IFERROR

IFERROR [<MESSAGE NUMBER>], [<FAIL ADDRESS>]

If the error flag is nonzero, type the PC of this instruction, the test number, subtest number, and the good and bad data. Then, go to <FAIL ADDRESS> if the HALTD flag is not set (ref. subsection 4.6).

If the error flag is zero, or the <FAIL ADDRESS> is not specified, go to the next instruction.

## INITIALIZE

INITIALIZE

Set and clear the CPU Initialize bit in the Machine Control register, clear the single time state bit, set the single bus cycle bit, set the ROM NOP bit, and set the Proceed bit in the Machine Control register.

## KMXGEN

KMXGEN <SRC ADDRESS>, <INDEX NAME>

Generate the KMUX address specified by the current value minus one of <INDEX NAME> and load it into the KMUX field of the microinstruction specified by <SRC ADDRESS>.

#### LDIDREG

LDIDREG <REGISTER>, <SRC ADDRESS>, [<SRC ADDRESS INDEX>]

Load the ID Bus register specified by <REGISTER> with the contents of the locations specified by <SCR ADDRESS> and <SCR ADDRESS>+2, indexed by <SRC ADDRESS INDEX>.

If <REGISTER> is the microstack, microbreak, or WCS address, the contents of <SCR ADDRESS> is taken to be 16 bits. Otherwise, it is taken to be 32 bits.

#### LOADCA

LOADCA <REGISTER>, <SRC ADDRESS>, [<SRC ADDRESS INDEX>]

Load the console register specified by <REGISTER> with the contents of the location specified by <SRC ADDRESS>, indexed by <SRC ADDRESS INDEX>. This instruction loads 16 bits of data.

#### LOOP

LOOP <INDEX NAME>, <START>, <END>, [<SIZE DEPENDENT>]

Initialize the loop parameter specified by <INDEX NAME> to the value specified by <START>. Save the value specified by <END> for the ENDLOOP instruction. Calculate and save the increment value for the ENDLOOP instruction with the following algorithm:

If <START> is less than or equal to <END>, set the increment value to +1; otherwise, set it to -1.

If <END> is an <INDEX NAME>, save the current value of that index name as the <END> value of this index name.

If <SIZE DEPENDENT> is specified, divide the larger of <START> and <END> by two if there is only one WCS module on the system. Otherwise, leave them unchanged.

#### MASK

MASK <DST ADDRESS>, <MASK ADDRESS>

Take the contents of location <MASK ADDRESS>, complement it, and bit clear the contents of location <PST ADDRESS> with it.

#### MOVE

MOVE ,SRC ADDRESS., [<SRC ADDRESS INDEX.[, <DST ADDRESS>

Move the contents of <SRC ADDRESS INDEX> (indexed by <SRC ADDRESS INDEX>) to the location specified by <DST ADDRESS>.

#### NEWTST

NEWTST <TEST NAME>, [<TEST DESCRIPTION>], [<LOGIC

DESCRIPTION>], [<ERROR DESCRIPTION>], [<SYNC POINT

DESCRIPTION>]

This instruction creates a test header document for the specified arguments. It clears the error flag, and saves the PC of the next instruction for looping on test.

286

#### READIN

READID <REGISTER>

Reads the ID Bus register specified by <REGISTER> and loads the contents of it into locations IDREGLO and IDREGHI.

#### RESET

RESET

Executes an <LSI-ll reset instruction>.

#### REPORT

REPORT < MODULE NAME STRING>

Types out the module numbers of the modules specified by <MODULE NAME STRING>. If the HALTI flag is set, return to the Microdiagnostic Monitor.

#### TSTVB

TSTVB <SRC TABLE ADDRESS>, [<SRC TABLE ADDRESS INDEX>]

Load and read the VBus. Compare the contents of the data at <SRC TABLE ADDRESS, indexed by <SRC TABLE ADDRESS INDEX, with the V Bus data just read. The <SRC TABLE> has the following format:

1\$: .WORD < NUMBER OF BITS TO CHECK>

VBUSG <CHANNEL NUMBER>, <BIT NUMBER>, <EXPECTED BIT

VALUE>

.

2\$: .WORD <NUMBER OF BITS TO CHECK>

VBUSG <CHANNEL NUMBER>, <BIT NUMBER>, <EXPECTED BIT

VALUE>

٠

•

.

The following is an example of the <SRC TABLE ADDRESS INDEX>:

TSTVB 1\$,I

If the current value of the <SRC TABLE ADDRESS INDEX> is 2, and the <SRC TABLE> looks like the above table, the physical <SRC TABLE ADDRESS> would be 2\$.

## SETPSW

SETPSW <DATA>

Load the LSI processor status word with the value specified by  $\langle {\sf DATA} \rangle$ .

#### SETVEC

SETVEC <VECTOR ADDRESS>

Set the LSI-11 address specified by <VECTOR ADDRESS> to the expected trap routine.

## SKIP

SKIP [<DST ADDRESS>]

Go to the <DST ADDRESS>. If <DST ADDRESS> is not specified, go to the next test. If <DST ADDRESS> starts with the alpha character S, go to the next subtest.

## SUBTEST

SUBTEST

Increment the subtest counter.

## TYPSIZE

TYPSIZE

Use the contents of location BADDATA to determine the WCS module configuration and type a message and the number of WCS modules that will be tested. If any of the following conditions exist, the test stream is aborted and the NER (No Error Report) flag is set:

- a. WCS module count is zero
- b. bits 3-0 are nonzero
- c. 5th K of WCS is not present

```
PAMX=1
RAMX.SXT=2
```

RAMX.CXT=3

290

· FIFIDS ARRANGED ALPHARETICALLY

TRANK SIGN EXTENDED ACCORDING TO DE PRAME OFRO EXTENDED, OXT(L)=0

2511/ 2 5 52 5	- 0044014 544515	
BEN/=0,5,72,D NOP=0	BRANCH ENABLE	:NO BRANCH
Z=1		: ALU Z
		:LA<1>, PSL <c>, LA&lt;0&gt;</c>
ROR=2		: ALU C31. 0
C31=3		:CODE FROM ACCELERATOR
ACCEL=6		:(VAX MODE) *. ASRC+VSRC. ASRC+Q+D
DATA.TYPE=8		: 0NORMAL, 1QUAD OR DOUBLE
		; 2FIELD, 3ADDRESS
5110 004 O		: (-11 MODE) *, G CLASS, J CLASS+DM27
END.CP1=8 IR2-1=9		: ( VAX MODE) *. IR<2:1>
		;(-11 MODE) *, SM47+SM57+DM47+DM07, DST R=PC
PC.MODES=9 REI=0A		:(VAX MODE) MODE.LSS.ASTLVL. *. *
SRC.PC=CA		:(-11 MODE) SRC R=PC
IB.TEST=OB		: 0TS MISS. 1ERROR
18.1651-08		: 2-STALL, 3DATA OK
MUL = OC		:SC.NE.O. D<1:0>
SIGNS=OD		:Q<31>, D.NE.O, D<31>
INTERRUPT=OE		:AC LOW, INTERNAL INTERRUPT, INT SEQ
DECIMAL=OF		O, D BYTE O VALID DIGIT, D2-0 NEG SIGN
UTRAP=10		:MICROTRAP DISPATCH VECTOR
LAST.REF=11		;-FPD, NESTED ERROR, LOW TWO BITS:
LAST.REF-11		; OREAD INTERLOCK, 1READ, READ CHK
		: 2 WRITE, 3READ, WRITE CHK
EALU=12		:EALU N. EALU Z. SC.NEG.O. SS
SC=14		:SC<9:8>.NE.O. SC.GT.O. SC<9:5>.NE.O
ALU1-0=15		:RLCG EMPTY, ALU<1:0>=0, ALU<1>, ALU<0>
AC01-0-13		: (ALU BITS FROM PREVIOUS STATE)
STATE7-4=16		:STATE <7:4>
STATE3-0=17		:STATE <3:0>
D.BYTES=18		:SYTES 3. 2. 1. 0 OF D.NE.0
D3-0=19		:D <g:0></g:0>
PSL.CC=1A		:N.Z.V.C OF PSL
ALU=1B		:ALU N. ALU Z. IR<0>. ALU C31
PSL.MODE=1C		:-VA<31:30>CONSOLE. IS+CM. KERNEL
TB.TEST=1D		:PTE VALID, ALIGNED, QUAD, +
.5.1251-15		: CTRANSLATION OK. 1WR CHK AND M=0
		: 2ACCESS VIOLATION, 3TB MISS
		, a necess violation, s to miss

```
BMX/=0.3.82
                         : BMX TO ALU
                                          :A 0 IN THE BIT SELECTED BY SC<4:0>
        MASKED
        PC. 03. LB=1
                                          THE UNIESS REPORTHEN PC
        PACKED FL = 2
                                          *PACKED FLOATING
        LB=3
        10=4
        PC=5
        KMX+6
                                          :D OR 0
        RRMX = 7
                         .CONDITION CODES
CCK/=0.3.20.D
                                          : DEFAULT
        NOPEO
        LDAD . UBCC=1
                                          PRAMPLE ALLER FALL CONDITIONS
                                          LEGRCE V. NO FEFECT ON N. Z. C.
        SFT V=2
        TST 7=3
                                          HOLD 7 TE ALL MELO
                                          * SET N FROM AMXIDDEL
        DDD-4
                                          ISET N & 7 FROM ALL C FROM AMX CO.
                                         :SET N AND Z FROM ALUFUDT1
        N+Z ALU=5
                                          *OTHERS UNAFFECTED
        C AMXD=6
        INST. DEP=7
                         :CONSOLE & ID BUS CONTROL IF FS/1
CID/=0.4.42
                                          :DEFAULT, ALLOW AUTO IB READ
        NOP=1
        ACK=5
                                          ESET CONSOLE ACKNOWLEGE FLAG
        CONT = 7
                                          HOLEAR CONSOLE MODE
        READ SC=9
                                          EREAD ID BUS REG SELECTED BY SC
        READ. BMX = 0 B
                                          *READ TO BUS REG SELECTED BY UKMA
                                          :WRITE REG SELECTED BY SC
        WRITE.SC=0D
        WRITE - KMX = OF
                                          ·WRITE REG SELECTED BY LIKMX
DK/=0.4.88.0
        NOP=0
                                          :DEFAULT, HOLD
        LEFT2=1
                                          :DOUBLE SHIFT LEFT
                                          :DOUBLE SHIFT RIGHT
        RIGHT2=2
        DIV=4
                                          TIE NOT ALU CRY. SHIFT LEFT
                                          : ELSE LOAD FROM SHE
        IFFT=5
                                          :SHIFT LEFT
        RIGHT=6
                                          :SHIFT RIGHT
        SHF=8
                                          :LOAD SHE MUX. INTEGER FORMAT
        SHF. FL = 9
                                          :LOAD SHE MUX. UNPACKED FLOATING FORMAT
                                          :LCAD ACCELERATOR DATA FROM DF BUS
        ACCEL=0A
        BYTE.SWAP=OB
                                          :REFLECT BYTES AROUND BIT 16
```

292

```
293
```

```
; LOAD Q THRU DAL
        Q=0C
                                          :LOAD DAL[SC]
        DAL.SC=0D
                                          ; LGAD DAL[SHF VAL]
        DAL.SV=0E
                                          ; LOAD ZEROS
        CLR=OF
DT/=0,2,78,D
                         ; DATA TYPE
                         :CONTROLS AMX SIGN/ZERO EXTENDER, SHF AMOUNT,
                         CONDITION CODE SETTING, AND MEMORY REFERENCES
        LONG=0
                                          : DEFAULT
        WORD=1
        BYTE=2
                                          :INSTRUCTION DEPENDENT --
        INST.DEP=3
                                          ; ANY OF ABOVE, OR QUAD/DOUBLE
                                          : EXPONENT ALU
EALU/=0.3.13
        A = 0
        OR = 1
        ANDNOT=2
        B=3
        A+B=4
        A-B=5
        A+1=6
                                          ;-ABS(A-B)
        NABS.A-B=7
EBMX/=0.2.18
                         :EBMX TO EALU
                                          :DEFAULT
        FE=0
        KMX = 1
        AMX.EXP=2
                                          :SHIFT VALUE
        SHF. VAL=3
FEK/=0.1,24,D
                         :FE REGISTER CONTROL
                                          :DEFAULT, HOLD
        NOP=0
        LOAD=1
FS/=0.1.42
                         :FUNCTION SELECT FOR 43-46
        MCT=0
                                          : ENABLE MEMORY CONTROL
                                          ; ENABLE ID BUS AND CONSOLE CONTROL
        CID=1
                         :INTERRUPT AND EXCEPTION ACKNOWLEDGE
IEK/=0,2,30
        NOP=0
                                          :STROBE INTERRUPT REQUESTS
        ISTR=1
                                          :INTERRUPT ACKNOWLEDGE
        IACK=2
                                          : EXCEPTION ACKNOWLEDGE
        EACK=3
```

```
:IBUF CONTROL FUNCTIONS
IBC/=0.4,92,D
                                         : DEFAULT
        NOPEO
        STOP=1
        FLUSH=2
                                         :FLUSH IB AND LOAD IBA
        START=3
                                         :CLEAR BYTES 0,1 (-11 OPCODE)
        CLR.C.1=4
                                         :CLEAR BYTES 2.3 (-11 ISTREAM DATA)
        CLR.2.3=5
                                         :TRANSFER BRANCH DISPLACEMENT
        BDEST=7
                                         :CLEAR BYTE 0 (VAX OPCODE)
        CLR.0=0C
                                         :CLEAR BYTE 1 (VAX SPECIFIER)
        CLR. 1=0D
                                         :CLEAR BYTES 0-3 (-11 DP & DATA)
        CLR.0-3=0E
                                         :CLEAR BYTES 1-5 CONDITIONALLY
        CLR. 1-5. COND=OF
                                         : IF THERE IS NO SPECIFIER EVALUATION.
                                         : CLEAR NOTHING. IF A SELF-CONTAINED
                                         : SPECIFIER, CLEAR IT. IF IMMEDIATE.
                                         : ABSOLUTE, OR DISPLACEMENT, CLEAR THE
                                         : ISTREAM LITERAL.
                         : ID BUS ADDRESS
ID.ADDR/=0,6,58
                                         :SPECIFIER/LITERAL DATA FROM IB
        IBUF=0
                                 :RD
                                 :RD+WR :CURRENT TIME OF DAY ...
        DAY.TIME=1
                                         : MUST READ UNTIL STOPS CHANGING
                                         :SYSTEM IDENTIFICATION
        SYS. ID=3
                                 :RD
                                 :RD+WR :CONSOLE RECIEVE CONTROL/STATUS
        RXCS=4
                                         :CONSULE RECIEVE DATA BUFFER
                                 :RD
        RXDB=5
                                         : (TO-ID REGISTER)
                                        :CONSOLE TRANSMIT CONTROL/STATUS
                                 :RD+WR
        TXCS=6
                                         :CONSOLE TRANSMIT DATA BUFFER
        TXDB=7
                                 : WR
                                         : (FROM-ID REGISTER)
                                         :DATA PATH D/O REGISTERS (MAINT ONLY)
        DQ=8
                                 :WR
                                         :INTERVAL CLOCK NEXT PERIOD REGISTER
        NXT.PER=9
                                 :RO+WR :INTERVAL CLOCK CONTROL/STATUS
        CLK.CS=OA
                                         :CURRENT INTERVAL COUNT
        INTERVAL=OB
                                 :RD
                                 :RD+WR :CPU ERPOR/STATUS
        CES=0C
                                 :RD+WR :EXCEPTION & INTERRUPT CONTROL
        VECTOR=00
                                 :RD+WR :SOFTWARE INTERRUPT REGISTER
        SIR=OE
        PSL=OF
                                 :RD+WR :PROCESSOR STATUS LONGWORD
                                         :TRANSLATION BUFFER DATA
        TBUF = 10
                                         :TB ERROR/STATUS 0
        TBFR0=12
                                         :TB ERROR/STATUS 1
        TBER1=13
                                         :ACCELERATOR REGISTER #0
        ACC. 0=14
```

```
ACC. 2=16
                                          :ACCELERATOR REGISTER #2
        ACC.CS=17
                                          :ACCELERATOR CONTROL/STATUS
        SIL0=18
                                          :NEXT ITEM FROM SBI HISTORY
                                          :SEI ERROR REGISTER
        SBI.ERR=19
                                          :SBI TIMEOUT ADDRESS
        TIME.ADDR=1A
                                          : FAULT, STATUS
        FAULT=1B
        COMP = 1C
                                          :SBI SILO COMPARATOR
                                          :SB1 MAINTENANCE
        MAINT=1D
        PARITY=15
                                          :CACHE PARITY
        USTACK=20
                                          :MICROSTACK
        UBREAK=21
                                          :MICRO BREAK
        WCS.ADDR=22
        WCS.DATA=23
                                          :WRITING WCS COUNTS ADDRESS
                                  : WR
: ID BUS ADDRESSES CONTINUED.
                               ADDRESSES 24-3F "RE RAM LOCATIONS
        PCBR=24
                                          :PROCESS SPACE O BASE REGISTER
        P1BR=25
                                          :PROCESS SPACE 1 BASE REGISTER
                                          :SYSTEM SPACE BASE REGISTER
        SBR=26
        KSP=28
                                          : KERNEL STACK POINTER
        ESP=29
                                          :EXEC STACK POINTER
                                          :SUPERVISOR STACK POINTER
        SSP=2A
                                          JUSER STACK POINTER
        USP=28
        ISP=2C
                                          :INTERRUPT STACK POINTER
        FPDA=2D
        D.SV=2E
        0.SV=2F
                                          GENERAL TEMPS
        T0=30
        T1=31
        T2=32
        T3=33
        T4 = 34
        T5=35
        T6=36
        T7=37
        T8=33
        T9=39
        PCBB=3A
                                          ; PROCESS CONTROL BLOCK BASE
        SCBB=3B
                                          :SYSTEM CONTROL BLOCK BASE
        POLR=3C
                                          :PROCESS O LENGTH REGISTER
        P1LR=3D
                                          : PROCESS 1 LENGTH REGISTER
```

:ACCELERATOR REGISTER #1

:SYSTEM LENGTH REGISTER

295

ACC.1=15

SLR=3E

```
J/=0.13.0.+
                          ; NEXT MICRO WORD ADDRESS, DEFAULT IS THE
                          :FOLLOWING MICRO WOFD
                          :SYMBOLS ARE DEFINED BY ":"
KMX/=0.6.58
                          :CONSTANTS OR # FROM FK
                                           :#8 FROM FK
        .8=0
                                           #1 FROM FK
        .1=1
        .2=2
                                           :#2 FROM FK
        .3=3
                                           :#3 FROM FK
                                           :#4 FROM FK
        .4=4
        SP1.CON=5
                                           :SPECIFIER 1 CONSTANT
        SP2.CON=6
                                           :SECIFIER 2 CONSTANT (-11 MODE)
                                          ; OR ZEROS (VAX MODE)
        ZER0=6
        SC=7
                                           ;SC[9:0] FROM FK
                          :8 - 3F: CONSTANTS (1 CYCLE SETUP IF ALU IN ARITH MODE)
                                  ; DECIMAL VALUE OF CONSTANT
                                          :20
                                                   (AF,JL,MH)
        .14=8
        .A0=9
                                           :160
                                                   (AF.JL)
        .34=0A
                                          ;52
                                                   (AF)
        .28=03
                                           :40
                                                   (AF)
                                                   (AF, JL, MH, TF)
        .40=0C
                                           :64
        .50=00
                                           :80
                                                   (AF,MH)
        .3000=0E
                                          ;12288 (JL)
        .EF=OF
                                           :239
                                                   (JL)
        .80=10
                                           :128
                                                   (AF, JL, MH, TF)
        .8000=11
                                           :-32768 (AF)
        .FF=12
                                           :255
                                                   (MH.TF)
        .FFC0=13
                                           ;-256
                                                   (MH, AF, JL)
        .1E = 14
                                           :30
                                                   (AF)
        .3F=15
                                                   (MH, AF, TF)
                                           ;63
        .7F=16
                                          :127
                                          ; 7
                                                   (AF,MH)
        .7=17
        .F=18
                                           :15
                                                   (MH.CM.AF.TF)
        .10 = 19
                                                   (MH.AF.JL.TF)
                                           :16
        .FFE8=1A
                                           :-24
                                                   (MH, TF)
        .FFF0=1B
                                          ;-16
                                                   (CM.JL.TF.MH)
        .FFF8=1C
                                           ; - ė
                                                   (CM, TF, MH)
        .20=1D
                                          :32
                                                   (CM.JL.MH.TF)
                                                   (CM.AF.MH.TF)
        .30=1E
                                           : 48
        .18=1F
                                                   (MH, AF, TF)
                                           : 24
        .3FF=20
                                          :1023
                                                   (CM)
```

```
(CM.JL.TF.MH)
                                           ;12
        .C=21
                                           ;13
        .D=22
                                                     (TF)
                                            :31
                                                    (AF, JL, MH, TF)
         .1F=23
                                           :7936
                                                    (JL,MH)
         .1F00=24
                                            :176
        .B0=25
                                                     (MH)
                                                     (CM)
         .E003=26
         .7C=27
                                            :124
                                                     (AF)
                                            ;-32
                                                    (UL)
         .FFE0=28
                                            :96
                                                    (TF)
         .60=29
;
        SPARE=2A
        .DFCF=2B
                                                     (JL)
                                            :-17
                                                     (AF)
         .FFEF=2C
        .FFF1=2D
                                            :-15
                                                     (AF)
         .19=2E
                                            :25
                                                    (AF)
                                            ;-7
                                                    (AF)
         .FFF9=2F
: KMX DEFINITION CONTINUED
                                                    (MH,JL,TF)
        .FFFF=30
                                            ;-1
        .88=31
                                            :136
                                                     (AF)
                                            ; ?
                                                    (TF)
        .3030=32
        .F0=33
                                            :240
                                                    (TF)
                                           :192
                                                    (TF,MH)
         .C0 = 34
                                            ;6
                                                     (CM, JL, TF)
        .6=35
                                            :9
        .9=36
                                                     (CM)
                                                    (CM)
         .FFF6=37
                                            :-10
                                           ;-11
        .FFF5=38
                                                     (CM)
                                                    (CM.AF.TF)
                                            :26
         .1A=39
                                                    (CM.MH)
         .24=3A
                                            : 36
         .1B=3B
                                           :27
                                                    (CM, AF, TF)
         .FFFC=3C
                                            :-4
                                                    (CM.TF.MH)
                                                    (AF,MH)
         .A=3D
                                            :10
                                                    (AF.TF)
                                            :126
         .7E=3E
        SPARE=3F
                                   : MEMORY CONTROL
MCT/=02.6.42.D
                                           :TEST TBUF WITH READ CHECK
        TEST.RCHK=00
                                            :NEITHER CPU NOR IB GETS MEM CYCLE
        MEM. NOP = 02
                                            :TEST TOUR WITH WRITE CHECK
        TEST.WCHK=04
        WRITE.V.NOCHK=CA
                                           :WRITE, INHIBIT TRAPS
        WRITE.V.WCHK=CC
                                            :WRITE, NORMAL VARIETY
                                           :INTERLOCK WRITE, VIRTUAL ADDRESS
        LOCKWRITE.V.XCHK=0E
```

```
:READ, NORMAL VARIETY
        READ. V. RCHK=10
                                         :READ, INHIBIT TRAPS
        READ. V. NOCHK=12
                                         :READ FOR MODIFY
        READ. V. WIRK=14
                                         TREAD, CHECK CONTROLLED BY IBUFFER
        READ. V. IBOHK=16
                                         IBEGIN NEW INSTRUCTION STREAM
        READLY.NEWPC=18
                                         : DATA GOES TO INSTRUCTION BUFFER
                                         INTERLOCK READ. INHIBIT CHECK
        LOCKREAD, V. NOCHK=1A
                                         :INTERLOCK READ, NORMAL VARIETY
        LOCKREAD. V. WCHK=10
                                         :STOP ALL 381 ACTIVITY
        SBI.HSLD=20
                                          :RESET SBI
        SBI.HOLD+UNUAM=22
                                          :CLEAR JACHE ENTRIES
        INVALIDATE=24
                                          :MICRODIAGNOSTIC FORCE VALID
        VALIDATE=26
        EXTWRITE, P=28
                                          SEXTENDED WRITE TO CLEAR MOS ERRORS
        WRITE . P=2A
                                          TREETE, PHYSICAL
                                          :INTERLOCK WRITE, PHYSICAL
        LOCKWRITE, P=2E
                                         PREAD. PHYSICAL
        READ P=32
                                          EINTERRUPT SUMMARY READ
        READ. INT. SUM=36
                                         INTERIOCK READ, PHYSICAL
        LOCKREAD. P=3A
        ALLOW. IB. READ=3E
                                          :GIVE 1B A CYCLE IF IT WANTS ONE
MSC/=0.4.26.D
                                         LEEFAULT
        NOP=0
                                         :CREATE NEW PSL FOR CHM
        CHK.CHM=01
                                         :UTRAP IF ALU<15>=1. ALU<14:7>=0
        CHK.FLT.SPR=02
        CHK.ODD.ADDR=03
                                          :THIS STATE IS INSTRUCTION DECODE
        IR0=04
        LOAD.STATE=05
        LOAD.ACC.CC=06
                                         :TAKE CONDITION CODES FROM ACCELERATOR
                                         *LAND FOR RIDG STACK)
        READ.RLOG=07
        CLR. FPD=08
                                         :CLEAR PSL<FPD> BIT
        SET.FPD=03
                                         :SET SAME
                                         :CLR NESTED ERROR FLAG IN CPU STATUS
        CLR. NEST, FRR = CA
        SET.NEST.ERR=OB
                                          :SET SAME
                                          :OF UNALIGNED DATA REFERENCE
        SECOND. REF = 00
        RETRY.NO.TRAP=00
                                         :APPLY SAVED CONTEXT, INHIBIT TRAPS
                                          :APPLY SAVED CONTEXT TO THIS REF
        RETRY.TRAP=CE
                                          :ALLOW USE OF FULL 32-BIT ADDRESS
        INH.CM.ADDR=OF
FCK/=0.3.32.D
                         :ADDRESS COUNT CONTROL
```

:DEFAULT

NDP=0

CLR.SD+SS=7

```
PC VA=1
        PC_IBA=2
        VA+4=3
                                          :VA VA+4
        PC+1=4
                                          ;FC_FC+1
        PC+2=5
                                          :PC PC+2
                                          :PC PC+4
        PC+4=6
        PC+N=7
                                          ;PC_PC+N, N IS DETERMINED BY INSTR BUFFER
QK/=0.4.51.D
        NOP=0
                                          :DEFAULT, HOLD
        1 FFT2=1
                                          :DOUBLE SHIFT LEFT 2
        RIGHT2=2
                                          :DOUBLE SHIFT RIGHT 2
        LEFT=5
        RIGHT=6
        SHF=8
                                          ; LCAD SHE, INTEGER FORMAT
        SHE.FL=9
                                          :LOAD SHE, UNPACKED FLOATING FORWAT
        DEC.CON=OA
                                          ;DECIMAL CONSTANT = 6'S IN EACH RIBBLE
                                          : FOR WHICH ALU CRY OUT IS FALSE
        ACCEL=08
                                          :LOAD ACCELERATOR DATA FROM DE BUS
        D=0C
        ID=0E
                                          :LOAD ID BUS
        CLR=OF
                                          : LCAD ZERO
RAMX/=0.1.77.D
                         :DATA PATH MIXER TO AMX
                                          :DEFAULT
        D=0
        Q = 1
RBMX/=0.1.77
                         :DATA PATH MIXER TO EMX. SAME BIT AS RAMX
        Q=0
        D = 1
SCK/=0.1.23.D
                         :SC REGISTER CONTROL
        NOP=0
                                          :DEFAULT, HOLD
        LOAD=1
                                          :LCAD SMX<09:00>
SGN/=0.3,48,D
                         :SIGN CONTROLS
        NOP=0
                                          :DEFAULT
        LOAD. SS=1
                                          :SS ALUK15>
        SS.FRGM.SD=2
                                          ;$$<u></u>[$D
        NOT.SD=3
                                          :SD_NOT SD
        SD.FRCM.SS=4
                                          :50 58
        SS.XGR.ALU=5
                                          ;SD_ALU<15>, SS_SS.XOR.ALU<15>
        ADD.SUB=6
                                          ;SD_ALU<15>. SS_SS.XOR.ALU<15>.XCR.IR<1>
```

:CLEAR BOTH

```
SHF/=0.3.85.0
                         :ALU SHIFTER CONTROLS
                                          :DEFAULT, SHF ALU
        ALU=0
                                          :SHF ALU(L1). INSERT SI CNTL
        LEFT=1
                                          :SHF ALU(R1), INSERT SI CNTL
        RIGHT=2
                                          :SHF ALU(DT: LO.L1.L2.L3). INSERT O
        ALU.DT=3
        RIGHT2=4
                                          :SHF ALU(R2), INSERT SI CNTL
        LEFT3=5
                                          :SHF ALU(L3)
                         :SHIFT INPUT CONTROLS
SI/=3.3.55.D
                                                   SHF
                                                           D
                                                  PSL<N>
                                                                   ALU C31
        DIVD=0
                                                           031
                                                                   Q31
                                                   ALU 31
                                                           QO
        ASHR = 1
                                                                   D31
        ASHL=2
                                                   0
                                                           ٥
        ZERO=3
                                                   0
                                                           0
                                                                   ٥
        SPARE=4
                                                  031
                                                           031
                                                                   ALU C31
        DIV=5
                                                   0
                                                           ALU 0.1 0
        MUL+=6
                                                           ALU 0,1 1
        MUL-=7
                         :MIXER TO SC
SMX/=0.2.16
                                          :FALU <9:0>
        EALU=0
                                          :FE<9:0>
        FE=1
        ALU=2
                                          :ALU<09:00>
        ALU.EXP=3
                                          :ALU<14:07>
                                  :SCRATCH PAD OPCODE, 7 BITS
SPO/=0.7,35.D
        NOP=0
                                          :DEFAULT
                                          :LOAD LC. ADR=SC[03:00]
        LOAD.LC.SC=6
        WRITE.RC.SC=7
                                          :WRITE RC. ADR=SC[03:00]
SPO.AC/=0,4,38
                         :4 FUNCTION BITS OF SPO FIELD
        LOAD. LAB=1
                                          :LOAD LA. LB FROM R(ACN)
                                          : LOAD LA_RN, HOLD LB
        LOAD.LA=2
        WRITE.RAB=3
                                          :WRITE RA, RB (ACN)
                         :AC NUMBER IN SPO FIELD
SPD.ACN/=0.3,35
                                                                   RB
                                  :VAX MODE
                                                   RA
                                          ; 0
                                                  SP1 R
                                                                   SP1 R
        SP1.SP1=0
        SP2.SP2=1
                                          : 1
                                                   SP2 R
                                                                   SP2 R
```

80

```
SP2.SP1=2
                                                    SP2 R
                                                                     SP1 R
        PRN=3
                                           ; 3
                                                    PRN
                                                                     PRN
        PRN+1=4
                                           : 4
                                                    PRN+1
                                                                     PRN+1
        SC=5
                                           :5
                                                    SC<03:00>
                                                                     SC<03:00>
        SP1+1=6
                                           : 6
                                                   SP1 R+1
                                                                     SP1 R+1
SPO.ACN11/=0.3.35
                          :AC NUMBER IN SPO FIELD -- 11 MODE
                                  :-11 MODE
                                                    RA
                                                                     RВ
        SRC.SRC=0
                                                   SRC R
                                                                    SRC R
                                           :0
        DST.DST=1
                                           ; 1
                                                   DST R
                                                                    DST R
        DST.SRC=2
                                           : 2
                                                    DST R
                                                                    SRC R
        :SRC.SRC=3
                                           : 3
                                                   SRC R
                                                                     SRC R
        SRC. OR. 1=4
                                           : 4
                                                   SRC R .OR. 1
                                                                    SRC R .OR. 1
        SC=5
                                           :5
                                                   SC<03:00>
                                                                     SC<03:00>
SPO.R/=0.3.39
                          :SCRATCH PAD FUNCS WITH LOW 4 BITS OF SP AS ADR
        LOAD.LC=2
                                           :LOAD LC. ADR=SPO.RN
        WRITE.RC=3
                                           :WRITE RC
        LOAD. LAB=4
                                           :LOAD LA. LB
        WRITE.RAB=5
                                           :WRITE RA. RB
                                           :LOAD LA, LB[R1], AND WRITE RC[RN]
        LUAD. LABI. WRITE.RC=6
                                           :LOAD LC[RN]. AND WRITE RA. RB[R1]
        LOAD. LC. WRITE. RAB1=7
SPO.RAB/=0.4.35
                          :RA/RB LOCATIONS
        R0 = 0
        R1 = 1
        R2=2
        R3=3
        R4=4
        R5=5
        R6=6
        R7≈7
                                  :R12 = ARGUMENT LIST POINTER
        AP=OC
        FP=0D
                                  :R13 = STACK FRAME POINTER
        SP=0E
                                  :R14 = STACK PGINTER
                                  :R15 = PC. TO SOFTWARE, SCRATCH TO UCODE
        R15=0F
                          :RC LOCATIONS
SPO.RC/=0.4.35
        T0=0
        T1=1
        T2=2
        T3=3
```

```
T4=4
             15=5
              T6=6
             T7=7
                                               : MEM MGMT SAVES LC HERE
             LC.SV=8
             VA.SV=9
             PTE.VA=OA
             PTE.PA=OB
             PC.SV=0C
             SC.SV=00
             VA.REF=0E
             MBIT. VA=CF
              PTE.MASK=OF
     SUB/=0.2,64.D
                              :SUBROUTINE CONTROL
             NOP=0
                                               :DEFAULT
                                               :PUSH UPC OF THIS MICROINSTRUCTION
             CALL=1
                                               : ONTO USTACK
                                               :"OR" TOP OF USTACK TO UPC
             RET=2
                                               : AND POP USTACK
302
                                               :REPLACE LOW 8 BITS OF NEXT
             SPEC=3
                                               ; UPC WITH SPECIFIER DECODE FROM
                                               : INSTRUCTION BUFFER
     VAK/=0.1,25,D
                                               :DEFAULT
              NOP=0
                                               : LOAD VA
              LOAD=1
     :ALU_O... THRU ALU_D.AND...
                      "AMX/RAMX.OXT.DT/LONG.ALU/A"
     ALU O(A)
                      "ALU/@1.AMX/RAMX.GXT.LONG.BMX/REMX.RBMX/D"
     ALU_O[ ]D
                      "AMX/RAMX.OXT.DT/LONG.RBMX/D.BMX/RBMX.ALU/A-B"
     ALU O-D
                      "AMX/RAMX.OXT.DT/LONG.RSMA/D.EMX/RBMX.ALU/A-B-1"
     ALU 0-D-1
                      "AMX/RAMX.OXT.DT/LONG.REMX/D.EMX/RBMX.ALU/A+B"
     ALU 0+D
                      "AMX/RAMX.OXT.DT/LONG.KMX/@1.80X/KMX.ALU/A-B"
     ALU_O-K[]
                      "KMX/@1.BMX/KMX,AMX/RAWX.OXT,DT/LONG,ALU/A-B-1"
     ALU 0-K[ ]-1
                      "KMX/@1_BMX/KMX,AMX/RAMX.CXT,DT/LONG,ALU/A+B"
     ALU 0+K[]
                      "KMX/@1.BMX/KMX.AMX/RAMX.OXT.DT/LONG.ALU/A+B+1"
     ALU_0+K[]+1
```

```
Ö
```

```
ALU 0+18+1
                 "AMX/RAMX.OXT.DT/LONG.EMX/LS.ALU/A+B+1"
ALU 0+LC
                 "AMX/RAMX.OXT DT/LONG.BMX/LC.ALU/A+R"
ALU 0-LC
                 "AMX/RAMX.OXT.DT/LONG.EMX/LC.ALU/A-B"
ALU 0+1C+1
                 "AMX/RAMX.OXT.DT/LONG.EMX/LC.ALU/A+B+1"
ALU 0-LC-1
                 "AMX/RANX.OXT.DT/LONG.BMX/LC.ALU/A-B-1"
ALU 0+MASK+1
                 "AMX/RAMX.OXT.DT/LONG.EMX/MASK.ALU/A+B+1"
ALU 0+0
                 "AMX 'RAMX, OXT, DT/LONG, RBWX/D, BMX/RBMX, ALU/A+B"
                 "AMX/RAMX.OXT.DT/LONG.REMX/Q.BMX/REMX.ALU/A-B"
ALU D-Q
                 "AMX/RAMX.OXT.DT/LONG.RSMX/Q.EMX/RBMX.ALU/A-B-1"
ALU 0-0-1
ALU 0+0+1
                 "AMX/RAMX.CXT.DT/LONG.RBMX/Q.BMX/RBMX.ALU/A+B+1"
ALU -1
                 "AMX/RAMX.OXT.DT/LONG.ALU/NOTA"
ALU D
                 "RAMX/D.AMX/RAMX.ALU/A"
ALU D. OXT[]
                 "RAMX/D.AMX/RAMX.OXT.DT/@1.ALU/A"
ALU D. OXT [ ]. AND . K [ ]
                         "RAMX/D.AMX/RAMX.CXT.DT/@1.KMX/@2.BMX/KMX.ALU/AND"
ALU D. OXT[]. ANDNOT.K[]
                         "ALU/ANDNOT, AMX/RAMX, OXT, DT/@1, RAMX/D, BMX/KMX, KMX/@2"
ALU D.OXT ] +K [] "RAMX /D.AMX /RAMX .OXT.DT /@1.KMX /@2.BMX /KMX .ALU /A+B"
ALU D.OXT[]-K[] "RAMX/D.AMX/RAMX.OXT.DT/@1.KMX/12.BMX/KMX.ALU/A-B"
                 "ALU/A-B.AMX/RAMX.OXT.DT/&1.RAVX/D.BMX/LC"
ALU D.OXT[]+LC
                 "ALU/A+B.AMX/RAMX.OXT.DT/@1.RAMK/D.BMX/RBMX.RBMX/Q"
ALU D.OXT[1+Q
                 "RAMX/D.AMX/RAMX.OXT.DT/@1.RSMX/O.BMX/RBMX.ALU/A-B"
ALU D.OXT[]-Q
ALU D. AND. KI
                 "RAMX/D.AMX/RAMX.KMX/$1.BMX 'KMX.ALU/AND"
                 "RAMX/D.AMX/RAMX.EMX/MASK.ALU/AND"
ALU D. AND. MASK
ALU D. ANDNOT. K[]
                         "RAMX/D.AMX/RAMX.KMX @1.BMX/KMX.ALU/ANDNOT"
                         "RAMX/D.AMX/RAMX.EMX/MASK.ALU/ANDNOT"
ALU D. ANDNOT. MASK
ALU D. ANDNOT. Q
                 "RAMX / D. AMX / RAMX . RBMX / Q. BMX / RBMX . A LU/ANDNOT "
:ALU D(B)... THRU ALU D.XDR...
ALU D(B)
                 "RBMX /D. BMX /RBMX . ALU /B"
ALU_D[ 1K[ 1
                 "RAMX/D.AMX/RAMX.KMX/@2.BMN/KMX.ALU/@1"
ALU D+K[]
                 "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A+B"
ALU_D-K[]
                 "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMK.ALU/A-B"
ALU D+K()+1
                 "RAMX /D. AMX /RAMX . KMX /@1 . EMX / NMX . ALU / A+B+1"
ALU_D-K[]-1
                 "RAMX/D.AMX/RAMX.KMX/@1.SMX/KMX.ALU/A-B-1"
ALU D-LB
                 "RAMX/D.AMX/PAMX.BMX/LB.ALU/A-B"
ALU_D[ ]LC
                 "RAMX/D.AMX/RAMX.BWX/LC.ALU/@1"
ALU D+LC
                 "RAMX/D.AMX/RAMX.BMX/LC.ALU.A+S"
ALU D-LC
                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/A+B"
ALU_D-LC-1
                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/A-B-1"
ALU_D+LC+PSL.C
                 "RAMX/D, AMX/RAMX, BMX/LC, ALU/A+B+PSL.C"
                 "RAMX/D.AMX/RAMX.KUX/@1.8MX/RMX.ALU/OR"
ALU D.OR.K[]
ALU_D.GR.LC
                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/OR"
```

ALU_LC

"BMX/LC.ALU/B"

```
ALU D. GRNOT, MASK
                          "PAMY /D AMX / RAMY BMX / MASK ALLE/ORNOT"
ALU D.OR.Q
                 "DAMY /D AMY /PAMY BRMY /O BMY -RRMX ALLI/OP"
ALU DI 10
                 "PAMY /D AMY /PAMY PPMX /C BMX / R SMX ALLI /@1"
                 "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/A+B"
ALU D+0
                 "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/A-B"
ALU D-O
                 "RAMX /D. AMX /RAMX . RBMX / Q. BMX / RBMX . ALU / A+B+1"
ALU D+0+1
                 "RAMX/D.AMX/RAMX.RBMX/O.BMX/RBMX.ALU/A-B-1"
ALU D-0-1
                 "ALH/A+B+PSL.C.AMX/RAMX.BMX/RBMX.RBMX/O.RAMX/D"
ALU D+Q+PSL.C
ALU D. SXT[]
                 "PAMX/D AMX/PAMX.SXT.DT/@1.ALU/A"
                          "RAMX /D. AMX RAMX.SXT.DT/@1.KMX/@2.BMX/KMX.ALU/AND"
ALU D. SXTI 1. AND. KI 1
ALU D.SXT[]+K[] "RAMX/D.AMX/RAMX.SXT.DT/@1.KMX/@2.BMX/KMX.ALU/A+B"
                 "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/XOR"
ALU D. XOR.K[]
ALU D. XOR. LC
                 "PAMX /D AMX /PAMX . BMX / LC. ALU / XOR"
                 "RAMX /D. AMX /RAMX . REMX /Q. BMX / RBMX . ALU / XOR"
ALU D. XOR.Q
                 "RAMX/D.AMX/RAMX.SPO.R/LOAD.LAB.SPO.RAB/@1.BMX/LB.ALU/XOR"
ALU D. XOR. R[]
ALU D. XOR. RC[] "RAMX/D. AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/XOR"
:ALU K ... THRU ALU PC ...
ALU K[1
                 "KMX /@1 . BMX /KMX . ALU / B"
ALU LA
                 "AMX/LA.ALU/A"
ALU LA.AND.K[] "AMX/LA.KMX/@1.BMX/KMX.ALU/AND"
                          "AMX/LA.KMX/@1.BMX/KMX,ALU/ANDNOT"
ALU LA.ANDNOT.K[]
                          "AMX/LA.BMX/MASK.ALU/ANDNOT"
ALU LA.ANDNOT.MASK
ALU LA. XOR. LC
                 "AMX/LA.BMX/LC.ALU/XCR"
                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/@1"
ALU LA! 1D
ALU LA-D
                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/A-B"
ALU_LA-D-1
                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/A-B-1"
                 "AMX/LA.KMX/@1.BMX/KMX.ALU/A+B"
ALU LA+K[]
                 "AMX/LA, KMX/@1.BMX/KMX.ALU/A-B"
ALU_LA-K[]
                 "ALU/A+S+1.AMX/LA.BMX/KMX.KMX/@1"
ALU LA+K[ ]+1
ALU_LA+K[].RLOG "AMX/LA.KMX/@1.8MX/KMX.ALU/A+B.RLOG"
ALU LA-KII.RLOG "AMX/LA,KMX/@1,BMX/KMX,ALU/A-B.RLOG"
ALU_LA[]LB
                 "AMX/LA.EMX/LB.ALU/@1"
                 "ALU/A+B,AMX/LA,BMX/LC"
ALU LA+LC
                 "AMX/LA.RBMX/Q.BMX/RBMX.ALU/@1"
ALU LA[10
ALU_LA+Q
                 "ALU/A+B,AMX/LA,BMX/RBMX,RBMX/Q"
ALU LA-O
                 "ALU/A-B.AMX/LA.BMX/RBMX.RBMX/Q"
                 "ALU/A-B-1, AMX/LA, BMX/RBMX, RBMX/Q"
ALU LA-Q-1
ALU_LB
                 "BMX/LB.ALU/B"
```

```
ALU NOT.D
                 "ALU/NOTA.AMX/RAMX,RAMX/D"
ALU_NOT.RC[]
                "SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.AMX/RAMX.OXT.DT/LONG.ALU/ORNOT"
ALU PACK. FP
                "BMX/PACKED.FL.ALU/B"
ALU PC
                "BMX/PC.ALU/B"
:ALU Q... THRU CACHE ...
ALU_Q
                "RAMX/Q,AMX/RAMX,ALU/A"
ALU Q.OXT[]
                 "RAMX/Q.AMX/RAMX.OXT.DT/@1.ALU/A"
ALU_Q.OXT[].ANDNOT.K[]
                         "ALU/ANDNOT.AMX/RAMX.OXT.DT/@1.RAMX/Q.BMX/KMX.KMX/@2"
                         "ALU/OR,AMX/RAMX.OXT,DT/@1,RAMX/Q,BMX/KMX,KMX/@2"
ALU_Q.OXT[].OR.K[]
ALU_Q.OXT[].OR.D
                         "ALU/OR.AMX/RAMX.OXT.DT/@1.RAMX/Q.BMX/RBMX.RBMX/D"
ALU_Q.OXT[]+D
                "ALU/A+B, AMX/RAMX.OXT, CT/@1, BMX/RBMX, RBMX/D.RAMX/Q"
ALU_Q.OXT[]+D+1 "ALU/A+B+1.AMX/RAMX.OXT.DT/@1.BMX/RBMX.RAMX/Q.RBMX/D"
ALU_Q.OXT[]+K[] "ALU/A+B,AMX/RAMX.OXT,DT/@1,RAMX/Q.BMX/KMX,KMX/@2"
ALU Q.OXT[]-K[] "ALU/A-B.AMX/RAMX.OXT.DT/@1.RAMX/Q.BMX/KMX.KMX/@2"
ALU Q. AND. K[]
                "RAMX/Q.AMX/RAMX.KMX/@1.BMX/KMX.ALU/AND"
ALU Q. ANDNOT. MASK
                         "RAMX/O.AMX/RAMX.EMX/MASK.ALU/ANDNOT"
ALU_Q.ANDNOT.K[]
                         "RAMX/Q,AMX/RAMX,KMX/@1,BMX/KMX,ALU/ANDNOT"
ALU_Q(B)
                 "RBMX/Q.BMX/RBMX.ALU/6"
ALU_Q[ ]D
                 "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/@1"
ALU Q-D
                 "RAMX/Q.AMX/RAMX, RBMX/D, BMX/RBMX, ALU/A-B"
ALU 0-D-1
                 "ALU/A-B-1.AMX/RAMX.RAMX/Q.BMX/RBMX.RBMX/D"
                "RAMX/Q, AMX/RAMX, KMX/@1, BMX/KMX, ALU/A+B"
ALU_Q+K[]
                 "RAMX/Q,AMX/RAMX,KMX/@1,BMX/KMX,ALU/A-B"
ALU_Q-K[]
                "ALU/A+B+1,AMX/RAMX,RAMX/Q,BMX/KMX,KMX/@1"
ALU Q+K[]+1
                 "RAMX/O.AMX/RAMX, BMX/LB, ALU/A+B"
ALU_Q+LB
ALU Q-LB
                "RAMX/O.AMX/RAMX.BMX/LB.ALU/A-B"
                 "RAMX/Q.AMX/RAMX,BMX/LB,ALU/A+B+1"
ALU_Q+LB+1
                "RAMX/Q.AMX/RAMX.BMX/LC.ALU/A+B"
ALU_Q+LC
                "RAMX/Q.AMX/RAMX.BMX/LC.ALU/A-B"
ALU_Q-LC
                "ALU/A+B+1.AMX/RAMX.RAMX/Q.BMX/LC"
ALU Q+LC+1
                "ALU/A+B, AMX/RAMX, RAMX/Q, BMX/MASK"
ALU_Q+MASK
                "ALU/A-B-1, AMX/RAMX, RAMX/Q, BMX/MASK"
ALU_Q-MASK-1
                "RAMX/Q.AMX/RAMX, KMX/@1, BMX/KMX, ALU/OR"
ALU_Q.DR.K[]
ALU_Q.OR.LC
                "RAMX/Q,AMX/RAMX,BMX/LC,ALU/DR"
ALU_Q.ORNOT.K[] "ALU/ORNOT, AMX/RAMX, RAMX/Q, BMX/KMX, KMX/@1"
                "ALU/A,AMX/RAMX.SXT,DT/@1,RAMX/Q"
ALU_Q.SXT[]
ALU_Q.SXT[].ANDNOT.K[] "ALU/ANDNOT,AMX/RAMX.SXT,RAMX/Q.BMX/KMX.KMX/@2.DT/@1"
ALU_Q.SXT[]+K[] "RAMX/Q.AMX/RAMX.SXT.DT/@1.KMX/@2.BMX/KMX.ALU/A+B"
ALU Q.SXT[]+LB "RAMX/Q.AMX/RAMX.SXT,DT/@1,EMX/LB,ALU/A+B"
```

```
ALU Q.SXT[]+PC "RAMX/G.AMX/RAMX.SXT.DT/@1.SMX PC.ALU/A+B"
                 "RAYX/Q.AMX/RAMX.BMX/RBMX.RBMX.D.ALU/XOR"
ALU Q. XOR.D
                 "RAMX/G. AMX/RAMX.KVK/&1.EVX/KMX.ALU/XOR"
ALU Q. YOR.KIT
ALU Q. XOR LC
                 "RAMX/O.AMX/RAMX.BMX/LC.ALU.XOR"
                 "SPO.R/(OAD.LAB.SPO.RAB/@1.AMX/LA.ALU/A"
ALU RII
ALU RÍÍ, AND KIT "SPOLRZICAD, LAR SPOLRABZ®1, AMX, LA LKMX/@2, BMX/KMX, ALUZAND"
                         "SPO.R/LOAD. LAB.SPO.RAB/@1.AMX/LA.BMX/MASK.ALU/ANDNOT"
ALU RIT ANDNOT MASK
                 "SPO AC/LOAD LAB.SPO.ACN11/DST.DST.AMX/LA.ALU/A"
ALU R(DST)
                "SPO.R/LOAD.LAB.SPO.RAP/@1.AMX/LA.KMX/@2.BMX/KMX.ALU/OR"
ALU RII.OR.KII
ALU RII DENOT KI] "ALU/ORNOT AMX/LA BMX/KMX.SPO.R/LOAD.LAB.SPO.RAB/@1.KMX. 22"
ALU RI 1. XOR. KI 1 "SPO. R/LOAD. LAB. SPJ. RAB/$1. ANX/LA. KMX/$2. BMX/KMX. ALU/XOR"
                 "SPO.R/LOAD.LC.SPO.RC/91 SMX/LC.ALU/B"
ALU RC[]
                 "SPO/LOAD. LC.SC. BMX/ LC. ALU/5"
ALU RC(SC)
                         "SPO.AC/LOAD.LAE,SPO.ACN/SP1.SP1.AMX/LA.KMX/@1.BMX/kMX.ALU/A+B.RLOG"
ALU R(SP1)+K[].RLOG
                 "VAK/NOP.MCT/WRITE.V.WCHK.DT/@1.DK/NOP"
CACHE DIT
                 "VAK/NOP.MCT/WRITE.V.WCHK.MSC/@1.DK/NOP"
CACHELLD
                         "VAK/NOP.MCT/WRITE.V.WCHK.DT/INST.DEP.DK/NOP"
CACHE D. INST. DEP
CACHE DITINDCHK "VAK/NOP.MCT/WRITE.V.NCCHK.DT/@1.DK/NOP"
                 "VAK/NCP.MCT/WRITE.P.DT/@1.DK/NGP"
CACHE, P DI
                 "VAK/NOP.MCT/LOCKWRITE.V.XCHK.DT/@1.DK/NOP"
CACHE DI ] . LK
:D O. . THRU D CACHE ...
D 0
                 "DK/CLR"
                 "AMX/RAMX.OXT.DT/LONG.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU.DK'SHF"
ກີດ-ກ
                 "AMX, RAMX, DXT, DT/LONG, MMX @1.BMX/KMX, ALU/A+B+1.SHF/ALU.DK/SHF"
D 0+K[]+1
                 "AMX/RAMX.OXT.DT/LCNG.BMX/LC.ALU/A+B+1.SHF/ALU.DK/SHF"
D 0+LC+1
                 "AMX, RAMX.OXT, DT/LONG, RBWX/Q. BMX/RBMX.ALU/A-B.SHF/ALU.DK/SHF"
0-0
                 "DK/ACCEL.ACE/SYNC"
D ACCELASYNC
                 "SHE/A_U.DK/SHE"
D ALU
                 "SHF/LEFT.DK/SHF"
D ALU, LEFT
                 "SHE/ALU.DT.DT/LONG.DK/SHE"
D ALU. LEFT2
                 "SHE/!EFT3.DK/SHE"
D ALU. LEFT3
                 "SHE/RIGHT.DK/SHF"
D ALU.RIGHT
                 "SHE/RIGHT2.DK/SHF"
D. ALU. RIGHT2
D ALU(FRAC)
                 "SHF/ALU.DK/SHF.FL"
D BLANK
                 "D K[.20]"
                 "VAK/NOF MCT/READ.V. RCHK.DT/81,DK/NOP"
DI 1 CACHE
                "VAK/NOP.MCT/READ.V.RCHK, MSC/@1.DK/NOP"
D CACHE[1
DIT CACHE. IBCHK "VAK/NOP.MCT/READ.V. IBCHK.DT/@1.DK/NOP"
```

```
D CACHE. INST. DEP
                         "VAK/NOP, MCT/READ.V. IBCHK, DT/INST. DEP, DK/NOP"
D_CACHE.LK[]
                "VAK/NOP, MCT/LOCKREAD. V. WCHK, MSC/@1, DK/NOP"
D[]_CACHE.LK
                "VAK/NOP, MCT/LOCKREAD. V. WCHK. DT/@1. DK/NOP"
D[]_CACHE.NOCHK "VAK/NOP.MCT/READ.V.NOCHK.DT/@1.DK/NOP"
D[]_CACHE.P
                "VAK/NOP.MCT/READ.P.DT/@1,DK/NGP"
D[]_CACHE.WCHK
                "VAK/NOP.MCT/READ.V.WCHK.DT/@1.DK/NOP"
D CACHE. WCHK[]
                "VAK/NOP.MCT/READ.V.WCHK.MSC/@1.DK/NOP"
:D DAL ... THRU D D ...
D DAL.HORM
                "DK/DAL.SV"
D. DAL.SC
                "DK/DAL.SC"
                "RAMX/D.AMX/RAMX.OXT.DT/@1.ALU/A.SHF/ALU.DK/SHF"
D D.OXT[]
                         "RAMX/D.AMX/RAMX.OXT.DT/@1.KMX/@2.BMX/KMX.ALU/ANDNOT.SHF/ALU.DK/SHF"
D_D.OXT[].ANDNOT.K[]
                "RAMX/D.AMX/RAMX.OXT.DT/@1,KMX/@2,BMX/KMX.ALU/A+B.SHF/ALU.DK/SHF"
D D.0XT[]+K[]
                "RAMX/D.AMX/RAMX.GXT.DT/@1.RBMX.Q.BMX/REMX.ALU/OR.SHF/ALU.DK/SHF"
D D.OXTII.OR.O
D D.OXT[]+Q
                "ALU/A+B.AMX/RAMX.OKT.DT.@1.BMX/RBMX.RBMX/Q.D.ALU"
                "RAMX/D.AMX/RAMX.OXT.DT/@1.BMX/RBMX.ALU/A+B+1.D_ALU"
D D.0XT[]+0+1
D_D.OXT[].XOR.Q "DK/SHF.ALU/XOR.SHF/ALU.AMX/RAMX.OXT.RAMX/D.DT/@1.RBMX/Q.BMX/RBMX"
D D.OXT[].XOR.RC[]
                         "RAMX/D,AMX/RAMX.DXT,DT/@1,SPO.R/LOAD.LC,SPO.RC/@2,BMX/LC,ALU/XOR.SHF/ALU.DK/SHF"
                "RAMX/D.AMX/RMAX.KMX/@1.BMX/KMX.ALU/AND.SHF/ALU.DK/SHF"
D D.AND.K[]
D_D.AND.K[].LEFT2
                         "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/AND.SHF/ALU.DT.DT/LONG.DK/SHF"
                         "RAMX/D, AMX/RAMX, kMX/@1, BMX/KMX, ALU/AND, SHF/RIGHT, DK/SHF"
D D.AND.K[].RIGHT
                "RAMX/D.AMX/RAMX.BMX/LC.ALU/AND.SHF/ALU.DK/SHF"
D D.AND.LC
                "RAMX/D.AMX/RAMX.BMX/MASK.ALU/AND.SHF/ALU.DK/SHF"
D D.AND.MASK
                "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RSMX.ALU/AND.SHF/ALU.DK/SHF"
D D. AND. Q
D_D.AND.RC[]
                "RAMX/D.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/AND.SHF/ALU.DK/SHF"
D D.ANDNOT.K[]
                "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/ANDNOT.SHF/ALU.DK/SHF"
                "RAMX/D.AMX/RAMX.BMX/LC.ALU/ANDNOT.SHF/ALU.DK/SHF"
D D.ANDNOT.LC
D_D.ANDNOT.PSWZ "DK/SHF,ALU/ANDNOT,AMX/RAMX,RAMX/D,BMX/KMX/KMX/.4.SHF/ALU"
                "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/ANDNOT.SHF/ALU.DK/SHF"
D D.ANDNOT.Q
D_D.ANDNOT.RC[] "RAMX/D.AMX/RAMX.SPS.R/LOAD.LC.SPO.RC/@1,BMX/LC.ALU/ANDNOT.SHF/ALU.DK/SHF"
D D(FRAC)
                "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.DK/SHF.FL"
D_D[]K[]
                "RAMX/D.AMX/RAMX.KMX/@2.BMX YMX.ALU/@1.SHF/ALU.DK/SHF"
                "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A+B.SHF/ALU.DK/SHF"
D D+K[]
D D-K[1
                "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A-B.SHF/ALU.DK/SHF"
D_D+K[]+1
                "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A+B+1.SHF/ALU.DK/SHF"
D_D+LB
                "RAMX/D.AMX/RAMX.BMX/LB.ALU, A+B.SHF/ALU, DK/SHF"
D_D+LC
                "RAMX/D.AMX/RAGX.BMX/LC.ALU/A+B.SHF/ALU.DK/SHF"
D_D-LC
                "RAMX/D.AMX/RAMX.BMX/LC.ALU/A-B.SHF/ALU.DK/SHF"
D_D+LC+PSL.C
                "RAMX/D.AMX/RAMX.BMX/LC.ALU/A+B+PSL.C.SHF/ALU.DK/SHF"
```

```
D D.LEFT
                "DK/LEFT"
D D.LEFT2
                "DK/LEFT2"
D D[]MASK
                "RAMX/D.AMX/RAMX.BMX/MASK.ALU/@1.SHF/ALU.DK/SHF"
D D.OR.ASCII
                "D D.OR.K[.30]"
D D.OR.K[]
                "RAMX/D.AMX/RAMX.KMX/@1.BMX:KMX.ALU/OR.SHF/ALU.DK/SHF"
D D.ORNOT.MASK
                "RAMX/D.AMX/RAMX.BMX/MASK.Atu/GRNOT.SHF/ALU.DK/SHF"
D D.OR.PSWC
                "DK/SHF.ALU/OR.AMX/RAMX.RAMX.D.EMX/KMX.KMX/.1.SHF/ALU"
D D.OR.PSWV
                "CK/SHF.ALU/OR.AMX/RAMX.RAMX.D.EMX/KMX,KMX/.2.SHF/ALU"
                "RAMX/D.AMX/RAMX.RBMX.Q.BMX/RBMX.ALU/GR.SHF/ALU.DK/SHF"
D D.OR.Q
D D.OR.RC[]
                "RAMX/D.AMX/RAMX.SPO.B/ECAD.LC.SPO.RC/@1.BMX/LC.ALU/OR.SHF/ALU.DK/SHF"
DIIQ
                "RAMX/D.AMX/RAMX.RBMX_G.EMX/RBMX.ALU/@1.SHF/ALU.DK/SHF"
D D+Q
                "RAMX/D.AVX/RAMX,RBMX,Q.BVX/RBMX,ALU/A+B.SHF/ALU.DK/SHF"
                "RAMX/D.AVX/RAMX.REMX/Q.EMX/RBTX.ALU/A-B.SHF/ALU.DK/SHF"
D D-0
D D+Q+1
                "RAMX/D.AVX/RAMX.RUMX/Q.BMX/RBNK.ALU/A+B+1.SHF/ALU.DK/SHF"
                "RAMX/D.AMX/RAMX.RBMX/Q.BMX/RBMX.ALU/A-B-1.SHF/ALU.DK/SHF"
D D-0-1
                "DK/RIGHT"
D D.RIGHT
D D.RIGHT2
                "DK. RIGHT2"
                "REMX/D. BNX/RBMX, ALU/3, SHF/RIGHT, DK/SHF"
D D.RIGHT(B)
D D.SWAP
                "DK EYTE.SWAP"
                "RAMX/OLAMX/RAMX.SKT.DT/@1.ALU/A.SHF/ALU.DK/ShF"
D D.SXT[]
D D.SXT[].RIGHT "RAMX/D.AMX/RAMX.SXT.DT/@1.4LU/A.SHF/RIGHT.DK/SHF"
D D.XOR.K[]
                "RAMX/D.AMX/RAMX.KMX/@).2MX FMX.ALU/XOR.SHE/ALU.DK/SHE"
                "RAMX/D.AMX/RAMX, BMX/LC.ALU/XOR, SHF/ALU.DK/SHF"
D D.XDR.LC
D D.XOR.Q
                "RAMA/D.AMX/RAMX.REMX/Q.BMX/RBMX.ALU/XOR.SHF/ALU.DK/SHF"
:D INT.SUM... THRU D PC...
D INT.SUM
                "MCT/READ.INT.SUM.DK/NCP"
D K[]
                "KMX/@1.BMX/KMX.ALU/B.SHF/ALU.DK/SHF"
D K[].RIGHT
                "KMX.@1.BMX/KMX.ALU/B.SHF/RIGHT.DK/SHF"
D K[].RIGHT2
                "KMX/@1.BMX/KMX,ALU/B,SHF/RIGHT2,DK/SHF"
                "AMX/LA.ALU/A.SHF/ALU.DK/SHF"
D LA
                "AMX/LA.KMX/@1.BMX/KMX,ALU/AND,SHF/ALU.DK/SHF"
D LA.AND.K[]
                "AMX/LA, RBMX/D, EMX/RBMX, ALU/A+B+PSL.C.SHF/ALU.DK/SHF"
D_LA+D+PSL.C
D LA-D
                "DK/SHF.ALU/A-B.AMX/LA.BMX/RSMX.RBMX/D.SHF/ALU"
                "AMX/LA.ALU/A.SHF/ALU.DK/SHF.FL"
D LA(FRAC)
                "AMX/LA,KMX/@1,BMX/KMX,ALU/A-B,SHF/ALU,DK/SHF"
D LA-K[]
D LA.RIGHT
                "AMX/LA.ALU/A.SHF/RIGHT, CK/SHF"
D_LB
                "BMX/LB.ALU/B.SHF/ALU.DK/SHF"
                "BMX/PC.OR.LB.ALU/6, SHF/ALU.DK/SHF"
D LB.PC
```

```
D LC
                "BMX/LC.ALU/B.SHF/ALU.DK/SHF"
D_LC(FRAC)
                "BMX/LC.ALU/B.SHF/ALU.DK/SHF.FL"
D NOT D
                "RAMX/D.AMX/RAMX.ALU/NOTA.SHF/ALU.DK/SHF"
D NOT.K[]
                "KMX/@1.BMX/KMX.AMX/RAMX.OXT.DT/LONG.ALU/ORNOT.SHF/ALU.DK/SHF"
D NOT.MASK
                "BMX/MASK.AMX/RAMX.OXT.DT/LONG.ALU/ORNOT.SHF/ALU.DK/SHF"
D. TON D
                "RAMX/Q.AMX/RAMX, ALU/NOTA, SHF/ALU, DK/SHF"
D NOT.R[]
                "LA RA[@1].AMX/LA.ALU/NOTA.D ALU"
D PACK FP
                "BMX/PACKED.FL.ALU/B.SHF/ALU.DK/SHF"
D PACK. FP. LEFT
                "BMX/PACKED.FL.ALU/B.SHF/LEFT.DK/SHF"
D_PC
                "BMX/PC.ALU/B.SHF/ALU.DK/SHF"
D PC.LEFT
                "BMX/PC.ALU/B.SHF/LEFT.DK/SHF"
; D_Q...
                "DK/Q"
D Q
D Q.OXT[]
                "RAMX/Q.AMX/RAMX.OXT.DT/@1.ALU/A.SHF/ALU.DK/SHF"
                "RAMX/Q.AMX/RAMX.KMX/@1.BMX/KMX.ALU/AND.SHF/ALU.DK/SHF"
D Q.AND.K[]
                "RAMX/G.AMX/RAMX.BMX/LC.ALU/AND.SHF/ALU.DK/SHF"
D Q.AND.LC
                "RAMX/Q,AMX/RAMX,BMX/MASK,ALU/AND,SHF/ALU,DK/SHF"
D Q.AND.MASK
                "RAMX/Q.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/ANDNOT.SHF/ALU.DK/SHF"
C.TONONA.O d
                "RAMX/Q.AMX/RAMX.KMX/@1.BMX/kMX.ALU/ANDNOT.SHF/ALU.DK/SHF"
D Q.ANDNOT.K[]
D Q.ANDNOT.MASK "RAMX/Q.AMX/RAMX,BMX/MASK,ALU/ANDNOT.SHF/ALU.DK/SHF"
D. O.ANDNOT.PSWC "DK/SHF.ALU/ANDNOT.AMX/RAMX.RAMX/O.BMX/KMX.KMX/.1.SHF/ALU"
D Q.ANDNOT.PSWN "DK/SHF.ALU/ANDNOT.AMX/RAMX,FAMX/Q.BMX/KMX,KMX/.8.SHF/ALU"
D. Q.ANDNOT.PSWZ. "DK/SHF.ALU/ANDNOT.AMX/RAMX.RAMX/Q.BMX/KMX,KMX/.4.SHF/ALU"
D Q.AND.RC[1
                "RAMX/G.AMX/RAMX.SPO.R:LOAD.LC.SPO.RC/@1.BMX/LC.ALU/AND.SHF/ALU.DK/SHF"
D&Q_D+Q
                "RAMX/D.AMX/RAMX.RBMX/Q.EMX/RBMX.ALU/A+B.SHF/ALU.DK/SHF.QK/SHF"
D Q+D
                "RAMX/OLAMX/RAMX.REMX/DLEMX/REMX.ALU/A+B.SHF/ALU.DK/SHF"
D_Q-D
                "RAMX/OLAMX/RAMX.RBMX/D.BMX/RBVX.ALU/A-B.SHF/ALU.DK/SHF"
D Q-D-1
                "RAMX/Q.AMX/RAMX.RBMX/D.BMX.RBVX.ALU/A-B-1.SHF/ALU.DK/SHF"
D_Q[]D
                "RAMX/O.AMX/RAMX.RBMX/D.BMX/RBMX.ALU/@1.SHF/ALU.DK/SHF"
D Q(FRAC)
                "RAMX/Q.AMX/RAMX.ALU/A.SHF/ALU.DK/SHF.FL"
D_Q+K[]
                "RAMX/Q.AMX/RAMX,KMX/@1.BMX/kMX,ALU/A+B.SHF/ALU.DK/SHF"
D Q-K[]
                "RAMX/G.AMX/RAMX.KMX/@1.BMX/kMX.ALU/A-B.SHF/ALU.DK/SHF"
D_Q-K[]-1
                "RAMX/O.AMX/RAMX.KMX/@1.BMX.FMX.ALU/A-B-1.SHF/ALU.DK/SHF"
D_Q+LB
                "RAMX/OLAMX/RAMX.BMX/LB.ALU/A+B.SHF/ALU.DK/SHF"
D_Q[]MASK
                "RAMX/Q.AMX/RAMX.BMX/MASM.ALU/@1.SHF/ALU.DK/SHF"
                "RAMX/Q.AMX/RAMX.ALU/A.SHF/LEFT.DK/SHF"
D Q. LEFT
                "RAMX/Q.AMX/RAMX.KMX/@1.BMX:KMX.ALU/OR.SHF/ALU.DK/SHF"
D 0.0R.K[]
D Q.ORNOT.MASK
                "RAMX/Q.AMX/RAMX, BYX/MASK, ALU/ORNOT, SHF/ALU.DK/SHF"
                 "DK/SHF.ALU/OR.AMX/RAMX.RAMX/Q.SMX/KMX.KMX/.1.SHF/ALU"
```

D Q.OR.PSWC

```
310
```

```
D 0.0R.RC[]
                "RANK,O.AMX/RANX.SEC.R/LGAD.LC.SPO.RC/@1.SMX/LC.ALU/OR.SHF/ALU.DK/SHF"
D Q+PC
                "RAMX/Q.AUX/RAMX.BMX/PC.ALU/A+B.SHF/ALU.DK/SHF"
D Q-PCSV
                "RAMX-Q.AMX/RAMX.BMX/Q.MSC/READ.REQG.ALU/A-B.SHF/ALU.DK/SHF"
D Q.RIGHT
                "RAMX/Q.AVX/RAMX,ALU/A,SHF/RIGHT.DK/SHF"
D O.RIGHT2
                "RAMX/Q.AMX/RAMX.ALU/A.SHF/RIGHT2.DK/SHF"
                "RAMX/O.AMX/RAMX.SXT.DT/@1.ALU/A.SHF/ALU.DK/SHF"
D Q.SXT[]
                "RAMX/O.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/XOR.SHF/ALU.DK/SHF"
D Q.XOR.RC[]
:D R... THRU D&VA ...
                "SPO.R/LOAD.LAB, SPO.RA3/$1, AMX/LA, ALU/A, SHF/ALU, DK/SHF"
D_R[]
                "SPD.R/LOAD.LAB,SPO.RAB/@1.AMX/LA.KMX/@2.BMX/KMX.ALU/AND.SHF/ALU.DK/SHF"
D R[]. AND. K[]
D_R[].ORNOT.K[] "LAB_R[@1].AMX/LA.BMX/KMX.KWX/@2.ALU/ORNOT.D_ALU"
                "SPO.R/LOAD.LC,SPO.RC/@1.BMX/LC.ALU/B.SHF/ALU,DK/SHF"
D RC[]
                "BMX/PC.ALU/B.SHF/ALU.DK/SHF.SPG.R/WRITE.RC.SPO.RC/@1"
D&RC[]_PC
                "SPC/LOAD. LC.SC, BMA/LC, ALU/B, SHF/ALU, DK/SHF"
D RC(SC)
                "SPO.R/LOAD.LAB.SPO.RAB/@1,AMX/LA,ALU/A.SHF/ALU.DK/SHF.FL"
D_R[](FRAC)
                "BMX/O,MSC/READ.RLOG,ALU,B,SHF/ALU,DK/SHF"
D RLOG
                "BMX/O.MSC/READ.FLGG.ALU/B.SHF/RIGHT.DK/SHF"
D RLOG. RIGHT
                "SPO.AC/LOAD.LAB.SPO.ACN/PRN+1.AMX/LA.ALU/A.SHF/ALU,DK/SHF"
D R(PRN+1)
                "SPO.AC/LOAD.LAB.SPO.ACN/SC.AMX/LA.ALU/A.SHF/ALU.DK/SHF"
D R(SC)
                "SPO.AC/LOAD.LAB, SPO.ACN, SP1+1, AMX/LA, ALU/A, SHF/ALU, DK/SHF"
D R(SPI+1)
                "VAK/LOAD.SHF/ALU.DK/SHF"
D&VA ALU
                "RAMX/D.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A-B.VAK/LOAD.SHF/ALU.DK/SHF"
D&VA D-K[]
                "RAMX/D.AMX/RAMX.BMX/LC.ALU/A+B.VAK/LOAD.SHF/ALU.DK/SHF"
D&VA D+LC
C+C AV&C
                "D D+Q.VAK/LOAD"
                "AMX/LA,ALU/A,VAK/LOAD,SHF/ALU,DK/SHF"
D&VA LA
                "BMX/LB.ALU/B.VAK/LCAD.SHF/ALU.DK/SHF"
D&VA LB
                "RAMX/Q.AMX/RAMX.ALU/A.VAK/LOAD.DK/Q"
D&VA Q
                "RAMX/Q.AMX/RAMX.BMX/PC.OR.LB.ALU/A+B.VAK/LOAD.SHF/ALU.DK/SHF"
D&VA_Q+LB.PC
:EALU ... THRU FE ...
                "RAMX/D.AMX/RAMX.EBMX/AMX.EXP.EALU/B"
EALU_D(EXP)
EALU FE
                "EBMX/FE.EALU/B"
EALU_K[]
                "KMX/@1.EBMX/KMX.EALU/B"
                "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,EBMX/AMX.EXP,EALU/B"
EALU R[](EXP)
                "EALU/A"
EALU SC
                        "KMX/@1,EBMX/KMX,EALU/ANDNOT"
EALU_SC.ANDNOT.K[]
EALU SC+FE
                "EBMX/FE.EALU/A+B"
                "EBMX/FE.EALU/A-B"
EALU SC-FE
                "KMX/@1.EBMX/KMX.EALU/A+B"
EALU_SC+K[]
```

```
EALU_SC-K[]
                "KMX/@1.EBMX/KMX.EALU/A-B"
                "EALU/A, MSC/LOAD, STATE"
EALU_STATE
FE_0(A)
                 "AMX/RAMX.OXT.DT/LCNG.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE_D(EXP)
                 "RAMX/D.AMX/RAMX.ESMX/AMX.EXP.EALU/B.FEK/LOAD"
FE EALU
                 "FEK/LOAD"
                 "KMX/@1,EBMX/KMX,EALU/B,FEK/LOAD"
FE_K[]
FE_LA(EXP)
                "AMX/LA.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE_NABS(SC-LA(EXP)) "AMX/LA,EBMX/AMX.EXP.EALU/NABS.A-B.FEK/LOAD"
FE_Q(EXP)
                "RAMX/Q.AMX/RAMX.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE_R[](EXP)
                "SPO.R/LOAD.LAB.SPO.RAS/@1.AMX/LA.EBMX/AMX.EXP.EALU/B.FEK/LOAD"
FE_SC
                 "EALU/A.FEK/LOAD"
FE_SC.ANDNOT.FE
                         "EBMX/FE, EALU/ANONOT, FEK/LOAD"
FE_SC.ANDNOT.K[]
                         "KMX/@1,EEMX/KMX,EALU/ANDNOT,FEK/LOAD"
FE_SC+1
                "EALU/A+1.FEK/LOAD"
FE_SC+FE
                "EBMX/FE.EALU/A+B.FEK/LOAD"
FE SC-FE
                "EBMX/FE.EALU/A-B.FEK/LOAD"
FE&SC_K[]
                "KMX/@1.EBMX/KMX.EALU/B.FEK, LOAD.SMX/EALU.SCK/LOAD"
FE_SC+K[]
                "KMX/@1.EBMX/KMX.EALU/A+B.FEK/LOAD"
FE_SC-K[]
                "KMX/@1.EBMX/KMX.EALU/A-8.FEK/LOAD"
FE_SC+LA(EXP)
                "AMX/LA.EBMX/AMX.EXP.EALU/A+B.FEK/LOAD"
FE_SC-LA(EXP)
                "AMX/LA.EBMX/AMX.EXP.EALU/A-B.FEK/LOAD"
FE_SC.OR.K[]
                "EALU/OR.EBMX/KMX.KMX/@1.FEK/LOAD"
FE_SC-SHF.VAL
                "EBMX/SHF. VAL, EALU/A-B, FEK/LOAD"
FE_SHF.VAL
                "EBMX/SHF.VAL, EALU/B.FEK/LOAD"
:ID ... THRU LC_...
ID[]_D
                "CID/WRITE.KMX, ID. ADDR/@1"
                "CID/WRITE.KMX, ADS/IBA, KMX/SP1.CON"
ID D&NO.SYNC
                "CID/WRITE.KMX, ADS/IBA, KMX/SP1.CON, ACF/SYNC"
ID_D.SYNC
                "CID/WRITE.SC"
ID(SC)_D
K[]
                "KMX/@1"
                "SPO.AC/LOAD.LA, SPO.RAB/@1"
LA RAÍI
                         "SPD.AC/LOAD.LAB.SPO.ACN11/DST.SRC"
LA_R(DST)&LB_R(SRC)
                         "SPO.AC/LOAD.LAB, SPO.ACN/SP2.SP1"
LA R(SP2)&LB_R(SP1)
                         "ALU_0(A), LAB_R18RC[@1]_ALU"
LAB_R1&RC[]_0
LAB_R1&RC[]_ALU "SPO.R/LOAD.LAB1.WRITE.RC.SPO.RC/@1.SHF/ALU"
```

```
312
```

```
LAB RIGROSS ALU.RIGHT2 "SPO.R/LOAD.LAB1.WRITE.RC.SPO.RC/@1.SHF/RIGHT2"
LAB RI&RC[] D.OXT[]+K[] "ALU D.OXT[@2]+K[@3].LAB RI&RC[@1] ALU"
                        "ALU D+LC. LAB RISRC[@1] ALU"
LAB RISRC[] D+LC
LAB RIARCIT Q-Kil
                         "ALL 0-K[@2] LAB R188C[@1] ALU"
LAB_R18RC[] O-D "SPO.R/LOAD.LAB1.WRITE.RC.SPO.RC/91.ALU/A-B.AMX/RAMX.OXT.DT/LDNG.BMX/RAMX.RBMX/D.SHF/ALU"
                        "ALH/A+B+1. AMX/RAMX.OXT.DT/LONG.BMX/LC.SPO.R/LOAD.LAB1.WRITE.RC.SPO.RC/@1.SHF/ALU"
LAB RIARC[] 0+LC+1
LAB R[]
                 "SPO.R/LOAD.LAB.SPO.RAB/@1"
                "SPO.AC/LOAD.LAB.SPC.ACN11/DST.DST"
LAB R(DST)
                 "SPO.AC/LOAD.LAB.SPO.ACN/SC"
LAB R(SC)
                "SPG.AC/LOAD.LAB.SPG.ACN/SP1.SP1"
LAB R(SP1)
LC RCIT
                 "SPD.R/LOAD.LC.SPO.RC/91"
                         "ALU D.IC RC[@1]&R1 ALU"
IC RC[ ]&R1 D
LC RC[ 1&R1 LA-K[ ]
                         "ALU LA-K[@2]. LC RC[@1]&R1 ALU"
LC RC(SC)
                "SPO/LOAD.LC.SC"
LC RC[ ]&R1 ALU "SPD.R/LOAD.LC.WRITE.RAB1.SPO.RC/@1.SHF/ALU"
LC RC[] &R1 (LA+LB) . LEFT "AMX/LA.BMX/LB.ALU/A+B.SHF/LEFT.SPD.R/LOAD.LC.WRITE.RAB1.SPD.RC/@1"
IC RC[ | ART (| A-LB) | LEFT "AMX/LA . EMX/LB . ALU/A-B . SHF/LEFT . SPO. R/LOAD . LC . WRITE . SAB1 . SPO. RC/@1"
                        "SPO.R/LOAD.EC.WRITE.RAB1.SPO.RC/@1.SHF/ALU.ALU/A+B.AMX/LA.BMX/KMX.KMX/@2"
IC RC[]&R1 | A+K[]
               "ALU LB.LC RC[@1]&R1 ALU"
IC RC[ ]&R1 LB
                "SPC.R/!OAD.:C.WRITE.RAB1.SPO.RC/@1.SHF/ALU.ALU/A.AMX/RAMX.RAMX/Q"
LC RC[ ]&R1 Q
:PC ... THRU PC&VA ...
PC PC+1
                 "PCK/PC+1"
PC PC+2
                 "PC%/PC+2"
PC PC+4
                "PCK/PC+4"
PC PC+N
                "PCK/PC+N"
                "ALU/A+B.VAK/LOAD.PCK/PC_VA.BMX/PC.AMX/RAMX.RAMX/O"
PC Q+PC
                "PCK/PC VA"
PC VA
                "VAK/EDAD.PCK/PC VA"
PC&VA ALU
                "RAMX/D.AMX/RAMX.ALU/A.VAK/LGAD.PCK/PC VA"
PC&VA D
                "RAMX/D.AMX/RAMX.OXT.DT.@1.ALU/A.VAK/LOAD.PCK/PC VA"
PC&VA_D.OXT[]
                        "RAMX/D.AMX/RAYK.OXT.DT @1.BMX/PC.ALU/A+B.VAK/LOAD.PCK/PC.VA"
PC&VA D.OXT[]+PC
PC&VA_D.SXT[]+PC "RAMX/D.AMX/RAMX.SXT.DT/@1.SMX/PC.ALU/A+B.VAK/LCAD.PCK/PC VA"
                "RAWX/D.AMX/RAMX,KMX/@1.8MX, KMX, ALU/A+B.VAK/LOAD.PCK/PC_VA"
PC&VA D+K[]
                "RAMX D.AMX/RAMX.KMX/@1.BMX/WMX.ALU/A-B.VAK/LOAD.PCK/PC VA"
PC&VA D-KII
                "RAMX/D.AMX/RAMX.EMX/PC.ALU/A-B.VAK/LOAD.PCK/PC VA"
PC&VA_D-PC
                "KMX/@1.BNX/KMX.ALU/B.VAK/LOAD.FCK/PC VA"
PC&VA KIT
                "BWX/PC.ALU/B.VAK/LOAD.PCK/FC VA"
PC&VA_PC
                "RAMX/Q, AMX/RAMX, ALU/A, VAK/LOAD, PCK/PC_VA"
PC&VA Q
                "RAMX/Q.AMX/RAMX, RBMX/D.EMX, RBMX, ALU/A-B, VAK/LDAD, PCK/PC_NA"
PC&VA Q-D
```

```
313
```

```
PC&VA_Q-K[]
                "RAMX/Q.AMX/RAMX,KMX/@1,EMX/KMX,ALU/A-B,VAK/LGAD,PCK/PC_VA"
PC&VA Q+PC
                "RAMX/Q.AMX/RAMX.BMX/PC.ALU/A+8.VAK/LGAD.PCK/PC VA"
                         "RAMX/O.AMX/RAMX.SXT.DT @1.BMX/PC.ALU/A+B.VAK/LOAD.PCK/PC VA"
PC&VA_Q.SXT[]+PC
PC&VA_R[].ANDNOT.K[] "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,KMX/@2,BMX/kMX,ALL/ANDNOT,VAK/LOAD.PCK/PC_VA"
PC&VA_RC[]
                "SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/B.VAK/LOAD.PCK/PC.VA"
PC_VIBA
                "PCK/PC_IBA"
;Q_0... THRU Q_D...
Q_0
                "OK. CLR"
0 0-D
                "AMX/RAMX.OXT.DT/LONG.RBMX/D.BVX/RBMX.ALU/A-B.SHF/ALU.QK/SHF"
Q 0-K[1
                "AMX/RAMX.OXT.DT/LONG.KMX,@1.BVX/KMX.ALU/A-B.SHF/ALU.QK/SHF"
0 0-LC
                "AMX/RAMX.OXT.DT/LONG.SMX/LC.ALU/A-B.SHF/ALU.QK/SHF"
Q_0+MASK+1
                "AMX/RAMX.OXT.DT/LONG.BMX/MASK.ALU/A+B+1.SHF/ALU.OK/SHF"
                "AMX/RAMX.OXT.DT/LONG.SMX/PC.ALU/A+B.RLCG.SHF/ALU.QK/SHF"
Q O+PC.RLOG
Q_0-Q
                "AMX/RAMX.OXT.DT/LONG.RBMX/Q.BMX/RBMX.ALU/A-B.SHF/ALU.QK/SHF"
Q ACCEL&SYNC
                "QK/ACCEL.ACE/SYNC"
Q ALU
                "SHF/ALU.CK/SHF"
Q_ALU.LEFT
                "SHF/LEFT.OK/SHF"
Q ALU.LEFT2
                "SHF, ALU. DT. DT/LONG, QK/SHF"
O ALU.RIGHT
                "SHF/RIGHT,QK/CHF"
Q_ALU.RIGHT2
                "SHF/RIGHT2.OK/SHF"
                "SHF/ALU.OK/SHF.FL"
Q ALU(FRAC)
Q_D
                "QK/D"
                "REMX/D.BMX/RBMX.ALU/B.SHF/ALU.QK/SHF.FL"
Q D(FRAC)(B)
Q_D.OXT[]
                "RAMX/D.AMX/RAMX.OXT.DT/@1.ALU.A.SHF/ALU.QK/SHF"
Q D.OXT[]+K[].LEFT "RAMX/D.AMX/RAMX.OXT.DT/@1, \MX/@2, BMX/KMX, ALU/A+B.SHF/LEFT.QK/SHF"
                "RAMX/D.AMX/RAMX,KMX/@1,EMX/KMX,ALU/AND,SHF/ALU,QK/SHF"
Q_D.AND.K[]
Q D.AND.K[].RIGHT
                         "RAMX/D.AMX RAMX.KMX @1.BMX/KMX.ALU/AND.SHF/RIGHT.QK/SHF"
                         "RAMX/D.AMX/RAMX, KMX/@1.BMX/KMX.ALU/AND.SHF/RIGHT2.QN/SHF"
O D. AND. KT 1. RIGHT2
Q D.ANDNOT.RC[] "RAMX/D.AMX/RAMX,SPO.R/LCAD.LC.SPO.RC/@1.BMX/LC.ALU/ANDNJT.SHF/ALU.QK/SHF"
                "RAMX/D.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/AND.SHF/ALU.QK/SHF"
Q D.AND.RC[]
                "OK/DEC.CON"
Q_DEC.CON
                "RAMX/D.AMX/RAMX.KMX/@1.BWX/KMX.ALU/A+B.SHF/ALU.QK/SHF"
Q D+K[]
                "RAMX/D.AMX/RAMX.KMX/@1.6MX/KMX.ALU/A+B.SHF/LEFT.OK/SHF"
Q_D+K[].LEFT
Q D-K[]
                "RAMX/D.AMX/RAMX.KMX/@1.BMX.KMX.ALU/A-B.SHF/ALU.QK/SHF"
                "RAMX/D.AMX/RAMX.BMX/LC.ALU/A+B.SHF/ALU.QK/SHF"
0 D+LC
Q D-LC
                "RAMX/D.AMX/RAMX, BMX/LC, ALU/A-B. SHF/ALU, QK/SHF"
                "RAMX/D.AMX/RAMX.ALU/A.SHF/LEFT3.QK/SHF"
Q_D.LEFT3
                "RAMX/D.AMX/RAWX.KMX/@1.BMX/KMX.ALU/GR.SHF/ALU.OK/SHF"
Q D.OR.K[]
```

```
314
```

```
0.08.80[1
                 "RAMX/D AMX/RAMX.SPO.R/EGAD.LC.SPO.RC/@1.BMX/LC.ALU/OR.SHF 'AEU.OK/SHF"
0_0-0
                 "RAMX/D.AMX/RAMX.REMX/Q.EWX/REMX.ALU/A-B.SHF/ALU.OK/SHF"
                 "RAMX /D AMX /RAMX . ALU/A . SHE / RIGHT . OK / SHE "
O D RIGHT
O. D. RIGHT2
                 PRAMY /D AMY / RAMY ALUI / A SHE / RIGHTO OK / SHE!
O D. SXT[]
                 *RAMX/D AMX/RAMX.SXT.DT/@1.ALU/A.SHE/ALU.QK/SHE*
                 "OK/SHE.ALU/XOR.AMX/RAMX.RAMX/D.BMX/RBMX.REMX/O.SHE/ALU"
O D. XOR.O
O TB... THRU O PC...
                 "IBC/BDEST.OK/ID.MCT/ALLOW.IB.READ"
O IB. BDEST
                 "OK / TO MCT /ALLOW, TE. READ"
O IB. DATA
                 "CID/READ.KMX.ID.ASCR/@1.QK/ID"
1101 0
                 "CID/READ.SC.OK/ID"
Q ID(SC)
                 "KMX @1 BMX/KMX.ALU/8.SHF/ALU.OK/SHF"
0 K[]
                 "KMX 01 BUX /KMX. ALU/B. SHF/ALU.DT.DT/INST. DEP.OK/SHF"
O KILCTX
                 "KMX/@1.BMX/KMX.ALU/B.SHF/RIGHT.OK/SHF"
O KIL RIGHT
O KII.RIGHT?
                 "KMX /@1 BMX /KMX ATTL B. SHE /RIGHT2 . OK/SHE"
                 "AMX/LA.ALU/A.SHE/ALU.CA/SHE"
O LA
                 "AMX/LA.KNX/@1.5MN/FMX.ALU/AND.SHF/ALU.OK/SHF"
O LA. AND KET
                         "AMX/LA.SPO.R.LOAD.LC.SPO.RC/@1.EMX/LC.ALU/ANDNOT.SHF/ALU.OK/SHF"
O LA ANDNOT ROLL
                 "AMX/LA.KMX/@1.BMX/KMX.ALU/A+B.SHF/ALU.OK/SHF"
O LA+KI1
                 "AMX.": A. KMX/@1.BMX.KMX.ALU/A-8.SHF/ALU.OK/SHF"
O LA-K[]
                 "AMX/LA.REMX/O.BMX/RBMX.ALU/A+B.SHF/ALU.QK/SHF"
Q LA+Q
                 "EMX/IB.ALU/B.SHE/ALU.OK.SHE"
O LB
O LC
                 "BMX/LC.ALU/B.SHF/ALU.QK/SHF"
                 "RAMX/Q.AMX/RAMX.ALU/NOTA.SHF/ALU.OK/SHF"
O NOT.O
Q NOT.RIT
                 "LA RA[@1], AMX/LA, ALU/NOTA, Q_ALU"
                 "BMX/PACKED.FL, ALU/B, SHF/ALU.QK/SHF"
O PACK FP
                 "BMX/PC_ALU/B.SHF/ALU.OK/SHF"
Q PC
:0 Q ... THRU Q&VA ...
                 "RAMX/O.AMX/RAMX.OXT.DT/@1.KMX/@2.BMX/KMX.ALU/A-B.SHF/ALU.OK/SHF"
0 0.0XT[1-K[1
                "RAMX/Q.AMX/RAMX.OXT.DT/@1.ALU/A.SHF/LEFT.QK/SHF"
O O.OXTII.LEFT
                "RAMX/O.ANX/RAMX.OXT.DT/@1.RBMX/D.BMX/RBMX.ALU/OR.SHF/ALU.OK/SHF"
0 0.0XT[].OR.D
                 "RAMX/Q.AMX/RAMX.KMX/&1.BMX/KMX.ALU/AND.SHF/ALU.OK/SHF"
D O.AND.K[1
                         "RAMX/Q.AMX/RAMX.KWX/@1.BMX/KMX.ALU/AND.SHF/RIGHT.OK/SHF"
O O.AND.K[].RIGHT
                 "RAMX/C.AMX/RAMX, RBMX/D.BMX/RSMX, ALU/ANDNOT.SHF/ALU.QK/SHF"
Q Q. ANDNOT. D
                 "RAMX/O.AMX/RAMX.KS.K/@1.BMX/KMX.ALU/ANDNOT.SHF/ALU.OK/SHF"
O O. ANDNOT. K[]
                 "RAMX/O.AMX/RAMX.SPO.R/LGAD.LC.SPO.RC/@1.BMX/LC.ALU/AND.SHF/ALU.QK/SHF"
Q Q. AND. RC[1
                 "RAMX/Q.AMX/RAMY, REMX/D.BMX/RBMX, ALU/A-B.SHF/ALU.QK/SHF"
Q_Q-D
                 "RAMX/Q.AMX/RAMX.RBMX/D.SMX/RBMX.ALU/A+B.SHF/ALU.QK/SHF"
Q = Q + D
```

```
Q Q-D-1
                 "PAMX/G AMX/RAMX.RBMX/D.BMX/RBWX.ALU/A-B-1.SHF/ALU.QK/SHF"
Q Q(FRAC)
                 "PAMY /O AMY /PAMY ALL: /A SHE /ALL. OK /SHE, EL"
                 "REMX /O. BMX / RBMX . ALU / B. SHE / ALU . CK / SHE . EL "
Q Q(FRAC)(B)
0 0+Kf1
                 "PAMX /O AMX / RAMX . KMX / Q1 . BMX / KMX . ATU / A+B . SHE / ALU . QK / SHE "
                 "RAMX/O.AMX/RAMX.KMX/@1.BMX/KMX.ALU/A-B.SHF/ALU.OK/SHF"
0 0-K11
0 0-K[]-1
                 "RAMX /O AMX /RAMX .KMX /@1 .BMX /KMX .ALU/A-B-1 .SHF /ALU .OK /SHF"
Q Q+LC
                 "PAMX /G AMX / RAMX . RMX / LC . ALU / A+B . SHE / ALU . QK / SHE "
0 0-10
                 "RAMX/O.AMX/RAMX.BMX/LC.ALU/A+B.SHF/ALU.QK/SHF"
0 0-LC-1
                 "RAMX /O AMX /RAMX RMX /LC ALU /A+S-1.SHF /ALU OK /SHF"
O O.LEFT
                 "OK/LEFT"
                 "RAMX/O.AMX/RAMX.BMX/MASK.ALU/A-B-1.SHF/ALU.OK/SHF"
O O-MASK-1
                 "RAMX/O.AMX/RAMX.KMX/@1.BMX/KMX.ALU/OR.SHF/ALU.OK/SHF"
0 0.0R.K[]
                 "RAMX/O.AMX/RAMX.BMX/MASK.ALU/ORNOT.SHE/ALU.OK/SHE"
O O. DRNOT. MASK
O Q+PC
                 "RAMX/O.AMX/RAMX.BMX/PC.ALU/A+B.SHF/ALU.QK/SHF"
Q Q.RIGHT
                 "OK/RIGHT"
                 "OK/RIGHT2"
O O.RIGHT2
0 0.SXT[1
                 "RAMX/O.AMX/RAMX.SXT.DT/@1.ALU/A.SHF/ALU.QK/SHF"
Q_R[]
                 "SPO.R/LDAD.LAB.SPO.RAB/@1.ANX/LA.ALU/A.SHF/ALU.QK/SHF"
                 "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.KMX/@2.BMX/KMX.ALU/AND.SHF/ALU.OK/SHF"
Q R[].AND.K[]
                         "SPD.R/LOAD.LAB.SPO.RAS @1.AMX/LA.ALU/AND.BMX/KMK.KMK/@2.SHF/RIGHT.OK/SHF"
Q R[].AND.K[].RIGHT
Q_R[].ANDNOT.K[]
                         "SPO.R/LOAD.LAB.SPO.RAB.@1.AMX/LA.KMX/@2.BMX/KMX.AEU/ANDNOT.SHF/AEU.QK/SHF"
                 "SPO.R/LDAD.LC.SPO.RC/@1.BMX/LC.ALU/B.SHF/ALU.OK/SHF"
Q_RC[]
                 "SPO.R/LOAD.LC.SFO.RC/@1.BMX/LC.ALU/B.SHF/ALU.OK/SHF.FL"
O RC[](FRAC)
                 "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.ALU/A.SHF/ALU.QK/SHF.FL"
Q R[](FRAC)
O R(PRN), ANDNOT, O
                         "SPOLAC/LOAD.LAB.SPOLACN/PRN.AMX/LA.RBMX/Q.BMX/RBMX.ALU/ANDNOT.SHF/ALU.QK/SHF"
Q R(PRN+1)
                 "SPO.AC/LOAD.LAB.SPO.ACN/PRN+1.AMX/LA.ALU/A.SHF/ALU.QK/SHF"
                         "SPO.AC/LOAD.LAB.SPO.ACN/PRN+1.AMX/LA.RBMX/Q.BMX/RBMX.ALU/AND.SHF/ALU.QK/SHF"
Q R(PRN+1).AND.Q
                         "SPD.AC/LOAD.LAB.SPD.ACN11/SRC.GR.1,AMX/LA.KMX/@1,EMX/KMX,ALU/AND.SHF/ALU.OK/SHF"
Q_R(SRC!1).AND.K[]
Q SC
                 "ALU/B.BMX/KMX.KMX/SC.SHF/ALU.OK/SHF"
                 "VAK/LOAD.SHF/ALU.OK/SHF"
OSVA ALU
QSVA D
                 "RAMX/D.AMX/RAMX.ALU/A.VAK/LOAD.SHF/ALU.OK/SHF"
                 "RAMX/D.AMX/RAMX.BMX/LC.ALU/A+B.VAK/LCAD.SHF/ALU.QK/SHF"
Q&VA_D+LC
Q&VA LA
                 "AMX/LA.ALU/A.VAK/LOAD.SHF/ALU.OK/SHF"
                 "RAMX/Q.AMX/RAMX.BMX/PC.OR.L6.ALU/A+B.VAK/LOAD.SHF/ALU.QK/SHF"
Q&VA_Q+LB.PC
:R[] O...THRU R[] PACK.FP
R[]_0
                 "SPO.R/WRITE, RAB, SPO.RA3/@1,4MX/RAMX.OXT, DT/LONG, ALU/A,SHF/ALU"
9[]_0-D
                 "AMX/RAMX.OXT.DT/LONG.RBMX/O.SMX/RBMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
                 "AMX/RAMX.OXT.DT/LONG.KMK/02.BMX/KMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[] 0-K[]
                 "AMX/RAMX.OXT.DT/LONG.BMX/LB.ALU/A-B.SHF/ALU.SPO.R/WRITE.HAB.SFO.RAB/@1"
R[]_0-LB
```

```
"AMX TRAMAX DAT DIVIDES BEAN OF AND/A+B+1.SHE/ALU.SPO.R/WRITE.9AB.SPO.RAB/@1"
R[] 0+18+1
                "AMX/RAMX.OXT.DI/LONG.RBWX/O.BWX/RBWX.ALU/A-B.SHF/A!U.SPO.R/WRITE.RAB.SPO.RAB/#1"
R[1 0-0
                "AMX/RAMX.OXT.DT/LCNG.EMX kMX.EMX/.1.ALU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/91"
R[ ] 0-1
PIT ALL
                "SHE ALL SPO.R/WRITE, RAS. SEO. RAB/@1"
REL ALULIEFT
                "SPO R /WRITE RAB SPO RAB 61 SHE / LEET"
RITALL RIGHT
                "SHE / PICHT SPO R / WRITE RAR SEO RAR /@1"
                "SPO.R/WRITE.RAB.SPO.RAB/@1.RAMX/D.AMX/RAMX.ALU/A.SHF/ALU"
RIID
                "SPO R/WRITE, RAB. SPO. RAB/@1. ALU/AND. AMX/RAMX. RAMX/D. BMX/FMX. FMX/@2. SHE/ALU"
R[] D. AND. K[]
                "SPO.R/WRITE.RAB.SPO.RAB.91.BAMX/D.AMX/RAMX.KMX/@2.BMX/KMX.ALU/A+B.SHF/ALU"
ווא+מ"ווֹק
RII D-KII
                "SPO R/WRITE RABISED RASIGIRAMX/DLAMX/RAMX.KMX/@2.BMX/KMX.ALU/A-B.SHE/ALU"
                "SPO B WRITE RAB SPO RABIRG RAMX/D AMX/RAMX.KMX/@1 BMX/KMX.ALU/A+B.RLDG.SHE/ALU"
R6 D+K[1.R!DG
RIT D-LC-1
                "ALL D-IC-1.REG11 ALU"
                "SPO ROWRITE RABISED RABIGET, ALU/OR, AMX/RAMX, RAMX/D, BMX/LC, SHE/ALU"
RIT D.OR.LC
RIT D. OR PACK FP
                         HSPO PIMPITE RAB SPO RABIMITALUTOR, AMXIRAMX, RAMX, B. RMX/PACKED, FL. SHE/ALUF
                 "SPO RIWRITE RAB SPO RAB 01.RAMX/D.AMX/RAMX.REWX/Q.BMX/RSMX.ALU/QR.SHE/ALU"
RIT D.OR.Q
RIT D+O
                "SPO D/WRITE DAR SPO RAB/@1.RAMX/D.AMX/RAMX.REMX/O.BMX/REMXX.A:U/A+B.SHE/ALU"
RII D-O
                "SPO RIWRITE RABISEG. RABISEG. RABISEG. RAMX/D.AMX/RAMX.RBMX/O.BMX/RBMX.AUU/A-B.SHF/ALU"
R[1 0+0+1
                "SPO BYWRITE RABISPO RABIONIRALLY / D. AMX/RAMX, RBMX/Q. BMX/RBMX, ALU/A+B+1.SHF/ALU"
RITKI
                "BMX/KMX KMX/@2.ALU/B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
RITLA
                "SPO R/WRITE RABISED RABISEL AMXILA ALU/A SHE/ALU"
                "AMX/!A RMX/KMX.KMX.@2.ALU/AND.SHF/ALU.SPO.R/WRITE_RAB.SPO.RAB/@1"
R[] LA.AND.K[]
                "AMX/LA_RBMX/D.BMX/RBMX.ALU/A+B.SHF/ALU.SPO.R/WRITE.RAB.SFC.RAB/@1"
R[] LA+D
                "AMX/IA REMX/D.SMX/RBMX.ALU/A+8+1.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R 1 1 A+0+1
                "AMX/IA RBMX/D.BMX/RBMX.ALU.A-B.SHF/ALU.SPO.R/WRITE.RAB.S~J.RAB/@1"
R[] LA-D
                "AMX LA BMX/KMX KMX/@2.ALU/A+B.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAS/@1"
R[1 LA+K[1
                "AMX/LA.BMX/KMX.KMX.92.ALU/A+B+1.R[@1] ALU"
R[] | A+K[]+1
                "AMX/EA BUX/KMX KMX/@2.AEU/A-B.SHF/ALU.SPO.R/WRITE.RAB.SFO.RAS @1'
RIT LA-KIT
R[] LA+K[].RLOG "AMX/LA.SMX/KMX.KMX/92.ALU/A+B.RLOG.DT/LONG.SHF/ALU.SPO.R.WRITE.RAB.SPO.RAB/@1*
RITLA-KIT.RLOG "AMX/LA BMX/KMX,KMX,MX/@2,ALU/A-B.RLOG,DT/LONG,SHF/ALU,SPO.R/WRITE.RAB.SPO.RAB/@1"
R6 LA+K[].RLOG - "AMX/LA.BJX/KMX.KMX/@1.ALU/A+B.RLOG.DT/WORD.SHF/ALU.SPO.5 WRITE.RAB.SPO.RAB/R6"
               "AMX/LA BWX/KMX.KMX.@1.ALU/A-B.RLOG.DT/WORD.SHF/ALU.SPO.9, WRITE.RAB.SPO.RAB/R6"
R6 LA-K[].RLOG
                "AMX LA.EMX/LC.ALU/A+B.SHF/4LU.SPO.R/WRITE.RAB.SPO.RAB/@1"
RII LA+LC
                "AMX/LA.BMX/MASK,ALU/A+B+1,R[@1] ALU"
R[] LA+MASK+1
                "ALUZA-B-1.AMXZLA.5MXZMASK.SPO.RZWRITE.RAB.SPO.RABZ@1.SHFZALU"
R[] LA-MASK-1
                "AMX/LA.RBMX/D.BMX/RBMX.ALU/OR.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
RIT LA.OR.D.
RIT LA . ORNOT . MASK
                         "AMX/LA.EMX MASK.ALU/ORNOT.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
                 "AMX/LALREMX/O.EMX/PEMX.ALU/A+B.SHF/ALU.SPO.R/WRITE.RAB.SFO.FAB.@1"
RII LA+Q
                "AMX/LA.RBWX/Q.BMX/RBWX.ALU/A-8.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
RII LA-O
                "BMX/LB.ALU/B.SHF/ALU.SPO.R WRITE.RAB.SPO.RAB.@1"
R[] LB
R[]_LC
                "BMX/LC.ALU/B.SHF/ALU.SPG.R/WRITE.RAB.SPO.RAB/@1"
```

```
R[]_LC.RIGHT
                "BMX/LC.ALU/B.SHF/RIGHT.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[] NOT.0
                "AMX/RAMX.OXT.DT/LONG.ALU/NOTA.R[@1]_ALU"
R[] NOT.D
                "RAMX/D.AMX/RAMX.ALU/NOTA.R[@1] ALU"
R[] NOT.MASK
                "BMX/MASK.AMX/RAMX.OXT.DT/LONG.ALU/ORNOT.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
                "RAMX/O.AMX/RAMX.ALU/NOTA.R[@1] ALU"
RII NOT.O
R[]_PACK.FP
                "BMX/PACKED.FL.ALU/B.SHF/ALU,SPO.R/WRITE.RAB.SPO.RAB/@1"
:R[ ] Q ... THRU R[ ] RLOG ...
R[]_Q
                "SPO.R/WRITE.RAB.SPO.RAB/@1.RAMX/Q.AMX/RAMX.ALU/A.SHF/ALU"
R[]_Q+1
                "ALU 0+Q+1,R[@1] ALU"
R[]_Q+5
                "SPO.R/WRITE.RAB.SPO.RAB/@1.ALU/A+B+1.BMX/KMX.KMX/.4.AMX/RAMX.RAMX/Q.SHF/ALU"
R[]_Q-D
                "SPO.R/WRITE.RAB.SPO.RAB'@1.RAMX/Q.AMX/RAMX.RBMX/D.BMX/R6MX.ALU/A-B.SHF/ALU"
R[] Q-D-1
                "SPO.R/WRITE.RAB.SPO.RAB'@1.ALU/A-B-1.AMX/RAMX.RAMX/Q.BMX/RBMX.RBMX/D.SHF/ALU"
R[] 0+K[]
                "SPO.R/WRITE.RAB.SPO.RAB/@1.RAMX/Q.AMX/RAMX.BMX/KMX.KMX/@2.ALU/A+B.SHF/ALU"
R[]_Q-K[]
                "SPO.R/WRITE.RAB,SPO.RAB @1,RAMX/Q,AMX/RAMX,BMX/KMX,KMX/@2,ALU/A-B,SHF/ALU"
                -"RAMX/Q.AMX/RAMX.SMX/KVX.KMX/@2.ALU/A-B.RLOG.DT/LONG.SHF/ALU.SPD.R/WRITE.RAB.SPO.RAB/@1"
R[] Q-K[].RLOG
R[] Q+LB
                "SPO.R/WRITE.RAB.SPO.RAB/@1.ALU A+B.AMX/RAMX.BMX/LB.RAMX/O.SHF/ALU"
RI1_Q+LC
                "SPO.R/WRITE.RAB.Skg.RAB/@1.RAMX/Q.AMX/RAMX.BMX/EC.ALU/A+B.SHE/ALU"
R[]_Q-LC
                "SPO.R/WRITE.RAB.SPO.RAB/@1.RAMX/Q.AMX/RAMX.BMX/LC.ALU/A-B.SHF/ALU"
R[]_Q.AND.K[]
                "ALU/AND.SPO.R/WRITE.RAB.SPO.RAS/@1.AMX/RAMX.RAMX/O.BMX/ESX.KMX/@2"
                        "SPO.R/WRITE.RAB.SPJ.RAB/@1.ALU/ANDNOT.AMX/RAMX.RAMX/O.BMX/KMX.KMX/@2.SHF/ALU"
R[]_Q.ANDNOT.K[]
R[]_Q.OR.D
                "SPO.R/WRITE.RAB.SPO.RAB.⊕1.ALU/OR.AMX/RAMX.RAMX/O.BMX/REMX/D.SHF/ALU"
R[] O.ORNOT.K[] "SPO.R/WRITE.RAB.SPO.RAS/@1.RAMX/Q.AMX/RAMX.BMX/KMX.KMX/@2.ALU/ORNOT.SHF/ALU"
                "ALU Q.SHF/RIGHT.SPO.R/WRITE.RAB,SPO.RAB/@1"
R[]_Q.RIGHT.1
R[] RLOG.RIGHT.1
                        "BMX/O.MSC/READ.RLGG.ALU/B.SHF/RIGHT.SPO.R/WRITE.RAB.SPO.RAB/@1"
;RC[]_0... THRU RC[]_D...
RC[]_0
                "AMX/RAMX.OXT.DT/LONG.ALU/A.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
                "AMX/RAMX.OXT.DT/LONG.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] 0-D
                "AMX/RAMX.OXT.DT/LONG,KMX/@2,BMX/KMX.ALU/A+B+1.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/#1"
RC[]_0+K[]+1
                "AMX/RAMX.OXT.DT/LONG.BMX/LC.ALU/A+B+1,SHF/ALU,SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_0+LC+1
                "AMX/RAMX.OXT.DT/LONG.BMX/MASK.ALU/A+B+1.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] 0+MASK+1
                        "AMX/RAMX.OXT.DT/LONG.BMX/MASK.ALU/A+B+1.SHF/RIGHT2.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] 0+MASK+1.RIGHT2
RC[]_ALU
                "SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
                "SHF/LEFT.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] ALU. LEFT
                "SPO.R/WRITE.RC, SPO.RC/@1, SHF/ALU.DT, DT/LONG"
RC[] ALU.LEFT2
                "SPO.R/WRITE.RC.SPO.RC/@1,SHF/LEFT3"
RC[]_ALU.LEFT3
                "SHF/RIGHT, SPO.R/WRITE.RC, SPO.RC/@1"
RC[]_ALU.RIGHT
                "RAMX/D.AMX/RAMX, ALU/A, SHF/ALU, SPD.R/WRITE.RC, SPD.RC/@1"
RC[]_D
                "RAMX/D.AMX/RAMX.OXT.DT/@2,ALU/A,SHF/ALU,SPO.R/WRITE.RC,SPO.RC/@1"
RC[]_D.OXT[]
                "RAMX/D.AMX/RAMX, BMX/KMX, KMX/@2, ALU/AND, SHF/ALU. SPO. R/WRITE. RC. SPO. RC/@1"
RC[]_D.AND.K[]
```

```
PCILD AND MASK "RAMY/D AMY/RAMY, BMY/MASK, ALU/AND, SHF/ALU, SPO. R/WRITE, RC. SPO. RC/91"
RCII D. ANDNOT.O "RAMX/D. AMX/RAMX.REMX/O. BMX/RBMX. ALU/ANDNOT. SHF/ALU. SPO. R/WRITE.RC. SPO. RC/@1"
                "REMX /D SMX /REMX . ALU/B . SHE /ALU . SPO . R /WRITE . RC . SPO . RC /@1"
RCIT D(B)
                "PAMX/D AMX/RAMX.ALU/A.SHF/ALU.DT.DT/INST.DEP.SPO.R/WRITE.RC.SPO.RC/@1"
RCII D.CTX
                "RAMX/D AMX/RAMX.BMX/KMX.kMX/@2.ALU/A+B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
BC[] D+K[]
                "RAMX/D AMX/RAMX.BMX/KMX,KMX/$2.ALU/A-B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RCII D-KII
                "RAMX /D AMX /RAMX . ALU /A . SHF/LEFT . SPO. R/WRITE . RC . SPO. RC/@1"
PCI D LEET
                "RAMX/D. AMX/RAMX. ALU/A. SHF/LEFT3. SPO. R/WRITE. RC. SPO. RC/@1"
RCII D.LEFTA
                "BAMX/D AMX/RAMX KMX/@2.BMX/KMX.ALU/OR.SHF/ALU SPO.R/WRITE.RC.SPO.RC/@1"
RC[ ] D.OR.K[ ]
                "RAMX/D.AMX/RAMX.RBMX/Q.EMX/RBMX.ALU/OR.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RCT1 D.OR.O.
                         "SPO.RC/61 SPO.R/WRITE RC.ALU/ORNOT.AMX/RAMX/RAMX/D.BMX/KMX.KMX/@2.SHF/ALU"
RC[] D.ORNOT.K[]
                "RAMX/D.AMX/RAMX.SXT.DT/@2.ALU/A.SHF/ALU.SPQ.R/WRITE.RC.SPQ.RC/@1"
ROLL D. SXTIL
:RC[] K ... THRU RC[]&VA ...
                "KMX/@2 BMX/KMX.ALU/B.SHF/ALU.SPG.R/WRITE.RC.SPG.RC/@1"
RC[1 K[1
                "AMX RAMX.OXT.DT/LONG.KMX/@2,BXX/KMX.ALU/A+B+1.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/#1"
RC[] K[]+1
                "KMX.@2 BMX/KMX.ALL B.SHF/ALU.CT.DT/LONG.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] K[].LEFT2
RCITKIT.RIGHT2 "KMX/@2.BMX/KMX.ALU/B.SHF/RIGHT2.SPO.R/WRITE.RC.SPO.RC/@1"
                "AMX/LA.ALU/A.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] LA
                         "ALU LA.AND.K[@2].RC[@1] ALU"
RC[] LA.AND.K[]
                "AMX/LA.ALU/A.SHF/ALU.DT.DT/INST.DEP.SPO.R/WRITE.RC.SPO.RC/@1"
RCIT LA.CTX
                "AMX/LA.KMX/@2.BMX/KMX.ALU/A-B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_LA-K[]
                "BMX/LB.ALU/B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] LB
                "BMX/LB.ALU/B.SHF/LEFT.SPC.R.WRITE.RC.SPC.RC/@1"
RC[] LB.LEFT
                "BMX/LC.ALU/B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RCT1 LC
RC[] NOT.O
                "RAMX/O AMX/RAMX.ALU/NOTA.RCI@11 ALU"
                "BMX/PACKED.FL.ALU/B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RCII PACK. FP
                "BMX/PC_ALU/B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] PC
                "RAMX/O.AMX/RAMX, ALU/A.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_Q
                "RAMX/Q.AMX/RAMX.OXT.DT/@2.ALU/A.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] O.OXT[]
                "RAMX/Q.A%X/RAMX.BMX/KMX.KMX/@2.ALU/AND.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] Q.AND.K[]
                         "FAMX / O. AMX / RAMX . BMX / KMX . KMX / @2 . ALU/ANDNOT . SHF/ALU . SFO . R/WRITE . RC . SPO . RC/@1"
RC[] Q.ANDNOT.K[]
                'ALU 0+0+1.RC[@1] ALU"
RC[] Q+1
                "RAMX/OLAMX/RAMX.BYX/KMX.KMX/@2.ALU/A+B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[1 Q+K[1
                "RAMX/Q.AMX/RAMX, BMX/KNY, KMX/@2.ALU/A-B.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_Q-K[]
                "RAMX, Q.AVX/RAMX.ALU/A.SHF/LEFT.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] Q.LEFT
                "RAMX/Q.AMX/RAMX, ALU/A.SHF, LEFT3.SPO.R/WRITE.RC.SPO.RC/@1"
RC[] O.LEFT3
                "RAMX/O.AMX/RAMX, BMX/MASK, ALU/A-B-1, SHF/ALU, SPO.R/WRITE.RC. SPO.RC/@1"
RC[] Q-MASK-1
                "RANK/O.AMX/RAMX, BMX/PC, ALU/A+8, SHF/ALU, SPO.R/WRITE.RC, SFO.RC/@1"
RC[] Q+PC
                "RAMX/Q.AMX/RAMX.BMX/PC.ALU.A+B+1.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RC[]_Q+PC+1
```

```
RC[] O.RIGHT
                 "RAMX/Q.AMX/RAMX.ALU/A.SHF/RIGHT.SPO.R/WRITE.RC.SPO.RC/@1"
RC[1 0.SXT[1
                 "RAMX/Q.AMX/RAMX.SXT.DT/22.ALU/A.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/@1"
RCIT RLOG RIGHT "BMX/O.MSC/READ.RLOG.ALU/B.SHF/RIGHT.SPO.R/WRITE.RC.SPO.RC/@1"
RCI LEVA D+Q
                 "RAMX/O.AMX/RAMX.REMX/O.BMX/RBMX.ALU/A+B.VAK/LOAD.SHF/ALU.SPO.R/WRITE.RC.SPO.RC/91"
RC(SC) ALU
                 "SHE/ALU. SPD/WRITE, RC. SC"
:R(DST) ... THRU RITEVA ...
                 "SHE/ALU.SPO.AC/WRITE.RAB.SPG.ACN11/DST.DST"
R(DST) ALU
                 "RAMX/D.AMX/RAMY.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN11/DST.DST"
R(DST) D
R(DST) D.SXT[].RIGHT
                         "RAMX/D.AMX/RAMX.SXI.DT/@1.ALU/A.SHF/RIGHT.SPO.AC/WRITE.RAB.SPO.ACN11/DST.DST"
R(PRN) ALU
                 "SHE/ALU SPO.AC/WRITE.RAE SPC.ACN/PRN"
R(PRN)_D
                 "RAMX /D AMX /RAMX . ALU / A . SHE / ALU . SPOLAC / WRITE . RAB . SPOLACN / PRNº
R(PRN) D.OR.Q
                 "RAMX/D.AMX/RAMX.REMX/O.5MX.REMX.ALU/OR.R(PRN) ALU"
R(PRN) D[10
                 "RAMX /D. AMX /RAMX . RBMX /Q. SMX /REMX . ALU /@1 . R (PRN) "ALU!"
R(PRN) D+K[1.RLDG "RAMX/D.AMX/RAMX.KMX/31.BMX/KMX.ALU/A+B.RLDG.DT/LDNG.R PRN) ALU"
R(PRN) D-K[].RLOG "RAMX/D.AMX/RAMX,AMX/@1.EVX/KNX,ALU/A-B.RLOG.DT/LONG.R.PRN) ALU"
                 "KMX/@1.BMX/KMX.ALU/B.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN"
R(PRN) K[]
R(PRN) LA+K[1.RLOG
                         "AMX/LA.KMX @1.8MX/KMX.ALU/A+B.RLOG.DT/LONG.R(PRN) ALU"
R(PRN) LA-K[].RLCG
                         "AMX / LAIRMX / $1. BMX / KMX LALU / A-BIRLOGIDT / LONGIR / PRN 1 ALU!"
R(PRN) LATIMASK "AMX/LA.BMX/MASK.AL../@1.SHE/ALU.SPO.AC/WRITE.RAB.SPO.ACN PRN"
                 "AMX/LAIRBMX/OLEMX/RBMX.ALU/A+B.SHE/ALU.SPOLAC/WRITE.RAB.SEO.ACN/PRN"
R(PRN) LA+O
                "BMX/PACKED.FL.ALU/B.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN"
R(PRN) PACK. FP
                 "RAMX/O.AMX/RAMX.AEU/A.SHE/AEU.SPO.AC/WRITE.RAB.SPO.ACN/PRN"
R(PRN) O
R(PRN+1) D
                 "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PRN+1"
R(PRN+1) D.OR.Q "RAMX/D.ANX/RAMX, RBMX, Q.BMX/RBMX, ALU/OR, SHF/ALU, SPO.AC/WRITE.RAB.SPO.ACN/PRN+1"
                 "BMX/LC.ALU/B.SHF/ALU.SPC.AC/WRITE.RAB.SPO.ACN/PRN+1"
R(PRN+1) LC
R(PRN+1) Q
                 "RAMX/O.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/PSN+1"
R(SC) ALU
                 "SHE/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SC"
                 "RAMX/D.ANX/RAMX.ALU/A.SHF/ALU.SPD.AC/WRITE.RAB.SPD.ACN/SC"
R(SC) D
R(SC)_LA+D
                 "AMX/LA.RBMX/D.BMX/REMX.ALU/A+5.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SC"
R(SC) LA-D
                 "AMX/LA.RBMX/D.BMX/RBMX.ALU/A-B.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SC"
R(SC) LC
                         "ALU LC.R(SC)_ALU"
                 "RAMX/O.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SC"
R(SC) Q
R(SP1+1) LC
                 "BMX/LC.ALU/B.SHF/ALU,SPO.AC/WRITE.RAB.SPO.ACN/SP1+1"
R(SP1+1) Q
                 "RAMX/Q.AMX/RAMX.ALU/A.SHE/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SP1+1"
                 "SHE/ALU.SPO.AC/WRITE.RAB,SPO.ACN/SP1.SP1"
R(SP1) ALU
R(SP1) D
                "RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SP1.SP1"
                "KMX/@1,BMX/KMX,ALU/B,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN/SP1.SP1"
R(SP1) K[]
                "BMX/PACKED.FL.ALU B.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SP1.SP1"
R(SP1) PACK.FP
R(SP1) Q
                 "RAMX/Q.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN/SP1.SP1"
R(SRC) ALU
                 "SHE/ALU.SPO.AC/WRITE.RAB.SPO.ACN11/SRC.SRC"
```

```
"RAMX/D.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN11/SRC.SRC"
R(SRC)_D
                "RBMX/D,BMX/RBMX,ALU/B,SHF/ALU,SPO.AC/WRITE.RAB,SPO.ACN11/SRC.SRC"
R(SRC) D(B)
R(SRC)_D+K[].RLOG "RAMX/D.AMX/RAMX,KMX/@1.BMX/KMX.ALU/A+B.RLOG.DT/WORD.R(SRC) ALU"
R(SRC)_D-K[].RLOG "RAMX/D.AMX/RAMX,KMX/@1.BMX/KMX.ALU/A-B.RLOG.DT/WORD.R(SRC)_ALU"
                 "BMX/LC.ALU/B.R(SRC) ALU"
R(SRC)_LC
                "RAMX/O.AMX/RAMX.ALU/A.SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN11/SRC.SRC"
R(SRC) 0
                "SHF/ALU.SPO.AC/WRITE.RAB.SPO.ACN11/SRC.OR.1"
R(SRC!1)_ALU
                "RBMX/D, BMX/RBMX, ALU/B, SHF/ALU, SPO. AC/WRITE. RAB, SPO. ACN11, SRC. GR. 1"
R(SRC!1) D(B)
                "AMX/LA.KMX/@2.BMX/KMX.ALU/A+B.VAK/LOAD.SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[]&VA_LA+K[]
                "AMX/LA.KMX/$2,BMX/KMX,ALU/4-B,VAK/LOAD,SHF/ALU.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[]&VA LA-K[]
                         "AMX/LA,KMX/@2,BMX/KMX,ALU/A-B.RLOG,DT/LONG,VAK/LGAD.SHF/ALU.SFD.R/WRITE.RAB.SPO.RAB/@1
R[]&VA LA-K[].RLOG
                "RAMX/Q.AMX/RAMX,KMX/@2,BMX/KMX.ALU/A-B,VAK/LOAD.SPO.R/WRITE.RAB.SPO.RAB/@1"
R[]&VA_Q-K[]
;SC_...
                "AMX/RAMX.OXT.DT/LONG.EBMX/AMX.EXP.EALU/B.SMX/EALU,SCK/LCAD"
SC_0(A)
                "BMX/KMX.KMX/@1.AMX/RAMX.OXT.DT/LONG.ALU/A-B.SMX/ALU.SCK/LCAD"
SC 0-K[]
                "SMX/ALU.SCK/LOAD"
SC ALU
SC_ALU(EXP)
                "SMX/ALU.EXP.SCK/LOAD"
                "RAMX/D.AMX/RAMX,ALU/A.SMX/ALU.SCK/LOAD"
SC D
                "RAMX/D.AMX/RAMX.OXT.DT/@1.kMX/@2.BMX/KMX.ALU/A-B.SMX/ALU.SCK/LDAD"
SC_D.OXT[]-K[]
                         "RAMX/D.AMX/RAMX.CXT.DT/@1,BMX/KMX,KMX/@2,ALU/XOR,SC_ALU"
SC_D.OXT[].XOR.K[]
                 "RAMX/D.AMX/RAMX.KMX/$1,BMX/KMX.ALU/AND.SMX/ALU.SCK/LOAD"
SC D.AND.K[]
                "RAMX/D.AMX/RAMX.ALU/A.SWX/ALU.EXP.SCK/LOAD"
SC D(EXP)
                "RAMX/D.AMX/RAMX.EBMX/AMX.EXP.EALU/B.SMX/EALU.SCK/LOAD"
SC_D(EXP)(A)
                "RBMX/D,BMX/RBMX,ALU/B,SMX/ALU.EXP,SCK/LDAD"
SC D(EXP)(B)
                "RAMX/D,AMX/RAMX,KMX/@1,BMX/KMX,ALU/A-B,SMX/ALU,SCK/LOAD"
SC_D-K[]
                "RAMX/D.AMX/RAMX, KMX/@1, BMX/KMX, ALU/OR, SMX/ALU, SCK/LOAD"
SC D.OR.K[]
                "RAMX/D.AMX/RAMX.SXT.DT/@1,ALU/A,SMX/ALU,SCK/LOAD"
SC D.SXT[]
SC_EALU
                 "SMX/EALU.SCK/LOAD"
SC_FE
                 "SMX/FE.SCK/LOAD"
                "EBMX/FE, EALU/NABS. A-B, SMX/EALU. SCK/LOAD"
SC NABS (SC-FE)
                 "KMX/@1.EBMX/KMX.EALU/B.SMX/EALU,SCK/LOAD"
SC_K[]
                "KMX/@1.BMX/KMX.ALU/B.SMX/ALU.SCK/LOAD"
SC_K[].ALU
                "AMX/LA.ALU/A.SMX/ALU.SCK/LOAD"
SC_LA
                "AMX/LA,KMX/@1,BMX/KMX,ALU/AND,SMX/ALU.SCK/LOAD"
SC LA. AND. K[]
                "BMX/LC,ALU/B.SMX/ALU.EXP.SCK/LOAD"
SC_LC(EXP)
                 "SMX/EALU, EBMX/KMX, SCK/LOAD, KMX/.F, EALU/B"
SC_PSLADDR
                "RAMX/Q, AMX/RAMX, ALU/A, SMX/ALU, SCK/LOAD"
SC_Q
                "RAMX/Q.AMX/RAMX.BMX/KMX.KMX/@1.ALU/AND.SMX/ALU.SCK/LOAD"
SC Q.AND.K[]
```

"RAMX/Q.AMX/RAMX, EBMX/AMX. EXP. EALU/B. SMX/EALU, SCK/LOAD"

SC_Q(EXP)

```
321
```

```
SC_Q(EXP)(B)
                 "RBMX/Q.BMX/RBMX,ALU/B,SMX/ALU.EXP.SCK/LOAD"
SC_Q+K[]
                "RAMX/Q.AMX/RAMX.BMX/KMX.KMX/@1,ALU/A+B,SMX/ALU,SCK/LOAD"
                "RAMX/Q_AMX/RAMX,BMX/KMX,KMX/@1,ALU/A-B,SMX/ALU,SCK/LOAD"
SC_Q-K[]
SC_Q.OR.K[]
                "RAMX/Q.AMX/RAMX.BMX/KMX.KMX/@1.ALU/OR.SMX/ALU.SCK/LOAD"
                "RAMX/Q.AMX/RAMX.SXT.DT/@1.ALU/A.SMX/ALU.SCK/LOAD"
SC_Q.SXT[]
                "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.ALU/A.SMX/ALU.SCK/LOAD"
SC_R[]
                "SPO.R/LOAD.LC.SPO.RC/@1,BMX/LC.ALU/B.SMX/ALU.SCK/LOAD"
SC_RC[]
                "ALU/AND.AMX/LA.SPO.R/LOAD.LAB.SPO.RAB/@1,BMX/KMX,KMX/@2.SMX/ALU.SCK/LOAD"
SC_R[].AND.K[]
SC_R[](EXP)
                "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.ALU/A.SMX/ALU.EXP.SCK/LCAD"
SC_RC[](EXP)
                *SPO.R/LOAD.LC.SPO.RC/@1,BMX/LC.ALU/B,SMX/ALU.EXP.SCK/LOAD"
SC_SC+1
                "EALU/A+1.SMX/EALU.SCK/LOAD"
SC_SC.ANDNOT.FE "EBMX/FE.EALU/ANDNOT, SMX/EALU, SCK/LOAD"
                         "KMX/@1,EBMX/KMX,EALU/ANDNOT,SMX/EALU.SCK/LOAD"
SC SC. ANDNOT.K[]
SC_SC+FE
                "EBMX/FE.EALU/A+B.SMX/EALU.SCK/LOAD"
SC_SC-FE
                "EBMX/FE.EALU/A-B.SMX/EALU.SCK/LOAD"
                "KMX/@1,EBMX/KMX,EALU/A+B,SMX/EALU,SCK/LOAD"
SC SC+K[1
                "KMX/@1,EBMX/KMX,EALU/A-B,SMX/EALU,SCK/LOAD"
SC_SC-K[]
                "KMX/@1.EBMX/KMX,EALU/OR,SMX/EALU,SCK/LOAD"
SC SC.OR.K[]
                "EBMX/SHF.VAL, EALU/A-B, SMX/EALU, SCK/LOAD"
SC_SC-SHF.VAL
SC_SHF.VAL
                "EBMX/SHF.VAL.EALU/B,SMX/EALU,SCK/LOAD"
                "EALU/A.MSC/LOAD.STATE.SMX/EALU.SCK/LOAD"
SC STATE
                         "EALU/ANDNOT.EBMX/KMX.MSC/LOAD.STATE.SMX/EALU.SCK/LOAD.KMX/@1"
SC_STATE.ANDNOT.K[]
SC&STATE_STATE-F[](EXP) "LAB_R[@1],AMX/LA,EBMX/AMX.EXP,MSC/LOAD.STATE,EALU/A-B,SMX/EALU,SCK/LOAD"
;SD_... THRU VA_...
SD NOT.SD
                 "SGN/NOT.SD"
SD SS
                "SGN/SD.FROM.SS"
SS O&SD O
                "SGN/CLR.SD+SS"
SS_ALU15
                "SGN/LOAD.SS"
SS_SD
                "SGN/SS.FROM.SD"
SS_SS.XOR.ALU15&SD_ALU15
                                 "SGN/SS.XOR.ALU"
                "AMX/RAMX.OXT.DT/LONG.EBMX/AMX.EXP,EALU/B,MSC/LOAD.STATE"
STATE_O(A)
STATE_AMX.EXP
                "EBMX/AMX.EXP.EALU/B.MSC/LOAD.STATE"
                "RAMX/D, AMX/RAMX, EBMX/AMX.EXP, EALU/B, MSC/LOAD.STATE"
STATE_D(EXP)
STATE_FE
                "EBMX/FE.EALU/B.MSC.'LOAD.STATE"
STATE_K[]
                "KMX/@1.EBMX/KMX,EALU/B,MSC/LCAD.STATE"
                "RAMX/Q, AMX/RAMX, EBMX/AMX. EXP, EALU/B, MSC/LOAD. STATE"
STATE_Q(EXP)
                         "MSC/LOAD.STATE, EALU/B, EBMX/KMX, KMX/SC"
STATE_SC.VIA.KMX
STATE_STATE+1
                "EALU/A+1, MSC/LOAD. STATE"
                        "FEMX/FE.EALU/ANDNOT.MSC/LOAD.STATE"
STATE STATE, ANDNOT, FE
```

```
STATE_STATE.ANDNOT.K[] "KMX/@1,EBMX/KMX,EALU/ANDNOT,MSC/LOAD.STATE"
STATE_STATE+FE "EBMX/FE, EALU/A+B, MSC/LOAD.STATE"
STATE STATE-FE "EBMX/FE.EALU/A-B.MSC/LOAD.STATE"
STATE_STATE+K[] "KMX/@1.ESMX/KMX.EALU/A+B.MSC/LOAD.STATE"
STATE_STATE-K[] "KMX/@1.EBMX/KMX.EALU/A-B.MSC/LOAD.STATE"
STATE_STATE.OR.FE
                        "EALU/OR.EBMX/FE.MSC/LOAD.STATE"
STATE STATE.OR.K[]
                        "KMX/@1,EBMX/KMX,EALU/OR,MSC/LOAD.STATE"
:SKPC STATES
STATE SKPLONG
                         "STATE_K[.4]"
                       "STATE_STATE.ANDNOT.K[.4]"
STATE_STATE.AN.SKPLONG
:EDITPC STATES
                         "STATE K[ZERO]"
STATE FIRST
                        "STATE_K[.85]"
STATE PREDEC
                        "STATE STATE. ANDNOT. K[.3F]"
STATE_STATE.AN.5TOO
                        "STATE_STATE.ANDNOT.KI.7F]"
STATE STATE. AN. 6104
                        "STATE STATE.ANDNOT.K[.6]"
STATE_STATE.AN.DESTOBL
STATE STATE, AN. NOTPREDEC
                                 "STATE STATE, ANDNOT, K[.7F]"
                                 "STATE STATE. ANDNOT.K[.CO]"
STATE_STATE.AN.PREDECZERO
                        "STATE_STATE.OR.K[.3]"
STATE STATE OR ADJINE
                        "STATE STATE.OR.K[.4]"
STATE_STATE.OR.DEST
STATE STATE.OR.DESTOBL "STATE_STATE.OR.M[.6]"
STATE STATE. CR. FILL
                        "STATE_STATE.OR.K[ ]7]"
STATE_STATE.OR.FLOAT
                        "STATE STATE.OR.K[.60]"
                        "STATE_STATE.OR.K[.50]"
STATE STATE, OR, MOVE
                        "STATE STATE.OR.K[.1]"
STATE STATE.GR.PATT1
STATE_STATE.OR.PATT2
                        "STATE_STATE.OR.K[.2]"
:MATCHC STATES
STATE_INNEROBU "STATE_K[.1]"
STATE INNERSEC
                "STATE K[.3]"
STATE_OUTER
                "STATE_K[ZERO]"
SWAPD
                "DK/BYTE.SWAP"
                "VAK/LOAD"
VA_ALU
VA_D
                "RAMX, D. AMX/RAMX, A! U/A, VAK/LOAD"
                "RAMX/D,AMX/RAMX.OKT.DT/@1.ENX/RBMX.ALU/A+B.VAK/LCAD"
VA_D.OXT[]+Q
VA_D.ANDNOT.K[] "RAMX/D.AMX/RAMX.BMX/RMX.BMX.@1.ALU/ANDNOT.VAK/LOAD"
VA D+K[]
                "RAMX D.AMX RAMX, RMX POL.BMX, RMX, ALU/A+B, VAK/LOAD"
VA_D+LC
                "RAMX/D.AVX/RAMX,BMY/LC.ALU/A+B.VAK/LOAD"
                "RAMK/D.AMK/RAMK.RBMK, Q.BMX.RBMX,ALU/A+B.VAK/LOAD"
VA D+Q
```

```
VA_K[]
                 "KMX/@1.BVX/KMX.ALJ/B.VAK/LOAD"
VA LA
                "AMX/LA.ALU/A.VAK/LOAD"
VA_LA.AND.LC
                 "AMX/LA.BMX/LC.ALU AND.VAK/LOAD"
VA LA.ANDNOT.K[]
                         "AMX/LA,EMX KMX,KMX/@1,ALU/ANDNOT,VAK/LOAD"
VA LA+D
                 "AMX/LA.REMX/D.EMX/REMX.ALU/A+B.VAK/LCAD"
VA_LA-D
                 "AMX/LA.REMX/D.EMX/REMX.ALU/AHB.VAK/LOAD"
                 "AMX/LA.EMX/KMX.KMX/@1.ALU/A+8.VAK/LOAD"
VA LA+K[]
VA_LA-K[]
                 "AMX/LA.BMX/KMX,KMX,@1,ALU/A-B.VAK/LOAD"
VA LA+K[]+1
                 "AMX/LA.BMX/KMX,KMX/@1,ALU/A+B+1,VAK/LOAD"
VA_LA-K[]-1
                 "AMX, LA.BMX/KMX, KMX '@1, ALU/A-B-1, VAK/LOAD"
VA LA+PC
                 "AMX LA .BOX/PC .ALU/A+B.VAX/LOAD
VA_LA+Q
                 "AMX/LA.REMX/O.EMX-REMX.ALU/A+3.VAK/LOAD"
VA LA-O
                "VAK/LOAD.ALU/A-B.AMX/LA.EMX/RGMX.RBMX/Q.SHF/ALU"
                "BMX/LB.ALU/A+B.AMX/RAMX.CXT.DT/BYTE.VAK/LOAD"
VA_LB+D.OXT
VA PC
                 "BMX, PC.ALU/B. VAK/LCAD"
VA_Q
                 "RAMX/Q.4MX/RAMX,ALU/A.VAK/LOAD
VA_Q.ANDNOT.K[] "RAMX/Q,AMX/RAMX,EMX/@1,EMX/RMX,ALU/ANDNGT,VAK/LOAD"
VA_Q+D
                 "VAK/LOAD.ALU/A+B.AMX/RAMX.ENX.RBMX.RAMX/Q.RBMX/D.SHF/ALU"
VA_Q+K[]
                 "RAMX:O.AMX/RAMX.KMY/@1.SNX,KMX.ALU/A+B.VAK/LCAD"
VA Q-K[]
                 "RAMX/Q.AGX/RAMX.KMX/@1.BMX KMX.ALU/A-B.VAK/LOAD"
VA_Q+LC
                "RAMX/O.AMX/RAMX.BMX/LC.ALU.A+B.VAK/LOAD"
VA_Q+LB
                "RAMX, O.AMX/RAMX, BMX/LB, ALU, A+B, VAK/LOAD"
VA_Q-LB
                 "RAMX/O.AMX/RAMX.BMx/LB.ALU.A-8.VAK/LOAD"
VA_Q+LB.PC
                "RAMX/Q.AMX/RAMX.BMX/PC.OR.LB.ALU/A+B.VAK/LOAD"
VA_Q+PC
                 "RAMX/O.AMX/RAMX.BMX/PC.ALU/A+8.VAK/LOAD"
                 "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,ALU/A,VAK/LOAD"
VA_R[]
                 "SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/B.VAK/LOAD"
VA_RC[]
VA_VA+4
                 "PCK/VA+4"
        "Non-transfer Functions"
                 "LAB_R(SP1),QK/ID,CLR.IB.COND,PC_PC+N,SUB/SPEC.J/B.FORK"
B. FORK
BYTE
                 "DT/SYTE"
CACHE. INVALIDATE
                         "MCT/INVALIDATE, VAK/NOP"
CALL
                 "SUB/CALL"
CALL[]
                 "CALL.J/@1"
C. FORK
                 "SUB/SPEC.J/C.FORK"
CHK.ODD.ADDR
                 "MSC/CHK.ODD.ADDR"
CHK.FLT.DPR
                 "MSC/CHK.FLT.OPR"
                 "CCK/LOAD.UBCC"
CLK.UBCC
CLR. FPD
                 "MSC/CLR.FPD"
                "IBC/CLR.O.1, IEK/ISTR"
CLR.IBO-1
```

```
:DISCARD -11 INSTR & OPERAND
CLR.IBO-3
                 "IBC/CLR.0-3"
                                          :11 MODE DISCARD ISTREAM OPERAND
CLR. IB2-3
                 "IBC/CLR.2.3"
                                          :2ND PART OF Q/D IMMEDIATE
CLR. IB2-5
                 "IBC/CLR.1-5.COND"
CLR. IB. COND
                 "TRC/CLR. 1-5. COND"
CLR. IB. OPC
                 "IBC/CLR.D.IEK/ISTR"
CLR. IB. SPEC
                 "IBC/CLR.1"
                 "MSC/CLR.NEST.ERR"
CLR.NEST.ERR
CLR.SD&SS
                 "SGN/CLR.SD+SS"
EXCEPT.ACK
                 "IEK/EACK"
                 "IBC/FLUSH, VAK/LOAD, IEK/ISTR"
FLUSH. IB
                 "MCT/MEM.NOP"
INHIBIT. IB
                 "IEK/IACK"
INTRPT.ACK
                 "IEK/ISTR"
INTRPT.STROBE
                 "IRDO,CLK.UBCC.IRD1.SUB/SPEC.J/A.FORK"
IRD
                 "LA_R(SP2)&LB_R(SP1),D&VA_LB,SC_ALU(EXP),FE_LA(EXP),SS_ALU15"
IRDO
                 "MSC/IRD,QK/ID,MCT/ALLOW. IB.READ, ISC/CLR. 1-5. COND. PCK/PC+\"
IRD1
                 "LA_R(DST)&LB_R(SRC),D_LB.PC.VAK/LDAD,Q_IB.DATA.SC_K[.10].PCK/PC+N.MSC/IPD,SUB/SPEC.J/DPO"
IRD. 11
LOAD, IB
                 "VAK/NOP.MCT/READ.V.NEWPC"
                 "VAK/NOP.MCT/READ.V.NEWPC"
LOAD, IB. 11
                 "DT/LONG"
LONG
POLY . DONE
                 "ACF/CONTROL,ACM/POLY.DONE"
RETURN[]
                 "SUB/RET.J/@1"
RETURNO
                 "SUB/RET.J/0"
RETURN 1
                 "SUB/RET.J/1"
RETURN2
                 "SUB/RET.J/2"
                 "SUB/RET.J/3"
RETURN3
RETURN8
                 "SUB/RET.J/8"
RETURN9
                 "SUB, RET. J/9"
RETURNE
                 "SUB/RET.J/OF"
RETURN10
                 "SUB/SET.J/10"
RETURN12
                 "SJB/RET.J/12"
RETURN18
                 "SUB RET.J/18"
RETURN1F
                 "SUB/RET.U/1F"
RETURN20
                 "SUB. RET. U/20"
RETURN24
                 "SUB/RET.J/24"
RETURN40
                 "SUB/RET.U/40"
                 "SUB, RET. J/60"
RETURN60
                 "SUB. RET. J /61"
RETURN61
RETURN100
                 "SUB/RET.U/100"
RETURN 10C
                 "SUB/RET.J/10C"
```

324

```
RETURN 10E
                 "SUB/RET, J/10E"
SET.CC(INST)
                 "CCK/INST.DEP.DT/INST.DEP"
SET.CC(LONG)
                 "CCK/INST.DEP.DT/LONG"
SET.CC(ROR)
                 "CCK/ROR"
SET. FPD
                 "MSC/SET.FPD"
SET.N.AND.Z
                 "CCK/TST.Z"
SET.NEST.ERR
                 "MSC/SET.NEST.ERR"
SET.N&Z
                 "CCK/N+Z ALU"
SET.PSL.C(AMX)
                 "CCK/C AMXO"
SET.V
                 "CCK/SET.V"
START. IB
                 "IBC/START"
STOP. IB
                 "IBC/STOP"
TEST.TB.RCHK
                 "MCT/TEST.RCHK.VAK/NOP"
TEST. TB. WCHK
                 "MCT/TEST.WCHK.VAK/NOP"
TRAP.ACC[]
                 "ACF/TRAP.ACM/@1"
WORD
                 "DT/WORD"
WRITE.DEST
                 "LAB_R(SP1),QK/ID,CLR.IB.CGND,PC_PC+N,SUB/SPEC,J/WRD"
        "Branch Enable Macro Definitions"
                 "BEN, ACCEL"
ACCEL?
ACC.SYNC?
                                  ;, 3/3"
                 "BEN/ACCEL"
AC.LOW?
                 "BEN/INTERRUPT" :. J3/3"
ALIGNED?
                 "BEN/TS.TEST"
                                  ;,J5/17"
ALU?
                 "BEN/ALU"
ALU.N?
                                  :,U4/07"
                 "BEN/ALU"
ALU1-0?
                 "BEN, ALU1-0"
BCDSGN?
                 "BEN/DECIMAL"
                                  :, 32/24
C31?
                 "BEN. C31"
CONSOLE.MODE?
                                  :.05/18"
                 "BEN/PSL.MODE"
00?
                 "BEN/D3-0"
                                  ;,04/0E"
5(1)?
                 "BEN/MUL"
02?
                                  ;,U4/0B"
                 "BEN/D3-0"
D2-0?
                 "BEN/ 03-0"
                                  :.04/08"
03?
                 "BEN: D3-0"
                                  :.04/07"
D3-0?
                 "BEN, D3-0"
D31?
                 "BEN/SIGNS"
                                  ;,J3/6"
DATA. TYPE?
                 "BEN/DATA.TYPE"
D.B0?
                 "BEN, D. BYTES"
                                  ;,J4/0E"
D.B1?
                 "BENID.BYTES"
                                  :.U4/0D"
```

;,U4/0B"

"BEN/D.BYTES"

D.B2?

```
DBIS
                  "RENIDATA TYPE"
D. BYTES2
                  "BEN/D. BYTES"
                                   :.43/5" :PREFERED FORM
D. NE . 02
                  "BEN SIGNS"
:- A1112
                  "REN FALLI"
                                   1.014/07"
FALU.N2
                  "BEN/EALIL"
                 "BEN 'EALU"
                                   :.u4/0B"
FAILL 72
END. DP12
                 "BEN/END. DP1"
                                  :.44/07"
FPD?
                  "BEN/LAST.REF"
IB. TEST?
                  "BENZIB TEST"
INT?
                  "BEN/INTERRUPT"
INTERRUPT REG?
                 "BEN INTERRIPT" + 33/5"
                 "BEN 'ALU"
1202
                                   :.U4/0D"
180.0312
                 "REN'ALU"
                                  :..3/6"
1917
                 "BEN. 1R2-1"
1P2-12
                 "REN. IR2-1"
AST.REF?
                 "BEN/LAST. REE"
                                           :.03/3"
MODELLSS, ASTIVI2
                          "BEN/REI"
MODE 2
                 "REN.MID"
NEST. ERR?
                 "BEN LAST.REF"
                                  :.J4/0B"
PC.MODES?
                 "SEN/PO.MODES"
PSI.C2
                 "BEN/PSL.CO"
                                   :.U4/0E"
PSL.CC?
                 "SEN/PSL.CC"
PSI MODE?
                 "BEN/PSL, MODE"
PSL.N2
                 "BEN/PSL.CC"
                                   ....4/7"
                                  :.U4/0D*
PSL.V?
                  "BEN/PSL.CC"
                                  :.J4/0B"
PSL.Z?
                  "BEN/PSL.CC"
                                   :.U5/0F"
PTF. VALID?
                  "REN/TR.TEST"
QUAD?
                  "BEN/DATA.TYPE"
031?
                  "BEN/SIGNS"
                                   :. 3/3"
                                   :.J4/7"
RLOG. EMPTY?
                  "BEN. ALU1-0"
ROR?
                  "BEN/ROR"
SC?
                  "BEN/SC"
SC.GT.0?
                  "BEN/SC"
SC.NE.0?
                                  :.J3/3"
                  "BEN/MUL"
SIGNS?
                 "BEN/SIGNS"
SRC.PC?
                  "BEN/SRC.PC"
                                   : COMP MODE. BEN ON SRC R = PC
55?
                 "BEN/EALU"
                                   :.J4/0E"
STATEO?
                 "BEN/STATE3-0"
                                  :.J4/0E"
                                  :.J4/0D"
STATE1?
                 "BEN: STATE3-0"
STATE1-02
                 "BEN/STATE3-0"
                                   :.U4/0C"
STATE2?
                 "BEN/STATE3-0"
                                   :.J4/0B"
```

ALU Q.AND.MASK

```
STATE3?
                 "BEN/STATE3-0"
                                  ;, 4/07"
STATE3-0?
                 "BEN/STATE3-0"
STATE4?
                 "BEN, STATE7-4"
STATES?
                 "BEN/STATE7-4"
STATE6?
                 "BEN/STATE7-4"
STATE(7)?
                          "STATE7-4?"
STATE7-4?
                 "BEN/STATE7-4"
TB. TEST?
                 "BEN/TB.TEST"
VA31?
                 "BEN/PSL.MODE"
                                  :. J5/0F"
VA31-30?
                 "BEN/PSL, MODE"
                                  :.J5/07"
Z?
                 "BEN, Z"
ZONED?
                 "BEN/DECIMAL"
                                  :, 02/1"
ALEG D
                 "AMX/RAMX, RAMX/D"
ALEG_LA
                 "AMX/LA"
ALEG LAB
                 "AMX/LA"
                 "AMX/RAMX,RAMX/Q"
ALEG_Q
                 "KMX/ZERO.BVX/KMX.ALU/B"
ALU O(K)
                 "AMX/RAMX.OXT.DT/LONG.REMX/D.BMX/RBMX.ALU/A+B+1"
ALU 0+D+1
ALU D. AND. Q
                 "RAMX/D, AMX/RAMX, RBNX/Q, BMX/RBMX, ALU/AND"
ALU D.OR.MASK
                 "RAMX/D.AMX/RAMX.BMX/MASK.ALU/OR"
                 "RAMX/D,AMA, RAMX.SMx/LB.ALU/@1"
ALU_D[]LB
ALU D[ ]MASK
                 "RAMX/D.AMX RAMX.EMX/MASK,ALU/@1"
                 "AMX/RAMX, RAMX/D. LC_RC[@2], BMX/LC, ALU/@1"
ALU DI IRCI 1
                 "AMX/RAMX.RAMX/D.LAB R[@2],BMX/LB,ALU/@1"
ALU D[]R[]
ALU_D-R[]
                 "BMX/RBVX,RBMX/D,LAB_R[@1],AMX/LA,ALU/A-B"
                 "AMX/LA,BMX/LC,ALJ/A-B"
ALU_LA-LC
ALU LA.AND.LC
                 "AMX/LA.BMX/LC.ALU/AND"
                 "AMX/LA,BMX 'KMX,KMX/S2,ALU/@1"
ALU LATIKI
ALU LA[]LC
                 "AMX/LA.BMX LC.ALU/@1"
                 "BMX/MASK,ALU/B"
ALU MASK
ALU MASK+1
                 "AMX/RAMX.OXT.DT/LONG.BMX/MASK.ALU/A+B+1"
                 "AMX/RAMX.OKT, DT/LONG, KMX/@1, BMX/KMX, ALU/ORNOT"
ALU NOT.K[]
ALU NOT.LA
                 "AMX/LA.ALU/NOTA"
                 "AMX/RAMX.OXT.DT/LONG, BWX/MASK, ALU/ORNOT"
ALU NOT . MASK
                 "RAMX/Q.AMX/RAMK.ALU/NOTA"
ALU NOT.O
ALU Q+D "RAMX/Q, AMX 'RAMX, SMX/RBMX, ALU/A+B"
                 "KMX/SC.EMX/KMX.RAMX/Q.AMX/RAMX.ALU/A-B"
ALU_Q-SC
ALU_Q[]LB
                 "RAMX/O.AMX: RAMX, BMX 'LB.ALU/@1"
                 "RAMX/Q.AMX/RAMX.BMX, MASK.ALU/@1"
ALU_Q[]WASK
                 "RAMX/O, AMX/RAMX, EMX/MASK, ALU/AND"
```

```
ALU Q.OR.MASK
                 "RAMX/Q.AMX/RAMX.BMX/MASK.ALU/DR"
                         "RAMX/Q.AMX/RAMX.BMX/MASK.ALU/ORNOT"
ALU Q.ORNOT.MASK
                "LC_RC[@1],AMX/RAMX,RAMX/Q,BMX/LC,ALU/XOR"
ALU Q.XOR.RC[]
ALU Q.XOR.R(SC) "LAB_R(SC).EMX/LB.AMX/RAMX.RAMX/Q.ALU/XOR"
                 "RAMX/Q,AMX, RAMX,KMX, $2,BMX/KMX,ALU/@1"
ALU O[ Kil
                 "RAMX/Q, AMX/RAMX, BMX/LC, ALU/@1"
ALU Q[ LC
                 "AMX/RAMX, RAMX/Q, LC_RC[@2], BMX/LC, ALU/@1"
ALU_Q[]RC[]
                 "AMX/RAMX.RAMX/O.LAS R[@2],BMX/LB.ALU/@1"
ALU GIRI
                 "SPO.AC/LOAD.LAB.SPO.ACN/SC.AMX/LA.ALU/A"
ALU_R(SC)
ALU RLOG
                 "MSC/READ.RLOG.ALU/B"
                         "SPO.R/LOAD.LAB, SPO.RAB/@1, AMX/LA, BMX/MASK, ALU/AND"
ALU R[].AND.MASK
ALU RIJ.OR.MASK "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.BMX/MASK.ALU/OR"
                         "SPC.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.BMX/MASK.ALU/CRNOT"
ALU_R[].ORNOT.MASK
                "SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.KMX/@2.BMX/kMX.ALU/A-B"
ALU R[]-K[]
                "SPO.R/LCAD.LAB.SPO.RAB/@1.AMX/LA.KMX/@2.BMX/KMX.ALU/A+B"
ALU_R[]+K[]
ALU SC
                 "KMX/SC.BMX/KMX.ALU/B"
                 "BMX/RBMX,RBMX/D"
BLEG_D
BLEG_LB
                 "EMX/LB"
BLEG LC
                 "BMX/LC"
BLEG_Q
                 "BMX/REMX.REMX/Q"
CPSYNC
                 "ACF/SYNC"
DELAY
                 "CALL[DELAY]"
                 "AMX/RAMX.OXT.KMX/@1.BMX/KMX.ALU/A-B.D_ALU"
D_0-K[]
                 "DK/ACCEL"
D ACC
                 "BAMX/D.AMX 'RAMY, SMX/LS.ALU/A-B.D.ALU"
D_D-LB
                 "ALU_D[$1]90[$2].D_ALU"
D DI 19C[1
                 "REMX/D.EMX REMX.SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.ALU/AND.D_ALU"
D_D.AND.R[]
D D. LEFT.Q
                 "DK/LEFT.SI/DIV"
                 PROMX/D.BMX 'RBMX.SPG.R/LOAD.LAB,SPG.RAB/@1,AMX/LA.AEU/GR.D_ALU"
D_D.09.R[]
                 "PAMX/D.AMX/RAMX.SXT.DT,@1,KMX/@2,BMX/KMX.ALU/A+B.D_ALU"
D_D.5XT[]+X[]
                 "RAMX/D, AMX/RAMX, SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/XOR.D ALU"
D_D.XOP.RC[]
                "AMX/LA.REMX/D.EMX/RDMX.ALU/A+B.D_ALU"
D_LA+D
                "AMX/LA.RBMX/D.BMX/RBMX,ALU/OR.D_ALU"
D LA.OR.D
                "BMX/MASK.ALU/B.D_ALU"
D MASK
                "AMX/RAMX.OXT.BMX/MASK,ALU/A+B+1.D_ALU"
D MASK+1
                "AMX/RAMX.OXT,SPO.R/LOAD.LC,SPO.RC/@1,BMX/LC,ALU/ORNOT.D_ALU"
D NOT.RC[]
                "RAMX/Q, AMX/RAMX, ALU/OR, SHF/ALU, DK/SHF, BMX/RBMX.RBMX/D"
D_Q.OR.D
                "DK/NCP"
D MD
                "SPO.R/LCAD.LAB.SPO.RAB/@1,AMX/LA.ALU/A.SHF/LEFT,DK/SHF"
D_R[].LEFT
                "SPO.R/LOAD.LAB.SPO.RAB/Q1,AMX/LA,RBMX/D,BMX/RBMX.ALU/OR.D_ALU"
D_R[].OR.D
```

```
D R[].ORNOT.MASK "SPO.R/LOAD.LAB,SPO.RAB/@1,AMX/LA,BMX/MASK,ALU/ORNOT.D_ALU"
D_SC
        "KMX/SC.BMX/KMX.ALU/B.SHF/ALU.DK/SHF"
EALU_STATE-K[] "EBMX/KMX,KMX/@1,MSC/LOAD.STATE,EALU/A-B"
EBMX K[]
                 "KMX/@1.EBMX/KMX"
ENDOVR "SUB/CALL.J/SCOPE"
ERLOOP "SUB/CALL.J/ERLOOP"
ERROR1
        "SUB/CALL.J/ERROR1"
ERROR2 "SUB/CALL, J/ERROR2"
LAB_R(PRN)
                 "SPO.AC/LOAD.LAB,SPO.ACN/PRN"
LAB R(PRN+1)
                 "SPO.AC/LOAD.LAB, SPO.ACN/PRN+1"
                "SPO.AC/LOAD.LAB.SPO.ACN/SP1+1"
LAB R(SP1+1)
LAB_R(SRC!1)
                 "SPO.AC/LOAD.LAB.SPO.ACN11/SRC.OR.1"
LAB R(SP2)
                 "SPO.AC/LOAD.LAB, SPO.ACN/SP2.SP2"
                "SPO.AC/LOAD.LAB, SPO.ACN/SP2.SP1"
LAB R(SP2.SP1)
                 "D_K[ZERO], CALL[MSGCOM]"
MESSAGET
MESSAGE2
                 "D_K[.1],CALL[MSGCOM]"
MESSAGE3
                 "D KI.21.CALL[MSGCOM]"
                "D_K[.3],CALL[MSGCCM]"
MESSAGE4
MESSAGE5
                "D K[.4].CALL[MSGCOM]"
MESSAGE7
                "D_K[.6], CALL[MSGCGM]"
MESSAGE8
                 "D K[.7].CALL[MSGCGM]"
MESSAGE9
                 "D_K[.8], CALL[MSGCOM]"
MESSAGE 10
                "D_K[.9],CALL[MSGCOM]"
NEWTST
        "SUB/CALL.J/SCOPE"
NEWTST[]
                 "NEWTST,RC[OF]_K[@1]"
NOP
        "DK/NOP"
Q ACC
                 "OK/ACCEL"
Q_D[]Q
                 "RAMX/D, AMX/RAMX, BMX/RBMX, RBMX/Q, ALU/@1, Q_ALU"
Q_D[]RC[]
                 "RAMX/D, AMX/RAMX, SPO.R/LOAD.LC, SPO.RC/@2, BMX/LC.ALU/@1,Q_ALU"
                 "KMX/SP1.CON.EMX/KMX.ALU/B.Q ALU"
Q_K(SP1)
Q MASK+1
                 "AMX/RAMX.OXT, BMX/MASK, ALU/A+B+1, Q_ALU"
                 "amx/ramx.0kt.bmx/mask.alu/ornot.g.alu"
q_not.mask
Q_Q.AND.LC
                "RAMX/Q,AMX/RAMX,SMX/EC,ALU/AND,Q_ALU"
                "RAMX/Q.AMX, RAMX.BMX/MASK.ALU/AND.Q.ALU"
O O.AND.MASK
Q_Q.AND.R[]
                 "RSMX/O.SMX'RBMX,SPO.R/LOAD.LAB.SPO.RAB/@1.AMX/LA.ALU/AND.Q ALU"
                "RAMX/Q.AMX/RAMX.SPO.R/LOAD.LC.SPO.RC/@1.BMX/LC.ALU/ANDNOT.Q_ALU"
O Q.ANDNOT.RC[]
Q_Q.LEFT2
                 "OK/LEFT2"
Q Q.XOR.D
                "RAMX/Q, AMX/RAMX, RBMX/D, BMX/RBMX, ALU/XOR, D_ALU"
                 "QK/SHF,AMX/RAMX.RAMX/Q.BMX/LB,ALU/XOR,LAB_R[@1]"
Q_Q.XCR.R[]
RC[] 0-K[]
                 "AMX/RAMX.OXT.KMX @2.8VX/KMX.ALU/A-B.RC[@1]_ALU"
```

ä

```
SETROF[]
                        "SC_K[@1],CALL,U/SETROF"
       SETRXCS[]
                        "R[OA]_K[@1],CALL,U/SETRXCS"
       SETTXCS[]
                        "R[OA]_K[@1].CALL,J/SETTXCS"
       SUBTEST "CALL, J/SUBTST"
       TRAP. FPA
                        "ACF/CONTROL,ACM/7"
       VA_D.OXT[]
                        "ALU_D.OXT[@1],VA_ALU"
       VA_D.OXT[]+K[]
                        "ALU_D.OXT[@1]+K[@2],VA_ALU"
       VA_R[]+K[]
                        "SPO.R/LOAD.LAB,SPO.RAS/@1,KMX/@2,BMX/KMX,AMX/LA,ALU/A+6,VA_ALU"
; BRANCH DEFINITIONS
        ALU.Z?
                        "BEN/ALU"
                                         ; NOTE J/XXB NESSECARY
        ALU.C?
                        "BEN/ALU"
        D1-0?
                        "BEN/D3-0"
```

### CHAPTER 9 MISCELLANEOUS

## 25S10 FOUR-BIT SHIFTER CHIP WITH TRISTATE OUTPUT

### LOGIC SYMBOL 10 11 V_{CC} = PIN 16 GND = PIN 8 AM25S10 LOGIC DIAGRAM 1-3 1-2 1-1

### TRUTH TABLE

ဌဌ

ŌĒ	S ₁	$s_0$	13	12	11	10	, L	11.2	1.3	Υ3	Υ2	Υ1	Υ0
н	х	х	х	×	Х	х	х	×	х	z	Z	Z	Z
L	L	L	$D_3$	$D_2$	D ₁	D ₀	х	×	×	D ₃	D ₂	D ₁	D _O
L	L	н	×	02	D ₁	D ₀	D. ₁	х	х	D ₂	D ₁	D ₀	D.1
L	н	L	×	х	D ₁	$D_0$	D. ₁	D.2	×	D ₁	D ₀	D.1	D.2
L	н	н	×	х	х	D ₀	D. 1	D.2	D.3	D ₀	D. 1	D.2	D.3

H = HIGH X = DON'T CARE

L = LOW Z = HIGH IMPEDANCE STATE

 ${\rm D_n}$  at input  ${\rm I_n}$  may be either high or low and output  ${\rm Y_m}$  will follow the selected  ${\rm D_n}$  input level.

### **26S10 BUS TRANSCEIVER CHIP**



H ≈ HIGH	INPUTS		OUTPUTS	
L = LOW X = DON'T CARE Y = VOLTAGE OF BUS (ASSUMES CONTROL BY ANOTHER BUS TRANCEIVER	Z L H Ÿ	B H L Y	D L H X	Ē L L
IC-2851				

### 74LS181 ALU CHIP



74181 TABLE OF LOGIC FUNCTIONS

	Func	tion Se	elect	Output	Function
<b>S</b> 3	<b>S2</b>	S1	S0	Negative Logic	Positive Logic
L	L	L	L	1 - Ä	f = Ä
Ł	L	L	н	1 - AB	f = A + B
L	L	н	L	f = Ā + B	f = AB
L	L	н	н	f = Logical 1	f = Logical 0
Ł	н	L	L	( × A + B	f - AB
L	н	L	н	f = B	f = B
L	н	н	L	f = A⊕B	f=A⊕B
L	н	н	н	1 = A + B	t = AB
н	Ł	Ł	L	1 - ĀB	f = <u>A + B</u>
н	L	L	н	1 = A⊕B	1 - A⊕B
н	L	н	L I	f = B	f = B
н	L	н	н	f = A+B	f = AB
н	н	L	L	f = Logical 0	f = Logical 1
н	н	L	н	f = AB	f = A + B
н	н	н	Ł	f = AB	f = A + B
н	н	н	н	f = A	f = A

For positive logic: logical 1 = high voltage logical 0 = low voltage For negative logic: logical 1 = low voltage logical 0 = high voltage logical 0 = high voltage logical 0 = high voltage

74181 TABLE OF ARITHMETIC OPERATIONS

Function Select			Function Select Output Function			
S3	S2	SI	SO	Low Levels Active	High Levels Active	
L	L	L	L	f = A minus 1	f=A	
L	L	L	н	t = AB minus 1	f = A + B	
L	L	н	L	f = AB minus 1	1 - A + B	
L	L	н	н	f = minus 1 (2's complement)	f = minus 1 (2's complement	
L	н	L	L	f = A plus (A + B)	f = A plus AB	
L	н	L	н	f = A8 plus (A + B)	f = [A + B] plus AB	
L	н	н	L	f = A minus B minus 1	f = A minus B minus 1	
L	н	н	н	1-A+B	f = AB minus 1	
н	L	L	L	f = A plus (A + B)	f = A plus AB	
н	L	Ł	н	f = A plus B	f = A plus B	
н	L	н	L	1 × AB plus (A + B)	f = [A + B] plus AB	
н	L	н	н	1-A+B	f = AB minus 1	
н	н	L	L	f = A plus At	f = A plus A+	
н	н	L	н	f = AB plus A	f = (A + B) plus A	
н	н	н	L	f = AB plus A	f = [A + B] plus A	
н	н	н	н	1-A	f = A minus 1	

With mode control (M) and C_{in} low † Each bit is shifted to the next more significant position

IC - 74 IS IS

### 74182 LOOKAHEAD CARRY CHIP

### PIN DESIGNATIONS

Designation	Pin No.	Function
G0, G1, G2, G3	3, 1, 14, 5	ACTIVE LOW CARRY GENERATE INPUTS
PO, P1, P2, P3	4, 2, 15, 6	ACTIVE-LOW CARRY PROPAGATE INPUTS
CIN	13	CARRY INPUT
COUTX, COUTY, COUTZ	12, 11, 9	CARRY OUTPUTS
GOUT	10	ACTIVE-LOW CARRY GENERATE OUTPUT
POUT	7	ACTIVE-LOW CARRY PROPAGATE OUTPUT
v _{cc}	16	SUPPLY VOLTAGE
GND	8	GROUND









VCC = PIN 16 GND= PIN 08

IC-74182

### 74LS670 4 X 4 REGISTER FILE CHIP



WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)

TRUTH TABLES

READ FUNCTION TABLE

(SEE NOTES A AND D)

WRI	TE INF	PUTS		wo	RD	
W _B	WA	$G_{\mathbf{W}}$	0	1	2	3
L	L	L	Q=D	σ <b>0</b>	$a_0$	$\sigma^0$
L	Н	L	Q ₀	Q=D	$\sigma^0$	$\sigma^0$
н	L	L	ο ₀	$\sigma_0$	Q=D	$Q_0$
н	н	L	$Q_0$	$Q_0$	$a_0$	Q=D
х	X	Н	σ0	$\sigma^0$	$o_0$	$\sigma^0$

REA	D INP	UTS		OUT	PUTS	
R _B	RA	$G_{R}$	Q1	Q2	Q3	Ω4
L	L	L	W0B1	W0B2	W0B3	W0B4
L	Н	L	W1B1	W1B2	W1B3	W1B4
н	L	L	W2B1	W2B2	W2B3	W2B4
Н	Н	L	W3B1	W3B2	W3B3	W3B4
×	X	Н	z	Z	Z	Z
L						

- A. H = HIGH LEVEL, L = LOW LEVEL, X = IRRELEVANT, Z = HIGH IMPEDANCE (OFF)
- B. (Q = D) = THE FOUR SELECTED INTERNAL FLIP-FLOP OUTPUTS WILL ASSUME THE STATES APPLIED TO THE FOUR EXTERNAL DATA INPUTS.
- C.  $Q_0$  = THE LEVEL OF Q BEFORE THE INDICATED INPUT CONDITIONS WERE EXTABLISHED.
- D. WOB1 = THE FIRST BIT OF WORD 0, ETC.

IC-74LS670

### 82S23, 82S123 256-BIT BIPOLAR PROM CHIP



THE 82S23 USER OPEN COLLECTOR OUTPUTS.
THE 82S123 USER TRISTATE OUTPUTS.

 $V_{CC} = (16)$ 

GND = (8)

(N) = DENOTES PIN NUMBERS

IC-82S23 82S123

### 85S68 64-BIT EDGE-TRIGGERED D-TYPE REGISTER FILE CHIP WITH TRISTATE OUTPUTS



VCC 18 GND 9

TRUTH TABLE

OD	WE	CLK	os	MODE	OUTPUTS
L	Х	Х	٦	OUTPUT STORE	DATA FROM LAST ADDRESSED LOCATION
Ιx	L	7	Х	WRITE DATA	DEPENDENT ON STATE OF OD AND OS
L	Х	X	Н	READ DATA	DATA STORED IN ADDRESSED LOCATION
Н	Х	Х	L	OUTPUT STORE	Hi-Z
Н	Х	Х	Н	OUTPUT DISABLE	Hi-Z

IC-85568

### DEC 8646 FOUR-BIT TRISTATE BACKPLANE INTERCONNECT TRANSCEIVER CHIP



342

### 93406 1024-BIT ROM CHIP



### 9403 FIFO BUFFER CHIP



### DC101 ARBITRATOR CHIP, PART 1



## DC101 ARBITRATOR CHIP, PART 2



## DC101 ARBITRATOR CHIP, PART 3



### DC003 INTERRUPT CHIP



### DC004 PROTOCOL CHIP





IC DC004

### DC005 TRANSCEIVER CHIP



350