Single-source shortest paths in DAGs. All Pairs Shortest Paths.

The Floyd-Warshall algorithm

November 2013

A DAG (directed acyclic graph) is a digraph without cycles. ASSUMPTION: G = (V, E) is a DAG with weight function $w : E \to \mathbb{R}$. We write w(u, v) for the weight of arc $u \to v$. We know that

- G has no cycles ⇒ G has no negative cycles ⇒ there is a minimal path between every pair of nodes.
- ② The nodes of G can be sorted in topological order v_1, \ldots, v_n such that $(v_i \rightarrow v_j) \in E$ implies i < j.

```
DAGSHORTESTPATHS(G, w, s)
1 topologically sort the nodes of G
2 INITIALIZESINGLESOURCE)(G, s)
3 for each node u taken in topologically sorted order
4 for each node v \in Adj[u]
5 RELAX(u, v, w)
```

Complexity analysis

- Line 1 (topological sort) can be done in $\Theta(|V| + |E|)$ time.
- The outer **for** loop is done |V| times.
- For each node, the arcs that leave it are examined exactly once.
- Line 5 takes *O*(1) time.

```
\Rightarrow \Theta(|V| + |E|) time.
```


Running example

Single-source shortest paths in DAGs Running example

Single-source shortest paths in DAGs Running example

- The magenta arrows are from the predecessor of a node to the node.
- The values inside circles represent the shortest path estimates after each execution of the for loop of the algorithm (lines 3-5).

Properties of the algorithm DAGSHORTESTPATHS

Theorem

If a weighted directed graph G = (V, E) has source node s and no cycles, then at the termination of the DagShortestPaths algorithm, we have

- \bullet $d[v] = \delta(s, v)$ for all nodes $v \in V$, and
- ② the predecessor subgraph G_{π} is a shortest paths tree.

PROOF. Cormen et al, Introduction to Algorithms, Section 25.4.

All pairs shortest path: The problem

ASSUMPTION: Given a directed, weighted graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

- Find shortest paths between all pairs of vertices in a graph.
- Example:
 - Make a table of distances between all pairs of cities for a road atlas.

What did we learn so far?

- Single-source shortest-path algorithms:
 - Dijkstra: $O(|V|^2)$
 - Bellman-Ford: O(|V||E|).

- If $w : E \to \mathbb{R}_+$, we can run Dijkstra's single-path algorithm for every node $v \in |V|$
 - \Rightarrow overall complexity: $O(|V|) \cdot O(|V|^2) = O(|V|^3)$.
- $w: E \to \mathbb{R}$, we can run Bellman-Ford single-path algorithm for every node $v \in |V|$
 - \Rightarrow overall complexity: $O(|V|) \cdot O(|V| |E|) = O(|V|^4)$.
- Q: Can we do better?

All pairs shortest path algorithms

- We assume given the adjacency matrix of G with n nodes
- For all $i, j \in V$, we know

$$w_{i,j} = \left\{ egin{array}{ll} 0 & \mbox{if } i=j \ \mbox{weight of directed edge } (i,j) & \mbox{if } i
eq j \ \mbox{and } (i,j) \in E \ \mbox{} & \mbox{if } i
eq j \ \mbox{and } (i,j)
eq E. \end{array}
ight.$$

- We want to compute
 - The $n \times n$ matrix $D = (d_{i,j})$ where every $d_{i,j}$ is the length of a shortest path from node i to node j
 - The $n \times n$ predecessor matrix $\Pi = (\pi_{i,j})$ where

$$\pi_{i,j} = \left\{ \begin{array}{ll} \textit{nil} & \text{if } i = j \text{ or there is no path from } i \text{ to } j \\ k & \text{if there exists a shortest path } i \leadsto k \to j \text{ from } i \text{ to } j. \end{array} \right.$$

All pairs shortest path algorithms

- Suppose we know the predecessor matrix $\Pi = (\pi_{i,j})$.
- For every $i \in V$, define the predecessor graph of G for i as follows: $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$, where
 - $V_{\pi,i} := \{j \in V \mid \pi_{i,j} \neq nil\} \cup \{i\}$
 - $E_{\pi,i} := \{(\pi_{i,j},j) \mid j \in V_{\pi,i} \text{ and } \pi_{i,j} \neq nil\}$
- For all $i \in V$, $G_{\pi,i}$ is a shortest-path tree with root i.

The structure of a shortest path

- All subpaths of a shortest path are shortest paths.
- Suppose $i \stackrel{p}{\leadsto} j$ is a shortest path.
 - if i = j then p has weight 0 and no edges.
 - If $i \neq j$ then p contains a finite number of edges, say $\leq m$ edges, and we can write $p = i \stackrel{p'}{\leadsto} k \rightarrow j$, where p' is a path with $\leq m 1$ edges. Note that
 - p' is a shortest path from i to $k \Rightarrow \delta(i,j) = \delta(i,k) + w_{k,j}$

All pairs shortest path algorithms A recursive solution

- Let $a_{i,j}^{(m)} := \text{minimum weight of any path with length } \leq m$ from i to j,
- When m = 0, there is a shortest path from i to j with no edges if and only if i = j. Thus

$$d_{i,j}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

Recursive formula for m > 0:

$$d_{i,j}^{(m)} = \min_{1 \le k \le n} \left(d_{i,j}^{(m-1)}, \min_{1 \le k \le n} \left\{ d_{i,k}^{(m-1)} + w_{k,j} \right\} \right)$$
$$= \min_{1 \le k \le n} \left\{ d_{i,k}^{(m-1)} + w_{k,j} \right\}$$

NOTE. The last equality holds because $w_{j,j} = 0$ for all j.

Shortest path weights

Q: How to compute the shortest path weights $\delta_{i,j}$ for all nodes $i,j \in V$?

A: If the graph contains no negative-weight cycles then

- All shortest paths are simple and they contain at most n − 1 edges
- A path from i to j with more than n − 1 edges can not have less weight than a shortest path from i to j
- $\Rightarrow \delta_{i,j} = \delta_{i,j}^{(n-1)} = \delta_{i,j}^{(n)} = \cdots$

Given input matrix $W = (w_{i,j})$

Compute the series of matrices $D^{(1)}, \ldots, D^{(n-1)}$ where for $1 \le m < n$, we have $D^{(m)} = (\delta_{i,j}^{(m)})$

- Since $d_{i,j}^{(1)} = w_{i,j}$ for all $i, j \in V$, we have $D^{(1)} = W$.
- EXTEND-SHORTEST-PATHS(D, W) is supposed to take the following arguments:
 - $D = D^{(m-1)}$
 - The weight matrix W of the graph

and will return $D^{(m)}$

```
EXTEND-SHORTEST-PATHS(D, W)

1 n \leftarrow rows[D]

2 let D' = (d'_{ij}) be an n \times n matrix

3 for i \leftarrow 1 to n

4 do for j \leftarrow 1 to n

5 do d'_{ij} \leftarrow \infty

6 for k \leftarrow 1 to n

7 do d'_{ij} \leftarrow \min(d'_{ij}, d_{ik} + w_{kj})

8 return D'
```

• Complexity = $\Theta(n^3)$ – due to the three nested **for** loops.

• If A, B are $n \times n$ matrices and $C = (c_{i,j}) = A \cdot B$ then

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

• The matrix multiplication formula is equivalent with the recursive formula for $d^{(m)}$, if we do the following changes:

$$\begin{array}{cccc} d^{(m-1)} & \leftrightarrow & a \\ & w & \leftrightarrow & b \\ d^{(m)} & \leftrightarrow & c \\ & \min & \leftrightarrow & + \\ & + & \leftrightarrow & \cdot \end{array}$$

 Based on the previous observation, we get the following matrix multiplication algorithm by changing EXTEND-SHORTEST-PATHS:

```
MATRIX-MULTIPLY(A, B)

1 n \leftarrow rows[A]

2 let C be an n \times n matrix

3 for i \leftarrow 1 to n

4 do for j \leftarrow 1 to n

5 do c_{ij} \leftarrow 0

6 for k \leftarrow 1 to n

7 do c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

• Time complexity of MATRIX-MULTIPLY: $\Theta(n^3)$.

If we write $A \cdot B$ instead of EXTEND-SHORTEST-PATHS(A, B), we compute

Computation Time complexity
$$D^{(1)} = D^{(0)} \cdot W = W$$
 $\Theta(n^3)$ $D^{(2)} = D^{(1)} \cdot W = W^2$ $\Theta(n^3)$ \vdots $D^{(n-1)} = D^{(n-2)} \cdot W = W^{n-1}$ $\Theta(n^3)$

- In the end, W^{n-1} contains the shortest-path weights of all pairs of nodes.
- Total time complexity: $(n-1) \cdot \Theta(n^3) = \Theta(n^4)$ time.

Shortest path weights

The bottom-up approach

```
\begin{array}{lll} \operatorname{SLow-All-Pairs-Shortest-Paths}(W) \\ 1 & n \leftarrow rows[W] \\ 2 & D^{(1)} \leftarrow W \\ 3 & \text{for } m \leftarrow 2 \text{ to } n-1 \\ 4 & \text{do } D^{(m)} \leftarrow \operatorname{Extend-Shortest-Paths}(D^{(m-1)}, W) \\ 5 & \operatorname{return } D^{(n-1)} \end{array}
```

The computation of $D^{(n-1)}$ can be improved if we use the method of repeated squaring:

```
FASTER-ALL-PAIRS-SHORTEST-PATHS(W)

1 n \leftarrow rows[W]

2 D^{(1)} \leftarrow W

3 m \leftarrow 1

4 while n-1 > m

5 do D^{(2m)} \leftarrow \text{Extend-Shortest-Paths}(D^{(m)}, D^{(m)})

6 m \leftarrow 2m

7 return D^{(m)}
```

Total time complexity: $\lceil \log_2(n-1) \rceil \cdot \Theta(n^3) = \Theta(n^3 \cdot \lceil \log_2(n-1) \rceil)$.

The bottom-up approach without repeated squaring Example

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad D^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Assumption: there are no cycles with negative weight

- An intermediate node of a simple path $p = (v_1, v_2, \dots, v_{\ell-1}, v_{\ell})$ is any node $v \in \{v_2, v_3, \dots, v_{\ell-1}\}$.
- The Floyd-Warshall algorithm is based on the following observation:
 - Assume $V = \{1, 2, ..., n\}$. For all $i, j \in V$ consider all paths from i to j whose intermediate nodes are from $\{1, ..., k\}$. Let $i \stackrel{p}{\leadsto} j$ be such a minimum-weight path from i to j, and let $d_{i,j}^{[k]}$ be its weight.
 - $d_{i,j}^{[k]}$ can be computed by recursion on k.

Another characterization of the shortest path (continued)

• If k is an intermediate node of path p, we have $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$:

p: all intermediate vertices in $\{1,2,...,k\}$

where p_1 is minimum-weight path from i to k through nodes $\{1,\ldots,k-1\}$, and p_2 is a minimum-weight path from k to j through nodes $\{1,\ldots,k-1\}$. Thus $d_{i,j}^{[k]}=d_{i,k}^{[k-1]}+d_{k,j}^{[k-1]}$

2 If j is not intermediate node of path p then all intermediate nodes of p are from $\{1, \ldots, k-1\}$, thus $d_{i,j}^{[k]} = d_{i,j}^{[k-1]}$.

A recursive definition of $d_{i,j}^{[k]}$:

$$d_{i,j}^{[k]} := \left\{ \begin{array}{ll} w_{i,j} & \text{if } k = 0, \\ \min\left(d_{i,j}^{[k-1]}, d_{i,k}^{[k-1]} + d_{k,j}^{[k-1]}\right) & \text{if } k \geq 1. \end{array} \right.$$

- $d_{i,j}^{[n]}$ is the weight of a shortest path from i to j for all $i, j \in V$.
 - \Rightarrow we wish to compute the $n \times n$ matrix $D^{[n]} = (d_{i,j}^{[n]})$.

• Computes $d_{i,j}^{[k]}$ in order of increasing values of k.

```
FLOYD-WARSHALL(W)

1 n := rows[W]

2 D^{[0]} := W

3 for k := 1 to n

4 for i := 1 to n

5 for j := 1 to n

6 d_{ij}^{[k]} := min\left(d_{ij}^{[k-1]}, d_{ik}^{[k-1]} + d_{kj}^{[k-1]}\right)

7 return D^{[n]}
```

- Running time complexity:
 - There are 3 nested loops (lines 3-6)
 - The execution time of line 6 takes O(1) time
 - $\Rightarrow \Theta(n^3)$ time complexity.

The predecessor matrix Π can be computed incrementally, via a sequence of matrices

$$\Pi^{[0]}, \Pi^{[1]}, \dots, \Pi^{[n]}$$

where $\Pi = \Pi^{[n]}$ and $\pi^{[k]}_{i,j}$ is the predecessor of vertex j on a shortest path from vertex i with all intermediate nodes in the set $\{1,2,\ldots,k\}$.

Formally, we have

$$\pi_{i,j}^{[0]} = \left\{ egin{array}{ll} \textit{nil} & \textit{if } i = j \textit{ or } w_{i,j} = \infty, \\ i & \textit{if } i \neq j \textit{ and } w_{i,j} < \infty \end{array} \right.$$

$$\pi_{i,j}^{[k]} = \left\{ \begin{array}{ll} \pi_{i,j}^{[k-1]} & \text{if } d_{i,j}^{[k-1]} \leq d_{i,k}^{[k-1]} + d_{k,j}^{[k-1]} \\ \pi_{k,j}^{[k-1]} & \text{if } d_{i,j}^{[k-1]} > d_{i,k}^{[k-1]} + d_{k,j}^{[k-1]} \end{array} \right.$$

Running example

For the graph

we have

$$D^{[0]} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{[0]} = \begin{pmatrix} nil & 1 & 1 & nil & 1 \\ nil & nil & nil & nil & 2 & 2 \\ nil & 3 & nil & nil & nil \\ 4 & nil & 4 & nil & nil \\ nil & nil & nil & 1 & nil \\ nil & nil & nil & 1 & nil \\ nil & nil & nil & 1 & 1 & nil \\ nil & nil & nil & 1 & 1 & 1 \\ nil & nil & nil & nil & 2 & 2 \\ nil & 3 & nil & nil & nil & 1 \\ nil & nil & nil & nil & 1 \\ nil & nil & nil & nil & 1 \\ nil & nil & nil & 1 & 1 \\ nil & nil & nil & 1 & 1 \\ nil & nil & nil & 1 & 1 \\ nil & nil & nil & 1 & 1 \\ nil & nil & nil & 5 & nil \end{pmatrix}$$

Running example (continued)

For the graph

$$D^{[2]} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{[3]} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{[2]} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{[2]} = \begin{pmatrix} nil & 1 & 1 & 2 & 1 \\ nil & nil & nil & 2 & 2 \\ nil & 3 & nil & 2 & 2 \\ 4 & 1 & 4 & nil & 1 \\ nil & nil & nil & 5 & nil \end{pmatrix}$$

$$D^{[3]} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{[3]} = \begin{pmatrix} nil & 1 & 1 & 2 & 1 \\ nil & nil & nil & nil & 2 & 2 \\ nil & 3 & nil & 2 & 2 \\ nil & 3 & nil & 2 & 2 \\ 4 & 3 & 4 & nil & 1 \\ nil & nil & nil & 5 & nil \end{pmatrix}$$

Running example (continued)

For the graph

we have

$$D^{[4]} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{[4]} = \begin{pmatrix} nil & 1 & 4 & 2 & 1 \\ 4 & nil & 4 & 2 & 1 \\ 4 & 3 & nil & 2 & 1 \\ 4 & 3 & 4 & nil & 1 \\ 4 & 3 & 4 & 5 & nil \end{pmatrix}$$

$$D^{[5]} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{[5]} = \begin{pmatrix} nil & 3 & 4 & 5 & 1 \\ 4 & nil & 4 & 2 & 1 \\ 4 & 3 & nil & 2 & 1 \\ 4 & 3 & 4 & nil & 1 \\ 4 & 3 & 4 & 5 & nil \end{pmatrix}$$