Dynamic Pricing on Online Marketplaces: Strategies and Applications

Demand Estimation & Impact Analysis

Dr. Rainer Schlosser

Hasso Plattner Institute (EPIC)

April 19, 2016

НРІ

Outline

- High Jump
- Explanatory Variables
- Goals of Today's Meeting
- Data Structure
- Least Squares Regression
- Logistic Regression
- Tips & Tricks

HPI

High Jump

- High Jump Results
- How they can be explained? What are the key factors?
- Data: Results and features of participants (observations)
- What is a suitable regression model?
- How does it work? What is the idea?
- How can we derive forecasts?
- How good are our forecasts? Is there a measure?

High Jump Data

ID	Name	Höhe	Größe	Geschlecht	Party
1	Keven	160	176	1	0
2	Martin	155	178	1	0
3	Christian	140	172	1	1
4	Matthias	150	175	1	0
5	Ralf	130	160	1	0
6	Stefan	165	190	1	1
7	Markus	165	185	1	0
8	Cindy	130	168	0	0
9	Julia	130	163	0	1
10	Anna	145	170	0	0
11	Viktoria	155	171	0	0
12	Marilena	125	167	0	0

- Number of observations?
- Which quantity do we want to explain?

(dependent variable)

• Which quantities may be factors?

(explanatory variables)

- What might be missing variables?
- Mean of the dependent variable?

$$\overline{y} = \frac{1}{N} \cdot \sum_{i=1}^{N} y_i$$

• Variance of the dependent variable?

$$VAR = \frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - \overline{y})^2$$

- Plausibility checks: Expectations? Hypotheses?
- How do we quantify the impact/dependencies?

Least Squares Regression

- Idea: Use explanatory variables x to explain dependent variable y.
- Approach: Try to reconstruct y by linear parts of x

$$y_i \approx \beta_1 + \beta_2 \cdot x_i^{(2)} + \beta_3 \cdot x_i^{(3)} + \dots$$
 where $\vec{x}_i, y_i, i = 1,..., N$, given data

 β - coefficients have to be chosen such that the fit is "good".

- What is a "good" fit? We need a measure.
- Answer: Minimize the sum of squared deviations, i.e.,

$$\min_{\beta_1,\beta_2,\beta_3\in\mathbb{R}} \sum_{i=1}^{N} \left(\beta_1 + \beta_2 \cdot x_i^{(2)} + \beta_3 \cdot x_i^{(3)} + \beta_4 \cdot x_i^{(4)} - y_i\right)^2$$

Solution & Forecasts

- We obtain optimal coefficients $\beta_1^*, \beta_2^*, \beta_3^*, \beta_4^*$ (solver/software).
- What can we do with the coefficients $\vec{\beta}^* = (-102, 1.43, 3.05, -5.43)$?
- (1) We can quantify the impact of factors $x^{(2)}, x^{(3)}, x^{(4)}$ on y!
- (2) We can compute smart forecasts!
- Example: We have a new participant (179 groß, männlich, Party)
- Forecast: Geschätzte Höhe = $\beta_1^* + 179 \cdot \beta_2^* + 0 \cdot \beta_3^* + 1 \cdot \beta_4^* = 151.74$

How reliable is our Model?

- We can use various combinations of explanatory variables.
- We will always obtain a result and some optimal β^* coefficients!
- How to measure the quality of a model? There is a measure: R^2 .
- Idea: How much of the variance in y can be explained by the model.

• Model fit:
$$\hat{y}_i = \beta_1^* + \beta_2^* \cdot x_i^{(2)} + \beta_3^* \cdot x_i^{(3)} \approx y_i$$

• New variance:
$$VAR_{new} = \frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \le VAR = \frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - \overline{y})^2$$

• Goodness of fit:
$$R^2 = 1 - \frac{VAR_{new}}{VAR} \in [0,1]$$
 (large is good)

Demand Estimation

HPI

Goals

- We want to measure the impact of price on sales.
- We want to estimate sales probabilities for specific scenarios.
- We just want to use observable data:

```
our offer prices,
competitors' offer prices
our realized sales
```

• We want to identify the factors that determine customers' choice.

Data Structure

- We consider periods of time (e.g., days, hours, minutes)
- For every period of time we have the following raw data:

data	we	competitor 1	competitor 2	
number of sales	\checkmark	?	?	
offer price	\checkmark	\checkmark	\checkmark	
product condition	✓	✓	✓	
customer rating	\checkmark	✓	✓	
feedback count	\checkmark	✓	✓	
shipping time	\checkmark	✓	✓	

First Approach: Least Squares Regression

• Idea: explain ,,dependent variable" by ,,explanatory variables"

• "dependent variable": number of sales y (of our firm)

• "explanatory variables": $\mathbf{price\ rank}\ r$

price difference to best competitor's price

time (day time, weekday, month etc.)

ratings, shipping time, . . .

• Remember: Derive the β^* – coefficients for every explanatory variable by minimizing sum of squared deviations (over all observations)

First Results: Expected Sales as Function of Price

- Explanatory variable: price rank $x_i^{(2)}(a, \vec{p}) = r_i(a, \vec{p})$
- Regression result: intercept β_1^* , price rank impact β_2^*
- Expected sales: $y(a, \vec{p}) = \beta_1^* + \beta_2^* \cdot r(a, \vec{p})$ (for any situation!)
- Impact analysis: Each better rank boosts the expected number of sales by β_2^* units!

Let's be creative: Multi Linear Regression

- Invent multiple explanatory variables!
- Use transformed variables, e.g., $x^{(3)} = r^2$, $x^{(4)} = \ln(r)$, etc.
- Use and combine multiple features.
- Note, your explanatory variables can be any function of all features.

• Model:
$$y(a, \vec{p},...) \approx \sum_{m=1}^{M} \beta_m \cdot x^{(m)}(a, \vec{p},...)$$

Limitations

• Advise: Do not use too many explanatory variables, i.e., $M \ll N$!

• Problems: Consider cases of rare events (short time intervals):

sales y is just 0 or 1, i.e., either sale or no sale.

OLS estimations can be negative!

• Alternative: Binary Choice Models (e.g., logistic regression)

Weaknesses of Linear Regressions

Can the prediction $y(x) = 1.06 - 0.32 \cdot x$ be used as sales probability?

Second Approach: Logistic Regression

- Logit model: Estimate the **probability** of a binary event (sale/no sale)
- The same explanatory variables can be used
- Idea: Find a probability function that explains best sales observations by its corresponding features (explanatory variables)
- Model: $P(a, \vec{p},...) := \frac{\exp(L)}{1 + \exp(L)} = \frac{1}{1 + \exp(-L)}$, where

$$L(a, \vec{p}, ...) = \sum_{m=1}^{M} \beta_m \cdot x^{(m)}(a, \vec{p}, ...)$$

Illustration: Logistic Regression

• Binary 0/1 y observations, explanatory variable x, and probabilities (x)

• What are the best β coefficients? What is the Sales Probability when x=2?

Solution Details: Logistic Regression

• To solve: Find β such that the *Log-Likelihood-Function* is maximized:

$$\max_{\beta_{1},\beta_{2} \in \mathbb{R}} \left\{ \sum_{i=1}^{N} y_{i} \cdot \ln p_{i} + (1-y_{i}) \cdot \ln(1-p_{i}) \right\}, \text{ where } p_{i} = P(y_{i} = 1 | x_{i}) := \frac{e^{\beta_{1} + \beta_{2} \cdot x_{i}}}{1 + e^{\beta_{1} + \beta_{2} \cdot x_{i}}}$$

- Use Standard Software (recommended)
 - e.g., R, STATA, Matlab, Mathematica, ... or Libraries (Python, C, Java, ...)
- Or: Solve an optimization problem (use nonlinear solver, e.g. AMPL/Minos)

Optimality Conditions:
$$\sum_{i=1}^{N} (y_i - p_i(\beta_1, \beta_2)) \stackrel{!}{=} 0 \quad \& \quad \sum_{i=1}^{N} (y_i - p_i(\beta_1, \beta_2)) \cdot x_i \stackrel{!}{=} 0$$

Result: Sales Probabilities as Function of Price

sales probability
$$p(a, \vec{p}) := \frac{e^{\beta_1 + \beta_2 \cdot x^{(2)} + \beta_2 \cdot x^{(3)}}}{1 + e^{\beta_1 + \beta_2 \cdot x^{(2)} + \beta_2 \cdot x^{(3)}}}$$
 $(\beta_1, \beta_2, \beta_3) = (-3.89, -0.56, -0.01)$

$$0.020$$

$$\vec{p} = (5.18, 5.96, 6.31, 8.28, 9.48, 9.88, 10.33, 10.98)$$

$$0.010$$

$$0.005$$

$$0.005$$

$$0.005$$

$$price a$$

Model: $x^{(2)}(a, \vec{p})$ price rank, $x^{(3)}(a, \vec{p})$ price difference to best competitor

What is a good Model?

- Compare "Goodness of fit" measures
- OLS: R^2 (high is good, share of explained variance in y)
- Logit: AIC (low is good, trade-of between fit and number of variables M)

$$AIC = -2 \cdot \sum_{i=1}^{N} (y_i \cdot \ln p_i + (1 - y_i) \cdot \ln(1 - p_i)) + 2 \cdot M$$

Note, p_i depends on all features x_i and the optimal β^* coefficients.

• Be creative: Test different variables and find the smallest AIC value.

Hint: Not quantity but quality counts!

Demand Estimation: Ideas & Tips

- Price rank
- Price difference to best competitor
- Overall price level in the competition
- Price density
- Binary variables (to be on rank *k*)
- Price differences to price rank neighbours
- Psychological Prices (e.g. does our offer price end with a "9")

Simulate & Verify your Model

- Idea: Use random numbers to simulate features x and observed sales y
- Example: $a_i = Uniform(1,20)$, i = 1,...,10K our prices for 10K observations $p_{i,c} = Uniform(1,20)$, c = 1,...,5 prices of 5 competitors
- Sales: $y_i = round \left(Uniform(0, 1 r(a_i, \vec{p}_i) / 11) \right)$, assume a dynamic or $y_i = if Uniform(0, 1) < e^{b'x} / (1 + e^{b'x})$ then 1 else 0 (b known)
- Check whether or not your regression finds the right coefficients
- When your model can learn different dynamics it can learn the true one!

Overview

- 2 April 19 Demand Estimation
- 3 April 26 Optimization Techniques
- 4 May 3 Extensions / Projects A-D
- 5 May 10 Assign Projects to Teams
- 6 May 17 no Meeting
- 7 May 24 Workshop / Group Meetings
- 8 May 31 Workshop / Group Meetings
- 9 June 7 Presentations (First Results)
- 10 June 14 Workshop / Group Meetings
- 11 June 21 Workshop / Group Meetings
- 12 June 28 Workshop / Group Meetings
- 13 July 5 no Meeting
- 14 July 12 Presentations (Final Results), Discussions, Feedback