16 Quantum Key distribution

- Classical Cryptography
 - Caesar cipher:

replace letter x by a letter n position further in the alphabet $x \to x + n \mod 26$

plain text

encrypted message

- Easily breakable
- Enhanced version with longer key (Vigenère cipher): $x_i \rightarrow x_i + n_i$ but still unsafe when key $(n_1, n_2, n_3, ...)$ too short

One time pad

- Similar to Vigenère cipher with
 - length of key = length of message
 - key is chosen randomly (<u>important</u>)

• Principle: $x_i \rightarrow x_i + n_i \mod 26$ \Rightarrow also random number

• Binary version: 100101101 message XOR 101111010 key 001010111 encrypted message

- Properties:
 - perfectly secure (Claude Shannon)
 - requires very long keys (same as text length)
 - → Problem: how to distribute key

Possible attacking strategies

Intercept-resend
 (Eve measures photons and sends similar photon to Bob)

Alice's random bit	0	1	1	0	1	0	0	1
Alice's random sending basis	+	+	×	+	×	×	×	+
Photon polarization Alice sends	1	→	`\	†	`\	7	7	→
Eve's random measuring basis	+	X	+	+	×	+	×	+
Polarization Eve measures and sends	↑	7	→	†	`	→	7	\rightarrow
Bob's random measuring basis	+	×	×	×	+	×	+	+
Photon polarization Bob measures	↑	7	7	`	→	7	1	\rightarrow
PUBLIC DISCUSSION OF BASIS								
Shared secret key	0		0			0		1
Errors in key	√		X			√		√

- → Introduces error when Eve measures in different basis than Bob
- > Eve can be detected

Error correction

 In real live, there are always errors in the communication (even without Eve)

Error correction:

Exchange of parity bits between Alice and Bob

- → Alice+ Bob have same key,
- → Eve gains some information about the key

Privacy Amplification

- From the measured error rate
 - → determine maximal knowledge of Eve
- To remove Eve's knowledge:

Apply a random universal hash function *F* on the key

$$F: \{0,1\}^n \to \{0,1\}^m \ (n \dots \text{ key length}, m < n)$$

- → Key length is reduced, but knowledge of Eve on the remaining key is reduced.
- higher error-rate
 - → higher potential knowledge of Eve
 - → larger reduction in the length of the remaining key

Distance Limits

- Error correction and privacy amplification
 - → Alice and Bob obtain identical key, Eve has only negligible knowledge
 - → But, key generation rate is reduced
- As losses + errors increase with communication distance
 - → Limit to the maximum distance of QKD

Generation rate of secure key vs. length of optical fiber:

Rev. Mod. Phys. 74, 145 (2002)

Photon-number-splitting attack

- Real-life implementations of BB84 protocol use attenuated laser pulses (not single photons)
 - Typical values: pulse contain about 0.1 photon
 - Poisson statistics requires:
 - → every 10th pulse contains 1 photons and every 100th pulse contains 2 photons
- Attack strategy:
 - Eve performs non-destructive photon number measurement
 - If pulse contains 2 photons, Eve removes one and measures it
- → Eve knows 10% of the photons without introducing errors

Man-in-the-middle attack

- QKD requires communication between Alice and Bob via public channel (key generation, error correction, ...)
- If attacker has full control of public channel, he can simulate Bob to Alice and vice versa ("man in the middle")
 - → Can gain full information about the message

- Solution: Prior to communication, Alice and Bob need already an initial shared secret key
 - → use classical (secure) authentication scheme to verify identity of the communication partner

Experimental demonstrations

Experimental demonstrations

Fiber based QKD (300km)
 (ID-Quantique,
 Geneva)

Commercial company for fiber intregrated QKD systems and accesoires

Experimental demonstrations

 Free-space QKD (Munich-Vienna cooperation)

- Implementation of BB84 + Ekert Protocol
- Experimental key rates: ~10 bits/s
- Distance similar to distance to orbit satellites
- → first step to satellite based QKD

Physical Review Letters **98**, 010504 (2007) Nature Physics **3**, 481 (2007)

Outlook

- How to overcome distance limits?
 - In classical communication → optical amplifier (repeater)
 - Not possible in quantum communication (no-cloning theorem)

