

Measuring the incremental impact of marketing campaigns with geo experiments

My Loan Tong
Marketing Intelligence Data Analyst
December 12, 2019
Düsseldorf

Agenda

- 1. Advertising Examples
- 2. What do we measure?
- 3. Geo Experiments
- 4. Limitations
- 5. Q&A

I see the @trivago woman more than I see my missus at the moment

4:41 AM - 18 Aug 2017

Advertising

Examples

Channels

- Out-Of-Home
- TV
- Online Video
- Football Club Sponsorship
- Radio

How can we measure the effectiveness of these campaigns?

What do we measure?

Example: Number of visits over a period of time

Did the campaign generate additional visits?

Did the campaign generate additional visits?

We don't know for certain

We need a counterfactual to measure the additional visits.

Geo Experiments

How it works

How do we select the regions?

We need a counterfactual to measure the additional visits.

Test and control time series data should be correlated

- Simply measure the correlation and plot
- Hierarchical Clustering using Dynamic Time Warping to measure the distance between two time series
- Spatial data to exclude neighbouring regions

library(dtwclust)

hclust()

tsclust()

library(sp)

For reading GADM spatial data

Post Campaign Analysis

Causallmpact - An R package for causal inference using Bayesian structural time-series models

Authors: Kay H. Brodersen, Alain Hauser Copyright © 2014-2017 Google, Inc.

Very easy to use!

Causallmpact - An R package for causal inference using Bayesian structural time-series models

Authors: Kay H. Brodersen, Alain Hauser Copyright © 2014-2017 Google, Inc.

Posterior inference {CausalImpact}

Actual Prediction (s.d.) 95% CI	Average 1406 699 (24) [650, 743]	Cumulative 11247 5593 (190) [5203, 5942]
Absolute effect (s.d.)	707 (24)	5654 (190)
95% CI	[663, 755]	[5305, 6044]
Relative effect (s.d.)	101% (3.4%)	101% (3.4%)
95% CI	[95%, 108%]	[95%, 108%]

Posterior tail-area probability p: 0.001 Posterior prob. of a causal effect: 99.8997%

Limitations

- We need to be able to target specific locations – can be costly
- We need to be able to identify these locations also with our data
- We need to have comparable and high correlated regions as well as a big impact campaign for significant results
- There are lots of assumptions
- With real data it is unfortunately we often get insignificant results

Q&A