Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики ::::::: УНИВЕРСИТЕТ ИТМО УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3215</u>	_К работе допущен
Студент <u>Барсуков М.А.</u>	_Работа выполнена
Преподаватель Хвастунов Н.Н.	_Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.02

Изучение скольжения тележки по

наклонной поверхности

1. Цель работы.

- 1) Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
 - 2) Определение величины ускорения свободного падения g.

2. Задачи.

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

3. Объект исследования.

Ускорение тележки при различных углах наклона.

4. Метод экспериментального исследования.

Измерение времени, за которое тележка проходит заданное расстояние по наклонной плоскости при различных углах наклона.

5. Рабочие формулы и исходные данные.

$$Y = x_2 - x_1$$

$$Z = \frac{t_2^2 - t_1^2}{2}$$

$$\Delta Y = \sqrt{\left(\frac{df_1}{dx_1} \cdot \Delta x_1\right)^2 + \left(\frac{df_1}{dx_2} \cdot \Delta x_2\right)^2}$$

$$\Delta Z = \sqrt{\left(\frac{df_2}{dt_1} \cdot \Delta t_1\right)^2 + \left(\frac{df_2}{dt_2} \cdot \Delta t_2\right)^2}$$

$$\varepsilon_Y = \frac{\Delta Y}{Y} \cdot 100\%$$
 $\varepsilon_Z = \frac{\Delta Z}{Z} \cdot 100\%$

$$a = \frac{\sum_{i=1}^{N} Z_i \cdot Y_i}{\sum_{i=1}^{N} Z_i^2} \qquad \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - a \cdot Z_i)^2}{(N-1) \cdot \sum_{i=1}^{N} Z_i^2}}$$

$$\Delta_a = 2\sigma_a \quad \varepsilon_a = \frac{\Delta_a}{a} \cdot 100\%$$

$$\sin \alpha = \frac{(h - h_0) - (h' - h'_0)}{x' - x}$$

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2}$$

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{\tiny M2}})^2 + (\Delta x_{\text{\tiny M1}})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

$$B \equiv g = \frac{\sum_{i=1}^{N} (a_i \cdot sin\alpha_i) - \frac{1}{N} \cdot \sum_{i=1}^{N} a_i \cdot \sum_{i=1}^{N} sin\alpha_i}{\sum_{i=1}^{N} sin\alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} sin\alpha_i)^2}$$

$$A = \frac{1}{N} \cdot (\sum_{i=1}^{N} a_i - B \cdot \sum_{i=1}^{N} \sin \alpha_i)$$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^N (a_i - (A + B \cdot \sin \alpha_i))^2}{(\sum_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^N \sin \alpha_i)^2) \cdot (N - 2)}}$$

$$\Delta_g = 2\sigma_g$$
 $\varepsilon_g = \frac{\Delta_g}{g} \cdot 100\%$

$$\langle t \rangle = \frac{\sum_{i=1}^{N} t_i}{N}$$

$$\Delta t = \sqrt{\left(\frac{df_3}{dt_1} \cdot \Delta t_1\right)^2 + \left(\frac{df_3}{dt_2} \cdot \Delta t_2\right)^2 + \left(\frac{df_3}{dt_3} \cdot \Delta t_3\right)^2 + \left(\frac{df_3}{dt_4} \cdot \Delta t_4\right)^2 + \left(\frac{df_3}{dt_5} \cdot \Delta t_5\right)^2}$$

$$\alpha = 0.90$$

$$N = 5$$

$$g_{\text{табл}} = 9,82 \; \frac{\text{м}}{\text{c}^2}$$

6. Измерительные приборы.

Таблица 1: Измерительные приборы

Наименование	Предел	Цена	Класс	Погрешность
	измерений	деления	точности	
Линейка на рельсе	1,3 м	1 см/дел	-	5,0 мм
Линейка на угольнике	250 мм	1 мм/дел	-	0,5 мм
ПКЦ-3 в режиме	100 c	0,1 c	-	0,1 c
секундомера				

7. Схема установки.

Рис. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки.

Задание 1. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки

Таблица 2

х, м	x', m	h_o , мм	h'_{o} , mm
$0,22 \pm 0,005$	$1,00 \pm 0,005$	$202 \pm 0,5$	204 ± 0.5

Таблица 3: Результаты прямых измерений (Задание 1)

№	Измеренные величины			ИИНЫ	Рассчитанные величины	
	x_1, m	x_2, m	t_1, c	t_2, c	$x_2 - x_1, m$	$\frac{t_2^2 - t_1^2}{2}, c^2$
1	0,15	0,40	1,4	2,7	0,25	2,665
2	0,15	0,50	1,5	3,1	0,35	3,68
3	0,15	0, 70	1,4	3,6	0,55	5,5
4	0,15	0,90	1,5	4,2	0,75	7,695
5	0,15	1,10	1,5	4,7	0,95	9,92

Задание 2. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения

Таблица 4: Результаты прямых измерений (Задание 2)

n_p	h, mm	h', mm	No	t_1, c	t_2, c
1	212	205	1	1,4	4,7
			2	1,5	4,7
			3	1,5	4,7
			4	1,5	4,7
			5	1,5	4,7
2	221	206	1	1,0	3,2
			2	0,9	3,2
			3	0,9	3,1
			4	1,0	3,2
			5	1,0	3,2
3	230	206	1	0,8	2,6
			2	0,7	2,6
			3	0,8	2,6
			4	0,8	2,6
			5	0,8	2,6
4	239	207	1	0,7	2,2
			2	0,6	2,2
			3	0,7	2,2
			4	0,7	2,2
			5	0,7	2,2
5	247	207	1	0,6	2,0
			2	0,6	2,0
			3	0,6	2,0
			4	0,6	2,0
N more			5	0,6	2,0

 $N_{\Pi\Pi}$ - количество пластин h - высота на координате x=0,22 м h ' - высота на координате x '=1,00 м

9. Расчет результатов косвенных измерений. Задание 1

$$a = \frac{\sum_{i=1}^{N} Z_i \cdot Y_i}{\sum_{i=1}^{N} Z_i^2} \cong 0,09675 \frac{M}{c^2}$$

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - a \cdot Z_i)^2}{(N-1) \cdot \sum_{i=1}^{N} Z_i^2}} \cong 0,000807 \frac{M}{c^2}$$

Задание 2

Таблица 5: Результаты расчетов (Задание 2)

$N_{\Pi J}$	$\sin lpha$	$\langle t_1 \rangle \pm \Delta t_1, c$	$\langle t_2 \rangle \pm \Delta t_2, c$	$\langle a \rangle \pm \Delta a, \frac{M}{c^2}$
1	0.044.7404.4	1,480	4,700	0,095
1	0,011538462	$\pm 0,055$	$\pm 0,050$	$\pm 0,002$
		0,960	3,180	0,207
2	0,021794872	$\pm 0,058$	$\pm 0,055$	$\pm 0,008$
		0,780	2,600	0,309
3	0,033333333	$\pm 0,055$	$\pm 0,050$	± 0,014
		0,680	2,200	0,434
4	0,043589744	$\pm 0,055$	$\pm 0,050$	± 0,023
		0,600	2,000	0,522
5	0,053846154	$\pm 0,050$	± 0,050	± 0,030

$$N_{\Pi \Pi}$$
 — количество пластин $\langle t_{1,2} \rangle = rac{1}{N} \sum_{i=1}^N t_{1i,2i}$

$$B \equiv g = \frac{\sum_{i=1}^{N} (a_i \cdot \sin \alpha_i) - \frac{1}{N} \cdot \sum_{i=1}^{N} a_i \cdot \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_i)^2} = 10,14837 \frac{M}{C^2}$$

$$A = \frac{1}{N} \cdot (\sum_{i=1}^{N} a_i - B \cdot \sum_{i=1}^{N} \sin \alpha_i) = -0.01966$$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} (a_i - (A + B \cdot \sin \alpha_i))^2}{(\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_i)^2) \cdot (N - 2)}} = 0,73037 \frac{M}{c^2}$$

11. Графики.

График 1. Зависимость Y от Z

График 2. Зависимость а от sinlpha

12. Окончательные результаты.

$$\Delta a = 2\sigma = 0.001614$$
 $\varepsilon a = \Delta a / a \cdot 100\% = 1.66821705$

Табличное значение g для Санкт-Петербурга = 9,8195

$$|g - g_{\text{табл}}| = 0,33299302 \frac{M}{c^2}$$

$$\varepsilon_{g_{{ t Ta6}\pi}} = \frac{|g-g_{{ t Ta6}\pi}|}{g_{{ t Ta6}\pi}} \cdot 100\% = 3,39114\%$$

13. Выводы и анализ результатов работы.

Таким образом, нам удалось исследовать движение тележки по наклонной плоскости на равноускоренность, а также определить величину ускорения свободного падения.

На основе графика, изображённого на рисунке №2, можно утверждать, что движение тележки действительно является равноускоренным, поскольку с учётом погрешности ускорения, зависимость получилась линейной.

Что касается ускорения свободного падения, то абсолютная погрешность примерно равна абсолютному отклонению относительно табличного значения $g_{\text{табл}}$ для Санкт-Петербурга, из чего можно сделать вывод о том, что полученную величину ускорения можно считать достоверной.