§ 22. Ядерные реакции

В этом разделе используются данные таблиц 3 и 21 из приложения. В задачах 22.22, 22.31 дан авторский вариант решения.

22.1. Найти число протонов и нейтронов, входящих в состав ядер трех изотопов магния: a) $_{12}^{24}Mg$; б) $_{12}^{25}Mg$; в) $_{12}^{26}Mg$.

Решение:

Ядро обозначается тем же символом, что и нейтральный атом: $_{Z}^{A}X$, где X— символ химического элемента; Z— зарядовое число (атомный номер, число протонов в ядре); A— массовое число (число нуклонов в ядре). Число нейтронов в ядре N=A-Z. С учетом сказанного найдем: а) ядро $_{12}^{24}Mg$ содержит 12 протонов и 12 нейтронов; ядро $_{12}^{25}Mg$ содержит 12 протонов и 13 нейтронов; ядро $_{12}^{26}Mg$ содержит 12 протонов и 14 нейтронов.

22.2. Найти энергию связи W ядра изотопа лития $\frac{7}{3}Li$.

Решение:

Энергия связи ядра любого изотопа определяется соотношением $W=c^2\Delta m$, где Δm —разность между массой частиц, составляющих ядро, и массой самого ядра. Очевидно, $\Delta m=Zm_p+(A-Z)m_n-m_a$, где m_p — масса протона, m_n — масса нейтрона, m_s — масса ядра изотопа. Т. к. $m_s=m_A-Zm_c$, где m_c — масса электрона, m_A — масса изотопа. То $\Delta m=Zm_{\parallel H}+(A-Z)m_n-m_A$. С помощью таблицы 21 найдем $\Delta m=(3\cdot1,00783+4\cdot1,00867-7,01600)==0.04217$ а.е.м. Массе 1 а.е.м. соответствует энергия 931МэВ (см. задачу 17.20), энергия связи ядра $\frac{7}{3}Li$ будет 528

равна $W = 0.04217 \cdot 931 = 39,3 \text{ МэВ}$. Эту энергию надо затратить, чтобы расщепить ядро $\frac{7}{3}Li$ на нуклоны.

22.3. Найти энергию связи W ядра атома гелия $\frac{4}{2}$ He.

Решение:

Энергия связи ядра любого изотопа определяется соотношением $W=c^2\Delta m$ — (1), где $\Delta m=Zm_p+(A-Z)\times m_n-m_g$ — (2) — разность между массой частиц, составляющих ядро, и массой самого ядра, Z — порядковый помер изотопа, A — массовое число, m_p — масса протона, m_n — масса нейтрона, m_g — масса ядра изотопа. Поекольку $m_g=m_a-Zm_e$ — (3), где m_a — масса изотопа и m_c — масса электрона, то, подставляя (3) в (2), получаем $\Delta m=Zm_{\frac{1}{2}H}+(A-Z)m_n-m_a$ — (4). Подставляя (4) в (1),

окончательно получаем $W=c^2\Big[Zm_{\frac{1}{4}H}+(A-Z)m_n-m_a\Big]$. Для гелия $\frac{4}{2}He$: A=4, Z=2, $m_a=4,0026$ а.е.м. Кроме того, $m_{\frac{1}{4}H}=1,0078$ а.е.м. и $m_n=1,0087$ а.е.м. Подставляя числовые значения, получаем W=28,6 МэВ.

22.4. Найти эпергию связи W ядра атома алюминия $\frac{27}{13} Al$.

Решение:

Энергия связи ядра любого изотопа (см. задачу 22.3) равна $W=c^2\Big[Zm_{\frac{1}{1}H}+(A-Z)m_n-m_a\Big]$. Для алюминия $\frac{27}{13}Al$: A=27, Z=13 и $m_a=26.9815$ а.е.м. Подставляя числовые данные, получим $W=227\,\mathrm{MpB}$.

22.5. Найти энергию связи W ядер: a) ${}_{1}^{3}H$; б) ${}_{2}^{3}$ He. Какое из этих ядер более устойчиво?

Решение:

Энергия связи ядра любого изотопа (см. задачу 22.3) равна $W=c^2\Big[Zm_{\frac{1}{2}H}^2+(A-Z)m_n-m_o\Big]$. а) Для ядра $\frac{3}{1}H$: A=3, Z=1 и $m_o=3.0161$ а.е.м. Подставляя числовые данные, получим W=8.52 МэВ. б) Для ядра $\frac{3}{2}He$: A=3, Z=2 и $m_o=3.0160$ а.е.м. Подставляя числовые данные, получим W=7.81 МэВ. Поскольку энергия связи ядра $\frac{3}{1}H$ больше, чем ядра $\frac{3}{2}He$, следовательно, ядро $\frac{3}{1}H$ более устойчивое.

22.6. Найти энергию связи $\dot{W}_{\rm c}$, приходящуюся на один нуклон в ядре атома кислорода $^{16}_{8}O$.

Решение:

Энергия связи ядра любого изотопа (см. задачу 22.3) равна $W=c^2\Big[Zm_{_{\parallel H}}+(A-Z)m_n-m_a\Big]$ — (1). Энергия связи, приходящаяся на один нуклоп в ядре, равна $W_0=\frac{W}{A}$ — (2). Подставляя (1) в (2), получаем $W_0=\frac{c^2}{A}\Big[Zm_{_{\parallel H}}+(A-Z)m_n-m_a\Big]$

A = 16, Z = 8 и $m_a = 15,9994$ а.е.м. Подставляя числовые данные, получим $W_0 = 7.78$ МэВ.

22.7. Найти энергию связи W ядра дейтерия ${}^2_1 H$.

Решение:

Эпергия связи ядра любого изотола (см. задачу 22.3) равна $W=c^2\left[Zm_{\frac{1}{4}H}+(A-Z)m_a-m_a\right]$. Для дейтерия $\frac{2}{4}H$: A=2, 530

Z=1 и $m_a=2.0141\,\mathrm{a.e.m.}$ Подставляя числовые данные, получим $W=2.25\,\mathrm{MpB}$.

22.8. Найти энергию связи W_0 , приходящуюся на один нуклон в ядрах: а) $\frac{7}{3}Li$; б) $\frac{14}{7}N$; в) $\frac{27}{13}Al$; г) $\frac{40}{20}Ca$; д) $\frac{63}{29}Cu$; е) $\frac{113}{48}Cd$; ж) $\frac{200}{80}Hg$; з) $\frac{238}{92}U$. Постронть зависнмость $W_0 = f(A)$, где A — массовое число.

Решение:

Между энергией и массой любого вещества существует связь, которая дается уравнением Эйнштейна $W=mc^2$, где $c\approx 3\cdot 10^8\,\mathrm{m/c}$ — скорость света в вакууме. Под энергией связи понимают энергию, которая высвобождается в процессе образования из нуклонов атомного ядра, т. е. $W_{\rm cB}=\Delta mc^2$, где $\Delta m=\left[Zm_p+(A-Z)m_n-m_{I\!\!U}\right]$ — дефект массы этого ядра, Z — атомарный номер, A — массовое число. Энергия связи, приходящаяся на один нуклон, $W_{\rm cB}=\left(Zm_p+(A-Z)m_n-m_B\right)c^2$

$$W_0 = \frac{W_{\text{ch}}}{A} = \frac{(Zm_p + (A-Z)m_n - m_g)c^2}{A}.$$

a)
$$W_0 = \frac{(3 \cdot 1.67 + 4 \cdot 1.68 - 7 \cdot 1.66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{7} = 0.089 \cdot 10^{-11} \,\text{J} = 5.62 \,\text{M} \Rightarrow \text{B}.$$

6)
$$W_0 = \frac{(7 \cdot 1,67 + 7 \cdot 1,68 - 14 \cdot 1,66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{14} =$$

$$= 0.12 \cdot 10^{-11} \, \text{Дж} = 7.53 \, \text{M}{\circ}\text{B}.$$

в)
$$W_0 = \frac{(13 \cdot 1.67 + 14 \cdot 1.68 - 27 \cdot 1.66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{27} = 0.134 \cdot 10^{-11}$$
Дж = 8,35 МэВ.

r)
$$W_0 = \frac{(20 \cdot 1,67 + 20 \cdot 1,68 - 40 \cdot 1,66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{40} =$$

$$= 0.137 \cdot 10^{-11} \text{ Дж} = 8,55 \text{ МэВ.}$$
a) $W_0 = \frac{(29 \cdot 1,67 + 34 \cdot 1,68 - 63 \cdot 1.66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{600} = 0.137 \cdot 10^{-11} \text{ Дж}$

63
$$= 0.141 \cdot 10^{-11} \, \text{Дж} = 8.75 \, \text{MэB}.$$

e)
$$W_0 = \frac{(48 \cdot 1.67 + 65 \cdot 1.68 - 113 \cdot 1.66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{113} =$$

$$= 0.135 \cdot 10^{-11} \, \text{Дж} = 8.48 \, \text{МэВ}.$$

ж)
$$W_0 = \frac{(80 \cdot 1.67 + 120 \cdot 1.68 - 200 \cdot 1.66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{200} = 0.127 \cdot 10^{-11}$$
 Дж = 7.93 МэВ.

3)
$$W_0 = \frac{(92 \cdot 1.67 + 146 \cdot 1.68 - 238 \cdot 1.66) \cdot 10^{-27} \cdot 9 \cdot 10^{16}}{238} = 0.0122 \cdot 10^{-11} \text{ Jbx} = 7.62 \text{ MaB.}$$

22.9. Найти энергию
$$Q$$
, выделяющуюся при реакции ${}_{3}^{7}Li+{}_{1}^{1}H\rightarrow {}_{2}^{4}He+{}_{2}^{2}He$.

Изменение энергин при ядерной реакции $Q = c^2 \times \left(\sum m_1 - \sum m_2\right)$ — (1). Сумма масс исходных частиц $\sum m_1 = (7.01600 + 1,00783) = 8,02383$ а.е.м. Сумма масс образовавшихся частиц $\sum m_2 = (4,00260 + 4,00260) = 8.00520$ а.е.м. Таким образом, дефект масс $\Delta m = 0.01863$ а.е.м. Тогда из (1) найдем $Q = 17,3 \cdot 10^6$ эВ.

22.10. Найти энергию Q, поглощенную при реакции ${}^{14}_{5}N+{}^{4}_{2}He \rightarrow {}^{1}_{1}H+{}^{17}_{8}O$.

Решение:

Изменение энергии при ядерной реакции $Q=c^2\times (\sum m_1-\sum m_2)$, где $\sum m_1$ — сумма масс частиц до реакции, $\sum m_2$ — сумма масс частиц после реакции. В нашем случае $\sum m_1=m_{14N}^4+m_{2He}^4=18,0057$ а.е.м., а $\sum m_2=m_{1H}^4+m_{17O}^2=18,0069$ а.е.м. Поскольку $\sum m_1<\sum m_2$, то реакция идет с поглощением тепла. Подставляя числовые данные, получим Q=1,13 МэВ.

22.11. Найти энергию Q, выделяющуюся при реакциях а) ${}_{1}^{2}H+{}_{1}^{2}H\to {}_{1}^{1}H+{}_{1}^{3}H$; б) ${}_{1}^{2}H+{}_{1}^{2}H\to {}_{1}^{1}H+{}_{0}^{1}n$.

Решение:

Изменение энергии при ядерной реакции $Q=c^2\times \times \left(\sum m_1-\sum m_2\right)$ (см. задачу 22.10). а) $\sum m_1=m_{_{\parallel}H}+m_{_{\parallel}H}=4.0566$ а.е.м., а $\sum m_2=m_{_{\parallel}H}+m_{_{\parallel}H}=4.0239$ а.е.м. Поскольку $\sum m_1>\sum m_2$, то реакция идет с выделением гепла. Подставляя числовые данные, получим 533

Q = 3,11 МэВ. б) $\sum m_1 = m_{_{1}H} + m_{_{2}H} =$ 4,0566 а.е.м., а $\sum m_2 = m_{_{\frac{3}{2}He}} + m_{_{\frac{1}{6}H}} =$ 4.0247 а.е.м. Поскольку $\sum m_1 > \sum m_2$, то реакция идет с выделением тепла. Подставляя числовые данные, получим Q = 3,01 МэВ.

22.12. Найти энергию Q, выделяющуюся при реакциях: a) ${}_{1}^{2}H + {}_{2}^{3}He \rightarrow {}_{1}^{1}H + {}_{2}^{4}He$; б) ${}_{3}^{6}Li + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + {}_{2}^{4}He$;

B) ${}_{3}^{6}Li + {}_{1}^{1}H \rightarrow {}_{2}^{3}He + {}_{2}^{4}He$.

Решение:

Изменение энергии при ядерной реакции $Q=c^2\times (\sum m_1-\sum m_2)$ (см. задачу 22.10). а) $\sum m_1=m_{\frac{2}{1}H}+m_{\frac{3}{2}He}=5.0301$ а.е.м., а $\sum m_2=m_{\frac{1}{1}H}+m_{\frac{4}{2}He}=5.0104$ а.е.м. Поскольку $\sum m_1>\sum m_2$, то реакция идет с выделением тепла. Подставляя числовые данные, получим Q=18.5 МэВ. б) $\sum m_1=m_{\frac{6}{3}L_1}+m_{\frac{7}{1}H}=8.0292$ а.е.м., а $\sum m_2=m_{\frac{4}{2}He}+m_{\frac{4}{2}He}=8.0052$ а.е.м. Поскольку $\sum m_1>\sum m_2$. то реакция идет с выделением тепла. Подставляя числовые данные, получим Q=22.5 МэВ. в) $\sum m_1=m_{\frac{6}{3}L_1}+m_{\frac{7}{1}H}=7.0229$ а.е.м., а $\sum m_2=m_{\frac{3}{2}He}+m_{\frac{4}{2}He}=7.0186$ а.е.м. Поскольку $\sum m_1>\sum m_2$. 10 реакция идет с выделением тепла. Подставляя числовые данные, получим Q=4.04 МэВ.

22.13. Какую массу M воды можно нагреть от 0° С до кипения, если использовать все гепло, выделяющееся при реакции $\frac{7}{3}Li(p,\alpha)$, при полном разложении массы m=1 г лития? 534

чество тепла, выделяемое при распаде одного ядра, $Q_1=c^2\left(\sum m_1+\sum m_2\right)$. Полная энергия, выделенная при распаде, $Q=NQ_1$ — где $N=\frac{m}{\mu}N_A$ — число ядер $\frac{3}{7}Li$; $N_A=6,023\cdot 10^{23}$ моль $^{-1}$ — число Авогадро. Количество тепла, необходимое для нагревания воды, $Q=c_{\rm B}M(t_2-t_1)$. По условию все тепло, выделенное при реакции, идет на нагревание воды, поэтому $\frac{m}{\mu}N_Ac^2\left(\sum m_1-\sum m_2\right)=$ $=c_{\rm B}M(t_2-t_1)$. Отсюда $M=\frac{mN_Ac^2\left(\sum m_1-\sum m_2\right)}{\mu c_{\rm B}(t_2-t_1)}$. Подставляя числовые данные, получим M=563 т.

Напишем уравнение реакции ${}_{3}^{7}Li+{}_{1}^{1}p \rightarrow {}_{2}^{4}\alpha+{}_{2}^{4}\alpha$. Коли-

22.14. Написать недостающие обозначения в реакциях: а) $_{13}^{27}$ $Al(n,\alpha)x$; б) $_{9}^{19}$ $F(p,x)_{8}^{16}$ O; в) $_{25}^{55}$ $Mn(x,n)_{26}^{55}$ Fe; г) $_{13}^{27}$ $Al(\alpha,p)x$; д) $_{7}^{14}$ $N(n,x)_{6}^{14}$ C; е) $x(p,\alpha)_{11}^{22}$ Na.

Решение:

- а) Запишем уравнение реакции $_{13}^{27}Al +_0^1 n \rightarrow_{11}^{24} x +_2^4 \alpha$. Зная заряд ядра, по таблице Менделеева найдем, что x Na натрий, отсюда окончательно $_{13}^{27}Al(n,\alpha)_{11}^{24}Na$.
- 6) Запишем уравнение реакции ${}_{9}^{19}F + {}_{1}^{1}p \rightarrow {}_{8}^{16}O + {}_{2}^{4}x$. Следовательно, $x = {}_{2}^{4}\alpha$, отсюда окончательно ${}_{9}^{19}F(p,\alpha){}_{8}^{16}O$.
- в) Запишем уравнение реакции $_{25}^{55}Mn+_{1}^{1}x \rightarrow_{26}^{55}Fe+_{0}^{1}n$. Следовательно, $x=_{1}^{1}p$, отсюда окончательно $_{25}^{55}Mn(p,n)_{26}^{55}Fe$.

- г) Запишем уравнение реакции ${}^{27}_{13}AI + {}^{4}_{2}\alpha \rightarrow {}^{30}_{14}x + {}^{1}_{1}p$. Зная заряд ядра, по таблице Менделеева найдем, что $x \longrightarrow Si$ кремний, отсюда окончательно ${}^{27}_{13}Al(\alpha,p)^{30}_{14}Si$.
- д) Запишем уравнение реакции ${}_{7}^{14}N + {}_{0}^{1}n \rightarrow {}_{6}^{14}C + {}_{1}^{1}x$. Следовательно, $x \longrightarrow {}_{1}^{1}p$, отсюда окончательно ${}_{1}^{14}N(n,p){}_{6}^{14}C$.
- е) Запишем уравнение реакции $^{25}_{12}x+^1_1p \rightarrow^{22}_{11}Na+^4_2\alpha$. Зная заряд ядра, по таблице Менделеева найдем, что x Mg марганец, отсюда окончательно $^{27}_{13}Mg(p,\alpha)^{22}_{11}Na$.
- **22.15.** Найти энергию Q, выделяющуюся при реакции ${}^7_3Li+{}^5_1H\to {}^8_4Be+{}^6_0n$.

Изменение энергии при ядерной реакции $Q=c^2\times \left(\sum m_1-\sum m_2\right)$ (см. задачу 22.10). В нашем случае $\sum m_1=m_{\frac{7}{3}Li}+m_{\frac{2}{1}H}=9,0301$ а.е.м., а $\sum m_2=m_{\frac{8}{4}Be}+m_{\frac{1}{0}H}=9,0140$ а.е.м. Поскольку $\sum m_1>\sum m_2$, то реакция идет **с** выделением тепла. Подставляя числовые данные, получим Q=15.12 МэВ.

22.16. Найти энергию Q, выделяющуюся при реакции ${}^{9}_{4}$ $Be + {}^{1}_{1}$ $H \rightarrow {}^{10}_{5}$ $Be + {}^{1}_{0}$ n.

Решение:

536

Изменение энергии при ядерной реакции $Q=c^2 \times \left(\sum m_1 - \sum m_2\right)$ (см. задачу 22.10). В нашем случае $\sum m_1 = m_{\frac{1}{2}Be} + m_{\frac{1}{2}H} = 11.0263$ а.е.м., а $\sum m_2 = m_{\frac{10}{5}Be} + m_{\frac{1}{6}n} =$

=11,0216 а.е.м. Поскольку $\sum m_1 > \sum m_2$, то реакция идет с выделением тепла. Подставляя числовые данные, получим $O=4,42\,\mathrm{MpB}$.

22.17. При бомбардировке изотопа азота ${}^{14}_{7}N$ нейтронами получается изотоп углерода ${}^{14}_{6}C$, который оказывается β -активным. Написать уравнения обеих реакций.

Решение:

По условию уравнение первой реакции имеет вид $\frac{14}{7}N+\frac{1}{6}n\to_{6}^{14}C+\frac{1}{1}x$. Следовательно, $x\leftarrow$ есть $\frac{1}{1}p$ и первое уравнение окончательно запишется в виде $\frac{14}{6}N+\frac{1}{6}n\to_{6}^{14}C+\frac{1}{1}p$ или $\frac{14}{7}N(n,p)_{6}^{14}C$. По условию изотоп $\frac{14}{6}C$ оказывается β -радиоактивным, т. е. испускает электроны, поэтому $\frac{14}{6}C\to_{-1}^{0}e+\frac{14}{7}x$. По заряду ядра из таблицы Менделеева найдем, что $x\leftarrow N$ — азот, отсюда уравнение второй реакции имеет вид $\frac{14}{6}C\to_{-1}^{0}e+\frac{14}{7}N$.

22.18. При бомбардировке изотопа алюминия $^{27}_{13}$ Al α - частицами получается радноактивный изотоп фосфора $^{30}_{15}P$, который затем распадается с выделением позитрона. Написать уравнения обеих реакций. Найти удельную активность a_m изотопа $^{30}_{15}P$, если его период полураспада $T_{1/2}=130$ с.

Решение:

По условию уравнение первой реакции имеет вид $\frac{27}{13}Al+\frac{4}{2}\alpha \rightarrow_{15}^{30}p+\frac{1}{0}x$. Следовательно, x — есть $\frac{1}{0}n$ и первое уравнение окончательно запишется в виде $\frac{27}{13}Al+\frac{4}{2}\alpha \rightarrow_{15}^{30}p+\frac{1}{0}n$ или $\frac{27}{13}Al(\alpha,n)^{30}_{15}p$. По условию

изотоп $^{30}_{15} p$ оказывается радиоактивным и распадается с излучением позитрона, поэтому $^{30}_{15} p \rightarrow_{+1}^{0} e + ^{30}_{16} x$. По заряду ядра из таблицы Менделеева найдем, что x - S — сера, отсюда уравнение второй реакции имеет вид $^{30}_{15} p \rightarrow_{+1}^{0} e + ^{30}_{16} S$. Период полураспада определяется как $T_{4/2} = \frac{ln2}{\lambda}$, отсюда $\lambda = \frac{0.693}{T_{1/2}}$ — постоянная распада. Активностью вещества называется физическая величина $A = \lambda N$, где $N = \frac{m}{\mu} N_A$ — число делящихся ядер. Тогда $A = \frac{0.693mN_A}{T_{1/2}\mu}$. Удельная активность $a_m = \frac{A}{m} = \frac{0.689N_A}{T_{1/2}\mu} = 1.07 \cdot 10^{23} \, \text{Бк/кг}$.

22.19. При бомбардировке изотопа $^{23}_{11}Na$ дейтонами образуется β -радиоактивный изотоп $^{24}_{11}Na$. Счетчик β -частиц установлен вблизи препарата, содержащего радиоактивный $^{24}_{11}Na$. При первом измерении счетчик дал 170 отбросов за 1мин, а через сутки — 56 отбросов за 1 мин. Написать уравнения обеих реакций. Найти период полураспада $T_{1/2}$ изотопа $^{24}_{11}Na$.

Решение:

По условию уравнение первой реакции имеет вид $^{23}_{11}Na+^2_1d\to^{24}_{11}Na+^1_1x$. Следовательно, x — есть 1_1p и первое уравнение окончательно запишется в виде $^{23}_{11}Na+^2_1d\to^{24}_{11}Na+^1_1p$ или $^{23}_{11}Nf(d,p)^{24}_{11}Na$. По условию изотоп $^{24}_{11}Na$ оказывается β -радиоактивным, т. е. испускает электроны, поэтому $^{24}_{11}Na\to^0_{-1}e+^{24}_{10}x$. По заряду ядра из таблицы Менделсева найдем, что x — Ne — 538

неон, отсюда уравнение второй реакции имеет вид $N = \frac{21}{11} Na \rightarrow_{-1}^{0} e + \frac{24}{10} Ne$. По закону радиоактивного распада $N = \frac{N_0}{2t \wedge T_{1/2}}$, отсюда $2\frac{t}{T_{1/2}} = \frac{N_0}{N}$; $\frac{t}{T_{1/2}} = log_2 \left(\frac{N_0}{N}\right) = \frac{ln(N_0/N)}{ln\,2} = \frac{ln(N_0/N)}{0,693}$. Тогда период полураспада $T_{1/2} = \frac{t\ln 2}{ln(N_0/N)} = 14.97$ ч.

22.20. Какая энергия Q_1 выделится, если при реакции $\prod_{i=1}^{m} Al + \frac{4}{2} He \rightarrow_{14}^{30} Si + \frac{1}{4} H$ подвергаются превращению все ядра, находящиеся в массе m=1 г алюминия? Какую энергию Q_2 надо затратить, чтобы осуществить это превращение, если известно, что при бомбардировке ядра алюминия α -частицами с энергией W=8 МэВ телько одна α -частица из $n=2\cdot 10^6$ частиц вызывает превращение?

Решение:

Энергия, выделяемая при превращении одного ядра алюминия, $Q_0 = c^2 \Big(\sum m_1 - \sum m_2 \Big)$. Число ядер алюминия, участвующих в реакции, $N = \frac{m}{\mu} N_A$. Тогда полная энергия, выделяемая при превращении всех ядер, $Q_1 = Q_0 N = \frac{m}{\mu} N_A c^2 \Big(\sum m_1 - \sum m_2 \Big)$. Подставляя числовые данные и учитывая, что энергетический эквивалент атомной единицы массы $\{1 a.e.m.\}c^2 = 931,5 \, \text{МэВ}$, получим: $Q_1 = 5,3 \cdot 10^{22} \, \text{МэВ}$. Т. к. превращение может осуществлять только одна из n частиц, то энергия, необходимая для осуществления превращения всех ядер, $Q_2 = WNn = \frac{WmN_An}{\mu} = 3,57 \cdot 10^{29} \, \text{МэВ}$. Таким образом,

 $\frac{Q_2}{Q_1} = 5.71 \cdot 10^6$, т. е. чтобы осуществить это превращение, надо затратить энергии приблизительно в 6 млн раз

больше, чем выделится при этой реакции.

22.21. При бомбардировке изотопа лития $\frac{6}{3}Li$ дейтонами (ядрами дейтерия ${}^{2}H$) образуются две α -частицы. При этом выделяется энергия $Q = 22.3 \,\mathrm{MpB}$. Зная массы дейтона d и α -частицы, найти массу m изотопа лития ${}_3^6Li$.

Решение:

Запишем уравнение реакции ${}_{3}^{6}Li + {}_{1}^{2}d \rightarrow {}_{2}^{4}\alpha + {}_{2}^{4}\alpha$. Количество выделенной энергии $Q = c^2 [(m_{t_1} + m_{t_2}) - 2m_{\alpha}];$ $m_{I,i} = \frac{Q}{a^2} - m_d + 2m_\alpha = 6{,}015 \text{ a.e.m.}$

22.22. Источником энергии солнечного излучения является энергия образования гелия из водорода по следующей циклической реакции: ${}_{6}^{12}C + {}_{1}^{1}H \rightarrow {}_{7}^{13}N \rightarrow {}_{6}^{13}C + {}_{+1}^{0}e, {}_{6}^{13}C + {}_{1}^{1}H \rightarrow {}_{7}^{14}N,$ $_{7}^{14}N+_{1}^{1}H \rightarrow_{8}^{15}O \rightarrow_{7}^{15}N+_{11}^{0}e, \frac{15}{7}N+_{11}^{1}H \rightarrow_{6}^{12}C+_{2}^{4}He$. Какая масса т, водорода в единицу времени должна превращаться в гелий? Солнечная постоянная $K = 1,37 \text{ kBr/m}^2$. Принимая, что масса водорода составляет 35% массы Солица, подсчитать, на какое время / хватит запаса водорода, если излучение Солнца считать постоянным.

Решение:

В результате проведенного цикла четыре ядра водорода превращаются в одно ядро гелия. Углерод, ведущий себя как химический катализатор, может использоваться снова.

 $m H_{3M}$ енение эпергии при ядерной реакции $\it Q = c^2 imes$ $imes \left(\sum m_1 - \sum m_2\right)$. Для цикла реакций $\sum m_1 = 4m_{\frac{1}{4}H} = 6$ = 4.0312 а.е.м., а $\sum m_2 = 4m_{\frac{1}{2}He} = 4,0026$ а.е.м. Поскольку $\sum m_1 > \sum m_2$, то реакция идет с выделением энергии. Под- $_{\rm CTABЛЯЯ}$ числовые данные, получим $Q = 268,66\,{\rm MpB} =$ $=4.29\cdot10^{-12}$ Дж. С другой стороны, энергия, излучаемая Солнцем в единицу времени, $W_t = 4\pi \langle R \rangle^2 K$ — (1), где $\langle R \rangle = 1.495 \cdot 10^{11} \,\mathrm{M}$ — среднее расстояние от Земли до Солнца, К — солнечная постоянная. Число атомов водорода, необходимое для излучения энергии W_i , равно $N = \frac{4W_t}{O}$ — (2). Подставляя (1) в (2), получаем $N=16\pi \left\langle R\right\rangle ^{2}K$ — (3), тогда необходимая масса водорода в единицу времени равна $M_{Hi} = m_{\parallel H} N = \frac{16\pi \langle R \rangle^2 K m_{\parallel H}}{O} =$ $=6.03\cdot10^{11}\,\mathrm{kr}$. По условию $M_H=0.35M_C$ — (4), где $M_{\rm C} = 2 \cdot 10^{30} \; {\rm kr}$ — масса Солнца. Тогда время, на которое хватит запаса водорода, равно $t = \frac{M_H}{M_{H_t}}$ — (5). Подставляя (4) в (5), окончательно получаем $t = \frac{0.35M_{\rm C}}{M_{\odot}} = 3.7 \cdot 10^{10}$ лет.

22.23. Реакция разложения дейтона у -лучами:

 $^2H + hv \rightarrow_1^1 H +_0^1 n$. Найти массу m нейтрона, если известно, что энергия γ -квантов $W_1 = 2,66$ МэВ, а энергия вылетающих протонов, измеренная по производимой ими ионизации, ока-

залась равной $W_2 = 0.22$ МэВ. Энергию нейтрона считать равной энергии протона. Массы дейтона и протона считать известными.

Решение:

Запишем уравнение реакции ${}_{1}^{2}d+h\nu \rightarrow {}_{1}^{1}p+{}_{0}^{1}n$. Количество тепла, выделенное при реакции, $Q=c^{2}\times (m_{d}-(m_{p}+m_{n}))$. По закону сохранения энергии $W_{1}=2W_{2}-Q$. Подставим Q в закон сохранения энергии $W_{1}=2W_{2}-c^{2}(m_{d}(m_{p}+m_{n}))$, откуда $m_{n}=m_{d}-m_{p}-\frac{2W_{2}-W_{1}}{c^{2}}$; $m_{n}=1,0087$ а.е.м.

22.24. Написать недостающие обозначения в реакциях:

a)
$$_{13}^{27} Al(\gamma, x)_{12}^{26} Mg$$
; δ) $_{13}^{27} Al(\gamma, n)x$; $_{12}^{89} Cu(\gamma, x)_{29}^{62} Cu$; $_{13}^{81} Cu(\gamma, n)_{74}^{181} W$.

Решение:

- **22.25.** Выход реакции образования радиоактивных изотопов можно охарактеризовать либо числом k_i отношением числе 542

происшедших актов ядерного превращения к числу бомбардирующих частиц, либо числом k_2 [Бк] — отношением активности полученного продукта к числу единиц, бомбардирующих мишень. Как связаны между собой величины k_1 и k_2 ?

Решение:

Пусть N_1 — число происшедших актов ядерного превращения, N_2 — число бомбардирующих частиц. Тогда $k_1=\frac{N_1}{N_2}$ — (1); $k_2=\frac{a}{N_2}=\frac{\lambda N_1}{N_2}=\frac{\ln 2N_1}{T_{1/2}N_2}$ — (2). Сравнивая выражения (1) и (2), получим $k_2=\frac{\ln 2}{T_{1/2}}k_1$.

22.26. При бомбардировке $\frac{7}{3}Li$ протонами образуется радиоактивный изотоп бериллия $\frac{7}{4}Be$ с периодом полураспада $\Gamma_{1/2} = 4,67 \cdot 10^6$ с. Найти выход реакции k_1 (см. задачу 22.25), если известно, что бомбардирующие протоны общим зарядом q = 1 мкА·ч вызывают активность полученного препарата $a = 6.51 \cdot 10^6$ Бк.

Решение:

По определению $k_1=\frac{N_1}{N_2}$ — (1), где N_1 — число происшедших актов ядерного превращения за некоторый промежуток времени, N_2 — число частиц, бомбардирующих мишень за этот промежуток времени, а $k_2=\frac{a}{N_2}$ — (3), где a — активность полученного продукта. Суммарный заряд протонов, бомбардирующих мишень, равен $q=eN_2$, откуда $N_2=\frac{q}{e}$ — (3). Подставляя (3) в (1) и (2), соответственно получаем $k_1=\frac{N_1e}{q}$ — (4) и $k_2=\frac{ae}{q}$ — (5). Величины k_1 и k_2 связаны между собой соотношением: $k_2=\frac{\ln 2}{T_{1/2}}k_1$, где $T_{1/2}$ — период полураепада полученного продукта. тогда $k_1=\frac{T_{1/2}}{\ln 2}k_2$ — (6). Подставляя (5) в (6). окончательно получаем $k_1=\frac{aeT_{1/2}}{q\ln 2}=2\cdot 10^{-3}=\frac{1}{500}$, значит, только один протон из 500 вызывает реакцию.

22.27. В результате ядерной реакции $_{20}^{56}Fe(p,n)$ образуется радиоактивный изотоп кобальта $_{27}^{56}Co$ с периодом полураспада $T_{1/2}=80$ сут. Найти выход реакции k_1 (см. задачу 22.25), если известно, что бомбардирующие протоны общим зарядом q=20 мкА·ч вызывают активность полученного препарата $a=5.2\cdot 10^7$ Бк.

Решение:

Выход реакции (см. задачу 22.26) выражается соотношением $k_1 = \frac{aeT_1}{q \ln 2} = 1.15 \cdot 10^{-3}$.

22.28. Источником нейтронов является трубка, содержащая порошок бериллия 9_4Be и газообразный радон. При реакции α -частиц радона с бериллием возинкают нейтроны. Написать реакцию получения нейтронов. Найти массу m радона, введенного в источник при его изготовлении, если известно, что этот источник дает через время t=5 сут после его изготовления число нейтронов в единицу времени $a_2=1.2\cdot 10^6 \, {\rm c}^{-1}$. Выход 544

реакцин $k_1 = 1/4000$, т. е. только одна α -частица из n = 4000 вызывает реакцию.

Решение:

Сразу после изготовления источник дает в единицу времени число распадов $a_1 = \left(\frac{\Delta N}{\Delta t}\right)_1 = \lambda N_1$. Через время t число распадов в единицу времени $a_2 = \left(\frac{\Delta N}{\Delta t}\right)_2 = \lambda N_2$, где $N_2 = N_1 e^{-\lambda t}$. По условию только одна α -частица из n = 4000 вызывает реакцию, тогда число атомов радона, введенного в источник, $N' = nN_1 = \frac{nN_2}{e^{-\lambda t}} = nN_2 e^{\lambda t}$. Тогда масса радона $m = \frac{\mu N'}{N_A} = \frac{\mu}{N_A} nN_2 e^{\lambda t} = \frac{\mu m e^{\lambda t} a_2}{N_A \lambda}$. Подставляя числовые данные, получим $m = 2,1\cdot 10^{-9}$ кг.

22.29. Источником нейтронов является трубка, описанная в задаче 22.28. Какое число нейтронов a_2 в единицу времени создают α -частицы, излучаемые радоном с активностью $a_1 = 3.7 \cdot 10^{10}$ Бк, попадая на порошок бериллия? Выход реакции $k_1 = 1/4000$.

Решение:

По условию выход реакции $k_1 = \frac{1}{4000}$, значит, только одна α -частица из n = 4000 вызывает реакцию. Поскольку активность радона равна $a_1 = 3.7 \cdot 10^{10} \, \text{Бк}$, то число нейтронов в единицу времени, создаваемое α -частицами,

равно $a_2 = \frac{a_1}{n} = a_1 k_1 = 9.25 \cdot 10^6 \,\mathrm{c}^{-1}$.

22.30. Реакция образования радиоактивного изотопа углерода $_{6}^{11}C$ имеет вид $_{5}^{10}B(d,n)$, где d-дейтон (ядро дейтерия $_{1}^{2}H$). Период полураспада изотопа $_{6}^{11}C$ $T_{1/2}=20$ мин. Какая энергия Q выделится при этой реакции? Найти выход реакции k_{2} , если $k_{1}=10^{-8}$ (см. задачу 22.25).

Решение:

Запишем уравнение реакции ${}_5^{10}B + {}_1^2H \to {}_6^{11}C + {}_0^1n$. Изменение энергии при ядерной реакции $Q = c^2 \Big(\sum m_1 - \sum m_2 \Big)$. В нашем случае $\sum m_1 = m_{10} + m_{10} + m_{10} = 12,0270$ а.е.м., а $\sum m_2 = m_{11} + m_{10} = 12,0087$ а.е.м. Поскольку $\sum m_1 > \sum m_2$, то реакция идет с выделением энергии. Подставляя числовые данные, получим Q = 7,12 МэВ. Величины k_1 и k_2 связаны соотношением $k_2 = \frac{\ln 2}{T_{1-2}}k_1$, отсюда $k_3 = 5,78 \cdot 10^{-12}$ Бк.

22.31. В реакции $^{14}_{7}N(\alpha,p)$ кинетическая энергия α -частицы $W_1=7,7$ МэВ. Под каким углом φ к направлению движения α -частицы вылетает протон, если известно, что его кинетическая энергия $W_2=8,5$ МэВ?

Решение:

Обозначим m_1 , m_2 и m_3 — массы бомбардирующей α -частицы, протона и ядра отдачи (в нашем случае кислорода); W_1 , W_2 и W_3 — их кинетические энергии. Если ядро азота (m) непо-

движно, то закон сохранения энергии запишется так: $W_1 + Q = W_2 + W_3$ — (1), где Q — энергия реакции. Закон сохранения импульса в векторной форме имеет вид $\vec{p}_1 = \vec{p}_2 + \vec{p}_3$ — (2). Из (2) имеем для импульсов $p_3^2 = p_1^2 + p_2^2 - 2p_1p_2\cos\varphi$ — (3). T. K. $p^2 = (mv)^2 =$ $=\frac{mv^2}{2}2m=2mW$ — (4), то уравнение (3) примет вид $2m_3|V_3=2m_1W_1+2m_2W_2-2\cos\varphi\sqrt{2m_1W_12m_2W_2}$, или $W_3 = \frac{m_1}{m_2}W_1 + \frac{m_2}{m_2}W_2 - \frac{2\cos\varphi}{m_2}\sqrt{m_1m_2W_1W_2}$ — (5). Исключая из (1) и (5) энергию W_3 , получим формулу, связывающую кинетическую энергию бомбардирующих а -частиц с кинетической энергией протонов: $W_1 \left(\frac{m_3 - m_1}{m_1} \right) + Q = W_2 \times W_1$ $\times \left(\frac{m_2 + m_3}{m_1}\right) - \frac{2\cos\varphi}{m_2} \sqrt{m_1 m_2 W_1 W_2}$ — (6). Здесь Q = -1,18 МэВ. Решая (6) относительно $\cos \varphi$ и подставляя числовые данные, найдем $\cos \varphi = \frac{m_2 + m_3}{2} \sqrt{\frac{W_2}{m.m.W.} - \frac{m_3 - m_1}{2}} \times$ $\times \sqrt{\frac{W_1}{m_1 m_2 W_1}} - \frac{m_3 Q}{2\sqrt{m_1 m_2 W_2 W_2}} = 0.849$, или $\varphi = 32^\circ$.

22.32. При бомбардировке изотопа лития 6_3Li дейтонами образуются две α -частицы, разлетающиеся симметрично под углом φ к направлению скорости бомбардирующих дейтонов. Какую кинетическую энергию W_2 имеют образующиеся α -частицы, если известно, что энергия бомбардирующих дейтонов $W_1 = 0.2$ МэВ? Найти угол φ .

Запишем уравнение реакции ${}_{3}^{6}Li + {}_{2}^{1}d \rightarrow {}_{2}^{4}\alpha + {}_{2}^{4}\alpha .$ T. K. $^6_3Li + ^1_2d \rightarrow ^4_2\alpha + ^4_2\alpha$. Т. к. ядра лития покоились, то по закону сохранения энергии $W_1 = 2W_2 - Q$, где $Q = c^2 (m_{Li} + m_d - 2m_\alpha)$. Тогда $2W_2 = W_1 + c^2(m_{Li} + m_d - 2m_{\alpha}),$ OT-

сюда $W_2 = \frac{W_1 + c^2(m_{L_1} + m_d - 2m_\alpha)}{2} = 11,31 \,\text{MpB}$. Из меха-

ники кинетическая энергия $W_{\kappa} = \frac{mv^2}{2} = \frac{m^2v^2}{2m} = \frac{p^2}{2m}$, откуда $p^{2} = 2mW_{x}$ или импульс $p = \sqrt{2mW_{x}}$. Импульсы дейтона и α -частиц будут соответственно равны $p_1 = \sqrt{2m_dW_1}$ и $p_2 = \sqrt{2m_a W_2}$. По закону сохранения импульса $p_1 = 2\rho_2 \cos \varphi$; $\cos \varphi = \frac{p_1}{2 n_2} = \frac{1}{2} \sqrt{\frac{m_d W_1}{m_1 W_2}} = 0,047$, отсюда $\varphi = \arccos(0.047) \approx 87.3^{\circ}$.

22.33. Изотоп гелия ³ Не получается бомбардировкой ядер трития ${}^{3}_{1}H$ протонами. Написать уравнение реакции. Какая энергия Q выделяется при этой реакции? Найти порог реакции, т. е. минимальную кинетическую энергию бомбардирующей частицы, при которой происходит эта реакция. У казание: учесть, что при пороговом значении кинетической энергии бомбардирующей частицы относительная скорость частиц, возникающих в реакции, равна нулю.

Решение:

Запишем уравнение реакции ${}_{1}^{3}H + {}_{1}^{1}p \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$. Энергия, выделяемая при реакции, $Q = c^2 (\sum m_1 - \sum m_2)$. Подставляя

валент атомной единицы массы (la.e.м.) $c^2 = 931.5 \,\text{MB}$, по- $D_{\text{NYMM}} = Q = 931.5 \cdot ((3.01605 + 1.0078) - (3.01603 + 1.00867)) = 0.00078$ = -0.79 МэВ. Т. к. Q < 0, то реакция эндотермическая, т. с. идет с поглощением энергии и обладает порогом. Если частицы покоятся друг относительно друга, то такая не пойдет. Необходимо, чтобы реакция относительного движения частиц была не меньше |Q|, поэтому пороговая энергия определяется соотношением $W_{\text{nop}} = \frac{p_1^2}{2(m_1 + m_2)} + |Q|$, где p_1 — импульс центра инерции системы. С другой стороны, по определению W_{nop} равна кинетической энергии протона: $W_{\text{вор}} = \frac{p_1^2}{2m_2}$, откуда $p_{\rm i}^2 = 2m_2W_{\rm nop}$. Значит, $W_{\rm nop} = \frac{2m_2W_{\rm nop}}{2(m_1+m_2)} + |\mathcal{Q}|$, откуда $W_{\text{пор}}\left(1 - \frac{m_2}{m_1 + m_2}\right) = |Q|$ или $W_{\text{пор}} = \frac{|Q|(m_1 + m_2)}{m_2} = 1,04 \,\text{M}{\circ}\text{B}$. **22.34.** Найти порог W ядерной реакции ${}^{14}_{7}N(\alpha, p)$. Решение: Порог ядерной реакции, т. е. минимальная кинетическая энергия бомбардирующей частицы, при которой происходит эта реакция (см. задачу 22.33), выражается соотно-

числовые данные и учитывая, что энергетический экви-

шением $W = \frac{|Q|(m_1 + m_2)}{m_1}$. В нашем случае $m_1 = m_{\frac{14}{7}N} = m_1$ =14.0031a.e,м. — масса покоящегося ядра, $m_2 = m_{\frac{4}{2}He} =$ = 4,0026 а.е.м. — масса бомбардирующей частицы. Запишем уравнение реакции: ${}_{7}^{14}N + {}_{2}^{4}He \rightarrow {}_{8}^{7}O + {}_{1}^{1}p$. Изменение энергии при ядерной реакции $Q=c^2\left(\sum m_1-\sum m_2\right)$. В нашем случае $\sum m_1=m_{1_1^4N}^2+m_{\frac{4}{2}He}^2=18,0057$ а.е.м., а $\sum m_2=m_{\frac{1}{8}7O}^2+m_{\frac{1}{1}p}^2=18,0069$ а.е.м. Поскольку $\sum m_1<\sum m_2$, то реакция идет с поглощением энергии. Подставляя числовые данные, получим Q=-1,13 МэВ и W=1,45 МэВ.

22.35. Найти порог W ядерной реакции $\frac{7}{3}Li(p,n)$.

Решение:

Порог ядерной реакции, т. е. минимальная кинетическая энергия бомбардирующей частицы, при происходит эта реакция (см. задачу 22.33), выражается $W = \frac{|Q|(m_1 + m_2)}{m_1}$. В нашем случае соотношением $m_l = m_{\frac{7}{3}Li} = 7,0160$ а.е.м. — масса покоящегося ядра, $m_2 = m_{|p|} = 1,0078$ а.е.м. — масса бомбардирующей частицы. Запишем уравнение реакции: ${}^7_3Li+{}^1_1p \rightarrow {}^7_4Be+{}^1_0n$. энергии при ядерной реакции $Q = c^2 \left(\sum m_1 - \sum m_2 \right)$. В нашем случае $\sum m_1 = m_{\frac{7}{2}L_l} + m_{\frac{1}{2}R_l} = 0$ = 8,0238 а.е.м., а $\sum m_2 = m_{\tilde{l}_{Be}} + m_{\tilde{l}_{n}} = 8,0256$ а.е.м. Поскольку $\sum m_{
m l} < \sum m_{
m 2}$, то реакция идет с поглощением энергии. Подставляя числовые данные, получим $Q = -1.69 \,\mathrm{MpB}$ и $W = 1.93 \text{ M} \cdot \text{B}.$

22.36. Искусственный изотоп азота $^{13}_{7}N$ получается бомбардировкой ядер углерода $^{12}_{6}C$ дейтонами. Написать уравнение реакции. Найти количество теплоты Q, поглощенное при этой 550

реакции, и порог W этой реакции. Какова суммарная кинетическая энергия W' продуктов этой реакции при пороговом значении кинетической энергии дейтонов? Ядра углерода считать неподвижными.

Решение:

Запишем уравнение реакции ${}_{6}^{12}C + {}_{1}^{2}d \rightarrow {}_{7}^{13}N + {}_{6}^{1}n$. Найлем количество тепла $Q = c^2[(m_C + m_A) - (m_N + m_L)]$: $Q = 9 \cdot 10^{16} [(12 + 2.0141) - (13.00574 + 1.0087)] \cdot 1.66 \cdot 10^{-27};$ $Q = -0.00507 \cdot 10^{-11} \text{ J/m} = -0.00317 \cdot 10^{-8} \text{ pB} = -0.317 \text{ MpB}.$ Т. к. Q < 0, то реакция эндотермическая, т. е. она не пойдет, если частицы покоятся друг относительно друга. Необходимо, чтобы энергия относительного движения частиц была не меньше |Q|. Поэтому порог определяется соотношением $W = \frac{p_d^2}{2(m_c + m_{c'})} + |Q|$. С другой стороны, по определснию этот порог равен кинетической энергии дейтона, т. е. $W = \frac{p_d^2}{2m}$; $\frac{p_d^2}{2(m_d + m_0)} + |Q| = \frac{p_d^2}{2m_d}$. Т. к. $p_d^2 = 2m_d W$ (см. задачу 22.32), $\frac{2m_{a}W}{2m_{d}} - \frac{2m_{a}W}{2(m_{d} + m_{C})} = |Q|;$ $W - \frac{m_d W}{m_d + m_C} = W \left(1 - \frac{m_d}{m_d + m_C} \right) = |Q|;$ $W = \frac{|Q|}{1 - m_c / (m_c + m_c)} = \frac{|Q|(m_d + m_c)}{m_c + m_c - m_c} = |Q|(\frac{m_d}{m_c} + 1) - \text{no-}$ роговая энергия. $W = 0.317 \left(\frac{2.0141}{12} + 1 \right) = 0.37 \text{ MэВ.}$ Суммарная кинстическая энергия продуктов реакции W'' = W + Q = 0.37 - 0.317 = 0.053 M 3B.

22.37. Реакция $_{5}^{10} B(n,\alpha)$ идет при бомбардировке бора нейтронами, скорость которых очень мала (тепловые нейтроны). Какая энергия Q выделяется при этой реакции? Пренебрегая скоростями нейтронов, найти скорость v и кинетическую энергию W α -частицы. Ядра бора считать неподвижными.

Решение:

Запишем уравнение реакции ${}_{5}^{10}B+{}_{0}^{1}n\to_{3}^{7}Li+{}_{2}^{4}\alpha$. Количество тепла, выделенного при реакции, $Q=c^{2}[(m_{B}+m_{n})+(m_{Li}+m_{\alpha})];$ $Q=9\cdot10^{16}[(10,01294+1,0087)-(7,016+4,0026)]\cdot 1,66\cdot 10^{-27}=0,0454\cdot 10^{-11}$ Дж Q=2,83 МэВ. Т. к. по условию скоростью нейтронов можно пренебречь, то по закону сохранения импульса $m_{Li}v_{Li}=m_{\alpha}v_{\alpha}$, отсюда $v_{Li}=\frac{m_{\alpha}v_{\alpha}}{m_{Li}}$. По закону сохранения энергии $Q=W_{Li}+W_{\alpha}=\frac{m_{Li}v_{Li}^{2}}{2}+\frac{m_{\alpha}v_{\alpha}^{2}}{2};$ $2Q=m_{\alpha}v_{\alpha}^{2}\left(\frac{m_{\alpha}}{m_{Li}}+1\right)$, отсюда $v_{\alpha}=\sqrt{\frac{2Q}{m_{\alpha}(m_{\alpha}/m_{Li}+1)}}=9,33\cdot 10^{6}$ м/с.

Кинетическая энергия α -частицы $W_{\alpha} = \frac{m_{\alpha}v_{\alpha}^2}{2}$;

 $W_{\alpha} = \frac{4,0026 \cdot 1,66 \cdot 10^{-27} \cdot 9,33^2 \cdot 10^{12}}{2} = 2,89 \cdot 10^{-13}$ Дж = = 1,806 МэВ.

22.38. При бомбардировке изотопа лития ${}_3^7Li$ протонами образуются две α -частицы. Энергия каждой α -частицы в момент их образования $W_2 = 9,15$ МэВ. Какова энергия W_1 бомбардирующих протонов?

Запишем уравнение реакции: ${}^{7}_{3}Li+{}^{1}_{1}p \rightarrow {}^{4}_{2}He+{}^{4}_{2}He$. Изменение энергии при ядерной реакции $Q=c^2\left(\sum m_1-\sum m_2\right)$. В нашем случае $\sum m_1=m_{{}^{7}_{3}Li}+m_{{}^{1}_{1}p}=8{,}0238\,\mathrm{a.e.m.}$, а $\sum m_2=m_{{}^{4}_{2}He}+m_{{}^{4}_{2}He}=8{,}0052\,\mathrm{a.e.m.}$ Поскольку $\sum m_1>\sum m_2$, то реакция идет с выделением энергии. Подставляя числовые данные, получим $Q=17{,}37\,\mathrm{M}{,}9B$. По закону сохранения энергии $W_1+Q=2W_2$, откуда энергия бомбардирующих протонов $W_1=2W_2-Q=0{,}93\,\mathrm{M}{,}9B$.

22.39. Найти наименьшую энергию γ -кванта, достаточную для осуществления реакции разложения дейтона γ -лучами ${}_{1}^{2}H + h\nu \rightarrow {}_{1}^{1}H + {}_{0}^{1}n$.

Решение:

Количество тепла, поглощаемое при реакции $Q=c^2\times \left(m_{\frac{1}{2}H}-\left(m_{\frac{1}{4}H}+m_n\right)\right)=9\cdot 10^{16}\big[2,0141-\left(1,00783+1,0086\right)\big]\times \times 1,66\cdot 10^{-27}=-0,035\cdot 10^{-11}\,\text{Дж}=-2,175\,\text{МэВ.}$ Для осуществления расщепления необходимо, чтобы γ -квант имел энергию $h\nu\geq |Q|$. В предельном случае при $h\nu=|Q|$ γ -квант расщепит ядро, но не сможет сообщить образовавшимся частицам кинетическую энергию. Значит, $h\nu_{min}=2,175\,\text{МэВ}.$

22.40. Найти паименьшую энергию γ -кванта, достаточную для осуществления реакции $^{24}_{12}\,Mg(\gamma,n)$.

Запишем уравнение реакции: ${}^{24}_{12}Mg + h\nu \rightarrow {}^{23}_{12}Mg + {}^{1}_{0}n$. Изменение энергии при ядерной реакции $Q = c^2 \times (\sum m_1 - \sum m_2)$. В нашем случае $\sum m_1 = m_{24 \, Mg} = 23.9850 \, \text{а.е.м.}$, т. к. масса покоя γ -кванта равна нулю, а $\sum m_2 = m_{12 \, Mg} + m_{0n} = 24,0028 \, \text{а.е.м.}$ Поскольку отношение $\sum m_1 < \sum m_2$, то реакция идет с поглощением энергии. Подставляя числовые данные, получим $Q = -16,72 \, \text{МэВ}$. Чтобы реакция могла произойти, энергия γ -кванта должна быть больше или равна порогу ядерной реакции, который выражается соотношением $W = \frac{|Q|(m_1 + m_2)}{m_1}$ (см. задачу 22.33). Однако в нашем случае масса покоя γ -кванта $m_2 = 0$, поэтому порог ядерной реакции W = |Q|, а следовательно, наименьшая энергия γ -кванта $h\nu = |Q| = 16,72 \, \text{МэВ}$.

22.41. Какую энергию W (в киловатт-часах) можно получить от деления массы m=1 г урана $\frac{2.15}{92}U$, если при каждом акте распада выделяется энергия $Q=200\,\mathrm{MpB}$?

Решение:

Число делящихся ядер урана $^{235}_{92}U$, содержащееся в определенной массе, равно $N=\frac{m}{\mu}N_{\rm A}$ — (1), где $\mu=0.235\,{\rm кг/моль}$ — молярная масса $^{235}_{92}U$, $N_{\rm A}=6.02\times 10^{23}\,{\rm моль}^{-1}$ — постоянная Авогадро. Энергия, которую можно получить при образовании данной массы $^{235}_{92}U$, 554

равна W = QN — (2). Подставляя (1) в (2), получим $W = \frac{m}{u} N_A Q = 2,28 \text{ кВт·ч}.$

22.42. Какая масса урана $^{235}_{92}U$ расходуется за время t=1 сут на атомной электростанции мощностью $P=5000~\mathrm{kBt?}$ К.п.д. принять равным 17%. Считать, что при каждом акте распада выделяется энергия $Q=200~\mathrm{MpB}$.

Решение:

Число распавшихся ядер урана $n=\frac{m}{\mu}N_{\Lambda}$. Полная энергия, выделяемая при распаде массы m урана, $Q_{\text{полн}}=Q_0n=Q_0\frac{m}{\mu}N_{\Lambda}$. Тогда полезная энергия $Q_{\text{полез}}=\eta Q_{\text{полн}}=\eta Q_0\times \frac{m}{\mu}N_{\Lambda}$. Мощность атомной электростанции $p=\frac{Q_{\text{полез}}}{t}=\frac{\eta Q_0mN_{\Lambda}}{\mu t}$. Отсюда масса распавшегося урана за время t $m=\frac{p\mu t}{\eta Q_0N_{\Lambda}}=31$ г.

22.43. При взрыве водородной бомбы протекает термоядерная реакция образования гелия из дейтерия и трития. Написать уравнение реакции. Найти энергию Q, выделяющуюся при этой реакции. Какую энергию W можно получить при образовании массы m=1 г гелия?

Решение:

Запишем уравнение реакции: ${}^2_1H + {}^3_1H \rightarrow {}^4_2He + {}^1_0n$. Изменение энергии при ядерной реакции $Q = c^2 \Big(\sum m_1 - \sum m_2 \Big)$.

В нашем случае $\sum m_1 = m_{_{_1}H} + m_{_{_1}H} = 5.0301$ а.е.м., а $\sum m_2 = m_{_{_2}He} + m_{_{_0}n} = 5,0113$ а.е.м. Поскольку $\sum m_1 > \sum m_2$, то реакция идет с выделением энергии. Подставляя числовые данные, получим Q=17,66 МэВ. Энергия, которую можно получить при образовании данной массы 4_2 Не (см.

задачу 22.41), равна $W = \frac{m}{M} N_A Q = 11.8 \cdot 10^4 \text{ кBт·ч}.$