Физическая модель

физ. обозначение		значение		величина	Единицы измерения в СИ	
$M_{ m Ha ext{ iny }}$		267000		масса до запуска ракеты		
M_0		500		масса полезной нагрузки		
m_{0i}	m_{01}	172000		масса 1-й заправленной ступени	кг	
	m_{02}	94000		масса 2-й заправленной ступени		
m_{1i}	m_{11}	13600		масса 1-й ступени без топлива		
	m_{12}	7495		масса 2-й ступени без топлива		
	I_1	на Земле	252	удельный импульс		
		вакуум	308	двигателя 1-й ступени		
I_i	I_2	на Земле	243	удельный импульс двигателя 2-й ступени	С	
		вакуум	309			
F_{T_i}	$F_{{\scriptscriptstyle extbf{T}}_1}$	на Земле	3216	тяга двигателя 1-й	кН	
		вакуум	3924	ступени		
	F_{T_2}	на Земле	735,5	тяга двигателя 2-й		
		вакуум	921	ступени		
g		9,81		местное ускорение свободного падения	$\frac{M}{C^2}$	

Основные формулы:

Искомая величина	Формула	Единицы измерения в СИ
Скорость ракеты	$V = V_{\phi,II} - \Delta V_g$	
Формула Циолковского для многоступенчатой ракеты	$V_{\phi, \mathbf{LL}} = \sum_{i=1}^{N} I_i \cdot \ln(\frac{M_0 + \sum_{j=i}^{N} m_{0j}}{M_0 + m_{1i} + \sum_{j=i+1}^{N} m_{0j}})$	<u>м</u> с
Гравитационные потери скорости	$\Delta V_g = \int_0^t g(t) \cdot \cos \gamma(t) dt$	

 $\gamma(t)$ - угол между вектором силы тяги двигателя и вектором местного ускорения свободного падения.

Вспомогательные физические величины:

физ. обозначение		значение	величина	Единицы измерения в СИ
t_0		315	время от начала полета до конца полета	С
t_{π_1}		16	время начала поворота	С
t_{Π_2}		113	время окончания поворота	С
_	t_1	122	время работы 1-й ступени ракеты	С
t_i	t_2	280	время работы 2-й ступени ракеты	С
$t_{ m oбm}$		280	общее время работы ступеней	С
	m_1	1300	скорость расхода топлива 1-й ступени	КГ
m_i	m_2	308.5	скорость расхода топлива 2-й ступени	c
φ		$\frac{\pi}{180}$	Итоговый угол наклона ракеты к горизонту	рад.
k			экспериментально подобранный коэффициент	

Вспомогательные формулы:

Искомая величина	Формула	Единицы измерения в СИ	
Скорость расхода топлива	$m_i = rac{F_{\mathtt{T}_i}}{I_i \cdot g}$	<u>кг</u> с	
Высота ракеты	$h = \int\limits_0^t V_{ ext{HB}}$	М	
скорость набора высоты	$V_{\text{HB}} = \cos(\alpha(t)) V$	<u>м</u> с	

 $\alpha(t)$ — угол между вертикалью и вектором скорости ракеты.

Математическая модель

Скорость расхода топлива

1. Первая ступень:

$$m_1 = \frac{3216 \cdot 10^3}{252 \cdot 9.81} \approx 1300 \; \frac{\mathrm{K}\Gamma}{\mathrm{c}}$$

2. Вторая ступень:

$$m_2 = \frac{735.5 \cdot 10^3}{243 \cdot 9.81} \approx 308.5 \; \frac{\mathrm{K}\Gamma}{\mathrm{c}}$$

Время работы каждой ступени

1. Первая ступень:

$$t_1 = \frac{172000 - 13600}{1300} \approx 122 \, c$$

2. Вторая ступень:

$$t_2 = \frac{94000 - 7495}{308.5} \approx 280 \ c$$

Так как вторая ступень начинает работать с самого старта, то $t_{
m o 6 m} = t_2$

Скорость и высота полета Скорость ракеты вычисляется с помощью этого уравнения:

$$V(t) = V_{\text{d.II}}(t) - \Delta V_{a}(t)$$

где:

$$V_{\phi, \text{II}}(t) = \sum_{i=1}^{N} (t > \sum_{j=1}^{i-1} t_j) (I_i \cdot \ln \left(\frac{M_0 + \sum_{j=i}^{N} m_{0j}}{M_0 + \max(m_{1i}, m_{0i} - m_i * (t - \sum_{j=1}^{i-1} t_j)) + \sum_{j=i+1}^{N} m_{0j}} \right))$$

- характеристическая скорость многоступенчатой ракеты в момент времени t.

$$\Delta V_g(t) = \int_0^t g \cdot (-\cos(\gamma(t)))dt$$

- гравитационные потери скорости к моменту времени t.

Угол $\gamma(t)$ рассчитывается по формуле:

$$\gamma(t) = (t < t_{\Pi 1}) * \pi + (t_{\Pi 1} \le t \le t_{\Pi 2}) * \max\left(\frac{\pi}{2} + \varphi, \pi - \frac{\pi}{2} * \frac{t - t_{\Pi 1}}{t_{\Pi 2} - t_{\Pi 1}}\right) + (t > t_{\Pi 2}) * (\frac{\pi}{2} + \varphi)$$

Таким образом, скорость ракеты в момент времени t равна:

$$V(t) = \sum_{i=1}^{N} (t > \sum_{j=1}^{i-1} t_j) (I_i \cdot \ln \left(\frac{M_0 + \sum_{j=i}^{N} m_{0j}}{M_0 + \max \left(m_{1i}, m_{0i} - m_i * (t - \sum_{j=1}^{i-1} t_j) \right) + \sum_{j=i+1}^{N} m_{0j}} \right)) - \int_0^t g \cdot (-\cos \left(\gamma(t) \right)) dt$$

Высота полета

$$h(t) = \int_{0}^{t} V_{\text{HB}}(t) dt$$

где

$$V_{\text{\tiny HB}}(t) = \cos(\alpha(t))V(t)$$

а угол между вертикалью и вектором скорости ракеты равен:

$$\alpha(t) = (t < t_{\Pi 1}) * 0 + (t_{\Pi 1} \le t \le t_{\Pi 2}) * k * \frac{\pi}{2} * \frac{t - t_{\Pi 1}}{t_{\Pi 2} - t_{\Pi 1}} + (t > t_{\Pi 2}) * k * \frac{\pi}{2}$$

Итоговая формула для нахождения высоты ракеты в момент времени t:

$$h(t) = \int_{0}^{t} \cos(\alpha(t)) V(t) dt$$