Circuitos Logisim

Binvert

Operation

ALU de 1 Bit

ALU de 4 Bits

Tabela de Resultados

Instruções Realizadas	Binário (A, B, Op.code)	Valor em Hexa (0x)	Resultado em Binário
AND (A,B)	0010 0001 00	$(0000\ 1000\ 0100) = 0x084$	0000
OR (A,B)	0010 0011 01	$(0000\ 1000\ 1101) = 0x08D$	0011
SOMA (A,B)	0010 0011 11	(00 <mark>00 1000 1111</mark>) = 0x08F	0101
NOT (A)	1100 0001 10	(00 <mark>11 00</mark> 00 0110) = 0x306	0011
AND (B,A)	1100 1101 00	(00 <mark>11 0011 0100</mark>) = 0x334	1100

Testes Realizados

 $A = 0010 \mid B = 0001 \mid OP.code = 00$

A = 0010 | B = 0011 | OP.code = 01

A = 1100 | B = 0011 | OP.code = 10

Circuitos Logisim

Tabela de Resultados

Instruções	Binário	Resultado da Operação
450	0100 0101 0000	1011 = 0xB
CB1	1100 1011 0001	0000 = 0x0
A32	1010 0011 0010	0001 = 0x1
C43	1100 0100 0011	0000 = 0x0
124	0001 0010 0100	1111 = 0xF
785	0111 1000 0101	0111 = 0x7
9B6	1001 1011 0110	0010 = 0x2
CD7	1100 1101 0111	0000 = 0x0
FE8	1111 1110 1000	1110 = 0xE
649	0110 0100 1001	1101 = 0xD
D9A	1101 1001 1010	1001 = 0x9
FCB	1111 1100 1011	1100 = 0xC
63C	0110 0011 1100	1111 = 0xF
98D	1001 1000 1101	1111 = 0xF
76E	0111 0110 1110	0111 = 0x7
23F	0010 0011 1111	0010 = 0x2

Testes Realizados (Exemplos)

Instrução = 785 | Binário = 0111 1000 0101

Instrução = FCB | Binário = 1111 1100 1011

Instrução = 9B6 | Binário = 1001 1011 0110

Instrução = 76E | Binário = 0111 0110 1110

Perguntas

Se o objetivo fosse realmente testar está ULA, quantas linhas a nossa tabela verdade deveria ter, ou seja, na verdade a tabela que você preencheu deveria ter quantas linhas?

R: Pra testar todas as possibilidades dessa ULA, a tabela deveria conter 4096 linhas, tendo em vista temos 4 entradas na variável A (A0, A1, A2 e A3), 4 entradas na variável B (B0, B1, B2 e B3), e 4 entradas na variável S (S0, S1, S2 e S3). Logo se temos 12 entradas, em que cada uma pode possuir dois valores, então temos 2¹² possibilidades, que resultam em 4096 linhas.