Imperfect Best-Response Mechanisms

Diodato Ferraioli

DIAG Sapienza Università di Roma

> joint work with Paolo Penna

Best-response mechanisms [Nisan et al., 2011]

- ► At each time step, a subset of agents is adversarially chosen
- ► The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium

Best-response mechanisms [Nisan et al., 2011]

- ► At each time step, a subset of agents is adversarially chosen
- ► The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium

Examples

- BGP
- some TCP variants
- GSP auctions
- ► Interns-Hospital Matching (IHM)

Convergence & Incentive-Compatibility

Convergence

▶ The dynamics will eventually converges to a Nash equilibrium

Convergence & Incentive-Compatibility

Convergence

The dynamics will eventually converges to a Nash equilibrium

Incentive Compatibility

- ▶ If a player does not play the best response whenever is selected, the dynamics will reach a different equilibrium
- ► The utility for this player at new equilibrium is lower than in the equilibrium reached by always playing the best response

NBR-solvable games [Nisan et al., 2011]

NBR-solvable game

- ▶ NBR strategy: a strategy that can never be a best-response
- ▶ A game solvable by iterated elimination of NBR strategies

NBR-solvable games [Nisan et al., 2011]

NBR-solvable game

- ▶ NBR strategy: a strategy that can never be a best-response
- A game solvable by iterated elimination of NBR strategies

Clear outcome

- ▶ A NBR solvable game has clear outcome if for each player i...
- ... there is a sequence of eliminations of NBR strategies...
- ▶ ... such that the equilibrium maximizes the utility of *i*...
- ▶ ... at the first time that *i* eliminate a strategy in this sequence

NBR-solvable games [Nisan et al., 2011]

NBR-solvable game

- ▶ NBR strategy: a strategy that can never be a best-response
- A game solvable by iterated elimination of NBR strategies

Clear outcome

- ▶ A NBR solvable game has clear outcome if for each player i...
- ... there is a sequence of eliminations of NBR strategies...
- ▶ ... such that the equilibrium maximizes the utility of i...
- ▶ ... at the first time that *i* eliminate a strategy in this sequence

BGP, TCP, GSP & IHM are NBR-solvable with clear outcomes

In this work...

Theorem (Nisan et al., 2011)

- ► If a game is NBR-solvable, then the best-response mechanism converges
- ▶ If the NBR-solvable game has a clear outcome, then the best-response mechanism is also incentive-compatible

In this work...

Theorem (Nisan et al., 2011)

- ► If a game is NBR-solvable, then the best-response mechanism converges
- ▶ If the NBR-solvable game has a clear outcome, then the best-response mechanism is also incentive-compatible

Our contribution

- ▶ What happen if an agent can sometimes take a wrong action?
- ▶ How resistant are these results to small perturbations?
- Are convergence and incentive-compatibility robust?

Imperfect best-response mechanisms

Best-response mechanism

- ► At each time step, a subset of agents is adversarially chosen
- ▶ The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium

Imperfect best-response mechanisms

Best-response mechanism

- ► At each time step, a subset of agents is adversarially chosen
- ► The selected agents adopt their best-response
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium

p-imperfect best-response mechanism

- At each time step, a subset of agents is chosen by a non-adaptive adversary
- ► The selected agents adopt their best-response, except with probability *p*
- Repeat until the equilibrium has been reached
- Agents utilities/costs are only evaluated at the equilibrium

Does the convergence result holds?

Does the convergence result holds?

Obviously, if p is small...

Does the convergence result holds?

Obviously, if *p* is small...

WRONG!

- ▶ Even for *p* exponentially small in the number of players. . .
- ▶ there is a schedule of players such that for any t > 0...
- \triangleright the p-imperfect mechanism is in the equilibrium at time t...
- ightharpoonup with probability at most arepsilon

The game

- ▶ n players with strategies s_0 and s_1
- lacktriangledown player i prefers strategy s_1 only if $1,\ldots,i-1$ are playing s_1

The game

- ▶ n players with strategies s_0 and s_1
- lacktriangle player i prefers strategy s_1 only if $1,\ldots,i-1$ are playing s_1

The *p*-imperfect mechanism

- ▶ if 1, ..., i-1 play s_1 , player i gets wrong with probability p
- lacktriangle otherwise, she gets the wrong strategy with probability $q \ll p$

The game

- ▶ n players with strategies s_0 and s_1
- lacktriangle player i prefers strategy s_1 only if $1,\ldots,i-1$ are playing s_1

The *p*-imperfect mechanism

- ▶ if 1, ..., i-1 play s_1 , player i gets wrong with probability p
- lacktriangle otherwise, she gets the wrong strategy with probability $q \ll p$
- ► The non-adaptive schedule repeat the following sequence: 12131214121312151213121412131216...

The game

- ▶ n players with strategies s_0 and s_1
- lacktriangle player i prefers strategy s_1 only if $1,\ldots,i-1$ are playing s_1

The *p*-imperfect mechanism

- ▶ if 1, ..., i-1 play s_1 , player i gets wrong with probability p
- lacktriangle otherwise, she gets the wrong strategy with probability $q \ll p$
- The non-adaptive schedule repeat the following sequence: 12131214121312151213121412131216...
 - ▶ Between two consecutive occurrence of *i* always appears j > i

The game

- ▶ n players with strategies s_0 and s_1
- lacktriangle player i prefers strategy s_1 only if $1,\ldots,i-1$ are playing s_1

The *p*-imperfect mechanism

- ▶ if 1, ..., i-1 play s_1 , player i gets wrong with probability p
- lacktriangle otherwise, she gets the wrong strategy with probability $q \ll p$
- ► The non-adaptive schedule repeat the following sequence: 12131214121312151213121412131216...
 - ▶ Between two consecutive occurrence of *i* always appears j > i
 - ▶ The length of the sequence is 2^{n-1}

The game

- ▶ n players with strategies s_0 and s_1
- lacktriangle player i prefers strategy s_1 only if $1,\ldots,i-1$ are playing s_1

The *p*-imperfect mechanism

- ▶ if 1, ..., i-1 play s_1 , player i gets wrong with probability p
- lacktriangle otherwise, she gets the wrong strategy with probability $q \ll p$
- ► The non-adaptive schedule repeat the following sequence: 12131214121312151213121412131216...
 - \triangleright Between two consecutive occurrence of i always appears i > i
 - ▶ The length of the sequence is 2^{n-1}
 - n appears only at the end of the sequence

The game

- ▶ n players with strategies s_0 and s_1
- lacktriangle player i prefers strategy s_1 only if $1,\ldots,i-1$ are playing s_1

The *p*-imperfect mechanism

- ▶ if 1, ..., i-1 play s_1 , player i gets wrong with probability p
- lacktriangle otherwise, she gets the wrong strategy with probability $q \ll p$
- ► The non-adaptive schedule repeat the following sequence: 12131214121312151213121412131216...
 - ▶ Between two consecutive occurrence of *i* always appears j > i
 - ▶ The length of the sequence is 2^{n-1}
 - n appears only at the end of the sequence
- lacksquare if $p=\Omega\left(rac{1}{2^{n-1}}
 ight)$ and q o 0, then n always plays s_0 w.h.p.

Convergence: a positive result

Convergence is not robust

- For best-response mechanisms, convergence result holds regardless of the schedule
- ► For *p*-imperfect mechanism, convergence results must depend on the schedule

Convergence: a positive result

Convergence is not robust

- ► For best-response mechanisms, convergence result holds regardless of the schedule
- ▶ For p-imperfect mechanism, convergence results must depend on the schedule

A positive result

- ▶ If p is small enough and the game is NBR-solvable...
- ▶ then a *p*-imperfect mechanism converges...

Convergence: a positive result

Convergence is not robust

- For best-response mechanisms, convergence result holds regardless of the schedule
- ▶ For p-imperfect mechanism, convergence results must depend on the schedule

A positive result

- \triangleright If p is small enough and the game is NBR-solvable...
- ▶ then a p-imperfect mechanism converges...
- ▶ but the bound on p depends on the schedule

	left	right
top	2, 1	1,0
bottom	0,0	0, <i>c</i>

	leit	right
top	2, 1	1,0
bottom	0,0	0, <i>c</i>

▶ It is a NBR-solvable game with clear outcome

	Tert	right
top	2, 1	1,0
bottom	0,0	0, <i>c</i>

- ▶ It is a NBR-solvable game with clear outcome
- If the row player gets wrong with prob. p and $c = \Omega(1/p)$, then the column player prefers to play right

	leit	right
top	2, 1	1,0
bottom	0,0	0, <i>c</i>

- ▶ It is a NBR-solvable game with clear outcome
- If the row player gets wrong with prob. p and $c = \Omega(1/p)$, then the column player prefers to play right

We need a quantitative definition of clear outcome

Theorem

A p-imperfect mechanism is incentive-compatible if for each i

$$u_i(NE) \ge \frac{1}{1-2\delta} \left(2\delta \cdot u_i^{\star} + u_i^k \right)$$

- $\delta = \delta(p) > 0$
- \triangleright u_i^k : max utility player i achieves at her first elimination
- \triangleright u_i^* : max utility player i achieves in the entire game

Proof idea.

- ▶ If the player follows the *p*-imperfect mechanism. . .
- \blacktriangleright ... then she gets $u_i(NE)$
- ▶ Otherwise she gets at most u_i^* with prob. depending on p...
- \triangleright ... and she gets at most u_i^k with remaining probability

What happens for larger classes of games?

Different behavior for different schedules

What happens for larger classes of games?

Different behavior for different schedules

Different behavior for different best-response mechanisms

$$\begin{array}{c|cc} & 0 & 1 \\ 0 & 0,0 & 0,1 \\ 1 & 0,1 & 1,0 \end{array}$$

Other results

▶ We try to describe how *p*-imperfect mechanism behave

Other results

- ▶ We try to describe how *p*-imperfect mechanism behave
- ... with an application to PageRank games

Thank you!