Life Cycle Dynamic Programming under Great Recession Unemployment Shock

This is the example vignette for function: snw_v08p08_jaeemk from the PriOptiSNW Package. Solving the dynamic programming problem conditional on having an one period unemployment shock that is expected with known unemployment probability. Unemployment probability is a function of the realized state-space next year, specifically, it is determined by age and education. Bush 2008 checks were received by households in expectation of forth-coming unemployment shocks, ex-ante the realization of shocks. During COVID, the shocks were received ex-post the realization of shocks. In both cases, stimulus checks were determined based on exante information.

Due to expected shock, households consume less and save more in 2008 than under steady-state, as shown below. Value/welfare overall is lower in 2008 than under steady-state.

Test SNW V08P08 JAEEMK

First, solve for value without unemployment issue (use the vectorized code that was previously tested). This is the steady state results, but also the results in 2009 without unemployment.

```
mp_more_inputs = containers.Map('KeyType','char', 'ValueType','any');
mp_more_inputs('fl_ss_non_college') = 0.225;
mp_more_inputs('fl_ss_college') = 0.271;
mp_more_inputs('fl_scaleconvertor') = 54831;
% st_param_group = 'default_small';
% st_param_group = 'default_dense';
st_param_group = 'default_docdense';
mp_params = snw_mp_param(st_param_group, false, 'tauchen', false, 8, 8, mp_more_inputs);
mp_controls = snw_mp_control('default_test');
mp_controls('bl_print_vfi') = false;
mp_controls('bl_print_vfi_verbose') = false;
mp_controls('bl_print_ds') = false;
mp_controls('bl_print_ds_verbose') = false;
[V_VFI_ss, ap_VFI_ss, cons_VFI_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
```

Completed SNW VFI MAIN BISEC VEC; SNW MP PARAM=default docdense; SNW MP CONTROL=default test; time=526.0056

```
V_emp_2009 = V_VFI_ss;
```

Second, solve for the unemployment value, use the exact-bisec result code, call the snw_vfi_main_bisec_vec.m function with a third input of existing value. xi is the share of income lost during covid year given surprise covid shock, b is the share of income loss that is covered by unemployment insurance. If xi=0.5 and b=0 means will lose 50 percent of income given 2009 great recession shocks, and the loss will not be covered at all by unemployment insurance.

```
mp_params('xi') = 0.532;
mp_params('b') = 0.37992;
mp_params('a2_covidyr') = mp_params('a2_greatrecession_2009');
[V_unemp_2009] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_VFI_ss);
```

Third, solve for 2008 policy and value funtion given employed and unemployed value function in 2009,

```
[V_2008, ap_2008, cons_2008, ev_empshk_2009] = ...
    snw_v08p08_jaeemk(mp_params, mp_controls, V_emp_2009, V_unemp_2009);
```

ONTAINER	NAME: mp_d	outcomes	ND Array	(Matrix	etc)						
<xxxxxxxx< th=""><th>i -</th><th>idx</th><th>ndim</th><th>numel</th><th>row</th><th>N colN</th><th>sum</th><th>mea</th><th>n std</th><th>coef</th><th>/ari</th></xxxxxxxx<>	i -	idx	ndim	numel	row	N colN	sum	mea	n std	coef	/ari
V_2008	- 8 1	1	6	4.37e+0	 7 83	5.265e+		+08 -19.	775 28.	 14 -1.4	 123
ap_200	08 2	2	6	4.37e+0	7 83	5.265e+	05 1.4164e		413 36.79	99 1.13	
cons_2	2008 3	3	6	4.37e+0	7 83	5.265e+	05 2.1314e	+08 4.8	774 8.32	75 1.70	173
x TABLE	:V_2008 xxx	xxxxxx	xxxxxxx								
	c1	c2		3	c4	с5	c526496	c526497	c526498	c5264	199
r1	-377.6	-377		4.55	-368.41	-358.7	-6.6852	-6.5348	-6.384	 1 -6.2	
r2	-365.34	-364.			-356.26	-346.87	-6.4943	-6.3486	-6.202		
r3	-353.22	-352.			-344.47	-335.51	-6.3002	-6.1591	-6.016		
r4	-341.2	-340.			-333.04	-324.62	-6.1007	-5.964	-5.825		
r5	-330.3	-329.			-322.66	-314.72	-5.9113	-5.7784	-5.643		
r79	-13.739	-13.7			-13.409	-13.022	-0.22845	-0.21772	-0.2076		
r80	-12.3	-12.2	87 -12	.198	-11.97	-11.583	-0.17425	-0.16609	-0.158	4 -0.15	5115
r81	-10.552	-10.5	38 -10	.449	-10.221	-9.8344	-0.11926	-0.11367	-0.1084	2 -0.16)346
r82	-8.2458	-8.23	27 -8.	1431	-7.9156	-7.5286	-0.065967	-0.062837	-0.05992	1 -0.057	181
r83	-4.9602	-4.94	71 -4.	8576	-4.6301	-4.2431	-0.020966	-0.019971	-0.01903	7 -0.01	.816
x TABLE:	:ap_2008 xx	xxxxxx	xxxxxxxx c2	c3		c4	c 5	c526496	c526497	c526498	c5
											_
r1	0.0005149		00051498	0.003		0.0091501	0.023607	114.76	120.42	126.29	13
r2	0.0005149		00051498	0.0030		0.0084089	0.022296	114.88	120.54	126.43	13
r3		0	0	0.001		0.0069216	0.020659	114.99	120.67	126.57	13
r4		0	0	0.001		0.0069002	0.020494	115.74	121.44	127.36	13
r5		0	0	0.001		0.0068855	0.020347 0.00051498	116.52	122.23	128.16	13
r79		0	0		0	0 0		81.091	85.68	90.33	94
r80 r81		0	0		0 0	0	0 0	76.669 68.313	80.556 71.526	84.298 74.467	88 77
r82		0	0		0	0	0	50.126	53.467	56.953	- / /
r83		0	0		0	0	0	0	0	0	_
x TABLE	:cons_2008	xxxxxx	xxxxxxxx	XX							
	c1	С	2	c 3	c4	c5	c526496	c526497	c526498	c526499)
r1	0.036202	0.03	—— - 6736	0.0377	0.041	.994 0.047	306 9.6346	9.8024	9.9503	10.059	
	0.036202			0.0377	0.041		200 2.0340	3.002→	10 086	-0.000	

	c1	c2	c3	c4	с5	c526496	c526497	c526498	c526499
r1	0.036202	0.036736	0.0377	0.041994	0.047306	9.6346	9.8024	9.9503	10.059
r2	0.036202	0.036736	0.037929	0.042735	0.048617	9.7969	9.9535	10.086	10.177
r3	0.036717	0.037251	0.039375	0.044222	0.050255	9.962	10.105	10.219	10.288
r4	0.038144	0.038678	0.040786	0.045669	0.051843	10.114	10.242	10.338	10.39
r5	0.039534	0.040068	0.042157	0.047073	0.053379	10.254	10.367	10.447	10.485
r79	0.2016	0.20214	0.20586	0.21598	0.23516	35.82	37.055	38.423	40.592
r80	0.2016	0.20214	0.20586	0.21598	0.23568	40.216	42.153	44.428	46.907
r81	0.2016	0.20214	0.20586	0.21598	0.23568	48.55	51.16	54.237	57.094

```
0.23568
r82
        0.2016
                0.20214
                             0.20586
                                        0.21598
                                                              66.719
                                                                        69.201
                                                                                  71.733
                                                                                             76,161
r83
        0.2016
                  0.20214
                             0.20586
                                        0.21598
                                                    0.23568
                                                              116.83
                                                                        122.65
                                                                                   128.67
                                                                                             134.89
```

Difference Between Value and Choices In steady state and in 2008, given expected unemployment (one-period) shock due to the great recession, snw_v08p08_jaeemk.

```
V_VFI_unemp_drop = V_VFI_ss - V_2008;
ap_VFI_unemp_drop = ap_VFI_ss - ap_2008;
cons_VFI_unemp_drop = cons_VFI_ss - cons_2008;
```

Define Parameter Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 15; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(VAL(A,Z) - VAL(A,Z, 08wthEV09unemshk)), MEAN(AP(A,Z) - AP(A,Z, 08wthEV09unemshk)), MEAN(C(A,Z) - C(A,Z, 08wthEV09unemshk))

Tabulate value and policies along savings and shocks:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
```

```
ar permute = [1,4,5,6,3,2];
% Value Function
tb_az_v = ff_{summ_nd_array}("MEAN(v(A,Z) - v(A,Z, 08wthEV09unemshk))", V_VFI_unemp_drop, true,
group
            savings
                       mean_eta_1
                                    mean eta 2
                                                            mean_eta_4
                                                                         mean_eta_5
                                                                                     mean_eta_6
                                                mean_eta_3
                                                                                                 mean_
     1
                          0.61601
                                      0.59253
                                                   0.56551
                                                               0.53755
                                                                            0.5101
                                                                                        0.48381
                                                                                                    0.
     2
           0.00051498
                          0.61585
                                      0.59199
                                                   0.56477
                                                               0.53681
                                                                           0.50943
                                                                                        0.4832
                                                                                        0.47141
            0.0041199
                          0.60855
                                                                0.5232
                                                                           0.49656
     3
                                      0.58066
                                                   0.5514
                                                                                                    0
     4
             0.013905
                          0.54472
                                                   0.49909
                                                               0.47633
                                                                           0.45473
                                                                                        0.43419
                                      0.52256
                                                                                                    0
     5
             0.032959
                          0.44669
                                      0.43305
                                                   0.41839
                                                                0.4036
                                                                             0.389
                                                                                        0.37467
                                                                                                    0
                                                   0.35848
     6
             0.064373
                          0.37716
                                      0.36829
                                                               0.34803
                                                                            0.3372
                                                                                        0.32622
                                                                                                    0.
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(A,Z) - AP(A,Z, 08wthEV09unemshk))", ap_VFI_unemp_drop, tru
group
            savings
                       mean_eta_1
                                    mean_eta_2
                                                  mean_eta_3
                                                               mean_eta_4
                                                                            mean_eta_5
                                                                                         mean_eta_6
     1
                       -7.3284e-06
                                    -3.5629e-05
                                                  -7.2995e-05
                                                               -9.7831e-05
                                                                            -0.00012331
                                                                                          -0.00014314
     2
           0.00051498
                       -1.4831e-05
                                     -6.5918e-05
                                                  -9.7611e-05
                                                               -0.00013303
                                                                            -0.00015672
                                                                                          -0.00017746
     3
            0.0041199
                       -0.00023391
                                     -0.00041139
                                                  -0.00055964
                                                               -0.00064928
                                                                             -0.0007066
                                                                                          -0.00074956
     4
             0.013905
                       -0.00026726
                                     -0.00045571
                                                  -0.00062462
                                                               -0.00073298
                                                                            -0.00080614
                                                                                         -0.00086368
     5
             0.032959
                       -0.00025565
                                     -0.00039576
                                                  -0.00048282
                                                               -0.00053831
                                                                            -0.00059111
                                                                                         -0.00064471
     6
             0.064373
                       -0.00026331
                                     -0.00027992
                                                  -0.00029286
                                                               -0.00030841
                                                                             -0.0003269
                                                                                          -0.00034936
```

% Consumption Choices tb_az_c = ff_summ_nd_array("MEAN(C(A,Z) - C(A,Z, 08wthEV09unemshk))", cons_VFI_unemp_drop, true

xxx MEAN(C(A,Z) - C(A,Z,	08wthEV09uner	nshk)) xxxxxxx	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX				
group	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean _.	
1	0	7.3284e-06	3.5629e-05	7.2995e-05	9.7831e-05	0.00012331	0.00014314	0.00	
2	0.00051498	1.4831e-05	6.5918e-05	9.7611e-05	0.00013303	0.00015672	0.00017746	0.00	
3	0.0041199	0.00023391	0.00041139	0.00055964	0.00064928	0.0007066	0.00074956	0.00	
4	0.013905	0.00026726	0.00045571	0.00062462	0.00073298	0.00080614	0.00086368	0.00	
5	0.032959	0.00025565	0.00039576	0.00048282	0.00053831	0.00059111	0.00064471	0.00	
6	0.064373	0.00026331	0.00027992	0.00029286	0.00030841	0.0003269	0.00034936	9.99	

Graph Mean Values Change:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(val(a,z) - val(a,z, 08wthEV09unemshk)), a=x, z=0
mp_support_graph('cl_st_ytitle') = {'MEAN(val(a,z) - val(a,z, 08wthEV09unemshk))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Savings Choices Change:

Graph Mean Consumption Change:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(a,z) - C(a,z, 08wthEV09unemshk)), a=x, z=color
mp_support_graph('cl_st_ytitle') = {'MEAN(C(a,z) - C(a,z, 08wthEV09unemshk))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

MEAN(V(KM,J) - V(KM,J | unemp)), MEAN(ap(KM,J) - ap(KM,J | unemp)), MEAN(c(KM,J) - c(KM,J | unemp))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
```

```
tb_az_v = ff_summ_nd_array("MEAN(V(KM,J) - V(KM,J | unemp))", V_VFI_unemp_drop, true, ["mean"],
group
            kids
                    marry
                             mean_age_18
                                            mean_age_19
                                                           mean_age_20
                                                                          mean_age_21
                                                                                         mean_age_22
                                                                                                        mean_age_23
     1
                      0
                              0.046286
                                             0.045154
                                                            0.045206
                                                                           0.044045
                                                                                          0.043041
                                                                                                         0.042174
             1
     2
             2
                      0
                              0.061509
                                             0.060105
                                                            0.060105
                                                                           0.058309
                                                                                           0.05672
                                                                                                          0.05531
                                                                                          0.065702
     3
             3
                      0
                              0.071135
                                             0.069801
                                                             0.06956
                                                                            0.06751
                                                                                                        0.064099
     4
              4
                      0
                                                            0.078496
                                                                                          0.074156
                              0.080137
                                               0.0788
                                                                           0.076191
                                                                                                        0.072353
     5
              5
                      0
                                             0.086234
                                                            0.085827
                                                                           0.083393
                                                                                          0.081251
                                                                                                        0.079361
                              0.087487
     6
             1
                      1
                              0.035539
                                             0.034243
                                                            0.033548
                                                                           0.032741
                                                                                          0.032045
                                                                                                        0.031451
     7
              2
                      1
                              0.043811
                                             0.042205
                                                            0.041298
                                                                           0.040208
                                                                                          0.039233
                                                                                                         0.038362
     8
              3
                      1
                              0.048496
                                             0.046783
                                                            0.045815
                                                                           0.044615
                                                                                          0.043554
                                                                                                         0.042607
     9
              4
                              0.053774
                                                             0.05096
                                                                           0.049624
                                                                                          0.048442
                                                                                                         0.047397
                      1
                                             0.051966
    10
                      1
                              0.058404
                                             0.056626
                                                            0.055602
                                                                            0.05418
                                                                                          0.052931
                                                                                                         0.051825
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(ap(KM,J) - ap(KM,J | unemp))", ap_VFI_unemp_drop, true, ["mea
group
            kids
                    marry
                             mean_age_18
                                            mean_age_19
                                                           mean_age_20
                                                                          mean_age_21
                                                                                         mean_age_22
                                                                                                        mean_age_23
     1
             1
                      0
                             -0.0020954
                                            -0.0022922
                                                           -0.0023124
                                                                          -0.0023781
                                                                                          -0.002452
                                                                                                         -0.002541
      2
              2
                      0
                             -0.0025384
                                            -0.0028561
                                                           -0.0028769
                                                                           -0.002923
                                                                                         -0.0029984
                                                                                                        -0.0030695
                                                            -0.003403
     3
             3
                      0
                             -0.0029997
                                            -0.0034133
                                                                          -0.0033945
                                                                                         -0.0033908
                                                                                                        -0.0034369
     4
             4
                      0
                             -0.0033272
                                            -0.0037849
                                                           -0.0037592
                                                                          -0.0037304
                                                                                          -0.003723
                                                                                                        -0.0037402
     5
              5
                      0
                             -0.0036714
                                            -0.0040673
                                                           -0.0040589
                                                                          -0.0040155
                                                                                         -0.0039849
                                                                                                        -0.0039914
     6
             1
                      1
                             -0.0033041
                                             -0.003509
                                                           -0.0035692
                                                                          -0.0036765
                                                                                         -0.0037787
                                                                                                        -0.0038947
     7
              2
                      1
                             -0.0035178
                                            -0.0037456
                                                            -0.003797
                                                                          -0.0038875
                                                                                         -0.0039924
                                                                                                        -0.0040965
     8
             3
                      1
                             -0.0038496
                                            -0.0040777
                                                             -0.00411
                                                                          -0.0041767
                                                                                         -0.0042559
                                                                                                        -0.0043528
     9
             4
                      1
                              -0.004079
                                            -0.0043493
                                                           -0.0043317
                                                                          -0.0043657
                                                                                         -0.0044326
                                                                                                        -0.0045066
                                                                                         -0.0046013
    10
                             -0.0043828
                                            -0.0047223
                                                           -0.0045492
                                                                          -0.0045848
                                                                                                        -0.0046315
% Consumption Choices
tb_az_c = ff_summ_nd_array("MEAN(c(KM,J) - c(KM,J | unemp))", cons_VFI_unemp_drop, true, ["mear
xxx MEAN(c(KM,J)
                 - c(KM,J | unemp)) xxxxxxxxxxxxxxxxxxxxxxxxxxxx
                                                                                                        mean_age_23
    group
            kids
                    marry
                             mean_age_18
                                            mean_age_19
                                                           mean_age_20
                                                                          mean_age_21
                                                                                         mean_age_22
     1
             1
                      0
                              0.0020954
                                             0.0022922
                                                            0.0023124
                                                                           0.0023781
                                                                                           0.002452
                                                                                                          0.002541
     2
              2
                      0
                              0.0025384
                                             0.0028561
                                                            0.0028769
                                                                            0.002923
                                                                                          0.0029984
                                                                                                         0.0030695
     3
              3
                      0
                              0.0029997
                                             0.0034133
                                                             0.003403
                                                                           0.0033945
                                                                                          0.0033908
                                                                                                         0.0034369
     4
                                                            0.0037592
              4
                      0
                              0.0033272
                                             0.0037849
                                                                           0.0037304
                                                                                           0.003723
                                                                                                         0.0037402
     5
             5
                      0
                              0.0036714
                                             0.0040673
                                                            0.0040589
                                                                           0.0040155
                                                                                          0.0039849
                                                                                                         0.0039914
     6
             1
                      1
                              0.0033041
                                              0.003509
                                                            0.0035692
                                                                           0.0036765
                                                                                          0.0037787
                                                                                                         0.0038947
     7
             2
                              0.0035178
                                             0.0037456
                                                             0.003797
                                                                           0.0038875
                                                                                          0.0039924
                                                                                                         0.0040965
                      1
     8
             3
                      1
                              0.0038496
                                             0.0040777
                                                              0.00411
                                                                           0.0041767
                                                                                          0.0042559
                                                                                                         0.0043528
     9
             4
                      1
                               0.004079
                                             0.0043493
                                                            0.0043317
                                                                           0.0043657
                                                                                          0.0044326
                                                                                                         0.0045066
              5
                              0.0043828
    10
                                             0.0047223
                                                            0.0045492
                                                                           0.0045848
                                                                                          0.0046013
                                                                                                         0.0046315
```

Graph Mean Values Change:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(v(KM,J) - v(KM,J, 08wthEV09unemshk), a=age, z=ki
mp_support_graph('cl_st_ytitle') = {'MEAN(v(KM,J) - v(KM,J, 08wthEV09unemshk)'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices Change:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(ap(KM,J) - ap(KM,J, 08wthEV09unemshk)), a=x, z=c
mp_support_graph('cl_st_ytitle') = {'MEAN(ap(KM,J) - ap(KM,J, 08wthEV09unemshk))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption Change:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(c(KM,J) - c(KM,J, 08wthEV09unemshk)), a=x, z=colong support_graph('cl_st_ytitle') = {'MEAN(c(KM,J) - c(KM,J, 08wthEV09unemshk))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(v(EKM,J) - v(EKM,J, 08wthEV09unemshk)), MEAN(ap(EM,J, steady) - ap(EM,J, 08wthEV09unemshk)), MEAN(c(EM,J, steady) - c(EM,J, 08wthEV09unemshk))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,6,1,4,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(v(EM,J, steady) - v(EM,J, 08wthEV09unemshk))", V_VFI_unemp_dro
xxx MEAN(v(EM,J, steady) - v(EM,J, 08wthEV09unemshk))
                                                  XXXXXXXXXXXXXXXXXXXXXXXXXXXX
   group
           edu
                  marry
                          mean_age_18
                                       mean_age_19
                                                     mean_age_20
                                                                   mean_age_21
                                                                                 mean_age_22
                                                                                              mean_age_23
```

```
1
             0
                     0
                             0.084881
                                            0.083361
                                                           0.083388
                                                                           0.08165
                                                                                          0.080055
                                                                                                         0.078588
     2
             1
                     0
                              0.05374
                                             0.052677
                                                            0.052289
                                                                           0.050129
                                                                                          0.048293
                                                                                                         0.046731
                                             0.057684
     3
             0
                                                            0.056623
                                                                           0.055357
                                                                                          0.05421
                                                                                                         0.053173
                     1
                             0.059454
     1
             1
                             0.036556
                                             0.035045
                                                            0.034267
                                                                            0.03319
                                                                                          0.032272
                                                                                                         0.031484
                     1
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(ap(EM,J, steady) - ap(EM,J, 08wthEV09unemshk))", ap_VFI_unemp
xxx MEAN(ap(EM,J, steady) - ap(EM,J, 08wthEV09unemshk))
                                                         XXXXXXXXXXXXXXXXXXXXXXXXXXXX
    group
                   marry
                             mean_age_18
                                           mean_age_19
            edu
                                                           mean_age_20
                                                                         mean_age_21
                                                                                        mean_age_22
                                                                                                        mean_age_23
     1
             0
                     0
                             -0.0028826
                                             -0.003052
                                                           -0.0031902
                                                                          -0.0032817
                                                                                         -0.0033667
                                                                                                        -0.0034573
     2
             1
                     0
                             -0.0029702
                                            -0.0035135
                                                            -0.003374
                                                                          -0.0032948
                                                                                          -0.003253
                                                                                                        -0.0032542
     3
             0
                     1
                              -0.003801
                                            -0.0039575
                                                           -0.0040645
                                                                          -0.0041885
                                                                                         -0.0043137
                                                                                                        -0.0044335
     4
             1
                     1
                             -0.0038523
                                             -0.004204
                                                           -0.0040784
                                                                           -0.004088
                                                                                         -0.0041106
                                                                                                        -0.0041594
% Consumption Choices
tb_az_c = ff_summ_nd_array("MEAN(c(EM,J, steady) - c(EM,J, 08wthEV09unemshk))", cons_VFI_unemp_
xxx MEAN(c(EM,J, steady) - c(EM,J, 08wthEV09unemshk))
                                                       XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    group
                   marry
                             mean_age_18
                                           mean_age_19
                                                           mean_age_20
                                                                          mean_age_21
                                                                                         mean_age_22
                                                                                                        mean_age_23
     1
             0
                     0
                             0.0028826
                                             0.003052
                                                            0.0031902
                                                                          0.0032817
                                                                                          0.0033667
                                                                                                         0.0034573
     2
             1
                     0
                             0.0029702
                                             0.0035135
                                                            0.003374
                                                                          0.0032948
                                                                                          0.003253
                                                                                                         0.0032542
     3
             0
                     1
                               0.003801
                                             0.0039575
                                                            0.0040645
                                                                          0.0041885
                                                                                          0.0043137
                                                                                                         0.0044335
     4
             1
                             0.0038523
                                             0.004204
                                                            0.0040784
                                                                            0.004088
                                                                                          0.0041106
                                                                                                         0.0041594
                     1
```

Graph Mean Values Change:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(v(EM,J, steady) - v(EM,J, 08wthEV09unemshk)), a=
mp_support_graph('cl_st_ytitle') = {'MEAN(v(EM,J, steady) - v(EM,J, 08wthEV09unemshk))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices Change:

mp_support_graph('cl_st_graph_title') = {'MEAN(ap(EM,J, steady) - ap(EM,J, 08wthEV09unemshk)),
mp_support_graph('cl_st_ytitle') = {'MEAN(ap(EM,J, steady) - ap(EM,J, 08wthEV09unemshk))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);

Graph Mean Consumption Change:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(c(EM,J, steady) - c(EM,J, 08wthEV09unemshk)), a=
mp_support_graph('cl_st_ytitle') = {'MEAN(c(EM,J, steady) - c(EM,J, 08wthEV09unemshk))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


