Math Drill

Time yourself from start to finish and record your time below. The SAT Non-Calculator section is all about speed and practice makes perfect!

YOUR TIME: _____

]	Multip	lying	With	Factor	s 2 to	13 (A)	
Name:			_	Date:				Score:	/100
			Cal	culate ea	ich prod	uct.			
$\times \frac{8}{10}$	_ <u>×4</u>	13 ×6	$\times 12^{7}$	$\frac{8}{\times 11}$	12 ×6	$\times 13^{5}$	$\stackrel{11}{\times} \stackrel{4}{}$	× 13	$\frac{7}{\times 7}$
3 3	12 ×12	_×2	_×2	_×4	_×5	×13	$\times 11$	_×7	_×6
$\times \frac{11}{10}$	_×7	7 ×10	_×5	13 ×12	×11	12 ×2	_×7	13 ×8	10 _×9
13 ×13	_ <u>×6</u>	_×9	7 ×13	_ <u>×8</u>	_×5	_ <u>×6</u>	_×5		_ <u>×2</u>
9 ×11	11 ×5	×10	10 ×2	_×8	9 ×9	_×8	_×4	<u>×3</u>	<u>×13</u>
3 × 10	12 ×8	<u>×8</u>	_×8	×13	×11	6 ×6	$\times \frac{13}{10}$		11 ×12
$\times 12$	10 _×4	9 ×12	×13	7 ×6	$\frac{10}{\times 10}$	4 ×5	7 ×11	6 8	_×6
_ <u>×7</u>	11 ×6	<u>×3</u>	<u>×12</u>	×12	10 × 5	_ <u>×4</u>	10 × 12	12 ×5	×11
9 × 10	_ <u>×13</u>	_×8	_×3		×11	7 × 12	10 × 6	<u>×7</u>	×10
_×3	12 _×6	×10	_×7	<u>×6</u>	$\frac{11}{\times 10}$	11 _×5	11 3	13 × 13	$\times \frac{13}{\times 10}$

Math-Drills.com

Unit 19 - Circles

Topic: Arcs, Angles, and Tangents

Questions 1 - 4 refer to the following information.

In the figure above, \overline{BD} is a diameter, and \overline{PA} and \overline{PD} are tangents to circle O. $m \angle CDE = 52$, $m \angle APD = 45$, and AP = 9.

1

What is the measure of $\angle ODC$?

2

What is the measure of $\angle OCD$?

3

What is the measure of $\angle AOD$?

4

What is the length of PD?

5

In the figure above, $\odot O$ is inscribed in $\triangle PQR$. If PA = 12, QA = 6, and RB = 9.5, what is the perimeter of $\triangle PQR$?

A) 46

B) 49

C) 52

D) 55

6

In the figure above, \overline{OP} is a radius and \overline{PQ} is tangent to circle O. If the radius of circle O is 10 and OR = 16, what is the length of OPQ?

A) 16

B) 20

C) 24

D) 28

Topic: Arc Lengths and Areas of Sectors

Questions 1 and 2 refer to the following information.

In the figure above, \widehat{AB} is an arc of a circle with radius 27 cm.

1

If the length of arc AB is $k\pi$, what is the value of k?

2

If the area of sector OAB is $n\pi$, what is the value of n?

3

The figure above shows arcs of length 8, 7, 6, 5, and 4. If $\widehat{mAB} = 120$, what is the degree measure of angle a?

4

In the figure above, the radius of the circle is 8 and $m\angle AOB = 120^{\circ}$. What is the length of \overline{AB} ?

- A) 8√2
- B) 8√3
- C) 12√2
- D) 12√3

5

In the figure above, OP = OQ and \overline{PQ} is tangent to circle O. If the radius of circle O is 8, what is the length of \overline{QR} ?

- A) 10(√2 −1)
- B) 6
- C) $10(\sqrt{3}-1)$
- D) 8

Topic: Inscribed Angles

Questions 1 - 4 refer to the following information.

In circle O above, \overline{AB} is a diameter.

1

What is the value of y?

2

What is the value of x?

3

What is the value of w?

4

What is the value of z?

Questions 5 and 6 refer to the following information.

In the figure above, a quadrilateral is inscribed in a circle.

5

What is the value of x?

- A) 70
- B) 80
- C) 90
- D) 100

6

What is the value of y?

- A) 75
- B) 80
- C) 85
- D) 90

Topic: Arcs and Chords

1

In circle O above, if the radius is 13 and PR = 24, what is the length of QS?

- A) 6
- B) 7
- C) 8
- D) 9

2

In the circle above, if RS = 6, OM = 5, and ON = 4, what is the length of PQ?

- A) 4√2
- B) 6
- C) 6√2
- D) 6√3

3

In circle O above, the area of the circle is 9π and $PR = \sqrt{5}$. What is the length of QR?

- A) 1
- B) √2
- C) √3
- D) 2

4

In the figure above, the radius of the circle is 12. If the length of chord \overline{AB} is 18, what is the distance between the chord and the diameter?

- A) 2√10
- B) 3√7
- C) 4√5
- D) 6√2

Topic: Circles in the Coordinate Plane

1

Which of the following equations represents the equation of the circle shown in the xy-plane above?

A)
$$(x+5)^2 + (y+2)^2 = 4$$

B)
$$(x-5)^2 + (y-2)^2 = 4$$

C)
$$(x+5)^2 + (y+2)^2 = 16$$

D)
$$(x-5)^2 + (y-2)^2 = 16$$

2

Which of the following is an equation of a circle in the xy-plane with center (-2,0) and a radius with endpoint $(0,\frac{3}{2})$?

A)
$$x^2 + (y - \frac{3}{2})^2 = \frac{5}{2}$$

B)
$$x^2 + (y - \frac{3}{2})^2 = \frac{25}{4}$$

C)
$$(x+2)^2 + y^2 = \frac{25}{4}$$

D)
$$(x-2)^2 + y^2 = \frac{25}{4}$$

3

$$x^2 + 12x + y^2 - 4y + 15 = 0$$

The equation of a circle in the xy-plane is shown above. Which of the following is true about the circle?

B) center
$$(6,-2)$$
, radius = 5

C) center (-6,2), radius =
$$\sqrt{15}$$

D) center
$$(6,-2)$$
, radius = $\sqrt{15}$

4

Which of the following represents an equation of a circle whose diameter has endpoints (-8,4) and (2,-6)?

A)
$$(x-3)^2 + (y-1)^2 = 50$$

B)
$$(x+3)^2 + (y+1)^2 = 50$$

C)
$$(x-3)^2 + (y-1)^2 = 25$$

D)
$$(x+3)^2 + (y+1)^2 = 25$$

5

$$x^2 + 2x + y^2 - 4y - 9 = 0$$

The equation of a circle in the xy-plane is shown above. If the area of the circle is $k\pi$, what is the value of k?

Unit 19 Review Questions

1

In the figure above, O is the center of the circle and \overline{AB} is a diameter. If the length of \overline{AC} is $4\sqrt{3}$ and $m\angle BAC = 30$, what is the area of circle O?

- A) 12π
- B) 16π
- C) 18π
- D) 24π

2

In the circle above, chord \overline{RS} is parallel to diameter \overline{PQ} . If the length of \overline{RS} is $\frac{3}{4}$ of the length of \overline{PQ} and the distance between the chord and the diameter is $2\sqrt{7}$, what is the radius of the circle?

- A) 6
- B) 3√7
- C) 8
- D) 4√7

3

In the figure above, the circle is tangent to the x- axis and has center (-4, -3). Which of the following equations represents the equation of the circle shown in the xy- plane above?

A)
$$(x+4)^2 + (y+3)^2 = 9$$

B)
$$(x-4)^2 + (y-3)^2 = 9$$

C)
$$(x+4)^2 + (y+3)^2 = 3$$

D)
$$(x-4)^2 + (y-3)^2 = 3$$

4

The figure above shows a semicircle with the lengths of the adjacent arcs a, a+1, a+2, a+3, and a+4. If the value of x is 42, what is the value of a?

- A) 7
- B) 8
- C) 9
- D) 10

5

In the figure above, the length of arc \widehat{AB} is π . What is the area of sector OAB?

- A) 2π
- B) $\frac{5}{2}\pi$
- C) 3π
- D) $\frac{7}{2}\pi$

6

$$x^2 - 4x + y^2 - 6x - 17 = 0$$

What is the area of the circle in the xy-plane above?

- A) 20π
- B) 24π
- C) 26π
- D) 30π

7

Which of the following is the equation of a circle that has a diameter of 8 units and is tangent to the graph of y = 2?

- A) $(x+1)^2 + (y+2)^2 = 16$
- B) $(x-1)^2 + (y-2)^2 = 16$
- C) $(x+2)^2 + (y+1)^2 = 16$
- D) $(x-2)^2 + (y-1)^2 = 16$

8

In the figure above, rectangle OPQR is inscribed in a quarter circle that has a radius of 9. If PQ = 7, what is the area of rectangle OPOR?

- A) $24\sqrt{2}$
- B) 26√2
- C) 28√2
- D) 30√2

9

In a circle with center O, the central angle has a measure of $\frac{2\pi}{3}$ radians. The area of the sector formed by central angle AOB is what fraction of the area of the circle?

10

A wheel with a radius of 2.2 feet is turning at a constant rate of 400 revolutions per minute on a road. If the wheel traveled $k\pi$ miles in one hour what is the value of k? (1 mile = 5,280 feet)