ISA 414 – Managing Big Data

Lecture 24 – Introduction to Spark

(Part II)

Dr. Arthur Carvalho

arthur.carvalho@miamioh.edu

Copyright © 2021 Arthur Carvalho

- 11/16 and 11/18: presentation of (preliminary) project ideas
 - Goals:
 - 1. Strengthen your project ideas
 - 2. Soft skills: presentation
 - Duration
 - ISA 414: 15 minutes
 - ISA 514: 20 minutes
 - Presentation structure
 - Business background
 - Problem definition
 - Proposed solution (bird's-eye view)
 - Potential pros and cons

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bayesian inference
- Supervised learning: decision trees, random forests, logistic regression
- ☆ Unsupervised learning: clustering, dimensionality reduction
- Optimization: gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- ☆ Strategic, proactive, creative, innovative and collaborative

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- ☆ Statistical computing packages, e.g., R
- ☆ Databases: SQL and NoSQL
- ☆ Relational algebra
- Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Experience with xaaS like AWS

COMMUNICATION & VISUALIZATION

- ☆ Able to engage with senior management
- ☆ Story telling skills
- ☆ Translate data-driven insights into decisions and actions
 - ☆ Visual art design
 - ☆ R packages like ggplot or lattice
 - Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

- > 11/16 and 11/18: presentation of (preliminary) project ideas
 - Your project grade will also reflect this presentation
 - Hint: take it seriously and come prepared
 - Non-presenters
 - Your behavior during the presentations will be reflected in your individual, final grade
 - The presentation slides must be sent to the instructor by email 24h before the day of the presentation

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bayesian inference
- Supervised learning: decision trees, random forests, logistic regression
- Optimization: gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- Strategic, proactive, creative innovative and collaborative

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- ☆ Statistical computing packages, e.g., R
- ☆ Databases: SQL and NoSQL
- ☆ Relational algebra
- ☆ Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Experience with xaaS like AWS

COMMUNICATION & VISUALIZATION

- Able to engage with senior management
- ☆ Story telling skills
- ☆ Translate data-driven insights into decisions and actions
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- ☆ Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

- Presentation order (Tuesday, 11/16)
 - ISA 514 (10:05 am 11:25 am)
 - Group D: Alexander Amata, Jack Boyd, Will Dunn, Ben Keeley
 - Group A: Brendan Byrnes, Griffin Lester, Vish Nalagatla
 - **ISA 414** (1:15 pm 2:35 pm)
 - Group D: Sierra Hessinger, Elianna Pecha, Rebekah Poth, Jacob Steele
 - Group A: John Doll, Abby Larson, Aubrey Liu, Spencer Townes
 - Group H: Hannah Le, Matt Madias, Carly Schechtman, Anthony Troiano
 - Group C: Charlie Fox, Ava Kunar, Tara Morrison, Nick Telerico

- Presentation order (Thursday, 11/18)
 - ISA 514 (10:05 am 11:25 am)
 - Group B: Maddie Banyas, Amara Cummins, Ashley Lonsinger, Meghana Muvva
 - Group C: Arnav Damodhar, Abay Ismailov, Jason Lantz

- **ISA 414** (1:15 pm 2:35 pm)
 - Group F: Natalie Day, Sam Groth, Aidan McGaughy, Andre Su
 - Group G: Benjamin Boczulak, Ben Cawley, Caroline Davis, Jack Laux
 - Group B: Cecilia Dauer, Julia Edelman, Macayla Temple
 - Group I: Nick Cimarusti, Mitch Gray, Thomas Hemsworth, Brendan Keck
 - Group E: Nina Gollapudy, Nicholas Hesselgesser, Esha Kallam, Chau Vu

> 11/23 and 11/30: in-class group work

> 12/02: review session

Lecture Objectives

- Review Homework 10
- Discuss Assignment 4
- Continue to learn about Spark and its libraries
 - Learn how to use machine learning algorithms in Spark
 - ML Library
 - Learn how to use SQL to obtain data from RDDs in tabular format
 - SQL Library

Lecture Instructions

Download the file Lecture 24.ipynb from Canvas

Download the data set noshow.csv available on Canvas

Lecture Instructions

- Go to https://community.cloud.databricks.com/
 - Sign in
- Upload the file noshow.csv to Databricks
 - Copy the path to the file

Lecture Instructions

- Next, create a cluster
 - Go to the left panel, "Create" -> "Cluster"

The Hadoop Ecosystem

- Overview and agenda
 - HDFS
 - Hadoop Distributed File System
 - Scalable and reliable storage
 - Yarn
 - Schedule jobs/task over HDFS storage
 - MapReduce
 - Programming model that simplifies parallel/distributed computations
 - Two functions: Map (apply) and Reduce(summarize)
 - Spark
 - Built for real-time, in memory processing of data

Data Lake

- How does data get into Hadoop?
 - Standard approach
 - Hadoop services automatically extract and send data to HDFS
 - Examples:
 - Sqoop: transfers bulk data from relational databases to HDFS
 - Flume: transfers log data from web servers to HDFS
 -

Data Lake

- > Spark
 - Core definitions: RDD, transformations, and actions
 - Libraries: Streaming, SQL, ML, GraphX
 - Our focus today: ML and SQL

- Spark
 - Always keep the following perspective in mind

We can simply use **Spark libraries** to send commands
to a spark cluster

PySpark

- Documentation
 - All what you need to know about PySpark:
 - https://spark.apache.org/docs/latest/api/python/reference/ind ex.html

We shall see some of these functions in class today

- No-show case study using Spark
 - Question: will a certain person who booked a doctor's appointment show up?
 - Background: real-life data from Brazil
 - Government-sponsored healthcare: "I will not pay anything if I book an appointment and don't show up"
 - No shows take spots from people who need the service
 - Idea: if we can predict who will show up, we can estimate the number of no-shows
 - Classification problem: dependent variable Status
 - Overbooking: good policy
 - That is what some airlines do

- Let's connect to Spark
 - Create a notebook: Go to the left side panel, "Create" -> "Notebook"

 As we progress, copy the code from "Lecture 24.ipynb" into Databricks

- Spark heavily relies on the concepts of *pipes* (or pipelines)
 - Many chained commands
 - The output of one command is the input to another one
 - Consequences
 - Shorter code
 - Fewer variables (lower memory consumption)

Loading a CSV file from a cluster to the main memory

```
# File location and type
file_location = "/FileStore/tables/noshow.csv"

# inferSchema := detect data types
# header := whether first row contains column names
raw_data = spark.read.load(file_location, format="csv", inferSchema="true", header="true")
```

Retrieving and showing the first 20 rows in our data frame raw_data.show()

- Let's do some data preprocessing now
 - Documentation:
 https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.html
 - Check variable types: df.dtypes
 - Is the data set unbalanced?
 df.select("Status").groupBy("Status").count().show()

- Let's do some data preprocessing now
 - Let's reduce the number of values for the variable DayOfTheWeek
 - replace function: https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.replace

- Let's do some data preprocessing now
 - Basic statistics for the variable Age
 - **summary() function:** <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.summary.html#pyspark.sql.DataFrame.summary.sql.DataFrame.summary.sql.DataFrame.summary.sql.DataFrame.summary.sql.DataFrame.summary.sql.DataFrame.sql.DataFrame.summary.sql.DataFrame.sql.DataFrame.summary.sql.DataFra

```
df.select("Age").summary().show()
```

- Filtering negative Age
 - filter() function: https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.filter

```
df = df.filter(df["age"] >= 0)
```


- It is time to build a predictive model
 - Like with sklearn, we have to transform qualitative variables to numeric values
 - Qualitative values to indexes: StringIndexer function
 - Qualitative values to 3+ dummies: OneHotEnconder function

```
from pyspark.ml.feature import StringIndexer
```

```
stringToIndex = StringIndexer(inputCol = 'Gender', outputCol = 'GenderIndex')

df = stringToIndex.fit(df).transform(df)

stringToIndex = StringIndexer(inputCol = 'DayOfTheWeek', outputCol = 'DayOfTheWeekIndex')

df = stringToIndex.fit(df).transform(df)

stringToIndex = StringIndexer(inputCol = 'Status', outputCol = 'StatusIndex')

df = stringToIndex.fit(df).transform(df)
```


- It is time to build a predictive model
 - PySpark ML Library requires that all the predictors must be combined into a single vector

from pyspark.ml.feature import VectorAssembler

- It is time to build a predictive model
 - Remember the discussion: training vs test sets

```
training_set, test_set = df.select(["StatusIndex","predictors"]).randomSplit([0.75,0.25])
```

Training a random forest with 100 trees

```
from pyspark.ml.classification import RandomForestClassifier
```

```
model = RandomForestClassifier(numTrees=100,
featuresCol= "predictors",
labelCol='StatusIndex')
```

```
model = model.fit(training set)
```


Evaluation

Predictions on the test set

```
predictions = model.transform(test_set)
```

print("Accuracy = %s" % (accuracy))

Model's overall accuracy

SQL Library

- Hadoop has services that allow one to use SQL to retrieve data from structured files inside HDFS, such as CSV files
 - Spark SQL
 - Hive (not covered in this course)
 - Impala (not covered in this course)

- Spark SQL
 - Once a data set is loaded into a Spark cluster, SQL commands can be used to retrieve data from the RDD raw_data.createOrReplaceTempView("TABLE")
 - SQL commands are translated into transformations and actions
 - Examples

```
spark.sql("SELECT AGE FROM TABLE").show()
spark.sql("SELECT Status, COUNT(Status) FROM TABLE GROUP BY Status").show()
spark.sql("SELECT * FROM TABLE WHERE AGE < 0").show()</pre>
```


- You might be asking yourself: "is this whole thing worth it?"
 - "I could do the same thing with fewer lines of code and running quicker without Spark"
- Always keep in mind that Spark is used when there are tons of data and many available nodes
 - Only then, you can see how Spark speeds up data processing
 - Think about a data set having millions or even billions of appointments

Summary

- We learned about Spark ML and SQL libraries
 - To use Spark in Python, one simply needs to learn about a bunch of predefined functions

Next lecture: project (idea) presentations

Copyright 2021 Arthur Carvalho. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed without explicit written consent

