

Exercise 18A

Q1.

Answer:

Area of a trapezium = $\frac{1}{2} \times (Sum \text{ of parallel sides}) \times (Distance between them)$

$$= \left\{ \frac{1}{2} \times (24 + 20) \times 15 \right\} \text{ cm}^2$$

$$= \left(\frac{1}{2} \times 44 \times 15 \right) \text{ cm}^2$$

$$= (22 \times 15) \text{ cm}^2$$

$$= 330 \text{ cm}^2$$

Hence, the area of the trapezium is 330 cm².

Q2.

Answer:

Area of a trapezium = $\frac{1}{2} \times (Sum \text{ of parallel sides}) \times (Distance between them)$

$$= \left\{ \frac{1}{2} \times (38.7 + 22.3) \times 16 \right\} \text{ cm}^2$$

$$= \left(\frac{1}{2} \times 61 \times 16 \right) \text{ cm}^2$$

$$= (61 \times 8) \text{ cm}^2$$

$$= 488 \text{ cm}^2$$

Hence, the area of the trapezium is 488 cm².

Q3.

Answer:

Area of a trapezium =
$$\frac{1}{2}$$
 × (Sum of parallel sides) × (Distance between them)
= $\left\{\frac{1}{2}$ × $(1+1.4)$ × $0.9\right\}$ m²
= $\left(\frac{1}{2}$ × 2.4 × $0.9\right)$ m²
= $(1.2$ × $0.9)$ m²
= 1.08 m²

Hence, the area of the top surface of the table is 1.08 m².

Let the lengths of the parallel sides of the trapezium be 4x cm and 5x cm, respectively.

Now,

Area of trapezium =
$$\left\{\frac{1}{2} \times (4x + 5x) \times 18\right\}$$
 cm²
= $\left(\frac{1}{2} \times 9x \times 18\right)$ cm²

Area of trapezium = 405 cm^2 (Given)

$$31x = 405$$

$$\Rightarrow x = \frac{405}{81}$$

$$\Rightarrow x = 5 \text{ cm}$$

Length of one side = (4×5) cm = 20 cm

Length of the other side = (5×5) cm = 25 cm

Q7.

Answer:

Let the lengths of the parallel sides be x cm and (x+6) cm. Now

Area of trapezium =
$$\left\{ \frac{1}{2} \times (x + x + 6) \times 9 \right\}$$
 cm²
= $\left(\frac{1}{2} \times (2x + 6) \times 9 \right)$ cm²
= $4.5(2x + 6)$ cm²
= $(9x + 27)$ cm²

Area of trapezium = 180 cm² (Given)

$$\therefore 9x + 27 = 180$$

$$\Rightarrow 9x = (180 - 27)$$

$$\Rightarrow 9x = 153$$

$$\Rightarrow x = \frac{153}{9}$$

$$\Rightarrow x = 17$$

Hence, the lengths of the parallel sides are $17~\mathrm{cm}$ and $23~\mathrm{cm}$, that is, $(17+6)~\mathrm{cm}$.

Q8.

Answer:

Let the lengths of the parallel sides be x cm and 2x cm.

Area of trapezium =
$$\left\{\frac{1}{2} \times (x + 2x) \times 84\right\}$$
 m²
= $\left(\frac{1}{2} \times 3x \times 84\right)$ m²
= $(42 \times 3x)$ m²
= $126x$ m²

Area of the trapezium $= 9450 \text{ m}^2$ (Given)

$$126x = 9450$$

$$\Rightarrow x = \frac{9450}{126}$$

$$\Rightarrow x = 75$$

Thus, the length of the parallel sides are 75 m and 150 m, that is, (2×75) m, and the length of the longer side is 150 m.

****** END ******