Chapitre VII : Fonctions polynômes de degrés 2 et 3

I - Les fonctions $x \longmapsto a(x-x_1)(x-x_2)$

<u>Définition</u>: a, x_1 et x_2 sont trois nombres réels $(a \neq 0)$.

Toute fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)$

- est une fonction polynôme de degré 2 (ou polynôme du second degré);
- est écrite sous forme factorisée;
- est représentée par une parabole coupant l'axe des abscisses en deux points dès que $x_1 \neq x_2$.

Lorsque a > 0, alors la parabole est tournée vers le haut. Lorsque a < 0, elle est tournée vers le bas.

Exemple : f est la fonction définie sur \mathbb{R} par f(x) = -0.3(x-1)(x+5).

Comme -0.3 < 0, la parabole représentant cette fonction est

De plus, pour déterminer l'intersection de la parabole avec l'axe des abscisses, on résout l'équation f(x)=0 ce qui donne :

-0.3(x-1)(x+5) = 0 équivaut à :

La parabole représentant f coupe alors l'axe des abscisses en deux points de coordonnées

Remarque : f(x) peut aussi s'écrire sous forme développée :

 $\overline{f(x)} = ax^2 + bx + c$ où le réel a est **le même** que celui qui est présent dans l'écriture $a(x - x_1)(x - x_2)$.

La détermination de b et c ne peut quant à elle se faire qu'en développant l'expression.

Propriété:

 \overline{f} étant une fonction polynôme de degré 2 de la forme $f(x) = a(x - x_1)(x - x_2)$, l'équation f(x) = 0 admet deux solutions : x_1 et x_2 (une seule lorsque $x_1 = x_2$). x_1 et x_2 sont appelées racines du polynôme.

La parabole représentant cette fonction coupe l'axe des abscisses en deux points de coordonnées $(x_1; 0)$ et $(x_2; 0)$.

De plus, la parabole admet pour **axe de symétrie** la droite d'équation x=c où $c=\frac{x_1+x_2}{2}$.

Dans l'exemple précédent, $x_1 = \ldots$ et $x_2 = \ldots$ Or $\frac{x_1 + x_2}{2} = \ldots$

Donc la droite d'équation est l'axe de symétrie de la parabole représentant la fonction.

Propriété : Dans le cas où on prend $x_1 < x_2$:

<u>Trophete</u> : Build to can be on profit $w_1 < w_2$.	
Si $a < 0$	Si $a > 0$
La fonction est négative sauf sur l'in-	La fonction est positive sauf sur l'in-
tervalle $[x_1 ; x_2]$	tervalle $[x_1; x_2]$

Exercice: Les trois questions de cet exercice sont indépendantes.

- 1. f est définie sur \mathbb{R} par f(x) = -3(x-2)(x+3). Écrire f(x) sous forme développée.
- 2. g est la fonction polynôme de degré 2 définie sur \mathbb{R} par $g(x) = 4x^2 + 18x 10$.
 - (a) Vérifier que -5 et $\frac{1}{2}$ sont des racines du polynôme.
 - (b) En déduire la forme factorisée de g(x).
- 3. h est la fonction polynôme définie sur \mathbb{R} par $h(x) = 3x^2 + 3x 18$ et admettant 2 pour racine.
 - (a) Déterminer la valeur de la deuxième racine.
 - (b) En déduire l'équation réduite de l'axe de symétrie de la parabole représentant h.