Анализ структуры шума при разных типах ошибок измерений

Федоренко Кристина Андреевна, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н. Н.Э. Голяндина Рецензент — к.ф.-м.н. В.В. Некруткин

Санкт-Петербург 2013г.

Постановка задачи

Модели наблюдений

Рассмотрим ряд $F=(f_0,\ldots,f_{N-1})$, такой что

$$\begin{split} f_i &= u(x_i) + \delta_i, & (Y_A), \\ f_i &= u(x_i + \varepsilon_i), & (X_A), \\ f_i &= u(x_i + \varepsilon_i) + \delta_i, & (X_AY_A), \\ f_i &= u(x_i)(1 + \delta_i), & (Y_M), \\ f_i &= u(x_i + \varepsilon_i)(1 + \delta_i), & (\mathbf{X_AY_M}), \end{split}$$

где $u\in\mathcal{C}^2_\mathcal{B}$ — неизвестная функция на \mathbb{R} , $ar{x}=(x_0,\dots,x_{N-1})$ — произвольный дискретный набор точек, $arepsilon_i\sim \mathrm{N}(0,\sigma_x^2)$, $\delta_i\sim \mathrm{N}(0,\sigma_y^2)$ — независимы в совокупности.

Задача: в каждой модели оценить параметры σ_x^2 и σ_y^2 . В данном случае сигнал неизвестен, но представляет интерес не он, а именно параметры σ_x^2 и σ_y^2 .

План доклада

- ① Сначала получим оценки, предположив, что значения функций u(x) и $u^{\prime}(x)$ известны.
- **②** Получим два вида оценок неизвестных параметров σ_x^2 и σ_y^2 :
 - оценки, полученные с помощью сведения задачи к линейной регрессии;
 - оценки максимального правдоподобия.
- f 3 Построим оценки значений функций u(x) и u'(x).
- ① Исследуем свойства оценок параметров σ_x^2 и σ_y^2 при условии, что значения функций u(x) и u'(x) неизвестны.
- **5** Рассмотрим работу методов на реальных данных.

Используемые аппроксимации

Для моделей (X_A) , (X_AY_A) и (X_AY_M) с ошибками в аргументе используем линеаризацию с помощью представления:

$$u(x+\gamma)=u(x)+\gamma u'(x)+\frac{\gamma^2}{2}u''(x+\theta\gamma),\ 0<\theta<1.$$

Например, для модели $(X_A Y_M)$ вместо

$$f_i = u(x_i + \varepsilon_i)(1 + \delta_i),$$

будем рассматривать

$$g_i = (1 + \delta_i)u(x_i) + \varepsilon_i(1 + \delta_i)u'(x_i).$$

Замечание. Оценки строятся в модели ряда $G=(g_0,\dots,g_{N-1})$, но для реальных данных в качестве исходного ряда будет использоваться ряд $F=(f_0,\dots,f_{N-1})$.

Задача оценивания дисперсий ошибок в регрессионной постановке

Обозначим w(x) = u'(x). Представим вектор $(g_i - u(x_i))^2$ в виде:

$$(g_i - u(x_i))^2 = \mathbb{E}(g_i - u(x_i))^2 + r_i,$$

$$\mathbb{E}r_i = 0.$$

Модели (Y_A) , (X_A) , (Y_M) — простые регрессионные модели (оценки выписываются явно).

Модели $(X_A Y_A)$, $(X_A Y_M)$ — сложные регрессионные модели.

Пример простой модели (X_A) :

$$\mathbb{E}(g_i - u(x_i))^2 = \sigma_x^2 w^2(x_i),$$

$$r_i = (\varepsilon_i^2 - \sigma_x^2) w^2(x_i).$$

Пример сложной модели $(X_A Y_M)$:

$$\mathbb{E}(g_i - u(x_i))^2 = \sigma_x^2 (1 + \sigma_y^2) w^2(x_i) + \sigma_y^2 u^2(x_i),$$

$$r_i = (\varepsilon_i^2 (1 + \delta_i)^2 - \sigma_x^2 (1 + \sigma_y^2)) w^2(x_i) + (\delta_i^2 - \sigma_y^2) u^2(x_i) + 2\varepsilon_i \delta_i (1 + \delta_i) w(x_i) u(x_i).$$

Задача оценивания дисперсий ошибок в регрессионной постановке

Рассмотрим регрессионное уравнение

$$Y = \mathbf{X}B + R,$$

где
$$Y = (y_0, \dots, y_{N-1})$$
, $y_i = (g_i - u_i)^2$, $R = (r_0, \dots, r_{N-1})$.

- Для модели (X_A) $\mathbf{X} = [X_1], X_1 = (w^2(x_0), \dots, w^2(x_{N-1}))^T, B = \sigma_x^2$ $\mathbb{D}r_i = 2\sigma_\pi^4 w^4(x_i)$:
 - Условие невырожденности матрицы Х: вектор из производных не нулевой. Например, не подходит u(x) = c.
- \bullet Для модели $(X_A Y_M)$ $\mathbf{X} = [X_1 : X_2],$ $X_1 = (u^2(x_0), \dots, u^2(x_{N-1}))^{\mathrm{T}}, X_2 = (w^2(x_0), \dots, w^2(x_{N-1}))^{\mathrm{T}}.$ $B = (\sigma_{u}^{2}, \sigma_{x}^{2}(1 + \sigma_{u}^{2}))^{\mathrm{T}}.$ $\mathbb{D}r_i = 2\sigma_x^4(1 + 2\sigma_y^2)^2 w^4(x_i) + 2\sigma_y^4 u^4(x_i) + 4\sigma_x^2 \sigma_y^2(1 + 3\sigma_y^2) u^2(x_i) w^2(x_i).$ Условие невырожденности матрицы X: вектор из производных функции не пропорционален вектору из её значений. Например, не подходит $u(x) = \exp(\alpha x)$.

Отметим, что дисперсия компонент вектора R непостоянна и зависит от i.

Способы решения регрессионного уравнения

Рассмотрим способы решения регрессионного уравнения

$$Y = \mathbf{X}B + R.$$

Пусть $\mathbf{W} = \mathrm{C}\operatorname{diag}(\mathbb{D}r_0,\ldots,\mathbb{D}r_{N-1}),\ \mathrm{C} > 0.$

ullet Если $\mathbb{D}r_i > 0, i = 0, \dots, N-1$, то следующая формула дает BLUE оценки параметров B

$$\widehat{B} = (\mathbf{X}^{\mathrm{T}}\mathbf{W}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}^{-1}Y,$$

- Если $\mathbb{D}r_{k_0}=0$ при каком-то k_0 , то
 - ullet можно рассмотреть регуляризацию матрицы \mathbf{W} : $\mathbf{W}_{\lambda} = \mathbf{W} + \lambda \mathbf{I}$;
 - или удалить наблюдения с нулевой дисперсией шума.

Проблема: $W = W_B$. Тогда для нахождения оценки получаем систему уравнений

$$\widehat{B} = (\mathbf{X}^{\mathrm{T}} \mathbf{W}_{\widehat{B}}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W}_{\widehat{B}}^{-1} Y.$$

Если ${\bf W}$ зависит от параметров B, рассмотрим итерационное решение. Пусть τ и M — параметры остановки.

- Шаг 1. Выбор начального значения Выберем некоторое начальное значение \widehat{B}_0 , i=0.
- ullet Шаг 2. Вычисление приближенных значений матрицы ${f W}$ $\mathbf{W}_{(i)} = \mathbf{W}(\widehat{B}_{(i)}).$
- Шаг 3. Нахождение оценок

$$\widehat{B}_{(i+1)} = (\mathbf{X}^{\mathrm{T}} \mathbf{W}_{(i)}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W}_{(i)}^{-1} Y,$$

• Шаг 4. Критерий остановки Если $||\widehat{B}_{(i)} - \widehat{B}_{(i+1)}|| < au$ или i+1=M, процедура заканчивается и результатом ее работы является $\widehat{B}_{(i+1)}$. Иначе i = i + 1, переход к шагу 2.

• Для простых моделей (Y_A) , (X_A) , (Y_M) : $\mathbb{D}r_i = c(B)q_i, q_i$ не зависит от B, тогда $\mathbf{W} = \operatorname{diag}(q_0, \dots, q_{N-1})$ — не зависит от B, следовательно решение выписывается явно, при условии, что \mathbf{W} не вырождена.

Например, для модели (X_A) :

$$\hat{\sigma}_x^2 = \frac{1}{N} \sum_{i=0}^{N-1} \frac{(f_i - u(x_i))^2}{w(x_i)}$$

и условие невырожденности матрицы \mathbf{W} : $w(x_i) \neq 0$ для всех i.

• В сложных моделях $(X_A Y_A)$ и $(X_A Y_M)$ $\mathbf{W} = \mathbf{W}(B)$, поэтому оценим параметры по итерационной процедуре. Условие невырожденности матрицы ${\bf W}$ в $(X_A Y_M)$: $w(x_i)$ и $u(x_i)$ не равны нулю одновременно.

Оценки максимального правдоподобия

- В моделях (Y_A) , (X_A) , (Y_M) ОМП выписываются явно и полностью совпадают с регрессионными BLUE оценками.
- Рассмотрим модель $(X_A Y_A)$, $\theta = (\theta_1, \theta_2)$, где $\theta_1 = \sigma_x^2$, $\theta_2 = \sigma_y^2$,

$$g_i \sim N(u(x_i), \theta_1 w^2(x_i) + \theta_2),$$

$$\mathcal{L}(g_i \mid \theta) = \left(\prod_{i=1}^{N-1} \frac{1}{\sqrt{2\pi(\theta_1 w^2(x_i) + \theta_2)}} \right) \exp\left(-\sum_{i=1}^{N-1} \frac{(g_i - u(x_i))^2}{2(\theta_1 w^2(x_i) + \theta_2)} \right).$$

 $q_i = u(x_i) + w(x_i)\varepsilon_i + \delta_i$

Функция правдоподобия выписывается, ОМП находятся численным методом.

• Рассмотрим модель зашумления $(X_A Y_M)$ $g_i = (1+\delta_i)u(x_i)+\varepsilon_i(1+\delta_i)u'(x_i).$ Функцию правдоподобия не получается выписать аналитически.

Описание примера

Пример: $u(x) = x^2$, $x_i = i$, i = 1, ..., 200.

Модель $(X_A Y_M)$:

$$f_i = (x_i + \varepsilon_i)^2 (1 + \delta_i), i = 1, \dots, 200,$$

$$g_i = x_i^2 (1 + \delta_i) + 2x_i \varepsilon_i (1 + \delta_i), i = 1, \dots, 200.$$

 $arepsilon_i \sim \mathrm{N}(0,\sigma_x^2)$ и $\delta_i \sim \mathrm{N}(0,\sigma_y^2)$ — независимы в совокупности.

В модели $(X_A Y_M)$ не умеем строить ОМП, следовательно, получим оценки σ_x^2 , σ_y^2 по итерационной процедуре.

Предположим, что $\sigma_x^2 \in [0,1]$ и $\sigma_y^2 \in [0,1]$, поэтому начальные значения возьмем равномерно распределенными на [0,1].

Характеристики оценок (смещение и стандартное отклонение) получены по 100 реализациям исходного ряда.

Точность итерационных оценок

Для модели (X_AY_M) по исходному ряду G сравним следующие оценки:

- итерационные: $\widehat{B} = (\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}Y;$
- BLUE оценки, формально предположив, что $\mathbb{D}r_i$ известны: $\widehat{B} = (\mathbf{X}^{\mathrm{T}}\mathbf{W}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}^{-1}Y.$

Таблица:
$$\widehat{B}=(\mathbf{X}^{\mathrm{T}}\mathbf{W}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}^{-1}Y$$
 для модели $(X_{A}Y_{M})$ по G

σ_x^2	σ_y^2	bias of $\widehat{\sigma}_x^2$	sd $\widehat{\sigma}_x^2$	bias of $\widehat{\sigma}_y^2$	sd $\widehat{\sigma}_y^2$
0.25	1e-04	1.65e-03	4.8e-02	0e+00	2.1e-05
0.49	4e-04	-1.01e-04	1.1e-01	1e-05	8.1e-05
1.00	9e-04	-2.82e-02	2.3e-01	1e-05	1.5e-04

Таблица:
$$\widehat{B}=(\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}Y$$
 для модели $(X_{A}Y_{M})$ по G

	σ_x^2	σ_y^2	bias of $\widehat{\sigma}_x^2$	$sd \widehat{\sigma}_x^2$	bias of $\widehat{\sigma}_y^2$	$\operatorname{\sf sd} \widehat{\sigma}_y^2$
	0.25	1e-04	1.63e-03	4.9e-02	0e+00	2.2e-05
ĺ	0.49	4e-04	2.2e-04	1.04e-01	1e-05	8.3e-05
ĺ	1.00	9e-04	-2.4e-02	2.3e-01	1e-05	1.5e-04

Результаты итерационной процедуры близки к оптимальным оценкам.

Влияние линеаризации модели

Сравним итерационные оценки, полученные по исходным данным и по линеаризованной модели.

Таблица:
$$\widehat{B}=(\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}Y$$
 для модели $(X_{A}Y_{M})$ по G

σ_x^2	σ_y^2	bias of $\widehat{\sigma}_x^2$	$\operatorname{\sf sd}\widehat{\sigma}_x^2$	bias of $\widehat{\sigma}_y^2$	sd $\widehat{\sigma}_y^2$
0.25	1e-04	1.63e-03	4.9e-02	0e+00	2.2e-05
0.49	4e-04	2.2e-04	1.04e-01	1e-05	8.3e-05
1.00	9e-04	-2.4e-02	2.3e-01	1e-05	1.5e-04

Таблица:
$$\widehat{B}=(\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}_{\widehat{B}}^{-1}Y$$
 для модели $(X_{A}Y_{M})$ по F

σ_x^2	σ_y^2	bias of $\widehat{\sigma}_x^2$	sd $\widehat{\sigma}_x^2$	bias of $\widehat{\sigma}_y^2$	sd $\widehat{\sigma}_y^2$
0.25	1e-04	5.7e-03	5.2e-02	0e+00	3.3e-05
0.49	4e-04	-1.8e-02	1.0e-01	1e-05	7.3e-05
1.00	9e-04	-2.7e-02	2.1e-01	-3e-05	1.4e-04

Таблицы демонстрируют, что линеаризация незначительно влияет на результат.

Оценивание тренда и его производной

Пусть $x_i=i$. Так как $\mathbb{E} g_i=u(x_i)$, следовательно (u_0,\dots,u_{N-1}) можно рассмотреть как тренд ряда F.

Оценивание тренда $u(x_i)$ с помощью метода «Гусеница».

Рассмотрим ряд $F = (f_0, \dots, f_{N-1})$ длины N > 2.

• Шаг 1: Вложение

Выберем длину окна L: 1 < L < N. Процедура вложения образует K = N - L + 1 векторов вложения $Z_i = (f_{i-1}, \dots, f_{i+L-2})^{\mathrm{T}}, \quad 1 \le i \le K.$ $\mathbf{Z} = [Z_1: \dots: Z_K]$ — траекторная матрица ряда F.

- Шаг 2: Сингулярное разложение $\mathbf{Z} = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$.
- Шаг 3: Группировка и диагональное усреднение Пусть F=T+N, ранг T равен r< d, $I=\{1,\ldots,r\}$. $Z_I=\sum_{i=1}^r\sqrt{\lambda_i}U_iV_i^{\mathrm{T}}\longrightarrow \widetilde{F}$, \widetilde{F} оценивает T.

Оценивание производной $u^\prime(x_i)$ по формуле

$$\tilde{w}(x_i) = \frac{-\tilde{f}_{i+2} + 8\tilde{f}_{i+1} - 8\tilde{f}_{i-1} + \tilde{f}_{i-2}}{12h}, i = 2, \dots, N - 3, \ h = 1.$$

Описание примера

Пример: $u(x) = x^2$, $x_i = i$, i = 1, ..., 200.

Модель $(X_A Y_M)$:

$$f_i = (x_i + \varepsilon_i)^2 (1 + \delta_i), i = 1, \dots, 200,$$

$$g_i = x_i^2 (1 + \delta_i) + 2x_i \varepsilon_i (1 + \delta_i), i = 1, \dots, 200.$$

 $arepsilon_i \sim \mathrm{N}(0,\sigma_x^2)$ и $\delta_i \sim \mathrm{N}(0,\sigma_y^2)$ — независимы в совокупности.

Значения функции u(x) оценим методом «Гусеница» с длиной окна L=100 и r=3.

В модели $(X_A Y_M)$ не умеем строить ОМП, следовательно, получим оценки σ_x^2 , σ_y^2 по итерационной процедуре.

Предположим, что $\sigma_x^2 \in [0,1]$ и $\sigma_y^2 \in [0,1]$, поэтому начальные значения возьмем равномерно распределенными на [0,1].

Характеристики оценок (смещение и стандартное отклонение) получены по 100 реализациям исходного ряда.

Сравнение результатов

Сравним результаты для случаев известных и неизвестных значений тренда и его производной. Исходный ряд — F.

Таблица: Итерационное решение для модели $(X_A Y_M)$ при известном u(x)

σ_x^2	σ_y^2	bias of $\widehat{\sigma}_x^2$	$\operatorname{\sf sd} \widehat{\sigma}_x^2$	bias of $\widehat{\sigma}_y^2$	sd $\widehat{\sigma}_y^2$
0.25	1e-04	5.7e-03	5.2e-02	-2.5e-06	2.1e-05
0.49	4e-04	-6.8e-03	1.3e-01	9.6e-06	7.2e-05
1.00	9e-04	2.1e-02	2.3e-01	-1.3e-05	1.8e-04

Таблица: Итерационное решение для модели (X_AY_M) при неизвестном u(x)

σ_x^2	σ_y^2	bias of $\widehat{\sigma}_x^2$	$sd \ \widehat{\sigma^2}_x$	bias of $\widehat{\sigma^2}_y$	sd $\widehat{\sigma}_y^2$
0.25	1e-04	-1.1e-01	5.6e-02	2.4e-05	2.6e-05
0.49	4e-04	7.2e-02	2.0e-01	-6.5e-05	7.7e-05
1.00	9e-04	-6.1e-02	2.8e-01	-9.7e-05	1.7e-04

Из таблиц следует, что оценивание u(x) и w(x) увеличивает смещение оценок, однако оценки остаются приемлемыми.

Описание задачи

Данные представляют собой измерения активности гена kruppel у зародышей дрозофил. Ошибка в данных порождена двумя причинами:

- Ошибкой определения пространственного расположения ядра гена;
- Не детерминированной природой активности гена.

Задача: оценить изменчивость активности гена при условии, что в наблюдениях присутствует ошибка определения пространственного расположения ядра гена.

Дан ряд длины N=1255, модель измерений которого предположительно удовлетворяет модели (X_AY_M) $f_i=u(x_i+arepsilon_i)(1+\delta_i).$

Схема исследования

- ullet Шаг 1: Выделение сигнала Применим к вектору F алгоритм метода "Гусеница" с длиной окна L=100, восстановим тренд по первой компоненте.
- Шаг 2: Вычисление оценки производной тренда
- Шаг 3: Вычисление оценок параметров σ_x^2 и σ_y^2 в модели $(X_A Y_M)$ по данным на интервале от 470 до 800, убрав тем самым значения с маленькими шумом для улучшения свойств оценок.
- Шаг 4: Проверка результата модели Сравнение модельной дисперсии шума $\widehat{\sigma}_x^2(1+\widehat{\sigma}_y^2)\widehat{w}^2(x_i)+\widehat{\sigma}_y^2\widehat{u}^2(x_i)$ и дисперсии шума как тренда квадратов остатков $(f_i-u(x_i))^2$.
- Шаг 5: Вычисление точности оценок с помощью бутстреп-метода

Оценивание тренда

Рис.: Исходные данные, тренд, остатки L=100.

Оценки дисперсий и проверка адекватности результата

Оценки параметров по итеративному регрессионному алгоритму: $\widehat{\sigma}_x^2 = 0.6, \ \widehat{\sigma}_y^2 = 0.002$

Рис.: $(f_i-\widehat{u}(x_i))^2$, скользящее среднее с окном 50 (пунктир) и модельная дисперсия шума $\widehat{\sigma}_x^2(1+\widehat{\sigma}_y^2)\widehat{w}^2(x_i)+\widehat{\sigma}_y^2\widehat{u}^2(x_i)$

Бутстреп-процедура для оценивания точности оценок

Для вычисления характеристик полученных оценок применим к данным следующую bootstrap-процедуру:

- ullet выделим тренд методом «Гусеница» с длиной окна L=100, тренд восстановим по первой компоненте;
- ullet получим оценки σ_x^2 и σ_y^2 в модели $(X_A Y_M)$;
- промоделируем ряд G для этой модели 100 раз, оценим σ_x^2 и σ_y^2 для каждой реализации ряда, получим выборку из оценок объема 100,
 - предполагая что тренд известен;
 - каждый раз оценивая тренд с помощью метода «Гусеница» с теми же параметрами;
- вычислим средние и стандартные отклонения оценок.

Таблица: Результаты bootstrap-процедуры

	mean of $\widehat{\sigma}_x^2$	mean of $\widehat{\sigma}_y^2$	sd $\widehat{\sigma}_x^2$	sd $\widehat{\sigma}_y^2$
тренд известен	0.59	0.002	7.0e-02	2.6e-04
тренд оценивается				

Результаты

- Были рассмотрены пять моделей данных с ошибками разной структуры, в которых интерес представляют дисперсии шумов, входящих к модель.
- Для каждой модели были построены оценки дисперсий шумов разными методами, методом максимального правдоподобия и с помощью сведения к регрессионной задаче.
- На ряде примеров было проведено сравнение методов.
- Разработанные методы были применены к реальным данным.