

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (напиональный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТГОЛОВНОЙ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКИЙ И МЕТОДИЧЕСКИЙ ЦЕНТР
ПРОФЕССИОНАЛЬНОЙ РЕАБИЛИТАЦИИ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ
ЗДОРОВЬЯ
КАФЕДРАСИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ
·

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

УТВЕРЖДАЮ

Ю.Е. Гапанюк_

(И.О.Фамилия) Д.М._Афанасьев

(И.О.Фамилия)

					Заведуюц	ций кафедрой	ИУ5
							(Индекс)
						B.V	 Терехов
							(И.О.Фамилия)
					« <u>07</u> » _	февраля	2024 г
Н	а выпол		З А Д А научно-ио			й работы	
			•				
Студент групп	пы _ <u>ИУ5Ц-81</u>	Б					
		Афанасье	в Ланиил Мир	онович			
		_ · · · · · · · · · · · · · · · · · · ·	ия, имя, отчеств	o)			
·	ИС	СЛЕДОВА	ТЕЛЬСКАЯ_		ская, производ Е <u>ДРА</u>	ственная, др.)	
График выпол	пнения НИР:	25% к	нед., 50% г	к нед	., 75% к не	ед., 100% к	_ нед.
Техническое	задание	_ Построение	моделей машинног	о обучения на	основе выбранного	датасета	
Оформление	UWWIUO_11@074	доватопъ	ะเกบี ยนถึกพระ				
• •	•		•				
Расчетно-пояс							
Перечень грас	рического (ил	люстратив	вного) материа	ала (чертех	ки, плакаты, с.	тайды и т.п.)	

(Подпись, дата)

(Подпись, дата)

Дата выдачи задания «<u>07</u>» <u>февраля</u> 2024 г.

Руководитель НИР

Студент

ВВЕДЕНИЕ	3
Постановка задачи	5
Описание исходных данных и используемых методов	7
Выполнение работы	9
Заключение	10
Источники	19

ВВЕДЕНИЕ

Этот набор данных, созданный Фишером в 1936 году, является классическим и широко используется для оценки методов классификации. Он содержит 150 записей о растениях ириса из трех видов.

Каждый экземпляр в наборе данных описывается четырьмя признаками:

- Длина чашелистка: длина чашелистка цветка
- Ширина чашелистка: ширина чашелистка цветка
- Длина лепестка: длина лепестка цветка
- Ширина лепестка: ширина лепестка цветка

Набор данных Iris используется в различных задачах машинного обучения, таких как:

- Классификация: Классификация растений ириса по их виду на основе их характеристик.
- Кластеризация: Группировка растений ириса на основе их сходства по характеристикам.
- Регрессия: Прогнозирование характеристик растений ириса на основе других характеристик.

Набор данных Iris является ценным ресурсом для изучения и разработки методов машинного обучения.

Постановка задачи

Цель:

Создать модель машинного обучения, которая будет классифицировать цветы ириса по их виду на основе их характеристик.

Входные данные:

Набор данных Iris, который содержит 150 записей о растениях ириса из трех видов. Каждый экземпляр в наборе данных описывается четырьмя признаками:

- Длина чашелистка: длина чашелистка цветка
- Ширина чашелистка: ширина чашелистка цветка
- Длина лепестка: длина лепестка цветка
- Ширина лепестка: ширина лепестка цветка

Выходные данные:

Модель должна предсказывать вид ириса для каждого нового экземпляра данных.

Ограничения:

- Модель должна быть построена на основе набора данных Iris.
- Модель должна быть точной и надежной.
- Модель должна быть интерпретируемой и понятной.

Ожидаемые результаты:

- Модель должна правильно классифицировать большинство экземпляров данных в наборе данных Iris.
- Модель должна быть able to generalize to new data that is not in the training set.
- Модель должна быть легко понятна и интерпретируема.

Этапы решения задачи:

- 1. **Сбор и предобработка данных:** Загрузить набор данных Iris и подготовить его к обучению модели.
- 2. Выбор алгоритма машинного обучения: Выбрать подходящий алгоритм машинного обучения для задачи классификации.
- 3. **Обучение модели:** Обучить модель на наборе данных Iris.
- 4. Оценка модели: Оценить производительность модели на тестовом наборе данных.

5. Интерпретация модели	: Проанализировать модель и понять, как она
принимает решения.	

Описание исходных данных и используемых методов

1. Описание исходных данных:

Набор данных: Iris

Источник: https://archive.ics.uci.edu/dataset/53/iris

Описание: Набор данных Iris содержит 150 записей о характеристиках ириса из трех видов: Iris setosa, Iris versicolor и Iris virginica. Каждый экземпляр в наборе данных описывается четырьмя признаками:

• Длина чашелистка: длина чашелистка цветка

• Ширина чашелистка: ширина чашелистка цветка

• Длина лепестка: длина лепестка цветка

• Ширина лепестка: ширина лепестка цветка

2. Используемые методы:

2.1. Предобработка данных:

- Загрузка данных: Загрузить набор данных Iris из репозитория UCI Machine Learning.
- Проверка данных: Проверить наличие отсутствующих значений и выбросов в данных.
- Обработка отсутствующих значений: Заменить отсутствующие значения средними значениями по столбцу или удалить экземпляры с отсутствующими значениями.
- Масштабирование данных: Масштабировать данные, чтобы все признаки имели одинаковый масштаб.

2.2. Выбор алгоритма машинного обучения:

- Логистическая регрессия: Алгоритм логистической регрессии используется для классификации бинарных задач. В данном случае его можно использовать для классификации ирисов на два класса: Iris setosa и остальные два класса (Iris versicolor и Iris virginica).
- Деревья решений: Деревья решений это древовидные структуры, которые используются для принятия решений. В данном случае их можно использовать для классификации ирисов на все три класса.
- **Нейронные сети:** Нейронные сети это биологически вдохновленные модели, которые могут обучаться на сложных данных. В данном случае их можно использовать для классификации ирисов на все три класса.

2.3. Обучение модели:

- Разделить набор данных на обучающую и тестовую выборки.
- Обучить выбранный алгоритм машинного обучения на обучающей выборке.
- Оценить производительность модели на тестовой выборке.

2.4. Оценка модели:

- Точность: Процент правильно классифицированных экземпляров данных.
- **ROC-кривая:** График, который показывает соотношение между истинно положительными и ложно положительными результатами при разных пороговых значениях.

2.5. Интерпретация модели:

- Анализ коэффициентов: Для логистической регрессии можно проанализировать коэффициенты модели, чтобы понять, как каждый признак влияет на прогноз.
- Визуализация деревьев решений: Для деревьев решений можно визуализировать дерево, чтобы понять, как оно принимает решения.
- Анализ активационных карт: Для нейронных сетей можно анализировать активационные карты, чтобы понять, какие части входных данных нейроны считают наиболее важными.

3. Выбор метода:

Выбор метода машинного обучения зависит от specific task and the characteristics of the data.

- **Логистическая регрессия:** Good choice for binary classification tasks, especially when the data is linearly separable.
- Деревья решений: Can handle both binary and multi-class classification tasks, and can be easily interpreted.
- **Нейронные сети:** Can handle complex nonlinear relationships in the data, but can be more difficult to interpret.

4. Ожидаемые результаты:

Ожидается, что выбранная модель машинного обучения сможет правильно классифицировать большинство экземпляров данных в наборе данных Iris.

Выполнение работы

Этапы:

1. Загрузка данных:

Загрузим набор данных

Разделим данные на обучающую и тестовую выборки.

2. обработка данных:

Масштабируем данные, чтобы все характеристики имели одинаковый диапазон значений.

3. Обучение модели:

Обучим несколько различных моделей машинного обучения, таких как K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Tree, Random Forest, Gradient Boosting.

Оценим производительность каждой модели на тестовой выборке.

4. Выбор лучшей модели:

Выберем модель с наилучшей производительностью на тестовой выборке.

5. Интерпретация результатов:

Проанализируем результаты работы выбранной модели.

Сделаем выводы о том, какие характеристики цветка наиболее важны для его классификации.

Заключение

В ходе выполнения проекта были обучены несколько моделей машинного обучения.

Лучшей моделью оказалась модель Random Forest, которая показала точность классификации 100% на тестовой выборке.

Другие модели также показали хорошую точность классификации:

KNN: 97%SVM: 97%

- Decision Tree: 100%

- Gradient Boosting: 100%

Вывод:

Все модели, обученные в рамках данного проекта, показали высокую точность классификации цветов Iris.

Модель Random Forest может быть рекомендована для использования в качестве инструмента для классификации новых цветов Iris по их характеристикам.

Были построены такие важные графики:

График распределение ширины и длины чашелистника и лепестков.

Были построены гистограммы для каждого признака:

Построение ящиков с усами для каждого признака

Построена тепловая карта корреляции

Визуализация метрик

Построение ROC-curve

График классификаций

График метрики МАЕ

График метрики MSE

График метрики R2

Источники

- codingfamily.net/machine-learning/a-simple-machine-learning-processexample-supervised-just-to-start-with/
- www.cloudiqtech.com/machine-learning-an-introduction/
- github.com/AnityaGan9urde/would-you-survive-titanic-2.0
- www.yourdatateacher.com/2022/06/06/which-models-are-interpretable/
- github.com/AijajKhan/Digit-Recognizer-by-Support-Vector-Machines
- github.com/KrishGupta-rgb/headbrain