Lesson 13 Algorithms For Weighted Graphs: Creative Intelligence Manifesting As Material Creation

Wholeness of the Lesson

Weighted graphs are graphs that have weights or costs associated with each edge. Two questions that often need to be answered when working with weighted graphs are (1) What is the least costly path between two given vertices of the graph? (2) What is the least costly subgraph of the given graph which includes all the vertices of the given graph? Dijkstra's Shortest Path Algorithm provides an efficient solution to the first question; Kruskal's Minimum Spanning Tree Algorithm provides an efficient solution to the second. Solutions to optimization problems of all kinds give expression to Nature's tendency to achieve the most possible with the least expenditure of energy. Waking up to one's own deeper values of intelligence has the effect of drawing Nature's style of functioning into our thinking and action so that we automatically achieve goals with less effort.

Outline

- Weighted graphs
- Shortest path problem
- Dijkstra's algorithm
- Minimum spanning tree problem
- Kruskal's Algorithm

Weighted Graphs

- ◆ In a weighted graph, each edge has an associated numerical value, called the weight of the edge (wt: edges → numbers)
- Edge weights may represent distances, costs, etc.
- Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

- Given a connected weighted graph and two vertices s and x, we want to find a path of minimum total weight between s and x.
 - "Length" of a path is the sum of the weights of its edges.
- Example:
 - Shortest path between Providence and Honolulu
- Applications
 - Internet packet routing
 - Flight reservations

Dijkstra's Algorithm: The Problem

- The *distance* of a vertex v from a vertex s, denoted d(s,v), is the length of a shortest path between s and v
- Question: Is it always true in a weighted graph that, for any two vertices v, w, d(v,w) = wt(v,w)? Prove or give a counterexample.
- Assumptions:
 - the graph G = (V,E) is connected
 - the edges are undirected
 - the edge weights are nonnegative

- Starting with weighted graph G = (V,E) and starting vertex s, we wish to compute, for each vertex v, the distance from s to v in G.
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- We will store our computed value of the distance from s to any vertex v in an array A:
 A[v] = our computed value of distance from s to v
- If our algorithm is right (which we will need to prove) then for each v in V, A[v] = d(s,v).

Dijkstra's Algorithm

Input: A simple connected undirected weighted graph G with nonnegative edge weights, determined by a weight function wt(x,y), and a starting vertex S of G.

Output: Array A of shortest distances d(s,v) from s to v, for each v in V, so A[v] = d(s,v) for each v

Aux Output: Array B with property that B[v] is a shortest path from s to v.

The Algorithm:

```
A[s] \leftarrow 0. B[s] \leftarrow empty path (empty set)

X \leftarrow \{s\} //Basis step

while X \neq V do

\{POOL \leftarrow \{(v,w) \in E \mid v \in X \text{ and } w \notin X\}\}

(v',w') \leftarrow search POOL for edge (v,w) for which A[v] + wt(v,w) is minimal add w' to X

A[w'] \leftarrow A[v'] + wt(v',w')

B[w'] \leftarrow B[v'] \cup \{(v',w')\}
```



```
Step 1.

A[s] \leftarrow 0

B[s] \leftarrow \{\}

Put s in X
```



```
Step 2.
```

```
X = {s}

POOL= { (s,v), (s,w) }

Find minimum greedy length – min of the following

A[s] + wt(s,v) = wt(s,v) = 1

A[s] + wt(s,w) = wt(s,w) = 4

Add v to X and set value of A[v]: A[v] ←1

Auxiliary Storage: B[v] = B[s] U {(s,v)} = {(s,v)}
```



```
Step 3.
    X = {s, v}
POOL = { (s,w), (v,w), (v,x) }
Find minimum greedy length - min of the following
    A[s] + wt(s,w) = wt(s,w) = 4
    A[v] + wt(v,w) = 1 + wt(v,w) = 1 + 2 = 3 ←
    A[v] + wt(v,x) = 1 + wt(v,x) = 1 + 6 = 7
Add w to X and set value of A[w]: A[w] ← 3
Auxiliary Storage: B[w] = B[v] U {(v,w)} = {(s,v), (v,w)}
```



```
Step 4.
```

 $X = \{s, v, w\}$ POOL= \{(w, x), (v, x)\}

Find minimum greedy length - min of the following

$$A[v] + wt(v,x) = 1 + wt(v,x) = 1 + 6 = 7$$

$$A[w] + wt(w,x) = 3 + wt(w,x) = 3 + 3 = 6$$

Add x to X and set value of A[x]: A[x] \leftarrow 6

Algorithm complete since X = V. Computed values:

$$A[s] = 0$$
 $A[v] = 1$ $A[w] = 3$ $A[x] = 6$

Computeed values of array B:

$$B[s] = \{ \}, B[v] = \{(s,v)\}, B[w] = \{(s,v), (v,w)\}, B[x] = \{(s,v), (v,w), (w,x)\}$$

Dijkstra - Exercises

Why is there a requirement that edges have nonnegative weights? Why can't we add a large positive constant to every edge (to eliminate negative edge weights) and compute shortest paths for the new graph using Dijkstra?

Dijkstra - Exercises

Why is there a requirement that edges have nonnegative weights? Why can't we add a large positive constant to every edge (to eliminate negative edge weights) and compute shortest paths for the new graph using Dijkstra?

Exercises, continued

Does Dijkstra's
Algorithm sometimes
work correctly when
there are negative
edge weights?
Consider this weighted
graph.

Exercises, continued

Why is Dijkstra's approach to the shortest path problem better than simply using BFS, as described in the previous lesson?

[BFS approach: Making all edge weights = 1 is same as removing all weights. Perform BFS with start vertex s and compute distance to each vertex by returning its *level* in the BFS spanning tree. These computed values should be same as values found using Dijkstra]

↓BFS Style

Dijkstra's Algorithm As A Greedy Algorithm

- Dijkstra's algorithm is an example of an optimization problem – trying to find an optimal solution among many possible solutions.
- Algorithms for optimization problems typically go through a sequence of steps, making choices along the way.
- If, in making such choices, an algorithm always chooses the option that appears best at the time, it is called a *greedy algorithm*.
- Dijkstra's Algorithm is an example of this algorithm design strategy – select the next vertex to enter the cloud by choosing the one that yields least greedy length.

Dijkstra – Correctness

Loop Invariant: I(i) is the following statement: (where i means iteration #i)

$$(1) |X| = i + 1$$

(2)
$$A[v] = d(s,v)$$
 for all $v \in X$

Preconditions for loop:

$$X = \{s\}, A[s] = 0$$
 (Basis Step)

Postconditions for loop:

$$X = V$$
, $A[v] = d(s,v)$ for all $v \in V$

Dijkstra – Correctness (2)

Verification of I(i) for all iterations i = 1,2 ... n-1. Base case i = 1, it is obvious that I(1) is true. *Induction Step*: We assume I(i) is true, so |X| = i + 1 and A[v] = d(s,v) all v in X.

- ◆ Iteration i+1 causes one more vertex to be added to X, so |X| = i + 2
- During iteration i+1, algorithm locates (v',w') that
 has least greedy length among edges from X to
 V X, and the algorithm sets A[w'] = A[v']+d(v',w')
- ◆ To complete the induction, it suffices to show A[w'] is shortest path length from s to w', i.e., A[w'] = d(s,w')

Dijkstra – Correctness (3)

- Let q: s, ..., y, z, ..., w' be a truly shortest path from s to w', where z is first vertex in V X encountered on the path q. Let L be the length of q. Let q_0 be the path s, ..., y, z; we denote its length L_0 . Notice that $L_0 \le L$ (since no edge has negative weight). We will actually show that $A[w'] \le L_{0_r}$ and this will finish the induction step.
- Notice that the sum of edge weights in q_0 from s to y is the true distance d(s,y) from s to y because q is a shortest path from s to w' (if we could find a shorter path from s to y, we could also find a shorter path from s to w'). Therefore, by the induction hypothesis,

$$L_0$$
 = length of q_0 = $d(s,y)$ + $wt(y,z)$ = $A[y]$ + $wt(y,z)$.

- Recall from the previous slide that the algorithm so far has already defined A[w'] = A[v'] + wt(v',w') and that this is the smallest sum of the form A[u] + wt(u,w), for u in X and w not in X.
- ♦ It follows that $A[v'] + wt(v',w') \le A[y] + wt(y,z)$ and so $A[w'] \le L_0$. This completes the induction and proof of correctness.

Dijkstra – Running Time

- Running time can be computed by observing that a (potentially) exhaustive search of edges is made in each iteration, leading to a running time of O(mn).
- This can be improved to O(m * log n) if an optimal data structure is used.

Improving Dijkstra

- Since "mins" are needed in each iteration, serve them using a Priority Queue instead of doing an exhaustive search of edges.
- ◆ Exhaustive search for next optimal vertex forces us to make *redundant computations* (next slides). These can be avoided by having the next optimal vertex *immediately available* at each step of the algorithm, and this can be accomplished by storing vertices in a Priority Queue in which vertices are prioritized according to optimal greedy lengths.

Redundant Computations in the Naïve Algorithm (1)

Steps 2 and 3 in worked example:


```
Step 2.  X = \{s \}   POOL = \{(s,v),(s,w)\}  Find minimum greedy length – min of the following  A[s] + wt(s,v) = wt(s,v) = 1   A[s] + wt(s,w) = wt(s,w) = 4  first computation  Add v to X and set value of A[v]: A[v] \leftarrow 1
```



```
Step 3.  X = \{s, v\}  POOL = \{(s,w), (v,w), (v,x)\}  Find minimum greedy length — min of the following  \underbrace{A[s] + wt(s,w) = wt(s,w) = 4}_{A[v] + wt(v,w) = 1 + wt(v,w) = 1 + 2 = 3}_{A[v] + wt(v,x) = 1 + wt(v,x) = 1 + 6 = 7}_{Add w to X and set value of A[w]: A[w] \leftarrow 3
```

Redundant Computations in the Naïve Algorithm (2)

Steps 3 and 4 in worked example:


```
Step 3.
    X = {s, v}
    POOL = { (s,w), (v,w), (v,x) }
Find minimum greedy length - min of the following
    A[s] + wt(s,w) = wt(s,w) = 4
    A[v] + wt(v,w) = 1 + wt(v,w) = 1 + 2 = 3
    A[v] + wt(v,x) = 1 + wt(v,x) = 1 + 6 = 7 first comput
Add w to X and set value of A[w]: A[w] ← 3
```



```
Step 4. X = \{s, v, w\}
POOL = \{(w, x), (v, x)\}
Find minimum greedy length – min of the following A[v] + wt(v, x) = 1 + wt(v, x) = 1 + 6 = 7 \quad 2nd \ comput
A[w] + wt(w, x) = 3 + wt(w, x) = 3 + 3 = 6
Add x \text{ to } X \text{ and set value of } A[x] \colon A[x] \leftarrow 6
```

Dijkstra – Using Priority Queue

The Algorithm:

```
A[s] < 0
A[v] \leftarrow infinity (for each vertex v in V where v = s)
Q <- new heap-based priority queue //items in Q are constructed by (u, A[u]) and ordered by A[u]
M <- new HashMap where entries are (u, A[u])
while !Q.isEmpty() do
   (u, A[u]) <- Q.removeMin()
   M.remove(u)
   for each v adjacent to u and v is in Q:
        alt = A[u] + wt(u, v)
       if alt < A[v]
           A[v] <- alt
           Q.updateNode(v, alt)
           M.put(v, alt)
return the label A[u] for each vertex u
```

Running time - updateNode

- updateNode(v, alt):
 - We can think it as two steps delete node at v, and insert a new node (v, alt).
 - Insert a new node to priority queue takes O(log n)
 - Lab: Describe an algorithm for deleting a key from a heap-based priority queue that runs in O(log n) time.

Running time

Initialize A[v] for all vertices.

O(n)

Build priority queue for all vertices

O(n)

Build the hashmap

O(n)

The while loop removes one min node each time until the priority queue is empty. So the algorithm is going to execute while loop n times.

Remove min node and do downheap

O(nlog n)

Remove min node from hashmap

O(n)

Computing the greedy length for each edge is done exactly once, if the greedy length computed at some particular point is less than what is stored on priority queue, we need to update this value on priority queue, update this value in the hashmap

O(mlog n)

O(m)

Since the graph is connected, n is O(m).

Running time is therefore

O(m log n)

This improves the O(mn) running time of the naïve algorithm.

Main Point

Dijkstra's algorithm is an example of a shortest-path algorithm — an algorithm that efficiently (O(mlog n)) computes the shortest distance between two vertices in a graph.

Analogously, Nature itself is known to obey the law of least action — Nature does the least possible amount of work to proceed from one location or state to another. Nature's way of achieving this makes use of computational dynamics that involve "no effort" and no steps.

Minimum Spanning Tree

Spanning subgraph

Subgraph of a graph G
 containing all the vertices of G

Spanning tree

Spanning subgraph that is itself a tree

Minimum spanning tree (MST)

 Spanning tree of a weighted graph with minimum total edge weight

Applications

- Computer network (minimize cost of cable)
- Transportation networks
 (minimize cost of road construction)

Kruskal's Greedy Strategy

Build a collection T of edges by doing the following: At each step, add an edge e to T of least weight subject to the constraint that adding e to T does not create a cycle in T. To answer questions about correctness and running time of this algorithm, we need to specify certain details.

Implementation Questions

- 1. How do we pick the next edge at each step?
- 2. How do we make sure that we do not add an edge to T that produces a cycle?

Solutions

- 1. We can arrange edges by sorting them by weight (in ascending order), and so we pick edges according to this sorted order.
- We can ensure no cycles are created by building local minimum spanning trees around each vertex (and using the Lab 11 Extra Credit facts)

Kruskal's Algorithm

- First step is to sort all edges by weight.
- Second step involves creation of clusters
 - Every vertex is initially placed in a trivial cluster --the cluster for a vertex v, denoted C(v), is simply {v}. A cluster represents a local minimum spanning tree.
 - When the next edge (u,v) is considered, C(u) and C(v) are compared -- if different, (u,v) is included as an edge in the final output tree, and C(u) and C(v) are merged.

Kruskal's Algorithm

Input: A simple connected weighted graph G = (V, E) with n vertices and m edges **Output:** A minimum spanning tree T of G

The Algorithm:

```
sort E in increasing order of edge weight

for each vertex v in G, define an elementary cluster C(v) (which will grow) by C(v) = \{v\}

T \leftarrow an empty tree // T will eventually become the minimum spanning tree

while T has fewer than n-1 edges do

(u,v) \leftarrow next edge

C(v) \leftarrow cluster containing V

C(u) \leftarrow cluster containing U

if C(v) \neq C(u) then

add edge (u,v) to T

merge C(u) and C(v) (and update other clusters as needed)
```

Optional: Correctness

We need to verify the following Facts:

- 1. During execution, distinct clusters are always disjoint, and for each cluster C, if T[C] is the subgraph of G whose set of vertices is C and whose edges are those edges of T whose endpoints lie in C, then T[C] is a tree.
- 2. No cycle ever arises in T during execution of the algorithm
- 3. The main loop terminates (it is conceivable that after all edges have been examined, T still contains < n 1 edges this is shown to be impossible)
- 4. The set T that is returned is a spanning tree for G
- 5. The set T is a *minimum* spanning tree for G.

Verification of the Loop Invariant

To establish Facts 1 - 2, we establish the following loop invariant I(i):

- (a) Distinct clusters are disjoint
- (b) For each cluster C, the subgraph T[C] is a tree
- (c) T contains no cycles

[NOTE: As the algorithm proceeds, we do *not* expect T itself to be a tree because it is composed of disconnected pieces. We will show that these pieces do assemble into a tree by the time the algorithm has completed.]

At the beginning of execution, when singleton clusters are first formed, (a) – (c) hold. We now assume (a) – (c) hold and consider the iteration in which the next edge (x,y) is examined, and show that (a) – (c) continue to hold. In the algorithm, if C(x) = C(y), the iteration ends and the state of the clusters and that of the set T are unchanged, so we assume $C(x) \neq C(y)$.

To establish that (a) - (c) hold, we make use of background facts from the lab.

Verifying the Loop Invariant (a)-(c)

For (a) [distinct clusters are disjoint], joining two clusters with an edge, forming a new larger cluster, does not change the fact that distinct clusters are disjoint.

For (b) [T[C] is a tree], adding the edge (x,y) to the union of the trees T[C_x], T[C_y] results in another tree, T[C_x] U T[C_y] U {(x,y)}, by Background Fact B (previous slide). So, if we let $C = C_x$ U C_y , then T[C] is a tree.

For (c) [no cycles], notice that the edges that compose T itself are formed as the union of the edges in the (disjoint) trees $T[C_v]$, for v in V. Since none of these trees contains a cycle, T itself does not contain a cycle either.

This establishes the loop invariant and therefore Facts 1, 2.

Correctness – Fact 3, "while loop terminates"

We verify that the while loop in the algorithm eventually terminates:

Assume that after all edges have been examined, T still has < n-1 edges (this would be the situation when the while loop fails to terminate).

By Fact 2, T contains no cycle. By Background Fact 3, since |T| < n-1 and contains no cycle, there is an edge e in G so that T U {e} also contains no cycles and so that e \notin T.

But this situation is impossible: During the execution of Kruskal's algorithm, the edge e = (x,y) was examined at some point, because, if the while loop does not terminate, *every* edge would be examined eventually. When e was examined, Kruskal rejected e (since e was not in T after all edges had been examined); the only reason Kruskal has for rejecting is to avoid creation of a cycle in T. But, by the way e was chosen above, clearly e does not introduce a cycle, as Background Fact 3 shows.

The reasoning shows that the assumption that the while loop never terminates is incorrect.

Correctness – Fact 4, "T is a spanning tree"

We verify Fact 4, that, after execution of Kruskal's algorithm, T is a spanning tree.

❖ We have already seen that T has no cycles and therefore (by the way the while loop is defined) T has n − 1 edges, where n is the number of vertices in G. By the lemma below, T must have n vertices. It follows that T is a spanning tree.

Lemma. If a graph H is a graph that has n vertices and m edges and if $m \ge n$, then H has a cycle.

Proof. If H is connected but has no cycle, it follows that m = n - 1. Since $m \ge n$, it therefore follows that H has a cycle.

If H is not connected, write H as a union of its connected components: $H = H_1 \cup H_2 \cup \ldots \cup H_k$, where k > 1, where, for each i, H_i has n_i vertices and m_i edges. Since each H_i is a tree, $m_i = n_i - 1$. We have therefore

$$m = m_1 + ... + m_k = (n_1-1) + ... + (n_k-1) = n - k < n$$
, contradiction.

Correctness – Fact 5

To verify Fact 5 – that, after execution of Kruskal's algorithm, T is a *minimum* spanning tree – the main idea is to establish the following two points

- At each stage of the algorithm, for each cluster C, T[C] is not only a tree, but is in fact a minimum spanning tree for G[C], the subgraph induced by C.
- After the algorithm has finished, all clusters have merged into a single cluster, which must be equal to V, the set of all vertices of G.

From these two points, it follows that T = T[V] is a minimum spanning tree for G = G[V].

To establish the truth of these two points, we consider the following enhanced loop invariant:

<u>I(i)</u>: For each cluster C, T[C] is a minimum spanning tree for G[C].

Correctness (Fact 5)

Before the first iteration, I is clearly true. After the first iteration, when the first edge is added and two clusters merge, it is still true. We consider later iterations inductively: We assume I(i) and prove I(i+1). We assume that at the i+1st iteration, an edge e = (x,y) is added; if not, I(i+1) holds trivially.

Let C, D be the clusters for which $x \in C$ and $y \in D$. We show that $T_{C,D} = T[C] \cup T[D] \cup \{e\}$ is an MST for $G[V_1,V_2]$. If not, let S be an MST for $G[V_1,V_2]$.

Then S[C] (S restricted to the vertices of C) is a spanning tree for G[C], and S[D] is a spanning tree for G[D]. Total weight of S[C] is \geq total weight of T[C] and total weight of S[D] is \geq total weight of T[D] (by minimality of the spanning trees T[C], T[D]). Since both T_{C,D} and S are spanning trees for G[V₁,V₂], they have the same number of edges. Likewise, T[C] and S[C] must have the same number of edges, and T[D] and S[D] must have the same number of edges. This means that there is just one edge f in S having one endpoint in C and the other in D. Since total weight of S is less than that of T_{C,D} (since S is truly an MST) we have

wt(f) < wt(e).

Correctness, Fact 5 (continued)

It follows that f was processed by the algorithm before e was processed, and was rejected because both its endpoints already belong to a single cluster; but this is impossible because one endpoint of f lies in C, the other in D, and C, D, at this stage, are disjoint clusters. Contradiction. We have shown I(i+1) holds, assuming that I(i) does.

To complete the proof of Fact 5, we need to show that all the local MSTs eventually merge into a single MST for G. Since, as we have shown, at any stage of the algorithm, T is the union of the trees T[C], for all clusters C, if at the end of the algorithm there were two (or more) clusters C_1 , C_2 remaining, then T would be the union of two (or more) disjoint trees, and would therefore be disconnected. But T has been shown to be a tree (and is therefore connected). This shows all the clusters have merged into one cluster by the end of the algorithm.

Running Time of Kruskal: First Try

- Time to sort edges: O(mlog n)
- Cost of while loop = O(mn)
 - loop potentially accesses every edge
 - comparison C(x) = C(y), with a hashtable implementation of sets, is O(n)
 - merging C(x), C(y) costs min{|C(x)|, |C(y)|}, which is O(n).
- Cost of while loop can be improved with a good choice of data structure

DisjointSets Data Structure

- Data structure for maintaining a partition of a set into disjoint subsets (data structure sometimes called Partition rather than DisjointSets)
 - General features
 - Data:
 - Universe U the base set that is being partitioned (this set is never altered)
 - Collection C = {X₁, X₂, ..., X_n} of subsets of the universe the subsets are disjoint and their union is U (these subsets are modified when the data structure is used size of C shrinks because of repeated union operations)
 - Operations:
 - find(x) returns the subset X_i to which x belongs
 - union(A,B) replaces the subsets A, B in C with A U B.

Example

- Initial Structure:
 - $U = \{1, 2, 3, 4, 5\}$
 - $X_1 = \{1, 2\}, X_2 = \{3\}, X_3 = \{4, 5\}$
 - $C = \{X_1, X_2, X_3\}$
- find Operation: $find(2) = X_1$ find(5) = X_3
- union Operation:
 union(X₁, X₂) = X₁ U X₂ = {1,2,3}
 New value for C is {{1,2,3}, {4,5}}

Tree-Based Implementation of DisjointSets

- The elements of each set X in the collection C are represented by nodes in a tree T_X ; the set X itself is referenced by its root r_X .
- find(x) returns the root of the tree to which x belongs
- union(x,y) joins the tree that x belongs to to the tree that y belongs to by pointing root of one to the root of the other.

Example

U = {\a', \b', \c', \d', \e'}
C = {{\a'}, {\b'}, {\c', \d', \e'}}
Tree representations:

find('d') returns 'c'

Example (cont)

union('b', 'c') points root 'b' to root 'c'

Now, find('b') returns 'c'

Code

```
//handle trees by keeping track of parents only
//whenever a character c is a root, its parent is set to be c itself
HashMap<Character, Character> parents = new HashMap<Character, Character>();
char[] universe;
//find returns the root of tree representing a subset
//worst case: find requires full depth of tree to locate root of representing tree
public char find(char element) {
  char nextParent = parents.get(element);
  if(nextParent == element) {
     return element;
  } else {
     return find(nextParent);
```

Code

```
//union() accepts only tree roots (representing subsets) as arguments
//The method simply points the first root to the second
//In the worst case, resulting tree is taller than original two
public void union(char a_tree, char b_tree) {
    parents.put(a_tree, b_tree);
}
```

To avoid building up trees that are too tall (and therefore imbalanced), an optimization can be used: Always point the shorter tree's root to that of the taller.

Optimized Code

```
HashMap<Character, Character> parents = new HashMap<Character, Character>();
char[] universe;
//keep track of heights of trees
HashMap<Character, Integer> heights = new HashMap<Character, Integer>();
public void union(char a tree, char b tree) {
  int height_a = heights.get(a_tree);
  int height_b = heights.get(b_tree);
  if(height a < height b) {
     parents.put(a_tree, b_tree);
  } else if(height_b < height_a) {</pre>
     parents.put(b_tree, a_tree);
  } else { //height_a == height_b
     parents.put(a_tree, b_tree);
     heights.put(b_tree, height_b + 1); //this is case in which height is increased
```

NOTE: With this optimization of union(), find() can be shown to run in O(log n) in the worst case. See https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Optimized Running Time of Kruskal

- Time to sort edges: O(mlog n)
- Cost of while loop = O(mlog n)
 - loop potentially accesses every edge //O(m)
 - comparison C(x) = C(y) follows these steps: //locates roots of representing trees
 - $r_x \leftarrow find(x)$ and $r_y \leftarrow find(y)$ //O(log n)
 - check whether $r_x = r_y //O(1)$
 - merging C(x), C(y) is done by union() operation 1/O(1)
- ◆ Total (optimized) running time for Kruskal: O(mlog n).

Connecting the Parts of Knowledge with the Wholeness of Knowledge

- 1. A Minimum Spanning Tree can be obtained from a weighted graph G = (V,E) by examining all possible subgraphs of G, and extracting from those that are trees having the smallest sum of edge weights. This procedure runs in $\Omega(2^m)$, where n = |E|.
- 2. Kruskal's Algorithm is a highly efficient procedure (O(mlog n)) for finding an MST in a graph G. It proceeds by choosing edges with minimum possible weight subject to the constraint that selected edges do not introduce a cycle in the set T of edges obtained so far.

- 3. Transcendental Consciousness, the simplest form of awareness, is the source of effortless right action.
 - 4. Impulses Within the Transcendental Field.
 Effortless, economical, mistake-free creation arises from the self-referral dynamics of the field of pure consciousness.
 - 5. Wholeness Moving Within Itself. In Unity Consciousness, optimal solutions arise as an effortless unfoldment within one's unbounded nature.