中国科学院大学网络空间安全学院专业核心课

2021-2022学年春季学期

网络空间安全态势感知 Cyber security situation awareness

授课团队: 刘宝旭 卢志刚 刘玉岭

助 教:李宁

中国科学院大学网络空间安全学院专业核心课

网络空间安全态势感知

Cyber security situation awareness

[第6次课] 语义与本体表示技术

授课教师: 刘玉岭

授课时间: 2022.3.10

网络空间安全态势感知

- 一、语义网络概念与内涵
- 二、本体概念与内涵
- 三、语义网与本体的应用
- 四、未来的挑战

□互联网的发展过程

- 第一代互联网(Web 1.0)
 - 通过超链接把资源联系在一起
 - 以HTML、URL和HTTP等技术为标志,以静态页面的形式来展 现信息
- 第二代互联网(Web 2.0)
 - 动态的、允许用户与应用程序交互,动态的生成返回页面。
 - 以动态HTML 语言、Javascript、Ajax、JQuery、PHP、C#等技 术为标志
- 第三代互联网(Web 3.0)
 - ▶ 一个组成部分:语义网(Semantic Web)

□现有的Web存在的问题

- Web信息在内容上不容易自动关联
- Web信息在内容上不容易自动理解
- 传统的Web 侧重信息的定位与展示,并不侧重内容的理解

□语义网的目标

2021-2022春

当前"机器可阅读"的万维网扩展为"机器可理解"的语义 网

- 语义网 (Semantic Web)
 - 万维网联盟的Tim Berners-Lee在1998年提出
 - Tim Berners-Lee: 互联网之父、HTTP和HTML的发明人
 - 通过给万维网上的文档(如: HTML)加能够被计算机所理 解的语义(Meta data),使整个互联网成为一个通用的信 息交換媒介
 - W3C的提法: The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries

设计目标: 机器可自动处理 机器可理解

网络空间安全态势感知

• 基本概念

语义网络是通过概念及其语义关系来表达知识的一种网络图,是一种"带标识"的有向图.

节点表示各种事物,概念,情况,属性,动作,状态等.弧表示 各种语义关系

(节点1,弧,节点2)

也可表示为:

当把多个基本的网络通过相应的语义关联在一起时,就得到一个语义网络

- 语义网体系结构
- Berners-Lee最初提出, Berners-Lee.Semanticweb-XML2000

Grigoris Antoniou等提出的另一类体系结构

A Semantic Web Primer, G Antoniou

维基百科上的语义网堆栈

网络空间安全态势感知

2021-2022春

RDF (Resource Description Framework) 概念

- 由W3C组织于1999年提出,于2004年2月成为W3C推荐标准
- 是一种语义资源描述语言
- 本质上是一种数据模型,涵盖数据结构、操作符、查询语言 和完整性规则

● RDF基本数据模型

- 资源(Resource):能够使用RDF表示的对象,资源用唯一的URI来表示
- 属性(Property):用来描述资源的特征或资源间的关系
- 断言(Statements): 为三元组<主体,属性,客体>

RDFS (RDF Schema)

- 定义了一组标准类及属性的层次关系词汇
- 是一种模式语言,定义了特定领域的词汇的含义

Adida B, Birbeck M, McCarron S, et al. 2013. RDFa Core 1.1 - Second Edition

● 语义网络的推理过程

- 用语义网络表示知识的问题求解系统包括:
 - ●用语义网络构成的知识库
 - 用于问题求解的推理机构
- 语义网络的推理过程主要有两种:继承,匹配

所谓继承就是对事物的描述从概念节点或类节点传递 到实例节点,例如下图:

- ■继承推理的三种继承模式
 - **值继承**: ISA链与 AKO (A Kind Of) 链,常用知识 传递方法
 - "**如果需要" (If** needed) 链: 有时对不知道的 槽值,可以计算得到,通过此计算程序得到知识的模 式称为if - needed链,如通过体积与密度在需要时可 以计算其质量
 - "缺省"继承:在对事务所作假设无十分把握时, 可以加上"可能"字样,这种不肯定的值称为"缺省" 值

- 一、语义网络概念与内涵
- 二、本体概念与内涵
- 三、语义网与本体的应用
- 四、未来的挑战

- 本体ontology
 - 斯坦福大学Tom Gruber: 一种对于某一概念体系的明确表述 (specification)
 - W3C: Ontology is about the exact description of things and their relationships
 - 德国学者Studer等人(1998): "本体是共享概 念模型的明确的形式化规范说明"

基本特征:概念化、形式化、可共享、明

确、描述领域知识

● 本体描述语言

- 基于谓词逻辑的本体描述语言:表示能力有限
- 基于Web的本体描述语言: 主流语言

特征 ——	语言							
1寸14. —	SHOE	OML/CKML	RDF(S)	OIL	DAML+OIL	OWL		
Horn 逻辑	是	否	否	否	否	否		
描述逻辑	否	否/是	否	是	是	是		
谓词逻辑	否	否	否	否	否	否		
类的相等	支持	支持	不支持	不支持	支持	支持		
属性/谓词相等	支持	支持	不支持	不支持	支持	支持		
实例相等	不支持	不支持	不支持	不支持	支持	支持		
本体分布定义	支持	不支持	支持	支持	支持	支持		
本体扩展	支持	不支持	支持	支持	支持	支持		
本体版本修订	支持	不支持	不支持	不支持	不支持	支持		
计算特性区分	无	有	无	有	无	有		

- OWL (Web Ontology Language)
 - OWL旨在提供一种可用于描述网络文档和 应用之中所固有的那些类及其之间关系的 语言,于2004年2月成为W3C的推荐标 准
 - OWL提供了3种表达能力递增、计算效率 递减的子语言: OWL Lite、OWL DL、 OWL Full
 - OWL Lite: 单一分类层次和简单约束 , 是OWL DL的子集仅支持部分的 OWL语言要素
 - OWL DL: 表达能力强大,与RDF不 完全兼容
 - OWL Full: 是OWL语言的全集,对 推理的支持难以预测

OWL (Web Ontology Language)

OWL :	Design Goals for OWL	
intersec	Design Guais for OWL	
unionO	■ Shareable	
compler	Changing over time	
oneOf	■ Interoperability between ontologies	S.A}
	Inconsisteny detection (requires a logic)	
allValue	Balancing expressivity and complexity	hrope
someVa	■ Ease of use	
Cardina	Compatible with existing standards	
maxCar	■ Internationalisation	
minCar		

● 本体构造方法

十十分に対し								
•	骨架法: 割 IDEF5法:	名称	生命 周期	相关 技术	方法 细节	特点	应用领域	
•	七步法: 基用, 应用广	TOVE 法	非真正 生命周期	不确定	少	基于 问题	企业	浃
•	METH-ON TOVE法:	METHON- TOLOGY 法	有	有 ,不全	详细	生命周期	化学、(Onto) 2Agent	
•	KACTUS浸 体	骨架法	非真正 生命周期	不确定	少	指导 方针	企业	
•	SENSUS法 循环获取法	KACTUS 法	没有	不确定	很少	知识复用	多用途复杂 技术系统知 识建模] 支
•	术 五步循环注	SENSUS 法	没有	不确定	一般	启发式	电子科学、军事等	
		IDEF5 法	没有	有 ,不全	详细	结构化	企业	
		七步法	非真正 生命周期	有	详细	系统	医学等	

网络空间安全态势感知

● 构造本体的要义

● Gruber在1995年提出的5条规则:

清晰 (Clarity)

定义应该是客观的,形式化的

一致 (Coherence)

它应该支持与其定义相一致的推理

可扩展性 (Extendibility)

应该提供概念基础, 支持在已有的概念基础上定义新的术语

编码偏好程度最小 (Minimal encoding bias)

概念的描述不应该依赖于某一种特殊的符号层的表示方法

本体约定最小(Minimal ontological commitment)

本体约定应该最小, 只要能够满足特定的知识共享需求即可。

内容概要

- 一、语义网络概念与内涵
- 二、本体概念与内涵
- 三、语义网与本体的应用
- 四、未来的挑战

语义网与本体应用-数据表示(1)

● 安全态势要素的表述

SNAP and SPAN:Towards Dynamic Spatial Ontology

ExistsAt(
$$x$$
, t) $\equiv_{\text{def}} \exists \omega \, (\text{Snap}\Omega(\omega) \land \text{TemporalIndex}(\omega, t) \land \text{Constituent}(x, \omega))$

ExistsDuring
$$(x, y) \equiv_{\text{def}} \text{TimeRegion}(y)$$

 $\land \forall z \text{ ((TimeInstant}(z) \land \text{ProperPart}(z, y)) \rightarrow \text{ExistsAt}(x, z))$

Constituent: Entity x Ontology	TemporalIndex: Ontology x TimeRegion
Part: Entity x Entity	SpatialLocation:
InheresIn: SnapDependent x Substantial	SnapEntity x SpaceRegion
TemporalLocation: SpanEntity x TimeRegion	TemporalLocation: SpanEntity x SpacetimeRegion
Exists-At: SnapEntity x TimeInstant	ParticipatesIn: Substantial x Processual

网络空间安全态势感知

Figure 3. Primitive relations and their signatures.

语义网与本体应用-数据表示 (2)

一个扩展的态势本体模型:非网络安全

A Situation-Aware Method Based on Ontology Analysis of the Semantic Social Network

语义网与本体应用-数据表示 (3)

语义网与本体应用-数据表示 (4)

Combining Fuzzy Logic and Semantic Web to Enable Situation Awareness in Service Recommendation **Place**

语义网与本体应用-数据表示 (6)

FIGURE 5. Top classes of the NSSA ontology model.

Network Security Situation Awareness Based on Semantic Ontology and User-Defined Rules for Internet of Things

网络空间安全态势感知

语义网与本体应用-数据表示 (7)

2021-2022春

语义网与本体应用-数据溯源(1)

● 开放溯源模型 (Open Provenance Model, OPM)

	_		_		
was	Der	ıved	Н	ro	m

	关系名称	起点	终点	指代含义	
	Used	活动	实体	活动使用实体	١t
	Was Generated by	实体	活动	活动产生实体	10
	Was Informed by	活动	活动	两个活动之间存在实体的交流	
	Was Derived by	实体	实体	活动使用的实体与产生的实体之间的关系,主要适用涉及活动未知或者不关注的情况	
¹ prefix time:	Was Attributed to	实体	代理	代理对实体承担责任	
→ Objec	Was Associated with	活动	代理	代理在活动中承担责任	ıstant
Objec define rdfs:se	Acted on Behalf of	代理	代理	承担不同责任代理之间的关系	
					J

语义网与本体应用-数据溯源(3)

Occurrent: Events – happen and then don't exist

Capating of the complete of t

网络空间安全态势感知

dynamic entities get spatial properties indirectly through relationships with spatial entities

2021-2022春

语义网与本体应用-数据溯源 (4)

dynamic entities get spatial properties indirectly through relationships with spatial entities

网络空间安全态势感知

2021-2022春

语义网与本体应用-决策辅助 (1)

Ontology Applications for Achieving Situation Awareness in Military Decision Support Systems

网络空间安全态势感知

https://icodrops.com/ontology-network/

2021-2022春

内容概要

- 一、语义网络概念与内涵
- 二、本体概念与内涵
- 三、语义网与本体的应用
- 四、未来的挑战

未来的挑战

- 网络数据智能语义化
 - 智能标记
 - 语义理解
 - ...
- 网络主体的智能推理
 - 精准的机器推理 (学习)
 - 语义表达模型扩展
 - 本体的时空动态演变
 - ...
- 安全与隐私
 - 能力表达与隐私泄露是一对矛盾体

中国科学院大学网络空间安全学院专业核心课

语义与本体

