

Linear voltage regulator

■ Product introduction

XC6206 series is a CMOS step-down voltage regulator with high ripple rejection, low power consumption, low dropout, overcurrent and short - circuit protection. These devices have a very low static bias current (6.0µA Typ.), which can provide an output current of 250mA even if the difference between the input and output voltages is very small, and still maintain a good regulation rate. Because the voltage difference between input and output t is very small and the static bias current is very small, these devices are especially suitable for battery-powered products that want to prolong the battery life, such as computers, consumer products and industrial equipment.

■ Product features

- High precision output voltage: gear A: ±1%, gear B: ±2.5%
- Output voltage: 1.5V~5.0V (step size 0.1V)
- Very low static bias current (Typ.=6.0 μ A)
- Low temperature adjustment coefficient

- The highest input voltage can reach 8V.
- With strong load capacity: when Vin=4.3V and Vout=3.3V, lout=250mA.
- It can be used as regulator and reference voltage.
- Good input stability: Typ. 0.03%/V
- Package form: SOT89-3, SOT23-3

■ product usage

- Battery power supply system
- Cordless telephone equipment
- Wireless control system
- Portable/palm computer
- Portable consumer equipment
- Portable instrument
- Automobile electronic equipment
- Voltage reference source

Package form and pin definition function

	Pin serial number		
MR	PR package	Pin definition	function declaration
S0T23-3	S0T89-3		
1	1	VSS	Chip grounding terminal
2	3	OUT	Output
3	2	VIN	Input

■ Model description

XC6206P

Representat ive number	describe	symbol	describe	
	Output voltage	12~50	: e.g. output 3.0V =3, =0	
	precision	2	:±2.5%	
	p. 66.6.6.	1	: ±1%	
		М	: SOT-23	
	package	Р	: SOT-89	
	Belt loading	R	: embossed belt, standard inflow	

functional block diagram

Limit parameter

project	symbol	parameter		parameter		limit value	unit
voltage	Vin	input voltage		input voltage		9	V
	Vout	Output voltage		Vss-0.3 ~Vout+0.3	V		
elect riccurrent	lout	output (current	500	mA		
power	PD	SOT23	Maximum allowable	300	mW		
consumption		SOT89-3	power consumption	500			
	Tw		Vorking nperature	-25~+80	°C		
temperature	Тс		Storage nperature	- 40 ~ +125	°C		
	Th		velding nperature	260	°C ,10s		

■ Electrical characteristics (Cin=Cout=10uF, Ta=25°C unless otherwise specified)

trait	symbol	con	ndition	minimum value	typical value	maximum	unit
Output voltage	V _{OUT} (E)	I _{OUT} =1mA, V _{IN} =	= V _{OUT} (T) +1V	V _{OUT} (T) *0. 98	V _{OUT} (T)	V _{OUT} (T)* 1.02	V
Maximum output current	I _{OUT} (max)	$V_{IN}=V_{OUT}(T)+1V$	T	100			mA
			1. $5V \leq V_{OUT}(T) \leq 2.5V$		200	280	
Drop pressure	Vdrop	$I_{\text{OUT}} = 50 \text{mA}$	$2.6V \leq V_{OUT}(T) \leq 3.3V$		160	240	mV
difference			$3.4V \leqslant V_{OUT}(T) \leqslant 5.5V$		120	200	
quiescent current	I_{ss}	$V_{IN} = V_{OUT}(T) + 1$	V		7		μA
Load stability	$\Delta V_{ ext{out}}$	$V_{IN} = V_{OUT}(T) + 1$	V, 1mA≤I _{OUT} ≤80mA		20		mV
Input stability	$\Delta V_{\text{OUT}} / (\Delta V_{\text{IN}} + V_{\text{OUT}})$	$I_{OUT} = 1 \text{ mA},$ $V_{OUT} (T) + 0.5 \text{ V}$	≤V _{IN} ≤5.5V		0. 1	0.2	%/V
Output voltage temperature coefficient	ΔV _{OUT} (ΔTa •V _{OUT})	$V_{IN} = V_{OUT}(T) + 1$ $-40 ^{\circ}\text{C} \leq \text{Ta} \leq$			±100		ppm/℃
input voltage	$V_{\scriptscriptstyle \mathrm{IN}}$			1.8		8.0	V
Ripple suppression ratio	PSRR	V_{IN} = $[V_{OUT}(T)+1]V +1Vp-pAC$ I_{OUT} =10mA, f=1kHz			40		dB
Short circuit current	Ishort	$V_{IN} = V_{OUT}(T) + 1$	5V , V _{OUT} =V _{SS}		30		mA
Overcurrent protection current	Ilimt	$V_{IN} = V_{OUT}(T) + 1$. 5V		380		mA

Note:

- 1. VOUT (T): the specified output voltage.
- 2. VOUT (E): effective output voltage (that is, the output voltage when IOUT keeps a certain value and VIN = (VOUT (T)+1.0V))
- 3. IOUT (max):VIN=VOUT(T)+1V, slowly increase the output current, and the current value when the output voltage is \leq VOUT(E)*95%.
- 4. Vdrop = Vin1 Vout (e) s: Vin1 = the input voltage when the output voltage drops to 98% of VOUT (E)1. VOUT (E)s = VOUT (E)*98%

VOUT (E)1= the output voltage value when vin = vout (t)+1V and iout = a certain value.

■ test circuit

■ Applied circuit

1. Basic circuit

2. Positive voltage regulator with large output current

3. Circuit for increasing output voltage (1) Vin XC6206 Vout COMMON Vout COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON

Vout=Vxx(1+R2/R1)+IssR2

4. Circuit for increasing output voltage (2)

Vout=Vxx+V_{D1}

5. Constant current regulator

Iout=Vxx/RA+Iss

■ Characteristic curve

1. Output voltage-output current (when the load current increases)

3. Dropout voltage and output current

5. Output voltage and temperature

7. Transient response

Time (2msec/div)

Input transient response characteristics

2. Output voltage and input voltage

4. Dropout voltage and output voltage

6. Ripple suppression

Load transient input response characteristics

(A) sua afferson

2.5

■ Package Information

SOT-89-3

symbol	Minimum (mm)	Maximum (mm)		
Α	1.400	1.600		
ь	0.320	0.520		
ь1	0.360	0.560		
c	0.350	0.440		
D	4.400	4.600		
D1	1.400	1.800		
E	2.300	2.600		
E1	3.940	4.250		
e	1.5	OOTYP		
e1	2.900	3.100		
L	0.900	1.100		

S0T-23

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
C	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	