Sistemi Operativi: Prof.ssa A. Rescigno	Anno Acc. 2017-2018
Esame – 10 Gennaio 2018 (teoria)	Università di Salerno

- 1. Codice comportamentale. Durante questo esame si deve lavorare da soli. Non si puó consultare materiale di nessun tipo. Non si puó chiedere o dare aiuto ad altri studenti.
- 2. **Istruzioni.** Rispondere alle domande. Per la brutta usare i fogli posti alla fine del plico (NON si possono usare fogli aggiuntivi); le risposte verranno corrette solo se inserite nello spazio ad esse riservate oppure viene indicata con chiarezza la posizione alternativa. Per essere accettata per la correzione la risposta deve essere ordinata e di facile lettura. TUTTE le risposte vanno GIUSTIFICATE. Ciascuna risposta non giustificata vale ZERO.

Nome e Cognome:	
Matricola	
Matricola.	
Firma	

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	Tot
/16	/12	/13	/9	/50

1. 16 punti

Un hard disk ha la capienza di 2^{34} byte ed è formattato in blocchi da 1Kb. Si assuma che un file pluto la cui taglia é 4Kb sia allocato su tale hard disk, che il suo FCB sia giá presente in memoria principale e che b sia il numero del primo blocco di pluto. Giustificando le risposte, rispondere ai quesiti seguenti.

- 1) Assumendo che lo <u>spazio libero</u> sia gestito attraverso un unico blocco indice (non riempito completamente), giá presente in memoria principale, dire "quanti accessi a disco" sono necessari e "come viene eventualmente modificato lo spazio libero" nel caso
- 1a) sia adottata <u>allocazione contigua</u> (con spazio libero alla fine), e si voglia **cancellare il primo blocco di pluto** ed **modificare il contenuto dell'ultimo blocco di pluto**

1b) sia adottata <u>allocazione linkata</u> e si voglia **aggiungere un nuovo blocco alla fine di** pluto che contenga esattamente ció che é contenuto nell'ultimo blocco.

2) Assumendo che si adotti una organizzazione del filesystem simile a Unix, dove il FCB sia del tipo seguente:

attributi

ind. blocco 0

ind. blocco 1

ind. blocco indirizzi indirezione singola

ind. blocco indirizzi indirezione doppia

(2.1) "quanti accessi a disco" sono necessari per leggere l'ultimo byte di pluto, con accesso diretto

(2.2) "quanti blocchi" liberi devo recuperare se volessi che pluto avesse la size massima possibile?

2. 12 punti

Quattro processi arrivano al tempo indicato, consumano una quantitá di CPU alternata ad un'operazione di I/O (se indicata) come indicato nella tabella sottostante:

Processo	T. di Arrivo	1º CPU burst	I/O burst	2º CPU burst
P_1	0	11	-	-
P_2	3	2	5	-
P_3	5	2	3	3
P_4	6	2	3	-

Considerando che:

- l'algoritmo di scheduling della CPU sia $S\!J\!F$ con prelazionee che
- le operazioni di I/O avvengono tutte su "uno stesso dispositivo" gestito attraverso un algoritmo FIFO,

calcolare il turnaround ed il waiting time di ogni processo.

Riportare il diagramma di GANTT usato per il calcolo.

3.	13	punti
υ.	10	paree

In un sistema con paginazione, le pagine sono grandi 1Kb, la memoria é costituita da 32 frame e la tabella delle pagine di un processo P (fornita anche di bit di validitá, bit di modifica e bit di riferimento) é grande 16 byte.

a) individuare la struttura dell'indirizzo fisico;

b) individuare la struttura dell'indirizzo logico.

- c) Si assuma che il processo P viene mandato in esecuzione all'istante 100 e che
 - al processo vengono assegnati ai primi 6 frame della memoria principale e che essi sono vuoti quando il processo viene mandato in esecuzione (all'istante 100), e che
 - ogni accesso alla pagina 0 é in scrittura, e che
 - il processo fa riferimento nell'ordine (a partire dall'istante 100) alle seguenti pagine:

$$0, 1, 1, 0, 5, 3, 2, 5, 9, 10, 8, 1, 4$$

c1) Applicare l'algoritmo di sostituzione delle pagine **LRU** e determinare il numero totale di accessi a disco della paginazione del processo a partire dall'istante 100 fino alla fine dell'istante 112.

c2) assumendo che il processo P fa riferimento sempre al "primo byte" delle pagine, mostrare per l'indirizzo logico generato nell'istante 103 e nell'istante 104 i corrispondenti indirizzi fisici (entrambi gli indirizzi devono essere espressi in binario).

istante	indirizzo logico	indirizzo fisico
103		
104		

4. 9 punti

Si considerino tre processi P_1 , P_2 e S.

• Il processo P_1 ripete indefinitamente un ciclo in cui genera un numero x (con una chiamata ad una data funzione: x = genera();).

- Il processo P_2 ripete indefinitamente un ciclo in cui genera un numero y (con una chiamata ad una data funzione: y = genera();).
- Il processo S ripete indefinitamente un ciclo in cui acquisisce i due valori generati da P_1 e P_2 , li somma e stampa il risultato.

Scrivere lo pseudocodice che utilizzi i semafori per la sincronizzazione dei tre processi P_1 , P_2 e S per l'utilizzo delle variabili comuni x, y in modo che nessun numero generato vada perso e che il numero prodotto da P_1 nel suo ciclo i-esimo sia sommato con il numero prodotto da P_2 nel suo ciclo i-esimo.