

# Linear regression Part II

**Machine Learning** 

Norman Juchler





# **Quiz SW05: Modelling aspect**

Which of the following statements about regression models are true?

In the equations below,  $\varepsilon$  models the noise in the data. A common assumption is that  $\varepsilon \sim \mathcal{N}(0, \sigma)$ .

| True | False |                                                                                                                                                                                                                                                                                          |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 0     | The following model can be solved using linear regression. $y(x_1,x_2)=\beta_0+\beta_1\sin(x_1)+\beta_2\cos(x_2)+\epsilon$                                                                                                                                                               |
| 0    | 0     | The following equation represents a linear model $y(x_1,x_2)=\beta_1x_1+\beta_2x_1x_2+\beta_3x_2+\epsilon$                                                                                                                                                                               |
| 0    | 0     | It was noted above that noise is commonly modeled as $\epsilon \sim \mathcal{N}(0,\sigma)$ . This is equivalent to saying that the residuals $r=y-\hat{y}$ (i.e. the difference between true and predicted values) are normally distributed with a mean of zero and a constant variance. |
| 0    | 0     | The following equation represents a quadratic regression model. It can be computed in Python with the help of scikit-learn and its transformer PolynomialFeatures $y(x_1,x_2)=\beta_{10}x_1+\beta_{20}x_1^2+\beta_{11}x_1x_2+\beta_{02}x_2^2+\beta_{00}+\varepsilon$                     |

# **Quiz SW05: Modelling aspect**



Which of the following statements about regression models are true?

In the equations below,  $\varepsilon$  models the noise in the data. A common assumption is that  $\varepsilon \sim \mathcal{N}(0, \sigma)$ .

| True | False |                                                                                                                                                                                                                                                                                          |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 0     | The following model can be solved using linear regression. $y(x_1,x_2)=\beta_0+\beta_1\sin(x_1)+\beta_2\cos(x_2)+\epsilon$                                                                                                                                                               |
| 0    | 0     | The following equation represents a linear model $y(x_1,x_2)=\beta_1x_1+\beta_2x_1x_2+\beta_3x_2+\varepsilon$                                                                                                                                                                            |
| 0    | 0     | It was noted above that noise is commonly modeled as $\epsilon \sim \mathcal{N}(0,\sigma)$ . This is equivalent to saying that the residuals $r=y-\hat{y}$ (i.e. the difference between true and predicted values) are normally distributed with a mean of zero and a constant variance. |
| 0    | 0     | The following equation represents a quadratic regression model. It can be computed in Python with the help of scikit-learn and its transformer PolynomialFeatures $y(x_1,x_2) = \beta_{10}x_1 + \beta_{20}x_1^2 + \beta_{11}x_1x_2 + \beta_{02}x_2^2 + \beta_{00} + \epsilon$            |

3

# Recapitulation



### Linear model

- Assume we have a set of p features:  $\boldsymbol{x}_i := (x_{i1}, x_{i2}, \dots, x_{ip})$
- We want to use them to predict a target variable y
- The simple assumption we can make is (model ansatz):

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}$$
$$f_i(\boldsymbol{x}, \boldsymbol{\beta}) = \boldsymbol{\beta} \boldsymbol{x}$$

• Where the  $\beta_i$  are unknown parameters that we want to determine from the data





## Ordinary least squares (OLS) regression

Optimization objective for linear regression:

$$\boldsymbol{\beta}^* = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^n (y_i - f(x_i, \boldsymbol{\beta}))^2 = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \mathcal{L}(\boldsymbol{\beta})$$

- In words: Find parameters β such that the sum of squared residuals (green lines) is minimized.
- Using calculus, we can derive an analytical solution.
- For a general solution of the OLS regression problem, as well as proof, see here:
  - Definition: <u>Simple linear regression</u>
  - Proof: Ordinary least squares / optimal parameters β





### **Loss functions**

 A loss function (a.k.a. cost function) in the context of machine learning usually measures how well the predicted values match the true target values.

$$\mathcal{L}(y-\hat{y})$$

• For regression, we used the residual sum of squares (RSS) as loss function.

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Sometimes, it is more meaningful to compute the mean squared error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} RSS$$

• (Note: both yield the same optimal solution!)



### Residuals

- ullet The **residual** for a sample m is given by  $\epsilon_m = y_m \hat{y}_m$
- It represents the modelling error
- The residual plot is a scatter plot of input or predicted values vs. residuals.



Residual plots are useful for assessing and "debugging" linear regression

# zhaw

### Residuals

Which of the following residual plots show an appropriate setting for linear regression?



# zh

### **Assumptions of linear regression**

- Linearity: The input and output values have a linear relationship
- Independence: The outcome of one sample does not affect the others

- Normality: Errors should be normally distributed, i.e. larger deviations from mean should be less likely
- Equality of Variance ("Homoscedasticity"): Error distribution should be the same for all input values







# Coefficient of determination / R squared

#### Goodness of fit:

R<sup>2</sup> is a statistical measure that indicates how well the predicted values from a regression model fit the observed data.

### Explained variance:

It represents the proportion of the variance in the target variable that is explained by the features in the model.

#### Value range:

R<sup>2</sup> values range from 0 to 1, where 1 means the model perfectly predicts the target variable, and 0 means it does not explain any of the variability.

### • Model Comparison:

It is often used to compare the fit of different models, but it does not necessarily indicate whether a model is correct or good, especially for non-linear models.

$$egin{aligned} R^2 &= 1 - rac{SS_{ ext{res}}}{SS_{ ext{tot}}} \ SS_{ ext{res}} &= \sum_i (y_i - \hat{y}_i)^2 = \sum_i e_i^2 \ SS_{ ext{tot}} &= \sum_i (y_i - \mu_y)^2 \end{aligned}$$





### **Multivariate linear regression**

■ We just include multiple variables ©

$$\hat{y}^{(m)} = h_{ heta}(x^{(m)}) = heta_0 x_0^{(m)} + heta_1 x_1^{(m)} + heta_2 x_2^{(m)} + \ldots + heta_N x_N^{(m)} = oldsymbol{ heta}^T oldsymbol{X}_1$$
 Eq. (1

$$x_0^{(m)} \coloneqq 1$$
 for all  $m=1,\ldots,M$ 

$$\epsilon^{(m)} = y^{(m)} - \hat{y}^{(m)}$$
 residuals

$$oldsymbol{y} = oldsymbol{X} oldsymbol{ heta} + oldsymbol{\epsilon}$$
 M equations of the form of Eq. (1)

$$oldsymbol{X}: M{ imes}(N+1), oldsymbol{ heta}: (N+1){ imes}1, oldsymbol{y}: M{ imes}1$$
 dimensions



# **Multivariate regression**



# Regularization / Lasso