实验题目: 单摆法测重力加速度

实验目的:利用单摆法测量合肥当地重力加速度(不确定度小于1%)

实验原理: 在摆角很小时,我们有近似公式 $\sin \theta \approx \theta$,因此真空中的单摆动力学方程

 $\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \frac{g}{l}\sin\theta = 0$ 在摆角很小时可改写为 $\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \frac{g}{l}\theta = 0$, 该方程的通解是

$$\theta = A\cos(\sqrt{\frac{g}{I}}t + \varphi) \tag{1}$$

这是简谐运动, 因此周期

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}} \tag{2}$$

上式仅对理想单摆成立,要求 $\theta \to 0$,这在实际上是不存在的。实际的单摆周期公式为

$$T = 2\pi \sqrt{\frac{l}{g} \left[1 + \frac{d^2}{20l^2} - \frac{m_0}{12m} \left(1 + \frac{d}{2l} + \frac{m_0}{m} \right) + \frac{\rho_0}{2\rho} + \frac{\theta^2}{16} \right]}$$
 (3)

式中,T为单摆的周期,I、 m_0 为单摆摆线长度和质量,d、m、 ρ 分别为摆球的直径、质量和密度, ρ_0 为空气密度, θ 为摆角。一般情况下,摆球几何形状、摆的质量、空气浮力、摆角(θ <5°)对T的修正都小于 1‰。若实验精度要求在 1‰以内,则这些修正项都可以忽略不计,仍沿用(2)式。

可以通过测量小球摆动的周期,再通过上式来计算当地重力加速度。

由于 $g = \frac{4\pi^2 l}{r^2}$,按最大不确定度公式估算,有

$$\frac{\Delta g}{g} = \frac{\Delta l}{l} + 2\frac{\Delta T}{T} \tag{4}$$

根据不确定度均分原理有 $\frac{\Delta l}{l}$ \leq 0.5% , $2\frac{\Delta T}{T}$ \leq 0.5% , 将 l 和 T 的粗测值 $(l \approx 70 \text{cm} \ T \approx 1.7 \text{s})$ 代入有 ΔL < 0.35 cm , ΔT < 0.00425s 。

由于钢卷尺的最大允差为 0.2cm, 所以测量摆长应当使用钢卷尺; 测量周期应当使用秒表。

根据统计分析,实验人员开启或停止秒表的反应时间为 0.1s 左右,所以实验人员测量时间的精度近似为 $\Delta_{\Lambda}\approx 0.2s$ 。

设应当累计测量 N 次周期, N 应当满足关系式

$$\frac{\Delta_{\wedge} + \Delta_{\oplus}}{N} \le \Delta T \tag{5}$$

解得 $N \ge 49.41$, 近似取 N = 50, 即要累计合并 50 个周期进行测量。

实验仪器: 本实验的测量装置如下图。先测量摆线端点到小球质心的长度作为摆长。平面镜上有一细线,开始前需调整调节螺栓使得这一细线、摆线和摆线在平面镜中的像在同一平面内。轻轻拨动小球,使小球偏角小于 5°,用秒表记录小球摆动 N(N≥50)个周期所用时间。

图1 实验装置

测量记录: (原始数据附后)

i	1	2	3	4	5	6
l_i /cm	72.70	72.53	72.48	72.60	72.68	72.65
T_i/s	87.18	88.00	88.10	87.27	85.57	85.54
N_i	51	52	52	51	50	50

表1 原始实验数据表格

分析讨论:

(1) 实验数据处理

由
$$t_i = \frac{T_i}{N_i}$$
,计算得

i	1	2	3	4	5	6
l_i /cm	72.70	72.53	72.48	72.60	72.68	72.65
t_i /s	1.709	1.692	1.694	1.711	1.711	1.710

表 2 需要使用的数据表格

计算表 2 中物理量的平均值为 $\bar{l}=72.60$ cm、 $\bar{t}=1.704$ s。代入 $g=\frac{4\pi^2 l}{t^2}$,得

到g的测量值g = 9.87m/ s^2 。

(2) 误差分析

1°相对误差

合肥地区重力加速度公认值 $g_0 = 9.79 \, \text{m/s}^2$,因此本实验的相对误差为

$$\delta = \frac{|g - g_0|}{g_0} = 0.8\% \tag{4}$$

2°不确定度

摆长均值 $\bar{l}=72.60$ cm,则A类不确定度 $u_{\scriptscriptstyle A}=\sqrt{\frac{\sum (l_{\scriptscriptstyle i}-\bar{l})^2}{6\cdot 5}}=0.00035$ cm;卷尺

最大允差 $\Delta_{\text{*R}}=0.2\text{cm}$,置信系数 C=3,则 B 类不确定度 $u_{\text{B}}=\frac{\Delta_{\text{卷R}}}{3}=0.067\text{cm}$;

测量次数n=6, 查表可知 $t_{0.95}=2.57$, 则展伸不确定度为

$$U_{0.95,I} = \sqrt{(t_{0.95}u_A)^2 + u_B^2} = 0.067 \text{cm}$$
 (5)

摆动周期均值 $\bar{t}=1.704\mathrm{s}$,则 A 类不确定度 $u_{\scriptscriptstyle A}=\sqrt{\frac{\sum (t_i-\bar{t})^2}{6\cdot 5}}=0.003\mathrm{s}$; 秒表的

最大允差 $\Delta_{\theta = 0.01s}$,置信系数C = 3,则B类不确定度 $u_{B} = \frac{\Delta_{\theta = 0.003s}}{3} = 0.003s$;测

量次数n=6, 查表可知 $t_{0.95}=2.57$, 则展伸不确定度为

$$U_{0.95,t} = \sqrt{(t_{0.95}u_A)^2 + u_B^2} = 0.008s$$
 (6)

最终测量结果的标准不确定度为

$$\frac{\Delta g}{g} = \sqrt{\left(\frac{\partial \ln g}{\partial l}u_l\right)^2 + \left(\frac{\partial \ln g}{\partial t}u_l\right)^2} = 0.48\% < 1\% \tag{7}$$

最终测量结果的展伸不确定度为

$$\frac{U_{0.95,g}}{g} = \sqrt{(U_{0.95,l})^2 + (2U_{0.95,t})^2} = 0.016$$
 (8)

实验的标准不确定度满足要求,可信最大误差 $U_g=0.016\times g_0=0.16\,\mathrm{m/s^2}$,因此实验测得的重力加速度g的表达式应为

$$g = (9.87 \pm 0.16) \text{m} / \text{s}^2$$

(3) 实验讨论

考虑到摆球几何形状、摆的质量、空气浮力、摆角等的影响,修正重力加速度应当大于本实验的测量值。

思考题:

分析基本误差的来源,提出进行改进的方法。

本实验误差一是对摆长的测量,由于需要测悬挂点到小球质心的长度,因此在摆处于悬挂状态时对其摆长进行测量时米尺难免会有偏斜。此外,由于细线总有一定的弹性,在竖直情况下测量摆长会使摆长测量值偏大。可将摆取下,单独测量小球的直径和绳长,再相加作为摆长;二是对摆动周期测量会有误差,因为通过人眼观察的方式来控制秒表误差较大,所以可以尝试录制视频,通过视频编辑软件确定T。