Prof. Juvêncio Santos Nobre

Departamento de Estatística e Matemática Aplicada

Universidade Federal do Ceará-Brasil

http://www.dema.ufc.br/~juvencio

DEMA-UFC

Capital do Ceará, agosto de 2022

Conteúdo

- 1 Motivação
- 2 Ideia
- 3 Função de regressão
 - Tipos de funções de regressão
- 4 Parcimônia
- 5 Correlação espúria
- 6 Utilização de regressão

- A Análise de Regressão é uma técnica estatística que visa investigar e modelar a relação funcional entre variáveis.
- Em regressão, existem dois tipos de variáveis, a saber:
 - Variável(is) resposta(s) (explicada, endógena ou dependente)
 - Variável(is) explicativa(s) (independentes ou exógenas).
- As variáveis podem ser dos tipos que já conhecemos: qualitativa (nominal ou ordinal) ou quantitativa (discreta, contínua ou mista).
- O tipo de modelo depende essencialmente das características e da quantidade de variávei envolvidas (modelo linear normal, modelo multivariado, modelo de regressão logística multinomial, modelo de regressão beta aumentado, etc...)
- Existem situações em que tem-se interesse em mais de uma variável resposta, gerando os

- A Análise de Regressão é uma técnica estatística que visa investigar e modelar a relação funcional entre variáveis.
- Em regressão, existem dois tipos de variáveis, a saber:
 - Variável(is) resposta(s) (explicada, endógena ou dependente).
 - Variável(is) explicativa(s) (independentes ou exógenas).
- As variáveis podem ser dos tipos que já conhecemos: qualitativa (nominal ou ordinal) ou quantitativa (discreta, contínua ou mista).
- O tipo de modelo depende essencialmente das características e da quantidade de variáveis envolvidas (modelo linear normal, modelo multivariado, modelo de regressão logística multinomial, modelo de regressão beta aumentado, etc...)
- Existem situações em que tem-se interesse em mais de uma variável resposta, gerando os

- A Análise de Regressão é uma técnica estatística que visa investigar e modelar a relação funcional entre variáveis.
- Em regressão, existem dois tipos de variáveis, a saber:
 - Variável(is) resposta(s) (explicada, endógena ou dependente).
 - Variável(is) explicativa(s) (independentes ou exógenas).
- As variáveis podem ser dos tipos que já conhecemos: qualitativa (nominal ou ordinal) ou quantitativa (discreta, contínua ou mista).
- O tipo de modelo depende essencialmente das características e da quantidade de variáveis envolvidas (modelo linear normal, modelo multivariado, modelo de regressão logística multinomial, modelo de regressão beta aumentado, etc...)
- Existem situações em que tem-se interesse em mais de uma variável resposta, gerando os modelos multivariados

- A Análise de Regressão é uma técnica estatística que visa investigar e modelar a relação funcional entre variáveis.
- Em regressão, existem dois tipos de variáveis, a saber:
 - Variável(is) resposta(s) (explicada, endógena ou dependente).
 - Variável(is) explicativa(s) (independentes ou exógenas).
- As variáveis podem ser dos tipos que já conhecemos: qualitativa (nominal ou ordinal) ou quantitativa (discreta, contínua ou mista).
- O tipo de modelo depende essencialmente das características e da quantidade de variáveis envolvidas (modelo linear normal, modelo multivariado, modelo de regressão logística multinomial, modelo de regressão beta aumentado, etc...)
- Existem situações em que tem-se interesse em mais de uma variável resposta, gerando os modelos multivariados

- A Análise de Regressão é uma técnica estatística que visa investigar e modelar a relação funcional entre variáveis.
- Em regressão, existem dois tipos de variáveis, a saber:
 - Variável(is) resposta(s) (explicada, endógena ou dependente).
 - Variável(is) explicativa(s) (independentes ou exógenas).
- As variáveis podem ser dos tipos que já conhecemos: qualitativa (nominal ou ordinal) ou quantitativa (discreta, contínua ou mista).
- O tipo de modelo depende essencialmente das características e da quantidade de variáveis envolvidas (modelo linear normal, modelo multivariado, modelo de regressão logística multinomial, modelo de regressão beta aumentado, etc...)
- Existem situações em que tem-se interesse em mais de uma variável resposta, gerando os modelos multivariados

- A Análise de Regressão é uma técnica estatística que visa investigar e modelar a relação funcional entre variáveis.
- Em regressão, existem dois tipos de variáveis, a saber:
 - Variável(is) resposta(s) (explicada, endógena ou dependente).
 - Variável(is) explicativa(s) (independentes ou exógenas).
- As variáveis podem ser dos tipos que já conhecemos: qualitativa (nominal ou ordinal) ou quantitativa (discreta, contínua ou mista).
- O tipo de modelo depende essencialmente das características e da quantidade de variáveis envolvidas (modelo linear normal, modelo multivariado, modelo de regressão logística multinomial, modelo de regressão beta aumentado, etc...)
- Existem situações em que tem-se interesse em mais de uma variável resposta, gerando os modelos multivariados.

- A Análise de Regressão é uma técnica estatística que visa investigar e modelar a relação funcional entre variáveis.
- Em regressão, existem dois tipos de variáveis, a saber:
 - Variável(is) resposta(s) (explicada, endógena ou dependente).
 - Variável(is) explicativa(s) (independentes ou exógenas).
- As variáveis podem ser dos tipos que já conhecemos: qualitativa (nominal ou ordinal) ou quantitativa (discreta, contínua ou mista).
- O tipo de modelo depende essencialmente das características e da quantidade de variáveis envolvidas (modelo linear normal, modelo multivariado, modelo de regressão logística multinomial, modelo de regressão beta aumentado, etc...)
- Existem situações em que tem-se interesse em mais de uma variável resposta, gerando os modelos multivariados.

- Esta ferramenta possui aplicações em praticamente todas as áreas do conhecimento, como por exemplo, Engenharia, Medicina, Biologia, Psicometria, Ciências Sociais, etc...
- A ideia de regressão é extremamente útil na área de Ciência de Dados (aprendizado estatístico, inteligência artificial, etc...), pois em geral, tem-se interesse em explicar um conjunto de variáveis em função de variáveis explicativas.
- A área de modelos de regressão tem excelentes grupos de pesquisa no Brasil, em especial, no IME-USP, UFPE, UNICAMP, UFSCAR, UFC, etc...
- Temos inclusive um congresso específico, que é a Escola de Modelos de Regressão EMR que é um evento científico na área de Estatística, de repercussão nacional/internacional, organizado pela Associação Brasileira de Estatística (ABE) a cada dois anos (anos ímpares).
- A XII EMR foi sediada em Fortaleza no ano de 2011, sendo até o momento o evento que teve o maior número de participantes (mais de 500).

4 D > 4 A > 4 B > 4 B >

- Esta ferramenta possui aplicações em praticamente todas as áreas do conhecimento, como por exemplo, Engenharia, Medicina, Biologia, Psicometria, Ciências Sociais, etc...
- A ideia de regressão é extremamente útil na área de Ciência de Dados (aprendizado estatístico, inteligência artificial, etc...), pois em geral, tem-se interesse em explicar um conjunto de variáveis em função de variáveis explicativas.
- A área de modelos de regressão tem excelentes grupos de pesquisa no Brasil, em especial, no IME-USP, UFPE, UNICAMP, UFSCAR, UFC, etc...
- Temos inclusive um congresso específico, que é a Escola de Modelos de Regressão EMR que é um evento científico na área de Estatística, de repercussão nacional/internacional, organizado pela Associação Brasileira de Estatística (ABE) a cada dois anos (anos ímpares).
- A XII EMR foi sediada em Fortaleza no ano de 2011, sendo até o momento o evento que teve o maior número de participantes (mais de 500).

4 D > 4 A > 4 B > 4 B >

- Esta ferramenta possui aplicações em praticamente todas as áreas do conhecimento, como por exemplo, Engenharia, Medicina, Biologia, Psicometria, Ciências Sociais, etc...
- A ideia de regressão é extremamente útil na área de Ciência de Dados (aprendizado estatístico, inteligência artificial, etc...), pois em geral, tem-se interesse em explicar um conjunto de variáveis em função de variáveis explicativas.
- A área de modelos de regressão tem excelentes grupos de pesquisa no Brasil, em especial, no IME-USP, UFPE, UNICAMP, UFSCAR, UFC, etc...
- Temos inclusive um congresso específico, que é a Escola de Modelos de Regressão EMR que é um evento científico na área de Estatística, de repercussão nacional/internacional, organizado pela Associação Brasileira de Estatística (ABE) a cada dois anos (anos ímpares).
- A XII EMR foi sediada em Fortaleza no ano de 2011, sendo até o momento o evento que teve o maior número de participantes (mais de 500).

- Esta ferramenta possui aplicações em praticamente todas as áreas do conhecimento, como por exemplo, Engenharia, Medicina, Biologia, Psicometria, Ciências Sociais, etc...
- A ideia de regressão é extremamente útil na área de Ciência de Dados (aprendizado estatístico, inteligência artificial, etc...), pois em geral, tem-se interesse em explicar um conjunto de variáveis em função de variáveis explicativas.
- A área de modelos de regressão tem excelentes grupos de pesquisa no Brasil, em especial, no IME-USP, UFPE, UNICAMP, UFSCAR, UFC, etc...
- Temos inclusive um congresso específico, que é a Escola de Modelos de Regressão EMR, que é um evento científico na área de Estatística, de repercussão nacional/internacional, organizado pela Associação Brasileira de Estatística (ABE) a cada dois anos (anos ímpares).
- A XII EMR foi sediada em Fortaleza no ano de 2011, sendo até o momento o evento que teve o maior número de participantes (mais de 500).

4 D > 4 AB > 4 B > 4 B >

- Esta ferramenta possui aplicações em praticamente todas as áreas do conhecimento, como por exemplo, Engenharia, Medicina, Biologia, Psicometria, Ciências Sociais, etc...
- A ideia de regressão é extremamente útil na área de Ciência de Dados (aprendizado estatístico, inteligência artificial, etc...), pois em geral, tem-se interesse em explicar um conjunto de variáveis em função de variáveis explicativas.
- A área de modelos de regressão tem excelentes grupos de pesquisa no Brasil, em especial, no IME-USP, UFPE, UNICAMP, UFSCAR, UFC, etc...
- Temos inclusive um congresso específico, que é a Escola de Modelos de Regressão EMR, que é um evento científico na área de Estatística, de repercussão nacional/internacional, organizado pela Associação Brasileira de Estatística (ABE) a cada dois anos (anos ímpares).
- A XII EMR foi sediada em Fortaleza no ano de 2011, sendo até o momento o evento que teve o maior número de participantes (mais de 500).

Exemplo 1: Considere

 Y_i : Renda do i-ésimo indivíduo, $i = 1, \dots n$.

Objetivo: Estimar a renda média (μ) .

$$\hat{\mu} = \overline{Y}_n$$
?

- Mas $\hat{\mu}$ é o ENVVUM de μ , correto? $\overline{\ }$
- Na verdade, $\hat{\mu}$ é o ENVVUM de μ , se e somente se, $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, $\sigma < \infty$. •
- Parece razoável admitir que temos uma amostra iid? Por quê?
- Por outro lado, é razoável assumir que Y_i , dependa, por exemplo, do número de anos estudados (efetivos), digamos X_i ?

Exemplo 1: Considere

 Y_i : Renda do i-ésimo indivíduo, $i = 1, \dots n$.

Objetivo: Estimar a renda média (μ) .

$$\hat{\mu} = \overline{Y}_n$$
?

- Mas $\hat{\mu}$ é o ENVVUM de μ , correto? \Im
- Na verdade, $\hat{\mu}$ é o ENVVUM de μ , se e somente se, $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, $\sigma < \infty$. •
- Parece razoável admitir que temos uma amostra iid? Por quê?
- Por outro lado, é razoável assumir que Y_i , dependa, por exemplo, do número de anos estudados (efetivos), digamos X_i ?

Exemplo 1: Considere

 Y_i : Renda do i-ésimo indivíduo, $i = 1, \dots n$.

Objetivo: Estimar a renda média (μ) .

$$\hat{\mu} = \overline{Y}_n$$
?

- Mas $\hat{\mu}$ é o ENVVUM de μ , correto? \Im
- Na verdade, $\hat{\mu}$ é o ENVVUM de μ , se e somente se, $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, $\sigma < \infty$. •
- Parece razoável admitir que temos uma amostra iid? Por quê?
- Por outro lado, é razoável assumir que Y_i , dependa, por exemplo, do número de anos estudados (efetivos), digamos X_i ?

Exemplo 1: Considere

 Y_i : Renda do i-ésimo indivíduo, $i = 1, \dots n$.

Objetivo: Estimar a renda média (μ) .

$$\hat{\mu} = \overline{Y}_n$$
?

- Mas $\hat{\mu}$ é o ENVVUM de μ , correto? \Im
- Na verdade, $\hat{\mu}$ é o ENVVUM de μ , se e somente se, $Y_1, \ldots, Y_n \overset{\mathrm{iid}}{\sim} (\mu, \sigma^2)$, $\sigma < \infty$.
- Parece razoável admitir que temos uma amostra iid? Por quê?
- Por outro lado, é razoável assumir que Y_i , dependa, por exemplo, do número de anos estudados (efetivos), digamos X_i ?

Exemplo 1: Considere

 Y_i : Renda do i-ésimo indivíduo, $i = 1, \dots n$.

Objetivo: Estimar a renda média (μ) .

$$\hat{\mu} = \overline{Y}_n$$
?

- Mas $\hat{\mu}$ é o ENVVUM de μ , correto? \Im
- Na verdade, $\hat{\mu}$ é o ENVVUM de μ , se e somente se, $Y_1, \ldots, Y_n \overset{\text{iid}}{\sim} (\mu, \sigma^2)$, $\sigma < \infty$.
- Parece razoável admitir que temos uma amostra iid? Por quê?
- Por outro lado, é razoável assumir que Y_i , dependa, por exemplo, do número de anos estudados (efetivos), digamos X_i ?

Exemplo 1: Considere

 Y_i : Renda do i-ésimo indivíduo, $i = 1, \dots n$.

Objetivo: Estimar a renda média (μ) .

$$\hat{\mu} = \overline{Y}_n$$
?

- Mas $\hat{\mu}$ é o ENVVUM de μ , correto? \Im
- Na verdade, $\hat{\mu}$ é o ENVVUM de μ , se e somente se, $Y_1, \ldots, Y_n \overset{\text{iid}}{\sim} (\mu, \sigma^2)$, $\sigma < \infty$.
- Parece razoável admitir que temos uma amostra iid? Por quê?
- Por outro lado, é razoável assumir que Y_i , dependa, por exemplo, do número de anos estudados (efetivos), digamos X_i ?

- Agora, baseado na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$, como podemos estimar a renda média de um indivíduo?
- Neste caso, o valor estimado vai depender do particular valor de X_i ?
- Existe relação? Se sim, qual o tipo de relação existente?
- Como ter ideia desta relação?
- Classes de modelos:
 - Modelos Mecanísticos: Baseados em teorias físicas, químicas, econômicas, etc...
 - Modelos Empíricos

- Agora, baseado na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$, como podemos estimar a renda média de um indivíduo?
- Neste caso, o valor estimado vai depender do particular valor de X_i ?
- Existe relação? Se sim, qual o tipo de relação existente?
- Como ter ideia desta relação?
- Classes de modelos:
 - Modelos Mecanísticos: Baseados em teorias físicas, químicas, econômicas, etc.
 - **■** Modelos Empíricos

- Agora, baseado na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$, como podemos estimar a renda média de um indivíduo?
- Neste caso, o valor estimado vai depender do particular valor de X_i ?
- Existe relação? Se sim, qual o tipo de relação existente?
- Como ter ideia desta relação?
- Classes de modelos:
 - Modelos Mecanísticos: Baseados em teorias físicas, químicas, econômicas, etc.
 - Modelos Empíricos

- Agora, baseado na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$, como podemos estimar a renda média de um indivíduo?
- Neste caso, o valor estimado vai depender do particular valor de X_i ?
- Existe relação? Se sim, qual o tipo de relação existente?
- Como ter ideia desta relação?
- Classes de modelos:
 - Modelos Mecanísticos: Baseados em teorias físicas, químicas, econômicas, etc.
 - Modelos Empíricos

- Agora, baseado na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$, como podemos estimar a renda média de um indivíduo?
- Neste caso, o valor estimado vai depender do particular valor de X_i ?
- Existe relação? Se sim, qual o tipo de relação existente?
- Como ter ideia desta relação?
- Classes de modelos:
 - Modelos Mecanísticos: Baseados em teorias físicas, químicas, econômicas, etc...
 - Modelos Empíricos.

- Agora, baseado na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$, como podemos estimar a renda média de um indivíduo?
- Neste caso, o valor estimado vai depender do particular valor de X_i ?
- Existe relação? Se sim, qual o tipo de relação existente?
- Como ter ideia desta relação?
- Classes de modelos:
 - Modelos Mecanísticos: Baseados em teorias físicas, químicas, econômicas, etc...
 - Modelos Empíricos.

- Agora, baseado na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$, como podemos estimar a renda média de um indivíduo?
- Neste caso, o valor estimado vai depender do particular valor de X_i ?
- Existe relação? Se sim, qual o tipo de relação existente?
- Como ter ideia desta relação?
- Classes de modelos:
 - Modelos Mecanísticos: Baseados em teorias físicas, químicas, econômicas, etc...
 - Modelos Empíricos.

■ Considerando que $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, podemos representar Y_i estocasticamente da seguinte forma

$$Y_i \stackrel{\mathcal{D}}{=} \mu + e_i, i = 1, \dots, n, \tag{1}$$

em que $e_1, \ldots, e_n \stackrel{\text{iid}}{\sim} (0, \sigma^2)$.

- Lembre-se que no contexto de Estatística, Y_i é uma variável aleatória, portanto em (1) temos uma identidade estocástica e não uma igualdade, por isso a razão de usar ²². Todavia, na prática, desconsidera-se e utiliza-se o símbolo da igualdade tradicional, mas lembre-se que isso não é uma igualdade e sim uma representação estocástica.
- Logo, pelo comentário anterior, cabe ressaltar que o modelo (1) não é um modelo matemático como aparece em alguns textos.
- O termo e_i por vezes é denominado de erro, todavia, parece ser mais apropriado utilizar o termo fonte de variação.
- Perceba que a fonte de variação é uma variável latente, i.e., não é observada
- lacktriangle No exemplo em que estamos analisando, parece que não é razoável admitir que Y_1,\ldots,Y_n são iid.

7/40

■ Considerando que $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, podemos representar Y_i estocasticamente da seguinte forma

$$Y_i \stackrel{\mathcal{D}}{=} \mu + e_i, i = 1, \dots, n, \tag{1}$$

em que $e_1, \ldots, e_n \stackrel{\text{iid}}{\sim} (0, \sigma^2)$.

- \blacksquare Lembre-se que no contexto de Estatística, Y_i é uma variável aleatória, portanto em (1) temos uma identidade estocástica e não uma igualdade, por isso a razão de usar $\stackrel{\mathcal{D}}{=}$. Todavia, na prática, desconsidera-se e utiliza-se o símbolo da igualdade tradicional, mas lembre-se que isso não é uma igualdade e sim uma representação estocástica.

- No exemplo em que estamos analisando, parece que não é razoável admitir que Y_1, \ldots, Y_n são iid

■ Considerando que $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, podemos representar Y_i estocasticamente da seguinte forma

$$Y_i \stackrel{\mathcal{D}}{=} \mu + e_i, i = 1, \dots, n, \tag{1}$$

em que $e_1, \ldots, e_n \stackrel{\text{iid}}{\sim} (0, \sigma^2)$.

- \blacksquare Lembre-se que no contexto de Estatística, Y_i é uma variável aleatória, portanto em (1) temos uma identidade estocástica e não uma igualdade, por isso a razão de usar $\stackrel{\mathcal{D}}{=}$. Todavia, na prática, desconsidera-se e utiliza-se o símbolo da igualdade tradicional, mas lembre-se que isso não é uma igualdade e sim uma representação estocástica.
- Logo, pelo comentário anterior, cabe ressaltar que o modelo (1) não é um modelo matemático como aparece em alguns textos.

- No exemplo em que estamos analisando, parece que não é razoável admitir que Y_1, \ldots, Y_n são iid

lacktriangle Considerando que $Y_1,\ldots,Y_n\stackrel{\mathrm{iid}}{\sim}(\mu,\sigma^2)$, podemos representar Y_i estocasticamente da seguinte forma

$$Y_i \stackrel{\mathcal{D}}{=} \mu + e_i, i = 1, \dots, n, \tag{1}$$

em que $e_1, \ldots, e_n \stackrel{\mathrm{iid}}{\sim} (0, \sigma^2)$.

- Lembre-se que no contexto de Estatística, Y_i é uma variável aleatória, portanto em (1) temos uma identidade estocástica e não uma igualdade, por isso a razão de usar $\stackrel{\mathcal{D}}{=}$. Todavia, na prática, desconsidera-se e utiliza-se o símbolo da igualdade tradicional, mas lembre-se que isso não é uma igualdade e sim uma representação estocástica.
- Logo, pelo comentário anterior, cabe ressaltar que o modelo (1) não é um modelo matemático como aparece em alguns textos. ●
- O termo e_i por vezes é denominado de erro, todavia, parece ser mais apropriado utilizar o termo fonte de variação.
- Perceba que a fonte de variação é uma variável latente, i.e., não é observada
- lacktriangle No exemplo em que estamos analisando, parece que não é razoável admitir que Y_1,\ldots,Y_n são iid.

Considerando que $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, podemos representar Y_i estocasticamente da seguinte forma

$$Y_i \stackrel{\mathcal{D}}{=} \mu + e_i, i = 1, \dots, n, \tag{1}$$

em que $e_1, \ldots, e_n \stackrel{\text{iid}}{\sim} (0, \sigma^2)$.

- \blacksquare Lembre-se que no contexto de Estatística, Y_i é uma variável aleatória, portanto em (1) temos uma identidade estocástica e não uma igualdade, por isso a razão de usar $\stackrel{\mathcal{D}}{=}$. Todavia, na prática, desconsidera-se e utiliza-se o símbolo da igualdade tradicional, mas lembre-se que isso não é uma igualdade e sim uma representação estocástica.
- Logo, pelo comentário anterior, cabe ressaltar que o modelo (1) não é um modelo matemático como aparece em alguns textos.
- \blacksquare O termo e_i por vezes é denominado de **erro**, todavia, **parece** ser mais apropriado utilizar o termo fonte de variação.
- Perceba que a fonte de variação é uma variável latente, i.e., não é observada.
- No exemplo em que estamos analisando, parece que não é razoável admitir que Y_1, \ldots, Y_n são iid

• Considerando que $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, podemos representar Y_i estocasticamente da seguinte forma

$$Y_i \stackrel{\mathcal{D}}{=} \mu + e_i, i = 1, \dots, n, \tag{1}$$

em que $e_1, \ldots, e_n \stackrel{\text{iid}}{\sim} (0, \sigma^2)$.

- Lembre-se que no contexto de Estatística, Y_i é uma variável aleatória, portanto em (1) temos uma identidade estocástica e não uma igualdade, por isso a razão de usar $\stackrel{\mathcal{D}}{=}$. Todavia, na prática, desconsidera-se e utiliza-se o símbolo da igualdade tradicional, mas lembre-se que isso não é uma igualdade e sim uma representação estocástica.
- Logo, pelo comentário anterior, cabe ressaltar que o modelo (1) não é um modelo matemático como aparece em alguns textos.
- O termo e_i por vezes é denominado de erro, todavia, parece ser mais apropriado utilizar o termo fonte de variação.
- Perceba que a fonte de variação é uma variável latente, i.e., não é observada.
- lacktriangle No exemplo em que estamos analisando, parece que não é razoável admitir que Y_1,\ldots,Y_n são iid.

No caso em que não se assume que Y_1, \ldots, Y_n representa uma amostra iid, pode-se, por exemplo, assumir que Y_i tenha alguma relação com X_i , de forma que com base na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$ um modelo a ser considerado seja

$$y_i = \mu(x_i; \boldsymbol{\beta}). \tag{2}$$

- \mathbf{y}_i (x_i) representa a variável resposta (explicativa) associada ao *i*-ésimo indíviduo, $\mu(x_i; \boldsymbol{\beta})$ é denominada de função de regressão e $\boldsymbol{\beta}$ é um vetor de parâmetros, denominado parâmetros de regressão.
- Com base no exemplo, a ideia seria modelar (explicar) a renda média do indíviduo em função da quantidade de anos estudados (efetivos).
- Note que (2) representa um modelo matemático. Por quê?
- Você acha o modelo acima apropriado? Por quê?
- Apesar de Yi representar uma variável aleatória (estocástica) é comum representá-la no processo de modelagem por letra minúscula.

No caso em que não se assume que Y_1, \ldots, Y_n representa uma amostra iid, pode-se, por exemplo, assumir que Y_i tenha alguma relação com X_i , de forma que com base na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$ um modelo a ser considerado seja

$$y_i = \mu(x_i; \boldsymbol{\beta}). \tag{2}$$

- **v**_i (x_i) representa a variável resposta (explicativa) associada ao *i*-ésimo indíviduo, $\mu(x_i; \beta)$ é denominada de função de regressão e β é um vetor de parâmetros, denominado parâmetros de regressão.
- Com base no exemplo, a ideia seria modelar (explicar) a renda média do indíviduo em função da quantidade de anos estudados (efetivos).
- Note que (2) representa um modelo matemático. Por quê?
- Você acha o modelo acima apropriado? Por quê?
- Apesar de Yi representar uma variável aleatória (estocástica) é comum representá-la no processo de modelagem por letra minúscula.

No caso em que não se assume que Y_1, \ldots, Y_n representa uma amostra iid, pode-se, por exemplo, assumir que Y_i tenha alguma relação com X_i , de forma que com base na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$ um modelo a ser considerado seja

$$y_i = \mu(x_i; \boldsymbol{\beta}). \tag{2}$$

- \mathbf{y}_i (x_i) representa a variável resposta (explicativa) associada ao *i*-ésimo indíviduo, $\mu(x_i; \boldsymbol{\beta})$ é denominada de função de regressão e $\boldsymbol{\beta}$ é um vetor de parâmetros, denominado parâmetros de regressão.
- Com base no exemplo, a ideia seria modelar (explicar) a renda média do indíviduo em função da quantidade de anos estudados (efetivos).
- Note que (2) representa um modelo matemático. Por quê?
- Você acha o modelo acima apropriado? Por quê?
- Apesar de Yi representar uma variável aleatória (estocástica) é comum representá-la no processo de modelagem por letra minúscula.

Ideia

No caso em que não se assume que Y_1, \ldots, Y_n representa uma amostra iid, pode-se, por exemplo, assumir que Y_i tenha alguma relação com X_i , de forma que com base na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$ um modelo a ser considerado seja

$$y_i = \mu(x_i; \boldsymbol{\beta}). \tag{2}$$

- $\mathbf{v}_i(\mathbf{x}_i)$ representa a variável resposta (explicativa) associada ao *i*-ésimo indíviduo, $\mu(\mathbf{x}_i; \boldsymbol{\beta})$ é denominada de função de regressão e $\boldsymbol{\beta}$ é um vetor de parâmetros, denominado parâmetros de regressão.
- Com base no exemplo, a ideia seria modelar (explicar) a renda média do indíviduo em função da quantidade de anos estudados (efetivos).
- Note que (2) representa um modelo matemático. Por quê?
- Você acha o modelo acima apropriado? Por quê?
- Apesar de Yi representar uma variável aleatória (estocástica) é comum representá-la no processo de modelagem por letra minúscula.

Ideia

No caso em que não se assume que Y_1, \ldots, Y_n representa uma amostra iid, pode-se, por exemplo, assumir que Y_i tenha alguma relação com X_i , de forma que com base na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$ um modelo a ser considerado seja

$$y_i = \mu(x_i; \boldsymbol{\beta}). \tag{2}$$

- **v**_i (x_i) representa a variável resposta (explicativa) associada ao *i*-ésimo indíviduo, $\mu(x_i; \beta)$ é denominada de função de regressão e β é um vetor de parâmetros, denominado parâmetros de regressão.
- Com base no exemplo, a ideia seria modelar (explicar) a renda média do indíviduo em função da quantidade de anos estudados (efetivos).
- Note que (2) representa um modelo matemático. Por quê?
- Você acha o modelo acima apropriado? Por quê?
- Apesar de Yi representar uma variável aleatória (estocástica) é comum representá-la no processo de modelagem por letra minúscula.

Ideia

No caso em que não se assume que Y_1, \ldots, Y_n representa uma amostra iid, pode-se, por exemplo, assumir que Y_i tenha alguma relação com X_i , de forma que com base na amostra $(X_1, Y_1), \ldots, (X_n, Y_n)$ um modelo a ser considerado seja

$$y_i = \mu(x_i; \boldsymbol{\beta}). \tag{2}$$

- $\mathbf{v}_i(\mathbf{x}_i)$ representa a variável resposta (explicativa) associada ao *i*-ésimo indíviduo, $\mu(\mathbf{x}_i; \boldsymbol{\beta})$ é denominada de função de regressão e $\boldsymbol{\beta}$ é um vetor de parâmetros, denominado parâmetros de regressão.
- Com base no exemplo, a ideia seria modelar (explicar) a renda média do indíviduo em função da quantidade de anos estudados (efetivos).
- Note que (2) representa um modelo matemático. Por quê?
- Você acha o modelo acima apropriado? Por quê?
- Apesar de Y_i representar uma variável aleatória (estocástica) é comum representá-la no processo de modelagem por letra minúscula.

Modelos estatísticos

■ Alguns exemplos de modelos estatísticos:

$$y_i = \mu(x_i; \boldsymbol{\beta}) + e_i \text{ (Modelo aditivo)}$$

= $\mu(x_i; \boldsymbol{\beta}) \cdot e_i \text{ (Modelo multiplicativo)}.$

A forma funcional da função de regressão e de como a fonte de variação deve entrar no modelo (de forma aditiva ou multiplicativa) depende de uma série de fatores que vamos estudar no decorrer do nosso curso.

Modelos estatísticos

Alguns exemplos de modelos estatísticos:

$$y_i = \mu(x_i; \boldsymbol{\beta}) + e_i \text{ (Modelo aditivo)}$$

= $\mu(x_i; \boldsymbol{\beta}).e_i \text{ (Modelo multiplicativo)}.$

A forma funcional da função de regressão e de como a fonte de variação deve entrar no modelo (de forma aditiva ou multiplicativa) depende de uma série de fatores que vamos estudar no decorrer do nosso curso.

- Vamos lembrar um pouco de probabilidade... 😊
- Considere (X, Y) um vetor aleatório bidimensional, de forma, que o interesse é determinal uma função $h: \mathcal{X} \mapsto \mathcal{X}_V$ tal que h(X) seja o melhor preditor de Y em algum sentido.
- Por exemplo, pode-se ter interesse em uma função h que minimiza o erro quadrático médio de previsão

$$\mathbb{E}\left[(Y-h(X))^2\right]$$

lacksquare Considerando que $Y\in\mathcal{L}_2(\Omega,\mathcal{A},\mathbb{P})$, i.e., que $\mathbb{E}[Y^2]<\infty$, tem-se

$$\mathbb{E}\left[(Y - h(X))^2\right] = \mathbb{E}\left[\left(\{Y - \mathbb{E}[Y|X]\} + \{\mathbb{E}[Y|X] - h(X)\}\right)^2\right]$$
= continuar no quadro...•

$$\mathbb{E}\left[(Y-h(X))^2\right] = \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right] + \underbrace{\mathbb{E}\left[(\mathbb{E}[Y|X]-h(X))^2\right]}_{>0}.$$

- Vamos lembrar um pouco de probabilidade... 🥞
- Considere (X, Y) um vetor aleatório bidimensional, de forma, que o interesse é determinar uma função $h: \mathcal{X} \mapsto \mathcal{X}_y$ tal que h(X) seja o melhor preditor de Y em algum sentido.
- Por exemplo, pode-se ter interesse em uma função h que minimiza o erro quadrático médio de previsão

$$\mathbb{E}\left[(Y-h(X))^2\right]$$

lacksquare Considerando que $Y\in\mathcal{L}_2(\Omega,\mathcal{A},\mathbb{P})$, i.e., que $\mathbb{E}[Y^2]<\infty$, tem-se

$$\mathbb{E}\left[(Y - h(X))^2 \right] = \mathbb{E}\left[\left(\{Y - \mathbb{E}[Y|X]\} + \{\mathbb{E}[Y|X] - h(X)\} \right)^2 \right]$$
= continuar no quadro...

$$\mathbb{E}\left[(Y-h(X))^2\right] = \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right] + \underbrace{\mathbb{E}\left[\left(\mathbb{E}[Y|X]-h(X)\right)^2\right]}_{>0}.$$

- Vamos lembrar um pouco de probabilidade... 🥞
- Considere (X, Y) um vetor aleatório bidimensional, de forma, que o interesse é determinar uma função $h: \mathcal{X} \mapsto \mathcal{X}_y$ tal que h(X) seja o melhor preditor de Y em algum sentido.
- Por exemplo, pode-se ter interesse em uma função h que minimiza o erro quadrático médio de previsão

$$\mathbb{E}\left[\left(Y-h(X)\right)^2\right].$$

lacksquare Considerando que $Y\in\mathcal{L}_2(\Omega,\mathcal{A},\mathbb{P})$, i.e., que $\mathbb{E}[Y^2]<\infty$, tem-se

$$\mathbb{E}\left[(Y - h(X))^2\right] = \mathbb{E}\left[\left(\left\{Y - \mathbb{E}[Y|X]\right\} + \left\{\mathbb{E}[Y|X] - h(X)\right\}\right)^2\right]$$
= continuar no quadro...

$$\mathbb{E}\left[(Y-h(X))^2\right] = \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right] + \underbrace{\mathbb{E}\left[(\mathbb{E}[Y|X]-h(X))^2\right]}_{>0}.$$

- Vamos lembrar um pouco de probabilidade... 😊
- Considere (X, Y) um vetor aleatório bidimensional, de forma, que o interesse é determinar uma função $h: \mathcal{X} \mapsto \mathcal{X}_V$ tal que h(X) seja o melhor preditor de Y em algum sentido.
- Por exemplo, pode-se ter interesse em uma função h que minimiza o erro quadrático médio de previsão

$$\mathbb{E}\left[\left(Y-h(X)\right)^2\right].$$

■ Considerando que $Y \in \mathcal{L}_2(\Omega, \mathcal{A}, \mathbb{P})$, i.e., que $\mathbb{E}[Y^2] < \infty$, tem-se

$$\mathbb{E}\left[(Y - h(X))^2 \right] = \mathbb{E}\left[(\{Y - \mathbb{E}[Y|X]\} + \{\mathbb{E}[Y|X] - h(X)\})^2 \right]$$
= continuar no quadro...

$$\mathbb{E}\left[(Y - h(X))^2\right] = \mathbb{E}\left[(Y - \mathbb{E}[Y|X])^2\right] + \underbrace{\mathbb{E}\left[\left(\mathbb{E}[Y|X] - h(X)\right)^2\right]}_{>0}.$$

- Vamos lembrar um pouco de probabilidade... 🥞
- Considere (X, Y) um vetor aleatório bidimensional, de forma, que o interesse é determinar uma função $h: \mathcal{X} \mapsto \mathcal{X}_y$ tal que h(X) seja o melhor preditor de Y em algum sentido.
- Por exemplo, pode-se ter interesse em uma função h que minimiza o erro quadrático médio de previsão

$$\mathbb{E}\left[\left(Y-h(X)\right)^2\right].$$

■ Considerando que $Y \in \mathcal{L}_2(\Omega, \mathcal{A}, \mathbb{P})$, i.e., que $\mathbb{E}[Y^2] < \infty$, tem-se

$$\mathbb{E}\left[(Y - h(X))^2\right] = \mathbb{E}\left[\left(\{Y - \mathbb{E}[Y|X]\} + \{\mathbb{E}[Y|X] - h(X)\}\right)^2\right]$$
= continuar no quadro...

$$\mathbb{E}\left[(Y-h(X))^2\right] = \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right] + \underbrace{\mathbb{E}\left[(\mathbb{E}[Y|X]-h(X))^2\right]}_{\geq 0}.$$

$$\mathbb{E}\left[(Y-h(X))^2\right] \geq \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right].$$

- Por essa razão, é comum considerar a função de regressão como sendo a esperança condicional
- Todavia, podemos utilizar outras funções de regressão, tais como mediana condicional, quantis condicionais, probabilidades, função distribuição/sobrevivência condicionais, funções pertinentes da esperança condicional, etc...
- Cada escolha gera uma classe de modelos específica, tais como modelos lineares generalizados, modelos de sobrevivência, modelos de regressão quantílica, regressão logística, regressão probito, etc...
- Cada classe tem suas vantagens e peculiaridades.

$$\mathbb{E}\left[(Y-h(X))^2\right] \geq \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right].$$

- Por essa razão, é comum considerar a função de regressão como sendo a esperança condicional.
- Todavia, podemos utilizar outras funções de regressão, tais como mediana condicional, quantis condicionais, probabilidades, função distribuição/sobrevivência condicionais, funções pertinentes da esperanca condicional. etc...
- Cada escolha gera uma classe de modelos específica, tais como modelos lineares generalizados, modelos de sobrevivência, modelos de regressão quantílica, regressão logística, regressão probito, etc...
- Cada classe tem suas vantagens e peculiaridades.

$$\mathbb{E}\left[(Y-h(X))^2\right] \geq \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right].$$

- Por essa razão, é comum considerar a função de regressão como sendo a esperança condicional.
- Todavia, podemos utilizar outras funções de regressão, tais como mediana condicional, quantis condicionais, probabilidades, função distribuição/sobrevivência condicionais, funções pertinentes da esperança condicional, etc...
- Cada classe tem suas vantagens e peculiaridades. ◎

$$\mathbb{E}\left[(Y-h(X))^2\right] \geq \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right].$$

- Por essa razão, é comum considerar a função de regressão como sendo a esperança condicional.
- Todavia, podemos utilizar outras funções de regressão, tais como mediana condicional, quantis condicionais, probabilidades, função distribuição/sobrevivência condicionais, funções pertinentes da esperanca condicional, etc...
- Cada escolha gera uma classe de modelos específica, tais como modelos lineares generalizados, modelos de sobrevivência, modelos de regressão quantílica, regressão logística, regressão probito, etc... ●
- Cada classe tem suas vantagens e peculiaridades.

$$\mathbb{E}\left[(Y-h(X))^2\right] \geq \mathbb{E}\left[(Y-\mathbb{E}[Y|X])^2\right].$$

- Por essa razão, é comum considerar a função de regressão como sendo a esperança condicional.
- Todavia, podemos utilizar outras funções de regressão, tais como mediana condicional, quantis condicionais, probabilidades, função distribuição/sobrevivência condicionais, funções pertinentes da esperanca condicional, etc...
- Cada escolha gera uma classe de modelos específica, tais como modelos lineares generalizados, modelos de sobrevivência, modelos de regressão quantílica, regressão logística, regressão probito, etc... ☺
- Cada classe tem suas vantagens e peculiaridades. ②

■ Se considerarmos

$$\begin{pmatrix} Y_i \\ X_i \end{pmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}; \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \cdot & \sigma_2^2 \end{pmatrix} \end{bmatrix}, i = 1, \dots, n.$$

■ Dado que

$$Y_i|X_i = x_i \sim \mathcal{N}\left[\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2); \sigma_1^2(1 - \rho^2)\right], i = 1, \dots, n$$

Então

$$\mathbb{E}[Y_i|X_i = x_i] = \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2) = \underbrace{\mu_1 - \rho \frac{\sigma_1}{\sigma_2}\mu_2}_{\beta_0} + \underbrace{\rho \frac{\sigma_1}{\sigma_2}x_i}_{\beta_1}$$
$$= \beta_0 + \beta_1 x_i = \mu(x_i; \beta), \text{ em que } \beta = (\beta_0, \beta_1)$$

Além disso, perceba que a variância condicional

$$Var[Y_i|X_i = x_i] = \sigma_1^2(1 - \rho^2)$$

não depende funcionalmente de X_i . Neste caso diz-se que existe homoscedasticidade

Se considerarmos

$$\begin{pmatrix} Y_i \\ X_i \end{pmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}; \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \cdot & \sigma_2^2 \end{pmatrix} \end{bmatrix}, i = 1, \dots, n.$$

■ Dado que

$$Y_i|X_i = x_i \sim \mathcal{N}\left[\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2); \sigma_1^2(1 - \rho^2)\right], i = 1, \dots, n.$$

Então,

$$\mathbb{E}[Y_i|X_i = x_i] = \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2) = \underbrace{\mu_1 - \rho \frac{\sigma_1}{\sigma_2}\mu_2}_{\beta_0} + \underbrace{\rho \frac{\sigma_1}{\sigma_2}x_i}_{\beta_1}$$
$$= \beta_0 + \beta_1 x_i = \mu(x_i; \beta), \text{ em que } \beta = (\beta_0, \beta_1)$$

Além disso, perceba que a variância condicional

$$Var[Y_i|X_i = x_i] = \sigma_1^2(1 - \rho^2)$$

não depende funcionalmente de X_i . Neste caso diz-se que existe homoscedasticidade

■ Se considerarmos

$$\begin{pmatrix} Y_i \\ X_i \end{pmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}; \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \cdot & \sigma_2^2 \end{pmatrix} \end{bmatrix}, i = 1, \dots, n.$$

■ Dado que

$$Y_i|X_i = x_i \sim \mathcal{N}\left[\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2); \sigma_1^2(1 - \rho^2)\right], i = 1, \dots, n.$$

Então,

$$\mathbb{E}[Y_i|X_i = x_i] = \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2) = \underbrace{\mu_1 - \rho \frac{\sigma_1}{\sigma_2}\mu_2}_{\beta_0} + \underbrace{\rho \frac{\sigma_1}{\sigma_2}}_{\beta_1} x_i$$
$$= \beta_0 + \beta_1 x_i = \mu(x_i; \boldsymbol{\beta}), \text{ em que } \boldsymbol{\beta} = (\beta_0, \beta_1)^\top.$$

Além disso, perceba que a variância condicional

$$Var[Y_i|X_i = x_i] = \sigma_1^2(1 - \rho^2)$$

não depende funcionalmente de X_i . Neste caso diz-se que existe homoscedasticidade

■ Se considerarmos

$$\begin{pmatrix} Y_i \\ X_i \end{pmatrix} \sim \mathcal{N}_2 \begin{bmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}; \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \cdot & \sigma_2^2 \end{pmatrix} \end{bmatrix}, i = 1, \dots, n.$$

Dado que

$$Y_i|X_i = x_i \sim \mathcal{N}\left[\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2); \sigma_1^2(1 - \rho^2)\right], i = 1, \dots, n.$$

■ Então,

$$\mathbb{E}[Y_i|X_i = x_i] = \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_i - \mu_2) = \underbrace{\mu_1 - \rho \frac{\sigma_1}{\sigma_2}\mu_2}_{\beta_0} + \underbrace{\rho \frac{\sigma_1}{\sigma_2}}_{\beta_1} x_i$$
$$= \beta_0 + \beta_1 x_i = \mu(x_i; \boldsymbol{\beta}), \text{ em que } \boldsymbol{\beta} = (\beta_0, \beta_1)^\top.$$

■ Além disso, perceba que a variância condicional

$$Var[Y_i|X_i = x_i] = \sigma_1^2(1 - \rho^2),$$

não depende funcionalmente de X_i . Neste caso diz-se que existe **homoscedasticidade**.

Tipos de funções de regressão

i) Linear nos parâmetros e na variável explicativa.

$$\mu(\mathbf{x}_i; \boldsymbol{\beta}) = \beta_0 + \beta_1 \mathbf{x}_i$$

$$\mu(\mathbf{x}_i; \boldsymbol{\beta}) = \beta_0 + \beta_1 \mathbf{x}_{i1} + \beta_2 \mathbf{x}_{i2}.$$

ii) Linear somente nos parâmetros.

$$\mu(\mathbf{x}_i; \boldsymbol{\beta}) = \beta_0 + \beta_1 \ln x_i$$

$$\mu(\mathbf{x}_i; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_{i1}^2 + \beta_2 \exp(x_{i2}).$$

iii) Não-linear.

$$\mu(\mathbf{x}_{i}; \boldsymbol{\beta}) = \exp(\beta_{0}) + \beta_{1}x_{i} + \beta_{2}\sqrt{x_{i2}}$$

$$\mu(\mathbf{x}_{i}; \boldsymbol{\beta}) = \frac{1}{1 + \exp(-\{\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i1}^{2}\})}$$

13 / 40