Maciej Byczko	Prowadzący:	Numer ćwiczenia	
Bartosz Matysiak	dr inż. Jacek Mazurkiewicz	2	
PN 10:50 TP	Temat ćwiczenia:	Ocena:	
	Układy Kombinacyjne	0 001100.	
Grupa:	Data wykonania:		
В	10 Października 2021		

Spis treści

1	Zad	anie 1		2
	1.1	Polece	enie	2
	1.2	Rozwi	ązanie	2
		1.2.1	Schemat układu	2
		1.2.2	Kod VHDL	2
		1.2.3	Symulacja	3
2	Zad	anie 2		3
	2.1	Polece	enie	3
	2.2	Rozwi	ązanie	3
		2.2.1	Wyprowadzenie	3
		2.2.2	Tabela prawdy	4
		2.2.3	Siatka Karnaugh	4
		2.2.4	Schemat układu	5
		2.2.5	Kod VHDL	5
		2.2.6	Symulacja	6
3	Zad	anie 3		6
	3.1	Polece	enie	6
	3.2	Rozwi	ązanie	7
		3.2.1	Tabela Prawdy	7
		3.2.2	Siatki Karnaugh	7
		3.2.3	Schemat układu	8
		3.2.4	Kod VHDL	8
		3.2.5	Symulacja	8
4	Wni	ioski		8

1 Zadanie 1

1.1 Polecenie

Wykonać dowolną bramkę - funktor: 2 wejścia, 1 wyjście

1.2 Rozwiązanie

1.2.1 Schemat układu

1.2.2 Kod VHDL

```
LIBRARY ieee;
  USE ieee.std_logic_1164.ALL;
  USE ieee.numeric_std.ALL;
  LIBRARY UNISIM;
  USE UNISIM. Vcomponents. ALL;
  ENTITY schematic_zad1_schematic_zad1_sch_tb_IS
  END schematic zad1 schematic zad1 sch tb;
  ARCHITECTURE behavioral OF schematic_zad1_schematic_zad1_sch_tb IS
     COMPONENT schematic zad1
10
                    : IN
                           STD LOGIC;
     PORT(
             IN 1
11
                           STD LOGIC;
             IN 2
                      IN
12
                      OUT STD_LOGIC);
             OUT 1:
13
     END COMPONENT;
14
     SIGNAL IN_1
                   : STD_LOGIC;
      SIGNAL IN_2
                   : STD_LOGIC;
17
      SIGNAL OUT_1:
                      STD LOGIC;
18
19
  BEGIN
20
21
     UUT: schematic_zad1 PORT MAP(
22
       IN 1 \Rightarrow IN 1,
23
       IN_2 \implies IN_2,
24
       OUT_1 \implies OUT_1
25
      );
26
27
  IN_1 \le '0', '1' after 100 ns, '0' after 300 ns;
  IN_2 <= '0',
                 '1' after 200 ns,
                                     '0' after 400 ns;
29
```

END;

1.2.3 Symulacja

2 Zadanie 2

2.1 Polecenie

Implementacja funkcji logicznej $G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$

2.2 Rozwiązanie

2.2.1 Wyprowadzenie

$$G(w, x, y, z) = \prod (0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 15)$$

$$= \sum (1, 5, 8, 10, 14) = \sum (0001, 0101, 1000, 1010, 1110)$$

$$= \overline{w}x\overline{y}z + \overline{w}x\overline{y}z + w\overline{x}y\overline{z} + w\overline{x}y\overline{z} + wxy\overline{z}$$

$$= \overline{w}yz(\overline{x} + x) + w\overline{z}(\overline{x}y + \overline{x}y + xy)$$

$$= \overline{w}yz + w\overline{z}(\overline{x}(\overline{y} + y) + xy)$$

$$= \overline{w}yz + w\overline{z}(\overline{x} + xy)$$

$$= \overline{w}yz + w\overline{z}((\overline{x} + x)(\overline{x} + y))$$

$$= \overline{w}yz + w\overline{z}((\overline{x} + y))$$

$$= \overline{w}yz + w\overline{z}((\overline{x} + y))$$

$$= \overline{w}yz + w\overline{z}z + w\overline{z}y$$

$$(9)$$

2.2.2 Tabela prawdy

Kod dziesiętny	W	X	У	Z	G
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

2.2.3 Siatka Karnaugh

Rysunek 1: $G_{wxyz} = w\overline{x}\overline{z} + \overline{w}\overline{y}z + wy\overline{z}$

2.2.4 Schemat układu

2.2.5 Kod VHDL

```
LIBRARY ieee;
  USE ieee.std_logic_1164.ALL;
  USE ieee.numeric std.ALL;
  LIBRARY UNISIM;
  USE UNISIM. Vcomponents. ALL;
  ENTITY schematic_zad2_schematic_zad2_sch_tb_IS
  END schematic zad2 schematic zad2 sch tb;
  ARCHITECTURE behavioral OF schematic_zad2_schematic_zad2_sch_tb IS
     COMPONENT schematic_zad2
10
             w : IN
                      STD_LOGIC;
     PORT(
11
             x : IN
                      STD LOGIC;
12
             y : IN
                      STD_LOGIC;
13
             : IN STD_LOGIC;
14
                       : OUT STD_LOGIC);
             G_{wxyz}
15
     END COMPONENT;
16
      SIGNAL w : STD\_LOGIC := '0';
18
     SIGNAL x : STD LOGIC := '0';
19
     SIGNAL y : STD\_LOGIC := '0';
20
    SIGNAL z
              : STD\_LOGIC := '0';
21
     SIGNAL G_wxyz : STD_LOGIC;
22
23
  BEGIN
24
     UUT: schematic_zad2 PORT MAP(
26
       w \implies w,
27
```

```
x \implies x,
28
        y \implies y \;,
29
         z \implies z,
30
        G_wxyz \implies G_wxyz
31
32
33
        w <= not w after 800ns;
34
        x \le not x after 400 ns;
35
        y \ll not y after 200 ns;
       z \ll not z after 100 ns;
37
   END;
```

2.2.6 Symulacja

3 Zadanie 3

3.1 Polecenie

Implementacja układu translatora kodu 4-bit kod NKB na 4-bit kod Aikena

3.2 Rozwiązanie

3.2.1 Tabela Prawdy

TZ: 1 1 toda	NKB				Kod Aikena			
Kod dziesiętny	W	X	у	z	W	X	у	z
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1
6	0	1	1	0	1	1	0	0
7	0	1	1	1	1	1	0	1
8	1	0	0	0	1	1	1	0
9	1	0	0	1	1	1	1	1
10	1	0	1	0	-	-	-	-
11	1	0	1	1	-	-	-	-
12	1	1	0	0	-	-	-	-
13	1	1	0	1	_	-	-	-
14	1	1	1	0	_	-	-	_
15	1	1	1	1	_	-	-	-

3.2.2 Siatki Karnaugh

$$x_A = x\overline{z} + xy + w$$

		yz						
		00	01	11	10			
	00	0	1	1	0			
anæ	01	0	1	1	0			
wx	11		-	-	-			
	10	0	1	-	-			

$$y_A = \overline{x}y + x\overline{y}z + w$$

 $z_A = z$

3.2.3 Schemat układu

3.2.4 Kod VHDL

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY UNISIM;
USE UNISIM.Vcomponents.ALL;
```

```
ENTITY schematic_zad3_schematic_zad3_sch_tb_IS
  END schematic_zad3_schematic_zad3_sch_tb;
  ARCHITECTURE behavioral OF schematic_zad3_schematic_zad3_sch_tb IS
      COMPONENT schematic_zad3
10
      PORT(
11
         W: IN
                   STD LOGIC;
12
             Υ
                 : IN
                        STD_LOGIC;
13
             Χ
                   IN
                        STD_LOGIC;
              Ζ
                  : IN
                        STD LOGIC;
             Y A
                    : OUT STD_LOGIC;
16
                    : OUT STD_LOGIC;
             X A
17
             WA
                   : OUT STD_LOGIC;
18
             Z A
                    : OUT STD LOGIC
19
20
      END COMPONENT;
21
      SIGNAL W: STD LOGIC := '0';
      SIGNAL Y : STD\_LOGIC := '0';
24
      SIGNAL X : STD LOGIC := '0';
25
      SIGNAL Z : STD LOGIC := '0';
26
      SIGNAL Y_A : STD_LOGIC;
27
      SIGNAL X_A : STD_LOGIC;
      SIGNAL W_A : STD_LOGIC;
29
      SIGNAL Z_A : STD_LOGIC;
30
31
  BEGIN
32
33
      UUT: schematic zad3 PORT MAP(
34
       W \Longrightarrow W,
       Y \Rightarrow Y,
       X \Rightarrow X
37
       Z \implies Z
38
       Y_A \Rightarrow Y_A
39
       X A \Rightarrow X A
40
       W_A \Longrightarrow W_A
41
       Z_A \Rightarrow Z_A
      );
       W \le not W after 800 ns;
44
       X \le not X after 400 ns;
45
       Y \le not Y after 200 ns;
46
      Z \ll not Z after 100 ns;
47
  END;
```

3.2.5 Symulacja

Name	Value	0 ns	100 ns	200 ns	300 ns	400 ns	500 ns	600 ns	700 ns	800 ns	900 ns
₹ w	1										
Ve x	0										
Ū _α γ	1										
3.0	0										
Va w_a	1										
la x_a	1										
Ua y_a	1										
7.0	0										
_											

4 Wnioski