Chapter VII

PAIRS OF RANDOM VARIABLES - 1st Part

1 Definitions

In an experiment that produces one r.v., events are points or intervals on a line. In an experiment that leads to two r.v. X and Y, each outcome (x,y) is a point in a plane and events are points or areas in the plane.

Definition 1.1. The joint cumulative distribution function (CDF) of r.v. X and Y is:

$$F_{X,Y}(x,y) = P(X \le x, Y \le y).$$

Proposition 1.1. The following properties hold:

1.

$$0 \le F_{X,Y}(x,y) \le 1,$$

for any pair $(x, y) \in \mathbb{R}^2$;

- 2. $F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y) \text{ and } F_Y(y) = \lim_{x \to \infty} F_{X,Y}(x,y);$
- 3. $\lim_{x \to -\infty} F_{X,Y}(x,y) = \lim_{y \to -\infty} F_{X,Y}(x,y) = 0;$
- 4. If $x \le x_1$ and $y \le y_1$, then $F_{X,Y}(x,y) \le F_{X,Y}(x_1,y_1)$ ($F_{X,Y}(x,y)$ is an increasing function);
- 5. $\lim_{\substack{x \to \infty \\ y \to \infty}} F_{X,Y}(x,y) = 1.$

Definition 1.2. The joint probability mass function of discrete r.v. X and Y is:

$$P_{X,Y}(x,y) = P[X = x, Y = y].$$

We denote by $S_{X,Y}$ the range of the pair (X,Y), meaning the set of possible values of the pair:

$$S_{X,Y} = \{(x,y), P(x,y) > 0\}.$$

Proposition 1.2. For any two discrete r.v. X and Y, and any set $B \subset (xOy)$, the probability of the event $(X,Y) \in B$ is:

$$P(B) = \sum_{(x,y)\in B} P_{X,Y}(x,y).$$

Proposition 1.3. If $P_{X,Y}(x,y)$ is the joint PMF for r.v. X and Y, the PMF of the r.v. X is given by

$$P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y),$$

and is called the marginal PMF for X. Obviously, the marginal PMF of Y is:

$$P_Y(y) = \sum_{x \in S_X} P_{X,Y}(x,y).$$

Definition 1.3. The joint probability density function of the continuous r.v. X and Y is a function $f_{X,Y}(x,y)$ with the property:

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) du dv.$$

Proposition 1.4. 1. Given the joint CDF $F_{X,Y}(x,y)$ of the continuous r.v. X and Y, the joint PDF of X and Y is the second order partial derivative of joint CDF:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}.$$

2. The probability that X takes values in [a,b] and Y takes values in [c,d] is:

$$P[a < X \le b, c < Y \le d] = F_{X,Y}(b,d) - F_{X,Y}(b,c) - F_{X,Y}(a,d) + F_{X,Y}(a,c).$$

3. The probability that the continuous r.v. (X,Y) are in $A \subset (xOy)$ is:

$$P(A) = \iint_A f_{X,Y}(x,y) dx dy.$$

Proposition 1.5. A joint PDF $f_{X,Y}$ has the following properties:

- 1. $f_{X,Y} \geq 0$, for any real pair (x,y);
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{f_{X,Y}(u,v)} du dv = 1.$

Proposition 1.6. If X and Y are continuous r.v. with joint PMF $f_{X,Y}(x,y)$, then the marginal PDF of X, respectively Y are given by

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy,$$

and

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx.$$

2 Solved Problems

1. Test two integrated circuits one after the other. On each test, the possible outcomes are a (accepted), and r (rejected).

Assume that all circuits are acceptable with probability 0.9 and that

the outcomes of successive tests are independent.

Count the number of acceptable circuits X and count the number of successful tests Y before you observe the first reject. If both tests are successful, let Y = 2. Find the following:

- a) The joint PMF of X and Y.
- b) The probability of the event B that X equals Y (the number of acceptable circuits equals the number of tests before observing the first failure);
- c) The marginal PMFs.

Solution: a) Let us denote by $S = \{aa, ar, ra, rr\}$ the sample space, and the function $g: S \to \mathbb{R}^2$ that transforms the outcome $s \in S$ into the pair (X, Y).

Then g(aa) = (2,2), g(ar) = (1,1), g(ra) = (1,0), g(rr) = (0,0). The corresponding probabilities are computed in the following table:

Figure 1

$$X/Y$$
 $y = 0$ $y = 1$ $y = 2$ $P_X(x)$
 $x = 0$ 0.01 0 0.01
 $x = 1$ 0.09 0.09 0 0.18
 $x = 2$ 0 0 0.81 0.81
 $P_Y(y)$ 0.10 0.09 0.81 1

so the joint PMF of X and Y is:

$$P_{X,Y}(x,y) = \begin{cases} 0.81, & x = 2, y = 2\\ 0.09, & x = 1, y = 1\\ 0.09, & x = 1, y = 0\\ 0.01, & x = 0, y = 0 \end{cases}$$

b) $B = \{X = Y\}$ so $B \cap S_{X,Y} = \{(0,0), (1,1), (2,2)\}$, therefore

$$P(B) = P_{X,Y}(0,0) + P_{X,Y}(1,1) + P_{X,Y}(2,2) = 0.01 + 0.09 + 0.81 = 0.91.$$

c) The marginal PMF of X can obtained from the last column of the above table:

$$P_X(x) = \begin{cases} 0.01, & x = 0 \\ 0.18, & x = 1 \\ 0.81, & x = 2 \end{cases}$$

The marginal PMF of Y can obtained from the last line of the above table:

$$P_Y(y) = \begin{cases} 0.1, & y = 0 \\ 0.09, & y = 1 \\ 0.81, & y = 2 \end{cases}$$

2. R.v. X and Y have the joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} c, & x \in [0,5], y \in [0,3] \\ 0, & otherwise \end{cases}$$

- a) Find $c \in \mathbb{R}$.
- b) Compute the probability $P(A)=P(2\leq X<3,1\leq Y<3).$ c) Compute the probability P(B)=P(Y>X).

Solution: a) Following the properties of the PDF of a r.v., the double integral on \mathbb{R}^2 equals 1:

$$\int_0^5 \int_0^3 c dx dy = 1,$$

so $c = \frac{1}{15}$.

b) The probability of the event A is:

$$P(A) = \int_{2}^{3} \int_{1}^{3} \frac{1}{15} du dv = \frac{2}{15}.$$

c)

Figure 2

$$P(A) = \iint_A f_{X,Y}(x,y) dx dy = \int_0^3 dx \int_x^3 \frac{1}{15} dy$$
$$= \frac{1}{15} \int_0^3 (y \mid_x^3) dx = \frac{1}{15} \int_0^3 (3-x) dx = \frac{3}{10}.$$

3. R.v. X and Y have the joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} \frac{5y}{4}, & -1 \le x \le 1, -1 \le y \le 1\\ 0, & otherwise \end{cases}$$

Find the marginal PDFs, $f_X(x)$ and $f_Y(y)$.

Solution: The marginal PDF of r.v. X is:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy = \int_{x^2}^{1} \frac{5y}{4}dy = \frac{5}{8}(1-x^4),$$

Figure 3

therefore,

$$f_X(x) = \begin{cases} \frac{5}{8}(1 - x^4), & -1 \le x \le 1, \\ 0, & otherwise \end{cases}$$

Using the same procedure, the marginal PDF of r.v. Y is:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{5y}{4} dx = \frac{5}{2} y \sqrt{y},$$

so

$$f_Y(y) = \begin{cases} \frac{5}{2}y\sqrt{y}, & 0 \le y \le 1, \\ 0, & otherwise \end{cases}$$

4. Find the joint CDF $F_{X,Y}(x,y)$ when X and Y have the joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} 2, & 0 \le y \le x \le 1\\ 0, & otherwise \end{cases}$$

Solution: As we know, the joint CDF of X and Y is

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) du dv.$$

• If x, y < 0, then

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} 0 \ du dv = 0.$$

• If x, y > 1, then

Figure 4

$$F_{X,Y}(x,y) = \int_0^1 dx \int_0^x 2 dy = 1.$$

• If $x > 1, y \in [0, 1]$, then

Figure 5

$$F_{X,Y}(x,y) = \int_0^y dv \int_y^1 2 \ du = 2(1-y)y.$$

• If $y > 1, x \in [0, 1]$, then

Figure 6

$$F_{X,Y}(x,y) = 2 \int_0^x du \int_0^x 2 dv = 2x^2.$$

• If $y \in [0, 1], y < x$ then

Figure 7

$$F_{X,Y}(x,y) = 2 \int_0^y dv \int_y^x du = 2y(x-y),$$

so:

$$F_{X,Y}(x,y) = \begin{cases} 0, & x,y < 0 \\ 2(1-y)y, & x > 1, y \in [0,1] \\ 2x^2, & y > 1, x \in [0,1] \\ 2y(x-y), & y \in [0,1], y < x \\ 1, & x,y > 1. \end{cases}$$