2015

Interfacing NRF24L01 Transceiver with Arduino UNO

Author: Vivek g s

Transmitting data through wireless can be done by various hardware modules like XBEE, HC-05 Bluetooth module, RF ASK module etc. These modules operate on different frequency band and they are very much costlier, if you are looking out for a wireless transceiver device which uses ultralow power and with less cost and it can also transmit and receive data up to 1Km range NRF24L01 is the device.

Figure 1 - nRF24L01 module

The nRF24L01+ is a single chip 2.4GHz transceiver with an Enhanced shock burst protocol embedded in it, which operates on a very low power (i.e. 3.3V). In this application note we are interfacing nRF24L01+ module with <u>Arduino UNO</u> to turn ON an LED, whenever the LDR value reaches certain limit on the transmitter end a LED on the receiver side will glow.

PIN Configuration:

 $Figure\ 2-nRF24L01\ pin\ outs$

Pin Description:

GND	Connects to System Ground
IRQ	Maskable interrupt pin. Active Low
MISO	SPI Slave Data Output
MOSI	SPI Slave Data Input
SCK	SPI Slave Data Input
CSN	SPI Chip Select
CE	Chip Enable Activates RX or TX mode. CE
	= 0 makes the chip to go into Stand-by
VCC	Connects to Power Supply (3.3V).

Pin connections:

Arduino UNO	nRF24L01
GND	GND
3.3V	VCC
Pin-9	CE
Pin-10	CSN
Pin-13	SCK
Pin-11	MOSI
Pin-12	MISO
No connection	IRQ

 ${\it \# 9/3, 2nd floor, Sree Laksmi \ Complex, opp, to \ Vivekananda \ Park, Girinagar, Bangalore - 560085,}$

 ${\bf Email: info@tenettech.com, Phone: 080-26722726}$

Interfacing nRF24L01+ module with Arduino UNO

Transmitter1 Block diagram:

Figure 3 – Transmitter1 circuit diagram

 ${\it \# 9/3, 2nd floor, Sree Laksmi \ Complex, opp, to \ Vivekananda \ Park, Girinagar, Bangalore - 560085,}$

Transmitter2 Block diagram:

Figure 4 – Transmitter2 circuit diagram

 ${\it \# 9/3, 2nd floor, Sree Laksmi \ Complex, opp, to \ Vivekananda \ Park, Girinagar, Bangalore - 560085,}$

Receiver:

Figure 5 – Receiver circuit diagram

Code:

Transmitter1:

#include <SPI.h> //Call SPI library so you can communicate with the nRF24L01+

#include <nRF24L01.h> //nRF2401 libarary found at https://github.com/tmrh20/RF24/

#include <RF24.h> //nRF2401 libarary found at https://github.com/tmrh20/RF24/

const int pinCE = 9; //This pin is used to set the nRF24 to standby (0) or active mode (1)

9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,

```
const int pinCSN = 10; //This pin is used to tell the nRF24 whether the SPI
communication is a command or message to send out
bool done = false; //used to know when to stop sending guesses
RF24 wirelessSPI(pinCE, pinCSN); // Create your nRF24 object or wireless SPI
connection
const uint64_t wAddress = 0xB00B1E50C3LL; //pipe for writing or
transmitting data
const uint64_t rAddress = 0xB00B1E50A4LL; //pipe for reading or recieving
data
void setup()
 Serial.begin(57600); //start serial to communicate process
 randomSeed(analogRead(0)); //create unique seed value for random number
generation
 wirelessSPI.begin();
                             //Start the nRF24 module
 wirelessSPI.openWritingPipe(wAddress); // setup pipe to transmit over
 wirelessSPI.openReadingPipe(1,rAddress); //set up pipe to recieve data
 wirelessSPI.stopListening(); //turn off recieve capability so you can transmit
void loop()
 if(!done) { //true once you guess the right number
# 9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,
 Email: info@tenettech.com, Phone: 080 - 26722726
```

byte randNumber = (byte)random(11); //generate random guess between 0 and 10

```
if (!wirelessSPI.write( &randNumber, 1 )){ //if the write fails let the user know over serial monitor
```

```
Serial.println("Guess delivery failed");
}
else { //if the write was successful
    Serial.print("Success sending guess: ");
    Serial.println(randNumber);
```

wirelessSPI.startListening(); //switch to recieve mode to see if the guess was right

```
unsigned long startTimer = millis(); //start timer, we will wait 200ms bool timeout = false;
```

while (!wirelessSPI.available() && !timeout) { //run while no recieve data and not timed out

```
if (millis() - startTimer > 200 ) timeout = true; //timed out
```

TECHNETRONICS

if (timeout) Serial.println("Last guess was wrong, try again"); //no data to recieve guess must have been wrong

```
else { //we recieved something so guess must have been right byte daNumber; //variable to store recived value
```

9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,

```
wirelessSPI.read(&daNumber,1); //read value
      if(daNumber == randNumber) { //make sure it equals value we just sent,
if so we are done
       Serial.println("You guessed right so you are done");
       done = true; //signal to loop that we are done guessing
      else Serial.println("Something went wrong, keep guessing"); //this should
never be true, but just in case
     wirelessSPI.stopListening(); //go back to transmit mode
   }
  delay(1000);
Transmitter2:
#include <SPI.h> //Call SPI library so you can communicate with the
nRF24L01+
#include <nRF24L01.h> //nRF2401 libarary found at
https://github.com/tmrh20/RF24/
#include <RF24.h> //nRF2401 libarary found at
https://github.com/tmrh20/RF24/
\# 9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,
```

```
const int pinCE = 9; //This pin is used to set the nRF24 to standby (0) or active
mode (1)
const int pinCSN = 10; //This pin is used to tell the nRF24 whether the SPI
communication is a command or message to send out
byte counter = 1; //used to count the packets sent
bool done = false; //used to know when to stop sending packets
RF24 wirelessSPI(pinCE, pinCSN); // Create your nRF24 object or wireless SPI
connection
const uint64 t wAddress = 0xB00B1E50D2LL;
                                                        // Pipe to write or
transmit on
const uint64_t rAddress = 0xB00B1E50B1LL; //pipe to recive data on
void setup()
 Serial.begin(57600); //start serial to communicate process
 randomSeed(analogRead(0)); //create unique seed value for random number
generation
 wirelessSPI.begin();
                            //Start the nRF24 module
 wirelessSPI.openWritingPipe(wAddress); //open writing or transmit pipe
 wirelessSPI.openReadingPipe(1,rAddress); //open reading or recieve pipe
 wirelessSPI.stopListening(); //go into transmit mode
}
# 9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,
```

```
void loop()
  if(!done) { //true once you guess the right number
   byte randNumber = (byte)random(11); //generate random guess between 0
and 10
  if (!wirelessSPI.write(&randNumber, 1)){ //if the write fails let the user
know over serial monitor
      Serial.println("Guess delivery failed");
   }
   else { //if the write was successful
      Serial.print("Success sending guess: ");
      Serial.println(randNumber);
     wirelessSPI.startListening(); //switch to recieve mode to see if the guess
was right
     unsigned long startTimer = millis(); //start timer, we will wait 200ms
     bool timeout = false;
     while (!wirelessSPI.available() && !timeout ) { //run while no recieve
data and not timed out
      if (millis() - startTimer > 200 ) timeout = true; //timed out
     }
{\it \# 9/3, 2} nd \ floor, Sree Laksmi \ Complex, opp, to \ Vivekananda \ Park, Girinagar, Bangalore - 560085,
 Email: info@tenettech.com, Phone: 080 - 26722726
```

```
if (timeout) Serial.println("Last guess was wrong, try again"); //no data to
recieve guess must have been wrong
     else { //we recieved something so guess must have been right
      byte daNumber; //variable to store recived value
      wirelessSPI.read(&daNumber,1); //read value
      if(daNumber == randNumber) { //make sure it equals value we just sent,
if so we are done
       Serial.println("You guessed right so you are done");
       done = true; //signal to loop that we are done guessing
      else Serial.println("Something went wrong, keep guessing"); //this should
never be true, but just in case
     wirelessSPI.stopListening(); //go back to transmit mode
   }
  delay(1000);
Receiver:
#include <SPI.h> //Call SPI library so you can communicate with the
nRF24L01+
#include <nRF24L01.h> //nRF2401 libarary found at
https://github.com/tmrh20/RF24/
{\it \# 9/3, 2} nd \ floor, Sree Laksmi \ Complex, opp, to \ Vivekan and a \ Park, Girinagar, Bangalore - 560085,
 Email: info@tenettech.com, Phone: 080 - 26722726
```

```
#include <RF24.h> //nRF2401 libarary found at
https://github.com/tmrh20/RF24/
const int pinCE = 9; //This pin is used to set the nRF24 to standby (0) or active
mode (1)
const int pinCSN = 10; //This pin is used to tell the nRF24 whether the SPI
communication is a command or message to send out
byte daNumber = 0; //The number that the transmitters are trying to guess
RF24 wireless SPI(pinCE, pinCSN); // Declare object from nRF24 library
(Create your wireless SPI)
const uint64 t rAddress[] = \{0xB00B1E50D2LL, 0xB00B1E50C3LL\};
//Create pipe addresses for the 2 nodes to recieve data, the "LL" is for
LongLong type
const uint64_t wAddress[] = \{0xB00B1E50B1LL, 0xB00B1E50A4LL\};
//Create pipe addresses for the 2 nodes to transmit data, the "LL" is for
LongLong type
void setup()
 randomSeed(analogRead(0)); //create unique seed value for random number
generation
 daNumber = (byte)random(11); //Create random number that transmitters have
to guess
 Serial.begin(57600); //start serial to communication
 Serial.print("The number they are trying to guess is: ");
 Serial.println(daNumber); //print the number that they have to guess
# 9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,
```

```
Serial.println();
 wirelessSPI.begin(); //Start the nRF24 module
 wirelessSPI.openReadingPipe(1,rAddress[0]);
                                                     //open pipe o for recieving
meassages with pipe address
 wirelessSPI.openReadingPipe(2,rAddress[1]);
                                                     //open pipe o for recieving
meassages with pipe address
 wirelessSPI.startListening();
                                          // Start listening for messages
void loop()
{
  byte pipeNum = 0; //variable to hold which reading pipe sent data
  byte gotByte = 0; //used to store payload from transmit module
  while(wirelessSPI.available(&pipeNum)){ //Check if recieved data
   wirelessSPI.read(&gotByte, 1); //read one byte of data and store it in
gotByte variable
   Serial.print("Recieved guess from transmitter: ");
   Serial.println(pipeNum); //print which pipe or transmitter this is from
   Serial.print("They guess number: ");
   Serial.println(gotByte); //print payload or the number the transmitter guessed
   if(gotByte != daNumber) { //if true they guessed wrong
   Serial.println("Fail!! Try again.");
# 9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,
 Email: info@tenettech.com, Phone: 080 - 26722726
```

```
else { //if this is true they guessed right
    if(sendCorrectNumber(pipeNum)) Serial.println("Correct! You're done.");
//if true we successfully responded
   else Serial.println("Write failed"); //if true we failed responding
   Serial.println();
 delay(200);
//This function turns the reciever into a transmitter briefly to tell one of the
nRF24s
//in the network that it guessed the right number. Returns true if write to module
was
//successful
bool sendCorrectNumber(byte xMitter) {
  bool worked; //variable to track if write was successful
  wirelessSPI.stopListening(); //Stop listening, stop recieving data.
  wirelessSPI.openWritingPipe(wAddress[xMitter-1]); //Open writing pipe to
the nRF24 that guessed the right number
  if(!wirelessSPI.write(&daNumber, 1)) worked = false; //write the correct
number to the nRF24 module, and check that it was recieved
  else worked = true; //it was recieved
\# 9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,
 Email: info@tenettech.com, Phone: 080 - 26722726
```

wirelessSPI.startListening(); //Switch back to a reciever return worked; //return whether write was successful

Libraries to be included:

https://github.com/maniacbug/RF24

Result:

}

Figure 6 – Analog values read from node1

9/3, 2nd floor, SreeLaksmi Complex, opp, to Vivekananda Park, Girinagar, Bangalore - 560085,

Figure 6 – Analog values read from node2

For product information:

- 1. http://www.tenettech.com/product/5294/nrf24l01module
- 2. HTTP://WWW.TENETTECH.COM/PRODUCT/202/ARDUINO-UNO-ARDUINO-UNO-R3
- 3. HTTP://WWW.TENETTECH.COM/PRODUCT/2609/BASIC-BREADBOARD

For more information please visit: www.tenettech.com

For technical query please send an e-mail: info@tenettech.com

 ${\it \# 9/3, 2} nd \ floor, Sree Laksmi \ Complex, opp, to \ Vivekananda \ Park, Girinagar, Bangalore - 560085,$