SPRINT 4

Date	09 November 2022
Team ID	PNT2022TMID19524
Project Name	Project – Smart Farmer-IoT Enabled smart
	Farming Application

5.5 Receiving commands from IBM cloud using Python program

import time import

sys

import ibmiotf.application

import ibmiotf.device import

random

#Provide your IBM Watson Device Credentials

```
organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"
```

```
# Initialize GPIO
```

```
def myCommandCallback(cmd): print("Command
received: %s" % cmd.data['command'])
status=cmd.data['command']
                                if status=="motoron":
print ("motor is on") elif status == "motoroff":
                                                  print
("motor is off")
                    else:
    print ("please send proper command")
try:
      deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
```

```
Humid=random.randint(60,100)
Mois=random. Randint(20,120) data = {
  'temp': temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                       def
myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %
Humid, "Moisture =%s deg c" % Mois "to IBM Watson") success =
      deviceCli.publishEvent("IoTSensor", "json", data, gos=0,
on publish=myOnPublishCallback)
                                         if not success:
       print("Not connected to IoTF")
time.sleep(10) deviceCli.commandCallback =
myCommandCallback # Disconnect the device and
application from the cloud deviceCli.disconnect()
ibmiotpublishsubscribe.py - C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py (3.7.0)
```

```
- o ×
File Edit Format Run Options Window Help
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
   print("Command received: %s" % cmd.data['command'])
   status=cmd.data['command']
     if status=="motoron":
          print ("motor is on")
     elif status == "motoroff":
         print ("motor is off")
          print ("please send proper command")
try:
          deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
          deviceCli = ibmiotf.device.Client(deviceOptions)
# DO O The Price of the Explorer
                                 🏴 🖭 😩 😂 📉 📈 👩 💪 ibmiotpublishsubscri...
                                                                                                  _____ 29°C Cloudy ∧ Q == ENG 18:01 =
```


6. Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.