CS 341: Algorithms Module 7: Graph Algorithms

Armin Jamshidpey, Eugene Zima

Based on lecture notes by many previous CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2019

DFS on directed graphs

- Interpret "w adjacent to v" as finding directed edge (v, w)
- Edges (v, w) grouped into four types:
 - Tree edge
 - ★ White w discovered from gray v
 - ★ Actually a set of trees, or forest
 - Back edges
 - ★ w ancestor of v or on stack when w visited (w gray)
 - ► Forward edges
 - ★ w descendant of v (w black, d[v] < d[w])
 - Cross-edges
 - ★ All others (w black, d[v] > d[w])

Topological sort

- A linear ordering of vertices of a Directed Acyclic Graph (DAG)
- For any directed edge (u, v), u precedes v in ordering

Use of topological sort

- Application: nodes are tasks, edges are "precedences" (e.g. one task must be done before another can be started)
- A topological sort gives an order in which to do tasks
- Naive algorithm: look for a source (no incoming edges), choose and delete it
- This is $\Theta(n(n+m))$

Using DFS

- The finishing times f[u] give a topological ordering (taken in decreasing order).
- Equivalently, in postprocessing (when vertex coloured black), put it on front of a linked list; resulting list is topologically ordered.
- Why does this work? Intuitively OK
- Need to show that for any directed edge (u, v), f[u] > f[v]; this is not obvious.

Proof of topological sort

Lemma

A graph is acyclic iff there are no back edges in a DFS of the graph

Proof: (\Rightarrow) If there is a back edge, that edge plus the tree path forward gives a cycle.

Proof of topological sort

(\Leftarrow) If there is a cycle, let u be the first discovered cycle vertex in DFS, and let (v, u) be a cycle edge.

The white-path theorem applied to v, u says that v is a descendant of u, so (v, u) is a back edge.

Proof of topological sort

Apply DFS to a DAG, and consider directed edge (u, v); must show f[v] < f[u].

- When (u, v) explored, v can not be gray, because (u, v) would be a back edge.
- If v is white, it becomes descendant of u, so f[v] < f[u] by parenthesis theorem.
- If v is black, f[v] already set; f[u] must be bigger when it is set.

Strongly connected components

• A strongly connected component is a maximal set of vertices $C \subseteq V$ such that for any u, v in C, there are directed paths from one to the other.

A naive algorithm for SCC

- Run DFS-visit from each node u to get reach(u) = vertices reachable from u.
- $S \leftarrow reach(u)$; for every v in S, if $u \notin reach(v)$, delete v from S.
- What is left is a strongly connected component
- This takes $\Theta(n(n+m))$ time just to get one strongly connected component

Better use of DFS for SCC

- Let G^T be G with all edges reversed.
- \bullet G and G^T have the same strongly connected components.
- Can create G^T in O(n+m) time.

Strongly-Connected-Components(G)

- lacktriangle Call a DFS on G, recording finishing times.
- **2** Compute G^T .
- **3** Call a DFS on G^T , choosing roots in order of decreasing finishing time in first DFS (step 1).
- Vertices of each tree in the depth-first forest is a strongly connected component.

SCC algorithm example

Intuition: the component graph

- Define a graph G^{SCC} : Each vertex is a strongly connected component of G.
- (u, v) is an edge in G^{SCC} iff there is an edge in G from a vertex in the component u to the component v.

The component graph

- G^{SCC} is a directed acyclic graph (DAG).
- The second DFS on G^T basically visits the vertices of (G^T)^{SCC} in reverse topological order (or of G^{SCC} in topological order).

Proof of SCC algorithm

Extend definition of d and f (discovery time and finishing times) to sets:

For
$$U \subseteq V$$
, $d(U) = min_{u \in U}d[u]$ and $f(U) = max_{u \in U}f[u]$

Lemma 4

For two components C and C', if there is an edge from C to C', then f(C) > f(C').

Proof:

If d(C) < d(C'), then when the first vertex x was discovered in C, there was a white path from x to all vertices in C and C'; the white-path and parenthesis theorems show f[x] = f(C) > f(C').

Proof of lemma 4

- If d(C) > d(C'), when first vertex y discovered in C', all other vertices in C' are white, and as before f[y] = f(C').
- Vertices of C are also white, and because of edge (u, v) from C to C, no vertices of C are reachable from y, so their discovery times and finishing times are > f[y].
- Thus f(C) > f(C').

Proof of SCC algorithm (ctd.)

Corollary 5

For two components C, C', if there is an edge from C' to C in G^T , then f(C) > f(C').

Thus the component first visited in the DFS search on G^T has no edge to any other component.

Conclusion of proof

Can now use induction on the number of trees visited in second DFS to show each one is a separate component

