Sébastien Lassalle Licence CC-BY-NC-SA

Fiche méthode: Suites

1. Démonstration par récurrence

• Pour démontrer une propriété par récurrence, on commence par donner la propriété que l'on souhaite vérifier. Exemple :

$$P_n:U_n>0$$

- On procède ensuite à l'étape dite "initialisation" :
 - Propriété d'égalité : $P_n: U_n = \frac{1}{n+1}$

Initialisation

D'une part,
$$U_1 = \frac{1}{2}$$
. D'autre part, $\frac{1}{1+1} = \frac{1}{2} = U_1$
Ainsi P_1 vraie.

– Propriété d'inégalité : $P_n : 0 < U_n < U_{n+1} \le 1$

On a
$$U_1 = \frac{1}{2}$$
 et $U_2 = \frac{3}{4}$
On a donc $0 < \frac{1}{2} < \frac{3}{4} \le 1 \Leftrightarrow 0 < U_1 < U_2 \le 1$
Ainsi P_1 vraie

- On poursuit avec l'étape intitulé "hérédité" :
 - Propriété d'égalité :

<u>Hérédité</u>:

On suppose qu'il existe un rang n fixé tel que : $U_{n+1} = \frac{1}{n+1}$. (On ne fait que recopier la propriété!)

On veut montrer que $U_{n+1} = \frac{1}{n+2}$. (Pour trouver U_{n+2} on a juste à ajouter 1 à n donc on fait la même chose dans la formule : $U_{n+1} = U_{(n)+1} = \frac{1}{(n+1)+1} = \frac{1}{n+2}$)

Or on sait que $U_{n+1} = \frac{U_n}{U_{n+1}}$. (Ici on recopie la suite que l'on dispose)

$$U_{n+1} = \frac{U_n}{U_n + 1}$$
 (On réécrit ce que l'on sait)

$$U_{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+1}+1}$$
 (On remplace U_n par notre supposition $(\frac{n}{n+1})$)

$$U_{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+1} + \frac{n+1}{n+1}}$$
 (On met au même dénominateur)

$$U_{n+1} = \frac{\frac{1}{n+1}}{\frac{1+n+1}{n+1}}$$

$$U_{n+1} = \frac{1}{n+1} \times \frac{n+1}{n+2}$$
 (Diviser par une fraction revient à multiplier par son inverse)

$$U_{n+1} = \frac{(n+1)}{(n+1)(n+2)}$$

$$U_{n+1} = \frac{1}{n+2}$$

 P_n vraie implique P_{n+1} vraie. Par hérédité, P_n vraie $\forall n \in \mathbb{N}$. (Simple conclusion)

- Propriété d'inégalité :

Fiche méthode 1/6

Sébastien Lassalle Licence CC-BY-NC-SA

> Dans cet exemple, on se propose d'étudier la suite (U_n) définie $\forall n \in \mathbb{N}$ et $n \geq 1$ par $\frac{U_n+1}{2}$ avec comme premier terme $U_1=\frac{1}{2}$.

On souhaite montrer que la suite (U_n) est minorée par son premier terme U_1 . Cela se traduit par la propriété suivante : $P_n: U_n \ge 0, 5$.

On suppose qu'il existe un rang n fixé tel que : $U_n \ge 0, 5$. On veut montrer que $U_{n+1} \ge 0, 5$.

 $U_n \geq \frac{1}{2}$ (Le but est de retrouver la formule de U_{n+1})

$$U_n + 1 \ge \frac{1}{2} + 1$$

$$\frac{U_n}{2} \ge \frac{\frac{3}{2}}{2}$$

$$U_{n+1} \ge \frac{3}{2} \times \frac{1}{2}$$

$$U_{n+1} \ge \frac{3}{4} > \frac{1}{2}$$

 P_n vraie implique P_{n+1} vraie. Par hérédité, P_n vraie $\forall n \in \mathbb{N}$.

Propriété d'inégalité avec utilisation de fonction associée :

Dans cet exemple, on étudie la suite précédente avec une propriété cette fois-ci plus complète.

On rappelle que la suite (U_n) est définie $\forall n \in \mathbb{N}, n \geq 1$ par $\frac{U_n + 1}{2}$.

On a la propriété suivante : $P_n: 0 \le U_n \le U_{n+1} \le 1$. Avec ceci on peut établir une fonction associée à la suite. (il suffit de replacer U_n par x)

On aura $f(x) = \frac{x+1}{2}$. On admet que cette fonction est croisante sur [0;1] (Normalement cela doit être montré mais au vu de sa simplicité, on ne va pas perdre de temps ici!)

Hérédité:

On suppose qu'il existe un rang n fixé tel que : $0 \le U_n \le U_{n+1} \le 1$. La fonction f est croissante sur [0;1] donc $f(0) \leq f(U_n) \leq f(U_{n+1}) \leq f(1)$. $f(0) = \frac{1}{2} > 0$, $f(U_n) = U_{n+1}$, $f(U_{n+1}) = U_{n+2}$ et f(1) = 1On en déduit que $0 \le U_{n+1} \le U_{n+2} \le 1$.

 P_n vraie implique P_{n+1} vraie. Par hérédité, P_n vraie $\forall n \in \mathbf{N}$.

On notera que cette propriété nous apporte plusieurs choses.

On sait que la suite (U_n) est minorée par 0 et majorée par 1.

On en conclu que comme $U_n \leq U_{n+1}$, la suite (U_n) est croissante.

- Exemple d'exercice et correction :
 - 1. Soit la suite (U_n) définie $\forall n \in \mathbb{N}$ par $U_{n+1} = 0, 7 \times U_n + 1, 8$ et de premier terme $U_0 = 2$. Démontrer par récurrence que la suite est croissante et majorée par 6.

Correction rédigée :

On note P_n la propriété suivante : $U_n \leq U_{n+1} < 6$.

 $\underline{\text{Initialisation}}$:

 $U_0 = 2$ et $U_1 = 0, 7 \times 2 + 1, 8 = 3, 2$.

On a donc $U_0 \leq U_1 < 6$.

Ainsi, P_0 vraie.

Hérédité :

Fiche méthode 2/6 Sébastien Lassalle Licence CC-BY-NC-SA

On suppose qu'il existe un rang n fixé tel que : $U_n \leq U_{n+1} < 6$ On veut montrer que $U_{n+1} \leq U_{n+2} < 6$.

On a bien montré que $U_{n+1} \leq U_{n+2} < 6$. Donc $P_n + 1$ vraie implique P_{n+1} vraie. Ainsi, par hérédité, P_n vraie $\forall n \in \mathbf{N}$.

2. Montrer la monotonie d'une suite

• Méthode générale On étudie le signe de $U_{n+1} - U_n$.

> Suite explicite Soit la suite (U_n) définie $\forall n \in \mathbb{N}$ par $\frac{1}{n+1}$. On peut en déduire que $U_{n+1} = \frac{1}{n+2}$

Rédaction possible : On étudie le signe de $U_{n+1} - U_n$.

$$U_{n+1} - U_n = \frac{1}{n+2} - \frac{1}{n+1}$$

$$= \frac{(n+1)}{(n+2)(n+1)} - \frac{(n+2)}{(n+2)(n+1)}$$

$$= \frac{(n+1) - (n+2)}{(n+2)(n+1)}$$

$$= \frac{n+1-n-2}{(n+2)(n+1)}$$

$$= \frac{-1}{n^2+n+2n+2}$$

$$= \frac{-1}{n^2+3n+2}$$

Sachant que $n \in \mathbb{N}$, on sait que $n \geq 0$.

$$-1 < 0$$

$$-1 \times \frac{1}{n^2 + 3n + 2} < 0$$

$$\frac{-1}{n^2 + 3n + 2} < 0$$

$$U_{n+1} - U_n < 0$$

On n'a pas changé de sens dans l'inégalité car la fonction $\frac{1}{n^2+3n+2}$ est croissante sur N. On peut tout de même le montrer.

Soit la fonction f définie et dérivable $\forall x \in \mathbf{N}$ par $f(x) = \frac{1}{x^2 + 3x + 2}$. Soit f' la fonction dérivée de f définie sur \mathbf{N} par $f'(x) = \frac{-(-1)(2x+3)}{(x^2 + 3x + 2)^2} = \frac{2x+3}{(x^2 + 3x + 2)^2}$ On résout f'(x) = 0.

$$f'(x) = 0$$

$$\frac{2x+3}{(x^2+3x+2)^2} = 0$$

$$2x+3 = 0$$

$$x = \frac{-3}{2} \notin \mathbf{N}$$

3/6Fiche méthode

Sébastien Lassalle Licence CC-BY-NC-SA

Sachant que f'(0) = 0,75 > 0 et que sur \mathbf{N} , f' est toujours de même signe. On en déduit que $\forall x \in \mathbf{N} f'$ est positive ce qui implique $\forall x \in \mathbf{N} f$ est toujours croissante.

Ainsi la différence entre les termes de la suite est inférieure à 0. On peut donc en conclure que la suite est strictement décroissante.

- Suite définie par réccurence :

Dans ce cas, on aura besoin du signe des termes de la suite.

Soit la suite (U_n) définie $\forall n \in \mathbf{N}$ par $U_{n+1} = \frac{U_n}{U_n + 1}$ avec $U_0 = \frac{1}{2}$. On admet que les termes de la suite (U_n) sont toujours strictement positifs.

On étudie le signe de $U_{n+1} - U_n$.

$$U_{n+1} - U_n = \frac{U_n}{U_n + 1} - U_n$$

$$= \frac{U_n}{U_n + 1} - \frac{U_n(U_n + 1)}{U_n + 1}$$

$$= \frac{U_n - U_n(U_n + 1)}{U_n + 1}$$

$$= \frac{-(U_n)^2 - U_n + U_n}{U_n + 1}$$

$$= \frac{-(U_n)^2}{U_n + 1}$$

On sait que $U_n > 0$. On peut donc en conclure que $-(U_n)^2$ est strictement négatif. De même U_n+1 est donc strictement positif. Ainsi $\frac{-(U_n)^2}{U_n+1}$ admet un numérateur négatif et un dénominateur positif, on en déduit que $\frac{-(U_n)^2}{U_n+1}$ est négatif. Autrement dit : $U_{n+1} - U_n < 0$, cela signifie que la différence entre les termes est négative donc la suite (U_n) est décroissante.

• Méthode pour les suites explicites

<u>Théorème</u>: Si $U_n = f(n)$ et si f est monotone sur $[U_0; +\infty[$ alors, la suite (U_n) admet la même monotonie que f.

La méthode n'admet pas de rédation assez compliqué alors, pas d'exemple ici!

• Méthode par récurrence

On peut montrer qu'une suite est croissante ou décroissante à l'aide d'une conjecture que l'on démontrera dans un raisonnement par récurrence.

Si la suite semble décroissante $P_n:U_n>U_{n+1}$ ou $P_n:U_n\geq U_{n+1}$. Si la suite semble croissante : $P_n:U_n< U_{n+1}$ ou $P_n:U_n\leq U_{n+1}$. Puis cf. partie 1.

3. Démontrer qu'une suite converge

Lorsque l'on doit montrer cela on doit connaître la monotonie de la suite étudiée et par quelle valeur elle est minorée ou majorée.

Exemples:

- On sait $U_n < U_{n+1} < 1$, on en déduit que (U_n) est sctrictement croissante car $U_n < U_{n+1}$ et majorée par 1 car $U_{n+1} < 1$ donc $U_n < 1$. D'après le théorème de convergence monotone, la suite (U_n) converge vers une limite finie notée l.
- On sait $0 > U_n \ge U_{n+1}$, on en déduit que (U_n) est décroissante car $U_n \ge U_{n+1}$ et minorée par 0 car $0 > U_n$. D'après le théorème de convergence monotone, la suite (U_n) converge vers une limite finie notée l.

4. <u>Déterminer la limite d'une suite</u>

• Suite géométrique

On distungue deux limites possibles, soit 0 soit $+\infty$.

Exemple de rédaction :

Fiche méthode 4/6

Sébastien Lassalle Licence CC-BY-NC-SA

- La suite (U_n) est une suite géométrique de raison $q=\frac{1}{2}<1$. On en déduit que :

$$\lim_{n\to\infty} U_n = 0$$

- La suite (U_n) est une suite géométrique de raison q = 8 > 1. On en déduit que :

$$\lim_{n\to\infty} U_n = +\infty$$

• Limites sans théorème

ATTENTION : Un infini n'est pas défini alors sa grandeur non plus ! On ne peut donc pas écrire $+\infty = +\infty$ car cette propriété n'est pas toujours vraie! Par exemple, n croit moins vite que n^2 pourtant ils croient tous les deux vers $+\infty$.

On s'intéresse aux limites que l'on ne peut pas déterminer directement.

(a)
$$U_n = n^2 + \sqrt{n} - 1$$

$$\lim_{n \to \infty} n^2 = +\infty$$

$$\lim_{n \to \infty} \sqrt{n} = +\infty$$

Donc par somme,

$$\lim_{n \to \infty} U_n = +\infty$$

(b)
$$V_n = -\frac{2}{n^3} + \frac{3}{\sqrt{n}} + 4$$

$$\lim_{n \to \infty} n^3 = +\infty \text{ et } \lim_{n \to \infty} \frac{2}{n} = 0 \text{ Donc } \lim_{n \to \infty} -\frac{2}{n^3} = 0$$

$$\lim_{n \to \infty} \sqrt{n} = +\infty \text{ et } \lim_{n \to \infty} \frac{3}{n} = 0 \text{ Donc } \lim_{n \to \infty} -\frac{3}{\sqrt{n}} = 0$$
Denominant sorting

$$\lim_{n\to\infty} \sqrt{n} = +\infty$$
 et $\lim_{n\to\infty} \frac{3}{n} = 0$ Donc $\lim_{n\to\infty} -\frac{3}{\sqrt{n}} = 0$

Donc par somme,

$$\lim_{n\to\infty} U_n = 4$$

(c)
$$W_n = 3n^2 - 2n + 1 \lim_{n \to \infty} 3n^2 = +\infty$$
 et $\lim_{n \to \infty} -3n = -\infty$ Il s'agit donc ici d'une forme indéterminée. On factorise pour déterminer la limite de (W_n) .

$$W_n = n(3n - 2 + \frac{1}{n})$$

$$\lim_{n \to \infty} 3n - 2 = +\infty \text{ et } \lim_{n \to \infty} \frac{1}{n} = 0.$$

Par somme,
$$\lim_{n \to \infty} 3n - 2 + \frac{1}{n} = +\infty$$

Par produit :
$$\lim_{n\to\infty} W_n = +\infty$$

- Limites avec théorème de comparaison et des gendarmes
 - On sait que $W_n < U_n < 1$ et que $\lim_{n \to \infty} W_n = 1$.

Ainsi : $\lim_{n\to\infty} W_n < \lim_{n\to\infty} U_n < 1$, Donc, d'après le théorème des gendarmes, $\lim_{n\to\infty} U_n = 1$.

- On sait que $W_n < U_n$ et que $\lim_{n \to \infty} W_n = +\infty$.

Ainsi : $\lim_{n\to\infty} W_n < \lim_{n\to\infty} U_n$, Donc, d'après le théorème de comparaison, $\lim_{n\to\infty} U_n = +\infty$.

• Théorème du point fixe

Pour cette méthode on doit disposer d'une suite définie par récurrence pour construire une fonction associée et avoir $f(U_n) = U_{n+1}$.

L'exemple rédigé ci-dessous dispose des informations suivantes : $U_{n+1} = 1,9U_n(1-U_n)$ et f(x) =1,9x(1-x). On sait également que la suite (U_n) est croissante.

Fiche méthode 5/6 Sébastien Lassalle Licence CC-BY-NC-SA

Exemple de rédaction :

On appel l la limite de la suite (U_n) .

Comme pour tout n, $f(U_n) = U_{n+1}$ et que la fonction f est dérivable sur \mathbf{R} donc continue sur \mathbf{R} , la limite l vérifie f(l) = l.

On résout l'équation f(x) = x:

$$f(x) = x$$

$$1,9x(1-x) = x$$

$$1,9x(1-x) - x = 0$$

$$1,9x - 1,9x^{2} - x = 0$$

$$-1,9x^{2} + 0,9x = 0$$

$$x(1,9x + 0,9) = 0$$

$$x = 0 \text{ ou } x = \frac{0,9}{1,9}$$

Mais comme la suite (U_n) est croissante $l \ge u_0$. Or $u_0 > 0$ donc 0 ne peut pas être le limite de la suite (U_n) . En revanche la deuxième solution $\frac{0.9}{1.9}$ est bien supérieur à u_0 . On peut donc en conclure que $l = \frac{0.9}{1.9}$.

Ainsi,
$$\lim_{n\to\infty} U_n = \frac{0.9}{1.9}$$

5. Montrer qu'une suite est géométrique et trouver la suite explicite associée

Dans l'exemple ci-dessous on dispose des informations suivantes : $V_n = 6 - U_n$ et $U_{n+1} = 0,7U_n + 1,8$ (avec $U_0 = 2$).

Nous devons montrer que (V_n) est une suite géométrique de raison 0,7 et nous devons déterminer une expression de U_n en fonction de n.

Exemple de rédaction :

On veut montrer que $V_{n+1} = V_n \times k$.

Or, on sait que $V_n = 6 - U_n$, on en déduit que $V_{n+1} = 6 - U_{n+1}$. On a donc :

$$V_{n+1} = 6 - U_{n+1}$$

$$= 6 - 0,7U_n + 1,8$$

$$= -0,7U_n + 4,2$$

$$= 0,7(6 - U_n)$$

$$= 0,7V_n$$

On a bien montré que $V_{n+1} = V_n \times k$. On en déduit que la suite (V_n) est une suite géométrique de raison q = 0, 7 et de premier terme $V_0 = -U_0 + 6 = 6 - 2 = 4$.

Désormais, on peut exprimer V_n en fonction de n. On a :

$$V_n = V_0 \times q^n = 4 \times 0, 7^n$$

On veut déterminer une expression de la suite (U_n) en fonction de n. On sait que :

$$V_n = 6 - U_n$$

On a donc :

$$V_n = 6 - U_n$$

$$4 \times 0, 7^n = 6 - U_n$$

$$-U_n = 4 \times 0, 7 - 6$$

$$U_n = -4 \times 0, 7 + 6$$

Fiche méthode 6/6