Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный университет им. Ф.М. Достоевского»

Ковалев Юрий Викторович

(подпись исследователя)

Курсовая работа

Исследование влияния дефектов структуры на неравновесное критическое поведение трехмерной изотропной модели Гейзенберга

Научный руководитель: д.ф.-м.н, профессор В.В. Прудников

Заведующий кафедрой: д.ф.-м.н., профессор В.В. Прудников

Содержание

Введение.		2	
1	Получение значения T_C		3
	1.1	Изотропная модель Гейзенберга	3
	1.2	Методы исследования	3
	1.3	Критическая температура	4
2	Исследование автокорреляционной функции		6
	2.1	Автокорреляционная функция	6
Заключение.		7	
Литература.		8	

Введение

Поведение статистических систем вблизи температуры T_C фазового перехода второго рода характеризуется чрезвычайно медленной динамикой с аномально большими временами релаксации, стремящимися к бесконечности как $t_{rel} \sim |T-T_C|^{-z\nu}$, где z и ν - динамический критический индекс и индекс корреляционной длины соответственно. В этих условиях система демонстрирует ряд особенностей своего неравновесного поведения, такие как явления старения и нарушения флуктуационно-диссипативной теоремы ($\Phi \Pi$). Эффекты старения наблюдаются только на временах $t << t_{rel}$ и проявляются в форме двухвременной зависимости корреляционной от времени наблюдения t и времени ожидания t_{ω} . Целью данной работы является исследование критического поведения изотропной модели Гейзенберга. В исследование критического поведения входит:

- нахождение значения критической температуры T_C для изотропной модели Гейзенберга с концентрацией спинов P=0.8;
- получение динамических зависимостей автокорреляционной функции $C(t,t_w)$ при компьютерном моделировании из низкотемпературного состояния с начальной намагниченностью $m_0=1$
- Анализ влияния времени ожидания t_w на временное поведение автокорреляционной функции;

1 Получение значения T_C

1.1 Изотропная модель Гейзенберга

В данной работе исследуются трехмерная изотропная модель Гейзенберга гамильтониан которой описывается, соответственно, следующим выражением

$$H = -J \sum_{\langle i,j \rangle} p_i p_j \overrightarrow{S}_i \overrightarrow{S}_j', \tag{1.1}$$

где J – константа обменного взаимодействия, J>0 для ферромагнитной модели, S_i^x , S_i^y , S_i^z - компоненты трехмерного вектора $\overrightarrow{S_i}$, который находится в і-м узле решетки, $\langle i,j \rangle$ показывает, что суммирование идет по ближайшим соседям, p - случайное число, принимающие значение 1 или 0, p_i принимается равным 1, если в i узле находиться спин, и значение 0, если спина в узле нет.

1.2 Методы исследования

Для исследования трехмерной изотропной модели Гейзенберга требуется значение критической температуры T_C , которое к началу исследования было неизвестно. Для нахождения значения критической температуры для данной модели используется метод кумулянтов Биндера

$$U(L,T) = \frac{1}{2} \left(3 - \frac{\langle M_4(T) \rangle}{\langle M_2(T) \rangle^2} \right), \tag{1.2}$$

где скобки угловые обозначают статистическое усреднение, а M_n - намагниченность порядка n описывается следующей формулой

$$M_n(T) = \left\langle \left(\frac{1}{PN_s} \sum_{i=1}^{N_s} \overrightarrow{p_i S_i}(t) \right)^n \right\rangle. \tag{1.3}$$

где P - концентрация спинов.

$$P = \frac{1}{N_s} \sum_{i=1}^{N_s} p_i. \tag{1.4}$$

Кумулянт U(L,T) имеет важную для описания поведения конечных систем скейлинговую форму

$$U(L,T) = u(L^{1/\nu}(T - T_c))$$
(1.5)

не содержащую мультипликативной зависимости от L. Кумулянт определен так, что $0 \le U \le 1$, при этом при температурах выше $T_c \ U(L,T) \to 0$ в пределе $L \to \infty$. Данная скейлинговая зависимость кумулянта позволяет определять критическую температуру $T_c(L=\infty)$ через координату точки пересечения кривых, задающих температурную зависимость U(L,T) для различных L.

Компьютерное моделирования проводилось с помощью алгоритма Метрополиса. На решетку накладывались периодические граничные условия, которые устраняют влияние поверхностных эффектов и наилучшим образом соответствуют моделированию поведение объемных систем.

1.3 Критическая температура

Для получения T_c проводилось компьютерное моделирование систем с линейными размерами L=24,36,48. Для локализации T_C был выбран интервал $T\in[1,1.4],$ с шагом $\Delta T=0.02$

Рис. 1: Температурная зависимость кумулянтов Биндера $U_4(L,T)$ для L=24,36,48.

Для дальнейшего исследования была выбран интервал $T \in [1.07, 1.09]$ с шагом $\Delta T = 0.002$.

Рис. 2: Температурная зависимость кумулянтов Биндера $U_4(L,T)$ для L=24,36,48.

Полученные кумулянты были аппроксимированы в интервале $T \in [1.075, 1.095]$ и было получено значение критической температуры $T_C = 1.0813(34)$

2 Исследование автокорреляционной функции

2.1 Автокорреляционная функция

В данном исследовании критических свойств изотропной модели Гейзенберга в качестве характеристики неравновесного процесса используются такая величина, как двухвременная автокорреляционная функция

$$C(t, t_w) = \left\langle \frac{1}{N_s} \sum_{i=1}^{N_s} \overrightarrow{S}_i(t) \overrightarrow{S}_i(t_w) \right\rangle - \overrightarrow{M}(t) \overrightarrow{M}(t_w), \tag{2.6}$$

где угловые скобки обозначают статистическое усреднение по реализациям начального состояния. Время ожидания t_w характеризует отрезок от момента приготовления образца до момента начала измерения его характеристик.

Рис. 3: Динамические зависимости автокорреляционной функции $C(t,t_w)$ при эволюции системы из низкотемпературного $(m_0=1)$ начального состояния при времени ожидания $t_w=20,40,80,160~{
m MCS}.$

Заключение

Было проведено компьютерное моделирование для трехмерной изотропной модели Гейзенберга. проведено исследование:

- найдено значение критической температуры для анизотропной модели Гейзенберга с анизотропией типа легкая ось $T_c = 1.0813(34)$;
- Были получены динамические зависимости автокорреляционной функции $C(t,t_w)$ при компьютерном моделировании из низкотемпературного состояния с начальной намагниченностью $m_0=1$

Список литературы

- [1] Прудников В.В., Прудников П.В., Лях А.С., Поспелов Е.А. Неравновесное критическое поведение трехмерной классической модели Гейзенберга // Вестн. Ом. ун-та. 2018. Т. 23, № 3. С. 64-72. DOI:10.25513/1812-3996.2018.23(3).64-72.
- [2] Прудников В.В., Прудников П.В., Маляренко П.Н., Крижановский В.В. Влияние дефектов структуры на неравновесное критическое поведение трехмерной модели Изинга при эволюции из начального низкотемпературного состояния // Вестн. Ом. ун-та. 2015. № 4. С. 32-38.