Fundamentals of Hydrology 2ed.

Tim Davie

Dezembro 14, 2018

Anotações da leitura do livro "Fundamentals of Hydrology" do autor Tim Davie, por Fernando Basquiroto de Souza.

Capítulo 02 - Precipitação

Precipitação é definida como a liberação da água da atmosfera para chegar na superfície terrestre. Esta definição abrange neve, granizo, sleet e chuva. A precipitação é o principal input em uma bacia hidrográfica, sendo que ela deve ser cuidadosamente avaliada em estudos hidrológicos.

Embora a chuva seja fácil de ser medida, é extremamente dificil ser medida com precisão e para piorar, sua variação espacial em uma bacia hidrográfica é grande.

Formação da Precipitação

A habilidade do ar de reter vapor d'água depende da **temperatura**: "Quanto mais frio, menos vapor é retido".

Se uma massa de ar úmido e quente é resfriada (**resfriamento**), ela vai ficar saturada de vapor d'água e este irá passar para a fase líquida ou sólida. Para ocorrer essa mudança de fase, é necessário que haja **núcleos de condensação** no ar, onde as gotas d'água ou gelo se formam. Conforme elas se juntam, seu peso começa a superar as correntes de ascenção dentro de uma nuvem (**crescimento**) e finalmente, elas caem como precipitação.

- Resfriamento da Atmosfera: Existem vários mecanismos que podem acontecer independentemente ou simultaneamente. O mais comum é a ascensão de ar na atmosfera, devido ao aquecimento da superficie (precipitação convectiva), topografia (precipitação orográfica), ou sistema climático de baixa pressão (precipitação ciclônica);
- Núcleos de Condensação: São pequenas partículas na atmosfera que providenciam superfície para a
 água ficar retida (e.g. poeira, sais marinhos e partículas de fumaça).
- Crescimento das Gotas: A água na atmosfera se condensa nos núcleos de condensação (processo lento), sendo que conforme seu tamanho cresce, ela vai vencendo as forças de ascensão da nuvem e a gravidade puxa ela.
 - O principal mecanismo de crescmento é: Colisão e Coalescência. Outro mecanismos é o processo de Bergeron (diferença / gradiente de pressão na superfície das gotas de água e gelo).
- Orvalho: Processo de condensação, porém formado quando o vapor d'água entra em contato com uma superfície fria.

Há pesquisas na formação artificial de núcleos de condensação, processo denominado de cloud seeding. Embora com resultados controversos, têm-se utilizado cloreto de potássio nesta técnica (previamente eram usados partículas de iodeto de prata).

Distribuição da Precipitação

A distribuição da precipitação é influenciada por fatores estáticos e dinâmicos. Fatores estáticos são mais dominantes em escala local, enquanto os dinâmicos são em escala global.

- Estáticos: Altitude, Aspecto (Direção da fase do terreno) e Declividade;
 - Altitude: Conforme altitude aumenta, a temperatura baixa e quanto mais frio o ar, menos vapor de água ele pode reter;
 - Aspecto: Dependendo da direção que o sistema climático ciclônico chega, o terreno voltado para ele receberá mais chuva que aquele do lado oposto;
 - Declividade: É apenas importante em escala local, em situações onde a direção que a chuva cai é relevante (normalmente é ignorado).
- **Dinâmicos**: Variam conforme precipitação e são influenciados por variações no clima (e.g. Sombra de Chuva).

Efeito Sombra de Chuva: Ocorre em locais onde há uma grande diferença no terreno, bloqueando a passagem de nuvens de chuva, onde ocorre mais chuva num lado da montanha do que do outro.

Particionamento da Chuva na Floresta

Assim que a precipitação cai sobre a copa da vegetação, ele pode seguir três caminhos diferentes:

- Queda livre (*Throughfall*): É a água que atravessa a copa da árvore tanto *diretamente* (depende do Índice de Área Foliar), quanto *indiretamente* (água cai na folha/galho/tronco e depois cai no solo);
- Fluxo pelo Tronco (Stemflow): Chuva que é interceptada por galhos e que flue até o solo pelo tronco.
- Perda por Interceptação (*Interception Loss*): Assim que a água fica "parada" nas folhas da árvore, ela pode ser evaporada.

Existe também o Ganho por Interceptação, por exemplo, em situações particulares, as folhas das árvores (principalmente do Pinus, pois são finas) podem atuar como núcleos de condensação e reter a água de névoas.

Medição

A precipitação é registrada por altura de coluna d'água (mm), o que equivaleria à quantidade de chuva acumulada no local onde ela caiu. Para a neve, é utilizado a unidade "Profundidade Equivalente de Água" (ou seja, a quantidade de água resultante do derretimento da neve).

Pluviômetros

Pluviômetros são os equipamentos utilizados para mensurar a quantidade de chuva em um determinado local. Embora pareça um equipamento simples, existem vários detalhes que devem ser observados para que sua medida evite erros, tais como:

- Perda por evaporação;
- Perda por molhamento do pluviômetro;
- Medição alterada devido à respingos e turbulência do entorno do entorno;

Neve

Há duas formas de medir a quantidade de neve, utilizando um equipamento semelhante ao pluviômetro ou medindo a profundidade da camada de neve no chão. Ambos métodos apresentam erros, principalmente devido a forma como a neve cai no chão/medidor, sendo influenciada pelo vento (neve é mais leve que a chuva).

Uma modificação realizada nos medidores de neve semelhantes aos pluviometros é a utilização de um anél de aquecimento para derreter a neve coletada. Porém, esse método apresenta alguns problemas (i.e. fornecimento de energia e altura do coletor).

Uma forma simples de mensurar a quantidade de neve é pela sua profundidade no chão utilizando amostradores (tipo caladores).

Chuva na Floresta

É possível medir a quantidade de água interceptada pela copa utilizando dois medidores, uma acima da copa e outra abaixo, sendo a diferença entre as medidas a água interceptada pela copa.

A medição da chuva que atravessa a copa pode ser realizada com calhas, o que tem demonstrado ser mais eficiente do que os medidores convencionais.

E para mensurar o fluxo de água no tronco, são colocados colares nos troncos de forma a coletar a água que nele escorre.

Das medições pontuais para as estimativas em grandes áreas

As medições de precipitação são pontuais, sendo que para utilizar essas medidas para uma bacia hidrográfica (por exemplo), é necessário realizar algum tipo de transformação (spatial averaging). Entre as técnicas estatísticas para realizar essa transformação, temos:

- Polígonos de Thiessen: Os polígonos representam a área de influência, ou representativa, do ponto amostrado, sendo a média de precipitação ponderada em função da área de cada polígono;
- Método Hipsométrico: Determina a quantidade de precipitação baseada em uma média ponderada em função da altitude (área entre as curvas de nível);
- Método das Isoietas: Os valores de precipitação são interpolados e a apartir da área ocupada entre as curvas de "chuva", é definido a chuva média.

Intensidade e Duração da Chuva

A altura de precipitação não é a única medida interessante da chuva, a intensidade e a duração também são importantes. Para que esse tipo de medição seja útil, é importante que ela seja registrada em intervalos menores que 1 hora.

Quanto maior for o evento de precipitação (chuvas de maior intensidade), menos frequente será ele.

Medidas indiretas

Outra forma de mensurar a quantidade de chuva pode ser realizada utilizando-se radares e sensoriamento remoto. Radares estimam a quantidade de chuva "olhando para cima" e satélites (sensoriamento remoto) fazem esse trabalho "olhando do espaço".

Radares (*RAdio Detection And Ranging*) são utilizados para previsão do tempo, mas não define a quantidade de chuva que caiu em uma determinada área. Os radares emitem uma onda eletromagnética e quando esta entra em contato com a nuvem, quanto mais água ela tiver, mais desta onda será refletida (retornando para o radar). O problema desta técnica é a determinação do melhor comprimento de onda para a detecção da água nas nuvens (aparentemente, a melhor encontra-se na banda das microondas, *c-band*) e a calibração dos modelos.

Nuvens com maior probabilidade de gerar chuva são bem mais claras e com topo mais frio.

Satélites com sistemas passivos (não emitem radiação, só recebem) são mais comuns (e.g. LANDSAT, SPOT e AVHRR). Microondas passivas também são utilizadas para detectar nuvens com água, pois quando a Terra emite elas, a água na atmosfera (ou na superficie) absorve elas.

Chuva e Qualidade e Quantidade de Água

Quanto mais chove (mais água entra para o balanço hídrico), existe um potencial maior para a diluição de contaminantes nos rios. Porém, se há poluentes na atmosfera, a precipitação tem capacidade de removê-los e "contaminar" os recursos hídricos (e.g. chuva ácida).

Perguntas do Capítulo

- 1. Descreva os diferentes fatores que afetam a distribuição espacial da precipitação em diferentes escalas.
 - Há vários fatores que impactam a precipitação, sendo eles a Altitude (quanto mais alto, mais frio, logo a quantidade vapor d'água retido pela atmosfera é menor e o restante torna-se precipitação); Aspecto (orientação do talude); Declividade; Clima (Variações climáticas têm o potencial de influenciar o comportamento da precipitação).
- 2. Como os erros da mensuração da neve e chuva são minimizados?
 - Chuva: Instalá-se o pluviômetro longe de objetos altos, rente ao solo (com piso contra respingo) ou acima do solo, mas com proteção contra o vento. Neve: Instalá-se em altura suficiente para não ser soterrado, pode apresentar um anél para aquecimento e derretimento da neve.
- 3. Compare e contraste diferentes técnicas para obteção da precipitação média de uma determinada área (incluindo medidas indiretas)?
 - É possível obter a precipitação média de uma área por meio dos Polígonos de Thiessen, Método Hipsométrico e de Isoietas. Ainda é possível utilizar sensoriamento remoto e radares para obter quantidade de água presente na atmosfera.
- 4. Por que a escala é uma questão importante na análise da precipitação na hidrologia?
 - A precipitação é uma variável ambiental bastante heterogênia, sendo que dependendo da escala, poderá haver erros associados à escala adotada.
- 5. Descreva um experimento de campo (incluindo equipamento) para medir o balanço hídrico abaixo da copa de uma floresta.
 - Pluviômetros (Ville de Paris) serão distribuidos aleatoriamente abaixo da copa, sendo que após cada evento de precipitação, estes serão realocados. Também serão instalados calhas nos troncos para medir o fluxo de água neles (stemflow). Pluviômetros serão instalados acima da copa para estimar quando de chuva esta ingressando no sistema.
- 6. Discuta o papel da escala espacial na avaliação da importância da copa de uma floresta dentro de uma bacia hidrográfica.
 - A copa das árvores interfere no caminho que a água da chuva realiza, pois ela pode interceptar parte dessa água e dependendo da quantidade de área foliar, pode reduzir significaticamente a quantidade de água que chega ao solo diretamente.

LEIA TAMBÉM: Modelagem de Vapor d'Água na Atmosfera.