ROBEM I Prove that solution of equation

$$x^{2} + y^{2} = z^{4}, \gcd(x, y) = 1, x > 0, y > 0, z > 0, 2 \mid x$$

is

$$\begin{cases} x = 4ab(a^2 - b^2) \\ y = |a^4 + b^4 - 6a^2b^2| \\ z = a^2 + b^2 \end{cases}$$

where $a > 0, b > 0, \gcd(a, b) = 1, a \not\equiv b \mod 2$.

SOLION. On one hand, we know x, y, z^2 is solution of Pythagorean equation, so there exists $s, t \in \mathbb{N}^+, s > t, \gcd(s, t) = 1, s \not\equiv t \mod 2$, such that

$$\begin{cases} x = 2st \\ y = s^2 - t^2 \\ z^2 = s^2 + t^2 \end{cases}$$

For convinence we dismiss the condition s > t and let $y = |s^2 - t^2|$ instead. Now s, t are symmetry, so without loss of generality assume $2 \mid s$, then (s, t, z) is solution of Pythagorean equation, so $\exists a, b \in \mathbb{N}^+, \gcd(a, b) = 1, a \not\equiv b \mod 2, a > b$, such that

$$\begin{cases} s = 2ab \\ t = a^2 - b^2 \\ z = a^2 + b^2 \end{cases}$$

So $x = 2st = 2 \times 2ab \times (a^2 - b^2) = 4ab(a^2 - b^2)$, and $y = |s^2 - t^2| = |4a^2b^2 - a^4 - b^4 + 2a^2b^2| = |a^4 + b^4 - 6a^2b^2|$, and $z = a^2 + b^2$.

On the other hand, it is easy to check that for $x = 4ab(a^2 - b^2)$, $y = |a^4 + b^4 - 6a^2b^2|$, $z = a^2 + b^2$ we have $x^2 + y^2 = z^4$. And since $\gcd(a,b) = 1$ we get $\gcd(x,y) \mid \gcd(2,y)^2 \gcd(a,y) \gcd(b,y) \gcd(a+b,y) \gcd(a-b,y) = \gcd(2,a^4+b^4)^2 \gcd(a,b^4) \gcd(b,a^4) \gcd(a+b,4a^4) \gcd(a-b,4a^4)$. Since $a \not\equiv b$ mod 2 we get $\gcd(2,a^4+b^4) = 1$. Easily to know $\gcd(a,b^4) = \gcd(b,a^4) = 1$. And $\gcd(a\pm b,4a^4) \mid \gcd(a\pm b,2)^2 \gcd(a\pm b,a)^4 = 1$. Finally we get $\gcd(x,y) = 1$. Easy to check x,y,z>0 and $z \mid x$. All in all, they are all solution of the given equation.

ROBEM II Find a method to judge whether a number can be divided by 37, 101.

SOLTON. Noting $1000 \equiv 1 \mod 37$, so we can use 1000-binary. Assume $n = \sum_{k=0}^{m} a_k 1000^k$ and $0 \le a_k < 1000$. Then $n \equiv \sum_{k=0}^{m} a_k \mod 37$. So $37 \mid n \iff 37 \mid \sum_{k=0}^{m} a_k$.

For 10-binary, we can combine them as group of three. Assume $n = \sum_{k=0}^{t} b_k 10^k$, $0 \le b_k < 10$. Let $s = \lceil \frac{t}{3} \rceil$ and let $b_k = 0$ for k > t. Then $n = \sum_{k=0}^{s} (b_{3k} + 10b_{3k+1} + 100b_{3k+2})1000^k$. Then $37 \mid n \iff 37 \mid \sum_{k=0}^{s} b_{3k} + 10b_{3k+1} + 100b_{3k+2}$.

Noting $100 \equiv -1 \mod 101$, so we can consider 100-binary for 101. Assume $n = \sum_{k=0}^{m} a_k 100^k$ and $0 \le a_k < 100$. Then $n \equiv \sum_{k=0}^{m} (-1)^k a_k \mod 101$. So $101 \mid n \iff 101 \mid \sum_{k=0}^{m} (-1)^k a_k$.

For 10-binary, we can combine them as group of two. Assume $n = \sum_{k=0}^{t} b_k 10^k$, $0 \le b_k < 10$. Let $s = \left\lceil \frac{t}{2} \right\rceil$ and let $b_k = 0$ for k > t. Then $n = \sum_{k=0}^{s} (b_{2k} + 10b_{2k+1})100^k$. Then $101 \mid n \iff 101 \mid \sum_{k=0}^{s} (-1)^k (b_{2k} + 10b_{2k+1})$.

ROBEM III Assume $2 \nmid a$, then $a^{2^n} \equiv 1 \mod 2^{n+2}$.

SOLITION. We will prove $a^{2^n} - 1 = (a^2 - 1) \prod_{k=1}^{n-1} (a^{2^k} + 1)$ first. Prove it by MI to n. When n = 1 there is nothing to do. Assume it holds for certain n, consider n + 1, we get $a^{2^{n+1}} - 1 = (a^{2^n} + 1)(a^{2^n} - 1) = (a^{2^n} + 1)(a^2 - 1) \prod_{k=1}^{n-1} (a^{2^k} + 1) = (a^2 - 1) \prod_{k=1}^{n} (a^{2^k} + 1)$. So we get it holds for every $n \in \mathbb{N}^+$.

Since $2 \nmid a$, assume a = 2b + 1, then $a^2 - 1 = 4b^2 + 4b = 4b(b+1)$. Noting $2 \mid b(b+1)$, we get $8 \mid a^2 - 1$. And easily $2 \mid a^{2^k} + 1, \forall k \in \mathbb{N}$. So we get $8 \times \prod_{k=1}^{n-1} 2 \mid a^{2^n} - 1$, i.e., $2^{n+2} \mid a^{2^n} - 1$. Finally we get $a^{2^n} \equiv 1 \mod 2^{n+2}$.

ROBEM IV Let p be a prime and s,t be integers and $t \leq s$. Prove that $(u+p^{s-t}v:0 \leq u \leq p^{s-t}-1,0 \leq v \leq p^t-1)$ is a Complete residue system of p^s .

SOUTION. Since there are p^{s-t} different u and $p^t - 1$ different v, there are p^s different elements in total. So we only need to prove any two of them are not equal $\mod p^s$.

Assume $u_1 + p^{s-t}v_1 \equiv u_2 + p^{s-t}v_2 \mod p^s$, we need to prove $(u_1, v_1) = (u_2, v_2)$. Consider mod p^{s-t} , we get $u_1 \equiv u_2 \mod p^{s-t}$. Since $|u_1 - u_2| \leq p^{s-t} - 1$, we easily get $u_1 = u_2$. Then $p^{s-t}v_1 \equiv p^{s-t}v_2 \mod p^s$. So $v_1 \equiv v_2 \mod p^t$. For the same reason since $|v_1 - v_2| \leq p^t - 1$ we get $v_1 = v_2$. So we proved any two of them are not equal $\mod p^s$.

So $(u+p^{s-t}v:0\leq u\leq p^{s-t}-1,0\leq v\leq p^t-1)$ is a Complete residue system of p^s .

ROBEM V Assume m_1, \dots, m_k is k integers coprime to each other. Assume A_1, A_2, \dots, A_k is Complete residue of m_1, \dots, m_k respectively. Let $m = \prod_{t=1}^k m_t$ and $M_t := \frac{m}{m_t}, t = 1, \dots, k$. Prove that $A := \{\sum_{t=1}^k M_t x_t : x_t \in A_t, t = 1, \dots, k\}$ is a Complete residue of m.

SOLTON. Easily $|A_t| = m_t$, so there is m different (x_1, \dots, x_k) . So we only need to prove for different (x_1, \dots, x_k) the value of $\sum_{t=1}^k M_t x_t \mod m$ is different.

Assume $\sum_{t=1}^k M_t x_t \equiv \sum_{t=1}^k M_t y_t$ and $x_t, y_t \in A_t, t = 1, \dots, k$. Now we need to prove $(x_1, \dots, x_k) = (y_1, \dots, y_k)$. Noting for $i \neq j$ we have $m_i \mid M_j$. So we consider $\mod m_i$, we get $M_i x_i \equiv M_i y_i \mod m_i$. Then $m_i \mid M_i (x_i - y_i)$. Since $\gcd(m_i, m_j) = 1$ for $i \neq j$, we get $\gcd(m_i, M_i) = 1$. So $m_i \mid x_i - y_i$. Since $x_i, y_i \in A_i$ and A_i is Complete residue of m_i , we get $x_i = y_i$. So $(x_1, \dots, x_k) = (y_1, \dots, y_k)$.

So finally we get A is Complete residue of m.

ROBEM VI Let $H = \frac{3^{n+1}-1}{3-1}$. Let $I = \{(x_0, \dots, x_n) : x_k \in \{-1, 0, 1\}, k = 0, \dots, n\}$. Let $f : I \to N := [-H, H] \cap \mathbb{Z}$, and $f(x_0, \dots, x_n) = \sum_{k=0}^n x_k 3^k$. Prove that f is bijection. Thus, we can use n+1 weights and a balance to weigh all integer weights between 1 and H.

SOLION. First we prove f is well-defined. i.e., $\forall (x_0, \dots, x_n) \in I, -H \leq \sum_{k=0}^n x_k 3^k \leq H$. Since $x_k = -1, 0, 1$, we get $\sum_{k=0}^n x_k 3^k \leq \sum_{k=0}^n 1 \times 3^k = \frac{3^{n+1}-1}{3-1} = H$. For the same reason, we get $\sum_{k=0}^n x_k 3^k \geq -H$.

Second we will prove f is injection. Assume $x, y \in I$ and f(x) = f(y), i.e., $\sum_{k=0}^{n} x_k 3^k = \sum_{k=0}^{n} y_k 3^k$, we need to prove x = y. If $x \neq y$, then assume $m = \min\{t : x_t \neq y_t\}$. Then $x_t = y_t, \forall t < m$. So $\sum_{k=m}^{n} x_k 3^k = \sum_{k=m}^{n} y_k 3^k$. Consider $\mod 3^{m+1}$, we get $x_m 3^m \equiv y_m 3^m \mod 3^{m+1}$, i.e., $x_m \equiv y_m \mod 3$. But $x_m, y_m \in \{-1, 0, 1\}$ and $x_m \neq y_m$, contradiction! So x = y and thus f is injection.

Finally we prove f is surjection. Since $|I|=3^{n+1}$, and $|N|=2H+1=3^{n+1}$, we get $|I|=|N|<\infty$. Noting we have proved f is injection, so f is surjection.

All in all, f is bijection.

Now we use n+1 weights, $3^0, 3^1, \dots, 3^n$. For every integer $n: 1 \le n \le H$, we know there is a $x \in I$ such that f(x) = n. Let $L := \{t: x_t = 1\}$ and $R = \{t: x_t = -1\}$, put the thing to weight on right, and put weights in R on right, then put weights in L on left, we can weigh this thing out if it's weight is n.

ROBEM VII Assume m_1, \dots, m_k is k integers coprime to each other. Assume A_1, A_2, \dots, A_k is Complete residue of m_1, \dots, m_k respectively. Let $m = \prod_{t=1}^k m_t$ and $M_t := \prod_{i=1}^{t-1} m_i, t = 1, \dots, k$. Prove that $A := \{\sum_{t=1}^k M_t x_t : x_t \in A_t, t = 1, \dots, k\}$ is a Complete residue of m.

SOUTION. Easily $|A_t| = m_t$, so there is m different (x_1, \dots, x_k) . So we only need to prove for different (x_1, \dots, x_k) the value of $\sum_{t=1}^k M_t x_t \mod m$ is different.

Assume $\sum_{t=1}^k M_t x_t \equiv \sum_{t=1}^k \overline{M_t} y_t$ and $x_t, y_t \in A_t, t = 1, \dots, k$. Now we need to prove $(x_1, \dots, x_k) = (y_1, \dots, y_k)$. Noting for i < j we have $m_i \mid M_j$. If $(x_1, \dots, x_k) \neq (y_1, \dots, y_k)$, then let $i = \min\{t : x_t \neq y_t\}$. Then $\sum_{t=i}^k M_t x_t = \sum_{t=i}^k M_t y_t$. Consider mod m_i , we get $M_i x_i \equiv M_i y_i \mod m_i$. Then $m_i \mid M_i (x_i - y_i)$. Since $\gcd(m_i, m_j) = 1$ for i > j, we get $\gcd(m_i, M_i) = 1$. So $m_i \mid x_i - y_i$. Since $x_i, y_i \in A_i$ and A_i is Complete residue of m_i , we get $x_i = y_i$. So $(x_1, \dots, x_k) = (y_1, \dots, y_k)$.

So finally we get A is Complete residue of m.