Efficient Bayesian mixed-model analysis increases association power in large cohorts

Loh et al. 2015. Nature Genetics

April 21, 2015

Mixed-models in GWAS

■ Linear mixed models (LMM) have become increasingly popular for genome-wide association studies (GWAS)

- Linear mixed models (LMM) have become increasingly popular for genome-wide association studies (GWAS)
- Variance components can account for inherently hierarchical data

- Linear mixed models (LMM) have become increasingly popular for genome-wide association studies (GWAS)
- Variance components can account for inherently hierarchical data
 - Observations are, by definition, not independent
 - Dependence structure is not always known a priori
 - (sometimes cousins unwittingly wed)
 - Dependence structure can be estimated from the data

- Linear mixed models (LMM) have become increasingly popular for genome-wide association studies (GWAS)
- Variance components can account for inherently hierarchical data
 - Observations are, by definition, not independent
 - Dependence structure is not always known a priori
 - (sometimes cousins unwittingly wed)
 - Dependence structure can be estimated from the data
- LMMs can reduce the false discovery rate by accounting for pseudo-replication

- Linear mixed models (LMM) have become increasingly popular for genome-wide association studies (GWAS)
- Variance components can account for inherently hierarchical data
 - Observations are, by definition, not independent
 - Dependence structure is not always known a priori
 - (sometimes cousins unwittingly wed)
 - Dependence structure can be estimated from the data
- LMMs can reduce the false discovery rate by accounting for pseudo-replication
- LMMs can be computationally expensive, $O(MN^2)$ or $O(M^2N)$

Standard LMM

The standard LMM takes the form:

$$y_i = x_i \beta + \sigma_G^2 K + \sigma_E^2 I$$

Where y_i is the phenotype of individual i, xi are the covariates of interest (SNPs, age, etc.), σ_G^2 is the variance due to genetic similarity, K is the genetic similarity matrix (GSM), E is the variance due to environment (chance), and I is the NxN identity matrix.

- The GSM (K) accounts for the hierarchical structure of the data and can be estimated in various ways
- The $\sigma_E^2 I$ term is similar to a typical regression error term

LMM Model Assumptions

Assumes the "infinitesimal model" of genetic effects

LMM Model Assumptions

- Assumes the "infinitesimal model" of genetic effects
 - Proposed by Fisher in 1930
 - Many loci contribute small additive effects for a phenotype
 - Appears consistent with some traits (size) but not others (Huntington's disease)

LMM Model Assumptions

- Assumes the "infinitesimal model" of genetic effects
 - Proposed by Fisher in 1930
 - Many loci contribute small additive effects for a phenotype
 - Appears consistent with some traits (size) but not others (Huntington's disease)
- Assumes correctly specified variance components

$$\sigma_G^2$$
 and σ_E^2

LMM Model Assumptions

- Assumes the "infinitesimal model" of genetic effects
 - Proposed by Fisher in 1930
 - Many loci contribute small additive effects for a phenotype
 - Appears consistent with some traits (size) but not others (Huntington's disease)
- Assumes correctly specified variance components

$$\sigma_G^2$$
 and σ_E^2

• Assumes linearity in the parameters (β)

LMM Test Statistic

For efficiency the current methodology incorporates a 2 step process:

LMM Test Statistic

For efficiency the current methodology incorporates a 2 step process:

1 Fit the variance components via REML ($\sigma_G^2 K$ and $\sigma_F^2 I$).

LMM Test Statistic

For efficiency the current methodology incorporates a 2 step process:

- 1 Fit the variance components via REML ($\sigma_G^2 K$ and $\sigma_E^2 I$).
- 2 Use score test to compute test statistics for each SNP

$$\chi_1^2 = \frac{(x'_{SNP}V^{-1}y)^2}{x'_{SNP}V^{-1}x_{SNP}}$$

where V is the $cov(y) = \sigma_G^2 K + \sigma_E^2 I$

(Some models use simultaneous likelihood ratio tests to achieve exact statistics)

Proposed Model

Proposed model has the same basic components:

$$y_i = x_i \beta + \sigma_G^2 K + \sigma_E^2 I$$

Proposed Model

Proposed model has the same basic components:

$$y_i = x_i \beta + \sigma_G^2 K + \sigma_E^2 I$$

- Several "improvements":
 - 1 Adjust current score statistic with calibration factor, c.
 - 2 Test against "denoised" residuals for increased power
 - 3 Gaussian mixture extension to accommodate heterogeneous effect sizes

Proposed Model

Proposed model has the same basic components:

$$y_i = x_i \beta + \sigma_G^2 K + \sigma_E^2 I$$

- Several "improvements":
 - 1 Adjust current score statistic with calibration factor, c.
 - 2 Test against "denoised" residuals for increased power
 - 3 Gaussian mixture extension to accommodate heterogeneous effect sizes
- Not purely Bayesian actual test statistic is frequentist

Calibration Factor: c_{inf}

The BOLT_LMM statistic (for infinitesimal model)

$$\chi_1^2 = \frac{\left(x_{SNP}'V_{LOCO}^{-1}y\right)^2}{c_{inf}}$$

where,

$$c_{inf} = rac{\mathsf{mean} \left(x_{SNP}' V_{LOCO}^{-1} y
ight)^2}{\mathsf{mean} \chi_1^2}$$

This statistic is similar to others (GRAMMAR-gamma and MASTOR) but avoids proximal contamination via the LOCO approach.

The key insight in this paper is this approach:

■ The numerator from the χ^2 statistic is a scalar multiple of $\sigma_E^2 V_{LOCO}^{-1} y$

- The numerator from the χ^2 statistic is a scalar multiple of $\sigma_E^2 V_{LOCO}^{-1} y$
 - The test statistic uses residuals where other effects have been "conditioned out"

- The numerator from the χ^2 statistic is a scalar multiple of $\sigma_E^2 V_{LOCO}^{-1} y$
 - The test statistic uses residuals where other effects have been "conditioned out"
 - Less noise = more power to detect a signal

- The numerator from the χ^2 statistic is a scalar multiple of $\sigma_F^2 V_{LOCO}^{-1} y$
 - The test statistic uses residuals where other effects have been "conditioned out"
 - Less noise = more power to detect a signal
 - Can manipulate the model producing the residual without changing the test statistic

- The numerator from the χ^2 statistic is a scalar multiple of $\sigma_E^2 V_{LOCO}^{-1} y$
 - The test statistic uses residuals where other effects have been "conditioned out"
 - Less noise = more power to detect a signal
 - Can manipulate the model producing the residual without changing the test statistic
- \blacksquare The test statistic is still a quasi-likelihood score so is asymptotically χ^2

The Bayesian Part

Assume the effects, β have a distribution:

Infinitesimal model:

$$\beta \sim N(0, \sigma_G^2)/M$$

where M is the proximally-controlled SNPs under evaluation

The Bayesian Part

Assume the effects, β have a distribution:

Infinitesimal model:

$$\beta \sim N(0, \sigma_G^2)/M$$

where M is the proximally-controlled SNPs under evaluation

■ The general (heterogeneous effects) model utilizes a Gaussian mixture:

$$eta \sim \mathit{N}(0, \sigma_{eta, 1}^2)$$
 with probability p

$$eta \sim \mathit{N}(0, \sigma_{eta, 2}^2)$$
 with probability $1-p$

If p is small and $\sigma_{\beta,2}^2$ is much smaller than $\sigma_{\beta,1}^2$ you will get a many β s of small (near 0) effect and a few of large effect.

From Bayesian to Frequentist

The method uses Bayesian model to obtain a frequentist statistic:

- First fit the Bayesian mixture model
- Calculate the posterior mean to obtain the residual
- Use the residual to calculate the χ^2 statistic

Computational Efficiency

Table 1 Comparison of fast mixed-model association methods that model all SNPs

Method ^a	Requires O (MN ²) time	Avoids proximal contamination	Models non-infinitesimal genetic architecture
EMMAX (ref. 3)	Х		
FaST-LMM (ref. 5)	Xp	X	
FaST-LMM-Select (refs. 9,11,15)	Xp	X	Xc
GEMMA (ref. 6)	Χ		
GRAMMAR-Gamma (ref. 10)	Xq		
GCTA-LOCO (ref. 12)	X	X	
BOLT-LMM		Χ	X

- Computes on $\sim O(MN)$ time
- Avoids proximal contamination by borrowing methods from GCTA-LOCO
- Accommodates non-infinitesimal genetic architecture

Computational Efficiency

- Fastest of the group*
- CPU time scales to $\sim O(MN^{1.5})$
- lacktriangle Memory use scales to $\sim O(MN)$

Simulations

- Increased power especially when the number of causal SNPs is small
- Increased power is stable at various α levels (consistent with theory)
- BOLT-LMM is virtually identical to GCTA-LOCO under infinitesimal architecture assumption

Simulations

- Effective false positive control
- Large gains in power with small number of causal SNPs
- No associated increase in type I error with power increase

Women's Genome Health Study

- Similar increases in power in non-simulated data
- Power increases are not homogeneous (as predicted by theory)
- Substantial increases in predictive ability

Comments from the Peanut Gallery

- Not sure about mixing Bayesian and Frequentist paradigms
- Room to improve the modelling of genetic architecture
- Carry the Bayesian theme through to the test statistic to get a credible interval

Questions?

