

SCHOOL OF PHYSICS AND ASTRONOMY

QUANTUM THEORY INTEGRALS. SO MANY INTEGRALS.

James Shaw

Winter 2017

CONTENTS

I.	BACK TO BASICS — QUANTUM MECHANICS STYLE	3
1.	TINY LITTLE THINGS SORT OF MOVING AROUND NOT ACTUALLY THAT	
	FAST	4

PART I. BACK TO BASICS — QUANTUM MECHANICS STYLE

TINY LITTLE THINGS SORT OF MOVING AROUND NOT ACTUALLY THAT FAST

1.1. Double Slit Experiment

The double slit experiment demonstrates some of the most important points of quantum mechanics. Feynman was a particular fan of it. We make $P_1 = |\phi_1|^2$ the probability of a particle passing through the first slit and likewise for P_2 . Classically, we'd expect that

$$P_{1 \text{ or } 2} = P_1 + P_2 = |\phi_1|^2 + |\phi_2|^2$$

which is all well and good but isn't what happens when we approach the quantum world.

We define two states, $|i\rangle$ and $|f\rangle$, the initial and final states, and two intermediate states $|1\rangle$, $|2\rangle \in \mathcal{H}$ for each of the slits. These are vectors in a Hilbert space, and as such are linear superposable and