Álgebra Lineal

Domingo López 2020-04-29

Contents

1	Inti	roducción	5
2	Espacios Vectoriales		7
	2.1^{-}	Qué es un sistema de vectores linealmente independiente	7
	2.2	Qué es un sistema generador y el subespacio generado por un conjunto de vectores	9
	2.3	Cómo extraemos una base a partir de un sistema generador de un (sub)espacio vectorial	9
	2.4	Cómo encontrar la base (y la dimensión) para un subespacio vectorial	9
	2.5	Cómo hallar la intersección de dos subespacios vectoriales	9
	2.6	Cómo hallar la suma de dos subespacios vectoriales	9
	2.7	Comprobación del teorema de la dimensión	9
	2.8	Cómo calcular las coordenadas de un vector con respecto a una	
		base dada	9
	2.9	Cómo calcular la matriz de cambio de base entre dos bases de un	
		mismo espacio vectorial	9
3	Aplicaciones lineales		11
	3.1	Cuál es la matriz asociada a una aplicación lineal en unas bases	
		dadas	11
	3.2	Cómo determinar el núcleo de una aplicación lineal	11
	3.3	Caracterización de la inyectividad	11
	3.4	Cómo calcular el subespacio imagen de una aplicación lineal	11
	3.5	Caracterización de la sobreyectividad	11
	3.6	A qué se llama rango y nulidad de la aplicación lineal	11
	3.7	Comprobación del teorema de la dimensión	11
4	Dia	gonalización	13
5	Esp	Espacios Euclídeos 1	

4 CONTENTS

Introducción

En este libro vamos a recopilar algunas de las preguntas y dudas más frecuentes en los temas de Álgebra Lineal, con ejemplos resueltos, y acompañados de la teoría necesaria para comprender los resultados.

Cada capítulo incluye preguntas y sus respuestas acerca de aquellos procedimientos más usuales relacionados con el tema correspondiente.

Espacios Vectoriales

Supongamos un cuerpo \mathcal{K} (generalmente $\mathcal{K} = \mathbb{R}$). Consideremos un conjunto V dotado de dos operaciones:

- Una operación interna, la suma, de forma que si $u, v \in V$ entonces su suma es $u + v \in V$.
- Una operación externa, producto por un escalar de \mathcal{K} : si $c \in \mathcal{K}$ y $v \in V$, su producto es $c \cdot v \in V$.

Si:

- \bullet V con la operación es grupo abeliano.
- El producto por un escalar verifica las propiedades distributiva $((c+d) \cdot v = c \cdot v + d \cdot v \text{ y } c \cdot (u+v) = c \cdot u + c \cdot v, \text{ para } c, d \in \mathcal{K}, u, v \in V)$, pseudoasociativa $(c(dv) = (cd)v \text{ para } c, d \in \mathcal{K}, v \in V)$ y existencia de neutro $(1 \cdot v = v \text{ para todo } v \in V)$.

Entonces a $(V,+,\cdot)$ se de denomina espacio vectorial, y a los elementos de V, vectores.

Ejemplo

$$V=\mathbb{R}^4$$
es un espacio vectorial y $\left(\begin{array}{c} -2\\1\\1\\1\end{array}\right)$ es un vector de $V.$

2.1 Qué es un sistema de vectores linealmente independiente

Supongamos un conjunto de vectores $\{v_1, \ldots, v_n\}$. Este conjunto es **linealmente** independiente si ninguno de los vectores se puede poner como combinación

lineal de los demás vectores.

Esto es equivalente a que si tenemos una combinación lineal igualada a 0, de la forma

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0$$

entonces el sistema de los v_i será independiente si necesariamente todos los α_i valen 0.

Evidentemente, cualquier sistema de vectores que incluya al vector 0 no es linealmente independiente.

Ejemplo

Consideremos el sistema de vectores
$$\begin{pmatrix} -2\\1\\1\\1 \end{pmatrix}$$
, $\begin{pmatrix} 2\\1\\-2\\-1 \end{pmatrix}$, $\begin{pmatrix} -10\\1\\7\\5 \end{pmatrix}$ \\$.

- 2.2 Qué es un sistema generador y el subespacio generado por un conjunto de vectores
- 2.3 Cómo extraemos una base a partir de un sistema generador de un (sub)espacio vectorial
- 2.4 Cómo encontrar la base (y la dimensión) para un subespacio vectorial
- 2.4.1 Partiendo de las ecuaciones paramétricas
- 2.4.2 Partiendo de las ecuaciones cartesianas
- 2.5 Cómo hallar la intersección de dos subespacios vectoriales
- 2.6 Cómo hallar la suma de dos subespacios vectoriales
- 2.7 Comprobación del teorema de la dimensión
- 2.8 Cómo calcular las coordenadas de un vector con respecto a una base dada
- 2.9 Cómo calcular la matriz de cambio de base entre dos bases de un mismo espacio vectorial

Aplicaciones lineales

- 3.1 Cuál es la matriz asociada a una aplicación lineal en unas bases dadas
- 3.2 Cómo determinar el núcleo de una aplicación lineal
- 3.3 Caracterización de la inyectividad
- 3.4 Cómo calcular el subespacio imagen de una aplicación lineal
- 3.5 Caracterización de la sobreyectividad
- 3.6 A qué se llama rango y nulidad de la aplicación lineal
- 3.7 Comprobación del teorema de la dimensión

Diagonalización

Espacios Euclídeos