Carefully PRINT your full na	ame:	
Math 51	Differential Equations Exam 2 (100 points)	April 11, 2022 noon–1:20 p.m.
There are 6 problems on the	exam.	
,	books or notes during the exam.	`
and upload it to Gradescope	ou will submit this exam booklet. If for marking (you do not need to at the top of each page, as indicated booklet).	o take images of your exam).
space if possible. There is a	ns, always show your work. Try to blank page at the back of your e solution, please write clearly in	xam for use as scratch paper.
*****	* * * * * * * * * * * * * * * * * * * *	: * * * * * *
Please sign the pledge below nor received assistance on the	. With your signature, you pledg is exam.	e that you have neither given
Signature:		

- 1. (25 points) Short-Answer Questions.
 - (a) (2 pts.) True or False. Any set of vectors that include the zero vector **0** is linearly dependent.
 - (b) (2 pts.) True or False. If $\vec{\mathbf{p}}_1$ and $\vec{\mathbf{p}}_2$ are solutions of the nonhomogeneous system $D\vec{\mathbf{x}} = A\vec{\mathbf{x}} + \vec{\mathbf{E}}(t)$, then $\vec{\mathbf{p}}_1 \vec{\mathbf{p}}_2$ is a solution of the related homogeneous system.
 - (c) (2 pts.) True or False. Assume that all the functions in this question are differentiable. Let $\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n$ be solutions of the *nonhomogeneous* linear system $D\vec{\mathbf{x}} = A\vec{\mathbf{x}} + \vec{\mathbf{E}}(t)$ on an interval I and let t_0 be a point in I. Then $\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n$ generate the general solution of the given system if and only if the Wronskian $W[\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n](t_0) \neq 0$.
 - (d) (2 pts.) True or False. Two vectors $\vec{\mathbf{v}}_1$ and $\vec{\mathbf{v}}_2$ are linearly dependent if and only if one of them is a constant multiple of the other.
 - (e) (2 pts.) True or False. Three vectors $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$ and $\vec{\mathbf{v}}_3$ are linearly dependent if and only if each vectors is a constant multiple of another vector.
 - (f) (2 pts.) Which of the following formulas for $\vec{\mathbf{x}}$ gives the general solution to the linear homogeneous ode $(D^2+1)^3\vec{\mathbf{x}}=\vec{\mathbf{0}}$?
 - A. $c_1 \cos t + c_2 \sin t$
 - B. $c_1 t^2 \cos t + c_2 t^2 \sin t$
 - C. $c_1 t^2 \cos t + c_2 t^2 \sin t + c_3 t \cos t + c_4 t \sin t + c_5 \cos t + c_6 \sin t$
 - D. None of the above.
 - (g) (2 pts.) For which of the following expressions for E(t) does the method of undetermined coefficients **not** apply when solving the linear nonhomogeneous ode Lx = E(t)?

$$3t^4$$
, $\sin t$, $2t^3e^{-4t}\cos 5t$, $\ln t$.

- A. Only $3t^4$.
- B. Only $\sin t$.
- C. Only $2t^3e^{-4t}\cos 5t$.
- D. Only $\ln t$.
- E. The method of undetermined coefficients does not apply for at least two of the four functions.
- F. The method of undetermined coefficients applies for all four functions.
- (h) (3 pts.) The matrix

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right]$$

has a triple eigenvalue 1. Find three linearly independent generalized eigenvectors (you do not have to verify that they are linearly independent). (*Hint*: Approached correctly, this problem does not require any computation.)

2

- (i) (5 pts.) Write down an annihilator of smallest possible order with real coefficients for the function $3e^t + 2te^{-t} + \sin t$.
- (j) (3 pts.) Suppose

where it is given that the determinant of the coefficient matrix is nonzero. Write down the formula for u_3 in terms of determinants. Do not evaluate the determinants

- 2. (5 points) Given that $\vec{\mathbf{h}}_2 = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$ and $\vec{\mathbf{h}}_2 = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$ are solutions of $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$, where $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$, determine whether or not the general solution is $\vec{\mathbf{x}}(t) = c_1\vec{\mathbf{h}}_1(t) + c_2\vec{\mathbf{h}}_2(t)$
- 3. (10 points) Find the eigenvalues of the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{array} \right]$$

and for each eigenvalue, find as many linearly independent eigenvectors as possible.

- 4. (10 points)
 - (a) Convert the differential equation

$$x''' - e^t x'' - 4tx + x = e^{2t}$$

into a linear system of three equations in three unknowns x_1, x_2, x_3 .

- (b) Write the linear system in the form $D\vec{\mathbf{x}} = A(t)\vec{\mathbf{x}} + \vec{\mathbf{E}}(t)$ for some matrix A(t) and vector $\vec{\mathbf{E}}(t)$.
- 5. (10 points) Suppose 3 + 2i, 3 2i are eigenvalues of the 2×2 matrix A with corresponding eigenvectors $\begin{bmatrix} i \\ 1 \end{bmatrix}, \begin{bmatrix} -i \\ 1 \end{bmatrix}$, respectively. Write down two linearly independent real solutions of $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$. Show your work and simplify your answers.
- 6. (10 points) Find the general solution of $4x'' 4x' + x = \frac{8}{t^2}e^{t/2}$ for t > 0.
- 7. (10 points) The matrix A below has an eigenvalue λ and a generalized eigenvector $\vec{\mathbf{v}}$ as follows:

3

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \qquad \lambda = 1, \qquad \vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Find the general solution of $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$.

8. (10 points) Make a simplified guess for a particular solution of the differential equation

$$(D+2)^7(D^2+1)^6 = te^{-2t} + \sin t.$$

Do not solve for the coefficients.