# PHYS 157 Notes

# Raymond Wang

# October 2022

# Contents

| 1 | Ten                                  | perature 2                                             |  |  |  |
|---|--------------------------------------|--------------------------------------------------------|--|--|--|
|   | 1.1                                  | Temperature and Thermal Equilibrium                    |  |  |  |
|   | 1.2                                  | Temperature Scales                                     |  |  |  |
|   |                                      | 1.2.1 Celsius and Fahrenheit Scales                    |  |  |  |
|   |                                      | 1.2.2 Kelvin Scale                                     |  |  |  |
| 2 | The                                  | ermal Expansion, Stress, and Strain                    |  |  |  |
|   | 2.1                                  | $\Delta L$ due to $\Delta T$                           |  |  |  |
|   | 2.2                                  | $\Delta V$ due to $\Delta T$                           |  |  |  |
|   | 2.3                                  | Young's Modulus                                        |  |  |  |
|   | 2.4                                  | $\Delta L$ due to $\Delta T$ and $\Delta F$            |  |  |  |
| 3 | Hea                                  | at and Temperature/Phase Change                        |  |  |  |
|   | 3.1                                  | Heat of Temperature Change                             |  |  |  |
|   | 3.2                                  | Heat of Phase Change                                   |  |  |  |
| 4 | Heat Flow: Conduction and Convection |                                                        |  |  |  |
|   | 4.1                                  | Heat Conduction                                        |  |  |  |
|   | 4.2                                  | Thermal Resistance                                     |  |  |  |
| 5 | Rac                                  | liation 4                                              |  |  |  |
|   | 5.1                                  | Radiation                                              |  |  |  |
|   | 5.2                                  | Net Radiation                                          |  |  |  |
|   | 5.3                                  | Intensity at Distance $R$                              |  |  |  |
|   | 5.4                                  | Wien Displacement Law                                  |  |  |  |
| 6 | The                                  | ermodynamic Processes, Work, Heat, and Internal Energy |  |  |  |
|   | 6.1                                  | Ideal Gas Law                                          |  |  |  |
|   | 6.2                                  | Work Done by Gas                                       |  |  |  |
|   | 6.3                                  | First Law of Thermodynamics                            |  |  |  |
|   | 6.4                                  | Internal Energy                                        |  |  |  |
|   | 6.5                                  | Thermodynamic Processes                                |  |  |  |
|   |                                      | 6.5.1 Isochoric                                        |  |  |  |
|   |                                      | 6.5.2 Isobaric                                         |  |  |  |
|   |                                      | 6.5.3 Isothermal                                       |  |  |  |
|   |                                      | 6.5.4 Adiabatic                                        |  |  |  |

| 7  | Cyclic Thermodynamic Processes, Heat Engines, and Refrigerators |                                          |   |  |
|----|-----------------------------------------------------------------|------------------------------------------|---|--|
|    | 7.1                                                             | Cyclic Processes                         | 6 |  |
|    | 7.2                                                             | Heat Engines                             | 6 |  |
|    |                                                                 |                                          | 6 |  |
|    |                                                                 | 7.2.2 Diesel Cycle                       | 7 |  |
|    | 7.3                                                             | Refrigerators                            | 7 |  |
| 8  | Ent                                                             | $\mathbf{ropy}$                          | 7 |  |
|    | 8.1                                                             | Microscopic Definition of Entropy        | 7 |  |
|    | 8.2                                                             | Macroscopic Definition of Entropy        | 8 |  |
|    | 8.3                                                             | Second Law of Thermodynamics             | 8 |  |
|    | 8.4                                                             | T-S Diagrams                             | 8 |  |
|    | 8.5                                                             |                                          | 8 |  |
| 9  | Per                                                             | iodic Motion                             | 8 |  |
|    | 9.1                                                             | Describing Oscillations                  | 8 |  |
|    | 9.2                                                             | Simple Harmonic Motion                   | 9 |  |
|    | 9.3                                                             | Displacement, Velocity, and Acceleration | 9 |  |
|    | 9.4                                                             | Energy in Simple Harmonic Motion         | 9 |  |
|    | 9.5                                                             | Damped Oscillations                      | 9 |  |
|    | 9.6                                                             | Effective Spring Constant                | 9 |  |
| 10 | ) Wav                                                           | ves                                      | 9 |  |
|    | 10.1                                                            | Pario dia Wayna                          | Ω |  |

## 1 Temperature

### 1.1 Temperature and Thermal Equilibrium

- Key terms: temperature, thermometer, thermal equilibrium, insulator, conductor.
- The Zeroth Law of Thermodynamics: If C is initially in thermal equilibrium with both A and B, then A and B are also in thermal equilibrium with each other.
- Condition for Thermal Equilibrium: Two systems are in thermal equilibrium if and only if they have the same temperature.

#### 1.2 Temperature Scales

### 1.2.1 Celsius and Fahrenheit Scales

- Celsius temperature scale: water's freezing point is 0 °C and water's boiling point is 100 °C.
- Fahrenheit temperature scale: water's freezing point is 32 °F and water's boiling point is 212 °F.

$$T_F = \frac{9}{5}T_C + 32^{\circ}$$
  
 $T_C = \frac{5}{9}(T_F - 32^{\circ})$ 

#### 1.2.2 Kelvin Scale

• Has the same increments as the Celsius temperature scale, but 0 K is defined at absolute zero.

$$T_K = T_C + 273.15$$

• Can be defined using a gas thermometer and one reference temperature.

$$\frac{T_2}{T_1} = \frac{p_2}{p_1}$$

- 2 Thermal Expansion, Stress, and Strain
- **2.1**  $\Delta L$  due to  $\Delta T$

$$\Delta L = \alpha L_0 \Delta T$$
$$L = L_0 (1 + \alpha \Delta T)$$

**2.2**  $\Delta V$  due to  $\Delta T$ 

$$\Delta V = \beta V_0 \Delta T$$

$$V = V_0 (1 + \beta \Delta T)$$

$$\beta = 3\alpha$$

2.3 Young's Modulus

$$\frac{\Delta F}{A} = Y \frac{\Delta L}{L_0} \implies Y = \frac{\Delta F/A}{\Delta L/L_0}$$
 
$$\Delta L = \frac{L_0 \Delta F}{YA}$$

**2.4**  $\Delta L$  due to  $\Delta T$  and  $\Delta F$ 

$$\Delta L = \Delta L_T + \Delta L_F = \alpha L_0 \Delta T + \frac{L_0 \Delta F}{YA}$$

- 3 Heat and Temperature/Phase Change
- 3.1 Heat of Temperature Change

$$Q = mc\Delta T$$

3.2 Heat of Phase Change

$$Q = \pm mL$$

- 4 Heat Flow: Conduction and Convection
- 4.1 Heat Conduction

$$H = \frac{dQ}{dt} = kA\frac{T_H - T_C}{L}$$

4.2 Thermal Resistance

$$R = \frac{L}{k}$$

$$H = \frac{A(T_H - T_C)}{R}$$

In layers (series):  $R_{total} = R_1 + R_2 + \cdots + R_n$ 

- 5 Radiation
- 5.1 Radiation

$$H = Ae\sigma T^4$$
 
$$\sigma = 5.67\times 10^{-8}\,\mathrm{W/(m^2\,K^4)}$$

5.2 Net Radiation

$$H_{net} = Ae\sigma(T^4 - T_s^4)$$

5.3 Intensity at Distance R

$$I = \frac{H}{A} = \frac{H}{4\pi R^2}$$
$$\frac{I_2}{I_1} = \left(\frac{R_1}{R_2}\right)^2$$

5.4 Wien Displacement Law

$$\lambda_{max} = \frac{b}{T}$$
 
$$b = 2.90 \times 10^{-3} \,\mathrm{m\,K}$$

- 6 Thermodynamic Processes, Work, Heat, and Internal Energy
- 6.1 Ideal Gas Law

$$pV = nRT$$

6.2 Work Done by Gas

$$W = F\Delta x_{\parallel} = \int_{x_1}^{x_2} F(x)dx$$
$$W = p\Delta V = \int_{V_1}^{V_2} p(V)dV$$

6.3 First Law of Thermodynamics

$$\Delta U = Q - W$$
$$Q = \Delta U + W$$

- $\Delta U$ : change in internal energy of the gas
- Q: heat added to gas
- W: work done by the gas

For cyclic processes,  $\Delta U = 0$ , so Q = W.

### 6.4 Internal Energy

$$U = \frac{3}{2}nRT \text{ (monoatomic)}$$

$$U = \frac{5}{2}nRT \text{ (diatomic)}$$

$$\Delta U = nC_V \Delta T$$

For all ideal gases, where  $C_V = \frac{3}{2}R$  for monoatomic gases and  $C_V = \frac{5}{2}R$  for diatomic gases.

### 6.5 Thermodynamic Processes

#### 6.5.1 Isochoric

Constant volume process.

$$W = 0$$

$$Q = \Delta U = nC_V \Delta T$$

$$Q = \left(\frac{C_V}{R}\right) V \Delta p$$

### 6.5.2 Isobaric

Constant pressure process. Can be indicated by "moveable piston."

$$W = p\Delta V$$
 
$$W = nR\Delta T$$
 
$$Q = \Delta U + W = nC_V\Delta T + nR\Delta T = nC_p\Delta T$$
 
$$Q = \left(\frac{C_p}{R}\right)p\Delta V$$

Where  $C_p = C_V + R$ .

### 6.5.3 Isothermal

Constant temperature process. Slow process where temperature is allowed to equilibrate with surroundings.

$$\Delta U = 0$$

$$Q = W = nRT \ln \left(\frac{V_2}{V_1}\right)$$

$$Q = W = p_1 V_1 \ln \left(\frac{V_2}{V_1}\right) = p_2 V_2 \ln \left(\frac{V_2}{V_1}\right)$$

### 6.5.4 Adiabatic

No heat transfer. Fast process where there is no time for significant heat flow.

$$\gamma = \frac{C_p}{C_V}$$

$$TV^{\gamma - 1} = \text{constant}$$

$$pV^{\gamma} = \text{constant}$$

$$W = -\Delta U = nC_V(T_1 - T_2)$$

$$= \frac{C_V}{R}(p_1V_1 - p_2V_2)$$

$$= \frac{1}{\gamma - 1}(p_1V_1 - p_2V_2)$$

# 7 Cyclic Thermodynamic Processes, Heat Engines, and Refrigerators

## 7.1 Cyclic Processes

$$\Delta U = 0$$
$$Q = W$$

Sign convention:

- $\bullet$  Q is positive when it enters the engine/refrigerator and negative when it exits.
- W is positive when there is work output and negative when there is work input.

### 7.2 Heat Engines

- $Q_H > 0$ : heat absorbed during one cycle
- $Q_C < 0$ : heat rejected during one cycle
- W > 0: work output during one cycle

$$Q = Q_H + Q_C = |Q_H| - |Q_C|$$

$$e = \frac{W}{Q_H} = 1 + \frac{Q_C}{Q_H} = 1 - \left| \frac{Q_C}{Q_H} \right|$$



#### 7.2.1 Otto Cycle

$$e=1-\frac{1}{r^{\lambda-1}}\approx 35\%$$



### 7.2.2 Diesel Cycle



## 7.3 Refrigerators

- $Q_H < 0$ : heat discarded to the hot system (outside air)
- $Q_C > 0$ : heat removed from cold system (refrigerator)
- W < 0: work input of refrigerator

$$Q = Q_H + Q_C = |Q_C| - |Q_H|$$
 
$$K = \frac{Q_C}{|W|} = \frac{|Q_C|}{|Q_H| - |Q_C|}$$



# 8 Entropy

• A state variable that measures the disorder of a system.

## 8.1 Microscopic Definition of Entropy

$$S = k \ln w$$

- k: Boltzmann constant
- w: number of microstates of a given macrostate

8.2 Macroscopic Definition of Entropy

$$dS = \frac{dQ}{T}$$

$$\Delta S = \int_{1}^{2} \frac{dQ}{T}$$

 $\Delta S = \frac{Q}{T} \text{ (reversible isothermal process)}$ 

## 8.3 Second Law of Thermodynamics

The total entropy of a closed system never decreases.

### 8.4 T-S Diagrams

- $Q_H$ : area under curve
- $\bullet$  W: area enclosed



# 8.5 Carnot Cycle

- Isothermal and adiabatic processes.
- Maximum efficiency of engine operating between temperatures of  $T_H$  and  $T_C$ .



8

# 9 Periodic Motion

### 9.1 Describing Oscillations

- A: amplitude =  $|x|_{max}$ .
- T: period = time to complete one cycle.

- f: frequency = number of cycles per unit time.
- $\omega$ : angular frequency.

$$\omega = 2\pi f = \frac{2\pi}{T}$$

9.2 Simple Harmonic Motion

$$F_x=-kx$$
 (Restoring Force) 
$$a_x=\frac{d^2x}{dt^2}=-\frac{k}{m}x$$
 
$$\omega=\sqrt{\frac{k}{m}}$$

9.3 Displacement, Velocity, and Acceleration

$$x = A\cos(\omega t + \phi)$$
$$v = -\omega A\sin(\omega t + \phi)$$
$$a = -\omega^2 A\cos(\omega t + \phi)$$

Plug in  $x_0$  to find  $\phi$ .

9.4 Energy in Simple Harmonic Motion

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \text{constant}$$

9.5 Damped Oscillations

$$F_x = -kx - bv_x \text{ (restoring and damping/drag force)}$$
 
$$t_0 = \frac{2m}{b}, t_0 = -\frac{T}{\ln(r)} \text{ (where } r = \text{reduction fraction per period)}$$
 
$$x = Ae^{-t/t_0}\cos(\omega' t + \phi)$$
 
$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

- Critical damping:  $b = 2\sqrt{km}$
- Overdamping:  $b > 2\sqrt{km}$  (returns to equilibrium slower than critical damping)

9.6 Effective Spring Constant

$$k = -\frac{dF_{net}}{dx}(x_{eq})$$

10 Waves

- Transverse wave: displacement is perpendicular to direction of travel
- Longitudinal wave: displacement is in the same direction as direction of travel
- ullet v: wave speed. Speed of disturbance propagation

10.1 Periodic Waves

$$v = \lambda f$$