Deadline: 10/13 23:59

Problem E. 3D Partial Order

Time limit 4000 ms Memory limit 256MB

Problem Description

You are given a set P of N points in three-dimensional space. For each point $i = (x_i, y_i, z_i)$, count how many points $j = (x_j, y_j, z_j)$ in P satisfy

$$x_j > x_i, \quad y_j > y_i, \quad z_j > z_i.$$

In other words, for every point i, compute the number of points that strictly dominate i in all three coordinates. Print the answers in the same order as the input points.

Input format

The first line contains an integer N ($1 \le N \le 10^5$), the number of points.

Each of the next N lines contains three integers x_i , y_i , z_i ($1 \le x_i$, y_i , $z_i \le N$), describing the coordinates of point i.

Points are not guaranteed to be distinct.

Output format

Print N lines. For each i = 1, ..., N, on the *i*-th line print the number of points j such that $x_j > x_i$, $y_j > y_i$, and $z_j > z_i$.

Subtask score

Subtask	Score	Additional Constraints
1	10	$x_i = y_i = z_i$
2	50	$y_i = z_i$
3	40	No Constraints

Sample

Sample Input 1

10	
7 2 6	
8 6 4	
6 6 3	
3 1 7	
8 7 8	
8 7 2	
7 10 1	
5 6 4	
1 3 1	
7 3 1	

Deadline: 10/13 23:59

Sample Output 1

Sample Output 1		
1		
0		
1		
1		
0		
0		
0		
1		
5		
3		