2015级《高等数学》(下) 联考试券

试卷_A_,(A/B),考核方式_闭卷_(闭卷/开卷),考试时间(120分钟)

题	号	_	=	Ξ	四	五	六	七	八	九	总分
分	数										
评卷	人										

专业: 评卷人 得分

密

一、单项选择题(本大题共5个小题,每小题3分,总计 15分)。

班级

- 1. 二元函数 $z = 2016 \sqrt{x^2 + y^2}$ 的图像为 ()。
- (A) 球面;
- (B) 双曲面;
- (C) 圆锥面;
- (D) 抛物面
- 2、函数z = f(x, y)在点 $P_0(x_0, y_0)$ 的所有一阶偏导数都存在是该函数

在该点可微的(A)。 (A)必要而非充分条件 (B)充分而非必要条件

- (C) 充分必要条件
- (D) 既非充分, 又非必要条件

3、设见由 $z = \frac{1}{2}(x^2 + y^2)$ 与z = 2围成,则在柱坐标下 $\iint_{\Omega} f(x, y, z) dx dy dz =$ $(D)_{0}$ $\frac{1}{2}\rho^{2}$ $(A) \int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{0}^{2\pi} f(\rho \sin \theta, \rho \cos \theta, z) dz$ $(A) \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} \rho d\rho \int_{0}^{2\pi} f(\rho \sin \theta, \rho \cos \theta, z) dz$

(B)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{\frac{1}{2}\rho^{2}}^{2} f(\rho \sin \theta, \rho \cos \theta, z) dz$$

(C)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{0}^{\frac{1}{2}\rho^{2}} f(\rho \cos \theta, \rho \sin \theta, z) dz$$

(D)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{\frac{1}{2}\rho^{2}}^{2} f(\rho \cos \theta, \rho \sin \theta, z) dz$$

(A)
$$\sum_{n=1}^{\infty} n \sin \frac{\pi}{n}$$
 (B) $\sum_{n=1}^{\infty} \ln \left[\frac{n}{n+1} \right]$ (C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ (D) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

二、填空题(本大题共五个小题,每小题3分,总计15分) 6. 已知向量 $\vec{a} = (1,1,0)$, $\vec{b} = (1,0,1)$,则 \vec{a} 与 \vec{b} 的夹角 $\theta =$

7. 已知函数 $f(x,y) = \begin{cases} \frac{(x^2+y^2)}{\sqrt{x^2+y^2+1}-1} & x^2+y^2 \neq 0 \\ k & x^2+y^2 = 0 \end{cases}$ 在 (0,0) 处连续, \Rightarrow $K = \begin{cases} (0,0) = x^2 + y^2 \\ y = x^2 + y^2 = 0 \end{cases}$ $= \begin{cases} (x^2+y^2) \\ (x^2+y^2+1-1) \\ (x^2+y^2) = 0 \end{cases}$ $= \begin{cases} (x^2+y^2) \\ (x^2+y^2+1-1) \\ (x^2+y^2) = 0 \end{cases}$ 8. 二次积分 $\int_0^1 dy \int_0^1 f(x,y) dx$ 改换积分次序为 $\int_0^1 dx \int_0^\infty f(x,y) dy = x^2 + y^2 +$

10. (交大的同学做)幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的和函数为 e^{-1} $x \in (-\infty, +\infty)$

10. (**重邮的同学做**)函数 f(x)是以 2π 为周期的周期函数,它在 $[-\pi,\pi)$ 上的表

达式为 $f(x) = \begin{cases} x^2, & -\pi \le x < 0 \\ \pi x & 0 \le x < \pi \end{cases}$ 则 f(x) 的傅立叶级数在点 $x = \pi$ 处收敛

$$\frac{1}{2} \frac{f(\pi) + f(\pi^{+})}{2} = \frac{f(\pi^{-}) + f(-\pi^{+})}{2} = \frac{\pi^{-}}{2} = \pi^{-}$$

得分 评卷人

三、计算题(本大题共两个小题,每小题5分,满分10分)

- 11. 设方程 $x^3 + y^3 + z^3 + xyz 6 = 0$ 确定了隐函数z = z(x, y),
- (1) 求 dz
- (2) 求曲面 $x^3 + y^3 + z^3 + xyz 6 = 0$ 在点(1, 2, -1)处的切平面方程。 34 F=x3+y3+23+xy2-6, Fx=3x2+y2 Ty=3y2+x2, Px=322+x4

: ta 3 ab x-1+11(y-2)+5(2+1)=0

得分 评卷人

四、计算题(本大题共两个小题,每小题5分,满分10分)

得分 评卷人

五、计算题(本大题共10分)

13. 计算二重积分 $I = \iint (2017 - 4x^2) dx dy$, 其中 $D = \{(x, y) | x^2 + y^2 \le 1\}$ 。 $= 2017 \int_0^1 - x \iint_0^1 x^2 dx dy$ $= 2017 \int_0^1 x \int_0^1 x^2 dx dy$ $= 2017 \int_0^1 x \int_0^1 x dx dx$ $= 2017 \int_0^1 x dx dx$

得分 评卷人

六、计算题 (本大题共分 10 分):

14. 计算 $I = \iint_{\Sigma} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy$,其中 Σ 是旋转抛物面 $z = x^2 + y^2$ 介于平面 z = 0 及 z = 1 之间的部分的下侧。 $1 = \iint_{\Sigma} (z \cos x \, d + y \cos x \, dx + z \cos x \, dx) \, dx = \iint_{\Sigma} (z \cos x \, d + y \cos x \, dx + z \cos x \, dx) \, dx$ $= \iint_{\Sigma} (z \cos x \, d + y \cos x \, dx + z \cos x \, dx) \, dx$ $= \iint_{\Sigma} (z \cos x \, d + y \cos x \, dx + z \cos x \, dx) \, dx$ $= \iint_{\Sigma} (z \cos x \, d + y \cos x \, dx + z \cos x \, dx) \, dx$ $= \iint_{\Sigma} (z \cos x \, d + y \cos x \, dx + z \cos x \, dx) \, dx$ $= \iint_{\Sigma} (z \cos x \, d + y \cos x \, dx + z \cos x \, dx) \, dx$ $= \iint_{\Sigma} (z \cos x \, d + y \cos x \, d$

区上点计为子单 (各局支: 前=(25,24,-1)

#310 733, cood = 3x 651 = 34 651 = 24 [4x744]

■ 2 、 2 = x²4 ^重庆市江南片区高校 2015 级《高等数学》(下)联考试卷 第4页(共6页)

= [1+ FR+ Ky drdy

* /

得分 评卷人

七、应用题 (本大题满分10分):

15. 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展成 x 的幂级数,并指出其收敛域。 $= \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{x+2$

得 分 评卷人

八、综合应用题(本大题共2小题,每小题5分,共10分)

16. 设曲线积分 $\int_{L} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy$, 其中 L 为 xoy 平面上一条有向曲线,

(1) 证明: 该曲线积分在整个 xoy 平面上与路径无关,

(2) 计算:
$$I = \int_{(1,2)}^{(3,4)} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy$$
。

(3) $P = 6xy^2 - y^3$ $Q = 6xy^2 - 3xy^2$

(4) $P = 6xy^2 - y^3$ $Q = 6xy^2 - 3xy^2$

(5) $P = 6xy^2 - y^3$ $Q = 6xy^2 - 3xy^2$

(6) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(7) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(8) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(9) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(10) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(11) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(12) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(13) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(14) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(15) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(16) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(17) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(18) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(19) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(2) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(2) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(2) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(2) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(2) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(2) $P = 6xy^2 - y^3$ $P = 6xy^2 - 3xy^2$

(2) $P = 6xy^2 - y^3$

(3) $P = 6xy^2 - y^3$

(4) $P = 6xy^2 - y^3$

(5) $P = 6xy^2 - y^3$

(6) $P = 6xy^2 - y^3$

(7) $P = 6xy^2 - y^3$

(8) $P = 6xy^2 - y^3$

(9) $P = 6xy^2 - y^3$

(18) $P = 6xy^2 - y^3$

(19) $P = 6xy^2 - y^3$

(19) $P = 6xy^2 - y^3$

(10) $P = 6xy^2 - y^3$

(10) $P = 6xy^2 - y^3$

(11) $P = 6xy^2 - y^3$

(12) $P = 6xy^2 - y^3$

(13) $P = 6xy^2 - y^3$

(14) $P = 6xy^2 - y^3$

(15) $P = 6xy^2 - y^3$

(16) $P = 6xy^2 - y^3$

(17) $P = 6xy^2 - y^3$

(18) $P = 6xy^2 - y^3$

(19) $P = 6xy^2 - y^3$

= 3xfx-16 = 2+ 2.16 - 236 得分 评卷人

九、综合应用题(本大题共10分)

17. 某厂要用铁皮做成一个体积为 8 m^3 的有盖长方体水箱,问当水箱的长、宽、高各为取多少时,才能使用料最省。

T y

: 专意意,多母处 2mm 5 篇小平 粉料面面