Задача 0.1. Да се докаже, че ако \mathcal{L}_1 и \mathcal{L}_2 са полуразрешими езици над азбука Σ , то:

- 1. $\mathcal{L}_1 \cup \mathcal{L}_2$ е полуразрешим.
- 2. $\mathcal{L}_1 \cap \mathcal{L}_2$ е полуразрешим.

Тази задача казва, че може да използваме полуразрешими езици за формулирането на IF-условия, които са свързани със съюзите И и ИЛИ.

Задача 0.2. Да се докаже, че ако \mathcal{L}_1 и \mathcal{L}_2 са полуразрешими езици над азбука Σ и $\$ \notin \Sigma$, то: $\mathcal{L} = \{u\$v \mid u \in \mathcal{L}_1 \ u \ v \in \mathcal{L}_2\}$ е полуразрешим.

Тази задача може да се интерепретира и по следния начин. Полуразрешими езици са затворени относно декартово произведение. Всъщност \$ служи като разделител между отделните компоненти.

Задача 0.3. Нека $\mathcal{L} \subseteq \Sigma^* \$ \Sigma^*$ е полуразрешим. Да се докаже, че езикът:

$$\mathcal{L}' = \{ v \in \Sigma^* \mid \exists u \in \Sigma^* (u \$ v \in \mathcal{L}) \}$$

е полуразрешим.

В контекста на предишната задача, тази задача може да се интерепретира и по следния начин. Полуразрешими езици са затворени относно проекция. Всъщност \$ служи като разделител между отделните компоненти.

Улътване 0.1. 1. Разгледайте $G_i = \langle \Sigma, \mathcal{N}_i, P_i, S_i, F_i, \# \rangle$ – 1-управляващи граматики, които представят $\mathcal{L}(G_i) = \mathcal{L}_i$ и нямат общи нетерминали, т.е. $\mathcal{N}_1 \cap \mathcal{N}_2 = \emptyset$. Приложете конструкцията за обединение:

$$G = \langle \Sigma, \mathcal{N}_1 \cup \mathcal{N}_2 \cup \{S, F\}, P_1 \cup P_2 \cup \{S \rightarrow S_1 | S_2, F \rightarrow F_1 | F_2\}, S, F, \# \rangle$$

и покажете, че G представя точно $\mathcal{L}_1 \cup \mathcal{L}_2$.

- 2. Разгледайте $G_i == \langle \Sigma, \mathcal{N}_i, P_i, S_i, F_i, \#_i \rangle$ 1-управляващи граматики, които представят $\mathcal{L}(G_i) = \mathcal{L}_i$ и нямат общи нетерминали, т.е. $\mathcal{N}_1 \cap \mathcal{N}_2 = \emptyset$. Аргументирайте, че следните стъпки може да бъдат моделирани с 1-управляваща граматика:
 - При вход w, копираме w до $w' = w \#_1 w$.
 - Прилагаме правилата G_1 върху S_1w' , докато не се появи F_1 .
 - Ако се появи F_1 , изтриваме сегмента преди $\#_1$ и прилагаме G_2 върху w.
 - Ако се появи F_2 , приемаме.

Упътване 0.2. Приложете идеята от 1.2.

Упътване 0.3. Разгледайте 1-управляваща граматика $G = \langle \Sigma_\$, \mathcal{N}, P, S, F, \# \rangle$, която представя точно \mathcal{L} . Добавете към нея нови нетерминали S', S'' и правила:

$$\{S' \to S'' \$, S'' \to S\} \cup \{S'' \to S'' a \mid a \in \Sigma\}.$$

Нека получената граматика е G'. Обосновете, че за всеки две думи $u,v\in \Sigma^*$ в G' има извод:

$$S'v\# \Rightarrow_{G'}^* S''u\$v\# \Rightarrow_{G'} Su\$v\#.$$

Обосновете, че всеки извод $S'w\# \Rightarrow_{G'}^* xFy\#$ започва с извод от вида $S'w\# \Rightarrow_{G'}^* S''u\$w\# \Rightarrow Su\$w\#$, след което следва извод в G. Докажете, че G' представя $\mathcal{L}'\subseteq \Sigma^*$.