

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра дискретной математики и алгоритмики

Зязюлькин Сергей Павлович

Построение больших непересекающихся ациклических подграфов в геометрических графах

Научный руководитель: кандидат физ.-мат. наук В.И. Сарванов

Постановка задачи

- ✓ разработка точных экспоненциальных алгоритмов решения задачи построения больших непересекающихся ациклических подграфов в геометрических графах;
- ✓ поиск новых классов геометрических графов, допускающих полиномиальное решение задачи построения больших непересекающихся ациклических подграфов;
- ✓ программная реализация разработанных алгоритмов.

Геометрический граф

Сложность задачи построения непересекающегося остовного дерева

Теорема. Задача распознавания NST в геометрическом графе G является NP-трудной, даже если степень любой вершины не более трех, а индекс пересечения графа G не превосходит двух.

Параметризованные алгоритмы

Теорема. Пусть G — геометрический граф, содержащий k пар пересекающихся ребер. За время $O^*(1.9276^k)$ можно построить NST в графе G, если оно существует.

Полиномиально разрешимые случаи

Теорема. Пусть G такой геометрический граф, что для произвольной тройки e_i , e_j , e_k его ребер верно следующее: $e_i \cap e_j \neq \emptyset$ и $e_i \cap e_k \neq \emptyset \Rightarrow e_j \cap e_k \neq \emptyset$. Тогда задача построения NST в графе G является полиномиально разрешимой.

Матроид

Mатроиdом называют упорядоченную пару (E, X), где E — непустое конечное множество, а X — непустое множество его подмножеств, удовлетворяющее следующим условиям:

- 1. $\emptyset \in X$;
- 2. Если $I \in X$ и $I' \subseteq I$, то $I' \in X$;
- 3. Если $I_1 \in X$, $I_2 \in X$ и $|I_1| < |I_2|$, то существует элемент $e \in I_2 \setminus I_1$ такой, что $I_1 \cup \{e\} \in X$.

Геометрический граф, допускающий построение матроида пересечений

Геометрический граф с индексом пересечения, равным единице

Построение большого непересекающегося ациклического подграфа

Теорема. Пусть G = (V, E) – геометрический граф, на множестве ребер E которого может быть построен матроид пересечений. Пусть $E' \subseteq E$ – зафиксированное подмножество ребер графа G. Тогда задача построения NST и MNAS с множеством зафиксированным ребер E' могут быть решены для графа G за полиномиальное время путем сведения этих задач к задаче пересечения двух матроидов.

Построение непересекающегося остовного дерева

Теорема. Пусть G — геометрический граф, имеющий k пар пересекающихся ребер. Задача построения NST может быть решена для графа G за время $O^*(1.4143^k)$.

Построение наибольшего непересекающегося ациклического подграфа

Теорема. Пусть G — геометрический граф, имеющий k пар пересекающихся ребер. Задача построения MNAS может быть решена для графа G за время $O^*(1.4143^k)$.

- 20 вершин;
- 127 ребер;
- индекс пересечения 53;
- 1370 пар пересекающихся ребер;
- рассмотрено 1150090 подграфов;
- 43.784 секунды.

- 40 вершин;
- 115 ребер;
- индекс пересечения 50;
- 1142 пары пересекающихся ребер;
- рассмотрено 581420 подграфов;
- 33.934 секунды.

Граф, ограниченный многоугольником

Построение непересекающегося остовного дерева в графе, ограниченном многоугольником

Теорема. Пусть G - OM-граф на n вершинах. Задача построения NST в графе G может быть решена за время $O(n^3)$ с использованием метода динамического программирования.

- 100 вершин;
- 1509 ребер;
- индекс пересечения 941;
- 401981 пар пересекающихся ребер;
- 1.7 секунды.

- 20 вершин;
- 133 ребер;
- индекс пересечения 67;
- 2438 пар пересекающихся ребер;
- 0.01 секунды для полиномиального алгоритма;
- 6.212 секунды (193208 подзадач) для экспоненциального алгоритма.

Заключение

- ✓ разработан и программно реализован алгоритм решения задачи пересечения двух матроидов с возможностью фиксирования множества элементов, которое обязано входить в пересечение;
- ✓ предложен способ применения алгоритма решения задачи пересечения двух матроидов с возможностью фиксирования множества обязательных элементов для решения задачи построения непересекающегося остовного дерева и задачи построения наибольшего непересекающегося ациклического подграфа в геометрическом графе;
- ✓ разработан и программно реализован алгоритм частичного перебора с отсечениями для решения задачи построения непересекающегося остовного дерева в геометрическом графе, дана оценка трудоемкости разработанного алгоритма;
- ✓ разработан и программно реализован алгоритм частичного перебора с отсечениями для решения задачи построения наибольшего непересекающегося ациклического подграфа в геометрическом графе, дана оценка трудоемкости разработанного алгоритма;
- ✓ введено понятие графа, ограниченного многоугольником, разработан и программно реализован точный полиномиальный алгоритм решения задачи построения непересекающегося остовного дерева в графе, ограниченном многоугольником;
- ✓ проведены вычислительные эксперименты.

СПАСИБО ЗА ВНИМАНИЕ!