DS Système et réseaux - Partie Conception des systèmes

Date: 24.10.2016 Durée: 1h 30

Seul document autorisé : feuille A4 remplie par vos soins.

Calculatrices interdites.

- Le barème est indicatif -

Gestion de processus (6pt)

- 1. Quelles sont les conditions qu'un processus doit satisfaire pour qu'il puisse être considéré par l'ordonnanceur ?
- 2. Définir la notion d'interblocage. Quelles sont les stratégies pour traiter un interblocage?
- 3. Quel est l'intérêt de l'algorithme du banquier de Dijkstra?
- 4. Soit un ordonnanceur préemptif. Lorsqu'il est exécuté, à un instant t, il choisit le processus qui a le moins utilisé la CPU entre les instants $t \delta$ et t, δ étant une constante.
 - Q1 Cet ordonnancement favorise-t-il les processus interactifs? Expliquer.
 - Q2 Y a-t-il un risque de famine? Expliquer.
- 5. Illustrer par un diagramme de Gantt l'occupation de la CPU selon un ordonnancement du tourniquet avec un quantum égal à 3 unités de temps. Trois processus P_1 , P_2 et P_3 sont concernés par l'ordonnancement. Leurs moments d'arrivée sont : P_1 : 0, P_2 : 3 et P_3 : 6. Leurs durées d'exécution (en unités de temps) sont : P_1 : 6, P_2 : 4 et P_3 : 1.

Gestion de la mémoire (14pt)

- 1. Questions
 - Q1 Quelles sont les solutions qu'un système peut proposer quand un processus demande de l'allocation mémoire et selon l'algorithme d'allocation, il n'y a pas de mémoire disponible? Analyser d'une part, l'allocation par partitionnement, et d'autre part, l'allocation par pagination.
 - Q2 Qui produit un défaut de page et comment est-il géré?
 - Q3 Quel est l'inconvénient pallié par :
 - i. la pagination?
 - ii. la mémoire associative?
 - iii. la segmentation?
 - Q4 Expliquer dans quelles conditions les entrées dans la mémoire associative contiennent, comme champ, l'identificateur du processus ?

- 2. Soit un système utilisant le partitionnement variable qui présente à un moment donné 2 partitions de 100K et une partition de 250K (partitions libres). Quelle est la condition à remplir par la taille du premier processus demandant une allocation pour définir un cas de :
 - Q1 fragmentation interne?
 - Q2 fragmentation externe?
- 3. Soit une mémoire paginée physique de 4Go, avec des cadres de taille 1Ko. Les processus contiennent 2¹⁶ pages.
 - Q1 Donner la structure de l'adresse logique.
 - Q2 Donner la structure de l'adresse physique.
 - Q3 Sur combien de bits est codée l'adresse logique?

Bit # Cadre présence 3 1 104 256 0 333 Q4 Soit l'extrait suivant de la table de pages : 257 1 409 258 0 610 269 1 100 270 0 110

Expliquer le processus de transcodage de l'adresse logique en hexadécimal 40031₁₆.

- Q5 Si la pagination mémoire est à deux niveaux, donner la structure de l'adresse logique tenant compte que la table d'indirection tient sur une seule page, chacune de ses entrées étant codée sur 4 octets.
- 4. Soit un ordinateur dont la mémoire physique dispose de 4 cadres et les processus contiennent 8 pages. Nous supposons que les cadres sont initialement vides et que les pages sont appelées dans l'ordre suivant au cours de l'exécution d'un processus par le processeur : 1 2 3 1 7 4 1 8 2 7 8 4 3 8 1 1.
 - Q1 Quels sont les taux de défauts de pages selon les algorithmes FIFO, LRU et optimal?
 - Q2 Donner un exemple de succession de références de pages où les deux algorithmes FIFO et LRU se retrouvent, les deux, dans la pire des situations.

Question bonus

Citer un ouvrage bibliographique que vous avez consulté en complément aux notions vues en cours et en TD (auteur et titre - même approximatif) et le nombre de pages consultées (indication).