Análisis de Algoritmos Recurrencias I – Forma y soluciones por iteración

Luis Alfredo Alvarado Rodríguez

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

31 de Julio de 2025

Sumario

- Conceptos básicos
- 2 Recurrencias de primer orden
 - Homogéneas con coeficiente constante
 - Homogéneas con coeficiente variable
 - Inhomogéneas
- 3 Recurrencias de segundo orden
- 4 Ejemplo aplicado al análisis de algoritmos
- 5 Conclusiones y vista a la próxima sesión

¿Qué es una relación de recurrencia?

Definición

Una relación de recurrencia es una fórmula que nos permite calcular los términos de una sucesión uno tras otro, partiendo de uno o más valores iniciales.

¿Qué es una relación de recurrencia?

Definición

Una relación de recurrencia es una fórmula que nos permite calcular los términos de una sucesión uno tras otro, partiendo de uno o más valores iniciales.

Ejemplo (1.24)

$$x_{n+1} = c x_n$$
 $(n \ge 0; x_0 = 1).$

¿Qué es una relación de recurrencia?

Definición

Una relación de recurrencia es una fórmula que nos permite calcular los términos de una sucesión uno tras otro, partiendo de uno o más valores iniciales.

Ejemplo (1.24)

$$x_{n+1} = c x_n$$
 $(n \ge 0; x_0 = 1).$

- La ecuación es de primer orden (sólo depende de x_n).
- Solución iterativa: $x_n = c^n$.

Caso homogéneo, coeficiente constante

Ecuación (1.24) nuevamente

$$x_{n+1} = c x_n, \quad x_0 = 1.$$

Caso homogéneo, coeficiente constante

Ecuación (1.24) nuevamente

$$x_{n+1} = c x_n, \quad x_0 = 1.$$

$$x_1 = c x_0, \ x_2 = c x_1 = c^2 x_0, \ \dots \implies \boxed{x_n = c^n} \ (n \ge 0).$$

Caso homogéneo, coeficiente constante

Ecuación (1.24) nuevamente

$$x_{n+1} = c x_n, \quad x_0 = 1.$$

$$x_1 = c x_0, \ x_2 = c x_1 = c^2 x_0, \ \dots \implies \boxed{x_n = c^n} \ (n \ge 0).$$

- Método: desenrollar (unfolding) la recurrencia.
- La solución es única porque se especifica x_0 .

Coeficiente variable (1.26)

$$x_{n+1} = b_{n+1} x_n$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.26)

Coeficiente variable (1.26)

$$x_{n+1} = b_{n+1} x_n$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.26)

$$x_1 = b_1 x_0, \ x_2 = b_2 b_1 x_0, \ \dots, \ x_n = x_0 \prod_{i=1}^n b_i.$$
 (1.27)

Coeficiente variable (1.26)

$$x_{n+1} = b_{n+1} x_n$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.26)

$$x_1 = b_1 x_0, \ x_2 = b_2 b_1 x_0, \ \dots, \ x_n = x_0 \prod_{i=1}^n b_i.$$
 (1.27)

- Basta observar el patrón tras los primeros términos.
- La iteración sigue siendo directa, aunque la expresión final sea un producto.

$$x_{n+1} = b_{n+1} x_n + c_{n+1}$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.28)

 $x_{n+1} = b_{n+1} x_n + c_{n+1}$

Cambio de variable (1.29)

$$x_n = (b_1 b_2 \cdots b_n) y_n, \qquad x_0 = y_0.$$
 (1.29)

 $(n \geq 0; x_0 \text{ dado}).$

(1.28)

$$x_{n+1} = b_{n+1} x_n + c_{n+1}$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.28)

Cambio de variable (1.29)

$$x_n = (b_1 b_2 \cdots b_n) y_n, \qquad x_0 = y_0.$$
 (1.29)

Sustituyendo se obtiene la recurrencia más simple

$$y_{n+1} = y_n + d_{n+1}, \quad d_{n+1} = \frac{c_{n+1}}{b_1 \cdots b_{n+1}}.$$
 (1.30)

$$x_{n+1} = b_{n+1} x_n + c_{n+1}$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.28)

Cambio de variable (1.29)

$$x_n = (b_1 b_2 \cdots b_n) y_n, \qquad x_0 = y_0.$$
 (1.29)

(1.30)

(1.31)

Sustituyendo se obtiene la recurrencia más simple

$$u_{n,n} = u_n + d_{n,n}$$
 $d_{n,n} = \frac{c_n}{c_n}$

 $y_{n+1} = y_n + d_{n+1}, \quad d_{n+1} = \frac{c_{n+1}}{b_1 \cdots b_{n+1}}.$

$$y_n = y_0 + \sum_{j=1}^n d_j \implies \left[x_n = \left(b_1 \cdots b_n \right) \left(x_0 + \sum_{j=1}^n d_j \right) \right]$$

$$x_{n+1} = b_{n+1} x_n + c_{n+1}$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.28)

Cambio de variable (1.29)

$$x_n = (b_1 b_2 \cdots b_n) y_n, \qquad x_0 = y_0.$$
 (1.29)

Sustituyendo se obtiene la recurrencia más simple

$$y_{n+1} = y_n + d_{n+1}, \quad d_{n+1} = \frac{c_{n+1}}{b_1 \cdots b_{n+1}}.$$
 (1.30)

$$y_n = y_0 + \sum_{j=1}^n d_j \implies \left| x_n = (b_1 \cdots b_n) \left(x_0 + \sum_{j=1}^n d_j \right) \right|$$
 (1.31)

(a) Realizar un cambio de variable adecuado.

$$x_{n+1} = b_{n+1} x_n + c_{n+1}$$
 $(n \ge 0; x_0 \text{ dado}).$ (1.28)

Cambio de variable (1.29)

$$x_n = (b_1 b_2 \cdots b_n) y_n, \qquad x_0 = y_0.$$
 (1.29)

Sustituyendo se obtiene la recurrencia más simple

$$y_{n+1} = y_n + d_{n+1}, \quad d_{n+1} = \frac{c_{n+1}}{b_1 \cdots b_{n+1}}.$$

 $\frac{}{}_{+1}$. (1.30)

(1.31)

$$y_n = y_0 + \sum_{j=1}^n d_j \implies \left[x_n = (b_1 \cdots b_n) \left(x_0 + \sum_{j=1}^n d_j \right) \right].$$

- (a) Realizar un cambio de variable adecuado.
- (b) Resolver la nueva recurrencia (por sumación).

$$x_n = (b_1 b_2 \cdots b_n) y_n, \qquad x_0 = y_0.$$

 $x_{n+1} = b_{n+1} x_n + c_{n+1}$

Sustituyendo se obtiene la recurrencia más simple

$$y_{n+1} = y_n + d_{n+1}, \quad d_{n+1} = \frac{c_{n+1}}{b_1 \cdots b_{n+1}}.$$

$$y_n = y_0 + \sum_{j=1}^n d_j \implies \left[x_n = \left(b_1 \cdots b_n \right) \left(x_0 + \sum_{j=1}^n d_j \right) \right].$$

- Realizar un cambio de variable adecuado.
- Resolver la nueva recurrencia (por sumación).
- Regresar a las incógnitas originales.

(1.29)

(1.28)

 $(n \ge 0; x_0 \text{ dado}).$

(1.31)

(1.30)

$$x_{n+1} = 3x_n + n$$
 $(n \ge 0; x_0 = 0).$ (1.32)

$$x_{n+1} = 3x_n + n \qquad (n \ge 0; \ x_0 = 0). \tag{1.32}$$
Cambia: $x_n = 3^n u_n \Rightarrow u_{n+1} = u_n + \frac{n}{n}$

Cambio: $x_n = 3^n y_n \Rightarrow y_{n+1} = y_n + \frac{n}{3^{n+1}}$.

$$x_{n+1} = 3x_n + n$$
 $(n \ge 0; x_0 = 0).$ (1.32)
Cambio: $x_n = 3^n y_n \Rightarrow y_{n+1} = y_n + \frac{n}{3^{n+1}}.$

$$y_n = \sum_{j=1}^{n-1} \frac{j}{3^{j+1}} \implies \left| x_n = 3^n \sum_{j=1}^{n-1} \frac{j}{3^{j+1}} \right|$$
 (1)

$$x_{n+1} = 3x_n + n$$
 $(n \ge 0; x_0 = 0).$ (1.32)

Cambio: $x_n = 3^n y_n \Rightarrow y_{n+1} = y_n + \frac{n}{3^{n+1}}$.

$$y_n = \sum_{j=1}^{n-1} \frac{j}{3^{j+1}} \implies x_n = 3^n \sum_{j=1}^{n-1} \frac{j}{3^{j+1}}.$$
 (1.33)

- La serie restante puede evaluarse cerradamente (ej. con técnicas de series geométricas).
- El procedimiento *siempre* funciona para (1.28).

$$x_{n+1} = a x_n + b x_{n-1}$$
 $(n \ge 1; x_0, x_1 \text{ dados}).$ (1.34)

$$x_{n+1} = a x_n + b x_{n-1}$$
 $(n \ge 1; x_0, x_1 \text{ dados}).$ (1.34)

• Supóngase $x_n = \alpha^n$; sustituyendo resulta

$$\alpha^2 = a\alpha + b. \tag{1.35}$$

$$x_{n+1} = a x_n + b x_{n-1}$$
 $(n \ge 1; x_0, x_1 \text{ dados}).$ (1.34)

• Supóngase $x_n = \alpha^n$; sustituyendo resulta

$$\alpha^2 = a\alpha + b. (1.35)$$

• Sean α_+, α_- las raíces. Con $\alpha_+ \neq \alpha_-$,

$$x_n = c_1 \alpha_+^n + c_2 \alpha_-^n.$$
 (1.36)

$$x_{n+1} = a x_n + b x_{n-1}$$
 $(n \ge 1; x_0, x_1 \text{ dados}).$

(1.34)

(1.35)

(1.36)

• Supóngase
$$x_n = \alpha^n$$
; sustituyendo resulta

$$\alpha^2$$

$$\chi^2$$

$$\alpha^2 = a\alpha + b.$$

• Sean
$$\alpha_+, \alpha_-$$
 las raíces. Con $\alpha_+ \neq \alpha_-,$

$$x_n = c_1 \alpha_+^n + c_2 \alpha_-^n.$$

Si la raíz es doble, la solución es

$$x_n = \alpha^n (c_1 + c_2 n).$$

$$F_{n+1} = F_n + F_{n-1}, \quad F_0 = 0, \ F_1 = 1.$$
 (1.37)

$$F_{n+1} = F_n + F_{n-1}, \quad F_0 = 0, \ F_1 = 1.$$
 (1.37)

Ecuación característica:
$$\alpha^2 = \alpha + 1 \Rightarrow \alpha_{\pm} = \frac{1 \pm \sqrt{5}}{2}$$
.

$$F_{n+1} = F_n + F_{n-1}, \quad F_0 = 0, \ F_1 = 1.$$
 (1.37)

Ecuación característica: $\alpha^2 = \alpha + 1 \Rightarrow \alpha_{\pm} = \frac{1 \pm \sqrt{5}}{2}$.

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$
 (1.38)

$$F_{n+1} = F_n + F_{n-1}, \quad F_0 = 0, \ F_1 = 1.$$

(1.37)

(1.38)

Ecuación característica: $\alpha^2 = \alpha + 1 \Rightarrow \alpha_{\pm} = \frac{1 \pm \sqrt{5}}{2}$.

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

$$F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} \qquad (n \to \infty).$$

Ejemplo 1.3: raíz doble

$$x_{n+1} = 2x_n - x_{n-1}, \quad x_0 = 1, \ x_1 = 5.$$
 (1.39)

Ejemplo 1.3: raíz doble

$$x_{n+1} = 2x_n - x_{n-1}, \quad x_0 = 1, \ x_1 = 5.$$
 (1.39)

Raíz doble $\alpha = 1$.

$$x_n = c_1 + c_2 n$$
, $c_1 = 1$, $c_2 = 4 \implies x_n = 4n + 1$.

$$T(n) = T(n-1) + n$$
, $T(0) = 0$.

$$T(n) = T(n-1) + n, \quad T(0) = 0.$$

$$T(n) = (T(n-2) + (n-1)) + n$$

$$= T(n-2) + ((n-1) + n)$$

$$\vdots$$

$$= T(0) + \sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

$$T(n) = T(n-1) + n, \quad T(0) = 0.$$

$$T(n) = (T(n-2) + (n-1)) + n$$

$$= T(n-2) + ((n-1) + n)$$

$$\vdots$$

$$= T(0) + \sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

$$T(n) = \Theta(n^{2}).$$

$$T(n) = T(n-1) + n, \quad T(0) = 0.$$

$$T(n) = (T(n-2) + (n-1)) + n$$

$$= T(n-2) + ((n-1) + n)$$

$$\vdots$$

$$= T(0) + \sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

$$T(n) = \Theta(n^{2}).$$

- El desenrollado (iteration method) es suficiente aquí.
- En la próxima sesión veremos métodos más potentes para resolver recurrencias de divide-and-conquer.

 \blacksquare Definimos y clasificamos relaciones de recurrencia.

- Definimos y clasificamos relaciones de recurrencia.
- \blacksquare Resolvimos recurrencias de primer y segundo orden por iteraci'on.

- Definimos y clasificamos relaciones de recurrencia.
- \blacksquare Resolvimos recurrencias de primer y segundo orden por iteraci'on.
- Vimos ejemplos clásicos: $x_{n+1} = c x_n$, Fibonacci, y T(n) = T(n-1) + n.

- Definimos y clasificamos relaciones de recurrencia.
- \blacksquare Resolvimos recurrencias de primer y segundo orden por iteraci'on.
- Vimos ejemplos clásicos: $x_{n+1} = c x_n$, Fibonacci, y T(n) = T(n-1) + n.
- Herramientas: desenrollado, cambio de variable, ecuación característica.