Finance du Climat

Thierry Roncalli

Date de remise du projet: 15 Avril 2024

Chaque projet est constitué de deux fichiers:

- Un fichier python qui permet d'obtenir l'ensemble des résultats de l'exercice.
- Un fichier PDF qui présente les réponses aux questions en donnant les résultats et en expliquant comment ces résultats sont obtenus.

Les projets sont individuels.

Nous considérons un univers d'investissement de 5 émetteurs ou entreprises. Dans la table ci-dessous, nous reportons les émissions carbone $\mathcal{CE}_{i,j}$ de l'entreprise i pour le scope j et leur revenu Y_i . Nous indiquons aussi dans la dernière ligne si l'entreprise appartient au secteur \mathcal{S}_1 ou \mathcal{S}_2 :

Entreprise	#1	#2	#3	#4	#5	#6	#7	#8
$\mathcal{CE}_{i,1}$ (en ktCO ₂ e)	75	5000	720	50	2500	25	30 000	5
$\mathcal{CE}_{i,2}$ (en ktCO ₂ e)	75	5000	1030	350	4500	5	2000	64
$\mathcal{CE}_{i,3}$ (en ktCO ₂ e)	200	500	520	850	8000	50	200	146
Y_i (en \$ bn)	300	-328	-125	100	200	$10\bar{2}$	107	$-\frac{1}{25}$
Secteur	$\bar{\mathcal{S}}_1$	\mathcal{S}_2	\mathcal{S}_1	$\bar{\mathcal{S}}_1$	$^ ar{\mathcal{S}}_2^-$	$\bar{\mathcal{S}}_1$	$ar{\mathcal{S}}_2$	\mathcal{S}_2

Nous supposons que la volatilité des rendements des actions de ces entreprises est respectivement égale à 12%, 21%, 23%, 19%, 20%, 33%, 43% and 19%. La matrice de corrélation entre les rendements de ces actions est égale à:

$$\rho = \begin{pmatrix} 100\% \\ 80\% & 100\% \\ 70\% & 75\% & 100\% \\ 60\% & 65\% & 80\% & 100\% \\ 70\% & 50\% & 70\% & 85\% & 100\% \\ 50\% & 60\% & 70\% & 80\% & 60\% & 100\% \\ 70\% & 50\% & 70\% & 75\% & 80\% & 50\% & 100\% \\ 70\% & 75\% & 80\% & 85\% & 75\% & 80\% & 70\% & 100\% \end{pmatrix}$$

Le porte feuille de référence (ou benchmark) b de cet univers d'investissement est défini par le vecteur d'allocation suivant:

$$b = (20\%, 17\%, 17\%, 13\%, 11\%, 10\%, 6\%, 6\%)$$

Dans ce qui suit, nous considérons uniquement des portefeuilles long-only.

- 1. Nous voulons calculer l'intensité carbone du portefeuille de référence.
 - (a) Déduire les intensités carbone $\mathcal{CI}_{i,1+2}$ de chaque entreprise i pour les émissions scope 1+2.
 - (b) Calculer l'intensité carbone pondéré (ou WACI) du benchmark.
 - (c) Même question si on s'intéresse au scope 1 + 2 + 3.
- 2. Nous voulons gérer un portefeuille actions basé sur l'univers d'investissement précédent et réduire la mesure **WACI** du benchmark par un taux de réduction \mathcal{R} .
 - (a) Calculer la matrice de covariance Σ .
 - (b) Écrire le problème d'optimisation si l'objectif est de minimiser le risque d'erreur de réplication (tracking error) sous la contrainte de réduction de l'intensité carbone.
 - (c) Donner la formulation QP (quadratic programming) de ce problème d'optimisation.
 - (d) \mathcal{R} est égal à 20%. Trouver le portefeuille optimal si nous ciblons les scopes 1+2. Quelle est la volatilité de l'erreur de réplication ?
 - (e) Méme question si \mathcal{R} est égal à 30%, 50%, et 70%.
- 3. Nous voulons gérer un portefeuille actions basé sur l'univers d'investissement précédent, réduire la mesure **WACI** du benchmark par un taux de réduction \mathcal{R} et être secteur neutre¹ (sector neutral).
 - (a) Écrire la contrainte secteur neutre sous forme matricielle.
 - (b) Écrire le problème d'optimisation correspondant si l'objectif est de minimiser le risque d'erreur de réplication, de réduire l'intensité carbone et d'imposer la neutralité sectorielle du porte-feuille.
 - (c) Donner la formulation QP de ce problème d'optimisation.
 - (d) \mathcal{R} est égal à 20%. Trouver le porte feuille optimal si nous ciblons les scopes 1+2+3. Quelle est la volatilité de l'erre ur de réplication ?
 - (e) Méme question si \mathcal{R} est égal é 30%, 50%, et 70%.

 $^{^1}$ Cela veut dire que les poids des secteurs \mathcal{S}_1 et \mathcal{S}_2 du portefeuille doivent être égaux aux poids dans le benchmark.