40/Questão 1 (1,0): Considere o conjunto $S=\{\mathbf{v_1},\mathbf{v_2},\mathbf{v_3}\},$ onde $\mathbf{v_1}=(-5,-10,2,-6,10),$ $\mathbf{v_2}=(-4,-8,-4,12,-8),$ $\mathbf{v_3}=(3,6,4,-12,5)$ e a matriz $\mathbf{A} = \begin{bmatrix} -5 & -10 & 2 & -6 & 10 \\ -4 & -8 & -4 & 12 & -8 \\ 3 & 6 & 4 & -12 & 5 \end{bmatrix}$ $oldsymbol{0_t}oldsymbol{1}_{(a)}$ Seja $oldsymbol{B}=(b_{ij})$ a forma escalonada reduzida por linhas da matriz $oldsymbol{A}$. Determine as $b_{12} = 2$ b24 = -3 0,4 (b) Seja $T:\mathbb{R}^5 \to \mathbb{R}^3$ definida por $T(\mathbf{v})=\mathbf{A}\mathbf{v}$. Encontre uma base para as soluções de $T(\mathbf{v})=\mathbf{0}$. Null Space (A) B = { (0) (2) (0) } 0,4 (c) Marque a opção correta: $\slash\hspace{-0.4em} \sum S$ é um conjunto LI. \square S é um conjunto LD. Com base na opção marcada, faça: Se S for LI, considere o vetor $\mathbf{v}=(-78,-156,-44,132,-28)$. Determine as constantes $a_1,\ a_2$ e a_3 tais que $\mathbf{v}=a_1\mathbf{v}_1+a_2\mathbf{v}_2+a_3\mathbf{v}_3$. $a_1 = _{-}$ 6 $a_2 =$ _ **G** Se S for LD, encontre as constantes a_1 e a_2 tais que $\mathbf{v}_3=a_1\mathbf{v}_1+a_2\mathbf{v}_2.$

0/4/ Questão 2 (0,8):

Considere as matrizes

$$\mathbf{A} = \begin{pmatrix} -2 & 9 & 18 & -25 \\ -3 & 7 & 9 & -29 \\ 9 & 6 & 20 & -9 \\ 10 & -2 & 6 & 27 \end{pmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

As componentes de um vetor $\mathbf{v}=(v_1,v_2,v_3,v_4)$ tal que $\mathbf{A}\mathbf{v}=\mathbf{B}\mathbf{v}$ são

04 (b) Marque somente as opções corretas.

O conjunto de vetores ${\bf v}$ que satisfazem a condição do item (a) formam

- Xuma reta em R4.
- \Box um subespaço de \mathbb{R}^3 de dimensão 3.
- □ um plano em R⁴.
- \bigvee um subespaço de \mathbb{R}^4 de dimensão 1.
- \square um subespaço de \mathbb{R}^2 de dimensão 1.
- □ um plano em ℝ³.
- \square uma reta em \mathbb{R}^3 .
- □ o próprio ℝ⁴.
- \Box um subespaço de \mathbb{R}^4 de dimensão 2.
- □ um subespaço de ℝ⁴ de dimensão 3.

Questão 3 (1,2):

Seja Tuma transformação matricial definida por $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ tal que

$$T \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix} \qquad \qquad T \begin{pmatrix} 2 \\ 5 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 10 \\ -2 \\ 2 \end{pmatrix}$$

$$T\begin{pmatrix} 2\\5\\-1\\1 \end{pmatrix} = \begin{pmatrix} 4\\10\\-2\\2 \end{pmatrix}$$

$$T \begin{pmatrix} 0 \\ -1 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 2 \\ 10 \end{pmatrix} \qquad T \begin{pmatrix} 0 \\ 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 6 \\ 0 \end{pmatrix}$$

$$T \begin{pmatrix} 0 \\ 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 6 \\ 0 \end{pmatrix}$$

0,5 (a) Na lista a seguir, marque somente os vetores que são autovetores da matriz A

$$\Box$$
 (0,0,0,3)

$$(10, -20, 0, 30)$$

$$\Box$$
 (0, 1, 2, 0)

$$(0,1,-2,0)$$

$$(0, -2, 2, 10)$$

$$\lambda_1 = 1$$
 $\lambda_2 = 1/2$ $\lambda_3 = 1/2$ $\lambda_4 = -1/3$

$$\lambda_3 = \frac{1}{2}$$

$$a_{11} = 1$$
 $a_{23} = 0$ $a_{44} = -\frac{1}{2}$

Não aproxime os resultados. Se necessário, escreva na forma de fração.