Introduction to Proteomics Analysis and Databases

Jon Ambler: jon@ambler.co.za

Nicky Mulder: nicola.mulder@uct.ac.za

What is Proteomics?

- Large-scale study of proteins to determine their function
- Proteome is protein complement of the genome
- Includes the study of:
 - Protein structure and function
 - Protein-protein interactions
 - Protein expression
 - Protein localisation
 - Protein modifications
 - Etc.

Proteomics studies

- Primary structure (sequence)
 - ...YSFVATAER...
- Secondary structure (structural elements)

- Tertiairy structure (3D shape)

- Modifications (dynamic, function) phosphorylation
- Processing (targetting, activation)

 trypsin

 platelet activity

Mass spectrometry

Xray, NMR

Mass spectrometry

Localisation studies

Determine function at:

trypsin

platelet activity

Physical interactions

- Experiments to identify physical interactions between DNA and proteins (for example TFs) or between two proteins:
 - Yeast two hybrid
 - Protein arrays

Protein-protein interaction databases

- Protein-protein interaction databases store pairwise interactions or complexes
 - IntAct
 - DIP (Database of Interacting Proteins)
 - BIND (Biomolecular Interaction Network Database)
 - STRING

Expression

- Differences in protein quantity between samples
- Timing
 - Is it always expressed?
 - Only expressed under certain conditions?
- Enzyme kinetics
 - Is it a rate limiting protein?
- Protein turnover rate

Localisation

- Relates to function
- Can be inferred by looking at signal sequence if present
- Determined experimentally from labelling and imaging techniques
- Co-localised proteins may share functional relationships
 - Not always case, e.g. in cytoplasm
- Localisation can change with environment

Modifications

- Various modifications
- Are mostly not "visible" at sequence level
- Have various effects on proteomic analysis
 - Phosphorylation, glycosylation, ubiquitination, etc...

Proteomics workflow

Wet lab

In silico

Isolation of tissue, growing isolates

Based on properties of the proteins (size, charge, etc...) 2-D PAGE, HPLC, ICAT, etc.

Dependant on seperation method

Mass spectrometry

Protein seperation

Protein seperation

2-D PAGE

- Image capture and precessing
 - Removing background noise
 - Thresholding
 - Identification of centroids
- Image comparison:
 - Measuring intensities
 - Finding difference between gels

- Image capture and precessing
 - Removing background noise
 - Thresholding
 - Identification of centroids
- Image comparison:
 - Measuring intensities
 - Finding difference between gels

- Image capture and precessing
 - Removing background noise
 - Thresholding
 - Identification of centroids
- Image comparison:
 - Measuring intensities
 - Finding difference between gels

- Image capture and precessing
 - Removing background noise
 - Thresholding
 - · Identification of centroids
- Image comparison:
 - Measuring intensities
 - Finding difference between gels

0	0	0	0	0	0	0	0
0	0	0	0	3	0	0	0
0	0	0	2	0	1	2	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	2	0	0
0	0	0	0	1	0	0	0
0	0	3	0	0	0	0	0
0	0	0	0	0	3	0	0
0	0	0	0	0	0	0	0

- Image capture and precessing
 - Removing background noise
 - Thresholding
 - Identification of centroids
- Image comparison:
 - Measuring intensities
 - Finding difference between gels

0	0	0	0	0	0	0	0
0	0	0	0	3	0	0	0
0	0	0	2	0	1	2	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
			0				
0	0	0	0	1	0	0	0
0	0	3	0	0	0	0	0
0	0	0	0	0	3	0	0
0	0	0	0	0	0	0	0

Sample 2

- Challenges:
 - Some proteins can't be detected
 - Low abundance
 - Highly charged (run off gel)
 - Imperfect separation –multiple proteins in a spot
 - Reproducibility (Replicates needed ideally)

Sample 1

0	0	0	0	0	0	0	0
0	0	0	0	3	0	0	0
0	0	0	2	0	1	2	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	2	0	0
0	0	0	0	1	0	0	0
0	0	3	0	0	0	0	0
0	0	0	0	0	3	0	0
0	0	0	0	0	0	0	0

Sample 2

Mass Spectrometry (MS)

Mass Spectrometry (MS)

Protein identification with Mass Spectrometry

Problems with mass spec ID

- Protein samples often contain a mixture of proteins
- Digestion/fragmentation isn't always complete
- Not all proteins get ionized
- Background noise in spectra
- Proteins can contain modifications, which will change mass
 - (Phosphorylation, glycosylation, ubiquitination, etc...)

Solving problems –Tandem MS

- Two rounds of mass spec
- Fragment peptides and obtain spectrum
- Select peak you want then fragment this again
- Able to better separate peptides/proteins

Tandem Mass Spectrometry (MS/MS)

Tandem Mass Spectrometry (MS/MS)

Tandem Mass Spectrometry (MS/MS)

(New spectra produced) compare with theoretical peptide spectra; ID = best similarity

In summary:

In addition:

- Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)
- LASER = Light Amplification by Stimulated Emission of Radiation

Data analysis of MS

- Pre-processing
 - Noise reduction
 - Charge deconvolution
 - One peptide may have multiple charge states
 - Peak picking
- Spectrum filtering and clustering
- Protein identification
- Pathway analysis
- Enrichment analysis

Pre-processing: noise reduction

Pre-processing: peak picking

 The process of extracting this information, that means the conversion of the "raw" ion count data acquired by the mass spectrometer into peak lists for further processing

Comparative proteomics

- Quantification of protein differential expression:
 - Isotope-coded affinity tags (ICAT)
 - Label-free quantification
 - By spectral counting

Nature Reviews | Molecular Cell Biology

Comparative proteomics

- Quantification of protein differential expression:
 - Isotope-coded affinity tags (ICAT)
 - Label-free quantification
 - By spectral counting

Comparative proteomics

- Quantification of protein differential expression:
 - Isotope-coded affinity tags (ICAT)
 - Label-free quantification
 - By spectral counting

Protein ID

- Protein identification through mass spectrometry can be done in many ways:
 - Peptide Mass Fingerprinting
 - Tandem MS
 - Peptide Fragment Fingerprinting
- Summarised as:
 - Fragment
 - Generate spectra
 - Compare to database

Protein identification from Tandem MS spectra

- Compare to peptide spectra from databases
 - Use existing DB
 - NCBI
 - EMBL UniProt
 - Create your own
 - In silico predicted spectra
- Sequence databases differ
 - Content
 - Redundant / non-redundant

DB

Query peptide

FVA

- Compare to peptide spectra from databases
 - Use existing DB
 - NCBI
 - EMBL UniProt
 - Create your own
 - In silico predicted spectra
- Sequence databases differ
 - Content
 - Redundant / non-redundant

- Compare to peptide spectra from databases
 - Use existing DB
 - NCBI
 - EMBL UniProt
 - Create your own
 - In silico predicted spectra
- Sequence databases differ
 - Content
 - Redundant / non-redundant

- Compare to peptide spectra from databases
 - Use existing DB
 - NCBI
 - EMBL UniProt
 - Create your own
 - In silico predicted spectra
- Sequence databases differ
 - Content
 - Redundant non-redundant

- Compare to peptide spectra from databases
 - Use existing DB
 - NCBI
 - EMBL UniProt
 - Create your own
 - In silico predicted spectra
- Sequence databases differ
 - Content
 - Redundant non-redundant

Query peptide

FVA?

Peptide Fragment Fingerprinting (PFF)

- Identification of a protein based on the peptide fragmentation pattern after enzymatic digestion
- Assumptions:
 - All peaks in spectrum are from the same protein
 - The protein is in the same form as it is in the database
 - Protein is completely digested
 - All pieces produce a signal

Peptide Fragment Fingerprinting (PFF)

• Sequence comparison

Peptide Fragment Fingerprinting (PFF)

Software

- MASCOT (http://www.matrixscience.com)
 - Predicts threshold score that needs to be passed
 - Provides rank, score and threshold
- SEQUEST (http://fields.scripps.edu/sequest)
 - User decides on threshold
 - Provides rank and score
- XTandem (http://www.thegpm.org/TANDEM)

Problems with peptide ID

- Does not give you the actual sequence
- Problematic when using an unsequenced genome
- Ambiguity with protein families
- False positive and false negative matches

Potential solutions

- Combining search algorithms
 - Diff programs have different strengths
 - All give some Fs and Ns
 - Run a combination of search engines then:
 - Union of results –extends identifications –fewer Ns
 - Intersection of results –stricter set of results –fewer Fs
 - What is your research question?

Validation: Peptide- and ProteinProphet

- Validation tools:
 - PeptideProphet & ProteinProphet
 - Calculate the probability the ID is correct
- Use of decoy databases:
 - Three main types: reversed, shuffled and randomised
 - Use to calculate probability of identifications and FP rate
 - Reversed databases reverse all sequences
 - e.g. RKLYWSML -> LMSWYLKR

Types of identification

Spectral comparison

Sequence comparison

Sequencing with mass spec

Use known weights of amino acids

Sequencing with mass spec

From: Tabb et al., Anal. Chem., 2003

Summary

- Proteomics allows:
 - Identification of proteins
 - Comparison of protein levels between samples
- Requires:
 - Careful choice of databases
 - Careful selection of parameters
 - Selection of the right technique that will allow you to answer the research question