

PCT

From the INTERNATIONAL BUREAU To:

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

TOHDOH, Naoki et al

Assistant Commissioner for Patents
United States Patent and Trademark

Office Box PCT

Washington, D.C.20231 ETATS-UNIS D'AMERIQUE

Date of mailing (day/month/year) 25 April 2000 (25.04.00)	in its capacity as elected Office
International application No. PCT/JP99/05631	Applicant's or agent's file reference 66156209
International filing date (day/month/year) 13 October 1999 (13.10.99)	Priority date (day/month/year) 13 October 1998 (13.10.98)
Applicant	

1.	The designated Office is hereby notified of its election made: X in the demand filed with the International Preliminary Examining Authority on:
	30 March 2000 (30.03.00)
	in a notice effecting later election filed with the International Bureau on:
2.	The election X was
	was not
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, ch min des Col mbettes 1211 G neva 20, Switzerland **Authorized officer**

Y. KUWAHARA

Telephone No.: (41-22) 338.83.38

Form PCT/IR/331 (July 1003)

特 許 協 力 条 約

 $P \ C \ T$

国際予備審査報告

(法第12条、法施行規則第56条) [PCT36条及びPCT規則70]

出願人又は代理人 の書類記号 66156209	今後の手続きについては、国際予備審査報告の送付通知(様式PCT/ IPEA/416)を参照すること。										
国際出願番号 PCT/JP99/05631	国際出願日 (日.月.年) 13.10.99 優 先日 (日.月.年) 13.10.98										
国際特許分類(IPC)Int. Cl ⁷ C12N15/12, C07K14/47, C12N5/10, G01N33/53, C12Q1/68, C07K16/18//C12P21/02, C12P2 A61K38/16, A61K48/00, A61P35/00, A61P25/28											
出願人(氏名又は名称)											
1. 国際予備審査機関が作成したこの国	国際予備審査報告を法施行規則第57条(PCT36条)の規定に従い送付する。										
2. この国際予備審査報告は、この表紀	Hを含めて全部で3 ページからなる。										
この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び/又はこの国際予備審査機関に対してした訂正を含む明細書、請求の範囲及び/又は図面も添付されている。 (PCT規則70.16及びPCT実施細則第607号参照) この附属書類は、全部で ページである。											
3. この国際予備審査報告は、次の内容	を含む。										
 I × 国際予備審査報告の基礎											
Ⅱ □ 優先権											
Ⅲ ∭ 新規性、進歩性又は産業	上の利用可能性についての国際予備審査報告の不作成										
IV 開の単一性の欠如											
V × PCT35条(2)に規定す の文献及び説明 VI ある種の引用文献	- - る新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるため										
│ │ VII │ 国際出願の不備											
VII 国際出願に対する意見											
国際予備審査の請求書を受理した日 30.03.00	国際予備審査報告を作成した日 08.12.00										
名称及びあて先 日本国特許庁(IPEA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番	特許庁審査官(権限のある職員) 本間 夏子 第3号 電話番号 03-3581-1101 内線 3488										

国際出願番号	CT	/ I	P 9	9/	'n	5	6	3	٠

1.	国際予備審査	報告の基礎			
1.	この国際予備 応答するため PCT規則70	に提出された差し替え月	身類に基づいて作成さ 月紙は、この報告書に	れた。 (法第6条 (PCT おいて「出願時」とし、本報	14条)の規定に基づく命令に 報告書には添付しない。
. 1	🗵 出願時の国	際出願書類			
	明細書明細書	第 第 	ページ、 ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書とま	キに提出されたもの 対の書簡と共に提出されたもの
[請求の範囲 請求の範囲 請求の範囲 請求の範囲	第	項、 項、 項、	出願時に提出されたもの PCT19条の規定に基っ 国際予備審査の請求書とも 作	_
(図面 図面 図面	第 第 第	ページ/図、 ページ/図、 ページ/図、	出願時に提出されたもの 国際予備審査の請求書とも	
(明細書の配	列表の部分 第 列表の部分 第 列表の部分 第	ページ、 ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書とま	tに提出されたもの けの書簡と共に提出されたもの
2.				の国際出願の言語である。	
3.	□ 国際調査 □ PCT規 □ 国際予備		 C T規則23.1(b)にい 公開の言語 た P C T規則55.2また		
J.	□ このの国際にいるの国際にいるの国験をにいる。 出願 願後にいる 出願 願をにいる 出願 ののの事をにいる。 はいる	送出願に含まれる書面に、 送出願と共に提出された に、この国際予備審査(ご に、この国際予備審査(ご 提出した書面による配列 があった	よる配列表 フレキシブルディスク または調査)機関に提 または調査)機関に提 列表が出願時における	による配列表 出された書面による配列表 出されたフレキシブルディ 国際出願の開示の範囲を超	
4. [補正により、 別 明細書 別 請求の範囲 図面	下記の書類が削除された 第 第 図面の第	ページ 項	ジ /図	·
5.[れるので、そ	備審査報告は、補充欄に その補正がされなかった ける判断の際に考慮しな	:ものとして作成した。	(PCT規則70.2(c) この	3を越えてされたものと認めら 補正を含む差し替え用紙は上

v.	新規性、進歩性又は産業上の利用可能 文献及び説明	性性についての法第12条	(PCT35条(2)) に定める見解、	それを裏付ける
1.	見解			
	新規性(N)	請求の範囲 _ 請求の範囲 _	1 - 3 2	有 無
	進歩性(IS)	請求の範囲 請求の範囲	1 - 3 2	
	産業上の利用可能性 (IA)	請求の範囲 請求の範囲	1 - 3 2	有 無

2. 文献及び説明 (PCT規則70.7)

文献 1:DNA Res. (1994) Vol. 1 No. 5 p. 223-229 文献 2:Nature (1992) Vol. 357 No. 6373 p. 47-52

請求の範囲 $1\sim32$ に記載された発明は、国際調査報告で引用された文献 $1\sim2$ に対して進歩性を有する。文献 $1\sim2$ には癌細胞に対する増殖阻害活性を有する新規タンパク質WAR-1が記載されておらず、しかもその点は文献 $1\sim2$ から当業者といえども容易に想到し得ないものである。

P

国際調査報告

(法8条、法施行規則第40、41条) (PCT18条、PCT規則43、44)

出願人又は代理人 の書類記号 66156209													
国際出願番号 PCT/JP99/05631	国際出願日 (日.月.年) - 13.10.99	優先日 (日.月.年) 13.10.98											
出願人(氏名又は名称) 住友製薬株式会社													
	国際調査機関が作成したこの国際調査報告を法施行規則第41条(PCT18条)の規定に従い出願人に送付する。 この写しは国際事務局にも送付される。												
この国際調査報告は、全部で 2	ページである。	·											
 この調査報告に引用された先行技術文献の写しも添付されている。													
1. 国際調査報告の基礎 a. 言語は、下記に示す場合を除くほか、この国際出願がされたものに基づき国際調査を行った。 □ この国際調査機関に提出された国際出願の翻訳文に基づき国際調査を行った。													
b. この国際出願は、ヌクレオチ この国際出願に含まれる書	ド又はアミノ酸配列を含んでおり、次の 面による配列表	配列表に基づき国際調査を行った。											
区 この国際出願と共に提出さ	れたフレキシブルディスクによる配列表	ŧ											
□ 出願後に、この国際調査機	関に提出された書面による配列表												
	関に提出されたフレキシブルディスクに る配列表が出願時における国際出願の開	よる配列表 現示の範囲を超える事項を含まない旨の陳述											
	た配列とフレキシブルディスクによる配	2列表に記録した配列が同一である旨の陳述											
2. 請求の範囲の一部の調査	ができない(第I欄参照)。												
3. ② 発明の単一性が欠如してい	いる(第Ⅱ欄参照)。												
4. 発明の名称は 🗵 出	類人が提出したものを承認する。												
□ 次(こ示すように国際調査機関が作成した。												
_													
5. 要約は 🗵 出	頭人が提出したものを承認する。												
国		第47条(PCT規則38.2(b))の規定により 国際調査報告の発送の日から1カ月以内にこ きる。											
6. 要約書とともに公表される図は 第図とする。 □ 出		⊠ なし											
二 出	願人は図を示さなかった。												
本	図は発明の特徴を一層よく表している。												

- 発明の属する分野の分類(国際特許分類(IPC))
- Int. Cl'C12N15/12, C07K14/47, C12N5/10, G01N33/53, C12Q1/68, C07K16/18//C12P21/02, C12P21/08, A61K38/16, A61K48/00, A61P35/00, A61P25/28

国際出願

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1'C12N15/12, C07K14/47, C12N5/10, G01N33/53, C12Q1/68, C07K16/18, C12P21/02, C12P21/08, A61K38/16, A61K48/00, A61P35/00, A61P25/28

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) SwissProt/PIR/GeneSeq, Genebank/EMBL/DDBJ/GeneSeq, WPI(DIALOG), BIOSIS (DIALOG), REGISTRY(STN)

C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Α , .	Nobuo Nomura et al. "Prediction of the Coding Sequences of Unidentified Human Genes. II. The Coding Sequences of 40 New Genes (KIAA0041-KIAA0080) Deduced by Analysis of cDNA Clones from Human Cell Line KG-1"DNA Res. (1994) Vol. 1, No. 5, p. 223-229	1-32
A	Dirk Gorlich et al. "A protein of the endoplasmic reticulum involved early in polypeptide translocation"Nature(1992) Vol. 357, NO. 6373, p. 47-52	1-32
· ·		

│ │ C欄の続きにも文献が列挙されている。

| パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願目前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告の発送日 国際調査を完了した日 25,01,00 13.01.00 4N | 9637 特許庁審査官(権限のある職員) 国際調査機関の名称及びあて先 新見 浩一 日本国特許庁 (ISA/JP) 郵便番号100-8915 電話番号 03-3581-1101 内線 3488 東京都千代田区霞が関三丁目4番3号

明 細 書

新規なタンパク質WAR-1及びその遺伝子

技術分野

5

10

15

20

25

本発明は、WAR-1と称される新規なタンパク質およびその遺伝子に関する。 さらに詳しくは、癌細胞に対する増殖阻害活性を有する新規なタンパク質WAR -1、該WAR-1をコードする遺伝子、前記WAR-1に対する抗体、あるい はこれらの物質の、診断及び治療における用途などに関する。

さらに、本発明は、脳において特異的な発現が認められる小胞体膜タンパク質であるWAR-1ポリペプチドまたはそれをコードする遺伝子を有効成分とする神経栄養因子分泌促進剤に関する。

背景技術

近年、制癌剤の開発は、細胞の複製・遺伝子の転写や翻訳というセントラルドグマをターゲットにしたものをはじめ、シグナル伝達、分化、細胞周期、代謝、アポトーシス、テロメレース等に着目したものなど、様々な方面からの薬剤の開発が進められている。しかし、未だ決定的な薬剤が見出されたとは言えない状況にあり、新たなメカニズムに基く制癌剤の創生が望まれている。

ところで、シグナルペプチドを有するタンパク質のmRNAは、シグナル配列が合成された後に小胞体膜を透過し、その後小胞体内で翻訳の起こることが知られている。この小胞体膜輸送(小胞体膜透過)に関与する因子として、TRAMと称する因子の存在が知られている(Görlich et al., Nature, 357, 47-52, 1992)。

通常、小胞体の膜を輸送されるタンパク質のmRNAは、細胞質へ輸送後リボ ゾームと結合し、翻訳が開始され、膜透過に必要なシグナル配列がシグナル配列 認識タンパク質に結合する。その後、複合体はシグナル配列認識タンパク質レセ プターに結合し、小胞体膜上に固定される。次いで、シグナル配列認識タンパク 質から解離した翻訳タンパク質とリボゾーム複合体は、Sec61pと結合し、 その際、小胞体膜上に存在するTRAMがシグナル配列を認識して、複合体に会 合する。その後、翻訳されたタンパク質はSec61pを介して小胞体のルーメ ン側に輸送されると考えられている(Jungnickel et al., Cell, 82, 261-270, 1995)。以上のような小胞体膜輸送のメカニズムには例外もあり、ある種のシグナル配列を有するタンパク質の小胞体膜輸送には、TRAMは必ずしも必要ではないことも知られている(Voigt et al., J. Cell Biol., 134, 25-35, 1996)。このような小胞体膜輸送に関与するTRAMに対し、そのアミノ酸配列および塩基配列に相同性(ホモロジー)を有する因子が存在しているとの報告は、急性骨髄性白血病細胞で見出されたKIAAOO57遺伝子(Nomura et al., DNA Res., 1, 223-229, 1994)以外なされていない。また、それらの因子と前記癌との関連などについても、何ら報告はなされていない。

10 発明の開示

5

15

20

25

本発明は、新規なタンパク質WAR-1およびその遺伝子を提供することを目的とする。すなわち本発明は、構造的にはTRAMと高い相同性を有しており、機能的には癌細胞に対する増殖阻害活性を有する新規なタンパク質であるWAR-1、該WAR-1をコードする遺伝子、前記WAR-1に対する抗体、あるいはこれらの物質の、診断及び治療における用途を提供することを目的とする。

また、本発明の目的は、小胞体膜タンパク質であるWAR-1ポリペプチドまたはその一部、またはそれらをコードする遺伝子を有効成分とする神経栄養因子分泌促進剤を提供することである。

本発明者らは、種々の新規なcDNAのクローニングを目的として、幼若ラットcDNAライブラリーからランダムにクローンの選択を行っていた。その過程において、シグナルペプチドを有するタンパク質の小胞体膜輸送(小胞体膜透過)に関与するTRAM(Görlich et al., Nature, 357, 47-52, 1992)やKIAAO057(Nomura et al., DNA Res., 1, 223-229, 1994)と高い相同性を有する新規なタンパク質をコードする遺伝子のクローニングに成功した。本発明者らはこの新規なタンパク質をWAR-1と命名した。該WAR-1は前記のように構造上、TRAMと相同性を有する因子であったが、機能については皆目不明であった。本発明者らはさらに検討を続けた結果、該WAR-1遺伝子を癌細胞内で発現させることにより癌細胞の増殖が阻害されること、すなわち本発明のWAR-1は癌細胞の増殖阻害活性を有するものであることが明らかとなった。従っ

10

15

20

25

て本発明のWAR-1、又は該WAR-1をコードする遺伝子を有効成分として 含有する医薬は、新規な抗癌剤として利用できるものと考えられる。ちなみに本 発明のWAR-1は、悪性度の高い肉腫の癌の増殖をも抑制するものであること から、臨床上の有用性が期待される。

さらに、WAR-1遺伝子の組織及び種々の癌細胞での発現を検討した結果、 該WAR-1遺伝子は、肝臓、肺、リンパ系組織(脾臓、胸腺、白血球)などの 組織においては通常発現が認められないが、癌化することによって特異的に発現 してくることが明らかとなった。従って本発明のWAR-1遺伝子の部分断片、 又は該WAR-1に対する抗体などが、これらの癌の診断に利用できるものと考 えられる。

また、本発明者らは、分泌タンパク質の小胞体への膜輸送に関わるタンパク質 WAR-1の遺伝子が成熟したラット脳で過剰に発現していることに着目し、当 該遺伝子のグリア細胞における発現上昇により神経突起伸展作用を有するタンパク質の分泌が増大していることを示す事象を捉えた。 さらには、該遺伝子の発現増加により、生体内のグリア細胞または神経細胞自身が実際に産生している複数の神経栄養因子の分泌が促進されることを見出した。

より詳細には、本発明者らは、配列番号:1に記載されたラット型WAR-1 (以下、本明細書においてはrWAR-1と略すことがある) 遺伝子が脳のみならず網膜でも発現していることを明らかとし、また、配列番号:2に記載されたヒト型WAR-1 (以下、本明細書においてはhWAR-1と略すことがある) 遺伝子が脳全体に発現していることに加えて脊髄でも発現が認められることから、中枢神経領域のみならず末梢神経領域においても特異的に発現していることを明らかにした。さらに、hWAR-1遺伝子を含む組換えアデノウイルスベクターを感染させたヒトグリア芽細胞腫株であるT98G細胞の培養上清中に、ラット副腎褐色細胞腫由来のPC12細胞に対して神経突起伸長作用を有する神経栄養因子が増加していることを見出した。

本発明は、以上のような知見に基づき完成するに至ったものである。 即ち本発明は、

(1) 以下の(a)又は(b)のタンパク質をコードするDNA、

- (a) 配列番号: 2又は配列番号: 4に記載のアミノ酸配列からなるタンパク質
- (b)配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは複数のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ癌細胞の増殖阻害活性を有するタンパク質
- 5 (2) 以下の(c)又は(d)のDNA、
 - (c) 配列番号:1又は配列番号:3に記載の塩基配列からなるDNA
 - (d)前記(c)のDNAとストリンジェントな条件下でハイブリダイズし、かつ癌細胞の増殖阻害活性を有するタンパク質をコードするDNA
- (3) 配列番号:1又は配列番号:3に記載のDNAの全部又は一部をプロー 7に用いて染色体DNAライブラリーからクローニングされる、前記(2)記載 のDNA、
 - (4) プロモーター領域を含むことを特徴とする、前記(3)記載のDNA、
 - (5) 受託番号FERM BP-6910、又は受託番号FERM BP-6911で表示される微生物が有する、前記(1)又は(2)記載のDNA、
- 15 (6) 前記(1)~(5) いずれか記載のDNAを発現することによって得られるタンパク質、
 - (7) 前記(1)~(5) いずれか記載のDNAを含有する組換え発現ベクター、
- (8) 前記(1)~(5) いずれか記載のDNAを含有する組換えアデノウイ20 ルスベクター、
 - (9) 前記(7)又は(8)記載の組換え発現ベクターによって形質転換された形質転換細胞、
 - (10) 前記(1)~(5)いずれか記載のDNAの全部又は一部よりなる1本鎖又は2本鎖DNAであって、かつ配列番号:1又は配列番号:3に記載の塩 基配列よりなるDNAの発現を特異的に検出し得る、ハイブリダイゼーションプロープ又はPCRプライマー用のDNA、
 - (11) 以下の配列よりなる、前記(10)記載のDNA、
 - 5'側プライマー配列;5'-CACCTGGCTGGATCGCAGAATCGG-3'(配列番号:7)
 - 3'側プライマー配列;5'-CTCTTTCCTCTTTGGCGGACAGTC-3'(配列番号:8)

- (12) 前記(10)又は(11)記載のDNAを、ハイブリダイゼーション プローブ又はPCRプライマーとして用いることを特徴とする、配列番号:1又 は配列番号:3に記載の塩基配列よりなるDNAの発現の検出方法、
 - (13) 前記(6)記載のタンパク質に結合する抗体、
- 5 (14) 前記(13)記載の抗体を用いることを特徴とする、配列番号:2又 は配列番号:4に記載のアミノ酸配列よりなるタンパク質の発現の検出方法、
 - (15) 前記(12)又は(14)記載の検出方法よりなる、癌の診断方法、
 - (16) 前記(1) \sim (5) いずれか記載のDNA、又は前記(6) 記載のタンパク質のいずれかを有効成分として含有する医薬、
- 10 (17) 配列番号:1又は配列番号:3に記載の塩基配列よりなるDNAの発 現を増加させることを特徴とする、癌細胞増殖阻害剤、
 - (18) 前記(1)~(5)いずれか記載のDNAを有効成分とする、癌細胞 増殖阻害剤、
 - (19) アデノウイルスベクターを用いることを特徴とする、前記(18)記載の癌細胞増殖阻害剤、
 - (20) 以下の(a)又は(b)のタンパク質をコードするDNAを有効成分とする神経栄養因子分泌促進剤、
 - (a) 配列番号:2又は配列番号:4に記載のアミノ酸配列からなるタンパク質
- (b)配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは数 20 個または複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列から なり、かつ神経栄養因子の分泌促進活性を有するタンパク質
 - (21) 以下の(c)又は(d)のDNAを有効成分とする神経栄養因子分泌 促進剤、
 - (c)配列番号:1又は配列番号:3に記載の塩基配列からなるDNA
- 25 (d) 前記(c) のDNAとストリンジェントな条件下でハイブリダイズし、かつ神経栄養因子の分泌促進活性を有するタンパク質をコードするDNA
 - (22) 配列番号:1又は配列番号:3に記載のDNAの全部又は一部をプロープに用いて染色体DNAライブラリーからクローニングされるDNAを有効成分とする、前記(21)記載の神経栄養因子分泌促進剤、

15

20

25

- (23) プロモーター領域を含むことを特徴とするDNAを有効成分とする、 前記(22)記載の神経栄養因子分泌促進剤、
- (24) 受託番号FERM BP-6910、又は受託番号FERM BP-6911で表示される微生物が有するDNAを有効成分とする、前記(20)又は(21)記載の神経栄養因子分泌促進剤、
 - (25) DNAが組換え発現ベクターに含まれていることを特徴とする、前記(20) ~ (24) いずれか記載の神経栄養因子分泌促進剤、
 - (26) DNAがアデノウイルスベクターに含まれていることを特徴とする、 前記(25)記載の神経栄養因子分泌促進剤、
- 10 (27) 以下の(a) 又は(b) のタンパク質を有効成分とする神経栄養因子 分泌促進剤、
 - (a) 配列番号:2 又は配列番号:4 に記載のアミノ酸配列からなるタンパク質
 - (b)配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは数個または複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ神経栄養因子の分泌促進活性を有するタンパク質
 - (28) 以下の(c)又は(d)のDNAによってコードされるタンパク質を 有効成分とする神経栄養因子分泌促進剤、
 - (c) 配列番号:1 又は配列番号:3 に記載の塩基配列からなるDNA
 - (d) 前記(c) のDNAとストリンジェントな条件下でハイブリダイズし、かつ神経栄養因子の分泌促進活性を有するタンパク質をコードするDNA
 - (29) 受託番号FERM BP-6910、又は受託番号FERM BP-6911で表示される微生物が有するDNAによってコードされるタンパク質を有効成分とする、前記(27)又は(28)記載の神経栄養因子分泌促進剤、
 - (30) 配列番号:1又は配列番号:3に記載のDNAの発現を増強する物質 または配列番号:2又は配列番号:4に記載のアミノ酸配列からなるタンパク質 の産生を増強する物質を有効成分とする神経栄養因子分泌促進剤、
 - (31) 前記 (20) ~ (30) いずれか記載の神経栄養因子分泌促進剤を含有する神経変性疾患治療剤、ならびに
 - (32) 配列番号:1又は配列番号:3に記載の塩基配列よりなるDNAの発

10

15

25

現を増強すること、または配列番号:2又は配列番号:4に記載のアミノ酸配列 からなるタンパク質の産生を増強することを特徴とする、神経栄養因子の分泌促 進方法、に関する。

本発明の第1の態様は、新規なタンパク質WAR-1と該WAR-1をコードするDNAに関する。

本発明のDNAのうちタンパク質をコードするものとしては、新規なタンパク質WAR-1をコードするDNA、又は該WAR-1をコードするDNAに類似のDNAであって、かつ癌細胞の増殖阻害活性を有するタンパク質をコードするDNAであれば特に限定されない。具体的には、以下の1)~3)のDNAが例示される。

- 1) 配列番号: 2又は配列番号: 4に記載のアミノ酸配列からなるタンパク質をコードするDNA、あるいは配列番号: 1又は配列番号: 3に記載の塩基配列からなるDNA。
- 2) 配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは複数 のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ癌細 胞の増殖阻害活性を有するタンパク質をコードするDNA。
 - 3) 配列番号:1 又は配列番号:3 に記載の塩基配列からなる DNA とストリンジェントな条件下でハイブリダイズし、かつ癌細胞の増殖阻害活性を有するタンパク質をコードする DNA。
- 20 以下、これらのDNAにつき順次説明する。

<u>1)WAR-1をコードするDNA</u>

前記DNAのうち、「配列番号:2に記載のアミノ酸配列からなるタンパク質をコードするDNA」、「配列番号:1に記載の塩基配列からなるDNA」とは、本発明のラットWAR-1をコードするDNAである。また「配列番号:4に記載のアミノ酸配列からなるタンパク質をコードするDNA」、「配列番号:3に記載の塩基配列からなるDNA」とは、本発明のヒトWAR-1をコードするDNAである。このような、本発明のラットおよびヒトWAR-1をコードするDNAは、以下の如く寄託がなされている。

すなわち、配列番号:1に記載のラットWAR-1をコードするDNAをベク

15

10 <u>2) WAR-1の改変体又は変異体をコードするDNA</u>

前記DNAのうち、「配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは複数のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ癌細胞の増殖阻害活性を有するタンパク質をコードするDNA」とは、人為的に作製したいわゆる改変体(改変タンパク質)や、生体内に存在する変異体のうち、癌細胞の増殖阻害活性を有するタンパク質をコードするDNAを指す。

前記改変体をコードするDNAは、例えば制限酵素やヌクレアーゼ等を用いる方法、部位特異的変異導入方法(W. Ito et al., Gene, 102, 67-70 (1991))、またはPCR法(Molecular Cloning, 2nd Edt. Cold Spring Harbor

20 Laboratory Press (1989)) などによって、当業者ならば容易に作製することが できる。

> ここで、「欠失、置換及び/又は付加」されるアミノ酸残基の数は、上記部位 特異的変異導入法等の周知の方法により欠失、置換及び/又は付加できる程度の 数を指す。

25 さらに、前記の如き遺伝子工学的手法を用いずに、細胞を変異原物質に曝すことによっても、当該改変体をコードするDNAを作製することが可能である。

前記変異体をコードするDNAとは、生体内において自然に生じるものを指す。 すなわち、塩基及びアミノ酸の欠失、置換または付加は、自然界に存在する、例 えば癌のような場合や種差によっても生じることがあり、このような自然に生じ

10

15

20

25

た変異体をコードするDNAも、癌細胞の増殖阻害活性を有するタンパク質をコードするものである限り、本発明のDNAの範疇に含まれる。

前記改変等を施したDNAが癌細胞の増殖阻害活性を有するタンパク質をコードするものであるか否かは、例えば以下の方法により測定することができる。

すなわち、前記改変を施したDNA等、本発明のDNAの候補となるDNAを発現ベクターに組み込み、これをヒト由来の癌細胞株に導入する。ここで癌細胞株としては、例えばT98Gなどのヒトグリア芽細胞腫を用いることが好ましい。発現ベクターとしては、非ウイルスベクター、ウイルスベクターのいずれであっても、ヒト由来の癌細胞株において発現可能なベクターであれば特に限定されない(該発現ベクターについては後に詳述する)。該組換え発現ベクターを癌細胞株に導入し、培養した後に、細胞数や細胞の形態変化を観察する。このとき、外来DNAを組み込んでいない発現ベクターを用いて全く同じ操作を行うことにより調製された細胞をコントロールとし、比較することが重要である。コントロール細胞と比較して細胞数の減少、あるいは細胞の形態変化が観察された場合は、前記候補DNAは癌細胞の増殖阻害活性を有するタンパク質をコードするものであると判断することができる。

さらに、前記の遺伝子導入細胞において³Hで標識されたチミジンの取り込み能の低下を測定すること (Nagase et al., Int. J. Cancer, 65, 620-626, 1996) 、あるいは癌細胞を接種したヌードマウスに対して前記候補DNAを有するアデノウイルスを感染させた後に、腫瘍形成能の低下を測定すること (Cheney et al., Cancer Res., 58, 2331-2334, 1998) などによっても、癌細胞の増殖阻害活性を有するか否かを測定することができる。

- 3) WAR-1 DNAとストリンジェントな条件下でハイブリダイズするDNA 前記DNAのうち、「配列番号:1 又は配列番号:3 に記載の塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ癌細胞の増殖阻 害活性を有するタンパク質をコードするDNA」とは、例えば、
- A) 脊椎動物全てのWAR-1をコードする c DNA、又は該WAR-1の部分 タンパク質をコードする c DNA、
- B) 脊椎動物全てのWAR-1をコードする染色体DNA、

10

15

20

25

のような、配列番号:1又は配列番号:3に記載の塩基配列からなるラット又は ヒトWAR-1DNAとストリンジェントな条件下でハイブリダイズするDNA のうち、癌細胞の増殖阻害活性を有するタンパク質をコードするものを指す。

ここで、「ストリンジェント条件下でハイブリダイズするDNA」とは、例えばハイブリダイゼーション緩衝液として0.1% SDS、50%ホルムアミド、5xSSC、 $1xDenhardt試薬、<math>250\mu$ g/mlサケ精子DNAの組成の溶液を用いて、42%で一晩ハイブリダイズした後、2xSSCを用いて室温で1時間洗浄、2xSSC、0.1% SDSを用いて室温で30分間、その後0.1xSSC、0.1%SDSを用いて $50\sim65\%$ で30分洗浄するような条件下でハイブリダイズするようなDNAを指す。

前記A)のDNAは、例えば配列番号:1又は配列番号:3に記載のDNAの全部又は一部をプローブに用いたハイブリダイゼーション、あるいは配列番号:1又は配列番号:3に記載のDNAの一部をプライマーに用いたPCR等によりクローニングされるものであるが、具体的なcDNAライブラリーの作製、ハイブリダイゼーション、PCR、ポジティブコロニーの選択、塩基配列の決定等の操作はいずれも公知であり、例えばMolecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press (1989)等を参照にして行うことができる。以下に、具体的なクローニング方法の一例について記載する。

前記A)のDNAは、例えば以下の工程a)~b)を含む方法により単離することができる。

- a) 所望の種由来の組織あるいは培養細胞株より全RNAを調製し、ポリ(A) RNAを精製し、cDNAライブラリーを作製する工程。
- b) 配列番号:1又は配列番号:3に記載の塩基配列の全部又は一部よりなるプローブを調製し、該プローブを用いて前記a)で作製したcDNAライブラリーとのハイブリダイゼーション反応を行うことにより目的のDNAを単離する工程。ここで、前記a)工程における全RNAの調製は、常法に従って行えば良いが、例えばSDS、NP-40、Triton-X100等の界面活性剤もしくはフェノール存在下で細胞を処理することにより、細胞を分解する方法が挙げられる。また、ホモゲナイザー等の物理的方法によって細胞を破砕し、グアニジンチオシ

10

15

20

25

アネートで細胞を処理した後、塩化セシウム密度勾配遠心によって全RNAを沈 酸化させる、または、グアニジンチオシアネート存在下で細胞を処理した後、酸 性条件下フェノール処理(酸性グアニジンチオシアン酸ーフェノールクロロホルム法)することによって全RNAを調製する方法も挙げられる。次に上記方法のいずれかによって得られた細胞の全RNAからポリ(A)RNA(mRNA)を精製するには、オリゴ(dT)ーセルロース、ポリUを結合したポリUーセファロースなどのアフィニティーカラムを用いるか、mRNAの長さが判明している場合もしくは更にmRNAの長さに基づいて分画したい場合には、ショ糖密度勾配遠心法、アガロースゲル電気泳動、カラムによるゲルろ過法等を用いて調製することができる。上記の如くして得られたmRNAよりcDNAライブラリーを作製する方法としては、例えばmRNAを鋳型として一本鎖cDNAを合成し、次いで二本鎖cDNAを合成して適当なベクターに組み込んで宿主大腸菌に組換えベクターを導入する方法が挙げられる。ベクターとしては、プラスミド及びスファージベクターが多用される。以下、該cDNAライブラリーの作製法につき記述する。

まず、mRNAを鋳型とし、オリゴ(dT)プライマーもしくは末端に適当な配列を付加したオリゴ(dT)プライマーまたは6塩基からなるランダムプライマーを用いて、逆転写酵素(トリ骨髄芽球性白血病ウイルス;AMV由来または、マウス白血病ウイルス;MoーMLV由来)によりmRNAと相補的な一本鎖でDNAを合成する。次いで、アルカリ処理を行うことによってmRNAを分解した後、一本鎖でDNAを鋳型として逆転写酵素もしくはDNAポリメラーゼにより二本鎖でDNAを合成する。ここで二本鎖でDNAの合成は、直接RNaseH及び大腸菌DNAポリメラーゼIを働かせることによっても行い得る。その後、いずれの方法においても、S1ヌクレアーゼ、T4 DNAポリメラーゼもしくは大腸菌DNAポリメラーゼI(Klenow断片)等の酵素のいずれかを用いることによって合成された二本鎖でDNAの両末端を平滑化する。得られた平滑末端化された二本鎖でDNAは適当なベクターに挿入する為に、リンカーやアダプター等の化学合成DNAまたはdG、dC鎖をデオキシターミナルトランスフェラーゼによって付加し、末端修飾を行う。次に、適当なベクターにこの二本鎖

10

15

20

25

c DNAを組み込んだ後、大腸菌を形質転換して c DNAライブラリーを作製する。ここで、プラスミドベクターに二本鎖 c DNAを組み込み宿主大腸菌を形質 転換する場合は、このDNAを取り込むことの出来るコンピテント細胞の対数増 殖期における細胞を集め、Hanahanが詳細に報告している方法

(J. Mol. Biol., 166, 557 (1983)) に準じて形質転換を行えば良い。また、ファージベクターに二本鎖 c DNAを組み込み宿主大腸菌を形質転換させる場合は、T 4 DNAリガーゼによって連結されたDNAをインビトロパッケージングによりファージ粒子内に導入し、これを宿主大腸菌に感染させることによって形質転換を行うことができる。

次に工程 b)であるが、配列番号:1又は配列番号:3に記載の塩基配列の全部又は一部よりなるプローブを調製し、該プローブと前記で作製したcDNAライブラリーとのハイブリダイゼーション反応を行うことにより目的のDNAを単離することができる。ここでプローブは、例えば配列番号:1又は配列番号:3に記載の塩基配列の適当な部分断片をDNA合成機により合成するか、あるいはPCRにより該部分断片を増幅し、その後ニックトランスレーション法又はランダムプライムラベリング法等の常法により該DNA断片を²²Pで標識することにより作製することができる。ハイブリダイゼーション反応としては、前述の条件が挙げられる。

前記B)のDNA、すなわちWAR-1をコードする染色体DNAは、例えば配列番号:1又は配列番号:3に記載のDNAの全部又は一部、あるいは前記A)に記載のDNAの全部又は一部などをプローブに用い、所望の種由来の組織、あるいは培養細胞株から調製された染色体DNAライブラリーとのハイブリダイゼーションを行うことにより、クローニングすることができる。

ここで、染色体DNAの調製及び染色体DNAライブラリーの作製は、常法に従って行えば良い。すなわち、所望の種由来の組織もしくは培養細胞株をSDS存在下で処理し、RNase及びプロテイナーゼKで不必要なRNA及びタンパク質を分解する。その後、フェノール処理を行い、エタノール沈澱もしくは透析によって染色体DNAを精製すれば良い。得られた染色体DNAを適当な制限酵素を用いて部分的に切断するか、クローニングする断片の長さが判明している場

10

15

合には、必要な制限酵素によって完全分解させる。クローニング用のベクターに 外来遺伝子を導入する際に許容されるDNAの長さに応じて染色体DNA切断断 片を分画するためには、ショ糖密度勾配遠心、アガロースゲル電気泳動、カラム によるゲルろ過法等を用いることができる。得られた切断断片を λ ファージベク ターもしくはコスミドベクターに導入し、インビトロパッケージング後、ファー ジもしくはコスミドを用いた染色体DNAライブラリーを作製する。

WAR-1をコードする染色体DNAのクローニングを行うためには、前記のファージもしくはコスミドライブラリーを大腸菌に感染させ、WAR-1のcDNAの全部又は一部をニックトランスレーション法もしくはランダムプライムラベリング法などで™Pで標識したプローブを用い、常法(Molecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press (1989)等を参照)に従いプラークもしくはコロニー・ハイブリダイゼーションなどを行えば良い。

なお、以上のような染色体DNAには、遺伝子の発現調節に関与する、いわゆるプロモーター領域が含まれており、該プロモーター領域を含有する染色体DNAは、上記の手法により容易に取得することができる。

上記した本発明の種々のDNAを発現ベクターに組み込むことにより、本発明のDNAを含有する組換え発現ベクターを作製することができる。さらに、該組換え発現ベクターを宿主細胞に導入することにより、本発明の形質転換細胞を作製することができる。

20 該発現ベクターは、非ウイルスベクター、ウイルスベクターのいずれかを問わず、本発明のDNAが挿入でき、該DNAがコードするタンパク質の発現が可能なベクターであれば特に限定されない。ここで非ウイルスベクターとは、一般的な哺乳動物細胞発現プラスミドベクターであり、例えばpBK-CMV、pCAGGS、pcDNA3.1、pZeoSVなどが挙げられる。本発明のDNAを組み込んだ非ウイルス性発現ベクターの宿主細胞への導入法としては、リン酸ーカルシウム共沈法、リポソームを用いてDNA分子を導入する方法(リポソーム法、リポフェクチン法、リポフェクトアミン法)、エレクトロポレーション法、マイクロインジェクション法、パーティクルガンで坦体とともにDNA分子を細胞に移入する方法等が挙げられる。また宿主細胞としては、例えばHeLa、C

10

15

20

25

OS1、A549、293細胞などが挙げられる。

後者のウイルスベクターとしては、アデノウイルス及びレトロウイルス等のウイルスベクターが代表的なものである。より具体的には、例えば、無毒化したレトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス、センダイウイルス、SV40、免疫不全症ウイルス(HIV)等のDNAウイルスまたはRNAウイルスに当該タンパク質をコードする遺伝子を導入し、細胞に組換えウイルスを感染させることによって、細胞内に遺伝子を導入することが可能である。その際の宿主細胞としては、例えば293、A549、HeLa細胞などが挙げられる。

以上のような本発明の形質転換細胞を好適な条件下で培養し続けることにより、本発明のDNAからタンパク質を発現、生産することが可能である。ここで「好適な条件下」とは、その宿主細胞に適した培養用培地により、37℃、5%CO。存在下で培養するような条件を指す。

このような好適な条件下で培養した形質転換細胞より、前記本発明のタンパク質を単離し、精製することが可能である。ここで、本発明のタンパク質の粗抽出液を得る方法、また、該粗抽出液から本発明のタンパク質を精製する方法としては、例えば日本生化学会編、新生化学実験講座1、タンパク質Iー分離・精製・性質一、1990に記載された方法を用いて行うことが可能である。

以上のようにして得られた本発明のタンパク質の具体例としては、例えば配列番号:2に記載のアミノ酸配列よりなるラットWAR-1、又は配列番号:4に記載のアミノ酸配列よりなるヒトWAR-1が挙げられる。

前記本発明のタンパク質の癌細胞増殖阻害活性は、以下のようにして測定することができる。すなわち、T98Gなどの癌細胞の培養液中に本発明のタンパク質を添加する。その際、本発明のタンパク質を、あらかじめリポソームに封入したり、リピッドを結合させることにより、細胞膜への透過性を増しておく。また、タンパクのC末端に小胞体保持配列であるLys-Asp-Glu-Leu(KDEL)を付加したりすることにより、細胞質に取り込まれたタンパク質を小胞体に輸送できるようにする。このような処理を施した本発明のタンパク質を培養

10

15

20

液に添加後、数日間培養し、癌細胞の細胞数や細胞の形態変換を観察することにより、本発明のタンパク質の癌細胞増殖阻害活性を測定することができる。また、³Hで標識されたチミジンの取り込み能の低下を測定すること(Nagase et al., Int. J. Cancer, 65, 620-626, 1996)によっても、癌細胞の増殖阻害活性を測定することができる。

本発明のタンパク質をコードするDNAの全部又は一部よりなる1本鎖又は2本鎖DNAを、ハイブリダイゼーションプローブ又はPCRプライマーに用いて、生体組織、又は培養細胞株などにおけるWAR-1DNAの発現を特異的に検出することが可能である。該1本鎖又は2本鎖DNAとしては、WAR-1DNAの転写産物であるWAR-1のmRNAを選択的に検出することのできる1本鎖又は2本鎖DNAであれば、特に限定されない。

具体的な検出方法としては、以下の1)、2)の2つの手法が挙げられる。

- 1) WAR-1のmRNAを特異的に検出することのできる2本の1本鎖DNA (正鎖及び逆鎖)をPCRプライマーとして用い、被験用の組織又は培養細胞株 より得られた全RNAもしくはポリ(A)RNAを基質として、PCRにより解 析を行う手法。
- 2) WAR-1のmRNAを特異的に検出することのできる1本鎖又は2本鎖DNAを放射標識し、これをプローブとして、被験用の組織又は培養細胞株より得られた全RNAもしくはポリ(A)RNAに対してノーザンブロット解析を行う手法。
- 以上の1)及び2)の検出法は、例えばMolecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press(1989)等の基本書に基づき行うことができる。以下に具体例を示す。
- 1)のPCRの具体的な手法としては、例えば以下の方法が挙げられる。まず、WAR-1のmRNAを特異的に検出することのできるPCRプライマーを常法により合成する。次に、被験用の組織又は培養細胞株より、前述の方法にて全RNA又はポリ(A)RNAを調製し、これを鋳型として、MMTV-RT等の逆転写酵素により1本鎖DNAを調製する。その後、先のPCRプライマーを添加し、常法によりPCR反応を行う。PCR反応の条件としては、例えば95℃1

10

15

20

25

2) のノーザンブロット解析の具体的な手法としては、例えば以下の方法が挙 げられる。まず、WAR-1のmRNAを特異的に検出することのできる1本鎖 又は2本鎖DNAを放射標識し、プローブを作製する。2本鎖DNAの場合は、 例えば前記1)の手法により調製されたPCR反応物を、ニックトランスレーシ ョン法又はランダムプライムラベリング法などで『P標識することにより作製さ れる。次に、被験用の組織又は培養細胞株より、前記と同様の手法により全RN A又はポリ(A)RNAを調製し、常法によりホルムアルデヒドゲル電気泳動及 びナイロンメンブレンへのブロッティングを行う。このメンブレンと、先のプロ ープとのハイブリダイゼーションを行うことにより、WAR-1mRNAの発現 の有無を検出することができる。ハイブリダイゼーションの条件としては、2本 鎖DNAをプローブとして用いる場合、例えば45%(v/v)ホルムアミド、5 ×SSPE、2×デンハルト溶液、0.5%SDS、20μg/mlサケ精子 DNAの条件で42℃、16-24時間ハイブリダイズさせた後に、2×SS PE、0. 5%SDS中で室温、10分間2-3回洗浄し、更に65℃、2× SSPE、0.5%SDS中で20分間2-3回洗浄するような条件が挙げられ る。

前記検出方法において使用される1本鎖又は2本鎖DNAとしては、具体的に は以下のものが挙げられる。

すなわち図1に、ヒトWAR-1(hWAR-1)及びラットWAR-1(rWAR-1)の塩基配列を、小胞体膜輸送に関与する公知の因子であるヒトTRAM(hTRAM)およびヒトKIAA0057の塩基配列と比較した結果を示しているが(図中、黒枠が相同性を有する部分)、ヒトWAR-1に特異的なプロープ又はプライマー部分の選択に関しては、ヒトTRAMとヒトWAR-1の

相同性が低い領域を選択することが重要である。この際、両者のcDNAから増幅されるDNA断片を区別できるようにするため、一方の配列に一部塩基配列の欠失のある領域を増幅することが好ましい。また、両者のcDNAを特異的に認識するプライマーとして、プライマー配列全領域で相同性がないことが好ましいが、特に3、末端近傍の配列が大きく異なる方が、増幅したくないcDNAに対して伸長反応が進みにくくなるため、特異性が向上すると考えられる。さらに、3、末端の塩基が異なるように設定すればより特異的な増幅に効果的である。また、National Biosciences社のソフトウェアOligo等のプログラムによるプライマー解析も利用し得る。

10 以上のようにして選択した部分を基にして、常法により前記1)のプローブ又は前記2)のプライマーを作製することができる。

一例としては、以下の配列よりなる1本鎖DNA、又はこの1本鎖DNAをプライマーとして前記PCR反応を行うことにより増幅される2本鎖DNAなどが挙げられる。

- 15 5'側プライマー配列;5'-CACCTGGCTGGATCGCAGAATCGG-3'(配列番号:7)
 - 3'側プライマー配列:5'-CTCTTTCCTCTTTGGCGGACAGTC-3'(配列番号:8)

ここで配列番号:7は、図1のhWAR-1DNAの第823位~第846位 の正鎖部分に相当し、配列番号:8は、図1のhWAR-1DNAの第1093 位~第1116位の逆鎖部分に相当する。

20 以上のような1本鎖DNA又は2本鎖DNAを前記検出方法1)のPCRプライマー、又は前記検出方法2)のハイブリダイゼーションプローブとして用いることにより、WAR-1のDNAの特異的な発現を検出することができる。詳しくは実施例4を参照されたい。なお、このようなプライマーおよびプローブは、天然のWAR-1由来の配列のみに限定されず、WAR-1DNAの転写産物であるWAR-1のmRNAを特異的に検出することのできるDNAであれば、置換、欠失、付加などの修飾を施したものであっても良い。

以上のようなWAR-1DNAの発現検出方法の具体的な用途としては、疾患の診断目的の他、in situハイブリダイゼーションのような研究目的にも応用される。

10

15

20

25

「課題を解決する手段」において記述したように、WAR-1遺伝子は、肝臓、肺、リンパ系組織(脾臓、胸腺、白血球)などの組織においては通常発現が認められないが、これらの組織が癌化することによって、特異的に発現してくることが明らかとなった。従って、前記のようなWAR-1特異的なPCRプライマー又はハイブリダイゼーションプローブを用い、患者由来の癌組織又は癌細胞に対して前記の如きWAR-1mRNAの検出を行うことにより、癌の診断を行うことができる。

本発明において抗体とは、前記した本発明のタンパク質に結合する抗体である。 該抗体は、例えば、Antibodies; A Laboratory Manual, Lane, H, D. ら編、Cold Spring Harbor Laboratory Press(1989)、新細胞工学実験プロトコール、秀潤社 (1993) などに記載の方法により容易に作製される。すなわち、本発明のタンパク質又はその一部を用いて常法により適宜動物を免疫することにより、本発明のタンパク質に結合する抗体を作製することができる。

ここで、免疫抗原として使用される本発明のタンパク質は、前記したように、本発明のDNAを含む組換え発現ベクターを大腸菌もしくは培養細胞株に導入し、これらの形質転換体より当該ポリペプチドを大量に調製、精製することにより、得ることができる。また、本発明のタンパク質のアミノ酸配列の一部よりなるペプチドを常法により合成し、BSAやKLH等にコンジュゲーションを行い、これを免疫抗原とすることも可能である。

免疫感作する種としては、ウサギ、マウス、ラット、ニワトリ、ウシ、ロバ、 ヒツジ、ウマ等何れでも良く、また、当該本発明のタンパク質を認識する抗体で あれば、ポリクローナル抗体もしくはモノクローナル抗体の何れでも良い。

該抗体は、WAR-1タンパク質の発現の検出、又は該タンパク質の分離などに使用される。具体的には、アフィニティークロマトグラフィー、cDNAライブラリーのスクリーニング、免疫学的診断などに利用することができる。

本発明の抗体を用いることにより、癌の免疫学的診断を行うことができる。すなわち、本発明の抗体を用いることにより、WAR-1を産生する癌組織または細胞を検出することが可能となり、癌の診断に適用することが可能となる。具体的な検出法としては、蛍光抗体法、ウェスタン・ブロット法、免疫沈降法、免疫

10

15

20

25

組織染色法が挙げられる。このうち、蛍光抗体法についての具体的な手順は、 Samoszúk et al., Am. J. Clin. Pathol., 109, 205-210, 1998やBernardini et al., Tumori., 83, 673-678, 1997に記載された方法に準じて行えばよい。

本発明のDNA又は本発明のタンパク質は、医薬の有効成分とすることができる。前記したように本発明のタンパク質は、癌細胞に対する増殖阻害活性を有している。従って本発明のDNAを医薬の有効成分として癌患者に投与し、体内で発現させる遺伝子治療剤として使用するか、又は本発明のタンパク質を医薬の有効成分として癌患者に投与することにより、癌細胞の増殖を阻害し、癌の治療を行うことができる。なお、本発明のDNA又はタンパク質を有効成分として用いる場合のみならず、生体内のWAR-1遺伝子又はタンパク質の発現を誘導するような因子又は化合物を用いた場合にも同様に、前記癌細胞の増殖阻害効果が認められる。従って、このようなWAR-1遺伝子の発現を誘導するような因子、化合物、又はWAR-1タンパク質の発現を誘導するような因子、化合物、又はWAR-1タンパク質の発現を誘導するような因子、化合物を有効成分とする癌細胞増殖阻害剤もまた、本発明の範疇に含まれる。

本発明のタンパク質を有効成分とする治療剤は、アジュバントとともに投与したり、粒子状の剤形にして投与することができる。剤形として、より具体的には、リポソーム製剤、直径数μmのビーズに結合させた粒子状の製剤、リピッドを結合させた製剤等の剤形にすることができる。投与方法としては徐放性のミニペレット製剤などが挙げられる。本発明のタンパク質の様に、小胞体に存在すると予想されるタンパク質を本タンパク質が機能する小胞体に選択的に輸送するためには、小胞体に保持されることが知られるタンパク質のC末端に存在するLysーAspーGluーLeu(KDEL)配列を本タンパク質のC末端に付加することが可能である。C末端にKDEL配列を有するタンパク質は、ゴルジ体及び小胞体に存在するレセプタータンパク質に結合し、ゴルジ体から小胞体に逆輸送することが知られている(Majoul et al., J. Cell Biol., 133, 777-789, 1996)。更に、特定の糖ペプチド鎖や糖鎖をタンパク質に付加することやビオチンを結合させることによって本タンパク質に組織移行選択性をもたらすことが可能である。具体的には、肝細胞に特異的にタンパク質を蓄積させるために、asialoglycoprotein (Merwin et al., Bioconjug Chem., 5, 612-620, 1994)や

25

g a l a c t o s e (Chen et al., Hum Gene Ther., 5, 429-435, 1994) でポリペプチドを修飾することが可能である。また、特定の組織や細胞で発現するタンパク質と結合するタンパク質をビオチン化し、アビジンとビオチン化した本タンパク質とで複合体を形成させることによって組織移行性を高めることが可能である (Saito et al., Proc. Natl. Acad. Sci. USA, 92, 10227-10231, 1995, Pardridge et al., Pharm. Res., 11, 738-746, 1994)。

投与量は、癌細胞の特性、患者の年齢、体重等により適宜調整することができるが、通常 $0.001 mg/Kg/回\sim1000 mg/Kg/回であり、これを初期時には連日投与、その後、数日ないし数<math>\tau$ 月に1回投与するのが好ましい。

10 投与形態としては、剤形に応じて経口、動脈注射、静脈注射、筋肉注射、癌組織 に対する局所注射により投与することが可能である。

本発明のDNAを有効成分とする遺伝子治療剤は、細胞内でWAR-1タンパク質を大量に産生させ、癌細胞内においては癌細胞の増殖を阻害することができる。

15 本発明のDNAを有効成分とする遺伝子治療剤を癌細胞に導入する場合、その 投与形態としては非ウイルスベクターを用いた場合と、ウイルスベクターを用い た場合の二つに大別される。

より詳細に説明すると、本発明のDNAを細胞内で作用させる手段として、以下の方法が挙げられる。

20 A. 非ウイルスベクターを用いる場合

遺伝子発現ベクターに本発明のDNAを導入し、リン酸ーカルシウム共沈法、リポソームを用いてDNA分子を導入する方法(リポソーム法、リポフェクチン法、リポフェクトアミン法)、エレクトロポレーション法、マイクロインジェクション法、パーティクルガンで坦体とともにDNA分子を細胞に移入する方法等の何れかの方法により組換え発現ベクターを細胞内に取り込ませることが可能である。ここで用いられる発現ベクターとしては、例えばpBK-CMV、pCAGGS、pcDNA3.1、pZeoSV等が挙げられる。

B.ウイルスベクターを用いる場合

ウイルスベクターとしては、組換えアデノウイルス、レトロウイルス等のウイ

10

15

20

25

ルスベクターを用いた方法が代表的なものである。より具体的には、例えば、無毒化したレトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス、センダイウイルス、SV40、免疫不全症ウイルス (HIV) 等のDNAウイルスまたはRNAウイルスに本発明のDNAを導入し、細胞に組換えウイルスを感染させることによって、細胞内に遺伝子を導入することが可能である。

前記ウイルスベクターの内、アデノウイルスの感染効率が他のウイルスベクターを用いた場合よりもはるかに高いことが知られており、従って、アデノウイルスベクター系を用いることが好ましい。

これらの方法の何れかを用いることによって、WAR-1をコードする遺伝子を癌細胞内に導入することが可能である。また、非ウイルスベクターによる遺伝子治療では、局所投与や組織移行性を高めた剤形との組み合わせ等によって疾患部位の近傍に遺伝子を導くことが好ましいが、ウイルスベクターによる遺伝子治療では、必ずしも局所投与をする必要はなく、静脈内投与も可能である。投与形態としては、製剤形態(例えば液剤など)をとり得るが、必要に応じて慣用の担体等を加えても良い。また、疾患部位の近傍に遺伝子を導入し易くするために、徐放性の製剤とすることも可能である。

本発明の遺伝子治療剤を実際に医薬として作用させるには、DNAを直接体内に導入するin vivo法、及びヒトからある種の細胞を取り出して体外でDNAを該細胞に導入し、その細胞を体内に戻すex vivo法がある(日経サイエンス、1994年4月号、20-45頁、月刊薬事、36(1),23-48(1994)、実験医学増刊、12(15)、(1994))。本発明では、in vivo法が好ましい。

製剤中のDNAの含量は、治療目的の疾患、患者の年齢、体重等により適宜調節することができるが、通常、本発明のDNAとして0.0001-100mg、好ましくは0.001-10mgであり、これを数日ないし数ヶ月に1回投与するのが好ましい。

本発明の第2の態様は、タンパク質WAR-1または該WAR-1をコードするDNAを有効成分とする神経栄養因子分泌促進剤に関する。

10

15

25

「神経栄養因子分泌促進剤」とは、インビボあるいはインビトロで神経細胞に接触させた場合、その細胞からの神経栄養因子の分泌を促進する作用を示す薬剤を意味する。神経栄養因子とは、1950年に発見された神経成長因子(NGF)のように、神経細胞の生存維持、神経分化促進などの生理作用を有するタンパク質の総称である。

本発明におけるDNAのうちタンパク質をコードするものとしては、タンパク質WAR-1をコードするDNA、又は該WAR-1をコードするDNAに類似のDNAであって、かつ神経栄養因子の分泌促進活性を有するタンパク質をコードするDNAであれば特に限定されない。具体的には、以下の1)~3)のDNAが例示される。

- 1) 配列番号: 2又は配列番号: 4に記載のアミノ酸配列からなるタンパク質をコードするDNA、あるいは配列番号: 1又は配列番号: 3 に記載の塩基配列からなるDNA。
- 2) 配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは数個または複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ神経栄養因子の分泌促進活性を有するタンパク質をコードするDNA。
- 3) 配列番号:1又は配列番号:3に記載の塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ神経栄養因子の分泌促進活性を有するタンパク質をコードするDNA。
- 20 これらのDNAの詳細については、前述したとおりである。ただし、DNAが コードするタンパク質の生物活性が、癌細胞の増殖阻害活性ではなく、神経栄養 因子の分泌促進活性である点で異なる。

前記DNAが神経栄養因子の分泌促進活性を有するタンパク質をコードするものであるか否かは、当該DNAを導入した細胞の発現する神経栄養因子を解析しても良く、また、細胞外に放出された神経栄養因子を解析しても良い。例えば、以下の方法により測定することができる。

生化学的な解析方法としては、各種の神経栄養因子を認識する抗体を用いたウェスタンプロット法、ELISAやRIA等を用いるのが簡便である。さらに、抗体を用いた免疫組織染色に電子顕微鏡技術を応用し、小胞体に神経栄養因子が蓄積して

10

15

20

25

いることを確認する方法が挙げられる。この方法は、細胞質中で新たに翻訳されるタンパク質がシグナル認識タンパク質やWAR-1に出会わない場合には細胞質中に大量に存在するタンパク質分解酵素により分解を受ける一方、一旦シグナル認識タンパク質やWAR-1に結合して粗面小胞体が形成された後は、タンパク質分解酵素の少ない小胞体にタンパク質は安定に存在するという前提に基づくものである。

また、生物学的な解析方法としては、遺伝子導入された形質転換細胞の培養上清中に神経突起伸長作用を持つ神経栄養因子が蓄積しているかをみることが挙げられる。具体的には、各種の神経栄養因子の添加により神経突起伸長作用が認められるラット副腎褐色細胞腫由来のPC12細胞に対し、形質転換細胞の培養上清を作用させることにより、神経突起伸長作用を持つ神経栄養因子が形質転換細胞の培養上清中にコントロールより多く蓄積しているかを調べる。PC12細胞は、大日本製薬や理研ジーンバンクから容易に入手することができる。第一の選択としては、生物学的な解析方法の方が好ましい。

神経突起伸長作用が認められた場合、どの様な神経栄養因子が増えているかを 検討するための次の手段として、生化学的な解析を行うことが必要となる。この 場合、多数の抗体を用いて様々な神経栄養因子を検出する必要があるが、未知の 因子が含まれる可能性も否定できない。

未知因子の存在の有無を確認する為には、神経栄養因子群やそれらレセプターに結合してそれらの活性を消失させるような様々な、いわゆる中和抗体で培養上清を処理して、神経突起伸長作用の低下を見れば良い。中和抗体の存在下でも顕著な突起伸長作用が残存する場合は、未知の神経栄養因子が含まれている可能性がある。

さらに、WAR-1遺伝子の発現を増強することにより、神経栄養因子の分泌 が促進されたことを確認するための方法として、例えば特定の神経栄養因子遺伝 子を導入した細胞や特定の神経栄養因子の放出が知られている細胞を用いること ができる。より簡便には、後者の細胞、特に癌由来の細胞株の利用が好ましい。

特定の神経栄養因子を放出するものとして、例えばヒトアストロサイト由来の グリオ芽細胞腫であるT98G細胞を用いることができる。T98Gは大日本製

10

15

20

25

前述した方法により、本発明のDNAで形質転換された細胞を好適な条件下で 培養し続けることにより、本発明におけるDNAからタンパク質を発現、生産す ることが可能である。ここで「好適な条件下」とは、その宿主細胞に適した培養 用培地により、37℃、5%CO₂存在下で培養するような条件を指す。

このような好適な条件下で培養した形質転換細胞より、前記本発明のタンパク質を単離し、精製することが可能である。ここで、本発明のタンパク質の粗抽出液を得る方法、また、該粗抽出液から本発明のタンパク質を精製する方法としては、例えば日本生化学会編、新生化学実験講座1、タンパク質 I 一分離・精製・性質一、1990に記載された方法を用いて行うことが可能である。

以上のようにして得られた本発明におけるタンパク質の具体例としては、例えば配列番号:2に記載のアミノ酸配列よりなるラットWAR-1、又は配列番号:4に記載のアミノ酸配列よりなるヒトWAR-1が挙げられる。

前記本発明におけるタンパク質による、神経栄養因子の分泌促進の活性は、以下のようにして測定することができる。

ヒトグリア芽細胞腫株T98Gなどの細胞の培養液中に該タンパク質を添加する。その際、該タンパク質を、あらかじめリポソームに封入したり、リピッドを結合させることにより、細胞膜への透過性を増しておく。また、タンパクのC末端に小胞体保持配列であるLys-Asp-Glu-Leu(KDEL)を付加

10

15

20

25

したりすることにより、細胞質に取り込まれたタンパク質を小胞体に輸送できるようにする。このような処理を施した該タンパク質を培養液に添加後、数日間培養し、培養上清を得る。得られた培養上清を用いて、DNAによる神経栄養因子の分泌促進の活性を測定した前述の方法と同様にして、神経栄養因子の分泌促進活性を測定する。

本発明の神経栄養因子分泌促進剤には、有効成分として、WAR-1遺伝子の発現を増強またはWAR-1タンパク質の産生を増強する物質を含んでも良い。 当該物質の神経栄養因子の分泌促進活性の測定には以下の方法が挙げられる。

WAR-1遺伝子の発現を増強またはWAR-1タンパク質の産生を増強する物質の選別は、WAR-1タンパク質に対する抗体を用いて細胞内のWAR-1タンパク質の蓄積を直接調べることで実施できる。その際は、WAR-1タンパク質に標識となるTag配列を付加し、抗Tag抗体を用いることもできる。

また、WAR-1が関与する特定の分泌タンパク質因子または細胞膜タンパク質因子の小胞体中の蓄積を調べることで行うことができる。特定の分泌タンパク質因子の分泌を指標とする場合は、細胞の培養上清におけるそれらタンパク質の蓄積をELISA等を用いて調べることができる。また、特定の膜タンパク質因子の細胞膜における蓄積を指標とする場合は、それら因子の抗体を用いたウェスタンブロットやFACS解析またはそれらの因子が特定のリガンドのレセプターである場合は、リガンドとの結合能の増加を基に調べることができる。

細胞に対する作用をもって評価することも可能である。例えば、本明細書に記載されたように該物質を作用させた特定の細胞から放出され培養上清に蓄積した因子による生物学的作用、例えば、神経突起伸長作用をもって評価することも可能である。

また、遺伝子の発現が増強されているかを検討するためには、WAR-1遺伝子の発現上昇をノーザンブロット解析やRT-PCRによって直接調べることができる。また、WAR-1遺伝子のプロモーター領域を含む5'上流配列を用いて、これをlacZ、ルシフェラーゼ遺伝子またはGFP等のレポーター遺伝子に連結した発現ベクターを特定の細胞に導入し、レポーター遺伝子の活性を指標に該物質の作用を調べることもできる。

10

15

20

25

本発明におけるDNA又はタンパク質は、神経栄養因子の分泌促進活性を有するので、神経変性疾患治療剤の有効成分とすることができる。神経変性疾患とは、酸化的ストレス、神経毒、遺伝的素因等による複合的な作用により、神経の変性・脱落を伴う疾患であり、具体的には、アルツハイマー病、脳梗塞性痴呆症、パーキンソン病、ハンチントン病、およびALS等が挙げられる。

本発明の神経変性疾患治療剤は、(1) WAR-1タンパク質そのものまたははその一部を有効成分とする治療剤として使用しても良く、(2) WAR-1をコードするDNAを有効成分として患者に投与し、体内で発現させる遺伝子治療剤として使用しても良く、また(3) WAR-1遺伝子の発現又はWAR-1ポリペプチドの産生を増強する物質を有効成分としても良い。

神経細胞の生存維持に関わる神経栄養因子の作用は、グリア細胞から放出され パラクリン的に神経細胞に働く場合と神経細胞から放出されオートクリン的に働 く場合があるが、本発明による神経変性疾患治療剤の標的細胞は、グリア細胞と 神経細胞のどちらであっても良い。

(1) WAR-1タンパク質そのものまたはその一部を有効成分とする神経変性 疾患治療剤

WAR-1そのものまたはその一部を有効成分とする治療剤は、神経変性疾患前述したWAR-1 タンパク質を有効成分とする癌細胞増殖阻害剤と同様に投与される。

(2) WAR-1をコードするDNAを有効成分とする神経変性疾患治療剤 遺伝子治療剤として用いる場合、神経変性組織内のグリア細胞や神経細胞内で WAR-1ポリペプチドを大量に産生させ、神経栄養因子の放出を促進すること ができる。

WAR-1をコードするDNAを有効成分とする遺伝子治療剤を投与する場合、 その投与形態としては非ウイルスベクターによる態様及びウイルスベクターを用いる態様の二つに大別される。詳細は前述した、癌細胞増殖阻害剤として用いる 場合と同様である。

ウイルスベクターのうち、アデノウイルスの感染効率が他のウイルスベクター を用いた場合よりもはるかに高く、神経細胞等の非分裂細胞においても外来遺伝

図面の簡単な説明

5

10

15

25

子を発現することが知られており、従って、アデノウイルスベクター系を用いる ことが神経変性疾患治療剤として最も好ましい。

また、神経細胞への感染が認められるセンダイウイルスベクター系や神経細胞 を標的化した場合はヘルペスウイルスベクター系もアデノウイルスベクター系に 次いで好ましい。

製剤中のDNAの含量は、治療目的の疾患、患者の年齢、体重等により適宜調節することができるが、通常、本発明のDNAとして0.0001-100mg、好ましくは0.001-10mgであり、これを数日ないし数 σ 月に σ 1回投与するのが好ましい。

(3) WAR-1遺伝子の発現又はWAR-1ポリペプチドの産生を増強する物質を有効成分とする神経変性疾患治療剤

本発明のDNA又はタンパク質を有効成分とする神経変性疾患治療剤のみならず、生体内のWAR-1遺伝子の発現又はタンパク質の産生を誘導するような因子又は化合物を有効成分として用いた場合にも同様に、神経栄養因子の分泌促進活性が認められる。従って、このようなWAR-1遺伝子の発現を促進するような物質、又はWAR-1タンパク質の産生を促進するような物質を有効成分とする神経変性疾患治療剤も本発明の範疇に含まれる。該物質としては、例えば、ペプチド、ペプチドのアナログ、微生物培養液、合成化合物等が挙げられる。

20図1は、ヒト由来TRAM (図中: HTRAM)、ヒト由来KIAA0057(図中: KIAA0057)、ヒト由来WAR-1 (図中: HWAR1)及びラット由来WAR-1 (図中: RWAR1)をコードするcDNAの塩基配列の相同性の解析結果を示す図である。

図2は、ヒト由来TRAM(図中:HTRAM)、ヒト由来KIAA0057 (図中:KIAA0057)、ヒト由来WAR-1(図中:HWAR1)及びラット由来WAR-1(図中:RWAR1)をコードするcDNAの塩基配列から推定されるアミノ酸配列の相同性の解析結果を示す図である。

図3は、ヒト由来の各種癌細胞株におけるhWAR-1遺伝子の発現をRT-PCR法によって解析した結果を示す電気泳動写真である。上のレーンはhWA

10

20

25

R-1のRT-PCRの結果を、下のレーンはhTRAMのRT-PCRの結果 を、それぞれ示す。

図4は、ヒト各種組織におけるhWAR-1遺伝子の発現をノーザンハイブリ ダイゼーションによって解析した結果を示す電気泳動写真である。各写真の右に 記載した数字は、RNA分子量マーカーのサイズ(Kb)を示している。

図5は、ヒト各種組織におけるhTRAM遺伝子の発現をノーザンハイブリダ イゼーションによって解析した結果を示す電気泳動写真である。各写真の右に記 載した数字は、RNA分子量マーカーのサイズ(Kb)を示している。

図6は、ヒトグリア芽細胞腫T98Gに、hWAR-1遺伝子を挿入したアデ ノウイルスを感染させ、形態変化を観察した結果を示す顕微鏡写真である。A: アデノウイルス非感染細胞、B:アデノウイルスベクターのみのアデノウイルス 感染細胞、C:hWAR-1のセンス鎖を発現する組換えアデノウイルス感染細 胞、D:hWAR-1のアンチセンス鎖を発現する組換えアデノウイルス感染細 胞。

15 図7は、アデノウイルスベクターAxCAwtを感染させたT98G細胞の経 時的な形態変化を示す顕微鏡写真である。A:感染直後、B:感染8時間後、 C:感染21時間後(約1日後)、D:感染31時間後(約1.5日後)、E: 感染46時間後(約2日後)、F:感染70時間後(約3日後)。

図8は、hWAR-1のセンス鎖を発現する組換えアデノウイルスAxCAW AR1-Lを感染させたT98G細胞の経時的な形態変化を示す顕微鏡写真であ る。A:感染直後、B:感染8時間後、C:感染21時間後(約1日後)、D: 感染31時間後(約1.5日後)、E:感染46時間後(約2日後)、F:感染 70時間後(約3日後)。

図 9 はラット由来 r WAR-1遺伝子を検出するオリゴヌクレオチドプローブ を用いたラット各種組織におけるrWAR-1遺伝子の発現を示したノーザンハ イブリダイゼーションの結果を示す電気泳動写真である。発現している組織では、 約2.4Kbの2本の転写産物が検出されている。

図10はラット由来rWAR-1遺伝子を検出する1.9Kb EcoRIフラグメント をプローブとして用いたノーザンハイブリダイゼーションによって解析した結果 を示す電気泳動写真である。Lane 1:ラット幼若脳海馬組織 poly(A) mRNA; Lane 2:成熟ラット脳 poly(A) mRNA; Lane 3:ラット網膜 poly(A) mRNA。

図11はヒト脳由来の各部位から調製された poly(A) mRNAに対して、ヒト由来 hWAR-1遺伝子を特異的に検出するDNAフラグメントをプローブとして用いたノーザンハイブリダイゼーションの結果を示す電気泳動写真である。各写真の右に記載した数字は、RNA分子量マーカーのサイズ(Kb)を示している。実施例

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実 施例によりなんら限定されるものではない。

10 実施例 1

5

15

20

25

ラット c DNAライブラリーの作製

種々の新規なcDNAのクローニングを目的として、以下の手法により幼若ラットのcDNAライブラリーを作製した。

まず生後12日令の幼若ラットの組織を摘出し、常法によりグアニジンチオシアン酸溶液を加えてホモゲナイズした後、塩化セシウム密度勾配遠心法により2mgの全RNAを調製した。

この全RNAをオリゴ (dT) セルロースカラム (ファルマシア社製) にかけることにより、ポリ (A) 付加配列を有する 103μ gのmRNAを精製した。このうち 16μ gのmRNAをオリゴ (dT) プライマー及びランダムプライマーを用いて、逆転写酵素によって一本鎖相補 DNAを合成した。次いでRNaseH及びE. coli DNAポリメラーゼ Iを反応させることにより、二本鎖 c DNAを合成した。得られた二本鎖 c DNAの末端を平滑化するためにT 4 DNAポリメラーゼで処理し、両末端にE coR I アダプターを付加した。最終的な c DNA量は、オリゴ (dT) プライマー及びランダムプライマーを用いた場合、各々 2μ g と 1. 3μ g であった。その内の一部を λ ファージベクターである λ g t λ 100 E coR I 切断部位に挿入後、インビトロパッケージングキット (ストラタジーン社製) により λ ファージ粒子内に導入し、これを大腸菌 λ 6 λ 6 λ 7 と 1 の 1 に 1 の 2 に 1 の 3 に 1 の 3 に 1 の 3 に 1 の 5 に 1

1/15

図 1

														-																
	20	20	20	50		100	100	100	100		150	150	150	150		200	200	200	200		250	250	250	250		300	300	300	300	
20	TCAGCCACGA	TCAGCCAGGA	TOAGCCAGGA	TGAGCCACGA	100	GCGAMGGMCTI		GGGATGTTCT	GGCAWGFFTCT	150	TANCANTINU	GTOTO DAMEN	CATCGTGTTT	GANCGNGTWC	200	AACAAGCIIAC	5 VO	AACAAGCCAC	GGGTACOCTO	250	GCITACTIGITUT	GTORCAMICT	GCCACGGTTT	GCCACAGTIGT	300	TCARGAGTAT	TCAGGAGTAC	TCAGGAMTAT	TCAGGAGTAC	350
40	CCCCOAGRIGC	TACCCCC	CCCCCCGIIIC	CCCCGGTGC	06	CTCCTGTGTG	CTTCTGCCTC	CTCCTGCGTG	CTCCTGCGTG	140	GAABAGGTITC	OCHRICA CHICA	CACA ACCA PC	CCMGATCHC	190	GCAACAGAAG	ACAGCAGA	GCAGCAGAGG	AGCGGAAG	240	CAAAGATITG	THAGGACCRG	CAAAGATITG	CANAGATICTG	290	ATGCCGRAAT	ATGCTGTGG	ATGCCACAAT	Ac eco accan	340
200	CACCAAGA <mark>G</mark> C	GCANALGT	CACCAAGAAC	GGGGAGGAAG	80	CGGACATCGT	CGGACATCG	CGGACATCGT	CGGATATIGGT	130	GAGATAROGO	GAGGTCAGAG	GAGGGAAGAG	GAGGCOACCG	180	CAGCONCCOA		Techercer	CGTTGTCCC-	230	АСТАЛСЕСА Л	ACTIATIGGCCC	MTTANGGTGN	ATTATEGGE	280	ATTAMENTATION	ATTCATICATION	ATCATHATTC	АТСАПСАТТС	330
20	GCAAGAAAAG	GCAGGAGGA-	GITAAGAAGAG	GCAAGAAGAA	70	CAGAAMCACG	CACAACCATG	CAGAAnCAnc	CAGAACCACG	120	conorment	GCTTATGTTC	GOTTICREFIT	ACTTATGTTC	170	RGT POBATICT	AGT MT PACA		AGCATGGAGT	220	TCCCITTELT	action	TCCCT CITY TT	A ccou ting cc	270	GCTPAGTGGCG	CTI CALICACO	GCTGGTGGCA	GCTGGTGGCC	320
10	ATGGCGAUTG	ATGGCTTTCC	ATGGGGCTCC	ATGGGGGTCC	09	<u>муто</u> с <u>тсстс</u>	GIVICGING AND	ATTOATTCCTG	ATTICATIONE	110	TCCTGCTGGG	IICCIIICA IICEE	TCCTGCTGGC	тестестес	160	GIITACITCITIC	ANTTANCING	CTICACTUTC		210	T G AA IIO AG IIG	Tigaigh oction	GEGGIICAAAG	GegenocaGe	260	TCTTCTACAT	пспистисал	TCTTCTACAT	тсттстасат	310
	7	-	7	1		51	51	51	51		101	101	101	101		151	151	151	151		201	201	201	201		251	251	251	251	
	HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA	

2/15

図1 (続き)

HTRAM. DNA	301		ARATTER CPC	GCGAARGCAC	TICTCCARAA	CAAAACACAG	350
KIAA0057.DNA	301	AIITIMAGAWA	AMAYI CAGGAA	ACCCONTON	CAAAC	TOPANACACAG	350
HWAR1.DNA	301		PANTIBACIA		CAAAG	GGANAGAGA	350
RWAR1.DNA	301		BGCIICAGGCG	GAGACTGCAG		GCAAACAAAA	350
		360	370	380		400	
HTRAM. DNA	351	CAAGITITIAAT	GAATCTGGTC	AGCTTAGTGC	GTTCTACCTT	TUNIC OCT ON G	400
KIAA0057.DNA	351	CAAGUTICAAT	GNATICTICGAC	AGCTGGTCGT	CENTCETING	ACCINGGETGA	400
HWAR1.DNA	351	CAAGTTTAAC	GAGTGGTC	AGTITIAGTGT	GTTCTACTTT	TTTTCTTGTA	400
RWAR1.DNA	351	CAMALTICAAT		AGCTICAGTGT	GTTCTACATTA	GIIGIICIIGENA	400
		410	420	430	440	450	
HTRAM. DNA	401	TTTGGGGCAC	АТТСАТТСТС	ATCTCTGAAA	ACTABATICE	AGACCCAACT	450
KIAA0057.DNA	401	TTTGGTGCTT	CINAGGINGGING	GIICAGGEAIG	GAMAGTMAAG	APAGGGAAGA	450
HWAR1.DNA	401	TTTGGGGCAC		ATCTCTCAAA	Rong Concern	AGACCCAACT	450
RWAR1.DNA	401	TCTGGGGTAT	GATCATTCTC	GCONCREDGA	ACTIGOCTION	AGACCCCACT	450
		460	470	480	490	500	2
HTRAM. DNA	451	ATCTTATGGA	GGGTTATCC	CCATTANCCING	ATTICACATUTUC	AAAmgaagm	500
KIAA0057.DNA	451	AGGCIICIIGGS	MAGACTACO	GOMGTGCAC		AGGTGPAAGTUT	2005
HWAR1.DNA	451	CITATATIGGA	AGGCTCGTCC	CCATACOATIC		APAGEM	200
RWAR1.DNA	451		AGTOTICAGOC	COACAACATG	ATGACATTTC	ACAMERA IN	200
		510	520	530	540	550	
HTRAM. DNA	501	TTTCTACATA	TOACACTICE	CTTACTGCCT		QOVERA MINIST	550
KIAA0057.DNA	501	TTTCTACCTA	December 1	GCTPACTICGCT	GONCHORCHUM	SQUED CONTRACT	7.70
HWAR1.DNA	501	TTTCTACATA	TCCCAGTTGG	CTWACTEGIT		CONTENA CONTEN	350
RWAR1.DNA	501		TOA CAGT TGG	CTTACTGGTT		CCCCACCTICAT	550
		260	570	580	295	, iog)

WO 00/22123

3/15

図1 (続き)

009	009	009		650	9 9	000	650	}	700	700	200	9 6)	7.0	7 7	7.00	750	2	ď			200)	850	850	850	850	
TGTCTACATT	CCAGINATIANI TOTOTTA CART	CATCTACATT	650	ACTTGAARGA		A CHITCH AND THE PARTY OF THE P	ACTITIONACION	700	Thron Throc	PURCONCIPTION		CINCONCIDA	750	CANACCASTINA		CANANAGA CAGA	GAPAGGGTTG	900				OACH CANAGE	850	AAVICAGAAAG	PACCAGCAT	AATIGGAAATIG	AATCGGAATG	006
			640	WACCHITITICA	WACCING MAD	PATICATOR	TAIT CIT CIT CIT	069	ттпстисма	CICAACINGAG			740	AAAAGTAIrca	PANACAMOCA	AAAAGTACCA	AGCGGWACCA	790	AGACTTOWER				840	AAGAGGAGAA				890
GAAGAWAYITO		CANGANATICO	630	TGCTGGAGCT	AGCTGGAGCA	mplowers/sor	IIGGAGGGGGC	089	TGCTACATTA	тсстссиспа	MACTIGCATIVA	TGCTGCACTA	730	INVITABLE DAVID	PUVIGC PICTURE	PUT AGT GAVIE	THIGGGGANG	780	ilgirringeea	UGGGGTTACC	DAIDCIMGGGT	NAWANCCEG	830	TUTGG COTT TGC	TTGGACTGGC	TTCACCTGGC	TTCAGTEGG	880
AACCAAAAAA		, AA	620	TCTTCCACAT	III GGIII GOZI TAVI	TCTTCCACAT	TCTTCCACAT	670	GITTOTTOTTGG	Ancrincing	CTTCTTTGG	CINCOLORIGIA CINCOLORIGIA	720	CCTGTTTTAL	AGIICHINCHAG	CCTGTTTTAC	сстестти	770	PAGINCII TINI		-	124	820	ACTGTTGGTT	GCA WGGC	ACTGTTGGGT	AGAGIIAGGGC	870
ACTTCCAGAA ACTTCCAGAA	ACTTCCAGAA	ACTTCCAGAA	610	GGTCTTTACC	TGCCIIGTACC	GGTOTTICACO	GGCONCCACO	099	TON AGGAONT		TTMGGGAGW	ಿಗಾರಂತಿಯ ಂ	710		ACACGCCTAG	ACAMETICOCC	Cochen Conc	760	TCTCTGTGGG	AGIIGCCIIGGG	TCTCTGTGGG	TCTTTGTGGC	810					860
551 551	551	551		601	601	601	601		651	651	651	651		701	701	701	701		751	751	751	751			801	801	801 (
HTRAM.DNA KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA		HTRAM. DNA	KIAA0057.DNA	HWAR1.DNA	RWAR1.DNA	

4/15

図1 (続き)

HTRAM, DNA	851			TCAATGTGT	PAGE TGT PAG	AATCGCTGTT	900
KIAA0057.DNA	851			TREADCACT	MGTTTTGCMG	GCIIC TGCCIIC	900
INAME DINA	851	-	TACTGGAAAR	GTPATGTGT	TGGCAGCTAA	AATIIGCTGTT	006
KWAKI. DNA	851	GAAAMGC	CTCTGGGTAPT	GTCAATGTGT	TGGGAGGTAA	AMTCGCTGTT	006
		910	920	930	940	950	
HTRAM. DNA	901		THECTIME	TCAGGCATTT	MONTGREEN	AGNINOAVINA AGNINOAVINA	950
KIAA0057.DNA	901	GIGCTECTEG	TOWETCOCCC	CCAGGGGTGG			050
HWAR1. DNA	901			つた 出しつ こうしゅんしつ			000
DEAD 1 DAY	5 5					CONTRACTOR CONTRACTOR	950
ANG . TARMA	TOR		GINICO AGINAT	CCAGGTGTAC	MWANCAUGGE		950
		096	970	980	066	1000	
HTRAM. DNA	951	TIMITCAGONI	CCAAGGTGCA	GGGAACATTC	TGCTTTTTCAG	-GCACONGCIN	1000
KIAA0057.DNA	951	cel cel calculation	GGGCACTIGGC	GGGAATACEG	GAMEAGOAG	AGTGCAMAGC	1000
HWAR1.DNA	951	TCINCINGEON	CAGAGGTIGGG	TAGAMGAVING		- Gold Tall Trial	1000
RWAR1.DNA	951	ce ne re cen	CAGAGAITGGT	TAGAAGATIGG	GAATICITICAL		1000
		1010	1020	1030	1040	1050))
HTRAM. DNA	1001	GIGAAGAAGA	AACCA-ACAG	MARCTAR-AG	GOAGAMONNO	TAAAAAAGGA	1050
KIAA0057.DNA	1001		PGC CACACCC	AGAGINACCIAG	TACTOR O	Marchard Control	0001
HWAR1.DNA	1001		AACGG	20 0	AGAINGITHG	TANK TANK TANK	1050
RWAR1.DNA	1001		GAG		- 0 26G116	GPICEPANAGEC	1050
٠		1060		1080	0801	1100	2
HTRAM. DNA	1051	ACAGAAAAMG	GIGIGAMEE	MACATINAMEN	PATSWAY OU		1100
KIAA0057.DNA	1051	TETEGTTEC	ATGAMAMGG	Bolleting BAG	GONG MANAGE	G Pacientes	1100
HWAR1. DNA	1051	ACAGAAAAGG	GAGNGGG	ECINERA EVA	TO A DAMPER		1100
RWAR1.DNA	1051	ACAGAAAATG	GAGNGGME	MA	CCABAMAGA	TACAMPORT	7 7 7 7
	•	1110	1120	1130	1140	1150	0011
HTRAM. DNA	1101	CCCCANTANA	AAAGAGAAAT				1150
KIAA0057.DNA	1101		PARCTORAGE				1150
HWAR1.DNA	1101	GCCAAAGAGG		CTT CA			1150
RWAR1.DNA	1101		122				1150

5/15

図 2

6/15

図 2 (続き) 300 250 250 250 250 350 350 350 350 400 400 400 400 ENTECRICO VINITARIAN VINITARIAN PALPARLIER FINULAVRITAV NRINGNATSGN 340 **MPAVKKKRPTV** ALGEGINAME WGEHINGSO RRINGAFO AND THE PARTY AND KAENGTSERT MAN KEINEO LMMRF1HSQ1 VTMINE WEI BILLAW GTENGVNGTL **ESGYHENGV**V SLWAIVEILG SLMPITVETSC 351 351 201 201 201 201 201 251 251 251 301 301 301 351 351 251 KIAA0057.AMI KIAA0057.AMI KIAA0057.AMI KIAA0057.AMI HTRAM. AMI HWAR1.AMI HTRAM. AMI HWAR1.AMI HTRAM. AMI HWAR1.AMI HTRAM. AMI HWAR1.AMI RWAR1.AMI RWAR1.AMI RWAR1.AMI

7/15

図3

T24
HeLa
Jurkat
MOLT4
MOLT4
A549
HepG2
G401
SW480

8/15

1

9/15

10/15

11/15

12/15

13/15

ラットMTNブロット

14/15

15/15

図11

ts (pfu) は、先にオリゴ (dT) プライマー及びランダムプライマーを用いて合成された cDNA 1μ g当たり、各々8. 8×10^7 pfu及び2. 5×10^7 pfuであった。

実施例2

5

10

15

20

25

rWAR-1をコードするcDNA塩基配列の決定

実施例1で得られた c DNAライブラリーよりランダムにクローンを選別し、 通常のプレートライセート法により λ ファージDNAを回収し、制限酵素 E c o RIで切断後、挿入cDNA部分をM13ファージベクターにサブクローニング した。そのうちの一つについて挿入 c DNA部分の塩基配列を決定した結果、ク ローニングされた c DNAの長さは約2.2 K b であり、約1 K b に 同りオープ ン・リーディング・フレームが存在していることが明らかとなった。1.8Kb からなるEcoRI断片をプローブに用いて常法によりノーザン解析を行った結 果、このcDNAの対応mRNAのサイズは2.4Kb程度と推定されたため、 poly(A)配列の長さを加味すると、ほぼ全長のcDNAが得られたと予想 された。得られたクローンをクローン12と命名した。クローン12の有するc DNAの塩基配列をGenBankデータベースで検索したところ、ヒト由来の 小胞体膜輸送関連タンパク質であるTRAM(GenBank Accessio n No. X63679)と塩基配列上59.7%、アミノ酸配列上57.0%の 相同性が認められ、また、KIAA0057(GenBank Accessio n No. D31762)と塩基配列上53.7%、アミノ酸配列上41.0%の 相同性が認められたが(表1)、完全に一致する配列は見出されなかったことか ら、クローン12の有するcDNAは新規なcDNAであることが明らかとなっ た。この新規なcDNAによりコードされるタンパク質を、ラットWAR-1 (rWAR-1)と命名した。rWAR-1の塩基配列及び推定上のアミノ酸配 列を、配列番号:1及び2に示した。また、公知のヒトTRAM(hTRAM) の塩基配列及びアミノ酸配列を、配列番号:5および6に、また、ヒトKIAA 0057の塩基配列及びアミノ酸配列を、配列番号:12および13に示した。 表 1

ヒトWAR-1、ヒトTRAM、ラットWAR-1およびKIAA0057の

相同性(%)

			i	i e	KIAA
		WAR-1	WAR-1	TRAM	0057
ヒト	塩基配列		72.4	76.3	64.1
WAR-1	(アミノ酸		(72.7)	(70.7)	(44.1)
	配列)				
ラット	塩基配列	72.4		59.7	53.7
WAR-1	(アミノ酸	(72.7)		(57.0)	(41.0)
,	配列)		-		
ヒト	塩基配列	76.3	59.7		69.3
TRAM	(アミノ酸	(70.7)	(57.0)		(51.3)
	配列)	-	:		
KIAA	塩基配列	64.1	53.7	69.3	
0057	(アミノ酸	(44.1)	(41.0)	(51.3)	
	配列)				

なお、上記 r WAR-1のc DNA断片をベクターpBluescript IIに組み込んだプラスミド、prWAR-1を含有する大腸菌E. coli DH5 α (prWAR-1) は、茨城県つくば市東1丁目1番3号、工業技術院生命工学工業技術研究所に寄託されている(微生物の表示:E. coli DH5 α (prWAR-1);受領日:平成10年10月6日;受託番号:FERMP-17018)。

実施例3

5

hWAR-1をコードするcDNAのクローニングと塩基配列の決定

10 rWAR-1のオープン・リーディング・フレームに相当する0.8KbからなるEcoRI-XhoI DNA断片をプローブに用いて、常法により、ヒトcDNAライブラリー (クロンテック社製) からヒト型WAR-1のcDNAを有するクローンのスクリーニングを行った。その結果、1×10⁶pfuのヒトcDNAライブラリーから1クローンが単離された。塩基配列を決定した結果、実施例2で得られたrWAR-1と塩基配列上72.4%、アミノ酸配列上72.7%の相同性を示したため、これをヒト型WAR-1(hWAR-1)をコードするcDNAであると結論した(表1)。決定された塩基配列及び推定上のアミノ酸配列を、配列番号:3および4に示す。このhWAR-1は、先のhTRAMと塩基配列上76.3%、アミノ酸配列上70.7%の相同性を示し、KIA

A0057と塩基配列上64.1%、アミノ酸配列上44.1%の相同性を示した(表1)。

なお、上記hWAR-1のcDNA断片をベクターpBluescript IIに組み込んだプラスミド、phWAR-1を含有する大腸菌E. coli DH5 α (phWAR-1)は、茨城県つくば市東1丁目1番3号、工業技術院生命工学工業技術研究所に寄託されている(微生物の表示:E. coli DH5 α (phWAR-1);受領日:平成10年10月6日;受託番号:FERMP-17019)。

これらhWAR-1、rWAR-1、hTRAM及びKIAA0057をコードするcDNAの塩基配列を比較した結果を、図1に示す。また、hWAR-1、rWAR-1、hTRAM及びKIAA0057のアミノ酸配列を比較した結果を、図2に示す。

実施例4

10

15

20

WO 00/22123

各種ヒト癌細胞樹立株におけるhWAR-1をコードする遺伝子の発現の検討

hWAR-1とhTRAMをコードする遺伝子のヒト各種癌細胞での発現を検 討する目的で、hWAR-1 mRNAとhTRAM mRNAを各々特異的に増 幅するプライマーを設定し、以下の条件にてRT-PCRを行った。

hWAR-1 mRNAを増幅するための5'側のプライマーとして、図1のhWAR-1の塩基配列の第823位~第846位(配列番号:7)の部分を用い、3'側のプライマーとして、第1093位~第1116位(配列番号:8)の部分を用いた。また、hTRAM mRNAを増幅するための5'側のプライマーとして、図1のhTRAMの塩基配列の第823位~第846位(配列番号:9)の部分を用い、3'側のプライマーとして、第1087位~第1110位(配列番号:10)の部分を用いた。

25 ヒト由来の癌細胞株として、子宮頸部癌細胞株HeLa、肺癌細胞株A549、 膀胱癌細胞株T24、大腸癌細胞株SW480、グリア芽細胞腫株T98G、肝 癌細胞株HepG2、ウィルムス腫瘍:腎癌細胞株G401、バーキットリンパ 腫:Bリンパ腫細胞株Daudi、及びTリンパ腫細胞株MOLT4、Jurk atを用いた。これらの細胞株のうち、理研ジーンバンクより入手されるT24 細胞以外のものは全て、大日本製薬より入手し得る。

RT-PCRの反応は以下のように行った。

まず、上記各癌細胞株よりニッポンジーン社の全RNA精製キット(ISOGEN)を用いて、全RNAを調製した。この全RNA 4μg(9.5μl)に対し、100mM DTT 2.0μl、5×First Strand Buffer (Gibco BRL社) 4.0μl、40U/μl RNasein (Promega社) 0.5μl、10mM dNTP 2.0μl、0.2μg/μlpd (N)。プライマー 1.0μl、200U/μl MMTV-RT (Gibco BRL社) 1.0μlを加え、37℃で45分加温し、95℃で5分間加熱することによって酵素を失活させた。次に、反応液から16μlを分取し、H2Oを24μl加えた。その内、2.0μlの反応液に10×PCR Buffer (Perkin Elmer社) 2.5μl、2.0mM dNTP 2.5μl、25μM 各5'プライマー、25μM 各3'プライマー、H2O16.875μl、及び5U/μl AmpliTaq Gold (Perkin Elmer社) 0.125μlを加え、95℃で9分加熱後、95℃1分、60℃1分、72℃2分の反応を35回行い、最後に72℃で10分間加熱した後、反応液3μlを2%アガロースゲル電気泳動に供した。結果を図3に示す。

hTRAMは全ての癌細胞で発現していることが確認されたが、hWAR-1では、Jurkat等でhTRAMよりも幾分発現の低いことが示され、hTRAM遺伝子の発現様式と異なることが示された(図3)。

実施例5

10

15

20

<u>ヒト正常組織におけるhWAR-1をコードする遺伝子の発現の検討</u>

hWAR-1遺伝子とhTRAM遺伝子の組織での発現性を検討するために、以下の実験を行った。

まず、前記したhWAR-1特異的なプライマー配列(配列番号:7及び8)を用いて実施例4と同様のRT-PCRを行うことにより、hWAR-1遺伝子の目的断片を増幅し、これをpT7Blue(R)T vector(Novagen社)にクローニングした。同様に、hTRAM特異的なプライマー配列(配列番号:9及び10)を用いたRT-PCRによりTRAM遺伝子の目的断片

を増幅し、クローニングを行った。その後、これらのプラスミドを鋳型としてプライマー配列(配列番号:7及び8)を用いてRT-PCRを行い、ポリアクリルアミドゲル電気泳動にて増幅DNA断片を回収した。

次に、得られたDNA断片をマルチプライムラベル法により[※]Pで標識してプローブを調製し、Clontech社より購入したMTNブロットフィルター(human MTN blotI及びhuman MTN blotII)に対して常法によりハイブリダイゼーションを行った。また、コントロールプローブとしてClontech社より購入したβーアクチンを用いた。図4、図5にそれぞれhWAR-1遺伝子とTRAM遺伝子の組織発現の結果を示す。hTRAMはあらゆる組織で発現しているのに対して(図5)、hWAR-1はリンパ系組織(胂臓、胸腺、白血球)、肺、肝臓などの組織では発現が認められなかった(図4)。先の実施例4の結果より、肺癌(A459)、Tリンパ腫(MOLT4、Jurkat)、肝癌(HepG2)の各細胞株ではhTRAM遺伝子が発現していたことから(図3)、これらの組織においては癌化に伴ってhTRAMが発現してくることが示された。

また、得られたオートラジオグラムのバンドの強度を解析し、 β -アクチンの強度を基準として、各臓器における発現性を検討した。検討した結果を、表 2に示した。なお、示された数値は、精巣での発現を 1.00 とし、標準化した値である。

20 表 2

5

10

15

	組織	hWAR-1/ β -actin	組織	hWAR-1/β-actin
	心臓	0. 56	脾臓	0. 00
	脳	1. 47	胸腺	0. 00
	胎盤	0.00	前立腺	0. 28
25	肺	0.00	精巣	1. 00
	肝臓	0.00	卵巣	0. 25
	骨格筋	0.00	小腸	0. 15
	腎臓	0.74	大腸	0. 12
	膵臓	1. 21	末梢白血球	0. 00

表2に明らかなように、hWAR-1遺伝子はrWAR-1と同様に脳での発現が最も高く、膵臓、腎臓、精巣の発現も比較的高いことが示された。 実施例6

5 組換えコスミドベクターの作製

10

15

20

25

hWAR-1をコードするcDNA遺伝子(配列番号:3)の開始コドンのA TG配列の36塩基対上流のPvuII切断部位から終始コドンTAAから13 9塩基対下流のDra I切断部位までの約1.3KbのDNA断片を用いて、h WAR-1のセンス鎖、アンチセンス鎖が挿入されたコスミドベクターを作製し た。具体的には、SwaIで切断したpAxCAwtコスミドベクター(Kan egae et al., 1995, Nucleic Acid Res., 23,3 816-3821に記載、また Adenovirus Expression vector kitとして宝酒 造より購入可能) に、前記hWAR-1 1.3Kb PvuII/DraI断 片を連結後、挿入断片を含まないコスミドベクターをSwalで消化し、反応液 の一部を常法によりインビトロパッケージングした。大腸菌DH5αに感染後、 出現したコロニーからコスミドDNAを回収し、EcoRI/XhoIで切断後、 1%アガロースゲル電気泳動にて解析した。その結果、センス鎖RNAを発現す るクローンが9種、アンチセンス鎖を発現するクローンが6種得られた。その内 各々3種を選別し、センス鎖のRNAを発現するものは、EcoRI/XbaI またはBgIIIによって、またアンチセンス鎖のRNAを発現するものは、S tu I/X ba I またはE c o R I/X h o I により切断し、DNA断片の方向 性の確認と挿入断片に異常のないことを確認した。

<u>組換えアデノウイルスの作製</u>

実施例7

ヒトアデノウイルス 5型由来非増殖型組換えアデノウイルスベクター (E1及 びE3遺伝子を欠失)のE1遺伝子欠失部位に、実施例 6で作製した hWAR-1遺伝子 (センス/アンチセンス) の発現単位を挿入した組換えアデノウイルス ベクターを作製するために、以下の操作を行った。なお、プロモーターは高発現 プロモーターとして特開平3-168087号公報に開示されているCAGプロ

10

15

20

25

アデノウイルスのE1遺伝子欠失部位にCAGプロモーターのみが挿入された組換えアデノウイルスベクター AxCAwt (Kanegae et al., 1995、Nucleic Acid Res., 23,3816-3821に記載、また Adenovirus Expression vector kitとして宝酒造より購入可能)から、既存の方法 (特開平7-298877) に従いウイルスDNA-末端蛋白質複合体を調製し、制限酵素EcoT22I及びClaIで同時消化した。この制限酵素消化ウイルスDNA-末端蛋白質複合体と、実施例6で作製したhWAR-1センス鎖、もしくはアンチセンス鎖を挿入したコスミドベクターとを用い、リン酸カルシウム共沈法で293細胞を形質転換した。生じた組換えアデノウイルスをクローニング後、ウイルスDNAをXhoI及びClaIで消化することより目的ウイルスを選別し、組換えアデノウイルスベクターAxCAWAR1-L(センス鎖)とAxCAWAR1-R(アンチセンス鎖)を得た。この組換えウイルスを継代した4次ウイルス液の力価を既存の方法(特開平7-298877)により測定し、以後の実験に用いた。

実施例8

<u>組換えアデノウイルスベクター感染によるhWAR-1遺伝子の発現</u>

実施例7で作製したアデノウイルスベクターA×CAWAR1-LまたはA×CAWAR1-R、およびA×CAwt (コントロールウイルス)をヒトグリア 芽細胞腫株T98Gに重複感染度10で37℃、1時間感染させ、その後5% FCS含有最小栄養培地で培養した。感染翌日に培地を低血清培地(0.5% FCS)に交換した。感染2日後において、いずれのアデノウイルスベクターを 感染させた細胞においても、培地のみで感染操作を行った細胞と比べて変性して おり、アデノウイルス感染の影響が若干認められたものの、センス鎖を発現する A×CAWAR1-Lを感染させた細胞にのみ顕著な形態変化が観察された(図6)。また、A×CAWAR1-R感染細胞の形態はA×CAwt感染細胞と差 は認められなかった。さらに、A×CAWAR1-Lを感染させたT98G細胞

は、感染3日後より細胞死を起こし始めた。 実施例9

WAR-1センスRNA発現によるT98G細胞の形態変化

形態の変化を観察し易いように感染時の細胞密度を低くし(実施例8における コンフルエント状態の細胞の約1/10の細胞密度)、アデノウイルスベクター AxCAWAR1-L(センス鎖)またはAxCAWAR1-R(アンチセンス 鎖)、およびAxCAwt(コントロール)を実施例8と同様にT98G細胞に 感染させ、細胞の形態変化を経時的に観察した。感染翌日にはコントロールであ るAxCAwt 感染細胞においても、培地のみで感染操作を行った細胞と比べて 変性し始めており、アデノウイルス感染による影響が若干認められた(図7)。 しかし、AxCAwt感染細胞と比べて、hWAR-1のセンス鎖を発現するA x C AWAR1-Lを感染させた細胞は、感染翌日(感染21~31時間後)に は顕著な形態変化が観察され、感染3日後には細胞死を迎え始めた(図8)。な お、アンチセンスRNAを発現するAxCAWAR1-R感染細胞の形態は、A x CAw t 感染細胞と差は認められなかった。

37

実施例10

10

15

20

25

WAR-1タンパク質添加によるT98G細胞の形態変化

WAR-1タンパク質を、あらかじめリポソームに封入したり、リピッドを結 合させることにより、細胞膜への透過性を増しておく。また、タンパクのC末端 に小胞体保持配列であるLvs-Asp-Glu-Leu(KDEL)を付加し たりすることにより、細胞質に取り込まれたタンパク質を小胞体に輸送できるよ うにする。このような処理を施した本発明のタンパク質を、実施例8及び9で用 いたT98Gの培養液中に添加後、数日間培養する。その後、T98Gの細胞数 や細胞の形態変換を観察することにより、癌細胞増殖阻害活性を測定することが できる。また、³Hで標識されたチミジンの取り込み能の低下を測定すること (Nagase et al., Int. J. Cancer, 65, 620-626, 1996) によっても、癌細胞の 増殖阻害活性を測定することができる。

実施例11

ラットWAR-1遺伝子の組織発現の検討

20

rWAR-1遺伝子を特異的に検出するオリゴヌクレオチドプローブを用いて Clontech社より購入したラットMTNブロットフィルターに対してハイブリダイゼーションを行った。用いたプローブの塩基配列は、配列番号:11に記載したATTTCTGTGCCTTTCTCGACCTGGACCGTCTCTTCCTCCCACAGACAである。ハイブリダイゼーションの条件は、Clontech社のプロトコールに従った。その結果、図9に示されるように、rWAR-1遺伝子は、脳で強く発現していた。また、精巣での発現が認められ、肺、腎臓での発現は微弱であった。実施例12

ヒト及びラットWAR-1の神経関連部位での発現の検討

r WAR-1遺伝子をプローブとして1.7KbのEcoRI断片を用いて幼若ラット脳 海馬組織より常法により調製した poly(A) mRNA及びClontech社より購 入した成熟ラット脳並びに網膜の poly(A) mRNAに対してノーザンハイブリダイ ゼーションを行った。その結果、図10に示されるように網膜でも発現が認められた。検出されたバンドの強度が低いのは poly(A) mRNAが幾分分解を受けてい るためと考えられる。

また、実施例5で用いたhWAR-1を検出するプローブを用いてClontech社より購入したMTNブロットフィルター(human brain MTN blotII及びIII)に対してハイブリダイゼーションを行った(図11)。その結果、脳内のどの部位においてもhWAR-1の発現が認められた。また、脊髄においても本遺伝子の発現が認められた。このことより、末梢における神経部位においてもhWAR-1遺伝子が発現していることが示唆された。実施例13

<u>組換えアデノウイルスベクター感染細胞の培養上清を用いたPC12細胞に対する神経突起伸長作用の検討</u>

25 実施例7で作製したアデノウイルスベクターA×CAWAR1ーLまたはA×CAWAR1ーR、もしくはA×CAwt (コントロールウイルス)をヒトグリア芽細胞腫株T98Gに重複感染度10で37℃、1時間感染させ、その後5%FCS含有最小栄養培地で培養した。また、ネガティブコントロールとして非神経系培養であるヒト肺癌由来A549細胞に対しても同様のウイルス感染実験を

WO 00/22123

10

15

20

25

染2日後の各々の培養上清を回収し、遠心後、上清を0.22ミクロン孔のメンブレ ンフィルターを通して細胞の残骸を除去した。

得られた培養上清は、場合によってアミコン社のセントリプレップ (3000Kdカット) を用いて 5 倍に濃縮した。

96穴コラーゲンコートプレートに1ウェルあたり100 μ 1のDMEM-10%FCS培地で1~5 x 10⁴細胞/mlとなるようPC12細胞を撒き込み、4日間培養を続けた。培養上清をすて、組換えアデノウイルス感染細胞の培養上清を表3及び表4に示したように最終容量が約100 μ 1となるように添加した。また、培養中の血清濃度は最終10%FCSとした。添加した試料として、培地(Medium)、非感染細胞の培養上清(Mock)、AxCAWAR1ーL感染細胞の培養上清(WAR(+))、AxCAWAR1ーR感染細胞の培養上清(WAR(-))、及びAxCAwt感染細胞の培養上清(Control)を用いた。アッセイ系のポジティブコントロールとして、10 μ 1の500 ng/ml β -NGFを添加した。

培養上清添加後、2日間培養を続けPC12細胞の神経突起伸長作用を顕微鏡下で観察した。その結果、表3に示されるようにhWAR-1のセンス鎖を発現するアデノウイルスを感染させたT98G細胞の培養上清をPC12に添加した場合にのみ、強い神経突起伸長作用が認められた。また、A549細胞の培養上清を用いた実験では何れの場合も神経突起伸長作用は認められなかった。更に、表4に示された結果から、神経突起伸長作用を起こすのに必要なAxCAWAR1-L感染細胞の培養上清ば50µ1以上であれば良いことが確認された。

以上の結果は、WAR-1遺伝子の発現により、T98G細胞の産生する神経 栄養因子の細胞外への分泌が促進されたことを明らかに示すものである。表2は、 アデノウイルス感染T98G及びA549細胞の培養上清を用いたPC12アッ セイの結果(感染細胞培養上清100µ1添加)を示す。表3中、+++、++、+、 ーはこの順に、PC12細胞の神経突起伸長が大きいことを示す。

表3

	β-NGF	T98G	A549
Medium	_		_
Mock		+	_
Control		+	+
WAR (-)		+	+
WAR (+)		. ++	+
β-NGF	+++ _		

表4は、アデノウイルス感染T98G細胞の培養上清を用いたPC12アッセイの結果を示す。表4中、+++、++、+、-/+、-はこの順に、PC12細胞の神経突起伸長が大きいことを示す。

表 4

5

		濃約	宿培養上清	f(μ1)	培	美上清(μ	1)
	β-NGF	50	30	20	100	50	30
Medium	_		_	_	-	_	_
Mock		-/+	-/+	-/+	-/+	-/+	-/+
Control		++	+	+	+	+	+
WAR (-)		-/+	+	+	-/+	++	-/+
WAR (+)		++	++	++	++	++	+
β−NGF	+++						

産業上の利用の可能性

本発明のDNAは、癌細胞増殖阻害効果を示すWAR-1をコードするものであり、該DNAにコードされるWAR-1ポリペプチドを細胞内で産生または産生誘導させることにより、癌細胞の増殖を阻害し、癌細胞に細胞死を起こさせることができる。本発明はこのようなWAR-1の効果に基く新しい癌治療方法を提供することができる。

また、本発明の小胞体膜タンパク質WAR-1遺伝子にコードされるWAR-1ポリペプチドを細胞内で産生または、産生誘導させることにより、中枢及び末梢神経変性疾患領域において神経細胞の脱落を防ぎ、更に細胞死を迎える直前の細胞を活性化し正常な神経伝達機能を回復させるに有用な複数の神経栄養因子の分泌を同時に促進することができる。本発明により、神経変性疾患に対する新しい治療方法が提供される。

15

20

請求の範囲

- 1. 以下の(a)又は(b)のタンパク質をコードするDNA。
- (a) 配列番号: 2又は配列番号: 4に記載のアミノ酸配列からなるタンパク質
- (b) 配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは複数のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ癌細胞の増殖阻害活性を有するタンパク質
 - 2. 以下の(c) 又は(d) のDNA。
- (c)配列番号:1又は配列番号:3に記載の塩基配列からなるDNA
- 10 (d) 前記(c) のDNAとストリンジェントな条件下でハイブリダイズし、かつ癌細胞の増殖阻害活性を有するタンパク質をコードするDNA
 - 3. 配列番号:1又は配列番号:3に記載のDNAの全部又は一部をプローブ に用いて染色体DNAライブラリーからクローニングされる、請求項2記載のD NA。
 - 4. プロモーター領域を含むことを特徴とする、請求項3記載のDNA。
 - 5. 受託番号FERM BP-6910、又は受託番号FERM BP-6911で表示される微生物が有する、請求項1又は2記載のDNA。
 - 6. 請求項1~5いずれか記載のDNAを発現することによって得られるタンパク質。
 - 7. 請求項1~5いずれが記載のDNAを含有する組換え発現ベクター。
 - 8. 請求項1~5いずれか記載のDNAを含有する組換えアデノウイルスベク ター。
 - 9. 請求項7又は8記載の組換え発現ベクターによって形質転換された形質転換細胞。
- 25 10. 請求項1~5いずれか記載のDNAの全部又は一部よりなる1本鎖又は 2本鎖DNAであって、かつ配列番号:1又は配列番号:3に記載の塩基配列よ りなるDNAの発現を特異的に検出し得る、ハイブリダイゼーションプローブ又 はPCRプライマー用のDNA。
 - 11.以下の配列よりなる、請求項10記載のDNA。

15

20

- 5'側プライマー配列;5'-CACCTGGCTGGATCGCAGAATCGG-3'(配列番号:7)
- 3'側プライマー配列:5'-CTCTTTCCTCTTTGCCGACAGTC-3'(配列番号:8)
- 12. 請求項10又は11記載のDNAを、ハイブリダイゼーションプローブ 又はPCRプライマーとして用いることを特徴とする、配列番号:1又は配列番号:3に記載の塩基配列よりなるDNAの発現の検出方法。
- 13.請求項6記載のタンパク質に結合する抗体。
 - 14. 請求項13記載の抗体を用いることを特徴とする、配列番号:2又は配列番号:4に記載のアミノ酸配列よりなるタンパク質の発現の検出方法。
 - 15. 請求項12又は14記載の検出方法よりなる、癌の診断方法。
- 10 16.請求項1~5いずれか記載のDNA、又は請求項6記載のタンパク質の いずれかを有効成分として含有する医薬。
 - 17. 配列番号:1又は配列番号:3に記載の塩基配列よりなるDNAの発現を増加させることを特徴とする、癌細胞増殖阻害剤。
 - 18. 請求項1~5いずれか記載のDNAを有効成分とする、癌細胞増殖阻害 剤。
 - 19. アデノウイルスベクターを用いることを特徴とする、請求項18記載の 癌細胞増殖阻害剤。
 - 20. 以下の(a) 又は(b) のタンパク質をコードするDNAを有効成分とする神経栄養因子分泌促進剤。
 - (a)配列番号:2又は配列番号:4に記載のアミノ酸配列からなるタンパク質。
 - (b) 配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは数個または複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ神経栄養因子の分泌促進活性を有するタンパク質。
- 21. 以下の(c) 又は(d)のDNAを有効成分とする神経栄養因子分泌促25 進剤。
 - (c) 配列番号:1又は配列番号:3に記載の塩基配列からなるDNA。
 - (d) 前記(c)のDNAとストリンジェントな条件下でハイブリダイズし、かつ神経栄養因子の分泌促進活性を有するタンパク質をコードするDNA。
 - 22. 配列番号:1 又は配列番号:3 に記載のDNAの全部又は一部をプロー

ブに用いて染色体DNAライブラリーからクローニングされるDNAを有効成分とする、請求項21記載の神経栄養因子分泌促進剤。

- 23. プロモーター領域を含むことを特徴とするDNAを有効成分とする、請求項22記載の神経栄養因子分泌促進剤。
- 5 24. 受託番号FERM BP-6910、又は受託番号FERM BP-6 911で表示される微生物が有するDNAを有効成分とする、請求項20又は2 1記載の神経栄養因子分泌促進剤。
 - 25. DNAが組換え発現ベクターに含まれていることを特徴とする、請求項 20~24いずれか記載の神経栄養因子分泌促進剤。
- 10 26. DNAがアデノウイルスベクターに含まれていることを特徴とする、請 求項25記載の神経栄養因子分泌促進剤。
 - 27. 以下の(a) 又は(b) のタンパク質を有効成分とする神経栄養因子分泌促進剤。
 - (a) 配列番号:2又は配列番号:4に記載のアミノ酸配列からなるタンパク質
- 15 (b)配列番号:2又は配列番号:4に記載のアミノ酸配列のうち1若しくは数 個または複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列からなり、かつ神経栄養因子の分泌促進活性を有するタンパク質。
 - 2.8. 以下の(c)又は(d)のDNAによってコードされるタンパク質を有効成分とする神経栄養因子分泌促進剤。
- 20 (c) 配列番号:1又は配列番号:3に記載の塩基配列からなるDNA。
 - (d) 前記(c)のDNAとストリンジェントな条件下でハイブリダイズし、かつ神経栄養因子の分泌促進活性を有するタンパク質をコードするDNA。
 - 29. 受託番号FERM BP-6910、又は受託番号FERM BP-6911で表示される微生物が有するDNAによってコードされるタンパク質を有効成分とする、請求項27又は28記載の神経栄養因子分泌促進剤。
 - 30. 配列番号:1又は配列番号:3に記載のDNAの発現を増強する物質または配列番号:2又は配列番号:4に記載のアミノ酸配列からなるタンパク質の産生を増強する物質を有効成分とする神経栄養因子分泌促進剤。
 - 31. 請求項20~30いずれか記載の神経栄養因子分泌促進剤を含有する神

経変性疾患治療剤。

32. 配列番号:1又は配列番号:3に記載の塩基配列よりなるDNAの発現を増強すること、または配列番号:2又は配列番号:4に記載のアミノ酸配列からなるタンパク質の産生を増強することを特徴とする、神経栄養因子の分泌促進方法。

国際出願番号 PCT/JP99/05631

A. 発明の風する分野の分類(国際特許分類(IPC)) Int. Cl'Cl2N15/12, C07K14/47, C12N5/10, G01N33/53, C12Q1/68, C07K16/18//C12P21/02, C12P21/08, A61K38/16, A61K48/00,

A61P35/00, A61P25/28

B. 調査を行った分野

....

調査を行った最小限資料(国際特許分類(IPC))

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) SwissProt/PIR/GeneSeq, Genebank/EMBL/DDBJ/GeneSeq, WPI(DIALOG), BIOSIS (DIALOG), REGISTRY(STN)

C. 関連する引用文献のカテゴリー*	5と認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	Nobuo Nomura et al. "Prediction of the Coding Sequences of Unidentified Human Genes. II. The Coding Sequences of 40 New Genes (KIAA0041-KIAA0080) Deduced by Analysis of cDNA Clones from Human Cell Line KG-1"DNA Res. (1994) Vol. 1, No. 5, p. 223-229	1-32
A	Dirk Gorlich et al. "A protein of the endoplasmic reticulum involved early in polypeptide translocation"Nature(1992) Vol. 357, NO. 6373, p. 47-52	1-32
	たたまかは70分としていて	

||_| C欄の続きにも文献が列挙されている。-| | パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す て出願と矛盾するものではなく、発明の原理又は理 もの 「E」国際出願日前の出願または特許であるが、国際出願日 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) よって進歩性がないと考えられるもの 「O」口頭による開示、使用、展示等に含及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査報告の発送日 国際調査を完了した日 25,01,00 13.01.00 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 N 9637 **/P** 日本国特許庁(ISA/JP) 郵便番号100-8915 電話番号 03-3581-1101 内線 3488 東京都千代田区霞が関三丁目4番3号