Conceptos básicos de grafos

Redes sociales

Introducción

- Es impresionante la ubicuidad de las redes
 - Interconexiones neuronales
 - Reacciones bioquímicas
 - Publicación de artículos
 - Redes de computadoras
 - Infraestructura de transporte
 - Vínculos sociales
 - Cadenas de alimentación
 - Propagación de enfermedades/rumores
 - Cadenas de suministro

Es mucho más impresionante observar que prácticamente todas siguen las mismas leyes

Blogs políticos – Campaña electoral B. Obama

Fuente: Lada Adamic Teoría de grafos 4

Organizaciones

Células terroristas

Facebook

Vínculos de amistad

Amigos de mis amigos

Coautores

Redes

Red social: Estructura de una organización

Redes de colaboración científica

Vínculos empresariales biotech- EUA

Redes de transporte

Una red es un grafo

- Nodos conectados por enlaces
- Los grafos tienen propiedades
 - Generación
 - Distancia entre nodos
 - Alcanzabilidad
 - Conectividad
 - Difusión de información
 - Cooperación/colaboración
 - Tolerancia a fallas
- Entender esas propiedades es entender buena parte de nuestro universo

Grafos

Redes/Grafos son un conjunto de nodos conectados

Puntos	Líneas	Contexto
Vértices	Orillas, arcos	Matemáticas
Nodos	Enlaces, ligas	Computación
Sitios	Enlaces	Física
Actores	Relaciones, conexiones	Sociología

Fuente: Lada Adamic Teoría de grafos 15

¿Cómo se forman las redes?

• Erdös y Rényi: Random networks (1959)

Redes aleatorias

- Pocas componentes conexas (típicamente una)
- Bajo coeficiente de agrupamiento
- Magia cuando L (número de enlaces) es del orden de N (número de nodos): Aparece un componente gigante
- Muy útil pero insuficiente

Conectividad de una random network

Small worlds – Watts & Strogatz

- Seis grados
- Nuestra sociedad es muy densa
- Si en vez de una liga, cada nodo tiene, en promedio k:

d = log N/log k

"Bacon number"

http://oracleofbacon.org/

En matemáticas, Erdös number

A tiny portion of the movie-performer relationship graph

Small worlds

- Lo común en casi todo tipo de redes, es tener una pequeña separación
- 1998. ¿Distancia entre dos documentos?
 - En promedio, 19. $d = 0.35 + 2 \log N$
 - ... la distancia más larga en las redes estudiadas (hasta 2005)
 - Lo difícil en internet no es la distancia, sino encontrar el documento

El poder de los enlaces débiles - Granovetter

- Para conseguir un empleo, para diseminar un rumor, para crear una epidemia, los enlaces débiles son mucho más importantes que los vínculos fuertes
 - Nuestros contactos están en el mismo grupo fuertemente interrelacionado
 - Son enlaces débiles los que llevan a otras áreas

Hubs y conectores – Ley Pareto

- Unas personas tienen muchos más conocidos que otras
 - Crean tendencias, cierran negocios, difunden noticias y rumores
- Hubs existen en cualquier sistema complejo
 - 80% de enlaces en 15% de las páginas
- Dominan la estructura de las redes y las hacen ver como "small worlds"

Modelos de redes

Las redes "naturales" suelen tener...

- Una (o muy pocas) componentes conexas
 - Independientemente del tamaño de la red
- Un diámetro pequeño ("6 grados de separación")
 - Constante, que crece logarítmicamente o que incluso decrece con el tamaño de la red
- Un alto grado de agrupamiento (comunidades)
 - Mucho mayor que el que resultaría de una red aleatoria (y, aún así, con un pequeño diámetro)
- Mezcla de conexiones
 - Conexiones locales y de larga "distancia"
- ¿ comparten características "universales"?

Scale-free networks

 Muestran rasgos de auto-organización en sistemas complejos: Los enlaces no son aleatorios

 Resistentes frente a fallos aleatorios, que pueden causar con facilidad la disrupción de una red aleatoria pero no la de una red libre de escala.

 Vulnerables frente a ataques organizados: Los "hubs" son esenciales para mantener la red unida.

Tolerancia a fallos

Propiedades de las redes

Propiedades de interés

- Componentes conectados:¿cuántos? ¿de qué tamaño?
- Diámetro de la red:Distancia media, peor caso...
- Grado de los nodos (degree distribution)
 y existencia de "hubs" (vértices muy conectados)
- Agrupamiento
 (balance entre conexiones locales y de larga distancia; roles de ambos tipos de conexiones)

Propiedades de las redes

Coeficiente de agrupamiento

```
 nbr(u) Vecinos de u en el grafo
 k Número de vecinos de u (i.e. |nbr(u)|)
 max(u) Número máximo de aristas entre los vecinos de u, p.ej. k*(k-1)/2
```

Coeficiente de agrupamiento del nodo u: c(u) = (#aristas entre vecinos de u) / max(u)

Coeficiente de agrupamiento del grafo G: C = Promedio de c(u) para todos los nodos de G

Coeficiente de agrupamiento

$$k = 4$$

$$m = 6$$

$$c(u) = 4/6 = 0.66$$

$$0 \le c(u) \le 1$$

Nodos

- Propiedades
 - De conexiones inmediatas
 - indegree Cuántos enlaces dirigidos inciden en el nodo
 - outdegree
 Cuántos enlaces dirigidos salen del nodo
 - degree (in or out)
 Número de enlaces vinculados al nodo
 - Del grafo
 - Centralidad (cercanía, interrelación)

Enlaces

- Dirigidos
 - $-A \rightarrow B$
 - A le dio un regalo a B, A es hijo de B, A va a B
- No dirigidos
 - $-A \iff B \text{ or } A B$
 - A y B publicaron un artículo
 - A y B son hermanos
 - A y B son amigos

Atributos de enlaces

Ejemplos:

- Peso (e.g. frecuencia de comunicación)
- ranking (mejor amigo, segundo mejor, ...)
- Tipo (amigo, pariente, compañero de trabajo)
- Propiedades que dependen de la estructura del resto del grafo, por ejemplo, intermediación (betweeness)