

- 1 -

SEQUENCE LISTING

<110> Braun, Jonathan
Wei, Bo
Forbes, Ashley

<120> Methods of Diagnosing and Treating
Crohn's Disease Using Pseudomonas Antigens

<130> P-PM 4968

<140> US 09/976,451
<141> 2001-10-12

<150> US 60/240,347
<151> 2000-10-13

<160> 10

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 551
<212> DNA
<213> P. fluorescens

<220>
<221> CDS
<222> (1)...(549)

<400> 1
atg acg gaa cca gta tcc aca ggc agg tgc gat tca ccc ctt ctc cag 48
Met Thr Glu Pro Val Ser Thr Gly Arg Cys Asp Ser Pro Leu Leu Gln
1 5 10 15

gcg ttc gtc gac aat cga ctg att ctg gtg aag atc gcg gcc cgt atc 96
Ala Phe Val Asp Asn Arg Leu Ile Leu Val Lys Ile Ala Ala Arg Ile
20 25 30

acc ggg tgc cgc tcc cgc gcc gaa gac gtg gtg cag gac gcc tac ttc 144
Thr Gly Cys Arg Ser Arg Ala Glu Asp Val Val Gln Asp Ala Tyr Phe
35 40 45

cgg ctg cag tcg gcg ccg acc atc acc tca tcg ttc aag gcc caa ctg 192
Arg Leu Gln Ser Ala Pro Thr Ile Thr Ser Ser Phe Lys Ala Gln Leu
50 55 60

agt tat ctg ttt cag atc gta cgc aac ctg gcg atc gat cat tac cgc 240
Ser Tyr Leu Phe Gln Ile Val Arg Asn Leu Ala Ile Asp His Tyr Arg
65 70 75 80

aag cag gcc ctg gag ctc aaa tac tcc ggg acc gaa gag gaa ggc ttg 288
Lys Gln Ala Leu Glu Leu Lys Tyr Ser Gly Thr Glu Glu Gly Leu
85 90 95

aat gtg gtt att cac ggc gct tca ccg gaa acc tcg cac atc aat ttc 336
Asn Val Val Ile His Gly Ala Ser Pro Glu Thr Ser His Ile Asn Phe
100 105 110

aac acc ctg gaa aac atc gcc gac gcc ctg acg caa ctg ccc cag cgc 384
Asn Thr Leu Glu Asn Ile Ala Asp Ala Leu Thr Gln Leu Pro Gln Arg
115 120 125

acc cgc tac gcg ttc gag atg tac cgc ttg cat ggc gtg ccg caa aaa 432
Thr Arg Tyr Ala Phe Glu Met Tyr Arg Leu His Gly Val Pro Gln Lys
130 135 140

gac atc gcc aag gag ctt ggg gtg tct ccg acc ttg gtg aac ttc atg 480
Asp Ile Ala Lys Glu Leu Gly Val Ser Pro Thr Leu Val Asn Phe Met
145 150 155 160

att cgc gat gcg ctg gtg cat tgc cgc aag gtg tcg ggc agt cat agc 528
Ile Arg Asp Ala Leu Val His Cys Arg Lys Val Ser Gly Ser His Ser
165 170 175

gat acg ttt gcg cg^g cg^g gtt ta 551
Asp Thr Phe Ala Arg Arg Val
180

<210> 2
<211> 183
<212> PRT
<213> *P. fluorescens*

<400> 2
Met Thr Glu Pro Val Ser Thr Gly Arg Cys Asp Ser Pro Leu Leu Gln
1 5 10 15
Ala Phe Val Asp Asn Arg Leu Ile Leu Val Lys Ile Ala Ala Arg Ile
20 25 30
Thr Gly Cys Arg Ser Arg Ala Glu Asp Val Val Gln Asp Ala Tyr Phe
35 40 45
Arg Leu Gln Ser Ala Pro Thr Ile Thr Ser Ser Phe Lys Ala Gln Leu
50 55 60
Ser Tyr Leu Phe Gln Ile Val Arg Asn Leu Ala Ile Asp His Tyr Arg
65 70 75 80
Lys Gln Ala Leu Glu Leu Lys Tyr Ser Gly Thr Glu Glu Gly Leu
85 90 95
Asn Val Val Ile His Gly Ala Ser Pro Glu Thr Ser His Ile Asn Phe
100 105 110
Asn Thr Leu Glu Asn Ile Ala Asp Ala Leu Thr Gln Leu Pro Gln Arg
115 120 125
Thr Arg Tyr Ala Phe Glu Met Tyr Arg Leu His Gly Val Pro Gln Lys
130 135 140

Asp Ile Ala Lys Glu Leu Gly Val Ser Pro Thr Leu Val Asn Phe Met
145 150 155 160
Ile Arg Asp Ala Leu Val His Cys Arg Lys Val Ser Gly Ser His Ser
165 170 175
Asp Thr Phe Ala Arg Arg Val
180

<210> 3
<211> 184
<212> PRT
<213> P. fluorescens

<400> 3
Met Thr Glu Gln Val Ser Thr Ser Lys Cys Asp Ser Pro Leu Leu His
1 5 10 15
Ala Phe Val Asp Asn Arg Leu Ile Leu Val Lys Ile Ala Ala Arg Ile
20 25 30
Thr Gly Cys Arg Ser Thr Ala Glu Asp Val Val Gln Asp Ala Phe Phe
35 40 45
Arg Leu Gln Ser Ala Pro Pro Ile Thr Ser Ser Ile Lys Ala Gln Leu
50 55 60
Ser Tyr Leu Phe Gln Ile Val Arg Asn Leu Ala Ile Asp His Tyr Arg
65 70 75 80
Lys Gln Ala Leu Glu Gln Lys Tyr Ser Gly Pro Glu Glu Gly Leu
85 90 95
Asn Val Val Ile Gln Gly Ala Ser Pro Glu Thr Ser His Ile Asn Phe
100 105 110
Ser Thr Leu Glu Asn Ile Ala Asp Ala Leu Thr Glu Leu Pro Ser Arg
115 120 125
Thr Arg Tyr Ala Phe Glu Met Tyr Arg Leu His Gly Val Pro Gln Lys
130 135 140
Asp Ile Ala Lys Glu Leu Gly Val Ser Pro Thr Leu Val Asn Phe Met
145 150 155 160
Ile Arg Asp Ala Leu Val His Cys Arg Lys Val Ser Gly Ser Arg Arg
165 170 175
Asp Ala Val Ala Val Gly Arg Arg
180

<210> 4
<211> 597
<212> DNA
<213> P. fluorescens

<220>
<221> CDS
<222> (1)...(594)

<400> 4
atg cgc acc atg gtc gac agt ggc caa ttg acc gac ccc gag agc gcc 48
Met Arg Thr Met Val Asp Ser Gly Gln Leu Thr Asp Pro Glu Ser Ala
1 5 10 15

cgc ggc aag ttg ctg caa acc gcg gct cat ctg ttt cgc aac aag ggt	96		
Arg Gly Lys Leu Leu Gln Thr Ala Ala His Leu Phe Arg Asn Lys Gly			
20	25	30	
ttc gag cgc acc acc gtg cga gat ctg gcc agc gcc gtg ggc atc cag	144		
Phe Glu Arg Thr Thr Val Arg Asp Leu Ala Ser Ala Val Gly Ile Gln			
35	40	45	
tcc ggc agc atc ttt cat cac ttc aag agc aag gat gag ata ttg cgt	192		
Ser Gly Ser Ile Phe His His Phe Lys Ser Lys Asp Glu Ile Leu Arg			
50	55	60	
gcc gtg atg gag gaa acc acc cat tac aac acc gcg atg atg cgc gct	240		
Ala Val Met Glu Glu Thr Thr His Tyr Asn Thr Ala Met Met Arg Ala			
65	70	75	80
tca ctg gaa gaa gcg agc acg gtg cgc gaa cgc gtg ctg gcg ctg atc	288		
Ser Leu Glu Glu Ala Ser Thr Val Arg Glu Arg Val Leu Ala Leu Ile			
85	90	95	
cgc tgc aag ttg cag tcg atc atg ggc ggc agt ggc gag gcc atg gcg	336		
Arg Cys Lys Leu Gln Ser Ile Met Gly Gly Ser Gly Glu Ala Met Ala			
100	105	110	
gtg ctg gtc tac gaa tgg cgc tcg ctg tcg gcc gaa ggc cag gcg cac	384		
Val Leu Val Tyr Glu Trp Arg Ser Leu Ser Ala Glu Gly Gln Ala His			
115	120	125	
gtg ctg gcc ctg cgt gac gtg tat gag cag atc tgg ttg cag gta ctg	432		
Val Leu Ala Leu Arg Asp Val Tyr Glu Gln Ile Trp Leu Gln Val Leu			
130	135	140	
ggc gag gcc aag gcc gct ggc tac atc cgg ggc gac gtg ttt att acc	480		
Gly Glu Ala Lys Ala Ala Gly Tyr Ile Arg Gly Asp Val Phe Ile Thr			
145	150	155	160
cgg cgc ttc ctc acc ggg gcc tta tcc tgg acc acc acc tgg ttt cgt	528		
Arg Arg Phe Leu Thr Gly Ala Leu Ser Trp Thr Thr Trp Phe Arg			
165	170	175	
gcc caa ggc agc ctg acc ctt gag gag ttg gcc gaa gag gcc ttg ttg	576		
Ala Gln Gly Ser Leu Thr Leu Glu Leu Ala Glu Glu Ala Leu Leu			
180	185	190	
atg gtg ctg aag tcg gac tga	597		
Met Val Leu Lys Ser Asp			
195			

<210> 5

<211> 198

<212> PRT

<213> P. fluorescens

<400> 5

Met Arg Thr Met Val Asp Ser Gly Gln Leu Thr Asp Pro Glu Ser Ala
1 5 10 15
Arg Gly Lys Leu Leu Gln Thr Ala Ala His Leu Phe Arg Asn Lys Gly
20 25 30
Phe Glu Arg Thr Thr Val Arg Asp Leu Ala Ser Ala Val Gly Ile Gln
35 40 45
Ser Gly Ser Ile Phe His His Phe Lys Ser Lys Asp Glu Ile Leu Arg
50 55 60
Ala Val Met Glu Glu Thr Thr His Tyr Asn Thr Ala Met Met Arg Ala
65 70 75 80
Ser Leu Glu Glu Ala Ser Thr Val Arg Glu Arg Val Leu Ala Leu Ile
85 90 95
Arg Cys Lys Leu Gln Ser Ile Met Gly Gly Ser Gly Glu Ala Met Ala
100 105 110
Val Leu Val Tyr Glu Trp Arg Ser Leu Ser Ala Glu Gly Gln Ala His
115 120 125
Val Leu Ala Leu Arg Asp Val Tyr Glu Gln Ile Trp Leu Gln Val Leu
130 135 140
Gly Glu Ala Lys Ala Ala Gly Tyr Ile Arg Gly Asp Val Phe Ile Thr
145 150 155 160
Arg Arg Phe Leu Thr Gly Ala Leu Ser Trp Thr Thr Thr Trp Phe Arg
165 170 175
Ala Gln Gly Ser Leu Thr Leu Glu Glu Leu Ala Glu Glu Ala Leu Leu
180 185 190
Met Val Leu Lys Ser Asp
195

<210> 6

<211> 17

<212> DNA

<213> P. fluorescens

<400> 6

agatcaagat cacaagc

17

<210> 7

<211> 187

<212> PRT

<213> P. aeruginosa

<400> 7

Met Ser Glu Gln Leu Ser Thr Arg Arg Cys Asp Thr Pro Leu Leu Gln
1 5 10 15
Ala Phe Val Asp Asn Arg Thr Ile Leu Val Lys Ile Ala Ala Arg Ile
20 25 30
Thr Gly Cys Arg Ser Arg Ala Glu Asp Val Val Gln Asp Ala Phe Phe
35 40 45
Arg Leu Gln Ser Ala Pro Gln Ile Thr Ser Ser Glu Lys Ala Gln Leu
50 55 60

Ser Tyr Leu Phe Gln Ile Val Arg Asn Leu Ala Ile Asp His Tyr Arg
65 70 75 80
Lys Gln Ala Leu Glu Gln Lys Tyr Ser Gly Pro Glu Glu Glu Gly Leu
85 90 95
Asn Val Val Ile Gln Gly Ala Ser Pro Glu Thr Ser His Ile Asn Tyr
100 105 110
Ala Thr Leu Glu His Ile Ala Asp Ala Leu Thr Glu Leu Pro Lys Arg
115 120 125
Thr Arg Tyr Ala Phe Glu Met Tyr Arg Leu His Gly Val Pro Gln Lys
130 135 140
Asp Ile Ala Lys Glu Leu Gly Val Ser Pro Thr Leu Val Asn Phe Met
145 150 155 160
Ile Arg Asp Ala Leu Val His Cys Arg Lys Val Thr Ala Glu Arg Gln
165 170 175
Gly Asp Asn Val Thr His Leu Ser Ala Arg Arg
180 185

<210> 8
<211> 176
<212> PRT
<213> *P. putida*

<400> 8
Met Ala Glu Gln Leu Ser Thr Ser Lys Cys Asp Ser Pro Leu Leu Gln
1 5 10 15
Ala Phe Val Asp Asn Arg Ser Ile Leu Val Lys Ile Ala Ala Arg Ile
20 25 30
Thr Gly Cys Arg Ser Arg Ala Glu Asp Val Val Gln Asp Ala Phe Phe
35 40 45
Arg Leu Ser Ala Ala Pro Gln Ile Thr Ser Ser Phe Lys Ala Gln Leu
50 55 60
Ser Tyr Leu Phe Gln Ile Val Arg Asn Leu Ala Ile Asp His Tyr Arg
65 70 75 80
Lys Gln Ala Met Glu Leu Lys Tyr Ser Gly Ser Glu Glu Gly Leu
85 90 95
Asn Val Val Ile Gln Asn Ala Ser Pro Glu Ala Thr His Ile Asn Leu
100 105 110
Ala Ala Leu Asp Glu Ile Ala Glu Ala Leu Asn Glu Leu Pro Gln Arg
115 120 125
Thr Arg Ser Ala Phe Glu Met Tyr Arg Leu His Gly Val Pro Gln Lys
130 135 140
Asp Ile Ala Lys Glu Leu Gly Val Ser Pro Thr Leu Val Asn Phe Met
145 150 155 160
Ile Arg Asp Ala Leu Val His Ser Ala Lys Thr Ala Asn Arg Gln Val
165 170 175

<210> 9
<211> 160
<212> PRT
<213> Artificial Sequence

<220>

<223> synthetic consensus sequence

<400> 9

Met	Glu	Gln	Ser	Thr	Cys	Asp	Ser	Pro	Leu	Leu	Gln	Ala	Phe	Val	Asp
1									5		10				15
Asn	Arg	Ile	Leu	Val	Lys	Ile	Ala	Ala	Arg	Ile	Thr	Gly	Cys	Arg	Ser
		20							25					30	
Arg	Ala	Glu	Asp	Val	Val	Gln	Asp	Ala	Phe	Phe	Arg	Leu	Gln	Ser	Ala
		35							40					45	
Pro	Ile	Thr	Ser	Ser	Phe	Lys	Ala	Gln	Leu	Ser	Tyr	Leu	Phe	Gln	Ile
		50				55					60				
Val	Arg	Asn	Leu	Ala	Ile	Asp	His	Tyr	Arg	Lys	Gln	Ala	Leu	Glu	Lys
	65					70			75					80	
Tyr	Ser	Gly	Glu	Glu	Gly	Leu	Asn	Val	Val	Ile	Gln	Gly	Ala	Ser	
		85							90					95	
Pro	Glu	Thr	Ser	His	Ile	Asn	Thr	Leu	Glu	Ile	Ala	Asp	Ala	Leu	Thr
		100							105					110	
Glu	Leu	Pro	Arg	Thr	Arg	Tyr	Ala	Phe	Glu	Met	Tyr	Arg	Leu	His	Gly
		115							120					125	
Val	Pro	Gln	Lys	Asp	Ile	Ala	Lys	Glu	Leu	Gly	Val	Ser	Pro	Thr	Leu
		130							135					140	
Val	Asn	Phe	Met	Ile	Arg	Asp	Ala	Leu	Val	His	Cys	Arg	Lys	Val	Arg
	145								150					155	
															160

<210> 10

<211> 3657

<212> DNA

<213> P. fluorescens

<220>

<221> misc_feature

<222> 1923

<223> n = A,T,C or G

<400> 10

cgacggcccg ggctggctcg tttgagttga ggggtgcaggt catcgccgag caacacggcg 60
attttcagcg gcatgtgcgc gttatcgca gcccgttgca gggcgccggc gcaggcttgg 120
gggttatac caccggcatt gctgtatcacc cggatgccct ggcgctggat atccgcccagc 180
aggggtgtca gcacctcgac aaaatccgtg gcgttaaccgg ccttggggtc tttcaggcg 240
gcaccggcga ggatcgacag ggtgacttcc gcgaggtaat cgaacaccag gtaatccaag 300
gcaccggccct gcaccaattt ggcggccggc gtgcagaatgt cgcggccagaa ggcgctggcg 360
cagccgatac gtaccgtctt gctcatgaga aatcccttcc ccaagggtcg tgccgagac 420
taccaagcaa ggcgctgggt ttgaaactcc agtcacaagt tttacccaaag cgcttgcgtt 480
ggtggcagtc acggcctaaa ttgcccggcca agacgacagt agacgtgaag gagagcagca 540
tgatgagca caaaggccctg ggggtgtatgc gcacccatggt cgacagtggc caattgaccg 600
accccgagag cgccccggc aagttgctgc aaaccggcgc tcatctgttt cgcaacaagg 660
gtttcgagcg caccaccgtg cgagatctgg ccagccgtt gggcatccag tccggcagca 720
tctttcatca cttcaagagc aaggatgaga tattgcgtgc cgtgatggag gaaaccaccc 780
attacaacac cgcgatgtatgc cgcgcttcac tggagaagaagc gagcacggtg cgcaacgcg 840
tgctggcgct gatccgctgc aagttgcagt cgatcatggg cggcagtggc gagggccatgg 900
cggtgctggc ctacgaatgg cgctcgctgt cggccgaagg ccaggcgcac gtgctggccc 960

tgctgtacgt gtatgagcag atctggttgc aggtactggg cgaggccaa gcccgtggct 1020
acatccgggg cgacgtgtt attaccggc gcttcctcac cggggccta tcctggacca 1080
ccacctggtt tcgtgcccaa ggcagcctga cccttgagga gttggccgaa gaggcctgt 1140
tgatggtgct gaagtccggac tgaggcgcaa gttattaaatt tgctggcgaa agttgtctcc 1200
cccaataaaaa acgccttagct tatcggcatt gaactcttca acggtgtgtg cctcgatgtt 1260
ttcgccatgg cggctggctg caggacttac tttatggca ctgggcacccg ccgcgtggac 1320
gcaggctggt gccgcgcagt tggtgagaat cggcgcggcg cattttccgc cctacaccgt 1380
acgcctgaa caaggcgcg acaccgggtt gctggcgc aa ttggtcgagg cgttgaacgc 1440
tgcgcaaacc gattaccagt ttgtgggtt gcctacctcg atacctggc gttttcgtga 1500
cttcgagcaa ggccgggtcg acatggcgat ctgcggaaac ccgtcctggg gttggcagaa 1560
tattgccccat accagtgtt atatggggct gaagatgcgg agattttgt cgctcagcgt 1620
cagccccgtc ggcgaccaggat ttatccgacccg gacccacccg gaagcgctgg cggtattcag 1680
cggttacac tatgccttg ctgacttcaa tcccgatccc aagaacatgc cgagcggttc 1740
aacgcgacgt tgacctactc ccatgacagt aatctgctga tggttgctcg tgggcgtgca 1800
gatattgcgc tggttacccg ctcgtacctg agtgatttca tggtgccgaa cgccggacatg 1860
gccccggcagt ttttgggtc ggagcgtatt gaccagggtt atcaccacta cgcgttgg 1920
cgnccaaggc acccgatcac tggccggcg tttggccgaa ctgctcaagt cttgcgcgac 1980
agtggccaga tgctgaagat ttttggccg ttttgcgtatttgcgtt atgtgacgccc ggtggccctaa 2040
ggtcttagta agtaaaaatcc ttccggcgtca gtgggatcaa ctgtggaaagc tggcttgcct 2100
gcatggccgg cctgacagcc gacacagatt aatttgcgtt gatgccccccg gatccaatgt 2160
gggagcttgg cttgcctgca aagacggcct gacagtcaac acagttggac cgtgtacata 2220
tccatccctt gcggttaacgg gctactttagg gttccgcctt tacagccgct cactttgaa 2280
aagcgaaaaa gtaagaaaaa cgctcttgc ccaccactcg gcacccgcg aggctcggt 2340
tgcccgtaat ccgcgtatcg tttggggggc cgccacgcg catccatgcg cggggcggct 2400
aaacggatcc ctgcgggtt accccccaaa tccctgtcg aattccggcc agcgtggttt 2460
aacggggcgc ctaagatcaa aagccagatc aagatcacaa gcagatcaag atcacaagca 2520
gatcaagatc acaagcagat caagatcaca agcagatcaa gatcaagagc gggctcgctt 2580
cgcatcgtag tttccgtgga gccccttaccc acatatgtcg gcgctggatt aaaccggcg 2640
cgcaaacgtt tcgttatgcg tggccgacac cttgcggcaa tgcaccagcg catcgcaat 2700
catgaagttt accaagggtcg gagacacccca aagctccttgc gcatgtctt tttgcggcac 2760
gccatgcgaa cggtacatct cgaacgcgtt gcccgcgc tggggcagtt gcgctcaggcc 2820
gtcggcgatg tttccagggtt ttttgcgtt gatgtgcgag gttccgggtt aagcggcg 2880
aataaccaca ttcaagcctt cctttcggtt cccggagtttgcgtt ttttgcgtt gggcctgctt 2940
gccccgtatcg tcgatgcgc gtttgcgtt gatgtggaaatcg gatctggaaac agataactca gttggccctt 3000
gaacgatgag gtatgggtcg gcccgcactg cagccggaaag taggcgttgc gacccacgtc 3060
ttccggcgcc gaggccgacc cggtgatacg ggccgcgtt ttcaccagaa tcagtcgatt 3120
gtcgcacgaaac gcttggagaa ggggtgaatcg gacccgcgtt gttccgttgc gttccgtcat 3180
ggaaatcacc ttgcgtcgaa taggttaggg aagggcatcc ctgtttagggcc tcctacatat 3240
cgccgcacccaa attatgttta atgataatcg ttgtcaatcg agaaggcgaa ctaatctt 3300
gccttggcgaa aggtgtgaac cacgtctcgcc tcccccccg cgtactatcg ttttgcgtt 3360
ccgtccgttc tcatgggtcg cagggtcgatcg agtacaacgg ccaaggacca gcacccgcag 3420
gaggaccaga tgggttttgcgtcgatcc agcgtgtttc agttccggagt cctcgcggga 3480
tgatgtacgtc cctgcggctt cgcgttttgcgtt gctggccca ctcaggccg acgcgcctcg 3540
tctacgctcg ctggccgg gtttgcgttgc actggctgca agtgtgccc gtttgcgtt 3600
cgggacgcgg catgcgtatcg gacgagccat tgcagcgcga taccagcccg gggcgcc 3657