

Raisonnement par récurrence

Introduction:

En mathématiques, un certain nombre de propriétés dépendent d'un entier naturel n.

Par exemple, la somme des entiers naturels de 1 à n est égale à $\frac{n(n+1)}{2}$, c'est-à-dire que pour tout entier naturel n>0 :

$$1+2+3+\ldots+n=rac{n(n+1)}{2}$$

Nous pouvons vérifier ce résultat pour n=2 et pour n=3 :

Pour
$$n=2$$
: Pour $n=3$:

$$1 + 2 = 3 1 + 2 + 3 = 6$$

$$\frac{2(2+1)}{2} = 3 \qquad \qquad \frac{3(3+1)}{2} = 6$$

Même si ce résultat est vrai jusqu'à n=100, cela ne démontre pas pour autant qu'il est vrai pour tout $n\in\mathbb{N}^*$.

Pour effectuer cette démonstration, on dispose d'un outil particulier : le raisonnement par récurrence.

Le raisonnement par récurrence

a. Principe

Pour démontrer par récurrence qu'une proposition P_n est vraie pour tout entier naturel n supérieur ou égal à un entier naturel n_0 fixé, on procède en

trois étapes.

ightarrow Avant de commencer, on note P_n la proposition que l'on va démontrer.

Initialisation

On vérifie que P_{n_0} est vraie, c'est-à-dire que la proposition est vraie pour le premier indice n_0 .

→ On dit qu'on a **initialisé** la récurrence.

2 Hérédité

On suppose que, pour un entier naturel quelconque $k \geq n_0$, P_k est vraie. Sous cette hypothèse (dite de récurrence), on démontre que la proposition P_{k+1} est vraie.

ightarrow On a ainsi prouvé que l'hypothèse de récurrence « P_n vraie » est **héréditaire**.

Conclusion

Lorsque les deux premières étapes ont été réalisées, on peut conclure.

ightarrow Par récurrence, la proposition P_n est vraie pour tout entier naturel $n \geq n_0$.

En effet:

- ullet on a montré que P_{n_0} est vraie ;
- ullet on a démontré l'hérédité : si P_k est vraie, alors P_{k+1} est vraie ;
- ullet donc, avec $n=n_0$, P_{n_0+1} est vraie ;
- par hérédité, $P_{(n_0+1)+1}=P_{n_0+2}$ est vraie ;
- ullet toujours par hérédité, $P_{(n_0+2)+1}=P_{n_0+3}$ est aussi vraie ;
- et ainsi de suite...
- → C'est ce que l'on appelle un raisonnement par récurrence.
- b. Illustration

Démontrons maintenant la formule vue en introduction à l'aide du raisonnement par récurrence et montrons que, pour tout entier naturel $n\in\mathbb{N}^*$, $1+\ldots+n=\frac{n(n+1)}{2}$.

$$ightharpoonup$$
 Notons P_n la proposition : $1+\ldots+n=rac{n(n+1)}{2}$.

Initialisation

La proposition P_1 est vraie, car $1=rac{1(1+1)}{2}.$

On conçoit donc que, si l'on sait démontrer que, pour $n\geq 1$, « P_n vraie » entraı̂ne « P_{n+1} vraie », alors la proposition est vraie pour tout entier naturel $n\geq 1$.

2 Hérédité

Supposons donc que P_k est vraie pour un entier naturel $k\geq 1$, c'est-à-dire que, pour un entier naturel $k\geq 1$:

$$1+2+\ldots+(k-1)+k=rac{k(k+1)}{2}$$

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la propriété est vraie au rang supérieur (k+1), c'est-à-dire que P_{k+1} est vraie.

Autrement dit, montrons que:

$$1+2+\ldots+k+(k+1)=rac{(k+1)ig((k+1)+1ig)}{2}$$

Comme P_k est vraie, dans la somme $1+2+\ldots+k+(k+1)$, on peut remplacer les k premiers termes par $\frac{k(k+1)}{2}$.

→ On obtient alors :

$$1+2+\ldots+k+(k+1) = \overbrace{(1+2+\ldots+k)}^{rac{k(k+1)}{2}} + (k+1) = rac{k(k+1)}{2} + (k+1)$$

 \rightarrow En factorisant par (k+1), on obtient :

$$1+2+\ldots+k+(k+1)=(k+1)rac{k}{2}+(k+1)$$
 $=(k+1)\Big(rac{k}{2}+1\Big)$

 \rightarrow En réduisant le deuxième facteur au même dénominateur 2, on a :

$$1+2+\ldots+k+(k+1)=(k+1)rac{k+2}{2}$$

$$=rac{(k+1)ig((k+1)+1ig)}{2}$$

 \rightarrow Ainsi, P_{k+1} est vraie.

3 Conclusion

 P_n est vraie pour tout entier naturel $n \geq 1$.

ightarrow C'est-à-dire que, pour tout entier naturel $n\geq 1$:

$$1+\ldots+n=\frac{n(n+1)}{2}$$

2 Exemples

La meilleure façon de se familiariser avec le raisonnement par récurrence, c'est de le travailler. Nous donnons donc ici quatre exemples d'un tel raisonnement.

→ N'hésitez pas à mener vous-même le raisonnement à partir de la formule à démontrer, avant de regarder le déroulé donné.

a. Exemple 1

On considère la suite (u_n) définie par $u_0=1$ et, pour tout entier naturel n, $u_{n+1}=\sqrt{u_n+1}$.

Montrons par récurrence que tous les termes de la suite (u_n) sont strictement positifs et que la suite est croissante.

Une suite (u_n) est croissante si, pour tout entier naturel $n, u_n \leq u_{n+1}$.

Il s'agit ici donc de démontrer que $0 < u_n \le u_{n+1}$, pour tout entier naturel n.

 \rightarrow Commençons par noter P_n la proposition : $0 < u_n \le u_{n+1}$.

Initialisation

$$u_0 = 1$$

$$u_1 = \sqrt{u_0 + 1}$$
$$= \sqrt{1 + 1}$$
$$= \sqrt{2}$$

On a bien : $0 < 1 < \sqrt{2}$, donc : $0 < u_0 \le u_1$.

 \rightarrow La proposition P_0 est vraie.

2 Hérédité

Supposons la proposition P_k vraie pour un certain entier naturel k, c'est-àdire :

$$0 < u_k \le u_{k+1}$$

→ C'est l'hypothèse de récurrence.

Montrons que la proposition P_{k+1} est vraie, c'est-à-dire que $0 < u_{k+1} \le u_{k+2}$.

En utilisant la définition de la suite (u_n) , c'est équivalent à :

$$0<\sqrt{u_k+1}\leq \sqrt{u_{k+1}+1}$$

Hypothèse de récurrence :	$0 < u_k \le u_{k+1}$
On ajoute 1 aux inégalités :	$\boxed{1 < u_k + 1 \leq u_{k+1} + 1}$
Comme la fonction racine carrée est strictement croissante sur l'intervalle $[0\;;+\infty[$, elle ne change pas le sens des inégalités, et on obtient :	$\sqrt{1} < \sqrt{u_k+1} \leq \sqrt{u_{k+1}+1}$
Soit:	$igg 0 < 1 < u_{k+1} \le u_{k+2}$

ightarrow La propriété P_{k+1} est donc vraie.

Conclusion

Par récurrence, la proposition P_n est vraie pour tout entier naturel n.

 \rightarrow La suite (u_n) est croissante et à termes strictement positifs pour tout entier naturel n.

b. Exemple 2

Démontrons que, pour tout entier naturel n, (4^n+2) est divisible par 3.

ightarrow Notons P_n la proposition « (4^n+2) est divisible par 3 ».

Initialisation

Pour n=0, on a :

$$4^{0} + 2 = 1 + 2$$
 $= 3$

3 est bien divisible par 3.

 \rightarrow La proposition P_0 est vraie.

2 Hérédité

Supposons la proposition P_k vraie pour un entier naturel k.

Pour montrer qu'un entier x est divisible par un entier a, il faut montrer qu'il existe un entier b tel que $x=a\times b$.

 (4^k+2) est divisible par 3, c'est-à-dire qu'il existe un entier relatif b tel que $4^k+2=3 imes b$.

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la proposition P_{k+1} est vraie, c'est à dire que $(4^{k+1}+2)$ est aussi divisible par 3.

On cherche à montrer qu'il existe un entier relatif c tel que $4^{k+1}+2=3 imes c$.

Hypothèse de récurrence :	$4^k+2=3 imes b$
On soustrait 2 à l'égalité :	$oxed{4^k=3 imes b-2}$
De plus :	$4^{k+1}+2=4^k\times 4+2$
On remplace 4^k par $(3 imes b-2)$:	$4^{k+1} + 2 = (3 imes b - 2) imes 4 + 2$
On développe :	$egin{array}{c} 4^{k+1}+2 &= 12b-8+2 \ &= 12b-6 \ \end{array}$

	(On factorise par 3 :	$4^{k+1} + 2 = 3 \times (4b-2)$
b étant un entier relatif, $4b-2$ est donc aussi un entier relatif. Posons ainsi un entier relatif c tel que $4b-2=c$. On obtient :	F	Posons ainsi un entier relatif c	$4^{k+1}+2=3 imes c$

 \rightarrow Donc la proposition P_{k+1} est vraie.

3 Conclusion

Pour tout entier naturel n, P_n est vraie.

 \rightarrow Pour tout entier naturel $n, 4^n + 2$ est divisible par 3.

c. Exemple 3

Soit (u_n) la suite définie par $u_0=2$ et, pour tout entier naturel n, $u_{n+1}=rac{u_n}{1+u_n}.$

Démontrons que, pour tout $n\in\mathbb{N}$, $u_n=rac{2}{2n+1}$.

ightarrow Notons P_n la proposition « $u_n=rac{2}{2n+1}$ ».

Initialisation

Pour n=0 :

$$u_0=2 \ rac{2}{2 imes 0+1}=2$$

 \rightarrow La proposition P_0 est vraie.

2 Hérédité

Supposons la proposition P_k vraie pour un entier naturel k, c'est-à-dire que, pour un entier naturel k :

$$u_k = \frac{2}{2k+1}$$

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la proposition est vraie au rang (k+1), c'est-àdire :

$$u_{k+1} = \frac{2}{2(k+1)+1}$$

Hypothèse de récurrence :	$u_k = \frac{2}{2k+1}$
Par définition de la suite :	$u_{k+1} = rac{u_k}{1+u_k}$
On remplace u_k par $\dfrac{2}{2k+1}$:	$u_{k+1} = rac{rac{2}{2k+1}}{1+rac{2}{2k+1}}$
On réduit au même dénominateur le dénominateur du deuxième terme :	$egin{aligned} u_{k+1} &= rac{rac{2}{2k+1}}{rac{2k+1+2}{2k+1}} \ &= rac{2}{2k+1} imes rac{2k+1}{2k+1+2} \end{aligned}$
On simplifie par $(2k+1)$:	$u_{k+1} = \frac{2}{2k+2+1}$
On factorise $(2k+2)$ par 2 :	$u_{k+1} = rac{2}{2(k+1)+1}$

ightarrow Donc la proposition P_{k+1} est vraie.

3 Conclusion

Pour tout entier naturel n, P_n est vraie.

ightharpoonup Pour tout entier naturel $n,u_n=rac{2}{2n+1}.$

d. Exemple 4 : inégalité de Bernoulli

L'inégalité de Bernoulli dit que, pour tout réel x strictement positif et n entier naturel, $(1+x)^n \geq 1+nx$.

Nous utiliserons cette inégalité dans le cours suivant, sur les suites. Nous allons donc la démontrer ici, par récurrence.

Soit x un réel strictement positif.

ightharpoonup Notons P_n la proposition « $(1+x)^n \geq 1+nx$ ».

Initialisation

Pour n=0:

$$(1+x)^0 = 1$$
$$\ge 1 + 0 \times x$$

 \rightarrow Donc la proposition P_0 est vraie.

2 Hérédité

Supposons la proposition P_k vraie pour un entier naturel k, c'est-à-dire, que pour un entier naturel k :

$$(1+x)^k \ge 1 + kx$$

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la proposition est vraie au rang (k+1), c'est-àdire :

$$(1+x)^{k+1} \ge 1 + (k+1)x$$

Hypothèse de récurrence :	$\left \left(1+x\right)^k\geq 1+kx\right $
D'où, en multipliant par $(1+x)$ $(x>0$, donc $x+1>0$, et cela ne change pas le sens des inégalités) :	$(1+x)^{k+1} \geq (1+kx)(1+x)$
On développe :	$(1+x)^{k+1}\geq 1+x+kx+kx^2$
On factorise $(x+kx)$ par x :	$egin{aligned} (1+x)^{k+1} \geq 1 + x(k+1) + \ kx^2 \end{aligned}$
k étant un entier positif, $kx^2 \geq 0$:	$1 + x(k+1) + kx^2 \ge 1 + (k+1)x$
D'où :	$\left(1+x\right)^{k+1} \geq 1+(k+1)x$

 \rightarrow La proposition P_{k+1} est vraie.

3 Conclusion

Pour tout entier naturel n, P_n est vraie.

ightharpoonup Pour tout entier naturel n et tout réel x strictement positif, $(1+x)^k \geq 1+kx$.

Conclusion:

Dans ce cours, nous avons vu ce principe puissant qu'est le raisonnement par récurrence : il permet de démontrer assez rapidement une propriété sur l'ensemble des entiers naturels, ou une partie de cet ensemble.

Ainsi, notamment en travaillant sur les suites, nous ferons souvent appel à ce type de raisonnement.