How To Not Predict An Election

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Motivation

In probabilistic modeling

- ► Independence assumptions are unavoidable
- ▶ Ignoring some dependencies can be catastrophic

United States presidential election

- ▶ Indirect election, citizens of the US cast ballots for *electors* in the Electoral College
- These electors vote for the President and Vice President
- Number of electors per state = members of Congress (Washington D.C. gets 3)
- All electors in a state are assigned to candidate who wins the state (except in Maine and Nebraska)

Cartoon election: 51 states, one elector each

Probabilistic modeling

Result in state i modeled by Bernoulli random variable

$$\tilde{s}_i = egin{cases} 1 & ext{if Republican candidate wins} \\ 0 & ext{otherwise} \end{cases}$$

Election is determined by the sum

$$\sum_{i=1}^{51} \tilde{s}_i$$

If it is larger than 25, the Republican wins

Joint pmf

To compute the probability

$$P(\text{Republican wins}) = P\left(\sum_{i=1}^{51} \tilde{s}_i > 25\right)$$

we need the joint pmf of \tilde{s}_1 , \tilde{s}_2 , ..., \tilde{s}_{51}

Number of entries? $2^{51} - 1 \ge 10^{15}!$

We need assumptions!

Independence

If states are independent, what do we need to estimate?

Only 51 marginal pmfs

Plan:

- 1. Estimate marginal pmf of each state
- 2. Aggregate them

Toy model

Probability of Republican winning state i depends only on rural turnout \tilde{r}_i

P (Republican wins state
$$i \mid \text{Rural turnout } = r$$
)
= $p_{\vec{s}_i \mid \vec{r}_i}(1 \mid r) := 0.6r + 0.1(1 - r)$

If $\tilde{r}_i = 0$:

Urban voters dominate $\implies p_{\tilde{s}_i \mid \tilde{r}_i}(1 \mid r) = 0.1$

If $\tilde{r}_i = 1$:

Rural voters dominate $\implies p_{\tilde{s}_i \mid \tilde{r}_i}(1 \mid r) = 0.6$

Probability of winning a state is not equal to fraction of voters in that state!	

Important

Real poll (Pennsylvania 2020)

Data: 281 people intend to vote for Trump, 300 for Biden

Fraction of Biden voters: 51.6%

Probability that Biden wins in Pennsylvania? (if data are truly i.i.d.)

Bayesian parametric model

Posterior pmf of fraction of Trump voters given 581 data points

Back to cartoon election

P (Republican wins | Rural turnout =
$$r$$
)
= $p_{\tilde{s}_i \mid \tilde{r}_i}(1 \mid r) := 0.6r + 0.1(1 - r)$

Marginal pmf of rural turnout in every state is uniformly distributed between 0 and 1

P (Republican wins state
$$i$$
) = $p_{\tilde{s}_i}(1)$
= $\int_{r=0}^1 f_{\tilde{r}_i}(r) p_{\tilde{s}_i \mid \tilde{r}_i}(1 \mid r) dr$
= $\int_{r=0}^1 (0.5r + 0.1) dr$
= 0.35

Aggregating probabilities

Under our assumptions,

$$p_{\tilde{s}_1}(1) = p_{\tilde{s}_2}(1) = \cdots = p_{\tilde{s}_{51}}(1) = 0.35$$

$$\tilde{s}_1$$
, \tilde{s}_2 , ..., \tilde{s}_{51} are independent

What is the distribution of
$$\sum_{i=1}^{51} \tilde{s}_i$$
?

Binomial with parameters n = 51 and $\theta = 0.35$

P (Republican wins) = P
$$\left(\sum_{i=1}^{51} \tilde{s}_i > 25\right)$$

= $\sum_{i=26}^{51} {51 \choose i} 0.35^i (1 - 0.35)^{51-i}$
= 0.014

Independent turnouts: P (Republican wins) = 1.4%

What could go wrong?

CLINTON 98.0%

1.7%

Fictitious ground truth

Rural turnout is highly dependent, it is the same in every state

Probabilistically, modeled as a single random variable \tilde{r}

Same marginal distribution as before: Uniform in [0,1]

Same conditional probability for each state

$$p_{\tilde{s}_i \mid \tilde{r}}(1 \mid r) := 0.6r + 0.1(1 - r)$$

P (Republican wins state
$$i$$
) = $p_{\tilde{s}_i}(1)$
= $\int_{r=0}^1 f_{\tilde{r}}(r) p_{\tilde{s}_i \mid \tilde{r}}(1 \mid r) dr$
= 0.35

Same as before!

Election results

$$\begin{split} & \text{P (Republican wins)} \\ & = \text{P}\left(\sum_{i=1}^{51} \tilde{s}_i > 25\right) \\ & = \int_{r=0}^{1} f_{\tilde{r}}(r) \text{P}\left(\sum_{i=1}^{51} \tilde{s}_i > 25 \,|\, \tilde{r} = r\right) \, \mathrm{d}r \\ & = \int_{r=0}^{1} \sum_{i=26}^{51} {51 \choose i} (0.6r + 0.1)^i (1 - (0.6r + 0.1))^{51-i} \, \mathrm{d}r \end{split}$$

What if we don't know how to compute the integral?

Monte Carlo method

- 1. Simulate *n* elections:
 - 1.1 Generate rural turnout r
 - 1.2 Generate result in each state conditioned on r
 - 1.3 Check what candidate wins
- 2. Probability estimate = fraction of times each candidate wins

Many real election forecasts are more complicated versions of this

Independent turnouts: P (Republican wins) = 1.4%

Dependent turnouts: P (Republican wins) = 20.4%

What have we learned?

In probabilistic modeling

- ► Independence assumptions are unavoidable
- ▶ Ignoring some dependencies can be catastrophic