Zum Winde verweht

J1, Team-ID: 00353, Team-Name: U+1F947, Leonhard Masche, 24.09.2021

Inhaltsverzeichnis

- 1. Lösungsidee
- 2. Umsetzung
- 3. Beispiele
- 4. Quellcode

Lösungsidee

Zuerst bietet es sich an, die Koordinaten der Häuser und der Windräder in Listen zu speichern. Man kann dann mit zwei ineninander verschachtelten for-loops für jedes Windrad und jedes Haus die Entfernung mithilfe des Satz des Pythagoras berechnen. Die kleinste ermittelte Entfernung pro Windrad wird durch 10 geteilt, auf 2 Stellen nach dem Komma gerundet, und zusammen mit den Koordinaten des Windrads ausgegeben.

Umsetzung

Das Programm ist in der Sprache Python umgesetzt. Der Aufgabenordner enthält neben dieser Dokumentation eine ausführbare Python-Datei. Diese Datei ist mit einer Python-Umgebung ab der Version 3.6 ausführbar.

Wird das Programm gestartet, wird zuerst eine Eingabe in Form einer einstelligen Zahl erwartet, um ein bestimmtes Beispiel auszuwählen. (Das heißt: 1 für Beispiel Landkreis1.txt)

Nun wird die Logik des Programms angewandt und die Ausgabe erscheint in der Kommandozeile.

Beispiele

Hier wird das Programm auf die vier Beispiele aus dem Git-Repo angewendet:

landkreis1.txt

```
12 3
-82 -315
248 714
1202 907
226 680
694 -20
-767 44
-245 719
-339 36
473 406
863 -290
953 885
-109 510
```

```
1242 -593
-1223 -1479
1720 401
```

Ausgabe zu landkreis1.txt

```
Standort (1242|-593): 48.52m
Standort (-1223|-1479): 158.98m
Standort (1720|401): 72.41m
```

landkreis2.txt

```
94 15
1157 3693
1063 1317
1493 2916
800 2849
1568 3562
3411 2207
1255 3346
1309 3588
2111 2794
1534 3040
359 20
2 -773
315 -213
-629 -532
97 -69
276 292
156 55
-423 -93
202 -219
-340 -343
```

Ausgabe zu landkreis2.txt

```
Standort (359|20): 115.16m

Standort (2|-773): 201.25m

Standort (315|-213): 138.85m

Standort (-629|-532): 209.12m

Standort (97|-69): 132.01m

Standort (-392|-418): 186.16m

Standort (87|-384): 161.68m

Standort (-597|612): 133.3m
```

```
Standort (-13|-32): 133.54m

Standort (-57|49): 128.77m

Standort (276|292): 91.78m

Standort (156|55): 118.28m

Standort (-423|-93): 161.95m

Standort (202|-219): 142.39m

Standort (-340|-343): 177.04m
```

landkreis3.txt

```
2382 16
8801 6661
5748 17368
4490 12848
10935 12512
6940 9243
 :
9694 12538
4785 7982
9391 10712
10412 12825
11378 10021
0 0
180 570
360 1140
540 1710
360 -120
1260 1470
1080 -360
1260 210
1440 780
1620 1350
```

Ausgabe zu landkreis3.txt

```
Standort (0|0): 451.57m
Standort (180|570): 393.79m
Standort (360|1140): 336.7m
Standort (540|1710): 280.74m
Standort (360|-120): 444.62m
Standort (540|450): 385.71m
Standort (720|1020): 327.11m
Standort (900|1590): 269.02m
Standort (720|-240): 440.84m
Standort (900|330): 381.25m
Standort (1080|900): 321.73m
Standort (1260|1470): 262.32m
```

```
Standort (1080|-360): 440.31m

Standort (1260|210): 380.54m

Standort (1440|780): 320.78m

Standort (1620|1350): 261.02m
```

landkreis4.txt

```
9993 30
-4147 8575
4966 6387
1771 2674
2417 6350
4207 5051
 :
2336 4331
4774 1732
1663 3918
1618 5620
6616 6675
-4147 8575
-6453 14307
-8370 5831
13045 - 5404
-8361 8131
-3214 15263
6887 17263
-3944 13584
6576 15697
-12074 5974
```

Ausgabe zu landkreis4.txt

```
Standort (-4147|8575): 0.0m

Standort (-6453|14307): 383.81m

Standort (-8370|5831): 262.45m

Standort (13045|-5404): 233.99m

Standort (-8361|8131): 296.19m

Standort (-6963|-371): 71.76m

Standort (9772|-3239): 181.41m

Standort (-5102|-1726): 235.4m

Standort (13454|11822): 343.11m

Standort (-7427|1720): 177.9m

Standort (-7816|12396): 449.16m

Standort (-11095|603): 408.03m

Standort (8314|16301): 317.95m

Standort (15283|-2961): 221.29m

Standort (7082|18552): 520.12m
```

```
Standort (16743|2687): 394.71m
Standort (17511|-730): 433.25m
Standort (-10767|12860): 703.83m
Standort (1508|-8030): 168.42m
Standort (-7767|982): 201.27m
Standort (1277|-11294): 139.16m
Standort (-8724|3575): 348.99m
Standort (7033|-7766): 297.91m
Standort (2720|-10910): 110.23m
Standort (20589|7265): 813.6m
Standort (-3214|15263): 236.19m
Standort (-3944|13584): 125.78m
Standort (6576|15697): 241.01m
Standort (-12074|5974): 625.4m
```

Quellcode

```
# pylama:ignore=E501
import math
from os import path
# absoluter Pfad des ausgewählten Beispiels
path = path.join(
    path.dirname(path.abspath(__file__)),
    f'beispieldaten/landkreis{input("Nummer des Beispiels eingeben: ")}.txt')
with open(path, 'r') as f:
    lines = f.read().split('\n')
# die Koordinaten in Form von Listen (`List`) speichern
n houses, n windmills = tuple(lines[0].split(' '))
n_houses, n_windmills = int(n_houses), int(n_windmills)
coords = [(int(line.split(' ')[0]), int(line.split(' ')[1])) for line in
lines[1:n_houses+n_windmills+1]]
houses = coords[:n_houses]
windmills = coords[n_houses:]
# über alle Windräder-Standorte iterieren
for w coord in windmills:
    min distance = 99999999
    # über alle Häuser iterieren
    for h coord in houses:
        # Entfernung berechnen. d = sqrt(\Delta x^2 + \Delta y^2)
        distance = math.sqrt((w_coord[0]-h_coord[0])**2+(w_coord[1]-
h_coord[1])**2)
        if(distance < min_distance):</pre>
```

```
min_distance = distance
print(f'Standort ({w_coord[0]}|{w_coord[1]}): {round(min_distance/10, 2)}m')
```