Santec PDL 扫描测试系统 Sample 软件说明书

2025-07-29

1. 项目概况

这是一种用于 PDL 测量的扫描测试系统的示例软件。 **需按照自己安装的** labview 是 64 位还是 32 位版本选择不同的版本下载应用,版本不一致会导致无法运行。

开发环境 Labview2017
Instrument.DLL 版本 3.0.1
STSProcess.DLL 版本 2.2.7

NI DLL **17.6** 及其后继版本

2. 配置

仪器

(1) 可调谐激光器 TSL 系列(TSL-550/TSL-710/TSL-570/ TSL-770)

(2) 功率计 MPM 系列(MPM-210/210H/211/212/213/215) 这个示例软件允许您控制最多两个 MPM 主机 (MPM-210 or MPM-210H or MPM-220).

(3) 偏振控制器 PCU 系列(PCU-100/PCU-110)

通讯设置

可调谐激光器(TSL)控制

TSL-550/710: GPIB

TSL-570/ TSL-770: GPIB, TCP/IP, USB

*可以在源代码上更改它,分隔符初始值是 CRLF。

功率计(MPM)控制

MPM-210/210H/220: GPIB, TCP/IP

偏振控制器(PCU)控制

PCU-100: GPIB

PCU-110: GPIB, TCP/IP 和 USB

连线参照

1. MPM-210/210H

PCU-110

Reference

Measurement

使用 BNC 电缆连接以下部分。

TSL-*** 触发输出(Trigger output)->MPM-210H 触发输入(Trigger input)PCU-110 功率监测输出(Power Monitor)->MPM-210H TSL 监视器(TSL Monitor)

图 1. 使用 PCU-110 连线配置

PCU-100

Reference

Measurement

TSL-*** 触发输出(Trigger output) -> PCU100 触发输入(Trigger input)
PCU-110 触发输出(Trigger output) -> MPM-210H 触发输入(Trigger input)
图 2. 使用 PCU-100 配置

2. MPM-220 Standard 模式

PCU-110

Reference

Measurement

TSL-*** 触发输出(Trigger output) -> MPM-220 触发输入(Trigger input)

图 3. 使用 PCU-110 配置

PCU-100

Reference

Measurement

TSL-*** 触发输出(Trigger output) -> MPM-220 触发输入(Trigger input)
图 4. 使用 PCU-100 配置

3. MPM-220 High-Spec 模式

PCU-110

Reference

使用光纤跳线连接以下部分。

TSL 激光输出口(power output)-> PCU 激光输入口(power input)PCU 激光输出口(power output)-> MPM-220 左侧最上方的输入口MPM-220 左侧中间的输出口-> MPM-220 第一个模块最上方的输入口MPM-220 左侧最下方的输出口-> MPM-220 需使用的输入口

Measurement

使用光纤跳线连接以下部分。

TSL 激光输出口(power output)-> PCU 激光输入口(power input)PCU 激光输出口(power output)-> MPM-220 左侧最上方的输入口MPM-220 左侧中间的输出口-> MPM-220 第一个模块最上方的输入口MPM-220 左侧最下方的输出口-> DUT 的激光输入口DUT 的激光输入口-> MPM-220 需使用的输入口

TSL-*** 触发输出(Trigger output) -> MPM-220 触发输入(Trigger input)

图 5. 使用 PCU-110 配置

PCU-100

Reference

使用光纤跳线连接以下部分。

TSL 激光输出口(power output)-> PCU 激光输入口(power input)

PCU 激光输出口(power output)-> MPM-220 左侧最上方的输入口

MPM-220 左侧中间的输出口-> MPM-220 第一个模块最上方的输入口

MPM-220 左侧最下方的输出口-> MPM-220 需使用的输入口

Measurement

使用光纤跳线连接以下部分。

TSL 激光输出口(power output)-> PCU 激光输入口(power input)

PCU 激光输出口(power output)-> MPM-220 左侧最上方的输入口

MPM-220 左侧中间的输出口-> MPM-220 第一个模块最上方的输入口 MPM-220 左侧最下方的输出口-> DUT 的激光输入口

DUT 的激光输入口-> MPM-220 需使用的输入口

使用 BNC 电缆连接以下部分。

TSL-*** 触发输出(Trigger output) -> MPM-220 触发输入(Trigger input)
图 6. 使用 PCU-100 配置

3. 操作步骤

软件操作主要分为两个阶段: 1. 仪器连接与参数设置(在仪器设置窗口完成); 2. 参考数据采集与偏振相关损耗测量(在主窗口完成)

3.1 仪器设置窗口

图 7. 仪器设置窗口

1) 功能-仪器设置-

此窗口在软件启动时自动弹出(或需从主窗口调用)。用户需在此窗口中完成所有测试仪器的基本连接配置。配置完成后点击'Connect'按钮,软件将连接仪器并进入主操作界面(图 8)。

1. Form Load

从主窗体接收到与 PC 相连的 SPU (DAQ)设备号(**当功率计型号为 MPM-210/210H 时**)和 USB 资源(**当 TSL-570 接口为 USB 时**),并在每个 Combobox 控件中显示

2. TSL 显示 TSL 通信设置信息

3. MPM

显示 MPM 的通信设置信息,最多可用于两个主机(**当使用 MPM-220** High-Spec **模式** 时,功率计第一个插槽上的第一个端口为默认参考通道,禁止选择)

4. PCU

显示 PCU 的通信设置信息

5. SPU

显示 DAQ 的设备号(仅当使用 MPM-210/210H 功率计主机时才需要设置此选项。对于 MPM-220 或其他主机,此设置无效或隐藏).

6. Connect

在图 7 中设置好每个测量仪器后,按下"Connect"按钮,STS PDL Demo 软件界面如图 8 所示.

3.2 STS PDL 示例软件窗口

图 8. PDL 示例软件窗口

3.2.1 怎样使用

1. 可调谐激光器设置

在扫描设置(1)帧中输入扫描条件

StartWavelength (nm) 起始波长 StopWavelength (nm) 停止波长

WavelengthStep(nm) 测量数据步进波长

SweepSpeed(nm/s) 扫描速度

Rev.1 2025/07/29

santec corporation

TSL Power (dBm)

TSL 输出功率

2. 功率计设置

在测量通道和范围框架中设置 Measurement ch (2) 和 Measurement Range (3)。(如使用 MPM215 模块时,此选择禁用)。

在 Measurement ch (2) 处**设置功率计模块的通道**。 选择多个通道时,可以同时测量被测通道(DUT)的多个设备。

在 Measurement Range (3) 处**设置每次扫描的范围**。 选择多个量程时,可以进行高动态范围测量。 当 DUT 的动态范围为 40dB 或更高的高动态范围时,此功能有效。

每次扫描可以测量大约 40 dB 的动态范围。

选择多个通道(2)允许同时测量多个 DUT 端口。选择多个量程(3)用于进行高动态范围测量(见下方说明)

在以下条件下,

DUT的动态范围设置为60dB,

光源的输出功率设置为8dBm,

DUT 直接连接,无需在可调器件之间插入分路器

激光(TSL)和功率计(MPM),

Range number: 2

1st Range: Range 1
2nd Range: Range 4

3. 将设定的参数设置到每台仪器上

点击"SET(4)"按钮后设置的参数会设置到每台仪器上。 将设置的参数传递给每个仪器 类和 STS Process 类。 还设置了在 STS 过程中保留数据所需的 STS 数据结构。

此步骤必须在进行参考测量(Reference)之前执行。成功设置后,仪器状态(如波长、功率、量程)应相应改变。

4. Reference 数据的测试

点击 Reference (5) 后,对每个偏振态进行扫描处理,在设置条件 1 和 2 下获取 Reference 数据。偏振态的设置顺序为 Vertical → Horizontal → Linear 45° → Right-hand circular。

*关于多量程: "*当设置了多个测量量程时,参考数据仅在第一量程(Range 1)下采集。"

关于多通道:"当选择多个通道(2)且勾选'each channel individually(3)'选项时,软件将为每个选中的通道单独采集并存储其对应的参考数据。

采集参考数据时,DUT 应被移除或被旁路(例如,使用直通光纤连接 PCU 和 MPM),以建立无 DUT 损耗情况下的基准值。此步骤对于后续计算偏振相关损耗(PDL) 至关重要。

5. 计算处理方法的设置

PDL Calcurate (10) 可以设置 PDL 测量期间的处理方法和数据存储条件 (Measurement

(6))。 测量多个量程时,如果选中"2SOP for low power range"并执行 PDL 测量,则仅对

第1量程以外的较低量程执行垂直和水平扫描。如果在没有选择的情况下进行 PDL 测量,则在所有范围内进行 4 偏振态测量。如果选中"Save of Mueller parameter"并执行 PDL 测试,则在保存数据时,根据测试的 4 偏振态数据计算的穆勒参数 m11、m12、m13 和 m14 除了正常 PDL 外,还会输出到单独的文件中 计算结果。

m11 = (Horizontal + Vertical)/2

m12 = (Horizontal-Vertical)/2

m13 = Linear 45° - m11

m14 = Right-hand circular - m11

以上为输出信息。 单位为 mW,但由于进行减法运算,可能会输出负值。

6. PDL 测量

点击 Measurement(6)时,PDL 在 1 和 2 中设置的条件下进行测量。如果设置了多个功率计量程,则以设置的量程数执行 Sweep 处理,并在 STS Process 类中执行数据合并处理。之后,针对每个偏振计算 IL 数据 → 执行 PDL 计算,并将计算结果输出到 文件。一次数据的测量完成后,调用 TSL_Sweep_Stop.Vi,取消 TSL Sweep 进程(触发待机状态)。当设置一个新的扫描参数而不执行此过程时,TSL 将没有任何参数。有关扫描处理的详细信息,请参阅 4)。

7. 保存 Reference 原始数据

点击 Save Reference Rawdata (7) 后,在从 STS Process 类中读取 Reference Rawdata 时指定 STS Data Struct。 保存的数据以 csv 格式保存在指定路径中。 Vertical polarized light, Horizontal polarized light, Linear +45° polarized light 和 Right-hand circular polarized light 的结果保存在单独的文件中。选择多个通道且 each channel individually(11)选中时,每个通道的 monitordata 单独保存。

8. 保存原始数据

单击 Save Rawdata (9) 时,从 STS Process 类中读取 Measurement (6) 处的测量数据。 指定 STS Data Struct 和 Rawdata 保存在 csv 文件的指定路径中。 对于每个 range 和 SOP,数据将输出到不同的 csv 文件。

range 在"Save Rawdata"按钮 (9) 旁边的文本框中指定。 如果输入的 range 无效,将显示错误消息。

9. 读取 Reference 数据

读取 7.中保存的 Reference 数据,传递给 STS Process 类。 按 Vertical polarized light, Horizontal polarized light, Linear +45° polarized light 和 Right-hand circular polarized light 的顺序指定 Reference 文件。 如果读取了 SET 按钮设置的条件以外的参考文件,将显

示错误消息。选择多个通道且 each channel individually(11)选中时,读取时需要每个通道有自己的 monitordata 数据。

注意:加载的参考数据必须与当前仪器设置(波长范围、步长等)相匹配,否则可能导致计算错误。

- 10. 点击"Zeroing"(13)对连接的 MPM 进行电回零操作
- 11. 计算过的 LL 数据 (Calucrated IL) 保存

此方法必须在 PDL 计算后运行

单击 Save Calucrated IL (14)时,保存计算的 IL 数据。

4. 扫描过程详解

4.1 扫描流程

- 1.将 TSL 设置为扫描起始波长,并设置 MPM 的功率计量程。
- 2.将 PCU 设置相对应的偏振态。
- 3.启动 TSL 扫描并将 TSL 设置为触发信号输入待机模式。*1
- 4.MPM 开始记录。
- 5.SPU 开始记录(使用 MPM-210H/220 启用,如使用 MPM220 忽略此动作)。
- 6. 向 TSL 发送软件触发指令, 启动波长扫描。
- 7. 等待 SPU(使用 MPM220 忽略此动作) 和 MPM 的记录完成*2
- 8. 等待 TSL 的扫描完成。
- 9.将 TSL 设置为扫描起始波长。
- 10.为下一次测量执行 TSL_ Sweep_Start.Vi 并启动 TSL 扫描。
- 11.从 MPM 和 SPU 中读取测量数据以及这些数据和 STS Data Struct 到 STS Process 类。

*1

在 PDL 测量中进行多量程测量时,需要多次扫描才能获取一个数据。 在第一次扫描 1 个数据时,在进行扫描处理之前调用 TSL_ Sweep_Start.Vi,开始 TSL 扫描,触发待机状态设置为起始波长。 TSL 的触发待机设置(SweepStartMode 设置)在"SET"按钮中进行。

*2

MPM 在 FreerunMode 下运行。 如果没有来自 TSL 的触发信号输入,MPM 测量将不会开始。 在本示例软件中,如果 MPM 测量在采样时间 + 2000 毫秒后仍未完成,则执行 Sweep 处理的 Sweep_Process. Vi 被编码为返回 -9999 作为错误。

4.2 PDL 计算流程

PDL 计算使用 4 偏振 IL 数据。 在执行 PDL 处理之前执行 Rescaling 处理和 IL 计算处理。

1. 目标波长列表的获取

STS_Get_Target_Wavelength_Table.vi

2. PCU 波长灵敏度数据的获取

PCU_Cal_All_SOP_Parametar.vi

将1中获取的波长表作为变量输入,将第二变量中计算的校正数据作为3维数组返回。

3. 添加 PCU 波长灵敏数据

STS_Add_PCU_CalData.vi

将 2 中获取的校正数据传递给 PDLSTS 类。

4. IL 数据的获取

STS_Get_IL_Merge_Data.vi 获取数据。 合并多个范围数据时,调用 STS_Get_IL_Merge_Data.vi。

5. PDL 计算

STS_Cal_PDL.vi

将 4 中获取的 4 个偏振态的 IL 数据传递给 Cal PDL 函数并执行 PDL 计算。

要传递的数据是一个二维数组(SOPindex,Wavelengthindex)。

请按以下顺序输入 SOPindex。

0: Vertical, 1: Horizontal, 2: Linear 45°, 3: Right-hand circular

请注意,如果此顺序不同,则可能无法正确执行计算。 计算结果与第 2 (PDL)、第 3 (IL)、第 4 (Ilmax) 和第 5 (ILmin) 参数一起返回。 该函数是每个通道的 PDL 计算。 在计算多个通道时,传递每个对应通道的 IL 数据并执行该过程。