AST 381, HW 3

Chun-Yi Wu

December 15, 2017

Part 1

Figure 1: Stellar output at orbital distance

Part 2

The power absorbed by the dust ring in Watts

	Orbital radius		
Grain size	10 AU	130 AU	
$0.1~\mu\mathrm{m}$	1.463×10^{-12}	8.656×10^{-15}	
$\overline{1 \ \mu \mathrm{m}}$	6.246×10^{-10}	3.696×10^{-12}	
$10 \ \mu \mathrm{m}$	6.602×10^{-8}	3.907×10^{-10}	
1 mm	7.121×10^{-4}	4.214×10^{-6}	

Part 3

Figure 2: Dust ring output at 10 AU

Figure 3: Dust ring output at $130~\mathrm{AU}$

Part 4

Figure 4: SED of Fomalhaut, green: hot ring, red: warm belt, blue: total (Libreton et al., 2013)

Part 5

	10 AU		130 AU	
Grain size	RP	P-R	RP	P-R
$0.1~\mu\mathrm{m}$	4.880×10^{-21}	2.124×10^{-25}	2.887×10^{-23}	3.486×10^{-28}
1 μ m	2.083×10^{-18}	9.069×10^{-23}	1.233×10^{-20}	1.488×10^{-25}
$10~\mu~\mathrm{m}$	2.202×10^{-16}	9.587×10^{-21}	1.303×10^{-18}	1.573×10^{-23}
1 mm	2.375×10^{-12}	1.034×10^{-16}	1.405×10^{-14}	1.697×10^{-19}