

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Bacharelado em Ciência da Computação

Gabriela Lacerda Muniz João Vitor Mendes Moreira

Segundo Trabalho Prático

Belo Horizonte

2024

Gabriela Lacerda Muniz João Vitor Mendes Moreira

Segundo Trabalho Prático

Trabalho Prático da disciplina de Teoria dos Grafos e Computabilidade - Aplicado no curso de Ciência da Computação da Pontifícia Universidade Católica de Minas Gerais.

RESUMO

Neste trabalho, será feito o desenvolvimento e a comparação de dois métodos para resolver o problema de K-Center em grafos: o método guloso e o método de força bruta. O algoritmo guloso seleciona os centros de forma iterativa, escolhendo o vértice mais distante dos centros já escolhidos, oferecendo uma solução aproximada com boa performance. Já o método de força bruta verifica todas as combinações possíveis de centros para encontrar a solução ótima, embora com um custo computacional mais elevado. O objetivo é comparar ambos os métodos em termos de tempo de execução e qualidade da solução.

SUMÁRIO

1 INTRODUÇÃO	1
1.1 Contexto	1
1.1.1 Problema dos k-centros	1
1.2 Objetivos	1
1.2.1 Objetivos específicos	1
2 METODOLOGIA	2
2.1 Implementações	2
2.1.1 Força Bruta	2
2.1.2 Guloso	2
2.1.3 Diferenças	2
2.2 Testes	3
2.2.1 Descrição das Instâncias	3
2.2.2 Executao dos testes	3
3 RESULTADOS	5
3.1 Abordagem Bruta	5
3.2 Abordagem Gulosa	5
4 CONCLUSÃO	7
DEEEDÊNCIAC	0

1 INTRODUÇÃO

1.1 Contexto

O problema dos k-centros é amplamente utilizado na teoria dos grafos para resolver tarefas como clustering e localização de facilidades. Ele busca selecionar k vértices em um grafo completo para minimizar a maior distância de qualquer outro vértice ao centro mais próximo. Com aplicações em logística, saúde e análise de dados, o problema combina desafios teóricos e práticos, especialmente em instâncias de grande escala, destacando a importância de métodos exatos e aproximados para soluções eficazes.

1.1.1 Problema dos k-centros

1.2 Objetivos

O objetivo principal deste trabalho é implementar e comparar métodos para a resolução do problema dos k-centros, avaliando o desempenho de uma abordagem exata e outra aproximada. Essas implementações serão analisadas em termos de eficácia e eficiência, especialmente ao lidar com instâncias de tamanhos variados.

1.2.1 Objetivos específicos

Os objetivos específicos deste projeto são:

- 1. Desenvolver uma solução para instâncias menores do problema.
- 2. Implementar uma solução aproximada capaz de lidar com instâncias maiores.
- 3. Comparar desempenho e qualidade das soluções das duas abordagens.

2 METODOLOGIA

2.1 Implementações

2.1.1 Força Bruta

A estratégia de força bruta explora todas as combinações possíveis de vértices para serem escolhidos como centros. Para cada combinação, o algoritmo calcula o raio, que corresponde à maior distância entre um vértice qualquer e o centro mais próximo. O objetivo é identificar a combinação de centros que minimiza esse raio. Embora garanta a solução exata, essa abordagem é computacionalmente intensiva, tornando-se impraticável para grafos grandes devido ao crescimento combinatorial das possibilidades.

2.1.2 Guloso

A estratégia gulosa seleciona os centros de forma iterativa, sempre priorizando o vértice mais distante dos centros já escolhidos. O processo começa com um vértice inicial arbitrário e segue adicionando novos centros até atingir o número k desejado. Após a seleção, o raio é calculado considerando a maior distância de um vértice até o centro mais próximo. Embora mais rápida e eficiente, a abordagem gulosa pode não encontrar a solução ótima, já que suas decisões se baseiam apenas no estado atual, sem considerar as implicações futuras.

2.1.3 Diferenças

A seguir, apresentamos a tabela das diferenças entre as abordagens de Força Bruta e Gulosa, destacando seus aspectos principais.

Aspecto	Força Bruta	Gulosa	
Dwasiaão	Encontra a solução ótima	Encontra uma solução aproxi-	
Precisão	(exata).	mada.	
Velocidade	Muito lenta para grafos gran-	Muito mais rápida.	
velocidade	des.		
Complexidade	Combinatorial $O(C(n, k))$.	$O(k \cdot n^2)$.	
Uso recomen-	Para grafos pequenos e solu-	solu- Para grafos maiores e soluções	
dado	ções exatas.	aproximadas.	

Tabela 1 – Diferenças entre as estratégias de Força Bruta e Gulosa.

2.2 Testes

Os testes realizados neste trabalho foram baseados nas instâncias disponíveis na OR-Library, mais especificamente, utilizamos as 40 instâncias relacionadas ao problema das p-medianas não capacitadas, disponíveis no arquivo 'pmed1.txt' até 'pmed40.txt'. Essas instâncias foram adaptadas ao problema dos k-centros, pois os dois problemas possuem características semelhantes, diferenciando-se apenas pela função objetivo.

2.2.1 Descrição das Instâncias

Cada instância da OR-Library contém as informações necessárias para definir o grafo, incluindo:

- Número de vértices |V| do grafo;
- Número máximo de centros k a serem encontrados;
- Peso da aresta (ou distâncias entre os vértices).

Essas instâncias foram processadas conforme descrito na documentação da OR-Library. Não utilizamos os valores ótimos fornecidos na OR-Library para o problema das p-medianas, já que a função objetivo difere do problema dos k-centros.

2.2.2 Executao dos testes

Para cada uma das 40 instâncias, aplicamos ambos os algoritmos desenvolvidos — força bruta e guloso. O processo de teste foi dividido nas seguintes etapas:

1. Carregamento das Instâncias: Os arquivos foram lidos e convertidos em representações de grafos no formato exigido pelos algoritmos.

- 2. Execução dos Algoritmos: Cada instância foi resolvida utilizando as abordagens de força bruta e gulosa, mantendo o valor de k especificado no arquivo de entrada.
- 3. Coleta de Resultados: Para cada instância, registramos:
 - O raio da solução encontrada;
 - O tempo de execução;
- 4. **Análise Comparativa:** Os resultados foram comparados para avaliar a eficácia (qualidade da solução) e a eficiência (tempo de execução) de cada método, especialmente à medida que o tamanho das instâncias aumentava.

3 RESULTADOS

3.1 Abordagem Bruta

A abordagem de força bruta foi testada inicialmente com a instância pmed1.txt, contendo 100 vértices e k=5. Para esta instância, o algoritmo conseguiu encontrar a solução ótima, porém, devido à sua elevada complexidade combinatorial, não foi possível executar as demais instâncias dentro de um tempo viável.

A força bruta trabalha explorando todas as combinações possíveis de k-centros dentre os n vértices do grafo. Isso resulta em uma complexidade de O(C(n,k)), onde C(n,k) é o número de combinações de n elementos tomados k a k. Essa complexidade cresce exponencialmente à medida que o tamanho do grafo e o valor de k aumentam, tornando a abordagem inviável para grafos grandes.

Como exemplo, para uma instância com 300 vértices e k=10, seriam necessárias mais de 3.5×10^{12} combinações. Esse crescimento exponencial torna impossível a execução em hardware convencional para grafos maiores.

3.2 Abordagem Gulosa

A abordagem gulosa foi projetada para lidar melhor com o aumento no tamanho do grafo. Ela se baseia em uma heurística que seleciona iterativamente os vértices mais distantes dos centros já escolhidos, até atingir k centros. Embora essa abordagem não garanta a solução ótima, ela oferece resultados aproximados com tempos de execução significativamente menores.

A Tabela 2 apresenta os resultados obtidos pela estratégia gulosa em todas as 40 instâncias testadas, incluindo o raio real, o raio encontrado, o erro percentual e o tempo de execução em milissegundos. Os resultados mostram que a abordagem gulosa conseguiu processar todas as instâncias em um tempo aceitável, mesmo para os maiores grafos, como os de 900 vértices.

Tabela 2 – Resultados do Algoritmo Guloso para as 40 Instâncias.

Instância	Vértices (V)	k	Raio Real	Raio Encontrado	Erro (%)	Tempo de Execução (ms)
01	100	5	127	146	24.41	0.368
02	100	10	98	99	1.02	0.531
03	100	10	93	104	9.68	0.494
04	100	20	74	79	4.05	1.259
05	100	33	48	63	31.25	2.485
06	200	5	84	100	19.05	0.165
07	200	10	64	91	42.19	0.174
08	200	20	55	91	65.45	0.518
09	200	40	37	75	102.70	0.985
10	200	67	20	51	155.00	1.276
11	300	5	59	90	52.54	0.016
12	300	10	51	94	84.31	0.069
13	300	30	35	91	160.00	0.229
14	300	60	26	72	176.92	0.720
15	300	100	18	45	150.00	1.687
16	400	5	47	94	100.00	0.019
17	400	10	39	98	151.28	0.061
18	400	40	28	91	225.00	0.499
19	400	80	18	58	222.22	1.860
20	400	133	13	35	169.23	4.195
21	500	5	40	94	135.00	0.029
22	500	10	38	99	160.53	0.074
23	500	50	22	79	259.09	1.035
24	500	100	15	63	320.00	3.635
25	500	167	11	28	154.55	8.828
26	600	5	38	96	152.63	0.032
27	600	10	32	98	206.25	0.070
28	600	60	18	85	372.22	1.746
29	600	120	13	52	300.00	6.162
30	600	200	9	25	177.78	16.337
31	700	5	30	98	226.67	0.039
32	700	10	29	95	227.59	0.098
33	700	70	15	80	433.33	2.724
34	700	140	11	46	318.18	9.986
35	800	5	30	97	223.33	0.046
36	800	10	27	98	262.96	0.116
37	800	80	15	86	473.33	3.993
38	900	5	29	100	244.83	0.046
39	900	10	23	100	334.78	0.131
40	900	90	13	80	515.38	5.663

4 CONCLUSÃO

As abordagens de força bruta e gulosa apresentam ideias distintas e refletem diferenças significativas nos resultados e tempos de execução. Enquanto a força bruta busca exaustivamente a solução ótima, sua complexidade combinatorial torna a execução inviável para grafos grandes, como evidenciado pelo timeout em instâncias maiores. Esse comportamento é esperado devido ao crescimento exponencial das combinações possíveis à medida que o número de vértices e o valor de k aumentam.

Por outro lado, a abordagem gulosa, embora não garanta a solução ótima, oferece uma solução aproximada em tempos de execução significativamente menores. Essa eficiência se deve à estratégia iterativa de selecionar vértices com base em uma heurística simples, o que reduz drasticamente o número de cálculos necessários.

Os resultados demonstram que, para problemas com restrições de tempo e recursos computacionais, a abordagem gulosa é uma alternativa prática e eficiente. No entanto, sua precisão depende da estrutura do grafo e das instâncias testadas, como observado nas variações de erro percentual apresentadas. Ambas as abordagens têm seu valor dependendo do contexto, sendo a força bruta ideal para pequenas instâncias e a gulosa adequada para problemas de maior escala.

REFERÊNCIAS

CORMEN, T. H. et al. Introduction to Algorithms. 3rd. ed. Cambridge, MA, USA: MIT Press, 2009. ISBN 9780262033848.

HOCHBAUM, D. S.; SHMOYS, D. B. A best possible heuristic for the k-center problem. MATHEMATICS OF OPERATIONS RESEARCH, INFORMS, v. 10, n. 2, p. 180–184, 1985. Disponível em: https://doi.org/10.1287/moor.10.2.180.

KLEINBERG, J.; TARDOS Éva. ALGORITHM DESIGN. Boston, MA, USA: Pearson, 2005. ISBN 9780321295354.

OPENAI. CHATGPT: ASSISTENTE VIRTUAL BASEADO EM MODELOS DE LINGUAGEM DE GRANDE ESCALA. 2024. https://openai.com/chatgpt. Modelo utilizado para auxílio na geração de conteúdo e resolução de problemas. Acesso em: 07 dez. 2024.