Faculdade de Tecnologia Senac Tecnologia em Sistemas de Informação Sistemas Distribuídos

Sistemas Distribuídos Visão Geral

Lincoln Morais

Porto Alegre, Agosto/2006

- ⇒Revisão de conceitos básicos de Sistemas Operacionais;
- ⇒Evolução histórica;
- ⇒Definições sobre Sistemas Distribuídos (SD);
- ⇒Vantagens e desvantagens de SD;
- → Desafios / oportunidades em SD.

→ Revisão de conceitos básicos de Sistemas Operacionais;

- ⇒Evolução histórica:
- Definições sobre Sistemas Distribuídos (SD);
- ⇒Vantagens e desvantagens de SD;
- Desafios / oportunidades em SD.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Definição simplificada

Conjunto de programas que gerenciam os recursos (hardware e software) de um sistema de computação.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Principais finalidades

- Criar uma máquina virtual, através da facilidade de seu uso;
- Compartilhamento dos recursos de uma forma eficiente, organizada e segura;
- Evitar retrabalho e redundâncias de código.

culdades SENAC-RS Sistemas Distribuídos

Lincoln L. de Morais

Principais finalidades

Criar uma máquina virtual, através da facilidade de seu uso;

Faculdades SENAC-RS Sistemas Distribuídos Lincoln L. de Morais

Principais finalidades

Compartilhamento dos recursos de uma forma eficiente, organizada e segura;

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Principais finalidades

Evitar retrabalho e redundâncias de código:

Cada camada é responsável por implementar serviços específicos.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Principais finalidades

Evitar retrabalho e redundâncias de código:

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- Sistemas Monotarefa / Monoprogramáveis;
- Sistemas Multitarefas / Multiprogramáveis;
- Sistemas Distribuídos (Multiprocessados).

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Único processo aloca todos os recursos disponíveis;

➡ Execução serial das aplicações;

Sub-utilização de recursos (ex: processador);

⇒ ex: MS-DOS, CP/M.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- Vários processos compartilhando os recursos existentes;
- ➡ Execução <u>CONCORRENTE</u> dos processos;

- Preocupação com problemas de privacidade (segurança) e sincronismo na execução dos processos;
- Sistemas mais complexos: ex: W2K, Unix, Linux, Netware, OS/2, BeOS,

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Classificação de acordo com:

- → Gerenciamento da execução de processos:
 - **⇒** Lote / Batch;
 - → Tempo-Compartilhado / Time-Sharing;
 - → Tempo-Real / Real-Time.
- → Número de usuários por estação:
 - → Monousuário;
 - → Multiusuário.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Tempo-Compartilhado / Time-Sharing:

- → Noção da fatia de tempo (quantum / time-slice);
- Sistemas conhecidos como *on-line*: baixo tempo de resposta;
- Processamento seqüencial dos processos;
- Processamento baseado em cooperação / preempção;
- Tempo de resposta depende da carga do sistema.

Time-slice

Carga do sistema (nº de processos)

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Tempo-Compartilhado / Time-Sharing:

- → Noção da fatia de tempo (quantum / time-slice);
- Sistemas conhecidos como *on-line*: baixo tempo de resposta;
- Processamento seqüencial dos processos;
- Processamento baseado em cooperação / preempção;
- → Tempo de resposta depende da carga do sistema.

Troca de msg´s

Carga do sistema (nº de processos)

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Tempo-Real / Real-Time:

- → Tempo de máximo para resposta (deadline) de cada processo é conhecido previamente;
- Sistemas customizados para aplicações específicas;
- Processamento baseado prioridades;
- Tempo de resposta independe da carga do sistema.

Revisão de conceitos básicos de Sistemas Operacionais;

⊃Evolução histórica;

- ⇒Definições sobre Sistemas Distribuídos (SD);
- ⇒Vantagens e desvantagens de SD;
- ⇒Desafios / oportunidades em SD.

Mainframe

Sistemas Operacionais Distribuídos

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- ⇒ Primeiros SO em computação científica e comercial;
- **⊃** Atualmente, grande volume de dados;
- ➡ Arquitetura de hardware e infra-estrutura de instalação complexa;
- ⇒ Processamento centralizado;
- Trabalham em time-sharing ou batch;
- **⇒** Ex: IBM, Unisys-Burroughs, Fujitsu.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

mini-computadores & super-micros

- Processamento centralizado;
- → Alternativa de menor custo aos mainframes;
- → Atualmente, comparado aos servidores;
- ⇒ Ex: Cobra, Medidata, Labo, Sisco, Edisa.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

mini-computadores & super-micros

- Mudanças de paradigmas:
- Usuário final com cultura tecnológica;
- Explosão de aplicativos e interface gráfica;
- Popularização da informática;
- ⇒ Adotou tecnologias de SO desenvolvida para mainframes;
- ⇒ Bom tempo de resposta a baixo custo;
- Arquitetura de hardware e infra-estrutura para instalação simplificada;
- ⇒ Ex: HP, Compaq, Dell, Microtec, Itautec, Monydata.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

mini-computadores & super-micros

Redes de Computadores

- Compartilhamento de recursos computacionais;
- Downsizing tecnológico;
- **⊃** Sistemas fracamente acoplado:
 - Cada nodo da rede tem o seu prório SO, memória e relógio;
 - "Relativa transparência" de hardware e software;
 - → Infra-estrutura de comunicação e conversões → troca de mensagens;
- ⇒ Ex: NetWare, LanManager, Família Unix, Banyan Vines, Amplus, W2K, ...

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

mini-computadores & super-micros

Redes de Computadores

Processador com 2 núcleos (dual core).

- Alto desempenho nos desktop (paralelismo);
- Maior poder as sistemas servidores (paralelismo);
- Cliente magro (thin client);
- Tendência a computação centralizada;
- SO's modernos suportam SMP;
- Aumento da vazão (throughput);
- Economia de escala;
- Confiabilidade;
- ex: W2k, Linux, Solaris, Unix, ...

Sistema com 2 processadores.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

mini-computadores & super-micros

Redes de Computadores

Sistemas Fortemente Acoplados

- ⇒ Processadores <u>compartilham</u> memória (*Data Shared Memory DSM*);
- Processadores conectados através de barramento comum;
- ⇒ Relógio (clock) único;
- Controlados por um único SO;
- Processamento voltado para a resolução de um único problema.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Sistemas Fortemente Acoplados

- Classificados de acordo com a <u>simetria</u> da execução dos processos pelos processadores:
- **○** Simétricos:
 - ⇒Todos os processadores podem realizar todos os tipos de processos;
 - ⇒Acessos simultâneos à memória (DSM);
 - Solução mais complexa que o assimétrico:melhor reconfiguração e tolerância à falhas;

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal smultiprocessados

mini-computadores Redes de Computadores

& super-micros Computadores

Sistemas Fortemente Acoplados:

- Classificados de acordo com a simetria da execução dos processos pelos processadores:
- ⇒ Assimétricos:
 - Organização mestre/escravo;
 - Processador mestre executa as transações do SO;
 - ⇒ Processadores escravos executam processos de usuários;
 - Problemas de sobrecarga ou falhas no processador mestre.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

mini-computadores & super-micros

Redes de Computadores

Agregados - Cluster

Sistema fracamente acoplado:

- Cada nodo de execução tem SO (cópia idêntica), memória e relógio;
- Conexões de alto desempenho (fast, gigabit, myrinet TCP, Cliente/Servidor);
- Aplicações críticas (alta disponibilidade);
- Aplicações com demanda de processamento;

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

mini-computadores & super-micros

Redes de Computadores Agregados - Cluster

- Balanceamento de carga;
- ⇒ Redundância → reconfiguração, tolerância à falhas.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

Grade Computacional

mini-computadores & super-micros

Redes de Computadores

Agregados - Cluster

Sistema fracamente acoplado:

- Mecanismos de descoberta de recursos;
- Conceito de Organização Virtual (VO-Virtual Organization).

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Sistema fracamente acoplado:

- Usuários "enxergam" os recursos distribuídos como se fossem centralizados (Portal);
- Provedores e consumidores de recursos;
- Grandes distâncias geográficas;
- Recursos computacionais heterogêneos.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

Grade Computacional

mini-computadores & super-micros

Redes de Computadores Agregados - Cluster

Aplicações características:

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

Grade Computacional

mini-computadores & super-micros

Redes de Computadores Agregados - Cluster

Computação Móvel, Ubíqüa, adaptativa

Sistema fracamente acoplado:

- ➡ SO´s adaptados para dispositivos móveis, como PDA (*Personal Digital Assistents*) e telefones celulares:
 - Memória limitada, processador mais lento, display de pequenas dimensões;
 - SO e aplicações projetadas para minimizar o uso de bateria;
 - Comunicção sem fio & alta conectividade (MP3, Cameras, cartões diversos,....);
 - Miniaturização (redes de sensores, computadores vestíveis, etc);
 - Aplicações nômades, adaptativas, embarcadas.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mainframe

Computador pessoal

SMP - Sistemas multiprocessados

Grade Computacional

mini-computadores & super-micros

Redes de Computadores

Agregados - Cluster

Computação Móvel, Ubíqüa, adaptativa

Roteiro

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Revisão de conceitos básicos de Sistemas Operacionais;

⇒ Definições sobre Sistemas Distribuídos (SD);

- ⇒Vantagens e desvantagens de SD;
- ⇒Desafios / oportunidades em SD.

Definições de SD

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

⇒ "Um sistema distribuído são vários computadores fazendo algo juntos" [Michael Schröder]

Definições de SD

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- ⇒ "Um sistema distribuído são vários computadores fazendo algo juntos" [Michael Schröder]
- "Um sistema é distribuído quando a falha de um computador do qual você nunca ouviu falar o impede de fazer qualquer coisa" [Leslie Lamport]

Definições de SD

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- ⇒ "Um sistema distribuído são vários computadores fazendo algo juntos" [Michael Schröder]
- "Um sistema é distribuído quando a falha de um computador do qual você nunca ouviu falar o impede de fazer qualquer coisa" [Leslie Lamport]
- ⇒ "Conjunto de CPU interconectadas por meio de uma rede de comunicação" [Tanenbaum]

Definições de SD

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- ⇒ "Um sistema distribuído são vários computadores fazendo algo juntos" [Michael Schröder]
- "Um sistema é distribuído quando a falha de um computador do qual você nunca ouviu falar o impede de fazer qualquer coisa" [Leslie Lamport]
- → "Conjunto de CPU interconectadas por meio de uma rede de comunicação" [Tanenbaum]
- ⇒ "Coleção de computadores autônomos interconectados através de uma rede de comunicação, equipado com um software de sistema distribuído. Um software de sistema distribuído permite que computadores possam coordenar suas atividades e compartilhar os recursos do sistema: hardware, software e dados" [Colouris, Dolimore, Kindberg]

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Internet e Intranets

Mensagens instantâneas

WWW (World-Wide Web)

Correio eletrônico

Transferência de arquivos

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Internet e Intranets

- Correio eletrônico;
- ⇒ WWW (World-Wide Web);
- ➡ Transferência de arquivos;
- Mensagens Instantâneas.

Requisitos

- → Alta extensibilidade e escalabilidade;
- Mecanismos de resolução de nomes:
 - zebeleza@yahoo.com.br;
 - www.zebeleza.com.br.
- Esquemas de endereçamento e roteamento;
- Controle de acesso e segurança.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Aplicações Comerciais

Controle de estoque, entregas e vendas (Supply Chain Management).

Sistema bancário

Sistema de reservas de passagens

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Aplicações Comerciais

- 1. Sistema de reservas de passagens;
- 2. Sistema bancário (interconexão de agências, terminais bancários);
- 3. Controle de estoque, entregas e vendas (Supply Chain Management).

Requisitos

- Alta grau de confiabilidade;
- Alto grau de segurança e privacidade de informações;
- ⇒ Suporte à concorrência de usuários;
- Garantia de tempos de respostas satisfatórios;
- Suportar massiva distribuição e extensibilidade;
- Suporte a sistemas operados por diferentes organizações.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- **⇒** Computação Nômade Nomadic Computing:
 - ➡ Execução de tarefas enquanto o usuário se movimento movimentação do hardware;

Faculdades SENAC-RS

Sistemas Distribuído

Lincoln L. de Morais

- Computação Nômade Nomadic Computing:
 - ➡ Execução de tarefas enquanto o usuário se movimento movimentação do hardware;
- **Computação Sem Fio Wireless Computing:**
 - Usuário se movimenta conectado ao um conjunto fixo de estações conectadas à rede;

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- Computação Nômade Nomadic Computing:
 - Execução de tarefas enquanto o usuário se movimento movimentação do hardware;
- **Computação Sem Fio Wireless Computing:**
 - Usuário se movimenta conectado ao um conjunto fixo de estações conectadas à rede;
- **Computação Adaptativa Adaptative Computing:**
 - → A aplicação se movimenta;
 - Utiliza informações do ambiente, construindo modelos computacionais dinamicamente;

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- Computação Nômade Nomadic Computing:
 - Execução de tarefas enquanto o usuário se movimento movimentação do hardware;
- Computação Sem Fio Wireless Computing:
 - Usuário se movimenta conectado ao um conjunto fixo de estações conectadas à rede;
- **Computação Adaptativa Adaptative Computing:**
 - A aplicação se movimenta;
 - Utiliza informações do ambiente, construindo modelos computacionais dinamicamente;
- Computação ubíqüa Ubiquitous Computing:
 - Computação em larga escala;
 - Computador inserido no ambiente de forma invisível;
 - Todos os elementos do sistema de computação tem a propriedade de mobilidade.
 - Também chamada de computação pervasiva ou pervasive computing.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Computação Móvel - integração de dispositivos miniaturizados e portáteis ao SD. Classificada em:

Requisitos

- Suporte transparente à mobilidade;
- Tratamento de contexto;
- → Otimização de espaço de armazenamento, largura de banda, consumo de energia;
- Tratamento de conteúdo adequado aos recursos momentâneos:
- ⇒ Formatação, apresentação, compressão, entrega e armazenamento adaptável à largura de banda e recursos do dispositivo.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Aplicações Multimídias e Teleconferências

Sistema de suporte ao trabalho cooperativo

Sistema de suporte a EaD

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Aplicações Multimídias e Teleconferências

- Sistema de suporte a Educação à Distância;
- Sistema de suporte ao trabalho cooperativo;
- ⇒ Jogos em rede.

Requisitos

- Suporte ao trabalho cooperativo (comunicação confiável, suporte a grupos, autenticação, controle de versões, etc);
- ⇒ Suporte para sincronização de canais de transmissão (ex: imagem e som);
- Garantias de qualidade de serviços:
 - Atrasos máximos;
 - ⇒ Taxas de transmissão;
 - Restrições de tempo.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Resumindo SD...

- Conjunto de máquinas autônomas;
- Interconectadas por canais de comunicação;
- Comunicando-se através de mensagens;
- → Ausência de um estado global;
- → Independência de falhas;
- → Ausência de sincronização de relógios (geral);
- Compartilhamento de recursos (software e/ou hardware).

Definições de SD

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Implicações de SD no desenvolvimento de aplicações?

Mudança de paradigmas

Antes	Depois
Controle Central	Controle Distribuído
Nomeação Global	Nomeação Federada
Consistência Global	Consistência Fraca
Execução seqüencial	Execução Paralela
Vulnerabilidade a falhas	Tolerância a falhas
Homogeneidade	Heterogeneidade
Expansibilidade cara e limitada	Expansibilidade ilimitada (teoricamente)
Informação local	Informação remota
Localização fixa	Migração

SISTEMAS FRACAMENTE ACOPLADOS.

Roteiro

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- Previsão de conceitos básicos de Sistemas Operacionais;
- ⇒Evolução histórica;
- ⇒Definições sobre Sistemas Distribuídos (SI
- ⇒ Vantagens e desvantagens de SD;
- ⇒Desafios / oportunidades em SD.

Vantagens e desvantagens do SD

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

CONTEXTO ATUAL

- ⇒ É relativamente fácil agrupar um grande número de CPUs, conectando-as por uma rede de alta velocidade.
- O software para sistemas distribuídos é completamente diferente do software para sistemas centralizados e está apenas começando a se desenvolver.

Vantagens do SD - I

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- Economia: melhor relação custo x benefício quanto ao desempenho (supercomputador virtual);
- Eficiência: maior poder total de computação;
- Distribuição de recursos: máquinas geograficamente separadas;
- Confiabilidade e Disponibilidade: se uma máquina falha, o sistema permanece funcional;
- Normalização: necessária à integração;

Vantagens do SD - II

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- Escalabilidade: poder computacional adicionado em incrementos;
- Aplicações modulares: domínios maiores, baixo acoplamento e reaproveitamento;
- Flexibilidade: diferentes plataformas podem ser integradas;
- Compartilhamento de recursos: computação como comodities (discos, processadores, memória, software);
- NOVOS MERCADOS.

Desvantagens do SD - I

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Aplicação:

- Pouca disponibilidade de ferramentas de suporte (ex:compiladores, middleware);
- Deve ser bem planejada para obter os benefícios propostos (concorrência, consistência, multithread, sincronismo, comunicação);
- Conceitos e sua utilização em fase de amadurecimento;
- Soluções mais complexas.
- Rede: seu estado causa alto impacto na aplicação, podendo eliminar suas vantagens;
- Segurança: várias portas de entrada (queijo suiço);
- Falhas: instabilidade das aplicações, modelagem e testes falhos.

Desvantagens do SD - II

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

→ MERCADO: especialização e segmentação de área de atuação → convergência.

Roteiro

Sistemas Distribuídos

Lincoln L. de Morais

Revisão de conceitos básicos de Sistemas Operacionais;

- ⇒Evolução histórica;
- Definições sobre Sistemas Distribuídos (SI
- ⇒Vantagens e desvantagens de SD;
- **Desafios / oportunidades em SD.**

Desafios | Oportunidades

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- **⇒** Heterogeneidade;
- **⇒** Abertura (openness);
- Segurança;
- Concorrência / Paralelismo;
- Escalabilidade;
- Tratamento de falhas;
- **⊃** Transparência.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Um SD tende a evoluir para a heterogeneidade:

- ⇒Equipamentos de diferentes vendedores;
- ⇒Diferentes aplicações para o mesmo fim;
- ⇒Diferentes versões da mesma aplicação;
- Diferentes administradores;
- ⇒Possibilidade de evolução sem troca completa do sistema.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Um SD tende a evoluir para a heterogeneidade:

- ⇒Equipamentos de diferentes vendedores;
- ⇒Diferentes aplicações para o mesmo fim;
- ⇒Diferentes versões da mesma aplicação;
- → Diferentes administradores;
- ⇒Possibilidade de evolução sem troca completa do sistema.

Uso de protocolos e padrões comuns (utilizados na Internet) Ex: Myrinet (protocolo TCP/IP), GridFTP (FTP).

Middleware.

Middleware:

- ⇒Camada de software;
- → Mascara a heterogeneidade do ambiente.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Middleware:

- ⇒Camada de software;
- → Mascara a heterogeneidade do ambiente.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Middleware:

- Camada de software;
- Mascara a heterogeneidade do ambiente.
 - Ex: CORBA, JAVA-RMI, DCOM.

Faculdades SENAC-RS Sistemas Distribuídos

Lincoln L. de Morais

Middleware:

- Camada de software;
- Mascara a heterogeneidade do ambiente.

Ex: CORBA, JAVA-RMI, DCOM.

Abertura (openness)

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Capacidade de um sistema se *estender* e *interoperar*:

- aspectos de hardware;
- aspectos de software.

- ➡ Especificações de interfaces → públicas e padronizadas
- Padrões sugeridos e padrões de fato.
 - ⇒ ex: serviço WWW com protocolo HTTP, Linux, Web Services, ambientes de cluster e grade.

Segurança

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Confidencialidade:

⇒proteção contra acesso indevido;

Integridade:

⇒proteção contra alteração ou corrupção indevida;

Disponibilidade:

Armazenamento / transmissão segura de dados:

Segurança

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Confidencialidade:

⇒proteção contra acesso indevido;

Integridade:

⇒proteção contra alteração ou corrupção indevida;

Disponibilidade:

⇒proteção contra impedimento de acesso;

Armazenamento / transmissão segura de dados:

⇒criptografia;

Concorrência

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Paralelismo

processos que executam simultaneamente;

Concorrência

processos que executam simultaneamente e concorrem por recursos.

Concorrência

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Paralelismo

processos que executam simultaneamente;

Concorrência

processos que executam simultaneamente e concorrem por recursos.

- ⇒ Requisições concorrentes a um mesmo serviço ou recurso;
- Vários servidores oferecendo um mesmo serviço;
- Mesma aplicação executando em diferentes computadores.

Interações concorrentes devem ser sincronizadas: garantia de consistência do estado da aplicação

Escalabilidade

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Capacidade de um sistema suportar aumento de escala sem sofrer alterações estruturais.

- ⇒ Filosofia do projeto: prever aumento de demanda;
- Operar efetivamente em escalas diferentes;
- Processamento independente do tamanho da rede.

Escalabilidade

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Capacidade de um sistema suportar aumento de escala sem sofrer alterações estruturais.

Desafios:

- **⊃**Controle de custos;
- Controle de perda de desempenho;
- ⇒Evitar gargalos;
- ⇒Prevenir escassez de elementos de software:

Ex: endereços IP na Internet.

Escalabilidade

Faculdades SFNAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Capacidade de um sistema suportar aumento de escala sem sofrer alterações estruturais.

Desafios:

- **⊃**Controle de custos;
- Controle de perda de desempenho;
- ⇒Evitar gargalos;
- ⇒Prevenir escassez de elementos de software:

Ex: endereços IP na Internet.

Problemas:

Serviços, dados e algoritmos centralizados.

Escalabilidade - técnicas de suporte

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Capacidade de um sistema suportar aumento de escala sem sofrer alterações estruturais.

evitar centralização

armazenamento de dados recentes

Caching

distribuição de recursos

Replicação e

dados, serviços/computação, dispositivos

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Na ocorrência de falhas:

⊃ Resultados errôneos;

⇒ Interrupção do serviço. subsistema falha → erro — defeito causa física ou sistema algorítmica do erro universo da processamento posterior informação pode levar a defeito universo físico falha defeito universo do usuário desvio da especificação falhas podem ser toleradas, defeitos não Taisy Weber

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mecanismos para garantia de funcionamento (com falhas):

⊃ Detecção:

- Códigos de verificação e correções de falha (ex: checksums);
- → Impossibilidades;

A página não pode ser exibida

A página que você procura não está disponível no momento. Talvez o site esteja passando por dificuldades técnicas ou você precise ajustar as configurações do navegador.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Mecanismos para garantia de funcionamento (com falhas):

⊃ Detecção:

- Códigos de verificação e correções de falha (ex: checksums);
- → Impossibilidades;

A página não pode ser exibida

A página que você procura não está disponível no momento. Talvez o site esteja passando por dificuldades técnicas ou você precise ajustar as configurações do navegador.

○ *Mascaramento:*

- Confinamento e tratamento da falha;
- ⇒ ex: retransmissão de mensagens, sistema baseados em RAID;

Sistemas Distribuídos

Lincoln L. de Morais

Mecanismos para garantia de funcionamento (com falhas):

- **⊃** Detecção;
- Mascaramento;

⇒ Recuperação:

garantia de consistência (ex: roll back, BCP, checkpoints);

♦ Tolerância:

⇒ garantia de correção e disponibilidade → através de redundância.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Abordagens:

- Redundância de hardware: servidores múltiplos;
- ➡ Redundância de software: manter dados permanentes sempre consistentes.

Considere um sistema com a probabilidade P(Falha)=0.1, ou seja, P(OK)=0.9.

Dependência de componente único.

Dependência de múltiplos componentes.

Abordagens:

- Diferentes componentes podem falhar independentemente;
- Sistema centralizado: falha de um componente afeta todo o sistema.

Tratamento de Falhas - Disponibilidade

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Componente em falha:

apenas a parte que o usa é afetada.

Componente (sw) pode ser redirecionado e reinicializado em outro computador.

No projeto prever: recuperação do estado anterior à falha.

Tratamento de Falhas - Disponibilidade

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Componente em falha:

apenas a parte que o usa é afetada.

Componente (sw) pode ser redirecionado e reinicializado em outro computador.

Componente de hardware deve ser replicado:

Atividades não-críticas em ausência de falhas.

No projeto prever: recuperação do estado anterior à falha.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Tipos de falha:

- Transiente: acontece uma vez;
- Intermitente: acontece periodicamente de maneira assíncrona;
 - Permanente: acontece sempre.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Tipos de falha:

- Transiente: acontece uma vez;
- Intermitente: acontece periodicamente de maneira assíncrona;
 - Permanente: acontece sempre.

Classificação:

- **⇒** Falhas físicas:
 - → Permanentes;
 - → Temporárias: intermitentes ou transitórias.

Falhas são inevitáveis confiabilidade sempre foi um problema de engenharia, assim falhas físicas, que afetam diretamente o hardware, vem tradicionalmente recebendo atenção especial

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Tipos de falha:

- Transiente: acontece uma vez;
- Intermitente: acontece periodicamente de maneira assíncrona;
 - Permanente: acontece sempre.

Classificação:

- **⇒** Falhas físicas:
 - Permanentes;
 - Temporárias: intermitentes ou transitórias.

descrição de falhas

natureza: falha de hardware, falha de software, etc..

duração: permanente ou temporária

extensão: local a um módulo, global

valor: determinado ou indeterminado no tempo

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Tipos de falha:

- Transiente: acontece uma vez;
- Intermitente: acontece periodicamente de maneira assíncrona;
 - Permanente: acontece sempre.

Classificação:

- ➡ Falhas físicas:
 - → Permanentes;
 - Temporárias: intermitentes ou transitórias.

⇒Falhas humanas:

⇒Projeto;

Security

⇒Interação: intencionais ou não-intencionais.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

- → Problemas de especificação;
- ⇒ Problemas de implementação;
- Componentes defeituosos:
 - → Imperfeições de manufatura;
 - ⇒ Fadiga; ····

- Distúrbios externos:
 - ➡ Radiação, interferência eletromagnética, variações ambientais (temperatura, pressão, umidade), problemas de operação.

Faculdades SFNAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Causas de defeitos

Dependability of Computer Systems: from Concepts to Limits Jean-Claude Laprie - DCIA 98

Sistemas tradicionais				Redes cliente-servidor	
Não tolerante a falhas		Tolerante a falhas		(não toleran	tes a falhas)
MTBF: 6 a 12 semanas Indisponibilidade após defeito: 1 a 4 h		MTBF: 21 anos (Tandem)		Disponibilidade média: 98%	
Defeitos: hardware software operações comunicações / ambiente	50% 25% 10% 15%	Defeitos: software operações hardware ambiente	65% 10% 8% 7%	Defeitos: projeto operações físicos	60% 24% 16%

Causas usuais de defeitos em sistemas de computação

http://www.cs.wits.ac.za/research/workshop/ifip98.html

Faculdades SENAC-RS Sistemas Distribuídos

Lincoln L. de Morais

➡ Visão única e não coleção de componentes:

ex: portal de uma grade computacional.

Abstração das camadas subjacentes:

ex: middleware.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Sucesso de um SD

grau de transparência

Em que medida é indistinguível de um sistema centralizado com a mesma funcionalidade?

Mantendo compromissos com custos, desempenho, segurança,...

Transparência - Tipos

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência	Descrição	
Acesso	Esconde diferenças na representação de dados e como um recurso é acessado	
Localização	Esconde onde um recurso está localizado	
Migração	Esconde que um recurso pode mover-se para outra localização	
Relocação	Esconde que um recurso pode ser movido para outra localização enquanto esta sendo usado	
Replicação	Esconde que um recurso pode ser compartilhado por vários usuários concorrentes	
Concorrência	Esconde que um recurso pode ser compartilhado por vários usuários concorrentes	
Falha	Esconde a falha e recuperação de um recurso	
Persistência	Esconde quando um recurso (software) esta em memória ou em disco	

Segundo Tanenbaum:

Esconde dos usuários ou desenvolvedores a existência de réplicas de recursos.

Transparência - Tipos

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência	Descrição	
Acesso	Esconde diferenças na representação de dados e como um recurso é acessado	
Localização	Esconde onde um recurso está localizado	
Migração	Esconde que um recurso pode mover-se para outra localização	
Relocação	Esconde que um recurso pode ser movido para outra localização enquanto esta sendo usado	
Replicação	Esconde que um recurso pode ser compartilhado por vários usuários concorrentes	
Concorrência	Esconde que um recurso pode ser compartilhado por vários usuários concorrentes	
Falha	Esconde a falha e recuperação de um recurso	
Persistência	Esconde quando um recurso (software) esta em memória ou em disco	

Segundo Tanenbaum:

Esconde dos usuários ou desenvolvedores a existência de réplicas de recursos.

Complementando...

- Desempenho: reconfiguração para melhorar desempenho(balanceamento de carga);
- Escala: expandir sem modificar: arquitetura do sistema ou algoritmos de aplicação.

Transparência de Acesso

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Recursos locais e remotos são acessados com as mesmas operações:

Exemplo: Java-RMI, serviço WWW.

- 1. O objeto A faz a chamada do método desejado no Stub
- 2. O Stub converte a chamada em protocolo RMI e envia pela Rede
- 3. A requisição é enviada pela rede
- 4. O Skeleton recebe a requisição em RMI e reconhece qual método deve ser chamado.
- 5. Chama o método desejado no Objeto B.
- 6. Recebe o retorno do método
- 7. Envia a o objeto de Retorno para o Cliente
- 8. O Stub recebe o retorno
- 9. O Stub repassa o retorno para o Objeto A.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência de Localização

- ⇒ Recurso é acessado independentemente da sua localização;
- ➡ Implica em mecanismos de resolução de nomes;

Exemplo: redes P2P, Mensagens Instantâneas.

Faculdades SFNAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência de Localização

- ⇒ Recurso é acessado independentemente da sua localização;
- Implica em mecanismos de resolução de nomes;

Exemplo: redes P2P, Mensagens Instantâneas.

Transparência de Concorrência

O recurso é acessado independentemente da quantidade de usuários:

Exemplo: impressora em rede.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência de Replicação

⇒ Várias cópias sem que o usuário perceba;

Exemplo: servidor WWW de provedores de acesso (Terra, UOL,...)

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência de Replicação

Várias cópias sem que o usuário perceba;

Exemplo: servidor WWW de provedores de acesso (Terra, UOL,...)

Transparência de Falha

- Na falha de um recurso, o usuário continua sendo atendido sem notar a ocorrência da falha;
- → Implica na inexistência de um único ponto de falha (????):

Exemplo: sistema bancário.

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência de Desempenho

O sistema tira partido de recursos adicionais, sem que o usuário perceba.

Exemplo: computação colaborativa (SETI@home)

Faculdades SENAC-RS

Sistemas Distribuídos

Lincoln L. de Morais

Transparência de Desempenho

O sistema tira partido de recursos adicionais, sem que o usuário perceba.

Exemplo: computação colaborativa (SETI@home)

Transparência de Escala

- Sistema funciona em escalas diferentes, sem alteração da aplicação.
- Implica na ausência de pontos de estrangulamento ou gargalos:

Exemplo: compartilhamentos de arquivos P2P.

Exercícios

Faculdades SENAC-RS Sistemas Distribuídos Lincoln L. de Morais

Exercícios 98

Bibliografia

Faculdades SENAC-RS Sistemas Distribuídos Lincoln L. de Morais

Bibliografia 99