5.1 Discussion Questions

Name_Matt Lizak

1. Determine whether each of the functions below is a power function. If it is, rewrite it in the form $f(x) = kx^p$ and identify k and p.

(x) - kx and lucit	ii y ie alia p	
a. $f(x) = \frac{7}{3x^4}$	b. $h(u) = 17(2^x)^{-1}$	c. $h(x) = (11x^4)(\pi x^{-1})$
= 3×	b. $h(u) = 17(2^x)^{-1} \times \frac{17(2^x)^{-1}}{2}$	= 11 m ×3
K== 7 p-4	Not a poner	K=117 p=3
	function	1 (2 5)3
d. $p(x) = 3x^2 + 7x - 5$	e. $g(w) = \frac{3w^6}{5\sqrt{w^3}}$	f. $y = \frac{1}{2} (3x\sqrt{x})^3$ = $\frac{1}{2} (3x\sqrt{x})^3$
Not a power	$=\frac{3}{5},\frac{6}{\sqrt{2}}$	= 27 x 4/2
function	= 3 war K = 3	K=27 P=92

2. Find a formula for the power function that passes through (2, 20) and (3, 45). $V = K \times V$

3. Find a formula for the power function that passes through $\left(2, -\frac{5}{4}\right)$ and $\left(5, -\frac{2}{25}\right)$

$$\frac{1}{|x|} = \frac{1}{|x|} = \frac{1}$$

5.1 Power Functions and Proportionality

4. Consider the following functions:

$$f(x) = \frac{1}{x} \qquad g(x) = \frac{1}{x^2}$$

a. Complete the following table.

х	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	-10	-100	7000	undet.	1000	100	10
g(x)	100	10,000	1,000,100	undet	1000 000	10,000	100

b. Fill in the blanks:

As x approaches zero from the **right**, f(x) is approaching $\frac{\mathcal{O}}{\mathbf{v}}$

That is,
$$\lim_{x\to 0^+} f(x) = \underline{\hspace{1cm}}$$
.

As x approaches zero from the **left**, f(x) is approaching _____

That is,
$$\lim_{x\to 0^-} f(x) = \underline{\qquad}$$
.

As x approaches zero from the **right**, g(x) is approaching

That is,
$$\lim_{x\to 0^+} g(x) = \underline{\qquad}$$
.

As x approaches zero from the **left**, g(x) is approaching _____

That is,
$$\lim_{x\to 0^-} g(x) = \underline{\hspace{1cm}}$$

c. Which function appears to be growing more rapidly as x goes to 0 from the right?

5. For the power function $F(x) = kx^p$, let $f(x) = pkx^{p-1}$.

For instance, if
$$F(x) = 3x^{-4/5}$$
, then $k = 3$ and $n = -\frac{4}{5}$, so $f(x) = -\frac{4}{5}(3)x^{-9/5}$.
Find $f(x)$ for the function $F(x)$ given below:
$$F(x) = \frac{7}{\sqrt[3]{x}}$$

$$F(x) = \frac{7}{\sqrt[3]{x}}$$

$$f(x) = -\frac{1}{3}(7) \times \frac{1}{3}$$

$$f(x) = -\frac{1}{3}(7)x^{\frac{4}{3}}$$

5.1 Power Functions and Proportionality

6. a. Let $f(x) = x^{-10}$. Sketch a graph of this function. It doesn't need to be precise, but the general shape should be correct.

b. Describe the behavior of $f(x) = x^{-10}$ for each situation below.

$$\lim_{x \to \infty} f(x) = \underline{0}$$

$$\lim_{x \to -\infty} f(x) = \underline{\qquad}$$

$$\lim_{x \to 0^+} f(x) = \underline{\hspace{1cm}}$$

$$\lim_{x \to 0^-} f(x) =$$

c. Let $g(x) = -x^{10}$. Sketch a graph of this function. It doesn't need to be precise, but the general shape should be correct.

d. Describe the behavior of $g(x) = -x^{10}$ for each situation below:

$$\lim_{x\to\infty}g(x)=\underline{\mathbf{O}}^{\mathbf{C}}$$

$$\lim_{x \to \infty} g(x) = \underline{\hspace{1cm}}$$

$$\lim_{x\to 0^+}g(x)=$$

$$\lim_{x \to 0^{-}} g(x) = \underline{\hspace{1cm}}$$

- 7. Consider the power functions $f(x) = \frac{x^4}{100}$ and $g(x) = x^3$.
 - a. For what values of x is f(x) > g(x)?

5.1 Power Functions and Proportionality

- 8. In a microwave oven, cooking time is inversely proportional to the amount of power used. It takes 6.5 minutes to heat a frozen dinner at 750 watts.
 - a. Write a formula for the cooking time, t, as a function of power level, w.

$$t = \frac{1}{v} = \frac{1}{v} = \frac{1}{v} = \frac{1}{v} = \frac{1}{v}$$

b. Fill in the table below with the cooking times needed to heat the frozen dinner at various power levels. (Hint: For 650 watts, the cooking time should be 7.5 minutes.)

Power, w (watts)	250	300	500	650
Time, t (min)	14.5	16.25	9,75	7.5
-18	4975	4e75	4975 500	650

c. Graph the function t = f(w). Be sure that your graph has the correct shape, and label at least two specific points on it.

d. If it takes 2 minutes to heat a rhubarb crumble at 250 watts, how long will it take at 500 watts? (Hint: This is a re-do of part (a) with new values. Answer: 1 minute. Show how to aet this.)

$$2=\frac{k}{250} = \frac{1}{100} = \frac{$$