Token Generation & Loss (Forward)

Token Generation & Loss — Backward (Corrected)

•	Abbrev	Name	Type / Shape	Notes
Operations (Ops)	S	Softmax	op	Over vocab axis V ; outputs probabilities \mathbf{P} .
	CE	Cross-Entropy	op	Usually $sparse$ CE consuming label indices \mathbf{Y} .
	ARG	Argmax (greedy)	op	argmax_V to get token ids (no gradient).
	$ ext{TOP-}k$	Top- k / sampling	op	Optional decoding path (or nucleus sampling); no gradient.
	T	Transpose	op	E.g., $\widetilde{\mathbf{W}}_{\mathrm{lm}}^T \in \mathbb{R}^{V \times D}$.
	$\mathrm{BC}_{B,S}(\cdot)$	Broadcast	op	Expand $[V] \rightarrow [B, S, V]$ for bias add.
	dS	Softmax backward	op	The output is $d\mathbf{Z}_{\text{bias}} = \mathbf{P} - \text{onehot}(\mathbf{Y})$ (with CE).
	dAddB	Addition (Bias) backward	op	Passes $d\mathbf{Z}_{\text{bias}}$ to $d\mathbf{Z}_{\text{lin}}$ and $\sum_{B,S}$.
	$\sum_{B,S}$	Summation	op	Sums $d\mathbf{Z}_{\text{bias}}$ over axes B and S to get $d\widetilde{\mathbf{b}}_{\text{lm}}$.

Data Tensors (Values)

Symbol	Name	Shape	Notes			
${f A}_{ m out}$	Transformer output (hidden)	[B, S, D]	Final hidden from the Transformer block(s).			
$\widetilde{\mathbf{W}}_{\mathrm{lm}}$	LM head weight (tied)	[D,V]	Typically tied to \mathbf{E}^T .			
$\widetilde{\mathbf{b}}_{\mathrm{lm}}$	LM head bias	[V]	Broadcast-added over $[B, S, V]$.			
$\mathbf{Z}_{\mathrm{lin}}$	Logits (linear output)	[B,S,V]	$\mathbf{Z}_{ ext{lin}} = \mathbf{A}_{ ext{out}} \widetilde{\mathbf{W}}_{ ext{lm}}.$			
$\mathbf{Z}_{ ext{bias}}$	Logits (final/Softmax input)	[B,S,V]	$\mathbf{Z}_{ ext{bias}} = \mathbf{Z}_{ ext{lin}} + \widetilde{\mathbf{b}}_{ ext{lm}}.$			
P	Probabilities	[B, S, V]	$\mathbf{P} = \operatorname{softmax}(\mathbf{Z}_{\operatorname{bias}}).$			
\mathbf{Y}	Target token ids	[B,S]	Ground-truth indices (sparse labels).			
${\cal L}$	Loss	scalar or $[B, S]$	Typically mean over B, S .			
$\mathrm{d}\mathcal{L}$	Loss gradient	scalar-grad	Starting signal for backward pass.			
$\mathrm{d}\mathbf{Z}_{\mathrm{bias}}$	Final Logits gradient	[B,S,V]	From CE+Softmax: \mathbf{P} – onehot(\mathbf{Y}).			
$\mathrm{d}\mathbf{Z}_{\mathrm{lin}}$	Linear output grad	[B, S, V]	Same as $d\mathbf{Z}_{\text{bias}}$ (input to \mathbf{Z}_{lin} matmul).			
$\mathrm{d}\widetilde{\mathbf{W}}_{\mathrm{lm}}$	LM weight grad	[D,V]	$=\mathbf{A}_{ ext{out}}^T\mathrm{d}\mathbf{Z}_{ ext{lin}}.$			
$\mathrm{d}\widetilde{\mathbf{b}}_{\mathrm{lm}}$	LM bias grad	[V]	$=\sum_{B,S}(\mathrm{d}\mathbf{Z}_{\mathrm{bias}}).$			
$\mathrm{d}\mathbf{A}_{\mathrm{out}}$	Hidden grad	[B, S, D]	$=\mathrm{d}\mathbf{Z}_{\mathrm{lin}}\widetilde{\mathbf{W}}_{\mathrm{lm}}^{T}.$			
Shapes:	Shapes: B =batch, S =sequence length, D =hidden dim, V =vocab size.					