Условное математическое ожидание (продолжение). Семинар 8. 23 октября 2018 г.

Подготовил: Горбунов Э.

Источники: [Ширяев, Гл. 1 §8, Гл. 2 §7], [НатанТВ, Гл. 5], [Боровков, Гл. 4 §2], [Гнеденко, Гл. 5 §23]

Ключевые слова: условное математическое ожидание относительно σ -алгебры, условная вероятность относительно σ -алгебры

Первые 10-15 минут семинара — разбор прошедшей контрольной работы.

Условное математическое ожидание относительно σ -алгебры

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и некоторую σ -алгебру $\mathcal{D} \subseteq \mathcal{F}$ $(\mathcal{D} - \sigma$ -подалгебра $\mathcal{F})$. Пусть ξ — некоторая случайная величина. Мы определяли математического ожидание случайной величины ξ (интеграл Лебега по вероятностной мере) в два этапа: сначала это было сделано для неотрицательных случайных величин, а затем и в общем случае мат. ожидание было определено формулой:

$$\mathbb{E}\xi = \mathbb{E}\xi^+ - \mathbb{E}\xi^-$$
 при условии, что $\min\{\mathbb{E}\xi^-, \mathbb{E}\xi^+\} < \infty$.

Подобная же конструкция используется для определения условного мат. ожидания относительно σ -алгебры.

- Определение 1. 1. Условным математическим ожиданием неотрицательной случайной величины ξ относительно σ -алгебры $\mathcal D$ называется расширенная случайная величина $\mathbb E[\xi|\mathcal D](\omega)$ (т.е. принимающая значения из $\overline{\mathbb R}=[-\infty,+\infty]$), такая, что
 - а) $\mathbb{E}[\xi|\mathcal{D}](\omega)$ является \mathcal{D} -измеримой;
 - b) для любого события $A \in \mathcal{D}$ выполняется:

$$\int_{A} \xi d\mathbb{P} = \int_{A} \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P}.$$

2. Условным математическим ожиданием произвольной случайной величины ξ относительно σ -алгебры $\mathcal D$ называется расширенная случайная величина

$$\mathbb{E}[\xi|\mathcal{D}](\omega) \stackrel{\text{def}}{=} \mathbb{E}[\xi^{+}|\mathcal{D}](\omega) - \mathbb{E}[\xi^{-}|\mathcal{D}](\omega)$$

при условии, что с вероятностью 1 выполнено неравенство:

$$\min\{\mathbb{E}[\xi^-|\mathcal{D}](\omega), \mathbb{E}[\xi^+|\mathcal{D}](\omega)\} < \infty,$$

причём на множестве нулевой вероятностной меры $\{\omega \in \Omega \mid \min\{\mathbb{E}[\xi^-|\mathcal{D}](\omega), \mathbb{E}[\xi^+|\mathcal{D}](\omega)\} = \infty\}$ значение условного математического ожидание определяется произвольным образом. Если же $\mathbb{P}\{\omega \in \Omega \mid \min\{\mathbb{E}[\xi^-|\mathcal{D}](\omega), \mathbb{E}[\xi^+|\mathcal{D}](\omega)\} = \infty\} > 0$, то условное математическое ожидания ξ относительно σ -алгебры \mathcal{D} неопределено.

Замечание 1. Существование условного математического ожидания для неотрицательных случайных величин гарантирует теорема Радона-Никодима. Для этого рассмотрим неотрицательную случайную величину ξ и функцию множеств

$$Q(A) = \int_A \xi d\mathbb{P}, \quad A \in \mathcal{D}.$$

Легко показать, что $Q(\cdot)$ является мерой на (Ω, \mathcal{D}) , которая *абсолютно непрерывна* относительно меры \mathbb{P} (по определению, это означает, что из $\mathbb{P}\{A\} = 0, A \in \mathcal{D}$ следует Q(A) = 0). Тогда по теореме Радона-Никодима существует такая неотрицательная \mathcal{D} -измеримая расширенная случайная величина $\mathbb{E}[\xi|\mathcal{D}](\omega)$, что

$$Q(A) = \int_{A} \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P}.$$

Она определена с точностью до множества Р-меры нуль.

Замечание 2. Отметим, что свойство (b) из определения будет выполнено, если положить $\mathbb{E}[\xi|\mathcal{D}] = \xi$. Но так сделать в общем случае нельзя, т. к. ξ не обязана быть \mathcal{D} -измеримой.

Замечание 3. В случае тривиальной σ -алгебры $\mathcal{D} = \{\varnothing, \Omega\}$ получаем, что $\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}\xi$.

Определение 2. Условной вероятностью события $B \in \mathcal{F}$ относительно σ -алгебры \mathcal{D} называется обобщённая случайная величина

$$\mathbb{P}\{B|\mathcal{D}\}(\omega) \stackrel{\text{def}}{=} \mathbb{E}[\mathbb{I}_B|\mathcal{D}](\omega).$$

Из введённых определений следует, что для каждого фиксированного $B \in \mathcal{F}$ выполнено:

- а) $\mathbb{P}\{B|\mathcal{D}\}(\omega)$ является \mathcal{D} -измеримой;
- b) для любого $A \in \mathcal{D}$

$$\mathbb{P}\{A \cap B\} = \int_{A} \mathbb{P}\{B|\mathcal{D}\}d\mathbb{P}.$$

Определение 3. Условным математическим ожиданием случайной величины ξ относительно случайной величины η называется обобщённая случайная величина

$$\mathbb{E}[\xi|\eta](\omega) \stackrel{\text{def}}{=} \mathbb{E}[\xi|\mathcal{D}_{\eta}](\omega),$$

где $\mathcal{D}_{\eta}-\sigma$ -алгебра, порождённая случайной величиной η (при условии, что $\mathbb{E}[\xi|\mathcal{D}_{\eta}](\omega)$ определено).

Определение 4. Условной вероятностью события $B \in \mathcal{F}$ относительно случайной величины η называется обобщённая случайная величина

$$\mathbb{P}\{B|\eta\}(\omega) \stackrel{\text{def}}{=} \mathbb{P}\{\mathbb{I}_B|\mathcal{D}_{\eta}\}(\omega),$$

где $\mathcal{D}_{\eta}-\sigma$ -алгебра, порождённая случайной величиной η (при условии, что $\mathbb{P}\{B|\mathcal{D}_{\eta}\}(\omega)$ определена).

Следующая теорема показывает, что введённое определение условного математического ожидания согласуется с определением, данным на прошлом семинаре.

Теорема 1. Пусть $D = \{B_1, \dots, B_n\}$ — некоторое разбиение вероятностного пространства $(\Omega, \mathcal{F}, \mathbb{P})$. Пусть $\mathcal{D} = \sigma(D)$ и ξ — некоторая случайная величина, для которой $\mathbb{E}\xi$ определено. Тогда с вероятностью 1 выполнено равенство

$$\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}[\xi|D].$$

Доказательство. Действительно, если случайная величина $\mathbb{E}[\xi|\mathcal{D}]$ является \mathcal{D} -измеримой, то она принимает постоянные значения на элементах разбиения B_i (с вероятностью 1), т.е. с вероятностью 1 выполняется равенство

$$\mathbb{E}[\xi|\mathcal{D}] = \sum_{i=1}^{n} x_i \mathbb{I}_{B_i}.$$

Тогда для всех B_i из определения условного математического ожидания относительно σ -алгебры имеем:

$$\int\limits_{B_i} \xi d\mathbb{P} = \int\limits_{B_i} \mathbb{E}[\xi|\mathcal{D}] d\mathbb{P} = x_i \mathbb{P}\{B_i\} \Rightarrow x_i = \frac{1}{\mathbb{P}\{B_i\}} \int\limits_{B_i} \xi d\mathbb{P} \stackrel{\text{def}}{=} \mathbb{E}[\xi|B_i],$$

то есть

$$\mathbb{E}[\xi|\mathcal{D}] = \sum_{i=1}^{n} x_i \mathbb{I}_{B_i} = \sum_{i=1}^{n} \mathbb{E}[\xi|B_i] \mathbb{I}_{B_i} \stackrel{\text{def}}{=} \mathbb{E}[\xi|D].$$

Перечислим теперь важные свойства условного математического ожидания относительно σ -алгебры.

1. Если c — константа и $\xi = c$ с вероятностью 1, то с вероятностью 1 $\mathbb{E}[\xi|\mathcal{D}] = c$. Данное свойство следует из того, что константная функция измерима относительно σ -алгебры \mathcal{D} и удовлетворяет равенству:

$$\int\limits_{A} \xi d\mathbb{P} = \int\limits_{A} cd\mathbb{P}, \quad \forall A \in \mathcal{D}.$$

2. Если $\xi \leqslant \eta$ с вероятностью 1, то $\mathbb{E}[\xi|\mathcal{D}] \leqslant \mathbb{E}[\eta|\mathcal{D}]$ с вероятностью 1. Действительно, мы имеем

$$\int\limits_{A} \xi d\mathbb{P} \leqslant \int\limits_{A} \eta d\mathbb{P}, \quad \forall A \in \mathcal{D},$$

а значит,

$$\int\limits_A \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P} \leqslant \int\limits_A \mathbb{E}[\eta|\mathcal{D}]d\mathbb{P}, \quad \forall A \in \mathcal{D}.$$

Последнее означает, что $\mathbb{E}[\xi|\mathcal{D}] \leqslant \mathbb{E}[\eta|\mathcal{D}]$ с вероятностью 1 (это следует из свойств интеграла Лебега и того факта, что $\mathbb{E}[\xi|\mathcal{D}]$ и $\mathbb{E}[\eta|\mathcal{D}]$ измеримы относительно \mathcal{D}).

3. $|\mathbb{E}[\xi|\mathcal{D}]| \leq \mathbb{E}[|\xi||\mathcal{D}]$ с вероятностью 1. Данное свойство вытекает из предыдущего.

4. Если a, b — постоянные и $a\mathbb{E}\xi + b\mathbb{E}\eta$ определено, то с вероятностью 1 выполнено равенство

$$\mathbb{E}[a\xi + b\eta | \mathcal{D}] = a\mathbb{E}[\xi | \mathcal{D}] + b\mathbb{E}[\eta | \mathcal{D}].$$

Данное свойство следует из линейности интеграла Лебега.

5. Если $\mathcal{D}_* = \{\varnothing, \Omega\}$ — тривиальная σ -алгебра, то $\mathbb{E}[\xi | \mathcal{D}_*] = \mathbb{E}\xi$. Это свойство следует из того, что константа $\mathbb{E}\xi$ является \mathcal{D}_* -измеримой функцией и если $A = \varnothing$ или $A = \Omega$, то выполняется

$$\int_{A} \xi d\mathbb{P} = \int_{A} \mathbb{E} \xi d\mathbb{P}.$$

6. $\mathbb{E}[\xi|\mathcal{F}]=\xi$ с вероятностью 1. Поскольку $\xi-\mathcal{F}$ -измерима и

$$\int\limits_A \xi d\mathbb{P} = \int\limits_A \xi d\mathbb{P}, \quad \forall A \in \mathcal{F},$$

то $\mathbb{E}[\xi|\mathcal{F}] = \xi$ с вероятностью 1.

7. Если $\mathcal{D}_1 \subseteq \mathcal{D}_2$, то с вероятностью 1

$$\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right] = \mathbb{E}[\xi|\mathcal{D}_1].$$

Действительно, для любого множества $A \in \mathcal{D}_1 \subseteq \mathcal{D}_2$

$$\int_{A} \mathbb{E}[\xi|\mathcal{D}_{1}]d\mathbb{P} = \int_{A} \xi d\mathbb{P}$$

И

$$\int\limits_A \mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right] d\mathbb{P} = \int\limits_A \mathbb{E}[\xi|\mathcal{D}_2] d\mathbb{P} = \int\limits_A \xi d\mathbb{P}.$$

Тогда для всех $A \in \mathcal{D}_1$

$$\int_{A} \mathbb{E}[\xi|\mathcal{D}_{1}]d\mathbb{P} = \int_{A} \mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_{2}]|\mathcal{D}_{1}\right]d\mathbb{P},$$

откуда следует, что \mathcal{D}_1 -измеримые функции $\mathbb{E}[\xi|\mathcal{D}_1]$ и $\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right]$ совпадают с вероятностью 1.

8. Если $\mathcal{D}_1 \supseteq \mathcal{D}_2$, то с вероятностью 1

$$\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right] = \mathbb{E}[\xi|\mathcal{D}_2].$$

Действительно, $\mathbb{E}[\xi|\mathcal{D}_2]$ является \mathcal{D}_2 -измеримой случайной величиной, а значит, и \mathcal{D}_1 -измеримой. Кроме того,

$$\int_{A} \mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_{2}]|\mathcal{D}_{1}\right] d\mathbb{P} = \int_{A} \mathbb{E}[\xi|\mathcal{D}_{2}] d\mathbb{P}.$$

Значит, $\mathbb{E}[\xi|\mathcal{D}_2]$ является одним из вариантов условного математического ожидания $\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right]$.

- 9. С вероятностью 1 выполнено равенство $\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}]\right] = \mathbb{E}\xi$. Данное свойство следует из свойства 7, если взять $\mathcal{D}_1 = \mathcal{D}_* = \{\varnothing, \Omega\}$ и $\mathcal{D}_2 = \mathcal{D}$ и воспользоваться свойством 5.
- 10. Если для случайной величины ξ определено математическое ожидание $\mathbb{E}\xi$ и она не зависит от σ -алгебры \mathcal{D} (то есть не зависит от \mathbb{I}_A для всех $A \in \mathcal{D}$), то с вероятностью 1

$$\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}\xi.$$

Это так, поскольку $\mathbb{E}\xi$ является \mathcal{D} -измеримой случайной величиной и верна цепочка равенств

$$\int_A \xi d\mathbb{P} = \mathbb{E}[\xi \mathbb{I}_A] = \mathbb{E}\xi \cdot \mathbb{E}\mathbb{I}_A = \mathbb{E}\xi \cdot \mathbb{P}\{A\} = \int_A \mathbb{E}\xi d\mathbb{P}.$$

11. Если $\eta - \mathcal{D}$ -измеримая случайная величина, $\mathbb{E}|\eta| < \infty$ и $\mathbb{E}|\xi\eta| < \infty$, то с вероятностью 1

$$\mathbb{E}[\xi\eta|\mathcal{D}] = \eta \mathbb{E}[\xi|\mathcal{D}].$$

В частности,

$$\mathbb{E}[\xi\eta|\eta] = \eta \mathbb{E}[\xi|\mathcal{D}]$$

с вероятностью 1. Данное свойство доказывается сначала для простых функций η , а потом для произвольных \mathcal{D} -измеримых функций путём предельного перехода.

Определение 5. Пусть ξ и η — случайные величины и $\mathbb{E}\xi$ определено. Условным математическим ожиданием случайной величины ξ при условии, что $\eta=y$ называется борелевская функция $\mathbb{E}[\xi|\eta=y]\stackrel{\mathrm{def}}{=} m(y)$ такая, что

$$\int_{\{\omega \in \Omega \mid \eta(\omega) \in B\}} \xi(\omega) d\mathbb{P}(\omega) = \int_{B} m(y) d\mathbb{P}_{\eta}(y), \quad \forall B \in \mathcal{B}(\mathbb{R}).$$

Существование такой функции показывается аналогичными рассуждениями с использованием теоремы Радона-Никодима, что и при доказательстве существования условного математического ожидания относительно σ -алгебры.

Применяя теорему о замене переменных под знаком интеграла Лебега, получим, что

$$\int\limits_{\{\omega\in\Omega|\eta(\omega)\in B\}}\xi(\omega)d\mathbb{P}(\omega)=\int\limits_{B}m(y)d\mathbb{P}_{\eta}(y)=\int\limits_{\{\omega\in\Omega|\eta(\omega)\in B\}}m(\eta(\omega))d\mathbb{P}(\omega),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Случайная величина $m(\eta)$ является \mathcal{D}_{η} -измеримой, а множествами $\{\omega \in \Omega \mid \xi(\omega) \in B\}B \in \mathcal{B}(\mathbb{R})$ исчерпываются все множества из \mathcal{D}_{η} . Следовательно, $m(\eta) = \mathbb{E}[\xi|\eta]$ с вероятностью 1. Отсюда следует, что можно восстановить $\mathbb{E}[\xi|\eta]$, зная $\mathbb{E}[\xi|\eta = y]$, и, наоборот, по $\mathbb{E}[\xi|\eta]$ можно найти $\mathbb{E}[\xi|\eta = y]$.

Можно показать, что для любой $\mathcal{B}(\mathbb{R}^2)$ -измеримой функции $\varphi(x,y)$ и независимых случайных величин ξ и η таких, что $\mathbb{E}|\varphi(\xi,\eta)|<\infty$, то с вероятностью 1

$$\mathbb{E}[\varphi(\xi,\eta)|\eta=y] = \mathbb{E}[\varphi(\xi,y)].$$

Данный факт оказывается очень полезным при решении задач, но мы его оставим без доказательства.

Определение 6. Условной вероятностью события $A \in \mathcal{F}$ при условии, что $\eta = y$ будем называть расширенную случайную величину

$$\mathbb{P}\{A|\eta=y\} \stackrel{\text{def}}{=} \mathbb{E}[\mathbb{I}_A|\eta=y].$$

Заметим, что из данного определения следует определение условной вероятности $\mathbb{P}\{A|\eta=y\}$, данное на пятом семинаре:

$$\mathbb{P}\left\{A \cap \{\omega \in \Omega \mid \eta(\omega) \in B\}\right\} = \int_{B} \mathbb{P}\left\{A \mid \eta = y\right\} d\mathbb{P}_{\eta}(y), \quad \forall B \in \mathcal{B}(\mathbb{R}).$$

Пример 1. Пусть (ξ, η) — пара случайных величин, имеющих совместное абсолютно непрерывное распределение с плотностью $f_{\xi,\eta}(x,y)$. Пусть $f_{\xi}(x)$ и $f_{\eta}(y)$ — плотности распределения ξ и η соответственно. Теперь мы готовы обосновать факт с пятого семинара, что плотность условного распределения $\xi|\eta$ равна

$$f_{\mathcal{E}|n}(x|y) = g(x,y),$$

где $g(x,y)=\frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)},$ причём g(x,y) положим равной нулю, если $f_{\eta}(y)=0.$ Иными словами, нам нужно показать, что

$$\mathbb{P}\{\xi \in C | \eta = y\} = \int_C g(x, y) dx, \quad \forall C \in \mathcal{B}(\mathbb{R}).$$

Для этого воспользуемся определением условной вероятности:

$$\mathbb{P}\left\{\left\{\omega\in\Omega\mid\xi(\omega)\in C\right\}\cap\left\{\omega\in\Omega\mid\eta(\omega)\in B\right\}\right\}=\int\limits_{\mathbb{R}}\mathbb{P}\{\xi\in C|\eta=y\}d\mathbb{P}_{\eta}(y),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Используя $meopemy \Phi y \delta u h u$, получим

$$\int_{B} \left[\int_{C} g(x, y) dx \right] d\mathbb{P}_{\eta}(y) = \int_{B} \left[\int_{C} g(x, y) dx \right] d\mathbb{P}_{\eta}(y)
= \int_{B} \left[\int_{C} g(x, y) dx \right] f_{\eta}(y) dy
= \int_{C \times B} g(x, y) = \frac{f_{\xi, \eta}(x, y)}{f_{\eta}(y)} f_{\eta}(y) dx dy
= \int_{C \times B} f_{\xi, \eta}(x, y) dx dy
= \mathbb{P} \{ \xi \in C, \eta \in B \},$$

откуда следует, что

$$\mathbb{P}\{\xi \in C | \eta = y\} = \int_C g(x, y) dx, \quad \forall C \in \mathcal{B}(\mathbb{R}).$$

Аналогичным образом, можно показать, что

$$\mathbb{E}[\xi|\eta=y] = \int\limits_{\mathbb{D}} x f_{\xi|\eta}(x|y) dx.$$

Замечание 4. Если в определении $\mathbb{P}\{A|\eta=y\}$ взять $B=\mathbb{R}$, то получим формулу полной вероятности:

$$\mathbb{P}\{A\} = \int_{\mathbb{R}} \mathbb{P}\{A|\eta = y\}d\mathbb{P}_{\eta}(y).$$

Например, если $A=\{\omega\in\Omega|\varphi(\xi,\eta)<0\}\stackrel{\mathrm{def}}{=}\{\varphi(\xi,\eta)<0\}$, где $\varphi(x,y)$ — некоторая борелевская функция, а ξ и η — независимые случайные величины, то

$$\mathbb{P}\{\varphi(\xi,\eta)<0\}=\int\limits_{\mathbb{R}}\mathbb{P}\{\varphi(\xi,\eta)<0|\eta=y\}d\mathbb{P}_{\eta}(y)=\int\limits_{\mathbb{R}}\mathbb{P}\{\varphi(\xi,y)<0\}d\mathbb{P}_{\eta}(y).$$