Department of Mathematics University of Utah

Loxodromics for the cyclic splitting complex

Derrick Wigglesworth joint with Radhika Gupta

January 10, 2018

Introduction

Groups acting on hyperbolic spaces

Theme in GGT:

Many groups we like are not hyperbolic: By making them act on a hyperbolic space, we can find ways that they are "like a hyperbolic group."

$$G \cap X$$

Theme in GGT:

Many groups we like are not hyperbolic: By making them act on a hyperbolic space, we can find ways that they are "like a hyperbolic group."

$$G \cap X$$

- ▶ $MCG(S) \curvearrowright C(S)$, the curve complex.
- ► A relatively hyperbolic group acting on its coned-off Cayley graph.
- ► CAT(0) cube complex group acting on its contact graph.

Definition

$$\operatorname{Out}(F_n) = \operatorname{Aut}(F_n) / \operatorname{Inn}(F_n)$$

Theorem [Bestvina-Feighn]

 $\operatorname{Out}(F_n)$ is **acylindrically hyperbolic**: $\operatorname{Out}(F_n)$ admits an acylindrical action on a Gromov hyperbolic metric space.

Definition

$$\operatorname{Out}(F_n) = \operatorname{Aut}(F_n) / \operatorname{Inn}(F_n)$$

Theorem [Bestvina-Feighn]

 $\operatorname{Out}(F_n)$ is **acylindrically hyperbolic**: $\operatorname{Out}(F_n)$ admits an acylindrical action on a Gromov hyperbolic metric space.

Motivating Question

Find a natural, concrete example of such a space.

Some Hyperbolic $Out(F_n)$ graphs Background

- ▶ A **one-edge free splitting** of F_n is a decomposition $F_n = A * B$ where each of A and B is nontrivial.
- ▶ A one-edge \mathbb{Z} -splitting of F_n is a decomposition $F_n = A *_{\mathbb{C}} B$ where C is either trivial or \mathbb{Z} and neither A nor B is trivial or equal to C.

Some Hyperbolic $Out(F_n)$ graphs Background

- ▶ A **one-edge free splitting** of F_n is a decomposition $F_n = A * B$ where each of A and B is nontrivial.
- ▶ A one-edge \mathbb{Z} -splitting of F_n is a decomposition $F_n = A *_{\mathbb{C}} B$ where C is either trivial or \mathbb{Z} and neither A nor B is trivial or equal to C.
- ► A and B are called **vertex groups** of the splittings.
- ▶ A **free factor** of F_n is a subgroup A such that there exists a B with $F_n = A * B$.

Some Hyperbolic $Out(F_n)$ graphs

▶ The free splitting graph, \mathcal{FS}_n is

$$\mathcal{FS}_n = \begin{cases} \text{vertices:} & \text{one-edge free splittings} \\ \text{edges:} & \text{compatibility} \end{cases}$$

▶ The cyclic splitting graph, $\mathcal{F}\mathcal{Z}_n$ is

$$\mathcal{FZ}_n = \begin{cases} \text{vertices:} & \text{one-edge } \mathcal{Z}\text{-splittings} \\ \text{edges:} & \text{compatibility} \end{cases}$$

▶ The free factor graph, $\mathcal{F}\mathcal{F}_n$ is

$$\mathcal{FF}_n = \begin{cases} \text{vertices:} & \text{free factors} \\ \text{edges:} & \text{inclusion} \end{cases}$$

Understanding the actions

Translation Distance

Definition

Let $g \in Isom(X)$, for X a metric space. The **translation distance** of g is

$$\tau(g) = \lim_{n \to \infty} \frac{1}{n} d(x, g^n \cdot x)$$

If *X* is hyperbolic and $\tau(g) > 0$, we say *g* is **loxodromic**.

Understanding the actions Translation Distance

Definition

Let $g \in \text{Isom}(X)$, for X a metric space. The **translation distance** of g is $\tau(g) = \lim_{n \to \infty} \frac{1}{n} d(x, g^n \cdot x)$

If *X* is hyperbolic and $\tau(g) > 0$, we say *g* is **loxodromic**.

Loxodromic elements have nice dynamical properties:

- g fixes exactly two points in $\overline{X} = X \cup \partial X$.
- g acts with north-south dynamics on \overline{X} .
- ▶ *g* has a (quasi) "axis" along which it acts by translation.
- ▶ independent loxodromics can be used to play ping pong.

Loxodromics for some $Out(F_n)$ graphs

- ▶ Associated to each $\phi \in Out(F_n)$ is a finite set of **attracting laminations**, $\mathcal{L}(\phi)$, that are analogs of the finite set of measured laminations associated to a reducible mapping class.
- ▶ A lamination $\Lambda \in \mathcal{L}(\phi)$ is **filling** if it isn't contained in (carried by) a vertex group of any free splitting.

Theorem [Handel-Mosher '14]

An element $\phi \in \text{Out}(F_n)$ acts loxodromically on the free splitting complex if and only if ϕ has a filling lamination.

Loxodromics for some $Out(F_n)$ graphs

- ▶ Associated to each $\phi \in Out(F_n)$ is a finite set of **attracting laminations**, $\mathcal{L}(\phi)$, that are analogs of the finite set of measured laminations associated to a reducible mapping class.
- ▶ A lamination $\Lambda \in \mathcal{L}(\phi)$ is \mathcal{Z} -filling if it isn't contained in (carried by) a vertex group of any \mathcal{Z} -splitting.

Theorem [Gupta-W. '17]

An element $\phi \in \operatorname{Out}(F_n)$ acts loxodromically on the cyclic splitting complex if and only if ϕ has a \mathbb{Z} -filling lamination.

Back to Acylindrical Hyperbolicity

Questions:

- ▶ Is the action $Out(F_n) \curvearrowright \mathcal{FZ}_n$ acylindrical?
- ▶ Is the action $Out(F_n) \curvearrowright \mathcal{FF}_n$ acylindrical?

Back to Acylindrical Hyperbolicity

Questions:

- ▶ Is the action $Out(F_n) \curvearrowright \mathcal{FZ}_n$ acylindrical?
- ▶ Is the action $Out(F_n) \curvearrowright \mathcal{FF}_n$ acylindrical?

WPD

WPD is a still weaker version of proper discontinuity for a group action. Roughly speaking, WPD is "acylindricity in the directions of axes of loxodromics."

▶ Does the action $Out(F_n) \curvearrowright \mathcal{FZ}_n$ satisfy weak proper discontinuity?

Promising Results

Theorem [Gupta-W., '17]

If $\phi \in \text{Out}(F_n)$ has a filling lamination Λ , then ϕ has virtually cyclic centralizer if and only if Λ is \mathcal{Z} -filling.

In particular, the Lipschitz map

$$\mathcal{FS}_n \longrightarrow \mathcal{FZ}_n$$

kills the axes of precisely those loxodromics whose stabilizer is large.

Promising Results

Theorem [Gupta-W., '17]

If $\phi \in \text{Out}(F_n)$ has a filling lamination Λ , then ϕ has virtually cyclic centralizer if and only if Λ is \mathcal{Z} -filling.

In particular, the Lipschitz map

$$\mathcal{FS}_n \longrightarrow \mathcal{FZ}_n$$

kills the axes of precisely those loxodromics whose stabilizer is large.

Conjecture

The action of $Out(F_n)$ on \mathcal{FZ}_n satisfies WPD.

- ▶ The boundary of $\mathcal{F}\mathcal{Z}_n$ consists of equivalence classes of \mathcal{Z} -averse trees [Horbez '16].
- ▶ One wants to take an automorphism, ϕ , that has a \mathcal{Z} -filling lamination and a \mathcal{Z} -splitting, S, then start iterating: $\phi^n \cdot S$. We then want to show that the limiting tree is \mathcal{Z} -averse.

- ► There is one exactly "good representative" in each equivalence class of Z-averse trees; it's a tree that is mixing.
- A standard way to study trees in the boundary of outer space is using folding paths, so we want to construct a folding path that ends at the good limiting tree.

- For certain automorphisms, the tree obtained from iterating ϕ will not be the mixing representative in it's class.
- To get from T' to T one has to collapse the complement of a Cantor set...in an ℝ-tree.

• 7

- ► To overcome this, we collapse first to get a simplicial tree in the boundary of outer space.
- ► Then develop folding paths for trees in the boundary, and study the limiting mixing tree via those folding paths.
- ▶ Show *T* is *Z*-averse.

A Word on Proofs

Keywords:

- ▶ The boundary of \mathcal{FZ}_n : equivalence classes of \mathcal{Z} -averse trees.
- ► Folding paths for simplicial trees in the boundary of outer space.
- ▶ JSJ decompositions and deformation spaces of trees.
- Completely split train tracks

Thank you!

