Úloha č.2

- 1. Uvažujte jazyk $L = \{w \in \{a, b\}^* \mid \#_a(w) = \#_b(w)\}$, kde $\#_x(w)$ značí počet výskytov symbolu x v reťazci w. Dokážte, že jazyk L je bezkontextový. Postupujte nasledovne:
 - (a) Najprv navrhnite gramatiku G, ktorá bude mať za cieľ jazyk L generovať.
 - (b) Potom pomocou indukcie k dĺžke slova $w \in L$ dokážte, že L = L(G).

Riešenie

(a) $G = (N, \Sigma, P, S)$, $kde\ N = \{S\}, \Sigma = \{a, b, \varepsilon\}, P = \{S \to aSb, S \to bSa, S \to SS, S \to \varepsilon\}$

(b) Aby sme dokázali, že L=L(G), potrebujeme dokázať, že platí:

$$L(G)\subseteq L \quad \wedge \quad L\subseteq L(G)$$

(i) $L(G) \subseteq L$

Pre dôkaz, že každé slovo w generované gramatikou G patrí do jazyka L použijeme indukciu vzhľadom k dĺžke n slova w:

Bázový prípad: n = 0, slovo $w = \varepsilon$ možno vygenerovať 2 spôsobmi:

1) priamo:
$$S \underset{G}{\Rightarrow} \varepsilon = w$$

2) nepriamo:
$$S \underset{G}{\Rightarrow} SS \underset{G}{\stackrel{*}{\Rightarrow}} \varepsilon = w$$

Keďže platí
$$\#_a(\varepsilon) = \#_b(\varepsilon)$$
, slovo $w = \varepsilon \in L$.

Indukčný predpoklad: Predpokladajme, že $L(G) \subseteq L$ platí pre všetky slová

dĺžky
$$n$$
, takže platí: $\forall w' \left(S \stackrel{*}{\Rightarrow} w' \wedge |w'| = n \implies w' \in L \right)$

Indukčný krok: Ukážeme, že implikácia platí aj pre slová dĺžky n+2

(gramatika G generuje slová párnej dĺžky), tj. že platí

$$\forall w \Big(S \stackrel{*}{\underset{G}{\Rightarrow}} w \land |w| = n + 2 \implies w \in L \Big)$$

Pri generovaní slova w pomocou gramatiky G môže nastať niekoľko prípadov, v závislosti od voľby pravidla pre prvý derivačný krok:

 $\bullet \ S \to aSb \colon \quad S \underset{G}{\Rightarrow} \ aSb \underset{G}{\stackrel{*}{\Rightarrow}} \ aw'b = w \qquad |w'| = n, \ |w| = n+2$

Podľa indukčného predpokladu $w' \in L$. Je zrejmé, že ak platí $\#_a(w') = \#_b(w')$, tak rovnaký vzťah platí aj pre w = aw'b (pomer počtu symbolov a a b v slove ostal zachovaný), preto $w \in L$.

• $S \rightarrow bSa$: $S \underset{G}{\Rightarrow} bSa \underset{G}{\stackrel{*}{\Rightarrow}} bw'a = w$ |w'| = n, |w| = n + 2

Opäť podľa indukčného predpokladu $w' \in L$. Slovo w = bw'a spĺňa podmienky príslušnosti do jazyka L, teda $w \in L$.

•
$$S \to SS$$
: $S \underset{G}{\Rightarrow} SS \underset{G}{\stackrel{*}{\Rightarrow}} w_1w_2$ $w_1 \in \{aw_1'b, bw_1'a, \varepsilon\}, w_2 \in \{aw_2'b, bw_2'a, \varepsilon\}$ $|w_1'| = n_1, |w_2'| = n_2$

V tomto prípade pravidlo negeneruje priamo terminálny symbol, preto nijako neovplyvňuje pomer počtu výskytov symbolu a a b v slove. Podľa indukčného predpokladu $w_1', w_2' \in L$ a ako sme ukázali v predošlých krokoch, platí: $aw_1'b$, $bw_1'a$, $aw_2'b$, $bw_2'a$, $\varepsilon \in L$. Týmto pravidlom sa tieto slová môžu reťaziť za seba, čo neporušuje podmienky príslušnosti do jazyka.

Ukázali sme, že pre každý prípad reťazca w dĺžky n+2 generovaného gramatikou G, platí $w \in L$. Indukčný krok platí.

(ii) $\mathbf{L} \subseteq \mathbf{L}(\mathbf{G})$

Potrebujeme ukázať, že všetky slová z jazyka L je možné generovať gramatikou G. Pre dôkaz použijeme indukciu vzhľadom k dĺžke slova w:

Bázový prípad: |w|=0, slovo $w=\varepsilon\in L$ a zároveň existuje pravidlo $S\to\varepsilon$ v gramatike G. Z toho vyplýva že $\varepsilon\in L(G)$.

Indukčný predpoklad: Predpokladajme, že $L\subseteq L(G)$ platí pre všetky slová dĺžky n-2, formálne:

$$\forall w' \Big(w' \in L \land |w'| = n - 2 \implies S \underset{G}{\overset{*}{\Rightarrow}} w' \Big)$$

Indukčný krok: Ukážeme, že implikácia platí aj pre slová dĺžky n tj. že platí: $\forall w \Big(w \in L \land |w| = n \implies S \stackrel{*}{\Rightarrow} w \Big)$

Podľa definície jazyka L existuje niekoľko prípadov slova $w \in L$ takého, že |w| = n:

- w = aw'b |w'| = n 2, |w| = nPodľa indukčného predpokladu platí $S \stackrel{*}{\Rightarrow} w'$. Pri derivovaní slova w z gramatiky G budeme postupovať nasledovne: $S \stackrel{*}{\Rightarrow} aSb \stackrel{*}{\Rightarrow} aw'b$. Platí $w \in L(G)$.
- w = bw'a |w'| = n 2, |w| = nAnalogicky ku predošlému prípadu, použijeme indukčný predpoklad a derivácia slova w z gramatiky G bude vyzerať nasledovne: $S \Rightarrow bSa \stackrel{*}{\Rightarrow} bw'a$. Platí $w \in L(G)$.
- w = axa |x| = n 2, |w| = n

Pre x zároveň platí: $x \in \{a, b\}^* \land \#_a(x) = \#_b(x) - 2$.

Reťazec x rozpíšeme do tvaru $x_1, x_2, \ldots, x_{n-2}$. Postupne vytvoríme reťazce w_i pre každé $i \in \langle 1, n \rangle$ tak, že w_i je prefixom slova w dĺžky i, tj.:

$$w_1 = a,$$

 $w_2 = ax_1,$
 $w_3 = ax_1x_2,$
...
 $w_{n-1} = ax_1x_2...x_{n-2},$
 $w_n = ax_1x_2...x_{n-2}a,$

Všimnime si, že platia nasledovné vzťahy:

$$\#_a(w_1) = \#_b(w_1) + 1$$
 slovo w_1 obsahuje o jedno a viac ako b $\#_a(w_{n-1}) = \#_b(w_{n-1}) - 1$ slovo w_{n-1} obsahuje o jedno a menej ako b

Z toho vyplýva, že musí existovať j také, pre ktoré platí:

$$1 < j < n-1$$
 \wedge $\#_a(w_j) = \#_b(w_j)$

a teda aj: $w_i \in L$.

Nech $w' = w_j$. Slovo w tak môžeme zapísať ako w = w'w'', keďže w' je prefixom w. Ďalej je zrejmé, že ak v celom slove w, aj v jeho prefixe w' je pomer zastúpenia symbolov a a b rovnaký, platí to aj pre w'', formálne:

$$w = w'w'' \land w, w' \in L \implies w'' \in L$$

Podľa indukčného predpokladu $S \overset{*}{\underset{G}{\Rightarrow}} w'$ a $S \overset{*}{\underset{G}{\Rightarrow}} w''$. Pre deriváciu slova w z gramatiky G postupujeme nasledovne: $S \overset{*}{\underset{G}{\Rightarrow}} SS \overset{*}{\underset{G}{\Rightarrow}} w'S \overset{*}{\underset{G}{\Rightarrow}} w'w'' = w$. Platí $w \in L(G)$.

• pre prípad w = bxb je postup analogický kw = axa, rovnako platí $w \in L(G)$.

Ukázali sme, že pre každý prípad reťazca w z jazyka L dĺžky n platí $w \in L(G)$. Indukčný krok platí.

Pomocou indukcie k dĺžke slova $w \in L$ sme dokázali, že výrok: $L(G) \subseteq L \land L \subseteq L(G)$ je pravdivý, z čoho plynie, že je pravdivý aj výrok: L = L(G).

- 2. Uvažujte doprava čítaný jazyk TS M, značený ako $L^P(M)$, ktorý je definovaný ako množina reťazcov, ktoré M príjme v behu, pri ktorom nikdy nepohne hlavou doľava a nikdy neprepíše žiadny symbol na páske za iný. Dokážte, či je problém prázdnosti doprava čítaného jazyka TS M, tj. či $L^P(M) = \emptyset$, je rozhodnuteľný:
 - ak áno, napíšte algoritmus v pseudokóde, ktorý daný problém bude rozhodovať;
 - ak nie, dokážte nerozhodnuteľnosť redukciou z jazyka HP.

Riešenie

Základná myšlienka algoritmu pre rozhodovanie tohto problému je postupný prevod TS M na deterministický konečný automat A_D so zreteľom na fakt, že jazyk, ktorý automat A_D prijíma nieje jazykom L(M) ale $L^P(M)$, čo predstavuje jeho podmnožinu.

Algorithm 1 Pseudokód algoritmu, ktorý rozhoduje problém prázdnosti doprava čítaného jazyka TS M, tj. či $L^P(M) = \emptyset$.

```
Vstup: Turingov stroj M = (Q, \Sigma, \Gamma, \delta, q_0, q_F)
```

Výstup: TRUE, ak je jazyk $L^P(M)$ prázdny, inak FALSE

```
1: Vytvoríme TS M' = (Q, \Sigma, \Gamma, \delta', q_0, q_F), kde \delta' : (Q \setminus \{q_F\}) \times \Gamma \to Q \times (\Gamma \cup \{R\}) \text{ taká, že:} \forall q_1, q_2 \in Q \ \forall a \in \Gamma : (q_2, R) \in \delta'(q_1, a) \iff (q_2, R) \in \delta(q_1, a) (q_2, a) \in \delta'(q_1, a) \iff (q_2, a) \in \delta(q_1, a)
```

2: Zavedieme relácie $\stackrel{\Delta}{\longrightarrow}$ a $\stackrel{\Delta R}{\longrightarrow}$ v množine Q takto:

```
\begin{split} \forall q_1, q_2 \in Q: q_1 & \xrightarrow{\Delta} q_2 & \stackrel{def}{\Longleftrightarrow} \ (q_2, \Delta) \in \delta(q_1, \Delta), \\ \forall q_1, q_2 \in Q: q_1 & \xrightarrow{\Delta R} q_2 & \stackrel{def}{\Longleftrightarrow} \ (q_2, \Delta) \in \delta(q_1, \Delta) \vee (q_2, R) \in \delta(q_1, \Delta), \end{split}
```

kde Q je konečná množina vnútorných stavov nejakého TS a δ jeho prechodová funkcia.

3: Následne definujeme funkcie :

```
\Delta\text{-uz\'aver}(p) = \{q \in Q \mid p \stackrel{\Delta}{\longrightarrow}^* q\}.\Delta R\text{-uz\'aver}(p) = \{q \in Q \mid p \stackrel{\Delta R}{\longrightarrow}^* q\}.
```

- 4: Pre výpočet Δ -uzáveru (resp. ΔR -uzáveru) potom môžeme použiť Warshallov algoritmus a postupovať analogicky ako pri výpočte ε -uzáveru pri RKA.
- 5: Prevedieme TS M' na RKA $A = (Q, \Sigma_A, \delta_A, q_0, F)$ nasledujúcim postupom:

```
\begin{split} \Sigma_A &= \Sigma \cup \{\varepsilon\} \\ F &= \{q_F\} \\ \delta_A : Q \times \Sigma_A \to 2^Q \text{ taká, že:} \\ \forall q_1, q_2 \in Q \ \forall a \in \Sigma_A \setminus \{\varepsilon\} : \\ q_2 \in \delta_A(q_1, a) \iff (q_2, R) \in \delta'(q_1, a) \\ q_2 \in \delta_A(q_1, \varepsilon) \iff (q_2, a) \in \delta'(q_1, a) \wedge \left( (q_2, a) \neq \emptyset \vee (q_2 = q_F) \right) \\ \forall q_1, q_2 \in Q : \\ q_2 \in \delta_A(q_1, \varepsilon) \iff (q_2, \Delta) \in \delta'(q_1, \Delta) \wedge q_2 \in \Delta\text{-uzáver}(q_0) \\ q_2 \in \delta_A(q_1, \varepsilon) \iff (q_2, A) \in \delta'(q_1, \Delta) \wedge q_1 \in \Delta\text{-uzáver}(q_0) \\ q_2 \in \delta_A(q_1, \varepsilon) \iff (q_2, \Delta) \in \delta'(q_1, \Delta) \wedge q_F \in \Delta R\text{-uzáver}(q_2) \\ q_2 \in \delta_A(q_1, \varepsilon) \iff (q_2, R) \in \delta'(q_1, \Delta) \wedge q_F \in \Delta R\text{-uzáver}(q_2) \end{split}
```

- 6: Pomocou algoritmu z prednášky prevedieme RKA A na DKA $A_D = (Q_D, \Sigma_A, \delta_D, q_{0D}, F_D)$.
- 7: Ak platí: $\exists q \in Q_D : (q \in F_D \land q \text{ je dostupný z } q_{0D}) \text{ vráť } \mathbf{FALSE}, \text{ inak vráť } \mathbf{TRUE}.$

Dôvodom tohto prístupu k riešeniu je, že jazyk $L^P(M)$ vieme prijímať pomocou tzv. read-only right moving TS, keďže pre prijatie slova nieje povolený prepis symbolu na páske za iný a hlavou je povolené posúvať iba doprava. Navyše read-only TS dokáže prijímať iba regulárne jazyky. Môžeme tak využiť faktu, že v triede regulárnych jazykov \mathcal{L}_3 je problém neprázdnosti rozhodnuteľný.

V prvom kroku vytvoríme TS M', ktorý predstavuje TS M bez pravidiel pri ktorom sa hlava pohybuje doľava alebo prepisuje symbol na páske za nejaký iný. Ďalej si potrebujeme zadefinovať funkcie Δ -uzáver a ΔR -uzáver, ktoré nám pomôžu pre definovanie špeciálnych prípadov pri prepise prechodovej funkcie TS M' na prechodovú funkciu rozšíreného konečného automatu. Pri prepise je potrebné ošetriť niekoľko špeciálnych prípadov. Ak by v TS došlo k zaseknutiu, v automate k nemu dôjde takisto. Ďalej je potrebné riešiť náhradu prechodov tvaru Δ/Δ na začiatku pred čítaním vstupného reťazca, tvaru Δ/R práve pred začiatkom čítania slova a prechodov tvaru Δ/Δ alebo Δ/R po prečítaní reťazca na ceste do koncového stavu za ε -prechody. Vzniknutý RKA A prevedieme na DKA A_D , u ktorého vieme rozhodnúť, či jazyk, ktorý prijíma, je prázdny.

3. Uvažujte jazyk $L_{42} = \{\langle M \rangle \mid \text{TS } M \text{ zastaví na niektorom vstupe tak, že páska bude obsahovať práve 42 neblankových symbolov}. Dokážte pomocou redukcie, že <math>L_{42}$ je nerozhodnuteľný. Uveďte ideu dôkazu čiastočnej rozhodnuteľnosti L_{42} .

Riešenie

Dôkaz, že L₄₂ je nerozhodnuteľný

Pre dôkaz nerozhodnuteľ nosti použijeme techniku redukcie z problému A na problém B, zapisujeme: $A \leq B$. Potrebujeme ukázať, že problém daný jazykom L_{42} je nerozhodnuteľ ný, preto v zápise redukcie L_{42} odpovedá B problému a za problém A zvolíme problém zastavenia (HP), o ktorom vieme, že je nerozhodnuteľ ný.

Redukcia $\mathbf{HP} \leq \mathbf{L_{42}}$:

- Problém **HP** je charakterizovaný jazykom: $HP = \{ \langle M \rangle \# \langle w \rangle \mid M \text{ je TS, ktorý na reťazci } w \text{ zastaví.} \}$
- Problém $\mathbf{L_{42}}$ je charakterizovaný jazykom: $L_{42} = \{\langle M \rangle \mid M \text{ je TS, ktorý zastaví na niektorom vstupe tak, že páska bude obsahovať práve 42 neblankových symbolov}.$
- Navrhneme redukciu $\sigma: \{0,1,\#\}^* \to \{0,1\}^*$ z jazyka HP na L_{42} .
- σ priradí každému reťazcu $x \in \{0, 1, \#\}$ reťazec $\langle M_X \rangle \in \{0, 1\}^*$, kde M_X je TS, ktorý so vstupným reťazcom $w \in \{0, 1\}^*$ pracuje nasledovne:
 - (i) M_X zmaže svoj vstup w zo vstupnej pásky.
 - (ii) M_X zapíše na vstupnú pásku reťazec x, ktorý má uložený v konečnom stavovom riadení.
 - (iii) M_X overí, či x má štruktúru $x_1 \# x_2$, kde x_1 je kód TS a x_2 je kód jeho vstupu. Ak nie, **zmaže** svoju vstupnú pásku a **odmietne**.
 - (iv) M_X odsimuluje na reťazci s kódom x_2 beh TS s kódom x_1 . Ak simulácia skončí, TS M_X zmaže svoju vstupnú pásku, **zapíše** na vstupnú pásku 42 symbolov a, pričom platí $a \neq \Delta$ a **príjme**, inak **cyklí**.
- Funkciu σ je možné implementovať úplným TS M_{σ} , ktorý pre vstup x vyprodukuje kód TS M_X . Ten sa skladá zo štyroch komponent odpovedajúcim vyššie uvedeným krokom:
 - (i) M_{σ} vypíše kód pre TS, ktorý zmaže vstupnú pásku;
 - (ii) M_{σ} vypíše kód takého TS, ktorý zapíše na vstup reťazec $x = x_1, x_2, \dots, x_n$ (tento TS zapíše na vstup x_1 , posunie hlavu doprava, zapíše na vstup x_2, \dots);
 - (iii) M_{σ} vypíše kód TS, ktorý na vstupe overí, či sa jedná o platnú inštanciu HP a ak nie tak M_X a **odmietne**;
 - (iv) M_{σ} vypíše kód TS, ktorý spustí univerzálny TS; UTS simuluje TS s kódom x_1 a vstupom x_2 .

Komponenty z bodov (i),(iii),(iv) možno pripraviť dopredu, pretože nijak nezávisia na vstupe x a M_{σ} len vypíše príslušný kód. M_{σ} ešte potrebuje zaistiť sekvenčné predávanie riadenia medzi týmito komponentami.

- Skúmajme možné jazyky TS M_X :
 - (a) $L(M_X) = \emptyset \iff (x \text{ nemá správnu štruktúru})$ alebo $(x \text{ má správnu štruktúru} x_1 \# x_2)$, ale TS s kódom x_1 na vstupe s kódom x_2 cyklí).
 - (b) $L(M_X) = \Sigma^* \iff (x \text{ má správnu štruktúru})$ a zároveň (TS s kódom x_1 na vstupe s kódom x_2 zastaví).
- Ukážeme, že funkcia redukcie σ zachováva členstvo v jazyku: $\forall x \in \{0, 1, \#\}^*: \quad \sigma(x) = \langle M \rangle \in L_{42} \iff L(M_X) = \Sigma^* \iff (x \text{ má štruktúru } x_1 \# x_2, \text{ kde } x_1 \text{ je kód TS a } x_2 \text{ je taký kód vstupu, že TS s kódom } x_1 \text{ zastaví na vstupe s kódom } x_2) \iff x \in HP.$

Dôkaz čiastočnej rozhodnuteľ nosti L₄₂ (idea)

K čiastočnému rozhodnutiu problému L_{42} môžeme zostrojiť TS M', ktorý na svojej páske simuluje beh TS $M \in L_{42}$ pre jednotlivé vstupné reťazce. Avšak TS M' nemôže vygenerovať vstupné reťazce a postupne na každom spustiť neobmedzenú simuláciu, pretože môže nastať prípad, že sa na nejakom reťazci zacyklí a k simulácii ďalšieho reťazca už nedôjde. Nebolo by tak garantované, že nájdeme reťazec, ktorý TS M príjme (ak taký existuje). Namiesto toho, M' na svojej páske postupne rozbieha viacero simulácií TS M pre jednotlivé vygenerované reťazce. Tie potrebuje vhodným spôsobom oddeliť a pri každej simulácii si ešte naviac pamätať, aký je aktuálny stav riadenia pri spracovaní daného vstupu. Simulácia potom prebieha nasledovne:

- (1) TS M' prejde všetky aktuálne rozbehnuté simulácie a na každej urobí jeden krok.
- (2) Ak na niektorej zo simulácii TS M príjme príslušný reťazec, TS M' príjme.
- (3) Inak pridá nový reťazec pre simuláciu na pásku spolu so stavom riadenia (počiatočnú konfiguráciu) a postup opakuje.

Je zrejmé, že M' príjme, ak $L(M) \neq \emptyset$. Inak neskončí.