01 - Výrazy, mocniny, odmocniny

1) Vyznačte na číselné ose obrazy čísel $\frac{1}{2}$ a $\frac{5}{6}$

- 2) a) Na číselné ose vyznačte interval (2 n; n 3) pro n = 5.
 - b) Najděte nejmenší přirozené číslo n, pro které existuje interval (2 n; n 3) a tento interval vyznačte na číselné ose.

3) Vyznačte na číselné ose obraz periodického čísla 0, \(\overline{6} \).

4) Na číselné ose jsou vyznačeny obrazy neznámých čísel M-2 a M a dále obraz čísla 0. Vyznačte obraz čísla 1. Určete hodnotu čísla M.

5) Na číselné ose jsou vyznačeny obrazy neznámých čísel –K a 2K a dále obraz čísla 1. Vyznačte obraz čísla 0. Určete hodnotu čísla K.

6) Trojúhelník je rozdělen na tři části. Část při vrcholu C zaujímá třetinu obsahu trojúhelníku, část při vrcholu B dvě pětiny obsahu trojúhelníku a zbývající část při vrcholu A má obsah 4 m². Vypočtěte v m² obsah trojúhelníku ABC.

7) Tři obdélníky jsou rozděleny různými způsoby. První obdélník je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vypočtěte zlomkem, jakou část druhého obdélníku tvoří tmavá plocha.

V8) Aleš s Bohunkou rekonstruovali podlahu v kuchyni. Aleš si přál vydláždit část A, která tvoří ¹/₄ podlahy kuchyně, Bohunka část B, která tvoří ²/₅ podlahy kuchyně. Ve výsledném řešení (V) byla obě přání splněna, tedy byla vydlážděna část A i B. Zapište zlomkem, jaká část podlahy kuchyně byla vydlážděna.

- ✓ 9) Zaokrouhlete na desítky výsledek číselného výrazu: $10^5 \cdot (0,\overline{25} 0,2\overline{05}) = 4$
- ✓ 10) Jsou dána čísla $s = 9 \cdot 10^{180}$, $t = 54 \cdot 10^{160}$. Ve stejném tvaru (součin co nejmenšího přirozeného čísla a mocniny deseti) uveďte čísla $a = s : 45, b = s^2 : t$.
- \checkmark 11) Najděte nejmenší sudé číslo k tak, aby součin $k \cdot 5^{27} \cdot 3$ byl třetí mocninou nějakého přirozeného čísla.
- 12) Přirozené číslo n je dělitelné pěti. Totéž číslo n dává při dělení třemi zbytek 2. Určete nejmenší číslo k, které je třeba přičíst k číslu n, aby byl součet n + k dělitelný patnácti.
- 13) Je dán číselný výraz 16 · 4⁹⁹ · 8¹⁰¹.

a) Výraz zapište jako mocninu čísla 2.

- b) Výraz zapište jako mocninu přirozeného čísla s největším možným prvočíselným exponentem.
- √ 14) Marek se snažil zapamatovat čtyřmístný kód. Shledal, že jde o největší číslo, v jehož zápise jsou vedle sebe dvě různá dvoumístná prvočísla, kde ciferný součet každého z nich je 8. Zapište Markův kód.
 - 15) Součet dvou čísel je 100. Dělíme-li první číslo 7, dostaneme stejný výsledek, jako když druhé číslo vydělíme 18. Určete obě původní čísla.
- ∨ 16) Adam přečte celou knihu za d dnů. Kdyby denně přečetl o 6 stran více, knihu by dočetl o 2 dny dříve. Vypočtěte, kolik stran má kniha, jestliže d = 8. Vyjádřete počet stran (p) knihy v závislosti na parametru d.
- $\sqrt{17}$) Vyřešte: $(a^{12} + 2a^{10} a^2 2)$: $(a^{10} 1)$
- ✓18) Zjednodušte a určete podmínky: $\frac{a^{222}-a^{20}}{a^{101}-1}$ =
- √19) Určete nejmenší přirozené číslo n, pro které je kladný výraz $\frac{n}{90} \frac{40}{n}$. √20) Pro $n \in N$ upravte výraz: $(n^0 + 2n^{-1} + n^{-2}) \cdot (n+1)^{-1} =$
- o $\sqrt{21}$) Pro které hodnoty x je výraz roven nule? $\frac{4x^2-4x-3}{4x^2+4x+1}$
 - $\sqrt{22}$) V oboru R je dán výraz: $\left(\sqrt{a-\sqrt{a^2-9}}-\sqrt{a+\sqrt{a^2-9}}\right)^2$. a) Vypočtěte hodnotu výrazu pro a = 5. b) Výraz zjednodušte. c) Zapište podmínky řešitelnosti.
 - \checkmark 23) Zjednodušte: $\frac{(2+\sqrt{a})^2}{4-a} \frac{2\sqrt{a}}{2-\sqrt{a}}$
 - ✓ 24) Zjednodušte daný výraz $\frac{\sqrt{5} \sqrt{3}}{\sqrt{5} + \sqrt{3}} + \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} \sqrt{3}}$
- $25) \text{ Zjednodušte: } \frac{0.4 \cdot \sqrt{\frac{1}{4}} + \frac{2^4}{8 \cdot \sqrt{100}} \left(-\frac{1}{2^2} \frac{1}{\sqrt{16}}\right)}{3 \cdot \frac{7}{5 \cdot 2^3} + \left(-\frac{3}{4}\right)^2 : \left(-\sqrt{0.81}\right)} =$
 - 26) Zjednodušte: $\frac{(-2)^2 \cdot \left[(-2)^2 : \left(\frac{2}{3} \frac{5}{12} \right) \right] (-3)^2 : 1\frac{1}{8}}{10 3 \cdot \sqrt{\frac{4}{25}} 0.8} =$
 - 27) Zjednodušte: $\frac{22:2,2-\left(-\frac{3}{2}\right)^2+\left(\sqrt{64}:1,6+3\frac{1}{2}\right)}{\left[\left(\sqrt{9}\right)^2-4:\frac{1}{4}\right]+15\cdot0,5^2} =$
 - 28) Určeme podmínky, za kterých má smysl výraz: $\left(\frac{\sqrt{(1+a)^3\sqrt{1+a}}}{3a}\right)^{-1}$

 - 29) Výraz $(x+1)^4 x^4 + 2x^2 1$ rozložte na součin mnohočlenů s co nejnižšími stupni. 30) Zjednodušte výraz: $\frac{1}{a(a-b)(a-c)} + \frac{1}{b(b-a)(b-c)} + \frac{1}{c(c-a)(c-b)}.$ 31) Zjednodušte a určete podmínky: $[(1-v)^{-1} + (1+v)^{-1}]^{-1}$

 - 32) Zjednodušte a určete podminky: $\left[\left(\frac{n+2}{n-2} \right)^3 : \frac{n^3 + 4n^2 + 4n}{3n^2 12n + 12} \right] \cdot \frac{n}{3}$

- 33) Zjednodušte a zapište podmínky: $[(-x)^{-2n}:(-x)^{-2n-1}]^{-2}:[(-x)^{2n+1}(-x)^{-2n+1}]^3$
- 34) Zjednodušte výraz a zapište podmínky: $\left(\frac{x^{-2}-x^{-4}}{x^{-2}-1}\right)^{-1}: \left(\frac{1-x^{-\frac{1}{2}}}{x^{-\frac{1}{2}}-x^{-1}}\right)$
- 35) Zjednodušte výraz a zapište podmínky: $\left(\sqrt[4]{\left(\sqrt[3]{a\sqrt{ab}}\right)^{-2}}\right)$
- 36) Zjednodušte výraz a zapište podmínky: $\left(\int_{\sqrt{a}}^{1} \sqrt{\frac{1}{\sqrt{a^3}}} \sqrt{\frac{1}{\sqrt{a^5}}} \right)$
- 37) Určete podmínky, za kterých má výraz smysl: $\frac{1}{x^2+1} + \frac{3}{2(x+1)} \frac{3}{2(x-1)}$
- 38) Určete podmínky, za kterých má výraz smysl: $\frac{a^2-1}{n^2+an} \cdot \left(\frac{1}{1-\frac{1}{a}}-1\right) \cdot \frac{a-an^3-n^4+n}{1-a^2}$
- 39) Určete podmínky, za kterých má výraz smysl:

$$\frac{a}{2} \sqrt[4]{(a+1)(a^2-1)(1+2a+a^2)} \cdot \left(\frac{a^2+3a+2}{\sqrt{a-1}}\right)^{-1}$$

- 40) Pro která *a* je výraz roven -1? $\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}} + \frac{1-a}{\sqrt{1-a^2}-1+a}\right) \cdot \left(\sqrt{\frac{1}{a^2}-1} \frac{1}{a}\right)$
- 41) Je dán trojčlen $x^3 + 2x^2 + k$ s proměnnou $x \in \mathcal{R}$ a parametrem $k \in \mathcal{R}$. Ke každému z následujících dvojčlenů najděte takovou hodnotu parametru k, aby byl daný trojčlen dělitelný dvojčlenem beze zbytku. a) x + 2; b) x + 1; c) x - 1.
- 42) Tiskárna vytiskne k listů za n sekund $(k, n \in N)$. Vyjádřete v závislosti na veličinách k a n počet listů, které tiskárna vytiskne za 5 minut.
- 43) Nádrž se plní několika stejně výkonnými čerpadly. Dvě čerpadla by prázdnou nádrž naplnila za x hodin. Vyjádřete v hodinách, za jak dlouho by prázdnou nádrž naplnilo n čerpadel $(n \in N)$.
- 2) a) (-3; 2)b) $n = 3, \langle -1; 1 \rangle$
- 4) M = 2.5
- 5) $K = \frac{2}{5}$
- 15 m²
- 8)
- 9) 4750 10) a) 2.10¹⁷⁹
 - b) 15.10¹⁹⁹
- 11) 72
- 12) 10
- 13) a) 2⁵⁰⁵ b) 32¹⁰⁹
- 14) 7153
- 15) 72, 28

- 16) a) 144
 - b) p = 3d 6
- 17) $a^2 + 2$, $a \neq \pm 1$
- 18) $a^{121} + a^{20}, a \neq 1$
- 19) 61
- 20) $\frac{n+1}{n+1}$
- 21) $\frac{3}{2}$
- 22) $2\alpha 6$, (3; ∞)
- 23) 1, $a \neq 4$
- 24) 8
- 25) -9
- 26) 7
- 27) -5
- 28) $a \neq 0, a \neq -1$
- 29) $4x(x+1)^2$
- 31) $\frac{1-v^2}{2}$, $v \neq \pm 1$

- 32) $\frac{n+2}{n-2}$, $n \neq 0$, $n \neq \pm 2$ 33) x^{-8} , $x \neq 0$
- 34) $-x^{\frac{5}{2}}, x > 0, x \neq 1$
- 35) $a^{\frac{1}{4}}b^{\frac{1}{12}}, a > 0, b > 0$
- 36) $a^{\frac{15}{16}}, a > 0$
- 37) $\frac{2(x^4-1)}{4(x-2)(x+2)}$, $x \neq \pm 1$, $x \neq \pm 2$ 38) $\frac{(a-n)(1+n+n^2)}{n(n+a)}$,
- - $n \neq 0, n \neq 1, n \neq -a, a$
- 39) $\frac{a(a+1)(a-1)}{a+2}$, a > 0
- $40) \{-1\} \cup (0;1)$
- 41) a) k = 0
 - b) k = -1
 - c) k = -3
- $42) \ x = \frac{k}{n} \cdot 300$