COURS D'ANALYSE : CHAPITRE 3 – APPROXIMATION D'UNE FONCTION NUMERIQUE (THEOREMES DE TAYLOR)

Objectif général : Connaitre les fondamentaux sur les l'approximation polynomiale et le développement limite.

Objectifs spécifiques :

A la fin de ce chapitre l'étudiant doit être capable de :

- > connaître et savoir utiliser les notions d'infiniment petit et d'infiniment grand
- restituer le développement limite des fonctions usuelles ;
- > effectuer les opérations sur les développements limités
- > utiliser le développement limite pour calculer des limites

I – Infiniment petits – Infiniment grands

1) Définitions et exemples

a) Définitions

Soit f une fonction numérique à variable réelle définie au voisinage de x₀ (x₀ fini ou infini)

- si $\lim f(x) = 0$, on dira que f(x) est un infiniment petit au voisinage de x_0 $x \rightarrow x_0$
- si lim $f(x) = +\infty$ (resp ∞), on dira que f(x) est un infiniment grand au $x \rightarrow x_0$ voisinage de x_0
- On dira que f(x) et g(x) sont deux infiniment petits (resp infiniment grands) simultanés au voisinage de x_0 si $\lim f(x) = \lim g(x) = 0$

$$x \rightarrow x_0 \quad x \rightarrow x_0$$

(resp lim(fx) = lim(g(x) = ∞)

• On dira que deux infiniment petits (resp infiniment grands) sont de même ordre au voisinage de x_0 s'il existe un réel a différent de 0 tel que lim [f(x)/g(x)] = a

$$x \rightarrow x_0$$

si a = 1, on dira que f et g sont équivalentes au voisinage de x_0 et on note f~g.

b) Exemple : (sinx)² et 3x² sont deux infiniment petits de même ordre au voisinage de 0

c) Définitions : Lorsqu'on étudie des fonctions

- i) au voisinage de 0, x(resp 1/x) est appelé infiniment petit principal (resp infiniment grand principal)
- ii) au voisinage de ∞ , 1/x (resp x) est appelé infiniment grand principal (resp infiniment petit principal
- iii) au voisinage de $x_0 \in IR$, $(x x_0)$ (resp $1/(x-x_0)$ est appelé infiniment petit principal (resp infiniment grand principal)
- iv) Si f(x) est un infiniment petit (resp infiniment grand) et α l'infiniment petit (resp l'infiniment grand) principal, f(x) est dite d'ordre p par rapport à α si les deux infiniment petit (resp infiniment grand) f(x) et α^p sont de meme ordre i.e si l'on a $\lim \left[\frac{f(x)}{\alpha^p}\right] = a$ avec $a \neq 0$

Dans ce cas, $f(x) \sim \alpha^p$ et a. α^p est dite partie principale de f(x)

d) Exemple

- i) $\sin(x-x_0)$ est un infiniment petit d'ordre 1 par rapport à $(x-x_0)$ au voisinage de x_0
- ii) $1 \cos x$ est un infiniment petit d'ordre 2 par rapport à x au voisinage de 0.

2) Comparaison de fonctions

a) Définitions

S étant un voisinage de x₀, f et deux fonctions numériques définies sur S

On dira que g est négligeable au voisinage de x_0 devant f et l'on notera g = o(f) s'il existe une fonction ε définie sur S telle que $g(x) = f(x) \varepsilon(x)$ avec $\lim \varepsilon(x) = 0$

$$x \rightarrow 0$$

b) Propriétés

- Si g = o(f) et h = o(g), alors, f = o(h)
- Si g = o(f) et si h est bornée, alors, gh = o(f)

c) Exemples

- $x^{n+1} = o(x^n)$ au voisinage de 0 si $n \in IN$
- Si α >0, $\ln(x) = o(x^{\alpha})$ au voisinage de + ∞
- Si p ∈ IN, alors, $x^p = o(e^x)$ au voisinage de + ∞

II – Développement limité au voisinage de 0

1) Définitions

Soit f une fonction définie au voisinage de x₀ sauf peut être en x₀.

On dira que f(x) admet un développement limité (on notera D.L)d'ordre n au voisinage de 0 s'il existe un intervalle de centre 0 et un polynôme P_n de degré inférieur ou égal à n tel que :

 $\forall x \in I$, $x \ne 0$, $f(x) = P_n(x) + \varepsilon(x)x^n$ où ε est une fonction définie sur I avec $\lim \varepsilon(x) = 0$

$$x \rightarrow 0$$

 $P_n(x)$ est appelée partie régulière de du D.L et $\varepsilon(x)x^n$ le reste

Dans toute la suite, $\varepsilon(x)$ ou $\varepsilon_i(x)$ désignera un infiniment petit au voisinage de 0

2) Propriétés

- i) Si f admet un DL au voisinage de 0 et si la partie régulière $P_n(x)$ est non nulle, alors, f(x) est équivalente à $P_n(x)$ au voisinage de 0
- ii) Si f(x) admet un DL d'ordre n au voisinage de 0, alors, elle admet au voisinage du même point un DL d'ordre q, q<n
- iii) Si f(x) admet un DL d'ordre n au voisinage de 0, la fonction n'étant pas supposé définie en 0, on a lim $f(x) = P_n(0)$ et l'on pourra prolonger f par continuité en 0 $x \rightarrow 0$
 - Soit f une fonction définie au voisinage de 0 et continue en 0. Si f admet un DL d'ordre n (n>0) en 0, alors, f est dérivable en 0 et $f'(0) = P_n'(0)$
- v) Si f admet un DL d'ordre $n_n(n>0)$, alors sa partie régulière $P_n(x)$ est unique

Application:

iv)

- Si f est impaire, alors, les termes de degré pair dans $P_n(x)$ sont nuls
- Si f est paire, alors, les termes de degré impair dans $P_n(x)$ sont nuls

3) Développement limité obtenu à partir de la

formule de Mac- Laurin

a) Si f, f',..., $f^{(n)}$ sont définies et continues dans un voisinage V de 0 et si $f^{(n+1)}$ est définie et bornée dans V, alors on a la formule suivante dite de Mac-Laurin :

$$f(x) = \sum_{p=0}^n \frac{x^p}{p!} f^{(p)}(0) + \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta \, x) \quad (0 < \theta < 1)$$
 En posant $\epsilon(x) = \frac{x}{(n+1)!} f^{(n+1)}(\theta \, x)$, on a $\epsilon(x)$ qui tend vers 0 quand x tend vers 0

Par suite, f admet un DL d'ordre n en 0 et sa partie régulière n'est autre que son

polynôme de TAYLOR
$$P_n(x) = \sum_{p=0}^{n} \frac{x^p}{p!} f^{(p)}(0)$$

Ainsi, au voisinage de 0, $f(x) = \sum_{p=0}^{n} \frac{x^p}{p!} f^{(p)}(0) + x^n \epsilon(x)$, $\epsilon(x)$ tendant vers 0 en 0 .

b) On suppose que f admet un DL à l'ordre n obtenu à l'aide de la formule de Mac-Laurin . La fonction dérivée g = f' vérifie les hypothèses de a) à l'ordre n-1;

D'où : g(x) = g(0) + xg'(0) +....+
$$\frac{x^{n-1}}{(n-1)!}g^{(n-1)}(0) + x^{n-1} \epsilon_1(x)$$

En revenant à f: f'(x) = f'(0) + xf''(0) +....+
$$\frac{x^{n-1}}{(n-1)!}f^{(n)}(0) + x^{n-1} \epsilon_1(x)$$

On peut donc conclure que si f admet un DL d'ordre n, alors, f' admet un DL d'ordre n-1 et sa partie régulière est obtenue par dérivation de la partie régulière du DL de f.

De même, toute primitive F de f vérifie les hypothèses de a) l'ordre n+1,d'où

$$F(x) = F(0) + xF'(0) + \dots + \frac{x^{n+1}}{(n+1)!}F^{(n+1)}(0) + x^{n+1} \epsilon_2(x)$$

En revenant à f, F(x) = F(0) + xf(0) +
$$\frac{x^2}{2}$$
 f '(0)+... + $\frac{x^{n+1}}{(n+1)!}$ f (n) (0) + x^{n+1} $\epsilon_2(x)$

Donc, si f admet un DL d'ordre n, toute primitive F de f admet un DL d'ordre n+1 et sa partie régulière est la primitive de la partie régulière de f qui, pour x = 0, prend la valeur F(0)

Exercice corrigé

1)
$$\frac{1}{1-x}$$
 = 1 + x + x² + ...+ xⁿ + xⁿ $\varepsilon(x)$

On en déduit par dérivation :

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + ... + nx^{n-1} + x^{n-1} \varepsilon_1(x)$$

2)
$$\frac{1}{1+x}$$
 = 1 - x + x² +...+ (-1)ⁿ xⁿ + xⁿ $\varepsilon(x)$

On en déduit par intégration :

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + ... + (-1)^n \frac{x^{(n+1)}}{(n+1)} + x^{n+1} \varepsilon_2(x)$$

4) Opérations sur les développements limités

a) Somme

Règle : Si f et g admettent un DL d'ordre n au voisinage de 0,alors,f + g admet un DL

d'ordre n au voisinage de 0 et sa partie régulière est la somme des parties

régulières des DL de f et g.

Exercice corrigé:

$$\begin{split} e^x &= 1 + x + ... + \frac{x^n}{n!} + x^n \; \epsilon_1(x) \qquad \qquad e^{-x} &= 1 - x + ... + (-1)^n \; \frac{x^n}{n!} + x^n \; \epsilon_2(x) \\ \text{D'où,} \qquad e^x + e^{-x} &= 2 + 2(\frac{x^2}{2!}) + ... + 2(\frac{x^{2n}}{(2n)!}) + x^{2n} \; \epsilon_3(x) \\ \text{Par suite,} \; \text{ch}(x) &= \frac{e^x + e^{-x}}{2} = 1 + (\frac{x^2}{2!}) + ... + (\frac{x^{2n}}{(2n)!}) + x^{2n} \; \epsilon_4(x) \end{split}$$

b) Produit

<u>Rappel</u>: Si dans un polynôme P(x) de degré $\leq n$ on supprime les termes de degré > q, on obtient un polynôme de degré $\leq q$; on dit qu'on a tronqué p(x) à l'ordre

q et on écrit :Q(x) =
$$D_q(\overline{P}(x))$$

<u>Règle</u>: Si f et g admettent un DL d'ordre n au voisinage de 0,alors,f.g admet un DL d'ordre n au voisinage de 0 et sa partie régulière est le produit des parties régulières des DL de f et g tronqué à l'ordre n.

Exercice corrigé: Donner un DL en 0 de $f(x) = (x^3 + x^2 + 1) \ln(1+x)$ à l'ordre 4

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + x^4 \varepsilon_1(x)$$

d'où, f(x) =
$$\left[(1 + x^2 + x^3)(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}) \right] + x^4 \varepsilon_2(x)$$

$$f(x) = x - \frac{x^2}{2} + \frac{4x^3}{3} + \frac{x^4}{4} + x^4 \varepsilon_2(x) \right]$$

c) Quotient

<u>Règle</u>: Si f et g admettent un DL d'ordre n au voisinage de 0 et si g(x) ne tend pas vers 0 quand x tend vers 0, alors, f/g admet un DL d'ordre n au voisinage de 0 et sa partie régulière s'obtient en divisant suivant les puissances croissantes à l'ordre n, la partie régulière de f par la partie régulière de g.

Exercice corrigé : Donner un DL d'ordre 2 de f(x) = $\frac{\sin x}{\ln(1+x)}$ au voisinage de 0 $\sin x = x - \frac{x^3}{6} + x^3 \varepsilon_1(x) \qquad \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon_2(x)$ $\therefore \qquad x - \frac{x^3}{6} + x^3 \varepsilon_1(x) \qquad 1 - \frac{x^2}{2} + x^2 \varepsilon_1(x) \qquad 2$

$$\frac{\sin x}{\ln(1+x)} = \frac{x - \frac{x^3}{6} + x^3 \varepsilon_1(x)}{x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon_2(x)} = \frac{1 - \frac{x^2}{6} + x^2 \varepsilon_1(x)}{1 - \frac{x}{2} + \frac{x^2}{3} + x^2 \varepsilon_2(x)} = 1 + \frac{x}{2} + \frac{x^2}{12} + x^2 \varepsilon(x)$$

d) Composé

<u>Règle</u>: La partie régulière du DL de F(x) = f(u(x)) s'obtient en remplaçant u, dans la partie régulière du DL de f(x), par la partie régulière de u(x), le tout tronqué à l'ordre n

Exercice corrigé :DL à l'ordre 4 de F(x) = In(cosx) au voisinage de 0

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^4 \varepsilon(x) = 1 + u(x) \text{ avec } u(x) = -\frac{x^2}{2!} + \frac{x^4}{4!} + x^4 \varepsilon(x)$$

D'où F(x) = In(1 + u(x)) avec Iim u(x) = 0

$$x \rightarrow 0$$

On obtient alors : $\ln(\cos x) = -\frac{x^2}{2} - \frac{x^4}{12} + x^4 \epsilon(x)$

III - Développement limité en $x_0 \neq 0$ et à l'infini

1) Développement limité en x₀

a) Définition :

Une fonction f admet un DL d'ordre n au voisinage de x_0 si la fonction F définie par

 $F(x) = f(x-x_0)$ admet un DL d'ordre n au voisinage de 0.

b) Exercice corrigé : Donner un DL à l'ordre 3 de $f(x) = e^x$ au voisinage de 1

$$F(x) = f(1+x) = e^{1+x} = e \cdot e^{x} = e \left[1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + x^{3} \varepsilon(x) \right]$$

$$D'où, e^{x} = e \left[1 + (x-1) + \frac{(x-1)^{2}}{2!} + \frac{(x-1)^{3}}{3!} + (x-1)^{3} \varepsilon(x-1) \right]$$

2) Développement limité à l'infini

a) Définition

Une fonction f admet un DL d'ordre n au voisinage de l'infini si la fonction F définie par F(x) = f(1/x) admet un DL d'ordre au voisinage de 0

b) Exercice corrigé:

Donner le DL de f(x) =
$$\frac{x^2 - 1}{x^2 + 2x}$$
 d'ordre 2 au voisinage de l'infini

Solution

$$F(x) = f(1/x) = \frac{1 - x^2}{1 + 2x} = (1 - x^2) (1 - 2x + 4x^2 + x^2 \varepsilon (x) = 1 - 2x + 3x^2 + x^2 \varepsilon (x)$$

$$D'où, \frac{x^2 - 1}{x^2 + 2x} = 1 - \frac{2}{x} + \frac{3}{x^2} + \frac{1}{x^2} \varepsilon (\frac{1}{x})$$

IV - Généralisation des développements limités

1) Définition

Soit f une fonction définie au voisinage de 0 (sauf peut être en 0). On suppose que f n'admet pas de DL au voisinage de 0 mais qu'il existe k>0 tel que $\Phi(x)=x^kf(x)$ admet un DL au voisinage de 0. Dans ce cas :

$$x^k f(x) = a_0 + a_1 x + ... + a_n x^n + x^n \epsilon(x)$$

d'où,
$$f(x) = x^{-k}[a_0 + a_1x + ... + a_nx^n + x^n \epsilon(x)]$$

L'expression ainsi obtenue de f(x) au voisinage de 0 s'appelle DL généralisé de f(x) au voisinage de 0

2) Exemples

a) Développement limité généralisé de f(x) = $\frac{1}{x-x^2}$ au voisinage de 0

f n'admet pas de DL au voisinage de 0 car lim $f(x) = +\infty$; par contre,

$$x \rightarrow 0$$

$$xf(x) = \frac{1}{x-1} = 1 + x + x^2 + x^3 + x^3 \epsilon(x)$$

d'où,
$$\frac{1}{x-x^2} = \frac{1}{x} [1 + x + x^2 + x^3 + x^3 \epsilon(x)]$$

b) Développement limité généralisé de $f(x) = \cot g(x)$

f n'admet pas de DL au voisinage de 0 car $\lim f(x) = +\infty$; par contre,

$$x \rightarrow 0$$

$$x.\cot gx = \frac{x \cos x}{\sin x} = \frac{1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^4 \varepsilon(x)}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} + x^4 \varepsilon(x)}$$

Donc, x.cotgx =
$$1 - \frac{x^2}{3} - \frac{x^4}{45} + x^4 \epsilon(x)$$

Donc, x.cotgx =
$$1 - \frac{x^2}{3} - \frac{x^4}{45} + x^4 \varepsilon(x)$$

D'où $\cot gx = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} + x^3 \varepsilon(x)$

V - Application à la recherche de limites

Lorsque la règle de l'Hôpital ne donne pas des résultats immédiats, on utilise alors les DL pour lever certaines formes indéterminées

Exercice 1: Trouver lim
$$(2-x)^{\frac{1}{\sin \pi x}}$$
 (forme 1^{∞}) $\mathbf{x} \rightarrow 0$

Solution

On se ramène au voisinage de 0 en posant x = 1 + X

$$\begin{array}{ll} \text{f(1+X) = (1-X)} & \frac{1}{\sin \pi (1+X)} & = & \frac{1}{\sin \pi X} & = & \frac{\ln (1-X)}{\sin \pi X} = & e^{-\frac{-X+X\epsilon_1(X)}{\pi X+X\epsilon_2(X)}} \\ \text{d'où, lim f(x) = } & \text{lim f(1+X) = } & e^{\frac{1}{\pi}} \\ & \text{x} \rightarrow 1 & \text{X} \rightarrow 0 \end{array}$$

Exercice 2 :Trouver lim ($\frac{1}{\mathbf{v}} - cot \, gx$) $\,$ quand x tend vers 0 $\,$

Solution

On a cotg(x) =
$$\frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} + x^3 \epsilon(x)$$

d'où
$$\frac{1}{x} - \cot gx = \frac{x}{3} - \frac{x^3}{45} + x^3 \varepsilon(x)$$
 et lim $(\frac{1}{x} - \cot gx) = 0$ quand x tend vers 0