## EXTRAPOLATION



Given, f(x) = 0

choose in os the 1st approximation and suppose inth is its closer approximation.

Since, 
$$f(x)=0$$
 is approximately satisfied by  $x_n+h$ 

$$f(x_{n+1})=f(x_n+h)=0$$
 (1)

From Taylon's series

$$f(x_{n+1}) = f(x_n + h) = f(x_n) + h f'(x_n) + h / 2 f''(x_n) + \dots$$
  
Since, h is small, neglecting its higher powers we get,

 $f(x_n+h) = f(x_n) + hf(x_n) = f(x_n) + (x_{n+1} - x_n)f'(x_n)$ 

From eg (1) We get,
$$f(x_n) + (x_{n+1} - x_n) + (x_n) = 0.$$
or  $(x_{n+1} - x_n) f'(x_n) = -f(x_n)$ 

$$(x_n) = x_n - \frac{f(x_n)}{f(x_n)}$$

Prob.-10 Find the root of the equation  $f(x) = x^3 - x - 1 = 0$  in the vicinity of x = 2 by Newton-Raphson method.

## 2012-

$$f(x) = x^{3} - x - 1$$

$$f'(x) = 3x^{2} - 1$$

$$= x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

$$= x_{n} - \frac{x_{n}^{3} - x_{n-1}}{3x_{n}^{2} - 1}$$

The iterations are prosented in tabular form.

| Iteration<br>No. | $\chi_n$ | xn+1      |
|------------------|----------|-----------|
| . 1              | 2        | 1.54545   |
| 2                | 1.54545  | 1.359609  |
| 3                | 1.359609 | 1.325801  |
| 4                | 1.325801 | 1.324719  |
| 5                | 1:324719 | 1.3247179 |

The estimated most of the equation x=1.3247179

Prob.-11 Find the root of the equation  $f(x) = x^3 - x - 1 = 0$  in the vicinity of x = 2 using modified Newton-Raphson method.

Solt:-
$$f(x) = x^{3} - x - 1$$

$$f'(x) = 3x^{2} - 1$$

$$\chi_{0} = 2 \quad f'(0) = 3 \times 2^{2} - 1 = 11$$

$$\chi_{n+1} = \chi_{n} - \frac{\chi_{n}^{3} - \chi_{n} - 1}{11}$$

Iterations are presented in tabular form:

|                 | 34343.1  |          |
|-----------------|----------|----------|
| Henation<br>No. | 2n       | Nn+1     |
| 1               | 2        | 1154545  |
| 2               | 1.54545  | 1.441294 |
| 3               | 1-44-294 | 1.391044 |
| 4               | 1.391044 | 1.363714 |
| 5               | 1,363714 | 1:34804  |

The estimated noot of the given equation: x = 1.34804