CHAP 13 - APPLICATIONS LINEAURES

Dans tout le chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , E, F et G sont des \mathbb{K} -espaces vectoriels.

1 Ensemble des applications linéaires

1.1 Structure de l'ensemble des applications linéaires

Définition 1

Soit u une application de E dans F.

- On dit que u est une application linéaire si :
 - $\bigstar \ \forall (x,y) \in E^2, \quad u(x+y) = u(x) + u(y)$
 - $\bigstar \ \forall (\lambda, x) \in \mathbb{K} \times E, \quad u(\lambda x) = \lambda u(x)$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

On dit également qu'une application linéaire est un morphisme d'espaces vectoriels.

- Si u est une application linéaire bijective, on dit que u est un isomorphisme. S'il existe un isomorphisme entre E et F, on dit que E et F sont isomorphes.
- Si E = F, on dit que l'application linéaire u est un **endomorphisme**. L'ensemble des endomorphismes de E se note $\mathcal{L}(E)$. Si E=F et si u est un isomorphisme, on dit que u est un **automorphisme** de E. L'ensemble des automorphismes de E se note Aut(E).
- Si $F = \mathbb{K}$, on dit que l'application linéaire u est une forme linéaire.

Remarque 1

Pour $u \in \mathcal{L}(E, F)$, on a :

(a) $u(0_E) = 0_F$.

(b)
$$\forall (x_1, \dots, x_n) \in E^n, \forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, u\left(\sum_{k=1}^n \lambda_k x_k\right) = \sum_{k=1}^n \lambda_k u(x_k).$$

Proposition 1

Soit u une application de E dans F. u est une application linéaire si, et seulement si :

$$\forall (\lambda, x, y) \in \mathbb{K} \times E^2, \quad u(\lambda x + y) = \lambda u(x) + u(y)$$

Exemple 1

- (a) $\mathrm{Id}_{E} \in \mathcal{L}(E)$. (b) $u: \left| \begin{array}{ccc} \mathbb{R}^{2} & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & x+3y \end{array} \right|$ est une forme linéaire sur \mathbb{R}^{2} . (c) Pour $(a,b) \in \mathbb{R}^{2}, I: \left| \begin{array}{ccc} C^{0}(\mathbb{R},\mathbb{R}) & \longrightarrow & \mathbb{R} \\ f & \mapsto & \int_{a}^{b} f(t) \mathrm{d}t \end{array} \right|$, est une forme linaire sur $C^{0}(\mathbb{R},\mathbb{R})$.
- (d) Si $\overrightarrow{u} \in \mathscr{V}$ (ensemble des vecteurs de l'espace) alors $\varphi_{\overrightarrow{u}} : \left| \begin{array}{ccc} \mathscr{V} & \longrightarrow & \mathscr{V} \\ \overrightarrow{v} & \mapsto & \overrightarrow{u} \wedge \overrightarrow{v} \end{array} \right|$ est un endomorphisme sur \mathcal{V} .
- (e) Si E est un \mathbb{K} -espace vectoriel, pour $a \in \mathbb{K}^*, h_a : \begin{vmatrix} E & \longrightarrow & E \\ x & \mapsto & ax \end{vmatrix}$ est un automorphisme de E, appelé homothétie de rapport a.

Théorème 1

Si E est de dimension finie, $u \in \mathcal{L}(E, F)$ est entièrement déterminée par la donnée des images des vecteurs d'une base de E.

Corollaire 1

Si $(e_i)_{i\in I}$ est une base de E, et si $(f_i)_{i\in I}$ est une famille de F, alors il existe une unique application $u \in \mathcal{L}(E, F)$ telle que pour tout $i \in I$, $u(e_i) = f_i$.

Corollaire 2

Si E_1 et E_2 sont deux sous-espaces vectoriels supplémentaires $(E = E_1 \oplus E_2)$, alors :

- $u \in \mathcal{L}(E, F)$ est entièrement déterminée par ses restrictions à E_1 et E_2 .
- Si $u_1 \in \mathcal{L}(E_1, F)$ et $u_2 \in \mathcal{L}(E_2, F)$, alors il existe une unique application $u \in \mathcal{L}(E, F)$ telle que $u_{|E_1} = u_1$ et $u_{|E_2} = u_2$.

Définition 2

Si $E = E_1 \oplus E_2$:

- On appelle **projecteur**, ou **projection**, sur E_1 parallèlement à E_2 l'endomorphisme p défini sur E par ses restrictions : $p_{|E_1} = \operatorname{Id}_{E_1}$ et $p_{|E_2} = 0_E$.
- On appelle **symétrie** par rapport à E_1 parallèlement à E_2 l'endomorphisme s défini sur E par ses restrictions : $s_{|E_1} = \operatorname{Id}_{E_1}$ et $s_{|E_2} = -Id_{E_2}$.

Remarque 2

(a) Si on note $x = x_{E_1} + x_{E_2}$ la décomposition de x suivant E_1 et E_2 , p le projecteur sur E_1 parallèlement à E_2 et s la symétrie par rapport à E_1 parallèlement à E_2 , alors on a :

$$p(x) = x_{E_1}, \quad s(x) = x_{E_1} - x_{E_2}, \quad \text{et} \quad s = 2p - \text{Id}_E$$

(b) Si on note p_{E_1} le projecteur sur E_1 parallèlement à E_2 et p_{E_2} le projecteur sur E_2 parallèlement à E_1 , alors : $p_{E_1} + p_{E_2} = \operatorname{Id}_E$.

Proposition 2

 $\mathcal{L}(E,F)$ est un K-espace vectoriel pour les lois usuelles.

Si E est F sont de dimensions finies, alors $\mathcal{L}(E,F)$ est de dimension finie et $\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$.

1.2 Composition

Proposition 3

Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ alors $v \circ u \in \mathcal{L}(E, G)$.

Proposition 4

Soit $u \in \mathcal{L}(E, F)$. Si u est un isomorphisme, alors u^{-1} est un isomorphisme de F dans E.

Définition 3

L'ensemble Aut(E) muni de la loi \circ est appelé groupe linéaire de E, noté GL(E).

1.3 Noyau et image d'une application linéaire

Proposition 5

Soit $u \in \mathcal{L}(E, F)$. On a:

- Pour tout sous-espace vectoriel E_1 de E, $u(E_1)$ est un sous-espace vectoriel de F.
- Pour tout sous-espace vectoriel F_1 de F, $u^{-1}(F_1)$ est un sous-espace vectoriel de E.

Définition 4

Soit $u \in \mathcal{L}(E, F)$.

• On appelle noyau de u, et on note Ker(u) l'ensemble :

$$Ker(u) = \{x \in E, u(x) = 0_F\} = u^{-1}(\{0_F\})$$

• On appelle image de u, et on note Im(u) l'ensemble :

$$Im(u) = u(E) = \{ y \in F, \exists x \in E, u(x) = y \}$$

Proposition 6

Si $u \in \mathcal{L}(E, F)$, alors $\mathrm{Ker}(u)$ est un sous-espace vectoriel de E et $\mathrm{Im}(u)$ est un sous-espace vectoriel de F.

Proposition 7

Soit $u \in \mathcal{L}(E, F)$. On a:

- u est injective si, et seulement si $Ker(u) = \{0_E\}.$
- u est surjective si, et seulement si Im(u) = F.

Théorème 2

Soit $u \in \mathcal{L}(E, F)$. Im(u) est isomorphe à tout supplémentaire de Ker(u).

Corollaire

Si $u \in \mathcal{L}(E, F)$ et si S est un supplémentaire de $\mathrm{Ker}(u)$, alors u induit un isomorphisme de S sur $\mathrm{Im}(u)$.

1.4 Image d'une famille de vecteurs

Proposition 8

Soit $u \in \mathcal{L}(E, F)$.

- Si \mathscr{F} est une famille de vecteurs de E, alors on a : $u(\operatorname{Vect}(\mathscr{F})) = \operatorname{Vect}(u(\mathscr{F}))$.
- u est surjective si, et seulement si l'image par u d'une famille génératrice de E est une famille génératrice de F.
- u est injective si, et seulement si l'image par u d'une famille libre de E est une famille libre de F.
- u est bijective si, et seulement si l'image d'une base de E est une base de F.

Remarque 3

- (a) Soit $u \in \mathcal{L}(E, F)$. Si $(x_i)_{i \in I}$ est une famille génératrice de E, alors $\mathrm{Im}(u) = \mathrm{Vect}(u(x_i))_{i \in I}$
- (b) Soient $n \in \mathbb{N}^*$, et (e_1, \dots, e_n) une base de E. L'application $\varphi : \mathbb{K}^n \longrightarrow E$ définie par

$$\varphi(x_1, \dots, x_n) = \sum_{k=1}^n x_i e_i$$
 est un isomorphisme.

On en déduit que tout espace vectoriel de dimension n est isomorphe à \mathbb{K}^n .

(c) Deux espaces vectoriels de dimensions finies sont isomorphes si, et seulement si ils ont la même dimension.

1.5 Rang d'une application linéaire

Proposition 9

Soit $u \in \mathcal{L}(E, F)$. Si E est de dimension finie, alors Im(u) est de dimension finie.

Définition 5

Soit $u \in \mathcal{L}(E, F)$. Si $\mathrm{Im}(u)$ est de dimension finie, on appelle rang de u, noté $\mathrm{rg}(u)$ l'entier

$$rg(u) = dim (Im(u))$$

Théorème 3 Théorème du rang

Soit $u \in \mathcal{L}(E, F)$. Si E est de dimension finie, alors on a :

$$\dim(E) = \dim(\operatorname{Ker}(u)) + \operatorname{rg}(u)$$

Remarque 4

Si $u \in \mathcal{L}(E, F)$, alors :

- (a) Si \mathscr{B} est une base de E, alors $\operatorname{rg}(u) = \operatorname{rg}(u(\mathscr{B}))$.
- (b) $rg(u) \leq dim(E)$.
- (c) rg(u) = dim(E) si, et seulement si u est injective.

Proposition 10

Si E et F sont de dimensions finies, et si $u \in \mathcal{L}(E,F), v \in \mathcal{L}(F,G)$, alors

$$rg(v \circ u) \le inf(rg(u), rg(v))$$

Proposition 11

On suppose que E et F sont de dimensions finies. Soient $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(F,G)$.

- Si v est un isomorphisme, alors $rg(v \circ u) = rg(u)$.
- Si u est un isomorphisme, alors $rg(v \circ u) = rg(v)$.

Théorème 4

Si E et F sont de dimension $n \in \mathbb{N}^*$, et si $u \in \mathcal{L}(E, F)$, alors :

u est injective $\iff u$ est surjective $\iff u$ est bijective

1.6 Caractérisation d'un projecteur et d'une symétrie

Proposition 12

Si p est le projecteur sur E_1 parallèlement à E_2 , alors $\operatorname{Im}(p) = E_1$, $\operatorname{Ker}(p) = E_2$ et $\operatorname{Im}(p) \oplus \operatorname{Ker}(p) = E$.

Proposition 13

Soit p une application de E dans E. Alors p est un projecteur \Leftrightarrow $\begin{cases} p \text{ linéaire} \\ p \circ p = p \end{cases}$. Dans ce cas, p est le projecteur sur Im(p) parallèlement à Ker(p).

Proposition 14

Soit s une application de E dans E. Alors s est une symétrie \Leftrightarrow $\begin{cases} s \text{ linéaire} \\ s \circ s = \text{Id}_E \end{cases}$. Dans ce cas, s est la symétrie par rapport à Ker(s - Id) parallèlement à Ker(s + Id).

1.7 Equations linéaires

Définition 6

Soient $b \in F$ et $u \in \mathcal{L}(E, F)$.

- Toute équation du type (L): u(x) = b est appelée équation linéaire.
- L'équation (H): u(x) = 0 est appelée **équation homogène** associée à (L).

Proposition 15

Soient $b \in F$ et $u \in \mathcal{L}(E, F)$. On note (L) : u(x) = b.

- L'ensemble des solutions de l'équation homogène associée à (L) est $S_H = \text{Ker}(u)$.
- L'ensemble des solutions de l'équation (L) est :

$$S_L = \begin{cases} x_0 + S_H = \{x_0 + x \mid x \in S_H\} & \text{si } b = u(x_0) \in \text{Im}(u) \\ \varnothing & \text{sinon} \end{cases}$$

2 Matrice d'une application linéaire

2.1 Isomorphisme entre $\mathcal{L}(E,F)$ et $\mathcal{M}_{n,p}(\mathbb{K})$

Dans l'ensemble du paragraphe, E et F sont des \mathbb{K} -espaces vectoriels de dimensions p et n respectivement, et u désigne un application linéaire de E dans F.

Définition 7

Soient $\mathscr{B}=(e_1,\cdots,e_p)$ une base de E et $\mathscr{B}'=(f_1,\cdots,f_n)$ une base de F.

Pour $j \in [1, p]$, on note $u(e_j) = \sum_{i=1}^n a_{ij} f_i$, c'est-à-dire que les coordonnées de $u(e_j)$ dans \mathscr{B}' sont (a_{1j}, \dots, a_{nj}) .

On appelle matrice de u relativement aux bases \mathscr{B} et \mathscr{B}' la matrice $(a_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$, notée :

Si E = F et $\mathscr{B} = \mathscr{B}'$ on notera plus simplement $\operatorname{mat}_{\mathscr{B},\mathscr{B}}(u) = \operatorname{mat}_{\mathscr{B}}(u)$.

Exemple 2

Quelle que soit la base \mathscr{B} de E, $\operatorname{mat}_{\mathscr{B}}(\operatorname{Id}_{E}) = \operatorname{I}_{p}$.

Définition 8

Si \mathcal{B} est une base de E, alors :

- Pour tout vecteur $x \in E$, on note $\operatorname{mat}_{\mathscr{B}}(x)$ la matrice colonne des coordonnées de x dans la base \mathscr{B} .
- Pour toute famille finie \mathscr{F} de vecteurs de E, on appelle **matrice de** \mathscr{F} **dans la base** \mathscr{B} , notée $\mathrm{mat}_{\mathscr{B}}(\mathscr{F})$, la matrice dont les colonnes sont les coordonnées dans la base \mathscr{B} des vecteurs de \mathscr{F} .

Proposition 16

Soient $x \in E$, $y \in F$, \mathscr{B} une base de E et \mathscr{B}' une base de F.

On note $X = \text{mat}_{\mathscr{B}}(x), Y = \text{mat}_{\mathscr{B}'}(y)$ et $A = \text{mat}_{\mathscr{B},\mathscr{B}'}(u)$ alors on a :

$$u(x) = y \iff AX = Y$$

Proposition 17

Quelles que soient les bases \mathscr{B} de E et \mathscr{B}' de F l'application $\varphi: \left| \begin{array}{ccc} \mathscr{L}(E,F) & \longrightarrow & \mathscr{M}_{n,p}(\mathbb{K}) \\ u & \mapsto & \mathrm{mat}_{\mathscr{B},\mathscr{B}'}(u) \end{array} \right|$ est un isomorphisme d'espaces vectoriels.

Remarque 5

Si $A = \max_{\mathscr{B}, \mathscr{B}'}(u)$ et $B = \max_{\mathscr{B}, \mathscr{B}'}(v)$ alors pour tout $\lambda \in \mathbb{K}$, $\max_{\mathscr{B}, \mathscr{B}'}(u + \lambda v) = A + \lambda B$.

Définition 9

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. L'application linéaire $u \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ ayant pour matrice A dans les bases canoniques de \mathbb{K}^p et \mathbb{K}^n est dite **canoniquement associée à** A.

Proposition 18

Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimensions finies, de bases respectives $\mathscr{B}, \mathscr{B}'$ et \mathscr{B}'' . Si $u \in \mathscr{L}(E, F)$, et $v \in \mathscr{L}(F, G)$ avec $\mathrm{mat}_{\mathscr{B}, \mathscr{B}'}(u) = A$ et $\mathrm{mat}_{\mathscr{B}', \mathscr{B}''}(v) = B$ alors

$$\operatorname{mat}_{\mathscr{B}.\mathscr{B}''}(v \circ u) = BA$$

Proposition 19

 $u \in \mathcal{L}(E, F)$ est un isomorphisme si, et seulement si quelles que soient les bases \mathscr{B} et \mathscr{B}' de E et F respectivement, $\mathrm{mat}_{\mathscr{B},\mathscr{B}'}(u) \in \mathrm{GL}_n(\mathbb{K})$.

De plus, si u est un isomorphisme, alors $\operatorname{mat}_{\mathscr{B}',\mathscr{B}}(u^{-1}) = \left(\operatorname{mat}_{\mathscr{B},\mathscr{B}'}(u)\right)^{-1}$.

Proposition 20

Si $u \in \mathcal{L}(E,F)$ est de rang r, alors il existe une base \mathcal{B} de E et une base \mathcal{B}' de F telles que $\max_{\mathcal{B},\mathcal{B}'}(u) = (a_{ij})$ où $a_{ij} = \left\{ \begin{array}{ll} 1 & \text{si } i = j \in [\![1,r]\![] \\ 0 & \text{sinon} \end{array} \right.$

2.2 Changement de bases

Définition 10

Soient \mathscr{B} et \mathscr{B}' deux bases de E.

On appelle **matrice de passage** de \mathscr{B} à \mathscr{B}' la matrice dans la base \mathscr{B} , des vecteurs de \mathscr{B}' ; on la note $P_{\mathscr{B},\mathscr{B}'} = \operatorname{mat}_{\mathscr{B}}(\mathscr{B}')$.

Remarque 6

- (a) Quelles que soient les bases \mathscr{B} et \mathscr{B}' , on a $P_{\mathscr{B},\mathscr{B}'} = \operatorname{mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{Id}_E)$.
- (b) Si $\mathscr{B}, \mathscr{B}'$ et \mathscr{B}'' sont trois bases de E, alors $P_{\mathscr{B}, \mathscr{B}''} = P_{\mathscr{B}, \mathscr{B}'} \times P_{\mathscr{B}', \mathscr{B}''}$.
- (c) Quelles que soient les bases \mathscr{B} et \mathscr{B}' de E, $P_{\mathscr{B},\mathscr{B}'}$ est inversible, et $P_{\mathscr{B},\mathscr{B}'}^{-1} = P_{\mathscr{B}',\mathscr{B}}$.

Proposition 21 Changement de base pour un vecteur

Soient \mathscr{B} et \mathscr{B}' deux bases de $E, x \in E$. Si $X = \operatorname{mat}_{\mathscr{B}}(x)$ et $X' = \operatorname{mat}_{\mathscr{B}'}(x)$, alors

$$X = P_{\mathscr{B},\mathscr{B}'}X'$$

Proposition 22 Changement de base pour une application linéaire

Soient \mathscr{B} et \mathscr{C} deux bases de E, \mathscr{B}' et \mathscr{C}' deux bases de F. On note $P = P_{\mathscr{B},\mathscr{C}}$ et $Q = P_{\mathscr{B}',\mathscr{C}'}$. Soit $u \in \mathscr{L}(E,F)$. On note $A = \operatorname{mat}_{\mathscr{B},\mathscr{B}'}(u)$ et $A' = \operatorname{mat}_{\mathscr{C},\mathscr{C}'}(u)$. On a :

$$A' = Q^{-1}AP$$

Proposition 23 Changement de base pour un endomorphisme

Soient \mathscr{B} et \mathscr{B}' deux bases de E. On note $P = P_{\mathscr{B},\mathscr{B}'}$.

Soit $u \in \mathcal{L}(E)$. On note $A = \text{mat}_{\mathcal{B}}(u)$ et $A' = \text{mat}_{\mathcal{B}'}(u)$. On a :

$$A' = P^{-1}AP$$

Définition 11

Soient A et B des matrices de $\mathcal{M}_n(\mathbb{K})$. On dit que A et B sont **semblables** s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que :

$$B = P^{-1}AP$$

Remarque 7

Deux matrices représentant le même endomorphisme dans des bases différentes sont semblables.

2.3 Noyau, image, rang d'une matrice

Définition 12

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On note u l'application linéaire canoniquement associée à A.

- On appelle **noyau de** A, noté Ker(A), l'ensemble des matrices dans la base canonique de \mathbb{K}^p des vecteurs de Ker(u).
- On appelle **image de** A, noté Im(A), l'ensemble des matrices dans la base canonique de \mathbb{K}^n des vecteurs de Im(u).

Proposition 24

Les opérations élémentaires sur les colonnes (resp. lignes) conservent l'image (resp. le noyau) d'une matrice.

Définition 13

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle **rang de** A, noté $\operatorname{rg}(A)$, le rang de la famille des p vecteurs de \mathbb{K}^n dont elle est la matrice dans la base canonique.

Remarque 8

- (a) $\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \operatorname{rg}(A) \leq \inf(n,p).$
- (b) Soient \mathscr{B} et \mathscr{B}' deux bases de E et F respectivement, et $u \in \mathscr{L}(E,F)$. On a :

$$\operatorname{rg}\left(\operatorname{mat}_{\mathscr{B},\mathscr{B}'}(u)\right) = \operatorname{rg}(u)$$

Proposition 25

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ la matrice d'une application linéaire u. On a :

- rg(A) = n si, et seulement si u est surjective.
- rg(A) = p si, et seulement si u est injective.

Corollaire

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \quad \operatorname{rg}(A) = n \iff A \in \operatorname{GL}_n(\mathbb{K})$$

Proposition 26

Soient
$$A \in \mathcal{M}_{n,p}(\mathbb{K})$$
, et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. On a : $\operatorname{rg}(AB) \leq \inf (\operatorname{rg}(A), \operatorname{rg}(B))$.

Proposition 27

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \forall B \in \mathrm{GL}_n(\mathbb{K}), \forall C \in \mathrm{GL}_p(\mathbb{K}), \quad \mathrm{rg}(BA) = \mathrm{rg}(AC) = \mathrm{rg}(A).$$

Corollaire

Les opérations élémentaires sur une matrice ne changent pas son rang.

Proposition 28

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \quad \operatorname{rg}(A^T) = \operatorname{rg}(A).$$

2.4 Systèmes linéaires

Soit \mathcal{S} un système linéaire de n équations à p inconnues, de matrice augmentée (A|B).

On note u l'application linéaire canoniquement associée à A, et b le vecteur de \mathbb{K}^n dont B est la matrice dans la base canonique.

On a : $x = (x_1, \dots, x_p) \in \mathbb{K}^p$ solution de \mathscr{S} si et seulement si u(x) = b.

C'est l'interprétation vectorielle de \mathscr{S} .

Proposition 29

Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est la matrice associée à un système \mathcal{S} , alors :

- $\operatorname{rg}(A) = \operatorname{rg}(\mathscr{S})$.
- Le système AX = B est compatible si, et seulement si $B \in Im(A)$.
- Si n=p, et si A est inversible, alors le système AX=B possède une unique solution.
- L'ensemble des solutions dans $\mathcal{M}_{n,1}(\mathbb{K})$ de l'équation homogène AX = 0 est Ker(A).

Proposition 30

Soit \mathscr{S}_0 le système linéaire homogène de n équations à p inconnues d'écriture matricielle AX = 0. Si rg(A) = r, alors l'ensemble des solutions de \mathscr{S}_0 est un sous-espace vectoriel de \mathbb{K}^p de dimension p - r.