Logical agents

Knowlegde-based agents

Knowlegde base: set van zinnen Beweringen over de wereld

Uitgedrukt in knowledge representation language TELL: Voeg een nieuwe zin toe aan de knowlegde base

ASK: Query de knowledge base

Logic

De knowledge base bestaat uit zinnen Syntax: symbolen, diagrammen

Semantiek: waarde

Het model is een abstractie van de mogelijke wereld.

= zin
 M(⋈) = verzameling van alle modellen van ⋈
 ⋈ ⊧ β = β is een logisch gevolg van ⋈
 ⋈ ⊧ β asa M(⋈)⊆ M(β)
 ⋈ ⊧ β = De zin β is afgeleid van ⋈ m.b.v. het algoritme i
 Gevolg: Model checking

Sound: Als $\alpha \vdash \beta$ dan $\alpha \models \beta$ Complete: Als $\alpha \models \beta$ dan $\alpha \vdash \beta$

Propositie logica

 \neg : niet \lor : of \Leftrightarrow : als en slechts als \land : en \Rightarrow : impliceert \equiv : zijn logische gelijk

$$\alpha \Rightarrow \beta \equiv \neg \beta \Rightarrow \neg \alpha$$
 $\alpha \Rightarrow \beta = \neg \alpha \lor \beta$

Alle regels uit booleaanse logica blijven geldig.

De Morgan, commutativiteit, associativiteit, distributiviteit

Conjunctive normal form

Zorgen dat de zin geschreven is uit enkel niet, en, of en variabelen.

Forward chaining

- 1. Bepaal aantal onbekenden voor =>
- 2. Zet gekende variabelen op de agenda
- 3. Zet de eerste gekende variabele op true en pas het aantal gekende variabelen aan.
- 4. Zet nieuw ontdekte variabelen op de agenda
- 5. Doe stap 3 en 4 opnieuw tot de agenda leeg is
- 6. Controleer of het gevraagde op de agenda stond

Backward chaining

- 1. Wat bewezen moet worden uitschrijven als wat men gegeven krijgt
- 2. Kijken of wat gegeven is bewezen is

Ja: bewijs volledig

Nee: voer stap 1 en 2 uit voor wat men uitgeschreven heeft

voorbeeld: P = > Q $L \wedge M \Longrightarrow P$ $B \wedge L \Longrightarrow M$ $A \wedge P \Longrightarrow L$ $A \wedge B \Longrightarrow L$ Α В B, L