FEUILLE 3: Nombres complexes

I EXERCICES TECHNIQUES

Exercice 1

Donner la forme algébrique des nombres complexes suivants :

a.
$$z = (i-1)(2+3i)$$

a.
$$z = (i-1)(2+3i)$$
 b. $z = (2-3i)(1+2i)(3-2i)(2+i)$

c.
$$z = \frac{2-3i}{i}$$

d.
$$\frac{1-i}{1+i} + \frac{2i}{-1+i}$$

c.
$$z = \frac{2-3i}{i}$$
 d. $\frac{1-i}{1+i} + \frac{2i}{-1+i}$ **e.** $z = \frac{(1+i)(2i+1)}{(3-i)(2i-1)}$

f.
$$\frac{z+\overline{z}}{z-\overline{z}}$$
 où $z \notin i\mathbb{R}$

f.
$$\frac{z+\overline{z}}{z-\overline{z}}$$
 où $z \notin i\mathbb{R}$ **g.** $z = \frac{1+ki}{2k+(k^2-1)i}$ où $k \in \mathbb{R}$

Exercice 2

Mettre sous forme trigonométrique les nombres complexes suivants :

a.
$$z_1 = 1 - \sqrt{3}i$$

a.
$$z_1 = 1 - \sqrt{3}i$$
 b. $z_2 = -\frac{1}{\sqrt{3}} + \frac{1}{3}i$ **c.** $z_3 = z_1 + 3z_2$

c.
$$z_3 = z_1 + 3z_2$$

d.
$$z_4 = z_1^2 z_2^2$$
 e. $z_5 = \frac{z_1}{z_2}$ **f.** $z_6 = \frac{z_1}{z_3}$

e.
$$z_5 = \frac{z_1}{z_2}$$

f.
$$z_6 = \frac{z_1}{z_2}$$

g.
$$z_7 = \frac{1 + \sqrt{3}i}{\sqrt{3} + i}$$

g.
$$z_7 = \frac{1+\sqrt{3}i}{\sqrt{3}+i}$$
 h. $z_8 = \frac{\sqrt{3}-1+(\sqrt{3}+1)i}{\sqrt{3}+1+(\sqrt{3}-1)i}$

j.
$$z_9 = 1 + \cos \varphi + i \sin \varphi$$
 , où $\varphi \in]-\pi,\pi[$

$$\mathbf{k.}\ z_{10} = \frac{1+i\tan\varphi}{1-i\tan\varphi}\quad\text{, où }\varphi\in[-\pi,\pi]\setminus\left\{-\frac{\pi}{2},\frac{\pi}{2}\right\}$$

Exercice 3

Résoudre dans $\mathbb C$ les équations suivantes, et exprimer les solutions sous forme algébrique :

a.
$$iz = -\sqrt{3} + i$$

a.
$$iz = -\sqrt{3} + i$$
 b. $z(1+i) + 3 + i = 0$ **c.** $2z - 4i = iz + 2$

c.
$$2z - 4i = iz + 2$$

d.
$$3z + 2 = (1 - i)z - 7 + 13i$$
 e. $2z + \overline{z} = 9 + i$ **f.** $\overline{z} - 3iz - 3 + 6i = 0$

e.
$$2z + \overline{z} = 9 + i$$

$$\mathbf{f} = 3iz - 3 + 6i - 0$$

Exercice 4

Résoudre dans $\mathbb C$ les équations suivantes :

a.
$$z^2 + 2z + 10 = 0$$

b.
$$z^3 - 6z^2 + 13z - 10 = 0$$
 en remarquant que 2 est solution

c.
$$z^4 + 4z^2 + 16 = 0$$

Exercice 5

Développer les expressions suivantes :

$$\mathbf{a.} \cos(4x)$$

b.
$$\sin(5x)$$

c.
$$cos(5x)$$

d.
$$\cos(4x) \sin(5x)$$

Exercice 6

Linéariser les expressions suivantes :

a.
$$\cos^3(2x)$$

b.
$$\sin^4(3x)$$

a.
$$\cos^3(2x)$$
 b. $\sin^4(3x)$ **c.** $\cos^2 x \sin^3 x$ **d.** $\cos^3 x \sin^3 x$ **e.** $\cos^2 x \sin^4 x$

d
$$\cos^3 x \sin^3 x$$

$$e^{-\cos^2 x \sin^4 x}$$

II EXERCICES SUR LES PROPRIÉTÉS ALGÉBRIQUES

Exercice 7

On donne $z_1 = \frac{1}{2} \left(\sqrt{6} - \sqrt{2}i \right)$ et $z_2 = 1 + i$.

- **a.** Donner le module et un argument de $Z = \frac{z_1}{z_2}$.
- ${f b.}$ Exprimer Z sous forme algébrique.
- c. En déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 8

a. Montrer que :

$$\forall (z, z') \in \mathbb{C}^2, \quad |z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2)$$

b. En déduire que dans un parallélogramme la somme des carrés des longueurs des diagonales est égale à la somme des carrés des longueurs des côtés.

Exercice 9

Soient a et b des nombres complexes tels que $\overline{a}b \neq 1$. On pose $c=\frac{a-b}{1-\overline{a}b}$ Montrer les assertions suivantes :

a.
$$(|c| = 1) \Leftrightarrow ((|a| = 1) \lor (|b| = 1))$$

b.
$$(|c| < 1) \Leftrightarrow (((|a| < 1) \land (|b| < 1)) \lor (|a| > 1) \land (|b| > 1)))$$

Exercice 10

- a. Déterminer les racines carrées de 5 + 12i.
- **b.** Déterminer les racines cinquièmes de i.
- c. Déterminer les racines quatrièmes de 28 + 96i.

Exercice 11

Résoudre dans $\mathbb C$ l'équation :

$$(2z^2 - 3z + 2)^2 + (z^2 - 3z + 2)^2 = 0$$

Exercice 12

On considère l'équation :

$$z^{3} - (5+i)z^{2} + (9+4i)z - 3(3+i) = 0$$
 (E)

- **a.** Montrer que (E) admet une solution réelle.
- **b.** Résoudre (E) dans \mathbb{C} .

Exercice 13

On considère l'équation :

$$4z^3 - 6i\sqrt{3}z^2 - 3(3 + i\sqrt{3})z - 4 = 0$$
 (E)

- a. Montrer (E) admet une solution réelle.
- **b.** Résoudre (E) dans \mathbb{C} .

Exercice 14

Soit $\varphi \in \mathbb{R}$. Résoudre dans \mathbb{C} l'équation :

$$z^2 - 2z\cos\varphi + 1 = 0$$

Exercice 15

Soit $j = e^{\frac{2i\pi}{3}}$. Déterminer les solutions dans \mathbb{C} de l'équation :

$$\overline{z} = jz^2$$

Exercice 16

Soient
$$n \in \mathbb{N}$$
 a et b des réels. Calculer les sommes :
a. $C_n = \sum_{k=0}^n \cos(a+kb)$ **b.** $S_n = \sum_{k=0}^n \sin(a+kb)$

III EXERCICES SUR LES APPLICATIONS GEOMETRIQUES

Exercice 17

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, soient A, B, C et D les points d'affixes respectives $z_A = i, z_B = 1 + i, z_C = \frac{1}{2} + \left(1 - \frac{\sqrt{3}}{2}\right)i$ et $z_D = \frac{\sqrt{3}}{2} + \frac{3}{2}i$.

Déterminer la nature des triangles ABC et ACL

Exercice 18

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, soient A, B et C les points d'affixes respectives $z_A = 8, z_B - 4 + 4i$ et $z_C = -4i$.

- a. Montrer que le triangle ABC est rectangle isocèle.
- **b.** Déterminer les affixes des points A', B' et C' images respectives des points A, B et C par la rotation de centre O et d'angle $\frac{\pi}{3}$.
- Soient P,Q et R les milieux respectifs des segments [A'B], [B'C] et [C'A]. Etablir la nature du triangle PQR.

Exercice 19

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives $z_A = 1, z_B = i$ et $z_C = \frac{\sqrt{3} - 1}{2}(1 - i)$.

- Mettre z_C sous forme trigonométrique.
- Déterminer l'affixe du point C_1 , image de C par la rotation de centre O et d'angle $\frac{\pi}{2}$.
- Déterminer l'affixe du point C_2 , image de C_1 par l'homothétie de centre O et de rapport $\sqrt{3} + 2$.
- Montrer que C et C_2 sont sur un cercle de centre B.

Exercice 20

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, à tout point M d'affixe $z \neq i$, on associe le point M' d'affixe $z' = \frac{1}{i-z}$. Déterminer l'ensemble des points M tels que M' appartienne au centre de centre A d'affixe 1 et de rayon 1.

Exercice 21

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, soient A, B et C les points d'affixes respectives $z_A = 1 + i$, $z_B = \overline{z_A}$ et $z_C = 2z_B$.

- a. Montrer que le cercle circonscrit au triangle ABC a pour centre le point I d'affixe 3 et pour rayon $\sqrt{5}$.
- **b.** Montrer que le triangle ACI est rectangle isocèle.
- c. Soient D l'image de O par la translation de vecteur $2\overrightarrow{IC}$ et E l'image de D par la rotation de centre O et d'angle $\frac{\pi}{2}$. Montrer que (AB) et (CE) sont perpendiculaires.

Exercice 22

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, soient A, B, C, D les points d'affixes respectives $z_A = \frac{3}{2} + 6i$, $z_B = \overline{z_A}$, $z_C = -3 - \frac{1}{4}i$, $z_D = 3 + 2i$, et \overrightarrow{w} le vecteur d'affixe $z_{\overrightarrow{w}} = -1 + \frac{5}{2}i$.

- a. Déterminer l'affixe du point Q, image de B par la translation de vecteur \overrightarrow{w} ; l'affixe du point R, image de D par l'homothétie de centre C et de rapport $-\frac{1}{3}$; l'affixe du point S, image de D par la rotation de centre A et d'angle $-\frac{\pi}{2}$.
- **b.** Déterminer la nature du quadrilatère DQRS.
- c. Montrer que la droite (AD) est tangente au cercle circonscrit au triangle DQR.

Exercice 23

Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère l'homothétie h de centre A d'affixe 3-i de rapport $-\sqrt{2}$; la rotation r de centre B d'affixe 2i d'angle $\frac{3\pi}{4}$; la translation t de vecteur \overrightarrow{BO} et l'application composée $s=t\circ r\circ h$. M désigne un point du plan d'affixe z.

- **a.** Exprimer à l'aide de z l'affixe de l'image de M par h.
- **b.** Exprimer à l'aide de z l'affixe de l'image de M par r.
- c. Déterminer le point Ω tel que $s(\Omega) = O$.

Exercice 24

Dans chacun des cas suivants, déterminer l'ensemble des points M du plan complexe dont l'affixe z vérifie la condition donnée :

- **a.** |z| = 2|z i|
- **b.** Les points d'affixes 1, z et z^3 sont alignés.
- c. Les points d'affixes 1, z et z^3 forment un triangle rectangle isocèle en M.
- **d.** $\left(\frac{z-i-1}{iz+1}\right)^2$ est un réel.
- e. $\frac{z^2}{z+i}$ est un imaginaire pur.

LES BONS RÉFLEXES

- * Dans les exercices de calcul, choisir la forme la mieux adaptée (algébrique ou trigonométrique).
- ₹ Quand on a une somme d'exponentielles complexes, penser à l'angle moitié.
- ₹ Dans les exercices de géométrie, faire un schéma à main levée.