Extending Auto-scheduler to Support Performance Evaluation with Timing Model

Minchun Liao, NTHU Yaohua Chen, ITRI Chungta King, NTHU

Motivation

- Current TVM Auto-scheduler needs real devices or simulators to provide timing information for optimized code scheduling.
- If the device and/or its simulator are still in development, it is difficult to get the execution time.
- In the mean time, we still want the compiler to generate optimized code for the device in development for testing and design optimization.
- This work proposes the use of a timing model in TVM to approximate timing.
 - As a demonstration, we extend TVM Auto-scheduler to generate schedule for Computing-in-Memory (CIM) devices, like ReRAM-based accelerators.

CIM Behavior Model

• 168 PEs/chip, 12 CUs/PE, 8 Memristor arrays/CU

Memristor array size: 128*128

WO

RO

Original Flow in TVM

Revised Flow

Compilation Flow

- Design sketch rules, annotation rules and mutation rules for CIM
- Leverage Auto-scheduler to generate schedule and perform schedule tuning

Runner

- Add a simulation runner into TVM
- Return the time cost

RPC Runner

Run generated code on remote devices

Local Runner

Run generated code on local devices

Timing model

Approximate the convolution execution time on CIM device

$$total_{cycle} = number_{batch} * cycle_{batch} + 6$$

 $cycle_{batch} = feature map resolution / DAC resolution$

$$number_{batch} = \lceil \frac{\frac{kernel_size^2 * IC}{\#uesd_WL} * \frac{OC}{\#filters_for_MA} * W*H*N \rceil}{\#MA * \#CU}$$

- *OC* : Output channels
- *IC* : Input channels
- W: Width of input feature map over stride
- H: Height of input feature map over stride
- N : Number of input feature maps
- #used_WL: How many wordlines are used in a memristor array
- #filters_for_MA: How many filters are mapped in a memristor array
- #MA: Number of memristor arrays in one CU
- #CU: Number of computation units in one PE

Cycle 2 Cycle 1

DAC resolution: 1 bit

Summary

- Use a timing model to work with TVM Auto-scheduler if the device or the simulator is not ready yet.
- Extend TVM Auto-scheduler to get the time cost through the timing model.
- During development of the device, the optimized code generated by TVM can be used to facilitate the development, e.g., for testing and design optimization.

Thank You!

Video Download Link

• https://drive.google.com/file/d/1BKIGeTSIATv1YJhxg2ND4_5Dv8wrJb Th/view?usp=sharing

