Función	Derivada	Función	Derivada
f(x) = k	f'(x) = 0	$f(x) = \arctan(u)$	$f'(x) = \frac{u'}{1 + u^2}$
f(x) = ax	f'(x) = a	$f(x) = \operatorname{arcsec}(u)$	$f'(x) = \frac{u'}{u \cdot \sqrt{u^2 - 1}}$
$f(x) = u^n$	$f'(x) = n \cdot u^{n-1} \cdot u'$	$f(x) = \operatorname{arccosec}(u)$	$f'(x) = -\frac{u'}{u \cdot \sqrt{u^2 - 1}}$
$f(x) = \sqrt{u}$	$f'(x) = \frac{u'}{2\sqrt{u}}$	$f(x) = \operatorname{arccotg}(u)$	$f'(x) = -\frac{u'}{1+u^2}$
$f(x) = \sqrt[n]{u}$	$f'(x) = \frac{u'}{n\sqrt[n]{u^{n-1}}}$	$f(x) = \operatorname{senh}(u)$	$f'(x) = \cosh(u) \cdot u'$
$f(x) = e^u$	$f'(x) = e^u \cdot u'$	$f(x) = \cosh(u)$	$f'(x) = \operatorname{senh}(u) \cdot u'$
$f(x) = a^u$	$f'(x) = a^u \cdot \ln(a) \cdot u'$	$f(x) = \tanh(u)$	$f'(x) = \frac{u'}{\cosh^2(u)}$ $= (1 - \tanh^2(u)) \cdot u'$
$f(x) = \ln(u)$	$f'(x) = \frac{u'}{u}$	$f(x) = \mathrm{sech}(u)$	$f'(x) = -\operatorname{sech}(u) \cdot \tanh(u) \cdot u'$
$f(x) = \log_a(u)$	$f'(x) = \frac{u'}{u \cdot \ln(a)}$	$f(x) = \operatorname{cosech}(u)$	$f'(x) = -\operatorname{cosech}(u) \cdot \operatorname{cotgh}(u) \cdot u'$
$f(x) = \operatorname{sen}(u)$	$f'(x) = \cos(u) \cdot u'$	$f(x) = \cosh(u)$	$f'(x) = -\operatorname{cosech}^2(u)$
$f(x) = \cos(u)$	$f'(x) = -\mathrm{sen}(u) \cdot u'$	$f(x) = \operatorname{arcsenh}(u)$	$f'(x) = \frac{u'}{\sqrt{u^2 + 1}}$
$f(x) = \tan(u)$	$f'(x) = \frac{u'}{\cos^2(u)}$ $= (1 + \tan^2(u)) \cdot u'$	$f(x) = \operatorname{arccosh}(u)$	$f'(x) = \frac{u'}{\sqrt{u^2 - 1}}$
$f(x) = \sec(u)$	$f'(x) = \frac{u' \cdot \text{sen}(u)}{\cos^2(u)}$	$f(x) = \operatorname{arctanh}(u)$	$f'(x) = \frac{u'}{1 - u^2}$
$f(x) = \csc(u)$	$f'(x) = -\frac{u' \cdot \cos(u)}{\sin^2(u)}$	$f(x) = \operatorname{arcsech}(u)$	$f'(x) = -\frac{u'}{u \cdot \sqrt{1 - u^2}}$
$f(x) = \cot(u)$	$f'(x) = -\frac{u'}{\operatorname{sen}^2(u)}$	$f(x) = \operatorname{arccsch}(u)$	$f'(x) = -\frac{u'}{u \cdot \sqrt{1 + u^2}}$
$f(x) = \arcsin(u)$	$f'(x) = \frac{u'}{\sqrt{1 - u^2}}$	$f(x) = \operatorname{arccoth}(u)$	$f'(x) = \frac{u'}{1 - u^2}$
$f(x) = \arccos(u)$	$f'(x) = -\frac{u'}{\sqrt{1 - u^2}}$		

Básicas y Suma/Resta	Ángulo Doble y Medio	Suma a Producto; Producto a Suma
$\sin\theta = \frac{1}{\csc\theta}$	$\sin(2\theta) = 2\sin\theta\cos\theta$	$\sin\theta + \sin\beta = 2\sin\left(\frac{\theta + \beta}{2}\right)\cos\left(\frac{\theta - \beta}{2}\right)$
$\cos\theta = \frac{1}{\sec\theta}$	$\cos(2\theta) = \cos^2\theta - \sin^2\theta$	$\sin\theta - \sin\beta = 2\sin\left(\frac{\theta - \beta}{2}\right)\cos\left(\frac{\theta + \beta}{2}\right)$
$\csc\theta = \frac{1}{\sin\theta}$	$\cos(2\theta) = 1 - 2\sin^2\theta$	$\cos\theta + \cos\beta = 2\cos\left(\frac{\theta + \beta}{2}\right)\cos\left(\frac{\theta - \beta}{2}\right)$
$\sec \theta = \frac{1}{\cos \theta}$	$\cos(2\theta) = 2\cos^2\theta - 1$	$\cos\theta - \cos\beta = -2\sin\left(\frac{\theta + \beta}{2}\right)\sin\left(\frac{\theta - \beta}{2}\right)$
$\cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{1}{\tan\theta}$	$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$	$\sin\theta\sin\beta = \frac{1}{2}\left[\cos(\theta - \beta) - \cos(\theta + \beta)\right]$
$\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{1}{\cot\theta}$	$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$	$\cos\theta\cos\beta = \frac{1}{2}\left[\cos\left(\theta - \beta\right) + \cos\left(\theta + \beta\right)\right]$
$\sin^2\theta + \cos^2\theta = 1$	$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$	$\sin\theta\cos\beta = \frac{1}{2}\left[\sin(\theta+\beta) + \sin(\theta-\beta)\right]$
$1 + \tan^2\theta = \sec^2\theta$	$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$	Suplemento, complemento
$1 + \cot^2 \theta = \csc^2 \theta$	$\tan\frac{\theta}{2} = \frac{1-\cos\theta}{\sin\theta} = \frac{\sin\theta}{1+\cos\theta}$	$\sin(\pi \pm \theta) = \mp \sin\theta$
$\sin(\theta \pm \beta) = \sin\theta \cos\beta \pm \sin\beta \cos\theta$	Par, impar	$\cos(\pi \pm \theta) = -\cos\theta$
$\cos(\theta \pm \beta) = \cos\theta \cos\beta \mp \sin\theta \sin\beta$	$\sin(-\theta) = -\sin\theta$	$\sin(\pi/2 - \theta) = \cos\theta$
$\tan(\theta \pm \beta) = \frac{\tan\theta \pm \tan\beta}{1 \mp \tan\theta \tan\beta}$	$\cos(-\theta) = \cos\theta$	$\cos(\pi/2 - \theta) = \sin\theta$