

EE 604 Digital Image Processing

Thresholding

Thresholding

- Simplest form of image segmentation
- Usually, partitions an image *f* into a binary image *s* with 2 levels (foreground and background): above and below a chosen threshold *T*
- If, f(x,y) > T, s(x,y) = 1, else, s(x,y) = 0

Assumptions:

- Intensity values are different in different regions
- Within a region (representing an object, say) intensity values are similar.
- Works well when the image histogram is bimodal

Thresholding

global

local

Global: single threshold *T* for the entire image

Local: divide image into sub-images, use a different *T* for each region

Adaptive: *T* changes based on image statistics

Basic global thresholding

- Initialize threshold *T*
- Loop until converged
 - Partition image using T
 - Compute background mean μ_b as the average intensity of all pixels below $extbf{ extit{T}}$
 - Compute foreground mean μ_f as the average intensity of all pixels above T
 - Update *T*

$$T = \frac{1}{2}(\mu_f + \mu_b)$$

p(z) = PDF i.e. normalized histogram

$$p(z) = P_1 p_1(z) + P_2 p_2(z)$$

 P_1, P_2 : prob of occurrence of two classes of pixels

$$P_1 + P_2 = 1$$

$$E_1(T) = \int_{-\infty}^{T} p_2(z)dz$$
 $E_2(T) = \int_{T}^{\infty} p_1(z)dz$

Total error:

$$E(T) = P_2 E_1(T) + P_1 E_2(T)$$

$$T^* = \underset{T}{\operatorname{argmin}} E(T)$$

Differentiating E(T) w.r.t T and setting to 0 results in

$$P_1p_1(T^*) = P_2p_2(T^*)$$

- Not easy to always find an analytical expression
- Requires the knowledge of the PDFs
- Expression when modeling using Gaussian (Homework: derive the expression)

$$T^* = \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2}{\mu_1 - \mu_2} \ln(\frac{P_2}{P_1})$$

 μ_1, μ_2 : class mean

 $\sigma = \sigma_1 = \sigma_2$: class variance

Region growing

Assumptions

- We wish to partition image \mathcal{I} into n regions such that
- $\mathcal{I} = \bigcup_{i=1}^{n} R_i$ i.e. every pixel belongs to some region
- $R_i \cap R_j = \emptyset$ i.e. each pixel is assigned to only one region
- All pixels in a region share similar (predefined) property
- Pixels in different regions have different properties.

Region growing

- Seed Pixel
- ↑ Direction of Growth

(a) Start of Growing a Region

- Grown Pixels
- Pixels Being Considered

(b) Growing Process After a Few Iterations

What do we need?

- Seed points
- A measure of similarity
- A stopping criterion

A basic algorithm

- Start with a seed point s_j for region R_j
- For every S_j
 - Initialize mean intensity of each region: $\mu_j = s_j$
 - Initialize region: $R_j = \{s_j\}$
- For each point p in R_j
 - Get its 4-connect neighborhood: $\mathcal{N}_i(p)$, i=1,2,3,4
 - If $|\mathcal{N}_i(p) \mu_j| < \tau$, $\mathcal{N}_i(p) \notin \mathcal{R}_k$ $j \neq k$
 - $\mathcal{R}_j \leftarrow \mathcal{R}_j \bigcup \mathcal{N}_i(p)$
 - update μ_j
 - Stop growing when no neighborhood pixel matches
- Move to the next seed point, until the whole image is partitioned.

Remarks

- Seed point selection is important.
 - Different choice of seeds will lead to different segmentation
 - Can be difficult to decide
 - A region may not grow at all (if the seed point is bad)
- Similarity criteria: intensity, color, texture, shape, motion, size
- What happens if you let one region grow completely before others?
 - Chosen region may dominate
- Simultaneous region growing: Let adjacent regions grow simultaneously
 - May result into over segmentation

A better algorithm

Key Idea:

Fit an appropriate low-order surface through the pixels in a region

$$f(x, y, a, m) = \sum_{(i+j) \le m} a_{ij} x^i y^j$$

Check approximation error:

$$E(R, a, m) = \sum_{(x,y)\in R} \{g(x,y) - f(x,y,a,m)\}^2$$

• For pixel values belonging to the same region, E should be small.

A better algorithm

- Partition the image into initial seed <u>regions</u> $R_i^{(0)}$
 - E.g. split the image into 11x11 regions
- Fit a surface to each seed region.
 - If $E(R_i^{(0)}, a, m)$ is smaller than some predefined value
 - accept $R_i^{(0)}$ as a seed region
 - accept its model
 - else, reject $R_i^{(0)}$
- Let's say we selected n seed regions

A better algorithm

- For a seed region:
 - Find all *compatible* points $C_i^{(k)}$ in its neighborhood:

$$C_i^{(k)} = \{(x,y) | (g(x,y) - f(x,y,a,m))^2 \le \epsilon \}$$

$$(x,y) \text{ is a neighbor of } R_i^{(k)}$$

- If $C_i^{(k)}$ is empty, stop growing $R_i^{(k)}$
- Else $R_i^{(k+1)} = R_i^{(k)} \bigcup C_i^{(k)}$
- Refit the model to $\widetilde{R_i^{(k+1)}}$, and compute $E(R_i^{(k+1)},a,m)$
- If $(E(R_i^{(k+1)}, a, m) E(R_i^{(k)}, a, m)) \le \tau$, compute $C_i^{(k+1)}$

Region growing

Iteration 10

Clustering

Segmentation as clustering

- Segmentation can be seen as a clustering problem (unsupervised learning).
 - Group pixels into a number of clusters based on predefined criteria
- Given a pixel (x,y) in an image I, we can create a vector

$$\mathbf{F} = \begin{bmatrix} (x,y) & \text{location} \\ I(x,y) & \text{intensity} \\ L(x,y) & \text{any other information} \end{bmatrix}$$

- For **N** pixels in an image, we get $\mathbf{F}_1, \mathbf{F}_2, ..., \mathbf{F}_N$
- <u>Task:</u> cluster **N** vectors into **k** clusters

Segmentation as clustering

- Task: cluster N vectors into C clusters
- A large number of algorithms exist for this task
 - k-means clustering
 - Gaussian mixture model
 - Mean shift clustering
 - Spectral clustering
 - Hierarchical clustering
 - Many more ...

Acknowledgement (next 15 slides adapted from...)

Clustering

15-381 Artificial Intelligence Henry Lin

What is a natural grouping among these objects?

What is a natural grouping among these objects?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

What is similarity?

The quality or state of being similar; likeness; resemblance; as, a similarity of features.

Webster's Dictionary

Similarity is hard to define, but... "We know it when we see it"

The real meaning of similarity is a philosophical question. We will take a more pragmatic approach.

What is similarity?

What properties should a distance measure have?

•
$$D(A,B) = D(B,A)$$

•
$$D(A,B) = 0$$
 iif $A = B$

•
$$D(A,B) \ge 0$$

•
$$D(A,B) \le D(A,C) + D(B,C)$$

Symmetry

Constancy of Self-Similarity

Positivity

Triangular Inequality

Types of clustering

- **Partitional algorithms:** Construct various partitions and then evaluate them by some criterion (we will see an example called BIRCH)
- Hierarchical algorithms: Create a hierarchical decomposition of the set of objects using some criterion

Hierarchical

Partitional

The number of dendrograms with n leafs = $(2n-3)!/[(2^{(n-2)})(n-2)!]$

Number of Leafs	Number of Possible Dendrograms
2	1
3	3
4	15
5	105
 10	34,459,425

Since we cannot test all possible trees we will have to heuristic search of all possible trees. We could do this..

Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Top-Down (divisive): Starting with all the data in a single cluster, consider every possible way to divide the cluster into two. Choose the best division and recursively operate on both sides.

Similarity between clusters

Single link

 cluster similarity = similarity of two most similar members

Potentially long and skinny clusters

Similarity between clusters

Complete link

• cluster similarity = similarity of two least similar members

Similarity between clusters

Average link

• cluster similarity = average similarity of all pairs

the most widely used similarity measure

Robust against noise

Bottom-Up (agglomerative):

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Choose the best

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Agglomerative clustering

Agglomerative clustering

- No need to specify the numb rod clusters in advance
- Hierarchical structure is often more intuitive
- Do not scale well: Complexity is $O(n^2)$ for n data points
- Interpretation is very subjective