VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY FACULTY OF COMPUTER SCIENCE AND ENGINEERING

${\bf Microprocessor\ \textbf{-}\ Microcontroller}$

Lab Report - CO3010

Lab 1

Advisor(s): Phan Văn Sỹ

Student(s): Lương Đức Hiếu 2352324

Contents

1	Ove	rall																									4
2	Exe	Exercise 1 2.1 Report 1															5										
	2.1	Repo	t 1																								5
	2.2	Repo	rt 2																		•		•				5
3	Exe	Exercise 2															6										
	3.1	Repo	t 1																								6
	3.2	Repo	rt 2																						•		6
4	Exe	Exercise 3														8											
	4.1	Repo	t 1																								8
	4.2	Repo	rt 2																								8
5	Exe	rcise 4	4																								10
	5.1	Repo	t 1																								10
	5.2	Repo	rt 2																								10
6	Exe	rcise	5																								11
	6.1	Repo	t 1																								11
	6.2	Repo	rt 2																						•		11
7															13												
	7.1	Repo	t 1																								13
	7.2	Repo	rt 2																								13
8	Exercise 7														14												
	8.1	Repo																									14
	8.2	Repo	rt 2					•			•	•			•		•	•		 •	•	•	•	•			14
9															15												
	9.1	Repo	t 1																								15
	9.2	Repo	rt 2																								15
10		rcise																									16
	10.1	Repo	t 1																								16
	10.2	Ropo	+ 2																								16

Ho Chi Minh City University of Technology Faculty of Computer Science and Engineering

11 Exercise 10	17
11.1 Report 1	17
11.2 Report 2	17

1 Overall

Lab schematics are submitted via GitHub link: https://github.com/hieuld1003/MPU-MCU

The default while(1) code for most of the exercise is:

```
while(1){
//Insert function for each exercise
HAL_Delay(1000);
}
```

The schematic for the exercises from 1 to 5 and 6 to 10:

Figure 1.1: Exercise 1 to 5 schematic

Figure 1.2: Exercise 6 to 10 schematic

2.1 Report 1

Schematic is in **Overall** section.

2.2 Report 2

This is the pseudocode from exercise 1 header file:

```
Initialize:
setInit = 0
count = 0

Main Loop:
while(1) {
   if (setInit == 0) {
        // Initialize LEDs: red OFF, yellow ON
}
```



```
setInitLED()
setInit = 1

11  }

12

13  if (count == 1) {
      count = 0
      // Toggle both red and yellow LEDs
      toggleLED()
17  } else {
      count = count + 1
19  }

20
21  // Wait for next iteration
22 }
```

3.1 Report 1

Schematic is in **Overall** section.

3.2 Report 2

This is the pseudocode from exercise 2 header file:


```
switch(phase) {
          case 1: // Red phase (5 time units)
              if (count == 5) {
                  Phase2() // Toggle red OFF, yellow ON
                  phase = 2
                  count = 0
              }
              break
          case 2: // Yellow phase (3 time units)
              if (count == 3) {
                  Phase3() // Toggle yellow OFF, green ON
                  phase = 3
                  count = 0
              }
              break
30
          case 3: // Green phase (2 time units)
              if (count == 2) {
                  Phase1() // Toggle green OFF, red ON
                  phase = 1
                  count = 0
36
              }
              break
38
     }
39
40
     count = count + 1
41
     // Wait for next iteration
42
43 }
```


4.1 Report 1

Schematic is in **Overall** section.

4.2 Report 2

This is the pseudocode from exercise 3 header file:

```
1 Initialize:
2 init = 0
3 ver_phase = 0, hor_phase = 0
ver_count = 0, hor_count = 0
6 Main Loop:
7 while(1) {
     // Initial setup (runs only once)
     if (init == 0) {
         Set vertical: green ON, others OFF
         Set horizontal: red ON, others OFF
         ver_phase = 1, hor_phase = 1
         init = 1
     }
     // Vertical light state machine
     if (ver_count reaches threshold for current phase) {
         ver_count = 0
         Switch to next phase:
         - If phase 1 (green, 3s): change to phase 2 (yellow)
         - If phase 2 (yellow, 2s): change to phase 3 (red)
         - If phase 3 (red, 5s): change to phase 1 (green)
     }
     // Horizontal light state machine
     if (hor_count reaches threshold for current phase) {
         hor_count = 0
         Switch to next phase:
         - If phase 1 (red, 5s): change to phase 2 (green)
```



```
- If phase 2 (green, 3s): change to phase 3 (yellow)
- If phase 3 (yellow, 2s): change to phase 1 (red)
}

ver_count++
hor_count++
```


5.1 Report 1

Schematic is in **Overall** section.

5.2 Report 2

This is the pseudocode from exercise 4 header file:

```
int arr[10][7] = {
     \{0, 0, 0, 0, 0, 0, 1\}, //0
     {1, 0, 0, 1, 1, 1, 1}, //1
     \{0, 0, 1, 0, 0, 1, 0\}, //2
     \{0, 0, 0, 0, 1, 1, 0\}, //3
     \{1, 0, 0, 1, 1, 0, 0\}, //4
     \{0, 1, 0, 0, 1, 0, 0\}, //5
     \{0, 1, 0, 0, 0, 0, 0\}, //6
     \{0, 0, 0, 1, 1, 1, 1\}, \frac{1}{7}
     \{0, 0, 0, 0, 0, 0, 0\}, //8
     {0, 0, 0, 0, 1, 0, 0}
12 };
      a, b, c, d, e, f, g
16 Function display7SEG(num):
17 if (0 <= num <= 9) {
     for (state = 0 to 6) {
          // Set each segment according to the pattern in arr
          Set GPIO pin (GPIOB_PIN_state) to arr[num][state]
     }
22 } else {
     // Invalid number, turn off all segments
     Turn off all pins on GPIOB
25 }
```


6.1 Report 1

Schematic is in **Overall** section.

6.2 Report 2

This is the pseudocode from exercise 5 header file:

```
1 Initialize:
2// Same as Exercise 3
4 Main Loop:
5 while(1) {
    // Run the traffic light control system
     exercise_3()
     // Display countdown on first 7-segment display for vertical
     switch(ver_phase) {
         case 1: // Green phase
             display7SEG(3 - ver_count) // Countdown from 3 to 0
             break
         case 2: // Yellow phase
             display7SEG(2 - ver_count) // Countdown from 2 to 0
             break
         case 3: // Red phase
             display7SEG(5 - ver_count) // Countdown from 5 to 0
             break
     }
     // Display countdown on second 7-segment display for
        horizontal
     switch(hor_phase) {
         case 1: // Red phase
             display7SEG_2(5 - hor_count) // Countdown from 5 to
                0
```



```
case 2: // Green phase
display7SEG_2(3 - hor_count) // Countdown from 3 to

0
break

case 3: // Yellow phase
display7SEG_2(2 - hor_count) // Countdown from 2 to

0
break

// Wait for next iteration

// Wait for next iteration
```


7.1 Report 1

Schematic is in **Overall** section.

7.2 Report 2

This is the pseudocode from exercise 6 header file:

```
1//initialize the clock pins
2 uint16_t clockPins[12] = {
3     d12_Pin, d1_Pin, d2_Pin, d3_Pin, d4_Pin, d5_Pin,
4     d6_Pin, d7_Pin, d8_Pin, d9_Pin, d10_Pin, d11_Pin
5 };
6
7 void testLEDs() {
8     for (int i = 0; i < 12; i++) {
9         HAL_GPIO_WritePin(GPIOA, clockPins[i], 1);
10         HAL_Delay(500);
11     }
12 }</pre>
```


8.1 Report 1

Schematic is in **Overall** section.

8.2 Report 2

This is the pseudocode from exercise 7 header file:

```
void clearAllClock() {
   for (int i = 0; i < 12; i++) {
        HAL_GPIO_WritePin(GPIOA, clockPins[i], 0);
}
</pre>
```


9.1 Report 1

Schematic is in **Overall** section.

9.2 Report 2

This is the pseudocode from exercise 8 header file:

```
void setNumberOnClock(int num) {
   if (num >= 0 && num < 12) {
        HAL_GPIO_WritePin(GPIOA, clockPins[num], 1);
}
</pre>
```


10.1 Report 1

Schematic is in **Overall** section.

10.2 Report 2

This is the pseudocode from exercise 9 header file:

```
void clearNumberOnClock(int num) {
   if (num >= 0 && num < 12) {
        HAL_GPIO_WritePin(GPIOA, clockPins[num], 0);
}
</pre>
```


11.1 Report 1

Schematic is in **Overall** section.

11.2 Report 2

This is the pseudocode from exercise 10 header file

```
int second = 0,
_2 minute = 0,
3 \text{ hour} = 0;
4 void displayClock() {
     ++second;
     if (second > 59){
          second = 0;
          ++minute;
     if (minute > 59){
          minute = 0;
          ++hour;
13
     }
     if (hour > 23){
          hour = 0;
     }
     clearAllClock();
     hour = hour % 12;
      int minuteLED = minute / 5;
      int secondLED = second / 5;
      setNumberOnClock(hour);
      setNumberOnClock(minuteLED);
      setNumberOnClock(secondLED);
27 }
```