Thesis

TRẦN KHÔI NGUYÊN VẬT LÝ LÝ THUYẾT

Ngày 20 tháng 5 năm 2025

Từ Hamiltonian $H_{\mu\mu'}^{jj'}(\mathbf{k})=\sum_{\mathbf{R}}e^{i\mathbf{k}\cdot\mathbf{R}}E_{\mu\mu'}^{jj'}(\mathbf{R})$ trong đó

$$E_{\mu\mu'}^{jj'}(\mathbf{R}) = \langle \phi_{\mu}^{j}(\mathbf{r}) | \hat{H} | \phi_{\mu'}^{j'}(\mathbf{r} - \mathbf{R}) \rangle$$

$$|\phi_1^1\rangle = d_{z^2}, \quad |\phi_1^2\rangle = d_{xy}, \quad |\phi_2^2\rangle = d_{x^2-y^2}$$

$$\begin{split} H_{\mu\mu'}^{jj'}(\mathbf{k}) &= \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{1}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{1}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{2}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{2}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{3}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{3}}) \\ &+ \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{4}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{4}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{5}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{5}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{6}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{6}}) \end{split}$$

$$H^{NN} = \begin{pmatrix} h_0 & h_1 & h_2 \\ h_1^* & h_{11} & h_{12} \\ h_2^* & h_{12}^* & h_{22} \end{pmatrix}$$

$$h_{0} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{1}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{1} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$h_{2} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{11} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{2}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$h_{12} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{22} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{2}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

Lai có $E^{jj'}(\hat{g_n}\mathbf{R}) = D^j(\hat{g_n})E^{jj'}(\mathbf{R}) \left[D^j(\hat{g_n})\right]^{\dagger}$

trong đó $\hat{g_n} = \{E, C_3, C_3^2, \sigma_\nu, \sigma'_\nu, \sigma''_\nu\}$

trong đó $D^1(\hat{g_n}) = 1$

$$D^{2}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$D^{2}(\hat{C}_{3}) = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$D^{2}(\hat{C}_{3}^{2}) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

Để tìm được $D^2(\sigma_{\nu})$ ta cố định \triangle ABC : $A(\frac{1}{2}, \frac{\sqrt{3}}{2}), B(1,0), C(0,0)$.

Khi đổi chỗ A \leftrightarrow B, ta được ma trận:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = D^2(\sigma_{\nu}) \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \Rightarrow D^2(\sigma_{\nu}) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

Ta có
$$\overrightarrow{R_5} = \sigma_{\nu}' \overrightarrow{R_4}$$
 mà $C_3^2 \overrightarrow{R_5} = \overrightarrow{R_1} \Rightarrow C_3^2 \sigma_{\nu}' \overrightarrow{R_4} = \overrightarrow{R_1}$

$$\Rightarrow \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\Rightarrow D^2\left(\sigma_{\nu}'\right) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

Tương tự ta tính cho

$$D^2\left(\sigma_{\nu}^{\prime\prime}\right) = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

Toán tử C_3 đánh lên \mathbf{R}_1 ta được $\to \mathbf{R}_5$ (dưới dạng ma trận)

Toán tử C_3^2 đánh lên \mathbf{R}_1 ta được $\to \mathbf{R}_3$ (dưới dạng ma trận)

Toán tử σ_{ν} đánh lên ${\bf R}_1$ ta được $ightarrow {\bf R}_6$ (dưới dạng ma trận)

Toán tử σ'_{ν} đánh lên \mathbf{R}_1 ta được $\rightarrow \mathbf{R}_2$ (dưới dạng ma trận)

Toán tử σ''_{ν} đánh lên ${f R}_1$ ta được $\to {f R}_4$ (dưới dạng ma trận)

Kiểm tra điều trên:

$$D^{2}\left(C_{3}^{2}\right)R_{1} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix} = \mathbf{R}_{3}$$
$$D^{2}\left(\sigma_{\nu}^{\prime}\right)R_{1} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix} = \mathbf{R}_{2}$$

* h0

$$\begin{split} h_{0} &= \sum_{\mathbf{R}\neq 0} e^{i\mathbf{k}\cdot\mathbf{R}} \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}-\mathbf{R}\right) \right\rangle + \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}\right) \right\rangle \right. \\ &= e^{i\mathbf{k}\cdot\mathbf{R}_{1}} \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}-\mathbf{R}_{1}\right) \right\rangle + e^{i\mathbf{k}\cdot\mathbf{R}_{4}} \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}-\mathbf{R}_{4}\right) \right\rangle \\ &+ e^{i\mathbf{k}\cdot\mathbf{R}_{2}} \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}-\mathbf{R}_{2}\right) \right\rangle + e^{i\mathbf{k}\cdot\mathbf{R}_{5}} \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}-\mathbf{R}_{5}\right) \right\rangle \\ &+ e^{i\mathbf{k}\cdot\mathbf{R}_{3}} \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}-\mathbf{R}_{3}\right) \right\rangle + e^{i\mathbf{k}\cdot\mathbf{R}_{6}} \left\langle \phi_{1}^{1}\left(\mathbf{r}\right) | H \left| \phi_{1}^{1}\left(\mathbf{r}-\mathbf{R}_{6}\right) \right\rangle + \epsilon_{1} \\ &= e^{ik_{x}a} E_{11}^{11}\left(\mathbf{R}_{1}\right) + e^{-ik_{x}a} E_{11}^{11}\left(\mathbf{R}_{4}\right) + e^{i\left(k_{x}\frac{a}{2}-k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{11}\left(\mathbf{R}_{2}\right) + e^{-i\left(k_{x}\frac{a}{2}-k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{11}\left(\mathbf{R}_{5}\right) \\ &+ e^{-i\left(k_{x}\frac{a}{2}+k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{11}\left(\mathbf{R}_{3}\right) + e^{i\left(k_{x}\frac{a}{2}+k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{11}\left(\mathbf{R}_{6}\right) + \epsilon_{1} \\ &= 2E_{11}^{11}\left(\mathbf{R}_{1}\right)\left(\cos 2\alpha + 2\cos \alpha \cos \beta\right) + \epsilon_{1} \end{split}$$

* h1

$$\begin{split} h_1 &= \sum_{\mathbf{R} \neq 0} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^2 \left(\mathbf{r} - \mathbf{R} \right) \right\rangle \\ &= e^{ik_x a} E_{11}^{12} \left(\mathbf{R_1} \right) + e^{-ik_x a} E_{11}^{12} \left(\mathbf{R_4} \right) + e^{i\left(k_x \frac{a}{2} - k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{12} \left(\mathbf{R_2} \right) + e^{-i\left(k_x \frac{a}{2} - k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{12} \left(\mathbf{R_5} \right) \\ &+ e^{-i\left(k_x \frac{a}{2} + k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{12} \left(\mathbf{R_3} \right) + e^{i\left(k_x \frac{a}{2} + k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{12} \left(\mathbf{R_6} \right) \end{split}$$

trong đó

$$E^{12}(\mathbf{R_2}) = E^{12}(\sigma'_{\nu}\mathbf{R_1}) = D^{1}(\sigma'_{\nu})E^{12}(\mathbf{R_1}) \left[D^{2}(\sigma'_{\nu})\right]^{\dagger}$$

$$= \left(1\right) \left(E^{12}_{11}(\mathbf{R_1}) \quad E^{12}_{12}(\mathbf{R_1})\right) \left(\frac{\frac{1}{2}}{2} \quad -\frac{\sqrt{3}}{2}\right)$$

$$= \left(\frac{E^{12}_{11}(\mathbf{R_1}) - \sqrt{3}E^{12}_{12}(\mathbf{R_1})}{2} \quad \frac{-E^{12}_{11}(\mathbf{R_1})\sqrt{3} - E^{12}_{12}(\mathbf{R_1})}{2}\right)$$

$$\Rightarrow E^{12}_{11}(\mathbf{R_2}) = \frac{E^{12}_{11}(\mathbf{R_1}) - \sqrt{3}E^{12}_{12}(\mathbf{R_1})}{2}$$

Tương tự ta có cho:

$$\begin{split} E_{11}^{12}(\mathbf{R_3}) &= \frac{-E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_4}) = -E_{11}^{12}(\mathbf{R_1}) \\ E_{11}^{12}(\mathbf{R_5}) &= \frac{-E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_6}) = \frac{E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \\ h_1 &= e^{i2\alpha}E_{11}^{12}(\mathbf{R_1}) - e^{i2\alpha}E_{11}^{12}(\mathbf{R_1}) \\ &+ e^{i(\alpha-\beta)}\frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} + e^{-i(\alpha+\beta)}\frac{-E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \\ &+ e^{i(-\alpha+\beta)}\frac{-E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} + e^{i(\alpha+\beta)}\frac{E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \\ &= 2isin2\alpha E_{11}^{12}(\mathbf{R_1}) + 2i\frac{E_{11}^{12}(\mathbf{R_1})}{2}sin(\alpha-\beta) - 2\frac{E_{12}^{12}(\mathbf{R_1}\sqrt{3})}{2}cos(\alpha-\beta) \\ &+ 2i\frac{E_{11}^{12}(\mathbf{R_1})}{2}sin(\alpha+\beta) + 2\frac{E_{12}^{12}(\mathbf{R_1}\sqrt{3})}{2}cos(\alpha+\beta) \\ &= -2\sqrt{3}t_2sin\alpha sin\beta + 2it_1(sin2\alpha + sin\alpha \cos\beta) \end{split}$$

Đặt

$$t_0 = E_{11}^{11}(\mathbf{R_1}); \quad t_1 = E_{11}^{12}(\mathbf{R_1}); \quad t_2 = E_{12}^{12}(\mathbf{R_1});$$

$$t_{11} = E_{11}^{22}(\mathbf{R_1}); \quad t_{12} = E_{12}^{22}(\mathbf{R_1}); \quad t_{21} = E_{21}^{22}(\mathbf{R_1}); \quad t_{22} = E_{22}^{22}(\mathbf{R_1});$$

* h22

$$h_{22} = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} E_{22}^{22}(\mathbf{R})$$

$$= e^{i\mathbf{k}\cdot\mathbf{R}_{1}} E_{22}^{22}(\mathbf{R}_{1}) + e^{i\mathbf{k}\cdot\mathbf{R}_{2}} E_{22}^{22}(\mathbf{R}_{2}) + e^{i\mathbf{k}\cdot\mathbf{R}_{3}} E_{22}^{22}(\mathbf{R}_{3})$$

$$+ e^{i\mathbf{k}\cdot\mathbf{R}_{4}} E_{22}^{22}(\mathbf{R}_{4}) + e^{i\mathbf{k}\cdot\mathbf{R}_{5}} E_{22}^{22}(\mathbf{R}_{5}) + e^{i\mathbf{k}\cdot\mathbf{R}_{6}} E_{22}^{22}(\mathbf{R}_{6}) + E_{22}^{22}(\mathbf{0})$$

$$E^{22}(\mathbf{R}_{2}) = E^{22}(\sigma_{\nu}'\mathbf{R}_{1})$$

$$= D^{2}(\sigma_{\nu}') E^{22}(\mathbf{R}_{1}) \left[D^{2}(\sigma_{\nu}') \right]^{\dagger}$$

$$= \left(\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} - \frac{1}{2} \right) \left(E_{11}^{22}(\mathbf{R}_{1}) \quad E_{12}^{22}(\mathbf{R}_{1}) \right) \left(\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} - \frac{\sqrt{3}}{2} \right)$$

$$= \left(\frac{t_{11} - t_{12}\sqrt{3} - t_{21}\sqrt{3} + 3t_{22}}{4} \quad \frac{-t_{11}\sqrt{3} - t_{12} + 3t_{21} + \sqrt{3}t_{22}}{4} \right)$$

$$= \left(\frac{t_{11} - t_{12}\sqrt{3} - t_{21}\sqrt{3} + 3t_{22}}{4} \quad \frac{-t_{11}\sqrt{3} - t_{12} + 3t_{21} + \sqrt{3}t_{22}}{4} \right)$$

$$\Rightarrow E_{22}^{22}(\mathbf{R_2}) = \frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}$$

Tương tự ta có cho:

$$E_{22}^{22}(\mathbf{R_3}) = \frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_4}) = t_{22}$$

$$E_{22}^{22}(\mathbf{R_5}) = \frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_6}) = \frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}$$

Ta được:

$$\begin{split} h_{22} &= e^{i2\alpha}t_{22} + e^{-i2\alpha}t_{22} \\ &+ e^{i(\alpha-\beta)}\left(\frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}\right) + e^{-i(\alpha+\beta)}\left(\frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}\right) \\ &+ e^{i(-\alpha+\beta)}\left(\frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}\right) + e^{i(\alpha+\beta)}\left(\frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}\right) \\ &= 2cos(2\alpha)t_{22} + \frac{1}{4}3t_{11}\left(e^{i\alpha} + e^{-i\alpha}\right)\left(e^{-i\beta} + e^{i\beta}\right) + \frac{1}{4}t_{22}\left(e^{i\alpha} + e^{-i\alpha}\right)\left(e^{-i\beta} + e^{i\beta}\right) \\ &+ c\sqrt{3}(e^{i(\alpha-\beta)} - e^{i(-\alpha+\beta)} + e^{i(-\alpha+\beta)} - e^{i(\alpha+\beta)}) \\ &+ t_{12}\sqrt{3}(e^{i(\alpha-\beta)} - e^{i(-\alpha+\beta)} + e^{i(-\alpha+\beta)} - e^{i(\alpha+\beta)}) \\ &= 2cos(2\alpha)t_{22} + (3t_{11} + t_{22})cos\alpha\cos\beta \end{split}$$

Sử dụng tính Hermite của Hamiltonian h_{22} là số thực, nên $t_{12} = -t_{21}$

*h11

$$\begin{split} H_{11}^{22} &= \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} E_{11}^{22}(\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}_{1}} E_{11}^{22}(\mathbf{R}_{1}) + e^{i\mathbf{k}\cdot\mathbf{R}_{2}} E_{11}^{22}(\mathbf{R}_{2}) + e^{i\mathbf{k}\cdot\mathbf{R}_{3}} E_{11}^{22}(\mathbf{R}_{3}) \\ &+ e^{i\mathbf{k}\cdot\mathbf{R}_{4}} E_{11}^{22}(\mathbf{R}_{4}) + e^{i\mathbf{k}\cdot\mathbf{R}_{5}} E_{11}^{22}(\mathbf{R}_{5}) + e^{i\mathbf{k}\cdot\mathbf{R}_{6}} E_{11}^{22}(\mathbf{R}_{6}) + E_{11}^{22}(\mathbf{0}) \\ &= e^{ik_{x}a} E_{11}^{22}(\mathbf{R}_{1}) + e^{i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{2}) + e^{i\left(-k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{3}) \\ &+ e^{-ik_{x}a} E_{11}^{22}(\mathbf{R}_{4}) + e^{i\left(-k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{5}) + e^{i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{6}) + \epsilon_{2} \\ &= e^{2i\alpha}t_{11} + e^{i(\alpha-\beta)} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4} \\ &+ e^{i(-\alpha-\beta)} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4} + e^{-2i\alpha}t_{11} \\ &+ e^{i(-\alpha+\beta)} \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4} + e^{i(\alpha+\beta)} \frac{t_{11} + \sqrt{3}t_{21} + 3t_{22}}{4} + \epsilon_{2} \\ &= 2t_{11}cos(2\alpha) + (t_{11} + 3t_{22}) cos(\alpha)cos(\beta) + \epsilon_{2} \end{split}$$

Lưu ý ở đây đã sử dụng tính chất Hermite của h_{11} phải là số thực

$$\Rightarrow t_{12} = -t_{21}$$

$$E^{22}(\mathbf{R_2}) = E^{22}(\sigma'_{\nu}\mathbf{R_1}) = D^2(\sigma'_{\nu})E^{22}(\mathbf{R_1})[D^2(\sigma'_{\nu})]^{\dagger}$$

$$= \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \text{Trong d\'o} \begin{pmatrix} a = t_{11} \\ b = t_{12} \\ c = t_{21} \\ d = t_{22} \end{pmatrix}$$

$$\Rightarrow E_{11}^{22}(\mathbf{R_2}) = \frac{a - \sqrt{3}b - \sqrt{3}c + 3d}{4}$$

Tương tự ta tìm được:

$$E_{11}^{22}(\mathbf{R_3}) = \frac{a - \sqrt{3}b - \sqrt{3}c + 3d}{4}$$

$$E_{11}^{22}(\mathbf{R_4}) = a$$

$$E_{11}^{22}(\mathbf{R_5}) = \frac{a + \sqrt{3}b + \sqrt{3}c + 3d}{4}$$

$$E_{11}^{22}(\mathbf{R_6}) = \frac{a + \sqrt{3}b + \sqrt{3}c + 3d}{4}$$

*h12

$$\begin{split} H_{12}^{22} &= \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} E_{12}^{22}(\mathbf{R}_1) + e^{i\mathbf{k}\cdot\mathbf{R}_2} E_{12}^{22}(\mathbf{R}_2) + e^{i\mathbf{k}\cdot\mathbf{R}_3} E_{12}^{22}(\mathbf{R}_3) \\ &= e^{i\mathbf{k}\cdot\mathbf{R}_4} E_{12}^{22}(\mathbf{R}_4) + e^{i\mathbf{k}\cdot\mathbf{R}_5} E_{12}^{22}(\mathbf{R}_5) + e^{i\mathbf{k}\cdot\mathbf{R}_3} E_{12}^{22}(\mathbf{R}_6) + E_{12}^{22}(\mathbf{0}) \\ &= e^{i\mathbf{k}\cdot\mathbf{R}_4} E_{12}^{22}(\mathbf{R}_4) + e^{i(\mathbf{k}\cdot\mathbf{R}_5} E_{12}^{22}(\mathbf{R}_5) + e^{i\mathbf{k}\cdot\mathbf{R}_6} E_{12}^{22}(\mathbf{R}_6) + E_{12}^{22}(\mathbf{0}) \\ &= e^{i\mathbf{k}\cdot\mathbf{R}_4} E_{12}^{22}(\mathbf{R}_4) + e^{i(\mathbf{k}\cdot\mathbf{R}_5 - \mathbf{k}_2 - \mathbf{k}_2 - \mathbf{k}_2 - \mathbf{k}_2}) E_{12}^{22}(\mathbf{R}_2) \\ &+ e^{i(-\mathbf{k}\cdot\mathbf{R}_3 - \mathbf{k}_2 - \mathbf{k}_2 - \mathbf{k}_2}) E_{12}^{22}(\mathbf{R}_3) \\ &+ e^{-i\mathbf{k}\cdot\mathbf{R}_4} E_{12}^{22}(\mathbf{R}_4) + e^{i(-\mathbf{k}\cdot\mathbf{R}_3 - \mathbf{k}_2 - \mathbf{k}_2 - \mathbf{k}_2}) E_{12}^{22}(\mathbf{R}_5) \\ &+ e^{i(\mathbf{k}\cdot\mathbf{R}_3 - \mathbf{k}_2 - \mathbf{k}_2 - \mathbf{k}_2)} E_{12}^{22}(\mathbf{R}_6) \\ &= e^{2i\alpha} t_{12} + e^{i(\alpha - \beta)} - \sqrt{3}t_{11} - t_{12} + 3t_{21} + \sqrt{3}t_{22} \\ &+ e^{i(-\alpha - \beta)} \frac{\sqrt{3}t_{11} + t_{12} - 3t_{21} - \sqrt{3}t_{22}}{4} \\ &- e^{-2i\alpha} t_{12} + e^{i(-\alpha + \beta)} - \sqrt{3}t_{11} + t_{12} - 3t_{21} + \sqrt{3}t_{22} \\ &+ e^{i(\alpha + \beta)} \frac{\sqrt{3}t_{11} - t_{12} + 3t_{21} - \sqrt{3}t_{22}}{4} \\ &= \sqrt{3}(t_{22} - t_{11}) \sin\alpha\sin\beta + 4it_{12}\sin\alpha\cos\alpha - it_{12}\sin\alpha\cos\beta + 3it_{21}\sin\alpha\cos\beta \\ &E^{22}(\mathbf{R}_2) = E^{22}(\sigma_{\nu}'\mathbf{R}_1) = D^2(\sigma_{\nu}')E^{22}(\mathbf{R}_1)[D^2(\sigma_{\nu}')]^{\dagger} \\ &= \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \text{Trong d\'o} \begin{pmatrix} a = t_{11} \\ b = t_{12} \\ c = t_{21} \\ d = t_{22} \end{pmatrix} \\ &\Rightarrow E_{12}^{22}(\mathbf{R}_2) = \frac{-\sqrt{3}a - b + 3c + \sqrt{3}d}{4} \end{split}$$

Tương tự ta tìm được:

$$\begin{split} E_{12}^{22}(\mathbf{R_3}) &= \frac{\sqrt{3}a + b - 3c - \sqrt{3}d}{4} \\ E_{12}^{22}(\mathbf{R_4}) &= -b \\ E_{12}^{22}(\mathbf{R_5}) &= \frac{\sqrt{3}a + b - 3c + \sqrt{3}d}{4} \\ E_{12}^{22}(\mathbf{R_6}) &= \frac{\sqrt{3}a - b + 3c - \sqrt{3}d}{4} \end{split}$$

Chọn hướng từ trường là
$$B = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix}$$
. Lại có $B = \overrightarrow{\nabla} \times \overrightarrow{A} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$
$$= (\frac{\partial}{\partial y} A_z - \frac{\partial}{\partial z} A_y) \overrightarrow{i} + (\frac{\partial}{\partial z} A_x - \frac{\partial}{\partial x} A_z) \overrightarrow{j} + (\frac{\partial}{\partial x} A_y - \frac{\partial}{\partial y} A_x) \overrightarrow{k}$$
Có thể chọn $A = \begin{pmatrix} 0 \\ B \cdot x \\ 0 \end{pmatrix}$

$$H_{\mu\mu'}^{jj'}(\mathbf{k}) = \sum_{\mu\mu'jj'} \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} \mathbf{A}(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{\mu\mu'}^{jj'}(\mathbf{R})$$

* h0

$$h_{0} = H_{11}^{11}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{11}^{11}(\mathbf{R})$$

$$= e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{1}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{1}} E_{11}^{11}(\mathbf{R}_{1}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{2}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{2}} E_{11}^{11}(\mathbf{R}_{2})$$

$$+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{3}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{3}} E_{11}^{11}(\mathbf{R}_{3}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{4}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{4}} E_{11}^{11}(\mathbf{R}_{4})$$

$$+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{5}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{5}} E_{11}^{11}(\mathbf{R}_{5}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{6}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{6}} E_{11}^{11}(\mathbf{R}_{6})$$

Xét $e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'}$

Đặt A = (P(x,y), Q(x,y), R(x,y)) = (0, Bx, 0). Do hướng của từ trường là theo trục y nên khi electron hopping theo hướng $x(m,n) \to x(m+1,n)$ là không có pha vì A không có thành phần theo trục x. Khi electron hopping theo hướng $y(m,n) \to y(m,n+1)$ thì có pha

Phương trình tham số cho x, y:

$$x = ma$$
$$y = y(t) = y_0 + \beta t$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_1} \atop (0,0) \qquad (a,0)$$

Ta có:

$$y = 0$$

$$\Rightarrow \int_{C} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_{B}}^{t_{A}} \left[P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_{0}^{1} \left[0 \frac{dx}{dt} + Bx0 + 0 \frac{dz}{dt} \right] dt = 0$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_2} \atop (0,0) \xrightarrow{(\frac{a}{2}, -\frac{a\sqrt{3}}{2})}$$

Ta có:

$$\begin{split} y &= -\frac{a\sqrt{3}}{2}t \\ &\Rightarrow \int_{C} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_{B}}^{t_{A}} \left[P(x,y) \frac{dx}{dt} + Q(x,y) \frac{dy}{dt} + R(x,y) \frac{dz}{dt} \right] dt \\ &= \int_{0}^{1} \left[0 \frac{dx}{dt} + Bma^{2} \left(-\frac{a\sqrt{3}}{2} \right) + 0 \frac{dz}{dt} \right] dt = -\frac{Bma^{2}\sqrt{3}}{2} \end{split}$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_3} \atop (0,0) \xrightarrow{(-\frac{a}{2}, -\frac{a\sqrt{3}}{2})}$$

Ta có:

$$\begin{split} y &= -\frac{a\sqrt{3}}{2}t \\ &\Rightarrow \int_{C} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_{B}}^{t_{A}} \left[P(x,y) \frac{dx}{dt} + Q(x,y) \frac{dy}{dt} + R(x,y) \frac{dz}{dt} \right] dt \\ &= \int_{0}^{1} \left[0 \frac{dx}{dt} + Bx \left(-\frac{a\sqrt{3}}{2} \right) + 0 \frac{dz}{dt} \right] dt = Bma^{2} \left(-\frac{a\sqrt{3}}{2} \right) \int_{0}^{1} dt \\ &= -\frac{Bma^{2}\sqrt{3}}{2} \end{split}$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_4} \atop (0,0) \longrightarrow (0,-a)$$

Ta có:

$$y = 0$$

$$\Rightarrow \int_{C} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_{B}}^{t_{A}} \left[P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_{0}^{1} \left[0 \frac{dx}{dt} + Bx0 + 0 \frac{dz}{dt} \right] dt = 0$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_5} \atop (0,0) \qquad (-\frac{a}{2},\frac{a\sqrt{3}}{2})$$

Ta có:

$$y = \frac{a\sqrt{3}}{2}t$$

$$\Rightarrow \int_{C} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_{B}}^{t_{A}} \left[P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_{0}^{1} \left[0 \frac{dx}{dt} + Bx \frac{a\sqrt{3}}{2} + 0 \frac{dz}{dt} \right] dt = \frac{Bma^{2}\sqrt{3}}{2}$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_6} \atop \stackrel{(0,0)}{\longrightarrow} (\frac{a}{2},\frac{a\sqrt{3}}{2})$$

Ta có:

$$y = \frac{a\sqrt{3}}{2}t$$

$$\Rightarrow \int_{C} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_{B}}^{t_{A}} \left[P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_{0}^{1} \left[0 \frac{dx}{dt} + Bx \frac{a\sqrt{3}}{2} + 0 \frac{dz}{dt} \right] dt = \frac{Bma^{2}\sqrt{3}}{2}$$

Vậy h_0 có dạng:

$$h_{0} = H_{11}^{11}(\mathbf{k}) = e^{0}e^{i\mathbf{k}\cdot\mathbf{R}_{1}}E_{11}^{11}(\mathbf{R}_{1}) + e^{-\frac{ie}{\hbar}\frac{Bma^{2}\sqrt{3}}{2}}e^{i\mathbf{k}\cdot\mathbf{R}_{2}}E_{11}^{11}(\mathbf{R}_{2})$$

$$+ e^{-\frac{ie}{\hbar}\frac{Bma^{2}\sqrt{3}}{2}}e^{i\mathbf{k}\cdot\mathbf{R}_{3}}E_{11}^{11}(\mathbf{R}_{3}) + e^{0}e^{i\mathbf{k}\cdot\mathbf{R}_{4}}E_{11}^{11}(\mathbf{R}_{4})$$

$$+ e^{\frac{ie}{\hbar}\frac{Bma^{2}\sqrt{3}}{2}}e^{i\mathbf{k}\cdot\mathbf{R}_{5}}E_{11}^{11}(\mathbf{R}_{5}) + e^{\frac{ie}{\hbar}\frac{Bma^{2}\sqrt{3}}{2}}e^{i\mathbf{k}\cdot\mathbf{R}_{6}}E_{11}^{11}(\mathbf{R}_{6}) + \epsilon_{1}$$

$$= e^{ik_{x}a}E_{11}^{11}(\mathbf{R}_{1}) + e^{-ik_{x}a}E_{11}^{11}(\mathbf{R}_{4}) + e^{-\frac{ie}{\hbar}\frac{Bma^{2}\sqrt{3}}{2}}e^{i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{2})$$

$$+ e^{-\frac{ie}{\hbar}\frac{Bma^{2}\sqrt{3}}{2}}e^{i\left(-k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{3}) + e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{2}}e^{i\left(-k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{5})$$

$$+ e^{\frac{ie}{\hbar}\frac{Bma^{2}\sqrt{3}}{2}}e^{i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{6}) + \epsilon_{1}$$

Đặt $k_x \frac{a}{2q} =$, $k_y \frac{a\sqrt{3}}{2} = \beta$, $\frac{e}{\hbar} \frac{Bma^2\sqrt{3}}{2} = 2\pi \frac{\Phi}{\Phi_0} m = \eta$, $\alpha - \beta = \delta$, $\alpha + \beta = \gamma$, với $\Phi_0 = 2\pi \frac{\hbar}{e}$ và $\Phi = Ba^2$ là thông lượng đi qua ô đơn vị. Áp dụng các toán tử quay để biểu diễn \mathbf{R}_n theo \mathbf{R}_1 .

$$E^{11}(\mathbf{R_4}) = E^{11}(\sigma''\mathbf{R_4}) = D^1(\sigma'')E^{11}(\mathbf{R_1}) \left[D^1(\sigma'') \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_2}) = E^{11}(\sigma'\mathbf{R_1}) = D^1(\sigma')E^{11}(\mathbf{R_1}) \left[D^1(\sigma') \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_3}) = E^{11}(C_3^2\mathbf{R_1}) = D^1(C_3^2)E^{11}(\mathbf{R_1}) \left[D^1(C_3^2) \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_5}) = E^{11}(C_3\mathbf{R_1}) = D^1(C_3)E^{11}(\mathbf{R_1}) \left[D^1(C_3) \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_6}) = E^{11}(\sigma\mathbf{R_1}) = D^1(\sigma)E^{11}(\mathbf{R_1}) \left[D^1(\sigma) \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$\Rightarrow h_0 = E_{11}^{11}(\mathbf{R}_1)(e^{ik_x a} + e^{-ik_x a}) + (e^{-i\eta}e^{i\delta} + e^{i\eta}e^{-i\gamma} + e^{i\eta}e^{-i\delta} + e^{-i\eta}e^{i\gamma})E_{11}^{11}(\mathbf{R}_1) + \epsilon_1$$

$$= 2E_{11}^{11}(\mathbf{R}_1)\cos(2\alpha) + E_{11}^{11}(\mathbf{R}_1)\left[(\cos\eta - i\sin\eta)e^{i\delta} + (\cos\eta + i\sin\eta)e^{-i\delta}\right]$$

$$+ E_{11}^{11}\mathbf{R}_1\left[(\cos\eta + i\sin\eta)e^{-i\gamma} + (\cos\eta - i\sin\eta)e^{i\gamma}\right] + \epsilon_1$$

$$= 2E_{11}^{11}(\mathbf{R}_1)\cos(2\alpha) + E_{11}^{11}(\mathbf{R}_1)\left[2\cos\eta\cos\delta - i\sin\eta(2i\sin\delta)\right]$$

$$+ E_{11}^{11}(\mathbf{R}_1)\left[2\cos\eta\cos\gamma - i\sin\eta(2i\sin\gamma)\right] + \epsilon_1$$

$$= 2E_{11}^{11}(\mathbf{R}_1)\cos(2\alpha) + 2E_{11}^{11}(\mathbf{R}_1)\left[\cos\eta(\cos\gamma + \cos\delta) + \sin\eta(\sin\gamma + \sin\delta)\right] + \epsilon_1$$

$$= 2t_0\left[\cos(2\alpha) + 2\cos\eta\cos\alpha\cos\beta + 2\sin\eta\sin\alpha\cos\beta\right] + \epsilon_1$$

* h1

$$\begin{split} h_1 &= H_{11}^{12}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{11}^{12}(\mathbf{R}) \\ &= e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_1} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_1} E_{11}^{12}(\mathbf{R}_1) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_2} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_2} E_{11}^{12}(\mathbf{R}_2) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_3} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_3} E_{11}^{12}(\mathbf{R}_3) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_4} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_4} E_{11}^{12}(\mathbf{R}_4) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_5} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_5} E_{11}^{12}(\mathbf{R}_5) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_6} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_6} E_{11}^{12}(\mathbf{R}_6) \end{split}$$

Trong đó:

$$*E^{12}(\mathbf{R_4}) = E^{12}(\sigma''\mathbf{R_4}) = D^1(\sigma'')E^{12}(\mathbf{R_1}) \left[D^2(\sigma'') \right]^{\dagger}$$

$$= 1 \left(E_{11}^{12}(\mathbf{R_1}) \quad E_{12}^{12}(\mathbf{R_1}) \right) \left(-1 \quad 0 \atop 0 \quad 1 \right)$$

$$= \left(-E_{11}^{12}(\mathbf{R_1}) \quad E_{12}^{12}(\mathbf{R_1}) \right)$$

$$\Rightarrow E_{11}^{12}(\mathbf{R_4}) = -E_{11}^{12}(\mathbf{R_1}), \quad E_{12}^{12}(\mathbf{R_4}) = E_{11}^{12}(\mathbf{R_1})$$

$$*E^{12}(\mathbf{R_2}) = E^{12}(\sigma'\mathbf{R_2}) = D^1(\sigma')E^{12}(\mathbf{R_1}) \left[D^2(\sigma') \right]^{\dagger}$$

$$= 1 \left(E_{11}^{12}(\mathbf{R_1}) \quad E_{12}^{12}(\mathbf{R_1}) \right) \left(\frac{1}{2} \quad -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} \quad -\frac{1}{2} \right)$$

$$= \left(\frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \right)$$

$$\Rightarrow E_{11}^{12}(\mathbf{R_2}) = \frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2}$$

$$E_{12}^{12}(\mathbf{R_2}) = \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2}$$

Một cách tương tự ta có cho:

$$E_{11}^{12}(\mathbf{R_3}) = \frac{-E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_4}) = -E_{11}^{12}(\mathbf{R_1})$$

$$E_{11}^{12}(\mathbf{R_5}) = \frac{-E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_6}) = \frac{E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2}$$

$$h_{1} = E_{11}^{12}(\mathbf{R}_{1}) \left(e^{ik_{x}a} - e^{-ik_{x}a} \right) + e^{-i\eta}e^{i\delta} \frac{E_{11}^{12}(\mathbf{R}_{1}) - \sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2} + e^{i\eta}e^{-i\gamma} \frac{-E_{11}^{12}(\mathbf{R}_{1}) + \sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2} + e^{i\eta}e^{-i\delta} \frac{-E_{11}^{12}(\mathbf{R}_{1}) - \sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2} + e^{-i\eta}e^{i\gamma} \frac{E_{11}^{12}(\mathbf{R}_{1}) + \sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2} + e^{-i\eta}e^{i\gamma} \frac{E_{11}^{12}(\mathbf{R}_{1}) + \sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2}$$

$$= E_{11}^{12}(\mathbf{R}_{1}) \left(e^{ik_{x}a} - e^{-ik_{x}a} \right) + \frac{E_{11}^{12}(\mathbf{R}_{1})}{2} \left(e^{-i\eta}e^{i\delta} - e^{i\eta}e^{-i\gamma} - e^{i\eta}e^{-i\delta} + e^{-i\eta}e^{i\gamma} \right) + \frac{\sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2} \left(-e^{-i\eta}e^{i\delta} + e^{i\eta}e^{-i\gamma} - e^{i\eta}e^{-i\delta} + e^{-i\eta}e^{i\gamma} \right)$$

$$= E_{11}^{12}(\mathbf{R}_{1}) \left(2i\sin 2\alpha \right) + \frac{E_{11}^{12}(\mathbf{R}_{1})}{2} 4i(\cos \eta \sin \alpha \cos \beta - \sin \eta \cos \alpha \cos \beta) + \frac{\sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2} 4(-\cos \eta \sin \alpha \sin \beta + \sin \eta \sin \alpha \cos \beta)$$

$$\Rightarrow h_{1} = 2it_{1}(\sin 2\alpha + \cos \eta \sin \alpha \cos \beta - \sin \eta \cos \alpha \cos \beta) - 2\sqrt{3}t_{2} \left[\cos \eta \sin \alpha \sin \beta - \sin \eta \cos \alpha \sin \beta \right]$$

* h2

$$\begin{split} h_2 &= H_{12}^{12}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{12}^{12}(\mathbf{R}) \\ &= e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_1} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_1} E_{12}^{12}(\mathbf{R}_1) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_2} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_2} E_{12}^{12}(\mathbf{R}_2) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_3} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_3} E_{12}^{12}(\mathbf{R}_3) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_4} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_4} E_{12}^{12}(\mathbf{R}_4) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_5} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_5} E_{12}^{12}(\mathbf{R}_5) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_6} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_6} E_{12}^{12}(\mathbf{R}_6) \end{split}$$

Trong đó:

$$E_{12}^{12}(\mathbf{R_2}) = \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2}$$

$$E_{12}^{12}(\mathbf{R_3}) = \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{12}^{12}(\mathbf{R_4}) = E_{11}^{12}(\mathbf{R_1})$$

$$E_{12}^{12}(\mathbf{R_5}) = \frac{\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{12}^{12}(\mathbf{R_6}) = \frac{\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2}$$

Thế vô:

$$\begin{split} h_2 = & E_{12}^{12}(\mathbf{R_1}) \left(e^{ik_x a} + e^{-ik_x a} \right) + e^{-i\eta} e^{i\delta} \frac{-\sqrt{3} E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \\ & + e^{i\eta} e^{-i\gamma} \frac{-\sqrt{3} E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} + e^{i\eta} e^{-i\delta} \frac{\sqrt{3} E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \\ & + e^{-i\eta} e^{i\gamma} \frac{\sqrt{3} E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \\ = & 2 E_{12}^{12}(\mathbf{R_1}) \cos 2\alpha + \frac{\sqrt{3} E_{11}^{12}(\mathbf{R_1})}{2} \left(-e^{-i\eta} e^{i\delta} - e^{i\eta} e^{-i\gamma} + e^{i\eta} e^{-i\delta} + e^{-i\eta} e^{i\gamma} \right) \\ & + \frac{E_{12}^{12}(\mathbf{R_1})}{2} \left(-e^{-i\eta} e^{i\delta} - e^{i\eta} e^{-i\gamma} - e^{i\eta} e^{-i\delta} - e^{-i\eta} e^{i\gamma} \right) \\ = & 2 t_2 \cos 2\alpha + 2i\sqrt{3} t_1 (\cos \eta \cos \alpha \sin \beta + \sin \eta \sin \alpha \cos \beta) \\ & - 2 t_2 (\cos \eta \cos \alpha \cos \beta + \sin \eta \sin \alpha \sin \beta) \\ h_2 = & 2 t_2 (\cos 2\alpha - \cos \eta \cos \alpha \cos \beta - \sin \eta \sin \alpha \cos \beta) \\ & + 2i\sqrt{3} t_1 (\cos \eta \cos \alpha \sin \beta + \sin \eta \sin \alpha \sin \beta) \end{split}$$

Các ma trận $E^{22}(\mathbf{R})$

$$*E^{22}(\mathbf{R_2}) = E^{22}(\sigma'_{\nu}\mathbf{R_1})$$

$$= D^2(\sigma'_{\nu})E^{22}(\mathbf{R_1}) \left[D^2(\sigma'_{\nu}) \right]^{\dagger}$$

$$= \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} E_{11}^{22}(\mathbf{R_1}) & E_{12}^{22}(\mathbf{R_1}) \\ E_{21}^{22}(\mathbf{R_1}) & E_{22}^{22}(\mathbf{R_1}) \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4} & \frac{-\sqrt{3}t_{11} - t_{12} + 3t_{21} + \sqrt{3}t_{22}}{4} \\ -\frac{\sqrt{3}t_{11} + 3t_{12} - t_{21} + \sqrt{3}t_{22}}{4} & \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4} \end{pmatrix}$$

$$\Rightarrow E_{11}^{22}(\mathbf{R_2}) = \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$E_{12}^{22}(\mathbf{R_2}) = \frac{-\sqrt{3}t_{11} - t_{12} + 3t_{21} + \sqrt{3}t_{22}}{4}$$

$$E_{21}^{22}(\mathbf{R_2}) = \frac{-\sqrt{3}t_{11} + 3t_{12} - t_{21} + \sqrt{3}t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_2}) = \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4}$$

$$*E^{22}(\mathbf{R_3}) = E^{22}(C_3^2 \mathbf{R_1})$$

$$= D^2(C_3^2)E^{22}(\mathbf{R_1}) \left[D^2(C_3^2) \right]^{\dagger}$$

$$= \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} E_{11}^{22}(\mathbf{R_1}) & E_{12}^{22}(\mathbf{R_1}) \\ E_{21}^{22}(\mathbf{R_1}) & E_{22}^{22}(\mathbf{R_1}) \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4} & \frac{\sqrt{3}t_{11} + t_{12} - 3t_{21} - \sqrt{3}t_{22}}{4} \\ \frac{\sqrt{3}t_{11} - 3t_{12} + t_{21} - \sqrt{3}t_{22}}{4} & \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4} \end{pmatrix}$$

$$\Rightarrow E_{11}^{22}(\mathbf{R_3}) = \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$E_{21}^{22}(\mathbf{R_3}) = \frac{\sqrt{3}t_{11} + t_{12} - 3t_{21} - \sqrt{3}t_{22}}{4}$$

$$E_{21}^{22}(\mathbf{R_3}) = \frac{\sqrt{3}t_{11} - 3t_{12} + t_{21} - \sqrt{3}t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_3}) = \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4}$$

$$*E^{22}(\mathbf{R_5}) = E^{22}(C_3\mathbf{R_1})$$

$$= D^2(C_3)E^{22}(\mathbf{R_1}) \left[D^2(C_3) \right]^{\dagger}$$

$$= \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} E_{11}^{22}(\mathbf{R_1}) & E_{12}^{22}(\mathbf{R_1}) \\ E_{21}^{22}(\mathbf{R_1}) & E_{22}^{22}(\mathbf{R_1}) \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4} & \frac{-\sqrt{3}t_{11} + t_{12} - 3t_{21} + \sqrt{3}t_{22}}{4} \\ -\frac{\sqrt{3}t_{11} - 3t_{12} + t_{21} + \sqrt{3}t_{22}}{4} & \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4} \end{pmatrix}$$

$$\Rightarrow E_{11}^{22}(\mathbf{R_5}) = \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$E_{21}^{22}(\mathbf{R_5}) = \frac{-\sqrt{3}t_{11} + t_{12} - 3t_{21} + \sqrt{3}t_{22}}{4}$$

$$E_{21}^{22}(\mathbf{R_5}) = \frac{-\sqrt{3}t_{11} - 3t_{12} + t_{21} + \sqrt{3}t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_5}) = \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4}$$

$$*E^{22}(\mathbf{R_4}) = E^{22}(\sigma''_{\nu}\mathbf{R_1})$$

$$= D^2(\sigma''_{\nu})E^{22}(\mathbf{R_1}) \left[D^2(\sigma''_{n}u) \right]^{\dagger}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} E^{22}_{11}(\mathbf{R_1}) & E^{22}_{12}(\mathbf{R_1}) \\ E^{22}_{21}(\mathbf{R_1}) & E^{22}_{22}(\mathbf{R_1}) \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} t_{11} & -t_{12} \\ -t_{21} & t_{22} \end{pmatrix}$$

$$\Rightarrow E^{22}_{11}(\mathbf{R_4}) = t_{11}$$

$$E^{22}_{12}(\mathbf{R_4}) = -t_{12}$$

$$E^{22}_{21}(\mathbf{R_4}) = -t_{21}$$

$$E^{22}_{22}(\mathbf{R_4}) = t_{22}$$

$$*E^{22}(\mathbf{R_{6}}) = E^{22}(\sigma_{\nu}\mathbf{R_{1}})$$

$$= D^{2}(\sigma_{\nu})E^{22}(\mathbf{R_{1}}) \left[D^{2}(\sigma_{\nu})\right]^{\dagger}$$

$$= \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} E_{11}^{22}(\mathbf{R_{1}}) & E_{12}^{22}(\mathbf{R_{1}}) \\ E_{21}^{22}(\mathbf{R_{1}}) & E_{22}^{22}(\mathbf{R_{1}}) \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4} & \frac{-\sqrt{3}t_{11} - t_{12} + 3t_{21} - \sqrt{3}t_{22}}{4} \\ \frac{\sqrt{3}t_{11} + 3t_{12} - t_{21} - \sqrt{3}t_{22}}{4} & \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4} \end{pmatrix}$$

$$\Rightarrow E_{12}^{22}(\mathbf{R_{6}}) = \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$E_{21}^{22}(\mathbf{R_{6}}) = \frac{\sqrt{3}t_{11} - t_{12} + 3t_{21} - \sqrt{3}t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_{6}}) = \frac{\sqrt{3}t_{11} + 3t_{12} - t_{21} - \sqrt{3}t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_{6}}) = \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4}$$

* h11

$$\begin{split} h_{11} &= H_{11}^{22}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{11}^{22}(\mathbf{R}) \\ &= e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{1}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{1}} E_{11}^{22}(\mathbf{R}_{1}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{2}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{2}} E_{11}^{22}(\mathbf{R}_{2}) \\ &+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{3}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{3}} E_{11}^{22}(\mathbf{R}_{3}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{4}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{4}} E_{11}^{22}(\mathbf{R}_{4}) \\ &+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{5}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{5}} E_{11}^{22}(\mathbf{R}_{5}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{6}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{6}} E_{11}^{22}(\mathbf{R}_{6}) \end{split}$$

Trong đó:

$$E_{11}^{22}(\mathbf{R_2}) = \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$E_{11}^{22}(\mathbf{R_3}) = \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$E_{11}^{22}(\mathbf{R_4}) = t_{11}$$

$$E_{11}^{22}(\mathbf{R_5}) = \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$E_{11}^{22}(\mathbf{R_6}) = \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4}$$

Thế vô:

$$h_{11} = t_{11} \left(e^{ik_x a} + e^{-ik_x a} \right) + e^{-i\eta} e^{i\delta} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$+ e^{i\eta} e^{-i\gamma} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + 3t_{22}}{4} + e^{i\eta} e^{-i\delta} \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4}$$

$$+ e^{-i\eta} e^{i\gamma} \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + 3t_{22}}{4}$$

Do tính Hermite của Hamiltonian, ta có thể đưa $t_{12}=-t_{21}$, nên h_{11} đơn giản thành:

$$h_{11} = e^{-i\eta} e^{i\delta} \frac{t_{11} + 3t_{22}}{4} + e^{i\eta} e^{-i\gamma} \frac{t_{11} + 3t_{22}}{4} + e^{i\eta} e^{-i\delta} \frac{t_{11} + 3t_{22}}{4} + e^{-i\eta} e^{i\gamma} \frac{t_{11} + 3t_{22}}{4}$$

$$+ t_{11} \left(e^{ik_x a} + e^{-ik_x a} \right) + \epsilon_2$$

$$= \left(e^{-i\eta} e^{i\delta} + e^{i\eta} e^{-i\gamma} + e^{i\eta} e^{-i\delta} + e^{-i\eta} e^{i\gamma} \right) \frac{t_{11} + 3t_{22}}{4} + t_{11} \left(e^{ik_x a} + e^{-ik_x a} \right) + \epsilon_2$$

$$= \frac{t_{11} + 3t_{22}}{2} \left[2\cos\eta\cos\alpha\cos\beta + 2\sin\eta\sin\alpha\cos\beta \right] + 2t_{11}\cos2\alpha + \epsilon_2$$

$$\Rightarrow h_{11} = \left(t_{11} + 3t_{22} \right) \left[\cos\eta\cos\alpha\cos\beta + \sin\eta\sin\alpha\cos\beta \right] + 2t_{11}\cos2\alpha + \epsilon_2$$

* h22

$$\begin{split} h_{22} &= H_{22}^{22}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{22}^{22}(\mathbf{R}) + \epsilon_{2} \\ &= e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{1}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{1}} E_{22}^{22}(\mathbf{R}_{1}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{2}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{2}} E_{22}^{22}(\mathbf{R}_{2}) \\ &+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{3}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{3}} E_{22}^{22}(\mathbf{R}_{3}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{4}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{4}} E_{22}^{22}(\mathbf{R}_{4}) \\ &+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{5}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{5}} E_{22}^{22}(\mathbf{R}_{5}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{6}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{6}} E_{22}^{22}(\mathbf{R}_{6}) + \epsilon_{2} \end{split}$$

Trong đó:

$$E_{22}^{22}(\mathbf{R_2}) = \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_3}) = \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_4}) = t_{22}$$

$$E_{22}^{22}(\mathbf{R_5}) = \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R_6}) = \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4}$$

$$\begin{split} h_{22} = & e^{-i\eta} e^{i\delta} \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4} + e^{i\eta} e^{-i\gamma} \frac{3t_{11} + \sqrt{3}t_{12} + \sqrt{3}t_{21} + t_{22}}{4} \\ & + e^{i\eta} e^{-i\delta} \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4} + e^{-i\eta} e^{i\gamma} \frac{3t_{11} - \sqrt{3}t_{12} - \sqrt{3}t_{21} + t_{22}}{4} \\ & + t_{22} \left(e^{ik_x a} + e^{-ik_x a} \right) + \epsilon_2 \\ = & e^{-i\eta} e^{i\delta} \frac{3t_{11} + t_{22}}{4} + e^{i\eta} e^{-i\gamma} \frac{3t_{11} + t_{22}}{4} + e^{i\eta} e^{-i\delta} \frac{3t_{11} + t_{22}}{4} + e^{-i\eta} e^{i\gamma} \frac{3t_{11} + t_{22}}{4} \\ & + t_{22} \left(e^{ik_x a} + e^{-ik_x a} \right) + \epsilon_2 \\ = & \left(e^{-i\eta} e^{i\delta} + e^{i\eta} e^{-i\gamma} + e^{i\eta} e^{-i\delta} + e^{-i\eta} e^{i\gamma} \right) \frac{3t_{11} + t_{22}}{4} + t_{11} \left(e^{ik_x a} + e^{-ik_x a} \right) + \epsilon_2 \\ = & \frac{3t_{11} + t_{22}}{2} \left[2\cos\eta\cos\alpha\cos\beta + 2\sin\eta\sin\alpha\cos\beta \right] + 2t_{22}\cos2\alpha + \epsilon_2 \\ \Rightarrow & h_{22} = \left(3t_{11} + t_{22} \right) \left[\cos\eta\cos\alpha\cos\beta + \sin\eta\sin\alpha\cos\beta \right] + 2t_{22}\cos2\alpha + \epsilon_2 \end{split}$$

* h12

$$\begin{split} h_{12} &= H_{12}^{22}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{12}^{22}(\mathbf{R}) + \epsilon_{2} \\ &= e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{1}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{1}} E_{12}^{22}(\mathbf{R}_{1}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{2}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{2}} E_{12}^{22}(\mathbf{R}_{2}) \\ &+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{3}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{3}} E_{12}^{22}(\mathbf{R}_{3}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{4}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{4}} E_{12}^{22}(\mathbf{R}_{4}) \\ &+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{5}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{5}} E_{12}^{22}(\mathbf{R}_{5}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{6}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{6}} E_{12}^{22}(\mathbf{R}_{6}) + \epsilon_{2} \end{split}$$

Trong đó:

$$E_{12}^{22}(\mathbf{R_2}) = \frac{-\sqrt{3}t_{11} - t_{12} + 3t_{21} + \sqrt{3}t_{22}}{4}$$

$$E_{12}^{22}(\mathbf{R_3}) = \frac{\sqrt{3}t_{11} + t_{12} - 3t_{21} - \sqrt{3}t_{22}}{4}$$

$$E_{12}^{22}(\mathbf{R_4}) = -t_{12}$$

$$E_{12}^{22}(\mathbf{R_5}) = \frac{-\sqrt{3}t_{11} + t_{12} - 3t_{21} + \sqrt{3}t_{22}}{4}$$

$$E_{12}^{22}(\mathbf{R_6}) = \frac{\sqrt{3}t_{11} - t_{12} + 3t_{21} - \sqrt{3}t_{22}}{4}$$

Thế vô:

$$\begin{split} h_{12} &= e^{-i\eta} e^{i\delta} \frac{-\sqrt{3}t_{11} - t_{12} + 3t_{21} + \sqrt{3}t_{22}}{4} + e^{i\eta} e^{-i\gamma} \frac{\sqrt{3}t_{11} + t_{12} - 3t_{21} - \sqrt{3}t_{22}}{4} \\ &\quad + e^{i\eta} e^{-i\delta} \frac{-\sqrt{3}t_{11} + t_{12} - 3t_{21} + \sqrt{3}t_{22}}{4} + e^{-i\eta} e^{i\gamma} \frac{\sqrt{3}t_{11} - t_{12} + 3t_{21} - \sqrt{3}t_{22}}{4} \\ &\quad + t_{12} \left(e^{ik_x a} - e^{-ik_x a} \right) \\ &= e^{-i\eta} e^{i\delta} \frac{-\sqrt{3}t_{11} - 4t_{12} + \sqrt{3}t_{22}}{4} + e^{i\eta} e^{-i\gamma} \frac{\sqrt{3}t_{11} + 4t_{12} - \sqrt{3}t_{22}}{4} \\ &\quad + e^{i\eta} e^{-i\delta} \frac{-\sqrt{3}t_{11} + 4t_{12} + \sqrt{3}t_{22}}{4} + e^{-i\eta} e^{i\gamma} \frac{\sqrt{3}t_{11} - 4t_{12} - \sqrt{3}t_{22}}{4} + t_{12} \left(e^{ik_x a} - e^{-ik_x a} \right) \\ &= \frac{\sqrt{3}t_{11}}{4} \left(-e^{-i\eta} e^{i\delta} + e^{i\eta} e^{-i\gamma} - e^{i\eta} e^{-i\delta} + e^{-i\eta} e^{i\gamma} \right) + t_{12} \left(-e^{-i\eta} e^{i\delta} + e^{i\eta} e^{-i\delta} - e^{-i\eta} e^{i\gamma} \right) \\ &\quad + \frac{\sqrt{3}t_{22}}{4} \left(e^{-i\eta} e^{i\delta} - e^{i\eta} e^{-i\gamma} + e^{i\eta} e^{-i\delta} - e^{-i\eta} e^{i\gamma} \right) + t_{12} \left(e^{ik_x a} - e^{-ik_x a} \right) \\ &= 2it_{12} \sin 2\alpha + \frac{\sqrt{3}t_{11}}{4} 4 \left[-\cos \eta \sin \alpha \sin \beta + \sin \eta \cos \alpha \sin \beta \right] \\ &\quad - 4it_{12} (\cos \eta \sin \alpha \cos \beta - \sin \eta \cos \alpha \cos \beta) + \sqrt{3}t_{22} \left[\cos \eta \sin \alpha \sin \beta - \sin \eta \cos \alpha \sin \beta \right] \\ &\Rightarrow h_{12} = 4it_{12} (\sin \alpha \cos \alpha - \cos \eta \sin \alpha \cos \beta + \sin \eta \cos \alpha \cos \beta) \\ &\quad + \frac{\sqrt{3}(t_{22} - t_{11})}{4} 4 \left[\cos \eta \sin \alpha \sin \beta - \sin \eta \cos \alpha \sin \beta \right] \end{split}$$

Vậy Hamiltonian:

$$H_{TB}^{NN}(\mathbf{k}) = \begin{pmatrix} h_0 & h_1 & h_2 \\ h_1^* & h_{11} & h_{12} \\ h_2^* & h_{12}^* & h_{22} \end{pmatrix}$$
 (1)

Với:

$$h_0 = 2t_0 \left[\cos(2\alpha) + 2\cos\eta\cos\alpha\cos\beta + 2\sin\eta\sin\alpha\cos\beta \right] + \epsilon_1, \tag{2}$$

 $h_1 = 2it_1(\sin 2\alpha + \cos \eta \sin \alpha \cos \beta - \sin \eta \cos \alpha \cos \beta)$

$$-2\sqrt{3}t_2\left(\cos\eta\sin\alpha\sin\beta - \sin\eta\cos\alpha\sin\beta\right),\tag{3}$$

$$h_2 = 2t_2(\cos 2\alpha - \cos \eta \cos \alpha \cos \beta - \sin \eta \sin \alpha \cos \beta) \tag{4}$$

$$+2i\sqrt{3}t_1(\cos\eta\cos\alpha\sin\beta+\sin\eta\sin\alpha\sin\beta),\tag{5}$$

$$h_{11} = (t_{11} + 3t_{22}) \left[\cos \eta \cos \alpha \cos \beta + \sin \eta \sin \alpha \cos \beta\right] + 2t_{11} \cos 2\alpha + \epsilon_2, \tag{6}$$

$$h_{22} = (3t_{11} + t_{22}) \left[\cos \eta \cos \alpha \cos \beta + \sin \eta \sin \alpha \cos \beta\right] + 2t_{22} \cos 2\alpha + \epsilon_2, \tag{7}$$

 $h_{12} = 4it_{12}(\sin\alpha\cos\alpha - \cos\eta\sin\alpha\cos\beta + \sin\eta\cos\alpha\cos\beta)$

$$+\sqrt{3}(t_{22}-t_{11})\left[\cos\eta\sin\alpha\sin\beta-\sin\eta\cos\alpha\sin\beta\right],\tag{8}$$

$$(\alpha, \beta) = \left(\frac{1}{2q}k_x a, \frac{\sqrt{3}}{2}k_y a\right),$$

$$\eta = 2\pi \frac{\Phi}{\Phi_0} m = 2\pi \frac{p}{q}m,$$
(9)

$$t_0 = E_{11}^{11}(\mathbf{R_1}); \quad t_1 = E_{11}^{12}(\mathbf{R_1}); \quad t_2 = E_{12}^{12}(\mathbf{R_1});$$

$$t_{11} = E_{11}^{22}(\mathbf{R_1}); \quad t_{12} = E_{12}^{22}(\mathbf{R_1}); \quad t_{22} = E_{22}^{22}(\mathbf{R_1});$$
(10)

* Phương trình Harper cho Hamiltonian 3 bands:

Phương trình Schrödinger độc lập thời gian cho Hamiltonian 3 bands

content...

* Hamiltonian Zeeman:

Chon các cơ sở:

$$|\phi_1^1,\uparrow\rangle = |\phi_1^1\rangle \,\chi_+ \quad , \quad |\phi_1^2,\uparrow\rangle = |\phi_1^2\rangle \,\chi_+ \quad , \quad |\phi_2^2,\uparrow\rangle = |\phi_2^2\rangle \,\chi_+$$

$$|\phi_1^1,\downarrow\rangle = |\phi_1^1\rangle \,\chi_- \quad , \quad |\phi_1^2,\downarrow\rangle = |\phi_1^2\rangle \,\chi_- \quad , \quad |\phi_2^2,\downarrow\rangle = |\phi_2^2\rangle \,\chi_-$$

$$\chi_+ = \begin{pmatrix} 1\\0 \end{pmatrix} \quad , \quad \chi_- = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Trong đó $|\phi_{\mu}^{j}\rangle$ là các hàm sóng không gian, χ là các hàm spinor.

Do các hàm Spinor χ chỉ tác động lên spin σ_z và không tác động lên Hamiltonian nằm trong không gian Hilbert. Đồng thời Hamiltonian (1) không có sự tách spin nên ta có thể viết thành:

$$H = H_{space} + H_{1/2} = \mathbb{1}_{2 \times 2} \otimes H_{TB}^{NN} + H_{Zeeman}$$
 (11)

Nhờ vào tính trực giao của các hàm cơ sở $|\phi_{\mu}^{j}\rangle$ và spinor χ , ta tính được:

$$*H_{11}^{11(z)}\uparrow$$

$$\begin{split} H_{11}^{11(z)} \uparrow &= -\sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}), \uparrow \middle| \boldsymbol{\mu} \cdot \mathbf{B} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}), \uparrow \right\rangle \\ &= -\sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}), \uparrow \middle| \gamma \mathbf{B} \cdot \mathbf{S} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}), \uparrow \right\rangle \\ &= -\gamma B \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}), \uparrow \middle| S_{z} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}), \uparrow \right\rangle \\ &= -\gamma B \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}) \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}) \right\rangle \left\langle \uparrow \middle| S_{z} \middle| \uparrow \right\rangle \\ &= \frac{-\gamma B \hbar}{2} \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} \delta_{11} 1 \\ &= \frac{-\gamma B \hbar}{2} (e^{0} + e^{-\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}} + e^{\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}} + e^{0} + e^{\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}} + e^{-\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}}) \\ &= \frac{-\gamma B \hbar}{2} (2 + 4 \cos \eta) = -\gamma B \hbar (1 + 2 \cos \eta) \end{split}$$

$$*H_{11}^{22(z)} \uparrow$$

$$\begin{split} H_{11}^{22(z)}\uparrow &= -\sum_{\mathbf{R}}e^{\frac{ie}{\hbar}\int_{0}^{\mathbf{R}}\mathbf{A}(\mathbf{r}')\cdot d\mathbf{r}'}e^{i\mathbf{k}\cdot\mathbf{R}}\left\langle \phi_{1}^{2}\left(\mathbf{r}\right),\uparrow\right|\boldsymbol{\mu}\cdot\mathbf{B}\left|\phi_{1}^{2}\left(\mathbf{r}-\mathbf{R}\right),\uparrow\right\rangle\\ &= \frac{-\gamma B\hbar}{2}(e^{0}+e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{0}+e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}})\\ &= \frac{-\gamma B\hbar}{2}(2+4\cos\eta) = -\gamma B\hbar(1+2\cos\eta) \end{split}$$

 $*H_{22}^{22(z)}\uparrow$

$$\begin{split} H_{22}^{22(z)}\uparrow &= -\sum_{\mathbf{R}}e^{\frac{ie}{\hbar}\int_{0}^{\mathbf{R}}\mathbf{A}(\mathbf{r}')\cdot d\mathbf{r}'}e^{i\mathbf{k}\cdot\mathbf{R}}\left\langle\phi_{2}^{2}\left(\mathbf{r}\right),\uparrow\right|\boldsymbol{\mu}\cdot\mathbf{B}\left|\phi_{2}^{2}\left(\mathbf{r}-\mathbf{R}\right),\uparrow\right\rangle\\ &= \frac{-\gamma B\hbar}{2}(e^{0}+e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{0}+e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}})\\ &= \frac{-\gamma B\hbar}{2}(2+4\cos\eta) = -\gamma B\hbar(1+2\cos\eta). \end{split}$$

 $*H_{11}^{11(z)}\downarrow$

$$H_{11}^{11(z)} \downarrow = -\sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}), \downarrow \middle| \boldsymbol{\mu} \cdot \mathbf{B} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}), \downarrow \right\rangle$$

$$= -\sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}), \downarrow \middle| \gamma \mathbf{B} \cdot \mathbf{S} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}), \downarrow \right\rangle$$

$$s = -\gamma B \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}), \downarrow \middle| S_{z} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}), \downarrow \right\rangle$$

$$= -\gamma B \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{1}(\mathbf{r}) \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}) \right\rangle \left\langle \downarrow \middle| S_{z} \middle| \downarrow \right\rangle$$

$$= \frac{-\gamma B \hbar}{2} \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} \delta_{11} 1$$

$$= \frac{-\gamma B \hbar}{2} (e^{0} + e^{-\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}} + e^{\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}} + e^{0} + e^{\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}} + e^{-\frac{ie}{\hbar} \frac{Ba^{2}\sqrt{3}}{8}})$$

$$= \frac{-\gamma B \hbar}{2} (2 + 4 \cos \eta) = \gamma B \hbar (1 + 2 \cos \eta)$$

 $*H_{11}^{22(z)}\downarrow$

$$\begin{split} H_{11}^{22(z)} \downarrow &= -\sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} \left\langle \phi_{1}^{2}(\mathbf{r}), \downarrow \middle| \boldsymbol{\mu} \cdot \mathbf{B} \middle| \phi_{1}^{2}(\mathbf{r} - \mathbf{R}), \downarrow \right\rangle \\ &= \frac{-\gamma B \hbar}{2} (e^{0} + e^{-\frac{ie}{\hbar} \frac{Ba^{2} \sqrt{3}}{8}} + e^{\frac{ie}{\hbar} \frac{Ba^{2} \sqrt{3}}{8}} + e^{0} + e^{\frac{ie}{\hbar} \frac{Ba^{2} \sqrt{3}}{8}} + e^{-\frac{ie}{\hbar} \frac{Ba^{2} \sqrt{3}}{8}}) \\ &= \frac{-\gamma B \hbar}{2} (2 + 4 \cos \eta) = \gamma B \hbar (1 + 2 \cos \eta) \end{split}$$

 $*H_{22}^{22(z)}\downarrow$

$$\begin{split} H_{22}^{22(z)}\downarrow &= -\sum_{\mathbf{R}}e^{\frac{ie}{\hbar}\int_{0}^{\mathbf{R}}\mathbf{A}(\mathbf{r}')\cdot d\mathbf{r}'}e^{i\mathbf{k}\cdot\mathbf{R}}\left\langle \phi_{2}^{2}\left(\mathbf{r}\right),\downarrow\right|\boldsymbol{\mu}\cdot\mathbf{B}\left|\phi_{2}^{2}\left(\mathbf{r}-\mathbf{R}\right),\downarrow\right\rangle\\ &= \frac{-\gamma B\hbar}{2}(e^{0}+e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{0}+e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}+e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}})\\ &= \frac{-\gamma B\hbar}{2}(2+4\cos\eta)=\gamma B\hbar(1+2\cos\eta) \end{split}$$

với $\gamma = -\frac{e}{m}$

Hamiltonian cho thành phần Zeeman:

$$H_{Zeeman} = rac{e\hbar B}{m}(1+\cos\eta) egin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Ta có thể xây dựng Hamiltonian thành:

$$H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bigotimes \begin{pmatrix} h_0 & h_1 & h_2 \\ h_1^* & h_{11} & h_{12} \\ h_2^* & h_{12}^* & h_{22} \end{pmatrix} + H_{Zeeman}$$

$$= \begin{pmatrix} h_0 & h_1 & h_2 & 0 & 0 & 0 \\ h_1^* & h_{11} & h_{12} & 0 & 0 & 0 \\ h_2^* & h_{12}^* & h_{22} & 0 & 0 & 0 \\ 0 & 0 & 0 & h_0 & h_1 & h_2 \\ 0 & 0 & 0 & h_1^* & h_{11} & h_{12} \\ 0 & 0 & 0 & h_2^* & h_{12}^* & h_{22} \end{pmatrix} + \frac{e\hbar B}{m} (1 + \cos \eta) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

Two bands $k \cdot p$ model

g_n	x'	y'	z'	z'^2	x'y'	$\frac{\frac{1}{2}(x'^2 - y'^2)}{}$
E	x	y	z	z^2	xy	$\frac{1}{2}(x^2-y^2)$
					$-\frac{1}{2}xy + \frac{\sqrt{3}}{4}(x^2 + y^2)$	$-\frac{\sqrt{3}}{2}xy - \frac{1}{4}(x^2 - y^2)$
$C_3(\frac{-4\pi}{3})$	$-\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	z	z^2	$-\frac{1}{2}xy - \frac{\sqrt{3}}{4}(x^2 + y^2)$	$\frac{\sqrt{3}}{2}xy - \frac{1}{4}(x^2 - y^2)$
$\sigma_{ u}$	-x	y	z	z^2	-xy	$\frac{1}{2}(x^2 - y^2)$
$\sigma_{ u}'$	$\frac{1}{2}x - \frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	z^2	$\frac{1}{2}xy - \frac{\sqrt{3}}{4}(x^2 + y^2)$	$-\frac{\sqrt{3}}{2}xy - \frac{1}{4}(x^2 - y^2)$
$\sigma''_{ u}$	$\frac{1}{2}x + \frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	z^2	$\frac{1}{2}xy + \frac{\sqrt{3}}{4}(x^2 + y^2)$	$\frac{\sqrt{3}}{2}xy - \frac{1}{4}(x^2 - y^2)$

Nếu bỏ qua tương tác Coulomb giữa các điện tử, Hamiltonian của hệ nhiều điện tử đơn giản là tổng các Hamiltonian một điện tử:

$$H = \sum_{i} H_{1e}(\mathbf{r}_i) = \sum_{i} \left(-\frac{\hbar^2 \nabla_i^2}{2m_0} + V_0(\mathbf{r}_i) \right). \tag{12}$$

Hàm sóng trong mạng tinh thể thỏa định lý Bloch:

$$|\psi_{m\mathbf{k}}(\mathbf{r})\rangle = e^{i\mathbf{k}\cdot\mathbf{r}} |u_{m\mathbf{k}}(\mathbf{r})\rangle.$$
 (13)

Thay (13) vào (12), ta được phương trình Schrödinger cho mạng tinh thể tuần hoàn theo $u_{m\mathbf{k}}$:

$$\left[\frac{p^2}{2m_0} + V_0(\mathbf{r}) + \frac{\hbar^2 k^2}{2m_0} + \frac{\hbar}{m_0} \mathbf{k} \cdot \mathbf{p}\right] \left| u_{m\mathbf{k}}(\mathbf{r}) \right\rangle = E_{m\mathbf{k}} \left| u_{m\mathbf{k}}(\mathbf{r}) \right\rangle. \tag{14}$$

Giả định rằng chúng ta đã biết trị riêng năng lượng và trạng thái riêng tại một điểm k_0 trong vùng Brillouin. Để giải phương trình (14), ta có thể khai triển hàm riêng $|u_{m\mathbf{k}}(\mathbf{r})\rangle$ qua một tập hợp các hàm cơ sở trực chuẩn, đầy đủ $\{|u_n\rangle\}$:

$$|u_{m\mathbf{k}}(\mathbf{r})\rangle = \sum_{n} a_{m\mathbf{k}}^{n} |u_{n}(\mathbf{r})\rangle.$$
 (15)

Thay (15) vào (14) và nhân trái với $\langle u_n(\mathbf{r})|$, ta được:

$$\sum_{n'} H_{nn'}(\mathbf{k}) a_{m\mathbf{k}}^{n'} = E_{m\mathbf{k}} a_{m\mathbf{k}}^n, \tag{16}$$

trong đó

$$H_{nn'}(\mathbf{k}) = \left(E_n^0 + \frac{\hbar^2 k^2}{2m_0}\right) \delta_{nn'} + \frac{\hbar}{m_0} \mathbf{k} \cdot \langle u_n | \mathbf{p} | u_{n'} \rangle.$$
 (17)

$$H_{\mathbf{k}\cdot\mathbf{p}} = \frac{\hbar}{m_0} \mathbf{k} \cdot \langle u_n | \mathbf{p} | u_{n'} \rangle$$

Ta đi khai triển nhiễu loạn cho $H_{\mathbf{k}\cdot\mathbf{p}}$ tới bậc 3 lân cận \mathbf{k} :

$$H_{\mathbf{k}\cdot\mathbf{p}} = \frac{\hbar}{m_0} \mathbf{k} \cdot \langle u_n | \mathbf{p} | u_{n'} \rangle, \qquad (18)$$

 $\langle u_n | \mathbf{p} | u_n \rangle = 0.$

Hamiltonian cho tập hợp con $A = \{|u_m\rangle\}$:

trong đó

$$\begin{split} H_{ii'}^{(1)} &= H_{ii'}^{'}, \\ H_{ii'}^{(2)} &= \frac{1}{2} \sum_{l} H_{in}^{'} H_{ni'}^{'} \left[\frac{1}{E_{i} - E_{n}} + \frac{1}{E_{i'} - E_{n}} \right], \\ H_{ii'}^{(3)} &= -\frac{1}{2} \sum_{n,i''} \left[\frac{H_{in}^{'} H_{ni''}^{'} H_{i''i'}^{'}}{(E_{i'} - E_{n})(E_{i''} - E_{n})} + \frac{H_{ii''}^{'} H_{i''n}^{'} H_{ni'}^{'}}{(E_{i'} - E_{n})(E_{i''} - E_{n})} \right], \\ &+ \frac{1}{2} \sum_{n,n'} H_{in}^{'} H_{nn'}^{'} H_{n'i'}^{'} \left[\frac{1}{(E_{i} - E_{n})(E_{i} - E_{n'})} + \frac{1}{(E_{i'} - E_{n})(E_{i'} - E_{n'})} \right], \end{split}$$

với $i, i', i'' \in A$ và $n, n' \in B$ $(i = \pm 2, 0)$ và $(n = \pm 1)$. Ứng với đó là $d_{\pm 2} = \frac{1}{\sqrt{2}}(d_{x^2 - y^2} \pm i d_{xy}), d_0 = d_{z^2}, d_{\pm 1} = \frac{1}{\sqrt{2}}(d_{xz} \pm i d_{yz}).$

Khi SOC chưa được xét đến, các orbitals trong tập chẵn không thể tương tác với các orbitals trong tập lẻ. Do đó ta chọn các cơ sở dựa trên trị riêng của toán tử xung lượng góc L^2 và L_z với các chỉ số lượng tử $l=2, m=0,\pm 2$:

$$\left|\tilde{\phi}_1\right\rangle = \left|d_{m=2}\right\rangle,\tag{20}$$

$$\left|\tilde{\phi}_{2}\right\rangle = \left|d_{m=0}\right\rangle,\tag{21}$$

$$\left| \tilde{\phi}_3 \right\rangle = \left| d_{m=-2} \right\rangle. \tag{22}$$

Các cơ sở mới cho thể có dẫn ra được từ cơ sở cũ bằng phép biến đổi tuyến tính sau

$$\left| \tilde{\phi}_{j} \right\rangle = \sum_{j} W_{jj'} \left| \phi_{j} \right\rangle,$$

trong đó

$$W = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}$$

Hamiltonian TB ở cơ sở mới có dạng

$$\tilde{H}^{\text{NN}}(\mathbf{k}) = WH^{\text{NN}}(\mathbf{k})W^{\dagger}$$

$$= \begin{pmatrix} \frac{1}{2}(h_{11} + h_{22} + 2\operatorname{Im}\{h_{12}\}) & \frac{1}{\sqrt{2}}(h_1^* + ih_2^*) & \frac{1}{2}(h_{11} - h_{22} + 2i\operatorname{Re}\{h_{12}\}) \\ \frac{1}{\sqrt{2}}(h_1 - ih_2) & h_0 & \frac{1}{\sqrt{2}}(h_1 + ih_2) \\ \frac{1}{2}(h_{11} - h_{22} - 2\operatorname{Im}\{h_{12}\}) & \frac{1}{\sqrt{2}}(h_1^* - ih_2^*) & \frac{1}{2}(h_{11} + h_{22} - 2i\operatorname{Re}\{h_{12}\}) \end{pmatrix}$$

và đặt

$$\left\langle \tilde{\phi}_{c}^{\tau}, \pm \mathbf{K} \middle| p_{x} \middle| \tilde{\phi}_{v}^{\tau}, \pm \mathbf{K} \right\rangle = \pm i \left\langle \tilde{\phi}_{c}^{\tau}, \pm \mathbf{K} \middle| p_{y} \middle| \tilde{\phi}_{v}^{\tau}, \pm \mathbf{K} \right\rangle [3]$$
(23)

Thành phần ma trận của Hamiltonian không nhiễu loạn H^0 :

$$\begin{split} H_{\mu\mu'}(\mathbf{k},\tau) &= \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} E_{\mu\mu'}(\mathbf{R}) \\ &= \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left\langle \psi^{\tau}_{\mu}(\mathbf{r}) \middle| \hat{H} \middle| \psi^{\tau}_{\mu'}(\mathbf{r} - \mathbf{R}) \right\rangle \end{split}$$

 $*H_{cc}(\mathbf{k},\tau)$

$$H_{cc}(\mathbf{k}, \tau) = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left\langle \psi_c^{\tau}(\mathbf{r}) \middle| \hat{H} \middle| \psi_c^{\tau}(\mathbf{r} - \mathbf{R}) \right\rangle$$
$$= h_0$$
$$= 2t_0 \left(\cos 2\alpha + 2\cos \alpha \cos \beta\right) + \epsilon_1$$

 $*H_{cv}(\mathbf{k},\tau)$

$$H_{cv}(\mathbf{k},\tau) = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left\langle \psi_{c}^{\tau}(\mathbf{r}) \middle| \hat{H} \middle| \psi_{v}^{\tau}(\mathbf{r} - \mathbf{R}) \right\rangle$$

$$= \frac{1}{\sqrt{2}} \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left[\left\langle \phi_{1}^{1}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \right\rangle + i\tau \left\langle \phi_{1}^{1}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \right\rangle \right]$$

$$= \frac{1}{\sqrt{2}} (h_{2} + i\tau h_{1})$$

$$= \frac{1}{\sqrt{2}} \left[2t_{2}(\cos 2\alpha - \cos \alpha \cos \beta) + 2i\sqrt{3}t_{1}\cos \alpha \sin \beta + i\tau \left(-2\sqrt{3}t_{2}\sin \alpha \sin \beta + 2it_{1}(\sin 2\alpha + \sin \alpha \cos \beta) \right) \right]$$

 $*H_{vc}(\mathbf{k},\tau)$

$$H_{vc}(\mathbf{k},\tau) = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left\langle \psi_{v}^{\tau}(\mathbf{r}) \middle| \hat{H} \middle| \psi_{c}^{\tau}(\mathbf{r} - \mathbf{R}) \right\rangle$$

$$= \frac{1}{\sqrt{2}} \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left[\left\langle \phi_{2}^{2}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}) \right\rangle - i\tau \left\langle \phi_{1}^{2}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{1}^{1}(\mathbf{r} - \mathbf{R}) \right\rangle \right]$$

$$= \frac{1}{\sqrt{2}} (h_{2}^{*} - i\tau h_{1}^{*})$$

$$= \frac{1}{\sqrt{2}} \left[2t_{2}(\cos 2\alpha - \cos \alpha \cos \beta) - 2i\sqrt{3}t_{1}\cos \alpha \sin \beta - i\tau \left(-2\sqrt{3}t_{2}\sin \alpha \sin \beta - 2it_{1}(\sin 2\alpha + \sin \alpha \cos \beta) \right) \right]$$

 $*H_{vv}(\mathbf{k},\tau)$

$$H_{vv}(\mathbf{k},\tau) = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left\langle \psi_{v}^{\tau}(\mathbf{r}) \middle| \hat{H} \middle| \psi_{v}^{\tau}(\mathbf{r} - \mathbf{R}) \right\rangle$$

$$= \frac{1}{2} \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \left[\left\langle \phi_{2}^{2}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \right\rangle + i\tau \left\langle \phi_{2}^{2}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \right\rangle$$

$$- i\tau \left\langle \phi_{1}^{2}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \right\rangle + \tau^{2} \left\langle \phi_{1}^{2}(\mathbf{r}) \middle| \hat{H} \middle| \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \right\rangle \right]$$

$$= \frac{1}{2} \left(h_{22} + i\tau h_{12}^{*} - i\tau h_{12} + \tau h_{11} \right)$$

$$= \frac{1}{2} \left[2t_{22} \cos 2\alpha + (3t_{11} + t_{22}) \cos \alpha \cos \beta + \tau^{2} \left(2t_{11} \cos 2\alpha + (t_{11} + 3t_{22}) \cos \alpha \cos \beta + 2\epsilon_{2} \right) - i\tau (8it_{12} \sin \alpha (\cos \alpha - \cos \beta)) \right]$$

Tại $\pm K$ valley

$$\mathbf{k} = (k_x, k_y) = \left(\tau \frac{4\pi}{3a}, 0\right)$$
$$(\alpha, \beta) = \left(\frac{1}{2}k_x a, \frac{\sqrt{3}}{2}k_y a\right)$$

với $\tau=\pm 1$

$$H_{cc}(\mathbf{k}, \tau) = -3t_0 + \epsilon_1$$

$$H_{cv}(\mathbf{k}, \tau) = 0$$

$$H_{vc}(\mathbf{k}, \tau) = 0$$

$$H_{vv}(\mathbf{k},\tau) = \epsilon_2 - \frac{3}{2}(t_{11} + t_{22}) - \tau 3\sqrt{3}t_{12}$$

 $*H_{mm'}^{(1)}$

$$H_{cc}^{(1)} = H_{0,0}^{'} = 0$$

$$H_{vv}^{(1)} = H_{2,2}^{'} = 0$$

$$H_{vc}^{(1)} = H_{vc}^{'}$$
$$= H_{0.2}^{'*}$$

$$H_{cv}^{(1)} = H_{0,2}'$$

$$= \frac{\hbar}{m_0} \mathbf{k} \cdot \langle u_c | \mathbf{p} | u_v \rangle$$

$$= \frac{\hbar}{m_0} \left(k_x \langle u_c | p_x | u_v \rangle + k_y \langle u_c | p_y | u_v \rangle \right)$$

$$= \frac{\hbar}{m_0} \left(k_x \langle u_c | p_x | u_v \rangle - i k_y \langle u_c | p_x | u_v \rangle \right)$$

$$= \frac{\hbar}{m_0} \left(k_x \langle u_c | p_x | u_v \rangle - i k_y \langle u_c | p_x | u_v \rangle \right)$$

$$= \frac{a\hbar}{am_0} \left(k_x \langle u_c | p_x | u_v \rangle - i k_y \langle u_c | p_x | u_v \rangle \right)$$

$$= \frac{a\hbar}{am_0} \left(k_x - i k_y \right) \langle u_c | p_x | u_v \rangle$$

$$= at \left(k_x - i k_y \right)$$

đặt $t = \frac{\hbar}{am_0} \langle u_c | p_x | u_v \rangle$ (ta nhân thêm a và chia cho a ở mẫu để không bị vi phạm thứ nguyên).

Ta sử dụng định nghĩa mới là $k_{\pm}=k_x\pm ik_y$ và $p_{\pm}=p_x\pm ip_y$

$$k_x = \frac{k_+ + k_-}{2}; \ k_y = \frac{k_+ - k_-}{2i},$$
 (24)

$$p_x = \frac{k_+ + k_-}{2}; \ p_y = \frac{k_+ - k_-}{2i}.$$
 (25)

, viết lại phương trình (18) dưới dạng:

$$H_{\mathbf{k}\cdot\mathbf{p}} = \frac{1}{2} \frac{\hbar}{m_0} (k_+ \hat{p}_- + k_- \hat{p}_+) = H_{\mathbf{k}\cdot\mathbf{p}}^- + H_{\mathbf{k}\cdot\mathbf{p}}^+, \tag{26}$$

với $k_{\pm}=k_x\pm iq_y,\,\hat{p}_{\pm}=\hat{p}_x\pm i\hat{p}_y$

irrep	Basics funtiones	Band
$\overline{A_{1}^{'}}$	$\left \Psi_{2,0} ight>$	VB
$E^{'}$	$\{\left \Psi_{2,2}\right\rangle,\left \Psi_{2,-2}\right\rangle\}$	VB-3
$E^{''}$	$\{\left \Psi_{2,1}\right\rangle,\left \Psi_{2,-1}\right\rangle\}$	VB-1

Bảng 1: Cơ sở cho biểu diễn bất khả quy của nhóm D_{3h} tại điểm K.

Sử dụng toán tử quay C_3 tác dụng lên p_{\pm} :

$$C_{3}\hat{p}_{+} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix} = \begin{pmatrix} p'_{x} \\ p'_{y} \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{1}{2}p_{x} - \frac{\sqrt{3}}{2}p_{y} \end{pmatrix} + i \left(\frac{\sqrt{3}}{2}p_{x} - \frac{1}{2}p_{y} \right)$$
$$= e^{-\frac{2\pi i}{3}}p_{+}$$

Tương tự cho p_{-} , ta có:

$$C_3 \hat{p}_{\pm} = e^{\mp \frac{2\pi i}{3}} p_{\pm} \tag{27}$$

$$\left\langle \psi_{f}\right|\hat{p}_{\pm}\left|\psi_{i}\right\rangle =e^{\frac{2\pi i\left(m_{f}-m_{i}\mp1\right)}{3}}\left\langle \psi_{f}\right|\hat{p}_{\pm}\left|\psi_{i}\right\rangle$$

Sử dụng kết quả (22), ta tính được nhiễu loạn bậc 1 như sau:

$$*H_{mm'}^{(1)}$$

$$H_{cc}^{(1)} = H_{0,0}^{'} = 0$$

$$H_{vv}^{(1)} = H_{2,2}^{'} = 0$$

$$H_{vc}^{(1)} = H_{vc}^{'}$$
$$= H_{02}^{'*}$$

$$\begin{split} H_{cv}^{(1)} &= H_{0,2}^{'} \\ &= \frac{1}{2} \frac{\hbar}{m_0} \left(k_+ \left< 0 \right| \hat{p}_- \left| 2 \right> + k_- \left< 0 \right| \hat{p}_+ \left| 2 \right> \right) \\ &= \frac{1}{2} \frac{\hbar}{m_0} \left(k_+ \left< 0 \right| C_3^{\dagger} C_3 \hat{p}_- C_3^{\dagger} C_3 \left| 2 \right> + k_- \left< 0 \right| C_3^{\dagger} C_3 \hat{p}_+ C_3^{\dagger} C_3 \left| 2 \right> \right) \\ &= \frac{1}{2} \frac{\hbar}{m_0} \left(e^{\frac{2i\pi}{3}} e^{\frac{2i\pi}{3}} k_+ \left< 0 \right| \cancel{p}_- \left| 2 \right> \right> + e^{-\frac{2i\pi}{3}} e^{\frac{4i\pi}{3}} k_- \left< 0 \right| \hat{p}_+ \left| 2 \right> \right) \end{split}$$

$$*H_{mm'}^{(2)}$$

$$\begin{split} H_{0,0}^{(2)} &= \frac{1}{2} \sum_{l} H_{0,l}' H_{l,0}' \left[\frac{1}{E_{0} - E_{l}} + \frac{1}{E_{0} - E_{l}} \right] \\ &= \frac{1}{2} H_{0,-1}' H_{-1,0}' \left[\frac{1}{E_{0} - E_{-1}} + \frac{1}{E_{0} - E_{-1}} \right] + \frac{1}{2} H_{0,1}' H_{1,0}' \left[\frac{1}{E_{0} - E_{1}} + \frac{1}{E_{0} - E_{1}} \right] \\ &= \frac{1}{4} \frac{\hbar}{m_{0}} \left(k_{+} \left\langle 0 | \hat{p}_{-} | - 1 \right\rangle + k_{-} \left\langle 0 | \hat{p}_{+} | - 1 \right\rangle \right) \left(k_{+} \left\langle - 1 | \hat{p}_{-} | 0 \right\rangle + k_{-} \left\langle - 1 | \hat{p}_{+} | 0 \right\rangle \right) \left[\frac{1}{E_{0} - E_{-1}} + \frac{1}{E_{0} - E_{-1}} \right] \\ &+ \frac{1}{4} \frac{\hbar}{m_{0}} \left(k_{+} \left\langle 0 | \hat{p}_{-} | 1 \right\rangle + k_{-} \left\langle 0 | \hat{p}_{+} | 1 \right\rangle \right) \left(k_{+} \left\langle 1 | \hat{p}_{-} | 0 \right\rangle + k_{-} \left\langle 1 | \hat{p}_{+} | 0 \right\rangle \right) \left[\frac{1}{E_{0} - E_{1}} + \frac{1}{E_{0} - E_{1}} \right] \\ &= \frac{1}{4} \frac{\hbar}{m_{0}} \left(k_{+} \left\langle 0 | C_{3}^{\dagger} C_{3} \hat{p}_{-} C_{3}^{\dagger} C_{3} | - 1 \right\rangle + k_{-} \left\langle 0 | C_{3}^{\dagger} C_{3} \hat{p}_{+} C_{3}^{\dagger} C_{3} | - 1 \right\rangle \right) \\ &\times \left(k_{+} \left\langle - 1 | C_{3}^{\dagger} C_{3} \hat{p}_{-} C_{3}^{\dagger} C_{3} | 0 \right\rangle + k_{-} \left\langle - 1 | C_{3}^{\dagger} C_{3} \hat{p}_{+} C_{3}^{\dagger} C_{3} | 0 \right\rangle \right) \left[\frac{1}{E_{0} - E_{-1}} + \frac{1}{E_{0} - E_{-1}} \right] \\ &+ \frac{1}{4} \frac{\hbar}{m_{0}} \left(k_{+} \left\langle 0 | C_{3}^{\dagger} C_{3} \hat{p}_{-} C_{3}^{\dagger} C_{3} | 1 \right\rangle + k_{-} \left\langle 0 | C_{3}^{\dagger} C_{3} \hat{p}_{+} C_{3}^{\dagger} C_{3} | 0 \right\rangle \right) \left[\frac{1}{E_{0} - E_{-1}} + \frac{1}{E_{0} - E_{-1}} \right] \\ &= \frac{1}{4} \frac{\hbar}{m_{0}} \left(k_{+} \left\langle 0 | C_{3}^{\dagger} C_{3} \hat{p}_{-} C_{3}^{\dagger} C_{3} | 1 \right\rangle + k_{-} \left\langle 0 | C_{3}^{\dagger} C_{3} \hat{p}_{+} C_{3}^{\dagger} C_{3} | 0 \right\rangle \right) \left[\frac{1}{E_{0} - E_{1}} + \frac{1}{E_{0} - E_{1}} \right] \\ &= \frac{1}{4} \frac{\hbar}{m_{0}} \left(k_{+} e^{\frac{2i\pi}{3}} e^{-\frac{2i\pi}{3}} \left\langle 0 | \hat{p}_{-} | - 1 \right\rangle + k_{-} e^{-\frac{2i\pi}{3}} e^{\frac{2i\pi}{3}} \left\langle 0 | \hat{p}_{+} | - 1 \right\rangle \right) \left[\frac{1}{E_{0} - E_{-1}} + \frac{1}{E_{0} - E_{-1}} \right] \\ &\times \left(k_{+} e^{\frac{2i\pi}{3}} e^{-\frac{2i\pi}{3}} \left\langle 0 | \hat{p}_{-} | - 1 \right\rangle + k_{-} e^{-\frac{2i\pi}{3}} e^{\frac{2i\pi}{3}} \left\langle - 1 | \hat{p}_{+} | 0 \right\rangle \right) \left[\frac{1}{E_{0} - E_{-1}} + \frac{1}{E_{0} - E_{-1}} \right] \\ &+ \frac{1}{4} \frac{\hbar}{m_{0}} \left(k_{+} e^{\frac{2i\pi}{3}} e^{-\frac{2i\pi}{3}} \left\langle 0 | \hat{p}_{-} | + 1 \right\rangle + k_{-} e^{-\frac{2i\pi}{3}} e^{\frac{2i\pi}{3}} \left\langle 0 | \hat{p}_{+} | + 1 \right\rangle \right) \\ &\times \left(k_{+} e^{\frac{2i\pi}{3}} e^{-\frac{2i\pi}{3}} \left\langle 1 | \hat{p}_{-} | 0 \right\rangle + k_{$$

Vậy, rút gọn những thành phần ma trận không cần thiết ta được:

$$\begin{split} H_{0,0}^{(2)} &= \frac{1}{4} \frac{\hbar}{m_0} \left(k_+ \left< 0 \right| \hat{p}_- \left| -1 \right> \right) \left(k_- \left< -1 \right| \hat{p}_+ \left| 0 \right> \right) \left[\frac{2}{E_0 - E_{-1}} \right] \\ &+ \frac{1}{4} \frac{\hbar}{m_0} \left(k_- \left< 0 \right| \hat{p}_+ \left| 1 \right> \right) \left(k_+ \left< 1 \right| \hat{p}_- \left| 0 \right> \right) \left[\frac{2}{E_0 - E_1} \right] \\ &= \frac{1}{2} \frac{\hbar}{m_0} q^2 \left[\left< 0 \right| \hat{p}_- \left| -1 \right> \left< -1 \right| \hat{p}_+ \left| 0 \right> \frac{1}{E_0 - E_{-1}} + \left< 0 \right| \hat{p}_+ \left| 1 \right> \left< 1 \right| \hat{p}_- \left| 0 \right> \frac{1}{E_0 - E_1} \right] \\ &= q^2 a^2 \frac{1}{2} \frac{\hbar}{a^2 m_0} \left[\left< 0 \right| \hat{p}_- \left| -1 \right> \left< -1 \right| \hat{p}_+ \left| 0 \right> \frac{1}{E_0 - E_{-1}} + \left< 0 \right| \hat{p}_+ \left| 1 \right> \left< 1 \right| \hat{p}_- \left| 0 \right> \frac{1}{E_0 - E_1} \right] \\ &= a^2 k^2 \gamma_1 \end{split}$$

với
$$q^2 = k_x^2 + k_y^2$$
.

$$\begin{split} H_{2,2}^{(2)} &= \frac{1}{2} \sum_{l} H_{2,l}' H_{l,-2}' \left[\frac{1}{E_{2} - E_{l}} + \frac{1}{E_{2} - E_{l}} \right] \\ &= \frac{1}{2} H_{2,-1}' H_{-1,2}' \left[\frac{1}{E_{2} - E_{-1}} + \frac{1}{E_{2} - E_{-1}} \right] + \frac{1}{2} H_{2,l}' H_{1,2}' \left[\frac{1}{E_{2} - E_{1}} + \frac{1}{E_{-2} - E_{1}} \right] \\ &= \frac{1}{4} \frac{h}{m_{0}} \left(k_{+} \langle 2|p_{-}|-1 \rangle + k_{-} \langle 2|p_{+}|-1 \rangle \right) \left(k_{+} \langle -1|p_{-}|2 \rangle + k_{-} \langle -1|p_{+}|2 \rangle \right) \\ &\times \left[\frac{1}{E_{2} - E_{-1}} + \frac{1}{E_{-2} - E_{-1}} \right] + \frac{1}{4} \frac{h}{m_{0}} \left(k_{+} \langle 2|p_{-}|1 \rangle + k_{-} \langle 2|p_{+}|1 \rangle \right) \\ &\times \left(k_{+} \langle 1|p_{-}|2 \rangle + k_{-} \langle 1|p_{+}|2 \rangle \right) \left[\frac{1}{E_{2} - E_{1}} + \frac{1}{E_{-2} - E_{1}} \right] \\ &= \frac{1}{4} \frac{h}{m_{0}} \left(k_{+} \langle 2|C_{3}^{\dagger}C_{3}p_{-}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} - 1 \rangle + k_{-} \langle 2|C_{3}^{\dagger}C_{3}p_{+}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} - 1 \rangle \right) \\ &\times \left(k_{+} \langle -1|C_{3}^{\dagger}C_{3}p_{-}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} \right) + k_{-} \langle -1|C_{3}^{\dagger}C_{3}p_{+}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} \right) \right) \times \left[\frac{1}{E_{2} - E_{-1}} + \frac{1}{E_{-2} - E_{-1}} \right] \\ &+ \frac{1}{4} \frac{h}{m_{0}} \left(k_{+} \langle 2|C_{3}^{\dagger}C_{3}p_{-}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} \right) + k_{-} \langle 2|C_{3}^{\dagger}C_{3}p_{+}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} \right) \right) \left[\frac{1}{E_{2} - E_{-1}} + \frac{1}{E_{-2} - E_{-1}} \right] \\ &= \frac{1}{4} \frac{h}{m_{0}} \left(k_{+} \langle 2|C_{3}^{\dagger}C_{3}p_{-}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} \right) + k_{-} \langle 2|C_{3}^{\dagger}C_{3}p_{+}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} \right) \right) \left[\frac{1}{E_{2} - E_{1}} + \frac{1}{E_{-2} - E_{1}} \right] \\ &= \frac{1}{4} \frac{h}{m_{0}} \left(k_{+} \langle 2|C_{3}^{\dagger}C_{3}p_{-}C_{3}^{\dagger}C_{3}^{\dagger}C_{3} \right) + k_{-} \langle 2|C_{3}^{\dagger}C_{3}p_{+}C_{3}^{\dagger}C$$

Vật lý Lý thuyết

$$\begin{split} H_{0,2}^{(2)} &= \frac{1}{2} \sum_{l} H_{0,l}' H_{l,2}' \left[\frac{1}{E_0 - E_l} + \frac{1}{E_2 - E_l} \right] \\ &= \frac{1}{2} H_{0,-1}' H_{-1,2}' \left[\frac{1}{E_0 - E_{-1}} + \frac{1}{E_2 - E_{-1}} \right] + \frac{1}{2} H_{0,1}' H_{1,2}' \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &= \frac{1}{4} \frac{h}{m_0} \left(k_+ \langle 0 | p_- | - 1 \rangle + k_- \langle 0 | p_+ | - 1 \rangle \right) \left(k_+ \langle - 1 | p_- | 2 \rangle + k_- \langle - 1 | p_+ | 2 \rangle \right) \left[\frac{1}{E_0 - E_{-1}} + \frac{1}{E_2 - E_{-1}} \right] \\ &+ \frac{1}{4} \frac{h}{m_0} \left(k_+ \langle 0 | p_- | 1 \rangle + k_- \langle 0 | p_+ | 1 \rangle \right) \left(k_+ \langle 1 | p_- | 2 \rangle + k_- \langle 1 | p_+ | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &= \frac{1}{4} \frac{h}{m_0} \left(k_+ \langle 0 | C_3^{\dagger} C_3 p_- C_3^{\dagger} C_3 | - 1 \rangle + k_- \langle 0 | C_3^{\dagger} C_3 p_+ C_3^{\dagger} C_3 | - 1 \rangle \right) \\ &\times \left(k_+ \langle - 1 | C_3^{\dagger} C_3 p_- C_3^{\dagger} C_3 | 2 \rangle + k_- \langle - 1 | C_3^{\dagger} C_3 p_+ C_3^{\dagger} C_3 | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &+ \frac{1}{4} \frac{h}{m_0} \left(k_+ \langle 0 | C_3^{\dagger} C_3 p_- C_3^{\dagger} C_3 | 1 \rangle + k_- \langle 0 | C_3^{\dagger} C_3 p_+ C_3^{\dagger} C_3 | 1 \rangle \right) \\ &\times \left(k_+ \langle 1 | C_3^{\dagger} C_3 p_- C_3^{\dagger} C_3 | 2 \rangle + k_- \langle 1 | C_3^{\dagger} C_3 p_+ C_3^{\dagger} C_3 | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &= \frac{1}{4} \frac{h}{m_0} \left(k_+ e^{\frac{2i\pi(1 - 2 + 1)}{3}} \langle 0 | p_- | + 1 \rangle^{-1} \right)^{-1} + k_- e^{\frac{2i\pi(1 - 2 - 1)}{3}} \langle -1 | p_- | 2 \rangle^{-1} + k_- e^{\frac{2i\pi(1 - 2 - 1)}{3}} \langle -1 | p_- | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &+ \frac{1}{4} \frac{h}{m_0} \left(k_+ e^{\frac{2i\pi(1 - 2 + 1)}{3}} \langle 0 | p_- | 1 \rangle + k_- e^{\frac{2i\pi(1 - 2 - 1)}{3}} \langle -1 | p_- | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &= \frac{1}{4} \frac{h}{m_0} \left(k_+ \langle 0 | p_- | 1 \rangle \right) \left(k_+ \langle 1 | p_- | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &= \frac{1}{4} \frac{h}{m_0} \left(k_+ \langle 0 | p_- | 1 \rangle \right) \left(k_+ \langle 1 | p_- | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &= a^2 k_1^2 \frac{h}{4} \frac{h}{a^2 m_0} \left(\langle 0 | p_+ | 1 \rangle \right) \left(\langle 1 | p_+ | 2 \rangle \right) \left[\frac{1}{E_0 - E_1} + \frac{1}{E_2 - E_1} \right] \\ &= a^2 k_1^2 \frac{h}{33} \right] \\ &= a^2 k_1^2 \frac{h}{33}$$

To describe the presence of the magnetic field, we replace the wave vector $\hat{\mathbf{k}} = -i\nabla + \frac{e}{\hbar}\mathbf{A}$, where \mathbf{A} is vector potential and $\mathbf{B} = \nabla \times \mathbf{A}$.

$$D(C_{3}(-\frac{2\pi}{3})) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & \sqrt{3}/2 \\ 0 & -\sqrt{3}/2 & -1/2 \end{pmatrix}, \quad D(C_{3}(-\frac{4\pi}{3})) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & -\sqrt{3}/2 \\ 0 & \sqrt{3}/2 & -1/2 \end{pmatrix},$$

$$D(\sigma_{\nu}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D(\sigma_{\nu}') = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 \\ 0 & -\sqrt{3}/2 & -1/2 \end{pmatrix}, \tag{28}$$

$$D(\sigma_{\nu}'') = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & \sqrt{3}/2 \\ 0 & \sqrt{3}/2 & 1/2 \end{pmatrix}.$$

$$\mathcal{E}(\mathbf{R}_{2}) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_{1})D^{\dagger}(\sigma_{\nu}')$$

$$= \begin{pmatrix} t_{0} & \frac{1}{2}t_{1} - \frac{\sqrt{3}}{2}t_{2} & -\frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} \\ -\frac{1}{2}t_{1} - \frac{\sqrt{3}}{2}t_{2} & \frac{1}{4}t_{11} + \frac{3}{4}t_{22} & -\frac{\sqrt{3}}{4}t_{11} - t_{12} + \frac{\sqrt{3}}{4}t_{22} \\ \frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} & -\frac{\sqrt{3}}{4}t_{11} + t_{12} + \frac{\sqrt{3}}{4}t_{22} & \frac{3}{4}t_{11} + \frac{1}{4}t_{22} \end{pmatrix},$$
(29)

$$\mathcal{E}(\mathbf{R}_{3}) = D(C(-\frac{2\pi}{3}))\mathcal{E}(\mathbf{R}_{1})D^{\dagger}(C(-\frac{2\pi}{3}))
= \begin{pmatrix} t_{0} & -\frac{1}{2}t_{1} + \frac{\sqrt{3}}{2}t_{2} & -\frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} \\ \frac{1}{2}t_{1} + \frac{\sqrt{3}}{2}t_{2} & \frac{1}{4}t_{11} + \frac{3}{4}t_{22} & \frac{\sqrt{3}}{4}t_{11} + t_{12} - \frac{\sqrt{3}}{4}t_{22} \\ \frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} & \frac{\sqrt{3}}{4}t_{11} - t_{12} - \frac{\sqrt{3}}{4}t_{22} & \frac{3}{4}t_{11} + \frac{1}{4}t_{22} \end{pmatrix}, \tag{30}$$

$$\mathcal{E}(\mathbf{R}_4) = D(\sigma_{\nu})\mathcal{E}(\mathbf{R}_1)D^{\dagger}(\sigma_{\nu}) = \begin{pmatrix} t_0 & -t_1 & t_2 \\ t_1 & t_{11} & -t_{12} \\ t_2 & t_{12} & t_{22} \end{pmatrix}, \tag{31}$$

$$\mathcal{E}(\mathbf{R}_{5}) = D(C(-\frac{4\pi}{3}))\mathcal{E}(\mathbf{R}_{1})D^{\dagger}(C(-\frac{4\pi}{3}))$$

$$= \begin{pmatrix} t_{0} & -\frac{1}{2}t_{1} - \frac{\sqrt{3}}{2}t_{2} & \frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} \\ \frac{1}{2}t_{1} - \frac{\sqrt{3}}{2}t_{2} & \frac{1}{4}t_{11} + \frac{3}{4}t_{22} & -\frac{\sqrt{3}}{4}t_{11} + t_{12} + \frac{\sqrt{3}}{4}t_{22} \\ -\frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} & -\frac{\sqrt{3}}{4}t_{11} - t_{12} + \frac{\sqrt{3}}{4}t_{22} & \frac{3}{4}t_{11} + \frac{1}{4}t_{22} \end{pmatrix}, \tag{32}$$

$$\mathcal{E}(\mathbf{R}_{6}) = D(\sigma_{\nu}^{"})\mathcal{E}(\mathbf{R}_{1})D^{\dagger}(\sigma_{\nu}^{"})
= \begin{pmatrix} t_{0} & \frac{1}{2}t_{1} + \frac{\sqrt{3}}{2}t_{2} & \frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} \\ -\frac{1}{2}t_{1} + \frac{\sqrt{3}}{2}t_{2} & \frac{1}{4}t_{11} + \frac{3}{4}t_{22} & \frac{\sqrt{3}}{4}t_{11} - t_{12} - \frac{\sqrt{3}}{4}t_{22} \\ -\frac{\sqrt{3}}{2}t_{1} - \frac{1}{2}t_{2} & \frac{\sqrt{3}}{4}t_{11} - t_{12} - \frac{\sqrt{3}}{4}t_{22} & \frac{3}{4}t_{11} + \frac{1}{4}t_{22} \end{pmatrix}, \tag{33}$$

$$\mathcal{E}(\mathbf{R}_9) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_7)D^{\dagger}(\sigma_{\nu}') \tag{34}$$

$$\mathcal{E}(\mathbf{R}_{10}) = \tag{35}$$

$$\mathcal{E}(\mathbf{R}_{11}) = D(C(-\frac{2\pi}{3}))\mathcal{E}(\mathbf{R}_7)D^{\dagger}(C(-\frac{2\pi}{3}))$$
(36)

$$\mathcal{E}(\mathbf{R}_{12}) = D(\sigma_{\nu})\mathcal{E}(\mathbf{R}_{8})D^{\dagger}(\sigma_{\nu}) \tag{37}$$

$$\mathcal{E}(\mathbf{R}_9) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_7)D^{\dagger}(\sigma_{\nu}') \tag{38}$$

$$\mathcal{E}(\mathbf{R}_9) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_7)D^{\dagger}(\sigma_{\nu}') \tag{39}$$

$$\mathcal{E}(\mathbf{R}_9) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_7)D^{\dagger}(\sigma_{\nu}') \tag{40}$$

$$\mathcal{E}(\mathbf{R}_9) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_7)D^{\dagger}(\sigma_{\nu}') \tag{41}$$

$$\mathcal{E}(\mathbf{R}_9) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_7)D^{\dagger}(\sigma_{\nu}') \tag{42}$$

$$\mathcal{E}(\mathbf{R}_9) = D(\sigma_{\nu}')\mathcal{E}(\mathbf{R}_7)D^{\dagger}(\sigma_{\nu}') \tag{43}$$

The nearest-neighbor tight-binding Hamiltonian now can be written as

$$H^{\text{NN}}(\mathbf{k}) = \begin{pmatrix} h_0 & h_1 & h_2 \\ h_1^* & h_{11} & h_{12} \\ h_2^* & h_{12}^* & h_{22} \end{pmatrix},\tag{44}$$

$$\mathbf{R}_{1} = \begin{pmatrix} r_{0} & r_{1} & \frac{r_{1}}{\sqrt{3}} \\ h.c & r_{11} & r_{12} \\ h.c & h.c & r_{11} + \frac{2r_{12}}{\sqrt{3}} \end{pmatrix}, \tag{45}$$

$$\mathbf{R}_{2} = \begin{pmatrix} r_{0} & 0 & \frac{2r_{2}}{\sqrt{3}} \\ h.c & r_{11} + \sqrt{3}r_{12} & 0 \\ h.c & h.c & -r_{11} - \frac{r_{12}}{\sqrt{3}} \end{pmatrix}, \tag{46}$$

$$\mathbf{R}_{3} = \begin{pmatrix} r_{0} & -r_{1} & -\frac{r_{1}}{\sqrt{3}} \\ h.c & r_{11} & -r_{12} \\ h.c & h.c & r_{11} + \frac{2r_{12}}{\sqrt{3}} \end{pmatrix}, \tag{47}$$

$$\mathbf{R}_{4} = \begin{pmatrix} r_{0} & r_{2} & -\frac{r_{2}}{\sqrt{3}} \\ h.c & r_{11} & r_{12} \\ h.c & h.c & r_{11} + \frac{2r_{12}}{\sqrt{3}} \end{pmatrix}, \tag{48}$$

$$\mathbf{R}_{5} = \begin{pmatrix} r_{0} & 0 & \frac{2r_{1}}{\sqrt{3}} \\ h.c & r_{11} + \sqrt{3}r12 & 0 \\ h.c & h.c & -r_{11} - \frac{r_{12}}{\sqrt{3}} \end{pmatrix}, \tag{49}$$

$$\mathbf{R}_{6} = \begin{pmatrix} r_{0} & -r_{2} & -\frac{r_{2}}{\sqrt{3}} \\ h.c & r_{11} & -r_{12} \\ h.c & h.c & r_{11} + \frac{2r_{12}}{\sqrt{3}} \end{pmatrix}, \tag{50}$$

Tài liệu tham khảo

- [1] Andor Kormányos, Viktor Zólyomi, Neil D. Drummond, Péter Rakyta, Guido Burkard, and Vladimir I. Fal'ko. Monolayer mos₂: Trigonal warping, the Γ valley, and spin-orbit coupling effects. *Phys. Rev. B*, 88:045416, Jul 2013.
- [2] Jun John Sakurai and Jim Napolitano. *Modern quantum mechanics*. Cambridge University Press, 2020.
- [3] Fengyuan Xuan and Su Ying Quek. Valley zeeman effect and landau levels in two-dimensional transition metal dichalcogenides. *Phys. Rev. Res.*, 2:033256, Aug 2020.