МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

Факультет радіоелектроніки, комп'ютерних систем та інфокомунікацій

Кафедра комп'ютерних систем, мереж і кібербезпеки (503)

Лабораторна робота № 7

<u>-</u>	Вивчення одномірних масивів в МП х86				
	(назва лаборатор	ної роботи)			
з дисципліни	Архітектура комп'ютерів				
-	(шифр				
	ХАІ.503.525а.03О.123-Комп'юте	рна інженерія, ПЗ №9629619			
	<u> </u>	25a <i>Литвиненко А.В.</i>			
	17.12.2022 (№ 1	(1.1.2)			
	Перевірив	канд. техн. наук, доцент			
		R I Лужий			

(підпис, дата)

Тема роботи: изучение одномерных массивов в МП x86

Мета роботи:

- 1. Изучение режимов адресации, используемых при работе с массивами.
- 2. Изучение команд, используемых при работе с массивами.
- 3. Изучение базовых операций, используемых при работе с одномерными массивами.
- 4. Реализация циклов, управляемых счетчиком команд.

Варіант **5** Задача **1**

Частина 1. Постановка завдання **Умова:**

Выполнить операции с одним или несколькими массивами, используя соответствующие команды и режимы адресации. Длина массива и сам массив (или массивы) вводятся из файла in.txt. Признак конца ввода — длина массива, равная нулю. Файл с исходными данными содержит корректные данные, которые проверять не нужно. Результаты работы программы выводятся на терминал.

Умова з додатка:

5. Долги - 6 начало. Задан числовой массив **A[1..M]**. Перенести все положительные элементы в начало массива, а в остальном – порядок расположения элементов меняться не должен.

Вхідні дані:

in.txt – текстовий файл з вхідними даними; MAX_LENGTH – максимальна довжина масиву – константа arr_c, arr_asm – вхіжний масив довгих цілих чисел

Необхідний результат:

arr_c, arr_asm - результуючий масив довгих цілих чисел

Частина 2. Схема алгоритму

Опис на псевдокоді

На основі постановки завдання розроблений алгоритм, представлений на рисунку 1.

Рисунок 1 – Алгоритм основної програми

Рисунок 2 - Алгоритми додаткових функцій

Частина 3. Розробка тестів

Таблиця 1 – Тестові набори

No	Довжина	Вхідний масив	Очікуваний масив	Коментар
1	0		-	Пустий масив
2	1025			Довжина більше
				максимальної
3	10	123 -30 -60 70 0 -1000	40000 123 90 80 70 0	Різні числа (+-)
		40000 80 90 0	0 -30 -60 -1000	
4	10	-1000 -60 -30 0 0 70 80 90	70 80 90 123 40000 -	Числа за
		123 40000	1000 -60 -30 0 0	зростанням
5	10	123 -30 -60 70 0 -1000	123 70 40000 80 90 -	Числа за
		40000 80 90 0	1000 -60 -30 0 0	спаданням
6	10	5 6 -2 -6 4 6 4 -3 1 2	5 6 4 6 4 1 2 -3 -6 -2	Різні числа (+-)і
7	1	5555	5555	Один елемент
8	10	1 2 3 4 5 6 7 8 9 10	1 2 3 4 5 6 7 8 9 10	Лише додатні
				числа
9	10	-1 -2 -3 -4 -5 -6 -7 -8 -9 -	-1 -2 -3 -4 -5 -6 -7 -8 -	Лише від'ємні
		10	9 -10	числа
10	100	54 -23 47 -67 10 -62 -1 22	54 47 10 22 5 96 8 54	Сто елементів
		-45 5 96 -18 -2 8 -37 -95	19 55 28 28 24 66 52	
		54 -18 19 55 28 28 24 66	69 91 22 47 9 96 61	
		52 -88 -39 -54 69 91 22 -	33 31 18 13 100 73 30	
		32 -39 -45 -98 47 9 96 61	23 68 89 7 23 91 63 8	
		33 31 -91 18 -82 -99 -100	33 65 22 63 76 35 91	
		13 -22 -15 100 73 -58 -69	96 13 38 44 36 25 73	
		-23 30 23 -14 -52 68 89 7	50 6 27 9 67 59 -52 -	
		-11 -30 -38 -7 -3 -22 23 -	18 -32 -39 -11 -30 -38	
		41 -48 91 -96 63 -4 -27 -	-7 -3 -22 -45 -41 -48 -	
		76 8 33 65 22 63 76 35 91	98 -96 -45 -4 -27 -76 -	
		96 13 38 44 36 -22 -33 25	23 -62 -18 -2 -1 -91 -	
		73 50 6 27 9 -12 67 59	37 -82 -99 -100 -88 -	
			22 -15 -22 -33 -39 -54	
			-58 -69 -23 -95 -12 -	
			67 -14	

Частина 4. Текст програми

long n;

Відповідно до розробленого алгоритму в середовищі Microsoft Visual Studio була написана програма, яка наведена нижче.

laba_7.cpp

```
* File: laba_7.cpp
* Долги - в начало. Задан числовой массив А[1..М]. Перенести все положительные
элементы в
* начало массива, а в остальном - порядок расположения элементов меняться не должен.
* (C) Lytvynenko A.V., 2022
#include <iostream>
#include <iomanip>
using namespace std;
#define MAX_LENGTH 1024
long arr_c[1024] = { 0, };
long arr_asm[1024] = { 0, };
void show(long arr[], long n) {
      /// <summary>
      /// Виводить масив елементів через пробіл
      /// </summary>
      /// <param name="arr">Масив елементів</param>
      /// <param name="n">Довжина масиву</param>
      for (int i = 0;i < n;i++) {</pre>
             printf("%ld ", arr[i]);
      printf("\n");
}
void equal(long arr1[], long arr2[], long n) {
      /// <summary>
      /// Прирівнює перший масив до другого. Масив2 = Масив1
      /// </summary>
      /// <param name="arr1">Macив 1</param>
      /// <param name="arr2">Macив 2</param>
      /// <param name="n">Довжина масиву</param>
      for (int i = 0;i < n;i++) {</pre>
             arr2[i] = arr1[i];
      }
}
void zeros(long arr[], long n) {
      /// <summary>
/// Обнуляє повністю масив
      /// </summary>
      /// <param name="arr">Macив</param>
      /// <param name="n">Кількість елементів</param>
      for (int i = 0;i < n;i++) {</pre>
             arr[i] = 0;
}
int main() {
      // Довжина масиву
```

```
// Індекс для встановлення наступного позитивного числа (можливий індекс)
      long allowed_index = 0;
      // Тимчасово змінна
      long tmp;
      // Ітераторний індекс
      long i;
      // Файловий вказівник
      FILE* file;
      // Якщо не вдається відкрити файл - завершення програми
      if ((file = fopen("in.txt", "r")) == NULL) {
             printf("[ERR] Can't open file!\n");
             return 1;
      }
      int j = 0;
      while (j < 10) {</pre>
             fscanf(file, "%ld\n", &n);
if (n <= 0 || n > MAX_LENGTH) {
                    printf("[ERR] Invalid paramaters!\n\n");
                    j++;
                    continue;
             }
             zeros(arr_c, n);
             zeros(arr_asm, n);
             allowed_index = 0;
             for (i = 0; i < n; i++) {
                    fscanf(file, "%ld", &arr_c[i]);
             equal(arr_c, arr_asm, n);
             // Виведення масивів до операцій
             printf("[BEFORE] [C] :\t\t");
             show(arr_c, n);
             printf("[BEFORE] [ASM] :\t");
             show(arr_asm, n);
             // Частина на Сі
             for (i = 0;i < n;i++) {</pre>
                    // Якщо число позитивне, то обмінятися з числом на можливому
індексі
                    if (arr_c[i] > 0) {
                           tmp = arr_c[allowed_index];
                           arr_c[allowed_index] = arr_c[i];
                           arr_c[i] = tmp;
                           allowed_index++;
                    }
             }
             /*
             eax - allowed_index
             ecx - arr_asm[eax]
             edx - arr_asm[esi]
ebx - tmp
             esp
             ebp
             esi - I
             edi
             */
```

```
// Частина на асемблері
              __asm {
                     // for(i = 0;i < n;i++)
                    mov esi, 0 // i
mov eax, 0 // allowed_index
                     For1:
                     cmp esi, n
                            jge EndFor1
                            cmp arr_asm[esi * 4], 0
                            jg Exchange
                            jmp Go
                            Exchange:
                     mov ebx, arr_asm[eax * 4]
                            mov edx, arr_asm[esi * 4]
                           mov arr_asm[eax * 4], edx
                            mov arr_asm[esi * 4], ebx
                            inc eax
                            jmp Go
                            Go:
                     inc esi
                            jmp For1
                            EndFor1 :
              }
              // Виведення масивів після виконання операцій
              printf("[AFTER] [C] :\t\t");
              show(arr_c, n);
printf("[AFTER] [ASM] :\t\t");
              show(arr_asm, n);
              printf("\n");
              j++;
       }
       return 0;
}
```

in.txt

```
1025
10
40000 123 90 80 70 0 0 -30 -60 -1000
-1000 -60 -30 0 0 70 80 90 123 40000
123 -30 -60 70 0 -1000 40000 80 90 0
5 6 -2 -6 4 6 4 -3 1 2
1
5555
10
1 2 3 4 5 6 7 8 9 10
10
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10
100
54 -23 47 -67 10 -62 -1 22 -45 5 96 -18 -2 8 -37 -95 54 -18 19 55 28 28 24 66 52 -88 -
39 \; -54 \; 69 \; 91 \; 22 \; -32 \; -39 \; -45 \; -98 \; 47 \; 9 \; 96 \; 61 \; 33 \; 31 \; -91 \; 18 \; -82 \; -99 \; -100 \; 13 \; -22 \; -15 \; 100 \; 73
-58 -69 -23 30 23 -14 -52 68 89 7 -11 -30 -38 -7 -3 -22 23 -41 -48 91 -96 63 -4 -27 -76 8 33 65 22 63 76 35 91 96 13 38 44 36 -22 -33 25 73 50 6 27 9 -12 67 59
```

Частина 5. Тестування

Результати тестування наведені в таблиці 2.

Таблиця 2 – Результати тестування на Сі

No No	Довжина	ультати тестування Вхідні дані	Очікуваний	Отриманий	Результат
312	довжина	Блідіп дапі	результат	результат	тестування
1	0		результат	результат	OK
2	1025				OK
3	10	123 -30 -60 70 0 -	40000 123 90 80	40000 123 90 80	OK
	10	1000 40000 80 90	70 0 0 -30 -60 -	70 0 0 -30 -60 -	OK
		0	1000	1000	
4	10	-1000 -60 -30 0 0	70 80 90 123	70 80 90 123	OK
•	10	70 80 90 123	40000 -1000 -60 -	40000 -1000 -60 -	
		40000	30 0 0	30 0 0	
5	10	123 -30 -60 70 0 -	123 70 40000 80	123 70 40000 80	OK
	10	1000 40000 80 90	90 -1000 -60 -30 0	90 -1000 -60 -30 0	011
		0	0	0	
6	10	56-2-6464-3	5 6 4 6 4 1 2 -3 -6 -	5 6 4 6 4 1 2 -3 -6	OK
		1 2	2	-2	
7	1	5555	5555	5555	OK
8	10	123456789	12345678910	123456789	OK
		10		10	
9	10	-1 -2 -3 -4 -5 -6 -	-1 -2 -3 -4 -5 -6 -7	-1 -2 -3 -4 -5 -6 -7	OK
		7 -8 -9 -10	-8 -9 -10	-8 -9 -10	
10	100	54 -23 47 -67 10 -	54 47 10 22 5 96 8	54 47 10 22 5 96 8	OK
		62 -1 22 -45 5 96	54 19 55 28 28 24	54 19 55 28 28 24	
		-18 -2 8 -37 -95	66 52 69 91 22 47	66 52 69 91 22 47	
		54 -18 19 55 28	9 96 61 33 31 18	9 96 61 33 31 18	
		28 24 66 52 -88 -	13 100 73 30 23 68	13 100 73 30 23	
		39 -54 69 91 22 -	89 7 23 91 63 8 33	68 89 7 23 91 63 8	
		32 -39 -45 -98 47	65 22 63 76 35 91	33 65 22 63 76 35	
		9 96 61 33 31 -91	96 13 38 44 36 25	91 96 13 38 44 36	
		18 -82 -99 -100	73 50 6 27 9 67 59	25 73 50 6 27 9 67	
		13 -22 -15 100 73	-52 -18 -32 -39 -11	59 -52 -18 -32 -39	
		-58 -69 -23 30 23	-30 -38 -7 -3 -22 -	-11 -30 -38 -7 -3 -	
		-14 -52 68 89 7 -	45 -41 -48 -98 -96	22 -45 -41 -48 -98	
		11 -30 -38 -7 -3 -	-45 -4 -27 -76 -23 -	-96 -45 -4 -27 -76	
		22 23 -41 -48 91 -	62 -18 -2 -1 -91 -	-23 -62 -18 -2 -1 -	
		96 63 -4 -27 -76 8	37 -82 -99 -100 -88	91 -37 -82 -99 -	
		33 65 22 63 76 35	-22 -15 -22 -33 -39	100 -88 -22 -15 -	
		91 96 13 38 44 36	-54 -58 -69 -23 -95	22 -33 -39 -54 -58	
		-22 -33 25 73 50	-12 -67 -14	-69 -23 -95 -12 -	
		6 27 9 -12 67 59		67 -14	

Скриншот тестування:

```
[ERR] Invalid paramaters!
[ERR] Invalid paramaters!
```

Рисунок 3 – скришот тестування тест №1-2

```
[BEFORE] [C]: 40000 123 90 80 70 0 0 -30 -60 -1000 [BEFORE] [ASM]: 40000 123 90 80 70 0 0 -30 -60 -1000 [AFTER] [C]: 40000 123 90 80 70 0 0 -30 -60 -1000 [AFTER] [ASM]: 40000 123 90 80 70 0 0 -30 -60 -1000
```

Рисунок 4 – тест №3

```
[BEFORE] [C]: -1000 -60 -30 0 0 70 80 90 123 40000 [BEFORE] [ASM]: -1000 -60 -30 0 0 70 80 90 123 40000 [AFTER] [C]: 70 80 90 123 40000 -1000 -60 -30 0 0 [AFTER] [ASM]: 70 80 90 123 40000 -1000 -60 -30 0 0
```

Рисунок 5 - тест №4

```
      [BEFORE] [C]:
      123 -30 -60 70 0 -1000 40000 80 90 0

      [BEFORE] [ASM]:
      123 -30 -60 70 0 -1000 40000 80 90 0

      [AFTER] [C]:
      123 70 40000 80 90 -1000 -60 -30 0 0

      [AFTER] [ASM]:
      123 70 40000 80 90 -1000 -60 -30 0 0
```

Рисунок 6 - тест №5

```
[BEFORE] [C]: 5 6 -2 -6 4 6 4 -3 1 2 [BEFORE] [ASM]: 5 6 -2 -6 4 6 4 -3 1 2 [AFTER] [C]: 5 6 4 6 4 1 2 -3 -6 -2 [AFTER] [ASM]: 5 6 4 6 4 1 2 -3 -6 -2
```

Рисунок 7 - тест №6

```
[BEFORE] [C] : 5555
[BEFORE] [ASM] : 5555
[AFTER] [C] : 5555
[AFTER] [ASM] : 5555
```

Рисунок 8 - тест №7

```
[BEFORE] [C] : 1 2 3 4 5 6 7 8 9 10 [BEFORE] [ASM] : 1 2 3 4 5 6 7 8 9 10 [AFTER] [C] : 1 2 3 4 5 6 7 8 9 10 [AFTER] [ASM] : 1 2 3 4 5 6 7 8 9 10
```

Рисунок 9 - тест №8

```
[BEFORE] [C]: -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 [BEFORE] [ASM]: -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 [AFTER] [C]: -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 [AFTER] [ASM]: -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
```

Рисунок 10 - тест №9

```
[BEFORE] [C]: 54 -23 47 -67 10 -62 -1 22 -45 5 96 -18 -2 8 -37 -95 54 -18 19 55 28 28 24 66 52 -88 -39 -54 69 91 22 -32 -39 -45 -98 47 9 96 61 33 31 -91 18 -82 -99 -100 13 -22 -15 100 73 -58 -69 -23 30 23 -14 -52 68 89 7 -11 -30 -38 -7 -3 -22 23 -41 -48 91 -96 63 -4 -27 -76 8 33 65 22 63 76 35 91 96 13 38 44 36 -22 -33 25 73 50 6 27 9 -12 67 59 [BEFORE] [ASM]: 54 -23 47 -67 10 -62 -1 22 -45 5 96 -18 -2 8 -37 -95 54 -18 19 55 28 28 24 66 52 -88 -39 -54 69 91 22 -32 -39 -45 -98 47 9 96 61 33 31 -91 18 -82 -99 -100 13 -22 -15 100 73 -58 -69 -23 30 23 -14 -52 68 89 7 -11 -30 -38 -7 -3 -22 23 -41 -48 91 -96 63 -4 -27 -76 8 33 65 22 63 76 35 91 96 13 38 44 36 -22 -33 25 73 50 6 27 9 -12 67 59 [AFTER] [C]: 54 47 10 22 5 96 8 54 19 55 28 28 24 66 52 69 91 22 47 9 96 61 33 31 18 13 100 73 30 23 68 89 7 23 91 63 8 33 65 22 63 76 35 91 96 13 38 44 36 25 73 50 6 27 9 67 59 -52 -18 -32 -39 -11 -30 -38 -7 -3 -22 -45 -41 -48 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -88 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -88 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -88 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -88 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -88 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14 -88 -98 -96 -45 -4 -27 -76 -23 -62 -18 -2 -1 -91 -37 -82 -99 -100 -88 -22 -15 -22 -33 -39 -54 -58 -69 -23 -95 -12 -67 -14
```

Рисунок 11 - тест №10

Висновки

Під час цієї лабораторної роботи я вивчив адресацію та її використання під час програмування на мові асемблера з масивами. У моєму завданні було необхідно було пробігтися по масиву і перемістити усі додатні числа в початок масиву, що не створило дуже великих проблем: спочатку я проаналізував задачу і умову до неї, після чого я написав псевдокод і графічно зобразив їх за допомогою блок-схем — це дуже спрощує проектування.

Приступивши до технічної реалізації проєкту, було важливо написати дуже простий код на мові Сі, щоб як наслідок, було просто реалізувати на мові асемблері і допустити якомога менше помилок.

Після закінчення основної частини проєкту і базового тестування на функціональність я приступив до включення «автоматизації» у процес тестування — додав можливість працювати з файлами, звідки зчитувалася уся необхідна інформація, а саме N- кількість елементів та Arr[N]- масив елементів довжини N.

На мою думку, я повністю засвоїв цю лабораторну роботу і зможу реалізувати подібний функціонал у майбутньому без додаткових труднощів.