MEĐUISPIT IZ ELEKTRONIKE 1 ZADACI

ZADATAK 1. Na sklop prikazan slikom a) priključen je ulazni napon $u_{UL}(t)$ prikazan slikom b). U t = 0 ms napon na kondenzatoru iznosi $U_{C0} = 4$ V, a $u_{UL}(0 \text{ ms}) = -4$ V.

- a) Napisati izraze za izlazni napon u_{IZ} u intervalima 0 < t < 5 ms, 5 ms < t < 10 ms i t > 10 ms, te izračunati vrijednosti izlaznog napona u t = 0 ms, 9 ms i 12 ms (**4 boda**).
- b) Na istom grafu nacrtati ulazni i izlazni napon (1 bod).
- c) Izračunati graničnu frekvenciju mreže. Radi li se o niskopropusnom ili visokopropusnom filtru (1 bod)?

ZADATAK 2. Silicij *n*-tipa homogeno je dopiran s primjesom koncentracije $2 \cdot 10^{16}$ cm⁻³. Nakon dodavanja druge primjese u silicijsku pločicu, Fermijeva energija pomaknut će se za 0,1 eV prema dnu vodljivog pojasa. T = 300 K.

- a) Odrediti tip i koncentraciju druge primjese (4 boda).
- b) Odrediti položaj Fermijeve energije u odnosu na vrh valentnog pojasa nakon drugog dopiranja (1 bod).
- c) Odrediti koncentracije većinskih i manjinskih slobodnih nosilaca nakon prvog i drugog dopiranja (1 bod).

ZADATAK 3. Koncentracije primjesa na *n* i *p* strani silicijske diode iznose $N_D = 5 \cdot 10^{18}$ cm⁻³ i $N_A = 5 \cdot 10^{15}$ cm⁻³. Parametri manjinskih nosilaca su $\mu_n = 670$ cm²/Vs, $\mu_p = 200$ cm²/Vs, $\tau_n = 0.5$ μs i $\tau_p = 1.0$ μs. Površina *pn* spoja iznosi S = 10.0 mm². Širine *n* i *p* strane diode su $W_n = 2$ μm i $W_p = 200$ μm. Vrijedi T = 300 K i m = 1.

- a) Jesu li n i p strana diode uske ili široke? Strana diode je široka ako vrijedi $W_x > 5$ L_x (2 boda).
- b) Izračunati struju zasićenja I_S (2 boda).
- c) Ako kroz diodu teče struja od 15 mA, koliki je napon na diodi U_D (2 boda)?
- d) Skicirati raspodjele manjinskih nosilaca, izračunati i označiti rubne te ravnotežne koncentracije za priključeni napon iz c) dijela zadatka (**2 boda**).
- e) Što se dogodi s dinamičkim otporom diode r_d ako priključeni napon na diodi padne za 25% (pada, raste, ostaje isti)? Koliko iznosi dinamički otpor u tom slučaju (**2 boda**)?

ZADATAK 4. Izlazne karakteristike nekog MOSFET-a prikazane su na slici. Napon praga tranzistora iznosi $|U_{GSO}| = 0,5$ V. Struje u točkama A i B iznose $|I_{DA}| = 0,66$ mA i $|I_{DB}| = 0,666$ mA.

- a) Uz obrazloženje, odrediti tip MOSFET-a (*n* ili *p* kanalni, obogaćeni ili osiromašeni)
 (1 bod).
- b) Odrediti faktor modulacije duljine kanala λ i strujni koeficijent K (3 boda).
- c) Odrediti struju odvoda u točki C, I_{DC} (1 **bod**).
- d) Odrediti dinamičke faktore g_m i r_d u točkama A i C (**3 boda**).

PITANJA

- **1.** Na ulaz CR mreže sa slike doveden je pravokutni napon u_{UL} . Što se dogodi s vremenom pada t_f i srednjom vrijednosti izlaznog napona u_{IZ} u stacionarnom stanju, ako odspojimo kapacitet C_1 ? Vrijedi (**2 boda**):
 - a) t_f se ne mijenja, srednja vrijednost izlaznog napona u_{IZ} se ne mijenja
 - b) t_f se smanji, srednja vrijednost izlaznog napona u_{IZ} se poveća
 - c) t_f se poveća, srednja vrijednost izlaznog napona u_{IZ} se smanji
 - d) t_f se smanji, srednja vrijednost izlaznog napona u_{IZ} se ne mijenja
 - e) t_f se poveća, srednja vrijednost izlaznog napona u_{IZ} se ne mijenja?

- **2.** Silicij je dopiran jednom primjesom. Na temperaturi od 300 K Fermijeva energija E_{F1} nalazi se 0,4 eV iznad Fermijeve energije intrinzičnog silicija (E_{Fi}). Nakon toga silicij je ponovo dopiran, a Fermijeva energija E_{F2} na 300 K nalazi se sada 0,2 eV iznad ruba valentnog pojasa. Nakon toga je temperatura porasla s 300 K na 500 K. Za tip druge primjese i pomak Fermijeve energije nakon porasta temperature vrijedi (**2 boda**):
 - a) druga primjesa su donori, položaj Fermijeve energije se ne mijenja
 - b) druga primjesa su akceptori, Fermijeva energija približava se rubu valentnog pojasa
 - c) druga primjesa su donori, Fermijeva energija približava se sredini zabranjenog pojasa
 - d) druga primjesa su akceptori, Fermijeva energija približava se sredini zabranjenog pojasa
 - e) druga primjesa su donori, Fermijeva energija približava se rubu valentnog pojasa.

- **3.** Na pn-diodu sa širokim stranama spojen je napon $U_D = 0.6$ V i n-strana je 1000 puta jače dopirana od p-strane. Na kojoj strani je veća koncentracija manjinskih nosilaca? Ako se širina n-strane suzi na vrijednost $W_n = L_p/10$, što se dogodi s iznosom struje kroz diodu? Vrijedi (**2 boda**):
 - a) koncentracija manjinskih nosilaca veća je na p-strani, a struja ostaje približno ista
 - b) koncentracija manjinskih nosilaca veća je na *n*-strani, a struja značajno raste
 - c) koncentracija manjinskih nosilaca veća je na p-strani, a struja značajno pada
 - d) koncentracija manjinskih nosilaca veća je na n-strani, a struja značajno pada
 - e) koncentracija manjinskih nosilaca veća je na p-strani, a struja značajno raste.
- **4.** Za struje zasićenja dvije diode na sobnoj temperaturi (T = 300 K) vrijedi $I_{SI} < I_{S2}$. Na diode je primijenjen isti napon $u_D = U_D + U_{dm} \cdot \sin \omega t$ gdje je $U_D = 500 \text{ mV}$. Za istosmjerne i izmjenične komponente struja dioda vrijedi (**2 boda**):
 - a) $I_{D1} > I_{D2}$, $I_{dm1} > I_{dm2}$
 - b) $I_{D1} > I_{D2}$, $I_{dm1} < I_{dm2}$
 - c) $I_{D1} < I_{D2}$, $I_{dm1} > I_{dm2}$
 - d) $I_{D1} = I_{D2}$, $I_{dm1} = I_{dm2}$
 - e) $I_{D1} < I_{D2}$, $I_{dm1} < I_{dm2}$.
- 5. Može li se monokristalni silicij koristiti za izradu efikasnog izvora svjetlosti? Za valne duljine zračenja u vidljivom spektru pretpostavljamo $\lambda = [400 \text{ nm}, 700 \text{ nm}]$. Može li se silicij koristiti za izradu fotodetektora zračenja valne duljine $\lambda_1 = 1.5 \mu \text{m}$ (infracrveno područje)? Vrijedi (2 boda):
 - a) za efikasan izvor svjetlosti može, za detekciju $\lambda_1 = 1.5$ µm može
 - b) za efikasan izvor svjetlosti ne može, za detekciju $\lambda_1 = 1.5 \mu m$ može
 - c) za efikasan izvor svjetlosti može, za detekciju $\lambda_1 = 1.5 \,\mu m$ ne može
 - d) za efikasan izvor svjetlosti ne može, za detekciju $\lambda_1=1.5~\mu m$ ne može
 - e) za efikasan izvor svjetlosti može, za detekciju $\lambda_1 = 1.5 \,\mu m$ ovisi o radnoj temperaturi.

6. Na ulaz sklopa ispravljača priključen je sinusni ulazni napon. Kako izgleda izlazni napon (2 boda)?

7. Na slici su prikazane izlazne karakteristike dva MOSFET-a, A i B, pri istim naponima U_{GS} ($U_{GSA} = U_{GSB}$). Za napon praga U_{GS0} i faktor naponskog pojačanja μ vrijedi (2 boda):

- a) $U_{GSOA} = U_{GSOB}$ i $\mu_A > \mu_B$
- b) $U_{GSOA} > U_{GSOB}$ i $\mu_A = \mu_B$
- c) $U_{GSOA} = U_{GSOB}$ i $\mu_A < \mu_B$
- d) $U_{GSOA} > U_{GSOB}$ i $\mu_A < \mu_B$
- e) $U_{GSOA} = U_{GSOB}$ i $\mu_A = \mu_B$.

ELEKTRONIKA 1

Međuispit - 16. 11. 2020.

Rješenja

ZADACI

1.

a)
$$u_{IZ} = u_{UL} + U_{C0} = 0 \text{ V}$$

 $\underline{5 \text{ ms}} < t < 10 \text{ ms}$ $u_{IZ} \left(5 \text{ ms} < t < 10 \text{ ms} \right) = u_{IZ} \left(5 \text{ ms} \right)^{+} \cdot e^{-\frac{t - 5 \text{ms}}{\tau}}$
 $\underline{t > 10 \text{ ms}}$ $u_{IZ} \left(t > 10 \text{ ms} \right) = u_{UL} \left(10 \text{ ms} \right)^{+} \cdot e^{-\frac{t - 10 \text{ms}}{\tau}}$

$$u_{IZ} (t = 0 \text{ ms}) = 0 \text{ V}$$

 $u_{IZ} (t = 9 \text{ ms}) = 4,406 \text{ V}$
 $u_{IZ} (t = 12 \text{ ms}) = -0,92 \text{ V}$

b)

c) $f_d = 1 / (2\pi\tau) = 28.4$ Hz, visokopropusni filtar

2.

a) dodani su donori (*n*-tip), $N_D = 9.35 \cdot 10^{17} \text{cm}^{-3}$

b)
$$\Delta E = E_{F2} - E_{Fi} + \frac{E_G}{2} = 0.47 + 0.56 = 1.03 \text{ eV}$$

c)
$$n_1 = 2 \cdot 10^{16} \text{ cm}^{-3}$$
 $p_1 = 1,05 \cdot 10^4 \text{ cm}^{-3}$ $n_2 = 9,55 \cdot 10^{17} \text{ cm}^{-3}$ $p_2 = 220 \text{ cm}^{-3}$

3.

a) *n*-strana je uska, *p*-strana je široka

b)
$$I_S = qS \left(D_n \frac{n_{0p}}{L_n} + D_p \frac{p_{0n}}{W_n} \right) = 3,97 \text{ pA}$$

c)
$$U_D = mU_T \cdot \ln\left(\frac{I_D}{I_S} + 1\right) = 0,57 \text{ V}$$

d)
$$n_{p0} = 1,53 \cdot 10^{14} \text{ cm}^{-3}$$
 $p_{n0} = 1,53 \cdot 10^{11} \text{ cm}^{-3}$

e) r_D raste $r_{d2} = \frac{U_T}{I_{D2} + I_S} = 431,0 \ \Omega$

4.

a) n-kanalni obogaćeni tip - (struje I_D i napon U_{DS} pozitivni – n-kanalni, za $U_{GS}=0$ V, kanal nije formiran – obogaćeni)

b)
$$\lambda = 0.0133 \text{ V}^{-1}$$

$$K = 2,63 \text{ mA/V}^2$$

c)
$$I_{DC} = 2.31 \text{ mA}$$

d)
$$g_{mA} = 1.89 \text{ mA/V}$$
 $g_{mC} = 3.55 \text{ mA/V}$

$$r_{dA}=116,7~\mathrm{k}\Omega$$
 $r_{dC}=33,83~\mathrm{k}\Omega$

PITANJA

- grupa A
 - D
 - 1. 2. D

 - 3. A
 - 4. E
 - 5. D
 - D 6.
 - 7. C