$ext{CS251}$ - Data Structures and Algorithms Fall 2024

PSO 3, Week 4

Question 1

(Binary Tree)
(1) A full binary tree cannot have which of the following number of nodes?
A. 3
B. 7
C. 11
D. 12
E. 15
(2) Given the number of nodes $n = 7$, how many distinct shapes can a full binary tree have?
A. 3
B. 4
C. 5
D. 6
E. 7
(3) The number of leaf nodes is always greater than the number of internal nodes in a full binary tree
A. True
B. False
(4) The number of leaf nodes is always greater than the number of internal nodes in a complete binar tree.
A. True
B. False
(5) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined.
A. True
B. False

Question 2

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

- 1. Pushing an element to the stack takes no more than O(1) operations.
- 2. Popping from the stack takes no more than O(1) operations if performed after a push.
- 3. Popping from the stack takes no more than O(n) operations if performed after another pop, where n is the number of elements in the data structure.

Question 3

(Binary heap)	
(1) If the binary heap is represented as an array, and the root is stored at index 0, where is the left c of the node at index $i = 23$ stored?	hilo
A. 45	
B. 46	
C. 47	
D. 48	
E. 49	
(2) If the binary heap is represented as an array, and the root is stored at index 0, where is the part of the node at index $i = 99$ stored?	rent
A. 45	
B. 46	
C. 47	
D. 48	
E. 49	
(3) If the binary heap is represented as an array of length $n = 99$, and the root is stored at inde where is the last non-leaf node stored?	x 0
A. 45	
B. 46	
C. 47	
D. 48	
E. 49	
(4) If the binary heap is represented as an array of length $n = 99$, and you want to insert an elem how many different locations of the element are possible after insertion?	ent
A. 5	
B. 6	
C. 7	
D. 8	
E. 9	

Question 4

(Review)

- (1) The big-O closed-form runtime expression T(n) for the recurrence T(n) = 3T(n/3) + n is (assume n is a power of 3 and T(1) = 1)
- A. O(n)
- B. $O(n \log n)$
- C. $O(n^3 \log n)$
- D. $O(\sqrt[3]{n}\log n)$
- E. $O(n\sqrt[3]{\log n})$

4

(2) Two algorithms are developed based on the following template

```
1: function \mathcal{A}(n: \mathbb{Z}_{\geq 1} \text{ power of } 2)
2: if n = 1 then
3: return 1
4: end if
5: return \mathcal{A}(n/2) + \mathcal{A}(n/2)
7: end function
```

The missing part requires F(n) time in Algorithm \mathcal{A}_1 , and requires G(n) time in Algorithm \mathcal{A}_2 , where F(n) and G(n) are two functions of n.

If
$$F(n) = \Theta(G(n))$$
, then $A_1(n) = \Theta(A_2(n))$.

The above statement is

- A. True
- B. False
- C. Possibly true/Possible false
- (3) Consider a sorted circular doubly-linked list where the head element points to the smallest element in the list. What is the time complexity to find the largest element in the list?
 - A. O(1)
 - B. $O(\log n)$
 - C. O(n)
 - D. $O(n \log n)$

4