

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

A207

Swedish Patent No. 123-138

---

Translated from Swedish by the Ralph McElroy Co., Custom Division  
2102 Rio Grande, Austin, Texas 78705 USA

S W E D E N

PENT NO. 123-138

Description published  
by the Royal Patent and  
Registration Office



CLASS 5 a:41

Granted on September 9, 1948

Term of Patent from Jan. 30, 1945

Published on November 9, 1948

---

Application No. 767/1945 on January 30, 1945. Supplement: one drawing.

SVENSKA SKIFFEROLJEAKTIEBOLAGET, ÖREBRO

A process in the gasification of oil-bearing shale rock in situ while supplying heat through channels bored in the shale rock.

Inventor: F. Ljungström

The invention refers to a process of producing shale oil, based on the heating of the shale rock without prior quarrying of the shale, in which process the oil-bearing gases produced by the heating are removed from the rock through channels bored in it. During condensation through cooling, those portions of the gases that constitute the shale oil are then separated from said gases.

When heating a shale rock and during degasification of gas-forming substances that are present in the rock a certain quantity of material is transported away, which material in a gaseous state thus leaves the rock in a manner similar to that occurring in degasification of pit coal or wood, for example, and in all such cases a more or less porous structure of the original material remains. The remaining material, provided it consists of coke or charcoal, has because of its porous structure extraordinarily large surface area within reach of the gas. It is now known that the shale coke also, that is in this case the degasified shale rock, has a porous structure with very large surface area within reach of gases. The shale coke unlike ordinary coke or

charcoal has at the same time a very high ash content, that is a residue of incombustible components, and with regard to Swedish conditions this amounts to about 70% of the original weight of the shale. The shale-coke contents include various iron compounds, for example, and quite a few other components that in contact with different gases are suited as catalysts for influencing reactions in the gases.

In direct degasification of shale rock during continuing production of shale oil very large volumes of heated and degasified shale rock are created, mainly consisting of shale coke which remains unmoved in its various strata but which through the degasification has become transformed into one large porous mass that allows gases to move in all directions. If thus approximately 15 m<sup>3</sup> of rock mass is used for each m<sup>3</sup> of oil, then, for example, a porous shale rock of 300,000 m<sup>3</sup> is formed during one year in the production of 20,000 m<sup>3</sup> of shale oil. During the actual gasification procedure of the shale oil a slowly progressing heat front is arranged in the shale rock where both instruments for heating (electric heating elements) and outlet channels for removal of the gases are gradually put into action.

The object of the invention is to use the large porous shale-coke mass formed in this manner as a catalyst for initiation of certain desired chemical reactions within the same, all with the intent of producing various substances with the co-operation of the catalyst in question. The gas channels mentioned are utilized in this process, after they have finished serving as outlets for the shale-oil gases, also for supply of gases to the shale rock. At the same time other such channels can be used as outlets for the synthesis products that have been produced within the shale rock with the co-operation of the shale coke catalyst. A portion of the channels thus forms inlets to the shale coke, and other channels serve as outlets from the same, at which gases that are inserted into the rock under pressure in one place can be led away from the same in another place. Gases then come into contact with the surfaces of the

catalyst and are affected by these in a manner determined by the chemical and physical conditions at hand.

The invention will be more thoroughly described below with reference to the design for implementation of the process shown in the example on the enclosed drawing, at which time other qualities characteristic of the invention also will be indicated.

Figure 1 shows more or less schematically a shale rock, arranged for production of shale oil, in vertical section.

Figure 2 shows a diagram indicating the temperature distribution within the shale rock.

10 on the drawing indicates a number of heating elements that are installed at regular intervals in the shale rock 12, on which is overlaid a stratum of limestone 14 and possibly a layer of soil 16. A number of exhaust channels 18 are connected to gas outlets 20, drilled through limestone and shale. The heating elements 10 and the exhaust channels 18 are synchronously arranged in rows one after another at an angle with the plane of the drawing. The gas outlets 20 belonging to such a row are connected to a manifold 24 via the connecting pipes 21 and shut-off and control valves, respectively, 22, 23. A larger manifold 25 for a number of manifolds 24 unites these in turn with a condenser 26 and a spray tower 27 in which the shale-oil gases are cooled in a standard manner and separated from condensable oil components to the greatest possible extent. The condenser 26 which can also consist of or include, respectively, equipment for other chemical treatment of shale-oil gases, for example, separation of sulfur or other by-products in these, includes a pipe 28 connected to a storage tank for the oil 30. A pipe 32 from the tower washer 27 also leads to this tank. From a branch pipe 34 some of the uncondensed gases can also be led off through a pipe 36 into which is installed a valve 38, to be used for fuel or other purposes. Another portion of the gases flows through a compressor 40.

In a section of the shale rock, bordered at a right angle to the plane of the drawing by the plane through the lines 42, 44, the pyrolysis, that is the new formation of shale gases occurring through heat supply, is considered to be finished. The heat supply to the elements 10 has consequently been interrupted here. For the moment, a section of the shale rock, bordered by the lines 44-46, is extracted instead. The heat wave is accordingly assumed to move in the direction of the arrows 48. The line 50 in Figure 2 represents the temperature distribution in the two sections. At line 44 the temperature can reach a value between 350 and 400°C, preferably 380°C. During the process according to the invention the temperature falls in the direction towards line 42.

While the channels 20 in section 44-46 serve as outlets for the shale gases extracted in this section, at least one row of such channels, that is situated at the rear edge of the section 42-44, as seen in the direction of the path of the heat according to the arrows 48, and which has been given the designation 52 on the drawing, has been connected to the back-pressure side of the compressor via a manifold 54. In the gas channels 52 the gases coming from the pipe 34 are thus forced to flow back to the already degasified shale rock in the area between the lines 42 and 44. Some of these gases flowing back can be led off through an outlet 56 and a manifold 58 from the outlet channel 60 in this area, in order to be utilized or recycled, respectively, to the pipe 34 after suitable treatment by condensation or washing or other processes. Possibly, the channels 60 can be connected to the junction pipe 24. During continued flow within the porous strata of the shale rock in the direction of the arrows 48 the rest of the gases can contact shale rock within the sections 44-46 where shale rock heating is in progress and where during the pyrolysis shale gases are consequently led off through the gas channels 20. By obtaining a sufficiently high pressure increase in the gases after the compressor 40 these can thus be made to flow in a circuit with two different branches, partly a circuit connected to the passages 56, 34 and the section 42-44 in the shale rock, partly a circuit including passages 18, 34 and both

sections 42-44 and 44-46 within the shale rock. According to the invention, such gases which through cooling, condensation and washing are freed from the oil are thus made to flow through the shale rock where they among other things can contribute to more expeditious transport of oil gases from the shale rock to the condenser installation by the flushing effect that such gases will produce. However, besides this flushing effect another effect is also referred to according to the invention. In all oil production with degasification directly in the shale rock some losses always arise through gas leakage within the rock up towards the ground surface, because of the overpressure that prevails in the rock during degasification. Cracks exist here and there in the rock, and the overlaid limestone is in itself not completely leak-free. A smaller portion of the produced oil gases will therefore gradually leak out through leakage in cracks in the ground on top of the shale rock. Already degasified shale rock is filled by a compressor with gases where the oil has already been extracted according to the invention. The leakage that still results in connection therewith will in this way consist of leaking gases that do not contain any oil. Owing to this the advantage is gained according to the invention that oil losses through leakage in the ground surface are reduced.

When extracting oil from shale it can be assumed that depending on the temperatures and pressures at which the pyrolysis takes place, as well as depending on the rate at which the shale is heated, the pyrolysis is carried out under conditions regulated by physical and chemical conditions, so that different substances are formed in a quantitatively balanced ratio to one another. As an example it can thus be assumed that 20% of the formed pyrolysis gas consists of hydrogen, a certain portion of said gas of methane and other closely related hydrocarbons, and that finally the oil-forming hydrocarbons will amount to a smaller portion of the total gas volume because of their higher molecular weight.

The actual pyrolysis process is of such a complicated nature that at present it cannot be explained in a satisfactory way, but the practical result indicates that a certain ratio between the different hydrocarbons always is present. As can be seen from above, the gas returned through pipe 34 to the shale rock is proportionately richer in hydrogen and light hydrocarbons than the original pyrolysis gas from which the heavier hydrocarbons have been extracted. In the presence of the large porous mass of shale rock as a contact substance and where pyrolysis progresses slowly within very large volumes, the surplus of hydrogen and lighter hydrocarbons in the recycled gas will according to the invention affect the pyrolysis in the direction that an equilibrium strives to be reinstated similar to the composition of the pyrolysis gas originally extracted. This condition could probably most closely be compared to hydrogenation, but, according to the invention, the very high pressure under which such a hydrogenation is normally carried out are replaced, in this case with an enormous contact surface area in the catalyst, which makes it possible to achieve an approach to equilibrium ratio between the different reactions during pyrolysis in a reasonable time. More coal is then bound to the hydrogen added through the reintroduction, through which the carbon remaining in the coke is diminished to the advantage of a quantitative increase in the oil-forming gases.

According to the invention the gases from which the oil has been extracted first pass through a porous rock mass where the oil has already been driven off. In this process the said gases are preheated, after they during the passage through the condenser and spray tower have been cooled to a low temperature that in practice remains about  $0^{\circ}$  or lower. The already degasified shale rock and the waste heat that has been left behind in this hot rock after the pyrolysis are thus partly utilized for preheating the circulation gas participating in the pyrolysis. Since the heat content of such a gas is relatively low, the quantity of gas that is circulated can according to the invention and depending on the circumstances be selected so that its volume amounts to one or several times the volume of the gas newly formed in the pyrolysis. In this way the mechanism of reaction which

has been indicated above is facilitated in such a manner that equilibrium in the different reactions does not have to be nearly achieved because of the large surplus of lighter hydrocarbons and hydrogen, that is available in the pyrolysis. Through this richer gas circulation the condition also emerges that such hydrocarbons that are in the border area for the gasification more easily can be led away from the shale rock by means of the richer gas circulation. The heaviest hydrocarbons that without circulating gas remain and are coked in the rock, will probably therefore wholly or partially be forced to move along with the general gas flow by means of gas circulation. According to the invention new possibilities are thus created by introduction of a circulating gas in already heated shale rock to obtain a richer production of the coveted pyrolytic liquid hydrocarbons. Finally it is conceivable that the large rock body of hot shale coke through which the circulation gas flows on its way to the pyrolysis area in the shale rock because of its enormous dimensions and with that associated catalytic activity to a certain extent directly allows a hydrogenation of hydrocarbons closely related to the coke, that have remained in the same, through which the loss of residue in the form of coke is reduced.

Instead of the pyrolysis gases according to above other gases, for example producer gas, can be considered for accomplishment of different desired chemical reactions with assistance from the porous hot shale.

*Fig. I*



*Fig. 2*



Patent claims: [for clarification, retyped from original text.]

Translation of the claims of Swedish Patent Specification 123-138  
Svenska Skifferoljeaktiebolaget, Örebro, Sweden.

1. A process in the gasification of oil-bearing shale rocks in situ while supplying heat through channels bored in the rock, characterized in that when a shale portion has been degasified by means of pyrolysis and has become porous gases are introduced in said portion, while it is still warm, through other channels bored in the shale rock than the heat supplying channels, and that said gases are of such kind that they in the meanwhile are subjected to chemical reactions without combustion, the shale rock acting as a catalyst.

2. A process as claimed in claim 1, characterized in that at least a part of the gas formed during the pyrolysis is recycled into the shale portion after that its oil-bearing constituents has [sic; have] been removed by condensation or washing with cooling.

3. A process as claimed in claim 1, characterized by that the introduced gas by means of a compressor is caused to flow through a portion of already degasified warm shale rock to be introduced in another rock portion wherein oil is being recovered.

4. A process as claimed in any of the claims 1 to 3, characterized by that a part of the recycled gas is discharged from the shale rock before it has reached the zone, wherein the degasification of shale is taking place, while another part is passed also through this zone.

5. A process as claimed in any of the preceding claims, characterized by that the gases are introduced into the shale rock through the channels serving as gas outlets during the pyrolysis.

1123  
PATENT N° 123 138

SVERIGE

BESKRIVNING  
OFFENTLIGGJORD AV KUNGL.  
PATENT- OCH REGISTRERINGSVERKET



E65.452-1

KLASS 5 a:41

BEVILJAT DEN 9 SEPTEMBER 1948  
PATENTID FRAN DEN 30 JAN 1945  
PUBLICERAT DEN 9 NOVEMBER 1948

Ans. den 7/1 1945, nr 767/1945.

Härtill en ritning.

SVENSKA SKIFFEROLJEAKTIEBOLAGET, ÖREBRO. (3)

Sätt vid förgasning av oljeförande skifferberg in situ under tillförande av värme genom i skifferberget upptagna kanaler.

Uppfinnare: E. Ljungström.

Uppfinningen härför sig till ett sätt att framställa skifferolja, baserat på uppvärming av skifferberget utan föregående utbrytning av skiffer, varvid de genom uppvärmeningen framkallade oljeförande gaserna avlägsnas ur berget genom i delsamma anbragta kanaler. Ur gaserna fränskiljs därpå sadana delar av desamma, vilka utgöra skifferoljan, under avkylning genom kondensation.

Vid uppvärmeningen av ett skifferberg sker vid avgasningen en delvis förflyttlig gasbildande substanser en horitransport av en viss mängd, som alltså i gasform avgår ur berget på liknande sätt som t. ex. vid avgassning av stenkol eller ved, och i samtidiga dessa fall kvarstår en mer eller mindre porös/~~stomp~~ma av det ursprungliga materialet. Det kvarblivande materialet, därest det består av koks eller tråkol, har genom sin porösa struktur utomordentligt stora för gasens åtkomliga ytor. Det har nu visat sig, att även skifferkoksen, d. v. s. i detta fall det avgasade skifferberget, har en porös struktur med mycket stora ytor, åtkomliga för gaser. Samtidigt har skifferkoksen i motsats till den vanliga koksen eller tråkolet en mycket stor askhalt, d. v. s. rest av icke brännbara beständsdelar och speciellt för svenska förhållanden uppgår till omkring 70 % av den ursprungliga skiffervikten. Skifferkoksen innehåller bl. a. t. ex. olika järnföringar och en hel del andra beständsdelar, som i kontakt med olika gaser är ägnade att i egenskap av katalysator påverka reaktioner i gaserna.

Vid direkt avgasning av skifferberget uppstår under fortgående framställning av skifferolja mycket stora volymer av uppvärmt och avgasat skifferberg bestående huvudsakligen av skifferkoks, som ligger kvar orubbat i sitt ofta lager, men som genom avgasningen blivit ombildat till en enda porös massa framsläplig för gaser i alla riktningar. Därest sålunda för varje m<sup>3</sup> olja åtgår omkring 15 m<sup>3</sup> bergmassa, bildas t. ex. under ett års tid vid framställning av 20000 m<sup>3</sup> skifferolja ett poröst skifferberg om 300000 m<sup>3</sup>. Under själva

förgasningsprocedturen av skifferoljan anordnas inom skifferberget en långsamt framdrivande värmefront, där såväl organ för uppvärmeningen (elektriska värmeelement) som avloppskanaler för gasernas avledning successivt sättas i verksamhet.

Uppfinningen avser att använda den på så sätt utbildade stora porösa skifferkoksmassan som en katalysator för inleddet av vissa önskade kemiska reaktioner inom densamma, allt med avsikt att framställa olika substanser under medverkan av katalysatorn ifråga. Harvid utnyttjas de nämnda gaskanalerna, sedan de slutat att tjänstgöra som avlopp för skifferoljegaserna, även för tillförsel av gaser till skifferberget. Samtidigt kunna andra dylika kanaler användas för avlopp av syntesprodukter framställda inom skifferberget under medverkan av den av skifferkoksen bildade katalysatorn. En del kanaler bildar sättes tilllopp till skifferkoksen och andra kanaler avlopp från densamma, varvid gaser, som under tryck nedföras i berget på ett ställe, kunna avförlas ur detsamma på ett annat ställe. Gaser kommer härunder i kontakt med katalysatorns ytor och påverkas av desamma på sadant sätt, som beläggas av förhanden varande kemiska och fysikaliska förhållanden.

Uppfinningen skall nedan närmare beskrivas under hävvisning till å bifogade ritning som exempel visade utföringsform för sattets genomförande, varvid även ytterligare uppföringen känneleknande egenskaper skola angivs.

Fig. 1 visar mer eller mindre schematiskt ett skifferberg, inrattat för framställning av skifferolja, sett i vertikalsektion.

Fig. 2 visar ett diagram angivande temperaturfordelningen inom skifferberget.

A ritningen betecknar 10 ett antal värmeelement, som är anbragta på jämnma mellanrum i skifferberget 12, på vilket är överlagrat ett lager av kalksten 14 samt eventuellt ett jordlager 16. Ett antal avgeskanner 18 står i förbindelse med genom kalk och skiffer ned-

Patent 123 138

borrade gasavlopp 20. Värmeelementen 10 och avgaskanalerna 18 är åro samtidigt anordnade i rader efter varandra i vinkel med ritningsplanet. Gasavloppen 20 tillhörande en dylik rad är över förbindelserör 21 och avstångs- resp. regleringsventiler 22, 23 anslutna till en samlingskanal 24. En större samlingskanal 25 för ett flertal samlingskanaler 24 förenar dessa i sin tur med en kondensor 26 och ett tvättorn 27, vari skifferoljegaserna på känt sätt nedkylas och i möjligaste mån befrias från kondenserbara oljebeständsdelar. Kondensorn 26, vilken även kan utgöras av resp. omfatta apparatur för annan kemisk behandling av skifferoljegaser t. ex. avskiljning av svavel eller andra biprodukter i dessa, är genom en ledning 28 ansluten till en uppställare mynnar 30 för oljan. I denna befällare mynnar även en ledning 32 från tvättornet 27. Från en grenledning 34 kan nu en del av de icke kondenserade gaserna avföras genom en ledning 36, i vilken är insatt en ventil 38, för att användas som bränsle eller för andra ändamål. En annan del av gaserna genomströmina en kompressoranordning 40.

I en sektion av skifferberget begränsad vintrått mot ritningsplanet av plan genom linjerna 42, 44 antages pyrolysen, d. v. s. en under värmetillsel försiggående nybildning av oljegaser vara avslutad. Värmetillseln till elementen 10 har här alltså avbrutits. I ålet utvinnes för ögonblicket en sektion av skifferberget, begränsad av linjerna 44–46. Irnevägen förutsättes alltså vandra i riktningen av pilarna 48. Linjen 50 i fig. 2 representerar temperatursfördelningen i de båda kaktionerna. Vid linjen 44 kan temperaturen ha uppnått ett värde, mellan  $350-400^{\circ}$  C reträdessvis omkring  $380^{\circ}$  C. Temperaturen blir genom processen enligt uppföringen i röning mot linjen 42.

Medan kanalerna 20 i sektionen 44–46 instigöra som avlopp för de i denna sektion vunna skiffergaserna, har minst en rad dyka kanaler, som är belägen vid sektionens

44 bakkant, sett i irnevägens riktning längst pilarna 48, och som i röningen givits teckningen 52, anslutits till kompressorns tryck icke via en samlingskanal 54. I gaserna 52 bringas sålunda de från ledning 34 kommande gaserna att återströmma till redan avgasade skifferberget inom området mellan linjerna 42 och 44. En del av dessa återströmmande gaser kan avledas genom avlopp 56 och en samlingskanal 58 från kanalen 60 inom detta område, för att efflämplig behandling genom kondensation

tvättning eller andra processer nyttiggörs, resp. återledas till ledningen 34. Eventuellt kanalerna 60 vara kopplade med ledningsledningen 24. Resten av gaserna under fortsatt strömmning inom skifferbergets porösa lagringar i pilarnas 48 riktning anta i kontakt med skifferberg inom sek-

tionen 44–46, där uppvärmeningen av skifferberget pågår och där alltså skiffergasen under pyrolys avledas genom gaskanalerna 20. Genom åstadkommandet av tillräckligt hög tryckstegeing hos gaserna efter kompressorn 40 kan dessa således bringas att strömma i ett kretslopp med två olika förgreningar, dels en krets ansluten till passagerna 56, 34 samt sektionen 42–44 i skifferberget och dels en krets innehållande passagerna 18, 34 och bagage sektionerna 42–44 och 44–46 inom skifferberget. Sådana gaser vilka genom nedkylning, kondensering och tvättning befrias från oljan bringas således enligt uppföringen att genomströmma skifferberget, där de bl. a. kan kunna bidraga till en tydligare transport av oljegaser från skifferberget till kondensoranläggningen genom den spolverkan, som dylika gaser kommer att prestera. Vid sidan av denna spolverkan avses emellertid enligt uppföringen även en annan verkan. Vid all oljeframställning med avgasning direkt i skifferberget uppkommer alltid på grund av det övertryck, som råder i berget vid avgasningen en del förluster genom gasläckage inom berget upp mot markytan. Sprickor finnas här och var inom berget och det överlagrade kalkberget är i sig själv icke fullkomligt tätt. En mindre del av de framställda oljegaserna kommer därför att så smältningomi läcka ut genom läckage i sprickor i marken ovanpå skifferberget. Enligt uppföringen fylls sedan avgasat skifferberg med tillhjälp av en kompressor med gaser där oljan redan utvunnits. Det läckage, som därför allt förfarande uppstår kommer på så sätt att bestå av läckande gaser, som icke innehåller någon olja. Härigenom vinnas enligt uppföringen den fördelen, att oljeförluster genom läckage i markytan minskas.

Vid oljeutvinning ur skiffer kan det antas, att beroende på de temperaturer och tryck, varunder pyrolysen fortgår, även som beroende på den hastighet, med vilken uppvärmeningen av skiffern genomföres, pyrolysen genomförs under av de fysikaliska och kemiska betingelserna reglerade förhållanden, så att olika substanser utbildas i ett kvantitativt balansförhållande till varandra. Samtida kan som exempel antas att 20 % av den utbildade pyrolysgasen utgörs av vete, en viss del av densamma av metan och andra närsilikatade kolväten för att stötta de oljebildande kolvätena på grund av sin stora molekylnvikt kommer att uppgå till en mindre del av den totala gasvolymen.

Själva pyrolysprocessen är av en så komplicerad natur, att den ej för matvarande kan tillfredsställande klarlagras, men det praktiska resultatet tyder på, att en dylik viss proportion mellan de olika kolvätena alltid föreligger. Den genom ledningen 34 till skifferberget återintorda gasen är, sasom av oväntade framgår, proportionellt rikare på vete och fattigare kolväten än den ursprung-

Transl  
Svensk

1  
situ w

charac  
meens

in sai

bored

ssid g

ted to

eating

2.

least r

into tt

been re

3.

the int

through

introdu

4.

rized b

shale r

tion of

through

5.

*My i argi*

I pyrolysgasen, fram vilken de tyngre kolvaten i utvunnits. I nivåvaro av skifferbergets stora porosa massor som kontaktssubstans och där pyrolysen långsamt pagar inom mycket stora volymer, kommer enligt uppförningen över skottet av valgas och lättare kolvaten i den återinförda gasen att påverka pyrolysen i den riktning att en balans stravar att återställas mot den ursprungliga utvunna pyrolysgasens sammansättning. Detta förhållande torde naturligt kunna liknas vid en hydrering, men enligt uppföringen ersattes de mycket höga tryck, under vilka sådan hydrering brukar genomföras, i detta fall med en ändamålig kontakt yta i katalysatorn, som möjliggör att inom rimlig tid uppnå ett närmende till ett balanserat förhållande mellan de olika reaktionerna vid pyrolysen. Därvid binder mera kol vid det genom återinföringen tillfördä väte, varigenom i koksen kvarblivande kol minskas till förmån för en kvantitativ ökning av de oljebildande gaserna.

Enligt uppföringen passerar de gaser, ur vilka oljan utvunnits först genom en porös bergsmassa, där oljeavdrivning redan är fullbordad. Härunder förvärmes sagda gaser, sedan de under passagen genom kondensor och tvättnar nedkylts till en låg temperatur, som i praktiken håller sig omkring  $0^{\circ}$  eller lägre. Det redan avgasade skifferberget och den spälvärme som i detta varma berg kvarlämnas efter pyrolysen, utnyttjas sålunda delvis för förvärmning av den vid pyrolysen medverkande cirkulationsgasen. Emedan en sådan gas' varmeinnehåll är relativt lågl, kan enligt uppföringen den kvantitet gas, som cirkuleras lierende på omständigheterna valjas så, att dess volym uppgår till en å flera gånger den vid pyrolysen nybildade gasens volym. Härigenom underlättas det reaktionstörlopp, som här ovan antyts på sa sätt, att ett balansförhållande inom de olika reaktionerna icke behöver närmelsetvis uppnås på grund av det stora överskottet av lättare kolvaten och vete, som vid pyrolysen finnas tillgängliga. Genom denna rikligare gascirkulation inträder även det förhållandet, att sådana kolvatten, som ligga på gränsområdet för förgassningen, lättare kunna avföras ur skifferberget med tillhjälp av den rikligage gascirkulationen. De tyngsta kolvatena, som utan cirkulerande gas kvarbliva och förkokas i berget, torde, därför med tillhjälp av gascirkulation helt eller delvis bringas att medfölja den allmänna gasströmmingen. Enligt uppföringen skapas således genom införande av en cirkulerande gas inom redan uppvärmt skiffer-

C

berg, nya möjligheter att erhålla en rikare produktion av de genom pyrolysen eftertraktade flytande kolvatena. Stiftligen kan det tankas, att den stora bergkroppen av varm skifferkok, genom vilken cirkulationsgasen strömmar på sin väg till pyrolysonrådet i skifferberget, på grund av sina enorma dimensioner och därmed förknippad katalysatorverkan direkt i viss mån medger en hydrering av med koksen märktade kolvaten, som kvarstannat i densamma, varigenom restförlusten, i form av kol, nedbringas.

I stället för pyrolysgaserna enligt ovan kunnat andra gaser, t. ex. generatorgas komma i fråga för åstadkommandet av olika önskade kemiska reaktioner under medverkan av den porosa varma skiffern.

#### Patentanspråk:

1. Sätt vid förgassing av oljeförande skifferberg *in situ* under tillhörande av värme genom i skifferberget upptagna kanaler, kännetecknat därav, att sedan ett skifferparti genom pyrolys avgasats och blivit poröst, gaser införs i detta parti, medan det annu är varmt, genom andra i skifferberget upptagna kanaler är värmetillförselkanalerna och att dessa gaser är av sådan art, att de härunder utsätts för kemiska reaktioner utan förbrämning med skifferberget tjänstgörande som katalysator.

2. Sätt enligt patentanspråket 1, kännetecknat därav, att i skifferpartiet återinförs åtminstone en del av den under pyrolysen bildade gasen, sedan den genom kondensation eller tvättning under avkyllning berövats sina oljeförande beständsdelar.

3. Sätt enligt patentanspråket 1, kännetecknat därav, att den införda gasen genom en kompressoranordning bringas att strömma genom ett parti av redan avgasat varmt skifferberg för att därifrån införs i annat bergparti, där oljeutvinning pagår.

4. Sätt enligt patentanspråken 1-3, kännetecknat därav, att en del av den återinförda gasen utläges från skifferberget innan den når den zon, i vilken avgassing av skiffer pågår, medan en annan del får passera även denna zon.

5. Sätt enligt något av de föregående patentanspråken, kännetecknat därav, att gaserna införs i skifferberget genom kanaler, som under pyrolysen tjänstgjorde som gasavlopp.

*Fig. 1*



*Fig. 2*



Translation of the claims of Swedish Patent Specification 125.158  
Svenska Skifferoljekoncernen, Finspång, Sweden.

1. A process in the gasification of oil-bearing shale rocks <sup>in situ</sup> while supplying heat through channels bored in the rock, characterized in that when a shale portion has been degasified by means of pyrolysis and has become porous gases are introduced in said portion, while it is still warm, through other channels bored in the shale rock than the heat supplying channels, and that said gases are of such kind that they in the meanwhile are subjected to chemical reactions without combustion, the shale rock acting as a catalyst.
2. A process as claimed in claim 1, characterized in that at least a part of the gas formed during the pyrolysis is recycled into the shale portion after that its oil-bearing constituents have been removed by condensation or washing with cooling.
3. A process as claimed in claim 1, characterized by that the introduced gas by means of a compressor is caused to flow through a portion of already degasified warm shale rock to be introduced in another rock portion wherein oil is being recovered.
4. A process as claimed in any of the claims 1 to 3, characterized by that a part of the recycled gas is discharged from the shale rock before it has reached the zone, wherein the degasification of shale is taking place, while another part is passed also through this zone.
5. A process as claimed in any of the preceding claims, characterized by that the gases are introduced into the shale rock through the channels serving as gas outlets during the pyrolysis.