

Présentation Projet 7

«Implémentez un modèle de scoring»

Denis Desoubzdanne

9 Décembre 2023

Formation Data Scientist

Sommaire

- 1. Présentation du sujet
- 2. Jeu de données et pre-processing
- 3. Explication de l'approche de modélisation
- 4. Déploiement du modèle *via* une API sur le web
- 5. Démonstration du dashboard
- 6. Conclusion et bilan

Présentation du sujet

Objectif, missions

Data Scientist/MLOps

Société financière "Prêt à dépenser" souhaitant mettre en oeuvre un outil de "scoring credit" pour calculer la probabilité qu'un client rembourse son crédit

 Mon objectif : Développer un modèle de classification et le déployer sur une plateforme web

Mes missions :

- Construire un modèle de scoring (prédiction sur la probabilité de faillite)
- Construire un dashboard interactif (interprétation des prédictions)
- Mettre en production : le modèle (à l'aide d'une API) et le dashboard

Jeux de données

Overview, pre-processing & déséquilibre

Overview

- 1 dossier '.zip' à télécharger
 - > 10 fichiers '.csv'
 - ➢ Jeu de données Kaggle : « Home Credit Default Risk »
- Données clients : 307511 (training) vs 48744 (test)
- 122 features (au départ) : âge, sexe, emploi, logement, revenus...
 - > feature cible (« TARGET ») : « 0 » = solvable et « 1 » : non solvable

Pre-processing

• Récupération d'un kernel sous Kaggle :

- => Notebooks de Will Koehrsen (https://www.kaggle.com/willkoehrsen)
- => EDA, préparation des données et features engineering
- Adapation des scripts à notre problématique :
 - => One-hot encoding
 - => Détection des *outliers*/anomalies
 - => Création de *features* métiers : durée de crédit, ratio montant du crédit sur revenu, ratio annuités sur revenu...
 - => Imputation des valeurs manquantes
- Nouveaux jeu de données de 1244 features

Jeu de données déséquilibré

• 92 % des clients solvables (classés « 0 ») vs

8 % des clients non solvables (classés « 1 »)

• Fort déséquilibre du jeu de données!

 Modèle naïf (tous les individus sont solvables): 92% d'exactitude (« accuracy »)

Explication de l'approche de modélisation

Gestion du déséquilibre, Entrainement du modèle, Score métier

Comment réduire les consequences du déséquilibre?

- Collecter plus de données clients non solvables (classe 1)
- Création d'invididus « artificiels » (SMOTE)
- Under-sampling (réduire le nombre d'individus surreprésentés) = Méthode 2
- Pondération des observations dans le training = Méthode 1
- 🜟 Choix d'une métrique de performance « customisée »

Méthode choisie

- Algorithme choisi : LGBMClassifier
- **Méthode 1** : *class_weight* = {0: 0.15, 1: 0.85}

Méthode 2 : under-sampling

=> comparaison : selon l'exactitude (TP+TP/all)

Optimiser le seuil de prédiction

Création d'une fonction « coût »

$$Co\hat{\mathbf{u}}t = \frac{100*FN-10*TN+1*(TP+TN+FP+FN)}{TP+TN+FP+FN}$$

Objet	Coût par client (unité arbitraire)	Classe
Octroi de crédit à un client qui fait défaut	100	FN (False
		Negative)
Octroi de crédit à un client qui ne fait pas	-10	TN (True
défaut		Negative)
Refus de crédit à un client qui aurait fait	0	TP (True
défaut		Positive)
Refus de crédit à un client qui n'aurait pas	0	FP (False
fait défaut		Positive)
Frais généraux pour chaque client	1	-

Seuil_opt = 0,4

12

Interprétabilité du modèle

• Globale : SHAP values

*Ext Sources Mean = Moy des 3 sources de revenus

*Payment_Rate = AMT_Annuity/AMT_Credit

AMT_CREDIT Credit amount of the loan
AMT_ANNUITY Loan annuity

• Locale : SHAP values

Ex: individu n°204226 (classé 0)

Analyse du Data Drift : 35% des feat.

• <u>Librairie</u> : *evidently*

Data drift observé sur des features dépendantes de l'âge du client

Déploiement du modèle *via* une API sur le Web

Entrainement d'un modèle et suivi de performance (mlflow)
Création et déploiement d'une API sur le web (+tests unitaires)
Création et déploiement d'un dashboard sur le web

Outils utilisés (MLOps)

	Solution	Description
ml <i>flow</i>	MLFlow	Plateforme pour faire du déploiement continu de modèles de ML (<i>tracking</i>)
IIII IIII SHAP	SHAP	Librairie utiliser pour une meilleure interprétabilité (locale ou globale) des <i>features</i> d'un modèle
4	FastAPI	API permettant d'appeler la prédiction à partir de l'ID d'un client (en locale ou hébergé) : back-end
Streamlit	Streamlit	Outil gratuit pour réaliser des tableaux de bord : <i>front-</i> <i>end</i>
	GitHub	Plateforme de <i>versioning</i> et de déploiement continu (approche CI/CD) de scripts
	Microsoft Azure	Plateforme informatique <i>Cloud</i> pour le déploiement d'applications notamment

Ré-entrainement du modèle et tracking (mlflow)

API, tests unitaires et dashboard en local

API runing (local host)

Tests unitaires (local)

Dashboard runing (local)

proba default = eval(response.content)["probability"]

/!\ tester que l'API renvoie bien une probabilité à partir du modèle (tests sur 2 json files : client 0 (audessus du seuil) et client 1 (endessous du seuil)

```
def host(local:bool):
                                                     if local is True
                                                 HOST = host(local=False)
intput1.isor
                                                         response = requests.get(HOST+'/get ids/')
                                                         response raise for status() # Check for HTTP errors
lesoubzdanne Denis 3 note méthodologique 12.
                                                 list_ids = get_ids()
```


Versioning des scripts sous GitHub

• 3 repositories:

Projet7_VL => repos API (https://github.com/DDesou/Projet7_VL.git)

Tableau de bord sous VSCode

- Git init
- Git add .
- Git commit –m 'my_message'
- Git push
- Projet7_Streamlit => repos dashboard (https://github.com/DDesou/Projet7_Streamlit.git)
- > Projet7_OCR_final => repos codes et délivrables (https://github.com/DDesou/Projet7_OCR_final.git)

Déploiement continu (CI/CD) : GitHub Actions

/!\ Tests unitaires (Pytest) directement intégrés dans le déploiement continu

Création de web apps sous Azure

Azure services

/!\ Connectés aux différents repos

Deploiement sous Azure

<u>API</u>
 (https://basicwebappvl.azurewebsite
 s.net/)

<u>Dashboard</u>
 (https://mystreamlit.azurewebsites.n et/)

Démonstration du dashboard

Streamlit déployé sous Azure

Dashboard interactif (en ligne)

Projet 7 : 'Implémentez un modèle de scoring'

Sélection du client par son numéro ID 351831

Conclusion & bilan

Conclusion & bilan

- Mise au point d'un modèle de classification

 - > Gestion du déséquilibre des groupes

• Création d'un scoring basé sur une fonction de 'coût métier'

- Interprétabilité globale et locale par les SHAP values et évaluation du *data drift*
 - Modèle (jeu de données) imparfait(s)

• Utilisation de *mlflow* pour le *tracking* du modèle

• Création d'une API et d'un dashboard sur le web

Versioning des codes + déploiement continu (approche CI/CD)

Denis Desoubzdanne

9 Décembre 2023

Formation Data Scientist

