Esssentials of Applied Data Analysis IPSA-USP Summer School 2017

Joint Distributions

Leonardo Sangali Barone leonardo.barone@usp.br

jan/17

Joint Distribution

Causal theories of politics necessarily involve expected relationships among concepts or variables. As such, we want to study joint distributions; marginal distributions are a natural extension as we will see in a moment.

For discrete variables, we can use contingency tables to represent the joint frequency distribution for two random variables.

Joint Distribution - legislators

Example: two variables, gender (Y) and political party (X) If we take the relative frequence of the cells we get:

Y/X	Party A (A)	Party B (B)	Party $C(C)$
Women (W)	$P(W \cap A)$	$P(W \cap B)$	$P(W \cap C)$
$\operatorname{Man}\left(M\right)$	$P(M \cap A)$	$P(M \cap B)$	$P(M \cap C)$

Note: joint distributions are represented, guess what, by joint probabilities!

Joint Distribution

We can write the joint probabilities as

$$P(Women \cap Party B) \text{ or } P(W \cup B)$$

or, if we have named the variables

$$P(Gender = Women, Party = Party B)$$

 $P(X = W, Y = B)$

These notations are equivalent if everything is well named.

Joint Distribution - dice

Joint distributions can be build from the process that generate the data (dice) or from a sample.

Example: roll a dice. Prime vs not prime (Y); and even vs odd (X). If we take the relative frequencies we get:

Y/X	Even (E)	Odd(O)
Prime (I)	$P(I \cap E) = 1/6$	$P(I \cap O) = 2/6$
Not Prime (N)	$P(N \cap E) = 2/6$	$P(N \cap O) = 1/6$

Joint Distribution - sex and political affiliation in Fakeland

We could do the same using our Fakeland example (let's not use numbers here).

Example:

Sex/Party	Conservative (C)	Independent (I)	Socialist (S)
Women (W)	$P(W \cap C)$	$P(W \cap I)$	$P(W \cap S)$
$\operatorname{Man}(M)$	$P(M \cap C)$	$P(M \cap I)$	$P(M \cap S)$

Now, use the fake dataset to build the table above. Remember that what you will build is the joint *sample* distribution (not the "True" Fakeland distribution).

Joint Distribution - conditional probability notation

All of the notations below are equivalent.

$$P(X = x_i | Y = 1) = P(X | Y = 1) = \frac{P(X = x, Y = 1)}{P(Y = 1)} = \frac{P(X \cap (Y = 1))}{P(Y = 1)}$$

Joint Distribution - Marginal Probabilities

The marginal probability of an event A is the probability that A will occur unconditional on all the other events on which A may depend. It is very easy to comprehend that in our example. If we take the relative frequencies we get:

Example:

Sex/Party	Conservative (C)	Independent (I)	Socialist (S)	Marginal
Women (W)	$P(W \cap C)$	$P(W \cap I)$	$P(W \cap S)$	P(W)
$\operatorname{Man}(M)$	$P(M \cap C)$	$P(M \cap I)$	$P(M \cap S)$	P(M)
Marginal	P(C)	P(I)	P(S)	1

Joint Distribution - Marginal Probabilities

We can calculate the Marginal Probability by simplying summing the probability of A happening conditional on all other events on which A depend (partitions o B):

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n) = \sum_{i=1}^{n} P(A \cap B_i)$$

or

$$P(A) = P(B_1) * P(A|B_1) + P(B_2) * P(A|B_2) + \dots + P(B_n) * P(A|B_n) =$$

$$= \sum_{i=1}^{n} P(B_i) * P(A|B_i)$$

This means that one averages over other events and focuses on the one event, A, of interest.

Joint Distribution - Independence - Cards

What does happen with the joint distribution of two random variables if they are independent of each other?

Example: choose a card from a deck. Calculate the relative frequencies:

Y/X	Hearts	Spades	Clubs	Diamonds	Marginal
King	1/52	1/52	1/52	1/52	4/52
Queen	1/52	1/52	1/52	1/52	4/52
Other	11/52	11/52	11/52	11/52	44/52
Marginal	13/52	13/52	13/52	13/52	52/52

We got a king. What is the probability that it is the king of hearts?

$$P(H|K) = 1/4$$

We got a queen. What is the probability that it is the queen of hearts?

$$P(H|Q) = 1/4$$

We got any other card. What is the probability that it is a card of hearts?

$$P(H|O) = 1/4$$

If the marginals probabilities are equal to the conditional probabilities, than the two variables are independent from each other.

$$P(H) = P(H|K) = P(H|Q) = P(H|O) = 1/4$$

Under independence:

$$P(H \cap K) = P(H) * P(K) = 1/4 * 1/13 = 1/52$$

or

$$P(Y = Hearts, X = King) = P(Y = Hearts) * P(X = King)$$

Joint Distribution - sex and political affiliation in Fakeland

Let's go back to our empirical example. If you completed the sample joint distribution, you got the table below:

Count:

Sex/Party	Conservative (C)	Independent (I)	Socialist (S)	Marginal
Women (W)	3	8	4	15
$\operatorname{Man}(M)$	3	7	5	15
Marginal	6	15	9	30

Proportion relative to Total:

Sex/Party	Conservative (C)	Independent (I)	Socialist (S)	Marginal
Women (W)	0.10	0.27	0.13	0.50
$\operatorname{Man}(M)$	0.10	0.23	0.17	0.50
Marginal	0.20	0.50	0.30	1.00

Proportion relative to Rows:

Sex/Party	Conservative (C)	Independent (I)	Socialist (S)	Marginal
Women (W)	0.20	0.54	0.26	1.00
$\operatorname{Man}\left(M\right)$	0.20	0.47	0.33	1.00
Marginal	0.20	0.50	0.30	1.00

Proportion relative to Columns:

Sex/Party	Conservative (C)	Independent (I)	Socialist (S)	Marginal
Women (W)	0.50	0.53	0.13	0.45
$\operatorname{Man}(M)$	0.50	0.47	0.17	0.55
Marginal	1.00	1.00	1.00	1.00

Can you tell if the two variables are independent of each other just by looking at the tables? We are going to train this a lot with real data using Stata.