

HACETTEPE UNIVERSITY

MAT 254 - Final - June 23, 2020

Department of Computer Engineering

Student Name and Number:_

Instructors: Prof.Dr. Derya Keskin Tütüncü, Assoc.Prof.Dr. Sultan Eylem Toksoy

Question#	1	2	3	4	Total
Question Value	25	25	25	25	100
Your Grade					

1. Let
$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] : a+c=b+d \right\}$$
 and $T:V \to \mathbb{R}$ with $T\left(\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \right) = a+c$.

- a) Find a basis for the kernel of T. $\dim(Ker(T)) = ? (10P)$
- b) Find a basis for the image of T. $\dim(\operatorname{Im}(T)) = ? (10P)$
- c) Is T an isomorphism? (5P)
- 2. Let $T = \{(2,3), (3,2)\}$ be a basis for \mathbb{R}^2 and $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ be the standard basis for \mathbb{R}^3 . Determine the linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^2$ such that the matrix $_T[L]_S$ of L relative to the bases S and T is $A = \begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$.
- 3. Consider the basis $S = \{(1,0,-1),(-1,1,0),(0,1,1)\}$ of \mathbb{R}^3 . Apply Gram-Schmidt orthogonalization process to S and find an orthonormal basis for \mathbb{R}^3 .
- 4. Find the eigenvalues and the eigenvectors corresponding to the eigenvalues of the matrix

$$A = \left[\begin{array}{rrr} -4 & 0 & 3 \\ 0 & -1 & 0 \\ -6 & 0 & 5 \end{array} \right]$$

GOOD LUCK