Kontinuumsmechanik VL 4

1.1.4.2 Erzwungene Schwingungen

q(x) = Q(x) sinst Q(x) Zunadet nod beliebig

Zur Erinnerung:

- Ω "groß" Omega: von außen vorgegebene Kreisfrequenz
- ω "klein" omega: Eigenkreisfrequenz

Feldgleichung:

Randbedingungen:

$$w(0,t) = 0$$
$$w(l,t) = 0$$

$$w(0,t) = 0$$
 $w(0,t) = 0$
 $w(l,t) = 0$

Ansatz $w(x,t) = W(x) \sin \Omega t$ (Partikulärlösung), in Feldgleichung

$$-n^2 W(x) \sin ut - c^2 W'(x) \sin ut = \frac{1}{n} Q(x) \sin ut$$
muss für jedes t gelten

$$W''(x) + \left(\frac{\Lambda^2}{c^2}\right)W(x) = -\frac{1}{\mu c^2}Q(x)$$

+ RMm $V(0) = W(2) = 0$

zeitfreies Randwertproblem RWP

oft Reihenentwicklungen in Eigenformen

Hier gelöst für
$$Q(x) = Q_0 \sin \pi \frac{x}{\ell}$$

Ansatz vom Typ der rechten Seite

erfüllt die RBen!

$$-\left(\frac{\pi}{e}\right)^{2} \text{ W. Sint } = -\frac{Q_{0}}{me^{2}} \text{ Sint } = -\frac$$

Erste Eigenkreisfrequenz war $\zeta_{n} = \pi_{n}$

Anregungsform entspricht der ersten Eigenform mit Eigenkreisfrequenz ω_1 . Wird mit $\Omega = \omega_1$ angeregt, geht $W_0 \to \infty$ (Resonanz)

Für die Lösung des gesamten Rand-Anfangswertproblem im Falle erzwungener Schwingungen muss die so berechnete Partikulärlösung mit der allgemeinen Lösung für die freien Schwingungen überlagert und dann an die Anfangsbedingungen angepasst werden.

1.1.5 Kopplung mit diskreten Elementen

Gegensatz: diskret ⇔ kontinuierlich

Wie sehen Feldgleichungen und Randbedingungen aus?

Randbedingungen am rechten Rand?

Dynamische Randbedingungen (aus Kräfte-/Momentengleichgewichten)!

1.1.6 D'Alembertsche Lösung der Wellengleichung

Lösung für
$$\ddot{w} = c^2 w''$$

Seien f_1 und f_2 zwei beliebige, zweimal stetig differenzierbare Funktionen in x und t

Behauptung: Dann sind

$$f_1(z_-) = f_1(x - ct)$$
 und
$$f_2(z_+) = f_1(x + ct)$$
 Lösungen der Wellengleichung

$$5^{-+} = x^{\frac{1}{2}} + c_{+}$$

$$\frac{3x}{35^{-}} + \frac{3x}{35^{-}} + \frac{3x}{35^{-}} + \frac{1}{35^{-}} + \frac{3x}{35^{-}} + \frac{1}{35^{-}} +$$

$$\frac{3x}{3l^{3}} = \frac{3x}{3l^{3}} + \frac{3x}{3x^{-1}} = \frac{3x}{3l^{3}} + \frac{3x}{3l^{3}} = \frac{3x}{3l^{3$$

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_1}{\partial x$$

 $f_1(x-ct)$, $f_2(x+ct)$ erfüllen also die Wellengleichung!

Also:

 $f_1(x-ct)$ kennzeichnet Wellenausbreitung in positive x-Richtung mit Wellenausbreitungsgeschwindigkeit c.

 $f_2(x + ct)$ kennzeichnet Wellenausbreitung in negative x-Richtung mit Wellenausbreitungsgeschwindigkeit c.

Saite: Lösung $w(x,t) = f_1(x-ct)$

$$t = 0$$
 $w(x_0, 0) = f_1(x_0 - c \cdot 0) = f_1(x_0)$

$$t = \hat{t}$$

$$w(x_0 + c\hat{t}, \hat{t}) = f_1(x_0 + c\hat{t} - c\hat{t})$$

$$= f_1(x_0)$$

Saite Lösung $w(x,t) = f_2(x+ct)$

$$t = 0$$
 $w(x_0, 0) = f_2(x_0 + c \cdot 0) = f_2(x_0)$

$$t = \hat{t} \qquad w(x_0 - c\hat{t}, \hat{t}) = f_2(x_0 - c\hat{t} + c\hat{t})$$

= $f_2(x_0)$

Allgemeine Lösung ist

Wodurch wird *c* bestimmt?

Saite
$$c^2 = \frac{1}{M}$$

abhängig von Vorspannung und Materialparametern

Stablängsschwingungen $C^2 = \left(\frac{\mathbb{E}}{\mathbb{E}} \right)$

abhängig Materialparametern

Torsionsschwingungen

abhängig Materialparametern

Erinnerung

$$G = \frac{E}{2(1+3)}$$

also

C Longitudied > C Torsion

Ausbreitungsgeschwindigkeit von Druckwellen in Stahl und Aluminium

Stahl
$$E = 27.2 \frac{42}{mal}$$
; $S = 7.47 \frac{44}{mal}$ $\rightarrow C = 57.72 \frac{47}{mal}$
Alu $E = 77.2 \frac{42}{mal}$; $S = 2.7 \frac{44}{mal}$ $\rightarrow C = 57.7 4 \frac{47}{mal}$