

Проектирование высоконагруженной системы для обработки пользовательских запросов

System Design

Меня хорошо видно & слышно?

Защита проекта

Тема: Проектирование высоконагруженной системы для обработки пользовательских запросов (запрос на поиск размещений и бронирование типа Booking, Ostrovok)

Бурдин Артем

Кратко о вас и вашей деятельности:

Архитектор ИТ инфраструктуры

План защиты

Цель и задачи проекта Какие технологии использовались Что получилось Выводы Вопросы и рекомендации

Цель и задачи проекта

Цель проекта: спроектировав архитектуру системы, способной обрабатывать высокую нагрузку в виде большого количество запросов к системе (50 000 запросов в секунду), обеспечивая отказоустойчивость, надёжность, безопасность и согласованность данных.

- 1. Задача, которую нужно выполнить, чтобы её достичь: ниже примеры задач
- 2. Визуализировать данные в виде дашборда
- 3. Сделать выводы по результатам анализа данных
- **4.** и т.д.

Какие технологии использовались (1/2)

- 1. GSLB для обеспечения гео-распределения запросов и катастроустойчивости
- 2. CDN-сервисов для кэширования и масштабирования количества запрсов
- 3. LB + K8S в рамках ЦОД для обеспечения отказоустойчивости и масштабирования экземпляров сервисов
- 4. Брокеры сообщений (типа apache kafka) для обеспечения асинхронной связи между сервисами и сохранения, чтобы можно было их независимо масштабировать

Какие технологии использовались (2/2)

- 5. SQL RDBMS для хранения данных реляционных данных справочники с описанием объектов, бронирования. Шардирование по регионам на уровне приложения. Реплики для масштабирования по чтению
- 6. NoSQL БД для хранения данных об доступности/стоимости объектов на различные комбинации дат с шардированием по местоположению объектов

Схема системы поиска и бронирования

Схема системы поиска и бронирования

Схема процесса поиска подходящих объектов

Схема процесса бронирования объекта

Подход к Observability

Выводы

- 1.
- 2.
- 3.

Оцените работу над проектом и ответьте на вопросы:

- 1. У вас получилось достичь цели и выполнить все задачи?
- 2. Что далось легко, а с чем возникли трудности?
- 3. Сколько времени занял проект?
- 4. Насколько полезным оказался для вас проект от 1 до 10?
 - а. 1 = я не научился ничему новому
 - b. 10 = очень полезно, я получил новый опыт
- 5. Остались ли у вас вопросы по проекту?
- 6. Как вы планируете развиваться дальше?

Ответьте на вопросы одногруппников и преподавателей и получите обратную связь на свою работу

Вопросы и рекомендации

Спасибо за внимание!

Инструменты для работы с презентацией

1. Текст:

- «Одна мысль один слайд»
- Размещайте на каждом слайде до 5 строк текста, не более 5 слов в каждой строке
- Выделяйте главные идеи с помощью размера и цвета шрифта
- Используйте подзаголовки, если заголовок слишком длинный
- Группируйте информацию в визуальные блоки
- Делите большие текстовые блоки на колонки или списки
- Используйте стрелки для обозначения последовательности информации
- Чередуйте текстовые блоки с графическими элементами
- 2. Используйте шрифт Roboto, кегль: заголовок 25-30, подзаголовок 17, основной текст 15-12, межстрочный интервал 1,15

3. Используйте нашу фирменную цветовую палитру (её найдете в следующем слайде)

4. Визуальные материалы:

- Добавляйте релевантные изображения к текстовым блокам
- Используйте иконки или эмодзи для визуализации ключевых пунктов
 - Используйте инфографику для визуализации сложной информации

качественные изображения вы можете взять в папке

Шаблоны, которые вы можете использовать для рассказа о своем проекте

Название подтемы

Определение - это

описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Слайды с "кнопками"

Тезис 1/Определение 1

Тезис 2 (выбирая его, словно щелкаем на него мышью, и в следующем слайде раскрываем выбранную мысль полностью) / Определение 2

Определение – описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Заголовок: главная мысль слайда

Подзаголовок – дополнение к основной мысли

- Источников много
- Кроме того, в той же микросервисной архитектуре у нас запрос от клиента может проходить через несколько различных микросервисов, причем в зависимости от различных аспектов, этот путь может состоять из разных узлов.

место для иллюстрации

Главная мысль слайда

- В этой статье мы будем завершать тему мониторинга и поговорим о мониторинге работы самих приложений.
- Какими средствами и как можно осуществлять сбор метрик с приложений и что такое трассировка.
- Как уже говорилось в предыдущих статьях, мы можем осуществлять сбор количественных показателей по событиям, формирующим тренды с помощью метрик.
- Кроме того, в той же микросервисной архитектуре у нас запрос от клиента может проходить через несколько различных микросервисов.
- В зависимости от различных аспектов, этот путь может состоять из разных узлов.

Главная мысль слайда

В этой статье мы будем завершать тему мониторинга и поговорим о мониторинге работы самих приложений.

Какими средствами и как можно осуществлять сбор метрик с приложений и что такое трассировка.

Как уже говорилось в предыдущих статьях, мы можем осуществлять сбор количественных показателей по событиям, формирующим тренды с помощью метрик.

Слайд со списком

- 3.
- .

Главная мысль слайда

В случае, если мы обнаружили превышение по какому-то определенному параметру, то нам необходимо разобраться в причинах произошедшего, и здесь нам на помощь приходят журналы событий сервисов.

В логах можно найти много полезной информации касающейся проблем в работе приложения, по сути, если событие в принципе логируется, то мы можем его найти и проанализировать.

место для иллюстрации

ссылка на источник кегль 11: https://habr.com/ru/companies/rosatom/articles/841842/

Слайд с 3 колонками

поменяйте иконки на подходящие по смыслу (слайд 100)

Над текстовым полем могут быть иконки, цифры, иллюстрации – всё, на чем вы хотите сакцентировать внимание студентов.

Над текстовым полем могут быть иконки, цифры, иллюстрации – всё, на чем вы хотите сакцентировать внимание студентов.

Над текстовым полем могут быть иконки, цифры, иллюстрации – всё, на чем вы хотите сакцентировать внимание студентов.

Сравнение двух кейсов

Кейс 1

Определяющей характеристикой метрик является то, что они поддаются агрегированию, то есть, метрики похожи на атомы, которые складываются в единый логический индикатор, счетчик или гистограмму за определенный промежуток времени.

Кейс 2

В качестве примеров: текущая глубина очереди может быть смоделирована как индикатор, количество входящих НТТР-запросов может быть смоделировано как счетчик, обновления которого агрегируются простым сложением.

Определяющей характеристикой метрик является то, что они поддаются агрегированию, то есть, метрики похожи на атомы, которые складываются в единый логический индикатор, счетчик или гистограмму за определенный промежуток времени.

Определяющей характеристикой метрик является то, что они поддаются агрегированию, то есть, метрики похожи на атомы, которые складываются в единый логический индикатор, счетчик или гистограмму за определенный промежуток времени.

Определяющей характеристикой метрик является то, что они поддаются агрегированию, то есть, метрики похожи на атомы, которые складываются в единый логический индикатор, счетчик или гистограмму за определенный промежуток времени.

Заголовок: главная мысль слайда

В этой статье мы будем завершать тему мониторинга и поговорим о мониторинге работы самих приложений. Какими средствами и как можно осуществлять сбор метрик с приложений и что такое трассировка.

Как уже говорилось в предыдущих статьях, мы можем осуществлять сбор количественных показателей по событиям, формирующим тренды с помощью метрик.

Место для кейса на полях: разместите здесь пример, иллюстрирующий вашу мысль, интересный факт, ссылку на дополнительный источник информации и т.д.

Мысль, объединяющая пункты списка

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Этап 1 Этап 2 Этап 3 Этап 4

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Этап 1 Этап 2 Этап 3 Этап 4 Этап 5

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Описание данных в виде набора сущностей, отношений между ними, атрибутов сущностей, их типов данных, соглашений об именовании и правил проверки целостностей

Определения, которые нужно сгруппировать

Слайд с кодом 1

```
int **a; // указатель на указатель на строку элементов
int i, j, n, m;
system("chcp 1251");
system("cls");
                                                               (n
printf("Введите количество строк: ");
scanf("%d", &n);
                                                              sizeof(int*))
printf("Введите количество столбцов: ");
scanf("%d", &m);
// Выделение памяти под указатели на строк
a = (int**) malloc (n * sizeof(int*));
// Ввод элементов массива
for (i = 0; i<n; i++) // цикл по строкам
 // Выделение памяти под хранение строк
 a[i] = (int*)malloc(m * sizeof(int));
 for (j = 0; j<m; j++) // цикл по столбцам
   printf("a[%d][%d] = ", i, j);
    scanf("%d", &a[i][j]);
```


Слайд с кодом 2

```
int **a; // указатель на указатель на строку элементов
int i, j, n, m;
system("chcp 1251");
system("cls");
printf("Введите количество строк: ");
scanf("%d", &n);
printf("Введите количество столбцов: ");
scanf("%d", &m);
// Выделение памяти под указатели на строки
a = (int**)malloc (n * sizeof(int*));
// Ввод элементов массива
for (i = 0; i<n; i++) // цикл по строкам
  // Выделение памяти под хранение строк
  a[i] = (int*)malloc(m * sizeof(int));
  for (j = 0; j<m; j++) // цикл по столбцам
    printf("a[%d][%d] = ", i, j);
    scanf("%d", &a[i][j]);
```


Слайд с кодом 3

```
int **a; // указатель на указатель на строку элементов
int i, j, n, m;
system("chcp 1251");
system("cls");
printf("Введите количество строк: ");
scanf("%d", &n);
printf("Введите количество столбцов: ");
scanf("%d", &m);
// Выделение памяти под указатели на строки
 a = (int**)malloc(n * sizeof(int*));
// Ввод элементов массива
 for (i = 0; i<n; i++) // цикл по строкам
  // Выделение памяти под хранение строк
  a[i] = (int*)malloc(m * sizeof(int));
  for (j = 0; j < m; j + +) // цикл по столбцам
    printf("a[%d][%d] = ", i, j);
    scanf("%d", &a[i][j]);
```


Слайд с кодом и текстом

- 1. Тезис 1
- 2. Тезис 2
- 3. Тезис 3

```
int **a; // указатель на строку
int i, j, n, m;
system("chcp 1251");
system("cls");
printf("Введите количество строк: ");
scanf("%d", &n);
printf("Введите количество столбцов: ");
scanf("%d", &m);
// Выделение памяти под хранение строк
```


Слайд с таблицей

Название столбца	Название столбца	Название столбца
Текст нежирным шрифтом	Текст нежирным шрифтом	Текст нежирным шрифтом

Слайд с таблицей

	Название столбца	Название столбца	Название столбца
1.	Текст нежирным шрифтом	Текст нежирным шрифтом	Текст нежирным шрифтом
2.			
3.			
4.			
5.			

Единственно верного решения не существует. Хотя существует много неверных.

Дэвид Акин, NASA