

Nachrichtentechnik

Allgemeines

Wandlung: ± 1 Gewichtete NF Impulse $\pm g_{\mathsf{S}}(t) o \mathsf{Modulation}$: Verschiebung ins Trägerband \rightarrow AWGN Kanal \rightarrow Detektor \rightarrow Bitstrom

1. Signale

1.1. Arten von Signalen

deterministisch: durch Funktionen beschreibbar, enthalten kein Nach-

stochastisch: zufälliger Verlauf, überträgt Information

Vorteile digitales Signal: Kompression, Verschlüsselung, Fehlerkorrektur

1.2. Sonstiges

Autokorrelation
$$r_{\mathrm{V}}(\tau) \stackrel{\mathcal{F}}{\circ} S_{\mathrm{V}}(f)$$
 Leistungsdichtespektrum $x(t),y(t)$ sind orthogonal, falls $\int\limits_{-\infty}^{\infty} x(t)y(t)=0$ Kompl. Fehlerfunktion $\mathrm{erfc}(x)=1-\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int\limits_{x}^{\infty}e^{-\tau^{2}}\,\mathrm{d}\tau$

2. Abtastung von Signalen

Abtasttheorem

Signal x(t), Abtastfunktion $s(t) = T_A \sum \delta(t - nT_s)$, Tiefpassfilter $h_r(t)$

Vorgang Zeitbereich Frequenzbereich Abtasten: $x_s(t) = s(t) \cdot x(t)$ $X_s(\omega) = S(\omega) * X(\omega)$ Rekonstr. $x_r(t) = h_r(t) * x_s(t)$ $X_r(\omega) = H_r(\omega) \cdot X_s(\omega)$

Bandbreite ω_q , Abtastfrequenz ω_s

$$\omega_s = \frac{2\pi}{T_s} \ge 2\omega_g$$

$$\omega_g \le \omega_r \le \omega_s - \omega_g$$

Abtastoperator:
$$\mathbb{A}\{x(t)\} = x(t) \cdot T_A \sum_{n=-\infty}^{\infty} \delta(t-nT_A)$$

Rekonstruktion:
$$x_r(t) = T_{\rm A} \sum_{n=-\infty}^{\infty} x(nT_{\rm A}) \cdot h_r(t-nT_{\rm A})$$

Abbruchfehler:
$$|\Delta| = \left| \frac{x_T(t) - x(t)}{x(t)} \right|$$

Periodisierungsoperator:
$$\mathbb{P}\{X(f)\} = X(f) * \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_A})$$

Ideale Abtastung: $\mathbb{A}\{x(t)\}^{f} = 1/T \mathbb{A} \mathbb{P}\{X(f)\}$

3. Quantisierung und Digitalisierung

wertkontinuierliche Sequenz von (zeitdiskreten) Abtastwerten wird abgebildet auf wertdiskrete Sequenz.

$$x(nT_A)$$
 mit $n \in \mathbf{Z} \xrightarrow{x_Q} x_Q(nT_A)$

3.1. Allgemeines

Quantisierungsfunktion $\underline{\boldsymbol{x}}_{Q} = \mathcal{Q}(\underline{\boldsymbol{x}})$

Bildet Vektoren ${\boldsymbol x} \in {\mathbb R}^N$ auf eine Menge S ab mit |S| = MMan benötigt $m = \lceil \log_2 M \rceil$ bits um \underline{x}_Q zu repräsentieren. Intervall $I_i = [g_i, g_{i+1}]$ enthält Reproduert s_i

Skalare Quantisierer: N = 1 Vektor Quantisierer: N > 1

Quantisierungsfehler: $q(\underline{x}) = \underline{x}_O - \underline{x} = s_i - x$

(besteht aus granularem Rauschen und Überlastungsrauschen)

3.2. Skalare Quantisierung N=1

m Bits für einen (N=1) Abtastwert

Quantisierungsfehler $q(x) = x_Q - x = x_Q(nT_A) - x(nT_A)$

Quantisierungsfehlerleistung:
$$P_{\mathsf{Q}} = \int q(x)^2 f_{\mathsf{X}}(x) \, \mathrm{d}x = \sum_{s_i} \int_{g_i}^{g_i+1} (s_i - x)^2 f_{\mathsf{X}}(x) \, \mathrm{d}x$$

Optimales
$$s_i$$
 (setze $\frac{\partial P_Q}{\partial s_i} \stackrel{!}{=} 0$):

$$s_i = \frac{\int\limits_{g_i}^{g_{i+1}} x f_x(x) \, \mathrm{d}x}{\int\limits_{g_i}^{g_{i+1}} f_x(x) \, \mathrm{d}x} = \mathsf{E}\left[\mathsf{X} \left| x \in I_i \right.\right]$$

3.3. Lineare Quantisierung

Spezialfall der skalaren Quantisierung mit gleich großen Quantisierungsin-

Es gilt für PDF:
$$\int_{-\infty}^{\infty} f_X(x) dx \stackrel{!}{=} 1$$

Gleich große Quantisierungsintervalle
$$\mathcal{I}_i = [g_i, g_{i+1}]$$
 mit Breite Δ $\Delta = \frac{x \max - x \min}{2^m} = g_{i+1} - g_i$

Reproduktionswerte
$$s_i$$
 in der Mitte der Intervalle (midriser) $s_i=\frac{2i-M+1}{2}\,\Delta$

Auftrittswahrscheinlichkeit p_i der Quantisierungsstufe s_i $p_i = \int_{g_i}^{g_i+1} f_{\mathsf{X}}(x) \, \mathrm{d}x$

Signalleistung
$$P_{\mathsf{X}} = \mathsf{E}[\mathsf{X}^2] = \int\limits_{x_{\min}}^{x_{\max}} x^2 f_{\mathsf{X}}(x) \, \mathrm{d}x$$

Gleichverteilung:
$$P_{\mathsf{X}} = rac{x_{\max}^2}{3}$$
 Sinusförmig: $P_{\mathsf{S}} = rac{x_1^2}{3}$

Fehlerleistung
$$P_{\mathsf{Q}} = \mathsf{E}[\mathsf{Q}^2] = \int\limits_{-\infty}^{\infty} q(x)^2 f_{\mathsf{Q}}(q) \,\mathrm{d}q$$

Bei gleichverteiltem Quantisierungsfehler: $P_Q = \frac{\Delta^2}{12}$

Signal-Noise-Ratio:
$$\mathrm{SNR}_Q = \frac{P_\mathsf{X}}{P_\mathsf{Q}}$$

$$\mathrm{SNR}_Q = rac{P_\mathrm{X}}{P_\mathrm{Q}} = egin{cases} rac{x^2_\mathrm{max}/3}{\Delta^2/12} = 2^{2m} & ext{bei gleichverteiltem Signal} \ rac{x^2_\mathrm{max}/2}{\Delta^2/12} = rac{3}{2}2^{2m} & ext{bei sinusförmigem Signal} \end{cases}$$

Signal zu Quantisierungsrauschabstand ${
m SNR}_{Q{
m dB}}$ $SNR_{OdB} = 10 \log_{10}(SNR_O)dB = m \cdot 6 dB$ (CD. 16 bit : 96 dB)

3.4. Nichtlineare Quantisierung

A-law-Kennlinie (Europa) und μ -law-Kennlinie (USA)

$$C(x) = \begin{cases} \frac{A}{1 + \ln(A)} \cdot |x| \cdot \operatorname{sgn}(x) & 0 \le |x| \le \frac{x \max}{A} \\ \frac{1 + \ln\left(\frac{A \cdot |x|}{x \max}\right)}{1 + \ln(A)} \cdot |x| \cdot \operatorname{sgn}(x) & \text{sonst} \end{cases}$$

$$A = 87.5 = 24 \text{ dB}$$

3.4.1. Pulse Coded Modulation PCM

Abtastung + skalare Quantisierung: $SNR_Q = \frac{P_X}{P_Q} = 2^{2m}$

3.4.2. Differentielle PCM (DPCM)

Differenz zu vorhergesagtem Wert wird quantisiert.

Prädiktion O.ter Ordnung: Kann bei schnellen, großen Änderungen nicht mehr folgen. Gut geeignet für Signale mit hoher zeitlicher Konzentration → schmales Snektrum

3.4.3. Delta-Modulation (Hohe Überabtastung)

1-Bit-Quantisierung: $e_O(nT_S) = \pm \Delta$

Kann den Wert nicht Konstant halten, Tiefpass am Empfänger nötig

3.4.4. Sigma-Delta-Modulator

 Σ : Summe/Integral Δ : 1-bit-Quantisierer

3.5. Optimale skalare Quantisierung

Lloyd-Max-Algorithmus

- ullet Wähle Startwerte für alle $s_i^{(0)}$
- $\begin{array}{ll} \bullet & \text{IntervalIgrenzen: } g_i^{(t+1)} = \frac{s_i^{(t)} + s_{i-1}^{(t)}}{2} & i = 1, \ldots, M-1 \\ \bullet & \text{Reprod. Werte: } s_i^{(t+1)} = \mathsf{E}[X \mid X \in I_i] & i = 0, \ldots, M-1 \\ \bullet & \text{Fehlerleistung } P_Q^{(t+1)} = \mathsf{E}[Q^2] \text{ mit } s_i^{(t+1)} \text{ und } g_i^{(t+1)} \\ \end{array}$

- Berechne relative Änderung $\delta^{(t)} = \frac{P_Q^{(t+1)} P_Q^{(t)}}{P_Q^{(t)}}$

3.6. Informationsgehalt und Entropie

$$\begin{split} & \text{Info vom Symbol } s_i : I_i = -\log_2 \mathsf{P}(\mathsf{X}_Q = s_i) = -\log_2 p_i \\ & \text{Entropie von } \mathsf{X}_Q \colon H(\mathsf{X}_Q) = \mathsf{E}[I] = -\sum_{i=0}^{M-1} p_i \log_2 p_i \left[\frac{\mathsf{bit}}{\mathsf{Symbol}} \right] \end{split}$$

Mittlere Codewortlänge $\bar{l} = \mathsf{E}[l] = \sum_{i=0}^{n-1} p_i l_i$

Die minimale mittlere Codewortlänge $\bar{l} \geq H(x_Q)$

4. Codierung

Komprimierung: Falls Bitstrom nicht gleichverteilt und mit Gedächtnis Maximale Kompression: Bits gleichverteilt, ohne Gedächtnis Entropie: kein Code kann für Z eine geringere mittlere Codewortlänge finden als $H(z) = \sum P(z) \operatorname{ld} \left(\frac{1}{P(z)} \right)$

4.1. Kompression

Kleiner Verlust bei unkodierten Bitstrom. Großer Gewinn bei Kodierung. Bsp: Feste Blocklänge mit Statusbit am Anfang: Kodiert/Unkodiert

4.2. Digitale Quellencodierung (Kompression)

Verteilung Bekannt: Huffman Code, Morse, Arithmetic Universal: Lempel-Ziv (ZIP), PPM, BWT(bZip)

Transform: Fouriertransformation (JPG,GIF,PNG,MP3)

4.3. Kanalcodierung

Single-Parity-Check: 1 Bit pro 2 bit zusätzlich: $XOR(x_1, x_2)$ Daraus ergibt sich eine Effizienz von $\frac{2}{3}$

FEC: Forward Error Correction liefert Fehlererkennung und Korrek-

Beispiele: Paritätsbit, CRC, Reed-Solomon-Codes, LDPC, Polar Codes

5. Basisbandübertragung

5.1. Impulsformen

5.1.1. Rechteckimpuls rect $\left(\frac{t}{T}\right)$:

$$g_{\text{NRZ}}(t) = \begin{cases} 1, & \text{für } |t| < \frac{T}{2} \\ \frac{1}{2}, & \text{für } |t| = \frac{T}{2} \\ 0, & \text{sonst} \end{cases}$$

$$G_{\mathsf{NRZ}}(f) = T\operatorname{sinc}(fT)$$

5.1.2. Manchester Impuls:

Mittelwert Null, kein Gleichanteil

5.1.3. cos²-Impuls:

$$g(t) = \begin{cases} \cos^2\left(\frac{\pi t}{T}\right), & \text{für } |t| < \frac{7}{2} \\ 0, & \text{sonst} \end{cases}$$

$$G(f) = \frac{T}{2} \frac{\cos(\pi f \frac{T}{2})}{1 - (fT)^2} \frac{\sin(\pi f \frac{T}{2})}{\pi f \frac{T}{2}}$$

5.1.4. $\operatorname{sinc-Impuls:} \operatorname{sinc}(x) = \operatorname{si}(\pi x)$

$$g(t) = \frac{\sin(\pi \frac{t}{T})}{\pi \frac{t}{T}} = \operatorname{sinc}\left(\frac{t}{T}\right) \qquad G(f) = \begin{cases} T, & \text{für } |f| < \frac{1}{2T} \\ \frac{T}{2}, & \text{für } |f| = \frac{1}{2T} \\ 0, & \text{sonst} \end{cases}$$

5.1.5. "Nyquist roll-off"-Impuls:

$$g(t) = \frac{\sin(\pi\frac{t}{T})}{\pi\frac{t}{T}} \cdot \frac{\cos(\alpha\pi\frac{t}{T})}{1-4\alpha^2(\frac{t}{T})^2}$$

$$G(f) = \begin{cases} T & \text{für } |f| \leq \frac{1-\alpha}{2T} \\ \frac{T}{2}[1+\cos(\frac{\pi T}{\alpha}(|f|-\frac{1-\alpha}{2T}))] & \text{für } \frac{1-\alpha}{2T} < |f| \leq \frac{1+\alpha}{2T} \\ 0 & \text{sonst} \end{cases}$$

5.1.6. Root-Raised-Cosine:

Meist genutzer Filter (Wurzel-Nyquist)

5.1.7. Gauß-Impuls:

5.1.7. Gauß-Impuls:
$$g(t) = \exp\left[-\pi\left(\frac{t}{\Delta t}\right)^2\right]$$

$$G(f) = \Delta t \cdot \exp\left(-\pi\left(\Delta t f\right)^2\right) = \frac{1}{\Delta f} \exp\left(-\pi\left(\frac{f}{\Delta f}\right)^2\right)$$

5.2. Energie wichtiger Impulse mit Amplitude A

$$\begin{array}{ll} E_S\{\operatorname{rect}(\frac{t}{\alpha T})\} = A^2\alpha \, |T| & E_S\{\operatorname{tri}(\frac{t}{\alpha T})\} = \frac{2}{3}\alpha \, |T| \, A^2 \\ E_S\{\operatorname{sinc}(\frac{t}{\alpha T})\} = A^2 \, |\alpha| \, |T| & \operatorname{Rampe 0 bis } \alpha T \colon \frac{\alpha}{3} \, |T| \, A^2 \end{array}$$

5.3. Bandbreite

Absolut: Alle positiven Frequenzen B₉₉ Bandbreite: 99% der Signalenergie bzw. -leistung liegen in diesem Bandbreitenbereich (geht auch mit 90%)

 $\mathsf{B}_{\mathsf{6dR}}$ Bandbreite: Bis Hälfte des Spektrums G(f)

B_{3dB} Bandbreite: Bis Hälfte der Leistung

B_N Äquivalente Rauschbandbreite

Bandbreiteneffizienz (Effizienz des Modulationsverfahrens):

5.4. Frequenz-Zeit-Unschärfe

Ein Signal kann nicht gleichzeitig hart Band- und Zeitbegrenzt sein! Unschärfe: $T_D \cdot B_0 \geq \frac{1}{4\pi}$

Nach Trägheitsradius definiert. (Integral $\int\limits_{0}^{\infty} t^2 g_{\rm s}^2 {\,{
m d}} t$ konvergiert)

Schrankenfunktion für Spektrum:

Falls das Zeitsignal in der n-ten Ableitung das erste mal einen Sprung aufweist, gilt für das Betragsspektrum:

$$|X(f)| \propto rac{1}{|f|^{n+1}} \qquad ext{für große } |f|$$

Anmerkung: n kann auch negativ sein! Bsp: $\delta(t) \Rightarrow n = -1$

5.5. Nyquist Bedingungen

5.5.1. 1. Bedingung: Kein Symbolübersprechen

Impulsantwort
$$g[nT] = \begin{cases} 1 & n=0 \\ 0 & n \neq 0 \end{cases}$$

Fordert maximale vertikale Öffnung des Auges Impuls Nullstellen: $\pm 1T$, $\pm 2T$, $\pm 3T$, . . .

$$\label{eq:Zeitbereich: A} \begin{cases} \text{Zeitbereich: } A\{g(t)\} = T \sum_{n=-\infty}^{\infty} g(nT) \cdot \delta(t-nT) = T \cdot \delta(t) \\ \\ \text{Frequenzbereich: } P\{G(f)\} = \sum_{k=-\infty}^{\infty} G(f-\frac{k}{T}) = T \end{cases}$$

5.5.2. 2. Bedingung: Verschärfung 1. Bedingung

mpulsantwort
$$g\left[k\frac{T}{2}\right] = \begin{cases} 1 & k = 0 \\ g\left[\frac{T}{2}\right] & k = \pm 1 \\ 0 & \text{sonst} \end{cases}$$

Fordert maximale horizontale Öffnung des Auges Zusätzliche Impuls Nullstellen: $\pm 1.5T, \pm 2.5T, \pm 3.5T, \ldots$

5.6. Augendiagramm

Bestimmung des Augendiagramm (4 Durchläufe): Für die Bereiche $[-T_A, 0]$ und $[0,T_{\mathsf{A}}]$ werden die relevanten Pulse so überlagert(positiv oder negativ), dass das Auge minimal wird. Daraus ergibt sich die Überlagerungstabelle.

1 Vor- und 2 Nachläufern:

Vertikale Öffnung A_v : Maß für Empfindlichkeit gegenüber Rauschen Horizontale Öffnung Ah: Maß für Empfindlichkeit gegenüber Schwankungen des Abtastzeitpunkts

5.7. Korrelation

Ein Maß für die Ähnlichkeit zweier Signale x(t), y(t) bei Verschiebung. Korrelationskoeffizient $\rho_{xy} = \frac{E_{xy}}{\sqrt{E_x \cdot E_y}} = \frac{\varphi_{xy}(0)}{\sqrt{\varphi_x(0) \cdot \varphi_y(0)}}$

Es gilt: Korreliert $\rho = 1$, Orthogonal $\rho = 0$, Antipodisch $\rho = -1$

Kreuzkorrelationsfkt. zwischen zueinander verschobenen Signalen:

$$\varphi_{xy}(\tau) = \varphi_{yx}(-\tau) = \int_{-\infty}^{\infty} x(t) \cdot y(t+\tau) dt$$

Zusammenhang mit Faltung: $\varphi_{xy}(au) = x(-t) * y(t)|_{t= au}$

Autokorrelationsfkt. AKF ist Kreuzkorrelation mit sich selbst (y = x): $\varphi_x(\tau) = \varphi_{xx}(\tau)$ Anwendung: Erkennen von Perioden

Energiebeziehung: $E_{x,y} = \rho_{x,y} \sqrt{E_x E_y}$ mit

Energie
$$E_x=\int\limits_{-\infty}^{\infty}x(t)^2\,\mathrm{d}t=\int\limits_{-\infty}^{\infty}\Phi_x\,\mathrm{d}f=\varphi_{xx}(0)$$
 (endl. Sig.)

Leistung
$$P_x = \mathsf{E}[X^2] = \frac{1}{2T} \int\limits_{-T}^T x(t)^2 \,\mathrm{d}t$$
 (period. Sig.)

Leistungsdichtespektrum $\Phi_x(f)$ ist definiert als $\varphi_x \circ \stackrel{\mathcal{F}}{\longrightarrow} \Phi(f)$

 $\begin{array}{l} \text{Periodische Signale: } \overline{\varphi}_{xy}(\tau) = \frac{1}{2T} \int_{-T}^{T} x(t) y(t+\tau) \, \mathrm{d}t \\ \text{Stochastische Signale: } \varphi_{X\,Y}(\tau) = \mathrm{E}[X(t) \cdot Y(t+\tau)] \\ \rho_{X,Y} = \frac{\mathrm{Cov}[X\,Y]}{\sigma_{X}\sigma_{Y}} \end{array}$ $\int\limits_{-\infty}^{\infty}\Phi_X(f)\,\mathrm{d}f=\varphi_X(0)=\mathsf{Var}[X]+\mathsf{E}[X]^2=\sigma_X^2+\mu_X^2$

6. Analoger Übertragungskanal

$$\begin{aligned} r(t) &= h(t) * s(t) & R(f) = H(f) \cdot S(f) \\ \text{Verzerrungsfrei: } h(t) &= h_0 \; \delta(t-t_0) & H(f) = h_0 e^{-\mathrm{i} 2\pi f t_0} \end{aligned}$$

6.1. AWGN - Additive White Gaussian Noise

Weißes Rauschen N enthält alle Frequenzen. Thermisch: $N_0 = k_B T$

PDF
$$f_N(n) = \frac{1}{\sqrt{2\pi \cdot \sigma}} e^{-\frac{n^2}{2\sigma^2}}$$
 LDS:
$$\Phi_N(f) := \frac{N_0}{2} \qquad \qquad \text{für } f < 10 \, \text{GHz}$$
 AKF:
$$\varphi_n(\tau) = \frac{N_0}{2} \delta(\tau) \qquad \qquad \Rightarrow 0 \, \text{für } \tau \neq 0$$

Leistung $P_N = \int \Phi_N df = \sigma^2 = B \cdot N_0$

Äquivalente Rauschbandbreite B_N : Bandbreite eines idealen Tiefpasses, der die selbe Rauschleistung P_N erzeugt, wie das reale Tiefpassfiltersystem

7. Detektion im Rauschen

gewähltes Bit \hat{D}_n eines tatsächlichen Bits $D_n = \{1, 0\}$

Ziel: $P(\hat{D}_n \neq D_n)$ soll minimal sein.

Lösung: maximiere SNR zum Abtastzeitpunkt nTRauschleistung nach Filterung mit h(t):

$$P_{N} = \int_{-\infty}^{\infty} \Phi_{N} |H(f)|^{2} df = \frac{N_{0}}{2} \int_{-\infty}^{\infty} |H(f)|^{2} df$$

$$ightarrow$$
 mit Satz von Parseval gilt : $P_{
m N}=rac{N_0}{2}\int\limits_{}^{\infty}|h(t)|^2\,{
m d}t$

momentane Signalleistung: $P_s(t) = |y_s(t)|^2$

mittlere Signalleistung: $P_s = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{1} |y_s(t)|^2 dt$

7.1. Matched Filter

Signalangepasster Filter damit Signal im AWGN Kanal zum Abtastzeitpunkt die maximale SNR hat. Impulsantwort des Matched Filters: $h_{\mathsf{MF}}(t) = K \cdot g_{s}^{*}(T-t)$ (entspricht gewendetem Sendeimpuls) $H_{\mathsf{MF}}(f) = K \cdot G_s^*(f) \cdot \mathrm{e}^{-\mathrm{j}2\pi f T}$ Maximum SNR: $\frac{P_S}{P_{NS}} = \frac{2E_S}{N_O}$

7.2. Fehlerwahrscheinlichkeit P_b

Für matched Filter: $P_b = Q(\sqrt{P_s/P_n}) = Q(\sqrt{Y_s^2/\sigma_N^2})$ $Q(\sqrt{2E_s/N_0}) = Q(\sqrt{SNR})$

7.3. Zeitdiskreter AWGN-Kanal

$$\sigma^2 = \frac{\sigma_N^2}{A^2} = \frac{N_0}{2E_S} = \frac{1}{\text{SNR}}$$

7.4. Unabhängiges (unkorreliertes) Rauschen

Falls die erste Nyquistbedingung erfüllt und maximale SNR: ⇒ Die Folge abgetasteter Rauschanteile ist unabhängig!

8. Lineare, digitale Modulation

8.1. Allgemeines

Dimensionen: Phase (sin/cos), Polarisation (hori/vert) Die meisten Medien übetragen um eine Trägerfrequenz f_0 (Bandpass)

Bandpass-Sendesignal (moduliert mit S(t)): $\tilde{S}(t) = A(t)\sqrt{2}\cos\left(2\pi(f_0 + F(t))t + \varphi_0(t)\right)$

Inphasenanteil (Cosinusträger) $S_I(t) = A(t)\cos(\varphi'(t))$ Quadraturanteil (Sinusträger) $S_O(t) = A(t)\sin(\varphi'(t))$

Amplitude: $|A(t)| = \sqrt{S_I^2(t) + S_Q^2(t)}$

Phase: $\varphi'(t) = \arctan \frac{S_Q(t)}{S_I(t)}$

Mittl. Energie pro Symbol: $\overline{E}_S = \mathrm{E}[D_{In}^2 + D_{Qn}^2] \cdot \underbrace{\int_0^T |g_s(t)|^2 \,\mathrm{d}t}_{E_{Qs}}$

Energie je Bit : $E_{\mathrm{bit}} = \frac{\overline{E}_S}{\# \, \mathrm{Bits}}$

Anfälligkeit gegenüber Rauschen: d_{\min}

8.2. Modulation und Signalraumzuordnung

Moduliertes Sendesignal

$$\begin{split} \tilde{S}(t) &= S_I(t) \sqrt{2} \cos(2\pi f_0 t) - S_Q(t) \sqrt{2} \sin(2\pi f_0 t) \\ &= \left[\sum_{n=-\infty}^{\infty} D_{I_n} g_s(t-nT) \right] \sqrt{2} \cos(2\pi f_0 t) \\ &- \left[\sum_{n=-\infty}^{\infty} D_{Q_n} g_s(t-nT) \right] \sqrt{2} \sin(2\pi f_0 t) \end{split}$$

8.4. On-Off Keying (OOK)

Intensitätsmodulation mit b=1 (Laser an oder aus) Mittlere Energie pro Symbol: $E_{\scriptscriptstyle S}=\frac{A_{\rm on}^2}{2}$

8.5. Amplitude Shift Keying (M-ASK)

Für M Stufen mit Abstand Δ gilt: $\mathrm{E}[D_I^2] = \frac{\Delta^2(M^2-1)}{12}$

8.6. Phase Shift Keying (PSK)

 $\begin{aligned} d_I^2 + d_Q^2 &= r^2 & \text{(meist } r = 1\text{)} \\ E_S &= \mathrm{E}[D_I^2 + D_Q^2] \int_0^T |g_S(t)|^2 \, \mathrm{d}t \end{aligned}$

Offset: verhindert harte Übergänge (Nicht durch Null) Gray-Codierung zwischen benachbarten Symbolen: Fehler in der Symbolerkennung hat nur geringe Bitfehler

8.6.1. DPSK

Differentielle binäre Phasenmodulation
0: Phase bleibt gleich, 1: Phase ändert sich

8.7. Quadraturamplitudenmodulation (M-QAM)

Für M Stufen und Abstand Δ : $\mathrm{E}[D_I^2 + D_Q^2] = \frac{\Delta^2(M-1)}{6}$

Auch wichtig

Eigene Notizen:

Anhang

9. Mathematik

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

9.2. Exponentialfunktion und Logarithmus

$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$\ln(x^a) = a \ln(x)$	$ \ln(\frac{x}{a}) = \ln x - \ln a $	log(1) = 0

9.3. Sinus, Cosinus $\sin^2(x) + \cos^2(x) = 1$								
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\frac{1}{2}\pi$	π 180°	$1\frac{1}{2}\pi$	2π
φ	00	30°	45°	60°	90°	180°	270°	360℃
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

Additionstheorem

, taareronsencorenie	O La IIII LI III
$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) \mathrm{d}x = \cos(x) + x \sin(x)$
$\sin(x + \frac{\pi}{2}) = \cos x$	$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$

$$\begin{split} \sin(x\pm y) &= \sin x\,\cos y \pm \sin y\,\cos x & \sin x = \frac{1}{2!}(e^{\mathrm{i}x} - e^{-\mathrm{i}x}) \\ \cos(x\pm y) &= \cos x\,\cos y \mp \sin x\,\sin y & \cos x = \frac{1}{2!}(e^{\mathrm{i}x} + e^{-\mathrm{i}x}) \end{split}$$

9.4. Integralgarten

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

Substitution: $\int \int (g(x))g(x) dx = \int \int (t) dt$						
F(x) - C	f(x)	f'(x)				
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}				
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$				
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$				
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$				
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$				
$-\cos(x)$	$\sin(x)$	$\cos(x)$				
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$				
$\mathrm{Si}(x)$	sinc(x)	$\frac{x\cos(x)-\sin(x)}{x^2}$				
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$				

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$
$$\int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2} \qquad \int t^2 e^{at} dt = \frac{(ax-1)^2 + 1}{a^3} e^{at}$$

2^1	2^2	2^3	2^4	2^5	2^6	2^7	2^8	2^{16}	
2	4	8	16	32	64	128	256	65536	

10. Geometrie

$$a^2 + b^2 = c^2$$

$$a:b=c:d \quad \frac{a+b}{c+d} = \frac{a}{c} = \frac{b}{d}$$
$$\frac{a}{a+b} = \frac{c}{c+d} = \frac{e}{f}$$

Innenwinkelsumme im n-Eck: $(n-2) \cdot 180^{\circ}$

Allg. Dreieck $\triangle ABC$ mit Seiten a, b, c und Winkel α, β, γ :

Höhe $h_c=a\sin\beta=b\sin\alpha$ Fläche $A=\frac{1}{2}h_cc=\frac{1}{2}h_aa$ Schwerpunkt: $x_S = \frac{1}{3}(x_A + x_B + x_C)$ $y_S = \frac{1}{3}(y_A + y_B + y_C)$

Rechtwinkliges Dreieck $\triangle ABC$ mit $\gamma = 90^{\circ}$ bei C

Pythagoras: $a^2 + b^2 = c^2$ Höhensatz: $h^2 = pq$ Kathetensatz: $a^2 = pc$

 $a = c \sin \alpha = c \cos \beta = b \tan \alpha$

Zylinder/Prisma

Pyramide mit beliebiger Grundfläche G $V = \frac{1}{2}G \cdot h$

 $V = G \cdot h$ $M = U \cdot h$ SP: liegt auf h mit $y_S = h/4$

Kreis:
$$A=\pi r^2$$
 $U=2\pi r$
Kugel: $V=\frac{4}{3}\pi r^3$ $O=4\pi r^2$
Kreissehne: $s=2r\sin(\alpha/2)$

11. Stochastik

11.1. Der Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P)

Ein Wahrscheinlichkeitsraum $(\Omega, \mathbb{F}, \mathsf{P})$ besteht aus

Ergebnismenge	$\Omega = \{\omega_1, \omega_2, \dots\}$	Ergebnis $\omega_j \in \Omega$
Ereignisalgebra	$\mathbb{F} = \{A_1, A_2, \ldots\}$	Ereignis $A_i \subseteq \Omega$
Wahrscheinlichkeitsmaß	$P: \mathbb{F} \to [0, 1]$	$P(A) = \frac{ A }{ \Omega }$

Es gilt: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

Multiplikationssatz: $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

Erwartungswert: $\mathsf{E}[X] = \mu = \sum x_i P(x_i) = \int x \cdot f_\mathsf{X}(x) \, \mathrm{d}x$

 $\textbf{Varianz:} \ \mathsf{Var}[X] = \mathsf{E}\left[(\mathsf{X} - \mathsf{E}[\mathsf{X}])^2\right] = \mathsf{E}[\mathsf{X}^2] - \mathsf{E}[\mathsf{X}]^2$ Standard Abweichung $\sigma = \sqrt{\operatorname{Var}[X]}$

Covarianz: Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]

Binominialverteilung (diskret, n Versuche, k Treffer): $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ $\mu = np$ $\sigma^2 = np(1-p)$

Korrelation ist ein Maß für den linearen Zusammenhang von Variablen

Cov(X, Y)Kreuzkorrelation von X und Y: $r_{xy} =$

11.2. Normalverteilung

$$\text{PDF:} \quad f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad x \in \mathbb{R}$$

 $Var(X) = \sigma^2$ $E(X) = \mu$

12. Signale

12.1. Faltung von Signalen

$$x(t) * h(t) = h(t) * x(t) = \int_{-\infty}^{\infty} x(\tau) \cdot h(t - \tau) d\tau$$

12.2. sinc-Singal

13. Fouriertransformation

13.1. Eigenschaften der Fouriertrafo

Linearität:	$\alpha x(t) + \beta g(t) \stackrel{\mathcal{F}}{\circ} \alpha X(f) + \beta G(f)$
Zeitverschiebung:	$x(t-\tau) \circ \xrightarrow{\mathcal{F}} e^{-j2\pi f \tau} X(f)$
Frequenzversch.	$e^{j2\pi f_0 t} \circ \xrightarrow{\mathcal{F}} X(f - f_0)$
Vertauschung:	$U^*(t) \circ \stackrel{\mathcal{F}}{\longrightarrow} u^*(f)$
Stauchung	$x(ct) \circ \frac{\mathcal{F}}{ c } X(\frac{f}{c})$
Ableitung	$x^{(n)}(t) \stackrel{\mathcal{F}}{\circ} (j2\pi f)^n X(f)$
Integral	$\int_{-\infty}^{t} x(\tau) d\tau \circ \frac{\mathcal{F}}{\mathbf{\Phi}} \left(\frac{1}{2} \delta(f) - \frac{\mathbf{j}}{2\pi f} \right) X(f)$
Faltung:	$(x*g)(t) \circ \stackrel{\mathcal{F}}{\longrightarrow} X(f) \cdot G(f)$

Zusammenhang zwischen geraden und ungeraden Signalanteilen: $x(t) = g + u + \mathbf{j}g + \mathbf{j}u$

 $X(f) = G + U + \mathbf{j}G + \mathbf{i}U$ $x(t) \circ \xrightarrow{\mathcal{F}} X(f) \circ \xrightarrow{\mathcal{F}} x(-t) \circ \xrightarrow{\mathcal{F}} X(-f)$ Bei periodischen Signalen: Fourierreihen!

13.2. Wichtige Fouriertransformationen

 $\operatorname{tri}\left(\frac{t}{T}\right)$

13.3. Weitere Paare

f(t)	$F(\omega)$	f(t)	$F(\omega)$
$ t^n $	$\frac{2n!}{(\mathrm{i}\omega)^n+1}$	$\operatorname{sinc}(\frac{t}{T})$	$T \operatorname{rect}(fT)$
t^n	$2\pi i^n \delta^{(n)}(\omega)$	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(a+\mathrm{i}\omega)^n}$
		$\exp(-\alpha t)$	$\frac{1}{\mathrm{i} 2 \pi f + \alpha}$