# zillow by Xiaodan

Xiaodan Chen

2017年12月28日

## 1.Define Problem

Given new data to predict its logerror, which is the log of estimated house price minus the log of real sales price.

## 2.Clean Data

```
#load data
setwd("F:/tiger/zillow")
train<-read.csv('train_property.csv',stringsAsFactors = F)

#remove variables with missing values more than 20%
NA_rate<-colMeans(sapply(train,is.na))
remain_col<-names(train)[which(NA_rate<.2)]
train2<-train[,remain_col]
train2<-train2[,-1]
#remained variables
names(train2)</pre>
```

```
[1] "parcelid"
                                        "logerror"
   [3] "transactiondate"
                                        "bathroomcnt"
                                        "calculatedbathnbr"
  [5] "bedroomcnt"
   [7] "calculatedfinishedsquarefeet" "finishedsquarefeet12"
## [9] "fips"
                                        "fullbathcnt"
## [11] "hashottuborspa"
                                        "latitude"
## [13] "longitude"
                                        "lotsizesquarefeet"
## [15] "propertycountylandusecode"
                                        "propertylandusetypeid"
## [17] "propertyzoningdesc"
                                        "rawcensustractandblock"
## [19] "regionidcity"
                                        "regionidcounty"
## [21] "regionidzip"
                                        "roomcnt"
                                        "fireplaceflag"
## [23] "yearbuilt"
## [25] "structuretaxvaluedollarcnt"
                                        "taxvaluedollarcnt"
## [27] "assessmentyear"
                                        "landtaxvaluedollarcnt"
## [29] "taxamount"
                                        "taxdelinquencyflag"
## [31] "censustractandblock"
```

```
head(train2)
```

```
##
     parcelid logerror transactiondate bathroomcnt bedroomcnt
## 1 10711738
                0.0276
                             2016-08-02
## 2 10711755 -0.0182
                                                   3
                                                               3
                             2016-08-02
                                                   2
## 3 10711805
               -0.1009
                             2016-05-03
                                                               3
                                                   2
## 4 10711816 -0.0121
                             2016-04-05
                                                               4
                                                   2
                                                               4
## 5 10711858 -0.0481
                             2016-07-15
## 6 10711910
                0.2897
                             2016-08-30
                                                   2
                                                               3
     calculatedbathnbr calculatedfinishedsquarefeet finishedsquarefeet12 fips
## 1
                                                 2538
                      3
                                                                       2538 6037
                      3
                                                 1589
## 2
                                                                       1589 6037
                      2
## 3
                                                 2411
                                                                       2411 6037
                      2
## 4
                                                 2232
                                                                       2232 6037
## 5
                      2
                                                 1882
                                                                       1882 6037
                      2
## 6
                                                 1477
                                                                       1477 6037
     fullbathcnt hashottuborspa latitude longitude lotsizesquarefeet
                                 34220381 -118620802
## 1
                                                                   11012
               3
                                 34222040 -118622240
## 2
                                                                   11010
## 3
               2
                                 34220427 -118618549
                                                                   11723
               2
                                 34222390 -118618631
## 4
                                                                    9002
## 5
               2
                                 34222544 -118617961
                                                                    9002
                                 34221864 -118615739
## 6
                                                                   11285
     propertycountylandusecode propertylandusetypeid propertyzoningdesc
## 1
                           0101
                                                   261
                                                                    LARE11
## 2
                           0101
                                                   261
                                                                    LARE11
## 3
                           0101
                                                   261
                                                                     LARE9
                           0100
## 4
                                                   261
                                                                     LARE9
                           0101
## 5
                                                   261
                                                                     LARE9
## 6
                           0101
                                                   261
                                                                    LARE11
##
     rawcensustractandblock regionidcity regionidcounty regionidzip roomcnt
                    60371132
                                    12447
                                                     3101
## 1
                                                                 96339
## 2
                    60371132
                                     12447
                                                     3101
                                                                              0
## 3
                    60371132
                                    12447
                                                     3101
                                                                 96339
                                                                              0
## 4
                    60371132
                                    12447
                                                     3101
                                                                 96339
                                                                              а
## 5
                    60371132
                                    12447
                                                     3101
                                                                 96339
                                                                              0
## 6
                    60371132
                                    12447
                                                     3101
                                                                 96339
##
     yearbuilt fireplaceflag structuretaxvaluedollarcnt taxvaluedollarcnt
## 1
          1978
                                                   245180
                                                                      567112
## 2
          1959
                                                   254691
                                                                      459844
## 3
          1973
                                                   235114
                                                                      384787
## 4
          1973
                                                   262309
                                                                      437176
## 5
          1973
                                                   232037
                                                                       382055
## 6
          1960
                                                    57098
                                                                       76860
     assessmentyear landtaxvaluedollarcnt taxamount taxdelinquencyflag
               2015
## 1
                                     321932
                                              7219.18
## 2
               2015
                                     205153
                                              6901.09
## 3
               2015
                                     149673
                                              4876.61
## 4
               2015
                                     174867
                                              5560.07
## 5
               2015
                                     150018
                                              4878.25
## 6
               2015
                                     19762
                                              1116.46
##
     censustractandblock
## 1
            6.037113e+13
## 2
            6.037113e+13
## 3
            6.037113e+13
## 4
            6.037113e+13
## 5
            6.037113e+13
## 6
            6.037113e+13
```

```
#missing rate of the remained variables from the highest to the Lowest
miss<-data.frame(var=remain_col,NA_rate=NA_rate[remain_col],row.names = NULL,stringsAsFactors =
F)
miss<-miss[order(miss$NA_rate,decreasing = T),]
library(ggplot2)</pre>
```

```
## Warning: package 'ggplot2' was built under R version 3.4.2
```

ggplot(miss,aes(x=reorder(var,-NA\_rate),y=NA\_rate))+geom\_bar(stat='identity',fill='red')+
labs(x='remained variables',title='missing rate of the remained variables')+
theme(axis.text.x = element\_text(angle=90,hjust=1))

## missing rate of the remained variables



str(train2)

```
## 'data.frame':
                90275 obs. of 31 variables:
                            : int 10711738 10711755 10711805 10711816 10711858 10711910
## $ parcelid
10712086 10712162 10712163 10712195 ...
                            : num 0.0276 -0.0182 -0.1009 -0.0121 -0.0481 ...
   $ logerror
                           : chr "2016-08-02" "2016-08-02" "2016-05-03" "2016-04-05"
  $ transactiondate
## $ bathroomcnt
                            : num 3 3 2 2 2 2 2 3 3 3 ...
## $ bedroomcnt
                            : int 4 3 3 4 4 3 4 3 4 3 ...
## $ calculatedbathnbr
                            : num 3 3 2 2 2 2 2 3 3 3 ...
  $ calculatedfinishedsquarefeet: int 2538 1589 2411 2232 1882 1477 1850 3193 2421 1678 ...
## $ finishedsquarefeet12
                           : int 2538 1589 2411 2232 1882 1477 1850 3193 2421 1678 ...
## $ fips
                           ## $ fullbathcnt
                            : int 3 3 2 2 2 2 2 3 3 3 ...
                            : chr "" "" "" ...
## $ hashottuborspa
## $ latitude
                            : int 34220381 34222040 34220427 34222390 34222544 34221864
34226039 34226833 34226843 34223689 ...
                            : int -118620802 -118622240 -118618549 -118618631 -118617961
## $ longitude
 -118615739 -118618527 -118612917 -118612422 -118612746 ...
                           : num 11012 11010 11723 9002 9002 ...
## $ lotsizesquarefeet
## $ propertycountylandusecode : chr "0101" "0101" "0101" "0100" ...
: int 12447 12447 12447 12447 12447 12447 12447 12447
## $ regionidcity
12447 ...
## $ regionidcounty
                            : int 96339 96339 96339 96339 96339 96339 96339 96339
## $ regionidzip
96339 ...
## $ roomcnt
                            : int 00000000000...
                            : int 1978 1959 1973 1973 1973 1960 1974 1964 1962 1961 ...
## $ yearbuilt
                                 ...
  $ fireplaceflag
                            : chr
## $ structuretaxvaluedollarcnt : num 245180 254691 235114 262309 232037 ...
## $ taxvaluedollarcnt
                      : num 567112 459844 384787 437176 382055 ...
                           ## $ assessmentyear
## $ landtaxvaluedollarcnt
                          : num 321932 205153 149673 174867 150018 ...
  $ taxamount
                           : num 7219 6901 4877 5560 4878 ...
                           : chr "" "" "" ...
## $ taxdelinquencyflag
  $ censustractandblock
                            : num 6.04e+13 6.04e+13 6.04e+13 6.04e+13 ...
```

## 3. Explore data

The original train dataset has 90275 observations and 61 variables. After removing data with missing rate more than 20%, 31 variables are remained.

Among these 31 variables, 18 are continuous variables. Except the outcome variablE logerror, the other 17 variables can be grouped into 5 categories.

- 1. room count related variables: bathroomcnt, bedroomcnt, caculatedbathnbr, fullbathcnt, roomcnt
- 2. house size related variables: calculatedfinishedsquarefeet, finishedsquarefeet12, lotsizesquarefeet
- 3. house location related: longitute, latitute
- 4)house value related: taxvaluedollarcnt, landtaxvaluedollarcnt, taxamount, structuretaxvaluedollarcnt
  - 5. date related: yearbuilt, transactiondate, assessmentyear

There are 13 categorical variables: 1) parcelid

- 2. house adress related: fips, regionidcity, regionidcounty, regionidzip
- 3. house feature related: hashottuborspa, fireplaceflag
- 4. property use variable: propertycountylandusecode, propertyzoningdesc, propertylandusetypeid
- 5. tax: taxdelinquencyflag
- 6. census track and block variables: censustractandblock and rawcensustractandblock

# 3.1 Univariate analysis

## 3.11 the outcome variable: logerror

```
summary(train2$logerror)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4.60500 -0.02530 0.00600 0.01146 0.03920 4.73700

plot(density(train2$logerror), main='logerror')
```

## logerror



Findings: in general, the logerror between estimated house price and the actual sale price is very small

## 3.12 Continuous variable

Roomcount related

names(train2)

```
## [1] "parcelid"
                                        "logerror"
## [3] "transactiondate"
                                        "bathroomcnt"
## [5] "bedroomcnt"
                                        "calculatedbathnbr"
## [7] "calculatedfinishedsquarefeet"
                                        "finishedsquarefeet12"
## [9] "fips"
                                        "fullbathcnt"
                                        "latitude"
## [11] "hashottuborspa"
## [13] "longitude"
                                        "lotsizesquarefeet"
## [15] "propertycountylandusecode"
                                        "propertylandusetypeid"
## [17] "propertyzoningdesc"
                                        "rawcensustractandblock"
## [19] "regionidcity"
                                        "regionidcounty"
                                        "roomcnt"
## [21] "regionidzip"
## [23] "yearbuilt"
                                        "fireplaceflag"
## [25] "structuretaxvaluedollarcnt"
                                        "taxvaluedollarcnt"
                                        "landtaxvaluedollarcnt"
## [27] "assessmentyear"
## [29] "taxamount"
                                        "taxdelinguencyflag"
## [31] "censustractandblock"
```

### summary(train2[,c(4,5,6,10,22)])

```
##
    bathroomcnt
                     bedroomcnt
                                  calculatedbathnbr fullbathcnt
## Min. : 0.000
                   Min. : 0.000
                                  Min. : 1.000
                                                   Min.
                                                         : 1.000
                   1st Qu.: 2.000 1st Qu.: 2.000
   1st Qu.: 2.000
                                                   1st Qu.: 2.000
## Median : 2.000
                   Median : 3.000 Median : 2.000
                                                   Median : 2.000
##
   Mean : 2.279
                   Mean : 3.032
                                  Mean : 2.309
                                                   Mean : 2.241
   3rd Qu.: 3.000
                   3rd Qu.: 4.000
                                  3rd Qu.: 3.000
                                                   3rd Qu.: 3.000
##
##
   Max. :20.000
                   Max. :16.000
                                  Max. :20.000
                                                   Max. :20.000
                                  NA's
                                                   NA's
                                         :1182
                                                         :1182
##
##
      roomcnt
## Min. : 0.000
   1st Qu.: 0.000
##
## Median : 0.000
        : 1.479
## Mean
   3rd Qu.: 0.000
##
   Max.
         :18.000
##
##
```

```
par(mfrow=c(2,3))
hist(train2[,4],xlab='bathroomcnt',main='number of bathroom')
hist(train2[,5],xlab='bedroomcnt',main='number of bedroom')
hist(train2[,6],xlab='calculatedbathnbr',main='number of calculatedbathnbr')
hist(train2[,10],xlab='fullbathcnt',main='number o fullbathcnt')
hist(train2[,22],xlab='roomcnt',main='number of roomcnt')
```



Findings: 1) the distribution of bathroom and bedroom are positively skewed 2) most houses have less than 5 bedroom and bathrooms 3) apart from some houses with only one room, a lot of houses have 5~8 rooms in total 4) bathroomcnt, bedroomcnt and roomcnt have better data quality cuz they do not have NAs

### House size related

```
summary(train2[,c(7,8,14)])
    calculatedfinishedsquarefeet finishedsquarefeet12 lotsizesquarefeet
##
    Min.
                                  Min.
                                              2
                                                        Min.
                                                                     167
##
    1st Qu.: 1184
                                  1st Qu.: 1172
                                                        1st Qu.:
                                                                   5703
##
##
    Median: 1540
                                  Median: 1518
                                                        Median :
                                                                   7200
##
    Mean
           : 1773
                                  Mean
                                          : 1745
                                                        Mean
                                                                  29110
##
    3rd Qu.: 2095
                                  3rd Qu.: 2056
                                                        3rd Qu.:
                                                                  11686
                                          :20013
                                                               :6971010
##
    Max.
           :22741
                                  Max.
                                                        Max.
##
    NA's
           :661
                                  NA's
                                          :4679
                                                        NA's
                                                               :10150
par(mfrow=c(1,3))
hist(train2[,7],xlab='calculatedfinishedsquarefeet',main='calculatedfinishedsquarefeet')
hist(train2[,8],xlab='finishedsquarefeet12',main='finishedsquarefeet12')
hist(train2[,14],xlab='lotsizesquarefeet',main='area of the lot')
```



## House location related variables

summary(train2[,c(12,13)])

```
##
       latitude
                          longitude
##
   Min.
           :33339295
                       Min.
                               :-119447865
    1st Qu.:33811538
                       1st Qu.:-118411692
##
    Median :34021500
                       Median :-118173431
##
                               :-118198868
##
    Mean
           :34005411
                       Mean
    3rd Qu.:34172742
                       3rd Qu.:-117921588
##
##
    Max.
           :34816009
                       Max.
                               :-117554924
```

```
par(mfrow=c(1,2))
hist(train2[,12],main='latitute')
```

```
## Warning in n * h: 整数上溢产生了NA
```

```
hist(train2[,13],main='longtitue')
```

```
## Warning in n * h: 整数上溢产生了NA
```



### House value related variables

```
summary(train2[,c(25,26,28,29)])
```

```
structuretaxvaluedollarcnt taxvaluedollarcnt landtaxvaluedollarcnt
##
##
    Min.
                100
                                Min.
                                                    Min.
    1st Qu.: 81245
                                1st Qu.:
                                           199023
                                                    1st Qu.:
                                                                82228
##
    Median : 132000
                                                    Median :
##
                                Median :
                                           342872
                                                               192970
           : 180093
##
    Mean
                                Mean
                                          457673
                                                    Mean
                                                               278335
    3rd Qu.: 210534
                                3rd Qu.:
                                           540589
                                                    3rd Qu.:
                                                               345420
##
##
    Max.
           :9948100
                                Max.
                                        :27750000
                                                    Max.
                                                            :24500000
    NA's
           :380
                                NA's
                                        :1
                                                    NA's
                                                            :1
##
##
      taxamount
##
    Min.
           :
                49.1
              2872.8
##
    1st Qu.:
    Median: 4542.8
##
##
    Mean
              5984.0
    3rd Qu∴:
              6901.1
##
##
    Max.
           :321936.1
    NA's
##
           :6
```

```
par(mfrow=c(2,2))
hist(train2[,25],xlab='structuretaxvaluedollarcnt',main='structure tax value')
hist(train2[,26],xlab='taxvaluedollarcnt',main='total tax')
hist(train2[,28],xlab='landtaxvaluedollarcnt',main='land tax')
hist(train2[,28],xlab='taxamount',main='tax assesed for the year')
```



## $\neg$

8e+06



structuretaxvaluedollarcnt

4e+06

taxvaluedollarcnt

total tax

### land tax



## tax assesed for the year



### ####Date variables

0e+00

Frequency

#convert transactiondate from character to date format and create a new variable transdate to s
tore it
train2\$transDate<-as.Date(train2\$transactiondate,'%Y-%m-%d')
summary(train2[,c(23,27,32)])</pre>

```
##
      yearbuilt
                    assessmentyear
                                      transDate
##
   Min.
           :1885
                    Min.
                            :2015
                                    Min.
                                           :2016-01-01
    1st Qu.:1953
                    1st Qu.:2015
                                    1st Qu.:2016-04-05
##
    Median :1970
                                    Median :2016-06-14
##
                    Median :2015
##
    Mean
           :1969
                    Mean
                           :2015
                                    Mean
                                           :2016-06-11
                                    3rd Qu.:2016-08-19
    3rd Qu.:1987
                    3rd Qu.:2015
##
##
    Max.
           :2015
                    Max.
                           :2015
                                    Max.
                                           :2016-12-30
##
    NA's
           :756
```

```
str(train2[,c(23,27,32)])
```

```
par(mfrow=c(1,2))
hist(train2[,23],xlab='yearbuilt',main='yearbuilt')
hist(train2[,32],xlab='transDate',main='transDate',breaks='months')
```





## 3.1.3categorical variables

House adress related variables

```
#fips distribution
table(train2$fips)/nrow(train2)
```

```
## 6037 6059 6111
## 0.64883966 0.27144835 0.07971199
```

#6037 for LA county, 6059 for Orange county and 6111 for ventura

```
#city distribution
#table(train2$regionidcity)

#county distribution
#table(train2$regionidcounty)

#zip
#table(train2$regionidzip)
```

## House feature variable

```
table(train2$hashottuborspa)/nrow(train2)
```

```
##
## true
## 0.97380227 0.02619773
```

```
table(train2$fireplaceflag)/nrow(train2)
```

```
##
## true
## 0.997540847 0.002459153
```

Findings: very few houses have fireplace or spa tub

## propertyuse variable

```
table(train2$propertycountylandusecode)
```

```
##
                   010
                         0100
                                0101
                                       0102
                                              0103
                                                     0104
                                                            0108
                                                                   0109
                                                                          010C
               1
                      1 30846
                                7435
                                           3
                                               100
                                                      348
                                                              46
                                                                     27 10264
                                                                                 2209
##
    010E
           010F
                  010G
                         010H
                                010M
                                       010V
                                              0110
                                                     0111
                                                            0114
                                                                   012C
                                                                          012D
                                                                                 012E
##
##
    2286
             28
                     80
                            72
                                   59
                                        201
                                                  4
                                                         1
                                                                1
                                                                    523
                                                                             4
                                                                                     7
    0130
           0131
                  01DC
                         01DD
                                01HC
                                       0200
                                              0201
                                                     020G
                                                            020M
                                                                   0210
                                                                          0300
                                                                                 0301
##
                   251
                             1
                                 148
                                       2153
                                                43
                                                         4
                                                                           578
    0303
           030G
                  0400
                         0401
                                040A
                                       040V
                                              0700
                                                     070D
                                                                1
                                                                   100V
                                                                          1011
                                                                                 1012
##
        1
               2
                   747
                             4
                                    1
                                                            2915
                                                                       5
                                                                              2
                                                                                     2
##
                                           6
                                                 54
    1014
            105
                  1110
                                1112
                                                     1128
                                                            1129
                                                                   1200
                                                                          1210
                                                                                  122
                         1111
                                       1116
                                              1117
##
                         3883
                                    5
##
      32
                  1117
                                         11
                                                 46
                                                      356
                                                            1643
                                                                      1
                                                                            47 15383
##
    1222
           1310
                  1321
                         1333
                                 135
                                       1410
                                              1420
                                                     1421
                                                            1432
                                                                   1720
                                                         2
                                                                2
##
       28
               4
                             1
                                   35
                                         13
                                                  1
                                                                       7
                                                                             1
                                                                                     1
##
       34
             38
                  6050
                            73
                                8800
                                         96
                            11
    5946
            106
##
                      1
                                    1
                                        104
```

#table(train2\$propertyzoningdesc)

### tax related

```
table(train2$taxdelinquencyflag)/nrow(train2)
```

```
##
## Y
## 0.98024924 0.01975076
```

Findings: 2% of the houses have tax delinquency

# 3.2 Bivariate analysis

## 3.2.1 continuous vs outcome

```
corr<-cor(train2[,c(2,4:8,10,12:14,22,23,25,26,28,29)],use='pairwise.complete.obs')
library(corrplot)</pre>
```

```
## Warning: package 'corrplot' was built under R version 3.4.3
```

```
## corrplot 0.84 loaded
```

corrplot(corr)



cor\_logerror<-sort(corr[,1],decreasing = T)
cor\_logerror</pre>

```
##
                                          finishedsquarefeet12
                        logerror
##
                     1.000000000
                                                    0.041922367
##
   calculatedfinishedsquarefeet
                                             calculatedbathnbr
##
                     0.038784069
                                                    0.029447685
                     fullbathcnt
##
                                                    bathroomcnt
##
                     0.028845122
                                                    0.027889287
                                    structuretaxvaluedollarcnt
##
                      bedroomcnt
##
                     0.025467090
                                                    0.022084970
##
                                             taxvaluedollarcnt
                       yearbuilt
##
                     0.017312211
                                                    0.006507999
##
                         roomcnt
                                                       latitude
                     0.005759796
##
                                                    0.004915466
##
              lotsizesquarefeet
                                         landtaxvaluedollarcnt
                     0.004835250
                                                   -0.003051035
##
##
                       longitude
                                                      taxamount
##
                    -0.003432217
                                                   -0.006671116
```

#corelations are all soooo weak

```
#show corelation between each variable and the Logerror
par(mfrow=c(4,2))
plot(train2$finishedsquarefeet12,train2$logerror)
plot(train2$calculatedfinishedsquarefeet,train2$logerror)
plot(train2$calculatedbathnbr,train2$logerror)
plot(train2$fullbathcnt,train2$logerror)
plot(train2$bathroomcnt,train2$logerror)
plot(train2$bathroomcnt,train2$logerror)
plot(train2$structuretaxvaluedollarcnt,train2$logerror)
```



the points are randomly scattered and indicates the corelation is weak

## correlation between the transDate and the logerror

```
library(lattice)

## Warning: package 'lattice' was built under R version 3.4.3

train2$transMonth<-sapply(strsplit(train2$transactiondate,'-'),function(x) x[2])
bwplot(logerror~transMonth,data=train2,xlab='month')</pre>
```



bwplot(logerror[which(abs(logerror)<0.05)]~transMonth,data=train2,xlab='month')</pre>



```
err.month<-by(train2,train2$transMonth,function(x){return(mean(x$logerror))})
plot(names(err.month),err.month,type='l',xlab='month',ylab='average error')</pre>
```



Findings: distributon of logerror is similar, but average logerror differs in the month of april, may, june transaction day with logerror

```
train2$transDay<-sapply(strsplit(train2$transactiondate,'-'),function(x) x[3])
err.day<-by(train2,train2$transDay,function(x){return(mean(x$logerror))})
plot(names(err.day),err.day,type='l',xlab='day',ylab='average logerror')</pre>
```



## 3.2.2categorical variables vs outcome

For categorical variables, I would explore the relationship between the logerror and the fips, hashottuborspa, fireplaceflag, propertylanusetypeid, taxdelinquency









landPlot1<-bwplot(logerror~as.character(propertylandusetypeid),data=train2,xlab='landtype')
landPlot2<-bwplot(logerror~as.character(propertylandusetypeid),data=subset(train2,abs(logerror)
<.05),</pre>

xlab='landtype with logerror less tha 0.05')
grid.arrange(landPlot1,landPlot2,ncol=2)



anova(with(train2,lm(logerror~as.character(fips))))

anova(with(train2,lm(logerror~as.character(propertylandusetypeid))))

```
anova(with(train2,lm(logerror~hashottuborspa)))
```

```
## Analysis of Variance Table
##
## Response: logerror
## Df Sum Sq Mean Sq F value Pr(>F)
## hashottuborspa 1 0.06 0.062835 2.4218 0.1197
## Residuals 90273 2342.22 0.025946
```

```
anova(with(train2,lm(logerror~fireplaceflag)))
```

```
anova(with(train2,lm(logerror~taxdelinquencyflag)))
```

Findings: taxdelinquence, fips and propertylandusetypeid really matters

### 3.2.3 create new variables

number of houses sold by city

```
#calculate the number of houses sold by city
library(plyr)
```

```
## Warning: package 'plyr' was built under R version 3.4.3
```

```
house.city<-ddply(train2,.(regionidcity),summarise,cityhousecnt=length(regionidcity))
train3<-merge(train2,house.city,by='regionidcity',all.x=T)
with(train3,plot(cityhousecnt,logerror,main='logerror vs city house count'))</pre>
```

## logerror vs city house count



train3\_sub<-train3[train3\$cityhousecnt != max(train3\$cityhousecnt),]
with(train3\_sub,plot(cityhousecnt,logerror))</pre>



## ####number of house sold by zip

```
house.zip<-ddply(train2,.(regionidzip),summarise,ziphousecnt=length(regionidzip))
train4<-merge(train2,house.zip,by='regionidzip',all.x=T)
with(train4,plot(ziphousecnt,logerror,main='logerror vs zip house count' ))</pre>
```

## logerror vs zip house count



cor(train4\$ziphousecnt,train\$logerror)

## [1] 0.0002476373

## community quality

```
price.zip<-ddply(train4,.(regionidzip),summarize,avgtax=mean(taxamount,na.rm = T))
train5<-merge(train4,price.zip,by='regionidzip',all.x=T)
with(train5,plot(avgtax,logerror,main='avgtax vs error ' ))</pre>
```

## avgtax vs error

