Numerical methods for conservation laws

Sheet 2

Prof. Dr. Patrick Henning Mahima Yadav Winterterm 24/25

Tutorial: Wednesday 23.10.24, 15:15 - 17:00.

Exercise 1

We consider the one dimensional Poisson equation on the unit interval $\Omega = [0, 1]$,

$$-u_{xx} = S$$
 in Ω ,
 $u_x \cdot \mathbf{n} = g_N$ on Γ_N ,
 $u = g_D$ on Γ_D ,

with source $S: \Omega \to \mathbb{R}$, boundary sets $\Gamma_N, \Gamma_D \subset \partial\Omega$ such that $\Gamma_N \cup \Gamma_D = \partial\Omega$, $\Gamma_N \cap \Gamma_D = \emptyset$ and $g_N: \Gamma_N \to \mathbb{R}$, $g_D: \Gamma_D \to \mathbb{R}$. In particular, we have Neumann boundary conditions on Γ_N and Dirichlet boundary conditions on Γ_D .

We consider the cases

- i). $S(x) = \pi^2 \sin(\pi x)$, $\Gamma_N = \emptyset$, $\Gamma_D = \partial \Omega$, $g_D = 0$ (homogeneous Dirichlet boundary conditions).
- ii). $S(x) = \pi^2 \cos(\pi x)$, $\Gamma_N = \{1\}$, $g_N = 0$, $\Gamma_D = \{0\}$, $g_D = 1$ (Dirichlet conditions at the left and Neumann conditions at the right boundary).
- (a). What is the solution of the Poisson equation in case i), respectively ii)?
- (b). Derive the scheme of the finite volume method with $N \in \mathbb{N}$ cells of size $h = \frac{1}{N}$ for the Poisson equation with i) and ii). Use the midpoint rule for approximating the integrals of S and finite differences for approximating the flux u_x . You should end up with a linear system of the form AQ = S, where Q is a vector consisting of the cell averages of the solution u.
- (c). Implement the finite volume method (e.g. in MATLAB) with cell size N = 50 (or h = 0.02 respectively) in both cases i) and ii). Plot the approximation of the solution together with the exact solutions from (a).
- (d). For $h = 2^{-i}$, i = 5, ..., 15 compute the approximation of the solution and calculate the error $e(h) = \max_{i=1,...N} |u(x_i) Q_i|$ where $u(x_i)$ is the exact solution at the cell midpoint x_i and Q_i is the approximation of the *i*-th cell average of the numerical solution. Plot the results in a logarithmic (h, e(h))-diagram for the both cases i) and ii).