Self-Support Few-Shot Semantic Segmentation, ECCV 2022 自支持匹配的思想 用于FSS

Motivation

现有的few-shot方法大多基于查询-支持匹配的框架。 支持的类是少量的,覆盖范围有限 such as:

即:S和Q中的同类物体是有可能存在很大的外观差异性。

提出了自支持匹配的策略来解决问题

Motivation

之前的方法:

自适应学习 注意力机制 或是更好的训练方法

但都没有很好的解决上述问题,因为都局限在用少量的 support去分割无穷的query

Solution

想法是利用查询特征原型 P_q 去匹配查询图像特征 F_q 。 P_q 是从query prediction mask 提取对应的查询特征 F_q 得到的。 query prediction mask 是用传统的匹配算法生成的。

Framework

Framework

 $\mathcal{M}_1 = \operatorname{softmax}(\operatorname{cosine}(\mathcal{P}_s, \mathcal{F}_q)),$

where $\widetilde{\mathcal{M}}_q = \mathbb{1}(\mathcal{M}_1 > \tau)$, and \mathcal{M}_1 is the estimated query mask generated by Equation 2, $\mathbb{1}$ is the indicator function. The mask threshold τ is used to control the query feature sampling scope which is set as $\{\tau_{fg} = 0.7, \tau_{bg} = 0.6\}$ for foreground and background query masks respectively. The estimated self-support prototype $\mathcal{P}_q = \{\mathcal{P}_{q,f}, \mathcal{P}_{q,b}\}$ will be utilized to match query features.

Framework: ASBP

自适应地为每个查询 像素生成自支持背景 原型。

Framework: SSFP

Framework

Results

Table 3. Quantitative comparison results on PASCAL- 5^i dataset. The **best** and second best results are highlighted with **bold** and <u>underline</u>, respectively.

Method	Do akh ana	1-shot fold0 fold1 fold2 fold3 Mean					5-shot					Donoma
Method	Баскропе	loido	10101	10102	10103	Mean	loido	lold1	loid2	10103	Mean	
PANet [75]	Res-50	44.0	57.5	50.8	44.0	49.1	55.3	67.2	61.3	53.2	59.3	$\underline{23.5~\mathrm{M}}$
PPNet [56]		48.6	60.6	55.7	46.5	52.8	58.9	68.3	66.8	58.0	63.0	$31.5 \mathrm{M}$
PFENet [73]		<u>61.7</u>	69.5	55.4	56.3	60.8	63.1	70.7	55.8	57.9	61.9	$34.3~\mathrm{M}$
CWT [59]		56.3	62.0	59.9	47.2	56.4	61.3	68.5	68.5	56.6	63.7	-
HSNet [61]		64.3	70.7	60.3	60.5	64.0	70.3	73.2	67.4	67.1	69.5	26.1 M
MLC [82]		59.2	71.2	$\underline{65.6}$	52.5	62.1	63.5	71.6	71.2	58.1	66.1	8.7 M
SSP (Ours)		61.4	67.2	65.4	49.7	60.9	<u>68.0</u>	72.0	74.8	60.2	68.8	8.7 M
$\overline{\mathrm{SSP}_{refine}}$		60.5	67.8	66.4	51.0	61.4	67.5	<u>72.3</u>	75.2	<u>62.1</u>	<u>69.3</u>	8.7 M
FWB [62]	Res-101	51.3	64.5	56.7	52.2	56.2	54.8	67.4	62.2	55.3	59.9	43.0 M
PPNet [56]		52.7	62.8	57.4	47.7	55.2	60.3	70.0	69.4	60.7	65.1	$50.5~\mathrm{M}$
PFENet [73]		60.5	69.4	54.4	55.9	60.1	62.8	70.4	54.9	57.6	61.4	$53.4~\mathrm{M}$
CWT [59]		56.9	65.2	61.2	48.8	58.0	62.6	70.2	68.8	57.2	64.7	-
HSNet [61]		67.3	72.3	62.0	63.1	$\bf 66.2$	71.8	74.4	67.0	68.3	70.4	$45.2~\mathrm{M}$
MLC [82]		60.8	<u>71.3</u>	61.5	56.9	62.6	65.8	74.9	71.4	63.1	68.8	27.7 M
SSP (Ours)		63.7	70.1	66.7	55.4	64.0	70.3	76.3	<u>77.8</u>	65.5	72.5	27.7 M
SSP_{refine}		63.2	70.4	68.5	56.3	64.6	70.5	76.4	79.0	<u>66.4</u>	73.1	27.7 M