Human Activity Monitoring for Mental Health Assessment

Christopher Patterson, Matthew Johnson, Adi Widjaja, Abdullah Al Lawati, Erik Low Advisor: Nikolaos Papanikolopoulos

Overview

- Uses, Features, and Capabilities
- Technology and How It Works
- Specifications
- Further Development and Marketing Opportunities
- Demo

Uses, Features, and Capabilities

Uses

- Versatile with uses for other applications
- Detection of multiple physical symptoms simultaneously
- Health and Fitness
 - Physical Therapy
 - o Yoga
 - o Fitness/sports training

Uses

- Entertainment
 - Video games
 - Dancing
 - Music
- Surveillance
 - Crime investigation
 - Human monitoring
- Smart technology
 - Automobiles
 - Homes

Features

- Display of information onto the original video
 - Data related to hand flapping
 - Keypoints and vectors related representing body
 - Angles and Frequencies of repetitive motion
- Notification system
 - Angle threshold
 - Frequency threshold
 - Change of text
- Action Recognition
 - Display of recognized actions of patient

Capabilities

- Keypoint vector options
 - Default: Background + keypoint vectors
 - Completely filtered background
 - Data only, no graphics
- 135 keypoints throughout the body
 - Ears, eyes, legs, big/small toes, heels, etc.
 - Advanced: facial features and hands

Capabilities

- Overlay/display
 - Any information desired by user
 - Shapes and text options
 - Changeable notification system
- Action Recognition
- Multi-person tracking

Technology and How It Works

The Whole Picture

Pose Detection in Video

- OpenPose library from Carnegie Mellon University
- Pose estimation using Convolutional Neural Networks
- Outputs up to 135 Keypoints, identifying parts of a person's pose

Vector Analysis

- Can visualize OpenPose keypoints as start and end points of vectors
- Find angles between two of these vectors
- Perform Fast Fourier Transform to determine frequency of this movement
- Combining with action recognition classification can yield the frequency of an action

Action Classification

- Convolutional Neural Network
- Window of keypoints in time as input
- 80% train 20% test method yielding up to 99% test accuracy
- Classifications labels from KTH dataset
 - Running
 - Jogging
 - Waving
 - Clapping
 - Boxing
- Limitations:

- CNN works on KTH but not enough data for ASD specific actions
- Different video perspectives limit performance based on KTH dataset

Presentation of Data

- Video overlay of extracted data
 - Pose overlay
 - Angle information of arms to torso
 - Frequency of motion
 - Action classification
- Augments Medical Professional's information set for diagnosis
- Saving this information for easy recall later
- Allows professional to focus attention on patient

Specifications

Tracking Accuracy:

- -Detection is no longer done using Optical Flow analysis nor MatLab
- -Tracking is done through the 25 key-points detection

Tracking Distance:

- -Tested from 1-20 meters
- -Openpose is able to detect very long distances

Specification	Ideal Value	Actual Value
Tracking Accuracy	10 pixels	
Tracking Distance	3 meters	1-20 meters

Camera Focal Length & Image Quality:

- -Wide range of different qualities were tested
- -All were processed through Openpose with all key-points visible

Specification	Ideal Value	Actual Value
Camera Focal Length	4.3 mm	4.3 mm
Image Quality	12 Megapixels	1.3-12 Megapixels

Success Rate:

- -99% success Rate
- -Openpose filters out the background noise

Movement Speed:

-Detect movements higher than 2 m/s

Response Time:

- -Approximately 3 Minutes
- Not enough time to implement real-time tracking and classification

Specification	Ideal Value	Actual Value
Success Rate	80%	99%
Movement Speed	2 m/s	>2 m/s
Response Time	4 ms	3 minutes

Further Development and Marketing Opportunities

Further Development

Marketing Opportunities

Current Method

- Current procedure for diagnosis requires multiple screenings with children
 - Occur at 18 and 24 months
- Time consuming
- Requires large amount of medical training and expertise

Proposed New Method

- Video analysis will provide preliminary probabilities to expedite diagnosing process
- Can incorporate screenings into earlier visits
- Will catch movements and patterns that humans can miss

Additional Benefits

Professional

- Provide unbiased probabilities based on known movement patterns
- Ability to share medical records without the loss of privacy
- Large amounts of data collection
- Minimize extensive professional training required

Personal

- Earlier detection leads to improved long term prognosis
- Increased awareness of unusual patterns within children
- Improved accuracy leading to decreased need of second opinion

Broader Market and Applications

- Sports and performance
 - More efficiently track training of athletes
 - Analyze technique more precisely
- Physical therapy
 - Monitor progress of patients
 - Track imbalances in patients movements
- Smart technologies
 - Action recognition within smart homes
 - Action recognition within automobiles
- Recognition of other disorders

Summary of Project

- Utilize an open source tool to determine human pose
- Analyze movement of keypoints
 - Calculations Angles and frequency of movement
 - More complex action recognition CNN
- Up to 99% accuracy for train/test data set used with CNN
- Project is a proof of concept, more data is required to improve action recognition
- Future applications hope to develop a more accessible platform to monitor and provide feedback

Demo

Thank You! Questions?

Human Activity Monitoring for Mental Health Assessment

Check out our output examples: https://bit.ly/2QyZXh7

Want to work with our source code? https://github.com/chrispypatt/Senior-Design