Model Evaluation

Imbalanced Dataset &

Imbalanced Dataset

- An unequal distribution of classes
 - Example: In a credit card fraud detection dataset, most of the credit card transactions are not fraud and a very few classes are fraud transactions.
- Types of Imbalance Dataset

Imbalanced Dataset

- An unequal distribution of classes
 - Example: In a credit card fraud detection dataset, most of the credit card transactions are not fraud and a very few classes are fraud transactions.
- Types of Imbalance Dataset
- Cause of Imbalance Dataset
 - Biased Sampling
 - Measurement Error
- The imbalance might be a property of the problem domain
- Approaches to handling Imbalanced Dataset
 - Act on Data (Sampling)
 - Act on Cost Function (Evaluation Methods)

Sampling

- Undersampling (If enough data is available)
 - Remove some data from **Majority Class**

- Oversampling
 - Add new data for Minority Class
 - SMOTE (Synthetic Minority Oversampling Technique)
 - Random oversampling

Resampling

Evaluation Methods

Upweighting

Downweighting

Evaluation Metrics

• Ensemble Method

Evaluation Metrics

Precision/Specificity: how many selected instances are relevant

Recall/Sensitivity: how many relevant instances are selected

F1 score: harmonic mean of precision and recall

Confusion Matrix: a table showing the relation of predicted and expected result

ROC Curve: true positive vs false positive curve

Model Evaluation (Holdout)

- Randomly partitioned in two independent sets
 - Training set
 - Test set
- Training set is used to train the model
- Test set is used to validate the accuracy of the model
- Estimation is Pessimistic

Model Evaluation (Random Sampling)

- Variation of Holdout method
- Holdout method is used for some n times
- Average result is considered

Model Evaluation (Cross Validation)

- k-fold
 - Randomly partitioned into k subsets
 - Training performs k times
 - Each time one subset of data is kept test data
 - Other (k-1) subsets are used as training dataset
- Leave-one-out
 - Special case of k-fold
 - Each fold contains only one data tuple
- Stratified cross validation
 - Preserves the data distribution in subsets

Model Evaluation (Bootstrap)

- Uniformly sample tuple with replacement
- On average, 63.2% data as Training data
- On average, 36.8% data as Test data
- Model accuracy is weighted

Model Evaluation (Ensemble Method)

- Use a set of classifiers
- Data is sampled for each classifier
- Final prediction based on majority voting
- Techniques:
 - Bagging
 - Boosting

Model Evaluation (Bagging)

- Bagging stands for Bootstrap Aggregation
- Each Training is a bootstrap sample

Model Evaluation (Boosting)

- Weights are assigned to each tuple
- A series of n classifiers are learned
- Weights are updated after each iteration
 - Increased if predicted incorrectly
 - Decreased if predicted correctly
- Adaboost
 - Weights are updated based on error rate
 - Models are weighted based on error

Thank You

References

- https://towardsdatascience.com/guide-to-classification-on-imbalanced-datasets-d6653aa5fa23
- https://www.kdnuggets.com/2017/06/7-techniques-handle-imbalanced-data.html
- https://machinelearningmastery.com/what-is-imbalanced-classification/#:~:text=Imbalanced%20classification%20refers%20to%20a,is%20instead%20biased%20or%20skewed.
- https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28
- Chapter 6, Data Mining Concepts and Techniques, Jiawei Han and Micheline Kamber, Second Edition