HR ANALYSIS CASE STUDY

Sicheng Yang
DSI
Oct 20

github.com/kkarzyang/Presentation

- Predict promotion or not

- Sociology research, junior employees, current students

- Classification problem

- Kaggle

- Collected from HR datasets (by shivan kumar)

- IDs get dropped
- Features: 12
- Target Variable: is_promoted

<pre>is_promoted awards won?</pre>	0	1
0		0.076749 0.440157

Why?

Why?

SPLITTING

- HOW & WHY
- Data Dimension: 54808 * 13
- iid, train/validation/test set (80%/10%/10%)
- X and traget(y) variable
- Stratify

avg_training_score	is_promoted		
49	0		
60	0		
50	0		
50	0		
73	0		

	department	region	education	gender	recruitment_channel	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	awards_won?
0	Sales & Marketing	region_7	Master's & above	f	sourcing	1	35	5.0	8	1	0
1	Operations	region_22	Bachelor's	m	other	1	30	5.0	4	0	0
2	Sales & Marketing	region_19	Bachelor's	m	sourcing	1	34	3.0	7	0	0
3	Sales & Marketing	region_23	Bachelor's	m	other	2	39	1.0	10	0	0
4	Technology	region_26	Bachelor's	m	other	1	45	3.0	2	0	0
•••											
B03	Technology	region_14	Bachelor's	m	sourcing	1	48	3.0	17	0	0

- Missing values
- Fraction of missing values in features:
- education: 0.043333
- previous_year_rating: 0.075218
- (43846, 12)
- (38949, 12)
- 4897 rows with missing values: 0.11168635679423436

WHAT & WHY

```
std_cols = ['no_of_trainings', 'length_of_service', 'avg_training_score']
cat_cols = ['department', 'region', 'gender', 'recruitment_channel', 'KPIs_met >80%', 'awards_won?']
ord_col1 = ['education']
ord_col2 = ['previous_year_rating']
minmax_cols = ['age']
ord_cat1 = [["NA", "Below Secondary", "Bachelor's", "Master's & above"]]
ord_cat2 = [[0.0,1.0,2.0,3.0,4.0,5.0]]
```

- WHAT & WHY
- Categorical features -> one-hot-encoding
- Ordinal features -> OrdinalEncoder (After filled in missing values)
- Numerical features with a well known range -> minmaxscaler
- Numerical features -> standard scaler

BEFORE & AFTER

```
print(df_train.shape)
print(X_train.shape)

(43846, 58)
(43846, 12)
```

Presentation title 12

Presentation title 13