Sprawozdanie z laboratorium: Przetwarzanie i Rozpoznawanie Obrazów

Projekt 1: dopasowywanie elementów

12 października 2021

Prowadzący: dr inż. Bartosz Wieloch

Autorzy: Marianna Murawicz inf132291 ISWD marianna.murawicz@student.put.poznan.pl Paweł Przybyłowski inf131813 ISWD pawel.przybylowski@student.put.poznan.pl

1 Opis metody

1.1 Poszczególne kroki przetwarzania obrazów wejściowych

Wizualizacja poszczególnych kroków została przedstawiona na rysunkach (czarne obramowania dodane na cel sprawozdania, aby było cokolwiek widać) pod listą na przykładowym obrazie wejściowym.

- 1. Obraz wczytywany jest w skali szarości.
- 2. Obraz jest obracany, tak aby był "wyprostowany", to znaczy tak, że ściany prostokąta będą równoległe do odpowiadających osi w układzie współrzędnych.
- 3. Obraz jest następnie przycinany, aby usunąć niepotrzebne czarne tło (zostaje tylko biała część uciętego prostokąta).
- 4. Obraz jest pomniejszany do wymiarów 30 pikseli na 30 pikseli (aby przyspieszyć obliczenia opisu).
- 5. Sprawdzana jest rotacja obrazu, jeśli "podstawa" prostokątu jest na lewym lub prawym boku, obracana jest aby była na dole lub górze.

Rysunek 1: Poszczególne kroki przetwarzania przykładowego obrazu wejściowego

1.2 Sposób porównywania ze sobą elementów

1.2.1 Opis pojedynczego elementu

Każda kolumna pojedynczego obrazka jest sprawdzana pod kątem liczby białych pikseli, a ta dodawana do listy, która jest przypisana do danego obrazu (wykorzystano strukturę listy w liście, wiedząc że zerowy element głównej listy dotyczy obrazka 0.png).

W celu szybkiego działania były one pomniejszane (krok 4) oraz aby zapewnić poprawność opisu (zliczanie po kolumnach) odpowiednio obracane, co wiązało się z koniecznością wykonania kroku 5 podczas przetwarzania.

1.2.2 Porównywanie opisów

Każdą listę pojedynczych pikseli porównywano następnie z pozostałymi. Porównanie polegało na wyliczeniu odchylenia standardowego dla każdych dwóch zsumowanych list wartości pikseli, czyli jeśli w pierwszej liście były wartości [33, 35, 33, 38], a w drugiej [37, 35, 39, 34], wychodziła lista [70, 70, 72, 72]. W celu zapewnienia poprawności, jeden z porównywanych obrazów był odwracany (porównywano jego odbicie lustrzane).

Obliczoną wartość dodawano do słownika w postaci krotki (ID_obrazka, wartość). Im mniejsza wartość odchylenia standardowego, tym bardziej obrazki są do siebie podobne. Rozwiązane zostało oparte na założeniu, że suma białych pikseli w kolumnach w odpowiadających obrazkach musi być mniej więcej równa.