

Nível Ligação de Dados (Data Link Layer)

- Como se corrigem tramas detectadas como tendo erros?
 - Caso o código permita corrigir erros (e.g., Hamming)
 Efectuado no receptor (FEC Forward Error Correction)
 - Caso o código apenas permita detectar erros (e.g. CRC)

Pelo emissor (ARQ) colaborando com o receptor - protocolo!

Protocolos do Nível de Ligação de Dados

Objectivos:

- Controlo de erros por ARQ: mecanismo para controlar a retransmissão de dados em caso de erro
- Controlo de fluxo: mecanismo para restringir a quantidade de dados que o emissor pode enviar para o receptor

• Famílias de protocolos:

- Stop-and-Wait
- Sliding Window:
 - Go-Back-N
 - Selective Repeat

Erros na Transmissão e ARQ

por retransmissão automática por parte Correcção dos erros do emissor. Utilização de avisos de recepção positivos ACK e negativos NACK, e temporizadores (Nota: num ACK o valor *n* indica o próximo número de sequência esperado).

Uso de NACK para sinalizar tramas com erro e que devem ser repetidas

Perda/erro na trama de Utilização timers (temporizadores)

Início do timer

Desligar o timer

Disparo do timer

Perda/erro ACK no Utilização de timers (temporizadores)

ARQ: Protocolo Stop-and-Wait (S&W)

- Necessita apenas um bit (0,1) para numeração/identificação das tramas
- Round-Trip-Time (T_{RTT}) : $T_{RTT} = T_{txINF} + T_{prop} + T_{procINF} + T_{txACK} + T_{prop} + T_{procACK}$ T_{txINF} : tempo tx tramas de informação, T_{txACK} : tempo tx tramas de ACK $T_{procINF}$: tempo tx tramas de informação, tx tempo tx tramas de ACK
- Valor mínimo do temporizador $(T_{TimeOut}): T_{TimeOut} \ge T_{RTT}$
- Taxa de utilização do canal $(U_{S\&W})$: $U_{S\&W} = T_{txINF} / T_{RTT}$ $U_{S\&W} = T_{txINF} / T_{RTT} = T_{txINF} / (T_{txINF} + T_{prop} + T_{procINF} + T_{txACK} + T_{prop} + T_{procACK})$ se $T_{procINF}$, T_{txACK} , $T_{procACK} \approx 0$ então $U_{S\&W} \approx 1/(1+2a)$ com a = T_{prop} / T_{txINF}

Desempenho protocolo Stop-and-Wait com erros

• Taxa de utilização do canal com erros $(U_{S\&W_erros})$:

$$U_{S\&W_erros} = \frac{T_{tx}}{(E[N_{tx}]-1)\cdot T_{TimeOut} + T_{RTT}} \longrightarrow \textit{Tempo \'{util}}$$

• Valor esperado do número de transmissões ($E[N_{tx}]$):

$$\widehat{N}_{tx} = E[N_{tx}] = \sum_{i=1}^{\infty} i \cdot p_i = \sum_{i=1}^{\infty} i \cdot (1 - p_{sucesso})^{i-1} \cdot p_{sucesso} = 1/p_{sucesso}$$
 p_i , probabilidade de serem i-1, insucessos sucesso na i-ésima tentativa necessárias i transmissões

Nível Ligação de Dados (Data Link Layer)

 Como se poderá melhorar a taxa de utilização do Stop&Wait?

 O que é o factor mais limitativo?

- Como se poderiam enviar várias tramas sem ter de esperar?

Usar a memória do emissor e receptor: Janelas de transmissão e recepção.

Janela de transmissão = 4 Janela Deslizante (Sliding Window)

ISCTE 2015/2016

Equipa RDI

38

Tamanho da janela

Go-Back-N (GB-n)

detx. W = J. = 4

de tx , $w = J_{tx} = 4$				
				0
ilta/errada"			1	
				0
			7	1
				•
fa fa				3
as tramas deste a sinalizada com "em falta/errada"!			4	3
			4	3
		5	4 4	3 3 3
		5	4	3
		5	4	3
			5	4
			5	4
de de			<u> </u>	4
las		6	5	4
am Tam			.	
s tr				
=				
				=

Tamanho da janela de rx, $J_{rx} = 1$

- 1^a transmissão À espera de Ack Para retransmissão
- Valor máximo para J_{tx} : $J_{tx} \leq N-1$
 - Transmissão sem parar (espera) se:

Desempenho (sem erros):

$$U_{GB-n} = \begin{cases} 1, \text{caso } T_{RTT} < T_{tx} \cdot J_{tx} \\ \frac{T_{tx} \cdot J_{tx}}{T_{RTT}}, \text{caso contrário} \end{cases}$$

Garante a entrega ordenada, sem falhas ou duplicados!

tempo

6

Limite da janela de Tx do Go-Back-N

Recebe: CatarinaPais

Violação do limite da janela de tx Go-Back-N Instituto Universitário de Lisboa Lisbon University Institute

$$J_{tx} = N \times$$

ARQ: Protocolo Selective Repeat

No protocolo GB-n a necessidade de retransmitir todas as tramas na janela tx desde a sinalizada como "errada/em falta" tem implicações negativas no seu desempenho.

ou duplicados!

Selective Repeat (variante com temporizador)

Usado conjuntamente com NACK o dimensionamento do *timer* é dinâmico e diferente do usado no *S&W* ou *GB-N*.

Piggyback Acknowledgement

Controlo de Fluxo

O receptor controla o ritmo a que o emissor envia tramas <u>novas</u>.

High-Level Data Link Control - HDLC

Formato da trama

CRC-16-CCITT
$$G(x) = x^{16} + x^{12} + x^5 + 1$$

Campo de controlo

Trama de informação

Trama de supervisão

TYPE

00 - ACK

01 - NACK

(c)

Modifier Type P/F

Trama não numerada

10 - RECEIVE NOT READY (confirma todas as tramas até Next, mas não quer receber mais)

11 - SELECTIVE REJECT (pede retransmissão da trama Next)

O Nível de Ligação de Dados na Internet

PPP: Point-to-Point Protocol

- Delimitação de tramas e detecção de erros
- Gestão da ligação (Link Control Protocol LCP):
 - Activa, testa, negoceia opções (e.g. checksum) e desactiva as ligações
- Negociação de opções do nível de Rede (Network Control Protocol NCP),
 e.g., obtenção de um endereço IP.

Formato da trama:

Protocol: LCP, NCP, IP, IPX, etc.

Checksum: depende de negociação

Payload: Max. 1500 bytes

 Bytes
 1
 1
 1 or 2
 Variable Var

Trama HDLC não numerada (Nota: ISO e IETF usam diferentes "byte order")

ISCTE 2015/2016 Equipa RDI 48

PPP: Point-to-Point Protocol (2)

Diagrama de estados para estabelecimento e fim de ligações

Parte III: Nível de Ligação de Dados

- Bibliografia
 - Tanenbaum, 3.1-3.4
 - Stallings. 6.1-6.8, 7.1-7.5
- Séries de problemas
 - RDI: Série de problemas 4, 5.
- Questões de frequências e exames
 - Consultar sistema de e-learning
 - Realizar auto-avaliação

ISCTE 2015/2016 Equipa RDI 50