Supporting Information

Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms. 1. Chemical and Physical Characterization and Isotopic Tests

Yu Yang¹, Jun Yang^{1, *}, Wei-Min Wu², Jiao Zhao³, Yiling Song⁴, Longcheng Gao¹, Ruifu Yang³, Lei Jiang^{1, *}

¹ Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China.

² Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Research Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, USA.

Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen 518083, P. R. China.
School of Biological Science and Medical Engineering, Beihang University, Beijing 100191,

P. R. China.

7pages, 5figures, and 1 table

Supplementary Figures

Figure S1.Styrofoam-eating mealworms from three different sources: Beijing (500 worms), China (**a**), Qinhuangdao (500 worms), Hebei, China (**b**)and Ham Lake (50 worms), MN, the USA (**c**).

FigureS2.Procedures and calculation used to estimate carbon balance of Styrofoam loss, fecula residues, CO₂ and biomass in batch Styrofoam-feeding trails. Carbon element percentageof the Styrofoam was determined by using an Elemental Analyzer (Vario EL, USA).

Figure S3.Procedures for ¹³C stable carbon isotope tracer experiments.irMS: isotope ratio mass spectrometry, GC-C-irMS: gaschromatography-combustion-isotope ratio mass spectrometry.

FigureS4.TGA-FTIR thermograms representing absorbance with respect to temperature (°C) and wave number (cm⁻¹).(a) FTIR spectra of the evolved gas in the maximumdecomposing rate temperatures (421 °C) of the control sample of Styrofoam. (b-d) FTIR spectra of the evolved gas in the three maximum decomposing rate temperatures (233,327 and 431°C) of the three decomposition stages of the fecula.

Figure S5. Impact of feeding condition on the biomass dry weight of mealworms after 16-day test period. The starving group lost 24.9% of dry weight; Styrofoam-feeding group increased only 0.2 % of dry weigh; and bran-feeding group increased weight by 33.6%. 40 mealworms as a group and triplicate were used for each condition.

Table S1. Characterization of Styrofoam feedstock (the control polystyrene).

	Chemical property	Method
Chemical composition	> 98.0% polystyrene	TG-FTIR
Chemical composition	All resonance signals attributed to polystyrene	¹³ C CP/MAS NMR
Molecular weight	$M_n=40,430; M_w=124,200$	GPC
Residual styrene	< 0.1%	GC