Prof. Dr. Werner Vogelsang, Institut für Theoretische Physik, Universität Tübingen

Homework problems Classical Field Theory – SoSe 2022 – Set 1 due April 26 in lecture

Problem 1: Differentiation rules for fields

Study first Appendix A in the lecture notes. Consider then scalar fields f(x,y,z), g(x,y,z) and vector fields $\vec{F}(x,y,z)$, $\vec{G}(x,y,z)$ that are sufficiently differentiable. Show that the identities given below hold. In this problem, we will also practice working with three-dimensional indices 1,2,3. Write for example F^i for a component of \vec{F} . Use Einstein's summation convention and use $(\vec{a} \times \vec{b})^i = \varepsilon^{ijk} a^j b^k$. In the end, write equations (a)–(i) also in terms of "grad", "div", "rot" (or "curl") instead of $\vec{\nabla}$.

(a)
$$\vec{\nabla}(fq) = f \vec{\nabla}q + q \vec{\nabla}f,$$

(b)
$$\vec{\nabla}(\vec{F} \cdot \vec{G}) = (\vec{F} \cdot \vec{\nabla})\vec{G} + (\vec{G} \cdot \vec{\nabla})\vec{F} + \vec{F} \times (\vec{\nabla} \times \vec{G}) + \vec{G} \times (\vec{\nabla} \times \vec{F}),$$

(c)
$$\vec{\nabla} \cdot (f \vec{F}) = f \vec{\nabla} \cdot \vec{F} + \vec{F} \cdot \vec{\nabla} f,$$

(d)
$$\vec{\nabla} \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot (\vec{\nabla} \times \vec{F}) - \vec{F} \cdot (\vec{\nabla} \times \vec{G}),$$

(e)
$$\vec{\nabla} \times (f\vec{F}) = (\vec{\nabla}f) \times \vec{F} + f\vec{\nabla} \times \vec{F},$$

(f)
$$\vec{\nabla} \times (\vec{F} \times \vec{G}) = (\vec{\nabla} \cdot \vec{G}) \vec{F} + (\vec{G} \cdot \vec{\nabla}) \vec{F} - (\vec{\nabla} \cdot \vec{F}) \vec{G} - (\vec{F} \cdot \vec{\nabla}) \vec{G},$$

(g)
$$\vec{
abla} imes (\vec{
abla} f) = \vec{0},$$

(h)
$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0,$$

(i)
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{F}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{F}) - \Delta \vec{F},$$

 $Help: \ \varepsilon^{ijk} \varepsilon^{i'j'k} = \delta^{ii'} \delta^{jj'} - \delta^{ij'} \delta^{ji'}.$ It is convenient to use the short-hand notation $\frac{\partial}{\partial x^i} \equiv \partial_i.$

Problem 2:

(a) We consider the Lagrangian

$$\mathcal{L}(\phi, \dot{\phi}, \vec{\nabla}\phi) = \frac{1}{2} \left[\frac{1}{c^2} \left(\frac{\partial \phi}{\partial t} \right)^2 - (\vec{\nabla}\phi)^2 - \mu^2 \phi^2 \right]$$

for a field $\phi(\vec{x},t)$. c and μ are constants. Derive the equations of motion for the field. Also compute the corresponding Hamilton density \mathcal{H} .

(b) Consider now two fields $\psi(\vec{x},t)$, $\phi(\vec{x},t)$ with the Lagrangian

$$\mathcal{L}(\psi, \dot{\psi}, \vec{\nabla}\psi, \phi, \dot{\phi}, \vec{\nabla}\phi) = \frac{i\kappa}{2} \left(\phi \frac{\partial \psi}{\partial t} - \frac{\partial \phi}{\partial t} \psi \right) - \frac{\kappa^2}{2m} (\vec{\nabla}\phi) \cdot (\vec{\nabla}\psi) - V(\vec{x}, t) \phi \psi .$$

Here, κ and m are constants, and V is a potential. Derive the equations of motion for ψ and ϕ . Do they look familiar?

Problem 3: (a little more difficult)

Consider the Lagrangian density

$$\mathcal{L} = \mathcal{L}(\phi, \partial \phi / \partial t, \vec{\nabla} \phi)$$

for a field $\phi = \phi(\vec{x}, t)$. Show that the Hamilton equations of motion read

$$\begin{array}{lcl} \frac{\partial \phi}{\partial t} & = & \frac{\partial \mathcal{H}}{\partial \pi} \,, \\ \\ \frac{\partial \pi}{\partial t} & = & -\frac{\partial \mathcal{H}}{\partial \phi} + \vec{\nabla} \cdot \frac{\partial \mathcal{H}}{\partial (\vec{\nabla} \phi)} \,, \end{array}$$

where $\mathcal{H} \equiv \pi \frac{\partial \phi}{\partial t} - \mathcal{L}$ is the Hamilton density and $\pi(\vec{x}, t) \equiv \frac{\partial \mathcal{L}}{\partial (\frac{\partial \phi}{\partial t})}$ is the canonical momentum density.

Verify that for $\mathcal{L} = \frac{\varrho}{2} (\partial_t \phi)^2 - \frac{\sigma}{2} (\vec{\nabla} \phi)^2$ the Hamilton equations of motion lead to a wave equation.

Help: \mathcal{H} is a function of ϕ, π and $\partial \phi/\partial x$, $\partial \phi/\partial y$, $\partial \phi/\partial z$. Consider the derivatives with respect to these quantities. Use the chain rule.