Contrôle de géométrie analytique N°4

Durée : 1 heure 45 minutes Barème sur	15 points
Duree: 1 neure 45 minutes — Dareine sur	19 points

NOM:		
	Groupe	
PRENOM:		

1. Dans le plan muni d'un repère orthonormé, on donne une droite t et un point F:

$$t: y = -\sqrt{5}x$$
, et $F(0, \alpha)$, $\alpha \in \mathbb{R}_{-}^{*}$.

- a) Déterminer en fonction du paramètre $\alpha < 0$, la famille \mathcal{P}_{α} des paraboles d'axe vertical, tangentes à la droite t.
- b) Déterminer la parabole de la famille \mathcal{P}_{α} qui admet comme directrice la droite d'équation y+4=0.
- 2. Dans le plan muni d'un repère orthonormé, on considère les coniques C_m , $m \in \mathbb{R}$, définies par l'équation cartésienne :

$$C_m$$
: $(m+2)x^2 - 4xy + (m-1)y^2 + 2(m+2)x - 4y + m + 7 = 0$.

- a) Déterminer, en fonction du paramètre m, le genre des coniques \mathcal{C}_m .
 - i) Pour les ellipses réelles, déterminer la direction du grand axe et du petit axe.
 - ii) Pour les hyperboles, déterminer la direction de l'axe réel et de l'axe imaginaire.
- b) Montrer que les coniques ayant un centre, ont toutes le même centre Ω .
- c) Déterminer le paramètre m de sorte que la conique C_m soit une hyperbole dont l'un des sommets est le point A(-3, 1).
- **3.** Dans le plan muni d'un repère orthonormé, on donne deux points A, B et une droite horizontale c:

$$A(0, 0), \quad B(4, 0) \quad \text{et} \quad c: y = b, \quad b \in \mathbb{R}.$$

Soit C un point courant de la droite c.

On considère, dans le triangle ABC, la médiane m issue du sommet C, la hauteur h issue du sommet A et le point P intersection des droites m et h.

- a) Déterminer l'équation cartésienne du lieu de $\,P\,$ lorsque le point $\,C\,$ décrit la droite $\,c\,$.
- b) Déterminer la nature géométrique de ce lieu en fonction de $b \in \mathbb{R}$.

4,5 pts