Part F2: Àlgebra Lineal

- 1. [2 punts] Siguin E, F espais vectorials, v_1, \ldots, v_k i u vectors de E, i $f: E \to F$ una aplicació.
 - (a) Expliqueu què ha de complir u per pertànyer a $\langle v_1, \ldots, v_k \rangle$.
 - (b) Digueu què ha de complir f per ser una aplicació lineal.
 - (c) Suposeu que f és lineal, que coneixem $f(v_1), \ldots, f(v_k)$, i que $u \in \langle v_1, \ldots, v_k \rangle$. Expliqueu com es pot calcular f(u).
- 2. [4 punts] Considereu el subespai de \mathbb{R}^4 següent:

$$F = \left\langle \begin{pmatrix} 2\\3\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 5\\8\\2\\-1 \end{pmatrix}, \begin{pmatrix} -2\\-4\\0\\2 \end{pmatrix} \right\rangle.$$

- (a) Trobeu la dimensió de F i doneu-ne una base B formada per alguns dels generadors.
- (b) Trobeu les condicions, en forma de sistema d'equacions homogeni, que ha de satisfer un vector de \mathbb{R}^4 per a pertànyer a F.
- (c) Considereu els vectors $u = \begin{pmatrix} 4 \\ 6 \\ 1 \\ -1 \end{pmatrix}$ i $v = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 2 \end{pmatrix}$. Per a cadascun d'ells, digueu si pertany

al subespai F i, en cas afirmatiu, doneu-ne les coordenades en la base B de l'apartat (a).

- (d) Amplieu la base B de l'apartat (a) a una base de \mathbb{R}^4 .
- 3. [4 punts]
 - (a) Sigui $f: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^3$ l'aplicació lineal determinada per

$$f\begin{pmatrix}2&0\\0&0\end{pmatrix} = \begin{pmatrix}0\\2\\-4\end{pmatrix}, \ f\begin{pmatrix}1&1\\0&0\end{pmatrix} = \begin{pmatrix}1\\4\\-5\end{pmatrix}, \ f\begin{pmatrix}0&1\\1&2\end{pmatrix} = \begin{pmatrix}0\\7\\-14\end{pmatrix}, \ f\begin{pmatrix}0&0\\0&1\end{pmatrix} = \begin{pmatrix}-1\\2\\-7\end{pmatrix}.$$

Doneu la matriu de l'aplicació en les bases canòniques i digueu si f és injectiva, exhaustiva o bijectiva.

(b) Considerem l'endomorfisme f de \mathbb{R}^3 tal que la matriu associada en la base canònica és:

$$M = \begin{pmatrix} -1 & 0 & -3 \\ 3 & 2 & 3 \\ -3 & 0 & -1 \end{pmatrix}$$

- i. Calculeu el polinomi característic de f. Doneu tots els valors propis de f i, per a cadascun d'ells, una base del subespai de vectors propis associat.
- ii. Comproveu si l'endomorfisme diagonalitza. En cas que diagonalitzi, doneu una base B tal que la matriu associada en aquesta base sigui diagonal. Quina relació hi ha entre la matriu M i la matriu associada en la base B?

Informacions:

Cal que JUSTIFIQUEU TOTES LES RESPOSTES.

La durada de l'examen és de 2h.

Entregueu cadascuna de les tres preguntes en un full diferent i escriviu amb tinta negra o blava. Les notes es publicaran al Racó de la FIB com a tard el dia 16 de gener, i la revisió serà el dia 17, a les 14h (el lloc s'anunciarà amb antel·lació).

Model de solució

- 1. [2 punts] Siguin E, F espais vectorials, v_1, \ldots, v_k i u vectors de $E, i f : E \to F$ una aplicació.
 - (a) Expliqueu què ha de complir u per pertànyer a $\langle v_1, \ldots, v_k \rangle$.

Solució. El vector u és del subespai $\langle v_1, \ldots, v_k \rangle$ si existeixen escalars $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$ tals que $u = \sum_{i=1}^k \alpha_i v_i$.

(b) Digueu què ha de complir f per ser una aplicació lineal.

Solució. L'aplicació f és lineal si compleix les dues propietats següents, on u, v són vectors qualssevol de E i λ és un escalar qualsevol:

i)
$$f(u+v) = f(u) + f(v)$$
;

$$ii) f(\lambda u) = \lambda f(u).$$

Alternativament, també podem dir que l'aplicació f és lineal si la imatge d'una combinació lineal de vectors d'E és la combinació lineal de les imatges amb els mateixos escalars, és a dir, si per a vectors u_1, \ldots, u_r qualsevol d'E i escalars $\lambda_1, \ldots, \lambda_r$ qualsevol, es compleix $f(\sum_{i=1}^r \lambda_i u_i) = \sum_{i=1}^r \lambda_i f(u_i)$.

(c) Suposeu que f és lineal, que coneixem $f(v_1), \ldots, f(v_k)$, i que $u \in \langle v_1, \ldots, v_k \rangle$. Expliqueu com es pot calcular f(u).

Solució. Per ser del subespai $\langle v_1, \ldots, v_k \rangle$, el vector u és de la forma $u = \sum_{i=1}^k \alpha_i v_i$, on $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$. Per ser f lineal, tenim que $f(u) = \sum_{i=1}^k f(\alpha_i v_i) = \sum_{i=1}^k \alpha_i f(v_i)$.

2. [4 punts] Considereu el subespai de \mathbb{R}^4 següent:

$$F = \left\langle \begin{pmatrix} 2\\3\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 5\\8\\2\\-1 \end{pmatrix}, \begin{pmatrix} -2\\-4\\0\\2 \end{pmatrix} \right\rangle.$$

(a) Trobeu la dimensió de F i doneu-ne una base B formada per alguns dels vectors generadors.

Solució. Considerem la matriu A que té aquests vectors per columnes. La dimensió del subespai és el rang de la matriu, que es pot calcular fent transformacions elementals per files:

$$A = \begin{pmatrix} 2 & 1 & 5 & -2 \\ 3 & 1 & 8 & -4 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 0 \\ 3 & 1 & 8 & -4 \\ 2 & 1 & 5 & -2 \\ 0 & 1 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & -2 & 2 & -4 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Per tant, $\dim F = \operatorname{rang} A = 2$ i una base està formada pels vectors que corresponen a les columnes amb els pivots, és a dir, els dos primers vectors,

$$B = \left\{ \begin{pmatrix} 2\\3\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}.$$

(b) Trobeu les condicions, en forma de sistema d'equacions homogeni, que ha de satisfer un vector de \mathbb{R}^4 per a pertànyer a F.

Solució. Un vector
$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4$$
 és de F si és combinació lineal dels vectors que generen

F. Com que a l'apartat anterior hem trobat una base, és suficient imposar que el vector sigui combinació lineal dels vectors de la base. Per tant, cal estudiar la compatibilitat del sistema següent:

$$\begin{pmatrix} 2 & 1 & x \\ 3 & 1 & y \\ 1 & 1 & z \\ 0 & 1 & t \end{pmatrix} \sim (\cdots) \sim \begin{pmatrix} 1 & 1 & z \\ 0 & 1 & t \\ 0 & 0 & x - 2z + t \\ 0 & 0 & y - 3z + 2t \end{pmatrix}.$$

Clarament el sistema és compatible si i només si x - 2z + t = 0 i y - 3z + 2t = 0. Per tant,

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} : x - 2z + t = 0, y - 3z + 2t = 0 \right\}.$$

(Nota: la solució no és única, en el sentit que qualsevol sistema homogeni equivalent al donat defineix el subespai F.)

(c) Considered els vectors $u = \begin{pmatrix} 4 \\ 6 \\ 1 \\ -1 \end{pmatrix}$ i $v = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 2 \end{pmatrix}$. Per a cadascun d'ells, digueu si pertany

al subespai F i, en cas afirmatiu, doneu-ne les coordenades en la base B de l'apartat (a).

Solució. Comprovem si u i v satisfan el sistema d'equacions lineals homogeni que defineix F, trobat a l'apartat (b). Veiem que $u \notin F$ perquè $4-2\cdot 1-1=1\neq 0$, en canvi $v\in F$ perquè satisfà les dues equacions. Les coordenades de v en la base B són els escalars pels que cal multiplicar els vectors de la base B per obtenir el vector v. Fent el càlcul veiem que

$$v = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 2 \end{pmatrix} = (-1) \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix} + (2) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix},$$

i per tant les coordenades són $v_B = \begin{pmatrix} -1\\2 \end{pmatrix}$.

(d) Amplieu la base B de l'apartat (a) a una base de $\mathbb{R}^4.$

Solució. Sabem que dim(\mathbb{R}^4) = 4, per tant ens cal trobar dos vectors de \mathbb{R}^4 que juntament amb els dos de la base B siguin linealment independents. La matriu següent, formada per dos vectors de la base canònica de \mathbb{R}^4 i pels dos vectors de B té rang 4:

$$\begin{pmatrix}
1 & 0 & 2 & 1 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Per tant, podem ampliar B amb els vectors $\left\{\begin{pmatrix} 1\\0\\0\\0\end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0\end{pmatrix}\right\}$ per a tenir una base de \mathbb{R}^4 .

3. (a) Sigui $f: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^3$ l'aplicació lineal determinada per

$$f\begin{pmatrix}2&0\\0&0\end{pmatrix} = \begin{pmatrix}0\\2\\-4\end{pmatrix}, \ f\begin{pmatrix}1&1\\0&0\end{pmatrix} = \begin{pmatrix}1\\4\\-5\end{pmatrix}, \ f\begin{pmatrix}0&1\\1&2\end{pmatrix} = \begin{pmatrix}0\\7\\-14\end{pmatrix}, \ f\begin{pmatrix}0&0\\0&1\end{pmatrix} = \begin{pmatrix}-1\\2\\-7\end{pmatrix}.$$

Doneu la matriu de l'aplicació en les bases canòniques i digueu si f és injectiva, exhaustiva o bijectiva.

Solució. Observem que

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Per tant,

$$f\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = f(\frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}) = \frac{1}{2} f\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}.$$

$$f\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = f\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} - f\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -5 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix}$$

$$f\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = f\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} - f\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - 2f\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 7 \\ -14 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} - 2\begin{pmatrix} -1 \\ 2 \\ -7 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

$$f\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -7 \end{pmatrix}.$$

La matriu associada a f en les bases canòniques és, doncs:

$$A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 3 & 0 & 2 \\ -2 & -3 & 3 & -7 \end{pmatrix}.$$

L'aplicació f no pot ser injectiva per ser $\dim \mathcal{M}_{2\times 2}(\mathbb{R}) > \dim \mathbb{R}^3$. Per a que sigui exhaustiva, ha de ser rang $A = \dim \mathbb{R}^3 = 3$, però

$$\operatorname{rang} A = \operatorname{rang} \begin{pmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 1 & -1 \\ -2 & -3 & 3 & -7 \end{pmatrix} = \operatorname{rang} \begin{pmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 3 & 3 & -3 \end{pmatrix} = \operatorname{rang} \begin{pmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 2.$$

Per tant, f no és ni injectiva, ni exhaustiva, ni bijectiva.

(b) Considerem l'endomorfisme f de \mathbb{R}^3 tal que la matriu associada en la base canònica és:

$$M = \begin{pmatrix} -1 & 0 & -3 \\ 3 & 2 & 3 \\ -3 & 0 & -1 \end{pmatrix}$$

i. Calculeu el polinomi característic de f. Doneu tots els valors propis de f i, per a cadascun d'ells, una base del subespai de vectors propis associat.

Solució. El polinomi característic és:

$$p_f(x) = \det(M - xI_3) = \det\begin{pmatrix} -1 - x & 0 & -3 \\ 3 & 2 - x & 3 \\ -3 & 0 & -1 - x \end{pmatrix} = (2 - x) \det\begin{pmatrix} -1 - x & -3 \\ -3 & -1 - x \end{pmatrix}$$
$$= (2 - x)((-1 - x)^2 - (-3)^2) = (2 - x)(x^2 + 2x - 8) = -(x - 2)^2(x + 4).$$

Els valors propis de f són les arrels del polinomi característic, o sigui, 2 i -4. Els subespais E_2 i E_{-4} de valor propi 2 i -4, respectivament, són les solucions dels sistemes d'equacions lineals homogenis que tenen per matriu de coeficients $M-2I_3$ i $M+4I_3$.

Calculem E_2 :

$$\begin{pmatrix} -1-2 & 0 & -3 \\ 3 & 2-2 & 3 \\ -3 & 0 & -1-2 \end{pmatrix} \sim \begin{pmatrix} -3 & 0 & -3 \\ 3 & 0 & 3 \\ -3 & 0 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

d'on deduïm:

$$E_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : z = -x \right\} = \left\{ \begin{pmatrix} x \\ y \\ -x \end{pmatrix} : x, y \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle.$$

Per tant, dim $E_2 = 2$ i una base és $\left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$.

Calculem E_{-4} :

$$\begin{pmatrix} -1+4 & 0 & -3 \\ 3 & 2+4 & 3 \\ -3 & 0 & -1+4 \end{pmatrix} \sim \begin{pmatrix} 3 & 0 & -3 \\ 3 & 6 & 3 \\ -3 & 0 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

d'on deduïm

$$E_{-4} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = z, \ y = -z \right\} = \left\{ \begin{pmatrix} z \\ -z \\ z \end{pmatrix} : z \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\rangle.$$

Per tant, dim $E_{-4} = 1$ i una base és $\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$.

ii. Comproveu si l'endomorfisme diagonalitza. En cas que diagonalitzi, doneu una base B tal que la matriu associada en aquesta base sigui diagonal. Quina relació hi ha entre la matriu M i la matriu associada en la base B?

Solució. Hem vist a l'apartat anterior que els valors propis de f són 2 i -4, de multiplicitats algebraiques 2 i 1 respectivament; les multiplicitats geomètriques coincideixen: dim $E_2 = 2$ i dim $E_{-4} = 1$. Per tant, f diagonalitza. Una base B en que diagonalitza és la unió d'una base de E_2 i una base de E_{-4} :

$$B = \left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \right\},\,$$

i la matriu diagonal associada a f en aquesta base és:

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}.$$

La relació entre les matrius M i D és $D=P^{-1}MP,$ on P és la matriu de canvi de base de B a la base canònica:

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}.$$