

CGAP MACS Live Dead Separation

Adam Hunter

Abstract

Citation: Adam Hunter CGAP MACS Live Dead Separation. protocols.io

dx.doi.org/10.17504/protocols.io.qz5dx86

Published: 11 Jul 2018

Protocol

Step 1.

Material	Quantity	Supplier Info
15ml Falcon Tubes	3	Falcon (352097)
50ml Falcon Tubes	1	Falcon (352098)
MACS Dead Cell Removal Kit	1	Miltenyi Biotech (130-090-101)
Nuclease Free Water	19ml	Ambion (AM9939)
LS Columns	1	Miltenyi Biotech (130-042-401)
0.5ml DNA LoBind Eppendorf Tubes	1	Eppendorf (0030 108.035)
Trypan Blue	20ul	Fisher Scientific (11414815)
C-Chips	1	Cambridge Bioscience (DHC-N01-50)
PBS	10ml	GIBCO (14190-144)
Bovine Serum Albumin (BSA)	400ul	Sigma-Aldrich Co. Ltd (A7906-10G)

Step 2.

A single-cell suspension should have been prepared previously and cells number and viability assessed using 1:1 trypan blue dilution.

• A viability percentage below 70-80% usually justifies using this Dead Cell Removal protocol.

Step 3.

Remove required number of cells and place in a 15ml Falcon Tube.

• Required number of cells/total cells = volume required (ml).

Step 4.

Prepare 20ml 1X Binding Buffer by adding 1ml 20X Binding Buffer Stock to 19ml Nuclease Free Water.

Step 5.

Centrifuge cell suspension for 5min at 300g.

Step 6.

Remove supernatant.

Step 7.

Resuspend cell pellet in 100ul Dead Cell Removal MicroBeads per 10⁷ cells.

Step 8.

Mix well and incubate for 15mins at room temperature.

Step 9.

When 5min of incubation remains, place MS column (if <2x108 cells) or an LS column (if <2x109 cells) on QuadroMACS Magnetic Cell Separator and run 500 μ l (MS column) or 3ml (LS column) 1X Binding Buffer through the LS column, using a waste 15ml Falcon Tube to catch the effluent.

Step 10.

When incubation is finished, add 1ml (MS column) or 3ml (LS column) 1X Binding Buffer to cells.

Step 11.

Run cell suspension through LS column on QuadroMACS Magnetic Cell Separator, using a 15ml Falcon Tube to catch effluent as the live cell fraction.

Step 12.

When cells have passed through, run $4 \times 500 \mu l$ (MS column) or $4 \times 3 m l$ (LS column) 1X Binding Buffer through LS column on QuadroMACS Magnetic Cell Separator using the same falcon tube to catch effluent as the live cell fraction.

Step 13.

Centrifuge cells at 500g for 5 min at 4°C. Resuspend in 0.5-1ml PBS + 0.04% BSA.

Step 14.

Count cells and viability using nucleocounter.

Step 15.

Resuspend in appropriate volume of 0.04% BSA in PBS to run in Chromium.