Reg. No.					

Question Paper Code: 17999

B.E. / B.TECH. DEGREE EXAMINATION, NOVEMBER / DECEMBER 2021

Third Semester

Common to B.E. - Computer Science and Engineering & B.Tech. - Information Technology

19IT303 – PRINCIPLES OF COMMUNICATION

(Regulations: Mepco – R2019)

		(B
Duration: 3	3 Hours	Max.: 100 Marks
		Answer ALL Questions
BTL, CO		$PART A - (10 \times 2 = 20 Marks)$
A, CO1	1.	The maximum shift in frequency is 3 kHz and the minimum and maximum
		deviation in frequency of the actual signal are 149.97 MHz and 150.03 MHz.
		What is the carrier frequency? Justify your answer.
		A) 150 MHz B) 153 MHz C) 140 MHz D) 100 MHz
R, CO1	2.	In a frequency modulation signal, the power as the modulation
		index increases. Justify your answer.
		A) Remains constant B) Increases
		C) Decreases D) Become 0
U,CO3	3.	Define droop. What causes it?
A, CO2	4.	Determine the alias frequency for a 14 kHz sample rate and an analog input
		frequency of 8 kHz.
A,CO3	5.	"PSK is superior than the ASK and FSK", Justify this statement.
U,CO3	6.	Compare QPSK modulator and QAM modulator.
A,CO4	7.	A pseudo noise sequence is generated using a linear feedback shift register of
		length m = 5. The PN sequence period is Justify your answer.
		A) 31 B) 32 C) 5 D) None of the above
U,CO4	8.	The maximum length sequence produced by a linear feedback shift register of
		length $n = 6$ is Justify your answer.
		A) 5 B) 11 C) 31 D) 63
U, CO5	9.	What is the purpose of cladding in an optical fiber?
U, CO5	10.	The area of coverage of a satellite radio beam is called its Justify
	10.	your answer.
		A) Beam width B) Circular polarization
		C) Footprint D) Identity

PART B $-(5 \times 16 = 80 \text{ Marks})$

U, CO1	11. a) i.	Write short notes on angle modulated waves.	(8 Marks)
U, CO1	11. a) ii.	Explain in detail the operation of High Level AM Transmitter	
		with neat diagrams.	(8 Marks)
		OR	
A, CO1	11. b) i.	When the modulating frequency in an FM system is 400 Hz and	
		the modulation voltage is 2.4 V, the modulation index is 60.	
		Calculate the maximum deviation. What is the modulation index	
		when the modulating frequency is reduced to 250 Hz and the	
		modulating voltage is simultaneously raised to 3.2 V?	(8 Marks)
U,CO1	11. b) ii.	State the purpose of Superheterodyne receiver in the	
		communication system. Discuss about the elements in AM	
		Superheterodyne receiver.	(8 Marks)
A, CO2	12. a) i.	Discuss about the test setup and waveform for ternary signal in	
		the eye pattern.	(8 Marks)
U, CO2	12. a) ii.	A 12-bit linear PCM code is digitally compressed into eight bits.	
		The resolution = 0.5 V. Determine the following for an analog	
		input voltage of 1.465 V:	
		A) 12-bit linear PCM code	
		B) 8-bit compressed ode	
		C) Decoded 12-bit code	
		D) Decoded voltage	(8 Marks)
		OR	
U, CO2	12. b) i.	Illustrate the operation of delta modulation transmitter with	
		suitable diagrams.	(8 Marks)
A, CO2	12. b) ii.	For the following eight bit compressed codes, determine the	
		expanded 12-bit code:	
		Eight bit code	
		1100 1010 1010 1111	
		1111 0000	(8 Marks)
		1101 1101	

A, CO3	13. a) i.	For an 8-PSK system, operating with an information bit rate of	
		24 kbps, determine:	
		A) Baud	
		B) Minimum bandwidth	
		C) Bandwidth efficiency	
		For 16-PSK transmission system with a 10 kHz bandwidth,	
		determine the maximum bit rate.	(8 Marks)
A, CO3	13. a) ii.	Illustrate the working principle of BPSK transmitter with a	
		suitable diagram.	(8 Marks)
		OR	
A, CO3	13. b) i.	Determine the bandwidth efficiency for the following modulators:	
		A) QPSK, $fb = 10 \text{ Mbps}$	
		B) 8 -PSK, $fb = 21$ Mbps	
		C) 16-QAM, $fb = 20 \text{ Mbp}$	(8 Marks)
U, CO3	13. b) ii.	Explain the principle of operation of 8-QAM system with a neat	
		block diagram.	(8 Marks)
U, CO4	14. a) i.	State how bandwidth sharing is achieved in FHSS, when	
		compared to FDM.	(8 Marks)
U, CO4	14. a) ii.	With a suitable example, demonstrate how spectrum spreading	
		has been achieved in Direct Sequence-Spread Spectrum	
		modulation system.	(8 Marks)
		OR	
U, CO4	14. b) i.	Compare TDMA, FDMA, SDMA and CDMA techniques.	(8 Marks)
A, CO4	14. b) ii.	A pseudo noise sequence is generated using a feedback shift	
		register of length $m = 7$. The chip rate is 10^7 chips per second.	
		Find the following parameters:	
		A) Length of the PN sequence	
		B) Chip duration of the PN sequence	
		C) PN sequence period	(8 Marks)

U, CO5 List and describe the primary characteristics of light detectors. 15. a) i. Contrast the advantages and disadvantages of ILDs and LEDs. (10 Marks) A, CO5 15. a) ii. For an earth station transmitter with an antenna output power of 40 dBw (10,000w), a back-off ratio is 6 dB, a total branching loss is 2 dB the feeder loss is 4 dB and a transmit antenna gain of 4 dB. Determine the actual radiated power and the EIRP. (6 Marks) OR U, CO5 15. b) i. Explain Kepler's laws and how they relate to satellite

communications. (10 Marks)

A, COS 15. b) ii. Calculate the number of nodes supported by a step index fiber of 100 µm core diameter and reflective indices of the core and cladding given as 1.485 & 1.465 respectively. The peak wave

length of the light source used is 820 nm. (6 Marks)