Constraint Satisfaction Problems

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

9 Feb 2016

Outline

- Constraint Satisfaction
 - Defining Problems
 - Problem Types
- Backtracking Search
 - CSPs as Search
 - Search Heuristics
- **3** Search Alternatives
 - Local Search
 - Tree Search

Outline

- Constraint Satisfaction
 - Defining Problems
 - Problem Types
- Backtracking Search
 - CSPs as Search
 - Search Heuristics
- 3 Search Alternatives
 - Local Search
 - Tree Search

Problem

Color all countries with red, green or blue, and with no 2 adjacent countries the same color

Problem

Color all countries with red, green or blue, and with no 2 adjacent countries the same color

Constraint Satisfaction Problem

Terms

Variables X_1, X_2, \ldots, X_n

Domains Allowable values for each variable

Constraints Allowable combinations of variables

States

Assignment of values to variables, $\{X_i = v_i, X_j = v_j, \ldots\}$

Types of States

Consistent No constraints violated

Solution No constraints violated, all variables assigned

Problem

Color all countries with red, green or blue, and with no 2 adjacent countries the same color


```
Variables WA, NT, Q, NSW, V, SA, T
Domains D_i = \{\text{red, green, blue}\}\
Constraints WA \neq NT, WA \neq SA, NT \neq SA, ...

WA = red, NT = green, Q = red,
NSW = green, V = red, SA = blue,
```

Problem

Color all countries with red, green or blue, and with no 2 adjacent countries the same color

Variables WA, NT, Q, NSW, V, SA, T

Domains $D_i = \{\text{red, green, blue}\}$

Constraints $WA \neq NT$, $WA \neq SA$, $NT \neq SA$, ...

Solution | NSW = green, V = red, SA = blue.

T = green

Problem

Color all countries with red, green or blue, and with no 2 adjacent countries the same color

Variables WA, NT, Q, NSW, V, SA, T Domains $D_i = \{\text{red}, \text{green}, \text{blue}\}$

Constraints $WA \neq NT, WA \neq SA, NT \neq SA, ...$

Solution

WA = red, NT = green, Q = red,
NSW = green, V = red, SA = blue
T = green

Problem

Color all countries with red, green or blue, and with no 2 adjacent countries the same color


```
Variables WA, NT, Q, NSW, V, SA, T

Domains D_i = \{\text{red}, \text{green}, \text{blue}\}

Constraints WA \neq NT, WA \neq SA, NT \neq SA, ...
```

Solution

WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue T = green

Problem

Color all countries with red, green or blue, and with no 2 adjacent countries the same color


```
Variables WA, NT, Q, NSW, V, SA, T

Domains D_i = \{\text{red}, \text{green}, \text{blue}\}

Constraints WA \neq NT, WA \neq SA, NT \neq SA, ...

WA = red, NT = green, Q = red,

NSW = green, V = red, SA = blue,

T = green
```

Variables
$$T, W, O, F, U, R$$

Domains $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
Constraints $O + O = R + 10 \cdot C_1$
 $C_1 + W + W = U + 10 \cdot C_2$
 $C_2 + T + T = O + 10 \cdot C_3$
 $C_3 = F$
Solution $\begin{cases} T = 7, W = 3, O = 4, F = 1, U = 6, \\ R = 8, C_1 = 0, C_2 = 0, C_3 = 1 \end{cases}$

Variables
$$T, W, O, F, U, R, C_1, C_2, C_3$$

Domains $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
Constraints $O + O = R + 10 \cdot C_1$
 $C_1 + W + W = U + 10 \cdot C_2$
 $C_2 + T + T = O + 10 \cdot C_3$
 $C_3 = F$
Solution $\begin{cases} T = 7, W = 3, O = 4, F = 1, U = 6, \\ R = 8, C_1 = 0, C_2 = 0, C_3 = 1 \end{cases}$

```
Variables T, W, O, F, U, R, C_1, C_2, C_3

Domains \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

Constraints O + O = R + 10 \cdot C_1

C_1 + W + W = U + 10 \cdot C_2

C_2 + T + T = O + 10 \cdot C_3

C_3 = F

Solution \begin{cases} T = 7, W = 3, O = 4, F = 1, U = 6, \\ R = 8, C_1 = 0, C_2 = 0, C_3 = 1 \end{cases}
```

```
Variables T, W, O, F, U, R C , C , C
  Domains {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints O + O = R + 10 \cdot C_1
             C_1 + W + W = U + 10 \cdot C_2
             C_2 + T + T = O + 10 \cdot C_3
                  = F
             C_3
  Solution
```

```
Variables T, W, O, F, U, R, C_1, C_2, C_3
  Domains {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints O + O = R + 10 \cdot C_1
             C_1 + W + W = U + 10 \cdot C_2
             C_2 + T + T = O + 10 \cdot C_3
             C_3
                   = F
   Solution
```

Variables
$$T, W, O, F, U, R, C_1, C_2, C_3$$

Domains $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
Constraints $O + O = R + 10 \cdot C_1$
 $C_1 + W + W = U + 10 \cdot C_2$
 $C_2 + T + T = O + 10 \cdot C_3$
 $C_3 = F$
Solution $\begin{cases} T = 7, W = 3, O = 4, F = 1, U = 6, \\ R = 8, C_1 = 0, C_2 = 0, C_3 = 1 \end{cases}$

Example: Meeting Scheduling

Problem Description

- 2 hour meetings: Jim & Tammy
- 1 hour meetings: Jim & Martha, Martha & Tammy
- Meetings start on the hour 9:00am to 5:00pm
- Busy: Jim 12-2, Martha 11-1, Tammy 10-11 and 2-3

Example: Meeting Scheduling

Problem Description

- 2 hour meetings: Jim & Tammy
- 1 hour meetings: Jim & Martha, Martha & Tammy
- Meetings start on the hour 9:00am to 5:00pm
- Busy: Jim 12-2, Martha 11-1, Tammy 10-11 and 2-3

```
Variables J&T, J&M, M&T

Domains D_{J\&T} = \{9-11, 10-12, ...\}
D_{J\&M} = D_{M\&T} = \{9-10, 10-11, ...\}

Constraints J\&T \cap J\&M = \emptyset, J\&M \cap M\&T = \emptyset, 12-2 \cap J\&T = \emptyset, 12-2 \cap J\&M = \emptyset, ...

Solution \{J\&T = 3-5, M\&T = 1-2, J\&M = 10-11\}
```

Domain Types

Finite Domains

- Examples: map coloring, 8-queens
- Constraints described by enumeration, e.g. $(WA, NT) \in \{(red, green), (red, blue), ...\}$

Infinite but Countable Domains

- Examples: scheduling jobs by day or hour
- Need constraint language, e.g. $Start_{Job1} + 5 \le Start_{Job3}$

Continuous Domains

- Examples: scheduling jobs by any fraction of time
- Some can be solved by linear programming

Domain Types

Finite Domains

- Examples: map coloring, 8-queens
- Constraints described by enumeration, e.g. $(WA, NT) \in \{(red, green), (red, blue), ...\}$

Infinite but Countable Domains

- Examples: scheduling jobs by day or hour
- Need constraint language, e.g. $Start_{Job1} + 5 \le Start_{Job3}$

Continuous Domains

- Examples: scheduling jobs by any fraction of time
- Some can be solved by linear programming

Domain Types

Finite Domains

- Examples: map coloring, 8-queens
- Constraints described by enumeration, e.g. $(WA, NT) \in \{(red, green), (red, blue), ...\}$

Infinite but Countable Domains

- Examples: scheduling jobs by day or hour
- Need constraint language, e.g. $Start_{Job1} + 5 \le Start_{Job3}$

Continuous Domains

- Examples: scheduling jobs by any fraction of time
- Some can be solved by linear programming

Unary Constraints

- Restrict the value of a single variable
- Can be eliminated by preprocessing domains

Binary Constraints

 \blacksquare Relate two variables, e.g. SA \neq NSW

Unary Constraints

- Restrict the value of a single variable
- Can be eliminated by preprocessing domains

Binary Constraints

■ Relate two variables, e.g. $SA \neq NSW$

Higher Order Constraints

■ Relate more than two variables

Preferences

Unary Constraints

- Restrict the value of a single variable
- Can be eliminated by preprocessing domains

Binary Constraints

■ Relate two variables, e.g. $SA \neq NSW$

Higher Order Constraints

■ Relate more than two variables

Preferences

Unary Constraints

- Restrict the value of a single variable
- Can be eliminated by preprocessing domains

Binary Constraints

■ Relate two variables, e.g. SA ≠ NSW

Higher Order Constraints

■ Relate more than two variables

Preferences

Unary Constraints

- Restrict the value of a single variable
- Can be eliminated by preprocessing domains

Binary Constraints

■ Relate two variables, e.g. SA ≠ NSW

Higher Order Constraints

■ Relate more than two variables: can convert to binary

Preferences

Unary Constraints

- Restrict the value of a single variable
- Can be eliminated by preprocessing domains

Binary Constraints

■ Relate two variables, e.g. SA ≠ NSW

Higher Order Constraints

■ Relate more than two variables: can convert to binary

Preferences

Outline

- Constraint Satisfaction
 - Defining Problems
 - Problem Types
- Backtracking Search
 - CSPs as Search
 - Search Heuristics
- 3 Search Alternatives
 - Local Search
 - Tree Search

Formulation

States Full or partial assignments

Initial The empty assignment, {}

Actions Assign value to variable, obeying constraints

Goal Assignment is complete

Benefits

- Same for all CSPs
- \blacksquare All solutions at depth r

Formulation

States Full or partial assignments

Initial The empty assignment, {}

Actions Assign value to variable, obeying constraints

Goal Assignment is complete

Benefits

- Same for all CSPs
- \blacksquare All solutions at depth n = depth-first search of

Formulation

States Full or partial assignments

Initial The empty assignment, {}

Actions Assign value to variable, obeying constraints

Goal Assignment is complete

Benefits

- Same for all CSPs
- All solutions at depth $n \Rightarrow$ depth-first search ok

Problem

Given *n* variables, *d* values in domains:

```
Root Level 1 Level 2 ... Branches (n-1)d (n-2)d ...
```

Leaves: $n! \cdot d''$ Total possible assignments:

Note

Variable assignments are commutative, e.g.

- \blacksquare WA = red then NT = green
- \blacksquare NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Root Level 1 Level 2 ...

Branches nd (n-1)d (n-2)d ...
```

Leaves: $n! \cdot a''$ Total possible assignments:

Note

Variable assignments are commutative, e.g.

- WA = red then NT = green
- \blacksquare NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Root Level 1 Level 2 ...
(n-1)d (n-2)d
```

Nota

Variable assignments are commutative, e.

- \blacksquare WA = red then NT = green
- NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Root Level 1 Level 2 ... (n-1)d (n-2)d ...
```

Leaves: $n! \cdot d''$ Total possible assignments:

Note

Variable assignments are commutative, e.g.

- WA = red then NT = green
- \blacksquare NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Level 1 Level 2 ... (n-1)d (n-2)d ...
```

Leaves:

Note

Variable assignments are commutative, e.g

- \blacksquare WA = red then NT = green
- \blacksquare NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Level 1 Level 2 ... (n-1)d (n-2)d ...
```

Leaves: $n! \cdot d^n$

Note

Variable assignments are commutative, e.g

- \blacksquare WA = red then NT = green
- \blacksquare NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Root Level 1 Level 2 ... (n-1)d (n-2)d ...
```

Leaves: $n! \cdot d^n$ Total possible assignments:

Note

Variable assignments are commutative, e.g

- \blacksquare WA = red then NT = green
- \blacksquare NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Level 1 Level 2 ... (n-1)d (n-2)d ...
```

Leaves: $n! \cdot d^n$ Total possible assignments: d^n

Note

Variable assignments are commutative, e.g.

- \blacksquare WA = red then NT = green
- \blacksquare NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Level 1 Level 2 ... (n-1)d (n-2)d ...
```

Leaves: $n! \cdot d^n$ Total possible assignments: d^n

Note

Variable assignments are commutative, e.g.

- WA = red then NT = green
- NT = green then WA = red

Problem

Given *n* variables, *d* values in domains:

```
Branches nd Level 1 Level 2 ... (n-1)d (n-2)d ...
```

Leaves: $n! \cdot d^n$ Total possible assignments: d^n

Note

Variable assignments are commutative, e.g.

- WA = red then NT = green
- NT = green then WA = red

```
def csp_search(csp, heuristic, assignment=None):
```

```
def csp_search(csp, heuristic, assignment=None):
    if assignment is None:
        assignment = {}
```

```
def csp_search(csp, heuristic, assignment=None):
    if assignment is None:
        assignment = {}
    # if assignment is complete, return it
    if len(assignment) == len(csp.variables):
        return assignment
```

```
def csp_search(csp, heuristic, assignment=None):
    if assignment is None:
        assignment = {}
    # if assignment is complete, return it
    if len(assignment) == len(csp.variables):
        return assignment
    # select an unassigned variable and order the values
    variable = heuristic.select_variable(csp, assignment)
```

```
def csp_search(csp, heuristic, assignment=None):
    if assignment is None:
        assignment = {}
    # if assignment is complete, return it
    if len(assignment) == len(csp.variables):
        return assignment
    # select an unassigned variable and order the values
    variable = heuristic.select_variable(csp, assignment)
    # try assigning each value to the variable
    for value in heuristic.order_values(csp, assignment, variable):
        assignment[variable] = value
```

```
def csp search(csp. heuristic. assignment=None);
    if assignment is None:
        assignment = {}
    # if assignment is complete, return it
    if len(assignment) == len(csp.variables):
        return assignment
    # select an unassigned variable and order the values
    variable = heuristic.select_variable(csp, assignment)
    # try assigning each value to the variable
    for value in heuristic.order_values(csp, assignment, variable):
        assignment[variable] = value
        # for consistent assignments, recursively check if
        # it is possible to assign the remaining variables
        if csp.is_consistent(assignment):
            result = csp_search(csp, heuristic, assignment)
            if result is not None:
                return result
```

```
def csp search(csp. heuristic. assignment=None);
    if assignment is None:
        assignment = {}
    # if assignment is complete, return it
    if len(assignment) == len(csp.variables):
        return assignment
    # select an unassigned variable and order the values
    variable = heuristic.select_variable(csp, assignment)
    # try assigning each value to the variable
    for value in heuristic.order_values(csp, assignment, variable):
        assignment[variable] = value
        # for consistent assignments, recursively check if
        # it is possible to assign the remaining variables
        if csp.is_consistent(assignment):
            result = csp_search(csp, heuristic, assignment)
            if result is not None:
                return result
        del assignment[variable]
    # all assignments failed
    return None
```

```
Variables WA, NT, Q, SA, NSW, V, T

Domains D_i = \{\text{red}, \text{green}, \text{blue}\}

Constraints SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V,

WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V
```

{}

```
Variables WA, NT, Q, SA, NSW, V, T

Domains D_i = \{\text{red}, \text{green}, \text{blue}\}

Constraints SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V
```

```
Variables WA, NT, Q, SA, NSW, V, T

Domains D_i = \{\text{red}, \text{green}, \text{blue}\}

Constraints SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V
```

```
Variables WA, NT, Q, SA, NSW, V, T
Domains D_i = \{red, green, blue\}
Constraints SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V,
WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V
```

```
{\text{WA=red}}
\[ \{ \text{WA} = \text{red}, \text{NT} = \text{green} \]
\[ \{ \text{WA} = \text{red}, \text{NT} = \text{green}, \text{Q} = \text{blue} \}
```

```
Variables WA, NT, Q, SA, NSW, V, T
Domains \ D_i = \{red, green, blue\}
Constraints \ SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V,
WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V
```

```
{ WA = red, NT = green}

{ WA = red, NT = green, Q = blue}

|

{ WA = red, NT = green, Q = blue, SA = ???}
```

```
Variables WA, NT, Q, SA, NSW, V, T

Domains D_i = \{\text{red}, \text{green}, \text{blue}\}

Constraints SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V
```

```
{\text{WA=red}}
{\text{WA} = red, NT = green}
{\text{WA} = red, NT = green, Q = red}
```

```
Variables WA, NT, Q, SA, NSW, V, T

Domains D_i = \{\text{red}, \text{green}, \text{blue}\}

Constraints SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V
```

```
{\text{WA=red}}
{\text{WA = red, NT = green}}
{\text{WA = red, NT = green, Q = red}}
```

Problem

- Basic depth first search is still too inefficient.
- E.g. Can only solve *n*-queens for $n \approx 25$

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Problem

- Basic depth first search is still too inefficient.
- E.g. Can only solve *n*-queens for $n \approx 25$

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Problem

- Basic depth first search is still too inefficient.
- E.g. Can only solve *n*-queens for $n \approx 25$

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Problem

- Basic depth first search is still too inefficient.
- E.g. Can only solve *n*-queens for $n \approx 25$

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Minimum Remaining Values

Idea

Select the variable with the fewest legal values

Also Known As

Most Constrained Variable

Minimum Remaining Values

Idea

Select the variable with the fewest legal values

Also Known As

Most Constrained Variable

Minimum Remaining Values

Idea

Select the variable with the fewest legal values

Also Known As

Most Constrained Variable

Degree Heuristic

Idea

- But what to do when MRV produces ties?
- Select variable with most constraints on other values

Also Known As

Most Constraining Variable

Degree Heuristic

Idea

- But what to do when MRV produces ties?
- Select variable with most constraints on other values

Also Known As

Most Constraining Variable

Degree Heuristic

Idea

- But what to do when MRV produces ties?
- Select variable with most constraints on other values

Also Known As

Most Constraining Variable

Least Constraining Value

Idea

Select the variable that rules out the smallest number of values for the remaining variables

- Minimum Remaining Values
- + Degree Heuristic
- + Least Constraining Value
- \approx 1000 queens

Least Constraining Value

Idea

Select the variable that rules out the smallest number of values for the remaining variables

Minimum Remaining Values

- + Degree Heuristic
- + Least Constraining Value
- \approx 1000 queens

Least Constraining Value

Idea

Select the variable that rules out the smallest number of values for the remaining variables

Minimum Remaining Values

- + Degree Heuristic
- + Least Constraining Value
- ≈ 1000 queens

Forward Checking

Idea

- Keep track of remaining legal values for all variables
- Stop search when any variable has no legal values

Forward Checking

Idea

- Keep track of remaining legal values for all variables
- Stop search when any variable has no legal values

Forward Checking

Idea

- Keep track of remaining legal values for all variables
- Stop search when any variable has no legal values

Forward Checking

Idea

- Keep track of remaining legal values for all variables
- Stop search when any variable has no legal values

Outline

- Constraint Satisfaction
 - Defining Problems
 - Problem Types
- Backtracking Search
 - CSPs as Search
 - Search Heuristics
- **3** Search Alternatives
 - Local Search
 - Tree Search

CSPs as Local Search

Formulation

States Complete assignments

Initial Any complete assignment

Actions Change value of one variable

Goal Consistent assignment

Benefits

- Minimal memory consumption
- Emprically very effective

CSPs as Local Search

Formulation

States Complete assignments

Initial Any complete assignment

Actions Change value of one variable

Goal Consistent assignment

Benefits

- Minimal memory consumption
- Emprically very effective

Min-Conflicts

Idea

- Pick a variable with constraint violations
- Assign the value that violates the fewest constraints

Min-Conflicts

Idea

- Pick a variable with constraint violations
- Assign the value that violates the fewest constraints


```
def min_conflicts(csp, max_steps):
```

```
def min_conflicts(csp, max_steps):
    # start with an initial complete assignment
    assignment = {}
    for variable in csp.variables:
        assignment[variable] = random.choice(variable.domain)
```

```
def min_conflicts(csp, max_steps):
    # start with an initial complete assignment
    assignment = {}
    for variable in csp.variables:
        assignment[variable] = random.choice(variable.domain)
    # adjust one variable each time through the loop
    for i in range(max_steps):
```

```
def min_conflicts(csp, max_steps):
    # start with an initial complete assignment
    assignment = {}
    for variable in csp.variables:
        assignment[variable] = random.choice(variable.domain)
    # adjust one variable each time through the loop
    for i in range(max_steps):
        # return the assignment when it is consistent
        if csp.is_consistent(assignment):
            return assignment
```

```
def min conflicts(csp. max steps):
    # start with an initial complete assignment
    assignment = {}
    for variable in csp.variables:
        assignment[variable] = random.choice(variable.domain)
    # adjust one variable each time through the loop
    for i in range(max steps):
        # return the assignment when it is consistent
        if csp.is_consistent(assignment):
            return assignment
        # otherwise, select a random conflicted variable
        var = random.choice(csp.get_conflicts(assignment))
```

```
def min conflicts(csp. max steps):
    # start with an initial complete assignment
    assignment = {}
    for variable in csp.variables:
        assignment[variable] = random.choice(variable.domain)
    # adjust one variable each time through the loop
    for i in range(max steps):
        # return the assignment when it is consistent
        if csp.is_consistent(assignment):
            return assignment
        # otherwise, select a random conflicted variable
        var = random.choice(csp.get_conflicts(assignment))
        # assign the variable the value with minimal conflicts
        counts = {}
        for value in var.domain:
            assignment[var] = value
            counts[value] = len(csp.get_conflicts(assignment))
        assignment[var] = min(counts, key=counts.get)
```

```
def min conflicts(csp. max steps):
    # start with an initial complete assignment
    assignment = {}
    for variable in csp.variables:
        assignment[variable] = random.choice(variable.domain)
    # adjust one variable each time through the loop
    for i in range(max steps):
        # return the assignment when it is consistent
        if csp.is_consistent(assignment):
            return assignment
        # otherwise, select a random conflicted variable
        var = random.choice(csp.get_conflicts(assignment))
        # assign the variable the value with minimal conflicts
        counts = {}
        for value in var.domain:
            assignment[var] = value
            counts[value] = len(csp.get_conflicts(assignment))
        assignment[var] = min(counts, key=counts.get)
    # all assignments failed
    return None
```

Min-Conflicts Properties

n-Queens

Almost constant time for arbitrary *n* with high probability

Other kinds of CSPs

Appears the same is true except for a narrow range of:

$$R = \frac{|constraints|}{|variables|}$$

Min-Conflicts Properties

n-Queens

Almost constant time for arbitrary *n* with high probability

Other kinds of CSPs

Appears the same is true except for a narrow range of:

$$R = \frac{|constraints|}{|variables|}$$

CSPs as graphs:

- Nodes = Variables
- Edges = Constraints

CSPs as graphs:

- Nodes = Variables
- Edges = Constraints

Solver

■ Choose root variable, list parents before children, e.g.

- **End** to start: remove values inconsistent with parent
- 3 Start to end: assign any remaining consistent value

CSPs as graphs:

- Nodes = Variables
- Edges = Constraints

Solver

■ Choose root variable, list parents before children, e.g.

- **2** End to start: remove values inconsistent with parent
- 3 Start to end: assign any remaining consistent value

Time complexity:

CSPs as graphs:

- Nodes = Variables
- Edges = Constraints

Solver

■ Choose root variable, list parents before children, e.g.

- **2** End to start: remove values inconsistent with parent
- 3 Start to end: assign any remaining consistent value

Time complexity: $O(nd^2)$

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

- B must be before 11:00
- D must be after 10:00
- B & C must be after A
- D & E must be after C

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

- Num. of subproblems: n/c
- Time per subproblem: d^c
- Total work: $O(nd^c/c)$

$$n = 80, d = 2, c = 20$$

- \blacksquare 4 · 2²⁰ = 0.4 seconds

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

■ Num. of subproblems:

n = 80, d = 2, c = 20

- \blacksquare 2⁸⁰ = 4 billion years
- $4 \cdot 2^{20} = 0.4$ seconds

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

Num. of subproblems: n/c

■ Total work: $O(nd^c/c)$

n = 80, d = 2, c = 20

- \blacksquare 2⁸⁰ = 4 billion years
- \bullet 4 · 2²⁰ = 0.4 seconds

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

- Num. of subproblems: n/c
- Time per subproblem:

n = 80, d = 2, c = 20

- \blacksquare 4 · 2²⁰ = 0.4 seconds

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

- Num. of subproblems: n/c
- Time per subproblem: d^c

n = 80, d = 2, c = 20

- \blacksquare 4 · 2²⁰ = 0.4 seconds

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

- Num. of subproblems: n/c
- Time per subproblem: d^c
- Total work: O(nd°/c)

n = 80, d = 2, c = 20

- \blacksquare 4 · 2²⁰ = 0.4 seconds

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

- Num. of subproblems: n/c
- Time per subproblem: d^c
- Total work: $O(nd^c/c)$

n = 80, d = 2, c = 20

- $4 \cdot 2^{20} = 0.4$ seconds

Example

Tasmania, mainland: separate components

If each subproblem has *c* of the *n* total variables

- Num. of subproblems: n/c
- Time per subproblem: d^c
- Total work: $O(nd^c/c)$

$$n = 80, d = 2, c = 20$$

- $= 2^{80} = 4$ billion years
- \bullet 4 · 2²⁰ = 0.4 seconds

Tree Decomposition

Convert constraint graphs to trees by assigning variables:

Properties

Complexity

Tree Decomposition

Convert constraint graphs to trees by assigning variables:

Properties

- Complexity: $O(d^c \cdot (n-c)d^2)$, given cutset size c
- Finding the smallest cycle cutset is NP-hard, but some efficient approximations exist

Tree Decomposition

Convert constraint graphs to trees by assigning variables:

Properties

- Complexity: $O(d^c \cdot (n-c)d^2)$, given cutset size c
- Finding the smallest cycle cutset is NP-hard, but some efficient approximations exist

Key Points

Constraint Satisfaction Problems

- States are assignment of values to variables
- Goals are assignments with no constraint violations

Backtracking

- Depth-first search, one variable assigned per node
- Can be made effective with a number of heuristics

Min-Conflicts

- One value changed to reduce violations per iteration
- Usually effective in practice
- Tree-Structured Search
 - Can be solved in linear time
 - Graphs can sometimes be decomposed into trees