Haag-Kastler Nets in Isabelle/HOL

Formalising an Algebraic Approach to Quantum Field Theory

Richard Schmoetten

The University of Edinburgh

31st August 2022

Haag-Kastler Nets in Isabelle/HOL Formalising an Algebraic Approach to Quantum Field Theory

Richard Schmoetten

The University of Edinburgh

31st August 2022

Testing the SM

- Fine structure constant $\alpha^{-1} = 137.035999084(21)$ CODATA
- Anomalous magnetic dipole of e⁻
 Recoil frequency of Cesium-133
- ► In agreement...

Testing the SM

► Fine structure constant α⁻¹ = 137 08999984(21) CODATA

► Anomalson magnetic depice of e⁻¹ compuse

► Reconf Integracy of Catum-133

► In agreement...

- 1. related to the scale of EM interactions std uncertainty: 1.5×10^{-10} measuring polar diameter to within 0.1 hair's width!
- 2. Fine structure constant is calculated from g-2 measurement and calculation of > 10000 diagrams! No more dark photons (2.5 σ). Limited by g_e-2 accuracy.
- 3. $<1\sigma$ tension with prior recoil measurement, 2.5σ tension with gyromag measurement. Fermilab (4/2021) brings this to 4.2 σ , on $g_{\mu}-2$.

Quantum Field Theory

- Framework for the different parts of the standard model.
- Based on the idea of path integrals.
- Many theoretical breakthroughs: renormalisation, QCD asymptotic freedom, Higgs boson, ...

Difficulties

- What exactly are the common features of the theories?
- What exactly is the state space we're describing?
- ightharpoonup Divergent integrals, asymptotic (\neq converging) series, ...

lueQuantum Field Theory

Quantum Field Theory

- Framework for the different parts of the standard model.
- Based on the idea of path integrals.
 Many theoretical breakthroughs: renormalisation, QCD asymptotic freedom,
- Higgs boson, ...

Difficulties

- ► What exactly are the common features of the theories?
- What exactly is the state space we're describing?
- \blacktriangleright Divergent integrals, asymptotic (\neq converging) series, ...

- 1. Diagrams:
 - beta decay (mediated by weak force)
 - Higgs production
- 2. van Howe -> different ways of quantising give different theories for the same model
- 3. what are states? different pictures and unitary inequivalence, Haag's theorem

Lie groups in Isabelle

Lie groups in Isabelle

1. Some maths incoming - not so important for this talk.

General Linear Group

- ▶ $GL(n, \mathbb{R})$ is the group of all invertible $n \times n$ matrices.
- ▶ Elements of $GL(n, \mathbb{R})$ represent linear operators on the vector space \mathbb{R}^n .
- ▶ The homogeneous part of ¶ is a subgroup of $GL(4, \mathbb{R})$.
- ▶ $GL(n, \mathbb{R})$ is a Lie group! It is parametrised by real matrix elements.

```
abbreviation "GL \equiv {M::('a,'n)square_matrix. invertible M}" abbreviation GLR4::"(real,4)square_matrix set" where "GLR4 \equiv GL"
```

General Linear Group

General Linear Group

- GL(n, ℝ) is the group of all invertible n × n matrices.
- ► Elements of GL(n, R) represent linear operators on the vector space R*.
- ➤ The homogeneous part of ¶ is a subgroup of GL(4, R).
- ▶ GL(n, R) is a Lie group! It is parametrised by real matrix elements.

(N::('a::comm ring 1.'n::finite) gouare matrix, invertible M)" abbreviation "GL \equiv (N::('a,'n)square_matrix. invertible N)" abbreviation GL_{GL} ::"(real,4)square_matrix set" where " GL_{GL} \equiv GL"

Transfer

The *transfer* package transfers theorems between related types. Say we want to transfer a result about a type α to β .

- ightharpoonup α and β related by \cong : $\alpha \to \beta \to \mathtt{bool}$
- prove g maps related f-inputs to related f-outputs
- prove similar transfer rules for all constants in the theorem to be transferred
- relations can be constructed from the type of a constant

└─Transfer

The transfer package transfers theorems between related types. Say we want to transfer a result about a type o to fi and if related by Str a → if → bool. prove a maps related f-inputs to related f-outputs in the theorem to be transferred

prove similar transfer rules for all constants

relations can be constructed from the type of a

Transfer

- 1. And then it works! It works both ways too.
- 2. This is the great contribution of transfer: generic construction for rules, and automation.
- 3.

WLOG for interval endpoints

Proofs mirror the structure of the preceding lemma.

- 1. State the desired result.
- 2. Split up the proof into essentially distinct cases with fixed events

```
let ?prop = "\lambda I J. is_int (I\capJ) \vee (I\capJ) = {}"
{ fix I J a b c d
  assume "I = interval a b" "J = interval c d"
  { assume "betw4 a b c d"
    have "I \cap J = \{\}" ...
  } { assume "betw4 a c b d"
    have "I \cap J = interval c b" ...
  } { assume "betw4 a c d b"
    have "I∩J = interval c d" ...
then show "is_int (I1\cap I2)"
  using wlog_interval_endpoints_distinct symmetry assms
  by simp
```