

GEOMETRÍA

Tomo 7

3th SECONDARY

RETROALIMENTACIÓN

1. En un triángulo rectángulo ABC, recto en B, se traza la altura \overline{BH} , tal que AH = 4 u y HC = 9 u. Calcule el área de la región triangular ABH.

9

Resolución

- Piden: S
- ABC : Relaciones métricas

$$(BH)^2 = (4)(9)$$

$$(BH)^2 = 36$$

$$BH = 6$$

Aplicando el teorema:

$$S=\frac{(4)(6)}{2}$$

$$S = 12 u^2$$

2. Si AB = $12\sqrt{2}$ u, calcule el área de la región triangular ABC.

RESOLUCIÓN

- Piden: S_{ABC}
- Trazamos la altura BH:
- △AHB: notable de 45° y 45°.
- △BHC: notable de 37° y 53°.
- Calculando S_{ABC}

$$S_{ABC} = \frac{21(12)}{2}$$

$$S_{ABC} = 126 u^2$$

3. Calcule el área de la región ABC.

RESOLUCIÓN

- Piden: S_{ABC}
- ⊿BPC: notable de 37° y 53°.
- Calculando S_{ABC}

$$S_{ABC} = \frac{9(8)}{2}$$

$$S_{ABC} = 36 u^2$$

4. Calcule el área de la región trapecial ABCD mostrada.

Resolución

- Piden: S_{ABCD}
- Se traza la altura CH.
- CHD :T. Pitágoras

$$15^2 = (HD)^2 + 12^2$$

$$9 = HD$$

Aplicando el teorema:

$$S_{ABCD} = \left(\frac{11+2}{2}\right).12$$

$$S_{ABCD} = 78 u^2$$

5. Calcule el área de una región rombal ABCD, si AB = 10 y BD = 12.

Resolución

- Piden: S_{ABCD}
- Se traza la diagonal \overline{AC} .

$$BO = OD = 6$$

AOB : Notable de 37° y 53°

$$AO = OC = 8$$

Aplicando al teorema:

$$S_{ABCD} = \frac{(16)(1/2)}{2}_{1}$$

SABCD =
$$96 \text{ u}^2$$

6. En el gráfico, O es centro del sector circular POQ. Calcule el área de la región rectangular OABC.

Resolución

- Piden: S_{OABC}
- Se traza \overline{OB} .

$$OB = OQ = 13$$

OBC: T. Pitágoras

$$13^2 = (BC)^2 + 5^2$$

$$12 = BC$$

Por teorema

$$S_{OABC} = (5)(12)$$

$$S_{OABC} = 60 u^2$$

7. Un círculo cuyo radio mide 6 cm es dividido en dos regiones equivalentes por otro círculo interior de radio r. Halle el valor de r.

Resolución

- Piden: r
- Dato: $S_1 = S_2$
- Del gráfico:

$$S_{TOTAL} = S_1 + S_2$$
 $\pi(6)^2 = S_1 + S_1$
 $36\pi = 2S_1$
 $36\pi = 2\pi r^2$
 $18 = r^2$

8. En la circunferencia inscrita de centro O, halle el área de la región sombreada.

9. Calcule el área del sector circular sombreado, si AT = 2 cm, TB = 6 cm y T es punto de tangencia.

Resolución

Piden: S.

$$S = \frac{1}{4} . \pi r^2$$
 ... (1)

- Se traza \overline{OT} .
- AOB : Relaciones métricas

$$r^2 = (2)(6)$$

 $r^2 = 12$... (2)

Reemplazando 2 en 1.

$$S = \frac{\pi. 12}{4}$$

 $S = 3\pi u^2$

10. Calcule el área del círculo de centro O, si A y B son puntos de tangencia.

Resolución

Piden: S.

$$S = \pi r^2$$

- Se traza \overline{OP} .
- Se traza \overline{OB} .

PBO : Notable de 37° y 53°

$$r = 6$$

Reemplazando al teorema:

$$S = \pi . 6^2$$

$$S = 36\pi u^2$$