Семинары 5-6

Задание 1. Дана бинарная случайная величина X, у которой P(X=1)=0.9. Рассмотрим 8 независимых измерений этой случайной величины. Какие из следующих выборок можно считать правдоподобными для этой случайной величины:

- 1, 1, 1, 1, 1, 1, 1
- 1, 0, 0, 0, 1, 1, 0, 1
- 0, 0, 0, 1, 0, 0, 0, 1
- 0, 1, 1, 1, 1, 1, 1, 0

Задание 2. Дана случайная выборка, состоящая из n наблюдений, из распределения с функцией плотности: $f(x) = p(1-p)^{k-1}$ при 0 . Найдите оценку параметра <math>p методом максимального правдоподобия (\hat{p}^{MLE}) .

Задание 3. Дана случайная выборка, состоящая из n наблюдений, из распределения со следующей функцией плотности:

$$f(x) = \begin{cases} \frac{x}{\beta^2} \exp{(\frac{-x}{\beta})}, & \text{если } x > 0 \\ 0, & \text{в противном случае} \end{cases}$$

Найдите оценку параметра β методом максимального правдоподобия $(\hat{\beta}^{MLE})$.

Задание 4. Дана случайная выборка, состоящая из n наблюдений, из распределения с функцией плотности:

$$f(x) = \frac{1}{\theta} x^{(1-\theta)/\theta}$$

при $0 < x < 1; \theta > 0$. Найдите оценку параметра θ методом максимального правдоподобия $(\hat{\theta}^{MLE})$.

НИУ ВШЭ, ОП «Политология»

Задание 5. Время ожидания клиента банка в очереди представляет сл.в., имеющую экспоненциальное распределение. Ниже в таблице приведены значения длительности ожидания клиентов (в минутах), собранные за день. Найдите оценку математического ожидания методом максимального правдоподобия.

Время ожидания	Количество клиентов
[0; 5)	10
[5; 10)	2
[10; 15)	6
[15; 20)	1
$[20; \infty)$	1