$$(\varphi_1,\varphi_1) = \sum_{i=0}^4 x_i^2 = 11.875,$$

$$(\varphi_0,\overline{y}) = \sum_{i=0}^4 \overline{y}_i = 9.404, (\varphi_1,\overline{y}) = \sum_{i=0}^4 x_i\overline{y}_i = 14.422$$
故有
$$\begin{cases} 5A + 7.50b = 9.404 \\ 7.50A + 11.875b = 14.422 \end{cases}$$
解得 $A = 1.122, b = 0.505 \ 6, a = e^A = 3.071, \mp 是得最小二乘拟合曲线$

$$y = 3.071e^{0.505 \ 6x} = \varphi^*(x)$$
例 $2-12$ 求函数 $f(x) = \sqrt{1+x^2}$ 在 $[0,1]$ 上的一次最佳一致逼近多项式,并求其偏差.
分析 这是一个常规题. 按求一次最佳一致逼近多项式的固定办法可求得形如 $P_1^*(x) = a_0^* + a_1^*x$ 的最佳一致逼近多项式。
解答 因 $f'(x) = x/\sqrt{1+x^2}, f''(x) = \frac{1}{(1+x^2)^{3/2}},$ 所以在 $[0,1]$ 上 $f''(x)$ 恒为正,故
$$a_1 = [f(1) - f(0)]/(1-0) = \sqrt{2} - 1 \approx 0.4142$$
由 $f'(x_2) = x_2/\sqrt{1+x_2^2} = \sqrt{2} - 1$
得 $x_2 = [(\sqrt{2}-1)/2]^{1/2} \approx 0.4551$
且 $f(x_2) = \sqrt{1+x_2^2} \approx 1.0986$
所以 $a_0 = \frac{1}{2}[f(0) + f(x_2)] - a_1 \frac{0+x_2}{2} \approx 0.955$
于是得到 $f(x) = \sqrt{1+x^2}$ 在 $[0,1]$ 上一次最佳一致逼近多项式为

在[0,1]上 f''(x) 恒为正,故 由 $P_1^*(x) = 0.955 + 0.414 2x$ 又因区间端点必属于切比雪夫交错点组,故 • 60 •

 $\varphi(x) = x^3 - ax$ 则 $\varphi(x)$ 与 0 的偏差点使 $|\varphi(x)|$ 达到最大,且这些偏差点一定是使 $\varphi(x)$ 取最大或最小或取极值的值,因此,需考察这些点. 由 $\varphi(x) = x^3 - ax$, $\varphi'(x) = 3x^2 - a$, $\varphi''(x) = 6x$ 得, 当 $x \in$ (0,1),a>0 时, $\varphi(x)$ 在 $\overline{x}=\sqrt{a/3}$ 取极小值,且极小值为 $\varphi(\overline{x}) = (\frac{a}{3})^{3/2} - a(\frac{a}{3})^{1/2} = -\frac{2}{2\sqrt{2}}a^{3/2}$ 在区间端点, $\varphi(0) = 0$, $\varphi(1) = 1 - a$. 显然, $\varphi(0)$ 不能使 $|\varphi(x)|$ 达到最大,故令 $\varphi(1) = -\varphi(\bar{x})$ $\frac{2}{2\sqrt{3}}a^{3/2} = 1 - a$ 整理得 $4a^3 - 27a^2 + 54a - 27 = 0$ 分解得 $(4a-3)(a-3)^2=0$ 所以 $a = \frac{3}{4} \quad \text{id} \quad a = 3$ 、当 a = 3/4 时, $\bar{x} = \sqrt{a/3} = \frac{1}{2} \in (0,1)$;当 a = 3 时, $\bar{x} =$ $\sqrt{a/3} = 1$,由 $\varphi(1) = -\varphi(1)$,解得 $\varphi(1) = 0$. 另一方面又有 $\varphi(1)$ 61 •

 $\Delta(f, P_1^*) = \max_{x \in \mathcal{X}} |f(x) - P_1^*| =$

个解是否惟一? マン

项式的充要条件去确定 a.

 $|f(0) - P^*(0)| = 0.045$

例 x-13 选取常数 a,使 $\max_{0 \leqslant x \leqslant 1} |x^3 - ax|$ 达到极小. 又问这

分析 本题可这样理解,即把常数 0 看作是函数 $x^3 - ax$ 的

解一 要使 $\max |x^3 - ax|$ 达到极小,只要使 0 为 $x^3 - ax$ 的

最佳一致逼近多项式,然后按照零为 $x^3 - ax$ 的最佳一致逼近多

最佳一致逼近多项式. 由于 0 为 x^3 — ax 的最佳一致逼近多项式

的充要条件是0在[0,1]上有两个轮流为正、负的偏差点,若设

= 1 - a = 1 - 3 = -2,从而产生矛盾.所以,使 $\max_{x \in X} |x^3 - ax|$ 达到极小时,a有惟一解 3/4. \triangleright 解二 设 $\varphi(x) = x^3 - ax$,由于 $\varphi(x)$ 在 [-1,1] 上为奇函数, 故 $\max_{0 \le x \le 1} |x^3 - ax| = \max_{-1 \le x \le 1} |x^3 - ax|$,根据最小零偏差多项式定

故
$$\max_{0 \le x \le 1} |x^3 - ax| = \max_{-1 \le x \le 1} |x^3 - ax|$$
,根据最小零偏差多项理,有
$$x^3 - ax = \frac{1}{2^2} T_3(x) = x^3 - \frac{3}{4} x$$
 故得
$$a = \frac{3}{4}.$$

从而,使 $\max_{0 \le x \le 1} |x^3 - ax|$ 达到极小的 a 取惟一值 $\frac{3}{4}$. 例 $2\sqrt{4}$ 设 $f(x) = 4x^3 + 2x^2 + x + 1$, 试在[-1,1]上寻 找一个次数不超过 2 的多项式 $P_{*}^{*}(x)$, 使它为 f(x) 在 [-1,1] 上 的最佳一致逼近多项式: 这是一个常规题,实际上是求满足 $\max_{1 \le x \le 1} |f(x)|$ $|P_{2}^{*}(x)| = \min \text{ in } P_{2}^{*}(x)$. 根据最小零偏差定理知, $f(x) - P_{2}^{*}(x)$ 应该是首项系数为1的切比雪夫三次多项式 $\frac{1}{2}T_3(x)$,从而可得 $\frac{1}{4}\left|f(x)-p_1^4x\right|=\frac{1}{2^2}I_3(x)$ $P_{2}^{*}(x)$. 由题意,所求 $P_2^*(x)$ 应该满足

解答 $\max_{-1 \leqslant x \leqslant 1} |f(x) - P_2^*(x)| = \min$ 由最小零偏差定理,并注意到 f(x) 的首项系数为 4,有 $\frac{1}{4}[f(x) - P_2^*(x)] = \frac{1}{2^2}T_3(x) = \frac{1}{4}(4x^3 - 3x)$ 从而 $P_2^*(x) = f(x) - (4x^3 - 3x) = 2x^2 + 4x + 1$ 例2-15 设 $f(x) = x^4 + 3x^3 - 1$,在[0,1]上求 f(x) 的三 次最佳一致逼近多项式, **分析** 这题不是在[-1,1]上,因此可将[0,1]变换到[-1, 1]上,然后利用最小零偏差定理求解.

• 62 •

于 $f(\frac{t+1}{2})$ 的首项系数为 $\frac{1}{24}$,故有 24/100-13 $16[f(\frac{t+1}{2}) - P_3^*(\frac{t+1}{2})] = \frac{1}{2^{4-1}}T_4(t)$ $\mathbb{P}_{3}^{*}(\frac{t+1}{2}) = f(\frac{t+1}{2}) - \frac{1}{16 \times 8}T_{4}(t) =$ $(\frac{t+1}{2})^4 + 3(\frac{t+1}{2})^3 - 1 \frac{1}{16\times8}(8t^4-8t^2+1)$ 从而 $P_3^*(x) = (x^4 + 3x^3 - 1) \frac{1}{16 \times 8} [8(2x-1)^4 - 8(2x-1)^2 + 1] =$

此时

解答 令 t = 2x - 1,则当 x 在[0,1] 变化时, $t \in [-1,1]$

设 $P_{\star}^{\star}(x)$ 为f(x)在[0,1]上的三次最佳一致逼近多项式,自

 $f(x) = f(\frac{t+1}{2}) = (\frac{t+1}{2})^4 + 3(\frac{t+1}{2})^3 - 1$

例 2 16 设 $f(x) = \arctan x$, 在[-1,1]上利用插值极小人 求三次近似最佳一致逼近多项式. 利用插值极小化求近似最佳一致逼近多项式的方法 就是要求插值节点为切比雪夫多项式的零点的那个插值多项式 而这样的插值多项式的插值余项就能达到近似最小,本题中要求 三次多项式,插值节点应是 $T_4(x)$ 的零点. 解答 取 $T_4(x)$ 的零点

 $x_k^* = \cos \frac{(2k-1)\pi}{2n}, n=4, k=1, 2, 3, 4$ 作为插值节点,具体计算得 $x_1^* = \cos \frac{\pi}{8} \approx 0.9238795$, $x_2^* = \cos \frac{3\pi}{8} \approx 0.3826834$

 $5x^3 - \frac{5}{4}x^2 + \frac{1}{4}x - \frac{129}{128}, x \in [0,1]$

 $x_3^* = \cos \frac{5\pi}{\varrho} \approx -0.3826834, x_4^* = \cos \frac{7\pi}{\varrho} \approx -0.9238795$ 重新排序进行插值,列表如下: 1 -0.9238795- 0.382 683 4 0.382 683.4 0.923 879 5 -0.745852643 - 0.365489756 0.365489756 0.745852643造差商表后,可得牛顿型插值多项式 $P_3(x) = -0.745852643 + 0.702818972 \times$ $(x + 0.9238795) + 0.193065229 \times$ (x + 0.9238795)(x + 0.3826834) - $0.208972306(x + 0.9238795) \times$ (x + 0.3826834)(x - 0.3826834) = $-0.208972306x^3+0.985674118x$ 例 2 17 用拉格朗日插值余项极小化的方法,求 $f(x) = e^{-x}$ 在[0,1]上的三次近似最佳一致逼近多项式,使其误差不超过0.5 $\times 10^{-3}$. 分析 拉格朗日插值余项为 $R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \omega_{n+1}(x)$ $|R_n(x)| \le \frac{1}{(n+1)!} \max_{0 \le r \le 1} |f^{(n+1)}(x)| \cdot |\omega_{n+1}(x)|.$ $\max_{0 \le x \le 1} |f^{(n+1)}(x)| \le M_{n+1},$ $|R_n(x)| \leqslant \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$ 要让 $|\omega_{n+1}(x)|$ 最小,只须将[0,1]变到[-1,1],取切比雪夫 多项式 $T_{n+1}(x)$ 的零点作为 x_i 即可. $M_{n+1} = \max_{0 \le n \le 1} |(-1)^{n+1} e^{-x}| = 1$

• 64 •

取 n=3,就有 $|R_3(x)| \leqslant \frac{1}{2^7} \cdot \frac{1}{4!} = 0.000 \ 325 \ 5 < 0.5 \times 10^{-3}$ 因此取插值节点为 $x_0^* = \frac{1}{2} + \frac{1}{2} \cos \frac{\pi}{8} \approx 0.961 \ 93$ $x_1^* = \frac{1}{2} + \frac{1}{2} \cos \frac{3\pi}{8} \approx 0.691 \ 34$ $x_2^* = \frac{1}{2} + \frac{1}{2} \cos \frac{5\pi}{8} \approx 0.308 \ 65$ $x_3^* = \frac{1}{2} + \frac{1}{2} \cos \frac{7\pi}{8} \approx 0.038 \ 06$ 用这些点所作的插值多项式为 $P_3(x) = 0.999 \ 77 - 0.992 \ 90x + 0.463 \ 23x^2 - 0.102 \ 40x^3$

关于插值节点的最佳选择,根据最小零偏差多项式定理,在

• 65 •

[-1,1] 上, $\omega_{n+1}(x) = \prod_{k=0}^{n} (x - x_k) = \frac{1}{2^n} T_{n+1}(x)$ 与零的偏差最小,即

 $\omega_{n+1}(x)$ 应取成 $\frac{1}{2^n}T_{n+1}(x)$, x_k 应取成 $T_{n+1}(x)$ 的零点: $x_k = \cos\frac{(2k+1)\pi}{2(n+1)}$, k

 $|R_n(x)| \leqslant \frac{1}{(n+1)!} |\omega_{n+1}(x)|$

节点 $x_k = \frac{1}{2} + \frac{1}{2}\cos\frac{(2k+1)\pi}{2(n+1)}, k = 0, 1, 2, \dots, n, 则 \omega_{n+1}(x)$ 就

是切比雪夫多项式 $\frac{1}{2^n}T_{n+1}(x)$,它对零的偏差最小.此时有截断误

 $|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^{2n+1}} = \frac{1}{(n+1)!} \frac{1}{2^{2n+1}}$

令 $x = \frac{1}{2}(t+1)$,则当 $x \in [0,1]$ 时, $t \in [-1,1]$. 取插值

故有

差估计

(请读者详细推导上述估计式).

$$\max_{-1\leqslant x\leqslant 1} |f(x)-P_n(x)|\leqslant \frac{M_{n+1}}{(n+1)!}\max_{-1\leqslant x\leqslant 1} |\omega_{n+1}(x)|\leqslant \frac{1}{2^n}\frac{M_{n+1}}{(n+1)!}$$
 若插值区间为 $[a,b]$,作变换
$$x=\frac{1}{2}(a+b)+\frac{1}{2}(b-a)t$$
 当 x 在 $[a,b]$ 上变化时, t 在 $[-1,1]$ 变化,插值节点应取
$$x_k=\frac{1}{2}(a+b)+\frac{b-a}{2}\cos\frac{(2k+1)\pi}{2(n+1)},\ k=0,1,2,\cdots,n$$
 这时,有截断误差估计
$$\max_{\alpha\leqslant x\leqslant b} |f(x)-P_n(x)|\leqslant \frac{M_{n+1}}{(n+1)!}|\omega_{n+1}(x)|\leqslant \frac{(b-a)^{n+1}}{2^{2n+1}}\frac{M_{n+1}}{(n+1)!}$$
 其中 $M_{n+1}=\max_{\alpha\leqslant x\leqslant b} |f^{(n+1)}(x)|$. 其中 $M_{n+1}=\max_{\alpha\leqslant x\leqslant b} |f^{(n+1)}(x)|$.

并估计误差.
 分析 用切比雪夫多项式降低已知多项式的次数,就是用
$$T_k(x)$$
 来表示 x^k ,然后舍去高次切比雪夫多项式所在的项,即可降 低多项式的次数.
 解答 $\varphi(x) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{3}{24}x^3 - \frac{15}{384}x^4 - \frac{105}{3840}x^5 = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{3}{24}x^3 - \frac{15}{384} \times$

 $\frac{105}{3.840} \times \frac{1}{16} (10T_1 + 5T_3 + T_5) =$

 $\frac{1}{9}(3T_0 + 4T_2 + T_4) -$

• 66 •

 $\frac{105}{3.840 \times 16} (10x + 20x^3 - 15x + T_5)$ 金夫含有 $T_4(x)$ 、 $T_5(x)$ 的项,得三次多项式 $P_3(x) = (1 + \frac{15}{384 \times 8}) + (-\frac{1}{2} + \frac{105 \times 5}{3840 \times 16})x +$ $\left(-\frac{1}{8} - \frac{15}{384}\right)x^2 + \left(-\frac{1}{8} - \frac{105 \times 20}{3840 \times 16}\right)x^3 \approx$ 1.004 882 8 - 0.491 455 1x - $0.164\ 062\ 5x^2 - 0.159\ 179\ 7x^3$ 误差之绝对值为 $|R(x)| = |\varphi(x) - P_3(x)| =$ $|-\frac{15}{384\times8}T_4-\frac{105}{3840\times16}T_5| \leqslant$ $\frac{15}{384 \times 8} + \frac{105}{3840 \times 16} \approx 0.0066$ **例 2-19** 设在 $0 \le x \le 1$ 上给定 $P(x) = 1 - x + x^2 - x^3$ $+x^4$,试在允许误差为 0.008 的要求下降低 P(x) 的次数. 数,一般用切比雪夫多项式来做,因此必须将[0,1]变换到 [-1,1]. 解答 令 $x = \frac{1}{2} + \frac{1}{2}t$,则当 $x \in [0,1]$ 时, $t \in [-1,1]$. 由 $1 = T_0, \quad t = T_1$

 $1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{3}{24}x^3 -$

 $\frac{15}{384 \times 8} (3 + 8x^2 - 4 + T_4) -$

得 $P(x) = f(t) = 1 - \frac{1}{2}(t+1) + \left[\frac{1}{2}(t+1)\right]^2 (\frac{t+1}{2})^3 + (\frac{t+1}{2})^4 = (1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4}) +$

$$(-\frac{1}{2} + \frac{1}{2} - \frac{3}{2^3} + \frac{1}{2^2})t + (\frac{1}{2^2} - \frac{3}{2^3} + \frac{3}{2^3})t^2 + (-\frac{1}{2^3} + \frac{1}{2^2})t^3 + \frac{1}{2^4}t^4 = \frac{11}{16}T_0 + (-\frac{1}{8})T_1 + \frac{1}{8}(T_0 + T_2) + \frac{1}{16}T_0 + \frac{1}{1$$

$$\frac{107}{128}T_0 - \frac{1}{32}T_1 + \frac{5}{32}T_2 + \frac{1}{32}T_3 + \frac{1}{128}T_4$$
因为 $\frac{1}{128}$ < 0.008, $\frac{1}{32} + \frac{1}{128}$ > 0.008, 故去掉含 T_4 的末项,

 $\frac{1}{22}(3T_1 + T_3) + \frac{1}{27}(3T_0 + 4T_2 + T_4) =$

不影响允许误差,所以 $\widetilde{f}(t) = \frac{107}{128} - \frac{1}{32}t + \frac{5}{32}(2t^2 - 1) + \frac{1}{32}(4t^3 - 3t) =$ $\frac{87}{129} - \frac{1}{9}t + \frac{5}{16}t^2 + \frac{1}{9}t^3, t \in [-1,1]$

将 t = 2x - 1 代入上式,得[0,1] 上的允许误差为 0,008 的近 似多项式: $\widetilde{P}(x) = \frac{87}{128} - \frac{1}{8}(2x - 1) + \frac{5}{16}(2x - 1)^2 +$

$$\frac{1}{8}(2x-1)^3 = \frac{127}{128} - \frac{3}{4}x - \frac{1}{4}x^2 + x^3$$

$$x \in [0,1]$$
例 2 - 20 定义伯恩斯坦(Bernstein) 多项式

例 2-20 定义伯恩斯坦(Bernstein) 多项式

 $B_n(f,x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}, x \in [0,1]$ 试求 $f(x) = 1, x, x^2$ 时 $B_n(f, x)$ 的值.

分析 本题中 $B_{r}(f,x)$ 是非常著名的多项式,在函数逼近论

中起过非常重要的作用. 本题要求 f(x) 分别等于 $1, x, x^2$ 时的 R(f,x),实际上根据求得之结果可以和其它类型的多项式进行 比较,得出一些有意义的结论.

(1) f(x) = 1 时,将 f(x) = 1 代入 $B_{x}(f,x)$,得 $B_n(1,x) = \sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k}$

该式恰好是二项式[x+(1-x)]"的展开式,即 $B_n(1,x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = [x+(1-x)]^n = 1$

(2) f(x) = x Bt. $B_n(x,x) = \sum_{k=0}^{n} \left(\frac{k}{n}\right) {n \choose k} x^k (1-x)^{n-k} =$ $\sum_{k=1}^{n} \left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k}$ 利用已知的组合关系式 $\frac{k}{n}\binom{n}{k} = \binom{n-1}{k-1}$,得

$$B_{n}(x,x) = \sum_{k=1}^{n} {n-1 \choose k-1} x^{k} (1-x)^{n-k} = \sum_{k=0}^{n-1} {n-1 \choose k} x^{k+1} (1-x)^{n-k-1} = \sum_{k=0}^{n-1} {n-1 \choose k} x^{k} (1-x)^{(n-1)-k} \cdot x = B_{n-1}(1,x) \cdot x = x$$

$$(3) \stackrel{\text{def}}{=} f(x) = x^{2} \stackrel{\text{def}}{=} f,$$

$$B_{n}(x^{2},x) = \sum_{k=0}^{n} \left(\frac{k}{n}\right)^{2} {n \choose k} x^{k} (1-x)^{n-k}$$

 $\operatorname{All}\left(\frac{k}{n}\right)\binom{n}{k} = \binom{n-1}{k-1},$

$$\sum_{k=0}^{n-1} \left(\frac{k}{n}\right) \binom{n-1}{k} x^{k+1} (1-x)^{(n-1)-k} =$$

$$(利用(1)) \qquad \frac{x}{n} + \frac{n-1}{n} x \sum_{k=0}^{n-1} \left(\frac{k}{n-1}\right) \binom{n-1}{k} \times x^{k} (1-x)^{(n-1)-k} =$$

$$(利用(2)) \qquad \frac{x}{n} + (1-\frac{1}{n}) x^{2} = x^{2} + \frac{1}{n} x (1-x)$$
注记 这题告诉我们,当 $f(x) = x^{2}$ 时,它的伯恩斯坦多项式就不再等于 $f(x)$. 这点与拉格朗日插值多项式不同.另外,从 x^{2} 的伯恩斯坦多项式可以看出,当 $n \to \infty$ 时, $B_{n}(x^{2}, x) \to x^{2}$.

例 $2-21$ 设 $B_{n}(f, x)$ 为 $f(x)$ 的伯恩斯坦多项式,试证:当 $m < f(x) \le M$ 时, $m \le B_{n}(f, x) \le M$.

分析 本题结论实际上说, $f(x)$ 的伯恩斯坦多项式不会产生新的最大值与最小值.利用 $f(x)$ 的伯恩斯坦多项式及常数函数的伯恩斯坦多项式可以证明题中结论.
证明 因为 $B_{n}(f, x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k},$ $x \in [0,1]$ $m \le f(x) \le M$

 $\sum_{k=0}^{n} m \binom{n}{k} x^{k} (1-x)^{n-k} \leqslant \sum_{k=0}^{n} f \left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k} \leqslant$

 $B_n(x^2,x) = \sum_{k=0}^{n} \left(\frac{k}{n}\right)^2 \binom{n}{k} x^k (1-x)^{n-k} =$

 $\sum_{k=1}^{n} \left(\frac{k}{n}\right) \binom{n-1}{k-1} x^k (1-x)^{n-k} =$

 $\frac{x}{n}\sum_{k}^{n-1}\binom{n-1}{k}x^{k}(1-x)^{(n-1)-k}+$

 $\sum_{k=0}^{n-1} {k+1 \choose k} {n-1 \choose k} x^{k+1} (1-x)^{(n-1)-k} =$

 $m\sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} \leqslant B_{n}(f,x) \leqslant$

由例 2-20(1) 的结论知, $\sum_{k=0}^{n} {n \choose k} x^{k} (1-x)^{n-k} = 1$, 故有

 $m \leq B_n(f,x) \leq M$ 例2-22 设 $f(x) \in C[a,b], m$ 和 M 分别为 f(x) 在[a,b]

 $f(x_2) - P_0(x_2) = M - \frac{1}{2}(m+M) = \frac{1}{2}(M-m)$

 $\max_{x \in \mathcal{A}} |f(x) - P_0(x)| = \frac{1}{2} (M - m)$

 $P_0^*(x) = \frac{1}{2}(m+M) = P_0(x)$

故 x_1,x_2 是 $P_{\mathfrak{o}}(x)$ 与 f(x) 的偏差点,从而由切比雪夫定理知

 $\sum_{k=1}^{n} M\binom{n}{k} x^{k} (1-x)^{n-k}$

 $M\sum_{k=1}^{n} \binom{n}{k} x^k (1-x)^{n-k}$

即当 $f(x) \in C[a,b]$ 时, f(x) 的零次最佳一致逼近多项式为 $P_0^*(x) = \frac{1}{2}(m+M).$

例 2-23 设
$$f(x) = e^x 在[-1,1]$$
 上的插值极小化近似最佳
一致逼近多项式为 $L_n(x)$;若 $||f - L_n||_{\infty}$ 有界,证明对任何 $n \ge$

1,存在常数 α_n 、 β_n ,使 $\alpha_{n}|T_{n+1}(x)| \leq |f(x) - L_{n}(x)| \leq \beta_{n}|T_{n+1}(x)|, x \in [-1,1]$ 分析 f(x) 的插值极小化近似最佳一致逼近多项式为

分析
$$f(x)$$
 的插值极小化近似最佳一致逼近多项式为 $L_n(x)$, 因此自然会想到 $R_n(x)=f(x)-L_n(x)=\frac{1}{(n+1)!}f^{(n+1)}(\xi)\omega_{n+1}(x)$. 对 $R_n(x)$ 进行估计即可得出题断.证明 因为 $L_n(x)$ 是 $f(x)=e^x$ 在 $[-1,1]$ 上的插值极小化

近似最佳一致逼近多项式,故 $f(x) - L_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \omega_{n+1}(x) =$

$$\frac{1}{(n+1)!}f^{(n+1)}(\xi) \cdot \frac{1}{2^n}T_{n+1}(x), \xi \in (-1,1)$$
 从而有
$$|f(x) - L_n(x)| = \frac{|f^{(n+1)}(\xi)|}{2^n(n+1)!} \cdot |T_{n+1}(x)|, \xi \in (-1,1)$$
 又由于 $e^{-1} < f^{(n+1)}(\xi) < e$,故有

又由于 $e^{-1} < f^{(n+1)}(\xi) < e$,故有 $\frac{e^{-1}}{2^{n}(n+1)!} |T_{n+1}(x)| \leqslant |f(x) - L_{n}(x)| \leqslant$ $\frac{e}{2^{n}(n+1)!}|T_{n+1}(x)|$ $\phi \alpha_n = e^{-1}/[2^n(n+1)!], \beta_n = e/[2^n(n+1)!], 则对任何n \ge 1,$

 $x \in [-1,1]$,都有 $\alpha_n |T_{n+1}(x)| \le |f(x) - L_n(x)| \le \beta_n |T_{n+1}(x)|$ 例 2-24 将 $f(x) = \arcsin x$ 在 [-1,1] 上展开为切比雪夫 级数,并判断切比雪夫级数和泰勒级数哪一个收敛快?

(1) 先求 $f(x) = \arcsin x$ 在[-1,1]上的切比雪夫级

泰勒级数比较收敛速度.

数,由切比雪夫级数的系数公式 $a_0^* = \frac{1}{\pi} \int_{-1}^1 \frac{f(x)}{\sqrt{1-x^2}} \mathrm{d}x, \ a_k^* = \frac{2}{\pi} \int_{-1}^1 \frac{f(x)T_k(x)}{\sqrt{1-x^2}} \mathrm{d}x,$

 $k = 1, 2, \dots$

并注意到 f(x) 是奇函数,有

 $a_0^* = 0, a_{2l}^* = 0, l = 1.2...$ $a_{2l+1}^* = \frac{2}{\pi} \int_{-1}^1 \frac{\arcsin x \cos \left[(2l+1) \arccos x \right]}{\sqrt{1-x^2}} dx =$ $\frac{2}{\pi} \int_{0}^{\pi} (\frac{\pi}{2} - \theta) \cos(2l + 1)\theta d\theta = (\text{free } \phi x = \cos \theta)$

 $\frac{4}{\pi} \cdot \frac{1}{(2l+1)^2}, \ l=0,1,2,\cdots$ 故 $\arcsin x$ 在[-1,1]上的切比雪夫级数为 $\arcsin x = \frac{4}{\pi} \left[T_1(x) + \frac{1}{9} T_3(x) + \frac{1}{25} T_5(x) + \frac{1}{125} T_5(x) + \frac{1}{12$ $\cdots + \frac{1}{(2l+1)^2} T_{2l+1}(x) + \cdots$

(2) 比较收敛速度 · f(x) 的泰勒级数为 $\arcsin x = \sum_{k=0}^{\infty} b_{2k+1} x^{2k+1}, x \in [-1,1]$

 $b_{2k+1} = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2k)} \cdot \frac{1}{2k+1}$ 比较 a_{2k+1}^* 与 b_{2k+1} ,我们有 $\frac{a_{2k+1}^*}{b_{2k+1}} = \frac{4}{\pi} \cdot \frac{2 \cdot 4 \cdot 6 \cdot \cdots (2k)}{1 \cdot 3 \cdot 5 \cdots (2k-1)} \cdot \frac{1}{2k+1} =$ $\frac{4}{\pi} \int_{0}^{\frac{n}{2}} (\sin \theta)^{2k+1} d\theta$

上式当 k 增大时,很快趋于零,说明 a_{2k+1}^* 比 b_{2k+1} 更快地趋于 零,故切比雪夫级数收敛快.

这是一个常规题. 先进行切比雪夫级数展开,然后与 • 72 •

例 2-25 (1) 求
$$y = \arctan x$$
 在 $[0,1]$ 上的一次最佳一致逼近多项式;

(2) 利用切比雪夫级数的截断在[0,1]上求 $y = \arctan x$ 的一 次近似最佳一致逼近多项式;

解答 (1) 在[0,1] 上
$$f'(x) = \frac{1}{1+x^2} > 0$$
, $f''(x) = \frac{-2x}{1+x^2)^2} < 0$,故

$$\frac{-2x}{(1+x^2)^2} < 0, 故$$

$$a_1 = \frac{f(b) - f(a)}{b-a} = \frac{\arctan 1 - \arctan 0}{1-0} = \frac{\pi}{4} \approx 0.785 \text{ 4}$$

由
$$f'(x_2) = \frac{1}{1+x_2^2} = \frac{\pi}{4}$$
,得
$$x_2 = \sqrt{\frac{4}{\pi} - 1} \approx 0.5227$$

且
$$f(x_2) = \arctan(0.5227) \approx 0.48166$$

故 $a_0 = \frac{1}{2} [f(0) + f(x_2)] - a_1 \frac{0 + x_2}{2} =$

故
$$a_0 = \frac{1}{2} [f(0) + f(x_2)] - a_1 \frac{1}{2} = \frac{1}{2} [0.48166 - 0.7854 \times 0.5227] \approx$$

$$\frac{1}{2}$$
[0.48166-0.7854×0.5227] \approx 0.0356 故 $y = \arctan x$ 在[0,1]上的一次最佳一致逼近多项式为 $P_{*}^{*}(x) = 0.0356+0.7854x$

(2)
$$\mathfrak{P}(x) = \frac{1}{2}(t+1), \mathfrak{P}(x) = \frac{1}{2}(t+1),$$

$$f(t) = f(x) = \arctan\left(\frac{t+1}{2}\right), -1 \le t \le 1$$

按切比雪夫级数的系数计算公式,并求数值积分,得

 $\frac{1}{\pi} \int_{\pi}^{\pi} \arctan(\frac{\cos\theta + 1}{2}) d\theta \approx 0.427 1$ $a_1^* = \frac{2}{\pi} \int_{-\pi}^{\pi} (\cos \theta) \cos \theta d\theta =$

 $\frac{2}{\pi} \int_{-\pi}^{\pi} \arctan(\frac{\cos\theta + 1}{2}) \cos\theta d\theta \approx 0.3947$ $\arctan x \approx a_0^* T_0(t) + a_1^* T_1(t) =$ $a_0^* + a_1^*t = a_0^* + a_1^*(2x - 1) =$

0.0324 + 0.7894x即 $\tilde{P}_1^*(x) = 0.0324 + 0.7894x$ 就是 $\arctan x$ 在[0,1]] 一次近似最佳一致逼近多项式.

(3) 由 P₁*(x) 的性质知 $\Delta(f,P_1^*) = \max_{0 < \infty} \left| \arctan x - P_1^*(x) \right| =$

故

 $|f(0) - P^*(0)| = 0.035.6$ 对于 $\tilde{P}_1^*(x)$,可令 $\tilde{R}(x) = \arctan x - \tilde{P}_1^*(x)$,则 $\widetilde{R}'(x) = \frac{1}{1+x^2} - 0.789 4$

解得
$$\widetilde{R}(x)$$
 的极值点为 $\widetilde{x} = (\frac{1}{0.7894} - 1)^{1/2} \approx 0.516$ $\widetilde{R}(\widetilde{x}) \approx 0.0366$,所以 $\Delta(f,\widetilde{P}_1^*) = \max\{|\widetilde{R}(0)|,|\widetilde{R}(\widetilde{x})|,|\widetilde{R}(1)|\} = 0.0366$ 由此可见,二者相差不大. 例 2 - 26 证明勒让德多项式 $P_0(x) = 1$, $P_n(x)$

 $\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{dx^{n}} [(x^{2} - 1)^{n}] \mathcal{L}[-1,1] \bot 带权 \rho(x) = 1 的 n 次正交$ 项式,且 $\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$

 $a_0^* = \frac{1}{\pi} \int_0^{\pi} f(\cos\theta) d\theta =$ 分析 $P_n(x)$ 是 n 次多项式,显然要证正交关系式,自然会

由于 $(x^2-1)^n$ 是一个2n次多项式,求n阶导数并整理 证明 $P_n(x) = \frac{1}{2^n n!} (2n) (2n-1) \cdots (n+1) x^n +$

到应使用分部积分法,

得

$$P_n(x) = \frac{1}{2^n n!} (2n) (2n-1) \cdots (n+1) x^n +$$

$$a_{n-1} x^{n-1} + \cdots + a_0$$
于是得 $P_n(x)$ 的首项系数 $a_n = \frac{(2n)!}{2^n (n!)^2}$.
$$\Rightarrow \varphi(x) = (x^2 - 1)^n, \quad \text{of } \varphi^{(k)}(+1) = 0, \quad k = 0, 1, 2, \cdots, n-1.$$

う 定得
$$I_n(x)$$
 的 $I_n(x)$ の $I_$

$$\int_{-1}^{1} P_{n}(x)Q(x)dx = \frac{1}{2^{n}n!} \int_{-1}^{1} Q(x)\varphi^{(n)}(x)dx =$$

$$\frac{-1}{2^{n}n!} \int_{-1}^{1} Q'(x)\varphi^{(n-1)}(x)dx = \dots =$$

$$\frac{(-1)^{n}}{2^{n}n!} \int_{-1}^{1} Q^{(n)}(x)\varphi(x)dx$$

(1) 若
$$Q(x)$$
 是次数小于 n 的多项式,则 $Q^{(n)}(x) \equiv 0$,故得
$$\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = 0, \, \, \exists \, n \neq m \, \exists \, m < n$$
(2) 若
$$Q(x) = P_{n}(x) = \frac{1}{2^{n} n!} \varphi^{(n)}(x) = \frac{(2n)!}{2^{n} (n!)^{2}} x^{n} + \cdots$$

 $Q^{(n)}(x) = P_n^{(n)}(x) = \frac{(2n)!}{2^{n} - 1}$

 $\frac{2 \cdot 4 \cdot \cdots \cdot (2n)}{1 \cdot 3 \cdot \cdots \cdot (2n+1)}$ $\int_{-1}^{1} P_n^2(x) \mathrm{d}x = \frac{2}{2n+1}$ 于是结论得证. 关于拉盖尔多项式的正交性、埃尔米特多项式的正交性可负 本题方法证明. 见参考文献 2,3.

由于 $\int_{1}^{1} (1-x^{2})^{n} dx = \int_{1}^{\pi/2} \cos^{2n+1} t dt = 0$

 $\int_{-1}^{1} P_n^2(x) dx = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \int_{-1}^{1} (x^2 - 1)^n dx =$

 $\frac{(2n)!}{2^{2n}(n!)^2} \int_{-1}^{1} (1-x^2)^n dx$

三、习题二

选取常数 a,b,使 $\max_{x} |e^x - ax - b|$ 达到极小. $\sqrt{\xi}$ 2. 设 $f(x) = \sqrt{1+x^2}$, 求 f(x) 在[0,1] 上的一次最佳平

逼近多项式.

3. 已知n+1个函数值 $y_i = f(x_i), i = 0, 1, 2, \dots, n$. 求 $f(x_i)$ 的零次最佳平方逼近函数(即用常函数拟合上述数据).

在二次多项式类 $\varphi = \text{span}\{1,x^2\}$ 中求一多项式 $\overline{P}_2(x)$,使其成 $f(x) = e^x$ 在[-1,1]上的最佳平方逼近函数. 5. 用最小二乘原理确定经验公式 $y = ae^{bx}$ 中的参数 $a \rightarrow b$

4. 已知勒让德多项式 $P_0 = 1$, $P_1 = x$, $P_2 = \frac{1}{2}(3x^2 - 1)$

该函数曲线与下列数据相拟合 于是

x_i	1	2	3	4
yi	60	30	20	15

6. 试求多项式 $ax^2 + bx + 1$ (a,b 是任意常数), 使它在[-1, 1] 上与零有最小偏差.

第三章 数值积分与数值微分

一、内容提要

数直 知 分 是 求 定 积 分 $I = \int_{a}^{b} f(x) dx$ 的 一 种 近 似 算 法 .

1. 牛顿一柯特斯(Cotes) 求积分式

牛顿一柯特斯求积公式是节点等距的插值型求积公式.将 [a,b]n 等分,其节点为 $x_k = a + kh, k = 0,1,2,\cdots,n,h = (b-a)/n$,节点 x_k 处的函数值为 $f(x_k)$,则牛顿一柯特斯求积公式为

$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{n} A_{k} f(x_{k}) = (b-a) \sum_{k=0}^{n} C_{k}^{(n)} f(x_{k})$$

其中A,称为求积系数, $C_{i}^{(n)}$ 为柯特斯系数.

$$n=1$$
 时,求积公式为梯形公式:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} [f(a) + f(b)] - \frac{1}{12} (b-a)^{3} f''(\eta), a \leqslant \eta \leqslant b$$

n=2 时,求积公式为辛普森(Simpson) 公式:

$$\int_{a}^{b} f(x) dx = \frac{b - a}{6} [f(a) + 4f(\frac{a + b}{2}) + f(b)] - \frac{(b - a)^{5}}{2880} f^{(4)}(\eta), \ a \le \eta \le b$$

n=4时的求积公式称为柯特斯求积公式,详细表达式见参考文献 1,2.

2. 复化求积公式