1 Tydzień 1 (10–14.03.2023)

- ▶ Zadanie 1.1. Podczas wykładu pokazaliśmy, że "parzystość" nie jest definiowalna w $FO[\emptyset]$, tzn. nie jest definiowalna nad (skończonymi) zbiorami. Wytłumacz czemu przedstawiony w trakcie wykładu dowód nie może być przerobiony na dowód niewyrażalności w świecie skończonych grafów czy skończonych porządków liniowych.
- ▶ Zadanie 1.2. Przy pomocy twierdzenia o zwartości wykaż, że nie ma takiej formuły φ w FO[{P}] używającej unarnego predykatu P dla której dla każdej skończonej struktury $\mathfrak A$ mamy $\mathfrak A \models \varphi$ wtw $|P^{\mathfrak A}| = |A \setminus P^{\mathfrak A}|$, tzn. interpretacja P oraz jego dopełnienia mają równe moce.

Hint: Zaadaptuj dowód niewyrażalności parzystosci podanej podczas wykładu.

- ▶ Zadanie 1.3. Wykaż, że jeśli teoria \mathcal{T} ma modele o dowolnie dużych mocach (tzn. dla każdego $n \in \mathbb{N}$ mamy model $\mathfrak{A} \models \mathcal{T}$ o mocy $|A| \geq n$). Pokaż, że \mathcal{T} ma nieskończony model.
- ▶ Zadanie 1.4. Obal następujący wariant twierdzenia o zwartości w świecie skończonych modeli.
- "Niech \mathcal{T} to FO-teoria. Jeśli każdy skończony pozdzbiór $\mathcal{T}_0 \subseteq \mathcal{T}$ jest skończenie spełnialny, to \mathcal{T} również ma skończony model."
- ▶ Zadanie 1.5. Zastosuj twierdzenie o zwartości by pokazać, że istnieje przeliczalna struktura, która jest elementarnie równoważna (\mathbb{Z}, \leq) ale jej nie izomorficzna.

Hint: rosszerz sygnaturę o symbole stałych c, d, i rozważ teorię $\mathbb T$ zdań spełnionych w ($\mathbb Z$, \leq) razem ze zdaniami ϕ_n dla $n \in \mathbb N$ mówiącymi $\phi_n := \exists x_1 \ldots \exists x_n \ c < x_1 < x_2 < \ldots < x_n < d$.

▶ Zadanie 1.6. Przy pomocy twierdzenia o zwartości pokaż, że "parzystość" nie jest definiowalna w FO w świecie porządków liniowych, tzn. nie ma takiej formuły φ w FO[≤] takiej że dla każdej skończonej struktury $\mathfrak A$ interpretującej ≤ jako porządek liniowy to $\mathfrak A \models \varphi$ wtw A ma parzyście wiele elementów.

Hint: Calkiem trudne. Zobacz Example 0.4.4 w notatkach Otta dla zarysu dowodu.

▶ Zadanie 1.7. Dla podanych poniżej par struktur, wskaż minimalne m, takie że duplic∀tor ma strategię wygrywającą w m-rundowej grze E-F.

