<u>Literature Survey</u>

AUTHOR	DESCRIPTION	PAPER TITLE	YEAR
Sami O. Osman, Mohamed z.Mohamed, Alzain M. sullman, Amjed A. mohammed	The author proposed the working of different sensors to be used in the purification process in order to obtain the desired result.	"Working of the pH module with the Arduino"	2018
Meghana M, Kiran Kumar B .M, Ravikant Verma, Divya Kiran	The author discussed about data and calibrate it with the various sensors.	"Data acquisition and calibration"	2019
Dr. Nageswara Rao Mopathi, Ch. Mukesh, Dr. P. Vidya Sagar	The author proposed the integrated connections of all the different sensors such as PH and turbidity sensors and how they function with each other in order to ensure the proper purification of water	"Integration of different comphonents"	2018
Tarun Agrawal, Mohamaad Abdul Qadeer	The author discussed the integration of the GPS module with the Arduino UNO and also how the callbration of the module helps in pin pointing out the desired location	"Working of the GPS module"	2017

AUTHOR	DESCRIPTION	PAPER TITLE	YEAR
Jaba Anandh .S	Proposed on findings show that the system is capable of reading physiochemical parameters and processing, transmitting , and displaying the data and is shown to work within a accuracy ranges	Smart and low cost Real Time Water Quality Monitoring System Using IOT	2019
Hussein J.Kadim, Faik K. Obaed, Hayder M. Rashid	Polluted water may cause a variety of diseases in the ecosystem's life cycle. A Proposed smart and low-cost, high-efficiency IoT appliance water quality pH, TDS and tubidity continuously checked	Water Quality Detection Using cost effective sensor based on IoT	2022
Kartik Mageshwari, Adrija Chakaborty	This proposed system has successfully improvised an intelligent water quality monitoring system .the system can be monitored from a PC and is also capable of sending a smart alert through IFTTT	Water Quality Monitoring System Implemented With IoT	2021
Jayti Bhatt Jignesh patoliya	This system consists some sensors, Raspberry pi, Zigbee protocol which measures water quality and sensors data can view on internet browser application using cloud computing	Real Time Water Quality monitoring system	2016

AUTHOR	DESCRIPTION	PAPER TITLE	YEAR
Dr .Prasannakumar	Proposed an sensor can be used to monitored Turbidity, Ph levels and future Improvement monitoring in Oxygen, COD, BOD, Amonia levels	Real-Time Water Quality Monitoring System for Vrishabhavathi River of Bengaluru	2019
S. Geetha S. Gouthami	Proposed on the Water Monitor in Power Efficient ,Alert to a remote user in low Cost and Less Complex	Internet of things enabled real time water quality monitoring system	2017
Darko Babunski Atanasko Tuneski	Proposed on Protection of the natural Water resources is continues monitoring is Completely independent real-time measuring in industrial SCADA	SCADA System for Real- Time Measuring and Evaluations of River Water Quality	2016
Brinda Das P .C .Jain	Proposed on officials can Keep track of the levels of pollution occurring in the water bodies and immediate warnings in Zigbee module transmit in public	Real-Time Water Quality Monitoring System Using Internet of Things	2017