

COSBench: A Benchmark Tool for Cloud Object Storage

Wang, Yaguang

Yaguang.wang@intel.com

Agenda

- Storage towards Tomorrow's Data Centers
- Cloud Storage & COSBench Overveiw
- Case Study with COSBench
- Summary

Agenda

- Storage towards Tomorrow's Data Centers
- Cloud Storage & COSBench Overveiw
- Case Study with COSBench
- Summary

Data Centers are Evolving

- Data centers are built upon three fundamental pillars:
 - Compute
 - Storage
 - Networking
- All three are critical for efficient data center operations
 - Balanced in performance and utilization

A Balanced Data Center is Essential for Efficiency

IDC Storage Capacity Growth[†]

- Structured data (23.6% CAGR)
 Traditional enterprise database
- Replicated data (24.2% CAGR)
 Backups
 Data warehouses
- Unstructured data (54.8% CAGR)
 Archives
- Content Depots (75.6% CAGR)
 Web
 Email
 Document sharing
 Social network content (pictures/videos)

2012 Deployment Estimate:

~7.6 million drives ~500,000 storage systems*

†Source: IDC, Worldwide Enterprise Storage Systems 2010–2014 Forecast: Recovery, Efficiency, and Digitization Shaping Customer Requirements for Storage Systems, Doc

^{*}Source: Internal estimates based on the IDC Worldwide Enterprise Storage Systems Forecast # 223234., May 2011

Intelligent Enterprise Storage is More Important than Ever

Traditional Storage

Does not scale smoothly with the rapid growth of distributed cloud storage capacity and performance needs

- Designed for structured data
- Restricted to single site
- Vertically integrated storage with separate storage network

Scale Out Storage

- Built on standard server and storage hardware and software components.
- Enables application-specific storage tuning for energy efficient performance.

Scale-out storage is the foundation for tomorrow's data centers

Storage Solution Usage Models

Storage Capacity Requirement

Key Storage Usage Models Have Differing Requirements
Thus Need New Benchmarks

Agenda

- Storage towards Tomorrow's Data Centers
- Cloud Storage & COSBench Overveiw
- Case Study with COSBench
- Summary

Cloud Object Storage Overview

Amazon's S3 cloud storage service hits 1 trillion files

Can cloud storage scale? You bet. Amazon's Jeff Barr notes this morning that its S3 online storage has blown past one trillion objects.

 Cloud (object) storage is a model of networked online storage where data is stored in virtualized pools of storage. (<u>from wikipedia</u>)

The rising of cloud storage demands new benchmark tool.

COSBench Introduction

- An benchmark tool to measure Cloud Object
 Storage performance provided by Intel, supports
 - openstack swift/ amplidata amplistor,
 - in the future, Amazon S3, Google and Microsoft's ...
- Benefit:
 - For Cloud user,
 - Compare public Cloud Object Storage services
 - For Cloud builder,
 - Evaluate different Hardware/Software Stack
 - Identify bottleneck and make optimization

COSBench is open sourced with Apache V2 License, it can be accessed on github: https://github.com/intel-cloud/cosbench. We are keeping improving it and welcome for contributions from you!

COSBench

Key Components

Major Features

- Cross Platform Deployment:
 - Ubuntu 12.04 LTS /RedHat Enterprise Linux
 6.1/Windows 7.
- Distributed load testing framework.
- Pluggable adaptors:
 - OpenStack* Swift/Amplidata*
 Amplistor/Amazon* S3/Ceph
 - SNIA* CDMI (upcoming)
- Web-based real-time performance monitoring
- Rich performance metric reporting
 - Performance timeline
 - Response time histogram
- Flexible workload definition
- Open Source (Apache License)

Workload Configuration

 Execution of workstage is sequential, while execution of work in the same workstage is in parallel.

 "config" attribute is for variable parameters.

Workload Configuration

```
Flexible load control
- <workflow>
 - <workstage name="init">
     <work type="init" workers="8" config="containers=r(1,32)" />
   </workstage>
 - <workstage name="prepare">
     <work type="prepare" workers="8" config="containers=r(1,32);objects=r(1,50);sizes=c(64)KB" />
   </workstage>
 - <workstage name="main">
                                                                          object size distribution
   - <work name="main" workers="8" rampup="100" runtime="300">
       coperation type='read' ratio='80" config="containers=u(1,32);objects=u(1,50)" />
       <operation type='write' ratio='20" config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />
     </work>
                                   Read/Write Operations
   </workstage>
 - <workstage name="cleanup">
     <work type="cleanup" workers="8" config="containers=r(1,32);objects=r(1,50)" />
   </workstage>
 - <workstage name="dispose">
     <work type="dispose" workers="8" config="containers=r(1,32)" />
   </workstage>
 </workflow>
                         Workflow for complex stages
</workload>
```

Flexible configuration parameters is capable of complex Cases

Extensible framework

Separate auth and storage API, so

- One auth → multiple storages
- One storage → multiple auths

Extensible framework supports new object storage services.

Performance Metrics

General Report

Op-Type	Op-Count	Byte-Count	Avg-ResTime	Throughput	Bandwidth	Succ-Ratio
read	12.58 kops	12.28 MiB	10.14 ms	628.84 op/s	628.84 KiB/S	100%
write	3.21 kops	200.88 MiB	10.09 ms	160.71 op/s	10.04 MiB/S	100%

Throughput (Operations/s): the operations completed in one second

Response Time (in ms): the duration between operation initiation and completion.

Bandwidth (KB/s): the total data in KiB transferred in one second

Success Ratio (%): the ratio of successful operations

Performance Metrics/Reporting/Chart

Web Console

COSBENCH - CONTROLLER WEB CONSOLE

GA Release version: 2.0.0.GA

Controller Overview

Name: not configured URL: not configured

Driver list

Driver	Name	URL	Link
1	driver1	http://127.0.0.1:18088/driver	view details
2	driver2	http://127.0.0.1:18088/driver	view details

There are 2 drivers attached to the controller.

Active Workloads

- N	16	56	st
- WW	KH	lai i	
- 'A'			

Id	Name	Submitted-At	State	Link
w6	demo	Aug 3, 2012 2:56:48 PM	processing	view details
w7	demo	Aug 3, 2012 2:56:52 PM	queving	view details

There are currently 2 active workloads.

submit new workloads

History Workloads

view performance matrix

CTO	-1//	ICT
stor	W	13 L

				71 y 110	
Id	Name	Duration	Op-Info	State	Link
w4	demo	Aug 3, 2012 2:52:51 PM - 2:53:37 PM	prepare, read	finished	view details
w5	demo	Aug 3, 2012 2:53:37 PM - 2:54:23 PM	prepare, read	finished	view details

Intuitive web UI to give overview.

Live Demo

Agenda

- Storage towards Tomorrow's Data Centers
- Cloud Storage & COSBench Overveiw
- Case Study with COSBench
- Summary

OpenStack* Swift overview

- OpenStack* is open source software to build private and public clouds.
- OpenStack Object Store (Swift): Create petabytes of reliable storage using standard servers

OpenStack* Swift Overview

Entities ← RING → physical location (zone/device/partition/...),

e.g.: $/account1/container1/object1.txt \rightarrow /sn1/sda1/123/.../23432.dat$

Test OpenStack Swift performance

Test OpenStack Swift performance

Test OpenStack* Swift performance

Agenda

- Storage towards Tomorrow's Data Centers
- Cloud Storage & COSBench Overveiw
- Case Study with COSBench
- Summary

Summary

- New storage Usage model rises for Cloud Computing age, which need new benchmark
- COSBench is a new benchmark developed by Intel to measure Cloud Object Storage service performance
- COSBench is useful to analyze Cloud Object Service system performance, identify bottleneck and conduct optimization

