Auto-encoders

Toby Dylan Hocking

Motivation: MNIST digits data

Set of digits is represented as a matrix

- ► Each digit image in MNIST data set is a matrix of 28×28 pixel intensity values, $x_i \in \{0, ..., 255\}^{784}$.
- ▶ Each of the images is a row in the data matrix.
- Each of the columns is a pixel.
- All images on last slide represented by a data matrix with n = 100 rows/images and p = 784 columns/pixels.

Background/motivation: dimensionality reduction

- High dimensional data are difficult to visualize.
- ► For example each observation/example in the MNIST data is of dimension 28 x 28 = 784 pixels.
- We would like to map each observation into a lower-dimensional space for visualization / understanding patterns in the data.

Example: 2d iris data

- Simpler example: iris.
- One row for each flower (only 6 of 150 shown below).
- ▶ One column for each measurement/dimension.

##		${\tt Sepal.Width}$	Petal.Length
##	1	3.5	1.4
##	2	3.0	1.4
##	3	3.2	1.3
##	4	3.1	1.5
##	5	3.6	1.4
##	6	3.9	1.7

Example: 2d iris data

Project 2d data onto 1d subspace (line)

Loss decreases with number of epochs

Zoom to last 100 epochs

Possible exam questions

- ▶ When is the max number of principal components equal to the number of rows of the data matrix?
- ▶ When is the max number of principal components equal to the number of columns of the data matrix?