plot01

01. 변수의 특징을 찾기 위해서 사용하는 그래프

(1) 하나의 변수에 대한 것.

히스토그램(hist) : 연속형 변수 표시 Barplot : 명목형 변수 그래프 표시 Boxplot : 데이터의 분포를 본다.

(2) 산포도, 산점도(두변수에 관한 것)

02. plot(base), ggplot2 패키지, rCharts 패키지

base plot : 빠르게 데이터 탐색용

ggplot2 : 보다 정교한 그래프 특징 나타내기 rCharts(d3, javascript) : Report를 위한 그래프

03. 고수준 함수, 저수준 함수

plot, boxplot, hist title, lines, points(그래프 타이틀, X축 이름, Y축 이름, 그래프 색 바꾸기)

1-1 데이터 불러오기

setwd("D:/dataset/R2_ex")
DF <- read.csv("example_studentlist.csv")
attach(DF)
str(DF)</pre>

```
## 'data frame':
                  17 obs. of 8 variables:
             : Factor w/ 17 levels "강수친", "김길동",..: 2 12 17 6 10 7 1 14 13 9 ...
## $ name
             : Factor w/ 2 levels "남자". "여자": 1211222211...
## $ sex
             : int 23 22 24 23 20 21 22 23 23 22 ...
## $ age
             : int 3243121132...
## $ grade
## $ absence : Factor w/ 2 levels "무"."유": 2 1 1 1 2 1 1 1 1 1 ...
## $ bloodtype: Factor w/ 4 levels "A"."AB", "B", "0": 4 2 3 2 1 4 4 1 3 3 ...
## $ height
            : num 165 170 175 182 168 ...
            : num 68.2 53 80.1 85.7 49.5 52 45.3 55 64.2 61.3 ...
## $ weight
```

DF

```
name sex age grade absence bloodtype height weight
## 1 김길동 남자 23
                                   0 165.3
                                           68.2
## 2 이미린 여자 22
                                  AB 170.1
                                           53.0
## 3 홍길동 남자 24
                                  B 175.0
                                           80.1
                                  AB 182.1
                                           85.7
    김철수 남자 23
## 5 손세수 여자 20
                                  A 168.0
                                           49.5
                          무
## 6 박미희 여자 21
                                  0 162.0
                                           52.0
## 7 강수친 여자 22
                                  0 155.2
                                           45.3
## 8 이희수 여자
                                  A 176.9
                                           55.0
## 9 이철린 남자 23
                                  B 178.5
                                           64.2
## 10 방희철 남자 22
                                  B 176.1
                                           61.3
                                  0 167.1
## 11 박수호 남자 24
                                           62.0
## 12 임동민 남자 22
                                  AB 180.0
                                           75.8
## 13 김민수 남자 21
                                  A 162.2
                                           55.3
## 14 이희진 여자 23
                                  0 176.1
                                           53.1
## 15 김미진 여자 22
                                  B 158.2
                                           45.2
## 16 김동수 남자 24
                                  B 168.6
                                           70.2
## 17 여수근 남자 21
                          무
                                  A 169.2 62.2
```

1-2 plot(): 값을 하나 갖는 경우,

```
plot(age)
```


1-2 plot(): 값을 두개 갖는 경우,

```
par(mfrow=c(2,2))
plot(height, weight)
plot(weight~height)
plot(height, sex)
plot(sex,height) # 성별에 따른 키의 boxplot
```


1-3 plot(): 변수간의 관계를 표시하기 위한 필수. scatter plot

names(DF)

[1] "name" "sex" "age" "grade" "absence" "bloodtype"

[7] "height" "weight"

str(DF)

```
## 'data.frame': 17 obs. of 8 variables:
## $ name : Factor w/ 17 levels "강수친","김길동",...: 2 12 17 6 10 7 1 14 13 9 ...
## $ sex : Factor w/ 2 levels "남자","여자": 1 2 1 1 2 2 2 2 1 1 ...
## $ age : int 23 22 24 23 20 21 22 23 23 22 ...
## $ grade : int 3 2 4 3 1 2 1 1 3 2 ...
## $ absence : Factor w/ 2 levels "무","유": 2 1 1 1 2 1 1 1 1 ...
## $ bloodtype: Factor w/ 4 levels "A","AB","B","0": 4 2 3 2 1 4 4 1 3 3 ...
## $ height : num 165 170 175 182 168 ...
## $ weight : num 68.2 53 80.1 85.7 49.5 52 45.3 55 64.2 61.3 ...
```

plot01

```
DF2 <- data.frame(age, height, weight)
DF2
```

```
age height weight
## 1 23 165.3 68.2
     22 170.1
## 2
                53.0
                80.1
## 3
      24 175.0
## 4
      23
         182.1
                85.7
## 5
         168.0
                49.5
      20
## 6
     21
         162.0
                52.0
## 7
      22
         155.2
                45.3
      23
         176.9
                55.0
## 8
      23 178.5
## 9
                64.2
## 10 22
         176.1
                61.3
## 11 24
         167.1
                62.0
## 12 22
         180.0
                75.8
## 13 21
         162.2
                55.3
## 14 23 176.1
                53.1
## 15 22
         158.2
                45.2
## 16 24 168.6
                70.2
## 17 21 169.2 62.2
```

```
plot(DF2)
```


1-4 plot() : pch 속성

점의 형태를 이용해서 남자와 여자를 구분하여 표시

dat <- data.frame(sex, height, weight)
dat</pre>

```
sex height weight
##
## 1 남자
          165.3
                 68.2
## 2 여자
          170.1
                 53.0
## 3 남자
          175.0
                 80.1
## 4 남자
          182.1
                 85.7
## 5 여자
          168.0
                 49.5
## 6 여자
          162.0
                 52.0
## 7 여자
          155.2
                 45.3
## 8 여자
          176.9
                 55.0
## 9 남자
          178.5
                64.2
## 10 남자
         176.1
                61.3
## 11 남자
          167.1
                 62.0
## 12 남자
          180.0
                75.8
## 13 남자
          162.2
                 55.3
## 14 여자
         176.1
                 53.1
## 15 여자
          158.2
                45.2
## 16 남자
          168.6
                70.2
## 17 남자 169.2 62.2
```

```
par(mfrow=c(1,2))
plot(weight~height)
plot(weight~height, pch=as.integer(sex))
```


pch

총 18개까지 가능하다.

dat

```
sex height weight
##
## 1 남자
          165.3
                68.2
## 2 여자
          170.1
                53.0
## 3 남자 175.0
                80.1
## 4 남자
          182.1
                85.7
## 5 여자
          168.0
                49.5
## 6 여자
          162.0
                52.0
## 7 여자
          155.2
                45.3
## 8 여자
         176.9
                55.0
## 9 남자
          178.5
                64.2
## 10 남자
         176.1
                61.3
## 11 남자
          167.1
                62.0
## 12 남자
          180.0
                75.8
## 13 남자 162.2
                55.3
## 14 여자 176.1
                53.1
## 15 여자 158.2
                45.2
## 16 남자 168.6
               70.2
## 17 남자 169.2 62.2
```

```
plot(weight~height, pch=as.integer(sex))
legend("topleft", c("남", "여"), pch=dat$sex) # 범례
```


1-5 coplot() 함수

- (가) 명목형 변수(범주형)에 대한 그래프
- (나) Levels별 그래프를 보는 것이 목적이다.
- (다) 남녀 성별에 따른 키와 몸무게의 상관관계

coplot(weight~height | sex)

Given: sex

height

155

160

165

170

175

180

1-6 저수준 함수 사용

title() : 그래프의 타이틀 함수

grid() : 격자 추가 함수

abline() : 수직선, 수평선 추가

```
plot(weight~height, ann=FALSE)
title(main="A와 B의 몸무게와 키의 상관관계")
title(xlab="키", ylab="몸무게")
grid() # 격자 추가

hMean <- mean(height)
wMean <- mean(weight)
abline(v=hMean, col="red")
abline(h=wMean, col="blue")
```

A와 B의 몸무게와 키의 상관관계

1-7 barplot(막대 그래프)

```
(가) 범주형(명목형) 변수 데이터 특징 살펴 보기
```

- (나) 먼저 빈도수를 확인해야 한다. 이를 위해 table() 함수 이용
- (다) 사용법 : barplot(변수객체)

```
tb|B|ood <- table(DF$b|oodtype)
tb|B|ood
```

```
##
## A AB B 0
## 4 3 5 5
```

```
barplot(tblBlood)
title(main="혈액형별 빈도수")
title(xlab="혈액형", ylab="빈도수" )
```


1-7 barplot(막대 그래프) barplot 혈액형별 키의 평균

```
[사용법]
tapply(X, INDEX, FUN = NULL, ...,)
X : 객체
INDEX : 하나 또는 그 이상의 범주형 리스트 (factor)
. . .
FUN : 적용할 함수
?tapply
## starting httpd help server ... done
class(bloodtype)
## [1] "factor"
Height = tapply(height, bloodtype, mean )
Height
        Α
              AB
## 169.075 177.400 171.280 165.140
barplot(Height, ylim=c(0,200))
```


1-7 barplot(막대 그래프) boxplot 혈액형별(levels) 키에 대한 분포 그려보기

```
boxplot(VariableA) => 변수 하나의 경우, 분포
boxplot(A ~ B) => B(독립변수,설명변수), A(종속변수)의 분포 (B는 범주형 변수이어야 함.)
```

boxplot(height)

boxplot(height~bloodtype)

1-7 hist() : 히스토 그램 살펴보기

hist

hist(하나의 변수) # 연속형변수

prob : 확률(상대도수)

breaks : 나누기

height

```
## [1] 165.3 170.1 175.0 182.1 168.0 162.0 155.2 176.9 178.5 176.1 167.1 ## [12] 180.0 162.2 176.1 158.2 168.6 169.2
```

```
par(mfrow=c(2,2)) # 2행 2열
hist(height) # 하나의 변수
hist(height, breaks=1, prob=T)
hist(height, breaks=1)
hist(height, prob=T)
```


Ledneuck 155 160 165 170 175 180 185 height

Histogram of height

Histogram of height

Histogram of height

density(밀도) vs frequency(빈도)

```
par(mfrow=c(2,2))
hist(height, breaks=1, prob=T)
hist(height, breaks=1)

hist(height, breaks=10, prob=T)
hist(height, breaks=10)
lines(density(height))
```


Histogram of height

Histogram of height

Histogram of height

length(height)

[1] 17

print(2/34)

[1] 0.05882353

print(14/34)

[1] 0.4117647

print(1/34)

[1] 0.02941176

1-7 hist() : 히스토 그램 살펴보기

저수준 함수- 추세선 보기

par(mfrow=c(1,1))
hist(height, breaks=10, prob=T)
lines(density(height))

Histogram of height

1-7 hist() : 히스토 그램 살펴보기

```
(가) seq() 함수
seq(시작, 끝, by=증가)
(나) hist(객체, breaks=직접지정)
```

range(height)

[1] 155.2 182.1

BPoint = seq(min(height), max(height)+5, by=5)
BPoint

[1] 155.2 160.2 165.2 170.2 175.2 180.2 185.2

par(mfrow=c(1,2))
hist(height, breaks=5, prob=T)
hist(height, breaks=BPoint)

Histogram of height

breaks 포인트를 5로 나누기

BPoint = seq(min(height), max(height)+5, by=5)
BPoint

[1] 155.2 160.2 165.2 170.2 175.2 180.2 185.2

hist(height, breaks=BPoint)

Histogram of height

breaks 포인트를 10로 나누기

BPoint = seq(min(height), max(height)+10, by=10)
BPoint

[1] 155.2 165.2 175.2 185.2

hist(height, breaks=BPoint)

Histogram of height

2,3 열의 그래프를 그린다.

1행 1열 height, weight 에 대한 산점도 1행 2열 성별, weight에 대한 Boxplot 그리기 1행 3열에는 혈액형별 빈도수 구하기 barplot 2행 1열 boxplo

```
par(mfrow=c(2,3))

plot(weight, height)
plot(sex, height)
barplot(table(bloodtype))
boxplot(height)
boxplot(height~bloodtype)

BPoint = seq(min(height), max(height)+5, by=5)
BPoint
```

plot01

[1] 155.2 160.2 165.2 170.2 175.2 180.2 185.2

hist(height, breaks=BPoint)

한 그래프에 두개의 그래프 그려보기

```
TS1 \leftarrow c(round(runif(30)*100))
TS2 \leftarrow c(round(runif(30)*100))
TS3 \leftarrow c(round(runif(30)*100))
TS1
## [1] 8 47 1 50 13 10 3 34 66 26 26 38 24 31 14 35 88 4 95 8 30 64 66
## [24] 48 46 51 59 57 75 51
TS2
## [1] 5 27 3 94 62 19 11 49 59 28 0 18 43 11 3 0 38 77 67 83 6 33 9
## [24] 92 95 53 71 21 60 16
TS3
## [1] 32 65 89 21 98 73 1 78 2 22 66 88 13 98 89 31 48 70 22 79 8 31 15
## [24] 53 98 1 34 69 35 35
plot(TS1, type="l")
lines(TS2, col="red", Ity="dashed")
lines(TS3, col="blue", lty="dashed")
```



```
runif(30)*100
```

```
## [1] 93.655458 90.014450 84.940736 11.199889 62.069550 16.474411 51.390581
## [8] 24.615840 39.604869 15.786344 98.682077 52.043595 44.352451 83.154918
## [15] 75.744201 31.107438 88.280991 5.842717 30.018740 19.615069 64.291585
## [22] 27.565219 83.704453 3.334375 27.892400 80.308224 14.779039 40.538484
## [29] 76.571974 90.488745
```

```
#help(plot)
par(mfrow=c(2,2))
plot(weight, type="p")
plot(weight, type="l")
plot(weight, type="b")
plot(weight, type="s")
```


ggplot2

```
#install.packages("ggplot2")
#install.packages("ggthemes")
library(ggplot2)
library(ggthemes)
```

ggplot2

```
dataset : diamond
dim(diamonds)
## [1] 53940
               10
str(diamonds)
## Classes 'tbl_df', 'tbl' and 'data.frame': 53940 obs. of 10 variables:
## $ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
## $ cut : Ord.factor w/ 5 levels "Fair"<"Good"<...: 5 4 2 4 2 3 3 3 1 3 ...
## $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<...: 2 2 2 6 7 7 6 5 2 5 ...
## $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<...: 2 3 5 4 2 6 7 3 4 5 ...
## $ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
## $ table : num 55 61 65 58 58 57 57 55 61 61 ...
## $ price : int 326 326 327 334 335 336 336 337 337 338 ...
## $ x
          : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
## $ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
## $ z
        : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
head(diamonds)
```

```
## # A tibble: 6 x 10
     carat cut
                       color clarity depth table price
     <dbl> <ord>
                       <ord>
                                      \langle db \rangle \langle db \rangle \langle int \rangle \langle db \rangle \langle db \rangle
## 1 0.23
           Ideal
                              SI2
                                        61.5
                       Ε
                                                 55
                                                      326 3.95 3.98
                                                                        2.43
## 2 0.21
            Premium
                              SI1
                                        59.8
                                                61
                                                      326 3.89 3.84 2.31
## 3 0.23
                                                                 4.07 2.31
           Good
                       Ε
                              VS1
                                        56.9
                                                65
                                                      327
                                                           4.05
## 4 0.290 Premium
                                                                  4.23 2.63
                              VS2
                                                58
                                                      334 4.2
                                        62.4
                              SI2
                                        63.3
                                                58
                                                          4.34 4.35 2.75
## 5 0.31
           Good
                                                      335
                                                      336 3.94 3.96 2.48
## 6 0.24 Very Good J
                              VVS2
                                        62.8
                                                57
```

summary(diamonds)

```
##
        carat
                            cut
                                       color
                                                    clarity
          :0.2000
                             : 1610
                                      D: 6775
   Min.
                    Fair
                                                 SI1
                                                        : 13065
    1st Qu.:0.4000
                             : 4906
                                      E: 9797
                                                 VS2
                    Good
                                                        : 12258
   Median :0.7000
                    Very Good: 12082
                                      F: 9542
                                                 S12
                                                        : 9194
          :0.7979
   Mean
                    Premium :13791
                                       G:11292
                                                 VS1
                                                        : 8171
                                                       : 5066
    3rd Qu.: 1.0400
                     Ideal
                              :21551
                                      H: 8304
                                                 VVS2
          :5.0100
                                       1: 5422
                                                 VVS1
                                                       : 3655
   Max.
                                       J: 2808
                                                 (Other): 2531
##
##
        depth
                        table
                                       price
                                                          Χ
          :43.00
   Min.
                   Min.
                          :43.00
                                    Min. : 326
                                                    Min. : 0.000
                                    1st Qu.: 950
    1st Qu.:61.00
                    1st Qu.:56.00
                                                    1st Qu.: 4.710
   Median :61.80
                   Median :57.00
                                    Median: 2401
                                                    Median : 5.700
          :61.75
##
                         :57.46
                                    Mean : 3933
                                                    Mean : 5.731
    Mean
                   Mean
   3rd Qu.:62.50
                   3rd Qu.:59.00
                                    3rd Qu.: 5324
                                                    3rd Qu.: 6.540
          :79.00
                           :95.00
                                           : 18823
   Max.
                   Max.
                                    Max.
                                                          :10.740
                                                    Max.
##
         У
                           Ζ
   Min. : 0.000
                    Min. : 0.000
    1st Qu.: 4.720
                     1st Qu.: 2.910
   Median : 5.710
                    Median : 3.530
         : 5.735
                    Mean : 3.539
   Mean
   3rd Qu.: 6.540
                    3rd Qu.: 4.040
          :58.900
                           :31.800
##
   Max.
                    Max.
##
```

```
names(diamonds)
## [1] "carat"
                 "cut"
                           "color"
                                     "clarity" "depth" "table" "price"
## [8] "x"
                 " y "
                           "z"
ggplot()
geom_point()
theme_wsj
#help(diamonds)
names(diamonds)
## [1] "carat"
                 "cut"
                           "color"
                                     "clarity" "depth"
                                                        "table"
                                                                  "price"
## [8] "x"
                 "y"
                           "z"
ggplot(data=diamonds,
      aes(x=carat, y=price, colour=clarity)) +
      geom_point() +
       theme_wsj()
```


plot(diamonds\$carat, diamonds\$price)

 $g1 + g2 + theme_bw()$

DF

```
name sex age grade absence bloodtype height weight
## 1 김길동 남자 23
                          유
                                   0 165.3
                    3
                                           68.2
## 2 이미린 여자 22
                          무
                                     170.1
                                           53.0
## 3 홍길동 남자 24
                          무
                                   B 175.0
                                            80.1
## 4 김철수 남자 23
                          무
                                  AB 182.1
                                            85.7
    손세수 여자
                                   A 168.0
                                            49.5
    박미희 여자
                                     162.0
              21
                                            52.0
## 7 강수친 여자 22
                                   0 155.2
                                            45.3
## 8 이희수 여자 23
                                   A 176.9
                                           55.0
## 9 이철린 남자 23
                                   B 178.5
                                           64.2
## 10 방희철 남자 22
                                   B 176.1
                                           61.3
## 11 박수호 남자 24
                                     167.1
                                           62.0
## 12 임동민 남자
                                  AB 180.0
                                           75.8
## 13 김민수 남자 21
                                   A 162.2
                                           55.3
## 14 이희진 여자 23
                                   0 176.1
                                           53.1
                          무
## 15 김미진 여자 22
                                   B 158.2
                                           45.2
## 16 김동수 남자 24
                                   B 168.6
                                           70.2
## 17 여수근 남자 21
                                   A 169.2
                                           62.2
```

```
g1 \leftarrow ggplot(DF)
```

ggplot2, point, line, size

```
x축 weight, y축 height, 색구분 : bloodtype
(1) 점으로 해보기
(2) 선으로 그려보기
(3) 점의 사이즈를 키워보기
(4) 성별로 나눠서 그래프를 보기
facet_grid() : facet_grid(.~sex)
```

```
g1 <- ggplot(DF, aes(x=height, y=weight, colour=bloodtype))
g2_p <- geom_point(size=10)
g2_l <- geom_line(size=2)
g3 <- facet_grid(.~sex)
g1 + g2_p + g2_l + g3
```


mtcars

										_
##	mpg d	cyl disp	hp dra	t wt	qsec	VS	am g	ear	carl	Э
## Mazda RX4	21.0	6 160.0						4		4
## Mazda RX4 Wag	21.0	6 160.0	110 3.9	0 2.875	17.02	0	1	4	4	4
## Datsun 710	22.8	4 108.0	93 3.8	5 2.320	18.61	1	1	4		1
## Hornet 4 Drive	21.4	6 258.0	110 3.0	8 3.215	19.44	1	0	3		1
## Hornet Sportabout	18.7	8 360.0	175 3.1	5 3.440	17.02	0	0	3		2
## Valiant	18.1	6 225.0	105 2.7	6 3.460	20.22	1	0	3		1
## Duster 360	14.3	8 360.0	245 3.2	1 3.570	15.84	0	0	3	4	4
## Merc 240D	24.4	4 146.7	62 3.6	9 3.190	20.00	1	0	4		2
## Merc 230	22.8	4 140.8	95 3.9	2 3.150	22.90	1	0	4		2
## Merc 280	19.2	6 167.6	123 3.9	2 3.440	18.30	1	0	4	4	4
## Merc 280C	17.8	6 167.6	123 3.9	2 3.440	18.90	1	0	4	4	4
## Merc 450SE	16.4	8 275.8					0	3	(3
## Merc 450SL	17.3	8 275.8	180 3.0	7 3.730	17.60	0	0	3	(3
## Merc 450SLC	15.2	8 275.8	180 3.0	7 3.780	18.00	0	0	3	(3
## Cadillac Fleetwood	10.4	8 472.0	205 2.9	3 5.250	17.98	0	0	3	4	4
## Lincoln Continental	10.4	8 460.0	215 3.0	0 5.424	17.82	0	0	3	4	4
## Chrysler Imperial	14.7	8 440.0	230 3.2	3 5.345	17.42	0	0	3	4	4
## Fiat 128	32.4	4 78.7	66 4.0	8 2.200	19.47	1	1	4		1
## Honda Civic	30.4	4 75.7	52 4.9	3 1.615	18.52	1	1	4		2
## Toyota Corolla	33.9	4 71.1	65 4.2	2 1.835	19.90	1	1	4		1
## Toyota Corona	21.5	4 120.1	97 3.7	0 2.465	20.01	1	0	3		1
## Dodge Challenger	15.5	8 318.0	150 2.7	6 3.520	16.87	0	0	3		2
## AMC Javelin	15.2	8 304.0	150 3.1	5 3.435	17.30	0	0	3		2
## Camaro Z28	13.3	8 350.0	245 3.7	3 3.840	15.41	0	0	3	4	4
## Pontiac Firebird	19.2	8 400.0	175 3.0	8 3.845	17.05	0	0	3	,	2
## Fiat X1-9	27.3	4 79.0	66 4.0	8 1.935	18.90	1	1	4		1
## Porsche 914-2	26.0	4 120.3	91 4.4	3 2.140	16.70	0	1	5	2	2
## Lotus Europa	30.4	4 95.1	113 3.7	7 1.513	16.90	1	1	5		2
## Ford Pantera L	15.8	8 351.0	264 4.2	2 3.170	14.50	0	1	5	4	4
## Ferrari Dino	19.7	6 145.0	175 3.6	2 2.770	15.50	0	1	5	(6
## Maserati Bora	15.0	8 301.0	335 3.5	4 3.570	14.60	0	1	5	8	8
## Volvo 142E	21.4	4 121.0	100 / 1	1 2 780	18 60	1	1	4	,	2

```
g1 <- ggplot(mtcars, aes(disp, mpg))
g2_p <- geom_point(size=5)
#g2_l <- geom_line(size=2)
g3 <- facet_grid(.~cyl)
#g
g1 + g2_p</pre>
```


barplot를 ggplot로

DF

```
name sex age grade absence bloodtype height weight
## 1 김길동 남자 23
                    3
                          유
                                   0 165.3
                                            68.2
## 2 이미린 여자 22
                          무
                                           53.0
                                     170.1
## 3 홍길동 남자 24
                          무
                                   B 175.0
                                            80.1
## 4 김철수 남자 23
                          무
                                  AB 182.1
                                            85.7
## 5 손세수 여자
                                   A 168.0
                                            49.5
    박미희 여자
                                     162.0
                                            52.0
## 6
              21
## 7 강수친 여자
                                   0 155.2
                                            45.3
## 8 이희수 여자 23
                          무
                                   A 176.9
                                           55.0
## 9 이철린 남자
                    3
                          무
                                   B 178.5
                                           64.2
              23
## 10 방희철 남자 22
                                   B 176.1
                                           61.3
                          무
## 11 박수호 남자
                                     167.1
                                           62.0
## 12 임동민 남자
                                     180.0
                                           75.8
## 13 김민수 남자 21
                          무
                                   A 162.2
                                           55.3
## 14 이희진 여자 23
                                   0 176.1
                                            53.1
## 15 김미진 여자 22
                          무
                                   B 158.2
                                           45.2
## 16 김동수 남자 24
                                   B 168.6
                                           70.2
## 17 여수근 남자 21
                                   A 169.2
                                           62.2
```

```
g1 <- ggplot(DF, aes(x=bloodtype, fill=sex))
#g2_p <- geom_point(size=5)
#g2_l <- geom_line(size=2)
g2_b <- geom_bar(position = "dodge", width=0.3)
#g3 <- facet_grid(.~cyl)
#g
g1 + g2_b
```



```
table(bloodtype,sex)
```

```
## sex
## bloodtype 남자 여자
## A 2 2
## AB 2 1
## B 4 1
## 0 2 3
```