VE320 Homework Nine Due: 2021/8/6 23:59

(Note: In the following problems, assume the semiconductor and oxide in the MOS system are silicon and silicon dioxide, respectively, and assume the temperature is T = 300 K unless otherwise stated.)

1. Assume that the subthreshold current of a MOSFET is given by

$$I_D = 10^{-15} \exp\left(\frac{V_{GS}}{(2.1)V_t}\right)$$

over the range $0 \le V_{GS} \le 1$ volt and where the factor 2.1 takes into account the effect of interface states. Assume that 10^6 identical transistors on a chip are all biased at the same V_{GS} and at $V_{DD} = 5$ V.

- (a) Calculate the total current that must be supplied to the chip at $V_{GS} = 0.5, 0.7$, and 0.9 V.
- (b) Calculate the total power dissipated in the chip for the same V_{GS} values.
- 2. Consider an n-channel silicon MOSFET. The parameters are $k'_n = 75\mu\text{A/V}^2$, W/L = 10, and $V_T = 0.35$ V. The applied drain-to-source voltage is $V_{DS} = 1.5$ V (a) For $V_{GS} = 0.8$ V, find (i) the ideal drain current, (ii) the drain current if $\lambda = 0.02$ V⁻¹, and (iii) the output resistance for $\lambda = 0.02$ V⁻¹. (b) Repeat part (a) for $V_{GS} = 1.25$ V.
- 3. The parameters of an n-channel enhancement-mode MOSFET are $V_T = 0.40 \text{ V}$, $t_{ox} = 20 \text{ nm} = 200 \text{Å}$, $L = 1.0 \mu \text{m}$, and $W = 10 \mu \text{m}$.
 - (a) Assuming a constant mobility of $\mu_n = 475 \text{ cm}^2/\text{V} \cdot \text{s}$, calculate I_D for $V_{GS} V_T = 2.0 \text{ V}$ when biased at (i) $V_{DS} = 0.5 \text{ V}$, (ii) $V_{DS} = 1.0 \text{ V}$, (iii) $V_{DS} = 1.25 \text{ V}$ and (iv) $V_{DS} = 2.0 \text{ V}$
 - (b) Consider the piecewise linear model of the carrier velocity versus V_{DS} shown in the figure below. Calculate I_D for the same voltage values given in part (a). [See equation $I_D(\text{sat}) = WC_{\text{ox}}(V_{GS} V_T)v_{\text{sat}}$]
 - (c) Determine the $V_{DS}(\text{sat})$ values for parts (a) and (b).

(Note: In the following problems, use the transistor geometry shown in Figure

12.13. Assume T = 300 K unless otherwise stated.)

- 4. Consider a p⁺⁺n⁺p bipolar transistor, uniformly doped in each region. Sketch the energy-band diagram for the case when the transistor is
 - (a) in thermal equilibrium,
 - (b) biased in the forward-active mode,
 - (c) biased in the inverse-active region, and
 - (d) biased in cutoff with both the B E and B C junctions reverse biased.
- 5. A uniformly doped silicon npn bipolar transistor at T = 300 K is biased in the forward-active mode. The doping concentrations are $N_E = 8 \times 10^{17}$ cm⁻³, $N_B = 2 \times 10^{16}$ cm⁻³, and $N_C = 10^{15}$ cm⁻³.
 - (a) Determine the thermal-equilibrium values p_{E0} , n_{B0} , and p_{C0} .
 - (b) For $V_{BE} = 0.640$ V, calculate the values of n_B at x = 0 and p_E at x' = 0.
 - (c) Sketch the minority carrier concentrations through the device and label each curve.
- 6. A uniformly doped pnp silicon bipolar transistor has a base doping of $N_B = 10^{16} \text{ cm}^{-3}$, a collector doping of $N_C = 10^{15} \text{ cm}^{-3}$, a metallurgical base width of $x_{B0} = 0.70 \mu \text{m}$, a base minority carrier diffusion coefficient of $D_B = 10 \text{cm}^2/s$, and a B-E cross-sectional area of $A_{BE} = 10^{-4} \text{ cm}^2$. The transistor is biased in the forward-active mode with $V_{EB} = 0.625 \text{ V}$. Neglecting the B E space charge width and assuming $x_B \ll L_B$,
 - (a) determine the change in neutral base width as V_{BC} changes from 1 to 5 V,
 - (b) find the corresponding change in collector current,
 - (c) estimate the Early voltage
 - (d) find the output resistance.