Correlation Coefficients: Understanding When to Use What

	_				
1	Pearson	Corro	lati∩n	/r\	
	i caison	COLLE	iauvii	\ I I I .	

- Measures linear relationship between two continuous variables.
- Assumes normality, linearity, no significant outliers, and homoscedasticity.
- Suitable when data shows a linear trend and is normally distributed.

2. Spearman Rank Correlation (rho):

- A non-parametric measure based on ranked values.
- Captures monotonic relationships (increasing or decreasing, not necessarily linear).
- Use when data is not normally distributed or the relationship is nonlinear but monotonic.

3. Kendall's Tau (tau):

- A non-parametric correlation based on the number of concordant and discordant pairs.
- More robust in small datasets or when there are many tied ranks.

Summary of When to Use:

Method Use When		Handles Non-Normal? Monotonic? Linear?						
Pearson (ı	r) Linear + normal	No		No	Yes			
Spearman (rho) Monotonic + non-normal			Yes		Yes	No	1	
Kendall (tau) Small/tied datasets + ordinal data			Yes		Yes	No	1	

Below is a visual example comparing different types of relationships:

