Introduction to Type Theories

Prof. Anja Petković Komel @ OPLSS25 Notes by: Yanning Chen

Contents

Judgments	. 1
Dependent Stuff	
Rules	. 1
Derivation	
Types	. 2
0.6.1 Pi (Dependent function)	. 2
0.6.2 Non-dependent function	. 3
0.6.3 N Natural Numbers	. 3
0.6.4 1	
0.6.5 0	. 4
0.6.6 Sigma (dependent sum/pair)	. 4
C.H	
	Rules Derivation Types 0.6.1 Pi (Dependent function) 0.6.2 Non-dependent function 0.6.3 N Natural Numbers 0.6.4 1 0.6.5 0 0.6.6 Sigma (dependent sum/pair) 0.6.7 Identity

0.1 Judgments

- Well-formed Type (Type Formation) $\Gamma \vdash A$ type
- Judgmentally Equal Types $\Gamma \vdash A = B$ type
- Well-formed Term $\Gamma \vdash a : A$
- Judgmentally Equal Terms $\Gamma \vdash a = b : A$

0.2 Context (Telescope)

$$x_1: A_1, ..., x_{k-1}: A_{k-1}(x_1, ..., x_{k-2}) \vdash A_{k(x_1, ..., x_{k-1})}$$
 type

0.3 Dependent Stuff

- type family (dependent types) $\Gamma, x : A \vdash B(x)$ type
- section (dependent terms) Γ , $x : A \vdash b(x) : B(x)$

NOTE Why is it called "section"? Category warning!

TODO

0.4 Rules

- Structural Rules
 - 1. Equivalence, as you expect
 - 2. Variable Conversion

$$\frac{\Gamma \vdash A \doteq A' \text{ type} \quad \Gamma, x : A, \Delta \vdash \mathcal{J}[B(x)]}{\Gamma, x : A', \Delta \vdash \mathcal{J}[B(x)]}$$

NOTE the following rule (*element conversion*) is derivable, as we'll see later

$$\frac{\Gamma \vdash A \stackrel{.}{=} A' \text{ type} \quad \Gamma \vdash a : A}{\Gamma \vdash a : A'}$$

3. Substitution

$$\frac{\Gamma \vdash a : A \quad \Gamma, x : A, \Delta \vdash \mathcal{J}}{\Gamma, \Delta[a/x] \vdash \mathcal{J}[a/x]} SUBST$$

This \mathcal{J} here stands for whatever judgment we are talking about. It could be *type formation*, *judgmental equal terms/types*, or *typing judgments*. In real life there will be 4 rules here.

Also note how \triangle is getting substituted because it can depend on x.

NOTE Usually we want Subst to be an admissible rule. For today, we see it as an axiom.

4. Weakening

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, \Delta \vdash \mathcal{J}}{\Gamma, x : A, \Delta \vdash \mathcal{J}} W$$

Note how we are adding x to Γ .

5. Contraction, which is derivable from how we defined substitution.

TODO I think defining substitution as an axiom is not a good idea, especially when it mixes substitution and structural properties up. My intuition is that structural properties are a direct consequence of how you define substitution, which in turn is the very core definition of the semantics of your type theory.

6. Generic element (variable rule)

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma, x : A \vdash x : A} \delta$$

0.5 Derivation

A finite tree where

• nodes: inferences

• root: conclusion

• leaves: hypotheses

E.g.

Thm (*element conversion*):

$$\frac{\Gamma \vdash A \stackrel{.}{=} A' \text{ type} \quad \Gamma \vdash a : A}{\Gamma \vdash a : A'}$$

Proof.

$$\frac{\Gamma \vdash A \stackrel{.}{=} A' \text{ type}}{\Gamma \vdash A' \stackrel{.}{=} A \text{ type}} \stackrel{.}{=} \text{Sym} \qquad \frac{\Gamma \vdash A' \text{ type}}{\Gamma, x : A' \vdash x : A'} x}{\Gamma, x : A \vdash x : A'} \text{VARCONV}$$

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a : A'}$$

0.6 Types

We define types by giving its formation (F), congruence (=), introduction (I), elimination (E), and computation (β/η) rules.

0.6.1 Pi (Dependent function)

 $\Pi_{x:A}B(x)$

$$\frac{\Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \Pi_{x:A}B(x) \text{ type}} \Pi_{F} \qquad \frac{\Gamma \vdash A \stackrel{.}{=} A' \qquad \Gamma, x : A \vdash B(x) \stackrel{.}{=} B'(x)}{\Gamma \vdash \Pi_{x:A}B(x) \stackrel{.}{=} \Pi_{x:A'}B'(x) \text{ type}} \Pi_{eq}$$

$$\frac{\Gamma, x : A \vdash b(x) : B(x)}{\Gamma \vdash \lambda x.b(x) : \Pi_{x:A}B(x)} \Pi_{I} \qquad \frac{\Gamma \vdash f : \Pi_{x:A}B(x)}{\Gamma, x : A \vdash f x : B(x)} \Pi_{E}$$

$$\frac{\Gamma, x : A \vdash b(x) : B(x)}{\Gamma, x : A \vdash (\lambda y.b(y)) x \stackrel{.}{=} b(x) : B(x)} \Pi_{\beta} \qquad \frac{\Gamma \vdash f : \Pi_{x:A}B(x)}{\Gamma \vdash \lambda x.f x \stackrel{.}{=} f : \Pi_{x:A}B(x)} \Pi_{\eta}$$

NOTE x.b(x) (binding) is a general structural construct, while λ applies to a binding and it is MLTT-specific. It allows a form of "local" substitution.

NOTE Π_n is normally derivable from Extensionality.

$$\frac{\Gamma \vdash f : \Pi_{x:A}B(x) \qquad \Gamma \vdash g : \Pi_{x:A}B(x) \qquad \Gamma, x : A \vdash f(x) \stackrel{.}{=} g(x) : B(x)}{\Gamma \vdash f \stackrel{.}{=} g : \Pi_{x:A}B(x)}$$
EXTENSIONALITY

It's convenient to have Π_{η} rule in terms of computation but normally when we study metatheory we want extensionality.

0.6.2 Non-dependent function

A special const case of Π where codomain does not have dependency on the domain.

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\frac{\Gamma, x : A \vdash B \text{ type}}{\Gamma \vdash \Pi_{x:A}B \text{ type}}} \Pi_F$$

$$\frac{\Gamma \vdash \Pi_{x:A}B \text{ type}}{\Gamma \vdash A \to B := \Pi_{x:A}B \text{ type}} \to_F$$

Notice how B does not depend on x.

E.g.

$$\frac{\frac{\Gamma, f: A \to B \vdash f: A \to B}{\Gamma, f: A \to B, x: A \vdash f x: B} \Pi_{E}}{\frac{\Gamma, g: B \to C, f: A \to B, x: A \vdash f x: B}{\Gamma, g: B \to C, f: A \to B, x: A \vdash f x: B}} \underbrace{\frac{\frac{\Gamma, g: B \to C \vdash g: B \to C}{\Gamma, g: B \to C, y: B \vdash g y: C}}{\frac{\Gamma, g: B \to C, f: A \to B, x: A, y: B \vdash g y: C}{\Gamma, g: B \to C, f: A \to B, x: A, y: B \vdash g y: C}}_{\text{Subst}}}_{\text{Subst}}$$

$$\frac{\frac{\Gamma, g: B \to C, f: A \to B, x: A \vdash g (f x): C}{\Gamma, g: B \to C, f: A \to B \vdash \lambda x. g (f x): A \to C}}{\frac{\Gamma, g: B \to C, f: A \to B \vdash \lambda x. g (f x): C}{\Gamma, g: B \to C \vdash \lambda f. \lambda x. g (f x): (A \to B) \to (A \to C)}}_{\Pi_{I}}$$

0.6.3 N Natural Numbers

$$\frac{\Gamma, n : \mathbb{N} \vdash \mathbb{N} \text{ type}}{\Gamma \vdash \mathbb{N} \text{ type}} \frac{\mathbb{N}_{F}}{\vdash \mathbb{O}_{\mathbb{N}} : \mathbb{N}} \frac{\Gamma}{\vdash \mathbb{N}} \mathbb{N}_{I_{0}} \frac{\Gamma}{\vdash S_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}} \mathbb{N}_{I_{S}}}{\Gamma \vdash \mathbb{N} \text{ type}} \frac{\Gamma \vdash p_{0} : P(\mathbb{O}_{\mathbb{N}}) \quad \Gamma \vdash p_{S} : \Pi_{n:\mathbb{N}} P(n) \to P(S_{\mathbb{N}} n)}{\Gamma \vdash \text{ind}_{\mathbb{N}}(p_{0}, p_{S}) : \Pi_{n:\mathbb{N}} P(n)} \mathbb{N}_{E}}$$

$$\frac{\dots}{\Gamma \vdash \text{ind}_{\mathbb{N}}(p_{0}, p_{S}, \mathbb{O}_{\mathbb{N}}) \stackrel{.}{=} p_{0} : P(\mathbb{O}_{\mathbb{N}})} \mathbb{N}_{\beta_{0}}} \frac{\mathbb{N}_{\beta_{0}}}{\Gamma, n : \mathbb{N} \vdash \text{ind}_{\mathbb{N}}(p_{0}, p_{S}, S_{\mathbb{N}} n) \stackrel{.}{=} \text{ind}_{\mathbb{N}}(p_{0}, p_{S}, n) : P(S_{\mathbb{N}} n)} \mathbb{N}_{\beta_{S}}}$$

Example,

$$\frac{m: \mathbb{N} \vdash \operatorname{add}_{\mathbb{N}} 0 := m: \mathbb{N} \quad m: \mathbb{N}, \operatorname{add}_{\mathbb{N}} S: \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \vdash \operatorname{add}_{\mathbb{N}} S := \operatorname{TODO} : \mathbb{N} \to (\mathbb{N} \to \mathbb{N})}{m: \mathbb{N} \vdash \operatorname{add}_{\mathbb{N}} m := \operatorname{ind}_{\mathbb{N}} (\operatorname{add}_{\mathbb{N}} 0 \ m, \operatorname{add}_{\mathbb{N}} S \ m) : \mathbb{N} \to \mathbb{N}}$$

TODO

0.6.4 1

NOTE No elimination rule

0.6.5 0

or, the non-dependent version, ind'₀: $0 \rightarrow P$

NOTE
$$\neg P := P \to 0$$

0.6.6 Sigma (dependent sum/pair)

$$\frac{\Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \Sigma_{x:A} B(x) \text{ type}} \Sigma_F \qquad \frac{\Gamma}{\Gamma \vdash \text{pair}}$$

TODO

0.6.7 Identity

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : A}{\Gamma \vdash a =_A b \text{ type}} =_F \qquad \frac{\Gamma \vdash a : A}{\Gamma \vdash \text{refl}_a : a =_A a} =_I$$

$$\frac{\Gamma, x : A, y : A, p : x = y \vdash P(x, y, p) \text{ type}}{\Gamma \vdash J : \Pi_{x:A} P(x, x, \text{refl}_x) \to \Pi_{x:A} \Pi_{y:A} \Pi_{g:x =_A y} P(x, y, g)} =_E$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash P(x, y, p) \text{ type}}{\Gamma \vdash J(d, a, a, \text{refl}_a) \doteq d(a) : P(a, a, \text{refl}_a)} =_{\text{compute}}$$

So morally, *J* rule is converting a proof on two *judgmentally equal* things to two *definitionally equal* things, by eliminating the refl constructor that smuggles a *judgmental equality* inside a *definitional equality*.

NOTE Notice that by its computation rule, J is not computable if the proof is not refl.

Example.

Thm (Transitivity). TODO

TODO Talk about how PAs hide J rule away from users, and show two different representations (J rule vs pm)

Thm (Symmetry).

Thm (*Ap*). If $a =_A b$ and $f : A \to B$, then $f(a) =_B f(b)$.

Thm (*Transport*). If $a =_A b$ and B(a), then B(b).

0.7 C.H.

TODO

- Prop Type
- Proof Element
- T 1
- 1 0
- $P \vee Q A + B$
- $P \wedge Q A * B$
- $P \Rightarrow Q A \rightarrow B$
- $\neg P A \rightarrow 0$
- $\exists_x P(x) \Sigma_{x:A} P(x)$
- $\forall_x P(x) \Pi_{x:A} P(x)$
- P = Q P = Q