Алгебра и геометрия

Лисид Лаконский

October 2022

Содержание

1	Алгебра и геометрия - 29.10.2022			2
	1.1	Линейные пространства		
		1.1.1	Аксиомы линейного пространства	2
		1.1.2	Примеры линейных пространств	3
		1.1.3	Следствия из аксиом линейного пространства	3
		1.1.4	Линейная комбинация элементов	3
		1.1.5	Размерность линейного пространства	4
		1.1.6	Базис линейного пространства	4
	1.2	Векто	рная алгебра	6
		1.2.1	Скалярное произведение векторов	6
		1.2.2	Скалярная проекция вектора	6

1 Алгебра и геометрия - 29.10.2022

1.1 Линейные пространства

Линейным пространством называется множество элементов произвольной природы, на котором определены операции **сложения** и **умножения на число**, согласованные друг с другом и **замкнутые в этом множестве**.

Замкнутость в множестве означает то, что результаты выполнения операций над его элементами остаются элементами множества.

1.1.1 Аксиомы линейного пространства

Сложением (обобщенным сложением) называется операция, которая любым двум элементам данного множества ставит в соответствие элемент этого же множества, называемый их суммой: $x,y\in D\to z\in D, z=x+y$ Причем данная операция удовлетворяет следующим условиям:

1. ассоциативности: $x \bigoplus (y \bigoplus z) = (x \bigoplus y) \bigoplus z$

2. коммутативности: $x \oplus y = y \oplus x$

3. нулевого элемента: $x \oplus \theta = x$

4. обратного элемента: $x \oplus \overline{x} = \theta$

Множества с операциями такого типа называются абелевыми группами.

Умножением на число называется операция, которая любому элементу данного множества и любому действительному числу α ставит в соответствие элемент того же множества, называемый их произведением: $x \in D; \alpha \in R \to z \in D, z = \alpha \bigodot x$

Причем данная операция удовлетворяет следующим условиям:

1.
$$\alpha \bigcirc (\beta \bigcirc x) = (\alpha \bigcirc \beta) \bigcirc x$$

2.
$$1 \bigcirc x = x$$

Условия согласования операций сложения и умножения:

1.
$$(\alpha + \beta) \bigcirc x = \alpha \bigcirc x \bigoplus \beta \bigcirc x$$

2.
$$\alpha \bigcirc (x \bigoplus y) = \alpha \bigcirc x + \alpha \bigcirc y$$

1.1.2 Примеры линейных пространств

Пример 1. Множество действительных чисел является линейным пространством.

Пример 2. Множество матриц также является линейным пространством.

Пример 3. Рассмотрим множество (A) многочленов второго порядка (вида $ax^2 + bx + c$).

Оно не является линейным пространством: при сложении элементов этого множества мы можем получить элемент, не принадлежащий множеству. Например, $(2x^2+3x+1)+(-2x^2-5x)=-2x+1\notin A$

Пример 4. Множество векторов является линейным пространством.

Пример 5. Множество векторов, выходящих из данной точки и заканчивающихся в конце прямой линии, на которой лежит данная точка. Данное пространство не является линейным.

1.1.3 Следствия из аксиом линейного пространства

- 1. В линейном пространстве существует единственный нулевой элемент
- 2. В линейном пространстве у каждого элемента должен существовать обратный элемент
- 3. Если выполняется $\alpha \odot x = 0$, то либо α равно нулю, либо x является нулевым элементом
- 4. Разностью элементов называют операцию, обратную сложению

1.1.4 Линейная комбинация элементов

Линейной комбинацией элементов называют элемент $\alpha_1 \bigodot x_1 \bigoplus \alpha_2 \bigodot x_2 + ... + \alpha_n \bigodot x_n = \theta$ (*), где α_i - действительные числа

Если равенство (*) выполняется только при всех a_i равных нулю, то все элементы x_i являются **линейно независимыми**. Иначе эти элементы называются **линейно зависимыми**

Для того, чтобы система векторов **была линейно зависимой**, необходимо и достаточно, чтобы хотя бы один вектор являлся линейной комбинацией остальных.

Доказательство необходимости. Предполагаем, что наши системы векторов являются линейно зависимыми. Не нарушим общность, если предположим, что первый элемент отличен от нуля. Тогда мы можем записать:

$$lpha_1x_1=-lpha_2x_2-lpha_3x_3-...-lpha_nx_n\Longleftrightarrow x_1=-rac{lpha_2}{lpha_1}x_2-rac{lpha_3}{lpha_1}x_3-...-rac{lpha_n}{lpha_1}x_n$$
 Что и требовалось доказать

Доказательство достаточности тоже легко сочинить.

1.1.5 Размерность линейного пространства

Если существует натуральное число n такое, что наше пространство содержит n линейно независимых векторов, а прибавление любого лишнего вектора делает эти вектора линейно зависимыми, тогда мы говорим, что линейное пространство **имеет размерность** n

1.1.6 Базис линейного пространства

Упорядоченная система векторов $e_1, e_2, ..., e_n$ называется базисом линейного пространства, если

- 1. Эти вектора являются линейно независимыми
- 2. Любой вектор линейного пространства можно выразить как линейную комбинацию из этих векторов: $x=\xi_1e_1+\xi_2e_2+...+\xi_ne_n$, где ξ_i координаты вектора e в базисе $e_1,e_2,...,e_n$

Замечание 1. Координаты в разложении по конкретному базису определяются однозначно.

Замечание 2. В линейном пространстве существует бесконечное множество базисов. Если линейное пространство имеет размерность n, то базис будет состоять из n векторов.

Замечание 3. На плоскости в качестве базиса могут использоваться любых два неколлинеарных вектора

Пример 1.

Например, если мы работаем на плоскости, то имеем ортонормированный $(\overrightarrow{i},\overrightarrow{j})$ базис. Дано $e_1=2\overrightarrow{i}+\overrightarrow{j},e_2=-1\overrightarrow{i}+2\overrightarrow{j},p=3\overrightarrow{i}+5\overrightarrow{j}$. Запишем вектор p в новом базисе e_1,e_2 : $\overline{p}=\xi_1\overline{e_1}+\xi_2\overline{e_2}$

$$\begin{pmatrix} 3 \\ 5 \end{pmatrix} = \xi_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \xi_2 \begin{pmatrix} -1 \\ 2 \end{pmatrix}
\begin{cases} 3 = 2x - y \\ 5 = x + 2y \end{cases}$$
(1)

Решая систему уравнений, получим: x = 2.2, y = 1.4

Ответ: $\overline{p} = 2.2\overline{e_1} + 1.4\overline{e_2}$

Свойства базиса линейного пространства

Пусть мы рассматриваем любое n-мерное линейное пространство, и $e_1, e_2, ..., e_n$ - базис в n-мерном линейном пространстве.

- 1. $\alpha = \underline{\xi}_1 e_1 + \underline{\xi}_2 e_2 + \dots + \underline{\xi}_n e_n, b = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n$, to $\overline{a} + \overline{b} = (\xi_1 + \lambda_1) e_1 + (\xi_2 + \lambda_2) e_2 + \dots + (\xi_n + \lambda_n) e_n$
- 2. $\alpha \overrightarrow{a} = \alpha \xi_1 \overline{e_1} + \dots + \alpha \xi_n \overline{e_n}$

1.2 Векторная алгебра

1.2.1 Скалярное произведение векторов

Скалярное произведение векторов - число.

 $a*b=|\overrightarrow{a}|*|\overrightarrow{b}|\cos \alpha$, где α - угол между данными векторами.

Обладает следующими свойствами:

1.
$$a * b = b * a$$

2.
$$(\alpha a) * b$$

$$3. (a+b) * e = ac + bc$$

4.
$$a * a \ge 0$$

Допустим, имеем $\alpha = \{x_a; y_a; z_a\}, b = \{x_b; y_b; z_b\}$, то $ab = x_a x_b + y_a y_b + z_a z_b$

$$\cos \alpha = \frac{ab}{|a||b|} = \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_a^2 + y_a^2 + z_a^2} \sqrt{x_b^2 + y_b^2 + z_b^2}}$$

Необходимым и достаточным условием перпендикулярности векторов a и b является равенство нулю их скалярного произведения, a*b>0 - угол острый, a*b<0 - угол тупой

1.2.2 Скалярная проекция вектора

 $\Pi \mathrm{p}_b \overline{a} = X_{\cos \alpha} + Y_{\cos \beta} + Z_{\cos \gamma}, \Pi \mathrm{p}_x \overrightarrow{a} = a*i, \Pi \mathrm{p}_y a = a*j,$ где α,β,γ - углы, которые в сост. с коор. осями.

 $e = \{\cos \alpha, \cos \beta, \cos \gamma\}$ - вектор в направлении b

$$\Pi p_b a = |a| \cos \alpha = |a| \frac{ab}{|a||b|} = \frac{a*b}{|b|}$$