Another Image (AI) Denoiser

CIS 565 - Vaibhav Arcot (yvarcot@seas.upenn.edu) and Dewang Sultania (dewang@seas.upenn.edu)

Motivation

- Path Tracing uses random sampling to render a scene
- The metric is Samples Per Pixel (SPP)

Motivation

Approach

Data

Data

Denoising Network

Fig. 2. Architecture of our recurrent autoencoder. The input is 7 scalar values per pixel (noisy RGB, normal vector, depth, roughness). Each encoder stage has a convolution and 2×2 max pooling. A decoder stage applies a 2×2 nearest neighbor upsampling, concatenates the per-pixel feature maps from a skip connection (the spatial resolutions agree), and applies two sets of convolution and pooling. All convolutions have a 3×3 -pixel spatial support. On the right we visualize the internal structure of the recurrent RCNN connections. I is the new input and h refers to the hidden, recurrent state that persists between animation frames.

Loss Functions

Spatial L1 Loss

Ground Truth

Reduces difference b/w the entire img

Denoiser Output

Ground Truth

Temporal Loss

Speeding Up Inference

Trained On

Never seen before

Never seen movement

Demo

Acknowledgements

- We would like to extend our gratitude to the authors of the paper "Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder".
- We would also like to extend our thanks to the authors of the paper titled "A Machine Learning Approach for Filtering Monte Carlo Noise"
- Special Thanks to Alan Galvin for giving us inputs on ways to improve results.
- We would also like to thank our shadow team (DroneMoM) for all their inputs

Thank You

Dewang Sultania - dewang@seas.upenn.edu Vaibhav Arcot - yvarcot@seas.upenn.edu