IN THE CLAIMS

Please amend the following claims as noted below:

1. (Amended) A compound of Formula I:

$$(R^{6})_{m}$$

$$(R^{6})_{m}$$

$$R^{1A}$$

$$R^{1B}$$

$$R^{2A}$$

$$R^{2B}$$

Ι

AI

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and

 R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a C_{3-10} cycloalkyl group; and

one of Z and Y is NR3 and the other of Z and Y is CHR4;

wherein R³ and R⁴ are independently selected from the group consisting of hydrogen, acyl, thioacyl, and R⁵; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SR^9$; $-SO2R^9$; and $-SO3R^9$;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently

selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SOR 14 ; -PR 15 R 14 R 15 R 15 R 14 R 15 R 15

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -PR 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

AI

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{\mathsf{R}}^{11}$ and $\ensuremath{\mathsf{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; acarboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl;

quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR ¹⁶; -NR ⁹R ¹⁰; -N ⁺R ⁹R ¹⁰R ^wA ⁻; -N ⁺R ⁹R ¹¹R ¹²A ⁻; -SR ¹⁶; -S(O)R ⁹; -SO2R ⁹; -SO3R ¹⁶; -CO2R ¹⁶; -CONR ⁹R ¹⁰; -SO2NR ⁹R ¹⁰; -PO(OR ¹⁶)OR ¹⁷; -PR ⁹R ¹⁰; -P ⁺R ⁹R ¹⁰R ¹¹A -; -S ⁺R ⁹R ¹⁰A -; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

Al

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R⁶ radicals are independently selected from the group consisting of R⁵, hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R

AI

 13 ; $-\text{SO}_{3}\text{R}^{13}$; $-\text{S}^{+}\text{R}^{13}\text{R}^{14}\text{A}^{-}$; $-\text{NR}^{13}\text{OR}^{14}$; $-\text{NR}^{13}\text{NR}^{14}\text{R}^{15}$; $-\text{CO}_{2}\text{R}^{13}$; -OM; $-\text{SO}_{2}$ OM; $-\text{SO}_{2}\text{NR}^{13}\text{R}^{14}$; $-\text{NR}^{14}\text{C}(\text{O})\text{R}^{13}$; $-\text{C}(\text{O})\text{NR}^{13}\text{R}^{14}$; -C(O)OM; $-\text{COR}^{13}$; $-\text{OR}^{18}$; $-\text{S}_{3}$; $-\text{NR}^{13}\text{R}^{14}$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^6 alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -N $^+$ R 9 R 11 R 12 A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PP 9 R 10 ; -P $^+$ R 9 R 11 R 12 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; exe; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypether; or polyalkyl; wherein

said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹
-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R^{18} alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R 10 ; -N $^{+}$ R 9 R 11 R 12 A $^{-}$; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; -CONR 9 R 10 ; -SO 2OM; -SO2NR 9 R 10 ; -PR 9 R 10 ; -P(OR 13)OR 14 ; -PO(OR 16)OR 17 ; and -C(O)OM; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R 3 , R 4 and R 6 is R 5 ; and provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt;
- (c) the R⁵ moiety comprises a phosphonic acid group or at least two carboxyl groups; or
- (d) the R⁵ moiety comprises a polyethylene glycol group having a molecular weight of at least 1000.
- 2. (Amended) A compound of Claim 1 wherein R⁵ is aryl substituted with one or more radicals independently selected from the group consisting of halogen; CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl;

Δ١

aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; - OR^{13} ; - $NR^{13}R^{14}$; - SR^{13} ; - $S(O)R^{13}$; - SO_2R^{13} ; - SO_3R^{13} ; - $NR^{13}OR^{14}$; - $NR^{13}NR^{14}$ R¹⁵; - CO_2R^{13} ; -OM; - SO_2OM ; - $SO_2NR^{13}R^{14}$; - $C(O)NR^{13}R^{14}$; -C(O)OM; - COR^{13} ; - $NR^{13}C(O)R^{14}$; - $NR^{13}C(O)NR^{14}R^{15}$; - $NR^{13}CO_2R^{14}$; - $OC(O)R^{13}$; - $OC(O)NR^{13}R^{14}$; - $NR^{13}SO_2R^{14}$; - NR^{13

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl,

alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may have one or more carbons replaced by -O-: -NR⁷-: -N⁺R⁷R⁸A-: -S-: -SO-: -SO2-: -S⁺R⁷A-: -PR⁷-: -P(O)R⁷-: -P⁺R⁷R⁸

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

A-; or phenylene; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; acarboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarenocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; exo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl;

guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-N^+R^9R^{11}R^{12}A^-$; SR^{16} ; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^{16}$; $-CO_2R^{16}$; $-CO_2R^{16}$; $-CO_2R^9R^{10}$; $-SO_2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-PR^9R^{10}$; -

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR
9-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

3. (Amended) A compound of claim 2 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

Λ ·

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2NR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴R¹⁵, -PR¹³R¹⁴R¹⁵A⁻; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(O)R¹³OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and

$$O$$
 N
 CO_2H
 CO_2H

$$O$$
 N
 CO_2H
 CO_2H

$$O$$
 $R = 1000 \text{ MW PEG}$

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl,

and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A--; -S-; -SO-; -SO2-; -S⁺R⁷A--; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A--; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group

consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and \bar{R}^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

AI

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR $^{9}R^{10}$; -N $^{+}R^{9}R^{10}R^{w}A^{-}$; -N $^{+}R^{9}R^{11}R^{12}A^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR $^{9}R^{10}$; -SO2NR $^{9}R^{10}$; -PO(OR 16)OR 17 ; -PR $^{9}R^{10}$; -P $^{+}R^{9}R^{10}R^{11}A^{-}$; -S $^{+}R^{9}R^{10}A^{-}$; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or

AI

more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

8. (Amended) A compound of claim 3 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

A2

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; - CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; - OR^{13} ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}$ R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}C(O)R^{14}$; -NR $^{13}C(O)NR^{14}R^{15}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SOR^{14}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(OR 13)OR 14 ; -S $^+R^{13}R^{14}A^-$; and -N $^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; exo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary

AZ

heterocyclylalkyl; alkylarylalkyl; alkylaterocyclylalkyl; alkylaterocyclylalkyl; alkylaterocyclylalkyl; aminoalkyl; aminocarbonylalkyl; alkylaterocyclylalkyl; aminocarbonylalkyl; alkylaterocyclylalkyl; aminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue;

192

peptide residue; or polypeptide residue; and

AZ

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M: and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

9. (Amended) A compound of claim 3 wherein:

R³ is selected from the group consisting of hydrogen; \(\frac{1}{2}\) alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; - CN; -NO2; \(\) alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; - OR^{13} ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}$ R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}CO_2R^{14}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}R^{14}R^{15}$; -NR $^{13}R^{14}R^{15}$; -PR $^{13}R^{14}R^{15}$ -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(OR 13)OR 14 ; -S $^+R^{13}R^{14}A^-$; and -N $^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR7; -NR7R8; -SR7; -S(O)R7; -SO2R7; -SO3R7; -CO2R7; -CONR7R8

; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 $\ensuremath{\mathsf{R}}^{11}$ and $\ensuremath{\mathsf{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of

AZ

R⁹ and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

10. (Amended) A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR¹³, -NR¹³R¹⁴, -NR¹³C(O)R¹⁴, -OC(O)NR¹³R¹⁴, and -NR¹³SO₂R¹⁴, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\ensuremath{\text{N}^+\text{R}^9\text{R}^{10}\text{A-}},$ and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

11. (Amended) A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

14. (Amended) A compound of claim 3 wherein R¹⁹ is selected from the group consisting of:

A3

$$O$$
 N
 CO_2H
 CO_2H

$$R = 1000 \text{ MW PEG}$$

$$O$$
 S
 CO_2H
 CO_2H
and

29. (Amended) A compound of claim 1 corresponding to Formula IA:

A 4

$$(R^6)_m$$
 R^{1A}
 R^{1B}
 R^{2A}
 R^{2B}

IA

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl,

cycloalkyl, cycloalkylalkyl, aryl, and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a $C_{3\mbox{-}7}$ cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, acyl, thioacyl, and R⁵; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SR^9$; $-SO_2R^9$; and $-SO_3R^9$;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R

AY

 ${}^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SONR^{14}R^{15}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^+R^{13}R^{14}R^{15}A^-; -P^-R^{13}R^{14}R^{15}A^-; -P^-R^{13}R^{14}R^{1$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may be further substituted with one or more radicals-selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl;

cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO2R^9$; $-SO3R^9$; $-CO2R^9$; and $-CONR^9R^{10}$; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-;

AY

-S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M: and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R⁶ radicals are independently selected from the group consisting of R⁵, hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2 OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)NR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R⁶ alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group

consisting of halogen; -CN; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO $2R^9$; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺ $R^9R^{11}R^{12}A^-$; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or

more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R 10 ; -N⁺R⁹R 11 R 12 A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R 10 ; -SO 2OM; -SO2NR 9 R 10 ; -PR 9 R 10 ; -P(OR 13)OR 14 ; -PO(OR 16)OR 17 ; and -C(O)OM; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and

provided that the R^5 alkyl, cycloalkyl, aryl, heterocyclyl, and -OR 9 radicals are not substituted with -O(CH $_2$) $_{1-4}$ NR'R''R''' wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge; and/or
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt; and/or
 - (c) the R⁵ moiety comprises at least two carboxy groups.
- 30. (Amended) A compound of Claim 29 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR^{13}; -NR^{13}R^{14}; -SR^{13}; -S(O)R^{13}; -SO2R^{13}; -SO3R^{13}; -NR^{13}OR^{14}; -NR^{13}NR^{14}R^{15}; -CO2R^{13}; -OM; -SO2OM; -SO2NR^{13}R^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^+R^{13}R^{14}R^{15}A^-; -P(OR^{13})OR^{14}; -S^+R^{13}R^{14}A^-; and -N^+R^{13}R^{14}R^{15}A^-; and -N^+R^{13}R^{14}R^{15}R^{15}R^{14}R^{15}R^{

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl,

AY

and polyether substituents of the R^5 aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl;

aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR ¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R ¹⁶; -CO2R ¹⁶; -CONR ⁹R ¹⁰; -SO2NR ⁹R ¹⁰; -PO(OR ¹⁶)OR ¹⁷; -PR ⁹R ¹⁰; -P⁺R ⁹R ¹⁰R ¹¹A-; -S⁺R ⁹R ¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺ R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -

A4

PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

31. (Amended) A compound of claim 30 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³SO2NR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and

36

AY

$$O$$
 O CI -+NEt₃

AY

39

AY

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A-; -S-; -SO-; -SO2-; -S⁺R⁷A-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl;

A4

quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -S-; -SO-; -SO₂-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; -P(O)R 9 -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

36. (Amended) A compound of claim 31 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

AS

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; - CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; - OR^{13} ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}$ R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR ^{13}CO 0)R 14 ; -NR ^{13}CO 2R 14 ; -NR ^{13}CO 2R 14 ; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}R^{14}R^{15}$; -NR $^{13}R^{14}R^{15}$; -PR $^{13}R^{14}R^{15}$ -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(OR 13)OR 14 ; -S $^+R^{13}R^{14}A^-$; and -N $^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of - CN; halogen; hydroxy, alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a

cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN, alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl;

AS

alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M: and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

A5

37. (Amended) A compound of claim 31 wherein:

R³ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; - CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; - OR^{13} ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}$ R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}CO_2R^{14}$; -NR $^{13}CO_2R^{14}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}R^{14}R^{15}$; -NR $^{13}R^{14}R^{15}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(OR 13)OR 14 ; -S $^+R^{13}R^{14}A^-$; and -N $^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with

one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; -CO2

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group

AS

consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; acarboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -N $^+$ R 9 R 11 R 12 A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -PR 9 R 10 ; -P $^+$ R 9 R 10 R 11 A-; -S $^+$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or

AS

more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein \mathbf{R}^{16} and \mathbf{R}^{17} are independently selected from the group consisting of \mathbf{R}^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 \mathbb{R}^4 is \mathbb{R}^5 .

A5

38. (Amended) A compound of claim 31 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^{+}R^{9}R^{10}A\text{-, and} \label{eq:normalization}$

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

39. (Amended) A compound of claim 31 wherein:

 R^{19} is independently selected from the group consisting of -OR¹³, -NR¹³R¹⁴, -NR¹³C(O)R¹⁴, -OC(O)NR¹³R¹⁴, and -NR¹³SO₂R¹⁴, and

AS

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^9R^{10}A$ -, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

^{42. (}Amended) A compound of claim 31 wherein R¹⁹ is selected from the group consisting of:

AL

Ale

AL

$$O$$
 S
 O
 CO_2H
 CO_2H and

75. (Amended) A compound of claim 1 corresponding to Formula IB:

A7

$$(R^6)_m$$
 R^{1A}
 R^{1B}
 R^{2A}
 R^{2B}

IB

wherein:

A7

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, exo, acyl, thioacyl and R⁵; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SR^9$; $-SO_2R^9$; and $-SO_3R^9$;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴R¹⁵A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy;

alkyl; cycloalkyl; alkenyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$; -CO

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl;

aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN, alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺ R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -

A7

A7

PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R^6 radicals are independently selected from the group consisting of R^5 , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+$ R 13 R 14 A $^-$; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -NR 14 C(O)R 13 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)NR 13 R 14 ; -NR 13 R 18 ; -NR 18 OR 14 ; -N $^+$ R 13 R 14 R 15 A $^-$; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^6 alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -N $^+$ R 9 R 11 R 12 A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PR 9 R 10 ; -PR 9 R 11 R 12 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R⁶ quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; exe; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-SO(0)R^{13}$; $-SO(0)R^{13}$; $-SO(0)R^{13}$; $-SO(0)R^{13}$; $-SO(0)R^{13}$; $-SO(0)R^{13}$; $-SO(0)R^{13}R^{14}$; $-CO(0)R^{13}R^{14}$; $-CO(0)R^{13}R^{14}$; $-CO(0)R^{13}R^{14}$; $-R^{13}R^{14}R^{15}A^{-1}$; $-R^{13}R^{14}R^{15}A^{-1}$; $-R^{13}R^{14}R^{15}A^{-1}$; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R ¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CO₁R⁹R¹⁰; -SO 2OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and provided that the R⁵ alkyl, cycloalkyl, aryl, and heterocyclyl, and -OR⁹ radicals

are not substituted with -O(CH₂)₁₋₄NR'R''R''' wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt; and
 - (c) the R⁵ moiety comprises at least two carboxy groups.

76. (Amended) A compound of Claim 75 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR^{13}; -NR^{13}R^{14}; -SR^{13}; -S(O)R^{13}; -SO2R^{13}; -SO3R^{13}; -NR^{13}OR^{14}; -NR^{13}NR^{14} R^{15}; -CO2R^{13}; -OM; -SO2OM; -SO2NR^{13}R^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO2R^{14}; -NR^{13}SO2R^{14}; -NR^{13}SO2R^{14}; -NR^{13}R^{14}R^{15}; -NR^{13}R^{14}R^{15}; -PR^{13}R^{14}R^{15}A^{-}; -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P(OR^{13})OR^{14}; -S^{+}R^{13}R^{14}A^{-}; and -N^{+}R^{13}R^{14}R^{15}A^{-}; and -N^{+}R^{13}R^{14}R^{15}R

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl,

AT

alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene;

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl;

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; acarboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one

or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarencyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically

acceptable cation.

77. (Amended) A compound of claim 76 wherein R⁵ is:

MA

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³SO2NR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴; -PR¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and

AV

ATE

AV

$$O$$
 S
 O
 CO_2H
 CO_2H
and

wherein the R¹⁹alkyl, polyalkyl,

haloalkyl, hydroxyalkyl, cycloalkyl,

AV

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

ATE

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R 13 , R 14 , and R 15 alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -N $^+$ R 9 R 11 R 12 A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -PR 9 R 10 ; -P $^+$ R 9 R 10 R 11 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl;

AT

alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M: and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

82. (Amended) A compound of claim 77 wherein:

R³ is R^{5;} and

R⁴ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

A8

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; - CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; - OR^{13} ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}$ R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR ^{13}CO 0)R 14 ; -NR ^{13}CO 0)NR $^{14}R^{15}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; and -N $^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with

one or more radicals selected from the group consisting of -CN; halogen; hydroxy, alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-SO(0)R^7$; and $-P(0)(0)R^7$; and $-P(0)(0)R^7$; and $-P(0)(0)R^7$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents-of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group

A 8

consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; acarboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and \bar{R}^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or

A 8

more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

83. (Amended) A compound of claim 77 wherein:

 R^3 is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and $-OR^9$;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; - CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; - OR^{13} ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}$ R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}C(O)R^{14}$; -NR $^{13}C(O)NR^{14}R^{15}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SOR^{14}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(OR 13)OR 14 ; -S $^+R^{13}R^{14}A^-$; and -N $^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

A8

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary

A 8

heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR

9-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue;

peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

84. (Amended) A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\ensuremath{N^+R}^9\ensuremath{R^{10}A}\xspace$ and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

85. (Amended) A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\ensuremath{\text{N}^{+}} \ensuremath{\text{R}^{9}} \ensuremath{\text{R}^{10}} \ensuremath{\text{A-}},$ and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

^{88. (}Amended) A compound of claim 77 wherein R¹⁹ is selected from the group consisting of:

121. (Amended) A compound of Formula III:

AID

$$R^{21}$$
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

wherein:

 R^{2C} and R^{2D} are independently selected from C_{1-6} alkyl; and R^{20} is selected from the group consisting of halogen and R^{23} ;

R²¹ is selected from the group consisting of hydroxy, alkoxy, and R²³; and wherein R²³ is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴R¹⁵A⁻; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(O)R¹³R¹⁴; -S⁺R¹³R¹⁴R¹⁵A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²³ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸

AIO

; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²³ aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarderocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of

AID

R⁹ and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{22} is unsubstituted phenyl or R^{23} ; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R^{20} , R^{21} and R^{22} is R^{23} .

122. (Amended) A compound of Claim 121 wherein R²³ is:

AID

wherein

p is 1, 2, 3 or 4; and

one or more R^{24} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³CO2R¹⁴; -NR¹³SO2NR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴R¹⁵, -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and

AIO

AID

wherein the R²⁴alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R²⁴ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; aryl; heterocyclyl; arylalkyl;

heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-SO(R^9)$; $-SO(R^9)$; $-SO(R^9)$; $-SO(R^9)$; and $-CO(R^9)$; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarderocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; - PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹

A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

125. (Amended) A compound of claim 122 wherein:

 R^{24} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO₂R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^{+}R^{9}R^{10}A\text{-,}$ and

wherein R¹³, R¹⁴, and R¹⁵ are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary

AIO

AII

heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboalkoxyalkyl, and carboxyalkylheterocyclyl; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

128. (Amended) A compound of claim 122 wherein R²⁴ is selected from the group consisting of:

AIL

Alz

$$A 1^{2}$$

$$CO_{2}H$$

$$CO_{2}H$$
and
$$CI$$

141. (Amended) A compound of Formula V:

$$R^{26}$$
 R^{26}
 R^{2F}
 R^{2F}
 R^{27}
 R^{2F}

wherein:

 R^{2E} and R^{2F} are independently selected from C_{1-6} alkyl; and

 R^{25} and R^{26} are independently selected from the group consisting of hydrogen, alkoxy, and R^{28} ;

wherein R²⁸ is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R

A13

 $^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SO_2R^{14}R^{15}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^+R^{13}R^{14}R^{15}A^-; -P(O)R^{13}OR^{14}; -S^+R^{13}R^{14}A^-; \text{ and } -N^+R^{13}R^{14}R^{15}A^-; \text{ and } -N^+R^{13}R^{14}R^{15}A^-; -P(O)R^{13}R^{14}R^{15}A^-; -P(O)R^{13}R^{14}R^{15}R^{15}A^-; -P(O)R^{13}R^{14}R^{15}R^{15}A^-; -P(O)R^{13}R^{14}R^{15}R^{15}A^-; -P(O)R^{13}R^{14}R^{15}R^{15}A^-; -P(O)R^{13}R^{14}R^{15}$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl,

alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²⁸ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²⁸ aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A-; -S-; -SO-; -SO2-; -S⁺R⁷A-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl;

cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; and $-CONR^9R^{10}$; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-;

-S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

A13

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

R²⁷ is unsubstituted phenyl or R²⁸; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R²⁵, R²⁶ and R²⁷ is R²⁸.

142. (Amended) A compound of Claim 141 wherein R²⁸ is:

wherein

r is 1, 2, 3 or 4; and

one or more R²⁹ are independently selected from the group consisting of

halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

AB

A13

wherein the R²⁹alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R²⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -

 $N^{+}R^{7}R^{8}A^{-}$; -S-; -SO-; -SO2-; -S $^{+}R^{7}A^{-}$; -PR 7 -; -P(O)R 7 -; -P $^{+}R^{7}R^{8}A^{-}$; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR
9-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

145. (Amended) A compound of claim 142 wherein:

 R^{29} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , - NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\mbox{N}^{+}\mbox{R}^{9}\mbox{R}^{10}\mbox{A-,}$ and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

148. (Amended) A compound of claim 142 wherein R²⁹ is selected from the group consisting of:

$$CI-N+$$
 CO_2H
 CO_2

AIS

163. (Amended) A compound of Formula VII:

$$(O)_i$$
 R^{1C}
 R^{2G}
 R^{2H}
 R^{2H}
 R^{2H}
 R^{2H}

A16

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-10} cycloalkyl group; and

one of E and F is NR³⁰ and the other of E and F is CHR³¹;

wherein R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R^{30} and R^{31} alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SONR 14 R 15 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 : -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

Alb

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 $\ensuremath{\mathsf{R}}^{11}$ and $\ensuremath{\mathsf{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN, alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR

⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{32} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³³ or -O-X-R³³ and wherein:

X is selected from the group consisting of:

-(C=O)s-alkyl-;

-(C=O) $_s$ -alkyl-NH-;

-(C=O)s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond;

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups;

s and t are independently 0 or 1; and

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+R^{13}R^{14}A^-$; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}R^{15}$; -CO2R 13 ; -OM; -SO2 OM; -SO2NR $^{13}R^{14}$; -NR $^{14}C(O)R^{13}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)nNR $^{13}R^{14}$; -NR $^{13}R^{18}$; -NR $^{18}OR^{14}$; -N $^+R^{13}R^{14}R^{15}A^-$; -PR $^{13}R^{14}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO 2 R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 11 R 12 A $^{-}$; -S $^{+}$ R 9 R 10 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; exe; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SCO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or

more radicals selected from the group consisting of halogen; -CN; NO₂; $\frac{1}{2}$; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CO₂R⁹; -CO₂R⁹; -CO₂R⁹; -CO₂R⁹; -SO₂OM; -SO₂OM; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R^{30} , R^{31} and R^{34} is R^{32} .

184. (Amended) A compound of claim 163 corresponding to Formula VIIA:

AIB

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and

R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R³⁰ and R³¹ alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;

MIT

heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$; $-SO_2R^{13}$; $-SO_3R^{13}$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-CO_2R^{13}$; -OM; $-SO_2OM$; $-SO_2NR^{13}R^{14}$; $-C(O)NR^{13}R^{14}$; -C(O)OM; $-COR^{13}$; $-NR^{13}C(O)R^{14}$; $-NR^{13}C(O)NR^{14}R^{15}$; $-NR^{13}CO_2R^{14}$; $-OC(O)R^{13}$; $-OC(O)NR^{13}R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-P(O)R^{13}R^{14}$; $-P(O)R^{$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -N $^+$ R 9 R 11 R 12 A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -

 $CO2R^{16}$; $-CONR^9R^{10}$; $-SO2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $_{-PR}^9R^{10}$; $_{-P}^+R^9R^{10}R^{11}A$ -; $-S^+R^9R^{10}A$ -; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{32} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X- R^{33} or -O-X- R^{33} and wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-; -(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

s and t are independently 0 or 1; and

one or more R³⁴ radicals are independently selected from the group consisting of R³², hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl;

hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; OR^{16} ; -NR $^9R^{10}$; -N $^+R^9R^{10}R^WA^-$; -SR 16 ; -S(O)R 9 ; -SO $2R^9$; -SO3R 16 ; -CO2R 16 ; -CONR $^9R^{10}$; -SO2NR $^9R^{10}$; -PO(OR 16)OR 17 ; -P $^9R^{10}$; -P $^+R^9R^{11}R^{12}A^-$; -S $^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SO 13 ; -SO 13 ; -SO 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO 2 R 13 ; OM; -SO 2 OM; -SO 2 NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate

residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$; or -P(O)R 9 -; and

wherein R^{18} is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

A17

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R ¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CO₂R⁹; -CO₁R⁹R¹⁰; -SO 2OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R³⁰, R³¹ and R³⁴ is R³².

205. (Amended) A compound of claim 163 corresponding to Formula VIIB:

A18

$$(R^{34})_1$$
 R^{1C}
 R^{1D}
 R^{2G}
 R^{2H}
 R^{30}

.

VIIB

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R^{30} and R^{31} alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P+R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl;

carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -N $^+$ R 9 R 11 R 12 A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -PR 9 R 10 ; -P $^+$ R 9 R 10 R 11 A-; -S $^+$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

R³² is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³³ or -O-X-R³³ and wherein:

X is selected from the group consisting of:

-(C=O) $_s$ -alkyl-;

-(C=O) $_s$ -alkyl-NH-;

-(C=O) $_s$ -alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

s and t are independently 0 or 1; and

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+$ R 13 R 14 A $^-$; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -NR 14 C(O)R 13 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)nNR 13 R 14 ; -NR 13 R 18 ; -NR 18 OR 14 ; -N $^+$ R 13 R 14 R 15 A $^-$; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

A18

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO $2R^9$; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺ $R^9R^{11}R^{12}A^-$; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SCO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

AI8

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R 10; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CO₁R⁹R¹⁰; -SO 2OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R³⁰, R³¹ and R³⁴ is R³².

226. (Amended) A compound of Formula VIII:

A19

$$R^{36}$$
 R^{35}
 R^{37}
VIII

wherein:

R^{2I} and R^{2J} are independently selected from C₁₋₆ alkyl; and

R³⁵ is selected from the group consisting of halogen and R³⁸;

R³⁶ is selected from the group consisting of hydroxy, alkoxy, and R³⁸;

wherein R³⁸ is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³⁹ or -O-X-R³⁹ and wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-;

-(C=O)_u-alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O)_u-alkyl-(C=O)_v; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

u and v are independently 0 or 1; and R^{37} is unsubstituted phenyl or R^{38} ; or a pharmaceutically acceptable salt or solvate thereof;

provided that at least one of R³⁵, R³⁶ and R³⁷ is R³⁸.

237. (Amended) A compound of Formula IX:

A20

$$R^{41}$$
 R^{40}
 R^{42}
 R^{2K}
 R^{2L}

wherein:

 R^{2K} and R^{2L} are independently selected from C_{1-6} alkyl; and R^{40} and R^{41} are independently selected from the group consisting of hydrogen, alkoxy, and R^{43} ;

wherein R^{43} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)- $X-R^{44}$ or -O- $X-R^{44}$ and wherein:

X is selected from the group consisting of:

-(C=O)_a-alkyl-; -(C=O)_a-alkyl-NH-; -(C=O)_a-alkyl-O-;

-(C=O) $_a$ -alkyl-(C=O) $_b$; and

a covalent bond; and

R⁴⁴ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

a and b are independently 0 or 1; and R^{42} is unsubstituted phenyl or R^{43} ; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R^{40} , R^{41} and R^{42} is R^{43} .

- 251. (Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula I according to any one of claims 1 to 120, or a pharmaceutically acceptable salt or solvate thereof.
- 252. (Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula III according to any one of claims 121 to 140, or a pharmaceutically acceptable salt or solvate thereof.
- 253 (Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula V according to any one of claims 141 to 162, or a pharmaceutically acceptable salt or solvate thereof.

A20

, ,

254. (Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula VII according to any one of claims 163 to 225, or a pharmaceutically acceptable salt or solvate thereof.

A21

- 255. (Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula VIII according to any one of claims 226 to 236, or a pharmaceutically acceptable salt or solvate thereof.
- 256. (Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula IX according to any one of claims 237 to 250, or a pharmaceutically acceptable salt or solvate thereof.
- 258. (Amended) A pharmaceutical composition comprising a compound of Formula I according to any one of claims 1 to 120 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

- 259. (Amended) A pharmaceutical composition comprising a compound of Formula III according to any one of claims 121 to 140 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 260. (Amended) A pharmaceutical composition comprising a compound of Formula V according to any one of claims 141 to 162 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 261. (Amended) A pharmaceutical composition comprising a compound of Formula VII according to any one of claims 163 to 225 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

- 262. (Amended) A pharmaceutical composition comprising a compound of Formula VIII according to any one of claims 226 to 236 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 263. (Amended) A pharmaceutical composition comprising a compound of Formula IX according to any one of claims 237 to 250 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.