Solutions to COMP9020 Problems Week 1

Kai Engelhardt

August 9, 2016

Solution to Exercise 1 See pages 23–24 of the textbook.

Solution to Exercise 2 We define:

A	B	C	A?B:C
\mathbf{F}	\mathbf{F}	\mathbf{F}	F
F	\mathbf{F}	\mathbf{T}	T
F	T	F	F
\mathbf{F}	\mathbf{T}	\mathbf{T}	T
\mathbf{T}	\mathbf{F}	F	F
\mathbf{T}	\mathbf{F}	\mathbf{T}	F
\mathbf{T}	\mathbf{T}	F	T
\mathbf{T}	\mathbf{T}	\mathbf{T}	T

Solution to Exercise 3 We claim that

$$A?B:C \Leftrightarrow (A \land B) \lor (\neg A \land C) \tag{1}$$

provides an alternative characterisation in propositional logic of A? B:C.

Proof:

A	B	C	$A \wedge B$	$\neg A \wedge C$	$(A \land B) \lor (\neg A \land C)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F	F
F	\mathbf{F}	\mathbf{T}	\mathbf{F}	T	T
\mathbf{F}	\mathbf{T}	F	\mathbf{F}	F	F
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	T	${f T}$
\mathbf{T}	\mathbf{F}	F	\mathbf{F}	F	F
\mathbf{T}	\mathbf{F}	\mathbf{T}	F	F	F
\mathbf{T}	\mathbf{T}	F	T	F	T
\mathbf{T}	\mathbf{T}	\mathbf{T}	T	F	T

Comparing the last column with our answer to the previous exercise we conclude that the alternative characterisation is correct.

Solution to Exercise 4 To express A ? B : C using NAND only we recall that

$$A \text{ NAND } B \Leftrightarrow \neg (A \wedge B)$$
 (2)

$$\neg A \Leftrightarrow A \text{ NAND } A \tag{3}$$

and transform the right-hand-side of (1) via a series of equivalences into the desired form.

$$A?B:C\Leftrightarrow (A\land B)\lor (\neg A\land C) \tag{1}$$

$$\Leftrightarrow \neg\neg(A\land B)\lor \neg\neg(\neg A\land C) \tag{2}$$
 double negation
$$\Leftrightarrow \neg(A \text{ NAND } B)\lor \neg(\neg A \text{ NAND } C) \tag{2}$$

$$\Leftrightarrow \neg((A \text{ NAND } B)\land (\neg A \text{ NAND } C)) \tag{2}$$
 de Morgan
$$\Leftrightarrow (A \text{ NAND } B) \text{ NAND } (\neg A \text{ NAND } C) \tag{2}$$

$$\Leftrightarrow (A \text{ NAND } B) \text{ NAND } (\neg A \text{ NAND } C) \tag{3}$$

A circuit diagram for this is:

