DNA Structure

he monomer unit of Nucleic Acids is a NUCLEOTIDE.

Structure of a DNA Nucleotide:

1. De oxyribose Sugar.

 A 5 carbon sugar molecule that lost an Oxygen from a hydroxyl group on its 2' carbon

2. Phosphate group

4 oxygen atoms surrounding a central Phosphorus

3. Nitrogenous Bases

- An alkaline, cyclic molecule containing nitrogen

- There are four different ones in a DNA molecule:

Adenine, Guanine, Thymine, Cytosine

Altogether, these three components make a nucleotide:

A 5-C sugar with a nitrogenous base attached to their 1' carbon and a phosphate group attached to their 5' carbon

Nucleotides are linked together by phosphodiester bonds

- This is a result of a dehydration synthesis between a phosphate group and a hydroxyl group

Nitrogenous Bases (four in total)

Purines:

- Adenine (A) and Guanine (G)

Double-ring structures
 → 2 nags

- Thymine (T) and Cytosine (C)

Single-ring structures

guanine

Complementary Base Pairing

· In a DNA molecule, a pyrimidine is always paired with a purine

· More specifically:

Pynnahule Cytosine is paired with Granue G > C

Complementary Bases are held together through

 Individually, H-bonds are weak → but together, they are very strong

The A-T, G-C pairings account for the fact that the width of a DNA molecule is consistent throughout.

The DNA Molecule

1-25-12

DNA is a double helix structured in such a way that there are two antiparallel strands of nucleotides

5' End

Phosphate group with only one sugar bonded to it is found at the 5' carbon in deoxyribose

OPOCH2 OH HIC OH NH NH Guanine

Antiparallel > pandled but running in different directions

(5 end aligns w/ 3 end)

3 and send Antiparallel

3' End

Hydroxyl group found on 3' carbon in deoxyribose

phosphodiester

- Turns in a clockwise direction
- 1 complete turn every 10 nucleotides

Glycosyl = glycosidic bond that is between sugar and nitrogen base.

Example of sequence: 5'-ATGCCGTTA-3'-TACGGCAAT-5'

(Antiparallel

Gene Organization and Chromosome Structure

Annotate the diagram below:

DNA Replication – A Summary

DNA Replication - Labeling

WORD BANK: DNA polymerase **DNA Ligase** Okazaki fragment **DNA Primase** Single Strand Binding Proteins Helicase Leading Strand Lagging Strand RNA primer Primase 1 gase Topoisomerase Polymerase eticase Identify the structure Enzyme that unwinds DNA Okazaki tragments Fragments of copied DNA created on the lagging strand eading tragmen The strand that is copied in a continuous way, from the 3' to 5' direction Binds Okazaki fragments Builds a new DNA strand by adding complementary bases ono 1.80 Menuse Stabilizes the DNA molecule during replication awana Strand that is copied discontinuously because it is traveling away from helicase Initiates the synthesis DNA by creating a short RNA segment at replication fork 9. Place the events in the correct order: DNA polymerase adds nucleotides in the 5' to 3' direction Replication fork is formed DNA polymerase attaches to the primer Okazaki fragments are bound together by ligase DNA helicase unwinds DNA 10. Why is replication called "semi-conservative?"

DNA plication

Recall from grade 11 genetics:

All cells give rise to new cells by undergoing cell division (mitosis and cytokinesis)
 It is important that each daughter cell has an exact copy of the parent cell's DNA

Watch the animation in the PowerPoint note for a detailed explanation of the Messelson and Stahl experiment PNA replication needs to begin Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules DNA Replication — Details The enzyme Leicage break Plack strand and of DNA strands cannot just be pulled apart — the hydrogen bases are added to complete the 2 new (identical) DNA molecules	
At the time there was no experimental results to support this hypothesis Templote (I per In 1958, In	
At the time there was no experimental results to support this hypothesis Temptite (I per In 1958, In	
In 1958, Each DNA strand following a replication is composed of one parent strand and one newly synthesized strand Watch the animation in the PowerPoint note for a detailed explanation of the Meselson and Stahl experiment DNA Replication Overview: What needs to happen: Replication needs to begin Degins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	1
Concluded that DNA replication is Each DNA strand following a replication is composed of one parent strand and one newly synthesized strand Watch the animation in the PowerPoint note for a detailed explanation of the Meselson and Stahl experiment DNA Replication Overview: What needs to happen: Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart — the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	œll,
DNA replication is Semble 10 (a) Each DNA strand following a replication is composed of one parent strand and one newly synthesized strand Watch the animation in the PowerPoint note for a detailed explanation of the Meselson and Stahl experiment DNA Replication Overview What needs to happen: Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart — the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	
Each DNA strand following a replication is composed of one parent strand and one newly synthesized strand Watch the animation in the PowerPoint note for a detailed explanation of the Meselson and Stahl experiment DNA Replication Overview What needs to happen: Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart — the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	
composed of one parent strand and one newly synthesized strand Watch the animation in the PowerPoint note for a detailed explanation of the Meselson and Stahl experiment DNA Replication Overview: What needs to happen: Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart — the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	LL.
Watch the animation in the PowerPoint note for a detailed explanation of the Meselson and Stahl experiment DNA Replication Overview	rand
Watch the animation in the PowerPoint note for a detailed explanation of the Meselson and Stahl experiment DNA Replication Overview: What needs to happen: Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	
DNA Replication Overview What needs to happen: Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	
DNA Replication Overview What needs to happen: Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	
Replication needs to begin	
 Replication needs to begin begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules 	
 begins when proteins bind to the replication origin sites of DNA Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules 	
 Prokaryotes have one replication origin site, while eukaryotes have many The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules 	
 The two DNA strands cannot just be pulled apart – the hydrogen bonds holding them together must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules 	
must be broken Specific enzymes work to pull apart the DNA template strands and to keep them separate and untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	
untangled The two antiparallel strands act as templates as new complementary bases are added to complete the 2 new (identical) DNA molecules	
complete the 2 new (identical) DNA molecules	
DNA Replication - Details The enzyme believe breaks	
DNA Replication - Details The enzyme believe breaks	
The enzyme breaks breaks	
the bonds holding the two	
complementary parent strands together, resulting in an	
complementary parent strands together, resulting in an unwound, unzipped helix that terminates at the	
The Single Standel Bunding	
SSBs) anneal to the newly exposed template strands	
 This prevents the strands from <u>rebonding</u> to one another by blocking the hydrogen banding 	

L	makes sure the DNA doesn't supercoil behin. e replication
	2
	In prokaryotes, there are DNA Polymerase enzymes involved in replication.
	In eukaryotes, there are DNA Polymerase enzymes involved in replication.
	(we are just going to lump these all together as 'a DNA polymerase')
	5' + 7'
	DNA Polymerase can only make new strands in the direction direction
	DNA Polymerase can only make new strands in the direction direction.
	bla polymerase cannot initiate a new strand by itself, so an
	The enzymelays down RNA primers that will be used by DNA
	The enzyme lays down RNA primers that will be used by DNA polymerase as a starting point to build the new complementary strands.
	In a eukaryotic cell, more than one replication fork can exist at once because there are many
	sites of origin
	Once the RNA primer is placed, DNA Polymerase binds at the site of the primer and starts
	synthesizing the new strand of DNA:
	DNA Polymerase moves along the existing strand (the ** ** ** ** ** ** ** ** ** ** ** ** **
	strand) in the 3' > 5' (temple) direction
	Because DNA strands are antiparallel , the new DNA is synthesized
	5'-3'
	Only one strand is able to be built continuously
	 The <u>leading strand</u> is built continuously toward the replication fork.
	A
	replication fork
	 Primers are continuously added as the replication fork forms
	 DNA polymerase therefore can only build short segments of DNA, known as
	Okazaki Fragments
	· Why the lagging strand? · DNA polymenus can only but to 3' 200
	· DIAN poryments can own brown to 1 800
	cannot continuously be suntherized
	COUND COMMING THE DE SYNTHETICAL
	THE STATE OF THE S
	DNA helicuse SSB
	DNA helicase
	5'
	3.1111111111111111111111111111111111111
	The same of the sa
	5' 5'
	DNA polymerase: RNA primer
	Win and the second
	The state of the s
	DNA polymerase 5. Intiging strate RNA primer 3. 5. Intiging strate RNA primer
	5.

Once the strands have been copied, some 'final touches' need to be made:

In eukaryotes,

			RNA primer		- Okazaki frag
	DNA polymerase III adds deoxyribonucleotides 3			100	RNA prime
	from primer to eprimer, forming	TIT			$\Pi\Pi\Pi$
	Okazaki fragments.	ш	ш	ш	ш
	3			1	
		-	Direction of synthe	sis L	— DNA polymera
	DNA polymerase I				
	replaces RNA primers with appropriate	TIT	TITI	ITT	
	deaxyribonucleotides. A gap is left between 5		1111		
	fragments.			— DNA polyr	merase I
				— DNA is	gase
	3		prosen		
	DNA ligase joins frugments by creating phosphodiester bonds. —	Ш			
DU U	5'				
KNasett	_removes the RNA p	rimers (i	n prokaryote	s this is	done by
one of the DNA polymerases - as					
DNA Ligare joi	ns the gaps in the Ok	azaki fra	agments by t	he creat	ion of a
Phesphodiester	(between a p	hosphat	e group and	a hydro	xyl group o
two nucleotides).					
UNA polymerase	proofread the re	eplicating	g strands		
 This is done by acting as a 					
o This cuts out incorrectly pa		e end of	the complet	nentary	strand and
adding the correct nucleoti			-A DNA		
 Errors that are missed by t repair mechanisms 	nis process can be co	orrected	aπer DNA re	plication	1 by other

Extra Resources:

- Amoeba sisters: https://www.youtube.com/watch?v=5qSrmeiWsuc
- Crash Course: https://www.youtube.com/watch?v=8kK2zwjRV0M

Summary Table - DNA Replication

Term or Enzyme	Function and Explanation of Significance
Helicase	Unzips DNA strand by breaking H-bonds
Replication Fork	Place DNA strands fork off. Used as point of reference
SSBs	Prevents nitrogenous boxes from rebonding
Anneal	11
DNA Polymerase	Birts to RNA primer to start synthesizing DNA strand using Starts 5' to 3' only (towards replication to rk)
Primase	Starts agreending new DNA stank Using RWA primers & nucleotides. These RNA components will eventually be removed
RNA Primer	Interes new strand for polymerase to build
Leading strand	Towards replication fork
Lagging strand	Army from replication tok
Okazaki Fragments	Small chunts of DNA nuleotides & RNA primer to-med due to
Rnase H	Removes RNA promers in evikaryotes
DNA ligase	Joins the gaps between ofazaki fragments
Exonuclease	Respores defective elements of the strand.

Directions:

Diagram A: The following diagram represents a segment of DNA that is undergoing replication.

- a. Colour this DNA segment red. This represents the parent/template strands.
- b. Label the orientation/direction of the template strands. One has been done for you.
- c. Add helicase and SSBs. What are their functions?
 Helicose! Unzys / breaks down H bonds between N bases
 SSBs: Prevents strand from rebording

Diagram B: The following diagram represents the addition of primers.

- a. Colour the parent strands red.
- b. 'X' represents primers, which are nucleotides. What is the purpose of the primers? What is different about these nucleotides compared to the ones DNA polymerase adds. Colour these nucleotides (primers) blue.
- c. 'Y' represents DNA nucleotides. These were added by DNA polymerase. Colour these green.

Answer the following questions:

- 1. What does semiconservative replication mean? I New, 1012 shank
- 2. Why are RNA primers added to the parent strand? To pluce a point for polynerable
- 3. Where does DNA replication happen in eukaryotes? Nucleus
- 4. During what part of the cell cycle does DNA replication happen? Interphase
- 5. (True or False) The process of DNA replication results in a copy of the original DNA molecule. T
- 6. (True or False) DNA does not have to break apart to be copied. 🤄
- 7. (True or False) After DNA replication is complete, there are two new DNA molecules; one molecule has both original strands, and one molecule has two new strands of DNA.

Place the steps of DNA replication in the correct order.

2	a. The enzyme DNA polymerase moves along the exposed strands and add complementary nucleotides to each nucleotide in each existing strand.
1	b. The DNA double helix breaks or unzips down the middle between the base pairs.
3	c. A complementary strand is created for each of the two strands of the original double helix.
·U	d. Two new identical DNA molecules have been produced.

Below is a DNA strand. Make the complementary DNA strand.

Original Strand:

5'-ATGCAAATTGCTCACCGGGGATCAGCACCGG-3'

Complementary Strand:

3'-TACGITTA ACGAGITGGCCCCT AGTCGTGGCC-5'

DNA Structure Review. Use the following word bank to label the DNA molecule below.

Nitrogen bases	Guanine	Hydrogen bonds	Phosphate	Phosphodiester bond
Thymine	Sugar-phosphate backbone	Deoxyribose	Nucleotide	Glycosidic bond

Hershey & Chase Discovered DNA is genetic material, not protern Miescher Looked at nuclei of pus celled concluded they were filled with muleun, not protein, Dubbed the substance he found "mulein" Watson & Crick Analyzed data to prove the double helix structure of DNA Chargoff Found the proportion of Adenne = Thymine & Cytosine = Gramme Franklin & Wilkens Examined DNA molecules using x-rays to get an image Suggested DNA has a helical structure, Meselson & Stahl Concluded & proved DNA replication is semi-conservative

Name:			
-			

The diagram represents a segment of DNA. Using the diagram, answer the questions below. (6)

а	Which letter represents the five-prime end of DNA?	D
b	What bond is represented by the letter 'E'?	Phosphodiester Bond
С	What bond is represented by the letter 'F'?	Hydrogen Bond
d	What is the name of the sugar found in this molecule?	Deoxyribose Sugar (6)
е	. How many nucleotides are in the diagram?	4
f.	What is the name of the nitrogenous base found at letter 'H'? Hint - You didn't have to memorize the structure to figure this out.	Gruanine

	Pina	C
Name: _	Maha	SIMSCHA

Quiz - History, OhA Structure and Replication

20 /20

Part A -	Multiple	Choice:	Circle	the	correct	answer	(4)	i

- What was the primary conclusion of the Hershey and Chase experiment conducted in 1952?
 - a. Proteins are the genetic material of bacteriophages.
 - b. DNA is the genetic material of bacteriophages.
 - c. RNA is the genetic material of bacteriophages.
 - d. Both DNA and proteins are the genetic material of bacteriophages.
 - What significant discovery did Friedrich Miescher make in 1869 while studying pus cells?
 - He discovered that pus cells contain large amounts of protein.
 - He found that the nuclei of pus cells contain a phosphorus-rich substance he called nuclein.
 - He identified the presence of RNA in the nuclei of pus cells.
 - d. He discovered the double helix structure of DNA.

- What was Rosalind Franklin's most significant contribution to the discovery of the DNA structure?
 - She developed the double helix model of DNA.
 - She discovered the base pairing rules of DNA
 - c. She produced X-ray diffraction images of DNA.
 - d. She identified the chemical composition of DNA.
 - 4. Which of the following is paired incorrectly?
 - Watson and Crick Produced double-helix structure of DNA
 - b. Chargaff proportion of adenine always equals that of thymine and proportion of guanine = cytosine
 - c. Meselson and Stahl semiconservative replication
 - d All are paired correctly

Part B - Terminology (8):

Name a pyrimidine.	Thymine
Proteins found in DNA that package and order DNA into nucleosomes.	Histories
Enzyme that lays down RNA primers during DNA replication.	Primage (
Enzyme that prevents DNA from supercoiling.	Topoisomense / p
Short, discontinuous segments of DNA found on the lagging strand.	Okazaki Fragments
Type of bond that holds complementary base pairs together.	Hydrogen Bonds

		n n
Direction in which DNA polymerase reads the strand being copied in DNA replication.	3'-5'	
Enzyme that unzips the DNA molecule by breaking bonds.	Helicase	

Name:

Part C - Diagram. Study the diagram below and then answer the following questions in the space provided. (2):

 b. Identify the 3' and 5' ends of the template strands. Place your answer in the hearts on the diagram. (1)

14