Estructuras de Datos Unidad 4: Arboles (Parte 2)

PARTE II: ÁRBOLES BINARIOS DE BÚSQUEDA

- Árboles binarios equilibrados
- Árboles AVL

M.C. YALU GALICIA HDEZ.(FCC/BUAP) 1

ÁRBOLES BINARIOS DE BÚSQUEDA (ABB)

- ABB = Árbol binario ordenado según uno o más criterios
- Cada nodo tiene dos hijos:
- el subárbol **izquierdo** es el árbol vacío o es un subárbol que contiene nodos cuya clave es menor que la suya
- el subárbol **derecho** es el árbol vacío o es un subárbol que contiene nodos cuya clave es mayor que la suya
- ¿Cuál de estos dos árboles binarios de enteros es un ABB?

ÁRBOLES BINARIOS DE BÚSQUEDA (ABB)

- Utilidad
- Almacenar estructuras lineales (que normalmente serían listas) mejorando la complejidad de las búsquedas
 - En el caso peor
 - · En el caso medio
- Motivación: AB no ordenados son de poco interés
 La falta de ordenación en un AB hace injustificable una estructura enlazada de árbol, prefiriéndose una lista
- Problema
- un ABB puede llegar a degenerar en una lista
- Solución: equilibrio en ABB

M.C. YALU GALICIA HDEZ. (FCC/BUAP) 3

ABB: DESCRIPCIÓN

- El nodo se compone de clave, información y referencias a los subárboles izquierdo y derecho
- -<arbol>::= <<nulo>> | <nodo>
- -<nodo>::= <clave> <info> <izq> <der>
- -<clave>::= <<dato>> {<<dato>>}
- <info>::={<<dato>>}
- <!zq>::=<arbol>
- -<der>::=<arbol>
- El proceso de inserción es el encargado de garantizar que se cumple la condición de ABB

ABB: OPERACIONES

Creación de un árbol	crearArbol (nombreArbol)
Comprobación del estado	arbolVacio(nombreArbol) → Booleano arbolVacio(referenciaNodo) → Booleano
Inserción de nodos	insertar(nombreArbol,valorClave,valorInfo)
Borrado de nodos	borrar(nombreArbol, valorClave)
Búsqueda de un nodo	buscar(nombreArbol, valorClave)→referenciaNodo
Recorrido del árbol	recorrer(nombreArbol,tipoRecorrido)
Acceso a los nodos	clave(referenciaNodo) → Clave info(referenciaNodo) → Informacion izq(referenciaNodo) → enlace der(referenciaNodo) → enlace eshoja(referenciaNodo) → Booleano

ABB: INSERCIÓN

- Los nodos se insertan siempre como nodos hoja
- El algoritmo de inserción garantiza para cada nodo del árboľ que:
 - Su subárbol izquierdo contiene claves menores
 - Su subárbol derecho contiene claves mayores
- Funcionamiento:
 - Si el árbol está vacío, se inserta el nodo en la raíz
 - si no, se va recorriendo el árbol:
 - En cada nodo se decide si hay que insertar a la derecha o la izquierda
 - · Si el subárbol en el que hay que insertar es vacío, se inserta el nuevo elemento
 - Si el subárbol en que hay que insertar no es vacío hay que recorrerlo hasta encontrar el lugar que le corresponde al nodo en ese subárbol
- Es un algoritmo recursivo

TAD ABB: EJEMPLO DE INSERCIÓN

- Insertar 7, 5, 2, 14, 12, 6, 4
 - Insertar 7
 - Insertar 5
 - Insertar 2
 - Insertar 14
 - Insertar 12
 - Insertar 6
 - Insertar 4

M.C. YALU GALICIA HDEZ. (FCC/BUAP)

ACTIVIDAD INDIVIDUAL

- Insertar en un ABB los elementos:
- 1, 4, 5, 6, 8, 12, 20
- Insertar los elementos en un ABB:
- · 8, 4, 2,1,3,12,10, 9, 11, 6, 7, 5, 14, 15, 13

¿ y el algoritmo?

ABB: BÚSQUEDA

- Funcionamiento:
- se va recorriendo el árbol
- si el nodo actual no es el buscado se decide si hay que buscar a la derecha o la izquierda
- el algoritmo termina al encontrar el nodo o llegar al árbol vacío
- Puede desarrollarse:
- como algoritmo recursivo del nodo del árbol
- como algoritmo iterativo del árbol

PROCESO PARA BUSCAR UN NODO... Buscar el 25 ¿El 25 es mayor o **Paso** menor que el 21? 21 2 ¿El 25 es 33 mayor o menor 13 que el 33? 10 25 Paso 13 10 18 Encontrado

IMPLEMENTACIÓN DE LA BÚSQUEDA

```
P contiene la
p=raiz;
                                          dirección del nodo
while (p != null)
                                          que tiene el valor
                                          buscado
   if (p.info == valor)
       return p;
  else
      p=(p.info > valor? p.izq: p.der);
                                                    Equivalente a:
                                                    if (p. info > valor)
return null;
                     No se encontró el valor
                                                        p = p.izq;
                     por lo que se regresa un
                                                    else p = p.der;
                     NULL
                                                    M.C. YALU GALICIA HDEZ. (FCC/BUAP) 11
```

ABB: BORRADO

- Funcionamiento:
- Buscar el nodo a borrar
- Si es un nodo hoja, basta con que su padre haga referencia al árbol vacío
- Si no es nodo hoja hay que sustituirlo por otro
 - 1. El nodo a borrar sólo tiene un hijo: sustituirlo por su hijo
 - 2. El nodo a borrar tiene dos hijos, sustituirlo por:
 - El mayor de su subárbol izquierdo o
 - El menor de su subárbol derecho
- Si el nodo a borrar es la raíz, hay que variarla aplicando el caso que corresponda

CASO: ELIMINAR NODO HOJA

CASO: ELIMINAR NODO CON UN HIJO

ACTIVIDAD INDIVIDUAL

- Utilizando los ABB creados en la actividad anterior, borrar los siguientes elementos:
- Primer ABB:
 - **2**0, 5, 1
- Segundo ABB
 - -7, 4, 10, 14, 8

M.C. YALU GALICIA HDEZ. (FCC/BUAP) 17

QUÉ HEMOS APRENDIDO?

