Actor Critic Methods: From Paper to Code

Review of Fundamental Concepts

Agent, Environment, Action

Markov Decision Process

State depends only on previous state and action

Markov Decision Process

Episodic Returns

These states have value

Present rewards worth more

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Sum of discounted rewards \rightarrow Episode return

Reward Discounting

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots$$

$$G_t = R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} + ...)$$

$$G_t = R_{t+1} + \gamma G_{t+1}$$

But wait... how can we know future rewards?

The Agent's Policy

Mapping of states to actions

Can be probabilistic

Value and Action Value Functions

$$v_{\pi}(s) = E_{\pi}[G_t|S_t = s] = E_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s] \text{ for all } s \in S$$

$$q_{\pi}(s,a) = E_{\pi}[G_t|S_t = s, A_t = a] = E_{\pi}[\sum_{k=0}^{\infty} y^k R_{t+k+1}|S_t = s, A_t = a] \text{ for all } s \in S$$

Learning from Experience

Interact with environment

Keep track of rewards

Monte Carlo Methods

The Bellman Equation

$$v_{\pi}(s) = E_{\pi}[G_{t}|S_{t}=s] = E_{\pi}[\sum_{k=0}^{\infty} y^{k} R_{t+k+1}|S_{t}=s] \text{ for all } s \in S$$

$$G_{t} = R_{t+1} + yG_{t+1}$$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + yG_{t+1}|S_{t}=s]$$

$$v_{\pi}(s) = \sum_{a} \pi(a,s) \sum_{s'} \sum_{r} p(s',r|s,a)[r+y E_{\pi}[G_{t+1}|S_{t+1}=s']]$$

$$v_{\pi}(s) = \sum_{a} \pi(a,s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

<u>Bellman</u> <u>Equation</u>

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a)[r+\gamma\sum_{a'} \pi(a'|s')q_{\pi}(s',a')]$$

Optimal Policies

Compare policies

Known dynamics → Model based

Unknown dynamics → Model free

Explore Exploit Dilemma

Epsilon greedy (Q Learning)

Approximate Policy Directly

On Policy vs. Off Policy

 One policy generates actions and updates value function → On policy

 One policy generates actions and another policy updates value function → Off policy

• Epsilon greedy → off policy learning

• Policy gradients → on policy learning

Conclusions

- Keep track of rewards to estimate value and action value functions
- Recursive relationship between functions
- Have to interact w/ environment to learn dynamics
- Policy gradient & Actor critic → on policy model free

