(Applied) Machine Learning for Data Science

02/6/17

Andreas Müller

Supervised Learning

$$(x_i,y_i) \propto p(x,y)$$
 i.i.d. $x_i \in \mathbb{R}^n$ $y_i \in \mathbb{R}$

 $f(x_i) \approx y_i$

Generalization

Not only

$$f(x_i) \approx y_i$$

Also for new data:

$$f(x) \approx y$$

training set

test set

Preprocessing

Categorical Variables

setup1 $\in \mathbb{R}^n$?

Categorical Variables

Data Scaling

Linear Models

Linear Regression

Linear Models for Regression

Ridge Regression

$$\min_{w \in \mathbb{R}^n} \sum_{i} ||w^T x_i - y_i||^2 + \lambda ||w||^2$$

Lasso

$$\min_{w \in \mathbb{R}^n} \sum_{i} ||w^T x_i - y_i||^2 + \lambda ||w||_1$$

Overfitting and Underfitting

Model complexity

Linear models for binary classfiication

$$\hat{y} = \operatorname{sign}(w^T \mathbf{x} + b) = \operatorname{sign}(\sum_i w_i x_i + b)$$

Logistic Regression

$$\min_{w \in \mathbb{R}^p} - \sum_{i} \log(\exp(-y_i w^T \mathbf{x}_i) + 1)$$

$$\log\left(\frac{p(y=1|x)}{p(y=0|x)}\right) = w^T \mathbf{x}$$

$$p(y|x) = \frac{1}{1 + e^{-w^T \mathbf{x}}}$$

$$\hat{y} = \operatorname{sign}(w^T \mathbf{x} + b)$$

Penalized Logistic Regression

$$\min_{w \in \mathbb{R}^n} -C \sum_{i} \log(\exp(-y_i w^T x_i) + 1) + ||w||_2^2$$

$$\min_{w \in \mathbb{R}^n} -C \sum_{i} \log(\exp(-y_i w^T x_i) + 1) + ||w||_1$$

C is inverse to alpha (or alpha / n_samples)

All points contribute to w (dense solution to dual).

(soft margin) linear SVM

$$\min_{w \in \mathbb{R}^n} C \sum_{i} \max(0, 1 - y_i w^T \mathbf{x}) + ||w||_2^2$$

$$\min_{w \in \mathbb{R}^n} C \sum_{i} \max(0, 1 - y_i w^T \mathbf{x}) + ||w||_1$$

Only some points contribute (the support vectors) to w (sparse solution to dual).

SVM or LogReg?

Do you need probability estimates?

It doesn't matter - try either / both

Logistic Regression

Need compact model or believe solution is sparse? Use L1.

Prediction with One Vs Rest

"Class with highest score"

$$\hat{y} = \arg\max_{i \in Y} \mathbf{w}_i \mathbf{x}$$

Unclear why it even works, but work well.

One vs Rest Prediction

Multinomial Logistic Regression

Probabilistic multi-class model:

$$p(y = i|x) = \frac{e^{-\mathbf{w}_i^T \mathbf{x}}}{\sum_{j \in Y} e^{-\mathbf{w}_j^T \mathbf{x}}}$$

$$\min_{w \in \mathbb{R}^n} - \sum_{i} \log(p(y = y_i | x_i))$$

$$\hat{y} = \arg\max_{i \in Y} \mathbf{w}_i \mathbf{x}$$

Same prediction rule as OvR!

Linear models in practice

- Good with P > n : because simple!
 (work well with sparse data)
- Good on very large: because fast!
- Very robust, always use as baseline!
- Relatively interpretable
- Try adding interaction or polynomial features

Reminder: Gradient Descent

$$w^{(i+1)} \leftarrow w^{(i)} - \eta_i \frac{d}{dw} F(w^{(i)})$$

Stochastic Gradient Descent

Logistic Regression:

$$F(w) = -C\sum_{i}\log(\exp(-y_iw^T\mathbf{x}_i) + 1) + ||w||_2^2$$
 Sum over data-points Independent of data

Pick x_i randomly, then

$$\frac{d}{dw}F_i(w) = \frac{d}{dw} - C\log(\exp(-y_i w^T \mathbf{x}_i) + 1) + \frac{1}{n}||w||_2^2$$

Is a stochastic approximation of gradient of F with expectation the actual gradient.

In practice: just iterate over i.

SGD in Practice

- Vopalwabbit (vw)
- Scikit-learn's SGDClassifier / SGDRegressor
- Can work with data larger than ram
- VERY fast
- Picking / tuning learning rates can be hard. Scale data!

Tree-based models

Decision Trees

Model complexity controlled by depth or number of leafs

Random Forests

Randomize in two ways

For each tree:

Pick bootstrap sample of data

For each split:
 Pick random sample of features

More tree are always better

Gradient Boosting

- Many shallow trees
- learning_rate ↔ n_estimators
- Look at XGBoost package

When to use tree-based models

- Model non-linear relationships
- Single tree: very interpretable (if small)
- Random forests very robust, good benchmark
- Gradient boosting often best performance with careful tuning
- Doesn't care about scaling, no need for feature engineering!

Neural Networks

$$\hat{y} = w_2^T \text{relu}(w_1^T x + b_1) + b_2$$

When to use neural networks

- Feed-forward vanilla: lots of data, to get the last couple %.
- Convolutional neural nets: Images, audio, video
- Recurrent neural nets: sequence prediction
- Word-embeddings: text classification

Usually need lots of tuning and preprocessing.

Neural Network / Deep Learning Packages

- Keras (Python)
- Tensorflow (tf.learn) (mainly Python)
- Caffe (for convolutional nets maybe)
- torch.nn (lua)

Parameter and Model selection

Three-fold split

pro: fast, simple

con: high variance, bad use of data.

Cross-validation

Pro: more stable, more data

con: slower

Cross-validation + test-set

Workflow

Sample application: Sentiment Analysis see e.g.

https://github.com/amueller/introduction_to_ml_with_p ython/blob/master/07-working-with-text-data.ipynb

IMDB Movie Reviews Data

Review:

One of the worst movies I've ever rented. Sorry it had one of my favorite actors on it (Travolta) in a nonsense role. In fact, anything made sense in this movie.

Who can say there was true love between Eddy and Maureen? Don't you remember the beginning of the movie?

Is she so lovely? Ask her daughters. I don't think so.

Label: negative

Training data: 12500 positive, 12500 negative

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

```
"This is how you get ants."
                                 tokenizer
       ['this', 'is', 'how', 'you', 'get', 'ants']
                                 Build a vocabulary over all documents
['aardvak', 'amsterdam', 'ants', ... 'you', 'your', 'zyxst']
                                  Sparse matrix encoding
          aardvak ants get you zyxst
            [0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]
```

N-grams (unigrams and bigrams)

CountVectorizer / TfidfVectorizer

```
"This is how you get ants."
      Unigram tokenizer

['this', 'is', 'how', 'you', 'get', 'ants']
                "This is how you get ants."
                             Bigram tokenizer
['this is', 'is how', 'how you', 'you get', 'get ants']
```

```
text_pipe = make_pipeline(CountVectorizer(), LinearSVC())
text_pipe.fit(text_train, y_train)
text_pipe.score(text_test, y_test)
```


Take-aways

- Try linear models first, random forest second
- Preprocess your data.
- Always keep a hold-out test set
- Do either cross-validation on training set or three-fold split.
- Are you underfitting or overfitting?