

一、数制和码制

1. 数制: 计数方法或计数体制(由基数和位权组成)

种类	基数	位权	应用	备注
十进制	0 ~ 9	10^i	日常	
二进制	0, 1	2^i	数字电路	$2 = 2^1$
八进制	0 ~ 7	8^{i}	计算机程序	$8=2^3$
十六进制	0 ~ 9, A ~F	16 ⁱ	计算机程序	$16 = 2^4$

各种数制之间的相互转换,特别是十进制→二进制的转换, 要求熟练掌握。

2. 码制: 常用的 BCD 码有 8421 码、2421 码、5421 码、余 3 码等, 其中以 8421 码使用最广泛。

[练习1] 完成下列数制和码制之间的相互转换

1.
$$(37)_{10} = (\begin{array}{ccc} \frac{32}{100} & \frac{4}{101} \\ 1 & 0 \end{array})_2 = (\begin{array}{ccc} 45 \\ 1 & 0 \end{array})_8 = (\begin{array}{ccc} 25 \\ 1 & 0 \end{array})_{16}$$

2.
$$(53)_8 = (10101011)_2 = (43)_{10} = (2B)_{16}$$

4.
$$(151)_{10} = {128 \choose 100101111}_{010111}_{0101111}_{01011}_{0101111}_{010111}_{010111}_{010111}_{010111}_{010111}_{010111}_{010111}_{010111}_{010111}_{01011}_$$

5.
$$(10 \ 1001)_{8421BCD} = (29)_D = (111101)_B$$

二、常用逻辑关系及运算

- 1. 三种基本逻辑运算: 与、或、非
- 2. 四种复合逻辑运算:与非、或非、与或非、异或

真值表 函数式 逻辑符号

三、逻辑代数的公式和定理

是推演、变换和化简逻辑函数的依据,有些与普通 代数相同,有些则完全不同,要认真加以区别。这些定 理中,摩根定理最为常用。

[练习2] 求下列函数的反函数(用摩根定理),并化简。

$$Y = A \cdot B + \overline{C} + \overline{AD}$$

[M]
$$\overline{Y} = A \cdot \overline{B} + \overline{C} + \overline{AD} = A \cdot \overline{B} + \overline{C} \cdot \overline{AD} = (\overline{A} + B + \overline{C})(A + \overline{D})$$

= $\overline{AD} + AB + B\overline{D} + A\overline{C} + \overline{CD} = \overline{AD} + AB + \overline{AC}$

四、逻辑函数的化简法

化简的目的是为了获得最简逻辑函数式,从而使逻辑 电路简单、成本低、可靠性高。化简的方法主要有公式 化简法和图形化简法两种。

- 1. 公式化简法: 可化简任何复杂的逻辑函数,但要求能熟练和灵活运用逻辑代数的各种公式和定理, 并要求具有一定的运算技巧和经验。
- 2. 图形化简法:简单、直观,不易出错,有一定的步骤和方法可循。但是,当函数的变量个数多于六个时,就失去了优点,没有实用价值。

约束项: 可以取 0,也可以取 1,它的取值对逻辑函 (无关项) 数值没有影响,应充分利用这一特点化简 逻辑函数,以得到更为满意的化简结果。

[练习3] 用公式法将下列函数化简为最简与或式。

$$(1) Y = \overline{ABC} + ABD + BE + (DE + AD) \overline{B}$$

$$= \overline{B} + \overline{AC} + AD + E + DE + AD + B$$

$$= 1$$

(2)
$$Y = AC + BC + BD + CD + A(B+C) + ABCD + ABDE$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + A \cdot \overline{B}C + A\overline{B}DE$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + A + A\overline{B}DE$$

$$= A + \overline{B}C + B\overline{D} + C\overline{D}$$

= A + BC + BD

[练习4] 用图形法将下列函数化简为最简与或式。

1.
$$Y = A\overline{BCD} + \overline{AB} + \overline{ABD} + \overline{BC} + \overline{BCD}$$

- [解](1) 画函数的卡诺图
 - (2) 合并最小项: 画包围圈
 - (3) 写出最简与或表达式 $Y = \overline{AD} + BD + \overline{CD}$

[练习 4] 用图形法将下列函数化简为最简与或式。

2.
$$F(A,B,C,D)$$

= $\sum_{m} (0,1,2,8,9) + \sum_{d} (10,11,12,13,14,15)$

- [解](1) 画函数的卡诺图
 - (2) 合并最小项: 画包围圈
 - (3) 写出最简与或表达式 $Y = \overline{BC} + \overline{BD}$

五、逻辑函数常用的表示方法:

真值表、卡诺图、函数式、逻辑图和波形图。

它们各有特点,但本质相同,可以相互转换。尤 其是由<u>真值表</u> → 逻辑图 和 逻辑图 → 真值表, 在逻 辑电路的分析和设计中经常用到,必须熟练掌握。