Свойства самосопряжённых линейных операторов в гильбертовом пространств

Пусть H — гильбертово пространство. Пусть $A: H \mapsto H$ — линейный и непрерывный оператор. Пусть A — самосопряжённый оператор, то есть $A = A^*$.

Утверждение 1. Если A — самосопряжённый оператор, тогда выполняются следующие свойства:

- 1. $||A^n|| = ||A||^n \ \forall n \in \mathbb{N}$
- $2. \ r(A) = ||A||$
- 3. $\sigma(A) \subset \mathbb{R}$
- 4. пусть $m_+ = \sup_{\|f\|=1} (Af, f)$, где $(Af, f) \in \mathbb{R}$ для самосопряжённого оператора, пусть $m_- = \inf_{\|f\|=1} (Af, f)$, тогда $m_{+-} \in \sigma(A)$ и $\sigma(A) \subset [m_-(A), m_+(A)]$ (доказать в качестве упражнения)

Доказательство. Докажем первое утверждение. $||A^n|| \le ||A||^n$ по определению операторной нормы. Надо показать, что $||A^n|| \ge ||A||^n$. Для n=1 очевидно верно. Если для $k=1\dots n$ имеем $||A^k|| = ||A||^k$ и $A \ne 0$, тогда без ограничения общности $\forall f: ||f|| = 1$

$$||A^n f||^2 = (A^n f, A^n f)$$

В силу того, что A — самосопряжённый оператор

$$(A^n f, A^n f) = (A^{n-1} f, A^{n+1} f)$$

Последнее в силу неравенства Коши-Буняковского

$$(A^{n-1}f, A^{n+1}f) \le ||A^{n-1}f|| ||A^{n+1}f|| \le ||A^{n-1}|| ||A^{n+1}||$$

Получаем, что

$$||A^n f||^2 \le ||A^{n-1}|| ||A^{n+1}||$$

Из индукции $\|A^{n-1}\| \leq \|A\|^{n-1}$ и $\|A^n\| = \|A\|^n$ Возмём теперь супремум $\forall \|f\| = 1$

$$||A^n||^2 = ||A||^{2n} \le ||A||^{n-1} ||A^{n+1}||$$

Отсюда при $A \neq 0$ получаем

$$||A||^{n+1} \le ||A^{n+1}||$$

Что и требовалось доказать.

Второе утверждение очевидно следует из первого для самосопряжённого оператора:

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|} = \lim_{n \to \infty} \sqrt[n]{\|A\|^n} = \|A\|$$

Перейдём к третьему утверждению. Воспоминание: пусть A — самосопряжённый оператор. Пусть $\lambda \in \sigma_p(A)$, то есть $\ker A_\lambda \neq 0$, следовательно $\exists f \neq 0 \in \ker A_\lambda \colon Af = \lambda f$. Тогда

$$(Af, f) = \lambda(f, f)$$

С другой стороны, в силу самосопряжённости

$$(Af, f) = (f, Af) = \overline{\lambda}(f, f)$$

И так как $f \neq 0$, то $\lambda = \overline{\lambda}$. Перейдём теперь непосредственно к доказательству. Рассмотрим $\lambda = \mu + \imath \nu, \ \nu \neq 0$ и докажем, что $\lambda \in \rho(A)$ и тогда, очевидно, $\sigma(A) = \mathbb{C} \setminus \rho(A) \subset \mathbb{R}$. $\forall f \in H$

$$||A_{\lambda}f||^{2} = ||A_{\mu}f - \imath\nu f||^{2} = (A_{\mu}f - \imath\nu f, A_{\mu}f - \imath\nu f) = ||A_{\nu}f||^{2} + \nu^{2}||f||^{2} - \imath\nu (f, A_{\mu}) + \imath\nu (A_{\mu}f, f)$$

где $A_{\lambda}f = Af - \lambda f$. Раз $\mu \in \mathbb{R}$, то

$$(A_{\mu})^* = A_{\overline{\mu}}^* = A_{\mu}^* = A_{\mu}$$

так как $A^* = A$. Следовательно

$$(f, A_{\mu}f) = (A_{\mu}f, f)$$

Отсюда получаем, что

$$(A_{\mu}f - \imath \nu f, A_{\mu}f - \imath \nu f) = ||A_{\mu}f||^2 + \nu^2 ||f||^2$$

Тогда

$$||A_{\lambda}f||^{2} = ||A_{\mu}f||^{2} + \nu^{2}||f||^{2} \ge \nu^{2}||f||^{2}$$

Получили оценку снизу:

$$||A_{\lambda}f|| \ge |\nu|||f|| \quad \forall f \in H$$

Пусть теперь $f \in \ker A_{\lambda}$. Это равносильно $A_{\lambda}f = 0 \Rightarrow 0 \geq |\nu| \|f\| \geq 0$,отсюда f = 0. По теореме Фредгольма

$$\overline{(\operatorname{Im} A_{\lambda})} = (\ker(A_{\lambda})^*)^{\perp} = (\ker A_{\overline{\lambda}})^{\perp} = 0^{\perp} = H$$

так как в силу самосопряжённости $(A_\lambda)^*=A_{\overline{\lambda}}^*=A_{\overline{\lambda}}.$ Аналогично как для A_λ

$$||A_{\overline{\lambda}}|| \ge |\nu|||f|| \Rightarrow \ker A_{\overline{\lambda}} = 0$$

Покажем теперь, что Im A_λ замкнут. Пусть $\|A_\lambda\|f=g$, тогда $(A_\lambda)^{-1}g=f$, тогда

$$\|(A_{\lambda})^{-1}g\| \le \frac{\|g\|}{\nu} \quad \forall g \in \operatorname{Im} A_{\lambda}$$

Поэтому

$$||(A_{\lambda})^{-1}|| \leq \frac{1}{\nu}$$

Возмём $\forall g \in \overline{\operatorname{Im} A_{\lambda}}$, тогда $\exists \{g_n\} \in \operatorname{Im} A_{\lambda} \colon g_n \to g$ в H. $g_n = A_{\lambda} f_n$

$$||f_n - f_m|| \le \frac{1}{\nu} ||g_n - g_m||$$

где $||g_n - g_m|| \to 0$ $n, m \to \infty$, отсюда $f_n - f_m \to 0$ $n, m \to \infty$. Так как $\{f_n\}$ — фундаментальная последовательность в полном пространстве H, то $\exists f \in H \colon f_n \to f$ в H. Так $g_n \to g$ $n \to \infty$ и так как A_λ — непрерывный оператор, то $g = A_\lambda f$ и $g \in \operatorname{Im} A_\lambda$. Таким образом получаем

$$\begin{cases} \operatorname{Im} A_{\lambda} = H \\ \ker A_{\lambda} = 0 \end{cases}$$

поэтому $\exists (A_{\lambda})^{-1}: H\mapsto H$ такой, что $\|(A_{\lambda})^{-1}\|\leq \frac{1}{|\nu|}$ и $\nu=\mathrm{Im}\,\lambda\neq 0.$

Пример 1. Пусть $H = L_2[0,1]$. Пусть задан оператор $A: H \mapsto H$ такой, что

$$(Af)(x) = xf(x) \quad 0 \le x \le 1, f \in H$$

Норма этого оператора будет

$$||Af|| = \sqrt{\int_{0}^{1} x^{2} |f|^{2} dx} \le ||f||_{L_{2}}$$

так как $x^2 \le 1$. Отсюда следует, что $||A|| \le 1$. Рассмотрим функцию $f_{\varepsilon} \in H$ такую:

$$f_{\varepsilon} = \begin{cases} 0 & 0 \le x \le \varepsilon \\ 1 & \varepsilon \le x \le 1 \end{cases}$$

Тогда получаем, что

$$1 \ge ||A|| \ge \frac{||Af_{\varepsilon}||_{L_2}||}{||f_{\varepsilon}||_{L_2}}$$

Выписываем явный вид нормы

$$||A|| \ge \frac{\sqrt{\int\limits_{1-\varepsilon}^{1} x^2 dx}}{\sqrt{\int\limits_{1-\varepsilon}^{1} dx}} \ge (1-\varepsilon) \frac{\sqrt{\int\limits_{1-\varepsilon}^{1} dx}}{\sqrt{\int\limits_{1-\varepsilon}^{1} dx}}$$

В итоге мы получили

$$1 \ge ||A|| \ge 1 - \varepsilon \to 1 \quad \varepsilon \to +0$$

Покажем теперь, что этот оператор самосопряжённый

$$(Af,g) = \int_{0}^{1} x f \overline{g} dx = \int_{0}^{1} f \overline{x} \overline{g} dx = (f,xg) = (f,A^{*}g)$$

Поэтому $A^*g=xg=Ag\ \forall g\in H.$ Рассмотрим теперь $\forall\lambda\in\mathbb{C}\colon\lambda\neq[0,1]\subset\mathbb{R}.$ Тогда

$$A_{\lambda}f = g = (x - \lambda)f$$

И тогда

$$(A_{\lambda})^{-1}g = f(x) = \frac{g(x)}{x - \lambda} \in L_2[0, 1] \quad x \in [0, 1]$$

Найдём норму f:

$$||f|| = \sqrt{\int_{0}^{1} \frac{|g|^{2}}{|x - \lambda|^{2}} dx} \le \rho(\lambda, [0, 1] ||g||$$

где $0 \le \rho(\lambda, [0,1]) \le |x-\lambda| \ \forall x \in [0,1]$ — расстояние, причём $\rho(\lambda, [0,1]) = 0 \Leftrightarrow \lambda \in [0,1]$. Таким образом

 $\|(A_{\lambda})^{-1}\| \le \frac{1}{\rho(\lambda, [0, 1])}$

U образ естественно всё пространство так как g — любой объект из H. Таким образом непрерывность очевидна, определена на всём пространстве и поэтому за пределами этого отрезка спектра нет. $\forall \lambda \in [0,1] \Rightarrow \lambda \in \sigma(A)$, причём $\lambda \notin \sigma_P(A)$ так как иначе $Af = \lambda f, f \neq 0$ в H. $xf(x) = \lambda f(x)$ для почти всех $x \in [0,1]$, ||f|| > 0 на множестве положительной меры S. Получаем $x = \lambda$ почти всюду на S. Но меразS > 0, то есть не одно число, поэтому $x = \lambda$ невозможно.

Покажем, что $\forall \lambda \in [0,1]$ выполняется $\lambda \in \sigma(A)$ тогда $\ker A_{\lambda} = 0$ и $g \in \operatorname{Im} A_{\lambda} \Leftrightarrow (x-\lambda)f(x) = g(x)$, то есть $x \in [0,1]$. Тогда $f(x) = \frac{g(x)}{x-\lambda} \in L_2[0,1]$ для почти всех $x \in [0,1] \setminus \{\lambda\}$. Но это справедливо не для всякой g. Пусть g(x) = 1, тогда $\frac{1}{x-\lambda} \notin L_2[0,1]$, поэтому $1 \notin \operatorname{Im} A \Rightarrow \operatorname{Im} A \neq H$, Значит это элемент спектра $\sigma(A) = \sigma_C(A)$. Так как оператор самосопряженный, то для $\lambda \in \mathbb{R}$ $\ker A_{\lambda}^* = \ker A_{\lambda} = 0$ и получается, что $\overline{\operatorname{Im} A_{\lambda}} = (\ker A_{\lambda})^{\perp} = 0^{\perp} = H$. Таким образом для $\lambda \in [0,1]$ оператор $(A_{\lambda})^{-1} : \operatorname{Im} A_{\lambda} \mapsto L_2[0,1]$, где $\operatorname{Im} A_{\lambda} = \{g \in L_2[0,1] \mid \frac{g(x)}{x-\lambda} \in L_2[0,1]\}$. $(A_{\lambda})^{-1}g = \frac{g}{x-\lambda}$. Но норма такого оператора $\|(A_{\lambda})^{-1}\| = +\infty$ (доказать в качестве упражнения): надо подобрать функции такие, что $\forall n \in \mathbb{N} \ \exists g_n \in \operatorname{Im} A_{\lambda}$

$$\frac{(A_{\lambda})^{-1}g_n\|}{\|g_n\|} \ge n$$

Если бы $\|(A_{\lambda})^{-1}\| \le +\infty$, то получили ту же самую оценку:

$$||f|| = ||(A_{\lambda})^{-1}g|| \le ||(A_{\lambda})^{-1}|||g||$$

для любого f из H, причём $g = A_{\lambda}f$. Отсюда

$$k||f|| = \frac{||f||}{||(A_{\lambda})^{-1}||} \le ||A_{\lambda}f||$$

где $k = \frac{1}{\|(A_{\lambda})^{-1}\|}$. И отсюда можно доказать, если норма образа больше или равна константы на норму прообраза, то мгновенно доказывается, что $\operatorname{Im} A_{\lambda}$ замкнут, что не так, так как замыкание образа совпадает c H, cam образ не совпадает.

Ещё одно свойство самосопряжённого оператора:

Утверждение 2. Если $A: H \mapsto H$ — линейный и непрерывный самосопрежённый оператор и $\lambda, \mu \in \sigma(A): \lambda \neq \mu$, тогда $\ker A_{\lambda} \perp \ker A_{\mu}$

Доказательство. Утверждение нетривиально для $\lambda, \mu \in \sigma_P(A)$ так как если одно из них из непрерывного спектра, то соответствующее ядро тривиально, а нулевое подпространство перпендикулярно чему угодно. Пусть $f \neq 0 \in \ker A_\lambda \neq 0$ и $g \neq 0 \in \ker A_\mu \neq 0$, тогда надо доказать, что $f \perp g$, то есть (f,g) = 0. В силу пункта 3 предыдущего утверждения $\lambda, \mu \in \mathbb{R}$. Тогда $Af = \lambda f$ и $Ag = \mu g$. Получается

$$(Af,g) = \lambda(f,g)$$

с другой стороны

$$(Af,g)=(f,Ag)=(f,\mu g)=\overline{\mu}(f,g)=\mu(f,g)$$

Отсюда получаем, что

$$(\lambda - \mu)(f, g) = 0$$

И отсюда (f,g)=0. Утверждение доказано.

Упражнение 1 (решается, например, с помощью теоремы Банаха-Штейнгаусса, (теорема Хеллингера, Теплица)). Пусть $A: H \mapsto H$ — линейный и симметричный оператор, то есть $(Af,g) = (f,AG) \ \forall f,g \in H$. Тогда A — непрерывный оператор $(\|A\| < +\infty)$.

Теория компактных операторов в гильбертовом пространстве.

Опреление 1. $A: H \mapsto H$ — линейный оператор называется компактным (или вполне непрерывным), если $\forall \{f_n\} \subset H \{f_n\}$ ограничена в H. Иначе говоря $\forall n \|f_n\| \leq R \Rightarrow \exists \{Af_{n_k}\}$ — фундаментальная подпоследовательность в H, где $n_1 < n_2 < \dots$

Утверждение 3. A — компактный, тогда A — непрерывный. Обратное не верно.

Пример 2. Пусть U- унитарный оператор, то есть $U: H \mapsto H$ и $||Uf|| = ||f|| \ \forall f \in H$ в бесконечномерном гильбертовом пространстве H. Очевидно, что ||U|| = 1, он он не компактный. Так как $\dim H = +\infty$, то существует линейно независимая последовательность $\{f_n\}_{n=1}^{\infty}$. Ортагонализируем её по Грамму-Шмитду и получим $\{e_n\}_{n=1}^{\infty}$, тогда

$$(Ue_n, Ue_m) = (e_n, e_m) = 0$$

 $||Ue_n||=1$, тогда

$$||Ue_n - Ue_m|| = \sqrt{||Ue_n||^2 + ||Ue_m||^2} = \sqrt{2}$$

для любых $n \neq m$, поэтому нет фундаментальной подпоследовательности и U не компактный.

Упражнение 2. Пусть оператор Af(x) = xf(x) в $L_2[0,1]$. A — самосопряжённный оператор. Показать, что A — не компактный оператор.

Докажем теперь утверждение

Доказательство. Если вдруг A — компактный и $||A|| = +\infty$, тогда $\exists \{f_n\}$ с единичной сферы такая, что $||Af_n|| \to +\infty$. Из компактности следует, что $\exists Af_{n_k}$ фундаментальная, то есть $Af_{n_k} \leq R$, а с другой стороны $||Af_{n_k}|| \to +\infty$. Получаем противоречие.

Утверждение 4. Пусть A_1 и A_2 — компактные операторы. Тогда их линейная комбинация также компактна (доказательство очевидно). Если $\{A_n\}_{n=1}^{\infty}$ — последовательность компактных операторов и $A_n \to T$ по операторной норме, тогда T также компактный.

Доказательство. Возмём последовательность f_n ограниченную в H и $||f_n|| \le R$. Рассмотрим $\{A_1f_n\}$ — это действие компактного оператора на ограниченную последовательность, тогда по определению $\exists \{n_k(1)\}_{k=1}^\infty \colon n_1(1) < n_2(1) < \cdots \Rightarrow A_1 f_{n_k(1)} - \varphi$ ундаментальная. Дальше действуем оператором A_2 , тогда $\exists \{n_k(2)\} \subset \{n_k(1)\}: n_1(2) < n_2(2) < \cdots \Rightarrow A_2 f_{n_k(2)} - \varphi$ ундаментальная, причём $A_1 f_{n_k(2)}$ осталась фундаментальной как подпоследовательность фундаментальной. Будем действовать так дальше. Реализуем Канторов диагональный процесс. Если для $m \in \mathbb{N}$ имеем $\{n_k(m)\}\subset \{n_k(m-1)\}\subset \cdots\subset \{n_k(1)\}\subset \mathbb{N}$ так что $\{A_sf_{n_k(m)}\}_{k=1}^\infty$ — фундаментальная $\forall s = 1 \dots m$. Тогда рассмотрим $\{A_{m+1}f_{n_k(m)}\}$, тогда, используя компактность, $\exists \{n_k(m+1)\} \subset \{n_k(m)\}$ такой, что $n_1(m+1) < n_2(m+1) < \dots$ такая, что $\{A_{m+1}f_{n_k(m+1)}\}$ фундаментальная. Остальные же сохранили фундаментальность, так как мы перешли к подпоследовательности фундаментальной последовательности, которая также фундаментальна. Таким образом мы по индукции реализовали счётный набор последовательностей натуральных чисел. Рассмотрим $\{n_k(k)\}_{k=1}^{\infty}$. $n_{k+1} \ge n_{k+1}(k)$ по построению и $n_{k+1}(k) > n_k(k)$ по определению, тогда $\{n_k(k)\}_{k=1}^{\infty}$ строго возрастающая последовательность чисел. Тогда $\{f_{n_k(k)}\}$ фундаментальная подпоследовательность. Рассмотрим действие оператора T на эту подпоследовательность. Надо доказать, что малло при большом p

$$||Tf_{n_k(k)} - Tf_{n_{k+n}(k+p)}||$$

должно быть мало. Добавим умный ноль

$$||Tf_{n_k(k)} - Tf_{n_{k+n}(k+p)} \pm A_s f_{n_k(k)} \pm A_s f_{n_{k+n}(k+P)}||$$

Какое s надо взять? $||f_n|| \le R$ по условию, тогда

$$||f_n|| \le R \ \forall n : \forall \varepsilon > 0 \ \exists S(\varepsilon) : \forall s \ge S(\varepsilon) \ ||T - A_s|| \le \frac{\varepsilon}{R+1}$$

 $A_s f_{n_k(m)}$ — фундаментальна по k если $s \geq m$