Lógica Quântica

Assessment 1

2022-2023

Part 1

Definition 1. Given a linear map $f: H \longrightarrow K$ between Hilbert spaces H and K, its adjoint is the unique linear map $f^{\dagger}: K \longrightarrow H$ such that, for all $v \in H$ and $w \in K$,

$$\langle f(v), w \rangle = \langle v, f^{\dagger}(w) \rangle$$
.

Exercise 1. Show that this construction is functorial, i.e. it defines a functor $(-)^{\dagger}$: $\mathbf{Hilb^{op}} \longrightarrow \mathbf{Hilb}$. Moreover, show that this functor is involutive, i.e. for any $f \colon H \longrightarrow K$, $(f^{\dagger})^{\dagger} = f$.

Part 2

Definition 2. A monoidal category is a category C equipped with:

- a functor \otimes : $\mathbf{C} \times \mathbf{C} \longrightarrow \mathbf{C}$ (called *tensor*);
- an object I of C (called the unit);
- natural isomorphisms α , λ , ρ with components

$$\alpha_{A,B,C} \colon A \otimes (B \otimes C) \xrightarrow{\cong} (A \otimes B) \otimes C$$
$$\lambda_A \colon I \otimes A \xrightarrow{\cong} A \qquad \rho_A \colon A \otimes I \xrightarrow{\cong} A$$

(called the associator, the left unitor, and the right unitor, respectively);

satisfying the equations

 $(\mathsf{id}_A \otimes \lambda_B) \circ \alpha_{A,I,B} = \rho_A \otimes \mathsf{id}_B$ and $(\mathsf{id}_A \times \alpha_{B,C,D}) \circ \alpha_{A,B \otimes C,D} \circ (\alpha_{A,B,C} \otimes \mathsf{id}_D) = \alpha_{A,B,C \otimes D} \circ \alpha_{A \otimes B,C,D}$ which are expressed by the commutativity of the following triangle a pentagon diagrams:

These equations guarantee what is called *coherence*: that all diagrams involving only α , λ , and ρ commute.

In any monoidal category, one can reason using string diagrams (and you may use those in this exercise if you prefer).

We have seen that any category C with binary products \times and a terminal object 1 is a monoidal category: exercise 3.13, exercise 4.7. Moreover, we have seen in exercises 4.2 and 4.3 that, in the case of products there are natural transformations Δ , p, q with components

$$\delta_A \colon A \longrightarrow A \times A$$
, $p_{X,Y} \colon X \times Y \longrightarrow X$, $q_{X,Y} \colon X \times Y \longrightarrow Y$,

which one can interpret as *copying* and *projections*. The goal of this second part is to show a converse to this, therefore characterising products as precisely monoidal structures (tensors) that admit copying and projections in some sense.

Exercise 2. Let **C** be a monoidal category and suppose there are natural transformations with components of type

$$d_A: A \longrightarrow A \otimes A$$
, $p_{X,Y}: X \otimes Y \longrightarrow X$, $q_{X,Y}: X \otimes Y \longrightarrow Y$,

such that the following diagrams commute:

Show that \otimes gives a product structure, i.e. that $A \otimes B$ is the categorical product of A and B.