Notes on a general form for the Quantum optimal control Hamiltonian

March 18, 2019

Abstract

Notes on the form of Hamiltonian and rules for constructing the general matrix form of H. Some additional comments on notation.

1 Hamiltonian

A fairly general form of the system Hamiltonian we are interested in looks like this:

$$H_0 = \sum_i \omega_i a_i^{\dagger} a_i - \chi_{ii} a_i^{\dagger} a_i^{\dagger} a_i a_i - \sum_{i \neq j} \chi_{ij} a_i^{\dagger} a_i a_j^{\dagger} a_j$$

where a_i are "annihilation operators" that are operating on a subspace of the full Hilbert space (In a way I'll expand on below) $a|n\rangle = \sqrt{n}|n-1\rangle$,

$$a = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \sqrt{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & \sqrt{n_a - 1} \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$
 (1)

a is a matrix of size $n_a \times n_a$. $|n\rangle$ is a column vector where only the nth entry is nonzero

$$\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

The lowering operator a_i is constructed using Kronecker products,

More detail on this flaky notation

$$\langle A|B\rangle \doteq A_1^*B_1 + A_2^*B_2 + \dots + A_N^*B_N = \begin{pmatrix} A_1^* & A_2^* & \dots & A_N^* \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \\ \vdots \\ B_N \end{pmatrix}$$

and

$$|\phi\rangle\langle\psi| \doteq \begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_N \end{pmatrix} \begin{pmatrix} \psi_1^* & \psi_2^* & \cdots & \psi_N^* \end{pmatrix} = \begin{pmatrix} \phi_1\psi_1^* & \phi_1\psi_2^* & \cdots & \phi_1\psi_N^* \\ \phi_2\psi_1^* & \phi_2\psi_2^* & \cdots & \phi_2\psi_N^* \\ \vdots & \vdots & \ddots & \vdots \\ \phi_N\psi_1^* & \phi_N\psi_2^* & \cdots & \phi_N\psi_N^* \end{pmatrix}$$

The full Hamiltonian is built up from tensor products of a and a^{\dagger} operators acting on tensored subspaces. For example, in the case of qubits, each a acts on a two level subsystem.

$$a = \left(\begin{array}{cc} 0.0 & 1.0\\ 0.0 & 0.0 \end{array}\right)$$

the full Hamiltonian matrix H for a two qubit system would then be made up of products of operators $a_0=a\otimes I_2$ and $a_1=I_2\otimes a$ that look like

$$a_0 = a \otimes I_2 = \left(\begin{array}{cccc} 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{array}\right)$$

$$a_1 = I_2 \otimes a = \left(\begin{array}{cccc} 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{array}\right)$$

Here, I_2 is the 2x2 identity.

So the full Hamiltonian for a two qubit system would look like

$$H = \omega_0(a \otimes I_2)^{\dagger}(a \otimes I_2) + \omega_1(I_2 \otimes a)^{\dagger}(I_2 \otimes a) + \chi_{00}(a \otimes I_2)^{\dagger}(a \otimes I_2)^{\dagger}(a \otimes I_2)(a \otimes I_2) + \chi_{11}(I_2 \otimes a)^{\dagger}(I_2 \otimes a)^{\dagger}(I_2 \otimes a)(I_2 \otimes a) + \chi_{01}(a \otimes I_2)^{\dagger}(a \otimes I_2)(I_2 \otimes a)^{\dagger}(I_2 \otimes a)$$

2 Control terms

$$H_c = \sum_k \mathcal{F}(t, \underline{\alpha}_k)(a_k + a_k^{\dagger}) + \sum_k i\mathcal{G}(t, \underline{\alpha}_k)(a_k^{\dagger} - a_k)$$
 (2)

3 example problem

3.1 state to state transfer

The objective is to solve for the control signals that will take the system from some predefined initial state ρ_0 to a target final state ρ_1

I this example we'll look at a problem suggested by Eric Holland that is fairly simple but physically relevant. The idea is that the system starts in a thermal state rather than the ideal ground state initial condition and our goal is to find a set of drives that quickly takes the system from this thermal state to the ground state. Here is

$$\rho_0 = \left(\begin{array}{cccccc} 0.909 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.083 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.008 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 6.830 \times 10^{-04} & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 6.209 \times 10^{-05} & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 5.645 \times 10^{-06} \end{array} \right)$$