Sistema de ayuda a la toma de decisión para inversiones en redes de telecomunicaciones y telefonía móvil bajo incertidumbre en la demanda

Autor: Alberto Bengoa Moreno Director: Carlos Vázquez Cendón

Departamento de Matemáticas Facultade de Informática de A Coruña

19 de julio de 2005

Índice

- Introducción
- Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- Desarrollo de la aplicación
- 6 Resultados
- 6 Posibles líneas futuras

Índice

- Introducción
- 2 Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- 4 Desarrollo de la aplicación
- 6 Resultados
- 6 Posibles líneas futura

Inversiones en redes de comunicaciones (I)

Infraestructuras de comunicaciones

- Proveedores de acceso a Internet: redes de fibra óptica ⇒ ancho de banda máximo para transmisión de datos
- Operadoras de telefonía móvil: clústers de telefonía ⇒ capacidad máxima de llamadas simultáneas atendidas

Infraestructuras

- Proporcionan beneficios a la empresa
- Necesitan de inversiones de capital

Demanda

Es el factor principal a tener en cuenta

- Alta incertidumbre
- Incidencia directa en el beneficio obtenido

Inversiones en redes de comunicaciones (I)

Infraestructuras de comunicaciones

- Proveedores de acceso a Internet: redes de fibra óptica ⇒ ancho de banda máximo para transmisión de datos
- Operadoras de telefonía móvil: clústers de telefonía ⇒ capacidad máxima de llamadas simultáneas atendidas

Infraestructuras

- Proporcionan beneficios a la empresa
- Necesitan de inversiones de capital

Demanda

Es el factor principal a tener en cuenta

- Alta incertidumbre
- Incidencia directa en el beneficio obtenido

Inversiones en redes de comunicaciones (I)

Infraestructuras de comunicaciones

- Proveedores de acceso a Internet: redes de fibra óptica ⇒ ancho de banda máximo para transmisión de datos
- Operadoras de telefonía móvil: clústers de telefonía ⇒ capacidad máxima de llamadas simultáneas atendidas

Infraestructuras

- Proporcionan beneficios a la empresa
- Necesitan de inversiones de capital

Demanda

Es el factor principal a tener en cuenta

- Alta incertidumbre
- Incidencia directa en el beneficio obtenido

Inversiones en redes de comunicaciones (y II)

Objetivo

Mejora de infraestructuras para un máximo beneficio y mínima inversión

Riesgos

- Poca demanda e infraestructuras con demasiada capacidad
- Mucha demanda e infraestructuras con capacidad insuficiente

en ambos casos se pierden beneficios: necesidad de realizar las inversiones de forma correcta.

Toma de decisiones clásica

Históricamente, se ha usado la regla

utilización > 50 % Capacidad máxima ⇒ Mejorar la red

Esta regla provoca sobredimensionamiento ⇒ pérdidas económicas

Inversiones en redes de comunicaciones (y II)

Objetivo

Mejora de infraestructuras para un máximo beneficio y mínima inversión

Riesgos

- Poca demanda e infraestructuras con demasiada capacidad
- Mucha demanda e infraestructuras con capacidad insuficiente

en ambos casos se pierden beneficios: necesidad de realizar las inversiones de forma correcta.

Toma de decisiones clásica

Históricamente, se ha usado la regla utilización > 50 % Capacidad máxima ⇒ Mejorar la red Esta regla provoca sobredimensionamiento ⇒ pérdidas económicas

Inversiones en redes de comunicaciones (y II)

Objetivo

Mejora de infraestructuras para un máximo beneficio y mínima inversión

Riesgos

- Poca demanda e infraestructuras con demasiada capacidad
- Mucha demanda e infraestructuras con capacidad insuficiente

en ambos casos se pierden beneficios: necesidad de realizar las inversiones de forma correcta.

Toma de decisiones clásica

Históricamente, se ha usado la regla utilización > 50 % Capacidad máxima ⇒ Mejorar la red Esta regla provoca sobredimensionamiento ⇒ pérdidas económicas

Nueva solución a la toma de decisiones

Valoración de redes

Desarrollo de modelos matemáticos que gobiernan el valor de las inversiones realizadas

- Similares a los de valoración de opciones
- Demanda: factor principal de riesgo
- Basados en ecuaciones en derivadas parciales de segundo orden

Los modelos proporcionan una medida objetiva para comparar diferentes inversiones ⇒ elegir la mejor ⇒ maximizar el beneficio

Nueva solución a la toma de decisiones

Valoración de redes

Desarrollo de modelos matemáticos que gobiernan el valor de las inversiones realizadas

- Similares a los de valoración de opciones
- Demanda: factor principal de riesgo
- Basados en ecuaciones en derivadas parciales de segundo orden

Los modelos proporcionan una medida objetiva para comparar diferentes inversiones \Rightarrow elegir la mejor \Rightarrow maximizar el beneficio

Aplicación software Modelos matemáticos+Métodos numéricos+Interfaz gráfica

Aplicación software Modelos matemáticos+Métodos numéricos+Interfaz gráfica V Sistema de avuda empresarial para toma de decisiones

Aplicación software

 $\begin{array}{c} \mathsf{Modelos} \ \mathsf{matem\'aticos} + \mathsf{M\'etodos} \ \mathsf{num\'ericos} + \mathsf{Interfaz} \ \mathsf{gr\'afica} \\ \Downarrow \end{array}$

Sistema de ayuda empresarial para toma de decisiones

Índice

- Introducción
- Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- Desarrollo de la aplicación
- Resultados
- Posibles líneas futuras

Índice

- Introducción
- 2 Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- 4 Desarrollo de la aplicación
- Resultados
- Posibles líneas futuras

Valoracion de lineas de fibra óptica

Líneas de fibra óptica

- Tienen un ancho de banda máximo
- Pueden mejorarse a líneas de mayor capacidad
- Beneficio
 - Directamente proporcional al ancho de banda utilizado
- Costes
 - De mejora a una línea superior
 - De mantenimiento

Ecuación de la línea

$$\frac{\partial V}{\partial t} + (\mu - \sigma k)Q\frac{\partial V}{\partial Q} + \frac{1}{2}\sigma^2 Q^2 \frac{\partial^2 V}{\partial Q^2} - rV + R = 0$$

- Dependiente de la demanda de ancho de banda y del tiempo
- Demanda: proceso estocástico $dQ = \mu Q dt + \sigma Q dZ$
- Mantenimiento de la línea y beneficio: varias formas de considerarlos. Por ejemplo

$$V(q, t^{-}) = V(q, t^{+}) - M_i d \Delta t_m$$

$$R(Q, t) = \min(Q, \overline{Q}_i) d P_0 e^{(-\alpha t)}$$

Ecuación de la línea

$$\frac{\partial V}{\partial t} + (\mu - \sigma k)Q\frac{\partial V}{\partial Q} + \frac{1}{2}\sigma^2 Q^2 \frac{\partial^2 V}{\partial Q^2} - rV + R = 0$$

- Dependiente de la demanda de ancho de banda y del tiempo
- Demanda: proceso estocástico $dQ = \mu \ Q \ dt + \sigma \ Q \ dZ$
- Mantenimiento de la línea y beneficio: varias formas de considerarlos. Por ejemplo

$$V(q, t^{-}) = V(q, t^{+}) - M_i d \Delta t_m$$

$$R(Q, t) = \min(Q, \overline{Q}_i) d P_0 e^{(-\alpha t)}$$

Ecuación de la línea

$$\frac{\partial V}{\partial t} + (\mu - \sigma k)Q\frac{\partial V}{\partial Q} + \frac{1}{2}\sigma^2 Q^2 \frac{\partial^2 V}{\partial Q^2} - rV + R = 0$$

- Dependiente de la demanda de ancho de banda y del tiempo
- Demanda: proceso estocástico $dQ = \mu \ Q \ dt + \sigma \ Q \ dZ$
- Mantenimiento de la línea y beneficio: varias formas de considerarlos. Por ejemplo

$$V(q, t^{-}) = V(q, t^{+}) - M_i d \Delta t_m$$

$$R(Q, t) = \min(Q, \bar{Q}_i) d P_0 e^{(-\alpha t)}$$

Ecuación de la línea

$$\frac{\partial V}{\partial t} + (\mu - \sigma k)Q\frac{\partial V}{\partial Q} + \frac{1}{2}\sigma^2 Q^2 \frac{\partial^2 V}{\partial Q^2} - rV + R = 0$$

- Dependiente de la demanda de ancho de banda y del tiempo
- Demanda: proceso estocástico $dQ = \mu \ Q \ dt + \sigma \ Q \ dZ$
- Mantenimiento de la línea y beneficio: varias formas de considerarlos. Por ejemplo

$$V(q, t^-) = V(q, t^+) - M_i d \Delta t_m$$

 $R(Q, t) = min(Q, \bar{Q}_i) d P_0 e^{(-\alpha t)}$

Propósito

Calcular en cada momento la mejor inversión para cada posible cantidad de demanda.

- ① Varios tipos de línea ⇒ conjunto de ecuaciones
- \bigcirc Horizonte de inversión: línea amortizada (valor = 0)
- Resolver hacia atrás en el tiempo todas las ecuaciones
- Para la toma de decisiones: comparar los valores de las diferentes líneas
 - Si la línea i tiene mayor valor que otra línea j de menor capacidad ⇒ mejorar j a i
- Continuar resolviendo y decidiendo hasta llegar al tiempo 0 (fecha actual)

Propósito

Calcular en cada momento la mejor inversión para cada posible cantidad de demanda.

- Varios tipos de línea ⇒ conjunto de ecuaciones
- 2 Horizonte de inversión: línea amortizada (valor = 0)
- Resolver hacia atrás en el tiempo todas las ecuaciones
- Para la toma de decisiones: comparar los valores de las diferentes líneas
 - Si la línea i tiene mayor valor que otra línea j de menor capacidad ⇒ mejorar i a i
- Continuar resolviendo y decidiendo hasta llegar al tiempo 0 (fecha actual)

Propósito

Calcular en cada momento la mejor inversión para cada posible cantidad de demanda.

- Varios tipos de línea ⇒ conjunto de ecuaciones
- ② Horizonte de inversión: línea amortizada (valor = 0)
- Resolver hacia atrás en el tiempo todas las ecuaciones
- Para la toma de decisiones: comparar los valores de las diferentes líneas
 - Si la línea i tiene mayor valor que otra línea j de menor capacidad \Rightarrow mejorar i a i
- Continuar resolviendo y decidiendo hasta llegar al tiempo 0 (fecha actual)

Propósito

Calcular en cada momento la mejor inversión para cada posible cantidad de demanda.

- Varios tipos de línea ⇒ conjunto de ecuaciones
- **2** Horizonte de inversión: línea amortizada (valor = 0)
- Resolver hacia atrás en el tiempo todas las ecuaciones
- Para la toma de decisiones: comparar los valores de las diferentes líneas
 - Si la línea i tiene mayor valor que otra línea j de menor capacidad ⇒ meiorar i a i
- Continuar resolviendo y decidiendo hasta llegar al tiempo 0 (fecha actual)

Propósito

Calcular en cada momento la mejor inversión para cada posible cantidad de demanda.

- Varios tipos de línea ⇒ conjunto de ecuaciones
- **2** Horizonte de inversión: línea amortizada (valor = 0)
- Resolver hacia atrás en el tiempo todas las ecuaciones
- Para la toma de decisiones: comparar los valores de las diferentes líneas
 - Si la línea i tiene mayor valor que otra línea j de menor capacidad ⇒ mejorar j a i
- Continuar resolviendo y decidiendo hasta llegar al tiempo 0 (fecha actual)

Propósito

Calcular en cada momento la mejor inversión para cada posible cantidad de demanda.

- Varios tipos de línea ⇒ conjunto de ecuaciones
- **2** Horizonte de inversión: línea amortizada (valor = 0)
- Resolver hacia atrás en el tiempo todas las ecuaciones
- Para la toma de decisiones: comparar los valores de las diferentes líneas
 - Si la línea i tiene mayor valor que otra línea j de menor capacidad \Rightarrow mejorar j a i
- Continuar resolviendo y decidiendo hasta llegar al tiempo 0 (fecha actual)

Decisiones a tomar

Consideraciones adicionales

Incluye otros factores

- Costes de mantenimiento
- Costes de mejora
- Decaimiento de precios con el tiempo
- etc

Algoritmo de decisión: garantiza tomar decisiones óptimas.

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de línea presentes, el algoritmo proporciona una decisión de la forma

Mejorar la línea al tipo Z si su utilización supera el X % de su ancho de banda máximo

Decisiones a tomar

Consideraciones adicionales

Incluye otros factores

- Costes de mantenimiento
- Costes de mejora
- Decaimiento de precios con el tiempo
- etc

Algoritmo de decisión: garantiza tomar decisiones óptimas.

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de línea presentes, el algoritmo proporciona una decisión de la forma

Mejorar la línea al tipo Z si su utilización supera el X % de su ancho de handa máximo

Índice

- Introducción
- Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- 4 Desarrollo de la aplicación
- Resultados
- Posibles líneas futuras

Valoración de *clusters* de telefonía móvil

Clusters de telefonía móvil

- Compuestos de estaciones base
- Capacidad máxima de atender llamadas
- Superada la capacidad máxima ⇒ bloqueos en llamadas

Ecuación del cluster

Muy similar a la de las líneas de fibra óptica, calcula V=V(Q,t)

$$\frac{\partial V}{\partial t} + (\mu - \sigma k)Q\frac{\partial V}{\partial Q} + \frac{1}{2}\sigma^2 Q^2 \frac{\partial^2 V}{\partial Q^2} - rV + R = 0$$

Pequeñas diferencias

- Parámetros inexistentes (p. ej. longitud de la línea)
- Expresiones diferentes para
 - Mantenimiento
 - Reneficio
 - Costes de mejora
- La resolución se realiza aplicando los mismos métodos

Ecuación del cluster

000000

Muy similar a la de las líneas de fibra óptica, calcula V=V(Q,t)

$$\frac{\partial V}{\partial t} + (\mu - \sigma k)Q\frac{\partial V}{\partial Q} + \frac{1}{2}\sigma^2 Q^2 \frac{\partial^2 V}{\partial Q^2} - rV + R = 0$$

Pequeñas diferencias

- Parámetros inexistentes (p. ej. longitud de la línea)
- Expresiones diferentes para
 - Mantenimiento
 - Beneficio
 - Costes de mejora
- La resolución se realiza aplicando los mismos métodos

Propósito

Calcular en cada momento la mejor inversión para cada posible demanda

Al igual que el de fibra ópica

Diferencias

- Posibilidad de solaparse varias decisiones en el tiempo
- Posibilidad de realizar los pagos de actualizaciones de forma fraccionada

Algoritmo más complicado

- Mayor ocupación de memoria
- Mayor coste computacional

Propósito

Calcular en cada momento la mejor inversión para cada posible demanda

Al igual que el de fibra ópica

Diferencias

- Posibilidad de solaparse varias decisiones en el tiempo
- Posibilidad de realizar los pagos de actualizaciones de forma fraccionada

Algoritmo más complicado:

- Mayor ocupación de memoria
- Mayor coste computacional

Propósito

Calcular en cada momento la mejor inversión para cada posible demanda

Al igual que el de fibra ópica

Diferencias

- Posibilidad de solaparse varias decisiones en el tiempo
- Posibilidad de realizar los pagos de actualizaciones de forma fraccionada

Algoritmo más complicado:

- Mayor ocupación de memoria
- Mayor coste computacional

Descripción

- Varios posibles clústers ⇒ conjunto de ecuaciones parabólicas
- ② En el horizonte de inversión: clústers amortizados
- Resolver las ecuaciones hacia atrás en el tiempo
- Fechas de pago de mejoras: pagar un plazo de las mejoras pendientes
- Fechas de decisión: comparar las mejoras completas con los clústers sin mejorar
 - Seleccionar las opciones con mayor valor

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de clúster presentes, el algoritmo proporciona una decisión de la forma

Descripción

- Varios posibles clústers ⇒ conjunto de ecuaciones parabólicas
- En el horizonte de inversión: clústers amortizados
- Resolver las ecuaciones hacia atrás en el tiempo
- Sechas de pago de mejoras: pagar un plazo de las mejoras pendientes
- Fechas de decisión: comparar las mejoras completas con los clústers sin mejorar
 - Seleccionar las opciones con mayor valor

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de clúster presentes, el algoritmo proporciona una decisión de la forma

Descripción

- Varios posibles clústers ⇒ conjunto de ecuaciones parabólicas
- En el horizonte de inversión: clústers amortizados
- Resolver las ecuaciones hacia atrás en el tiempo
- Sechas de pago de mejoras: pagar un plazo de las mejoras pendientes
- Fechas de decisión: comparar las mejoras completas con los clústers sin mejorar
 - Seleccionar las opciones con mayor valor

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de clúster presentes, el algoritmo proporciona una decisión de la forma

Descripción

- Varios posibles clústers ⇒ conjunto de ecuaciones parabólicas
- ② En el horizonte de inversión: clústers amortizados
- Resolver las ecuaciones hacia atrás en el tiempo
- Fechas de pago de mejoras: pagar un plazo de las mejoras pendientes
- Fechas de decisión: comparar las mejoras completas con los clústers sin mejorar
 - Seleccionar las opciones con mayor valor

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de clúster presentes, el algoritmo proporciona una decisión de la forma

Descripción

- Varios posibles clústers ⇒ conjunto de ecuaciones parabólicas
- 2 En el horizonte de inversión: clústers amortizados
- Resolver las ecuaciones hacia atrás en el tiempo
- Fechas de pago de mejoras: pagar un plazo de las mejoras pendientes
- Fechas de decisión: comparar las mejoras completas con los clústers sin mejorar
 - Seleccionar las opciones con mayor valor

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de clúster presentes, el algoritmo proporciona una decisión de la forma

Descripción

- Varios posibles clústers ⇒ conjunto de ecuaciones parabólicas
- 2 En el horizonte de inversión: clústers amortizados
- Resolver las ecuaciones hacia atrás en el tiempo
- Fechas de pago de mejoras: pagar un plazo de las mejoras pendientes
- Fechas de decisión: comparar las mejoras completas con los clústers sin mejorar
 - Seleccionar las opciones con mayor valor

Resultados del algoritmo

Para cada una de las fechas de decisión y cada uno de los tipos de clúster presentes, el algoritmo proporciona una decisión de la forma

Índice

- Introducción
- 2 Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- 4 Desarrollo de la aplicación
- 6 Resultados
- 6 Posibles líneas futuras

Necesidad de los métodos numéricos

Ecuación parabólica involucrada

No se puede calcular de forma analítica una solución

• Pero la solución es necesaria para poder valorar las inversiones

Solución

Calcular una aproximación de la solución en lugar de la solución exacta Aplicación del método de elementos finitos a la ecuación

- Proporciona buenas aproximaciones si se utiliza la precisión necesaria
- Elevado coste computacional

Necesidad de los métodos numéricos

Ecuación parabólica involucrada

No se puede calcular de forma analítica una solución

• Pero la solución es necesaria para poder valorar las inversiones

Solución

Calcular una aproximación de la solución en lugar de la solución exacta Aplicación del método de elementos finitos a la ecuación

- Proporciona buenas aproximaciones si se utiliza la precisión necesaria
- Elevado coste computacional

Ecuación involucrada

La ecuación es de dos variables (tiempo y capacidad)

Aplicar método de elementos finitos para ecuaciones parabólicas

Alternativa

- Descompone la ecuación evolutiva (de dos variables) en un conjunto de ecuaciones estacionarias (de una variable, la demanda)
 - Una ecuación para cada instante de tiempo
- Cada aproximación depende de la calculada en el paso anterior
- Comienza en el horizonte de inversión y termina en el instante actual
 Apropiado para el tipo de ecuación parabólica particular

Ecuación involucrada

La ecuación es de dos variables (tiempo y capacidad)

Aplicar método de elementos finitos para ecuaciones parabólicas

Alternativa

- Descompone la ecuación evolutiva (de dos variables) en un conjunto de ecuaciones estacionarias (de una variable, la demanda)
 - Una ecuación para cada instante de tiempo
- Cada aproximación depende de la calculada en el paso anterior
- Comienza en el horizonte de inversión y termina en el instante actual

Ecuación involucrada

La ecuación es de dos variables (tiempo y capacidad)

Aplicar método de elementos finitos para ecuaciones parabólicas

Alternativa

- Descompone la ecuación evolutiva (de dos variables) en un conjunto de ecuaciones estacionarias (de una variable, la demanda)
 - Una ecuación para cada instante de tiempo
- Cada aproximación depende de la calculada en el paso anterior
- Comienza en el horizonte de inversión y termina en el instante actual propiado para el tipo de ecuación parabólica particular

Ecuación involucrada

La ecuación es de dos variables (tiempo y capacidad)

Aplicar método de elementos finitos para ecuaciones parabólicas

Alternativa

- Descompone la ecuación evolutiva (de dos variables) en un conjunto de ecuaciones estacionarias (de una variable, la demanda)
 - Una ecuación para cada instante de tiempo
- Cada aproximación depende de la calculada en el paso anterior
- Comienza en el horizonte de inversión y termina en el instante actual apropiado para el tipo de ecuación parabólica particular

Ecuación involucrada

La ecuación es de dos variables (tiempo y capacidad)

Aplicar método de elementos finitos para ecuaciones parabólicas

Alternativa

Aplicar el método de características y el de elementos finitos en una dimensión

- Descompone la ecuación evolutiva (de dos variables) en un conjunto de ecuaciones estacionarias (de una variable, la demanda)
 - Una ecuación para cada instante de tiempo
- Cada aproximación depende de la calculada en el paso anterior
- Comienza en el horizonte de inversión y termina en el instante actual

Apropiado para el tipo de ecuación parabólica particular

Ecuación involucrada

La ecuación es de dos variables (tiempo y capacidad)

Aplicar método de elementos finitos para ecuaciones parabólicas

Alternativa

Aplicar el método de características y el de elementos finitos en una dimensión

- Descompone la ecuación evolutiva (de dos variables) en un conjunto de ecuaciones estacionarias (de una variable, la demanda)
 - Una ecuación para cada instante de tiempo
- Cada aproximación depende de la calculada en el paso anterior
- Comienza en el horizonte de inversión y termina en el instante actual

Apropiado para el tipo de ecuación parabólica particular

Índice

- Introducción
- Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- Desarrollo de la aplicación
- 6 Resultados
- Posibles líneas futuras

Elección del lenguaje Java

¿Por qué Java?

Primeras fases del proyecto: implementación en Matlab

- Adecuado para la realización de prototipos
- Fácil manejo de matrices y resultados
- Ejecución lenta

Utilización de Java

- Desarrollo menos costoso
- Ejecución más rápida que Matlab
- Solución multiplataforma
- Permite implementar las partes críticas en FORTRAN en caso necesario

Elección del lenguaje Java

¿Por qué Java?

Primeras fases del proyecto: implementación en Matlab

- Adecuado para la realización de prototipos
- Fácil manejo de matrices y resultados
- Ejecución lenta

Utilización de Java

- Desarrollo menos costoso
- Ejecución más rápida que Matlab
- Solución multiplataforma
- Permite implementar las partes críticas en FORTRAN en caso necesario

Aplicación modular y gráfica

Interfaz gráfica de usuario

- Más intuitiva que la interfaz de línea de comandos
- Uso más fácil por usuarios no especializados en informática
 - Son los usuarios potenciales de la aplicación

Diseño modular

Permite añadir nuevas funcionalidades sin tener que modificar el código de la aplicación

- Mejoras futuras más sencillas
- Amplía el tiempo de vida de la aplicación

Aplicación modular y gráfica

Interfaz gráfica de usuario

- Más intuitiva que la interfaz de línea de comandos
- Uso más fácil por usuarios no especializados en informática
 - Son los usuarios potenciales de la aplicación

Diseño modular

Permite añadir nuevas funcionalidades sin tener que modificar el código de la aplicación

- Mejoras futuras más sencillas
- Amplía el tiempo de vida de la aplicación

Cálculo distribuído mediante CORBA

Características de los problemas

Uso intensivo del método de elementos finitos

- Elevado coste computacional
- Tiempos de ejecución altos

Soluciones

- Adquirir mejor hardware
- Implementar en código nativo (C++ o FORTRAN)
- Realizar los cálculos de forma distribuída

Implementación del cálculo distribuído

- Paralelización de grano grueso (tareas de alto nivel)
- Uso de ordenadores de propósito general y/o redes heterogéneas
- CORBA: permite llamadas remotas a métodos Java

Cálculo distribuído mediante CORBA

Características de los problemas

Uso intensivo del método de elementos finitos

- Elevado coste computacional
- Tiempos de ejecución altos

Soluciones

- Adquirir mejor hardware
- Implementar en código nativo (C++ o FORTRAN)
- Realizar los cálculos de forma distribuída

Implementación del cálculo distribuído

- Paralelización de grano grueso (tareas de alto nivel)
- Uso de ordenadores de propósito general y/o redes heterogéneas
- CORBA: permite llamadas remotas a métodos Java

Cálculo distribuído mediante CORBA

Características de los problemas

Uso intensivo del método de elementos finitos

- Elevado coste computacional
- Tiempos de ejecución altos

Soluciones

- Adquirir mejor hardware
- Implementar en código nativo (C++ o FORTRAN)
- Realizar los cálculos de forma distribuída

Implementación del cálculo distribuído

- Paralelización de grano grueso (tareas de alto nivel)
- Uso de ordenadores de propósito general y/o redes heterogéneas
- CORBA: permite llamadas remotas a métodos Java

Índice

- Introducción
- 2 Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- Desarrollo de la aplicación
- 6 Resultados
- Posibles líneas futura:

Resultados obtenidos (I)

Decisiones a tomar

Se especifican en la forma

Mejorar la red al tipo Z si su utilización supera el X % de su capacidad máxima

Efectos observados en el valor λ

- Para tiempos mayores ⇒ X mayor
 - Menor tiempo para amortizar la inversión
- Para mayor tiempo entre decisiones ⇒ X menor
 - No desperdiciar oportunidades
- Para costes de mejora mayores ⇒ X mayor
- Para costes de mantenimiento mayores ⇒ X mayor
- et o

Resultados obtenidos (I)

Decisiones a tomar

Se especifican en la forma

Mejorar la red al tipo Z si su utilización supera el X % de su capacidad máxima

Efectos observados en el valor X

- Para tiempos mayores ⇒ X mayor
 - Menor tiempo para amortizar la inversión
- Para mayor tiempo entre decisiones ⇒ X menor
 - No desperdiciar oportunidades
- Para costes de mejora mayores ⇒ X mayor
- Para costes de mantenimiento mayores ⇒ X mayor
- etc

Resultados obtenidos (y II)

Decisiones tomadas

El sistema propone valores entre el $80\,\%$ y el $120\,\%$ de la capacidad máxima

 Muy superiores a la regla del 50 % ⇒ redes empresariales sobredimensionadas

Decision for line:		1	
Time	To line 2	To line 3	To line 4
0.0	128,62 %	273,31 %	787,78 %
8.25	128,62 %	289,39 %	836,01 %
0.5	144,69 %	321,54 %	900,32 %
0.75	160,77 %	353,7 %	980,71 %
1.0	192,93 %	401,93 %	1077,17 %
1.25	225.08 %	450,16 %	1189,71 %
1.5	289,39 %	530,55 %	1318,33 %
1.75	385,85 %	627.01 %	1495,18 %
2.0	691,32 %	755.63 %	1688,1 %
2.25		1077,17 %	1945,34 %
2.5		1816.72 %	2282.96 %
2.75		-	2958,2 %
3.0			4437,3 %
3.25			9839,23 %
3.5			
3.75			
4.0			
4.25			
4.5			

Resultados obtenidos (y II)

Decisiones tomadas

El sistema propone valores entre el $80\,\%$ y el $120\,\%$ de la capacidad máxima

 Muy superiores a la regla del 50 % ⇒ redes empresariales sobredimensionadas

Decision for line:		1	
Time	To line 2	To line 3	To line 4
0.0	128,62 %	273,31 %	787,78 %
0.25	128,62 %	289,39 %	836,01 %
0.5	144,69 %	321,54 %	900,32 %
0.75	160,77 %	353,7 %	980,71 %
1.0	192,93 %	401,93 %	1077,17 %
1.25	225,08 %	450,16 %	1189,71 %
1.5	289,39 %	530,55 %	1318,33 %
1.75	385,85 %	627.01 %	1495,18 %
2.0	691,32 %	755,63 %	1688,1 %
2.25		1077,17 %	1945,34 %
2.5		1816,72 %	2282,98 %
2.75		-	2958,2 %
3.0			4437,3 %
3.25		-	9839,23 %
3.5			
3.75			
4.0			
4.25		-	
4.5			

Resultados del cálculo distribuído

Objetivos del sistema de cálculo distribuído

- Reducir el tiempo de ejecución de la aplicación
- Programación distribuída simple
 - Desarrollo más rápido
 - Mantenimiento más fácil

Hardware utilizado

Red Ethernet 10/100 PCs Intel PentiumIII 600Mhz, 128Mb RAM, SO Windows2000 Pruebas en entorno real, no académico

Resultados del cálculo distribuído

Objetivos del sistema de cálculo distribuído

- Reducir el tiempo de ejecución de la aplicación
- Programación distribuída simple
 - Desarrollo más rápido
 - Mantenimiento más fácil

Hardware utilizado

Red Ethernet 10/100 PCs Intel PentiumIII 600Mhz, 128Mb RAM, SO Windows2000 Pruebas en entorno real, no académico

Mejora en el tiempo de ejecución

Speedup conseguido

Objetivos alcanzados

- Fácil programación de los problemas de forma distribuída
- Buena mejora en los tiempos de ejecución
 - Problema de telefonía móvil: paralelización más compleja

Mejora en el tiempo de ejecución

Speedup conseguido

Objetivos alcanzados

- Fácil programación de los problemas de forma distribuída
- Buena mejora en los tiempos de ejecución
 - Problema de telefonía móvil: paralelización más compleja

- Análisis de dos problemas reales de telecomunicaciones
- Descripción con modelos matemáticos complejos
- Desarrollo y uso de métodos numéricos
- Evaluación y aplicación de optimizaciones
- Soluciones basadas en criterios de decisión objetivos
- Desarrollo de una aplicación de utilidad en el sector

- Análisis de dos problemas reales de telecomunicaciones
- Descripción con modelos matemáticos complejos
- Desarrollo y uso de métodos numéricos
- Evaluación y aplicación de optimizaciones
- Soluciones basadas en criterios de decisión objetivos
- Desarrollo de una aplicación de utilidad en el sector

- Análisis de dos problemas reales de telecomunicaciones
- Descripción con modelos matemáticos complejos
- Desarrollo y uso de métodos numéricos
- Evaluación y aplicación de optimizaciones
- Soluciones basadas en criterios de decisión objetivos
- Desarrollo de una aplicación de utilidad en el sector

- Análisis de dos problemas reales de telecomunicaciones
- Descripción con modelos matemáticos complejos
- Desarrollo y uso de métodos numéricos
- Evaluación y aplicación de optimizaciones
- Soluciones basadas en criterios de decisión objetivos
- Desarrollo de una aplicación de utilidad en el sector

- Análisis de dos problemas reales de telecomunicaciones
- Descripción con modelos matemáticos complejos
- Desarrollo y uso de métodos numéricos
- Evaluación y aplicación de optimizaciones
- Soluciones basadas en criterios de decisión objetivos
- Desarrollo de una aplicación de utilidad en el sector

- Análisis de dos problemas reales de telecomunicaciones
- Descripción con modelos matemáticos complejos
- Desarrollo y uso de métodos numéricos
- Evaluación y aplicación de optimizaciones
- Soluciones basadas en criterios de decisión objetivos
- Desarrollo de una aplicación de utilidad en el sector

- Análisis de dos problemas reales de telecomunicaciones
- Descripción con modelos matemáticos complejos
- Desarrollo y uso de métodos numéricos
- Evaluación y aplicación de optimizaciones
- Soluciones basadas en criterios de decisión objetivos
- Desarrollo de una aplicación de utilidad en el sector

Índice

- Introducción
- 2 Modelos matemáticos
 - Modelo de redes de acceso a Internet
 - Modelo de redes de telefonía móvil
- Método numérico
- 4 Desarrollo de la aplicación
- 6 Resultados
- 6 Posibles líneas futuras

Posibles mejoras en los modelos

Extensión de los modelos

- Aplicación de los modelos empleados a nuevos tipos de redes
- Incorporación de nuevos modelos
 - Nuevos tipos de redes
 - Modelos de varios factores para las redes desarrolladas
- Desarrollo de nuevos métodos numéricos
 - Alternativas al método de elementos finitos con características

Posibles mejoras a nivel de aplicación

En la aplicación

- Diseño modular ⇒ extensión sencilla
 - Módulos que implementen los nuevos modelos
 - Módulo para la generación de informes
 - Módulo para la recolección automática de parámetros
- Mejorar la interfaz gráfica
 - Modificación de parámetros de forma visual

En el sistema de cálculo distribuído

- Paralelización de grano fino
- Reimplementación optimizada del sistema
 - Sin modificar las interfaces externas
- Carga dinámica de nuevas características

Para más información

Valoración de redes de telecomunicaciones

Valoración de opciones

- Y. d'Halluin, P.A. Forsyth, K.R. Vetzal and G. Labahn, A Numerical PDE Approach For Pricing Callable Bonds. February 2nd, 2001
- C. Vázquez: An upwind numerical approach for an American and European options pricing problem, Applied Mathematics and Computation, vol 97,273-286, 1998