$L = \{a^{n}b^{n} : n \geqslant i\} \text{ is not exputer.}$ $L = \{ab\}$ $\{ab, aabb, aaabbb, ...\}$

Stepl: Assume Lis sagulor. Then there is an FA with n States accepting L.

Let $w = a^n b^n$. Then |w| = 2n > n $n \ge 1$ By pumping lemme, we write W= sry Z with | sry 1 <

We want to find i so that 24 = EL

$$|w|=2n>n$$

$$\omega = x y = \frac{2}{3}$$

$$a^{n-k}(a^k)^2b^n$$

$$(i = 2)$$

Pumpe J String

an-k alk bn

construction. * Lengue L is non-replace

{ aa, aaa, aaa, a...}

00 0 b c cx aa* b (bb)*b ccc (ccc)* 25) aak Ib(bl)* coc(coc)* Show that $L = \{a^{\beta} \mid \beta \text{ is a fraine number}\}$ is not regal Step1: Assume L is regular. Let no be the number of st in the FA accepting L Stope: Let be a prime number greater-than n (>> Let (w=a) By pumpiy Lemm, w an be written

Let
$$y = a^m$$
 for $m > 1$ and

$$1 \le |y| \le n$$

= $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

$$|xy^{i}z| = |xyz| + |y^{i-1}|$$

= $|xyz| + |y^{i-1}|$

hues: L'defined by enzymber expression $E = \frac{a^*b(a+b)^*}{\sqrt{1-1}}$ $G = \left(V / T / S / P \right) = \left\{ \underline{L}_{J} \underline{a} \underline{b}_{J} \underline{b} \underline{a}_{J} \underline{b} \underline{b}_{J} \underline{e}_{J} \right\}$ (n+b) $\frac{1}{\epsilon} \frac{1}{\epsilon} \frac{1}$ Quo has

- b/ $G = \{ S, A, B \}$ 1. {a,b}, S, P) {53, {a,b}, -> aA | E aB | bB | E