大阪大学大学院情報科学研究科 平成 28 年度 博士前期課程 入試問題 (A)情報工学

2016年7月25日

1 計算機システムとシステムプログラム

(1)

(1-1)

- a) (\mathbf{I}) $\mathbf{P} \mathbf{F} + \mathbf{$
- b) (コ) ノイマン型
- c) (\dot{p}) \mathcal{T} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D}
- d) (イ) オペコード
- e) (カ) オペランド

(1-2)

(1-2-1)

 $\frac{mn}{f}[s]$

(1-2-2)

$$\frac{n+m-1}{f}[s$$

(1-2-3)

$$\lim_{m \to \infty} \frac{m}{\frac{n+m-1}{f}} \equiv \lim_{m \to \infty} \frac{1}{\frac{n}{mf} + \frac{1}{f} - \frac{1}{mf}} = f$$

(1-2-3)

1ステージあたりの所要時間を短くすることによって、クロック周波数を高めることができる為、(1-2-3)より CPU の性能を高めることができる.

(1-3)

(1-3-1)

図 2 (1-3-1)

(1-3-2)

図 3 (1-3-2)

(2)

(2-1)

(2-1-1)

$$2 \times 0.8 + 50 \times 0.2 = 11.6[ns]$$

(2-1-2)

$$4 \times x + 50 \times (1 - x) = 11.6$$

 $x = 0.8347... \approx 0.84$
 $\therefore 84\%$

(2-2)

(2-2-1)

アクセスされた命令及びデータの周辺の場所(アドレス)に存在する命令やデータは参照されやすい. (2-2-2)

ある時刻に参照された命令やデータは、近しい時間に再度参照されやすい.

(2-3)

先述の参照局所性を活用し、使用頻度の高いデータを高速なキャッシュメモリに蓄積しておくことで、低速なメインメモリへのアクセスを極力減らし、処理を高速化することができる。CPU の動作周波数が高くなると、メインメモリへのアクセス速度との差から待ち状態が頻発し、CPU 使用率が低下するという現象を防ぐ.

3 【選択問題】離散構造

(1)

(1-1)

$$x_{115} = \text{False}, x_{214} = \text{True}, x_{841} = \text{Flase}$$

(1-2)

$$n^2 \cdot n^2 \cdot n^2 = n^6$$

(1-3)

$$\bigvee_{1 \le i \le n^2} x_{11i}$$

(1-4)

$$A(i,j) = \bigvee_{1 \le i \le n^2} x_{ijk}$$

(1-5)

$$A = \bigwedge_{1 \le i \le n^2} \bigwedge_{1 \le j \le n^2} A(i, j)$$

(1-6)

$$B = \bigwedge_{1 \leq i \leq n^2} \bigwedge_{1 \leq j < l \leq n^2} \bigwedge_{1 \leq k \leq n^2} \neg x_{ijk} \lor \neg x_{ilk}$$

(1-7)

$$C = \underset{1 \leq i < l \leq n^2}{\wedge} \underset{1 \leq j \leq n^2}{\wedge} \underset{1 \leq k \leq n^2}{\wedge} \neg x_{ijk} \lor \neg x_{ljk}$$

(1-8)

■(1-8-1)

$$x_{131} \wedge x_{142} \wedge x_{211} \wedge x_{222} \wedge x_{234} \wedge x_{321} \wedge x_{332} \wedge x_{344} \wedge x_{443}$$

■(1-8-2)

 $A \land B \land C \land D \land \text{assign}$ $\rightarrow x_{241} \lor x_{242} \lor x_{243} \lor x_{244} \land (\neg x_{211} \lor \neg x_{241}) \land (\neg x_{222} \lor \neg x_{242}) \land (\neg x_{234} \lor \neg x_{244})$ $\land x_{211} \land x_{222} \land x_{234} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{241} \lor x_{242} \lor x_{243} \lor x_{244} \land (\neg x_{241} \lor \neg x_{241}) \land (\neg x_{222} \lor \neg x_{242}) \land (\neg x_{234} \lor \neg x_{244})$ $\land x_{241} \land x_{222} \land x_{234} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{443}) \land x_{443} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{243}) \land x_{243} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{243}) \land x_{243} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{243}) \land x_{243} \land \text{others}$ $\rightarrow x_{243} \land (\neg x_{243} \lor \neg x_{243}) \land x_{243} \land \text{others}$

となり空節が導出できるので CFN 式は充足不能である. したがって命題を示すことができた.

(2)

(2-1)

$$R_3 = \{(1,1), (2,2), (3,3), (1,4)\}$$

(2-2)

全ての自然数 n において $S_n \neq S_{n+1}$ と仮定する.S の定義より $S_n \subseteq S_{n+1}$ したがって $|S_n| \leq S_{n+1}$. 仮定より $|S_n| < S_{n+1}$. ここで $\lim_{n \to \infty} S_n = \infty$. しかし,V は有限集合なので |V| は有限であるので矛盾.よって $S_n = S_{n+1}$ となる非負の n が存在する.

(2-3)

- ■反射性 定義より $\forall a:(a,a)\in S_n$ また, $aS^{-1}a=aSa$ なので $\forall a:(a,a)\in S_n^{-1}$. したがって $\forall a:aSa$ が 成り立つので反射性は成り立つ.
- ■対称性 $\forall a, b: aSb \Rightarrow aSb \land aS^{-1}b \Rightarrow bSa \land bS^{-1}a \Rightarrow bSa$ となり、対称性を有する.
- ■推移性 $aS_nb \Rightarrow \exists i: aR_ib$. また、 $bS_nc \Rightarrow \exists j: bR_jc$. このとき $aR_{i+j}c$ であるので aS_nc となる.したがって S_n は推移性を有する.同様にして S_n^{-1} も推移性が成り立つ.推移性のある集合は積について閉じているので S も推移性を有する.以上より,反射性,対称性,推移性を有するので,S は同値関係となる.

(2-4)

v が集合に属しており、属する任意の2ノードは互いに到達可能である集合

4 【選択問題】計算理論

(1)

(1-1)

(答) 1(00+11)*0

(1-2)

1番目102番目10003番目11104番目1000005番目1001106番目1110007番目111110

(答) 1111110

(1-3)

 $i \in \epsilon$ -closure(i) である.

(答)
$$\epsilon$$
-closure(i)={b,c,f,i,j}

(1-4)

 M_1 から ϵ -遷移を取り除いたオートマトン M_1' を考える。このオートマトンの状態遷移表は表??となる。作

表 1 オートマトン M_1' の状態遷移表

)
5
6
6
5
5
ı
5
5
6
6

成したオートマトン M_1' に対してサブセット構成法を適用し、決定性有限オートマトン M_1'' を作成する。こ

の状態遷移表は表??となる。 M_1'' の状態名を上から順に A,B,C,... とする。この問題では、決定性有限オート

表 2 オートマトン $M_1^{\prime\prime}$ の状態遷移表

	0	1
\rightarrow a	ϕ	b
b	d,k	g
$^{\mathrm{\{d,k\}}*}$	e	ϕ
g	ϕ	h
e	d,k	g
h	$_{ m d,k}$	g

マトンを作成するので、状態 a でいきなり 0 が入力された場合など、不受理となる場合に遷移する新たな (ゴミ捨て場的な *1) 状態を作成し、G とすれば求めるオートマトン M_2 が作成される。 M_2 の状態遷移表は表??、状態遷移図は図??となる。

表 3 $\,$ オートマトン M_2 の状態遷移表

	0	1
\rightarrow A	G	В
В	С	D
C^*	Ε	G
D	G	\mathbf{F}
\mathbf{E}	С	D
\mathbf{F}	С	D
G	G	G

図 4 M2 の状態遷移図

 $^{^{*1}}$ 本番でもこんな書き方したけど、減点はなかったらしい

(1-5)

オートマトン M_2 の簡約化を行う。

同値類 $\{A,D\}$, $\{G\}$, $\{B,E,F\}$, $\{C\}$ をそれぞれ状態 A', B', C', D' とおくと,求める M_3 の状態遷移図は図 $\ref{M_3}$ でなる.

図 5 M3 の状態遷移図

(2)

(2-1)

$$V_4 = V_1 \cup V_2 \cup \{S_4\}$$
, ただし $S_4 \not\in (V_1 \cup V_2)$
$$T_4 = T_1 \cup T_2$$

$$P_4 = \{S_4 \rightarrow S_1 S_2\} \cup P_1 \cup P_2$$

$(2-2)^{*2}$

 G_4 によって生成される任意の語 w は開始記号 S_4 より生成される。今, S_4 に対して文法 G_4 の生成規則の集合 P_4 に含まれる生成規則 $S_4 \to S_1S_2$ を用いることで,変数列 S_1S_2 が必ず得られる.

この時,変数 S_1 に対して適用できる生成規則は $P_1 \subset P_4$ にのみ含まれる.また, P_1 は G_1 の生成規則 の集合であるので, P_1 に含まれる生成規則は変数の集合 V_1 と終端記号の集合 T_1 の要素のみから構成される.よって, S_1 からは変数の集合 V_1 、終端記号の集合 T_1 ,生成規則の集合 P_1 を用いてしか語を生み出すことはできない.したがって, S_1 から文法 G_4 によって生成される語を Z_1 とすると Z_1 は $G_4'(V_1) \subset V_4$, $T_1(\subset T_4), P_1(\subset P_4), S_1$ から生成される.ここで, $G_1 = (V_1, T_1, P_1, S_1)$ であるから,語 Z_1 は開始記号 Z_1 から文法 Z_1 によって生成できる.よって, $Z_1 = L(G_1)$ である.

同様に、変数 S_2 に対し、文法 G_4 を用いて語 z_2 を生成することを考える。この時 z_2 の生成には、 V_2 、 T_2 、 P_2 を用いる必要がある。すると、 $G_2=(V_2,T_2,P_2,S_2)$ であるので、語 z_2 は開始記号 S_2 から文法 G_2 によって生成できるので、 $z_2=L(G_2)$ である。

以上の操作で開始記号 S_4 から文法 G_4 を用いると、語の生成にあったって開始記号 S_4 より変数列 S_1S_2 が必ず得られるので、生成される任意の語 w は、 $w=z_1z_2:z_1\in L(G_1),z_2\in L(G_2)$ の形になり、 $w\in L(G_4)$ となる.

(2-3)

 L_4 に属する任意の語を $w' = w_1'w_2'(w_1' \in L(G_1), w_2' \in L(G_2))$ とおく。

いま、 w_1' は文法 G_1 によって生成される語であるので、生成規則の集合 $P_1(\subset P_4)$ を用いる事で開始記号 $S_1(\subset V_4)$ から生成可能である。また、 w_2' も文法 G_2 によって生成される語であるので、生成規則の集合 $P_2(\subset P_4)$ を用いる事で開始記号 $S_2(\subset V_4)$ から生成可能である。よって、w' は変数列 S_1S_2 から生成規則の集合 P_4 に含まれる規則のみを用いて生成可能である。

また、変数列 S_1S_2 は生成規則 $S_4 \to S_1S_2$ ($\subset P_4$) を用いることで、 G_4 の開始記号 S_4 から生成可能である。以上より、 L_4 に属する任意の語 w' は G_4 の開始記号 S_4 から G_4 の生成規則の集合 P_4 に含まれる規則のみを用いて生成可能であることが示されたので、 G_4 により生成可能である。

^{*2} この解答は自信ないですゴメンナサイ