

Regression: Housing price prediction

house in square feet.

uniformity of the cell shape and so on.

Supervised learning

Learns from being given "right answers"

Regression

Predict a number

infinitely many possible outputs

Classification

predict categories

small number of possible outputs

a category,

all of a small set of possible outputs.

Unsupervised learning

Data only comes with inputs x, but not output labels y. Algorithm has to find structure in the data.

<u>Clustering</u> Group similar data points together.

<u>Dimensionality reduction</u> Compress data using fewer numbers.

Anomaly detection Find unusual data points.

Stanford ONLINE

DeepLearning.Al

Andrew Ng

$$w = w - \boxed{a} \frac{d}{dw} J(w)$$

If α is too <u>small</u>... Gradient descent may be slow.

If α is too large...

Gradient descent may:

- Overshoot, never reach minimum
- Fail to converge, diverge

may fail to converge and may even diverge.

© DeepLearning Al

Stanford ONLINE

4) 4:13 / 9:03

Can reach local minimum with fixed learning rate

not as large

large

Near a local minimum,

- Derivative becomes smaller
- Update steps become smaller

Can reach minimum without decreasing learning rate <

So that's the gradient descent algorithm,

Stanford ONLINE

@DeepLearning.Al

Andrew Ng

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \dots + w_nx_n + b$$

$$\overrightarrow{w} = \begin{bmatrix} w_1 & w_2 & w_3 & \dots & w_n \end{bmatrix} \quad \text{parameters}$$

$$b \quad \text{is a number}$$

$$\text{vector } \overrightarrow{\chi} = \begin{bmatrix} \chi_1 & \chi_2 & \chi_3 & \dots & \chi_n \end{bmatrix}$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \dots + w_n\chi_n + b$$

$$\text{dot product} \qquad \text{multiple linear regression}$$

which has just one feature.

for j in range(0,16): f = f + w[j] * x[j]

f + w[15] * x[15]

Vectorization

efficient -> scale to large datasets

now have to operate on.

Stanford ONLINE

Andrew Ng

Gradient descent
$$\overrightarrow{w} = (w_1 \ w_2 \ \cdots \ w_{16})$$
 parameters $\overrightarrow{d} = (d_1 \ d_2 \ \cdots \ d_{16})$

$$w = np.array([0.5, 1.3, ... 3.4])$$

 $d = np.array([0.3, 0.2, ... 0.4])$
compute $w_i = w_i - 0.1d_i$ for $i = 1...16$

Without vectorization

$$w_1 = w_1 - 0.1d_1$$

$$w_2 = w_2 - 0.1d_2$$

$$\vdots$$

$$w_{16} = w_{16} - 0.1d_{16}$$

for j in range
$$(0,16)$$
: $w = w - w$
 $w[j] = w[j] - 0$ w is assigned to w minus 0.1

times d. Behind the scenes,
Stanford ONLINE DeepLearning.AI

With vectorization

w = w - 0.1 * d

Andrew Ng

Addressing overfitting

Options

Stanford ONLINE

- 1. Collect more data
- 2. Select features
 - Feature selection in course 2
- 3. Reduce size of parameters

@DeepLearning.Al

- "Regularization" next videos

for training learning algorithms,

Stanford ONLINE

DeepLearning.Al

Andrew Ng

Andrew Ng