WHAT IS CLAIMED IS:

- 1. An organic light-emitting diode (OLED) device which produces substantially white light, comprising:
 - a) an anode;
 - b) a hole-transporting layer disposed over the anode;
- c) a blue light-emitting layer having a host doped with a blue light-emitting compound disposed directly on the hole-transporting layer and the blue light-emitting layer being doped with an electron-transporting or a hole-transporting material or both selected to improve efficiency and operational stability;
- d) an electron-transporting layer disposed over the blue lightemitting layer;
 - e) a cathode disposed over the electron-transporting layer; and
- f) the hole-transporting layer or electron-transporting layer, or both the hole-transporting layer and electron-transporting layer, being selectively doped with a compound which emits light in the yellow region of the spectrum which corresponds to an entire layer or a partial portion of a layer in contact with the blue light-emitting layer.
- 2. The OLED device of claim 1 wherein hole-transporting or the electron-transporting blue stabilizing dopant material is selected to be in a range of from .5 to 10 percent by volume of the host material and when both are used, they are selected to be in a range of from 1 to 20 percent by volume of the host material.
- 3. The OLED device of claim 1 wherein the hole-transporting blue stabilizing dopants in the blue light-emitting layer are:
 - 1,1-Bis(4-di-p-tolylaminophenyl)cyclohexane
 - 1,1-Bis(4-di-p-tolylaminophenyl)-4-phenylcyclohexane
 - 4,4'-Bis(diphenylamino)quadriphenyl
 - Bis(4-dimethylamino-2-methylphenyl)-phenylmethane

- N,N,N-Tri(p-tolyl)amine
- 4-(di-p-tolylamino)-4'-[4(di-p-tolylamino)-styryl]stilbene
- N,N,N',N'-Tetra-p-tolyl-4-4'-diaminobiphenyl
- N,N,N',N'-Tetraphenyl-4,4'-diaminobiphenyl
- N,N,N',N'-tetra-1-naphthyl-4,4'-diaminobiphenyl
- N,N,N',N'-tetra-2-naphthyl-4,4'-diaminobiphenyl
- N-Phenylcarbazole
- 4,4'-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB)
- 4,4'-Bis[N-(1-naphthyl)-N-(2-naphthyl)amino]biphenyl (TNB)
- 4.4"-Bis[N-(1-naphthyl)-N-phenylamino]p-terphenyl
- 4,4'-Bis[N-(2-naphthyl)-N-phenylamino]biphenyl
- 4,4'-Bis[N-(3-acenaphthenyl)-N-phenylamino]biphenyl
- 1,5-Bis[N-(1-naphthyl)-N-phenylamino]naphthalene
- 4,4'-Bis[N-(9-anthryl)-N-phenylamino]biphenyl
- 4,4"-Bis[N-(1-anthryl)-N-phenylamino]-p-terphenyl
- 4,4'-Bis[N-(2-phenanthryl)-N-phenylamino]biphenyl
- 4,4'-Bis[N-(8-fluoranthenyl)-N-phenylamino]biphenyl
- 4,4'-Bis[N-(2-pyrenyl)-N-phenylamino]biphenyl
- 4,4'-Bis[N-(2-naphthacenyl)-N-phenylamino]biphenyl
- 4,4'-Bis[N-(2-perylenyl)-N-phenylamino]biphenyl
- 4,4'-Bis[N-(1-coronenyl)-N-phenylamino]biphenyl
- 2,6-Bis(di-p-tolylamino)naphthalene
- 2,6-Bis[di-(1-naphthyl)amino]naphthalene
- 2,6-Bis[N-(1-naphthyl)-N-(2-naphthyl)amino]naphthalene
- N,N,N',N'-Tetra(2-naphthyl)-4,4"-diamino-p-terphenyl
- 4.4'-Bis{N-phenyl-N-[4-(1-naphthyl)-phenyl]amino}biphenyl
- 4,4'-Bis[N-phenyl-N-(2-pyrenyl)amino]biphenyl
- 2,6-Bis[N,N-di(2-naphthyl)amine]fluorene
- 1,5-Bis[N-(1-naphthyl)-N-phenylamino]naphthalene
- 4,4',4"-tris[(3-methylphenyl)phenylamino]triphenylamine (MTDATA)
- 4,4'-Bis[N-(3-methylphenyl)-N-phenylamino]biphenyl (TPD).

4. The OLED device of claim 1 wherein the electron-transporting blue stabilizing dopants in the blue light-emitting layer are:

BAlq

Aluminum trisoxine [alias, tris(8-quinolinolato)aluminum(III)]

Magnesium bisoxine [alias, bis(8-quinolinolato)magnesium(II)]

Bis[benzo{f}-8-quinolinolato]zinc (II)

Bis(2-methyl-8-quinolinolato)aluminum(III)-μ-oxo-bis(2-methyl-8-quinolinolato) aluminum(III)

Indium trisoxine [alias, tris(8-quinolinolato)indium]

Aluminum tris(5-methyloxine) [alias, tris(5-methyl-8-quinolinolato) aluminum(III)]

Lithium oxine [alias, (8-quinolinolato)lithium(I)]

Gallium oxine [alias, tris(8-quinolinolato)gallium(III)]

Zirconium oxine [alias, tetra(8-quinolinolato)zirconium(IV)].

- 5. The OLED device of claim 1 wherein the hole-transporting blue stabilizing dopant material is NPB and the electron-transporting blue stabilizing material is Alq.
- 6. The OLED device of claim 1 wherein the hole-transporting blue stabilizing dopant material is NPB and the electron-transporting blue stabilizing dopant material is BAlq.
- 7. The OLED device of claim 1 wherein the yellow lightemitting compound is:

$$R_5$$
 R_6
 R_4
 R_3

wherein R₁, R₂, R₃, R₄, R₅, R₆ represent one or more substituents on each ring where each substituent is individually selected from the following groups:

Group 1: hydrogen, or alkyl of from 1 to 24 carbon atoms;

Group 2: aryl or substituted aryl of from 5 to 20 carbon atoms;

Group 3: carbon atoms from 4 to 24 necessary to complete a fused aromatic ring of phenyl, naphthyl, anthracenyl, phenanthryl, pyrenyl, or perylenyl;

Group 4: heteroaryl or substituted heteroaryl of from 5 to 24 carbon atoms such as thiazolyl, furyl, thienyl, pyridyl, quinolinyl or other heterocyclic systems, which may be bonded via a single bond, or may complete a fused heteroaromatic ring system;

Group 5: alkoxylamino, alkylamino, or arylamino of from 1 to 24 carbon atoms; or

Group 6: fluorine, chlorine, bromine or cyano.

8. The OLED device of claim 6 wherein the yellow-emitting dopants includes 5,6,11,12-tetraphenylnaphthacene (rubrene); 6,11-diphenyl-5,12-bis(4-(6-methyl-benzothiazol-2-yl)phenyl)naphthacene (DBzR) or 5,6,11,12-tetra(2-naphthyl)naphthacene (NR), the formulas of which are shown below:

(NR).

9. The OLED device of claim 7 wherein the concentration of yellow-emitting dopants 5,6,11,12-tetraphenylnaphthacene (rubrene); 6,11-diphenyl-5,12-bis(4-(6-methyl-benzothiazol-2-yl)phenyl)naphthacene (DBzR) or 5,6,11,12-tetra(2-naphthyl)naphthacene (NR) is in a range of greater than 0 and less than 30% percent by volume of the host material.

or

10. The OLED device of claim 7 wherein the concentration of yellow-emitting dopants 5,6,11,12-tetraphenylnaphthacene (rubrene); 6,11-

diphenyl-5,12-bis(4-(6-methyl-benzothiazol-2-yl)phenyl)naphthacene (DBzR) or 5,6,11,12-tetra(2-naphthyl)naphthacene (NR) is preferably in a range of greater than 0 and less than 15 % percent by volume of the host material.

11. The OLED device of claim 1 wherein the blue dopant includes distyrylamine derivatives as shown by the formula

- 12. The OLED device of claim 1 wherein the blue emitting dopant further includes perylene and its derivatives.
- 13. The OLED device of claim 12 wherein the perylene derivative is 2,5,8,11-tetra-tert-butyl perylene (TBP).
- 14. The OLED device of claim 1 wherein the blue dopant is represented by the following formulas:

B-2

B-3

B-4

B-5

B-6

B-7

B-8

- 15. The OLED device of claim 1 wherein the concentration of blue emitting dopants, is in the range of greater than 0 and less than 10% percent by volume of the host material.
- 16. The OLED device of claim 1 wherein thickness of the hole-transporting layer is between 5 nm-300 nm.
- 17. The OLED device of claim 1 wherein the hole-transporting layer includes two or more sublayers, the sublayer closest to the blue light-emitting layer being doped with yellow-emitting dopants.
- 18. The OLED device of claim 17 wherein the dopant in the hole transport material is 5,6,11,12-tetraphenylnaphthacene (rubrene); 6,11-diphenyl-5,12-bis(4-(6-methyl-benzothiazol-2-yl)phenyl)naphthacene (DBzR); or 5,6,11,12-tetra(2-naphthyl)naphthacene (NR), and the thickness of the layer containing yellow dopant is in a range between 1 nm-300 nm.
- 19. The OLED device of claim 1 wherein thickness of the blue light-emitting layer is in a range between 5 nm-100 nm.
- 20. The OLED device of claim 1 wherein a hole-injecting layer is provided between the anode and the hole-transporting layer.
- 21. The OLED device of claim 20 wherein the hole-injecting layer comprises CFx, CuPC, or m-MTDATA.

- 22. The OLED device of claim 20 wherein the thickness of hole injecting layer is 0.1 nm-100 nm.
- 23. The OLED device of claim 1 wherein thickness of the electron-transporting layer is in a range between 5 nm-150 nm.
- 24. The OLED device of claim 1 wherein the cathode is selected from the group consisting of LiF/Al, Mg:Ag alloy, Al-Li alloy, and Mg-Al alloy.
- 25. The OLED device of claim 1 wherein the cathode is transparent.
- 26. The OLED device of claim 1 wherein the electron-transporting layer is transparent.
- 27. The organic light-emitting diode (OLED) device of claim 1 wherein the electron-transporting layer is doped with a green light-emitting dopant or a combination of green and yellow light-emitting dopants.
- 28. The OLED device of claim 27 wherein of the green dopant in the electron-transporting layer includes a coumarin compound.
- 29. The OLED device of claim 28 wherein the coumarin compound includes C545T or C545TB.
- 30. The OLED device of claim 27 wherein the green lightemitting dopant has the formula:

or

and compounds suitably represented by formulas:

G-3

; and

G-7

- 31. The OLED device of claim 27 wherein green dopant concentration is between 0.1-5% percent by volume of the host material.
- 32. The OLED device of claim 1 further including buffer layer disposed on the cathode layer.
- 33. The OLED device of claim 32 wherein thickness of the buffer layer is in a range between 1 nm-1000 nm.
- 34. The OLED device of claim 1 further including a color filter array disposed on the substrate or over the cathode.
- 35. The OLED device of claim 27 further including a color filter array disposed on the buffer layer.
- 36. The OLED device of claim 1 further including thin film transistors (TFTs) on the substrate to address the individual pixels.
- 37. The OLED device of claim 1 wherein the hole-transporting layer includes an aromatic tertiary amine.
- 38. The OLED device of claim 1 wherein the electron-transporting layer includes copper phthalocyanine compound.
- 39. The OLED device of claim 1 wherein the blue lightemitting layer includes host material selected from the group consisting of:

or

; and a blue light-emitting dopant includes

or derivatives thereof.

40. The OLED device of claim 1 wherein the blue lightemitting layer includes host material selected from the group consisting of:

or

a blue light-emitting dopant includes

or derivatives thereof.