PROGRAMMING USING C

WEEK 12 USER DEFINED FUNCTIONS – RECURSIVE FUNCTIONS

NAME: JAGADISH S A

CLASS: AIML B

REG NO: 241501071

A binary number is a combination of 1s and 0s. Its n^{th} least significant digit is the n^{th} digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the 4^{th} least significant digit.

Example

number = 23

- Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Constraints

 $0 \le number < 2^{31}$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The only line contains an integer, number.

Sample Case 0

```
STDIN Function
-----
32 → number = 32
Sample Output 0
0
Explanation 0
     Convert the decimal number 32 to binary number: 32_{10} = (100000)_2.
     The value of the 4th index from the right in the binary representation is 0.
Sample Case 1
Sample Input 1
STDIN Function
77 → number = 77
Sample Output 1
1
Explanation 1
     Convert the decimal number 77 to binary number: 77_{10} = (1001101)_2.
```

The value of the 4th index from the right in the binary representation is 1.

```
Answer: (penalty regime: 0 %)
```

Reset answer

```
1 . /*
     * Complete the 'fourthBit' function below.
 2
 3
    * The function is expected to return an INTEGER.
 5
    * The function accepts INTEGER number as parameter.
   int fourthBit(int number)
 8
 9 v {
      int binary[32];
10
        int i=0;
11
        while(number>0){
12 v
            binary[i]=number%2;
13
14
            number/=2;
15
            i++;
16
17
       if(i>=4){
18 v
           return binary[3];
19
20
21
        else
22
        return 0;
23 }
```

		Test	Expected	Got	
	✓	<pre>printf("%d", fourthBit(32))</pre>	0	0	✓
	✓	printf("%d", fourthBit(77))	1	1	✓

Passed all tests! 🗸

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the list, sorted ascending. If there is no p^{th} element, return 0.

Example

n = 20

p = 3

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

Returns:

int: the long integer value of the pth integer factor of n or, if there is no factor at that index, then 0 is returned

Constraints

 $1 \le n \le 10^{15}$

 $1 \le p \le 10^9$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The second line contains an integer p, the 1-based index of the factor to return.

Sample Case 0

Sample Input 0

STDIN Function

10 \rightarrow n = 10

3 \rightarrow p = 3

Sample Output 0

5

Explanation 0

Factoring n = 10 results in {1, 2, 5, 10}. Return the $p = 3^{rd}$ factor, 5, as the answer.

Sample Case 1

Sample Input 1

STDIN Function $10 \rightarrow n = 10$ $7 \rightarrow p = 5$

Sample Output 1

0

```
Answer: (penalty regime: 0 %)
```

Reset answer

```
1 . /*
    * Complete the 'pthFactor' function below.
 3
 4
    * The function is expected to return a LONG_INTEGER.
    * The function accepts following parameters:
    * 1. LONG_INTEGER n
    * 2. LONG_INTEGER p
8
9
10 long pthFactor(long n, long p)
11 v {
12
       int count=0;
       for (long i=1;i<=n;i++){
13 v
14 v
           if(n%i==0){
15
               count++;
16 •
               if(count==p){
17
                   return i;
18
19
20
21
        return 0;
22 }
```

		Test	Expected	Got	
~	/	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5	~
~	/	<pre>printf("%ld", pthFactor(10, 5))</pre>	0	0	✓
~	/	<pre>printf("%ld", pthFactor(1, 1))</pre>	1	1	~

Passed all tests! <