HeteroCL: A Multi-Paradigm Programming Infrastructure for Software-Defined Reconfigurable Computing

Yi-Hsiang Lai¹, Yuze Chi², Yuwei Hu¹, Jie Wang², Cody Hao Yu^{2,3}, Yuan Zhou¹, Jason Cong², Zhiru Zhang¹

¹Cornell University ²University of California, Los Angeles ³Falcon Computing Solutions, Inc.

Essential Techniques for Hardware Acceleration

Compute customization

- Parallelization
- Pipelining, etc.

Data type customization

- Low-bitwidth integer
- Fixed point, etc.

Memory customization

- Banking
- Data reuse, etc

There exists interdependence among different customizations

Hardware Customization in High-Level Synthesis

Driving example: convolutional kernel

```
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
  out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```

Algorithm#1

Compute Customization

Algorithm#2

Data Type Customization

Memory Customization

Algorithm#3

Entangled hardware customization and algorithm

- Less portable
- Less maintainable
- Less productive

```
#pragma HLS array_partition variable=filter dim=0
 hls::LineBuffer<3, N, ap fixed<8,4> > buf;
 hls::Window<3, 3, ap fixed<8,4> > window;
 for(int y = 0; y < N; y++) {
  for(int xo = 0; xo < N/M; xo++) {
                                   Custom compute
#pragma HLS pipeline II=1
                                   (Loop tiling)
   for(int xi = 0; xi < M; xi++) {
    int x = xo*M + xi;
                                   Custom data type
    ap fixed<8,4> acc = 0;
    ap_fixed<8,4> in = image[y][x]; (Quantization)
    buf.shift up(x);
                                   Custom memory
    buf.insert_top(in, x);
    window.shift left();
                                   (Reuse buffers)
    for(int r = 0; r < 2; r++)
     window.insert(buf.getval(r,x), i, 2);
    window.insert(in, 2, 2);
    if (y \ge 2 \&\& x \ge 2) {
     for(int r = 0; r < 3; r++) {
      for(int c = 0; c < 3; c++) {
       acc += window.getval(r,c) * kernel[r][c];
     out[y-2][x-2] = acc;
}}}
```

Decoupling Algorithm from Hardware Customization

HLS C

Algorithm#1

Compute Customization

Algorithm#2

Data Type Customization

Memory Customization

Algorithm#3

Entangled algorithm specification and customization schemes [1,2,3]

- [1] Intel HLS
- [2] Xilinx Vivado HLS
- [3] Canis, et al. FPGA'11

Halide, TVM, etc.

Algorithm#1,2

Data Type Customization

Memory Customization

Algorithm#3

Compute Customization

Memory Customization

Decoupled temporal schedules [4,5,6,7,8]

- [4] Ragan-Kelly, et al. SIGPLAN'13
- [5] Baghdadi, et al. arXiv'18
- [6] Rong, et al. arXiv'17
- [7] Pu, et al. TACO'17
- [8] Chen, et al. arXiv'18

HeteroCL

Algorithm#1,2,3

Compute Customization

Data Type Customization

Memory Customization

Fully decoupled customization schemes + Clean abstraction capturing the interdependence

Decoupled Compute Customization

HeteroCL code

Algorithm

Decoupled customization

```
s = hcl.create_schedule()
xo, xi = s[out].split(out.x, factor=M)
s[out].reorder(xi, xo, out.y)
```

Customization primitives

More productive / less labor-intensive

HLS code

```
for (int y = 0; y < N; y++)
  for (int x = 0; x < N; x++)
  for (int r = 0; r < 3; r++)
    for (int c = 0; c < 3; c++)
    out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```

```
for (int xi = 0; xi < M; xi++)
    for (int xo = 0; xo < N/M; xo++)
    for (int y = 0; y < N; y++)
        for (int r = 0; r < 3; r++)
        for (int c = 0; c < 3; c++)
        out[xi+xo*M, y] +=
        image[xi+xo*M+r, y+c] * kernel[r, c]</pre>
```

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
    axis=[r, c]))
```

```
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
  out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
    axis=[r, c]))

s = hcl.create_schedule()
linebuf = s[image].reuse_at(out, out.y)
```

```
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```



```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
        axis=[r, c]))

s = hcl.create_schedule()
linebuf = s[image].reuse_at(out, out.y)
winbuf = s[linebuf].reuse_at(out, out.x)
```

```
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
  out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```



```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
        axis=[r, c]))

s = hcl.create_schedule()
linebuf = s[image].reuse_at(out, out.y)
winbuf = s[linebuf].reuse_at(out, out.x)
```

```
for (int y = 0; y < N; y++)
  for (int x = 0; x < N; x++)
  for (int r = 0; r < 3; r++)
    for (int c = 0; c < 3; c++)
    out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```


Decoupled Data Type Customization

- Bit-accurate data type support (e.g., Int(15), Fixed(7,4))
- Decoupled customization primitives: downsize & quantize

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
        axis=[r, c]))

s = hcl.create_scheme()
s.quantize([out], Fixed(6, 4))
```

Decoupled Data Type Customization

- ▶ Bit-accurate data type support (e.g., Int(15), Fixed(7,4))
- Decoupled customization primitives: downsize & quantize

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
    axis=[r, c]))
```

```
for i in range(2, 8):
    s = hcl.create_scheme()
    s.quantize([out], Fixed(i, i-2))
```


Trade-off between accuracy and resource for a neural network

Currently Supported Customization Primitives

Compute customization

Primitive	Description			
Loop transformation				
C.split(i, v)	Split loop i of operation C into a two-level nest loop with v as the factor of the inner loop.			
C.fuse(i, j)	Fuse two sub-loops i and j of operation C in the same nest loop into one.			
C.reorder(i, j)	Switch the order of sub-loops i and j of operation C in the same nest loop.			
P.compute_at(C, i)	Merge loop i of the operation P to the corresponding loop level in operation C.			
Parallelization				
C.unroll(i, v)	Unroll loop i of operation C by factor v.			
C.parallel(i)	Schedule loop i of operation C in parallel.			
C.pipeline(i, v)	Schedule loop i of operation C in pipeline manner with a target initiation interval v.			

Data type customization

Primitive	Description
quantize(t, d)	Quantize a list of tensors t from floating to fixed point type d in the format defined in Table 2.
<pre>downsize(t, d)</pre>	Downsize a list of tensors t from integers with larger bitwidth to integers d with smaller bitwidth in the format defined in Table 2.

Memory customization

Primitive	Description
<pre>C.partition(i, v)</pre>	Partition dimension i of tensor C with a factor v.
<pre>C.reshape(i, v)</pre>	Pack dimension i of tensor C into words with a factor ν .
memmap(t, m)	Map a list of tensors t with mode m to new tensors. The mode m can be either vertical or horizontal.
P.reuse_at(C, i)	Create a reuse buffer storing the values of tensor P, where the values are reused at dimension i of operation C.

Macros for spatial architecture templates

Primitive	Description
C.stencil()	Specify operation C to be implemented with stencil with dataflow architectures using the SODA framework.
C.systolic()	Specify operation C to be implemented with systolic arrays using the PolySA framework.

Macro for Stencil with Dataflow Architecture

- A sliding window applied on a tensor
- For applications where data elements are updated with some fixed, local patterns
- Incorporate with SODA [Y. Chi, et al. ICCAD'18]
 - Scalable reuse buffers with minimum buffer size that achieve highest throughput

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
    lambda y, x:
        hcl.sum(image[x+r, y+c]*kernel[r, c],
        axis=[r, c]))

s = hcl.create_schedule()
s[out].stencil()
```


Macro for Systolic Array

- A group of PEs locally connected to each other
- For applications having perfectly nested loops with uniform dependency
- Incorporate with PolySA [J. Cong, et al. ICCAD'18]
 - Systematic and efficient design space exploration => Comparable performance to manual designs within hours

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
    lambda y, x:
        hcl.sum(image[x+r, y+c]*kernel[r, c],
        axis=[r, c]))

s = hcl.create_schedule()
s[out].systolic()
```


Imperative Programming in HeteroCL

- HeteroCL further provides an embedded imperative DSL
 - Not all algorithms can be described using declarative code
- Unified interface for applying hardware customization to both imperative and declarative codes

```
with hcl.for_(0, N) as y:
    with hcl.for_(0, N) as x:
    with hcl.for_(0, 3) as r:
        with hcl.for_(0, 3) as c:
        out[x, y] += image[x+r, y+c] * kernel[r, c]

s = hcl.create_schedule()
s[out].split(out.x, M)
linebuf = s[image].reuse_at(out, out.y)
s.quantize([out], Fixed(6, 4))
# ...
```


Explore the Interdependence: Dot Product

HeteroCL Compilation Flow

Evaluation with Amazon AWS f1

Stencil

vstolic

Benchmark	Application Field	+ stencil	+ unroll	+ quantize	Theoretical (limited by memory bandwidth)
Seidel	Image processing	0.2	2.9	5.9	6.8
Gaussian	Image processing	1.1	6.7	13.2	15.6
Jacobi	Linear algebra	0.4	2.3	5.0	5.4

Benchmark	Application Field	Back end	Data type	Performance (GOPs)	Speedup
GEMM	Matrix multiplication	CPU (Intel MKL)	float32	76.0	1.0
		FPGA	float32	245.9	3.2
			fixed16	807.6	10.6
LeNet	Convolutional neural network	CPU (TVM TOPI)	float32	15.4	1.0
		FPGA	float32	79.8	5.2
			fixed16	137.8	8.9

Benchmark	Application Field	Speedup	
KNN Digit Recognition	Image classification	12.5	
K-Means	Clustering	16.0	
Smith-Waterman	Genomic sequencing	20.9	

Rapidly achieve good speedup for a rich set of applications

Case Study: Binarized Neural Network (BNN)

- ECE 5775 (high-level digital design automation) at Cornell [1]
 - 34 students: graduates and senior undergrads
- ► In-class competition: higher speedup => higher score
 - Baseline: unoptimized BNN on ARM (Zynq)

– Time: two weeks

Optimized BNN in HLS C

```
template<int M, int N, int I, int L>
void conv(ap int<32> input[MAX FMAP PACK SIZE],
     ap_int<32> output[MAX_FMAP_PACK_SIZE],
     const ap int<8> threshold[MAX FMAP],
     hls::LineBuffer<F, I, bit> buf[M]) {
 int O = I - F + 1, ifmap size = I * I, ofmap size = O * O;
 hls::Window<F, F, bit> window[M];
 for (int y = 0; y < 0; y++) {
  for (int m = 0; m < M; m++) {
  #pragma HLS pipeline
   for( int x = 0; x < F - 1; x++) {
    int i index = x + (y + F - 1) * I + m * ifmap size;
    bit newBit = GET BIT(input, i index, PACK WIDTH LOG);
    fillBuffer<F, I>(window[m], buf[m], x, newBit);
  for (int x = 0; x < 0; x++) {
   for (int m = 0; m < M; m++) {
    int i index = x + F - 1 + (y + F - 1) * I + m * ifmap size;
    bit newBit = GET BIT(input, i index, PACK WIDTH LOG);
    fillBuffer<F, I>(window[m], buf[m], x + F - 1, newBit);
   for (int n = 0; n < N; n++) {
   #pragma HLS pipeline
    int sum = 0;
    int o index = x + y * O + n * ofmap size;
    for (int m = 0; m < M; m++) {
     int one out = 0, mac num = 0;
     for (int c = 0; c < F; c++) {
      for (int r = 0; r < F; r++) {
       if (if mac(x + c, y + r, I)) { //neglect\ padding\ pixels\ in\ mac}
        int i index = x + c + (y + r) * I + m * ifmap size;
        int w index = c + r * F + (n + m * N) * FILTER SIZE;
        if (L == 0) one out += window[m].getval(r, c) == w conv1[w index];
        else     one out += window[m].getval(r, c) == w conv2[w index];
        mac num++;
     sum += (one out << 1) - mac num;
    SET BIT(output, o index, PACK WIDTH LOG, sum > threshold[o index] ? 1:0);
```

Applied customization techniques

- Compute: tiling, pipelining, reordering
- Data type: bit packing
- Memory: partitioning, line buffer, window buffer

Compute customization

Data type customization

Memory customization

Optimized BNN in HeteroCL

- Development time: < 3 days</p>
- Final speedup: 63x

- **✓ More productive**
- √ More maintainable

```
rc = hcl.reduce axis(0, in fmaps)
ry = hcl.reduce axis(0, F)
rx = hcl.reduce axis(0, F)
C = hcl.compute((1, out_fmaps, O, O),
 lambda nn, ff, yy, xx:
 hcl.select(
     hcl.sum(A[nn,rc,yy+ry,xx+rx] * B[ff,rc,ry,rx], axis=[rc,ry,rx]) >
          threshold[nn,ff,yy,xx], 1, 0),
 dtype=hcl.UInt(1))
s.quantize(C, hcl.UInt(32))
s[C].split(C.axis[1], factor=5)
s[C].unroll(C.axis[2], factor=5)
s[C].pipeline(C.axis[3])
lb = s[A].reuse\_at(C, C.axis[0])
wb = s[lb].reuse_at(C, C.axis[1])
```

Conclusions

- HeteroCL is a multi-paradigm programming infrastructure
 - Decouples algorithm from compute, data type, and memory customization
 - Provides an abstraction capturing the interdependence and trade-offs
- Maps to spatial architecture templates with macros
 - Stencil with dataflow architecture
 - Systolic array
- Validated against a rich set of benchmarks from multiple domains
 - Image processing, linear algebra, deep learning, etc.

Algorithm

Compute Customization

Data Type Customization

Memory Customization

Next Stop

- Connecting with front-end DSLs
 - E.g., PyTorch & MXNet

Open source release of HeteroCL is coming soon!

HeteroCL

Yi-Hsiang Lai¹, Yuze Chi², Yuwei Hu¹, Jie Wang², Cody Hao Yu^{2,3}, Yuan Zhou¹, Jason Cong², Zhiru Zhang¹ ¹Cornell University, ²University of California, Los Angeles, ³Falcon Computing Solutions, Inc.

Questions?

