Analysis of the Adverse Health and Economic Impacts of US Storms

Jayant

4/2/2020

1: Synopsis

The goal of the assignment is to explore the NOAA Storm Database and explore the effects of severe weather events on both population and economy. The database covers the time period between 1950 and November 2011.

The following analysis investigates which types of severe weather events are most harmful on:

- 1. Health (injuries and fatalities)
- 2. Property and crops (economic consequences)

Information on the Data: Documentation

2: Data Processing

2.1: Data Loading

Extract the data into a dataframe from the raw data file. Then convert to a data.table

```
library("data.table")
library("ggplot2")
stormDF <- read.csv("/Users/jayant/Desktop/Test/ReproData/Peer2/ReproResearchProj2/repdata_data_StormData/
# Converting data.frame to data.table
stormDT <- as.data.table(stormDF)</pre>
```

2.2: Examining Column Names

```
colnames(stormDT)
```

```
##
    [1] "STATE__"
                      "BGN_DATE"
                                    "BGN_TIME"
                                                  "TIME_ZONE"
                                                                "COUNTY"
                                                               "BGN_AZI"
    [6] "COUNTYNAME" "STATE"
                                    "EVTYPE"
                                                  "BGN_RANGE"
       "BGN LOCATI"
                      "END DATE"
                                    "END TIME"
                                                  "COUNTY END" "COUNTYENDN"
## [16]
        "END_RANGE"
                      "END_AZI"
                                    "END_LOCATI" "LENGTH"
                                                                "WIDTH"
        "F"
                      "MAG"
                                    "FATALITIES"
                                                 "INJURIES"
                                                                "PROPDMG"
   [26]
        "PROPDMGEXP" "CROPDMG"
                                    "CROPDMGEXP" "WFO"
                                                               "STATEOFFIC"
   [31]
        "ZONENAMES"
                      "LATITUDE"
                                    "LONGITUDE"
                                                  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"
                      "REFNUM"
```

2.3: Data Subsetting

Subset the dataset on the parameters of interest. Basically, we remove the columns we don't need for clarity.

```
# Finding columns to remove
cols2Remove <- colnames(stormDT[, !c("EVTYPE"</pre>
  , "FATALITIES"
   "INJURIES"
   "PROPDMG"
  , "PROPDMGEXP"
  , "CROPDMG"
  , "CROPDMGEXP")])
# Removing columns
stormDT[, c(cols2Remove) := NULL]
# Only use data where fatalities or injuries occurred.
stormDT <- stormDT[(EVTYPE != "?" &</pre>
             (INJURIES > 0 | FATALITIES > 0 | PROPDMG > 0 | CROPDMG > 0)), c("EVTYPE"
                                                                                , "FATALITIES"
                                                                                 "INJURIES"
                                                                                  "PROPDMG"
                                                                                 "PROPDMGEXP"
                                                                                , "CROPDMG"
                                                                                  "CROPDMGEXP") ]
```

2.4: Converting Exponent Columns into Actual Exponents instead of (-,+, H, K, etc)

Making the PROPDMGEXP and CROPDMGEXP columns cleaner so they can be used to calculate property and crop cost.

```
# Change all damage exponents to uppercase.
cols <- c("PROPDMGEXP", "CROPDMGEXP")</pre>
stormDT[, (cols) := c(lapply(.SD, toupper)), .SDcols = cols]
# Map property damage alphanumeric exponents to numeric values.
propDmgKey <- c("\""" = 10^0,
                  "-" = 10^0,
                  "+" = 10^0,
                  "0" = 10^{\circ}0,
                  "1" = 10^1,
                  "2" = 10^2,
                  "3" = 10^3,
                  "4" = 10^4,
                  "5" = 10^5,
                  "6" = 10^6,
                  "7" = 10^7,
                  "8" = 10^8,
                  "9" = 10^9,
                  "H" = 10^2,
                  "K" = 10^3,
                  "M" = 10^6,
                  "B" = 10^9
# Map crop damage alphanumeric exponents to numeric values
cropDmgKey <- c("\"\"" = 10^0,
                 "?" = 10^0,
```

```
"0" = 10^0,
"K" = 10^3,
"M" = 10^6,
"B" = 10^9)
stormDT[, PROPDMGEXP := propDmgKey[as.character(stormDT[,PROPDMGEXP])]]
stormDT[is.na(PROPDMGEXP), PROPDMGEXP := 10^0]
stormDT[, CROPDMGEXP := cropDmgKey[as.character(stormDT[,CROPDMGEXP])]]
stormDT[is.na(CROPDMGEXP), CROPDMGEXP := 10^0]
```

2.5: Making Economic Cost Columns

```
stormDT <- stormDT[, .(EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, propCost = PROPDMG * PROPDMGE
```

2.6: Calcuating Total Property and Crop Cost

```
totalCostDT <- stormDT[, .(propCost = sum(propCost), cropCost = sum(cropCost), Total_Cost
totalCostDT <- totalCostDT[order(-Total_Cost), ]
totalCostDT <- totalCostDT[1:10, ]
head(totalCostDT, 5)</pre>
## EVTYPE propCost cropCost Total_Cost
## 1: FLOOD 144657709807 5661968450 150319678257
```

```
## 1: FLOOD 144657709807 5661968450 150319678257
## 2: HURRICANE/TYPHOON 69305840000 2607872800 71913712800
## 3: TORNADO 56947380677 414953270 57362333947
## 4: STORM SURGE 43323536000 5000 43323541000
## 5: HAIL 15735267513 3025954473 18761221986
```

2.7: Calcuating Total Fatalities and Injuries

```
totalInjuriesDT <- stormDT[, .(FATALITIES = sum(FATALITIES), INJURIES = sum(INJURIES), totals = sum(FATALITIES), intotalInjuriesDT <- totalInjuriesDT[order(-FATALITIES), intotalInjuriesDT <- totalInjuriesDT[1:10, intotalInjuriesDT, 5)</pre>
```

```
##
              EVTYPE FATALITIES INJURIES totals
## 1:
             TORNADO
                           5633
                                   91346 96979
                                    6525
## 2: EXCESSIVE HEAT
                           1903
                                           8428
## 3: FLASH FLOOD
                            978
                                    1777
                                           2755
## 4:
                HEAT
                            937
                                    2100
                                           3037
          LIGHTNING
## 5:
                            816
                                    5230
                                           6046
```

3: Results

3.1: Events that are Most Harmful to Population Health

Melting data.table so that it is easier to put in bar graph format

```
bad_stuff <- melt(totalInjuriesDT, id.vars="EVTYPE", variable.name = "bad_thing")
head(bad_stuff, 5)</pre>
```

```
## EVTYPE bad_thing value
## 1: TORNADO FATALITIES 5633
## 2: EXCESSIVE HEAT FATALITIES 1903
## 3: FLASH FLOOD FATALITIES 978
## 4: HEAT FATALITIES 937
## 5: LIGHTNING FATALITIES 816
```

```
# Create chart
healthChart <- ggplot(bad_stuff, aes(x=reorder(EVTYPE, -value), y=value))
# Plot data as bar chart
healthChart = healthChart + geom_bar(stat="identity", aes(fill=bad_thing), position="dodge")
# Format y-axis scale and set y-axis label
healthChart = healthChart + ylab("Frequency Count")
# Set x-axis label
healthChart = healthChart + xlab("Event Type")
# Rotate x-axis tick labels
healthChart = healthChart + theme(axis.text.x = element_text(angle=45, hjust=1))
# Set chart title and center it
healthChart = healthChart + ggtitle("Top 10 US Killers") + theme(plot.title = element_text(hjust = 0.5)
healthChart</pre>
```


3.2: Events that have the Greatest Economic Consequences

Melting data.table so that it is easier to put in bar graph format

econChart

```
econ_consequences <- melt(totalCostDT, id.vars="EVTYPE", variable.name = "Damage_Type")</pre>
head(econ_consequences, 5)
##
                 EVTYPE Damage_Type
                                           value
## 1:
                           propCost 144657709807
                  FLOOD
## 2: HURRICANE/TYPHOON
                           propCost 69305840000
## 3:
                TORNADO
                           propCost 56947380677
            STORM SURGE
## 4:
                           propCost 43323536000
## 5:
                   HAIL
                           propCost 15735267513
# Create chart
econChart <- ggplot(econ_consequences, aes(x=reorder(EVTYPE, -value), y=value))</pre>
# Plot data as bar chart
econChart = econChart + geom_bar(stat="identity", aes(fill=Damage_Type), position="dodge")
# Format y-axis scale and set y-axis label
econChart = econChart + ylab("Cost (dollars)")
# Set x-axis label
econChart = econChart + xlab("Event Type")
# Rotate x-axis tick labels
econChart = econChart + theme(axis.text.x = element_text(angle=45, hjust=1))
# Set chart title and center it
econChart = econChart + ggtitle("Top 10 US Storm Events causing Economic Consequences") + theme(plot.ti
```


Event Type