

Autoignition of *n*-Butanol at Elevated Pressure and Low- to Intermediate-Temperature Using a Rapid Compression Machine

Bryan Weber

Prepared for Master's Thesis Defense July 21, 2010

Outline of Presentation

- Background
- Literature Review
- Experimental Apparatus
- RCM Test Matrix
- Check Mixture Composition
- RCM Results and Discussion
- Summary

Background (1)

- Environmental and geopolitical concerns are driving demand for a new type of fuel
- This new fuel should be renewable and able to be produced domestically
- Biofuels, and in particular alcohols, fit these criteria very well
- Current technology requires blending biofuel with conventional fuel
- Ethanol is one of the most popular biofuels for transportation use

Background (2)

- Butanol is a biofuel
 - Can be produced from bio-waste fermentation in bacteria genetically designed to increase butanol yield
- Formula C_4H_9OH ($C_4H_{10}O$)
- 4 isomers

Background (3)

- Butanol is a good test case for developing new fuels
- Butanol is the smallest alcohol with primary, secondary and tertiary alcohol groups
- The chemistry of butanol can be extended to higher alcohols

Background (4)

- *n*-Butanol has several advantages over ethanol:
 - Higher specific energy
 - Less miscible with water
 - Less corrosive to engine parts and pipes
 - Lower vapor pressure
- These properties enable:
 - Using current oil and gasoline pipelines for fuel transport
 - Higher mixing ratios with gasoline
 - Improved volumetric fuel economy (mpg) over ethanol
 - Reducing evaporative emissions and risk of explosion

Background (5)

Combustion

Diagnostics

UNIVERSITY OF CONNECTICUT

Fuel	Lower Heating Value [MJ/kg]	Volumetric Energy Density [MJ/L]	Research Octane Number, RON	Motor Octane Number, MON
Gasoline	42.5	32	92-98	82-88
Methanol	19.9	16	136	104
Ethanol	28.9	20	129	102
1-Butanol	33.1	29	96	78

J.T. Moss, et. al, "An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol," *The Journal of Physical Chemistry A*, vol. 112, 2008, pp. 10843-10855.

Background (6)

Background (7)

n-Butanol

 Carbons in the skeleton are numbered by their distance from the alcohol group

Literature Review (1)

- ~15 studies directly relevant to butanol kinetics.
- Dagaut *et al.*^{1,2} have done JSR experiments at 1 and 10 atm, and laminar flame speed and opposed-flow diffusion flame experiments for n-butanol.
- Zhang *et al.*³ performed a motored engine study with *n*-butanol and reported combustion intermediates in a temperature range similar to the one considered here
- 1. S.M. Sarathy, P. Dagaut, et. al., "An experimental and kinetic modeling study of n-Butanol combustion," Combustion and Flame, 2009.
- 2. P. Dagaut, et. al., "A chemical kinetic study of n-Butanol oxidation at elevated pressure in a jet stirred reactor," *Proceedings of the Combustion Institute*, vol. 32, 2009, pp. 229-237.
- 3. Y. Zhang, A.L. Boehman. "Oxidation of 1-butanol and a mixture of n-heptane/1-butanol in a motored engine." *Combustion and Flame*. In Press, 2010. doi:10.1016/j.combustflame.2010.04.017

Literature Review (2)

• Black *et al.*⁴ (NUI) have done shock tube studies for *n*-butanol from 1100-1800 K and 1, 2.6 and 8 atm over ϕ =0.5, 1, 2 and fuel mole percents of 0.6%, 0.75% and 3.5%.

NUI Mechanism

- 243 species
- 1446 reactions
- Mechanism based on updated C₄ chemistry from the same group, with an added n-butanol sub-mechanism taken from EXGAS and modified as appropriate
- Validated against shock tube data
- Ignition delay validation range:

$$- T = 1100 - 1800 K$$

$$- P = 1 - 8$$
 atm

Literature Review (2)

- Black et al.⁴ (NUI)
- Harper *et al.*⁵ (MIT) have created a mechanism for *n*-butanol based on the previous experiments, a pyrolysis experiment and a butanol-doped methane flame experiment

^{5.} M. Harper, W. Green, et. al., "Comprehensive Reaction Mechanism for n-Butanol Pyrolysis and Combustion", unpublished manuscript.

^{4.} G. Black, et. al., "Bio-Butanol: Combustion properties and a detailed kinetic model," Combustion and Flame, vol. 157, 2010 pp. 363-373.

MIT Mechanism

- 189 species
- 2022 reactions
- Created automatically from Reaction Mechanism Generator, open-source software from MIT
 - Initial "Seed" Mechanisms:
 - GRI-Mech (excluding Nitrogen chemistry)
 - Ethanol mechanism by Marinov (not discussed here)
- Validated against JSR, flame, shock tube and pyrolysis data
- Ignition delay validation range:
 - T = 1100-1800 K
 - P = 1 8 atm

Literature Review (2)

- Black et al.⁴ (NUI)
- Harper et al.⁵ (MIT)
- Grana *et al.*⁶ (Milano) have performed counterflow diffusion flame experiments of *n*-butanol and *iso*-butanol and created a reaction mechanism

^{6.} R. Grana, *et al.* "An experimental and kinetic modeling study of combustion of isomers of butanol." *Combustion and Flame.* In Press, 2010. doi:10.1016/j.combustflame.2010.05.009.

^{4.} G. Black, et. al., "Bio-Butanol: Combustion properties and a detailed kinetic model," Combustion and Flame, vol. 157, 2010 pp. 363-373.

^{5.} M. Harper, W. Green, et. al., "Comprehensive Reaction Mechanism for n-Butanol Pyrolysis and Combustion", unpublished manuscript.

Milano Mechanism

- 354 species
- 10,127 reactions
- Includes all four isomers of butanol
- Based on C_0 - C_{16} semi-detailed mechanism previously developed by the same group, which includes low temperature chemistry of most species but not the butanols
- Validated against JSR, flame, and shock tube data
- Ignition delay validation range:
 - T = 1100-1800 K
 - P = 1 8 atm

Literature Review (2)

- Black et al.⁴ (NUI)
- Harper et al.⁵ (MIT)
- Grana *et al.*⁶ (Milano)
- Moss *et al.*⁷ (RPI) have done shock tube studies for all four isomers of butanol at 1 and 4 bar and T=1200 to 1800 K over $\phi=0.5$, 1, 2 and fuel mole percents of 0.25%, 0.5% and 1%.
- 4. G. Black, et. al., "Bio-Butanol: Combustion properties and a detailed kinetic model," Combustion and Flame, vol. 157, 2010 pp. 363-373.
- 5. M. Harper, W. Green, et. al., "Comprehensive Reaction Mechanism for n-Butanol Pyrolysis and Combustion", unpublished manuscript.
- 6. R. Grana, *et al.* "An experimental and kinetic modeling study of combustion of isomers of butanol." *Combustion and Flame.* In Press, 2010. doi:10.1016/j.combustflame.2010.05.009.
- 7. J.T. Moss, et. al, "An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol," *The Journal of Physical Chemistry A*, vol. 112, 2008, pp. 10843-10855.

RPI Mechanism

- 161 species
- 1250 reactions
- Covers all four isomers of butanol
- Generated by EXGAS software which creates a 3 part mechanism
 - Primary mechanism: Initial organic compounds and oxygen
 - Lumped secondary mechanism: Reactions which consume the products of the primary mechanism, but not contained in the third mechanism
 - C_0 C_2 complete reaction base coupled with a C_3 C_4 unsaturated reaction base
- Validated against shock tube data
- Ignition delay validation range:
 - T = 1200 1700 K
 - P = 1 4 bar

Literature Review (3)

- None of the mechanisms have been validated at lower temperature than 1100 K for ignition delay
- None of the mechanisms have been validated at pressures higher than 10 atm (for JSR) or 8 atm (for shock tube)
- High-pressure, low-temperature combustion conditions are relevant to several advanced low emissions engines
 - Homogeneous Charge Compression Ignition (HCCI)
 - Low Temperature Diesel engines
- Comprehensive reaction mechanisms require validation over a wide range of experimental conditions

• Obtain experimental data for autoignition delays at elevated pressures and low-to-intermediate temperatures, using a heated rapid compression machine

- Compression Ratio: 8 to 12
- Initial Temperature: up to 140°C
- Compressed Pressure: 7 to 45 bar
- Compressed Temperature: 650-1100K
- Compression Time: ~30 ms

RCM Test Matrix (1)

- RCM Experimental Conditions for *n*-butanol
 - Compressed Pressure: $P_C = 7$, 15, 30 bar
 - Compressed Temperature: $T_C = 650-900 \text{ K}$
 - Fuel/Air Equivalence Ratio: 0.5, 1.0, 2.0
 - Vary initial O₂ mole fraction at constant initial fuel mole fraction
 - Vary initial fuel mole fraction at constant initial O₂ mole fraction
 - Vary Inert Composition: Ar, N₂
- Shock Tube Experiments for *n*-butanol^{4,7}
 - Fuel Mole Percent = 1-3.5%
 - Compressed Pressure: $P_C = 1-8$ bar
 - Compressed Temperature: $T_C = 1100-1800 \text{ K}$

RCM Test Matrix (2)

Mole Percentage (%)				Equivalence Ratio	Pressure (bar)
n-Butanol	\mathbf{O}_2	${f N}_2$	Ar	ф	P_C
2.96	20.39	76.65	0.00	0.87	30
2.96	20.39	0.00	76.65	0.87	7
3.38	20.30	76.32	0.00	1.0	15
3.38	20.30	76.32	0.00	1.0	30
1.72	20.65	77.63	0.00	0.5	15
6.54	19.63	73.83	0.00	2.0	15
3.38	40.60	56.02	0.00	0.5	15
3.38	10.15	86.47	0.00	2.0	15
1.69	20.30	78.01	0.00	0.5	15
6.76	20.30	72.94	0.00	2.0	15

Oxidizer = Air

Vary O₂ Mole Fraction

Vary Fuel Mole Fraction

Check Mixture Composition (1)

- 2 goals:
 - Ensure fuel does not decompose while being held in the mixing tank
 - Ensure the expected composition is being created in the mixing tank
- Use GCMS to identify any decomposition products and quantify the concentration of *n*-butanol in the mixing tank
- *Iso*-octane is used as an internal standard for quantitative check of the concentration of *n*-butanol

University of Connecticut Mixture Composition Check (2)

 RTX-1PONA column and temperature program used in this analysis provides good separation of isooctane and *n*-butanol

Mixture Composition Check (3)

- Liquid standard is created with known concentrations of *n*-butanol and *iso*-octane
- Small peaks are impurities from *n*-butanol and *iso*-octane
- There are no extra peaks in the chromatogram of the sample withdrawn from the mixing tank
- No decomposition!

University of Connecticut Mixture Composition Check (4)

- Response factor of *n*-butanol to *iso*-octane is calculated based on peak areas from the liquid sample
- Response factor and known concentration of *iso*-octane in the mixing tank are used to calculate the concentration of *n*-butanol in the mixing tank
- Concentration of *n*-butanol is within 4% of the expected value

	Response Factor Determination				
	1-butanol F	10788294			
	iso-octane				
	Area		20061355		
	Response Factor		0.349076		
	Concentration of 1-Butanol				
		oncentration of iso- etane in mixing tank			0.0111
1 1	1-butanol		e Peak		
ample #	Peak Area			,	butanol
1	11165856	22824	035	0	.015653
2	8920318	19145	108	0	.014908
3	18182941	35118	170	0	.016566
4	15224721	27259	402	(0.01787
5	19145886	34907	200	0	.017549
		Average			0.0165
		Expected			0.0172
		Deviation	ı (%)		4.05
				-	

Experimental Reproducibility

- Representative trace from at least 6 concordant runs for determining ignition delay.
- Pressure is measured; P_C is the pressure at Top Dead Center (TDC)
- Temperature at TDC (T_C) is computed by matching the simulated and experimental pressure traces during compression stroke

Definition of Ignition Delay

- End of Compression is determined to be at TDC
- The location of inflection point in the pressure trace (found by the maximum of the pressure derivative) identifies the point of ignition
- The ignition delay is the time difference between the end of compression and the point of ignition

Modeling Ignition Delay (1)

- SENKIN/CHEMKIN-III and CHEMKIN-PRO are used to model the ignition delay
- RCM Simulation
 - -Reactor volume is a specified function of time
 - Includes compression stroke and post-compression events
- Shock Tube Simulation
 - -Reactor is at constant volume and is adiabatic

Modeling Ignition Delay (2)

 During RCM simulations, none of the existing reaction mechanisms ignite within the limits of the experiment

n-Butanol/O₂/Ar, ϕ =0.87, P_C =7 bar, T_C =861K

Autoignition of *n***-Butanol (1)**

- Increasing compressed temperature reduces ignition delay monotonically
- No Negative
 Temperature Coefficient region found for n-butanol in these experiments

Autoignition of *n***-Butanol (2)**

 No two stage ignition found for any condition in these experiments

Autoignition of *n***-Butanol (2)**

This is a Typical 2-stage Ignition Delay

Autoignition of *n***-Butanol (2)**

 No two stage ignition found for any condition in these experiments

Autoignition of *n*-Butanol (3)

- Shock tube simulations are much longer than experiments
- MIT performs the worst; Harper *et al*. have a new mechanism to be published which corrects a serious error in their rate estimation database

Autoignition of *n*-Butanol (4)

- Increasing equivalence ratio increases reactivity
- Shock tube results show the opposite trend⁴
- Reactivity dependence on equivalence ratio appears to be a function of temperature

Autoignition of *n*-Butanol (5)

• Similar effect of varying initial oxygen mole fraction and initial fuel mole fraction

Autoignition of *n***-Butanol (6)**

- Simulations capture the effect of equivalence ratio in that increasing equivalence ratio increases reactivity
- Simulations generally over-predict all results by at least one order of magnitude

Autoignition of *n*-Butanol (7)

- Higher compressed pressure has higher reactivity
- Simulations unable to quantitatively capture the pressure dependence in this temperature range

Brute Force Sensitivity

% sensitivity =
$$\frac{\tau(2k_i) - \tau(k_i)}{\tau(k_i)} \times 100\%$$

- NUI mechanism is most sensitive to the reaction of fuel and HO₂ to form 1-hydroxybutyl
- The sensitivity is significantly reduced at higher temperatures

Reaction Path Analysis (1)

- A Reaction Path Diagram shows the percent of the reactant destroyed to form the product indicated by the arrow
- The percent destruction represents the cumulative destruction of each reactant up to the point in time where the mole fraction of fuel has been reduced 20% compared to the initial value

Reaction Path Analysis (2)

• n-Butanol (C_4H_9OH) is destroyed by H-atom abstraction producing 5 radicals

These radicals are not equally produced

Reaction Path Analysis (3)

800K, 15 atm, ϕ =1.0

Reaction Path Analysis (4)

1600K, 15 atm, ϕ =1.0

Modified Mechanism (1)

Reaction 1353: $NC4H9OH + HO2 \Leftrightarrow C4H8OH-1 + H2O2$

Ignition Delay vs. Multiplication Factor for Reaction 1353

- Ignition delay becomes constant when the rate of 1-hydroxybutyl formation by R1353 is increased past a certain point
- This suggests a new rate limiting step has taken over

Modified Mechanism (2)

Reaction 1353: $NC4H9OH + HO2 \Leftrightarrow C4H8OH-1 + H2O2$

- The rate of R1353 is multiplied by 1000
- Ignition delays are recomputed
- Results are close, but the lowest temperature case is still overpredicted by 100 ms

Modified Mechanism (3)

- Brute force sensitivity is performed again on the modified mechanism
- System is sensitive to the formation of butanal (NC₃H₇CHO)
- Formation of 1hydroxybutyl by R1353
 has disappeared from
 the top ten reactions

Modified Mechanism (4)

Reaction 1353: $NC4H9OH + HO2 \Leftrightarrow C4H8OH-1 + H2O2$

- Upon first increasing the rate of R1353, production of butanal from 1-hydroxybutyl and fission of 1-hydroxybutyl change drastically
- Further increasing the rate does not change the percent directed into each pathway

Modified Mechanism (5)

- This analysis suggests butanal formation is the next rate limiting step
- The entire pathway of 1-hydroxybutyl formation and destruction is clearly quite important
- Further speciation measurements are necessary to determine which pathways are most important

Future Work

- Speciation data with Rapid Sampling Apparatus can confirm fuel decomposition pathways
- Expand experiments to other isomers of butanol

Summary (1)

- Autoignition delay data have been obtained for *n*-butanol at low to intermediate temperature and elevated pressure using a heated rapid compression machine
- Reactivity increased as equivalence ratio, initial oxygen mole fraction or initial fuel mole fraction increase in the temperature range studied
- Comparison of experimental results and reaction
 mechanisms available in the literature showed very poor
 agreement

Summary (2)

- Sensitivity analysis of one reaction mechanism revealed that the rates of certain fuel decomposition reactions strongly affect the ignition delay
- Further path analysis highlighted the importance of several fuel decomposition pathways
- Speciation data may be required to further improve reaction mechanisms by confirming fuel decomposition pathways
- Quantum calculations of the rates of important reactions is warranted based on this work, in particular the 1-hydroxybutyl system

Acknowledgements

Advisor: Dr. Chih-Jen Sung

Research Advisors: Dr. Kamal Kumar, Dr. Yu Zhang

Advisory Committee: Dr. Baki Cetegen, Dr. Tianfeng Lu, Dr. Michael Renfro

Colleagues: Kyle Brady, Apurba Das, Billal Hossain, Xin Hui

Sponsor: Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198

Additional Slides

New MIT mechanism

- New MIT mechanism corrects error in reaction rates of H-abstraction from the fuel by HO₂
- New MIT mechanism shows much improved results comparable to the 1000*NUI results

Rapid Sampling Apparatus (1)

 Rapid Sampling Apparatus designed to sample the mixture from the reaction chamber at predetermined time

Rapid Sampling Apparatus (2)

- Volume ratio between Sample Chamber and Reaction Chamber is about 50:1
- Expansion occurs within 2-3 milliseconds and quenches reactions
- Convex shape ensures shocks are diverged and weakened
- Samples are withdrawn and analyzed using GC-MS/FID/TCD

Rapid Sampling Apparatus (3)

- Previous design relied on opposed forces of a spring and electromagnet to hold the puncture rod above the diaphragm
- Several drawbacks:
 - Electromagnet was frequently deactivated accidentally
 - Rod could not be withdrawn from the diaphragm after puncture
- Requires disassembly to replace the diaphragm

Rapid Sampling Apparatus (4)

- New design aims to improve reliability of puncture control circuit
- Use "positive action" system to reduce risk of accidental puncture
- Combination of linear solenoid device with MOSFET transistor
- Advantages:
 - Reduced risk of premature puncture
 - Solenoid allows retracting of rod after puncturing

Autoignition of *n***-Butanol (6)**

- Correlation shows slightly greater than first order dependence on initial fuel mole fraction and compressed pressure
- Nearly second order dependence on initial oxygen mole fraction

