Inhaltsverzeichnis

4	\mathbf{Dis}_{1}	stributed MIMO	1
	4.1	Half-Duplex One-Way Relaying	
		4.1.1 Decode - and - Forward (DF) Relaying	6

4 Distributed MIMO

- This research topic emerged ca. 10 years ago and is still a very active area of research
- Simple relaying schemes have been included in recent standards such as IEEE 802.16 (WiMAX) and LTE-Advanced
- Advantages: relay assisted communications:
 - Relays can help to reduce the effective overall pathloss
 - Relays can also combat small-scale fading effects
 - Relays can help to realize MIMO gains with single-antenna nodes
- Challenges in relays-assisted communication:
 - Network architectures are becoming more complex
 - Synchronization across different nodes may be necessary (Anm.: untersch. Trägerfrequenzen der Relays → Offset, Fehler, etc.)
 - Exchange of channel state information (CSI) across nodes may be required

4.1 Half - Duplex One - Way Relaying

Basic Relay Network Hier Bild einfügen

- Relay R assists source S in communication with destination D
- Two basic nodes of transmission (at the relay):

Full - Duplex relaying: R can receive and transmit at the same time and in the same frequency band (Anm.: effizient, da restliche Zeit und restliche Frequenzband von anderen genutzt werden kann)

- \rightarrow Since the TX signal power is orders of magnitude larger than the RX power, there is self-interference (at the relay) **Hier Bild einfügen**
- \rightarrow Full-duplex relays are difficult to implement. The design of full-duplex relays is an active area of research.
- \rightarrow Majority of existing literature assumes half-duplex relaying.

Half-duplex relaying: R transmits and receives in different time slots and/or different frequency bands. Typically, a two-phase protocoll is used:

Phase 1: S transmits, R and D receive Hier Bild einfügen

Phase 2: R transmits, D receives, S may or may not transmit Hier Bild einfügen

There are different relaying strategies that differ in the processing applied at the relay. The most popular are:

- Decode and Forward
- Amplify and Forward
- (Compress and Forward)

4.1.1 Decode - and - Forward (DF) Relaying

In DF relaying, the relay detects and decodes the signal received from the source before encoding it and forwarding it to the destination.**Hier Bild einfügen**

Phase 1:

- R receives: $y_R = h_{SR}x + n_R$
- D receives: $y_{D1} = h_{SD}x + n_{D1}$
- with:
 - transmit signal $x, \mathcal{E}_s = \mathcal{E}\{|x|^2\}$
 - AWGN n_R and n_{D1} , $\sigma_n^2 = \mathcal{E}\{|n_R|^2\} = \mathcal{E}\{|n_{D1}|^2\}$

Phase 2:

- R decodes and forwards x_R (estimate of x)
- D receives: $y_{D2} = h_{RD}x_R + n_{D2}$
 - $-x_R$ is estimate of x after decoding at R
 - $\sigma_n^2 = \mathcal{E}\{|n_{D2}|^2\}; \quad \mathcal{E}_R = \mathcal{E}\{|x_R|^2\}$
 - weassume: S is silent in Phase 2
- The capacity at the three node relay channel is not known!
- We provide an achievable rate under the following simplifying assumption: The direct source-relay link is not used/exploited.
- Achievable rate without S-D link:

$$C_{DF} = \frac{1}{2} \min \left\{ \log_2 \left(1 + \frac{\mathcal{E}_S |h_{SR}|^2}{\sigma_n^2} \right), \log_2 \left(1 + \frac{\mathcal{E}_R |h_{RD}|^2}{\sigma_n^2} \right) \right\}$$

- factor $\frac{1}{2}$ is due to the fact that we use two time slots to transmit one packet
- $-\min\{\ldots\}$ means we are limited by the weaker link (bottle-neck)
- If power allocation is possible, the total power $\mathcal{E} = \mathcal{E}_S + \mathcal{E}_R$ should be divided between S and R to guarantee:

$$\begin{split} & \frac{\mathcal{E}_S |h_{SR}|^2}{\sigma_n^2} = \frac{\mathcal{E}_R |h_{RD}|^2}{\sigma_n^2}, \\ & \mathcal{E}_R = \frac{|h_{SR}|^2}{|h_{SR}|^2 + |h_{RD}|^2} \cdot \mathcal{E}, \\ & \mathcal{E}_S = \frac{|h_{RD}|^2}{|h_{SR}|^2 + |h_{RD}|^2} \cdot \mathcal{E} \end{split}$$

- Outage-probability in fading:
 - We transmit with fixed rate R
 - An outage occurs, if:

$$\frac{1}{2}\log_2\left(1 + \underbrace{\frac{\mathcal{E}_S|h_{SR}|^2}{\sigma_n^2}}\right) < R \quad \text{or}$$

$$\frac{1}{2}\log_2\left(1 + \underbrace{\frac{\mathcal{E}_R|h_{RD}|^2}{\sigma_n^2}}\right) < R$$

$$= \frac{1}{2}\log_2\left(1 + \underbrace{\frac{\mathcal{E}_R|h_{RD}|^2}{\sigma_n^2}}\right) < R$$

$$\gamma_{SR} < \underbrace{2^{2R} - 1}_{\gamma_T} \quad \text{or} \quad \gamma_{RD} < 2^{2R} - 1$$