Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ЛАБОРАТОРНАЯ РАБОТА № 4

по курсу «Адаптивное и робастное управление»

РОБАСТНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ МНОГОМЕРНЫМ ОБЪЕКТОМ ПО СОСТОЯНИЮ

Вариант № 20

Авторы работы: Кирбаба Д.Д., Курчавый В.В. Группа: R3438 Преподаватель: Парамонов А.В.

Санкт-Петербург

"7" ноября 2023 г.

Работа выполнена с оценкой

Дата защиты "__" ____ 2023 г.

СОДЕРЖАНИЕ

1.	Цель работы	3
	Постановка задачи	
	Ход работы	
	. Исходные данные	
	. Эталонная модель	
	. Закон нелинейного робастного управления	
	3.1. Схема моделирования	
	3.2. Исследование при отсутствии внешнего возмущения	
	3.3. Исследование при наличии внешнего возмущения	
4.	Выводы	

1. Цель работы

Освоение принципов построения робастной системы управления многомерным объектом на основе метода функций Ляпунова.

2. Постановка задачи

Дан возмущенный объект

$$\dot{x} = Ax + bu + \delta, \qquad x(0)$$

 $y = Cx,$

где δ — вектор возмущающих воздействий, удовлетворяющий неравенству $||\delta(t)|| \leq \bar{\delta}, x \in \mathbb{R}^n$ — вектор состояния, u — управление, $y \in \mathbb{R}$ — регулируемая переменная,

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b_0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix},$$

 a_i , $i = \overline{0, n-1}$ – неизвестные параметры, b_0 – известный коэффициент.

Задача управления заключается в компенсации параметрической неопределенности объекта и обеспечении следующего целевого равенства:

$$||x_M(t) - x(t)|| \le \Delta, \forall t \ge T$$

где Δ , T — точность работы системы управления и время её настройки соответственно, $x_M \in R^n$ — вектор, генерируемый эталонной моделью

$$\dot{x}_M = A_M x_M + b_M g,$$

$$y_M = C_M x_M$$

с задающим воздействием g(t) и матрицами

$$A_{M} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{M_{0}} & -a_{M_{1}} & -a_{M_{2}} & \cdots & -a_{M_{n-1}} \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ a_{M_{0}} \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

Параметры эталонной модели a_{M_i} , $i=\overline{0,n-1}$ строятся на основе метода стандартных характеристических полиномов для обеспечения желаемого качества воспроизведения задающего воздействия g(t).

Отметим, что в задаче имеет место следующее допущение.

Для некоторого n — мерного вектора θ и скаляра κ матрицы A, b, A_M , b_M связаны соотношениями

$$A_M = A + b\theta^T$$
, $b = \kappa b_M$.

3. Ход работы

1. Исходные данные

Матрица А	Коэффициент передачи b 0	Время переходного процесса t_n
$\begin{bmatrix} 0 & 1 \\ -15 & 6 \end{bmatrix}$	2	1.2
Максимальное перерегулирование	Сигнал задания $g(t)$	Сигнал возмущения $\delta(t)$
		Сигнал возмущения $\delta(t)$

Таблица 1. Исходные данные (20 вариант).

2. Эталонная модель

Так как модель второго порядка и имеет описанные выше показатели качества, то стандартный полином будет полиномом Ньютона второго порядка.

$$D^*(\lambda) = \lambda^2 + 2\omega_o \lambda + \omega_o^2$$

Пусть $\Delta=0.05$ ед. от установившейся величины, тогда $t_n^*=4.75$ с и

$$\omega_o = \frac{4.75}{1.2} = 3.958$$

$$D^*(\lambda) = \lambda^2 + 7.916\lambda + 15.6658\omega_o^2$$

Тогда матрицы эталонной модели:

$$A_{M} = \begin{bmatrix} 0 & 1 \\ -15.6684 & -7.9167 \end{bmatrix}, b_{M} = \begin{bmatrix} 0 \\ 15.6684 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Рисунок 1. Схема моделирования эталонной модели.

Рисунок 2. Графики задающего воздействия и переходного процесса эталонной модели.

Как видно, перерегулирование =0 и время переходного процесса примерно равно 1.2 с (примерно, так как при расчете параметров модели мы ставили точность $\Delta=0.05$ ед. от установившейся величины).

3. Закон нелинейного робастного управления

3.1. Схема моделирования

Алгоритм нелинейного робастного управления:

$$u = \hat{\theta}^T x + \frac{1}{\kappa} g,$$

$$\hat{\theta} = \gamma x b^T P e,$$

где γ — коэффициент нелинейной обратной связи, P — симметричная матрица, из уравнения Ляпунова:

$$A_M^T P + P A_M = -Q, \qquad Q > 0.$$

Рисунок 3. Схема моделирования системы с нелинейным робастным управлением.

3.2. Исследование при отсутствии внешнего возмущения

Проведем эксперименты с данной системой при $\delta=0$. Будем рассматривать 3 случая с различными коэффициентами нелинейности обратной связи γ :

$$\gamma = 0.1$$

Рисунок 4. Графики векторов состояний реального объекта и эталонной модели системы с нелинейным робастным законом управления при $\gamma=0.1, \delta=0.$

Рисунок 5. Графики компонент вектора ошибок системы с нелинейным робастным законом управления при $\gamma=0.1, \delta=0$.

Рисунок 6. Графики векторов состояний реального объекта и эталонной модели системы с нелинейным робастным законом управления при $\gamma=1, \delta=0$.

Рисунок 7. Графики компонент вектора ошибок системы с нелинейным робастным законом управления при $\gamma=1$, $\delta=0$.

Рисунок 8. Графики векторов состояний реального объекта и эталонной модели системы с нелинейным робастным законом управления при $\gamma=10, \delta=0$.

Рисунок 9. Графики компонент вектора ошибок системы с нелинейным робастным законом управления при $\gamma=10$, $\delta=0$.

Итого, по данным графикам можем наблюдать, что при нелинейном робастном законе управления без внешнего возмущения имеем ограниченные сигналы в системе, норма вектора ошибки стремится к некоторой окрестности, радиус которой уменьшается до некоторого предельного значения с увеличением у.

3.3. Исследование при наличии внешнего возмущения

Теперь промоделирует те же случаи, но уже с некоторым ограниченным внешним возмущением δ .

Рисунок 10. График внешнего возмущения.

Рисунок 11. Графики векторов состояний реального объекта и эталонной модели системы с нелинейным робастным законом управления при $\gamma=0.1, \delta\neq 0$.

Рисунок 12. Графики компонент вектора ошибок системы с нелинейным робастным законом управления при $\gamma=0.1, \delta\neq 0.$

Рисунок 13. Графики векторов состояний реального объекта и эталонной модели системы с нелинейным робастным законом управления при $\gamma=1, \delta\neq 0$.

Рисунок 14. Графики компонент вектора ошибок системы с нелинейным робастным законом управления при $\gamma=1, \delta\neq 0.$

Рисунок 15. Графики векторов состояний реального объекта и эталонной модели системы с нелинейным робастным законом управления при $\gamma=10, \delta\neq 0$.

Рисунок 16. Графики компонент вектора ошибок системы с нелинейным робастным законом управления при $\gamma = 10$, $\delta \neq 0$.

Выводу по поведению системы при наличии внешних возмущений аналогичные с теми, когда они отсутствовали. Единственное различие – сигналы больше колеблются, однако всё равно ограничены.

4. Закон адаптивного и робастного управления

Применим следующий алгоритм адаптации:

$$\dot{\hat{\theta}} = -\sigma \hat{\theta} + \gamma x b^T P e,$$

где σ — коэффициент параметрической обратной связи, γ — коэффициент адаптации.

Настраиваемый регулятор:

$$u = \hat{\theta}^T x + \frac{1}{\kappa} g.$$

4.1. Схема моделирования

Рисунок 17. Схема моделирования системы с адаптивным и робастным управлением.

Для исследования данной системы проведем эксперименты с двумя различными $\sigma = [1, 0.1]$, двумя различными $\gamma = [0.1, 10]$ при наличии и отсутствия внешнего возмущения δ .

4.2.
$$\sigma = 1, \delta \equiv 0$$

$$\gamma = 0.1$$

Рисунок 18. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma=1$, $\gamma=0.1$, $\delta\equiv0$.

Рисунок 19. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=0.1, \delta\equiv 0.$

Рисунок 20. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=0.1, \delta\equiv0.$

Рисунок 21. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma=1$, $\gamma=10$, $\delta\equiv0$.

Рисунок 22. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=10, \delta\equiv 0.$

Рисунок 23. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=10, \delta\equiv0.$

4.3.
$$\sigma = 1, \delta \neq 0$$

Рисунок 24. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma=1$, $\gamma=0.1$, $\delta\neq0$.

Рисунок 25. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=0.1, \delta\neq0$.

Рисунок 26. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=0.1, \delta\neq0$.

Рисунок 27. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma=1$, $\gamma=10$, $\delta\neq0$.

Рисунок 28. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=10, \delta\neq0$.

Рисунок 29. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=1, \gamma=10, \delta\neq0.$

4.4.
$$\sigma = 0.1, \delta \equiv 0$$

Рисунок 30. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=0.1, \delta\equiv0.$

Рисунок 31. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=0.1, \delta\equiv0.$

Рисунок 32. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=0.1, \delta\equiv 0.$

Рисунок 33. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma = 0.1$, $\gamma = 10$, $\delta \equiv 0$.

Рисунок 34. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=10, \delta\equiv0.$

Рисунок 35. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=10, \delta\equiv0.$

4.5.
$$\sigma = 0.1, \delta \neq 0$$

$$y = 0.1$$

Рисунок 36. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=0.1, \delta\neq0.$

Рисунок 37. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=0.1, \delta\neq0.$

Рисунок 38. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=0.1, \delta\neq0.$

Рисунок 39. Графики векторов состояний реального объекта и эталонной модели системы с адаптивным и робастным законом управления при $\sigma = 0.1$, $\gamma = 10$, $\delta \neq 0$.

Рисунок 40. Графики компонент вектора ошибок системы с адаптивным и робастным законом управления при $\sigma = 0.1$, $\gamma = 10$, $\delta \neq 0$.

Рисунок 41. Графики компонент параметрической ошибки системы с адаптивным и робастным законом управления при $\sigma=0.1, \gamma=10, \delta\neq0.$

Анализируя графики, можно сделать следующие выводы: добавление обратной параметрической связи в уравнение алгоритма адаптации позволяет ограничить параметрический дрейф и в итоге параметрическая ошибка ограничена.

При увеличении коэффициента адаптации – уменьшается ошибка слежения, а вместе с ней и параметрическая ошибка.

С помощью уменьшения параметра можно также снижать ошибку слежения, более того, если у нас отсутствуют внешние возмущения при обнулении параметра σ можно добиться асимптотической устойчивости ошибки слежения.

4. Выводы

В данной лабораторной работе были освоены принципы построения робастной системы управления многомерным объектом при наличии внешних возмущений.

В работе исследовались два алгоритма для обеспечения робастности системы по отношению к внешнему возмущению:

1. Нелинейное робастное управление: $u = \hat{\theta}^T x + \frac{1}{\kappa} g$, $\hat{\theta} = \gamma x b^T P e$

Данный подход обеспечивает:

- ограниченность всех сигналов в системе;
- экспоненциальную сходимость ошибки слежения к некоторой ограниченной области, регулируемой параметром γ;
- при нулевом внешнем возмущении ошибка слежения не будет равна нулю;
- квадратичный сигнал управления относительно вектора состояния;
- для уменьшения ошибки слежения, требуется увеличивать коэффициент γ , что влечет за собой увеличение амплитуды управляющего воздействия.
- 2. Адаптивное и робастное управление: $u = \hat{\theta}^T x + \frac{1}{\kappa} g$, $\dot{\hat{\theta}} = -\sigma \hat{\theta} + \gamma x b^T P e$

Данный подход обеспечивает:

- ограниченность всех сигналов в системе;
- экспоненциальную сходимость ошибки слежения и параметрической ошибки к некоторым ограниченным областям, регулируемыми параметрами γ и σ;
- при нулевом внешнем возмущении требуется занулить σ для асимптотической устойчивости ошибки слежения;
- для уменьшения ошибки слежения, не требуется увеличивать коэффициент γ , можно обеспечивать это путем уменьшения σ .