Modal Logic Exercise Set 05

To be completed by Thursday 6 June

We will work through these exercises (and possibly some others as well) during the problem class. Exercises marked with a (Δ) are a little more challenging, and those marked with a (Δ) are more difficult still.

1. Recall that the definitions of an immediate and a strict extension of a tableau T are as follows. A tableau T' is an immediate extension of T, in symbols $T \prec_1 T'$, if T' is obtained from T by applying a branch extension rule. A tableau T' strictly extends T, in symbols $T \prec T'$, if there is a sequence of k tableaus $\langle T_i \rangle_{i \leq k}$ such that $T_0 = T$, $T_k = T'$, and for all i < k, $T_i \prec_1 T_{i+1}$. We call such a sequence a generating sequence of length k for T', or that T' is generated from T. A tableau T' extends T, in symbols $T \preceq T'$, if $T \prec T'$ or T = T'.

Fix a tableau T_0 and consider the restriction of the \prec relation to the set $\{T|T_0 \leq T\}$. Prove that the following properties hold of the restricted relation.

- (a) \prec is transitive: if $A \prec B$ and $B \prec C$, then $A \prec C$.
- (b) \prec is irreflexive: if $A \prec B$, then $A \neq B$.
- (c) \leq is antisymmetric: if $A \leq B$ and $B \leq A$, then A = B.
- (d) \prec (and hence \preceq) is wellfounded: there is no function g such that for all $n \in \mathbb{N}$, $g(n+1) \prec g(n)$.
- 2. Prove the necessity case of the branch extension lemma. Suppose that T is a tableau with a satisfiable branch B, and that $\sigma \square P$ appears on B. Show that the result of extending B by applying the necessity rule is another satisfiable tableau.
- 3. Prove the other possibility case of the branch extension lemma. Suppose that T is a tableau with a satisfiable branch B, and that $\sigma \neg \Box P$ appears on B. Show that the result of extending B by applying the possibility rule is another satisfiable tableau.
- 4. (\triangle) Re-prove the soundness theorem for **K** by using induction on the length of the generating sequence for the (hypothetical) closed but satisfiable tableau T.

Hint: Use the trivial tableau T_0 whose only formula is $\sigma \neg P$ as the base case, and apply the branch extension lemma to show that T_{n+1} is satisfiable on the assumption that T_n is. The rest of the proof is the same as the one in the lecture.