Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2013 – Matemática Discreta – 2º sem. 2023 Professor: Dr.José Ricardo G. Mendonça

1ª Prova — Data: 13 nov. 2023

Na resolução dos problemas, explique seu raciocínio e o que você está fazendo de forma que eu possa acompanhá-lo(a). Soluções "mágicas" ou "geniais" não serão aceitas sem explicações.

Problemas

- 1. [2 pontos] O conectivo lógico *nor* ("not-or") é definido pela relação $p \downarrow q \equiv \neg (p \lor q)$.
 - (a) Reescreva $\neg p$, $p \land q$ e $p \lor q$ em termos do conectivo lógico **nor**;
 - (b) Reescreva $p \rightarrow q$ e $p \leftrightarrow q$ em termos do conectivo lógico **nor**.
- 2. [2 pontos] Seja $A \triangle B = (A \setminus B) \cup (B \setminus A)$ a diferença simétrica entre os conjuntos A e B. Dados três subconjuntos A, B e C quaisquer de um mesmo conjunto universo, mostre que:
 - (a) $A \triangle B = \overline{A} \triangle \overline{B}$, onde $\overline{X} = \{x : x \notin X\}$ denota o complemento de X;
 - (b) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.
- 3. [2 pontos] Determine o valor verdade e estabeleça a negação das seguintes proposições:
 - (a) $(\exists z \in \mathbb{R})(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})(x+y=z)$.
 - (b) $(\forall x \in \mathbb{R}^*)(\exists y \in \mathbb{R}^*)(xy = 1)$, onde $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.
- 4. [2 pontos] Seja $A = \{a_1, a_2, a_3, a_4, a_5\}$ um conjunto formado por números inteiros distintos $1 \le a_i \le 8$. Mostre que as somas dos elementos de cada um dos subconjuntos não-vazios de A não podem ser todas diferentes entre si.
- 5. [2 pontos] Quantas soluções inteiras positivas existem para a inequação $x + y + z + t \le 25$ satisfazendo as condições x > 4 e $t \ge 5$?

