

150 mA low quiescent current and low noise voltage regulator

Datasheet - production data

Features

- Input voltage from 1.5 to 5.5 V
- Ultra low-dropout voltage (80 mV typ. at 100 mA load)
- Very low quiescent current (18 μA typ. at no load, 38 μA typ. at 150 mA load, 1 μA max. in OFF mode)
- Very low noise without bypass capacitor (29 μV_{RMS} at V_{OUT} = 0.8 V)
- Output voltage tolerance: ± 2.0% @ 25 °C
- 150 mA guaranteed output current
- Wide range of output voltages available on request: 0.8 V to 3.3 V with 100 mV step
- · Logic-controlled electronic shutdown

- Compatible with ceramic capacitors $C_O = 1 \mu F$
- Internal current and thermal limit
- Temperature range: -40 °C to 125 °C

Description

The LD39015 series provides 150 mA maximum current with an input voltage range from 1.5 V to 5.5 V and a typical dropout voltage of 80 mV. It is stable with ceramic capacitors. The ultra low drop voltage, low quiescent current and low noise features make it suitable for low power batterypowered applications. Power supply rejection is 65 dB at low frequencies and starts rolling off at 10 kHz. Enable logic control function puts the LD39015 in shutdown mode allowing a total current consumption lower than 1 µA. The device also includes short-circuit constant current limiting and thermal protection. Typical applications are mobile phones, personal digital assistants (PDAs), cordless phones or similar batterypowered systems.

Table 1. Device summary

Order codes	Output voltages
LD39015M08R	0.8 V
LD39015M10R	1.0 V
LD39015M12R	1.2 V
LD39015M125R	1.25 V
LD39015M15R	1.5 V
LD39015M18R	1.8 V
LD39015M25R	2.5 V
LD39015M33R	3.3 V

Contents LD39015

Contents

1	Diagram 3
2	Pin configuration
3	Typical application5
4	Maximum ratings
5	Electrical characteristics
6	Typical performance characteristics9
7	Package information
	7.1 SOT23-5L package information11
	7.2 SOT23-5L packing information
8	Revision history

LD39015 Diagram

1 Diagram

BandGap
1.22 V

Thermal
Protection

Enable

EN

GND

Figure 1. Block diagram

Pin configuration LD39015

2 Pin configuration

Figure 2. Pin connection (top view)

Table 2. Pin description

Pin n°	Symbol	Function
1	IN	LDO input voltage
2	GND	Common ground
3	EN	Enable pin logic input: low = shutdown, high = active
4	NC	Not connected
5	OUT	Output voltage

LD39015 Typical application

3 Typical application

V_{IN} — V_{OUT} 1 μF — Load

V_{EN} — EN GND — —

Figure 3. Typical application circuit

Maximum ratings LD39015

4 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	-0.3 to 7	V
V _{OUT}	DC output voltage	- 0.3 to V _I + 0.3	V
V _{EN}	Enable input voltage	- 0.3 to V _I + 0.3	V
I _{OUT}	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	SOT23-5L	Unit
R _{thJA}	Thermal resistance junction-ambient	255	°C/W
R _{thJC}	Thermal resistance junction-case	81	°C/W

5 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V, C_{IN} = C_{OUT} = 1 $\mu\text{F},~I_{OUT}$ = 1 mA, V_{EN} = $V_{IN},$ unless otherwise specified.

Table 5. Electrical characteristics (1)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		1.5		5.5	V
\/	Turn-on threshold			1.45	1.48	V
V _{UVLO}	Turn-off threshold		1.30	1.35		mV
		$V_{OUT} > 1.5 \text{ V}, I_{OUT} = 1 \text{ mA}$ $T_J = 25 \text{ °C}$	-2.0		2.0	- %
V _{OUT}	V _{OUT} accuracy	V _{OUT} > 1.5 V, I _{OUT} = 1 mA -40 °C < T _J < 125 °C	-3.0		3.0	
		V _{OUT} ≤ 1.5 V, I _{OUT} = 1 mA		±10		
		$V_{OUT} \le 1.5 \text{ V}, I_{OUT} = 1 \text{ mA}$ -40 °C < T _J < 125 °C		±30		mV
ΔV _{OUT}	Static line regulation	V_{OUT} +1 V \leq V _{IN} \leq 5.5 V I_{OUT} = 1 mA		0.01		%/V
ΔV _{OUT}	Transient line regulation (2)	ΔV_{IN} = + 500 mV, I_{OUT} = 1 mA T_R = T_F = 5 μ s		10		mVpp
ΔV_{OUT}	Static load regulation	I _{OUT} = 1 mA to 150 mA		0.002		%/mA
ΔV _{OUT}	Transient load regulation (2)	$I_{OUT} = 1$ mA to 150 mA $T_R = T_F = 5 \mu s$		40		mVpp
V _{DROP}	Dropout voltage (3)	I _{OUT} = 100 mA, V _{OUT} > 1.5 V -40 °C < T _J < 125 °C		80	100	mV
e _N	Output noise voltage	1.1 kHz to 100 kHz, I _{OUT} = 10 mA V _{OUT} = 0.8 V		29		μV _{RMS}
SVR	Supply voltage rejection	$V_{IN} = V_{OUTNOM} + 0.5 \text{ V +/-}V_{RIPPLE}$ $V_{RIPPLE} = 0.1 \text{ V, freq.} = 1 \text{ kHz}$ $I_{OUT} = 10 \text{ mA}$		65		- dB
SVR	V _{OUT} = 1.5 V	$V_{IN} = V_{OUTNOM} + 0.5 \text{ V +/-}V_{RIPPLE}$ $V_{RIPPLE} = 0.1 \text{ V, freq.=10 kHz}$ $I_{OUT} = 10 \text{ mA}$		62		- ub
IQ	Quiescent current	I _{OUT} = 0 mA		18		
		I _{OUT} = 0 mA, -40 °C < T _J < 125 °C			50	
		I _{OUT} = 0 to 150 mA		38		μΑ
		I _{OUT} = 0 to 150 mA -40 °C < T _J < 125 °C			70	
		V _{IN} input current in OFF mode: V _{EN} = GND		0.001	1	

Electrical characteristics LD39015

Table 5. Electrical characteristics (continued)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SC}	Short-circuit current	R _L = 0		350		mA
W	Enable input logic low	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C			0.4	V
V _{EN}	Enable input logic high	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C	0.9			V
I _{EN}	Enable pin input current	$V_{EN} = V_{IN}$		0.1	100	nA
T _{ON}	Turn-on time (4)			30		μs
_	Thermal shutdown			160		°C
T _{SHDN}	Hysteresis			20		C
C _{OUT}	Output capacitor	Capacitance (see typical performance characteristics for stability)	1		22	μF

^{1.} For $V_{OUT(NOM)}$ < 1.2 V, V_{IN} = 1.5 V

^{2.} All transient values are guaranteed by design, not production tested

^{3.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply to output voltages below 1.5 V

Turn-on time is the time measured between the enable input just exceeding V_{EN} high value and the output voltage just reaching 95% of its nominal value

6 Typical performance characteristics

Figure 6. Dropout voltage vs. output current 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0.05 0.15 0 0.1 0.2 0.25 I_{OUT} [A]

577

LD39015 Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 SOT23-5L package information

Figure 14. SOT23-5L package outline

Package information LD39015

Table 6. SOT23-5L mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
A	0.90		1.45		
A1	0		0.15		
A2	0.90		1.30		
b	0.30		0.50		
С	0.09		0.20		
D		2.95			
E		1.60			
е		0.95			
Н		2.80			
L	0.30		0.60		
q	0		8		

Figure 15. SOT23-5L recommended footprint (dimensions in mm)

LD39015 Package information

7.2 SOT23-5L packing information

A Po Note: Drawing not in scale

Figure 16. SOT23-5L tape and reel outline

Table 7. SOT23-5L tape and reel mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
Α			180	
С	12.8	13.0	13.2	
D	20.2			
N	60			
Т			14.4	
Ao	3.13	3.23	3.33	
Во	3.07	3.17	3.27	
Ko	1.27	1.37	1.47	
Po	3.9	4.0	4.1	
Р	3.9	4.0	4.1	

Revision history LD39015

8 Revision history

Table 8. Document revision history

Date	Revision	Changes
13-Nov-2007	1	Initial release.
11-Apr-2008	2	Modified: Table 5 on page 7.
12-Feb-2009	3	Modified: Table 1 on page 1.
11-Feb-2014	4	Part number LD39015xx changed to LD39015. Updated the <i>Description</i> in cover page and <i>Section 7: Package information</i> . Added <i>Section 7.2: SOT23-5L packing information</i> . Minor text changes.
		Updated features in cover page, Table 1: Device summary, Table 2: Pin description, Table 4: Thermal data, Figure 2: Pin connection (top view) and Section 7: Package information.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

