D-MATH Prof. M. Struwe

Exercise 6.1 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and let

$$A: D_A \subset X \to Y, \qquad B: D_B \subset X \to Y$$

be linear operators with $D_A \subset D_B$. Suppose that there exist $a \in (0,1)$ and $b \geq 0$ such that

$$||Bx||_Y \le a||Ax||_Y + b||x||_X$$
 for every $x \in D_A$.

Show that if A has closed graph, then $(A + B): D_A \to Y$ has closed graph.

Exercise 6.2 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Let $A: D_A \subset X \to Y$ be a closable linear operator. Assume that its closure \overline{A} is injective. Show that then the inverse operator A^{-1} is closable and $\overline{A^{-1}} = (\overline{A})^{-1}$.

Exercise 6.3 Let $(X, \|\cdot\|_X)$ be a Banach space and $U \subset X$ a closed subspace. Recall the notion of topologically complemented space introduced in Exercise 4.3. Prove that:

- (i) If $\dim(U) < \infty$, then U is topologically complemented.
- (ii) If $\dim(X/U) < \infty$, then U is topologically complemented.

Exercise 6.4 Let $(X, \|\cdot\|_X)$ be a normed space and let $f: X \to \mathbb{R}$ be linear and not identically zero.

- (i) Show that f is not continuous if and only if ker(f) is dense in X.
- (ii) Find an explicit example for X and f as in (i).

Exercise 6.5 Let $(X, \|\cdot\|_X)$ be a normed space and let $\varphi \colon X \to \mathbb{R}$ be a continuous linear functional. Assume $N := \ker(\varphi) \subsetneq X$ and let $x_0 \in X \setminus N$. Prove that the following are equivalent.

- (i) There exists $y_0 \in N$ with $||x_0 y_0||_X = \text{dist}(x_0, N)$.
- (ii) There exists $x_1 \in X$ with $||x_1||_X = 1$ and $||\varphi|| = |\varphi(x_1)|$.

Exercise 6.6 Let $(X, \|\cdot\|_X) = (C^0([-1,1]), \|\cdot\|_{C^0([-1,1])})$. Recall the map $\varphi \colon X \to \mathbb{R}$ given by

$$\varphi(f) = \int_0^1 f(t) dt - \int_{-1}^0 f(t) dt$$

from Exercise 3.2. Consider its kernel $N := \{ f \in X \mid \varphi(f) = 0 \}$ and some $x_0 \in X \setminus N$. Show that N is closed. Show that there does not exist any $y_0 \in N$ such that

$$||x_0 - y_0|| = \operatorname{dist}(x_0, N).$$

Hints to Exercises.

- **6.1** Start by proving that $(Ax_n)_{n\in\mathbb{N}}$ is Cauchy.
- **6.3** When working with finite dimensional vector spaces, you may always argue with bases and dual bases.
- **6.5** Start by recalling the first isomorphism theorem for linear maps.