entigo

Kubernetese põhitõed

Martin Vool
Tallinn 2021

Rakendused

- WEB
 Nodejs + react, staatiline html+javascript browseris
- API
 Nodejs API, vastab json formaadis
- Redis
 noSQL andmebaas sessiooni hoidmiseks

Rakendused

- Levinud tarkvara on juba paketeeritud
- Efektiivne ruumikasutus
- Ei ole sõltuvuste põrgut
- Töötab minu arvutis ja ka sinu arvutis

API readme.txt

Node 16. Vajab Redise andmebaasi. Ehitamiseks kasuta \$ npm run build Käivitamiseks

\$ npm start Seadista keskkonna muutujad: SESSION_SECRET ja REDIS_HOST

API Dockerfile

```
FROM node:16 #Kasutame node 16
WORKDIR /app #Määrame töötamise kausta
ENV SESSION_SECRET="CHANGEME" #Määrame vaike väärtuse
ENV REDIS_HOST="localhost" #Määrame vaike väärtuse
CMD npm start #Rakenduse käivitamise käsk
COPY . /app #Pane kood /app kausta
RUN npm run build #Ehitame rakenduse
```


Redis

Kasutame ametliku redise dockeri konteinerit https://hub.docker.com/ /redis

redis ☆

Docker Official Images

Redis is an open source key-value store that functions as a data structure server.

WEB readme.txt

Node 16. Ehitamiseks \$ npm install && npm run build Serveerida "build" kausta tekkiv HTML API komponent peab vastama relatiivse kausta /api kaudu.

WEB Dockerfile

```
FROM node:16-slim as build #Kasutame node 16
WORKDIR /app #Määrame töötamise kausta
COPY . /app #Pane kood /app kausta
RUN npm install && npm run build #Ehitame HTML
```

```
FROM nginx:1.20-alpine #Kasutame nginxi #Kopeerime eelmises konteineris ehitatud HTMLi COPY --from=build /app/build /usr/share/nginx/html
```

Käivitamine Kuberneteses

WEB jaoks vajalikud objektid

- Määrab Pod-ide arvu, ehk skaleerimine
- Teostab uuendusi ja määrab strateegia(Recreate, Rolling)
- Muudatuste tagasikerimine, ehk "rollback"
- Kasutatakse "stateless" rakenduste jaoks
- Tekitab ja haldab ReplicaSet objekte
- Sisaldab Pod-i kirjeldust

Käivitamine Kuberneteses

WEB jaoks vajalikud objektid

Pod

- Omab unikaalset IP aadressi
- Töötab ühe kindla serveri peal oma elu lõpuni
- Skaleeritakse pod-e, mitte konteinereid podis
- Uuenduste puhul luuakse uus pod ja vana kustutatakse
- Koosneb ühest kuni mitmest konteinerist

Pod

- Kui Pod sisaldab mitut konteinerit
 - Igal konteineril on oma protsessi tabel
 - Ei n\u00e4e teiste konteinerite protsesse
 - Omavad enda failisüsteemi
 - Võivad omada jagatud kaustu teiste konteineritega
 - Jagavad ühte IP aadressi

Pod

- Suunab võrgu liiklust Pod-ide suunas kindlatel võrgu portidel
- Nimeserveri kanne mis on service-iga sama nimega
- Teenuse hosti nimed on kujul <service nimi>.<namespace nimi>.
- Samas namespace-is oleva teenuse puhul piisab teenuse nime kasutamisest hosti nimena.
- Erinevad liigid: ClusterIP, NodePort, LoadBalancer, ExternalName

- Igas kubernetese klastris on oma nimeserveri teenus.
- Iga Service sõltumata tüübist saab omanimelise kande selles nimeserveris.
- Kõikidele konteineritele seadistatakse kubernetese nimeserverid automaatselt.
- Kui kubernetese siseselt ei suudeta nime lahendada, siis küsitakse serverite nimeserverilt.

- ClusterIP kõige levinum tüüp. Tekitab koormusjaoturi ja nimelahenduse pod-ide pihta.
- NodePort paneb serverite võrgu peal kindla pordi kuulama ja edastab selle pod-ide pihta.
- LoadBalancer eeldab integratsiooni välise koormusjaoruriga.
 Näiteks AWS või Azure pilves. Automaatselt tekitatakse koormusjaotur koos seadistusega.
- ExternalName tekitab klastri sees nimeserveri kande, mis on vabalt valitud CNAME tüüpi viide.

Käivitamine kuberneteses

WEB jaoks vajalikud objektid

Ingress

- Objekt on kirjeldus väljaspool kubernetest pakutavast teenusest
- Tavaliselt seadistatakse hosti nimi ja kaust millele vastab mingi kubernetese service
- Sageli määratakse ka millist SSL sertifikaati kasutada.
- Näiteks:

API ingress: demo.entigo.com/api* suuna api service 80 pordi pihta WEB ingress: demo.entigo.com/* suuna web service 80 pordi pihta

Ingress

- Ingressi objekte loevad erinevad koormusjaoturi tarkvarad, näiteks haproxy või nginx kontroller
- Objektidest saadud info põhjal koostatakse automaatselt koormusjaoturi seadistus
- Backendiks on pod-ide IP aadressid
- Enamasti teostatakse HTTPS koormusjaoturites

Käivitamine Kuberneteses

WEB jaoks vajalikud objektid

Käivitamine Kuberneteses

API jaoks vajalikud objektid

Configmap ja Secret

- Configmap sisaldab endas keskkonna muutujaid või faile
- Mitmed erinevad rakendused saavad kasutada ühiseid seadistusi või nende osi
- Erinevates keskkondades on sama nimega, aga erinevate väärtustega seadistused

Configmap ja Secret

- Secret väga sarnane configmap-iga.
- Sisaldab endast paroole, sertifikaate, võtmeid
- Sensitiivse info eristamiseks
- Sageli on erinevad kasutaja õigused
 - Näiteks võib olla õigus lugeda configmap-e, aga mitte secret-eid

Configmap ja Secret

Käivitamine Kuberneteses

API jaoks vajalikud objektid

Käivitamine Kuberneteses

Redis jaoks vajalikud objektid(Ei sobi)

Käivitamine Kuberneteses

Redis jaoks vajalikud objektid

- Sisaldab Pod-i kirjeldust
- Loob ja hävitab pod-e kindlas järjekorras
- Püsivad nimed ja kettad
- Mitte kunagi ei ole rohkem pode kui määratud
- Kasutatakse "stateful" rakenduste puhul Näiteks: redis, mysql

PersistantVolumeClaim

- Määrab ketta tüübi ja mahu
- Tegeleb ketta suurendamisega
- Sageli määratakse ka varundus strateegia
- Võimaldab siduda Podi kindla kettaga
- Mis saab kettast kui teda enam vaja ei ole

PersistantVolumeClaim

PersistantVolumeClaim

entigo

Rakenduse struktuur

- API/ Dockerfile + tarkvara kood
- web/ Dockerfile + tarkvara kood
- yaml/ Kubernetese objektide kirjeldused yaml formaadis
- skaffold.yaml Skaffold tööriista seadistused

Rakenduse struktuur

- yaml/api
 ingress.yaml service.yaml deployment.yaml secret.yaml configmap.yaml
- yaml/web ingress.yaml service.yaml deployment.yaml
- yaml/redis

service.yaml statefulset.yaml

Demo

Rakenduste lähtekood ja kubernetese seadistus

https://github.com/entigolabs/riigipilve-koolituspaev-21-kubernetese-pohitoed

Demo video https://youtu.be/VgDG7zknpnk

entigo

Tänan!

Martin Vool
Tallinn 2021

entigo

