import pandas as pd

df = pd.read_csv("weather.csv")

df

\Rightarrow	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm	WindSpeed9am .
0	8.0	24.3	0.0	3.4	6.3	NW	30.0	SW	NW	6.0
1	14.0	26.9	3.6	4.4	9.7	ENE	39.0	Е	W	4.0
2	13.7	23.4	3.6	5.8	3.3	NW	85.0	N	NNE	6.0
3	13.3	15.5	39.8	7.2	9.1	NW	54.0	WNW	W	30.0
4	7.6	16.1	2.8	5.6	10.6	SSE	50.0	SSE	ESE	20.0
361	9.0	30.7	0.0	7.6	12.1	NNW	76.0	SSE	NW	7.0
362	7.1	28.4	0.0	11.6	12.7	N	48.0	NNW	NNW	2.0
363	12.5	19.9	0.0	8.4	5.3	ESE	43.0	ENE	ENE	11.0
364	12.5	26.9	0.0	5.0	7.1	NW	46.0	SSW	WNW	6.0
365	12.3	30.2	0.0	6.0	12.6	NW	78.0	NW	WNW	31.0

366 rows x 22 columns

```
print("1] Descriptive Statistics")
print("(i) Mean of MinTemp is:",df["MinTemp"].mean())
print("(ii) Median of MinTemp is:",df["MinTemp"].median())
print("(iii) Standard Deviation of MinTemp is:",df["MinTemp"].std())
print("(iv) Mean of MaxTemp is:",df["MaxTemp"].mean())
print("(v) Median of MaxTemp is:",df["MaxTemp"].median())
print("(vi) Standard Deviation of MaxTemp is:",df["MaxTemp"].std())
print("(vii) Mean of Rainfall is:",df["Rainfall"].mean())
print("(viii) Median of Rainfall is:",df["Rainfall"].median())
print("(ix) Standard Deviation of Rainfall is:",df["Rainfall"].std())
print("(x) Mean of Evaporation is:",df["Evaporation"].mean())
print("(xi) Median of Evaporation is:",df["Evaporation"].median())
print("(xii) Standard Deviation of Evaporation is:",df["Evaporation"].std())
```

- 1] Descriptive Statistics
- (i) Mean of MinTemp is: 7.265573770491804
- (ii) Median of MinTemp is: 7.45 (iii) Standard Deviation of MinTemp is: 6.025799834253392 (iv) Mean of MaxTemp is: 20.550273224043714
- (v) Median of MaxTemp is: 19.65
- (vi) Standard Deviation of MaxTemp is: 6.690515669598577
- (vii) Mean of Rainfall is: 1.428415300546448
- (viii) Median of Rainfall is: 0.0
- (ix) Standard Deviation of Rainfall is: 4.225799585804051
- (x) Mean of Evaporation is: 4.521857923497268
- (xi) Median of Evaporation is: 4.2
- (xii) Standard Deviation of Evaporation is: 2.6693825342212643

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load the data
weather_data = pd.read_csv('weather.csv')
# Task 1: Descriptive Statistics
descriptive_stats = weather_data[['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation']].describe()
print("1] Descriptive Statistics:")
print(descriptive_stats)
# Task 2: Time Series Visualization using Row Index
plt.figure(figsize=(12, 6))
plt.plot(weather_data.index, weather_data['MinTemp'], label='MinTemp')
plt.plot(weather_data.index, weather_data['MaxTemp'], label='MaxTemp')
plt.plot(weather_data.index, weather_data['Rainfall'], label='Rainfall')
plt.plot(weather_data.index, weather_data['Evaporation'], label='Evaporation')
plt.title('2] Time Series Variation of Weather Variables')
plt.xlabel('Row Index (Time)')
plt.ylabel('Values')
plt.legend()
plt.show()
# Task 3: Correlation Analysis
correlation_matrix = weather_data[['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation']].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('3] Correlation Matrix')
plt.show()
# Task 4: Rainfall Distribution
plt.figure(figsize=(10, 6))
sns.histplot(weather_data['Rainfall'], kde=True)
plt.title('4] Rainfall Distribution')
plt.xlabel('Rainfall')
plt.ylabel('Frequency')
plt.show()
# Task 5: Seasonal Analysis
seasonal_data = weather_data[['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation']].mean()
plt.figure(figsize=(12, 6))
seasonal_data.plot(kind='bar')
plt.title('5] Seasonal Analysis of Weather Variables')
plt.xlabel('Index (Month or Row Number)')
plt.ylabel('Average Values')
plt.show()
```


