지능형 멀티미디어 시스템 데이터 증강에 따른 COVID-19 이미지 분류모델 성능 비교

프로젝트 소개 : 무엇이 목표인가?

► COVID 19 IMAGE SEGMENTATION 데이터 증강 성능 비교

의료데이터에서의 데이터 증강 성능

- GAN을 통해서 데이터 증강을 하고 다른 증강과 섞어볼까?
- JPEG의 문제점인 디지털 풍화를 모델 학습에 적용시킨다면?
- GAN을 통한 GAN의 재 학습 이미지는 어떤 모습이고 학습에 적용 시킬 수 있을까?
- UNET에서 우수한 성능을 보인 데이터 증강을 VIT에 학습시킨다면?
- UNET GAN 이외의 GAN의 성능은 어떨까?
- 딥러닝의 구성요소 3가지 모델, 데이터, loss함수
- 어떤 loss함수가최적의 결과를 보일까?

프로젝트 소개

프로젝트 소개 : 어떤 데이터를 사용했나?

► COVID-19 CT scan lesion segmentation dataset

COVID-19 CT scan lesion segmentation dataset

The curated COVID-19 lesion masks and their frames from 3 public datasets.

E

Data Card Code (10) Discussion (0) Suggestions (0)

About Dataset

We built a large lung CT scan dataset for COVID-19 by curating data from 7 public datasets. Three of these datasets had shared COVID-19 lesion masks and their corresponding frames of these 3 public datasets, with 2729 image and ground truth mask pairs. All different types of felsions are mapped to white cool for consistency across datasets.

Acknowledgement

- S. Morozov et al., "MosMedData: Chest CT Scans With COVID-19 Related Findings Dataset," arXiv preprint arXiv:2005.06465, 2020.
- M. Jun et al., "COVID-19 CT Lung and Infection Segmentation Dataset," Zenodo, Apr, vol. 20, 2020.
- "COVID-19." 2020. [Online] http://medicalsegmentation.com/covid19/ [Accessed 23 December, 2020].

512 × 512 px

병변vs 배경

이진 segmentation

* 2727장의 마스크와 이미지

* Kaggle을 통해서 배포되어 있는 데이터셋

Ground-Glass

주위 조직·혈관 구조가 보일 정도로 반투명하게 흐린 영역을 말합니다.

Consolidation

흉부 CT에서 폐포 내에 액체성분이 가득 차 폐 조직이 실질적으로 치밀해져 흰색 으로 보이는 소견을 말합니다.

데이터 전처리

데이터 증강

추가로 시도해 보고자 하는 것 - JPEG의 디지털 풍화

*원본 *30 압축 4번 *30 압축 18번 *30 압축 30번

디지털 풍화

데이터 증강으로 JPEG을 사용하면서 든 생각 —— 디지털 풍화를 시켜 모델에 학습시킨다면 어떤 결과가 나올 것인가?

* 30 압축

* 30 - 20 -10 - 5압축

Test Loss: 0.1512 Test F1: 0.6675 Test mloU: 0.5603

디지털 풍화란?

디지털 데이터나 이미지가 압축, 변환, 저장, 전송, 복사 과정에서 반복적으로 처리되며, 원본 품질이 점진적으로 손실되는 현상을 말합니다.

Elastic 대신에 JPEG을 사용할 수 있을까?

이미지를 랜덤하게 비틀어(탄성 변형) 실제 조직이나 객체가 자연스럽게 변형된 것처럼 만들어 줌

국소적인 왜곡(local deformation)을 통해 모델이 모양 변화에 강건해지도록 함

가우시안 필터를 사용하여 스무딩, 매우작은 영역에서 변위가 진행됨

* elastic

* flip/rotate

* mixup

* flip/rotate

데이터 생성

UNET - GAN Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros CVPR 2017c

Generator: U-Net

점점 receptive field(수렴 영역)를 넓혀가며, "대략 이 영역에 이런 객체가 있다"는 높은 수준의 맥락 정보를 추출

Discriminator: PatchGAN

이미지 전체가 아니라, N×N 크기 패치단위로 진짜/가짜 판별

L1 Loss

$$\min_{G} \; \max_{D} \left[\mathcal{L}_{cGAN}(G,D) + \lambda \, \mathcal{L}_{L1}(G)
ight]$$

IMG SIZE = 256BATCH SIZE = 8 EPOCHS = 50= 2e-4L1 LAMBDA = 100NUM_SAMPLES = 2500

*frame

*Mask

데이터 생성

DAGAN Data Augmentation Generative Adversarial Networks Antreas Antoniou, Amos Storkey, Harrison Edwards arXiv preprint arXiv Nov 2017

"같은 클래스 내 진짜 같은 가짜"를 생성함으로써, 데이터 소량 환경에서도 모델의 일반화 능력을 크게 향 상시키는 강력한 증강 기법

Generator

원본 이미지 x + 노이즈 벡터 z

Discriminator

조건부 PatchGAN + 스펙트럴 노멀라이제이션 → 국소 질감(realism) 을 학습

IMG SIZE = 256BATCH_SIZE = 8 EPOCHS = 50= 2e-4L1 LAMBDA = 100NUM_SAMPLES = 2500

*frame

*Mask

GAN 을 활용한 GAN 학습

Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros CVPR 2017c

*frame

*Mask

모델의 성능 비교 - LOSS

$$L_{BCE} = -\frac{1}{n} \sum_{i=1}^{n} (Y_i \cdot \log \hat{Y}_i + (1 - Y_i) \cdot \log (1 - \hat{Y}_i))$$

BCE(Binary Cross Entropy Loss)란?

Segmentaion에서 마스크의 안과 밖을 예측하는 문제에서 사용된다.

H,WH,WH,W는 출력 마스크의 높이와 너비

각 픽셀 (i,j)(i,j)(i,j) 에 대해 이진 교차 엔트로피를 계산하고, 전체 픽셀 평균을 구함

Dice Loss란?

두 이진 마스크 사이의 유사도를 측정하는 함수 MIOU는 교집합을 한번만 포함하지만 DICE는 교집합을 두 번 포함

Dice는 F1-score 관점에서 "정밀도(Precision)·재현율 (Recall)"을 직접 최적화하는 효과가 있음

작은 마스크에 효과적

데이터 증강에 따른 모델 성능비교

Flip/rotate + mixup

Mixup + jpeg

Origin(대조군)

Origin + gan + jpeg

Origin + gan

Origin + gan + elastic

Segmentation 에서의 증강성능 검증할 8개의 실험계획

모델 학습

U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015

* Train/val = 0.75/0.25

COVID-19 CT scan lesion segmentation dataset

*origin + gan

*origin + gan + elastic

*origin + gan + jpeg

U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015

* Train/val = 0.75/0.25

COVID-19 CT scan lesion segmentation dataset

*Flip/rotate + mixup

*Flip/rotate + elastic

*Flip/rotate + mixup + jpeg

*mixup + jpeg

U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015 * 50 epoch Test set 결과

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin(원본, 대조군)	0.0127	0.7489	0.6410
Origin + GAN	0.0073	0.8333	0.7460
Origin + GAN + Elastic	0.0084	0.7968	0.7014
Origin + GAN + JPEG	0.0099	0.7641	0.6741
Flip/Rotate + Elastic	0.0117	0.6928	0.5824
Flip/Rotate + Mixup	0.0423	0.3606	0.3064
Mixup + JPEG	0.0442	0.3608	0.3125
Flip/Rotate + Mixup + JPEG	0.0367	0.2847	0.2304

가장 안 좋은 성능을 보이는 데이터 증강의 조합

Flip/Rotate + Mixup

Mixup + JPEG

Flip/Rotate + Mixup + JPEG

IMAGE_SIZE = 256 NUM_SAMPLES = 2700 BATCH_SIZE = 8 EPOCHS = 50 LEARNING_RATE = 1e-3 BCE loss

U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015 * 100 epoch Test set 결과

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.0202	0.7825	0.6722
Origin + GAN	0.0125	0.8221	0.7327
Origin + GAN + Elastic	0.0124	0.7940	0.7038
Origin + GAN + JPEG	0.0141	0.7803	0.6888
Flip/Rotate + Elastic	0.0207	0.7388	0.6275
Flip/Rotate + Mixup	0.0754	0.3638	0.3096
Mixup + JPEG	0.0760	0.3966	0.3503
Flip/Rotate + Mixup + JPEG	0.0546	0.4387	0.3659

가장 안정적이고 좋은 결과를 보이는 데이터 증강의 조합

origin + gan

origin + gan + elastic

IMAGE_SIZE = 256 NUM_SAMPLES = 2700 BATCH_SIZE = 8 EPOCHS = 100 LEARNING_RATE = 1e-3 BCE loss

U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015 * 50 epoch Test set 결과

DICE LOSS사용시 변화

증강된 데이터 종류	Test Loss	F-1 Score	mloU	증강된 데이터	종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.0127	0.7489	0.6410	Origin (원본, 대	조군)	0.2517	0.7494	0.6315
Origin + GAN + Elastic	0.0073	0.8333	0.7460	Origin + GAN +	Elastic	0.2347	0.7667	0.6607
Origin + GAN	0.0124	0.7940	0.7038	Origin + GA	AN	0.2902	0.7044	0.6010

*BCE LOSS *DICE LOSS

SegFormer에 적용 SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, José M. Alvarez, Ping Luo. CVPR 2021

* 50 epoch Test set 결과

SegFormer에 적용 * 50 epoch Test set 결과

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, José M. Alvarez, Ping Luo. CVPR 2021

증강된 데이터 종류	Test Loss	F-1 Score	mloU	증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.0125	0.7448	0.6361	Origin (원본, 대조군)	0.2502	0.7599	0.6481
Origin + GAN + Elastic	0.0085	0.7534	0.6511	Origin + GAN + Elastic	0.2331	0.7761	0.6705
Origin + GAN	0.0081	0.7556	0.6705	Origin + GAN	0.2307	0.7756	0.6824

*BCE LOSS *DICE LOSS

VIT에서는 DICE LOSS가 우수한 성능을 보인다

모델성능 비교

UNET VS SegFormer * 50 epoch Test set 결과

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.0127	0.7489	0.6410
Origin + GAN + Elastic	0.0073	0.8333	0.7460
Origin + GAN	0.0124	0.7940	0.7038

Origin + GAN
*BCE LOSS ,VIT

증강된 데이터 종류

Origin (원본, 대조군)

Origin + GAN + Elastic

*BCE I	LOSS,	UNET
--------	-------	-------------

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.2517	0.7494	0.6315
Origin + GAN + Elastic	0.2347	0.7667	0.6607
Origin + GAN	0.2902	0.7044	0.6010

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.2502	0.7599	0.6481
Origin + GAN + Elastic	0.2331	0.7761	0.6705
Origin + GAN	0.2307	0.7756	0.6824

Test Loss

0.0125

0.0085

0.0081

F-1 Score

0.7448

0.7534

0.7556

mloU

0.6361

0.6511

0.6705

*DICE LOSS ,UNET

*DICE LOSS, VIT

모델성능 비교

연구들과 비교 MedSegBench: 14-dataset benchmark incl. COVID-19 CT lesion – Nat. Sci. Data 2024

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.0127	0.7489	0.6410
Origin + GAN + Elastic	0.0073	0.8333	0.7460
Origin + GAN	0.0124	0.7940	0.7038

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.0125	0.7448	0.6361
Origin + GAN + Elastic	0.0085	0.7534	0.6511
Origin + GAN	0.0081	0.7556	0.6705

*BCE LOSS ,UNET

증강된 데이터 종류	Test Loss	F-1 Score	mloU
Origin (원본, 대조군)	0.2517	0.7494	0.6315
Origin + GAN + Elastic	0.2347	0.7667	0.6607
Origin + GAN	0.2902	0.7044	0.6010

*BCE	LOSS	.VIT
DOL		, v

증강된 데이터 종류	Test Loss	F-1 Score	mloU	
Origin (원본, 대조군)	0.2502	0.7599	0.6481	
Origin + GAN + Elastic	0.2331	0.7761	0.6705	
Origin + GAN	0.2307	0.7756	0.6824	

*DICE LOSS ,UNET

*DICE LOSS, VIT

F1				IOU							
RN-18	RN-50	EN	MN-v2	DN-121	MVT	RN-18	RN-50	EN	MN-v2	DN-121	MVT
0.780	0.790	0.781	0.785	0.791	0.761	0.674	0.682	0.674	0.679	0.686	0.650

TEAM 꿀벌

김호중 팀장

Interested in Django, cloud, k8s, mlops Git hub : @wlrma0108

김 대 엽

Interested in robot algorithm, ui/ux Git hub: @kdy91202

지능형 멀티미디어 시스템 발표를 들어 주셔서 감사합니다.