

X3-Class HiPerFET™ Power MOSFET

IXFJ80N25X3

 $V_{DSS} = 250V$ $I_{D25} = 44A$ $R_{DS(ar)} \le 18m\Omega$

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated

ISO TO-247 [™]	
//	
G D	
D S	Isolated Tab

G = Gate	D	= Drain
S = Source		

Symbol	ymbol Test Conditions		Maximum Ratings	
V _{DSS}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	250	V	
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	250	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _c = 25°C	44	A	
I _{DM}	$T_{\rm c}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	220	Α	
I _A	T _c = 25°C	40	A	
E _{as}	$T_{c} = 25^{\circ}C$	1.2	J	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns	
P_{D}	T _c = 25°C	104	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	Plastic Body for 10s	260	°C	
F _c	Mounting Torque	1.13 / 10	Nm/lb.in	
V _{ISOL}	50/60 Hz, RM, t = 1min	2500	V~	
Weight		5	g	

Symbol **Characteristic Values Test Conditions** (T_J = 25°C, Unless Otherwise Specified) Max. Min. Тур. $\mathbf{BV}_{\mathrm{DSS}}$ $V_{GS} = 0V, I_{D} = 250 \mu A$ 250 $V_{\underline{GS(th)}}$ $V_{DS} = V_{GS}, I_{D} = 1.5 \text{mA}$ 2.5 ٧ 4.5 $V_{GS} = \pm 20V, V_{DS} = 0V$ ±100 nA l_{gss} $\mathbf{I}_{\mathrm{DSS}}$ $V_{DS} = V_{DSS}, V_{GS} = 0V$ 5 μΑ T_{.1} = 125°C 350 μΑ $V_{GS} = 10V, I_{D} = 40A, Note 1$ 18 $m\Omega$ $\mathbf{R}_{\mathrm{DS}(\underline{\mathrm{on}})}$

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Avalanche Rated
- Low $R_{DS(ON)}$ and Q_{G}
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Characteristic Values Min. Typ. Max		
g _{fs}	V _{DS} = 10V, I _D = 40A, Note 1	38	64	S
R_{gi}	Gate Input Resistance		1.6	Ω
C _{iss}			5430	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		890	pF
C _{rss}			1.6	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $V_{GS} = 0V$		320	pF
$\mathbf{C}_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1410	pF
t _{d(on)}	Pacietiva Switching Times		30	ns
t _r	Resistive Switching Times		17	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 40A$		65	ns
$\mathbf{t}_{r}^{\text{doff}}$ $\mathbf{R}_{G} = 5\Omega \text{ (External)}$		8	ns	
$Q_{g(on)}$			83	nC
Q _{as}	Q_{gs} $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 40A$		27	nC
\mathbf{Q}_{gd}			24	nC
R _{thJC}				1.20 °C/W
R _{thCS}			0.30	°C/W

Source-Drain Diode

Symbol (T _J = 25°C, l		Chara Min.	cteristic Typ.	Values Max	
I _s	V _{GS} = 0V			80	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			320	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 40A$, -di/dt = 100A/ μ s $V_R = 100V$		120 600 10		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

© 2019 IXYS CORPORATION, All Rights Reserved

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.