THINGS TO REMEMBER:

$$A = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx = \int_{a}^{b} [f(x) - g(x)] dx$$

$$y(av) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$A_a^x = \int f(x) dx = F(x) + c$$

$$A_a^a = 0 = F(a) + c \implies c = -F(a)$$

hence
$$A_a^x = F(x) - F(a)$$
. Finally by taking $x = b$ we get, $A_a^b = F(b) - F(a)$.

Set Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com KEY CONCEPTS

HINGS TO REMEMBER:

The area bounded by the curve y = f(x), the x-axis and the ordinates at x = a & x = b is given by, $A = \int_{a}^{b} f(x) dx = \int_{a}^{b} y dx.$ If the area is below the x-axis then A is negative. The convention is to consider the magnitude only i.e. $A = \int_{a}^{b} y dx \Big| \text{ in this case.}$ Area between the curves y = f(x) & y = g(x) between the ordinates at x = a & x = b is given by, $A = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx = \int_{a}^{b} [f(x) - g(x)] dx.$ Average value of a function y = f(x) w.r.t. x over an interval $a \le x \le b$ is defined as: $y(av) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$ The area function A_{a}^{b} satisfies the differential equation $\frac{dA_{a}^{b}}{dx} = f(x)$ with initial condition $A_{a}^{b} = 0$.

Note: If F(x) is any integral of F(x) then, $A_{a}^{b} = \int_{a}^{b} f(x) dx = F(x) - F(a).$ Finally by taking x = b we get, $A_{a}^{b} = F(b) - F(a)$.

CURVE TRACING:
The following outline procedure is to be applied in Sketching the graph of a function y = f(x) which inturn will be extremely useful to quickly and correctly evaluate the area under the curves.

Symmetry: The symmetry of the curve is judged as follows:

(i) If all the powers of x are eyen, the curve is symmetrical about the axis of x.

(ii) If powers of x & y both are even, the curve is symmetrical about the axis of x as well as y.

(iv) If on interchanging the signs of x & y both the equation of the curve is symmetrical about the axis of x in one procedure is to be applied in Sketching the graph of a function y = f(x) which in the curve is symmetrical about the axis of x.

(ii) If all the powers of x are eyen, the curve is symmetrical about the axis of x as well as y.

(iv) If the equation of the curve remains unchanged on interchanging x and y, then the curve is symmetrical about the axis of x in one procedure is to be applied in Sketching the graph of x and

- about y = x.
- (v) If on interchanging the signs of x & y both the equation of the curve is unaltered then there is symmetry $\frac{1}{2}$ in opposite quadrants.
- Find dy/dx & equate it to zero to find the points on the curve where you have horizontal tangents.
- Find the points where the curve crosses the x-axis & also the y-axis.
- Examine if possible the intervals when f(x) is increasing or decreasing. Examine what happens to 'y when $x \to \infty$ or $-\infty$.

USEFUL RESULTS:

- Whole area of the ellipse, $x^2/a^2 + y^2/b^2 = 1$ is π ab.
- Area enclosed between the parabolas $y^2 = 4$ ax & $x^2 = 4$ by is 16ab/3.
- Area included between the parabola $y^2 = 4$ ax & the line y = mx is $8 a^2/3 m^3$.

EXERCISE-I

- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Find the area bounded on the right by the line x + y = 2, on the left by the parabola $y = x^2$ and below by the x-axis.
 - Find the area of the region bounded by the curves, $y = x^2 + 2$; y = x; x = 0 & x = 3.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

- Find the area of the region $\{(x,y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$. Q.3
- Find the value of c for which the area of the figure bounded by the curves $y = \sin 2x$, the straight lines $x = \pi/6$, x = c & the abscissa axis is equal to 1/2.
- The tangent to the parabola $y = x^2$ has been drawn so that the abscissa x_0 of the point of tangency belongs to the interval [1, 2]. Find x_0 for which the triangle bounded by the tangent, the axis of ordinates x_0
- & the straight line $y = x_0^2$ has the greatest area.

 Compute the area of the region bounded by the curves $y = e.x. \ln x & y = \ln x/(e.x)$ where $\ln e=1$.

 A figure is bounded by the curves $y = \sqrt{2} \sin \frac{\pi x}{4}$, y = 0, x = 2 & x = 4. At what angles to the positive $\frac{80}{4}$ A figure is bounded by the curves $y = \begin{vmatrix} \sqrt{2} & \sin \frac{\pi}{4} \end{vmatrix}$, y = 0, x = 2 & x = 4. At what angles to the positive $\frac{\pi}{4}$ $\frac{\pi}{$

- $x = 2y y^2$ is, (i) 9/2 square units & (ii) minimum. Also find the minimum area.
- $x = 2y y^2$ is, (i) 9/2 square units & (ii) minimum. Also find the minimum area. Find the ratio in which the area enclosed by the curve $y = \cos x$ ($0 \le x \le \pi/2$) in the first quadrant is divided by the curve $y = \sin x$.

 Find the area enclosed between the curves: $y = \log_e(x + e)$, $x = \log_e(1/y)$ & the x-axis.

 Find the area of the figure enclosed by the curve $(y \arcsin x)^2 = x x^2$.

 For what value of 'a' is the area bounded by the curve $y = a^2x^2 + ax + 1$ and the straight line y = 0, 0 for x = 1 the least x = 0.
- x = 0 & x = 1 the least ?
- x = 0 & x = 1 the least?

 Find the positive value of 'a' for which the parabola $y = x^2 + 1$ bisects the area of the rectangle with vertices (0, 0), (a, 0), $(0, a^2 + 1)$ and $(a, a^2 + 1)$.

 Compute the area of the curvilinear triangle bounded by the y-axis & the curve, $y = \tan x \& y = (2/3)\cos x$.

 Consider the curve $C: y = \sin 2x \sqrt{3} |\sin x|$, C cuts the x-axis at (a, 0), $a \in (-\pi, \pi)$.
- Consider the curve C: $y = \sin 2x \sqrt{3} |\sin x|$, C cuts the x axis at (a, 0), $a \in (-\pi, \pi)$. Consider the curve C: $y = \sin 2x - \sqrt{3} + \sin x$, C cuts the x-axis at (a, 0), $a \in (-\pi, \pi)$.

 A₁: The area bounded by the curve C & the positive x-axis between the origin & the ordinate at x = a. A_2 : The area bounded by the curve C & the negative x – axis between the ordinate x = a & the origin. Prove that $A_1 + A_2 + 8 A_1 A_2 = 4$. ď
- Find the area bounded by the curve $y = x e^{-x}$; xy = 0 and x = c where c is the x-coordinate of the curve's ϕ
- inflection point.

 Find the value of 'c' for which the area of the figure bounded by the curve, $y = 8x^2 x^5$, the straight lines x = 1 & x = c & the abscissa axis is equal to <math>16/3. x = 1 & x = c & the abscissa axis is equal to 16/3.
- Find the area bounded by the curve $y^2 = x & x = |y|$.

 Find the area bounded by the curve $y = x e^{-x^2}$, the x-axis, and the line x = c where y(c) is maximum. Teko Classes, Maths:
- Find the area of the region bounded by the x-axis & the curves defined by,

$$\begin{bmatrix} y = \tan x & , & -\pi/3 \le x \le \pi/3 \\ y = \cot x & , & \pi/6 \le x \le 3\pi/2 \end{bmatrix}$$

- Consider the curve $y = x^n$ where n > 1 in the 1st quadrant. If the area bounded by the curve, the x-axis and the tangent line to the graph of $y = x^n$ at the point (1, 1) is maximum then find the value of n.

 Consider the collection of all curve of the form $y = a bx^2$ that pass through the the point (2, 1), where

 - Consider the collection of all curve of the form $y = a bx^2$ that pass through the the point (2, 1), where a and b are positive constants. Determine the value of a and b that will minimise the area of the region bounded by $y = a bx^2$ and x-axis. Also find the minimum area. In the adjacent graphs of two functions y = f(x) and $y = \sin x$ are given. $y = \sin x$ intersects, y = f(x) at A(a, f(a)); $B(\pi, 0)$ and $C(2\pi, 0)$. A_i (i = 1, 2, 3,) is the area bounded by the curves y = f(x) and $y = \sin x$ between y = a and y = a an

- Consider the two curves $y = 1/x^2 \& y = 1/[4(x-1)]$.
 - At what value of 'a' (a>2) is the reciprocal of the area of the fig. bounded by the curves, the lines x & x = a equal to 'a' itself?
- At what value of 'b' (1 < b < 2) the area of the figure bounded by these curves, the lines x = bx = 2 equal to 1 - 1/b.
- Show that the area bounded by the curve y = maximum point of the curve is independent of the constant c.
- For what value of 'a' is the area of the figure bounded by the lines, $y = \frac{1}{x}$, $y = \frac{1}{2x-1}$, x = 2 & x = a equal to $ln = \frac{1}{2x-1}$
- Compute the area of the loop of the curve $y^2 = x^2 [(1+x)/(1-x)]$.
- Find the value of K for which the area bounded by the parabola $y = x^2 + 2x 3$ and the lin
- Let A_n be the area bounded by the curve $y = (\tan x)^n$ & the lines x = 0, y = 0 & $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for x = 0, $x = \pi/4$. Prove that for $x = \pi/4$. Prove that for $x = \pi/4$.
- If f (x) is monotonic in (a, b) then prove that the area bounded by the ordinates at x = a; x = b; y = f(x) and y = f(c), $c \in (a, b)$ is minimum when $c = \frac{a + b}{2}$.

 Hence if the area bounded by the graph of $f(x) = \frac{x^3}{3} x^2 + a$, the straight lines x = 0, x = 2 and the x-axis is minimum then find the value of 'a'.

- Consider the two curves $C_1: y = 1 + \cos x \& C_2: y = 1 + \cos (x \alpha)$ for $\alpha \in \left(0, \frac{\pi}{2}\right); x \in [0, \pi]$. Find α the value of α , for which the area of the figure bounded by the curves C_1 , C_2 & x=0 is same as that of the figure bounded by C_2 , y=1 & $x=\pi$. For this value of α , find the ratio in which the line y=1 divides the area of the figure by the curves C_1 , C_2 & $x=\pi$.

 Find the area bounded by $y^2=4$ (x+1), $y^2=-4$ (x-1) & y=|x| above axis of x.

 Compute the area of the figure which lies in the first quadrant inside the curve

 Cessful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
- Q.17

- Find the whole area included between the curve $x^2y^2 = a^2(y^2 x^2)$ & its asymptotes (asymptotes are the $\frac{60}{100}$

- Q.22 Draw a neat and clean graph of the function $f(x) = \cos^{-1}(4x^3 3x)$, $x \in [-1, 1]$ and find the area
- Find the whole area included between the curve $x^2y^2 = a^2(y^2 - x^2)$ & its asymptotes (asymptotes are the lines which meet the curve at infinity).

 For what values of $a \in [0, 1]$ does the area of the figure bounded by the graph of the function y = f(x) = 0 and the straight lines x = 0, x = 1 & y = f(a) is at a minimum & for what values it is at a maximum if a = 0 and the straight lines a = 0, a = 1 & a = 0 and the straight lines a = 0 an

- For what values of $a \in [0, 1]$ does the area of the figure bounded by the graph of the function $y = f(x) \circ \mathcal{E}$ the straight lines x = 0, x = 1, y = f(a) have the greatest value and for what values does it have the least value, if, $f(x) = x^{\alpha} + 3x^{\beta}$, α , $\beta \in \mathbb{R}$ with $\alpha > 1$, $\beta > 1$.

 Given $f(x) = \int_{0}^{x} e^{t} (\log \sec t \sec^{2} t) dt$; $g(x) = -2e^{x} \tan x$. Find the area bounded by the curves g(x) = f(x) = f(x) = f(x) = f(x).

 EXERCISE-III

 Let f(x) = f(x) = f(x) = f(x) = f(x), f(x) = f(x) = f(x) = f(x), where f(x) = f(x) = f(x) bounded by the curves f(x) = f(x) = f(x), f(x) = f(x) = f(x).

 Indicate the region bounded by the curves f(x) = f(x) = f(x).

- Indicate the region bounded by the curves $x^2 = y$, y = x + 2 and x-axis and obtain the area enclosed by them. [REE '97, 6]
 - Let $C_1 \& C_2$ be the graphs of the functions $y = x^2 \& y = 2x$, $0 \le x \le 1$ respectively. Let C_3 be the graph of a function y = f(x), $0 \le x \le 1$, f(0) = 0. For a point P on C_1 , let the lines through P, parallel to the axes, meet C₂ & C₃ at Q & R respectively (see figure). If for every position of P (on C_1), the areas of the shaded regions OPQ & ORP are equal, determine the function f(x). [JEE '98, 8]

Sir)

자 자

Kariya (S.

- Indicate the region bounded by the curves $y = x \ln x \& y = 2x 2x^2$ and obtain the area enclosed by them. [REE '98, 6] For which of the following values of m, is the area of the region bounded by the curve $y = x x^2$ and the line y = mx equals 9/2?

 (A) -4 (B) -2 (C) 2 (D) 4

 Let f(x) be a continuous function given by $f(x) = \begin{cases} 2x & \text{for } |x| \le 1 \\ x^2 + ax + b & \text{for } |x| > 1 \end{cases}$ Find the area of the region in the third quadrant bounded by the curves, $x = -2y^2$ and cessful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com [JEE '99, 3 + 10 (out of 200)] y = f(x) lying on the left of the line 8x + 1 = 0. Find the area of the region lying the probability of the probability Find the area of the region lying inside $x^2 + (y-1)^2 = 1$ and outside $c^2x^2 + y^2 = c^2$ where $c = \sqrt{2} - 1$. Find the area enclosed by the parabola $(y-2)^2=x-1$, the tangent to the parabola at (2,3) and the x-axis. [REE 2000,3] be the area of the region bounded by the y axis and the curve S_j $xe^{ay} = sinby, \frac{j\pi}{b} \le y \le \frac{(j+1)\pi}{b}$. Show that $S_0, S_1, S_2, \ldots, S_n$ are in geometric progression. Also, $\frac{80}{5}$ $xe^{ay} = sinby, \frac{3}{b} \le y \le \frac{(y+1)}{b}. \text{ Show that } S_0, S_1, S_2, \dots S_n \text{ are in geometric progression. Also, } 6 \\ \text{find their sum for } a = -1 \text{ and } b = \pi. \\ \text{The area bounded by the curves } y = |x| - 1 \text{ and } y = -|x| + 1 \text{ is} \\ \text{(A) 1} \qquad \text{(B) 2} \qquad \text{(C) } 2\sqrt{2} \qquad \text{(D) 4} \\ \text{Find the area of the region bounded by the curves } y = x^2, y = |2 - x^2| \text{ and } y = 2, \text{ which lies to the right } 9 \\ \text{of the line } x = 1. \qquad \text{[JEE'2002, (Scr)]} 9 \\ \text{If the area bounded by } y = ax^2 \text{ and } x = ay^2, a > 0, \text{ is } 1, \text{ then } a = 2 \\ \text{(A) 1} \qquad \text{(B) } \frac{1}{\sqrt{3}} \qquad \text{(C) } \frac{1}{3} \qquad \text{(D) } -\frac{1}{\sqrt{3}} \\ \text{[JEE'2004, (Scr)]} \end{cases}$ The area bounded by the parabolas $y = (x+1)^2$ and $y = (x-1)^2$ and the line y = 1/4 is Q.12(a) The area bounded by the parabolas $y = (x + 1)^2$ and $y = (x - 1)^2$ and the line y = 1/4 is parabolas $y = (x + 1)^2$ and $y = (x - 1)^2$ and the line y = 1/4 is 1/6 sq. units (C) 4/3 sq. units (D) 1/3 sq. units [JEE '2005 (Screening)] he curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x - 3$. $\begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix}$, f(x) is a quadratic function and its maximum value occurs at $\begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix}$ (B) 1/6 sq. units (b) Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x - 3$. a point V. A is a point of intersection of y = f(x) with x-axis and point B is such that chord AB subtends a right angle at V. Find the area enclosed by f(x) and chord AB. [JEE 2005 (Mains), 4+6]

Match the following

(i) $\int_{0}^{\pi/2} (\sin x)^{\cos x} (\cos x \cot x - \log(\sin x)^{\sin x}) dx$ (A) 1

(ii) Area bounded by $-4y^2 = x$ and $x - 1 = -5y^2$ (B) 0

(iii) Cosine of the angle of intersection of curves $y = 3^{x-1} \log x$ and $y = x^x - 1$ is (C) $6 \ln 2$ (D) 4/3 [JEE 2006, 6]

ANSWER EXERCISE—I

5/6 sq. units

Q 2. 21/2 sq. units
Q 3. 23/6 sq. units $= -\frac{\pi}{6}$ or $\frac{\pi}{3}$ Q 5. $x_0 = 2$, $A(x_0) = 8$ Q 6. $(e^2 - 5)/4$ e sq. units $= -\tan^{-1} \frac{2\sqrt{2}}{3\pi}$; $\pi - \tan^{-1} \frac{4\sqrt{2}}{3\pi}$ Q 10. a = 9 Q 11. $\frac{3\pi + 2}{\pi - 2}$ cessful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

Get Soldion of These Q 12.
$$\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$
 sq. units $\frac{Q}{Q}$ 14. $\sqrt{2}$ $\frac{Q}{Q}$ 17. $a=-3/4$ $\frac{Q}{Q}$ 21. $1-3e^{-2}$ $\frac{Q}{Q}$ 23. $1/3$ $\frac{Q}{Q}$ 1. $4:121$ $\frac{Q}{Q}$ 24. $y=2$ $x/3$

Q 13. (i) m = 1, (ii) m =
$$\infty$$
; $A_{min} = 4/3$

$$\frac{2}{2}$$
 Q 14. $\sqrt{2}$

Q 16.
$$\pi/4$$

Q 18.
$$\sqrt{3}$$

Q 19.
$$\frac{1}{3} + \ell \ln \left(\frac{\sqrt{3}}{2} \right)$$
 sq. units

Q 21.
$$1 - 3e^{-2}$$

Q 22. C =
$$-1$$
 or $\left(8 - \sqrt{17}\right)^{1/3}$

Q 24.
$$\frac{1}{2}(1-e^{-1/2})$$
 Q 25. $\ln 2$

EXERCISE-II

Q 2. 128/15 sq. units

Q 3.
$$(5\pi - 2)/4$$
 sq. units

⊗ Q 4.
$$y = 2x/3$$

Q 5.
$$\sqrt{2} + 1$$

$$\mathbf{Q}$$
 4. $y = 2x/3$ \mathbf{Q} 5. $\sqrt{2} + 1$ \mathbf{Q} 6. $b = 1/8$, $A_{\text{minimum}} = 4\sqrt{3}$ sq. units \mathbf{Q} 7. $f(x) = x \sin x$, $a = 1$; $A_1 = 1 - \sin 1$; $A_2 = \pi - 1 - \sin 1$; $A_3 = (3\pi - 2)$ sq. units

Q.10
$$a = 8 \text{ or } \frac{2}{5} \left(6 - \sqrt{21} \right)$$

O 11.
$$2 - (\pi/2)$$
 sq. units

Q 12.
$$K = 2$$
, $A = 32/3$

Q.14
$$a = \frac{2}{3}$$

Q 15.
$$\alpha = \pi/3$$
, ratio = 2: $\sqrt{3}$

Q 16.
$$\frac{8}{3} - \frac{8}{3} \left(3 - 2\sqrt{2} \right)^{3/2} - \left(2\sqrt{2} - 2 \right)^2$$

Q 17.
$$\left| \frac{\sqrt{2}}{3} + \frac{3}{2} \right|$$
 arc $\sin \frac{1}{3} = a^2 + \sin \frac{1}{3}$ arc $\sin \frac{1}{3} = a^2 + \sin \frac{1}{3} = a^2 + \cos \frac{1}{3}$

Q 18.
$$\frac{1}{3} \left(16\sqrt{2} - 20 \right)$$

Q 19.
$$4a^2$$

$$\begin{array}{c} \bigotimes_{\mathbf{Q}} \mathbf{Q} \ \mathbf{4}. \ \mathbf{y} = 2 \, x/3 \\ \mathbf{Q} \ \mathbf{7}. \ \mathbf{f}(\mathbf{x}) = \mathbf{x} \ \mathrm{sinx}, \ \mathbf{a} = 1; \ \mathbf{A}_1 = 1 - \mathrm{sin1}; \ \mathbf{A}_2 = \pi - 1 - \mathrm{sin1}; \ \mathbf{A}_3 = (3\pi - 2) \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{7}. \ \mathbf{f}(\mathbf{x}) = \mathbf{x} \ \mathrm{sinx}, \ \mathbf{a} = 1; \ \mathbf{A}_1 = 1 - \mathrm{sin1}; \ \mathbf{A}_2 = \pi - 1 - \mathrm{sin1}; \ \mathbf{A}_3 = (3\pi - 2) \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{8}. \ \mathbf{a} = 1 + \mathbf{e}^2, \ \mathbf{b} = 1 + \mathbf{e}^{-2} \\ \mathbf{Q}. \ \mathbf{9} \ 1/2 \\ \mathbf{Q}. \ \mathbf{10} \ \mathbf{a} = 8 \ \mathrm{or} \frac{2}{5} \ \mathbf{9} \\ \mathbf{Q} \ \mathbf{11}. \ 2 - (\pi/2) \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{15}. \ \alpha = \pi/3, \ \mathrm{ratio} = 2 : \sqrt{3} \\ \mathbf{Q} \ \mathbf{15}. \ \alpha = \pi/3, \ \mathrm{ratio} = 2 : \sqrt{3} \\ \mathbf{Q} \ \mathbf{17}. \ \left[\frac{\sqrt{2}}{3} + \frac{3}{2} \cdot \mathrm{arc \, sin} \frac{1}{3} \right] \ \mathbf{a}^2 \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{18}. \ \frac{1}{3} \left(16\sqrt{2} - 20 \right) \\ \mathbf{Q} \ \mathbf{19}. \ \mathbf{4a}^2 \\ \mathbf{Q} \ \mathbf{20}. \ \mathbf{a} = 1/2 \ \mathrm{gives \, minima, } \ \mathbf{A} \left(\frac{1}{2} \right) = \frac{3\sqrt{3} - \pi}{12}; \ \mathbf{a} = 0 \ \mathrm{gives \, local \, maxima \, A} \ \mathbf{A} \ \mathbf{0} \ \mathbf{1} = \frac{\pi}{4}; \\ \mathbf{Q} \ \mathbf{Q} \ \mathbf{1}. \ \frac{32}{3} - 4\sqrt{3} + \frac{8\pi}{3} \\ \mathbf{Q} \ \mathbf{22}. \ \mathbf{3} \left(\sqrt{3} - 1 \right) \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{24}. \ \mathrm{for \, a} = 1, \ \mathrm{area \, is \, greatest, \, for \, a} = 1/2, \ \mathrm{area \, is \, least} \\ \mathbf{Q} \ \mathbf{24}. \ \mathrm{for \, a} = 1, \ \mathrm{area \, is \, greatest, \, for \, a} = 1/2, \ \mathrm{area \, is \, least} \\ \mathbf{Q} \ \mathbf{Q} \ \mathbf{24}. \ \mathrm{for \, a} = 1, \ \mathrm{area \, is \, greatest, \, for \, a} = 1/2, \ \mathrm{area \, is \, least} \\ \mathbf{Q} \ \mathbf{Q} \ \mathbf{25}. \ \mathbf{6a}, \ \mathbf{B}, \mathbf{D} \ \mathbf{(b)} \ \mathbf{257/192}; \ \mathbf{a} = 2; \ \mathbf{b} = -1 \\ \mathbf{Q} \ \mathbf{.6} \ \left(\pi - \frac{\pi}{2} - \frac{2}{2\sqrt{2}} \right) \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{.7} \ \mathbf{9} \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{.9} \ \mathbf{8} \ \mathbf{Q} \ \mathbf{.10} \ \left(\frac{20}{3} - 4\sqrt{2} \right) \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{.10} \ \left(\frac{20}{3} - 4\sqrt{2} \right) \ \mathrm{sq. units} \\ \mathbf{Q} \ \mathbf{.10} \$$

$$\mathbf{Q}$$
 Q 21. $\frac{32}{3} - 4\sqrt{3} + \frac{8\pi}{3}$

Q 22.
$$3(\sqrt{3}-1)$$
 sq. units

Q 23.
$$(16/9)$$
 x^2

$$\mathbf{Q}$$
 Q 24. for $a = 1$, area is greatest, for $a = 1/2$, area is least

Q25.
$$e^{\pi/3} \log 2$$
 sq. units

Q.3
$$f(x) = x^3 - x^3$$

Q.5 (a) B, D (b)
$$257/192$$
; $a = 2$; $b = -1$

Q.6
$$\left(\pi - \frac{\pi - 2}{2\sqrt{2}}\right)$$
 sq. units

$$\mathbf{Q}$$
 Q.7 9 sq. units

Q.8
$$\frac{S_j}{S_{j+1}} = e^{\frac{\pi a}{b}}; S_0 = \frac{b e^{-b} + 1}{a^2 + b^2}$$

Q.8
$$\frac{S_j}{S_{i+1}} = e^{\frac{\pi a}{b}}; S_0 = \frac{b\left(e^{-\frac{a\pi}{b}} + 1\right)}{a^2 + b^2}$$
 for $a = -1$, $b = \pi$, $S_0 = \frac{\pi(e+1)}{\pi^2 + 1}$ and $r = \pi$

Q.10
$$\left(\frac{20}{3} - 4\sqrt{2}\right)$$
 sq. units

Q.12 (a) D; (b)
$$\frac{1}{3}$$
 sq. units; (c) $\frac{125}{3}$ sq. units

(B)
$$\frac{2}{3}$$

(C)
$$\frac{3}{2}$$

The area bounded by the x-axis and the curve $y = 4x - x^2 - 3$ is

(A)
$$\frac{1}{3}$$

(B)
$$\frac{2}{3}$$

(C)
$$\frac{4}{3}$$

(D)
$$\frac{8}{3}$$

The area bounded by the curve y = sin ax with x-axis in one arc of the curve is

(A)
$$\frac{4}{a}$$

(B)
$$\frac{2}{a}$$

(C)
$$\frac{1}{a}$$

The area contained between the curve $xy = a^2$, the vertical line x = a, x = 4a (a > 0) and x-axis is (A) $a^2 \log 2$ (B) 2a² log 2 (C) a log 2

The area of the closed figure bounded by the curves $y = \sqrt{x}$, $y = \sqrt{4-3x}$ & y = 0 is:

(D) none

The area of the closed figure bounded by the curves $y = \cos x$; $y = 1 + \frac{2}{x} \cdot x \cdot x = 1 + \frac{2}{x} \cdot x = 1 + \frac$

$$(A) \ \frac{\pi + 4}{4}$$

(B)
$$\frac{3\pi}{4}$$

(C)
$$\frac{3\pi + 4}{4}$$

(D)
$$\frac{3\pi - 4}{4}$$

The area included between the curve $xy^2 = a^2(a-x)$ & its asymptote is:

(A)
$$\frac{\pi a^2}{2}$$

(B)
$$2 \pi a^2$$

(C)
$$\pi a^2$$

(D) none

The area bounded by $x^2 + y^2 - 2x = 0$ & $y = \sin \frac{\pi x}{2}$ in the upper half of the circle is:

(A)
$$\frac{\pi}{2} - \frac{4}{\pi}$$

$$(\mathsf{B})\frac{\pi}{4} - \frac{2}{\pi}$$

(B)
$$\frac{\pi}{4} - \frac{2}{\pi}$$
 (C) $\pi - \frac{8}{\pi}$

(D) none

The area of the region enclosed between the curves $7x^2 + 9y + 9 = 0$ and $5x^2 + 9y + 27 = 0$ is:

(A) 2

(B) 4

(C) 8

(D) 16

Where $x = e^{-1}$ and $x = e^{-1}$ and a positive X-axis between $x = e^{-1}$ and $x = e^{-1}$

$$(A) \left(\frac{e^2 - 4e^{-2}}{5} \right)$$

(B)
$$\left(\frac{e^2 - 5e^{-2}}{4}\right)$$

(C)
$$\left(\frac{4e^2 - e^{-2}}{5}\right)$$

(D)
$$\left(\frac{5e^2 - e^{-2}}{4}\right)$$

Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

The area bounded by the curves $\sqrt{x} + \sqrt{y} = 1$ and x + y = 1 is

(A) $\frac{1}{3}$ (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) none of these

The area bounded by x-axis, curve y = f(x), and lines x = 1, x = b is equal to $\sqrt{(b^2 + 1)} - \sqrt{2}$ for all $\frac{1}{2}$ $\frac{1}{2}$

(A)
$$\sqrt{(x-1)}$$

(B)
$$\sqrt{(x+1)^2}$$

(C)
$$\sqrt{(x^2+1)^2}$$

(D)
$$x/\sqrt{(1+x^2)}$$

(A)
$$\int_{1}^{3} (3-2x-x^2) dx$$

(B)
$$\int_{0}^{3} (3-2x-x^{2}) dx$$

(C)
$$\int_{0}^{1} (3-2x-x^{2}) dx$$

(D)
$$\int_{-1}^{3} (3-2x-x^2) dx$$

(A)
$$\frac{3\pi a^2}{8}$$

(B)
$$\frac{3\pi a^2}{16}$$

(C)
$$\frac{3\pi a^2}{32}$$

$$(A) A_1 = 2 A_2$$

(B)
$$A_2 = 2 A_1$$

(C)
$$A_2 = 2 A$$

(D)
$$A_1 = A_2$$

If A_1 is the area enclosed by the curve xy = 1, x -axis and the ordinates x = 1, x = 2; and A_2 is the area enclosed by the curve xy = 1, x -axis and the ordinates x = 2, x = 4, then $(A) A_1 = 2 A_2$ (B) $A_2 = 2 A_1$ (C) $A_2 = 2 A_1$ (D) $A_1 = A_2$ The area bounded by the curve y = f(x), x-axis and the ordinates x = 1 and x = b is $(b-1)\sin(3b+4)$, $\forall b \in R$, then $f(x) = (A)(x-1)\cos(3x+4)$ (B) $\sin(3x+4)$ (C) $\sin(3x+4) + 3(x-1)\cos(3x+4)$ (D) none of these

Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.

(A) $\frac{21}{2}$ sq. unit (B) 22 sq. unit (C) 21 sq. unit (D) none of these

The areas of the figure into which curve $y^2 = 6x$ divides the circle $x^2 + y^2 = 16$ are in the ratio $x^2 + y^2 = 16$ are

(A)
$$(x - 1) \cos (3x + 4)$$

(B)
$$\sin (3x + 4)$$

(C)
$$\sin (3x + 4) + 3(x - 1) \cos (3x + 4)$$

(A)
$$\frac{21}{2}$$
 sq. unit

(A)
$$\frac{2}{3}$$

(B)
$$\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$$

(C)
$$\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$$

(A) $\frac{2}{3}$ (B) $\frac{4\pi + \sqrt{3}}{8\pi + \sqrt{3}}$ (C) $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$ (D) none of these $\frac{2\pi}{8}$ (D) none of the none $\frac{2\pi}{8}$ (D) none o

For what value of 'a' is the area bounded by the curve $y = a^2x^2 + ax + 1$ and the straight line $\frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = 0$. Find the area of the region bounded in the first quadrant by the curve C: $y = \tan x$, tangent drawn to $\frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial$

- Olution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
 C at x = π/4 and the x axis.
 Find the values of m (m > 0) for which the area bounded by the line y = mx + 2 and x = 2y y² is, (i) 9/2 square units & (ii) minimum. Also find the minimum area.
 Consider the two curves y = 1/x² & y = 1/[4 (x 1)].
 (i) At what value of 'a' (a > 2) is the reciprocal of the area of the figure bounded by the curves, the lines x = 2 & x = a equal to 'a' itself?
 (ii) At what value of 'b' (1 < b < 2) the area of the figure bounded by these curves, the lines x = b & x = 2 equal to 1 1/b.
 A normal to the curve, x² + αx y + 2 = 0 at the point whose abscissa is 1, is parallel to the line y = x. Find the area in the first quadrant bounded by the curve, this normal and the axis of 'x'.
- Find the area between the curve $y^2(2a-x)=x^3$ & its asymptotes.

 Draw a neat & clean graph of the function $f(x)=\cos^{-1}(4x^3-3x), x\in[-1,1]$ & find the area enclosed between the graph of the function & the x-axis as x varies from 0 to 1.

 Find the area of the loop of the curve, a $y^2=x^2$ (a x).

 Let b $\neq 0$ and for j=0,1,2,..., n, let S_j be the area of the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by, \frac{j\pi}{b} \le y \le \frac{(j+1)\pi}{b}$. Show that $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression. Also, find the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression. Also, find the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression. Also, find the area of the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression. Also, find the area of the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression. Also, find the area of the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression. Also, find the area of the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression. Also, find the area of the region bounded by the y-axis and the curve $\sum_{j=0}^{\infty} xe^{ay} = \sin by$ are in geometric progression.

Find the area of the region bounded by the curves, $y = x^2$, $y = |2 - x^2| & y = 2$ which lies to the right of the line x = 1.

[IIT - 2002, 5]

자 자

Teko Classes, Maths: Suhag R. Kariya (S.

f(x) is a quadratic function and its maximum value occurs at a \dots $4a^2$ point V. A is a point of intersection of y = f(x) with x-axis and point B is such that chord AB subtends and

[IIT - 2005, 6] redough (i.i.s.) right angle at V. Find the area enclosed by f(x) and cheord AB.

- **6.** $a = 1 + e^2$, $b = 1 + e^{-2}$ **7.** $\frac{7}{6}$
- **9.** $3(\sqrt{3}-1)$ sq. units **10.** $\frac{8 a^2}{15}$

11. $\frac{20}{3} - 4\sqrt{2}$ sq. units **13.** $\frac{125}{3}$ square units.

- **13.** D **14.** C
- 17. D 18. C

- **1.** 4/3 sq. units **2.** $c = -\frac{\pi}{6}$ or $\frac{\pi}{3}$ **3.** $a = -\frac{3}{4}$
- $\frac{1}{2} \ln 2 \frac{1}{4}$ **5.** (i) m = 1, (ii) m = ∞ ; A_{min} = 4/3