Homework

a. Resolver analíticamente la ecuación deferencial, de primer orden, lineal, con valor de inicio.

$$\frac{dy}{dx} = \frac{y^2}{\sqrt{5}}; \qquad y(1) = 2.$$

- b. Utilizar el método de Leonhard Euler y la ecuación diferencia $\frac{dy}{dx} = \frac{y^2}{\sqrt{5}}$; con valor de inicio y(1) = 2, para aproximar y(x = 5) utilizando n=9 puntos, empleando un incremento h constante.
- c. Completar la siguiente tabla. Considerar h constante.

contador i	variable independiente x_i	Solución aproximación por el métodod de Leonhard Euler. $y_i = y_{i-1} + hf(x_{i-1}, y_{i-1})$; para $i = 2, 3, 4, \ldots, n$	Solución analítica.
1	$x_1 = a = 1 \leftarrow valor inicial$	$y_1 = y(x = a) = \alpha = 2 \leftarrow valor \ inicial$	<i>y</i> ₁ =
2	$x_2 =$	$y_2 =$	<i>y</i> ₂ =
3	$x_3 =$	$y_3 =$	<i>y</i> ₃ =
4	$x_4 =$	$y_4 =$	<i>y</i> ₄ =
5	$x_5 =$	$y_5 =$	<i>y</i> ₅ =
6	$x_6 =$	$y_6 =$	<i>y</i> ₆ =
7	$x_7 =$	$y_7 =$	<i>y</i> ₇ =
8	$x_8 =$	$y_8 =$	<i>y</i> ₈ =
9	$x_9 = b =$	$y_9 =$	<i>y</i> ₉ =

- d. Graficar la solución analítica de la ecuación deferencial del inciso a junto con la aproximación inciso b (datos de la tabla), en el intervalo de x=1 hasta x=5.
- e. Calcular el error relativo porcentual