Trig Final (SLTN v667)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 19 meters. The arc length is 48 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r} \qquad r = \frac{L}{\theta} \qquad L = r\theta$$

 $\theta = 2.526$ radians.

Question 2

Consider angles $\frac{11\pi}{3}$ and $\frac{-11\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{11\pi}{3}\right)$ and $\sin\left(\frac{-11\pi}{4}\right)$ by using a unit circle (provided separately).

Find $cos(11\pi/3)$

$$\cos(11\pi/3) = \frac{1}{2}$$

Find $sin(-11\pi/4)$

$$\sin(-11\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\sin(\theta) = \frac{40}{41}$, and θ is in quadrant II, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 40^{2} = 41^{2}$$

$$A = \sqrt{41^{2} - 40^{2}}$$

$$A = 9$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\tan(\theta) = \frac{\frac{40}{41}}{\frac{-9}{41}} = \frac{-40}{9}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 2.95 Hz, an amplitude of 7.4 meters, and a midline at y = -4.89 meters. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 7.4\sin(2\pi 2.95t) - 4.89$$

or

$$y = 7.4\sin(5.9\pi t) - 4.89$$

or

$$y = 7.4\sin(18.54t) - 4.89$$