Tarea de Investigación

• Nombres: Felipe Peralta y Samantha Suquilanda

• Fecha: Cuenca, 22 de octubre 2025

Parte 1: Estimación del Mercado Laboral Tech en Ecuador (Expandido)

A continuación, se presenta una tabla detallada con estimaciones de salarios, responsabilidades y tecnologías clave para roles de tecnología en Ecuador.

Nota:

• Los salarios son estimaciones para roles de nivel Intermedio

Profesión	Volumen de Ofertas (Demanda)	Salario Estimado (USD/hora)	Salario Estimado (USD/Anual)	Responsabilidades Clave	Frameworks / Tecnologías Comunes
Frontend Engineer	Alto	\$5.50 - \$10.50	\$11,440 - \$21,840	Implementar la interfaz de usuario (UI) y la experiencia de usuario (UX). Consumir APIs. Asegurar la interactividad y el responsiveness del sitio.	React.js, Angular, Vue.js, HTML5, CSS3/Sass.
Backend Engineer	Alto	\$6.00 - \$11.50	\$12,480 - \$23,920	Desarrollar la lógica del servidor, administrar bases de datos, crear APIs (REST/GraphQL) y manejar la autenticación y seguridad.	Node.js (Express), Python (Django, Flask), Java (Spring Boot), .NET, SQL (PostgreSQL, MySQL).

Profesión	Volumen de Ofertas (Demanda)	Salario Estimado (USD/hora)	Salario Estimado (USD/Anual)	Responsabilidades Clave	Frameworks / Tecnologías Comunes
Data Engineer	Medio	\$6.50 - \$13.00	\$13,520 - \$27,040	Diseñar, construir y mantener <i>pipelines</i> de datos (ETLs/ELTs). Gestionar la ingesta, almacenamiento y transformación de grandes volúmenes de datos.	Apache Spark, Airflow, SQL/NoSQL, Kafka, Databricks, (A veces MLflow o Kubeflow para orquestar pipelines).
ML Engineer	Вајо	\$8.00 - \$16.00	\$16,640 - \$33,280	Poner modelos de Machine Learning en producción (MLOps). Optimizar modelos para inferencia, crear APIs para su consumo y monitorear su rendimiento.	Scikit-learn, TensorFlow, Keras (o PyTorch), MLflow, Kubeflow, Docker, Kubernetes.
AI Engineer	Muy Bajo	\$8.50 - \$17.50+	\$17,680 - \$36,400+	Investigar, entrenar e implementar modelos complejos (Deep Learning, LLMs, Computer Vision, NLP). Es un rol más enfocado en R&D que el ML Engineer.	TensorFlow, Keras, PyTorch, Hugging Face Transformers, LangChain, (Scikit-learn para tareas base).

Observaciones

- 1. Roles de Datos (Data/ML/AI): Los frameworks como (Scikit-learn, TensorFlow, Keras, MLflow, Kubeflow) son el estándar de la industria.
 - o Scikit-learn: Usado por casi todos para ML clásico.
 - **TensorFlow/Keras:** Dominantes en Deep Learning (junto con PyTorch).
 - **MLflow/Kubeflow:** Son herramientas de MLOps (Machine Learning Operations) para gestionar el ciclo de vida del modelo, siendo cruciales para los ML Engineers.
- 2. **Demanda en Ecuador:** La demanda local de AI/ML Engineers puros es baja y se concentra en *startups* de tecnología o centros de innovación de grandes empresas. Sin embargo, la demanda de *Data Engineers* está creciendo muy rápido.
- 3. **El Factor Remoto:** Los salarios para todos estos roles se disparan si el profesional trabaja de forma remota para empresas de EE. UU. o Europa, pudiendo fácilmente duplicar o triplicar las cifras anuales mostradas.

Importancia de Roles: Data Engineer y Feature Engineer

Es primordial conocer sobre los conceptos básicos del tema, antes de poder aplicarlo y resolver el Query.

- 1. **Ingeniería de Características (Feature Engineering / FE):** es el proceso de usar el conocimiento del dominio para transformar datos crudos en variables (características o features) que representan de mejor manera el problema subyacente.
- **El objetivo es simple:** facilitar el trabajo del modelo de Machine Learning. La calidad de las características que alimentas a un modelo tiene un impacto mucho mayor en el resultado final que el algoritmo específico que elijas.
- Esta se divide principalmente en:
 - 1. Creación de características: crear nuevas variables a partir de las existentes. Ejemplo: Del dato fecha_construccion: Puedes crear antiguedad_casa (Año actual fecha_construccion).
 - 2. Transformación y limpieza: Los modelos matemáticos necesitan números limpios y en formatos específicos. Ejemplo: Codificación (Encoding): Convertir texto a números.
 - 3. Selección de características: Después de crear docenas o cientos de características, debes eliminar las que no aportan información (ruido) o las que son redundantes.
- 2. **Data Engineer:** Es el **habilitador** clave. No suele diseñar el modelo de similaridad, pero es responsable de construir y mantener el *pipeline* de datos que:
 - Genera millones de embeddings (que es costoso).
 - Los almacena y optimiza en bases de datos especializadas (como *Vector Databases*) para que el AI Engineer pueda hacer consultas de similaridad en milisegundos.

Conceptos Clave

Similaridad Coseno: mide el ángulo entre dos vectores.

- Si los vectores apuntan en la misma dirección, su similaridad es 1 (significan lo mismo).
- Si son perpendiculares (no tienen nada que ver), su similaridad es 0.
- Si apuntan en direcciones opuestas, es -1.

Ejercicio a Resolver

Query: comparar el significado de "dame el total de la factura IQ5430" con el significado de las funciones:

- Funcion_1: "find_invoice"
- Funcion_2: "find_user"
- Funcion_3: "create_invoice"

• Análisis: es un problema clásico de llamada a funciones (function calling) en sistemas de IA.

• **Parte 1:** La medida que necesitamos no es una simple, sino una combinación de dos técnicas:

- Embeddings (Vectores de Significado)
- Similaridad Coseno (Cosine Similarity)

La medida de similaridad por sí sola no funciona con texto crudo. Primero debemos convertir el query y funciones a un formato numérico que entienda de significado (Transformación y limpieza).

• Pasos Para Resolver

- 1. **Vectorización (Crear Embeddings):** primero debemos "vectorizar" (crear embeddings) tanto para el query como las funciones.
 - Un embedding es un vector de números que representa el significado semántico del texto.
 - Paso 1.1: Vectorizar el Query
 - a. Al query: "dame el total de la factura IQ5430"
 - b. Lo pasamsos por un modelo de embeddings (ej. sentence-transformers en Python).

Resultado: Vector_Query = [0.12, -0.45, 0.81, ...]

• Paso 1.2: Vectorizar las Funciones

Es importante no solo vectorizar el nombre (find_invoice) sino también una descripción clara de lo que hace la función.

- Funcion_1: "find_invoice: Busca y devuelve los detalles de una factura usando su ID."
- Funcion_2: "find_user: Encuentra los datos de un usuario por su nombre o ID."
- Funcion_3: "create_invoice: Genera una nueva factura para un cliente."

Pasamos cada una por el modelo de embeddings, y tenemos:

- Vector_Func1 = [0.10, -0.40, 0.79, ...] (Muy similar a Vector_Query)
 - Vector_Func2 = [-0.50, 0.11, -0.23, ...] (Muy differente)

```
- Vector_Func3 = [0.05, -0.30, 0.65, ...] (Algo similar, pero menos)
```

- 2. **Medición (Calcular Similaridad Coseno):** ahora que todos son vectores, se usa la Similaridad Coseno para comparar el Vector_Query contra cada Vector_Func. Y obtenemos:
 - score_1 = cosine_similarity(Vector_Query, Vector_Func1) / Resultado: 0.92 (muy alto)
 - score_2 = cosine_similarity(Vector_Query, Vector_Func2) / Resultado: 0.15 (muy bajo)
 - score_3 = cosine_similarity(Vector_Query, Vector_Func3) / Resultado: 0.61 (medio relacionado)

3. Ranking (Obtener el Top 3)

Finalmente, ordenamos los resultados de mayor a menor:

Top 3 de funciones más relacionadas:

```
1. find_invoice (Score: 0.92)
```

2. create_invoice (Score: 0.61)

3. find_user (Score: 0.15)

Conclusión

Con seguridad decimos que la función que se debe llamar es **find_invoice**