Discussion 05

Welcome to the Project 1 Discussion Worksheet! This week we will cover functions and table methods like .group and .pivot. As a reminder, make use of the Python Reference and the Table Functions Visualizer on the Data 8 website.

1. Fun(ctions)

a. After learning about them in Data 8, Conan wants to write a function that can calculate the hypotenuse of any right triangle. He wants to use his function to assign C to the hypotenuse of a triangle with side lengths A, B, and C. However, he's made a few mistakes. Which ones can you identify?

Hint: There are 5 unique issues. Assume that numpy has been imported as np.

```
def hypotenuse(a, b)
    """Returns the length of the hypotenuse of a right triangle, the square root of a
    squared + b squared."""
    squares = make_array(side1, side2) * 2
    sum = sum(squares)
    squareroot = np.sqrt(sum)
    print(squareroot)
```

- b. Write a function that takes in the following arguments:
 - tbl: a table
 - col: a string, name of a column in tbl
 - n: an int

The function should return a table that contains the rows that have the n *largest* values for the specified column.

```
def top_n(tbl, col, n):
    sorted_tbl = _____

    top_n_rows = _____

return _____
```

2. Table Matchmaking

Shown below are the chocolates and nutrition tables.

Color	Shape	Amount	Price (\$)
Dark	Round	4	1.30
Milk	Rectangular	6	1.20
White	Rectangular	12	2.00
Dark	Round	7	1.75
Milk	Rectangular	9	1.40
Milk	Round	2	1.00

Type	Calories
Dark	120
Milk	130
White	115
Ruby	120

Match the following table method calls to the resulting descriptions of tables.

Letter	Function Call
A	chocolates.group("Shape")
В	chocolates.group("Shape", max)
С	chocolates.group(["Shape", "Color"], max)
D	<pre>chocolates.pivot("Color", "Shape", "Price(\$)", max)</pre>
E	chocolates.join("Color", nutrition, "Type")
F	chocolates.group(["Shape", "Color"])

Number	Columns	# of Rows
1	Shape, Color max, Amount max, Price (\$) max	2
2	Shape, Dark, Milk, White	2
3	Shape, Color, Amount max, Price (\$) max	4
4	Color, Shape, Amount, Price (\$), Calories	6
5	Shape, count	2
6	Shape, Color, count	4

A:	
В:	
C:	
D:	
E:	
F:	

3. Squirrel!

The table squirrel below contains some information on reported squirrel sightings across the UC Berkeley campus:

- Squirrel ID (int): unique identification number for each unique squirrel
- Location (string): common name of the nearest campus landmark where the squirrel was spotted
- Month (int): numerical representation of the month when the squirrel was spotted
- Day (int): day of the month when the squirrel was spotted
- Year (int): year when the squirrel was spotted

Squirrel ID	Location	Day	Month	Year
2937	Wheeler Hall	17	3	2022
8421	East Asian Library	28	9	2021
472	Etcheverry Hall	7	1	2022
239	Campbell Hall	4	10	2021
2937	Moffitt Library	7	6	2022

a. Identify the categorical variables in the table.

Hint: Try to imagine taking the average of a variable and see if that quantity makes sense. If it doesn't make sense, the variable is categorical.

- b. Jessica wants to find the best location where she is most likely to find a squirrel. Write a line of code that evaluates to the location with the most squirrel sightings.
- c. Jessica is interested in how many squirrels were sighted at every location during every month. Create a table called sightings where each cell contains the number of squirrel sightings that occurred in 2022 at each location during each month. Note: Each row should be a different location.

sightings =	