$\forall \Gamma, \forall e, \forall T, \forall x, \forall T'$ (($\Gamma + e; T$) Λ (χ is not mentioned in e)) \Rightarrow ($\Gamma, \chi: T' + e; T$). For all contexts Γ , expression e, variable χ , and types T, if e has type T in context Γ , then adding a new, unused variable χ (of type T') to the context does not change the type of e.

case $e=e_1ez:$ Our induction hypothesis tells us that, if $\Gamma\vdash e_1: \tau_1$ (for some τ_1) and χ is not mentioned in e_1 then Γ , $\chi: \tau'\vdash e_1: \tau_1$ (and similarly for ez). We have assumed $\Gamma\vdash e_1ez: \tau$ and χ is not mentioned in e_1ez . This can be true only by APP. Thus the premises of APP must be true; we can conclude that $\Gamma\vdash e_1: \tau_1 \to \tau$ and $\Gamma\vdash e_2: \tau_2$ (for some τ_2). We thus use the induction hypothesis on both e_1 and e_2 to conclude that $(\Gamma, \chi: \tau'\vdash e_1: \tau_2 \to \tau)$ and $(\Gamma, \chi: \tau'\vdash e_2: \tau_2)$, thus, we can use APP to conclude Γ , $\chi: \tau'\vdash e_1e_2: \tau_2$ as desired.

ase $e=e; te_2: This$ is similar to the previous case, using PLUS instead of APP. ase e=n: We must prove that $\Gamma, \chi: T' \vdash n: Tht's + that is + that$ $<math>\Gamma \vdash n: Tht \land \chi$ is not mentioned as n: We have this by INT and we are done.

 $e=\lambda x'$: T_1 , e_1 : The induction hypothesis tells us that if $\Gamma + e_1$: $T_2 \wedge x$ x is not mentioned in 9x': I.e. (for some Iz), then This can be only by ABS. Thus, we can assume that P, x; T' + e; T2, we have assumed that P+ 7x': T, e; T. the premise of ABS: 17, x1:I, He;:Tz (and It must be

P, X: T', X': TI FG: Tz. By, ABS, we can thus conclude that T= T1-> T2) ワ、水、て、トレハ水、、て、ら、こ、て、コンファ as desired (remembering

that T=T, -> T2). That satisfies the premise of the

induction hypothesis and so we conclude