

Regression and Gradient Descent

Source: Intro. to Machine Learning By Andrew Ng, Stanford, Coursera

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(i di diditidi, di i)	1534	315
	852	178

Notation:

```
    m = Number of training examples
    x's = "input" variable / features
    y's = "output" variable / "target" variable
```

Housing Prices (Portland, OR)

Regression Problem

Predict real-valued output

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

Gradient descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.


```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }
```

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{2}{30j} \lim_{i = 1}^{\infty} \frac{\sum_{i = 1}^{\infty} \left(h_0(\mathbf{x}^{(i)}) - y^{(i)} \right)^2}{\sum_{i = 1}^{\infty} \left(h_0(\mathbf{x}^{(i)}) - y^{(i)} \right)^2}$$

$$= \frac{2}{30j} \lim_{i = 1}^{\infty} \frac{\sum_{i = 1}^{\infty} \left(h_0(\mathbf{x}^{(i)}) - y^{(i)} \right)^2}{\sum_{i = 1}^{\infty} \left(h_0(\mathbf{x}^{(i)}) - y^{(i)} \right)^2}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{M}}{\leq} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{M}}{\leq} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0, \theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

Linear regression with gradient descent

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\underset{\vdots}{\text{Repeat }} \begin{cases} \theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \end{cases}$$

$$\text{(for every } j = 0, \dots, n)$$

Linear regression with Batch Gradient Descent

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \xrightarrow[-0.3]{0.3}}$$

$$\text{(for every } j = 0, \dots, n\text{)}$$

Stochastic gradient descent

- 1. Randomly shuffle dataset.
- 2. Repeat { $\text{for} := 1, \dots, m \quad \{ \\ \theta_j := \theta_j \alpha(h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$
 - (for $j=0,\ldots,n$)
 - l J

Learning rate α is typically held constant. Can slowly decrease α over time if we want θ to converge. (E.g. $\alpha = \frac{\text{const1}}{\text{| iterationNumber + const2}}$)

Machine Learning

Advice for applying machine learning

Diagnosing bias vs. variance

Bias/variance

High bias (underfit)

"Just right"

 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

High variance (overfit)

Bias/variance

High bias (underfit) 2=1

"Just right" 1=2

High variance (overfit)

Bias/variance

Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$

Bias/variance

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error:
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

Variance (overfit):

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Machine Learning

Advice for applying machine learning

Regularization and bias/variance

Linear regression with regularization

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^m \theta_j^2$$

High bias (underfit) "Just right" High variance (overfit) $10000 \theta_1 \approx 0 \theta_2 \approx 0$

 $\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$ $h_{\theta}(x) \approx \theta_0$

Linear regression with regularization

→ High bias (underfit)

 $\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$

"Just right"

High variance (overfit)

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$2m \sum_{i=1}^{\infty} (h_{\theta}(x^{i}) - y^{i})^{2m} \sum_{j=1}^{\infty} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=0}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \leftarrow$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2} \leftarrow$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

7(0)

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$\lambda = 0$$

$$\lambda = 0.01$$

$$\lambda = 0.02$$

$$\lambda = 0.04$$

$$\lambda = 0.04$$

$$\lambda = 0.08$$

$$\lambda = 10$$

Pick (say) $\theta^{(5)}$. Test error:

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_j^2$$

1. Try
$$\lambda = 0 \leftarrow 1$$
 \longrightarrow $\min_{\theta} J(\theta) \rightarrow \theta^{(n)} \rightarrow J_{e_{\theta}}(\theta^{(n)})$

2. Try $\lambda = 0.01$ \longrightarrow $\lim_{\theta} J(\theta) \rightarrow \theta^{(n)} \rightarrow J_{e_{\theta}}(\theta^{(n)})$

3. Try $\lambda = 0.02$ \longrightarrow $\lim_{\theta} J(\theta) \rightarrow \theta^{(n)} \rightarrow J_{e_{\theta}}(\theta^{(n)})$

4. Try $\lambda = 0.04$ $\lim_{\theta} J(\theta) \rightarrow \theta^{(n)} \rightarrow J_{e_{\theta}}(\theta^{(n)})$

5. Try $\lambda = 0.08$

3. Try
$$\lambda = 0.02$$
 \longrightarrow Σ_{c} (6⁽³⁾)

4. Try
$$\lambda = 0.02$$

$$0.04$$

Try
$$\lambda = 0.08$$

:

Try $\lambda = 10$

Pick (say) $\theta^{(5)}$. Test error: $\mathcal{T}_{\text{test}}$ ($\mathcal{S}^{(5)}$)

Bias/variance as a function of the regularization parameter λ

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1\\ m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

Bias/variance as a function of the regularization parameter λ

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$$

$$T_{u}(\theta)$$