近代物理实验报告

实验 2-4: 康普顿散射

姓名:付大为 学号: 1800011105

邮 箱: fudw@pku.edu.cn 近代物理实验 (I) (2021, 秋季学期)

> 北京大学 物理学院 2018 级 1 班 2021 年 12 月 12 日

摘要

康普顿效应源于电子对高能光子的非弹性散射。光的经典波动理论难以解释这一现象,它强烈地依赖于波粒二象性。本实验以 137 Cs 为放射源,测定了 662keV γ 射线被铝棒散射后的能量及相对微分散射截面,考察了其关于散射角的分布。实验结果表明,散射光子能量及相对微分散射截面均随散射角增大而递减,其规律与理论分析基本一致,从而验证了康普顿效应,进而证实了光的波粒二象性。

关键词: 康普顿散射, 能谱, 散射截面

目 录

1	引言	4
2	理论	5
3	实验	6
	3.1 实验仪器	6
4	结果及分析	7
	4.1 做能量刻度 (取下散射棒, 在 $\theta = 0^\circ$ 时测量)	7
	4.2 安装散射棒, 打开 C ¹³⁷ C s 源 (注意: 放射源全部打开)	7
	4.3 取下散射棒, 测量本底计数	8
	4.4 计算实验值和理论值的偏差	S
5	结论	13
6	实验报告思考题	13
	6.1 分析本实验的主要误差来源, 试述有限立体角的影响和减少实验误差的办法	13
	6.2 讨论实验值与理论值不完全符合的原因	13
7	致谢	13

1 引言

20 世纪早期,诸多实验迹象表明,被物质散射后的 X 射线能量减小 1; 而经典电动力学的预测表明,散射波的能量应当与入射波一致。

1923 年,康普顿(A. H. Compton)采用光量子假定,结合狭义相对论的动力学,成功地解释了散射能量的变化。据此理论可知,光子的能量损失源于与电子的非弹性散射;其有效性在吴有训等人的一系列后续实验被进一步加以证实。

康普顿散射进一步确认了光子正是传递电磁场相互作用的粒子 (force carrier)。1928 年,Oskar Klein 和 Yoshita Nishina 根据狄拉克 (Paul Dirac) 的量子电动力学 (QED) 推导出了散射的微分截面。Klein-Nishina 公式是 QED 的最早成果之一,其在低能极限下表征经典的弹性散射(汤姆逊散射),而在高能情形下对应康普顿散射。

如今,康普顿散射仍作为研究基本粒子结构的一个重要方法。本实验意在复现康普顿效应的验证过程,通过测定 γ 射线的能谱,分析能量及相对微分散射截面随散射角 θ 的变化,以验证上述理论结果。这也是对吴先生的工作的一次重现。

2 理论

考虑高能极限,即光子能量远大于电子束缚能,此时电子近似是自由的;由相对论性能动量守恒,光子能量 $e=h\nu$,可得:

$$h\nu' = \frac{h\nu}{1 + \frac{h\nu}{mc^2} 1 - \cos\theta} \tag{1}$$

这里, $m \sim .511/c^2$ 是电子的静质量, ν, ν' 是散射前后光子的频率变化, h 为普朗克常数, c 为光速。

Klein-Nishina 公式给出关于立体角元 Ω 的微分散射截面:

$$\frac{d\sigma}{d\Omega} = r_0^2 \left[\frac{1}{1 + \alpha \left(1 - \cos \theta \right)} \right]^2 \left(\frac{1 + \cos^2 \theta}{2} \right) \left[1 + \frac{\alpha^2 (1 - \cos \theta)^2}{\left(1 + \cos^2 \theta \right) [1 + \alpha \left(1 - \cos \theta \right)]} \right] \tag{2}$$

这里采用了给出的形式,其中 $r_0 \sim 2.818 fm$ 为电子的经典半径, $\alpha = \frac{h\nu}{mc^2}$. 考虑实测过程,微分散射截面可表示为:

$$\frac{d\sigma}{d\Omega} \propto \frac{N(\theta)}{R(E)\,\eta(E)}, \quad E = E(\theta)$$
 (3)

 $N(\theta)$ 为实测光电峰值计数;由于存在显著的本底,这里约定峰的区间为峰值附近、计数 $> \frac{1}{3}$ 峰值的区域.

此外,峰总比 R(e) 及探测效率 $\eta(e)$ 是探测器的属性,它们是能量 E 的函数,从而间接依赖于 θ ,比例系数不依赖于散射角 θ ;

这里我们关注微分散射截面随 θ 的变化规律,则关注相对微分散射截面即可:

$$\frac{d\sigma(\theta)}{d\Omega} / \frac{d\sigma(\theta_0)}{d\Omega} = \frac{N_p(\theta)}{R(\theta)\eta(\theta)} / \frac{N_p(\theta_0)}{R(\theta_0)\eta(\theta_0)}$$
(4)

3 实验

3.1 实验仪器

- (1) 康普顿散射实验台一套: 含台面主架、导轨、铅屏蔽块及散射用铝棒 ($\phi = 20mm$).
- (2) 放射源: 一个约 $10 {
 m mCi}$ 的 $^{137}C{
 m s}$ 放射源, 密封安装在铅室屏蔽体内; 作刻度用的 $^{60}C{
 m o}$ 放射源 一个及小铅盒.
- (3) 闪烁探测器:NaI 晶体为 $\phi 40 \times 40mm$; 光电倍增管型号为 CRI05.
- (4) 多道一体机一台: 含高、低压电源, 主放大器,ADC.
- (5) 电脑一台: 含 UMS 或 PHA 仿真软件

4 结果及分析

4.1 做能量刻度 (取下散射棒, 在 $\theta = 0^{\circ}$ 时测量)

- 1) 打开 137 Cs 源, 调节探头高压 HV = 520V, 预热 10 分钟, 调节放大 GAIN ADJ 约为 3.3 左右, 测量时间设置为 600s (后面的策略时间均为 600s 不变), 使 0.662MeV 光电峰落在 480 道左右, 测量其全谱, 通过寻峰定出全能峰 (0.662MeV) 对应的准确道数.
- 2) 关闭 $^{137}\,\mathrm{Cs}$ 源, 放上 $^{60}\,\mathrm{Co}$ 源 (尽量靠近 NaI 探头), 测量其全能谱, 定出 $1.17\mathrm{MeV}$ 和 $1.33\mathrm{MeV}$ 两峰对应的准确道数.
- 3) 根据测得的三个峰, 做能量刻度 (用最小直线二乘法), 刻度如下图1.

图 1: $\theta = 0^{\circ}$ 的能量刻度

4.2 安装散射棒, 打开 137 Cs 源 (注意: 放射源全部打开)

测量微分散射截面和散射峰随散射角的变化. 散射角分别取: $\theta = 20^\circ, 40^\circ, 60^\circ, 80^\circ, 100^\circ, 120^\circ$ 通过操作"寻峰"和"重点区计算"键,找出并记录下光电峰的峰位、左右光标道址(峰值的三分之一处),重点区面积,测量能谱如下**图2**.

图 2: 137 Cs 源光子被铝棒散射后的能谱

测量结果如下表 1.

表 1: 测量峰位与重点区面积

θ	θ 峰位		右光标	重点区面积
20°	427	397	457	23859
40°	350	323	385	18111
60°	280	253	305	13970
80°	223	199	244	12675
100°	179	161	200	13206
120°	153	134	171	14584

4.3 取下散射棒,测量本底计数

记下和上一步中各散射角的相同道数区间的面积总计数,从而计算出净峰面积.如下表2.

表 2: 测量本底计数与净峰面积

θ	重点区面积	本底面积	净峰面积
20°	23859	1023	22836
40°	18111	604	17507
60°	13970	558	13412
80°	12675	541	12134
100°	13206	677	12529
120°	15584	1021	13563

4.4 计算实验值和理论值的偏差

(1) 我们先利用表3作三次样条函数内插得到连续函数关系如图3.

表 3: 距点源 30mm, $\phi 40 \times 40\text{mm}$ NaI(Tl) 对点源总探测效率与能量关系

E/MeV	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.8	1.0
$\eta(\theta)/10^{-4}$	10.9	10.7	10.4	9.17	8.11	7.37	6.87	6.17	5.69

图 3: 三次样条函数内插 $\eta(\theta)$ – E 关系曲线

(2) 我们再利用表4作三次样条函数内插得到连续函数关系如图4.

表 4: 距点源 30mm, $\phi 40 \times 40\text{mm}$ NaI(Tl) 对点源的峰总比与能量关系

$\mathrm{E/MeV}$	0.2	0.3	0.4	0.5	0.6	0.662	0.8	1.0
R(heta)	0.8841	0.7236	0.5875	0.4912	0.4266	0.3914	0.3373	0.2977

图 4: 三次样条函数内插 $R(\theta)-E$ 关系曲线

(3) 通过内插和计算得到结果如下表5.

表 5:

θ	峰位	E/MeV	$\eta(heta)$	R(heta)	净峰面积	相对微分截面
20°	427	0.608185	0.000683534	0.421784	22836	1
40°	350	0.502156	0.000735704	0.489555	17507	0.613673
60°	280	0.405766	0.000805984	0.580819	13412	0.361706
80°	223	0.327277	0.000883861	0.68316	12134	0.253705
100°	179	0.266689	0.000961567	0.775486	12529	0.212126
120°	153	0.230887	0.00100792	0.833335	14563	0.218894

(4) 我们可以首先求出 137 Cs 的散射散射 γ 光子的能量与散射角 θ 的关系并与实验结果比较, 如 **图5**所示:

图 5: 137 Cs 的散射 γ 光子的能量与散射角度 θ 的关系

(5) 我们接着可以求出 137 Cs 的散射 γ 光子微分散射截面与散射角 θ 的关系并与实验结果比较, 如 **图6**所示:

图 6: 137 Cs 的散射 γ 光子的微分散射截面与散射角度 θ 的关系

(6) 综上, 我们总结上述理论值与实验值的比较结果与误差, 展示如下表6.

表 6:

θ	散射光子能量 $\mathrm{E}(\gamma)/\mathrm{MeV}$	与理论值误差	相对散射截面	与理论值误差
20°	0.608185	-0.95%	1	
40°	0.502156	-1.15%	0.613673	+2.16%
60°	0.405766	+1.00%	0.361706	+6.05%
80°	0.327277	+2.36%	0.253705	+11.60%
100°	0.266689	+1.54%	0.212126	+12.44%
120°	0.230887	+2.65%	0.203863	+13.29%

5 结论

本实验以 ¹³⁷ Cs 为放射源, 考察了 0.662MeV 光子散射后的能量角分布及相对微分散射截面角分布, 结果与康普顿散射理论的预计基本一致, 在误差范围内, 可以说是验证了康普顿效应.

同时,实验简要分析了可能的误差来源,提出了周围墙体散射可能带来的显著影响;建议更为精确的测定应当在尽可能减小二次散射的空旷环境中进行。

6 实验报告思考题

6.1 分析本实验的主要误差来源, 试述有限立体角的影响和减少实验误差的办法

答: 减少实验误差: 本实验中仅取 3 点标定了系统的能量刻度, 相应的线性拟合结果虽具有充分大的相关性系数, 但其误差显著, 不可忽略; 后续可采用更丰富的峰值数据进行定标, 以提升能量刻度的准确性.

6.2 讨论实验值与理论值不完全符合的原因

答:据图线和数据可知,实测能量较理论值普遍有偏差,但偏差不甚显著;而相对截面的偏差则比较显著.简要分析可知,上述偏差应当主要源于实验环境的非理想性;事实上,本实验中有诸多误差来源未能充分控制:

- a. 首先, 能量刻度可能不够精准, 而关于怎么减少能量刻度误差的办法, 可以参考上一问.
- b. 此外, 仪器附近物质中的电子均可参与散射过程, 而本实验所在的室内环境不甚空旷, 势必对散射能谱造成影响. 这一影响并不能通过去除本底而完全消除; 事实上, 加上铝棒后, 散射导致光子的角分布比未加铝棒时显著增大, 从而四壁对光子的散射效应增强、角分布更广, 导致了额外的散射截面.

7 致谢

感谢楼建玲老师在实验中的的悉心指导.