Комплексные числа

Определение 1. Комплексное число z — это выражение вида z = a + bi, где a и b — действительные числа, а i — мнимая единица: символ, квадрат которого равен (-1). Число a называется вещественной частью комплексного числа z (пишется a = Re(z)), а число b — мнимой частью z (пишется b = Im(z)). Комплексные числа можно складывать и умножать («раскрывая скобки и приводя подобные»). Множество комплексных чисел обозначается буквой $\mathbb C$.

Задача 1. Напишите формулы для вещественной и мнимой части суммы и произведения комплексных чисел a + bi и c + di.

Определение 2. Сопоставим каждому комплексному числу z = a + bi вектор с координатами (a,b). Длина этого вектора называется modynem комплексного числа z и обозначается |z|. Пусть $z \neq 0$. Угол, отсчитанный против часовой стрелки от вектора с координатами (1,0) до вектора с координатами (a,b), называется apzymenmom комплексного числа z и обозначается Arg(z). Аргумент комплексного числа определен с точностью до прибавления числа вида $2\pi n$, где $n \in \mathbb{Z}$.

Задача 2. Найдите модуль и аргумент следующих комплексных чисел:

$$-4$$
, $1+i$, $1-i\sqrt{3}$, $\sin\alpha+i\cos\alpha$, $\frac{1+i\tan\alpha}{1-i\tan\alpha}$, $1+\cos\alpha+i\sin\alpha$.

Задача 3. (*Тригонометрическая форма записи*) Докажите, что для любого ненулевого комплексного числа z имеет место равенство $z = r(\cos \varphi + i \sin \varphi)$, где r = |z|, $\varphi = \text{Arg}(z)$.

Задача 4. а) Доказать, что сумме комплексных чисел отвечает вектор, равный сумме векторов, отвечающих слагаемым. **б)** Пусть z и w — комплексные числа. Выразите |zw| и $\operatorname{Arg}(zw)$ через |z|, |w|, $\operatorname{Arg}(z)$ и $\operatorname{Arg}(w)$.

Задача 5. Верно ли, что $|z+w| \leqslant |z| + |w|$ при любых комплексных числах z и w?

Определение 3. Пусть z = a + bi. Число $\overline{z} = a - bi$ называется комплексно-сопряжённым к z.

Задача 6. Выразите модуль и аргумент числа \overline{z} через модуль и аргумент числа z.

Задача 7. Докажите, что **a)** $|z|^2=z\overline{z}$ для любого $z\in\mathbb{C};$ **б)** $\overline{z_1+z_2}=\overline{z}_1+\overline{z}_2$ и $\overline{z_1z_2}=\overline{z}_1\overline{z}_2$ для любых $z_1,z_2\in\mathbb{C}.$

Задача 8. Пусть $P(x) \in \mathbb{R}[x], z \in \mathbb{C}$ и P(z) = 0. Докажите, что $P(\overline{z}) = 0$.

Задача 9. Докажите, что **a)** \mathbb{C} — поле; **б)** из любого комплексного числа можно извлечь квадратный корень.

Задача 10. Можно ли на множестве комплексных чисел ввести отношение порядка \leq так, чтобы получилось упорядоченное поле?

Задача 11. Вычислите: **a)** $\frac{(5+i)(7-6i)}{3+i}$; **б)** $\frac{(1+i)^5}{(1-i)^3}$; **в)** $\frac{(1+3i)(8-i)}{(2+i)^2}$;

г)
$$(1+i\sqrt{3})^{150}$$
; д) $\frac{(\sqrt{3}+i)}{(1-i)^{30}}$.

Задача 12. Решите уравнения: a) $z^2 = i$; б) $z^2 = 5 - 12i$; в) $z^2 + (2i - 7)z + 13 - i = 0$; г) $\overline{z} = z^2$; д) $\overline{z} = z^3$.

Задача 13. Вычислите суммы: **a)** $C_n^1 - C_n^3 + C_n^5 - C_n^7 + \dots$; **6)** $C_n^0 + C_n^4 + C_n^8 + C_n^{12} + \dots$

Задача 14. (Формула Муавра) Пусть $z = r(\cos \varphi + i \sin \varphi), n \in \mathbb{N}$. Докажите, что $z^n = r^n(\cos n\varphi + i \sin n\varphi)$.

Задача 15. Найдите суммы: a) $\sin \varphi + \sin 2\varphi + \ldots + \sin n\varphi$; б) $\cos \varphi + \cos 2\varphi + \ldots + \cos n\varphi$; B) $\sin \varphi + \frac{1}{2}\sin 2\varphi + \ldots + \frac{1}{2^n}\sin n\varphi$; г) $1 + 2\cos \varphi + 3\cos 2\varphi + \ldots + (n+1)\cos n\varphi$.

Задача 16. Выразите $\sin^4 x$ и $\cos^5 x$ в виде суммы чисел вида $\alpha \sin kx$ и $\beta \cos lx$, где α , $\beta \in \mathbb{R}$ и $k,l \in \mathbb{N} \cup \{0\}$.

Задача 17. Выразите $\cos nx$ и $\sin nx$ через $\cos x$ и $\sin x$.

Задача 18. Докажите, что многочлен степени n с комплексными коэффициентами имеет не более n комплексных корней.

0.3 mm 6.5 mm

Задача 19. а) Найдите (и нарисуйте) все комплексные корни многочленов: $z^2 - 1$, $z^3 - 1$, $z^4 - 1$, $z^5 - 1$, $z^6 - 1$. **6)** Сколько корней имеет уравнение $z^n = 1$?

Задача 20. а) Вычислите сумму и произведение всех корней степени n из 1. **6)** Пусть $\alpha_1, \ldots, \alpha_n$ все корни степени n из 1, $\alpha_1 = 1$. Найдите $\alpha_1^s + \ldots + \alpha_n^s$ (где $s \in \mathbb{N}$) и $(1 - \alpha_2) \cdot \ldots \cdot (1 - \alpha_n)$.

Задача 21. Пусть P — многочлен степени k с коэффициентами из \mathbb{C} . Докажите, что среднее арифметическое значений P в вершинах правильного n-угольника равно значению P в центре многоугольника, если n>k.

Задача 22. а) Пусть $z=\frac{3+4i}{5}$. Найдётся ли такое $n\in\mathbb{N}$, что $z^n=1$? б) Докажите, что $\frac{1}{\pi}$ arctg $\frac{4}{3}\notin\mathbb{Q}$.

Задача 23. Пусть $z, v, w \in \mathbb{C}$, причём $z + v + w = z^2 + v^2 + w^2 = z^3 + v^3 + w^3 = 0$. Верно ли, что $z^4 + v^4 + w^4 = 0$?

Задача 24. Нарисуйте множество комплексных чисел, для которых: **a)** $z^n + 1 = 0$;

б)
$$|z-i| \le 2$$
; в) $|z-1| = 2|z-i|$; г) $z^2 + \overline{z}^2 = 4$; д) $|z-1| - |z+1| \le 3$; е) $|z-1| + |z+1| = 3$; ж) $z + \overline{z} = 2|z-1|$.

Задача 25. Каким геометрическим преобразованиям соответствуют следующие отображения:

- a) $z \longmapsto \overline{z}$;
- **6)** $z \longmapsto (\cos \varphi + i \sin \varphi)z$, где $\varphi \in \mathbb{R}$;
- в) $z \longmapsto \lambda z$, где $\lambda \in \mathbb{R}$;
- \mathbf{r}) $z \longmapsto wz$, где $w \in \mathbb{C}$?

Задача 26. Запишите в виде функции комплексного переменного:

- а) ортогональную проекцию на ось x;
- **б)** симметрию относительно оси y;
- **в)** центральную симметрию с центром A;
- \mathbf{r}) поворот на угол φ относительно точки A;
- д) гомотетию с коэффициентом k и центром A;
- e) симметрию относительно прямой y = 3 со сдвигом на 1 влево;
- **ж)** поворот, переводящий ось x в прямую y = 2x + 1;
- **3)** симметрию относительно прямой y = 2x + 1.

Задача 27. Куда отображение $z \mapsto z^2$ переводит **a)** декартову координатную сетку;

б) полярную координатную сетку; **в)** окружность |z + i| = 1;

Задача 28. Те же вопросы для отображения $z \longmapsto 1/z$.

Задача 29. Куда отображение $z \longmapsto \sqrt{z}$ переводит верхнюю полуплоскость (без границы)?

Задача 30. а) Куда отображение $z \longmapsto 1/z$ переводит множество $\{z \in \mathbb{C} \mid \text{Im}(z) > 0, |z| \leqslant 1\}$? **6)*** Тот же вопрос для отображения $z \longmapsto \frac{z+1/z}{2}$.

1	2	3	4 a	4 6	5	6	7 a	7 б	8	9 a	9 6	10	11 a	11 б	11 B	11 Г	11 Д	12 a	12 б	12 B	12 Д	13 б	14	15 a	15 6	15 B	15 Г	16	17	18

19 a	19 б	$\begin{vmatrix} 20 \\ a \end{vmatrix}$	20 б	21	22 a	22 б	23	$\begin{vmatrix} 24 \\ a \end{vmatrix}$	24 б	24 B	24 Г	24 Д	24 e	24 ж	25 a	25 б	25 B	25 Г	26 a	26 6	26 B	26 Г	26 Д	26 e	26 ж	26 3	27 a	27 б	27 B	28	29	30 a	<u>30</u> б