Linear-Algebra Review

概念

• 酉性质: 保二范数, 即

$$||A\vec{x}||_2 = ||\vec{x}||_2$$

• 矩阵的零度: 使得 $A\vec{x}=0$ 成立的向量 x 构成的空间的维数。

矩阵的秩

- 矩阵的行秩等于列秩。
 - 。高斯消去法
- 矩阵 A^tA 的秩等于矩阵 A 的秩
 - 。 证明思路:转化为证明矩阵 A^tA 的零度和矩阵 A 的零度相等。事实上,若 $A\vec{x}=0$,则 $A^tA\vec{x}=A^t(A\vec{x})=0$,因此矩阵 A 的零度小于等于矩阵 A^tA 的零度;同时若 $A^tA\vec{x}=0$ 则 $\vec{x}^tA^tA\vec{x}=(A\vec{x})^t(A\vec{x})=0$ 则 $A\vec{x}=0$ 故矩阵 A 和矩阵 A^tA 的零度相等。
- 矩阵 A^2 的秩小于等于矩阵 A 的秩
 - 。证明思路:和上一条性质的证明思路一样,不难证明矩阵 A^2 的零度大于等于矩阵 A 的零度。

特征值和特征向量

- 对应于 n 个不同特征值的 n 个特征向量必然是线性无关的。
- 一个对称矩阵的属于不同特征值的特征向量必然正交,因而属于某一个特征值的特征向量会张出一个子空间。
 - 。 证明思路:

$$\langle lpha_1,Alpha_2
angle =\lambda_2\langle lpha_1,lpha_2
angle =lpha_1^tAlpha_2=(Alpha_1)^tlpha 2=\langle Alpha_1,lpha_2
angle =\lambda_1\langle lpha_1,lpha_2
angle \ \Longrightarrow \ (\lambda_1-\lambda_2)\langle lpha_1,lpha_2
angle =0$$

- 对称矩阵的特征值一定为实数。 (实对称和复对称都成立)
 - 。 证明思路:

$$\bar{\alpha}^t \bar{A}^t \alpha = \bar{\alpha}^t \bar{\lambda} \alpha = \bar{\alpha}^t A \alpha = \bar{\alpha}^t \lambda \alpha$$

- 矩阵 $A^t A$ 和矩阵 AA^t 有相同的特征值
 - 。 证明思路: 设 \vec{v} 是矩阵 $A^t A$ 的属于特征值 λ 的特征向量,则:

$$A(A^t A \vec{v}) = A(\lambda \vec{v}) = \lambda(A \vec{v}) = (AA^t)(A \vec{v})$$

所以 λ 也是矩阵 AA^t 的特征值。反之同理,事实上 $A^tA = A^t(A^t)^t$ 于是可以用同样的过程证明。

- 矩阵 A^tA 的特征值一定为非负实数。
 - 。 证明思路:特征值为实数已经在前面的性质中证明,设 $ec{v}$ 是矩阵 A^tA 的属于特征值 λ 的特征向量,则:

$$(Aec{v})^t(Aec{v})=ec{v}^tA^tAec{v}=\lambdaec{v}^tec{v}$$

因为 $(A\vec{v})^t(A\vec{v}) \geq 0$ 且 $\vec{v}^t\vec{v} \geq 0$ 故结论成立。

矩阵相似

- 性质
 - 。相似矩阵有相同的特征值;
- $n \times n$ 矩阵可对角化当且仅当矩阵有 n 个线性无关的特征向量。

- 。证明思路:矩阵可对角化时,满足 $A=P^{-1}DP$ 的 P 的列向量就是特征向量,因为 P 是非奇异阵,所以特征向量线性无关。反之,以线性无关的特征向量作为列向量的矩阵 P 必然满足 $A=P^{-1}DP$,其中 D 是由与特征向量对应的特征值作为对角线元素形成的矩阵。
- 具有 n 个不同的特征值的矩阵相似于对角线矩阵。
- 复数域上,任何矩阵都正交相似于上三角矩阵。
 - 。 证明思路: 数学归纳法
- $n \times n$ 矩阵是对称的当且仅当存在正交矩阵 Q 和对角矩阵 D 满足 $A = QDQ^t$
- 复数域上, 所有矩阵都相似于一个约当标准型。

正定矩阵

- 对称矩阵是正定矩阵当且仅当该矩阵所有的特征值都是正数。
 - 。 证明思路: 对称矩阵一定正交相似于对角线矩阵, 且对角线上的元素都是实数。