

M22 : Mathématiques fondamentales 2 L1 SESI 2019–2020

## Corrigé du devoir surveillé n° 3 – Partie Analyse

## Exercice 1.

1. La fonction h est deux fois dérivable comme la fonction f et on a, pour tout  $x \in [a, b[$ ,

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$
 et  $h''(x) = f''(x) > 0$ .

On en déduit que la fonction h' est strictement croissante sur a, b.

- 2. La fonction h est continue sur [a,b], dérivable sur ]a,b[ et vérifie h(a)=h(b)=0. Par conséquent, d'après le théorème de Rolle, il existe  $c \in ]a,b[$  tel que h'(c)=0.
- 3. Comme la fonction h' est strictement croissante sur ]a,b[ et s'annule en c d'après les questions précédentes, on en déduit qu'elle est strictement négative sur ]a,c[ et qu'elle est strictement positive sur ]c,b[. Ainsi, la fonction h est strictement décroissante sur ]a,c[ et strictement croissante sur ]c,b[. Mais comme de plus h(a)=h(b)=0 alors, pour tout  $x\in [a,b[$ , on a h(x)<0, et donc l'inégalité

$$f(x) < f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

La droite passant par les points de coordonnées (a, f(a)) et (b, f(b)) a pour équation

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

Ainsi, l'inégalité démontrée prouve que la courbe de la fonction f entre a et b est toute entière en-dessous de cette droite.

## Exercice 2.

- 1. (a) Comme la fonction inverse est strictement décroissante sur  $\mathbb{R}^*$ , on en déduit que la fonction f est strictement décroissante sur  $\mathbb{R}^*_+$ . Comme de plus la composée de deux fonctions strictement décroissantes est une fonction strictement croissante, on en déduit que la fonction g est strictement croissante sur  $\mathbb{R}^*_+$ .
  - (b) La fonction f étant décroissante sur [1,2], on en déduit que

$$f([1,2]) \subset [f(2), f(1)] = \left[\frac{3}{2}, 2\right] \subset [1,2].$$

(c) Pour  $x \in \mathbb{R}_+^*$ , on calcule

$$g(x) = f(f(x)) = 1 + \frac{1}{f(x)} = 1 + \frac{1}{1 + \frac{1}{x}} = 1 + \frac{x}{1 + x} = \frac{1 + 2x}{1 + x}.$$

On en déduit que

$$g(x) = x \iff \frac{1+2x}{1+x} = x \iff x^2 - x - 1 = 0.$$

Or l'équation du second degré  $x^2 - x - 1 = 0$  admet les deux solutions réelles

$$\frac{1-\sqrt{5}}{2} < 0$$
 et  $\frac{1+\sqrt{5}}{2} > 0$ ,

donc l'unique solution dans  $\mathbb{R}_+^*$  de l'équation g(x) = x est  $\ell = \frac{1+\sqrt{5}}{2}$ .

2. (a) Par définition, on a

$$u_1 = f(u_0) = f(1) = 2$$
,  $u_2 = f(u_1) = f(2) = \frac{3}{2}$ ,  $u_3 = f(u_2) = f(\frac{3}{2}) = \frac{5}{3}$ 

et donc

$$v_0 = u_0 = 1$$
,  $v_1 = u_2 = \frac{3}{2}$ ,  $w_0 = u_1 = 2$ ,  $w_1 = u_3 = \frac{5}{3}$ .

- (b) On montre que  $1 \le u_n \le 2$  pour tout  $n \in \mathbb{N}$  par récurrence sur n. En effet, on a bien  $u_0 = 1 \in [1, 2]$  et si, pour n arbitrairement fixé, on a  $u_n \in [1, 2]$ , alors  $u_{n+1} = f(u_n) \in [1, 2]$  d'après le point (b) de la question 1.
- (c) Pour tout  $n \in \mathbb{N}$ , on a

$$v_{n+1} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = (f \circ f)(u_{2n}) = g(v_n),$$

et de même

$$w_{n+1} = u_{2n+3} = f(u_{2n+2}) = f(f(u_{2n+1})) = (f \circ f)(u_{2n+1}) = g(w_n).$$

- (d) On montre que  $v_{n+1} \geq v_n$  et  $w_{n+1} \leq w_n$  pour tout  $n \in \mathbb{N}$ , dans chaque cas par récurrence sur n, et on en déduit respectivement que la suite  $(v_n)_{n \in \mathbb{N}}$  est croissante et que la suite  $(w_n)_{n \in \mathbb{N}}$  est décroissante.
  - On a  $v_1 = \frac{3}{2} \ge 1 = v_0$  d'après le point (a) et si, pour n arbitrairement fixé, on a  $v_{n+1} \ge v_n$  alors, comme la fonction g est croissante d'après le point (a) de la question 1, on obtient

$$g(v_{n+1}) \ge g(v_n)$$
 et donc  $v_{n+2} \ge v_{n+1}$ .

— De même, on a  $w_1 = \frac{5}{3} \le 2 = w_0$  et si, pour n arbitrairement fixé, on a  $w_{n+1} \le w_n$ , alors

$$g(w_{n+1}) \le g(w_n)$$
 et donc  $w_{n+2} \le w_{n+1}$ .

- (e) D'après le point (b), on a  $1 \le v_n \le 2$  et  $1 \le w_n \le 2$  pour tout  $n \in \mathbb{N}$ . Ainsi, la suite  $(v_n)_{n \in \mathbb{N}}$  est croissante et majorée (par 2) donc convergente et, de même, la suite  $(w_n)_{n \in \mathbb{N}}$  est décroissante et minorée (par 1) donc convergente aussi.
  - Pour tout  $n \in \mathbb{N}$ , on a  $v_{n+1} = g(v_n)$  et  $w_{n+1} = g(w_n)$ . La fonction g étant continue (comme composée de fonctions continues), on en déduit par passage à la limite dans ces égalités que les deux suites  $(v_n)_{n \in \mathbb{N}}$  et  $(w_n)_{n \in \mathbb{N}}$  convergent vers une limite qui est un point fixe de la fonction g, celui-ci devant dans chaque cas appartenir à [1,2] d'après la question précédente. Ainsi, d'après le point (c) de la question 1, ces deux limites sont en fait égales à  $\ell$ , l'unique réel strictement positif vérifiant  $g(\ell) = \ell$ .
- (f) D'après la question précédente, les suites  $(u_{2n})_{n\in\mathbb{N}}$  et  $(u_{2n+1})_{n\in\mathbb{N}}$  extraites de la suite  $(u_n)_{n\in\mathbb{N}}$  convergent vers la même limite  $\ell$ . Par théorème, on en déduit que la suite  $(u_n)_{n\in\mathbb{N}}$  converge également vers  $\ell$ .