МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Курсовой проект по курсу «Компьютерные системы и сети»

«Фреймворк и файловая система для распределённой обработки больших данных в рамках концепции map-reduce»

Выполнил: студент ИУ9-91 Выборнов А. И.

Руководитель: Дубанов А. В.

Содержание

Введение				3
1.	Теоретическая часть			4
	1.1.	Map-r	educe	4
		1.1.1.	Проблемы, которые решаются с помощью map-reduce	6
		1.1.2.	Пример применения map-reduce	6
	1.2.	Распр	еделённая файловая система	8
	1.3.	Распр	еделённый map-reduce	9
	1.4. Решаемый класс задач		емый класс задач	10
		1.4.1.	Ограничения на стадии map и reduce	10
		1.4.2.	Пример задачи класса информационный поиск	11
		1.4.3.	Решение задачи с помощью фреймворка map-reduce	11
		1.4.4.	Решение задачи на одной машине	11
		1.4.5.	Выводы	12
2.	Объ	ьекты	и методы	13
3.	Реализация			14
	3.1.	Используемые технологии		14
		3.1.1.	Коммуникация по сети	14
		3.1.2.	Сериализация	14
	3.2.	3.2. Работа с большими данными		
		3.2.1.	python generator	15
		3.2.2.	split	15
		3.2.3.	dfs	15
		3.2.4.	map-reduce	15
	3.3.	. Взаимодействие между узлами		16
	3.4. Интерфейс		17	
		3.4.1.	dfs	17
		3.4.2.	mr	17
4.	4. Тестирование		ание	18
5.	Зак	Заключение		
Список литературы				20

Введение

бла блабла

1. Теоретическая часть

1.1. Map-reduce

Map-reduce — концепция, используемая для распределённых вычислений над большими данными в компьютерных кластерах. Модель представлена компанией Google в 2004 году.

Большие данные (Big data) — термин, характеризующий любой набор данных, который достаточно велик и сложен для традиционных методов обработки данных, а также набор технологий для обработки таких наборов данных.

Выполнение приложения согласно концепции map-reduce состоит из двух последовательных этапов, между которыми происходит группировка результатов:

- тар предварительная обработка входных данных,
- reduce свёртка предварительно обработанных данных.

Несмотря на то, что прототипами этапов map и reduce послужили одноимённые функции, используемые в функциональном программировании, их семантика заметно отличается.

Базовым элементом в концепции map-reduce является структура (key, value) — (ключ, значение). Программирование представляет собой определение двух функций (квадратные скобки [] обозначают список):

- $map: (key, value) \rightarrow [(key, value)]$
- $reduce: (key, [value]) \rightarrow [(key, value)]$

Приведённое выще определение является достаточно абстрактным для прикладного применения. На практике достаточно следующего варианта выше приведённого определения:

- map: файл ввода $\rightarrow [(key, value)]$
- $reduce: (key, [value]) \rightarrow файл вывода$

На рисунке 1 схематически изображена обработка данных с помощью mapreduce. Файл ввода разбивается на блоки, каждый из которых поступает на вход функции *map*. Функция map обрабатывает его и порождает список пар (ключ, значение). Множество полученных списков пар объединяется и, затем, группируется по ключу, получая для каждого ключа список всех ассоциированных с ним значений.

Рисунок 1 — Схематическое изображение обработки данных с помощью концепции map-reduce

Все ключи равномерно распределяются на блоки и передаются на вход стадии reduce. Стадия reduce преобразовывает ключ и список значений в блок, являющийся частью файла вывода.

Как видно из описания, концепция налагает ограничения на формат файлов ввода и вывода: данные должны быть коммуникативны, с некоторой точностью (обычно до строки).

1.1.1. Проблемы, которые решаются с помощью map-reduce

Концепция map-reduce, появившись в 2004 году, довольно быстро обрела популярность, так как накопилось множество проблем для которых не существовало универсального решения. Вот основные из них (в скобках указан подход к решению используемый в концепции map-reduce):

- вычисления превосходят возможности одной машины (кластеры из сотен и тысяч машин),
- данные не помещаются в памяти, необходимо обращаться к диску (последовательное чтение и запись намного эффективнее случайного доступа),
- большое количество узлов в кластере вызывает множество отказов (все узлы унифицированы, что упрощает восстановление работы после отказа),
- данные хранятся на множестве машин (данные обрабатываются на той же машине, на которой они хранятся),
- разработка низкоуровневных приложений для подобных систем дорого и сложно (высокоуровневая модель программирования, универсальная и масшабируемая среда выполнения).

В рамках курсового проекта была предложена реализация концепции, дающая решение только части поставленных выше проблем, подробнее в главе 1.4.

1.1.2. Пример применения map-reduce

Разбор задачи на применение map-reduce

Задача: Есть граф пользователей некоторого ресурса, заданный в виде строчек: «пользователь - друг1 друг2 ...». Для каждой пары пользователей найти общих друзей.

Разберём задачу на следующих входных данных:

- A B C D
- B A C
- C A B D
- D A C

На стадии map преобразовываем пару (пользователь, друзья) в множество пар следующим образом:

- (A, B C D) -> (A B, B C D), (A C, B C D), (A D, B C D)
- (B, A C) -> (A B, A C), (B C, A C)
- (C, A B D) -> (A C, A B D), (B C, A B D), (C D, A B D)
- $(D, A C) \rightarrow (A D, A C), (C D, A C)$

Сливаем результаты полученные на стадии тар, получаем список пар:

- (A B, [B C D, A C])
- (A C, [B C D, A B D])
- (A D, [B C D, A C])
- (B C, [A B D, A C])
- (C D, [A B D, A C])

Ha стадии reduce пересекаем с друг другом все элементы списка значений и получаем:

- (A B, C)
- (A C, B D)
- (A D, C)
- (B C, A)
- (C D, A)

1.2. Распределённая файловая система

Определение.

Обоснование необходимости

Архитектура распределённой файловой системы - картинка.

Описание того что есть на картинке

1.3. Распределённый map-reduce

Определение.

map-reduce удобная концепция, но ... ??

Архитектура распределённого map-reduce - картинка

Подробное описание картинки.

1.4. Решаемый класс задач

Необходимо обосновать существование и найти класс задач, для которого актуальна приведённая выше схема распределённого map-reduce.

Пусть каждый узел располагает memory доступной оперативной памяти (здесь и далее единицей измерения памяти будет байт) и storageSize свободного места на диске. Всего узлов numNodes. Данный map-reduce проектировался для решения задач с bonomumu данными, поэтому в дальнейшем будем считать, что входные данные >> memory.

1.4.1. Ограничения на стадии map и reduce

На вход стадия тар принимает данные с диска, а результат этой стадии равномерно (с точностью до пары (ключ, значение)) распределяется по оперативной памяти узлов. То есть входные данные < storageSize * numNodes, а результат << memory* numNodes. Так как storageSize >> memory, получаем, что, в общем случае, стадия тар должна сильно сокращать объём данных.

На вход стадия reduce принимает данные из оперативной памяти, которые << memory*numNodes, результат этой стадии аккумулируется в оперативной памяти, то есть должен быть << memory для каждого узла, а затем записывается на диск. Получаем, что стадия reduce должна, как минимум, не увеличивать объём данных, поступивших на вход.

Рассмотрев полученные выше ограничения для стадий тар и reduce, а также учитывая достаточно большие входные данные, можно увидеть, что распределённый тар-reduce оптимально подходит для решения задач класса информационный поиск (information retrieval), что является одним из этапов решения задач анализа данных (data mining).

Информационный поиск — процесс поиска и получения информации как из структурированных, так и из неструктурированных данных. Обычно применяется в *анализе данных* для первичной обработки и сокращения объёма исходных данных.

1.4.2. Пример задачи класса информационный поиск

Исходные данные хранятся в виде текстового файла в n строк, в котором каждая строка соответствует строке в реляционной таблице table с m столбцов $(f_1...f_m, m > 2)$, каждое значение записано через пробел. Необходимо получить результат выполнения SQL запроса:

SELECT $f_1, ..., f_m$ FROM table WHFRE $f_1 > const$ GROUP BY f_1

1.4.3. Решение задачи с помощью фреймворка map-reduce

Функция тар определяется следующим образом: для каждой строки проверяется условие **WHERE** и все строки, удолетворяющие условию, составляют результат в виде пар: $(f_1, f_2, ..., f_m)$. Количество строк, удолетворяющих условию **WHERE**, обозначим как n'. Функция reduce возвращает то, что получила на вход.

Стадия тар получает O(nm) данных и, по выполнении, выдаёт O(n'm) данных, которые преобразуются и без изменений проходят стадию reduce. Сложность стадии тар — O(nm), преобразования между стадиями — за $O(n'm + n'ms_{net})$ (s_{net} — стоимость передачи данных между узлами), стадии reduce — O(n').

1.4.4. Решение задачи на одной машине

Решение задачи одной машине без применения фреймворка состоит из двух стадий:

- получить из входного файла все строчки, удолетворяющие **WHERE** сложность O(nm) (по памяти O(n'm))
- сгруппировать полученный результат по ключу f_1 сложность O(n'ln(n')), если применить для аггрегации быструю сортировку (по памяти O(n'm)), сложность O(n'), если применить для аггрегации сортировку подсчётом (по памяти 2O(n'm)).

В случае когда n' и m определены таким образом, что получишиеся данные больше memory, возникают проблемы: необходимо сохранять на диск промежуточные результаты, полученные после первой стадии, и сортировать полученный результат на диске, что достаточно медленно. В наиболее быстром варианте (результат первой стадии по частям сортируется и сохраняется файлах, а затем эти файлы

сливаются) получается сложность первой стадии $O(nm + n'ln(n') + n's_{hdd})$, второй стадии $O(n'ms_{hdd})$ (s_{hdd} — стоимость обращения к диску).

1.4.5. Выводы

Суммарная сложность решения с помощью map-reduce — $O(nm + n'm + n'ms_{net} + n')$, с помощью описанного выше способа решения на одной машине — $O(nm + n'ln(n') + n'ms_{hdd} + n'ms_{hdd})$. Для простоты положим, что $s_{hdd} \approx s_{net}$. Тогда можно увидеть, что принципиальное отличие в сложности заключается только в $O(n'ms_{hdd})$ для выполнения на одной машине, что соответсвует дополнительному слиянию файлов на диске.

На данном примере хорошо видно, что в случае выполнения на одной машине приходится кэшировать на диск то, что происходит в оперативной памяти нескольких нод в случае map-reduce. Как следствие — нужно вручную писать функционал, который реализован в фреймворке. Так же не стоит забывать, что время выполнения на одной машине существенно увеличивается не только за счёт слияния файлов, но и за счёт последовательного выполнения всех действий, которые происходят параллельно в случае map-reduce.

В итоге видно, что предложенная схема реализации концепции map-reduce позволяет решать задачи класса информационный поиск.

2. Объекты и методы

Характеристики программного обеспечения:

- \bullet Операционная система Ubuntu 14.04.1 LTS 64-bit.
- IDE Syblime Text 2.
- Язык программирования Python 2.7.3.

Характеристики оборудования:

- Процессор Intel Core i
7-3770k $3.5 \mathrm{Ghz} {\times} 8.$
- \bullet Оперативная память 16Gb DDR3.
- \bullet Видеокарта ATI Radeon 7860.

3. Реализация

3.1. Используемые технологии

При реализации ... были использованы готовые технологиии: ...

3.1.1. Коммуникация по сети

что такое зачем нужно почему zmq

3.1.2. Сериализация

что такое
зачем нужно
примеры, тесты
почему выбрали marshal
Сериализация в человекочитаемый формат
что такое и чем отличается от сериализации
json и xml определение и зачем нужно

3.2. Работа с большими данными

какие есть проблемы - описать все нижни пунксты

3.2.1. python generator

Paccказ про python generator и применение

3.2.2. split

обзор функции split

3.2.3. dfs

проблемы в dfs ?? доопределиться по ходу написания как эти проблемы решаются в фс

3.2.4. map-reduce

проблемы в map-reduce ?? распределение ключей как эти проблемы решаются в map-reduce

3.3. Взаимодействие между узлами

Описание реализации взаимодействия между различными узлами сети. класс nodesmanager и примеры его использования

3.4. Интерфейс

есть dfs, есть mr

3.4.1. dfs

перевести

Distributed file system is required to map-reduce framework.

On each node, you should run *dfsnode.py* with two arguments - port and storage path. Like this:

python dfsnode.py -p 5556 -s /home/username/storage

Then you should fill *config.json* with information about nodes. Now you can use *dfs.py*. Samples of use dfs.py:

python dfs.py -ls /user/ python dfs.py -mkdir /user/username/userdatafolder python dfs.py -put ./test.in /user/username/userdatafolder/testfile python dfs.py -get /user/username/userdatafolder/testfile python dfs.py -rm /user/username

3.4.2. mr

написать аналогично dfs

4. Тестирование

5. Заключение

Описать успех или не успех тестирования.

Описать проблемы.

Описать удачи.

Список литературы

http://webglmol.sourceforge.jp/index-en.html

[1] гугловая статья про mr от 2006 лекции шад http://www.slideshare.net/yandex/mapreduce-12321523 http://www.quora.com/What-is-the-most-efficient-way-to-serialize-in-Python http://www.codeinstinct.pro/2012/08/hadoop-design.html https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/ [2] SMILES — A Simplified Chemical Language // Daylight Chemical Information Systems, Inc: URL: http://www.daylight.com/dayhtml/doc/theory/theory.SMILES.html [3] Atomic Coordinate Entry Format Description // Penn State University: URL: http://www.wwpdb.org/documentation/format33/v3.3.html // [4] Periodic Table Datan Files Protein Data Bank: URL: http://php.scripts.psu.edu/djh300/cmpsc221/p3s11-pt-data.htm [5] Three.js — javascript 3D library // Three.js: URL: http://mrdoob.github.io/three.js/ [6] File: Tubby-1c8z-pymol.png // Wikipedia: URL: http://en.wikipedia.org/wiki/File:Tubby-1c8z-pymol.png [7] GLmol Molecular Viewer on WebGL/Javascript GLmol: URL: