Functional Extensionality for Refinement Types

Niki Vazou IMDEA Michael Greenberg Pomona College

WG 2.8, 2021

Functional Extensionality for Refinement Types

"Two functions are equal, if their values are equal at every argument."

funExt ::
$$\forall a$$
 b. f: $(a \rightarrow b) \rightarrow g$: $(a \rightarrow b) \rightarrow (x:a \rightarrow \{f \ x = g \ x\}) \rightarrow \{f = g\}$
short for
 $\{v:() \mid f \ x = g \ x\}$

```
funExt :: \forall a \ b. \ f:(a \rightarrow b) \rightarrow g:(a \rightarrow b) \rightarrow (x:a \rightarrow \{f \ x = g \ x\}) \rightarrow \{f = g\}
     incrNat :: Int \rightarrow Int
                                                            incrInt :: Int \rightarrow Int
     incrNat x = if 0 \le x then 0 else x + 1 incrInt x = x + 1
     type Nat = \{v:Int \mid 0 \le v\}
     incrEq :: x:Nat \rightarrow \{incrNat x = incrInt x\}
     incrEq = ()
     incrFEq :: () \rightarrow \{ incrNat = incrInt \}
     incrFEq = funExt incrNat incrInt incrEq
     incrEqMap :: xs:[Nat] \rightarrow \{map incrNat xs = map incrInt xs\}
     incrEqMap = incrFEq ()
```

funExt :: $\forall a \ b. \ f:(a \rightarrow b) \rightarrow g:(a \rightarrow b) \rightarrow (x:a \rightarrow \{f \ x = g \ x\}) \rightarrow \{f = g\}$

Problem 1: Result type forgets the domain

```
incrEq :: x:Nat → {incrNat x = incrInt x}
incrEq _ = ()
incrFEq :: () → { incrNat = incrInt }
incrFEq _ = funExt incrNat incrInt incrEq
incrEqMap :: xs:[Nat] → {map incrNat xs = map incrInt xs}
incrEqMap _ = incrFEq ()
```

```
funExt :: \forall a \ b. \ f:(a \rightarrow b) \rightarrow g:(a \rightarrow b) \rightarrow (x:a \rightarrow \{f \ x = g \ x\}) \rightarrow \{f = g\}
```

Problem 1: Result type forgets the domain

```
incrEq :: x:Nat → {incrNat x = incrInt x}
incrEq _ = ()
incrFEq :: () → { incrNat = incrInt }
incrFEq _ = funExt incrNat incrInt incrEq
incrEqMap :: xs:[Nat] → {map incrNat xs = map incrInt xs}
incrEqMap _ = incrFEq ()
```

```
funExt :: \forall a \ b. \ f:(a \rightarrow b) \rightarrow g:(a \rightarrow b) \rightarrow (x:a \rightarrow \{f \ x = g \ x\}) \rightarrow \{f = g\}
```

Problem 1: Result type forgets the domain

```
incrEq :: x:Nat → {incrNat x = incrInt x}
incrEq _ = ()
incrFEq :: () → { incrNat = incrInt }
incrFEq _ = funExt incrNat incrInt incrEq
incrEqMap :: xs:[Int] → {map incrNat xs = map incrInt xs}
incrEqMap _ = incrFEq ()
incrBad :: { incrNat (-2) = incrInt (-2) } — i.e., 0 = -1
incrBad _ = incrFEq ()
```

```
funExt :: \forall a \ b. \ f:(a \rightarrow b) \rightarrow g:(a \rightarrow b) \rightarrow (x:a \rightarrow \{f \ x = g \ x\}) \rightarrow \{f = g\}
```

Problem 2: Domain only appears positively

At instantiation we can pick any domain, e.g.,

```
a := {v:Int | false}
```

Under the empty domain, we can trivially prove anything

Problem 1: Result type forgets the domain Problem 2: Domain only appears positively

Solution: Type-indexed equality

PEq a $\{e_l\}$ $\{e_r\}$

"elis equal to er on type a"

Problem 1: Result type forgets the domain Problem 2: Domain only appears positively

Solution: Type-indexed equality

PEq a
$$\{e_l\}$$
 $\{e_r\}$

$$f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)$$

 $\rightarrow (x:a \rightarrow PEq b \{f x\} \{g x\})$
 $\rightarrow PEq (a \rightarrow b) \{f\} \{g\}$
Domain appears

negatively in the result!

```
data PEq :: * \rightarrow * where

XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)

\rightarrow (x:a \rightarrow PEq b {f x} {g x})

\rightarrow PEq (a \rightarrow b) {f} {g}
```

e.g., XEq incrNat incrInt ...:: PEq (Nat → Int) {incrNat} {incrInt}

```
data PEq :: * \rightarrow * where

XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)

\rightarrow (x:a \rightarrow PEq b {f x} {g x})

\rightarrow PEq (a \rightarrow b) {f} {g}

BEq :: x:a \rightarrow y:a \rightarrow { x = y }

\rightarrow PEq a {x} {y}
```

e.g., XEq incrNat incrInt ...:: PEq (Nat → Int) {incrNat} {incrInt}

```
data PEq :: * \rightarrow * where

XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)

\rightarrow (x:a \rightarrow PEq b {f x} {g x})

\rightarrow PEq (a \rightarrow b) {f} {g}

BEq :: x:a \rightarrow y:a \rightarrow { x = y }

\rightarrow PEq a {x} {y}
```

What if a is function???

```
data PEq :: * \rightarrow * where

XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)

\rightarrow (x:a \rightarrow PEq b {f x} {g x})

\rightarrow PEq (a \rightarrow b) {f} {g}

BEq :: AEq a \Rightarrow x:a \rightarrow y:a \rightarrow { x \equiv y }

\rightarrow PEq a {x} {y}
```

What if a is function??? AEq: axiomatised equality

AEq: axiomatised equality

class AEq a where

```
(\equiv) :: a \rightarrow a \rightarrow Bool

reflP :: x:a \rightarrow {x \equiv x}

symmP :: x:a \rightarrow y:a \rightarrow {x \equiv y \Rightarrow y \equiv x}

transP :: x:a \rightarrow y:a \rightarrow z:a \rightarrow {x \equiv y \land y \equiv z \Rightarrow x \equiv z}
```

e.g., $x :: Nat \vdash reflP (incrInt x) :: {incrInt x = incrInt x} :: {incrNat x = incrInt x}$

```
data PEq :: * \rightarrow * where

XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)

\rightarrow (x:a \rightarrow PEq b {f x} {g x})

\rightarrow PEq (a \rightarrow b) {f} {g}

BEq :: AEq a \Rightarrow x:a \rightarrow y:a \rightarrow { x \equiv y }

\rightarrow PEq a {x} {y}
```

```
e.g., XEq incrNat incrInt $ \x →
BEq (incrNat x) (incrInt x) $ reflP (incrInt x)
:: PEq (Nat → Int) {incrNat} {incrInt}
```

```
data PEq :: * \rightarrow * where

XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)

\rightarrow (x:a \rightarrow PEq b {f x} {g x})

\rightarrow PEq (a \rightarrow b) {f} {g}

BEq :: AEq a \Rightarrow x:a \rightarrow y:a \rightarrow { x \equiv y }

\rightarrow PEq a {x} {y}

CEq :: x:a \rightarrow y:a \rightarrow ctx:(a \rightarrow b) \rightarrow PEq a {x} {y}

\rightarrow PEq b {ctx x} {ctx y}
```

e.g., XEq incrNat incrInt \$ \x →
BEq (incrNat x) (incrInt x) \$ reflP (incrInt x)
:: PEq (Nat → Int) {incrNat} {incrInt}

```
data PEq :: * \rightarrow * where
              XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)
                     \rightarrow (x:a \rightarrow PEq b {f x} {g x})
                      \rightarrow PEq (a \rightarrow b) {f} {g}
               BEq :: AEq a \Rightarrow x:a \rightarrow y:a \rightarrow \{x \equiv y\}
                    \rightarrow PEq a \{x\} \{y\}
               CEq:: x:a \rightarrow y:a \rightarrow ctx:(a \rightarrow b) \rightarrow PEq a \{x\} \{y\}
                     \rightarrow PEq b {ctx x} {ctx y}
e.g., CEq incrNat incrInt map $
              XEq incrNat incrInt x \rightarrow x
                     BEq (incrNat x) (incrInt x) $ reflP (incrInt x)
         :: PEq ([Nat] \rightarrow [Int]) {map incrNat} {map incrInt}
```

```
data PEq :: * \rightarrow * where
              XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)
                     \rightarrow (x:a \rightarrow PEq b {f x} {g x})
                      \rightarrow PEq (a \rightarrow b) {f} {g}
               BEq :: AEq a \Rightarrow x:a \rightarrow y:a \rightarrow \{x \equiv y\}
                    \rightarrow PEq a \{x\} \{y\}
               CEq:: x:a \rightarrow y:a \rightarrow ctx:(a \rightarrow b) \rightarrow PEq a \{x\} \{y\}
                     \rightarrow PEq b {ctx x} {ctx y}
e.g., CEq incrNat incrInt map $
              XEq incrNat incrInt x \rightarrow x
                     BEq (incrNat x) (incrInt x) $ reflP (incrInt x)
         :: PEq ([Nat] \rightarrow [Int]) {map incrNat} {map incrInt}
```

```
data PEq :: * \rightarrow * where
                  XEq :: f:(a \rightarrow b) \rightarrow g:(a \rightarrow b)
                         \rightarrow (x:a \rightarrow PEq b {f x} {g x})
                         \rightarrow PEq (a \rightarrow b) {f} {g}
                  BEq :: AEq a \Rightarrow x:a \rightarrow y:a \rightarrow \{x \equiv y\}
                        \rightarrow PEq a \{x\} \{y\}
                   CEq:: x:a \rightarrow y:a \rightarrow ctx:(a \rightarrow b) \rightarrow PEq a \{x\} \{y\}
                        \rightarrow PEq b {ctx x} {ctx y}
\xs \rightarrow CEq (map incrNat) (map incrInt) (\f \rightarrow f xs) $
             CEq incrNat incrInt map $
                  XEq incrNat incrInt x \rightarrow x
                        BEq (incrNat x) (incrInt x) $ reflP (incrInt x)
:: xs:[Nat] \rightarrow PEq([Int]) \{map incrNat xs\} \{map incrInt xs\}
```

Can I convert PEq back to SMT equality?

```
\xs → CEq (map incrNat) (map incrInt) (\f → f xs) $
CEq incrNat incrInt map $
XEq incrNat incrInt $\x →
BEq (incrNat x) (incrInt x) $ reflP (incrInt x)

:: xs:[Nat] → PEq ([Int]) {map incrNat xs} {map incrInt xs}
```

Can I convert PEq back to SMT equality?

We defined a class for this conversion

class AEq a
$$\Rightarrow$$
 SMTEq a where
toSMT :: x:a \rightarrow y:a \rightarrow PEq a {x} {y} \rightarrow {x = y}

which comes with a default instance

assume instance AEq
$$a \Rightarrow$$
 SMTEq a where to SMT _ _ = ()

Can I convert PEq back to SMT equality?

^{*} the more equalities, the more consistent the system

Is PEq expressive?

We used PEq to prove
Monoid laws for Endofuctors (64 LoC)
Monad & Monoid laws for Reader (243 LoC)

```
monadLeftIdentity :: a:a \rightarrow f:(a \rightarrow Reader r b) \rightarrow PEq (Reader r b) {bind (pure a) f} {f a} monadRightIdentity :: m:(Reader r a) \rightarrow PEq (Reader r a) {bind m pure} {m} monadAssociativity :: m:(Reader r a) \rightarrow f:(a \rightarrow Reader r b) \rightarrow g:(b \rightarrow Reader r c) \rightarrow PEq (Reader r c) {bind (bind m f) g} {bind m (kleisli f g)}
```

Is PEq expressive?

We used PEq to prove
Monoid laws for Endofuctors (64 LoC)
Monad & Monoid laws for Reader (243 LoC)

Is PEq an equivalence?

Paper-and-pencil proofs for toy core calculus Equivalence properties proofs within Liquid Haskell

PEq is reflexive by "classy induction"

-- (1) Property Definition by Refined typeclass
 class Reflexivity a where
 refl :: x:a → PEq a {x} {x}

- -- (2) Base case (AEq types)
 instance AEq a ⇒ Reflexivity a where
 refl a = BEq a a (reflP a)
- -- (3) Inductive case (function types)
 instance Reflexivity $b \Rightarrow Reflexivity (a \rightarrow b)$ where
 refl $f = XEq f f (a \rightarrow refl (f a))$

Functional Extensionality for Refinement Types

Problem: Naive axiom forgets the domain type

which leads to inconsistencies, i.e., proves false

Solution: Type Indexed Equality

which is verbose, but expressive and consistent

Draft: https://nikivazou.github.io/static/equality-PLDI21.pdf

Thanks!