Solubility

Rules

- Salts containing Group I elements (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺) are soluble.
- Ammonium ion is soluble (NH₄⁺)
- Nitrate ion is generally soluble (NO₃⁺)
- (Cl⁻, Br⁻, I⁻) are generally soluble. EXCEPTIONS (Ag⁺, Pb²⁺, and Hg₂²⁺)
- Most silver salts are insoluble. EXCEPTIONS (AgNO₃, and Ag(C₂H₃O₂))
- Most sulfate salts are soluble (SO₄²⁻) EXCEPTIONS (BaSO₄, PbSO₄, and SrSO₄)

Polyatomic Ions

NO ₃ - Nitrate	NO ₂ - Nitrite
SO ₄ ²⁻ Sulfate	SO ₃ ²⁻ Sulfite
PO ₄ ³⁻ Phosphate	PO ₃ ³⁻ Phosphite
CO ₃ ²⁻ Carbonate	HCO ₃ - Hydrogen Carbonate
CN ⁻ Cyanide	NH ₄ ⁺ Ammonium
OH- Hydroxide	ClO ⁻ Hypochlorite
CH ₃ CO ₂ - Acetate	

Nomenclature

<u>Ionic</u>

- Name the cation
- Then name the anion
- Add -ide to the end of the anion
- Balance it when you have various charges on metals
- EX: CaCl₂ Calcium Chloride
- EX: Fe(OH)₂ Iron (II) Hydroxide. Because OH is 1- and you have 2. For an overall 2-. Iron has to be a positive charge of 2+ so that its balanced.

Covalent/Molecular

- Use prefixes EXCEPTION: No "mono" on the first atom if there is only one of them
- Add -ide to the end of the second atom
- EX: CO₂ Carbon Dioxide
- EX: SF₆ Sulfur Hexafluoride

Number	Prefix
1	Mono
2	Di
3	Tri
4	Tetra
5	Penta
6	Hexa
7	Hepta
8	Octa
9	Nona
10	Deca

Molarity

Molarity = (Moles of solute)/(Liters of solution)

Concentration = Determine concentration by multiplying the given M by how many there are in the equation. EX:

<u>Temperature</u>

Celsius to Fahrenheit	° F = 9/5 (° C) + 32
Kelvin to Fahrenheit	° F = 9/5 (K - 273) + 32
Fahrenheit to Celsius	° C = 5/9 (° F - 32)
Celsius to Kelvin	K = ° C + 273
Kelvin to Celsius	° C = K - 273
Fahrenheit to Kelvin	K = 5/9 (° F - 32) + 273

Net Ionic Equations

Then divide $^{\land}$ it all by 2 because its equivalent to $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(1)$