

LINEAR REGRESSION ON PYTHON

UNIT 3: RECONSTRUCTING CORAL CORE DATA

APRIL 2ND 2020

HOUSEKEEPING

- Personal check-in
- Final presentations are cancelled
- Restructuring class

PLAN FOR TODAY

- □ Complete time conversion function
- □ Linear regression in Python
- □Update lab notes
- ☐ Exit survey

CONCEPT CHECK-IN

A = 7.5891

Which of the rounding functions would give you the following results:

\$ 8.0

***** 7.0

***** 7.69

***** 7

FUNCTION

```
def convert_dates ( any dataframe ):
```

your script

return new dataframe with an additional year and month column

Challenge: Add in a "Day" column where all the entries are I

>>> print(add(4, 5))

SHARE OUR TEACHABLE MACHINE PROJECTS

LINEAR REGRESSION = MACHINE LEARNING?

In break-out rooms,

- Use your machine learning diagram from last class, to brainstorm the steps that go into a machine learning algorithm based on linear regression
- Draw/ present your ideas on the whiteboard

Working offline:

 https://www.youtube.com/watch?v=Gv9_4yMHFhl&list=PLblh5JKOoLUICTaGLRoH QDuF_7q2GfuJF [2:30 – 8:03]

MACHINE LEARNING STEPS

PREPARE DATA

Train Data Test

TRAIN MODEL

We know our data has some linear relationship but we want to find the equation of our best-fit line. This is where **linear regression** comes in to create a model that best represents out data

Training data Model

TEST MODEL

HOW DID THE MODEL DO?

HOW DID THE MODEL DO?

N = number of test data points

Average squared residual =
$$\frac{sum\ of\ squared\ residuals}{N}$$
 \rightarrow mean square error

Average residual = $\sqrt{mean\ square\ error}$ \rightarrow **root** mean square error (RMSE)

UPDATE LAB NOTES

EXIT SURVEY