Shusen Wang

The figure is from blog lilianweng.github.io

Shortcoming: The final state is incapable of remembering a **long** sequence.

The figure is from blog lilianweng.github.io

Encoder RNN

context vector

$$\mathbf{c} = \sum_{i=1}^{m} \alpha_i \ \mathbf{h}_i.$$

• α_i : similarity between \mathbf{s}_{t-1} and \mathbf{h}_i .

context vector

$$\mathbf{c} = \sum_{i=1}^{m} \alpha_i \ \mathbf{h}_i.$$

• α_i : similarity between \mathbf{s}_{t-1} and \mathbf{h}_i .

Standard Seq2Seq model: the decoder looks at only its current state.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Downside: higher time complexity.
 - l_1 : input sequence length
 - l_2 : target sequence length
 - Standard Seq2Seq: $O(l_1 + l_2)$ time complexity
 - Seq2Seq + attention: $O(l_1 l_2)$ time complexity