Applied Machine Learning

MLR3 Pipelines:

Part 2

Learning goals

- Targeting Columns
- Complex ML Pipelines
- AutoML Concepts

Two ways of restricting actions to individual columns:

- Individual PipeOps: affect_columns parameter
- Subgraphs, po("select"), and po("featureunion")
- \Rightarrow Both make use of column Selectors

Suppose we only want PCA on some columns of our data:

task\$data(1:9)						
#>		Species	Petal.Length	Petal.Width	Sepal.Length	Sepal.Width
#>		<fctr></fctr>	<num></num>	<num></num>	<num></num>	<num></num>
#>	1:	setosa	1.4	0.2	5.1	3.5
#>	2:	setosa	1.4	0.2	4.9	3.0
#>	3:	setosa	1.3	0.2	4.7	3.2
#>	4:	setosa	1.5	0.2	4.6	3.1
#>	5:	setosa	1.4	0.2	5.0	3.6
#>	6:	setosa	1.7	0.4	5.4	3.9
#>	7:	setosa	1.4	0.3	4.6	3.4
#>	8:	setosa	1.5	0.2	5.0	3.4
#>	9:	setosa	1.4	0.2	4.4	2.9

Two ways of restricting actions to individual columns:

- Individual PipeOps: affect_columns parameter
- Subgraphs, po("select"), and po("featureunion")
- \Rightarrow Both make use of column Selectors

Using affect_columns:

```
sel = selector_grep("^Sepal")
partial_pca = po("pca", affect_columns = sel)
result = partial_pca$train(list(task))
result[[1]]$data(1:3)
     Species PC1 PC2 Petal.Length Petal.Width
      <fctr> <num> <num>
                             <num>
                                        <num>
                            1.4
                                          0.2
  1: setosa -0.78 0.378
#> 2: setosa -0.94 -0.137 1.4
                                          0.2
#> 3: setosa -1.15 0.045
                               1.3
                                          0.2
```


Two ways of restricting actions to individual columns:

- Individual PipeOps: affect_columns parameter
- Subgraphs, po("select"), and po("featureunion")
- \Rightarrow Both make use of column Selectors

Using po("select"):

Two ways of restricting actions to individual columns:

- Individual PipeOps: affect_columns parameter
- Subgraphs, po("select"), and po("featureunion")
- \Rightarrow Both make use of column Selectors

Using po("select"):

```
sel = selector_grep("^Sepal")
selcomp = selector_invert(sel)
partial_pca = gunion(list())
 po("select", selector = sel) %>>% po("pca"),
 po("select", selector = selcomp, id = "select2"))) %>>%
 po("featureunion")
partial_pca$train(task)[[1]]$data(1:3)
#>
     Species PC1 PC2 Petal.Length Petal.Width
      <fctr> <num> <num>
                                <n11m>
                                           <n11m>
  1: setosa -0.78 0.378
                                 1.4
                                             0.2
#>
  2: setosa -0.94 -0.137
                                 1.4
                                             0.2
#> 3: setosa -1.15 0.045
                                  1.3
                                             0.2
```


Complex ML Pipelines and AutoML

AUTOML <3 PIPELINES

- AutoML: Automatic Machine Learning
- Let the algorithm make decisions about
 - what learner to use,
 - what preprocessing to use, and
 - what hyperparameters to use.
- (1) and (2) are decisions about graph structure in mlr3pipelines
- ⇒ The problem reduces to **pipelines + parameter tuning**

AUTOML WITH MLR3PIPELINES

AutoML in a Nutshell

Preprocessing steps

ML Algorithms

Tuner

PIPELINES TUNING

- Works exactly as in basic mlr3/mlr3tuning
- PipeOps have hyperparameters (using paradox pkg)
- Graphs have hyperparameters of all components combined
- → Joint tuning and nested CV of complete graph

```
p1 = ppl("branch", list(
  "pca" = po("pca"),
  "nothing" = po("nop")
))
p2 = flt("anova")
p3 = ppl("branch", list(
  "svm" = lrn("classif.svm", id = "svm", kernel = "radial",
   type = "C-classification"),
  "xgb" = lrn("classif.xgboost", id = "xgb"),
  "rf" = lrn("classif.ranger", id = "rf")
), prefix_branchops = "lrn_")
gr = p1 %>>% p2 %>>% p3
glrn = as_learner(gr)
```


PIPELINES TUNING

PIPELINES TUNING

```
ps = ps(
 branch.selection = p_fct(levels = c("pca", "nothing")),
 anova.filter.frac = p_dbl(lower = 0.1, upper = 1),
 lrn_branch.selection = p_fct(levels = c("svm", "xgb", "rf")),
 rf.mtry.ratio = p_int(lower = 1L, upper = 20L, trafo = function(x) 1/x,
   depends = lrn_branch.selection == "rf" ),
 xgb.nrounds = p_int(lower = 1, upper = 500,
    depends = lrn_branch.selection == "xgb"),
 svm.cost = p_dbl(lower = -12, upper = 4, trafo = function(x) 2^x,
    depends = lrn_branch.selection == "svm"),
 svm.gamma = p_dbl(lower = -12, upper = -1, trafo = function(x) 2^x,
    depends = lrn_branch.selection == "svm"))
inst = ti(task = tsk("sonar"), learner = glrn,
 resampling = rsmp("cv", folds = 3), measures = msr("classif.ce"),
 terminator = trm("evals", n_evals = 10), search_space = ps)
gsearch = tnr("random_search")
gsearch$optimize(inst)
```


Summary

MLR3PIPELINES

mlr3pipelines overview:

- Construct a PipeOp using po()
- Use Graph operators to connect them
 - %>>%—chain operations
 - gunion()—put operations in parallel
 - pipeline_greplicate()—put many copies of an operation in parallel
- Train/predict with the PipeOp or Graph using \$train()/\$predict()
- Inspect the trained state through \$state
- Encapsulate the Graph in a GraphLearner for resampling, benchmarking, and tuning

MLR3(PIPELINES) RESOURCES

mlr3 book

https://mlr3book.mlr-org.com/

mlr3 Use Case "Gallery"

https://mlr3gallery.mlr-org.com/

"cheat sheets"

https://cheatsheets.mlr-org.com/

