$12a_{0281} (K12a_{0281})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5u^{42} + 12u^{41} + \dots + 8b - 19, \ 11u^{42} + 29u^{41} + \dots + 8a - 44, \ u^{43} + u^{42} + \dots + 2u + 1 \rangle \\ I_2^u &= \langle 2.26163 \times 10^{32}u^{69} - 1.52330 \times 10^{31}u^{68} + \dots + 1.91814 \times 10^{32}b + 6.95419 \times 10^{32}, \\ &- 2.76673 \times 10^{33}u^{69} - 1.62384 \times 10^{33}u^{68} + \dots + 9.59072 \times 10^{32}a - 2.22275 \times 10^{34}, \ u^{70} + u^{69} + \dots + 14u - 14u - 14u^{44}u^{44$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 120 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5u^{42} + 12u^{41} + \dots + 8b - 19, \ 11u^{42} + 29u^{41} + \dots + 8a - 44, \ u^{43} + u^{42} + \dots + 2u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.37500u^{42} - 3.62500u^{41} + \dots + 10.8750u + 5.50000 \\ -\frac{5}{8}u^{42} - \frac{3}{2}u^{41} + \dots + \frac{37}{8}u + \frac{19}{8} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{4}u^{42} - \frac{17}{8}u^{41} + \dots + \frac{25}{4}u + \frac{25}{8}u + \frac{19}{8} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ -\frac{5}{8}u^{42} - \frac{1}{2}u^{41} + \dots + \frac{37}{8}u + \frac{19}{8} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ \frac{1}{8}u^{42} + \frac{11}{8}u^{41} + \dots - \frac{25}{8}u - \frac{3}{2} \\ \frac{1}{8}u^{42} + \frac{5}{4}u^{41} + \dots - \frac{15}{8}u - \frac{11}{8} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{8}u^{41} - \frac{1}{8}u^{40} + \dots - \frac{3}{4}u + \frac{1}{8} \\ -\frac{1}{8}u^{41} - \frac{1}{8}u^{40} + \dots - \frac{3}{4}u + \frac{1}{8} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{8}u^{41} - \frac{1}{8}u^{40} + \dots - \frac{3}{4}u + \frac{1}{8} \\ -\frac{1}{8}u^{41} - \frac{1}{8}u^{40} + \dots - \frac{3}{4}u + \frac{1}{8} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots + \frac{3}{4}u^{2} - \frac{1}{8}u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u + 1 \\ \frac{1}{8}u^{42} + \frac{1}{8}u^{41} + \dots - \frac{1}{8}u^{42} - \frac{1}{8}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{7}{2}u^{42} - \frac{19}{4}u^{41} + \dots - \frac{1}{2}u - \frac{49}{4}$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{43} + 21u^{42} + \dots + 10u + 1$
c_2, c_5, c_6 c_{12}	$u^{43} + u^{42} + \dots + 2u + 1$
c_3	$u^{43} + 3u^{42} + \dots + 238u + 194$
c_4, c_9	$u^{43} - 3u^{42} + \dots - 6u + 2$
c ₇	$u^{43} + 3u^{42} + \dots + 256u + 256$
c ₈	$u^{43} + 21u^{42} + \dots + 4u + 4$
c_{10}	$u^{43} - 9u^{42} + \dots - 118u + 38$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{43} + 11y^{42} + \dots + 18y - 1$
c_2, c_5, c_6 c_{12}	$y^{43} - 21y^{42} + \dots + 10y - 1$
c_3	$y^{43} + 3y^{42} + \dots + 106308y - 37636$
c_4,c_9	$y^{43} - 21y^{42} + \dots + 4y - 4$
C ₇	$y^{43} + 23y^{42} + \dots + 1441792y - 65536$
c ₈	$y^{43} + 3y^{42} + \dots + 80y - 16$
c_{10}	$y^{43} + 15y^{42} + \dots - 31068y - 1444$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.748644 + 0.637641I		
a = 0.080537 - 0.526871I	1.89821 - 0.96458I	-3.28074 - 0.62200I
b = 1.013350 + 0.562622I		
u = -0.748644 - 0.637641I		
a = 0.080537 + 0.526871I	1.89821 + 0.96458I	-3.28074 + 0.62200I
b = 1.013350 - 0.562622I		
u = 0.804750 + 0.623565I		
a = 0.222175 - 1.018610I	3.32140 - 3.80226I	-0.99469 + 6.39942I
b = 0.529140 + 0.662060I		
u = 0.804750 - 0.623565I		
a = 0.222175 + 1.018610I	3.32140 + 3.80226I	-0.99469 - 6.39942I
b = 0.529140 - 0.662060I		
u = -0.900705 + 0.522951I		
a = -1.36239 - 0.90089I	-1.80687 + 4.07167I	-9.95788 - 6.11472I
b = -1.035780 - 0.144530I		
u = -0.900705 - 0.522951I		
a = -1.36239 + 0.90089I	-1.80687 - 4.07167I	-9.95788 + 6.11472I
b = -1.035780 + 0.144530I		
u = 0.894694 + 0.620124I		
a = -0.903919 - 0.027255I	2.75595 - 5.96538I	-2.44764 + 6.68032I
b = 0.412108 - 0.716509I		
u = 0.894694 - 0.620124I		
a = -0.903919 + 0.027255I	2.75595 + 5.96538I	-2.44764 - 6.68032I
b = 0.412108 + 0.716509I		
u = -0.929214 + 0.629305I		
a = 1.48748 + 2.03173I	0.79286 + 10.89690I	-5.90232 - 10.97141I
b = 1.082430 - 0.572492I		
u = -0.929214 - 0.629305I		
a = 1.48748 - 2.03173I	0.79286 - 10.89690I	-5.90232 + 10.97141I
b = 1.082430 + 0.572492I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.821297 + 0.283255I		
a = -2.93341 + 0.45122I	-4.79407 - 5.18096I	-10.28186 + 9.63354I
b = -1.139100 - 0.422179I		
u = 0.821297 - 0.283255I		
a = -2.93341 - 0.45122I	-4.79407 + 5.18096I	-10.28186 - 9.63354I
b = -1.139100 + 0.422179I		
u = -0.230146 + 0.788552I		
a = -1.13253 + 1.42685I	-0.99153 - 7.44962I	-4.80788 + 5.14749I
b = -1.118980 - 0.552972I		
u = -0.230146 - 0.788552I		
a = -1.13253 - 1.42685I	-0.99153 + 7.44962I	-4.80788 - 5.14749I
b = -1.118980 + 0.552972I		
u = -0.469810 + 0.644333I		
a = -0.302237 - 1.339690I	1.37306 + 3.64200I	-1.97274 - 6.09907I
b = -0.975090 + 0.534458I		
u = -0.469810 - 0.644333I		
a = -0.302237 + 1.339690I	1.37306 - 3.64200I	-1.97274 + 6.09907I
b = -0.975090 - 0.534458I		
u = 0.766243 + 0.202401I		
a = 2.75313 - 0.25431I	-4.56135 + 2.74808I	-8.63761 + 1.53004I
b = 1.137770 - 0.456668I		
u = 0.766243 - 0.202401I		
a = 2.75313 + 0.25431I	-4.56135 - 2.74808I	-8.63761 - 1.53004I
b = 1.137770 + 0.456668I		
u = -0.735504 + 0.278747I		
a = 0.282174 - 0.733558I	-1.56483 + 1.33884I	-5.91775 - 5.05918I
b = 0.039236 - 0.647029I		
u = -0.735504 - 0.278747I		
a = 0.282174 + 0.733558I	-1.56483 - 1.33884I	-5.91775 + 5.05918I
b = 0.039236 + 0.647029I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.244913 + 0.744578I		
a = 0.531179 + 0.238214I	1.32443 + 2.58910I	-1.27516 - 1.34286I
b = -0.323354 - 0.721542I		
u = 0.244913 - 0.744578I		
a = 0.531179 - 0.238214I	1.32443 - 2.58910I	-1.27516 + 1.34286I
b = -0.323354 + 0.721542I		
u = 1.156160 + 0.436646I		
a = -2.27777 + 0.12084I	-8.54240 + 0.05443I	-13.25807 + 1.27713I
b = -1.157530 + 0.522173I		
u = 1.156160 - 0.436646I		
a = -2.27777 - 0.12084I	-8.54240 - 0.05443I	-13.25807 - 1.27713I
b = -1.157530 - 0.522173I		
u = -1.151630 + 0.457340I		
a = -0.353184 + 0.596905I	-5.75226 + 4.72408I	-9.80399 - 4.71758I
b = -0.199663 + 0.761913I		
u = -1.151630 - 0.457340I		
a = -0.353184 - 0.596905I	-5.75226 - 4.72408I	-9.80399 + 4.71758I
b = -0.199663 - 0.761913I		
u = 0.368859 + 0.661669I		
a = 0.306430 - 0.852800I	2.51319 + 0.87621I	0.614769 - 0.778636I
b = -0.587313 + 0.602075I		
u = 0.368859 - 0.661669I		
a = 0.306430 + 0.852800I	2.51319 - 0.87621I	0.614769 + 0.778636I
b = -0.587313 - 0.602075I		
u = -1.139070 + 0.530786I		
a = -0.355456 - 0.234216I	-2.78091 + 5.63282I	-7.68461 - 3.26690I
b = -0.851539 - 0.591728I		
u = -1.139070 - 0.530786I		
a = -0.355456 + 0.234216I	-2.78091 - 5.63282I	-7.68461 + 3.26690I
b = -0.851539 + 0.591728I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.140641 + 0.728292I		
a = 1.221290 - 0.180259I	-2.87123 + 0.12831I	-7.71481 - 0.77840I
b = 1.104910 - 0.276140I		
u = -0.140641 - 0.728292I		
a = 1.221290 + 0.180259I	-2.87123 - 0.12831I	-7.71481 + 0.77840I
b = 1.104910 + 0.276140I		
u = 1.178850 + 0.464753I		
a = 2.75499 - 0.42952I	-9.87566 - 8.22613I	-14.9046 + 7.3441I
b = 1.173340 + 0.326229I		
u = 1.178850 - 0.464753I		
a = 2.75499 + 0.42952I	-9.87566 + 8.22613I	-14.9046 - 7.3441I
b = 1.173340 - 0.326229I		
u = 1.165570 + 0.544375I		
a = -1.09575 + 0.95090I	-2.33002 - 10.45450I	-6.00000 + 9.18893I
b = -0.701705 - 0.646518I		
u = 1.165570 - 0.544375I		
a = -1.09575 - 0.95090I	-2.33002 + 10.45450I	-6.00000 - 9.18893I
b = -0.701705 + 0.646518I		
u = -1.206960 + 0.526147I		
a = 2.05937 + 1.28523I	-8.97242 + 9.46345I	-14.0760 - 5.8340I
b = 1.169220 + 0.252610I		
u = -1.206960 - 0.526147I		
a = 2.05937 - 1.28523I	-8.97242 - 9.46345I	-14.0760 + 5.8340I
b = 1.169220 - 0.252610I		
u = 1.203670 + 0.545583I		
a = 0.839018 + 0.724019I	-4.36938 - 12.53960I	-6.00000 + 7.94110I
b = -0.298947 + 0.789061I		
u = 1.203670 - 0.545583I		
a = 0.839018 - 0.724019I	-4.36938 + 12.53960I	-6.00000 - 7.94110I
b = -0.298947 - 0.789061I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.214000 + 0.548661I		
a = -2.58304 - 1.74814I	-6.8639 + 17.6023I	-6.00000 - 11.44619I
b = -1.144850 + 0.564961I		
u = -1.214000 - 0.548661I		
a = -2.58304 + 1.74814I	-6.8639 - 17.6023I	-6.00000 + 11.44619I
b = -1.144850 - 0.564961I		
u = -0.477384		
a = 1.52383	-1.08036	-9.00420
b = 0.744709		

$$II. \\ I_2^u = \langle 2.26 \times 10^{32} u^{69} - 1.52 \times 10^{31} u^{68} + \dots + 1.92 \times 10^{32} b + 6.95 \times 10^{32}, \ -2.77 \times 10^{33} u^{69} - 1.62 \times 10^{33} u^{68} + \dots + 9.59 \times 10^{32} a - 2.22 \times 10^{34}, \ u^{70} + u^{69} + \dots + 14u + 5 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 2.88480u^{69} + 1.69314u^{68} + \dots + 45.6456u + 23.1760 \\ -1.17907u^{69} + 0.0794152u^{68} + \dots - 5.46180u - 3.62548 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 4.06388u^{69} + 1.61372u^{68} + \dots + 51.1074u + 26.8015 \\ -1.17907u^{69} + 0.0794152u^{68} + \dots + 5.46180u - 3.62548 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^3 \\ u^5 - u^3 + u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0.313075u^{69} - 1.83539u^{68} + \dots - 42.8103u - 20.1308 \\ 0.313075u^{69} - 0.0137492u^{68} + \dots + 0.361832u + 3.97119 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.01374u^{69} + 1.31338u^{68} + \dots + 16.8630u + 10.0091 \\ -0.802260u^{69} - 0.995297u^{68} + \dots - 18.0333u - 8.31468 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1.07882u^{69} + 1.15734u^{68} + \dots + 21.7282u + 11.2174 \\ -1.17518u^{69} - 1.49537u^{68} + \dots - 26.6216u - 8.81004 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1.17026u^{69} - 1.03708u^{68} + \dots + 11.0870u + 8.41410 \\ -0.0599899u^{69} + 0.0501336u^{68} + \dots + 11.2062u - 7.83476 \\ -0.241672u^{69} - 0.176589u^{68} + \dots - 11.2062u - 7.83476 \\ -0.241672u^{69} - 0.176589u^{68} + \dots + 3.75637u + 2.48177 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-7.12152u^{69} 2.74694u^{68} + \cdots 113.643u 66.9331$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{70} + 41u^{69} + \dots + 116u + 25$
c_2, c_5, c_6 c_{12}	$u^{70} + u^{69} + \dots + 14u + 5$
c_3	$(u^{35} - u^{34} + \dots - 8u + 1)^2$
c_4, c_9	$(u^{35} + u^{34} + \dots + 2u + 1)^2$
	$(u^{35} + 3u^{34} + \dots + 14u + 5)^2$
<i>c</i> ₈	$(u^{35} + 17u^{34} + \dots + 2u + 1)^2$
c_{10}	$(u^{35} + 3u^{34} + \dots + 58u + 7)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{70} - 25y^{69} + \dots - 22056y + 625$
c_2, c_5, c_6 c_{12}	$y^{70} - 41y^{69} + \dots - 116y + 25$
c_3	$(y^{35} - y^{34} + \dots + 34y - 1)^2$
c_4, c_9	$(y^{35} - 17y^{34} + \dots + 2y - 1)^2$
C ₇	$(y^{35} + 23y^{34} + \dots + 166y - 25)^2$
<i>c</i> ₈	$(y^{35} + 3y^{34} + \dots - 14y - 1)^2$
c_{10}	$(y^{35} + 11y^{34} + \dots + 1446y - 49)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.793674 + 0.627689I		
a = -0.99722 - 1.98668I	1.77010 + 5.85664I	-3.47437 - 5.76903I
b = -1.053770 + 0.564883I		
u = -0.793674 - 0.627689I		
a = -0.99722 + 1.98668I	1.77010 - 5.85664I	-3.47437 + 5.76903I
b = -1.053770 - 0.564883I		
u = -0.921362 + 0.317106I		
a = 0.691410 - 1.228980I	-4.82753 - 1.71623I	-11.26691 + 0.I
b = -0.996188 - 0.423828I		
u = -0.921362 - 0.317106I		
a = 0.691410 + 1.228980I	-4.82753 + 1.71623I	-11.26691 + 0.I
b = -0.996188 + 0.423828I		
u = 0.739547 + 0.624054I		
a = 0.820919 - 0.310599I	3.50734 - 1.04155I	-60.10 + 0.572954I
b = -0.460984 + 0.678579I		
u = 0.739547 - 0.624054I		
a = 0.820919 + 0.310599I	3.50734 + 1.04155I	-60.10 - 0.572954I
b = -0.460984 - 0.678579I		
u = 0.630984 + 0.657903I		
a = 0.122104 + 0.833410I	3.50734 + 1.04155I	-0.146267 - 0.572954I
b = -0.460984 - 0.678579I		
u = 0.630984 - 0.657903I		
a = 0.122104 - 0.833410I	3.50734 - 1.04155I	-0.146267 + 0.572954I
b = -0.460984 + 0.678579I		
u = -0.586712 + 0.693730I		
a = -0.303058 + 0.936732I	1.77010 - 5.85664I	-3.47437 + 5.76903I
b = -1.053770 - 0.564883I		
u = -0.586712 - 0.693730I		
a = -0.303058 - 0.936732I	1.77010 + 5.85664I	-3.47437 - 5.76903I
b = -1.053770 + 0.564883I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.178332 + 0.886392I		
a = 1.31932 - 1.25242I	-3.75035 - 12.38410I	-8.15786 + 8.57579I
b = 1.134940 + 0.561389I		
u = -0.178332 - 0.886392I		
a = 1.31932 + 1.25242I	-3.75035 + 12.38410I	-8.15786 - 8.57579I
b = 1.134940 - 0.561389I		
u = 0.185862 + 0.864939I		
a = -0.416310 - 0.083692I	-1.32397 + 7.38977I	-4.98434 - 5.00078I
b = 0.308085 + 0.766136I		
u = 0.185862 - 0.864939I		
a = -0.416310 + 0.083692I	-1.32397 - 7.38977I	-4.98434 + 5.00078I
b = 0.308085 - 0.766136I		
u = -0.144791 + 0.848190I		
a = -1.42439 + 0.13590I	-5.81015 - 4.45397I	-11.15239 + 2.81525I
b = -1.146120 + 0.254789I		
u = -0.144791 - 0.848190I		
a = -1.42439 - 0.13590I	-5.81015 + 4.45397I	-11.15239 - 2.81525I
b = -1.146120 - 0.254789I		
u = -1.029850 + 0.501579I		
a = 0.184614 + 0.230509I	-0.250501 + 0.838616I	0
b = 0.890522 + 0.542191I		
u = -1.029850 - 0.501579I		
a = 0.184614 - 0.230509I	-0.250501 - 0.838616I	0
b = 0.890522 - 0.542191I		
u = 1.094160 + 0.367378I		
a = -1.35264 + 1.51551I	-4.07070 - 2.01862I	0
b = -0.688085 - 0.531421I		
u = 1.094160 - 0.367378I		
a = -1.35264 - 1.51551I	-4.07070 + 2.01862I	0
b = -0.688085 + 0.531421I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.237931 + 0.803328I		
a = -0.006775 + 0.772034I	0.41242 + 5.45820I	-3.39004 - 5.96309I
b = 0.665614 - 0.623440I		
u = 0.237931 - 0.803328I		
a = -0.006775 - 0.772034I	0.41242 - 5.45820I	-3.39004 + 5.96309I
b = 0.665614 + 0.623440I		
u = -1.164710 + 0.016951I		
a = 0.367943 - 0.438805I	-2.19805 - 0.44632I	0
b = 0.396163 - 0.521609I		
u = -1.164710 - 0.016951I		
a = 0.367943 + 0.438805I	-2.19805 + 0.44632I	0
b = 0.396163 + 0.521609I		
u = -1.125860 + 0.332862I		
a = 0.336942 - 0.575199I	-2.69753 + 0.59945I	0
b = 0.217277 - 0.699987I		
u = -1.125860 - 0.332862I		
a = 0.336942 + 0.575199I	-2.69753 - 0.59945I	0
b = 0.217277 + 0.699987I		
u = 1.188300 + 0.142603I		
a = -2.52952 + 0.58517I	-4.82753 - 1.71623I	0
b = -0.996188 - 0.423828I		
u = 1.188300 - 0.142603I		
a = -2.52952 - 0.58517I	-4.82753 + 1.71623I	0
b = -0.996188 + 0.423828I		
u = 1.087540 + 0.520480I		
a = 0.98039 - 1.12342I	0.41242 - 5.45820I	0
b = 0.665614 + 0.623440I		
u = 1.087540 - 0.520480I		
a = 0.98039 + 1.12342I	0.41242 + 5.45820I	0
b = 0.665614 - 0.623440I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.209060 + 0.033666I		
a = 2.36745 + 0.25960I	-4.09889 + 4.67146I	0
b = 1.059800 - 0.502369I		
u = 1.209060 - 0.033666I		
a = 2.36745 - 0.25960I	-4.09889 - 4.67146I	0
b = 1.059800 + 0.502369I		
u = -0.279476 + 0.738470I		
a = 0.380082 + 1.009830I	-0.250501 - 0.838616I	-4.53860 - 0.32367I
b = 0.890522 - 0.542191I		
u = -0.279476 - 0.738470I		
a = 0.380082 - 1.009830I	-0.250501 + 0.838616I	-4.53860 + 0.32367I
b = 0.890522 + 0.542191I		
u = 1.170540 + 0.309953I		
a = 2.31769 - 0.03429I	-5.29071 + 4.02658I	0
b = 1.131430 - 0.520956I		
u = 1.170540 - 0.309953I		
a = 2.31769 + 0.03429I	-5.29071 - 4.02658I	0
b = 1.131430 + 0.520956I		
u = -1.195020 + 0.281595I		
a = -0.424932 - 0.412941I	-4.07070 - 2.01862I	0
b = -0.688085 - 0.531421I		
u = -1.195020 - 0.281595I		
a = -0.424932 + 0.412941I	-4.07070 + 2.01862I	0
b = -0.688085 + 0.531421I		
u = 1.166680 + 0.383023I		
a = -2.78317 + 0.44147I	-6.61464 - 3.85709I	0
b = -1.141570 - 0.325389I		
u = 1.166680 - 0.383023I		
a = -2.78317 - 0.44147I	-6.61464 + 3.85709I	0
b = -1.141570 + 0.325389I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.149290 + 0.441973I		
a = 1.121900 + 0.806342I	-5.86442 - 3.36312I	0
b = -0.276974 + 0.740238I		
u = 1.149290 - 0.441973I		
a = 1.121900 - 0.806342I	-5.86442 + 3.36312I	0
b = -0.276974 - 0.740238I		
u = -0.698993 + 0.306329I		
a = -0.45204 + 3.09002I	-4.09889 + 4.67146I	-8.51273 - 7.37463I
b = 1.059800 - 0.502369I		
u = -0.698993 - 0.306329I		
a = -0.45204 - 3.09002I	-4.09889 - 4.67146I	-8.51273 + 7.37463I
b = 1.059800 + 0.502369I		
u = -1.155970 + 0.462646I		
a = -2.75547 - 2.20046I	-8.35620 + 8.22097I	0
b = -1.134810 + 0.545503I		
u = -1.155970 - 0.462646I		
a = -2.75547 + 2.20046I	-8.35620 - 8.22097I	0
b = -1.134810 - 0.545503I		
u = -0.623001 + 0.405449I		
a = 1.237280 + 0.532014I	-0.945432	-7.85887 + 0.I
b = 0.903342		
u = -0.623001 - 0.405449I		
a = 1.237280 - 0.532014I	-0.945432	-7.85887 + 0.I
b = 0.903342		
u = -1.184780 + 0.432685I		
a = 2.03697 + 1.61827I	-10.10360 + 0.30557I	0
b = 1.142990 + 0.287310I		
u = -1.184780 - 0.432685I		
a = 2.03697 - 1.61827I	-10.10360 - 0.30557I	0
b = 1.142990 - 0.287310I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.035280 + 0.733280I		
a = -1.39985 + 0.49717I	-6.61464 + 3.85709I	-12.01107 - 3.91391I
b = -1.141570 + 0.325389I		
u = 0.035280 - 0.733280I		
a = -1.39985 - 0.49717I	-6.61464 - 3.85709I	-12.01107 + 3.91391I
b = -1.141570 - 0.325389I		
u = 1.149890 + 0.529483I		
a = -0.943407 - 0.655113I	-1.32397 - 7.38977I	0
b = 0.308085 - 0.766136I		
u = 1.149890 - 0.529483I		
a = -0.943407 + 0.655113I	-1.32397 + 7.38977I	0
b = 0.308085 + 0.766136I		
u = -1.164290 + 0.498574I		
a = -1.93672 - 1.37737I	-5.81015 + 4.45397I	0
b = -1.146120 - 0.254789I		
u = -1.164290 - 0.498574I		
a = -1.93672 + 1.37737I	-5.81015 - 4.45397I	0
b = -1.146120 + 0.254789I		
u = -1.165560 + 0.537682I		
a = 2.49847 + 1.93336I	-3.75035 + 12.38410I	0
b = 1.134940 - 0.561389I		
u = -1.165560 - 0.537682I		
a = 2.49847 - 1.93336I	-3.75035 - 12.38410I	0
b = 1.134940 + 0.561389I		
u = -1.257860 + 0.336624I		
a = -0.370212 + 0.569226I	-5.86442 - 3.36312I	0
b = -0.276974 + 0.740238I		
u = -1.257860 - 0.336624I		
a = -0.370212 - 0.569226I	-5.86442 + 3.36312I	0
b = -0.276974 - 0.740238I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.248730 + 0.369448I		
a = 2.80639 - 0.41145I	-10.10360 + 0.30557I	0
b = 1.142990 + 0.287310I		
u = 1.248730 - 0.369448I		
a = 2.80639 + 0.41145I	-10.10360 - 0.30557I	0
b = 1.142990 - 0.287310I		
u = 0.674686 + 0.151897I		
a = -1.80142 + 1.47569I	-2.19805 - 0.44632I	-3.26109 + 2.08073I
b = 0.396163 - 0.521609I		
u = 0.674686 - 0.151897I		
a = -1.80142 - 1.47569I	-2.19805 + 0.44632I	-3.26109 - 2.08073I
b = 0.396163 + 0.521609I		
u = 1.276560 + 0.342849I		
a = -2.23310 + 0.02681I	-8.35620 + 8.22097I	0
b = -1.134810 + 0.545503I		
u = 1.276560 - 0.342849I		
a = -2.23310 - 0.02681I	-8.35620 - 8.22097I	0
b = -1.134810 - 0.545503I		
u = -0.041921 + 0.655776I		
a = 1.62553 - 1.90135I	-5.29071 - 4.02658I	-10.01018 + 2.90516I
b = 1.131430 + 0.520956I		
u = -0.041921 - 0.655776I		
a = 1.62553 + 1.90135I	-5.29071 + 4.02658I	-10.01018 - 2.90516I
b = 1.131430 - 0.520956I		
u = -0.032872 + 0.638178I		
a = -0.785149 + 0.173061I	-2.69753 - 0.59945I	-6.70115 + 0.74081I
b = 0.217277 + 0.699987I		
u = -0.032872 - 0.638178I		
a = -0.785149 - 0.173061I	-2.69753 + 0.59945I	-6.70115 - 0.74081I
b = 0.217277 - 0.699987I		

III.
$$I_3^u = \langle 3a^3 + 14a^2 + 155b - 74a - 75, \ a^4 - 12a^2 + 4a + 65, \ u - 1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -0.0193548a^3 - 0.0903226a^2 + 0.477419a + 0.483871 \\ -0.0193548a^3 + 0.0903226a^2 + 0.522581a - 0.483871 \\ -0.0193548a^3 - 0.0903226a^2 + 0.477419a + 0.483871 \\ a_{10} = \begin{pmatrix} 0.0903226a^3 - 0.245161a^2 - 0.561290a - 0.258065 \\ 0.0645161a^3 - 0.0322581a^2 - 0.258065a - 0.612903 \\ a_{11} = \begin{pmatrix} 0.0258065a^3 - 0.212903a^2 - 0.303226a + 2.35484 \\ 0.0258065a^3 - 0.212903a^2 - 0.303226a + 1.35484 \\ a_{12} = \begin{pmatrix} 0.0258065a^3 - 0.212903a^2 - 0.303226a + 2.35484 \\ 0.0258065a^3 - 0.212903a^2 - 0.303226a - 2.35484 \\ -0.0258065a^3 + 0.212903a^2 + 0.303226a - 2.35484 \\ -0.$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{8}{31}a^3 + \frac{4}{31}a^2 + \frac{32}{31}a \frac{544}{31}$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{11} \\ c_{12}$	$(u-1)^4$
c_2, c_6	$(u+1)^4$
c_3, c_{10}	$u^4 + 2u^2 + 2$
c_4,c_9	$u^4 - 2u^2 + 2$
c_7	u^4
c ₈	$(u^2 - 2u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_{10}	$(y^2 + 2y + 2)^2$
c_4, c_9	$(y^2 - 2y + 2)^2$
C ₇	y^4
<i>c</i> ₈	$(y^2+4)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -2.65246 + 0.81150I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = -1.098680 + 0.455090I		
u = 1.00000		
a = -2.65246 - 0.81150I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = -1.098680 - 0.455090I		
u = 1.00000		
a = 2.65246 + 1.18850I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = 1.098680 - 0.455090I		
u = 1.00000		
a = 2.65246 - 1.18850I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = 1.098680 + 0.455090I		

IV.
$$I_4^u = \langle -a^2 + b - 3a - 2, \ a^3 + 3a^2 + 3a + 1, \ u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ a^{2} + 3a + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a^{2} - 2a - 2 \\ a^{2} + 3a + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a + 2 \\ -a^{2} - 2a - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{2} + 3a + 1 \\ a^{2} + 3a + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{2} + 3a \\ a^{2} + 3a + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{2} + 3a + 1 \\ a^{2} + 3a + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{2} + 3a + 1 \\ a^{2} + 3a + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{2} + 3a + 1 \\ a^{2} + 3a + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^2 + 8a 8$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	$(u-1)^3$
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	u^3
c_5, c_{12}	$(u+1)^3$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^3$
c_3, c_4, c_7 c_8, c_9, c_{10}	y^3

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$((u-1)^7)(u^{43} + 21u^{42} + \dots + 10u + 1)(u^{70} + 41u^{69} + \dots + 116u + 25)$
c_2, c_6	$((u-1)^3)(u+1)^4(u^{43}+u^{42}+\cdots+2u+1)(u^{70}+u^{69}+\cdots+14u+5)$
c_3	$u^{3}(u^{4} + 2u^{2} + 2)(u^{35} - u^{34} + \dots - 8u + 1)^{2}$ $\cdot (u^{43} + 3u^{42} + \dots + 238u + 194)$
c_4, c_9	$u^{3}(u^{4} - 2u^{2} + 2)(u^{35} + u^{34} + \dots + 2u + 1)^{2}(u^{43} - 3u^{42} + \dots - 6u + 2)$
c_5, c_{12}	$((u-1)^4)(u+1)^3(u^{43}+u^{42}+\cdots+2u+1)(u^{70}+u^{69}+\cdots+14u+5)$
C ₇	$u^{7}(u^{35} + 3u^{34} + \dots + 14u + 5)^{2}(u^{43} + 3u^{42} + \dots + 256u + 256)$
c ₈	$u^{3}(u^{2} - 2u + 2)^{2}(u^{35} + 17u^{34} + \dots + 2u + 1)^{2}$ $\cdot (u^{43} + 21u^{42} + \dots + 4u + 4)$
c_{10}	$u^{3}(u^{4} + 2u^{2} + 2)(u^{35} + 3u^{34} + \dots + 58u + 7)^{2}$ $\cdot (u^{43} - 9u^{42} + \dots - 118u + 38)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$((y-1)^7)(y^{43} + 11y^{42} + \dots + 18y - 1)$ $\cdot (y^{70} - 25y^{69} + \dots - 22056y + 625)$
c_2, c_5, c_6 c_{12}	$((y-1)^7)(y^{43} - 21y^{42} + \dots + 10y - 1)(y^{70} - 41y^{69} + \dots - 116y + 25)$
<i>c</i> ₃	$y^{3}(y^{2} + 2y + 2)^{2}(y^{35} - y^{34} + \dots + 34y - 1)^{2}$ $\cdot (y^{43} + 3y^{42} + \dots + 106308y - 37636)$
c_4, c_9	$y^{3}(y^{2} - 2y + 2)^{2}(y^{35} - 17y^{34} + \dots + 2y - 1)^{2}$ $\cdot (y^{43} - 21y^{42} + \dots + 4y - 4)$
	$y^{7}(y^{35} + 23y^{34} + \dots + 166y - 25)^{2}$ $\cdot (y^{43} + 23y^{42} + \dots + 1441792y - 65536)$
c ₈	$y^{3}(y^{2}+4)^{2}(y^{35}+3y^{34}+\cdots-14y-1)^{2}(y^{43}+3y^{42}+\cdots+80y-16)$
c_{10}	$y^{3}(y^{2} + 2y + 2)^{2}(y^{35} + 11y^{34} + \dots + 1446y - 49)^{2}$ $\cdot (y^{43} + 15y^{42} + \dots - 31068y - 1444)$