EDUCATION

EDUCATION	
Purdue University, West Lafayette	
PhD in Aeronautics and Astronautics,	
Focus: Design of numerical schemes, CGPA: 3.89/4.0	
AMS: 35L99, 65M05, 76P05, 82B40, 35Q20, 65Y05	ay'18 - May'21
MS in Physics and Astronomy,	
Major: Quantum Information Science, CGPA: 3.80/4.0	ug'19 - May'21
MS in Aeronautics and Astronautics,	
Major: Aerodynamics, CGPA: 3.88/4.0	g'16 - May'18
Indian Institute of Technology (IIT), Hyderabad	
B. Tech in Mechanical Engineering (Honors),	
Focus: Computational Fluid Dynamics, CGPA: 8.28/10.0	ug'12 - May'16
Work Experience	
Mentor Graphics (Siemens), Wilsonville, OR	fay'19 - Aug'19
R&D Calibre Design-to-silicon Intern with Dr. Fedor Pikus (Chief engineering scientist)	, o
Research in development of quantum algorithms for Electronic Design Automation (EDA) 12.	

Research interests

Computational Fluid Dynamics, High performance computing, Kinetic theory, Quantum computing, Augmented Reality, Direct simulation Monte Carlo, Finite elements, Rarefied Gas Dynamics.

SKILLS

Programming: C++, Python, MPI, CUDA, Linux Scientific computing: Discretization for PDEs, Quantum algorithms, GPGPU computing Specific Tools: Tensorflow, PyTorch, Unity, Qiskit, OpenFOAM, Git

- Experience with programming in Python, C++ (8+ years)
- Experience with development of numerical schemes for solving partial differential equations (PDE)
- Experience with finite element, isogeometric schemes, multi-physics design, simulation, and analysis
- Experience with PDE based machine-learning models (optimal transport viewpoint)
- Experience with development of quantum algorithms and quantum software stacks
- Experience with parallel computing: MPI, CUDA, OpenMP, pThreads.
- Experience with writing performance portable codes, profiling
- Proficient working in a Linux/UNIX environment; git/subversion, automated build/test systems, testing and release processes

Research Experience

Developed the discontinuous Galerkin fast spectral (DGFS) method for solution of full-Boltzmann equation with general collision-kernels on massively parallel $\mathrm{CPU/GPU}$ architectures. More specifically, I developed:

- a) an $O(N^4 \log N)$ algorithm (fastest known) for general multi-species molecular interactions
- b) an efficient, robust, and highly-accurate deterministic method for general 1D/2D/3D flows
- c) implemented with demonstrated parallel efficiency of 0.96-0.99 on 36 GPUs for flows involving ~ 5 billion unknowns 1
- d) applied these recent theoretical mathematical ideas for actual engineering flow calculations.

For both single/multi species non-equilibrium rarefied flows, this is the first deterministic Boltzmann solver for *general* repulsive interactions, including, the well known Variable Soft Sphere model—necessary for simulating flows involving diffusive transport (Project Lead, Sole Developer, Only student involved).

DISTINCTIONS

- Awarded ACM SIGHPC Travel Grant for PASC'19 (1/4 awardees internationally, 1/2 awardees outside EU), 2019.
- At 22, I co-wrote the first National Science Foundation (NSF CDS&E #1854829) proposal for ~ \$0.35 million based on my Masters research work, 2018. Purdue University, West Lafayette.
- Awarded Undergraduate Research Excellence (among $\sim 1\%$ of the batch), 2016. Indian Institute of Technology, Hyderabad.
- All India Rank 1335 among ~ 1.3 million examinees (top ~ 0.1%), in All India Engineering Entrance Examination (AIEEE), 2012.

OPEN SOURCE CODES

dgfs1D: Discontinuous Galerkin fast spectral (https://github.com/jaisw7/dgfs1D_gpu)

A multi-CPU/multi-GPU code for solving single/multi-species 1D-3V full Boltzmann equation. This code achieved a parallel efficiency of 99% on 36 GPUs.

frfs: Flux-reconstructed fast spectral (https://github.com/jaisw7/frfs)

A multi-CPU/multi-GPU code for solving single/multi-species full 3D-3V Boltzmann equation.

PUBLICATIONS

- S. Jaiswal, J. Hu, J. K. Brillon, and A. A. Alexeenko, A discontinuous Galerkin fast spectral method for multi-species full Boltzmann on streaming multi-processors, in Proceedings of the Platform for Advanced Scientific Computing Conference, PASC '19 (ACM, 2019) pp. 4:1-4:9.
- [2] S. Jaiswal, A. A. Alexeenko, and J. Hu, A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general collision kernels. Journal of Computational Physics 378, 178 (2019).
- [3] S. Jaiswal, A. A. Alexeenko, and J. Hu, A discontinuous Galerkin fast spectral method for the multi-species Boltzmann equation. Computer Methods in Applied Mechanics and Engineering 352, 56 (2019).
- [4] S. Jaiswal, A. Pikus, A. Strongrich, I. B. Sebastião, J. Hu, and A. A. Alexeenko, Quantification of thermally-driven flows in microsystems using Boltzmann equation in deterministic and stochastic contexts. Physics of Fluids 31, 082002 (2019), [Invited].
- [5] S. Jaiswal, J. Hu, and A. A. Alexeenko, Fast deterministic solution of the full boltzmann equation on graphics processing units, AIP Conference Proceedings 2132, 060001 (2019).
- [6] S. Jaiswal, I. B. Sebastião, A. Strongrich, and A. A. Alexeenko, FEMTA micropropulsion system characterization by DSMC, AIP Conference Proceedings 2132, 070006 (2019).
- [7] S. Jaiswal, I. B. Sebastião, and A. A. Alexeenko, DSMC-SPARTA implementation of M-1 scattering model, AIP Conference Proceedings 2132, 070023 (2019).
- [8] A. Pikus, I. B. Sebastião, S. Jaiswal, M. Gallis, and A. A. Alexeenko, DSMC-SPARTA implementation of majorant collision frequency scheme, AIP Conference Proceedings 2132, 070026 (2019).
- [9] S. Jaiswal, R. Reddy, R. Banerjee, S. Sato, D. Komagata, M. Ando, and J. Okada, An efficient GPU parallelization for arbitrary collocated polyhedral finite volume grids and its application to incompressible fluid flows. in 23rd IEEE High Performance Computing Workshop (IEEE, 2016).
- [10] S. Holay, R. Reddy, S. Jaiswal, and R. Banerjee, High fidelity simulations of binary collisions of liquid drops. in 18th Annual Conference on Liquid Atomization and Spray Systems (ILASS, 2016).
- [11] S. Jaiswal and N. Dongari, Implementation of knudsen layer effects in open source cfd solver for effective modeling of microscale gas flows. in Proceedings of 1st International ISHMT-ASTFE and 23rd National Heat and Mass Transfer conference (ISHMT-ASTFE, Kerala, India, 2015)

Patents

- [12] F. G. Pikus and S. Jaiswal, "Limited basis quantum particle definitions in applications of quantum computing to electronic design automation processes," Patent, Nov. 24, 2020, US Patent 10,846,448.
- [13] F. Pikus and S. Jaiswal, "Adaptive penalty term determinations in applications of quantum computing to electronic design automation processes." U.S. Patent, Dec, 2019, Filed; Assignee: Mentor Graphics, Wilsonville, OR.