Lista 1 - solução

Exercício 1. Seja x um número real, e considere a seguinte implicação.

Se
$$x^2 - 3x + 2 \le 0$$
, então x está entre 1 e 2.

(i) Reescreva esta implicação sem usar qualquer palavra em português.

$$\forall x \in \mathbb{R}, \ x^2 - 3x + 2 \le 0 \Rightarrow 1 \le x \le 2.$$

(ii) Qual é a hipótese?

$$x^2 - 3x + 2 < 0.$$

(iii) Qual a conclusão?

$$1 \le x \le 2$$
.

(iv) Reescreva a implicação usando a "palavra necessária"

xestar entre 1 e 2 é condição necessária para que $x^2-3x+2\leq 0.$

(v) Reescreva a implicação usando a "somente se".

 $x^2-3x+2 \leq 0$ é condição suficiente para que x esteja entre 1 e 2.

(vi) Qual a implicação conversa?

$$1 \le x \le 2 \Rightarrow x^2 - 3x + 2 \le 0.$$

(vii) Qual a negação da implicação?

Existe um
$$x \in \mathbb{R}$$
 tal que $x^2 - 3x + 2 \le 0$, e $x < 1$ ou $x > 2$.

(viii) Qual a contrapositiva da implicação?

Se
$$x < 1$$
 ou $x > 2$, então $x^2 - 3x + 2 > 0$.

(ix) Demonstre que tanto a implicação como sua conversa são, de fato, verdadeiras (sim, relembre seu ensino médio).

Qualquer pessoa nota facilmente que $x^2 - 3x + 2 = (x - 1)(x - 2)$. O produto de dois números reais é negativo se e somente se um deles é positivo e o outro é negativo, portanto, neste caso, se e somente se 1 < x < 2; e o produto de dois números é 0 se e somente se ao menos um deles for igual a 0. Segue que $x^2 - 3x + 2 \le 0$ se e somente se $1 \le x \le 2$.

(x) Reescreva a implicação e sua conversa usando "se, e somente se".

Para todo
$$x$$
 real, $1 \le x \le 2$ se, e somente se, $x^2 - 3x + 2 \le 0$.

Exercício 2. Demonstre as equivalências abaixo usando tabelas de verdade.

$$\begin{array}{ccccc} (p\Rightarrow q)\wedge (p\Rightarrow r) & \equiv & p\Rightarrow (q\wedge r)\\ (p\Rightarrow r)\wedge (q\Rightarrow r) & \equiv & (p\vee q)\Rightarrow r\\ (p\Rightarrow q)\vee (p\Rightarrow r) & \equiv & p\Rightarrow (q\vee r)\\ (p\Rightarrow r)\vee (q\Rightarrow r) & \equiv & (p\wedge q)\Rightarrow r\\ p\iff q & \equiv & (p\Rightarrow q)\wedge (q\Rightarrow p)\\ p\iff q & \equiv & \neg p\iff \neg q\\ p\iff q & \equiv & (p\wedge q)\vee (\neg p\wedge \neg q)\\ \neg (p\iff q) & \equiv & p\iff \neg q \end{array}$$

p	q	r	$p \Rightarrow q$	$p \Rightarrow r$	$q \Rightarrow r$	$q \wedge r$	$p \lor q$	$(p \lor q) \Rightarrow r$	$p \Rightarrow (q \land r)$
T	T	T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T	F	F
T	F	T	F	T	T	F	T	T	F
T	F	F	F	F	T	F	T	F	F
F	T	T	T	T	T	T	T	T	T
F	T	F	T	T	F	F	T	F	T
F	\overline{F}	T	T	T	T	F	F	T	T
F	F	F	T	T	T	F	F	T	T

Basta notar agora que a última coluna é igual ao \wedge da quarta e da quinta, e que a penúltima coluna é igual ao \wedge da quarta e da sexta.

Agora para outras maneiras de demonstrar. Note que $(p \Rightarrow q) \lor (p \Rightarrow r) \equiv \neg p \lor q \lor \neg p \lor r$, pela lei da implicação, e que isso é equivalente a $\neg p \lor (q \lor r) \equiv p \Rightarrow (q \lor r)$, também pela lei da implicação. O mesmo pode ser feito para o caso que falta.

Exercício 3. Mostre que $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ é uma tautologia.

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	\wedge	$p \Rightarrow r$	\Rightarrow
T	T	T	T	T	T	T	T
T	T	F	T	F	\overline{F}	F	T
$\mid T \mid$	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
$\mid F \mid$	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
$\mid F \mid$	F	F	T	T	T	T	T

Como a última coluna é sempre verdade, segue que a implicação dada é uma tautologia.

Exercício 4. Sejam $p, q \in r$ as seguintes proposições:

p: Ursos pardos foram vistos na área.

q: É seguro caminhar na trilha.

r: Há frutas maduras ao longo da trilha.

Escreva as seguintes proposições utilizando p, q, r e conectivos lógicos.

(a) Há frutas maduras ao longo da trilha, mas ursos pardos não foram vistos na área.

$$r \wedge \neg p$$

(b) Ursos pardos não foram vistos na área e caminhar na trilha é seguro, mas frutas estão maduras ao longo da trilha.

$$\neg p \land q \land r$$

(c) Se há frutas maduras ao longo da trilha, caminhar é seguro se, e somente se, ursos pardos não foram vistos na área.

$$r \Rightarrow (q \iff \neg p)$$

(d) Não é seguro caminhar na trilha, mas ursos pardos não foram vistos na área e há frutas maduras ao longo da trilha.

$$\neg q \land \neg p \land r$$

(e) Para que seja seguro caminhar na trilha, é necessário mas não suficiente que não haja frutas maduras ao longo da trilha e que ursos pardos não tenham sido vistos na área.

$$\left[q \Rightarrow (\neg r \wedge \neg p)\right] \wedge \left[(\neg r \wedge \neg p) \wedge \neg q\right]$$

(f) Caminhar na trilha não é seguro sempre que ursos pardos tenham sido vistos na área e haja frutas maduras ao longo da trilha.

$$(p \wedge r) \Rightarrow q$$

Exercício 5. Determine nas sentenças abaixo as quatro partes que formam uma proposição quantificada:

(i) Para todo $x \in \mathbb{R}, x^2 + x^3 + x^4 > 0.$

Quantificador: \forall . Variável: x. Domínio: \mathbb{R} . Sentença: $x^2 + x^3 + x^4 > 0$.

(ii) $\forall x \in \mathbb{Q}, x^2 \in \mathbb{Q}$.

Quantificador: \forall . Variável: x . Domínio: \mathbb{Q} . Sentença: $x^2 \in \mathbb{Q}$.

(iii) $\exists n \in \mathbb{Z} : (n > 1 \land n/n^2 \in \mathbb{Z}).$

Quantificador: ∃. Variável: n. Domínio: Z. Sentença: $(n > 1 \ \land \ n/n^2 \in \mathbb{Z})$.

Determine se as proposições acima são verdadeiras ou falsas. Em cada exemplo, modifique precisamente uma das quatro partes de modo que o estado de verdade seja alterado.

(i) Para todo $x \in \mathbb{R}, x^2 + x^3 + x^4 > 0.$

Falsa. Troque $> por \ge$.

(ii) $\forall x \in \mathbb{Q}, x^2 \in \mathbb{Q}.$

Verdadeira. Troque Q pelo conjunto dos irracionais.

(iii) $\exists n \in \mathbb{Z} : (n > 1 \land n/n^2 \in \mathbb{Z}).$

Falsa. Troque \mathbb{Z} por \mathbb{Q} .

Exercício 6. Três professores estão sentados em um restaurante, e a garçonete pergunta a eles: "Todo mundo quer café?" O primeiro professor diz: "Eu não sei." O segundo professor diz: "Eu não sei." Finalmente, o terceiro professor diz: "Não, nem todo mundo quer café." A garçonete, então, traz café para os professores que queriam café. Como ela deduziu quem queria café?

Se algum dos dois primeiros professores não quisessem, então eles saberiam que nem todo mundo quer, e teriam respondido "não". Portanto eles queriam. Já o último sabia que nem todos queriam porque ele não queria.