

Exercise 1C

Questions 3:

(i) If possible, let $\sqrt{6}$ be rational and let its simplest form be $\frac{a}{b}$ then, a and b are integers having no common factor other than 1, and $b \neq 0$.

Now,
$$\sqrt{6} = \frac{a}{b} \Rightarrow 6 = \frac{a^2}{b^2} [\text{on squaring both sides}]$$

 $\Rightarrow 6b^2 = a^2 \dots (1)$

$$\Rightarrow$$
 6 divides a^2 $\left[\because 6 \text{ divides } 6b^2\right]$

⇒ 6 divides a

Let a = 6c for some integer c Putting a =6c in (1), we get $6b^2 = 36 c^2 \Rightarrow b^2 = 6c^2$

$$\Rightarrow$$
 6 divides b² [:: 6 divides 6c²]

$$\Rightarrow$$
 6 divides b $\left[\because 6 \text{ divides b}^2 = 6 \text{ divides b}\right]$

Thus, 6 is a common factor of a and b But, this contradicts the fact that a and b have no common factor other than 1

The contradiction arises by assuming that $\sqrt{6}$ is rational. Hence $\sqrt{6}$ is irrational.

(ii) If possible let $2 - \sqrt{3}$ is rational

$$\Rightarrow$$
 2 – $(2 - \sqrt{3})$ is rational

[: difference of two rationals is

rational]

$$\therefore \sqrt{3}$$
 is rational

This contradicts the fact $\sqrt{3}$ is irrational

Since the contradiction arises by assuming 2 - $\sqrt{3}$ rational.

Hence, $2 - \sqrt{3}$ is irrational.

(iii) If possible let $3 + \sqrt{2}$ is rational $\Rightarrow (3 + \sqrt{2}) - 3 = \sqrt{2}$ is rational

[: difference of two rational is

rational]

 $\therefore \sqrt{2}$ is rational

This contradicts the fact that $\sqrt{2}$ is irrational

Since the contradiction arises by assuming that $3 + \sqrt{2}$ is rational.

Hence $3 + \sqrt{2}$ is irrational.

(iv) If possible, let $2 + \sqrt{5}$ is rational.

$$\Rightarrow$$
 $(2 + \sqrt{5}) - 2 = \sqrt{5}$ is rational

[: difference of two rational is

rational]

∴ $\sqrt{5}$ is rational.

This contradicts the fact that $\sqrt{5}$ is irrational

Since, the contradiction arises by assuming $2 + \sqrt{5}$ is rational.

Hence, $2 + \sqrt{5}$ is irrational.

(v) If possible, let $5 + 3\sqrt{2}$ is rational

Now,
$$(5 + 3\sqrt{2}) - 5 = 3\sqrt{2}$$
 is rational

[: Difference of two rational is rational]

Also,
$$\frac{1}{3} \times 3\sqrt{2} = \sqrt{2}$$
 is rational

[: Product of two rational is rational]

∴ √2 is rational.

This contradicts the fact that $\sqrt{2}$ is irrational. Since, the contradiction arises by assuming that 5 +

 $3\sqrt{2}$ is irrational. Hence, $5 + 3\sqrt{2}$ is irrational

(vi) If possible, let $3\sqrt{7}$ be rational.

Let its simplest form be $3\sqrt{7} = \frac{a}{b}$, where a and b are

positive integers having no common factor other than ${\bf 1}$, then

$$3\sqrt{7} = \frac{a}{b} \Rightarrow$$

$$\sqrt{7} = \frac{a}{3b} - - - - (2)$$

Since, a and 3b are non -integers, so $\frac{a}{3b}$ is rational.

Thus, from (2), its follows that $\sqrt{7}\,$ is rational.

This contradicts the fact that $\sqrt{7}$ is irrational.

The contradiction arises by assuming that $3\sqrt{7}$ is rational.

Hence, $3\sqrt{7}$ is irrational.

(vii)
$$\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3}{5}.\sqrt{5}$$
 -----(3)

If possible, let $\frac{3}{\sqrt{5}}$ be rational.

Then, from (3), it follows that $\frac{3}{5}\sqrt{5}$ is rational

Let $\frac{3}{5}\sqrt{5} = \frac{a}{b}$, where <u>a and</u> b are non-zero integers

having no common factor other than 1.

Now,

$$\frac{3\sqrt{5}}{5} = \frac{a}{b} \Rightarrow$$

$$\sqrt{5} = \frac{5a}{3b} - - - - (4)$$

But, 3a and 5b are non-zero integers.

$$\therefore \frac{5a}{3b}$$
 is rational.

Thus, from (4), it follows that $\sqrt{5}$ is rational.

This contradicts the fact that $\sqrt{5}$ is irrational.

The contradiction arises by assuming that $\frac{3}{\sqrt{5}}$ is

rational.

Hence $\frac{3}{\sqrt{5}}$ is irrational.

(viii) If possible, let $2 - 3\sqrt{5}$ is rational.

$$\Rightarrow$$
 $(2-3\sqrt{5})-2=-3\sqrt{5}$ is rational.

[\because Difference of two rational is

rational]

$$\Rightarrow \left(-\frac{1}{3}\right) \times \left(-3\sqrt{5}\right) = \sqrt{5} \text{ is rational.}$$

[: Product of two rationals is rational]

This contradicts that fact that $\sqrt{5}$ is irrational.

Since, the contradiction arises by assuming $2-3\sqrt{5}$ is rational.

Hence, $2 - 3\sqrt{5}$ is irrational.

(ix) If possible, let $(\sqrt{3} + \sqrt{5})$ be rational

Let $\sqrt{3} + \sqrt{5} = a$, where a is rational.

$$\therefore \sqrt{3} = a - \sqrt{5}$$

Squaring both sides, we get

$$3 = \left(a - \sqrt{5}\right)^2 = a^2 + 5 - 2a\sqrt{5}$$

$$\Rightarrow a^2 + 2 - 2a\sqrt{5} = 0$$

$$\therefore \qquad \sqrt{5} = \frac{a^2 + 2}{2a} - - - - - (5)$$

But, $\frac{a^2+2}{2a}$ is a rational number.

Thus from (5), $\sqrt{5}$ is rational.

This contradicts the fact that $\sqrt{5}$ is irrational.

Since, the contradiction arises by assuming $(\sqrt{3} + \sqrt{5})$ is rational.

Hence $(\sqrt{3} + \sqrt{5})$ is irrational.

******* END ********