Análisis del Modelo Karplus-Strong (Time-Invariant)

1. Función de transferencia del modelo time-invariant

Partimos del modelo clásico de Karplus-Strong, donde la señal de salida está dada por:

$$y[n] = \frac{R_L}{2} (y[n-L] + y[n-(L+1)]) + x[n],$$

donde:

- L es el retardo (en muestras),
- R_L es la ganancia del búfer de realimentación,
- x[n] es la señal de excitación (ruido blanco u otro).

Aplicando la transformada Z (y suponiendo entrada nula para la respuesta libre):

$$Y(z) = \frac{R_L}{2} \left(z^{-L} + z^{-(L+1)} \right) Y(z) + X(z) \quad \Rightarrow \quad \left[1 - \frac{R_L}{2} \left(z^{-L} + z^{-(L+1)} \right) \right] Y(z) = X(z).$$

La función de transferencia es:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - \frac{R_L}{2} (z^{-L} + z^{-(L+1)})}.$$

2. Polos y ceros

2.1 Ceros

El numerador es constante (1), por lo tanto no hay ceros en el plano-z.

2.2 Polos

Los polos se obtienen del denominador:

$$D(z) = 1 - \frac{R_L}{2} \left(z^{-L} + z^{-(L+1)} \right) = 0.$$

Multiplicando ambos lados por z^{L+1} :

$$z^{L+1} - \frac{R_L}{2}(z+1) = 0.$$

Este es un polinomio de orden L+1.

2.3 ¿Por qué no hay solución cerrada?

Cuando L+1 > 4, el teorema de Abel–Ruffini establece que no existe una fórmula general en radicales para resolver polinomios de ese grado. Por tanto, las raíces se obtienen numéricamente.

3. Efecto del ruido uniforme vs. gaussiano

- Ruido uniforme: distribuye energía equitativamente, generando un contenido espectral más variado. Produce timbres más ásperos y ruido de fase más marcado.
- Ruido gaussiano: concentra la energía en torno a cero, generando excitaciones más suaves y un espectro menos impredecible. Ideal para sonidos más cálidos o suaves.

¿Es posible caracterizar el sistema time-variant como mezcla probabilística?

El sistema para producir efectos de percusión es tiempo variante. El sistema varía entre dos diferentes bloques de realimentación con probabilidades p y 1-p, Por su puesto, en si mismos cada sub-sistema posee un comportamiento tiempo *invariante*, y por ende tiene su propia función de transferencia $H_i(z)$; al poseer un comportamiento sobre cada subsistema con probabilidad p_i , el comportamiento medio es:

$$\mathbb{E}[H(z)] = \sum_{i} p_i H_i(z).$$

Sin embargo, este sistema deja de ser invariante en el tiempo, y debe analizarse como un proceso estocástico lineal.

4. Estabilidad: $|z| \leq 1$ si y sólo si $R_L < 1$

Partimos de:

$$z^{L+1} = \frac{R_L}{2}(z+1).$$

Sea $z = \rho e^{j\theta}$ con $\rho = |z|$. Tomando módulo en ambos lados:

$$\rho^{L+1} = \frac{R_L}{2} |\rho e^{j\theta} + 1| = \frac{R_L}{2} \sqrt{\rho^2 + 1 + 2\rho \cos \theta}.$$

 $\rho(R_L) \alpha R_L$ Por lo tanto, considerando el extremo $\rho = 1$, es suficiente para notar el máximo valor permitido de R_L .

Para que el sistema sea BIBO-estable, los polos asociados deben tener un modulo de la forma:

$$0 < \rho < 1$$

Consideramos los dos casos:

- o Para $\rho=0$: lado izquierdo es 0, lado derecho es $\frac{R_L}{2}\Rightarrow$ no hay raíz a menos que $R_L=0.$
- \circ Para $\rho \geq 1$: entonces

$$\rho^{L+1} \ge \frac{R_L}{2} |e^{j\theta} + 1|$$
$$1 \le \frac{R_L}{2} |e^{j\theta} + 1| \le R_L$$

Para que exista una raíz con módulo $\rho \geq 1$, se necesita $R_L \geq 1$.

Por lo tanto:

- Si $R_L < 1$, entonces todas las raíces cumplen |z| < 1 el sistema es **estable**.
- Si $R_L > 1$, hay raíces fuera del círculo unidad **inestabilidad**.

Cálculo de la fase en el modelo probabilístico

1. Definición de las funciones de transferencia

Sea el sistema con realimentación positiva (+) y negativa (-):

$$H_+(z) = \frac{1}{1 - \frac{R_L}{2} \left(z^{-L} + z^{-(L+1)}\right)}, \quad H_-(z) = \frac{1}{1 - \frac{R_L}{2} \left(z^{-L} - z^{-(L+1)}\right)}.$$

Evaluamos en $z = e^{j\omega}$. Definimos

$$A(\omega) = 1 - \frac{R_L}{2} (e^{-j\omega L} + e^{-j\omega(L+1)}), \quad B(\omega) = 1 - \frac{R_L}{2} (e^{-j\omega L} - e^{-j\omega(L+1)}),$$

de modo que

$$H_{+}(e^{j\omega}) = \frac{1}{A(\omega)}, \quad H_{-}(e^{j\omega}) = \frac{1}{B(\omega)}.$$

2. Respuesta media

Como el sistema elige "+" con probabilidad b y "-" con probabilidad 1-b,

$$H_{\text{med}}(e^{j\omega}) = b H_{+}(e^{j\omega}) + (1-b) H_{-}(e^{j\omega}) = \frac{b}{A(\omega)} + \frac{1-b}{B(\omega)} = \frac{N(\omega)}{A(\omega)B(\omega)},$$

donde el numerador complejo es

$$N(\omega) = b B(\omega) + (1 - b) A(\omega).$$

3. Descomposición en parte real e imaginaria

Escribimos

$$A(\omega) = A_r(\omega) + j A_i(\omega), \quad B(\omega) = B_r(\omega) + j B_i(\omega),$$

con

$$A_r = 1 - \frac{R_L}{2} \left(\cos(\omega L) + \cos(\omega (L+1)) \right), \qquad A_i = +\frac{R_L}{2} \left(\sin(\omega L) + \sin(\omega (L+1)) \right),$$

$$B_r = 1 - \frac{R_L}{2} \left(\cos(\omega L) - \cos(\omega (L+1)) \right), \qquad B_i = +\frac{R_L}{2} \left(\sin(\omega L) - \sin(\omega (L+1)) \right).$$

Entonces

$$N(\omega) = b (B_r + jB_i) + (1 - b) (A_r + jA_i) = N_r(\omega) + j N_i(\omega),$$

con

$$N_r = b B_r + (1 - b) A_r$$
, $N_i = b B_i + (1 - b) A_i$.

4. Cálculo de la fase

La fase de $H_{\rm med}(e^{j\omega})$ es

$$\Phi_{\mathrm{med}}(\omega) = \arg\left[H_{\mathrm{med}}(e^{j\omega})\right] = \arg\left[N(\omega)\right] - \underbrace{\arg\left[A(\omega)\right]}_{\phi_A} - \underbrace{\arg\left[B(\omega)\right]}_{\phi_B}.$$

Donde

$$\arg[N(\omega)] = \operatorname{atan} 2(N_i(\omega), N_r(\omega)), \quad \phi_A = \operatorname{atan} 2(A_i, A_r), \quad \phi_B = \operatorname{atan} 2(B_i, B_r).$$

Por tanto, expresado de forma cerrada:

$$\Phi_{\text{med}}(\omega) = \operatorname{atan} 2(b B_i + (1 - b) A_i, b B_r + (1 - b) A_r) - \operatorname{atan} 2(A_i, A_r) - \operatorname{atan} 2(B_i, B_r).$$

Con esta fórmula se obtiene la fase del sistema probabilístico en función de ω , b, L y R_L .

9. Desventajas y limitaciones

1. Rango de frecuencia limitado: Como $0 \le b \le 1$, sólo se pueden generar frecuencias fundamentales

$$\frac{f_s}{L+1.5} \le f_k \le \frac{f_s}{L+0.5}.$$

El cociente máximo es

$$\frac{(L+0.5)}{(L+1.5)} = 1 - \frac{1}{L+1.5},$$

que se aproxima a 1 cuando L crece. En la práctica esto cubre poco menos de una octava por cada valor fijo de L. Para abarcar varias octavas hay que cambiar el valor entero L.

2. Distorsión de magnitud y fase: El filtro FIR de primer orden $H_b(e^{j\omega}) = (1-b)e^{-j\omega L} + b e^{-j\omega(L+1)}$ introduce variaciones en la magnitud y la fase de los parciales:

$$|H_b(e^{j\omega})| = \sqrt{(1-b+b\cos\omega)^2 + (b\sin\omega)^2},$$

$$\arg H_b(e^{j\omega}) = -\omega L + \arctan \frac{-b\sin\omega}{1 - b + b\cos\omega}.$$

Esto puede teñir los armónicos altos, sobre todo cuando b se aproxima a los extremos 0 o 1.

3. **Mejor uso por octavas:** Dado que con un L fijo cubres menos de una octava, conviene agrupar los tonos de cada octava bajo un mismo L y reajustar L (y por tanto b) al pasar a la siguiente. Así mantienes la precisión y minimizas la distorsión.