PCA: dekompozicija matrice Σ

 Kao što smo videli, možemo matricu kovarijanse predstaviti pomoću njenih sopstvenih vektora/vrednosti:

$$\Sigma v = \lambda v$$

Ovo se može zapisati u matričnoj formi

$$\Sigma V = VL$$

gde je V matrica čije su kolone sopstveni vektori matrice Σ , a L je dijagonalna matrica čiji su ne-nula elementi odgovarajuće sopstvene vrednosti

 Odavde možemo Σ predstaviti kao funkciju njenih sopstvenih vrednosti i vektora:

$$\Sigma = VLV^{-1} = VLV^T$$

 Ova jednačina se zove eigendecomposition of the covariance matrix i može se dobiti postupkom koji se naziva Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

• Svaka matrica (npr. matrica sa podacima $X \in \mathbb{R}^{N \times D}$) se može predstaviti kao proizvod tri matrice. Matrica $X \in \mathbb{R}^{N \times D}$:

$$X = USV^T$$

- Gde su $U=[u_1,\ldots,u_D]$ i $V=[v_1,\ldots,v_D]$ ortonormalne baze (za ovakve matrice važi da je inverz jednak transponovanoj matrici, tj. $V^TV=VV^T=1$) za prostor redova i kolona matrice X
- a S je dijagonalna matrica sa elementima $\{\sigma_1, \dots, \sigma_D\}$

Singular Value Decomposition (SVD)

$$X = USV^T$$

• Ako je X matrica koja sadrži originalne podatke ($X \in \mathbb{R}^{N \times D}$):

$$X^{T}X = (USV^{T})^{T}USV^{T} = VS^{T}U^{T}USV^{T} = VS^{2}V^{T}$$

Singular Value Decomposition (SVD)

Ako uporedimo jednačine:

$$X^TX=VS^2V^T$$
 $\Sigma=X^TX=VLV^T$ veoma su slične, osim što je $\sigma_i^2=\lambda_i (i=1,...,D)$

- Drugim rečima, SVD je identičan sa PCA
- Matricu V (koja u kolonama ima odgovarajuće sopstvene vektore) možemo pronaći direktnom primenom SVD na ulazne podatke X:

$$[U, S, V] = \operatorname{svd}(X)$$

Prednosti i nedostaci SVD

- Dakle, PCA možemo primeniti:
 - izračunavanjem sopstvenih vrednosti matrice kovarijanse $\Sigma = X^T X$ ili
 - primenom SVD metode direktno na matricu podataka X

Prednosti SVD:

- numerička stabilnost (računanje X^TX može da izazove gubitak preciznosti)
- Ako je $D\gg N$ (više obeležja nego instanci), $\Sigma\in R^{D\times D}$ može biti veoma velika matrica