

Labor Matlab für die industrielle und medizinische Bildverarbeitung

Prof. Dr.-Ing. Bodo Rosenhahn

Institut für Informationsverarbeitung

Einleitung

- 20.10. Introduction (1h VL, 3 L), Accountvergabe (Präsenz)
- 27.10. Local operators (Harris, etc.) (1h VL, 3L)
- 03.11. Global Operators (Hough Transform) (1h VL, 3L)
- 10.11. Region Growing / Watershed Segmentation (1h VL, 3L)
- 17.11. Bayes Classifier (1h VL, 3L)
- 24.11. K-Means / Mean shift (1h VL, 3L)
- 01.12. Shape Context (1h VL, 3L)
- 08.12. Morphological Operators (1h VL, 3L)
- 15.12. Disparity estimation (DTW) (1h VL, 3L)
- 22.12. Restarbeiten vor Weihnachten (4L)
- 12.01. Calibration and Triangulation (1h VL, 3L)
- 19.01. PCA (1h VL, 3L)
- 26.01. Tracking (1h VL, 3L)

Statistics ...

... Emotions

Ein **Bayes-Klassifikator** (Aussprache: [bɛi:z], benannt nach dem englischen Mathematiker Thomas Bayes), ist ein aus dem Bayestheorem hergeleiteter Klassifikator.

Ein Bayes-Klassifikator *b* ist eine Funktion, die Vektoren aus einem *f*-dimensionalen reellwertigen Merkmalsraum auf eine Menge von Klassen *C* abbildet:

$$b: \mathbb{R}^f \to C$$

Die Funktion wird realisiert durch die Maximierung der A-Posteriori-WK gegeben die Merkmale. D.h. Eine (mögliche) Entscheidungsregel lautet "Wähle die Klasse die am wahrscheinlichsten ist."

$$p(C|F_1,...,F_n)$$

Probabilistische Erkennung

Modelliere Wahrscheinlichkeitsdichten und wende Sätze aus der Statistik an, um eine möglichst sichere Aussage über die Erkennung machen zu können.

Definition (Wahrscheinlichkeit, Wahrscheinlichkeitsmaß):

Die Wahrscheinlichkeit $P(\psi_j)$ ist eine reelle Zahl $0 \le P(\psi_j) \le 1$, die jedem Element ψ_j des Ereignisfeldes A eindeutig zugeordnet werden kann.

Es gilt also:

- 1. P ist nicht negativ: $P(\psi) \ge 0 \forall \psi \in \Omega$
- 2. P ist normiert: $P(\Omega) = 1$
- 3. P ist additiv: $P(\psi_j \cup \psi_k) = P(\psi_j) + P(\psi_k)$ falls $\psi_i \cup \psi_k = 0$

Event	Probability		
Α	$P(A) \in [0,1]$		
not A	$P(A^\complement) = 1 - P(A)$		
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive		
A and B	$P(A\cap B)=P(A B)P(B)=P(B A)P(A)$ $P(A\cap B)=P(A)P(B)$ if A and B are independent		
A given B	$P(A \mid B) = rac{P(A \cap B)}{P(B)} = rac{P(B \mid A)P(A)}{P(B)}$		

Definition (bedingte Wahrscheinlichkeit):

Die Wahrscheinlichkeit von Φ_j unter der Bedingung, dass Φ_k bereits eingetreten ist, heißt die bedingte Wahrscheinlichkeit von Φ_j unter der Bedingung Φ_i :

$$P(\Phi_{j}|\Phi_{k}) = \frac{P(\Phi_{j},\Phi_{k})}{P(\Phi_{k})} \quad \text{für} \quad P(\Omega_{k}) > 0$$

Hieraus folgt die Multiplikationsregel:

$$P(\Phi_{j} \cap \Phi_{k}) = P(\Phi_{j} | \Phi_{k}) P(\Phi_{k}) = P(\Phi_{k} | \Phi_{j}) P(\Phi_{j})$$

Definition (totale Wahrscheinlichkeit):

Bilden die Ereignisse $\Phi_{k,k} = 1,2,...,n$ im Ereignisfeld A ein vollständiges System von Ereignissen, dann erhält man für ein Ereignis $\Phi_j \in A$ die totale Wahrscheinlichkeit $P(\Phi_j)$ mit den bedingten Wahrscheinlichkeiten $P(\Phi_j | \Phi_k), k = 1,...,n$ zu

$$P(\Phi_j) = \sum_{k=1}^n P(\Phi_j \mid \Phi_k) P(\Phi_k)$$

Formel von Bayes:

$$P(\Phi_i | \Phi_0) = \frac{P(\Phi_0 | \Phi_i) P(\Phi_i)}{\sum_{k=1}^{n} P(\Phi_0 | \Phi_k) P(\Phi_k)}$$

Der Satz von Bayes

posterior probability likelihood prior probability

Eine der wichtigsten Regeln aus dem Bereich <u>Machine Learning</u>: Sie erlaubt die Ausgabe der Wahrscheinlichkeit von Ygegeben die Messungen X.

Im Training hat man die umgekehrte Information: Die Wahrscheinlichkeit des Auftretens von Y (prior) und die Auswertung einer Messung (likelihood), X.

(Die likelihood evaluiert eine mögliche Messung.) Maximierung der likelihood nennt man: **Maximum likelihood Schätzung** (ML)

Probabilistische Erkennung

Wahrscheinlichkeit eines Objektes o gegeben einen Feature Vektor m

$$p(o_n | m_k) = \frac{p(m_k | o_n) p(o_n)}{p(m_k)} = \frac{p(m_k | o_n) p(o_n)}{\sum_{i} p(m_k | o_i) p(o_i)}$$

p(o): Wahrscheinlichkeit des Auftretens von Objekt o (z.B. Gleichverteilung)

p(m): Wahrscheinlichkeit des Auftretens von Feature-Vektor m

p(m|o): Wahrscheinlichkeit von m gegeben o

Bei einem "Naiven Bayes Classifier" wird die Grundannahme gemacht, dass jedes Attribut nur vom Klassenattribut abhängt.

Die Bayes-Regel ergibt dann:

$$p(C | F_1,...,F_n) = \frac{1}{Z} p(C) \prod_{i=1}^n p(F_i | C)$$

Zist ein Skalierungsfaktor (Evidenz)

Wie *lernt* man die WK aus Beispielen?

- Nehme kontinuierliches Modell an
- Nehme z.B. Gaussverteilung an
- Bestimme mean und variance aus Trainingsdaten

$$P(x=v|c) = \frac{1}{\sqrt{2\pi\sigma_c^2}}e^{\frac{(v-\mu_c)^2}{2\sigma_c^2}}$$

Prior:

$$P(c) = 1 / (\# Klassen) oder$$

 $P(c) = (\# Beispiele aus der Klasse) / (\# Beispiele)$

Die Maximum A-posteriori-WK-Regel (MAP) lautet:

classify
$$(f_1,...,f_n)$$
 = arg max $p(C=c)\prod_{i=1}^n p(F_i=f_i \mid C=c)$.

Beispiel: Gender-Klassifikation

sex	height (feet)	weight (lbs)	foot size(inches)
male	6	180	12
male	5.92 (5'11")	190	11
male	5.58 (5'7")	170	12
male	5.92 (5'11")	165	10
female	5	100	6
female	5.5 (5'6")	150	8
female	5.42 (5'5")	130	7
female	5.75 (5'9")	150	9

Beispiel: Gender-Klassifikation

sex	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033e-02	176.25	1.2292e+02	11.25	9.1667e-01
female	5.4175	9.7225e-02	132.5	5.5833e+02	7.5	1.6667e+00

Prior:

P(male) = P(female) = 0.5

Probabilistische Erkennung

Wahrscheinlichkeit eines Objektes o gegeben einen Feature Vektor m

$$p(o_n | m_k) = \frac{p(m_k | o_n) p(o_n)}{p(m_k)} = \frac{p(m_k | o_n) p(o_n)}{\sum_{i} p(m_k | o_i) p(o_i)}$$

p(o): Wahrscheinlichkeit des Auftretens von Objekt o (z.B. Gleichverteilung)

p(m): Wahrscheinlichkeit des Auftretens von Feature-Vektor m

p(m|o): Wahrscheinlichkeit von m gegeben o

Beispiel: Gender-Klassifikation

Welches Geschlecht hat wohl eine Person mit den folgenden Daten?

sex	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

In Worten:

posterior (male) = P(male)*P(height | male)*P(weight | male)*P(foot size | male) / evidence

posterior (female) = P(female)*P(height | female)*P(weight | female)*P(foot size | female) / evidence

evidence = P(male)*P(height | male)*P(weight | male)*P(foot size | male) + P(female)*P(height | female)*P(weight | female)*P(foot size | female)

Beispiel: Gender- Klassifikation

```
P(male) = 0.5

P(height | male) = 1.5789

P(weight | male) = 5.9881e-06

P(foot size | male) = 1.3112e-3

posterior numerator (male) = Produkt = 6.1984e-09
```

P(female) = 0.5 P(height | female) = 2.2346e-1 P(weight | female) = 1.6789e-2 P(foot size | female) = 2.8669e-1 posterior numerator (female) = Produkt = 5.3778e-04

Entscheidung: Female

$$p(C | F_1,...,F_n) = \frac{1}{Z} p(C) \prod_{i=1}^n p(F_i | C)$$

Confusion Matrix

$$\widehat{Y} = 0$$

NEGATIVE

$$\widehat{Y} = 1$$

POSITIVE

Confusion Matrix

			OITION "Gold Standard"		
	TOTAL POPULATION	CONDITION POS	CONDITION NEG	PREVALENCE CONDITION POS TOTAL POPULATION	
TEST OUT- COME	TEST POS	True Pos TP	Type I Error False Pos FP	Precision Pos Predictive Value PPV = TP TEST P	False Discovery Rate FDR = FP TEST P
	TEST NEG	Type II Error False Neg FN	True Neg TN	False Omission Rate FOR = <u>FN</u> TEST N	Neg Predictive Value NPV = <u>TN</u> TEST N
	ACCURACY ACC ACC = TP+TN TOT POP	Sensitivity (SN), Recall Total Pos Rate TPR TPR = TP CONDITION POS	Fall-Out False Pos Rate FPR FPR = FP CONDITION NEG	Pos Likelihood Ratio LR + LR + = <u>TPR</u> FPR	Diagnostic Odds Ratio DOR DOR = <u>LR +</u> LR -
		Miss Rate False Neg Rate FNR FNR = FN CONDITION POS	Specificity (SPC) True Neg Rate TNR TNR =TN CONDITION NEG	Neg Likelihood Ratio LR - LR - = <u>TNR</u> FNR	

s. Matlab Beispiel

Feature-Antwort

Likelihood

→ Mean / Variance

Entscheidungsebene + Feature-Antwort

Detektionen

Detektionen nach Mean-shift

