EXTENDED SYMBOLIC DYNAMICS

Entropies and the Isomorphism problem

Neemias Martins joint with R. Varão, P. Mattos and P. Mehdipour neemias.org

CONTENTS

- 1. Extended Symbolic Dynamics
- 2. Kolmogorov-Sinai Entropy
- 3. Folding Entropy
- 4. Ornstein theory

EXTENDED SYMBOLIC DYNAMICS

- (X, \mathcal{B}, μ) a probability space
- $f: X \to X$ a measure-preserving map
- We say that $f: X \to X$ and $g: Y \to Y$ defined on (X, \mathcal{B}_1, μ) and (Y, \mathcal{B}_2, ν) , are isomorphic if there are invariant measurable sets $X_1 \subset X$ and $Y_1 \subset Y$ of full measure and a invertible measure preserving map $\varphi: X_1 \to X_2$ such that

$$\varphi \circ f = g \circ \varphi$$
.

Let A an finite alphabet and consider $\Sigma_A = A^{\mathbb{Z}}$ the space of all sequences of letters of A :

$$(x_n)_{n\in\mathbb{Z}} = (\cdots x_{-2}x_{-1}; x_0x_1\cdots) \in \Sigma_{\mathbf{A}}$$

- The **shift map** is the transformation $\sigma: \Sigma_A \to \Sigma_A$ tal que $\sigma(x_n) = (x_{n+1})$.
- A measurable map $f: X \to X$ is a **Bernoulli shift** if is isomorphic to a shift map.

- A órbita de x é representada por $(\cdots;0011\cdots)$
- A órbita de f(x) é representada por $(\cdots 0; 11 \cdots)$

Let A and B be two finite alphabets with $A \ge B$ and $\varphi : A \to B$ a surjective map. Consider Σ the space of all sequence of symbols

$$(x_n)_{n\in\mathbb{Z}} = (\cdots x_{-2}x_{-1}; x_0x_1\cdots)$$

with $x_{-1}, x_{-2}, ... \in B$ and $x_0, x_1, ... \in A$.

• The **zip shift** [1] map is the transformation $\sigma_{\varphi}: \Sigma \to \Sigma$ such that

$$\sigma_{\varphi}(\cdots x_{-1}; x_0 x_1 \cdots) = (\cdots x_{-1} \varphi(x_0); x_1 x_2 \cdots)$$

• A measurable map $f: X \to X$ is a **extended Bernoulli** if is isomorphic to a zip map. We say that f is a (m, l)-Bernoulli when #B = m and #A = l.

Let \mathcal{C} the σ -algebra generated by cylinders sets

- $C_i^s \stackrel{\text{def}}{=} \{(x_n) \in \Sigma : x_i = s\}$
- $C_{i...k}^{s_i...s_k} \stackrel{\text{def}}{=} \{(x_n) \in \Sigma : x_i = s_i, ..., x_k = s_k\}.$

Given a probability distribution $(p_{\alpha} : \alpha \in A)$ in A, we define a probability distribution $(p_{\beta} : \beta \in B)$ where

$$p_{\beta} \stackrel{\text{def}}{=} \sum_{\alpha \in \varphi^{-1}(\beta)} p_{\alpha}.$$

The measure μ is defined by

- $\mu(C_i^s) = p_s$
- $\mu(C_{m...n}^{j_m...j_n}) = \mu(C_m^{s_m})...\mu(C_n^{s_n}) = p_{s_m}...p_{s_n}.$

 (X, \mathcal{C}, μ) is the **zip shift space**

Proposition (Mehdipour, -)

The baker's n-to-1 is a (2,2n)-Bernoulli transformation. [2]

KOLMOGOROV-SINAI ENTROPY

• Entropy of a finite partition \mathcal{P} :

$$H_{\mu}(\mathcal{P}) \stackrel{\text{def}}{=} \sum_{P \in \mathcal{P}} -\mu(P) \log \mu(P)$$

• Entropy of f with respect to \mathcal{P} :

$$h_{\mu}(f,\mathcal{P}) \stackrel{\text{def}}{=} \lim_{k \to \infty} \frac{1}{k} H_{\mu} \left(\bigvee_{i=0}^{k-1} f^{-1} \mathcal{P} \right)$$

• Entropy of f:

$$h_{\mu}(f) \stackrel{\text{def}}{=} \sup_{\mathcal{P}} h_{\mu}(f, \mathcal{P})$$

Theorem (Kolmogorov, Sinai)

Let $\mathcal{P}_1 \leq \mathcal{P}_2 \leq ... \leq \mathcal{P}_n \leq ...$ a non decreasing sequence of partitions with finite entropy such that $\cup_n \mathcal{P}_n$ generates the σ -algebra of measurable sets, up to measure zero. Then

$$h_{\mu}(f) = \lim_{n \to \infty} h_{\mu}(f, \mathcal{P}_n).$$

.

We define:

- C_i the partition of Σ into cylinders of index $i : C_i^s$.
- $\mathcal{C}_{m...n}$ the partition of Σ into cylinders of index from m to n.

Theorem (- , Mattos, Varão)

$$h_{\mu}(\sigma_{\varphi}) = H_{\mu}(\mathcal{C}_0).$$

- **1.** $(\mathcal{P}_n)_{n\in\mathbb{N}}$ with $\mathcal{P}_n=\mathcal{C}_{-n...n-1}$ is a non-decreasing generating sequence.
- **2.** $\bigvee_{i=0}^{k-1} \sigma_{\varphi}^{-i}(\mathcal{P}_n) = \mathcal{C}_{-n...n+k-2}$
- 3. $H_{\mu}(\mathcal{C}_{-n...n+k-2}) = n \cdot H_{\mu}(\mathcal{C}_{-1}) + (n+k-1) \cdot H_{\mu}(\mathcal{C}_{0})$
- **4.** $h_{\mu}(f, \mathcal{P}_n) = \lim_{k \to \infty} \frac{1}{k} (H_{\mu}(\mathcal{C}_{-n...n+k-2})) = H_{\mu}(\mathcal{C}_0)$
- 5. $h_{\mu}(\sigma_{\varphi}) = H_{\mu}(\mathcal{C}_0)$ by Kolmogorov-Sinai theorem.

FOLDING ENTROPY

Let

- (X, \mathcal{B}, μ) be a probability space
- \mathcal{P} be a measurable partition of X
- $\pi: X \to \mathcal{P}$ the canonical projection: $x \in X \mapsto \mathcal{P}(x) \in \mathcal{P}$

We define a σ -algebra in $\mathcal P$ by $\hat{\mathcal B}\coloneqq \left\{\mathcal Q\subset \mathcal P:\pi^{-1}(\mathcal Q)\in \mathcal B\right\}$ and define the quotient measure $\hat\mu\coloneqq\pi_*\mu$:

$$\hat{\mu}(\mathcal{Q}) = \mu(\pi^{-1}\mathcal{Q}), \ \forall \mathcal{Q} \in \hat{\mathcal{B}}.$$

A **disintegration** of μ with respect to a partition \mathcal{P} is a family $\{\mu_P : P \in \mathcal{P}\}$ of measures in X such that

- $\mu_P(P) = 1$ for $\hat{\mu}$ -almost every $P \in \mathcal{P}$
- $P \mapsto \mu_{P(A)}$ is measurable for every $A \in \mathcal{B}$
- $\mu_P(A) = \int_{P \in \mathcal{P}} \mu_P(A) d\hat{\mu}(P)$ for every $A \in \mathcal{B}$.

Let

- $\varepsilon := \{\{x\} : x \in X\}$ the partition of X into single points
- $f^{-1}(\varepsilon) = \{f^{-1}(x) : x \in X\}$ the preimage partition of ε by f.

The **folding entropy** ([4], [5], [6]) of f is defined by

$$\mathcal{F}_{\mu}(f) = H_{\mu}(\varepsilon \mid f^{-1}(\varepsilon))$$

where $H_{\mu}(\varepsilon \mid f^{-1}(\varepsilon))$ is the conditional entropy.

- $\mathcal{F}_{\mu}(f) \leq \log N$ if f is N-to-1
- $\mathcal{F}_{\mu}(f) = \log N$ if all preimages are equally μ -weighted
- $\mathcal{F}_{\mu}(f) = 0$ if f is invertible (since N = 1).

Theorem (- , Mattos, Varão)

Consider the probability space (Σ,\mathcal{C},μ) and σ_{φ} a zip shift map. Then

$$\mathcal{F}_{\mu}(f) = H_{\mu}(\mathcal{C}_0) - H_{\mu}(\mathcal{C}_{-1}).$$

- $\hat{x} \stackrel{\text{def}}{=} \sigma_{\varphi}^{-1}(x) = \{(\dots x_{-2}; sx_0 \dots) : s \in \varphi^{-1}(x_{-1})\} \in \sigma_{\varphi}^{-1}(\varepsilon)$
- $\hat{E} \stackrel{\text{def}}{=} {\{\hat{x} : x \in E\}} \subset \sigma_{\varphi}^{-1}(\varepsilon), E \in \mathcal{C}.$
- The quotient measure $\hat{\mu}$ is given by

$$\hat{\mu}(\hat{E}) = \mu(\pi^{-1}(\hat{E})) = \mu(\sigma_{\varphi}^{-1}(C)) = \mu(C).$$

• For every $\beta \in B$, we define the following probability distribution

$$(q_{\alpha}^{\beta}: \alpha \in \varphi^{-1}(\beta))$$
, where $q_{\alpha}^{\beta} = \frac{p_{\alpha}}{p_{\beta}}$.

• The **conditional measure** on $\hat{x} \in \sigma_{\varphi}^{-1}(\varepsilon)$ is given by

$$\mu_{\hat{x}}(\{(...x_{-2}; sx_1...)\}) := q_s^{x_{-1}}, \ \forall s \in \varphi^{-1}(x_{-1}).$$

• The family $\{\mu_{\hat{x}}\}$ is a **disintegration** of μ with respect to $\sigma_{\varphi}^{-1}(\varepsilon)$.

The folding entropy of σ_{φ} is given by

$$\begin{split} \mathcal{F}_{\mu}(\sigma_{\varphi}) & \stackrel{\mathrm{def}}{=} H_{\mu}(\varepsilon \mid \sigma_{\varphi}^{-1}(\varepsilon)) \\ &= \int_{\hat{x} \in \sigma_{\varphi}^{-1}(\varepsilon)} H_{\mu_{\hat{x}}}(\varepsilon \mid_{\hat{x}}) d\hat{\mu}(\hat{x}) \\ &= \sum_{\beta \in \mathcal{B}} \int_{\hat{x} \in \hat{\mathcal{C}}_{-1}^{\beta}} H_{\mu_{\hat{x}}}(\varepsilon \mid_{\hat{x}}) d\hat{\mu}(\hat{x}) \\ &= \sum_{\beta \in \mathcal{B}} \left[\sum_{\alpha \in \varphi^{-1}(\beta)} -q_{\alpha}^{\beta} \log q_{\alpha}^{\beta} \right] \hat{\mu}(\hat{\mathcal{C}}_{-1}^{\beta}) \\ &= \sum_{\beta \in \mathcal{B}} \left[\sum_{\alpha \in \varphi^{-1}(\beta)} -q_{\alpha}^{\beta} \log q_{\alpha}^{\beta} \right] p_{\beta} \\ &= \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \varphi^{-1}(\beta)} -p_{\alpha}(\log p_{\alpha} - \log p_{\beta}), \text{ since } q_{\alpha}^{\beta} \cdot p_{\beta} = p_{\alpha} \\ &= \sum_{\alpha \in \mathcal{A}} -p_{\alpha} \log p_{\alpha} - \sum_{\beta \in \mathcal{B}} -p_{\beta} \log p_{\beta} \\ &= H_{\mu}(\mathcal{C}_{0}) - H_{\mu}(\mathcal{C}_{-1}). \end{split}$$

In particular,

$$h_{\mu}(\sigma_{\varphi}) = \mathcal{F}_{\mu}(\sigma_{\varphi}) + H_{\mu}(\mathcal{C}_{-1})$$

ORNSTEIN THEORY

Theorem (Ornstein)

Bernoulli shifts of same entropy are isomorphic.

[7]

Theorem (- , Varão, Mehdipour)

Let f and g be two n-to-1 (m,l)-Bernoulli transformations of same entropy. Then $f\cong g$.

.

If $f: X \to X$ is n-to-1 extended Bernoulli with distribution $(p_{\alpha}: \alpha \in A)$, there is a **« domain partition »** \mathcal{P} of X such that

- $d(\mathcal{P}) = (p_{\alpha})_{\alpha \in A}$
- \mathcal{P} is a generating partition for f
- $(f^{-n}(\mathcal{P}))_{n\in\mathbb{N}}$ and $(f^n(\mathcal{P}))_{n\in\mathbb{N}}$ are independent sequences

We say that the process (f, \mathcal{P}) is a **copy** of (g, \mathcal{R}) , and write $(f, \mathcal{P}) \sim (g, \mathcal{R})$, if for every $n \in \mathbb{N}$:

$$d\left(\bigvee_{i=0}^{n-1} f^{-i}\mathcal{P}\right) = d\left(\bigvee_{i=0}^{n-1} g^{-i}\mathcal{R}\right).$$

Let f and g be two n-to-1 (k, kn)-Bernoulli transformations with \mathcal{P} and \mathcal{R} domain partitions which are generating for f and g, respective. If $(f, \mathcal{P}) \sim (g, \mathcal{R})$, then f and g are isomorphic.

Getting a good copy . . .

If f is a n-to-1 (k,kn)-Bernoulli with $\mathcal P$ a domain generating partition for f, and $\mathcal P'$ is a $\operatorname{\mathbf{w}}$ good $\operatorname{\mathbf{w}}$ partition with $H_\mu(f,\mathcal P)=H_\mu(f,\mathcal P')$, then given $\delta>0$ there is a partition $\overline{\mathcal P}$ with

- $|\mathcal{P}' \overline{\mathcal{P}}| < \delta$
- $(f, \mathcal{P}') \sim (f, \overline{\mathcal{P}})$
- $\overline{\mathcal{P}}$ is generating for f.

... to get a better copy

Let f and g be two n-to-1 (k, kn)-Bernoulli transformations with \mathcal{P} and \mathcal{R} « good » generating partitions for f and g, respectively. If

$$H_{\mu}(f,\mathcal{P}) = H_{\mu}(g,\mathcal{R}),$$

then there is a partition $\overline{\mathcal{P}}$

- $(f, \overline{\mathcal{P}}) \sim (g, \mathcal{R})$
- $\overline{\mathcal{P}}$ is generating for f.

REFERENCES

- [1] S. Lamei and P. Mehdipour, "Zip shift space," 2022.
- [2] P. Mehdipour and N. Martins, "Encoding n-to-1 baker's transformations," *Arch. Math.*, vol. 119, pp. 199–211, 2022.
- [3] N. Martins, P. G. Martins, and R. Varão, "Folding Entropy for Extended Shifts." 2024.
- [4] D. Ruelle, "Positivity of entropy production in nonequilibrium statistical mechanics," *J Stat Phys*, vol. 85, pp. 1–23, 1996.
- [5] W. Wu and Y. Zhu, "On preimage entropy, folding entropy and stable entropy," *Ergod. Th. & Dynam. Sys.*, vol. 41, pp. 1217–1249, 2021.
- [6] G. Liao and S. Wang, "Continuity properties of folding entropy," *Israel Journal of Mathematics*, 2024, [Online]. Available: https://doi.org/10.1007/s11856-024-2653-6
- [7] D. Ornstein, "Bernoulli shifts with the same entropy are isomorphic," Advances in Mathematics, vol. 4, pp. 337–352, 1970.

(... o brigado!...)