

Thermodynamik II – Gruppenübung 09

Thema: Gasturbinenanlag, Joule-Prozess

Wissensfrage zum Strömungsapparat: Diffusor

SoSe24 (25.07.2024), Aufgabe 1 h) (3,5 Punkte)

Ein ideales Gas durchströmt einen idealen Diffusor. Berechnen Sie die Temperaturänderung des Gases bei maximaler Druckerhöhung und stellen Sie die Zustandsänderung in einem h, s-Diagramm dar. Beschriften Sie die Zustandspunkte im Diagramm eindeutig unter Verwendung charakteristischer Größen für einen Strömungsprozess.

Gegeben:
$$c_p^{iG} = 1000 \frac{\text{J}}{\text{kg·K}}, w_{ein} = 100 \frac{\text{m}}{\text{s}}$$

Großaufgabe aus Altklausur

7.7 SoSe14 (30.07.2014), Aufgabe 3 (25 min)

Es wird eine einfache, offene stationäre (ortsfeste) Gasturbinenanlage im zeitlich stationären Betriebszustand betrachtet. Die Wellenleistung P_V des adiabaten Verdichters ist halb so groß wie die der adiabaten Turbine, die diesen Verdichter antreibt. Der Luftmassenstrom $\dot{m}=6,8\,\frac{\mathrm{kg}}{\mathrm{s}}$ sei in der ganzen Anlage konstant. Die Brennkammer wird näherungsweise durch eine Wärmezufuhr ersetzt. Kinetische und potentielle Energien sollen vernachlässigt werden.

- a) Die bei $p_1=p_U=1$ bar und $T_1=T_U=300\,\mathrm{K}$ vom Verdichter angesaugte Luft wird auf $p_2=20\,\mathrm{bar}$ verdichtet. Der isentrope Verdichterwirkungsgrad beträgt $\eta_{s,V}=0,8$. Berechnen Sie die Wellenleistung des Verdichters und die von der Gasturbinenanlage abgegebene Netto-Wellenleistung.
- b) Die Austrittstemperatur aus der Turbine beträgt $T_4 = 900 \,\mathrm{K}$, der Austrittsdruck $p_4 = 1,1 \,\mathrm{bar}$. Berechnen Sie den nach der Verdichtung von der Luft isobar aufgenommenen Wärmestrom $\dot{Q}_{zu} = \dot{Q}_{23}$ und den isentropen Turbinenwirkungsgrad $\eta_{s,T}$. (8 min)
- c) Zeichnen Sie die Zustandsänderungen der Luft in ein T, s-Diagramm für Luft ein. (6 min)
- d) Wie groß ist die Entropieerzeugungsrate der Gesamtanlage? Rechnen Sie bei der Wärmezufuhr mit der thermodynamischen Mitteltemperatur. (5 min)

Tabelle: Stoffwerte von Luft

p/bar	T/K	$h/\frac{\mathrm{kJ}}{\mathrm{kg}}$	$s/\frac{\text{kJ}}{\text{kg*K}}$
1	300	300	6,87
1,1	700	714	7,72
1,1	800	823	7,86
1,1	900	934	7,99
20	693	707	6,87
20	787	809	7,01
20	1655	1828	7,88
20	1755	1951	7,95
20	1855	2074	8,02

Brennkammer (vereinfacht als Wärmequelle)

Abbildung 1: Anlagenschema