模型实验安排

电池测试系统项目开发执行书

1 模型实验安排

项目模型打开方法: mt charge 项目源码打开方法: kl charge

项目设计打开方法: la charge (本设计文档)

设计模型 ->

2 气缸控制实现

2.1 控制环境

1. OK 和 NG 信号: 我的 OK 端出是多少 V 时,总系统认为测试 OK; 我的 NG 端出是多少 V 时,总系统认为测试 NG;

2. 就位信号: 测试品就位好时,输出的信号电压是多少 V 给我的系统?

3. 气缸参数: 给气缸供电 24V, 它是进还是退, 气缸的型号是什么? 有没用到气缸传感器?

站位	气缸编号	气缸作用
电压测试站 1		
电压测试站 2		
电流测试站		

表 1: 气缸分配表

2.2 控制方案

电流站:

1GPIO 控制 OK 信号的输出; 1GPIO 控制 NG 信号的输出; 1GPIO 检测产品就位信号输入, 共 3 个 GPIO。 2GPIO 控制气缸; 1GPIO 控制制 AC 的通断; 1GPIO 控制 DC 的通断; 1GPIO 控制产品短路, 共 5 个 GPIO。

3 模型设计标准 2

一	
气缸通断 2 纵向位移/横向开机 3.3V 驱动 MOSFET 再驱动 24V	继电器
气缸通断 8 纵向位移/横向开机-加减档 3.3V 驱动 MOSFET 再驱动 24V	继电器
产品短路 1 输出短路电流测试 3.3V 驱动 MOSFET 再驱动 24V	双刀继电器
AC 输入 3 测试前后断开 3.3V 驱动 MOSFET 再驱动 24V	双刀继电器
DC 输入 3 灵活控制产品充/断电 3.3V 驱动 MOSFET 再驱动 24V	双刀继电器
信号就位 3 系统开始测试的输入信号 Input_24V -> Output_3.3V	
信号 OK 3 测试结果的输出信号 Input_3.3V -> Output_24V	
信号 NG 3 测试结果的输出信号 Input_3.3V -> Output_24V	
产品输出 3 电池产品输出分压 ADC 检测 24AWG 导线	

表 2: GPIO 引脚按控制功能分配方案

电压站:

1GPIO 控制 OK 信号的输出; 1GPIO 控制 NG 信号的输出; 1GPIO 检测产品就位信号输入, 共 3 个 GPIO。 4GPIO 控制气缸; 1GPIO 控制制 AC 的通断; 1GPIO 控制 DC 的通断; 共 6 个 GPIO。

统计:信号用 GPIO = 3*3 = 9 个。

电力用 GPIO = 5 + 6*2 = 17 个。

注: 电力用意为 GPIO 驱动 MOSFETG 来控制 24V 的供给; "AC/DC/产品短路"的通断采用有 MOSFET 的 24V 再控制双联继电器实现 AC/DC 的双线同时通断。

2.3 面向对象方法使用

为改善面向过程的编程方法造成的思路不清晰,及改一处而变全部的弊端,采用面向对象的方法。一个气缸为一个实例,它的执行过程中,会初始化一个新的气缸实例或继电器示例,使这些实例能用指定的变量参数初始化及受控。

构建继电器类,它包含的成员有:施控的 GPIO 端口,它的施控时间。施控动作函数, 它可以在控制过程中可以产生、控制其它的继电器实例。

2.4 RTOS 使用

2.5 检测准备好信号, 并用 LED 提示

3 模型设计标准

3.1 单支气缸

单支气缸的动作原理:气缸的动作控制信号只有一个,即通过一个 GPIO 脚控制气缸电源电压的通断。但在程序内部(simulink 模型中)通过简单改变一个变量求反就可以控制 GPIO 的翻转。但是控制变量翻转后,会通过一系列的逻辑判断才会确定 GPIO 是否翻转。

如果 GPIO 控制的气缸未翻转成功,则会有一个错误代码输出来告知系统出现故障。故障排除后,重置

3 模型设计标准 3

气缸状态(变量初值控制)开始新一轮测试1。

优点是:控制时不用管气缸的当前状态,只是由当前测试程序运行的进度连续施控即可,如果有气缸运行的逻辑错误,会导至测试失败而停止,而不会导致整个运行的错乱。

缺点是:必须确定好气缸的初始状态,也许中途会异想不到的气缸上下逻辑错位。

读感应0/10 这个"气缸头弧,灰出栅窄指掌后,经过外部索针检验柜判断定省执行 使获以报出开吊错误 田执行模块与 操作员

图 1: 单气缸控制模型

气缸执行错误代码, 当多组多气缸时再对错误代码进行扩展编制, 让系统识别是哪组及哪个气缸的异常。

错误代号	错误说明	原因	
2	两气缸位置传感器同时为 ON	可能传感器故障	
1	气缸位置传感器信号与控制状态 (out_state) 不一值	可能传感器接反	
0	没有错误	正常情况	
-2	两气缸位置传感器同时为 OFF	可能传感器故障,或未采用传感系统	

表 3: 错误代码表

3.2 一站气缸组

各电流测试或电压测试站,可能会有多于一个或两个的气缸完成行程和开机及调档。这些气缸要按照预定的顺序动作,动作时序是通过产生的一序列信号来同步。

联动分析:被测品就位,第一气缸纵向传送探针到与产品按钮水平位置;再由第二气缸模向传送探针到产品输出;其它气缸控制开机或调档的按钮。

每个气缸动作都会由________开始,由_______结束。有的气缸会在前一个气缸动作完后动作,而有些气缸会同时动作。所以气缸组的联动关键是设计联动信号组、为了能灵活变动及组合、最好设计成动态变量分

¹另外章节详细描述的细节

3 模型设计标准 4

配控制形式。

由表 2 的定义,可以让程序查表为初始化程序。每次气缸做不同的动作会有不同的时间限制。这个表可由电脑修改,灵活方便定义程序初始化状态。(将要实现数据同步模型)

气缸代号	名称	初始状态变量	值	气缸用途
P1S1	站位1气缸1	act_sta	0(抬起)	移动按建器
P1S2	站位1气缸2	act_sta	0(抬起)	上下就位键
P1S3	站位1气缸2	act_sta	0(抬起)	其它

表 4: 电流测试站气缸状态初始表

注.这个表的值是可变的,将会被电脑程序更改。若要更改或查看实际设定值的方法是:

联动顺序	气缸代号	动作变量	值	计时变量	值	动作说明
1	P1S1	act_sta	0(抬起)	act_tim	25(ms)	移动按建器
2	P1S2	act_sta	0(抬起)	act_tim	25(ms)	执行按键器 1 次
3	P1S3	act_sta	0(抬起)	act_tim	25(ms)	回退按键器 1 次

表 5: 电流测试站气缸动作时序表

3.3 多站式气缸群

