AUTOMATYCZNE ROZWIĄZYWANIE PUZZLI

. . . . . . . .

**ALICJA FIGAS** 

MARCIN GRUZA

#### Dlaczego ten temat?

#### Puzzle są fajne

Dobra okazja do eksploracji tradycyjnych metod CV

## Brak istniejących rozwiązań

Obecne rozwiązania skupiają się na kwadratowych elementach

#### **Złożony problem**

Mieliśmy tu kilka podproblemów CVi nie tylko :)

#### Założenia upraszczające



Puzzle pochodzą z jednego obrazka



Niewielka liczba elementów



Jednorodne tło



Puzzle wygenerowane komputerowo lub zdjęcia





## Segmentacja puzzli

. . . . . . . .





## Detekcja krawędzi

Za pomocą filtra Canny'ego znajdujemy wszystkie krawędzie na obrazie



# Operacje morfologiczne





Pozwalają nam na domknięcie kawałków puzzli





# Znalezienie kawałków puzzli

Znajdujemy najbardziej zewnętrzne kontury





## Punkty oddalone od otoczki wypukłej Typ krawędzi 100 -**Potencjalne** narożniki

### Rozpoznawanie krawędzi

Narożniki puzzla

#### **Problem!**

Dla niektórych puzzli "główki" są mocno wysunięte, co prowadzi do błędnego rozpoznania prawidłowego narożnika



## Rozpoznawanie krawędzi

#### Rozwiązanie

Rozpoznanie "główek" i ignorowanie potencjalnych narożników leżących na jej konturze.





### Rozpoznawanie krawędzi

#### Rozwiązanie

Rozpoznanie "główek" i ignorowanie potencjalnych narożników leżacych na jej konturze.

Rozpoznawanie główek bazujące na sprawdzeniu miary "roundness" dla kawałka puzzla pomiędzy punktami wklęsłymi.





### Rozpoznawanie krawędzi

. . . . . . . .









# Porównywanie krawędzi geometryczne



Wyznaczenie wektorów kolorystycznych krawędzi puzzli i porównanie ich segmentami



## Porównywanie krawędzi kolorystyczne







Standardowy algorytm z nawrotami

Dla ułatwienia puzzle są układane od górnego lewego rogu, w prawo

W momencie braku "dobrze" pasujących puzzli algorytm wycofuje się





### Algorytm











# Puzzle wygenerowane sztucznie



Liczba elementów: 12

Liczba nawrotów:

Odległość punktowa: 13

Odległość kolorystyczna: 21





# Puzzle wygenerowane sztucznie

Liczba elementów: 30

Liczba nawrotów:

Odległość punktowa: 0

Odległość kolorystyczna: brak

rozwiązania







#### Puzzle prawdziwe

Liczba elementów: 54

## Liczba prawidłowo ustawionych puzzli:

Odległość punktowa: brak rozwiązania

Odległość kolorystyczna: brak rozwiązania







#### Puzzle prawdziwe

Liczba elementów: 20°

Liczba prawidłowo ustawionych puzzli:

Odległość punktowa: brak rozwiązania

Odległość kolorystyczna: brak rozwiązania



#### Problemy i wnioski

- Duża liczba parametrów do dostosowania dla konkretnego zestawu puzzli
- Niedoskonałość algorytmu
- Problem w kolorystycznym porównywaniu krawędzi

# Dziękujemy

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations by Stories