Chapter 11 Relations binaires sur un ensemble

Exercice 1 (11.0)

Déterminer les propriétés des relations binaires suivantes (réflexivité, symétrie, anti-symétrie, transitivité), et détecter les relations d'équivalence, d'ordre total ou partiel.

- 1. $\|$ sur \mathcal{D} , l'ensemble des droites du plan.
- **2.** \perp sur \mathcal{D} , l'ensemble des droites du plan.
- 3. $\leq \sup \mathbb{R}$.
- **4.** $\geq \sup \mathbb{R}$.
- 5. # (avoir le même cardinal) sur $E = \mathcal{P}(F)$.
- **6.** \subset sur $E = \mathcal{P}(F)$.
- 7. «être multiple de» sur \mathbb{N} .
- **8.** «être multiple de» sur \mathbb{Z} .
- **9.** $< sur \mathbb{R}$.
- **10.** \neq sur \mathbb{R} .
- 11. = sur \mathbb{R} .

Solution 1 (11.0)

Nous ferons un joli tableau en cours!

Exercice 2 (11.0)

Pour $(a, b) \in \mathbb{N}^*$, on dira que

$$a\mathcal{R}b\iff \left(\exists n\in\mathbb{N}^{\star},a=b^{n}\right).$$

La relation ${\mathcal R}$ est-elle réflexive ? Symétrique ? Antisymétrique ? Transitive ?

Solution 2 (11.0)

Exercice 3 (11.0)

Soit (E, \preceq) un ensemble ordonné. On définit une relation \lhd sur E^2 par

$$\forall (x,y) \in E^2, \forall (x',y') \in E^2, (x,y) \vartriangleleft (x',y') \iff \left((x \preceq x' \text{ et } x \neq x') \text{ ou } (x=x' \text{ et } y \preceq y') \right)$$

On peut également écrire : $(x, y) \triangleleft (x', y') \iff (x \prec x' \text{ ou } (x = x' \text{ et } y \leq y')).$

- **1.** Montrer que \triangleleft est une relation d'ordre sur E^2 .
- **2.** La relation ⊲ s'appelle ordre lexicographique, pourquoi ?
- **3.** Est-ce une relation d'ordre total ?

Exercice 4 (11.0)

Soit *Q* 1'ensemble $\{1, 2, 3, 4\}$.

- 1. Écrivez les éléments de $\mathcal{P}(Q)$.
- **2.** Quels sont les majorants de $\{2,4\}$ pour la relation d'ordre \subset dans $\mathcal{P}(Q)$?
- **3.** Quels sont les majorants de { 1 } ?
- **4.** Quels sont les majorants de l'ensemble $\{\{1\}, \{2,4\}\}$?
- **5.** La partie $\{\{1\}, \{2,4\}\}\$ de $\mathcal{P}(Q)$ a-t-elle un maximum ?
- **6.** Donnez un sous-ensemble à plusieurs éléments de $\mathcal{P}(Q)$ qui admette un maximum pour cette relation. Est-ce que $\mathcal{P}(Q)$ a un maximum ?
- 7. Reprenez pour minimum les questions posées ci-dessus pour maximum.
- **8.** Le sous-ensemble $\{\{1\}, \{2,4\}\}$ de $\mathcal{P}(Q)$ a-t-il une borne supérieure pour la relation d'ordre \subset ? Une borne inférieure ?

Solution 4 (11.0)

Exercice 5 (11.0)

Sur $\mathcal{F}(\mathbb{R}, [0, 1[), \text{ on definit la relation} \leq \text{par})$

$$f \leq g \iff \forall x \in \mathbb{R}, f(x) \leq g(x).$$

- 1. Montrer que cette relation est une relation d'ordre.
- **2.** Montrer que l'ordre est partiel.
- 3. Existe-t-il un plus grand et un plus petit élément ?