Paul Gustafson

Texas A&M University - Math 607 Instructor: Thomas Schlumprecht

HW 9

1 If $f \in L_1(0,\infty)$, define

$$g(s) = \int_0^\infty e^{-st} f(t) dt, \quad 0 < s < \infty.$$

Prove that g(s) is differentiable on $(0, \infty)$ and that

$$g'(s) = -\int_0^\infty t e^{-st} f(t) dx, \quad 0 < s < \infty.$$

Proof. Let $s\in(0,\infty)$ and $0\leq|h|\leq s/2$. We have $|e^{-st}f(t)|\leq|f(t)|$, so $e^{-st}f(t)\in L_1$. Hence

$$\frac{g(s+h) - g(s)}{h} = \int_0^\infty \frac{e^{-(s+h)t} - e^{-st}}{h} f(t) dt.$$

By the Mean Value theorem, we have

$$\left| \frac{e^{-(s+h)t} - e^{-st}}{h} f(t) \right| \le \sup_{h \in (-s/2, s/2)} \left| -te^{-(s+h)t} \right| |f(t)|$$

$$= te^{-(s/2)t} |f(t)|$$

$$\le C_s |f(t)|$$

Hence, by the DCT,

$$\lim_{h \to 0} \frac{g(s+h) - g(s)}{h} = \int_0^\infty \frac{d}{ds} e^{-st} f(t) = -\int_0^\infty t e^{-st} f(t) \, dx.$$

2 Let (Ω, μ, Σ) be a finite measure space and (f_n) be a sequence of measurable functions on Ω . Suppose that for each $\omega \in \Omega$ there is an $M_{\omega} \in \mathbb{R}$ so that for all $k \in \mathbb{N}$, $|f_k(\omega)| \leq M_{\omega}$. Let $\epsilon > 0$. Show that there is a measurable $A \subset \Omega$ and an $M \in \mathbb{R}$ so that $\mu(\Omega \setminus A) < \epsilon$ and $f_k(\omega) < M$ for all $k \in \mathbb{N}$ and all $\omega \in A$.

Proof. Let $\epsilon > 0$ and $E_j := \bigcap_n \{f_n < j\}$. Then (E_j) is increasing and $\bigcup_j E_j = \Omega$. Hence $\lim_j \mu(E_j) = \mu(\Omega)$. Since $\mu(Omega) < \infty$, we can pick M such that $\mu(\Omega \setminus E_M) = \mu(\Omega) - \mu(E_M) < \epsilon$. Moreover, if $\omega \in E_M$, then $f_k(\omega) < M$ for all k.

3 57/page 77. Show that $\int_0^\infty e^{-sx}x^{-1}\sin x\,dx = \arctan(s^{-1})$ for s>0 by integrating $e^{-sxy}\sin x$ with respect to x and y. (Hints: $\tan(\frac{\pi}{2}-\theta)=\cot\theta$ and Exercise 31d.)

Proof. We have

$$\int_0^\infty e^{-sx}x^{-1}\sin x \, dx = s \int_0^\infty \int_1^\infty e^{-sxy}\sin x \, dy dx$$
$$= s \int_1^\infty \int_0^\infty e^{-sxy}\sin x \, dx dy$$

4 60/page 77. $\Gamma(x)\Gamma(y)/\Gamma(x+y)=\int_0^1 t^{x-1}(1-t)^{y-1}\,dt$. (Recall that Γ was defined in Section 2.3. Write $\Gamma(x)\Gamma(y)$ as a double integral and use the argument of the exponential as a new variable of integration.)

5 Given a bounded function $f:[a,b]\to\mathbb{R}$, define

$$H(x) = \lim_{\delta \to 0} \sup_{|x-y| \le \delta} f(y)$$
, and $h(x) = \lim_{\delta \to 0} \inf_{|x-y| \le \delta} f(y)$

- a) For $x \in [a, b]$, f continuous at $x \iff H(x) = h(x)$.
- **b)** Assume now that (P_k) is an increasing sequence of partitions of [a,b] for which the mesh converges to zero. Write $P_k = (t_0^{(k)}, t_1^{(k)}, \dots, t_{n_k}^{(k)})$. Define for $x \in [a,b]$,

$$G(x) = \lim_{k \to \infty} G_{P_k}(x)$$
 and $g(x) = \lim_{k \to \infty} g_{P_k}(x)$,

where for a partition $P = (t_0, t_1, \dots, t_n)$

$$G_P = \sum_{i=1}^n \chi_{(t_{i-1},t_i]} \sup_{t \in (t_{i-1},t_i]} f(t) \text{ and } g_P = \sum_{i=1}^n \chi_{(t_{i-1},t_i]} \inf_{t \in (t_{i-1},t_i]} f(t).$$

Prove that H = G and h = g m-a.e.

- c) Show that f is Riemann integrable \iff the set of discontinuities of f has Lebesgue measure zero.
- **6** Problem 30/page 60. Hint: AM-GM. Show that $\lim_{k\to\infty} \int_0^k x^n (1-k^{-1}x)^k dx = n!$
- 7 Problem 1/88. Let ν be a signed measure on (X, \mathcal{M}) . If (E_j) is an increasing sequence in \mathcal{M} , the $\nu(\bigcup_{1}^{\infty} E_j) = \lim_{j \to \infty} \nu(E_j)$. If (E_j) is a decreasing sequence in \mathcal{M} and $\nu(E_1)$ is finite, then $\nu(\bigcap_{1}^{\infty} E_j) = \lim_{j \to \infty} \nu(E_j)$.
- **8** Problem 4/88. If ν is a signed measure and λ, μ are positive measures such that $\nu = \lambda \mu$, then $\lambda \geq \nu^+$ and $\mu \geq \nu^-$.
- **9** Problem 7/88. Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$.
- **a.** $\nu^+(E)=\sup\{\nu(F): F\in\mathcal{M}, F\subset E\}$ and $\nu^-(E)=-\inf\{\nu(F): F\in\mathcal{M}, F\subset E\}.$
- **b.** $|\nu|(E) = \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\}.$