Introduction to Security Principles

Shambhu Upadhyaya Wireless Network Security CSE 566 (Lectures 3,4)

Shambhu Upadhyaya

Outline

- Basic Encryption Methodology
- Message Authentication and Integrity
- Program Security
- Network Security
- Intrusion Detection
- Firewalls

Popular Encryption Methods

- Stream Ciphers
 - One Time Pad
 - RC4
- Block Ciphers
 - DES/AES
 - RSA
 - RC5

Shambhu Upadhyaya

Stream Ciphers

- Processes the message bit by bit (as a stream)
- Typically has a (pseudo) random stream key
- Combined (XORed) with plaintext bit by bit
- Randomness of **stream key** completely destroys any statistically properties in the message
 - $C_i = M_i \text{ XOR StreamKey}_i$
- Concept is very simple!
- Stream key should not be reused
 - If reused the patterns can be used to reidentify the message

Stream Cipher Properties

- Some design considerations are:
 - Long period with no repetitions
 - Statistically random
 - Depends on large enough key
 - Large linear complexity
 - Correlation immunity
 - Confusion
 - Diffusion
 - Use of highly non-linear boolean functions

Shambhu Upadhyaya

RC4

- A proprietary cipher owned by RSA DSI
- Another Ron Rivest design, simple but effective
- Variable key size, byte-oriented stream cipher
- Widely used (web SSL/TLS, wireless WEP)
- Key forms random permutation of all 8-bit values
- Uses that permutation to scramble input info. processed a byte at a time

RC4 Key Schedule

- Starts with an array S of numbers: 0..255
- Use key to well and truly shuffle
- S forms internal state of the cipher
- Given a key k of length I bytes

```
for i = 0 to 255 do
  S[i] = i
i = 0
for i = 0 to 255 do
  j = (j + S[i] + k[i \mod 1]) \pmod{256}
  swap (S[i], S[j])
```


University at Buffalo The State University of New York

Shambhu Upadhyaya

RC4 Encryption

- Encryption continues shuffling array values
- Sum of shuffled pair selects "stream key" value
- XOR with next byte of message to en/decrypt

```
i = j = 0
for each message byte Mi
  i = (i + 1) \pmod{256}
  j = (j + S[i]) \pmod{256}
  swap(S[i], S[j])
  t = (S[i] + S[j]) \pmod{256}
  C_i = M_i \text{ XOR S[t]}
```


University at Buffalo The State University of New York

RC4 Security

- Since RC4 is a stream cipher, must never reuse a key
- Used in SSL and WEP
- Claimed secure against known attacks
 - Falls short of the standards of a secure cipher in several ways, and thus is not recommended for use in new applications
- Fluhrer, Mantin and Shamir Attack can be used to break the cipher

Shambhu Upadhyaya

Block Cipher Characteristics

- Features seen in modern block ciphers are:
 - Variable key length/block size/no. of rounds
 - Mixed operators, data/key dependent rotation
 - Key dependent S-boxes
 - More complex key scheduling
 - Operation of full data in each round
 - Varying non-linear functions

Shambhu Upadhyaya

DES Algorithm

- Confusion and Diffusion
- 64 bit block cipher, plaintext is encrypted in blocks of 64 bits
- Substitution and Permutation (Transposition)
- 56 bit key + 8 bit parity = 64 bit key
- Repetitive nature shift and xor
- Outline
 - Split data in half
 - Scramble each half independently
 - Combine key with one half
 - Swap the two halves
 - Repeat the process 16 times

AES (Advanced Encryption Standard) Requirements

- Private key symmetric block cipher
- 128-bit data, 128/192/256-bit keys
- Stronger & faster than Triple-DES
- Active life of 20-30 years (+ archival use)
- Provide full specification & design details
- Both C & Java implementations
- NIST have released all submissions & unclassified analyses

University at Buffalo The State University of New York

Rijndael

- Processes data as 4 groups of 4 bytes (state)
- Has 9/11/13 rounds in which state undergoes:
 - byte substitution (1 S-box used on every byte)
 - shift rows (permute bytes between groups/columns)
 - mix columns (subs using matrix multiply of groups)
 - add round key (XOR state with key material)
- Initial XOR key material & incomplete last round
- All operations can be combined into XOR and table lookups - hence very fast & efficient

Public Key Infrastructure

- Based on mathematical functions
- Asymmetric (two separate keys)
- Enhances confidentiality, key distribution and authentication
- Ingredients are
 - Plaintext
 - Encryption algorithm
 - Public and private keys
 - Ciphertext
 - Decryption algorithm

Shambhu Upadhyaya

RSA

- RSA encryption and decryption are commutative, hence it may be used directly as a digital signature scheme
- Given an RSA scheme {(e,R), (d,p,q)}
- To sign a message, compute:
 - $S = M^d \pmod{R}$
- To verify a signature, compute:
 - $M = S^e \pmod{R} = M^{e.d} \pmod{R} = M \pmod{R}$
- Thus know the message was signed by the owner of the public-key

Shambhu Upadhyaya

RSA

- Would seem obvious that a message may be encrypted, then signed using RSA without increasing its size
- But have blocking problem, since it is encrypted using the receivers modulus, but signed using the senders modulus (which may be smaller)
- Several approaches possible to overcome this
- More commonly use a hash function to create a separate message digest which is then signed

Shambhu Upadhyaya

RC5

- A proprietary cipher owned by RSADSI
- Designed by Ronald Rivest (of RSA fame)
- Used in various RSADSI products
- Can vary key size / data size / no. of rounds
- Very clean and simple design
- Easy implementation on various CPUs
- Yet still regarded as secure

RC5 Ciphers

- RC5 is a family of ciphers RC5-w/r/b
 - w = word size in bits (16/32/64)
 data=2w
 - r = number of rounds (0..255)
 - b = number of bytes in key (0..255)
- Nominal version is RC5-32/12/16
 - i.e., 32-bit words, so encrypts 64-bit data blocks
 - using 12 rounds
 - with 16 bytes (128-bit) secret key

Shambhu Upadhyaya

RC5 Key Expansion

- RC5 uses 2r+2 subkey words (w-bits)
- Subkeys are stored in array S[i], i=0..t-1
- Then the key schedule consists of
 - Initializing S to a fixed pseudorandom value, based on constants e and phi
 - The byte key is copied (little-endian) into a c-word array L
 - A mixing operation then combines L and S to form the final S array

RC5 Encryption

Split input into two halves A & B

```
L_0 = A + S[0];
R_0 = B + S[1];
for i = 1 to r do
   L_i = ((L_{i-1} XOR R_{i-1}) <<< R_{i-1}) + S[2 x i];
   R_i = ((R_{i-1} \text{ XOR } L_i) <<< L_i) + S[2 \times i + 1];
```

- Each round is like 2 DES rounds
- Note rotation is main source of non-linearity
- Need reasonable number of rounds (e.g., 12-16)

Shambhu Upadhyaya

RC5 Modes

- RFC2040 defines 4 modes used by RC5
 - RC5 Block Cipher, is ECB mode
 - RC5-CBC, is CBC mode
 - RC5-CBC-PAD, is CBC with padding by bytes with value being the number of padding bytes
 - RC5-CTS, a variant of CBC which is the same size as the original message, uses ciphertext stealing to keep size same as original

Message Authentication

- Message authentication is concerned with
 - Protecting the integrity of a message
 - Validating identity of originator
 - Non-repudiation of origin (dispute) resolution)
- Can be provided by three methods
 - Message encryption
 - Message authentication code (MAC)
 - Hash function

Shambhu Upadhyaya

Message Encryption

- Message encryption by itself also provides a measure of authentication
- If symmetric encryption is used then
 - Receiver knows sender must have created it
 - Since only sender and receiver know the key used
 - Content cannot be altered
 - If message has suitable structure, redundancy or a checksum to detect any changes

Message Encryption

- If public-key encryption is used
 - Encryption provides no confidence of sender at all
 - Since anyone potentially knows public-key
 - However if
 - Senders sign message using their private-key
 - Then encrypts with recipients public key
 - Have both secrecy and authentication
 - But at the cost of two public-key uses on message

Shambhu Upadhyaya

Message Authentication Code (MAC)

- Generated by an algorithm that creates a small fixed-sized block
 - Depending on both message and some key
 - Like encryption, though need not be reversible
- Appended to message as a signature
- Receiver performs same computation on message and checks if it matches the MAC
- Provides assurance that message is unaltered and comes from sender

Shambhu Upadhyaya

Digital Signatures

- Have looked at message authentication
 - But does not address issues of lack of trust
- Digital signatures provide the ability to
 - Verify author, date & time of signature
 - Authenticate message contents
 - Be verified by third parties to resolve disputes
- Hence include authentication function with additional capabilities

Shambhu Upadhyaya

Digital Signature Properties

- Must depend on the message signed
- Must use information unique to sender
 - To prevent both forgery and denial
- Must be relatively easy to produce
- Must be relatively easy to recognize & verify
- Be computationally infeasible to forge
 - With new message for existing digital signature
 - With fraudulent digital signature for given message
- To be practical, save digital signature in storage

Shambhu Upadhyaya

Direct Digital Signatures

- Involve only sender & receiver
- Assumes receiver has sender's public-key
- Digital signature made by sender signing entire message or hash with private-key
- Can encrypt using receivers public-key
- Important that sign first then encrypt message & signature
- Security depends on sender's private-key

Shambhu Upadhyaya

Arbitrated Digital Signatures

- Involves use of arbiter A
 - Validates any signed message
 - Then dated and sent to recipient
- Requires suitable level of trust in arbiter
- Can be implemented with either private or public-key algorithms
- Arbiter may or may not see the message

Digital Signature Standard (DSS)

- U.S. Govt approved signature scheme FIPS 186
- Uses the SHA hash algorithm
- Designed by NIST & NSA in early 90's
- DSS is the standard, DSA is the algorithm
- A variant on ElGamal and Schnorr schemes
- Creates a 320 bit signature, but with 512-1024 bit security
- Security depends on difficulty of computing discrete logarithms

Shambhu Upadhyaya

DSA Key Generation

- Have shared global public key values (p,q,g):
 - A large prime p such that 2^{L-1}
 - Where L= 512 to 1024 bits and is a multiple of 64
 - Choose q, a 160 bit prime factor of p-1
 - Choose q = h^{(p-1)/q}
 - Where h < p-1, $h^{(p-1)/q} \pmod{p} > 1$
- Users choose private & compute public key:
 - Choose x<q
 - Compute y = g^x (mod p)

University at Buffalo The State University of New York

Shambhu Upadhyaya

DSA Signature Creation

- To **sign** a message M the sender:
 - Generates a random signature key k, k<q
 - k must be random, be destroyed after use, and never be reused
- Then computes signature pair:

```
r = (g^k (mod p)) (mod q)
s = (k^{-1}.SHA(M) + x.r) \pmod{q}
```

Sends signature (r,s) with message M

Shambhu Upadhyaya

DSA Signature Verification

- Having received M & signature (r,s)
- To verify a signature, recipient computes:

```
w = s^{-1} \pmod{q}
u1= (SHA(M).w) (mod q)
u2 = (r.w) \pmod{q}
v = (g^{u1}.y^{u2}(mod p)) \pmod{q}
```

If v=r then signature is verified

University at Buffalo The State University of New York

Program/Application Security

- Intrusion by misusing programs in clever ways to obtain unauthorized higher levels of privilege
- To prevent this a baseline behavior is established by observing the system call sequences
- This can be done by executing the program in isolation and generating huge amount of data to train the system
- Any malicious activity is captured through deviations from this baseline behavior
- Avoids attacks such as obtaining root privileges illegally, running malicious code, insider threats, etc.

Shambhu Upadhyaya

Program/Application Security

- Advantages
 - Provides "true" end-to-end security
 - Flexibility
 - Protection against insider attacks
 - Secure audit trails
 - Mandate Use
- Disadvantages
 - Application dependence
 - Maintenance difficulties
 - Process speed degradation

Shambhu Upadhyaya

Network Security

- The aim of network security is to protect networks from unauthorized modification, destruction, or disclosure, and provision of assurance that the network performs its critical functions correctly without harmful side-effects
- Detection based on packet patterns
- One of the methods for detecting intrusions is by using honeypots
- Avoids unauthorized access to network resources, Denial Of Service attacks, etc.

Shambhu Upadhyaya

Network Security

- Advantages
 - Application independent
 - Reduced cost
 - Protection against external attack
 - Ease of upgrade and modification

Shambhu Upadhyaya

Intruders

- Significant issue for networked systems is hostile or unwanted access
- Either via network or local
- Can identify classes of intruders:
 - Masquerader
 - Misfeasor
 - Clandestine user
- Varying levels of competence

Shambhu Upadhyaya

Intruders

- Clearly a growing publicized problem
 - From "Wily Hacker" in 1986/87
 - Clearly escalating CERT stats
- May seem benign, but still cost resources
- May use compromised system to launch other attacks

Intrusion Techniques

- Aim to increase privileges on system
- Basic attack methodology
 - Target acquisition and information gathering
 - Initial access
 - Privilege escalation
 - Covering tracks
- Key goal often is to acquire passwords
- So then exercise access rights of owner

Shambhu Upadhyaya

Password Guessing

- One of the most common attacks
- Attacker knows a login (from email/web page etc.)
- Then attempts to guess password for it
 - Try default passwords shipped with systems
 - Try all short passwords
 - Then try by searching dictionaries of common words
 - Intelligent searches try passwords associated with the user (variations on names, birthday, phone, common words/interests)
 - Before exhaustively searching all possible passwords
- Check by login attempt or against stolen password file
- Success depends on password chosen by user
- Surveys show many users choose poorly

Password Capture

- Another attack involves password capture
 - Watching over shoulder as password is entered
 - Using a Trojan horse program to collect
 - Monitoring an insecure network login (e.g., telnet, FTP, web, email)
 - Extracting recorded info after successful login (web history/cache, last number dialled, etc.)
- Using valid login/password can impersonate user
- Users need to be educated to use suitable precautions/countermeasures

University at Buffalo The State University of New York

Shambhu Upadhyaya

Intrusion Detection

- Inevitably will have security failures
- So need also to detect intrusions so you can
 - Block if detected quickly
 - Act as deterrent
 - Collect info. to improve security
- Assume intruder will behave differently to a legitimate user
 - But will have imperfect distinction between

University at Buffalo The State University of New York

Approaches to Intrusion Detection

- Anomaly Detection Systems
 - Statistical Approaches
 - User Intent Identification
 - Predictive pattern generation
 - Neural Networks
- Misuse Detection Systems
 - Expert Systems
 - Signature Analysis
 - Colored Petri Nets

Shambhu Upadhyaya

What is a Firewall?

- A choke point of control and monitoring
- Interconnects networks with differing trust
- Imposes restrictions on network services
 - Only authorized traffic is allowed
- Auditing and controlling access
 - Can implement alarms for abnormal behavior
- Is itself immune to penetration
- Provides perimeter defense

Firewall Limitations

- Cannot protect from attacks bypassing it
 - E.g., sneaker net, utility modems, trusted organizations, trusted services (e.g., SSL/SSH)
- Cannot protect against internal threats
 - E.g., disgruntled employee
- Cannot protect against transfer of all virus infected programs or files
 - Because of huge range of O/S & file types

Firewalls - Packet Filters

- Simplest of components
- Foundation of any firewall system
- Examine each IP packet (not content) and permit or deny according to rules
- Hence restrict access to services (ports)
- Possible default policies
 - That not expressly permitted is prohibited
 - That not expressly prohibited is permitted

Shambhu Upadhyaya

Attacks on Packet Filters

- IP address spoofing
 - Attack by spoofing trusted source addresses
 - Remedy: Configure filters to ignore external incoming packets with internal source IP addresses
- Source routing attacks
 - Source routing involves specifying the exact route of the packet in the network
 - Attacker sets a route other than default so as to attack a particular resource
 - Remedy: Block source routed packets until necessary

Attacks on Packet Filters

- Tiny fragment attacks
 - Split packet over several tiny packets (intentionally or due to underlying media requirements)
 - Generally packet filters reject the first packet and let others pass with assumption that without the first packet the whole message cannot be reassembled
 - To prevent an attack configure firewalls to keep a cache of recently seen first fragments and the filtering decision that was reached, and look up non-first fragments in this cache in order to apply the same decision

