CORDAS VIBRANTES COMO INTRODUÇÃO À REALIDADE QUÂNTICA

A.D.TAVARES[†], A.J.SANTIAGO, C.A. DE AZEVEDO e R.A.GONÇALVES LEDO Instituto de Fisica Universidade do Estado do Rio de Janeiro - UERJ Rua São Francisco Xaviez, 524 20550 Rio de Janeiro, RJ

RESUMO

Neste trabalho descrevemos a construção de um dispositivo capaz de nos revelar os modos normais de vibração de uma corda sem fazer uso de gerador de áudio. Todos os estágios da montagen são descritos em detalhes. Os aspectos da quantificação são ressaltados e o clássico problema da corda vibrante é discutido. Por questão de completeza, a quantificação do momentum e da energia para uma partícula em uma cai xa rígida é brevemente revisada.

INTRODUÇÃO

Baseado en leis de conservação como a do momentum, momentum angular e a da conservação da energia, podemos desenvolver todo um formalismo denominado mecânica clássica [1]. Este formalismo descreve em detalhe o movimento de um ponto material ou de um sistema de partículas, baseado nas hipóteses de que estas estão localizadas no espaço e que podemos observá-las, sem perturbar apreciavelmente seus movimentos. Em geral, tais hipóteses não são estabelecidas de um modo preciso, mas estão sempre implícitas em nosso raciocínio.

In memorian.

O formalismo da mecânica clássica é bem aceito, quase naturalmente, pelos alunos, uma vez que devido a suas interações com a natureza já adquiríu, bem ou mal, algum con ceito intuitivo, bastando muitas vezes apenas refiná-lo. Nin guén precisa estudar física para ter uma idéia intuitiva de distância (deslocamento), velocidade, aceleração, ou até mes mo energia.

Existe porém um mundo distante (no sentido de que não podemos interagir diretamente com ele) do que vivemos, o mundo da microfísica no qual, em geral, os conceitos da mecânica clássica são inaplicáveis, como evidenciam certos resultados experimentais. É o campo de domínio do formalismo denominado Mecânica Quântica. A mecânica quântica em seu estado atual é resultado dos trabalhos de Louis de Broglie, Ervin Schrödinger, Werner Heisenberg, Paul Dirac, Max Born, entre outros, que a desenvolveram nos fins da década de 20.

Na Mecânica Quântica ou Mecânica Ondulatória, como a esta se referen muitos autores, um método geral de atacar um problema é escrever e esperar resolver uma equação conhecida como a equação de Schrödinger [2]. Em muitos problemas esta equação é exatamente análoga à equação de onda que descreve a propagação de ondas transversais em um fio esticado. em suas extremidades. Como é bem conhecido e nos veremos nes ta discussão, o fio pode vibrar em um estado estacionário em qualquer um dos diversos modos normais de vibração, quatro dos quais estão mostrados na Figura 1. Vemos então que pode haver un nodo en cada extremo e um antinodo no centro, ou pode haver um nodo nos extremos bem como no centro, com antinodos à meia distância entre os nódos, e assim por diante. O resul tado importante é que sempre há un número inteiro de antinodos, nos modos normais de vibração. A distância entre nodos (ou antinodos) é a metade de um comprimento de onda, de modo que se L é o comprimento da corda, os comprimentos de onda λ das possíveis ondas estacionárias são:

$$\lambda_{j} = \frac{1}{j} \cdot 2L \quad , \tag{1}$$

onde j = 1,2,3, ..., é um número inteiro igual ao de antinodos.

Uma onda estacionária é equivalente a duas ondas propagando-se em sentidos postos, as duas ondas sendo refletidas seguidamente nos extremos do fío. Isto é análogo ao movimento de uma partícula movendo-se livremente para frente e para trás ao longo de uma reta, e sofrendo choques elásticos em dois pontos separados por uma distância L. De acordo com a Mecânica Quântica, uma onda de Schrödinger estacionária é completamente equivalente a uma tal partícula, e o comprimento de onda λ da onda estacionária está relacionado com o momentum p da partícula pela relação p = h/λ , onde h é a constante de Planck que no sistema MKS é dada por h = 6,6262 × 10 $^{-34}$ J.s. O momentum da partícula só pode ter, então, algum dos valores

$$p_j = j \times \frac{h}{2L}$$
 . (2)

Partindo de condições gerais impostas ao sistema relacionadas com a homogeneidade e a isotropia do espaço e o princípio de relatividade de Galileu, somos conduzidos a uma dependência quadrática da energia da partícula com respeito ao seu momentum p; E = p²/2m, classicamente. Na Mecânica Quântica essas mesmas exigências do espaço conduzem a uma mesma relação entre os autovalores da energia e o momentum - grandezas conservativas (para uma partícula livre).

A energia E, correspondente à quantidade de movimento p_i, é portanto:

$$E_{j} = \frac{p_{j}^{2}}{2m} = j^{2} \frac{h^{2}}{8mL^{2}} . (3)$$

Se a partícula é livre para se mover en qualquer direção no interior de uma caixa cúbica de aresta de comprimen to L e com arestas paralelas aos eixos x, y e z, a quantidade de movimento só pode ter os seguintes valores em cada coordenada:

$$p_x = j_x \frac{h}{2L}$$
; $p_y = j_y \frac{h}{2L}$ e $p_z = j_z \frac{h}{2L}$. (4)

onde j_x , j_y e j_z são números inteiros chamados números quânticos, cada un deles podendo ter algum dos valores, 1, 2, 3, etc.

Cada conjunto de números quânticos correspondente, por tanto, a una certa direção da quantidade de movimento. Então, se \mathbf{p}_{j} é a quantidade de movimento resultante correspondente a algum conjunto de números quânticos $\mathbf{j}_{\mathbf{x}}$, $\mathbf{j}_{\mathbf{y}}$ e $\mathbf{j}_{\mathbf{z}}$, é dada por:

$$p_j^2 = p_x^2 + p_y^2 + p_z^2 = (j_x^2 + j_y^2 + j_z^2) \frac{h^2}{4L^2}$$
, (5)

ou ainda

$$p_{j} = j_{j}^{2} \frac{h^{2}}{4L^{2}}$$

s e

$$j_x^2 + j_y^2 + j_z^2 - j_j^2$$
, (6)

Diz-se que os valores j_x , j_y , j_z , definem o <u>estado</u> da partícula, e as energías correspondentes aos diferentes valores de j_i^2 são os níveis de energía possíveis. Os níveis de energía só dependen dos valores de j_i e não dos valores individuais de j_x , j_y , j_z . En outras palavras, a energía só depende do módulo da quantidade de movimento p_j e não de sua direção ou sentido, exatamente como em Mecânica Clássica.

Vimos então que podemos ilustrar, embora que, ainda classicamente (teoria da propagação da onda na corda), a quantização. Este trabalho sugere justamente um dispositivo experimental de montagem extremamente simples, dispensando inclusive o uso de gerador de áudio.

DISCUSSÃO TEÓRICA - CORDAS VIBRANTES

al Equação de Onda numa Corda Vibrante

Suponhamos uma corda de um material qualquer estica-

da sob uma tensão F por suas extremidades. Para desenvolver o estudo do movimento ondulatório (MO) na corda, podemos supor que ela tenha um comprimento muito grande, de modo que não precisemos considerar os efeitos advindos das suas extre nidades nas quais ocorrem reflexão de ondas, a onda refletida superpondo-se à onda direta, o que complica o estudo. Po demos, deste modo, supor uma onda percorrendo a corda cuja direção é a direção x (Figura 2). Na Figura 3, ampliamos a onda da Figura 2 para analisá-la; vemos nesta figura, um ele mento Ax da corda em vibração transversal; suas extremidades 1 e 2 tem ordenadas a e a', e estão submetidas às forças F e F' produzidas pela tensão, respectivamente. A amplitude da onda é relativamente pequena em relação ao seu comprimento λ, de modo que podemos considerar a inclinação do elemento Ax. em relação à posição de repouso x como muito pequena, isto é, o ângulo θ é muito pequeno. Desprezaremos os efeitos de atri to. A resultante das forças externas que atuam no elemento x será R = F +F', onde se desprezou também o peso do elemento Ax por ser muito pequeno em relação às forças.

Projetando R sobre x e sobre a direção ortogonal s x, teremos:

$$R_{x} = F_{x} \cdot F'_{x} = F' \cos\theta' - F \cos\theta$$
,
 $R_{a} = F_{a} \cdot F'_{a} = F' \sin\theta' - F \sin\theta$. (7)

Vamos admitir a hipótese de que não haja deslocamento de Δx ao longo de x, desse modo, a aceleração ao longo de x será nula, isto é, F' $\cos\theta$ ' -F $\cos\theta$ = 0. Desenvolvendo $\cos\theta$ em série:

$$\cos \theta = 1 - (1/2) \theta^2 + (1/4) \theta^4 + \dots$$
 (8)

Como por hipótese θ e θ' são muito pequenos, podemos desprezar os termos após o primeiro nesse desenvolvimento, isto é, cosθ ≡ cosθ e então F'cosθ - Fcosθ = 0, logo, F' = F, ou o módulo da tensão ao longo da corda não varia quando ela vi-

Figura 1 - Modos normais de vibração em uma corda vibrante.

Figura 2 - Movimento ondulatório em uma corda.

Figura 3 - Movimento ondulatório em uma corda vibrante, as principais quantidades geométricas e físicas para tratar o problema estão indicadas.

bra. Vejamos a componente ortogonal a x:

$$F' \operatorname{sen}\theta' - F \operatorname{sen}\theta = \Delta m Y$$
, (9)

como F' - F

$$F(sen\theta' - sen\theta) = \Delta m Y$$
, (10)

onde Y é a aceleração do elemento de massa Am. Definindo

$$\Delta sen\theta = (\Delta sen\theta/\Delta x)\Delta x$$

e, tendo em vista que 8 é muito pequeno

$$sen\theta = tg\theta = \frac{\Delta a}{\Delta x} = \frac{\partial a}{\partial x}$$

e assim,

$$\frac{\partial \sin \theta}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial a}{\partial x} \right) = \frac{\partial^2 a}{\partial x^2} ,$$

logo.

$$F \frac{\partial^2 \mathbf{a}}{\partial \mathbf{x}^2} \Delta \mathbf{x} = m \mathbf{Y} = (u \Delta \mathbf{x}) \frac{\partial^2 \mathbf{a}}{\partial \mathbf{t}^2}$$

onde $\mu = \Delta n/\Delta x$ é a densidade linear da corda, e $\Upsilon = \frac{3^2 a}{3t^2}$. Portanto,

$$\frac{\partial^2 a}{\partial t^2} = \frac{F}{\mu} \frac{\partial^2 a}{\partial x^2} , \qquad (11)$$

que é a equação de onda para a corda vibrante. Comparando com a equação de onda

$$\frac{\partial^2 a}{\partial t^2} = v^2 \left(\partial^2 a / \partial x^2 \right) \tag{12}$$

observa-se que

b) Reflexão da Onda numa Corda Vibrante. Ondas Estacionárias

Suponhamos uma corda vibrante de comprimento L presa pelas extremidades. Uma onda gerada, por exemplo, na extremi dade 1, em que supostamente se desfez momentaneamente a fixação, progride na corda até a extremidade 2 e aí se reflete. Vejamos en que consiste essa reflexão. A extremidade 2 não pode vibrar pois está fixada; a extremidade imediatamente an terior à 2 exerce sobre a 2 uma força para deslocá-la na direção ortogonal à direção da corda; a 2 reage forçando-a na mesma direção mas no sentido contrário. Isto significa que se origina na extremidade 2 um movimento ondulatório de sentido contrário, a onda muda de fase de 180° e muda o sentido de propagação. Veja Figuras 4 e 5. Diz-se que a onda se refletiu na extremidade 2 mudando a fase; é claro que a sua velo cidade também mudou de sentido, pois a onda percorre a corda no sentido inverso. Ao chegar à extremidade 1, o processo se repete como na extrenidade 2, a onda se inverte novamente, sua velocidade muda de sentido e ela reassume o mesmo aspecto da Figura 4. Se não houver perda de energia essa onda ficará percorrendo a corda da extremidade 1 para a 2; da 2 para a 1; no vamente da 1 para a 2, etc. indefinidamente. O estudante poderá indagar: - e se nos gerarmos uma onda no ponto médio da corda, por exemplo, isto é, se deslocarmos momentaneamente o ponto médio da corda, o que acontecerá? É óbvio que nesse ca so, o ponto médio P da corda, tendo executado uma vibração, originará uma onda para a direita e outra para a esquerda. Co mo o material da corda é o mesmo, homogêneo, a sua tensão é a nesma ao longo do seu comprimento, a velocidade das duas ondas terá o mesmo valor, apenas sentidos contrários. Deste modo, se a equação da onda que progride para a direita é a, = f(x -vt) a equação da onda que progride para a esquerda será a, = f(x +vt), pois a velocidade mudou de sinal. Essa ex pressão também pode ser deduzida diretamente, como se fez no início do estudo para a onda que progride para a direita.

Qualquer ponto da onda pode ser sede do movimento ondulatório, como um ponto p_1 próximo à extrenidade 1 ou 2. Essas on das vão refletir-se nas extremidades fixas 1 e 2 e compor-se, sem interferir com as ondas diretas. Nas Figuras 6, as duas ondas no meio da corda se refletem nas extremidades 1 e 2, passam uma pela outra, se interferem e prosseguem em seguida como se não tivesse havido nada. Observe-se que a função da onda que se reflete na extremidade 2 terá a expressão $a_2^{\prime} = -f(x+vt)$. Se a onda é senoidal, teremos:

$$a_1 = A \operatorname{sen}\omega \Big(t - (x/v)\Big)$$

$$a_2 = -A \operatorname{sen}\omega \Big(t + (x/v)\Big) .$$
(14)

Para facilitar, <u>vamos supor ondas senoidais</u> origina<u>n</u> do-se próximo à extremidade 1 e refletindo-se em 2. Essas o<u>n</u> das interferem umas com as outras e no ponto x o deslocamento resultante será dado pela soma dos dois:

$$a = a_1 + a_2 = A \operatorname{sen} \left(\omega t - \frac{\omega x}{v} \right) - A \operatorname{sen} \left(\omega t + \frac{\omega x}{v} \right)$$
, (15)

logo.

onde

$$/A = \left(-2A \operatorname{sen}(2\pi x/\lambda)\right) . \tag{17}$$

c) Condições de Contorno

As condições de contorno são condições que a função da onda deve satisfazer na fronteira ou no contorno do meio, isto é, neste caso, nas extremidades da corda. Na extremidade 1, fixada, a amplitude é nula, o que se verifica pois, para x = 0, /A = 0. Na extremidade 2, também fixada, devemos ter ainda A = 0, ora na extremidade 2, x = L, comprimento da cor

Figuras 4 e 5 - Reflexão de onda na corda.

Figura 6 - Interferência de onda na corda.

da; logo,

$$\frac{2\pi}{\lambda} L = j\pi ,$$

en que j é un número inteiro. Assim,

$$L = j \frac{\lambda}{2}$$

ou

$$\lambda = \frac{2L}{l} .$$
 (18)

Se a velocidade da onda é

$$v = \sqrt{F/\mu}$$
.

sendo v = λN , λ = v/N, em termo de frequência temos:

$$N = j \frac{v}{2L} = j \left\{ 1/2L \left(\sqrt{F/u} \right) \right\} , \qquad (19)$$

isto é, a frequência é múltipla de $\frac{1}{2L}\sqrt{F/\mu}$. Esse resultado pode ser resumido dizendo que uma corda de massa específica u, de comprimento L presa pelas duas extremidades e sob uma tensão F, as frequências de vibração são múltiplas de $1/2L\left(\sqrt{(F/\mu)}\right)$. Observe-se que a corda só pode vibrar com essas frequências, ou ainda que, a onda que percorre a corda é tal, que o comprimento da corda é múltiplo de semi-comprimentos de onda $L=j\frac{\lambda}{2}$. Isto significa ainda que se agitarmos ou sacudirmos um ponto da corda com uma frequência diferente dos valo res acima, a corda não entra en vibração, não havendo ondas percorrendo a corda. As frequências e os comprimentos de onda possíveis são:

$$N_{j} = j \left[\frac{1}{2L} \sqrt{\frac{F}{\mu}} \right]$$
 (20)

 $\lambda_j = \frac{1}{j} 2L$,

em que j = 1, 2,.... Para cada valor de j haverá um modo de a corda vibrar, ao varíar j obtemos os diferentes modos de vibração da corda. Por outro lado, para cada valor de j haverá pontos de corda que ficam parados, isto é, ficam estacionários. Para j = 1 são as duas extrenidades da corda que ficam estacionárias e, nesse caso, x = 2L, a corda toda vibra entre duas posições extremas. No decorrer do tempo cada ponto x vibrará harmonicamente entre esses extremos. Este efeito é ilustrado na Figura 1, onde são mostrados vários modos de vibração da corda.

A corda apresenta assim um aspecto estacionário e, por isso, as ondas se denominam ondas estacionárias.

O modo para j=1 se denomina fundamental, ou harmonico 1 e os outros modos harmonicos 2, 3, 4, etc. A corda só pode vibrar com o fundamental e seus múltiplos. Os pontos $f\underline{i}$ xos se denominam nos e os pontos que vibram, ventres.

Esse exemplo é muito importante para o estudante com preender os postulados da Mecânica Quântica, pois neste caso, nem todos os valores da frequência ou do comprimento de onda são possíveis, ou permitidos na corda, tendo en vista as con dições de contorno e podemos dizer que o movimento ondulatório está "quantificado". A passagem de uma onda ou de uma fre quência para outra não pode ser feita continuamente, mas por multiplos da frequência fundamental

$$N_1 = \frac{1}{2L} \sqrt{\frac{F}{\mu}}$$
, $N_2 = 2N_1$, $N_3 = 3N_1$, $N_4 = 4N_1$, ...

111. DESCRIÇÃO DA EXPERIÊNCIA

Na montagem realizada com o Kit de acústica (3), um fio de cobre de massa específica linear $u_c=2.350$ g/m, foi esticado por meio de uma mola de coeficiente pré-determinado K_c com tensões de 103,6 gf e 340,4 gf. Essa corda de cobre, foi usada como fonte de frequência pré-determinada para acio nar uma corda de lastex de massa específica linear $u_l=0.36 \times 10^{-2}$ g/cm, fixada entre dois pontos distantes 35,3 cm sob tensão de 10 gf fornecida por uma mola de coeficiente K_1 . Ve

ja o esquena da ligação da corda de cobre, excitadora, substituindo um gerador de áudio, com a corda de lastex, na Figura 7.

A corda de cobre foi dedilhada num ponto próximo à extremidade ligada à mola K_C e numa direção ortogonal ao plano das duas cordas, isto é, ortogonal ao plano do papel da Figura 7, a fim de produzir vibrações ortogonais à direção de corda de lastex. O fundamental do fio de cobre produzia una freqüência N_C1, que era transmitida à corda de lastex que so vibrava quando um de seus harmônicos coincidía com essa fundamental. Obtivemos assim na corda de lastex, todos os harmônicos 1, 2, 3, 4 e 5, e as respectivas ondas estacionárias, Figura 1.

A corda atuante (cobre) tinha um comprimento Lc_j variável com o dispositivo B (veja Figura 8). O comprimento sen do variável a fim de obter diferentes fundamentais na corda de cobre, com frequências N_{cj} (j = 1,2,3,4,5), frequências essas que na corda de lastex correspondiam aos harmônicos 1,2,3,4,5. Na Tabela 1, resumiremos os resultados dessa experiência.

IV. PROCEDIMENTO EXPERIMENTAL

a) Determinação das Constantes Elásticas das Molas

Para a calibração das molas utilizamos os métodos es tático, analítico e dinâmico, a saber:

 Método Dinâmico. Consiste em determinar a frequência N com que oscila em movimento harmônico simples uma massa m sus pensa por uma mola, e em seguida, determinar o K pela expressão

$$K = 4\pi^2 mN^2$$
 (21)

2) Método Analítico. Nos fornece o K pela expressão K = $\frac{G.R^4}{4nr^2}$ obtida diretamente da análise das tensões e flexões danala quando é distendida por um peso produzido por uma mas-

Figura 7 - Esquema de montagem da corda excitadora e a corda de lastex. Figura 8 - Ilustração do dispositivo experimental.

- sa m [4]. Nesta expressão G é o módulo de rigidez do material que constitue a mola; no nosso caso G = 6,4 × 10¹¹ dyn/cm², no número de espira da mola, R o raio da secção reta do arame e r o raio da espira.
- 3) Método Estático. Para tornar a experiência mais completa utilizamos ainda, do clássico método estático, que consis te em levantarmos a curva de calibração da mola em função das reflexões causadas por uma série de pesos:

$$K = \Delta p / \Delta x$$
.

Na Tabela 1 relacionamos os valores médios dos K's obtidos para as duas molas bem como do K médio final, em gf/cm.

Mola	Estático	Analítico	Dinâmico	Médio
K _c	28,98	27,51	28,46	28,32
K ₁	1,84	1,89	1,98	1,90

TABELA 1 - Constantes elásticas da mola.

b) A seguir fizemos a montagem, como ilustra a Figura 8, a corda de lastex tem comprimento 35,3 cm e massa específica linear μ_e = 0,36 × 10⁻² g/cm esta sob uma tensão constante de 10 gf.

As frequências permitidas na corda de lastex, equação (20) serão:

$$N_{1j} = j \times 23,4$$
. Harmônicos: $j = 1,2,3,4,5$.

Os comprimentos e as tensões da corda de cobre foram modificados de maneira a produzir todos os harmônicos 'na corda de lastex.

Na coluna I da Tabela 2, estão os comprimentos da mola de cobre que produzem as tensões $\mathbf{F}_{\mathbf{C}}$. Estas tensões estão indicadas na coluna III. A correspondente distensão no comprimento $\mathbf{L}_{\mathbf{C}}$ do fio de cobre, está na coluna IV. A freqüência

dos fundamentais produzidos N_c estão na coluna V. Esses fundamentais na corda de cobre vão produzir na corda de lastex os harmônicos 1, 2, 3, 4 e 5, coluna VI, de freqüências N₁, na coluna VII.

corda c corda 2 I II III IV VI VII C L (cm) N N. (gf) Harmonicos (c/s) (cm) (cm) (c/s) 103.6 4.1 2.8 50 20.8 23.4 4.1 2.8 103.6 25 41.6 2 46.8 10,5 9.2 340.4 40 47.1 2 46.8 10.5 9.2 340.4 27 69.8 3 70.2 10.5 9,2 340.4 20 94.2 93.6 10.5 9.2 340.4 16.1 117.0 5 117.0

TABELA 2 - Tensões e freqüências nas cordas utilizadas.

V. CONCLUSOES

Para as tensões de 103,6 gf, a discrepância entre as freqüências N_C e N₁ é muito grande, o erro relativo no aume<u>n</u> to do comprimento da mola de constante K_C é grande. Já a te<u>n</u> são de 340,4 gf fornece uma discrepância pequena.

Dependendo dos objetivos a serem atingidos, pode-se determinar em laboratório, utilizando-se da mesma montagem, a velocidade de propagação da onda no material que constitue as cordas, as massas específicas dos fios, etc.

No aspecto qualitativo, os resultados também são mu<u>i</u> to bons, já que o aluno pode ver a "quantização", as ondas estacionárias, despertando, assim, sua curiosidade e vontade de pesquisar.

VI. AGRADECIMENTO

Os autores agradecem ao Prof. P.J. Von Ranke, pelas valiosas discussões.

VII. REFERÊNCIAS BIBLIOGRĀFICAS O ROJAIS AF ANDARS ON A TRIVEN

- [1] Landau, L. e Lifshitz, E., Mechanics, I.
- [2] Fisica Quantica, Eisberg-Resnick, 1983.
- [3] Tavares, A.D., Gonçalves Ledo, R.A., Azevedo, C.A., Santia go, A.J., Criação e Desenvolvimento de um Laboratório de Acus tica. Submetido ao Caderno Catarinense de Ensino de Física, 1989
- [4] Sommerfeld, A., Mechanics of Deformable Bodies.