Dynamics of an isolated valve

(a) Experimental setup

In our model, a valve is described by its width w_b , its permeability k_b , and finally by its opening and closing conditions, which depend on the pressure differential dP across the valve:

```
dP_open = dpdx_opening * w_b
dP_close = dpdx_closing * w_b
```

In this experimental set up, dpdx_open (dpdx_hi), dpdx_close (dpdx_lo) and w_b vary, and k_b is fixed at 1e-3 * k_bg.

The runs are conducted in both fixed pressure and fixed flux boundary conditions.

Dynamics of an isolated valve

(a) Experimental setup

In order to understand the valve dynamics, cycle characteristic times are measured (loading and unloading periods) for a set of opening/closing thresholds and widths. Each run lasts 2*T_scale, during which we measure the first loading (resp. unloading) dt, the last loading (resp. unloading) dt, and the time at which the measure is stabilized.