APPENDIX C

June 14, 2019

Alan Sundquist CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760

Project Location: Beaver St., Waltham, MA

Client Job Number: Project Number: 1830

Laboratory Work Order Number: 19F0402

Michelle Kach

Enclosed are results of analyses for samples received by the laboratory on June 7, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Michelle M. Koch Project Manager

Table of Contents

Sample Summer.	
Sample Summary	4
Case Narrative	5
Sample Results	8
19F0402-01	8
19F0402-02	14
19F0402-03	23
19F0402-04	32
Sample Preparation Information	38
QC Data	40
Volatile Organic Compounds by GC/MS	40
B232980	40
Semivolatile Organic Compounds by GC/MS	45
B233211	45
Organochloride Pesticides by GC/ECD	46
B232858	46
Polychlorinated Biphenyls By GC/ECD	49
B232856	49
Herbicides by GC/ECD	50
B232959	
Petroleum Hydrocarbons Analyses - EPH	50
B232960	52
	52
Petroleum Hydrocarbons Analyses - VPH	54
B233005	54
Metals Analyses (Dissolved)	56
B233013	56

Table of Contents (continued)

B233055	57
Pesticides Degradation Report	58
Dual Column RPD Report	60
Flag/Qualifier Summary	69
Certifications	70
Chain of Custody/Sample Receipt	75

CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760 ATTN: Alan Sundquist

REPORT DATE: 6/14/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER:

1830

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

19F0402

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION:

Beaver St., Waltham, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
GP-3 MW	19F0402-01	Ground Water		MADEP-EPH-04-1.	1
				MADEP-VPH-Fcb	
				2018 Rev 2.1	
				SW-846 6020B	
				SW-846 7470A	
•				SW-846 8260C	
CD CAMY				SW-846 8270D	
GP-5 MW	19F0402-02	Ground Water		MADEP-EPH-04-1.	1
				MADEP-VPH-Fcb	
,				2018 Rev 2.1	
				SW-846 6020B	
				SW-846 7470A	
				SW-846 8081B	
				SW-846 8082A	
				SW-846 8151A	
				SW-846 8260C	
GP-7 MW	19F0402-03	Ground Water		SW-846 8270D	
4. /	171 0402-03	Ground water		MADEP-EPH-04-1.	1
				MADEP-VPH-Feb 2018 Rev 2.1	
				SW-846 6020B	
				SW-846 7470A	
				SW-846 8081B	
				SW-846 8082A	
•				SW-846 8151A	
				SW-846 8260C	
				SW-846 8270D	
MW-2	19F0402-04	Ground Water		MADEP-EPH-04-1.	1
				MADEP-VPH-Feb	•
				2018 Rev 2.1	
				SW-846 6020B	
				SW-846 7470A	
				SW-846 8260C	
				SW-846 8270D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only a select list of PAHs was analyzed and reported in order to achieve lower detection limits than possible with EPH analysis.

For method 8151 samples were derivatized on 06/12/19.

For method 8151 sample analysis bracketed by LCS to monitor esterification. All recoveries in the bracketing LCS met method criteria.

SW-846 8081R

Qualifications:

P-02

Sample RPD between primary and confirmatory analysis exceeded 40%. Per EPA method 8000, the lower value was reported due to obvious chromatographic interference on the column with the higher result.

Analyte & Samples(s) Qualified:

Heptachlor Epoxide 19F0402-03[GP-7 MW]

SW-846 8260C

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

compound. Analyte & Samples(s) Qualified:

Acetone

19F0402-01[GP-3 MW], 19F0402-02[GP-5 MW], 19F0402-03[GP-7 MW], 19F0402-04[MW-2], B232980-BLK1, B232980-BS1, B232980-BSD1

RL-07

Elevated reporting limit based on lowest point in calibration.

MA CAM reporting limit not met. Analyte & Samples(s) Qualified:

Carbon Disulfide

19F0402-01[GP-3 MW], 19F0402-02[GP-5 MW], 19F0402-03[GP-7 MW], 19F0402-04[MW-2]

Methylene Chloride

19F0402-01[GP-3 MW], 19F0402-02[GP-5 MW], 19F0402-03[GP-7 MW], 19F0402-04[MW-2]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

.,2-Dichloropropane

19F0402-01[GP-3 MW], 19F0402-02[GP-5 MW], 19F0402-03[GP-7 MW], 19F0402-04[MW-2], B232980-BLK1, B232980-BS1, B232980-BSD1, S037005-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

result. Analyte & Samples(s) Qualified:

1,4-Dioxand

19F0402-01[GP-3 MW], 19F0402-02[GP-5 MW], 19F0402-03[GP-7 MW], 19F0402-04[MW-2], B232980-BLK1, B232980-BS1, B232980-BSD1, S037005-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Chloromethane

B232980-BS1, B232980-BSD1, S037005-CCV1

MADEP-VPH-Feb 2018 Rev 2.1

No significant modifications were made to the method. All VPH samples were received preserved properly at pH <2 in the proper containers as specified on the chain-of-custody form unless specified in this narrative.

Analytical column used for VPH analysis is Restek, Rtx-502.2, 105meter, 0.53mmID, 3um df. Trap used for VPH analysis is Carbopack B/CarboSieveS-III. SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acctone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-3 MW

Sampled: 6/5/2019 09:15

Sample ID: 19F0402-01

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Acetone	ND	10	μg/L	1	R-05	SW-846 8260C	6/11/19	6/12/19 9:32	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Benzene	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Bromodichloromethane	ND	1.0	μg/L	ł		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
2-Butanone (MEK)	ND	10	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Carbon Disulfide	ND	5.0	μg/L	i	RL-07	SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Chlorobenzene	ND	1.0	μg/L	i		SW-846 8260C	6/11/19		EEH
Chlorodibromomethane	ND	0.50	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 9:32 6/12/19 9:32	EEH
Chloroethane	ND	2.0	μg/L	I		SW-846 8260C	6/11/19		EEH
Chloroform	ND	2.0	μg/L	t		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
-Chlorotoluene	ND	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
.2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
ribromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
ichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C		6/12/19 9:32	EEH
1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
l-Dichloroethylene	ND	1.0	μg/L	ı			6/11/19	6/12/19 9:32	EEH
s-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
ns-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
2-Dichtoropropane	ND	1.0	μg/L	, 1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
3-Dichloropropane	ND	0.50	րց/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
2-Dichloropropane	ND	1.0			14.0=	SW-846 8260C	6/11/19	6/12/19 9:32	EEH
-Dichloropropene	ND	0.50	μg/L μg/L	1	V-05	SW-846 8260C	6/11/19	6/12/19 9:32	EEH
:-1,3-Dichloropropene	ND	0.40				SW-846 8260C	6/11/19	6/12/19 9:32	EEH
ns-1,3-Dichloropropene	ND	0.40	μg/L ug/I	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
ethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
isopropyl Ether (DIPE)	ND		μg/L	!		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
-Dioxane		0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
nylbenzene	ND	50	μg/L ~	1	V-16	SW-846 8260C	6/11/19	6/12/19 9:32	EEH
•	ND	1.0	μg/L	t		SW-846 8260C	6/11/19	6/12/19 9:32	EEH

Page 8 of 77

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-3 MW Sample ID: 19F0402-01

Samole Matrix: Ground Water

Sampled: 6/5/2019 09:15

Volatile	Organic	Compoun	ds	by G	C/MS

Analyte	Results	RL	Units	Dilution	Fiag/Qual	Method	Date Prepared	Date/Time	4- 1 -
Hexachlorobutadiene	ND	0.60	μg/L	1	8-4	SW-846 8260C		Analyzed	Analyst
2-Hexanone (MBK)	ND	10	μ g/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1			6/11/19	6/12/19 9:32	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μ <u>σ</u> /L			SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Methylene Chloride	ND	5.0	μg/L	· i	D1 02	SW-846 8260C	6/11/19	6/12/19 9:32	EEH
4-Mcthyl-2-pentanone (MIBK)	ND	10	μg/L	1	RL-07	SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Naphthalene	ND	2.0				SW-846 8260C	6/11/19	6/12/19 9:32	EEH
n-Propylbenzene	ND	1.0	μg/L ·····″	I		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
1,1,2,2-Tetrachloroethane	ND		μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Tetrachloroethylene		0.50	μg/L	I ·		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Tetrahydrofuran	ND	1.0	μg/L	I		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Toluene	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 9:32	ЕЕН
1,1,2-Trichlorocthane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
•	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	ЕЕН
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	ЕЕН
Vinyl Chloride	ND	2.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
m+p Xylene	ND	2.0	μ g∕L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:32	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual			0/12/17 7/32	EEN
1,2-Dichloroethane-d4		98.6	70-130			·		6/12/19 9:32	
Toluene-d8		97.2	70-130					6/12/19 9:32	
4-Bromofluorobenzene		98.5	70-130					6/12/19 9:32	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-3 MW

Sampled: 6/5/2019 09:15

		Semi	ivolatile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	6/12/19	6/13/19 10:20	CLA
Benzo(a)pyrene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	6/12/19	6/13/19 10:20	CLA
Benzo(b)fluoranthene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	6/12/19	6/13/19 10:20	CLA
Benzo(k)fluoranthene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	6/12/19	6/13/19 10:20	CLA
Chrysene (SIM)	ND	2.0	μg/L	1		SW-846 8270D	6/12/19	6/13/19 10:20	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.50	μg/L	1		SW-846 8270D	6/12/19	6/13/19 10:20	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.50	μg/L	1		SW-846 8270D	6/12/19	6/13/19 10:20	CLA
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
o-Terphenyl (OTP) (SIM)		78.9	30-130			·		6/13/19 10:20	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-3 MW

Sampled: 6/5/2019 09:15

		Pe	etroleum Hydrocarbe	ons Analyses	- ЕРН				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
C19-C36 Aliphatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
Unadjusted C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19		KLB
Acenaphthylene	ND	2.0	μg/L	·		MADEP-EPH-04-1.1		6/12/19 18:54	KLB
Anthracene	ND	2.0	μg/L	,		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
Benzo(g,h,i)perylene	ND	2.0	μ <u>σ/L</u>	•			6/11/19	6/12/19 18:54	KLB
Fluoranthene	ND	2.0				MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
2-Methylnaphthalene			μg/L	1		MADEP-EPII-04-1.1	6/11/19	6/12/19 18:54	KLB
Naphthalene	ND	2.0	μg/L	I		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
•	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 18:54	KLB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD)		61.9	40-140					6/12/19 18:54	
o-Terphenyl (OTP)		75.7	40-140					6/12/19 18:54	
2-Bromonaphthalene		129	40-140					6/12/19 18:54	
2-Fluorobiphenyl		136	40-140					6/12/19 18:54	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-3 MW

Sampled: 6/5/2019 09:15

		Pe	etroleum Hydrocarb	ons Analyses	- VPH			•	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Fcb 2018	6/11/19	6/11/19 22:02	KMB
C5-C8 Aliphatics	ND	100	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:02	КМВ
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	ı		Rcv 2.1 MADEP-VPH-Feb 2018			
C9-C12 Aliphatics	ND	100				Rcv 2.1	6/11/19	6/11/19 22:02	KMB
C9-C10 Aromatics			μg/L	I		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 22:02	KMB
	ND	100	μg/L	1		MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:02	КМВ
Benzene	ND	1.0	μg/L	ı		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:02	КМВ
Ethylbenzene	ND	1.0	μg/L	ì		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:02	
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		Rev 2.1			KMB
Naphthalene	ND	5.0				MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 22:02	КМВ
Tolucne			μg/L	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/11/19	6/11/19 22:02	KMB
•	ND	1.0	μg/L	1 ,		MADEP-VPII-Feb 2018 Rev 2.1	6/11/19	6/11/19 22:02	КМВ
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-Fcb 2018	6/11/19	6/11/19 22:02	КМВ
o-Xylene	ND	1.0	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:02	КМВ
Surrogates		% Recovery	Recovery Limits		Fing/Qual	Rev 2.1		0/11/19 22:02	- CIMID
2,5-Dibromotoluene (FID)	······································	107	70-130		1.10th Cost				
2,5-Dibromotoluene (PID)		101	70-130 70-130					6/11/19 22:02	
								6/11/19 22:02	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-3 MW

Sampled: 6/5/2019 09:15

				Metals Analys	es (Dissolved)					
Antimony	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
•		ND	1.0	μg/L	1		SW-846 6020B	6/11/19	6/13/19 17:59	МЈН
Arsenic		ND	0.80	μg/L	1		SW-846 6020B	6/11/19	6/13/19 17:59	МЛН
Barium		26	10	μg/L	I		SW-846 6020B	6/11/19	6/13/19 17:59	МЈН
Beryllium		ND	0.40	μg/L	1		SW-846 6020B	6/11/19	6/14/19 8:33	QNW
Cadmium		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 17:59	МЈН
Chromium		7.0	1.0	μg/L	1		SW-846 6020B	6/11/19	6/14/19 8:33	
Lead		3.3	0.50	μg/L	1		SW-846 6020B	6/11/19	6/13/19 17:59	QNW
Mercury		ND	0.00010	mg/L	1 .		SW-846 7470A	6/11/19		МЈН
Nickel		ND	5.0	μg/L	t		SW-846 6020B	6/11/19	6/12/19 12:15	AJL
Sclenium		ND	5.0	μg/L	1				6/13/19 17:59	МЈН
Silver		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 17:59	МЈН
Thallium		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 17:59	МЈН
Vanadium		5.7	5.0		1		SW-846 6020B	6/11/19	6/13/19 17:59	MJH
Zinc		15	10	μg/L "	i		SW-846 6020B	6/11/19	6/14/19 8:33	QNW
			10	μg/L	1		SW-846 6020B	6/11/19	6/13/19 17:59	MJH

Project Location: Beaver St., Waltham, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-5 MW Sample ID: 19F0402-02

Sample Matrix: Ground Water

Sampled: 6/5/2019 10:30

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	R-05	SW-846 8260C	6/11/19	6/12/19 9:59	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Bromobenzene	ND	1.0	μg/L	l		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
2-Butanone (MEK)	ND	10	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	
sec-Butylbenzene	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
tert-Butylbenzene	ND	1.0	μg/L	j		SW-846 8260C	6/11/19		EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Carbon Disulfide	ND	5.0	μg/L	ı	RL-07	SW-846 8260C		6/12/19 9:59	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Chlorobenzene	ND	1.0	μg/L	1			6/11/19	6/12/19 9:59	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Chloroform	ND	2.0	μg/L			SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
2-Chlorotoluene	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
4-Chlorotoluene	ND	1.0	μg/L			SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	· -			SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L π	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Dibromomethane	ND	1.0	μg/L a	•		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
,2-Dichlorobenzene	ND	1.0	μg/L α	i		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
,1-Dichloroethane			μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	ЕЕН
,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
is-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
ans-1,2-Dichloroethylene	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
,2-Dichloropropane	ND	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
• •	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
s-1,3-Dichloropropene	ND	0.40	μg/L	I		SW-846 8260C	6/11/19	6/12/19 9:59	ЕЕН
ans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
iethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
iisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	6/11/19	6/12/19 9:59	EEH
llylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	ЕЕН

Page 14 of 77

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

		v	olatile Organic Com	pounds by G	C/MS	•			
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	·	SW-846 8260C	6/11/19	6/12/19 9:59	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	į		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	6/11/19	6/12/19 9:59	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Styrene	ND	1.0	. υ μg/L	1		SW-846 8260C	6/11/19		EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	րց/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Toluene	ND	1.0	μg/L	ı		SW-846 8260C		6/12/19 9:59	EEH
1,2,3-Trichlorobenzene	ND	2.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19 6/11/19	6/12/19 9:59	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C SW-846 8260C		6/12/19 9:59	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L			SW-846 8260C SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1			6/11/19	6/12/19 9:59	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L μg/L	· I		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Vinyl Chloride	ND	2.0	μg/L μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
m+p Xylene	ND	2.0	μg/L μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
o-Xylene	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/11/19	6/12/19 9:59	EEH
Surrogates		% Recovery		•	TI 10 1	SW-846 8260C	6/11/19	6/12/19 9:59	EEH
1,2-Dichloroethane-d4		100	Recovery Limits 70-130		Flag/Qual			41.51.5	
Toluene-d8		97.2	70-130 70-130					6/12/19 9:59 6/12/19 9:59	
4-Bromofluorobenzene		96.8	70-130					6/12/19 9:59 6/12/19 9:59	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

Semivolatile Organic Compounds by GC/MS											
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst		
Benzo(a)anthracene (SIM)	ND	1.0	μg/L	i		SW-846 8270D	6/12/19	6/13/19 15:36	CLA		
Benzo(a)pyrene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	6/12/19	6/13/19 15:36	CLA		
Benzo(b)fluoranthene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	6/12/19	6/13/19 15:36	CLA		
Benzo(k)fluoranthene (SIM)	ND	1.0	μg/L	l		SW-846 8270D	6/12/19	6/13/19 15:36	CLA		
Chrysene (SIM)	ND	2.0	μg/L	1		SW-846 8270D	6/12/19	6/13/19 15:36			
Dibenz(a,h)anthracene (SIM)	ND	0.50	μg/L	ı		SW-846 8270D	6/12/19	6/13/19 15:36	CLA CLA		
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.50	μg/L	1		SW-846 8270D	6/12/19	6/13/19 15:36	CLA		
Surrogates		% Recovery	Recovery Limits		Flag/Qual						
o-Terphenyl (OTP) (SIM)		61.4	30-130		g (6/13/19 15:36			

Work Order: 19F0402

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Beaver St., Waltham, MA

Sample Description:

Date Received: 6/7/2019
Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

			Organochloride Pest	icides by GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aldrin [1]	ND	0.053	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
alpha-BHC[1]	ND	0.053	μg/L	I		SW-846 8081B	6/9/19	6/11/19 21:29	TG
beta-BHC [1]	ND	0.053	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
delta-BHC [1]	ND	0.053	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	
gamma-BHC (Lindane) [1]	ND	0.032	μg/L	1		SW-846 8081B	6/9/19		TG
Chlordane [1]	ND	0.21	μg/L	1		SW-846 8081B		6/11/19 21:29	TG
4,4'-DDD [1]	ND	0.042	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
4,4'-DDE [1]	ND	0.042	րը/ L	1			6/9/19	6/11/19 21:29	TG
4,4'-DDT [1]	ND	0.042	μg/L	•		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Dieldrin [1]	ND	0.0021		,		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Endosulfan I [1]	ND	0.053	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Endosulfan II [1]	ND	0.084	μg/L ~			SW-846 8081B	6/9/19	6/11/19 21:29	TG
Endosulfan sulfate [1]			μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Endrin [1]	ND	0.084	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Endrin ketone [1]	ND	0.084	μg/L	i		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Heptachlor [1]	ND	0.084	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
· • •	ND	0.053	μg/L	ı		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Heptachlor epoxide [1]	ND	0.053	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Hexachlorobenzene [1]	ND	0.053	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Methoxychlor [1]	ND	0.53	μg/L	I		SW-846 8081B	6/9/19	6/11/19 21:29	TG
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		75.5	30-150					6/11/19 21:29	
Decachlorobiphenyl [2]		74.2	30-150					6/11/19 21:29	
Tetrachloro-m-xylene [1] Tetrachloro-m-xylene [2]		90.6	30-150					6/11/19 21:29	
renaemoro-m-xyrene [2]		93.5	30-150					6/11/19 21:29	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

Sample ID: 19F0402-02

Sample Matrix: Ground Water

		P	olychlorinated Biph	enyls By GC	ÆCD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.21	μg/L	1		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1221 [1]	ND	0.21	μg/L	1		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1232 [1]	ND	0.21	μg/L	1		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1242 [1]	ND	0.21	μg/L	1		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1248 [1]	ND	0.21	μg/L	1		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1254 [1]	ND	0.21	μg/L	ı		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1260 [1]	ND	0.21	μg/L	1		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1262 [1]	ND	0.21	μg/L	ı		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Aroclor-1268 [1]	ND	0.21	μg/L	1		SW-846 8082A	6/9/19	6/11/19 17:01	PJG
Surrogates		% Recovery	Recovery Limits		Flag/Qual			0.11.13 17.01	
Decachlorobiphenyl [1]		73.9	30-150					6/11/19 17:01	
Decachlorobiphenyl [2]		71.7	30-150					6/11/19 17:01	
Tetrachloro-m-xylene [1]		83.8	30-150		,			6/11/19 17:01	
Tetrachloro-m-xylene [2]		78.1	30-150			·		6/11/19 17:01	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

			Herbicides by	GC/ECD					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2,4-D [1]	ND	0.51	μg/L	ì		SW-846 8151A	6/10/19	6/13/19 21:43	TG
2,4-DB [1]	ND	0.51	μg/L	1		SW-846 8151A	6/10/19	6/13/19 21:43	TG
2,4,5-TP (Silvex) [1]	ND	0.051	μg/L	ı		SW-846 8151A	6/10/19	6/13/19 21:43	TG
2,4,5-T [1]	ND	0.10	μg/L	1		SW-846 8151A	6/10/19	6/13/19 21:43	TG
Dalalpon [1]	ND	1.3	μg/L	ı		SW-846 8151A	6/10/19	6/13/19 21:43	TG
Dicamba [1]	ND	0.051	μg/L	1		SW-846 8151A	6/10/19	6/13/19 21:43	TG
Dichloroprop [1]	ND	0.51	μg/L	1		SW-846 8151A	6/10/19	6/13/19 21:43	TG
Dinoseb [1]	ND	0.26	μg/L	1		SW-846 8151A	6/10/19	6/13/19 21:43	TG
MCPA[1]	ND	51	μg/L	1		SW-846 8151A	6/10/19	6/13/19 21:43	TG
MCPP [1]	ND	51	μg/L	1		SW-846 8151A	6/10/19	6/13/19 21:43	TG
Surrogates		% Recovery	Recovery Limits		Flag/Qual	·····			
2,4-Dichlorophenylacetic acid [1]		94.8	30-150		i			6/13/19 21:43	
2,4-Dichlorophenylacetic acid [2]		88.5	30-150					6/13/19 21:43	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

Petroleum Hydrocarbons Analyses - EPH											
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst		
C9-C18 Aliphatics	ND	100	μg/L	1		MADEP-EPH-04-1,1	6/11/19	6/12/19 19:13	KLB		
C19-C36 Aliphatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Unadjusted C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13			
C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	6/11/19		KLB		
Acenaphthene	ND	2.0	re- μg/L	1		MADEP-EPH-04-1.1		6/12/19 19:13	KLB		
Acenaphthylene	ND	2.0	μg/L	•		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Anthracene	ND	2.0	μg/L	,			6/11/19	6/12/19 19:13	KLB		
Benzo(g,h,i)perylene	ND	2.0				MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Fluoranthene	ND	2.0	μg/L			MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Fluorene	ND		μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
2-Methylnaphthalene		2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
•	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:13	KLB		
Surrogates		% Recovery	Recovery Limits		Flag/Qual			~			
Chlorooctadecane (COD)		60.1	40-140					6/12/19 19:13			
o-Terphenyl (OTP)		67.5	40-140					6/12/19 19:13			
2-Bromonaphthalene		125	40-140					6/12/19 19:13			
2-Fluorobiphenyl		135	40-140					6/12/19 19:13			

Project Location: Beaver St., Waltham, MA

Sample Description:

111

Work Order: 19F0402

6/11/19 22:31

Date Received: 6/7/2019 Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

Sample ID: 19F0402-02 Sample Matrix: Ground Water

2,5-Dibromotoluene (PID)

		Po	troleum Hydrocarb	ons Analyses	- VPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	I		MADEP-VPH-Fcb 2018	6/11/19	6/11/19 22:31	KMB
C5-C8 Aliphatics	ND	100	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:31	KMB
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 22:31	КМВ
C9-C12 Aliphatics C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 22:31	КМВ
	ND	100	μg/L	1		MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:31	КМВ
Benzene	ND	1.0	μg/L	I		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:31	КМВ
Ethylbenzene	ND	1.0	μg/L	ì		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:31	КМВ
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 22:31	КМВ
Naphthalene	ND	5.0	μg/L	1		Rev 2.1 MADEP-VPII-Feb 2018	6/11/19	6/11/19 22:31	КМВ
Toluene	ND	1.0	μg/L	t		Rev 2.1 MADEP-VPII-Fcb 2018	6/11/19	6/11/19 22:31	КМВ
n+p Xylene	ND	2.0	μg/L	1		Rev 2.1 MADEP-VPH-Fcb 2018	6/11/19	6/11/19 22:31	КМВ
-Xylene	ND	1.0	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 22:31	КМВ
Surrogates		% Recovery	Recovery Limits		Flag/Qual	1007 2.1			
2,5-Dibromotoluene (FID) 2,5-Dibromotoluene (PID)		115	70-130					6/11/19 22:31	

70-130

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-5 MW

Sampled: 6/5/2019 10:30

Metals Analyses (Dissolved)											
4	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Antimony		ND	1.0	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06	МЈН	
Arsenic		ND	0.80	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06		
Barium Beryllium		42	10	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06	МЛН МЈН	
-		ND	0.40	μg/L	1		SW-846 6020B	6/11/19	6/14/19 8:38	QNW	
Cadmium		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06	МЈН	
Chromium		4.0	1.0	μg/L	1		SW-846 6020B	6/11/19	6/14/19 8:38	QNW	
Lcad		1.9	0.50	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06	-	
Mercury		ND	0.00010	mg/L	1		SW-846 7470A	6/11/19		НІМ	
Nickel		ND	5.0	μg/L	1		SW-846 6020B		6/12/19 12:21	AJL	
Selenium		ND	5.0	μg/L	1			6/11/19	6/13/19 18:06	MJH	
Silver		ND	0.20				SW-846 6020B	6/11/19	6/13/19 18:06	MJH	
Thallium		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06	МЈН	
Vanadium				μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06	МЈН	
Zinc		ND	5.0	μg/L	1		SW-846 6020B	6/11/19	6/14/19 8:38	QNW	
Zaic		ND	10	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:06	мјн	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

Sample Matrix: Ground Water

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Accione	ND	10	μg/L	ı	R-05	SW-846 8260C	6/11/19	6/12/19 10:25	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 \$260C	6/11/19	6/12/19 10:25	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
2-Butanone (MEK)	ND	10	μg/L	t		SW-846 8260C	6/11/19	6/12/19 10:25	ЕЕН
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Chlorobenzene	11	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Chloroethane	ND	2.0	μ g/ L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
-Chlorotoluene	ND	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
2-Dibromoethane (EDB)	ND	0.50	μg/L	ī		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
4-Dichlorobenzene	5.4	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
2-Dichloroethane	1.7	1.0	μg/L	ī		SW-846 8260C	6/11/19	6/12/19 10:25	ЕЕН
I-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
s-1,2-Dichloroethylene	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ins-1,2-Dichloroethylene	ND	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	
3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	6/11/19	6/12/19 10:25	EEH
I-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
:-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ns-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
ethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/11/19		EEH
isopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
I-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	6/11/19	6/12/19 10:25	EEH
aylbenzene	ND	1.0	μg/L	1	-	SW-846 8260C	6/11/19	6/12/19 10:25 6/12/19 10:25	EEH

Page 23 of 77

Work Order: 19F0402

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Beaver St., Waltham, MA

Sample Description:

Date Received: 6/7/2019
Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

		7	Volatile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	El/O		Date	Date/Time	
Hexachlorobutadiene	ND	0.60	μg/L	1	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Hexanone (MBK)	ND	10	μg/L	•		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Isopropylbenzene (Cumene)	ND	1.0		1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L π	i .		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Methylene Chloride	ND	5.0	μg/L "	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L ~	l	RL-07	SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Naphthalene	ND		μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
n-Propylbenzene	ND ND	2.0	μg/ L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Styrene		1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Tetrachloroethylene	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Tetrahydrofuran	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Toluene	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1,2,3-Trichlorobenzene	ND	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	I		SW-846 8260C	6/11/19	6/12/19 10:25	ЕЕН
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	ЕЕН
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	ЕЕН
1,2,4-Trimethylbenzene	ND	1.0	μ g/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	ЕЕН
Vinyl Chloride	ND	2.0	μg/L	ì		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:25	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		99.3	70-130					6/12/19 10:25	
Toluene-d8		98.5	70-130					6/12/19 10:25	
4-Bromofluorobenzene		99.3	70-130					6/12/19 10:25	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

		Sem	ivolatile Organic Co	mpounds by	GC/MS			·	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	ND	0.95	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:05	CLA
Benzo(a)pyrene (SIM)	ND	0.19	μg/L	t		SW-846 8270D	6/12/19	6/13/19 16:05	CLA
Benzo(b)fluoranthene (SIM)	ND	0.95	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:05	CLA
Benzo(k)fluoranthene (SIM)	ND	0.95	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:05	CLA
Chrysene (SIM)	ND	1.9	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:05	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.48	μg/L	i		SW-846 8270D	6/12/19	6/13/19 16:05	CLA
Indeno(1,2,3-ed)pyrene (SIM)	ND	0.48	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:05	CLA
Surrogates		% Recovery	Recovery Limits	***************************************	Flag/Qual				
o-Terphenyl (OTP) (SIM)		56.3	30-130					6/13/19 16:05	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

		O	rganochloride Pesti	cides by GC	ECD/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aldrin [1]	ND	0.057	μg/L	l		SW-846 8081B	6/9/19	6/11/19 21:56	TG
alpha-BHC [1]	5.2	0.57	μg/L	10		SW-846 8081B	6/9/19	6/12/19 10:16	TG
beta-BHC [1]	2.0	0.057	μg/L	ı		SW-846 8081B	6/9/19	6/11/19 21:56	TG
delta-BHC [2]	14	0.57	μg/L	10		SW-846 8081B	6/9/19	6/12/19 10:16	TG
gamma-BHC (Lindone) [1]	0.36	0.034	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Chlordane [2]	3,2	0.23	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
4,4'-DDD [1]	ND	0.046	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
4,4'-DDE [1]	ND	0.046	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
4,4'-DDT [2]	0.057	0.046	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Dieldrin [2]	0.19	0.0023	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Endosulfan I [1]	ND	0.057	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Endosulfan II [1]	ND	0.092	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Endosulfan sulfate [1]	ND	0.092	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Endrin [1]	ND	0.092	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Endrin ketone [1]	ND	0.092	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Heptachlor [1]	ND	0.057	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Heptachlor epoxide [1]	0.15	0.057	μg/L	1	P-02	SW-846 8081B	6/9/19	6/11/19 21:56	TG
Hexachlorobenzene [1]	ND	0.057	μg/L	t		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Methoxychlor [1]	ND	0.57	μg/L	1		SW-846 8081B	6/9/19	6/11/19 21:56	TG
Surrogates		% Recovery	Recovery Limits		Flag/Qual		····		
Decachlorobiphenyl [1]		89.7	30-150					6/11/19 21:56	
Decachlorobiphenyl [2]		89.1	30-150					6/11/19 21:56	
Tetrachloro-m-xylene [1]		93.8	30-150					6/11/19 21:56	
Tetrachloro-m-xylene [2]		94.0	30-150					6/11/19 21:56	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

		P	olychlorinated Biph	enyls By GC	ÆCD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.23	μg/L	1		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1221 [1]	ND	0.23	μg/L	1		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1232 [1]	ND	0.23	μg/L	1		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1242 [1]	ND	0.23	μg/L	1		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1248 [1]	ND	0.23	μg/L	1		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1254 [1]	ND	0.23	μg/L	ī		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1260 [1]	ND	0.23	μg/L	1		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1262 [1]	ND	0.23	μg/L	1		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Aroclor-1268 [1]	ND	0.23	μg/L	ì		SW-846 8082A	6/9/19	6/12/19 10:17	PJG
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		84.1	30-150					6/12/19 10:17	
Decachlorobiphenyl [2]		76.3	30-150					6/12/19 10:17	
Tetrachloro-m-xylene [1]		75.8	30-150					6/12/19 10:17	
Tetrachloro-m-xylene [2]		70.0	30-150					6/12/19 10:17	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

			Herbicides by	GC/ECD			•		
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2,4-D [1]	ND	0.50	μg/L	I		SW-846 8151A	6/10/19	6/13/19 22:22	TG
2,4-DB [1]	ND	0.50	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
2,4,5-TP (Silvex) [1]	ND	0.050	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
2,4,5-T [1]	ND	0.10	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
Dalalpon [1]	ND	1.2	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
Dicamba [1]	ND	0.050	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
Dichloroprop [1]	ND	0.50	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
Dinoseb [1]	ND	0.25	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
MCPA [1]	ND	50	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
MCPP [1]	ND	50	μg/L	1		SW-846 8151A	6/10/19	6/13/19 22:22	TG
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2,4-Dichlorophenylacetic acid [1]		81.7	30-150					6/13/19 22:22	
2,4-Dichlorophenylacetic acid [2]		85.5	30-150					6/13/19 22:22	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

		Po	etroleum Hydrocarbo	ons Analyses	- EPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	95	μg/L	i		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
C19-C36 Aliphatics	ND	95	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	
Unadjusted C11-C22 Aromatics	ND	95	μg/L	1		MADEP-EPH-04-1.1			KLB
C11-C22 Aromatics	ND	95	μ g/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
Acenaphthene	ND	1.9	. –	•			6/11/19	6/12/19 19:32	KLB
Accnaphthylene	ND	1.9	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
Anthracene			μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
Benzo(g,h,i)perylene	ND	1.9	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
	ND	1.9	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
Fluoranthene	ND	1.9	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
Fluorene	ND	1.9	μg/L	ı		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
2-Methylnaphthalene	ND	1.9	μg/L	1		MADEP-EPH-04-1.1	6/11/19		
Naphthalene	ND	1.9	μg/L	1		MADEP-EPH-04-1.1		6/12/19 19:32	KLB
Phenanthrene	ND	1.9		,			6/11/19	6/12/19 19:32	KLB
Ругене	ND	1.9	μg/L			MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
Suggestion	ND		μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:32	KLB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD) o-Terphenyl (OTP)		60.2	40-140					6/12/19 19:32	
2-Bromonaphthalene		63.5	40-140					6/12/19 19:32	
2-Fluorobiphenyl		86.1	40-140					6/12/19 19:32	
· - · - · · · · · · · · · · · · · ·		92.4	40-140					6/12/19 19:32	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

Sample ID: 19F0402-03 Sample Matrix: Ground Water

		Pe	troleum Hydrocarb	ons Analyses	- VPH	, , , , , , , , , , , , , , , , , , , ,			
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018	6/11/19	6/11/19 23:01	KMB
C5-C8 Aliphatics	ND	100	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19	6/11/19 23:01	KMB
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:01	КМВ
C9-C12 Aliphatics C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:01	KMB
Benzene	ND	100	μg/L	I		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:01	КМВ
Ethylbenzene	ND ND	1.0 1.0	μg/L	I		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:01	КМВ
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:01	KMB
Naphthalene	ND	5.0	μg/L μg/L	1		MADEP-VPII-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:01	KMB
Toluene	ND	1.0	μg/L	1		MADEP-VPH-Fcb 2018 Rev 2.1 MADEP-VPH-Fcb 2018	6/11/19	6/11/19 23:01	КМВ
m+p Xylene	ND	2.0	μg/L	1		Rev 2.1 MADEP-VPH-Feb 2018	6/11/19 6/11/19	6/11/19 23:01	KMB
o-Xylene	ND	1.0	μg/L	1		Rev 2.1 MADEP-VPH-Fcb 2018	6/11/19	6/11/19 23:01 6/11/19 23:01	KMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual	Rev 2.1			
2,5-Dibromotoluene (FID)	· · · · · · · · · · · · · · · · · · ·	102	70-130		* mg/Quai			(//////////////////////////////////////	
2,5-Dibromotoluene (PID)		101	70-130					6/11/19 23:01 6/11/19 23:01	

6/11/19 23:01

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: GP-7 MW

Sampled: 6/5/2019 12:05

	Metals Analyses (Dissolved)									
A : A !	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony		ND	1.0	μg/L	l		SW-846 6020B	6/11/19	6/13/19 18:10	МЈН
Arsenic		12	0.80	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:10	МЈН
Barium		20	10	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:10	МЈН
Beryllium		ND	0.40	μg/L	1		SW-846 6020B	6/11/19	6/14/19 8:41	QNW
Cadmium		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:10	МЈН
Chromium		4.7	1.0	μg/L	ι		SW-846 6020B	6/11/19	6/14/19 8:41	QNW
Lead		3.2	0.50	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:10	мјн
Mercury		ND	0.00010	mg/L	1		SW-846 7470A	6/11/19	6/12/19 12:23	AJL
Nickel		ND	5.0	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:10	МЈН
Sclenium		ND	5.0	μg/L	l		SW-846 6020B	6/11/19	6/13/19 18:10	МЈН
Silver		ND	0.20	μg/L	ı		SW-846 6020B	6/11/19	6/13/19 18:10	НІМ
Thallium		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:10	MJH
Vanadium		ND	5.0	μg/L	. 1		SW-846 6020B	6/11/19	6/14/19 8:41	
Zinc		12	10	μg/L	1		SW-846 6020B	6/11/19		QNW
					-		5 5 0020B	W 11/17	6/13/19 18:10	МЈН

Page 32 of 77

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: MW-2 Sample ID: 19F0402-04

Sampled: 6/5/2019 13:30

		•	Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analy
Acetone	ND	10	μ g/L	l	R-05	SW-846 8260C	6/11/19	6/12/19 10:52	Analys EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Bromobenzene	ND	1.0	μg/L	I		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Bromochloromethane	ND	1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Bromoform	ND	1.0	μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	
2-Butanone (MEK)	ND	10	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19		EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C		6/12/19 10:52	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1	ACC-07	SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Chlorobenzene	ND	1.0	μg/L	1			6/11/19	6/12/19 10:52	EEH
Chlorodibromomethane	ND	0.50	μg/L	ı		SW-846 8260C SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Chlorocthane	ND	2.0	μg/L	1			6/11/19	6/12/19 10:52	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
-Chlorotoluene	ND	1.0	μg/L			SW-846 8260C	6/11/19	6/12/19 10:52	EEH
,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
Pibromomethane	ND	1.0	*	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
2-Dichlorobenzene	ND	1.0	μg/L σπ	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
3-Dichlorobenzene	ND	1.0	μg/L π	-		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
4-Dichlorobenzene	ND	1.0	μg/L σ	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
ichlorodifluoromethane (Freon 12)	ND	2.0	μg/L 	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
1-Dichloroethane	ND		µg/L .a.	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
2-Dichloroethane	ND	1.0	μg/L	I .		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
1-Dichloroethylene		1.0	μg/L	i		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
s-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
ns-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
3-Dichloropropane	ND	1.0	μg/L	ī		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	6/11/19	6/12/19 10:52	EEH
I-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
:-1,3-Dichloropropene	ND	0.40	μg/L	l		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
ins-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
ethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
isopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
1-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	6/11/19	6/12/19 10:52	EEH
hylbenzene	2.4	1.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019
Field Sample #: MW-2

Sampled: 6/5/2019 13:30

	1	Volatile Organic Com	pounds by C	C/MS				
Results	RL	Units	Dilution	Flag/Qual	Maskad	Date	Date/Time	
ND	0.60			v.infl./Cngt				Anai
ND	10							EE
ND								EE
ND							6/12/19 10:52	EEI
		· -					6/12/19 10:52	EEI
				71.07			6/12/19 10:52	EER
				KL-07		6/11/19	6/12/19 10:52	EE
						6/11/19	6/12/19 10:52	EEF
						6/11/19	6/12/19 10:52	EEH
					SW-846 8260C	6/11/19	6/12/19 10:52	EEF
					SW-846 8260C	6/11/19	6/12/19 10:52	EEH
					SW-846 8260C	6/11/19	6/12/19 10:52	EEF
					SW-846 8260C	6/11/19	6/12/19 10:52	EEF
					SW-846 8260C	6/11/19	6/12/19 10:52	EEF
					SW-846 8260C	6/11/19	6/12/19 10:52	EEH
		· -			SW-846 8260C	6/11/19	6/12/19 10:52	EEH
			1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
· · ·			I		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
			1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
			t		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
			i		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
		μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
		μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	ЕЕН
		μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
		μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
		μg/L	ı		SW-846 8260C	6/11/19	6/12/19 10:52	EEH
	2.0	μg/L	1		SW-846 8260C	6/11/19	6/12/19 10:52	ЕЕН
ND	1.0	μg/L	I		SW-846 8260C	6/11/19	6/12/19 10:52	ЕЕН
	% Recovery	Recovery Limits		Flag/Qual			***************************************	
	98.0	70-130					6/12/19 10:52	
	98.0 97.6	70-130 70-130					6/12/19 10:52	
	ND N	Results RL ND 0.60 ND 1.0 ND 2.0 ND 1.0 ND 2.0 ND 1.0 ND 2.0 ND 1.0 ND 2.0 ND 38.0 98.0	Results RL Units	Results RL Units Dilution	ND 0.60	Results RL Units Dilution Flag/Qual Method	Results RL Units Dilution Flag/Qual Method Prepared	Results RL Units Dilution Fing/Qual Method Prepared Analyzed

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019

Field Sample #: MW-2 Sample ID: 19F0402-04

Sampled: 6/5/2019 13:30

Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS										
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Benzo(a)anthracene (SIM)	ND	0.99	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:34	CLA	
Benzo(a)pyrene (SIM)	ND	0.20	μg/L	I		SW-846 8270D	6/12/19	6/13/19 16:34	CLA	
Benzo(b)fluoranthene (SIM)	ND	0.99	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:34	CLA	
Benzo(k)fluoranthene (SIM)	ND	0.99	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:34	CLA	
Chrysene (SIM)	ND	2.0	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:34	CLA	
Dibenz(a,h)anthracene (SIM)	ND	0.49	μg/L	ı		SW-846 8270D	6/12/19	6/13/19 16:34	CLA	
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.49	μg/L	1		SW-846 8270D	6/12/19	6/13/19 16:34	CLA	
Surrogates		% Recovery	Recovery Limits	# · · · · · · · · · · · · · · · · · · ·	Flag/Qual					
o-Terphenyl (OTP) (SIM)		62.7	30-130				······································	6/13/19 16:34		

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: MW-2

Sampled: 6/5/2019 13:30

		Pe	troleum Hydrocarb	ons Analyses	- EPH		· · · · · · · · · · · · · · · · · · ·		
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	150	99	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
C19-C36 Aliphatics	ND	99	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Unadjusted C11-C22 Aromatics	ND	99	μg/L	ı		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	
C11-C22 Aromatics	ND	99	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Acenaphthene	ND	2.0	μg/L	i		MADEP-EPH-04-1.1	6/11/19		KLB
Acenaphthylene	ND	2.0	μg/L	i		MADEP-EPH-04-1.1		6/12/19 19:51	KLB
Anthracene	ND	2.0	μg/L	,			6/11/19	6/12/19 19:51	KLB
Benzo(g,h,i)perylene	ND	2.0				MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Fluoranthene	ND	2.0	μg/L			MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Fluorene	ND		μg/L 	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
2-Methylnaphthalene		2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
•	ND	2.0	μg/L	i		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Phenanthrene	ND.	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	6/11/19	6/12/19 19:51	KLB
Surrogates		% Recovery	Recovery Limits	***************************************	Flag/Qual				
Chlorooctadecane (COD)		62.4	40-140					6/12/19 19:51	
o-Terphenyl (OTP)		65.7	40-140					6/12/19 19:51	
2-Bromonaphthalene		83.6	40-140					6/12/19 19:51	
2-Fluorobiphenyl		91.1	40-140			•		6/12/19 19:51	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: MW-2

Sampled: 6/5/2019 13:30

Sample ID: 19F0402-04
Sample Matrix: Ground Water

		Pe	troleum Hydrocarb	ons Analyses	- VPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
C9-C12 Aliphatics	ND	100	μg/L	t		MADEP-VPH-Fcb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
Benzene	ND	1.0	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
Ethylbenzene	2.2	1.0	μg/L	i		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
Naphthalene	ND	5.0	μg/L	1		MADEP-VPII-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
Toluene	ND	. 1.0	μg/L	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	6/11/19	6/11/19 23:30	КМВ
o-Xylene	ND	1.0	μg/L	i		MADEP-VPH-Fcb 2018 Rev 2.1	6/11/19	6/11/19 23:30	KMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual	1107 2,1			
2,5-Dibromotoluene (FID)		96.4	70-130					6/11/19 23:30	
2,5-Dibromotoluene (PID)		95.9	70-130					6/11/19 23:30	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19F0402

Date Received: 6/7/2019 Field Sample #: MW-2

Sampled: 6/5/2019 13:30

Sample ID: 19F0402-04

Sample Matrix: Ground Water

				Metals Analys	ses (Dissolved)					
Antimony	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic		ND	1.0	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:13	МЈН
Barium		ND	0.80	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:13	МЈН
		33	10	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:13	МЈН
Beryllium		ND	0.40	μg/L	l		SW-846 6020B	6/11/19	6/14/19 8:44	QNW
Cadmium		ND	0.20	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:13	МЈН
Chromium		1.1	1.0	μg/L	ı		SW-846 6020B	6/11/19	6/14/19 8:44	ONW
Lead		ND	0.50	μg/L	I		SW-846 6020B	6/11/19	6/13/19 18:13	МЈН
Mercury		ND	0.00010	mg/L	1		SW-846 7470A	6/11/19	6/12/19 12:24	
Nickel		ND	5.0	μg/L	1		SW-846 6020B	6/11/19		AJL
Sclenium		ND	5.0	μg/L	1		SW-846 6020B	6/11/19	6/13/19 18:13	МЈН
Silver		ND	0.20	μg/L	1		SW-846 6020B		6/13/19 18:13	MJH
Thallium		ND	0.20	μg/L	ī			6/11/19	6/13/19 18:13	HLW
Vanadium		ND	5.0	μg/L			SW-846 6020B	6/11/19	6/13/19 18:13	HLM
Zinc		ND	10				SW-846 6020B	6/11/19	6/14/19 8:44	QNW
			••	μg/L	ı		SW-846 6020B	6/11/19	6/13/19 18:13	MJH

Sample Extraction Data

Prep Method: SW-846 3510C-MADEP-EPH-04-1.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19F0402-01 [GP-3 MW]	B232960	1000	2.00	06/11/19	
19F0402-02 [GP-5 MW]	B232960	1000	2.00	06/11/19	
19F0402-03 [GP-7 MW]	B232960	945	1.80	06/11/19	
19F0402-04 [MW-2]	B232960	1020	2.00	06/11/19	

Prep Method: MA VPH-MADEP-VPH-Feb 2018 Rev 2.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19F0402-01 [GP-3 MW] 19F0402-02 [GP-5 MW] 19F0402-03 [GP-7 MW] 19F0402-04 [MW-2]	B233005 B233005 B233005 B233005	5 5 5	5.00 5.00 5.00 5.00	06/11/19 06/11/19 06/11/19	
			5.00	06/11/19	

Prep Method: SW-846 3005A Dissolved-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19F0402-01 [GP-3 MW]	B233013	50.0	50.0	06/11/19	
19F0402-02 [GP-5 MW]	B233013	50.0	50.0	06/11/19	
19F0402-03 [GP-7 MW]	B233013	50.0	50.0	06/11/19	
19F0402-04 [MW-2]	B233013	50.0	50.0	06/11/19	

Prep Method: SW-846 7470A Dissolved-SW-846 7470A

Prep Method: SW-846 3510C-SW-846 8081B

Lab Number [Field ID]	Batch	Initial (mL)	Final [mL]	Date	
19F0402-02 [GP-5 MW]	B232858	950	10.0	06/09/19	
19F0402-03 [GP-7 MW]	B232858	870	10.0	06/09/19	

Prep Method: SW-846 3510C-SW-846 8082A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19F0402-02 [GP-5 MW]	B232856	950	10.0	06/09/19	
19F0402-03 [GP-7 MW]	B232856	870	10.0		
		0,0	10.0	06/09/19	

Prep Method: SW-846 3510C-SW-846 8151A

i,ab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
F0402-02 [GP-5 MW]	B232959	980	5.00	06/10/19	
19F0402-03 [GP-7 MW]	B232959	1000	5.00	06/10/19	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19F0402-01 [GP-3 MW] 19F0402-02 [GP-5 MW] 19F0402-03 [GP-7 MW] 19F0402-04 [MW-2]	B232980 B232980 B232980 B232980	5 5 5 5	5.00 5.00 5.00 5.00	06/11/19 06/11/19 06/11/19 06/11/19	
				00/11/19	

Prep Method: SW-846 3510C-SW-846 8270D

19F0402-01 [GP-3 MW] B233211 1000 2.00 06/12/19 19F0402-02 [GP-5 MW] B233211 1000 2.00 06/12/19 19F0402-03 [GP-7 MW] B233211 945 1.80 06/12/19 19F0402-04 [MW-2] B233211 1000 2.00	Lab Number (Field ID)	Batch	Initial [mL]	Final [mL]	Date	
VV. 1.7	19F0402-02 [GP-5 MW] 19F0402-03 [GP-7 MW]	B233211 B233211	1000 945	2.00 1.80	06/12/19 06/12/19	

Bank (1212986 BLK1) Propert 06/11/19 Analyzed: 04/12/19 R-05	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Page	Batch B232980 - SW-846 5030B									**	*
No. 10 10 10 10 10 10 10 1					Prepared: 06	/11/19 Analy	zcd: 06/12/1	9			
Bereader ND		ND	10	μg/L							P. 05
Bromocharocace		ND	0.50	μ g/L							14-05
Bromecharementane		ND	1.0	μg/L							
Bromodibleomenhane		ND	1.0	μg/L							
Bromosform ND 1.0 pg/L		ND	1.0	μg/L							
Bromanethane		ND	1.0	μg/L							
2-Buttone (MEK) ND 10 pg/L		ND		μg/L							
n-Buylbeanzene ND 1.0 pg/L ter-Buylbeanzene ND 1.0 pg/L ter-Buylbeanzene ND 1.0 pg/L ter-Buylbeanzene ND 1.0 pg/L ter-Buylbeanzene ND 0.50 pg/L Carbon Distalfiel ND 0.50 pg/L Carbon Distalfiel ND 0.50 pg/L Carbon Distalfiel ND 0.50 pg/L Chlorochanzen ND 1.0 pg/L Chlorochanzene ND 1.0 pg/L Chlorochanzene ND 0.50 pg/L Chloro				μg/L							
see-Bulythenzene ND 1.0 pg/L tert-Bulythenzene ND 1.0 pg/L tert-Bulyt Ehry Ehry Ehry Ehry Ehry Ehry Ehry Ehry		ND		μg/L							
Inter-Buryl Edwyl Ether (TBEE)	·										
Inter-Bury Libry Ether (TBEE) ND S.50 mg/L											
Carbon Tisulific ND 1.0 spl. Chlorochanzen ND 1.0 spl. Chlorochanzen ND 2.0 spl. Chlorochanzen ND 1.0 spl. Chlorochanzen ND 1.0 spl. Chlorochanzen ND 1.0 spl. Chlorochanzen (EDEP) ND 2.0 spl. Chlorochanzen (EDEP) ND 2.0 spl. Chlorochanzen (EDE) ND 1.0 spl. Chlorochanzen ND 1.0 spl. Chl	-										
Carbon Tetrachloride ND 1.0 ag/L Chlorobenzene ND 1.0 ag/L Chlorobenzene ND 0.50 pg/L Chlorobenzene ND 0.50 pg/L Chlorobenane ND 0.50 pg/L Chlorobenane ND 0.00 pg/L Chlorobenane ND 0.00 pg/L Chlorobenane ND 0.00 pg/L Chlorobenane ND 1.0 pg/L Chlorobene ND 0.50 pg/L Chlorobe											
Chlorochanzene ND 1.0 μg/L Chlorochanzene ND 0.50 μg/L Chlorochanzene ND 0.20 μg/L Chlorochanzene ND 2.0 μg/L Netormathane ND 2.0 μg/L Netormathane ND 2.0 μg/L Netormathane ND 1.0 μg/L Chlorochanzene ND 1.0 μg/L Chlorocholane ND 1.0 μg/L C-Dictorolochane ND 1.0 μg/L 1.2-Dibromo-chlana (EDB) ND 0.50 μg/L 1.2-Dibromo-chlana (EDB) ND 0.50 μg/L 1.2-Dibromo-chlana (EDB) ND 1.0 μg/L 1.2-Dibromo-chlana (EDB) ND 1.0 μg/L 1.3-Dichlorochanzene ND 0.0 μg/L 1.3-Dichloro											
Chlorodibromomethane ND 0.50					ř						
Chlorochane ND 2.0											
Chloroform ND 2.0											
"hloromethane ND 2.0 µg/L Chloroducane ND 1.0 µg/L 4-Chloroducane ND 1.0 µg/L 1,2-Dibrome-3-chloropropane (DBCP) ND 2.0 µg/L 1,2-Dibromechane (EDB) ND 0.50 µg/L 1,2-Dichlorobenzene ND 1.0 µg/L 1,2-Dichlorobenzene ND 1.0 µg/L 1,3-Dichlorobenzene ND 1.0 µg/L 1,4-Dichlorobenzene ND 1.0 µg/L <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Chlorotoluene											
4-Chlorotoluene ND 1.0 μg/L 1.2-Dibromo-3-chloropropane (DBCP) ND 2.0 μg/L 1.2-Dibromo-3-chloropropane (DBCP) ND 0.50 μg/L 1.2-Dibromo-shane (EBB) ND 0.50 μg/L 1.2-Dibromo-shane (EBB) ND 0.50 μg/L 1.2-Dibromo-shane (EBB) ND 0.50 μg/L 1.2-Dibromo-shane (Preon 12) ND 1.0 μg/L 1.3-Dichlorobenzene ND 1.0 μg/L 1.3-Dichlorothane (Freon 12) ND 2.0 μg/L 1.3-Dichlorothane (Preon 12) ND 1.0 μg/L 1.3-Dichlorothane ND 1.0 μg/L 1.3-Dichlorothane ND 1.0 μg/L 1.3-Dichlorothylene ND 1.0 μg/L 1.3-Dichlorothylene ND 1.0 μg/L 1.3-Dichlorothylene ND 1.0 μg/L 1.3-Dichlorothylene ND 1.0 μg/L 1.3-Dichloropropane ND 0.50 μg/L 1.3-Dichloropropa											
1.2-Dibromo-3-chloropropane (DBCP) ND 2.0 Bg/L 1.2-Dibromoethane (EDB) ND 0.50 Hg/L 1.2-Dibromoethane (EDB) ND 0.50 Hg/L 1.2-Dichlorobenzene ND 1.0 Hg/L 1.3-Dichlorobenzene ND 1.0 Hg/L 1.3-Dichlorobenzene ND 1.0 Hg/L 1.4-Dichlorobenzene ND 1.0 Hg/L 1.4-Dichlorobenzene ND 1.0 Hg/L 1.1-Dichlorothane ND 1.0 Hg/L 1.1-Dichlorothylene ND 1.0 Hg/L 1.1-Dichlorothylene ND 1.0 Hg/L 1.1-Dichlorothylene ND 1.0 Hg/L 1.2-Dichlorothylene ND 0.50 Hg/L 1.2-Dichlorothylene ND 0.50 Hg/L 1.2-Dichlorothylene ND 0.50 Hg/L 1.3-Dichloropropane ND 0.50 Hg/L 1.3-Dichloropropane ND 0.50 Hg/L 1.3-Dichloropropene ND 0.50 Hg/L 1.4-Dichloropropene											
1.2-Dibformomethane (EDB) ND 0.50 µg/L											
Dibromomentane ND 1.0											
	•										
A-Dichlorobenzene ND 1.0											
A-Dichlorobenzene											
ND											
2Dichloroethane											
1.0											
rans-1,2-Dichloroethylene ND 1.0 µg/L ,2-Dichloropropane ND 1.0 µg/L ,3-Dichloropropane ND 0.50 µg/L ,2-Dichloropropane ND 0.50 µg/L ,2-Dichloropropane ND 0.50 µg/L ,2-Dichloropropene ND 0.50 µg/L ,1-Dichloropropene ND 0.50 µg/L rans-1,3-Dichloropropene ND 0.40 µg/L rans-1,3-Dichloropropene ND 0.40 µg/L rans-1,3-Dichloropropene ND 0.40 µg/L rans-1,3-Dichloropropene ND 0.50 µg/L rans-1,3-Dichloroprope	•										
1.0											
ND											
ND 1.0 µg/L V-05											
1-Dichloropropene ND 0.50 μg/L	• •										
ND 0.40 Hg/L											V-05
ND 0.40 μg/L	- *										
Story Ether ND 2.0 µg/L											
ND											
A-Dioxane	· · · · ·										
ND											
ND											V-16
Hexanone (MBK)	·										
opropylbenzene (Cumene) ND 1.0 μg/L Sopropyltoluene (p-Cymene) ND 1.0 μg/L ihyl tert-Butyl Ether (MTBE) ND 1.0 μg/L ichylene Chloride ND 5.0 μg/L Mcthyl-2-pentanone (MIBK) ND 10 μg/L											
Isopropyltoluene (p-Cymene)											
thyl tert-Buryl Ether (MTBE) ND 1.0 μg/L cthylene Chloride ND 5.0 μg/L Methyl-2-pentanone (MIBK) ND 10 μg/L											
cthylene Chloride ND 5.0 µg/L Methyl-2-pentanone (MIBK) ND 10 µg/L											
Methyl-2-pentanone (MIBK) ND 10 µg/L	7										
nulated											
ND 2.0 μg/L											
	•	ND	2.0	μg/L							

Analyte	. Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Nates	
Batch B232980 - SW-846 5030B											
Blank (B232980-BLK1)				Prepared: 06	/11/10 Anal-		n				
n-Propylbenzene	ND	1.0	μg/L	110,000	/11/17 /Allaly	72cu. 00/12/1	9				
Styrene	ND	1.0	μg/L								
,1,1,2-Tetrachloroethane	ND	1.0	μg/L						,		
,1,2,2-Tetrachloroethane	ND	0.50	μg/L								
Tetrachloroethylene	ND	1.0	μg/L								
Cetrahydrofuran	ND	2.0	μg/L								
Foluene Column C	ND	1.0	μg/L								
,2,3-Trichlorobenzene	ND	2.0	μg/L μg/L								
,2,4-Trichlorobenzene	ND	1.0									
,1,1-Trichloroethane	ND ND	1.0	μg/L σ								
.1,2-Trichloroethane	ND	1.0	μg/L ·····								
richloroethylene		1.0	μg/L								
richlorofluoromethane (Freon 11)	ND		μg/L								
2,3-Trichloropropane	ND	2.0	μg/L								
2,4-Trimethylbenzene	ND	2.0	μg/L								
3,5-Trimethylbenzene	ND	1.0	μg/L								
inyl Chloride	ND	1.0	μg/L								
+p Xylene	ND	2.0	μg/L								
Xylene	ND	2.0	μg/L								
<u> </u>	ND	1.0	μg/L								
progate: 1,2-Dichloroethane-d4	23.7		μg/L	25.0	_	94.6	70-130				-
urrogate: Toluene-d8	24.8		μg/L	25.0		99.2	70-130				
urogate: 4-Bromofluorobenzene	24.9		μg/L	25.0		99.5	70-130				
CS (B232980-BS1)				Prepared: 06/1	11/19 Analy2	red: 06/12/19)				
celone	116	10	μg/L	100		116	40-160			D 05	_
t-Amyl Methyl Ether (TAME)	9.38	0.50	μ <u>α</u> /L	10.0		93.8	70-130			R-05	
nzene	10.2	1.0	μg/L	10.0		102	70-130				
omobenzene	10.8	1.0	μg/L	10.0		108	70-130				
omochloromethane	10.4	1.0	μg/L	10.0		104	70-130				
omodichloromethane	10,4	1.0	μg/L	10.0		104	70-130 70-130				
omoform	10.0	1.0	μg/L	10.0		100					
omomethane	4.10	2.0	μg/L	10.0		41.0	70-130				
Butanone (MEK)	98.6	10	μg/L	100			40-160			L-14	
Butylbenzene	10.3	1.0	μg/L	10.0		98.6	40-160				
-Butylbenzene	10.6	1.0	μg/L	10.0		103	70-130				
-Butylbenzene	10.4	1.0	μg/L	10.0		106	70-130				
-Butyl Ethyl Ether (TBEE)	9.14	0.50	μg/L			104	70-130				
bon Disulfide	10.2	5.0	μg/L	10.0		91.4	70-130				
bon Tetrachloride	9.89	1.0		10.0		102	70-130				
orobenzene		1.0	μg/L ug/I	10.0		98.9	70-130				
orodibromomethane	11.1 9.64	0.50	μg/L	10.0		111	70-130				
oroethane			μg/L	10.0		96.4	70-130				
oroform	9.59	2.0	μg/L	10.0		95.9	70-130				
oromethane	10.3	2.0	μg/L σ	10.0		103	70-130				
hlorotoluene	13.5	2.0	μg/L	10.0		135	40-160			L-14, V-20	
hlorotoluene	11.0	1.0	μg/L	10.0		110	70-130				
Dibromo-3-chloropropane (DBCP)	11.0	1.0	μg/L	10.0		110	70-130				
Dibromoethane (EDB)	10.2	2.0	μg/L	10.0		102	70-130				
romomethane	10.6	0.50	μg/L	10.0		106	70-130				
Dichlorobenzene	10.0	1.0	μg/L	10.0		100	70-130				
Dichlorobenzene Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130				
>icinorobenzene	11.2	1.0	μg/L	10.0		112	70-130				
Dichlorobenzene							.0-100				

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B232980 - SW-846 5030B										110103	
LCS (B232980-BS1)				Prepared: 06	/11/10 Anale	mad: 06/12/1	10				
Dichlorodifluoromethane (Freon 12)	6.89	2.0	μg/L	10.0	TITE Allaly						
1.1-Dichloroethane	10.0	1.0	μg/L	10.0		68.9	40-160			L-14	
1,2-Dichloroethane	10.3	1.0	μg/L	10.0		100	70-130				
,1-Dichloroethylene	10.1	1.0	μg/L	10.0		103	70-130				
is-1,2-Dichloroethylene	9.87	1.0	μg/L	10.0		101	70-130				
rans-1,2-Dichloroethylene	9.99	1.0	μg/L	10.0		98.7	70-130				
,2-Dichloropropane	10.4	1.0	μg/L	10.0		99.9	70-130				
,3-Dichloropropane	10.1	0.50	μg/L			104	70-130				
,2-Dichloropropane	8.05	1.0	μg/L μg/L	10.0		101	70-130				
,1-Dichloropropene	9.91	0.50		10.0		80.5	70-130			V-05	
is-1,3-Dichloropropene	9.60	0.40	μg/L ug/	10.0		99.1	70-130				
ans-1,3-Dichloropropene	9.39	0.40	μg/L ug/I	10.0		96.0	70-130				
iethyl Ether	9.90	2.0	μg/L ug/I	10.0		93.9	70-130				
iisopropyl Ether (DIPE)	9.61	0.50	μg/L	10.0		99.0	70-130				
4-Dioxane	9.61 107	50	μg/L π	10.0		96.1	70-130				
hylbenzene			μg/L	100		107	40-160			V-16	
exachlorobutadiene	10.9	1.0	μg/L	10.0		109	70-130				
Hexanone (MBK)	11.4	0.60	μg/L 	10.0		114	70-130				
opropylbenzene (Cumene)	98.6	10	μg/L	100		98.6	40-160				
sopropyltoluene (p-Cymene)	11,2	1.0	μg/L	10.0		112	70-130				
ethyl tert-Butyl Ether (MTBE)	10.5	1.0	μg/L -	10.0		105	70-130				
ethylene Chloride	10.3	1.0	μg/L	10.0		103	70-130				
Methyl-2-pentanone (MIBK)	10.3	5.0	μg/L	10.0		103	70-130				
aphthalene	97.8	10	μg/L	100		97.8	40-160				
Propylbenzene	10.7	2.0	μg/L	10.0		107	70-130				
yrene	11,1	1.0	μg/L	10.0		111	70-130				
,1,2-Tetrachloroethane	11.0	1.0	μg/L	10.0		110	70-130				
,2,2-Tetrachloroethane	11.1	1.0	μg/L	10.0		111	70-130				
trachloroethylene	11.0	0.50	μg/L	10.0		110	70-130				
rahydrofuran	11.5	1.0	μg/L	10.0		115	70-130				
uene	10.7	2.0	μg/L	10.0		107	70-130				
	10.4	1.0	μg/L	10.0		104	70-130				
,3-Trichlorobenzene	10.7	2.0	μg/L	10.0		107	70-130				
,4-Trichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130				
,1-Trichloroethane	10.2	1.0	μg/L	10.0		102	70-130				
2-Trichloroethane	10.8	1.0	μg/L	10.0		108	70-130				
chloroethylene	11.2	1.0	μg/L	10.0		112	70-130				
chlorofluoromethane (Freon 11)	9.14	2.0	μg/L	10.0		91.4	70-130				
3-Trichloropropane	10.9	2.0	μg/L	10.0		109	70-130				
4-Trimethylbenzene	10.0	1.0	μg/L	10.0		100	70-130				
5-Trimethylbenzene	10.7	1.0	μg/L	10.0		107	70-130				
yl Chloride	8.55	2.0	μg/L	10.0		85.5	70-130				
Xylene	22.0	2.0	μg/L	20.0		110					
ylene	11.2	1.0	μg/L	10.0		112	70-130 70-130				
ogate: 1,2-Dichtoroethane-d4	24.2		μg/L	25.0		97.0	70-130		·		_
ogate: Toluene-d8	24.8		μg/L	25.0		99.2	70-130				
ogate: 4-Bromofluorobenzene	25.4		μg/L	25.0		102	70-130 70-130				

Analyte	Result	Reporting Limit	Units	Spike	Source	0/850	%REC	nnn	RPD		
Batch B232980 - SW-846 5030B	Kesan	Limit	Onis	Level	Result	%REC	Limits	RPD	Limit	Notes	
LCS Dup (B232980-BSD1)				Prepared: 06	6/11/19 Analy	vzed: 06/12/1	9				
Accione	93.3	10	μg/L	100	"11117 7111ui)	93.3	40-160	21.4 *	20	R-05	-
tert-Amyl Methyl Ether (TAME)	9.37	0.50	rs~ μg/L	10.0		93.7	70-130	0.107	20	K-05	t
Benzene	9,98	1.0	μg/L	10.0		99.8	70-130	2.08			
Broniebenzene	10.4	1.0	μg/L	10.0		104	70-130	3.11	20 20		
Bromochloromethane	10.2	1.0	μg/L	10.0		104	70-130	1.45	20		
Bromodichloromethane	10.2	1.0	μg/L	10.0		102	70-130	1.65	20		
Bromoform	9.67	1.0	μg/L	10.0		96.7	70-130	3.46			
Bromomethane	4.13	2.0	μg/L	10.0		41.3	40-160	0.729	20		_
2-Butanone (MEK)	90.4	10	μg/L	100		90.4	40-160	8.71	20 20	L-14	†
n-Butylbenzene	9.91	1.0	μg/L	10.0		99.1	70-130				t
sec-Butylbenzene	10.6	1.0	μg/L	10.0		106	70-130 70-130	3.76 0.00	20		
tert-Butylbenzene	10.3	1.0	μg/L	10.0		-103	70-130		20		
tert-Butyl Ethyl Ether (TBEE)	9.10	0.50	μg/L	10.0		91.0		1.06	20		
Carbon Disulfide	9.50	5.0	μg/L				70-130	0.439	20		
Carbon Tetrachloride	9.30	1.0	րը/L	10.0		95.0	70-130	7.01	20		
Chlorobenzene		1.0		10.0		97.6	70-130	1.32	20		
Chlorodibromomethane	11.0	0.50	μg/L	10.0		110	70-130	0.724	20		
Chloroethane	9.67	2.0	μg/L ··/r	10.0		96.7	70-130	0.311	20		
Chloroform	9.60		μg/L	10.0		96.0	70-130	0.104	20		
Aloromethane	10.1	2.0	μg/L	10.0		101	70-130	1.57	20		
2-Chiorotoluene	13.4	2.0	μg/L	10.0		134	40-160	0.594	20	L-14, V-20	t
4-Chlorotoluene	10.4	1.0	μg/L	10.0		104	70-130	6.16	20		
1,2-Dibromo-3-chloropropane (DBCP)	10.6	1.0	μg/L 	10.0		106	70-130	3.52	20		
1,2-Dibromoethane (EDB)	9.81	2.0	μg/L	10.0		98.1	70-130	4.00	20		
Dibromomethane	10.7	0.50	μg/L	10.0		107	70-130	0.375	20		
	10.2	1.0	μg/L	10.0		102	70-130	1.98	20		
1,2-Dichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130	1.19	20		
1,3-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130	2.43	20		
I,4-Dichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	0.742	20		
Dichlorodifluoromethane (Freon 12)	6.69	2.0	μ g/ Ľ	10.0		66.9	40-160	2.95	20	L-14	t
1,1-Dichloroethane	9.69	1.0	μg/L	10.0		96.9	70-130	3.45	20		
1,2-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	1.56	20		
I,1-Dichloroethylene	9.99	1.0	μg/L	10.0		99.9	70-130	1.10	20		
cis-1,2-Dichloroethylene	9.73	1.0	μg/L	10.0		97.3	70-130	1.43	20		
trans-1,2-Dichloroethylene	9.58	1.0	μg/L	10.0		95.8	70-130	4.19	20		
1,2-Dichloropropane	10.4	1.0	μg/L	10.0		104	70-130	0.0965	20		
1,3-Dichloropropane	9.72	0.50	μg/L	10.0		97.2	70-130	4.23	20		
2,2-Dichloropropane	7.75	1.0	μg/L	10.0		77.5	70-130	3.80	20	V-05	
1,1-Dichloropropene	9.80	0.50	μg/L	10.0		98.0	70-130	1.12	20		
eis-1,3-Dichloropropene	9.61	0.40	μg/L	10.0		96.1	70-130	0.104	20		
rans-1,3-Dichloropropene	9.40	0.40	μg/L	10.0		94.0	70-130	0.106	20		
Diethyl Ether	10.1	2.0	μg/L	10.0		101	70-130	2.10	20		
Diisopropyl Ether (DIPE)	9.41	0.50	μg/L	10.0		94.1	70-130	2.10	20		
,4-Dioxane	97.7	50	μg/L	100		97.7	40-160	9.13	20	V-16	†
Ethylbenzene	10.4	1.0	μg/L	10.0		104	70-130	4.70	20		
	11.7	0.60	μg/L	10.0		117	70-130	2.34	20		
2-Hexanone (MBK)	93.7	10	μg/L	100		93.7	40-160	5.10	20		t
sopropylbenzene (Cumene)	10.6	1.0	μg/L	10,0		106	70-130	4.95	20		,
sopropyltoluene (p-Cymene)	10.2	1.0	μg/L	10.0		102	70-130	2.99	20		
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	μg/L	10.0		102	70-130	1.27	20		
Methylene Chloride	10.4	5.0	μg/L	10.0		104	70-130	0.483	20		
I-Methyl-2-pentanone (MIBK)	95.0	10	μg/L	100		95.0	40-160	2.85	20		
Naphthalene		2.0	μg/L								İ
	10.7	ž. U	rgr	10.0		107	70-130	0.0932	20		

Analyte .	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	. RPD	RPD Limit	Notes
Batch B232980 - SW-846 5030B										
.CS Dup (B232980-BSD1)				Prepared: 06	/11/10 Analı	d. 06/13/				
-Propylbenzene	10.6	1.0	μg/L	10.0	ATTI Allai					
ityrene	10.6	1.0	μg/L μg/L	10.0		106	70-130	4.60	20	
,1,1,2-Tetrachloroethane	10.7	1.0	μg/L μg/L			106	70-130	3.90	20	
,1,2,2-Tetrachloroethane	11.3	0,50		10.0		107	70-130	3.30	20	
ctrachloroethylene	11.0	1.0	μg/L	10.0		113	70-130	2.15	20	
etrahydrofuran		2.0	μg/L	10.0		110	70-130	4.34	20	
oluene	10.2		μg/L	10.0		102	70-130	5.18	20	
2,3-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	0.953	20	
2,4-Trichlorobenzene	10.3	2.0	μg/L ~	10.0		103	70-130	3.61	20	
1,1-Trichloroethane	10.7	1.0	μg/L	10.0		107	70-130	0.748	20	
1,2-Trichloroethane	9.89	1.0	μg/L	10.0		98.9	70-130	3.28	20	
richloroethylene	11.1	1.0	μg/L	10.0		111	70-130	2.83	20	
richlorofluoromethane (Freon 11)	10.8	1.0	μg/L	10.0		108	70-130	3.47	20	
2,3-Trichloropropane	8.73	2.0	μg/L	10.0		87.3	70-130	4.59	20	
2,4-Trimotopropane	10.6	2.0	μg/L	10.0		106	70-130	2.60	20	
	10.1	1.0	μg/L	10.0		101	70-130	0.896	20	
3,5-Trimethylbenzene	10.5	1.0	μg/L	10.0		105	70-130	2.17	20	
nyl Chloride	8.31	2.0	μg/L	10.0		83.1	70-130	2.85	20	
+p Xylene	21.1	2.0	μg/L	20.0		105	70-130	4.18	20	
Xylene	10.8	1.0	μg/L	10.0		108	70-130	3.00	20	
rrogate: 1,2-Dichloroethane-d4	23.5		μg/L	25.0						
rrogate: Toluene-d8	24,7		μg/L μg/L	25.0 25.0		94.2	70-130			
rrogate: 4-Bromofluorobenzene	25.5		μg/L μg/L	25.0 25.0		98.9 102	70-130 70-130			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B233211 - SW-846 3510C										
Blank (B233211-BLK1)				Prepared: 06	/12/19 Anals	vzed: 06/13/1	9	****	·	
Benzo(a)anthracene (SIM)	ND	1.0	μg/L			, zcu. 00/15/1				
Benzo(a)pyrene (SIM)	ND	0.20	μg/L							
Benzo(b)fluoranthene (SIM)	ND	1.0	μg/L							
Benzo(k)fluoranthene (SIM)	ND	1.0	μg/L							
Chrysene (SIM)	ND	2.0	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.50	μg/L							
ndeno(1,2,3-ed)pyrene (SIM)	ND	0.50	μg/L							
urrogate: o-Terphenyl (OTP) (SIM)	62.4		μg/L	100		62.4	30-130		***************************************	
.CS (B233211-BS1)				Prepared: 06/	12/10 Analy	rand: 06/13/1				
enzo(a)anthracene (SIM)	67.4	20	μg/L	100	12019 Allaly	67.4				
enzo(a)pyrene (SIM)	72.3	4.0	μg/L	100		67.4 72,3	40-140			
lenzo(b)fluoranihene (SIM)	71,3	20	μg/L	100			40-140			
ienzo(k)fluoranthene (SIM)	75.3	20	μg/L	100		71.3 75.3	40-140			
hrysene (SIM)	69,4	40	μg/L	100			40-140			
Pibenz(a,h)anthracene (SIM)	80.3	10	μg/L	100		69.4	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	75.0	10	μg/L	100		80.3 75.0	40-140 40-140			
штоgate: o-Terphenyl (ОТР) (SIM)	73.2		μg/L	100		73.2	30-130			
CS Dup (B233211-BSD1)				Prepared: 06/	12/19 Analy	zed: 06/13/19				
enzo(a)anthracene (SIM)	56.3	20	μg/L	100		56.3	40-140	18.0		
enzo(a)pyrene (SIM)	60.0	4.0	μg/L	100		60.0	40-140	18.6	20	
enzo(b)fluoranthene (SIM)	59.6	20	μg/L	100		59.6	40-140	17.9	20	
enzo(k)fluoranthene (SIM)	63.0	20	μg/L	100		63.0	40-140	17.9	20	
rysene (SIM)	58.3	40	μg/L	100		58.3	40-140	17.8	20	
ibenz(a,h)anthracene (SIM)	67.0	10	μg/L	100		67.0	40-140		20	
deno(1,2,3-cd)pyrene (SIM)	62.2	10	μg/L	100		62.2	40-140 40-140	18.0 18.7	20 20	
arrogate: o-Terphenyl (OTP) (SIM)	61.4						.0 110	10.7	4V	

Organochloride Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232858 - SW-846 3510C										Notes
Blank (B232858-BLK1)			_	Prepared: 06	/09/19 Anals	mod: 06/12/1	······································			
Aldrin	ND	0.050	μg/L	111-11-11-11-11	OSTI ZINGI	/2cu. 00/12/1	y			
Aldrin [2C]	ND	0.050	μg/L							
ilpha-BHC	ND	0.050	μg/L							
lpha-BHC [2C]	ND	0.050	μg/L							
oeta-BHC	ND	0.050	μg/L							
eta-BHC [2C]	ND	0.050	μg/L μg/L							
lelta-BHC	ND	0.050	μg/L							
elta-BHC (2C)	ND	0.050								
amma-BHC (Lindane)	ND	0.030	μg/L uσ/I							
anınıa-BHC (Lindane) [2C]	ND ND	0.030	μg/L							
Chlordane		0.20	μg/L							
hlordane [2C]	ND	0.20	μg/L							
,4'-DDD	ND		μg/L							
.4'-DDD [2C]	ND	0.040	μg/L.							
4'-DDE	ND	0.040	μg/L							
4'-DDE [2C]	ND	0.040	μg/L	•						
4'-DDT	ND	0.040	μg/L							
4'-DDT [2C]	ND	0.040	μg/L							
ieldrin	ND	0.040	μg/L							
ieldrin [2C]	ND	0.0020	μg/L							
dosulfan I	ND	0.0020	μg/L							
ndosulfan I [2C]	ND	0.050	μg/L						•	
ndosulfan II	ND	0.050	μg/L							
ndosulfan II [2C]	ND	0.080	μg/L							
idosulfan Sulfate	ND	0.080	μg/L							
	ND	0.080	μg/L							
dosulfan Sulfate [2C]	ND	0.080	μg/L							
drin	ND	0.080	μg/L							
drin [2C]	ND	0.080	μg/L							
drin Aldehyde	ND	0.080	μg/L							
drin Aldehyde [2C]	ND	0.080	μg/L							
drin Ketone	ND	0.080	μg/L							
drin Ketone [2C]	ND	0.080	μg/L							
ptachlor	ND	0.050	μg/L							
ptachlor [2C]	ND	0.050	μg/L							
ptachlor Epoxide	ND	0.050	μg/L				•			
ptachlor Epoxide [2C]	ND	0.050	μg/L							
kachlorobenzene	ND	0.050	μg/L							
kachlorobenzene [2C]	ND	0.050	μg/L							
thoxychlor	ND	0.50	μg/L μg/L							
thoxychlor [2C]	ND	0.50	μg/L μg/L							
rogate: Decachlorobiphenyl	1.74			2.00		24.0				
rogate: Decachlorobiphenyl [2C]	1.77		μg/L	2.00		86.8	30-150			
rogate: Tetrachloro-m-xylene	1.60		μg/L	2.00		88.4	30-150			
rogate: Tetrachloro-m-xylene [2C]	1.79		μg/L μg/L	2.00 2.00		79.9	30-150			

Organochloride Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232858 - SW-846 3510C							· · · · · · · · · · · · · · · · · · ·			.10103
LCS (B232858-BS1)				Prepared: 06	/09/19 Anal-	uzad- 06/12/	10			·
Aldrin	0.91	0.050	μg/L	1.00	rozity mai					
Aldrin [2C]	0.90	0.050	μg/L	1.00		90.5	40-140			
alpha-BHC	0.91	0.050	μg/L	1.00		90.4	40-140			
alpha-BHC [2C]	0.91	0.050	μg/L	1.00		90.6	40-140			
beta-BHC	0.88	0.050	μg/L	1.00		90.6	40-140			
beta-BHC [2C]	0.85	0.050	μg/L			87.7	40-140			
delta-BHC	0.63	0.050	μg/L	1.00		84.6	40-140			
delia-BHC [2C]	0.67	0.050	μg/L	1.00		62.9	40-140			
gamma-BHC (Lindane)	0.91	0.030	μg/L	1.00		66.9	40-140			
gamma-BHC (Lindane) [2C]	0.92	0.030		1.00		91.0	40-140			
1,4'-DDD	0.93	0.040	μg/L ug/I	1.00		92.0	40-140			
I,4'-DDD [2C]	0.96	0.040	μg/L	1.00		93.4	40-140			
4'-DDE	0.95	0.040	μg/L ug/	1.00		95.8	40-140			
.4'-DDE [2C]	0.93	0.040	μg/L	1.00		94.8	40-140			
4'-DDT	0.94	0.040	μg/L	1.00		94.2	40-140			
,4'-DDT [2C]			μg/L	1.00		95.5	40-140			
Dieldrin	0.91	0.040	μg/L	1.00		91.4	40-140			
Dieldrin [2C]	0.93	0.0020	μg/L	1.00		92.7	40-140			
indosulfan I	0.92	0.0020	μg/L -	1.00		91.8	40-140			
ndosulfan I (2C)	0.85	0.050	μg/L	1.00		85.2	40-140			
ndosulfan II	0.87	0.050	μg/L -	1.00		87.4	40-140			
ndosulfan II (2C)	0.80	0.080	μg/L _	1.00		79.8	40-140			
ndosulfan Sulfate	0.79	0.080	μg/L	1.00		79.3	40-140			
ndosulfan Sulfate [2C]	0.93	0.080	μg/L	1.00		93.1	40-140			
ndrin	0.91	0.080	μg/L	1.00		91.3	40-140			
ndrin [2C]	0.94	0.080	μg/L	1.00		94.0	40-140			
ndrin Ketone	0.91	0.080	μg/L	1.00		91.1	40-140			
ndrin Ketone [2C]	0.90	0.080	μg/L	1.00		90.3	40-140			
eptachlor	0.95	0.080	μg/L	1.00		95.3	40-140			
eptachlor [2C]	0.68	0.050	μg/L	1.00		68.2	40-140			
eptachlor Epoxide	0.91	0.050	μg/L	1.00		90.6	40-140			
ptachlor Epoxide [2C]	0.89	0.050	μg/L	1.00		89.3	40-140			
exachlorobenzene	0.87	0.050	μg/L	1.00		87.4	40-140			
xachlorobenzene [2C]	1.0	0.050	μg/Ľ	1.00		101	40-140			
	0.91	0.050	μg/L	1.00		90.9	40-140			
ethoxychlor	0.90	0.50	μg/L	1.00		90.2	40-140			
ethoxychlor [2C]	0.90	0.50	μ g/ Ľ	1.00		90.1	40-140			
rrogate: Decachlorobiphenyl	1.90		μg/L	2.00		95.0	30-150			
rrogate: Decachlorobiphenyl [2C]	1.96		μg/L	2.00		97.8	30-150			
rrogate: Tetrachloro-m-xylene	1.85		μg/L	2.00		92.5	30-150			
rrogate: Tetrachloro-m-xylene [2C]	1.90		μg/L	2.00		95.0	30-150			
'S Dup (B232858-BSD1)										
Irin				Prepared: 06/09	9/19 Analyz	ed: 06/12/19				
lrin [2C]	0.93	0.050	μg/L	1.00		92.9	40-140	2.57	30	
ha-BHC	0.90	0.050	μg/L	1.00		90.3	40-140	0.163	30	
na-BHC [2C]	0.92	0.050	μg/L	1.00		92.0	40-140	1.51	30	
a-BHC	0.90	0.050	μg/L	1.00		89.9	40-140	0.749	30	
	0.87	0.050	μg/L	1.00		86.9	40-140	0.858	30	
a-BHC [2C]	18,0	0.050	μg/L	1.00		81.3	40-140	3.97	30	
a-BHC	0.49	0.050	μg/L	1.00		49.2	40-140	24.3	30	
a-BHC [2C]	0.51	0.050	μg/L	1.00		50.8	40-140	27.5	30	
ıma-BHC (Lindanc)	0.92	0.030	μg/L	1.00		91.9	40-140	0.984		
ma-BHC (Lindane) [2C]	0.89	0.030	μg/L	1.00		89.4	40-140	2.79	30 30	

Organochloride Pesticides by GC/ECD - Quality Control

Analyte	. Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232858 - SW-846 3510C							······································			
LCS Dup (B232858-BSD1)				Prepared: 06	/09/19 Analy	rzed: 06/12/1	0	***		
4,4'-DDD	0.95	0.040	μg/L	1.00		95.2	40-140	1.92		
4,4'-DDD [2C]	0.96	0.040	μg/L	1.00		96.4	40-140	0.599	30	
4,4'-DDE	0.96	0.040	μg/L	1.00		96.4	40-140	1.73	30	
4,4'-DDE [2C]	0.95	0.040	μg/L	1.00		94.8	40-140	0.732	30	
4,4'-DDT	0.97	0.040	μg/L	1.00		97.2	40-140		30	
4,4'-DDT [2C]	0.92	0.040	μg/L	1.00		92.5	40-140	1.83 1.19	30	
Dieldrin	0.94	0.0020	μg/L	1.00		94.0	40-140	1.19	30	
Dieldrin [2C]	0.92	0.0020	μg/L	1.00		91.5	40-140	0.253	30	
Endosulfan I	0.83	0.050	μg/L	1.00		82.7	40-140	2.93	30	
Endosulfan I [2C]	0.83	0.050	μg/L	1.00		83.2	40-140		30	
Endosulfan II	0.79	0.080	μg/L	1.00		78.7	40-140	4.94	30	
Endosulfan II (2C)	0.77	0.080	μg/L	1.00		76.7 77.2	40-140	1.45	30	
Endosulfan Sulfate	0,94	0.080	μg/L	1.00		93.7	40-140	2.76	30	
Endosulfan Sulfate [2C]	0,91	0.080	μg/L	1.00		90.6	40-140	0.615	30	
Endrin	0.95	0.080	μg/L	1.00		95.3	40-140	0.699	30	
Endrin (2C)	0.91	0.080	μg/L	1.00		90.7		1.33	30	
Endrin Ketone	0.92	0.080	μg/L	1.00		92.2	40-140	0.470	30	
Endrin Ketone [2C]	1.0	0.080	μg/L	1.00		101	40-140	2.03	30	
Teptachlor	0.70	0.050	μg/L	1.00		70.4	40-140	5.76	30	
.eptachlor [2C]	0.90	0.050	μg/L	1.00		70.4 89.8	40-140	3.17	30	
Leptachlor Epoxide	0.91	0.050	μg/L	1.00		90.7	40-140 40-140	0.844	30	
Teptachlor Epoxide [2C]	0.87	0.050	μg/L	1.00		86.6	40-140	1.60	30	
łexachlorobenzene	1.0	0.050	μg/L	1.00		104		0.953	30	
fexachlorobenzene [2C]	0.91	0.050	μg/L	1.00		91.3	40-140	3.27	30	
Methoxychlor	0.91	0.50	μg/L	1.00		91.5	40-140	0.470	30	
Acthoxychlor [2C]	0.91	0.50	μg/L	1.00		90.5	40-140 40-140	1.45 0.479	30 30	
urrogate: Decachlorobiphenyl	1.92		μg/L	2.00		96.2		3.777		
Surrogate: Decachlorobiphenyl [2C]	1.96		μg/L	2.00		90.2 97.9	30-150 30-150			
urrogate: Tetrachloro-m-xylene	1.91		μg/L	2.00		97.9 95.4	30-150 30-150			
iurrogate: Tetrachloro-m-xylene [2C]	1.90		μg/L	2.00		95.1 95.1	30-150 30-150			

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232856 - SW-846 3510C					***			-45		140105
Blank (B232856-BLK1)				Prepared: 06	/09/19 Anal-	vzed: 06/11/1	9			
Aroclor-1016	ND	0.20	μg/L			200.00/11/				
Aroclor-1016 [2C]	ND	0.20	μg/L							
Aroclor-1221	ND	0.20	μg/L							
Araclor-1221 [2C]	ND	0.20	μg/L							
Aroclor-1232	ND	0.20	μg/L							
Aroclor-1232 [2C]	ND	0.20	μg/L							
Aroclor-1242	ND	0.20	μg/L							
Aroclor-1242 [2C]	ND	0.20	μg/L							
Aroclor-1248	ND	0.20	μg/L							
Aroclor-1248 [2C]	ND	0.20	μg/L							
Aroclor-1254	ND	0.20	μg/L							
Aroclor-1254 [2C]	ND	0.20	μg/L							
Aroclor-1260	ND	0.20	μg/L							
Aroclor-1260 [2C]	ND	0.20	μg/L							
Aroclor-1262	ND	0.20	μg/L							
troclor-1262 [2C]	ND	0.20	μg/L							
rocior-1268	ND	0.20	μg/L							
roclor-1268 [2C]	ND	0.20	μg/Ľ							
urrogate: Decachlorobiphenyl	1.81		μg/L	2.00		90.4	20.150			
urogate: Decachlorobiphenyl [2C]	1.67		μg/L	2.00		90.4 83.7	30-150			
аrrogate: Tetrachloro-m-xylene	1.62		μg/L	2.00		80.8	30-150 30-150			
urrogate: Tetrachloro-m-xylene [2C]	1.50		μg/L	2.00		74.9	30-150			
CS (B232856-BS1)				Prepared: 06/0	19/19 Analy					
roclor-1016	0.50	0.20	μg/L	0.500	oor to remary	99.5				
roclor-1016 [2C]	0.50	0.20	μg/L	0.500		100	40-140			
roclor-1260	0.46	0.20	μg/L	0.500		91.4	40-140			
roclor-1260 [2C]	0.48	0.20	μg/L	0.500		96.3	40-140 40-140			
rrogate: Decachlorobiphenyl	1.94		μg/L	2.00		··				
rrogate: Decachlorobiphenyl [2C]	1.80		μg/L μg/L	2.00		97.0	30-150			
rrogate: Tetrachloro-m-xylene	1.80		μg/L	2.00		90.1 89.9	30-150			
rrogate: Tetrachloro-m-xylene [2C]	1.65		μg/L	2.00		82.3	30-150 30-150			
CS Dup (B232856-BSD1)				Prepared: 06/0	10/10 Amalum					
oclor-1016	0.50	0.20	μg/L		OITS Analys					
oclor-1016 [2C]	0.51	0.20		0.500		101	40-140	1.34	20	
oclor-1260	0.46	0.20	μg/L ug/ī	0.500		103	40-140	2.43	20	
oclor-1260 [2C]	0.48	0.20	μg/L μg/L	0.500 0.500		92.3	40-140	0.908	20	
rrogate: Decachlorobiphenyl	1.97			····		96.1	40-140	0.191	20	
rogate: Decachlorobiphenyl [2C]	1.85		μg/L ug/I	2.00		98.7	30-150			
rogate: Tetrachloro-m-xylene	1.84		μg/L	2.00		92.4	30-150			
rogate: Tetrachloro-m-xylene [2C]	1.69		μg/L μg/L	2.00 2.00		92.2 84.5	30-150 30-150			

Herbicides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232959 - SW-846 3510C									- Dillin	140165
Blank (B232959-BLK1)				Prepared: 06	/10/19 Anals	vzed- 06/13/1	10			
2,4-D	ND	0.50	μg/L			,				
2,4-D [2C]	ND	0.50	μg/L							
2,4-DB	ND	0.50	μg/L							
2,4-DB [2C]	ND	0.50	μg/L							
2,4,5-TP (Silvex)	ND	0.050	μg/L							
2,4,5-TP (Silvex) [2C]	ND	0.050	μg/L							
2,4,5-T	ND	0.10	μg/L							
2.4,5-T [2C]	ND	0.10	μg/L							
Dalapon	ND	1.2	μg/L							
Dalapon (2C)	ND	1.2	μg/L							
Dicamba	ND	0.050	μg/L							
Dicamba [2C]	ND	0.050	μg/L							
Dichloroprop	ND	0.50	μg/L							
Dichloroprop [2C]	ND	0.50	μg/L							
Dinoseb	ND	0.25	μg/L							
Dinoseb [2C]	ND	0.25	μg/L				•			
ACPA	ND	50	μg/L							
1CPA [2C]	ND	50	μg/L							
1CPP	ND	50	μg/L							
1CPP [2C]	ND	50	μg/L							
irrogate: 2,4-Dichlorophenylacetic acid	1.64		μg/L	2.00						
urrogate: 2,4-Dichlorophenylacetic acid	1.68		μg/L μg/L	2.00		82.1	30-150			
2C]			rg 2	2.00		84.2	30-150			
CS (B232959-BS1)				Prepared: 06/	10/19 Analy	zed: 06/13/1	9			
,4-D	2.04	0.50	μg/L	2.50		81.6	40-140			
,4-D [2C]	2.16	0.50	μg/L	2.50		86.2	40-140			
4-DB	2.09	0.50	μg/L	2.50		83.6	40-140			
4-DB [2C]	2.17	0.50	μg/L	2.50		86.7	40-140			
4,5-TP (Silvex)	0.223	0.050	μg/L	0.250		89.1	40-140			
4,5-TP (Silvex) [2C]	0.215	0.050	μg/L	0.250		86.0	40-140			
4,5-T	0.228	0.10	μg/L	0.250		91.3	40-140			
4,5-T [2C]	0.232	0.10	μg/L	0.250		92.9	40-140			
alapon	4.05	1.2	μg/L	6.25		64.9	40-140			
alapon [2C]	4.06	1.2	μg/L	6.25		65.0	40-140			
camba	0.301	0.050	μg/L	0.250		121				
camba [2C]	0.208	0.050	μg/L	0.250			40-140			
chloroprop	2.17	0.50	μg/L	2.50		83.2 86.7	40-140			
chloroprop [2C]	2.20	0.50	μg/L	2.50			40-140			
noscb	0.943	0.25	μg/L	1.25		88.1	40-140			
noseb [2C]	0.940	0.25	μg/L	1.25		75.4	10-140			
CPA	188	50	μg/L μg/L	250		75.2	10-140			
CPA [2C]	200	50	μg/L μg/L			75.3	40-140			
CPP	204	50	μg/L μg/L	250		79.8	40-140			
CPP [2C]	203	50	μg/L μg/L	250 250		81.8	40-140			
rrogate: 2,4-Dichlorophenylacetic acid						81.2	40-140			
rrogate: 2,4-Dichlorophenylacetic acid	1.74		μg/L -	2.00		87.0	30-150			
Plant : 2,4-Dictiorophenylacette acid	1.75		μg/L	2.00		87.3	30-150			

Herbicides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	ŖPD	RPD Limit	Notes
Batch B232959 - SW-846 3510C									***************************************	
LCS Dup (B232959-BSD1)				Prepared: 06	/10/19 Anals	rzed: 06/12/1	10			
2,4-D	2.08	0.50	μg/L	2,50	10/15 11/101					
2,4-D [2C]	2,20	0.50	μg/L	2.50		83.3	40-140	2.13	20	
2,4-DB	2.16	0.50	μg/L	2.50		87.9	40-140	1.93	20	
2,4-DB [2C]	2.34	0.50	μg/L	2.50		86.2	40-140	3.06	20	
4,4,5-TP (Silvex)	0.224	0.050	μg/L	0.250		93.5	40-140	7.47	20	
.4,5-TP (Silvex) [2C]	0.220	0.050	μg/L	0.250		89.5	40-140	0.520	20	
,4,5-T	0.202	0.10	րց/L μg/L	0.250		88.1	40-140	2.39	20	
.4,5-T (2C)	0.223	0.10	μg/L μg/L	0.250		81.0	40-140	12.0	20	
Palapon	4.00	1.2	μg/L μg/L	6.25		89.1	40-140	4.22	20	
alapon [2C]	4.03	1.2	μg/L μg/L			64.0	40-140	1.33	20	
icamba	0.334	0.050		6.25		64.4	40-140	0.904	20	
icamba [2C]	0.334	0.050	μg/L ug/I	0.250		134	40-140	10.3	20	
ichloroprop	2.22	0.050	μg/L	0.250		85.2	40-140	2.38	20	
ichloroprop [2C]	2.22	0.50	μg/L	2.50		88.7	40-140	2.28	20	
inoseb	0.931	0.30	μg/L	2.50		90.4	40-140	2.52	20	
inoseb [2C]		0.25	μg/L	1.25		74.5	10-140	1.25	20	
ICPA	0.947		μg/L.	1.25		75.8	10-140	0.688	20	
ICPA [2C]	196	50	μg/L	250		78.5	40-140	4.09	20	
ICPP	203	50	μg/L	250		81.4	40-140	1.97	20	
CPP [2C]	216	50	μg/L	250		86.3	40-140	5.40	20	
	206	50	μg/L	250		82.2	40-140	1.23	20	
urrogate: 2,4-Dichlorophenylacetic acid	1.80		μg/L	2.00		90.1	30-150			
rrogate: 2,4-Dichlorophenylacetic acid	1.78		μg/L	2.00		89.2	30-150			

Petroleum Hydrocarbons Analyses - EPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note:
Batch B232960 - SW-846 3510C								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Blank (B232960-BLK1)				Prepared: 06	/11/19 Analy	zed: 06/12/1	0	····		
C9-C18 Aliphatics	ND	100	μg/L	7	11117 111111	200. 00/12/1	,			
C19-C36 Aliphatics	ND	100	μg/L							
Unadjusted C11-C22 Aromatics	ND	100	μg/L							
C11-C22 Aromatics	ND	100	μg/L							
Accnaphthene	ND	2.0	μg/L							
Acenaphthylene	ND	2.0	μg/L							
Anthracene	ND	2.0	μg/L							
Benzo(g,h,i)perylene	ND	2.0	μg/L							
Fluoranthene	ND	2.0	μg/L							
Fluorene	ND	2.0	μg/L							
-Methylnaphthalene	ND	2.0	μg/L							
Naphthalene	ND	2.0	μg/L							
Phenanthrene	ND	2.0	μg/L							
yrene	ND	2.0								
-Decane	ND ND	2.0	μg/L							
-Docosane	ND ND	2.0	μg/L μg/L							
-Dodecane										
-Eicosane	ND	2.0	μg/L							
-Hexacosane	ND	2.0	μg/L							
-Hexadecane	ND	2.0	μg/L ~							
Hexatriacontane	ND	2.0	μg/L							
Nonadecane	ND	2.0	μg/L 							
Nonane	ND	2.0	μg/L							
Octacosane	ND	2.0	μg/L ~							
Octadecane	ND	2.0	μg/L –							
Tetracosane	ND	2.0	μg/L							
Tetradecane	ND	2.0	μg/L							
Triacontane	ND	2.0	μg/L							
aphthalene-aliphatic fraction	ND	2.0	μg/L							
Methylnaphthalene-aliphatic fraction	ND	2.0	μg/L							
	ND	2.0	μg/L							
rrogate: Chloroctadecane (COD)	72.8		μg/L	100		72.8	40-140			
rrogate: o-Terphenyl (OTP)	78.4		μg/L	100		78.4	40-140			
rrogate: 2-Bromonaphthalene	112		μg/L	100		112	40-140			
rrogate: 2-Fluorobiphenyl	122		μg/L	100		122	40-140			
CS (B232960-BS1)			,	Propagad: 06/1	1/10 Amatem	4.060000				
-C18 Aliphatics	491	100		Prepared: 06/1	1/19 Analyz					
9-C36 Aliphatics	603	100	μg/Ľ	600		81.8	0-200			
adjusted C11-C22 Aromatics	1280	100	μg/L	800		75.4	0-200			
enaphthene			μg/L	1700		75.0	0-200			
cnaphthylene	76.3	2.0	μg/L	100		76.3	40-140			
thracene	69.6	2.0	μg/L σ/ī	100		69.6	40-140			
nzo(g,h,i)perylene	75.7	2.0	μg/L	100		75.7	40-140			
oranthene	69.6	2.0	μg/L	100		69.6	40-140			
Orene	77.3	2.0	μg/L ~	100		77.3	40-140			
lethylnaphthalene	73.3	2.0	μg/L.	100		73.3	40-140			
phthalene	64.9	2.0	μg/L	100		64.9	40-140			
nanthrene	66.8	2.0	μg/L	100		66.8	40-140			
	75.5	2.0	μg/L	100		75.5	40-140			
ene	78.2	2.0	μg/L	100		78.2	40-140			
ecane	50.1	2.0	μg/L	100		1.00	40-140			
ocosane	79.1	2.0	μg/L	100		79.1	40-140			
odecane	59.7	2.0	μg/L	100		59.7	40-140			

Petroleum Hydrocarbons Analyses - EPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232960 - SW-846 3510C										11010
LCS (B232960-BS1)				Prepared: 06	/11/19 Analy	rzed: 06/12/1	10			
n-Eicosane	74.2	2.0	μg/L	100		74.2	40-140			
n-Hexacosane	79.1	2.0	μg/L	100		79.1	40-140			
n-Hexadecane	73.9	2.0	μg/L	100		73.9	40-140			
n-Hexatriacontane	77.4	2.0	μg/L	100		77.4	40-140			
n-Nonadecane	74.8	2.0	μg/L	100		74.8	40-140			
n-Nonane	40.5	2.0	μg/L	100		40.5	30-140			
n-Octacosane	77.2	2.0	μg/L	100		77.2	40-140	,		
n-Octadecane	75.3	2.0	μg/L	100		75.3	40-140			
n-Tetracosane	79.1	2.0	μg/L	100		79.1	40-140			
n-Tetradecane	68.3	2.0	μg/L	100		68.3	40-140			
a-Triacontane	76.6	2.0	μg/L	100		76.6	40-140			
Naphthalene-aliphatic fraction	ND	2.0	μg/L	100			0-5			
-Methylnaphthalene-aliphatic fraction	ND	2.0	μg/L	100			0-5			
Surrogate: Chlorooctadecane (COD)	74.8		μg/L	100		74.0				
Surrogate: o-Terphenyl (OTP)	77.0		μg/L μg/L	100		74.8 77.0	40-140			
urrogate: 2-Bromonaphthalene	103		μg/L μg/L	100		103	40-140			
urrogate: 2-Fluorobiphenyl	120		μg/L	100		120	40-140 40-140			
.CS Dup (B232960-BSD1)			re-							
)-C18 Aliphatics	40.4	100		Prepared: 06/	11/19 Analy:					
19-C36 Aliphatics	494	100	μg/L α	600		82.3	0-200	0.629		
nadjusted C11-C22 Aromatics	570 1290	100	μg/L	800		71.2	0-200	5.70		
cenaphthene	78.3	2.0	μg/L	1700		76.0	0-200	1.25		
cenaphthylene	78.3 71.7	2.0	μg/L	100		78.3	40-140	2.51	25	
nthracene	71.7	2.0	μg/L	100		71.7	40-140	2.96	25	
enzo(g,h,i)perylene	68.9	2.0	μg/L σ//	100		77.4	40-140	2.24	25	
luoranthene	78.4	2.0	μg/L ug/ï	100		68.9	40-140	1.08	25	
uorene	75.1	2.0	μg/L μg/L	100		78.4	40-140	1.51	25	
Methylnaphthalene	68.1	2.0	μg/L μg/L	100		75.1	40-140	2.41	25	
aphthalene	71.6	2.0	μg/L μg/L	100		68.1	40-140	4.91	25	
nenanthrene	71.0 77.2	2.0	μg/L	100		71.6	40-140	6.80	25	
rrene	79.3	2.0	μg/L μg/L	100		77.2	40-140	2.16	25	
Decane	58.6	2.0	μg/L	100		79.3	40-140	1.47	25	
Docosane	73.8	2.0	μg/L μg/L	100 100		58.6	40-140	15.6	25	
Dodecane	65.4	2.0	րց/L μg/L	100		73.8	40-140	6.88	25	
Eicosane	69.5	2.0	μg/L	100		65.4	40-140	9.22	25	
Hexacosane	74.2	2.0	μg/L	100		69.5	40-140	6.57	25	
Hexadecane	70.9	2.0	μg/L	100		74.2	40-140	6.33	25	
Hexatriacontane	72.5	2.0	μg/L	100		70.9	40-140	4.13	25	
Nonadecane	70.1	2.0	μg/L	100		72.5	40-140	6.58	25	
Vonanc	50.5	2.0	μg/L	100		70.1	40-140	6.58	25	
Octacosane	71.9	2.0	μg/L	100		50.5 71.9	30-140	21.8	25	
Octadecane	70.8	2.0	μg/L	100		70.8	40-140	7.13	25	
Cetracosane	73.7	2.0	μg/L	100		70.8 73.7	40-140	6.24	25	
l'etradecane	68.7	2.0	μg/L	100		68.7	40-140	7.11	25	
riacontane	71.8	2.0	μg/L	100		71.8	40-140 40-140	0.561	25	
phthalene-aliphatic fraction	ND	2.0	μg/L	100		/1.0	40-140 0-5	6.42	25	
1ethylnaphthalene-aliphatic fraction	ND	2.0	μg/L	100			0-5 0-5			
rogate: Chlorooctadecane (COD)	68.2	17 PANGALINA	μg/L	100		68.2	40-140			
rogate: o-Terphenyl (OTP)	78.9		μg/L	100		78.9	40-140			
rogate: 2-Bromonaphthalene	108		μg/L	100		108	40-140			
rogate: 2-Fluorobiphenyl	124		μg/L	100		124	40-140			

Petroleum Hydrocarbons Analyses - VPH - Quality Control

Analyte	Resulț	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B233005 - MA VPH										110162
Blank (B233005-BLK1)				Prepared & A	Analyzed- 06	/11/19				
Unadjusted C5-C8 Aliphatics	ND	100	μg/L		maryzea. oo	11/17				
C5-C8 Aliphatics	ND	100	μg/L							
Unadjusted C9-C12 Aliphatics	ND	100	μg/L							
C9-C12 Aliphatics	ND	100	μg/L							
C9-C10 Aromatics	ND	100	μg/L							
Benzene	ND	1.0	μg/L							
Butylcyclohexane	ND ND	1.0	րց/L							
Decane	ND	1.0	μg/L							
Ethylbenzene	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0								
2-Mcthylpentane		1.0	μg/L							
Vaphthalene	ND		μg/L							
Nonane	ND	5.0	μg/L							
entane	ND	1.0	μg/L							
Toluene	ND	1.0	μg/L							
,2,4-Trimethylbenzene	ND	1.0	μg/L							
,2,4-Trimethylpentane	ND	1.0	μg/L							
n+p Xylene	ND	1.0	μg/L							
-Xylene	ND	2.0	μg/L							
	ND	1.0	μg/L							
rrogate: 2,5-Dibromotoluene (FID)	47.9		μg/L	40.0		120	70-130	***************************************	* *************************************	
rrogate: 2,5-Dibromotoluene (PID)	47.3		μg/L	40.0		118	70-130			
.CS (B233005-BS1)				Decree d C. A						
enzene	47.0	10		Prepared & A	nalyzed: 06/					
utylcyclohexane	47.8	1.0	μg/L	50.0		95.5	70-130			
ecane	58.6	1.0	μg/L	50.0		117	70-130			
thylbenzene	48.3	1.0	μg/L	50.0		96.6	70-130			
lethyl tert-Butyl Ether (MTBE)	47.7	1.0	μg/L	50.0		95.3	70-130			
Methylpentane	44.5	1.0	μg/L	50.0		89.0	70-130			
aphthalene	52.5	1.0	μg/ L	50.0		105	70-130			
onane	46.3	5.0	μg/L	50.0		92.5	70-130			
entane	56.2	1.0	μg/L	50.0		112	30-130			
bluene	49.6	1.0	μg/L	50.0		99.1	70-130			
2,4-Trimethylbenzene	47.6	1.0	μg/L	50.0		95.1	70-130			
2,4-Trimethylpenzene 2,4-Trimethylpentane	47.7	1.0	μg/L	50.0		95.3	70-130			
	47.8	1.0	μg/L	50.0		95.5	70-130			
+p Xylene Yylene	96.7	2.0	μg/L	100		96.7	70-130			
Xylene	48.0	1.0	μg/L	50.0		96.1	70-130			
rrogate: 2,5-Dibromotoluene (FID)	46.7		μg/L	40.0		117	70-130			
rrogate: 2,5-Dibromotoluene (PID)	45.3		μg/L	40.0		113	70-130			
CS Dup (B233005-BSD1)			_	Prepared & Aı	udunadi ne ii		100			
nzene	AC 1	1.0			atyzed: U6/1				· · · · · · · · · · · · · · · · · · ·	
tylcyclohexane	46.1		μg/L σ/I	50.0		92.3	70-130	3.49	25	
cane	56.2	1.0	μg/L	50.0		112	70-130	4.04	25	
nylbenzene	45.7	1.0	μg/L.	50.0		91.5	70-130	5.44	25	
thyl tert-Butyl Ether (MTBE)	46.3	1.0	μg/L	50.0		92.5	70-130	2.98	25	
Acthylpentane	42.9	1.0	μg/L	50.0		85.8	70-130	3.63	25	
phthalene	50.1	1.0	μg/L -	50.0		100	70-130	4.62	25	
ane	44.2	5.0	μg/L	50.0		88.4	70-130	4.53	25	
	54.6	1.0	μg/L	50.0		109	30-130	2.96	25	
itane	47.1	0.1	μg/L	50.0		94.2	70-130	5.10	25	
uene	46.1	1.0	μg/L	50.0		92.2	70-130	3.14	25	
4-Trimethylbenzene	46.0	1.0	μg/L	50.0		92.0	70-130	3.51	25	

Petroleum Hydrocarbons Analyses - VPH - Quality Control

%REC	RPD	RPD	
		Limit	Notes
			
70.120	4.76	25	· · · · · · · · · · · · · · · · · · ·
70-130	3.37		
70-130			
70-130			
	70-130	70-130 3.52 70-130 3.37 70-130	70-130 3.52 25 70-130 3.37 25 70-130

Metals Analyses (Dissolved) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B233013 - SW-846 3005A Dissolved						T				.10103
Blank (B233013-BLK1)				Prepared: 06	/11/19 Anals	/zcd: 06/13/1	9		···	
Antimony	ND	1.0	μg/L	·			<u> </u>			
Arsenic	ND	0.80	μg/L							
arium	ND	10	μg/L							
cryllium	ND	0.40	μg/L							
admium	ND	0.20	μg/L							
hromium	ND	1.0	μg/L							
cad	ND	0.50	μg/L							
ickel	ND	5.0	μg/L							
elenium	ND	5.0	μg/L							
ilver	ND	0.20	μg/L							
nallium	ND	0.20	μg/L							
anadium	ND	5.0	μg/L μg/L							
nc	ND	10	μg/L							
CS (B233013-BS1)				Prepared: 06/	11/19 Analy	zed: 06/13/10	1			
ntimony	531	10	μg/L	500						
senie	524	8.0	μg/L	500		106	80-120			
urium.	514	100	μg/L	500		105	80-120			
ryllium	464	4.0	μg/L			103	80-120			
admium	530	2.0	μg/L	500		92.9	80-120			
nromium	517	10	μg/L μg/L	500		106	80-120			
ad	529	5.0		500		103	80-120			
ckel	521	50	μg/L ug/I	500		106	80-120			
lenium	522	50	μg/L	500		104	80-120			
lver	521	2.0	μg/L	500		104	80-120			
allium		2.0	μg/L	500		104	80-120			
nadium	503		μg/L	500		101	80-120			
nc	513	50 100	μg/L σπ	500		103	80-120			
CS Dup (B233013-BSD1)	1050	100	μg/L	1000		105	80-120			
				Prepared: 06/1	1/19 Analyz	red: 06/13/19	1			
limony	528	10	μg/L	500		106	80-120	0.548	20	
senic	531	8.0	μg/L	500		106	80-120	1.50	20	
ium	510	100	μg/L	500		102	80-120	0.733	20	
ryllium	465	4.0	μg/L	500		92.9	80-120	0.0536	20	
lmium -	524	2.0	μg/L	500		105	80-120	1.24	20	
romium	528	10	μg/L	500		106	80-120	2.20	20	
đ	529	5.0	μg/L	500		106	80-120	0.0635	20	
kel	523	50	μg/L	500		105	80-120	0.511	20	
enium	528	50	μg/L	500		106	80-120	1.20	20	
er	520	2.0	μg/L	500		104	80-120	0.131		
Ilium	505	2.0	μg/L	500		101	80-120		20	
adium	517	50	μg/L	500		101		0.486	20	
2	1060	100	μg/L	1000		103	80-120 80-120	0.722 0.810	20 20	

Metals Analyses (Dissolved) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B233013 - SW-846 3005A Dissolved										Notes
Duplicate (B233013-DUP1)	Sou	rce: 19F0402-	-01	Prepared: 06	/11/19 Analy	zed: 06/13/	10			
Antimony	ND	1.0	μg/L		ND	200. 00/13/		NO.		
Arsenic	ND	0.80	μg/L		ND			NC	20	
Barium	26.3	10	μg/L		25.9			NC	20	
Beryllium	ND	0.40	μg/L		ND			1.86	20	
Cadmium	ND	0.20	μg/L		ND			NC	20	
Chromium	7.32	1.0	μg/L					NC	20	
Lead	3.37	0.50	μg/L		7.00			4.43	20	
Nickel	ND	5.0	μg/L		3.27			3.08	20	
Selenium	ND	5.0	μg/L		ND			NC	20	
Silver	ND	0.20	μg/L		ND			NC	20	
Thallium	ND	0.20	μg/L		ND			NC	20	
Vanadium	6.36	5.0	μg/L		ND			NC	20	
Zinc	13.8	10			5.74			10.2	20	
	13.0	10	μg/L		15.3			10.3	20	
Matrix Spike (B233013-MS1)	Sour	ce: 19F0402-	01	Prepared: 06/	/11/19 Analyz	cd: 06/13/1	9			
Antimony	513	10	μg/L	500	ND	103	75-125	*		
Arsenic	528	8.0	μg/L	500	ND	106	75-125			
Barium	536	100	μg/L	500	25.9	102	75-125			
Reryllium	528	4.0	μg/L	500	ND	106	75-125			
admium	516	2.0	μg/L	500	ND	103	75-125 75-125			
Chromium	534	10	μg/L	500	7.00	105	75-125 75-125			
Lead	534	5.0	μg/L	500	3.27	106	75-125 75-125			
Nickel	540	50	μg/L	500	ND	108				
Selenium	527	50	μg/L	500			75-125			
Silver	479	2.0	μg/L	500	ND	105	75-125	•		
Thallium	507	2.0	μg/L	500	ND	95.8	75-125			
Vanadium	526	50	μg/L	500	ND	101	75-125			
Zinc	1080	100	μg/L	1000	ND ND	105 108	75-125 75-125			
Batch B233055 - SW-846 7470A Dissolved					,		,5 125			
Blank (B233055-BLK1)		· · · · · · · · · · · · · · · · · · ·		D						
Mercury	ND	0.00010	mg/L	Prepared: 06/1	11/19 Analyzo	ed: 06/12/19	9			
LCS (B233055-BS1)				_						
Mercury	0.00376	0.00010	ma/I	Prepared: 06/1	1/19 Analyzo					
(CS Dun (D222055 DCD1)	0,000,0	0.00010	mg/L	0.00400		94.1	80-120			
LCS Dup (B233055-BSD1)				Prepared: 06/1	1/19 Analyzo	:d: 06/12/19)			
Mereury	0.00372	0.00010	mg/L	0.00400		93.0	80-120	1.16	20	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 BREAKDOWN REPORT

Lab Sample ID:	S037025-PEM1	Analyzed: 06/11/2019
Column Number:	1	
Analyte	% Breakdown	•
4,4'-DDT [1]	0.52	
Endrin [1]	1.66	
Columa Number:	2	
Analyte	% Breakdown	
4,4'-DDT [2]	0.59	
Endrin [2]	1.86	

BREAKDOWN REPORT

Lab Sample ID:	S037025-PEM2	Analyzed:	06/12/2019
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	0.67		
Endrin [1]	2.18		
Column Number:	2		
Column Number: Analyte	2 % Breakdown		

BREAKDOWN REPORT

Lab Sample ID:	S037025-PEM3	Analyzed: 06/12/2019	
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	0.81		
Endrin [1]	2.76		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 BREAKDOWN REPORT

S037025-PEM3	Analyzed: 06/12/2019	
2		
% Breakdown		
0.86		
2.99		
	2 % Breakdown 0.86	2 % Breakdown 0.86

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Sample ID:	19F0402-03		Date(s) Analyzed:	06/11/2019	06/1:	2/2019
Instrument ID (1):	ECD6A		Instrument ID (2):	ECD6B	3	
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT W	INDOW	CONCENTRATION	%RPD
		.,,	FROM	то	CONCENTRATION	%RPD
4,4'-DDT	11	7.520	0.000	0.000	0.052	
	2	7.563	0.000	0.000	0.057	9.2
alpha-BHC	1	5.482	0.000	0.000	5.2	
	2	5.417	0.000	0.000	5.2	0.0
beta-BHC	1	5.739	0.000	0.000	2.0	
	2	5.688	0.000	0.000	1.7	16.2
Chlordane	1	0.000	0.000	0.000	2.4	·
	2	0.000	0.000	0.000	3.2	28.6
delta-BHC	1	5.856	0.000	0.000	13	
	2	5.877	0.000	0.000	14	7.4
Dieldrin	1	7.082	0.000	0.000	0.18	
	2	6.998	0.000	0.000	0.19	5.4
gamma-BHC (Lindane)	1	5.684	0.000	0.000	0.36	
	2	5.635	0.000	0.000	0.36	0.0
Heptachlor Epoxide	1	6.620	0.000	0.000	0.15	
	2	6.519	0.000	0.000	0.27	57.1

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

L	.cs	

SW-846 8082A

Lab Sample ID:	B232856-BS1		Date(s) Analyzed:	06/11/2019	06/11/	2019
Instrument ID (1):	ECD1		Instrument ID (2):	ECD1		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
			FROM	TO	CONCENTRATION	%KPU
Aroclor-1016	1	0.000	0.000	0.000	0.50	
	2	0.000	0.000	0.000	0.50	0.0
Aroclor-1260	11	0.000	0.000	0.000	0.46	
	2	0.000	0.000	0.000	0.48	4.3

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	Dup	

SW-846 8082A

Lab Sample ID:	B23285	6-BSD	1	_	Date(s) Analy	/zed:	06/11/2019	06/1	1/2019
Instrument ID (1):	ECD1				Instrument ID	(2):	EC	D1	
GC Column (1):		ID:	(r	nm)	GC Column (2	2):		ID:	(mm)
ANALY	TE (COL	RT	F	RT WINDOW	CONC	ENTRATION	%RPD	

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	0/ DDD
			FROM	то	CONCENTRATION	%RPD
Aroclor-1016	1	0.000	0.000	0.000	0.50	
***************************************	2	0.000	0.000	0.000	0.51	2.0
Aroclor-1260	1	0.000	0.000	0.000	0.46	
	2	0.000	0.000	0.000	0.48	4.3

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		

Lab Sample ID:	B232858-BS1		Date(s) Analyzed:	06/12/2019	06/12/2019	
Instrument ID (1):	ECD6	_	Instrument ID (2):	ECD6		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (m	nm)

	- 1	T	1 57.4			
ANALYTE	COL	RT		INDOW	CONCENTRATION	%RPD
4,4'-DDD	1	7.005	FROM	TO		
	2	7.305	0.000	0.000	0.93	
4,4'-DDE		7.323	0.000	0.000	0.96	3.2
7,7 000	1	6.862	0.000	0.000	0.95	
4.4'-DDT	2	6.888	0.000	0.000	0.94	1.1
4,4-001	1-1-	7.519	0.000	0.000	0.95	
Aldrin	2	7.563	0.000	0.000	0.91	5.4
Aldrin	11	6.199	0.000	0.000	0.91	
	2	6.127	0.000	0.000	0.90	1.1
alpha-BHC	11	5.481	0.000	0.000	0.91	
	2	5.417	0.000	0.000	0.91	0.0
beta-BHC	1	5.738	0.000	0.000	0.88	
	2	5.689	0.000	0.000	0,85	3.5
delta-BHC	1	5.855	0.000	0.000	0.63	
	2	5.876	0.000	0.000	0.67	6.2
Dieldrin	1	7.081	0.000	0.000	0.93	
	2	7.000	0.000	0.000	0.92	1.1
Endosulfan I	1	6.905	0.000	0.000	0.85	
	2	6.799	0.000	0.000	0.87	2.3
Endosulfan II	1	7.423	0.000	0.000	0.80	2.0
	2	7.388	0.000	0.000	0.79	1.3
Endosulfan Sulfate	1	8.071	0.000	0.000	0.93	1.0
	2	7.867	0.000	0.000	0.91	2.2
Endrin	1	7.255	0.000	0.000	0.94	
	2	7.226	0.000	0.000	0.91	3,2
Endrin Ketone	1	8.260	0.000			3.2
	2	8.242	0.000	0.000	0.90	
gamma-BHC (Lindane)				0.000	0.95	5.4
January (mildelio)	2	5.683	0.000	0.000	0.91	
Heptachlor		5.635	0.000	0.000	0.92	1.1
i iehraciiloi	1 1	5.995	0.000	0.000	0.68	
Hantockla III	2	5.914	0.000	0.000	0.91	28.9
Heptachlor Epoxide	1_1_	6,621	0.000	0.000	0.89	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

 	_
LCS	

Lab Sample ID:	B232858-BS1		Date(s) Analyzed:	06/12/2019	06/12/2	019
Instrument ID (1):	ECD6		Instrument ID (2):	ECD6		-
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	. RT WI	NDOW	CONCENTRATION	~~~~
			FROM	то	CONCENTRATION	%RPD
	2	6.521	0.000	0.000	0.87	2.3
Hexachlorobenzene	1	5.374	0.000	0.000	1.0	
***	2	5.330	0.000	0.000	0.91	9.4
Methoxychlor	1	7.900	0.000	0.000	0.90	
	2	8.098	0.000	0.000	0.90	0.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS_Dup	

Lab Sample ID:	B232858-BSD1		Date(s) Analyzed:	06/12/2019	06/12/201	9
Instrument ID (1):	ECD6		Instrument ID (2):	ECD6		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANIA1365	COL BT RT WINDOW					
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%RPD
4,4'-DDD	1	7.306	0.000	0.000	0.05	
	2	7.323	0.000	0.000	0.95	4 4
4,4'-DDE	1	6.862	0.000	0.000	0.96	1.1
	2	6.890	0.000	0.000	0.95	1 1
4,4'-DDT	1	7.519	0.000	0.000		1.1
	2	7.564	0.000	0.000	0.97	
Aldrin	1	6.200	0.000	0.000		5.3
**************************************	2	6.128	0.000	0.000	0.93	
alpha-BHC	1	5.483	0.000	0.000		3.3
	2	5.417	0.000	0.000	0.92	2.2
beta-BHC	1	5.739	0.000	0.000	0.87	2.2
	2	5.690	0.000	0.000	0.87	7.1
delta-BHC	1	5.856	0,000	0.000	0.49	7.1
	2	5.876	0.000	0.000	0.49	4.0
Dieldrin	1	7.082	0.000	0.000	0.94	4.0
	2	7.001	0.000	0.000	0.92	2.2
Endosulfan I	1	6.906	0.000	0.000	0.83	
	2	6.800	0.000	0.000	0.83	0.0
Endosulfan II	1	7.424	0.000	0.000	0.79	0.0
	2	7.389	0.000	0.000	0.79	2.6
Endosulfan Sulfate	1	8.072	0.000	0.000	0.94	2.0
	2	7.867	0.000	0.000	0.91	3.2
Endrin	1	7.255	0.000	0.000	0.95	3.2
	2	7.227	0.000	0.000	0.91	4.3
Endrin Ketone	1	8.260	0.000	0.000	0.92	7.3
<u> </u>	2	8.243	0.000	0.000	1.0	8.3
gamma-BHC (Lindane)	1	5.684	0.000	0.000	0.92	0.3
	2	5.636	0.000	0.000	0.89	3.3
Heptachlor	1	5.996	0.000	0.000		ა.ა
	2	5.915	0.000	0.000	0.70	25.0
Heptachlor Epoxide	1	6.622	0.000	0.000	0.90	20.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup

Lab Sample ID:	B232858-BSD1		Date(s) Analyzed:	06/12/2019	06/12/	2019
Instrument ID (1):	ECD6		Instrument ID (2):	ECD6		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
			FROM	TO	CONCENTRATION	%KPD
	2	6.522	0.000	0.000	0.87	4.5
Hexachlorobenzene	1	5.376	0.000	0.000	1.0	
	2	5.331	0.000	0.000	0.91	9.4
Methoxychlor	1	7.900	0.000	0.000	0.91	
	2	8.098	0.000	0.000	0.91	1.1

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		

SW-846 8151A

Lab Sample ID:	B232959-BS1		Date(s) Analyzed:	06/13/2019	06/13	/2019
Instrument ID (1):	ECD 8	_	Instrument ID (2):	ECD 8		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	COL RT		NDOW	CONCENTRATION	0/ 000
			FROM	TO	CONCENTRATION	%RPD
2,4,5-T	1	13.813	0.000	0.000	0.228	
	2	13.926	0.000	0.000	0.232	0.9
2,4,5-TP (Silvex)	111	13.236	0.000	0.000	0.223	
	2	13.131	0.000	0.000	0.215	2.3
2,4-D	1	11.562	0.000	0.000	2.04	
	2	11.535	0.000	0.000	2.16	7.7
2,4-DB	1	14.946	0.000	0.000	2.09	
	2	14.993	0.000	0.000	2.17	3.3
Dalapon	1	3.730	0.000	0.000	4.05	
	2	3.397	0.000	0.000	4.06	1.0
Dicamba	1	9.704	0.000	0.000	0.301	
	2	9.582	0.000	0.000	0.208	36.2
Dichloroprop	1	11,109	0.000	0.000	2.17	
	2	10.927	0.000	0.000	2.20	0.0
Dinoseb	1	16.825	0.000	0.000	0.943	
	2	15.576	0.000	0.000	0.940	0.0
MCPA	1	10.431	0.000	0.000	188	
	2	10.324	0.000	0.000	200	5.1
MCPP	1	10.146	0.000	0.000	204	
	2	9.895	0.000	0.000	203	1.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS_Dup	

SW-846 8151A

Lab Sample ID: B232959-BS			Date(s) Analyzed:	06/13/2019 06/		/2019
Instrument ID (1): ECD 8		Instrument ID (2):	ECD 8			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	COL RT		NDOW	CONCENTRATION	%RPD
			FROM	то	CONCENTRATION	MILD
2,4,5-T	1	13.815	0.000	0.000	0.202	
	2	13.926	0.000	0.000	0.223	10.9
2,4,5-TP (Silvex)	1	13.235	0.000	0.000	0.224	
	2	13.132	0.000	0.000	0.220	0.0
2,4-D	1	11.562	0.000	0.000	2.08	
	2	11.535	0.000	0.000	2.20	4.7
2,4-DB	1	14.947	0.000	0.000	2.16	
	2	14.993	0.000	0.000	2.34	6.2
Dalapon	1	3.731	0.000	0.000	4.00	
	2	3.398	0.000	0.000	4.03	0.7
Dicamba	1	9.705	0.000	0.000	0.334	
	2	9.581	0.000	0.000	0.213	43.1
Dichloroprop	1	11.110	0.000	0.000	2.22	
	2	10.927	0.000	0.000	2.26	2.7
Dinoseb	1	16.826	0.000	0.000	0.931	
	2	15.577	0.000	0.000	0.947	1.8
MCPA	1	10.431	0.000	0.000	196	
	2	10.326	0.000	0.000	203	1.5
MCPP	1	10.147	0.000	0.000	216	
	2	9.896	0.000	0.000	206	6.6

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
t	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
P-02	Sample RPD between primary and confirmatory analysis exceeded 40%. Per EPA method 8000, the lower value was reported due to obvious chromatographic interference on the column with the higher result.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-07	Elevated reporting limit based on lowest point in calibration. MA CAM reporting limit not met.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Certified Analyses included in this Report

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Analyte	Certifications
MADEP-EPH-04-1.1 in Soil	
C9-C18 Aliphatics	CT,NC,ME,NH-P
C19-C36 Aliphatics	CT,NC,ME,NH-P
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P
CI1-C22 Aromatics	CT,NC,ME,NH-P
Acenaphthene	CT,NC,ME,NH-P
Accnaphthylene	CT,NC,ME,NH-P
Anthracene	CT,NC,ME,NH-P
Benzo(g,h,i)perylene	CT,NC,ME,NH-P
Fluoranthene	CT,NC,ME,NH-P
Fluorene	CT,NC,ME
2-Methylnaphthalene	CT,NC
Naphthalene	CT,NC,ME,NH-P
Phenanthrene	CT,NC,ME,NH-P
Pyrene	CT,NC,ME,NH-P
MADEP-EPH-04-1.1 in Water	
C9-C18 Aliphatics	CTIVO ATTAINS
C19-C36 Aliphatics	CT,NC,ME,NH-P
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P
C11-C22 Aromatics	CT,NC,ME,NH-P
Acenaphthene	CT,NC,ME,NH-P
Acenaphthylene	CT,NC,ME,NH-P CT,NC,ME,NH-P
Anthracene	CT,NC,ME,NH-P
Benzo(g,h,i)perylene	CT,NC,ME,NH-P
Fluoranthene	CT,NC,ME,NH-P
Fluorene	CT,NC,ME
2-Methylnaphthalene	CT,NC
Naphthalene	CT,NC,ME,NH-P
Phenanthrene	CT,NC,ME,NH-P
Pyrene	CT,NC,ME,NH-P
MADEP-VPH-Feb 2018 Rev 2.1 in Water	
Unadjusted C5-C8 Aliphatics	OT MO ME MAIN
C5-C8 Aliphatics	CTNC,ME,NH-P
Unadjusted C9-C12 Aliphatics	CT,NC,ME,NH-P CT,NC,ME,NH-P
C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C10 Aromatics	CT,NC,ME,NH-P
Benzene	CT,NC,ME,NH-P
Ethylbenzene	CT,NC,ME,NH-P
Methyl tert-Butyl Ether (MTBE)	CT,NC,ME,NH-P
Naphthalene	CT,NC,ME,NH-P
Toluene	CT,NC,ME,NH-P
m+p Xylene	CT,NC,ME,NH-P
o-Xylene	CT,NC,ME,NH-P
W-846 6020B in Water	
Antimony	CTANDAYAYE 14 AIG
Arsenic	CT,NH,NY,ME,VA,NC
Barium	CT,NH,NY,NC,ME,VA
	MA,NY,CT,NC,NH,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 6020B in Water		
Beryllium	CTARLANVAIC AVE AVA	
Cadmium	CT,NH,NY,NC,ME,VA	
Chromium	CT,NH,NY,NC,ME,VA	
Lead	CT,NH,NY,NC,ME,VA	
Nickel	CT,NH,NY,NC,ME,VA	
Selenium	CT,NH,NY,NC,ME,VA	
Silver	CT,NH,NY,NC,ME,VA	
Thallium	CT,NC,NH,NY,ME,VA	
Vanadium	CT,NH,NY,NC,ME,VA	
Zinc	CT,NH,NY,NC,ME,VA	
SIV-846 7470A in Water	CT,NH,NY,NC,ME,VA	
317-040 7470A III Water		
Mercury	CT,NH,NY,NC,ME,VA	
SW-846 8081B in Water		
Aldrin	CT,NC,NH,NY,ME,VA	
Aldrin [2C]	CT,NC,NH,NY,ME,VA	
alpha-BHC	CT,NC,NH,NY,ME,VA	
alpha-BHC [2C]	CT,NC,NH,NY,ME,YA	
beta-BHC	CT,NC,NH,NY,ME,VA	
beta-BHC [2C]	CT,NC,NH,NY,ME,VA	
delta-BHC	CT,NC,NH,NY,ME,VA	
delta-BHC [2C]	CT,NC,NH,NY,ME,VA	
gamma-BHC (Lindanc)	CT,NC,NH,NY,ME,VA	
gamma-BHC (Lindane) [2C]	CT,NC,NH,NY,ME,VA	
Chlordane	CT,NC,NH,NY,ME,VA	
Chlordane [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDD	CT,NC,NH,NY,ME,VA	
4,4'-DDD [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDE	CT,NC,NH,NY,ME,VA	
4,4'-DDE [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDT	CT,NC,NH,NY,ME,VA	
4,4'-DDT [2C]	CT,NC,NH,NY,ME,VA	
Dieldrin	CT,NC,NH,NY,ME,VA	
Dieldrin [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan I	CT,NC,NH,NY,ME,VA	
Endosulfan I [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan II	CT,NC,NH,NY,ME,VA	
Endosulfan II [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate [2C]	CT,NC,NH,NY,ME,VA	
Endrin	CT,NC,NH,NY,ME,VA	
Endrin [2C]	СТ,NC,NH,NY,ME,VA	
Endrin Ketone	NC	
Endrin Ketone [2C]	NC	
Heptachlor	CT,NC,NH,NY,ME,VA	
Heptachlor [2C]	CT,NC,NH,NY,ME,VA	

CERTIFICATIONS

Certified Ana	lyses i	ncluded	in	this	Report
---------------	---------	---------	----	------	--------

Analyte	Certifications	
SW-846 8081B in Water		
Heptachlor Epoxide [2C]	CT,NC,NH,NY,ME,VA	
Hexachlorobenzene	NC	
Hexachlorobenzene [2C]	NC	
Methoxychlor	CT,NC,NH,NY,ME,VA	
Methoxychlor [2C]	CT,NC,NH,NY,ME,VA	
SIY-846 8082A in Water		
Aroclor-1016	CT,NH,NY,NC,ME,VA	
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1221	CT,NH,NY,NC,ME,VA	
Aroclor-1221 [2C]	CT.NH,NY,NC,ME,VA	
Aroclor-1232	CT,NH,NY,NC,ME,VA	
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1242	CT,NH,NY,NC,ME,VA	
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1248	CT,NH,NY,NC,ME,VA	
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1254	CT,NH,NY,NC,ME,VA	
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1260	CT,NH,NY,NC,ME,VA	
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1262	NH,NY,NC,ME,VA	
Aroclor-1262 [2C]	NH,NY,NC,ME,VA	
Aroclor-1268	NH,NY,NC,ME,VA	
Aroclor-1268 [2C]	NH,NY,NC,ME,VA	
SIV-846 8151A in Water		
2,4-D	ME,NC,NH,CT,NY,VA	
2,4-D [2C]	ME,NC,NH,CT,NY,VA	
2,4-DB	ME,NC,NH,CT,NY,VA	
2,4-DB [2C]	ME,NC,NH,CT,NY,VA	
2,4,5-TP (Silvex)	ME,NC,NH,CT,NY,VA	
2,4,5-TP (Silvex) [2C]	ME,NC,NH,CT,NY,VA	
2,4,5-T	ME,NC,NH,CT,NY,VA	
2,4,5-T [2C]	ME,NC,NH,CT,NY,VA	
Dalapon	ME,NC,NH,CT,NY,VA	
Dalapon [2C]	ME,NC,NH,CT,NY,VA	
Dicamba	ME,NC,NH,CT,NY,VA	
Dicamba [2C]	ME,NC,NH,CT,NY,VA	
Dichloroprop	ME,NC,NH,CT,NY,VA	
Dichloroprop [2C]	ME,NC,NH,CT,NY,VA	
Dinoseb	ME,NC,NH,CT,NY,VA	
Dinoseb [2C]	ME,NC,NH,CT,NY,VA	
MCPA	NC,CT	
MCPA [2C]	NC,CT	
МСРР	NC,CT	
MCPP [2C]	NC,CT	
W-846 8260C in Water	110,01	

Certified Analyses included in this Report

CERTIFICATIONS

Analyte	Certifications
SW-846 8260C in Water	
Acetone	СТ, NH, NY, МЕ
tert-Amyl Methyl Ether (TAME)	NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME
n-Butylbenzene	NY,ME
sec-Butylbenzene	NY,ME
tert-Butylbenzene	NY,ME
tert-Butyl Ethyl Ether (TBEE)	NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	NY,ME
4-Chlorotoluene	NY,ME
I,2-Dibromo-3-chloropropane (DBCP)	NY
1,2-Dibromoethane (EDB)	NY
Dibromomethane	NH,NY,ME
1,2-Dichlorobenzene	CT,NY,ME
1,3-Dichlorobenzene	СТ, NH, NY, МЕ
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NH,NY,ME
1,1-Dichloroethane	СТ, NH, NY, МЕ
1,2-Dichloroethane	СТ, NH, NY, МЕ
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,3-Dichloropropane	NY,ME
2,2-Dichloropropane	NH,NY,ME
1,1-Dichloropropene	NH,NY,ME
cis-1,3-Dichloropropene	CT,NH,NY,ME
trans-1,3-Dichloropropene	CT,NH,NY,ME
Diisopropyl Ether (DIPE)	NH,NY,ME
Ethylbenzene	CT,NH,NY,ME
Hexachlorobutadiene	СТ, NH, NY, МЕ
-Hexanone (MBK)	CT,NH,NY,ME
Isopropylbenzene (Cumene)	NY,ME
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME
Methyl tert-Buryl Ether (MTBE)	CT,NH,NY,ME
	• •

Certified Analyses included in this Report

CERTIFICATIONS

Analyte	Certifications
SIV-846 8260C in Water	
Methylene Chloride	СТ, NH, NY, МЕ
4-Methyl-2-pentanone (MIBK)	СТ, NH, NY, МЕ
Naphthalene	NH,NY,ME
n-Propylbenzene	СТ, ИН, ИУ, МЕ
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME
Tetrachloroethylene	
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	CT,NH,NY,ME
1,2,4-Trichlorobenzene	NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	СТ, NH, NY, МЕ
Trichlorofluoromethane (Freon 11)	СТ, NH, NY, МЕ
	СТ, NH, NY, МЕ
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME
TH	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	ML.	
AIHA	AIHA-LAP, LLC - ISO17025:2005	Number	Expires
MA	Massachusetts DEP	100033	03/1/2020
СТ		M-MA100	06/30/2019
NY	Connecticut Department of Publile Health	PH-0567	09/30/2019
	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	· -
NJ	New Jersey DEP		12/31/2019
FL	Florida Department of Health	MA007 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	E871027 NELAP	06/30/2020
ME	State of Maine	LL015036	07/30/2019
		2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	
		23703	07/31/2019

Page 75 of 77

Table of Contents ² <u>Preservation Codes:</u> | = Iced H = HCL M = Methanol N = Nitric Acid B = Sodium Bisulfate X = Sodium Hydroxide T = Sodium DW = Drinking Water GW = Ground Water WW = Waste Water ³ Container Codes: A = Amber Glass G = Glass P = Plastic ST = Sterile Thiosulfate O = Other (please define) S = Summa Canister O Fleid Filtered 0 = Other (please T = Tedlar Bag O = Other (please _ of _ Preservation Code Field Filtered S = Sulfuric Acid Matrix Codes Non Soxhlet O Lab to Filter Soxhlet O Lab to Filter PCB ONLY Container Code # of Containers SL = Sludge SOL = Solid A = Air S = Soil define) V = Vial VELAC ANT ARTALISES THE SERVERS Con-test 39 Spruce Street East Longmeadow, MA 01028 Chromatogram AIHA-LAP, LLC ANALYSIS REQUESTED × Other Doc # 381 Rev 1_03242017 METALS I ٥ × 2 8 2 9 2 29 X WRTA Ø × GW-1 Status per client 6/10/19 mmk I H 43 Q × ĸ Х ىز HIGV 7 × × بد MCP Certification Form Required × MA MCP Required CT RCP Required C) Certification Form Required MWRA MA State DW Required 1,001 School MBTA × × × = = -3 LONS-LTANTS, COM CHAIN OF CUSTODY RECORD Ø S = Municipality Brownfield 10-Day 3-Day 4-Day EXCEL CLP Like Data Pkg Required: PWSID # http://www.conte Email To: LAS wall \square 띥 X Due Date: Government Pagy S format: Fax To #: 120% 050 Other: 1-Day 2 (33) .Day Federal City Project Entity 51/3/0 Field filtered CONSULTANTS THE 2 -Q E = Email: info@contestlabs.com 51 WALTHOW 子、ア Phone: 413-525-2332 19 1745 Fax: 413-525-6405 Ofte/Time: Date/Time Qate/Time: Date/Time: Date/Time: 60-5 m 69-7mw SES. BEAKER ORIVE MK 19F0402 DELABUL AE 100 Map 14 Mately BEAVER 830 Hunea Con-Test Quote Name/Number: Relinquisper by (signature) quished by: (signature) Ţ Con-Test Work Order# ved by: (signature) ved by: (signatur Project Location: Project Manager: Invoice Recipient: Project Number: Sampled By: Comments: Address:

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Received By CP Date LLT/2019 Time /745 How were the samples in Cooler T No Cooler On Ice T No Ice Direct from Sampling Ambient Melted Ice Were samples within By Gun# Actual Temp - 3.4 + 2.1/2 Were samples within By Blank # Actual Temp - 3.4 + 2.1/2 Was Custody Seal Intact? N/A Were Samples Tampered with? N/A Does Chain Agree With Samples? T Does Chain Agree With Samples? T Were samples Tempered with? N/A Does Chain Agree With Samples? T Are there broken/leaking/loose caps on any samples? F Were samples received within holding time? T Analysis T Sampler Name T T Did COC include all Client T Analysis T Sampler Name T T Collection Dates/Times T Who was notified? T Is splitting samples required? F Who was notified? T Is splitting samples required? F Is splitting samples required? F On COC? F Base Does Does Does Does Does Does Does Do	Client	CDW	Consultan	ite						
How were the samples received? Direct from Sampling Direct from Sampling Direct from Sampling Ambient Melted Ice Meter samples within Temperature? 2-6°C T By Blank # Actual Temp - 3.4 + 2.1/2 Actual Temp - 3.4 + 2.1/2 Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? T Did COC Include all Cilient T Analysis T Sampler Name T Are Sample labels filled out and legible? T Are there Rushes? Who was notified? T Sample shade in the labels filled out and legible? T Are there Rushes? F Who was notified? Who was notified? Who was notified? Who was notified? T Sample shade in the labels filled out and legible? F Who was notified? Who was notified? Who was notified? Who was notified? T Base T Actual Temp - Actual Temp - Actual Temp - Actual Temp - T Actual Temp - Actual Temp - Actual Temp - T Actual Temp - Actual Temp - T Actual Temp - Actual Temp - Actual Temp - T Actual Temp - Actual Temp - T Actua	Recei	ived By	CAP		Date	1017/	2019	Time	1745	
Direct from Sampling			In Cooler	7	- No Coolo			-		
Were samples within Temperature? 2-6°C T By Blank # Actual Temp - Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Are there broken/leaking/loose caps on any samples? By COC in link / Legible? T Did COC include all Client pertinent Information? Are Sample labels filled out and legible? Are there Lab to Filters? Are there Pashes? Who was notified? Are there Rushes? Who was notified? Are there Rushes? Who was notified? Are there Rushes? Who was notified? Analysis			000.01		- MO COOISI				•	
Temperature? 2-6°C			Direct from Sam	, •		=			•	
Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Scoc in ink/ Legible? Tobic CoC include all Client Tobic Are Sample labels filled out and legible? Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? In the Headspace where applicable? In the Headspace where app				By Gun#	4	_	Actual Tem	p- 3.4+	2.6	
Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Did COC include all Client T Analysis T Sampler Name T T Analysis T Collection Dates/Times T Analysis Analysis T Collection Dates/Times T Who was notified? Wh	· · · · · · · · · · · · · · · · · · ·			By Blank #			Actual Tem	D -		-
Are there broken/leaking/loose caps on any samples? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? T				-		- ere Sample			2//0	-
Are there broken/leaking/loose caps on any samples? Bis COC in ink/ Legible? Did COC include all Client T Analysis T Sampler Name T ID's T Collection Dates/Times T Analysis T Sampler Name T ID's T Collection Dates/Times T Analysis T Sampler Name T ID's T Collection Dates/Times T Analysis T Sampler Name T ID's T Collection Dates/Times T ID's T				T	Doe	s Chain Ac	ree With Sa	mples?	_IV/A	-
Second Color Ink/ Legible? T	Are th	ere broken/l	leaking/loose caps	on any sam	ples?		,			-
Die OCC Include all Client T Analysis T Sampler Name T T Collection Dates/Times T Collection Dates/Times T T Sample Iabels filled out and legible? T Who was notified? I s splitting samples required? F On COC? F ON COC. F ON	Is COC in it	nk/ Legible?		•			_ ived within h	oldina time?	7	
pertinent Information? Project T ID's T Collection Dates/Times T Are Sample labels filled out and legible? T Are Sample labels filled out and legible? T Are there Lab to Filters? F Who was notified? Are there Rushes? F Who was notified? Are there Rushes? F Who was notified? Are there Short Holds? F Who was notified? Are there enough Volume? Are there Headspace where applicable? F Who was notified? Are there Headspace where applicable? F Who was notified? Are there Headspace where applicable? F Who was notified? Are there Headspace where applicable? F Who was notified? Are there Headspace where applicable? F Who was notified? Are there Headspace where applicable? Are there Rushes? Are there Rushes? Are there Rushes? Who was notified? Who was notified? Who was			Client	T	Analysis	τ				-
Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Are there Rushes? Are there Short Holds? Is there enough Volume? Is splitting samples required? Acid T Base MS/MSD? F				T		T				-
Are there Rushes? Are there Short Holds? Are there enough Volume? Are there Headspace where applicable? Are there Short Holds? Are there Rushes? Who was notified? Who was notified? Who was notified? Notified? Who was notified? Who was notified? Who was notified? Who was notified? I Liter Plastic				7			_			-
Are there Rushes? Are there Short Holds? Are there enough Volume? Are there enough Volume? Are there short Holds? Are there Headspace where applicable? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks received? Are trip blanks required? Are trip blanks amples required? Are trip blanks requi			?	F		Who wa	s notified?			
Who was notified? So there enough Volume? So there Headspace where applicable? Froper Media/Containers Used? Froper Media				F						•
sthere enough Volume? sthere Headspace where applicable? froper Media/Containers Used? froper Media/Containers Used? for all samples have the proper pH? Acid T Base Base				F						-
Proper Media/Containers Used? For etrip blanks received? For all samples have the proper pH? Acid T Base Acid T Base				T *						-
Proper Media/Containers Used? T				F		MS/MSD?	F			
On COC? F On COC? On Coc				T				wired?	F	
Base				F						••
Table Tabl	Do all samp	les have the	proper pH?		Acid	T	· · · · · · · · · · · · · · · · · · ·	Base		
Table Tabl	als	#	Containers	4					Salas and a sa	Programa
Solution	Jnp-			A CONTRACTOR STATE SECTION ASSESSMENT	1 Liter			16.07	Amb	#
Solution	HCL-	24	500 mL Amb.				<i>2</i> 1.			
Flashpoint Col./Bacteria 2oz Amb/Clear	Meoh-						- 3			
Other Glass Diosulfate- SOC Kit Plastic Bag Uffuric- Perchlorate Unused Media Plastic Unused Media Plastic Unused Media Plastic Unused Media Plastic I Liter Plastic I Soo mL Amb. Soo mL Plastic Encore Frozen: 16 oz Amb. 8 oz Amb/Clear Boch- Soo mL Amb. Soo mL Plastic Soo mL Amb. Soo mL Plastic Soo mL Amb. Soo mL Plastic Soo mL Amb/Clear Col./Bacteria Flashpoint Cother Plastic Other Plastic Other Glass Encore Frozen:			Flashpoint							
SOC Kit Plastic Bag Frozen:	DI-									
Unused Media Unused Media What is a second with the second w					Plastic	Bag				L
## Containers ## ## ## ## ## ## ## ## ## ## ## ## ##	Sulturic-		Perchlorate		Zipk	ock				
## Containers ## ## ## ## ## ## ## ## ## ## ## ## ##					Unusedia	dedia.				
CL- 500 mL Amb. 500 mL Plastic 80z Amb/Clear eoh- 250 mL Amb. 250 mL Plastic 40z Amb/Clear sulfate- Col./Bacteria Flashpoint 20z Amb/Clear - Other Plastic Other Glass Encore	/als	#	Sontainers :							
CL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear eoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear sulfate- Col./Bacteria Flashpoint 2oz Amb/Clear - Other Plastic Other Glass Encore niosulfate- SOC Kit Plastic Bag Frozen:	Inp-				1 Liter I	Plastic		16 07	Amh	
eoh- sulfate- Col./Bacteria Flashpoint 2oz Amb/Clear Cother Plastic Other Glass Encore SOC Kit Plastic Bag Frozen:	ICL-									
sulfate- Col./Bacteria Flashpoint 2oz Amb/Clear - Other Plastic Other Glass Encore - SOC Kit Plastic Bag Frozen:										
- Other Plastic Other Glass Encore niosulfate- SOC Kit Plastic Bag Frozen:										
niosulfate- SOC Kit Plastic Bag Frozen:	1-									
inuric- Perchlorate Ziplock					Plastic	Bag				
	omments:		Perchlorate	<u> </u>	Ziplo	ock				

only 1 uppreserved IL received for 61p-5 only 2 uppreserved IL received for 61p-7

		MADE	EP MCP Analytical	Method Report Ce	rtification Form	ı	able of Co
La	boratory Nam	ie: Con-Test An	alytical Laboratory		Project #: 19F6	0402	
Pro	oject Location	: Beaver St., V	Valtham, MA		RTN:		
This	Form provid	es certifications for	the following data se	et: [list Laboratory Sa			
1		ru 19F0402-04		•			
Mat	trices:	Water					•
C	AM Protoco	ol (check all that	below)				
ì	0 VOC	7470/7471 Hg	MassDEP VPH	8082 PCB	9014 Total	6860	
CAN	M II A (X)	CAM IIIB (X)	CAM IV A (X)	CAM V A (X)	Cyanide/PAC CAM VI A ()	Perchl	orate /III B()
ł	0 SVOC A II B (X)	7010 Metals	MassDEP VPH	8081 Pesticides	7196 Hex Cr		EP APH
<u> </u>		CAM III C ()	CAM IV C ()	CAM V B (X)	CAM VIB()	CAM IX	XA()
1	O Metals // III A ()	6020 Metals CAM III D (X)	MassDEP EPH CAM IV B (X)	8151 Herbicides CAM V C (X)	8330 Explosives CAM VIII A ()	TO-15 CAM IX	
					Presumptive Certainty"	status	
Α .	A Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?						□No¹
В	protocol(s) loli	iowed?	l associated QC requirem		1	☑ Yes	□No¹
С	protocor(s) imp	piemented for all identifi	nd analytical response ac ied performance standard	d non-conformances?		☑ Yes	□No¹
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data?						☑ Yes	□No¹
Ea	VPH, EPH, and	d APH Methods only: W	Vas each method conduct a list of significant modific	ted without significant me	odification(s)?	☑ Yes	
Еb	APH and TO-1	5 Methods only: Was th	ne complete analyte list re	eported for each method		□Yes	
F	Were all applicated in a	able CAM protocol QC laboratory narrative (in	and performance standa cluding all No responses	rd non-conformances ide	entified and	☑ Yes	
	A response	to questions G, H a	and I below is required	d for "Presumptive C	ertainty" status		
G	protocol(s)?		II CAM reporting limits sp			☐ Yes	☑No¹
<u>ยลเล</u> and เ	<u>User Note:</u> Da epresentative	ita that achieve "Pre ness requirements i	esumptive Certainty" s described in 310 CMR	status may not neces ? 40. 1056 (2)(k) and V	ssarily meet the data us NSC-07-350.	ability	
Н			pecified in the CAM protoc			□ _{Yes}	☑ _{No¹}
1	Were results rep	ported for the complete	e analyte list specified in t	the selected CAM protoc	;ol(s)?	□Yes	☑No¹
¹ All I	Vegative respo	nses must be addres	ssed in an attached En	vironmental Laborator	y case narrative.		
i, the	e undersigned, e responsible	, attest under the pa	ains and penalties of p formation, the materia	periury that, based ur	pon my personal inquir nalytical report is, to th	y of e best	
Sign	eature:	Too k	en e	Position:	Laboratory Director		
Print	ted Name:	Tod E. Kopyscinsk	(i	Date:0	06/14/19		

)					
		·		·	
T.					
			·		
				·	
J					