Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ U I FR

Câmpus Ponta Grossa

Exercício – Registros (*Structs*)

Profa. Simone Aires – Prof. Saulo

- 1. Faça um programa que converta coordenadas polares para cartesianas:
 - a. Crie e leia um ponto em coordenada polar, composto por raio (r) e a<mark>rgumento (a) em ra</mark>dianos.
 - b. Crie outro ponto, agora em coordenada cartesiana, composto por x e y, sabendo que (x = r.cos a) e (y = r.sin a).
- 2. Faça uma agenda de compromissos:
 - a. Crie e leia um vetor de n estruturas de dados contento: compromisso (máximo 60 letras) e data.
 - b. A data deve ser outra estrutura de dados contendo dia, mês e ano.
 - c. Leia dois inteiros m (mês) e a (ano). Apresente todos os compromissos do mês \mathbf{m} do ano \mathbf{a} . Repita o procedimento até ler $\mathbf{m} = 0$.
- 3. Crie uma estrutura representando os alunos de um determinado curso. A estrutura deve conter a matrícula do aluno, nome, nota da primeira prova, nota da segunda prova e nota da terceira prova.
- (a) Permita ao usuário entrar com os dados de 5 alunos.
- (b) Encontre o aluno com maior nota da primeira prova.
- (c) Encontre o aluno com maior media geral.
- (d) Encontre o aluno com menor media geral
- (e) Para cada aluno diga se ele foi <mark>aprovado ou reprovado</mark>, considerando o valor 6 para aprovação.
- 4. Faça um programa que simule uma rede social. Leia um inteiro n de usuários e:
 - a) Leia um vetor de n usuários, sendo que cada um tem nome (máximo de 15 letras), quantidade de amigos e lista de amigos.
 - b) A lista de amigos é um vetor de strings com nomes dos amigos (máximo de 15 letras cada nome).
 - c) Calcule e mostre a popularidade de cada usuário da rede social, sendo que a popularidade é o número de vezes que aparece na lista de amigos de todos os usuários. Exemplo:

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ U FPR

Câmpus Ponta Grossa

Entrada		Saída
** n **		** Popularidade **
3		Marcelo 1
** usuário 0 (nome/quantidade/amigos)	**	Yukio 1
Marcelo 3		Hossomi 2
Hossomi Yukio Hitomi		
** usuário 1 (nome/quantidade/amigos)	* *	
Yukio 2		
Marcelo Hossomi		
** usuário 2 (nome/quantidade/amigos)	**	
Hossomi 3		
Marcelo Yure Hitomi		

Nota: nem todos os amigos na lista de amigos precisam ser necessariamente usuários da rede social. Não é preciso calcular a popularidade de não-usuários.

- 5. Faça um programa que leia uma expressão polinomial homogênea (igual a zero). Leia o número n de termos e:
 - a) Crie e leia um vetor de n termos, sendo que cada termo possui coeficiente, incógnita e expoente.
 - b) A expressão pode ter quantas incógnitas o usuário desejar, que deve ser representada por uma letra apenas.
 - c) Trate os coeficientes e o expoente como inteiros.
 - d) Crie um novo vetor, mas simplificando a expressão somando todos os termos com mesma incógnita e mesma potência.
 - e) Na sua função main(), mostre a equação original e a equação simplificada.