Assignment - 3

Due date: Tuesday April 23.

I. Solve the following reducible second order ODEs.

(i)
$$yy'' + (y')^2 = D$$

II. Find a general solution of the following homogeneous equation:

$$xy'' - (2x+i)y' + (x+i)y = 0$$

given that $y_1 = e^{2}$ is one solution.

III. Find the Wronskian of the following functions:

- (i) $f_1(x) = e^{-3x}$, $f_2(x) = \cos 2x$, $f_3(x) = \sin 2x$
- (ii) f(x)=2cosx+3sinx, g(x)=3cosx-2cinx
- IN . Show that $y_1(x)=1$, $y_2(x)=5x$ are solutions of $yy''+(y')^2=0$, but that their sum $y=y_1+y_2$ is not a solution.
- [Note: This example shows that the perinciple of superposition does not hold for non-linear differential equations]
- I. Find a general solution of the following differential equations:
 - 1) 2y'' + 3y' = D. 3) y'' + 8y' + 25y = 0.
 - 2) 9y'' 12y' + 4y = 0. 4) y'' + 27y = 0.

VI. Recall the second order Euler equation $ax^2y'' + bxy' + cy = 0$ — ①

from class. [A] Prove that if the roots 9,
and 12 of the D. E obtained by the substitution v = logx:

$$a\frac{d^2y}{dv^2}$$
 + (b-a) $\frac{dy}{dv}$ + cy = 0

are such that h_1 and h_2 are real and distinct, then a general solution of \mathfrak{I} is given by $y(x) = c_1 x^{n_1} + c_2 x^{n_2}$.

[B] What if $h_1 = h_2 = \alpha$, a repeated real root? What would a general solution look like in this case?