Math 415 - Lecture 11

Column space, Solution to $A\mathbf{x} = b$

Friday September 18th 2015

Textbook: Chapter 2.1, 2.2.

Suggested practice exercises: Chapter 2.1: 3, 21, 28. Chapter 2.2: 33 and additional exercises at the end of this lecture.

Khan Academy videos: Introduction to the Null Space of a Matrix, Calculating the Null Space of a Matrix, Column Space of a Matrix

1 Review

Definition. The nullspace of an $m \times n$ matrix A, written as Nul(A), is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}.$$

Theorem 1. The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions \mathbf{x} to the system $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{R}^n .

2 Column Spaces

Definition. The **column space**, written as Col(A), of an $m \times n$ matrix A is

Example 1. • If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

• If $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$,

• If $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$,

Theorem 2. The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Why is it a subspace?

Remark. If A is $m \times n$ (m rows, n columns) then	
• $Col(A)$ is a subspace of	
• $Nul(A)$ is a subspace of	
Why?	
Theorem 3. Let A be an $m \times n$ matrix. \mathbf{b} is in $Col(A)$ iff there is an $\mathbf{x} = \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$.	$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} in$
Proof.	

Example 2. Find a matrix A such that W = Col(A) where

$$W = \left\{ \begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} : x, y \in \mathbb{R} \right\}.$$

\mathbf{S}	Solution.			

3 Nul(A), Col(A) and solutions to Ax = b

Theorem 4. Let A be an $m \times n$ matrix, let $\mathbf{b} \in \mathbb{R}^m$, and let $\mathbf{x}_{\mathbf{p}} \in \mathbb{R}^n$ such that

$$A\mathbf{x}_{\mathbf{p}} = \mathbf{b}.$$

Then the set of solutions $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}\}$ is exactly

$$\mathbf{x}_{\mathbf{p}} + Nul(A)$$
.

So every solution of $A\mathbf{x} = \mathbf{b}$ is of the form

$$x_p + x_n$$

where $\mathbf{x_n}$ is some vector in Nul(A).

Proof.

Remark. We often call $\mathbf{x_p}$ a particular solution of $A\mathbf{x} = \mathbf{b}$. The theorem then says that every solution to $A\mathbf{x} = \mathbf{b}$ is the sum of one particular solution $\mathbf{x_p}$ and all the solutions to $A\mathbf{x} = \mathbf{0}$ (the null space).

				$ \begin{array}{ccc} 3 & 3 \\ 6 & 9 \\ -3 & 3 \end{array} $ b to Ux		$\mathbf{l} \ \mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}$. Solve A	x = b.	
	<u>-</u>	. Teada							
St	ep 2	: Find ε	ı particu	ılar solu	tion to i	$U\mathbf{x} = \mathbf{c}.$			

Step 3 : Find all the solutions to $A\mathbf{x} = 0$ to find $Nul(A)$.
Stop 4: To find all the solutions to $4x - b$ add a particular solution x , to the
Step 4 : To find all the solutions to $A\mathbf{x} = \mathbf{b}$, add a particular solution $\mathbf{x}_{\mathbf{p}}$ to the null space of A .

Remark.

• If A is a matrix with echelon form U, then Nul(A) = Nul(U). Why?

• Not true that Col(A) = Col(U)! Why?

Additional Exercises

- 1. True or false?
 - (i) The solutions to $A\mathbf{x} = \mathbf{0}$ form a vector space. True. This is the null space Nul(A).
 - (ii) The solutions to $A\mathbf{x} = \mathbf{b}$ form a vector space. False, unless $\mathbf{b} = 0$.
- 2. Find an explicit description for Nul(A) where

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}.$$

3. Show that the given set W is a subspace (by showing that W is the column space or null space of some matrix A) or find a specific example that shows that W is not a subspace.

(i)
$$W_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x - 1 = y + 2z \right\}.$$

(ii)
$$W_2 = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a = 2b + c, \ 2a = c - 3d \right\}.$$

- 4. Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$. Find a smallest spanning set for W = Col(A). Find a matrix B such that W = Nul(B).
- 5. Let $B=\begin{bmatrix}1&2\\2&4\end{bmatrix}$. Find a smallest spanning set for W=Nul(A). Find a matrix B such that W=Col(B)