Notater

Fredrik Meyer

20. juni 2015

0.1 Tautologisk linjebunt på \mathbb{P}^n

Vi kan definere en tautologisk linjebunt på \mathbb{P}^n . Dette er en bunt hvis fiber over et punkt p er linjen i \mathbb{A}^{n+1} utspent av (de homogene koordinatene til) p. La $q \in \langle p \rangle$ bety at q er med i spennet av p. Da er

$$\mathscr{T} := \{ (q, p) \in \mathbb{A}^{n+1} \times \mathbb{P}^n \mid q \in \langle p \rangle \}.$$

Ved å regne overgangsfunksjoner kan en se at $\mathscr{T} \simeq \mathscr{O}_{\mathbb{P}^n}(-1)$.

Det finnes også andre måter å se dette på, eksempelvis slik Mike Eastwood forklarte det på siste forelesning, men det har jeg glemt av nå (!!).

0.2 Embedding Grassmannian

Grassmannian har en tautologisk linjebunt \mathcal{E} , hvis seksjoner kan skrives som matriser. Fiberen over et punkt [V] i Grassmannian er nettopp det lineære underrommet punktet representerer.

Da vil $\wedge^k\mathscr{E}$ være en linjebunt på Grassmannian, og seksjonene vil være utspent av alle minorene. Så dette er linjebunten Plücker-embeddingen svarer til.