Itération et algorithmes

Ce chapitre revisite les itérations et introduit des algorithmes.

Réaffectation

Une première affectation de variable crée cette variable et y associe cette valeur.

```
In [85]: x = 5
print(x)

5
7
```

Une réaffectation y associe une nouvelle valeur.

La variable y est affecté avec la valeur de x. Quand x change, y garde sa vaelur.

```
In [8]: y = x
In [7]: x = 3
    print(y)
```

Mettre à jour les variables

Une opération fréquente est l'incrémentation d'une variable.

```
In [11]: print(x)
x = x + 1
print(x)

5
6
```

La décrémentation d'une variable, c'est quand une valeur est soustrait du valeur de la variable.

```
In [12]: print(x)
    x = x - 1
    print(x)
    6
    5
```

Il existe un raccourci pour écrire cette fonction

En fait, toutes les opérateurs (+-*/%) possèdent ce raccourcis

```
In [21]: x = 10
    print(x)
    x += 1
    print(x)
    x //= 2
    print(x)
    x **= 3
    print(x)
    x %=4
    print(x)
10
11
5
125
1
```

L'instruction while

Dans un programme doit souvent répéter une séquence d'instructions. On appelle cette répétition une itération. La connotation avec itération est qu'il y a une petite modification à chaque répétition.

Le mot-clé while introduit une boucle. Tandis que la condition est vraie, le corps du while est répété.

```
In [24]: def count_down(n):
    while n > 0:
        print(n)
        n -= 1
        print('Finish')

    count_down(3)
3
2
1
Finish
```

Pour cerains calcul c'est difficile à dire si une boucle se termine.

```
In [40]: def sequence(n):
    while n != 1:
        print(n, end=', ')
        if n % 2 == 0:
            n = n // 2
        else:
            n = n * 3 + 1
        return n
```

La condition de la boucle est n = 1, donc la boucle continue jusqu'à ce que n soit 1.

```
In [41]:
         for n in range(2, 20):
             print(sequence(n))
          2, 1
          3, 10, 5, 16, 8, 4, 2, 1
          4, 2, 1
          5, 16, 8, 4, 2, 1
          6, 3, 10, 5, 16, 8, 4, 2, 1
          7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
          8, 4, 2, 1
          9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2
          , 1
          10, 5, 16, 8, 4, 2, 1
          11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
          12, 6, 3, 10, 5, 16, 8, 4, 2, 1
          13, 40, 20, 10, 5, 16, 8, 4, 2, 1
          14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
          15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
          16, 8, 4, 2, 1
          17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
          18, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,
          4, 2, 1
          19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8
          , 4, 2, 1
```

break - interrompre une boucle

Parfois on doit pouvoir interrompre une boucle depuis l'interieur.

Racines carrées

Une façon de calculer les racines carrées est d'utiliser un algorithme itérative, par exemple la méthode de Newton. Supposons que nous voulions calculer la racine carrée de a. A partir d'un estimation x, nous obtenons une meilleure estimation en utilisant la formule

$$y = \frac{x + a/x}{2}$$

```
In [5]: a = 4

x = 3

y = (x + a/x) / 2
```

Nous pouvons définir une fonction qu'il suffit d'appliquer quelques fois

```
In [13]: def newton(x, a):
    return (x + a/x) / 2
In [8]: x = newton(x, a); x
Out[8]: 2.16666666666665

In [9]: x = newton(x, a); x
Out[9]: 2.0064102564102564

In [10]: x = newton(x, a); x
Out[10]: 2.0000102400262145
```

Lorsque x==y nous pouvons arrêter. Voici une boucle qui commence avec la première estimation et améliore jus'qu'à ce quelle ne change plus.

```
a = 4
In [15]:
         x = 3
         while True:
              print(x)
              y = newton(x, a)
              if y==x:
                  break
              x = y
           3
           2.16666666666665
           2.0064102564102564
           2.0000102400262145
           2.0000000000262146
           2.0
In [19]:
         def root(a):
              x = a
              while True:
                  print(x)
                  y = newton(x, a)
                  if y==x:
                      return x
                  x = y
In [25]: root(3)
           3
           2.0
           1.75
           1.7321428571428572
           1.7320508100147274
           1.7320508075688772
Out[25]: 1.7320508075688772
```

Exercices

ex 1 - esilon

Encapsulez l'algorithme de Newton pour la racine carrée dans une fonction mysqrt qui prend x comme paramètre et renvoie une estimation de la racine carré.

Ecrivez une fonction test_racine qui compare cette valeur avec math.sqrt(x)

```
In [29]: def mysqrt(x):
    a = x
    while True:
        y = (x + a/x)/2
        if y == x:
            return x
        x = y

mysqrt(2)
```

Out[29]: 1.414213562373095

```
In [54]: import math

cols = '{:<3}{:<24}{:<24}{:<24}'
print(cols.format('x', 'mysqrt(x)', 'math.sqrt(x)', 'diff'))

for x in range(1, 10):
    a = mysqrt(x)
    b = math.sqrt(x)
    print(cols.format(x, a, b, b-a))</pre>
```

```
x mysqrt(x)
                           math.sqrt(x)
                                                    diff
                                                    0.0
1
                           1.0
2
  1.414213562373095
                           1.4142135623730951
                                                    2.220446049250313
e-16
                           1.7320508075688772
                                                    0.0
3
  1.7320508075688772
                           2.0
                                                    0.0
  2.23606797749979
                           2.23606797749979
                                                    0.0
  2.449489742783178
                           2.449489742783178
                                                    0.0
  2.6457513110645907
                           2.6457513110645907
                                                    0.0
  2.82842712474619
                           2.8284271247461903
                                                    4.440892098500626
e-16
   3.0
                           3.0
                                                    0.0
```

```
In [57]: 2**-52
```

Out[57]: 2.220446049250313e-16

La valeur est la plus petit incrément d'une valeur flottante à 64 bits avec 1 signe, 53 bits de mantisse et 10bits d'exposant

ex 2 - eval

La fonction interne **eval** prend une chaîne de caractères et l'évalue comme du code Python. Ecrivez une fonction qui invite l'utilisateur à faire une saisie, évalue cette expression et affiche le résultat jusqu'à ce que l'utilisateur entre le mot *fini*.

ex 3 - série infinie pour approximer pi

Le mathématicien Srinivasa Ranujan a trouvé une série infinie qui peut être utilisée pour générer une approximation numérique de $1/\pi$.

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)!(1193 + 26390k)}{(k!)^4 396^{4k}}$$

```
In [70]:
         def estimate_pi(k):
             res = * math.factorial(4*k) *
             return res
         estimate_pi(0)
Out[70]: 0.31830987844047015
In [84]: from math import sqrt, factorial, pi
         sum = 0.0
         k = 0
         a = 2 * sqrt(2) / 9801
         while True:
             b = factorial(4*k) * (1103 + 26390 * k) / (factorial(k)**4 * 396**)
             sum += b
             if b < 1e-15:
                 break
             k += 1
         res = 1 / (a * sum)
         print(res, pi)
```

3.141592653589793 3.141592653589793