Assignment1

Haoluan Chen

Q1

a)

Assume $E[\theta] = 1$ and $Var(\theta) = \sigma^2$

By the Law of total expectation and $Y|\theta \sim \text{Poisson}(\mu\theta)$:

$$E(Y) = E[E(Y|\theta)] = E[\mu\theta] = \mu E[\theta] = \mu$$

By the Law of total variance and $Y|\theta \sim \text{Poisson}(\mu\theta)$:

$$Var(Y|\theta) = E[Var(Y|\theta)] + Var[E(Y|\theta)] = E[\mu\theta] + Var(\mu\theta) = \mu + \mu^2\sigma^2 = \mu(1+\mu\sigma^2)$$

b)

Assume $\theta \sim Gamma(\alpha, \beta)0$

$$\begin{split} p(y) &= \int p(y|\theta) p(\theta) d\theta \\ &= \int \frac{(\mu\theta)^y e^{-\mu\theta}}{y!} \frac{\theta^{\alpha-1} e^{-\theta/\beta}}{\beta^\alpha \Gamma(\alpha)} d\theta \\ &= \frac{\mu^y}{\beta^\alpha y! \Gamma(\alpha)} \int \theta^{y+\theta-1} e^{-\mu\theta-\theta/\beta} d\theta \\ &= \frac{\mu^y}{\beta^\alpha y! \Gamma(\alpha)} \int e^{-\theta(\mu+1/\beta)} \theta^{y+\alpha-1} \\ &= \frac{\mu^y}{\beta^\alpha y! \Gamma(\alpha)} \frac{\Gamma(y+\alpha)}{(\mu+1/\beta)^{y+\alpha}} \\ &= \frac{\Gamma(y+\alpha)}{\Gamma(\alpha)\Gamma(y+1)} \frac{\mu^y}{\beta^\alpha} (\frac{\mu\beta+1}{\beta})^{-y-\alpha} \end{split}$$

$$\begin{split} &=\frac{\Gamma(y+\alpha)}{\Gamma(\alpha)\Gamma(y+1)}\frac{\mu^y}{\beta^\alpha}\frac{\beta^{y+\alpha}}{(\mu\beta+1)^{y+\alpha}}\\ &=\frac{\Gamma(y+\alpha)}{\Gamma(\alpha)\Gamma(y+1)}(\frac{\mu\beta}{\mu\beta+1})^y(\frac{1}{\mu\beta+1})^\alpha\sim NB(\alpha,\frac{\mu\beta}{\mu\beta+1}) \end{split}$$

c)

Since

$$E(Y) = \mu = \frac{\alpha(1 - \frac{\mu\beta}{\mu\beta + 1})}{\frac{\mu\beta}{\mu\beta + 1}} = \alpha\mu\beta => \alpha\beta = 1$$

$$Var(Y) = \mu(1+\mu\sigma^2) = \frac{\alpha(1-\frac{\mu\beta}{\mu\beta+1})}{(\frac{\mu\beta}{\mu\beta+1})^2} = \alpha\mu\beta + \alpha\mu^2\beta^2 => \alpha\beta^2 = \sigma^2$$

Then

$$\alpha = 1/\sigma^2, \beta = \sigma^2$$

a)

From the death by femininity scatter plot, it looks like there is two cluster. A group centered around femininity value of 2 and a group centered around femininity value of 8.5. Higher femininity value has higher variability on the number of deaths. One extreme value of over 200 deaths. For minimum pressure, there is a slightly increasing trend as the minimum pressure goes below 950. Lastly, we see an increasing in deaths as normalized damage increase, the variation also increase.

b)

Fitting Poisson model(Estimates are exponentiated):

```
model1 <- glm(alldeaths~MasFem, family = poisson, data = q2)
est <- data.frame(summary(model1)$coefficients) %>%
  mutate(Estimate = exp(Estimate))
kable(round(est, 4))
```

	Estimate	StdError	z.value	Prz
(Intercept)	12.1870	0.0633	39.5021	0
MasFem	1.0767	0.0079	9.3620	0

The poisson model suggested that as the MFI increase by one unit, the death count increase by a factor of 1.0767

Checking for overdispersion:

```
standard_res <- rstandard(model1)
plot(fitted(model1), standard_res)</pre>
```



```
n = 92
k = 2
sum(standard_res^2)/(n-k)

[1] 44.6563

1-pchisq(sum(standard_res^2), n-k)
```

[1] 0

There is an overdispersion!

Fitting quasi-poisson model(Estimates are exponentiated):

	Estimate	StdError	t.value	Prt
(Intercept)	12.1870	0.5437	4.5987	0.0000
MasFem	1.0767	0.0678	1.0899	0.2787

Assuming the significant level to be 0.05. The quasi-poisson suggest that the MFI does not affect on the death count.

c)

Model 4(Estimates are exponentiated):

```
cmodel<-glm.nb(alldeaths ~ ZMasFem*ZMinPressure_A + ZMasFem*ZNDAM , data=q2)
kable(round(summary(cmodel)$coefficients, 4))</pre>
```

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	2.4756	0.1222	20.2605	0.0000
ZMasFem	0.1723	0.1238	1.3918	0.1640
ZMinPressure_A	-0.5521	0.1503	-3.6734	0.0002
ZNDAM	0.8635	0.1445	5.9764	0.0000
ZMasFem:ZMinPressure_A	0.3948	0.1521	2.5952	0.0095
ZMasFem:ZNDAM	0.7051	0.1501	4.6988	0.0000

```
\exp(0.1723)
```

[1] 1.188034

Assuming a hurricane with median pressure and damage ratings, the estimated effect of one unit increase in MFI on death count is 18.8%

d)

```
d <- q2%>% filter(Name == "Sandy")
d
```

```
# A tibble: 1 x 14
```

- # ... with 4 more variables: Source <chr>, ZMasFem <dbl>, ZMinPressure_A <dbl>,
- # ZNDAM <dbl>, and abbreviated variable names 1: MinPressure_before,
- # 2: `Minpressure_Updated 2014`, 3: Gender_MF, 4: Category, 5: alldeaths,
- # 6: `Elapsed Yrs`

```
sandy <- d[12:14]
predict(cmodel, sandy, type="response")

1
20806.74</pre>
```

The predicted death count for Sandy is 20807. However, the actual death count is only 159. The predicted death count is so high because Sandy has highest damage.

e)

weakness:

1. Only 9 independent coder were include in determine the MFI, which may be biased. More coder can be included.

2.

strength:

- 1. Recognizing the confounding variable: effect of gendered names on protective action, not simply conclude that Feminine-named hurricanes cause significantly more deaths.
- 2. Many experiment were carried out to test difference aspect about the perceived risk of the hurricanes, predicted intensity and evacuation intention. This wide range of experiment helps convince reader that gendered hurricanes names will affect how people feel and act.
- 3. Data set are available for reproducible

f)

I think I'm convinced by the results,

Q3

Loading and combining two datasets

```
q3 <- read_csv("data/q3.csv")
```

```
Rows: 3283 Columns: 80
-- Column specification -------
Delimiter: ","
chr (6): Date, FIPS, Recip_County, Recip_State, SVI_CTGY, Metro_status
dbl (47): MMWR_week, Completeness_pct, Administered_Dose1_Pop_Pct, Administe...
num (27): Administered_Dose1_Recip, Administered_Dose1_Recip_5Plus, Administ...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
  q3 <- dplyr::select(q3, FIPS, starts_with("Series_Complete"), )
  acs <- read_csv("data/acs.csv")</pre>
Rows: 37704 Columns: 4
-- Column specification ------
Delimiter: ","
chr (3): fips, county_name, variable
dbl (1): value
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
  acs <- acs %>% pivot_wider(names_from = variable, values_from=value)
  acs <- acs %>% rename(FIPS = fips)
  combined <- inner_join(q3, acs, by='FIPS')</pre>
a)
```

skim(acs)

Table 4: Data summary

Name	acs
Number of rows	3142
Number of columns	14
Column type frequency:	
character	2

Table 4: Data summary

numeric	12
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
FIPS	0	1	5	5	0	3142	0
county_name	0	1	16	42	0	3142	0

Variable type: numeric

skim_variable n_missingmpl	${ m ete}_{_}$	_ra¢en	sd	p0	p25	p50	p75	p100	hist
total_pop_18plus 0	1	79970.8	8 2 55904.	46 5.00	8438.50	20154.	5 6 2646.5	7 866810	.00
prop_white 0	1	0.83	0.17	0.04	0.76	0.90	0.95	1.00	
$prop_foreign_born 0$	1	0.06	0.07	0.00	0.02	0.03	0.07	0.64	
median_age 0	1	41.43	5.42	22.30	38.20	41.30	44.50	67.40	
median_income 0	1	53475.9	9 1 4192.5	321504.0	044155.0	6 1757.	5 6 9867.2	2 5 42299.0	00
median_rent 4	1	774.54	226.89	313.00	633.00	716.00	851.00	2316.00	
prop_less_than_hs0	1	0.13	0.06	0.01	0.08	0.12	0.17	0.74	
prop_bachelor_abo@e	1	0.22	0.10	0.00	0.15	0.20	0.26	0.78	
prop_unemployed 0	1	0.03	0.01	0.00	0.02	0.03	0.04	0.16	
prop_nilf 0	1	0.42	0.08	0.17	0.36	0.41	0.47	0.85	
prop_health_insurance	1	0.90	0.05	0.54	0.88	0.91	0.94	1.00	
prop_low_ratio_ip0	1	0.16	0.07	0.00	0.11	0.15	0.19	0.58	

skim(q3)

Table 7: Data summary

Name	q3
Number of rows	3283
Number of columns	25
Column type frequency:	
character	1

Table 7: Data summary

numeric	24
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
FIPS	0	1	3	5	0	3225	0

Variable type: numeric

skim_variable n_	missi ng n	nplete	mætæn	sd	p0	p25	p50	p75	p100	hist
Series_Complete_Yes	17	0.99	69561.	5 2 42131	.732.0	5401.5	603727	.539787.	755025	92
Series_Complete_Pop_Pc	17 8	0.98	53.81	13.48	11.3	44.20	52.2	61.60	95	
Series_Complete_5Plus	17	0.99	69263.	4 3 40854	.432.0	5398.7	5 13714	.539738.	234654	45
Series_Complete_5PlusPo	<u>ря</u> Рсt	0.98	56.90	13.97	12.1	46.90	55.3	65.30	95	
Series_Complete_5to17	17	0.99	7539.7	929730.4	14 2.0	328.25	972.5	3337.0	092950	1
Series_Complete_5to17Po	<u> 18</u> Pct	0.98	28.17	17.48	1.4	16.00	23.3	34.90	95	
Series_Complete_12Plus	17	0.99	66440.	8 2 29753	.62.0	5306.2	25 13431	.38572.	731323	23
Series_Complete_12PlusP	7 8_Pct	0.98	60.74	13.92	13.2	50.90	59.6	69.30	95	
Series_Complete_18Plus	17	0.99	61723.	6 2 11637	. 23 0.0	5056.5	02685	.36343.	.0 6 5359	44
Series_Complete_18PlusP	78 _Pct	0.98	62.81	13.52	13.9	53.40	62.0	71.30	95	
Series_Complete_65Plus	17	0.99	15670.	78 4814.1	179.0	1755.2	254177.5	5 11113.	502534	00
Series_Complete_65PlusP	78 _Pct	0.98	80.99	11.95	17.6	73.80	83.0	90.70	95	
Series_Complete_Pop_Pc	₹ <u>9</u> SVI	0.98	7.81	4.47	1.0	4.75	9.0	13.00	16	
Series_Complete_5PlusPo	万 <u>9</u> Pct_	91.9 B	7.99	4.48	1.0	4.75	9.0	13.00	16	
Series_Complete_5to17Po	<u>р</u> 9Рсt	S)1.91 8	7.64	4.54	1.0	4.75	9.0	13.00	16	
Series_Complete_12PlusP	<i>6</i> 79_Pct_	<u>0</u> \$98I	8.24	4.50	1.0	4.75	9.0	13.00	16	
Series_Complete_18PlusP	<i>6</i> 79_Pct_	<u>0</u> \$98I	8.37	4.49	1.0	4.75	9.0	13.00	16	
Series_Complete_65PlusP	<i>6</i> 9_Pct_	<u>0</u> \$98I	9.47	4.46	1.0	4.75	9.0	13.00	16	
Series_Complete_Pop_Pc	<u>80</u> UR_1	Oq98 ty	4.27	1.87	1.0	2.00	5.0	6.00	8	
Series_Complete_5PlusPo	<u>80 Pct_</u>	U.B 8_E	Eq 4Li45	1.87	1.0	3.00	5.0	6.00	8	
Series_Complete_5to17Po	<u>80</u> Pct_	U.B <u>8</u> .E	Eq 4it 0	1.85	1.0	2.00	5.0	5.00	8	
Series_Complete_12PlusP	%p_ Pct_	<u>0U98</u> _	Еф1669у	1.87	1.0	3.00	5.0	6.00	8	
Series_Complete_18PlusP	%p_ Pct_	<u>0</u> U918	Еф1813 у	1.88	1.0	3.00	5.0	6.00	8	
Series_Complete_65PlusP	%p_ Pct_	<u>OU918.</u> _	Е б і 93 у	1.91	1.0	4.00	7.0	8.00	8	

skim(combined)

Table 10: Data summary

Name	combined
Number of rows	3142
Number of columns	38
Column type frequency:	
character	2
numeric	36
Group variables	None

Variable type: character

$skim_variable$	$n_{missing}$	$complete_rate$	min	max	empty	n _unique	whitespace
FIPS	0	1	5	5	0	3142	0
county_name	0	1	16	42	0	3142	0

Variable type: numeric

skim_variable n_	_miss ing mplete	mreate	sd	p0	p25	p50	p75	p100	hist
Series_Complete_Yes	16 0.99	68682	.92944993	3 3 .00	5198.7	512971	.0388067	.07050259	2.00
Series_Complete_Pop_I	Palcon 0.99	53.13	12.90	11.30	43.92	51.80	60.70	95.00	
Series_Complete_5Plus	16 0.99	68384	92243713	. 33 .00	5194.0	012934	.5338032	.2546544	5.00
Series_Complete_5PlusI	Pbp_Pct0.99	56.22	13.44	12.10	46.70	54.80	64.20	95.00	
Series_Complete_5to17	16 0.99	7457.0	529904.4	42.00	313.25	906.00	3052.7	' 5929501	.00
Series_Complete_5to17I	Pb. Pct0.99	26.92	15.74	1.40	15.90	22.90	33.80	95.00	
Series_Complete_12Plus	0.99	65630	3232586	. 62 .00	5101.5	5012693	.537089	.57013232	3.00
Series_Complete_12Plus	s P 6p_P61.99	60.14	13.52	13.20	50.70	59.10	68.40	95.00	
Series_Complete_18Plus	0.99	60927	82614192	2. 30 .00	4859.0	011959	.5304746	.56653594	4.00
Series_Complete_18Plus	s P 6p_P61.99	62.26	13.20	13.90	53.10	61.55	70.40	95.00	
Series_Complete_65Plus	0.99	15536.	14 5319.	529 .00	1697.5	604064.5	6010949	.01025340	0.00
Series_Complete_65Plus	s P 6p_P61.99	80.88	12.04	17.60	73.60	82.90	90.80	95.00	
Series_Complete_Pop_I	Pkot_SVI0.99	7.76	4.47	1.00	5.00	9.00	13.00	16.00	
Series_Complete_5PlusI	Pb_p_Pct_0	7.95	4.47	1.00	5.00	9.00	13.00	16.00	
Series_Complete_5to17H	Pb_p_Pct_0	7.58	4.52	1.00	5.00	9.00	13.00	16.00	
Series_Complete_12Plus	s P 6p_Pd₁.9 \$ V	18.20	4.49	1.00	5.00	9.00	13.00	16.00	

skim_variable r	_miss	ingmplete	mreate	sd	p0	p25	p50	p75	p100	hist
Series_Complete_18Pl	us P 6p_	_Pdt <u>.9</u> \$V	I8.34	4.48	1.00	5.00	9.00	13.00	16.00	
Series_Complete_65Pl	us P6 p_	_Pdt <u>.9</u> \$V	19.47	4.46	1.00	5.00	9.00	13.00	16.00	
Series_Complete_Pop_	_Plc7t	UR <u>0.19</u> 0/jui	t ≰ .27	1.88	1.00	2.00	5.00	6.00	8.00	
Series_Complete_5Plu	sPbp_	Pct <u>0.</u> ¶9R_	<u>E</u>46 it;	y 1.88	1.00	3.00	5.00	6.00	8.00	
Series_Complete_5to1	7Pb 7 p_	Pct <u>0.</u> ¶29R_	<u>Æ</u>Q9 it;	y 1.86	1.00	2.00	5.00	5.00	8.00	
Series_Complete_12Pl	us P 5p_	_Pdt <u>.9</u> ¶R	<u>4</u> Fqui	ty1.88	1.00	3.00	5.00	6.00	8.00	
Series_Complete_18Pl	us P 5p_	_Pdt <u>.9</u> ¶R	_4 B5 ui	ty1.89	1.00	3.00	5.00	6.00	8.00	
Series_Complete_65Pl	us P 5p_	_Pdt <u>.9</u> ¶R	_ <u>5</u> 19 qui	ty1.91	1.00	4.00	7.00	8.00	8.00	
$total_pop_18plus$	0	1.00	79970.	82 555904	.60.00	8438.5	020154	5502646.	57086681	0.00
prop_white	0	1.00	0.83	0.17	0.04	0.76	0.90	0.95	1.00	
prop_foreign_born	0	1.00	0.06	0.07	0.00	0.02	0.03	0.07	0.64	
median_age	0	1.00	41.43	5.42	22.30	38.20	41.30	44.50	67.40	
median_income	0	1.00	53475.	9114192.5	5 3 1504.	004155.	001757	.5509867.	2 542299	.00
median_rent	4	1.00	774.54	226.89	313.00	633.00	716.00	851.00	2316.0	0
$prop_less_than_hs$	0	1.00	0.13	0.06	0.01	0.08	0.12	0.17	0.74	
prop_bachelor_above	0	1.00	0.22	0.10	0.00	0.15	0.20	0.26	0.78	
prop_unemployed	0	1.00	0.03	0.01	0.00	0.02	0.03	0.04	0.16	
prop_nilf	0	1.00	0.42	0.08	0.17	0.36	0.41	0.47	0.85	
prop_health_insurance	e 0	1.00	0.90	0.05	0.54	0.88	0.91	0.94	1.00	
prop_low_ratio_ip	0	1.00	0.16	0.07	0.00	0.11	0.15	0.19	0.58	

```
combined <- na.omit(combined)</pre>
```

Check distribution of the count

```
combined %>% ggplot(aes(Series_Complete_18PlusPop_Pct))+ geom_histogram()
```

[`]stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

combined %>% ggplot(aes(Series_Complete_18PlusPop_Pct))+ geom_histogram() + scale_x_log10(

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

 \log transformation makes the count close to normal distribution, maybe I should consider \log -linear model?

Complete count vs prop_white

```
combined %>% ggplot(aes(x=median_income, y=Series_Complete_18PlusPop_Pct)) + geom_point()
```


combined %>% ggplot(aes(x=prop_bachelor_above, y=Series_Complete_18PlusPop_Pct)) + geom_pc

combined %>% ggplot(aes(x=median_age, y=Series_Complete_18PlusPop_Pct)) + geom_point()

combined %>% ggplot(aes(x=prop_white, y=Series_Complete_18PlusPop_Pct)) + geom_point()

combined %>% ggplot(aes(x=median_rent, y=Series_Complete_18PlusPop_Pct)) + geom_point()

 $\verb|combined| \%>\% | \texttt{ggplot(aes(x=total_pop_18plus, y=Series_Complete_18PlusPop_Pct))} + \texttt{geom_point}| \\$

b)

q3

# 1	# A tibble: 3,283 x 25										
	FIPS	Serie~1	${\tt Serie~2}$	Serie~3	${\tt Serie~4}$	${\tt Serie~5}$	Serie~6	Serie~7	Serie~8	Serie~9	
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	38079	11316	79.8	11283	87.1	2594	73	10057	91.8	8689	
2	48391	3750	54	3749	57.2	323	28.4	3675	61.9	3426	
3	53025	57360	58.7	57325	63.6	6465	30.6	55453	70.5	50860	
4	19183	12872	58.6	12822	62.5	1184	30.2	12399	67.4	11638	
5	48313	5981	41.9	5981	44.4	276	12.4	5910	48.1	5705	
6	20105	1330	44.9	1329	47.1	66	13.2	1309	51	1263	
7	29103	1629	41.1	1627	44	94	14	1606	47.9	1533	
8	55035	66817	63.9	66290	67.1	7574	49.6	62925	69.4	58716	
9	51097	3683	52.4	3680	54.9	233	25.7	3593	57.7	3447	
10	48029	1452251	72.5	1450278	77.8	186695	50.8	1389964	83.4	1263583	
#	# with 3.273 more rows. 15 more variables:										

Series_Complete_18PlusPop_Pct <dbl>, Series_Complete_65Plus <dbl>,

Series_Complete_65PlusPop_Pct <dbl>, Series_Complete_Pop_Pct_SVI <dbl>, #

[#] Series_Complete_5PlusPop_Pct_SVI <dbl>,

```
#
   Series_Complete_5to17Pop_Pct_SVI <dbl>,
   Series_Complete_12PlusPop_Pct_SVI <dbl>,
#
   Series_Complete_18PlusPop_Pct_SVI <dbl>, ...
  modeldata3b <- combined %>% mutate(Series_Complete_18PlusPop_Pct_model = Series_Complete_1
  model3b1 <- glm(Series_Complete_18PlusPop_Pct_model ~ prop_white + prop_foreign_born+</pre>
                   median_income +prop_unemployed + prop_nilf +
                   prop_health_insurance + prop_low_ratio_ip,
                 family = binomial, data = modeldata3b)
Warning in eval(family$initialize): non-integer #successes in a binomial glm!
  summary(model3b1)
Call:
glm(formula = Series_Complete_18PlusPop_Pct_model ~ prop_white +
    prop_foreign_born + median_income + prop_unemployed + prop_nilf +
    prop_health_insurance + prop_low_ratio_ip, family = binomial,
    data = modeldata3b)
Deviance Residuals:
     Min
               1Q
                     Median
                                   3Q
                                            Max
-1.03921 -0.13545 -0.00147 0.13379
                                        1.12401
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                     -2.637e+00 9.802e-01 -2.690 0.007144 **
prop_white
                     -6.614e-01 2.908e-01 -2.274 0.022964 *
prop_foreign_born
                      2.374e+00 7.013e-01 3.386 0.000710 ***
                      1.145e-05 5.507e-06 2.080 0.037552 *
median_income
prop_unemployed
                      5.345e+00 3.493e+00 1.530 0.125943
prop_nilf
                     -4.858e-01 6.571e-01 -0.739 0.459705
prop_health_insurance 3.269e+00 8.815e-01 3.709 0.000208 ***
                      2.877e-01 1.120e+00 0.257 0.797294
prop_low_ratio_ip
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

```
Null deviance: 247.53 on 3120 degrees of freedom Residual deviance: 172.04 on 3113 degrees of freedom
```

AIC: 3330.1

Number of Fisher Scoring iterations: 4

Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
summary(model3b2)
```

Call:

```
glm(formula = Series_Complete_18PlusPop_Pct_model ~ prop_white +
    prop_foreign_born + median_income + prop_unemployed + prop_health_insurance,
    family = binomial, data = modeldata3b)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
-1.0532 -0.1355 -0.0020 0.1342 1.1398
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.818e+00 7.610e-01 -3.704 0.000212 ***

prop_white -6.705e-01 2.745e-01 -2.442 0.014590 *

prop_foreign_born 2.439e+00 6.868e-01 3.551 0.000384 ***

median_income 1.239e-05 3.447e-06 3.595 0.000324 ***

prop_unemployed 5.794e+00 3.269e+00 1.772 0.076340 .

prop_health_insurance 3.231e+00 8.718e-01 3.706 0.000211 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 247.53 on 3120 degrees of freedom Residual deviance: 172.59 on 3115 degrees of freedom

(Dispersion parameter for binomial family taken to be 1)

```
AIC: 3329.5
Number of Fisher Scoring iterations: 4
c)
  Ada <- modeldata3b %>% filter(county_name == "Ada County, Idaho")
  Ada
# A tibble: 1 x 39
        Series-1 Serie-2 Serie-3 Serie-4 Serie-5 Serie-6 Serie-7 Serie-8 Serie-9
  <chr>
           <dbl>
                   <dbl>
                           <dbl>
                                   <dbl>
                                           <dbl>
                                                    <dbl>
                                                            <dbl>
                                                                    <dbl>
                                                                            <dbl>
                                                                       75 284480
1 16001
          323707
                    67.2 322173
                                    70.9
                                           37693
                                                     44.6 307890
# ... with 29 more variables: Series_Complete_18PlusPop_Pct <dbl>,
    Series_Complete_65Plus <dbl>, Series_Complete_65PlusPop_Pct <dbl>,
   Series Complete Pop Pct SVI <dbl>, Series Complete 5PlusPop Pct SVI <dbl>,
#
   Series_Complete_5to17Pop_Pct_SVI <dbl>,
   Series Complete 12PlusPop Pct SVI <dbl>,
   Series_Complete_18PlusPop_Pct_SVI <dbl>,
    Series_Complete_65PlusPop_Pct_SVI <dbl>, ...
  Ada <- dplyr::select(Ada, prop_white, prop_foreign_born,
                   median_income, prop_unemployed, prop_nilf,
                   prop_health_insurance, prop_low_ratio_ip, total_pop_18plus)
  Ada
# A tibble: 1 x 8
  prop_white prop_foreign_born median_~1 prop_~2 prop_~3 prop_~4 prop_~5 total~6
       <dbl>
                         <dbl>
                                   <dbl>
                                           <dbl>
                                                    <dbl>
                                                            <dbl>
                                                                    <dbl>
                                                                            <dbl>
       0.905
                        0.0698
                                   66293 0.0257
                                                    0.336
                                                            0.917 0.0902 347052
1
# ... with abbreviated variable names 1: median_income, 2: prop_unemployed,
    3: prop_nilf, 4: prop_health_insurance, 5: prop_low_ratio_ip,
    6: total_pop_18plus
  dplyr::select(modeldata3b, county_name, Series_Complete_18PlusPop_Pct) %>%
    filter(county_name == "Ada County, Idaho")
```

The prediction is about 10% off. I guess it is pretty good considering the variability in the data

d)

e)