Natural Cubic Spline

Vitor Peres de Brito

Novembro de 2023

Contents

1	Introdução	1
2	Aproximação de Padé	2
3	Eliminação de Gauss	2
4	Geração de Pontos	2
5	Main	2
6	A Interface	3
7	Resultados e Conclusões	3
8	Fontes	6

1 Introdução

O EP consiste em realizar uma aproximação de Padé com N=6 com todas as possibilidades de m e n para as seguintes funções:

$$e^{x}\cos(x)\sin(x)$$

$$\frac{e^{x}\sin(x)}{\cos^{2}(x)}$$

Essa funções foram definidas seguindo as instruções propostas no enunciado, a primeira é igual para os estudos de todos os alunos enquanto a segunda foi uma escolha arbitrária minha que possui alguns resultados interessantes que valem a pena serem discutidos.

2 Aproximação de Padé

A aproximação de Padé é uma técnica matemática usada para representar uma função complexa como a razão de dois polinômios. Essa abordagem é frequentemente utilizada em análise numérica e teoria de aproximação para simplificar expressões matemáticas complexas, proporcionando uma representação mais fácil de manipular. Em resumo, a aproximação de Padé é uma ferramenta útil para simplificar e aproximar funções matemáticas complexas. O código para a implementação da aproximação é o descrito nos materiais de aula combinado de um algoritmo de resolução de sistemas para obter todos os coeficientes do polinômio racional, para obtenção das derivadas a biblioteca sympy foi utilizada conforme o sugerido no enunciado.

3 Eliminação de Gauss

O algoritmo de resolução escolhido foi o método de eliminação de Gauss que consiste em transformar a matriz ampliada do sistema (matriz dos coeficientes concatenada com a matriz dos termos independentes) em uma forma triangular superior por meio de operações elementares. Esse processo consiste em eliminar gradualmente as incógnitas abaixo da diagonal principal, levando a um sistema equivalente mais simples de resolver. O código implementando encontra-se no módulo eliminacao_de_gauss.py, ele contém uma função de resolução de sistemas implementada a mão que utiliza-se apenas de numpy arrays e produtos internos, a função recebe a matriz do sistema e retorna as soluções. Esta função é chamada pelo módulo pade.py para resolver o output do algoritmo proposto em aula.

4 Geração de Pontos

A geração de pontos foi feita no módulo generatepoints.
py que consiste em gerar 100 valores de $x \in [0,1]$ baseado numa distribuição uniforme a função geradora recebe como parâmetro uma seed que nos ajuda a fixar os pontos para teste e conclusões.

5 Main

O modulo principal é responsável pela interface de interação com o usuário, plot dos gráficos e outputs do programa que são: o Erro médio(em módulo), a norma L2 e o erro máximo.

Para rodar o programa basta apenas inicializar main.py desde que os outros módulos estejam no mesmo diretório.

6 A Interface

A interface exibirá qual função está sendo aproximada e solicitará ao usuário os valores de m e n que deseja utilizar, após os outputs o programa perguntará se deseja continuar ou finalizar a aproximação para aquela função caso deseja continuar basta digitar "s" que poderá escolher outros valores de m e n e basta digitar "n" caso queira encerrar o loop.

7 Resultados e Conclusões

Para a função $e^x \cos(x) \sin(x)$ a melhor aproximação ocorreu para m=2 e n=4 a seguir uma tabela com todos os erros. Para a função $e^x \cos(x) \sin(x)$, a melhor aproximação ocorreu para m=2 e n=4. A seguir, uma tabela com todos os erros:

func 1	erro médio	erro máx	L2
m=1, n=5	3,82E-03	2,65E-02	7,58E-02
m=2, n=4	1,46E-03	9,76E-03	2,86E-02
m=3, n=3	3,31E-01	1,55E+01	1,64E+01
m=4, n=2	9,81E-03	6,76E-02	1,95E-01
m=5, n=1	5,11E-02	3,48E-01	1,00E+00

Note que m=3, n=3 gerou uma aproximação bem ruim a seguir os gráficos da melhor e da pior escolha dos valores de m e n.

m=2 n=4

m=3 n=3

função erro para m=3 e n=3

Para a função $\frac{e^x \sin(x)}{\cos^2(x)}$ não tivemos nenhum erro absurdo mas não diria que foi uma aproximação satisfatória, provavelmente aumentar o grau do polinômio seja uma melhor decisão, a seguir a tabela com os erros e o gráfico da melhor aproximação que ocorre com m=3 e n=3:

func 2	erro médio	erro máx	L2
m=1, n=5	3,94E-02	3,36E-01	8,53E-01
m=2, n=4	1,04E-01	1,10E+00	2,47E+00
m=3, n=3	1,38E-02	1,50E-01	3,34E-01
m=4, n=2	2,43E-01	3,20E+00	6,31E+00
m=5, n=1	1,41E-01	1,71E+00	3,56E+00

8 Fontes

Numerical Analysys-Burden

Pade Approximants de George A. Baker, Peter (University Of Bradford) Graves-Morris e P.R.Graves- Morris