

<u>Home</u>

<u>Gameboard</u>

Maths

Functions and Algebra 3i

# Functions and Algebra 3i



The functions f and g are defined for all real values of x by

$$f(x)=ig|2x+aig|+3a \quad ext{ and }\quad g(x)=5x-4a,$$

where a is a positive constant.

### Part A Range

Find the range of f(x).

Fill in the inequality below.



Items:

 $egin{bmatrix} 2a \ \end{bmatrix} egin{bmatrix} 3a \ \end{bmatrix} egin{bmatrix} 4a \ \end{bmatrix} egin{bmatrix} 0 \ \end{bmatrix} egin{bmatrix} -rac{a}{3} \ \end{bmatrix} egin{bmatrix} -rac{a}{2} \ \end{bmatrix} egin{bmatrix} -a \ \end{bmatrix} egin{bmatrix} -2a \ \end{bmatrix}$ 

#### 

Fill in the blanks to explain why the function f(x) has no inverse.

The function f(x) is not  $oxed{}$  . For example, f(0)=4a and  $f(oxed{}$  ) also equals 4a. Hence, f(x) has no inverse.

Items:

 many-to-many
 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 

 a 





<u>Home</u> <u>Gameboard</u>

Maths

Functions Graph Sketching

Inverse Quadratic Function

# **Inverse Quadratic Function**



Figure 1 shows the graph of y = f(x), where

$$f(x)=2-x^2,\quad x\leq 0$$



Figure 1: The graph of y = f(x), for  $x \leq 0$ .

Part A  $f^2(-3)$ 

Evaluate  $f^2(-3)$ .

Part B 
$$f^{-1}(x)$$

Find an expression for  $f^{-1}(x)$ .

The following symbols may be useful: f, x, y

### Part C Graph of $f^{-1}(x)$

Sketch the graph of  $y = f^{-1}(x)$ .



Used with permission from UCLES A-level Maths papers, 2003-2017.

#### Gameboard:

**STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities** 

<u>Home</u> <u>Gameboard</u> Maths Functions General Functions Function Types and Inverses

# **Function Types and Inverses**



Figure 1 shows five different graphs, A, B, C, D and E, each for values of x such that  $-a \le x \le a$  where a is a constant.



Figure 1: The set of five graphs, labelled A, B, C, D and E

### Part A Function

Which diagram does not show the graph of a function?

- ( ) A
- $\bigcirc$  B
- $\bigcirc$  c
- ( ) F

# Which diagram shows the graph of a function that is not one-to-one? Α В С D Ε Part C Inverses It is given that two of the diagrams illustrate functions that are inverses of each other. Identify one of these two diagrams. Α В С D Ε

One-to-one Function

Part B

### Part D Sketch

The graph in E has equation y = f(x). Sketch the graph of y = |f(x)|.

To prevent any sharp changes in your curve from being smoothed out, sketch your curve as two sections.



Used with permission from UCLES A-level Maths papers, 2003-2017.

### Gameboard:

**STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities** 



<u>Home</u> <u>Gameboard</u> Maths Functions General Functions Combined Transformations

### **Combined Transformations**



The function f is defined by  $f(x) = \sqrt{mx+7} - 4$ , where  $x \ge -\frac{7}{m}$  and m is a positive constant. Figure 1 shows the curve y = f(x).



Figure 1: The curve y=f(x)

#### 

A sequence of transformations maps the curve  $y=\sqrt{x}$  to the curve y=f(x). Give details of these transformations.

### Available items

Translate the curve 4 units in the positive y direction.

Translate the curve 4 units in the negative y direction.

Stretch the curve in the x direction by a factor of  $\frac{1}{m}$ .

Translate the curve 7 units in the positive x direction.

Stretch the curve in the y direction by a factor of  $\frac{1}{m}$ .

Stretch the curve in the x direction by a factor of m.

Translate the curve 7 units in the negative y direction.

Translate the curve 4 units in the negative x direction.

Translate the curve 7 units in the negative x direction.

### Part B $f^{-1}(x)$

Find an expression for  $f^{-1}(x)$ .

The following symbols may be useful: f, m,  $\times$ 

### Part C Values of m

It is given that the curves y=f(x) and  $y=f^{-1}(x)$  do not meet. Thus it can be deduced that neither curve meets the line y=x. Hence determine the set of possible values of m, and give the upper bound in the form m < a or  $m \le a$ .

The following symbols may be useful: <, <=, >, >=, m

Give the lower bound in the form m>a or  $m\geq a$ .

The following symbols may be useful: <, <=, >, >=, m

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

**STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities** 



Home Gameboard

Maths

Curve Sketching and Combined Transformations 3i

# **Curve Sketching and Combined Transformations 3i**



The function f is defined for all real values of x by

$$f(x) = k(x^2 + 4x)$$

where k is a positive constant. Figure 1 shows the curve with equation y=f(x).



Figure 1: The graph of y=f(x)

#### Part A



#### Range Part B

Find the range of f(x) as a single inequality in terms of k.

The following symbols may be useful:  $\langle , \langle =, \rangle, \rangle = f(x), k, x, y$ 



State the value of k.

The following symbols may be useful: k

Give the rational value of x which satisfies this equation.

The following symbols may be useful:  $\times$ 

Give one of the irrational solutions for x in its simplest exact form.

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

**STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities** 



<u> Home</u> <u>Gameboard</u>

Maths

Functions General Functions

Modulus Functions 2

### **Modulus Functions 2**



Part A Divergence of 
$$y=|rac{1}{x}|$$

Does the function 
$$y = \left| \frac{1}{x} \right|$$
 diverge anywhere? Where?

The following symbols may be useful:  $\times$ 

Part B Graph of 
$$y=|rac{1}{x}|$$

Sketch the graph of 
$$y = \left| \frac{1}{x} \right|$$
 .



Part C Divergence of 
$$y = \left| rac{1}{x^2-4} \right|$$

Does the function 
$$y=\left|rac{1}{x^2-4}
ight|$$
 diverge anywhere? Where?

The following symbols may be useful: x,  $\pm$ 

### Part D Graph of $y = \left| rac{1}{x^2 - 4} \right|$

Sketch the graph of 
$$y=\left|rac{1}{x^2-4}
ight|.$$



### Part E Solve equation graphically

Solve the equation  $|x|=\left|rac{1}{x}
ight|$  graphically and give the solution as a single expression.

The following symbols may be useful: x, ±

Created for isaacphysics.org for Julia Riley

Gameboard:

**STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities** 



<u>Home</u>

<u>Gameboard</u>

Maths

**Graph Sketching Functions** 

Sketching a Cubic Modulus Function

# **Sketching a Cubic Modulus Function**

The function f is defined by  $f(x) = 2x^3 - x^2 - 4x - 4$ .

#### Quotient Part A

Find the quotient when f(x) is divided by x-2.

The following symbols may be useful: x

#### First stationary point of f(x)Part B

Find the co-ordinates and nature of the stationary point of f(x) with the larger x-coordinate.

The stationary point ( ) is a

Items:



point of inflection -16

### Part C Second stationary point of f(x)

Find the co-ordinates and nature of the stationary point of f(x) with the smaller x-coordinate.

The stationary point ( , ) is a

Items:

 $oxed{-rac{145}{27}} oxed{-rac{5}{2}} oxed{ ext{point of inflection}} oxed{-3} oxed{-rac{11}{2}} oxed{-rac{1}{2}} oxed{-rac{2}{3}} oxed{-6} oxed{-rac{176}{27}} oxed{ ext{minimum point}} oxed{rac{1}{2}} oxed{-rac{77}{27}}$ 

 $egin{array}{c} -rac{1}{3} \end{array} egin{array}{c} -7 \end{array} egin{array}{c} exttt{maximum point} \end{array} egin{array}{c} 1 \end{array} egin{array}{c} -7 \end{array} egin{array}{c} -rac{3}{2} \end{array} egin{array}{c} -1 \end{array} egin{array}{c} -rac{64}{27} \end{array} egin{array}{c} -rac{2}{3} \end{array} egin{array}{c} rac{1}{3} \end{array} egin{array}{c} rac{3}{2} \end{array}$ 

#### 

Sketch the graph of y = f(x).



#### 

Sketch the graph of y=|f(x)|, then pick the graph that corresponds to y=|f(x)| from the options below.



Figure 1: Option (i)



Figure 2: Option (ii)



Figure 3: Option (iii)

- Option (i)
- Option (ii)
- Option (iii)

### Part F Sketch of y=f(|x|)

Sketch the graph of y = f(|x|).

To prevent any sharp changes in your curve from being smoothed out, sketch your curve as two sections.



Created for isaacphysics.org by Matthew Rihan

Gameboard:

**STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities** 



Home Gameboard

<u>d</u> Maths

**Functions** 

**General Functions** 

Rational Inequality

# Rational Inequality

Solve the inequality

$$\frac{x+4}{x+2} \leq \frac{x+2}{x-1}$$

giving your answer using set notation.

The solution is  $\{x: oxed{x} oxed{y} \cup \{x:x oxed{y}\}$ 

Items:





Created for isaacphysics.org by Matthew Rihan

Gameboard:

**STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities** 



<u>Home</u> Gameboard

**Functions** 

**General Functions** 

Rational Modulus Inequality

# Rational Modulus Inequality

Maths



Solve the inequality

$$rac{-x^2-5x+24}{|x|+3}>2$$

giving your answer using set notation.

The solution is  $\{x:[$ 

Items:





Created for isaacphysics.org by Matthew Rihan