

Maintaining sentiment polarity in translation of usergenerated content Pintu Lohar, Haithem Afli and Andy Way

ADAPT Centre, School of Computing, Dublin City University

Contents

- ➤Objective & Motivation
- >Sentiment analysis of user-generated content
- **≻**Data Preparation
 - >Corpus development
 - ➤Sentiment annotation and classification
- **≻**Experiments
 - ➤ Sentiment Translation Architecture
 - ➤ Results
 - **→** Discussion
- ➤ Conclusions and future work

Objective

 Analyse sentiment preservation & MT quality in the context of user-generated content (UGC)

Objective

 Analyse sentiment preservation & MT quality in the context of user-generated content (UGC)

 Focus on whether sentiment classification helps improve sentiment preservation in MT of UGC

Translation quality per se is not the main concern

- Translation quality per se is not the main concern
- Sentiment preservation is (arguably) more important

e.g. companies want to know what their customers think of their products and services.

It is **crucial** that user sentiment in one language is preserved in the target language (typically, English).

Customer feedback in Japanese

Customer feedback in Japanese

Japane se data

Englis h data

Sentime nt classes

Track Record in UGC

Track Record in UGC

13 languages and 24 language pairs

85,047,110 words in total

Irish

Spanish

Korean

German

Italian

Farsi

French

Portugues

Greek

Japanese

Chinese

English

Sentiment analysis of UGC

- UGC includes blog posts, podcasts, online videos, tweets etc.
- UGC is usually multilingual and of varying quality (sometimes deliberately)
- Sentiment analysis of UGC has many applications

Related work

noutral

MT can alter the sentiment (Mohammad et al. (2016))

Google Translate from English to German on 25/05/2017

English: he is out of the wonder negative

German: Er ist aus des weltmeisterschaft

Sentiment Analysis of UGC

 Can a sentiment classification approach help improve sentiment preservation in the target language?

Sentiment Analysis of UGC

- Can a sentiment classification approach help improve sentiment preservation in the target language?
- Is it useful to select a specific sentiment-MT model to translate the UGC with the same sentiment?

Data preparation

Corpus development:

 Twitter data set comprising 4,000 English tweets from the FIFA World Cup 2014 and their manual translations into German

Data preparation

Corpus development:

 Twitter data set comprising 4,000 English tweets from the FIFA World Cup 2014 and their manual translations into German

 Informal translations of English tweets into German

e.g. English tweet German tweet

Goaaaal

Toooor

Sentiment annotation

Manually annotated sentiment scores between 0 and 1

Sentiment annotation

Manually annotated sentiment scores between 0 and 1

Sentiment classes

- (i) Negative: sentiment score ≤ 0.4
- (ii) Neutral: sentiment score ≈ 0.5
- (iii) Positive: sentiment score ≥ 0.6

e.g. Tweet Sentiment

score

injured Neymar out of World Cup 0.2

Sentiment annotation and classification

• Manual annotation of Twitter data is considered as the "gold-standard"

- Manual annotation of Twitter data is considered as the "gold-standard"
- 50 tweets per sentiment (negative, neutral and positive) are held out for tuning and testing purposes

		Development			Test			
Data	Trai n	#neg	#neu	#pos	#neg	#neu	#pos	Tota I
Twitte r	3,70 0	50	50	50	50	50	50	4,00 0

Data distribution of Twitter data for Training, development and test

- Flickr and News commentary (``News'')
 data are used as additional resources
- Automatic sentiment analysis tool (Afli et. al. (2017)) is applied to Flickr and News data

- Flickr and News commentary (``News'')
 data are used as additional resources
- Automatic sentiment analysis tool (Afli et. al. (2017)) is applied to Flickr and News data

Performance accuracy:

- 2,994 tweets out of 4,000 correctly classified by this tool when compared to the 'gold standard' data
- Accuracy = **74.85%**

Data	Sentimen t classificat ion	#neg	#neu	#pos	#total
Twitte r	manual	919	1,308	1,473	3,700
Flickr	automatic	9,677	11,065		29,000
News	Data distribu	ition after s	sentinent	classiticati	<i>2</i> 38,843

Experiments

I. Translation without sentiment classification

Experiments

I. Translation without sentiment classification

II. Translation with sentiment classification

- i. Manual sentiment classification (only Twitter data)
- ii. Automatic sentiment classification (Flickr & News data)

Experiments

I. Translation without sentiment classification

II. Translation with sentiment classification

- Manual sentiment classification (only Twitter data)
- ii. Automatic sentiment classification (Flickr & News data)

III.Translation by wrong MT engines

- Negative tweets by positive model
- ii. Neutral tweets by negative model
- iii. Positive tweets by neutral model

Sentiment Translation Architecture

ongino)

Translation model	Dat a size	Sentiment Classificat ion	BLE U	METEO R	TER	Sentimen t Preservat ion
Twitter		\checkmark	48.2	59.4	34.2	72.66%
Twitter (Baseline)	4k	×	50.3	60.9	31.9	66.66%
Twitter + Flickr	33k	$\sqrt{}$	48.5	59.8	33.9	71.33%
Twitter + Flickr		×	50.7	62.0	31.3	62.66%
Twitter + Flickr + News	272k	V	50.3	62.3	31.0	75.33 %
Twitter + Flickr + News	orimon	×	52.0	63.4	30.1	73.33%
Twitter (Wrong MT	4k	tal evaluatio	46.9	57.9	35.4	47.33%

ongino)

Translation model	Dat a size	Sentiment Classificat ion	BLE U	METEO R	TER	Sentimen t Preservat ion
Twitter		$\sqrt{}$	48.2	59.4	34.2	72.66%
Twitter (Baseline)	4k	×	50.3	60.9	31.9	66.66%
Twitter + Flickr	33k	$\sqrt{}$	48.5	59.8	33.9	71.33%
Twitter + Flickr		×	50.7	62.0	31.3	62.66%
Twitter + Flickr + News	272k	$\sqrt{}$	50.3	62.3	31.0	75.33%
Twitter + Flickr + News	oriman	x otal ovaluatio	52.0	63.4	30.1	73.33%
Twitter Wrong MT	4k	tal evaluatio	46.9	57.9	35.4	47.33%

ongino)

Translation model	Dat a size	Sentiment Classificat ion	BLE U	METEO R	TER	Sentimen t Preservat ion
Twitter		\checkmark	48.2	59.4	34.2	72.66%
Twitter (Baseline)	4k	×	50.3	60.9	31.9	66.66%
Twitter + Flickr	33k	\checkmark	48.5	59.8	33.9	71.33%
Twitter + Flickr		×	50.7	62.0	31.3	62.66%
Twitter + Flickr + News	272k	V	50.3	62.3	31.0	75.33%
Twitter + Flickr + News	arimer	x otal evaluatio	52.0	63.4	30.1	73.33%
Twitter (Wrong MT	4k	ital evaluatio	46.9	57.9	35.4	47.33%

(Wrong MT

Translation model	Dat a size	Sentiment Classificat ion	BLE U	METEO R	TER	Sentimen t Preservat ion
Twitter		\checkmark	48.2	59.4	34.2	72.66%
Twitter (Baseline)	4k	×	50.3	60.9	31.9	66.66%
Twitter + Flickr	33k	\checkmark	48.5	59.8	33.9	71.33%
Twitter + Flickr		×	50.7	62.0	31.3	62.66%
Twitter + Flickr + News	272k	$\sqrt{}$	50.3	62.3	31.0	75.33%
Twitter + Flickr + News	orim or	×	52.0	63.4	30.1	73.33%
Twitter	4k	tal evaluatio	46.9	57.9	35.4	47.33%

(Wrong MT

Translation model	Dat a size	Sentiment Classificat ion	BLE U	METEO R	TER	Sentimen t Preservat ion
Twitter		$\sqrt{}$	48.2	59.4	34.2	72.66%
Twitter (Baseline)	4k	×	50.3	60.9	31.9	66.66%
Twitter + Flickr	33k	$\sqrt{}$	48.5	59.8	33.9	71.33%
Twitter + Flickr		×	50.7	62.0	31.3	62.66%
Twitter + Flickr + News	272k	\checkmark	50.3	62.3	31.0	75.33%
Twitter + Flickr + News	o rino o n	X	52.0	63.4	30.1	73.33%
Twitter	4k	tal evaluatio	46.9	57.9	35.4	47.33%

Exam ple	Reference	Sentiment translation model	Baseline model
1	Howard Web is a terrible ref #WorldCup	Howard Web is a schrecklicher ref #WorldCup	Howard Web is a schrecklicher ref #WorldCup
2	injured Neymar out of World Cup 2014	verletzter Neymar out the WC2014	verletzter Neymar out of World Cup 2014
3	penalty shootouts are too intense!	penalty shoot is to intensiv!	penalties is to intensiv!
4	damn chile is nice !!!! #WorldCup	freeking Chile is good !!! #WorldCup	damn Chile is good !!! #WorldCup
5	a bit boring	a little boring	some boring
6	im with Germany	I stand to Germany's side	I stand to Deutschlands side
7 Com	ாது rige etting ty, ang slatio CHILE!	PREMINIFERETYMABEKEAMEILATI BASELIMEEMODEL	i ଫ ଃ ଜୁନ୍ୟ ନାନ୍ତ <i>୩,୩</i> ୯ ୦ CHILE !

Exam ple	Reference	Sentiment translation system	Baseline system
1	Bosnia and Herzegovina really got f*** over man	Bosnia and Herzegowina eliminated echt demolished	Bosnia and Herzegovina were a abgezogen
2	when USA lost , but were still moving onto the next round	even if USA today we in the next round	could usa loses the next round
3	Brazil 5 WorldCup championship Argentine 2 WorldCup championship so III Exgronwites Butazile sentim	Brazil 5 time world champion Argentina 2 time world champion so Im for Brazil	Brazil 5 time world champions Argentina 2 time world champions so for Brazil

Exam ple	Reference	Sentiment translation system	Baseline system
1	Bosnia and Herzegovina really got f*** over man	Bosnia and Herzegowina eliminated echt demolished	Bosnia and Herzegovina were a abgezogen
2	when USA lost, but were still moving onto the next round	even if USA today we in the next round	could usa loses the next round
3 <i>E</i>	Brazil 5 WorldCup championship Argentina 2 WorldCup championship so III Exampites Where sentim	Brazil 5 time world champion Argentina 2 time world champion so Im for Brazil ent is altered by the Ba	Brazil 5 time world champions Argentina 2 time world champions so for Brazil aseline system

Exam ple	Reference	Right MT engine	Wrong MT engine
1	little break on the #WorldCup for an amazing #Wimbledon final!	small Pause from the #WorldCup for a amazing #Wimbledon final!	kleine Pause of the #WorldCup for a erstaunliches #Wimbledon final!
2	yes !!!!!	yes !!!!!	so !!!!!
3	a bit boring	a little boring	some was

Comparison between sentiment polarities using the right and wrong MT engine

- MT scores are better when no sentiment classification is used
- Sentiment classification approach performs better than for systems where it is switched off

Translation model	Sentiment Classificat ion	BLEU	Sentiment Preservation
Twitter	$\sqrt{}$	48.2	72.66% (+6%)
Twitter (Baseline)	×	50.3 (+2.1)	66.66%
Twitter + Flickr	V	48.5	71.33% (+8.67%)
Twitter + Flickr	×	50.7 (+2.2)	62.66%
Twitter + Flickr + News		50.3	75.33 % (+2%)
Twitter + Flickr + MT q	uality VS sent	52.0 (+1.7) timent preservat	73.33% ion

- In most cases, the Baseline system produces better outputs in terms of BLEU score
- In some cases, interestingly, sentiment classification approach produces better outputs

- ☐ In most cases, the Baseline system produces better outputs in terms of BLEU score
 - In some cases, interestingly, sentiment classification approach produces better outputs
- Using specific sentiment-MT model to translate a text with the same sentiment is better in both ways

Translation model	Sentiment Classificati on	BLEU	Sentiment Preservation
Twitter (Right MT engine)	V	48.2 (+1.3)	72.66% (+25%)
Twitter (Wrong MT engine) MT qua	√ lity vs. sentime	46.9 nt preservatio	47.33% on

The nearest sentiment class approach www.adaptcentre.ie

Sentiment translation system using nearest classes:

1. Combine the negative- and neutral-sentimented parallel twitter data

Sentiment translation system using nearest classes:

- 1. Combine the negative- and neutral-sentimented parallel twitter data
- 2. Combine the neutral- and positive-sentimented parallel twitter data

The nearest sentiment class approach www.adaptcentre.ie

Sentiment translation system using nearest classes:

- 1. Combine the negative- and neutral-sentimented parallel twitter data
- 2. Combine the neutral- and positive-sentimented parallel twitter data
- 3. Build the "negative-neutral" translation model using the data in Step 1

The nearest sentiment class approach www.adaptcentre.ie

Sentiment translation system using nearest classes:

- 1. Combine the negative- and neutral-sentimented parallel twitter data
- 2. Combine the neutral- and positive-sentimented parallel twitter data
- 3. Build the "negative-neutral" translation model using the data in **Step 1**
- 4. Build the "positive-neutral" translation model using the data in **Step 2**

Experiments

- Building a single translation system using the whole twitter data
- Building the sentiment-specific translation systems
- Building the nearest-sentiment translation systems

Data distribution

		Development		Test				
Experime	Train	#ne	#ne	#po	#ne	#n	#p	Total
nts		g	u	S	g	eu	OS	
Exp 1	3,700	50	50	50	50	50	50	4,000
Exp 2	3,400	100	100	100	100	100	100	4,000

Results

Exp1 (150 test data)	BLEU	Meteor	TER	Sentimen t Preservat ion
Twitter (Baseline)	50.3	60.9	31.9	66.66%
Twitter_SentCl ass	48.2 (- 2.1)	59.4 (- 1.5)	34.2 (+2.3)	72.66% (+6)
Twitter_NearS ent	49.0 (- 1.3)	60.1 (- 0.8)	34.0 (+2.1)	66.66% (+0)

Results

Exp1 (150 test data)	BLEU	Meteor	TER	Sentimen t Preservat ion
Twitter (Baseline)	50.3	60.9	31.9	66.66%
Twitter_SentCl ass	48.2 (- 2.1)	59.4 (- 1.5)	34.2 (+2.3)	72.66% (+6)
Exp2 (300 test data)	BLEU	Meteor	TER	Sentimen t Preservat ion
Twitter (Baseline)	51.3	62.5	31.0	52.33%
Twitter_SentCl ass	47.3 (-4)	59.1 (- 3.4)	35.2 (+3.8)	60.33% (+8)
Twitter_NearS ent	48.3 (-3)	59.6 (- 2.9)	34.4 (+3.4)	60.0% (+7.67)

Results

Exp1 (150 test data)	BLEU	Meteor	TER	Sentimen t Preservat ion
Twitter (Baseline)	50.3	60.9	31.9	66.66%
Twitter_SentCl ass	48.2 (- 2.1)	59.4 (- 1.5)	34.2 (+2.3)	72.66% (+6)
Exp2 (300 test data)	BLEU	Meteor	TER	Sentimen t Preservat ion
Twitter (Baseline)	51.3	62.5	31.0	52.33%
Twitter_SentCl assNote that score	res are differe	ent f <mark>ð</mark> r £ xp1 a	35.2 an d Ex p 2)as	60.33% they(are)
twitter_Neiffere ent	nt 48t3 distri	^{buti} 99 56 (- 2.9)	34.4 (+3.4)	60.0% (+7.67)

- ☐ A small of amount of test data (i.e., 150 tweet pairs) is not (really) sufficient to confirm our hypothesis
- ☐ Comparatively larger test data (i.e., 300 tweet pairs) confirms the utility of our approach
- Our approach is able to reduce the gap between translation quality and sentiment preservation

Conclusions

- Despite a small deterioration in translation quality, our approach significantly improves sentiment preservation
- It is essential to carefully select the proper MT engine conveying the same sentiment polarity as that of the UGC
- The nearest sentiment class-inclusion approach helps improve the balance between MT quality and sentiment preservation

Future work

- Apply to other language pairs and also other forms of UGC such as customer feedback, blogs etc.
- Further refine the sentiment classes (strong positive, strong negative etc.) in order to build more specific translation models

Thank you

