Model Documentation of the 'Terrain following model'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^7 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^1 z$ $\in \mathbb{R}^4 y \in \mathbb{R}^3$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value							
A	-1.0	0	0	0	0	0	0	
	1.0	0	0	0	0	0	0	
	0	1.0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1.0	-1.0	0	0	
	-0.088	0.0345	0	0	1.0	-0.0032	0	
	0	0	0.05	0	0	0	$-1.0 \cdot 10^{-5}$	
В	$\begin{bmatrix} 1.0 & 0 \end{bmatrix}$]						
	0 0	-						
	0 0							
	0 0.09)						
	0 0							
	0 0							
	0 0							
B_1	1.0 0	1						
	0 0							
	0 0	-						
	0 0.09)						
	0 0							
	0 0							
	0 0							
C_1	0 0 0	0 0	0	1.0				
	0 0 0	0 0	2.23	0				
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$							
		1.0 0						
C	$\begin{bmatrix} 0 & 0 \\ 0 & 1.0 \end{bmatrix}$	0 0		$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$				
C	$\begin{bmatrix} 0 & 1.0 \\ 0 & 0 \end{bmatrix}$	0 1.0		$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$				
D_{11}	[0]	0 1.0	, , ,	0 0]				
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$							
			0	٦				
D_{12}	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0					
	0	01	0	İ				
	1.732050		0					
	0	0.5	477225	00				
ъ	$\begin{bmatrix} 0.04 \end{bmatrix}$							
D_{21}	0							
	0							

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

TF2 Like TF1 with a different sensor matrix C.

4 Simulation

Figure 1: Simulation of the Terrain following model.

References

[1] . Gershon, Shaked, Yaesh, Tech.-Rep. 2003 Uni. Tel-Aviv "Static output feedback of state multiplicative systems with application to terrain following"