Cálculo 2 – Parcial 2 Teoría

- **1)** Definir valor promedio de una función f(x, y, z) sobre una región cerrada D en el espacio.
- 2) Determinar qué superficies se forman dejando constantes cada uno de los parámetros de las coordenadas esféricas.
- **3)** Definir integral de línea independiente de la trayectoria.
- **4)** Enunciar una condición necesaria y suficiente para que un campo vectorial sea conservativo según sus componentes. Demostrar.
- 5) Definir rotacional de un campo vectorial. Interpretarlo físicamente según el teorema de Stokes.
- 6) Se desea calcular la integral de línea de $F = P\vec{i} + Q\vec{j}$ sobre una curva C_1 . se cumplen las hipótesis de Green en la región D encerrada por las curvas C_1 y C_2 . Explicar detalladamente cómo se puede calcular la integral por medio de una curva más simple. ¿Se requiere una condición adicional para las componentes P y Q?

Práctica

- 1) Sea la superficie S que se muestra en la figura el paraboloide elíptico $z=x^2+4y^2$. Supongamos que la orientación es hacia arriba. Se pide:
 - a) Encontrar el flujo hacia arriba del rotacional del campo vectorial $F(x, y, z) = y\vec{i} + xz\vec{j} + xz^2\vec{k}$ a través de S.
 - **b)** Qué puede concluirse a partir del inciso anterior acerca de la circulación del fluido alrededor de la curva C? Ayuda: $\cos 2 x = \cos^2 x \sin^2 x$

- 2) Supongamos que el campo de velocidades de cierto fluido viene dado por $F(x,y,z)=xy\,\vec{i}+yz\,\vec{j}+xz\,\vec{k}$. Sea S la superficie limitada por los planos coordenados y los planos x=1,y=1,z=1.
 - a) ¿Es aplicable para F el teorema de la divergencia en la región acotada por la superficie propuesta? Justificar?
 - **b)** Determinar el flujo hacia afuera del campo F(x, y, z) a través de S.
- 3) Considerar el campo vectorial $F(x,y,z)=2x\vec{i}+e^{y+z}\vec{j}+e^{y+z}\vec{k}$ y los puntos $P_0(0,0,0)$ y $P_1(2,2,12)$ sobre la curva $C:r(t)=t\vec{i}+t\vec{j}+3t^2\vec{k}$ con $0 \le t \le 2$. Se pide responder justificando:
 - a) Determinar si $\int_C F dr$ es independiente de la trayectoria.
 - b) ¿Existe un campo escalar $\phi(x,y,z)$ definido en el dominio del campo vectorial F que verifique $\nabla \phi = F$? Si su respuesta es afirmativa, calcule el campo ϕ . Si su respuesta es negativa, argumente qué herramienta teórica avala su respuesta.
 - c) Calcular $\int_C F dr$ considerando C en el sentido de $P_0 a P_1$.
 - **d)** Responder V o F. Sea $\vec{w} \in \mathbb{R}^3$ un vector no nulo cualquiera. Si no se conocen las componentes de \vec{w} , resulta imposible determinar el valor del producto escalar $\vec{w} \cdot rot F$.
- 4) Calcular el volumen del sólido acotado por las gráficas de las ecuaciones $z=x^2+y^2$, $2z=x^2+y^2+4$, utilizando para ello coordenadas polares.