Orthogonal Gradient Boosting for Interpretable Additive Rule Ensembles Supplementary Information

Anonymous Author(s)

ACM Reference Format:

A PROOF OF THEOREM 4.3

The condition of Theorem 4.3 states that:

Let $Q \in \mathbb{R}^{n \times (t-1)}$ be the selected query matrix, g the corresponding gradient vector after a full weight correction, and q^* be a maximizer of the **orthogonal gradient boosting objective** function defined by

$$\operatorname{obj}_{\operatorname{ogb}}(q) = \frac{|\mathbf{g}^T \mathbf{q}|}{\|\mathbf{q}_{\perp}\| + \epsilon}$$

where \mathbf{q}_{\perp} is the projection of q onto the orthogonal complement of range \mathbf{Q} .

A.1 Property a

PROPOSITION A.1. For $\epsilon \to 0$, $[q_1, ..., q_{t-1}, q^*]$ is the best approximation to $[q_1, ..., q_{t-1}, g]$.

Proof. If $\epsilon \to 0$, then $\mathrm{obj}_{\mathrm{ogb}}(q) \to \frac{|g^Tq|}{\|q_\perp\|}$. If \mathbf{q}^* is a maximizer of $\mathrm{obj}_{\mathrm{ogb}}$, then as shown in Lemma 4.1, \mathbf{q}^* minimises the minimum distance from all

$$f \in \text{span}\{q_1, \cdots, q_{t-1}, g\}$$

to the subspace of

$$span\{q_1, \cdots, q_{t-1}, q^*\}.$$

Therefore, the subspace spanned by $[\mathbf{q}_1, \dots, \mathbf{q}_{t-1}, \mathbf{q}^*]$ is the best approximation to the subspace spanned by $[\mathbf{q}_1, \dots, \mathbf{q}_{t-1}, \mathbf{g}]$.

A.2 Property b

Proposition A.2. For $\epsilon \to \infty$, \mathbf{q}^* is also a maximizer of obj_{gs} and any maximizer of obj_{gs} is also a maximizer of obj_{ogb} .

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

KDD 2023, August 6-10, 2023, Long Beach, CA © 2023 Association for Computing Machinery. ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00 https://doi.org/XXXXXXXXXXXXXXX

PROOF. Let q_1 and q_2 be any two queries and denote by $\operatorname{obj}_{\operatorname{ogb}}^{(\epsilon)}(q)$ the $\operatorname{obj}_{\operatorname{ogb}}$ -value of q for a specific ϵ . Then

$$\begin{split} & \lim_{\epsilon \to \infty} \epsilon \left(\operatorname{obj}_{\operatorname{ogb}}^{(\epsilon)}(q_1) - \operatorname{obj}_{\operatorname{ogb}}^{(\epsilon)}(q_2) \right) \\ &= \lim_{\epsilon \to \infty} \epsilon \left(\frac{|g^T \mathbf{q}_1|}{\|\mathbf{q}_1^\perp\| + \epsilon} - \frac{|g^T \mathbf{q}_2|}{\|\mathbf{q}_2^\perp\| + \epsilon} \right) \\ &= \lim_{\epsilon \to \infty} \left(\frac{|g^T \mathbf{q}_1|}{\|\mathbf{q}_1^\perp\| / \epsilon + 1} - \frac{|g^T \mathbf{q}_2|}{\|\mathbf{q}_2^\perp\| / \epsilon + 1} \right) \\ &= |g^T \mathbf{q}_1| - |g^T \mathbf{q}_2| \\ &= \operatorname{obj}_{\operatorname{gs}}(q_1) - \operatorname{obj}_{\operatorname{gs}}(q_2) \end{split}$$

Thus for large enough ϵ , the signs of $\operatorname{obj}_{\operatorname{ogb}}^{(\epsilon)}(q_1) - \operatorname{obj}_{\operatorname{ogb}}^{(\epsilon)}(q_2)$ and $\operatorname{obj}_{\operatorname{gs}}(q_1) - \operatorname{obj}_{\operatorname{gs}}(q_2)$ agree. Therefore, a query q is a $\operatorname{obj}_{\operatorname{gs}}$ -maximizer, i.e., $\operatorname{obj}_{\operatorname{gs}}(q) \geq \operatorname{obj}_{\operatorname{gs}}(q')$ for all $q' \in Q$, if and only if q is a $\operatorname{obj}_{\operatorname{ogb}}$ -maximizer, i.e., $\operatorname{obj}_{\operatorname{ogb}}(q) \geq \operatorname{obj}_{\operatorname{ogb}}(q')$ for all $q' \in Q$.

A.3 Property c

Proposition A.3. For $\epsilon=0$ and $\|\mathbf{q}_{\perp}\|>0$, the ratio $(\mathrm{obj}_{\mathrm{ogb}}(q)/\mathrm{obj}_{\mathrm{gb}}(q))^2$ is equal to $1+(\|\mathbf{q}_{\parallel}\|/\|\mathbf{q}_{\perp}\|)^2$.

PROOF. If $\epsilon = 0$ and $||q_{\perp}|| > 0$, then

$$\begin{split} \left(\frac{\text{obj}_{ogb}(q)}{\text{obj}_{gb}(q)}\right)^2 &= \frac{\frac{|\mathbf{g}^T\mathbf{q}|^2}{\|\mathbf{q}_\perp\|^2}}{\frac{|\mathbf{g}^T\mathbf{q}|^2}{\|\mathbf{q}\|^2}} = \frac{\|\mathbf{q}\|^2}{\|\mathbf{q}_\perp\|^2} \\ &= \frac{\|\mathbf{q}\|\|^2 + \|\mathbf{q}_\perp\|^2}{\|\mathbf{q}_\perp\|^2} \\ &= 1 + \left(\frac{\|\mathbf{q}_\parallel\|}{\|\mathbf{q}_\perp\|}\right)^2 \end{split}$$

A.4 Property d

Proposition A.4. The objective value $obj_{ogb}(q)$ is upper bounded by $\|g\|/(1+\epsilon/n)$.

Figure 6: The number of instances of ratios between the best objective values obtained from the greedy search and the true optimal objective value. The upper figures are in linear scales and the lower figures are in \log scales. The total variation distances for these three values of ϵ are 0.394, 0.377 and 0.227.

Proof. If we divide the numerator and denominator of $obj_{ogb}(q)$ with $\|q_bot\|$, then we can get

$$\begin{aligned} \text{obj}_{\text{ogb}}(\mathbf{q}) &= \frac{\|\mathbf{g}^T \mathbf{q}\|}{\|q_\perp\| + \epsilon} \\ &= \frac{\frac{\|\mathbf{g}^T \mathbf{q}_\perp\|}{\|\mathbf{q}_\perp\|}}{1 + \frac{\epsilon}{\|\mathbf{q}_\perp\|}} \end{aligned}$$

according to the Cauchy–Schwarz inequality, $\frac{|g^Tq|}{\|q_\perp\|} \leq \frac{\|g\|\|q_\perp\|}{\|q_\perp\|} = \|g\|, \text{ so,}$

$$\label{eq:objogb} \begin{aligned} obj_{ogb}(q) & \leq \frac{ \quad \|g\|}{1 + \frac{\epsilon}{\|q_\perp\|}} \end{aligned}$$

as $\|\mathbf{q}_{\perp}\|$ is upper bounded by the number of data points n,

$$\operatorname{obj}_{\operatorname{ogb}}(\mathbf{q}) \le \frac{\|\mathbf{g}\|}{1 + \frac{\epsilon}{n}}.$$

B GREEDY APPROXIMATION TO BOUNDING FUNCTION

The branch-and-bound search described in Section 3.3 requires an efficient way of calculating the value of $\operatorname{bnd}(\mathbf{q}) = \max\{obj(\mathbf{q}'): \mathbf{q}' \leq \mathbf{q}, \mathbf{q}' \in \{0,1\}^n\}$. It is too expensive to enumerate all possible \mathbf{q}' s as there are 2^n cases in the worst case. One solution to this problem is that we can relax the constraint $\mathbf{q}' \in \{0,1\}^n$ to $\mathbf{q}' \in [0,1]^n$ and it can be solved by quadratic programming. However, this relaxation is too loose and inefficient. Instead, we consider relaxing the admission constraint and solve the problem using greedy algorithms.

Table 2: Comparison of Test Risks of Gradient Sum(S), Gradient boosting (G), XGBoost (X) and FCOGB (O) for benchmark datasets of classification (upper), regression (middle) and Poisson regression problems (lower).

DATASET	FEAT	ROW	$ar{ ilde{R}}_{ m O}$	FCOGB vs. GS					FCOGB vs. GB					FCOGB vs XGBoost				
				Δ	$\Delta_{SO}^{bc} \qquad \bar{\Delta}_{S}$		$\Delta_{ ext{SO}}^{ ext{wc}}$		$\Delta_{ ext{GO}}^{ ext{bc}}$		$\bar{\Delta}_{GO}$	$\Delta_{ m GO}^{ m wc}$		$\Delta_{ m XO}^{ m bc}$		$\bar{\Delta}_{XO}$	$\Delta_{ ext{XO}}^{ ext{wc}}$	
TITANIC	7	1043	.712	.074	(17.6)	.035	.000	(2.4)	.147	(2.4)	.025	025	(28.2)	.147	(2.4)	.022	015	(4.4)
TIC-TAC-TOE	27	958	.751	.174	(23.6)	.101	058	(1.4)	.111	(6.2)	.060	.000	(2.4)	.089	(16.8)	.030	013	(28.4)
IRIS	4	150	.552	.141	(5.8)	089	180	(7.2)	.149	(2.4)	083	294	(5)	.149	(2.4)	058	147	(25.8)
BREAST	30	569	.352	.024	(7.8)	055	229	(7)	.009	(7.8)	011	026	(26)	.100	(7.8)	.031	006	(20.2)
WINE	13	178	.368	.314	(2.4)	.020	270	(5.8)	.409	(6)	.135	.003	(4)	.433	(6)	.090	043	(27)
IBM HR	32	1470	.217	.019	(6.2)	.003	005	(8.2)	.034	(15.4)	.004	.000	(1.4)	.065	(4)	.012	.004	(1.4)
TELCO CHURN	18	7043	.688	.058	(2.4)	.005	159	(1.4)	.037	(23.4)	.019	032	(8.2)	.017	(9.4)	.006	009	(12.4)
GENDER	20	3168	.999	.003	(2.4)	.001	.002	(3.2)	.000	(4.2)	.000	.000	(2.4)	.003	(11.4)	.001	.000	(2.4)
BANKNOTE	4	1372	.355	.142	(19.6)	.055	075	(8.2)	.133	(19.6)	.024	079	(9.4)	.120	(19.6)	.049	049	(9.4)
LIVER	6	345	.999	012	(3.8)	093	195	(29.8)	.057	(3.8)	024	067	(15.4)	.057	(3.8)	066	164	(29.4)
MAGIC	10	19020	.710	.056	(8.2)	.018	037	(4.2)	.018	(15.4)	.007	.000	(5.2)	.017	(18.4)	.007	003	(25.4)
ADULT	11	30162	.619	.146	(2.4)	.007	191	(1.4)	.059	(10.4)	.018	.000	(2.4)	.058	(4.2)	.011	.004	(20.4)
DIGITS5	64	3915	.381	.030	(4.2)	.014	008	(3.2)	.009	(4.2)	031	058	(19.4)	.070	(4.2)	004	034	(19.4)
INSURANCE	6	1338	.163	.104	(7.2)	.017	567	(1.4)	.172	(4.2)	.018	011	(5.2)	.172	(4.2)	.020	011	(5.2)
friedman1	10	2000	.083	.013	(4)	002	012	(3.2)	.025	(4)	.006	.000	(1.4)	.025	(4)	.005	.000	(1.4)
friedman2	4	10000	.149	.165	(3.2)	021	612	(1.4)	.084	(10.4)	.019	068	(5.2)	.080	(8.2)	.016	068	(5.2)
friedman3	4	5000	.060	.009	(4.6)	.003	012	(4)	.021	(4.6)	.002	.000	(1.4)	.021	(4.6)	.002	.000	(1.4)
WAGE	5	1379	.419	.017	(6.6)	021	048	(4.6)	.065	(6.6)	.000	027	(18.2)	.065	(6.6)	002	014	(21.4)
DEMOGRAPHICS	13	6876	.229	.011	(5.2)	.003	.000	(1.4)	.007	(3.2)	.002	.000	(1.4)	.007	(3.2)	.002	.000	(1.4)
GDP	1	35	.038	.003	(3.2)	.000	001	(5.2)	.003	(3.2)	.000	001	(5.2)	.003	(3.2)	.000	001	(5.2)
USED CARS	4	1770	.198	.178	(3.2)	019	549	(1.4)	.113	(14)	.055	.000	(3.2)	.089	(8.8)	.035	.000	(3.2)
DIABETES	10	442	.169	.026	(4.4)	004	033	(3.4)	.058	(4.4)	002	011	(29.8)	.058	(4.4)	.002	008	(29.4)
BOSTON	13	506	.097	.019	(4.4)	001	025	(3.8)	.044	(4.4)	.006	011	(8.6)	.044	(4.4)	.006	011	(9.2)
WORLD HAPPINESS	8	315	.051	.010	(5.2)	003	012	(3.8)	.013	(5.2)	.002	010	(4.4)	.023	(5.2)	.002	001	(23.6)
LIFE EXPECTANCY	21	1649	.041	.003	(4.2)	.000	001	(8.2)	.007	(4.2)	.001	.000	(20.4)	.007	(4.2)	.001	001	(26.4)
MOBILE PRICES	20	2000	.168	.168	(2.4)	008	648	(1.4)	.058	(3.2)	.002	004	(8.2)	.058	(3.2)	.004	.000	(4.2)
SUICIDE RATE	5	27820	.534	.081	(2.4)	.016	333	(1.4)	.018	(13.4)	.008	.000	(2.4)	.024	(11.4)	.009	.000	(2.4)
VIDEO GAMES	6	16327	.723	.000	(4.2)	.000	.000	(3.2)	.000	(10.4)	.000	.000	(3.2)	.000	(10.4)	.000	.000	(3.2)
RED WINE	11	1599	.048	.003	(4.2)	.000	002	(3.2)	.004	(4.2)	.001	.000	(1.4)	.004	(4.2)	.001	.000	(7.4)
COVID VIC	4	85	.185	.068	(3)	.030	062	(10)	.103	(10.6)	005	692	(2.8)	3.448	(3)	.418	.002	(25.8)
COVID	2	225	.515	.071	(6.8)	037	399	(2)	.279	(3.8)	.025	003	(27)	25.66	(6.8)	5.388	.290	(26.8)
BICYCLE	4	122	.505	.213	(7.8)	021	333	(3.4)	.054	(4.6)	035	337	(4)	.011	(7.8)	025	061	(22.2)
SHIPS	4	34	.338	.076	(3.2)	089	498	(2.4)	.160	(11)	.015	066	(23.2)	993.4	(3.2)	181.3	.605	(29.6)
SMOKING	2	36	.216	017	(16.6)	046	189	(6.6)	.075	(10.2)	.029	043	(4.2)	.950	(2.4)	.124	.035	(14.2)

A full greedy approach can be used to approximate the maximum objective value of the subset of data points selected by \mathbf{q} , which is the bounding value $\operatorname{bnd}(\mathbf{q})$. Given a query $\mathbf{q}'^{(t-1)} \leq \mathbf{q}$, we need to find the data point selected by \mathbf{q} which maximise the objective function, and use it with $\mathbf{q}'^{(t-1)}$ to form a $\mathbf{q}'(t)$.

$$i_*^{(t)} = \mathop{\arg\max}_{i \in I(q) - I(q'^{(t-1)})} \frac{\mathbf{g}^T \left(\mathbf{q}'^{(t-1)} + \mathbf{e}_i \right)}{\| \left(\mathbf{q}'^{(t-1)} + \mathbf{e}_i \right)_\bot \| + \epsilon}.$$

where $I(\mathbf{q}) = \{i : \mathbf{q}(x_i) = 1, 1 \le i \le n\}$, $0 \le t \le |I(\mathbf{q})|$, $\mathbf{q'}^{(0)} = \mathbf{0}$ and $\mathbf{q'}^{(t)} = \mathbf{q'}^{(t-1)} + \mathbf{e}_{i_*^{(t)}}$. We use the maximum value of obj $(\mathbf{q'}^{(t)})$ as the bounding value for query \mathbf{q} . The computation time complexity level of this approach is $O(n^2)$ for each query, which is not as efficient as the presorting greedy approach described in Section 4.3.

The presorting greedy approach of solving the prefix optimization problem described in Section 4.3 leads to another approximation to the optimal objective function value for the queries which cover subsets of data points covered by ${\bf q}$. As proved in Theorem 4.4, this approach has a time complexity of O(tn).

We test 2000 instances for different initial queries and initial gradient values to see the difference between the approximation of $\operatorname{bnd}(\mathbf{q})$ obtained by the full greedy approach, the pre-sorting greedy approach, and the actual optimal objective values (obtained by a brute-force approach). We choose three different values of ϵ : 0.001, 0.1 and 1.

Figure 6 compares the ratio between the approximations to $bnd(\mathbf{q})$ obtained by the two greedy approaches and the true optimal objective value. The Y axis of Figure 6 represents the percentage of instances of different ratios.

According to the comparison, the full greedy approach can approximate the true bounding function better than the presorting greedy approach. For smaller ϵ values (ϵ = 0.001), there are 90% instances whose approximation values are more than 90% of the true bounding function values, while 96% of instances approximate more than 90% of the value of bnd(\mathbf{q}) using the full greedy approach.

For $\epsilon=0.1$, both algorithms have slight better (both 1% promotion) approximation than $\epsilon=0.001$. It can be observed that for $\epsilon=1$, both algorithms have more instances where the approximations are closed to the true bounding values. However, if the value of ϵ is too large, then the calculated objective values cannot be accurate according to Theorem 4.3. Comparing the statistical distances of these two greedy approaches, it is reasonable to use the presorting greedy approach to approximate the bounding values.

To approximate the true bounding function more efficiently and more accurate, we adopt the presorting greedy approach in this research.

C COMPARISON OF TESTING RISKS

Table 2 compares the testing empirical risks of the same benchmark datasets in Section 5. Table 2 has the same format with Table 1 except that it does not contain the comparison of running times.

As discussed in Section 5, the test performance of these algorithms follows similar trends to the training performance.