

Memory Management

Chandravva Hebbi

Department of Computer Science

Virtual Memory

Chandravva Hebbi

Department of Computer Science

Slides Credits for all PPTs of this course

- The slides/diagrams in this course are an adaptation,
 combination, and enhancement of material from the following resources and persons:
- 1. Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 9th edition 2013 and some slides from 10th edition 2018
- 2. Some conceptual text and diagram from Operating Systems Internals and Design Principles, William Stallings, 9th edition 2018
- 3. Some presentation transcripts from A. Frank P. Weisberg
- 4. Some conceptual text from Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau, Andrea Arpaci Dusseau

Thrashing

PES UNIVERSITY ONLINE

- If a process does not have "enough" pages, the page-fault rate is very high
 - Page fault to get page
 - Replace existing frame
 - But quickly need replaced frame back
 - This leads to:
 - Low CPU utilization
 - Operating system thinking that it needs to increase the degree of multiprogramming
 - ▶ Another process added to the system
- Thrashing = a process is busy swapping pages in and out

Cause of Thrashing

PES UNIVERSITY ONLINE

- Thrashing results in severe performance problems.
- Consider the scenario of the paging systems performance.
- As the degree of multiprogramming increases, CPU utilization also increases.
- Why there is a decrease in the CPU Utilization when the degree of

multiprogramming is increased?.

How this will be handled?

Cause of Thrashing contd...

- We can Limit the effects of thrashing by using a **local replacement** algorithm (or priority replacement algorithm)
 - If process starts thrashing, it cannot steal frames from another processes
- how does demand paging work? Locality model
 - Process migrates from one locality to another
 - Localities may overlap
- Why does thrashing occur? Σ size of locality > total memory size
 - Limit effects by using local or priority page replacement

Keeping Track of the Working Set

PES UNIVERSITY ONLINE

- The working-set model is based on the assumption of locality.
- \blacksquare The parameter, Δ , defines the working-set window.
- \blacksquare It is examine the most recent \triangle page references.
- The set of pages in the most recent Δ page references is the working set.
- If a page is in active use, it will be in the working set.
- If it is no longer being used, it will drop from the working set time units after its last reference.
- Thus, the working set is an approximation of the program's locality
- Approximate the W-S model with interval timer + a reference bit

Keeping Track of the Working Set

PES UNIVERSITY ONLINE

- Example: $\Delta = 10,000$ references
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts copy and sets the values of all reference bits to 0
 - If one of the bits in memory = $1 \Rightarrow$ page in working set
- Why is this not completely accurate?
 - We cannot tell where, within an interval of 5000, a reference occurred.
- Improvement = 10 bits and interrupt every 1000 time units but overhead to service more frequent interrupts

Working-Set Model

PES UNIVERSITY

- Parameter $\Delta \equiv$ working-set window \equiv a fixed number of page references Example: 10,000 instructions
- WSS_i (working set of Process P_i) = total number of pages referenced in the most recent Δ (parameter that varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if $\Delta = \infty \Rightarrow$ will encompass entire program
- $D = \sum WSS_i \equiv \text{total demand frames}$
 - Approximation of locality
- if D > m (available frames) \Rightarrow Thrashing will occur
- Policy if D > m, then suspend or swap out one of the processes

page reference table

... 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . $\Delta \qquad \qquad \Delta \qquad \qquad \Delta \qquad \qquad \Delta \qquad \qquad L_1 \qquad \qquad WS(t_1) = \{1,2,5,6,7\} \qquad WS(t_2) = \{3,4\}$

Page-Fault Frequency

PES UNIVERSITY

- More direct approach than W-S model
 - Control the page-fault rate
 - Looks clumsy to control thrashing

Establish "acceptable" page-fault frequency (PFF) rate and use local replacement policy

- If actual rate too low, process loses frame
- If actual rate too high, process gains frame.
- processes can be suspended if the free frames is zero
- With the working-set strategy, we may have to swap out a process.
 - If page fault Increases and no free frames available

THANK YOU

Chandravva Hebbi
Department of Computer Science Engineering
chandravvahebbi@pes.edu