Ridge Regression 1

Derivation of Ridge Regression Coefficients

Step 1: Ridge Regression Objective Function

Start with the ridge regression objective function:

$$\min_{\beta} \left\{ (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^{\top} \beta \right\}$$

where:

- y is an $n \times 1$ vector of observed values,
- **X** is an $n \times p$ matrix of predictors,
- β is a $p \times 1$ vector of coefficients,
- λ is the regularization parameter.

Step 2: Expand the Objective Function

Expand and simplify the ridge regression objective function:

$$(\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta) + \lambda\beta^{\top}\beta$$

$$= \mathbf{y}^{\top}\mathbf{y} - 2\beta^{\top}\mathbf{X}^{\top}\mathbf{y} + \beta^{\top}\mathbf{X}^{\top}\mathbf{X}\beta + \lambda\beta^{\top}\beta$$

$$= \mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{X}\beta + \beta^{\top}\mathbf{X}^{\top}\mathbf{X}\beta + \lambda\beta^{\top}\beta$$

Step 3: Take the Derivative

To find the ridge regression coefficients, take the derivative of the objective function with respect to β and set it to zero:

$$\frac{\partial}{\partial \beta} \left\{ \mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{y}^{\top} \mathbf{X} \beta + \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta + \lambda \beta^{\top} \beta \right\} = 0$$
$$-2 \mathbf{X}^{\top} \mathbf{y} + 2 \mathbf{X}^{\top} \mathbf{X} \beta + 2 \lambda \beta = 0$$

Step 4: Solve for β

Now, solve the equation for β :

$$\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} + \lambda\boldsymbol{\beta} = \mathbf{X}^{\top}\mathbf{y}$$
$$(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})\boldsymbol{\beta} = \mathbf{X}^{\top}\mathbf{y}$$
$$\boldsymbol{\beta} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

where **I** is the $p \times p$ identity matrix.

Interpretation

The formula $\beta = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ gives us the coefficients for ridge regression.

This equation adjusts the coefficients β to minimize the sum of squared residuals while penalizing them by the regularization parameter λ . This penalty helps prevent overfitting by shrinking the coefficients, particularly useful when predictors are correlated (multicollinearity).