

Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Least Square

Normal Equation:

$$\mathbf{y} = \mathbf{X} \ \theta \qquad (y \in R^{m + 1}, X \in R^{m + (1 + n)}, \theta \in R^{(n + 1) + 1})$$

$$\theta = X^{-1}y$$

Normal Equation

$$L = \frac{1}{2m} \sum_{i=1}^{m} (y_i - x^{(i)T}\theta)^2 \longrightarrow \min_{\theta} L \longrightarrow \frac{dL}{d\theta} = 0$$

Normal Equation:

$$\theta^* = (X^T X)^{-1} X^T y$$

$$(X^T \in R^{(n+1)*m}, X \in R^{m*(1+n)}, X^T X \in R^{(n+1)*(n+1)})$$

$$(X^T X)^{-1} \in R^{(n+1)*(n+1)}$$

$$y \in R^{m+1}$$
 , $\theta^* \in R^{(n+1)*1}$

$$(X^T X)^{-1} \in R^{(n+1)*(n+1)}$$
 $(X^T X)^{-1} : O(n^3)$

If n=1000 \bigcirc $O(10^9)$

Comparison

Gradient Descent

تکراری است.

نیاز به مقدار دهی اولیه دارد.

حجم محاسبات پایین است.

نیا به تنظیم ابرپارامتر ها دارد.

نیاز به Feature scaling دارد.

Normal Equation

تکراری نیست.

نیاز به مقدار دهی اولیه پار امتر ها ندارد.

حجم محاسبات بالایی دارد.

نیاز به تنظیم ابرپارامترها نیست.

نیاز به Feature scaling ندارد.

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies w_1, w_2 = 1 \implies Y = x + 1$$

$$\begin{array}{c} x \\ w_1 + w_2 = 2 \\ 2w_1 + w_2 = 3 \\ 3/2w_1 + w_2 = 4 \end{array}$$

Min (
$$[2 - (w_1 + w_2)]^2 + [3 - (2w_1 + w_2)]^2 + [4 - (3/2w_1 + w_2)]^2$$
)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad ||\vec{x}||_2 = \sqrt{x_1^2 + x_2^2}$$

$$x^T x = x_1^2 + x_2^2 = ||x||^2$$

مشتق گیری نسبت به بردار

$$Y = a^T w \qquad a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \qquad w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$Y = a_1 w_1 + a_2 w_2 \qquad \frac{dy}{d\vec{w}} = ?? \implies \frac{dy}{dw_1} = a_1 , \frac{dy}{dw_2} = a_2 \implies \frac{dy}{d\vec{w}} = \begin{bmatrix} \frac{dy}{dw_1} \\ \frac{dy}{dw_2} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = a$$

$$\frac{da^Tw}{d\overrightarrow{w}} = a, \quad \frac{dw^Ta}{d\overrightarrow{w}} = a$$

مشتق گیری نسبت به بردار

$$Y = w^{T}Bw \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \quad \frac{dY}{d\vec{w}}$$

$$Y = \begin{bmatrix} w_{1} & w_{2} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} = \begin{bmatrix} w_{1}b_{11} + w_{2}b_{21} , w_{1}b_{12} + w_{2}b_{22} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

$$= (w_1b_{11} + w_2b_{21}) w_1 + (w_1b_{12} + w_2b_{22}) w_2$$

$$\frac{dy}{dw_1} = 2 w_1 b_{11} + w_2 b_{21} + b_{12} w_2 \quad , \quad \frac{dy}{dw_2} = b_{21} w_1 + w_1 b_{12} + 2 w_2 b_{22}$$

$$\frac{dy}{d\vec{w}} = \begin{bmatrix} \frac{dy}{dw_1} \\ \frac{dy}{dw_2} \end{bmatrix} = (\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix}) \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 2b_{11} & b_{12} + b_{21} \\ b_{21} + b_{12} & 2b_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} (B + B^T) & W \end{bmatrix}$$

مشتق گیری نسبت به بردار

If B symmetric
$$\implies$$
 B = $B^T \implies \frac{dy}{d\vec{w}}$ = 2Bw

$$\frac{dy}{db_{11}} = w_1^2$$
 , $\frac{dy}{db_{12}} = w_1 w_2$, $\frac{dy}{db_{21}} = w_2 w_1$, $\frac{dy}{db_{22}} = w_2^2$

$$\frac{dy}{dB} = \mathbf{W}\mathbf{W}^T$$

$$x^T. x = ||x||^2$$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $y^T X w)^T = (X w)^T y$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (y - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)^T (y - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)$
 $J(w) = ||y - XW||^2 = (x - XW)$
 $J(w) =$

Min j(w) =
$$-2 X^T y + 2Bw = -2 X^T y + 2 X^T X w = 0$$

$$2X^TX w = 2X^Ty \implies w = (X^TX)^{-1} X^Ty = X^+y$$
 (pseudo inverse)

بردارهایی را مستقل خطی میگویند که هیچکدام از آنها را به صورت ترکیب خطی از یکدیگر نتوان نوشت.

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 2 & 8 \\
2 & 7 & 25 \\
3 & 4 & 18
\end{pmatrix}
\qquad x \in \mathbb{R}^{m * D}$$

(Span(row vectors: مجموعه همه ترکیب های خطی سطرها (Row space)

(Span(column vectors: مجموعه همه ترکیب های خطی ستون ها

Null space(X) = N(x): همه بردار های غیر صفر w که Xw برابر صفر است. Dimension of column space: تعداد ستون های مستقل خطی Dimension of row space: تعداد سطر های مستقل خطی

Dim (row space) = Dim (column space)

Nullity (A) = Dim(N(A))

Rank(X) = Dim(row space)

Row Echelon Form

شكل سطرى بلكاني

همه سطرهای کامل صفر در پایین ماتریس باشد.

عنصر پیشرو (pivot) هر سطر غیر صفر در سمت راست عنصر پیشرو سطر بالای آن باشد.

تبدیل به Row echelon form (عملیات سطری مقدماتی):

1. جابجایی دو سطر 2. ضرب عدد حقیقی در یک سطر 3. حمع یا تفریق مضربی از یک سطر با سطر دیگر

مثال

تعداد سطرهای غیر صفر در شکل سطری پلکانی تعداد سطرهای مستقل خطی هستند. رتبه یا Rank ماتریس تعداد سطرهای غیر صفر در شکل سطری پلکانی است.

Rank(X) + Nullity(X) = number of columns of X

مثال

$$X = \begin{pmatrix} -1 & 0 & -1 & 2 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 1 & -1 \end{pmatrix} \xrightarrow{2R_1 + R_2} \begin{pmatrix} -1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 4 \\ 1 & 0 & 1 & -1 \end{pmatrix}$$

$$Rank(X) = 2$$

Rank(X) + Nullity(X) =
$$4$$

2 + 2 = 4

Dim(column space B) = ?

$$B = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 1 & 2 & 3 \\ -1 & 0 & 1 & -2 \end{pmatrix}$$

Column space B = Row space B^T

$$B^{T} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \\ 2 & 3 & -2 \end{pmatrix} \qquad \begin{array}{c} R_{1} + R_{3} \\ \hline \end{array} \qquad \begin{array}{c} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 0 \\ 2 & 3 & -2 \end{array} \qquad \begin{array}{c} -2R_{1} + R_{4} \\ \hline \end{array} \qquad \begin{array}{c} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & -1 & 0 \end{array}$$

$$X \in R^{m * D}$$

$X^T X \in \mathbb{R}^{D \times D}$ (Gram Matrix)

ماتریسی معکوس پذیر است که مربعی بوده و رتبه آن کامل باشد.

(Full column rank) در صورتی معکوس دارد که X دارای رتبه ستونی کامل باشد. X^TX

به عبارت دیگر Rank(X) = D

اثبات:

فرض کنید Rank(X) < D باشد با توجه به Rank(X) + N(X) = D یک U وجود دارد که XU = 0 در نتیجه داریم Rank(X) < D فرض کنید $Rank(X^TX) < D$ و $Rank(X^TX) < D$ و $Rank(X^TX) < D$

 $X^T X \ V = 0$: هجود دارد که V معکوس پذیر نباشد یک بردار V وجود دارد که

پس داریم:

$$0 = V^T X^T X V = (XV)^T (XV) = ||XV||^2$$

پس U=0پیXV=0پی Rank(X) < D.

اگر m < D باشد در نتیجه Rank(X) < D و ماتریس $X^T X$ معکوس پذیر نیست.

ممکن است حتی وقتی m >= D باشد به دلیل و ابستگی ها بین ستون های X رتبه X کمتر از D باشد.