2016

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

For regular languages L₁ and L₂, we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement:

Intersection:

ntersection: $L_1 \cap L_2$ Difference: $L_1 - L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Difference: $L_1 - L_2$

Regular language L_1

Regular language L_2

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Single final state

Single final state

Example

$$n \ge 0$$

$$L_1 = \{a^n b\}$$

$$b = 0$$

$$L_2 = \{ba\} \qquad \begin{array}{c} M_2 \\ b \\ \end{array}$$

Union

NFA for $L_1 \cup L_2$

Example

NFA for $L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$

Concatenation

NFA for L_1L_2

Example

NFA for
$$L_1L_2 = \{a^nb\} \{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$b$$

$$\lambda$$

$$b$$

$$\lambda$$

Star Operation

Example

NFA for
$$L_1$$
* = $\{a^nb\}$ *

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state final state and vice versa

Example

Complement

- 1. Take the **DFA** that accepts L_1
- 2. Make final states non-final, and vice-versa

Example

Let's step through an example

$$L_1 = \{ x \mid 00 \text{ is not a substring of } x \}$$

$$L_2 = \{ x \mid x \text{ ends in } 01 \}$$

•
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 $-Q_1 = \{A, B, C\}$
 $-q_1 = A$
 $-F_1 = \{A, B\}$

- M = (Q, Σ, δ, q₀, F)
 Q = {AX, AY, AZ, BX, BY, BZ, CX, CY, CZ}
 - $-q_0 = AX$

$$\delta((A,X), 1) = (\delta 1 (A,1), \delta 2 (X,1)) = (A, X)$$

 $\delta((A,X), 0) = (\delta 1 (A,0), \delta 2 (X,0)) = (B, Y)$

- Finally we can define F, the set of accepting states in M
- Intersection (L₁ ∩ L₂)
 F = {(p,q) | p ∈ F₁ and q ∈ F₂}
- Difference (L₁ L₂)
 F = {(p,q) | p ∈ F₁ and q ∉ F₂}

Intersection $(L_1 \cap L_2)$

Difference (L₁ - L₂)

Union $(L_1 U L_2)$

Intersection

DeMorgan's Law: $L_1 \cap L_2 = L_1 \cup L_2$

$$L_1$$
, L_2 regular

$$\longrightarrow$$
 L_1 , L_2 regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$L_1 \cap L_2$$
 regular

Example

$$L_1 = \{a^nb\}$$
 regular
$$L_1 \cap L_2 = \{ab\}$$
 $L_2 = \{ab,ba\}$ regular regular

Difference

$$L_1 - L_2 = L_1 \cap \overline{L_2}$$

 L_1 , L_2 regular

regular

regular

Closure under Other Operations

- Definition 4.1:
 - Suppose Σ and Γ are alphabets. Then a function

h:
$$\Sigma \rightarrow \Gamma^*$$

is called a homomorphism. In other words, a homomorphism is a substitution in which a single letter is replaced with a string.

If L is a language on Σ , then its homomorphic image is defined as

$$h(L) = \{h(w): w \in L\}$$

Example 4.2

• $\Sigma = \{a, b\}$ and $\Gamma = \{a, b, c\}$ and define h by

$$h(a) = ab, h(b) = bbc.$$

h(aba) = abbbcab

The homomorphic image of $L = \{aa, aba\}$ is $h(L) = \{abab, abbbcab\}$

Example 4.3

• $\Sigma = \{a, b\}$ and $\Gamma = \{b, c, d\}$ and define h by

$$h(a) = dbcc, h(b) = bdc.$$

If L is the regular language denoted by

$$r = (a + b^*)(aa)^*$$

then

$$r_1 = (dbcc + (bdc)^*)(dbccdbcc)^*$$

Theorem 4.3

 Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular.

Outline

Standard Representations of Regular Languages

When we say: We are given a Regular Language 1.

We mean: Language L is in a standard representation

Membership Question

Question: Given regular language L and string w how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted

DFA

$$w \in L$$

DFA

$$w \notin L$$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

$$L_1 \cap \overline{L_2} = \emptyset$$
 and $\overline{L_1} \cap L_2 = \emptyset$

$$\overline{L_1} \cap L_2 = \emptyset$$

$$(L_2)$$
 L_1

$$L_1 \subseteq L_2$$

$$L_2 \subseteq L_1$$

$$L_1 = L_2$$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \neq \emptyset$$

$$L_1 \cap \overline{L_2} \neq \emptyset$$

or

$$\overline{L_1} \cap L_2 \neq \emptyset$$

 $L_2 \not\subset L_1$

 $L_1 \not\subset L_2$

$$L_1 \neq L_2$$

Outline

 \bigcirc

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ etc...

Finite languages

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: the Pumping Lemma !!!

The Pigeonhole Principle

4 pigeons

pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

The Pigeonhole Principle

 η pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: a

aa

aab

no state is repeated

In walks of strings: *aabb*

bbaa

abbabb

abbbabbabb...

a state

is repeated

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

transitions are pigeons states are pigeonholes walk of w Repeated state

Example 4.6

- (Is L = $\{a^nb^n : n \ge 0\}$ regular?)
- Suppose L is regular → A DFA M exists for it
 - $-\delta^*(q_0, a^i)$ for i = 1, 2, 3, ... (unlimited)
 - But only a finite number of states in M
 - By pigeonhole principle, there must some state q s.t. $\delta^*(q_0, a^n) = q$ and $\delta^*(q_0, a^m) = q$ with n ≠ m
 - Since M accepts aⁿbⁿ we must have

$$\delta^*(q, b^n) = q_f \in F$$

 $\delta^*(q_0, a^m b^n) = q_f \in F$ (contradiction!! :: $n \neq m$)

To accept all a^nb^n , an automaton would have to differentiate between all prefixes a^n and a^m .

But since there are only a finite number of internal states with which to do this, there are some *n* and *m* for which the distinction cannot be made.

The Pumping Lemma

Take an infinite regular language L

There exists a DFA M that accepts $\,L\,$

Take a string w with $w \in L$ (drive to q_f)

There is a walk with label W:

If string w has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

Let q be the first state repeated in the walk of w

(such a repetition must start no later than the mth move)

Write w = x y z

Observations:

length $|x y| \le m$

Number of states of DFA

length $|y| \ge 1$

Remember 'q' is the first repeated state, meaning that $a_1, a_2, ..., a_i, a_{i+1} ..., a_j$, are passed through different states

$$y = a_{i+1}a_{i+2}...a_j$$

Observation: The string x z is accepted

Observation: The string x y y z is accepted

Observation: The string x y y y z is accepted

In General:

The string $x y^i z$ is accepted i = 0, 1, 2, ...

In General:

$$x y^i z \in L \qquad i = 0, 1, 2, \dots$$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma:

Given a infinite regular language L

there exists an integer m

for any string $w \in L$ with length $|w| \ge m$

we can write w = x y z

with $|x y| \le m$ and $|y| \ge 1$

such that:
$$x y^i z \in L \quad i = 0, 1, 2, \dots$$

The Pumping Lemma Game

 Goal: Win the game by establishing a contradiction of the pumping lemma

- O Picks m
- Picks a string w in L of length equal or greater than m. We are free to choose any w, subject to w ϵ L and $|w| \ge m$.
- O Chooses the decomposition xyz, subject to $|xy| \le m$, $|y| \ge 1$.
- Picks i such that the pumped string wis not in L.

Applications

of

the Pumping Lemma

Theorem: The language $L = \{a^nb^n : n \ge 0\}$ is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

O

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length
$$|w| \ge m$$

P We pick
$$w = a^m b^m$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k, k \ge 1$$

$$x y z = a^m b^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^i z \in L$

$$x y^i z \in L$$

$$i = 0, 1, 2, \dots$$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

• Show that $L = \{ww^R : w \in \Sigma^*\}$ is not regular

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{ww^R : w \in \Sigma^*\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ and length $|w| \ge m$

We pick
$$w = a^m b^m b^m a^m$$

Write
$$a^m b^m b^m a^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a...aa...a...ab...bb...ba...a$$

$$x y z = a...aa...a...ab...bb...ba...a$$

$$y = a^k, \quad k \ge 1$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^l z \in L$

$$x y^{l} z \in L$$

 $i = 0, 1, 2, ...$

Thus: $x y^2 z \in L$

$$x y z = a^m b^m b^m a^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...bb...ba...a}^{m + k} \underbrace{m m m m}_{z} \in L$$

Thus:
$$a^{m+k}b^mb^ma^m \in L$$

$$a^{m+k}b^mb^ma^m \in L \qquad k \ge 1$$

BUT:
$$L = \{ww^R : w \in \Sigma^*\}$$

$$a^{m+k}b^mb^ma^m \notin L$$

CONTRADICTION!!!

$$L = \{ww^R : w \in \Sigma^*\}$$

If we choose $w = a^{2m} \in L$

The opponent picks $y = a^k$?

To apply the pumping lemma, we assume that the opponent will make the best move. Ex. y = aa

- Let Σ = {a, b}. The language $L = \{w \in \Sigma^* : n_a(w) < n_b(w)\} \text{ is not regular}$
- Given m
- Picks $w = a^m b^{m+1}$
- $|xy| \le m \rightarrow \text{picks y with all a's } \rightarrow y = a^k, 1 \le k \le m$
- Picks $i = 2 \rightarrow w_2 = a^{m+k}b^{m+1}$ is not in L

- Let $\Sigma = \{a, b\}$. The language $L = \{(ab)^n a^k : n > k, k \ge 0\}$ is not regular
- O Given m
- Picks $w = (ab)^{m+1}a^m$
- $|xy| \le m \rightarrow picks y = a (or ab)$
- Picks $i = 0 \rightarrow w_0 = (ab)^p b(ab)^q a^m$ is not in L $(w_0 = (ab)^m a^m$ is not in L)

- Let $\Sigma = \{a\}$. The language $L = \{a^n : n \text{ is a perfect square}\}$ is not regular
- Given m
- Picks $w = a^{m^2}$
- $|xy| \le m \rightarrow picks y = a^k, 1 \le k \le m$
- Picks $i = 0 \rightarrow w_0 = a^{m^2-k}$ is not in L $\therefore m^2-k > (m-1)^2$

- Let Σ = {a, b, c}. The language $L = \{a^n b^k c^{n+k} : n \ge 0, k \ge 0\}$ is not regular
- Given m
- Picks $w = a^m b^m c^{2m}$
- $|xy| \le m \rightarrow picks y = a^k, 1 \le k \le m$
- Picks $i = 0 \rightarrow w_0 = a^{m-k}b^mc^{2m}$ is not in L

Use homomorphism h(a) = a, h(b) = a, h(c) = c $\rightarrow h(L) = \{a^{n+k}c^{n+k}: n+k \ge 0\}$

• Let $\Sigma = \{a, b\}$. The language $L = \{a^n b^l : n \neq l\}$ is not regular

Set
$$n = 1 + 1$$
?

 $L_1 = L \cap L(a^*b^*)$

- Given m
- Picks $w = a^{m!}b^{(m+1)!}$
- $|xy| \le m \rightarrow picks y = a^k, 1 \le k \le m$
- Pumps i times $\rightarrow w_i = a^{m!+(i-1)k}b^{(m+1)!}$

if
$$\exists i$$
 s.t. $m!+(i-1)k = (m+1)!$

$$i = 1 + \frac{mm!}{k}$$
 $\therefore k \le m \rightarrow i$ is an integer

- Use pumping lemma to show that a language is regular
- Start with a string not in L
- Make some assumptions about the decomposition xyz

- Use pumping lemma to show that a language is regular
 - Even if you can show that no string in a language L can ever be pumped out, you cannot conclude that L is regular.
- Start with a string not in L
- Make some assumptions about the decomposition xyz

- Use pumping lemma to show that a language is regular
- Start with a string not in L
 - $-EX. L = {a^n: n is a prime number}$
 - Given m, let $w = a^m$ (incorrect)
 - Given m, let w = a^P, where P is a prime number larger than m
- Make some assumptions about the decomposition xyz

- Use pumping lemma to show that a language is regular
- Start with a string not in L
- Make some assumptions about the decomposition xyz
 - $-EX. L = {a^n: n is a prime number}$
 - $-y = a^k$, with k odd. Then w = xz is an evenlength string and thus not in L (incorrect)

More Example

- Let Σ = {a}. The language
 L = {aⁿ: n is a prime number} is not regular
- Take p to be the smallest prime # ≥ m
- Picks w = a^p
- $|xy| \le m \rightarrow picks y with all a's \rightarrow y = a^k, 1 \le k \le m$
- Pumps i times $\rightarrow w_i = a^{p+(i-1)k}$
- if we take i–1=p, then p+(i-1)k=p(k+1) is composite and w_{p+1} is not in L

Short Quiz

Please use the pumping lemma to show that each of these languages is nonregular:

```
A = \{x \in \{0,1\}^* : \text{ the length of } x \text{ is odd, and its middle symbol is } 1\}
```

```
\{a^n b^n a^m \text{ where } n = 0, 1, 2, \dots \text{ and } m = 0, 1, 2, \dots\}
```

Questions?