Equivalence Relation

CS301 Theory of Computation

S = { Romeo, Bill Gates, William, Melinda, Harry, Juliet, Ginny, Kate Middleton, Antony, Bill Clinton, Cleopatra, Hillary}

S = { Romeo, Bill Gates, William, Melinda, Harry, Juliet, Ginny, Kate Middleton, Antony, Bill Clinton, Cleopatra, Hillary}

	L L
Harry Juliet Ginny I	Kate Middleton
Antony Bill Clinton Cleopatra H	Hillary

S = { Romeo, Bill Gates, William, Melinda, Harry, Juliet, Ginny, Kate Middleton, Antony, Bill Clinton, Cleopatra, Hillary}

Example relation spouse on S

S = { Romeo, Bill Gates, William, Melinda, Harry, Juliet, Ginny, Kate Middleton, Antony, Bill Clinton, Cleopatra, Hillary}

Example relation spouse on S

$$S = \{1, 2, 3, 4\}$$

1 2 3 4

$$S = \{1, 2, 3, 4\}$$

1 2 3 4

$$S = \{1, 2, 3, 4\}$$

Example relation less_than on S

less_than = $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$

Cartesian product

Let A and B be two sets. Then, their cartesian product is defines as:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

Cartesian product

Let A and B be two sets. Then, their cartesian product is defines as:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

Cartesian product - Example

$$A = \{1,2,3\}, B = \{x,y\}$$
:

$$A \times B = \{(1,x), (2,x), (3,x), (1,y), (2,y), (3,y)\}$$

Cartesian product

Let A and B be two sets. Then, their cartesian product is defines as:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

Cartesian product - Example

$$A = \{1,2,3\}, B = \{x,y\}:$$

$$A \times B = \{(1,x), (2,x), (3,x), (1,y), (2,y), (3,y)\}$$

Relation

Let A and B be two sets. Then, a binary relation R between A and B is any subset of $A \times B$.

Cartesian product

Let A and B be two sets. Then, their cartesian product is defines as:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

Cartesian product - Example

$$A = \{1,2,3\}, B = \{x,y\}:$$

 $A \times B = \{(1,x), (2,x), (3,x), (1,y), (2,y), (3,y)\}$

Relation

Let A and B be two sets. Then, a binary relation R between A and B is any subset of $A \times B$.

Relation - Example

$$A = \{1,2,3\}, B = \{x,y\}:$$

 $R_1 = \{(1,x),(3,y)\}$

Cartesian product

Let A and B be two sets. Then, their cartesian product is defines as:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

Cartesian product - Example

$$A = \{1,2,3\}, B = \{x,y\}:$$

 $A \times B = \{(1,x), (2,x), (3,x), (1,y), (2,y), (3,y)\}$

Relation

Let A and B be two sets. Then, a binary relation R between A and B is any subset of $A \times B$.

Relation - Example

$$A = \{1,2,3\}, B = \{x,y\}:$$

$$R_1 = \{(1,x),(3,y)\}$$

$$R_2 = \{(3,x)\}$$

Cartesian product

Let A and B be two sets. Then, their cartesian product is defines as:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Cartesian product - Example

$$A = \{1,2,3\}, B = \{x,y\}:$$

 $A \times B = \{(1,x), (2,x), (3,x), (1,y), (2,y), (3,y)\}$

Relation

Let A and B be two sets. Then, a binary relation R between A and B is any subset of $A \times B$.

Relation - Example

$$A = \{1,2,3\}, B = \{x,y\}:$$

$$R_1 = \{(1,x),(3,y)\}$$

$$R_2 = \{(3,x)\}$$

$$R_3 = \{\}$$

1 2 3 4

 \leq : {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}

 \leq : {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}

Reflexive Relation

A relation $R \subseteq A \times A$ is said to be reflexive iff $\forall a \in A \mid (a, a) \in R$.

Reflexive Relation

A relation $R \subseteq A \times A$ is said to be reflexive iff $\forall a \in A \mid (a, a) \in R$.

Examples:

 $R_1 = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3), (3,4), (4,4)\}$

Reflexive Relation

A relation $R \subseteq A \times A$ is said to be reflexive iff $\forall a \in A \mid (a, a) \in R$.

$$R_1 = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

Reflexive Relation

A relation $R \subseteq A \times A$ is said to be reflexive iff $\forall a \in A \mid (a, a) \in R$.

$$R_1 = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3), (3,4), (4,4)\} \times$$

 $R_2 = \{(1,1), (2,2), (2,4), (3,3), (3,4), (4,4)\}$

Reflexive Relation

A relation $R \subseteq A \times A$ is said to be reflexive iff $\forall a \in A \mid (a, a) \in R$.

$$R_1 = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3), (3,4), (4,4)\} \times R_2 = \{(1,1), (2,2), (2,4), (3,3), (3,4), (4,4)\}$$

Symmetric Relation

A relation $R \subseteq A \times A$ is said to be symmetric if:

$$\forall (a,b) \in A \times A \mid (a,b) \in R \implies (b,a) \in R.$$

Symmetric Relation

A relation $R \subseteq A \times A$ is said to be symmetric if:

$$\forall (a,b) \in A \times A \mid (a,b) \in R \implies (b,a) \in R.$$

Symmetric Relation

A relation $R \subseteq A \times A$ is said to be symmetric if:

$$\forall (a,b) \in A \times A \mid (a,b) \in R \implies (b,a) \in R.$$

Symmetric Relation

A relation $R \subseteq A \times A$ is said to be symmetric if:

$$\forall (a,b) \in A \times A \mid (a,b) \in R \implies (b,a) \in R.$$

Symmetric Relation

Symmetric Relation

A relation $R \subseteq A \times A$ is said to be symmetric if:

$$\forall (a,b) \in A \times A \mid (a,b) \in R \implies (b,a) \in R.$$

Transitive Relation

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be transitive if:

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Examples:

 \leq on \mathbb{N}

Transitive Relation

A relation $R \subseteq A \times A$ is said to be transitive if:

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be transitive if:

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Examples:

 \neq on \mathbb{N}

Transitive Relation

A relation $R \subseteq A \times A$ is said to be transitive if:

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be transitive if:

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

$$\leq$$
 on \mathbb{N}

$$\neq$$
 on \mathbb{N} \times $(2,3) \in \neq$ and $(3,2) \in \neq$, but $(2,2) \notin \neq$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be transitive if:

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be transitive if:

$$\forall (a,b) \in A \times A, (b,c) \in A \times A \mid (a,b) \in R \text{ and } (b,c) \in R \implies (a,c) \in R.$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

```
R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\}
```

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

$$R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

```
R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times \text{Not reflexive since } (2,2) \notin R_1
```

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

$$R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\}$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

$$R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\} \times$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

Examples on $\{1,2,3\}$:

$$R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\} \times$$

Not symmetric since $(1,3) \in R_2$, but $(3,1) \notin R_2$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

$$R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\} \times$$

$$R_3 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\} \times$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

$$R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\} \times$$

$$R_3 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\} \checkmark$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

$$R_{1} = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

$$R_{2} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\} \times$$

$$R_{3} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\} \checkmark$$

$$R_{4} = \{(1,1), (2,2), (3,3)\}$$

Transitive Relation

A relation $R \subseteq A \times A$ is said to be an equivalence relation if it satisfies the following 3 properties:

- (i) R is reflexive
- (ii) R is symmetric
- (iii) R is transitive

$$R_1 = \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \times$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2), (3,3)\} \times$$

$$R_3 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\} \checkmark$$

$$R_4 = \{(1,1), (2,2), (3,3)\} \checkmark$$

NIMISHA S. NAIR	IMTIYAZ HUSSAIN	ABHIJITH K S	ABHISHEK S
ATHIRA K S	RAGESH O.R.	ABHISHEK MANOHARAN	GOKUL K
PAURNAMI PRADEEP	DEVIKA M S	FAZNA HAREES	ABHILA KRISHNAN K

NIMISHA S. NAIR IMTIYAZ HUSSAIN ABHIJITH K S ABHISHEK S

ATHIRAKS RAGESH O.R. ABHISHEK MANOHARAN GOKUL K

PAURNAMI PRADEEP DEVIKA M S FAZNA HAREES ABHILA KRISHNAN K

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation?

NIMISHA S. NAIR IMTIYAZ HUSSAIN ABHIJITH K S ABHISHEK S

ATHIRAKS RAGESH O.R. ABHISHEK MANOHARAN GOKUL K

PAURNAMI PRADEEP DEVIKA M S FAZNA HAREES ABHILA KRISHNAN K

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

ABHISHEK S IMTIYAZ HUSSAIN NIMISHA S. NAIR **ABHIJITH K S** RAGESH O.R. **GOKUL K**

PAURNAMI PRADEEP **ABHILA KRISHNAN DEVIKAMS FAZNA HAREES**

ABHISHEK MANOHARAN

Example Relation

ATHIRAKS

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes Reflexive, since $\forall s$, if s is studying in semester, then s is studying in semester, hence $(s, s) \in R$

NIMISHA S. NAIR IMTIYAZ HUSSAIN ABHIJITH K S ABHISHEK S

ATHIRA K S RAGESH O.R. ABHISHEK MANOHARAN GOKUL K

PAURNAMI PRADEEP DEVIKA M S FAZNA HAREES ABHILA KRISHNAN K

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

Reflexive, since $\forall s$, if s is studying in semester, then s is studying in semester, hence $(s, s) \in R$ Symmetric since,

 $(s_i, s_j) \in R \Longrightarrow s_i \text{ and } s_j \text{ are in the same semester } \Longrightarrow s_j \text{ and } s_i \text{ are in the same semester } \Longrightarrow (s_j, s_i) \in R$

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

Reflexive, since $\forall s$, if s is studying in semester, then s is studying in semester, hence $(s, s) \in R$ Symmetric since,

 $(s_i, s_j) \in R \Longrightarrow s_i \text{ and } s_j \text{ are in the same semester } \Longrightarrow s_j \text{ and } s_i \text{ are in the same semester } \Longrightarrow (s_j, s_i) \in R$

Transitive since,

 $(s_i, s_j) \in R, (s_j, s_k) \in R \Longrightarrow s_i \text{ and } s_j \text{ are in the same semester and } s_j \text{ and } s_k \text{ are in the same semester} \Longrightarrow s_i \text{ and } s_k \text{ are in the same semester} \Longrightarrow (s_i, s_k) \in R$

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

[NIMISHA S. NAIR] = {NIMISHA S. NAIR, RAJESH O.R., FAZNA HAREES, GOKUL L. K.} = S_5

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

[NIMISHA S. NAIR] = {NIMISHA S. NAIR, RAJESH O.R., FAZNA HAREES, GOKUL L. K.} = S_5

[ATHIRA K. S.] = {ATHIRA K. S., DEVIKA M. S., ABHISHEK MANOHARAN, ABHISHEK S.} = S_7

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

[NIMISHA S. NAIR] = {NIMISHA S. NAIR, RAJESH O.R., FAZNA HAREES, GOKUL L. K.} = S_5

[ATHIRA K. S.] = {ATHIRA K. S., DEVIKA M. S., ABHISHEK MANOHARAN, ABHISHEK S.} = S_7

[POURNAMI PRADEEP] = {POURNAMI PRADEEP, IMITIYAZ HUSSAIN, ABHISHEK K. S., ABHILA KRISHNAN K.} = S_3

Example Relation

Let A be the above set of students in CSE. Consider a relation R on A such that $(s_1, s_2) \in R$ is the students s_1 and s_2 are studying in the same semester. Is R an equivalence relation? Yes

[NIMISHA S. NAIR] = {NIMISHA S. NAIR, RAJESH O.R., FAZNA HAREES, GOKUL L. K.} = S_5

[ATHIRA K. S.] = {ATHIRA K. S., DEVIKA M. S., ABHISHEK MANOHARAN, ABHISHEK S.} = S_7

[POURNAMI PRADEEP] = {POURNAMI PRADEEP, IMITIYAZ HUSSAIN, ABHISHEK K. S., ABHILA KRISHNAN K.} = S_3

o These are called the equivalences classes induced by an equivalence relation

An equivalence relation R on a set A partition A into a number disjoint subsets or equivalence classes $[a_i]$ such that:

$$A = \bigcup_{i} [a_i]$$

where, $a_i \in A$ and $[a_i] = \{x \in A \mid (a_i, x) \in R\}$.

Homework Exercise

• Let \mathbb{Z} be the set of integers and R be a binary relation on \mathbb{Z} defined as follows:

$$\forall (a,b) \in \mathbb{Z} \times \mathbb{Z}, (a,b) \in R \text{ iff 3 divides } a-b$$

Prove that R is an equivalence relation. Also find the equivalence classes induced by R.