Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français
Semestre	Automne
Mode d'évaluation	Examen oral
Session	Janvier
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Maîtrise universitaire en mathématiques	N/A	6.0
Maîtrise universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Master of Science in Statistics	N/A	5.0
Baccalauréat universitaire en mathématiques	N/A	6.0

Optimization with applications I

14M192 | Sylvain Sardy

Objectifs

Description

En statistique de nombreux estimateurs sont définis comme solution dun problème doptimisation, par exemple lestimateur des moindres carrés, du maximum de vraisemblance, ou vraisemblances pénalisées (e.g., ridge, lasso, basis pursuit). Nous étudierons ces problèmes doptimisation (existence, unicité, convexité, différentiabilité) et développerons des algorithmes pour calculer ces estimateurs, notamment steepest descent, conjugate gradient, BFGS, relaxation (back-fitting), méthodes duales. Des travaux pratiques mettront en applications ces méthodes en les programmant en Python ou R.