In the Claims

1-8. (canceled)

9. (previously presented) A polymerizable composition comprising

- a) an ethylenically unsaturated monomer;
- b) a radical polymerization initiator; and
- c) a hydroxylamine having a molecular weight of more than 250 g/mol of formula A', A", B' or O'

wherein

m is 1,

R is hydrogen, C_1 - C_{18} alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β -unsaturated

- 2 -

10/568,376

RPP/1-22942/CGM 530/PCT

ر در 1300ع

.490

1,540

carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

p is 1;

 R_{101} is C_1 - C_{12} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl or benzoyl;

 R_{102} is C_1 - C_{18} alkyl, C_5 - C_7 cycloalkyl, C_2 - C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl;

 R_{106} and R'_{106} together are both hydrogen, a group =0 or =N-O- R_{120} wherein

R₁₂₀ is H, straight or branched C₁-C₁₈alkyl, C₃-C₁₈alkenyl or C₃-C₁₈alkinyl, which may be unsubstituted or substituted by one or more OH, C₁-C₈alkoxy, carboxy

or C₁-C₈alkoxycarbonyl; or is C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

or is phenyl, C_7 - C_9 phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C_1 - C_8 alkyl, halogen, OH, C_1 - C_8 alkoxy, carboxy or C_1 - C_8 alkoxycarbonyl;

or is $-C(O)-C_1-C_{36}$ alkyl, or an acyl moiety of a α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

or is $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO-NH-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H^+ , ammnonium or an alkali metal cation; or

 $R_{106} \ and \ R'_{106} \ are \ independently -O-C_1-C_{12} \\ alkyl, \ -O-C_3-C_{12} \\ alkenyl, \ -O-C_3-C_{12} \\ alkinyl, \ -O-C_3-C_{12} \\ alkenyl, \ -O-C_3-C_{12} \\ alkinyl, \ -O-C_3-C_{12} \\ alkinyl, \ -O-C_3-C_{12} \\ alkenyl, \ -O-C_3-C_{12} \\ alkinyl, \ -$

-O-C₅-C₈cycloalkyl, -O-phenyl, -O-naphthyl or -O-C₇-C₉phenylalkyl; or

 R_{106} and R'_{106} together form one of the bivalent groups -O-C(R_{121})(R_{122})-CH(R_{123})-O-,

 $-O-CH(R_{121})-CH_{122}-C(R_{122})(R_{123})-O-, -O-CH(R_{122})-CH_2-C(R_{121})(R_{123})-O-, -O-CH_2-C(R_{121})(R_{122})-CH(R_{123})-O-, -O-CH_2-C(R_{121})(R_{122})-CH(R_{123})-O-, -O-CH_2-C(R_{121})(R_{122})-CH_2-C(R_{121})(R_{121})-CH_2-C(R_{121})(R_{121})-CH_2-C(R_{121})(R_{121})-CH_2-C(R_{121})(R_{121})-CH_2-C(R_{1$

-O-CH₂-CH=CH-CH₂-O-,
$$C_{17}H_{32}$$
 or $C_{17}H_{32}$; wherein

 R_{121} is hydrogen, C_1 - C_{12} alkyl, COOH, COO- $(C_1$ - $C_{12})$ alkyl or CH_2OR_{124} ;

R₁₂₂ and R₁₂₃ are independently hydrogen, methyl ethyl, COOH or COO-(C₁-C₁₂)alkyl;

R₁₂₄ is hydrogen, C₁-C₁₂alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic, cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms;

G₆ is hydrogen and G₅ is hydrogen or C₁-C₄alkyl, and

G₁, G₂, G₃ and G₄ are methyl; or

 G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl.

10. (canceled)

- 11. (previously presented) A process for preparing an oligomer, a cooligomer, a polymer or a copolymer (block, random or graft) by free radical polymerization of at least one ethylenically unsaturated monomer or oligomer, which comprises (co)polymerizing the monomer or monomers/oligomers in the presence of
 - b) a free radical initiator and
 - c) a hydroxylamine, a nitrone or an alkyl N-oxid having a molecular weight of more than 250 g/mol,

where the hydroxylamine, the nitrone or the alkyl N-oxid are of formulae (I), II) or (III)

where

R₁, R₂, R₃ and R₄ are independently hydrogen, phenyl or C₁-C₄alkyl;

 R_5 and R_6 are independently C_7 - C_{35} alkyl, C_7 - C_{35} alkenyl or C_7 - C_{35} alkinyl, which may be unsubstituted or substituted by phenyl, halogen, NH_2 , $N(R_{21})_2$, -OH, -CN, -NO₂, or -COOR₂₁; or which may be interrupted by -O- or -C(O)-; or

 R_5 and R_6 together are an alkylene bridge, which may be interrupted by a -O-, -C(O)- or a -N(C₁-C₁₈alkyl)- group to form a heterocyclic 5, 6, 7 or 8 membered ring, which may be further substituted by a -O-C(O)-]_nR₂₀, NR₂₁-C(O)-]_nR₂₀ or a ketal group;

n is 1 or 2; wherein, when n is 1, R_{20} is hydrogen or C_1 - C_{18} alkyl and, when n is 2, R_{20} is C_1 - C_{18} alkylene; R_{21} is hydrogen or C_1 - C_{18} alkyl;

 R_7 and R_8 are independently C_8 - C_{36} alkyl; and R_9 is C_1 - C_4 alkyl.

13. (previously presented) A process according to claim 11 wherein the polymerization is carried out by heating and takes place at a temperature of between 70°C and 160°C.
14. (original) A process according to claim 11 wherein the hydroxylamine, the nitrone or the alkyl Noxid having a molecular weight of more than 250 g/mol is present in an amount of 0.001 to 10 mol % based on the monomer or monomers.
15. (original) A process according to claim 11 wherein the weight ratio between the radical polymerization initiator and the hydroxylamine, the nitrone or the alkyl N-oxid having a molecular weight of more than 250 g/mol is from 1:5 to 5:1.
16. (canceled)
17. (canceled)
18. (previously presented) A process for preparing an oligomer, a cooligomer, a polymer or a copolymer (block, random or graft) by free radical polymerization of at least one ethylenically unsaturated monomer or oligomer, which comprises (co)polymerizing the monomer or monomers/oligomers in the presence of b) a free radical initiator and c) a hydroxylamine having a molecular weight of more than 250 g/mol of formula A', A", B' or O'

$$G_{1}$$
 G_{2}
 G_{6}
 G_{2}
 G_{6}
 G_{2}
 G_{1}
 G_{6}
 G_{106}
 G_{106}

wherein

mis 1,

R is hydrogen, C_1 - C_{18} alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

p is 1;

R₁₀₁ is C₁-C₁₂alkyl, C₅-C₇cycloalkyl, C₇-C₈aralkyl, C₂-C₁₈alkanoyl, C₃-C₅alkenoyl or benzoyl;

R₁₀₂ is C₁-C₁₈alkyl, C₅-C₇cycloalkyl, C₂-C₈alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl;

 $R_{\underline{106}}$ and $R'_{\underline{106}}$ together are both hydrogen, a group =0 or =N-O- $R_{\underline{120}}$ wherein

 R_{120} is H, straight or branched C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl or C_3 - C_{18} alkinyl, which may be unsubstituted or substituted by one or more OH, C_1 - C_8 alkoxy, carboxy

or C_1 - C_8 alkoxycarbonyl; or is C_5 - C_{12} cycloalkyl or C_5 - C_{12} cycloalkenyl;

or is phenyl, C_7 - C_9 phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C_1 - C_8 alkyl, halogen, OH, C_1 - C_8 alkoxy, carboxy or C_1 - C_8 alkoxycarbonyl;

 G_5

(O')

or is $-C(O)-C_1-C_{36}$ alkyl, or an acyl moiety of a α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

or is $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO-NH-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H^+ , ammnonium or an alkali metal cation; or

 R_{106} and R'_{106} are independently $-O-C_1-C_{12}$ alkyl, $-O-C_3-C_{12}$ alkenyl, $-O-C_3-C_{12}$ alkinyl,

-O-C₅-C₈cycloalkyl, -O-phenyl, -O-naphthyl or -O-C₇-C₉phenylalkyl; or

R₁₀₆ and R'₁₀₆ together form one of the bivalent groups -O-C(R₁₂₁)(R₁₂₂)-CH(R₁₂₃)-O-,

-O-CH₂-CH=CH-CH₂-O-,
$$C_{17}H_{32}$$
 or $C_{17}H_{32}$; wherein

 R_{121} is hydrogen, C_1 - C_{12} alkyl, COOH, COO- $(C_1$ - $C_{12})$ alkyl or CH_2OR_{124} ;

R₁₂₂ and R₁₂₃ are independently hydrogen, methyl ethyl, COOH or COO-(C₁-C₁₂)alkyl;

R₁₂₄ is hydrogen, C₁-C₁₂alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic, cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms;

 G_{6} is hydrogen and G_{5} is hydrogen or $C_{1}\text{-}C_{4}\text{alkyl}\text{,}$ and

 $G_1,\,G_2,\,G_3$ and G_4 are methyl; or

 G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl.

ngh

1.1 -)-