UFR SCIENCES ET TECHNOLOGIES

INFORMATIQUE

L23 LECENCE 1 TD Algorithmique 1 Fiche de TD N° 1 Les concepts de base de l'Algo, et les structures alternatives

Exercice 1 : Carré

Écrire un algorithme appelé carre qui demande un entier x à l'utilisateur et affiche le carré de

Exercice 2 : Somme produit et moyenne

Ecrire un algorithme qui lit trois nombres calcule et affiche leur somme, leur produit et leur moyenne.

Exercice 3 : Cercle

Écrire un algorithme appelé cercle qui demande le rayon d'un cercle (de type réel) et affiche son diamètre, sa circonférence et sa surface.

Exercice 4 : Échange

Écrire un algorithme appelé echange qui permet d'échanger les valeurs de deux variables entières.

Exercice 5 : Signe du produit de deux nombres

Ecrire un algorithme permettant de déterminer le signe du produit de deux nombres sans faire le produit.

Exercice 6: Edition des trois plus petits nombres parmi quatre

Soit trois nombres X, Y et Z classés par ordre croissant et un nombre quelconque appelé
NOMBRE, Ecrire un algorithme permettant d'éditer les trois plus petites valeurs de ces quatre
variables

Exercice 7: Année bissextile

Écrire un algorithme qui demande à saisir une année, puis affiche si elle est bissextile ou non. On rappelle qu'une année A est bissextile si elle est multiple de 4, et si elle est multiple de 100 elle doit aussi être multiple de 400.

Par exemple 1996 oui, 1900 non, 2000 oui.

Exercice 8 : Boulangerie

Une boulangerie est ouverte de 7 heures à 13 heures et de 16 heures à 20 heures, sauf le lundi après-midi et le mardi toute la journée. On suppose que l'heure h est un entier entre 0 et 23. Le jour j code 0 pour lundi, 1 pour mardi, etc.

Ecrire un algorithme qui demande le jour et l'heure, puis affiche si la boulangerie est ouverte.

Exercice 9 : Factorisation d'un polynôme

- On considère l'équation ax² + bx + c = 0 où a, b, et c sont des réels donnés.
 Construire l'algorithme qui résout l'équation. Donner une codification de l'algorithme en Pascal.
- Ecrire un programme qui factorise (si possible) un polynôme du second degré ax² + bx + c = 0 sous la forme

•
$$a\left(x + \frac{b + \sqrt{\Delta}}{2a}\right)\left(x + \frac{b - \sqrt{\Delta}}{2a}\right)$$
.
• $a\left(x + \frac{b + i\sqrt{\Delta}}{2a}\right)\left(x - \frac{b - i\sqrt{\Delta}}{2a}\right)$ ou
• $b\left(x + \frac{c}{b}\right)$

suivant les valeurs des coefficients a, b et c. Δ est le déterminant et vaut b² - 4ac.

Exercice 10 : Distributeur automatique

Dans le ciné-club d'un quartier, les tarifs (en FCFA) sont donnés par la graille suivante :

Tarif de basc	Etudiant	Normal	Abonné
Semaine Week-end	400	500	400
	500	600	400

De plus les personnes qui habitent le quartier bénéficient d'une remise en FCFA.

Les dirigeants du ciné-club souhaitent mettre en place un distributeur automatique de tickets et il faut créer le logiciel qui gère ce distributeur. Dans un premier temps on s'occupe seulement du prix à payer.

 Donner l'expression booléenne (la condition) qui est vraie si et seulement si le tarif de base (i.e., le prix sans la réduction pour les habitants du quartier) à payer est de 500F CFA. Même question pour un tarif de base à payer de 400 FCFA.

 Ecrire un algorithme qui demande à un client les informations nécessaires, puis détermine et affiche le prix qu'il doit payer sa place de cinéma.

Contrainte : l'utilisateur répondre aux questions en donnant (au clavier, comme d'habitude) les valeurs suivantes :

- 1 pour lundi, 2 pour mardi, ..., 7 pour dimanche,
- E pour étudiant, N pour normal, A pour abonné,

- Q pour habitant du quartier, H pour habitant hors du quartier.

On suppose que le client ne se trompe pas et ne donne pas de veleur erronée. L'algorithme ne s'occupe que d'un seul client.