Bio 1M: Evolutionary processes

Evolution by natural selection

- What is the weak link in the story I told last chapter?
 - Heritable **variation** in traits
 - Selection (i.e., differential reproductive success) based on these traits

•

Some genetics

- Our basic traits are determined by genes
- A location where a gene can occur is called a **locus** (pl. **loci**)
- A particular version of a gene is called an allele
- Complex organisms usually have two alleles at each locus
 - These can be the same, or different

Loci

- Complex organisms usually have two alleles at each locus
 - These can be the same, or different
- An organism with different alleles at a particular locus is referred to as **heterozygous** (adj., n. form heterozygote)
- An organism with two copies of the same allele at a particular locus is referred to as **homozygous** (adj., n. form homozygote)

Two definitions of evolution

- Lecture: heritable changes in species traits over time
- Book: changes in allele frequencies
- These definitions are consistent; use the one which helps you think clearly

1 Analyzing genotype frequencies — S23.1 (2ndEd S25.2)

Genotypes and phenotypes

- A **genotype** is the collection of an individual's genes
- A phenotype is the collection of an individual's physiological and physical traits
 - What we can observe about an individual
 - Phenotype is largely (but by no means entirely) determined by genotype

Example: peppered moths

- Kettlewell's experiment https://en.wikipedia.org/wiki/Kettlewell%27s_experiment
- Two different alleles possible at the wing color gene: A_1 and A_2 .
 - Individuals with A_1A_1 genotype have light-winged phenotype
 - Individuals with A_2A_2 genotype have dark-winged phenotype.
 - Individuals with A_1A_2 genotype ???
- If individuals with genotype XY have the same phenotype (on average) as those with XX, we say that X is a **dominant** allele and Y is a **recessive** allele.
- If XY individuals have an intermediate phenotype (between XX and YY, we say X and Y are **incompletely dominant**.

Co-dominance

- Co-dominance means when both phenotypes are expressed. Whatever that would mean.
- Examples?
- a very particular term that should fall under incomplete dominance
- People shouldn't worry about this distinction, and you shouldn't worry about it for this course
 - Notice that it's not in bold

Analyzing genotype frequencies

- We analyze genotype frequencies as follows:
 - Make simple assumptions about how frequencies work
 - Calculate **expected frequencies** under our assumptions
 - Measure **observed frequencies** in the population
 - Look for evidence of systematic (not random) difference between expected and observed frequencies

Making simple assumptions

• Expected frequencies are usually calculated by assuming that alleles assort randomly and independently, like flipping two coins, or rolling two dice

Activity: Coin flipping

- I flip two fair coins (ie., each coin will land heads with probability 1/2).
- What is the probability of:
 - Two heads
 - Two tails?
 - One of each?

•

Activity: Professional coin flipping

- A professional gambler can flip a coin so that it lands heads 70% of the time. She flips two coins.
- What is the probability of:
 - Two heads
 - Two tails?
 - One of each?

•

Hardy-Weinberg distribution

- The Hardy-Weinberg distribution is the distribution expected if alleles work like coins (random and independent).
- If p is frequency of allele A_1 and q is frequency of allele A_2 , then:
 - Frequency of genotype A_1A_1 is p^2 .
 - Frequency of genotype A_2A_2 is q^2 .
 - Frequency of genotype A_1A_2 is 2pq.
- Why the 2?

Example: calculating allele frequencies

- I collect 20 perpered moths from a particular place, and find that 4 have genotype A_1A_1 , 8 have genotype A_1A_2 , and 8 have genotype A_2A_2 .
- What is the observed frequency of each allele?
- What is the expected frequency of each genotype under the Hardy-Weinberg assumptions?
- Is this population in Hardy-Weinberg equilibrium?

*

What do we mean by expected?

- If we flip a fair coin 100 times, what is the expected number of heads?
 - What if we flip it 25 times?
- We don't expect to get exactly the expected value.
- The 'expected value' is an average of what is expected under our assumptions

How do you know a coin is perfectly fair?

- You can never be sure that a coin is perfectly fair, you can only evaluate your evidence that it's more or less close to fair.
- Similarly, we never have evidence that a population is exactly in Hardy-Weinberg equilibrium
- We can only evaluate our evidence that it is far from (or close to) equilibrium
- What's another way to think about the evidence?

Hardy-Weinberg equilibrium

- When do we expect genotype frequencies to behave like coins?
- Alleles selected at random from the previous generation:

-

- If these assumptions hold exactly, we expect **Hardy-Weinberg equilibrium**
 - Hardy-Weinberg distribution, with no change in allele frequencies from generation to generation.
- This never happens

Differences from equilibrium

- If we observe large differences from the Hardy-Weinberg equilibrium, this is usually a sign that mating is not random, or that natural selection is operating
- The analysis tells us that something is going on, but not what
- Hardy-Weinberg is a **null model**: it tells us what to expect if complicating effects are absent
- Without a null model, we couldn't start interpreting.

Example: Human blood groups

- MN blood groups in different human populations are very close to Hardy-Weinberg equilibrium Table 23.1 (2ndEd 25.1)
 - No evidence for non-random mating, or for fitness differences.
 - This does not mean it's not happening, but probably means that it's small

Activity: Human blood groups at the global level

- •
- •
- •
- •
- •

Example: Human HLA genes — Table 23.2 (2ndEd 25.2)

- HLA genes are used by the immune system to recognize disease-causing organisms
- Researchers hypothesized that heterozygous individuals may recognize more bacteria and viruses
- Data shows that more people are heterozygous for HLA genes than would be expected under the Hardy-Weinberg assumption

Heterozygous HLA genes

- Why might more people be heterozygous for HLA genes than predicted by Hardy-Weinberg?
 - _ _ *
 - _

2 Types of natural selection — S23.2 (2ndEd S25.3)

2.1 Directional selection

- Directional selection tends to move a population in a particular direction
 - Giraffe necks
 - Human brains

Multi-directional selection

- Directional selection can change through time with the environment
 - Swallows may get larger during extreme cold spells, smaller again during normal weather
 - * But we need to know whether the changes we saw were heritable
 - Finch beaks get thicker when food is scarce, and smaller when food is abundant
- Why might small-beaked finches have advantages?

>

*

2.2 Stabilizing selection

- Stabilizing selection tends to keep the population where it is
 - Example: human birthweights Fig 23.4 (2ndEd 25.4)

Connections between selection types

• What happens if the target of directional selection stays the same for a long time?

• Examples?

_

_

*

2.3 Disruptive selection

- Disruptive selection favors phenotypes different from the average value Fig 23.5 (2ndEd 25.5)
 - Black-bellied seedcrackers
 - Animals that get eaten a lot may want to look different from their peers
- Disruptive selection may lead to **speciation** the formation of new species.

2.4 Balancing selection

- Balancing selection tends to maintain allele diversity
 - When there is no single best allele
- Heterozygote advantage: when heterozygotes have higher fitness
- Frequency dependence: when rare types have higher fitness

Example: The sickle cell phenotype

- Blood cells that can lose their shape and squash malaria parasites!
 - People heterozygous for this trait get less sick with malaria
 - People homozygous for this trait have too much instability and severe anemia
- This is an example of:

Example: seedcrackers

• What would happen if almost all of the seedcrackers had large bills?

*

• What happens when large-billed and small-billed individuals breed?

_

_

3 Other evolutionary mechanisms

3.1 Genetic drift

- Genetic drift is change in allele frequencies due to random sampling:
 - Some individuals have more offspring than others due to chance events
 - Offspring receive certain parental alleles, and not others
- These factors will lead to an accumulation of random changes in allele frequencies

Thought experiment

- Imagine flipping a fair coin 100 times
 - Repeat
- Now imagine choosing 100 alleles at random (with replacement) from a population of 50 A and 50 B alleles
 - Repeat, using new population as a starting point Fig 23.6 (2ndEd 25.6)

Small populations

- Drift is much stronger in small populations than in large ones (law of averages).
- Even if a population is big now, it may have been small in the past
 - Founder effects occur when a new population is started by a small number of individuals
 - Bottlenecks occur when a population becomes small, then large again
 - * ... or, when a new genetic mutation takes over a population

Fixation and loss

- An allele may drift to a frequency of 0 (it's **lost**) or of 1 (it's **fixed**)
- Advantageous alleles are often (not always) fixed
- Disadvantageous alleles are usually (not always) lost
- Alleles with **neutral** differences (no selective difference) will be fixed or lost at random
 - This is also true for alleles with small effects
- Drift tends to reduce genetic variation

3.2 Gene flow — S23.4 (2ndEd S25.4)

- Gene flow is the movement of alleles from one population to another
 - This happens when individuals move from one population to another and breed
- How we think about gene flow depends on how we choose to define a 'population'
- Gene flow can be an obstacle to speciation; it helps keep populations similar

3.3 Mutation — S23.5 (2ndEd S25.5)

- Mutations are heritable errors in copying DNA
- Mutations are rare; by themselves they don't cause much evolution
- Mutations are extremely important to evolution, however:

_

Types of mutations

- Mutations can occur at many scales:
 - a single DNA base might change
 - chunks of DNA can be added or subtracted
 - whole genes (or whole chromosomes) can be duplicated
- New genetic sequence can come from:
 - copying errors
 - other organisms! lateral gene transfer

Mutations are random

- Most mutations are **deleterious** bad for fitness
- Very rarely mutations are **beneficial** good for fitness
 - Such mutations are favored by natural selection

Complex organisms

- Can complex organisms arise through random mutations?
 - A central question of biology
 - Large-scale evolution takes a long time
 - Beneficial changes can accumulate gradually
 - Much evidence of intermediate forms
- Check out videos of "evolution of the eye"

What about sex?

- Sex does not *directly* change allele frequencies
 - Your book may say this means it's not an "evolutionary process" don't worry about that
- It does act to bring alleles together (and to split them apart)
- Sex is not a source of new alleles
 - But it is a source of new combinations
- There is still active debate on the advantages and disadvantages of sex in evolution

4 Mating patterns

4.1 Inbreeding

- Inbreeding refers to mating between close relatives
- Since relatives will tend to share similar alleles, inbred populations will tend to differ from Hardy-Weinberg equilibrium in what way?

Inbreeding depression

- In many populations, it is observed that inbred individuals have lower fitness:
 - They are more likely to be homozygous for rare genetic defects
 - They are less likely to be heterozygous for immune-system genes
- Inbreeding depression is a serious concern for conservation
 - As populations get smaller, inbreeding becomes more common
- Wildlife studies show that panthers with both parents from Florida (small population) do not survive well Fig 23.14
- Human demographic studies show strikingly lower survival for children of first cousins

4.2 Sexual selection

- Sexual selection is a form of natural selection
- Occurs when there is heritable variation in traits related to success in obtaining mates

Example: zebra finches

- Males but not females have colorful orange beaks
- Hypothesis: these beaks make males more attractive to females Fig 23.18 (2ndEd 25.17)

Activity: Zebra finch experiments

• How would you test this hypothesis?

Results: Zebra finch experiments

Results: Zebra finch experiments

• Why not simply find and use birds whose beaks are naturally more or less orange?

• What is a possible problem with the conclusion that females prefer birds with orange beaks?

Why the males?

- Males often have striking traits that females lack, used in courtship, or in battles for mates
 - Sexual dimorphism refers to trait differences between males and females
- Why do males more often have these traits than females?
 - Investment in reproduction
 - Variation in reproductive success

Investment in reproduction

- In many species, females invest much more in each offspring than males do
 - Eggs are expensive, sperm are cheap
 - Females are often more involved in caring for offspring
- If females invest a lot in each offspring, they can maximize fitness by being choosy about mates
- If males invest little in each offspring, they can maximize fitness by mating as much as possible

Testing the theory

• How might we test the theory that males compete more sexually because females invest more in offspring?

*

*

Variation in reproductive success

- Males often have greater variation in reproductive success than females do
- This is a side-effect of the fact that females usually invest a lot in each offspring
 - Reduces potential total number of offspring
 - Makes females desirable to males
- Greater variation in reproductive success means that winning contests is more important to male than female fitness

Example: elephant seals

- Male elephant seals compete for control of breeding beaches
- Huge variation in reproductive success
- Huge size difference between males and females (strong sexual dimorphism) Fig 23.19 (2ndEd 25.19)

What about people?

- Men and women have pretty clear size differences
- How unequal is child-rearing in people?

_ *

- To what extent do these principles even apply to people?
 - _

Conclusions

- Mutation (mistakes!) is the source of new variation
- Natural selection drives adaptation: selects variation that allows organisms to thrive in diverse settings
- Sex facilitates new combinations, but sexual selection can work against adaptation to the environment
- Genetic drift and gene flow are also non-adaptive drivers of evolution
- The adaptation we see is the result of all of these processes:
 - adaptive, non-adaptive, previously adaptive