Solving Linear Systems Gauss Elimination

CS/SE 4X03

Ned Nedialkov

McMaster University

September 23, 2021

Outline

Linear systems

Example

Gauss elimination

Algorithm

Cost

Backward substitution

Algorithm

Cost

Total cost

Linear systems Example Gauss elimination Backward substitution Total cost

Linear systems

ullet Given an $n \times n$ nonsingular matrix A and an n-vector b solve

$$Ax = b$$

The following are equivalent

- \circ A is nonsingular
 - The determinant of A is nonzero, $det(A) \neq 0$
 - o Columns (rows) are linearly independent
 - \circ There exists A^{-1} such that $A^{-1}A=AA^{-1}=I,$ where I is the $n\times n$ identity matrix

Linear systems Example Gauss elimination Backward substitution Total cost Linear systems cont.

- ullet Dense system: A may have a small number of nonzeros
- Sparse system: most of the elements are zeros
 See Florida Sparse Matrix Collection
- Direct methods: based on Gauss elimination
- ullet Iterative methods: for large A

Example

$$Ax = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 3 \\ 3 \end{bmatrix} = b$$

Multiply first row by 1 and subtract from second row, multiply first row by 3 and subtract from third row

$$A|b = \begin{bmatrix} 1 & -1 & 3 & 11 \\ 1 & 1 & 0 & 3 \\ 3 & -2 & 1 & 3 \end{bmatrix} \begin{array}{c} \times 1 & \times 3 \\ \downarrow & & \downarrow \end{array}$$

$$A|b \leftarrow \begin{bmatrix} 1 & -1 & 3 & 11 \\ 0 & 2 & -3 & -8 \\ 0 & 1 & -8 & -30 \end{bmatrix}$$

Linear systems Example Gauss elimination Backward substitution Total cost Example cont.

Multiply second row by $\frac{1}{2}$ and subtract from third row

$$A|b \leftarrow \begin{bmatrix} 1 & -1 & 3 & 11 \\ 0 & 2 & -3 & -8 \\ 0 & 1 & -8 & -30 \end{bmatrix} \quad \times \frac{1}{2}$$

$$\downarrow$$

$$A|b \leftarrow \begin{bmatrix} 1 & -1 & 3 & 11 \\ 0 & 2 & -3 & -8 \\ 0 & 0 & -6.5 & -26 \end{bmatrix}$$

This is Gauss elimination, also called forward elimination

Linear systems Example Gauss elimination Backward substitution Total cost Example cont.

$$\begin{bmatrix} 1 & -1 & 3 \\ 0 & 2 & -3 \\ 0 & 0 & -6.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \begin{bmatrix} 11 \\ -8 \\ -26 \end{bmatrix}$$

$$\begin{array}{lll} x_3 &= b_3/a_{33} &= -26/(-6.5) &= 4 \\ x_2 &= (b_2 - a_{23}x_3)/a_{22} &= (-8 - (-3) \times 4)/2 &= 2 \\ x_1 &= (b_1 - a_{12}x_2 - a_{13}x_3)/a_{11} &= (11 - (-1) \times 2 - 3 \times 4)/1 &= 1 \end{array}$$

This is called backward substitution

Gauss elimination

Algorithm

```
Algorithm 3.1 (Gauss elimination). for k=1:n-1 % for each row for i=k+1:n % for each row below kth m_{ik}=a_{ik}/a_{kk} % multiplier % update row for j=k+1:n a_{ij}=a_{ij}-m_{ik}a_{kj} b_i=b_i-m_{ik}b_k % update b_i
```

Gauss elimination cont.

Cost

- ullet We do not count the operations for updating b
- The third nested **for** loop executes n-k times
 - \circ n-k multiplications
 - \circ n-k additions
- The work per one iteration of the second nested **for** loop is 2(n-k)+1, the 1 comes from the division
- This loop executes n-k times
- The total work for the second nested **for** loop is $2(n-k)^2 + (n-k)$
- The work for the outermost **for** loop is

$$\sum_{k=1}^{n-1} \left[2(n-k)^2 + (n-k) \right] = 2\sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k$$

Gauss elimination cont.

Cost

Since
$$1^2+2^2+3^2+\cdots+n^2=n(n+1)(2n+1)/6$$

$$\sum_{k=1}^{n-1}k^2=(n-1)(n-1+1)(2(n-1)+1)/6$$

$$=n^3/3-n^2/2+n/6$$

Using the above and $\sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}$,

$$2\sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k = 2n^3/3 - 2n^2/2 + 2n/6 + n^2/2 - n/2$$
$$= 2n^3/3 - n^2/2 - n/6 = 2n^3/3 + O(n^2)$$

Total work for Gauss elimination is $2/3n^3 + O(n^2)$

Backward substitution

• After GE, we have

$$\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & \vdots \\ a_{n-1,n-1} & a_{n-1,n} \\ a_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

- $x_n = b_n/a_{n,n}$
- $a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_{n-1}$ $x_{n-1} = (b_{n-1} - a_{n-1,n}x_n)/a_{n-1,n-1}$
- $x_k = \left(b_k \sum_{j=k+1}^n a_{k,j} x_j\right) / a_{k,k}$

Backward substitution

Algorithm

Algorithm 4.1 (Backward substitution). for
$$k = n: -1: 1$$

$$x_k = \left(b_k - \sum_{j=k+1}^n a_{k,j} x_j\right)/a_{k,k}$$

Backward substitution

Cost

- The work per iteration is
 - \circ n-k multiplications
 - $\circ (n-k-1)+1$ additions
 - o 1 division
 - \circ total 2(n-k)+1 operations
- Total work is

$$\sum_{k=1}^{n} (2(n-k)+1) = 2\sum_{k=1}^{n} (n-k) + \sum_{k=1}^{n} 1$$

$$= 2\sum_{k=1}^{n-1} k + n = 2\frac{n(n-1)}{2} + n$$

$$= n^{2} - n + n = n^{2}$$

Total cost

- GE: $2n^3/3 n^2 + n/6$
- Backward substitution: n^2
- Total cost for solving Ax = b is

$$2n^3/3 + n^2/2 + n/6 = 2n^3/3 + O(n^2) = O(n^3)$$