Louis Meunier

Algebra 2 MATH251

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Anush Tserunyan.

Contents

1	Introduction		
	1.1	Vector Spaces	2
	1.2	Creating Spaces from Other Spaces	4
	1.3	Linear Combinations and Space	6
	1.4	Linear Dependence and Span	10
2	Linear Transformations		17
	2.1	Definitions	17

1 Introduction

Remark 1.1. This course is about vector spaces and linear transformations between them; a vector space involves multiplication by scalars, where the scalars come from some field. We recall first examples of fields, then vector spaces, as a motivation, before presenting a formal definition.

1.1 Vector Spaces

Remark 1.2. Much of this is recall from Algebra 1.

*** Example 1.1: Examples of Fields**

- 1. \mathbb{Q} ; the field of rational numbers.
- 2. \mathbb{R} ; the field of real numbers; $\mathbb{Q} \subseteq \mathbb{R}$.
- 3. \mathbb{C} ; the field of complex numbers; $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- 4. $\mathbb{F}_p \equiv \mathbb{Z}/p\mathbb{Z} \equiv \{0, 1, \dots, p-1\}$; the (unique) field of pelements, where pprime.

(a)
$$p = 2$$
; $\mathbb{F}_2 \equiv \{0, 1\}$.

(b)
$$p = 3$$
; $\mathbb{F}_3 \equiv \{0, 1, 2\}$.

(c) · · ·

a where $a +_p b :=$ remainder of $\frac{a+b}{p}$, $a \cdot_p b :=$ remainder of $\frac{a \cdot b}{p}$.

Remark 1.3. Throughout the course, we will denote an abstract field as \mathbb{F} .

® Example 1.2: Examples of Vector Spaces

- 1. $\mathbb{R}^3 := \{(x,y,z) : x,y,z \in \mathbb{R}\}$. We can add elements in \mathbb{R}^3 , and multiply them by real scalars.
- 2. $\mathbb{F}^n := \underbrace{\mathbb{F} \times \mathbb{F} \times \cdots \mathbb{F}}_{n \text{ times}} := \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{F}\}, \text{ where } n \in \mathbb{N}^1; \text{ this is a generalization of the previous example, where we took } n = 3, \mathbb{F} = \mathbb{R}. \text{ Operations follow identically; addition:}$

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) := (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and, taking a scalar $\lambda \in \mathbb{F}$, multiplication:

$$\lambda \cdot (a_1, a_2, \dots, a_n) := (\lambda \cdot a_1, \lambda \cdot a_2, \dots, \lambda \cdot a_n).$$

We refer to these elements (a_1, \dots, a_n) as vectors in \mathbb{F}^n ; the vector for which

 $a_i = 0 \,\forall i$ is the 0 *vector*, and is the additive identity, making \mathbb{F}^n an abelian group under addition, that admits multiplication by scalars from \mathbb{F} .

- 3. $C(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{R} : f \text{ continuous} \}$. Here, we have the constant zero function as our additive identity $(x \mapsto 0 \forall x)$, and addition/scalar multiplication of two continuous real functions are continuous.
- 4. $\mathbb{F}[t] := \{a_0 + a_1t + a_2t^2 + \dots + a_nt^n : a_i \in \mathbb{F} \, \forall i, n \in \mathbb{N} \}$, ie, the set of all polynomials in t with coefficients from \mathbb{F} . Here, we can add two polynomials;

$$(a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_mt^m) := \sum_{i=0}^{\max\{n,m\}} (a_i + b_i)t^i,$$

(where we "take" undefined a_i/b_i 's as 0; that is, if m > n, then $a_{m-n}, a_{m-n+1}, \ldots, a_m$ are taken to be 0). Scalar multiplication is defined

$$\lambda \cdot (a_0 + a_1t + a_2t^2 + \dots + a_nt^n) := \lambda a_0 + \lambda a_1t + \lambda a_2t^2 + \dots + \lambda a_nt^n.$$

Here, the zero polynomial is simply 0 (that is, $a_i = 0 \,\forall i$).

→ Definition 1.1: Vector Space

A vector space V over a field \mathbb{F} is an abelian group with an operation denoted + (or $+_V$) and identity element² denoted 0_V , equipped with scalar multiplication for each scalar $\lambda \in \mathbb{F}$ satisfying the following axioms:

1.
$$1 \cdot v = v$$
 for $1 \in \mathbb{F}$, $\forall v \in V$.

2.
$$\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta)v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$$

3.
$$(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$$

4.
$$\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v, \forall \alpha \in \mathbb{F}, u, v \in V.$$

We refer to elements $v \in V$ as vectors.

$\hookrightarrow \underline{\textbf{Proposition}}$ 1.1

For a vector space V over a field \mathbb{F} , the following holds:

1.
$$0 \cdot v = 0_V$$
, $\forall v \in V$ (where $0 := 0_{\mathbb{F}}$)

2.
$$-1 \cdot v = -v, \forall v \in V \text{ (where } 1 := 1_{\mathbb{F}})^3$$

¹Where we take $0 \in \mathbb{N}$, for sake of consistency. Moreover, by convention, we define \mathbb{F}^0 (that is, when n = 0) to be $\{0\}$; the trivial vector space.

²The "zero vector".

3.
$$\alpha \cdot 0_V = 0_V, \forall \alpha \in \mathbb{F}$$

³NB: "additive inverse"

<u>Proof.</u> 1. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \implies 0 \cdot v = 0_V$ (by "cancelling" one of the $0 \cdot v$ terms on each side).

2.
$$v + (-1 \cdot v) = (1 \cdot v + (-1) \cdot v) = (1 - 1) \cdot v = 0 \cdot v = 0_V \implies (-1 \cdot v) = -v.$$

3. $\alpha \cdot 0_V = \alpha \cdot (0_V + 0_V) = \alpha \cdot 0_V + \alpha \cdot 0_V \implies \alpha \cdot 0_V = 0_V$ (by, again, cancelling a term on each side).

→ Wed Jan 10 14:16:29 EST 2024

1.2 Creating Spaces from Other Spaces

→ Definition 1.2: Product/Direct Sum of Vector Spaces

For vector spaces U, V over the same field \mathbb{F} , we define their *product* (or *direct sum*) as the set

$$U \times V = \{(u, v) : u \in U, v \in V\},\$$

with the operations:

$$(u_1, v_1) + (u_2, v_2) := (u_1 + u_2, v_1 + v_2)$$

 $\lambda \cdot (u, v) := (\lambda \cdot u, \lambda \cdot v)$

\circledast Example 1.3: \mathbb{F}

 $\mathbb{F}^2 = \mathbb{F} \times \mathbb{F}$, where \mathbb{F} is considered as the vector space over \mathbb{F} (itself).

→ Definition 1.3: Subspace

For a vector space V over a field \mathbb{F} , a *subspace* of V is a subset $W \subseteq V$ s.t.

- 1. $0_V \in W^4$
- 2. $u + v \in W \, \forall \, u, v \in W$ (closed under addition)
- 3. $\alpha \cdot u \in W \, \forall \, u \in W, \alpha \in \mathbb{F}^5$

Then, W is a vector space in its own right.

*** Example 1.4: Examples of Subspaces**

- 1. Let $V := \mathbb{F}^n$.
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 = 0\} = \{(0, x_2, x_3, \dots, x_n) : x_i \in \mathbb{F}\}.$
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 + 2 \cdot x_2 = 0\}$

<u>Proof.</u> Let $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in W$. Then, $x + y = (x_1 + y_1, ..., x_n + y_n)$, and $x_1 + y_1 + 2 \cdot (x_2 + y_2) = x_1 + 2 \cdot x_2 + y_1 + 2 \cdot y_2 = 0 + 0 = 0 \implies x + y \in W$. Similar logic follows for axioms 2., 3.

• (More generally)

$$a_{11}x_1 + \cdots + a_{1n}x_n = 0$$

$$W := \{(x_1, \dots, x_n) \in \mathbb{F}^n : a_{21}x_1 + \cdots + a_{2n}x_n = 0 \},$$

$$\vdots$$

$$a_{k1}x_1 + \cdots + a_{kn}x_n = 0$$

that is, a linear combination of homogenous "conditions" on each term.

- $W^* := \{(x_1, \dots, x_n) : x_1 + x_2 = 1\}$ is *not* a subspace; it is not closed under addition, nor under scalar multiplication.
- 2. Let $\mathbb{F}[t]_n := \{a_0 + a_1t + \dots + a_nt^n : a_i \in \mathbb{F}\}$. Then, $\mathbb{F}[t]_n$ is a subspace of $\mathbb{F}[t]$, the more general polynomial space. *However*, the set of all polynomials of degree *exactly* n (all axioms fail, in fact) is not a subspace of $\mathbb{F}[t]_n$.
 - $W := \{p(t) \in \mathbb{F}[t]_n : p(1) = 0\}.$
 - $W := \{p(t) \in \mathbb{F}[t]_n : p''(t) + p'(t) + 2p(t) = 0\}.$
- 3. Let $V:=C(\mathbb{R})$ be the space of continuous function $\mathbb{R} \to \mathbb{R}$.

- ⁴This is equivalent to requiring that $W \neq \emptyset$; stated this way, axiom 3. would necessitate that $0 \cdot w = 0_V \in W$.
- ⁵Note that these axioms are equivalent to saying that W is a subgroup of V with respect to vector addition; 2. ensures closed under addition, and 3. ensures the existence of additive inverses (as per $-1 \cdot v = -v$).

• $W := \{ f \in C(\mathbb{R}) : f(\pi) + 7f(\sqrt{2}) = 0 \}.$

• $W:=C^1(\mathbb{R}):=$ everywhere differentiable functions.

• $W := \{ f \in C(\mathbb{R}) : \int_0^1 f \, \mathrm{d}x = 0 \}.$

\hookrightarrow Proposition 1.2

Let W_1, W_2 be subspaces of a vector space V over \mathbb{F} . Then, define the following:

1. $W_1 + W_2 := \{ w_1 + w_2 : w_1 \in W_1, w_2 \in W_2 \}$

2. $W_1 \cap W_2 := \{ w \in V : w \in W_1 \land w \in W_2 \}$

These are both subspaces of V.

Proof. 1. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 + W_2$.

(b) $(u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in W_1 + W_2$.

(c) $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v \in W_1 + W_2$

2. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 \cap W_2$.

(b) $u, v \in W_1 \cap W_2 \implies u + v \in W_1 \wedge u + v \in W_2 \implies u + v \in W_1 \cap W_2$.

(c) $\alpha \cdot u \in W_1 \wedge \alpha \cdot u \in W_2 \implies \alpha \cdot u \in W_1 \cap W_2$.

1.3 Linear Combinations and Space

→ Definition 1.4: Linear Combination

Let V be a vector space over a field \mathbb{F} . For finitely many vectors v_1, v_2, \ldots, v_n , their *linear combination* is a sum of the form

$$\sum_{i=1}^{n} a_i v_i = a_1 \cdot v_1 + \dots + a_n \cdot v_n,$$

where $a_i \in \mathbb{F} \, \forall i$.

A linear combination is called *trivial* if $a_i = 0 \,\forall i$, that is, all coefficients are 0.

If n=0 (ie, we are "summing up" 0 vectors), we define the sum as the zero vector; $\sum_{i=1}^{0} a_i v_i := 0_V$.

 $\hookrightarrow \textit{Wed Jan 10 13:37:51 EST 2024}$

→ Definition 1.5: A More General Definition of Linear Combination

For a a (possible infinite) set S of vectors from V, a linear combination of vectors in S is a linear combination of $a_1v_1 + \cdots + a_nv_n$ for some finite subset $\{v_1, \dots, v_n\} \subseteq S^6$

> ⁶That is, we do not allow infinite sums.

\hookrightarrow **Definition** 1.6: Span

For a subset $S \subseteq V$, we define its *span* as

 $\operatorname{Span}(S) := \operatorname{set} \operatorname{of} \operatorname{all linear combinations of} S := \{a_1v_1 + \cdots + a_nv_n : a_i \in \mathbb{F}, v_i \in S\}.$

By convention, we set $Span(\emptyset) = \{0_V\}.$

*** Example 1.5**

Let $S := \{(1,0,-1), (0,1,-1), (1,1,-2)\} \subset \mathbb{R}^3$. Then,

$$0_{\mathbb{R}^3} = (0,0,0) = 1 \cdot (1,0,-1) + 1 \cdot (0,1,-1) + -1 \cdot (1,1,-2).$$

We claim, moreover, that $\mathrm{Span}(S) = U := \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ (a plane through the origin).

Proof. Note that $S \subseteq U$, hence $S \subseteq \operatorname{Span} S \subseteq U$. OTOH, if $(x, y, z) \in U$, we have z = -x - y, and so

$$(x, y, z) = (x, y, -x - y) = x \cdot (1, 0, -1) + y \cdot (0, 1, -1) \in \text{Span}(S)$$

hence $U \subseteq \operatorname{Span}(S)$ and thus $\operatorname{Span}(S) = U$.

Remark 1.4. We implicitly used the following claim in the proof above; we prove it more generally.

\hookrightarrow Proposition 1.3

§1.3

Let V be a vector space over \mathbb{F} and let $S \subseteq V$. Then, $\operatorname{Span}(S)$ is always a subspace. Moreover, it is the smallest (minimal) subspace containing S (that is, for any subspace $U \supseteq S$, we have that $U \supseteq \operatorname{Span} S$).

Proof. Because adding/scalar multiplying linear combinations of elements of S again results in a linear combination of elements of S, and $0_V \in \text{Span}(S)$ by definition, we have that Span(S)is indeed a subspace.

If $U \supset S$ is a subspace of V containing S, then by definition U is closed under addition, that is, taking linear combinations of its elements (in particular, of elements of S); hence, $U \supset$ $\mathrm{Span}(S)$.

\hookrightarrow Lemma 1.1

For $S \subseteq V$ and $v \in V$, $v \in \operatorname{Span}(S) \iff \operatorname{Span}(S \cup \{v\}) = \operatorname{Span}(S)$.

<u>Proof.</u> (\Longrightarrow) Let $v \in \operatorname{Span}(S) \Longrightarrow v = a_1v_1 + \cdots + a_nv_n, a_i \in \mathbb{F}, v_i \in V$. Then, for any linear combination

$$b_1u_1 + \cdots + b_mu_m + b \cdot v = b_1u_1 + \cdots + b_mu_m + b(a_1v_1 + \cdots + a_nv_n)$$

is a linear combination of vectors in $S \cup \{v\}$ (first equality) or equivalently, a combination of vectors in S (second equality) and thus $\mathrm{Span}(S \cup \{v\}) \subseteq \mathrm{Span}\, S$. The reverse inclusion follows trivially.

$$(\longleftarrow) \operatorname{Span}(S \cup \{v\}) = \operatorname{Span}S \implies v \in \operatorname{Span}(S).$$

*** Example 1.6**

(From the above example) We have

$$Span(\{(1,0,-1),(0,1,-1)\} \cup \{(1,1,-2)\}) = Span(\{(1,0,-1),(0,1,-1)\}),$$

since $(1, 1, -2) \in \text{Span}(\{(1, 0, -1), (0, 1, -1)\})$ (it was redundant, as it could be generated by the other two vectors).

\hookrightarrow <u>Definition</u> 1.7: Spanning Set

Let V be a vector space over a field \mathbb{F} . We call $S \subseteq V$ a spanning set for V if $\mathrm{Span}(S) = V$. We call such a spanning set minimal if no proper subset of S is a spanning set $(\exists v \in S \text{ s.t. } S \setminus \{v\} \text{ spanning})$.

Remark 1.5. Note that any $S \subseteq V$ is a spanning for $\mathrm{Span}(S)$. But, S may not be minimal; indeed, consider the previous example. We were able to remove a vector from S while having the same span.

*** Example 1.7**

§1.3

For \mathbb{F}^n as a vector space over \mathbb{F} , the *standard spanning set*

$$St := \{ \underbrace{(1, \dots, 0)}_{:=e_1}, \underbrace{(0, 1, 0, \dots, 0)}_{:=e_2}, \dots, \underbrace{(0, \dots, 1)}_{e_n} \}.$$

Given any $x := (x_1, \dots, x_n) \in \mathbb{F}^n$, we can write

$$x = x_1 \cdot e_1 + \cdots + x_n \cdot e_n$$
.

This is clearly minimal; removing any e_i would then result in a 0 in the *i*th "coordinate"

→ **<u>Definition</u>** 1.8: Linear Dependence

Let V be a vector space over a field \mathbb{F} . A set $S \subseteq V$ is said to be *linearly dependent* if there is a nontrivial linear combination of vectors in S that is equal to 0_V .

Conversely, S is called *linearly independent* if there is no nontrivial linear combination of vectors in S that is equal to 0_V ; all linear combinations of vectors in S that equal 0_V are trivial.

*** Example 1.8**

- 1. The empty set \varnothing is linearly independent; there are no non-trivial linear combinations that equal 0_V (there are no linear combinations at all).
- 2. For $v \in V$, the set $\{v\}$ is linearly dependent iff $v = 0_V$.
- 3. $S := \{(1,0,-1),(0,1,-1),(1,1,-2)\} := \{v_1,v_2,v_3\}; S$ is linearly dependent $(v_1 + v_2 v_3 = (0,0,0)).$
- 4. $V:=\mathbb{F}^3$; $S:=\{(1,0,-1),(0,1,-1),(0,0,1)\}=\{v_1,v_2,v_3\}$ is linearly independent.

Proof. Suppose

$$a_1v_1 + a_2v_2 + a_3v_3 = 0_V$$

 $\implies a_1 = 0 \land a_2 = 0 \land -a_1 - a_2 + a_3 = 0 \implies a_3 = 0$
 $\implies a_1 = a_2 = a_3 = 0$

Hence only a trivial linear combination is possible.

5. St_n is linearly independent.

Proof.

$$\sum_{i=1}^{n} a_i e_i = 0_{\mathbb{F}^n} \implies a_i = 0 \,\forall i$$

\hookrightarrow Lemma 1.2

Let V be a vector space over a field \mathbb{F} , and $S \subseteq V$ (possibly infinite).

- 1. S is linearly dependent \iff there is a finite subset $S_0 \subseteq S$ that is linearly dependent.
- 2. S is linearly independent \iff all finite subsets of S are linearly independent.

Proof. 2. follows from the negation of 1.

 (\Leftarrow) Trivial.

(\Longrightarrow) Suppose S linearly dependent. Then, $0_V = \text{some nontrivial linear combination of vectors } v_1, \ldots, v_n \text{ in } S$. Let $S_0 = \{v_1, \ldots, v_n\}$, then, S_0 is linearly dependent itself.

1.4 Linear Dependence and Span

\hookrightarrow Proposition 1.4

Let V be a vector space over a field \mathbb{F} and $S \subseteq V$.

- 1. S linearly dependent $\iff \exists v \in \text{Span}(S \setminus \{v\}).$
- 2. S linearly independent \iff there is no $v \in \text{Span}(S \setminus \{v\})$.

Proof. 2. follows from the negation of 1.

(\Longrightarrow) Suppose S linearly dependent. Then, $0_V = \sum_{i=1}^n a_i v_i$ for some nontrivial linear combination of distinct vectors S. At least one of $a_i \neq 0$; we can assume wlog (reindexing) $a_1 \neq 0$. Then,

$$a_1 v_1 = -\sum_{i=2}^n a_i v_i \implies v_1 = (-a_1^{-1}) \sum_{i=2}^n a_i v_i = \sum_{i=2}^n (-a_1^{-1} a_i) v_i,$$

hence, $v_1 \in \operatorname{Span}(\{v_2, \dots, v_n\}) \subseteq \operatorname{Span}(S \setminus \{v\})$

(\iff) Suppose $v \in \text{Span}(S \setminus \{v\})$, then $v = a_1v_1 + \cdots + a_nv_n$, with $v_1, \ldots, v_n \in S \setminus \{v\}$, thus

$$0_V = a_1 v_1 + \cdots + a_n v_n - v,$$

which is not a trivial combination (-1 on the v; v cannot "merge" with the other vectors), hence S is linearly dependent.

\hookrightarrow Corollary 1.1

 $S \subseteq V$ is linearly independent $\iff S$ a minimal spanning set of Span S.

Proof. Follows from proposition 1.4, 2.

→ Definition 1.9: Maximally Independent

Let V be a vector space over a field \mathbb{F} . A set $S \subseteq V$ is called *maximally independent* if S is linearly independent and $\exists v \in V \setminus S$ s.t. $S \cup \{v\}$ is still linearly independent.

In other words, there is no proper supset $\tilde{S} \supseteq S$ that is still independent.

→ Lemma 1.3

If $S \subseteq V$ maximally independent, then S is spanning for V.

<u>Proof.</u> Let $S \subseteq V$ be maximally independent. Let $v \in V$; supposing $v \notin S$ (in the case that $v \in S$, then $v \in \operatorname{Span}(S)$ trivially). By maximality, $S \cup \{v\}$ is linearly dependent, hence there exists a nontrivial linear combination that equals 0_V . Since S independent, this combination must include v, with a nonzero coefficient. We can write

$$av + \sum_{i=1}^{n} a_i v_i = 0_V \quad a \neq 0, v_i \in S$$

$$\implies v = \sum_{i=1}^{n} (-a^{-1}a_i)v_i \in \operatorname{Span} S.$$

\hookrightarrow Theorem 1.1

Let V be a vector space over a field \mathbb{F} and let $S\subseteq V$. TFAE:

- 1. S is a minimal spanning set;
- 2. S is linearly independent and spanning;
- 3. S is a maximally linearly independent set;
- 4. Every vector in V is equal to *unique* linear combination of vectors in S.

→ Mon 7an 15 13:44:34 EST 2024

<u>Proof.</u> (1. \implies 2.) Suppose S is spanning for V and is minimal. Then, by corollary 1.1, we have that S is linearly independent, and is thus both linearly independent and spanning.

(2. \Longrightarrow 3.) Suppose S is linearly independent and spanning. Let $v \in V \setminus S$; S is spanning, hence $v \in \operatorname{Span} S$, that is, there exists a linear combination of vectors in S that is equal to v:

$$v = a_1 v_1 + \dots + a_n v_n, a_i \in \mathbb{F}, v_i \in S.$$

Thus, $0_V = a_1v_1 + \cdots + a_nv_n - v$, thus $S \cup \{v\}$ is linearly dependent, and so S is maximally linearly independent.

(3. \implies 1.) Suppose S is maximally linearly independent. By lemma 1.3, S is spanning, and since S is linearly independent, by corollary 1.1, S is minimally spanning for Span S.

(2. \implies 4.) Suppose S is linearly independent and spans V, and let $v \in V$. We have that $v \in \operatorname{Span} S$ and hence is equal to a linear combination of vectors in S. This gives existence; we now need to prove uniqueness.

Suppose there exist two linear combinations that equal v,

$$v = a_1v_1 + \cdots + a_nv_n = b_1u_1 + \cdots + b_mu_m$$

 $a_i, b_j \in \mathbb{F}$, $v_i, u_j \in S$. With appropriate reindexing/relabelling and allowing certain scalars to equal 0, we can assume that the combinations use the same vectors (with potentially different coefficients), that is,

$$v = a_1 w_1 + \dots + a_k w_k = b_1 w_1 + \dots + a_k w_k.$$

This implies, then,

$$(a_1 - b_1)w_1 + \cdots + (a_k - b_k)w_k = 0_V$$

and by the assumed linear independent of S, each coefficient $(a_i - b_i) = 0 \,\forall i \implies a_i = b_i \,\forall i$, hence, these are indeed the same representations, and thus this representation is unique.

(4. \implies 2.) Suppose every vector in V admits a unique linear combination of vectors in S. Clearly, then, S is spanning. It remains to show S is linearly independent. Suppose

$$0_V = a_1 v_1 + \dots + a_n v_n$$

for $v_i \in S$. But we have that every vector has a unique representation, and we know that $a_i = 0 \,\forall i$ is a (valid) linear combination that gives 0_V ; hence, this must be the unique combination, $a_i = 0 \,\forall i$, and the linear combination above is trivial. Hence, S is linearly independent and spanning.

\hookrightarrow **Definition 1.10: Basis**

If any (hence all) of the above statements hold, we call S a *basis* for V.

In the words of 4., we call the unique linear combination of vectors in S that is equal to v the unique representation of v in S. Its coefficients are called the Fourier coefficients of v in S.

*** Example 1.9**

- 1. $\operatorname{St}_n = \{e_i : 1 \leq i \leq n\}$ is a basis for \mathbb{F}^n .
- 2. In \mathbb{F}^3 , the set

$$\{(1,0,-1),(0,1,-1),(0,0,1)\}$$

is a basis; it is linearly independent and spanning.

3. For $\mathbb{F}[t]_n$, the standard basis is

$$\{1, t, t^2, \dots, t^n\}.$$

4. For $\mathbb{F}[t]$, the standard basis is

$$S := \{1, t, t^2, \dots\} = \{t^n : n \in \mathbb{N}\}.$$

5. Let $\mathbb{F}[\![t]\!]$ denote the space of all formal power series $\sum_{n\in\mathbb{N}}a_nt^n$; polynomials are an example, but with only finite nonzero coefficients. Note that, then, the set S defined above is not a basis for this "extended" set. We can in fact find a basis for this set; we need more tools first.

\hookrightarrow Theorem 1.2

Every vector space has a basis.

Remark 1.6. This theorem relies on assuming the Axiom of Choice.

Proof (Attempt). (Of theorem 1.2) We will try to "inductively" build a maximally independent set, as follows:

Begin with an empty set $S_0 := \emptyset$, and iteratively add more vectors to it. Let $v_0 \in V$ be a non-zero vector, and let $S_1 := \{v_0\}$.

If S_1 is maximal, then we are done. Otherwise, there exists a new vector $v_1 \in V \setminus S_1$ s.t. $S_2 := \{v_0, v_1\}$ is still independent.

If S_2 is maximal, then we are done. Otherwise, there exists a new vector $v_2 \in V \setminus S_2$ s.t. $S_3 := \{v_0, v_1, v_2\}$ is still independent.

Continue in this manner; this would take arbitrarily many finite, or even infinite, steps; we would need some "choice function" that would "allow" us to choose any particular ith vector v_i .

We can make this construction precise via the Axiom of Choice and transfinite induction (on ordinals); alternatively, we will prove a statement equivalent to the Axiom of Choice, Zorn's Lemma.

Remark 1.7. Before stating Zorn's Lemma, we introduce the following terminology.

\hookrightarrow **Axiom** 1.1: Axiom of Choice

Let X be a set of nonempty sets. Then, there exists a choice function f defined on X that maps each set of X to an element of that set.

→ Definition 1.11: Inclusion-Maximal Element

A inclusion-maximal element of I is a set $S \in I$ s.t. there is no strict super set $S' \supsetneq S$ s.t. $S' \in I$.

→ Definition 1.12: Chain

Let X a set. Call a collection $\mathcal{C} \subseteq \mathcal{P}(X)$ a *chain* if any two $A, B \in \mathcal{C}$ are comparable, ie, $A \subseteq B$ or $B \subseteq A$.

→ Definition 1.13: Upper Bound

An *upper bound* of a collection $\tau \subseteq \mathcal{P}(X)$ is a set $U \subseteq X$ s.t. $U \supseteq J \forall J \in \tau$; U contains the union of all sets in J.

*** Example 1.10: Of The Previous Definitions**

Let $X := \mathbb{N}, I := \{\emptyset, \{0\}, \{1, 2\}, \{1, 2, 3\}\} \subseteq \mathcal{P}(\mathbb{N}).$

The maximal elements of I would be $\{0\}$ and $\{1, 2, 3\}$.

Chains would include $C_0 := \{\emptyset, \{1, 2\}, \{1, 2, 3\}\}, C_1 := \{\emptyset, \{0\}\}, C_2 := \{\emptyset\}$ (or any set containing a single element).

The sets $\{0, 1, 2, 3\}$ and $\{0, 1, 2, 3, 4, 5\}$ are upper bounds for I, while neither is an element of I. The set $\{1, 2, 3\}$ is an upper bound for C_0 . A chain $\{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \dots\}$ has an upper bound of \mathbb{N} .

→ Lemma 1.4: Zorn's Lemma

Let X be an ambient set and $I \subseteq \mathcal{P}(X)$ be a nonempty collection of subsets of X. If every chain $\mathcal{C} \subseteq I$ has an upper bound in I, then I has a maximal element.

"Proof". This is equivalent to the Axiom of Choice; proving it is beyond the scope of this course :(.

Proof of theorem 1.2, cnt'd. We obtain a maximal independent set using Zorn's Lemma.

Let I be the collection of all linearly independent subsets of V. I is nonempty; $\varnothing \in I$, as is $\{v\} \in I$ for any nonzero $v \in V$. To apply Zorn's, we need to show that every chain $\mathcal C$ if sets in I has an upper bound in I; that is, every linearly independent set has an upper bound that itself is linearly independent.

Let \mathcal{C} be a chain in I. Let $S:=\bigcup \mathcal{C}$ be the union of all sets in \mathcal{C} . To show S is linearly independent, it suffices to show that every finite subset $\{v_1,\ldots,v_n\}\subseteq S$ is linearly independent. Let $S_i\in\mathcal{C}$ be s.t. $v_i\in S_i$ for each i. Because \mathcal{C} a chain, for each i,j we have either $S_i\subseteq S_j$ or $S_i\subseteq S_i$, and so we can order S_1,\ldots,S_n in increasing order w.r.t \subseteq . This implies, then, there

is a maximal S_{i_0} s.t. $S_{i_0} \supseteq S_i \, \forall i \in \{1, \dots, n\}$. Moreover, we have that $\{v_1, \dots, v_n\} \in S_{i_0}$, and that S_{i_0} is linearly independent and thus $\{v_1, v_2, \dots, v_n\}$ is also linearly independent.

Thus, as we can apply Zorn's Lemma, we conclude that I has a maximal element, ie, there is a maximal independent set, and thus a V indeed has a basis.

→ Fri Jan 19 13:36:58 EST 2024

\hookrightarrow Theorem 1.3

For every vector space V over a field \mathbb{F} , any two bases \mathcal{B}_1 , \mathcal{B}_2 are equinumerous/of equal size/cardinality, ie, there is a bijection between \mathcal{B}_1 and \mathcal{B}_2 .

Remark 1.8. We will only prove this for vector spaces that admit a finite basis.

← Lemma 1.5: Steinitz Substitution

Let V be a vector space over a field \mathbb{F} . Let $Y\subseteq V$ be a (possibly infinite) linearly independent set and let $Z\subseteq V$ be a finite spanning set. Then:

- 1. $k := |Y| \le |Z| =: n$
- 2. There is $Z' \subseteq Z$ of size n k s.t. $Y \cup Z'$ is still spanning.

Proof. We prove by induction on k.

k=0 gives that $Y=\varnothing$, and so Z'=Z itself works $(Z'\cup Y=Z)$ as a spanning set.

Suppose the statement holds for some $k \geq 0$. Let Y be an independent set such that |Y| = k + 1, ie

$$Y := \{y_1, y_2, \dots, y_k, y_{k+1}\}, \quad y \in V.$$

By our inductive assumption, we can consider $Y' := \{y_1, \dots, y_k\} \subseteq Y$ of size k, to obtain a set

$$Z' = \{z_1, z_2, \dots, z_{n-k}\} \subseteq Z$$
, s.t. $Y' \cup Z' = \{y_1, \dots, y_k, z_1, \dots, z_{n-k}\}$

is spanning. As this is spanning, we can write y_{k+1} as a linear combination of vectors in $Y' \cup Z'$, ie

$$y_{k+1} = a_1 y_1 + \dots + a_k y_k + b_1 z_1 + \dots + b_{n-k} z_{n-k}, \quad a_i, b_j \in \mathbb{F}.$$

It must be that at least one of b_j 's must be nonzero; if they were all zero, then y_{k+1} would simply be a linear combination of vector y_i giving that y_{k+1} linearly dependent, contradicting our construction of Y linearly independent.

Assume, wlog, $b_{n-k} \neq 0$. Then, we can write

$$z_{n-k} = b_{n-k}^{-1} y_{k+1} - b_{n-k}^{-1} a_1 y_1 - \dots - b_{n-k}^{-1} a_k y_k - b_{n-k}^{-1} b_1 z_1 - \dots - b_{n-k}^{-1} b_{n-k-1} z_{n-k-1},$$

and hence

$$z_{n-k} \in \text{Span}\{y_1, \dots, y_{k+1}, z_1, \dots, z_{n-k-1}\} = \text{Span}\left(\underbrace{\{y_1, \dots, y_{k+1}\}}_{Y} \cup \underbrace{\{z_1, \dots, z_{n-k-1}\}}_{:=Z''}\right).$$

We had that $Y' \cup Z'$ was spanning, and $(Y' \cup Z') \setminus (Y \cup Z'') = \{z_{n-k}\} \subseteq \operatorname{Span}(Y \cup Z'')$, and we thus have that $Y \cup Z''$ is also spanning.

⇔ Corollary 1.2: Finite Basis Case for theorem 1.3

Let V be a vector space that admits a finite basis. Then, any two bases of V are equinumerous.

Proof. Let Y, Z be two finite bases for V. Then, Y is independent and Z is spanning, so by Steinitz Substitution, $|Y| \leq |Z|$. OTOH, Z is independent, and Y is spanning, so by Steinitz Substitution, $|Z| \leq |Y|$, and we conclude that |Y| = |Z|. Let n := |Y|.

It remains to show that there exist no infinite bases for V; it suffices to show that there is no independent set of size n+1. To this end, let $I \subseteq V$ such that |I| = n+1 be an independent set. Y is still spanning, hence, by the substitution lemma, $n+1 \le n$, a contradiction. Hence, I as defined cannot exist and so any basis of V must be of size n.

→ Definition 1.14: Dimension

Let V be a vector space over a field \mathbb{F} . The dimension of V, denote

$$\dim(V)$$

as the cardinality/size of any basis for V. We call V finite dimensional if $\dim(V)$ is a natural number, i.e. V admits a finite basis. Otherwise, we say V is infinite dimensional.

→ Corollary 1.3: of Steinitz Substitution

Let V be a finite dimensional vector space over \mathbb{F} and denote $n := \dim(V)$. Then:

- 1. Every linearly independent subset $I \subseteq V$ has size $\leq n$;
- 2. Every spanning set $S \subseteq V$ for V has size $\geq n$;
- 3. Every independent set I can be completed to a basis to V, ie, there exists a basis B for V s.t. $I \subseteq B$.

Proof. Fix a basis B for V, |B| =: n.

1. If I is a independent set, then because B spanning, Steinitz Substitution gives $|I| \leq |B|$.

- 2. If S spanning for V, then because B is linearly independent, Steinitz Substitution gives $|B| \leq |S|$.
- 3. Let I be an independent set. Then, because B is spanning, Steinitz Substitution gives $B' \subseteq B$ of size n |I| s.t. $I \cup B'$ is spanning. Moreover, $|I \cup B'| \le n$, and by 2. it must have size $\ge n$, and thus has size precisely n and is thus a minimally spanning set and thus a basis.

⇔ Corollary 1.4: Monotonicity of Dimension

Let V be a vector space over a field \mathbb{F} . For any subspace $W \subseteq \dim W \leq \dim V$, and

$$\dim W = \dim V \iff W = V.$$

<u>Proof.</u> Let $B \subseteq W$ be a basis for W. Because B is independent, $|B| \leq \dim(V)$ by 1. of corollary 1.3, so $\dim(W) = |B| \leq \dim(V)$.

If $|B| = \dim(V)$, then B is a basis for V again by 1. of corollary 1.3, so $W = \operatorname{Span}(B) = V$.

→ Mon Jan 22 13:43:44 EST 2024

2 Linear Transformations

2.1 Definitions

→ Definition 2.1: Linear Transformation

Let V, W be vector spaces over a field \mathbb{F} . A function $T: V \to W$ is called a *linear transformation* if it preserves the vector space structures, that is,

1.
$$T(v_0 + v_1) = T(v_0) + T(v_1), \forall v_0, v_1 \in V;$$

2.
$$T(\alpha \cdot v) = \alpha \cdot T(v), \forall \alpha \in \mathbb{F}, v \in V;$$

3.
$$T(0_V) = 0_W$$
.

Remark 2.1. *Note that 3. is redundant, implied by 2., but included for emphasis:*

$$T(0_V) = T(0_{\mathbb{F}} \cdot 0_V) = 0_{\mathbb{F}} \cdot T(0_V) = 0_W.$$

*** Example 2.1: Linear Transformations**

1.
$$T: \mathbb{F}^2 \to \mathbb{F}^2$$
, $T(a_1, a_2) := (a_1 + 2a_2, a_1)$.

- 2. Let $\theta \in \mathbb{R}$, and let $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation by θ . The linearity of this is perhaps most obvious in polar coordinates, ie $v \in \mathbb{R}^2$, $v = r(\cos \alpha, \sin \alpha)$ for appropriate r, α , and $T_{\theta}(v) = r(\cos(\alpha + \theta), \sin(\alpha + \theta))$.
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$, a reflection about the x-axis, ie, T(x,y) = (x,-y).
- 4. Projections, $T: \mathbb{F}^n \to \mathbb{F}^n$.
- 5. The transpose on $M_n(\mathbb{F})$, ie, $T:M_n(\mathbb{F})\to M_n(\mathbb{F})$, where $A\mapsto A^t$.
- 6. The derivative on space of polynomials of degree leq $n, D : \mathbb{F}[t]_{n+1} \to \mathbb{F}[t]_n, p(t) \mapsto p'(t)$.

\hookrightarrow Theorem 2.1

Linear transformations are completely determined by their values on a basis.

That is, let $\mathcal{B} := \{v_1, \dots, v_n\}$ be a basis for a vector space V over \mathbb{F} . Let W also be a vector space over \mathbb{F} and let $w_1, \dots, w_n \in W$ be arbitrary vectors. Then, there is a unique linear transformation $T: V \to W$ s.t. $T(v_i) = w_i \, \forall \, i = 1, \dots, n$.

Proof. We aim to define T(v) for arbitrary $v \in V$. We can write

$$v = a_1 v_1 + \dots + a_n v_n$$

as the unique representation of v in terms of the basis \mathcal{B} . Then, we simply define

$$T(v) := a_1 w_1 + \dots + a_n w_n,$$

for our given w_i 's. Then, $T(v_i) = 1 \cdot w_i = w_i$, as desired, and T is linear;

1. Let $u, v \in V$; $u := \sum_n a_i v_i, v := \sum_n b_i v_i$. Then,

$$T(u+v) = T(\sum_{i=1}^{n} a_i v_i + \sum_{i=1}^{n} b_i v_i) = T(\sum_{i=1}^{n} (a_i + b_i) v_i) = (a_i + b_i) \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} a_i w_i + \sum_{i=1}^{n} b_i w_i.$$

2. Scalar multiplication follows similarly.

To show uniqueness, suppose T_0, T_1 are two linear transformations satisfying $T_0(v_i) = w_i = T_1(v_i)$. Let $v \in V$, and write $v = \sum_n a_i v_i$. By linearity,

$$T_k(v) = T_k(\sum_{v} a_i v_i) = \sum_{v} a_i T(v_i) = \sum_{v} a_i w_i,$$

for k=0,1, hence, $T_1(v)=T_0(v)$ for arbitrary v, hence the transformations are equivalent.

\hookrightarrow <u>Definition</u> 2.2: Some Important Transformations

We denote $T_0: V \to W$ by $T_0(v) := 0_W \, \forall \, v \in V$ the zero transformation. We denote $I_V: V \to V, \, I_V(v) := v \, \forall \, v \in V$, as the identity transformation.

 \hookrightarrow Mon Jan 22 14:26:24 EST 2024