INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.05 Análisis de Señales y Sistemas Digitales

GUÍA FIR

Grupo 2:

Matías Larroque Leg. 56597

Tomás Agustín González Orlando Leg. 57090

Lucero Guadalupe FERNANDEZ Leg. 57485

Manuel Mollón Leg. 58023

Ezequiel VIJANDE Leg. 58057 Profesor:

Daniel JACOBY Carlos BELAUSTEGUI GOITIA Rodrigo Iñaki IRIBARREN

Entregado: 10 de Junio de 2019

1 FILTROS PASAALTOS

Se simularon los siguientes filtros pasaaltos con sus respectivas ventanas en MATLAB.

$f_s(Hz)$	$f_p(Hz)$	$f_a(Hz)$	$A_p(dB)$	$A_a(dB)$	Ventana
44.1k	1 <i>k</i>	2k	2	20	Rectangular
44.1k	1 <i>k</i>	2k	2	40	Hamming
44.1k	1 <i>k</i>	2k	1	40	Blackman
44.1k	2.4k	3.6 <i>k</i>	2	40	Kaiser
44.1k	1 <i>k</i>	2k	2	60	Kaiser

Tabla 1: Plantillas de filtros pasaaltos realizados.

1.1 VENTANA RECTANGULAR

La ventana rectangular está definida por:

$$\omega(n+1) = 1$$
 $0 < n < N-1$ (1)

Figura 1: Respuesta en frecuencia del pasaaltos con ventana rectangular.

Figura 2: Fase del pasaaltos con ventana rectangular.

1.2 VENTANA DE HAMMING

La ventana de Hamming está definida por:

$$\omega(n+1) = 0.54 + 0.46\cos\left(\frac{2\pi n}{N-1}\right) \qquad 0 < n < N-1$$
 (2)

Figura 3: Respuesta en frecuencia del pasaaltos con ventana de Hamming.

Figura 4: Fase del pasaaltos con ventana de Hamming.