Tutorial-01, B.Tech. Semester-I (Leibnitz's rule, Partial Differentiation)

Problem 1: Find the n^{th} derivative of the following functions:

(a)
$$\tan^{-1} \frac{2x}{1-x^2}$$
 (b) $e^x \sin 4x \cos 6x$ Ans: (a) $(-1)^{n-1}(n-1)! \sin^n \theta \cdot \sin n\theta$

(b)
$$e^{x} \frac{(101)^{\frac{n}{2}}}{2} sin(10x + n tan^{-1} 10) - e^{x} \frac{(5)^{\frac{n}{2}}}{2} sin(2x + n tan^{-1} 10)$$

Problem 2: If $I_n = \frac{d^n}{dx^n}(x^n \log x)$, prove that $I_n = nI_{n-1} + (n-1)!$ and hence show that

$$I_n = n! \{ \log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \}$$

Problem 3: If $y=(x^2-1)^n$, use Leibnitz's theorem to show that $(1-x^2)y_{n+2}-2x\ y_{n+1}+n(n+1)y_n=0.$

$$(1-x^2)y_{n+2} - 2x y_{n+1} + n(n+1)y_n = 0.$$

Problem 4: If $y = \sin(m \sin^{-1} x)$, show that

$$(1-x^2)y_{n+2} - (2n+1)x y_{n+1} + (m^2-n^2)y_n = 0$$
 and hence evaluate $(y_n)_0$.

Problem 5: If
$$\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$$
, prove that $x^2y_{n+2} + (2n+1)x \ y_{n+1} + 2n^2y_n = 0$.

Problem 6: If
$$y = [x - \sqrt{(x^2 - 1)}]^m$$
,

prove that
$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$$
.

Problem 7:(a) If $u=x^y$ establish the relation that $u_{xy}=u_{yx}$.

(b) If
$$u=(x^2+y^2+z^2)^{-1/2}$$
 , show that $x.u_x+y.u_y+zu_z=-u$ and $u_{xx}+u_{yy}+u_{zz}=0$.

(c) If
$$u=\varphi(y-ax)+\varphi(y+ax)$$
, show that $u_{xx}-a^2u_{yy}=0$.

(d) If
$$u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$
, show that $x. u_x + y. u_y = 0$.

(d) If
$$u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$
, show that $x. u_x + y. u_y = 0$.
(e) If $u = \begin{vmatrix} x^2 & y^2 & z^2 \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix}$, then show that $u_x + u_y + u_z = 0$.

(f) If
$$u=e^{xyz}$$
, show that $u_{xyz}=(1+3xyz+x^2y^2z^2)e^{xyz}$.

(g) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, then prove that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}.$$

Problem 8:(a) If u = f(r) and $r = \sqrt{x^2 + y^2}$, then $u_{xx} + u_{yy} = f''(r) + \frac{1}{r} f'(r)$.

(b) If
$$k = x^x y^y z^z$$
 , show that at $= y = z$, $z_{xy} = -\frac{1}{(x \log ex)}$.

(c) If
$$\frac{x^2}{u+a^2} + \frac{y^2}{u+b^2} + \frac{z^2}{u+c^2} = 1$$
 prove that
$$(u_x)^2 + (u_y)^2 + (u_z)^2 = 2(x \cdot u_x + y \cdot u_y + z \cdot u_z)$$

Problem 9:(a) If $\theta = t^n e^{-\frac{r^2}{4t}}$, find the value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \theta}{\partial r}) = \frac{\partial \theta}{\partial t}$ Ans: $n = -\frac{3}{2}$ (b) If $u = x^3 + y^3$, where $x = a \cos t$, $y = b \sin t$ find $\frac{du}{dt}$?

(b) If
$$u = x^3 + y^3$$
, where $x = a \cos t$, $y = b \sin t$ find $\frac{du}{dt}$?

$$Ans:3(b^3sin^2t \cos t - a^3cos^2t \sin t)$$

(c) If u = f(x, y), where $x = r \cos \theta$, $y = r \sin \theta$ find the value of u_x and u_y .

Then prove that
$$(u_x)^2 + (u_y)^2 = (u_r)^2 + \frac{1}{r^2}(u_\theta)^2$$
.

(d) If
$$x^y + y^x = c$$
, find the value of $\frac{dy}{dx}$. Ans:
$$\frac{-[y^x \log y + yx^{y-1}]}{x^y \log x + xy^{x-1}}$$

(e) If
$$V = f(x - y, y - z, z - x)$$
, then prove that $\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial V}{\partial z} = 0$.

Problem 10: State and prove Euler's theorem for a homogeneous function f(x,y) of degree n in two variables x and y. Also deduce that

(i)
$$x.u_{xx} + y.u_{yy} = (n-1)u_x$$

(ii)
$$x.u_{xy} + y.u_{yy} = (n-1)u_y$$

(iii)
$$x^2 \cdot u_{xx} + y^2 \cdot u_{yy} + 2xy u_{xy} = n(n-1)u$$

Problem 11: Prove the following results:

u	Result
f(y/x)	$x.u_x + y.u_y = 0.$
$\tan^{-1}\left(\frac{x^3+y^3}{x+y}\right)$	$x.u_x + y.u_y = \sin 2u$
$\sin^{-1}\left(\frac{x^2+y^2}{x+y}\right)$	$x. u_x + y. u_y = \tan u$
$\sin^{-1}\left(\sqrt{\frac{x+y}{x^2+y^2}}\right)$	$x.u_x + y.u_y = -\frac{1}{2}\tan u$
$\log\left(\frac{x^4+y^4}{x+y}\right)$	$x.u_x + y.u_y = 3$
$x \sin^{-1}\left(\frac{y}{x}\right)$	$x^2.u_{xx} + y^2.u_{yy} + 2xy u_{xy} = 0$
$\frac{x^2y^2}{x^2+y^2}$	$x^2.u_{xx} + y^2.u_{yy} + 2xy u_{xy} = 2u$
$\cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$	$x.u_x + y.u_y + \frac{1}{2}\cot u = 0$

Problem 12: If $y=e^{a\sin^{-1}x}$, Establish the relation $(1-x^2)y_{n+2}-(2n+1)x\ y_{n+1}-(n^2+a^2)y_n=0 \ \text{and hence evaluate} \qquad (y_n)_0$

Problem 13: If $y = \sin mx + \cos mx$ prove that $y_n = m^n \sqrt{1 + (-1)^n \sin 2mx}$

Problem 14: If $y = [x + \sqrt{(x^2 + 1)}]^m$, prove that $(1 + x^2)y_2 + xy_1 - m^2y = 0$ and hence evaluate $(y_n)_0$.

Tutorial-02, B.Tech Semester-I

(Expansions of functions of several variables and Curve Tracing)

Problem 1: Find the equation of the tangent plane and the normal to the surface

$$z^2 = 4(1 + x^2 + y^2)$$
 at (2,2,6)

Ans:
$$4x + 4y - 3z = -2$$
; $\frac{x-2}{4} = \frac{y-2}{4} = \frac{z-6}{-3}$

Problem 2: Expand $e^x \cos y$ near the point $(1, \frac{\pi}{4})$ by Taylor's theorem.

Ans:
$$\frac{e}{\sqrt{2}} \left[1 + (x - 1) - \left(y - \frac{\pi}{4} \right) + \frac{(x - 1)^2}{2} - (x - 1) \left(y - \frac{\pi}{4} \right) - \left(y - \frac{\pi}{4} \right)^2 + \dots \dots \right]$$

Problem 3: Obtain Taylor's expansion of $\tan^{-1} \frac{y}{y}$ about (1,1) upto and including the second degree terms. Hence compute f(1.1,0.9).

Ans:
$$\tan^{-1} \frac{y}{x} = \frac{\pi}{4} - \frac{1}{2}(x-1) + \frac{1}{2}(y-1) + \frac{1}{4}(x-1)^2 - \frac{1}{4}(y-1)^2 + \dots$$
 and 0.7862

Problem 4: Expand x^y in powers of (x-1) and (y-1) upto the third degree terms.

Ans:
$$x^y=1+(x-1)+(x-1)(y-1)+\frac{1}{2}(x-1)^2(y-1)+\dots$$

Problem 5: Expand $e^{ax} \sin by$ in powers of x and y upto the third degree terms.

Ans:
$$by + abxy + \frac{(3a^2bx^2y - b^3y^3)}{3!} + \cdots$$

Problem 6: Trace the following curves

1.
$$a^2v = x^3$$
; Cubical parabola

3.
$$y^{2}(2a - x) = x^{3}$$
 Cissoid

5.
$$y = a \cosh \frac{x}{a}$$
 Catenary

7.
$$y(x^2 + 4a^2) = 8a^3$$

$$2. xy^2 = 4a^2(2a - x),$$

2.
$$xy^2 = 4a^2(2a - x);$$

4. $x^5 + y^5 = 5ax^2y^2$
6. $y(x^2 - 1) = (x^2 + 1)$

6.
$$y(x^2-1)=(x^2+1)$$

$$8. a^2 x^2 = y^3 (2a - y)$$

9.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
 or $x = a\cos^3\theta$ $y = a\sin^3\theta$ Astroid

10..
$$x = a(\theta - \sin\theta), y = a(1 - \cos\theta)$$
 Cycloid

12.
$$r = a(1 + cos\theta)$$
 Cardiod

14.
$$r = a(1 - cos\theta)$$
 Cardiod
16. $x = a(\theta + sin\theta), y = a(1 + cos\theta)$ Cycloid

18.
$$r = a + b \cos \theta$$
 . $a < b \text{ Limecon}$

18.
$$r = a + b \cos\theta$$
 , $a < b \text{ Limecon}$

$$20. r(1 - \cos\theta) = 2a$$

22.
$$r^2 \cos 2\theta = a^2$$
 Hyperbola

$$11. r = a + b \cos\theta, a > b$$

$$13. r = a \sin 3\theta$$
 Three leaves rose

15.
$$r = a \cos 2\theta$$
 Four leaves rose

$$17.y^2 = x^5(2a - x)$$

$$19. r^2 = a^2 \cos 2\theta$$

$$21..r(1+\cos\theta)=2a$$

$$23.y^2 = ax^3$$
 Semi- cubical parabola

$$24.\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1 \text{ or } x = a\cos^3\theta \ y = b\sin^3\theta$$
 Hypocycloid

$$25.x = (y-1)(y-2)(y-3) 26. x = a \cos t + \frac{1}{2} a \log t a n^2 \left(\frac{t}{2}\right), y = a \sin t \{ \text{Tractrix} \}$$

27.
$$x = \frac{3at}{1+t^3}$$
; $y = \frac{3at^2}{1+t^3}$ 28. $x = \frac{1-t^2}{1+t^2}$; $y = \frac{2t}{1+t^2}$ 29. $x = t^2$, $y = t - \frac{1}{3}t^3$

30.
$$x = a(\theta + sin\theta), y = a(1 + cos\theta)$$
 Cycloid 31. $x = a(\theta - sin\theta), y = a(1 + cos\theta)$ Cycloid

32.
$$x = a(\theta + sin\theta), y = a(1 - cos\theta)$$
 Cycloid

Tutorial-3 B.Tech. Semester-I

(Double integrals and their applications)

- **1.** Find the area of the loop of the curve $x^3 + y^3 = 3axy$. Also find the area bounded between the Ans: $\frac{3a^2}{2}$ and $\frac{3a^2}{2}$. curve and its asymptote.
- **2.** Evaluate $\iint_A (x^2 + y^2) dxdy$ over the area A enclosed by the curves y = 4x, x + y = 3, y = 4xAns: $9\frac{31}{48}$ 0 and v = 2.
- 3. Evaluate the following double integrals

(i)
$$\int_{0}^{2} \int_{0}^{x^{2}} e^{\frac{y}{x}} dy dx$$

(i)
$$\int_0^2 \int_0^{x^2} e^{\frac{y}{x}} dy dx$$
 (ii) $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} x^2 dy dx$ (iii) $\int_0^a \int_v^a \frac{x^2}{\sqrt{v^2+v^2}} dy dx$

(iii)
$$\int_0^a \int_y^a \frac{x^2}{\sqrt{x^2+y^2}} dy dx$$

(iv)
$$\int_{1}^{0} \int_{0}^{1} (x + y) \, dy dx$$

(iv)
$$\int_{1}^{0} \int_{0}^{1} (x+y) \, dy dx$$
 (v) $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} \sqrt{a^2-x^2-y^2} \, dy dx$

Ans: (i)
$$e^2-1$$
 .(ii) $\frac{5\pi a^4}{8}$ (iii) $\frac{a^3}{3}\log(\sqrt{2}+1)$ (iv)-1 (v) $\frac{\pi a^3}{6}$

- **4.** Show that $\int_{1}^{2} \int_{3}^{4} (xy + e^{y}) dxdy = \int_{3}^{4} \int_{1}^{2} (xy + e^{y}) dydx$
- 5. Show that $\int_{1}^{2} \int_{0}^{\frac{y}{2}} y \, dy \, dx = \int_{1}^{2} \int_{0}^{\frac{x}{2}} x \, dx \, dy$
- **6.** Show that $\int_0^1 \int_0^1 \frac{1}{\sqrt{\{1-x^2\}\{1-v^2\}}} dy dx = \int_0^1 \int_0^1 \frac{1}{\sqrt{\{1-x^2\}\{1-v^2\}}} dx dy$
- **7.** Show that $\int_0^1 dx \int_0^1 \frac{x-y}{(x+v)^3} dy \neq \int_0^1 dy \int_0^1 \frac{x-y}{(x+v)^3} dx$, also find the values of two integrals. **Ans:** $L.H.S = \frac{1}{2}$, $R.H.S = -\frac{1}{2}$ Give a conclusion on the basis of the results in Q. 4 to 7.
- **8.** Evaluate $\iint (x^2y^2) dxdy$ over the region $x^2 + y^2 \le 1$.

Ans:
$$\frac{\pi}{24}$$

- **9.** Evaluate $\iint_A (x^2y^2) \, dxdy$ over the region A bounded by the curves x=0, y=0, and x^2+1
- **10.** Evaluate $\iint r^2 d\theta dr$ over the area of the circle $r = a \cos\theta$

Ans:
$$\frac{4a^3}{9}$$

11. Find by double integration the area lying inside the circle $r=a \sin\theta$ and outside the

parabola
$$r(1 + cos\theta) = a$$

Ans:
$$\frac{(9\pi+16)}{12}$$

4

12. Change the order of the following double integrations:

(i)
$$\int_1^\infty \int_1^x x e^{\frac{-x^2}{y}} dy dx$$

Ans:
$$\int_1^\infty \int_y^\infty x e^{\frac{-x^2}{y}} dxdy$$

(ii)
$$\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} f(x,y) \, dy dx$$

Ans:
$$\int_0^a \int_{a-\sqrt{a^2-y^2}}^{a+\sqrt{a^2-y^2}} f(x,y) dxdy$$

$$\text{(iii)} \ \int_0^{acos\alpha} \int_{xtan\alpha}^{\sqrt{a^2-x^2}} f(x,y) \, dy \, dx \quad \text{Ans:} \ \int_0^{asin\alpha} \int_0^{ycot\alpha} f(x,y) \, dx \, dy + \int_{asin\alpha}^a \int_0^{\sqrt{a^2-y^2}} f(x,y) \, dx \, dy$$

(iv)
$$\int_0^a \int_{mx}^{lx} f(x,y) \; dy dx$$

Ans:
$$\int_0^{am} \int_{\frac{y}{1}}^{\frac{y}{m}} f(x, y) dxdy + \int_{am}^{al} \int_{\frac{y}{1}}^{a} f(x, y) dx dy$$

$$(\mathbf{v}) \int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy \ dy dx$$

Ans:
$$\int_0^a \int_0^{\sqrt{ay}} xy \, dx dy + \int_a^{2a} \int_0^{2a-y} xy \, dx \, dy$$

13. Express as single integral and evaluate: $\int_0^{\frac{a}{\sqrt{2}}} \int_0^x x \, dx dy + \int_{\frac{a}{\sqrt{2}}}^a \int_0^{\sqrt{a^2 - x^2}} x \, dx dy$

Ans: $\int_0^{\frac{a}{\sqrt{2}}} dy \int_y^{\sqrt{a^2 - y^2}} x dx$; $\frac{5a^3}{6\sqrt{2}}$

- **14.** Convert into polar co-ordinates $\int_0^{2a} \int_0^{2ax-x^2} dy dx$ Ans: $\int_0^{\frac{\pi}{2}} \int_0^{2a\cos\theta} r d\theta dr$
- **15.** Using transformation x + y = u, y = vu show that $\int_0^1 \int_0^{1-x} e^{\frac{y}{x+y}} dy dx = \frac{e-1}{2}$
- **16.** Using transformation x y = u, x + y = v show that $\iint_{\mathbb{R}} \cos \frac{x y}{x + y} dx dy = \frac{\sin 1}{2}$ Where R is the region bounded by x = 0, y = 0, x + y = 1.
- 17. Find the whole area of the curve $a^2x^2=y^3(2a-y)$ by double integration. Ans: πa^2
- **18.** Find the area enclosed by the curve $r = 3 + 2\cos\theta$ by double integration. Ans: 11π
- **19.** Find the volume of the torus generated by revolving the circle $x^2 + y^2 = 4$ about the line x = 3.
- **20.** Find the Center of gravity of the area bounded by the parabola $y^2 = x$ and the line x + y = 2.

 Ans: $(\frac{8}{5}, -\frac{1}{2})$
- **21.** Find the Center of gravity of the loop of the curve $r^2 = a^2 \cos 2\theta$. Ans: $(\frac{\pi a \sqrt{2}}{8}, 0)$
- **22.** Find the Center of gravity of an arc of the curve $x = a(\theta + sin\theta)$, $y = a(1 cos\theta)$ in the positive quadrant. Ans: $[a(\pi \frac{4}{3}, \frac{2a}{3})]$

Semester–I, Tutorial 4 Error, Approximations and Maxima and Minima

- Compute an approximate value of (1.04)^{3.01} Ans: 1.12
- 2. If $u = x^2y^3/z$, find the maximum percentage error in u if the percentage error in x, y, z are 2, 3 and 4 respectively. **Ans: 17**
- 3. If the sides and angles of a plane triangle vary in such a way that its circum radius remains constant prove that $\frac{da}{cosA} + \frac{db}{cosB} + \frac{dc}{cosC} = 0$ where da, db and dc are small increments in the sides a, b and c respectively.
- 4. Find the shortest distance from origin to the surface $xyz^2 = 2$. Ans: 2
- 5. Find the dimensions of a rectangular box, with open top and given volume V, so that the total surface area of the box is a minimum. **Ans**: Length=breadth=2 height= $(2V)^{(13)}$
- 6. Find the Minimum value of $x^2 + y^2 + z^2$ subject to 1/x + 1/y + 1/z = 1
- 7. Find the absolute extrema of $f = 3x^2 + 2y^2 4y$ in the region bounded by $y = x^2$ and y = 4. **Ans**: Abs max= 28 at $(\pm 2, 4)$; Abs. min= -2 at (0, 1)
- 8. Find Min $f = x^2 + y^2$ subject to x + y = 10. Ans: 50 at (5,5)
- 9. Find extremum of f = x + y + z subject to $x^2 + y^2 + z^2 = 12$. Ans: Max f(2,2,2) = 6, Min f(-2,-2,-2) = -6.
- 10. Find extrema of $u=a^2x^2+b^2y^2+c^2z^2$ subject to $x^2+y^2+z^2=1$ and lx+my+nz=0. **Ans**: The extremum can be obtained by the equation $\frac{l^2}{u-a^2}+\frac{m^2}{u-b^2}+\frac{n^2}{u-c^2}=0$.
- 11. Find the extrema of $u=x^2+y^2+z^2$ where $ax^2+by^2+cz^2+2fyz+2gzx+2hxy=1$. Ans : The roots of .
- 12. Find the extreme values of f(x,y,z)=2x+3y+z subject to $x^2+y^2=1$ and x+z=1. Ans with Hint: for $\lambda_2=-1, \lambda_1=\frac{1}{\sqrt{2}}, f=1-5\sqrt{2}$ while for $\lambda_2=-1, \lambda_1=-\frac{1}{\sqrt{2}}, f=1+5\sqrt{2}$

Find the local extrema for the following functions:

- 13. $f = -22x^2 + 22xy 11y^2 + 110x 44y 23$ Ans: f = 120 is local min at (3, 1)
- 14. $f = x^3 + y^3 3xy$ Ans: f = -1 is local min at (1,1); (0,0) is saddle point.
- 15. $f = xy + \frac{9}{x} + \frac{3}{y}$ Ans: f = 9 is local min at (3, 1).

Tutorial-05, B. Tech Sem-I Jacobians

- **1.** If u = x + y + z + t, v = x + y z t, w = xy zt, $r = x^2 + y^2 z^2 t^2$ show that $\frac{\partial(u, v.w, r)}{\partial(x, y, z, t)} = 0$ and hence find a relation between u, v, w and r. Ans: uv = r + 2w
- 2. Prove that the following functions are not independent. Find the relation between them

(i)
$$u = x + y + z$$
, $v = xy + yz + zx$, $w = x^3 + y^3 + z^3 - 3xyz$. Ans: $u^3 = 3uv + w$

(ii)
$$u = x^2 + y^2 + z^2$$
, $v = x + y + z$, $w = xy + yz + zx$. Ans: $v^2 = u + 2w$

- 3. If x, y, z are connected by a functional relation f(x, y, z) = 0, show that $\frac{\partial(y, z)}{\partial(x, z)} = \left(\frac{\partial y}{\partial x}\right)_{z=\text{constt.}}$
- **4.** If λ , μ , ν are the roots of the equation in k, $\frac{x}{a+k} + \frac{y}{b+k} + \frac{z}{c+k} = 1$, prove that $\frac{\partial(x,y,z)}{\partial(\lambda,\mu,\nu)} = -\frac{(\mu-\nu)(\nu-\lambda)(\lambda-\mu)}{(a-b)(b-c)(c-a)}$.
- 5. If $u = x(1 r^2)^{\frac{-1}{2}}$, $v = y(1 r^2)^{\frac{-1}{2}}$, $w = z(1 r^2)^{\frac{-1}{2}}$, where $\mathbf{r}^2 = \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2$ show that $\frac{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})}{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})} = (1 r^2)^{\frac{-5}{2}}$.
- **6.** If $u^3 = xyz$, $\frac{1}{v} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$, $w^2 = x^2 + y^2 + z^2$, show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = -\frac{v(y-z)(z-x)(x-y)(x+y+z)}{3u^2w(xy+yz+zx)}$.
- 7. Find the Jacobian of $y_1, y_2, y_3, \ldots, y_n$ being given $y_1 = x_1(1 x_2)$, $y_2 = x_1x_2(1 x_3)$,...., $y_{n-1} = x_1x_2.....x_{n-1}(1 x_n), y_n = x_1x_2.....x_n \text{ find } J(y_1, y_2, ..., y_n)$ {Hint: $y_1 + y_2 + y_3, + \cdots + y_n = x_1$, Ans: $x_1^{n-1}x_2^{n-2}....x_{n-1}$ }.
- 8. Find the Jacobian $\frac{\partial(\mathbf{x},\mathbf{y},\mathbf{z})}{\partial(\mathbf{u},\mathbf{v},\mathbf{w})}$ being given $x = r\cos\theta\cos\phi$, $y = r\sin\theta\sqrt{1 m^2\sin^2\phi}$, $z = r\sin\phi\sqrt{(1 n^2\sin^2\theta)}$ where $\mathbf{m}^2 + \mathbf{n}^2 = 1$. {Hint: $\mathbf{r}^2 = \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2$, Ans: $\frac{\mathbf{r}^2(n^2\cos^2\theta + m^2\cos^2\phi)}{\sqrt{(1 n^2\sin^2\theta)(1 m^2\cos^2\phi)}}$ }.
- **9.** Prove that JJ'=1
- **10.** If u = xyz, v = x + y z, w = x + y + z, Find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ Ans: $\frac{x}{2(2x^2-y^2)}$
- 11. If f(0) = 0 and $f'(x) = \frac{1}{1+x^2}$, prove without using the method of integration, that $f(x) + f(y) = f(\frac{x+y}{1-xy})$. {Hint: Let u = f(x) + f(y) and $v = \frac{x+y}{1-xy}$ the find J(u, v)}

Tutorial-6, B. Tech. Sem-I, (Triple integrals and their application)

Problem 1: Evaluate the triple integrals $\int_0^1 \int_1^{1-x} \int_0^{x+y} e^z \, dz \, dy \, dx$ Ans: $\frac{1}{2}$

Problem 2: Evaluate $\iiint (x + y + z)^9 dxdydz$ over the region bounded by $x \ge 0$, $y \ge 0$

$$0, z \ge 0, x + y + z \le 1.$$
 Ans: $\frac{1}{24}$

Problem 3: Evaluate the following triple integrals

$$(i) \int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) \quad dz dy dx \qquad \qquad (ii) \int_{0}^{1} \int_{y^2}^{1} \int_{0}^{1-x} x \, dz dx dy$$

(iii)
$$\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dzdydx$$

$$(iv) \int_0^4 \int_0^{2\sqrt{z}} \int_0^{\sqrt{4z-x^2}} dy dx dz \qquad (v) \int_0^2 \int_0^2 \int_0^{4-x^2} (2x+y) dz dy dx \\ Ans: (i) \frac{8abc(a^2+b^2+c^2)}{3}. (ii) \frac{4}{35} (iii) \frac{8}{3} log(2) - \frac{19}{9} (iv) 8\pi (v) \frac{80}{3}$$

Problem 4: Evaluate the triple integral $\iiint_{\mathbb{R}} (x-2y+z) \, dx \, dy \, dz$, where R is the region determined by $0 \le x \le 1$, $0 \le y \le x^2$ and $0 \le z \le x + y$.

Ans: $\frac{29}{100}$

Problem 5: Find the volume of the region bounded by the surface $y = x^2$, $x = y^2$ and the planes z = 0, z = 3.

Ans: 1

Problem 6: Find the volume of the tetrahedron bounded by the co-ordinate planes and the

plane
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
. { Hint: $\int_0^a \int_0^{b(1-\frac{x}{a})} \int_0^{c(1-\frac{x}{a}-\frac{y}{b})} dz dy dx$ } Ans: $\frac{abc}{6}$

Problem 7: Find the volume common to the cylinder $x^2+y^2=a^2$ and $x^2+z^2=a^2$.

{ Hint:
$$\int_{-a}^{a} \int_{-\sqrt{(a^2-x^2)}}^{\sqrt{(a^2-x^2)}} \int_{-\sqrt{(a^2-x^2)}}^{\sqrt{(a^2-x^2)}} dz dy dx$$
 } Ans: $\frac{16a^3}{3}$

Problem 8: Find the mass of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ the variable density $\rho = kxyz$

{ Hint:
$$\int_0^a \int_0^{b(1-\frac{x}{a})} \int_0^{c(1-\frac{x}{a-b})} kxyz \, dz \, dy \, dx }$$
 Ans: $\frac{2ka^3}{3} (3\sqrt{3} - \frac{\pi}{3})$

Problem 9: Find the moment of inertia of the solid about its major axes generated by revolving the ellipse $\frac{a}{r} = \frac{2-\cos\theta}{2}$ about minor axes.

Tutorial-7, B.Tech Sem-I (Vector Calculus)

Note: In this exercise bold face letters (say) **F** represents vector \vec{f} and i,j,k represents unit vectors \hat{i},\hat{j},\hat{k} respectively.

Problem1: Evaluate the following (i) $\nabla \cdot (\mathbf{r}^3 \mathbf{r})$ (ii) $\nabla \cdot (\mathbf{r} \nabla (\frac{1}{\mathbf{r}^3}))$ (iii) $\nabla^2 (\nabla \cdot (\mathbf{r} \frac{1}{\mathbf{r}^2}))$ (iv) grad Div $(\frac{\mathbf{r}}{\mathbf{r}})$

Ans: (i)6
$$r^3$$
, (ii)3 r^{-4} , (iii)2 r^{-4} , (iv) $-\frac{2r}{r^3}$

Problem2:If $A = 2yz i - x^2y j + xz^2k$, $B = x^2i + yz j - xy k$ and $\phi = 2x^2yz^3$, then find

- (i) $(\mathbf{A} \cdot \boldsymbol{\varphi}) \mathbf{B}$; Ans:
- (ii) $\mathbf{A} \cdot \nabla \varphi$;
- (iii) $(B \cdot \nabla) A$;
- (iv) $(\mathbf{A} \times \nabla) \varphi$;
- (v) $\mathbf{A} \times (\nabla \varphi)$

Problem3: If **A** and **B** are differentiable vector functions, ϕ and ϕ are differentiable scalar functions of position (x, y, z), then prove the following results:

- $(i)\nabla \cdot (A + B) = \nabla \cdot A + \nabla \cdot B$
- (ii) $\nabla \cdot (\varphi A) = \varphi (\nabla \cdot A) + A \cdot A \times$
- (iii) $\nabla \times (\varphi A) = \varphi(\nabla \times A) + A \times \nabla \varphi$
- (iv) $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) \mathbf{A} \cdot (\nabla \times \mathbf{B})$
- (v) $\nabla (\mathbf{A} \cdot \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} + (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{B} \times (\nabla \times \mathbf{A}) + \mathbf{A} \times (\nabla \times \mathbf{B})$
- (vi) $\nabla \times (\nabla \varphi) = 0$

Problem4: Evaluate the grad. of $\log |\mathbf{r}|$ Ans: $\frac{\mathbf{r}}{\mathbf{r}^2}$

Problem5: Show that $\nabla \varphi$ is a vector perpendicular to the surface $\varphi(x, y, z)$ = constt.

Problem6: Find the directional derivative of $\varphi(x, y, z) = x^2yz + 4xz^2$ at (1, -2, -1) in the direction 2i - j - 2k.

Problem7:Prove that the vector $\mathbf{A} = 3y^4z^2\mathbf{i} + 4x^3z^2\mathbf{j} - 3x^2y^2\mathbf{k}$ is solenoidal.

Problem8: Prove following identities

- (i) $\text{Div}(\nabla \phi \times \nabla \psi) = 0$
- (ii) If \mathbf{A} and \mathbf{B} are irrotational then $\mathbf{A} \times \mathbf{B}$ is solenoidal.
- (iii) $\nabla \times (\phi \nabla \Phi) = 0$
- (iv) Div ($f \nabla g$) = $f \nabla^2 g + \nabla f \cdot \nabla g$
- (v) $\mathbf{b} \cdot \nabla (\mathbf{a} \cdot \nabla \frac{1}{r}) = \frac{3(\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r})}{r^5} \frac{\mathbf{a} \cdot \mathbf{b}}{r^3}$ where **a** and **b** are constt. Vectors.
- (vi) $\nabla \cdot (U\nabla V V\nabla U) = U\nabla^2 U V\nabla^2 U$
- (vii) $\nabla r^n = nr^{n-2}r$

Problem9: (a) Prove that $\mathbf{F} = (y^2 \cos x + z^3)i + (2y \sin x - 4)j + (3xz^2 + 2)k$ is a conservative force field.

- (b) Find the scalar potential for **F**. Ans: $(y^2 sinx + xz^3 4y + 2z + c)$
- (c) Find the work done in moving an object in this field from (0,1,-1) to $(\frac{\pi}{2},-1,2)$.

Ans: $15+4\pi$

Problem10: Show that $V=2xyz i + (x^2z + 2y)j + x^2yk$ is irrotational. Express V as gradient of a scalar function φ .

Problem11: Evaluate $\int_{(0,0)}^{(2,1)} (10 x^4 - 2xy^3) dx - 3x^2y^2 dy$ along the path $x^4 - 6xy^3 = 4y^2$

Ans: 60. {Hint: Use Exact

differential}

Problem12: Use Green's theorem to evaluate $\oint_{\mathbb{C}} (\cos x \sin y - xy) dx + \sin x \cos y dy$, where

 $C \equiv x^2 + y^2 = 1.$ Ans: 0.

- **Problem13:** Verify Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$, where C is the closed curve of the region bdd. by the line y = x and curve $y = x^2$.
- **Problem14**: Find the work done in moving a particle once around a circle C in the xy-plane, if circle has center at the origin and radius 3, Force field is given by $\mathbf{F} = (2x y + z)i + (x + y z^2)j + (3x 2y + 4z)k$ Ans: 18π
- **Problem15**: State and prove Green's theorem.
- **Problem16**: Prove that the area bounded by a simple closed curve C is given by $\frac{1}{2}\oint_{C} xdy ydx\{Hint: Use Green's theorem \}$
- **Problem16:** Find the constants a,b,c such that V = (x + 2y + az)i + (bx 3y z)j + (4x + cy + 2z)k is irrotational. Express V as gradient of a scalar function φ .
- **Problem18**: State Green's theorem and hence evaluate $\oint_C (\cos y) dx + (x x \sin y) dy$, where C is the closed curve $x^2 + y^2 = 1$.
- **Problem19**: Use Green's theorem to evaluate $\oint_C (x^2 + xy) dx + (x^2 + y^2) dy$, where C is the square formed by the lines $y = \pm 1$, $x = \pm 1$.
- **Problem20**: Use Stoke's theorem to evaluate $\oint_C (x + 2y) dx + (x z) dy + (y z) dz$, where C is the boundary of the Δ with the vertices (2,0,0),(0,3,0),(0,0,6) oriented in the anticlockwise direction.
- **Problem21:** Verify Stoke's theorem for $\mathbf{F} = x^2y \, \mathbf{k} y \, \mathbf{j} + xzi$ and S is the surface of the region bounded by x = 0, y = 0, z = 0, 2x + y + 2z = 8, which is not included in the xz-plane.
- **Problem22:** Evaluate $\iint_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}}$ ds ,where $\mathbf{F} = \mathbf{y} \, \mathbf{i} + (\mathbf{x} 2\mathbf{x}\mathbf{z}) \, \mathbf{j} \mathbf{x}\mathbf{y} \, \mathbf{k}$ and S is the surface of the sphere $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{a}^2$ above the xy-plane. **Ans**: Zero.
- **Problem23:** Evaluate $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}}$ ds ,where $\mathbf{F} = 4xz \, \mathbf{i} y^2 \, \mathbf{j} + yz \, \mathbf{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

 Ans: $\frac{3}{2}$.
- **Problem24:** If $\mathbf{F} = (\mathbf{x}^2 + \mathbf{y} 4)\mathbf{i} + 3\mathbf{x}\mathbf{y}\,\mathbf{j} + (2\mathbf{x}\mathbf{z} + \mathbf{z}^2)\,\mathbf{k}$, evaluate $\iint_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \,d\mathbf{s}$, and S is the surface of the sphere $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{16}$ above the xy-plane. Ans: $-\mathbf{16}\pi$
- **Problem25:** Evaluate $\iint (y^2z^2i + x^2z^2j + x^2y^2k) \cdot \widehat{n} \, ds$, where S is the part of the surface of the sphere $\mathbf{x^2} + \mathbf{y^2} + \mathbf{z^2} = \mathbf{1}$ above xy-plane.
- **Problem26:** If V is the volume enclosed by the surface S, Find the value of $\int_S \mathbf{r} \cdot \hat{\mathbf{n}} ds$ Ans: 3V
- **Problem27**: State and prove Gauss Divergence theorm.
- **Problem28**: Evaluate $\iint (ax i + by j + cz k) \cdot \hat{n} ds$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$. [P.U. 2004]
- **Problem29:** Evaluate $\iint_S \mathbf{A} \cdot \hat{\mathbf{n}}$ ds ,where $\mathbf{A} = 18z \, \mathbf{i} 12 \, \mathbf{j} + 3y \, \mathbf{k}$ and S is the part of the plane 2x + 3y + 6z = 12 which is located in the first octant. **Ans**: 24

- **Problem30:** Evaluate $\iint_S \mathbf{A} \cdot \widehat{\mathbf{n}} \ ds$, where $\mathbf{A} = z \ i + x \ j 3y^2z \ k$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. **Ans**: 90
- **Problem 31**: Prove that (i) $\iint_S \frac{\mathbf{r} \cdot \hat{\mathbf{n}}}{\mathbf{r}^2} ds = \iiint_V \frac{d\mathbf{v}}{\mathbf{r}^2}$; (ii) $\iint_S \frac{\mathbf{r}^5 \cdot \hat{\mathbf{n}}}{\mathbf{d}} ds = \iiint_V 5\mathbf{r}^3 \mathbf{r} d\mathbf{v}$ (iii) $\iint_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} ds = 0$ for any closed surface S.
- **Problem 32:** Use divergence theorem to evaluate $\iint_S \mathbf{A} \cdot \overrightarrow{ds}$, where $\mathbf{A} = 4x \mathbf{i} 2y^2 \mathbf{j} + z^2 \mathbf{k}$ and S is the surface of the cylinder $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{4}$ bdd. between z = 0 and z = 3. **Problem 33:** Verify Stoke's theorem for $\mathbf{F} = (x^2 + y^2) \mathbf{i} 2xy \mathbf{j}$ taken around rectangle bdd. by
- the lines $x = \pm a$; y = 0, b.