Global Plastic Waste

```
In [1]: #Importing Libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         %matplotlib inline
         warnings.filterwarnings('ignore')
         sns.set_style('whitegrid')
         '''reading the Dataset'''
In [2]:
         #as GDP Per capita Increases Plastic waste Increases
         df=pd.read csv('per-capita-plastic-waste-vs-gdp-per-capita.csv')
         '''displaying first five rows'''
In [3]:
         df.head()
Out[3]:
                                                           GDP per capita,
                                              Per capita
                                                                         Total population
                                                            PPP (constant
                                                                             (Gapminder, Continent
                 Entity
                            Code Year
                                           plastic waste
                                                         2011 international
                                         (kg/person/day)
                                                                             HYDE & UN)
          0
               Abkhazia OWID ABK
                                  2015
                                                   NaN
                                                                    NaN
                                                                                   NaN
                                                                                             Asia
            Afghanistan
                             AFG 2002
                                                              1063.635574
                                                                              22601000.0
                                                   NaN
                                                                                             NaN
          2 Afghanistan
                             AFG 2003
                                                              1099.194507
                                                                              23681000.0
                                                                                             NaN
                                                   NaN
            Afghanistan
                             AFG 2004
                                                              1062.249360
                                                                              24727000.0
                                                                                             NaN
                                                   NaN
             Afghanistan
                             AFG 2005
                                                   NaN
                                                              1136.123214
                                                                              25654000.0
                                                                                             NaN
        '''shape of the data'''
In [4]:
         df.shape
```

Out[4]: (48168, 7)

```
'''checking the null values'''
In [5]:
        df.isnull().sum()
Out[5]: Entity
        Code
                                                                2014
        Year
        Per capita plastic waste (kg/person/day)
                                                               47982
        GDP per capita, PPP (constant 2011 international $)
                                                               41761
        Total population (Gapminder, HYDE & UN)
                                                                1285
        Continent
                                                               47883
        dtype: int64
In [6]:
        '''checking percentage of null values at each column'''
        for column in df.columns:
            print("{} has {:.2f}% null values:".format(column,df[column].isnull().sum()/(
            print('-'*100)
        Entity has 0.00% null values:
        Code has 4.18% null values:
        Year has 0.00% null values:
        Per capita plastic waste (kg/person/day) has 99.61% null values:
        GDP per capita, PPP (constant 2011 international $) has 86.70% null values:
        Total population (Gapminder, HYDE & UN) has 2.67% null values:
        Continent has 99.41% null values:
         ______
```

```
'''checking info of data'''
In [7]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 48168 entries, 0 to 48167
        Data columns (total 7 columns):
             Column
                                                                   Non-Null Count Dtype
                                                                   _____
             Entity
         0
                                                                   48168 non-null objec
             Code
                                                                   46154 non-null objec
         1
        t
         2
             Year
                                                                   48168 non-null int64
         3
             Per capita plastic waste (kg/person/day)
                                                                   186 non-null
                                                                                   float
        64
             GDP per capita, PPP (constant 2011 international $) 6407 non-null
         4
                                                                                   float
        64
             Total population (Gapminder, HYDE & UN)
         5
                                                                   46883 non-null float
        64
             Continent
                                                                   285 non-null
         6
                                                                                   objec
        t
        dtypes: float64(3), int64(1), object(3)
        memory usage: 2.6+ MB
```

```
In [8]: '''renaming columns in the dataframe'''

df.rename(columns={'GDP per capita, PPP (constant 2011 international $)': 'GDP per total population (Gapminder, HYDE & UN)': 'Total Population', 'Per capita plastic waste (kg/person/day)': 'Waste per person' #if we place False in place of inplace a new dataframe will get created with char #if we use True in place of inplace changes will happen to the existing data fram
```

In [9]: df.head()

Out[9]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent
0	Abkhazia	OWID_ABK	2015	NaN	NaN	NaN	Asia
1	Afghanistan	AFG	2002	NaN	1063.635574	22601000.0	NaN
2	Afghanistan	AFG	2003	NaN	1099.194507	23681000.0	NaN
3	Afghanistan	AFG	2004	NaN	1062.249360	24727000.0	NaN
4	Afghanistan	AFG	2005	NaN	1136.123214	25654000.0	NaN

```
In [10]: '''removing entities/countries with incomplete or missing data'''
incmp_df_idx=df[(df['Total Population'].isna())&(df['GDP per capita in PPP'].isna
df.drop(incmp_df_idx,inplace=True)
```

```
In [11]: df.head()
```

Out[11]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent
1	Afghanistan	AFG	2002	NaN	1063.635574	22601000.0	NaN
2	Afghanistan	AFG	2003	NaN	1099.194507	23681000.0	NaN
3	Afghanistan	AFG	2004	NaN	1062.249360	24727000.0	NaN
4	Afghanistan	AFG	2005	NaN	1136.123214	25654000.0	NaN
5	Afghanistan	AFG	2006	NaN	1161.124889	26433000.0	NaN

```
In [12]: df.shape
```

Out[12]: (48113, 7)

```
In [13]: '''retrieving rows in the year-2010'''
    df_2010=df[df['Year']==2010]
    df_2010=df_2010.drop(columns='Continent')
```

In [14]: df_2010.head()

Out[14]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population
9	Afghanistan	AFG	2010	NaN	1614.255001	2.918600e+07
333	Africa	NaN	2010	NaN	NaN	1.039304e+09
344	Albania	ALB	2010	0.069	9927.181841	2.948000e+06
564	Algeria	DZA	2010	0.144	12870.602699	3.597700e+07
844	American Samoa	ASM	2010	NaN	NaN	5.600000e+04

```
In [15]: '''retrieving continent name in which year==2015'''
df_2015=df[df['Year']==2015]
df_2010['Continent']=df_2015['Continent'].values
```

In [16]: df_2015.head()

Out[16]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent
14	Afghanistan	AFG	2015	NaN	1809.016488	3.441400e+07	Asia
338	Africa	NaN	2015	NaN	NaN	1.182439e+09	NaN
369	Albania	ALB	2015	NaN	10970.452245	2.891000e+06	Europe
589	Algeria	DZA	2015	NaN	13724.723853	3.972800e+07	Africa
849	American Samoa	ASM	2015	NaN	NaN	5.600000e+04	Oceania

In [17]: df_2010.head()

Out[17]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent
9	Afghanistan	AFG	2010	NaN	1614.255001	2.918600e+07	Asia
333	Africa	NaN	2010	NaN	NaN	1.039304e+09	NaN
344	Albania	ALB	2010	0.069	9927.181841	2.948000e+06	Europe
564	Algeria	DZA	2010	0.144	12870.602699	3.597700e+07	Africa
844	American Samoa	ASM	2010	NaN	NaN	5.600000e+04	Oceania

In [18]: '''dropping rows with missing Continent values using index'''
missing_idx=df_2010[df_2010['Continent'].isna()].index
df_2010.drop(missing_idx,inplace=True)

In [20]: df_2010.head()

Out[20]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent
344	Albania	ALB	2010	0.069	9927.181841	2948000.0	Europe
564	Algeria	DZA	2010	0.144	12870.602699	35977000.0	Africa
1074	Angola	AGO	2010	0.062	5897.682841	23356000.0	Africa
1294	Anguilla	AIA	2010	0.252	NaN	13000.0	North America
1365	Antigua and Barbuda	ATG	2010	0.660	19212.720131	88000.0	North America

In [21]: wa_g.head()

Out[21]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent
0	Albania	ALB	2010	0.069	9927.181841	2948000.0	Europe
1	Algeria	DZA	2010	0.144	12870.602699	35977000.0	Africa
2	Angola	AGO	2010	0.062	5897.682841	23356000.0	Africa
3	Anguilla	AIA	2010	0.252	NaN	13000.0	North America
4	Antigua and Barbuda	ATG	2010	0.660	19212.720131	88000.0	North America

In [22]: '''reading the second file'''
df2=pd.read_csv('per-capita-mismanaged-plastic-waste-vs-gdp-per-capita.csv')

Out[23]:

	Entity	Code	Year	Per capita mismanaged plastic waste	GDP per capita, PPP (constant 2011 international \$)	Total population (Gapminder, HYDE & UN)	Continent
0	Abkhazia	OWID_ABK	2015	NaN	NaN	NaN	Asia
1	Afghanistan	AFG	2002	NaN	1063.635574	22601000.0	NaN
2	Afghanistan	AFG	2003	NaN	1099.194507	23681000.0	NaN
3	Afghanistan	AFG	2004	NaN	1062.249360	24727000.0	NaN
4	Afghanistan	AFG	2005	NaN	1136.123214	25654000.0	NaN

In [24]: '''renaming coulumns'''

In [25]: df2.head()

Out[25]:

	Entity	Code	Year	Mismanaged waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent
() Abkhazia	OWID_ABK	2015	NaN	NaN	NaN	Asia
•	I Afghanistan	AFG	2002	NaN	1063.635574	22601000.0	NaN
2	2 Afghanistan	AFG	2003	NaN	1099.194507	23681000.0	NaN
;	3 Afghanistan	AFG	2004	NaN	1062.249360	24727000.0	NaN
4	1 Afghanistan	AFG	2005	NaN	1136.123214	25654000.0	NaN

```
In [26]: '''dropping continent column'''
df2.drop('Continent',axis=1,inplace=True)
```

Out[27]:

	Entity	Code	Year	Mismanaged waste per person(kg/day)	GDP per capita in PPP	Total Population
9	Afghanistan	AFG	2010	NaN	1614.255001	2.918600e+07
333	Africa	NaN	2010	NaN	NaN	1.039304e+09
344	Albania	ALB	2010	0.032	9927.181841	2.948000e+06
564	Algeria	DZA	2010	0.086	12870.602699	3.597700e+07
844	American Samoa	ASM	2010	NaN	NaN	5.600000e+04

In [28]: '''dropping rows with missing mismanaged values'''
df2_2010=df2_2010[df2_2010['Mismanaged waste per person(kg/day)'].isna()!=True]

In [29]: df2_2010.head()

Out[29]:

	Entity	Code	Year	Mismanaged waste per person(kg/day)	GDP per capita in PPP	Total Population
344	Albania	ALB	2010	0.032	9927.181841	2948000.0
564	Algeria	DZA	2010	0.086	12870.602699	35977000.0
1074	Angola	AGO	2010	0.045	5897.682841	23356000.0
1294	Anguilla	AIA	2010	0.010	NaN	13000.0
1365	Antigua and Barbuda	ATG	2010	0.051	19212.720131	88000.0

In [30]: '''reset index'''
w_m=df2_2010.reset_index()

In [31]: w_m.head()

Out[31]:

	index	Entity	Code	Year	Mismanaged waste per person(kg/day)	GDP per capita in PPP	Total Population
0	344	Albania	ALB	2010	0.032	9927.181841	2948000.0
1	564	Algeria	DZA	2010	0.086	12870.602699	35977000.0
2	1074	Angola	AGO	2010	0.045	5897.682841	23356000.0
3	1294	Anguilla	AIA	2010	0.010	NaN	13000.0
4	1365	Antigua and Barbuda	ATG	2010	0.051	19212.720131	88000.0

In [32]: '''drop index column'''
 w_m=w_m.drop('index',axis=1)
 w_m.head()

Out[32]:

	Entity	Code	Year	Mismanaged waste per person(kg/day)	GDP per capita in PPP	Total Population
0	Albania	ALB	2010	0.032	9927.181841	2948000.0
1	Algeria	DZA	2010	0.086	12870.602699	35977000.0
2	Angola	AGO	2010	0.045	5897.682841	23356000.0
3	Anguilla	AIA	2010	0.010	NaN	13000.0
4	Antigua and Barbuda	ATG	2010	0.051	19212.720131	88000.0

In [33]: '''merging w_m and w_g'''
df_plastic_waste=pd.merge(wa_g,w_m,how='inner')

In [34]: df_plastic_waste.head()

Out[34]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent	Mismanaged waste per person(kg/day)
0	Albania	ALB	2010	0.069	9927.181841	2948000.0	Europe	0.032
1	Algeria	DZA	2010	0.144	12870.602699	35977000.0	Africa	0.086
2	Angola	AGO	2010	0.062	5897.682841	23356000.0	Africa	0.045
3	Anguilla	AIA	2010	0.252	NaN	13000.0	North America	0.010
4	Antigua and Barbuda	ATG	2010	0.660	19212.720131	88000.0	North America	0.051

```
'''converting column names into list'''
In [35]:
         df plastic waste.columns.tolist()
          '''column names'''
         col names=['Entity',
          'Code',
          'Year',
          'Waste per person(kg/day)',
          'GDP per capita in PPP',
          'Total Population',
          'Continent',
          'Mismanaged waste per person(kg/day)']
         df plastic waste=df plastic waste[col names]
         #'''rounding the values per person'''
         #df_plastic_waste.iloc[:,3:5]=np.around(df_plastic_waste[['Waste per person(kg/dd
          '''changing datatype of Total Population'''
         df_plastic_waste['Total Population']=df_plastic_waste['Total Population'].astype(
          '''generating Total waste and Total mismanaged waste by country'''
         df_plastic_waste['Total waste(kgs/year)']=((df_plastic_waste['Waste per person(kg
                                                       df_plastic_waste['Total Population'])
         df plastic waste['Total waste mismanaged(kgs/year)']=((df plastic waste['Mismanaged(kgs/year)']=()
                                                                   df plastic waste['Total Pd
```

In [36]: df_plastic_waste.head()

Out[36]:

	Entity	Code	Year	Waste per person(kg/day)	GDP per capita in PPP	Total Population	Continent	Mismanaged waste per person(kg/day)	wast
0	Albania	ALB	2010	0.069	9927.181841	2948000	Europe	0.032	7.4
1	Algeria	DZA	2010	0.144	12870.602699	35977000	Africa	0.086	1.8
2	Angola	AGO	2010	0.062	5897.682841	23356000	Africa	0.045	5.2
3	Anguilla	AIA	2010	0.252	NaN	13000	North America	0.010	1.1
4	Antigua and Barbuda	ATG	2010	0.660	19212.720131	88000	North America	0.051	2.

```
In [37]: ''' scatter plot graph '''

plt.figure(1, figsize=(12,8))
plt.scatter(df_plastic_waste['GDP per capita in PPP'], df_plastic_waste['Mismanage plt.title('Waste Mismanaged', loc='center', fontsize=15)
plt.ylabel('Mismanaged waste', loc='center', fontsize=15)
plt.xlabel('GDP per capita in PPP', fontsize=12)

sns.regplot(x=df_plastic_waste['GDP per capita in PPP'], y=df_plastic_waste['Mismanaged', loc='center', fontsize=12)

sns.regplot(x=df_plastic_waste['GDP per capita in PPP'], y=df_plastic_waste['Mismanaged', loc='center', fontsize=15)
plt.xlabel('GDP per capita in PPP', fontsize=12)
sns.regplot(x=df_plastic_waste['GDP per capita in PPP'], y=df_plastic_waste['Mismanaged', loc='center', fontsize=15)
plt.xlabel('SDP per capita in PPP', fontsize=12)
sns.regplot(x=df_plastic_waste['GDP per capita in PPP'], y=df_plastic_waste['Mismanaged', loc='center', fontsize=15)
plt.xlabel('SDP per capita in PPP', fontsize=12)
```



```
In [38]: '''scatter plot'''

plt.figure(2, figsize=(12,8))
plt.scatter(df_plastic_waste['GDP per capita in PPP'], df_plastic_waste['Waste per plt.title('Waste Generated by GDP', loc='center', fontsize=14)
plt.ylabel('Waste per person(kg/day)',loc='center',fontsize=12)
plt.xlabel('GDP per capita in PPP',fontsize=12)

sns.regplot(x=df_plastic_waste['GDP per capita in PPP'], y=df_plastic_waste['Waste scatter_kws={'color':'#CD212A'}, line_kws={'color': '#380282'})

plt.show()
```



```
In [ ]:
```