SCR1 User Manual

Syntacore, info@syntacore.com

v1.0.4, 2019-04-11

Table of Contents

Revision history	1
1. SCR1 overview.	2
1.1. Version of SCR1 Core	2
1.2. Features	2
1.3. Block Diagram	3
2. Codebase overview	5
3. Recommended configurations	7
4. Configurable options	8
5. Simulation environment	10
5.1. Prerequisites	10
5.1.1. Using pre-built binary tools	10
5.1.2. Building tools from source	10
5.1.3. Set environment variables	10
5.2. Clone and prepare the RISC-V ISA tests	10
5.3. Clone RISC-V Compliance tests	11
5.4. Prepare Coremark benchmark sources	11
5.5. Pre-made simulation script	11
5.5.1. Simulator selection	12
5.5.2. Architectural configuration	12
5.5.3. Test subset	12
5.6. Simulation code	12
5.6.1. Trace log	12
6. SDK information.	14
7. Support	15

Revision history

Revision	Date	Description
1.0.0	2018-05-07	Initial version
1.0.1	2018-09-19	RTL configurations and sim script update
1.0.2	2018-10-09	Updated MIMPID
1.0.3	2019-03-19	Updated to comply with MIMPID=0x19031802
1.0.4	2019-04-11	Updated to comply with MIMPID=0x19040301

1. SCR1 overview

SCR1 is an open-source RISC-V compatible MCU core, designed by Syntacore.

1.1. Version of SCR1 Core

The version of SCR1 core corresponds to MIMPID value of 0x19040301.

1.2. Features

- RV32I | E[MC] ISA
- Machine privilege mode
- 2 to 4 stage pipeline
- 32-bit AXI4/AHB-Lite external interface
- Integrated IRQ controller and advanced debug
- Optimized for area and power
- Written in SystemVerilog
- Features a number of configurable parameters

1.3. Block Diagram

The core is load-store architecture, where only load and store instructions access memory and arithmetic instructions only operate on integer registers. The core provides a 32-bit user address space that is byte-addressed and little-endian. The execution environment will define what portions of the address space are legal to access.

Block diagram of the core is shown in Figure 1.

Figure 1: SCR1 Block Diagram

SCR1 core contains:

- Instruction Fetch Unit (IFU)
- Instruction Decode Unit (IDU)
- Execution Unit (incl. integer ALU) (EXU, IALU)
- Load-Store Unit (LSU)
- Multi-port register file (MPRF)
- Control/Status register file (CSRF)
- Integrated programmable interrupt controller (IPIC)
- System Control Unit (SCU)
- Tightly-coupled memory (TCM)
- External AXI4/AHB-Lite instruction memory interface

- External AXI4/AHB-Lite data memory interface
- Debug Subsystem:
 - Test access point controller (TAPC)
 - Debug Module (DM)
 - Trigger Module (TM)

2. Codebase overview

Table 1: Repository contents

Folder	Description
docs	SCR1 documentation
src	SCR1 RTL source and testbench files
sim	Tests and scripts for simulation
sim/tests/common	Common source files for tests
sim/tests/riscv_isa	Common source files for RISC-V ISA tests
sim/tests/riscv_compliance	Common source files for RISC-V Compliance tests
sim/tests/benchmarks/dhrystone21	Dhrystone 2.1 source files
sim/tests/benchmarks/coremark	Coremark source files
sim/tests/vectored_isr_sample	Simple test example for vectored interrupt mode
sim/verilator_wrap	Wrappers for Verilator simulation

Table 2: SCR1 RTL source and testbench files

Path	Description		
SCR1 header files			
includes/scr1_ahb.svh	AHB header file		
includes/scr1_arch_custom.svh	Custom architecture description file		
includes/scr1_arch_description.svh	Architecture description file		
includes/scr1_arch_types.svh	Pipeline types description file		
includes/scr1_dm.svh	DM header file		
includes/scr1_hdu.svh	HDU header file		
includes/scr1_tdu.svh	TM header file		
includes/scr1_csr.svh	CSR mapping/description file		
includes/scr1_ipic.svh	IPIC header file		
includes/scr1_memif.svh	Memory interface definitions file		
includes/scr1_riscv_isa_decoding.svh	RISC-V ISA definitions file		
includes/scr1_search_ms1.svh	Most significant one search function		
includes/scr1_tapc.svh	TAPC header file		
SCR1 pipeline source files			
pipeline/scr1_ipic.sv	Integrated Programmable Interrupt Controller (IPIC)		
pipeline/scr1_pipe_tdu.sv	Trigger Debug Unit (TDU)		
pipeline/scr1_pipe_hdu.sv	Hart Debug Unit (HDU)		
pipeline/scr1_pipe_csr.sv	Control Status Registers (CSR)		

Path	Description		
pipeline/scr1_pipe_exu.sv	Execution Unit (EXU)		
pipeline/scr1_pipe_ialu.sv	Integer Arithmetic Logic Unit (IALU)		
pipeline/scr1_pipe_idu.sv	Instruction Decoder Unit (IDU)		
pipeline/scr1_pipe_ifu.sv	Instruction Fetch Unit (IFU)		
pipeline/scr1_pipe_lsu.sv	Load/Store Unit (LSU)		
pipeline/scr1_pipe_mprf.sv	Multi Port Register File (MPRF)		
pipeline/scr1_pipe_top.sv	SCR1 pipeline top		
pipeline/scr1_tracelog.sv	Core tracelog module		
SCR1 top	source files		
core/primitives/scr1_cg.sv	SCR1 clock gate primitive		
core/primitives/scr1_reset_cells.sv	SCR1 reset logic primitives		
core/scr1_clk_ctrl.sv	SCR1 clock control		
core/scr1_core_top.sv	SCR1 core top		
core/scr1_dm.sv	Debug Module (DM)		
core/scr1_dmi.sv	Debug Module Interface (DMI)		
core/scr1_tapc.sv	TAP Controller (TAPC)		
core/scr1_tapc_shift_reg.sv	TAPC shift register		
core/scr1_tapc_synchronizer.sv	TAPC clock domain crossing synchronizer		
core/scr1_scu.sv	System Control Unit		
SCR1 top clus	ter source files		
top/scr1_dmem_ahb.sv	Data memory AHB bridge		
top/scr1_dmem_router.sv Data memory router			
top/scr1_dp_memory.sv Dual-port synchronous memory with enable inputs			
top/scr1_imem_ahb.sv	Instruction memory AHB bridge		
top/scr1_imem_router.sv	Instruction memory router		
top/scr1_mem_axi.sv	Memory AXI bridge		
top/scr1_tcm.sv	Tightly-Coupled Memory (TCM)		
top/scr1_timer.sv	Memory-mapped Timer		
top/scr1_top_ahb.sv	SCR1 AHB top		
top/scr1_top_axi.sv	SCR1 AXI top		
Testbench files			
tb/scr1_memory_tb_ahb.sv	AHB memory testbench		
tb/scr1_memory_tb_axi.sv AXI memory testbench			
tb/scr1_top_tb_ahb.sv	SCR1 top testbench AHB		
tb/scr1_top_tb_axi.sv	SCR1 top testbench AXI		

3. Recommended configurations

The table below shows recommended SCR1 configurations for typical use cases. These configurations can be easily enabled in **scr1_arch_description.svh** file, section "Recommended configurations".

Table 3: SCR1 recommended configurations

Architecture	RV32EC	RV32IC	RV32IMC
Pipeline stages	3	2	2
GPRs	16	32	32
Hardware multiplier	-	-	+
Fast multiplier	-	-	+
Compressed instructions	+	+	+
Vectored interrupts	-	+	+
IRQ lines	1	16	16
Debug	-	+	+
HW breakpoints	0	2	2
Coremark/MHz	1.01	1.27	2.95
Area, 50MHz @90nm_LP, kgates	11	26	33
Artix-7 utilization, LUT/FF	2099 / 818	4355 / 2267	5753 / 2413
Config option	SCR1_CFG_RV32 EC_MIN	SCR1_CFG_RV32 IC_BASE	SCR1_CFG_RV32 IMC_MAX

4. Configurable options

SCR1 has a total of 33 configurable options, described below.

Table 4: SCR1 configurable options

Name	Description			
ISA options				
SCR1_RVE_EXT	Enable RV32E base integer instruction set; when this option is disabled, RV32I base is used			
SCR1_RVM_EXT	Enable M extension (hardware multiplication and division)			
SCR1_RVC_EXT	Enable C extension			
	Core options			
SCR1_IFU_QUEUE_BYPASS	Pipeline bypass after IFU (see "Pipeline configurations" in docs/scr1_eas.pdf)			
SCR1_EXU_STAGE_BYPASS	Pipeline bypass before EXU (see "Pipeline configurations" in docs/scr1_eas.pdf)			
SCR1_FAST_MUL	Enable fast one-cycle multiplication; when this option is disabled, multiplication takes 32 cycles			
SCR1_CLKCTRL_EN	Enable global clock gating; please note that for synthesis, code in scr1_cg.sv should be replaced with implementation-specific clock gate cod			
SCR1_VECT_IRQ_EN	Enable vectored mode (see MTVEC [0x305] in docs/scr1_eas.pdf)			
SCR1_CSR_MCOUNTEN_EN	Enable counter control CSR (see MCOUNTEN [0x7E0] in docs/scr1_eas.pdf)			
SCR1_CSR_MTVEC_BASE_RW_BITS	Number of writable bits in MTVEC BASE field (see MTVEC [0x305] in docs/scr1_eas.pdf)			
1	Uncore options			
SCR1_DBGC_EN	Enable debug controller			
SCR1_BRKM_EN	Enable breakpoint controller			
SCR1_BRKM_BRKPT_NUMBER	Number of hardware breakpoints			
SCR1_IPIC_EN	Enable interrupt controller			
SCR1_IPIC_SYNC_EN	Enable 2-stage input synchronizer for IRQ lines			
SCR1_CFG_EXCL_UNCORE	Exclude DBGC, BRKM, IPIC			
SCR1_TCM_EN	Enable tightly-coupled memory, default size is 64K			
SCR1_IMEM_AHB_IN_BP	Enable bypass on instruction memory AHB bridge inputs			
SCR1_IMEM_AHB_OUT_BP	Enable bypass on instruction memory AHB bridge outputs			
SCR1_DMEM_AHB_IN_BP	Enable bypass on data memory AHB bridge inputs			

Name	Description		
SCR1_DMEM_AHB_OUT_BP	Enable bypass on data memory AHB bridge outputs		
SCR1_IMEM_AXI_REQ_BP	Enable bypass on instruction memory AXI bridge request		
SCR1_IMEM_AXI_RESP_BP	Enable bypass on instruction memory AXI bridge response		
SCR1_DMEM_AXI_REQ_BP	Enable bypass on data memory AXI bridge request		
SCR1_DMEM_AXI_RESP_BP	Enable bypass on data memory AXI bridge response		
Address constants			
SCR1_ARCH_RST_VECTOR	User-defined reset vector		
SCR1_ARCH_CSR_MTVEC_BASE	MTVEC BASE field reset value, or constant value for MTVEC BASE bits that are hardwired		
SCR1_TCM_ADDR_MASK	Set TCM mask and size; size in bytes is two's complement of the mask value		
SCR1_TCM_ADDR_PATTERN	Set TCM address match pattern		
SCR1_TIMER_ADDR_MASK	Set timer mask (should be 0xFFFFFE0)		
SCR1_TIMER_ADDR_PATTERN	Set timer address match pattern		
Simulation options			
SCR1_SIM_ENV	Enable simulation code: SVA, trace log (see Simulation code)		
SCR1_TRACE_LOG_EN	Enable trace log (see Trace log)		
SCR1_TRACE_LOG_FULL	Enable full trace log (see Trace log)		

5. Simulation environment

5.1. Prerequisites

RISC-V GCC toolchain is required to compile the software. You can use pre-built binaries or build the toolchain from scratch.

5.1.1. Using pre-built binary tools

Pre-built RISC-V GCC toolchain and OpenOCD binaries are available to download from http://syntacore.com/page/products/sw-tools. Download the archive (.tar.gz for Linux, .zip for Windows) for your platform, extract the archive to your preferred directory <GCC_INSTALL_PATH> and update the PATH environment variable as described in Set environment variables section.

5.1.2. Building tools from source

You can build the RISC-V toolchain from sources.

Build procedure is verified at the Ubuntu 14.04 LTS and Ubuntu 16.04 LTS distributions.

```
sudo apt-get install autoconf automake libmpc-dev libmpfr-dev libgmp-dev gawk bison flex texinfo libtool make g++ pkg-config libexpat1-dev zlib1g-dev git clone https://github.com/riscv/riscv-gnu-toolchain.git cd riscv-gnu-toolchain git checkout a71fc539850f8dacf232fc580743b946c376014b git submodule update --init --recursive ./configure --prefix=<GCC_INSTALL_PATH> --enable-multilib make
```

More detailed instructions on how to prepare and build the toolchain can be found in https://github.com/riscv/riscv-tools/blob/master/README.md.

5.1.3. Set environment variables

Add the <GCC_INSTALL_PATH>/bin folder to the PATH environment variable:

```
export PATH=$PATH:<GCC_INSTALL_PATH>/bin
```

5.2. Clone and prepare the RISC-V ISA tests

Clone RISC-V ISA tests to your preferred directory <RISCV_TESTS_PATH>

```
git clone https://github.com/riscv/riscv-tests
cd riscv-tests
git checkout a9433c4daa287fbe101025f2a079261a10149225
```

Set the \$RISCV_TESTS environment variable accordingly:

```
export RISCV_TESTS=<RISCV_TESTS_PATH>
```

5.3. Clone RISC-V Compliance tests

Clone RISC-V Compliance tests to your preferred directory <RISCV_COMPLIANCE_TESTS_PATH>

```
git clone https://github.com/riscv/riscv-compliance
cd riscv-compliance
git checkout 9f280717f26f50833357db9bfb77a8c79835f162
```

Set the \$RISCV_COMPLIANCE_TESTS environment variable accordingly:

```
export RISCV_COMPLIANCE_TESTS=<RISCV_COMPLIANCE_TESTS_PATH>
```

5.4. Prepare Coremark benchmark sources

Download CoreMark from EEMBC's web site and extract the archive from http://www.eembc.org/coremark/download.php, or clone from https://github.com/eembc/coremark

Copy the following files from into the sim/tests/benchmarks/coremark/src directory in this repository:

```
core_main.ccore_list_join.ccoremark.hcore_matrix.ccore_state.ccore_util.c
```

5.5. Pre-made simulation script

To build RTL, compile and run tests from the repo root folder:

```
make run_<SIMULATOR> BUS=<AHB, AXI> ARCH=<I, IM, IMC, IC, EM, EMC, EC> IPIC=<0, 1>
```

Default options if not specified: BUS=AHB ARCH=IMC IPIC=0.

Test build and run parameters can be configured in the ./Makefile.

5.5.1. Simulator selection

Currently supported simulators:

- run_modelsim Mentor Graphics ModelSim
- run_vcs Synopsys VCS
- run_ncsim Cadence NCSim
- run_verilator Verilator (version >= 4.0)
- run_verilator_wf Verilator with waveforms support

Please note that RTL simulator executables should be in your PATH variable.

For option run_verilator_wf the waveform is generated for the last test and stored in ./build/simx.vcd.

5.5.2. Architectural configuration

The RISC-V toolchain automatically uses the selected ARCH for code compilation.

Please make sure that architectural configuration selected for the SCR1 RTL matches the one used for tests compilation. SCR1 core parameters can be configured in ./src/includes/scr1_arch_description.svh

5.5.3. Test subset

To run an arbitrary subset of tests, edit the **tests** target in the ./Makefile. Edit the ./sim/tests/riscv isa/rv32 tests.inc to specify subset of RISC-V ISA tests.

After all the tests have finished, the results can be found in build/test_results.txt (default location).

5.6. Simulation code

You can add useful information about the simulation process: assertions and trace log. The SCR1_SIM_ENV parameter must be defined in src/includes/scr1_arch_description.svh to enable all simulation code. This parameter is automatically enabled when you run the pre-made simulation script.

5.6.1. Trace log

During the simulation, the data from General-purpose Integer Registers and Control and Status Registers will be written to a special files in build directory.

• File trace_mprf_<HARTID>.log contains full trace log: time, delay, PC, values of all GPRs. Available if SCR1_TRACE_LOG_FULL is defined in src/includes/scr1_arch_description.svh (enabled by default).

- File trace_mprf_diff_<HARTID>.log contains compact trace log which only includes GPR value changes: time, PC, value of changed GPR. Available if SCR1_TRACE_LOG_FULL is not defined in src/includes/scr1_arch_description.svh.
- File trace_csr_<HARTID>.log contains trace log for each change in CSRs: time, MSTATUS, MTVEC, MIE, MIP, MEPC, MCAUSE, MTVAL.

Parameter SCR1_TRACE_LOG_EN and SCR1_SIM_ENV must be defined in src/includes/scr1_arch_description.svh to enable trace log.

6. SDK information

SCR1 SDKs are located in https://github.com/syntacore/scr1-sdk. The table below gives some basic information on SDKs.

Table 5: SCR1 SDKs

SDK name	Digilent Arty	Terasic DE10-Lite	Arria V GX Starter	Digilent Nexys 4 DDR (Nexys A7)
Default architecture	RV32IMC	RV32IMC	RV32IMC	RV32IMC
FPGA vendor	Xilinx	Altera	Altera	Xilinx
FPGA part	XC7A35T	10M50DAF484C7G	5AGXFB3H4F35C4 N	XC7A100T
Required software	Vivado	Quartus	Quartus	Vivado
Frequency, MHz	25	20	30	30
Resources	TCM, SRAM, UART	TCM, SDRAM, UART	TCM, DDR3, UART	TCM, DDR2, UART
User Guide link	https://github.com/ syntacore/scr1- sdk/blob/master/ docs/ arty_scr1_guide_e n.pdf	https://github.com/ syntacore/scr1- sdk/blob/master/ docs/ de10lite_scr1_guid e_en.pdf	https://github.com/ syntacore/scr1- sdk/blob/master/ docs/ a5_scr1_guide_en. pdf	https://github.com/ syntacore/scr1- sdk/blob/master/ docs/ nexys4ddr_scr1_g uide_en.pdf

7. Support

For more information on SCR1 core, please write to scr1@syntacore.com.