# Technology Review

**Wind Tunnel Data Analysis** 

Eddie Ting, Bob Hu, Yiju Hu

### **Background**

Supersonic airliners/SSBJs are optimized at cruise speed and often neglect low-speed impact at takeoff, approach, and landing.

Studies on how the shapes and configurations affect the aircraft's aerodynamics, handling qualities, dynamic, stability and control.



#### **Project**

This project aims to analyze the experimental wind tunnel data for design space and trade-off study of supersonic airliner/ business jet at low speeds.

The goal is to extract the commercial wind tunnel standard corrected data for look-up, search, process, and visualization.



## **Workflow Chart**



# Technology Considered - 1

- **1. Numpy** [Scientific computing][Ndarray: multidimensional array][Fast operations]
- 2. Pandas [Less coding][Extensive feature set][ Efficient for large dataset ] [Collaboration with other packages]
- Basic Python Data Structure (Set/List/Tuple/Dictionary) [Simple Syntax]
- **4. Scipy** [Fast computational power][A variety of sub-packages]

### Technology Considered - 2

- **5. Matplotlib** [Simple to grasp for beginners][Matlab][Collaboration with other packages]
- Altair [Interactive data visualization]
- 7. Seaborn [high-level interface for drawing attractive statistical graphics]
- Streamlit [The fastest way to build and share data apps]
- 9. Pandas GUI [Collaboration with Pandas][Reframing the dataframe]

#### Choice



# Appeal of Choice



| (C)  | <u>↓</u><br>IMPORT |        | E ADD COL     | DEL COL  | PIVOT  | (C)<br>MERGE | IIII<br>GRAPH | SAVE         | REPLAY |       |   |                |                 |        |       |          |          | STEPS | DOCS | E FULLSCREEN |
|------|--------------------|--------|---------------|----------|--------|--------------|---------------|--------------|--------|-------|---|----------------|-----------------|--------|-------|----------|----------|-------|------|--------------|
| Fx I |                    |        |               |          |        |              |               |              |        |       |   |                |                 |        |       |          |          |       |      |              |
| 7    | Pclass             | ∇<br># | Name          | ∇<br>Abc | Sex    | Abc Age      |               | ∀<br># SibSp |        | Parch | 7 | Ticket         | ∇<br>Abc   Fare | ∇<br># | Cabin | ∇<br>Abc | Embarked |       |      | Ab           |
|      | 3                  |        | Braund, Mr.   | Owen     | male   | 22.0         | 1             | 1            |        | 0     |   | A/5 21171      | 7.25            |        | NaN   |          | S        |       |      |              |
|      | 1                  |        | Cumings, Mr   | rs. Joh  | female | 38.0         | 1             | 1            |        | 0     |   | PC 17599       | 71.2833         |        | C85   |          | C        |       |      |              |
|      | 3                  |        | Heikkinen, M  | Miss. L. | female | 26.0         | 1             | 0            |        | 0     |   | STON/02. 31012 | 82 7.925        |        | NaN   |          | S        |       |      |              |
|      | 1                  |        | Futrelle, Mrs | s. Jacq  | female | 35.0         | )             | 1            |        | 0     |   | 113803         | 53.1            |        | C123  |          | S        |       |      |              |
|      | 3                  |        | Allen, Mr. Wi | illiam   | male   | 35.0         | 1             | 0            |        | 0     |   | 373450         | 8.05            |        | NaN   |          | S        |       |      |              |
|      | 3                  |        | Moran, Mr. J  | James    | male   | NaN          | l             | 0            |        | 0     |   | 330877         | 8.4583          |        | NaN   |          | Q        |       |      |              |
|      | 1                  |        | McCarthy, M   | tr. Tim  | male   | 54.0         | 1             | 0            |        | 0     |   | 17463          | 51.8625         |        | E46   |          | S        |       |      |              |
|      | 3                  |        | Palsson, Ma   | ster. G  | male   | 2.0          |               | 3            |        | 1     |   | 349909         | 21.075          |        | NaN   |          | S        |       |      |              |
|      | 3                  |        | Johnson, Mr   | rs. Osc  | female | 27.0         | 1             | 0            |        | 2     |   | 347742         | 11.1333         |        | NaN   |          | s        |       |      |              |
|      | 2                  |        | Nasser, Mrs.  | . Nicho  | female | 14.0         | )             | 1            |        | 0     |   | 237736         | 30.0708         |        | NaN   |          | С        |       |      |              |
|      | 3                  |        | Sandstrom, I  | Miss     | female | 4.0          |               | 1            |        | 1     |   | PP 9549        | 16.7            |        | G6    |          | S        |       |      |              |
|      | 1                  |        | Bonnell, Mis  | s. Eliz  | female | 58.0         | 1             | 0            |        | 0     |   | 113783         | 26.55           |        | C103  |          | S        |       |      |              |
|      | 3                  |        | Saundercock   | k, Mr    | male   | 20.0         | )             | 0            |        | 0     |   | A/5. 2151      | 8.05            |        | NaN   |          | s        |       |      |              |
|      | 3                  |        | Andersson, I  | Mr. An   | male   | 39.0         | )             | 1            |        | 5     |   | 347082         | 31.275          |        | NaN   |          | S        |       |      |              |
|      | 3                  |        | Vestrom Mi    | ee Hul   | female | 14.0         |               | 0            |        | 0     |   | 350406         | 7.8542          |        | NaN   |          | 9        |       |      |              |
|      | sv 🗸               |        |               |          |        |              |               |              |        |       |   |                |                 |        |       |          |          |       |      | (891, 12)    |

Pandas GUI: User friendly Interaction



#### **Drawback of choice**

- 1. Pandas [Complex syntax][Not ok for 3D matrices]
- 2. Altair [Not as customizable][Not for 3D visualization]
- 3. Streamlit [inefficient]
- 4. Pandas GUI[Need internet connection, Annaconda]

# Project Deliverables & Timeline



**Project work-packages in Gantt-chart** 

WP<sub>4</sub>: Working Progress

w<sub>3</sub>: Week

# Other packages

#### **Visualization**

- Plotly
- Bokeh

- Streamlit
- Plotly
- Bokeh
- Kivy

Next Thu. every project will present Max 5 minutes – I will cut you off

Everyone in the team will speak

Background: your application and why you want to use it, 1 slide What technologies you considered: 1 slide

Choice: what you chose to use, summary of how it works, 1 slide

Appeal of choice: 1 slide

Drawbacks of choice: 1 slide

Things to think about, as a starting point:

Availability of relevant examples

Look at open issues on GitHub

#### Technology Considered

- 1. Numpy
- Pandas [Less coding][Extensive feature set][ Efficient for large dataset ]
  [Collaboration with other packages]
- 3. Basic Python Data Structure(Set/List/Tuple/Dictionary) [Simple Syntax]
- 4. Matplotlib
- 5. Altair
- 6. Streamlit

Need to search packages to use

Streamlit (i/o)

#### Relevant Examples & Existing Issues

https://github.com/Lepresean/Wind\_Tunnel\_Force\_Post-processing

Pros: Could handle multiple csv files

Cons: Written in MATLAB, Visualization is not perfect for our requirements