CSE 4102 LEXICAL ANALYSIS

Lecture 03

Converting DFAs to REs

- Combine serial links by concatenation
- Combine parallel links by alternation
- 3. Remove self-loops by Kleene closure
- Select a node (other than initial or final) for removal. Replace it with a set of equivalent links whose path expressions correspond to the in and out links
- 5. Repeat steps 1-4 until the graph consists of a single link between the entry and exit nodes.

EXAMPLE

parallel edges become alternation

EXAMPLE

serial edges become concatenation

EXAMPLE

Find paths that can be "shortened"

REGULAR EXPRESSION TO DFA

Important States of NFA

- If it has a non-ε out-transition
- move(s,a) is non-empty if s is important
- Accepting states are not important states
 - Adding a unique marker # after the RE r (i.e. r#) we can make the accepting states important
 - Now a state with a transition on # will be accepting state

SYNTAX TREE

 Augmented RE (r#) can be represented by a syntax tree

Leaves contain: Alphabet symbols or ε

Each non-ε leaf is associated with a unique number- position of the leaf and position of the symbol

Internal nodes contain: Operators

o cat-node, or-node or star-node

Syntax tree for r# = (a|b)*abb#

NFA FOR (A|B)*ABB#

- Lettered states are non-important states
- Number states are important states
 - Numbers correspond to the number in syntax tree

DFA FOR (A|B)*ABB#

- Nullable:
 - Nodes that are the root of some sub-expression that generate empty string
- o If n is a leaf labeled by ε then
 - nullable (n) = true
- If n is a leaf labeled with position i
 - nullable (n) = false
- If n is an or-node (|) with children c1 and c2
 - nullable (n) = nullable(c1) or nullable (c2)
- o If n is an cat-node (•) with children c1 and c2
 - nullable (n) = nullable(c1) and nullable (c2)
- If n is an star-node (*) with children c1
 - nullable(n) = true

- o Firstpos(n):
 - Set of positions that can match the first symbol of a string generated by the sub-expression rooted at n
- o If n is a leaf labeled by ε then
 - firstpos (n) = \emptyset
- If n is a leaf labeled with position i
 - firstpos $(n) = \{i\}$
- If n is an or-node (|) with children c1 and c2
 - firstpos (n) = firstpos(c1) \cup firstpos (c2)
- If n is a cat-node (•) with children c1 and c2
 - firstpos(n) = If nullable (c1) then firstpos(c1) ∪ firstpos (c2) else firstpos(c1)
- If n is an star-node (*) with children c1
 - firstpos(n) = firstpos(c1)

- o Lastpos(n):
 - Set of positions that can match the last symbol of a string generated by the sub-expression rooted at n
- o If n is a leaf labeled by ε then
 - lastpos $(n) = \emptyset$
- If n is a leaf labeled with position i
 - lastpos $(n) = \{i\}$
- o If n is an or-node (|) with children c1 and c2
 - $lastpos(n) = lastpos(c1) \cup lastpos(c2)$
- If n is an cat-node (•) with children c1 and c2
 - $lastpos(n) = If nullable (c2) then <math>lastpos(c1) \cup lastpos (c2)$
 - else lastpos(c2)
- If n is an star-node (*) with children c1
 - lastpos(n) = lastpos(c1)

n	nullable(n)	firstpos(n)	lastpos(n)
leaf labeled ϵ	true	Φ	Φ
leaf labeled with position i	false	{i}	{i}
c_1 c_2	nullable(c_1) or nullable(c_2)	$firstpos(c_1) \cup firstpos(c_2)$	$lastpos(c_1) \cup lastpos(c_2)$
c_1 c_2	$\frac{\text{nullable}(c_1)}{\text{nullable}(c_2)}$	if (nullable(c_1)) firstpos(c_1) \cup firstpos(c_2) else firstpos(c_1)	if (nullable(c_2)) lastpos(c_1) \cup lastpos(c_2) else lastpos(c_2)
* c ₁	true	firstpos(c ₁)	lastpos(c ₁)

FIRSTPOS AND LASTPOS EXAMPLE

Followpos(i):

Tells what positions can follow position i in the syntax tree

Rule 1:

If n is a cat-node with left child c1 and right child c2 and i is a position in lastpos (c1), then all positions in firstpos(c2) are in followpos(i)

Rule 2:

If n is a star node, and i is a position in lastpos(n), then all positions in firstpos(n) are in followpos(i)

0	At	star-node:
	,	Jta: 115451

- lastpos(*) = {1,2} and firstpos(*)={1,2}
- According to Rule 2:
 - $followpos\{1\} = \{1,2\}$
 - followpos $\{2\} = \{1,2\}$

Node	followpos
1	{1,2,
2	{1,2,
3	{
4	{
5	{
6	{

Node	Followpos
1	{1,2,3
2	{1,2,3
3	{
4	{
5	{
6	{

- At cat-node above the star-node, '*' is left child and 'a' is right child
 - $lastpos(*) = \{1,2\} \text{ and } firstpos(a)=\{3\}$
 - According to Rule 1:
 - followpos $\{1\} = \{3\}$
 - followpos $\{2\} = \{3\}$

Node	Followpos
1	{1,2,3
2	{1,2,3
3	{4
4	{5
5	{6
6	{

- At next cat-node '•' is left child and 'b' is right child
 - lastpos(•) = {3} and firstpos(b) = {4}
 - According to Rule 1:
 - followpos $\{3\} = \{4\}$
- Similarly, followpos{4}={5} and followpos{5}={6}

Node	followpos
	Tollowpoo
1	{1,2,3}
2	{1,2,3}
3	{4}
4	{5}
5	{6}
6	-

FOLLOWPOS GRAPH

- A node for each position
- Edge from node i to node j if j ∈ followpos{i}

0	followpos graph becomes equivalent NFA
	without ε-transition if

- All positions in firstpos of root become start state
- Label edge {i,j} by the symbol at position j
- Position associated with # only accepting state

Node	followpos
1	{1,2,3}
2	{1,2,3}
3	{4}
4	{5}
5	{6}
6	-

CONSTRUCTION OF DFA FROM RE

- Input: A regular expression r
- Output: A DFA D that recognizes L(r)
- Method:
- Construct syntax tree ST for augmented RE r#
- Construct the functions nullable, firstpos, lastpos and followpos for ST
- Construct Dstates: set of states of D

Dtrans: transition table for D

CONSTRUCTION OF DFA FROM RE

Algorithm

end

```
Initially, the only unmarked state in Dstates is firstpos(root)
while there is an unmarked state T in Dstates do begin
   Mark T;
   For each input symbol a do begin
      Let U be the set of positions that are in followpos(p) for
       some position p in T such that the symbol at position
       p is a
      If U is not empty and is not in Dstates then
        Add U as an unmarked states to Dstates
      Dtrans[T,a]=U
   End
```


 $\{1\}$ $\{1\}$ $\{2\}$ $\{2\}$

Node	followpos	
1	{1,2,3}	
2	{1,2,3}	
3	{4}	
4	{5}	
5	{6}	
6	-	

firstpos{root} = $\{1,2,3\} \equiv A$	(unmarked)
	(arimarkoa)

a

For the input symbol **a**, positions are 1, 3 \therefore followpos(1) \cup followpos(3) ={1,2,3,4} \equiv B

For the input symbol **b**, positions are 2

∴ followpos(2)= $\{1,2,3,\} \equiv A$

Dstates	а	b
$\{1,2,3\} \equiv A$	В	А
$\{1,2,3,4\} \equiv B$		

{1} a_{1} {2}^b{2}

Node	followpos	
1	{1,2,3}	
2	{1,2,3}	
3	{4}	
4	{5}	
5	{6}	
6	-	

I	4
	$\{1,2,3,4\} \equiv B \text{ (unmarked)}$

a

For the input symbol **a**, positions are 1, 3

:. followpos(1)
$$\cup$$
 followpos(3)
={1,2,3,4} \equiv B

For the input symbol **b**, positions are 2, 4

∴ followpos(2)
$$\cup$$
 followpos(4)
= $\{1,2,3,5\} \equiv C$

Dstates	а	b
$\{1,2,3\} \equiv A$	В	А
$\{1,2,3,4\} \equiv B$	В	С
{1,2,3,5} ≡ C		

{1} a_{1} {2} b_{2}

Node	followpos	
1	{1,2,3}	
2	{1,2,3}	
3	{4}	
4	{5}	
5	{6}	
6	-	

 $\{1,2,3,5\} \equiv C \text{ (unmarked)}$

a

For the input symbol **a**, positions are 1, 3

:. followpos(1)
$$\cup$$
 followpos(3)
={1,2,3,4} \equiv B

For the input symbol **b**, positions are 2, 5

∴ followpos(2)
$$\cup$$
 followpos(5) = {1,2,3,6} \equiv D

Dstates	а	b
{1,2,3} ≡ A	В	А
$\{1,2,3,4\} \equiv B$	В	С
$\{1,2,3,5\} \equiv C$	В	D
$\{1,2,3,6\} \equiv D$		

{1} a_{1} {2} b_{2}

Node	followpos	
1	{1,2,3}	
2	{1,2,3}	
3	{4}	
4	{5}	
5	{6}	
6	-	

1	2
	$\{1,2,3,6\} \equiv D \text{ (unmarked)}$

For the input symbol **a**, positions are 1, 3

:. followpos(1)
$$\cup$$
 followpos(3)
={1,2,3,4} \equiv B

For the input symbol **b**, positions are 2

$$\therefore \text{ followpos(2)} \\ = \{1,2,3\} \equiv A$$

Dstates	а	b
{1,2,3} ≡ A	В	А
$\{1,2,3,4\} \equiv B$	В	С
$\{1,2,3,5\} \equiv C$	В	D
$\{1,2,3,6\} \equiv D$	В	A

DFA FOR (A|B)*ABB#

Thank You