L. Vandenberghe ECE133A (Spring 2021)

1. Vectors

- notation
- examples
- vector operations
- linear functions
- complex vectors
- complexity of vector computations

Vector

- a vector is an ordered finite list of numbers
- we use two styles of notation:

$$\begin{bmatrix} -1.1\\0.0\\3.6\\7.2 \end{bmatrix} = (-1.1, 0.0, 3.6, 7.2)$$

- numbers in the list are the *elements* (*entries*, *coefficients*, *components*)
- number of elements is the *size* (*length*, *dimension*) of the vector
- a vector of size n is called an n-vector
- set of *n*-vectors with real elements is denoted \mathbf{R}^n

Conventions

we usually denote vectors by lowercase letters

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = (a_1, a_2, \dots, a_n)$$

- *i*th element of vector *a* is denoted *a_i*
- *i* is the *index* of the *i*th element a_i

Note

- several other conventions exist
- we make exceptions, e.g., a_i can refer to ith vector in a collection of vectors

Block vectors, subvectors

Stacking

- vectors can be stacked (concatenated) to create larger vectors
- example: stacking vectors b, c, d of size m, n, p gives an (m + n + p)-vector

$$a = \begin{bmatrix} b \\ c \\ d \end{bmatrix} = (b_1, \dots, b_m, c_1, \dots, c_n, d_1, \dots, d_p)$$

• other notation: a = (b, c, d)

Subvectors

- colon notation can be used to define subvectors (slices) of a vector
- example: if a = (1, -1, 2, 0, 3), then $a_{2:4} = (-1, 2, 0)$

Special vectors

Zero vector and ones vector

$$0 = (0, 0, \dots, 0),$$
 $\mathbf{1} = (1, 1, \dots, 1)$

size follows from context (if not, we add a subscript and write 0_n , $\mathbf{1}_n$)

Unit vectors

- there are n unit vectors of size n, written e_1, e_2, \ldots, e_n
- *i*th unit vector is zero except its *i*th element which is 1; for n = 3,

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• size of e_i follows from context (or should be specified explicitly)

Outline

- notation
- examples
- vector operations
- linear functions
- complex vectors
- complexity of vector computations

Location and displacement

Location: coordinates of a point in a plane or three-dimensional space

Displacement: shown as arrow in plane or 3-D space

other quantities that have direction and magnitude, e.g., force vector

Vectors 1.6

Signal or time series

elements of n-vector are values of some quantity at n different times

• hourly temperature over period of *n* hours

- daily return of a stock for period of *n* trading days
- cash flow: payments to an entity over *n* periods (*e.g.*, quarters)

Vectors

Images, video

Monochrome (black and white) image

grayscale values of $M \times N$ pixels stored as MN-vector (e.g., row-wise)

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{62} \\ x_{63} \\ x_{64} \end{bmatrix} = \begin{bmatrix} 0.65 \\ 0.05 \\ 0.20 \\ \vdots \\ 0.28 \\ 0.00 \\ 0.90 \end{bmatrix}$$

Color image: 3MN-vectors with R, G, B values of the MN pixels

Video: vector of size KMN represents K monochrome images of $M \times N$ pixels

Portfolio vector, resource vector

Portfolio

- *n*-vector represents stock portfolio or investment in *n* assets
- ith element is amount invested in asset i
- elements can be no. of shares, dollar values, or fractions of total dollar amount

Resource vector

- elements of n-vector represent quantities of n resources or commodities
- sign indicates whether quantity is held or owed, produced or consumed, ...
- example: bill of materials gives quantities needed to create a product

Vectors 1.9

Word count vectors

- vector represents a document
- size of vector is number of words in a dictionary
- word count vector: element i is number of times word i occurs in the document
- word histogram: element *i* is frequency of word *i* in the document

Example

Word count vectors are used in computer based document analysis. Each entry of the word count vector is the number of times the associated dictionary word appears in the document.

word	3
in	2
number	1
horse	0
document	2

Vectors

Feature vectors

contain values of variables or attributes that describe members of a set

Examples

- age, weight, blood pressure, gender, ..., of patients
- square footage, #bedrooms, list price, ..., of houses in an inventory

Note

- vector elements can represent very different quantities, in different units
- can contain categorical features (e.g., 0/1 for male/female)
- ordering has no particular meaning

Vectors 1.11

Outline

- notation
- examples
- vector operations
- linear functions
- complex vectors
- complexity of vector computations

Addition and subtraction

$$a + b = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{bmatrix}, \qquad a - b = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_n - b_n \end{bmatrix}$$

commutative

$$a + b = b + a$$

associative

$$a + (b+c) = (a+b) + c$$

Scalar-vector and componentwise multiplication

Scalar-vector multiplication: for scalar β and n-vector a,

$$\beta \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \beta a_1 \\ \beta a_2 \\ \vdots \\ \beta a_n \end{bmatrix}$$

Component-wise multiplication: for n-vectors a, b

$$a \circ b = \begin{bmatrix} a_1b_1 \\ a_2b_2 \\ \vdots \\ a_nb_n \end{bmatrix}$$

Linear combination

a *linear combination* of vectors a_1, \ldots, a_m is a sum of scalar-vector products

$$\beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_m a_m$$

the scalars β_1, \ldots, β_m are the *coefficients* of the linear combination

Inner product

the inner product of two n-vectors a, b is defined as

$$a^T b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

- a scalar
- ullet meaning of superscript T will be explained when we discuss matrices
- other notation: $\langle a, b \rangle$, $(a \mid b)$, ...

Properties

for vectors a, b, c of equal length, scalar γ

•
$$a^T a = a_1^2 + a_2^2 + \dots + a_n^2 \ge 0$$

- $a^T a = 0$ only if a = 0
- commutative:

$$a^Tb = b^Ta$$

associative with scalar multiplication:

$$(\gamma a)^T b = \gamma (a^T b)$$

distributive with vector addition:

$$(a+b)^T c = a^T c + b^T c$$

Simple examples

Inner product with unit vector

$$e_i^T a = a_i$$

Differencing

$$(e_i - e_j)^T a = a_i - a_j$$

Sum and average

$$\mathbf{1}^T a = a_1 + a_2 + \dots + a_n$$

$$(\frac{1}{n}\mathbf{1})^T a = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Examples

Weighted sum

- *f* is vector of features
- w is vector of weights
- inner product $w^T f = w_1 f_1 + w_2 f_2 + \cdots + w_n f_n$ is total score

Cost

- *p* is vector of prices of *n* goods
- q is vector of quantities purchased
- inner product $p^Tq = p_1q_1 + p_2q_2 + \cdots + p_nq_n$ is total cost

Vectors

Examples

Portfolio return

- h is portfolio vector, with h_i the dollar value of asset i held
- *r* is vector of fractional returns over the investment period:

$$r_i = \frac{p_i^{\text{final}} - p_i^{\text{init}}}{p_i^{\text{init}}}, \quad i = 1, \dots, n$$

 p_i^{init} and p_i^{final} are the prices of asset i at the beginning and end of the period

• $r^T h = r_1 h_1 + \cdots + r_n h_n$ is the total return, in dollars, over the period

Vectors

Outline

- notation
- examples
- vector operations
- linear functions
- complex vectors
- complexity of vector computations

Linear function

a function $f: \mathbf{R}^n \to \mathbf{R}$ is **linear** if the superposition property

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \tag{1}$$

holds for all *n*-vectors x, y and all scalars α , β

Extension: if f is linear, superposition holds for any linear combination:

$$f(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \dots + \alpha_m f(u_m)$$

for all scalars $\alpha_1, \ldots, \alpha_m$ and all *n*-vectors u_1, \ldots, u_m

(this follows by applying (1) repeatedly)

Inner product function

for fixed $a \in \mathbf{R}^n$, define a function $f: \mathbf{R}^n \to \mathbf{R}$ as

$$f(x) = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

any function of this type is linear:

$$a^{T}(\alpha x + \beta y) = \alpha(a^{T}x) + \beta(a^{T}y)$$

holds for all scalars α , β and all n-vectors x, y

every linear function can be written as an inner-product function:

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

= $x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$

line 2 follows from superposition

Examples in \mathbb{R}^3

• $f(x) = \frac{1}{3}(x_1 + x_2 + x_3)$ is linear: $f(x) = a^T x$ with $a = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• $f(x) = -x_1$ is linear: $f(x) = a^T x$ with a = (-1, 0, 0)

• $f(x) = \max\{x_1, x_2, x_3\}$ is not linear: superposition does not hold for

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \alpha = -1, \qquad \beta = 1$$

we have f(x) = 1, f(y) = 0,

$$f(\alpha x + \beta y) = 0 \neq \alpha f(x) + \beta f(y) = -1$$

Exercise

- unit mass with zero initial position and velocity
- apply piecewise-constant force F(t) during interval [0, 10):

$$F(t) = x_j$$
 for $t \in [j-1, j), j = 1, ..., 10$

• define f(x) as position at t = 10, g(x) as velocity at t = 10

are f and g linear functions of x?

Solution

- from Newton's law s''(t) = F(t) where s(t) is the position at time t
- integrate twice to get final velocity and position

$$s'(10) = \int_0^{10} F(t) dt$$

$$= x_1 + x_2 + \dots + x_{10}$$

$$s(10) = \int_0^{10} s'(t) dt$$

$$= \frac{19}{2}x_1 + \frac{17}{2}x_2 + \frac{15}{2}x_3 + \dots + \frac{1}{2}x_{10}$$

the two functions are linear: $f(x) = a^T x$ and $g(x) = b^T x$ with

$$a = (\frac{19}{2}, \frac{17}{2}, \dots, \frac{3}{2}, \frac{1}{2}), \qquad b = (1, 1, \dots, 1)$$

Affine function

a function $f: \mathbf{R}^n \to \mathbf{R}$ is **affine** if it satisfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all *n*-vectors x, y and all scalars α , β with $\alpha + \beta = 1$

Extension: if f is affine, then

$$f(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \dots + \alpha_m f(u_m)$$

for all *n*-vectors u_1, \ldots, u_m and all scalars $\alpha_1, \ldots, \alpha_m$ with

$$\alpha_1 + \alpha_2 + \cdots + \alpha_m = 1$$

Affine functions and inner products

for fixed $a \in \mathbf{R}^n$, $b \in \mathbf{R}$, define a function $f : \mathbf{R}^n \to \mathbf{R}$ by

$$f(x) = a^{T}x + b = a_1x_1 + a_2x_2 + \dots + a_nx_n + b$$

i.e., an inner-product function plus a constant (offset)

• any function of this type is affine: if $\alpha + \beta = 1$ then

$$a^{T}(\alpha x + \beta y) + b = \alpha(a^{T}x + b) + \beta(a^{T}y + b)$$

• every affine function can be written as $f(x) = a^T x + b$ with:

$$a = (f(e_1) - f(0), f(e_2) - f(0), \dots, f(e_n) - f(0))$$

 $b = f(0)$

Vectors

Affine approximation

first-order Taylor approximation of differentiable $f: \mathbb{R}^n \to \mathbb{R}$ around z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

generalizes first-order Taylor approximation of function of one variable

$$\hat{f}(x) = f(z) + f'(z)(x - z)$$

- \hat{f} is a local affine approximation of f around z
- in vector notation: $\hat{f}(x) = f(z) + \nabla f(z)^T (x z)$ where

$$\nabla f(z) = \left(\frac{\partial f}{\partial x_1}(z), \frac{\partial f}{\partial x_2}(z), \dots, \frac{\partial f}{\partial x_n}(z)\right)$$

the *n*-vector $\nabla f(z)$ is called the *gradient* of f at z

Example with one variable

$$\hat{f}(x) = f(z) + f'(z)(x - z)$$

Example with two variables

$$f(x_1, x_2) = x_1 - 3x_2 + e^{2x_1 + x_2 - 1}$$

Gradient

$$\nabla f(x) = \begin{bmatrix} 1 + 2e^{2x_1 + x_2 - 1} \\ -3 + e^{2x_1 + x_2 - 1} \end{bmatrix}$$

First-order Taylor approximation around z = 0

$$\hat{f}(x) = f(0) + \nabla f(0)^{T} (x - 0)$$
$$= e^{-1} + (1 + 2e^{-1})x_1 + (-3 + e^{-1})x_2$$

Regression model

$$\hat{y} = x^T \beta + v = \beta_1 x_1 + \dots + \beta_p x_p + v$$

- x is feature vector
- elements x_i are regressors, independent variables, or inputs
- $\beta = (\beta_1, \dots, \beta_p)$ is vector of weights or coefficients
- *v* is *offset* or *intercept*
- coefficients $\beta_1, \ldots, \beta_p, v$ are the *parameters* of the regression model
- \hat{y} is prediction (or outcome, dependent variable)
- regression model expresses \hat{y} as an affine function of x

Vectors

Example: house price regression model

$$\hat{y} = 54.4 + 148.73x_1 - 18.85x_2$$

- \hat{y} is predicted selling price in thousands of dollars
- x_1 is area (1000 square feet); x_2 is number of bedrooms

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Vectors 1.31

Example

scatter plot shows sale prices for 774 houses in Sacramento

Outline

- notation
- examples
- vector operations
- linear functions
- complex vectors
- complexity of vector computations

Complex numbers

Complex number: $x = \alpha + j\beta$ with α , β real scalars

- $j = \sqrt{-1}$ (more common notation is i or j)
- α is the *real part* of x, denoted Re x
- β is the *imaginary* part, denoted Im x

set of complex numbers is denoted C

Modulus and conjugate

- modulus (absolute value, magnitude): $|x| = \sqrt{(\text{Re } x)^2 + (\text{Im } x)^2}$
- conjugate: $\bar{x} = \text{Re } x j \text{ Im } x$
- useful formulas:

Re
$$x = \frac{x + \bar{x}}{2}$$
, Im $x = \frac{x - \bar{x}}{2j}$, $|x|^2 = \bar{x}x$

Polar representation

nonzero complex number x = Re x + j Im x can be written as

$$x = |x| (\cos \theta + j \sin \theta) = |x|e^{j\theta}$$

- $\theta \in [0, 2\pi)$ is the argument (phase angle) of x (notation: $\arg x$)
- $e^{j\theta}$ is complex exponential: $e^{j\theta} = \cos \theta + j \sin \theta$

imaginary axis

Vectors

Complex vector

- vector with complex elements: $a = \alpha + j\beta$ with α , β real vectors
- real and imaginary part, conjugate are defined componentwise:

$$Re a = (Re a_1, Re a_2, ..., Re a_n)$$

$$Im a = (Im a_1, Im a_2, ..., Im a_n)$$

$$\bar{a} = Re a - j Im a$$

- set of complex n-vectors is denoted \mathbb{C}^n
- addition, scalar/componentwise multiplication defined as in \mathbb{R}^n :

$$a+b=\begin{bmatrix}a_1+b_1\\a_2+b_2\\\vdots\\a_n+b_n\end{bmatrix}, \qquad \gamma a=\begin{bmatrix}\gamma a_1\\\gamma a_2\\\vdots\\\gamma a_n\end{bmatrix}, \qquad a\circ b=\begin{bmatrix}a_1b_1\\a_2b_2\\\vdots\\a_nb_n\end{bmatrix}$$

Complex inner product

the inner product of complex n-vectors a, b is defined as

$$b^{H}a = \bar{b}_{1}a_{1} + \bar{b}_{2}a_{2} + \dots + \bar{b}_{n}a_{n}$$

- a complex scalar
- ullet meaning of superscript $^{\cal H}$ will be explained when we discuss matrices
- other notation: $\langle a, b \rangle$, $(a \mid b)$, ...
- for real vectors, reduces to real inner product $b^T a$

Properties

for complex *n*-vectors a, b, c and complex scalars γ

• $a^H a \ge 0$: follows from

$$a^{H}a = \bar{a}_{1}a_{1} + \bar{a}_{2}a_{2} + \dots + \bar{a}_{n}a_{n}$$

= $|a_{1}|^{2} + |a_{2}|^{2} + \dots + |a_{n}|^{2}$

- $a^H a = 0$ only if a = 0
- $b^H a = \overline{a^H b}$
- $b^H(\gamma a) = \gamma(b^H a)$
- $(\gamma b)^H a = \bar{\gamma}(b^H a)$
- $\bullet (b+c)^H a = b^H a + c^H a$
- $\bullet \ b^H(a+c) = b^H a + b^H c$

Outline

- notation
- examples
- vector operations
- linear functions
- complex vectors
- complexity of vector computations

Floating point operation

Floating point operation (flop)

- the unit of complexity when comparing vector and matrix algorithms
- 1 flop = one basic arithmetic operation $(+, -, *, /, \sqrt{, ...})$ in \mathbf{R} or \mathbf{C}

Comments: this is a very simplified model of complexity of algorithms

- we don't distinguish between the different types of arithmetic operations
- we don't distinguish between real and complex arithmetic
- we ignore integer operations (indexing, loop counters, ...)
- we ignore cost of memory access

Vectors 1.38

Complexity

Operation count (flop count)

- total number of operations in an algorithm
- in linear algebra, typically a polynomial of the dimensions in the problem.
- a crude predictor of run time of the algorithm:

run time
$$\approx \frac{\text{number of operations (flops)}}{\text{computer speed (flops per second)}}$$

Dominant term: the highest-order term in the flop count

$$\frac{1}{3}n^3 + 100n^2 + 10n + 5 \approx \frac{1}{3}n^3$$

Order: the power in the dominant term

$$\frac{1}{3}n^3 + 10n^2 + 100 = \text{order } n^3$$

Examples

complexity of vector operations in this lecture (for vectors of size n)

• addition, subtraction: *n* flops

• scalar multiplication: *n* flops

• componentwise multiplication: *n* flops

• inner product: $2n - 1 \approx 2n$ flops

these operations are all order n

Vectors