2D GS

2D Gaussian Splatting for Geometrically Accurate Radiance Fields

2DGS(SIGGRAPH 2024)

3DGS在不同视角下不具有几何一致性,因为是通过视线与3d高斯体的交点来决定渲染 使用仿射矩阵将 3D 高斯转换到射线空间只能在中部获得准确的投影,而在周边区域损失了透视准确性

- 二维高斯:使用二维高斯圆盘代替三维高斯体,提出对应的渲染办法 -》sugar用3维近似2维
- 对齐: 增加两个正则项1) 射线内多个圆盘尽可能在一个表面,
 - 2) 深度法向和圆盘固有法向一致

2D高斯属性

3D Gaussians 属性:

- 均值:
- 协方差矩阵:
- 颜色:
- 不透明度

2D Gaussians 属性:

- 均值: 圆盘中心点
- 两个切向量+一个二维的缩放矩阵
- 颜色:
- 不透明度

$$P(u, v) = \mathbf{p}_k + s_u \mathbf{t}_u u + s_v \mathbf{t}_v v = \mathbf{H}(u, v, 1, 1)^{\mathsf{T}}$$

where
$$\mathbf{H} = \begin{bmatrix} s_u \mathbf{t}_u & s_v \mathbf{t}_v & \mathbf{0} & \mathbf{p}_k \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{RS} & \mathbf{p}_k \\ \mathbf{0} & 1 \end{bmatrix}$$

$$\mathcal{G}(\mathbf{u}) = \exp\left(-\frac{u^2 + v^2}{2}\right)$$

2d高斯的参数化

2D高斯投影到相机屏幕

1、透视投影的仿射近似投影 边缘有误差 2、基于齐次坐标:

需要求逆数值不稳定,变成一条线只能丢弃 从世界坐标系到相机坐标系的变换矩阵W,圆盘内坐标系H

$$\mathbf{x} = (xz, yz, z, z)^{\mathsf{T}} = \mathbf{W}P(u, v) = \mathbf{W}\mathbf{H}(u, v, 1, 1)^{\mathsf{T}}$$
$$\mathbf{M} = (\mathbf{W}\mathbf{H})^{-1}$$

3、Ray-splat 交点法

- ▶ 由xoz、yoz和圆盘三平面确定交点,不用求逆
- ▶ 退化一条线时,用给定的方差替换原有方差。

$$\mathbf{h}_x = (-1, 0, 0, x)$$
 $\mathbf{h}_y = (0, -1, 0, y)$ x平面、y平面 相机坐标系

$$\mathbf{h}_u = (\mathbf{WH})^{\mathsf{T}} \mathbf{h}_x \quad \mathbf{h}_v = (\mathbf{WH})^{\mathsf{T}} \mathbf{h}_v \qquad \mathsf{x}$$
平面、y平面 圆盘坐标系

$$\begin{split} \mathbf{h}_{u} \cdot (u, v, 1, 1)^\top &= \mathbf{h}_{v} \cdot (u, v, 1, 1)^\top = 0 \\ u(\mathbf{x}) &= \frac{\mathbf{h}_{u}^2 \mathbf{h}_{v}^4 - \mathbf{h}_{u}^4 \mathbf{h}_{v}^2}{\mathbf{h}_{1}^4 \mathbf{h}_{v}^2 - \mathbf{h}_{2}^2 \mathbf{h}_{1}^4} \qquad v(\mathbf{x}) &= \frac{\mathbf{h}_{u}^4 \mathbf{h}_{v}^1 - \mathbf{h}_{u}^4 \mathbf{h}_{v}^4}{\mathbf{h}_{1}^4 \mathbf{h}_{2}^2 - \mathbf{h}_{2}^2 \mathbf{h}_{1}^4} \end{split}$$
 求三平面交点

如果圆盘在相机坐标系退化 如果圆盘在相机坐标系退化 为一条直线,替换方差
$$\sigma = \sqrt{2}/2$$

$$\mathbf{c}(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{c}_i \, \alpha_i \, \hat{\mathcal{G}}_i(\mathbf{u}(\mathbf{x})) \prod_{i=1}^{i-1} (1 - \alpha_j \, \hat{\mathcal{G}}_j(\mathbf{u}(\mathbf{x}))) \qquad 根据交点累积渲染$$

正则项使圆盘集中分布

■ 沿射线的交点集中分布

$$\mathcal{L}_d = \sum_{i,j} \omega_i \omega_j |z_i - z_j|$$

$$\omega_i = \alpha_i \hat{\mathcal{G}}_i(\mathbf{u}(\mathbf{x})) \prod_{j=1}^{i-1} (1 - \alpha_j \hat{\mathcal{G}}_j(\mathbf{u}(\mathbf{x})))$$
$$z_i 是交点深度$$

■ 圆盘法向和由深度估计的法向保持一致

$$\mathcal{L}_n = \sum_i \omega_i (1 - \mathbf{n}_i^\top \mathbf{N})$$

n是圆盘法向

N是周围深度估计的法向

$$\mathbf{N}(x, y) = \frac{\nabla_x \mathbf{p} \times \nabla_y \mathbf{p}}{|\nabla_x \mathbf{p} \times \nabla_y \mathbf{p}|}$$

$$\mathcal{L} = \mathcal{L}_c + \alpha \mathcal{L}_d + \beta \mathcal{L}_n$$

	CD \	PSNR↑	Time ↓	MB (Storage) ↓	
3DGS [Kerbl et al. 2023]	1.96	35.76	11.2 m	113	24
SuGaR [Guédon and Lepetit 2023]	1.33	34.57	~1 h	1247	Scan
2DGS-15k (Ours)	0.83	33.42	5.5 m	52	-
2DGS-30k (Ours)	0.80	34.52	18.8 m	52	

1、在表面分布的路上更进一步 重建精度很高,速度也快 和sdf方向相比,速度是十足的优势 轻,受益于集合的正则项。

2、渲染质量更低了

		input 3DGS					us	Sugan							Ours			
		24	37	40	55	63	65	69	83	97	105	106	110	114	118	122	Mean	Time
Ħ	NeRF [Mildenhall et al. 2021]	1.90	1.60	1.85	0.58	2.28	1.27	1.47	1.67	2.05	1.07	0.88	2.53	1.06	1.15	0.96	1.49	> 12h
implicit	VolSDF [Yariv et al. 2021]	1.14	1.26	0.81	0.49	1.25	0.70	0.72	1.29	1.18	0.70	0.66	1.08	0.42	0.61	0.55	0.86	>12h
	NeuS [Wang et al. 2021]	1.00	1.37	0.93	0.43	1.10	0.65	0.57	1.48	1.09	0.83	0.52	1.20	0.35	0.49	0.54	0.84	>12h
	3DGS [Kerbl et al. 2023]	2.14	1.53	2.08	1.68	3.49	2.21	1.43	2.07	2.22	1.75	1.79	2.55	1.53	1.52	1.50	1.96	11.2 m
explicit	SuGaR [Guédon and Lepetit 2023]	1.47	1.33	1.13	0.61	2.25	1.71	1.15	1.63	1.62	1.07	0.79	2.45	0.98	0.88	0.79	1.33	~ 1h
9	2DGS-15k (Ours)	0.48	0.92	0.42	0.40	1.04	0.83	0.83	1.36	1.27	0.76	0.72	1.63	0.40	0.76	0.60	0.83	5.5 m
	2DGS-30k (Ours)	0.48	0.91	0.39	0.39	1.01	0.83	0.81	1.36	1.27	0.76	0.70	1.40	0.40	0.76	0.52	0.80	18.8 m