ELETROTÉCNICA

CÓDIGO DE CATÁLOGO: 1201

Trabalho elaborado pela Diretoria de Educação e Tecnologia do Departamento Regional do SENAI - PR , através do *LABTEC* - Laboratório de Tecnologia Educacional.

Coordenação geral Marco Antonio Areias Secco

Elaboração técnica Senai - Maringá

Equipe de editoração

Coordenação Lucio Suckow
Diagramação José Maria Gorosito
Ilustração José Maria Gorosito
Revisão técnica Senai - Maringá
Capa Ricardo Mueller de Oliveira

Referência Bibliográfica. NIT - Núcleo de Informação Tecnológica SENAI - DET - DR/PR

S474e SENAI - PR. DET **Eletrotécnica** Curitiba, 2001, 100 p

CDU-

Direitos reservados ao

SENAI — Serviço Nacional de Aprendizagem Industrial Departamento Regional do Paraná

Avenida Cândido de Abreu, 200 - Centro Cívico

Telefone: (41) 350-7000
Telefax: (41) 350-7101
E-mail: senaidr@pr.senai.br
CEP 80530-902 — Curitiba - PR

SUMÁRIO

Matéria	
TENSÃO ELÉTRICA (E)	07
CORRENTE ELÉTRICA (I)	09
RESISTÊNCIA ELÉTRICA (R)	11
Potência Elétrica	12
Condutores - Isolantes - Resistores	15
Resistividade	18
CIRCUITOS ELÉTRICOS	23
Lei de OHM	26
Associação de Resistores	30
Lei de Kirchhoff	34
Magnetismo	39
Queda de Tensão	53
DIMENSIONAMENTO DE CONDUTORES	55
DISJUNTOR DIFERENCIAL RESIDUAL (DR)	63
ATERRAMENTO	66
LUMINOTÉCNICA	70
TIPOS DE LÂMPADAS	75
FONTES GERADORAS DE ELETRICIDADE	88
SISTEMAS DE DISTRIBUIÇÃO	97

MATÉRIA

A compreensão dos fenômenos elétricos supõe um conhecimento básico da estrutura da matéria, cujas noções fundamentais serão reunidas a seguir.

.....

.....

.....

.....

......

.....

.....

.....

......

......

.....

.....

.....

.....

.....

.....

Toda matéria, qualquer que seja seu estado físico, é formada por partículas denominadas moléculas. As moléculas são constituídas por combinações de tipos diferentes de partículas extremamente pequenas, que são os átomos. Quando uma determinada matéria é composta de átomos iguais é denominada elemento químico.

Os átomos são constituídos por partículas extraordinariamente pequenas, das quais as mais diretamente relacionada com os fenômenos elétricos básicos são as seguintes :

- prótons, que possuem carga elétrica positiva ;
- elétrons, possuidores de carga negativa,
- *nêutrons*, que são eletricamente neutros.

O modelo de Bohr tem uma estrutura muito semelhante à do sistema solar, onde os planetas giram em torno do sol, cada um em sua órbita. Ele representa o átomo com suas três partículas fundamentais: elétrons, prótons e nêutrons, como mostra a figura.

Os elétrons, que giram segundo órbitas mais exteriores,	
são atraídos pelo núcleo com uma força de atração menor	
que a exercida sobre os elétrons das órbitas mais próximas	
do núcleo. Os elétrons mais exteriores podem ser retiradas	
de sua orbita com certa facilidade, são denominados elétrons	
livres.	
O acúmulo de elétrons em um corpo caracteriza a carga	
elétrica do mesmo.	
Em certas substâncias, a atração que o núcleo exerce	
sobre os elétrons é pequena ; estes elétrons tem maior	
facilidade de se libertar e se deslocar. É o que ocorre nos metais	
como a prata, o cobre, o alumínio etc., denominados, por isso,	
condutores elétricos. Quando, pelo contrário, os elétrons	
externos se acham submetidos a forças interiores de atração	
que dificultam consideravelmente sua libertação, as	
substâncias em que tal ocorrem são denominadas isolantes	
elétricos. É o caso do vidro, das cerâmicas, dos plásticos etc.	
Pode-se dizer que um condutor elétrico é um material que oferece	
pequena resistência a passagem dos elétrons, e um isolante	
elétrico é o que oferece resistência elevada a corrente elétrica.	
Assim como em hidráulica a unidade de volume do líquido	
é o m³, em eletricidade exprime-se a "quantidade" de	
eletricidade em <i>coulombs</i> .	

Resumo:

- *Matéria* : é tudo aquilo que tem massa e ocupa um lugar no espaço.
- Molécula: é a menor parte da matéria que conserva todas as propriedades dessa matéria.
- Átomo: é a menor porção de um elemento equilibrado eletricamente e apenas divisível por reação atômica.
- *Núcleo* : é a porção central do átomo, onde se encontram os prótons e nêutrons.

Obs.: 1C (coulomb) = 6.25×10^{18} elétrons

TENSAC	PELETRICA (E	3):		
Nos cor	ndutores, existem			
			mento de forma	
desordenada	. Para que es	tes elétron	s passem a se	
movimentar de	forma ordenada	é preciso qu	ue se aplique uma	
força, de mod	o que se estab	eleça um flu	uxo ordenado de	
elétrons.		-		
Daata fa		! . !		
	•	•	, quando entre as	
extremidades	de um condut	or existir ur	ma diferença de	
concentração d	de elétrons, isto é	e, de carga el	étrica, existirá um	
potencial elét	<i>rico</i> ou uma <i>ten</i>	são elétrica	entre esses dois	
pontos.				
A +		untan dafinin		
		entos, definim	nos tensão elétrica	
da seguinte ma	aneira:			
TENSÂ	O ELÉTRICA :	é a força q	ue impulsiona os	
elétrons livres	nos fios.			
Δ tensã	o elétrica é tamb	ém conhecic	la como diferenca	
A tensão elétrica é também conhecida como diferença				
de potencial (d.d.p.).				
• Unidad	de de medida : \	/olt (V)		
• Aparol	lho do modido d	la tanção al	étrica : voltímetro	
• Aparei	ino de medida c	ie leiisau ei	etrica . voitimetro	
_				
RELAÇÃ	O ENTRE AS U	NIDADES :		
Polooãoo	Donomingoão	Símbolo	Valor em	
Relações	Denominação	Simbolo	relação ao volt	
múltiplos	Megavolt -10 ⁶	MV	1000000V	
unidade	Quilovolt 10 ³	kV V	1000V	
submúltiplos	Milivolt 10 ⁻³	mV	0.001V	
"	Microvolt 10 ⁻⁶	μV	0.000001V	
Tabela pa	ara a conversão	de unidades	de medida:	
kA	A	mA	μА	
			μ,	

TIPOS DE TENSÃO ELÉTRICA :	
Tensão contínua	
Tensão alternada	
TENSÃO ELÉTRICA CONTÍNUA :	
Tensão contínua - é aquela que não varia ao longo do	
tempo. Possui a sua polaridade definida.	
Como exemplos de fontes de tensão contínua temos as	
pilhas e baterias	
TENSÃO ELÉTRICA ALTERNADA :	
Tensão alternada - é aquela que troca de polaridade	
constantemente, provocando nos circuitos um fluxo de corrente	
ora em um sentido, ora em outro.	
A tensão elétrica disponível nas residências é do tipo	
alternada, razão pela qual a maior parte dos equipamentos	
elétricos é construído para funcionar alimentado a partir deste	
tipo de corrente elétrica.	

CORRENT	E ELÉTRICA ((1):			
Os elétron	s livres dos áto	mos de uma	certa substând	cia	
normalmente se	deslocariam er	n todas as dii	eções. Quand	do,	
em um condutor,	o movimento	de deslocam	ento de elétro	ns	
livres for mais int	enso em um o	determinado	sentido, diz -	se	
que existe uma	corrente elétr	rica ou um fl	uxo elétrico	no	
condutor.					
A intensida	de da corrente	elétrica é ca	racterizada pe	elo	
número de elétro			•		
seção do conduto			na aotomina	uu	
seção do conduit	n na umaaac c	ic tempo.			
Atrovás dos	staa informaas	aa dafinimaa	corronto alátri	00	
	stas informaçõ	es delinimos	corrente eletri	Ca	
da seguinte forma	a :				
		,			
	E ELÉTRICA (
elétrons livres nos condutores, quando existe uma diferença					
de potencial (tensão) elétrico entre suas extremidades.					
 Unidade de medida : ampère (A); 					
 Aparelh 	o de medid	a de corre	nte elétrica	1 :	
amperímetro;					
•					
DEL ACÃO	ENTRE AS UI	MIDADES :			
KLLAÇAO	LIVING AS O	NIDADLO.			
Relação	Denominação	Símbolo	Valor em		
			relação ao ampère		
múltiplos unidade	quiloampere ampère	kA A	1000A -		
submúltiplos "	miliampere	mA	0.001A		
	microampere	μΑ	0.000001A		
Tabela para a conver	são de unidades d	e medida:			
kA	Α	n	nA	μΑ	

TIPOS DE CORRENTE ELÉTRICA :	
Corrente contínua	
Corrente alternada	
2 Corronte alternada	
CORRENTE CONTÍNUA (CC) :	
CONNENTE CONTINUA (CC) .	
Corrente Contínua é aquela cuja intensidade é constante	
e sempre no mesmo sentido.	
Ex. : pilhas comuns e baterias.	
ZX. : pilitad domand d batorido.	
CORRENTE ALTERNADA (CA) :	
Corrente Alternada é aquela cuja intensidade varia	
senoidalmente com o tempo e cujo sentido inverte	
periodicamente.	
Ex. : corrente utilizada nas residências.	

	KESIS I EN	NCIA ELETRIC	A(R):		
	RESISTÊN	NCIA ELÉTRIC	A é a dific	uldade encontra	da
	pela corrente elé	trica ao atrave	ssar um co	orpo.	
	 Unidade 	e de medida :	ohm (Ω);		
	Aparelho (de medida de	resistênc	ia elétrica :	
	ohmmímet	ro;			
	-			de um aparelho	, o
	aparelho deve	•		•	io
	poderá danifica	r o equipame	nto (ohmi	mímetro).	
		•		esistência elétric	
	desta forma p				S :
	condutores, iso	olantes e sem	condutor	es.	
	a) aandut	eree información	rolativa foa	silidada à naccad	
	•	ente elétrica (b		cilidade à passage ôncia \:	HII
	ua corre				
	b) isolant e	se			
	impossí				
	resistên				
		,,			
	c) semico	<i>ndutores:</i> têm	caracterist	ticas intermediári	as
	entre os	condutores e d	s isolantes	s, e são largamer	nte
Valor e	utilizado	os em eletrônic	a.		
relação ampèr					
1000 <u>c</u>	RELAÇÃO	ENTRE AS U	NIDADES	:	
0.001	Relação	Denominação	Símbolo	Valor em relação ao	
0.00000	MACIENTA	Managhara		ampére	
	Múltiplos Múltiplos	Megaohms quilohm	MΩ kΩ	100000Ω	
	Unidade	ohm	Ω	Ω	
	Submúltiplos		mΩ	0,001Ω	
	Submúltiplos		μΩ	0.000001Ω	
	T-1!	~_			
	labela p _{MΩ}	oara conversão d			
	IVISZ	kΩ	Ω	mΩ	<u> </u>

0

POTÊNCIA ELÉTRICA (P):	
POTÊNCIA ELÉTRICA é definida como sendo o	
trabalho efetuado na unidade de tempo. Assim como a potência	
hidráulica é dada pelo produto do desnível energético pela	
vazão, a potência elétrica, para um circuito com resistência, é	
obtida pelo produto da <i>tensão E</i> pela <i>corrente elétrica I</i> :	
P = E * I	
 Unidade de medida : watt (W) 	
Aparelho de medida de potência elétrica :	
wattimetro	
Como vimos anteriormente a tensão (E) faz	
movimentar os elétrons, dando origem a corrente elétrica (I).	
Eviationale community of a surroutions and four and	
Existindo corrente ocorrerá algum tipo de fenômeno.	
Ev. : airquita aimplea anda uma lâmpada á acesa. O que	
Ex. : circuito simples onde uma lâmpada é acesa. O que ocorre ? Quais os fenômenos que são percebidos ?	
ocorre : Quais os renomenos que são percebidos :	
Luz e calor.	
Luz e caloi.	
Esses fenômenos nada mais são do que a potência	
elétrica, que foi transformada em potência luminosa (luz) e	
potência térmica (calor).	
p-1011-1011 (-011-101)	
Desta forma é fácil verificar que para existir potência	
elétrica é necessário que haja tensão e corrente elétrica.	
, ,	
O dimensionamento de uma instalação elétrica é	
baseada na potência elétrica dos aparelhos de consumo.	

RELAÇÃO ENTRE AS UNIDADES: Valor em relação ao Relação Denominação Símbolo ampére Múltiplos quilowatt kW 1000W Unidade W ohm Submúltiplos 0,001W miliohm mM Submúltiplos microohm 0.000001W μΩ Tabela para conversão de unidades de medidas kW μW **CONSIDERAÇÕES**: Na introdução ao estudo da potência elétrica definimos que potência elétrica é o produto de uma tensão elétrica E por uma corrente I, onde obtemos como unidade de medida o watt (W). No entanto, este produto fornece "na realidade" uma unidade de potência expressa em volt - ampère (VA), a qual denominamos Potência Aparente. Esta diferenciação, para fins de entendimento, existe pelo fato de trabalharmos com dois tipos de tensão elétrica (contínua e alternada). Portanto, sempre que trabalharmos em tensão contínua

deveremos nos referir a uma potência, cuja unidade de medida é o Watt (W), e quando trabalharmos em tensão alternada (na maioria dos casos), utilizaremos o volt - ampère (VA) potência aparente, a qual é composta de duas parcelas:

potência ativa (W) e potência reativa (var).

 <u>Potência ativa</u>: é a parcela efetivamente transformada em outras formas de potência:

Potência mecânica, potência térmica e potência luminosa, ou seja é a energia que realmente produz algum tipo de trabalho. Em termos práticos é a energia que consumimos e pagamos.

A unidade de medida desta forma de potência é o Watt (W).

.....

......

.....

.....

......

 <u>Potência reativa</u>: é a parcela transformada em campo 	
magnético, necessário por exemplo ao funcionamento de	
motores, transformadores e reatores. Este tipo de energia não	
gera trabalho nenhum (desperdício). Logo, é uma energia	
que <i>não consumimos mas pagamos.</i>	
A unidade de medida da potência reativa é o volt -	
ampère - reativo (var).	
A relação entre a potência ativa (W) e a potência	
aparente (VA) nos fornece o que chamamos de fator de	
potência, muito importante para as indústrias e concessionárias	
de energia elétrica.	

CONDUTORES - ISOLANTES - RESISTORES: **CONDUTORES:** São materiais que, devido à sua constituição atômica, possuem um grande número de elétrons, e por não sofrerem forte atração por parte do núcleo do átomo, podem ser retirados de suas órbitas com relativa facilidade. Devido a pouca atração exercida pelo núcleo do átomo, estes materiais apresentam grande condutância e pequena resistência. Não existe um condutor perfeito, por maior que seja a sua condutância, sempre existirá resistência. Os materiais condutores são utilizados para transportarem ou conduzirem a corrente elétrica. Abaixo citaremos os 4 melhores condutores : • Ouro: é o melhor condutor elétrico, devido ao seu alto custo é pouco empregado na eletricidade. Na eletrônica ele é utilizado nos terminais de Cl's especiais. • Prata: é considerado o 2° melhor condutor elétrico, sendo pouco empregado na eletricidade, devido ao seu alto custo. Na eletricidade a prata é utilizada em contatores, recobrindo ou mesmo confeccionando os contatos internos. • Cobre : é o 3° melhor condutor elétrico, é o material mais empregado em eletricidade, devido ao seu custo relativamente baixo. O cobre é empregado na confecção de contatos de interruptores, receptáculos, fios, etc.. • Alumínio: é o 4° melhor condutor elétrico. É bastante empregado na confecção de condutores usados nas

ililias de transiliissad de ellergia, das usilias	
geradoras até as cidades.	
ISOLANTES:	
São materiais que possuem grande resistência à	
passagem da corrente elétrica.	
Neste grupo de materiais os elétrons estão presos aos	
átomos por uma força de atração muito maior do que nos	
materiais condutores.	
Devido a essa característica, estes materiais oferecem	
pequena condutância e grande resistência. Não existe isolante	
perfeito, por maior que seja a sua resistência, sempre existirá	
condutância.	
Os materiais isolantes mais utilizados são : o plástico, a	
borracha, a baquelita, a porcelana e a mica.	
• Plástico: é empregado no isolamento de condutores,	
corpo de tomadas, carcaça de eletrodomésticos,	
interruptores, plugues, etc	
Borracha: é empregado na fabricação de isolamento	
de condutores.	
de condutores.	
 Baquelita: é empregada na confecção do corpo de 	
interruptores, tomadas e na base e corpo de chaves .	
 Porcelana: é empregada na fabricação de roldanas e 	
bases de chaves.	
• <i>Mica</i> : é empregado em locais onde serão	
desenvolvidas altas temperaturas, como por exemplo,	
entre a resistência e a carcaça do ferro de soldar, ferro	
de passar roupas, etc	

RESISTORES:	
São materiais que oferecem uma certa resistência à	
passagem da corrente elétrica. Sua função específica é	
transformar energia elétrica em calor.	
Nestes materiais os elétrons estão presos ao núcleo do	
átomo por uma força de atração maior do que nos materiais	
condutores e menor que nos materiais isolantes.	
Devido a essa característica, estes materiais oferecem	
média condutância e média resistência. Dentre os materiais	
considerados resistores elétricos, os mais usados em	
eletricidade são : o tungstênio e o níquel-cromo.	
 Tungstênio: é utilizado na confecção de filamentos 	
de lâmpadas incandescentes.	
• Nígual - erama : á bastanto utilizado na confocção do	
Níquel - cromo: é bastante utilizado na confecção de registância de eletradaméntica en tais como eletradaméntica eletradaméntica eletradaméntica eletradamentica eletradam	
resistência de eletrodomésticos, tais como : chuveiros, fogão elétrico, etc	

RESISTIVIDADE:

Todos os materiais, em sua constituição física, facilitam, dificultam ou até mesmo impedem à passagem da corrente elétrica.

.....

......

.....

......

.....

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

......

......

.....

......

.....

......

A facilidade encontrada pela corrente elétrica ao passar pelos materiais é denominada **CONDUTÂNCIA** (**G**).

Porém, em contrapartida à condutância, os materiais sempre oferecem certa oposição à passagem da corrente elétrica.

A essa dificuldade encontrada pela corrente elétrica ao percorrer um material é denominada *RESISTÊNCIA ELÉTRICA* (R).

Todo material condutor de corrente elétrica apresenta certo grau de condutância e de resistência. Quanto maior for a condutância do material, menor será sua resistência. Se o material oferecer grande resistência, proporcionalmente apresentará pouca condutância.

A condutância e a resistência elétrica se manifestam com maior ou menor intensidade nos diversos tipos de materiais.

Por exemplo : no cobre a *condutância* é maior que a *resistência*,(figura a seguir) já no plástico a resistência é muito maior que a condutância.

CONDUTÂNCIA

RESISTÊNCIA

material cobre.

- Maior resistência → Menor condutância
- Menor resistência → Maior condutância

Os valores de resistência elétrica e de condutância variam de acordo com certos fatores:

 natureza do material; 	
 comprimento do condutor; 	
• seção transversal;	
• temperatura.	
NATUREZA DO MATERIAL :	
Para a determinação dos valores de resistência, é	
importante levarmos em consideração a constituição atômica	
do material. Como cada material possui uma estrutura atômica	
diferente, logo teremos valores distintos de resistência.	
COMPRIMENTO:	
Um fator a ser considerado no estudo da resistência	
elétrica é o comprimento do fio, pois mesmo que tenhamos	
um material de mesma constituição atômica, mas	
comprimentos diferentes as respectivas resistências serão	
diferentes.	
Portanto:	
 aumentando o comprimento → aumentará a 	
resistência	
 diminuindo o comprimento → diminuirá a 	
resistência	
resistencia	
Obs.: é importante lembrar que estamos considerando	
materiais de mesma natureza.	
Sabendo que a condutância é o inverso da resistência e	
levando em consideração o comprimento do material, concluímos que :	
 aumentando o comprimento → diminuirá a 	
condutância	
 diminuindo o comprimento → aumentará a 	
condutância	

SEÇÃO TRANSVERSAL:	
Seção transversal é a área do material quando este é	
cortado transversalmente.	
seção transversal (área)	
50,40 (202)	
Interferência da seção transversal na resistência e	
condutância dos materiais, considerando materiais de mesma	
natureza e de igual comprimento.	
Tamanda as dais matariais sam as características	
Tomando-se dois materiais com as características	
citadas acima e seções transversais diferentes, conclui-se que .	
 aumentando a seção transversal → diminuirá a 	
resistência	
 diminuindo a seção transversal → aumentará a 	
resistência	
Levando em consideração a condutância (G), conclui-	
se que :	
 aumentando a seção transversal → aumentará a 	
condutância	
oonaatanoid	
 diminuindo a seção transversal →diminuirá a 	
condutância	
TEMPERATURA:	
O último fator que pode influenciar nos valores de	
resistência e condutância elétrica dos materiais é a	
temperatura, onde levaremos em consideração materiais de	

mesma natureza, igual comprimento e de mesma seção	
transversal, variando apenas os valores de temperatura.	
Em relação a resistência, temos que :	
• aumentando a temperatura 🔿 aumentará a	
resistência	
 diminuindo a temperatura → diminuirá a 	
resistência	
resistencia	
Condutância :	
Conditation .	
a cumentando o temporaturo. V diminuirá o	
 aumentando a temperatura → diminuirá a 	
condutância	
 diminuindo a temperatura → aumentará a 	
condutância	
Se um condutor for aquecido, a corrente do circuito	
sofrerá considerável redução e, quanto maior for o aquecimento,	
menor será a corrente no circuito.	
Essa influência depende da natureza do material de que	
serão constituídos.	
Demonstra-se matematicamente que, se Ro é a	
resistência de um condutor à temperatura de 0° C, o valor	
da resistência desse condutor à temperatura de t° C é expresso	
pela fórmula :	
$R = Ro.(1 + \alpha t)$, onde é o coeficiente de temperatura	
do metal que se considera, e representa a variação da	
resistência pelo aumento de um grau centígrado de	
temperatura para cada um de resistência inicial do condutor.	
Conhaganda da sucilar da Duda da 1100 da 1111	
Conhecendo-se o valor de R da resistência elétrica de	
um condutor à temperatura t1, pode-se calcular o valor da	
mesma para a temperatura t2:	

Rt = R.[1 + α .(t2 - t1)]		
Os valores do coeficiente	de temperatura dos materiais	
	ões elétricas estão indicadas	
	Des eletticas estad ilidicadas	
bela abaixo:		
coeficientes de tempera	ntura	
material	α	
	0.00427 0.00426	
	0.00460	
prata	0.00340	
RESISTÊNCIA ESPECÍFI	ICA:	
Definição : é a resistência o	oferecida por um material com	
•	1mm² de seção transversal e	
	•	
	/() ⁻ (.	
ndo a uma temperatura de 2	20 0.	
ndo a uma temperatura de 2		
ndo a uma temperatura de 2 Resistividade (ρ) - é	a resistência específica de	
ndo a uma temperatura de 2		
ndo a uma temperatura de 2 Resistividade (ρ) - é		
ndo a uma temperatura de 2 Resistividade (ρ) - é	a resistência específica de	
ndo a uma temperatura de 2 Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (a resistência específica de	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material	a resistência específica de	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre	a resistência específica de	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio	ρ (ρ):	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio	ρ (ρ):	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio	ρ (ρ):	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio	ρ (ρ):	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio	ρ (ρ):	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo	ρ (ρ):	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo	p	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R =	e a resistência específica de (ρ):	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo R = resistência total do n	a resistência específica de (ρ) : $\begin{array}{c} \rho \\ 0.016 \\ 0.017 \\ 0.030 \\ 0.050 \\ 1.000 \end{array}$ = ρ . I / S, onde :	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R = resistência total do n ρ (rô) = resistência espe	e a resistência específica de (ρ) : $ \begin{array}{c} \rho\\ 0.016\\ 0.017\\ 0.030\\ 0.050\\ 1.000 \end{array} $ = ρ . I / S, onde : material, em ohms (Ω) ecífica do material (Ω .mm²./ m	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R = resistência total do n ρ (rô) = resistência espel l = comprimento do mate	e a resistência específica de (ρ) : $ \begin{array}{c} \rho\\ 0.016\\ 0.017\\ 0.030\\ 0.050\\ 1.000 \end{array} $ = ρ . I / S, onde : material, em ohms (Ω) ecífica do material (Ω .mm²./ merial, em metros (m)	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R = resistência total do n ρ (rô) = resistência espe	e a resistência específica de (ρ) : $ \begin{array}{c} \rho\\ 0.016\\ 0.017\\ 0.030\\ 0.050\\ 1.000 \end{array} $ = ρ . I / S, onde : material, em ohms (Ω) ecífica do material (Ω .mm²./ merial, em metros (m)	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R = resistência total do n ρ (rô) = resistência espel l = comprimento do mate	e a resistência específica de (ρ) : $ \begin{array}{c} \rho\\ 0.016\\ 0.017\\ 0.030\\ 0.050\\ 1.000 \end{array} $ = ρ . I / S, onde : material, em ohms (Ω) ecífica do material (Ω .mm²./ merial, em metros (m)	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R = resistência total do n ρ (rô) = resistência espel l = comprimento do mate	e a resistência específica de (ρ) : $ \begin{array}{c} \rho\\ 0.016\\ 0.017\\ 0.030\\ 0.050\\ 1.000 \end{array} $ = ρ . I / S, onde : material, em ohms (Ω) ecífica do material (Ω .mm²./ merial, em metros (m)	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R = resistência total do n ρ (rô) = resistência espel l = comprimento do mate	e a resistência específica de (ρ) : $ \begin{array}{c} \rho\\ 0.016\\ 0.017\\ 0.030\\ 0.050\\ 1.000 \end{array} $ = ρ . I / S, onde : material, em ohms (Ω) ecífica do material (Ω .mm²./ merial, em metros (m)	
Resistividade (ρ) - é material.(Ω.mm²/ m). Tabela de resistividade (material prata cobre alumínio tungstênio níquel - cromo Fórmula : R = resistência total do n ρ (rô) = resistência espel l = comprimento do mate	e a resistência específica de (ρ) : $ \begin{array}{c} \rho\\ 0.016\\ 0.017\\ 0.030\\ 0.050\\ 1.000 \end{array} $ = ρ . I / S, onde : material, em ohms (Ω) ecífica do material (Ω .mm²./ merial, em metros (m)	

Pefinição: circuito elétrico é o caminho fechado, pelo qual circula a corrente elétrica. Um circuito elétrico é constituído basicamente por quatro componentes fundamentais: • fontes geradoras de energia; • consumidor; • condutor; • dispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	CIRCUITOS ELÉTRICOS :	
pefinição : circuito elétrico é o caminho fechado, pelo qual circula a corrente elétrica. Um circuito elétrico é constituído basicamente por quatro componentes fundamentais : • fontes geradoras de energía; • consumidor; • condutor; • dispositivo de manobra FONTES GERADORAS : Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO : O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
qual circula a corrente elétrica. Um circuito elétrico é constituído basicamente por quatro componentes fundamentais: • fontes geradoras de energia; • consumidor; • condutor; • dispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	Poliniago : circuito alátrico á a cominho fochado nalo	
Um circuito elétrico é constituído basicamente por quatro componentes fundamentais : • fontes geradoras de energia; • consumidor; • condutor; • dispositivo de manobra FONTES GERADORAS : Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO : O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
Um circuito elétrico é constituído basicamente por quatro componentes fundamentais : • fontes geradoras de energia; • consumidor; • condutor; • dispositivo de manobra FONTES GERADORAS : Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	quai circula a corrente elettica.	
fontes geradoras de energia; consumidor; condutor; dispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	Um circuito elétrico é constituído basicamente por	
fontes geradoras de energia; consumidor; condutor; dispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	·	
fontes geradoras de energia; consumidor; condutor; dispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
consumidor; condutor; dispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	fontes geradoras de energia:	
condutor; dispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
Olispositivo de manobra FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	• condutor;	
FONTES GERADORAS: Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	 dispositivo de manobra 	
Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
Fonte geradora de energia elétrica é a que gera ou produz energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO : O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	FONTES GERADORAS :	
energia elétrica, a partir de outro tipo de energia. Ex.: pilha da lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
lanterna, bateria do automóvel e usina hidrelétrica. CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
CONSUMIDOR: Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex.: furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	ianterna, pateria do automover e usina nidrefetrica.	
Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	CONSUMIDOR:	
Aparelho consumidor é o elemento do circuito que emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO : O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
emprega a energia elétrica para realizar trabalho. A função do aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO : O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	Aparelho consumidor é o elemento do circuito que	
aparelho consumidor no circuito é transformar a energia elétrica em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO : O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
em outro tipo de energia. Ex. : furadeira, ferro de soldar, televisor, etc CONDUTOR ELÉTRICO : O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
televisor, etc CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	em outro tipo de energia. Ex. : furadeira, ferro de soldar,	
CONDUTOR ELÉTRICO: O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	televisor, etc	
O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
O condutor elétrico faz a ligação entre o consumidor e a fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	CONDUTOR ELÉTRICO :	
fonte geradora, permitindo a circulação da corrente. DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
DISPOSITIVO DE MANOBRA: O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	fonte geradora, permitindo a circulação da corrente.	
O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
O dispositivo de manobra é um componente ou elemento que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	DISPOSITIVO DE MANOBRA:	
que nos permite manobrar ou operar um circuito. O dispositivo de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	O dianositivo de manebre é um compenente ou elemente	
de manobra permite ou impede a passagem da corrente elétrica pelo circuito. Acionando o dispositivo de manobra, nós ligamos	·	
pelo circuito. Acionando o dispositivo de manobra, nós ligamos		
	ou desligamos os consumidores de energia.	

CIRCUITO FECHADO: É o circuito não interrompido; ele tem continuidade e dá passagem à corrente elétrica. **CIRCUITO ABERTO:** É o circuito interrompido, que não tem continuidade, o circuito pode ter sido interrompido por um dispositivo de manobra ou , até mesmo por uma interrupção acidental. TIPOS DE CIRCUITOS ELÉTRICOS: circuito elétrico série; circuito elétrico paralelo; circuito elétrico misto **CIRCUITO SÉRIE:** Circuito série é o mais elementar dos circuitos, pois se caracteriza ligando seus componentes um após o outro, desta forma a corrente que passa por todos os elementos é a mesma.

A falha de um dos elementos do circuito faz N com que o mesmo deixe R de funcionar, isto é, ocasiona sua interrupção. Isto significa que o circuito em série tem funcionamento *dependente*, ou seja, um componente só pode funcionar quando todos os outros também funcionarem.

CARACTERÍSTICAS DO CIRCUITO SÉRIE: funcionamento dependente; • corrente elétrica (I) constante em todo o circuito; · tensão elétrica variável; a corrente elétrica tem somente um caminho a percorrer **CIRCUITO PARALELO:** Circuito paralelo é aquele em que o funcionamento de um elemento independe do funcionamento dos demais, isto é, uma fonte receptora pode funcionar sem que os outros elementos estejam ligados. circuito paralelo Ν R interruptor simples **CARACTERÍSTICAS DO CIRCUITO PARALELO:** · funcionamento independente; • tensão elétrica (E) constante no circuito; · corrente elétrica variável; · o circuito oferece vários caminhos para a corrente elétrica percorrer CIRCUITO ELÉTRICO MISTO: Circuito misto é o circuito que apresenta seus elementos ligados uns em série e outros em paralelo, ou seja,

.....

é a união dos dois circuitos estudados anteriormente.

Como o circuito misto é uma composição de circuitos em série com circuitos em paralelo, logo este apresenta num único circuito as características dos dois circuitos anteriores, ou seja, trechos com funcionamento independente (circuito paralelo) e trechos com funcionamento dependente (circuito série).

......

.....

.....

......

......

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

.....

.....

LEI DE OHM:

Desde muito tempo os fenômenos elétricos tem despertado a curiosidade do homem.

Nos primórdios da eletricidade esta curiosidade levou um grande número de cientistas a se dedicarem ao estudo da eletricidade.

George Simon Ohm foi um destes cientistas, dedicando - se ao estudo da corrente elétrica.

Através dos seus estudos Ohm definiu uma relação entre a corrente, tensão e resistência elétrica em um circuito, denominado de " **Lei de Ohm** ".

Nos dias de hoje, ampliando os conhecimentos sobre eletricidade, a Lei de Ohm é tida como a

LEI BÁSICA DA ELETRICIDADE. Observações realizadas por Ohm: • Ohm verificou a interdependência entre a tensão aplicada sobre uma resistência e a corrente que por ela flui: • Para uma mesma resistência, um aumento da tensão aplicada corresponde a um aumento proporcional na corrente que flui através da mesma; Mantendo constante a tensão, um aumento do valor da resistência corresponde a uma diminuição proporcional da corrente elétrica no circuito. Isto se traduz da seguinte forma: " A corrente que flui através de uma resistência é diretamente proporcional à tensão aplicada e inversamente proporcional à resistência. " (Lei de Ohm) I _ <u>E</u> Determinação experimental da Lei de Ohm: A Lei de Ohm pode ser obtida a partir de medidas de tensão, corrente e resistência realizadas em circuitos elétricos simples, composto por uma fonte geradora e um resistor. miliamperímetro resistor

Diversas experiências podem ser realizadas variando -	
se a resistência ou aumentando a tensão.	
Aplicação da Lei de Ohm :	
•	
A Lei de Ohm pode ser utilizada através da sua equação	
para determinar os valores de tensão (E), corrente (I) ou	
resistência (R) em um circuito.	
Sempre que se conhecem dois valores em um circuito (
E e I; I e R ou E e R) o terceiro valor desconhecido pode ser	
determinado pela Lei de Ohm.	
·	
T	
E	
RI	
Quando se deseja determinar a intensidade da corrente	
elétrica (I) que percorre um circuito, coloca - se o dedo sobre	
a letra I do triângulo.	
Com a letra I (corrente elétrica) coberta, o triângulo	
fornece a equação que deve ser usada para calcular a corrente	
do circuito. No caso teríamos a seguinte equação :	
I = E / R	
Quando for necessário determinar a resistência (R) de	
um circuito deve - se cobrir a letra R do triângulo e a equação	
encontrada será :	
R = E / I	
Da mesma forma pode - se determinar a tensão aplicada	
em um circuito quando se conhece a corrente e a resistência.	
E = R * I	
Para que as equações decorrentes da Lei de Ohm sejam	

utilizados, as grandezas elétricas devem ter seus valores expressos nas unidades fundamentais: volt (V), ampère (A) e ohm (Ω). Quando os valores de um circuito estiverem expressos em múltiplos ou submúltiplos das unidades devem ser convertidos para as unidades fundamentais antes de serem usadas nas equações. Ε Р R Ε ExI RxI R x I $P \div I$ E2+R E √PxR Ι R Ε÷Ι E÷R E₃÷P P÷E $P \div I^2$ $\sqrt{P+R}$ $\mathbf{E} =$ RxI $P \div I$ $\sqrt{P \times R}$ $\sqrt{P+R}$ $P \div E$ I = $E \div R$ $\mathbf{R} \times \mathbf{I}^2$ E'+R P =ExI $\mathbf{E}_{\mathbf{i}} + \mathbf{P}$ P÷I2 $\mathbf{E} \div \mathbf{I}$

ASSOCIAÇÃO DE RESISTORES :

RESISTORES: elementos presentes no circuito, constituído de material de baixa condutibilidade elétrica, cuja função é oferecer resistência, transformando energia elétrica em calor (energia térmica).

Inúmeras vezes tem - se necessidade de um valor de resistência diferente do fornecido por um único resistor, outras vezes atravessar em resistor com uma corrente maior do que aquela que normalmente suportaria e que o danificaria. Nesses casos deve -se fazer uma associação de resistores.

Os resistores podem ser associados de diversos modos. Basicamente existem dois modos distintos de associá - los : em série e paralelo. Um outro método que podemos citar, seria a associação mista de resistores, que nada mais é do que a associação de resistores em série e paralelo.

Em qualquer uma dessas associações deveremos encontrar o *resistor equivalente*, ou seja, o resistor que faria o mesmo efeito do conjunto.

Exemplos das formas de se associar resistores

stintos de associá - los :	
que podemos citar, seria	
e nada mais é do que a	
paralelo.	
sociações deveremos	
seja, o resistor que faria	
sociar resistores :	
Associação em paralelo R1	
R2	
R3	
R R4 N	
RS	
R3	
RS N	
SENAI-PR	

.....

.....

.....

......

.....

.....

.....

ASSOCIAÇÃO DE RESISTORES EM SÉRIE: Muitas vezes, nos circuitos elétricos, aparecem resistências ligadas uma em seguida à outra. Quando isto acontece, dizemos que as resistências estão associadas em série. As lâmpadas usadas na decoração das árvores de Natal, por exemplo, geralmente são associadas desta maneira. Na associação em série a resistência equivalente é a soma das resistências parciais : $R_T = R_1 + R_2 + R_3 + \dots R_n$ No caso de termos vários resistores iguais ligados em série, teremos: $R_{T} = R + R + R + \dots$ OU $R_{\tau} = n \times R$, n = número de resistores R = resistência de cada um dos resistores CARACTERÍSTICAS DA ASSOCIAÇÃO EM SÉRIE : o resistor equivalente é a soma de todos os resistores do circuito: • todo o circuito é percorrido pela mesma corrente; as potências dissipadas pelas resistências são diretamente proporcionais às respectivas resistências (Lei de Joule $P = I^2 \times R$);

 a tensão elétrica ou d.d.p. em cada resistor de uma associação em série são diretametne proporcionais às respectivas resistências
 ASSOCIAÇÃO DE RESISTORES EM PARALELO :

Já estudamos anteriormente como se ligam elementos em paralelo. Do mesmo modo que, para o circuito série, vamos encontrar para a associação de resistores em paralelo um resistor equivalente à associação, isto é, que produz no circuito

o mesmo efeito que ela.

Lembrete: os resistores estão associados em paralelo, quando são ligados de modo a ficarem submetidos à mesma d.d.p.

Na associação em paralelo a resistência equivalente da associação é igual à soma dos inversos das resistências associadas :

$$1/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3} +1/R_{n}$$

No caso de termos dois resistores associados em série, temos :

$$R_T = R1 \times R2$$
 (produto)
R1 + R2 (soma)

Se tivermos vários resistores iguais

$$R_{T} = R / n$$
, onde

R = valor de uma resistência

n = número de resistores iguais

—-и	
stência equivalente da	
rsos das resistências	
1 / R _n	
"	
s associados em série,	
ais:	
SENAI-PR	

.....

.....

.....

.....

.....

.....

CARACTERÍSTICAS DA ASSOCIAÇÃO **EM PARALELO:** • todas as resistências recebem a mesma d.d.p. (tensão elétrica); • a corrente elétrica total do circuito é igual a soma das correntes que percorrem cada resistência; • a corrente elétrica que percorre cada resistor é inversamente proporcional às respectivas resistências; •as potências dissipadas são inversamente proporcionais às respectivas resistências **ASSOCIAÇÃO MISTA DE RESISTORES:** A associação mista de resistores é uma combinação das duas associações anteriores : associação em série e associação em paralelo. Qualquer associação mista pode ser substituída por um resistor equivalente, que se obtém considerando - se que cada associação parcial (série ou paralelo) equivale a apenas um resistor, reduzindo aos poucos a associação, até que encontremos um valor que será a resistência equivalente. Não existe uma regra fixa para o cálculo deste tipo de ligação. As associações mistas de resistores são consideradas simples, quando podemos perceber, à primeira vista, o trecho, em série ou paralelo, que será o ponto de partida para o cálculo da resistência total da associação. ·N

LEI DE KIRCHHOFF

PRIMEIRA LEI DE KIRCHHOFF:

A primeira Lei de Kirchhoff se refere a forma como a corrente se comporta nos circuitos paralelos.

......

.....

......

.....

......

......

.....

.....

......

.....

......

.....

......

......

.....

Enunciado da Primeira Lei de Kirchhoff:

" A soma das correntes que chegam a um nó do circuito é igual a soma das correntes que saem do nó."

Obs.: chama - se " nó " ao ponto de união de três ou mais braços de um circuito elétrico.

Para darmos continuidade ao estudo da Primeira Lei de Kirchhoff, vamos relembrar as duas características fundamentais do circuito elétrico paralelo:

- fornecer mais de um caminho para a circulação da corrente elétrica;
- a tensão em todos os componentes associados é a mesma

Suponhamos agora três resistores ligados em paralelo a uma rede cuja tensão elétrica é E.

Os pontos A e B, onde se realizam as derivações para a ligação de cada componente se chamam nós.

A tensão com que funciona cada fonte receptora deve	
ser a mesma que a tensão de rede.	
Se as potências dos resistores são P1, P2 e P3, as	
respectivas correntes serão :	
I1 = P1 /E,	
Pelo condutor da linha geral deverá chegar uma corrente	
I, que se divide no nó A em I1, I2 e I3 para alimentar os	
resistores, estas correntes reunem - se novamente no nó B,	
somam - se, e pelo outro condutor da linha geral, saem numa	
corrente de valor I. Assim teremos :	
I = I1 + I2 + I3	
No caso de vários resistores em paralelo, teremos :	
,	
I = I1 + I2 + I3 +In	
SEGUNDA LEI DE KIRCHHOFF :	
A segunda Lei de Kirchhoff se refere a forma como a	
tensão se distribui nos circuitos série.	
torious de dienipul rice en cuites correi	
Enunciado da Segunda Lei de Kirchhoff :	
Enditolado da oeganda Eel de Kilolillon .	
" A soma das tensões nos componentes de uma	
associação série é igual a tensão aplicada nos seus	
terminais extremos. "	
terminais extremos.	
R R1 R2 R3 N	
Para darmos continuidado ao estudo da Segunda Lei de	
Para darmos continuidade ao estudo da Segunda Lei de	
Kirchhoff vamos relembrar as características fundamentais dos	
circuitos série :	
forman annual constitution and a simulation	
fornece apenas um caminho para a circulação da	
corrente elétrica;	

 a corrente tem o mesmo valor em qualquer ponto do 	
circuito	
Consideremos agora um circuito série constituído por	
dois componentes com resistências R1 e R2, respectivamente,	
sendo percorridas por uma corrente I.	
THE DO	
$R \longrightarrow R1 \longrightarrow R2 \longrightarrow N$	
A tensão aplicada ao circuito se distribui para os dois	
componentes, sendo assim, teremos :	
$E1 = I \times R1$ $E2 = I \times R2$	
Assim, teremos para o circuito uma tensão total de :	
E = E1 + E2	
No caso de termos vários componentes ligados em	
série, a tensão aplicada no circuito será :	
E = E1 + E2 + E3 + En	
LEI DE JOULE :	
A energia se apresenta sob as mais variadas formas,	
tais como : energia elétrica, energia térmica, energia mecânica,	
energia luminosa, etc. Estas formas de energia podem sofrer	
transformações, passando de uma para outra; por exemplo,	
pode - se transformar a energia elétrica em energia térmica.	
Quando a corrente elétrica passa através de um condutor	
ou resistor, encontra uma resistência elétrica, ocorrendo então	
o aquecimento do fio. Houve, portanto, uma transformação de	
energia elétrica em energia térmica, a esse fenômeno	
denominamos <i>Efeito Joule</i> .	
O efeito Joule pode ser entendido como o choque de	
elétrons livres contra os átomos do condutor. Com o choque,	
os elétrons transformam parte da energia elétrica que recebem	
do gerador e esta energia transferida e transformada em calor.	
ao gorador o obia oriorgia transiona o transionnada cin calor.	

Por sua vez, este calor determina a elevação da temperatura	
do condutor.	
ac conductor.	
Enunciado da Lei de Joule :	
Enanolado da Lor de Godie .	
" A energia térmica ou quantidade de calor	
desenvolvida pela passagem da corrente elétrica por um	
condutor ou resistor é diretamente proporcional ao	
quadrado da corrente elétrica, à resistência do resistor ou	
condutor e ao tempo durante o qual se efetua a	
transformação de energia. "	
uanoronnagao ao onergia.	
$Q = 0.24 \times I^2 \times R \times t$ onde	
Q = 0,24 X1 X N X t Olide	
Q - quantidade de calor em calorias (cal)	
0,24 - equivalente térmico de calor (1J = 0,24 cal)	
R - resistência (Ω)	
I - corrente elétrica (A)	
t - tempo (s)	
t - tempo (3)	
O efeito Joule ocorre sempre, pois todos os dispositivos	
possuem resistência elétrica, porém nem sempre interessa a	
transformação de energia elétrica em calor, como por exemplo,	
o caso de um motor elétrico. Neste, a intenção é a	
transformação de energia elétrica em energia mecânica, mas	
nem toda energia é assim transformada, pois uma parcela se	
transforma em calor devido à resistência elétrica dos fios que	
constituem os enrolamentos do motor.	
constituent os enfolamentos do motor.	
Como essa energia não é desejada, dizemos que a	
mesma se constitui numa energia perdida ou dissipada, pois	
o calor é trocado com o meio ambiente.	
o calor e trocado com o meio ambiente.	
A transformação da energia elétrica em térmica aparece	
sob duas formas : aproveitamento Joule e perdas Joule.	
sob duas formas : aproveitamento sodie e perdas sodie.	
O aproveitamento Joule se dá nos resistores (estufas,	
ferros de soldar, etc.), onde se deseja obter aquecimento através da corrente elétrica.	
Nos condutores a transformação de energia elétrica em	
1100 00110010100 A HAHOIDHHADAD UE EHEIUIA EIEHDA EIH	

térmica é um inconveniente, pois ela não é desejada.

A perda Joule é expressa em watts pela seguinte fórmula	
$P = I^2 \times R$, onde	
P - potência dissipada ou perdida (W)	
I - corrente elétrica (A)	
R - resistência elétrica (Ω)	
` '	
APLICAÇÕES DO EFEITO JOULE :	
O efeito Joule embora seja prejudicial as máquinas	
elétricas e nas linhas de transmissão, pois representa uma	
perda de energia elétrica, é por sua vez muito útil. Isso ocorre,	
por exemplo, nos aquecedores elétricos em geral : ferro elétrico,	
chuveiro, etc., nos fusíveis e nas lâmpadas de incandescência.	
a) As lâmpadas incandescentes criadas no século	
passado pelo inventor Thomas Edison, constituem também	
uma aplicação do efeito Joule. Os filamentos destas lâmpadas	
são geralmente feitos de tungstênio, que é um metal cujo ponto	
de fusão é muito elevado. Assim, estes filamentos, ao serem	
percorridos por uma corrente elétrica, se aquecem e podem	
alcançar altas temperaturas tornando - se incandescentes e	
emitindo grande quantidade de luz.	
b) Outra aplicação do efeito Joule é encontrada na	
construção de fusíveis, que são dispositivos usados para limitar	
a corrente que passa em um circuito elétrico como , por	
exemplo, em um automóvel, em uma residência, em um	
aparelho elétrico, etc Este dispositivo é constituído por um	
filamento metálico, geralmente de chumbo, que tem baixo ponto	
de fusão. Desta maneira, quando a corrente que passa no	
fusível ultrapassa um certo valor (próprio de cada valor), o	
calor gerado pelo efeito Joule provoca a fusão do filamento,	
interrompendo a passagem da corrente.	
${f c}$) Atualmente , os fusíveis nas residências são substituídos	
por disjuntores, o qual também possui o seu funcionamento	
baseado no efeito Joule. Nestes componentes, o aquecimento	
de um dispositivo bimetálico provoca a sua dilatação, fazendo	

38 SENAI-PR

com que o disjuntor desligue, protegendo o circuito.

MAGNETISMO

Formação do campo magnético em um condutor

De acordo com o que verificamos anteriormente, corpos com cargas elétricas de mesmo sinal se repelem e corpos com cargas elétricas de sinal contrário se atraem. As cargas elétricas possuem, em torno de si, um espaço denominado campo elétrico.

Nesse espaço, a força atuante é de origem elétrica.

O campo eletrostático de uma carga elétrica é a região em torno da carga onde age seu campo elétrico. Em um elétron, o campo elétrico pode ser representado por linhas de força eletrostática que convergem para o elétron no sentido radial, como se observa no desenho abaixo.

Quando o elétron se movimenta em um condutor, cria em torno deste um campo magnético.

O condutor estará, portanto, sob a ação de dois campos: campo elétrico e campo magnético.

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

O campo magnético é formado por linhas concêntricas que giram perpendicularmente ao condutor.

O sentido de rotação das linhas de força magnética é determinado segurando-se o condutor com a mão esquerda: o polegar indica o sentido da corrente e a curvatura dos dedos indica o sentido de rotação das linhas magnéticas.

Para demonstrar-se a existência de um campo magnético ao redor de um condutor percorrido por corrente, liga-se, por intermédio de uma chave, um condutor "grosso" a um acumulador. O condutor deve ser introduzido em uma placa de acrílico mantida em posição horizontal e perpendicular a ele.

Com a chave ligada, espalha-se limalha de ferro sobre a placa. Batendo-se levemente com um lápis na placa de acrílico,

nota-se que a limalha de ferro forma linhas concêntricas em torno do condutor. A conformação da limalha de ferro é chamada espectro magnético.

Sentido de linha de força segundo Oersted

A experiência de Oersted também demonstra o sentido de rotação das linhas de força ao redor de um condutor. Essa experiência é feita com o auxílio de uma agulha imantada e um condutor por onde circulará uma corrente elétrica.

Coloca-se um condutor sobre uma agulha imantada, obedecendo à direção desta.

Ao circular corrente pelo condutor, a agulha deflexionará, acompanhando o sentido de rotação das linhas magnéticas.

O sentido de deflexão da agulha depende do sentido da corrente que circula no condutor.

Observe a deflexão na ilustração ao lado

A deflexão da agulha ocorre quando a mesma toma	
direção perpendicular ao condutor.	
Se a agulha estiver sobre o condutor ou se invertermos	
o sentido da corrente, o sentido da deflexão será contrário ao	
apresentado na figura.	
O sentido da deflexão da agulha deve-se à interação do	
campo magnético da agulha com o do condutor.	
ramit a magnama an agama asma as asmanan	
A interação de campos magnéticos ocorre também entre	
· · · · · · · · · · · · · · · · · · ·	
dois condutores paralelos, quando são percorridos por uma	
corrente elétrica.	
O campo magnético criado em torno dos condutores	
desenvolve uma força que pode ser de atração ou repulsão.	
Observação	
A atração ocorre quando o sentido da corrente é o mesmo	
em dois condutores, estando estes posicionados	
paralelamente entre si.	
•	
corrente no mesmo sentido – atração –	
A repulsão ocorre quando o sentido da corrente é	
contrário nos condutores, estando estes paralelos entre si.	

Se o condutor tomar a forma de anel ou espira, as linhas de força concêntricas produzirão um campo magnético perpendicular ao plano da espira com polaridade S-N.

IDENTIFICAÇÃO DE POLARIDADE

A identificação de polaridade de uma espira pode ser feita com a utilização de uma bússola ou através da regra da mão esquerda.

Utilizando-se bússola, coloca-se esta em posição horizontal e com a agulha perpendicular ao plano da espira.

O campo magnético da espira atrairá um dos extremos da agulha, e em consequência, repelirá o outro.

O pólo norte da espira atrairá o pólo sul da bússola e repelirá, consequentemente, o pólo norte. Pode-se usar também a regra da mão esquerda para se determinar a polaridade da espira. Esta regra considera o sentido eletrônico ou real da corrente, ou seja, a corrente que flui do pólo negativo para o positivo. A figura abaixo indica a maneira de se determinar a polaridade da espira. polo magnético magnético polo polo negativo positivo Conforme mostra a ilustração, os dedos seguem o sentido da corrente e o polegar indica o pólo norte. Observação Pode-se, também, determinar a polaridade da espira considerando o sentido convencional da corrente, ou seja, a corrente que flui do pólo positivo para o negativo. Neste caso, porém, deve-se utilizar a regra da mão direita. Solenóide O campo magnético produzido por uma única espira é muito pequeno. Com finalidade de aumentar esse campo magnético,

utiliza-se o solenóide, que é um condutor formado por diversas

espiras, uma ao lado da outra.

Cada espira contribui com uma parcela para a composição do campo magnético. Assim, as linhas de força atuarão, no solenóide, da mesma forma como ocorre com os imãs.

Solenóide é o conjunto de espiras com uma só camada. As linhas de força passam por dentro do solenóide e retornam por fora, formando, assim, um único campo magnético.

A passagem da corrente pelo solenóide cria um campo	
magnético com as mesmas propriedades do ímã permanente:	
O pólo norte de um solenóide repele o pólo norte de outro	
solenóide ou de um ímã qualquer, atraindo, consequentemente,	
o pólo sul.	
O campo magnético de um solenóide está condicionado	
a diversos fatores, pois o mesmo depende das condições	
físicas com que se trabalha, do material, do número de espiras	
do solenóide da corrente que circula pelo mesmo.	
Força magnetomotriz (fmm)	
A força magnetomotriz é calculada multiplicando-se	
corrente que flui nas espiras pelo número de espiras do	
solenóide.	
O símbolo do force magnetemetriz é fmm	
O símbolo de força magnetomotriz é fmm.	
A força magnetomotriz é representada pela fórmula	
$\tau = N . I$	
* ****	
onde:	
τ = força magnetomotriz, em ampères-espira;	
N = Numero de espiras do solenóide;	
I = Intensidade da corrente em ampères.	
4	
É possível, portanto, com solenóides diferentes,	
conseguir-se a mesma força magnetomotriz.	
Everyle e	
Exemplos	
1. Qual á a valor da fem da um calanáida com 100	
1- Qual é o valor da fmm de um solenóide com 100	
espiras quando por ele circula um total de 5 ampères?	
$\tau = N \cdot I \Rightarrow \tau = 100 \cdot 5 = 500Ae$	
v = 10.1 → v = 100.0 = 000/10	

espiras quando por ele circula uma corrente de 0,5 ampère? $\tau = N . I \Rightarrow \tau = 1000 . 0,5 = 500Ae$ Dois solenóides diferentes podem produzir a mesma fmm. Entretanto, a intensidade do campo magnético será maior naquele que apresentar menor circuito magnético. Observe na ilustração abaixo a representação de um campo magnético formado pela passagem da corrente em um solenóide. circuito magnético Convencionalmente as linhas de força saem do pólo norte e vão para o pólo sul magnético. Essas linhas circulam continuamente por esse caminho formando o circuito magnético. A intensidade do campo magnético é calculada pela fórmula. Onde: H = intensidade do campo magnético em A/cm ou A/m; = Força magnetomotriz; P_m = perímetro médio do circuito magnético.

2- Quando é o valor da fmm de um solenóide com 1000

Exemplos

Calcular a intensidade do campo magnético de um solenóide com 100 espiras quando por ele circulam 5 ampères, sendo o perímetro médio do circuito magnético igual a 20 cm.

1.
$$H_{=}$$
 $\frac{\tau}{P_{m}} = \frac{I.N}{P_{m}} = \frac{5A.100}{20 \text{ cm}} = \frac{500A}{20 \text{ cm}} = 25A/\text{cm}$

2.
$$H_{=}$$
 $\frac{\tau}{P_{m}} = \frac{I.N}{P_{m}} = \frac{5A.100}{0.2 \text{ cm}} = \frac{500A}{0.2 \text{ cm}} = 2500 \text{A/cm}$

2- calcular a intensidade do campo magnético de um solenóide com 100 espiras quando por ele circulam 5 ampères, sendo o perímetro médio do circuito magnético igual a 40 cm.

1.
$$H_{=}$$
 $\frac{\tau}{P_{m}} = \frac{I.N}{P_{m}} = \frac{5A.100}{40 \text{ cm}} = 12,5\text{A/cm}$

2.
$$H = \frac{\tau}{P_m} = \frac{I.N}{P_m} = \frac{5A.100}{0.4 \text{ cm}} = 1.250 \text{A/cm}$$

Eletroimã

A distribuição de um solenóide sobre o fluxo magnético é difícil de ser obtida, pois como vimos anteriormente, um solenóide nada mais é que um condutor enrolado em forma de espiral. Se a ele aplicarmos uma corrente, teremos formado um campo magnético.

O fluxo magnético sempre prefere percorrer um caminho através de um núcleo material ferroso ao invés de um núcleo de ar.

Denomina-se eletroímã ao conjunto de um ou mais solenóides montados em um núcleo ferroso.

O campo magnético encontra maior facilidade para fluir	
em uma bobina com núcleo material ferroso. Com a mesma	
corrente, o campo magnético será substancialmente maior.	
Notas	
1- No solenóide com núcleo de ar, a densidade do fluxo	
magnético cresce proporcionalmente com a corrente.	
magnetice crosse propercionalmente com a contente.	
2- No solenóide com núcleo de material ferroso, a	
densidade do fluxo magnético aumenta sensivelmente	
no período inicial.	
3- Entretanto, os materiais ferrosos ficam saturados	
com a crescente densidade do fluxo magnético e a	
variação da corrente não influirá no seu rendimento.	
As forças magnéticas dispõem-se em linhas de força.	
Essas linhas se apresentam um grande número,	
constituindo o campo magnético.	
Portanto, fluxo de indução magnética é a quantidade total	
de linhas de força de um ímã.	
•	
N M	
fluxo seção,	
total transversal A	
S Item Central	
· ·	
O fluxo de indução magnética é representado	
graficamente pela letra grega maiúscula Φ (lê-se fi).	
No sistema Eletromagnético, uma linha de indução	

denomina-se Maxwell e a densidade magnética é expressa

em maxwells por centímetro quadrado. Neste sistema, a unidade de densidade magnética é o gauss:

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

1 gauss =
$$\frac{1 \text{ Mx}}{\text{Cm}^2}$$

No sistema internacional, uma linha de indução denomina-se webber e a densidade magnética é expressa em webbers por metro quadrado. Neste sistema, a unidade de densidade magnética é o tesla:

$$1 \text{ tesla} = \frac{1 \text{ Wb}}{\text{m}^2}$$

Observação

Densidade de um campo magnético significa o número de linhas por unidade de seção.

No sistema Eletromagnético é necessária a variação de 108Mx/segundo para induzir 1 volt de tensão em um condutor.

No sistema internacional é necessária a variação de 1 Wb/segundo para induzir a mesma tensão no condutor.

Conclusão:

 $1 \text{ webber} = 10^8$

e, por seguinte,

1 tesla = 10⁴ gauss.

A intensidade do campo magnético para produzir uma densidade de fluxo magnético é distinta para cada material e se obtém experimentalmente. Por exemplo, o ferro fundido é mais difícil de ser magnetizado que o aço fundido. Os resultados podem ser representados através de tabelas ou gráficos.

Valores de B e das amp-espiras-cm para materiais de qualidade média normal.

	ado e aço	Ferro fundido		Lâmina de Ferro		Lâmina de ferro com silício	
fund			A /	nor			
В	A/cm	В	A/cm	В	A/cm	В	A/cm
1 000	0,7	1 000	2	1 000	0,45	1 000	0,8
2 000	0,9	2 000	4,5	2 000	0,5	2 000	1
3 000	1	3 000	8	3 000	,06	3 000	1,25
4 000	1,2	4 000	13	4 000	0,7	4 000	1,45
5 000	1,4	5 000	20	5 000	0,9	5 000	1,6
6 000	1,7	6 000	28	6 000	1,3	6 000	1,8
7 000	2,2	7 000	40	7 000	1,7	7 000	2
8 000	2,7	8 000	55	8 000	2,3	8 000	2,5
9 000	3,2	9 000	80	9 000	3,3	9 000	3,1
10 000	4	10 000	110	10 000	4,7	10 000	4
11 000	5	11 000	150	11 000	6,3	11 000	5
12 000	6,2	12 000	200	12 000	8	12 000	7
13 000	8,5			13 000	10,5	13 000	12
14 000	12			14 000	13,5	14 000	23
15 000	20			15 000	18	15 000	40
16 000	35			16 000	31	16 000	75
17 000	60			17 000	52	17 000	140
18 000	100			18 000	90	18 000	240
19 000	160			19 000	148		
20 000	250			20 000	300		
21 000	400			21 000	460		
22 000	750			22 000	670		
				23 000	900		
				24 000	1 200		
				25 000	1 530		
				26 000	1 900		
				27 000	2 300		

Nota

No gráfico e na tabela, a densidade do fluxo magnético é fornecida em gauss (maxwells por centímetro quadrado) e a intensidade do campo magnético em Ae/cm ou A/cm (ampères-espiras por centímetro).

Fatores de conversão

Transformação de A/cm para A/m

Para transformar A/cm para A/m basta, simplesmente, multiplicar o número de A/cm constante da coluna por 100, pois 1 m = 100 cm.

Transformação de gauss para tesla

Como sabemos, gauss é o número de linhas magnéticas existentes em um centímetro quadrado.

Para transformar gauss em teslas, multiplicamos por 104, pois 1 $m^2 = 10~000~cm^2$.

1 tesla = 104 gauss

Nota

Quando utilizarmos a tabela acima e transformamos A/ cm em A/m, necessáriamente teremos que transformar B, que é dado em gauss, para teslas.

Perímetro médio do circuito magnético

O perímetro médio do circuito magnético obtém-se através da fórmula:

$$P_{m} = \frac{P_{e} + P_{i}}{2}$$

Onde:

P_m = perímetro médio;

P = perímetro externo;

P_i = perímetro interno;

Todas as medidas devem ser tomadas em centímetros.

Exemplos

1- Calcular o perímetro médio do circuito magnético da figura abaixo.

$$P_e = 2 \cdot (50 + 35) = 100 + 70 = 170$$
cm.

$$P_i = 2 \cdot (40 + 25) = 80 + 50 = 130$$
cm.

$$P_{m} = \frac{P_{e} + P_{i}}{2} = \frac{170 + 130}{2} = \frac{300}{2} = 150$$

Resposta: $P_m = 150cm$

......

......

......

.....

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

QUEDA DE TENSÃO

Os aparelhos de utilização de energia elétrica são	
projetados para trabalharem em determinadas tensões, com	
uma tolerância pequena.	
Estas quedas são função da distância entre a carga e o	
centro de distribuição e a potência da carga.	
, ,	
A queda de tensão provocada pela passagem de	
corrente nos condutores dos circuitos de uma instalação deve	
estar dentro de limites pré - fixados, a fim de não prejudicar o	
funcionamento dos equipamentos de utilização ligados aos	
circuitos terminais.	
A queda de tensão (total) é considerada entre a origem	
da instalação e o último ponto de utilização de qualquer terminal.	
As quedas de tensão admissíveis são dadas em	
percentagens da tensão nominal ou de entrada :	
Queda de tensão tensão de entrada - tensão na carga	
percentual (e %) = (tensão de entrada) x 100	
Pela NBR 5410 admitem - se as seguintes quedas de	
tensão:	
a) para instalações alimentadas diretamente por um	
ramal de baixa tensão, a partir da rede de distribuição pública	
de baixa tensão :	
• iluminação :4%	
 outras utilizações : 4% 	
•	

DIMENSIONAMENTO DE CONDUTORES

DIMENSIONAMENTO DOS CONDUTORES PELA QUEDA DE TENSÃO ADMISSÍVEL :

Para que os aparelhos, equipamentos e motores possam funcionar satisfatoriamente, é necessário que a tensão, sob a qual a corrente lhes é fornecida, esteja dentro de limites prefixados. Ao longo do circuito, desde o quadro geral ou a subestação até o ponto de utilização em um circuito terminal, ocorre uma queda de tensão. Assim, é necessário dimensionar os condutores para que esta redução na tensão não ultrapasse os limites estabelecidos pela NBR 5410 (especificados no capítulo 13 - Queda de tensão).

Transcrevem - se a seguir, as tabelas que dão as quedas percentuais para os alimentadores e ramais, em função das distâncias e potências utilizadas, medidas em watts, para os circuitos monofásicos, com fator de potência unitário.

∑ Potência P (W) x distância I (m) E= 110 V

Seção do fio (mm2)	1%	2%	3%	4%
1,5	5263	10526	15789	21052
2,5	8773	17546	26319	35092
4	14036	28072	42108	56144
6	21054	42108	63162	84216
10	35090	70180	105270	140360
16	56144	112288	168432	224576
25	87725	175450	263175	350900
35	122815	245630	368445	491260
50	175450	350090	526350	701800
70	245630	491260	726890	982520
95	333355	666710	1000065	1333420
120	421080	842160	1263240	1684320
150	526350	1052700	1578050	2105400
185	649165	1298330	1947495	2596660
240	842160	1684320	2526480	3368640
300	1052700	2105400	3158100	4210800
400	1403600	2807200	4210800	5614400
500	1754500	3509000	5263500	7018000

Σ Potência P (W) x distância I (m) E= 220 V

Seção do fio (mm2)	1%	2%	3%	4%
1,5	21054	42108	63163	84216
2,5	35090	70180	105270	140360
4	56144	112288	168432	224576
6	84216	168432	253648	336864
10	140360	280720	421080	561440
16	224576	449152	673728	898304
25	350900	701800	1052700	1403600
35	491260	982520	1473780	1965040
50	701800	1403600	2105400	2807200
70	982520	1965040	2947560	3930080
95	1333420	2666840	4000260	5333680
120	1684320	3368640	5052960	6767280
150	2105400	4210800	6316200	8421600
185	2596660	5193320	7789980	10360640
240	3368640	6737280	10105920	13474560
300	4210800	8421600	12632400	16843200
400	5614400	11228800	16843200	22457600
500	7018000	14036000	21054000	28072000

Obs.:

- a) para os circuitos trifásicos equilibrados (simétricos),
 de fator de potência unitário, também se podem usar
 estas tabelas, desde que se multipliquem as distâncias
 por 0,57;
- b) para os alimentadores trifásicos ou bifásicos disponíveis em quadros com cargas monofásicas, divide - se a carga pelo número de fases (3 ou 2) e aplicam - se as tabelas.

DIMENSIONAMENTO DOS CONDUTORES PELA CAPACIDADE MÁXIMA DE CONDUÇÃO DE CORRENTE :

A corrente ao passar pelo condutor, dissipa calor, segundo a Lei de Joule, e esse calor tende a elevar a temperatura do condutor até um nível, a partir do qual todo o calor é transmitido para o meio que circunda o condutor (ar, outros condutores, isoladores e outras partes vizinhas). Não se deve deixar que o calor eleve a temperatura a um nível tal que danifique o condutor, seu isolamento e outras partes próximas.

Os fabricantes de condutores e a própria NBR 5410 indicam, através de tabelas de capacidade de condução, as

correntes admissíveis),		
segundo a qual cada c			
da capacidade de conc			
•	•	esconier o conduto	',
atendendo às indicaçõ	es das tabelas.		
Fórmulas para a	a determinação da	as correntes	
dos circuitos :			
• Circuitos mond	ofásicos :		
I = P / FP x E			
1-1711 X 2			
Oinavitaa tuitéa			
 Circuitos trifás 	ICOS :		
I = P / 1,73 x FP	хE		
I = corrente elétri	ca (A)		
FP = fator de pot	ência		
P = potência elét			
E = tensão elétric	, ,		
L = terisao eletri			
T		~ .	
-	-	ão de corrente, er	n
ampères, para a man	eira de instalar :	B - 5	
• maneira de in	stalar B - 5 (cond	dutores isolados ei	n
eletroduto emb	outido em alvenaria	a)	
temperatura no	o condutor : 70° C;		
 até 3 condutor 			
 condutores de 	_		
• condutores de			
Seção Nominal	AWG/	Corrente	
Seção Nominal (mm²)	MCM	Elétrica	
1,5	14	(A) 15,5	
2,5	12	21	
4	10	28	
6 10	8 6	36 50	
16	4	68	
25	2	89	
1 9E	. 1	444	***************************************

(mm)	MICINI	(A)
1,5	14	15,5
2,5	12	21
4	10	28
6	8	36
10	6	50
16	4	68
25	2	89
35	1	111
50	1/0	134
70	3/0	171
95	4/0	207
120	300	239
150	400	272

.....

Obs.: De acordo com a NBR 5410 devemos utilizar									
as seguintes seções mínimas para as instalações residenciais :									
• iluminação							mm²		
	tomadas em quartos, salas					•			
					_		•	nm²	
tomada	as em (cozinh	as, ár	eas de	e servi	iço	2 ,5r	nm²	
aquece	dores	de ág	jua				4mr	n²	
 aparelh 	nos de	ar cor	ndicio	nado			2,5r	nm²	
 fogões 	elétrio	cos					6mr	n²	
	0.00						•		
									
DIM	IENSIC	NAMI	ENTO	DE EI	LETRO	DDUT	DS :		
Dim	ension	ar eletr	odutos	é dete	rminar	o tama	anho n	ominal	
do eletrod	luto pa	ra cada	a trech	o da in	stalac	ão.			
	. c. to po				· · · · · · · · · · · · · · · · · · · ·				
_									
Iam	nanho r	nomina	ıl do ele	etrodut	to é o c	diāmeti	ro exte	rno do	
eletroduto	expre	sso en	n mm,	padror	nizado	por no	rma.		
O ta	amanho	dos e	letrodu	ıtos de	ve ser	de um	n diâme	etro tal	
que os c									
•	onduic	nes p	USSAIII	361 1	aciiiiie	inte in	istalau	103 00	
retirados.									
Par	a tanto	o é re	comer	idado	que o	s con	dutore	s não	
ocupem n	nais de	40% (da área	a útil do	os elet	roduto	S.		
•									
T-1-	-l- 0 <i>I</i>	- 1 - 4			. DV6				
iab	ela 2. E	=ietroc	auto ri	giao a	ie PVC	<i>;</i> :			
						s no ele			
seção	2	3	4	5	6	7	8	9	
nominal			Tar	nanho d	lo eletro	duto (m	nm)		
(mm ²)									
1,5 2,5	16 16	16 16	16 16	16 20	16 20	16 20	20 20	20 25	
4	16	16	20	20	20	25	25	25	
6	16	20	20	25	25	25	25	32	
10	20	20 25	25 25	25 32	32 32	32 40	32 40	40	
16 25	25	32	32	40	40	40	50	50	
35	25	32	40	40	50	50	50	50	
50	32	40	40	50	50	60	60	60	
70 95	40	40 50	50 60	60 60	60 75	60 75	75 75	75 85	
120	50	50	60	75	75	75	85	85	
150	50	60	75	75	85	85			

Tabela 3. Tamanho nominal dos eletrodutos -	
equivalência :	
(1111)	
(mm) 16 20 25 32 40 50 60 75 85 polegadas 3/8 1/2 3/4 1 1 1/4 1 1/2 2 2 1/2 3	
CÁLCULO DA OCUPAÇÃO DE UM ELETRODUTO :	
Cálcula do ávos útil do eletrodute (A) :	
 Cálculo da área útil do eletroduto (A_E): 	
A = (= (A) v (d = 2) 2 and a	
$A_{E} = (\pi / 4) \times (d_{e} - 2_{e})^{2}$ onde	
d _e = diâmetro externo (mm)	
e = espessura do eletroduto (mm)	
A _E = área útil do eletroduto (mm²)	
Cálculo da área total do condutor (Ac):	
` ,	
$Ac = (\pi/4) \times d^2$ onde	
d = diâmetro externo do condutor (mm)	
Ac = área total do condutor (mm²)	
Número máximo de condutores (N) :	
$N = 0.40 \times (A_E/A_C)$	
DISJUNTORES :	
Disjuntores são dispositivos eletromecânicos que	
satisfazem simultaneamente às seguintes condições	
 possuir baixa resistência entre seus bornes de ligação; 	
 abrir automaticamente no caso de sobrecarga no 	
circuito;	
 abrir automaticamente no caso de curto - circuito; 	
 possuir dispositivo para extinção do arco; 	
 permitir a ligação após a remoção do defeito no circuito. 	

- 1. Caixa moldada
- 2. Alavanca liga desliga
- 3. Extintor de arco
- 4. Mecanismo de disparo
- Bocas para fixação
- 6. Bornes de ligação
- 7. Relê bimetálico
- 8. Relê eletromagnético
- 9. Contato

FUNCIONAMENTO:

Na ocorrência de uma sobrecorrente, provavelmente de uma sobrecarga ou curto - circuito, o disjuntor atua interrompendo o circuito elétrico de modo a protegê - lo.

Estes disjuntores termomagnéticos possuem o elemento térmico contra sobrecarga e o elemento magnético contra curto - circuito.

Quando há um excesso de corrente fluindo num circuito, dizemos que está havendo uma sobrecarga, corrente além da prevista.

Surgindo esta condição num circuito, o elemento térmico que protege o circuito contra sobrecargas entra em ação e desliga o circuito. Considerando sobrecarga até 10* In (corrente nominal).

O elemento térmico é chamado de bimetal composto por dois metais soldados paralelamente, possuindo coeficientes de dilatação térmica diferente. O disjuntor é inserito no circuito como um interruptor, o relé bimetálico e o relé eletromagnético são ligados em série.

Ao acionarmos a alavanca, fecha - se o circuito que é travado pelo mecanismo de disparo, e a corrente circula pelo relé térmico e pelo relé eletromagnético.

Havendo no circuito uma pequena sobrecarga de longa duração, o relé bimetálico atua sobre o mecanismo de disparo, abrindo o circuito. No caso de haver um curto circuito, o relé eletromagnético é quem atua sobre o mecanismo de disparo, abrindo o circuito instantaneamente.

O disjuntor substitui com vantagem o fusível, pois não é danificado ao abrir um circuito com sobrecarga ou curto circuito.

PROTEÇÃO CONTRA CURTO - CIRCUITO :

Um curto - circuito pode ser definido como uma elevação brusca da carga de um circuito, acima de 10*In. O elemento magnético que protege o sistema contra curto - circuito é chamado de magneto.

A alta corrente produzida em conseqüência de um curto - circuito, cria um forte campo magnético quando circula pelo magneto, atraindo a armadura e soltando a engate de disparo do disjuntor.

CÁLCULO DE DISJUNTORES:

Para calcular disjuntores em redes monofásicos, usa
 se a seguinte fórmula:

D = I * 1,25 , onde	
I = corrente nominal do circuito	
D = disjuntor	
1,25= coeficiente de segurança	
1,20 cconcionic de cogarança	
I = P / E → corrente nominal do circuito	
Para redes trifásicas:	
I = ,	
1.73 * E * cosφ	
onde	
I = corrente nominal (A);	
P = potência	
1.73 = é a constante por ser trifásico	
E = tensão	
cos φ = fator de potência	
obs. a fórmula para o cálculo dos disjuntores em redes	
trifásicas é a mesma, muda apenas o cálculo da corrente do	
circuito.	

DISJUNTOR DIFERENCIAL RESIDUAL (DR):	
É um dispositivo constituído de um disjuntor	
termomagnético acoplado a um outro dispositivo : o diferencial	
residual, que protege os fios do circuito contra sobrecarga e	
curto - circuito e as pessoas contra choques elétricos.	
Descrição:	
Na NBR 5410 está preconizado o emprego dos	
dispositivos de proteção a corrente diferencial - residual (
dispositivos DR) mais conhecidos no mercado como "	
interruptores de corrente de fuga ".	
Estes dispositivos asseguram a proteção contra tensões	
de contato perigosas, provenientes de defeitos de isolamento	
em aparelhos ligados à terra. Os dispositivos DR protegem	
contra contatos indiretos a totalidade da instalação, parte desta,	
ou consumidores individuais, de acordo com a sua localização.	
Os dispositivos DR com $I\Delta_N$ = 30mA asseguram ainda a	
proteção contra contatos diretos com partes ativas da	
instalação. As correntes de falta à terra que atingem o valor da	
corrente de falta nominal, são igualmente cortadas (proteção	
contra incêndios).	
Conforme NBR 5410, item 412.5.3. Os dispositivos de	
proteção a corrente diferencial residual tem a vantagem de,	
além de facilitar a proteção contra os contatos indiretos, ainda	
assegura de certa forma a supervisão permanente do	
isolamento das instalações em relação à terra, por detecção	
das correntes de falta.	
 Princípio de funcionamento : 	
Para evitar tensões de contatos elevadas, a norma NBR	
5410, tabela 24 estipula que o disparo do interruptor de corrente	
de falta deve ocorrer em 0,2 segundos, sob tensão de 110V ~,	
ou 0,05 segundos sob 220V ~.	

 Conceito de proteção : 	
Os dispositivos DR tem as sensibilidades de I $\Delta_{\rm N}$ = 0,5	
A (500mA) e 0,03 A (30mA). Estes dispositivos com	
sensibilidade superior a 30mA asseguram apenas a proteção	
contra os contatos indiretos e contra incêndios (NBR 5410).	
A utilização de dispositivos com I $\Delta_{\rm N}$ = 30mA asseguram uma	
proteção complementar contra contatos diretos com partes	
ativas da instalação, conforme aconselhado pela norma.	
 Proteção contra incêndio : 	
A NBR 5410, item 472.2.9, exige que :	
Para limitar as consequências da circulação de correntes	
de falta nas instalações, sob o ponto de vista dos riscos de	
incêndioos circuitos que servem a estes locais, devem ser	
protegidos por meio de dispositivos à corrente diferencial	
residual, igual ou inferior a 500mA.	
Assim, esta norma contempla não só as instalações	
comerciais e industriais, mas também as domiciliares.	
A proteção contra incêndio com dispositivos DR deve	
ser utilizada não só em edifícios com atividades de elevado	
risco de incêndio (código BE2 e BE3 da tabela 21 da NBR	
5410), mas também todas as restantes instalações de um	
modo generalizado.	
Utilização :	
	
É dada uma grande importância à segurança e à	
qualidade. Os dispositivos DR são sujeitos a ensaios de 10000	
manobras à corrente nominal, sem apresentarem defeitos.	
Após estes ensaios permanecem em perfeito estado de	
funcionamento.	
On dispositives DD nodem con utilizados are lasais	
Os dispositivos DR podem ser utilizados em locais	
sujeitos a condições climáticas difíceis.	

Os dispositivos DR podem ser utilizados em ambientes	
com umidade relativa de 95% e com temperaturas até 45° C.	
Neste caso, e para temperaturas elevadas, a corrente de carga	
do aparelho deve ser reduzida no que respeita ao valor da sua	
corrente nominal.	
Obs. :	
1) os disjuntores termomagnéticos somente devem ser	
ligados aos condutores fase dos circuitos;	
2) os disjuntores DR devem ser ligados aos condutores	
fase e neutro dos circuitos, sendo que o neutro não pode ser	
aterrado após o DR.	

ATERRAMENTO	
Aterramento é um complemento das instalações, tendo	
em vista a proteção contra choques perigosos nas pessoas	
que utilizem os equipamentos elétricos.	
que utilizem os equipamentos eletricos.	
O aterramento é feito através de um fio chamado de	
condutor de terra que interliga o sistema ou equipamento	
elétrico ao eletrodo de terra. O condutor de terra não pertence	
ao circuito, servindo apenas como proteção contra choques	
elétricos.	
Todos já devem ter ouvido falar que a superfície da Terra	
é o caminho natural de escoamento de cargas elétricas	
indesejáveis, como, por exemplo, dos relâmpagos, nas	
tempestades.	
Então, a terra pode servir como condutor de corrente	
elétrica.	
Quase todos os sistemas de distribuição de energia	
elétrica possuem um fio neutro em ligação com a terra, para	
proteção individual.	
•	
Nos chuveiros elétricos mal instalados era comum	
sentirem - se choques em todas as torneiras da casa, hoje	
em dia isso raramente ocorre devido a tubulação ser	
praticamente toda de PVC.	
A água em contato com a resistência elétrica do chuveiro	
conduz um pouco de corrente para a sua carcaça e daí para o	
encanamento. Qualquer pessoa tocando uma torneira,	
estando com os pés no chão, deverá levar "choque ', porém,	
se ligarmos um fio condutor qualquer entre a entrada e a	
saída da caixa d`água, esta hipótese ficará quase abolida,	
pois a corrente se escoará pelo encanamento de entrada	
da caixa para a terra, o qual oferece melhor caminho para a	
terra do que o corpo da nessoa	

Em todos os prédios, no ponto de alimentação de	
energia, deverá ser executado um eletrodo de terra, para	
ligação do condutor de proteção (PE).	
O eletrodo de terra deverá apresentar a menor resistência	
de contato possível, devendo ser da ordem de 5 ohms e nunca	
ultrapassar 25 ohms.	
O condutor terra é normalmente de cobre e deve ter a	
dimensão mínima, de acordo com o ramal de entrada do prédio	
(consultar a concessionária local).	
TIPOS DE ATERRAMENTO:	
a) aterramento funcional: consiste na ligação à terra	
de um dos condutores do sistema (geralmente o neutro), e	
está relacionado com o funcionamento correto, seguro e	
confiável da instalação.	
b) <i>aterramento de proteção</i> : consiste na ligação à	
terra das massas e dos elementos condutores estranhos a	
instalação, visando à proteção contra choques elétricos por	
contato indireto.	
COMPONENTES DO SISTEMA DE ATERRAMENTO:	
a) <i>eletrodo de aterramento</i> : constitui a parte colocada	
em contato íntimo com o solo, com o objetivo de dispersar a	
corrente;	
b) condutor de aterramento : liga o eletrodo de	
aterramento ao terminal de aterramento principal;	
c) condutores de eqüipotencialidade : com os quais	
são feitas as ligações eqüipotenciais (principal e suplementar	
), que são :	
• os condutores de eqüipotencialidade principais, que	
ligam ou interligam as canalizações metálicas não	
elétricas de abastecimento do prédio e os elementos	
metálicos acessíveis da construção:	

- os condutores de eqüipotencialidade das ligações eqüipotenciais suplementares que interligam massas e/ ou elementos condutores estranhos à instalação;
- d) condutor de proteção principal: condutor ao qual são ligados, diretamente ou através de terminais de aterramento, os condutores de proteção das massas, o condutor de aterramento, e eventualmente, condutores de eqüipotencialidade;
- e) *condutores de proteção das massas* : acompanham os circuitos terminais promovendo o aterramento das massas dos equipamentos de utilização alimentados;
- f) *terminal de aterramento principal*: que deve reunir o condutor de aterramento, o condutor de proteção principal e os condutores de eqüipotencialidade principal.

DESCRIÇÃO DOS COMPONENTES DE ATERRAMENTO DE ACORDO COM A NBR 5410:

.....

Para solos que apresentam dificuldades conseguir baixa resistência de terra, podemos ton providências:	•
 instalar mais de um eletrodo; 	
fazer tratamento do solo com produtos quím grosso, sulfato de cobre ou sulfato de magn Tabela de valores máximos de corrente de fuga a	esio);
em equipamentos de utilização :	
Equipamentos - aparelhos classe 0, I e III (eletrodomésticos portáteis, algumas geladeiras domésticas)	Correntes de fuga em mA 0,50
- aparelhos classe I portáteis (secador de cabelo, ferramentas sem dupla isolação)	0,75
- aparelhos classe I estacionários a motor (condicionador de ar)	3,50
 aparelhos classe I estacionários para aquecimento (chuveiro, torneira elétrica) 	0,75/kW ou 5mA (o que for maior)
- aparelhos classe II (ferramentas portáteis com dupla isolação)	0,25

LUMINOTÉCNICA

CONHECENDO A LUZ

A luz sempre foi um importante e indispensável elemento em nossas vidas. Por isso, ela é encarada de forma familiar e natural, e nós deixamos muitas vezes de lado a real necessidade de conhecê-la e compreendê-la.

.....

.....

.....

.....

.....

......

......

.....

.....

.....

.....

......

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Ao longo dos anos, graças aos avançados recursos tecnológicos, nada alterou tanto nossas vidas como a luz elétrica. Surgiram no mercado as mais variadas fontes de luz artificial, com propriedades e qualidades específicas. Desta diversidade, fez - se necessário conhecer as fontes de luz artificial adequadas a cada aspecto e necessidade da vida moderna.

A qualidade da luz é decisiva, tanto no que diz respeito ao desempenho das atividades, como na influência que ela exerce no estado emocional dos seres humanos.

Conhecer a luz, as alternativas disponíveis e saber controlar qualidade e quantidade, são ferramentas preciosas para o sucesso de qualquer instalação. Somando - se criatividade, o resultado pode ser transformador de nossa vida, de forma a torná-la mais produtiva, agradável, confortável e segura.

LUZ:

Luz é uma radiação eletromagnética capaz de produzir sensação visual.

FONTES LUMINOSAS:

A excitação dos corpos luminosos pode ser de origem térmica, como o sol. Outras fontes luminosas podem ser como os raios em uma tempestade ou como a luminescência de um vagalume.

As fontes de luz artificial estão apresentados em três grandes famílias : as de incandescência, de luminescência /	
fotoluminescência e de descarga.	
LÂMPADAS:	
As lâmpadas modernas são fontes luminosas de origem	
elétrica. As com filamento convencional ou halógenas	
produzem luz pela incandescência, assim como os raios. E	
os diodos utilizam a fotoluminescência, assim como os	
vagalumes.	
vagaramoo.	
Evistom ginda as lâmpadas mistas, que combinam	
Existem ainda as lâmpadas mistas, que combinam	
incandescência e luminescência, e as fluorescentes, cuja	
característica é o aproveitamento da luminescência e	
fotoluminescência.	
QUALIDADE DA LUZ :	
ESPECTRO VISÍVEL :	
É uma faixa de radiação que ocorre em um intervalo,	
com comprimento de ondas que vão de 380 a 780 nm (
nanômetros), ou seja, da cor ultravioleta à vermelha, passando	
pelo azul, verde, amarelo e roxo. As cores azul, vermelho e	
verde, quando somadas em quantidades iguais, definem o	
aspecto da luz " branca ".	
Espectros contínuos ou descontínuos resultam em	
fontes de luz com presença de comprimentos de ondas de	
cores distintas. Cada fonte de luz tem, portanto, um espectro	
de radiação próprio que lhe confere características e qualidades	
específicas.	
• TEMPERATURA DE COR / APARÊNCIA	
DE COR DA LUZ :	
DE CON DA LUZ.	
É a grandeza que expressa a aparência de cor da luz,	
sendo sua unidade o Kelvin. Quanto mais alta a temperatura	
de cor, mais branca é a cor da luz.	

A "luz quente" é a que tem aparência amarelada e	
temperatura de cor baixa : 3000K ou menos. A "luz fria", ao	
contrário, tem aparência azul - violeta, com temperatura de	
cor elevada : 6000K ou mais. A "luz branca natural" é aquela	
emitida pelo sol em céu aberto ao meio dia, cuja temperatura	
de cor é de 5800K.	
• ÍNDICE DE REPRODUÇÃO DE COR : Ra ou IRC	
•	
É a medida de correspondência entre a cor real de	
um objeto ou superfície e sua aparência diante de uma fonte	
de luz.	
A luz artificial, como regra, deve permitir ao olho humano	
perceber as cores corretamente, ou o mais próximo possível	
da luz natural do dia.	
Lâmpadas com Ra de 100% apresentam as cores com	
total fidelidade e precisão. Quanto mais baixo o índice, mais	
deficiente é a reprodução das cores. Os índices variam	
conforme a natureza da luz e são indicados de acordo com o	
uso de cada ambiente.	
• CONCEITOS LUMINOTÉCNICOS :	
CONCEITOS EDMINOTECNICOS .	
a) <i>FLUXO LUMINOSO</i> (lm):	
a) FLOXO LOMINOSO (IIII).	
É a quantidade de luz emitida por uma fonte, medida em	
lúmens (lm), na tensão nominal de funcionamento.	
idifieris (iiii), fia terisao fiorilinai de funcionamento.	
b) POTÊNCIA CONSUMIDA (W):	
b) POTENCIA CONSONIDA (W).	
É a anargia alátrica concumida por uma fonte luminosa	
É a energia elétrica consumida por uma fonte luminosa,	
medida em watts (W). Para fontes que funcionam com o	
auxílio de equipamentos (transformadores, reatores) deve -	
se considerar a potência consumida pelos mesmos, somada à potência das lâmpadas.	

c) <i>EFICIENCIA ENERGETICA</i> (Im / W):	
É a relação entre o fluxo luminoso e a potência	
consumida, ou seja, é a eficiência luminosa de uma fonte que	
dissipa 1 watt para cada lúmen emitido.	
d) VIDA / DURABILIDADE DE UMA LÂMPADA :	
,	
O conceito de vida de uma lâmpada é dado em horas e	
é definido por critérios pré - estabelecidos, considerando	
sempre um grande lote testado sob condições controladas e	
de acordo com as normas pertinentes.	
•	
No dia - a - dia a vida de uma lâmpada depende muito de	
como ela está sendo utilizada, da qualidade da instalação e de	
uma manutenção periódica.	
una manatongao ponotioa.	
e) <i>VIDA MEDIANA</i> (h):	
É o número de horas resultantes, onde 50% das	
lâmpadas ensaiadas ainda permanecem acesas.	
lampadas ensaladas ainda permanecem acesas.	
f) <i>VIDA MÉDIA</i> (h):	
1) VIDA MEDIA (11).	
É a média aritmética do tempo de duração de cada	
lâmpada ensaiada.	
lampada ensalada.	
a) VIDA CUSTO / BENEEÍCIO / h) :	
g) VIDA CUSTO / BENEFÍCIO (h) :	
É o número de horas atingido em que houve determinada	
depreciação do fluxo luminoso inicial do lote ensaiado,	
decorrente da depreciação do fluxo luminoso de cada lâmpada	
e de suas respectivas queimas.	
h) <i>INTENSIDADE LUMINOSA</i> (cd) :	
Expressa em candela (cd), é a intensidade do fluxo	
luminoso projetado em uma determinada direção.	

i) <i>ILUMINÂNCIA</i> (E = Lux):	
Expressa em lux, é o fluxo luminoso que incide sobre	
uma superfície situada à uma certa distância da fonte. Ela é a	
relação entre intensidade luminosa e o quadrado da distância	
(l/d²). Na prática, é a quantidade de luz dentro de um ambiente,	
e pode ser medida com o auxílio de um luxímetro. Para obter	
conforto visual, considerando a atividade que se realiza, são	
necessários certos níveis de iluminância médios. Os mesmos	
são recomendados por normas técnicas : ABNT - NBR 5523.	
j) <i>FATOR OU ÍNDICE DE REFLEXÃO</i> :	
É a relação entre o fluxo luminoso refletido e o incidente.	
Varia sempre em função das cores ou acabamentos das	
superfícies e suas características de reflectância.	
k) <i>Luminância</i> (L):	
Medida em cd/m², é a intensidade luminosa produzida	
ou refletida por uma superfície existente.	

TIPOS DE LÂMPADAS	
TIPOS DE LAWIPADAS	
As lâmpadas utilizadas em iluminação classificam - se	
basicamente em dois grupos :	
Lâmpadas incandescentes	
Lâmpadas de descarga	
LÂMPADAS INCANDESCENTES :	
A lâmpada incandescente é uma das mais antigas fontes	
de luz e a mais familiar para a maioria das pessoas, funciona	
basicamente através da passagem da corrente elétrica pelo	
filamento de tungstênio que, com o aquecimento, gera a luz.	
UTILIZAÇÃO:	
As lâmpadas incandescentes são utilizadas em locais	
onde se deseja a luz dirigida e com flexibilidade de escolha de	
diversos ângulos de abertura de facho luminoso.	
Geralmente são empregadas em residências, lojas e	
locais de trabalho que não exijam índices de iluminamento	
elevados.	
Devido ao seu alto desempenho em relação a reprodução	
de cores, a lâmpada incandescente é largamente utilizada nas	
lojas com a finalidade de destacar as mercadorias.	
Nas indústrias empregam - se as lâmpadas	
incandescentes na iluminação geral ou suplementar nas	
máquinas de produção ou em locais com problemas de	
vibração (lâmpadas para serviço pesado) ou ainda em estufas	
de secagem (infravermelhas).	
CARACTERÍSTICAS DAS LÂMPADAS	
INCANDESCENTES :	
Possuem um bulbo de vidro, em cujo interior existe um	
filamento de tungstênio, que pela passagem da corrente	
elétrica, fica incandescente.	

Para evitar que o filamento se queime, utiliza - se um dos seguintes processos :							im ·				
add dogain.co processes .											
o vácuo no interior do bulbo, ou seja, é retirada de todo											
o oxigênio co				-							
a combustão		io buib	o, ja q	ue o oz	agerilo	aiiiiici					
	•	ânia n	or um	aáa ina	rto ao	rolmor	ıto .				
• substituição	_	•	or um (gasıne	erte, ge	raimer	ile ·				
o nitrogênio o	ou argo	onio.					•				
							•				
O tungstênio			-								•••••
elevado (3400° C		-	rmite	uma te	emper	atura i	uo .				•••••
filamento, de cerca d	e 2500	0º C.					•				
											•••••
TIPOS DE LÂ	MPAD	AS IN	CAND	ESCE	NTES	:					
a) Comuns d	ou de	uso g	eral :	são e	mpreg	adas e	m ·				
residências, lojas e lo	ocais c	de trab	alho q	ue não	exijan	n índic	es ·				
de iluminamento elev	/ados.	Poder	n ser c	le bulb	o trans	sparen	te, ·				
translúcido ou opali	zado,	e são	fabri	cadas	nas p	otênci	as ·				
indicadas na tabela.											
Tabela <i>Lâmpa</i>	ıdas ir	ncand	escen	tes Os	SRAM						
para iluminaç											
para namnay	uo gei	u									
Referência	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC	INC
	25	40	60	75	100	150	200	300	300	500	500
Potência (W) Fluxo Luminoso	25 230	40 430	60 730	75 960	100 138	150 222	200 315	300 500	300 500	500 840	500 840
(lm)					0	0	0	0	0	0	0
Comprimento (mm)	105	105	105	105	105	114	114	183	183	207	207
				I	ı	l .					
As lâmpadas a	acima	referer	n - se	a ten	são de	120V	е.				
220V, apresentando	vida út	til de 10	000h c	onforn	ne catá	logo.					
•											
							•				
b) <i>Bulbo temp</i>	erado	o são f	abrica	das pa	ara fund	cionare	·m				
,				•							
ao tompo, som a nec	,000iu	ado de	uma I	umma	na proi	otora.					
o\ Bulba da s		- ا بیم	000-1-	000=4	00 6-1	600==					
,						•			•••••		
		•									
ao tempo, sem a neo				•							
c) Bulbo de q	uartzo	ou in	cande	escent	es hal	ógena	S: .				
é um tipo aperfeiçoac		•									
de um hulho tuhular	do ai	ortzo	dontro	י אט מו	iva Icu	etam i	ım				

filamento de tungstêr	nio e partícul	as de iodo.	(daí o nom	e de				
halógenas), que atra	vés de uma	reação cícl	ica, recondu	ızem				
o tungstênio volatiliz	ado de volt	a ao filame	ento, evitan	do o				
escurecimento do bu	lbo. Em tem	nperaturas p	oróximas a	1400				
°C, o halogênio adicio	na - se ao gá	s contido no	bulbo. Por e	efeito				
de convecção, o co	omposto se	aproxima	novamente	e do				
filamento. A alta temp	eratura aí rei	nante decor	npõe o chan	nado				
haleto, e parte do tunç	stênio depos	sita - se de v	olta no filam	ento.				
Apresenta - se a	as seguintes	vantagens	sobre a lâm _l	oada				
incandescente com	num : vida	mais longa	a, ausência	a de				
enegrecimento do tu	ıbo, alta efic	ciência lumi	nosa, excel	ente				
reprodução de cores e	e reduzidas d	limensões, c	bviamente,	mais				
caras.								
Encontram - se	aplicação r	na iluminaçã	ão de praça	s de				
esporte, pátios de ca	rga e descai	rga de merc	adorias, tea	tros,				
museus, estúdios de	TV, iluminaç	ão externa	em geral, et	.c				
A tabela 2 apres	entará algun	nas caracter	ísticas refere	entes				
as lâmpadas halóge	nas refletor	as, ideais _l	para ilumina	ação				
dirigida de destaque.								
Podem ser ut	ilizadas int	erna e ext	ernamente	em				
ambientes residencia	is, hotéis, vit	rinas, musei	us, galerias,	bem				
como em paisagismo	decorativo,	monument	os ou facha	das.				
, -								
Tabela <i>Lâmpa</i>	das halógei	nas refleto	ras OSRAN	1				
para uso inter	no e extern	o :						
Referência	HALOPAR	HALOPAR	HALOPAR	HALOI	PAR	HALOPAR	HALOPAR	
	16NFL*	20NFL**	20FL*	30NF	L**	30FL*	38FL*	
Tensão (V)	120 75	130	220 50	120		220 75	120	

Referência	HALOPAR 16NFL*	HALOPAR 20NFL**	HALOPAR 20FL*	HALOPAR 30NFL**	HALOPAR 30FL*	HALOPAR 38FL*
Tensão (V)	120	130	220	120	220	120
Potência (W)	75	50	50	75	75	90
Int. Luminosa (cd)	2000	1250	1300	3000	2200	4000
Comprimento (mm)	73	82,5	91	92	90,5	135

^{*} vida útil : 2000h / ** vida útil 2500h

A tabela a seg	uir apre	sentará a	as carac	terísticas	s de ···			
lâmpadas halógena	as em	baixa te	ensão,	conheci	das ··			
popularmente como " palito ".								
Apresentam luz	clara e b	rilhante	que prop	orciona i	uma ··			
excelente reproduçã								
funcionam diretamen								
iluminação decorativa	•							
indireta, como luz dif				•				
		•		•				
grandes áreas interna			•	•				
ainda em pequenas	quadra	s espor	livas, co	ondomin	ios,			
canteiros de obra etc								
Tabela <i>Lâmpad</i>	as halóg	genas O	SRAM:					•••••
Referência	64690	64696	64703	64700	64701	64702	64740	64760
Tensão (V)	220	220	120	120	220	220	220	220
Potência (W)	100	150	300	500	300	500	1000	1500
Fluxo Luminoso(Im)	1650 74,9	2200 114,2	5400 114,2	10500 114,2	5000 114,2	9500 114,2	22000 185,7	33000 250,7
Comprimento	74,9	114,2	114,2	114,2	114,2	114,2	100,1	250,1
d) Lâmpadas in de luz de alto rendime facho dirigido. Possu internamente um reve superfície, de modo a lâmpadas de bulbo presentido de sua base adequado que produziluminação indireta.	ento lum em o bu stimento concentr rateado d e devem za a refl	inoso, dii ulbo de f de alum ar e orier orientam n ser usa exão da	mensões formatos tínio em ntar o fac o facho adas con luz, pro	especia parte de ho de luz luminoso n um refl porciona	as e is e sua As o no etor indo			
A tabela a segu	ıir aprese	entará al	gumas ca	aracteríst	icas			
das lâmpadas refletora	s OSRA	M para u	iso intern	10.				
Estas lâmpadas	apresent	am fachd	os de luz	diriaidos				
valorizam objetos e es	-			g. 5.00				
Taionzam objetos e es	payoo.							

Lâmpadas refletoras OSRAM:

Referência	40R63	60R63	60R75	100R75	120PAR38FL
Potência (W)	40	60	60	100	120
Ângulo	30 ⁰	30°	100°	100°	30°
Int. Luminosa (cd)	540	960	480	890	3100
Comprimento (mm)	103	103	125	125	136

^{*} vida útil: 1000h Tensão de funcionamento 127 e 220V. e) *Lâmpadas infravermelhas* : usadas em secagem de tintas, lacas, vernizes, no aquecimento em certas estufas e, também, em fisioterapia e criação de animais em climas frios. Nunca podem ser usadas como fontes luminosas, uma vez que sua radiação se encontra na faixa de ondas caloríficas (10⁶ a 780 nm). LÂMPADAS DE DESCARGA : Nas lâmpadas de descarga, a energia é emitida sob forma de radiação, que provoca uma excitação de gases ou vapores metálicos, devido à tensão elétrica entre eletrodos especiais. A radiação, que se estende da faixa do ultravioleta até a do infravermelho, passando pela do espectro luminoso, depende, entre outros fatores, da pressão interna da lâmpada, da natureza do gás ou da presença de partículas metálicas ou halógenas no interior do tubo. OPERAÇÃO DE LÂMPADAS DE DESCARGA : As lâmpadas de descarga em geral não podem ser operadas sem um dispositivo de limitação da corrente, ou reator, ligado no circuito da lâmpada. TIPOS DE LÂMPADAS DE DESCARGA : a) Lâmpada fluorescente : é uma lâmpada que utiliza a descarga elétrica através de um gás para produzir energia luminosa.

.....

São constitu	uídas por um tu	bo cilíndrico de	vidro, em cujas			
paredes internas	•					
de fósforo) e one			•			
•		•				
pressão, em pres	•					
uma radiação u	-					
fluorescente exis	stente nas pa	redes se trans	sforma em luz			
visível.						
Tabela <i>Lâr</i>	npadas Fluor	escentes OSR	PAM:			
Referência	L15LD	L20LDE	L30LD	L40LDE	L110LDE H.O	
Potência (W)	15 + 10	20 + 12	30 + 10	40 + 11	110 + 25	
lâmpada + reator						
Fluxo Luminoso (lm)	840	1060	2000	2700	8300	
Bulbo	Т8	T10	T8	T10	T12	
Diâmetro (mm)	26	33	26	33	38	
Comprimento	438	590	895	1200	2400	
* vida útil = 7500 ** são conside convencional co	eradas universa				nagnéticos partida	

Tabela Lâmpadas Fluorescentes GE:

Código	17036	22647	15949	22656	22657
Potência (W)	17	17	32	32	32
Fluxo Luminoso (lm)	1325	1375	2850	2950	2950
Diâmetro (mm)	25	25	25	25	25
Comprimento	610	610	1220	1220	1220

.....

.....

.....

.....

......

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

b) Lâmpada de Luz Mista: é uma lâmpada que reúne as vantagens da lâmpada incandescente, fluorescente e da vapor de mercúrio, pois consiste num bulbo preenchido com gás, revestido na parede interna com fósforo, contendo um tubo de descarga ligado em série com um filamento de tungstênio. Na lâmpada de luz mista a radiação ultravioleta da descarga de mercúrio é convertida em radiação visível pela camada de fósforo. Somada a esta radiação visível, está a radiação visível do próprio tubo de descarga, bem como a luz de cor quente do filamento incandescente. A radiação das duas fontes mistura - se harmoniosamente, passando através da camada de fósforo para dar uma luz branca difusa com uma aparência de cor agradável.

O filamento da lâmpada age como um reator para a descarga, estabilizando assim a corrente da lâmpada. Não é necessário o uso de um reator. As lâmpadas de luz mista, portanto, poderão ser ligadas diretamente à rede. Isto significa que as instalações de iluminação existentes, quando usam lâmpadas incandescentes, poderão facilmente ser modernizadas com o uso de lâmpadas de luz mista, que têm praticamente duas vezes a eficácia e quase seis vezes a vida daquelas, sem custo extra em termos de reatores, fiação ou luminárias.

Tabela Lâmpadas de Luz Mista OSRAM:

Referência	HWL160	HWL250	HWL250	HWL500
Potência (W)	160	250	250	500
Fluxo	3100	5600	5600	14000
Luminoso(lm)				
Diâmetro (mm)	75	90	90	120
Comprimento (mm)	177	226	226	275

^{*} vida útil 6000h

^{*} vida mediana 20000h

	vapor de l	Mercúrio : c	onsta de un	n tubo		
de quartzo ou vidro	duro, conte	endo uma pe	quena quan	tidade ··		
de mercúrio e cheic	de gás ar	rgônio, com	quatro eletro	odos - ··		
dois principais e dois						
do tubo. Os dois						
estabelecem um ar			•	_		
mercúrio. Forma - s	_			muvo		
entre os dois elet	rodos prin	cipais. O b	ulbo é reve	Stido		
internamente com ur	ma camada	fluorescente	e de fosfato d	le ítrio ··		
vanadato, o que tra	ansforma a	a radiação u	Itravioleta e	m luz ··		
avermelhada, que m	nelhora a re	eprodução da	as cores e di	stribui ··		
uniformemente a luz	z do tubo p	or toda a su	perfície do l	bulbo, ··		
evitando ofuscame	ento à visã	io. O bulbo	de vidro e	vita a ··		
irradiação ultraviolet	a fora do tu	ubo, proteger	ndo, assim, a	a vista ··		
das pessoas.		71 3	,			
and process.						
As lâmpadas	de vanor d	le mercúrio r	nossuem um	ı fluxo		
luminoso grande e u		_				
-				mano		
econômicas. São mu		-	•	Jiicas,		
estacionamentos,				iiias,		
depósitos e fachadas	s. Assim co	mo as lâmpa	das fluoresc	entes, ··		
as lâmpadas a vapo	r de mercú	ırio também ı	necessitam (de um ··		
reator para propor	cionar um	a sobretens	ão de mod	o que ··		
ocasione a partida	da lâmpad	a e ao mesr	no tempo lir	nite a ··		
corrente de operaçã	0.					
,						
Tabala / âmn	adaa da W	onor do Mor	oúrio OSD			
Tabela <i>Lâmp</i> a	auas ue va	apor de ivier	curio OSKA	AIVI : ··		
		T				
Referência	HQL80	HQL125	HQL250	HQL400		HQL1000
Potência (W)	80+9	125+12	250+12	400+25	700+35	1000+45
Fluxo	3800	6300	13000	22000	38500	58000
Luminoso(lm)	70	75	90	120	140	165
Diâmetro (mm)	, 0	7.5	50	120	170	100

^{.....}

PROJETO DE ILUMINAÇÃO PARA INTERIORES :	
O projeto de iluminação de um recinto supõe algumas	
opções preliminares.	
Deve - se escolher entre :	
iluminação incandescente, mista ou fluorescente;	
 iluminação direta, indireta, semi - direta ou semi - 	
indireta;	
Esta opção envolve aspectos de decoração do ambiente	
e principalmente o conhecimento da destinação do local	
(escritório, sala, loja, indústria, etc.), e as atividades que serão	
desenvolvidas no local (trabalho bruto, trabalhos que exijam	
iluminamento intenso, etc.). Deve - se de imediato, determinar	
:	
 dimensões do local; 	
as cores das paredes e do teto;	
 altura das mesas e bancadas de trabalho ou máquinas 	
a serem operadas, conforme o caso.	
 possibilidade de fácil manutenção dos aparelhos 	
Existem vários métodos que podem ser aplicados na	
elaboração de um projeto de iluminação de ambientes	
interiores. O método proposto para o curso é o <i>Método dos</i>	
Lúmens muito empregado na prática por projetistas e	
engenheiros e também por se tratar de uma rotina de cálculo	
sem maiores dificuldades.	
SELEÇÃO DA ILUMINÂNCIA :	
A NBR 5413/82 estabelece um procedimento para a	
escolha da " iluminância " constante da tabela a seguir	
Observa - se que nessa tabela constam três valores de "iluminância" para cada grupo de tarefas visuais. Para a escelha	
"iluminância" para cada grupo de tarefas visuais. Para a escolha da "iluminância" em determinado problema, deve - se atender	
para os três fatores que constam na tabela posterior.	

- idade do observador;
- velocidade e a precisão exigidas na operação;
- refletância da superfície onde se desenvolve a tarefa

Tabela *lluminâncias* (índices de iluminamento) para cada grupo de tarefas visuais, segundo a NBR5413/82

Faixa	Iluminância (lux)	Tipo de atividade
	20	
	30	Áreas públicas com arredores escuros
A	50	
lluminação geral para	50	
tarefas visuais simples	75	Orientação simples para permanência curta
	100	
	100	
	150	Recintos não usados para trabalho contínuo
	200	
	200	
	300	Tarefas com requisitos visuais limitados
В	500	trabalho bruto de maquinaria, auditórios
Iluminação geral para	500	
área de trabalho	750	Tarefas com requisitos visuais normais,
	1000	trabalho médio de maquinaria, escritórios
	1000	
	1500	Tarefas com requisitos especiais, gravação
	2000	manual, inspeção, indústria de roupas, etc
	2000	
	3000	Tarefas visuais exatas e prolongadas,
C	5000	eletrônica de tamanho pequeno, relógios
Iluminação adicional para	5000	
tarefas visuais difíceis	7500	Tarefas visuais muito exatas, montagem de microeletrônica, etc.
	10000	· ·
	10000	
	15000	Tarefas visuais muito especiais, cirurgia,etc
	20000	

Tabela Fatores determinantes da iluminância adequada:

Característica da	-1	0	+1
tarefa e do			
observador			
Idade dos Ocupantes	inferior a 40 anos	40 a 55 anos	superior a 55 anos
Velocidade e	sem importância	importante	crítica
Precisão	-		
Refletância do fundo	superior a 70%	30 a 70%	inferior a 30%
da tarefa			

- 1º) determinar o peso (-1, 0, +1) correspondente a cada característica.
- 2º) Somam se algebricamente os valores encontrados (considerando, portanto, os sinais).
- 3º) Se o valor total for igual a -2 ou -3, usa se a iluminância mais baixa do grupo na tabela 9. Se a soma for igual a +2 ou +3, usa - se o maior valor da iluminância. Nos demais casos, usa - se o valor central.

Tabela Iluminância em Lux, por tipo de atividade segundo a NBR 5413/91

a) auditórios anfiteatros tribuna 300 500 700 registro 750 1000 platéia 100 150 200 engenharia e 750 1000 bilheterias 300 150 750 geral 100 150 contabilidade 300 500 750 cozinhas 200 300 recepção 100 150 200 banheiros 100 150 guichês 300 500 750 geral 100 150 guichês 300 500 750 geral 100 150 cozinhas 200 300 sarquivos 200 300 500 750 geral 100 150 guichês 300 500 750 geral 100 150 destantes 200 300 500 500 500 500 500 500 500 500 5	Alta	Média	Baixa	Atividades	Alta	Média	Baixa	Atividades
tribuna 300 500 700 registro 750 1000 platéia 100 150 200 engenharia e 750 1000 bilheterias 300 150 750 arquitetura b		<u> </u>		e) escritórios				a) auditórios
Diatéia 100 150 200 engenharia e 750 1000 Dilheterias 300 150 750 arquitetura Dilheterias 300 150 750 arquitetura Dilheterias 300 500 750 arquitetura Dilheterias 300 300 300 300 300 300 Dilheterias 300 300 300 300 300 300 Dilheterias 300 300 300 300 300 300 300 Dilheterias 300 300 300 300 300 300 300 300 300 Dilheterias 300 300 300 300 300 300 300 300 300 300 Dilheterias 300 30								anfiteatros
bilheterias 300 150 750 arquitetura 100 150 150 200 300 150 150 200 200 200 200 200 200 200 200 200 200 200 20	1500	1000	750	registro	700	500	300	tribuna
b) bancos atendimento 300 500 750 geral 100 150 contabilidade 300 500 750 cozinhas 200 300 recepção 100 150 200 banheiros 100 150 guichês 300 500 750 arquivos 200 300 500 c) bibiotecas s.de leitura 300 500 750 geral 100 150 estantes 200 300 500 cozinha 150 200 fichário 200 300 500 quartos 100 150 d) escolas s. de aula 200 300 500 foicinas 150 150	1500	1000	750	engenharia e	200	150	100	platéia
atendimento 300 500 750 geral 100 150 cozinhas 200 300 recepção 100 150 200 banheiros 100 150 guichês 300 500 750 arquivos 200 300 500				arquitetura	750	150	300	bilheterias
atendimento 300 500 750 geral 100 150 cozinhas 200 300 recepção 100 150 200 banheiros 100 150 guichês 300 500 750 arquivos 200 300 500				f) rocidôncias				h) hances
Contabilidade 300 500 750 cozinhas 200 300 recepção 100 150 200 banheiros 100 150 guichês 300 500 750 arquivos 200 300 500 C) bibiotecas S.de leitura 300 500 500 estantes 200 300 500 cozinha 150 200 fichário 200 300 500 quartos 100 150 restaurantes 100 150 d) escolas S. de aula 200 300 500 oficinas 150 150 d) garagens 150 150 h) garagens 150 150 cozinhas 200 200 200 d) escolas 150 150 cozinhas 200 200 200 d) escolas 150 150 escolas	000	450	400	'	750	5 00	000	l ′
recepção 100 150 200 banheiros 100 150 guichês 300 500 750 arquivos 200 300 500 750 geral 100 150 estantes 200 300 500 guartos 200 300 500 quartos 100 150 cozinha 150 200 fichário 200 300 500 quartos 100 150 restaurantes 100 150 d) escolas s. de aula 200 300 500 ficinas 150 150 150	200							
guichês 300 500 750	500	300	200		750	500	300	
C) bibiotecas Solution Solu	200	150	100	banheiros	200	150	100	recepção
C) bibiotecas S.de leitura 300 500 750 geral 100 150 estantes 200 300 500 quartos 100 150 restaurantes 100 150					750	500	300	guichês
s.de leitura 300 500 750 geral 100 150 estantes 200 300 500 cozinha 150 200 fichário 200 300 500 quartos 100 150 restaurantes 100 150 d) escolas s. de aula 200 300 500 ficinas 150 150					500	300	200	arquivos
estantes 200 300 500 cozinha 150 200 fichário 200 300 500 quartos 100 150 restaurantes 100 150 d) escolas s. de aula 200 300 500 ficinas 150 150				g) hotéis				c) bibiotecas
estantes 200 300 500 cozinha 150 200 duartos 100 150 restaurantes 100 150 d) escolas s. de aula 200 300 500 ficinas 150 150	200	150	100	geral	750	500	300	s.de leitura
d) escolas s. de aula 200 300 500 oficinas 150 150	300	200	150	cozinha		300	200	estantes
d) escolas s. de aula 200 300 500 oficinas 150 150	200	150	100	quartos	500	300	200	fichário
s. de aula 200 300 500 oficinas 150 150	200	150	100	restaurantes				
s. de aula 200 300 500 oficinas 150 150				h) garagens				d) escolas
200 300 300 130	000	450	450	, , ,	500	000	000	1 ′
	300							
s. de desenho 300 500 750 bancadas 300 300	750			bancadas				
salão 100 150 200 estacionamento. 100 150	200	150	100	estacionamento.	200	150	100	salão

ESCOLHA DA LUMINÁRIA :	
A escolha da luminária depende de diversos, tais	
como: objetivo da instalação (comercial, industrial,	
residencial, etc.), fatores econômicos, razões da	
decoração, facilidade de manutenção, etc.	
Para a escolha da luminária recomenda - se a consulta	
nos catálogos dos fabricantes de modo a especificar a luminária	
adequada para o ambiente.	
DETERMINAÇÃO DO ÍNDICE DO LOCAL :	
Este fator relaciona as proporções entre o	
comprimento, largura e à altura do local de montagem, ou	
seja, altura da luminária em relação ao plano do trabalho,	
de acordo com o tipo de iluminação (direta, semi-direta,	
indireta e semi-indireta) e difusa-geral.	
DETERMINAÇÃO DO FATOR DE DEPRECIAÇÃO (d):	
É a relação entre o fluxo luminoso produzido por uma	
luminária no fim do período de manutenção e o fluxo emitido	
pela mesma luminária no início de seu funcionamento.	
DETERMINAÇÃO DO COEFICIENTE DE	
UTILIZAÇÃO (μ):	
É a relação entre o fluxo luminoso que incide sobre o	
referido plano (fluxo útil) e o fluxo total emitido pelas lâmpadas	
(fluxo total) - f. Evidentemente, este coeficiente dependerá	
das dimensões do local, da cor do teto, das paredes e do	
acabamento das luminárias.	
Para encontrar o coeficiente de utilização, precisamos	
entrar na tabela, com a refletância dos tetos e paredes :	

• teto branco	75%	
• teto claro	50%	
• paredes brancas	50%	
•		
• paredes claras	30%	
 paredes médias 	10%	
_		
	O TOTAL E DO NÚMERO	
DE LÂMPADAS :		
• Cálculo do fluxo to	otal (ф) :	
		•••••
	G E	
$\phi = -$	$\frac{\mathbf{S} \times \mathbf{E}}{\mathbf{\mu} \times \mathbf{d}}$	
	μ×α	
ϕ = fluxo total, em lum	iens (lm)	
$S = $ área do local (m^2	•	
E = nível de iluminame		
μ = fator de utilização	(1611)	
d = fator de depreciaç	ão	
3		
Cálculo do número	n de lâmnadas :	
Carouro do namor	o do lampadao .	
	ф	
n =	$=\frac{\phi}{\phi}$	
, , , ,		
n = número de lâmpa	das	
ϕ = fluxo total (lm)	41.	
φ = fluxo por lâmpada	(im)	

.....

FONTES GERADORAS DE ELETRICIDADE

Eletricidade estática

Na eletricidade estática estudamos as propriedades e ação mútua das cargas elétricas em repouso, nos corpos eletrizados.

Um corpo se eletriza negativamente quando ganha elétrons e positivamente quando perde elétrons.

Entre corpos eletrizados ocorre o efeito de atração quando suas cargas elétricas têm sinais contrários e ocorre efeito de repulsão quando suas cargas elétricas têm sinais iguais.

Sempre que dois corpos com cargas elétricas contrárias são colocados próximos um do outro, em condições favoráveis, o excesso de elétrons de um deles é atraído na direção daquele que está com falta de elétrons, sob a forma de uma descarga elétrica.

.....

.....

......

.....

.....

.....

.....

.....

 Essa descarga poderá ser visível se tiver potencial elétrico elevado e se ela ocorrer através do ar, como você pode observar, por exemplo, na ilustração anterior.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Entretanto, uma descarga elétrica não pode ser vista se ela ocorrer através de um fio condutor em condições normais de uso, mas apenas comprovada pelo efeito produzido, com o aquecimento deste fio condutor.

Eletricidade dinâmica ou eletrodinâmica

A eletricidade dinâmica refere-se aos elétrons livres, em movimento de um átomo para outro, constituindo, assim, uma corrente elétrica nos corpos sólidos.

Por exemplo: Uma barra de ferro

Para haver movimento dos elétrons livres em um circuito é necessário que nele seja exercida uma pressão elétrica. Essa pressão elétrica pode ocorrer de modos diferentes e resulta na formação de um pólo com excesso de elétrons, denominado pólo negativo, e de outro com falta de elétrons, denominado pólo positivo.

A energia elétrica disponível entre esses dois pólos é	
chamada força eletromotriz (fem) quando é medida sem carga	
ligada. Quando é medida com carga ligada, chama-se diferença	
de potencial (ddp) ou, simplesmente, tensão elétrica.	
Eletricidade por ação química	
Em 1970, Luigi Galvani descobriu a eletricidade	
produzida pelo contato entre materiais diferentes. Alguns anos	
mais tarde, depois de várias experiências, Alessandro Volta	
conseguiu enunciar o principio da teoria dos contatos: "Dois	
corpos heterogêneos colocados em contato, sejam eles	
condutores ou isolantes, apresentam uma diferença de	
potencial."	
Ainda com suas experiências, Volta estabeleceu uma	
ordem de sucessão para os metais mais comuns, segundo a	
qual cada metal fica positivo quando em contato com qualquer	
um dos que o precedem. A ordem de sucessão é a seguinte:	
zinco, chumbo, estanho, fero, cobre, platina, etc.	
Esta lei é válida apenas para séries puramente metálicas,	
pois colocando-se uma solução condutora entre os metais, a	
ordem da sucessão perde a validade. A essa solução	
condutora dá-se o nome de eletrólito.	
Mergulhando-se uma placa de zinco e outra de cobre	
numa solução eletrolítica, de salmoura (H ₂ O + NaCl), constituiu-	
se uma célula primária e constata-se entre as placas uma	
diferença de potencial, contrária à aquele que se obtém pelo	
contato direto entre elas. Isto ocorre porque o zinco adquire	
potencial maior que o do cobre, devido à ação do eletrólito.	
A pilha seca, conhecida como pilha lanterna, é a mais	
conveniente das fontes portáteis de energia elétrica. O pólo	
positivo é um bastão de carbono (carvão) e o pólo negativo é o	
próprio recipiente de zinco metálico que abriga um eletrólito	
pastoso de cloreto de amônia.	

Vista em corte de uma pilha seca

A força eletromotriz (fem) de uma pilha seca nova é de 1,5 a 1,6 volts, diminuindo à medida que ela vai sendo usada.

E l e t r i c i d a d e produzida pelo magnetismo

O método mais usual de produção de eletricidade em larga escala deriva da utilização do magnetismo. O

magnetismo é uma condição, um meio pelo qual se produz a energia elétrica por indução, cujo movimento é produzido pela energia mecânica.

Transformação de energia

Energia mecânica obtida através de uma máquina a vapor.	
Energia mecânica obtida através de um potencial	
hidráulico, que faz girar uma roda d'água	
maraanoo, qao raz girar ama road a agaa	
Há também a transformação de energia mecânica em	
energia elétrica. Este fenômeno se verifica, por exemplo, nos	
geradores das usinas elétricas. Tais geradores se utilizam dos	
potenciais hidráulicos como fontes de energia mecânica.	
TURBINA	AADOO
Em resumo temos:	
 Potencial hidráulico obtido através dos rios; 	
 Energia mecânica conseguida pela roda d'água; 	
 Energia elétrica conseguida pelo gerador. 	
Qualquer que seja a fonte de energia mecânica, a	
potência elétrica produzida nos geradores será o resultado do	
corte das linhas magnéticas pelos condutores.	
compo magnético	
condutor	
N S	
imō deslocando-se um condutor	
magnético, aparece nos extremos	
deste condutor uma tensão elétrica	

Transformação de energia térmica em elétrica

.....

.....

.....

.....

.....

......

.....

......

.....

......

.....

.....

.....

.....

.....

.....

Outro método de obtenção de energia elétrica é o do aquecimento direto da junção de dois metais diferentes.

Se um fio de cobre e outro de constantan forem unidos por um dos seus extremos, e se aquecermos os fios neste ponto, aparecerá uma tensão elétrica nos outros extremos. Constantan é uma liga de cobre e níquel. A medida que aumentamos a temperatura no extremo unido, aumenta também o valor da tensão elétrica.

Esse dispositivo chama-se par termelétrico e é usado como elemento sensor nos pirômetros, que são aparelhos usados para medir a temperatura.

Transformação de energia luminosa em elétrica

Os modernos foto elementos funcionam com a utilização de semicondutores, materiais que se situam entre os condutores e os isolantes quando à condutibilidade elétrica.

Construção

Os foto elementos são construídos sobre uma placa base, na qual é aplicada uma fina camada de material semicondutor (selênio, birmânio ou silício). Sobre essa camada aplica-se outra, bem fina, geralmente de selênio-cádmio.

Em seguida vem o eletrodo de oposição, que é uma película metálica transparente à luz, por exemplo, de óxido de cádmio. Para finalizar, o conjunto recebe um anel metálico.

.....

.....

.....

......

Funcionamento

O efeito fortelétrico ocorre quando irradiações luminosas passam pela camada metálica transparente, fazendo com que os elétrons livres da camada semicondutora se desloquem até o anel. Assim, o anel se torna negativo e a placa base, positiva. Durante a incidência luminosa, aparece uma força eletromotriz e entre as placas.

Aplicação

O uso mais comum desse tipo de célula é como medidor de luz ou fotômetro, usado em fotografia, por exemplo, para medir a intensidade da luz existente em um recinto.

A célula fotoelétrica, comumente chamada "olho elétrico", funciona segundo o mesmo princípio da fotocélula. A célula fotoelétrica, no entanto, depende de uma bateria ou de alguma outra fonte de tensão elétrica para cumprir sua função de detectar variações de luminosidade. A célula fotoelétrica tem muitos usos, entre eles o controle automático de portas, de máquinas cinematográficas de projeção, controles automáticos contra roubos, etc.

Energia elétrica através do atrito

Toda vez que se atritam dois corpos diferentes, alguns elétrons passam de um dos corpos para o outro. O corpo que

recebe os elétrons adquire carga elétrica negativa. O corpo que cede os elétrons adquire carga elétrica positiva. Esse deslocamento de elétrons é provocado pelo aquecimento dos corpos durante o atrito, que acelera a velocidade dos elétrons, aumentando força centrífuga dos átomos e, assim, possibilitando a fuga dos elétrons. Algumas substâncias como o vidro, âmbar, ebonite, ceras, flanelas, seda, nylon, rayon, etc., produzem facilmente eletricidade estática. Quando se esfrega um bastão de ebonite em uma flanela, esta perde elétrons para o bastão. Assim, o bastão fica carregado negativamente e a flanela, positivamente. ebonite eletricamente negativo eletricamente neutro flanela flanela eletricamente positivo antes (equilíbrio de cargas) depois (desequilíbrio de cargas) Energia elétrica obtida através de um cristal sob pressão Alguns cristais, quando submetidos a ações mecânicas, como compressão ou torção, desenvolvem uma diferença de potencial. Por exemplo, o quartzo, a turmalina e os sais de Rochelle são cristais que se enquadram no princípio de obtenção de energia elétrica através de pressão. Se um cristal de um desses materiais for colocado entre duas placas metálicas e sobre elas for aplicada uma pressão obteremos uma ddp, produzida por pressão. O valor dessa diferença de potencial, dependerá da pressão exercida.

O uso de cristais como fonte de energia elétrica é largamente observado em equipamentos de pequena potência, como, por exemplo, nos toca-discos.

O braço desses aparelhos tem um cristal, que conforme a pressão recebida pelas variações do disco, gera uma corrente de valores variados. Essa corrente é conduzida a um amplificador e, depois amplificada, é emitida pelo alto-falante, em forma de som.

Os microfones usados nas emissoras de rádio e TV, geralmente, operam segundo esse princípio.

_	
е	
е	
n	
€,	
_	
,	
/,	

.....

SISTEMAS DE DISTRIBUIÇÃO	
Um sistema elétrico, na sua concepção mais geral, é	
constituído pelos equipamentos e materiais necessários para	
transportar a energia elétrica desde a "fonte" até os pontos	
em que é utilizada.	
Desenvolve - se em quatro etapas básicas : geração ,	
transmissão, distribuição e utilização.	
A <i>geração</i> é a etapa desenvolvida nas usinas geradoras	
que produzem energia elétrica por transformação, a partir das	
fontes primárias. Podemos classificar as usinas em :	
 hidroelétricas : utilizam a energia mecânica das quedas 	
d'água;	
 termoelétricas : utilizam a energia térmica da queima 	
de combustíveis (carvão, óleo diesel, gasolina, etc.)	
 nucleares : utilizam a energia térmica produzida pela 	
fissão nuclear de materiais (urânio, tório, etc.).	
,	
A etapa seguinte é a <i>transmissão</i> , que consiste no	
transporte da energia elétrica, em tensões elevadas, desde as	
usinas até os centros consumidores. Muitas vezes segue - se	
à transmissão uma etapa intermediária (entre ela e a	
distribuição) denominada <i>subtransmissão</i> , com tensões um	
pouco mais baixas. Nas linhas de transmissão aéreas são	
usados, geralmente, cabos nus de alumínio com alma de aço,	
que ficam suspensos em torres metálicas através de	
isoladores.	
Grandes consumidores, tais como complexos industriais	
de grande porte, são alimentados pelas concessionárias de	
energia elétrica a partir das linhas de transmissão ou de	
subtransmissão.	
Nesses casos, as etapas posteriores de abaixamento	

da tensão são levadas a efeito pelo próprio consumidor.

Cogue de a distribuiçõe etena decenvalvida via de	
Segue - se a <i>distribuição</i> etapa desenvolvida, via de	
regra, nos centros consumidores.	
As linhas de transmissão alimentam subestações	
abaixadoras, geralmente situadas nos centros urbanos; delas	
partem as <i>linhas de distribuição primária</i> . Estas podem ser	
aéreas, com cabos nus (ou, em alguns casos, cobertos) de	
alumínio ou cobre, suspensos em postes, ou subterrâneas,	
com cabos isolados.	
As <i>linhas de distribuição primária</i> alimentam	
diretamente indústrias e prédios de grande porte (comerciais,	
institucionais e residenciais), que possuem subestação ou	
transformador próprios. Alimentam também transformadores	
de distribuição, de onde partem as <i>linhas de distribuição</i>	
secundária, com tensões mais reduzidas. Estas alimentam	
os chamados pequenos consumidores : residências, pequenos	
prédios, oficinas, pequenas indústrias, etc Podem, também,	
ser aéreas (com cabos cobertos ou isolados, geralmente de	
cobre) ou subterrâneas (com cabos isolados, geralmente de	
cobre).	
Nos grandes centros urbanos, com elevado consumo	
de energia, dá - se preferência à distribuição (primária e	
secundária) subterrânea. Com a potência elevada a	
transportar, os cabos a serem empregados são de seção	
elevada, complicando bastante o uso de estruturas aéreas.	
Por outro lado, melhora - se a estética urbana, suprimindo - se	
os postes com seus inúmeros fios e cabos, aumentando - se	
também a confiabilidade do sistema (não existe, por exemplo,	
interrupção no fornecimento de energia devido a choque de	
veículos com postes).	
A última etapa de um sistema elétrico é a utilização. Ela	
ocorre, via de regra, nas instalações elétricas, onde a energia	
gerada nas usinas é transportada pelas linhas de transmissão	
e distribuição é transformada, pelos equipamentos de	
utilização, em energia mecânica, térmica e luminosa, para ser	
finalmente utilizada.	

