

Mathématiques

Classe: BAC MATHS

Chapitre: Isométrie du plan

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

© 20 min

6 pt

Dans le plan orienté dans le sens direct,

ABCD est losange de centre O de sens direct tel que AC = 2BD

 Δ est la droite qui porte la bissectrice intérieure du secteur [OA, OB].

Soient A' , B' , C' et D' les Images respectives des points A, B, C et D par $S_{\scriptscriptstyle \Delta}$.

1) Caractériser chacune des applications suivantes :

$$S_{\Delta} \circ S_{O}$$
 ; $S_{\Delta} \circ S_{(AC)}$ et $S_{\Delta} \circ S_{(BD)}$

- 2) Déterminer l'ensemble δ des isométries du plan qui laissent globalement Invariant l'ensemble $\{A,B,C,D\}$.
- 3) Soit δ 'l'ensemble des isométries du plan qui transforme $\{A,B,C,D\}$ en $\{A',B',C',D'\}$.

On pose $g = S_{\Delta} \circ f$

- a) Montrer que : $g \in \delta' \Leftrightarrow f \in \delta$
- b) En déduire l'ensemble δ '

Exercice 2

(S) 20 min

6 pt

Dans le plan orienté P, on considère un triangle équilatéral direct ABC. On désigne par I, J et K les milieux respectifs des segments $\begin{bmatrix} BC \end{bmatrix}$; $\begin{bmatrix} AC \end{bmatrix}$ et $\begin{bmatrix} AB \end{bmatrix}$

Et par O le centre du cercle circonscrit au triangle ABC.

Soit Δ la perpendiculaire à (AB) en B . On désigne par R_1 la rotation de centre C

et d'angle $\frac{\pi}{3}$ et par R_2 la rotation de centre O et d'angle $\frac{2\pi}{3}$.

- 1) Déterminer la droite D telle que : $R_1 = S_D \circ S_{(OC)}$
- 2) Déterminer la droite D' telle que : $R_2 = S_{(OC)} \circ S_{D}$
- 3) En déduire la nature et les éléments caractéristiques de $R_1 \circ R_2$

4) Déterminer la nature et les éléments caractéristiques de chacune des applications :

$$R_3 = S_{\Delta} \circ S_{(BC)}$$
 et $R_3 \circ R_1$.

- 5) On pose $f = R_1^{-1} \circ R_3 \circ R_1$
 - a) Montrer que f est une rotation de centre A et d'angle $\frac{-\pi}{3}$.
 - b) En déduire que : $R_1 \circ R_{\left(A; \frac{-\pi}{3}\right)} = t_{\overline{AB}}$
 - c) Soit M un point de P. On pose $M' = R_{\left(A; \frac{\pi}{3}\right)}(M)$ et $M'' = R_1(M)$.

Montrer que : $\overrightarrow{M'M''} = \overrightarrow{AB}$

Exercice 3

5 pt

Soit ABC un triangle équilatéral direct . On note Γ son cercle circonscrit .

La médiatrice de [BC] coupe Γ en A et D . On note A' le point d'intersection des droites

$$(BD)$$
 et (AC) .

- 1) Montrer que : A' est le symétrique de A par rapport à C.
- 2) a) Déterminer la nature et les éléments caractéristique des isométries suivantes :

$$S_{(BD)} \circ S_{(DC)}$$
 et $S_{(AC)} \circ S_{(AB)}$

b) Soit Δ la parallèle à (DC) passant par A.

Montrer que :
$$S_{(BD)}\circ S_{(DC)}=S_{(DC)}\circ S_{(DA)}$$
 et
$$S_{(AC)}\circ S_{(AB)}=S_{(AD)}\circ S_{\Delta}\,.$$

- c) Déterminer l'isométrie : $T = S_{(BD)} \circ S_{(DC)} \circ S_{(AC)} \circ S_{(AB)}$
- d) Déterminer T(A) et retrouver que le symétrique de A par rapport à C est le point

d'intersection des droites (AC) et (BD).

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000