

Figure 1: 25-bar Truss

Table 1: Bars membership of the spatial truss Group Number Group Number Bar Members Bar Members 1-2 3-4, 5-6 1-4, 2-3, 1-5, 2-6 6 3-10, 6-7, 4-9, 5-8

2-5, 2-4, 1-3, 1-6	7	3-8, 4-7, 6-9, 5-10
3-6, 4-5	8	3-7, 4-8, 5-9, 6-10

Table 2: Loading conditions for the 25-bar spatial truss

Node	F_x (kips)	F_y (kips)	F_z (kips)
1	1.0	-10.0	-10.0
2	0.0	-10.0	-10.0
3	0.5	0.0	0.0
6	0.6	0.0	0.0

1. (50%) Determine the optimal cross sections of all bar members with NO uncertainty. Identify active constraints.

2

3 4

- 2. (50%) What are the probability of violating active constraints when uncertainties in manufacturing and materials are considered? Please use Monte-Carlo with 1 million samples.
- 3. (10%) What's the changes in the overall weight when uncertainties are considered?
- 1. Used files: get_cns.m, get_model_result.m, get_obj.m, main.m The x result is in this picture:

	x ×							
\blacksquare	1x8 double							
	1	2	3	4	5	6	7	8
1	0.1000	0.3559	3.4643	0.1000	1.8920	0.7870	0.1302	4.0011

Compare to Table 1, we can find different groups of truss members have different cross sections.

group number	bar members	cross section (in^2)
1	12	0.1
2	14, 23, 15, 26	0.3559
3	25, 24, 13, 16	3.4643
4	36, 45	0.1
5	34, 56	1.892
6	310, 67, 49, 58	0.787
7	38, 47, 69, 510	0.1302
8	37, 48, 59, 610	4.0011

The active constraint is number 26, which is the constraint limits the displacement of node 1 in an allowance value.

2. Used files: get_cns.m, get_model_result.m, get_obj.m, <a href="mailto:mail

constraint number	constraint meaning	violating persentage
1	the stress executed on truss 1 should not exceed Yielding point of the material	0%
2	the stress executed on truss 2 should not exceed Yielding point of the material	0%
3	the stress executed on truss 3 should not exceed Yielding point of the material	0%
4	the stress executed on truss 4 should not exceed Yielding point of the material	0%
5	the stress executed on truss 5 should not exceed Yielding point of the material	0%
6	the stress executed on truss 6 should not exceed Yielding point of the material	0%
7	the stress executed on truss 7 should not exceed Yielding point of the material	0%
8	the stress executed on truss 8 should not exceed Yielding point of the material	0%
9	the stress executed on truss 9 should not exceed Yielding point of the material	0%
10	the stress executed on truss 10 should not exceed Yielding point of the material	0%
11	the stress executed on truss 11 should not exceed Yielding point of the material	0%
12	the stress executed on truss 12 should not exceed Yielding point of the material	0%
13	the stress executed on truss 13 should not exceed Yielding point of the material	0%
14	the stress executed on truss 14 should not exceed Yielding point of the material	0%
15	the stress executed on truss 15 should not exceed Yielding point of the material	0%
16	the stress executed on truss 16 should not exceed Yielding point of the material	0%
17	the stress executed on truss 17 should not exceed Yielding point of the material	0%
18	the stress executed on truss 18 should not exceed Yielding point of the material	0%
19	the stress executed on truss 19 should not exceed Yielding point of the material	0%
20	the stress executed on truss 20 should not exceed Yielding point of the material	0%
21	the stress executed on truss 21 should not exceed Yielding point of the material	0%
22	the stress executed on truss 22 should not exceed Yielding point of the material	0%
23	the stress executed on truss 23 should not exceed Yielding point of the material	0%
24	the stress executed on truss 24 should not exceed Yielding point of the material	0%
25	the stress executed on truss 25 should not exceed Yielding point of the material	0%
26	the displacement of node 1 should not exceed the allowable value	50.01%
27	the displacement of node 2 should not exceed the allowable value	41.73%

3. Because the displacements of node 1 & node 2 will exceed the allowance value when considering the uncertainties, the new structure of this twenty-five bars tower should become stronger. Thus, when uncertainties are considered, the overall weight will become heavier.

```
Files: get_cns.m , get_model_result.m , get_obj.m , main.m , hw4_2
get cns.m:
function [c, ceq] = get_cns(x,E)
[Q, stress] = get_model_result(x,E);
allow_stress = 40000; % psi
allow_disp = 0.35; % inch
c(1:25) = abs(stress)/allow_stress - 1.0;
disp = zeros(1,2);
for i = 1:2 % node 1, 2
   disp(i) = sqrt(Q(3*i-2)^2 + Q(3*i-1)^2 + Q(3*i)^2); % total
displacement of node 1,2 =square_root(displacement in x,y,z directions)
end
c = [c, disp./allow_disp - 1.0];
ceq = [];
get_model_result.m:
function [Q, stress] = get_model_result(x,E)
%E = 1e7; %E is young's modulus in psi
 node_{coord(1,:)} = [-37.5, 0, 200];
node\_coord(2,:) = [37.5, 0, 200];
node_coord(3,:) = [-37.5, 37.5, 100];
   node_coord(4,:) = [37.5, 37.5, 100];
   node_coord(5,:) = [37.5, -37.5, 100];
   node\_coord(6,:) = [-37.5, -37.5, 100];
```

```
node_{coord(7,:)} = [-100, 100, 0];
node_coord(8,:) = [100, 100, 0];
node_coord(9,:) = [100, -100, 0];
node_coord(10,:) = [-100, -100, 0]; % node coord.
en_pair = [ ...
      1,2; 1,4; 2,3; 1,5; 2,6; ...
   2,4; 2,5; 1,3; 1,6; 3,6; ...
     4,5; 3,4; 5,6; 3,10; 6,7; ...
     4,9; 5,8; 4,7; 3,8; 5,10; ...
      6,9; 6,10; 3,7; 4,8; 5,9]; % elemenet node pair
A = [x(1)*ones(1,1); ...
     x(2)*ones(4,1); ....
  x(3)*ones(4,1); ...
  x(4)*ones(2,1); ...
  x(5)*ones(2,1); ...
  x(6)*ones(4,1); ....
      x(7)*ones(4,1); ...
  x(8)*ones(4,1)]'; % element section area
F = zeros(18,1);
F(1) = 1;
F(2) = -10;
F(3) = -10;
F(4) = 0;
F(5) = -10;
F(6) = -10;
F(7) = 0.5;
F(8) = 0;
F(9) = 0;
F(16) = 0.6;
F(17) = 0;
F(18) = 0;
F = F*1e3;
% -- stiffness matrixs
for i = 1:25
```

```
ni = en_pair(i,1);
      nj = en_pair(i,2);
      Le(i) = norm( (node_coord(ni,:) - node_coord(nj,:)) );
      cx(i) = (node_coord(ni,1) - node_coord(nj,1)) / Le(i); % x
      cy(i) = (node_coord(ni,2) - node_coord(nj,2)) / Le(i); % y
      cz(i) = (node_coord(ni,3) - node_coord(nj,3)) / Le(i); % z
end
   K = zeros(30,30); % stiffness matrix
  for i = 1:25
   ni = en_pair(i,1);
      nj = en_pair(i,2);
      sk = [cx(i), cy(i), cz(i)]'*[cx(i), cy(i), cz(i)];
      tmp = zeros(30,30);
      tmp(3*ni-2:3*ni, 3*ni-2:3*ni) = sk;
      tmp(3*nj-2:3*nj, 3*nj-2:3*nj) = sk;
      tmp(3*ni-2:3*ni, 3*nj-2:3*nj) = -sk;
      tmp(3*nj-2:3*nj, 3*ni-2:3*ni) = -sk;
      K = K + E*A(i)/Le(i)*tmp;
end
   Kr = K(1:18,1:18); % Reduce matrix of K
% -- displacement
Qr = Kr^{-1*F};
Q = [Qr; zeros(12,1)];
% -- stress
  stress = zeros(1,25);
  for i = 1:25
      ni = en_pair(i,1);
      nj = en_pair(i,2);
       stress(1,i) = \dots
         E/Le(i)* ...
         [-1*cx(i), -1*cy(i), -1*cz(i), cx(i), cy(i), cz(i)]* ...
          [Q(ni*3-2); Q(ni*3-1); Q(ni*3); Q(nj*3-2); Q(nj*3-1); Q(nj*3)];
   end
end
```

```
get_obj.m:
```

```
function weight = get obj(x)
 node\_coord(1,:) = [-37.5, 0, 200];
node_coord(2,:) = [37.5, 0, 200];
node_coord(3,:) = [-37.5, 37.5, 100];
   node\_coord(4,:) = [37.5, 37.5, 100];
node_coord(5,:) = [37.5, -37.5, 100];
node_coord(6,:) = [-37.5,-37.5,100];
node\_coord(7,:) = [-100, 100, 0];
node_coord(8,:) = [100, 100, 0];
   node\_coord(9,:) = [100, -100, 0];
 node_coord(10,:) = [-100, -100, 0]; % node coord.
en_pair = [ ...
      1,2; 1,4; 2,3; 1,5; 2,6; ...
      2,4; 2,5; 1,3; 1,6; 3,6; ...
      4,5; 3,4; 5,6; 3,10; 6,7; ...
      4,9; 5,8; 4,7; 3,8; 5,10; ...
      6,9; 6,10; 3,7; 4,8; 5,9]; % elemenet's node pair
 Le = zeros(1,25);
 for i = 1:25
   ni = en_pair(i,1);
      nj = en_pair(i,2);
       Le(i) = norm( (node_coord(ni,:) - node_coord(nj,:)) ); % element
length
  end
A = [x(1)*ones(1,1); ...
x(2)*ones(4,1); ...
      x(3)*ones(4,1); ...
       x(4)*ones(2,1); ...
   x(5)*ones(2,1); ....
       x(6)*ones(4,1); ...
       x(7)*ones(4,1); ...
```

x(8)*ones(4,1)]';

```
D = 0.1; % density lb/in3
weight = sum(D*A.*Le);
end
main.m:
% -- 25-bar truss optimization
% -- Units: in-lb-s-lbf-psi
clear
close
clc
E=1e7;
x0 = 1.0*ones(1,8);
lb = 0.1*ones(1,8);
ub = 5.0*ones(1,8);
options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'active-
set');
[x, fval, exitflag] = fmincon('get_obj', x0, [], [], [], lb, ub, @(x)
get_cns(x,E), options);
hw4_2:
% -- 25-bar truss optimization
% -- Units: in-lb-s-lbf-psi
clear
close
clc
E=1e7;
x0 = 1.0*ones(1,8);
lb = 0.1*ones(1,8);
ub = 5.0*ones(1,8);
options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'active-
set');
```

```
[x, fval, exitflag] = fmincon('get_obj', x0, [], [], [], lb, ub, @(x)
get_cns(x,E), options);
mux=x; % you should change to the optimal design you obtained
stdx=0.0052*ones(1,8); % you should change this value according to the
homework descriptions
covX=diag(stdx.^2);
std E=1e6;
cov_E=std_E.^2;
% Basic MCS
N=1e6;
RandX=mvnrnd(mux, covX, N);
RandE=mvnrnd(E,cov_E,N);
g=zeros(N,27);
for ii=1:N
[c,ceq]=get_cns(RandX(ii,:),RandE(ii));
g(ii,:)=c;
end
Nf=zeros(1,27);
for ii=1:27
Nf(ii)=sum(g(:,ii)>0);
end
pf=Nf/N;
for ii=1:27
   sprintf('Failure probability using MCS with number %d constraint is
%0.5g percent ', ii, pf(ii)*100)
end
bar(pf*100);
xlabel ConstraintNumber
ylabel ViolatingPercentage
ax=gca;
ax.YLim=[-10,100];
```