Tarea 1 Inteligencia artificial

Emmanuel Peto Gutiérrez

8 de septiembre de 2022

Análisis del algoritmo de búsqueda voraz

■ ¿Es completo?

Si se marcan los nodos visitados sí es completo. En otro caso no lo es, y se mostrará con el siguiente ejemplo. Se tiene la siguiente gráfica con 7 nodos y una tabla con la distancia en línea recta desde cualquier nodo hacia F.

Nodo	Distancia hacia F
A	40m
Е	48m
G	57m
В	72m
С	120m
D	122m
F	0m

Se empieza la búsqueda en B y el nodo meta es F. El vecino de B más cercano a F es A, pues su distancia es 40m. Después, desde A la búsqueda debe continuar al nodo vecino de A cuya distancia sea la menor hacia F; pero este nodo es B, pues es su único vecino. Desde B se mueve otra vez a A y así sucesivamente en un loop infinito. Como se observa en este caso el algoritmo no termina, y por lo tanto es incompleto.

■ ¿Es óptimo?

No es óptimo y se pondrá el ejemplo de Rumania. Para ir de Arad a Bucharest usando este algoritmo se procede de la siguiente forma: Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Bucharest y el costo del camino es 450. Sin embargo, existe otro camino cuyo costo es 418: Arad \rightarrow Sibiu \rightarrow Rimnicu Vilcea \rightarrow Pitesti \rightarrow Bucharest.

\blacksquare Complejidad en tiempo

Debido a que la búsqueda voraz procede en profundidad, la complejidad en tiempo es la misma que en búsqueda en profundidad. Si d es la profundidad máxima del árbol y b es el número máximo de hijos que tiene un nodo, entonces la complejidad en tiempo es $O(b^d)$ en el peor caso.

• Complejidad en espacio

La complejidad en espacio es la misma que en la búsqueda en profundidad: O(bd).