Problema 785

Problema 1.- El lado \overline{BC} del triángulo \overline{ABC} se extiende desde C hacia D tal que $\overline{CD} = \overline{BC}$.

El lado \overline{CA} se extiende desde A hacia E tal que $\overline{AE} = 2\overline{CA}$.

Demostrar que si y solo si $\overline{AD} = \overline{BC}$, el triángulo \overrightarrow{ABC} es rectángulo

Solución de Ricard Peiró:

(⇐)

Supongamos que el triángulo $\stackrel{\triangle}{ABC}$ es rectángulo, $A=90^{\circ}$

Aplicando el teorema del coseno al triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{BAD}}$:

$$\overline{AD}^2 = c^2 + 4a^2 - 2c \cdot 2a \cdot cosB = c^2 + 4a^2 - 2c \cdot 2a \cdot \frac{c}{a}$$
.

Simplificando:

$$\overline{AD}^2 = 4a^2 - 3c^2$$
.

Aplicando el teorema de Pitágoras al triángulo rectángulo

$$\overline{BE}^2 = 4b^2 + c^2$$
.

Aplicando el teorema de Pitágoras al triángulo rectángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$:

$$a^2 = b^2 + c^2$$
, entonces,

$$\overline{BE}^2 = 4a^2 - 3c^2$$
.

Entonces, $\overline{AD} = \overline{BC}$.

(⇒)

Supongamos que $\overline{AD} = \overline{BC}$.

Aplicando el teorema del coseno al triángulo $\stackrel{\triangle}{\mathsf{ACD}}$:

$$\overline{AD}^2 = a^2 + b^2 + 2ab \cdot \cos C \tag{1}$$

Aplicando el teorema del coseno al triángulo $\overset{\triangle}{\mathsf{BEC}}$:

$$\overline{BE}^2 = a^2 + 9b^2 + 2a3b \cdot \cos C$$
 (2)

Igualando las expresiones (1) (2):

$$2ab \cdot \cos C = 2b^2 \tag{3}$$

Aplicando el teorema de Pitágoras al triángulo rectángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$:

$$2ab \cdot cos C = a^2 + b^2 - c^2 \tag{4}$$

Igualando las expresiones (3) (4)

$$2b^2 = a^2 + b^2 - c^2$$
.

Entonces. $a^2 = b^2 + c^2$.

Aplicando el teorema inverso del teorema de Pitágoras:

 $A = 90^{\circ}$, entonces, el triángulo ABC es rectángulo.

BĂE: