COMPREHENSIVE EXAM

SHREYA SHARMA

Contents

1.	Personal Background	1
2.	Introduction	1
2.1.	Definition and Examples.	1
2.2.	Potential Research?	1
2.3.	Plan.	2
2.4.	Notations	2
3.	Fano Threefolds with $\rho = 1$	3
3.1.	Fano 3-folds with $r \geq 2$	4
3.2.	Hyperelliptic Fano 3-folds with $r=1$	4
3.3.	Fano 3-folds with $r=1$	5
3.4.	Mukai and Gushel's description of Fano 3-folds with $g \geq 6$	6
4.	Fano Threefolds with $\rho \geq 2$	7
References		8

1. Personal Background

2. Introduction

2.1. **Definition and Examples.** Throughout we work over the field of complex numbers \mathbb{C} . A smooth projective variety X is called a *Fano Variety* if its anticanonical divisor $-K_X$ is ample. For any Cartier divisor D on a variety X, $\mathcal{O}_X(D)$ will denote the corresponding invertible sheaf, and, in particular, $\mathcal{O}_X(-K_X)$ is the anticanonical sheaf on X where $-K_X$ is the anticanonical divisor of X.

To give an example, for any positive integer n, \mathbb{P}^n is a n-dimensional Fano variety since its anticanonical sheaf is $\mathcal{O}(n+1)$ which is ample by II.7 in [5]. In fact \mathbb{P}^1 is the only 1-dimensional Fano variety up to isomorphism. Fano varieties of dimension 2 are called *del Pezzo surfaces* and their classification is given in [6]. Clearly, \mathbb{P}^3 is a 3-dimensional Fano variety. + should I include 1 more example, say of hypersurfaces?

Fano varieites of dim 3 with Picard rank $\rho=1$ are called *prime* Fano 3-folds and their classification was first completed by Iskovskikh using the birational method of double projection from a line in [1] and [2]. The classification was later reworked by S. Mukai in [7] using the biregular vector bundle method. Fano 3-folds with $\rho \geq 2$ were all classified by Mori and Mukai in to cite. A more recent Fatighenti et al. recent classification.

In this paper, we aim to understand the classification of Fano 3-folds.

2.2. Potential Research?

- 2.3. **Plan.** We begin by giving a Iskovskih's proof of the boundedness of the index r of smooth Fano 3-folds in the next subsection. In section 3, we describe he classification for Fano 3-fold with Picard rank 1. Iskovskih classified all smooth Fano 3-folds over \mathbb{C} with index $r \geq 2$ in [1]. We describe them in 3.1. In 3.2, we describe hyperelliptic Fano 3-folds following [1]. It turns out all Fano 3-folds except a few have very ample anticanonical divisor and r = 1. An outline of their classification is given in 3.3 following [2].
- S. Mukai gave a more explicit description of Fano 3-folds with genus $g \geq 7$ and Gushel did it independently for g = 6, 8. We describe these in 3.4. The exposition here primarily follows [7] and cite.

In section 4, we describe Fano 3-folds with Picard rank at least 2 following Multiple citations.

2.4. **Notations.** In this section, we establish the basic results that are important for subsequent classification. Let X be a Fano 3-fold. Let D be a divisor(class) on X and let us write \mathcal{L} for the invertible sheaf(class) corresponding to D, that is, $\mathcal{L} = \mathcal{O}_X(D)$. We also write $H^0(X, D)$ for the finite-dimensional vector space over \mathbb{C} of global sections of X. The symbol $|\mathcal{L}|$ or |D| will denote the complete linear system of effective divisors formed by the divisors of zeroes of sections in $H^0(X, \mathcal{L})$. Also we write dim |D| for dim $_{\mathbb{C}}(H^0(X,\mathcal{L})) - 1$. For an arbitrary coherent sheaf \mathcal{F} on X, we will write $h^i(X,\mathcal{F})$ for dim $H^i(X,\mathcal{F})$. We consider all vector spaces over \mathbb{C} . For a n-dimensional vector space V, Gr(s,n) denotes the space of s-dimensional subspaces of V, called the Grassmannian.

For a Fano 3-fold X, we define the integer $g = g(X) = -K_X^3/2 + 1$ to be the *genus* of X.

Proposition 2.1. If $F \in |-K_X|$ is a smooth surface, $C \in |\mathcal{O}_F(-K_X)|$ is a curve, and C has genus $g = g(C) = h^1(\mathcal{O}_C)$, then the following assertions are true:

- (i) $-K_X^3 = 2g 2$.
- (ii) If $-K_X$ is very ample, then $\phi_{|-K_X|}(X) = X_{2g-2}$ is a smooth variety of degree $-K_X^3 = 2g-2$ in \mathbb{P}^{g+1} , the hyperplane sections of which are K3 surfaces, and the curves sections of which are canonical curves $C_{2g-2} \subset \mathbb{P}^{g-1}$ of genus g.

A sort of converse to Proposition 2.1 is given in [2], 1.2.

Note that since $h^1(\mathcal{O}_X) = 0$ by Kodaira Vanishing theorem, the first chern map $H^1(X, \mathcal{O}_X^*) \to H^2(X, \mathbb{Z})$ is injective. Thus the Picard group Pic X coincides with the Néron-Severi group NS(X) making Pic X a finitely generated abelian group. The *Picard rank* of X is defined as the rank of Pic X, denoted by $\rho(X)$ or simply ρ .

The following result is due to Šokurov [3].

Theorem 2.2. Let X be a Fano 3-fold. There exists a divisor $H \in Pic(X)$ and a natural number r such that $-K_X = rH$ and the linear system |H| contains a smooth surface.

The maximal such integer r is called the *index* of the Fano 3-fold X. By the Riemann-Roch theorem, Serre duality, the Kodaira vanishing theorem and the adjunction formula we have from [1], 1.9,

Proposition 2.3. (fix notation- H should be S) If $r \geq 2$, then the canonical invertible sheaf of H is given by

$$\mathcal{O}_H(K_H) \simeq \mathcal{O}_H \otimes \mathcal{O}_X(-(r-1)H).$$

proof does not seem too important, so not writing it. But I am not sure. maybe I should omit this proposition here and include it in the proof of the following corollary. Think and Ask!

Corollary 2.4. Let $S \in |H|$ be a smooth surface. Then S is a del Pezzo surface.

Proof. From the proposition and $r \geq 2$, $-K_S = (r-1)H$ is ample.

The following result establishes the boundedness of the index of Fano 3-folds.

Proposition 2.5. Let X have index $r \geq 2$, and suppose that the linear system |H| contains a smooth surface S. Then

- (i) $r \le 4$;
- (ii) if r = 2 then $1 \le S^3 \le 9$;
- (ii) if r = 3 then $S^{3} = 2$;
- (iv) if r = 4 then $S^3 = 1$.

Proof. Let $S \in |H|$ be a del Pezzo surface. Then by cite delpezzo?

$$1 \le K_S^2 \le 9.$$

Plugging in the formula for K_S from 2.3, we get

$$1 \le (r-1)^2 S^3 \ge 9.$$

Now S^3 is a positive integer as $-K_X$ is ample and $r \ge 2$, so considering possibilities for positive integer values of S^3 gives $r \le 4$. This proves (i). For (ii) and (iv), using r = 2 and 4 respectively gives us possible values of S^3 . If r = 3, then from the last inequality $S^3 = 1$ or 2. For $S^3 = 1$, we get a contradiction

$$2g - 2 = -K_X^3 = (3H)^3 = 27,$$

so $S^3 = 2$.

Definition 2.6. Set $d = d(X) = S^3$. If H is very ample, then d(X) is the degree of $\phi_{|H|}(X)$ in $\mathbb{P}^{\dim|H|}$.

Proposition 2.7. (i) Pic $X \simeq H^2(X, \mathbb{Z})$.

(ii) Pic X is torsion-free.

Proof. The exponential exact sequence

$$0 \to \mathbb{Z} \to \mathcal{O}_X \xrightarrow{exp} \mathcal{O}_X^* \to 1$$

induces the long exact cohomological sequence

$$\cdots \to H^1(X, \mathcal{O}_X) \to H^1(X, \mathcal{O}_X^*) \xrightarrow{\delta} H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{O}_X) \to \cdots$$

By Kodaira vanishing theorem, $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$, so δ is an isomorphism. This shows (i). Let $S \in |-K_X|$. It is a K3 surface by [1], 1.5 and if? $r \geq 2$, a del Pezzo surface by 2.4. In any case, $H^2(S,\mathbb{Z})$ is torsion-free. Further by Lefschetz hyperplane theorem, $H^2(X,\mathbb{Z}) \hookrightarrow H^2(S,\mathbb{Z})$. Thus by (i), Pic X is also torsion-free.

Given a Fano 3-fold X, we label it by a pair of numbers $\rho - N$ where ρ is the Picard rank of X and N is the number in the classification found in [6]. A most recent classification table for Fano 3-folds along with some of their associated invariants and information about their birational geometry, zero section description (due to Fatighenti) class can be found on [9].

3. Fano Threefolds with $\rho = 1$

Let X be a smooth Fano 3-fold of index r.

3.1. Fano 3-folds with $r \geq 2$. The following theorem by Iskovskikh([1]) completely classifies Fano 3-folds with index $r \geq 2$.

Theorem 3.1. Let X be a Fano 3-fold of index $r \geq 2$. Then the following assertions hold:

- (i) 1-16, 1-17: If $r \geq 3$, then $\phi_{|H|}: X \xrightarrow{\sim} \mathbb{P}^3$ is an isomorphism for r=4, and $\phi_{|H|}: X \xrightarrow{\sim}$ $X_2 \subset \mathbb{P}^4$ is an isomorphism of X with a smooth quadric of \mathbb{P}^4 for r=3.
- (ii) If r=2, then a variety X only exists for $1 \leq d \leq 7$; for $d \geq 3$, $\phi_{|H|}: X \xrightarrow{\sim} X_d \subset \mathbb{P}^{d+1}$ is an embedding of X as a subvariety X_d of degree d in \mathbb{P}^{d+1} , with X_d projectively normal; and if $d \geq 4$, then X_d is the intersection of the quadrics containing it. Conversely, for any $d \geq 3$, every smooth projectively normal 3-fold $X_d \subset \mathbb{P}^{d+1}$ not lying in any hyperplane is a Fano 3-fold, and has index r = 2, apart from the case r = 4, d = 8, when X_8 is the image of \mathbb{P}^3 in \mathbb{P}^9 under the Veronese embedding.
- (iii) If r=2 and $3 \leq d \leq 7$, then; for d=7, X_7 is the projection of the Veronese 3-fold $X_8 \subset \mathbb{P}^9$ from some point of X_8 ; for d = 6, $X_6 \simeq \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ in its Segre embedding;

 - 1-15: for $d=5, X_5 \subset \mathbb{P}^6$ is unique up to projective equivalence, and can be realized in either of the following two ways:
 - (a) as the birational image of a quadric $W \subset \mathbb{P}^4$ under the map defined by the linear system $|\mathcal{O}_W(2) - Y|$ of quadrics passing through a twisted cubic Y;
 - (b) as the section of the Grassmannian Gr(2,5) of lines in \mathbb{P}^4 by 3 hyperplanes in general position;
 - 1-14: for d = 4, X_4 is any smooth intersection of two quadrics in \mathbb{P}^5 ;
 - 1-13: for d=3, X_3 is any smooth cubic hypersurface of \mathbb{P}^4 .
- (iv) If r = 2 and d = 1 or 2, then:
 - 1-12: for $d=2, \ \phi_{|H|}: X \to \mathbb{P}^3$ is a double covering with smooth ramification surface $D_4 \subset \mathbb{P}^3$ of degree 4, and any such variety is a Fano 3-fold with r=2 and d=2; and every Fano 3-fold with r=2 and d=2 can be realized as a smooth hypersurface of degree 4 in $\mathbb{P}(1,1,1,1,2)$;
 - 1-11: for d=1, $\phi_{|H|}: X \to \mathbb{P}^2$ is a rational map with a single point of indeterminacy, and with irreducible elliptic fibres; and X can be realized in either of the following two ways:
 - (a) $\phi_{|-K_X|}: X \to W_4$ is any double cover of the cone W_4 over the Veronese surface $F_4 \subset \mathbb{P}^5$, having smooth ramification divisor $D \subset W_4$ by a cubic hypersurface not passing through the vertex of the cone;
 - (b) any smooth hypersurface of degree 6 in $\mathbb{P}(1,1,1,2,3)$.

Note that in the theorem, for r=2, d=6, Picard group is Pic $X\simeq \mathbb{Z}^{\oplus 3}$, so in this case X is a Fano 3-fold with $\rho(X) = 3(3-27)$. For r = 2, d = 7 is 2-35? Probably not?

- 3.2. Hyperelliptic Fano 3-folds with r=1. For a Fano 3-fold of index r, Theorem 2.2 implies that the fundamental linear system |H| is without fixed components and base points and so by [1], 2.2, it follows that deg $\phi_{|H|} = 1$ or 2. Here we study the case when deg $\phi_{|H|} = 2$.
- **Definition 3.2.** A Fano 3-fold X of index r=1 is hyperelliptic if its anticanonical map $\phi_{|-K_X|}$ is a morphism and is of degree deg $\phi_{|-K_X|} = 2$.
- **Theorem 3.3.** Let X be a hyperelliptic Fano variety, and let $\phi_{|-K_X|}: X \to Y \subset \mathbb{P}^{g+1}$ be the corresponding morphism of degree 2. Then Y is nonsingular and X is uniquely determined by the pair (Y,D), where $D \subset Y$ is the ramification divisor of $\phi_{|-K_X|}$. For $\rho(X)=1$, the pair (Y,D)belongs to one of the following families (and if D is a smooth divisor, then for each pair (Y, D) there exists a Fano 3-fold X):

- (i) 1-1: $Y \simeq \mathbb{P}^3$, and D is a smooth hypersurface of degree 6; in this case X can be realized alternatively as a smooth hypersurface of degree 6 in the weighted projective space $\mathbb{P}(1,1,1,1,3)$.
- (ii) 1-2 b): $Y \simeq X_2$ is a smooth quadric in \mathbb{P}^4 and $D \in |\mathcal{O}_{X_2}(4)|$; that is, $D = X_2 \cap X_4$, where X_4 is a quartic in \mathbb{P}^4 . In this case X can also be realized as a smooth complete intersection in the weighted projective space $\mathbb{P}(1,1,1,1,1,2)$: X is the intersection of a quadric cone and a hypersurface of degree 4:

$$F_2(x_0, \dots, x_4) = 0$$

 $F_4(x_0, \dots, x_5) = 0$.

For the proof, see [1], 7.3-7.6.

3.3. Fano 3-folds with r=1. Let X be a Fano 3-fold with index r=1.

Definition 3.4. A smooth complete irreducible 3-fold X over \mathbb{C} is called a Fano 3-fold of the principal series if the anticanonical divisor $-K_X$ is very ample.

From Isk77,78- cite the exact result or conclude, it follows that all Fano 3-folds are of the principal series with the exceptions of hyperelliptic Fano 3-folds, 1-11, and cannot identify Fano 3-fold in 3.1-b). Also how are these not very ample?? From this point, we will consider our Fano 3-folds to be of principal series and write $X_{2g-2} \subset \mathbb{P}^{g+1}$ for a Fano 3-fold of the principal series in its anticanonical embedding.

Sokurov showed the existence of line on such Fano 3-folds with Picard rank 1 in [4]. Under this assumption and using the method of double projection from a line, Iskovskikh showed that there exist Fano 3-folds with $\rho = 1$ and r = 1 for genus $g \le 10$ and g = 12 but not for g = 11. For genus g = 3, 4, and 5, Fano 3-folds with r = 1, we have

Proposition 3.5. A Fano 3-fold $X_{2q-2} \subset \mathbb{P}^{g+1}$ is a complete intersection only for g = 3, 4 or 5, and we have that

1-2 a): $X_4 \subset \mathbb{P}^4$ is a quartic hypersurface,

1-3: $X_6 = V_{2\cdot 3}$ is an intersection of a quadric and a cubic in \mathbb{P}^5 , 1-4: $X_8 = V_{2\cdot 2\cdot 2}$ is an intersection of 3 quadrics in \mathbb{P}^6 .

Conversely, each smooth complete intersection of the types indicated is a Fano 3-fold the principal series.

See [2], 1.3 for a proof. To do some computations for genus g, index r and ρ and that will complete $r = \rho = 1$ discussion for these genera, I believe. Necessary?

Example 3.6. (g=6) Let us denote by V a section of Plücker embedding $Gr(2,5) \subset \mathbb{P}^9$ by two hyperplanes in general position and a quadric. By adjunction formula, this is a Fano variety of index 1. genus, Picard rank computations important? I think I should maybe delete this example here because later in 3.4, Gushel's theorem gives a description of it anyway. my mainreason to include it here to show that Iskovskikh gave genus g=6 Fano 3-fold too...

Iskovskikh asserts that it is possible to show that every Fano 3-fold $X_{10} \subset \mathbb{P}^7$ with Picard rank 1 is a section of Grassmannian Gr(2,5). See [2], 1.5.

The following result is the main classification theorem by Iskovskikh for Fano 3-folds with genus $g \geq 7$.

Theorem 3.7. Let $X = X_{2g-2} \subset \mathbb{P}^{g+1}$ be a Fano 3-fold with $\rho = 1$ and $g \geq 7$. Let $\pi_{2Z} : X \to W \subset \mathbb{P}^{g+1}$ \mathbb{P}^{g-6} be the double projection from a sufficiently general line $Z \subset X$. Let E denote the hyperplane section of W. Then the following assertions hold:

- (i) $g \le 12$.
- (ii) If g = 12, then $W = W_5 \subset \mathbb{P}^6$ is a prime Fano 3-fold with index 2 and degree 5 (with possibly one singular point); the map $\rho_Y : W \to X$ inverse to π_{2Z} is given by the linear system |3E 2Y|, with $Y \subset W$ a normal rational curve of degree 5 in \mathbb{P}^5 .
- (iii) There do not exist any prime Fano 3-folds with q = 11.
- (iv) If g = 10, then $W = W_2 \subset \mathbb{P}^4$ is a quadric and $\rho_Y : W \to X$ is given by the linear system |5E 2Y|, where Y is a smooth curve of genus 2 and degree 7 in \mathbb{P}^4 .
- (v) If g = 9, then $W = \mathbb{P}^3$ and $\rho_Y : \mathbb{P}^3 \to X$ is given by the linear system |7E 2Y|, where Y is a smooth curve of genus 3 and degree 7.
- (vi) If g = 8, then $\pi_{2Z} : X \to \mathbb{P}^2$ is a rational map with fibres(after resolving the determinacy) curves of genus 2, and such that the inverse images of lines of \mathbb{P}^2 are rational surfaces.
- (vii) If g = 7, then $\pi_{2Z} : X \to \mathbb{P}^1$ is a rational map whose general fiber(after resolving the indeterminacy) is a del Pezzo surface of degree 5 with 8 points blown up; X is a rational 3-fold, and the projection from a line maps it into a complete intersection of 3 quadrics of \mathbb{P}^6 containing a smooth rational ruled surface $R_3 \subset \mathbb{P}^4$.

The proof of (i) and the construction of Fano 3-folds with given genus in (ii)-(vii) uses the birational technique of projection and double projection from lines on X. See [2], §6 for details. For an alternative proof of boundedness of genus for Fano 3-folds using vector bundles, see [8].

3.4. Mukai and Gushel's description of Fano 3-folds with $g \geq 6$. While Iskovskikh's method gives the existence of prime Fano 3-folds with genus $g \geq 6$, Mukai gave a more explicit description of such projective varieties of dimension $n \geq 3$. To classify Fano n-folds of the principal series of genus $g \geq 6$, Mukai first showed the existence of a good vector bundle \mathcal{E} on X. Then using the linear system $|\mathcal{E}|$, we can embed X into a Grassmannian variety and describe its image. We find that X is a linear section of some homogeneous space. We describe these homogeneous spaces in the following examples.

Example 3.8. For Fano *n*-folds, very ample $-K_X$ with $\rho = 1$ and genus $g \ge 6$, the dimension *n* cannot be arbitraily large. In fact, the maximum dimension in these cases n(g) is attained by a variety $\Sigma_{2g-2}^{n(g)}$ as below:

- (i) g = 7. Let V be a 9-dimensional vector space with F as a non degenerate symmetric bilinear form on V and S be the space of spinors of F. Here n(g) = 10. Denote by $\Sigma_{12}^{10} \subset \operatorname{Gr}(4,9)$ the set of all 4-dimensional subspaces W of V with F(W,W) = 0. Then Σ_{12}^{10} is a smooth 10-dimensional subvariety of Grassmannian $\operatorname{Gr}(4,9)$ and can be embedded in \mathbb{P}^{15} by the spinor coordinates.
 - Here $\Sigma_{12}^{10} = SO_{10}(\mathbb{C})/P$ is a homogeneous space with P a maximal parabolic subgroup of $SO_{10}(\mathbb{C})$ and is unique up to isomorphism.
- (ii) g=8. The Grassmannian $\Sigma_{14}^8:=\operatorname{Gr}(2,6)\subset\mathbb{P}(\wedge^2\mathbb{C}^6)=\mathbb{P}^{14}$ is a smooth Fano variety of dimension 8 and index 8. Here $\Sigma_{14}^8=SL_6(\mathbb{C})/P$ is a homogeneous space with P a maximal parabolic subgroup of $SL_6(\mathbb{C})$.
- (iii) g = 9. Let V be a 6-dimensional vector space and F be a non degenrate skew-symmetric bilinear form on V. Here n(g) = 6. Let us denote by Σ_{16}^6 the set of all 3-dimensional subspaces W of V such that F(W, W) = 0. Then $\Sigma_{16}^6 \subset Gr(3, 6)$ is a homogeneous space isomorphic to U(3)/O(3) as varieties, hence is a smooth 6-dimensional subvariety of degree 16 in $Gr(3, 6) \subset \mathbb{P}^{19}$.
- (iv) g=10. Let V be a 7-dimensional vector space and F be a non degenerate skew-symmetric 4-linear form on V. Here n(g)=5. Denote by Σ^5_{18} the set of all 5-dimensional subspaces W of V such that F(W,W,W,W)=0. Then $\Sigma^5_{18}\subset\operatorname{Gr}(5,7)$ is a homogeneous space, hence a smooth 5-dimensional subvariety of degree 18 in $\operatorname{Gr}(5,7)\subset\mathbb{P}^{20}$. Here Σ^5_{18} is a homogeneous

- space under the action of a group of type G_2 and is isomorphic to G_2/P where P is a maximal parabolic subgroup of G_2 .
- (v) g=12. Let V be a 7-dimensional vector space and F_1 , F_2 , and F_3 be three linearly independent skew-symmetric bilinear forms on V. Denote by X the set of 3-dimensional subspaces W of V with $F_1(W,W)=F_2(W,W)=F_3(W,W)=0$. If the subspace $F_1 \wedge V^{\vee}+F_2 \wedge V^{\vee}+F_3 \wedge V^{\vee}$ of $\wedge^3 V^{\vee}$ contains no vectors of the form $f_1 \wedge f_2 \wedge f_3 \neq 0$ for $f_1, f_2, f_3 \in V^{\vee}$ then X is a smooth 3-dimensional subvariety of degree 22, denoted by Σ_{22}^3 . Here n(g)=3.

Theorem 3.9. Let X be a prime Fano n-fold $(n \ge 3)$ of index n-2 and genus $g \ge 6$ over $k \in \mathbb{C}$. Then there exists a k-vector space V and a space M of multilinear forms on V such that X is isomorphic to a linear section of $\Sigma_g(V,M) \subset \mathbb{P}_k^{g+n(g)-2}$.

In particular, for n=3 and $7 \leq g \leq 10$, a Fano 3-fold $X_{2g-2} \subset \mathbb{P}^{g+1}$ is obtained as a complete intersection of the homogeneous space $\Sigma_{2g-2}^{n(g)}$ and a linear subspace of codimension n(g)-3 in $\mathbb{P}(V)=\mathbb{P}^{g+n(g)-2}$. And by Lefschetz theorem, it follows that such $X=X_{2g-2}$ has Pic $(X)\simeq \mathbb{Z}(-K_X)$. For Fano 3-folds of genus 6 and 8 over \mathbb{C} , the theorem was proved independently by Gushel. For g=6, we have

Theorem 3.10. Let $X = X_{10} \subset \mathbb{P}^7$ be an anticanonically embedded Fano threefold of index 1 and genus 6 with $\rho(X) = 1$. Then X is one of the following:

- (i) a section of the Grassmannian Gr(2,5) embedded by Plücker embedding into $\mathbb{P}(\wedge^2\mathbb{C}^5)$ by a subspace of codimension 2 and a quadric,
- (ii) the section by a quadric of a cone $W=W_5\subset \mathbb{P}^7$ over a nonsingular del Pezzo threefold $V=V_5\subset \mathbb{P}^6$ of degree 5.

Threefolds of type (i) and (ii) are not isomorphic.

See [10] for details on the proof. A similar method can be applied to study Fano threefolds of genus 8, see [11] and [12].

Theorem 3.11. Let $X = X_{14} \subset \mathbb{P}^9$ be an anticanonically embedded Fano threefold of index 1 and genus 8 with $\rho(X) = 1$. Then X is a section of the Grassmannian Gr(2,6) embedded by Plücker embedding into $\mathbb{P}(\wedge^2\mathbb{C}^6) = \mathbb{P}^{14}$ by a subspace of codimension 5.

As a consequence, we see that the Fano 3-folds with Picard rank $\rho=1$ appear as one of the following:

- (i) Sections of Grassmannians(1-5 a), 1-6, 1-7, 1-8, 1-9, 1-10, 1-15)
- (ii) Complete intersections in projective or weighted projective space (1-2 a), 1-3, 1-4, 1-11, 1-12, 1-13, 1-14, 1-16, 1-17, 1-11, 1-12)
- (iii) Hyperelliptic (1-1, 1-2 b))

to decide about 1-5b) after Gushel

4. Fano Threefolds with $\rho \geq 2$

outline from mm(1981). Some details from others yet to add because what I have now is just not sufficient.

In this section, we consider Fano 3-folds with $B_2 \geq 2$. The main result is

Theorem 4.1. There are exactly 88 types of Fano 3-folds with $B_2 \geq 2$ up to deformations.

We begin with some definitions.

Definition 4.2. A Fano 3-fold is imprimitive if it is isomorphic to the blow-up of a Fano 3-fold along a smooth irreducible curve. A Fano 3-fold is primitive if it is not imprimitive.

Definition 4.3. A smooth variety over a smooth surface S is a conic bundle if every geometric fibre of $X \to S$ is isomorphic to a conic, i.e., a scheme of zeroes of a non zero homogeneous form of degree 2 on \mathbb{P}^2 .

The following theorem gives a complete classification for primitive Fano 3-folds.

Theorem 4.4. Let X be a primitive Fano 3-fold. Then we have

- (1) $B_2 \leq 3$,
- (2) if $B_2 = 2$, then X is a conic bundle over \mathbb{P}^2 , and (3) if $B_2 = 3$, then X is a conic bundle over $\mathbb{P}^1 \times \mathbb{P}^1$ and has either a divisor $D \simeq \mathbb{P}^1 \times \mathbb{P}^1$ such that $\mathcal{O}_D(D) \simeq \mathcal{O}(-1,-1)$ or another conic bundle structure over $\mathbb{P}^1 \times \mathbb{P}^1$.

The following proposition is important for classifying imprimitive Fano 3-folds.

Proposition 4.5. On a Fano 3-fold X with $B_2 = 2$, there are two smooth rational curves C_1 and C_2 and two numerically effective divisors H_1 and H_2 such that $(C_i \cdot H_j) = \delta_{ij}$ for all i, j = 1, 2.

It turns out that imprimitive Fano 3-folds can be obtained from successive curve-blow-ups of primitive Fano 3-folds by using their conic bundle structure or the existence of lines on Fano 3-folds with $B_2 = 2$. In the latter case, there can be several possibilities for each of the extremal rays and each possibility leads to an imprimitive Fano 3-fold with $B_2 = 2$. Combining all this information we get Table 2 in refer tables.

Since the blowing-up of a Fano 3-fold raises B_2 by 1(refer?), we obtain $B_2 \geq 3$ imprimitive Fano 3-folds by the blowing-up of a Fano 3-fold Y along a smooth irreducible curve C. The following Propositions give strong necessary conditions on $C \subset Y$.

References

- [1] V.A. Iskovskih, Fano 3-folds I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 516-562; English transl. in Math. USSR Izv. 11 No. 3 (1977).
- V. A. Iskovskih, Fano 3-folds II, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 506-549; English transl. in Math. USSR Izv. **12** No. 3 (1978), 469-506.
- [3] V. V. Šokurov, The smoothness of the general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430-441; English transl. in Math. USSR Izv. 14 No. 2 (1980).
- [4] V. V, Sokurov, The Existence of lines on Fano threefolds, English transl. in Math. USSR Izv. 15 (1980), 173-209.
- [5] R. Hartshorne. Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977.
- V. A. Iskovskih, Yu. G. Prokhorov, Fano varieties, Algebraic Geometry V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin 1999.
- S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A., 86, No. 9 (1989), 3000-3002.
- [8] S. Mukai, (1992). Fano 3-folds, In G. Ellingsrud, C. Peskine, G. Sacchiero, & S. Stromme (Eds.), Complex Projective Geometry: Selected Papers (London Mathematical Society Lecture Note Series, pp. 255-263). Cambridge: Cambridge University Press.
- [9] Pieter Belmans, https://www.fanography.info/
- [10] N. P. Gushel, Fano varieties of genus 6, Izv. Akad. Nauk. SSSR Ser. Mat. 46 (1982), 1159-1174 (Russian); English transl. in Math. USSR Izv. 21 (1983), 445-459.
- [11] N. P. Gushel, Fano varieties of genus 8, Usp. Mat. Nauk 38 (1983), 163-164 (Russian); English transl. in Russ. Math. Surv. 38 (1983), 192-193.
- [12] N. P. Gushel, Fano 3-folds of genus 8, Algebra i Analiz 4 (1992), 120-134 (Russian); English transl. in St. Petersbg. Math. J. 4 (1993), 115-129.