PS2 Solutions

Jingle Fu

Solution (a).

Step 1: Write the pdf of observations $x_i|\theta$

Since $x_i = \theta + u_i$, and we assume $u_i \sim \mathcal{N}(0, \sigma^2)$, then $x_i \sim \mathcal{N}(\theta, \sigma^2)$, and we have:

$$p(x_i|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \frac{(x_i - \theta)^2}{\sigma^2}\right\}.$$

Step 2: Define Likelihood Function

We have assumed that observations in the sample are independent. Thus,

$$L_n(\theta) = \prod_{i=1}^n p(x_i|\theta) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2\right\}$$

Log-linearize the function, and we define the log-likelihood function:

$$\ell_n(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2$$

Step 3: Define the Likelihood Estimation problem and find the $\hat{\theta}$

For maximum likelihood estimation, we need to solve the following problem:

$$\hat{\theta}_{ML} = \arg\max_{\theta \in \Theta} L_n(\theta) = \arg\max_{\theta \in \Theta} \ell_n(\theta)$$

So, we need to maximize:

$$\ell_n(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2$$

Take the derivative of $\ell_n(\theta)$ with respect to θ , and set it to zero for maximization,

$$\frac{\partial \ell_n(\theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \theta)$$
$$= \frac{1}{\sigma^2} (\sum_{i=1}^n x_i - n\theta)$$
$$= 0$$

Thus, we have

$$\hat{\theta}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Solution (b).

Step 1: Find the likelihood function

For $\mathcal{H}_0: \theta = \theta_0$, the likelihood function is:

$$L_n(\theta_0) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta_0)^2\right\}$$

For $\mathcal{H}_1: \theta \neq \theta_0$, the maximum likelihood estimator is $\hat{\theta}_{ML} = \frac{1}{n} \sum_{i=1}^n x_i = \hat{\theta}$. The likelihood function is:

$$L_n(\theta_1) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \hat{\theta})^2\right\}$$

Step 2: Define the likelihood ratio test and c_{α}

The likelihood ratio and the test is firstly defined as follows(we'll simplify to another version later):

$$\varphi_{LR}(x) = \mathbf{1} \left\{ LR_n < c \right\}$$

$$LR_n = \frac{L_n(\theta_1)}{L_n(\theta_0)}$$

$$= \exp\left\{\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i - \theta_0)^2 - \sum_{i=1}^n (x_i - \hat{\theta})^2\right]\right\}$$

Denote

$$D = \sum_{i=1}^{n} (x_i - \theta_0)^2 - \sum_{i=1}^{n} (x_i - \hat{\theta})^2$$

Using the identity:

$$\sum_{i=1}^{n} (x_i - \theta_0)^2 = \sum_{i=1}^{n} (x_i - \hat{\theta} + \hat{\theta} - \theta_0)^2 = \sum_{i=1}^{n} (x_i - \hat{\theta})^2 + n(\hat{\theta} - \theta_0)^2$$

Thus,

$$D = \sum_{i=1}^{n} (x_i - \theta_0)^2 - \sum_{i=1}^{n} (x_i - \hat{\theta})^2$$
$$= \sum_{i=1}^{n} (x_i - \hat{\theta})^2 + n(\hat{\theta} - \theta_0)^2 - \sum_{i=1}^{n} (x_i - \hat{\theta})^2$$
$$= n(\hat{\theta} - \theta_0)^2$$

So, the likelihood ratio LR_n is:

$$LR_n = \exp\left\{\frac{n}{2\sigma^2}(\hat{\theta} - \theta_0)^2\right\}$$

Then, we simplify the expression and define the test statistic T(x) as below:

$$T(x) = 2\log(LR_n) = \frac{n}{\sigma^2}(\hat{\theta} - \theta_0)^2$$

And our LR test would be:

$$\varphi_{LR}(x) = \mathbf{1}\left\{T(x) = \frac{n}{\sigma^2}(\hat{\theta} - \theta_0)^2 < c'\right\}$$

where $c' = 2\log(c)$. To get a size α test, we find c' so as to set the Type I error to α , which is:

$$\mathbb{P}\left[T(x) \ge c' | \mathcal{H}_0\right] = \alpha$$

we can denote that $c' = c_{\alpha}$.

Step 3: Determine the distribution of T(x) under \mathcal{H}_0 and find the value of c_{α}

Under \mathcal{H}_0 , $\hat{\theta} \sim \mathcal{N}(\theta_0, \frac{\sigma^2}{n})$, because:

$$\mathbb{E}[\hat{\theta}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}x_i\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[x_i] = \frac{1}{n}\cdot n\theta_0 = \theta_0$$

$$\mathbb{V}[\hat{\theta}] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^{n}x_i\right] = \frac{1}{n^2}\sum_{i=1}^{n}\mathbb{V}[x_i] = \frac{1}{n}\cdot n\sigma^2 = \frac{\sigma^2}{n}$$

Then, standardizing $\hat{\theta}$, we'll have:

$$Z = \frac{\hat{\theta} - \theta_0}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0, 1)$$

Using the hint, we know that

$$Z^{2} = \left(\frac{\hat{\theta} - \theta_{0}}{\sqrt{\sigma^{2}/n}}\right)^{2} = \frac{n}{\sigma^{2}}(\hat{\theta} - \theta_{0})^{2} \sim \chi_{1}^{2}$$

Therefore, under \mathcal{H}_0 ,

$$T(x) = \frac{n}{\sigma^2} (\hat{\theta} - \theta_0)^2 = Z^2 \sim \chi_1^2$$

Given $\alpha = 0.05$,

$$c_{\alpha} = \chi^2_{1,0.95} \approx 3.8415$$

Step 4: Set the decision rule

- Reject \mathcal{H}_0 : $T(x) > c_{\alpha} = 3.8415$
- Do not reject \mathcal{H}_0 : $T(x) \leq c_{\alpha} = 3.8415$

Solution (c).

We have $\sigma^2 = 6$, n = 4, $x_1 = 178$, $x_2 = 161$, $x_3 = 168$, $x_4 = 172$, $\theta_0 = 175$, so $\hat{\theta} = 169.75$. Put this data back into our T(x) and LR test, we have:

$$T(x) = \frac{n}{\sigma^2}(\hat{\theta} - \theta_0)^2 = \frac{4}{6}(169.75 - 175)^2 = 18.735 > 3.8415$$

We reject \mathcal{H}_0 .

Solution (d).

```
1 rm(list = ls())
2 set.seed(2024)
```

```
4 theta_0 <- 175
5 sigma_squared <- 6</pre>
6 sigma <- sqrt(sigma_squared)</pre>
7 n <- 4
8 alpha <- 0.05
9 M <- 1000
10 T_values <- numeric(M)</pre>
12 for (m in 1:M) {
    x_m <- rnorm(n, mean = theta_0, sd = sigma)
    x_bar_m <- mean(x_m)
14
    T_m \leftarrow (n / sigma_squared) * (x_bar_m - theta_0)^2
    T_values[m] <- T_m
17 }
18
19 hist(T_values, breaks = 30, col = 'skyblue', border = 'black', freq =
     FALSE,
       main = 'Histogram of T(X) under H0', xlab = 'Test Statistic T(X)')
21 grid()
23 T_values_sorted <- sort(T_values)</pre>
c_alpha_index <- ceiling(M * (1 - alpha))</pre>
c_alpha <- T_values_sorted[c_alpha_index]</pre>
27 cat(sprintf('Numerical approximation of c_alpha: %.4f\n', c_alpha))
29 c_alpha_analytical <- qchisq(1 - alpha, df = 1)
30 cat(sprintf('Analytical c_alpha from chi-squared distribution: %.4f\n',
     c_alpha_analytical))
32 difference <- abs(c_alpha - c_alpha_analytical)
33 cat(sprintf('Difference between numerical and analytical c_alpha: %.4f\n
  ', difference))
```

Numerical approximation of c_{α} : 3.6266

Analytical c_{α} from chi-squared distribution: 3.8415

Difference between numerical and analytical c_{α} : 0.2148, which is about 5.6% of the analytical c_{α} , so our approximation is not very close to the true value c_{α} .

Histogram of T(X) under H0

I expect the estimated approximation to get closer to the real analytical value of c_{α} as M is larger.

Since the T(x) we get is 18.735 which is greatly larger than 3.84 and 3.62, which is our numerical result, the conclusion from previous exercise doesn't change, we still reject \mathcal{H}_0 .

Solution (e).

Based on our previous LR test, we have:

$$\varphi_{LR}(x) = \mathbf{1} \left\{ T(x) = \frac{n}{\sigma^2} (\hat{\theta} - \theta_0)^2 < c_\alpha \right\}$$

$$= \mathbf{1} \left\{ (\hat{\theta} - \theta_0)^2 < \frac{c_\alpha \sigma^2}{n} \right\}$$

$$= \mathbf{1} \left\{ -\sqrt{\frac{c_\alpha \sigma^2}{n}} < (\hat{\theta} - \theta_0) < \sqrt{\frac{c_\alpha \sigma^2}{n}} \right\}$$

$$= \mathbf{1} \left\{ \hat{\theta} - \sqrt{\frac{c_\alpha \sigma^2}{n}} < \theta_0 < \hat{\theta} + \sqrt{\frac{c_\alpha \sigma^2}{n}} \right\}$$

Thus, we can define C(X) as:

$$C(X) = \left[\hat{\theta} - \sqrt{\frac{c_{\alpha}\sigma^2}{n}}, \hat{\theta} + \sqrt{\frac{c_{\alpha}\sigma^2}{n}}\right]$$

Apply our previous data: $\sigma^2 = 6$, n = 4, $x_1 = 178$, $x_2 = 161$, $x_3 = 168$, $x_4 = 172$, $\theta_0 = 175$, $\hat{\theta} = 169.75$, and $c_{\alpha} = 3.8415$, we have:

$$C(X) = [169.75 - 2.4, 169.75 + 2.4] = [167.35, 172.15]$$

 $\theta_0 = 175$ is not in this interval.

Because we rejected \mathcal{H}_0 : $\theta = 175$, it's consistent that 175 is not within the 95% confidence interval.

Solution (f).

```
rm(list = ls())
2 set.seed (2024)
x < -c(178, 161, 168, 172)
4 n <- length(x)
5 sigma_squared <- 6</pre>
6 sigma <- sqrt(sigma_squared)</pre>
7 alpha <- 0.05
8 M <- 1000
T_values < - seq(160, 180, by = 0.1)
vc <- numeric(length(T_values))</pre>
11
for (i in seq_along(T_values)) {
    theta_0 <- T_values[i]
    T_m <- numeric(M)</pre>
    for (m in 1:M) {
      x_m <- rnorm(n, mean = theta_0, sd = sigma)</pre>
16
      T_m_value \leftarrow (n / sigma_squared) * (mean(x_m) - theta_0)^2
      T_m[m] <- T_m_value</pre>
18
19
    T_m_sorted <- sort(T_m)</pre>
    c_alpha_theta_index <- ceiling(M * (1 - alpha))</pre>
21
    c_alpha_theta <- T_m_sorted[c_alpha_theta_index]</pre>
23
```

```
x_bar <- mean(x)</pre>
    T_x_{\text{theta}} \leftarrow (n / \text{sigma\_squared}) * (x_bar - \text{theta\_0})^2
25
    if (T_x_theta < c_alpha_theta) {</pre>
27
     vc[i] <- 1
2.8
    } else {
      vc[i] <- 0
30
    }
31
32 }
34 theta_in_Cx <- T_values[vc == 1]</pre>
if (length(theta_in_Cx) > 0) {
    numerical_Cx <- c(min(theta_in_Cx), max(theta_in_Cx))</pre>
    cat(sprintf("Numerical Confidence Interval C(x): [%.2f, %.2f]\n",
                 numerical_Cx[1], numerical_Cx[2]))
39 } else {
    cat("No values of Theta_0 are included in the numerical confidence
     interval C(x).\n")
41 }
43 plot(T_values, vc, type = "p", col = "blue", pch = 16,
       main = "Numerical Confidence Interval C(x)",
       xlab = expression(theta[0] ~ "values"),
       ylab = "Indicator")
47 grid()
_{49} c_alpha <- qchisq(1 - alpha, df = 1)
50 margin <- sqrt((c_alpha * sigma_squared) / n)</pre>
analytical_Cx <- c(x_bar - margin, x_bar + margin)</pre>
abline(v = analytical_Cx[1], col = 'red', lty = 2, lwd = 2)
54 abline(v = analytical_Cx[2], col = 'green', lty = 2, lwd = 2)
_{56} cat(sprintf("Numerical C(x): [%.2f, %.2f]\n", numerical_Cx[1], numerical
     _Cx[2]))
57 cat(sprintf("Analytical C(x): [%.2f, %.2f]\n",
              analytical_Cx[1], analytical_Cx[2]))
```

Numerical Confidence Interval C(x)

Numerical C(x): [167.50, 172.10]

Analytical C(x): [167.35, 172.15]

The numerical confidence interval C(x) aligns closely with the analytical interval, with the lower bound a bit larger than the analytical result and upper bound a bit smaller than the analytical result, confirming our earlier findings that 175 is not included.