Ejercicio: modelo de inventarios con restricción de espacio

Rodrigo Maranzana

Enunciado

Se desea conocer la cantidad óptima de pedido y el costo total esperado en la gestión de inventario de dos productos minoristas. Los productos compiten por el espacio en unidades de slots. Existen disponibles 150 slots.

	Producto 1	Producto 2	
Costo unitario	30 \$/u	40 \$/u	
Costo de alquiler variable (diario)	30 \$/(día*u)	30 \$/(día*u)	
Costo administrativo de compra	100 \$/pedido	150 \$/pedido	
Costo de calidad y recepción	200 \$/pedido	250 \$/pedido	
Demanda anual	3000 u	4300 u	
Superficie ocupada por el producto	10 slots	15 slots	
Interés	10% anual		

Se trabaja 30 días al mes.

Enunciado

Parámetros:

	Producto 1	Producto 2	
Costo unitario (b_j)	30 \$/u	40 \$/u	
Costo administrativo de compra	100 \$/pedido	150 \$/pedido	
Costo de calidad y recepción	200 \$/pedido	250 \$/pedido	
Costo de pedido (k_j)	300 \$/pedido	400 \$/pedido	
Demanda anual (D_j)	3000 u	4300 u	
Costo de alquiler (ca_j)	30 \$/(día*u)	30 \$/(día*u)	
	30 \$/(día*u) * 30 * 12 días/año	30 \$/(día*u) * 30 * 12 días/año	
Costo fijo de almacenamiento (ca_j)	10.800 \$/u	10.800 \$/u	
Superficie (s_j)	10 slots	15 slots	
Interés (i)	10% anual		

Modelo EOQ multiproducto con restricción

Siendo:

- s_i : espacio necesario para almacenar el ítem i.
- S: espacio total en el almacén.

El modelo resulta:

sulta:
$$Min \sum_{j} CTE(q_{j}) = b_{j}.D_{j} + k_{j}.\frac{D_{j}}{q_{j}} + \frac{1}{2}.q_{j}.\mathbf{c_{1}}$$

$$s.t. \qquad \sum_{j} q_{j}s_{j} \leq S$$

"Minimizar el costo total de inventario sujeto a que cada ítem "j" compite en el mismo espacio total S"

Método del Lagrangiano en inventarios EOQ

Siendo:

- $f(q_j) = CTE(q_j)$
- $g(q_j) = \sum_j q_j s_j S$

Si el modelo primal es:

$$Min \sum_{j} f(q_{j})$$

$$st \quad g(q_{j}) = 0$$

El modelo del Lagrangiano resulta:

Penaliza (+) por el Min primal
$$Max_{\lambda} \, Min_{q_j} \, \sum_{j} f(q_j) \, + \, \lambda \, g(q_j)$$

$$q_j \geq 0, \lambda \geq \mathbf{0}$$

Siendo λ multiplicadores de Lagrange.

Fórmulas modelo EOQ con restricciones

Funciones:

$$f(q_j) = \frac{b_j \cdot D_j}{D_j} + k_j \cdot \frac{D_j}{q_j} + \frac{1}{2} \cdot q_j \cdot c_1$$
$$g(q_j) = \sum_i q_i s_i - S$$

Lagrangiano:

$$L = \sum_{j} f(q_{j}) + \lambda g(q_{j})$$
$$q_{j} \ge 0, \lambda \ge 0$$

Lote óptimo:

$$q_{opt_j} = \sqrt{\frac{2.D_j.k_j}{c_1 + 2\lambda s_j}}$$

Costo Total Esperado:

$$CTE = f(q_i)$$

Función fo CTE

$$f(q_j) = b_j \cdot D_j + k_j \cdot \frac{D_j}{q_j} + \frac{1}{2} \cdot q_j \cdot c_1$$

$$c_1 = b_j * i + ca_j$$

Producto 1, $f(q_1)$	Producto 2, $f(q_j)$	
$\frac{30\$/u.3000u+300\$/p.\frac{3000u}{q_1}+\frac{1}{2}.(30\$/u.0,1+10800\$/u).q_1$	$40\$/u.4300 u + 400 \$/p. \frac{4300 u}{q_2} + \frac{1}{2}. (40 \$/u.0,1 + 10800 \$/u). q_2$	
$f(q_1) = \frac{90.000 \$ + \frac{900.000 \$ \cdot u}{q_1} + 5401.5 \$ / u. q_1$	$f(q_2) = 172.000 \$ + \frac{1.720.000 \$ \cdot u}{q_2} + 7202 \$ / u \cdot q_2$	
$CTE = f(q_1) + f(q_2)$		

	Producto 1	Producto 2
Costo unitario (b_j)	30 \$/u	40 \$/u
Costo de pedido (k_j)	300 \$/pedido	400 \$/pedido
Demanda anual (D_j)	3000 u	4300 u
Costo fijo de almacenamiento (ca_j)	10.800 \$/u	10.800 \$/u
Superficie (s_j)	10 slots	15 slots
Interés (i)	10% anual	

Función g

$$g(q_j) = \sum_{j} q_j s_j - S$$
$$g(q_1, q_2) = q_1.10 + q_2.15 - 150$$

Además, sabemos que: $\nabla L(q_1, q_2) = g(q_1, q_2)$

	Producto 1	Producto 2	
Costo unitario (b_j)	30 \$/u	40 \$/u	
Costo de pedido (k_j)	300 \$/pedido	400 \$/pedido	
Demanda anual (D_j)	3000 u	4300 u	
Costo fijo de almacenamiento (ca_j)	10.800 \$/u	10.800 \$/u	
Superficie (s_j)	10 slots	15 slots	
Interés (i)	10% anual		

Lagrangiano

Siendo:

- $f(q_1) = 90.000 \$ + \frac{900.000 \$.u}{q_1} + 5401,5 \$/u. q_1$ $f(q_2) = 172.000 \$ + \frac{1.720.000 \$.u}{q_2} + 7202 \$/u. q_2$
- $\sum_{i} f(q_i) = f(q_1) + f(q_2)$
- $\sum_{j} f(q_{j}) = \left[90.000 \$ + \frac{900.000 \$.u}{q_{1}} + 5401,5 \$/u. q_{1}\right] + \left[172.000 \$ + \frac{1.720.000 \$.u}{q_{2}} + 7202 \$/u. q_{2}\right]$

$$\sum_{j} f(q_{j}) = 262.000 \$ + \frac{2.620.000 \$.u}{q_{1}} + 12.603 \$/u.q_{1}$$

$$g(q_1, q_2) = q_1.10 + q_2.15 - 150$$

Lagrangiano

Siendo:

$$\sum_{j} f(q_{j}) = 262.000 \$ + \frac{2.620.000 \$.u}{q_{1}} + 12.603 \$/u.q_{1}$$

•
$$g(q_1, q_2) = q_1.10 + q_2.15 - 150$$

El Lagrangiano resulta:

$$L = \sum_{j} f(q_{j}) + \lambda g(q_{j})$$

$$L = 262.000 \$ + \frac{2.620.000 \$.u}{q_1} + 12.603 \$/u.q_1 + \lambda[q_1.10 + q_2.15 - 150]$$

Lote económico

$$q_{opt_j} = \sqrt{\frac{2.D_j.k_j}{c_1 + 2\lambda s_j}} \quad c_1 = b_j * i + ca_j$$

Producto 1, q_{opt_1}	Producto 2, q_{opt_2}
$\sqrt{\frac{2.3000u.300 \$/p}{(30 \$/u.0,1 + 10800 \$/u) + 2\lambda 10 slots}}$	$\sqrt{\frac{2.4300u.400\$/p}{(40\$/u.0,1+10800\$/u)+2\lambda15slots}}$
$q_{opt_1} = \sqrt{\frac{1.800.000}{10.803 + 20\lambda}}u$	$q_{opt_2} = \sqrt{\frac{3.440.000}{14.404 + 30\lambda}}u$

	Producto 1	Producto 2
Costo unitario (b_j)	30 \$/u	40 \$/u
Costo de pedido (k_j)	300 \$/pedido	400 \$/pedido
Demanda anual (D_j)	3000 u	4300 u
Costo fijo de almacenamiento (ca_j)	10.800 \$/u	10.800 \$/u
Superficie (s_j)	10 slots	15 slots
Interés (i)	10% anual	

Resumen

Fórmula	
$CTE = \sum_{j} f(q_1, q_2)$	$262.000 \$ + \frac{2.620.000 \$. u}{q_1} + 12.603 \$/u. q_1$
$\nabla L(q_1, q_2) = g(q_1, q_2)$	$q_1.10 + q_2.15 - 150$
$L(q_1, q_2, \lambda)$	$262.000 \$ + \frac{2.620.000 \$. u}{q_1} + 12.603 \$/u. q_1 + \lambda[q_1.10 + q_2.15 - 150]$
<i>a</i>	$q_{opt_1} = \sqrt{\frac{1.800.000}{10.803 + 20\lambda}} u$
q_{opt}	$q_{opt_2} = \sqrt{\frac{3.440.000}{14.404 + 30\lambda}} u$

Búsqueda de λ* con Grid Search

- Pseudocódigo:
- Creamos un vector de lambdas $\lambda = [\lambda_1, \lambda_2, ... \lambda_n]$
- Para cada λ_i :
 - lacktriangle Calculamos el óptimo q_i
 - Construimos el vector de óptimos $Q = [q_1, q_2, ..., q_m]$
 - Calculamos g y f
 - Calculamos $L(\lambda_i)$ para el lambda actual.
 - Guardamos $L(\lambda_i)$ en un vector de soluciones Lvector

-	Buscamos el	máximo	$L(\lambda_i)$	en Lvector
---	-------------	--------	----------------	------------

	λ	f	\boldsymbol{g}	L
λ_{0}	0	624.044,51	210,89	624.044,52
λ_1	1.000	679.831,26	58,47	738.300,61
λ_2	2.000	747.279,40	11,51	770.314,18
λ_3	2.500	778.761,63	-2,54	772.397,02
λ_4	3.000	808.718,15	-13,47	768.286,00

$$\lambda_3 = 2.500 \approx \lambda^*$$

Búsqueda de λ^* con Grid Search

Búsqueda de λ^* con Grid Search

RESULTADOS:

El lambda óptimo es: 2400.00

Las cantidades óptimas son: 5.53, 6.31

El CTE óptimo es: 772591.03

600 valores de λ

Búsqueda de λ^* con Método del Gradiente

Pseudocódigo:

- Inicializar λ_0
- Calcular $L(\lambda)$
- Calcular $\nabla L(\lambda)$
- Actualizar λ : $\lambda_{i+1} = \lambda_i + step * \nabla L(\lambda)$
- Calcular $\Delta \lambda = |\lambda_{i+1} \lambda_i|$
- Revisar si $\Delta \lambda > tol$, continuar; sino parar.

step=10

	λ	f	g = abla f	L
λ_{0}	0	624.044,51	210,89	624.044,52
λ_1	2.108,90	754.271,45	8,11	771.381,06
λ_2	2.190,02	759.431,19	5,71	771.941,14
λ_3	2.247,15	763.038,87	4,09	772.220,75
λ_4	2.288,01	765.606,78	2,95	772.364,48

Búsqueda de λ^* con Método del Gradiente

RESULTADOS:

El lambda óptimo es: 2398.94

Las cantidades óptimas son: 5.53, 6.31

El CTE óptimo es: 772524.68

Búsqueda de λ^* con Método del Gradiente

Podemos ver el efecto del método del Lagrangiano, buscando con dualidad débil y llegando a la fuerte.