

Stages of Data Science

Name:

Mobile #: 9XXXXXX45

Email ID: xyz@gmail.com

DOB/Age : 01/01/2000

Login Name: XYZ Password: ******

Card Details:2015 **** *****

Delivery address:

853, 1st Main Road, 6th cross, JP Nagar 3rd phase, Bangalore 560078

What is Data:

Facts or Statistics about people, person or object Qualitative or Quantitative variable

Address Table

Address #	House #	Street name	Cross	Main	City
101	853	Kothnur	1st	2 nd main	Bangalore

Customer Table

Customer ID	Name	Mobile	Email ID	DOB	Log in	Card	Address
12211		9xxxxxx45	xyz@gmail.com	01/01/00	xyz	****	101

Order Table

RDBMS

Customer ID	Order #	Part #	Desc	Qty	UoM	Price	Tax %	Total
12211	1100	M2231	iPhone 13	1	EA	75000	18	88550

Delivery Table

Order#	Delivery #	Part #	Desc	Qty	UoM	Address	Freight
1100	2001	M2231	iPhone 13	1	EA	101	DHL

Stages in Data Science

Collect

Store

Process

Describe

Model

Collecting Data

Storing Data

1) Master and Transactional data **Cust ID** Name **Address** Account 20001 Ravi Mysore 1200001 **RDBMS Structured** 20002 Sunil **Bangalore** 1200002 **Optimized for SQL** Bangalore 20003 Hari 1200003 Mangalore 20004 Ganesh 1200004

Storing Data

Processing Data

1) Data Wrangling and Data Munging

Part #	Time Stamp	First Name	Last Name
120011	3012020193000	Ravi	Kiran
120012	9112020193000	Sunil	Pawar
120013	8112020193000	Hari	Prasad

2) Data Cleaning

- Fill missing values
- Standardize keywords tags
- Correct spelling errors
- O Identify and remove outliner

3) Data Scaling, normalising, standardising

Scale

0

Normalise

C

Standardise

{
Item_name: "XF120013"
delivery_date: "8 Nov 2020"
delivery_time: "19:30:00"
Customer: "Hari Prasad"
}

Skills Required:

- Programming Skills
- Map Reduce (Hadoop)
- SQL and NoSQL Databases
- Basic Statistics

- 2) Summarising Data
- Mean Median
 Mode Variance
 Std deviation
- O Descriptive Statistics
- Iterative Process
- **Exploratory Data Analysis**

Skills Required:

- Statistics
- Excel
- Python
- Tableau

Modelling Data

Statistical Modelling

1) Underlying data distribution

2) Underlying relations in data

80	78
87	80
91	89
95	94
111	97
112	104
115	113
119	119
123	124
126	129
130	131
137	142

74

74

3) Give Statistical Guarantees

Application:

- Simple Models
- Allows robust statistical analysis
- Gives Statistical guarantee results

Modelling Data

Algorithmic Modelling

1) Focus on prediction and not the phenomena

$$Y = m1x1 + m2x2 + m3x3 + m4x4 + m5x5....mnxn$$

$$Y = f(x_1, x_2, x_3, x_4, x_5, \dots, x_n)$$

Here we can estimate value of f using data, optimization technique

For new patients plug input the value of x to get y

Skills Required:

- Inferential Statistics
- Probability Theory
- Calculus

- Optimization Algorithms
- ML & DL
- Python Packages and frame work (numpy, scipy, scikit-learn, PyTorch etc.