Implicit Regularization in Matrix Factorization

Suriya Gunasekar

http://www.ttic.edu/

Joint work with...

Blake Woodworth

Behnam Neyshabur

Srinadh Bhojanapalli

Nati Srebro

Modern machine learning algorithms

 h_W parameterized by $W \in \mathbb{R}^d$

$$\min_{W} f_{S}(W) = \sum_{i=1}^{m} \ell(h_{W}(x_{i}), y_{i}) + \mathcal{R}(W)$$

With regularization: $\mathcal{H}_R = \{h_W \colon W \in \mathbb{R}^d , \mathcal{R}(W) \leq t\}$

• $h_w(x)$ is highly non-convex function of w

e.g.
$$h_w(x) = W_k * \sigma \left(\dots \sigma \left(W_2 * \sigma (W_1 * x) \right) \right)$$

where $W = vec([W_k, \dots, W_2, W_1]), \quad \sigma(z) = \max(0, z)$

output layer

• w is very high dimensional $d \gg m$

Datasets CIFAR ~ 60K images, ImageNet ~14M images, ~1M annotations

Deep learning architectures

AlexNet (2012): 8 layers, 60M parameters

VGG-16 (2014): 16 layers, 138M parameters

ResNet (2015): 152 layers, ...

Mysteries of deep learning I

$$\min_{W} f_{S}(W) = \sum_{i=1}^{m} \ell(h_{W}(x_{i}), y_{i}) + \mathcal{R}(W)$$

• $h_w(x)$ is highly non-convex function of w

e.g.
$$h_w(x) = W_k * \sigma \left(\dots \sigma \left(W_2 * \sigma (W_1 * x) \right) \right)$$

where $W = vec([W_k, \dots, W_2, W_1]), \quad \sigma(z) = \max(0, z)$

- > Finding the global optimum is hard
 - "local search" methods like (stochastic) gradient descent can be guaranteed to converge only to a local optimum
- → Easy to get 0-training error solutions using local search
 - (informally) over-parameterization makes optimization easy

Mysteries of deep learning II

$$\min_{W} f_{S}(W) = \sum_{i=1}^{m} \ell(h_{W}(x_{i}), y_{i}) + \mathcal{R}(W)$$

- w is very high dimensional d >> m
 Datasets CIFAR ~ 60K images, ImageNet ~14M images, ~1M annotations
 Deep learning architectures AlexNet (2012): 8 layers, 60M parameters; VGG-16 (2014): 16 layers, 138M parameters
- → High variance and bad generalization on test dataset
 - Many global minima. e.g. $\min_{w \in \mathbb{R}^{100}} \sum_{i=1}^{10} (w^\mathsf{T} x_i y_i)^2$
 - MOST global optima are bad for generalization
- → Pre-DNN models had strong regularization for high dimensional estimation
- → Solutions from (S)GD-like algorithms do not overfit
 - small test error even without any regularization

Example

Neyshabur, Tomioka, Srebro ICLR 2015

Implicit Regularization

Inductive bias induced by choice of optimization algorithm

Least squares

$$\min_{x} f(x) = ||Ax - y||_{2}^{2}$$

Gradient descent initialized at x_0

$$x_{t+1} = x_t - \eta \nabla_x f(x_t)$$

Least squares

Gradient based updates will only change component of x_0 along the span of a_i 's

Least squares

Gradient based updates will only change component of x_0 along the span of a_i 's

If
$$x_0 = 0$$
, then $\widehat{x}_{(s)gd} = \underset{Ax=y}{\operatorname{argmin}} ||x||_2$

Goal

For DNNs, we want to characterize the "complexity" implicitly minimized by common optimization algorithms?

Previous work

- Generalization in terms of bounded norm DNNs. (Neyshabur et al. 2015, 2017)
- DNNs can fit random data. (Zhang et al. 2016)
- Comparing performance of adaptive optimization algorithms (Wilson et al. 2017)
- SGD biases towards "flat" global optima. (Hochreiter and Schmidhuber 1997;
 Keskar et al. 2017)
 - → "flatness" not necessary for generalization (Dihn et al. 2017)

Why do we care about?

Guide choice of optimization

 Modified (S)GD and acceleration techniques for faster convergence and/or better generalization

New regularization techniques

- Deep learning still needs1000s of examples per class
- Explicit regularization for low "complexity"

Efficiency

- Can potentially train smaller networks more efficiently
 - reduce test time computation and memory requirements
 - Model compression

Low rank matrix estimation

$$\min_{X} F(X) = \|\mathcal{A}(X) - y\|_{2}^{2}$$
, s.t. $\operatorname{rank}(X) \le d$

$$\mathcal{A}: \mathbb{R}^{n \times n} \to \mathbb{R}^m$$

$$y \in \mathbb{R}^m$$

$$\mathcal{A}(X)_i = \langle A_i, X \rangle$$
 for $i = 1, 2, \dots m$

Matrix completion

 A_i has 1 on i^{th} observation, 0 otherwise

Linear networks

$$X = UV$$

$$\bar{y}_i = Xa_i$$

$$\mathcal{A} \equiv \{ A_{ik} = a_i e_k^\top : i \in [m], k \in \dim(\bar{y}) \}$$

Matrix factorization

$$\min_{U,V \in \mathbb{R}^{n \times d}} f(U,V) = \|\mathcal{A}(UV^\top) - y\|_2^2$$

 $d \sim m/n$ low rank matrix regression often *unique global minima*

Jain, Netrapalli, Sanghavi 2012; ... Bhojanapalli, Neyshabur, Srebro 2016 & Ge, Lee Ma 2016;

d=n unconstrained problem, equivalent to $\min_{X} F(X)$ easy to get global minima

What happens when *f* is optimized using gradient descent?

Gradient descent for matrix regression

$$\min_{U \in \mathbb{R}^{n \times d}} f(U) = \|\mathcal{A}(UU^\top) - y\|_2^2$$

$$U_{t+1} = U_t - \eta \mathcal{A}^*(r_t)U_t,$$

where
$$r_t = \mathcal{A}(U_t U_t^{\top}) - y, \mathcal{A}^*(r) = \sum_{i=1}^m r_i A_i$$

$$n = 50, m = 300$$

 A_i symmetric random

 $y = \mathcal{A}(X^*)$ generated from ground truth $X^* \succcurlyeq 0$ of rank-2

Test data: $\mathcal{A}_{\text{test}}$ and $y_{\text{test}} = \mathcal{A}_{\text{test}}(X^*)$ \rightarrow low rank or low nuclear norm solutions generalize well

Gradient descent for matrix regression

Gradient descent for matrix regression

Gradient Flow

Gradient descent with infinitesimal step size

$$\dot{U}_t = \frac{dU_t}{dt} = -\nabla_U f(U_t) = -\mathcal{A}^*(r_t)U_t$$

$$r_t = \mathcal{A}(U_t U_t^{\top}) - y$$
$$\mathcal{A}^*(r) = \sum_{i=1}^m r_i A_i$$

Gradient Flow

Gradient descent with infinitesimal step size

$$\dot{U}_t = \frac{dU_t}{dt} = -\nabla_U f(U_t) = -\mathcal{A}^*(r_t)U_t$$

$$r_t = \mathcal{A}(U_t U_t^{\top}) - y$$
$$\mathcal{A}^*(r) = \sum_{i=1}^m r_i A_i$$

Induced dynamics on $X_t = U_t U_t^{\top}$

$$\dot{X}_t = U_t \dot{U}_t + \dot{U}_t U_t = -\mathcal{A}^*(r_t) X_t - X_t \mathcal{A}^*(r_t)$$

Independent of U for gradient flownot true for gradient descent

For
$$X_0 = X_{\text{init}}, X_{\infty}(X_{\text{init}}) := \lim_{t \to \infty} X_t$$

Gradient Flow

Gradient descent with infinitesimal step size

$$\dot{U}_t = \frac{dU_t}{dt} = -\nabla_U f(U_t) = -\mathcal{A}^*(r_t)U_t$$

Induced dynamics on $X_t = U_t U_t^{\top}$

$$\dot{X}_t = U_t \dot{U}_t + \dot{U}_t U_t = -\mathcal{A}^*(r_t) X_t - X_t \mathcal{A}^*(r_t)$$

For
$$X_0 = X_{\text{init}}, X_{\infty}(X_{\text{init}}) := \lim_{t \to \infty} X_t$$

Conjecture: As $||U_0|| \to 0$ if gradient flow converges to

a global minimum
$$U_{\infty} = \lim_{t \to \infty} U_t$$
, i.e. $f(U_{\infty}) = 0$, then

$$X_{\infty} = U_{\infty}U_{\infty}^{\top} = X_{\mathrm{NN}}^* = \underset{\mathcal{A}(X)=b}{\operatorname{argmin}} \|X\|_*$$

Exhaustive Search

All PSD matrix completion problems in 3x3 matrices with m=4

Commutative Ai

$$\dot{X}_t = -\mathcal{A}^*(r_t)X - X\mathcal{A}^*(r_t)$$

If
$$A_i A_j = A_j A_i$$
 for all $i, j \in [m]$, then
$$X_t = e^{\mathcal{A}^*(s_t)} X_0 e^{\mathcal{A}^*(s_t)} \text{ where } s_t = -\int_0^t r_t$$

KKT conditions: $\mathcal{A}^*(\nu)X = X$ and $\lambda_{\max}(\mathcal{A}^*(\nu)) \leq 1$

Theorem: Let $U_{\infty}(\alpha)$ be the solution of gradient flow initialized at $U_0 = \alpha I$. If measurements A_i commute, i.e. $A_i A_j = A_j A_i$, and if $\bar{X}_{\infty} = \lim_{\alpha \to 0} U_{\infty}(\alpha) U_{\infty}(\alpha)^{\top}$ exists and satisfies $\mathcal{A}(\bar{X}_{\infty}) = b$, then $\bar{\mathbf{X}}_{\infty} = \mathbf{X}_{\mathrm{NN}}^*$

Commutative Ai

$$\dot{X}_t = -\mathcal{A}^*(r_t)X - X\mathcal{A}^*(r_t)$$

If
$$A_i A_j = A_j A_i$$
 for all $i, j \in [m]$, then
$$X_t = e^{\mathcal{A}^*(s_t)} X_0 \mathcal{A}^*(s_t) \text{ where } s_t = -\int_0^t r_t$$

Corollary: Consider a non-negative *vector* least squares problem $\min_{x \in \mathbb{R}^n_{\perp}} \bar{F}(x) = \|Ax - b\|_2^2$.

Let $x=u^2$ (element wise square) for $u\in\mathbb{R}^n$, then gradient flow for $\min_{u\in\mathbb{R}^n} \bar{f}(u) = \|Au^2 - b\|_2^2$ initialized at $u_0 = \alpha \vec{1}$, as $\alpha \to 0$ will converge to a global optimum u_∞ such that $\mathbf{u}_\infty^2 = \underset{\mathbf{A}\mathbf{x}=\mathbf{b}}{\operatorname{argmin}} \|\mathbf{x}\|_1$

Proof strategy: revisit Least squares

$$\min_{x} f(x) = ||Ax - y||_{2}^{2}$$

$$\nabla_x f(x) = \sum_{i=1}^m r_i a_i \in \operatorname{span}\{a_i\}$$

Proof strategy: revisit Least squares

$$\min_{x} f(x) = ||Ax - y||_{2}^{2}$$

$$migg| egin{array}{c|c} a_i & & & & \\ A & & & & \\ x & & & \\ x & & & \end{array}$$

$$\nabla_x f(x) = \sum_{i=1}^m r_i a_i \in \text{span}\{a_i\}$$

KKT conditions for $\min_{x} ||x||_{2}^{2}$ s.t. Ax = y

$$Ax = y$$

$$\exists \nu \in \mathbb{R}^m, x = A^\top \nu = \sum_i \nu_i a_i$$

✓ If $x_0 = 0$, true for any point on gradient descent path

Proof strategy

KKT conditions for $\min_{X \succeq 0} ||X|| * s.t.$ $\mathcal{A}(X) = y$

$$egin{aligned} \mathcal{A}(X) &= y \ ec{\hspace{0.1cm}} ec{\hspace{0.1cm}} ext{True for any global} \ ext{optima on gradient} \ X \succcurlyeq 0 \ ext{flow path as} \ X_t &= U_t U_t^ op \succcurlyeq 0 \end{aligned}$$

$$\mathcal{A}^*(\nu)X = X$$

$$\mathcal{A}^*(\nu) \preccurlyeq I$$

Eigenvalues of $\mathcal{A}^*(\nu)$ are ≤ 1 Columns of X spanned by eigenvectors of $\mathcal{A}^*(\nu)$ corresponding to eigenvalue 1

- Characterize the 'set' of reachable points in gradient descent path
- 2. Characterize the asymptotic limit of the 'set'
- 3. Show KKT conditions for asymptotic reachable points

Gradient flow for single observation m=1

$$\dot{X}_t = -r_t(AX + XA) \propto -AX - XA$$

$$\downarrow$$

$$X_t = e^{s_t A} X_0 e^{s_t A} \text{ where } s_t = \int_0^t r_t dt$$

KKT conditions: $\nu AX = X$, $\nu \leq 1/\lambda_{\max}(A)$

• As $X_0 \to 0$, if y > 0 and $\langle A, X_\infty(X_0) \rangle = y$, then $s_\infty(X_0) \to \infty$

Gradient flow for single observation m=1

$$\dot{X}_t = -r_t(AX + XA) \propto -AX - XA$$

$$\downarrow$$

$$X_t = e^{s_t A} X_0 e^{s_t A} \text{ where } s_t = \int_0^t r_t dt$$

KKT conditions: $\nu AX = X$, $\nu \leq 1/\lambda_{\max}(A)$

- As $X_0 \to 0$, if y > 0 and $\langle A, X_\infty(X_0) \rangle = y$, then $s_\infty(X_0) \to \infty$
- $e^{s_{\infty}A} = \sum_{r=1}^{n} e^{s_{\infty}\lambda_r} \bar{a}_i \bar{a}_i = e^{s_{\infty}\lambda_{\max}} \sum_{r=1}^{n} e^{s_{\infty}(\lambda_r \lambda_{\max})} \bar{a}_i \bar{a}_i$

Gradient flow for single observation m=1

$$\dot{X}_t = -r_t(AX + XA) \propto -AX - XA$$

$$\downarrow$$

$$X_t = e^{s_t A} X_0 e^{s_t A} \text{ where } s_t = \int_0^t r_t dt$$

KKT conditions: $\nu AX = X$, $\nu \leq 1/\lambda_{\max}(A)$

- As $X_0 \to 0$, if y > 0 and $\langle A, X_\infty(X_0) \rangle = y$, then $s_\infty(X_0) \to \infty$
- $e^{s_{\infty}A} = \sum_{r=1}^n e^{s_{\infty}\lambda_r} \bar{a}_i \bar{a}_i = e^{s_{\infty}\lambda_{\max}} \sum_{r=1}^n e^{s_{\infty}(\lambda_r \lambda_{\max})} \bar{a}_i \bar{a}_i$
- $X_{\infty}(X_0)$ spanned only by eigenvectors of $\lambda_{\max}(A)$
- $X_{\infty}(X_0) = \nu A X_{\infty}$ with $\nu = 1/\lambda_{\max}(A)$

Commutative Ai

$$\dot{X}_t = -\mathcal{A}^*(r_t)X - X\mathcal{A}^*(r_t)$$

If
$$A_i A_j = A_j A_i$$
 for all $i, j \in [m]$, then
$$X_t = e^{\mathcal{A}^*(s_t)} X_0 e^{\mathcal{A}^*(s_t)} \text{ where } s_t = -\int_0^t r_t$$

- Every point on gradient flow lies in $\mathcal{M} = \{\alpha e^{\mathcal{A}^*(s)} : s \in \mathbb{R}^m\}$
- Complementary slackness and dual feasibility hold for any point on $\mathcal{M}_{\infty} = \{\alpha e^{\mathcal{A}^*(s)} : \alpha \to 0, \|s\|_2 \to \infty\}$
- Proof does not depend on particular choice of $r_t = \mathcal{A}(X_t) y$
- \bullet \mathcal{M} suggests infinitesimal stepwise necessary
- Result holds for infinitesimal SGD, but not accelerated gradient versions.

Non-commutative Ai

$$\dot{X}_t = -\mathcal{A}^*(r_t)X_t - X_t\mathcal{A}^*(r_t)$$

bilinear dynamical system with rt as 'control' variables

$$X_{t} = \left(\lim_{\epsilon \to 0} \prod_{k=t/\epsilon}^{0} e^{-\epsilon \mathcal{A}^{*}(r_{t})}\right) X_{0} \left(\lim_{\epsilon \to 0} \prod_{k=t/\epsilon}^{k=t/\epsilon} e^{-\epsilon \mathcal{A}^{*}(r_{t})}\right)$$

- with arbitrary r_t (not necessarily residuals from gradient flow), can reach any psd matrix even for m=2
- exploit structure of r_t to show: asymptotically, only components of leading eigenvectors of $\mathcal{A}^*(\nu)$ remain
 - empirically seems to hold for rt from gradient flow
 - empirically also holds for random rt

Summary of matrix reconstruction results

Conclusion

- Optimization algorithms traditionally studied as a tools to minimize training objective
- It is becoming increasingly evident that choice of optimization algorithm also influences generalization performance
- Such implicit regularization is potentially a key component for understanding learning in complex models
- Matrix factorization is the simplest non-convex problem where such properties can be analyzed