# Handbook of Quantitative Finance and Risk Management

#### **Editors**

Cheng-Few Lee, Rutgers University, USA Alice C. Lee, State Street Corp., USA\* John Lee, Center for PBBEF Research, USA

## **Advisory Board**

Ivan Brick, Rutgers University, USA
Stephen Brown, New York University, USA
Charles Q. Cao, Penn State University, USA
Chun-Yen Chang, National Chiao Tung University, Taiwan
Wayne Ferson, Boston College, USA
Lawrence R. Glosten, Columbia University, USA
Martin J. Gruber, New York University, USA
Hyley Huang, Wintek Corporation, Taiwan
Richard E. Kihlstrom, University of Pennsylvania, USA
E. H. Kim, University of Michigan, USA
Robert McDonald, Northwestern University, USA
Ehud I. Ronn, University of Texas at Austin, USA

<sup>\*</sup> Disclaimer: Any views or opinions presented in this publication are solely those of the authors and do not necessarily represent those of State Street Corporation. State Street Corporation is not associated in any way with this publication and accepts no liability for the contents of this publication.

Cheng-Few Lee • Alice C. Lee • John Lee Editors

# Handbook of Quantitative Finance and Risk Management



Editors
Cheng-Few Lee
Rutgers University
Department of Finance and Economics
94 Rockafeller Road
New Brunswick, NJ
08854-8054, Janice H. Levin Bldg.
USA
lee@business.rutgers.edu

John Lee Center for PBBEF Research North Brunswick, NJ USA johnleeexcelvba@gmail.com

Alice C. Lee State Street Corp. Boston, MA USA alice.finance@gmail.com

ISBN 978-0-387-77116-8 e-ISBN 978-0-387-77117-5 DOI 10.1007/978-0-387-77117-5 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010921816

#### © Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

### **Preface**

Quantitative finance and risk management is a combination of economics, accounting, statistics, econometrics, mathematics, stochastic process, and computer science and technology. This handbook is the most comprehensive handbook in quantitative finance and risk management, which integrates theory, methodology, and application. Due to the importance of quantitative finance and risk management in the finance industry, it has become one of the most popular subjects in business schools and departments of mathematics, operation research, and statistics. In addition, the finance industry has many job opportunities for people with good training in quantitative finance and risk management. Thus, a handbook should have a broad audience and be of interest to academics, educators, students, and practitioners.

Based on our years of experience in industry, teaching, research, textbook writing, and journal editing on the subject of quantitative finance and risk management, this handbook will review, discuss, and integrate theoretical, methodological and practical issues of quantitative finance and risk management. This handbook is organized into five parts as follows:

Part I. Overview of Quantitative Finance and Risk Management Research

Part II. Portfolio Theory and Investment Analysis

Part III. Options and Option Pricing Theory

Part IV. Risk Management

Part V. Theory, Methodology, and Applications

Part I of this handbook covers three chapters: they are "Chapter 1. Theoretical Framework of Finance," "Chapter 2. Investment, Dividend, Financing, and Production Policies," and "Chapter 3. Research Methods of Quantitative Finance and Risk Management." Part II of this handbook covers 18 chapters of portfolio theory and investment analysis. Part III of this handbook includes 21 chapters of options and option pricing theory. Part IV of this handbook includes 23 chapters of theory and practice in risk management. Finally, Part V of this handbook covers 44 chapters of theory, methodology, and applications in quantitative finance and risk management.

In the preparation of this handbook, first, we would like to thank the members of advisory board and contributors of this handbook. In addition, we note and appreciate the extensive help from our Editor, Ms. Judith Pforr, our research assistants Hong-Yi Chen, Wei-Kang Shih and Shin-Ying Mai, and our secretary Ms. Miranda Mei-Lan Luo. Finally, we would like to thank the Wintek Corporation and the Polaris Financial Group for the financial support that allowed us to write this book.

There are undoubtedly some errors in the finished product, both typographical and conceptual. We invite readers to send suggestions, comments, criticisms, and corrections to the author Professor Cheng-Few Lee at the Department of Finance and Economics, Rutgers University at Janice H. Levin Building Room 141, Rockefeller Road, Piscataway, NJ 08854-8054.

New Brunswick, NJ Boston, MA North Brunswick, NJ Cheng-Few Lee Alice C. Lee John Lee

## **About the Editors**

Cheng-Few Lee is Distinguished Professor of Finance at Rutgers Business School, Rutgers University and was chairperson of the Department of Finance from 1988 to 1995. He has also served on the faculty of the University of Illinois (IBE Professor of Finance) and the University of Georgia. He has maintained academic and consulting ties in Taiwan, Hong Kong, China, and the United States for the past three decades. He has been a consultant to many prominent groups, including the American Insurance Group, the World Bank, the United Nations, The Marmon Group Inc., Wintek Corporation, and Polaris Financial Group.

Professor Lee founded the *Review of Quantitative Finance and Accounting* (RQFA) in 1990 and the *Review of Pacific Basin Financial Markets and Policies* (RPBFMP) in 1998, and serves as managing editor for both journals. He was also a co-editor of the *Financial Review* (1985–1991) and the *Quarterly Review of Economics and Business* (1987–1989). In the past 36 years, Dr. Lee has written numerous textbooks ranging in subject matters from financial management to corporate finance, security analysis and portfolio management to financial analysis, planning and forecasting, and business statistics. In addition, he edited a popular book entitled *Encyclopedia of Finance* (with Alice C. Lee). Dr. Lee has also published more than 170 articles in more than 20 different journals in finance, accounting, economics, statistics, and management. Professor Lee was ranked the most published finance professor worldwide during the period 1953–2008.

Professor Lee was the intellectual force behind the creation of the new Masters of Quantitative Finance program at Rutgers University. This program began in 2001 and has been ranked as one of the top ten quantitative finance programs in the United States. These top ten programs are located at Carnegie Mellon University, Columbia University, Cornell University, New York University, Princeton University, Rutgers University, Stanford University, University of California at Berkley, University of Chicago, and University of Michigan.

Alice C. Lee is currently a Director in the Model Validation Group, Enterprise Risk Management, at State Street Corporation. Most recently, she was an Assistant Professor of Finance at San Francisco State University. She has more than 20 years of experience and has a diverse background, which includes academia, engineering, sales, and management consulting. Her primary areas of teaching and research are corporate finance and financial institutions. She is coauthor of *Statistics for Business and Financial Economics*, 2e (with Cheng F. Lee and John C. Lee) and *Financial Analysis, Planning and Forecasting*, 2e (with Cheng F. Lee and John C. Lee). In addition, she has co-edited other annual publications including *Advances in Investment Analysis and Portfolio Management* (with Cheng F. Lee).

**John C. Lee** is a Microsoft Certified Professional in Microsoft Visual Basic and Microsoft Excel VBA. He has a bachelor and masters degree in accounting from the University of Illinois at Urbana-Champaign.

John has more than 20 years' experience in both the business and technical fields as an accountant, auditor, systems analyst, and as a business software developer. He has authored a book on how to use MINITAB and Microsoft Excel to do statistical analysis; this book is

viii About the Editors

a companion text to *Statistics of Business and Financial Economics*, of which he is one of the co-authors. John has been a senior technology officer at the Chase Manhattan Bank and assistant vice president at Merrill Lynch. He is currently Director of the Center for PBBEF Research.

# **Contents**

| Pre | eface . |            |                                                                | V  |
|-----|---------|------------|----------------------------------------------------------------|----|
| Pai | rt I (  | Overview   | of Quantitative Finance and Risk Management Research           |    |
| 1   | The     | oretical F | Framework of Finance                                           | 3  |
|     | 1.1     | Introdu    | action                                                         | 3  |
|     | 1.2     | Discou     | inted Cash-Flow Valuation Theory                               | 3  |
|     | 1.3     | M and      | M Valuation Theory                                             | 6  |
|     | 1.4     | Marko      | witz Portfolio Theory                                          | 10 |
|     | 1.5     | Capital    | Asset Pricing Model                                            | 10 |
|     | 1.6     | Arbitra    | age Pricing Theory                                             | 12 |
|     | 1.7     | Option     | Valuation                                                      | 14 |
|     | 1.8     | Future     | s Valuation and Hedging                                        | 15 |
|     | 1.9     | Conclu     | ision                                                          | 22 |
|     | Refe    | rences     |                                                                | 22 |
| 2   | Inve    | stment, I  | Dividend, Financing, and Production Policies: Theory           |    |
|     | and     | Implicat   | ions                                                           | 23 |
|     | 2.1     | Introdu    | action                                                         | 23 |
|     | 2.2     | Investr    | nent and Dividend Interactions: The Internal Versus External   |    |
|     |         | Financ     | ing Decision                                                   | 23 |
|     | 2.3     | Interac    | tions Between Dividend and Financing Policies                  | 25 |
|     | 2.4     | Interac    | tions Between Financing and Investment Decisions               | 28 |
|     | 2.5     | Implica    | ations of Financing and Investment Interactions                |    |
|     |         | for Cap    | pital Budgeting                                                | 30 |
|     | 2.6     |            | ations of Different Policies on the Beta Coefficient           | 34 |
|     | 2.7     | Conclu     | ision                                                          | 36 |
|     | Refe    | rences     |                                                                | 36 |
|     | Appe    |            | Stochastic Dominance and its Applications to Capital-Structure |    |
|     |         | Analys     | sis with Default Risk                                          | 38 |
|     |         | 2A.1       | Introduction                                                   | 38 |
|     |         | 2A.2       | Concepts and Theorems of Stochastic Dominance                  | 38 |
|     |         | 2A.3       | Stochastic-Dominance Approach to Investigating the             |    |
|     |         |            | Capital-Structure Problem with Default Risk                    | 39 |
|     |         | 2A.4       | Summary                                                        | 40 |

x Contents

| 3   | Res  | earch Methods in Quantitative Finance and Risk Management               | 41  |
|-----|------|-------------------------------------------------------------------------|-----|
|     | 3.1  | Introduction                                                            | 41  |
|     | 3.2  | Statistics                                                              | 41  |
|     | 3.3  | Econometrics                                                            | 43  |
|     | 3.4  | Mathematics                                                             | 46  |
|     | 3.5  | Other Disciplines                                                       | 48  |
|     | 3.6  | Conclusion                                                              | 49  |
|     | Ref  | erences                                                                 | 50  |
| Par | t II | Portfolio Theory and Investment Analysis                                |     |
| 4   | Fou  | ndation of Portfolio Theory                                             | 53  |
| •   |      | ng-Few Lee, Alice C. Lee, and John Lee                                  | 23  |
|     | 4.1  | Introduction                                                            | 53  |
|     | 4.2  | Risk Classification and Measurement                                     | 53  |
|     | 4.3  | Portfolio Analysis and Application                                      | 57  |
|     | 4.4  | The Efficient Portfolio and Risk Diversification                        | 60  |
|     | 4.5  | Determination of Commercial Lending Rate                                | 64  |
|     | 4.6  | The Market Rate of Return and Market Risk Premium                       | 66  |
|     | 4.7  | Conclusion                                                              | 68  |
|     |      | erences                                                                 | 68  |
|     |      |                                                                         | 00  |
| 5   |      | k-Aversion, Capital Asset Allocation, and Markowitz Portfolio-Selection |     |
|     |      | del                                                                     | 69  |
|     |      | ng-Few Lee, Joseph E. Finnerty, and Hong-Yi Chen                        |     |
|     | 5.1  | Introduction                                                            | 69  |
|     | 5.2  | Measurement of Return and Risk                                          | 69  |
|     | 5.3  | Utility Theory, Utility Functions, and Indifference Curves              | 71  |
|     | 5.4  | Efficient Portfolios                                                    | 77  |
|     | 5.5  | Conclusion                                                              | 91  |
|     | Ref  | erences                                                                 | 91  |
| 6   | Car  | oital Asset Pricing Model and Beta Forecasting                          | 93  |
|     | _    | ng-Few Lee, Joseph E. Finnerty, and Donald H. Wort                      | -   |
|     | 6.1  | Introduction                                                            | 93  |
|     | 6.2  | A Graphical Approach to the Derivation of the Capital Asset             |     |
|     |      | Pricing Model                                                           | 93  |
|     | 6.3  | Mathematical Approach to the Derivation of the Capital Asset            |     |
|     |      | Pricing Model                                                           | 96  |
|     | 6.4  | The Market Model and Risk Decomposition                                 | 97  |
|     | 6.5  | Growth Rates, Accounting Betas, and Variance in EBIT                    | 100 |
|     | 6.6  | Some Applications and Implications of the Capital Asset Pricing Model   | 104 |
|     | 6.7  | Conclusion                                                              | 105 |
|     | Ref  | erences                                                                 | 105 |
|     |      | bendix 6A Empirical Evidence for the Risk-Return Relationship           | 106 |
|     |      | bendix 6B Anomalies in the Semi-strong Efficient-Market Hypothesis      | 109 |
|     |      |                                                                         |     |
| 7   |      | ex Models for Portfolio Selection                                       | 111 |
|     |      | ng-Few Lee, Joseph E. Finnerty, and Donald H. Wort                      |     |
|     | 7.1  | Introduction                                                            | 111 |
|     | 7.2  | The Single-Index Model                                                  | 111 |
|     | 7.3  | Multiple Indexes and the Multiple-Index Model                           | 118 |
|     | 7.4  | Conclusion                                                              | 121 |
|     | υaf  | grances                                                                 | 122 |

Contents

|    |                                                                                                                                | ndix 7A A Linear-Programming Approach to Portfolio-Analysis Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122                                                                                            |
|----|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|    | Appe                                                                                                                           | ndix 7B Expected Return, Variance, and Covariance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
|    |                                                                                                                                | for a Multi-index Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123                                                                                            |
| 8  |                                                                                                                                | ormance-Measure Approaches for Selecting Optimum Portfolios g-Few Lee, Hong-Yi Chen, and Jessica Shin-Ying Mai                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                                                                                            |
|    | 8.1                                                                                                                            | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                            |
|    | 8.2                                                                                                                            | Sharpe Performance-Measure Approach with Short Sales Allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                            |
|    | 8.3                                                                                                                            | Treynor-Measure Approach with Short Sales Allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128                                                                                            |
|    | 8.4                                                                                                                            | Treynor-Measure Approach with Short Sales Not Allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                                                            |
|    | 8.5                                                                                                                            | Impact of Short Sales on Optimal-Weight Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 132                                                                                            |
|    | 8.6                                                                                                                            | Economic Rationale of the Treynor Performance-Measure Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132                                                                                            |
|    | 8.7                                                                                                                            | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 133                                                                                            |
|    | Refer                                                                                                                          | ences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133                                                                                            |
|    | Appe                                                                                                                           | ndix 8A Derivation of Equation (8.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133                                                                                            |
|    | Appe                                                                                                                           | ndix 8B Derivation of Equation (8.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 134                                                                                            |
|    | Appe                                                                                                                           | ndix 8C Derivation of Equation (8.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135                                                                                            |
| 9  | The (                                                                                                                          | Creation and Control of Speculative Bubbles in a Laboratory Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137                                                                                            |
|    |                                                                                                                                | s S. Ang, Dean Diavatopoulos, and Thomas V. Schwarz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137                                                                                            |
|    | 9.1                                                                                                                            | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 137                                                                                            |
|    | 9.2                                                                                                                            | Bubbles in the Asset Markets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 139                                                                                            |
|    | 9.3                                                                                                                            | Experimental Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140                                                                                            |
|    | 9.4                                                                                                                            | Results and Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 145                                                                                            |
|    | 9.5                                                                                                                            | Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 161                                                                                            |
|    |                                                                                                                                | ences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 163                                                                                            |
| 10 | Dontf                                                                                                                          | olio Optimization Models and Mean–Variance Spanning Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 165                                                                                            |
| 10 | 1 01 11                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
|    | Wei-F                                                                                                                          | Peng Chen Huimin Chung Keng-Yu Ho, and Tsui-Ling Hsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                            |
|    |                                                                                                                                | Peng Chen, Huimin Chung, Keng-Yu Ho, and Tsui-Ling Hsu Introduction of Markowitz Portfolio-Selection Model                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |
|    | 10.1                                                                                                                           | Introduction of Markowitz Portfolio-Selection Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165                                                                                            |
|    | 10.1<br>10.2                                                                                                                   | Introduction of Markowitz Portfolio-Selection Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165<br>166                                                                                     |
|    | 10.1<br>10.2<br>10.3                                                                                                           | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 165<br>166<br>166                                                                              |
|    | 10.1<br>10.2<br>10.3<br>10.4                                                                                                   | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio  Mean-Variance Spanning Test                                                                                                                                                                                                                                                                                                                                                                                                                        | 165<br>166<br>166<br>172                                                                       |
|    | 10.1<br>10.2<br>10.3<br>10.4<br>10.5                                                                                           | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio  Mean-Variance Spanning Test  Alternative Computer Program to Calculate Efficient Frontier                                                                                                                                                                                                                                                                                                                                                          | 165<br>166<br>166<br>172<br>175                                                                |
|    | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6                                                                                   | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio  Mean-Variance Spanning Test  Alternative Computer Program to Calculate Efficient Frontier  Conclusion                                                                                                                                                                                                                                                                                                                                              | 165<br>166<br>166<br>172<br>175<br>182                                                         |
|    | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6                                                                                   | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio  Mean-Variance Spanning Test  Alternative Computer Program to Calculate Efficient Frontier                                                                                                                                                                                                                                                                                                                                                          | 165<br>166<br>166<br>172<br>175                                                                |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer                                                                          | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio  Mean-Variance Spanning Test  Alternative Computer Program to Calculate Efficient Frontier  Conclusion  ences  bining Fundamental Measures for Stock Selection                                                                                                                                                                                                                                                                                      | 165<br>166<br>166<br>172<br>175<br>182                                                         |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer                                                                          | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio  Mean–Variance Spanning Test  Alternative Computer Program to Calculate Efficient Frontier  Conclusion  ences                                                                                                                                                                                                                                                                                                                                       | 165<br>166<br>166<br>172<br>175<br>182<br>184                                                  |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer                                                                          | Introduction of Markowitz Portfolio-Selection Model  Measurement of Return and Risk  Efficient Portfolio  Mean-Variance Spanning Test  Alternative Computer Program to Calculate Efficient Frontier  Conclusion  ences  bining Fundamental Measures for Stock Selection  on K. Yee  Introduction                                                                                                                                                                                                                                                             | 165<br>166<br>166<br>172<br>175<br>182<br>184                                                  |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer                                                                          | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk Efficient Portfolio Mean-Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation                                                                                                                                                                                                                                               | 165<br>166<br>166<br>172<br>175<br>182<br>184                                                  |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Comb                                                                  | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk Efficient Portfolio Mean-Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation Triangulation in Forensic Valuation                                                                                                                                                                                                           | 165<br>166<br>172<br>175<br>182<br>184<br>185                                                  |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Comb<br>Kento<br>11.1<br>11.2                                         | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk Efficient Portfolio Mean-Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation                                                                                                                                                                                                                                               | 165<br>166<br>172<br>175<br>182<br>184<br>185                                                  |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Comb<br>Kento<br>11.1<br>11.2<br>11.3                                 | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk Efficient Portfolio Mean-Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation Triangulation in Forensic Valuation                                                                                                                                                                                                           | 165<br>166<br>166<br>172<br>175<br>182<br>184<br>185<br>185<br>187<br>189                      |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Comb<br>Kento<br>11.1<br>11.2<br>11.3<br>11.4                         | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk  Efficient Portfolio Mean—Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences  bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation Triangulation in Forensic Valuation Bayesian Triangulation in Asset Pricing Settings                                                                                                                                                        | 165<br>166<br>166<br>172<br>175<br>182<br>184<br>185<br>185<br>187<br>189<br>190               |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Comb<br>Kento<br>11.1<br>11.2<br>11.3<br>11.4                         | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk Efficient Portfolio Mean-Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation Triangulation in Forensic Valuation Bayesian Triangulation in Asset Pricing Settings The Data Snooping Trap                                                                                                                                   | 165<br>166<br>166<br>172<br>175<br>182<br>184<br>185<br>187<br>189<br>190                      |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Comb<br>Kento<br>11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6         | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk Efficient Portfolio Mean-Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences  bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation Triangulation in Forensic Valuation Bayesian Triangulation in Asset Pricing Settings The Data Snooping Trap Using Guidance from Theory to Mitigate Data Snooping                                                                             | 165<br>166<br>166<br>172<br>175<br>182<br>184<br>185<br>187<br>189<br>190<br>194<br>195        |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Coml<br>Kento<br>11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6<br>11.7 | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk  Efficient Portfolio Mean-Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences  bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation Triangulation in Forensic Valuation Bayesian Triangulation in Asset Pricing Settings The Data Snooping Trap Using Guidance from Theory to Mitigate Data Snooping Avoiding Data-Snooping Pitfalls in Financial Statement Analysis            | 165<br>166<br>166<br>172<br>175<br>182<br>184<br>185<br>187<br>189<br>190<br>194<br>195<br>197 |
| 11 | 10.1<br>10.2<br>10.3<br>10.4<br>10.5<br>10.6<br>Refer<br>Comb<br>Kento<br>11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6<br>11.7 | Introduction of Markowitz Portfolio-Selection Model Measurement of Return and Risk  Efficient Portfolio Mean—Variance Spanning Test Alternative Computer Program to Calculate Efficient Frontier Conclusion ences  bining Fundamental Measures for Stock Selection on K. Yee Introduction Bayesian Triangulation Triangulation in Forensic Valuation Bayesian Triangulation in Asset Pricing Settings The Data Snooping Trap Using Guidance from Theory to Mitigate Data Snooping Avoiding Data-Snooping Pitfalls in Financial Statement Analysis Conclusion | 165<br>166<br>166<br>172<br>175<br>182<br>184<br>185<br>187<br>189<br>190<br>194<br>195<br>197 |

xii Contents

| 12 | On E  | stimation Risk and Power Utility Portfolio Selection                    | 203  |
|----|-------|-------------------------------------------------------------------------|------|
|    | Rober | rt R. Grauer and Frederick C. Shen                                      |      |
|    | 12.1  | Introduction                                                            | 203  |
|    | 12.2  | Literature Review                                                       | 203  |
|    | 12.3  | The Multiperiod Investment Model                                        | 205  |
|    | 12.4  | The Data                                                                | 206  |
|    | 12.5  | Alternative Ways of Estimating the Joint Return Distribution            | 206  |
|    | 12.6  | Alternate Ways of Evaluating Investment Performance                     |      |
|    | 12.7  | The Results                                                             | 210  |
|    | 12.7  | Conclusion                                                              | 216  |
|    | 12.9  | Addendum                                                                |      |
|    |       | ences                                                                   |      |
|    |       |                                                                         |      |
| 13 |       | national Portfolio Management: Theory and Method                        | 221  |
|    |       | Jiun Paul Chiou and Cheng-Few Lee                                       | 221  |
|    | 13.1  | Introduction                                                            |      |
|    | 13.2  | Overview of International Portfolio Management                          |      |
|    | 13.3  | Literature Review                                                       |      |
|    | 13.4  | Forming the Optimal Global Portfolio                                    |      |
|    | 13.5  | The Benefits of International Diversification Around the World          | 227  |
|    | 13.6  | The Optimal Portfolio Components                                        | 229  |
|    | 13.7  | Conclusion                                                              | 232  |
|    | Refer | ences                                                                   | 233  |
| 14 | The l | Le Chatelier Principle in the Markowitz Quadratic Programming           |      |
| 17 |       | tment Model: A Case of World Equity Fund Market                         | 235  |
|    |       | W. Yang, Ken Hung, and Jing Cui                                         | 233  |
|    | 14.1  | Introduction                                                            | 235  |
|    |       |                                                                         |      |
|    | 14.2  | Data and Methodology                                                    | 236  |
|    | 14.3  | The Le Châtelier Principle in the Markowitz Investment Model            | 236  |
|    | 14.4  | An Application of the Le Châtelier Principle in the World Equity Market | 237  |
|    | 14.5  | Conclusion                                                              | 245  |
|    | Refer | ences                                                                   | 245  |
| 15 |       | Averse Portfolio Optimization via Stochastic Dominance Constraints      | 247  |
|    | Darin | ka Dentcheva and Andrzej Ruszczyński                                    |      |
|    | 15.1  | Introduction                                                            | 247  |
|    | 15.2  | The Portfolio Problem                                                   | 248  |
|    | 15.3  | Stochastic Dominance                                                    | 249  |
|    | 15.4  | The Dominance-Constrained Portfolio Problem                             | 252  |
|    | 15.5  | Optimality and Duality                                                  | 254  |
|    | 15.6  | Numerical Illustration                                                  | 256  |
|    | 15.7  | Conclusions                                                             | 257  |
|    |       | ences                                                                   | 257  |
|    |       |                                                                         |      |
| 16 |       | olio Analysis                                                           | 259  |
|    |       | Clark Francis                                                           | 2.50 |
|    | 16.1  | Introduction                                                            | 259  |
|    | 16.2  | Inputs for Portfolio Analysis                                           | 259  |
|    | 16.3  | The Security Analyst's Job                                              | 259  |
|    | 16.4  | Four Assumptions Underlying Portfolio Analysis                          | 260  |
|    | 16.5  | Different Approaches to Diversification                                 | 260  |
|    | 16.6  | A Portfolio's Expected Return Formula                                   | 261  |
|    | 16.7  | The Quadratic Risk Formula for a Portfolio                              | 261  |
|    | 16.8  | The Covariance Between Returns from Two Assets                          | 262  |

Contents xiii

|    | 16.10<br>16.11<br>16.12 | Portfolio Analysis of a Two-Asset Portfolio  Mathematical Portfolio Analysis  Calculus Minimization of Risk: A Three-Security Portfolio  Conclusion | 262<br>265<br>265<br>266<br>266 |
|----|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 15 |                         | ences                                                                                                                                               |                                 |
| 17 |                         | olio Theory, CAPM and Performance Measures Ferruz, Fernando Gómez-Bezares, and María Vargas                                                         | 267                             |
|    | 17.1<br>17.2            | Portfolio Theory and CAPM: Foundations and Current Application Performance Measures Related to Portfolio Theory and the CAPM: Classic               | 267                             |
|    |                         | Indices, Derivative Indices, and New Approaches                                                                                                     | 274                             |
|    | 17.3                    | Empirical Analysis: Performance Rankings and Performance Persistence                                                                                | 277                             |
|    | 17.4                    | Summary and Conclusions                                                                                                                             | 280                             |
|    | Refere                  | ences                                                                                                                                               | 280                             |
| 18 | Intert                  | temporal Equilibrium Models, Portfolio Theory and the Capital Asset                                                                                 |                                 |
|    |                         | ng Model                                                                                                                                            | 283                             |
|    |                         | en J. Brown                                                                                                                                         |                                 |
|    | 18.1                    | Introduction                                                                                                                                        | 283                             |
|    | 18.2                    | Intertemporal Equilibrium Models                                                                                                                    | 283                             |
|    | 18.3<br>18.4            | Relationship to Observed Security Returns                                                                                                           | 284<br>285                      |
|    | 18.5                    | Hansen Jagannathan Bounds                                                                                                                           | 285                             |
|    | 18.6                    | Are Stochastic Discount Factors Positive?                                                                                                           | 286                             |
|    | 18.7                    | Conclusion                                                                                                                                          | 286                             |
|    |                         | ences                                                                                                                                               | 287                             |
| 19 | Persis                  | stence, Predictability, and Portfolio Planning                                                                                                      | 289                             |
| 1, |                         | ael J. Brennan and Yihong Xia                                                                                                                       | 207                             |
|    | 19.1                    | Introduction                                                                                                                                        | 289                             |
|    | 19.2                    | Detecting and Exploiting Predictability                                                                                                             | 290                             |
|    | 19.3                    | Stock Price Variation and Variation in the Expected Returns                                                                                         | 296                             |
|    | 19.4                    | Economic Significance of Predictability                                                                                                             | 298                             |
|    | 19.5                    | Forecasts of Equity Returns                                                                                                                         | 303                             |
|    | 19.6                    | Conclusion                                                                                                                                          | 314                             |
|    |                         | ences                                                                                                                                               | 314                             |
|    |                         | ndix 19A The Optimal Strategy                                                                                                                       | 315                             |
|    |                         | ndix 19B The Unconditional Strategy                                                                                                                 | 316                             |
|    |                         | ndix 19C The Myopic Strategy                                                                                                                        | 317                             |
|    | Apper                   | ndix 19D The Optimal Buy-and-Hold Strategy                                                                                                          | 317                             |
| 20 |                         | olio Insurance Strategies: Review of Theory and Empirical Studies                                                                                   | 319                             |
|    |                         | hih Ho, John Cadle, and Michael Theobald                                                                                                            |                                 |
|    | 20.1                    | Introduction                                                                                                                                        | 319                             |
|    | 20.2                    | Theory of Alternative Portfolio Insurance Strategies                                                                                                | 319                             |
|    | 20.3                    | Empirical Comparison of Alternative Portfolio Insurance Strategies                                                                                  | 324                             |
|    | 20.4                    | Recent Market Developments                                                                                                                          | 329                             |
|    | 20.5                    | Implications for Financial Market Stability                                                                                                         | 331                             |
|    | 20.6                    | Conclusion                                                                                                                                          | 332<br>332                      |
|    | Kelere                  | ences                                                                                                                                               | 332                             |

xiv Contents

| 21 Security Market Microstructure: The Analysis of a Non-Frictionless |        |                                                                |            |  |  |
|-----------------------------------------------------------------------|--------|----------------------------------------------------------------|------------|--|--|
|                                                                       | Mark   | <b>Market</b>                                                  |            |  |  |
|                                                                       | Reto 1 | rancioni, Sonali Hazarika, Martin Reck, and Robert A. Schwartz |            |  |  |
|                                                                       | 21.1   | Introduction                                                   | 333        |  |  |
|                                                                       | 21.2   |                                                                | 334        |  |  |
|                                                                       | 21.3   |                                                                | 335        |  |  |
|                                                                       | 21.4   | · ·                                                            | 339        |  |  |
|                                                                       | 21.5   | ·                                                              | 344        |  |  |
|                                                                       | 21.6   | • 11                                                           | 344<br>345 |  |  |
|                                                                       | 21.7   | _                                                              | 343<br>347 |  |  |
|                                                                       |        | •                                                              |            |  |  |
|                                                                       |        |                                                                | 347        |  |  |
|                                                                       | Appe   |                                                                | 349        |  |  |
|                                                                       |        |                                                                | 349        |  |  |
|                                                                       |        |                                                                | 349        |  |  |
|                                                                       | Appe   | č č                                                            | 350        |  |  |
|                                                                       |        | C                                                              | 350        |  |  |
|                                                                       |        | 21B.2 Call Auction Trading                                     | 351        |  |  |
|                                                                       |        | 21B.3 Electronic Trading for Less Liquid Stocks                | 351        |  |  |
|                                                                       |        | 21B.4 Xetra's Implementation and the Migration of Liquidity    |            |  |  |
|                                                                       |        | to Xetra Since 1997                                            | 352        |  |  |
|                                                                       |        |                                                                |            |  |  |
| Par                                                                   | t III  | Options and Option Pricing Theory                              |            |  |  |
|                                                                       |        |                                                                |            |  |  |
| 22                                                                    | Optio  | ns Strategies and Their Applications                           | 355        |  |  |
|                                                                       | Chen   | Few Lee, John Lee, and Wei-Kang Shih                           |            |  |  |
|                                                                       | 22.1   | Introduction                                                   | 355        |  |  |
|                                                                       | 22.2   | The Option Market and Related Definitions                      | 355        |  |  |
|                                                                       | 22.3   | Put-Call Parity                                                | 360        |  |  |
|                                                                       | 22.4   | •                                                              | 363        |  |  |
|                                                                       | 22.5   | <u>.</u>                                                       | 372        |  |  |
|                                                                       | 22.6   | •                                                              | 375        |  |  |
|                                                                       |        |                                                                | 375        |  |  |
|                                                                       | RCICI  | 11005                                                          | 313        |  |  |
| 23                                                                    | Optio  | n Pricing Theory and Firm Valuation                            | 377        |  |  |
|                                                                       | Chen   | Few Lee, Joseph E. Finnerty, and Wei-Kang Shih                 |            |  |  |
|                                                                       | 23.1   | Introduction                                                   | 377        |  |  |
|                                                                       | 23.2   | Basic Concepts of Options                                      | 377        |  |  |
|                                                                       | 23.3   | · · · ·                                                        | 380        |  |  |
|                                                                       | 23.4   |                                                                | 384        |  |  |
|                                                                       | 23.5   | •                                                              | 387        |  |  |
|                                                                       | 23.6   |                                                                | 390        |  |  |
|                                                                       | 23.7   |                                                                | 391        |  |  |
|                                                                       |        |                                                                | 392        |  |  |
|                                                                       | Kelei  | iices                                                          | 392        |  |  |
| 24                                                                    | Appli  | ations of the Binomial Distribution to Evaluate Call Options   | 393        |  |  |
|                                                                       |        | C. Lee, John Lee, and Jessica Shin-Ying Mai                    |            |  |  |
|                                                                       | 24.1   | _                                                              | 393        |  |  |
|                                                                       | 24.2   |                                                                | 393        |  |  |
|                                                                       | 24.3   | •                                                              | 393        |  |  |
|                                                                       | 24.4   |                                                                | 395<br>395 |  |  |
|                                                                       | 24.4   |                                                                | 393<br>397 |  |  |
|                                                                       |        |                                                                |            |  |  |
|                                                                       | Keler  | nces                                                           | 397        |  |  |

Contents xv

| 25 |       | inomial Option Pricing Model                                   | 399   |
|----|-------|----------------------------------------------------------------|-------|
|    |       | g Few Lee and Jack C. Lee                                      | • • • |
|    | 25.1  | Introduction                                                   | 399   |
|    | 25.2  | Multinomial Option Pricing Model                               | 399   |
|    | 25.3  | A Lattice Framework for Option Pricing                         | 402   |
|    | 25.4  | Conclusion                                                     | 406   |
|    |       | ences                                                          | 406   |
|    | Appe  | ndix 25A                                                       | 406   |
| 26 | Two A | Alternative Binomial Option Pricing Model Approaches to Derive |       |
|    | Black | x-Scholes Option Pricing Model                                 | 409   |
|    | Chen  | g-Few Lee and Carl Shu-Ming Lin                                |       |
|    | 26.1  | Introduction                                                   | 409   |
|    | 26.2  | The Two-State Option Pricing Model of Rendleman and Bartter    | 409   |
|    | 26.3  | The Binomial Option Pricing Model of Cox, Ross, and Rubinstein | 415   |
|    | 26.4  | Comparison of the Two Approaches                               | 417   |
|    | 26.5  | Conclusion                                                     | 418   |
|    | Refer | ences                                                          | 418   |
|    | Appe  | ndix 26A The Binomial Theorem                                  | 419   |
| 27 |       | nal, Lognormal Distribution and Option Pricing Model           | 421   |
|    |       | g Few Lee, Jack C. Lee, and Alice C. Lee                       |       |
|    | 27.1  | Introduction                                                   | 421   |
|    | 27.2  | The Normal Distribution                                        | 421   |
|    | 27.3  | The Lognormal Distribution                                     | 422   |
|    | 27.4  | The Lognormal Distribution and Its Relationship to the Normal  | 400   |
|    | 27.5  | Distribution                                                   | 422   |
|    | 27.5  | Multivariate Normal and Lognormal Distributions                | 423   |
|    | 27.6  | The Normal Distribution as an Application to the Binomial      | 40.5  |
|    | 27.7  | and Poisson Distributions                                      | 425   |
|    | 27.7  | Applications of the Lognormal Distribution in Option Pricing   | 426   |
|    | 27.8  | Conclusion                                                     | 428   |
|    | Refer | ences                                                          | 428   |
| 28 | Bivar | riate Option Pricing Models                                    | 429   |
|    |       | g Few Lee, Alice C. Lee, and John Lee                          |       |
|    |       | Introduction                                                   | 429   |
|    | 28.2  | The Bivariate Normal Density Function                          | 429   |
|    | 28.3  | American Call Option and the Bivariate Normal CDF              | 430   |
|    | 28.4  | Valuating American Options                                     | 431   |
|    | 28.5  | Non-Dividend-Paying Stocks                                     | 433   |
|    | 28.6  | Dividend-Paying Stocks                                         | 433   |
|    | 28.7  | Conclusion                                                     | 438   |
|    |       | ences                                                          | 438   |
| 29 | Displ | aced Log Normal and Lognormal American Option Pricing:         |       |
|    | _     | mparison                                                       | 439   |
|    |       | Raw Chen and Cheng-Few Lee                                     |       |
|    | 29.1  | Introduction                                                   | 439   |
|    | 29.2  | The American Option Pricing Model Under the Lognormal Process  | 439   |
|    | 29.3  | The Geske-Roll-Whaley Model                                    | 440   |
|    | 29.4  | Conclusion                                                     | 442   |
|    | Refer | ences                                                          | 442   |
|    | Appe  | ndix 29A                                                       | 443   |

xvi Contents

| <b>30</b> |        | Calculus and the Derivation of the Black–Scholes Option-Pricing Model . | 447        |
|-----------|--------|-------------------------------------------------------------------------|------------|
|           | Georg  | ge Chalamandaris and A.G. Malliaris                                     |            |
|           | 30.1   |                                                                         | 447        |
|           | 30.2   | $\epsilon$                                                              | 447        |
|           | 30.3   |                                                                         | 451        |
|           | 30.4   | 1 11 1                                                                  | 452        |
|           | 30.5   | $\mathcal{E}$ 1                                                         | 454        |
|           | 30.6   |                                                                         | 455        |
|           | 30.7   | 6 6 11                                                                  | 458        |
|           | 30.8   | 1 C                                                                     | 463        |
|           | 30.9   |                                                                         | 465        |
|           |        |                                                                         | 465        |
|           | Appe   | ndix 30A An Alternative Method To Derive the Black-Scholes              |            |
|           |        | 1 6                                                                     | 466        |
|           |        | 30A.1 Assumptions and the Present Value of the Expected Terminal        |            |
|           |        | *                                                                       | 466        |
|           |        | 30A.2 Present Value of the Partial Expectation of the Terminal          |            |
|           |        |                                                                         | 467        |
|           |        | 30A.3 Present Value of the Exercise Price under Uncertainty             | 469        |
| 31        | Cons   | tant Elasticity of Variance Option Pricing Model: Integration           |            |
|           | and I  | Detailed Derivation                                                     | 471        |
|           | Y.L. I | Hsu, T.I. Lin, and C.F. Lee                                             |            |
|           | 31.1   | Introduction                                                            | 471        |
|           | 31.2   | The CEV Diffusion and Its Transition Probability Density Function       | 471        |
|           | 31.3   | Review of Noncentral Chi-Square Distribution                            | 473        |
|           | 31.4   |                                                                         | 474        |
|           | 31.5   | Conclusion                                                              | 478        |
|           | Refer  | rences                                                                  | 478        |
|           | Appe   | ndix 31A Proof of Feller's Lemma                                        | 478        |
| 32        | Stoch  | nastic Volatility Option Pricing Models                                 | 481        |
|           |        | g Few Lee and Jack C. Lee                                               |            |
|           | 32.1   | e                                                                       | 481        |
|           | 32.2   |                                                                         | 481        |
|           | 32.3   |                                                                         | 485        |
|           | 32.4   |                                                                         | 485        |
|           | 32.5   | • • • •                                                                 | 489        |
|           | Refer  |                                                                         | 489        |
|           |        |                                                                         | 489        |
| 22        | Dan!-  | untions and Applications of Cook I attens. Devices and Internation      | 491        |
| 33        |        | vations and Applications of Greek Letters: Review and Integration       | 491        |
|           | 33.1   |                                                                         | 491        |
|           | 33.2   |                                                                         | 491        |
|           | 33.3   |                                                                         | 494        |
|           | 33.4   |                                                                         | 496        |
|           | 33.5   |                                                                         | 498        |
|           | 33.6   | <del>-</del>                                                            | 498<br>500 |
|           | 33.7   | Derivation of Sensitivity for Stock Options Respective                  | 500        |
|           | ۱.دد   | * * *                                                                   | 501        |
|           | 33.8   |                                                                         | 502        |
|           | 33.9   | <u>.</u>                                                                | 503        |
|           |        |                                                                         | 503        |
|           | INCIUI | ······································                                  | JUJ        |

Contents xvii

| 34 | A Fu  | rther Analysis of the Convergence Rates and Patterns of the Binomial |     |
|----|-------|----------------------------------------------------------------------|-----|
|    | Mode  | els                                                                  | 505 |
|    | San-L | Lin Chung and Pai-Ta Shih                                            |     |
|    | 34.1  | Brief Review of the Binomial Models                                  | 505 |
|    | 34.2  | The Importance of Node Positioning for Monotonic Convergence         | 506 |
|    | 34.3  | The Flexibility of GCRR Model for Node Positioning                   | 507 |
|    | 34.4  | Numerical Results of Various GCRR Models                             | 507 |
|    | 34.5  | Conclusion                                                           | 510 |
|    | Refer | rences                                                               | 513 |
|    | Appe  | endix 34A Extrapolation Formulas for Various GCRR Models             | 513 |
| 35 |       | nating Implied Probabilities from Option Prices and the Underlying   | 515 |
|    | Bruce | e Mizrach                                                            |     |
|    | 35.1  | Introduction                                                         |     |
|    | 35.2  | Black Scholes Baseline                                               |     |
|    | 35.3  | Empirical Departures from Black Scholes                              | 517 |
|    | 35.4  | Beyond Black Scholes                                                 | 518 |
|    | 35.5  | Histogram Estimators                                                 | 518 |
|    | 35.6  | Tree Methods                                                         | 520 |
|    | 35.7  | Local Volatility Functions                                           | 522 |
|    | 35.8  | PDF Approaches                                                       | 522 |
|    | 35.9  | Inferences from the Mixture Model                                    | 524 |
|    | 35.10 | Jump Processes                                                       | 526 |
|    | 35.11 | Conclusion                                                           | 528 |
|    | Refer | rences                                                               | 528 |
| 36 |       | Tails Fat Enough to Explain Smile                                    | 531 |
|    |       | Raw Chen, Oded Palmon, and John Wald                                 |     |
|    | 36.1  | Introduction                                                         |     |
|    | 36.2  | Literature Review                                                    |     |
|    | 36.3  | The Models                                                           | 533 |
|    | 36.4  | Data and Empirical Results                                           | 537 |
|    | 36.5  | Conclusion                                                           | 541 |
|    | Refer | rences                                                               | 541 |
|    | Appe  | endix 36A                                                            | 542 |
|    |       | 36A.1 The Derivation of the Lognormal Model Under No Rebalancing     | 542 |
|    |       | 36A.2 Continuous Rebalancing                                         | 543 |
|    |       | 36A.3 Smoothing Techniques                                           | 543 |
|    |       | 36A.4 Results of Sub-Sample Testing                                  | 544 |
| 37 |       | on Pricing and Hedging Performance Under Stochastic Volatility       |     |
|    |       | Stochastic Interest Rates                                            | 547 |
|    |       | ip Bakshi, Charles Cao, and Zhiwu Chen                               |     |
|    | 37.1  | Introduction                                                         | 547 |
|    | 37.2  | The Option Pricing Model                                             | 549 |
|    | 37.3  | Data Description                                                     | 556 |
|    | 37.4  | Empirical Tests                                                      | 557 |
|    | 37.5  | Conclusions                                                          | 571 |
|    | Refer | rences                                                               | 571 |
|    | Anne  | endix 37A                                                            | 572 |

xviii Contents

| 38 |               | ication of the Characteristic Function in Financial Research                               | 575        |
|----|---------------|--------------------------------------------------------------------------------------------|------------|
|    | 38.1          | Introduction                                                                               | 575        |
|    | 38.2          | The Characteristic Functions                                                               | 575        |
|    | 38.3          | CEV Option Pricing Model                                                                   |            |
|    | 38.4          | Options with Stochastic Volatility                                                         | 577        |
|    | 38.5          | Conclusion                                                                                 | 581        |
|    |               | ences                                                                                      | 581        |
| 39 | Asiar         | on Options                                                                                 | 583        |
|    | Itzhal        | x Venezia                                                                                  |            |
|    | 39.1          | Introduction                                                                               | 583        |
|    | 39.2          | Valuation                                                                                  | 584        |
|    | 39.3          | Conclusion                                                                                 | 586        |
|    | Refer         | ences                                                                                      | 586        |
| 40 |               | erical Valuation of Asian Options with Higher Moments                                      |            |
|    |               | Underlying Distribution                                                                    | 587        |
|    |               | th Wang and Ming-Feng Hsu                                                                  |            |
|    | 40.1          | Introduction                                                                               | 587        |
|    | 40.2          | Definitions and the Basic Binomial Model                                                   | 588        |
|    | 40.3          | Edgeworth Binomial Model for Asian Option Valuation                                        | 589        |
|    | 40.4          | Upper Bound and Lower Bound for European Asian Options                                     | 591        |
|    | 40.5          | Upper Bound and Lower Bound for American Asian Options                                     | 593        |
|    | 40.6          | Numerical Examples                                                                         | 594        |
|    | 40.7<br>Refer | Conclusion                                                                                 | 602<br>602 |
| 41 |               | Valuation of Uncertain Income Streams and the Pricing of Options                           | 605        |
| 41 |               | Rubinstein                                                                                 | 003        |
|    | 41.1          | Introduction                                                                               | 605        |
|    | 41.2          | Uncertain Income Streams: General Case                                                     | 606        |
|    | 41.3          | Uncertain Income Streams: Special Case                                                     | 608        |
|    | 41.4          | Options                                                                                    |            |
|    | 41.5          | Conclusion                                                                                 |            |
|    |               | ences                                                                                      |            |
|    |               | ndix 41A The Bivariate Normal Density Function                                             |            |
|    |               | •                                                                                          | 014        |
| 42 |               | mial OPM, Black-Scholes OPM and Their Relationship: Decision Tree Microsoft Excel Approach | 617        |
|    | John          | **                                                                                         | 01,        |
|    | 42.1          | Introduction                                                                               | 617        |
|    | 42.2          | Call and Put Options                                                                       | 617        |
|    | 42.3          | One Period Option Pricing Model                                                            | 618        |
|    | 42.4          | Two-Period Option Pricing Model                                                            | 621        |
|    | 42.5          | Using Microsoft Excel to Create the Binomial Option Trees                                  | 622        |
|    | 42.6          | Black-Scholes Option Pricing Model                                                         | 624        |
|    | 42.7          | Relationship Between the Binomial OPM and the Black-Scholes OPM                            | 625        |
|    | 42.8          | Decision Tree Black-Scholes Calculation                                                    | 626        |
|    | 42.9          | Conclusion                                                                                 | 626        |
|    |               | ences                                                                                      | 627        |
|    |               | ndix 42A Excel VBA Code: Binomial Option Pricing Model                                     |            |

Contents xix

| Part IV | Risk Management |
|---------|-----------------|
|---------|-----------------|

| 43 | Combinatorial Meth<br>Alexander Kogan and   | ods for Constructing Credit Risk Ratings                    | . 639      |
|----|---------------------------------------------|-------------------------------------------------------------|------------|
|    | 43.1 Introduction                           |                                                             | 639        |
|    |                                             | sis of Data: An Overview                                    | 641        |
|    |                                             | itworthiness: Credit Risk Ratings of Financial Institutions | 643        |
|    | 43.4 Relative Credit                        | tworthiness: Country Risk Ratings                           | 648        |
|    | 43.5 Conclusions                            |                                                             | 659        |
|    |                                             |                                                             | 660        |
|    | Appendix 43A                                |                                                             | 662        |
| 44 |                                             | roach to Modeling Credit Risk                               | 665        |
|    | Jing-zhi Huang                              |                                                             |            |
|    |                                             |                                                             | 665        |
|    |                                             | lit Risk Models                                             | 665        |
|    | -                                           | lence                                                       | 668        |
|    |                                             |                                                             | 671        |
|    | References                                  |                                                             | 671        |
| 45 | _                                           | gation of the Rationales for Integrated Risk-Management     | <i>(75</i> |
|    | Michael S. Pagano                           |                                                             | 675        |
|    |                                             |                                                             | 675        |
|    |                                             | sk-Management, Previous Research, and Testable              | 677        |
|    | • •                                         | Selection, and Empirical Methodology                        | 685        |
|    | -                                           | ılts                                                        | 689        |
|    | •                                           |                                                             | 694        |
|    |                                             |                                                             | 694        |
|    |                                             |                                                             |            |
| 46 | Copula, Correlated I<br>Jow-Ran Chang and A | <b>Defaults, and Credit VaR</b>                             | 697        |
|    | 46.1 Introduction                           |                                                             | 697        |
|    | 46.2 Methodology.                           |                                                             | 698        |
|    | 46.3 Experimental F                         | Results                                                     | 703        |
|    | 46.4 Conclusion                             |                                                             | 710        |
|    | References                                  |                                                             | 711        |
| 47 | Unspanned Stochast<br>Feng Zhao             | ic Volatilities and Interest Rate Derivatives Pricing       | 713        |
|    | · ·                                         |                                                             | 713        |
|    |                                             | Models with Spanned Stochastic Volatility                   | 716        |
|    |                                             | t Models with Stochastic Volatility and Jumps: Theory       | /10        |
|    |                                             | 1                                                           | 723        |
|    |                                             | Estimation of the Forward Density                           | 734        |
|    |                                             | Estimation of the Polward Density                           | 746        |
|    |                                             |                                                             | 746        |
|    |                                             | erivation for QTSMs                                         | 748        |
|    |                                             | pplementation of the Kalman Filter                          | 750        |
|    |                                             | tion of the Characteristic Function                         | 751        |
|    | Appendix T/C Deliva                         | mon of the Characteristic Lanction                          | 151        |

xx Contents

| 48         | Catastrophic Losses and Alternative Risk Transfer Instruments                               | 753   |
|------------|---------------------------------------------------------------------------------------------|-------|
|            | in-Ping Lee and Min-Teh Yu                                                                  |       |
|            |                                                                                             | 753   |
|            | 1                                                                                           | 753   |
|            | r 1 2                                                                                       | 757   |
|            | 18.4 Catastrophe Derivatives                                                                | 760   |
|            | 48.5 Reinsurance with CAT-Linked Securities                                                 | 763   |
|            | 48.6 Conclusion                                                                             | 764   |
|            | References                                                                                  | 766   |
| 49         | A Real Option Approach to the Comprehensive Analysis of Bank                                |       |
|            | Consolidation Values                                                                        | 767   |
|            | Chuang-Chang Chang, Pei-Fang Hsieh, and Hung-Neng Lai                                       |       |
|            | 19.1 Introduction                                                                           | 767   |
|            | 19.2 The Model                                                                              | 768   |
|            | 19.3 Case Study                                                                             | 771   |
|            |                                                                                             | 775   |
|            |                                                                                             | 777   |
|            |                                                                                             | 777   |
|            | Appendix 49A The Correlations Between the Standard Wiener Process Generated                 | , , , |
|            |                                                                                             | 778   |
|            |                                                                                             | 778   |
|            | · ·                                                                                         | 778   |
| <b>5</b> 0 | · ·                                                                                         |       |
| 50         | · · · · · · · · · · · · · · · · · · ·                                                       | 779   |
|            | C.H. Ted Hong                                                                               | 770   |
|            |                                                                                             | 779   |
|            |                                                                                             | 780   |
|            | $\epsilon$                                                                                  | 782   |
|            | 1 7                                                                                         | 792   |
|            | 50.5 Delinquency Study                                                                      | 797   |
|            | 50.6 Conclusion                                                                             | 800   |
|            | References                                                                                  | 802   |
|            | Appendix 50A Default and Prepayment Definition                                              | 802   |
|            |                                                                                             | 803   |
|            |                                                                                             | 803   |
|            | 11                                                                                          | 805   |
|            |                                                                                             | 005   |
| 51         | The Effect of Default Risk on Equity Liquidity: Evidence Based on the Panel Threshold Model | 807   |
|            |                                                                                             | 007   |
|            | Huimin Chung, Wei-Peng Chen, and Yu-Dan Chen                                                | 005   |
|            |                                                                                             | 807   |
|            | <i>2</i> ;                                                                                  | 808   |
|            | 1                                                                                           | 812   |
|            | 51.4 Conclusion                                                                             | 815   |
|            | References                                                                                  | 815   |
|            | Appendix 51A                                                                                | 816   |
| 52         | Put Option Approach to Determine Bank Risk Premium                                          | 819   |
|            | Dar Yeh Hwang, Fu-Shuen Shie, and Wei-Hsiung Wu                                             |       |
|            |                                                                                             | 819   |
|            |                                                                                             | 820   |
|            |                                                                                             | 820   |
|            |                                                                                             | 823   |

Contents xxi

|    | 52.5 Conclusion  References  Appendix 52A  Appendix 52B                                                                                                                                                                                                                                                                     | 826<br>826                                    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 53 | Keiretsu Style Main Bank Relationships, R&D Investment, Leverage, and Firm Value: Quantile Regression Approach  Hai-Chin Yu, Chih-Sean Chen, and Der-Tzon Hsieh  53.1 Introduction  53.2 Literature Review  53.3 Data and Sample  53.4 Empirical Results and Analysis  53.5 Conclusions and Discussion  References          | 829<br>831<br>831<br>836<br>840               |
| 54 | On the Feasibility of Laddering Joshua Ronen and Bharat Sarath 54.1 Introduction 54.2 The Model 54.3 Results 54.4 Conclusion References                                                                                                                                                                                     | 843<br>843<br>845<br>849<br>851<br>851        |
| 55 | Stock Returns, Extreme Values, and Conditional Skewed Distribution  Thomas C. Chiang and Jiandong Li  55.1 Introduction  55.2 The AGARCH Model Based on the EGB2 Distribution  55.3 Data  55.4 Empirical Evidence  55.5 Distributional Fit Test  55.6 The Implication of the EGB2 Distribution  55.7 Conclusion  References | 853                                           |
| 56 | Capital Structure in Asia and CEO Entrenchment Kin Wai Lee and Gillian Hian Heng Yeo 56.1 Introduction 56.2 Prior Research and Hypothesis 56.3 Data and Method 56.4 Results 56.5 Conclusion References Appendix 56A Variables Definition                                                                                    | 863                                           |
| 57 | A Generalized Model for Optimum Futures Hedge Ratio Cheng-Few Lee, Jang-Yi Lee, Kehluh Wang, and Yuan-Chung Sheu 57.1 Introduction 57.2 GIG and GH Distributions 57.3 Futures Hedge Ratios 57.4 Estimation and Simulation 57.5 Conclusion References Appendix 57A                                                           | 873<br>876<br>876<br>877<br>880<br>880<br>881 |

xxii Contents

| 58        | The S | Sensitivity of Corporate Bond Volatility to Macroeconomic             |            |
|-----------|-------|-----------------------------------------------------------------------|------------|
|           | Anno  | ouncements                                                            | 883        |
|           | Nikol | ay Kosturov and Duane Stock                                           |            |
|           | 58.1  | Introduction                                                          | 883        |
|           | 58.2  | Theory and Hypotheses                                                 | 884        |
|           | 58.3  | Data and Return Computations                                          | 886        |
|           | 58.4  | Descriptive Statistics of Daily Excess Returns                        | 886        |
|           | 58.5  | OLS Regressions of Volatility and Excess Returns                      | 897        |
|           | 58.6  | Conditional Variance Models                                           | 899        |
|           | 58.7  | Alternative GARCH Models                                              | 903        |
|           | 58.8  | Conclusion                                                            | 910        |
|           | Refer | ences                                                                 | 912        |
|           | Appe  | ndix 58A                                                              | 913        |
| 59        | Raw   | Material Convenience Yields and Business Cycle                        | 915        |
|           | Chan  | g-Wen Duan and William T. Lin                                         |            |
|           | 59.1  | Introduction                                                          | 915        |
|           | 59.2  | Characteristics of Study Commodities                                  | 917        |
|           | 59.3  | The Model                                                             | 919        |
|           | 59.4  | Data                                                                  | 921        |
|           | 59.5  | Empirical Results                                                     | 922        |
|           | 59.6  | Conclusion                                                            | 930        |
|           | Refer | ences                                                                 | 931        |
| 60        | Alter | native Methods to Determine Optimal Capital Structure:                |            |
|           |       | ry and Application                                                    | 933        |
|           |       | g-Syan Chen, Cheng-Few Lee, and Han-Hsing Lee                         |            |
|           | 60.1  | Introduction                                                          | 933        |
|           | 60.2  | The Traditional Theory of Optimal Capital Structure                   | 934        |
|           | 60.3  | Optimal Capital Structure in the Contingent Claims Framework          | 936        |
|           | 60.4  | Recent Development of Capital Structure Models                        | 941        |
|           | 60.5  | Application and Empirical Evidence of Capital Structure Models        | 948        |
|           | 60.6  | Conclusion                                                            | 950        |
|           |       | ences                                                                 |            |
| <b>~1</b> |       |                                                                       |            |
| 61        |       | arial Mathematics and Its Applications in Quantitative Finance        | 933        |
|           |       | Introduction                                                          | 953        |
|           | 61.2  | Actuarial Discount and Accumulation Functions                         | 953        |
|           | 61.3  | Actuarial Mathematics of Insurance                                    | 955        |
|           | 61.4  | Actuarial Mathematics of Annuity                                      | 958        |
|           | 61.5  | Actuarial Premiums and Actuarial Reserves                             | 959        |
|           | 61.6  | Applications in Quantitative Finance                                  | 961        |
|           | 61.7  | Conclusion                                                            | 963        |
|           |       | ences                                                                 | 963        |
|           |       |                                                                       |            |
| 62        |       | Prediction of Default with Outliers: Robust Logistic Regression       | 965        |
|           | 62.1  | g-Hua Shen, Yi-Kai Chen, and Bor-Yi Huang Introduction                | 965        |
|           |       |                                                                       |            |
|           | 62.2  | Literature Review of Outliers in Conventional and in Logit Regression | 966        |
|           | 62.3  | Five Validation Tests                                                 | 967        |
|           | 62.4  | Source of Data and Empirical Model                                    | 969        |
|           | 62.5  | Empirical Results                                                     | 969        |
|           | 62.6  | Conclusion                                                            | 973<br>976 |
|           | ICICI | CHCC6                                                                 | 110        |

Contents xxiii

| 63  |       | Structure of Default-Free and Defaultable Securities:         | 979  |
|-----|-------|---------------------------------------------------------------|------|
|     |       | in and Chunchi Wu                                             | 313  |
|     | 63.1  | Introduction                                                  | 979  |
|     | 63.2  | Definitions and Notations                                     |      |
|     | 63.3  | Bond Pricing in Dynamic Term Structure Model Framework        |      |
|     | 63.4  | Dynamic Term Structure Models                                 |      |
|     | 63.5  | Models of Defaultable Bonds                                   |      |
|     | 63.6  | Interest Rate and Credit Default Swaps                        |      |
|     | 63.7  | Concluding Remarks                                            |      |
|     |       | ences                                                         |      |
| 64  | Liqui | idity Risk and Arbitrage Pricing Theory                       | 1007 |
|     | Umut  | t Çetin, Robert A. Jarrow, and Philip Protter                 |      |
|     | 64.1  | Introduction                                                  | 1007 |
|     | 64.2  | The Model                                                     | 1009 |
|     | 64.3  | The Extended First Fundamental Theorem                        | 1011 |
|     | 64.4  | The Extended Second Fundamental Theorem                       | 1012 |
|     | 64.5  | Example (Extended Black–Scholes Economy)                      | 1015 |
|     | 64.6  | Discontinuous Supply Curve Evolutions                         | 1016 |
|     | 64.7  | Conclusion                                                    | 1017 |
|     | Refer | rences                                                        | 1017 |
|     | Appe  | ndix 64A                                                      | 1018 |
| 65  |       | ntegrated Model of Debt Issuance, Refunding, and Maturity     | 1025 |
|     |       | ık C. Gupta and Alice C. Lee                                  |      |
|     | 65.1  | Introduction                                                  |      |
|     | 65.2  | The Model                                                     |      |
|     | 65.3  | Operationalizing the Model                                    |      |
|     | 65.4  | Numerical Illustration                                        |      |
|     | 65.5  | Conclusions                                                   |      |
|     | Refer | rences                                                        | 1037 |
| Par | t V   | Theory, Methodology, and Applications                         |      |
| 66  | Busir | ness Models: Applications to Capital Budgeting, Equity Value, |      |
|     |       | Return Attribution                                            | 1041 |
|     |       | nas S. Y. Ho and Sang Bin Lee                                 |      |
|     | 66.1  | Introduction                                                  |      |
|     | 66.2  | The Model Assumptions                                         | 1042 |
|     | 66.3  | Simulation Results of the Capital Budgeting Decisions         | 1045 |
|     | 66.4  | Relative Valuation of Equity                                  | 1048 |
|     | 66.5  | Equity Return Attribution                                     | 1050 |
|     | 66.6  | Conclusion                                                    | 1051 |
|     | Refer | rences                                                        | 1051 |
|     | Appe  | ndix 66A Derivation of the Risk Neutral Probability           | 1052 |
|     | Appe  | ndix 66B The Model for the Fixed Operating Cost at Time T     | 1052 |
|     | Appe  | ndix 66C The Valuation Model Using the Recombining Lattice    | 1053 |
|     | Appe  | ndix 66D Input Data of the Model                              | 1054 |

xxiv Contents

| 67 |       | ends Versus Reinvestments in Continuous Time: A More ral Model                                                          |
|----|-------|-------------------------------------------------------------------------------------------------------------------------|
|    | Ren-I | Raw Chen, Ben Logan, Oded Palmon, and Larry Shepp                                                                       |
|    | 67.1  | Introduction                                                                                                            |
|    | 67.2  | The Model                                                                                                               |
|    | 67.3  | The Solution                                                                                                            |
|    | 67.4  | Expected Bankruptcy Time                                                                                                |
|    | 67.5  | Further Remarks                                                                                                         |
|    | 67.6  | Conclusion                                                                                                              |
|    | Refer | ences                                                                                                                   |
| 68 | _     | enting Financial Services Market: An Empirical Study of Statistical                                                     |
|    |       | Non-parametric Methods                                                                                                  |
|    |       | eth Lawrence, Dinesh Pai, Ronald Klimberg, Stephen Kudbya,                                                              |
|    |       | heila Lawrence                                                                                                          |
|    | 68.1  | Introduction                                                                                                            |
|    | 68.2  | Methodology                                                                                                             |
|    | 68.3  | Evaluating the Classification Function                                                                                  |
|    | 68.4  | Experimental Design                                                                                                     |
|    | 68.5  | Results                                                                                                                 |
|    | 68.6  | Conclusions                                                                                                             |
|    | Refer | ences                                                                                                                   |
| 69 | _     | ious Regression and Data Mining in Conditional Asset Pricing Models 1067 e Ferson, Sergei Sarkissian, and Timothy Simin |
|    | 69.1  | Introduction                                                                                                            |
|    | 69.2  | Spurious Regression and Data Mining in Predictive Regressions                                                           |
|    | 69.3  | Spurious Regression, Data Mining, and Conditional Asset Pricing 1069                                                    |
|    | 69.4  | The Data                                                                                                                |
|    | 69.5  | The Models                                                                                                              |
|    | 69.6  | Results for Predictive Regressions                                                                                      |
|    | 69.7  | Results for Conditional Asset Pricing Models                                                                            |
|    | 69.8  | Solutions to the Problems of Spurious Regression and Data Mining 1086                                                   |
|    | 69.9  | Robustness of the Asset Pricing Results                                                                                 |
|    |       | Conclusions                                                                                                             |
|    |       | ences                                                                                                                   |
| 70 | Issue | s Related to the Errors-in-Variables Problems in Asset Pricing Tests1091                                                |
|    |       | cheol Kim                                                                                                               |
|    | 70.1  | Introduction                                                                                                            |
|    | 70.2  | The Errors-in-Variables Problem                                                                                         |
|    | 70.3  | A Correction for the Errors-in-Variables Bias                                                                           |
|    | 70.4  | Results                                                                                                                 |
|    | 70.5  | Conclusions                                                                                                             |
|    |       | ences                                                                                                                   |
| 71 | McM   | C Estimation of Multiscale Stochastic Volatility Models                                                                 |
|    | Germ  | an Molina, Chuan-Hsiang Han, and Jean-Pierre Fouque                                                                     |
|    | 71.1  | Introduction                                                                                                            |
|    | 71.2  | Multiscale Modeling and McMC Estimation                                                                                 |
|    | 71.3  | Simulation Study                                                                                                        |
|    | 71.4  | Empirical Application: FX Data                                                                                          |
|    | 71.5  | Implication on Derivatives Pricing and Hedging                                                                          |

Contents xxv

|                | 71.6  | Conclusions                                                              | . 1118 |
|----------------|-------|--------------------------------------------------------------------------|--------|
|                | Refer | rences                                                                   | . 1119 |
|                |       | ndix 71A Proof of Independent Factor Equivalence                         |        |
|                |       | ndix 71B Full Conditionals                                               |        |
|                | Аррс  | ndix / 1B Full Collationals                                              | . 1120 |
| 72             | Regir | me Shifts and the Term Structure of Interest Rates                       | 1121   |
| -              | _     | n-Chung Nieh, Shu Wu, and Yong Zeng                                      |        |
|                |       | · · · · · · · · · · · · · · · · · · ·                                    | 1121   |
|                | 72.1  | Introduction                                                             |        |
|                | 72.2  | Regime-Switching and Short-Term Interest Rate                            |        |
|                | 72.3  | Regime-Switching Term Structure Models in Discreet Time                  | . 1126 |
|                | 72.4  | Regime-Switching Term Structure Models in Continuous Time                | . 1128 |
|                | 72.5  | Conclusion                                                               |        |
|                |       | ences                                                                    |        |
|                | Kelei | ences                                                                    | . 1133 |
| 73             | ARM   | Processes and Their Modeling and Forecasting Methodology                 | 1135   |
| ,,             |       | amin Melamed                                                             | 1133   |
|                |       |                                                                          | 1105   |
|                | 73.1  | Introduction                                                             |        |
|                | 73.2  | Overview of ARM Processes                                                | . 1136 |
|                | 73.3  | The ARM Modeling Methodology                                             | . 1139 |
|                | 73.4  | The ARM Forecasting Methodology                                          | . 1140 |
|                | 73.5  | Example: ARM Modeling of an S&P 500 Time Series                          |        |
|                | 73.6  | Summary                                                                  |        |
|                |       | •                                                                        |        |
|                | Keler | rences                                                                   | . 1149 |
| 74             | Alter | native Econometric Methods for Information-based Equity-selling          |        |
| / <del>-</del> |       | nanisms                                                                  | 1151   |
|                |       |                                                                          | 1131   |
|                |       | Cheng-Few and Yi Lin Wu                                                  |        |
|                | 74.1  |                                                                          |        |
|                | 74.2  | The Information Contents of Equity-Selling Mechanisms                    | . 1152 |
|                | 74.3  | Alternative Econometric Methods for Information-Based Equity-Selling     |        |
|                |       | Mechanisms                                                               | . 1153 |
|                | 74.4  | Conclusions                                                              |        |
|                |       | ences                                                                    |        |
|                | Keler | ences                                                                    | . 1102 |
| 75             | Impl  | ementation Problems and Solutions in Stochastic Volatility Models of the | a .    |
| 15             | _     | on Type                                                                  |        |
|                |       | V A                                                                      | 1103   |
|                |       | au Guo and Mao-Wei Hung                                                  |        |
|                | 75.1  | Introduction                                                             |        |
|                | 75.2  | The Transform-Based Solution for Heston's Stochastic Volatility Model    | . 1165 |
|                | 75.3  | Solutions to the Discontinuity Problem of Heston's Formula               | . 1168 |
|                | 75.4  | Conclusion                                                               |        |
|                |       | ences                                                                    |        |
|                | Refer | chees                                                                    | . 11/1 |
| 76             | Revis | siting Volume vs. GARCH Effects Using Univariate and Bivariate           |        |
|                |       | CH Models: Evidence from U.S. Stock Markets                              | 1173   |
|                |       | Qiao and Wing-Keung Wong                                                 | 1175   |
|                |       |                                                                          | 1170   |
|                | 76.1  | Introduction                                                             |        |
|                | 76.2  | The Mixture of Distribution Hypothesis                                   | . 1175 |
|                | 76.3  | Data and Methodology                                                     | . 1175 |
|                | 76.4  | Empirical Findings in NYSE                                               |        |
|                | 76.5  | Conclusion                                                               |        |
|                |       |                                                                          |        |
|                |       | rences                                                                   |        |
|                | Appe  | ndix 76A                                                                 | . 1180 |

xxvi Contents

| 77        |        | cation of Fuzzy Set Theory to Finance Research: Method pplication |
|-----------|--------|-------------------------------------------------------------------|
|           |        | Yun Wang and Cheng Few Lee                                        |
|           | 77.1   | Introduction                                                      |
|           | 77.1   | Fuzzy Set                                                         |
|           | 77.3   | Applications of Fuzzy Set Theory                                  |
|           |        | **                                                                |
|           | 77.4   | A Example of Fuzzy Binomial OPM                                   |
|           | 77.5   | An Example of Real Options                                        |
|           | 77.6   | Fuzzy Regression                                                  |
|           | 77.7   | Conclusion                                                        |
|           |        | ences                                                             |
| <b>78</b> |        | nic Regression Analysis in Real Estate Markets: A Primer          |
|           | 78.1   | Sopranzetti Internal action 120                                   |
|           |        | Introduction                                                      |
|           | 78.2   | The Theoretical Foundation                                        |
|           | 78.3   | The Data                                                          |
|           | 78.4   | The Linear Model                                                  |
|           | 78.5   | Empirical Specification                                           |
|           | 78.6   | The Semi-Log Model                                                |
|           | 78.7   | The Box-Cox Model                                                 |
|           | 78.8   | Problems with Hedonic Modeling                                    |
|           | 78.9   | Recent Developments                                               |
|           | 78.10  | Conclusion                                                        |
|           | Refere | ences                                                             |
| <b>79</b> | Nume   | rical Solutions of Financial Partial Differential Equations       |
|           | Gang   | Nathan Dong                                                       |
|           | 79.1   | Introduction                                                      |
|           | 79.2   | The Model                                                         |
|           | 79.3   | Discretization                                                    |
|           | 79.4   | Finite Difference                                                 |
|           | 79.5   | Finite Volume                                                     |
|           | 79.6   | Finite Element                                                    |
|           | 79.7   | Empirical Result                                                  |
|           | 79.8   | Conclusion                                                        |
|           | Refere | ences                                                             |
|           |        | er Reading                                                        |
| 80        | A Pri  | mer on the Implicit Financing Assumptions of Traditional Capital  |
|           |        | eting Approaches                                                  |
|           |        | . Brick and Daniel G. Weaver                                      |
|           | 80.1   | Introduction                                                      |
|           | 80.2   | Textbook Approaches to NPV                                        |
|           | 80.3   | Theoretical Valuation of Cash Flows                               |
|           | 80.4   | An Example                                                        |
|           | 80.5   | Personal Tax and Miller Equilibrium                               |
|           | 80.6   | Conclusion                                                        |
|           |        |                                                                   |
|           |        | ences                                                             |
| 81        |        | minants of Flows into U.SBased International Mutual Funds         |
|           | 81.1   | Introduction                                                      |
|           |        | Motivation and Hypotheses 123                                     |
|           | 01/    | TYPOLIVATION AND LIVIDUMENES                                      |

Contents xxvii

|    | 81.4 Me<br>81.5 Cor<br>Reference | ta ethodology and Empirical Results nclusion es 81A Econometric Analysis of Panel Data | 1238<br>1247<br>1253 |
|----|----------------------------------|----------------------------------------------------------------------------------------|----------------------|
| 82 | Predicting                       | g Bond Yields Using Defensive Forecasting                                              | 1257                 |
|    |                                  | afer and Samuel Ring                                                                   |                      |
|    | 82.1 Intr                        | roduction                                                                              | 1257                 |
|    |                                  | me-Theoretic Probability                                                               |                      |
|    |                                  | fensive Forecasting                                                                    |                      |
|    |                                  | edicting Bond Yields                                                                   |                      |
|    |                                  | nclusion                                                                               |                      |
|    | Reference                        | S                                                                                      | 1271                 |
| 83 | Range Vo                         | olatility Models and Their Applications in Finance                                     | 1273                 |
|    | _                                | en Chou, Hengchih Chou, and Nathan Liu                                                 |                      |
|    | 83.1 Intr                        | roduction                                                                              | 1273                 |
|    | 83.2 The                         | e Price Range Estimators                                                               | 1274                 |
|    | 83.3 The                         | e Range-Based Volatility Models                                                        | 1276                 |
|    | 83.4 The                         | e Realized Range Volatility                                                            | 1278                 |
|    |                                  | e Financial Applications and Limitations of the Range Volatility                       |                      |
|    | 83.6 Co                          | nclusion                                                                               | 1279                 |
|    | Reference                        | S                                                                                      | 1280                 |
| 84 | Examinin                         | ng the Impact of the U.S. IT Stock Market on Other                                     |                      |
|    |                                  | Markets                                                                                | 1283                 |
|    | Zhuo Qiao                        | o, Venus Khim-Sen Liew, and Wing-Keung Wong                                            |                      |
|    | 84.1 Intr                        | roduction                                                                              | 1283                 |
|    | 84.2 Dat                         | ta and Methodology                                                                     | 1284                 |
|    | 84.3 Em                          | ppirical Results                                                                       | 1285                 |
|    | 84.4 Co                          | nclusions                                                                              | 1289                 |
|    |                                  | ·S                                                                                     |                      |
|    | Appendix                         | 84A                                                                                    | 1290                 |
| 85 | Application                      | on of Alternative ODE in Finance and Economics Research                                | 1293                 |
|    |                                  | w Lee and Junmin Shi                                                                   |                      |
|    | 85.1 Intr                        | roduction                                                                              | 1293                 |
|    |                                  | dinary Differential Equation                                                           |                      |
|    | 85.3 App                         | plications of ODE in Deterministic System                                              | 1295                 |
|    | 85.4 App                         | plications of ODE in Stochastic System                                                 | 1297                 |
|    | 85.5 Co                          | nclusion                                                                               | 1300                 |
|    | Reference                        | S                                                                                      | 1300                 |
| 86 | Application                      | on of Simultaneous Equation in Finance Research                                        | 1301                 |
|    |                                  | nen and Cheng Few Lee                                                                  |                      |
|    |                                  | roduction                                                                              | 1301                 |
|    |                                  | o-Stage and Three-Stage Least Squares Method                                           |                      |
|    |                                  | plication of Simultaneous Equation in Finance Research                                 |                      |
|    | 86.4 Coi                         | nclusion                                                                               | 1305                 |
|    | Reference                        | ·S                                                                                     | 1306                 |

xxviii Contents

| 87 |       | Fuzzy Set and Data Mining Applications in Accounting and Finance 130 Kwak, Yong Shi, and Cheng-Few Lee | 07  |
|----|-------|--------------------------------------------------------------------------------------------------------|-----|
|    | 87.1  | Introduction                                                                                           | 07  |
|    | 87.2  | A Fuzzy Approach to International Transfer Pricing                                                     | 07  |
|    | 87.3  | A Fuzzy Set Approach to Human Resource Allocation of a CPA Firm 13                                     |     |
|    | 87.4  | A Fuzzy Set Approach to Accounting Information System Selection 13                                     | 16  |
|    | 87.5  | Fuzzy Set Formulation to Capital Budgeting                                                             |     |
|    | 87.6  | A Data Mining Approach to Firm Bankruptcy Predictions                                                  |     |
|    | 87.7  | Conclusion                                                                                             |     |
|    |       | ences                                                                                                  |     |
| 88 |       | easting S&P 100 Volatility: The Incremental Information Content                                        | 22  |
|    |       | plied Volatilities and High-Frequency Index Returns                                                    | 33  |
|    |       | J. Blair, Ser-Huang Poon, and Stephen J. Taylor                                                        | 22  |
|    | 88.1  | Introduction                                                                                           |     |
|    | 88.2  | Data                                                                                                   |     |
|    | 88.3  | Methodology for Forecasting Volatility                                                                 |     |
|    | 88.4  | Results                                                                                                |     |
|    | 88.5  | Conclusion                                                                                             |     |
|    |       | ences                                                                                                  |     |
| 89 |       | eting Structural Instability in Financial Time Series                                                  | 45  |
|    |       | nn Hsu                                                                                                 | 4.5 |
|    | 89.1  | Introduction                                                                                           |     |
|    | 89.2  | Genesis of the Literature                                                                              |     |
|    | 89.3  | Problems of Multiple Change Points                                                                     |     |
|    | 89.4  | Here Came the GARCH and Its Brethrens                                                                  |     |
|    | 89.5  | Examples of Structural Shift Analysis in Financial Time Series                                         |     |
|    | 89.6  | Implications of Structural Instability to Financial Theories and Practice 13                           |     |
|    | 89.7  | Direction of Future Research and Developments                                                          |     |
|    | 89.8  | Epilogue                                                                                               |     |
|    | Refer | ences                                                                                                  | 54  |
| 90 |       | Instrument Variable Approach to Correct for Endogeneity in Finance 13.                                 | 57  |
|    |       | Jane Wang                                                                                              | -7  |
|    | 90.1  | Introduction                                                                                           |     |
|    |       | Endogeneity: The Statistical Issue                                                                     |     |
|    |       | Instrumental Variables Approach to Endogeneity                                                         |     |
|    | 90.4  | Validity of Instrumental Variables                                                                     |     |
|    | 90.5  | Identification and Inferences with Weak Instruments                                                    |     |
|    | 90.6  | Empirical Applications in Corporate Finance                                                            |     |
|    | 90.7  | Conclusion                                                                                             |     |
|    |       | ences                                                                                                  |     |
| 91 | •     | sian Inference of Financial Models Using MCMC Algorithms                                               | 71  |
|    | _     | ghua Liu, Liuling Li, and Hiroki Tsurumi                                                               |     |
|    | 91.1  | Introduction                                                                                           |     |
|    | 91.2  | Bayesian Inference and MCMC Algorithms                                                                 |     |
|    | 91.3  | CKLS Model with ARMA-GARCH Errors                                                                      |     |
|    | 91.4  | Copula Model for FTSE100 and S&P500                                                                    |     |
|    | 91.5  | Conclusion                                                                                             |     |
|    | Refer | ences                                                                                                  | 80  |

Contents xxix

| 92 |                                                                                                                                                        | apital Structure and Entry Deterrence                        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|    |                                                                                                                                                        | i Firoozi and Donald Lien                                    |
|    | 92.1                                                                                                                                                   | Introduction                                                 |
|    | 92.2                                                                                                                                                   | The Setting                                                  |
|    | 92.3                                                                                                                                                   | Equilibrium                                                  |
|    | 92.4                                                                                                                                                   | Capital Structure and Entry Deterrence                       |
|    | 92.5                                                                                                                                                   | Conclusion                                                   |
|    | Keiere                                                                                                                                                 | ences                                                        |
| 93 | VAR                                                                                                                                                    | Models: Estimation, Inferences, and Applications             |
|    | _                                                                                                                                                      | u Wu and Xing Zhou                                           |
|    | 93.1                                                                                                                                                   | Introduction                                                 |
|    | 93.2                                                                                                                                                   | A Brief Discussion of VAR Models                             |
|    | 93.3                                                                                                                                                   | Applications of VARs in Finance                              |
|    | 93.4                                                                                                                                                   | Conclusion                                                   |
|    | Refere                                                                                                                                                 | ences                                                        |
| 94 | Signa                                                                                                                                                  | ling Models and Product Market Games in Finance: Do We Know  |
|    |                                                                                                                                                        | We Know?                                                     |
|    | Kose.                                                                                                                                                  | John and Anant K. Sundaram                                   |
|    | 94.1                                                                                                                                                   | Introduction                                                 |
|    | 94.2                                                                                                                                                   | Supermodularity: Definitions                                 |
|    | 94.3                                                                                                                                                   | Supermodularity in Signaling Models                          |
|    | 94.4                                                                                                                                                   | Supermodularity in Product Market Games                      |
|    | 94.5                                                                                                                                                   | Empirical Evidence                                           |
|    | 94.6                                                                                                                                                   | Conclusion                                                   |
|    | Refere                                                                                                                                                 | ences                                                        |
| 95 |                                                                                                                                                        | ation of Short- and Long-Term VaR for Long-Memory Stochastic |
|    |                                                                                                                                                        |                                                              |
|    |                                                                                                                                                        | lity Models                                                  |
|    | Hwai-                                                                                                                                                  | Chung Ho and Fang-I Liu                                      |
|    | Hwai-<br>95.1                                                                                                                                          | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2                                                                                                                                  | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3                                                                                                                          | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4                                                                                                                  | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4                                                                                                                  | Chung Ho and Fang-I Liu Introduction                         |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere                                                                                                        | Chung Ho and Fang-I Liu Introduction                         |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Time                                                                                                | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Referen                                                                                                       | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Time<br>Tze L<br>96.1<br>96.2                                                                       | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Time<br>Tze L<br>96.1                                                                               | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Referen<br>Time<br>Tze L<br>96.1<br>96.2<br>96.3                                                              | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Time<br>Tze L<br>96.1<br>96.2                                                                       | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Tze L<br>96.1<br>96.2<br>96.3                                                                       | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4                                                               | Chung Ho and Fang-I Liu Introduction                         |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4                                                               | Chung Ho and Fang-I Liu  Introduction                        |
| 96 | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Reference<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4                                                            | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4<br>96.5<br>Refere<br>Listin                                   | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4<br>96.5<br>Refere<br>Listin                                   | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Reference<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4<br>96.5<br>Reference<br>Listin<br>Atul C<br>97.1<br>97.2   | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Refere<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4<br>96.5<br>Refere<br>Listin<br>Atul C<br>97.1<br>97.2<br>97.3 | Chung Ho and Fang-I Liu Introduction                         |
|    | Hwai-<br>95.1<br>95.2<br>95.3<br>95.4<br>Reference<br>Tze L<br>96.1<br>96.2<br>96.3<br>96.4<br>96.5<br>Reference<br>Listin<br>Atul C<br>97.1<br>97.2   | Chung Ho and Fang-I Liu Introduction                         |

xxx Contents

|     | 97.6  | Cross-Sectional Analysis                                        | 1439  |
|-----|-------|-----------------------------------------------------------------|-------|
|     | 97.7  | Conclusions                                                     | 1442  |
|     | Refer | ences                                                           | 1443  |
| 98  | An O  | DE Approach for the Expected Discounted Penalty at Ruin in Jump |       |
|     |       | sion Model (Reprint)                                            | 1445  |
|     | Yu-Ti | ng Chen, Cheng-Few Lee, and Yuan-Chung Sheu                     |       |
|     | 98.1  | Introduction                                                    | 1445  |
|     | 98.2  | Integro-Differential Equation                                   | 1446  |
|     | 98.3  | Explicit Formula for $\Phi$ – ODE Method                        | 1448  |
|     | 98.4  | The Constant Vector Q: Second Method                            | 1453  |
|     | 98.5  | Conclusion                                                      | 1457  |
|     | Refer | ences                                                           | 1458  |
|     | Appe  | ndix 98A Proofs                                                 | 1458  |
|     | Appe  | ndix 98B Toolbox for Phase-Type Distributions                   | 1462  |
|     | Appe  | ndix 98C First Order Derivative of Φ at Zero                    | 1462  |
|     |       |                                                                 |       |
| 99  |       | native Models for Estimating the Cost of Equity Capital         |       |
|     |       | roperty/Casualty Insurers                                       | 1465  |
|     |       | C. Lee and J. David Cummins                                     | 1.465 |
|     | 99.1  | Introduction                                                    |       |
|     | 99.2  | Prior Work                                                      |       |
|     | 99.3  | Model-Specification and Estimation                              |       |
|     | 99.4  | Data Description and Cost of Equity Capital Estimates           |       |
|     | 99.5  | Evaluations of Simulations and Estimates                        |       |
|     | 99.6  | Summary and Conclusion                                          |       |
|     | Refer | ences                                                           | 1481  |
| 100 | Imple | ementing a Multifactor Term Structure Model                     | 1483  |
| 100 | _     | Raw Chen and Louis O. Scott                                     | 1 105 |
|     | 100.1 | Introduction                                                    | 1483  |
|     |       | A Multifactor Term Structure Model                              |       |
|     |       | Pricing Options in the Multifactor Model                        |       |
|     |       | Calibrating a Multifactor Model                                 |       |
|     |       | Conclusion                                                      |       |
|     |       | ences                                                           |       |
|     |       |                                                                 |       |
| 101 | Takir | ng Positive Interest Rates Seriously                            | 1489  |
|     | Enlin | Pan and Liuren Wu                                               |       |
|     | 101.1 | Introduction                                                    | 1489  |
|     | 101.2 | Background                                                      | 1490  |
|     | 101.3 | The Model                                                       | 1491  |
|     | 101.4 | The Hump-Shaped Forward Rate Curve                              | 1494  |
|     | 101.5 | Fitting the US Treasury Yields and US Dollar Swap Rates         | 1495  |
|     | 101.6 | Extensions: Jumps in Interest Rates                             | 1498  |
|     | 101.7 | Conclusion                                                      | 1500  |
|     | Refer | ences                                                           | 1500  |
|     | Appe  | ndix 101A Factor Representation                                 | 1501  |
|     | Anne  | ndix 101B Extended Kalman Filter and Quasilikelihood            | 1502  |

Contents xxxi

| 102 | Positive Interest Rates and Yields: Additional Serious Considerations               | 1503  |
|-----|-------------------------------------------------------------------------------------|-------|
|     | Jonathan Ingersoll                                                                  | 1.500 |
|     | 102.1 Introduction                                                                  |       |
|     | 102.2 A Non-Zero Bound for Interest Rates                                           |       |
|     | 102.3 The Cox-Ingersoll-Ross and Pan-Wu Term Structure Models                       |       |
|     | 102.4 Bubble-Free Prices                                                            |       |
|     | 102.5 Multivariate Affine Term-Structure Models with Zero Bounds on Yields          |       |
|     | 102.6 Non-Affine Term Structures with Yields Bounded at Zero                        |       |
|     | 102.7 Non-Zero Bounds for Yields                                                    |       |
|     | 102.8 Conclusion                                                                    |       |
|     | References                                                                          |       |
|     | Appendix 102A                                                                       | 1517  |
|     | 102A.1 Derivation of the Probability and State price for $r_T = 0$ for the PW Model | 1517  |
|     | 102A.2 Bond Price When $r_t = 0$ Is Accessible for Only the Risk-Neutral Process    | 1519  |
|     | 102A.3 Properties of the Affine Exponentially Smoothed Average Model                |       |
|     | 102A.4 Properties of the Three-Halves Power Interest Rate Process                   |       |
| 102 | •                                                                                   | 1021  |
| 103 | Functional Forms for Performance Evaluation: Evidence from Closed-End Country Funds | 1523  |
|     | Cheng-Few Lee, Dilip K. Patro, and Bo Liu                                           | 132.  |
|     | 103.1 Introduction and Motivation                                                   | 1523  |
|     | 103.2 Literature Review                                                             |       |
|     | 103.3 Model Estimation                                                              |       |
|     | 103.4 Data and Methodology                                                          |       |
|     | 103.5 Empirical Results                                                             |       |
|     | 103.6 Conclusion                                                                    |       |
|     | References                                                                          |       |
|     |                                                                                     | 133.  |
| 104 | A Semimartingale BSDE Related to the Minimal Entropy                                |       |
|     | Martingale Measure                                                                  | 1555  |
|     | Michael Mania, Marina Santacroce, and Revaz Tevzadze                                |       |
|     | 104.1 Introduction                                                                  |       |
|     | 104.2 Some Basic Definitions, Conditions, and Auxiliary Facts                       |       |
|     | 104.3 Backward Semimartingale Equation for the Value Process                        |       |
|     | 104.4 Conclusions                                                                   |       |
|     | References                                                                          | 1565  |
| 105 | The Density Process of the Minimal Entropy Martingale Measure                       |       |
|     | in a Stochastic Volatility Model with Jumps (Reprint)                               | 1567  |
|     | Fred Espen Benth and Thilo Meyer-Brandis                                            |       |
|     | 105.1 Introduction                                                                  | 1567  |
|     | 105.2 The Market                                                                    |       |
|     | 105.3 The Minimal Entropy Martingale Measure                                        |       |
|     | 105.4 The Density Process                                                           |       |
|     | 105.5 The Entropy Price of Derivatives and Integro-Partial Differential             |       |
|     | Equations                                                                           | 1573  |
|     | 105.6 Conclusions                                                                   |       |
|     | References                                                                          |       |

xxxii Contents

| <b>106</b> Arbitrage Detection from Stock Data: An Empirical Study     | 7 |
|------------------------------------------------------------------------|---|
| 106.1 Introduction157'106.2 Arbitrage Detection: Volatility Change1579 |   |
| 106.3 Arbitrage Detection: Mean Change                                 | 3 |
| 106.4 Empirical Studies                                                | 6 |
| 106.5 Conclusions and Further Researches                               | 0 |
| References                                                             | 1 |
| 107 Detecting Corporate Failure                                        | 3 |
| Yanzhi Wang, Lin Lin, Hsien-Chang Kuo, and Jenifer Piesse              |   |
| 107.1 Introduction                                                     | 3 |
| 107.2 The Possible Causes of Bankruptcy                                | 4 |
| 107.3 The Methods of Bankruptcy                                        | 4 |
| 107.4 Prediction Model for Corporate Failure                           | 6 |
| 107.5 The Selection of Optimal Cutoff Point                            | 3 |
| 107.6 Recent Development                                               | 4 |
| 107.7 Conclusion                                                       | 4 |
| References                                                             | 4 |
| 108 Genetic Programming for Option Pricing                             | 7 |
| N.K. Chidambaran                                                       |   |
| 108.1 Introduction                                                     | 7 |
| 108.2 Genetic Program Elements                                         | 8 |
| 108.3 Black–Scholes Example                                            | 1 |
| 108.4 Extensions                                                       | 3 |
| 108.5 Conclusion                                                       | 3 |
| References                                                             | 4 |
| 109 A Constant Elasticity of Variance (CEV) Family of Stock            |   |
| Price Distributions in Option Pricing, Review, and Integration         | 5 |
| Ren-Raw Chen and Cheng-Few Lee                                         |   |
| 109.1 Introduction                                                     | 5 |
| 109.2 The CEV Diffusion and Its Transition Density                     | 6 |
| 109.3 The CEV Option Pricing Models                                    | 9 |
| 109.4 Computing the Non-Central Chi-Square Probabilities               | 2 |
| 109.5 Conclusion                                                       | 3 |
| Appendix 109A                                                          | 3 |
| References                                                             | 5 |
| <b>References</b>                                                      | 7 |
| <b>Author Index</b>                                                    | 5 |
| Subject Index                                                          | 9 |

# **List of Contributors**

James S. Ang, Florida State University, Tallahassee, FL, USA

Gurdip Bakshi, University of Maryland, College Park, MD, USA

Hamid Beladi, University of Texas at San Antonio, San Antonio, TX, USA

Fred Espen Benth, University of Oslo and Agder University College, Kristiansand, Norway

Bevan J. Blair, Ingenious Asset Management, London, UK

Michael J. Brennan, University of California at Los Angeles, Los Angeles, CA, USA

Ivan Brick, Rutgers University, Newark, NJ, USA

Stephen J. Brown, New York University, New York, NY, USA

John Cadle, University of Birmingham, Birmingham, UK

Charles Cao, Department of Finance, Smeal College of Business, Pennsylvania State University, University Park, PA, USA

Umut Çetin, Technische Universität Wien, Vienna, Austria

George Chalamandaris, Athens University of Economics and Business, Athens, Greece

Chuang-Chang Chang, National Central University, Taipei, Taiwan, ROC

Jow-Ran Chang, National Tsing Hua University, Hsinchu, Taiwan, ROC

An-Chi Chen, KGI Securities Co. Ltd., Taipei, Taiwan, ROC

Carl R. Chen, University of Dayton, Dayton, OH, USA

Chih-Sean Chen, Chung Yuan University, Taoyuan County, Taiwan, ROC

Cho-Jieh Chen, University of Alberta, Edmonton, AB, Canada

Hong-Yi Chen, Rutgers University, Newark, NJ, USA

Ren-Raw Chen, Fordham University, New York, NY, USA

Sheng-Syan Chen, National Taiwan University, Taipei, Taiwan, ROC

Wei-Peng Chen, Shih Hsin University, Taipei, Taiwan, ROC

Yi-Kai Chen, National University of Kaohsiung, Kaohsiung, Taiwan, ROC

Yu-Dan Chen, National Chiao Tung University, Hsinchu, Taiwan, ROC

Yu-Ting Chen, National Chao Tung University, Hsinchu, Taiwan, ROC

Zhiwu Chen, Yale University, New Haven, CT, USA

xxxiv List of Contributors

Thomas C. Chiang, Drexel University, Philadelphia, PA, USA

N. K. Chidambaran, Fordham University, New York, NY, USA

Wan-Jiun Paul Chiou, Shippensburg University, Shippensburg, PA, USA

Heng-chih Chou, Ming Chuan University, Taipei, Taiwan, ROC

Ray Y. Chou, Academia Sinica, Taipei, Taiwan, ROC

H.W. Chiang, National Taiwan University, Taipei, Taiwan, ROC

Huimin Cheng, National Chiao Tung University, Hsinchu, Taiwan, ROC

San-Lin Cheng, National Taiwan University, Taipei, Taiwan, ROC

Jing Cui, Clarion University of Pennsylvania, Clarion, PA, USA

J. D. Cumming, Temple University, Philadelphia, PA, USA

Darinka Dentcheva, Stevens Institute of Technology, Hoboken, NJ, USA

Dean Diavatopoulos, Villanova University, Philadelphia, PA, USA

Gang Nathan Dong, Rutgers University, Newark, NJ, USA

Chang-Wen Duan, Tamkang University, Taipei, Taiwan, ROC

Luis Ferruz, University of Zaragoza, Zaragoza, Spain

Wayne Fresón, University of Southern California, Los Angeles, CA, USA

Joseph E. Finnerty, University of Illinois at Urbana-Champaign, Champaign, IL, USA

Fathali Firoozi, University of Texas at San Antonio, San Antonio, TX, USA

Jean-Pierre Fouque, University of California, Santa Barbara, CA, USA

Reto Francioni, Deutsche Börse, Frankfurt, Germany

Jack Clark Francis, Baruch College, New York, NY, USA

Cheng-Der Fuh, National Central University and Academia Sinica, Taipei, Taiwan, ROC

Fernando Gómez-Bezares, University of Deusto, Bilbao, Spain

Robert R. Grauer, Simon Fraser University, Burnaby, BC, Canada

Jia-Hau Guo, Soochow University, Taipei, Taiwan, ROC

Atul Gupta, Bentley University, Waltham, MA, USA

Manak C. Gupta, Temple University, Philadelphia, PA, USA

Chuan-Hsiang Han, National Tsing Hua University, Hsinchu, Taiwan, ROC

Sonali Hazarika, Baruch College, New York, NY, USA

Hwai-Chung Ho, Academia Sinica and National Taiwan University, Taipei, Taiwan, ROC

Keng-Yu Ho, National Taiwan University, Taipei, Taiwan, ROC

Lan-chih Ho, Central Bank of the Republic of China, Taipei, Taiwan, ROC

Thomas S. Y. Ho, Thomas Ho Company, Ltd, New York, NY, USA

C.H. Ted Hong, Beyondbond Inc., New York, NY, USA

Tsui-Ling Hseu, National Chiao Tung University, Hsinchu, Taiwan, ROC

Der-Tzon Hsieh, National Taiwan University, Taipei, Taiwan, ROC

List of Contributors xxxv

Pei-Fang Hsieh, Department of Finance, National Central University, Chung Li City, Taiwan, ROC

Derann Hsu, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

Ming-Feng Hsu, Tatung University, Taipei, Taiwan, ROC

Ying Lin Hsu, National Chung Hsing University, Taichung, Taiwan, ROC

Bor-Yi Huang, Department of Business Management, Shih Chien University, Taipei, Taiwan, ROC

Dar-Yeh Huang, National Taiwan University, Taipei, Taiwan, ROC

Jingzhi Huang, Pennsylvania State University, University Park, PA, USA

Ken Hung, Texas A&M International University, Laredo, TX, USA

Mao-Wei Hung, National Taiwan University, Taipei, Taiwan, ROC

Jonathan E. Ingersoll, Jr., Yale School of Management, New Haven, CT, USA

Robert A. Jarrow, Cornell University, Ithaca, NY, USA

Kose John, New York University, New York, NY, USA

Dongcheol Kim, Korea University Business School, Seoul, Korea

Ronald Klimberg, St. Joseph's University, Philadelphia, PA, USA

Alexander Kogan, Rutgers University, Newark, NJ, USA

Nikolay Kosturov, University of Oklahoma, Norman, OK, USA

Stephen Kudbya, New Jersey Institute of Technology, Newark, NJ, USA

Hsien-chang Kuo, National Chi-Nan University and Takming University of Science and Technology, Nantou Hsien, Taiwan, ROC

Wikil Kwak, University of Nebraska at Omaha, Omaha, NE, USA

Hung-Neng Lai, Department of Finance, National Central University, Chung Li City, Taiwan, ROC

Tze Leung Lai, Stanford University, Stanford, CA, USA

Kenneth Lawrence, New Jersey Institute of Technology, Newark, NJ, USA

Sheila Lawrence, Rutgers University, Newark, NJ, USA

Alice C. Lee, State Street Corp., Boston, MA, USA

Cheng-Few Lee, Rutgers University, New Brunswick, NJ, USA and National Chiao Tung University, Hsinchu, Taiwan, ROC

Han-Hsing Lee, National Chiao Tung University, Hsinchu, Taiwan, ROC

Jack C. Lee, National Chiao Tung University, Hsinchu, Taiwan, ROC

Jang-Yi Lee, Tunghai University, Taichung, Taiwan, ROC

Jin-Ping Lee, Feng Chia University, Taichung, Taiwan, ROC

John Lee, Center for PBBEF Research, Hackensack, NJ, USA

Kin Wai Lee, Nanyang Technological University, Singapore, Singapore

Sang Bin Lee, Hanyang University, Seoul, Korea

Miguel A. Lejeune, George Washington University, Washington, DC, USA

xxxvi List of Contributors

Jiandong Li, Central University of Finance and Economics, P.R. China

Liuling Li, Rutgers University, New Brunswick, NJ, USA

Donald Lien, University of Texas at San Antonio, San Antonio, TX, USA

Venus Khim-Sen Liew, Universiti Malaysia Sabah, Sabah, Malaysia

Carle Shu Ming Lin, Rutgers University, New Brunswick, NJ, USA

Hai Lin, Xiamen University, Xiamen, Fujian, China

Lin Lin, Department of Banking and Finance, National Chi-Nan University, 1 University Rd.,

Puli, Nantou Hsien, Taiwan 545, ROC

T. I. Lin, National Chung Hsing University, Taichung, Taiwan, ROC

William T. Lin, Tamkang University, Taipei, Taiwan, ROC

Bo Liu, Citigroup Global Market Inc., New York, NY, USA

Fang-I Liu, National Taiwan University, Taipei, Taiwan, ROC

Nathan Liu, National Chiao Tung University, Hsinchu, Taiwan, ROC

Xianghua Liu, Rutgers University, Piscataway, NJ, USA

Ben Logan, Bell Labs, USA

Jessica Mai, Rutgers University, Newark, NJ, USA

A.G. Malliaris, Loyola University Chicago, Chicago, IL, USA

Michael Mania, A. Razmadze Mathematical Institute, Georgia and Georgian-American University, Tbilisi, Georgia

Benjamin Melamed, Rutgers Business School, Newark and New Brunswick, NJ, USA

Thilo Meyer-Brandis, University of Oslo, Oslo, Norway

Lalatendu Misra, University of Texas at San Antonio, San Antonio, TX, USA

Bruce Mizrach, Rutgers University, New Brunswick, NJ, USA

German Molina, Statistical and Applied Mathematical Sciences Institute, NC, USA

Chien-Chung Nieh, Tamkang University, Taipei, Taiwan, ROC

Michael S. Pagano, Villanova University, Philadelphia, PA, USA

Dinesh Pai, Rutgers University, Newark, NJ, USA

Szu-Yu Pai, National Taiwan University, Taipei, Taiwan, ROC

Oded Palmon, Rutgers University, New Brunswick, NJ, USA

Enlin Pan, Chicago Partners, Chicago, IL USA

Dilip K. Patro, Office of the Comptroller of the Currency, Washington, DC, USA

Jenifer Piesse, University of London, London, UK

Ser-Huang Poon, University of Manchester, Manchester, UK

Philip Protter, Cornell University, Ithaca, NY, USA

Zhuo Qiao, University of Macau, Macau, China

Martin Reck, Deutsche Börse, Frankfurt, Germany

Samuel Ring, Rutgers University, Newark, NJ, USA

List of Contributors xxxvii

Joshua Ronen, New York University, New York, NY, USA

Mark Rubinstein, University of California, Berkley, CA, USA

Andrzej Ruszczynski, Rutgers University, Newark, NJ, USA

Marina Santacroce, Politecnico di Torino, Department of Mathematics,

C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Bharat Sarath, Baruch College, New York, NY, USA

Sergei Sarkissian, McGill University, Montreal, QC, Canada

Robert A. Schwartz, Baruch College, New York, NY, USA

Thomas V. Schwarz, Grand Valley State University, Allendale, MI, USA

Louis O. Scott, Morgan Stanley, New York, NY, USA

Glenn Shafer, Rutgers University, Newark, NJ USA

Chung-Hua Shen, National Taiwan University, Taipei, Taiwan, ROC

Frederick C. Shen, Coventree Inc, Toronto, ON, Canada

Larry Shepp, Rutgers University, Piscataway, NJ, USA

Yuan-Chung Sheu, National Chao Tung University, Hsinchu, Taiwan, ROC

Junmin Shi, Rutgers University, Newark, NJ, USA

Yong Shi, University of Nebraska at Omaha, Omaha, NE, USA and

Chinese Academy of Sciences, Beijing, China

Fu-Shuen Shie, National Taiwan University, Taipei, Taiwan, ROC

Pai-Ta Shih, Department of Finance, National Taiwan University, Taipei 106, Taiwan, ROC

Wei-Kang Shih, Rutgers University, Newark, NJ, USA

Timothy Simin, Pennsylvania State University, University Park, PA, USA

Ben J. Sopranzetti, Rutgers University, Newark, NJ, USA

Duane Stock, University of Oklahoma, Norman, OK, USA

Anant Sunderam, Tuck School, Hanover, NH, USA

Stephen J. Taylor, Lancaster University, Lancaster, UK

Revaz Tevzadze, Institute of Cybernetics, Georgia and Georgian-American University, Tbilisi, Georgia

Michael Theobald, Accounting and Finance Subject Group, University of Birmingham, Birmingham, UK

Hiroki Tsurumi, Rutgers University, New Brunswick, NJ, USA

María Vargas, University of Zaragoza, Zaragoza, Aragon, Spain

Itzhak Venezia, Hebrew University, Jerusalem, Israel

John Wald, Pennsylvania State University, University Park, PA, USA

Chia-Jane Wang, Manhattan College, New York, NY, USA

Kehluh Wang, National Chiao Tung University, Hsinchu, Taiwan, ROC

xxxviii List of Contributors

Shin-Yun Wang, National Dong Hwa University, Hualien, Taiwán, ROC

Yanzhi Wang, Yuan Ze University, Taoyuan, Taiwán, ROC

Daniel Weaver, Rutgers University, Piscataway, NJ, USA

Wing-Keung Wong, Hong Kong Baptist University, Hong Kong, Kowloon Tong, Hong Kong

Donald H. Wort, California State University East Bay, Hayward, CA, USA

ChunChi Wu, University of Missouri, Columbia, MO, USA

Liuren Wu, Baruch College, New York, NY, USA

Shu Wu, The University of Kansas, Lawrence, KS, USA

Wei-Hsiung Wu, National Taiwan University, Taipei, Taiwan, ROC

Yangru Wu, Rutgers Business School, Newark and New Brunswick, NJ, USA

Yi Lin Wu, National Tsing Hua University, Hsinchu, Taiwan, ROC

Yihong Xia, Wharton School, Pennsylvania, PA, USA

Haipeng Xing, SUNY at Stony Brook, Stony Brook, NY, USA

Chin W. Yang, Clarion University of Pennsylvania, Clarion, PA, USA

Kenton K. Yee, Columbia Business School, New York, NY, USA

Gillian Hian Heng Yeo, Nanyang Technological University, Singapore, Singapore

Hai-Chin Yu, Chung Yuan University, Taoyuan, Taiwan, ROC

Min-Teh Yu, Providence University, Taichung, Taiwan, ROC

Yong Zeng, The University of Missouri at Kansas City, Kansas City, MO, USA

Feng Zhao, Rutgers University, Newark, NJ, USA

Xing Zhou, Rutgers Business School, Newark and New Brunswick, NJ, USA