Smart Light

Final Project, Fall 2018: Internet of Things (IoT)

Present to Dr.Pitchaya Sitthi-amorn Presented by

Gun Kaewngarm	5931006121
Nattichai Sutipanwihan	5931023821
Kamolnadda Dansuputra	5931001021
Ittiwat Sukhumdhanakul	5931077721

Embedded System Laboratory 2110366

Semester 1/2018

Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University

Table of content

1.Introduction	3
2.Objective	3
3. Roles and Responsibility	4
3.1 System Architecture	4
3.2 UI designer and development	6
3.3 Front-end development	9
3.4 Embedded System Development	11
4.Problem	13

1.Introduction

เนื่องจากปัจจุบันความต้องการทางตลาดในด้าน smart home ได้เพิ่มมากขึ้น และการใช้งานการเปิด/ปิดไฟนั้น สามารถใช้การสิ่งงานผ่านอินเทอร์เน็ต และผ่านคำสั่งเสียงเพื่ออำนวยความสะดวกแก่ผู้ใช้งานได้ ดังนั้นทางทีมงานของเรา จึงได้ริเริ่มโปรเจคชิ้นนี้พร้อมทั้งออกแบบ protype เพื่อทำให้การใช้งานสะดวกสะบายมากขึ้น

2.Objective

ในปัจจุบันนั้น การที่จะเปิด/ปิดไฟยังต้องทำผ่านการเดินไปที่สวิชต์ไฟด้วยตนเอง ในบางครั้งจึงเป็นเื่องที่เสียเวลา และไม่สะดวกอย่างมาก หากสามารถสั่งการผ่านอินเทอร์เนตหรือผ่านเสียงได้ย่อมที่จะแก้ปัญหาความไม่สะดวกสบายนี้ได้ ทางผู้จัดทำจึงออกแบบฮาร์ดแวร์เพื่อแก้ปัญหาดังกล่าวด้วยการใช้เซนเซอร์เสียง(ไมค์โครโฟน)เพื่อทำการเปิด หรือปิดไฟ ผ่านตรวจจับเสียงตบมือติดต่อกันสองครั้ง และสามารถสั่งให้เปิดหรือปิดไฟได้ผ่าน ทางเว็ปแอพพลิเคชั่น

3. Roles and Responsibility

3.1 System Architecture

Person in charge: Gun Kaewngarm

Responsibility:

- ศึกษาmicrophone MP45DT02 Data sheet : https://www.marutsu.co.jp/contents/shop/marutsu/ds/MP45DT02.pdf
- ศึกษาข้อมูลวิธีการใช้จากวิดีโอและsource code ตัวอย่าง:
 https://www.youtube.com/watch?v=YBh65gcw0w8
 https://github.com/gizTM/STM32F4Discovery-IC-and-application
- ศึกษาประเภทของข้อมูลที่MP45รับเสียงมาแล้วส่งให้บอร์ด ซึ่งMP45DT02ส่งข้อมูลเสียงเป็น แบบPDM (Pulse-density modulation)¹

An example of PDM of 100 samples of one period of a sine wave. 1s represented by blue, 0s represented by white, overlaid with the sine wave.

การเชื่อมโยงกันของระบบย่อยต่างๆ เช่น กลุ่มSensor กลุ่มส่งข้อมูล ได้ภาพรวมของระบบดังนี้

การต่อวงจร

1. ต่อ MP45DT02 กับ STM32

ในที่นี้MP45DT02นั้นอยู่onboardอยู่แล้วจึงไม่จำเป็นต้องต่อ

¹ "Pulse-density modulation - Wikipedia." https://en.wikipedia.org/wiki/Pulse-density_modulation. Accessed 18 Dec. 2018.

ภาพไมค์โครโฟนMP45DT02(วงกลมสีแดง)บนบอร์ด STM32F4Discovery

2.ต่อ STM32 กับ NodeMCU

ต่อ PA2,PA3 ซึ่งเป็น USART2_TX,USART2_RX ของSTM32 กับ D8,D7 ซึ่งเป็น TX,RX ของ

NodeMCUตามลำดับ โดยจะส่งข้อมูลแบบSerial Data

3.ต่อ NodeMCUกับ LED และตัวต้านทานเพื่อจำลองไฟที่จะถูกปิด/เปิด

ต่อ D6 ของ NodeMCUกับขั้วบวกของLEDเพื่อจ่ายไฟเข้าตามคำสั่ง และต่อชั้วลบเข้ากับตัวต้านทาน และGND ของ NodeMCU

4. เชื่อมต่อ NodeMCU กับ NETPIE ผ่านlibrary microgear ของ NETPIE

โดยมีwifiจะส่งข้อมูลไปยังNETPIE โดยใช้ฟังก์ชัน microgear.chat เมื่อNETPIEได้รับข้อมูลแล้ว Websiteจะ ดึงข้อมูลจากNETPIEมาใช้ (NETPIE คือ Platform as a service บริการเชื่อมต่อข้อมูลและ แลกเปลี่ยนข้อมูลระหว่างอุปกรณ์ต่างๆได้ เหมาะสำหรับ IoT เช่น Arduino, ESP8266 และสามารถหา Library ของอุปกรณ์ต่างๆได้ที่ GitHub NETPIE ให้บริการ โดย NECTEC)

5. ถ้ามีการกดปุ่มสั่งจากWebsite ก็จะส่งข้อมูลติดต่อกับNETPIEผ่านlibrary microgear แล้วส่งกลับไป ยังNodeMCU โดยในที่นี้จะใช้ไฟแสดงแทนว่าได้รับคำสั่งจากWebsite

ภาพรวมการต่อวงจรทั้งหมด

3.2 UI designer and development

Person in charge: Kamolnadda Dansuputra

Responsibility:

ออกแบบหน้าจอผู้ใช้ วางแผนด้านการจัดวางองค์ประกอบของ website เพื่อให้ Frontend
 Developer จะได้นำไป implement ต่อไป

UX/UI ของโปรเจคนี้ เน้นในด้านการใช้ง่ายและสะดวกกับผู้ใช้เป็นหลัก โดยเราได้แบ่ง หน้าจอออกเป็นสอง ส่วน หั่นคือ ส่วน login และ ส่วนฟังค์ชั่นเปิดปิดหลอดไฟ

โดยใช้หลักการการออกแบบดังนี้

- 1. เน้นความใช้ง่ายของผู้ใช้
- 2. เน้นการจัดวางที่ดูสะอาด ไม่รก

แต่ละหน้ามืองค์ประกอบดังต่อไปนี้

1.หน้าแรก จะเป็นหน้า log in user ต้องกรอก username password ที่ถูกต้องลงในฟอร์ม แล้วกด login

รูปที่1 หน้าจอ log in

2. ถ้าผู้ใช้กรอก username หรือ password ไม่ถูกต้อง จะขึ้นข้อความแจ้งเตือน ดังนี้

รูปที่ 2 หน้าจอ log in ทีมี alert

3. เมื่อผู้ใช้กด log in เข้าไปแล้ว จะมีข้อความ "Please Wait " ขึ้นตอนรอโหลด

รูปที่ 3 หน้าจอ loading

4. เมื่อโหลดเสร็จจะขึ้นสถานะของหลอดไฟ ผู้ใช้สามารถคลิกที่รูปหลอดไฟเพื่อเปิดหรือปิดไฟได้

รูปที่ 4.1 รูปสถานะหลอดไฟ ไฟเปิด

รูปที่ 4.1 รูปสถานะหลอดไฟ ไฟปิด

3.3 Front-end development

Person in charge: Ittiwat Sukhumdhanakul

Responsibility:

พัฒนาเว็บไซต์ด้วย HTML CSS และ Javascript เชื่อมต่อเว็บไซต์กับ Server ของ Netpie ด้วย Microgear โดยมีชั้นตอนต่างๆดังต่อไปนี้

- ทำการระบุข้อมูลของ device ที่ต้องการติดต่อ และสร้างตัวแปรที่เก็บ element ของ html

```
const APPID = "ClapClapLight";
const KEY = "i3V3f9P04j9XHo1";
const SECRET = "5RtkB5BtbOnhn6h50xkjUUSqW";
const ALIAS = "DigitalOUTPUT_HTML_web";
const thing1 = "NodeMCU1";

var connect = false;
var statuss = document.getElementById('status');
var loading = document.getElementById('loading');
```

- เขียนฟังก์ชั่นเพื่อ handle การติดต่อต่างๆระหว่างหน้าเว็ป และ device

```
function switchPress(logic){
   if(logic == 1 ){
     microgear.chat(thing1, "ON");
   }else if(logic == 0 ){
    microgear.chat(thing1,"OFF");
var microgear = Microgear.create({
  key: KEY,
  secret: SECRET,
  alias : ALIAS
microgear.on('message', function(topic,data) {
   if(data=="ON"){
     lightbulb.setAttribute("src",'./onn.png')
   }else if(data=="OFF") {
     lightbulb.setAttribute("src",'./offf.png')
});
microgear.on('connected', function() {
   microgear.setAlias(ALIAS);
   microgear.chat(thing1, "GET");
   connect = true;
});
microgear.on('present', function(event) {
  console.log(event);
});
microgear.on('absent', function(event) {
  console.log(event);
});
microgear.resettoken(function(err) {
  microgear.connect(APPID);
 });
```

- เขียนโค้ดในส่วนที่ handle การกดที่หลอดไฟ

```
var lightbulb = document.getElementById('lightbulb');
lightbulb.onclick = function() {
   if(lightbulb.getAttribute("src") === './offf.png') {
      switchPress(1);
   }
   else{
      switchPress(0);
   }
}
```

3.4 Embedded System Development

Person in charge : Nattichai Sutipanwihan

Responsibility:

ศึกษา datasheet ของ microphone MP45DT02

Data sheet: https://www.marutsu.co.jp/contents/shop/marutsu/ds/MP45DT02.pdf

- ทำการศึกษาการเขียนโดยศึกษาจากตัวอย่าง
 https://github.com/tueytoma/Hardware_Lab_Project/blob/master/Sensors%20573
 0625221/MP45DT02/Src/main.c
- Implement code ในส่วนของข้อมูลที่ได้รับจาก NetPie :
 https://github.com/netpieio/microgear-esp8266-arduino
 https://netpie.gitbooks.io/nodemcu-esp8266-on-netpie/content/lab-7.html

Sensor ที่เลือกใช้งาน

ชื่อ : MP45DT02

รายละเอียด : MP45DT02 นั้นคือไมค์โครโฟนประเภทดิจิทัล MEMS ซึ่งสามารถรับเสียงรับเสียงได้ ดีในทุกๆ ทิศทาง (Omnidirectional) ซึ่งฝังตัวอยู่บนบอร์ดSTM32 อยู่แล้วและสามารถใช้library I2Sของ บอร์ดในกับรับคำจากเซนเซอร์นี้ได้เลย จึงง่ายต่อการใช้งาน

ขั้นตอนการเตรียมก่อนนำ sensor มาใช้งาน

การ Implement ใน STM32F407VG

```
1. ทำการประกาศตัวแปร pdm, pcm และกำหนดค่าเริ่มต้น
       uint16_t PDM_buffer[PDM_BUFFER_SIZE];
       uint16 t PDM value = 0;
       uint16 t pcmCount = 0;
       uint8_t i;
       uint8_t PCM_value = 0;
      float leaky_PCM_buffer = 0.0;
      float leaky_AMP_buffer = 0.0;
       char uart_temp_display_buffer[100];
      float maxAmp = 0;
      int check = 0;
   2. Initialize ค่า system clock และ peripherals ต่าง ๆ
      HAL_Init();
       SystemClock_Config();
       MX_GPIO_Init();
       MX 12S2 Init();
       MX_USART2_UART_Init();
   3. เขียน Code ส่วน Main loop โดยมีลำดับการทำงานดังนี้
      while (1) {
       3.1 รับค่าจาก protocal I2S ลงใน PDM_buffer
              HAL_I2S_Receive(&hi2s2, PDM_buffer, PDM_BUFFER_SIZE, 1000);
       3.2 คำนวณค่า amplitude ในช่วงเวลาหนึ่ง โดยเก็บไว้ในตัวแปร leaky_AMP_buffer และเพิ่มค่า
pcmCount ไป 1 เพื่อนับจำนวนค่าที่คำนวณไปแล้ว
              for (i = 0; i < PDM_BUFFER_SIZE; i++) {
                     PCM value = -PDM BLOCK SIZE BITS / 2;
                     PDM_value = PDM_buffer[i];
                     while (PDM_value != 0)
                     {
                            PCM_value++;
                            PDM_value ^= PDM_value & -PDM_value;
```

```
}
                     leaky_PCM_buffer += PCM_value;
                     leaky PCM buffer *= LEAKY KEEP RATE;
                     leaky AMP buffer += absFloat(leaky PCM buffer);
                     leaky_AMP_buffer *= LEAKY_KEEP_RATE;
              }
              pcmCount++;
       3.3 เก็บค่า amplitude ที่มากที่สุดไว้ในตัวแปร maxAmp
              if (maxAmp < leaky AMP buffer)
                     maxAmp = leaky AMP buffer;
       3.4 หากจำนวนค่าที่คำนวณไปแล้วครบ 500 ค่า จะเปรียบเทียบค่า maxAmp ว่ามากกว่า 65000
หรือไม่ ถ้ามากกว่าให้ส่งข้อมูลไปทาง UART ว่าเสียงที่ได้รับมี amplitude มากกว่าที่กำหนดไว้ พร้อมกับ
reset ค่าต่าง ๆ กลับไปเป็นค่าเริ่มต้น
              if (pcmCount == 500) {
                     if(maxAmp >= 65000){
                             int d[1] = \{1\};
                             sprintf(uart_temp_display_buffer, d, sizeof(d));
                             HAL_UART_Transmit(&huart2,
(uint8_t*)uart_temp_display_buffer, trlen(uart_temp_display_buffer), 100);
                     pcmCount = 0;
                     maxAmp = 0;
                     leaky_PCM_buffer = 0;
                     leaky AMP buffer = 0;
              }
       }
```

4.Problem

ในการทำงานครั้งนี้มีปัญหาเกิดขึ้นตามที่ดังจะกล่าวต่อไปนี้

- 1. ตบมือแล้วบางที่ไฟไม่ติด (ไมค์โครโฟนไม่รับเสียง)
- 2. โค้ดติดบัค ตัวอย่างเช่น
 - 2.1 เกิดการ delay มากเวลาส่งข้อมูลจาก web server
 - 2.2 จาก log in มาหน้าหลัก ต้องใช้เวลารอ แต่ปัญหาเหล่านี้ได้รับการแก้ไขแล้วเรียบร้อย
- 3. สายที่เชื่อมต่อหลุดง่าย
- 4. ก่อนจะอัพโหลดโค้ดลง nodeMCU ต้องถอดสาย STM32 ออกก่อน เนื่องจากมี baudrate ที่ตรง กัน