程,具有一定的參考價值,感興趣的小夥伴們可以參考一下

相機標定:簡單的說,就 是獲得相機引數的過程。引數 如:相機內參數矩陣,投影矩 陣,旋轉矩陣和平移矩陣等

什麼叫相機引數?

簡單的說,將現實世界中的人、物,拍成一張影象(二維)。人或物在世界中的三維座標,和影象上對應的二維座標間的關係。表達兩種不同維度座標間的關係用啥表示?用相機引數。

相機的成像原理

先來看一下,相機的成像 原理:

聊一聊OpenCV相

首頁 科技 程式語言

軟體程式設計·發表 2018-01-10

NTS

馬_

這篇文章主要為大家詳細 介紹了OpenCV相機標定的相關 資料,即獲得相機引數的過

如圖所示,這是一個相機 模型。將物體簡化看成一個 點。來自物體的光,通過鏡 頭,擊中影象平面(影象感測 器),以此成像。d0是物體到 鏡頭的距離,di時鏡頭到影象平 面的距離,f是鏡頭的焦距。三 者滿足以下關係。

$$\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$$

現在,簡化上面的相機模型。

將相機孔徑看成無窮小, 只考慮中心位置的射線,這樣 就忽視了透鏡的影響。然後由

於d0遠遠大於di,將影象平面 放在焦距處,這樣物體在影象 平面上成像為倒立的影像(沒 有透鏡的影響,只考慮從中心 的孔徑推入的光線)。這個簡 化的模型就是針孔攝像機模 型。然後,我們在鏡頭前,將 影象平面放在焦距距離的位 置,就可以簡單獲得一個筆直 的影象(不倒立)。當然,這 只是理論上的,你不可能將影 象感測器從相機裡拿出來,放 在鏡頭前面。實際應用中,針 孔攝像機應該是將成像後的影 象倒過來,以獲得正立的影 象。

到此,我們獲得了一個簡化的模型,如下圖:

h0是物體的高,hi是影象上物體的高,f是焦距(距離),d0是影象到鏡頭的距離。四者滿足如下關係:

$$h_{i} = f \frac{h_{0}}{d_{0}}$$

(1)

物體在影象中的高度hi,和 d0成反比。也就是說,離鏡頭 越遠,物體在影象中越小,離 得越近越大(好吧,這句話是 廢話)。 但通過這個式子,我們便能夠 預測三維中的物體,在影象 (二維)中的位置。那麼怎麼 預測?

相機標定

如下圖所示,根據上面簡 化的模型,考慮三維世界中的 一個點,和其在影象(二維) 中的座標關係。

(X,Y,Z) 為點的三維 座標, (x,y) 為其通過相機 成像後在影象(二維)上的座 標。u0和v0是相機的中心點 (主點),該點位於影象平面中 心(理論上是這樣。但實際的 相機會有幾個畫素的偏差) 現在只考慮y方向上,由於需要 將三維世界中的座標,轉換為 影象上的畫素(影象上的座 標,實際上是畫素的位置), 需要求y方向上焦距等於多少個 畫素(用畫素值表示焦距), Py表示畫素的高,焦距f(米或 毫米)。垂直畫素表示的焦距 為

 $f_y = f/p_y$

根據式子(1),只考慮y 方向。我們三維世界中得點, 在影象(二維)中y的座標。

$$y = \frac{f_y Y}{Z} + v_0$$

同理,得到x的座標。

$$x = \frac{f_{X}X}{Z} + u_{0}$$

現在,將上圖中的座標系的原點O,移動到影象的左上角。由於(x,y)是關於(u0,v0)的偏移,上面表示影象(二維)中點的座標的式子不變。將式子以矩陣的形式重寫,得。

$$s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

其中,等式左邊的第一個 矩陣,叫做"相機內參數矩陣", 第二個矩陣叫(投影矩陣)。

更為一般的情況,開始時的參考座標系不位於主點(中心點),需要額外兩個引數"旋轉向量"和"平移向量"來表示這個式子,這兩個引數在不同視角中是不一樣的。整合後,上述式子重寫為。

$$s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_9 & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

校正畸變

通過相機標定,獲得了相機引數後,可以計算兩個對映函式(x座標和y座標),它們分別給出了沒有畸變的影象座標。將畸變的影象重新對映成為沒有畸變的影象。

程式碼:

做相機標定時,一般用標定板(棋盤)拍攝一組影象,利用這些影象提取角點,通過角點在影象中得座標和三維世界中的座標(通常自定義3維座標),計算相機引數。

```
1 std::vector<cv:: ♣ ^ //提取標定影象角點,
3 cv::findChessboar
4 boardSize, //角點
5 imageConers); ▼
```

函式**calibrateCamera**完成 相機標定工作。

```
1 cv::calibrateCame imagePoints, //二 imageSize, //影象 camerMatirx, //相相 disCoeffs, //投影符 rvecs, //旋轉 tvecs, //平移 flag //標記opencv表 );
```

計算畸變引數,去畸變

```
1 //計算畸變引數
2 cv::initUndistor
3 cv::Mat(), cv:
```

```
4 map1, //x對映函
5 map2 //y對映函元
6 );
7 //應用對映函式
8 cv::remap(image,
9 undistorted, //去
10 map1, map2, cv:::▼
```

現在整合程式碼。

示例:

標頭.h

```
#include<openc ♣ ▲
 2
     #include<opencv:
 3
     #include<opencv:</pre>
     #include<opency:
 4
     #include <opency
     #include<string</pre>
 6
     #include<vector:</pre>
 8
     class CameraCal:
9
10
     private:
11
       //世界座標
12
       std::vector <</pre>
13
       //影象座標
       std::vector <:
14
       //輸出矩陣
15
16
       cv::Mat camer
17
       cv::Mat disCo
       //標記
18
19
       int flag;
       //去畸變引數
20
21
       cv::Mat map1,
```

```
22
       //是否去畸變
23
       bool mustInit
24
      ///儲存點資料
25
26
      void addPoints
27
28
         imagePoints
29
         objectPoint:
30
31
     public:
32
       CameraCalibra
33
       //開啟棋盤圖片
34
       int addChessbo
35
36
         std::vector
37
         std::vector
38
         //輸入角點的
39
         for (int i
40
           for (int
41
42
43
            objectCo
44
45
         //計算角點在
46
47
         cv::Mat imag
48
         int success
49
         for (int i
50
51
           image = c
           //找到角點
52
53
           bool found
54
           cv::corner
55
             imageCo
56
             cv::Size
57
             cv::Size
58
             cv::Terr
```

```
59
             30, 0.1
60
           if (image(
61
62
             addPoint
63
             success-
64
65
           //畫出角點
66
           cv::drawCl
67
           cv::imshow
68
           cv::waitK
69
70
         return succe
71
72
73
       //相機標定
74
       double calibra
75
76
         mustInitUnd:
77
         std::vector
78
         //相機標定
79
         return cv::
80
           camerMati
81
       ///去畸變
82
83
       cv::Mat remap
84
85
         cv::Mat und:
86
         if (mustIni
87
88
           //計算畸變
           cv::initUr
89
90
             cv::Mat
91
           mustInitU
92
93
         //應用對映函
94
         cv::remap(ir
95
         return undi:
```

```
96 }
97 //常成員函式,
98 cv::Mat getCar
99 cv::Mat getDi:
100 };
```

源.cpp

```
#include"標頭.h'll 🔺
 2
     #include<iomanip:</pre>
     #include<iostream
 4
     int main()
 5
 6
       CameraCalibrato
       cv::Mat image;
       std::vector<std
 9
       cv::namedWindow
10
       for (int i = 1
11
12
         ///讀取圖片
13
         std::strings
14
         s << "D:/imag
15
         std::cout <<
16
17
         filelist.pusl
18
         image = cv:::
         cv::imshow(":
19
20
         cv::waitKey(1
21
22
       //相機標定
23
       cv::Size board
24
       Cc.addChessboar
25
       Cc.calibrate(ir
26
27
       //去畸變
28
       image = cv::im/
```

```
cv::Mat uImage:
        cv::imshow("原
cv::imshow("去
//顯示相機內參數
30
31
32
33
        cv::Mat cameral
34
        std::cout << "</pre>
35
        std::cout << ca
36
        std::cout << ca
37
        std::cout << ca
38
        cv::waitKey(0)
39
40
```

實驗結果:

標籤: 軟體程式設計 C語言

♪ 您可能也會喜歡...

Python使用OpenCV進 Android實現呼叫系統

行標定 相簿與相機設定頭像

並儲存在本地及伺服

器

Android 中通過訪問本 Android 相機相簿許可

地相簿或者相機設定 權設定方法

使用者頭像例項 android 7自定義相機

預覽及拍照功能

Python+樹莓派+YOLO Android 自定義相機及

打造一款人工智慧照 分析原始碼

相機 Android 自定義照相機

的例項

Android 用 camera2 iOS開發-自定義相機

API 自定義相機 例項(仿微信)

Spring Boot實戰之 Android中關於自定義

netty-socketio實現簡 相機預覽介面拉伸問

單聊天室(給指定使用 題

者推送訊息) Android自定義相機實

現定時拍照功能

Android使用系統自帶 Android自定義相機實

的相機實現一鍵拍照 現自動對焦和手動對

功能

Android自定義相機介 Android自定義照相機

面的實現程式碼 Camera出現黑屏的解

決方法

Android實用控制元件 Android自定義照相機

自定義逼真相機光圈 詳解

View Android實現從本地相

簿/相機拍照後裁剪圖

片並設定頭像

首頁

Python教學

ITREAD01.COM© 2018. 版權所有。

看以看到,相機內參數矩 陣為

172.654 \ 0 \ 157.829 0 \ 184.195 \ 118.635 0 \ 0 \ 1

以上就是本文的全部内容,希望對大家的學習有所幫助,也希望大家多多支援itread01.com。

