```
In [2]:
```

```
import pandas as pd
import numpy as np
```

In [3]:

```
df = pd.read_csv("train_data.csv")
```

In [4]:

```
df.shape
```

Out[4]:

(2644, 23)

In [5]:

```
df.isna().sum()
```

Out[5]:

id	0				
Country	0				
Year	0				
Status	0				
Life expectancy	9				
Adult Mortality					
infant deaths	0				
Alcohol	174				
percentage expenditure	0				
Hepatitis B	487				
Measles	0				
BMI	28				
under-five deaths	0				
Polio	15				
Total expenditure	204				
Diphtheria	15				
HIV/AIDS	0				
GDP	401				
Population	595				
thinness 1-19 years	28				
thinness 5-9 years	28				
Income composition of resources	149				
Schooling	146				
dtype: int64					

In [8]:

df.dtypes

Out[8]:

Country object Year int64 Status object Life expectancy float64 Adult Mortality float64 infant deaths int64
Status object Life expectancy float64 Adult Mortality float64
Life expectancy float64 Adult Mortality float64
Adult Mortality float64
-
infant deaths int64
Alcohol float64
percentage expenditure float64
Hepatitis B float64
Measles int64
BMI float64
under-five deaths int64
Polio float64
Total expenditure float64
Diphtheria float64
HIV/AIDS float64
GDP float64
Population float64
thinness 1-19 years float64
thinness 5-9 years float64
Income composition of resources float64
Schooling float64
dtype: object

In []:

In [12]:

```
df = df.fillna(df.mean(axis=0))
```

In [13]:

df.isna().sum()

Out[13]:

id	0
Country	0
Year	0
Status	0
Life expectancy	0
Adult Mortality	0
infant deaths	0
Alcohol	0
percentage expenditure	0
Hepatitis B	0
Measles	0
BMI	0
under-five deaths	0
Polio	0
Total expenditure	0
Diphtheria	0
HIV/AIDS	0
GDP	0
Population	0
thinness 1-19 years	0
thinness 5-9 years	0
Income composition of resources	0
Schooling	0
dtype: int64	

In [17]:

```
df['Status'] = df['Status'].astype('category').cat.codes
```

In [19]:

```
df.drop(columns=['Country'], inplace=True)
```

In [20]:

```
df.head()
```

Out[20]:

	id	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles
-	2752	2009	1	76.0	84.0	1	1.73	292.402267	93.000000	0
1	2486	2002	1	67.9	221.0	0	4.41	250.711237	81.197033	0
2	642	2014	0	77.8	97.0	0	12.14	1884.098811	95.000000	0
3	1229	2004	1	71.8	139.0	28	0.01	0.000000	95.000000	3
4	1583	2002	1	44.0	67.0	46	1.10	3.885395	64.000000	92

5 rows × 22 columns

```
In [23]:
df.columns
Out[23]:
Index(['id', 'Year', 'Status', 'Life expectancy ', 'Adult Mortality',
       'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatiti
s B',
       'Measles ', 'BMI ', 'under-five deaths ', 'Polio', 'Total expe
nditure',
       'Diphtheria ', ' HIV/AIDS', 'GDP', 'Population',
       'thinness 1-19 years', 'thinness 5-9 years',
       'Income composition of resources', 'Schooling'],
      dtype='object')
In [21]:
from sklearn.model_selection import train_test_split
In [27]:
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns=['Life expectangle)
                                                     df['Life expectancy '], test siz
In [28]:
X_train.shape, y_train.shape
Out[28]:
((1771, 21), (1771,))
In [29]:
X_test.shape, y_test.shape
Out[29]:
((873, 21), (873,))
In [ ]:
In [30]:
from sklearn.linear_model import LinearRegression
In [31]:
model = LinearRegression()
In [32]:
model.fit(X_train, y_train)
Out[32]:
LinearRegression()
```

```
In [33]:
y_pred = model.predict(X_test)

In [34]:
model.score(X_train, y_train)
Out[34]:
0.8198646717133773

In [35]:
model.score(X_test, y_test)
Out[35]:
0.8113515851735386

In []:
```