Derivability

Professor Cian Dorr

13th October 2022

New York University

Syntax of first-order terms (review)

For a first-order signature Σ , $\mathrm{Terms}(\Sigma)$ is the smallest set of strings meeting the following conditions:

$$\frac{v \in \operatorname{Var}}{v \in \operatorname{Terms}(\Sigma)}$$

$$f \in F_{\Sigma}, a_{\Sigma}(f) = n \quad t_{1} \in \operatorname{Terms}(\Sigma) \quad \cdots \quad t_{n} \in \operatorname{Terms}(\Sigma)$$

$$f(t_{1}, \dots, t_{n}) \in \operatorname{Terms}(\Sigma)$$

Syntax of first-order formulae (review)

For a first-order signature Σ , $\mathcal{L}(\Sigma)$ is the smallest set of strings meeting the following closure conditions:

$$F \in R_{\Sigma}, a_{\Sigma}(F) = n \qquad t_{1} \in \operatorname{Terms}(\Sigma) \qquad \cdots \qquad t_{n} \in \operatorname{Terms}(\Sigma)$$

$$R(t_{1}, \dots, t_{n}) \in \mathcal{L}(\Sigma)$$

$$P \in \mathcal{L}(\Sigma) \qquad P \in \mathcal{L}(\Sigma)$$

$$P \mapsto Q \in \mathcal{L}(\Sigma)$$

$$P \in \mathcal{L}(\Sigma) \qquad Q \in \mathcal{L}(\Sigma)$$

$$P \mapsto Q \in \mathcal{L}(\Sigma)$$

3

Provability

Provability

We are interested in studying the properties of *classical first order logic*, the system of logic for first-order languages that formalizes the reasoning we have been doing in our informal mathematical proofs.

To this end, we are going to define a relation $\vdash \subseteq \mathcal{P}(\mathcal{L}(\Sigma)) \times \mathcal{L}(\Sigma)$: that is, a relation that can hold between a *set* of formulae Γ and a *single* formula P.

- ▶ We write the relation in infix position: $\Gamma \vdash P$ is short for $\langle \Gamma, P \rangle \in \vdash$.
- We pronounce $\Gamma \vdash P$ as `P is [classically] provable/derivable from Γ' or ` Γ proves P'. This is a misnomer given that it'll turn out that every sentence is ``provable from'' some Γ , but we're stuck with it.
- ▶ An ordered pair $\langle \Gamma, P \rangle$ of a set of formulae and a formula is often called a *sequent*, and notated as something like $\Gamma \triangleright P$.
- ▶ When referring to sets of formulae Γ , P abbreviates $\Gamma \cup \{P\}$, and Γ , Δ abbreviates $\Gamma \cup \Delta$. $P \vdash Q$ abbreviates $\{P\} \vdash Q$, and $\vdash P$ abbreviates $\varnothing \vdash P$.

Defining provability

 \vdash is defined to be the smallest relation between sets of formulae and formulae meeting the following conditions.

$$\begin{array}{ll} \frac{P \in \mathcal{L}(\Sigma)}{P \vdash P} \text{ Assumption} & \frac{\Gamma \vdash P}{\Gamma, \Delta \vdash P} \stackrel{\Delta \subseteq \mathcal{L}(\Sigma)}{\text{Weakening}} \\ \\ \frac{\Gamma, P \vdash Q}{\Gamma \vdash P \to Q} \to \text{Intro} & \frac{\Gamma \vdash P \to Q}{\Gamma \vdash Q} \xrightarrow{\Gamma \vdash P} \to \text{Elim} \\ \\ \frac{\Gamma \vdash P}{\Gamma \vdash P \land Q} \land \text{Intro} & \frac{\Gamma \vdash P \land Q}{\Gamma \vdash P} \land \text{Elim1} & \frac{\Gamma \vdash P \land Q}{\Gamma \vdash Q} \land \text{Elim2} \\ \\ \frac{\Gamma \vdash P}{\Gamma \vdash P \lor Q} \lor \text{Intro1} & \frac{\Gamma \vdash Q}{\Gamma \vdash P \lor Q} \lor \text{Intro2} \\ \\ \frac{\Gamma \vdash P \lor Q}{\Gamma \vdash P \lor Q} & \frac{\Gamma, P \vdash R}{\Gamma \vdash R} & \frac{\Gamma, Q \vdash R}{\Gamma, Q \vdash R} \lor \text{Elim} \\ \\ \end{array}$$

Defining provability (contd.)

$$\frac{\Gamma, P \vdash Q \qquad \Gamma, P \vdash \neg Q}{\Gamma \vdash \neg P} \neg Intro \qquad \frac{\Gamma \vdash \neg \neg P}{\Gamma \vdash P} \ DNE$$

$$\frac{\Gamma \vdash P[u/v] \qquad u \not\in FV(\Gamma, \forall vP)}{\Gamma \vdash \forall vP} \forall Intro \qquad \frac{\Gamma \vdash \forall vP \qquad t \in \operatorname{Terms}(\Sigma)}{\Gamma \vdash P[t/v]} \forall Elim$$

$$\frac{\Gamma \vdash P[t/v]}{\Gamma \vdash \exists vP} \exists Intro \qquad \frac{\Gamma \vdash \exists vP \qquad \Gamma, P[u/v] \vdash Q \qquad u \not\in FV(\Gamma, Q, \exists vP)}{\Gamma \vdash Q} \exists Elim$$

$$\frac{t \in \operatorname{Terms}(\Sigma)}{\vdash t = t} = Intro \qquad \frac{\Gamma \vdash s = t \qquad \Gamma \vdash P[s/v]}{\Gamma \vdash P[t/v]} = Elim$$

Nomenclature

We call a sequent of the form $P \triangleright P$ an *instance* of Assumption. Likewise, we call a sequent of the form $\triangleright t = t$ an *instance* of =Elim.

We say that $\Gamma' \triangleright P'$ follows by Weakening from $\Gamma \triangleright P$ iff P' = P and $\Gamma \subseteq \Gamma'$.

We say that $\Gamma' \triangleright P'$ follows by $\rightarrow Intro\ from\ \Gamma \triangleright P$ iff there exists a formula Q such that $P' = Q \rightarrow P$ and $\Gamma = \Gamma' \cup \{Q\}$.

We say that $\Gamma'' \triangleright P''$ follows by $\rightarrow Elim \ from \ \Gamma \triangleright P$ and $\Gamma' \triangleright P'$ iff $\Gamma'' = \Gamma' = \Gamma$ and $P = P' \rightarrow P''$.

Similarly for all the rest. All told we have 2 sets of sequents; 9 binary relations between sequents; 6 ternary relations between sequents; and 1 quaternary relation between sequents. \vdash is being defined as the closure of the union of the two sets under those 16 relations.

Some other provability relations

I mentioned the existence of restricted languages $\mathcal{L}_{\Phi}(\Sigma)$, where $\Phi \subseteq \{\neg, \rightarrow, \land, \lor, \forall, \exists\}$. When we are thinking about $\mathcal{L}_{\Phi}(\Sigma)$, it's natural to consider a provability relation \vdash_{Φ} that's defined like \vdash above, but that just drops the rules that mention a logical constant not in Φ .

▶ These restrictions of \vdash also make *sense* for \mathcal{L} , but aren't very interesting there, since e.g., $P \nvdash_{\neg, \land, \forall} P \lor Q$ and $P \to Q, P \nvdash_{\neg, \land, \forall} Q$ for all P and Q.

Two other famous restrictions of \vdash that are interesting on $\mathcal{L}(\Sigma)$

- ightharpoonup (provability in *minimal logic*) is defined like \vdash but dropping the DNE rule.
- ightharpoonup (provability in *intuitionistic logic*) is defined like \vdash but replacing DNE with

$$\frac{\Gamma \vdash_{I} P \qquad \Gamma \vdash_{I} \neg P}{\Gamma \vdash_{I} Q}$$
 Explosion

Explosion is a *derived rule* for \vdash , i.e. we have $\Gamma \vdash Q$ whenever $\Gamma \vdash P$ and $\Gamma \vdash \neg P$.

A succinct way to show this is to display the following diagram:

$$\frac{\begin{array}{c|c} \Gamma \vdash P \\ \hline \Gamma, \neg Q \vdash P \end{array}}{\begin{array}{c} \Gamma \vdash \neg P \\ \hline \Gamma, \neg Q \vdash \neg P \end{array}} \text{Weakening} \quad \frac{\begin{array}{c} \Gamma \vdash \neg P \\ \hline \Gamma, \neg Q \vdash \neg P \end{array}}{\neg Intro} \text{Intro}$$

Proving by induction that all provable sequents have some property

Given how \vdash is defined as a closure, if we want to prove something of the form 'For all Γ and P such that $\Gamma \vdash P$, $\phi(\Gamma, P)$ ', we can do so by a proof by induction. In principle there'll be 18 steps: two base clauses (corresponding to the zero-premise rules Assumption and =Intro) and 16 induction steps (corresponding to the 10 one-premise, 5 two-premise, and 1 three-premise rules).

Often many steps can be bundled together. (Don't worry, I'm not going to give you assignments where you have to do anything like 18 separate bits.)

A proof by induction: provability is compact

Compactness of provability

 $\Gamma \vdash P$ iff there is a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash P$.

The right-to-left direction is just a matter of applying Weakening.

The left-to-right direction needs an induction. Let's say that a sequent $\Gamma \triangleright P$ is compactable iff there is a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash P$; we are trying to show that every provable sequent is compactable.

Assumption: if $\Gamma \triangleright P$ is an instance of Assumption, $\Gamma = \{P\}$ which is finite.

Weakening: if $\Gamma \triangleright P$ follows by Weakening from some provable compactable sequent, that sequent must be $\Delta \triangleright P$ for some $\Delta \subseteq \Gamma$. By the IH, there's a finite $\Delta_0 \subseteq \Delta$ such that $\Delta_0 \vdash P$; since $\Delta_0 \subseteq \Gamma$, this means $\Gamma \triangleright P$ is also compactable.

ightharpoonupIntro: suppose $\Gamma
ightharpoonup P$ follows by ightharpoonupIntro from some provable compactable sequent. Then there must be some Q and R such that $P = Q \to R$ and that sequent is $\Gamma, Q
ightharpoonup R$. By the IH, there's a finite subset Δ of $\Gamma \cup \{Q\}$ such that $\Delta
ightharpoonup R$. Let $\Gamma_0 = \Delta \setminus \{Q\}$; note that Γ_0 is finite since Δ is. Then $\Gamma_0 \subseteq \Gamma$ and $\Delta \subseteq \Gamma_0 \cup \{Q\}$, so by Weakening $\Gamma_0, Q \vdash R$, so by ightharpoonupIntro, $\Gamma_0 \vdash Q \to R$.

ightarrowElim: suppose $\Gamma
hd P$ follows by ightarrowElim from two provable compactable sequents. Then there must be some Q such that one of those sequents is $\Gamma
hd Q
ightarrow P$ and the other is $\Gamma
hd Q$. By the IH, there are finite subsets Γ_1, Γ_2 of Γ such that $\Gamma_1 \vdash Q
ightarrow P$ and $\Gamma_2 \vdash Q$. Let $\Gamma_0 = \Gamma_1 \cup \Gamma_2$. By Weakening, $\Gamma_0 \vdash Q
ightarrow P$ and $\Gamma_0 \vdash Q$, so by ightarrowElim, $\Gamma_0 \vdash P$. Γ_0 is finite since it's the union of two finite sets.

Other rules similar.

Finite-sequent provability

We can shed more light on the last result by introducing a new relation \vdash_{fin} between finite sets of formulae and formulae (a subset of $\mathcal{P}_{\mathit{fin}}(\mathcal{L}(\Sigma)) \times \mathcal{L}(\Sigma)$). It is defined just like \vdash , but the Weakening rule is changed to:

$$\frac{\Gamma \vdash_{\mathit{fin}} P \qquad Q \in \mathcal{L}(\Sigma)}{\Gamma, \, Q \vdash_{\mathit{fin}} P} \, \, \mathsf{One}\text{-}\mathsf{formula} \, \, \mathsf{Weakening}$$

Theorem

 $\Gamma \vdash P$ iff for some $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \vdash_{\mathit{fin}} P$

For the right-to-left direction, we first show by a trivial induction that $\Gamma_0 \vdash P$ whenever $\Gamma_0 \vdash_{\mathit{fin}} P$, and then appeal to Weakening to get that when $\Gamma_0 \vdash P$ and $\Gamma_0 \subseteq \Gamma$, $\Gamma \vdash P$.

For the left-to right direction, we first prove that \vdash_{fin} is closed under the version of Weakening restricted to $\mathit{finite}\ \Delta$ (by induction on the size of Δ). Then the proof proceeds just like the one on the previous slide.

Provability and proofs

What about proofs?

When you're taught to *use* a formal system of logic, you're taught rules for writing down things called *proofs*. So far, we haven't even mentioned them!

But there's a sense in which a certain very abstract notion of "proof" is in play whenever one defines a set (or relation) as a closure.

Closures and derivations

Supose we have a family (R_i) of relations on a set A (which may be of different arities), such that C is the smallest subset of A closed under all the R_i . (Note that some of the R_i may be 1-ary, i.e. subsets of A, so C need not be \varnothing !)

Let a *derivation history* for (R_i) be a list $s \in A^*$ such that for each element y of s, there is some R_i (of arity n) and some x_1, \ldots, x_{n-1} occurring earlier than y in s such that $R_i x_1 \ldots x_{n-1} y$. More carefully:

Definition

The set of derivation histories for (R_i) is the smallest set which contains [] and is such that if it contains s, and $R_ix_1 \ldots x_{n-1}y$ for some $x_1 \ldots x_{n-1} \in \text{elements } s$ (where n is the arity of R) then it contains (y:s).

It is easy to show that s and t are derivation histories, $s \oplus t$ is. (Use induction on s.)

The existence of derivations

A derivation of y is a derivation history whose last element is y, i.e. which is (y:s) for some $s \in A^*$.

Then we can show that for any $y \in A$, $y \in C$ iff there is a derivation of y.

Proof, left-to-right: When $y \in R_i$ for a singulary R_i , [y] is a derivation of y. Otherwise, suppose $R_i x_1 \dots x_{n-1} y$ for an n-ary R, where $x_1 \dots x_{n-1} \in C$, and there is a derivation s_i of each x_i . Then $t := [y] \oplus s_1 \oplus \cdots \oplus s_{n-1}$ is a derivation of y.

Right-to-left: we show by induction that for every s, if s is a derivation history, then elements $s \subseteq C$. Base case trivial since elements $[] = \varnothing \subseteq C$. Induction step: suppose s is such that if it's a derivation history, then elements $s \subseteq C$. Suppose (y:s) is a derivation history. Then s is a derivation history and there is an n-ary R_i such that for some $x_1 \dots x_{n-1} \in \text{elements } s$, $R_i x_1 \dots x_{n-1} y$. But by the induction hypothesis, elements $s \subseteq C$. Since C is closed under C, it follows that C.

The use of derivation histories

A common situation: we are interested in some finite number of (R_i) such that for each one, it is a mechanical matter to check whether $R_i x_1 \dots x_n$ (when $x_1 \dots x_n$ are "given" to us in some appropriate way, e.g. they are strings we have written down).

Figuring out whether a given y belongs to the smallest set closed under (R_i) may still be very hard!

But if we are presented (in the same canonical way) with a list of elements of A, it will be a mechanical matter to check whether it is a derivation of y. We just go through it step by step and check, for each step, whether it bears each R_i to an appropriate tuple of previous steps.

It's easier if we have an ``annotated'' derivation history where for each element of the list we are told which R_i applies and where in the earlier list we are to find the relevant x_1, \ldots, x_{n-1} ; but even without this information, there are only finitely many possibilities to search through.

Proofs

A derivation history for \vdash is a list of sequents, where each one is either an instance of Assumption, an instance of =Intro, follows from some earlier sequent by Weakening, \rightarrow Intro, ...; follows from two earlier sequents by \rightarrow Elim, \land Intro,...; or follows from three earlier sequents by \lor Elim.

Such derivation histories may involve sequents $\Gamma \triangleright P$ where Γ is infinite. There is no clear sense in which one could *write down* such a derivation history.

By contrast, derivation histories for \vdash_{fin} are lists of *finite* objects. These are more like what we'd expect a `proof' to be.

Proofs as strings

If we're treating formulas as strings, it's natural to think that proofs should be strings too. Derivation histories in \vdash_{fin} aren't strings; they are lists of ordered pairs of a finite set of formulae and a formula.

But we can represent any such list unambiguously as a string.

- 1. First, convert each finite set of formulae into a string by listing them in alphabetical order and joining them with a character that never appears in formulae: ;, say.
- Second, convert each ordered pair of such a string and a formula into a single string by joining the two with another character that never appears in formulae:
 , say.
- 3. Finally, convert the resulting list of strings into a single string by joining them all with some third character that never appears in formulae: newline, say.

Tree-style proofs

In constructing a proof in this sense of some given sequent, one typically ends up making a lot of arbitrary choices about how to order the lines. *Proof theorists* are interested in properties of proofs that don't depend on these arbitrary line-numbering choices: for these purposes, it's more useful to think of formal proofs as *trees* of formulae rather than lists of formulae. E.g. the following (cf. our earlier discussion of Explosion) would be an unambiguous visual representation of a unique proof:

$$\frac{\begin{array}{c|c} \Gamma \rhd P \\ \hline \Gamma, \neg Q \rhd P \end{array}}{\begin{array}{c} \Gamma, \neg Q \rhd P \end{array}} \text{Weakening} \quad \frac{\begin{array}{c} \Gamma \rhd \neg P \\ \hline \Gamma, \neg Q \rhd \neg P \end{array}}{\begin{array}{c} \neg \text{Intro} \end{array}} \text{-Intro}$$

The theory of trees can be developed along similar lines to the theory of lists; but we haven't done this, so we'll stick with our less elegant linear conception of proof.

Fitch-style proof formatting

In your introductory Logic class, you probably learnt a way of writing down proofs that look something like this:

Any such proof can be understood as a proof in our sense (in a system with some more rules, which are derived rules for \vdash) where the vertical lines on the left correspond to the formulae on the left hand side of \triangleright .

The Fitch-style proof on the previous line corresponds to the following list of sequents (which is in fact a proof in our sense):

$$A \triangleright A$$
 $A, B \triangleright B$
 $A, B \triangleright A$
 $A \triangleright B \rightarrow A$
 $A \triangleright A \rightarrow (B \rightarrow A)$

There's a simple algorithm for converting from Fitch notation to ours; the Fitch proof can be regarded as a nicer looking visual representation of the corresponding list-of-sequents.

Fitch proofs enforce certain choices about the ordering of lines, so not every proof in our sense corresponds to a Fitch proof. It turns out that every provable sequent *does* have a Fitch proof, but we won't show this since it would require a rigorous definition of ``Fitch proof'' (which is fiddly!).

Derivable rules

There are many other good-looking inference rules which we might have been tempted to add to the definition of \vdash . For example

$$\frac{\Gamma \vdash P \lor Q \qquad \Gamma \vdash \neg P}{\Gamma \vdash Q}$$
 Disjunctive Syllogism

But this turns out to be already derivable for \vdash as defined earlier, so we would get exactly the same relation if we added this to the definition.

$$\frac{\Gamma \vdash \neg P}{\Gamma, P, \neg Q \vdash \neg P} W \xrightarrow{\overline{P} \vdash P} A W \xrightarrow{\overline{Q} \vdash \overline{Q}} W \xrightarrow{\overline{Q} \vdash \overline{Q}} W \xrightarrow{\overline{\neg Q} \vdash \neg \overline{Q}} W \xrightarrow{\overline{\Gamma}, Q, \neg Q \vdash \overline{Q}} W \xrightarrow{\overline{\Gamma}, Q, \neg Q \vdash \neg \overline{Q}} W \xrightarrow{\overline{\Gamma}, Q, \neg \overline{Q}} W \xrightarrow{\overline{\Gamma}, Q$$

Provable equivalence

Definition

 $P \dashv \vdash Q$ (P and Q are provably equivalent) iff $P \vdash Q$ and $Q \vdash P$.

Fact

 $P \dashv \vdash Q$ iff for all Γ , $\Gamma \vdash P$ iff $\Gamma \vdash Q$.

Proof, right to left: by Assumption, $P \vdash P$ and $Q \vdash Q$. Left-to-right: suppose $\Gamma \vdash P$. Since $P \vdash Q$, $\Gamma, P \vdash Q$ by Weakening, so $\Gamma \vdash P \to Q$ by \to Intro; hence $\Gamma \vdash Q$ by \to Elim.

Provable equivalence

Provable equivalence is a congruence

If $P \dashv \vdash Q$, then $\neg P \dashv \vdash \neg Q$, and for any variable v, $\forall vP \dashv \vdash \forall vQ$ and $\exists vP \dashv \vdash \exists vQ$. If furthermore $P' \dashv \vdash Q'$, then also $P \land P' \dashv \vdash Q \land Q'$, $P \lor P' \dashv \vdash Q \lor Q'$, and $P \to P' \dashv \vdash Q \to Q'$

Proof for \wedge : by \wedge Elim, $P \wedge P' \vdash P$ and $P \wedge P' \vdash P'$. But then by the hypothesis, $P \wedge P' \vdash Q$ and $P \wedge P' \vdash Q'$. So by \wedge Intro, $P \wedge P' \vdash Q \wedge Q'$.

Proof for \forall : $\forall vP \vdash P$ by $\forall \mathsf{Elim}$ (since P = P[v/v]. So by the hypothesis, $\forall vP \vdash Q$. Since v isn't free in $\forall vP$ or $\forall vQ$, we can apply $\forall \mathsf{Intro}$ to conclude that $\forall vP \vdash \forall vQ$.

Other cases similar.