

BAKALÁŘSKÁ PRÁCE

Peter Lakatoš

Analyzátor USB paketů

Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D.

Studijní program: Informatika

Studijní obor: Programování a softwarové systémy

Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Tato práce nebyla využita k získání jiného nebo stejného titulu.
Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona.
V dne Podpis autora
roupis autora

Poděkování.

Název práce: Analyzátor USB paketů

Autor: Peter Lakatoš

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D., Katedra distribuovaných a spolehlivých systémů

Abstrakt: USB zbernica je dnes jedným z najrozšírenejších spôsobov pripojenia periférií k počítaču. Cieľom práce bolo vytvoriť software, ktorý analyzuje zachytenú komunikáciu medzi zariadnením pripojeným na danú zbernicu a počítačom.

Aplikácia následne rozumným spôsobom vizuálne zobrazuje zanalyzované dáta. Počiatočná verzia sa špecificky zameriava na HID triedu zariadení a ponúka aj sémantický význam jej úzkej podmnožiny do ktorej patria myš, klávesnica a joystick. Pri vizuálnej reprezentácii dát sa práca inšpiruje rôznymi dostupnými softwarmi, pričom rozlične kombinuje resp. dopĺňa ich vlastnosti a implementuje z nich tie, ktoré vníma ako najlepšie riešenie v danej situácii.

Ďalšie vlastnosti aplikácie sú napríklad parsovanie HID Report Descriptoru vďaka ktorému je jednoduchšie pridať sémantickú analýzu rôznym ďalším HID zariadeniam. Celkový návrh aplikácie by mal ponúknuť možnosť budúcej implementácie ďalších USB tried pre prípadné rozšírenie.

Klíčová slova: USB HID

Title: USB Packet Analyzer

Author: Peter Lakatoš

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable

Systems

Abstract: Abstract.

Keywords: key words

Obsah

1	Úvo	od	3										
	1.1	Základné pojmy	3										
	1.2		6										
	1.3	· · · ·	1										
	1.4		.3										
2	USI	B a Windows 1	4										
_	2.1		4										
	2.2		4										
		·	4										
	2.3		4										
	2.4		4										
		1 0	4										
	2.5		.5										
			5										
		1 0	5										
		1											
3	Ana	${f l}$ ýza 1	6										
	3.1	Získanie USB packetov	6										
		3.1.1 Windows exclusive mód	6										
		3.1.2 Známe knižnice	6										
		3.1.3 Third-party aplikácie	6										
	3.2	Spracovávanie pcap súborov	6										
	3.3	Sémantická reprezentácia dát	6										
	3.4	Voľba frameworku	6										
	3.5	Zobrazenie základných informácií	6										
	3.6	Zobrazenie sémantického významu dát	7										
	3.7	Hexdump	7										
4	Vývojová dokumentácia 18												
	4.1		8										
	4.2		8										
			8										
		·	8										
		<u> </u>	8										
		4.2.4 TreeItem	8										
	4.3	Modely	8										
			8										
			8										
		-	8										
			.8										
		4.3.5 USBPcapHeaderModel	8										
	4.4		9										
		- ·	9										
		-	a										

		4.4.3 Interpretery descriptorov	19					
		4.4.4 Interrupt transfer interpretery	19					
	4.5	Delegáti	19					
	4.6	HID	19					
		4.6.1 HIDDevices	19					
	4.7	Práca so súbormi	19					
		4.7.1 FileReader	19					
	4.8	Globálne dáta	20					
		4.8.1 ConstDataHolder	20					
		4.8.2 PacketExternStructs	20					
5	Mo	žnosti rozšírenia	21					
	5.1	Ukladanie výstupu do súboru	21					
	5.2	Iná vizuálna reprezentácia dát	21					
	5.3	Pridávanie nových interpreterov pre descriptory	21					
	5.4	Pridanie intepreteru na interrupt tranfser	21					
		5.4.1 Pridanie nových HID zariední	21					
	5.5	Pridanie analýzy pre isochronous a bulk transfer	21					
	5.6	?Možnosť rozšírenia na iné platformy?	21					
6	Užívateľská dokumentácia							
	6.1	Inštalácia	22					
	6.2	Orientácia v GUI aplikácie	22					
	6.3	Používanie aplikácie	22					
7	Záver							
	7.1	Zhrnutie	23					
	7.2	Budúce plány	23					
Se	eznar	n použité literatury	24					
Se	eznar	n obrázků	2 5					
Se	eznar	n tabulek	26					
Se	eznar	n použitých zkratek	27					
Ρì	říloh	y	28					
	7	První příloha	20					

1. Úvod

USB je najrozšírenejšia zbernica na pripojenie rôznych periférií k počítaču. Vznikla v druhej polovici 90. rokov 20. storočia, kedy boli rôzne zariadenia a ich porty veľmi úzko mapované. Na pripojenie základných zariadení ako myš alebo klávesnica slúžil napríklad sériový port PS/2 [1]. K pripojeniu tlačiarne sa často používal paralelný port Centronics [2]. Ešte pred PS/2 portom sa myš pripájala cez veľmi známy sériový port RS-232 [3]. Všetky tieto porty boli typu point-to-point – na jeden port je možné pripojiť len jedno zariadenie. Toto sa paralelným portom dalo čiastočné obísť tým, že niektoré zariadenia podporovali tzv. daisy chain – do pripojeného zariadenia sa pripojí ďalšie zariadenie, do toho sa pripojí ďalšie, atď. (napríklad typická tlačiareň toto nepodporovala, takže musela byť pripojená na konci daisy chainu). Existovala takisto paralelná SCSI zbernica [4], ktorej návrh bol prispôsobený aby podporoval daisy chain. Tá fungovala dobre na zariadeniach ako externé HDD a skenery, ale bola nepraktická pre zariadenia ako myš a klávesnica.

USB vzniklo za účelom nahradiť a zjednotiť tieto spôsoby pripojenia bežných periférií k počítaču. Návrh zbernice je založený na hviezdicovej topológii, ktorá umožňuje cez jeden port pripojiť až 127 zariadení súčasne. Z toho vylýva, že USB interface v sebe zahŕňa obrovskú množinu protokolov, ktoré sú hierarchicky usporiadané. K analýze paketov ktoré sa pohybujú na danej zbernici nám slúžia tzv. USB paket analyzátory. Tie môžu mať podobu hardwarového zariadenia, alebo softwarovej aplikácie. Môžu slúžiť napríklad ako učebná pomôcka pre účel lepšieho pochopenia jednotlivých protokolov. Takisto sa často využívajú pri implementácii vlastného USB zariadenia na ladenie komunikácie medzi daným zariadením a driverom. Využitie ale majú aj v opačnom prípade, keď implementujeme vlastný driver a potrebujeme sledovať jeho komunikáciu s konkrétnym zariadením. Čieľom tejto práce bude naprogramovať funkčný USB analyzátor, ktorý by mal presnejšie slúžiť práve ako učebná pomôcka pre lepšie pochopenie určitej množiny protokolov.

1.1 Základné pojmy

V tejto sekcii si vysvetlíme niektoré základné pojmy ktoré budeme neskôr v texte používať.

Ako sme už vyššie spomínali a ako ilustruje obrázok 1.1, USB zbernica je založená na vstevnatej hviezdicovej topológii. Na vrchu všetkého sa nachádza USB Host čo je systém do ktorého sa pripájajú ostatné USB zariadenia (v našom prípade je USB Host počítač). USB zariadenie je buď:

- Hub poskytuje dodatočné pripojenia k USB zbernici.
- Funkcia poskytuje novú funkcionalitu systému (napríklad joystick, repráky, myš a pod.)

V každom USB systéme sa nachádza práve jeden *USB Host*. Ten má integrovaný tzv. **RootHub**, ktorý poskytuje možné body pripojenia pre ďalšie zariadenia. Interface medzi hostom a USB sa nazýva **Host Controller**. Vzhľadom

Figure 4-1. Bus Topology

Obrázek 1.1: USB topológia vyobrazená v špecifikácii USB 2.0 [5].

na niektoré časové obmedzenia USB je maximálny počet vrstiev 7 (vrátane *USB Host* vrstvy). Každý káblový segment je *point-to-point* spojenie medzi:

- host < --> hub/funkcia
- hub <--> hub/funkcia

USB zariadenia sa delia na rôzne triedy:

- **Display** (monitor)
- Audio (repráky)
- Mass storage (harddisk)
- Human interface (myš)
- atd.

Podľa dodatku k USB špecifikácii [6] je HID (z anglického "Human Interface Device") USB trieda pozostávajúca prevažne zo zariadení, ktoré sú využívané človekom na riadenie určitých systémovových aplikácií. Medzi najpoužívanejšie príklady patrí myš, klávesnica alebo joystick.

USB zariadenia využívajú tzv. **descriptory** na predávanie informácií o sebe samých. **Descriptor** je dátová štruktúra s predom definovaným formátom. Existuje viacero typov *USB descriptorov* (device, endpoint, interface, ...), ktorých význam si vysvetlíme neskôr.

Paket je súbor dát zoskupený na prenos po zbernici. Typicky sa skladá z troch častí:

- základné informácie o danom pakete (napríklad zdroj, cieľ, dĺžka), takisto nazývaný hlavička paketu
- samotné dáta
- detekcia chýb, opravné bity

Komunikácia na zbernici medzi *USB hostom* a *zariadením* prebieha práve pomocou prenosu *USB paketov*. Existujú 4 typy takýchto prenosov:

- Control Transfer používa sa na nakonfigurovanie USB zariadenia v momente keď je prvýkrát pripojené na zbernicu.
- Bulk Data Transfer –typicky pozostáva z väčšieho množstva dát ktoré sú posielané nárazovo (využívajú ho najmä tlačiarne alebo skener). Vďaka detekcii chýb na hardwarovej úrovni je zaistená správnosť prenesených dát.
- Interrupt Data Transfer –spoľahlivý prenos ktorý sa využíva hlavne na odovzdávanie aktuálnych informácií (ako napríklad pohyb myšou). Tieto informácie musia byť doručené USB zbernicou za čas kratší ako má špecifikované dané zariadenie.
- Isochronous Data Transfer –takisto nazývaný ako streaming v reálnom čase. Typický príklad je prenos zvuku.

Našu aplikáciu by sme chceli zamerať na Windows a tak si vysvetlíme ešte zopár špecifických pojmov, ktoré sa viažu na túto kokrétnu platformu.

Podľa MSDN dokumentácie [7] je **USB client driver** software nainštalovaný na počítači, ktorý komunikuje s USB zariadením aby spojazdnil jeho funkcionalitu. Žiaden *USB client driver* ale nemôže priamo komunikovať so svojím zariadením. Namiesto toho vytvorí požiadavku, súčasťou ktorej je dátová štruktúra nazývaná **URB** (USB Request Block). Tá opisuje detaily požiadavku, takisto ako aj status o jeho vykonaní.

Na záver si ešte zadefinujeme rozdiel medzi *USB paket analyzátorom* a *USB paket snifferom*. Pod pojmom **USB paket sniffer** budeme rozumieť aplikáciu, ktorá monitoruje dianie na USB zbernici a je schopná ho rozumným spôsobom ukladať v predom definovanom formáte. Ako **USB paket analyzátor** budeme brať aplikáciu ktorá je schopná rozanalyzovať USB pakety (istým spôsobom ich vyobraziť alebo ukázať ich sémantický význam) uložené v predom definovanom formáte. Bežne sa tieto pojmy označujú za jednu a tú istú vec, aj keď ich funkcionalita spolu nijako priamočiaro nesúvisí a existujú nástroje, ktoré vedia len jedno alebo druhé. Preto dáva zmysel ich od seba explicitne oddeliť.

1.2 Existujúce aplikácie

Našu aplikáciu zameriavame výukovým smerom pre programátorov, ktorí chcú lepšie pochopiť komunikáciu na USB zbernici. Z toho dôvodu by sme v nej určite chceli zahrnúť analýzu základných USB deskriptorov, ktoré sú bližšie definované v špecifikácii USB 2.0 [8] v kapitole 9.6. Keďže chceme bližšie priblížiť komunikáciu na danej zbernici, potrebujeme konkrétne zariadenia, s ktorými ju budeme analyzovať. Dáva dobrý zmysel si zvoliť zariadenia, ktoré každý z nás dobre pozná, má ich k dispozícii a bežne ich využíva. Zároveň by ale mali mať dostatočne jednoduchý komunikačný protokol. Práve preto sa s našou aplikáciou zameriame na užšiu podmnožinu HID zariadení, konkrétne myš, klávesnica a joystick.

Momentálne existuje niekoľko známych aplikácií ktoré slúžia na analýzu USB paketov. Ich predbežným skúmaním a používaním sme ale zistili, že úplne nevyhovujú našim konkrétnym požiadavkám. Avšak mnohé ich funkcie nám prídu užitočné a môžu nám poslúžiť ako inšpirácia v implementovaní našej aplikácie. V tejto kapitole si ukážeme výhody a nevýhody zopár aplikácií, ktoré sme si zvolili ako príklady v oblasti paket analyzátorov. Ich výber spočíval v tom, že sú veľmi rozšírené medzi verejnosťou a sú najbližšie k tomu čo by sme chceli od našej aplikácie.

Je nutné upozorniť, že väčšina dnešných analyzátorov sú platené aplikácie, prípadne majú odomknuté len základné vlastnosti s možnosťou dokúpenia si plnej verzie. Práve preto sme nemali možnosť si pri všetkých vyskúšať ich celú funkcionalitu a na niektoré platené funkcie máme tak len ilustračný pohľad.

Wireshark

Aplikácia, ktorá na prvý pohľad nesúvisí s USB zbernicou. Wireshark je pravdepodobne najznámejší analyzátor a sniffer sieťových paketov. Jeho funkcionalita je veľmi rozsiahla, a vzhľadom na to, že sa jedná o open-source projekt, neustále rastie. Vďaka jeho obecnému návrhu podporuje spoluprácu s rôznymi inými sniffermi (LANalyzer, NetXRay, a pod.). Jeden z takýchto snifferov je *USBPcap*, ktorý zachytáva USB komunikáciu a tým pádom je Wireshark schopný analyzovať pakety aj nad touto zbernicou.

Pre priblíženie niektorých funkcií Wiresharku si ukážeme analýzu komunikácie s USB myšou (Genius DX-120 [9]). Medzi tie úplne základné funkcie určite patrí hexdump dát nad ktorými prebieha analýza, ktorý je vyobrazený na obrázku 1.2.

Obrázek 1.2: Ukážka hexdumpu vo Wiresharku.

Tento hexdump je tvorený dátami z jedného control prenosu, kde zariadenie posiela informácie o sebe samom v podobe rôznych deskriptorov.

V hexdumpe si takisto vieme pomocou kliknutia a ťahania myšou označiť ľubovoľné dáta, ktoré chceme. Zvýraznené byty na obrázku 1.3 reprezentujú jeden endpoint deskriptor.

Obrázek 1.3: Ukážka hexdumpu so zvýrazneným endpoint deskriptorom.

Pri pohybe myšou nad daným hexdumpom ponúka Wireshark interaktívnu odozvu, pričom farebne oddeľuje jednotlivé byty podľa ich významu. Na obrázku 1.4 vidíme konkrétny príklad – ak podržíme myš nad hexa časťou bytu 00, automaticky nám to označí aj byte 04 pred ním, pretože spoločne reprezentujú jednotnú informáciu, a to položku wMaxPacketSize v endpoint descriptore.

Obrázek 1.4: Ukážka hexdumpu s farebným oddelením na základe významu.

Ďalšia užitočná vlastnosť je, že pri označení hexa znakov v hexdumpe, sa samé označia aj im odpovedajúce tlačiteľné znaky (obdobne to funguje aj opačným smerom). To, že vyššie označených 7 bytov na obrázku 1.3 reprezentujú endpoint deskriptor sme zistili vďaka špecifikácii jednotlivých descriptorov a vlastnou analýzou bytov v hexdumpe. Práve preto Wireshark ponúka rozličné zobrazenie tých istých dát, napríklad pomocou stromovej štruktúry, ktorá už jednotlivým bytom pridáva ich sémantický význam v slovnom tvare ako je ukázané na obrázku 1.5 nižšie.

```
> Frame 6: 80 bytes on wire (640 bits), 80 bytes captured (640 bits)
> USB URB
> CONFIGURATION DESCRIPTOR
> INTERFACE DESCRIPTOR (0.0): class HID
> HID DESCRIPTOR
> ENDPOINT DESCRIPTOR
> INTERFACE DESCRIPTOR (1.0): class HID
> HID DESCRIPTOR
```

Obrázek 1.5: Ukážka reprezentácie dát pomocou stromovej štruktúry.

Jednotlivé položky si môžeme bližšie rozbaliť. Napríklad vyššie zvýraznených 7 bytov reprezentujú konkrétny *endpoint deskriptor*, ktorý je ukázaný na obrázku 1.6.

Medzi viac špecifické funkcie patrí detailnejšie vyobrazenie jednotlivých bytov a ich význam, ako je možné vidieť nižšie na obrázku 1.7. Túto vlastnosť aj napriek jej využitiu mnohé konkurenčné aplikácie postrádajú.

Wireshark ponúka interaktívne užívateľské rozhranie. V prípade kliknutia na konkrétny byte v hexdumpe sa nám označí jemu odpovedajúca položka v stromovej štruktúre. Príklad je ukázaný na obrázku 1.8.

Podobne to funguje aj opačne, takže ak klikneme na položku v stromovej štruktúre, označí sa jej odpovedajúca časť v hexdumpe. Príklad kliknutia na

```
➤ ENDPOINT DESCRIPTOR
    bLength: 7
    bDescriptorType: 0x05 (ENDPOINT)
    bEndpointAddress: 0x81 IN Endpoint:1
    bmAttributes: 0x03
    wMaxPacketSize: 4
    bInterval: 10
```

Obrázek 1.6: Endpoint deskriptor reprezentovaný dátami zvýraznenými na obrázku 1.2 vyššie.

```
bEndpointAddress: 0x81 IN Endpoint:1
1... = Direction: IN Endpoint
... 0001 = Endpoint Number: 0x1
```

Obrázek 1.7: Ukážka vyobrazenia jednotlivých bytov.

```
➤ ENDPOINT DESCRIPTOR
    bLength: 7
    bDescriptorType: 0x05 (ENDPOINT)
> bEndpointAddress: 0x81 IN Endpoint:1
> bmAttributes: 0x03

➤ wMaxPacketSize: 4
    ...0 0...... = Transactions per microframe: 1 (0)
    .....00 0000 0100 = Maximum Packet Size: 4
bInterval: 10
00 00 01 03 01 02 00 09 21
07 05 81 03 04 07 0a 09 04
09 21 11 01 00 0x 22 16 00
```

Obrázek 1.8: Ukážka kliknutia na položku v hexdumpe.

Obrázek 1.9: Ukážka kliknutia na položku *endpoint deskriptoru* v stromovej štruktúre.

endpoint deskriptor v stromovej štruktúre a označenia jemu odpovedajúcej časti hexumpu je vidieť na obrázku 1.9.

Obecné vyobrazenie pohybu paketov na zbernici bez hlbšej analýzy je ukázané na obrázku 1.10 nižšie.

No.	Time	Source	Destination	Protocol	Length	Info
	1 0.000000	host	1.6.0	USB	36	GET DESCRIPTOR Request DEVICE
	2 0.000684	1.6.0	host	USB	46	GET DESCRIPTOR Response DEVICE
	3 0.000750	host	1.6.0	USB	36	GET DESCRIPTOR Request CONFIGURATION
	4 0.001388	1.6.0	host	USB	37	GET DESCRIPTOR Response CONFIGURATION
	5 0.001432	host	1.6.0	USB	36	GET DESCRIPTOR Request CONFIGURATION
Г	6 0.002912	1.6.0	host	USB	80	GET DESCRIPTOR Response CONFIGURATION
	7 0.004170	host	1.6.0	USB	36	SET CONFIGURATION Request
	8 0.004827	1.6.0	host	USB	28	SET CONFIGURATION Response
	9 0.004905	host	1.6.0	USB	27	Unknown type 7f

Obrázek 1.10: Príklad obecného vyobrazenia jednotlivých paketov vo Wiresharku.

Výhoda Wiresharku je hlavne v tom, že podporuje širokú škálu deskriptorov a plná verzia programu je dostupná úplne zadarmo. Z pohľadu užívateľa je až prekvapivé, že aj napriek rozsiahlosti programu je aplikácia veľmi user-friendly orientovaná a dopĺňa ju intuitívne užívateľské rozhranie.

Naopak, jeho nevýhodou je sčasti neprehľadný hexdump. Ako môžeme vidieť

na obrázku 1.2, jedná sa o obyčajný hexdump, ktorý nijakým spôsobom neoddeľuje význam dát bez interakcie užívateľa. Preto v momente ak by sme nemali stromovú štruktúru k odpovedajúcemu hexdumpu, museli by sme sa riadiť špecifikáciou a vlastnou analýzou. V prípade rozsiahlejšieho hexdumpu môže byť veľmi obtiažné sa v ňom potom zorientovať. Ďalšia vec ktorá nám nevyhovuje, je chýbajúca sémantická analýza inputu rôznych zariadení. Ten je vyobrazený len pomocou hexdumpu a popisu "Leftover Capture Data" ako je ukázané na obrázku 1.11. Vôbec teda netušíme, čo jednotlivé dáta znamenajú.

```
> Frame 49: 31 bytes on wire (248 bits), 31 bytes captured (248 bits)
> USB URB
Leftover Capture Data: 00070000
0000 1b 00 a0 29 19 6e 8a dc ff ff 00 00 00 00 09 00 ...)·n·······
0010 01 01 00 06 00 81 01 04 00 00 00 00 07 00 00 ..........
```

Obrázek 1.11: Príklad inputu myši vo Wiresharku.

Device Monitoring Studio

Aplikácia ponúka analýzu sietových a USB paketov, tak ako aj analýzu komunikácie prebiehajúcej cez sériový port.

Ako prvé na aplikácii zaujme spôsob zvolenia si zariadenia s ktorým bude sledovaná komunikácia. Je implementovaný štýlom stromovej štruktúry ako je ukázané na obrázku 1.12 nižšie, kde máme konkrétne označenú rovnakú myš s ktorou komunikáciu sme sledovali predchádzajúcim programom.

Obrázek 1.12: Ukážka stromovej štruktúry na zvolenie si zariadenia s ktorým bude zachytávaná komunikácia.

Základná verzia programu ponúka vizuálne zobrazenie *URB*, tak ako aj analýzu jednotlivých paketov. Pod analýzou si tu môžeme predstaviť ale len obyčajný hexdump ktorý neposkytuje žiadne významové oddelenie dát, tým pádom je obtiažnejšie sa v ňom zorientovať. Príklad môžeme vidieť na obrázku 1.13.

Obrázek 1.13: Príklad hexdumpu v Device Monitoring Studio.

Takisto tu nemáme kompletné sémantické vysvetlenie čo dané dáta znamenajú (napríklad pomocou stromovej štruktúry ako to rieši konkurencia). K dispozícii máme len veľmi obmedzený popis jednotlivých paketov (číslo paketu, device request, a pod.), pričom ani nie je veľmi jasné odkiaľ sa tieto informácie vzali. Príklad takéhoto popisu aj s hexdumpom je ukázaný na obrázku 1.14 nižšie.

```
000081: Get Descriptor Request (UP), 2021-04-13 10:17:37,4763790 +0,0000026. (1. Device: Wired Mouse) Status: 0x000000000
Descriptor Type: Device
Descriptor Index: 0x0
Transfer Buffer Size: 0x12 bytes

12 01 10 01 00 00 00 08 58 04 86 01 58 24 04 28 ......x.+.x$.(
00 01
```

Obrázek 1.14: Príklad analýzy paketov.

Vyobrazenie URB (obrázok 1.15) tak ponúka súhrn týchto popisov jednotlivých paketov, ktoré sú postupne zachytené počas komunikácie na zbernici.

Obrázek 1.15: Ukážka vyobrazenia URB.

Pričom pri dvojkliku na šedé časti textu (napríklad *Setup Packet* alebo *End*point *Address*) sa užívateľovi rozbalí okno s detailnejším popisom.

Analýza inputu myši, ktorú môžeme vidieť na obrázku 1.16, je riešená podobým spôsbom ako pri analýze descriptorov.

Obrázek 1.16: Príklad inputu myši v Device Monitoring Studio.

Obecné vyobrazenie jednotlivých paketov bez bližšej analýzy je riešené podobne ako u konkurencie, pričom pakety sú farebne oddelené podľa ich smeru pohybu na zbernici (posielané smerom host -> zariadenie/smerom zariadenie -> host). Príklad je ukázaný na obrázku 1.17.

Zaujímavá funkcionalita, ktorú ale program ponúka len v platenej verzii, je umožnenie užívateľovi priamo komunikovať so zvoleným zariadením. Môžeme

00000073	2021-04-13 10:17:35,1931283	+25,9758328	UP	0xc0000011	URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER
00000074	2021-04-13 10:17:35,1932268	+0.0000985	UP	0xc0010000	URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER
00000075	2021-04-13 10:17:35,2130691	+0,0198423	UP		PnP: Device Surprise Removal
00000076	2021-04-13 10:17:35,2249868	+0,0119177	DOWN	0xffffd184	URB_FUNCTION_ABORT_PIPE
00000077	2021-04-13 10:17:35,2250067	+0,0000199	UP	0x80000300	URB_FUNCTION_ABORT_PIPE
00000078	2021-04-13 10:17:35,2250219	+0.0000152	UP		PnP: Device Disconnected
00000079	2021-04-13 10:17:37,4763688	+2,2513469	UP		PnP: Device Connected
00000080	2021-04-13 10:17:37,4763764	+0,0000076	DOWN	0x00000000	URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE
00000081	2021-04-13 10:17:37,4763790	+0,0000026	UP	0x00000000	URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE
00000082	2021-04-13 10:17:37,4763850	+0.0000060	DOWN	0x00000000	URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE
00000083	2021-04-13 10:17:37,4763874	+0.0000024	UP	0x00000000	URB FUNCTION GET DESCRIPTOR FROM DEVICE

Obrázek 1.17: Príklad obecného vyobrazenia jednotlivých paketov v Device Monitoring Studio.

mu tak posielať rôzne požiadavky (niektoré z nich sú spomenuté v USB 2.0 špecfikácii[8] v kapitole 9.4) ako napríklad GET_REPORT kde špecifikujeme $Report\ ID$ a prípadné ďalšie parametre, a zariadenie nám patrične odpovie.

Užívateľské rozhranie vyobrazené nižšie pomocou obrázku 1.18 "pozostáva z pomerne veľa ikoniek a celkovo sa javí ako trochu neprehľadné. Pri prvotnej interakcii s programom chvíľu trvá, kým človek nájde čo i len základné informácie ako napríklad hlavičky ku jednotlivým paketom. Nepoteší ani fakt, že verzia zadarmo nedovoľuje monitorovanie dlhšie ako 10 minút a maximálny počet monitorovaní za jeden deň je taktiež 10.

Obrázek 1.18: Užívateľské rozhranie Device Monitoring Studio.

1.3 Požadované funkcie

Ako prvé by sme si mali zadefinovať platformu na ktorú budeme cieliť s našou aplikáciou:

P1 Cieľová platforma našej aplikácie by mala byť Windows.

Keďže má naša aplikácia mať výukový charakter, tak sa pozrieme na typický výukový scénár jej používania. Učiteľ si dopredu do súboru zachytí komunikáciu s určitým zariadením na ktorej overí, že je didakticky dobrá a ilustruje to čo má. Následne daný súbor posunie študentom aby si mohli zobraziť analýzu konkrétnych paketov. Dôležitá je ale aj priama interakcia užívateľa s jeho konkrétnym zariadením, preto by sme zároveň chceli podporovať aby si študenti mohli pripojiť vlastné zariadenie a skúmať s ním komunikáciu v reálnom čase. Z toho nám vyplývajú naledujúce požiadavky:

- **P2** Mala by byť schopná analyzovať USB pakety zachytené do súboru v rozumnom formáte pomocou predom definovaného snifferu.
- P3 Mala by byť schopná analýzy paketov v reálnom čase. To znamená, že bude podporovať čítanie súboru súvisle s tým ako do neho bude zapisovať iný software (za predpokladu, že to daný software povoľuje).

Ako sme mohli vidieť aj na predchádzajúcich príkladoch, hexdump je jednou zo základných funkcií na analýzu paketov. Zároveň sa nám ale nepáčilo, že väčšina hexdumpov je neprehľadná a ťažko sa v nich orientuje. Preto si zadefinujeme nasledujúce požiadavky:

- P4 Mala by pomocou hexdumpu vedieť zobraziť dáta ktoré daný sniffer zachytí a uloží.
- **P5** Mala by mať prehľadnejší hexdump a užívateľovi uľahčiť orientáciu v ňom. Jednotlivé znaky by mali byť farebne označené na základe ich významu (hlavička paketu, rôzne typy deskriptorov, ...).

K sémantickej analýze sa nám môže hodiť vedieť zobraziť dáta a ich význam pomocou stromovej štruktúry. Pretože sa s našou aplikáciou budeme snažiť vysvetliť základy komunikácie na USB zbernici, mali by sme podporovať sémantickú analýzu všetkých základných USB descriptorov a takisto inputu určitej podmnožiny HID zariadení. Ako posledné by sa nám zišlo vedieť pomocou stromovej štruktúry vyobraziť hlavičku jednotlivých paketov. Z toho celého dostávame nasledovné:

- **P6** Mala by podporovať sémantickú analýzu (vyobrazenie pomocou stromovej štruktúry) pre všetky základné USB deskriptory spomenuté v USB 2.0 špecifikácii[8] v kapitole 9.6 (ako napríklad *Device descriptor*, *Interface descriptor*, *Endpoint descriptor*,...).
- P7 Mala by byť schopná pomocou stromovej štruktúry zobraziť sémantický význam dát posielaných danou podmnožinou HID zariadení, do ktorej patrí myš, klávesnica a joystick.
- P8 Mala by byť schopná pomocou stromovej štruktúry zobraziť sémantický význam jednotlivých hlavičiek paketov.

Vyššie v texte sme označili funkciu Wiresharku vyobraziť sémantický význam dát na bitovej úrovni (obrázok 1.7) za zaujímavú funkciu. Preto by sme ju chceli implementovať aj v našej aplikácii, z čoho vyplýva:

P9 V miestach kde to dáva zmysel, by aplikácia mala byť schopná zobrazovať význam dát až na úrovni jednotlivých bitov.

Nechceme užívateľov hneď zaplaviť všetkými detailnými informáciami o paketoch. Preto by sme mali vedieť zobraziť zopár obecných vecí ku každému paketu a vyobraziť tak pohyb na zbernici, a až v prípade interakcie užívateľa s aplikáciou zobraziť podrobný popis jednotlivých paketov. Z dostávame nasledujúce požiadavky:

- **P10** Mala by na prvý pohľad jasne zobraziť základné informácie o každom analyzovanom pakete (ako napr. dĺžka paketu, typ prenosu, ...) a pri bližšom skúmaní jednotlivých paketov detailnejšie zobraziť celú jeho hlavičku.
- P11 Detailnejšie informácie o pakete budú zobrazované na základe interakcie užívateľa s aplikáciou.

Aby sme boli schopní sémantickej analýzy dát myšky, klávesnice alebo joysticku podľa osobného výberu užívateľa, musíme si získať informácie o ich inpute z HID Report Descriptoru, takže naša ďalšia požiadavka je:

P12 Mala by byť schopná rozparsovať *HID Report Descriptor* takým štýlom, aby bolo neskôr možné sématnicky reprezentovať input nami zvolených HID zariadení – myš, klávesnica a joystick.

1.4 Ciele práce

Celkové ciele tejto práce sú následovné :

- C1 Vytvoriť funkčný analyzátor, ktorý spĺňa všetky požadované funkcie P1-P12
- C2 Návrh programu musí byť dostatočne obecný aby splňoval nasledujúce:
 - Jednoduché rozšírenie o analýzu ďalších typov USB prenosov.
 - Jednoduché pridanie sémantickej analýzy pre ďalšie HID zariadenia.

2. USB a Windows

vysvetlenie zakladnych pojmov spojenych USB: historia, usb port/conector, plug and play(https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introductio-to-plug-and-play), low/full/high speed zariadenia

2.1 USB zbernica

Plug and Play device tree(sposob akym si windows udrziava strom zariadeni na zbernici)(https://docs.microsoft.com/sk-sk/windows-hardware/drivers/gettingstarted/devicendes-and-device-stacks)

2.2 Device object a device stack

 $PDO, FDO, Device \ object (https://docs.microsoft.com/en-us/windows-hardware/drivers/kento-device-objects) \ https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-a-device-object$

2.2.1 Drivery

Opisat ako teda bezne analyzatory/sniffery funguju windows driver model(WDM) : https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/types-of-wdm-drivers bus driver(https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/bus-drivers), function driver(https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/fltdrivers) a filter driver(https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/filtdrivers)

2.3 Komunikacia s USB zariadenim

sposob komunikacie operacneho systemu so zariadenim pripojenym na USB zbernicu : IRP(https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-lo-request-packets) , URB (https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcowith-a-usb-device) a pod. https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irps

2.4 USB descriptory

opis zakladnych USB descriporov, hlavne tych ktore neskor aj vyuzivam v program(Device, Interface, Endpoint, Configuration, String, Setup): https://docs.microsoft.com/enus/windows-hardware/drivers/usbcon/usb-descriptors https://docs.microsoft.com/enus/windows-hardware/drivers/usbcon/usb-control-transfer

2.4.1 Rozlozenie USB zariadenia z hladiska descriptorov

https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-device-layout

2.5 HID zariadenia

hid zariadenie obecne, priklady https://docs.microsoft.com/en-us/windows-hardware/drivers/hid/

2.5.1 Reporty

Input/Output/Feature reporty.

2.5.2 Report Descriptor

Opis report descriptoru, k comu sluzi, pripadne ako z neho vycitat zaujimave data (neskor vyuzite v programe pri parsovani HID Report Descriptoru na naslednu semanticku analyzu dat ktore posiela zariadenie)

3. Analýza

3.1 Získanie USB packetov

3.1.1 Windows exclusive mód

opisat co to je, a dolezite je spomenut, ze windows otvara v exclusive mode zakladne HID zariadenia ako mys a klavesnica

3.1.2 Známe knižnice

opisat zakladne kniznice na sledovanie USB zbernice a preco som ich nemohol pouzit : libUSB, hidAPI, moufiltr, SetupAPI, WinUSB

3.1.3 Third-party aplikácie

opisat odkial nakoniec ziskavam packety - USBPcap a Wireshark

3.2 Spracovávanie pcap súborov

moznosti ako citat pcap subory : bud pouzit uz existujucu kniznicu : na linuxe Libpcap, windows NPcap(deprecated WinPcap), alebo citat subory manualne : std::istream alebo QFile

3.3 Sémantická reprezentácia dát

ako si z dat vytiahnut udaje ktore su potom pouzite na semanticku analyzu implementovanych HID zariadeni : HID Report parser, InputValues a EndpointDevice struct. Nasledne sparovanie - ako vybrat spravny report pre konkretny input

3.4 Voľba frameworku

obecne co by som od toho GUI priblizne chcel, potom opisat preco som si vybral prave Qt a v nasledujucich kapitolach opisat rozhodnutia uz v Qt dovod preco som si zvolil qt namiesto inych c++ GUI frameworkov(napriklad sfml)

3.5 Zobrazenie základných informácií

ako zobrazovat zakladne info o packete : pouzit QListWidget alebo QTableWidget (pripadne nieco ine ako nejaky abstract viewmodel), narok na zakladne funkcionality : lahka rozsiritenlnost o dalsie "stlpceky", moznost jednoduchej interakcie(doubleClick na polozku). Mat vsetky info na jednom okne / mat pop-up okna.

3.6 Zobrazenie sémantického významu dát

ako vyzobrazit semanticky vyznam roznych dat - descriptory, usb header, vyznam input dat roznych HID zariadeni

3.7 Hexdump

ako v qt urobit hexdump - do coho zobrazovat data(vytvorit si vlastny viewer dedeny od QAbstractScrollArea, pripadne niecoho ineho) vs najst nieco co uz v qt je a upravit to aby to sedelo poziadavkam. Vziat do uvahy bezne funkcie hexdumpu : selection mody(oznacit naraz hexa a im odpovedajuce printable), logicke oddelenie dat(napriklad farbami)

4. Vývojová dokumentácia

4.1 Architekrúra aplikácie

4.2 Jadro aplikácie

4.2.1 USB_Packet_Analyzer

riadi celkovy beh programu, reaguje na input od uzivatela

4.2.2 Item Manager

spracovanie samostatneho packetu a ulozenie dat o nom

4.2.3 DataViewer

trieda ktora ma na starosti vyskakovacie okno po dvojkliku a item a nasledne reaguje na input od uzivatela v okne

4.2.4 TreeItem

reprezentuje jednotlive nody v stromovej strukture ktora sa potom vyuziva na zobrazenie dat v QTreeView

4.3 Modely

4.3.1 AdditionaldataModel

model na spravovanie zvysnych dat(data ktore nie su sucastou hlavicky packetu)

4.3.2 ColorMapModel

vyobrazenie pomocnej mapy na lepsie sa zorientovanie v zvyraznemom hexdumpe

4.3.3 DataViewerModel

model na hexdump - prenasa hex/printable a zaroven o co vlastne ide(konkretny descriptor, interrupt data, ...)

4.3.4 TreeItemBaseModel

model na QTreeView ktorz vyuziva TreeItem

4.3.5 USBPcapHeaderModel

model na QTreeView ale specialne pre USBPcap hlavicku packetu

4.4 Interpretery

4.4.1 BaseInterpreter

abstractna trieda od ktorej dedia vsetkz interpretery

4.4.2 Interpreter factory

facory trieda na pridelenie konkretneho interpreteru za runtimu kvoli jednoduchosti na lepsie rozsirenie programu do buducnosti

4.4.3 Interpretery descriptorov

Config, Device, Setup, String,...

4.4.4 Interrupt transfer interpretery

obecne interrupt transfer interpreter - sluzi skor ako factory na rozne doteraz implementovane HID zariadenia

Joystick interpreter

Mouse interpreter

Keyboard interpreter

4.5 Delegáti

DataViewerDelegate

Qt delegat - stara sa o highlight hexdumpu

4.6 HID

4.6.1 HIDDevices

staticka trieda, drzi vsetky rozpoznane HID zariadenia a obsahuje funkcie specificke nich - parsovanie HID Report descriptoru

4.7 Práca so súbormi

4.7.1 FileReader

praca zo suborom a predavanie precitanych dat, offline/online capture, QFile vs std::istream

4.8 Globálne dáta

4.8.1 ConstDataHolder

staticka trieda na drzanie si konstant ktore su potrebne napriec celym programom. Mapovanie z enumu do jeho stringovej reprezentacie

4.8.2 PacketExternStructs

obsahuje definiciu vsetkych dolezitych USBPcap structov, pcap structov, enumova vsetkych structov ktore pouzivam v aplikacii

5. Možnosti rozšírenia

Rozobrať čo všetko sa dá urobiť s tými dátami, ktoré už mám uložené v pamati, ale momentálne sa s nimi nič nedeje

5.1 Ukladanie výstupu do súboru

výstup analýzy do súboru(textového)

5.2 Iná vizuálna reprezentácia dát

Momentálne vyzobrazujem dáta prevažne v QTreeView alebo QTableView, ale vdaka tomu ako ich mám uložené + to že nad nimi operuje nejaký model ktorý vie vrátiť dáta na základe indexu, by nemuselo byť taká zložité pridať inú vizualizáciu dát(napríklad obrázkovú ako tu : https://www.usbmadesimple.co.uk/ums_5.htm)

5.3 Pridávanie nových interpreterov pre descriptory

pridanie nových druhov descriptorov - pridať nový interpreter do factory

5.4 Pridanie interreteru na interrupt tranfser

pridanie analyzy interrupt transferu aj pre ine ako hid zariadenia

5.4.1 Pridanie nových HID zariední

nove HID zariadenie - pridanie do interrupt "factory"

5.5 Pridanie analýzy pre isochronous a bulk transfer

semanticka analyza aj inych ako interrupt alebo control transferov - momentalne su rozpoznavane len v hexdumpe

5.6 ?Možnosť rozšírenia na iné platformy?

uprava aplikacie aby bola prenositelna aj na ine platformy, co vsetko by tam bolo treba upravit(pravdepodobne nie vela, kedze qt je prenosne, a prakticky jedine co pouzivam spojene s windowsom su jeho structy na rozne descriptory)

6. Užívateľská dokumentácia

6.1 Inštalácia

nastavenie celkovej aplikácie, ale aj nainstalovanie USBP
cap+wireshark a ich kombinácia pre live capture

6.2 Orientácia v GUI aplikácie

popis k jednotlivým tlačidlám gui

6.3 Používanie aplikácie

ako spustit live/offline capture, a celkovo ako pracovať s aplikáciou(popis funkcií - doubleClick na item => zobrazi sa pop-up okno s bližšou analýzou)

7. Záver

7.1 Zhrnutie

celkove zhrnutie prace, ?praca s Qt?

7.2 Budúce plány

Seznam použité literatury

- [1] PS/2 port. https://en.wikipedia.org/wiki/PS/2_port.
- [2] Paralelný port. https://en.wikipedia.org/wiki/Parallel_port.
- [3] RS-232 port. https://en.wikipedia.org/wiki/RS-232.
- [4] Paralelná SCSI zbernica. https://en.wikipedia.org/wiki/Parallel_SCSI.
- [5] USB 2.0 Specification. https://www.usb.org/document-library/usb-20-specification. [súbor usb_20.pdf, Figure 4-1].
- [6] USB Human Interface Device Class. https://www.usb.org/document-library/device-class-definition-hid-111. [str. 9].
- [7] USB Client Driver. https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-driver-development-guide. [sekcia "Where applicable"].
- [8] USB 2.0 Specification. https://www.usb.org/document-library/usb-20-specification. [súbor usb_20.pdf].
- [9] Genius myš použitá v úvode pri porovnaní existujúcich analyzátorov. https://us.geniusnet.com/product/dx-120/.

Seznam obrázků

1.1	USB topológia vyobrazená v špecifikácii USB 2.0 [5]	4
1.2	Ukážka hexdumpu vo Wiresharku	6
1.3	Ukážka hexdumpu so zvýrazneným endpoint deskriptorom	7
1.4	Ukážka hexdumpu s farebným oddelením na základe významu	7
1.5	Ukážka reprezentácie dát pomocou stromovej štruktúry	7
1.6	Endpoint deskriptor reprezentovaný dátami zvýraznenými na ob-	
	rázku 1.2 vyššie	8
1.7	Ukážka vyobrazenia jednotlivých bytov	8
1.8	Ukážka kliknutia na položku v hexdumpe	8
1.9	Ukážka kliknutia na položku <i>endpoint deskriptoru</i> v stromovej štruk-	
	túre	8
1.10	Príklad obecného vyobrazenia jednotlivých paketov vo Wiresharku.	8
1.11	Príklad inputu myši vo Wiresharku	9
1.12	Ukážka stromovej štruktúry na zvolenie si zariadenia s ktorým	
	bude zachytávaná komunikácia.	9
1.13	Príklad hexdumpu v Device Monitoring Studio	10
1.14	Príklad analýzy paketov	10
1.15	Ukážka vyobrazenia URB	10
1.16	Príklad inputu myši v Device Monitoring Studio	10
1.17	Príklad obecného vyobrazenia jednotlivých paketov v Device Mo-	
	nitoring Studio	11
1.18	Užívateľské rozhranie Device Monitoring Studio	11

Seznam tabulek

Seznam použitých zkratek

Přílohy

.1 První příloha