UNIVERSIDAD CENTRAL DEL ECUADOR

FACULTAD DE INGENIERÍA CIENCIAS FÍSICAS Y MATEMÁTICA

PROYECTO DE ANÁLISIS NUMÉRICO

Integrantes: Alcívar Gustavo

Obando Jairo

Fecha: 13/03/2013.

Tema: Aplicación de Métodos Numéricos

TUTORIAL DE LA APLICACIÓN

Dentro de la carpeta EJECUTABLE se encuentra el ejecutable de nuestra aplicación.

Le damos clic solo el ejecutable

Una vez ingresado a la aplicación nos dirigimos a menú que se encuentra en la parte superior.

Podemos aquí ver los diferentes cálculos numéricos que podremos realizar en nuestro programa, entre ellos están:

- Multiplicación de un escalar por un vector.
- Norma Euclideana.
- > Suma de Vectores.
- Producto punto entre dos vectores.
- Suma de Matrices.
- Multiplicación de Matrices.
- Base Ortogonal en R2.
- > Transformar un número decimal a base x.
- > Transformar de un número binario a decimal.
- > Transformar de Octal a decimal.
- > Transformar de Octal a binario.
- Integración Numérica.

Multiplicación de un escalar por un vector

Aquí ingresamos el escalar (número) por el cual vamos a multiplicar un vector, para ingresar un vector lo podemos hacer manualmente, también podemos ingresar un vector aleatorio o ingresar un vector desde un archivo para lo cual primero tenemos que darle la dimensión del vector.

🚣 Multiplicación de un escalar por un	vector	
Escalar 3	una sola linea y separados por espacios; o ger	pere un verter a
	and sold lined y separados por espacios, o ger	icic dii vector d
Vector:		
Generar vecto	Ingrese el tamaño del vector 4 Aceptar Cancelar	Calcular
Resultado:		
		Į.
REGRESAR	SALIR	1
REGIREDAR	SALIK	J

Norma Euclideana

Aquí de igual manera para ingresar un vector lo podemos hacer manualmente, también podemos ingresar un vector aleatorio o ingresar un vector desde un archivo para lo cual primero tenemos que darle la dimensión del vector.

Suma de Vectores

🖆 Suma de vectores	
Ingrese los elementos de los vectores en una sola linea y separados por espacios; o genere vectores aleatorios	
Vector 1:	
vector i.	
	▼
Vector 2:	
	A
	¥
Generar vectores aleatorios Leer datos del archivo Calcular	
Resultado:	
	4
	Ţ
REGRESAR SALIR	
THE STATE OF THE S	

Podemos llenar los vectores manualmente, aleatoriamente o llenarlos con números desde un archivo previamente antes de haber dado la dimensión del vector.

Luego Aceptar

Producto punto entre dos vectores

Podemos llenar los vectores manualmente, aleatoriamente o llenarlos con números desde un archivo previamente antes de haber dado la dimensión del vector.

Suma de Matrices

Para llenar los datos de las matrices de igual manera lo podemos hacer de forma manualmente, aleatoriamente y desde un archivo previamente tenemos que dar el número de filas y el número de columnas.

Multiplicación de Matrices

Para llenar los datos de las matrices de igual manera lo podemos hacer de forma manualmente, aleatoriamente y desde un archivo previamente tenemos que dar el número de filas y el número de columnas de la primera matriz luego tenemos que dar el número de columnas de la segunda matriz.

Base Ortogonal en R2

De igual manera aquí podemos llenar los datos de manera manual, aleatoria o desde un archivo.

Transformar un número decimal a un número de base X

Ingresamos el número decimal, luego ingresamos la base a la cual queremos cambiar

Luego presionamos en Calcular

Transformar de un número binario a decimal

Ingresamos el número binario (ceros y unos)

Luego Calcular

Transformar de Octal a decimal

Ingresamos un número octal (es decir un número que contenga una serie de números entre 0 y 7)

Luego Calcular

Transformar de Octal a binario

Ingresamos un número octal (es decir un número que contenga una serie de números entre 0 y 7)

Integración Numérica

Aquí tenemos los diferentes métodos de integración entre ellos:

- Sumas de Riman
- Regla del Trapecio
- ❖ Regla de Simpson 1/3
- Regla de Simpson 3/8.

Para todos estos métodos de integración los datos de entrada son los mismo entre ellos tenemos límite inferior (a), límite superior (b), número de particiones (n) y la función (f(x)) que debe ser llenada con los botones disponibles en la ventana entre ellos también tenemos las funciones seno, coseno, tangente, entre otras.

Ejemplo 1: Utilizando el método de la Sumas de Riman sea a=1, b=3, n=3, $f(x) = x^2$

📤 Integración numérica				×
Límite inferior: Límite superior:	3	Sumas de Riemann	•	
Número de particiones	3			
1 2 3 4 5 6 7 8 9	() x +	sen cos arcsen tan abs arctan	arccos <- AC	
e 0 pi	. pot(base,exponen	raíz raíz	Calcular	
Función: POT(x,2)				4
Resultado: 6.14814814	48148147			
RE	GRESAR	SALIR		

Ejemplo 2: Utilizando el método de la Regla del Trapecio sea a=1, b=3, n=3, $f(x) = x^2$

🚣 Integración numérica		
Límite inferior: Límite superior:	1 Regla del trapecio v	
Número de particiones 3		
1 2 3 4 5 6 7 8 9	() x sen cos arcsen arc + - , tan abs arctan In	AC AC
e 0 pi	. pot(base,exponente) raíz	Calcular
Función: POT(x,2)		
Resultado: 8.814814814	4814813	
REGI	RESAR	

Ejemplo 3: Utilizando el método de la Regla de Simpson 1/3 sea a=1, b=3, n=4, $f(x) = x^2$

🖺 Integración numérica		3
Límite inferior: Límite superior:	1 Regla de Simpson 1/3	
Número de particiones	4	
1 2 3 4 5 6 7 8 9	() x sen cos arcsen arccos <- + - , tan abs arctan In AC	
e O pi	. pot(base,exponente) raíz Calcular)
Función: POT(x,2)		
Resultado: 8.6666666	86666666	
REC	GRESAR	

Ejemplo 4: Utilizando el método de la Regla de Simpson 3/8 sea a=1, b=3, n=5, $f(x) = x^2$

🖆 Integración numérica		_ • X
Límite inferior: Límite superior:	1 Regla de Simpson 3/8	
Número de particiones		
1 2 3 4 5 6 7 8 9	() x sen cos arcsen a + - , tan abs arctan In	AC AC
e O pi	pot(base,exponente) raíz	Calcular
Función: POT(x,2)		Ā
Resultado: 9.06		
	DEFOUE COLUMN	
REG	GRESAR SALIR	

Ejemplo 5: Utilizando el método de la Regla de Simpson 3/8 sea a=0, b=1.57, n=5, f(x) = tan(x)

🚣 Integración numérica				
Límite inferior: Límite superior:	0	Regla de Simpson 3/8	•	
Número de particiones	1.57			
1 2 3	() x		rcsen arcco	s <-
7 8 9 e 0 pi	* / pot(base,exponer	nte) raíz		Calcular
Función: tan(x)			(
Resultado: 149.80815	171575622			
REC	GRESAR		SALIR	

Ejemplo 6: Utilizando el método de la Regla de Simpson 3/8 sea a=0, b=1.57, n=5, f(x) = xtan(x).

🚣 Integración numérica				
Límite inferior: Límite superior:	1.57	Regla de Simpson 3	3/8	
Número de particiones: 5	:			
1 2 3 4 5 6 7 8 9 e 0 pi	() x + * / pot(base,exponer		arcsen arccos	<- AC Calcular
Función: x*tan(x)				X X
Resultado: 234.167440	81951362			
REG	GRESAR		SALIR	