Prova de Física 1 Llicenciatura de Ouímiques 30 d'Octubre, 2007

Qüestions

- 1. La força de fregament que fa un fluid sobre un cos que es mou lentament ve donada per l'expressió $F = -b v^2$, on v és la velocitat del cos i b una constant. Les unitats de b al sistema internacional són:
 - a) N m/s
 - b) kg m/s
 - c) kg/m (*)
 - d) kg/s
- 2. La gràfica següent representa la velocitat d'una partícula en funció del temps.

Quina de les següents afirmacions és correcta?

- a) La velocitat als punts A i C és negativa en ambdós casos
- b) L'acceleració als punt A i C és, respectivament, negativa i positiva
- c) L'acceleració als punts A i B és, respectivament, positiva i zero (*)
- d) L'acceleració als punts B i C és, respectivament, zero i negativa
- 3. La velocitat d'un cos ve donada per l'equació $v(t) = 4 t^3$. Sabent que el cos està en la posició x = 2 a l'instant t = 0, les equacions de la posició i de l'acceleració són
 - a) $x(t) = 2 + t^4$, $a(t) = 12 t^2$ (*) b) $x(t) = 1 + t^4$, $a(t) = 12 t^2$

 - c) x(t) = 2 + 4t, $a(t) = 4t^2$
 - d) cap de les anteriors
- 4. Si la força resultant que actua sobre un cos val 0...
 - a) la seva velocitat és 0
 - b) la seva acceleració és 0 (*)
 - c) no hi ha cap força que actua sobre el cos
 - d) descriu un moviment rectilini uniformement accelerat

Exercici 1

Es llencen dues pilotes des d'una altura de 20 m. La pilota A es deixa caure, mentre que la B surt amb una velocitat horitzontal de 5 m/s.

- 5. La pilota A arribarà al terra...
 - a) abans que la B, perquè recorre menys distància
 - b) desprès que la B
 - c) al mateix temps que la B (*)
 - d) cap de les anteriors
- 6. El temps que triga la pilota B en arribar al terra és aproximadament...
 - a) 1.4 s
 - b) 2 s (*)
 - c) 2.8 s
 - d) 3.2 s
- 7. La distància horitzontal recorreguda per la pilota B fins arribar al terra val...
 - a) 1 m
 - b) 2 m
 - c) 4 m
 - d) 10 m (*)

Considerem el sentit positiu del eix vertical cap a dalt. Sigui g l'acceleració de la gravetat i t₀ el temps que triga la pilota B en arribar al terra.

- 8. La component vertical de la velocitat de la pilota B quan arriba al terra és...
 - a) $5-g t_0$
 - b) $-g t_0(*)$
 - c) $-g t_0^2$
 - d) $5+ g t_0$

Exercici 2

Un disc gira sobre el seu eix donant 30 voltes cada minut.

- 9. La velocitat angular del disc val...
 - a) $\pi \text{ rad/s}^2$
 - b) $\pi \operatorname{rad/s}(*)$
 - c) 30 voltes
 - d) 30 min⁻¹
- 10. El temps en donar una volta és...
 - a) 2 s (*)
 - b) 0.5 s
 - c) 1/30 s
 - d) Cap de les anteriors

- 11. La velocitat lineal d'un punt que està a 0.5 m del centre del disc és aproximadament...
 - a) 1.6 m/s (*)
 - b) 30 m/s
 - c) 10 km/h
 - d) Cap de les anteriors

Exercici 3

- **A)** Un bloc d'1 kg llisca cap a baix amb una velocitat constant sobre un pla inclinat de $\theta = 60^{\circ}$ d'inclinació.
- 12. Dieu quina de les següents afirmacions és correcta. En aquest problema...
 - a) La força de fregament té sentit oposat a la velocitat (*)
 - b) No hi ha fregament
 - c) La força de fregament s'oposa a l'acceleració
 - d) Encara que el bloc llisca pel pla inclinat, el fregament és estàtic
- 13. El coeficient de fregament entre el pla i el bloc, μ, val...
 - a) $\mu = \text{sen } \theta$
 - b) $\mu = \cos \theta$
 - c) $\mu = \operatorname{tg} \theta$ (*)
 - d) $\mu = \cot \theta$
- **B)** Ara llancem el bloc anterior cap a dalt sobre el mateix pla amb una velocitat inicial de 10 m/s.
- 14. L'acceleració a la qual es troba sotmès el bloc és paral·lela al pla, val ...
 - a) $a = 17 \text{ m/s}^2$, i està dirigida cap amunt
 - b) $a = 17 \text{ m/s}^2$, i està dirigida cap a baix (*)
 - c) $a = 8.5 \text{ m/s}^2$, i està dirigida cap amunt
 - d) $a = 8.5 \text{ m/s}^2$, i està dirigida cap a baix
- 15. La distància que recorrerà el bloc sobre el pla abans de parar-se val aproximadament...
 - a) 15 metres.
 - b) 9 metres
 - c) 3 metres (*)
 - d) 1 metres

Exercici 4

Una pedra de 400 g de massa, es lliga a una corda de 0,5 m de longitud i massa menyspreable i se li fa descriure cercles verticals amb una velocitat **constant** de 5 m/s.

- 16. La tensió que suporta la corda en el punt més alt de la trajectòria és:
 - a) 0 N
 - b) 16 N (*)
 - c) 20 N
 - d) 24 N

4 -	-				•			•			- 1							,
17	lat	enció	alle	cunort	ว ไว	corda	allan	la.	nedra	ectà	a li	'alc	าลปล	del	centre	del	cercle	ÁC
1/	டவ	choro i	que	suport	а та	Corua	quan	1a	pcura	Cota	аі	arç	aua	uci	Contro	uci	CCICIC	· Co

- a) 0 N
- b) 16 N
- c) 20 N (*)
- d) 24 N
- 18. La tensió que suporta la corda en el punt més baix val...
 - a) 0 N
 - b) 16 N
 - c) 20 N
 - d) 24 N (*)
- 19. La velocitat mínima que pot tenir la pedra perquè faci una volta completa val...
 - a) 2.2 m/s (*)
 - b) 1.2 m/s
 - c) 23 m/s
 - d) 0.1 km/h
- 20. La condició perquè la pedra faci la volta complerta és:
 - a) La tensió de la corda en el punt més baix sigui màxima
 - b) La velocitat de la pedra en el punt més alt sigui nul·la
 - c) La tensió de la corda en el punt més alt sigui màxima
 - d) La tensió de la corda en el punt més alt sigui nul·la. (*)

Respostes

- 1. a b c d
- 2. a b c d
- 3. a b c d
- 4. a b c d
- 5. a b c d
- 6. a b c d
- 7. a b c d
- 8. a b c d
- 9. a b c d
- 10. a b c d
- 11. a b c d
- 12. a b c d
- 13. a b c d
- 14. a b c d
- 15. a b c d
- 16. a b c d
- 17. a b c d
- 18. a b c d
- 19. a b c d
- 20. a b c d