Using cosmic variance to constrain the dark matter halo mass and occupation fraction of Lyman-alpha emitting galaxies at z=3.1

Jaime E. Forero-Romero¹ and Julian Mejía-Restrepo²

- Departamento de Física, Universidad de los Andes, Cra. 1 No. 18A-10, Edificio Ip, Boqotá, Colombia
- ² Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Santiago, Chile

24 June 2013

ABSTRACT

We use cosmological N-body dark matter only simulations to constrain the characteristic mass of dark matter halos hosting Lyman-Alpha Emitting (LAE) galaxies at a redshift of z=3.1. The method is based on matching the statistics for the number density between mock and observed fields. The mock fields are constructed using a simple model where a dark matter halo can only host one LAE with a probability $f_{\rm occ}$ if its mass is found withing a certain range mass range delimited by two threshold values, $M_{\rm min}$ and $M_{\rm max}$. We also maximize the number of mocks surveys consistent with Our most important results is that, unlike previous studies, a pure clustering analysis cannot fully constraint the halo occupation fraction for LAEs.

Most of the models have a narrow mass range $\Delta M \equiv \log_{10} M_{\text{max}} - \log_{10} M_{\text{min}} < 1.0$ dex and a low occupation fraction $f_{\text{occ}} \leq 0.3$.

observations and impose consistency with the angular correlation function. Under these conditions we find that LAEs are preferentially hosted by halos in very narrow mass ranges less than 0.5 dex in width, with the minimum mass $10 \le \log_{10} M_{\rm min} \le 10.9$ and the occupation fraction $f_{\rm occ} \le 0.2$. Our finding suggest that the most massive dark matter halos at that epoch do not host the brightest LAEs. This also gives support to observational evidence that says that only a small fraction of star forming galaxies can be actually detected as LAEs.

Key words: galaxies: kinematics and dynamics, Local Group, methods:numerical

1 INTRODUCTION

Lyman- α emitting galaxies (LAEs) have become in the last decade a central topic in studies of structure formation in the Universe. They are helpful in a diverse range of fields. LAEs can be used as probes of reionization (Dijkstra et al. 2011), tracers of large scale structure (Koehler et al. 2007), signposts for low metallicity stellar populations and markers of the galaxy formation process through cosmic history (Forero-Romero et al. 2012).

At the same time, theoretical and observational developments have contributed to the emergence of a paradigm to describe structure formation in a cosmological context. In this context it is considered that dominant matter content of the Universe is to be found in dark matter, whereby each galaxy is hosted by larger dark matter structure known as a halo.

Most models of galaxy formation find that the mass of the halo can be used to predict properties of the galaxy such as its stellar mass and star formation rate (Behroozi et al. 2012). Processes that regulate the star formation cycle are also though to be strongly dependent on its mass. Furthermore, the spatial clustering of galaxies on large scales is entirely dictated by the halo distribution. For the reasons mentioned above, finding the typical dark matter halo mass hosting LAEs represents a significant step forward to understand the nature of this population in the context of Lambda Cold Dark Matter (Λ CDM) paradigm.

Some theoretical approaches to this problem have been based on a forward modeling. Starting from the DM halo population, the corresponding intrinsic star formation properties are infered and statistics such as the luminosity function, the correlation function and the equivalent width distributions. Such modelling has been implemented from analytic considerations, semi-analytic models and full N-body hidrodynamical simulations (Dayal et al. 2009; Forero-Romero et al. 2011; Yajima et al. 2012; Forero-Romero et al. 2012) .

Added to the uncertainties in the astrophysical processeses describing star formation in galactic populations,

a highly debated steps in this approach is the calculation of the fraction of Lyman- α photons that escape the galaxy to the observer. Given the resonance nature of the line, the radiative transfer of Lyman- α is sensitive to the density, temperature, topology and kinematics of the neutral Hydrogen in the interstellar medium (ISM) (Neufeld 1991; Forero-Romero et al. 2011; Laursen et al. 2013).

This complexity makes the use of monte-carlo simulations for the radiative transfer a required tool to obtain physically sound results, although the degeneracy in the physical parameters involved in the problem makes it difficult to achieve a robust consensus on what is the theoretical expected value for the Lyman-alpha escape fraction in high redshift.

Throughout this paper we assume a Λ CDM cosmology with the following values for the cosmological parameters, $\Omega_m = 0.27$, $\Omega_{\Lambda} = 0.73$ and h = 0.70, corresponding to the matter density, vacuum density and the Hubble constant in units of 100 km s⁻¹ Mpc⁻¹.

2 METHODOLOGY

Our method to constrain the typical mass of a dark matter halos hosting LAEs at z=3.1 is based on the comparison of observational results on the surface number density and the predictions of a simple model that uses the outputs from cosmological N-body simulations.

In the next subsections we describe in detail the four key elements of this workflow. First, we present the observations we take as a benchmark. Second, the N-body simulation and the halo catalogs we use. Third, the simplified model that allows us to translated halo catalogs into mock LAE observations. Fourth, the statistics we use to compare observational results against our theoretical predictions.

2.1 Observational Constraints

The observational benchamark we use in this paper is the LAE number density information at z=3.1 obtained by the panoramic narrow-band survey presented by Yamada et al. (2012) from a survey conducted with the Subaru 8.2m telescope and the Subaru Prime Focus Camera, which has a field of view covering 34×27 arcmin, corresponding to a comoving scale of 46×35 Mpc h^{-1} at z=3.09. The narrow band filter is centered at 4977 Åwith 77Åwidth, corresponding to the redshift range z=3.062-3.125 and 41 Mpc h^{-1} comoving scale for the detection of the Lyman- α line centered at z=3.09. The authors report a total 2161 LAEs with an observed equivalent width larger than 190 over a total survey area of 2.42 deg², this corresponds to averaga surface number density of 0.20 ± 0.01 arcmin⁻².

The survey covered four independent fields. The first is the SSA22 field of $1.38~{\rm deg^2}$ with $1394~{\rm detected}$ LAEs, this field has been known to harbor a region with a large density excess of galaxies. The second observed region is composed by the fields Subaru/XMM-Newton Deep Survey (SXDS)-North, -Center and -South, with a total of $0.58~{\rm deg^2}$ and $386~{\rm LAEs}$. The third and fourth fields are the Subaru Deep Field (SDF) with $0.22~{\rm deg^2}$ and $196~{\rm LAEs}$, and the fild arotund the Great Observatory Optical Deep Survey North (GOODS-N) with $0.24~{\rm deg^2}$ and $185~{\rm LAEs}$.

There is abundant observational work done on LAEs at redshift z=3.1 (Kudritzki et al. 2000; Matsuda et al. 2005; Gawiser et al. 2007; Nilsson et al. 2007; Ouchi et al. 2008). However, we decide to focus on the data from Yamada et al. (2012) because it has the largest covered area with homogeneous intrumentational conditions (telescope, narrow band filter), data reduction pipeline and conditions to construct the LAE catalog. This ensures that the number density variations among fields are due only to astrophysical reasons and not different observational conditions or criteria to construct the catalogs.

2.2 Simulation and Halo Catalogs

The Bolshoi simulation (Klypin et al. 2011) we use in this paper was performed in a cubic volume of 250 h^{-1} Mpc on a side. It includes dark matter distribution is sampled using 2048^3 particles, which translates into a particle mass of $m_{\rm p}=1.35\times 10^8~h^{-1}~{\rm M}_{\odot}$. The cosmological parameters are consistent with a WMAP5 and WMAP7 data with a density $\Omega_{\rm m}=0.27$, cosmological $\Omega_{\Lambda}=0.73$, dimensionless Hubble constant h=0.70, slope of the power spectrum n=0.95 and normalization of the power spectrum $\sigma_8=0.82$ (Komatsu et al. 2009; Jarosik et al. 2011).

We use halo catalogs constructed with a Friend-of-Friends (FOF) algorithm with a linking length of 0.17 times the interparticle distance. The minimum halo mass in the models we construct in this paper correspond to groups of ~ 75 particles. The catalogs were obtained from the publicly available Multidark database 1 (Riebe et al. 2011). We focus our work on halos more massive than $1\times 10^{10}h^{-1}{\rm M}_{\odot}$ that are resolved with at least 70 particles.

2.3 A Model to Populate Halos with LAEs

In our model a dark matter halo can only host one or zero LAE. There are three parameters in the model that decide whether a halo can host a galaxy or not: the lower and upper bounds for the mass range $M_{\rm min} < M_{\rm h} < M_{\rm max}$ where LAEs reside and the fraction $f_{\rm occ}$ of such halos that effectively host a LAE. We do not assign a luminosity to each LAE. We are primaraly interested in constraining the halo mass range hosting detectable LAEs under the conditions defined by Yamada et al. (2012). In what follows will describe by the letter \mathcal{M} a model defined by an specific choice of the three scalar parameters $M_{\rm min}$, $M_{\rm max}$ y $f_{\rm occ}$.

For each model \mathcal{M} we create a set of mock fields from disjoint volumes in the simulation. Each volume has the same geometry probed by Suprime-CAM and the narrow band filter, namely rectangular cuboids of dimensions $46 \times 35 \times 41~h^{-3}\mathrm{Mpc^3}$ where the last dinemsion goes in the redshift direction. This corresponds to a total area of 880 arcmin² in each mock field. We construct a total $5 \times 7 \times 6 = 210$ of such volumes from a snapshot in the Bolshoi simulation. In each mock field a LAE is assigned to the position of a dark matter halo if the halo mass is in the range allowed by the model $M_{\rm min} < M_{\rm h} < M_{\rm max}$ and a random variable taken from an homogeneous distribution $0 \le \xi < 1$ is smaller than the occupation fraction $\xi < f_{\rm occ}$.

¹ http://www.multidark.org/MultiDark/

Next we construct mock surveys by making groups of 11 mock fields out of the 210 available volumes. In total 15 mock surveys are constructed for each model \mathcal{M} . The grouping is done in two different ways. In the first way, called match, we follow the clustering of the observed fields. From the 11 mock fields, 7 are constructed from contigous fields in the simulation to mimic the SSA22 region, 3 are also contiguous between them but not to the first 7 fields to mimic the SXDS fields and finally 2 non-contigous fields to imitate the SDF and GOODS-North field. Our main goal with this selection is to test the impact on the final statistics of having 7 clustered fields. The second way to group the mock fields is called random, whereby all the 11 fields are selected in such a way as to avoid that any two volumes are contigous.

2.4 Sampling and Selecting Models

We make a thorough exploration of the parameter space for the models \mathcal{M} . $\log_{10} M_{\min}$ takes 30 values from 10.0 up to 12.9 with an even spacing of 0.1 dex. $\log_{10} M_{\max}$ takes values in the same range as $\log_{10} M_{\min}$ only with a displacement of 0.1 dex in the whole range. The occupation fraction f_{occ} takes 10 different values from 0.1 to 1 regulary spaced by 0.1. In total the number of different models \mathcal{M} that are explored is $30 \times 30 \times 10 = 9000$.

For each mock survey generated in a given model \mathcal{M} we compute the surface density in the 12 mock fields. We perform a Kolmogorov-Smirnov (KS) to compare this mock date against the 12 observational values. From this test we obtain a value 0 < P < 1 to reject the null hypotesis, namely that two data sets come from the same distribution. In this paper we consider that for values P > 0.05 the two distributions can be thought as coming from the same distribution.

In this paper we consider that a model \mathcal{M} that has at least one (1) mock survey (out of 15) consistent with the observed distribution of LAE number densities has viable parameters that deserve to be considered for further analysis.

3 BASIC RESULTS

3.1 Dark Matter Halo Number Density

In Figure 1 we present the results for the integrated dark matter halo surface density as a function of halo mass. Each line corresponds to one of the 210 sub-volumes in the Bolshoi simulation. The gray band indicates the surface density values for LAEs allowed reported in observations (Yamada et al. 2012).

This result provides the basis to understand why a range of models \mathcal{M} can be expected to be consistent with observations. In Figure 1 we can read that models with a minimum mass $\log_{10} M_{\rm min} > 11.5 h^{-1} \rm M_{\odot}$ will always have a surface number density lower than the observational constrain. The oppossite is true in models with $\log_{10} M_{\rm min} < 10.5$ that will show surface number density larger than observations, this implies that in such models the occupation fraction has to be tuned $f_{\rm occ} < 1.0$ as to lower the halo numeber density to match the gray band values.

Conversely, there are regions in the plot where the halo

Figure 1. Surface density of dark matter halos as a function of a minimum halo mass to count the total number of elements in a volume. Each line represents on of the 210 volumes of dimensions $46 \times 35 \times 41 \text{ h}-3\text{Mpc}^3$ in the Bolshoi simulation. The horizontal grey band represents the range of surface densities observed for LAEs at z=3.1 as reported by (Yamada et al. 2012).

surface density is always higher than the observational constraints correspond to models \mathcal{M} with a minimum mass below $M_{\rm min} < 3 \times 10^{10} h^{-1} \rm M_{\odot}$. Models with this minimum mass hava a chance for successfuly reproducing observations if the occupation fraction $f_{\rm occ} < 1$ is tuned as to lower the halo number density down to the observed value.

In the next subsection we quantify this intuition by means of the KS tests between mock surveys and observations.

3.2 Three Regions in Parameter Space

Figure 2 presents regions in parameter space $M_{\rm min}-M_{\rm max}$, $M_{\rm min}-f_{\rm occ}$ where the KS test yields values of P>0.05 at least for one mock survey. For those models it is not possible reject the hypothesis that the simulated and observed data for the surface number density come from the same parent distribution.

The upper (lower) panels correspond to the match (random) method to build the mock surveys from individual fields. The plot shows number of mock surveys consistent with observations. There are between 550 to 600 models out of the original 9000 models that have at least one (1) mock survey consistent with observations.

In Figure ?? there are three regions of parameter space that can be clearly distinguised. The first region corresponds to models where the minimum mass is high $\log_{10} M_{\rm min} > 11.5$. None of this models is compatible with observations as expected from the results in the previous section. For these models the number density of LAEs is too low.

The second region corresponds to an intermediate range for the minimum mass $10.5 < \log_{10} M_{\rm min} < 11.5$ where regardless of the value of the maximum mass $M_{\rm max}$ it is possible to tune the occupation fraction $f_{\rm occ}$ to bring some of the mock observations into good agreement with observations. In this region in parameter space one can thus find two extreme kinds of models. One kind where the mass interval is

Figure 2. M_{min} - M_{max} (left) and M_{min} – f_{occ} (right) planes for all models with P > 0.05 in two different ways used to construct the mock surveys. The color code corresponds to the number of mock surveys that are found to be compatible with observations in terms of the KS test with P > 0.05. Only regions of parameter space with at least one (1) consistent mock survey are included.

very narrow with sizes smaller than < 0.3 dex (a factor of two in mass) and others where the mass interval is very extended, larger than 1.0 dex, going up to the maximum halo mass present in the simulation at that redshift.

The third region in parameter space corresponds to $\log_{10} M_{\rm min} < 10.5$. In this case only models with a narrow mass interval of at most 0.5 dex ($\log_{10} M_{\rm max} < 11.0$) and low occupation fractions $f_{\rm occ} < 0.3$ are allowed.

Without any additional information our method allows us to infer that most of the succesful models are found in the second and third region of parameter space where. This result was already expected from halo abundance calculations shown in Figure 1. In the next section we reduce the size of this region by using more stringent constraints to define the agreement with observations and including additional observational information on possible values for the occupation fraction at $z\sim3$.

4 ADDITIONAL CONSTRAINTS

In this section we consider two additional constraints on the models we accept as succesul. First we take models with the highest possible number of mock surveys consistent with observations. Second by comparing the angular correlation function against observational constraints by Hu et al. (2004).

4.1 Models with the highest success rates

For each model \mathcal{M} there are 15 different mock surveys. In the previous section we presented the models that had at least one (1) mock survey with P > 0.05.

Figure 3 shows the number of models that have at least $N_{\rm high-P}$ mocks with P>0.05 for both the match and random methods. This shows that there are between 80 to 100 models with all the 15 realizations with P>0.05. Selction of these models as successful represents a reduction

Figure 3. Number of models with a minimum number of mock survey realizations that are consistent with observations.

of a factor of ~ 6 with repect to the total number of mocks with at least one consistent mock.

Figure 4 presents the locii of these models in the parameter space $M_{\rm min}-M_{\rm max}$ and $M_{\rm min}-f_{\rm occ}$. The results are very similar between the match and random methods. With this constraints the number of consistent models with $\log_{10}M_{\rm min}<11.7$ are greatly reduced. This corresponds to the regions in the parameter space in Figure 2 that already had a low number of consistent mock surveys. On the other hand, from the right panel in Figure 4 one can see that there is not a strong selection effect on the occupation fraction $f_{\rm occ}$.

4.2 Consitency with the Angular Correlation Function

As an additional observational constraint we requiring that the models selected in the previous section must be compatible with the observational angular correlation function (ACF). The measurementens presented in (Yamada et al. 2012) do not report an ACF measurement. Instead we use the results reported by (Hu et al. 2004) on the LAEs observed in the densest field of SSA22.

It is important to keep in mind that there are some differences between this work and (Yamada et al. 2012). First, the color selection by Yamada et al. (2012) is less stringent compared to the one by Hu et al. (2004). Also the EW threshold is different, Hu et al. (2004) uses a cut around 154Åinstead of 190Åused by (Yamada et al. 2012)

The comparison between the theoretical and observational ACF is done in therms of the angular correlation length obtained by fitting to a power-law function:

$$\xi(\theta) = \left(\frac{r}{\theta_0}\right)^{-\gamma} \tag{1}$$

Both the theoretical and observational ACF are derived by a least square minimization procedure. The results are shown in Figure 5 in a $\theta_0 - \gamma$ plane where the average and standard deviation for each mock is shown in comparison with the result derived from observations. The Error bars in

these figures represents the standard deviation of the ACF over all the sub-fields in the 15 mock observations. These error bars are larger than the statistical uncertainty from the fitting procedure on a single field..

We see in the left panel Figure 5 that the observational ACF measured by Hu et al. (2004) (green dot) is succesul in reducing the total number of possible models. Only those with angular-correlation length within $15'' < \theta_0 < 23''$ are considered to reproduce observations.

In order to interpret the results from this test we show in the right panel of Figure 5 the plane $\theta_0\text{-}M_{\min}$ for all models. There we divide the models into two disjoint sents: those with $\log\frac{M_{\max}}{M_{\odot}}<12$ (blue dots) and $\log\frac{M_{\max}}{M_{\odot}}>12$ (green dots). The colored rectangle includes the parameter region wich is consistent with the observational constraint in θ_0 . With this restriction we find that most models with $\log\frac{M_{\max}}{M_{\odot}}>12$ and $\log\frac{M_{\min}}{M_{\odot}}>11.1$ can be safely ruled out.

In Figure 6 we present the preferred models in the planes $M_{\rm min}-M_{\rm max}$ and $M_{\rm min}-f_{\rm occ}$ for the match method after applying the observational constraints in the occupation fraction and the ACF. Here we consider a model consistent if there is an overlap of 1-sigma in its values for the correlation length θ_0 and the power γ in the correlation function.

5 DISCUSSION

Imposing additional constraints with the maximal number of consistent mock surveys and the angular correlation function we end up with 50 models out of the initial 90000 models. In what follows we discuss the implications of the selection of these models on the escape fraction of Lyman α radiation, the stellar abundance and the star formation efficiency in LAEs at z=3.1.

5.1 Escape fraction and allowed halo mass range

We find that 70% of the best models have a low ocacupation fraction $f_{\rm occ} \leq 0.3$. This preference goes in the same direction as the observational constraint on $f_{\rm occ} \sim 0.1-0.2$

Figure 4. Favored regions in parameter space when the constraints on the maximal number of consistent mocks is imposed. The results for the random methodology (not shown here) are very similar to the ones presented here for the match method.

Figure 5. Left: Values for the free parameters (θ_0 vs γ) of the mean angular correlation function of the 15 mock surveys for each model. Blue dots corresponds to simulations and the green cross to observations by Hu et al. (2004). The error bars in the theoretical data correspond to the starndard deviation from the different mocks. Right: Same results as before in the θ_0 - $M_{\rm min}$ plane. This time the observational constraints are represented by the red rectangle. Blue squares represent models with $\log_{10} M_{\rm max} < 12.0$, green circles are models with $\log_{10} M_{\rm max} > 12.0$.

derived at z=2.2 by Hayes et al. (2010) and recent theoretical study of observational data in a wide redshift range 0 < z < 6 (Dijkstra & Jeeson-Daniel 2013).

The observational estimation by Hayes et al. (2010) was based on blind surveys of the H α and Lyman α line. Using corrections by extinction to obtain an estimate for the intrinsic H α luminosity, and using values for the theoretical expectation of the ratio Lyman $\alpha/{\rm H}\alpha$ they derive an bulk escape fraction for the Lyman α radiation of $f_{\rm esc}=(5.3\pm3.8)\%$ or $f_{\rm esc}=(10.7\pm2.8)\%$ if a different dust correction is used.

They also showed that that the luminosity function for LAEs at z=2.2 is consistent with the escape fraction being constant for every galaxy regardless of its luminosity. From this results they derive that almost 90% of the star forming galaxies emit insufficient Lyman α to be detected, effectively setting the occupation fraction to be $f_{\rm occ}=0.10$.

Dijkstra & Jeeson-Daniel (2013) use a similar princi-

ple to derive their results. They compared observationally derived star formation functions to LAE luminosity functions. At $z\sim 3.0$ they derive an affective escape fraction of $f_{\rm esc}=(17\pm5)\%$ could be interpreted as an occupation fraction $f_{\rm occ}\sim 0.2$. We consider a success of our method the fact that we find that most of the consistent models show a low occupation fraction.

A complementary perspective to the range of the allowed values for the escape fraction is the quantification of the allowed halo mass range $\Delta M = \log_{10} M_{\rm max} - \log M_{\rm min}$ for LAEs. In this respect, we find that all the successful models can be split into three families:

- (1) Low $f_{\rm occ} \leq 0.3$ and low $\Delta M \leq 1.0$ dex: 24 models.
- (2) Low $f_{\rm occ} \leq 0.3$ and high $\Delta M > 1.0$ dex: 11 models
- (3) High $f_{\rm occ} > 0.3$ and low $\Delta M \leq 1.0$: 14 models

There is a clear majority of models with a narrow

Figure 6. Best models paramter space when both the constraints on the maximal number of consistent mocks and the occupation fraction $f_{\text{occ}} \leq 0.2$ are included. M_{min} vs M_{max} (left), M_{min} vs f_{occ} (rigth).

 $\Delta M \leq 1$. Such models imply that there is a cut for lower and higher halo masses that render inefficient the presence and/or detection of LAEs. A cut at the low mass end can be readily interepreted in terms of the minimal halo star formation rate needed to produce the necessary Lyman α luminosity to be above a given detection threshold. However, under the reasonable assumption of star formation rate increainsng with halo mass, the cut at higher halo masses requires a different explanation.

A possible interpretation can be made in terms of a drecreasing escape fraction of Ly α radiation in massive systems. There are detailed models for radiative transfer that support the idea that massive galaxies with higher metallicities have larger dust contents than lower mass systems, which due to the resonant nature of the Ly α line are enough to produce high absorption of Ly α photons but not of continuum or other non-resonant lines.

This preference for narrow ΔM ranges for hosting LAEs together with the total absence of reasonable models with $M_{\rm max} > 10^{12} h^{-1} {\rm M}_{\odot}$ shows that our models supports theoretical insights where the most massive systems are not bright Ly α sources (Forero-Romero et al. 2012).

5.2 Comparison to other clustering estimates

Since the observational estimates based on the ACF infered from photometric measurements in the Extended Chandra Deep Field South (Gawiser et al. 2007) it is a well accepted fact that the median dark matter masses of halos hosting LAEs is $\log_{10} M_{\rm med} = 10.9^{+0.5}_{-0.9} {\rm M}_{\odot}$, with a corresponding occupation fraction of 1 – 10%. Our results are in a good agreement with those estimates for the host mass. This is not unexpected given that we have also required consistency with ACF measurements.

The novelty in our approach is that we have a detailed estimate for host halo mass range. Following the numbers shown for the three families in the previous section, we see that two thirds of the best models have a narrow mass range, less than < 1.0 dex, out of the 2.5 dex spanned by dark matter halos at that redshift. Only one fourth of the models indicate a wide mass range with > 1.0dex.

As a byproduct of our results, we are now able to demonstrate that a simple clustering analysis is not enough to rule out models with a high occupation fraction $f_{\rm occ} > 0.3$, they represent almost one fourth of our best models, coinciding with a wide range in halo masses $\Delta M > 1.0$ dex.

5.3 On the reproducibility of our results

... All the software to produce the results in this paper is publicly available.

... The raw catalogs can be obtained from the MultiDark database but can also be obtained in the repository of this paper on github.

6 CONCLUSIONS

In this paper we constrain the preferred dark matter mass and occupation fraction for halos hosting Lyman Alpha Emitters at redshift z = 3.1. We use a method that matches the cosmic variance in the surface density number of LAEs between mock and real observations and provides consistent results with observational estimates for the angular correlation function. The mock catalogs are based on a simplified model with three basic parameters: the halo mass range where LAEs can be found, $M_{\min} < M_{\rm h} < M_{\max}$, and the fraction of the halos in this range that are actully occupied, $f_{\rm occ}$. After a thorough exploration of the parameter space we find that wide variety of models are consistent with the observational constraints, where only a minority has been considered so far in the literature. Out of 9000 initial combinations for the model parameters we end up with 49 sucessful arrangement of parameters.

These parameter sets can be split into three families depending the mass range $\Delta M = \log_{10} M_{\rm max} - \log_{10} M_{\rm min}$ and the occupation fraction $f_{\rm occ}$. The first family is narrow both in ΔM and $f_{\rm occ}$, a second familiy is only narrow in ΔM and the third is narrow in $f_{\rm occ}$ and broad in ΔM .

All the halo mass ranges in the best models fall into the broad results based in observations, which have been able to describe models in the third family, but have so far missed

$\log_{10} M_{\min}$	$\log_{10} M_{\mathrm{max}}$	$f_{ m occ}$
10.1	10.2	0.1
10.3	10.5	0.1
10.4	10.7	0.1
10.5	10.6	0.3
10.5	10.9	0.1
10.5	11.0	0.1
10.6	10.8	0.2
10.6	11.2	0.1
10.6	11.3	0.1
10.6	11.4	0.1
10.6	11.5	0.1
10.6	11.6	0.1
10.7	11.0	0.2
10.8	11.2	0.2
10.8	11.3	0.2
10.8	11.4	0.2
10.9	11.3	0.3
10.9	11.7	0.2
10.9	11.8	0.2
10.9	11.9	0.2
11.0	11.6	0.3
11.0	11.7	0.3
11.0	11.8	0.3
11.0	12.0	0.3

Table 1. List of parameters for the first family of models. Narrow mass range $\Delta M \leq 1.0 \text{dex}$ and low occupation fraction $f_{\text{occ}} \leq 0.3$.

$\log_{10} M_{\min}$	$\log_{10} M_{\mathrm{max}}$	$f_{ m occ}$
10.6	10.7	0.4
10.7	10.8	0.5
10.8	10.9	0.6
10.8	11.0	0.4
10.9	11.0	0.8
10.9	11.0	0.9
10.9	11.1	0.5
11.0	11.1	1.0
11.0	11.4	0.4
11.1	11.3	0.7
11.1	11.7	0.4
11.2	11.5	0.7
11.2	11.6	0.6
11.2	11.9	0.5

Table 2. List of parameters for the second family of models. Narrow mass range $\Delta M \leq 1.0 {\rm dex}$ and high occupation fraction $f_{\rm occ} > 0.3$.

all the possible models. In particular, previous analysis did not consider the first two families: a narrow mass range and any value for the escape fraction.

In the case of narrow mass models there are various cases with $\Delta M=0.1 {\rm dex}$. Taken at face value, a possible confirmation of these kind of models can be considered a challenge to explain relatively high star formation ratesm

$\log_{10} M_{\min}$	$\log_{10} M_{\mathrm{max}}$	$f_{ m occ}$
10.6	11.7	0.1
10.9	12.1	0.2
10.9	12.2	0.2
10.9	12.3	0.2
10.9	12.4	0.2
10.9	12.5	0.2
10.9	12.6	0.2
10.9	12.7	0.2
10.9	12.8	0.2
10.9	12.9	0.2
10.9	13.	0 0.2

Table 3. List of parameters for the third family of models. Broad mass range $\Delta M > 1.0$ dex and low occupation fraction $f_{\rm occ} \leq 0.3$.

ACKNOWLEDGMENTS

REFERENCES

Behroozi P. S., Wechsler R. H., Conroy C., 2012, ArXiv e-prints

Dayal P., Ferrara A., Saro A., Salvaterra R., Borgani S., Tornatore L., 2009, MNRAS, 400, 2000

Dijkstra M., Jeeson-Daniel A., 2013, ArXiv e-prints Dijkstra M., Mesinger A., Wyithe J. S. B., 2011, MNRAS, 414, 2139

Forero-Romero J. E., Yepes G., Gottlöber S., Knollmann S. R., Cuesta A. J., Prada F., 2011, MNRAS, 415, 3666 Forero-Romero J. E., Yepes G., Gottlöber S., Prada F., 2012, MNRAS, 419, 952

Gawiser E., Francke H., Lai K., Schawinski K., Gronwall C., Ciardullo R., Quadri R., Orsi A., Barrientos L. F., Blanc G. A., Fazio G., Feldmeier J. J., 2007, ApJ, 671, 278

Gawiser E., Francke H., Lai K., Schawinski K., Gronwall C., Ciardullo R., Quadri R., Orsi A., Barrientos L. F., Blanc G. A., Fazio G., Feldmeier J. J., Huang J.-s., Infante L., Lira P., Padilla N., 2007, ApJ, 671, 278

Hayes M., Östlin G., Schaerer D., Mas-Hesse J. M., Leitherer C., Atek H., Kunth D., Verhamme A., de Barros S., Melinder J., 2010, Nature, 464, 562

Hu E. M., Cowie L. L., Capak P., McMahon R. G., Hayashino T., Komiyama Y., 2004, AJ, 127, 563

Jarosik N., Bennett C. L., Dunkley J., Gold B., Greason M. R., Halpern M., Hill R. S., Hinshaw G., Kogut A., Komatsu E., Larson D., Limon M., 2011, ApJS, 192, 14
Klypin A. A., Trujillo-Gomez S., Primack J., 2011, ApJ, 740, 102

Koehler R. S., Schuecker P., Gebhardt K., 2007, A&A, 462,

Komatsu E., Dunkley J., Nolta M. R., Bennett C. L., Gold B., Hinshaw G., Jarosik N., Larson D., Limon M., Page L., Spergel D. N., Halpern M., 2009, ApJS, 180, 330

Kudritzki R.-P., Méndez R. H., Feldmeier J. J., Ciardullo R., Jacoby G. H., Freeman K. C., Arnaboldi M., Capaccioli M., Gerhard O., Ford H. C., 2000, ApJ, 536, 19

Laursen P., Duval F., Östlin G., 2013, ApJ, 766, 124
Matsuda Y., Yamada T., Hayashino T., Tamura H., Yamauchi R., Murayama T., Nagao T., Ohta K., Okamura S., Ouchi M., Shimasaku K., Shioya Y., Taniguchi Y.,

2005, ApJL, 634, L125

Neufeld D. A., 1991, ApJL, 370, L85

Nilsson K. K., Møller P., Möller O., Fynbo J. P. U., Michałowski M. J., Watson D., Ledoux C., Rosati P., Pedersen K., Grove L. F., 2007, A&A, 471, 71

Ouchi M., Shimasaku K., Akiyama M., Simpson C., Saito T., Ueda Y., Furusawa H., Sekiguchi K., Yamada T., Kodama T., Kashikawa N., Okamura S., Iye M., Takata T., Yoshida M., Yoshida M., 2008, ApJS, 176, 301

Riebe K., Partl A. M., Enke H., Forero-Romero J., Gottloeber S., Klypin A., Lemson G., Prada F., Primack J. R., Steinmetz M., Turchaninov V., 2011, ArXiv e-prints

Yajima H., Choi J.-H., Nagamine K., 2012, MNRAS, 427, 2889

Yamada T., Nakamura Y., Matsuda Y., Hayashino T., Yamauchi R., Morimoto N., Kousai K., Umemura M., 2012, AJ, 143, 79