Sensores em Robótica Móvel

Prof. Carlos Carreto

Sumário

- Introdução
- Caracterização dos Sensores
- Classificação dos Sensores
- Exemplos de Sensores

Sistema Autónomo

Definição de Sensor

- Os sensores são os dispositivo que permitem ao robô ter percepção do meio ambiente e de si próprio.
 - Tipicamente convertem a energia recebida num sinal eléctrico (transdutores).
 - São necessários para estimar o estado do ambiente e do próprio sistema, permitindo assim lidar com a incerteza do meio e dos próprios actuadores.

Caracterização (parcial)

- Sensibilidade
- Linearidade
- Intervalo de Medida
- Tempo de Resposta
- Precisão
- Repetibilidade
- Resolução

Sensibilidade

- É a razão entre a taxa de variação dos valores de saída pela variação dos valores de entrada.
 - Por vezes a sensibilidades é afectada por outros factores (Ex.: temperatura).
 - Exemplo:

Se num dado sensor de movimento, uma variação de 0,001mm na entrada provoca uma variação de 0,02V na sua saída, esse sensor tem uma sensibilidade de

0.02V / 0.001mm = 20V/mm

Linearidade

Indica se a função de transferência do sensor é linear ou não linear.

Um sensor é dito linear se a função de transferência for uma recta e é dito não linear em caso contrário.
Exemplo da saída

Exemplo da saída de um sensor linear (sensor de pressão)

Analog Output Voltage vs.Distance Reflective Object

de um sensor não

linear (Sensor

Sharp GP2D12)

Intervalo de Medida

 Diferença entre os valores máximo e mínimo que o sensor consegue medir

Analog Output Voltage vs.Distance to Reflective Object

O sensor Sharp GP2D12 mede distancias entre os 8 e os 80 cm.

Tempo de Resposta

- Tempo necessário para uma variação na entrada ser observada na saída.
 - Em alguns sensores a saída oscila por um certo tempo antes de alcançar um valor estável.
 - O tempo de resposta é medido desde o início da variação na entrada até a estabilização da saída.
 - Normalmente indicado em Hz (frequência).

Precisão

• É uma medida de erro dada pela diferença entre o valore verdadeiro v e o valore medido m.

$$precisão = 1 - \frac{|m - v|}{|v|}$$

Repetibilidade

- É a diferença entre duas leituras sucessivas sob as mesmas condições.
 - Os sensores estão sujeitos a ruído sistemático e aleatório que alteram a repetibilidade das leituras

$$\delta_r = \frac{\Delta}{FS} 100\%$$

É normalmente especificado como uma percentagem da gama de valores de saída (FS).

Repetibilidade

 Os sensores podem ter alta repetibilidade, mas pouca precisão

Resolução

- Número de medidas de valores diferentes possíveis dentro de uma faixa de mínimo e máximo
 - No caso de sensores com interface analógica, é dada pela resolução do CAD (ex.: 5V/256 para 8-bit CAD)

Características da aplicação

- A escolha dos sensores está muitas vezes condicionada pelas características da aplicação e é influenciada por factores como:
 - Desenho
 - Peso
 - Dimensões
 - Preço

Factores Ambientais

- Condições de armazenamento
- Estabilidade a curto e a longo prazo
- Temperatura ambiente
- Erro de auto-aquecimento
- Erro de corrente insuficiente

Erros

- Erros sistemáticos (Determinísticos)
 - Causados por factores que podem, em teoria, ser modelados (predição).
- Erros não sistemáticos (Não Determinísticos)
 - Causados por factores aleatórios em relação aos quais não é possível realizar predição (podem no entanto ser descritos probabilisticamente).

Interfaces

- Saída analógica
 - Produzem uma voltagem que é proporcional à grandeza medida.
 - É a interface mais fácil de usar, uma vez que a grande maioria dos microcontroladores possui um conversor analógico-digital (CAD).

Interfaces

Saída PWM

- Produzem uma onda quadrada com uma frequência fixa, mas com amplitude de pulsos proporcional à grandeza medida.
- Fácil de usar, pois o sinal é normalmente medido através de uma porta digital.

Interfaces

- Saída Digital
 - Usam uma interface série (SPI, I²C, etc.) para receber e enviar comandos e dados.
 - É a interface mais sofisticada, mas nem todos os controladores possuem este tipo de interface.

- Quanto ao tipo de informação que obtêm
- Quanto à utilização de energia
- Quanto à função

Quanto ao tipo de informação que obtêm

- Sensores Internos Proprioceptive (PC) sensors:
 - Medem valores internos do sistema.
 - Exemplos: velocidade do motor, direcção do robô, carga da bateria, etc.
- Sensores Externos Exteroceptive (EC) sensors
 - Adquirem informação sobre o ambiente do sistema
 - Exemplos: distância de objectos, intensidade da luz do ambiente, temperatura, etc.

Quanto à utilização de energia

- Sensores passivos
 - Medem energia vinda do ambiente.
 - Exemplos: câmara, microfone, célula fotoeléctrica, etc.
- Sensores activos
 - Emitem a sua própria energia e medem a reacção desta
 - No geral têm melhor desempenho que os sensores passivos, mas afectam o ambiente.
 - Exemplos: SONAR, scaner laser, etc.

Quanto à função

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Tactile sensors (detection of physical contact or closeness; security switches)	Contact switches, bumpers Optical barriers Noncontact proximity sensors	EC EC EC	P A A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC	P P A A A A
Heading sensors (orientation of the robot in relation to a fixed reference frame)	Compass Gyroscopes Inclinometers	EC PC EC	P P A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Quanto à função

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A
Active ranging (reflectivity, time-of-flight, and geometric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC	A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analysis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	P

Quanto à função

- Sensores tácteis
- Shaft Encoders (sensores de eixo)
- Sensores de orientação
- Sensores de posição
- Sensores de distâncias
- Sensores de visão
- Sensores de proximidade (opto-reflectivos)

Sensores tácteis

Shaft Encoders Absolutos

Ópticos: Geram um padrão linear de bits representativo da posição angular do eixo.

Resistivos: Geram uma tensão proporcional à posição angular do eixo (ex.: potenciómetros).

Shaft Encoders Incrementais

- Geram um pulso por cada incremento fixo de deslocamento angular de um eixo.
- Podem ser usados para determinar a posição e/ou a velocidade de eixos.
- Usados também para indicar o número total de voltas de eixos (odómetros).
- ▶ Podem ter resoluções muito altas (+10.000).
- São relativamente fácies de construir de forma.
 caseira (para baixas resoluções).

Shaft Encoders Incrementais

www.seattlerobotics.org/encoder/200109/dpa.html

Shaft Encoders Incrementais

- Shaft Encoders Incrementais de Fase-Quadratura
 - Usam dois sensores de modo a obter dois trens de pulsos desfasados de 90°.
 - Isto permite determinar qual o trem que está a conduzir o outro e em consequência determinar o sentido de rotação do eixo.

Sensores de Orientação

- Bússola Electrónica (magnetómetro)
 - Mede a orientação absoluta em relação ao campo magnético terrestre.

CMPS03 Magnetic Compass

http://www.robot-electronics.co.uk/htm/cmps3tech.htm

Características

Voltage - 5v only required

Current – 20mA Typ.

Resolution – 0.1 Degree

Accuracy – 3– 4 degrees approx. after

calibration

Output 1 – Timing Pulse 1mS to 37mS in 0.1mS

increments

Output 2 – I2C Interface

Size - 32mm x 35mm

Sensores de Orientação

Acelerómetro

- Mede aceleração linear (sem rotação).
- Na presença de rotação, a aceleração da gravidade confunde-se com a aceleração linear.
- Pode ser usado como sensor de inclinação num dado eixo, ao detectar a aceleração da gravidade, mas não consegue medir a rotação fora desse eixo.
- Não consegue distinguir entre gravidade e movimento linear.

Sensores de Orientação

Acelerómetro

Memsic 2125

http://www.parallax.com/dl/docs/prod/compshop/SICMemsicTut.pdf

Características

Medições de 0 a ±2 g nos eixos X e Y Resolução inferior a 1 mg Saída simples de pulso da força-g para eixos X e Y Saída analógica de temperatura (pino TOut) Baixo consumo de corrente, menos de 4mA a 5Vdc

Sensores de Orientação

Acelerómetro

Sensores de Orientação

- Giroscópio
 - Medem a rotação em torno de um dado eixo.
 - Não medem aceleração linear.

Sensores de Orientação

Giroscópio

Triple-Axis Digital-Output Gyro ITG-3200

http://www.sparkfun.com/products/9801

Características

Baixo consumo de corrente, 6.5mA (5µA em standby) Voltagem VDD entre 2.1V a 3.5V Sensor de temperatura digital Interface Fast I²C (400kHz)

Sensores de Posição

GPS

Parallax GPS Receiver Module

http://www.parallax.com/tabid/768/ProductID/396/Default.aspx

Características

Raw NMEA0183 strings ou dados especificos via

comandos

Alimentação: +5VDC @ 65 mA (típico)

Comunicação: Interface Single-wire serial TTL, 4800 bps

Dimensões: 49 x 36 x 15 mm

Temperatura: 0 a 70 °C

Sensores de Distância

- Tempo de Voo
 - Conhecida a velocidade constante Vc de propagação de um feixe emitido pelo sensor e medido o tempo ∆t que o eco deste leva a retornar ao sensor depois de embater num objecto, a distância do sensor ao objecto pode ser determinada pela expressão:

$$d = \frac{1}{2} Vc \times \Delta t$$

Sensores de Distância

- Triangulação
 - Conhecido o ângulo θ que um feixe emitido pelo sensor faz com o eco deste, que retorna ao sensor depois de embater num objecto, a distância do sensor ao objecto pode ser determinada pela expressão:

Sensores de Distância

SONAR

Sonar SRF05

http://www.robot-electronics.co.uk/htm/srf05tech.htm

Características

Voltage - 5v only required

Current - 4mA Typ.

Max.Frequency - 40KHz

Max Range - 4 m

Min Range - 1 cm

Input Trigger - 10uS Min. TTL level pulse

Echo Pulse - Positive TTL level signal, width proportional to range.

Small Size - 43mm x 20mm x 17mm height

Interface - Sinal PWM

Sensores de Distância

SONAR

Programming pins. Used once only to program the PIC chip during manufacture.

Do not connect to these pins.

Ultrasonic burst transmitted from SRF05

> Colour Codes Blue - Users controller drives the Trigger/Echo pin

SRF05 Timing Diagram, Mode 2

Red - SRF 05 drives the Trigger/echo pin

Sensores de Distância

SONAR

Sensores de Distância

SONAR

Sonar SRF05

http://www.robot-electronics.co.uk/htm/srf05tech.htm


```
//IntelliBrain API
. . .
RangeFinder rangeFinder =
new ParallaxPing(IntelliBrain.getDigitalIO(3));
. . .
rangeFinder.ping();
Thread.sleep(50);
float distance = rangeFinder.getDistanceInches();
```


Sensores de Distância

SONAR

Sonar SRF04

http://www.robot-electronics.co.uk/htm/srf04tech.htm

Características

Voltage - 5v only required

Current – 30mA Typ. 50mA

Max.Frequency – 40KHz

Max Range – 3 m

Min Range – 3 cm

Sensitivity - Detect 3cm diameter broom handle at > 2 m

Input Trigger – 10uS Min. TTL level pulse

Echo Pulse – Positive TTL level signal, width proportional to range.

Small Size - 43mm x 20mm x 17mm height

Interface - Sinal PWM

Sensores de Distância

SONAR

Sensores de Distância

▶ SONAR

http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/17 6/ProductID/92/List/1/Default.aspx?SortField=ProductName,ProductName

http://www.maxbotix.com/

http://www.robot-electronics.co.uk/acatalog/Ultrasonic_Rangers.html

Sensores de Distância

SONAR

Sonar SRF08

http://www.robot-electronics.co.uk/htm/srf08tech.html


```
//IntelliBrain API
. . . .
DevantechSRF08 rangeFinder =
new DevantechSRF08(IntelliBrain.getI2CMaster());
. . .
rangeFinder.readLightSensor();
. . .
rangeFinder.ping();
Thread.sleep(100);
float distance = rangeFinder.getDistanceInches();
```


Sensores de Distância

SONAR

Vantagens:

- Baixo custo
- Leves e pequenos
- Baixo consumo energético

Desvantagens:

- Atenuação do sinal
- Reflexão especular do sinal
- Cross talk
- Limites mínimos e máximos na medição
- Efeito das condições atmosféricas
- Baixa velocidade do som

Sensores de Distância

LASER

- Segue o mesmo princípio de funcionamento do SONAR, mas usa um feixe de luz laser em vez de som ultra-sónico.
- Tipicamente o feixe gira num plano horizontal permitindo obter uma fatia 2D do ambiente.

Sensores de Distância

LASER

http://www.sick.de

Specifications						
Power source	5V +/-5%					
Current consumption	0.5A (Rush current 0.8A)					
Detection range	0.02 to approximately 4m					
Laser wavelength	785nm, Class 1					
Scan angle	240°					
Scan time	100msec/scan (10.0Hz)					
Resolution	1mm					
Angular Resolution	0.36°					
Interface	USB 2.0, RS232					
Weight	5.0 oz (141 gm)					

http://www.hokuyo-aut.jp/

Sensores de Distância

LASER

Vantagens:

- Maior velocidade (3x10⁸ m/s)
- Grande precisão (1 mm)
- Maior resolução angular (< 1º)

Desvantagens:

- Limitado ao plano 2D
- Consumo de energia elevado
- Custo elevado
- Materiais indetectáveis

Sensores de Distância

- Infravermelhos
 - Usam triangulação como princípio de funcionamento.
 - Um circuito transmissor emite um feixe de infravermelhos que é reflectido por um objecto e um circuito receptor capta-o determinando o ângulo de reflexão.
 - A distância a que se encontra o objecto é proporcional a este ângulo de reflexão.
 - Existem no mercado vários modelos de diferentes marcas.

Sensores de Distância

Infravermelhos (Sharp GP*)

Ranger	Output	Minimum Distance	Maximum Distance	On Current	Off Current
GP2D02	Analog	10cm	80cm	~22mA	~3mA
GP2D05	Digital	,	fixed at 24cm	~10mA	~3mA
GP2D12	Analog	10cm	80cm	~33mA	always on
GP2D15	Digital	,	fixed at 24cm±3cm	~33mA	always on
GP2D120	Analog	4cm	30cm	~33mA	always on
GP2Y0A02YK	Analog	20cm	150cm	~33mA	always on
GP2Y0D02YK	Digital	-	fixed at 80cm	~33mA	always on

The end of the black notes the minimum detectable range. The end of the grey notes the maximum range. The red oval notes a fixed range. Objects closer than the noted minimum range will give incorrect readings. For more information please see the product page for each sensor, and checkout Demystifying the Sharp IR Detectors in our articles section.

Sensores de Distância

Infravermelhos

Vantagens:

- Baixo custo
- Mais rápidos do que o SONAR

Desvantagens:

- Menos precisos que o SONAR
- Materiais indetectáveis
- Gama de distâncias limitadas

Sensores de Distância

Infravermelhos

Sharp GP2D12

http://www.acroname.com/robotics/parts/SharpGP2D12-15.pdf

Caracteristicas

Voltage – 4.5v – 5.5v Current - 50mA Typ. 33mA Max Range - 80 cm Min Range - 10 cm Interface – Sinal analógico

Analog Output Voltage vs.Distance to Reflective Object

Sensores de Distância

Infravermelhos

Sharp GP2D12

http://www.acroname.com/robotics/parts/SharpGP2D12-15.pdf


```
//IntelliBrain API
. . .
RangeFinder rangeFinder =
new SharpGP2D12(IntelliBrain.getAnalogInput(1), null);
. . .
rangeFinder.ping();
float distance = rangeFinder.getDistanceInches();
```


Sensores de Proximidade (opto-reflectivos)

Sensor de linha branca

http://www.lynxmotion.com/Product.aspx?productID=58&CategoryID=8

Sensores de Proximidade (opto-reflectivos)

Sensor Fairchild QRB1134 usado no kit Intellibrain-Bot

Sensores de Proximidade (opto-reflectivos)

Sensor Fairchild QRB1134 usado no kit Intellibrain-Bot

Sensores de Proximidade (opto-reflectivos)

Sensores de Proximidade (opto-reflectivos)

Sensores de Visão

Sensor de cor TCS230

http://www.parallax.com/Portals/0/Downloads/docs/prod/acc/TCS230-db_doc.pdf

<u>S0</u>	<u>\$1</u>	<u>Divide</u>	<u>S2</u>	S3	Color
0	0	Pwr. Down	0	0	Red
0	1	1:50	0	1	Blue
1	0	1:5	1	0	Clear
1	1	1:1	1	1	Green

Sensores de Visão

CMUCam

http://www-2.cs.cmu.edu/~cmucam/

Características

A 17 frames por segundo, a CMUCam é capaz de:

- Identificar a posição e tamanho de um objecto
- Medir o histograma RGB ou YUV de uma região da imagem
- Identificar e seguir automaticamente o primeiro objecto visível
- Seguir automaticamente um objecto através de um servomotor ligado directamente
- Enviar a imagem capturada através da porta série
- Enviar um bitmap com a forma do objecto detectado, através da porta série

Sensores de Visão

http://www.microsoft.com/en-us/kinectforwindows/purchase/

http://www.surveyor.com/stereo/

Sensor de Tom

http://members.cox.net/rbirac3/Snuffy/tone_detect.htm

Sensor de Chama (deteção de radiação infravermelha)

Sensor de Chama (deteção de radiação infravermelha)

Sensor de Chama (deteção de radiação ultravioleta)

UV-Tron

http://www.acroname.com/robotics/parts/R67-UVTRON.html

Características

Spectral Response - 185 to 260 nm
Recommended Operating Voltage - 325±25 Vdc
Peak Current - 30 mA
Operating Temperature - -20 to +60 °C
Sensibility - Can detect a match lighting from 5 m in a sunny room
Interface – PWM

Sensor de Chama (deteção de radiação ultravioleta)

UV-Tron

http://www.acroname.com/robotics/parts/R67-UVTRON.html


```
//IntelliBrain API
//PWM
IntelliBrainDigitalIO SUVTron =
IntelliBrain.getDigitalIO(6);
SUVTron.enablePulseMeasurement(true);
Thread.sleep(2000);
int count = SUVTron.readEdgeCount();
//Analog
AnalogInput SUVTron =
IntelliBrain.getAnalogInput(PORT NUMBER);
int value = SUVTron.sample();
```


Sensor de Chama (deteção de radiação ultravioleta)

UV-Tron

http://www.acroname.com/robotics/parts/R67-UVTRON.html

Sensor de Chama (deteção de radiação ultravioleta)

UV-Tron

http://www.acroname.com/robotics/parts/R67-UVTRON.html

Sensor de Chama (deteção de radiação infravermelha)

TPA81 Thermopile Array

http://www.robot-electronics.co.uk/htm/tpa81tech.htm

Características

Voltage - 5v only required

Current - 5mA Typ. excluding servo

Temperature Range - 4°C - 100°C

Accuracy (Full FOV) - +/-2°C +/-2% from 10°C to 100°C,

Accuracy (Full FOV) - +/-3°C from 4°C to 10°C

Field of View - 41° x 6° (8 pixels of approx. 5° x 6°)

Outputs - 1 ambient + 8 pixel temperatures

Servo - Controls servo in 32 steps to 180° rotation

Small Size - 31mm x 18mm

Interface - Bus I2C

Fabricantes e Fornecedores

- www.robot-electronics.co.uk
- www.prallax.com
- www.sparkfun.com
- www.libelium.com
- www.ptrobotics.com/
- www.aliatron.com/
- inmotion.pt/store/
- nxt4you.com/

