Report of Clustering Methods

Dataset - Mall Customer

Subject - Machine Learning

Objective

The objective of this lab is to gain hands-on experience with unsupervised learning by applying three clustering algorithms: **K-Means**, **Agglomerative Hierarchical Clustering**, and **DBSCAN**. We aim to identify customer segments using the *Mall Customers* dataset and interpret them from a business perspective.

Dataset

The dataset (Mall_Customers.csv) contains 200 entries with the following columns:

- CustomerID: Unique identifier for each customer.
- Gender: Male or Female.
- Age: Age of the customer.
- Annual Income (k\$): Customer's annual income in thousands of dollars.
- Spending Score (1-100): A score assigned based on customer behavior.

For clustering, only **Annual Income** and **Spending Score** were used, as per lab instructions.

Data Exploration and Visualization

After loading the dataset into a Pandas DataFrame:

- The data contained no missing values.
- A scatter plot of Annual Income vs Spending Score showed distinct dense regions, hinting at possible clusters.

Figure 1: Scatter plot of Annual Income vs Spending Score

K-Means Clustering

Elbow Method

The Elbow Method was applied by computing WCSS for k = 1 to k = 10. A clear "elbow" appeared at k = 5, suggesting five clusters.

Figure 2: Elbow Method for K-Means

Final Clustering

K-Means was applied with k = 5. The resulting clusters clearly separated customers into distinct spending/income groups.

Figure 3: K-Means clustering with k = 5 (centroids marked with X)

Interpretation: The five clusters represented:

- 1. Low income, low spending.
- 2. High income, high spending (premium customers).
- 3. Medium income, medium spending.
- 4. Low income, high spending (value-driven shoppers).
- 5. High income, low spending (reluctant spenders).

Agglomerative Hierarchical Clustering

Dendrogram

A dendrogram using Ward linkage suggested around 5 clusters, consistent with the K-Means result.

Figure 4: Dendrogram using Ward linkage

Final Clustering

Agglomerative clustering with 5 clusters gave results similar to K-Means, with only minor differences at the cluster boundaries.

Figure 5: Agglomerative Clustering (5 clusters)

4

DBSCAN

DBSCAN was applied with different parameters:

- eps = 5, $min_samples = 5$: Produced 4 clusters and some noise points.
- eps = 3, min_samples = 5: Marked many points as noise due to stricter neighborhood size.
- eps = 6, $min_samples = 4$: Fewer noise points, larger clusters.

Figure 6: DBSCAN clustering with eps=5, min_samples=5

Observation: DBSCAN did not perform as consistently as K-Means or Agglomerative for this dataset, because the customer groups are fairly compact and spherical.

Analysis and Questions

1. Optimal Clusters

- K-Means: 5 clusters (Elbow Method). - Hierarchical: 5 clusters (Dendrogram). - DBSCAN: Cluster count varied depending on parameters.

2. Cluster Comparison

K-Means and Hierarchical produced similar, interpretable clusters. DBSCAN produced fewer clusters and marked noise points.

3. DBSCAN Performance

DBSCAN identified outliers, but was sensitive to parameter choice. Its results were less meaningful compared to K-Means and Hierarchical.

4. Algorithm Suitability

For this dataset, K-Means and Agglomerative (Ward) are most suitable because the clusters are compact. DBSCAN is less suitable here.

5. Real-World Application

A mall could use these clusters for marketing:

- **High income**, **low spending:** Target with exclusive offers and personalized promotions.
- Low income, high spending: Offer budget-friendly deals and loyalty rewards.
- High income, high spending: Maintain premium relationships with VIP perks.

Conclusion

- K-Means and Agglomerative clustering both identified five meaningful customer segments.
- DBSCAN struggled due to the dataset's structure but is valuable for irregular clusters or outlier detection.
- Customer segmentation can directly support targeted marketing strategies and personalized campaigns and premium experience for the cluster who earn high but spend low.