# TOPOLOGÍA ELEMENTAL Muestras de examen

## Febrero 2007

# **TEORÍA**

- 1. Definir el producto de dos espacios topológicos.
- 2. Definir compactificación de Alexandroff.
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.
- / (1) La adherencia de una unión es la unión de las adherencias.
- (+ abierta/cerrada)
- (3) La imagen continua de un espacio Lindelöf es siempre Lindelöf. (International)
- (4) La unión de dos conjuntos disjuntos nunca es conexa.
- (5) Las componentes conexas son conjuntos abiertos.
- (6) Dos espacios con el mismo grupo fundamental son necesariamente homeomorfos.

#### **PROBLEMAS**

- 1. Se considera en  $X = \mathbb{R} \times \mathbb{Z}$  la topología  $\mathcal{T}$  producto de la usual  $\mathcal{T}_u$  en  $\mathbb{R}$  y la de los complementos finitos  $\mathcal{T}_{CF}$  en  $\mathbb{Z}$ .
  - (1) Estudiar la continuidad de la aplicación  $f:(X,\mathcal{T})\to(\mathbb{R}.\mathcal{T}_u):(t,k)\mapsto t-k$ .
  - (2) Probar que si  $M \subset X$  es compacto, entonces:
    - (i)  $M \cap (\mathbb{R} \times \{k\})$  es compacto para cada  $k \in \mathbb{Z}$ , y
    - (ii) existe L > 0 tal que  $|t| \le L$  para todo  $(t, k) \in M$ .
  - (3) Demostrar que el conjunto

$$M = \{(1,0)\} \cup \bigcup_{k>1} [0,1-\frac{1}{k}] \times \{k\}$$

es compacto. ¿Es cerrado?

(4) Estudiar si una unión finita

$$[0,1] \times \{k_1\} \cup \cdots \cup [0,1] \times \{k_r\}$$

es un conjunto conexo. ¿Y la unión infinita  $\bigcup_{k\geq 1}[0,1]\times\{k\}$ ?

**2.** Sea  $X \subset \mathbb{R}^3$  el tronco de cilindro  $\{x^2+y^2=1, -2 \le z \le 2\}$ , y sean  $E, F \subset X$  las dos circunferencias  $\{x^2+y^2=1, z=1\}$ ,  $\{x^2+y^2=1, z=-1\}$ . En M se considera la relación de equivalencia

$$p = (x, y, z) \sim p' = (x', y'.z')$$
 si y sólo si  $p = p'$  o  $z = z' = +1$  o  $z = z' = -1$ .

- (1) Encontrar un subespacio de  $\mathbb{R}^3$  homomorfo al espacio cociente  $M/\sim$ .
- (2) Calcular el grupo fundamental de  $M/\sim$ .
- (3) ¿Es cierto en general que al hacer un cociente el grupo fundamental se simplifica?

# **TEORÍA**

- 1. ¿Cuándo se dice que una aplicación continua es abierta?
- 2. Definir espacio simplemente conexo.
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.
- $(Q \in \mathbb{T})$ (1) La adherencia de la intersección es la intersección de las adherencias.
- (2) Si todos los puntos de un espacio son cerrados, el espacio es Hausdorff.
- (3) Todo subespacio cerrado de un espacio compacto es también compacto.
- (4) Todo espacio con una base numerable de abiertos es separable.
- (5) La imagen continua de un espacio conexo es asímismo un espacio conexo.
- (6) Toda aplicación continua no suprayectiva de un espacio en una esfera es homótopa a una aplicación constante.

#### **PROBLEMAS**

1. Se consideran en el plano  $\mathbb{R}^2$  los triángulos semiabiertos de vértice  $(a,b) \in \mathbb{R}^2$  y anchura  $\varepsilon > 0$  definidos por

$$U = \{(x, y) \in \mathbb{R}^2 : x - y \ge a - b, \ x + y \ge a + b, \ a \le x < a + \varepsilon\},\$$

y equipamos  $\mathbb{R}^2$  con la topología  $\mathcal{T}$  que tiene todos esos triángulos por base de abiertos.

- (1) Calcular la adherencia (en  $\mathfrak{I}$ ) de un triángulo semiabierto U.
- (2) Estudiar si  $(\mathbb{R}^2, \mathcal{T})$  es Lindelöf. ¿Y localmente compacto?
- (3) Demostrar que los únicos conjuntos conexos para esta topología son los puntos.
- (4) ¿Existe alguna topología  $\mathcal{T}_1$  en  $\mathbb{R}$  tal que  $\mathcal{T}$  sea la topología producto  $\mathcal{T}_1 \times \mathcal{T}_1$ ? ¿Y tal que  $(\mathbb{R}^2, \mathfrak{I})$  sea homeomorfo a  $(\mathbb{R}^2, \mathfrak{I}_1 \times \mathfrak{I}_1)$ ?
- **2.** Sea  $S \subset \mathbb{R}^2$  el conjunto

$$\{(x,y): -1 \le x \le 1, \ 0 \le y \le 1\}.$$

En S se considera la relación de equivalencia definida por las relaciones

$$(x,y) \sim (x,y); \quad (1,y) \sim (0,y); \quad (x,1) \sim (x',1) \text{ para } 0 \le x,x' \le 1.$$

- (1) Encontrar un subespacio de  $\mathbb{R}^3$  homeomorfo al espacio cociente  $X=S/\sim$ .
- (2) Mostrar que X es simplemente conexo.
- (3) Es X homeomorfo a una esfera?

#### Febrero 2008

# **TEORÍA**

- 1. Enunciar alguna condición suficiente para que una unión de conjuntos conexos lo sea también.
- 2. Definir cuándo dos espacios tienen el mismo tipo de homotopía.
- 3. Marcar verdadero (V) o falso (F) según corresponda.
- F (1) El interior de la unión de dos conjuntos es la unión de sus interiores.
- (2) Si un espacio tiene una base numerable de abiertos, las adherencias se calculan mediante límites de sucesiones. ☐ Ax ⇒ IAx ≈ lim; +cs
- V (3) Una aplicación continua biyectiva de un espacio compacto sobre un espacio Hausdorff es un homeomorfismo.
- F (4) Si un espacio no es conexo, su imagen por una aplicación continua tampoco es conexa. Ficto (firecip V)
- (5) Las componentes conexas por caminos son subconjuntos cerrados. (c)
  - (6) Dos espacios con el mismo tipo de homotopía son necesariamente homeomorfos.





- 1. En el plano  $\mathbb{R}^2$  se considera la topología  $\mathcal{T}$  de la que una base consiste en los cuadrados abiertos de centro un punto arbitario  $p \in \mathbb{R}^2$  y lado arbitrario  $\varepsilon > 0$ , menos los puntos  $\neq p$  de las dos diagonales.
- (1) Estudiar la continuidad de la aplicación  $f:(\mathbb{R}, \mathcal{T}_u) \to (\mathbb{R}^2, \mathcal{T}): t \mapsto (t, \lambda t)$ , para  $\lambda = 0, 1$ . ¿Es  $\mathbb{R}^2$  conexo por caminos con esta topología?
  - (2) Mostrar que  $\mathcal T$  no es una topología producto.
- (3) Probar que esta topología es primer axioma de numerabilidad. ¿Es además separable? ¿Y segundo Axioma?
- (4) Demostrar que en esta topología un cuadrado cerrado no es compacto, y deducir que los conjuntos compactos tiene interior vacío.
- **2.** Sea  $H \subset \mathbb{R}^2$  un hexágono regular cerrado con dos vértices opuestos en (0,1) y (0,-1), y consideremos la relación de equivalencia

$$(x,y) \sim (x,y)$$
 y  $(0,1) \sim (0,-1)$ .

- (1) Encontrar un subespacio de  $\mathbb{R}^3$  homeomorfo al espacio cociente  $H/\sim$ .
- (2) Calcular el grupo fundamental de  $H/\sim$ .
- (3) ¿Es cierto en general que un cociente de un espacio simplemente conexo deja de serlo?

# **TEORÍA**

- 1. ¿Qué es un espacio separable?
- 2. Definir homotopía de caminos con extremos fijos.
- 3. Marcar verdadero (V) o falso (F) según corresponda.
- (1) El interior del complementario es el complementario del interior.
- Toda aplicación continua y biyectiva es un homeomorfismo. + ab/cerr/f-120h
- (3) Todo espacio que cumple el 2º axioma de numerabilidad es localmente compacto.
- V (4) Los cocientes de espacios compactos son también compactos. (continuidad)
- $\bigvee$ (5) La imagen continua de un espacio conexo es conexo.
- V(6) Todos los lazos de una esfera son homótopos a un lazo constante. (5 cinpl. www.)

#### **PROBLEMAS**

1. Se consideran en el semiplano  $\mathbb{H}:y\geq 0$  de  $\mathbb{R}^2$  la topología  $\mathcal T$  generada por los discos abiertos de centros (a, b) con b > 0, y los "semidiscos"

$$S = \{(x, y) \in \mathbb{H} : (x - a)^2 + y^2 < \varepsilon, y > 0\} \cup \{(a, 0)\}.$$

Se pide:

- (1) ¿Qué topología induce  $\mathcal{T}$  en el borde L: y = 0 de  $\mathbb{H}$ ?
- (2) Estudiar si  $(\mathbb{H}, \mathcal{T})$  es separable.
- (3) Decidir qué cuadrados  $[a-\varepsilon,a+\varepsilon]\times[b-\varepsilon,b+\varepsilon]$  son compactos, y utilizarlo para determinar si H es localmente compacto con esta topología.
  - (4) Estudiar si  $(\mathbb{H}, \mathcal{T})$  es conexo por caminos.
- 2. Se consideran en  $\mathbb{R}^2$  los conjuntos

$$S = \{x^2 + y^2 \le 1\} \cup \{1 \le x \le 2, y = 0\}$$
 y  $T = \{x^2 + y^2 = 1\} \cup \{(2, 0)\},$ 

equipados con la topología usual. En S se identifican entre sí todos los puntos de T (y nada más), y se denota X el espacio cociente resultante. Se pide:

- (1) Describir un subespacio de  $\mathbb{R}^3$  homeomorfo a ese espacio cociente X.
- (2) Mostrar que el grupo fundamental de X es  $\mathbb{Z}$ .
- (3) ¿Es X homeomorfo a una circunferencia?

#### Febrero 2012

# **TEORÍA**

- 1. Describir la topología de un cociente de un espacio topológico.
- 2. Enunciar el teorema del punto fijo de Brouwer.
- 3. Marcar verdadero (V) o falso (F) según corresponda.
- V(1) Una unión de conjuntos cerrados puede no ser cerrado. (Union arbitraria)
- (2) Si un espacio es 1<sup>er</sup> axioma de numerabilidad y separable, entonces tiene una base numerable. (Tu, X) × in f:n: to no v v
- F (3) Una biyección continua entre espacios compactos es un homeomorfismo (Necesitas T<sub>2</sub>)
- √ (4) Un cociente de un espacio conexo por caminos es también conexo por caminos.
- V (5) El producto de dos espacios contráctiles es contráctil a su vez. (Internet)
- F (6) Dos espacios simplemente conexos son necesariamente homeomorfos. (Cambiar Jin)

- 1. Un subconjunto W del plano  $\mathbb{R}^2$  se llama radialmente abierto si para cada punto  $p \in W$  y cada recta L que pase por el punto,  $W \cap L$  contiene un intervalo abierto centrado en p.
- (1) Probar que los conjuntos radialmente abiertos son los abiertos de una topología  $\mathfrak{T}$  en  $\mathbb{R}^2$ . ¿Qué relación tiene con la usual?
- (2) Estudiar que topología induce  $\mathcal{T}$  en las circunferencias. ¿Cumple  $\mathcal{T}$  el segundo axioma de numerabilidad? ¿Y el primero?
- (3) Construir sucesiones de puntos del plano que convergan a un punto en la topología usual, pero no en esta topología  $\mathfrak{T}$ . ¿Es  $(\mathbb{R}^2, \mathfrak{T})$  un espacio localmente compacto?
- (4) Estudiar que topología induce  $\mathcal T$  en las rectas. ¿Es  $\mathbb R^2$  con esta topología conexo por caminos?
- **2.** Sea  $H \subset \mathbb{R}^2$  el rectángulo cerrado con vértices (-1,1), (-1,-1), (1,-1) y (1,1), y consideremos en él las dos relaciones de equivalencia definidas por

$$\begin{split} \mathcal{R} : (x,1) \sim (x,-1), \quad & (x,0) \sim (0,0), \\ \mathcal{S} : (x,1) \sim & (-x,-1), \quad & (x,0) \sim (0,0). \end{split}$$

- (1) Describir subespacios de  $\mathbb{R}^3$  homeomorfos a los espacios cocientes  $X=H/\mathbb{R}$  e  $Y=H/\mathbb{S}$ .
  - (2) Calcular el grupo fundamental de X.
  - (3) Decidir si X e Y son homeomorfos.
- $\mathbf{3.}^{ullet}$  Demostrar que un espacio X que cumple las dos condiciones siguientes es compacto:
  - (a) Cada punto tiene una base de entornos cerrados.
  - (b) Toda imagen continua de X en un espacio Haussdorff es cerrada.

# **TEORÍA**

- 1. Definir espacio localmente conexo.
- 2. Explicar qué grupo fundamental tiene la circunferencia.
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.
- √ (1) Si un conjunto abierto no vacío tiene frontera vacía, entonces su complementario es abierto. Ir (A) = A/A = A/A = A => A ceralo => Acub:crto
- $\bigvee$  (2) Un espacio que tiene una base numerable es separable.  $\coprod A_{\mathsf{X}} \Longrightarrow \mathsf{Sep}$ .
- (3) Si dos subconjuntos densos tienen intersección no vacía, entonces esa intersección es también un subconjunto denso. 🕡 e エベパ
- (4) Un subespacio cerrado de un espacio localmente compacto es también localmente v compacto.
  V (5) Todo abierto conexo del plano es conexo por caminos. por R + ab

  - (6) Si una aplicación continua entre dos espacios toppológicos induce un isomorfismo ntre sus grupos fundamentales, entonces es un homeomorfismo.

- 1. Sea  $X \subset \mathbb{R}^2$  el semiplano cerrado  $\{y \geq 0\}, P \subset X$  el semiplano abierto  $\{y > 0\}$  y L la recta  $\{y=0\}.$
- (1) Mostrar que se puede definir en X una topología estrictamente más fina que la usual tomando como entornos de los puntos  $p \in P$  los discos abiertos de P centrados en p, y como entornos de los puntos  $p \in L$  los conjuntos  $\{p\} \cup D$  donde D es un disco abierto de P tangente a L en p.
  - (2) ¿Qué topología induce  $\mathcal{T}$  en L? Estudiar qué axiomas de numerabilidad cumple  $\mathcal{T}$ .
- (3) Estudiar si son compactos en esta topología  $\mathfrak{T}$ : (i) el triángulo cerrado y < 1, y > 1 $x, y \ge -x$ , (ii) el disco cerrado  $x^2 + (y-1)^2 \le 1$ .
- (4) Describir un subconjunto  $E \subset X$  que sea conexo por caminos para la topología usual v no para T.
- 2. Sea  $H \subset \mathbb{R}^2$  el rectángulo cerrado con vértices (-1,1),(-1,0),(1,0) y (1,1), y consideremos en él la relación de equivalencia definida por

$$\mathcal{R}: (x,1) \sim (x,0), \quad (0,0) \sim (0,y), \quad (1,0) \sim (1,y).$$

- (1) Encontrar subespacio de  $\mathbb{R}^3$  homeomorfo al espacio cociente  $X = H/\Re$ .
- (2) Es X localmente homeomorfo al plano?
- (3) Calcular el grupo fundamental de X.

# **TEORÍA**

- 1. Enunciar una condición suficiente para que una unión de conexos sea conexo.
- 2. Explicar qué es un retracto de deformación.
- 3. Marcar verdadero (V) o falso (F) según corresponda.
- F (1) La adherencia del interior de un conjunto cerrado es igual al propio conjunto.
- (2) Un subespacio de un espacio separable es separable. (V 5: a bie do)
- (3) Dos espacios no homeomorfos tienen compactificaciones por un punto no homeomorfas.



- (6) Dos caminos continuos en la esfera unidad de  $\mathbb{R}^3$  con los mismos extremos son homótopos con extremos fijos. (\$\frac{1}{2}\$ es simp. Conexa)
- **4.** Sea X un espacio Hausdorff,  $K \subset X$  un compacto y  $a \in X$  un punto que no está en K. Demostrar que a y K tienen entornos abiertos disjuntos.

- 1. Se consideran en el plano  $\mathbb{R}^2$  los subconjuntos  $W^a$ ,  $a \in \mathbb{R}^2$ , obtenidos suprimiendo en una bola abierta B de centro a una cantidad finita de segmentos (a, b) con  $b \in \mathbb{R}^2$ .
- (1) Mostrar que se puede definir en  $\mathbb{R}^2$  una topología  $\mathcal{T}$  estrictamente más fina que la usual tomando como base de abiertos la colección de todos los  $W^a$  anteriores.
  - (2) ¿Qué topología induce  $\Im$  en las rectas? ¿Y en las circunferencias?
  - (3) Estudiar si esta topología  ${\mathfrak T}$  cumple el primer axioma de numerabilidad.
  - (4) Encontrar sucesiones que converjan en la topología usual, pero no en T.
  - (5) Estudiar la local compacidad de  $\Im$ .
- 2. Sea  $H \subset \mathbb{R}^2$  el rectángulo cerrado con vértices (-1,0),(1,0),(1,1) y (-1,1), y consideremos en él la relación de equivalencia definida por

$$\mathcal{R}: \begin{cases} (-1,y) \sim (0,y) \sim (1,y) & \text{para } 0 \leq y \leq 1, \\ (0,1) \sim (x,1) & \text{para } 0 \leq x \leq 1, \\ (0,0) \sim (x,0) & \text{para } -1 \leq x \leq 0. \end{cases}$$

- (1) Encontrar un subespacio de  $\mathbb{R}^3$  homeomorfo al espacio cociente  $X = H/\Re$ .
- (2) Mostrar que un semicono  $x^2+y^2=z^2,\,0\leq z\leq 1$ , tiene cualquiera de sus generatrices por retracto de deformación. (Nótese que un semicono es homeomorfo a un disco cerrado.)
  - (3) Calcular el grupo fundamental de X.
- (4) Explicar brevemente que espacio se obtendría suprimiendo la tercera condición de la relación  $\mathcal{R}$ .
  - (5) ¿Y qué grupo fundamental tendría ese espacio?



# **TEORÍA**

- 1. Enunciar dos axiomas de numerabilidad y explicar si uno implica otro.
- 2. Definir el grupo fundamental de un espacio.
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.
- (1) Una aplicación continua transforma entornos de un punto en entornos de su imagen. (a) reves f ×2 (-8, E) -> (-8, E)
- (2) El producto de dos espacios localmente compactos es localmente compacto.
- V (3) La intersección de dos conjuntos compactos puede no ser compacto. (51 no es 7)
- F (4) Una biyección continua de un espacio compacto en sí mismo es abierta. (heces: heces: he
  - (5) Un espacio localmente conexo tiene una cantidad finita de componentes conexas.
  - (6) Dos caminos continuos en un toro con los mismos extremos son homótopos.
- 4. Demostrar que un espacio locamente compacto tiene compactificación por un punto, y que es única salvo homeomorfismo. lasce son abiertas



- 1. Se consideran en el plano  $\mathbb{R}^2$  los subconjuntos  $W^a$ ,  $a \in \mathbb{R}^2$ , construidos como se indica en la figura, para todos los posibles ángulos positivos  $\theta < \frac{1}{4}\pi$  y amplitudes  $\varepsilon > 0$ .
- (1) Mostrar que se puede definir en  $\mathbb{R}^2$  una topología  $\mathcal T$  tomando como abiertos los conjuntos  $U \subset \mathbb{R}^2$  tales que para cada  $a \in U$  existe  $W^a \subset U$ . ¿Son los  $W^a$  abiertos en esta topología?
- (2) Mostrar que T induce la topología usual en las rectas horizontales y verticales. ¿Y en las demás?
- (3) Estudiar si el plano con esta topología cumple el 2º axioma de numerabilidad. ¿Es separable?
  - (4) Estudiar si el espacio ( $\mathbb{R}^2$ ,  $\mathcal{T}$ ) es localmente compacto.
  - (5) Mostrar que  $(\mathbb{R}^2, \mathcal{T})$  es conexo por caminos.
- 2. Sea  $H \subset \mathbb{R}^2$  la unión de los dos rectángulos de la figura, y consideremos en él la relación de equivalencia R definida como se especifica a continuación (y representada en la figura mediante flechas):

$$\mathcal{R} \colon \begin{cases} (x,0) \sim (x',0) & x' = -2 + x, \ -1 \le x \le 0, \\ (-2,y) \sim (1,y)) & \text{para } 0 \le y \le 1, \\ (-1,y') \sim (0,y') & \text{para } 0 \le y' \le 1, \end{cases}$$

- (1) ¿Qué espacio es el cociente  $H/\Re$ ?
- (2) Explicar cuál es el grupo fundamental de ese espacio.
- (3) ¿Qué espacio cociente resulta si se define una nueva relación de equivalencia S escribiendo x' = -1 - x en la primera línea de  $\Re$ ?
  - (4) Mostrar que este segundo cociente H/S es un espacio contráctil.
- (5) Utilizar una subrelación común de  $\mathcal{R}$  y  $\mathcal{S}$  para expresar  $H/\mathcal{R}$  y  $H/\mathcal{S}$  como cociente de un mismo espacio que sea contráctil. ¿Qué dice esto de la contractibilidad de un espacio v de sus cocientes?

# **TEORÍA**

- 1. ¿Qué es una botella de Klein?
- 2. Definir la topología cociente.
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.
- (1) El complementario de un conjunto denso no puede serlo también. F(2) Un subespacio de un espacio localmente compacto es localmente compacto. IV si loc. cerr
- (3) Si las compactificaciones de Alexandroff de dos espacios conexos son homeomorfas, los espacios lo con tambié. fas, los espacios lo son también.
- (4) El producto de dos espacios separables es separable.
- 7 (5) Un espacio localmente conexo es la suma topológica de sus componentes conexas.  $(1 \times 1)$  (6) Dos lazos en la esfera unidad de  $\mathbb{R}^3$  con distinto punto base pueden no ser
  - homótopos.
  - **4.** Sea  $\rho: X \to A \subset X$  un retracto de deformación. Demostrar que la aplicación  $Y \mapsto \rho(Y)$ es una bivección entre el conjunto de componentes conexas de X y el de componentes conexas de A.

#### **PROBLEMAS**

1. Se consideran en  $\mathbb{R}^2$  los subconjuntos

$$U_{\varepsilon,r}^a = \mathbb{R}^2 \setminus \{ \varepsilon \le ||x - a|| \le r \}, \quad 0 < \varepsilon < r, \ a \in \mathbb{R}^2.$$

- (1) Mostrar que en  $\mathbb{R}^2$  hay una topología  $\mathcal{T}$ , menos fina que la usual  $\mathcal{T}_u$ , que tiene como base de entornos de cada punto  $a \in \mathbb{R}^2$  la colección de todos los  $U_{\varepsilon r}^a$  anteriores.
- (2) Demostrar que un conjunto  $(\neq \mathbb{R}^2)$  es cerrado en  $\mathcal{T}$  si y sólo si es compacto en  $\mathcal{T}_u$ . ¿Qué topología induce  $\mathcal{T}$  en los subconjuntos compactos para  $\mathcal{T}_u$ ?
- (3) La aplicación f(t) = (t, 1/t) está definida para  $t \neq 0$ . Se puede extender a t = 0para obtener una aplicación continua  $f:(\mathbb{R}, \mathcal{T}_u) \mapsto (\mathbb{R}^2, \mathcal{T})$ ?
  - (4) Mostrar que  $(\mathbb{R}^2, \mathcal{T})$  es un espacio localmente compacto.
  - (5) Es ( $\mathbb{R}^2$ , T) conexo por caminos?
- 2. Sea  $H \subset \mathbb{R}^2$  el rectángulo cerrado con vértices (-2,0),(2,0),(2,1) y (-2,1), y consideremos en él las tres condiciones siguientes

$$\mathcal{R}: \left\{ \begin{aligned} (-1,y) &\sim (1,y) & \text{para } 0 \leq y \leq 1, \\ (-2,y) &\sim (2,y') & \text{para } 0 \leq y,y' \leq 1, \\ (x,0) &\sim (x',0) & \text{para } -1 \leq x,x' \leq 1. \end{aligned} \right\} : \mathcal{R}'$$

Como se indica, sean  $\mathcal{R}$  la relación de equivalencia generada por todas ellas y  $\mathcal{R}'$  la generada por la segunda y la tercera.

- (1) Encontrar un subespacio de  $\mathbb{R}^3$  homeomorfo al espacio cociente  $X = H/\Re$ .
- (2) Construir un retracto de deformación de H compatible con la relación  $\mathcal{R}$  v explicar qué retracto induce en X.
  - (3) Calcular el grupo fundamental de X.
  - (4) Repetir el proceso con la relación  $\mathcal{R}'$ , y sea  $X' = H/\mathcal{R}'$ .
  - (5) Los espacios X y X' tienen el mismo tipo de homotopía, pero ison homeomorfos?

# A=FRU }AND=(FAC) A (UNV)

# Septiembre 2014

# **TEORÍA**

- 1. Enunciar el lema de elevación para aplicaciones con valores en la circunferencia.
- 2. Definir dos axiomas de numerabilidad ninguno de los cuales implique al otro.
- 3. Marcar verdadero (V) o falso (F) según corresponda.
- (1) Si dos conjuntos tienen el mismo interior, entonces tienen la misma adherencia
- V(2) La intersección de dos conjuntos localmente cerrados es localmente cerrado.
- [3] La unión de dos conjuntos localmente conexos es localmente conexo. Sano topológo
- √ (4) El producto de dos espacios localmente compactos es localmente compacto.
- (5) Un espacio simplemente conexo es contráctil. (Esfera)
- (6) El grupo fundamental de una superficie orientable es abeliano.
- 4. Demostrar que un conjunto estrellado es contráctil.

#### **PROBLEMAS**

1. Se consideran en el espacio  $\mathbb{R}^2$  los triángulos

$$T_{\varepsilon,\lambda}: 0 \le x < \varepsilon, \ 0 \le y \le \lambda x, \quad 0 < \varepsilon, \lambda.$$

Se pide:

- (1) Mostrar que se puede definir en  $\mathbb{R}^2$  una única topología  $\mathcal{T}$  que tiene como base de entornos de cada punto  $a \in \mathbb{R}^2$  la colección de todos los triángulos  $a + T_{\varepsilon,\lambda}$ .
  - (2) ¿Qué topología induce  $\mathcal T$  en las rectas?
  - (3) Estudiar qué axiomas de numerabilidad cumple el espacio  $(\mathbb{R}^2, \mathcal{T})$ .
  - (4) Mostrar que  $(\mathbb{R}^2, \mathfrak{I})$  no es locamente compacto.
  - (5) Calcular las componentes conexas de este espacio. ¿Hay caminos no constantes?
- **2.** Sea  $C \subset \mathbb{R}^2$  el cuadrado cerrado con vértices (-1,-1),(1,-1),(1,1) y (-1,1), sea  $\mathcal{R}$  la relación de equivalencia generada por  $(-1,y) \sim (1,y)$  y sea  $X = C/\mathcal{R}$  el espacio cociente correspondiente. Ahora consideramos los conjuntos  $A \subset C_1 \subset C_0 \subset C$  siguientes:

$$\begin{cases} A = ([-1, 1] \times \{\pm 1\}) \cup (\{\pm 1\} \times [-1, 1]), \\ C_1 = C \setminus (-1, 1) \times \{0\}, \\ C_0 = C \setminus \{(0, 0)\}. \end{cases}$$

La restricción de  $\Re$  a A,  $C_1$  y  $C_0$  define sendas relaciones de equivalencia y denotamos Y,  $X_1$  y  $X_0$  los correspondientes espacios cocientes.

- (1) Describir los espacios  $Y \subset X_1 \subset X_0 \subset X$  mediante subespacios de  $\mathbb{R}^3$ .
- (2) Construir un retracto de deformación  $R_t$  de  $C_0$  sobre A compatible con  $\mathcal{R}$  tal que  $R_t(C_1) \subset C_1$ .
  - (3) Deducir que Y es retracto de deformación de  $X_0$  y también de  $X_1$ .
  - (4) Calcular los grupos fundamentales de los espacios  $Y, X_1, X_0$  y X.
- (5) ¿Cuáles de los espacios  $Y, X_1, X_0$  y X tienen igual tipo de homotopía? ¿Cuáles son homeomorfos?



# **TEORÍA**

- 1. Definir la topología cociente.
- 2. Caracterizar la compacidad mediante subconjuntos cerrados.
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.

(1) Si dos conjuntos tienen la misma frontera y uno está contenido en el otro, entonces tienen el mismo interior. **(∞,** ∫

(2) En un espacio Hausdorff, la intersección de dos conjuntos localmente compactos

es localmente compacto. 

Fulz Ncomp = comp (Internet)

(3) La intersección de dos conjuntos localmente conexos es localmente conexo. (Internet)

- (4) El producto de dos espacios Lindelöf es Lindelöf.
- (5) Dos espacios contráctiles son homeomorfos. R vs R
- (6) El grupo fundamental del plano proyectivo es infinito.
- 4. Demostrar que el grupo fundamental no depende del punto base.

#### **PROBLEMAS**

- 1. Se considera en  $\mathbb{R}^2$  la colección  $\mathcal{B}$  de todos los abiertos usuales más todos los subconjuntos de  $\mathbb{Q}^2$ . Se pide:
- (1) Mostrar que  $\mathcal{B}$  es base de una topología en  $\mathbb{R}^2$ . Compararla con la topología usual  $\mathfrak{T}_u$ . ¿Es ( $\mathbb{R}^2,\mathfrak{T}$ ) Hausdorff?
  - (2) Estudiar qué axiomas de numerabilidad cumple el espacio  $(\mathbb{R}^2, \mathfrak{T})$ .
- (3) Mostrar que un compacto de  $\mathcal{T}$  lo es de  $\mathcal{T}_u$ , pero no recíprocamente: un segmento cerrado que contenga un punto con ambas coordenadas racionales no es compacto para T.
  - (4) Es ( $\mathbb{R}^2$ , T) localmente compacto?
  - (5) Calcular las componentes conexas de este espacio.
- **2.** En el paralelogramo  $K \subset \mathbb{R}^2$  de vértices (0,0),(2,0),(3,1) y (1,1) se considera la relación de equivalencia R generada por

$$(x,0) \sim (1,1-x) \sim (2,1-x) \sim (2+x,1), \quad 0 \le x \le 1,$$

como se representa en la figura siguiente



- (1) Describir un subespacio de  $\mathbb{R}^3$  homeomorfo al espacio cociente  $X = K/\sim$ .
- (2) Sea  $A \subset K$  la unión del cuadrado  $\{1 \le x \le 2, 0 \le y \le 1\}$  y los dos segmentos  $\{0 \le x \le 1, y = 0\}, \{2 \le x \le 3, y = 1\}$ . Construir un retracto de deformación  $\rho_s$  de X sobre A compatible con  $\mathcal{R}$ , es decir, tal que si  $p \sim q$  entonces  $\rho_s(p) \sim \rho_s(q)$ .
  - (3) Deducir que  $A/\sim$  es retracto de deformación de  $K/\sim = X$ .
  - (4) Calcular el grupo fundamental de X.
- (5) Estudiar que pares de puntos  $p, q \in X$  tienen entornos (arbitrariamente pequeños) homeomorfos.

# **TEORÍA**

- 1. Citar dos propiedades que se conserven por identificaciones y dos que no.
- 2. ¿Qué es un retracto de deformación fuerte?
- 3. Marcar verdadero (V) o falso (F) según corresponda.
- ► (1) Un subespacio de un espacio separable es separable. (V para ab)
- $\vee$  (2) El producto de dos espacios conexos por caminos es conexo por caminos.
- $\bigvee(3)$  La compactificación de Alexandroff de un espacio conexo es conexa. Albarencia
- (4) Un subespacio de un espacio 1er axioma es 1er axioma.
- √(5) Un espacio contráctil es conexo por caminos.
- (6) El grupo fundamental del plano proyectivo es conmutativo y finito.
- 4. Demostrar que un subconjunto localmente compacto de un espacio Hausdorff es localmente cerrado.

#### **PROBLEMAS**

1. Se consideran en  $\mathbb{R}^2$  los subconjuntos

$$U^p = p + \{x^2 \le y^3 < \varepsilon\}, \ \varepsilon > 0, p \in \mathbb{R}^2.$$

Se pide:

- (1) Mostrar que todos estos conjuntos son base de una topología  $\mathcal{T}$  en  $\mathbb{R}^2$ .
- (2) Estudiar qué axiomas de numerabilidad cumple el espacio  $(\mathbb{R}^2, \mathcal{T})$ .
- (3) Describir algún conjunto compacto en  $\mathcal{T}_u$  que no lo sea en  $\mathcal{T}$ . ¿Qué topología tiene más compactos y por qué?
  - (4) ¿Es ( $\mathbb{R}^2$ ,  $\mathfrak{T}$ ) localmente compacto?
  - (5) Calcular las componentes conexas de este espacio.
- 2. En el paralelogramo  $T\subset\mathbb{R}^2$  dado por  $-1\leq x\leq 1,\,0\leq y\leq 1$  se considera en la relación de equivalencia  $\mathcal R$  generada por

$$(-1,y) \sim (1,y)$$
 &  $(x,0) \sim (x,1)$ .

Se consideran asímismo los subconjuntos

$$K = Fr(T) \cup \{(0, y) : 0 \le y \le 1\}$$
 y  $L = Fr(T) \cup \{(2y - 1, y) : 0 \le y \le 1\}$ ,

y  $U=T\setminus\{p,q\}$  con  $p=(-\frac{1}{2},\frac{1}{2}),q=(\frac{1}{2},\frac{1}{2}).$  Nótese que  $T/\sim$  es homeomorfo al toro de revolución  $\widetilde{T}\subset\mathbb{R}^3.$ 

- (1) Identificar subespacios  $\widetilde{K}, \widetilde{L}, \widetilde{U} \subset \widetilde{T}$  homeomorfos a los espacios cocientes  $K/\sim$ ,  $L/\sim$  y  $U/\sim$ .
- (2) Definir retractos  $U \to K$  y  $U \to L$  de deformación fuerte compatibles con la relación de equivalencia  $\sim$ .
  - (3) Deducir que  $\widetilde{K}$  y  $\widetilde{L}$  son ambos retractos de deformación de  $\widetilde{U}$ .
  - (4) Calcular el grupo fundamental de  $\widetilde{K}$  y  $\widetilde{L}$ .
  - (5) ¿Son  $\widetilde{K}$  y  $\widetilde{L}$  homeomorfos?

# **TEORÍA**

- 1. Citar dos propiedades que pasen de un conjunto a su adherencia.
- 2. ¿Qué es una superficie topológica?
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.
- F (1) Un espacio Lindelöf es separable. (1)
- (2) El producto de dos espacios Hausdorff es Hausdorff.
- V(3) La compactificación de Alexandroff de un espacio separable es separable. Afracca A V(4) Todo cociente de un espacio localmente conexo es localmente conexo.
- (5) Todo espacio conexo por caminos es localmente conexo.
- (6) El plano proyectivo es simplemente conexo.
- 4. Demostrar que un subconjunto localmente compacto de un espacio Hausdorff es localmente cerrado.

- 1. Se considera en  $\mathbb R$  la topología  $\mathfrak T_{CN}$  de los complementos numerables, y en  $\mathbb R^2$  la topología producto de  $\mathfrak{T} = \mathfrak{T}_{CN} \times \mathfrak{T}_{u}$ .
  - (1) Es ( $\mathbb{R}^2$ ,  $\mathfrak{I}$ ) separable? Y Axioma I de numerabilidad?
  - (2) ¿Cuáles son los subconjuntos compactos de  $(\mathbb{R}, \mathcal{T}_{CN})$ ?
- (3) Demostrar que los conjuntos compactos de  $(\mathbb{R}^2, \mathcal{T})$  son las uniones finitas de conjuntos  $\{a\} \times K$ , donde  $K \subset \mathbb{R}$  es compacto para  $\mathcal{T}_u$ . ¿Es  $(\mathbb{R}^2, \mathcal{T})$  localmente compacto?
  - (4) Estudiar si  $(\mathbb{R}^2, \mathfrak{I})$  conexo.
  - (5) Calcular las componentes conexas por caminos de este espacio.
- 2. En el paralelogramo  $K\subset\mathbb{R}^2$  dado por  $-1\leq x\leq 1,\,0\leq y\leq 1$  se consideran las dos relaciones de equivalencia siguientes:
  - generada por  $(-1, y) \sim (0, y), \quad 0 \le y \le 1$ ,
  - generada por  $(x, 0) \sim (x, 1), -1 \le x \le 1$ .
  - (1) Sea X el espacio cociente  $K/\mathbb{R}$ . Encontrar un modelo en  $\mathbb{R}^3$  de X.
- (2) Mostrar que  $\mathbb{R}^*$  induce una relación de equivalencia  $\mathbb{S}$  en X y encontrar un modelo en  $\mathbb{R}^3$  del correspondiente espacio cociente Y = X/S.
  - (3) Calcular los grupos fundamentales de X y de Y.
  - (4) Describir los posibles tipos de entornos de los puntos de Y mediante semidiscos.
  - (5) Analizar el grupo fundamental de esos entornos perforados.

# **TEORÍA**

- 1. Definir la compactificación de Alexandroff.
- 2. Definir las componentes conexas de un espacio.
- **3.** Marcar *verdadero* (V) o *falso* (F) según corresponda.
- $\bigvee$ (1) En un espacio Hausdorff los puntos son cerrados.
- √(2) Todo espacio métrico cumple el axioma I de numerabilidad.
- (3) Todo subespacio localmente cerrado de un espacio Lindelöf es Lindelöf.



(5) Todo espacio conexo por caminos y localmente conexo por caminos es simplemente conexo mente conexo.

/(6) Toda aplicación continua de un disco abierto en sí mismo tiene algún punto fijo.

**4.** Sean X un espacio conexo y conexo por caminos y  $A \subset X$  un retracto de deformación de X. Demostrar que A y X tienen el mismo grupo fundamental.

#### **PROBLEMAS**

- 1. Se considera en  $\mathbb{R}^2$  la colección  $\mathcal{B}$  de los conjuntos  $B \setminus L$  donde B es una bola euclídea abierta y L es la unión una colección numerable (incluido finita o vacía) de rectas.
  - (1) Mostrar que  $\mathcal{B}$  es base de una topología  $\mathcal{T}$  en  $\mathbb{R}^2$  y compararla con la usual.
  - (2) Estudiar si  $(\mathbb{R}^2, \mathcal{T})$  cumple el axioma I de numerabilidad. ¿Es un espacio separable?
- (3) Se considera en  $\mathbb{R}$  la topologia  $\mathcal{T}_{CN}$  de los complementarios numerables. ¿Cuáles son los conjuntos compactos para esta topología?
- (4) Se denotan  $p,q:\mathbb{R}^2\to\mathbb{R}$  las dos proyecciones lineales p(x,y)=x,q(x,y)=y. Mostrar que son continuas de  $(\mathbb{R}^2, \mathcal{T})$  en  $(\mathbb{R}, \mathcal{T}_{CN})$ . Comparar  $\mathcal{T}$  y la topología producto  $\mathfrak{I}_{CN} \times \mathfrak{I}_{CN}$ .
- (5) Deducir de la continuidad de p y q que para  $\mathcal{T}$  los compactos son finitos. ¿Es ( $\mathbb{R}^2, \mathcal{T}$ ) conexo por caminos?
- 2. Se considera en  $\mathbb{R}^2$  el conjunto

$$E = \Big([-2,2] \times \{0\}\Big) \bigcup \Big([-1,1] \times [-1,1]\Big) \bigcup \Big(\{0\} \times [-2,2]\Big)$$

y en él las relaciones de eequivalencia

$$\begin{cases} \mathcal{R} & \text{generada por } (-2,0) \sim (2,0), (0,-2) \sim (0,2), \\ \mathcal{S} & \text{generada por } (-1,0) \sim (1,0), (0,-1) \sim (0,1). \end{cases}$$

- (1) Sea X el espacio cociente  $E/\mathbb{R}$ . Encontrar un modelo en  $\mathbb{R}^3$  de X.
- (2) Sea Y el espacio cociente E/S. Encontrar un modelo en  $\mathbb{R}^3$  de Y.
- (3) Calcular los grupos fundamentales de X y de Y.
- (4) Estudiar si X e Y son homeomorfos.
- (5) Mostrar que uno de los dos espacios es retracto de deformación del otro.

Tema sin demostraciones. Conexión.

Tema con demostraciones. La compactificación de Alexandroff.

**Problema 1.** Se considera en el plano  $\mathbb{R}^2$  la topología cuyos abiertos son los conjuntos  $U \subset \mathbb{R}^2$  que contienen para cada punto  $(a,b) \in U$  un aspa

$$X = \{(x-a)^2 + (y-b)^2 < \varepsilon\} \cap (\{x-y=a-b\} \cup \{x+y=a+b\}), \quad \varepsilon > 0.$$

- (1) Estudiar si este espacio es: (i) 2º axioma, (ii) 1er axioma.
- (2) Estudiar la compacidad local.

**Problema 2.** En el paralelogramo  $K \subset \mathbb{R}^2$  de vértices (-1, -1), (1, -1), (1, 1) y (-1, 1) se considera la relación de equivalencia  $\mathcal{R}$  generada por

$$(x,x) \sim (-x,-x), \quad 0 \le x \le 1,$$

y se denota

$$E = K \setminus \{a\}$$
, siendo  $a$  el punto  $a = (-\frac{1}{2}, \frac{1}{2})$ .

- (1) Describir un conjunto  $\widetilde{X} \subset \mathbb{R}^3$  homeomorfo al espacio cociente  $X = E/\sim$ .
- (2) Calcular el grupo fundamental de  $\widetilde{X}$ . X si a fuera el origen?

## Septiembre 2017

Tema sin demostraciones. El grupo fundamental.

Tema con demostraciones. El teorema de Thychonoff.

**Problema 1.** Se considera en el plano  $\mathbb{R}^2$  la topología cuyos abiertos son los conjuntos  $U \subset \mathbb{R}^2$  que contienen para cada punto  $(a,b) \in U$  una región parabólica del tipo

$$\alpha(x-a)^2 < y-b, \quad \alpha > 0.$$

- (1) Estudiar los axiomas de numerabilidad de este espacio.
- (2) Mostrar que en este espacio hay conjuntos compactos que no son ni acotados ni cerrados.

**Problema 2.** En el triángulo  $\Delta \subset \mathbb{R}^2$  de vértices (1,0),(0,1) y (0,-1) se considera la relación de equivalencia  $\mathcal{R}$  generada por

$$(x, 1-x) \sim (x, -1+x), \quad 0 \le x \le 1,$$

y se denota

$$E = \Delta \setminus \{a\}$$
, siendo a el punto  $a = (\frac{1}{2}, 0)$ .

- (1) Describir un conjunto  $\widetilde{X} \subset \mathbb{R}^3$  homeomorfo al espacio cociente  $X = E/\sim$ .
- (2) Calcular el grupo fundamental de  $\widetilde{X}$ . ¿Y si a fuera (1,0)?

Tema sin demostraciones. El grupo fundamental de la circunferencia.

Tema con demostraciones. Demostrar que un espacio compacto y  $T_2$  es localmente compacto. Subespacios localmente compactos de un espacio  $T_2$ .

**Problema 1.** Se considera en el plano  $\mathbb{R}^2$  la topología obtenida tomando como base de entornos de un punto p los conjuntos E unión de dos discos cerrados tangentes en p en los extremos de sus dos diámetros horizontales. Encontrar una base de entornos *abiertos* de esta topología.

- (1) Estudiar si con esta topología  $\mathbb{R}^2$  es localmente compacto.
- (2) Estudiar si con esta topología  $\mathbb{R}^2$  es localmente conexo.

**Problema 2.** Se consideran dos cuadrados cerrados y en el interior de cada uno se suprime otro abierto más pequeño y se identifican con la misma orientación los bordes de los cuadrados suprimidos. La figura resume la situación.





El espacio resultante de esta identificación se denota X. Se hace lo mismo pero

- (i) antes de identificar se suprime un vértice a de un cuadrado grande,
- (ii) antes de identificar se suprimen dos vértices b, b' correspondientes de los cuadrados pequeños.

Los espacios resultantes se denotan respectivamente Y y Z.

- (1) Encontrar modelos sencillos de X, Y y Z en  $\mathbb{R}^3$ .
- (2) Calcular los grupos fundamentales de estos tres espacios.

# Septiembre 2018

Tema sin demostraciones. El grupo fundamental.

Tema con demostraciones. Componentes conexas. Conexión local.

**Problema 1.** Se considera en el plano  $\mathbb{R}^2$  la topología producto de la de Sorgenfray y la de los complementarios numerables.

- (1) Estudiar los axiomas de numerabilidad de este espacio.
- (2) Calcular sus componentes conexas y sus componentes conexas por caminos.

**Problema 2.** En el rectángulo  $K \subset \mathbb{R}^2$  de vértices (-1,0),(1,0),(1,1) y (-1,1) se considera la relación de equivalencia  $\mathcal{R}$  generada por

$$(-1, y) \sim (1, y)$$
 para  $0 \le y \le 1$ ,  
 $(-\frac{1}{2}, y) \sim (-\frac{1}{2}, y')$  para  $0 \le y, y' \le 1$ ,  
 $(\frac{1}{2}, y) \sim (\frac{1}{2}, y')$  para  $0 \le y, y' \le 1$ .

- (1) Describir un conjunto  $X \subset \mathbb{R}^2$  homeomorfo al espacio cociente  $K \setminus \{(0,0)\}/\sim$ .
- (2) Calcular el grupo fundamental de X.

#### Mayo 2019

Tema sin demostraciones. Espacios cocientes e identificaciones: definiciones, propiedades y comportamiento de compacidad y conexión.

Tema con demostraciones. Bases de abiertos y bases de entornos. Numerabilidad.

**Problema 1.** Se considera en el plano  $\mathbb{R}^2$  la topología producto de la de Sorgenfray y la usual.

- (1) Estudiar la local compacidad de este espacio.
- (2) Calcular sus componentes conexas por caminos. ¿Es localmente conexo este espacio?

**Problema 2.** En un triángulo  $K \subset \mathbb{R}^2$  como en el dibujo se identifican todos los puntos del intervalo cerrado I con le vertice a, y cada punto x del lado E con el punto y del lado F a igual altura.



- (1) Describir un conjunto  $X \subset \mathbb{R}^3$  homeomorfo al espacio cociente resultante.
- (2) Calcular el grupo fundamental de X.

#### **Junio 2019**

Tema sin demostraciones. Espacios conexos y localmente conexos.

Tema con demostraciones. Enunciar las propiedades del producto de caminos y demostrar la asociatividad.

**Problema 1.** Sea  $L \subset \mathbb{R}^2$  la recta y = 0. Se considera en  $\mathbb{R}^2$  la topología generada por los conjuntos  $W = U \cup (V \cap L)$  con U, V abiertos usuales.

- (1) ¿Existe algún compacto usual que no lo sea en esta topología? Estudiar la local compacidad.
  - (2) Calcular las componentes conexas de este espacio. ¿Es localmente conexo?

**Problema 2.** Se considera un triángulo cerrado  $T \subset \mathbb{R}^2$  y se identifican sus tres vértices.

- (1) Representar el espacio cociente resultante X mediante un subconjunto de la esfera.
- (2) Calcular el grupo fundamental de X.