Ludwig-Maximilians-Universität München Institut für Informatik

Prof. Dr. Thomas Seidl Andrea Maldonado, Florian Richter

Algorithmen und Datenstrukturen

SS 2021

Übungsblatt 4: Sortieren

Tutorien: 17.05.-21.05.2021

Aufgabe 4-1 *Einfaches Sortieren*

Laut Wikipedia sind die bis 2020 erbauten 10 höchsten Gebäude die folgend aufgelisteten Bauwerke:

Rang	Gebäude	Stadt	Höhe	Etagen	Baujahr
1	Burj Khalifa	Dubai (VAE)	828 m	163	2010
2	Shanghai Tower	Shanghai (VR China)	632 m	128	2015
3	Makkah Royal Clock Tower	Mekka (Saudi-Arabien)	601 m	120	2012
4	Ping An Finance Center	Shenzhen (VR China)	599 m	115	2016
5	Lotte World Tower	Seoul (Südkorea)	555 m	123	2017
6	One World Trade Center	New York City (USA)	541 m	94	2014
7	Guangzhou CTF Finance Center	Guangzhou (VR China)	530 m	111	2016
8	Tianjin CTF Finance Center	Tianjin (VR China)	530 m	97	2020
9	China Zun Tower	Peking (VR China)	528 m	108	2018
10	Taipei 101	Taipei (Taiwan)	508 m	101	2004

Sortieren Sie die höchsten Gebäude nach der Anzahl der nutzbaren Etagen. Zählen Sie alle Vertauschungsund Vergleichsoperationen und vergleichen Sie mit den theoretischen Komplexitätsschranken. Sie können zum Zählen auch ein (Java/Python-) Programm nutzen. Beschränken Sie sich auf die 6 höchsten, wenn Sie dies ohne maschinelle Unterstützung durchführen. Diskutieren Sie die Stabilität der Algorithmen. Nutzen Sie jeweils die folgenden Sortieralgorithmen:

- (a) BubbleSort
- (b) SelectionSort
- (c) InsertionSort

Aufgabe 4-2 *WorstCase beim Sortieren*

Geben Sie jeweils eine 6-elementige Liste von ganzen Schlüsselwerten an, die das Worst-Case-Verhalten bei BubbleSort, SelectionSort sowie InsertionSort auslösen.

Aufgabe 4-3 Komplexität MergeSort

Zeigen Sie mit dem Mastertheorem, dass MergeSort eine Komplexität von $\mathcal{O}(n \log n)$ hat. Hinweis: Benutzen Sie dazu den Code zu Merge-Sort aus der VL.

Aufgabe 4-4

Geben Sie zu jeder der folgenden Zwischenausgaben an, welcher einfache Sortieralgorithmus jeweils angewendet wurde. Die Ausgaben sind beim Sortieren eines gleichmäßig gemischten Arrays nach halber Laufzeit entnommen worden.

- $(a) \ \ [4,5,7,8,9,11,20,21,22,23,25,28,2,1,13,12,14,15,6,17,10,29,16,18,24,19,0,3,27,26] \\$
- (b) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 26, 24, 22, 18, 28, 27, 17, 29, 23, 21, 19, 20, 16, 25]
- $(c) \ [2,5,3,8,9,14,7,4,13,15,17,19,0,10,11,20,21,1,22,18,23,16,6,12,24,25,26,27,28,29] \\$