1. Osnovne matematičke operacije u računalnoj grafici

Linearna algebra dio je matematike koji se bavi vektorima i matricama. U računalnoj grafici želimo prikazati objekte čiju površinu aproksimiramo točkama i poligonima. Pogodan način za zapis ovakvih podataka su vektori, a za zapis transformacija nad objekata kao što je pomicanje ili translacija, rotacija i slično pogodan način zapisa su matrice. Za to će nam biti potrebne osnovne matrične operacije što je potrebno ostvariti u ovoj vježbi. Poželjno je imati biblioteku osnovnih matematičkih operacija koja će biti korištena u daljnjim vježbama.

Odabir programskog jezika i programska implementacija koju je potrebno načiniti u vježbi, odnosno način na koji će biti definirane strukture podataka i sama implementacija u potpunosti se prepušta izboru studenta. Dozvoljeno je korištenje i već gotovih matematičkih biblioteka kao što je na primjer glm *OpenGL Mathematics* (http://glm.g-truc.net/) ili bilo koje slične biblioteke a u tom slučaju potrebno je demonstrirati njihovo korištenje.

Za razumijevanje složenijih postupaka osnovu čini razumijevanje elementarnih pojmova kao i geometrijska interpretacija osnovnih operacija.

1.1. Operacije s vektorima

Za zadana dva vektora, na primjer vektori $v_1 = (x_1 y_1 z_1)$ i $v_2 = (x_2 y_2 z_2)$ definiran je njihov zbroj i razlika.

$$\mathbf{v}_{1} + \mathbf{v}_{2} = (x_{1} + x_{2} \quad y_{1} + y_{2} \quad z_{1} + z_{2}),$$

$$\mathbf{v}_{1} - \mathbf{v}_{2} = (x_{1} - x_{2} \quad y_{1} - y_{2} \quad z_{1} - z_{2}).$$
(1.1)

Skalarni produkt vektora $V_1 = (x_1 \ y_1 \ z_1)$ i $V_2 = (x_2 \ y_2 \ z_2)$ računa se kao zbroj umnožaka pojedinih komponenti, a rezultat je skalar:

$$\mathbf{v}_{1} \cdot \mathbf{v}_{2} = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}. \tag{1.2}$$

Skalarni produkt vektora koristi se kod izračuna kuta θ između dva vektora prema izrazu:

$$\cos(\theta) = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| |\mathbf{v}_2|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$
 (1.3)

gdje su u nazivniku moduli pojedinih vektora, odnosno njihove duljine.

Vrlo korisna je znati kako odrediti projekciju jednog vektora na drugi. Projekcija vektora $v_1 = (x_1 y_1 z_1)$ na vektor $v_2 = (x_2 y_2 z_2)$ je $v_{1 \text{ na } 2}$.

Slika 1.1. Projekcija vektora v 1 na vektor v 2.

Kod projekcije jednog vektora na drugi možemo promatrati skalarnu vrijednost, odnosno duljinu projiciranog vektora v 1 na vektor v 2

$$\mathbf{v}_{1na2} = \cos(\theta) |\mathbf{v}_1| = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_2|} \tag{1.4}$$

do čega dolazimo iz izraza (1.3) i Slike 1.1. uz interpretaciju definicije kosinusa kuta kao omjera priležeće stranice trokuta (v _{1 na 2}) i hipotenuze trokuta (|v ₁|). Znači, projekciju jednog vektora na drugi možemo odrediti iz poznavanja tih vektora ili kuta i vektora kojeg projiciramo.

Ako nam je potreban vektor koji predstavlja projekciju \mathbf{v}_1 na vektor \mathbf{v}_2 prethodno dobiveni rezultat ćemo pomnožiti jediničnim vektorom u smjeru vektora \mathbf{v}_2

$$\mathbf{v}_{1na2} = \cos(\theta) |\mathbf{v}_1| \frac{\mathbf{v}_2}{|\mathbf{v}_2|} = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_2|} \frac{\mathbf{v}_2}{|\mathbf{v}_2|}$$
(1.5)

Sada je rezultat vektor.

Vektorski produkt vektora v $_1 = (x_1 y_1 z_1)$ i v $_2 = (x_2 y_2 z_2)$ rezultira vektorom i definiran je

$$\mathbf{v}_{1} \times \mathbf{v}_{2} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_{1} & y_{1} & h_{1} \\ x_{2} & y_{2} & h_{2} \end{bmatrix} = \begin{bmatrix} y_{1}h_{2} - y_{2}h_{1} \\ -x_{1}h_{2} + x_{2}h_{1} \\ x_{1}y_{2} - x_{2}y_{1} \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
(1.6)

Geometrijska interpretacija vektorskog produkta dva vektora je vektor koji je okomit na ravninu u kojoj leže vektori v $_1$ i v $_2$. Važan je i redoslijed ova dva vektora u vektorskom produktu a definiran je po pravilu desne ruke. Ako zakretanje vektora v $_1$ prema v $_2$ određuju prsti desne ruke, palac je u smjeru rezultantnog vektora v $_3$.

Slika 1.2. Vektorski produkt vektora v₁ i v₂ daje vektor v₃.

Ako zamijenimo redoslijed vektora v 1 i v 2 u vektorskom produktu, rezultantni vektor v 3 bit će usmjeren na drugu stranu ravnine.

1.2. Operacije s matricama

U računalnoj grafici transformirat ćemo vrhove objekta koji su zadani kao jedno-redčane matrice 1×3 ili 1×4. Matrice transformacija zadaju se kao matrice 3×3 ili 4×4. Za to će nam biti potrebno množenje matrica. Također, transformacije mogu biti zadana kao niz matrica koje je potrebno množiti.

Kod inverznih transformacija ponekad se koriste i inverzne matrice te je potrebno imati i

ovu funkcionalnost za matrice 3×3 ili 4×4.

1.3. Baricentrične koordinate

Baricentrične koordinate korisne su kod određivanja da li se točka nalazi u trokutu u 3D prostoru. Ako su vrhovi trokuta A, B, C. Za neku točku T imamo baricentričnu kombinaciju:

$$T=t_1 A+t_2 B+t_3 C$$

gdje su t_1 , t_2 , t_3 baricentrične koordinate. Za baricentričnu kombinaciju vrijedi $t_1 + t_2 + t_3 = 1$.

Ovo možemo prikazati kao sustav jednadžbi, raspisan po koordinatama:

$$A_x t_1 + B_x t_2 + C_x t_3 = T_x$$

 $A_y t_1 + B_y t_2 + C_y t_3 = T_y$
 $A_x t_1 + B_x t_2 + C_x t_3 = T_x$

ili matrično:

$$\begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_z & B_z & C_z \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix}, \text{ pa je rješenje } \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_z & B_z & C_z \end{bmatrix}^{-1} \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix}$$

Znači, da bi odredili baricentrične koordinate bit će potrebno invertirati matricu. Može se desiti da matrica nije invertibilna. To je na primjer slučaj kada je jedan vrh trokuta u ishodištu ili kada su točke trokuta u jednoj od ravnina xy, xz ili yz pa je jedna od koordinata nula. Tada je matrica singularna i ne možemo ju invertirati. U tom slučaju koristimo uvjet koji smo naveli da vrijedi za baricentrične koordinate $t_1 + t_2 + t_3 = 1$ umjesto retka matrice koji je problematičan.

1.4. Radni zadatak

1. Napisati program koji izračunava i ispisuje na zaslonu:

$$\begin{split} \vec{\mathbf{v}}_1 &= \left(2\vec{i} + 3\vec{j} - 4\vec{k}\right) + \left(-\vec{i} + 4\vec{j} - \vec{k}\right) \\ s &= \vec{\mathbf{v}}_1 \cdot \left(-\vec{i} + 4\vec{j} - \vec{k}\right) \\ \vec{\mathbf{v}}_2 &= \vec{\mathbf{v}}_1 \times \left(2\vec{i} + 2\vec{j} + 4\vec{k}\right), \text{ gdje je} \times \text{vektorski produkt,} \\ \vec{\mathbf{v}}_3 &= \left|\vec{\mathbf{v}}_2\right|, \text{ normirani vektor,} \end{split}$$

 $\vec{\mathbf{v}}_4 = -\vec{\mathbf{v}}_2$, vektor suprotnog smjera

$$\mathbf{M}_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 4 & 5 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 2 & -3 \\ 5 & -2 & 7 \\ -4 & -1 & 3 \end{bmatrix}$$

$$\mathbf{M}_{2} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & -3 \\ 5 & -2 & 7 \\ -4 & -1 & 3 \end{bmatrix}^{T}, \text{ gdje je } T \text{ oznaka za transponiranu matricu}$$

$$\mathbf{M}_{3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & -3 \\ 5 & -2 & 7 \\ -4 & -1 & 3 \end{bmatrix}^{-1}$$

2. Napišite program koji će korisniku dopustiti da unese podatke o sustavu tri jednadžbe s tri nepoznanice (nije potrebno raditi parsiranje ulaza; pretpostavite da su varijable uvijek x, y i z, te da će korisnik unijeti redom podatke o prvoj jednadžbi pa podatke o drugoj jednadžbi te konačno podatke o trećoj jednadžbi). Program potom mora ispisati rješenje tog sustava. Primjerice, ako korisnik redom unese 1, 1, 1, 6, -1, -2, 1, -2, 2, 1, 3, 13, sustav jednadžbi koji je time definiran je:

$$1 \cdot x + 1 \cdot y + 1 \cdot z = 6$$
$$-1 \cdot x - 2 \cdot y + 1 \cdot z = -2$$
$$2 \cdot x + 1 \cdot y + 3 \cdot z = 13$$

a program treba ispisati da je rješenje $[x \ y \ z] = [1 \ 2 \ 3]$

3. Napišite program koji će korisniku dopustiti da unese podatke o tri vrha trokuta (A, B i C) te dodatnoj točki T u 3D prostoru (potrebno je unijeti x, y i z koordinatu za svaki vrh odnosno točku). Program treba na zaslon ispisati baricentrčne koordinate točke T s obzirom na zadani trokut.

Napomena: primijenite direktno prethodno opisani postupak i zanemarite moguće probleme uslijed loše odabranih vrhova odnosno zadane točke.