

Electronics and Electrical Communications Engineering Department

Faculty of Engineering

Cairo University

Streetlight Monitoring System

Submitted to: Dr. Mahmoud El-Hadidi

Analysis of the Merbok Estuary Oyster Farm IoT Deployment

Initial Report submitted for course ELC4015 "Selected Topics in Communications: Internet of Things"

4th Year

1st Semester - Academic Year 2025/2026

Prepared by:

NAME	SECTION	ID
Youssef Khaled Omar Mahmoud	4	9220984

Submission Date: 21 October 2025

1- Table of Contents

1-	Table of Contents		
2-	- Table of Figures2		
3-	3- List of tables2		
4-	Sun	nmary3	
5-	Res	earch Limitations and Author Outreach	
5.	.1	Formal Correspondence and Author Acknowledgement	
5.	.2	Summary of Key Correspondence Points4	
5.	.3	Critical Research Limitations	
6-	Det	ailed Analysis of the 12 Required Points Error! Bookmark not defined.	
6.	.1	Specific Name of IoT Application	
6.	.2	Specific Date for Case-Study Implementation	
6.	.3	Name of IoT Vertical Application6	
7-	Spe	cific Functions Performed by IoT in the Case Study6	
7.	.1	Functions Performed by the Sensing Devices	
7.	7.2 Functions Performed by the LoRaWAN Gateway7		
7.	.3	Functions Performed by the Cloud and Application Layer (AWS)	
8-	Ref	erences:	
		2- Table of Figures	
Figu Figu	Figure 1 Screenshot of Sent Email		
		3- List of tables	
Tab Tab Tab	Table 1 Dr. Tatsuya Yurimoto Response Summary4Table 2 Follow-Up Inquiry5Table 3 WS-2902 functions7Table 4 LoRaWAN Gateway Functions7Table 5 AWS Functions8		

4- Summary

This report analyzes the IoT deployment detailed in the publication, "Observation of the Freshwater Inflow Event Using IoT Devices at an Oyster Farm in the Merbok Estuary During Monsoon" (Yurimoto et al., 2025)[1]

The system represents an "actually implemented" solution utilizing **commercially available observation devices** (specifically the Ambient Weather WS-2902 series). The application focuses on establishing a real-time monitoring system within the oyster farm environment, primarily observing changes in water temperature and salinity during the monsoon season.

This report evaluates the project according to the **12 analytical** points required for **ELC4015**, confirming its implementation status and identifying specific research limitations.

5- Research Limitations and Author Outreach

While the environmental observations and results are **fully documented** in the publication, specific details regarding the communication architecture, hardware specifications, and formal performance metrics were **not provided** in the original paper.

This section acknowledges the successful outreach to the authors, integrates their clarifying information, and addresses the remaining knowledge gaps.

5.1 Formal Correspondence and Author Acknowledgement

The primary goal of the inquiry was to gather undocumented technical details necessary to analyze the Merbok Estuary IoT deployment for this academic coursework. The kind and prompt response from **Dr. Tatsuya Yurimoto** and his co-authors successfully clarified the system's architecture while simultaneously defining the limitations of the available engineering data. We formally acknowledge their support.

As shown in figure 1, A formal email was sent on October 17, 2025 (7:25 PM) to the project's lead author — via yurimoto@outlook.com

As shown in figure 1, the message, titled "Inquiry Regarding Deployment and Network Details of Your Open-Source Fish-Farming IoT Buoy System".

The message, titled "Inquiry Regarding Deployment and Network Details of Your Open-Source Fish-Farming IoT Buoy System," requested clarification on key technical points missing from the publication. These inquiries included the deployment scale and duration, the specific communication architecture (such as topology, protocols, and backhaul type), power supply, and confirmation of any recorded performance metrics or available schematics.

It emphasized the academic purpose of the request—to ensure accurate documentation of the system within this research report.

Figure 2 Screenshot of Sent Email

Figure 1 Dr. Tatsuya Yurimoto Response

As shown in figure 2, **Dr. Yurimoto responded promptly to these inquiries, providing the essential technical clarifications summarized below.**

5.2 Summary of Key Correspondence Points

Table 1 Dr. Tatsuya Yurimoto Response Summary

Query Topic	Author Confirmation / Clarification	Implication for Analysis
System Identity	Confirmed to be commercial Ambient	Analysis must rely on
	Weather WS-2902 series devices.	publicly available technical
		specifications.
Network	Star topology using Wi-Fi (IEEE 802.11)	Defines the system as a
Architecture	with a standard home Wi-Fi router as the	high-bandwidth, short-range
		COTS solution.

	backhaul. No gateway or inter-node communication.	
Power &	Powered by lithium batteries requiring	Confirms high power
Duration	replacement every 1–2 months. No solar or	consumption typical of
	external supply.	continuous Wi-Fi
		transmission.
Performance	None recorded (No data on reliability,	These metrics constitute the
Metrics	latency, uptime, or power efficiency).	critical research
		limitations of this report.
Documentation	Unavailable. (No schematics, photos, or	Prevents detailed
	internal documentation can be shared).	component-level or
		installation analysis.

after reading table 1, To enrich our analysis by comparing a commercial (Wi-Fi) and a custom **LPWAN** deployment, we intend to contact the authors again to clarify a few points regarding the **LoRaWAN** system they referenced in their response. We fully understand that this system was not the primary focus of the published paper.

Table 2 Follow-Up Inquiry

Purpose	Detail	
Deployment	Was this LoRaWAN system also deployed at the Merbok Estuary, or was it	
Location	a separate project used for comparative research?	
Hardware	What was the primary microcontroller/MCU used for the custom	
(MCU)	LoRaWAN sensor nodes? (e.g., ESP32, STM32, or a similar board).	
Gateway	Could you mention the general model or brand of the LoRaWAN gateway	
Model	that was paired with the 4G LTE modem?	
Code	Since technical documentation cannot be shared, we wanted to ask if the	
Repository	source code for the LoRaWAN system (or any other custom code related to	
	your research) is available on a public repository, such as GitHub ?	

5.3 Critical Research Limitations

Despite the authors' helpful clarification, several critical parameters required for a detailed engineering analysis are confirmed to be unavailable or unrecorded, leading to necessary limitations in this report's scope:

- **Deployment Documentation:** System schematics, deployment photographs, or internal documentation are not available for distribution.
- **Performance Metrics:** The authors confirmed they **did not record formal performance metrics** such as data transmission reliability, latency, uptime, or power efficiency during the deployment.
- **Specifics:** Technical specifications beyond the general model must be inferred from the **official documentation provided by Ambient Weather**, as detailed documentation of any custom modifications is unavailable.

6- Specific Name of IoT Application

The application is Real-Time Environmental Monitoring of an Oyster Farm during

Monsoon. Its objective is to observe the impact of freshwater inflow events on water quality parameters critical for aquaculture health.[1]

7- Specific Date for Case-Study Implementation

The paper documenting the project was published in **2025**. The data presented was collected during the **2024 monsoon season (October–November)**, representing a short-term, specific-event monitoring period.[1]

8- Name of IoT Vertical Application

The system operates within the vertical of **Smart Agriculture**, specifically **Precision Aquaculture** / **Water-Quality Monitoring in Marine Environments**. The key focus is on rapid data collection to understand environmental stressors (like salinity changes) during transient weather events.[1].

9- Specific Functions Performed by IoT in the Case Study

The system's operation is divided into three functional layers: **Sensing Devices** (data acquisition), **Wi-Fi Router** (network bridge), and the **Cloud Services** (data processing and storage).[1, 3].

9.1 Functions Performed by the Sensing Devices

The COTS sensing devices (buoys) such as Ambient Weather WS-2902 are responsible for interacting directly with the physical environment, acquiring data, and preparing it for network transmission.[1].

Figure 3 WS-2902 Home Wi-Fi Weather Station

Figure 4 WS-2902 Home Wi-Fi Weather Station

As shown in figure 3[3], We can some of the **Sensing Devices functions**:

Table 3 Sensing Devices functions

Function	Detail	Technical Implication
Sensing/Acquisition	Devices read water temperature and salinity via specialized probes.	Sensors are integrated into a self-recording unit with built-in Analog-to-Digital Conversion (ADC).
Local Data Processing	The internal microcontroller formats, calibrates, and time-stamps the sensor readings into a structured data packet.	This processing is handled internally by proprietary firmware.
Wireless Transmission	Utilizes the integrated Wi-Fi (IEEE 802.11) module to connect to the local router and initiate data packet transmission.	Requires significant power draw, leading to limited battery life (1–2 months).
Cloud Ingestion	The device establishes a secure HTTPS connection to the proprietary Ambient Weather Cloud API to upload data.	Ensures data integrity and security during the transport layer.

9.2 Functions Performed by the WI-FI Router

The **Wi-Fi Router** (**network bridge**) is the central component in the star topology, handling all local network and routing functions, acting as the critical link between the local sensors and the global Internet[2]

We can see the Functions Performed by the Wi-Fi Router

Table 4 Wi-Fi Router Functions

Function	Detail	Technical Implication
Network Access	Provides the IEEE 802.11 wireless	Enables the high-speed,
Point (AP)	access point that the sensor nodes use to join the local network.	short-range connectivity required by the COTS devices.
Local Security (L2)	Implements WPA2/WPA3 encryption to secure the wireless link between the sensors and the router.	Protects the raw sensor data packets from eavesdropping on the local network.
Network Address	Translates the private IP addresses of	Facilitates access to the
Translation (NAT)	the sensor nodes into the single public	wide area network (WAN)
	IP address needed to communicate with the Cloud Services over the Internet.	from the local network (LAN).
Routing/Backhaul	Forwards the sensor data packets (tunneled via HTTPS) from the local network to the public Internet, and ultimately to the Ambient Weather Cloud server.	Provides the necessary uplink capacity to the Internet Service Provider (ISP).

9.3 Functions Performed by the Cloud Services

The **Cloud Services** layer (proprietary **Ambient Weather** Cloud Platform) performs all the application-level tasks, including secure data handling, long-term storage, and providing the user interface.[1, 3]

We can see the **Cloud Services Functions:**

Table 5 Cloud Services Functions

Function	Detail	Technical Implication
Secure	Provides a highly available, secure	Guarantees the security and
Ingestion	HTTPS server endpoint that receives	authenticity of the data source
Endpoint	the authenticated and encrypted data	before processing.
	stream from the field devices.	
Data Parsing	Decodes the proprietary data payload	Prepares the raw data for
and Processing	received from the COTS devices,	storage and analysis.
	validates timestamps, and performs any	
	necessary unit conversions or checks.	
Data Storage	Stores the validated time-series sensor	Enables historical trend analysis
(Database)	data in a persistent, scalable cloud	and long-term research based on
	database solution.	the collected environmental
		parameters.
Data	Provides the user interface (web	Fulfills the final goal of the
Visualization &	dashboard) that allows researchers to	system: providing actionable
Access	view real-time data, download historical	insights to the researcher.
	records, and manage the devices.	

10- More Details for the IoT Application

10.1 Location and Topology of IoT Nodes

as shown in figure 4, the **IoT Nodes** are commercially available devices adapted for the water environment (buoys). They are deployed within the oyster farm area in the **Merbok River Estuary**. The system employs a **Star Topology** as the author told from table 1, where each node communicates directly with the central Gateway.

Figure 4 illustrates the location of the farm and deployed equipment:[1]

- (a) the location of the Merbok Estuary in the Malay Peninsula (red frame)
- (b) the location of the oyster farm at the mouth of the Merbok (star)
- (c) an aerial photograph of the oyster farm (arrow)
- (d) the location of the various equipment installed at the oyster farm: (C) weather camera, (D) depth sensor, (W) weather instrument, and (WS) suspension position of the water quality sensor. This geographical context establishes the physical boundary for the deployment.

Figure 5 Observation of the Freshwater Inflow Event Using IoT Devices at an Oyster Farm in the Merbok Estuary During Monsoon

10.1 Type/Model of IoT Nodes

The end devices are based on the **Ambient Weather WS-2902 Series** (console/sensor array), adapted into waterproof buoys with water temperature and salinity sensors. Figure 5 provides an overview of the installed devices, **which include** (a) a **weather meter**, (b) a **weather camera**, and (c) a water temperature buoy, with (d) showing the home page screen displaying live data.[1]

Figure 6 Observation of the Freshwater Inflow Event Using IoT Devices at an Oyster Farm in the Merbok Estuary During Monsoon

Figure 7 Observation of the Freshwater Inflow Event Using IoT Devices at an Oyster Farm in the Merbok Estuary During Monsoon

10.2 Location and Type/Model of Gateway

The Gateway is a standard **Home Wi-Fi Router**, likely located onshore or on a moored structure near the sensor cluster due to Wi-Fi's limited range. It acts as the backhaul bridge. **Each sensor communicates directly with the cloud via Wi-Fi (IEEE 802.11). No specialized gateway logic or inter-node communication is involved; the standard home Wi-Fi router serves strictly as the internet backhaul. Communication with the cloud is handled via HTTPS-based APIs.[2]**

10.3 Internet Connectivity

This connectivity detail is a **logical and necessary conclusion** derived from the known facts about the system's architecture (Node => Router => Cloud), as it was not explicitly stated in

the paper or correspondence. Since the local Wi-Fi network must eventually reach the public cloud, the router must be connected to the Wide Area Network (WAN) using a standard ISP technology (like Fiber, DSL, or 4G/LTE) and operate using the universal **TCP/IP protocols**.

The connection from the Gateway to the wider area network is therefore via a standard **ISP link** (e.g., Fiber, DSL, or 4G modem) operating over **TCP/IP**.[1, 2]

10.4 Cloud Connectivity

Data is transmitted over the Internet to the proprietary **Ambient Weather Cloud Platform** (Ambient Weather Network).[3]

10.5 Location of IoT Application Software

The primary IoT application software (data processing, storage, visualization) resides on the proprietary **Ambient Weather Cloud Platform**.[3]

10.6 Man-Machine Interface (MMI)

Researchers access the data and dashboards remotely via a standard **web browser interface** provided by the cloud platform, as shown in Figure 5(d) home page screen displaying live data.[1]

11- Details of Wireless Communication Protocol/Standard used for Communication between IoT Nodes

The protocol is Wi-Fi (IEEE 802.11).[2]

Protocol Characteristic	Detail
Standard	IEEE 802.11 (likely a mix of b/g/n standards for COTS devices).
Frequency Band	Typically 2.4 GHz ISM band.
Data Rate	High (tens of Mbps), providing high-speed but continuous data
	upload.
Topology	Star topology, requiring direct line-of-sight or coverage from the
	central router.

Table 6 IEEE 802.11 WIFI Characteristic

12- Details of Wireless Communication Protocol/Standard used for Interconnecting IoT Nodes to the Internet

The interconnection is handled by standard networking protocols: [1,2]

- 1- Local Link: Wi-Fi (IEEE 802.11) for the local wireless connection.
- 2- Transport/Application: HTTPS (Hypertext Transfer Protocol Secure) over TCP/IP is used to tunnel the data securely from the local Wi-Fi router, across the public Internet, to the specific cloud ingestion API.

13- Routing Protocol Deployed

There are **no specialized routing protocols** deployed within the IoT segment (Node to Router)[1, 2]

- **Node-to-Router:** Standard **Layer 2** (**MAC**) addressing and Layer 3 (IP) resolution within the local Wi-Fi segment.
- Router-to-Cloud: Standard IP Routing is used across the wide area network (Internet).

14- IoT Architecture

The architecture is a simplified, vendor-locked, **three-layer model**: [1, 3]

- 1- **Sensing Layer:** The COTS buoys and weather stations provide data acquisition and local processing.
- 2- **Network Layer:** The local **Wi-Fi Router** acts as the singular network bridge and backhaul medium.
- 3- **Application Layer:** The proprietary **Ambient Weather Cloud Platform** handles data storage, security, and visualization.

15- Power Requirements for the Transmitters & Receivers of the IoT Nodes

From figure 2, The system exhibits **high power requirements** characteristic of Wi-Fi technology.

- **Power Source:** Lithium batteries (likely AA or similar form factor).
- Operating Current: The transceiver draws substantial current (typically ≈ 100 mA to 300 mA) during transmission bursts.
- **Endurance:** The battery life is critically short, confirmed by the authors as requiring replacement every **1–2 months** due to the continuous high-power consumption associated with maintaining a persistent Wi-Fi connection and high-frequency data uploads.

16- Maximum Distance Coverage

The distance coverage is severely limited by the COTS Wi-Fi protocol:[1. 2]

- **Coverage:** Typically 10m to 100m in an outdoor, semi-obstructed environment like an estuary farm.
- **Limitation:** The deployment is highly restricted by the range of the central Wi-Fi Router, forcing a centralized sensor cluster close to the anchor point of the router.

17- Security Features/Capabilities Built

Security is reliant on established industry standards for commercial products:[1, 2]

- 1. **Local Network Security: WPA2 or WPA3** encryption is used to secure the wireless link between the sensor devices and the local Wi-Fi router.
- 2. **Transport Security: TLS/SSL (HTTPS)** encryption is used for end-to-end security when transmitting data over the Internet to the proprietary cloud server.

18- References:

- [1] Yurimoto, T., Kassim, F.M., & Rahim, M.A. (2025). Observation of the Freshwater Inflow Event Using IoT Devices at an Oyster Farm in the Merbok Estuary During Monsoon. *Thalassas: An International Journal of Marine Sciences* 41(143). https://doi.org/10.1007/s41208-025-00901-8
- [2] IEEE Standards Association (2020). *IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications*
- [3] Ambient Weather (n.d.). WS-2902 Smart Weather Station. Retrieved from https://ambientweather.com/ws-2902-smart-weather-station