香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

Course Examinations 1998 - 99

Course Code & Title: CSC3130 Formal Languages and Automata Theory			
Time allowed	:1	ours -	minutes
Student I.D. No.	:	Seat No. :	

Answer all three (3) questions.

1. (a) (15 marks) Construct a Turing machine $M = (Q, T, P, q_l)$ that computes the function $f:T^* \rightarrow T^*$ defined by

$$f(a\omega) = \omega a$$

where $a \in T$ and $\omega \in T^*$.

- (b) (15 marks) Show that it is undecidable whether a Turing machine halts on the string aaa. Assume that its set of tape symbols is $\{a, b, c\}$.
- (c) (5 marks) Is it a decidable problem to determine whether a language is recursive? Justify your answer.
- 2. (a) (i) (5 marks) Define 'recursive languages' and 'recursively enumerable languages.'
 - (ii) (5 marks) Explain the relation, if any, between recursive languages and decidable problems.
 - (iii) (10 marks) Let $\omega(M)$ be the string that uniquely represents a Turing machine M and L(M) be the set of strings accepted by M. Let $\Omega = \{\omega(M) \mid L(M) = \emptyset\}$. Is Ω a recursive language? Is Ω a recursively enumerable language? Justify your answers.
 - (b) (15 marks) Consider the Turing machine M = (Q, T, P, q_I) with the following specification.

```
Q = \{q_1, q_2, q_3\}
T = \{a, b\}
P = \{q_1: right(a/a, q_1), q_1: right(b/b, q_2), q_2: left(\#/\#, q_3), q_2: left(a/b, q_1), q_2: left(b/a, q_2)\}
q_1 = q_1
```

Construct a type 0 grammar that generates the language accepted by M.

3. Consider the following CFG.

$$S' \to S$$
$$S \to aSa \mid bSb \mid cd$$

- (a) (5 marks) Write down the set of all LR(0) items of this grammar.
- (b) (15 marks) Construct a DFA that accepts the language of all viable prefixes.
- (c) (10 marks) Is this grammar LR(0)? If it is, show all the steps how the string abcdba can be parsed. If it is not, explain why.

- End of Paper -