Кривизны поверхностей

Рассмотрим поверхность $f:U\to M$. Оператор формы $S: \mathbf{T}_pU\to \mathbf{T}_pU$ — это линейный оператор, удовлетворяющий $df(SX)=d\mathbf{N}(X)$. Главные кривизны k_1,k_2 и направления — это собственные значения и векторы S. Гауссова кривизна $\mathbf{K}=k_1k_2$, средняя кривизна $\mathbf{H}=k_1+k_2$.

ГКП-3, упр.1. Возьмите в качестве M либо сферу

$$f(u, v) = (R\cos u\cos v, R\cos u\sin v, R\sin u),$$

либо тор

$$f(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u).$$

Вычислите главные кривизны и направления M в точке f(0,0).

ГКП-3, упр.2. Докажите, что $H^2 \ge 4$ К. Когда достигается равенство?

ГКП-3, упр.3*. Вторая квадратичная форма определяется через

$$\mathbf{I}(X,Y) := -g(SX,Y) = -d\mathbf{N}(X) \cdot df(Y).$$

Выразите её в координатах. Докажите, что $k_n(X) = \frac{I\!I(X,X)}{q(X,X)}$.

ГКП-3, упр.4. Докажите, что для кривизны нормального сечения верно

$$k_n(X) := \frac{\langle df(X), dN(X) \rangle}{\langle df(X), df(X) \rangle}$$

ГКП-3, упр.5. Вторая квадратичная форма определяется по формуле

$$\mathbf{I}(X,Y) := -\langle SX, Y \rangle = -\langle d\mathbf{N}(X), df(Y) \rangle.$$

Докажите, что матрица **I** квадратичной формы имеет вид:

$$\mathbf{I} = \begin{pmatrix} \langle \mathbf{N}, f_{uu} \rangle & \langle \mathbf{N}, f_{uv} \rangle \\ \langle \mathbf{N}, f_{uv} \rangle & \langle \mathbf{N}, f_{vv} \rangle \end{pmatrix}.$$

ГКП-3, упр.6. Докажите, что $\langle SX, Y \rangle = \langle X, SY \rangle$.

ГКП-3, упр.7. Докажите, что главные направления ортогональны.

ГКП-3, упр.8. Пусть e_1 и e_2 — ортогональные касательные векторы единичной длины, приложенные в некоторой точке двумерной гиперповерхности. Докажите, что $\mathbf{H} = \mathbf{I}(e_1, e_1) + \mathbf{I}(e_2, e_2)$.

ГКП-3, упр.9. (Формула Эйлера). Пусть T — единичный касательный вектор на поверхности, и пусть $\theta_j = \angle(T, X_j)$. Докажите, что $k_n(T) = k_1 \cos^2 \theta_1 + k_2 \cos^2 \theta_2$.

ГКП-3, упр.10*. (Теорема Менье). Пусть T — вектор скорости кривой μ на поверхности M. Пусть N_{μ} — вектор главной нормали к μ , $\theta = \angle(N, N_{\mu})$. Тогда

$$k_n(T) = k_\mu \cos \theta = \frac{\mathbf{I}(T, T)}{\langle T, T \rangle}.$$

ГКП-3, упр.11*. Пусть две двумерные гиперповерхности M_1 и M_2 пересекаются по кривой γ . Пусть k — кривизна γ , k_j — нормальные кривизны вдоль γ в M_j , а θ — угол между нормалями к M_1 и M_2 . Докажите, что

$$k^2 \sin^2 \theta = k_1^2 + k_2^2 - 2k_1 k_2 \cos \theta.$$

ГКП-3, упр.12*. Пусть k_1, \ldots, k_m — нормальные кривизны двумерной гиперповерхности в направлениях, разбивающих касательную плоскость на углы π/m . Докажите, что

$$\frac{k_1+\ldots+k_m}{m}=\frac{H}{2}.$$

Кривизны поверхностей

Рассмотрим поверхность $f:U\to M$. Оператор формы $S: \mathbf{T}_pU\to \mathbf{T}_pU$ — это линейный оператор, удовлетворяющий $df(SX)=d\mathbf{N}(X)$. Главные кривизны k_1,k_2 и направления — это собственные значения и векторы S. Гауссова кривизна $\mathbf{K}=k_1k_2$, средняя кривизна $\mathbf{H}=k_1+k_2$.

ГКП-3, упр.1. Возьмите в качестве M либо сферу

$$f(u, v) = (R\cos u\cos v, R\cos u\sin v, R\sin u),$$

либо тор

$$f(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u).$$

Вычислите главные кривизны и направления M в точке f(0,0).

ГКП-3, упр.2. Докажите, что $H^2 \ge 4$ К. Когда достигается равенство?

ГКП-3, упр.3*. Вторая квадратичная форма определяется через

$$\mathbf{I}(X,Y) := -g(SX,Y) = -d\mathbf{N}(X) \cdot df(Y).$$

Выразите её в координатах. Докажите, что $k_n(X) = \frac{I\!I(X,X)}{q(X,X)}$.

ГКП-3, упр.4. Докажите, что для кривизны нормального сечения верно

$$k_n(X) := \frac{\langle df(X), dN(X) \rangle}{\langle df(X), df(X) \rangle}$$

ГКП-3, упр.5. Вторая квадратичная форма определяется по формуле

$$\mathbf{I}(X,Y) := -\langle SX, Y \rangle = -\langle d\mathbf{N}(X), df(Y) \rangle.$$

Докажите, что матрица **I** квадратичной формы имеет вид:

$$\mathbf{I} = \begin{pmatrix} \langle \mathbf{N}, f_{uu} \rangle & \langle \mathbf{N}, f_{uv} \rangle \\ \langle \mathbf{N}, f_{uv} \rangle & \langle \mathbf{N}, f_{vv} \rangle \end{pmatrix}.$$

ГКП-3, упр.6. Докажите, что $\langle SX, Y \rangle = \langle X, SY \rangle$.

ГКП-3, упр.7. Докажите, что главные направления ортогональны.

ГКП-3, упр.8. Пусть e_1 и e_2 — ортогональные касательные векторы единичной длины, приложенные в некоторой точке двумерной гиперповерхности. Докажите, что $\mathbf{H} = \mathbf{I}(e_1, e_1) + \mathbf{I}(e_2, e_2)$.

ГКП-3, упр.9. (Формула Эйлера). Пусть T — единичный касательный вектор на поверхности, и пусть $\theta_j = \angle(T, X_j)$. Докажите, что $k_n(T) = k_1 \cos^2 \theta_1 + k_2 \cos^2 \theta_2$.

ГКП-3, упр.10*. (Теорема Менье). Пусть T — вектор скорости кривой μ на поверхности M. Пусть N_{μ} — вектор главной нормали к μ , $\theta = \angle(N, N_{\mu})$. Тогда

$$k_n(T) = k_\mu \cos \theta = \frac{\mathbf{I}(T, T)}{\langle T, T \rangle}.$$

ГКП-3, упр.11*. Пусть две двумерные гиперповерхности M_1 и M_2 пересекаются по кривой γ . Пусть k — кривизна γ , k_j — нормальные кривизны вдоль γ в M_j , а θ — угол между нормалями к M_1 и M_2 . Докажите, что

$$k^2 \sin^2 \theta = k_1^2 + k_2^2 - 2k_1 k_2 \cos \theta.$$

ГКП-3, упр.12*. Пусть k_1, \ldots, k_m — нормальные кривизны двумерной гиперповерхности в направлениях, разбивающих касательную плоскость на углы π/m . Докажите, что

$$\frac{k_1+\ldots+k_m}{m}=\frac{H}{2}.$$