Engineering Electromagnetics

Lecture 10

11/09/2023

by

Debolina Misra

Assistant Professor in Physics IIITDM Kancheepuram, Chennai, India

The Fundamental Theorem for Gradients

Now we move a little further, by an additional small displacement $d\mathbf{l}_2$; the incremental change in T will be $(\nabla T).d\mathbf{l}_2$.

In this manner, proceeding by infinitesimal steps, we make the journey to point **b**.

At each step we compute the gradient of T (at that point) and dot it into the displacement $dl \rightarrow$ this gives us the change in T.

Evidently the *total* change in T in going from \mathbf{a} to \mathbf{b} (along the path selected) is

 $\int_{\mathbf{a}}^{\mathbf{b}} (\nabla T) \cdot d\mathbf{l} = T(\mathbf{b}) - T(\mathbf{a}).$

Corollary 1:
$$\int_a^b (\nabla T) \cdot d\mathbf{l}$$
 is independent of the path taken from **a** to **b**

Corollary 2:
$$\oint (\nabla T) \cdot d\mathbf{l} = ?$$

Problem-2

Example 1.9. Let $T = xy^2$, and take point **a** to be the origin (0, 0, 0) and **b** the point (2, 1, 0). Check the fundamental theorem for gradients.

Solution

Although the integral is independent of path, we must *pick* a specific path in order to evaluate it. Let's go out along the x axis (step i) and then up (step ii) (Fig. 1.27). As always, $d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}; \, \nabla T = y^2 \,\hat{\mathbf{x}} + 2xy \,\hat{\mathbf{y}}$.

(i)
$$y = 0$$
; $d\mathbf{l} = dx \,\hat{\mathbf{x}}$, $\nabla T \cdot d\mathbf{l} = y^2 \, dx = 0$, so

$$\int_{\mathbf{i}} \nabla T \cdot d\mathbf{l} = 0.$$

(ii)
$$x = 2$$
; $d\mathbf{l} = dy \,\hat{\mathbf{y}}, \, \nabla T \cdot d\mathbf{l} = 2xy \, dy = 4y \, dy$, so

$$\int_{ii} \nabla T \cdot d\mathbf{l} = \int_0^1 4y \, dy = 2y^2 \Big|_0^1 = 2.$$

The total line integral is 2. Is this consistent with the fundamental theorem? Yes: $T(\mathbf{b}) - T(\mathbf{a}) = 2 - 0 = 2$.

How do you find a unit vector normal to the surface $x^3+y^3+3xyz=3$ at the point (1,2,-1)?

How do you find a unit vector normal to the surface $x^3+y^3+3xyz=3$ ay the point (1,2,-1)?

Calling

$$f(x, y, z) = x^3 + y^3 + 3xyz - 3 = 0$$

The gradient of f(x, y, z) at point x, y, z is a vector normal to the surface at this point.

The gradient is obtained as follows

$$abla f(x,y,z) = ig(f_x,f_y,f_zig) = 3ig(x^2 + yz,y^2 + xz,xyig)$$
 at point $(1,2,-1)$ has the value $3(-1,3,2)$ and the unit vector is $rac{\{-1,3,2\}}{\sqrt{1+3^2+2^2}} = \left\{-rac{1}{\sqrt{14}},rac{3}{\sqrt{14}},\sqrt{rac{2}{7}}
ight\}$

https://socratic.org/questions/how-do-you-find-a-unit-vector-normal-to-the-surface-x-3-y-3-3xyz-3-ay-the-point-

Divergence: examples

$$\nabla = \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}.$$

Solution

$$f = x\hat{x} + y\hat{y} - \hat{z} , \nabla \cdot f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} =$$

$$f = x^2 \hat{x}, \nabla \cdot f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} =$$

The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

$$\int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{v}) \, d\tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d\mathbf{a}.$$

Gauss's theorem/divergence theorem

integral of a derivative (in this case the divergence) over a region (in this case a volume, V) =value of the function at the boundary (in this case the surface S that bounds the volume).

Notice that the boundary term is itself an integral (specifically, a surface integral). This is reasonable: the boundary of a *volume* is a (closed) surface.

Div. theorem: example (MIT open course)

Compute the flux
of
$$F = \langle x^4y, -2x^3y^2, z^2 \rangle$$
through the surface of
the solid bounded by
 $z = 0$, $z = h$ and
 $x^2 + y^2 = R^2$

https://www.youtube.com/watch?v=CCoTAyZ14XM

Problem-3

Check the divergence theorem using the function

$$\mathbf{v} = y^2 \,\hat{\mathbf{x}} + (2xy + z^2) \,\hat{\mathbf{y}} + (2yz) \,\hat{\mathbf{z}}$$

and a unit cube at the origin.

$$\int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{v}) \, d\tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d\mathbf{a}.$$

Solution

For the LHS

$$\mathbf{v} = y^2 \,\hat{\mathbf{x}} + (2xy + z^2) \,\hat{\mathbf{y}} + (2yz) \,\hat{\mathbf{z}}$$

$$\nabla \cdot \mathbf{v} = 2(x+y)$$

$$\int_{\mathcal{V}} 2(x+y) \, d\tau = 2 \int_0^1 \int_0^1 \int_0^1 (x+y) \, dx \, dy \, dz,$$

$$\int_0^1 (x+y) \, dx = \frac{1}{2} + y, \quad \int_0^1 (\frac{1}{2} + y) \, dy = 1, \quad \int_0^1 1 \, dz = 1$$

$$\int_{\mathcal{V}} \nabla \cdot \mathbf{v} \, d\tau = 2$$

(ii)

For the RHS

So much for the left side of the divergence theorem. To evaluate the surface integral we must consider separately the six faces of the cube:

(i)
$$\int \mathbf{v} \cdot d\mathbf{a} = \int_0^1 \int_0^1 y^2 dy \, dz = \frac{1}{3}.$$

(ii)
$$\int \mathbf{v} \cdot d\mathbf{a} = -\int_0^1 \int_0^1 y^2 \, dy \, dz = -\frac{1}{3}.$$

(iii)
$$\int \mathbf{v} \cdot d\mathbf{a} = \int_0^1 \int_0^1 (2x + z^2) \, dx \, dz = \frac{4}{3}.$$
 Note that for this surface y=1

$$J_0$$
 J_0

$$\int \mathbf{v} \cdot d\mathbf{a} = -\int_0^1 \int_0^1 z^2 \, dx \, dz = -\frac{1}{3}.$$
 Note that for this surface y=0 so it is not same as Surface (iii)

(v)
$$\int \mathbf{v} \cdot d\mathbf{a} = \int_0^1 \int_0^1 2y \, dx \, dy = 1.$$

(vi)
$$\int \mathbf{v} \cdot d\mathbf{a} = -\int_0^1 \int_0^1 0 \, dx \, dy = 0.$$

So the total flux is:

$$\oint \mathbf{v} \cdot d\mathbf{a} = \frac{1}{3} - \frac{1}{3} + \frac{4}{3} - \frac{1}{3} + 1 + 0 = 2,$$

Thank You