Mathematical Logic HW4

Abraham Murciano

December 16, 2019

- 1. (b) $A \to B$ from $\{E, A \to D, D \to (E \to B)\}$.
 - 1. E

premise

2. $A \to D$ premise

- 3. $D \to (E \to B)$ premise
- $A \rightarrow (E \rightarrow B)$ 2, 3, hypothetical syllogism
- 5.

assumption

- $E \to B$ 6.
- 4, 5, modus ponens
- 7.
- 1, 6, modus ponens
- 8.
- 3-5, conditional proof
- (d) $A \to G$ from $\{\neg(B \to G) \to \neg A, A \to B\}$
 - $\neg (B \to G) \to \neg A$ premise
 - $A \to B$ 2.

premise

- $A \to (B \to G)$ 3.
- 1, transposition
- 4.
- assumption
- 5. B
- 2, 4, modus ponens
- 6. $B \to G$
- 3, 4, modus ponens
- 7.
- 5, 6, modus ponens
- 8.
- 4-7, conditional proof
- (f) $A \vee B$ from $\{A \wedge B\}$
 - 1. $A \wedge B$ premise
- 1, conjunction elimination
- 3. $A \vee B$
- 2, disjunction introduction

- (h) $\neg A$ from $\{A \to (B \lor C), B \to D, \neg C \lor E, (D \lor E) \to \neg A\}$
 - 1. $A \to (B \lor C)$ premise
 - 2. $B \to D$ premise
 - 3. $\neg C \lor E$ premise
 - 4. $(D \lor E) \to \neg A$ premise

17.

 $\neg A$

	` ′	
5.	A	assumption
6.	$B \lor C$	1, 5, modus ponens
7.	B	assumption
8.	D	2, 7, modus ponens
9.	$D \lor E$	8, disjunction introduction
10.	$\neg A$	4, 9, modus ponens
11.	C	assumption
		-
12.	$\mid \mid \mid E$	3, 12, disjunctive syllogism
12. 13.		_
		3, 12, disjunctive syllogism
13.	$D \lor E$	3, 12, disjunctive syllogism 13, disjunction introduction
13. 14.	$D \lor E$ $\neg A$	3, 12, disjunctive syllogism 13, disjunction introduction 4, 14, modus ponens

5-16, negation introduction

(j) $(y \to z) \to \neg y$ from $\{r \leftrightarrow s, \neg (r \land s), z \to (y \to (r \lor s))\}$				
1.	$r \leftrightarrow s$	premise		
2.	$\neg(r \land s)$	premise		
3.	$z \to (y \to (r \vee s))$	premise		
4.	$r \rightarrow s$	1, biconditional elimination		
5.	$s \rightarrow r$	1, biconditional elimination		
6.	z	assumption		
7.	$y \to (r \vee s)$	3, 6, modus ponens		
8.	y	assumption		
9.	$r \vee s$	7, 8, modus ponens		
10.	s	assumption		
11.	s	10, reiteration		
12.	s	4, 9, 10-11, disjunction elimination		
13.	r	assumption		
14.	r	13, reiteration		
15.	r	5, 9, 13-14, disjunction elimination		
16.	$r \wedge s$	12, 15, conjunction introduction		
17.	y	assumption		
18.	$\neg(r \land s)$	2, reiteration		
19.	$\neg y$	8-16, 17-18 negation introduction		
20.	y	assumption		
21.	z	6, reiteration		
22.	$y \rightarrow z$	20-21, conditional proof		
23.	$y \rightarrow z$	22, reiteration		
24.	$\neg y$	19, reiteration		
25.	$(y \to z) \to \neg y$	23-24 conditional proof		
26.	$\neg z$	assumption		
27.	$y \rightarrow z$	assumption		
28.	$\neg y$	26, 27, modus tollens		
29.	$(y \to z) \to \neg y$ $z \lor \neg z$	27-28, conditional proof		
30.	$z \vee \neg z$	axiom		
31.	$(y \to z) \to \neg y$	$6-25,\ 26-29,\ 30,$ disjunction elimination		

2. (b) Proof for $\neg \neg x \to x$. By deduction, if $\{\neg \neg x\} \vdash x$, then it must be that $\neg \neg x \to x$.

1.	$\neg \neg x$	assumption
2.	$\neg \neg x \to (\neg x \to \neg \neg x)$	axiom 1
3.	$\neg x \rightarrow \neg \neg x$	1, 2, modus ponens
4.	$\neg x \to \neg \neg x \to ((\neg x \to \neg x) \to x)$	axiom 3
5.	$(\neg x \to \neg x) \to x$	3, 4, modus ponens
6.	$\neg x \to ((\neg x \to \neg x) \to \neg x)$	axiom 1
7.	$\neg x \to ((\neg x \to \neg x) \to \neg x) \to ((\neg x \to (\neg x \to \neg x)) \to (\neg x \to \neg x))$	axiom 2
8.	$(\neg x \to (\neg x \to \neg x)) \to (\neg x \to \neg x)$	6, 7, modus ponens
9.	$\neg x \to (\neg x \to \neg x)$	axiom 1
10.	$\neg x \rightarrow \neg x$	8, 9, modus ponens
11.	x	5, 10, modus ponens
12.	$\neg \neg x \to x$	1-11, deduction

3. (b) We must prove $\vdash \neg \alpha \rightarrow (\alpha \rightarrow \beta)$.

1.

- 2. $\neg \alpha \to (\neg \beta \to \neg \alpha)$ axiom 1
- 3. $\neg \beta \rightarrow \neg \alpha$ 1, 2, modus ponens
- 4. $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$ axiom 3
- 5. $(\neg \beta \to \alpha) \to \beta$ 3, 4, modus ponens

assumption

- 6. α assumption
- 7. $\alpha \to (\neg \beta \to \alpha)$ axiom 1
- 8. $\neg \beta \rightarrow \alpha$ 6, 7, modus ponens
- 9. β 5, 8, modus ponens
- 10. $\alpha \to \beta$ 6-9, deduction
- 11. $\neg \alpha \to (\alpha \to \beta)$ 1-10, deduction
- (d) We must prove $\vdash (\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$.
 - 1. $\neg \beta \rightarrow \neg \alpha$ assumption
 - 2. $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$ axiom 3
 - 3. $(\neg \beta \to \alpha) \to \beta$ 1, 2, modus ponens
 - 4. $\alpha \to (\neg \beta \to \alpha)$ axiom 1
 - 5. α assumption
 - 6. $| \neg \beta \rightarrow \alpha$ 4, 5, modus ponens 7. $| \beta$ 3, 6, modus ponens
 - 8. $\alpha \rightarrow \beta$ 5-7, deduction
 - 9. $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ 1-8, deduction
- 4. (a) We must prove $\vdash a \rightarrow (b \rightarrow a)$.
 - $\begin{array}{c|c} 1. & a & \text{assumption} \\ 2. & b & \text{assumption} \\ \end{array}$

 - 4. $b \rightarrow a$ 2-3, conditional proof
 - 5. $a \to (b \to a)$ 1-4, conditional proof
 - (b) We must prove $(a \to (b \to c)) \to ((a \to b) \to (a \to c))$.

1.	$a \to (b \to c)$	assumption
2.	$a \rightarrow b$	assumption
3.	a	assumption
4.	$ \ \ \ b$	2, 3, modus ponens

- 5. $\begin{vmatrix} b \rightarrow c \end{vmatrix}$ 1, 3, modus ponens 6. $\begin{vmatrix} c \end{vmatrix}$ 4, 5, modus ponens
- 7. $a \rightarrow c$ 3-6, conditional proof
- 8. $(a \to b) \to (a \to c)$ 2-7, conditional proof 9. $(a \to (b \to c)) \to ((a \to b) \to (a \to c)$ 1-8, conditional proof
- (c) We must prove $(\neg b \rightarrow \neg a) \rightarrow ((\neg b \rightarrow a) \rightarrow b)$.

1.	$\neg b \rightarrow \neg a$	assumption
2.	$\neg b \rightarrow a$	assumption
3.	b	1, 2, negation introduction
4	$(\neg b \rightarrow a) \rightarrow b$	2-3 conditional proof

4. $[\neg b \rightarrow a) \rightarrow b$ 2-3, conditional proof 5. $(\neg b \rightarrow \neg a) \rightarrow ((\neg b \rightarrow a) \rightarrow b)$ 1-4, conditional proof