

A global integrated strategy for laurel wilt surveillance

Technical Session: Tree Diseases

R. A. Mouafo-Tchinda, A.I. **Plex Sulá**, B.A. Etherton, R. Choudhury, R. Gazis, B. Faber, D. Carrillo, J. Crane, K.A. Garrett

Review Article | Free

ANNUAL REVIEW OF P

Climate Change Effects on Patl Intelligence to Translate Big Da

K.A. Garrett^{1,2,3}, D.P. Bebber⁴, B.A. Etherton^{1,2,3}, K.M. Gold⁵, A.I.

Data acquisition

Data integration

Iterative model evaluation, adaptation, and improvement

Model development

Decision-support tools

Long-term surveillance and mitigation strategies

Short-term surveillance and mitigation tactics

Global translation for socioeconomic contexts

Integrated risk assessments are urgently needed

Transportation networks

Trade networks

Cropland (host) expansion

Climate change

Urban agriculture landscape

Geographic vulnerability to pathogen invasions

Global (national) surveillance strategies

The "troublemaker"

An invasive complex

Harringtonia lauricola

- Lauraceae trees
- ✓ 300 million redbay& sassafras

- Vector species
- ✓ Untreated wood*

Laurel wilt disease = pathogen* \times susceptible host(s) \times conducive environment

Photo credit: Florida Forest Service

The "troublemaker"

An invasive complex

Harringtonia lauricola

Management?

- ✓ US\$ 356 million
- ✓ Cost is problematic
- ✓ No global surveillance strategy

Laurel wilt disease = pathogen* \times susceptible host(s) \times conducive environment

Translating ecological perspectives to define biosecurity priorities for emerging diseases

Invasion through trade networks

Pathogen spread with future climate

Pathogen "invasion" or epidemic networks

Methods

Pathogen invasion through trade networks

(8)

Potential pathogen dispersal through global network of wood packing Fritzen material movement

Reported distribution of Harringtonia lauricola

Absent

Native

Present

Widespread

Relative pathogen invasion potential

- •
- **200**
- 400
- 600

Pathogen trade movement potential

- \rightarrow 0.25
- \rightarrow 0.50
- → 0.75
- **→** 1.00

Country category

Intermediary
Producer

Plex 2025

Methods | Likely roles of locations in habitat networks

hub

Forest (habitat) networks

- Geographic locations (nodes)
- Geographic connections (links)

Geographic priorities

Global host connectivity for pathogen invasions

Example for laurel wilt (Harringtonia lauricola)

Host landscape connectivity for avocado (*Persea americana*)

Host landscape connectivity for **2271 Lauraceae species**

Methods

Quantifying climate risk for diseases

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Projected risk scenario based on current climate suitability conditions (1981-2010)

Potential climate similarity based on maximum likelihood

Potential climate similarity based on random forest

Projected future climate risk scenarios (2061-2080)

Can you spot 10 differences...?

Potential risk change based on future climate scenarios

The proposed global surveillance strategy

Invasion through trade networks

Prioritize surveillance in countries highly connected in the global network of wood packaging material.

Climate-smart surveillance targets

Keep track of potentially climatically suitable regions considering current and future risk scenarios.

Invasion through host networks

Increase preparedness for laurel wilt in highly connected regions in the host landscape.

Integrated surveillance systems

The surveillance system depends on the collective actions by the industries, forest conservation and the public.

Thanks!

Aaron I. Plex Sulá

Dr. Romaric A. Mouafo-Tchinda

Jacobo Robledo Buritica

Dr. Karen A. Garrett

Dr. Berea A. Etherton

Dr. Ashish Adhikari

Aaron I. Plex Sulá garrettlab.com plexaaron@ufl.edu

Questions?

