

Overview of available adenovirus packaging constructs and assessment of their capacity to transform primary kidney cells

*average of 5 plates 21 days after transelection

FIG. 6

Western blotting analysis of A549 clones transfected with pIG.E1A.NEO and PER clones (HER cells transfected with pIG.E1A.E1B)

FIG. 7

Southern blot analyses of 293, 911 and PER cell lines

FIG. 8

Transfection efficiency of PER.C3, PER.C5, PER.C6 and 911 cells. Cells were cultured in 6-well plates and transfected (n=2) with 5 μ g pRSV.lasZ by calcium-phosphate co-precipitation. Forty-eight hours later the cells were stained with X-GAL. The mean percentage of blue cells is shown.

FIG. 9

Construction of pMLP1.TK

FIG. 10

New recombinant adenoviruses and packaging constructs without sequence overlap

FIG. IIA

Packaging system based on primary cells

New recombinant adenoviruses and packaging constructs without sequence overlap

Packaging system based on established cell lines: transfection FIG. with E1a and selection with G418

FIG. 13

Replication of Adenovirus

FIG. 14

The potential hairpin conformation of a single—stranded DNA molecule that contains the HP/asp sequences used in these studies. Restriction with the restriction endonucleases <code>Asp7181</code> of plasid pICLHa, containing the annealed oligonucleotide pair HP/asp1 en HP/asp2 will yield a linear double—stranded DNA fragment. In cells in which the required adenovirus genes are present, replication can initiate at the terminus that contains the ITR sequence. During the chain elongation, the one of the strands will be displaced. The terminus of the single—stranded displaced—strand molecule can adopt the conformation depicted above. In this conformation the free 3'—terminus can serve as a primer for the cellular and/or adenovirus DNA polymerase, resulting in conversion of the displaced strand in a double—stranded form.

5'-GTACACTGACCTAGTGCCGCCCGGGCA ||||||||||||| A 3'-GATCACGGCGGGCCCGA

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

Cloned adenovirous fragments

FIG. 20

Adapter plasmid pAd5/L420-HSA

FIG. 2I

Adapter plasmid pAd5/CLIP

FIG. 22

Minimal adenovirus vector pMV/L420H

FIG. 24

FIG. 26A

thesai AMOo

Average percentage CPE efficiency: 86 %

FIG. 27

	とののだった	
(TOTO	

ceNOS

hTERT

hTERT D712A

3.6 3.5 3.5 3.2 2.2 2.0 1.7 1.4 .510 .434

lacZ hCAT1 GLVR2 Luc SOD3 MAX1 hVEGF121 hIL3 UBC9

ANG1-7

28 F1G.

Average titer $0.8 \pm 0.7 \times 10^9 \text{ pfu/ml}$

FIG. 32

FIG. 34B

FIG. 34C

FIG. 34G

FIG. 34M

Relative amounts of wells with CPE after transfection of PER.C6/E2A cells with pCLIP—LacZ and the adapter plasmid pIPspAdapt2.

Transfection of pIPspAdapt2 to PER.C6/E2A

FIG. 34N

FIG, 36B

EXAMPLE 21 384 WELL PLATE IN PROGRESS

Medium changed 7 days after transfection

FIG. 38A

Medium not changed

FIG. 38B

Propagation 7 days after transfection

FIG. 38C

\

Figure 47 using Ad5C01 and Ad5C20 fiber-modified viruses Infection of human primary pre-adipocytes

Figure 49

Adipocyte differentiation Primary human mesenchymal stem cells

Adipocyte differentiation Mouse mesenchymal stem cell line C3H10T1/2

H5-24: adenoviraly mediated expression of CIDEB does not induce any cell death

H5-1 DNA sequence (SEQ ID NO:12)

1	GCCCACGCGT	CCGGTTTTCT	ACTTTGCCAC	AGATTATCTT	GTACAGCCTT	TTATGGACCA
61	ATTAGCATTC	CATCAATTTT	ATATCTAGCA	TATTTGCGGT	TAGAATCCCA	TGGATGTTTC
121	TTCTTTGACT	ATAACAAAAT	CTGGGGAGGA	CAAAGGTGAT	TTTCCTGTGT	CCACATCTAA
181	CAAAGTCAAG	ATTCCCGGCT	GGACTTTTGC	AGCTTCCTTC	CAAGTCTTCC	TGACCACCTT
241	GCACTATTGG	ACTTTGGAAG	GAGGTGCCTA	TAGAAAACGA	TTTTGAACAT	ACTTCATCGC
301	AGTGGACTGT	GTCCCTCGGT	GCAGAAACTA	CCAGATTTGA	GGGACGAGGT	CAAGGAGATA
361	TGATAGGCCC	GGAAGTTGCT	GTGCCCCATC	AGCAGCTTGA	CGCGTGGTCA	CAGGACGATT
421	TCACTGACAC	TGCGAACTCT	CAGGACTACC	GTTACCAAGA	GGTTAGGTGA	AGTGGTTTAA
481	ACCAAACGGA	ACTCTTCATC	TTAAACTACA	CGTTGAAAAT	CAACCCAATA	ATTCTGTATT
541	AACTGAATTC	TGAACCTTTC	AGGAGGTACT	GTGAGGAAGA	GCAGGCACCA	GCAGCAGAAT
601	GGGGAATGGA	GAGGTGGGCA	GGGGTTCCAG	CTTCCCTTTG	ATTTTTTGCT	GCAGACTCAT
661	CCTTTTTAAA	TGAGACTTGT	TTTCCCCTCT	${\tt CTTTGAGTCA}$	AGTCAAATAT	GTAGATTGCC
721	TTTGGCAATT	CTTCTTCTCA	AGCACTGACA	CTCATTACCG	TCTGTGATTG	CCATTTCTTC
781	CCAAGGCCAG	TCTGAACCTG	AGGTTGCTTT	ATCCTAAAAG	TTTTAACCTC	AGGTTCCAAA
841	TTCAGTAAAT	TTTGGAAACA	GTACAGCTAT	TTCTCATCAA	TTCTCTATCA	${\tt TGTTGAAGTC}$
901	AAATTTGGAT	TTTCCACCAA	ATTCTGAATT	TGTAGACATA	CTTGTACGCT	CACTTGCCCC
961	AGATGCCTCC	TCTGTCCTCA	TTCTTCTCTC	CCACACAAGC	AGTCTTTTTC	TACAGCCAGT
1021	AAGGCAGCTC	TGTCGTGGTA	GCAGATGGTC	CCATTATTCT	${\tt AGGGTCTTAC}$	${\tt TCTTTGTATG}$
1081	ATGAAAAGAA	TGTGTTATGA	ATCGGTGCTG	TCAGCCCTGC	TGTCAGACCT	TCTTCCACAG
1141	CAAATGAGAT	GTATGCCCAA	AGACGGTAGA	ATTAAAGAAG	AGTAAAATGG	CTGTTGAAGC
1201	АААААААА	AAAA				

H5-24 DNA sequence (SEQ ID NO:14)

1	GTCGACCCAC	GCGTCCGCGC	CTGCAGAAGG	TTGACTGCGT	GGTAGGGGGC	CCAGAGCAAG
61	CCGAAGGCAA	GCACGATGGC	GCTCACCAGC	CGGCCCACCC	GCGCCCCGTG	CCGCCCGGAG
121	CCCCAGCGGG	CGCCCCGCAG	CCGTGCCAGC	GTCACGCTGT	AGCAGCCGAG	CATCAGCCCG
181	AAAGGAAGCA	CGAAAGCGGT	GGCGGTAGAC	GGCGGCCGGG	ACGGCGAGCA	ACAGGGCGGC
241	CAGCCAGACC	GCCAGCAGCA	GGCGGCGGGC	CAGGGCCGGG	CTGCGCAGCC	GAGGCGCCAG
301	GAAGGGGCGG	GTGACTGCGA	GGCAGCGCTG	CAGGCTGAGC	AGGCCGGTGA	GCAGCACGCT
361	GGCGTACATG	CTGAGCGCGC	ACACGTAGTA	CACCGCCTTG	CAGCCCGCCT	GGCCCAGCGG
421	CCAGGCCTGC	CGGGTCAGGA	AGGCCACAAA	GAGCGGCGTG	AGCAGCAGCA	CCGCGCCGTC
481	GGCCAGCGCC	AGGTGCAGCA	CAAGCGTGGC	CGCCAGCGGT	CGCCCCGTG	CAGGCCGCCA
541	GCCCGCCAAG	CTCCACACCA	CGAAGCCGTT	GCCAGGCAGC	CCCAGCAGCG	CCGCCAGCAG
601	CAGGAAGGCT	GTGCCTGTGG	CCCGCGAAGT	CTTCCAGCTC	AGCAGTGTCT	CGTTCCCTGG
661	GGGACGGTAG	CAGACCGACA	TCCTTCTGGG	CCTACAGGAC	ACAGAAAAA	AGTGGGGAAG
721	CTGGGGGACC	CCTACAAGGA	TCCTTGGCAG	GAAAGCAGGG	ATTGTGTTCA	TTTGAGGGTT
781	TCACTGTCAG	TGAGAGTCTC	AGCTTCCATG	CAACTGTCCA	TCACGGCTGC	AACTGAAATC
841	AGAGCTGGGA	CACAGCGCAC	CAGAAGCTAA	AGTCTTGATG	CCATCAAAGG	ACATCCCTGC
901	CCCATTCACA	TCTCTGTCAC	GTCCACTAAT	CGGCAAAAGG	AGAAAAGTGA	GAGAAGATGA
961	CCTAAGTGTG	ACTGCAGCAG	GCAGCTCTGG	AAAATGAAGC	CAGAGCAGTG	AGCCAGCCCC
1021	TCCTCCGACC	AAGGAGGAAG	GAAAGAGCAG	CCCCAGCACA	GGAGAGAACC	ACCCAGCCCA
1081	GAAGTTCCAG	GGAAGGAACT	CTCCGGTCCA	CCATGGAGTA	CCTCTCAGCT	CTGAACCCCA
1141	GTGACTTACT	CAGGTCAGTA	TCTAATATAA	GCTCGGAGTT	TGGACGGAGG	GTCTGGACCT
1201	CAGCTCCACC	ACCCCAGCGA	CCTTTCCGTG	TCTGTGATCA	CAAGCGGACC	ATCCGGAAAG
1261	GCCTGACAGC	TGCCACCCGC	CAGGAGCTGC	TAGCCAAAGC	ATTGGAGACC	CTACTGCTGA
1321	ATGGAGTGCT	AACCCTGGTG	CTAGAGGAGG	ATGGAACTGC	AGTGGACAGT	GAGGACTTCT
1381	TCCAGCTGCT	GGAGGATGAC	ACGTGCCTGA	TGGTGTTGCA	GTCTGGTCAG	AGCTGGAGCC
1441	CTACAAGGAG	TGGAGTGCTG	TCATATGGCC	TGGGACGGGA	GAGGCCCAAG	CACAGCAAGG
				AGCAAAACCC		
						CAAGGACTTG
1621	GCCCAAAGAA	AGTACTCAGG	GAGCTCCTTC	GTTGGACCTC	CACACTGCTG	CAAGGCCTGG
1681	GCCATATGTT	GCTGGGAATT	TCCTCCACCC	TTCGTCATGC	AGTGGAGGG	GCTGAGCAGT
						CCCCAGAATC
						TGCAGACAGT
1861	ĄCAGGCTAGA	TAACCCACCC	: AATTTCCCCA	CTGTCCTCTG	ATCCCCTCGT	GACAGAACCT
1921	TTCAGCATAA	CGCCTCACAT	CCCAAGTCTA	TACCCTTACC	TGAAGAATGC	TGTTCTTTCC
						TCCCCCAGGC
						CCTGTCCCTA
						GTCTTCATAC
2161	CCTTCCCCTC	C AAACTAACA	AAACATTTC	C AATAAAAATA	TCAAATATTI	AAAAAAAA 1
2221	L AAAAAAAGG	GGGCCGC				

H5-24 ORF4 Amino Acid sequence (SEQ ID NO: 71)

MEYLSALNPSDLLRSVSNISSEFGRRVWTSAPPPQRPFRVCDHKRTIRKGLTAAT RQELLAKALETLLLNGVLTLVLEEDGTAVDSEDFFQLLEDDTCLMVLQSGQSWS PTRSGVLSYGLGRERPKHSKDIARFTFDVYKQNPRDLFGSLNVKATFYGLYSMS CDFQGLGPKKVLRELLRWTSTLLQGLGHMLLGISSTLRHAVEGAEQWQQKGRL HSY

H5-24 Segment 1 of BLTR2 DNA sequence (SEQ ID NO: 15)

18 CGC CTGCAGAAGG TTGACTGCGT GGTAGGGGGC CCAGAGCAAG
61 CCGAAGGCAA GCACGATGGC GCTCACCAGC CGGCCCACCC GCGCCCGTG CCGCCGGAG
121 CCCCAGCGGG CGCCCCGCAG CCGTGCCAGC GTCACGCTGT AGCAGCCGAG CATCAGCCCG
181 AAAGGAAGCA CGAAAGCGGT 200

H5-24 Segment 2 DNA sequence (SEQ ID NO: 16)

		198 GGT	GGCGGTAGAC	GGCGGCCGGG	ACGGCGAGCA	ACAGGGCGGC
241	CAGCCAGACC	GCCAGCAGCA	GGCGGCGGC	CAGGGCCGGG	CTGCGCAGCC	GAGGCGCCAG
301	GAAGGGGCGG	GTGACTGCGA	GGCAGCGCTG	CAGGCTGAGC	AGGCCGGTGA	GCAGCACGCT
361	GGCGTACATG	CTGAGCGCGC	ACACGTAGTA	CACCGCCTTG	CAGCCCGCCT	GGCCCAGCGG
421	CCAGGCCTGC	CGGGTCAGGA	AGGCCACAAA	GAGCGGCGTG	AGCAGCAGCA	CCGCGCCGTC
481	GGCCAGCGCC	AGGTGCAGCA	CAAGCGTGGC	CGCCAGCGGT	CGCCCCCGTG	CAGGCCGCCA
541	GCCCGCCAAG	CTCCACACCA	CGAAGCCGTT	GCCAGGCAGC	CCCAGCAGCG	CCGCCAGCAG
601	CAGGAAGGCT	GTGCCTGTGG	CCCGCGAAGT	CTTCCAGCTC	AGCAGTGTCT	CGTTCCCTGG
~ ~ -	CCCACCCTAG	CAGACCGACA	TCCTTCTGGG	CCTACAGG 69	98	

DNA Sequence Comparison of H5-24 Segment 1 (SEQ ID NO: 15) with BLTR2 Antisense DNA sequence

SEQ ID NO:15		cgcctgcagaaggttgactgcgtggtagggggccagagcaagccgaaggcaagcaa
BLTR2	2455	cgcctgcagaaggttgactgcgtggtagggggcccagagcaagccgaaggcaagcacgat 2396
SEQ ID NO:15		ggcgctcaccagccggcccacccgcgccccgtgccgcccggagccccagcggggccccg 137
BLTR2	2395	ggcgctcaccagccggcccacccgcgccccgtgccccggagccccagcgggcgccccg 2336
SEQ ID NO:15		cagccgtgccagcgtcacgctgtagcagccgagcatcagcccgaaaggaagcacgaaagc 197
BLTR2	2335	cagccgtgccagcgtcacgctgtagcagccgagcatcagcccgaaaggaagcacgaaagc 2276
SEQ ID NO:15	198	ggt 200
BLTR2	2275	ggt 2273

DNA Sequence Comparison of H5-24 Segment 2 (SEQ ID NO: 16) with BLTR2 Antisense DNA sequence

SEQ ID NO:16	198	ggtggcggtagacggccgggacggcgagcaacagggcggccagcca	257
BLTR2	2195	ggtggcggtagacggcgggccgggacggcaacaggcggccagcca	2136
SEQ ID NO:16	258	gcaggcggcgggccagggccgggctgcgcagccgaggcgccaggaaggggcgggtgactg	317
BLTR2	2135	gcaggcggcgggccagggccgggctgcgcagccgaggcgccaggaagggggggg	2076
SEQ ID NO:16	318	cgaggcagcgctgcaggctgagcaggccggtgagcagcacgctggcgtacatgctgagcg 	377
BLTR2	2075	cgaggcagcgctgcaggctgagcaggccggtgagcagcacgctggcgtacatgctgagcg	2016
SEQ ID NO:16	378	cgcacacgtagtacaccgccttgcagcccgcctggcccagcggccaggcctgccgggtca	437
BLTR2	2015		1956
CEO ID NO.16	420		407
SEQ ID NO:16		ggaaggccacaaagagcggcgtgagcagcagcaccgcgccgtcggccagcgccaggtgca	
BLTR2	1955	ggaaggccacaaagagcggcgtgagcagcagcaccgccgtcggccagcgccaggtgca	1896
SEQ ID NO:16	498	gcacaagcgtggccgccagcggtcgccccgtgcaggccgccagcccgccaagctccaca	557
BLTR2	1895	gcacaagcgtggccgccagcggtcgccccgtgcaggccgccagcccgccaagctccaca	1836
SEO ID NO:16	558	ccacqaaqccqttqccaqqcaqccccaqcaqcqccqccaqcaqqaaqqctqtqcctq	617
_			
BLTR2	1033	ccacgaagccgttgccaggcagccccagcagcagcagcaggaaggctgtgcctg	1//6
SEQ ID NO:16	618	tggcccgcgaagtcttccagctcagcagtgtctcgttccctgggggacggtagcagaccg	677
BLTR2	1775	tggcccgcgaagtettccagetcagcagtgtetcgttccctggggggacggtagcagaccg	1716
SEQ ID NO:16	678	acatecttetgggeetacagg 698	
BLTR2			
DD1K2	1/12	acatccttctgggcctacagg 1695	