

DESCRIPTION:

With high ability to withstand the shock loading of large current, BTB20-600CW series triacs provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	20	А
VDRM /VRRM	600/800/1200	V

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40-150	$^{\circ}$
Operating junction temperature range		Tj	-40-125	$^{\circ}$
Repetitive peak off-state voltage (T _j =25°C)		V _{DRM}	600/800/1200	V
Repetitive peak reverse voltage (T _j =25℃)		V_{RRM}	600/800/1200	V
Non repetitive surge peak Off-state voltage		V _{DSM}	V _{DRM} +100	V
Non repetitive peak reverse voltage		Vrsm	V _{RRM} +100	V
RMS on-state current	TO-220A(Ins) (Tc=70°C)		20	
	TO-220A(Non-Ins) (Tc=90°C)	I _{T(RMS)}		A
	TO-220F(Ins) (T _C =65℃)	. ()		
	TO-3P(Ins) (T _C =105°C)			

Non repetitive surge peak on-state current (full cycle, F=50Hz)	I _{TSM}	200	А
I ² t value for fusing (tp=10ms)	l ² t	200	A ² s
Critical rate of rise of on-state current $(I_G = 2 \times I_{GT})$	dl/dt	100	A/µs
Peak gate current	I _{GM}	4	Α
Average gate power dissipation	P _{G(AV)}	1	W
Peak gate power	P _{GM}	10	W

ELECTRICAL CHARACTERISTICS (T_j =25 $^{\circ}$ C unless otherwise specified)

3 Quadrants

Symbol	Test Condition	Quadrant		Value		Unit
				BW	CW	Ullit
Ідт	V _D =12V R _L =33Ω	I - II -III	MAX	50	35	mA
V _G T		I - II -III	MAX	1	.3	V
V _{GD}	$V_D = V_{DRM} T_j = 125$ °C RL = 3.3KΩ	I - II -III	MIN	0.2		V
I _L I _G =1.2I _{GT}	I -III	MAX	70	60	mA	
	IG = 1.ZIGT	II	IVIAA	90	70	IIIA
lн	I _T =100mA		MAX	60	50	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	1000	500	V/µs

4 Quadrants

Symbol	Test Condition	Quadrant		Value	Unit
I _{GT}	V _D =12V R _L =33Ω	I - II -III	MAX	50	mA
		IV		70	
V _G T		ALL	MAX	1.3	V
V _{GD}	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ ΚΩ	ALL	MIN	0.2	V
IL IG=1.2IGT	1 -4 01	I -III-IV	MAX	70	mΛ
	IG = 1.2IGT	II	IVIAA	90	mA
I _H	I _T =100mA		MAX	60	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	500	V/µs

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{тм} =28A tp=380µs	T _j =25℃	1.5	V
IDRM	V _D =V _{DRM} V _R =V _{RRM}	T _j =25℃	5	μA
I _{RRM}		T _j =125℃	2.5	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit	
Rth(j-c) j	junction to case(AC)	TO-220A(Ins)	1.9		
		TO-220A(Non-Ins) 1.	O-220A(Non-Ins) 1.1		
		TO-220F(Ins)	2.1	°C/W	
		TO-3P	0.7		

FIG.1 Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I^2t (dI/dt < 100A/ μ s)

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

