Strong Induction Hypothesis Quantification

Here is one way to keep it straight:

 \square n \geqslant last base case

□ n ≥ K

to prove: P(n+1) in the IS

Note that this means there are multiple ways to write it:

BC: P(0) \(P(1) \(P(2) \) P(3) \(\times \) If these are your Base cases

IH: Fix $n \in \mathbb{N}$ Assume P(K) $\forall K \in \mathbb{N}$ s.t. $K \ge 0$, $n \ge 3$, $n \ge K$

IH: Fix n e N

Assume P(K) $\forall K \in IN$ s.t. $K \gg 0$ $3 \leqslant K \leqslant n$

IH: Fix $n \in \mathbb{N}$ Assume P(K) $\forall K \in \mathbb{N}$ s.t. $0 \le K \le n$, $n \ge 3$

We can check that all three are equivalent informally:

Fix $n \in \mathbb{N}$, $n \ge 3$ Assume $P(0) \land P(1) \land P(2) \land \dots \land P(n)$

visu a lly

