- 1. A rocket follows a straight path. Its position along the path is t^2 meters from the origin at time t. The radius of the exhaust pipe at time t is $r(t) = 8 t^{1/3}$.
 - (a) The EPA wants an estimate of the total volume of exhaust from t=0 to t=8 seconds. They request you estimate this volume by sampling the radius of the exhaust pipe and the length of the exhaust column at 8 regularly spaced **times**.
 - Write and evaluate a summation for the EPA's requested estimate.
 - (b) Use an integral to produce a more accurate estimate of the total amount of exhaust (you may assume the volume of exhaust in an exhaust column of height h and radius r is $\pi r^2 h$).
- 2. For this problem, you will be using MATLAB/OCTAVE. Please include a printout of your code along with your assignment.
 - (a) Let $f(x) = x^2$. Set up a right-endpoint Riemann sum to estimate the value of $\int_0^3 f(x) dx$.
 - (b) Use Matlab/Octave to evaluate the Riemann sum from part (a) using 10, 100, and 1000 intervals. Report the deviation from the exact integral for each case.
 - (c) Consider the parameterization $p: \mathbb{R} \to \mathbb{R}$ of the real numbers given by $p(t) = t^{1/3}$. Find an interval [a,b] such that p([a,b]) = [0,3]. (If you're unfamiliar with this notation, for a set X, p(X) is the image of X under p. That is, $p(X) = \{y: y = p(x) \text{ for some } x \in X\}$).
 - (d) The command stairs(xs, ys) can be used to graph a step function in MATLAB/OCTAVE. Perfect for visualizing Riemann sums! We're going to compare two ways of approximating f. Use stairs to plot (t, f(t)) for 50 equally spaced points in [0, 3]. Again, use stairs to plot $(p(t), f \circ p(t))$ for 50 equally spaced points in your interval [a, b] from above. How do the domain and range of your t-values compare? How do the x and y values for each of your plots compare?
 - (e) Set up a sum that estimates the area under the curve $(p(t), f \circ p(t))$ when t ranges over your previously-established interval [a, b]. Use MATLAB/OCTAVE to compute the value of this sum for 10, 100, and 1000 regularly spaced t values. Should you expect these estimates to be close to $\int_0^3 f(x) dx$? How do your estimates compare to part (b)?
 - (f) Set up and evaluate an integral to find the exact area under the curve $(p(t), f \circ p(t))$ where t ranges over your previously-established interval [a, b]. The bounds of your integral should be a and b. (Hint: set up a general sum to estimate the area and then take a limit as $\Delta t \to 0$).
- 3. You travel, starting from the origin and heading in the positive direction, along the x-axis with a speed given by $s(x) = \sqrt{x}$ units per second, where x is your position along the x-axis. You sample the height of a function as you travel and discover $h(t) = (2-t)^2$ where t is time in seconds.
 - (a) How long does it take you to get to x = 10?
 - (b) Give a relationship between x and t.
 - (c) Reparameterize h in terms of x.
 - (d) Write an integral formula for the area under h from x = 0 to x = 10.

Recall that Work = $\vec{F} \cdot \vec{d}$ where \vec{F} is a force vector and \vec{d} is a displacement vector.

4. A turbulent river pushes a particle at the point (x, y) with a force

$$\vec{F}(x,y) = (-yx,x).$$

You are pushing a box through the river from (0,0) to (1,1) along a straight path.

- (a) Does $\vec{F}(0,0) \cdot (1,1)$ give you the total work done? How about $\vec{F}(1,1) \cdot (1,1)$? Why or why not?
- (b) Suppose you take tiny steps of size $\sqrt{2}/n$ on your way from (0,0) to (1,1). Write a summation that represents the total amount of work done traveling from (0,0) to (1,1). If it's not the case already, rewrite your summation so it involves a dot product.
- (c) Write down the integral that results from your summation in (b) when you let $n \to \infty$.
- (d) What is the total work done?
- 5. A vector moves along the path $\vec{r}(t) = \begin{bmatrix} \sin t \\ 2 \cos t \\ t \end{bmatrix}$ through a force field given by $\vec{F}(x,y,z) = \begin{bmatrix} yz \\ xz \\ xy \end{bmatrix}$. Find the total work done between t = 0 and $t = \pi$.