

LQR Homework

Problem 1

This is how **state** x and **control** u evolve according to:

$$x[t+1] = Ax[t] + Bu[t]$$

where:

- $x[t] \in \mathbb{R}^n$ is the state vector.
- $u[t] \in \mathbb{R}^m$ is the control input.
- $A \in \mathbb{R}^{n imes n}$ is the state transition matrix.
- $B \in \mathbb{R}^{n imes m}$ is the control matrix.

We seek to determine the optimal control sequence u[t] that minimizes the **quadratic cost** function over a finite horizon T:

$$J = \sum_{t=0}^T \left(x[t]^T Q x[t] + u[t]^T R u[t]
ight)$$

where:

- $Q \in \mathbb{R}^{n \times n}$ is the **state cost matrix** (positive semi-definite).
- $R \in \mathbb{R}^{m imes m}$ is the **control cost matrix** (positive definite).

The **cost-to-go function** at time t, assuming optimal actions are taken thereafter, is a **quadratic function** of the state:

$$V_t(x) = x[t]^T P[t] x[t].$$

Then we use **Bellman Equation** to derive the recursive equations to compute P[t] and obtain the **optimal control law** u[t].

$$V_t(x) = \min_{u[t]} \left(x[t]^T Q x[t] + u[t]^T R u[t] + V_{t+1}(x[t+1])
ight).$$

Then we substitute the system dynamics:

$$x[t+1] = Ax[t] + Bu[t],$$

we get:

$$V_t(x) = \min_{u[t]} \Big(x[t]^T Q x[t] + u[t]^T R u[t] + (A x[t] + B u[t])^T P[t+1] (A x[t] + B u[t]) \Big).$$

Expanding the quadratic terms:

$$V_t(x) = \min_{u[t]} \left(x[t]^T Q x[t] + u[t]^T R u[t] + x[t]^T A^T P[t+1] A x[t]
ight)$$

$$+u[t]^TB^TP[t+1]Bu[t]+2x[t]^TA^TP[t+1]Bu[t]\Big).$$

Then we differentiate $V_t(x)$ with respect to u[t] and set it to zero to find the optimal u[t]:

$$rac{d}{du}\left(V_t(x)
ight)=0. \ \ (R+B^TP[t+1]B)u+B^TP[t+1]Ax=0.$$

Solving for u^* :

$$u^* = -(R + B^T P[t+1]B)^{-1} B^T P[t+1] Ax.$$

Thus, the optimal control law is:

$$u[t] = -K[t]x[t],$$

where the LQR feedback gain matrix is:

$$K[t] = (R + B^T P[t+1]B)^{-1} B^T P[t+1]A.$$

Then we substitute u^* into the value function:

$$V_t(x) = x^TQx + (-Kx)^TR(-Kx) + x^TA^TP[t+1]Ax$$

$$+2x^{T}A^{T}P[t+1]B(-Kx)+(-Kx)^{T}B^{T}P[t+1]B(-Kx).$$

We get:

$$V_t(x) = x^T(Q + A^TP[t+1]A - A^TP[t+1]BK - K^TB^TP[t+1]A + K^TB^TP[t+1]BK + X^TB^TP[t+1]BK + X^TB^TP[t+1]$$

The equation simplifies to:

$$P[t] = Q + A^T P[t+1]A - A^T P[t+1]B(R+B^T P[t+1]B)^{-1}B^T P[t+1]A.$$

This is **Riccati Equation**. As you can see we can solve backward using the terminal condition below via dynamic programming:

$$P[T] = Q.$$

Problem 2.1

$$A = \begin{bmatrix} 1 & dt \\ & & \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ dt \end{bmatrix}.$$

Problem 3.1

The following are the parameters of the undamped pendulum:

- Unit length l=1
- Unit mass m=1
- $\bullet \ \, {\rm Gravity} \ g = -10 \\$
- Control input \boldsymbol{u} (torque applied at the pivot)

The system evolves as:

$$egin{aligned} heta_{t+1} &= heta_t + \dot{ heta}_t dt, \ \dot{ heta}_{t+1} &= \dot{ heta}_t + (-rac{3g}{2l}\sin heta_t + rac{3}{ml^2}u)dt. \end{aligned}$$

Substituting g=10, l=1, m=1, we get:

$$\dot{\theta}_{t+1} = \dot{\theta}_t + (15\sin\theta_t + 3u)dt.$$

Then we linearize the system around $heta_t=0$, $\dot{ heta}_t=0$

To linearize, we approximate $\sin \theta_t$ using a **Taylor series expansion** around $\theta_t = 0$:

$$\sin heta_t = heta_t - rac{ heta_t^3}{3!} + \mathcal{O}(heta_t^5).$$

For small angles, the higher-order terms $\frac{\theta_t^3}{3!}$ and beyond become negligible, leading to the

approximation:

$$\sin \theta_t \approx \theta_t$$
.

Thus, the second equation simplifies to:

$$\dot{\theta}_{t+1} = \dot{\theta}_t + (15\theta_t + 3u)dt.$$

Rewriting the system in **state-space form**:

$$egin{bmatrix} heta_{t+1} \ \dot{ heta}_{t+1} \end{bmatrix} = egin{bmatrix} 0 & 1 \ 15 & 0 \end{bmatrix} egin{bmatrix} heta_t \ \dot{ heta}_t \end{bmatrix} + egin{bmatrix} 0 \ 3 \end{bmatrix} u.$$

Thus, the discrete-time linearized system matrices then are:

$$A = egin{bmatrix} 1 & dt \ 15dt & 1 \end{bmatrix}, \quad B = egin{bmatrix} 0 \ 3dt \end{bmatrix}.$$

The Cost Matrices are:

$$Q = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \quad R = egin{bmatrix} 1 \end{bmatrix}.$$

Problem 3.3

Problem 3.4

6DOF Homework

Problem 2

The experiments I have done and the validation metrics are shown below:

Experiment	Iteration	cls_accuracy	cls_R_t_accuracy	overall
Basic Model	40000	0.540578	0.046768	0.951857
Cropped Images as Input	46000	0.865199	0.442916	2.559835
6D Rotation Representation & Loss	93000	0.466300	0.027510	0.825309
Multiple Heads for Different Object Classes	47000	0.477304	0.071527	0.944979
Ensemble of All Modifications	65000	0.723521	0.235213	1.687758

My final model is the Cropped Images as Input one which comprises just the basic model architecture and the default training recipe and hyperparameters. The only modification I made is that I just cropped the input images to their bounding boxes.

Hyperparameter	Value	Description
lr	1e-4	Learning Rate
weight_decay	1e-4	Weight Decay for optimizer
output_dir	runs/basic/	Output Directory
data_dir	data/ycbv/v1/	Data Directory
batch_size	16	Batch Size
seed	2	Random seed

Hyperparameter	Value	Description
batch_size	16	Batch Size
seed	2	Random seed
max_iter	100000	Total Iterations
val_every	1000	Iterations interval to validate
save_every	50000	Iterations interval to save model
preload_images	1	Whether to preload train and val images
lr_step	[60000, 80000]	Iterations to reduce learning rate

The plot validation metrics of my best model is shown below:

