ESTADISTICA I

Semestre 01 - 2022

Taller Clase 12

- 1. La lectura de un voltímetro conectado a un circuito de prueba tiene una distribución uniforme en el intervalo $(\theta, \theta + 1)$, donde θ es desconocido. Para estimar a θ se toma una muestra aleatoria Y_1, Y_2, \dots, Y_n de lecturas de dicho voltímetro.
 - a) Se propone el siguiente estimador para θ : $\hat{\theta} = \bar{Y}$. ¿Es \bar{Y} insesgado para θ ? . Si no lo es, halle el sesgo de este estimador.
 - b) Usando a $\hat{\theta}$, proponga un estimador insesgado para θ .
 - c) Calcule el ECM para $\hat{\theta} = \bar{Y}$.
- 2. Sea X_1, X_2, \dots, X_n , con n > 5, una muestra aleatoria de una cierta población. La f.d.p. asoociada a esta muestra está dada por:

$$f(x|\theta) = \frac{2x}{\theta^2} \; ; \; 0 < x < \theta \; , \; \theta > 0 \; .$$

Considere los siguentes 4 estimadores para θ :

$$\hat{\theta}_1 = \frac{X_1 + X_2 + X_n}{2} \; ; \; \hat{\theta}_2 = \frac{X_1 + X_2 + \dots + X_n}{n} \; ;$$

$$\hat{\theta}_3 = \frac{X_1 + X_2 + X_3}{3} \; ; \; \hat{\theta}_4 = \frac{X_1 + 2X_2 + 3X_5}{6} \; .$$

- a) Determine el sesgo de cada uno de estos 4 estimadores para θ .
- b) Calcule los respectivos ECM para cada estimador. Comente
- 3. Sea X_1, X_2, \dots, X_n , con $n \geq 5$, una muestra aleatoria de una cierta población. La f.d.p. asoociada a esta muestra está dada por:

$$f(x|\theta) = \theta x^{\theta-1}$$
; $0 < x < 1$, $\theta > 1$.

Se porponen los siguientes estimadores para θ :

$$\hat{\theta}_1 = \frac{X_1 + 5X_n - AX_3}{3}$$
; $\hat{\theta}_2 = \frac{X_2 + BX_n - X_4}{8}$.

- a) Determine los valores de A y B para que $\hat{\theta}_1$ y $\hat{\theta}_2$ sean estimadores insesgados para θ .
- b) Una muestra aleatoria particular permite obtener los siguentes valores:

$$0.963, 0.948, 0.356, 0.931, 0.403$$
.

Haciendo A = -3 y B = 24, calcule una estimación para θ , basada en estos datos, usando el mejor estimador de la parte a).