Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumei

Marco Teorico

Analisis Multiresolucion

Umbralización

Implementacio

Resultados

Imagenes de prueba

Comparacion de filtros

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹ M.Santiago ² S.Lautaro Andres ³ V.Xavier ⁴

1-2-3-4 Universidad Nacional del Comahue Buenos Aires , Neuquen

Resume

Marco Teorico

Multiresolucion Umbralización

Implementacio:

Imagenes de prueba Parametros optimos

Comparacion de filtros

1 Resumen

- 2 Marco Teorico
 - Analisis Multiresolucion
 - Umbralización
- 3 Implementacion
- 4 Resultados
 - Imagenes de prueba
 - Parametros optimos
 - Comparacion de filtros

Resumen

Filtrado de ruido en imagenes con transformada de Wavelet

Resumen

Resumen del trabajo (alguna imagen que represente nuestro trabajo) Sugerencia usar a lenna

Análisis Multiresolución

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico

Analisis Multiresolucion Umbralización

Implementacio

Imagenes de prueba
Parametros optimos
Comparacion de

Un análisis multiresolución para $L^2(\mathbb{R})$ consiste en una secuencia de subespacios cerrados de $L^2(\mathbb{R})$, $\{V_j\}_{j\in\mathbb{Z}}$, una función una función $\phi\in V_0$ tal que se cumplan las siguientes condiciones:

i. Los espacios V_j están anidados, es decir:

$$...\subset V_{-1}\subset V_0\subset V_1...$$

ii.
$$\overline{\cup_{j\in\mathbb{Z}}V_j}=L^2(\mathbb{R})$$
 y $\cap j\in\mathbb{Z}V_j=0$

iii. Para todo
$$j \in \mathbb{Z}$$
, $V_{j-1} = D(V_j)$

iv.
$$f \in V_0 \to T_k f \in V_o$$
, $\forall k \in \mathbb{Z}$

v. $\{T_k\phi\}_{k\in\mathbb{Z}}$ es una base ortonormal de V_0

Análisis Multiresolución

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ¹ S.Lautaro Andres ³, V.Xavier ⁴

rvesume

Marco Teorico

Multiresolucion
Umbralización

Implementacion

Imagenes de prueba Parametros optimos Comparacion de Se define a W_j como el complemento ortogonal de V_j en V_{j-1}

$$V_{j-1} = V_j \oplus W_j \tag{1}$$

$$A_{j-1}(t) = A_j(t) + D_j(t)$$
 (2)

Por otro lado:

$$V_J = V_K \oplus W_K \oplus ... \oplus W_{J+1}, \ J < K \tag{3}$$

Finalmente:

$$x(t) = A_J(t) + \sum_{j=-\infty}^{J} D_j(t)$$
 (4)

Análisis Multiresolución

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico

Analisis Multiresolucion Umbralización

Implementacio

Imagenes de prueba Parametros optimos Comparacion de ightarrow Vemos ejemplo en el toolbox de Matlab Para continuar:

$$A_j(t) = \sum_{k \in \mathbb{Z}} \beta_{j,k} \phi_{j,k}(t)$$
 (5)

Donde:

$$\beta_{j,k} = \langle x(t), \phi_{j,k}(t) \rangle \tag{6}$$

$$D_{j}(t) = \sum_{k \in \mathbb{Z}} \alpha_{j,k} \psi_{j,k}(t)$$
 (7)

Donde:

$$\alpha_{j,k} = \langle x(t), \psi_{j,k}(t) \rangle \tag{8}$$

La función $\psi\in L^2(\mathbb{R})$ y $\{T_k\psi\}_{k\in\mathbb{Z}}$ son una base ortonormal de W_0

Umbralización

Filtrado de ruido en imagenes con transformada de Wavelet

Umbralización

Figura: Modos de umbralización más utilizados

Umbralización

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolucion Umbralización

Implementacion

Imagenes de prueba Parametros optimos Algortimos para el cálculo del umbral τ :

- VisuShrink
- LevelShrink
- BayesShrink
- NormalShrink
- AWT(Adaptative Wavelet Treshholding)

Pseudocodigo parametros optimos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis

Multiresolucion

Implementacion

Imagenes de prueba
Parametros optimos
Comparacion de

- Leer todas las imagenes de una carpeta.
- Agregar ruido gaussiano con $\mu = 0$ y varianza σ .
- Seleccionar el parametro a variar, y dejar constante el resto de parametros.
- Transfromar la imagen utilizando la trasnformada de Wavelet.
- Calcular los umbrales para cada nivel segun el umbral seleccionado.
- Aplicar el modo (soft hard) y eliminar las componentes menores al umbral.
- Aplicar la antitransformada.
- Calcular el PSNR y el SSIM.

Pseudocodigo comparacion de filtros

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis Multirecolucion

Implementacion

Popultado

Imagenes de prueba

Comparacion de

→□▶→□▶→■▶→■ 900

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis Multiresolucion

Implementacio

?esultados

Imagenes de prueba

Comparacion de

Imagenes con ruido gaussiano con $\sigma=0.3$

Comparacion de Niveles

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolucion Umbralización

impiementacio

Imagenes de prueba Parametros optimos

Parametros optimo Comparacion de filtros

PSNR	noise	1	2	4	6
Lenna	17.65	23.92	27.03	22.29	22.29
House	19.87	22.90	25.58	24.57	23.51
Wave	18.63	23.34	26.70	24.71	24.65
SSIM	noise	1	2	4	6
Lenna	0.518	0.742	0.856	0.847	0.808
House	0.620	0.806	0.882	0.839	0.814
Wave	0.586	0.761	0.839	0.820	0.803

Comparacion de Niveles

Filtrado de ruido en imagenes con transformada de Wavelet

Comparacion de modos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolucion
Umbralización

Implementacio

Resultados

Parametros optimos

Comparacion de filtros

PSNR	noise	soft	hard
Lenna	17.65	27.03	21.41
House	19.87	25.58	20.20
Wave	18.63	26.70	20.85
SSIM	noise	soft	hard
Lenna	0.518	0.856	0.757
House	0.620	0.882	0.789
Wave	0.586	0.839	0.755

Comparacion de modos

Filtrado de ruido en imagenes con transformada de Wavelet

Parametros optimos

Comparacion de umbrales

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis

Multiresolucion

Umbralización

Implementacio

Resultados

Imagenes de prueba Parametros optimos Comparacion de

PSNR	noise	universal	bayes	level	normal	awt
Lenna	17.65	25.86	25.71	25.40	27.03	25.24
House	19.87	22.91	23.32	23.19	25.58	23.41
Wave	18.63	26.74	26.70	26.86	26.70	25.56
SSIM	noise	universal	bayes	level	normal	awt
SSIM Lenna	noise 0.518	universal 0.848	bayes 0.847	level 0.849	normal 0.856	awt 0.838
Lenna	0.518	0.848	0.847	0.849	0.856	0.838

Comparacion de umbrales

Filtrado de ruido en imagenes con transformada de Wavelet

Parametros optimos

Comparacion de la Wavelet madre

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis Multiresolucion Umbralización

Implementacio:

Resultados Imagenes de prueba

Parametros optimos Comparación de

PSNR	noise	haar	db4	sym8
Lenna	17.65	23.44	25.19	27.03
House	19.87	26.38	24.78	25.58
Wave	18.63	24.67	26.87	26.70
SSIM	noise	haar	db4	sym8
Lenna	0.518	0.819	0.853	0.856
House	0.620	0.848	0.875	0.882
Wave	0.586	0.805	0.836	0.839

Comparacion de la Wavelet madre - db4

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis

Umbralización

Implementacion

Resultados

Parametros optimos

Comparacion de

Comparacion de la Wavelet madre - haar

Filtrado de ruido en imagenes con transformada de Wavelet

Parametros optimos

Comparacion de la Wavelet madre - sym8

Filtrado de ruido en imagenes con transformada de Wavelet

Parametros optimos

Parametros optimos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico

Multiresolucion

Implementacio

Resultados

Parametros optimos

Comparacion de

level	wavelet	mode	umbral
2	sym8	soft	normal

Resultado del filtrado

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis Multiresolucion

Implementacio

Imagenes de prueba

filtros

Parametros optimos Comparación de