Project Ballbot

Markus Lamprecht Florian Müller Michael Suffel

TU Darmstadt, RTM

In halts verzeichn is

1	Iten	a - List
2		ulation
	2.1	Launch
	2.2	Simulation design
	2.3	Gazebo Parameters
	2.4	Control
		2.4.1 Plugins
		2.4.2 Launch
	2.5	Sensors
		2.5.1 IMU
3	Mod	del
_		Composition
	3.2	Assumptions
	•	Model Parameters

1 Item - List				
Item	#	W.[g]	Weblink	Picture
OpenCR Board (Controlling the motors, IMU)	1	60	github_wiki	Manuary and the state of the st
UpBoard (Main PC)	1	96	127€	
Intel RealSense R200	1	9.4	datasheet, 84.15€	
Laser Distance Sensor	1	124	specs, 100€	
				USO 2 to selected a late of to brain and of the selected and the selected
Battery: LI-PO 11.1 1800mAh LB-12 19 Turtlebot3 Layers(125cmx125cm)	$\frac{1}{4}$	132	44.90€	
				3) Dhuog
XM430-W350-R Dynamixel (Motors)	3	82	robotis,250€	X-Sories Q
Ball(alum., dia.: 140mm, material thickness 2.5mm)	1	400	ball-tech gmbh, 40 €.	
				3
Omni wheels (dia: 60mm , thickness: 25mm)	3	51.46	10.38€	
Kreisring (PLA, 3D printeted)	1	28		Although Time.
H. I. (DI A. oD. ot. ot. 1)		10		
Halterung (PLA, 3D printeted)	3	18		
Mitnehmer (PLA, 3D printeted)	3	8		
Plain washer (Beilagscheibe),(PLA, 3D printeted)	3	0.45		•
M3 (Mutter-Halterung-Kreisring-Layer)	9	0.10		
M2.5 (Kreisring-Layer)	2			
M3x8mm Halterung	6		Zylinderkopf (Imbus)	
M3x22mm Layer	3	1.34	Zylinderkopf (Imbus)	
M2.5x22 (Motoren-Halterung)	12		Sechskant	
M2.5x38 (Motoren-Rad)	3		Zylinderkopf (Imbus)	
M2.5x24 (Layer)	2		Zylinderkopf (Imbus)	
M2x6mm (Mitnehmer-Motor)	12		Zylinderkopf (Imbus)	
Distanzbolzen	???	4.	???	
Total Cost: 1176€ + Cost of opencr board and all	plastic	c (incl. t	b3 structure) and scrwes	

Tabelle 1.1: My caption

Type	Size	Amount	Place
Cylinderhead screw	$M3 \times 11 mm$	8	Motor mounts
Cylinderhead screw	$M2,5 \times 22 mm$	16	Motor plate
Cylinderhead screw	$M2 \times 6 \text{ mm}$	18	Wheel shaft
Cylinderhead screw	M2,5 x 36 mm (38 mm)	5	Wheel shaft cover
Cylinderhead screw	$M3 \times 20 \text{ mm}$ (21mm)	4	Layer mounting
Nut	M2	5	Layer mounting
Cylinderhead screw	$M2.5 \times 22 mm$ $(23 mm)$	4	Layer mounting

TODO:

- $1.\ Abmessungen von einer struckture layer$
- 2. upboard1-link noch eintragen

2 Simulation

TODO: check if controller works check why imu fails

2.1 Launch

These files are executed one after another:

- 1. bb simulation: ballbot.launch
- 2. bb_description: bb_description.launch
- 3. bb description -> urdf: bb.xacro
- 4. bb_description -> urdf: bb.urdf.xacro
- 5. bb description -> urdf: common properties.xacro
- 6. bb description -> urdf: bb.gazebo.xacro

2.2 Simulation design

Ballbot SDF Reference: Ballbotmodel

We use not the sdf but the xacro description as in this example here.

Gazebo uses different physics engines:

- Open Dynamics Engine (ODE) (Default)
- Bullet
- Dynamic Animation and Robotics Toolkit (DART)
- Simbody

which all have different friction etc. models.

Files:

- bb.urdf.xacro: Link's: Visual description of the Robot and its collision model(STL file). Pose Mass and Inertias. Joint's: Pose, axis, effort and velocity limits, friction.
- common properties.xacro: Macros for color definition.
- bb.gazebo.xacro: gazebo references dynamics of the links: friction parameters (mu1,mu2),

Gazebo Parameter's List:

name(xacro)	description	value	sdf group
mu1	is the Coulomb friction coefficient for the first friction direction	1.0	ode
mu2	is the friction coefficient for the second friction direction (perpendicular to the first friction direction)	2.0	ode
fdir1	3-tuple specifying direction of mu1 in the collision local reference frame.	0 0 0	ode
kp	spring constant equivalents of a contact as a function of SurfaceParams::cfm and SurfaceParams::erp		ode
kd	spring damping constant equivalents of a contact as a function of SurfaceParams::cfm and SurfaceParams::erp.		ode
cfm	Constraint Force Mixing parameter.		ode
erp	Error Reduction Parameter.		ode
\min_{depth}	Minimum depth before ERP takes effect.		ode
$\max_{\rm Vel}$	Maximum interpenetration error correction velocity. If set to 0, two objects interpenetrating each other will not be pushed apart.		ode
slip1	Artificial contact slip in the primary friction direction		ode
slip2	Artificial contact slip in the secondary friction direction.		ode
See: ODES	urfaceParams		

2.3 Gazebo Parameters

2.4 Control

sobald diff drive plugin angeschaltet drehen sich die raeder viel zu schnell

Diff Drive in ballbot.launch an oder ausschalten.

in bb.gazebo.xacro transmission und controller festlegen.

zudem yaml file(currently I use: effort controllers/JointVelocityController)

Effort Joint Interface as Hardware Interface is used.

Do this example first: http://gazebosim.org/tutorials/?tut=ros_control

Also try this bb8 gazebo tutorial: https://www.youtube.com/watch?v=j5qC91448p8

2.4.1 Plugins

- gazebo-ros-control
- diff drive

2.4.2 Launch

roslaunch rrbot_control rrbot_control.launch

These files are executed one after another:

- 1. load config
- 2. controller_spawner

2.5 Sensors

2.5.1 IMU

We want to simulate the IMU of the opencr board. STRG+T to see imu topic values! Imu of opencr board simulated

Simulate like this: rviz rviz dann als fixed frame nimm: imu_link. Und add topic imu und waehle als topic ballbot/sensor/imu

The simulated IMU outputs values like: orientation (x,y,z,w), angluar velocity(x,y,z), linear velocity(x,y,z), linear acceleration(x,y,z).

The opencr real IMU gives values like: orientation(x,y,z,w), angular velocity(x,y,z), linear acceleration(x,y,z) see http://turtlebot3.readthedocs.io/en/latest/appendix opencr.html

3 Model

3.1 Composition

The Ballbot consists of three parts, which are depicted in Figure 3.1.

- \bullet Body with motors
- 3 omni-directional wheels
- Ball

Abbildung 3.1: Parts for the 3D-Model

3.2 Assumptions

To reduce the complexity of the system, the following assumptions are made:

- No slip between the contact points between the ball/ground and wheels/ball
- No friction; except the friction, which occurs at the rotation of the ball around the z-axis
- No deformation
- Fast motor dynamics; The controlling of the motor is much faster than the controller of the Ballbot
- Ball moves only horizontal

3.3 Model Parameters

Traegheitsmoment kugel Hohlzylinder: $J = m \frac{r_i^2 + r_a^2}{2} = 0.4 * \frac{65^2 + 70^2}{2} kg * 10^{-6} m^2 = 1.825 * 10^{-3} kg m^2$ Traegheitsmoment wheel Vollzylinder: $J = m \frac{1}{2} r^2 = 0.05146 * 0.020^2 = 1.0292 * 10^{-4} kg m^2$

Tabelle 3.1: My caption

		1		
Parameter	Variable	Value	Source	
Mass of the ball	m_K	0,4 kg	Datasheet	
Mass of the ball	m_K	$0.397 \mathrm{kg}$	Measured	
Mass of the ball	m_K	0,631 kg	SolidEdge	
Mass of the body, complete		?	Measured	
(with motors/wheels)	m_B		Measured	
Mass of the body, complete	m	1 705 lea	ColidEdge	
(with motors/wheels)	m_B	1,785 kg	SolidEdge	
Mass of the body	m	?	Measured	
(without motors/wheels)	m_B	:	measured	
Mass of the body	m	1 204 kg	SolidEdgo	
(without motors/wheels)	m_B	1,394 kg	SolidEdge	
Mass of Omniwheel	m_{OW}	0,050 kg	Measured	
Mass of Omniwheel	m_{OW}	0,046 kg	SolidEdge	
Mass of the virtual wheel	m_{VW}	0.384 kg	Measured	
Mass of the substructure, complete		0.506.1	Magazinad	
(with motors/wheels)	m_S	0,506 kg	Measured	
Mass of the substructure, complete	,,,	0.457 1	ColidEdmo	
(with motors/wheels)	m_S	0,457 kg	SolidEdge	
Mass of plate	m_P	0,078 kg	Measured	
Mass of plate	m_P	?	SolidEdge	
	•			
Radius of the ball	r_{K}	$0.07 \; { m m}$	Datasheet	
Radius of the body	r_B	0,0703 m	Measured	
Radius of the Wheels	r_W	$0.03 \; { m m}$	Datasheet	
Height of the center of gravity	l	0,24045 m	SolidEdge	
Height of the body	h	0,34294 m	SolidEdge	
Inertia of the Ball	Θ_{K}	$0,00131 \; kgm^2$	Computed	
Inertia of the Body (x-axis)	Θ_{Bx}	$0.08751 \; kgm^2$	SolidEdge	
Inertia of the Body (y-axis)	Θ_{By}	$0.08788 \; kgm^2$	SolidEdge	
Inertia of the body (z-axis)	Θ_{Bz}	$0,00329 \; kgm^2$	SolidEdge	
Inertia of the body (xy plane)	Θ_{Bxy}	$-0.00001 \ kgm^2$	SolidEdge	
Inertia of the body (xz plane)	Θ_{Bxz}	$0,00203 \ kgm^2$	SolidEdge	
Inertia of the body(zy plane)	Θ_{Bzy}	$0,00018 \ kgm^2$ SolidEd		
Inertia of the rotor (motor)	Θ_{M}	$0,444 e-6 \ kgm^2$	Adoption	
Inertia of Omniwheel	Θ_{OW}	$0.000023157 \ kgm^2$	Computed	
Inertia of the actuating wheel in yz/xz	Θ_W	$0.058873 \ kgm^2$	Computed	
Inertia of the actuating wheel in xy	Θ_{Wxy}	$0,16656 \ kgm^2$	Computed	
	1		-	
Gear ratio	i	353,5	Datasheet	
Gravitational acceleration	g	$9.81 \ m/s^2$	BachelorThesis	
L		· ' '	I.	