PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE20MA151

END SEMESTER ASSESSMENT (ESA), B.TECH. II- SEMESTER- JULY- 2021

	ß	UE20MA151- ENGINEERING MATHEMATICS-II	
-	ime:	Time: 3 Hrs Answer All Questions Max Marks: 100	9
	<u>a</u>	Evaluate $\int_0^{\frac{a}{\sqrt{2}}} \int_0^x x dy dx + \int_{\frac{a}{\sqrt{2}}}^a \int_0^{\sqrt{a^2 - x^2}} x dy dx$ by changing the order of integration. Also sketch the region of integration.	9
	(q	Find the mass of the lemniscate $(x^2 + y^2)^2 = x^2 - y^2$, with density function given by	7
_	(١
	2	and the plane $x + y + z = 1$ is $\frac{1}{2}$ degree Celsius. Find the average temperature	_
7.	a)	Find the Directional derivative of \vec{V}^2 , where $\vec{V} = xy^2i + zy^2j + xz^2k$ at the point (2,0,3) in the direction of the outward normal to the sphere $x^2 + v^2 + z^2 = 14$ at the point (3,2,1)	9
	þ)	$e \vec{F} = y^2 i$ $z > 0 . \text{ ord}$	7
_	િ	The state of the s	ı
	2	causs's Divergence meorem to evaluate J J the boundary of the region bounded by the pa	7
w.	a)	Find Laplace transform of the periodic function whose graph is given below.	9
		2	
	<u> </u>	Find $I\{coshat sinht \pm 2^t \pm sin2t cos3t \pm t3/2\}$	1
	7		-
	2	Find $L\{\int_0 \frac{t}{t} + \delta(t-a)u(t-a) + te^{-t}\sin 2t\}$.	7
4.	a)	Find $L^{-1}\left\{\frac{1-3s}{s^2+8s+21} + \frac{s^2-1}{(s^2+1)^2} + \cot^{-1}s\right\}$	9
	(q	Apply Convolution theorem to evaluate the inverse Laplace transform of $L^{-1}\left\{\frac{s^2}{s^4+4\sigma^4}\right\}$.	7
	ં	leflection of a beam of length L, clamped, horizontally at both ends and le	7
_		$\frac{L}{4}$ by a weight W is given by $EI \frac{a^4 y}{ax^4} = W \delta(x - \frac{L}{4})$. Find the deflection curve, given that	
		$y = \frac{dy}{dx} = 0 \text{ when } x = 0 \text{ and } x = L.$	
5.	a)	Find the complex form of the Fourier Series of the function $f(x) = e^x$ in $-\pi \le x \le \pi$	9
	(q	Find the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.	7
		11	7

reference point for every 30 degrees of rotation of the crank. θ 0 30 60 90 120 150 180 210 240 270 300 330 u 298 356 373 337 254 155 80 51 60 93 147 221 Find the constant term and coefficients of the first and second harmonics in the Fourier series expansion of 'u' (Leave the answer rounded off to two decimal places)		_
reference point for every 30 degrees $ \theta 0 30 60 $ u 298 356 373 Find the constant term and coefficients of 'u' (Teave the answer.)	೦	
nce point for every 30 degrees θ 0 30 60 u 298 356 373 he constant term and coefficients of 'n' (Leave the answers.)	The fc	
o 30 60 298 356 373 unt term and coefficient term and coefficient.	The following table gives displacement 'u' (in min) of a sliding piece from a fixed	
20 degrees 30 degrees 30 60 356 373 and coefficie	table g	
degrees 60 373 oefficie	ives di	
0	splace	
90 9337 337 nts of	ment '	
120 254	u' (in 1	
of the 150 155 st and	min) o	
crank 180 80	f a slic	
210 51 d harm	ling pi	
240 60 nonics	ece fr	
270 93 in the	om a	
300 147 Four	fixed	-
330 221 ier seri		
<u> </u>		