压位大法好

毛啸 金策

雅礼中学 学军中学

压位

压位

用 w 表示机器的字长,一般来说压 w=32 位,一般认为 $w \geq \log n$ 。

2 / 16

3 / 16

这是一种 simple 的降低程序复杂度的乱搞方法。

这是一种 simple 的降低程序复杂度的乱搞方法。 在很多算法中都能应用。

这是一种 simple 的降低程序复杂度的乱搞方法。 在很多算法中都能应用。

主要思想是对小规模的问题进行记忆化。因此需要压位。

乘法定义为 and, 加法定义为 or 或者 xor。

乘法定义为 and,加法定义为 or 或者 xor。 裸压位 $O(n^3/w)$ 。

乘法定义为 and,加法定义为 or 或者 xor。

裸压位 $O(n^3/w)$ 。

可以搞到 $O(n^3/(w \log n)) = O(n^3/(\log^2 n))$ 。

分成 $n/\log n$ 组。每组乘得的结果是一个 $n \times n$ 矩阵,全部加起来即可。

$$AB = A_1B_1 + A_2B_2 + \dots + A_kB_k$$

分成 $n/\log n$ 组。每组乘得的结果是一个 $n\times n$ 矩阵,全部加起来即可。

$$AB = A_1B_1 + A_2B_2 + \dots + A_kB_k$$

接下来考虑如何计算 A_iB_i 。

DFS 所有 $2^{\log n}$ 种可能的 a_{ki} ,并预处理出每一种对应的答案 $a_{ki}B_i$ 。

DFS 所有 $2^{\log n}$ 种可能的 a_{ki} ,并预处理出每一种对应的答案 $a_{ki}B_i$ 。这一步需要的复杂度是 $2^{\log n} \times n/w = n^2/w$ 。

DFS 所有 $2^{\log n}$ 种可能的 a_{ki} ,并预处理出每一种对应的答案 $a_{ki}B_i$ 。 这一步需要的复杂度是 $2^{\log n}\times n/w=n^2/w$ 。

把 a_{ki} 的 $\log n$ 位压成一个整数,然后在计算时查表即可 $O(n \times n/w)$

6 / 16

DFS 所有 $2^{\log n}$ 种可能的 a_{ki} ,并预处理出每一种对应的答案 $a_{ki}B_i$ 。这一步需要的复杂度是 $2^{\log n}\times n/w=n^2/w$ 。

把 a_{ki} 的 $\log n$ 位压成一个整数,然后在计算时查表即可 $O(n \times n/w)$ 总共有 $n/\log n$ 块,于是总复杂度 $O(n^3/(w \log n))$ 。

注: 有 $O(n^3 \text{poly}(\log \log n)/\log^4 n)$ 的做法。

An Improved Combinatorial Algorithm for Boolean Matrix Multiplication Huacheng Yu* Stanford University

注: 有 $O(n^3 \text{poly}(\log \log n)/\log^4 n)$ 的做法。 An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Huacheng Yu* Stanford University

有兴趣的同学可以参看附加材料 1。

求 DAG 的传递闭包。

8 / 16

求 DAG 的传递闭包。 稀疏图:

求 DAG 的传递闭包。

稀疏图:

裸压位, O(nm/w)。

求 DAG 的传递闭包。

稀疏图:

裸压位,O(nm/w)。

稠密图:

8 / 16

求 DAG 的传递闭包。

稀疏图:

裸压位,O(nm/w)。

稠密图:

将邻接矩阵平方 $\log n$ 次。

求 DAG 的传递闭包。

稀疏图:

裸压位,O(nm/w)。

稠密图:

将邻接矩阵平方 $\log n$ 次。

 $O(n^3/(w\log n) \times \log n) = O(n^3/w)$.

8 / 16

其实 $\log n$ 是可以去掉的:

其实 $\log n$ 是可以去掉的: 按拓扑序分治,每层做两遍矩阵乘法

其实 $\log n$ 是可以去掉的: 按拓扑序分治,每层做两遍矩阵乘法

根据主定理,复杂度还是 $O(n^3/(w \log n))$ 。

(逗比题)

一个 DAG, 顶点有权值。每次操作修改一个点的权值,或者询问一个点可以走到的点的最大权值。

(逗比题)

一个 DAG, 顶点有权值。每次操作修改一个点的权值, 或者询问一个点可以走到的点的最大权值。

把顶点分成若干组,每组 $\log n$ 个点,并记录组内所有 $2^{\log n} = O(n)$ 个子集的答案。

(逗比题)

一个 DAG, 顶点有权值。每次操作修改一个点的权值, 或者询问一个点可以走到的点的最大权值。

把顶点分成若干组,每组 $\log n$ 个点,并记录组内所有 $2^{\log n} = O(n)$ 个子集的答案。

修改时暴力重算所在组里的答案。

(逗比题)

一个 DAG, 顶点有权值。每次操作修改一个点的权值, 或者询问一个点可以走到的点的最大权值。

把顶点分成若干组,每组 $\log n$ 个点,并记录组内所有 $2^{\log n} = O(n)$ 个子集的答案。

修改时暴力重算所在组里的答案。

询问时暴力枚举 $n/\log n$ 组。

(逗比题)

一个 DAG, 顶点有权值。每次操作修改一个点的权值, 或者询问一个点可以走到的点的最大权值。

把顶点分成若干组,每组 $\log n$ 个点,并记录组内所有 $2^{\log n} = O(n)$ 个子集的答案。

修改时暴力重算所在组里的答案。

询问时暴力枚举 $n/\log n$ 组。

 $O(n^2/\log n)$.

± 1 RMQ

相邻两项之差为 ±1 的区间最小值询问。

(matthew99 &jcvb) WC2016 营员交流 11 / 16

± 1 RMQ

相邻两项之差为 ± 1 的区间最小值询问。 把序列分成若干段,每段长度 $\log n$ 。

± 1 RMQ

相邻两项之差为 ± 1 的区间最小值询问。 把序列分成若干段,每段长度 $\log n$ 。 对于 $n/\log n$ 段预处理一个 ST 表,复杂度是 O(n)。

$\pm 1 \text{RMQ}$

相邻两项之差为 ± 1 的区间最小值询问。 把序列分成若干段,每段长度 $\log n$ 。 对于 $n/\log n$ 段预处理一个 ST 表,复杂度是 O(n)。 对于小段内的询问,只有 $2^{\log n} = O(n)$ 种可能,预处理。

01 串的 LCS

$$f[i,j] = \begin{cases} f[i-1,j-1]+1 & (a[i]=b[j]) \\ \max(f[i-1,j],f[i,j-1]) & (a[i]\neq b[j]) \end{cases}$$
 按行做差分后,会变成一个 01 矩阵。
有一个熟知的 $O(n^2/w)$ 压位做法(附加材料 2)。

01 串的 LCS

还有一个复杂度为 $O(n^2/\log^2 n)$ 的做 (bao) 法 (li)。

将 dp 表格分成若干个 $t \times t$ 小块,相邻两个小块之间有宽度为 1 的重叠部分(黄圈)。我们只关心黄圈位置的 dp 值。

对于一个块,我们已知它的上边界、左边界的 dp 值,再根据对应位置的 a[],b[] 串,就可以得到下边界、右边界的 dp 值。

输入信息有 4t 位,对所有 2^{4t} 种进行打表。

这个方法也适用于求编辑距离等等 dp (字符集小,费用也为小整数的情形)。

 $\mathsf{FFT}\ O(n\log n)$

FFT $O(n \log n)$ 除此之外还有一些乱 (mei) 搞 (yong) 做法:

FFT $O(n \log n)$ 除此之外还有一些乱 (mei) 搞 (yong) 做法: 记忆化,对 $n \leq \frac{\log n}{2}$ 预处理一张乘法表,分块

FFT $O(n \log n)$ 除此之外还有一些乱 (mei) 搞 (yong) 做法:记忆化,对 $n \leq \frac{\log n}{2}$ 预处理一张乘法表,分块暴力 $O((n/\log n)^2)$

FFT $O(n \log n)$ 除此之外还有一些乱 (mei) 搞 (yong) 做法:记忆化,对 $n \leq \frac{\log n}{2}$ 预处理一张乘法表,分块暴力 $O((n/\log n)^2)$ Karatsuba 分治乘法 $O((n/\log n)^{1.59})$

感谢

感谢 CCF 给我提供这次交流的机会。

附加材料链接

```
http://theory.stanford.edu/~yuhch123/files/cbmm.pdf
http://wenku.baidu.com/link?url=
71T0FtY705sotC9pCIZHViu72JWJdE8nH2WuFpOisIU6CljduzBwzMFtSGCjK0BW
```