SYSTEM SOFTWARE LABORATORY

7. Design, develop and implement a C/C++/Java program to simulate the working of Shortest remaining time and Round Robin (RR) scheduling algorithms. Experiment with different quantum sizes for RR algorithm.

```
#include<stdio.h>
int main()
{
        int count,j,n,time,flag=0,time_quantum,ch=0;
        int wait_time=0,turnaround_time=0,at[10],bt[10],rt[10];
        int endTime,i,smallest;
        int finished=0,sum_wait=0,sum_turnaround=0;
        printf("1.Round Robin \n2.SRTF \n");
        scanf("%d",&ch);
        printf("Enter no of Processes : ");
        scanf("%d",&n);
        for(i=0;i<n;i++)
        {
                printf("Enter arrival time for Process P%d:",i);
                scanf("%d",&at[i]);
                printf("Enter burst time for Process P%d :",i);
                scanf("%d",&bt[i]);
                rt[i]=bt[i];
        }
        switch(ch)
        {
                case 1:
                printf("Enter Time Quantum:\t");
                        break;
```

```
case 2:
```

```
finished=0;
       printf("\n Process | Turnaround Time | Waiting Time \n");
       rt[9]=9999;
       for(time=0;finished!=n;time++)
       {
               smallest=9;
               for(i=0;i<n;i++)
                       if(at[i]<=time && rt[i]<rt[smallest] && rt[i]>0)
                              smallest=i;
               rt[smallest]--;
               if(rt[smallest]==0)
               {
                       finished++;
                       endTime=time+1;
            TurnAroundTime = EndTime - ArrivalTime
           WaitingTime = EndTime - ArrivalTime - BurstTime */
printf("\nP[%d]\t|\t%d\t|\t%d",smallest,endTime-at[smallest], endTime-bt[smallest]-at[smallest]);
                       printf("\n");
                       sum_wait+=endTime-bt[smallest]-at[smallest];
                       sum_turnaround+=endTime-at[smallest];
               }
       }
       printf("\nAverage waiting time = %f\n",sum_wait*1.0/n);
       printf("Average Turnaround time = %f",sum_turnaround*1.0/n);
       break;
       default:
       printf("Invalid\n");
```

```
}
return 0;
}
```

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	3	1
P2	1	4
РЗ	4	2
Р4	О	6
P5	2	3

If the CPU scheduling policy is SJF preemptive, calculate the average waiting time and average turn around time.

Solution-

Gantt Chart-

Gantt Chart

- Turn Around time = Exit time Arrival time
- Waiting time = Turn Around time Burst time

Process Id	Exit time	Turn Around time	Waiting time
P1	4	4-3=1	1 - 1 = 0
P2	6	6 – 1 = 5	5 – 4 = 1
Р3	8	8 – 4 = 4	4 – 2 = 2
P4	16	16 - 0 = 16	16 - 6 = 10
P5	11	11 – 2 = 9	9 – 3 = 6

Now,

- Average Turn Around time = (1 + 5 + 4 + 16 + 9) / 5 = 35 / 5 = 7 unit
- Average waiting time = (0 + 1 + 2 + 10 + 6) / 5 = 19 / 5 = 3.8 unit

Consider the set of 3 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	0	9
P2	1	4
P3	2	9

If the CPU scheduling policy is SRTF, calculate the average waiting time and average turn around time.

Solution-

Gantt Chart-

Now, we know-

- Turn Around time = Exit time Arrival time
- Waiting time = Turn Around time Burst time

Process Id	Exit time	Turn Around time	Waiting time
P1	13	13 – 0 = 13	13 – 9 = 4
P2	5	5 – 1 = 4	4 – 4 = 0
P3	22	22- 2 = 20	20 – 9 = 11

- Average Turn Around time = (13 + 4 + 20) / 3 = 37 / 3 = 12.33 unit
- Average waiting time = (4 + 0 + 11) / 3 = 15 / 3 = 5 unit

Process Id	Exit time	Turn Around time	Waiting time
P1	13	13 – 0 = 13	13 – 5 = 8
P2	12	12 – 1 = 11	11 – 3 = 8
P3	5	5 – 2 = 3	3 – 1 = 2
P4	9	9 – 3 = 6	6 – 2 = 4
P5	14	14 – 4 = 10	10 – 3 = 7

Now,

- Average Turn Around time = (13 + 11 + 3 + 6 + 10) / 5 = 43 / 5 = 8.6 unit
- Average waiting time = (8 + 8 + 2 + 4 + 7) / 5 = 29 / 5 = 5.8 unit