4. Demuestra o da un contraejemplo. Para i = 1, 2, 3, sea G_i una gráfica.

a)
$$G_1 + G_2 = G_2 + G_1$$

Demostración.

Ya que

$$V(G_1 + G_2) = V(G_1) \cup V(G_2)$$

= $V(G_2) \cup V(G_1)$
= $V(G_2 + G_1)$

y

$$A(G_1 + G_2) = A(G_1) \cup A(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$$

= $A(G_2) \cup A(G_1) \cup \{vu \mid v \in V(G_2), u \in V(G_1)\}$
= $A(G_2 + G_1)$

se tiene que $G_1 + G_2 = G_2 + G_1$

b) $G_1 \times G_2 = G_2 \times G_1$

Afirmación: $G_1 \times G_2 \neq G_2 \times G_1$

Sean $G_1 = (V, A)$ y $G_2 = (V, A)$ gráficas con $V(G_1) = \{u_1, u_2\}$, $A(G_1) = \{u_1u_2\}$, $V(G_2) = \{v_1, v_2, v_3\}$ y $A(G_2) = \{v_1v_2, v_2v_3\}$.

Como

$$V(G_{1} \times G_{2}) = V(G_{1}) \times V(G_{2})$$

$$= \{(u_{1}, v_{1}), (u_{1}, v_{2}), (u_{1}, v_{3}), (u_{2}, v_{1}), (u_{2}, v_{2}), (u_{2}, v_{3})\}$$

$$\neq \{(v_{1}, u_{1}), (v_{1}, u_{2}), (v_{2}, u_{1}), (v_{2}, u_{2}), (v_{3}, u_{1}), (v_{3}, u_{2})\}$$

$$= V(G_{2}) \times V(G_{1})$$

$$= V(G_{2} \times G_{1})$$

 G_2 :

se tiene que $G_1 \times G_2 \neq G_2 \times G_1$

c)
$$(G_1 + G_2) + G_3 = G_1 + (G_2 + G_3)$$

Demostración.

$$V((G_1 + G_2) + G_3) = V(G_1 + G_2) \cup V(G_3)$$

$$= [V(G_1) \cup V(G_2)] \cup V(G_3)$$

$$= V(G_1) \cup [V(G_2) \cup V(G_3)]$$

$$= V(G_1) \cup V(G_2 + G_3)$$

$$= V(G_1 + (G_2 + G_3))$$

Ahora, sea $uv \in A((G_1 + G_2) + G_3)$. P.d. $uv \in A(G_1 + (G_2 + G_3))$.

Ya que

$$A((G_1 + G_2) + G_3) = A(G_1 + G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$$

= $A(G_1) \cup A(G_2) \cup \{ab \mid a \in V(G_1), b \in V(G_2)\} \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$

se dan los siguientes casos:

- Si $uv \in A(G_1)$ entonces $uv \in A(G_1) \cup A(G_2 + G_3) \cup \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$, es decir, $uv \in A(G_1 + (G_2 + G_3))$.
- Si $uv \in A(G_2)$ entonces $uv \in A(G_1) \cup A(G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_2), b \in V(G_3)\} \cup \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$, es decir, $uv \in A(G_1 + (G_2 + G_3))$.
- Si $uv \in A(G_3)$ entonces $uv \in A(G_1) \cup A(G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_2), b \in V(G_3)\} \cup \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$, es decir, $uv \in A(G_1 + (G_2 + G_3))$.
- Si $uv \in \{ab \mid a \in V(G_1), b \in V(G_2)\}$ entonces $uv \in \{ab \mid a \in V(G_1), b \in V(G_2) \cup V(G_3)\} = \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$, es decir, $uv \in A(G_1 + (G_2 + G_3))$.
- Si $uv \in \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\} = \{ab \mid a \in V(G_1) \cup V(G_2), b \in V(G_3)\}$ entonces se tienen los siguientes casos:
 - Si $u \in V(G_1)$ entonces $uv \in \{ab \mid a \in V(G_1), b \in V(G_3)\}$. Así, $uv \in \{ab \mid a \in V(G_1), b \in V(G_2) \cup V(G_3)\} = \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$. De esta manera, $uv \in A(G_1) \cup A(G_2 + G_3) \cup \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$, es decir, $uv \in A(G_1 + (G_2 + G_3))$.
 - Si $u \in V(G_2)$ entonces $uv \in \{ab \mid a \in V(G_2), b \in V(G_3)\}$. De esta forma, $uv \in A(G_1) \cup A(G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_2), b \in V(G_3)\} \cup \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$, es decir, $uv \in A(G_1 + (G_2 + G_3))$.

Por lo anterior, $A((G_1 + G_2) + G_3) \subseteq A(G_1 + (G_2 + G_3))$.

Por otro lado, sea $uv \in A(G_1 + (G_2 + G_3))$. P.d. $uv \in A((G_1 + G_2) + G_3)$.

Como

$$A(G_1 + (G_2 + G_3)) = A(G_1) \cup A(G_2 + G_3) \cup \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$$

= $A(G_1) \cup A(G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_2), b \in V(G_3)\} \cup \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\}$

se dan los siguientes casos:

- Si $uv \in A(G_1)$ entonces $uv \in A(G_1) \cup A(G_2) \cup \{ab \mid a \in V(G_1), b \in V(G_2)\} \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$, es decir, $uv \in A((G_1 + G_2) + G_3)$.
- Si $uv \in A(G_2)$ entonces $uv \in A(G_1) \cup A(G_2) \cup \{ab \mid a \in V(G_1), b \in V(G_2)\} \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$, es decir, $uv \in A((G_1 + G_2) + G_3)$.
- Si $uv \in A(G_3)$ entonces $uv \in A(G_1 + G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$, es decir, $uv \in A((G_1 + G_2) + G_3)$.
- Si $uv \in \{ab \mid a \in V(G_2), b \in V(G_3)\}$ entonces $uv \in \{ab \mid a \in V(G_1) \cup V(G_2), b \in V(G_3)\}$ = $\{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$. Así, $uv \in A(G_1 + G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$, es decir, $uv \in A((G_1 + G_2) + G_3)$.
- Si $uv \in \{ab \mid a \in V(G_1), b \in V(G_2 + G_3)\} = \{ab \mid a \in V(G_1), b \in V(G_2) \cup V(G_3)\}$ entonces se tienen los siguientes casos:
 - Si $v \in V(G_2)$ entonces $uv \in \{ab \mid a \in V(G_1), b \in V(G_2)\}$. Así, $uv \in A(G_1) \cup A(G_2) \cup \{ab \mid a \in V(G_1), b \in V(G_2)\} \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$. De esta manera, $uv \in A((G_1 + G_2) + G_3)$.

• Si $v \in V(G_3)$ entonces $uv \in \{ab \mid a \in V(G_1), b \in V(G_3)\} \subseteq \{ab \mid a \in V(G_1) \cup V(G_2), b \in V(G_3)\}$. Así, $uv \in \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$. De esta manera, $uv \in A(G_1 + G_2) \cup A(G_3) \cup \{ab \mid a \in V(G_1 + G_2), b \in V(G_3)\}$, es decir, $uv \in A((G_1 + G_2) + G_3)$.

Por lo anterior, $A((G_1 + G_2) + G_3) \supseteq A(G_1 + (G_2 + G_3))$.

Por lo tanto, $A((G_1 + G_2) + G_3) = A(G_1 + (G_2 + G_3))$. En conclusión, $(G_1 + G_2) + G_3 = G_1 + (G_2 + G_3)$.

d) $(G_1 \times G_2) \times G_3 = G_1 \times (G_2 \times G_3)$

Afirmación: $(G_1 \times G_2) \times G_3 \neq G_1 \times (G_2 \times G_3)$.

Sean
$$G_1 = (V, A)$$
, $G_2 = (V, A)$ y $G_3 = (V, A)$ gráficas con $V(G_1) = \{u_1\}$, $A(G_1) = \emptyset$, $V(G_2) = \{v_1, v_2\}$, $A(G_2) = \{v_1v_2\}$, $V(G_3) = \{w_1, w_2, w_3\}$ y $A(G_3) = \{w_1w_2, w_2w_3\}$.

Como

$$\begin{split} V\left(\left(G_{1}\times G_{2}\right)\times G_{3}\right) &= V\left(G_{1}\times G_{2}\right)\times V\left(G_{3}\right) \\ &= \left[V\left(G_{1}\right)\times V\left(G_{2}\right)\right]\times V\left(G_{3}\right) \\ &= \left\{\left(\left(u_{1},v_{1}\right),w_{1}\right),\left(\left(u_{1},v_{1}\right),w_{2}\right),\left(\left(u_{1},v_{1}\right),w_{3}\right),\left(\left(u_{1},v_{2}\right),w_{1}\right),\left(\left(u_{1},v_{2}\right),w_{2}\right),\\ &\quad \left(\left(u_{1},v_{2}\right),w_{3}\right)\right\} \\ &\neq \left\{\left(u_{1},\left(v_{1},w_{1}\right)\right),\left(u_{1},\left(v_{1},w_{2}\right)\right),\left(u_{1},\left(v_{1},w_{3}\right)\right),\left(u_{1},\left(v_{2},w_{1}\right)\right),\left(u_{1},\left(v_{2},w_{2}\right)\right),\\ &\quad \left(u_{1},\left(v_{2},w_{3}\right)\right)\right\} \\ &= V\left(G_{1}\right)\times \left[V\left(G_{2}\right)\times V\left(G_{3}\right)\right] \\ &= V\left(G_{1}\right)\times V\left(G_{2}\times G_{3}\right) \\ &= V\left(G_{1}\times \left(G_{2}\times G_{3}\right)\right) \end{split}$$

se tiene que $(G_1 \times G_2) \times G_3 \neq G_1 \times (G_2 \times G_3)$