BACCALAUREAT DE L'ENSEIGNEMENT GENERAL

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETATRIAT GENERAL DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et PRIVE

Service d'Appui au Baccalauréat

SESSION 2002

Série : C

Epreuve de: MATHEMATIQUES

Durée: 4 heures

Code Matière : 009 Coefficient : 5

 $\underline{\text{NB}}$: Le candidat doit traiter les DEUX exercices et le problème.

EXERCICE 1 (4 points)

Dans le plan orienté (9°), on considère le rectangle ABCD tel que AD = 2AB = 4 et mes $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}$.

Soit I le milieu du segment [BC] et (C) le cercle de centre B passant par A.

- 1°- a)— Déterminer le barycentre du système de points pondérés $\{(A,1), (C,1), (D,-1)\}.$ (0,25 pt)
 - b)- On considère l'ensemble (E_k) des points M du plan ($\mathscr G$) tels que $||\overrightarrow{MA}||^2 + ||\overrightarrow{MC}||^2 ||\overrightarrow{MD}||^2 = k$. Calculer le réel k pour que (E_k) soit le cercle (C). (0,50 pt)
- 2°- Soit S la similitude plane directe qui transforme A en I et B en D et soit σ la symétrie orthogonale d'axe (BD).

On se propose dans cette question de déterminer géométriquement les éléments caractéristiques de S.

- a) Déterminer et construire l'image (C') du cercle (C) par S. (0,25 pt)
- b) Soit Ω le point d'intersection de (C) et (C ') autre que I. Montrer que (DB) est la médiatrice du segment $[\Omega I]$ et que $\Omega = \sigma$ (I). (0,50 pt)
- c) En déduire que mes $(\overrightarrow{\Omega B}, \overrightarrow{\Omega D})$ =mes $(\overrightarrow{ID}, \overrightarrow{IB})$ et que $\|\overrightarrow{\Omega D}\| = \|\overrightarrow{ID}\|$. (0,25 pt)
- d) En utilisant le triangle rectangle isocèle ICD et le point B, calculer la mesure de l'angle

$$(\overrightarrow{ID}, \overrightarrow{IB})$$
 et le rapport $\frac{\|\overrightarrow{D}\|}{\|\overrightarrow{B}\|}$. (0,50 pt)

e) – En déduire le centre, le rapport et l'angle de S.

(0.25 pt)

- 3° On rapporte maintenant le plan (\mathscr{G}) au repère orthonormé direct (A; \vec{u}, \vec{v}) où $\vec{u} = \frac{1}{2} \overrightarrow{AB}$ et $\vec{v} = \frac{1}{4} \overrightarrow{AD}$.
 - a) Déterminer les affixes des points A, B, D et I.

(0,50 pt)

b) – Donner l'expression complexe de S et préciser ses éléments caractéristiques.

(0,50 pt)

c) – Donner l'expression complexe de σ et montrer que l'image par σ du point I est le centre Ω de S.

(0,50 pt)

EXERCICE 2 (4 points)

1°- a) – Résoudre dans 9 x 9 l'équation 11x - 8y = 1.

(0,50 pt)

- b) Calculer PGCD (319, 232, 145) puis résoudre dans 9 x 9 l'équation 319x 232y = 145. (1,00 pt)
- 2° Une urne contient 81 boules indiscernables au toucher, numérotées de 1 à 81. L'épreuve E consiste à tirer au hasard et successivement deux boules de l'urne, sans remettre dans l'urne la boule tirée.
 - a) Calculer la probabilité de chacun des événements suivants :
 - A : « Tirer deux boules portant deux numéros pairs ».

(0,50 pt)

B: « Tirer deux boules portant deux numéros multiples de 3 ».

(0,50 pt)

- C: « Tirer deux boules portant deux numéros qui sont des nombres premiers ».
- (0,50 pt)Le plan (9) est rapporté à un repère orthonormé. On donne les deux droites (D₁) d'équation 11x - 8y - 1 = 0 et (D_2) d'équation 319x - 232y - 145 = 0. (On ne demande pas de construire ces deux droites). A l'épreuve E décrit précédemment, on associe le point M(x, y) du plan où x est le numéro porté par la première boule tirée et y par la seconde.

Calculer la probabilité de chacun des événements suivants :

(0,50 pt)

E: « Le point M n'appartient pas à la droite (D₂) ».

D: « Le point M appartient à la droite (D_1) ».

(0.50 pt)

PROBLEME (12 points)

On considère la fonction numérique f définie par : $f(x) = \begin{cases} 1 + \frac{x-1}{\ln |x|} & \text{si } x < 0 \\ (x+1)^2 e^{-x} & \text{si } x \ge 0 \end{cases}$

On note ($\mathcal C$) la courbe représentative de f dans un plan rapporté à un repère orthonormé (O; i, i) d'unité 1 cm.

Partie A

1° - Etudier la continuité et la dérivabilité de f en O. (0,25+0,5pt)

- 2° On considère la fonction q définie sur $]-\infty$; 0 [par $g(x) = 1 x + x \ln |x|$.
 - a) Etudier les variations de q.

(0,75 pt)(0,25 pt)

- b) Montrer qu'il existe un réel unique $\alpha \in]-4$; 3 [tel que $g(\alpha) = 0$.
- (0,25 pt)

c) – En déduire le signe de g(x) suivant les valeurs de x.

- 3° a) Montrer que pour tout x < 0, $x \ne -1$, f'(x) a le même signe que g(x). b – Vérifier que f'(α) = 0 et que f(α) = 1 + α où α est défini dans 2°/b).
- (0,50 pt)(0,25 pt)

c – Etudier les variations de f et dresser son tableau de variation.

(1,25 pt)

 4° - a) – Etudier les branches infinies de (\mathcal{C}).

(0,50 pt)

b) – Calculer à 10^{-1} près : f(-8), f(-6), f(-2) et $f(-\frac{1}{2})$.

(0,50 pt)

c) – Prendre α = – 3,6 et construire la courbe (\mathcal{C}).

(0,50 pt)

On donne: $\ln 2 \approx 0.7$; $\ln 6 \approx 1.8$; $e \approx 2.7$.

Partie B

- 1° On considère l'équation différentielle (E) : $y'' y' 2y = e^{-x} (-6x 4)$.
 - a) Vérifier que la fonction φ définie sur 3 par φ (x) = e^{-x} (x² + 2x) est solution de (E). (0,50 pt)
 - b) Montrer qu'une fonction numérique f est solution de (E) si et seulement si f– φ est solution de l'équation différentielle (E') :y'' - y' - 2y = 0.

(0,25 pt)

c) - Résoudre (E') et en déduire toutes les solutions de (E).

- (0,50 pt)
- d) Déterminer l'unique solution f de (E) telle que f(0) = 1 et f'(0) = 1.

(0,50 pt)

- 2° On pose $I_{\lambda} = \int_{\Omega}^{\lambda} (x+1)^2 e^{-x} dx$ où $\lambda > 0$.
 - a) Par deux intégrations par parties successives, exprimer I_{λ} en fonction de λ . Calculer $\lim I_{\lambda}$. $\lambda \rightarrow +\infty$

(1,25+0,25pt)

b) – En déduire, en cm², l'aire du domaine plan (D) ensemble des points M(x,y) tels que $x \ge 0$ et $0 \le y \le f(x)$. (0,25 pt)

Partie C

On se propose d'étudier la convergence de la suite
$$(U_n)_{n\in \mathbb{Z}^*}$$
 définie par :
$$\forall \ n\in IN^*, \quad U_n=\frac{1}{n^3}\left[(1+n)^2\,\mathrm{e}^{-\frac{1}{n}}+(2+n)^2\,\mathrm{e}^{-\frac{2}{n}}+...+(n+n)^2\,\mathrm{e}^{-\frac{n}{n}}\right].$$

$$1^{\circ} \text{ - V\'{e}rifier que } \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k+1}{n}\right) = U_n \text{ et } \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = U_n + \frac{e-4}{ne} \text{ (f \'{e}tant d\'{e}finie dans la partie A], } x \geq 0).$$

(1,00 pt)

- a) –Soit $n \in IN^*$ et k un entier tel que $0 \le k \le n-1$. Vérifier que $\left\lceil \frac{k}{n}, \frac{k+1}{n} \right\rceil \subset \left[p, 1 \right]$. (0,25 pt)
 - b) En utilisant le sens de variation de f sur [0 , 1], montrer que : $\frac{1}{n}f\left(\frac{k}{n}\right) \leq \int_{\underline{k}}^{\frac{k+1}{n}}f(t)dt \leq \frac{1}{n}f\left(\frac{k+1}{n}\right).$ (0,50 pt)

c) – En déduire que
$$U_h + \frac{e-4}{ne} \le \int_0^1 f(t) dt \le u_h$$
 et que $I_1 \le U_h \le I_1 + \frac{4-e}{ne}$. (0,5+0,25 pt)

d) – Montrer que (U_n) $_{n \in IN^*}$ est convergente et donner sa limite. (0,50 pt)