Eliciting Causal Bayesian Networks with Scoring Rules

Siddharth Namachivayam

Problem

- Scoring rules can elicit an agent's beliefs about probability distributions.
- How can we elicit an agent's beliefs about causal Bayesian networks?
- If we can:
 - 1. Credibly perform interventions
 - 2. Identify a causal Bayesian network from information about its interventional distributions

Then maybe we can combine scoring rules to discover the agent's beliefs...

Causal Bayesian Networks

- Let $V = \{V_1, \dots, V_K\}$ be a set of K discrete random variables each with at least 2 outcomes.
- A causal Bayesian network G over V is a DAG whose vertices are variables in V along with a set of 'interventional' distributions $p_{\mathsf{do}(X=x)}$ for each $X\subseteq V$.
- These interventional distribution satisfy the following compatibility condition:

$$p_{\mathsf{dO}(X=x)}(V=v) = \begin{cases} \prod_{i:V_i \not\in X} p(V_i = v_i \,|\, \mathsf{PA}_i = \mathsf{pa}_i) & v \text{ is consistent with } x \\ 0 & \text{otherwise} \end{cases}$$

where PA_i denotes the parents of V_i in G and pa_i denotes the values of PA_i in v.

Example

$$p(V_1 = H, V_2 = 0) = 50\%$$

 $p(V_1 = T, V_2 = 1) = 50\%$

$$p_{do(V_1=T)}(V_2=1)=100\%$$

$$p_{do(V_2=0)}(V_1=H)=50\%$$

$$p_{do(V_2=1)}(V_1=T)=50\%$$

Setup

- G is the causal Bayesian network over V believed by the agent.
- For any random variable R, we denote its outcomes by [R].
- Given random variables X and Y, the agent's beliefs about the distribution of Y conditional on do(X=x) are denoted by b(Y|do(X=x)).
 - Equivalently, we will also write $b(Y|\operatorname{do}(x))$ or $b_{Y|\operatorname{do}(x)}$ when X is clear from context.
 - Additionally, we will write $b(Y|\operatorname{do}(X))$ when speaking of the function $x\mapsto b_{Y|\operatorname{do}(x)}$.
- Finally, let $b^* = \{b(V | do(X)) : X \subseteq V\}$ consist of all the agent's interventional beliefs.

Identifiability

- Unfortunately G is not (in general) identifiable from b^* .
- Say for variables $X, Y \in V$ that X has zero direct effect on Y, or equivalently, that ZDE(X, Y) holds iff:

$$b(Y|\operatorname{do}(V\setminus\{X,Y\})) = b(Y|\operatorname{do}(V\setminus\{X,Y\},X))$$

- , i.e. intervening on X after intervening on $V \setminus \{X, Y\}$ does not change the distribution of Y.
- Bareinboim, Brito, Pearl 2012 show that if G does not have an arrow going from X to Y then ZDE(X,Y).
- However, ZDE(X, Y) does not imply that G does not have an arrow going from X to Y.

Example

 V_1 and V_2 are fair iid Bernoullis

ZDE Faithfulness

• We assume the agent's beliefs satisfy ZDE faithfulness, that is:

ZDE(X, Y) holds iff G does not have an arrow going from X to Y.

- Given ZDE faithfulness, G is identifiable from $b^*!$
- Just need to know $b(V_i | do(V \setminus \{V_i\}))$ for each i.

Scoring Rules

- Suppose an agent's beliefs over $[R] = \{1,...,n\}$ are given by $\vec{b} \in \Delta^n$.
- A scoring rule is a function $s:\Delta^n\to\mathbb{R}^n$ that for all reports $r\in\Delta^n$ returns a vector $\vec{s}(r)$.
- A proper scoring rule is a scoring rule $s:\Delta^n\to\mathbb{R}^n$ such that $\forall \vec{b}\in\Delta^n$:

$$\vec{b} \in \operatorname{argmax}_{r \in \Delta^n} \vec{b} \cdot \vec{s}(r)$$

$$\max_{r \in \Delta^n} \vec{b} \cdot \vec{s}(r) \ge 0.$$

• A strictly proper scoring rule is a proper scoring rule $s:\Delta^n\to\mathbb{R}^n$ such that $\forall b\in\Delta^n$:

$$\{\vec{b}\} = \operatorname{argmax}_{r \in \Delta^n} \vec{b} \cdot \vec{s}(r).$$

Mechanism Design

• Using a strictly proper scoring rule $s^i:\Delta^{|[V_i]|}\to\mathbb{R}^{|[V_i]|}$, the designer can $\forall v_{-i}\in [V\setminus\{V_i\}]$ successfully elicit:

$$b(V_i | \operatorname{do}(V \setminus \{V_i\} = v_{-i}))$$

by promising to interventionally realize v_{-i} .

- However, one might worry:
 - 1. Interventions are costly to perform
 - 2. The agent could learn from each experiment.

- We can bypass both issues!
- The designer can promise to randomize uniformly over which of the:

$$Z = \sum_{i=1}^{K} |[V \setminus \{V_i\}]|$$

scoring rules will actually pay out and perform only its intervention.

- The agent might incur a cognitive cost when processing each of the interventional conditions in mechanism #1.
- As Z increases, the agent's expected reward per bit of information on each scoring rule will shrink while processing costs stay fixed.
- This threatens incentive compatibility as the agent will just report their non-interventional beliefs for each scoring rule.

• We can formalize this objection in the context of when each scoring rule $s^i: \Delta^{|[V_i]|} \to \mathbb{R}^{|[V_i]|}$ is of the form:

$$s_{v}^{i}(r) = B \cdot \log_{2} \left(\frac{r_{v}}{1/|[V_{i}]|} \right)$$

, i.e. a log scoring rule. Here, the designer's worst case loss is:

$$B \cdot \log_2(\max_{i \in K} | [V_i] |)$$

• We can cash out the cost of processing the interventional condition in the scoring rule designed to elicit $b(V_i | do(V \setminus \{V_i\} = v_{-i}))$ as:

$$C \cdot \mathsf{KL}(b_{V_i | \mathsf{do}(v_{-i})} | | u(V_i))$$

where u denotes the uniform distribution over V.

• If the agent chooses to not process the interventional condition $u(V_i)$ is reported instead.

 One can show the expected benefit of processing the interventional condition for each scoring rule is:

$$\frac{B}{Z} \cdot \mathsf{KL}(b_{V_i | \mathsf{do}(v_{-i})} | | u(V_i)).$$

- Hence, mechanism #1 will be incentive compatible iff B/Z > C.
- Furthermore, the infimum worst case loss for mechanism #1 to be incentive compatible is:

$$(C \cdot Z) \cdot \log_2(\max_{i \in K} |[V_i]|)$$

- To illustrate the issue, consider when each $[V_i] = \{0,1\}$.
- The infimum worst case loss is:

$$C \cdot K \cdot 2^{K-1}$$
.

Lesson

- We need a mechanism that randomizes over fewer interventions.
- The Peter-Clark algorithm reconstructs a partially oriented causal skeleton from the joint distribution.
- This drastically reduces the number of interventions needed to identify G.
- Idea: Assume the agent's beliefs satisfy some kind of causal faithfulness!

Causal Faithfulness

- $\forall A \subseteq V$ let $do(A_r)$ randomize uniformly over all $a \in A$.
- Let G_A be the DAG obtained by removing all edges going into A from G.
- We say an agent's beliefs satisfy causal faithfulness if $\forall A \subseteq V$ the intervention $do(A_r)$ induces a distribution $b(V|do(A_r))$ where:

X and Y are dependent conditional on every subset $V' \subseteq V \setminus \{X, Y\}$

iff

X and Y are adjacent in G_A .

Tests

- An adjacency test for $X, Y \in V$ is an intervention $do(A_r)$ such that $X, Y \notin A$.
- A directional test for $X, Y \in V$ is an intervention $do(A_r)$ such that $X \in A$ or $Y \in A$ but not both.
- Eberhardt, Glymour, Scheines 2005 note that as long as each pair of variables is subject to one adjacency test and one directional test we can orient all edges in *G*.

Tests

• Towards that end, they form a sequence of subsets $A \subseteq V$ corresponding to interventions $do(A_r)$ as follows:

$$seq(V) :=$$

- 1. If |V| = 1 return $\langle \emptyset \rangle$.
- 2. Else, partition V into sets V^1 and V^2 where $V^1 = \lfloor |V|/2 \rfloor$ and $V^2 = \lceil |V|/2 \rceil$.
- 3. Return $\langle V^1 \rangle + (\text{seq}(V^1) \cup \text{seq}(V^2))$

where \cup first pads the shorter list with \emptyset at the end to make it equal in length to the longer list and takes their component-wise union.

Tests

• Using a strictly proper scoring rule $s:\Delta^{|[V]|}\to\mathbb{R}^{|[V]|}$, the designer can $\forall A\in \operatorname{seq}(V)$ successfully elicit:

$$b(V|\operatorname{do}(A_r)).$$

• Thus the designer can promise to randomize uniformly over which of the $|\sec(V)| = \lceil 1 + \log_2(K) \rceil$ scoring rules will actually payout and perform only its intervention to elicit G.

• Assuming each $s:\Delta^{|[V]|}\to \mathbb{R}^{|[V]|}$ is a log scoring rule:

$$s_{v}(r) = B \cdot \log_2\left(\frac{r_{v}}{1/|[V]|}\right)$$

we can show the infimum worst case loss for mechanism #2 to be incentive compatible is:

$$(C \cdot \lceil 1 + \log_2(K) \rceil) \cdot \log_2(\lceil \lfloor V \rfloor \rceil)$$

- To see why this answers objection #1 consider when each $[V_i] = \{0,1\}$.
- The infimum worst case loss is now:

$$C \cdot K \cdot \lceil 1 + \log_2(K) \rceil$$

Significant improvement from earlier:

$$C \cdot K \cdot 2^{K-1}$$

• In fact, no matter how many outcomes each V_i has we can always show:

infimum worst case loss for mechanism #2 to be IC infimum worst case loss for mechanism #1 to be IC
$$\leq \frac{\lceil 1 + \log_2(K) \rceil}{2^{K-1}}$$

- The PC algorithm can reconstruct a partially oriented skeleton of S from a given joint distribution.
- Let S^* denote the set of vertices which belong to an unoriented edge in the skeleton.
- It suffices now to subject every pair of variables in S^* to a directional test.
- Wouldn't this allow us to randomize over even fewer scoring rules?

- Step #1- The agent reports to a scoring rule $s:\Delta^{|[V]|}\to\mathbb{R}^{|[V]|}$ which pays out in case the designer performs no intervention.
- Step #2- The designer:
 - Reconstructs a partially oriented skeleton S from the report in step #1.
 - Computes $\operatorname{seq}(S^*)$ and $\forall A \in \operatorname{seq}(S^*) \setminus \{\emptyset\}$, allows the agent to report to a scoring rule $s: \Delta^{|[V]|} \to \mathbb{R}^{|[V]|}$ which pays out in case the designers performs the intervention $\operatorname{do}(A_r)$.
- Step #3- The designer randomizes uniformly over which of the $|\sec(S^*)|$ interventions to perform and pays out the agent.

- While $|\sec(S^*)| \le |\sec(V)|$, IC cannot be established due to the sequential nature of the game.
- Agents can leverage their knowledge that the PC algorithm determines which and how many interventions the designer will randomize over...very thorny!
- For instance, if the agent knows more about certain interventions than others, they may prefer the PC algorithm to output a skeleton different from the one they truly believe.
- So, mechanism #3 must assume agents are *myopic* to guarantee IC, i.e. agents ignore profits from future actions at each stage of the game.

Possible Solution

- Can we mitigate the incentive to lie in step #1 by making the reward sizes for the scoring rules in step #2 small in comparison?
- Formally, suppose the scoring rule in step #1, $s^{t_1}:\Delta^{|[V]|}\to\mathbb{R}^{|[V]|}$, is of the form:

$$s_v^{t_1}(r) = B_1 \cdot \log_2\left(\frac{r_v}{1/|[V]|}\right)$$

while the scoring rules in step #2, s^{t_2} : $\Delta^{|[V]|} \to \mathbb{R}^{|[V]|}$, are of the form:

$$s_v^{t_2}(r) = B_2 \cdot \log_2\left(\frac{r_v}{1/|[V]|}\right)$$

Possible Solution

- Ignore processing costs for a moment.
- $B_2 \cdot \log_2(|[V]|)$ is the maximum profit obtainable from a scoring rule used in #2.
- B_1 · KL(b(V) | r) is the cost of reporting r instead of b(V) to the scoring rule in #1.
- In equilibrium then:

$$KL(b(V) | | r) \le \frac{B_2}{B_1} \cdot \log_2(|[V]|).$$

• Since making $B_1 >> B_2$ implies $r \approx b(V)$, we might hope for approximate IC.

Possible Solution

- Without additional assumptions, this may be no more than a pipe dream.
- The causal skeleton output by the PC algorithm is in general highly sensitive to the input joint distribution.
- But even if we could find suitable assumptions, the presence of processing costs prevents us from decreasing B_2 arbitrarily.
- Therefore, such an approach would likely increase B_1 so high that the designer's worst case loss is greater than in mechanism #2.

Summary

Mechanism	Identification Assumptions	Myopic IC	IC	Inf Worst Case Loss (Log Rules)
Mechanism #1	ZDE faithfulness	Yes	Yes	$(C \cdot Z) \cdot \log_2(\max_{i \in K} [V_i])$
Mechanism~#2	Causal faithfulness	Yes	Yes	$(C \cdot \lceil 1 + \log_2(K) \rceil) \cdot \log_2([V])$
m Mechanism~#3	Causal faithfulness	Yes	No	$(C \cdot \mathrm{seq}(S^*)) \cdot \log_2([V])$

References

- Bareinboim, Brito, Pearl: https://link.springer.com/chapter/
 10.1007/978-3-642-29449-5
- Spirtes, Glymour, Scheines: https://direct.mit.edu/books/monograph/2057/Causation-Prediction-and-Search
- Eberhardt, Glymour, Scheines: https://arxiv.org/pdf/1207.1389