§9.2 正态总体的参数检验

- \rightarrow 关于 μ 的检验(σ 已知)
- (1.1) μ 的双边检验(σ 已知)

设 $X \sim N(\mu, \sigma^2)$, σ^2 已知, 需检验:

$$H_0: \mu = \mu_0 : H_1: \mu \neq \mu_0$$

给定显著性水平 α 与样本值 (x_1,x_2,\ldots,x_n)

$$H_0: \mu = \mu_0: H_1: \mu \neq \mu_0$$

拒绝域的推导

形式分析:

若 $\mu = \mu_0$ 成立,则样本均值 \bar{X} 不能偏离 μ_0 太多即 $\bar{X} - \mu_0$ 不能非常大或者非常小

 $\bar{X} - \mu_0$ 非常大时,说明样本数据不支持原假设 $\mu = \mu_0$, 而是支持被择假设 $\mu \neq \mu_0$

 $\bar{X} - \mu_0$ 非常小时, 说明样本数据不支持原假设 $\mu = \mu_0$, 而是支持被择假设 $\mu \neq \mu_0$

 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$ 形式为: $\bar{X} - \mu_0 > ?$ 或 $\bar{X} - \mu_0 < ?$

显著性水平为 α , 即 $\bar{X} - \mu_0$ 非常大或者非常小的标准为: $\bar{X} - \mu_0$ 非常大或者非常小到其发生的概率只有 α (0.05或0.01)

因为统计量
$$U = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$

$$P_{H_0}\left(\begin{array}{c} \overline{X} - \mu_0 \\ \overline{\sigma} / \sqrt{n} \end{array} \le -Z_{1-\frac{\alpha}{2}} \quad \text{if} \quad \overline{\frac{X}{\sigma} / \mu_0} \ge Z_{1-\frac{\alpha}{2}} \right) = \alpha$$

故拒绝域
$$\left\{ \overline{X} \mid \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \le -Z_{1-\frac{\alpha}{2}} \text{ } \text{ } \vec{X} \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge Z_{1-\frac{\alpha}{2}} \right\}$$

即
$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge Z_{1 - \frac{\alpha}{2}} \qquad 或 |U| \ge Z_{1 - \frac{\alpha}{2}}$$

(1.2) μ 的右边检验(σ^2 已知)

$$H_0: \mu = \mu_0: H_1: \mu > \mu_0$$

$$H_0: \mu = \mu_0: H_1: \mu > \mu_0$$

拒绝域的推导

形式分析:

若 $\mu = \mu_0$ 成立,则样本均值 \bar{X} 不能大于 μ_0 太多即 $\bar{X} - \mu_0$ 不能非常大

 $\bar{X} - \mu_0$ 非常大时,说明样本数据不支持原假设 $\mu = \mu_0$,而是支持被择假设 $\mu > \mu_0$

注:

 $\bar{X} - \mu_0$ 非常小时, 说明样本数据相对支持原假设 $\mu = \mu_0$, 此时不能拒绝原假设,不属于拒绝域

$$H_0: \mu = \mu_0; H_1: \mu > \mu_0$$

形式为:

$$\bar{X} - \mu_0 \ge ?$$

显著性水平为 α ,即 $\bar{X} - \mu_0$ 非常大的标准为: $\bar{X} - \mu_0$ 非常大到其发生的概率只有 α

因为统计量
$$U = \frac{\overline{X} - \mu_0}{\sigma} \sim N(0,1)$$

$$P(\overline{X} - \mu_0) > Z \rightarrow \sigma$$

$$P_{H_0}\left(\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\geq Z_{1-\alpha}\right) = \alpha$$

故拒绝域
$$\left\{ \overline{X} \mid \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge Z_{1-\alpha} \right\}$$

即
$$\frac{X-\mu_0}{\sigma/\sqrt{n}} \ge Z_{1-\alpha}$$
 或 $U \ge Z_{1-\alpha}$

(1.3) μ 的左边检验(σ 已知)

$$H_0: \mu = \mu_0: H_1: \mu < \mu_0$$

$$H_0: \mu = \mu_0: H_1: \mu < \mu_0$$

拒绝域的推导

形式分析:

若 $\mu = \mu_0$ 成立,则样本均值 \bar{X} 不能小于 μ_0 太多即 $\bar{X} - \mu_0$ 不能非常小

 $\bar{X} - \mu_0$ 非常小时,说明样本数据不支持原假设 $\mu = \mu_0$, 而是支持被择假设 $\mu < \mu_0$

注:

 $\bar{X} - \mu_0$ 非常大时,说明样本数据相对支持原假设 $\mu = \mu_0$,此时不能拒绝原假设,不属于拒绝域

形式为:

$$H_0: \mu = \mu_0; H_1: \mu < \mu_0$$
:
$$\bar{X} - \mu_0 \leq 2^{\mu_0}$$

显著性水平为 α ,即 $\bar{X} - \mu_0$ 非常小的标准为: $\bar{X} - \mu_0$ 非常小到其发生的概率只有 α

因为统计量
$$U = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$

$$P_{H_0}(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \leq Z_{\alpha}) = \alpha$$
 故拒绝域 $\left\{ \overline{X} \mid \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \leq -Z_{1-\alpha} \right\}$

即
$$\frac{X - \mu_0}{\sigma / \sqrt{n}} \le -Z_{1-\alpha}$$
 或 $U \le -Z_{1-\alpha}$

U检验法(σ²已知)

	原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其 H_0 为真时的分布	拒绝域
	$\mu = \mu_0$	$\mu \neq \mu_0$	$U = \frac{\overline{X} - \mu_0}{}$	$ U \ge z_{1-\frac{\alpha}{2}}$
_	$\mu = \mu_0$ $\mu \le \mu_0$	$\mu > \mu_0$	$\frac{\sigma}{\sqrt{n}}$ $\sim N(0,1)$	$U \ge z_{1-\alpha}$
	$\mu = \mu_0$ $\mu \ge \mu_0$	$\mu < \mu_0$	77 (0,1)	$U \le -z_{1-\alpha}$

\rightarrow 关于 μ 的检验(σ^2 未知)

(2.1) μ 的双边检验(σ^2 未知)

设 $X \sim N(\mu, \sigma^2)$, σ^2 未知, 需检验:

 $H_0: \mu = \mu_0: H_1: \mu \neq \mu_0$

给定显著性水平 α 与样本值 $(X_1, X_2, ..., X_n)$

$$H_0: \mu = \mu_0: H_1: \mu \neq \mu_0$$

拒绝域的推导

形式分析:

若 $\mu = \mu_0$ 成立,则样本均值 \bar{X} 不能偏离 μ_0 太多即 $\bar{X} - \mu_0$ 不能非常大或者非常小

 $\bar{X} - \mu_0$ 非常大时,说明样本数据不支持原假设 $\mu = \mu_0$,而是支持被择假设 $\mu \neq \mu_0$

 $\bar{X} - \mu_0$ 非常小时, 说明样本数据不支持原假设 $\mu = \mu_0$, 而是支持被择假设 $\mu \neq \mu_0$

 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$

形式为:

$$\overline{X} - \mu_0 > ?$$
 $\overline{X} - \mu_0 < ?$

显著性水平为 α ,即 $\bar{X} - \mu_0$ 非常大或者非常小的标准为: $\bar{X} - \mu_0$ 非常大或者非常小到其发生的概率只有 α (0.05或0.01)

因为统计量
$$T = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim t(n-1)$$
 $U = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$

$$P_{H_0} \left(\begin{array}{c} \overline{X} - \mu_0 \\ S / \sqrt{n} \end{array} \le -t_{1-\frac{\alpha}{2}} (n-1) \quad \text{Res} \quad \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \ge t_{1-\frac{\alpha}{2}} (n-1) \right) = \alpha$$

故拒绝域

即
$$\left| \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \right| \ge t_{1-\frac{\alpha}{2}}(n-1)$$
 或 $T \ge t_{1-\frac{\alpha}{2}}(n-1)$

(2.2) μ 的右边检验(σ^2 未知)

$$H_0: \mu = \mu_0; H_1: \mu > \mu_0$$

$$\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \ge t_{1-\alpha}(n-1) \qquad \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge Z_{1-\alpha}$$

(2.3) μ 的左边检验(σ^2 未知)

$$H_0: \mu = \mu_0; H_1: \mu < \mu_0$$

$$\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \le -t_{1-\alpha}(n-1) \qquad \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \le -Z_{1-\alpha}$$

T 检验法 (σ² 未知)

原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其 H ₀ 为真时的分布	拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$	$\overline{X} - \mu_0$	$ T \ge t_{1-\frac{\alpha}{2}}$
$\mu = \mu_0$ $\mu \le \mu_0$	$\mu > \mu_0$	$T = \frac{\overline{X} - \mu_0}{S}$ $\frac{S}{\sqrt{n}}$ $\sim t(n-1)$	$T \ge t_{1-\alpha}$
$\mu = \mu_0$ $\mu \ge \mu_0$	$\mu < \mu_0$		$T \le -t_{1-\alpha}$

例1 某糖厂有一台自动打包机打包,额定标准是每包质量为100kg。设包质量服从正态分布,且根据以往经验,其方差为 $\sigma^2 = (0.4)^2$ 。某天开工后,为检查打包机工作情况,随机的抽取9包,称得质量(单位:kg)如下:

99 98.5 102.5 101 98 99 102 102.1 100.5

问 这天打包机工作是否正常(α =0.05) ?

解 μ 的双边检验(σ^2 已知)

$$H_0$$
: $\mu = 100$; H_1 : $\mu \neq 100$

拒绝域
$$\left| \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \right| \ge Z_{1-\frac{\alpha}{2}} \quad \boxed{\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}} \ge 1.96$$

而由样本值:
$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \left| \frac{100.29 - 100}{0.4 / \sqrt{9}} \right| = 2.175$$

故拒绝 H_0 : $\mu = 100$

例2 某厂生产小型马达, 其说明书上写着: 这种小型马达在正常负载下平均消耗电流不会超过0.8 安培.

现随机抽取16台马达试验, 求得平均消耗电流为0.92安培, 消耗电流的标准差为0.32安培.

假设马达所消耗的电流服从正态分布,取显著性水平为 $\alpha = 0.05$,问根据这个样本,能否否定厂方的断言?

解根据题意待检假设可设为

$$H_0: \mu \le 0.8$$
; $H_1: \mu > 0.8$

 σ 未知, 拒绝域为:

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} > t_{1-\alpha}(n-1)$$

查表得 $t_{1-0.05}(16-1) = 1.753$, 故拒绝域为

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} > 1.753$$

曲
$$\bar{x} = 0.92$$
 $\mu = 0.8$ 得 $\frac{X - \mu}{S / \sqrt{n}} = 1.452$ $s = 0.32$ $n = 16$

故接受原假设,得到结论:不能否定厂方断言.

$$H_0: \mu \ge 0.8$$
; $H_1: \mu < 0.8$

 σ 未知, 拒绝域为:

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} < -t_{1-\alpha}(n-1)$$

查表得 $-t_{1-0.05}(16-1) = -1.753$, 故拒绝域为

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} < -1.753$$

曲
$$\bar{x} = 0.92$$
 $\mu = 0.8$ 得 $\frac{\bar{X} - \mu}{S / \sqrt{n}} = 1.452$ $s = 0.32$ $n = 16$

故接受原假设,得到结论:不能相信厂方断言.

由例2可见:对问题的提法不同(把哪个假设作为原假设),统计检验的结果也会不同.

由于假设检验是控制犯第一类错误的概率,使得拒绝原假设 H_0 的决策变得比较慎重, 也就是 H_0 得到特别的保护. 因而, 通常把有把握的, 经验的结论作为原假设, 或者尽量使后果严重的错误成为第一类错误.

上述两种解法的立场不同,因此得到不同的结论,第一种假设是不轻易否定厂方的结论; 第二种假设是不轻易相信厂方的结论.