High-Frequency Cross-Sectional Identification of Military News Shocks

Francesco Amodeo¹ Edoardo Briganti²

¹UC San Diego

²Bank of Canada

September 5, 2025

Bank of Italy
XXIII Public Finance Workshop

The opinions expressed in this presentation are the sole

responsibility of the authors and should not be interpreted as reflecting the views of the Bank of Canada.

OUTLINE

Introduction

HFXS Framework & Identification

EMPIRICAL RESULTS

APPLICATION: US GDP XS-MULTIPLIERS

Conclusions

MOTIVATION

- Economists are interested in the effects of defense spending because it provides:
 - Exogenous variation in government spending (causal inference)
 - Multiplier estimates of military build-ups (policy relevance)
- Identification challenges:
 - Effects of government spending are anticipated (Ramey, 2011)
 - Measuring expectations is tricky

\rightarrow Research Question:

- "How does the economy respond to **anticipated** changes in defense spending?" &
- "How can we effectively measure expectations about future defense spending?

LITERATURE REVIEW

- Macro shocks need to be unanticipated (Ramey, 2016)
 - Fiscal foresight Mertens and Ravn (2010) (gov. spending), Leeper et al. (2013) (taxes)
 - Measurement delays (Briganti et al., 2025)
 - → Non-invertibility of fiscal shocks
- → **Unanticipated measures** of government spending shocks:
 - VAR Restrictions: Blanchard and Perotti (2002) (short-run restrictions), Ben Zeev and Pappa (2017) (medium run restrictions (Barsky and Sims, 2011)), Ascari et al. (2023) (sign restrictions (Mountford and Uhlig, 2009))
 - Narrative Instruments Ramey and Shapiro (1998) (war dates), Ramey (2011)+Ramey and Zubairy (2018) (def. news)
 - Bartik Instruments: Nakamura and Steinsson (2014), Dupor and Guerrero (2017), Demyanyk et al. (2019), Auerbach et al. (2020), Muratori et al. (2023), Barattieri et al. (2023), Auerbach et al. (2024).
 - Stock-Price-Based Instruments: Fisher and Peters (2010), McClure and Yding (2024) (narrative+high frequency).
 - High Frequency Instruments: Bandeira et al. (2025) (Brazil Deficit), Wiegand (2025)+ Gomez-Cram et al. (2025)+Hazell and Hobler (2025)+Bi et al. (2025)(US Deficits)

CONTRIBUTION: HFXS IDENTIFICATION

- We introduce a novel method to quantify expectations of future military spending
 - I. Identify HF-fiscal events using narrative analysis augmented with LLM searches
 - II. Leverage stock price XS-variation to quantify expected shifts in defense expenditure

Benefits:

- I. Model consistent methodology grounded in asset pricing theory
- II. Self-validating: it estimates and allows statistical validation of each event (testing)
- III. Generalizable to contexts where units are heterogeneously impacted by aggregate shocks
- IV. Parsimony and objectivity (i.e., minimizes subjectivity in narrative approaches)

Contributions:

- I. Novel LLM-augmented narrative analysis: key fiscal events (2001-2023)
- II. Novel military news shocks series (2001-2023)
- III. Novel XS-multiplier estimates (MSA / 2001-2023)

OUTLINE

INTRODUCTION

HFXS Framework & Identification

EMPIRICAL RESULTS

Application: US GDP XS-Multipliers

Conclusions

A SIMPLE MODEL OF STOCK PRICES

• Profits $D_{i,t}$ of firm i at time t

$$D_{i,t} := (1 - au_t) \cdot \underbrace{(V_{i,t} + G_{i,t})}_{ ext{Total Sales}} \cdot \left(1 - rac{1}{\mu_i}
ight)$$

- $-V_{i,t}$ is private sales
- $-G_{i,t}$ is government sales
- $-\mu_i$ is the markup and τ_t is a corporate tax
- Gordon (1959):

$$P_{i,t} := \sum_{h=0}^{\infty} \frac{D_{i,t+h}^e}{\prod_{\tau=0}^h (1 + i_{t,t+\tau}^e)}$$

- $-P_{i,t}$ is the stock price of firm i
- $i_{t,t+ au}^e$ is the expected (t+ au)-period ahead interest rate at time t

- Under (i)-(ii):
 - I. Expected profits are proxied by current profits
 - II. Expectations hypothesis of the term structure holds

$$P_{i,t} = \frac{D_{i,t}}{1 - \frac{1}{1 + i_t}} = \frac{1 + i_t}{i_t} \cdot \underbrace{(1 - \tau_t) \cdot (V_{i,t} + G_{i,t}) \cdot \left(1 - \frac{1}{\mu_i}\right)}_{D_{i,t}} \tag{1}$$

→ The stock prices are proportional to government sales

STOCK RETURNS ARE PROPORTIONAL TO GOVERNMENT SALES

Let us focus on cross-section (XS) of contractors i

- Denote Reliance on DoD by $\lambda_i := \frac{G_i}{G_i + V_i}$; define $G_i := \theta_i \cdot G$
- Log-Differentiate (1) around a **HF fiscal event**:

$$\underbrace{d\log P_{i}}_{\text{Stock Return}} = \alpha + \underbrace{\lambda_{i}}_{\text{Reliance}} \cdot \left(\underbrace{d\log G^{e}}_{\text{Shock}} + d\log \theta_{i}^{e} - d\log V_{i}^{e}\right) + \varepsilon_{i}$$
(2)

- $-\alpha$: time FEs (e.g., \mathbb{E} change in corporate taxes);
- $-\varepsilon_i$: firm-specific FEs (e.g., \mathbb{E} change in markups)

EXTRACT NEWS SHOCKS FROM STOCK RETURNS

HFXS IDENTIFICATION: THEOREM

GENERALIZATION

Under weak Assumptions, regressing stock returns $(d \log P_i)$ on reliance on DoD contracts (λ_i) :

$$d\log P_i = \alpha + \gamma \cdot \lambda_i + e_i \tag{3}$$

yields

$$\hat{\gamma}_{\mathsf{OLS}} \stackrel{p}{\to} d \log G^e$$

That is, $\hat{\gamma}_{OLS}$ consistently estimates expected changes in defense spending $(d \log G^e)$

"If Lockheed's reliance on DoD (λ_i) is 71% and Boeing's is 30%, a positive shock will affect Lockheed's price more, mirroring its larger profit potential."

OUTLINE

Introduction

HFXS FRAMEWORK & IDENTIFICATION

EMPIRICAL RESULTS

APPLICATION: US GDP XS-MULTIPLIERS

Conclusions

EVENTS THAT SHIFTED US EXPECTED MILITARY SPENDING (2000-2023)

Date	Sign	Description of the Event				
11 September 2001	+	9/11 terrorist attacks $+$ ensuing invasion of Afghanistan in October 2001				
20 March 2003	+	U.Sled invasion of Iraq opens a second major war				
10 January 2007	+	President Bush's Iraq "Surge" address				
4 November 2008	-	Barack Obama elected U.S. president after campaigning to end the Iraq War				
2 August 2011	-	Budget Control Act of 2011 signed amid debt-ceiling crisis				
1 March 2013	-	U.S. Government Sequestration takes effect after Congress fails to agree on deficit reductions				
18 March 2014	+	Russia's illegal annexation of Crimea				
22 September 2014	+	Extremist group ISIS seizes large parts of Iraq & Syria				
8 November 2016	+	Trump wins 2016 U.S. Elections campaigning on military build-up				
9 February 2018	+	Bipartisan Budget Act of 2018 lifts strict BCA spending caps for FY 2018–19				
2 August 2019	+	${\it Bipartisan \; Budget \; Act \; of \; 2019 \; raises \; defense \; spending \; caps \; + \; ends \; sequestration-era \; limits}$				
24 February 2022	+	Russia invades Ukraine				

Defense Contractors Data

- Annual official Top100 Report (available from 1958)
- \rightarrow 430 Top100 Contractors from FY2001
- Three conditions:
 - Publicly Traded (NYSE or NASDAQ)
 - \rightarrow 57 contractors
 - II. Salience: investors associate contractors to "defense"
 - → Appear at least four times in Top100 report (e.g., rules out **Moderna**)
 - III. Relevance: stock price non-negligibly affected by gov. contracts
 - \rightarrow Median reliance \geq 1% (e.g., rules out **BP**):

$$\mathsf{Median}\left(\lambda_{i,t}
ight) \geq 1\%, \quad \lambda_{i,t} := rac{\mathsf{DoD}\;\mathsf{Contracts}_{i,t}}{\mathsf{Tot.}\;\mathsf{Sales}_{i,t}}$$

- → 33 Contractors meet conditions I-III
 - Median reliance is 20%. Interquartile range is [3.7%,39.9%] Descriptive Stats

33 companies = 40% total DoD Procurement spending!

Model-Implied XS-Regression

- We have:
 - Set of Narrative Dates ${\mathcal T}$
 - Set of 33 publicly traded, salient and relevant defense contractors
- → Implement HFXS Regressions
 - For each date $\tau \in \mathcal{T}$ estimate empirical analog of Equation (3):

$$\underbrace{\frac{\mathbf{V}_{i|t=\tau}}{\approx d \log P_{i,t}}} = \alpha + \underbrace{\gamma_{t=\tau}}_{\stackrel{\mathbf{P}}{\rightarrow} \mathbf{d} \log \mathbf{G}_{\mathbf{t}}^{\mathbf{e}}} \cdot \underbrace{\lambda_{i|t=\tau}}_{\text{RELIANCE}} + \epsilon_{i} \quad \forall \tau \in \mathcal{T}, \ \forall i \in \mathcal{I}_{\tau},$$

$$(4)$$

- $v_{i|t=\tau}$: weekly excess returns
 - Constructed using Fama-French 3 factors model
 - Frequency: five trading days
- $-\lambda_{i|t=\tau}$: reliance on DoD purchases in the quarter of the event
- $\rightarrow \gamma_{t=\tau}$: market-implied military news shock

EXAMPLE 1: BUDGET SEQUESTRATIONS (2013Q1)

 \rightarrow **Estimated Slope** $(\hat{\gamma})$: -0.066 (0.015)

EXAMPLE 2: TRUMP ELECTION (2016Q4)

 \rightarrow Estimated Slope ($\hat{\gamma}$): +0.092 (0.024)

ESTIMATES OF HFXS MILITARY NEWS SHOCKS

Event	Shock Trading Date	Expected Sign	$\mathbf{d} \log \mathbf{G_t} \left(\gamma_{\mathbf{t}= au} ight)$	pvalue	N	Defense Index
9/11 Terrorist Attack	September 21, 2001	+	0.629	0.000	14	+5.2%
Invasion of Iraq	March 19, 2003	+	(0.133) 0.029 (0.035)	0.406	20	+ 6.4%
Bush Speech on Iraq	January 11, 2007	+	0.028 (0.017)	0.117	20	+3.1%
Obama Election	November 6, 2008	-	-0.031 (0.030)	0.327	18	-2.3%
Budget Control Act 2011	August 2, 2011	-	-0.065 (0.019)	0.002	23	-3.1%
Sequestrations	January 31, 2013	-	-0.066 (0.015)	0.000	21	-4.7%
Russia's Invasion of Crimea	March 5, 2014	+	0.038 (0.021)	0.086	21	+1.5%
War to Isis	29 October 2014	+	0.047 (0.024)	0.065	23	+3.3%
Trump Election	November 14 2016	+	0.092 (0.043)	0.042	23	+4.9%
Bipartisan Budget Act 2018	January 31 2018	+	0.091 (0.038)	0.024	23	+5.8%
Bipartisan Budget Act 2019 $+$ Iron Dome	9 August, 2019	+	0.101 (0.028)	0.002	23	+3.7%
Invasion of Ukraine	March 1, 2022	+	0.273 (0.041)	0.000	23	+10.4%

Notes: Robust standard errors in parentheses. Last column (Defense Index), refers to the excess weekly returns of the Defense Index. Interquartile range of excess weekly returns of Defense Index is [-1.0%, +1.0%], 10th and 90th percentiles are -2.2% amd +2.1%.

HFXS MILITARY NEWS SHOCK SERIES RZIS COMPARISON

OUTLINE

Introduction

HFXS FRAMEWORK & IDENTIFICATION

EMPIRICAL RESULTS

APPLICATION: US GDP XS-MULTIPLIERS

Conclusions

MILITARY NEWS SHOCKS ARE (REGIONALLY) SALIENT!

MILITARY NEWS SHOCKS ARE (REGIONALLY) SALIENT!

REGIONAL ECONOMIC EFFECTS

$$\frac{Y_{\ell,t+h} - Y_{\ell,t-1}}{Y_{\ell,t-1}} = \underbrace{\beta_h}_{XS\text{-MULTIPLIER}} \cdot \frac{G_{\ell,t+h} - G_{\ell,t-1}}{Y_{\ell,t-1}} + \alpha_\ell^h + \lambda_t^h + \varepsilon_{\ell,t+h}$$

- $Y_{\ell,t}$ real GDP, $G_{\ell,t}$ real DoD Contracts, α_{ℓ}^h & λ_{t}^h location & time FE; (N = 377; T = 24)
- ! Endogeneity of $G_{\ell,t}$: Reverse Causality (Mintz, 1992), Anticipation (Auerbach et al., 2020)
- → shift-share (Bartik) instrument:

 \rightarrow We replace the Shift:

$$Z_{\ell,t+h}^{ ext{Bartik}} = rac{s_{\ell}\left(G_{t+h} - G_{t-1}
ight)}{Y_{\ell,t-1}}$$

$$Z_{\ell,t+h}^{\rm HFXS} = \frac{s_\ell \, \mathbb{E}_t \big(\mathit{G}_{t+1} \big)}{Y_{\ell,t-1}}$$

- $-s_{\ell}$ (Share): DoD contracts share MSA ℓ
- $\mathbb{E}_t(G_{t+1})$: HFXS MILITARY NEWS SHOCKS

G_t (Shift): National DoD contracts

2-year XS Multiplier of ≈ 1

Horizon	IV: HFXS	Military I	News Shocks	IV: Standard Bartik				
	Coefficient	pvalue	Effective F	Coefficient	pvalue	Effective F		
Impact	2.647 (2.307)	0.252	1.462	0.095 (0.044)	0.030	17.088		
Year 1	1.352 (0.369)	0.000	14.939	0.539 (0.125)	0.000	95.193		
Year 2	0.953 (0.271)	0.000	30.558	0.484 (0.148)	0.001	46.408		
Year 3	0.614 (0.338)	0.070	6.257	0.639 (0.256)	0.013	15.239		

Notes: 377 MSAs, 2001-23. GDP price deflator from BEA, base year 2017. Robust SE in parentheses, clustered at MSA level. Montiel Olea and Pflueger (2013) effective F is calculated with weakivtest.

- → Military news shocks have real economic effects
- → Produce **higher XS-multipliers** than standard Bartik

Robustness: exclusion of 9/11

OUTLINE

Conclusions

Conclusions

- New model-consistent methodology to identify military news shocks
 - Estimate & Test shocks from the data!
 - A. Identify narrative events
 - B. Run model-implied HFXS-regressions around events
 - → Self-validating (sign & significance)
 - Generalizable to contexts of aggregate shock/heterogeneous exposure
- Application: US Military Spending post-2000:
 - Document novel series of key US military events
 - Construct **new** (HFXS) defense news shocks
 - ightarrow Defense news shocks have significant effects on regional GDP (2-year XS- ${\cal M}~pprox 1)$

Thank You!

OUTLINE

APPENDIX

EXAMPLE OF PROMPT WITH NON-CONTROVERSIAL EVENTS BACK

"Compile a list of dates or events—from 2000 onward—that signal a potential shift in the expected path of US military procurement spending. Include both positive and negative shocks. Examples: (a) September 11, 2001 terrorist attacks: widely seen as a precursor to higher defense spending; (b) Failure in February/March 2013 of President Obama and Congress to reach a budget agreement: triggered automatic cuts (sequestration) and reduced defense spending; (c) Unexpected election victory of Donald Trump, November 2016: he campaigned on increasing military outlays. Use a similar standard to identify and briefly justify each additional event you list."

- 9/11: defense news shock according to Ramey and Zubairy (2018).
- Budget Sequestrations: exogenous fiscal consolidation by Alesina et al. (2014).
- Trump's 2016 election: marginal win + campaign on "peace through strength"

PROMPT FOR NARROWER PERIODS WITHOUT EXAMPLES (BACK)

- Context: Iraq & Afghanistan wars followed from 9/11 and prompted increased spending
- Then, we ask:

"List the defining moments/events of the war in Iraq and Afghanistan that (a) had large media coverage in the US around the years 2004-2008 and (b) which also gave the impression of an expected increase in military spending in the US."

ASSUMPTIONS FOR IDENTIFICATION BACK

- Assumption 1. $\lambda_i \perp d \log V_i^e$
- Assumption 2. $\mathbb{E}[d\log V_i^e] = 0$ Private sales may move in both directions:
 - Lee (2024): new contracts crowd-in private sales via learning-by-doing.
 - Ilzetzki (2023): capacity constraints during WWII may have limited the ability of contractors to expand private
 - di Giovanni et al. (2023): crowding-out on impact, and crowding-in after one year after winning a contract.
- Assumption 3. $\lambda_i \perp d \log \pi_i^e := \frac{d \log \mu_i^e}{\mu_i 1}$ If investors form expectations about future contractors' profitability, those expectations must be independent of reliance
- Assumption 4. $\lambda_i \perp d \log \theta_i^e$
- Assumption 5. $\mathbb{E}[d \log \theta_i^e] = 0$ If investors form expectations about future contractors' profitability, those expectations must be independent of reliance and average out to zero

Framework Generalizable to Broader Macro Contexts

BACK

• It is possible to show that:

$$d \log P_{i,t} = \underbrace{\lambda_{i,t}}_{(i)} \cdot \underbrace{\xi_i}_{(iii)} \cdot \underbrace{d\varepsilon_t}_{(iii)-Shock}$$
Heterogeneous Exposure

- I. $\lambda_{i,t}$: fraction of sales exposed to the news shock
- II. ξ_i : elasticity of sales with respect to the shock
- III. $d\varepsilon_t$: shock you want to identify

Proposition: Generalization

Let units experience a common shock ε_t with heterogeneous loadings captured by observable (or parametrizable) terms $(\lambda_{i,t}, \xi_i)$. Then, estimating the cross-sectional regression around the event yields an estimate of the shock magnitude.

LARGEST FIRMS IN THE SAMPLE BACK

- Median reliance is 20%. Interquartile range is [3.7%,39.9%].
- Top 3 firms by (median) reliance:
 - VSE Corp (86%) (Aviation Services)
 - L3 Harris Technologies (82%) (Avionics)
 - Huntington Ingalls Industries (73%) (Ship building)
- Top 3 firms by fraction of DoD Contracts (FY23):
 - Lockheed Martin (14.7%) (Aerospace)
 - Raytheon (RTX) (6.5%) (Weapons and Electronics)
 - **General Dynamics** (5.0%) (Aerospace, Submarines, Vehicles)
- Data cross-validation:
 - We match these companies with universe of micro-contracts from FPDS
 - We compare FPDS data with Top100 Report data
 - → The two data sources match!

CONSTRUCTION OF EXCESS RETURNS BACK

• Need to "clean" the returns → extract excess returns

• Fama and French (1993) three factor model:

$$r_{i,t} = \alpha_i + \beta_i^1 \cdot \mathsf{MKT}_t + \beta_i^2 \cdot \mathsf{SML}_t + \beta_i^3 \cdot \mathsf{HML}_t + v_{i,t} \quad \forall i \in \mathcal{I}$$

- $-r_{i,t}$: contractors' weekly returns (WRDS)
- Three factors: MKT (market), SML (size) and HML (value)
- $\rightarrow v_{i,t}$: OLS residuals weekly excess returns

HFXS AND RZ18 SHOCKS ARE SIMILAR BUT NOT IDENTICAL

ROBUSTNESS: EXCLUSION OF 9/11 BACK

		Robustne	ss - Sample: 2	00	2-2023 (With	out 9/11)	- 377 MSAs				
Horizon	IV: HFXC Military News Shocks				IV: Standard Bartik				OLS		
	Coefficient	pvalue	Effective F		Coefficient	pvalue	Effective F		Coefficient	pvalue	
Impact	-0.112 (0.209)	0.594	9.428		0.124 (0.047)	0.008	17.575		0.009 (0.018)	0.622	
Year 1	0.609 (0.301)	0.044	17.868		0.494 (0.120)	0.000	100.184		0.052 (0.025)	0.042	
Year 2	0.571 (0.268)	0.033	12.293		0.437 (0.142)	0.002	42.991		0.078 (0.046)	0.090	
Year 3	0.620 (0.427)	0.147	6.656		0.638 (0.271)	0.019	10.163		0.123 (0.069)	0.074	

Notes: 377 MSAs, 2001-23. GDP price deflator from BEA, base year 2017. Robust standard errors in parentheses, clustered at MSA level. Montiel Olea and Pflueger (2013) effective F is calculated with weakivtest, coincides with Kleibergen and Paap (2006) statistic for single instrument