Shuo YANG

Department of Computer Science, University of Texas at Austin

Email: yangshuo_ut@utexas.edu Website: <u>yangshuo-ut.github.io</u>

EDUCATION EXPERIENCE

Department of Computer Science, University of Texas, Austin	08/2018 – Now
> GPA: 4.0 Ph.D. student. Advisor: Sujay Sanghavi; Co-advisor: Inderjit Dhillon.	
Department of Electrical Engineering, Tsinghua University, Beijing	08/2014 - 07/2018
Major GPA: 92.35 Top 3 out of 140 in the department.	
School of Economics and Management, Tsinghua University, Beijing	09/2015 - 07/2018
> Double Major in Economics	
Electrical and Computer Engineering, University of Texas, Austin	01/2017 - 05/2017
➤ GPA: 4.0 International Exchange Student Program.	
RLAI Lab, University of Alberta	07/2017 - 09/2017

INDUSTRY EXPERIENCE

> Summer internship, supervised by Richard Sutton.

Google	06/2020 - 09/2020
Student Researcher. Manager: Xiaodan Song & Denny Zhou	Austin, TX (Remote)
Fast training of large-scale deep learning model (BERT).	
Amazon	06/2019 — 09/2019
Applied Scientist Intern. Manager: Dan Hill	Berkeley, CA

> Customer search query understanding and inline search suggestion.

RESEARCH INTEREST

My research interest lies in theoretical machine learning, optimization and sequential decision making under uncertainty. My research goal is to build machine learning algorithms that are theoretical sound and efficient in runtime/space/sample complexity.

RESEARCH EXPERIENCE

Achieving Sublinear Time Complexity for Linear Bandit Problem08/2020 – 01/2021Advisor: Professor Sujay Sanghavi, Professor Inderjit Dhillon. University of TexasAustin, US

- Extended existing solutions of one-time approximated Maximum Inner Product Search (MIPS) and provided theoretical guarantee for a sequence of adaptive queries.
- ➤ Combined the new MIPS solution with linear UCB/TS algorithms and achieved per-step time complexity sublinear to the number of arms, with regret bound the same as the original algorithms.

Online Assortment Optimization without Strict Preference Order 01/2020-08/2020

- Advisor: Professor Sujay Sanghavi, Professor Inderjit Dhillon. Universty of Texas

 Austin, US
- > Studied the online assortment optimization problem without assuming the users to have strict preference order for all available items.
- ➤ Proposed a weak preference assumption that covers commonly seen models including multinomial logit model/random utility model, etc.
- > Proved the regret lower bound and proposed an algorithm that achieves a matching regret bound.

[NeurIPS 2019] 09/2018 – 05/2019

Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space

Austin, US

Advisor: Professor Sujay Sanghavi, University of Texas

- > Developed a sub-quadratic time gradient estimation method for quadratic model.
- > Combining the sketching method with iterative hard threshold, obtained a provable linear convergence rate and consistent parameter estimation for solving quadratic regression.

Electrical Market Equilibrium Analysis with Accelerated Gradient Descent

09/2017 - 07/2018

Advisor: Professor Qixin CHEN, Chongqing KANG, Tsinghua University

Beijing, CN

- > The new method framed the electrical market bidding in a reduced form, gives a simple and accurate market model for equilibrium calculation.
- > Integrated accelerated gradient descent algorithm to solve for the market equilibrium.

Reinforcement Learning: Fast Planning with Linear Dyna

07/2017 - 09/2017

Advisor: Professor Richard Sutton, University of Alberta

Edmonton, CA

- > Developed a new planning method under the linear Dyna architecture.
- New method achieved the same data efficiency as previous Dyna method with linear time complexity and constant per-step computation. Suitable for large scale, long-term learning.

Automatic Curriculum Generation in Reinforcement Learning

02/2017 - 07/2017

Advisor: Professor Peter Stone, University of Texas

Austin, US

- Designed a method to generate agent-specific curriculum automatically. Empirical results have demonstrated a 40% learning efficiency increase.
- > Improved the experiment environment setting, which extends the previous experiment to a complex domain and allows for a more flexible configuration of tasks.

GRADUATE COURSES

Fall, 2020

- Advanced Probability (Prof. Sanjay Shakkottai)
- > Sublinear Algorithm (Prof. Eric Price)
- ➤ Wireless Networking (Prof. Lili Qiu)

Spring, 2020

- Markov Chains/Mixing Time (Prof. Joe Neeman)
- > Statistical Machine Learning (Prof. Haris Vikalo)

Fall, 2019

- Online Learning (Prof. Sanjay Shakkottai)
- Randomized Algorithm (Prof. Eric Price)
- ➤ Natural Language Process (Prof. Greg Durrett)
- > Deep Learning Seminar (Prof. Philipp Krahenbuhl)

Spring, 2019

- Large-Scale Optimization II (Prof. Constantine Caramanis)
- ➤ Algorithm: Techniques and Theory (Prof. Greg Plaxton)
- ➤ Theoretical Statistics (Prof. Purnamrita Sarkar)

Fall, 2018

- Large-Scale Optimization I (Prof. Sujay Sanghavi)
- Probability and Stochastic Process (Prof. Sanjay Shakkottai)