EE 2000 Logic Circuit Design Semester A 2024/25

Tutorial 5

1. With the following functions, design a circuit with a 3-to-8-line decoder and external gates.

$$F_1(x, y, z) = x'yz' + xz'$$

$$F_2(x, y, z) = xyz' + x'z$$

$$F_1(x, y, z) = \Sigma m(2,4,6)$$

$$F_2(x, y, z) = \Sigma m(1,3,6)$$

- 2. (a) Complete the truth table of the following circuit.
 - (b) Write down the logic expression of the following circuit and simplify as much as possible.(c) Draw the simplified logic expression obtained in (b) using 2-input NAND gate(s) only.

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	11

$$Y(A,B,C) = A'B'C + A'BC + AB'C' + AB'C + ABC$$

$$Y(A,B,C) = C + AB'$$

- 3. (a) Show the Boolean function f(a,b,c) of the following circuit.
 - (b) Simplify your answer in (a) by K-Map.

Input		Output			
A_1	A_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$\begin{split} f(a,b,c) &= D0(a'b'c') + D1(a'b'c) + D2(a'bc') + D3(a'bc) + D4(ab'c') \\ &+ D5(ab'c) + D6(abc') + D7(abc) \\ f(a,b,c) &= a'b'(a'b'c') + a'b(a'b'c) + ab'(a'bc') + ab(a'bc) + b'c'(ab'c') \\ &+ bc'(ab'c) + b'c(abc') + bc(abc) \\ f(a,b,c) &= a'b'c' + ab'c' + abc \end{split}$$

$$f(a,b,c) = b'c' + abc$$

4. Implement the following Boolean function with a 4×1 MUX and external gates. Connect inputs A and B to the selection lines and inputs C and D to the data input lines of the MUX.

$$F(A,B,C,D) = \Sigma \text{ m}(1,3,5,11,12,13,14,15)$$

When
$$A = 0$$
, $B = 0$, $f = D$
When $A = 0$, $B = 1$, $f = C'D$
When $A = 1$, $B = 0$, $f = CD$
When $A = 1$, $B = 1$, $f = 1$

5. What is the largest number of data inputs that a multiplexer with *k* input selection inputs can handle?

Answer: 2k

How many selection lines are contained in a multiplexer with 1024 inputs and one output? Answer: $log_21024 = 10$

For the multiplexer circuits shown in the figure below, what are Y1(A, B, C) and Y2(A, B, C), respectively? Please list in the standard sum of products form.

Answer:

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	Y_1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$Y_1(A, B,$	C) =	$\Sigma m($	[1, 2,	4, 6)
-------------	------	-------------	--------	------	---

C	\boldsymbol{B}	\boldsymbol{A}	Y_2
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Y_2(A, B, C) = \sum m(1, 2, 3, 4)$$