# Lecture 5: Convolutional Neural Networks for NLP

Andrei Arsene Simion

Columbia University

February 15, 2023

#### Outline

- Convolutional Neural Networks
- CNN for NLP
- ► Example: Text Classification
- ► Example: Language Modeling with Gated CNN

#### Outline

- Convolutional Neural Networks
- CNN for NLP
- ► Example: Text Classification
- ► Example: Language Modeling with Gated CNN

## Main Idea and goals of a CNN

- ▶ Given a sequence of text and a representation of each token in that text (one-hot, word vectors, etc.) how can we aggregate subsequences and get representations for each subsequence?
- Example: "I went to the Apple store to buy the cool new laptop."
  - How can we summarize the above by using batches of length 3?
  - ► There are 10 such contiguous groups of words for the above sentence
  - ► They are: {I went to}, {went to the}, {to the Apple} ... {cool new laptop}

#### Main Idea

- ▶ The phrases we make, we do not care if they are grammatical
- Or linguistically valid
- Or cognitively plausible
- What we care is trying to figure out if we can understand some sort of summary context from this information

#### Main Idea: Convolution

- ► CNN's were mainly used for Computer Vision, but we'll now see how they can be used for NLP
- In math, convolution is usually written as

$$(f * g)(n) = \sum_{m=-M}^{M} f[n-m]g[m]$$

► The idea above is to run some filter g with a function f and get a new function "mixing" f and g

# Example of a Convolution for Images

- Images are usually stored as (data) boxes of a certain width, height, and depth (channel)
- Assume the depth is 1 (Black White picture). For a rectangle of pixels, run a filter over the data over with a certain stride
- ► To note:
  - Data has size 5 × 5
  - ► Filter has size 3 × 3
  - We move the filter across each column 1 step at a time and when we come to the end columns we go 1 row down and repeat
  - ► Result has size 3 × 3



#### Effects of Convolution

- Note that the original data was shrunk in dimensions
- ▶ Note that we moved the filter across 1 column at a time
  - ► We could have moved this 2 (or rows) columns at a time, but, then we'd have a smaller result
  - ► The filter is applied to a sub-image of the exact same dimension as the filter (3 × 3), but we could have added "padding" with this padded image to get a result of the same size as before

## **Strides**

- Example:
  - ► Data has size 5 × 5
  - ► Filter has size 3 × 3
  - ▶ Stride is 1 on the left, 2 on the right



# **Padding**

- Example:
  - ▶ Data has size 5 × 5
  - ► Filter has size 3 × 3
  - ► Stride is 1
  - Added padding on the edges
    - Note that now a 3 × 3 kernel can convolve with a 2 × 2 sub image because this sub-image has been padded

| 0 | 0   | 0   | 0   | 0   | 0   | 0 |
|---|-----|-----|-----|-----|-----|---|
| 0 | 60  | 113 | 56  | 139 | 85  | 0 |
| 0 | 73  | 121 | 54  | 84  | 128 | 0 |
| 0 | 131 | 99  | 70  | 129 | 127 | 0 |
| 0 | 80  | 57  | 115 | 69  | 134 | 0 |
| 0 | 104 | 126 | 123 | 95  | 130 | 0 |
| 0 | 0   | 0   | 0   | 0   | 0   | 0 |



| 114 | 328  | -26 | 470  | 158 |
|-----|------|-----|------|-----|
| 53  | 266  | -61 | -30  | 344 |
| 403 | 116  | -47 | 295  | 244 |
| 108 | -135 | 256 | -128 | 344 |
| 314 | 346  | 279 | 153  | 421 |

#### Outline

- Convolutional Neural Networks
- ► CNN for NLP
- ► Example: Text Classification
- ► Example: Language Modeling with Gated CNN

## Example

- ▶ How can we represent text and do convolutions?
- Use word vectors!
  - Example: Assume each word has dimension 5
  - ▶ We can use GloVe, Word2Vec, etc to load these word vectors
    - Note: I assume here that the vectors are constants for demonstration

| i   | went | to   | the  | apple | store | to  | buy | the | cool | new  | laptop |
|-----|------|------|------|-------|-------|-----|-----|-----|------|------|--------|
| 0.1 | 0.2  | 0.31 | 0.41 | 0.45  | 0.5   | 0.7 | 0.8 | 0.9 | 0.91 | 0.92 | 0.93   |
| 0.1 | 0.2  | 0.31 | 0.41 | 0.45  | 0.5   | 0.7 | 0.8 | 0.9 | 0.91 | 0.92 | 0.93   |
| 0.1 | 0.2  | 0.31 | 0.41 | 0.45  | 0.5   | 0.7 | 0.8 | 0.9 | 0.91 | 0.92 | 0.93   |
| 0.1 | 0.2  | 0.31 | 0.41 | 0.45  | 0.5   | 0.7 | 0.8 | 0.9 | 0.91 | 0.92 | 0.93   |
| 0.1 | 0.2  | 0.31 | 0.41 | 0.45  | 0.5   | 0.7 | 0.8 | 0.9 | 0.91 | 0.92 | 0.93   |

- Apply a filter of dimension 3 but note that the filter's depth (i.e. channel depth) is 5, which is the dimension of the word vectors
- ► For NLP, these are know as 1-dimensional convolutions
- The all have the same number of rows we can have  $5 \times 2$ ,  $5 \times 1$ ,  $5 \times 5$  filters, etc

| 1 | 2 | -3 |
|---|---|----|
| 1 | 2 | -3 |
| 1 | 2 | -3 |
| 1 | 2 | -3 |
| 1 | 2 | -3 |



## Example

- ► The result of this convolution will be a new vector with 1 channel and length 10
- ► Each group of 3 words is convolved with the filter so each column knows about 3 words in sequence

| {i went to} | {went to the} | *** | {cool new laptop} |
|-------------|---------------|-----|-------------------|
| -2.14       |               |     | -0.2              |

If we had another 5 × 3 filter filter we might have a result that looks like the above but with another row

| l | {i went to} | {went to the} | <br>{cool new laptop} |
|---|-------------|---------------|-----------------------|
| ſ | -2.14       |               | <br>-0.2              |
| l | -0.23       |               | <br>0.9               |

- ▶ In PyTorch, this example would be done by applying
  - ▶ m=Conv1d(5, 2, 3)
  - data=torch.rand(5, 12)
  - m(data)
- ▶ Typically, a filter also has a bias each  $D \times k$  filter has kD + 1 parameters

# **Padding**

- ► We can also apply padding to the above, so that the resulting sentence's width is the same as the start
- ➤ You can get Conv1d(5, 2, 3, padding=1) to get the above behavior

| NULL | i   | went | to | the | <br>laptop | NULL |
|------|-----|------|----|-----|------------|------|
| 0    | 0.1 |      |    |     | 0.4        | 0    |
| 0    | 0.1 |      |    |     | 0.4        | 0    |
| 0    | 0.1 |      |    |     | 0.4        | 0    |
| 0    | 0.1 |      |    |     | 0.4        | 0    |
| 0    | 0.1 |      |    |     | 0.4        | 0    |

If we have 2 kernels, the result now is  $2 \times 12$  instead of  $2 \times 10$ 

| {NULL i went } | {i went to} | *** | {new laptop NULL} |
|----------------|-------------|-----|-------------------|
| 0.1            | 0.54        |     | -0.21             |
| -0.23          | 0.7         |     | 0.9               |

#### Dilation

- ▶ Question: What does Conv1d(..., dilation=2) do?
  - ▶ If you have words {a, b, c, d, e, f, g} and a filter width two, dilation 1, stride 1
  - ► A standard filter gives features made up of {*a*, *b*}, {*b*, *c*}, {*c*, *d*}, {*d*, *e*}, {*e*, *f*}, {*f*, *g*}
  - With dilation 2 we get features made up of  $\{a,c\},\{b,d\},\{c,e\},\{d,f\},\{e,g\}$
  - At a high level, you can get a wider context with less layers



Figure 2: Visualization of a stack of causal convolutional layers.



Figure 3: Visualization of a stack of dilated causal convolutional layers.

# Max Pooling

- ► What if you want to summarize your data across dimensions but don't want to collapse all the channels?
- ► For each dimension of your word vectors, take the maximum coordinate as you move across the sentence 3 words at a time
- ▶ In PyTorch, this can be done with
  - m=MaxPool1d(3, stride=1)
  - data=torch.rand(5, 10)
  - m(data)

# Max Pooling

- For the example we had before, this might look like below
- Notice that we have the same number of channels, but less vectors (sentence length)

| {i went to}         | <br>{cool new laptop}     |
|---------------------|---------------------------|
| max(0.1, 0.2, 0.31) | <br>max(0.91, 0.92, 0.93) |
| max(0.1, 0.2, 0.31) | <br>max(0.91, 0.92, 0.93) |
| max(0.1, 0.2, 0.31) | <br>max(0.91, 0.92, 0.93) |
| max(0.1, 0.2, 0.31) | <br>max(0.91, 0.92, 0.93) |
| max(0.1, 0.2, 0.31) | <br>max(0.91, 0.92, 0.93) |

# Average Pooling

- ▶ We could also do Average Pooling
- ► AvgPool1d

| {i went to}         | <br>{cool new laptop}     |
|---------------------|---------------------------|
| avg(0.1, 0.2, 0.31) | <br>avg(0.91, 0.92, 0.93) |
| avg(0.1, 0.2, 0.31) | <br>avg(0.91, 0.92, 0.93) |
| avg(0.1, 0.2, 0.31) | <br>avg(0.91, 0.92, 0.93) |
| avg(0.1, 0.2, 0.31) | <br>avg(0.91, 0.92, 0.93) |
| avg(0.1, 0.2, 0.31) | <br>avg(0.91, 0.92, 0.93) |

# Sum Pooling

- ▶ We could also do Sum Pooling
- ▶ SumPool1d

| {i went to}         | ••• | {cool new laptop}     |
|---------------------|-----|-----------------------|
| sum(0.1, 0.2, 0.31) |     | sum(0.91, 0.92, 0.93) |
| sum(0.1, 0.2, 0.31) |     | sum(0.91, 0.92, 0.93) |
| sum(0.1, 0.2, 0.31) |     | sum(0.91, 0.92, 0.93) |
| sum(0.1, 0.2, 0.31) |     | sum(0.91, 0.92, 0.93) |
| sum(0.1, 0.2, 0.31) |     | sum(0.91, 0.92, 0.93) |

# Big Benefit: We can apply multiple filters in parallel!

- One of the big benefits of CNN is we don't need to wait for one filter to process data through another filter
- ▶ On the same layer level, we can apply all the filters in parallel and then put these together to get the result

#### Outline

- Convolutional Neural Networks
- CNN for NLP
- ► Example: Text Classification
- ► Example: Language Modeling with Gated CNN

- ▶ Goal of the model: for each sentence, extract the "sentiment" of classification of the sentence
- Older notation, but very good insights for its time
- ▶ Model has dropout on the final layer (0.5)
- Model also has a "hack": After back prop, normalize all weights so that  $||w||_2 = s$  ... Do not let parameters get too large
- ightharpoonup This basically is  $L_2$  regularization
  - It turns out the problems below are equivalent, but there is no (analytic) mapping between t and  $\lambda$
  - $ightharpoonup min_{\theta}(f(\theta) + \lambda ||\theta||_2^2)$
  - $ightharpoonup min_{\theta,||\theta||_2 \leq t}(f(\theta))$

▶ Note that the Max Pooling is over the entire sequence length



Figure 1: Model architecture with two channels for an example sentence.

► The author looked at a variety of datasets with different statistics per data set

| Data  | c | l  | N     | V     | $ V_{pre} $ | Test |
|-------|---|----|-------|-------|-------------|------|
| MR    | 2 | 20 | 10662 | 18765 | 16448       | CV   |
| SST-1 | 5 | 18 | 11855 | 17836 | 16262       | 2210 |
| SST-2 | 2 | 19 | 9613  | 16185 | 14838       | 1821 |
| Subj  | 2 | 23 | 10000 | 21323 | 17913       | CV   |
| TREC  | 6 | 10 | 5952  | 9592  | 9125        | 500  |
| CR    | 2 | 19 | 3775  | 5340  | 5046        | CV   |
| MPQA  | 2 | 3  | 10606 | 6246  | 6083        | CV   |

Table 1: Summary statistics for the datasets after tokenization. c: Number of target classes. 1: Average sentence length. N: Dataset size. |V|: Vocabulary size. |V|-p: | Number of words present in the set of pre-trained word vectors. Test: Test set size (CV means there was no standard train/test split and thus 10-fold CV was used).

- Main goal was sentence classification: does the sentence have positive or negative sentiment?
- Question classification: is the sentence about a person, location, number, ...
- ► Subjective (news) or objective (opinion) language?

- ▶ Start with word vectors from Word2Vec:  $x_i \in \mathbb{R}^k$
- ▶ A typical sentence looks like:  $x_1 \oplus x_2 \dots \oplus x_n$
- ► Concatenate words in a range  $x_{i:i+h-1}$
- ▶ Multiply the concatenated vector with vector filters  $w \in \mathbb{R}^{hk}$
- Note this is a little different than the notation we introduced, which is more standard now; but it's the same thing!
- Filter could be of size 2, 3, 4

- A filter w and bias b is applied to all windows of size k
- ► We get a feature

$$c_i = f(w^{\mathsf{T}} x_{i:i+h-1} + b)$$

- ▶ Sentence:  $x_1 \oplus x_2 \ldots \oplus x_n$
- All possible windows of length h:  $\{x_{1:h}, x_{2:h+1}, \dots, x_{n-h+1:n}\}$
- ▶ You get features  $\{c_1, c_2, \dots, c_{n-h+1}\} \in \mathbb{R}^{n-h+1}$
- Do this for multiple filters and concatenate the result

► A nice picture of the idea



- 4 different models were considered
  - CNN-rand: Initialize randomly and let the model learn the word embeddings
  - CNN-static: Initialize with Word2Vec, but do not allow word vectors to be changed (e.requires\_grad=False)
  - ► CNN-non-static: Initialize with Word2Vec, Embedding layer is allowed to be changed by back propagation
  - ► CNN-multichannel: Two Embeddings, both are Word2Vec but one is static another can be fine-tuned by back propagation
- Note: Word2Vec was compared with the embeddings from "NLP Almost From Scratch" (Lecture 1) - they did much better

- For a very cheap model, CNNs got SOTA on 4 / 7 of the tasks considered
- Note that drop out was new at this time; most other methods below would benefit from dropout

| Model                                 | MR   | SST-1 | SST-2 | Subj | TREC | CR   | MPQA |
|---------------------------------------|------|-------|-------|------|------|------|------|
| CNN-rand                              | 76.1 | 45.0  | 82.7  | 89.6 | 91.2 | 79.8 | 83.4 |
| CNN-static                            | 81.0 | 45.5  | 86.8  | 93.0 | 92.8 | 84.7 | 89.6 |
| CNN-non-static                        | 81.5 | 48.0  | 87.2  | 93.4 | 93.6 | 84.3 | 89.5 |
| CNN-multichannel                      | 81.1 | 47.4  | 88.1  | 93.2 | 92.2 | 85.0 | 89.4 |
| RAE (Socher et al., 2011)             | 77.7 | 43.2  | 82.4  | -    | -    | -    | 86.4 |
| MV-RNN (Socher et al., 2012)          | 79.0 | 44.4  | 82.9  | -    | -    | -    | -    |
| RNTN (Socher et al., 2013)            | -    | 45.7  | 85.4  | -    | -    | -    | -    |
| DCNN (Kalchbrenner et al., 2014)      | -    | 48.5  | 86.8  | -    | 93.0 | -    | -    |
| Paragraph-Vec (Le and Mikolov, 2014)  | -    | 48.7  | 87.8  | -    | -    | -    | -    |
| CCAE (Hermann and Blunsom, 2013)      | 77.8 | -     | -     | -    | -    | -    | 87.2 |
| Sent-Parser (Dong et al., 2014)       | 79.5 | -     | -     | -    | -    | -    | 86.3 |
| NBSVM (Wang and Manning, 2012)        | 79.4 | -     | -     | 93.2 | -    | 81.8 | 86.3 |
| MNB (Wang and Manning, 2012)          | 79.0 | -     | -     | 93.6 | -    | 80.0 | 86.3 |
| G-Dropout (Wang and Manning, 2013)    | 79.0 | -     | - 1   | 93.4 | -    | 82.1 | 86.1 |
| F-Dropout (Wang and Manning, 2013)    | 79.1 | -     | - 1   | 93.6 | -    | 81.9 | 86.3 |
| Tree-CRF (Nakagawa et al., 2010)      | 77.3 | -     | - 1   | -    | -    | 81.4 | 86.1 |
| CRF-PR (Yang and Cardie, 2014)        | -    | -     | -     | -    | -    | 82.7 | -    |
| SVM <sub>S</sub> (Silva et al., 2011) | -    | -     | -     | -    | 95.0 | -    | -    |

Table 2: Results of our CNN models against other methods. RAE: Recurries Autorocoders with pre-trained word vectors from Walppell (aschert et al., 2011). MV-RNN from French (aschert et al., 2012). RNTN, Recurries Ventral Tenuris Venewek with tenuro-based feature function and pass trees (Socher et al., 2013). DNNN recurries Ventral Tenuris Venewek with tenuro-based feature function and pass trees. Socher et al., 2013. DNN recurries ventral Tenuris Venewek ventral Tenuris Venewek (as a social tenuris ventral Tenuris Venewek (as a social tenuris ventral Tenuris Venewek (as a social tenuris ventral Tenu

Side effect: Fine-tuning the embeddings allows the words to know better what is related and unrelated

|      | Most Similar Words for |                    |  |  |  |
|------|------------------------|--------------------|--|--|--|
|      | Static Channel         | Non-static Channel |  |  |  |
| bad  | good                   | terrible           |  |  |  |
|      | terrible               | horrible           |  |  |  |
|      | horrible               | lousy              |  |  |  |
|      | lousy                  | stupid             |  |  |  |
| good | great                  | nice               |  |  |  |
|      | bad                    | decent             |  |  |  |
|      | terrific               | solid              |  |  |  |
|      | decent                 | terrific           |  |  |  |
| n't  | os                     | not                |  |  |  |
|      | ca                     | never              |  |  |  |
|      | ireland                | nothing            |  |  |  |
|      | wo                     | neither            |  |  |  |
| !    | 2,500                  | 2,500              |  |  |  |
|      | entire                 | lush               |  |  |  |
|      | jez                    | beautiful          |  |  |  |
|      | changer                | terrific           |  |  |  |
| ,    | decasia                | but                |  |  |  |
|      | abysmally              | dragon             |  |  |  |
|      | demise                 | a                  |  |  |  |
|      | valiant                | and                |  |  |  |

Table 3: Top 4 neighboring words—based on cosine similarity—for vectors in the static channel (left) and fine-tuned vectors in the non-static channel (right) from the multichannel model on the SST-2 dataset after training.

## Outline

- Convolutional Neural Networks
- CNN for NLP
- ► Example: Text Classification
- ► Example: Language Modeling with Gated CNN

# **CNN** For Language Modeling

- Can you use CNNs for Language Modeling?
- In this case, we want to predict  $w_{N+1}$  from a past context window  $(w_0, w_1, \dots, w_N)$
- ▶ Idea: As usual, get the embeddings for all words in a context and convolve the embedding layer with *n* filters
- Assume the the kernels have a filter size of k
- ▶ The data is initially  $X \in \mathbb{R}^{m \times N}$  so that the word dimension is m

# **CNN** For Language Modeling

- From one layer to the next, allow the model the chance to pass some information
- ▶ Notation is a little dated:

$$h_I(X) = (X * W + b) \otimes \sigma(X * V + c)$$

- ► Here, we convolve *X* with two filters such that we get the same dimensional result
- One result of a filter goes through a nonlinearity, another does not
- Every so often, add a skip connection (this is done with the aid of padding and 1 dimensional convolutions to transform the input's number of channels to the same as the output - will explain at the end)
- ▶ Paper has other tricks adaptive softmax
- Nice argument on why the architecture enables gradient flow they compare with LSTMs which we'll see next week or in March

# **CNN** For Language Modeling

► Architecture is fairly simple



#### CNN Word Vectors

- Another idea is to get embeddings for each character in a word and use these as the initial embedding
- ▶ Then, put a convolutional layer after this layer so that effectively each word gets an embedding
- ▶ We are effectively mixing the character embeddings to *learn* the word embeddings



representation composed from a letter sequence using a convolutional neural network. Convolutions over 2-, 3-, 4-, and 5-letter n-grams are

## **CNN Word Vectors**

► These type of embeddings can be a part of larger systems, we'll look at this later



#### Convolutions with kernels of size 1

- Sometimes we have data that is D dimensions and T sequence length
- One idea is to use d a kernels of width 1 (!) and apply them to the data
- ► This way, you now have data that is *d* dimensional and *T* in sequence length
- ► This general idea is called down sampling, and it is useful especially when you have residual connections and need to add h + x where x is your original data and h is the output of some block layer
- This is used in the Gated CNN LM discussed above

## References

- Nice animations
- CNN Pictures
- CNN for Text Classification
- CNN for Language Modeling
- NLP Almost from Scratch
- CNN for Sentence Classification
- Character Aware Neural Language Models
- Wave Net
- Neural Machine Translation