잡케어 추천 알고리즘 경진대회 잡케어 서비스에 적용 가능한 추천 알고리즘 개발

강하연 김주은 정다인 정솔잎

CONTENTS

02

분석 목표 및 데이터 소개 EDA (탐색적 자료 분석)

03 데이터 전처리

04

모델링 후 예측 및 평가

분석 목표 및 데이터 소개

잡케어 추천 알고리즘 경진대회

잡케어

일자리를 탐색하는 구직자에게 구직자의 이력서를 통해 직무역량을 분석하여 훈련, 일자리 상담 등에 활용할 수 있도록 지원하는 시스템

회원 속성, 회원 선호 속성, 컨텐츠 속성 등을 이용하여 컨텐츠 이용 여부를 예측

활용데이터

분석 활용 데이터 목록

- **⊠** test
- **Train**
- 🛂 속성_D_코드
- № 속성_H_코드
- 🛂 속성_L_코드

train

훈련용 데이터. 칼럼 35개

test

테스트용 데이터. 칼럼 34개

속성 D, L, H 코드

train, test 데이터의 일부 칼럼 속성에 대한 데이터. 속성 D, L 코드 칼럼 5개. 속성 H 코드 칼럼 3개.

활용데이터

데이터 칼럼 설명

칼럼명	칼럼 설명		
target	컨텐츠 사용 여부	명목형	예측할 변수, 0 또는 1
contents_attribute	컨텐츠 속 성	명목형	I,A,J,J 하위,C,K,L,D,M,E,H
person_attribute	회원 속성	명목형	A, A 하위, B
person_prefer	회원 선호 속성	명목형	C, D1,D2,D3,E,F,G,H1,H2,H3
contents_open_dt	컨텐츠 열람 일시	날짜	
match_yn	속성 D,H 매칭 여부	논리형	회원선호속성과 컨텐츠속성 일치 여부
contents_rn	컨텐츠 번호	수치형	
person_rn	사 용 자 번호	수치형	

속성 D, L, H 코드 데이터

칼럼명	
속 성 코드	D,L,H
대분류 코드	D,L,H
중분 류 코드	D,L,H
소 분 류 코드	D,L
세분류 코드	D,L

EDA(탐색적 자료 분석)

EDA

job 데이터 target 분포도:

0 251106 1 250845

Name: target, dtype: int64

Target Columns 분포도 파악

job_data['target'].value_counts()

mis_val_df['mis_val_bool'].value_counts()

int형에 속하는 컬럼들에 특징 값 분포

job_data.select_dtypes('int64').apply(pd.Series.nunique, axis=0)

Out[12]:			
id	501951	person_rn	300177
person_attribute_a	2	contents_rn	283359
person_attribute_a_1	8	person_prefer_h_1_u	19
person_attribute_b	6	person_prefer_h_2_u	19
person_prefer_c	5	person_prefer_h_3_u	19
person_prefer_d_1	1093	contents_attribute_h_u	17
person_prefer_d_2	1081		
person_prefer_d_3	1043	contents_attribute_l_n	736
person_prefer_e	12	contents_attribute_l_s	305
person_prefer_f	1	contents_attribute_l_m	79
person_prefer_g	1	contents_attribute_I_I	21
person_prefer_h_1	279	Υ	1
person_prefer_h_2	279	M	11
person_prefer_h_3	279	0	31
contents_attribute_i	3		
contents_attribute_a	3	target	2
contents_attribute_j_1	9	dtype: int64	
contents_attribute_j	2		
contents_attribute_c	4	_	
contents_attribute_k	2	가장 많은 특징 값을 갖는	- 것이 'person rn'
contents_attribute_I	1752		• • • • •
contents_attribute_d	1065	동일한 특징 값을 갖는 것	
contents_attribute_m	5	['person_prefer_f', 'per	rson prefer a"l
contents_attribute_e	12		
contents_attribute_h	250	-> 추후 drop	

Float형에 속하는 컬럼들에 특징 값 분포

job_data.select_dtypes('float64').apply(pd.Series.nunique, axis=0)

Out[13]:	
person_prefer_d_1_n	443
person_prefer_d_1_s	36
person_prefer_d_1_m	137
person_prefer_d_1_I	11
person_prefer_d_2_n	435
person_prefer_d_2_s	36
person_prefer_d_2_m	137
person_prefer_d_2_I	11
person_prefer_d_3_n	420
person_prefer_d_3_s	36
person_prefer_d_3_m	136
person_prefer_d_3_I	11
contents_attribute_d_n	431
contents_attribute_d_s	36
contents_attribute_d_m	137
contents_attribute_d_I	11
dtype: int64	

- Float형인 것에 비해서 생각보다 특징 값의 분포도가 크지 않음.

x = 'person_attribute_a' y = 'target'

1의 특징 값을 값을 갖는 사람들이 target 1일 확률이 더욱 높음

person_attribute_a_1 회원 속성 A 하위 속성 1 특징 값

print("person_attribute_a_1: ")
print(job_data['person_attribute_a_1'].value_counts())

sns.countplot('person_attribute_a_1', data = job_data)

person_attribute_b 회원 속성 B 특징 값

print("person_attribute_b: ")
print(job_data['person_attribute_b'].value_counts())

sns.countplot('person_attribute_b', data =job_data, palette='pastel')

다른 값들에 비해서 0의 값이 매우 적은 것을 볼 수 있음

x = 'person_attribute_b' y = 'target'

```
Out [28]:
                                                                                                                                                     sns.catplot(x=x, y=y, kind="bar", data=job_data, palette='pastel')
                                                                                                        target 0
x = 'person_attribute_b'
y = 'target'
                                                                                                                                                   ut[29]:
                                                                                                                                                   <seaborn.axisgrid.FacetGrid at 0x23904f16a48>
sns.countplot(x, hue = y, data = job_data, ax=ax[0][0])
sns.histplot(job_data,
                                                                                                                                                   ut [29]:
           x = x
           hue=y,
           multiple="stack",
                                                                                                                                                     0.4
           palette="Pastel1",
                                                                                                                                                   0.3
           edgecolor=".10",
           linewidth=".20",
                                                                                                                                                     0.2
           bins = 6,
                                                                                                                                                     0.1
           ax = ax[0][1]
sns.kdeplot(data=job_data, x=x, hue=y, ax=ax[1][0])
                                                                                                                                                                   person_attribute_b
sns.violinplot(data=job_data, x=y, y=x, ax=ax[1][1])
plt.show()
```

●● 1의 특징과 5의 특징을 제외하고는 target 값이 1일 확률이 절반 이하 수준임

x = 'person_attribute_b' y = 'target'

sns.catplot(x=x, y=y, kind="point",row = "person_attribute_a_1", data=job_data)

이러한 특징 값을 갖는 사람은 2명뿐이다. 매우 희귀한 경우라고 할 수 있다.

person_attribute_a_1 = 4 이고 person_attribute_b = 0이면 무조건 target = 1이 된다.

x = 'person_prefer_c' y = 'target'

x = 'person_prefer_c' y = 'target'

sns.catplot(x=x, y=y, kind="bar", data=job_data, palette='pastel')

	id	d_l_match_yn	d_m_match_yn	d_s_match_yn	h_l_match_yn	h_m_match_yn	h_s_match_y
144520	144520	False	False	False	False	False	Fals
157233	157233	True	True	True	True	False	Fals
220839	220839	True	False	False	True	True	Tru
309103	309103	False	False	False	False	False	Fals
314503	314503	False	False	False	False	False	Fals
378324	378324	False	False	False	True	False	Fals
437122	437122	True	True	True	False	False	Fals

위와 같은 특징 값을 갖는 사람들은 모두 target = 1 이 된다. 이러한 값을 갖을 확률은 0.13945584329944556%로 매우 희귀한 경우

person_prefer_c 3이고 person_attribute_b = 0일 경우에 무조건 적으로 target = 1인 것을 볼 수 있음.

x = 'person_prefer_c' y = 'target'

sns.catplot(x=x, y=y, kind="point",col = "person_attribute_a", data=job_data)

x = 'person_prefer_e' y = 'target'

sns.catplot(x=x, y=y, kind="bar", data=job_data, palette='pastel')

ut [48]:

<seaborn.axisgrid.FacetGrid at 0x2390d799848>

print("person_prefer_e: ")
print(job_data['person_prefer_e'].value_counts())

x = 'person_prefer_e'
y = 'target'

sns.countplot('person_prefer_e', data =job_data, palette='pastel')

PP

값이 증가 할 수록 target일 확률이 높아짐 10일 경우에는 target 값이 될 확률이 60%가 넘음

contents_attribute_i

```
# contents_attribute_i
print("contents_attribute_i: ")
print(job_data['contents_attribute_i'].value_counts())

x = 'contents_attribute_i'
y = 'target'

sns.countplot('contents_attribute_i', data = job_data, palette='pastel')
```


x = 'contents_attribute_a' y = 'target'

sns.catplot(x=x, y=y, kind="point", data=job_data)

월 데이터(M)

월 데이터에 대해서 전체적으로 균등하게 분포하고 있음 12월 데이터가 별도로 존재하지 않음

sns.catplot(x=x, y=y, kind="point", data=job_data)

Out[175]:

<seaborn.axisgrid.FacetGrid at 0x23a7bb42308>

1월, 2월, 11월이 전체 에서 가장 target과 관련이 없는 달인 것을 볼 수 있음

상관계수

['person_attribute_a_1', 'person_attribute_b', 'person_prefer_e', 'contents_attribute_e', 'M','D', 'target']]

'contents_attribute_e' 와 ' 'person_prefer_e'가 0.25로 가장 높은 상관계수를 보임

데이터 전처리

데이터 전처리

변수 drop

["id", "person_prefer_f", "person_prefer_g", "contents_open_dt"]

학습에 필요없는 컬럼 리스트 제거

데이터 전처리

```
cols_equi = [
   ("contents_attribute_c", "person_prefer_c"),
   ("contents_attribute_e","person_prefer_e"),
   ("person_prefer_d_1_s", "contents_attribute_d_s"),
   ("person_prefer_d_2", "contents_attribute_d"),
   ("person_prefer_d_2_n", "contents_attribute_d_n"),
   ("person_prefer_d_2_s", "contents_attribute_d_s"),
   ("person_prefer_d_2_m", "contents_attribute_d_m"),
   ("person_prefer_d_2_l", "contents_attribute_d_l"),
   ("person_prefer_d_3", "contents_attribute_d"),
   ("person_prefer_d_3_n", "contents_attribute_d_n"),
   ("person_prefer_d_3_s", "contents_attribute_d_s"),
   ("person_prefer_d_3_m", "contents_attribute_d_m"),
   ("person_prefer_d_3_l", "contents_attribute_d_l"),
   ("person_prefer_h_2", "contents_attribute_h"),
   ("person_prefer_h_2_l", "contents_attribute_h_l"),
   ("person_prefer_h_2_m", "contents_attribute_h_m"),
   ("person_prefer_h_3", "contents_attribute_h"),
   ("person_prefer_h_3_l", "contents_attribute_h_l"),
   ("person_prefer_h_3_m", "contents_attribute_h_m")]
for col1, col2 in cols_equi:
     train2[f"{col1}_{col2}"] = (train2[col1] == train2[col2]).astype(int)
```

for col1, col2 in cols_equi:

회원 속성과 콘텐츠 속성의 동일한 코드 여부에 대한 컬럼명 리스트

회원선호속성과 컨텐츠 속성 코드 매칭 여부 추가

모델링 후 예측 및 평가

다른 모델과의 f1 점수 비교

```
1 model = lgbm.LGBMClassifier(objective="binary", **study.best_params)
2 model.fit(
3     X_train,
4     y_train
5 )
6     7 pred = model.predict(X_test)
8 f1_score(y_test, pred)

0.6236020053991516
```

Light GBM의 f1 score :0.623

```
1 # sample 1007H, tree depth - 100(max)
2
3 clf = RandomForestClassifier(n_estimators=100, max_depth=100,random_state=0)
4 clf.fit(train_x,train_y)
5
6 predict2 = clf.predict(test_x)
7 print(accuracy_score(test_y,predict2))
0.621001882638882
```

Random Forest² f1 score :0.621

Catboost 특징

Level-wise Tree

Ordered Boosting

Random Permutation

Ordered Target Encoding

학습 파라미터 설정

```
is_holdout = False
n_splits = 5
iterations = 3000
patience = 50

cv = KFold(n_splits=n_splits, shuffle=True, random_state=SEED)
```

- 데이터 분할수: n_splits
- epoch를 나누어서 실행하는 횟수를 나타냄: iteration
- 성능이 증가하지 않는 epoch을 몇 번이나 허용 할 지 정함: patience

모델링 - 학습 시작

- catbootclassifier로 모델을 만듦
- model_fit으로 model_compile에서 지정한 방식으로 학습 진행
- eval_set으로 검증 세트 지정
- Append로 기존 리스트에 요소 추가 후 break로 반복문을 끝냄

Cv 결과

1 print(scores)
2 print(np.mean(scores))

[0.6862737699969816, 0.6856276933276506, 0.6823716897117412, 0.6802265066223585, 0.6767257638626933] 0.6822450847042851

약 0.68의 결과

Threshold값 0.4로 설정에 따른 검정점수 확인 및 추론

```
1 #threshold값 변경에 따흔 검증점수 확인 및 추론
2 pred_list = []
3 scores = []
4 for i,(tri, vai) in enumerate( cv.split(x_train) ):
5         pred = models[i].predict_proba(x_train.iloc[vai])[:, 1]
6         pred = np.where(pred >= threshold , 1, 0)
7         score = f1_score(y_train[vai],pred)
8         scores.append(score)
9         pred = models[i].predict_proba(x_test)[:, 1]
10         pred_list.append(pred)
11 print(scores)
12 print(np.mean(scores))

[0.7126660503138533, 0.7125042678069163, 0.7084975715489905, 0.7115424019145815, 0.7060092921387218]
0.7102439167446126
```


Threshold=0.4로 설정했더니 f1값이 0.71로 증가

결과

Private 리더보드 201위

마무리 및 소감

잘한 점

- 모델링에 대해 체계적으로 배운 적이 없었기에 이번 기회를 통해 이론을 공부하여 적용하고자 노력했다.
- 여러가지 방법으로 모델링한 후 최적의 방법을 도출할 수 있었다.

아쉬운 점

- 머신러닝에 대해 더 잘 알았다면 더 좋은 결과가 있었을 것이라는 아쉬움이 남는다.

THANK YOU

발표를 들어주셔서 감사합니다 :)