Lab 5: Random Numbers and Simulations

2024-05-03

Simulations

You discussed simulations at length in Lecture 04, but in general simulations are a useful tool for understanding estimators' behaviors

Today we are going to discuss how to simulate data and test the reliability of estimators

Random Variables in R.

First, we should become familiar with how we can generate data. To do this, we will need to know how R handles random numbers.

In Base R, the following common random number distributions can be generated using the following functions:

- Binomial: rbinom(N, x, p)
 - -N trials, outcome is either x or 0, and it yields x with the probability p
- Normal: $rnorm(N, mean = \mu, sd = \sigma)$
 - N trials, each drawn from $N(\mu, \sigma)$, i.e. the distribution is mean μ and has standard deviation σ
- Uniform: runif(N, min, max)
 - -N trials, each drawn from U(min, max)

Let's try an example:

Exercise 1: Generate 100 samples of outcomes from the following distribution and graph these as a density plot:

$$N(3,2) + U(-1,1)$$


```
# Let's make it look nicer!
ggplot(ex_1_data) +
    # fill the density plot
geom_density(aes(obs), fill = "lightblue") +
    # vertical line where the mean is
geom_vline(xintercept = 3)
```


Seeds?

You may have seen the term "seed" around when it comes to generating random numbers on a computer.

A "seed" initializes a pseudorandom number generator. This allows your results to be replicated elsewhere. Try it out:

```
# Set seed (90325) # button mash

# Generate some numbers
rnorm(10, 0, 3)

## [1] -1.0079275  2.2570383  1.9844698  1.1620589 -0.8240209 -1.0463759

## [7] -2.7948056  2.6680005 -3.4627577  0.7473596

# Do it again:
set.seed(90325)
rnorm(10, 0, 3)

## [1] -1.0079275  2.2570383  1.9844698  1.1620589 -0.8240209 -1.0463759

## [7] -2.7948056  2.6680005 -3.4627577  0.7473596
```

Another fun exercise would be to find out what the probability of getting these exact numbers twice without re-setting the seed... But we won't do that now.

Tibble as a Function

We already saw 1 way to implement the *tibble* function to generate random data. Now let's do that within a function. This function will generate a dataframe of:

- N observations
- $ID_i = i$ numbers the observations
- $X_i = N(10, 2)$
- $Z_i = U(-3,3) + 0.1 * X_i$
- $\varepsilon_i = N(0,1)$
- $Y_i = \alpha + \beta X_i + \delta Z_i + \varepsilon_i$

For now, keep N, α , β and δ as variables that we can change.

```
# Data generating function
data_gen = function(N, alpha, beta, delta) {

# create the dataset
data = tibble(
   ID = 1:N,
   X = rnorm(N, mean = 10, sd = 2),
   Z = runif(N, min = -3, max = 3) + 0.1*X,
   e = rnorm(N, mean = 0, sd = 1),

# create Y as a function of other variables
   Y = alpha + beta*X + delta*Z + e
)

return(data)
}
```

Try with the following parameters:

$$N = 1000, \quad \alpha = 4, \quad \beta = 1/2, \quad \delta = 2$$

```
test_data = data_gen(N = 1000, alpha = 4, beta = 0.5, delta = 2)
head(test_data)
```

```
## # A tibble: 6 x 5
##
       ID
              Х
                     Z
                                   Y
                             е
##
    <int> <dbl> <dbl>
                         <dbl> <dbl>
        1 8.87 -0.920 0.827
                                7.42
## 2
        2 8.68 -0.894 -0.563
                                5.99
## 3
        3 8.70 -0.124 1.59
                                9.69
        4 6.06 3.37 -0.0454 13.7
## 5
        5 7.18 -2.00 -1.05
                                2.53
        6 8.70 -1.34 -0.296
                                5.37
```

Simulate Regressions

Create a function that simulates the data above (with the same parameters) 100 times, each time performing the following regression:

$$Y_i = a + bX_i + cZ_i$$

Collect the estimates for b.

```
# Grab some packages
p_load(fixest, broom)
# regression simulation, function of the number of iterations
reg_sim = function(iter){
  # get data
  data_i = data_gen(N = 1000, alpha = 4, beta = 0.5, delta = 2)
  # regression
  reg_i = feols(data_i, Y ~ X + Z)
  # Clean a bit
  bind_rows(tidy(reg_i)) %>%
      # only want the estimate of b
       filter(term == "X") %>%
      # grab the estimate
       select(2)
}
# Simulate for 100 periods
iter = 100
results_1 = bind_rows(map(1:iter, reg_sim))
```

Now plot the density of the estimates from the results of the simulation

```
# Plot
ggplot(results_1) +
    # fill the density plot
geom_density(aes(estimate), fill = "red", alpha = 0.5) + # alpha makes it see-through!

# recall that the true Beta = 0.5
geom_vline(xintercept = 0.5)
```


Omitted Variable Bias

Do the same simulation from the previous part but this time only estimating the regression:

$$Y_i = a + bX_i$$

Simulate the full regression model and the OVB simulation 1000 times each and graph the estimates for b on the same density plot

```
# 1000 periods
iter = 1000
# Full regression
results_full = bind_rows(map(1:iter, reg_sim))
# OVB regression
results_ovb = bind_rows(map(1:iter, reg_sim_2))
# Graph
# Plot
ggplot() +
  # Full reg estimates
  geom_density(aes(results_full$estimate), fill = "red", alpha = 0.5) +
  # OVB estimates
  geom_density(aes(results_ovb$estimate), fill = "blue", alpha = 0.5) +
  # true Beta = 0.5
  geom_vline(xintercept = 0.5) +
  labs(x = "Estimate of Beta")
```


You can estimate the mean of the biased estimator:

$$E(b^{OVB}) = \beta + \delta \frac{cov(X, Z)}{var(X)} = 0.5 + 2\frac{0.4}{4} = 0.7$$