Learning Dynamics: Assignement 1

Hakim Boulahya hboulahy@ulb.ac.be

Université Libre de Bruxelles

November 3, 2017

Contents

1	Hav	wk-Dove game	1
	1.1	Expected payoff for player 1	1
	1.2	Expected payoff for player 2	2
	1.3	Player 1's mixed strategies	2
	1.4		3
	1.5		3
2	Soc	ial Dilemma	3
	2.1	Payoff function	4
	2.2	Best response and equilibrium	4
3	Seq	uential truel	4
	3.1	Subgame perfect equilibria	5
		3.1.1 C equilibrium in T_3	5
		3.1.2 B equilibrium in T_2	6
		3.1.3 A equilibrium in T_1	6
		3.1.4 Weakness is strength	6

1 Hawk-Dove game

1.1 Expected payoff for player 1

Given player 2's mixed strategy α_2 , player 1 expected payoff for the pure strategy Hawk(p) is:

$$E_1(H,\alpha_2) = q(\frac{1}{2}(V-D)) + (1-q)V = V - \frac{q}{2}(V-D)$$
 (1)

Given player 2's mixed strategy α_2 , player 1 expected payoff for the pure strategy Dove(1-p) is:

	Hawk	Dove
Hawk	$\frac{1}{2}(V-D), \frac{1}{2}(V-D)$	V, 0
Dove	0, V	$\frac{V}{2}-T, \frac{V}{2}-T$

Figure 1: Hawk-Dove game

$$E_1(D, \alpha_2) = q \cdot 0 + (1 - q)(\frac{V}{2} - T) = (1 - q)(\frac{V}{2} - T)$$
 (2)

1.2 Expected payoff for player 2

Given player 1's mixed strategy α_1 , player 2 expected payoff for the pure strategy Hawk(q) is:

$$E_2(H,\alpha_1) = p(\frac{1}{2}(V-D)) + (1-p)V = V - \frac{p}{2}(V-D)$$
 (3)

Given player 1's mixed strategy α_1 , player 2 expected payoff for the pure strategy Dove(1-q) is:

$$E_2(D, \alpha_1) = p \cdot 0 + (1 - p)(\frac{V}{2} - T) = (1 - p)(\frac{V}{2} - T)$$
(4)

1.3 Player 1's mixed strategies

Since this is a game with two-players two actions *The linearity implies 3 possible outcomes*:

player 1's unique best response is the pure strategy Hawk(p) when:

$$\iff E_1(H, \alpha_2) > E_1(D, \alpha_2)$$

$$\iff V - \frac{q}{2}(V - D) > (1 - q)(\frac{V}{2} - T)$$

$$\iff V - \frac{V}{2}q + \frac{D}{2}q > \frac{V}{2} - T - \frac{V}{2}q + T$$

$$\iff q > -\frac{V}{D}$$

player 1's unique best response is the pure strategy Dove(1-p) when:

$$\iff E_1(H, \alpha_2) < E_1(D, \alpha_2)$$
 $\iff q < -\frac{V}{D}$

all player 1's mixed strategies are all best responses when:

$$\iff E_1(H, \alpha_2) = E_1(D, \alpha_2)$$

 $\iff q = -\frac{V}{D}$

1.4 Player 2's mixed strategies

This game is symmetric, the payoff matrix of player 1 and 2 are the same $(A = B^T)$. The strategies of player 2 are the same than the player 1, except that it depends on p and not on q.

Player 2's unique best response is pure strategy Hawk(q) when $p > -\frac{V}{D}$, is pure strategy Dove(1-q) when $p < -\frac{V}{D}$ and all mixed strategies are all best response when $p = -\frac{V}{D}$.

1.5 Discussions

2 Social Dilemma

Figure 2 represents the expected payoff of A based on her beliefs. For example the first column indicates the payoff of A when she believes that B will defect in all games type.

Since A is sure that each game is equally likely, there is a probability of 1/3 that she is in Prisonner's dilemma, probability of 1/3 in Stag-Hunt game and probability of 1/3 in Snowdrift game.

Figure 3 represents the best response of player B in all three games, she doesn't need to form any beliefs since she knows in which game she is playing.

	DDD	CCC	CCD	CDC	CDD	DCC	DCD	DDC
С	1/3	3	8/3	4/3	1	7/3	2	2/3
D	2/3	4	7/3	11/3	2	8/3	1	7/3

Figure 2: Expected payoff of player A for all possible combinations of player B's types

	С	D	С	D	С	D
С	2	5	5	2	2	5
D	0	1	0	1	1	0

Figure 3: Best response of player B against player A in all games (in the following order): Prisonner's dilemma, Stag-hunt game, Snowdrift game

2.1 Payoff function

Let's associate Prisonner's dilemma, Stag-hunt game and Snowdrift game with the indexes $I = \{1, 2, 3\}$, respectively. The actions cooperate and defect be the set $A = \{C, D\}$. Let $b_i \ \forall i \in I$, the beliefs of A, with $b_i \in A$ an action. Let $o_i(x,y) \ \forall i \in I \land \forall x,y \in A$ the outcomes of A for game i and action x for player A and action y for B. The payoff function is $p(a,b_1,b_2,b_3) \ \forall a \in A$:

$$p(a, b_1, b_2, b_3) = \frac{1}{3}(o_1(a, b_1) + o_2(a, b_2) + o_3(a, b_3))$$
 (5)

For example the payoff for A whe she plays cooperate (C) and believes $b_1 = D, b_2 = D, b_3 = D$, corresponding the first row and column of Figure 2, is:

$$p(C, D, D, D) = \frac{1}{3}(0+0+1) = 1/3$$
(6)

Other examples:

$$p(C, C, C, D) = \frac{1}{3}(2+5+1) = 8/3 \tag{7}$$

$$p(D, C, C, C) = \frac{1}{3}(5+2+5) = 4$$
 (8)

2.2 Best response and equilibrium

The best response given the action of all games type for player A are the bolded values in Figure 2. The best response for all games for player B are the bolded values in Figure 3. To find the pure Nash Equilibria, we need to match the best response of A with the best response of B for each beliefs. There are two pure Nash Equilibria, shown in red in Figure 2, $\{C, (DCD)\}$ and $\{D, (DDC)\}$. Indeed, for $\{C, (DCD)\}$, when A plays action C, the best response of B in Prisonner's dilemma is D, in Stag-hunt game it is C and in Snowdrift game it is D, so it is a pure Nash Equilibria. The same goes for $\{D, (DDC)\}$.

3 Sequential truel

The diagram representing the subgames are drawn as trees in Figure 4, 5 and 6. When we will refer to T_1 , T_2 and T_3 it means that we are referring to, respectively, Figure 4, 5 and 6. In the subgames, the action t(i) where $i \in \{A, B, C\}$, means that the current player is targeting player i. The current player can of course not target himself.

The main game is represented by T_1 . As mentioned in the assignment specifications, the subgames when A fails to hit is intended target are the same, it is T_2 . When in subgame T_2 , we also found that when B misses his intended target, the subgames are the same, it is T_3 .

Figure 4: T_1 , main subgame

Figure 5: T_2 , subgame when A misses her intended target

3.1 Subgame perfect equilibria

3.1.1 C equilibrium in T_3

To find the SPE, we have to use the backward induction, so we need to find the SPE of T_3 first. Player C always stay alive whatever target she is choosing.

Figure 6: T_3 , subgame when A and B miss their intended targets

The SPE is t(A) if $p_a > p_b$, and t(B) if $p_b > p_a$.

3.1.2 B equilibrium in T_2

Let's consider subgame T_2 . Player B needs either to target A or target C. If B targets A, she has less chance to survive because, since next turn C will play and will still be alive whatever the result is of this shoot, so B will always target C in T_3 .

Formally, if B misses, her outcome will be the same because it will have the SPE of subgame T_3 , which is unique. If B targets A and hits her, she has a probability of $1 - p_c$ to stay alive. If B targets C and hits her, she has a probability of 1 to stay alive. So B will always choose to target C.

3.1.3 A equilibrium in T_1

Let's consider the subgame T_1 (the full game). Intuitively, it is best for A to target the player with the biggest probability, because she will have more chance to stay alive if she manages to eliminate the strongest opponent.

Formally, if A misses her intended target, the outcome will be the same since T_2 has an unique SPE. If A targets B and hits her, she has a probability of $1 - p_c$ to stay alive, because C is the remaining shooter and has a probability of $1 - p_c$ to fail. If A targets C and hits her, she has a probability of $1 - p_b$ to stay alive, because B is the remaining shooter and has a probability of $1 - p_b$ to fail. So A targets B if $(1 - p_c) > (1 - p_b)$, which can be simplified as $p_c < p_b$, and A targets C if $(1 - p_b) > (1 - p_c)$, which can be simplified as $p_b < p_c$.

3.1.4 Weakness is strength

In the previous paragraph, we explained that if $p_c > p_b$ A will target C. If C is the target, her probability of survival is the probability that A misses and B

misses, formally:

$$(1 - p_a)(1 - p_b) = 1 - p_b - p_a + p_a p_b = 1 - p_a - p_b(1 - p_a)$$
(9)

If $p_b > p_c$ A will target B, then C's chance of survival is if A hits her target and C will be the last player with a bullet or A misses her target and B misses also her target. Formally:

$$p_a + (1 - p_a)(1 - p_b) = p_a + 1 - p_b - p_a + p_a p_b = 1 - p_b(1 - p_a)$$
(10)

The difference between the probablity (9) and (10), is that (9) is smaller than (10) because of the decrease of p_a , so (9) will always be smaller than (10). The probablity of survival of C when $p_c > p_b$ will always be smaller than the probability of survival of C when $p_b > p_c$. C is always better off when $p_b > p_c$.