**Titre :** Optimisation d'hyper-paramètres en apprentissage profond et apprentissage par transfert - Applications en imagerie médicale

**Mots clés :** Apprentissage profond, imagerie médicale, apprentissage par transfert, déformation de modèles, segmentation

Résumé: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum,

erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Title: Hyper-parameter optimization in deep learning and transfer learning - Applications to medical imaging

Keywords: Deep learning, medical imaging, transfer learning, template deformation, segmentation

**Abstract:** In the last few years, deep learning has changed irrevocably the field of computer vision. Faster, giving better results, and requiring a lower degree of expertise to use than traditional computer vision methods, deep learning has become ubiquitous in every imaging applications. This includes medical imaging applications.

At the beginning of this thesis, tools to use deep learning were lacking, and so was our understanding of how to build efficient neural networks for specific tasks. Thus this thesis first focused on the topic of hyper-parameter optimization for deep neural networks, i.e. methods for automatically finding efficient neural networks on specific tasks. The thesis includes a comparison of different methods, a performance improvement of one of those methods, Bayesian optimization, and the proposal of a new method of hyper-parameter optimization by combining two existing me-

thods: Bayesian optimization and Hyperband.

From there, we used those methods for medical imaging applications such as the classification of field-of-view in MRI or the segmentation of the kidney in 3D ultrasound images across two populations of patients. This last task required the development of a new transfer learning method based on the modification of the source network by adding new geometric and intensity transformation layers.

Finally this thesis loops back to older computer vision methods, and we propose a new segmentation algorithm combining template deformation and deep learning. We show how to use a neural network to predict global and local transformations without requiring the ground-truth of those transformations. The method is validated on the task of kidney segmentation in 3D US.

