C3UCB Draft Fall 2015

Contextual Combinatorial Cascading Bandit Experiment

1 Synthetic dataset

Let $I=\{e_1,e_2,\ldots,e_L\}$ be a set of arms, each associated with a d-dimensional vector μ_i randomly drawn from $\{x\in\mathbb{R}^d:\|x\|_2=1\}$. At round t, the context corresponding to the i-th arm, denoted as $x_{t,i}$, is generated using $x_{t,i}=(\mu_i+h\cdot b_{t,i})/\|\mu_i+h\cdot b_{t,i}\|_2$, where $b_{t,i}$ is randomly drawn from $\{x\in\mathbb{R}^d:\|x\|_2=1\}$ and h is a constant throughout the experiment. The expectation of the Bernoulli realization of an arm $e\in I$ is $w_t(e)=\theta_*^Tx_i+\epsilon_{i,t}$, where θ_* s.t. $\|\theta_*\|_2=1$ is randomly initialized and holds throughout the experiment, and $\epsilon_{i,t}\sim N(\mu_i,\sigma_i)$ i.i.d. be the fluctuation. In this experiment, the set of available superarms S is $\{A\subseteq I: |A|=k\}$. The following approaches were tested:

- 1. Li Shuai et al. Use linear regression on O_t observed arms and then UCB to select candidated.
- 2. 2014 Qin Lijing et al. Same w/ Li but takes more information (from O_t to k) with a full feedback.
- 3. 2015 Kveton Branislav et al. Combinatorial Cascading UCB which maintains its upper confidence bound purely by the historical payoff of the superarms selected. The contextual information $x_{i,t}$ is totally ignored so it can only catch the $\theta_*^T \mu$ part while suffers a lot from noisy.
- 4. Random.

2 Movielens

This section introduced Movielens dataset and its movie recommendation challenge. Let L = # movies, Movielens is a matrix $A \in \{0,1\}^{\#\text{users} \cdot L}$ where each entry A_{ij} is a boolean clickthrough indicator for the i-th user and the j-th movie. We split $A = A^1 + A^2$, by randomly putting hot entries in A into A^1 and A^2 according to a bernulli distribution. At round t, a user indexed i_t is randomly selected from a predefined set of users, and the agent is required to recommend movies using A^1 and \mathcal{H}_t such that $A^2_{i_tj} = 1$ for as many those recommended js as possible.

We formulate the movie recommendation problem into a combinatorial bandit problem. Let $A^1 = USV^T$ be the SVD decomposition and the movies $I = \{e_1, \dots, e_L\}$ be the set of arms, we define the context associated with e_j , at round t, as $x_{t,e_j} = u_{i_t}^T v_j$, where u_l , v_l denote the l-th row of U, V, respectively. Upon received a super arm $A \in \{A \subseteq I : |A| = k\}$, the reward r_t is calculated using its definition and $w_t(e_j) = A_{i_t e_j}^2$. Some notes follows:

- 1. Define $x_{t,e_j} = (u_{i_t}, v_j)$ is not applicable because the argmax over arms will ignore the stochastic part of the context.
- 2. Split users into training and testing, as 2014 Qin Lijing et al. did, is not applicable because the context is constant for each arm.
- 3. Measurement for Movielens is accuracy instead of regret because we have no access to the true θ_* , if there is one.

An example output, with T = 10000, is listed below.

Algorithm	Cumulative Reward $\sum_{t=1}^{T} r_i$
Li	4342.73
Qin	4323.26
Monkey	1765.41
Kveton	1787.81
Perfect Play	N/A

Table 1: Cumulative reward w.r.t different baselines, under Movielens setting.