

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №8 «Графы»

Студент Городский Юрий Николаевич

Группа ИУ7 – 32Б

Описание условия задачи

Обработать графовую структуру в соответствии с заданным вариантом. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Ввод данных осуществить на усмотрение программиста. Результат выдать в графической форме.

Описание технического задания

Найти все вершины графа, к которым от заданной вершины можно добраться по пути не длиннее A.

Входные данные:

- 1. Номер команды: целое число в диапазоне от 0 до 3.
- 2. **Файл с данными:** Число элементов, id связанных узлов, веса связей

Выходные данные:

- 1. Сообщение об ошибке
- 2. Граф в виде изображения
- з. Список доступных узлов

Обращение к программе:

Запуск через терминал

Аварийные ситуации:

- 1. Неверная команда
- 2. Ошибка при работе с файлом
- 3. Ошибка при вводе из файла
- 4. Ошибка при вводе данных при поиске доступных узлов

Описание структуры данных

ПРИМЕР РАБОТЫ ПРОГРАММЫ

Набор тестов

Файлы в тестах		
1.txt	2.txt	a.txt
10 011 121 231 341 451 501 671 781 891 961	a	Не существует
Описание	Пользовательский ввод	Результат
Некорректный ввод команды	-1 4 a	Неверная команда
Файл не существует	1 a.txt	Ошибка работы с файлом
Файл с ошибкой	1 2.txt	Ошибка ввода
Ошибка при вводе id	1 1.txt 3 a 1	Ошибка ввода
ld за пределами	1 1.txt	Ошибка

	3 11 1	диапазона данных
Ошибка при вводе максимальной длины пути	1 1.txt 3 1 a	Ошибка ввода

Разработанная задача

Логистическая фирма производит перевозки между несколькими городами, между которыми существуют платные и бесплатные дороги, необходимо составить оптимальные маршруты при перевозке товаров между городами, в одном пути можно посетить несколько городов.

Вывод

Для решения задачи был выбран способ хранения графа в виде списка смехностей. Плюсы данного метода заключаются в экономии памяти, в случае если количество связей меньше количества вершин и возможности легко построить граф в формате DOT.

Использовался алгоритм поиска в глубину, т. к. он легко реализуется, а для поиска всех доступных вершин необходимо обойти все ближайшие вершины, до которых путь меньше заданного.

Графы полезны при решении задач о путях или об иных связях и зависимостях. Они помогают при отображении и визуализации связей, что иногда является ключевым для быстрого решения задач.

Контрольные вопросы

1. Что такое граф?

Граф – это конечное множество вершин и ребер, соединяющих их, $\mathbf{G} = \langle \mathbf{V}, \mathbf{E} \rangle$, где \mathbf{V} – конечное непустое множество вершин; \mathbf{E} – множество ребер (пар вершин).

Если пары Е (ребра) имеют направление, то граф называется ориентированным (*орграф*), если иначе - неориентированный (*неорграф*). Если в пары Е входят только различные вершины, то в графе нет петель. Если ребро графа имеет вес, то граф называется взвешенным.

Неорграф называется *связным*, если существует путь из каждой вершины в любую другую.

2. Как представляются графы в памяти?

Граф в памяти представляется в виде матрицы смежности или списка смежности.

Матрица смежности B(n*n) – элемент b[i,j]=1, если существует ребро, связывающее вершины і и j, и =0, если ребра не существует.

Список смежностей содержит для каждой вершины из множества вершин V список тех вершин, которые непосредственно связаны с ней. Входы в списки смежностей могут храниться в отдельной таблице, либо же каждая вершина может хранить свой список смежностей.

3. Какие операции возможны над графами?

- поиск кратчайшего пути от одной вершины к другой (если он есть);
- поиск кратчайшего пути от одной вершины ко всем другим;
- поиск кратчайших путей между всеми вершинами;
- поиск эйлерова пути (если он есть);
- поиск гамильтонова пути (если он есть).

4. Какие способы обхода графов существуют?

Обход в ширину (BFS – Breadth First Search) - обработка вершины V осуществляется путём просмотра сразу всех «новых» соседей этой вершины, которые последовательно заносятся в очередь просмотра.

Обход в глубину (DFS – Depth First Search) - начиная с некоторой вершины v0, ищется ближайшая смежная ей вершина v, для которой в свою очередь осуществляется поиск в глубину до тех пор, пока не встретится ранее просмотренная вершина, или не закончится список смежности вершины v (то есть вершина полностью обработана). Если нет новых вершин, смежных с v, то вершина v считается использованной, идет возврат в вершину, из которой попали в вершину v, и процесс продолжается до тех пор, пока не получим v = v0. При просмотре используется стек.

5. Где используются графовые структуры?

Графовые структуры могут использоваться в задачах, где между элементами могут быть установлены произвольные связи. Распространенное применение — решение задачах о путях.

6. Какие пути в графе Вы знаете?

Эйлеровый путь - путь в графе, проходящий через каждое ребро ровно один раз. Если путь проходит по некоторым вершинам несколько раз – он называется непростым, иначе – простым.

Гамильтонов путь - путь, проходящий через каждую вершину ровно один раз.

7. Что такое каркасы графа?

Каркас графа – дерево, в которое входят все вершины графа, и некоторые (не обязательно все) его рёбра. Для построения каркасов графа используются алгоритмы Крускала и Прима.