

Machine Learning for Rail Safety Incident Classification

Ben Merange RGB Assurance

> ASSC 2019 23rd May

Overview

- Quantitative risk models are valuable
 But often difficult to quantify
- Safety-related datasets are plentiful But often unwieldy
- Machine learning is an effective tool
 Wrangle data to quantify risk models

Overview

- 1) Neural networks
- 2) Example Application
 - Movie reviews
- 3) Our Applications
 - Rail OCG1 Categories
 - Risk modelling

Neural Networks

Neural Networks

Neural Networks

6

playground.tensorflow.org

- Classify movie reviews from IMDb
 - Either positive or negative
- 50,000 textual reviews
 - Each labelled as positive or negative
 - 25,000 reviews for training
 - 25,000 reviews for evaluation
- Is there a correlation between words and labels?

Some examples:

- "This movie is terrible but it has some good effects..."
 - Negative
- "He is excellent is this film, he makes a fascinating woman..."
 - Positive
- "If you haven't seen this it's terrible. It is pure trash..."
 - Negative
- "This guy is a real genius! The movie is of excellent quality and..."
 - Positive

Input Layer: Word Presence

Prediction: Positive if > 0.5, otherwise Negative

- 3 passes over the data
- Trained in 3.5 seconds (on my laptop)
- Prediction correct ~87% of the time
 - Across 25,000 reviews

- What do the weights represent?
 - In this case, we can plot the weights for each word in 2D

Our Applications

- For ONRSR: Office of the National Rail Safety Regulator
 - Map rail safety incidents to OCG1 Categories
 (Occurrence Classification Guideline)
 - Using ONRSR's dataset

- For the ARRM: Australian Rail Risk Model
 - Map rail safety incidents to the risk model
 - Using ARRM dataset

- Classify rail safety incidents
 - Use ONRSR's OCG1 categories
- 23 categories
 - Collision
 - Derailment
 - Fire
 - Level Crossing
 - Slip, Trip or Fall
 - **—** ...
- Used to monitor rail safety trends

- Database of \sim 370,000 incidents
 - Spelling and grammatical errors
 - Domain specific terminology
- Keep 20% of data for evaluation

Example incident descriptions:

- "A person fell down the stairs leading from the concourse to platform 1. Sustained swelling to left knee. First aid applied."
- "Points are not detecting in reverse. FCC advised. 0924hrs repairs completed. Fault caused by build up of sand in points."

Input Layer: Word Presence

Output Layer: OCG1 Category Probability (23 options)

ASSC 2019 23/05/2019

15

- Trained in < 1 minute (on my laptop)
- Prediction correct ~87% of the time
 - − Across ~74,000 incidents
- A random guess would only be correct \sim 4.4% of the time

Can provide prediction confidence:

- "A person fell down the stairs leading from the concourse to platform 1. Sustained swelling to left knee. First aid applied."
 - Predicted "Slip, Trip or Fall" with 99.8% confidence

Can be used to detect human error:

- "Points are not detecting in reverse. FCC advised. 0924hrs repairs completed. Fault caused by build up of sand in points."
 - Incorrectly in dataset as "Rolling stock Irregularity"
 - Correctly predicted as "Track and Civil Infrastructure Irregularity" with 92% confidence

Quality and quantity:

- Data quality impacts accuracy and confidence
- Data quantity impacts ability to generalise

What do the weights represent?

- Terms are clustered to best map to OCG1 categories
- As a side effect, synonyms are learnt

Terms with similar weights:

- Collision
 - Struck, collided, hit, damage
- Slip
 - Fall, trip, fell, slipped, collapsed, tripped
- Derail
 - Derailment, derailed

For the Australian Rail Risk Model:

- Classify rail safety incidents
 - Use events in the risk model
- Large risk model
 - 143 hazardous events
 - $-\sim$ 1,200 basic events
- Used by industry

Concept of a Modelled Incident:

- Set of basic events
- Does not always realise the hazard
- Does not always have a consequence

For example:

$$MI_1$$
: { A, B, \neg E, F } MI_2 : { B, C } MI_3 : { A, F }

After 2 years of the ARRM, we had:

- A database of ~40,000 occurrences
 - Each mapped to a Modelled Incident
- Mappings to 874 unique Modelled Incidents

Can we, given a textual incident description:

- Predict the Modelled Incident (set of basic events)?
- Predict the consequence?
- Provide confidence of each prediction?

Output Layer: Modelled Incidents or Consequences

For Modelled Incidents:

- 74% of predictions were correct
- A random guess would only be correct \sim 0.1% of the time
- 44% of predictions could be confidently predicted
 - With a confidence of at least 95%

For consequences:

- 98% of predictions were correct
- 98% of predictions could be confidently predicted
 - With a confidence of at least 99%

How we use it:

- Evaluated with K-fold cross-validation
- Confirmed by humans
- Not used for rare events
- Used to identify human error

xkcd.com/1838

ASSC 2019 23/05/2019 26

Led to a 40% time saving in 2019

Modelled Incidents:

- 72% used the classifier's recommendation (top suggestion)
- 94% used one of the suggestions offered by the classifier

Consequences:

98% used the classifier's recommendation

Limitation:

Restricted to modelled incidents that have been observed

For example, "Ben climbed Mount Everest":

- All Modelled Incidents low confidence
- Highest is MI-38C9045F with 4.5% confidence
 - Miscellaneous event on rail infrastructure
 - Miscellaneous events that have been reported but are not associated with a hazardous event

Summary

- Quantitative risk models are valuable But often difficult to quantify
 - Safety-related datasets are plentiful But often unwieldy
- Machine learning is an effective tool
 Wrangle data to quantify risk models

