Econometría Básica

Capítulo 07: Dummys

José Valderrama & Freddy Rojas jtvalderrama@gmail.com & frojasca@gmail.com ▼ Universidad Católica Santo Toribio de Mogrovejo

Septiembre de 2021

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 8 Referencia

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 3 Referencia

Variables Dummy

- Una variable dummy es una variable que toma solo uno de dos valores: 1 ó 0. De ahí que también se le conozca como variables binarias.
- Ejemplos de ello son el género: (=1 si es mujer y cero en otro caso), el ámbito geográfico (=1 si la persona vive en el área rural y cero si vive en el área urbana), etc
- Otros nombres que son usados para este tipo de variables son: variables ficticias o variables dicotómicas

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 3 Referencia

$$y = \beta_0 + \delta_0 d + \beta_1 x + u$$

- Lo cual puede ser interpretado como un cambio en el intercepto:
 - Si d = 0, entonces $v = \beta_0 + \beta_1 x + \mu$
 - Si d=1, entonces $y=(\beta_0+\delta_0)+\beta_1x+u$

$$y = \beta_0 + \delta_0 d + \beta_1 x + u$$

- Lo cual puede ser interpretado como un cambio en el intercepto:
 - Si d = 0, entonces $y = \beta_0 + \beta_1 x + u$
 - Si d=1, entonces $y=(\beta_0+\delta_0)+\beta_1x+u$

$$y = \beta_0 + \delta_0 d + \beta_1 x + u$$

- Lo cual puede ser interpretado como un cambio en el intercepto:
 - Si d = 0, entonces $v = \beta_0 + \beta_1 x + \mu$
 - Si d=1, entonces $y=(\beta_0+\delta_0)+\beta_1x+u$

$$y = \beta_0 + \delta_0 d + \beta_1 x + u$$

- Lo cual puede ser interpretado como un cambio en el intercepto:
 - Si d = 0, entonces $y = \beta_0 + \beta_1 x + u$
 - Si d=1, entonces $y=(\beta_0+\delta_0)+\beta_1x+u$

$$y = \beta_0 + \delta_0 d + \beta_1 x + u$$

- Lo cual puede ser interpretado como un cambio en el intercepto:
 - Si d = 0, entonces $y = \beta_0 + \beta_1 x + u$
 - Si d=1, entonces $y=(\beta_0+\delta_0)+\beta_1x+u$

Gráficamente y cuando $\delta_0 > 0$ se tendría:

- La variable categórica 'Género' tiene dos categorías (Hombre y mujer) Porqué solo se considera una dicotómica en los modelos de regresión: $y = \beta_0 + \delta_0 Mujer + \beta_1 x + u$ y no se hace esto: $y = \beta_0 + \delta_0 Mujer + \delta_1 Hombre + \beta_1 x + u$
- Porque si se hiciera se tendría el problema de multicolinealidad perfecta: Hombre + Mujer = 1
- Es decir, de una variable categórica que tiene dos categoría, solo una se debe incluir en el modelo de regresión. En general, si la variable tiene N categoría, el modelo de regresión debería contar con N-1 variables dicotómicas.
- Dicotómica en STATA: gen mujer=sexo==2 (Crea la dicotómica 'mujer')

- La variable categórica 'Género' tiene dos categorías (Hombre y mujer) Porqué solo se considera una dicotómica en los modelos de regresión: $y = \beta_0 + \delta_0 Mujer + \beta_1 x + u$ y no se hace esto: $y = \beta_0 + \delta_0 Mujer + \delta_1 Hombre + \beta_1 x + u$
- \bullet Porque si se hiciera se tendría el problema de multicolinealidad perfecta: Hombre+Mujer=1
- Es decir, de una variable categórica que tiene dos categoría, solo una se debe incluir en el modelo de regresión. En general, si la variable tiene N categoría, el modelo de regresión debería contar con N – 1 variables dicotómicas.
- Dicotómica en STATA: gen mujer=sexo==2 (Crea la dicotómica 'mujer')

- La variable categórica 'Género' tiene dos categorías (Hombre y mujer) Porqué solo se considera una dicotómica en los modelos de regresión: $y = \beta_0 + \delta_0 Mujer + \beta_1 x + u$ y no se hace esto: $y = \beta_0 + \delta_0 Mujer + \delta_1 Hombre + \beta_1 x + u$
- \bullet Porque si se hiciera se tendría el problema de multicolinealidad perfecta: Hombre + Mujer = 1
- Es decir, de una variable categórica que tiene dos categoría, solo una se debe incluir en el modelo de regresión. En general, si la variable tiene N categoría, el modelo de regresión debería contar con N-1 variables dicotómicas.
- Dicotómica en STATA: gen mujer=sexo==2 (Crea la dicotómica 'mujer')

- La variable categórica 'Género' tiene dos categorías (Hombre y mujer) Porqué solo se considera una dicotómica en los modelos de regresión: $y = \beta_0 + \delta_0 Mujer + \beta_1 x + u$ y no se hace esto: $y = \beta_0 + \delta_0 Mujer + \delta_1 Hombre + \beta_1 x + u$
- \bullet Porque si se hiciera se tendría el problema de multicolinealidad perfecta: Hombre+Mujer=1
- Es decir, de una variable categórica que tiene dos categoría, solo una se debe incluir en el modelo de regresión. En general, si la variable tiene N categoría, el modelo de regresión debería contar con N-1 variables dicotómicas.
- Dicotómica en STATA: gen mujer=sexo==2 (Crea la dicotómica 'mujer')

- Así, si se quisiera saber si existe diferencia en los ingresos entre las 13 regiones de Chile la ecuación de Mincer debería tener 12 dicotómicas, cada una representando a una región. La categoría no incluida se conoce como la categoría base y su impacto vendría a ser dado por el intercepto de la regresión.
- En Stata una forma rápida de crear dicotómicas, una para cada categoría es: tab region,g(jose) (crea las dicotómicas: 'jose1', 'jose2', ..., 'jose13')
- En el trabajo aplicado también se suele convertir una variable continua en dicotómica. Por ejemplo convertir la variable edad (continua) en una variable categórica que identifica a los jóvenes y a los adultos.
- En STATA lo anterior se podría hacer del siguiente modo: gen joven=edad<31

- Así, si se quisiera saber si existe diferencia en los ingresos entre las 13 regiones de Chile la ecuación de Mincer debería tener 12 dicotómicas, cada una representando a una región. La categoría no incluida se conoce como la categoría base y su impacto vendría a ser dado por el intercepto de la regresión.
- En Stata una forma rápida de crear dicotómicas, una para cada categoría es: tab region,g(jose) (crea las dicotómicas: 'jose1', 'jose2', ..., 'jose13')
- En el trabajo aplicado también se suele convertir una variable continua en dicotómica. Por ejemplo convertir la variable edad (continua) en una variable categórica que identifica a los jóvenes y a los adultos.
- En STATA lo anterior se podría hacer del siguiente modo: gen joven=edad<31

- Así, si se quisiera saber si existe diferencia en los ingresos entre las 13 regiones de Chile la ecuación de Mincer debería tener 12 dicotómicas, cada una representando a una región. La categoría no incluida se conoce como la categoría base y su impacto vendría a ser dado por el intercepto de la regresión.
- En Stata una forma rápida de crear dicotómicas, una para cada categoría es: tab region,g(jose) (crea las dicotómicas: 'jose1', 'jose2', ..., 'jose13')
- En el trabajo aplicado también se suele convertir una variable continua en dicotómica. Por ejemplo convertir la variable edad (continua) en una variable categórica que identifica a los jóvenes y a los adultos.
- En STATA lo anterior se podría hacer del siguiente modo: gen joven=edad<31

- Así, si se quisiera saber si existe diferencia en los ingresos entre las 13 regiones de Chile la ecuación de Mincer debería tener 12 dicotómicas, cada una representando a una región. La categoría no incluida se conoce como la categoría base y su impacto vendría a ser dado por el intercepto de la regresión.
- En Stata una forma rápida de crear dicotómicas, una para cada categoría es: tab region,g(jose) (crea las dicotómicas: 'jose1', 'jose2', ..., 'jose13')
- En el trabajo aplicado también se suele convertir una variable continua en dicotómica. Por ejemplo convertir la variable edad (continua) en una variable categórica que identifica a los jóvenes y a los adultos.
- En STATA lo anterior se podría hacer del siguiente modo: gen joven=edad<31

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 3 Referencia

- Consiste en incluir la multiplicación de variables dicotómicas en la regresión.
- Así, si se tienen las variables dicotómicas: mujer y rural; una variable dicotómica que se puede incluir es mujer*rural
- $y = \beta_0 + \beta_1 mujer * rural$, con las siguientes posibilidades:
 - mujer=0 y rural=0; entonces $y = \beta_0$
 - mujer=1 y rural=1; entonces $y = \beta_0 + \beta_1$
 - mujer=0 y rural=1; entonces $y = \beta_0$
 - mujer=1 y rural=0; entonces $y = \beta_0$

- Consiste en incluir la multiplicación de variables dicotómicas en la regresión.
- Así, si se tienen las variables dicotómicas: mujer y rural; una variable dicotómica que se puede incluir es mujer*rural
- $y = \beta_0 + \beta_1 mujer * rural$, con las siguientes posibilidades:
 - mujer=0 v rural=0; entonces $v = \beta_0$
 - mujer=1 y rural=1; entonces $y = \beta_0 + \beta_1$
 - mujer=0 y rural=1; entonces $y = \beta_0$
 - mujer=1 y rural=0; entonces $y = \beta_0$

- Consiste en incluir la multiplicación de variables dicotómicas en la regresión.
- Así, si se tienen las variables dicotómicas: mujer y rural; una variable dicotómica que se puede incluir es mujer*rural
- $y = \beta_0 + \beta_1 mujer * rural$, con las siguientes posibilidades:
 - mujer=0 v rural=0; entonces $y = \beta_0$
 - mujer=1 y rural=1; entonces $y = \beta_0 + \beta_1$
 - mujer=0 y rural=1; entonces $y = \beta$
 - mujer=1 y rural=0; entonces $y = \beta_0$

- Consiste en incluir la multiplicación de variables dicotómicas en la regresión.
- Así, si se tienen las variables dicotómicas: mujer y rural; una variable dicotómica que se puede incluir es mujer*rural
- $y = \beta_0 + \beta_1 mujer * rural$, con las siguientes posibilidades:
 - mujer=0 y rural=0; entonces $y = \beta_0$
 - mujer=1 y rural=1; entonces $y = \beta_0 + \beta_1$
 - mujer=0 y rural=1; entonces $y = \beta_0$
 - mujer=1 y rural=0; entonces $y = \beta_0$

- Hasta el momento todas las dicotómicas vistas solo provocan cambios en los interceptos
- Es posible modelar cambios en las pendientes de la siguiente manera: $y = \beta_0 + \beta_1 x + \delta_1 * x * mujer + u$:
 - mujer=0; $y = \beta_0 + \beta_1 x + + u$
 - mujer=1; $y = \beta_0 + (\beta_1 + \delta_1)x + u$
- Aunque en general se podría modelar cambio en la pendiente y en el intercepto a la vez: $y = \beta_0 + \delta_0 mujer + \beta_1 x * mujer + \delta_1 * x * mujer + u$
 - mujer=0; $y = \beta_0 + \beta_1 x + + u$
 - mujer=1; $y = (\beta_0 + \delta_0) + (\beta_1 + \delta_1)x + u$

- Hasta el momento todas las dicotómicas vistas solo provocan cambios en los interceptos
- Es posible modelar cambios en las pendientes de la siguiente manera: $y = \beta_0 + \beta_1 x + \delta_1 * x * mujer + u$:
 - mujer=0; $y = \beta_0 + \beta_1 x + u$
 - mujer=1; $y = \beta_0 + (\beta_1 + \delta_1)x + u$
- Aunque en general se podría modelar cambio en la pendiente y en el intercepto a la vez: $y = \beta_0 + \delta_0 mujer + \beta_1 x * mujer + \delta_1 * x * mujer + u$
 - mujer=0; $y = \beta_0 + \beta_1 x + + u$
 - mujer=1; $y = (\beta_0 + \delta_0) + (\beta_1 + \delta_1)x + \iota$

- Hasta el momento todas las dicotómicas vistas solo provocan cambios en los interceptos
- Es posible modelar cambios en las pendientes de la siguiente manera: $y = \beta_0 + \beta_1 x + \delta_1 * x * mujer + u$:
 - mujer=0; $y = \beta_0 + \beta_1 x + + u$
 - mujer=1; $y = \beta_0 + (\beta_1 + \delta_1)x + u$
- Aunque en general se podría modelar cambio en la pendiente y en el intercepto a la vez: $y = \beta_0 + \delta_0 mujer + \beta_1 x * mujer + \delta_1 * x * mujer + u$
 - mujer=0; $y = \beta_0 + \beta_1 x + + u$
 - mujer=1; $y = (\beta_0 + \delta_0) + (\beta_1 + \delta_1)x + u$

Términos de interacción entre dicotómicas

Gráficamente y cuando $\delta_0 > 0$ y $\delta_1 < 0$ se tendría:

- . use datos, clear
- . reg bmi Z1 age

Source	SS	df	MS		per of obs 3275)	=	3,278 27.72
Model Residual	1701.34797	2 3,275	850.67398 30.690958	4 Prol 5 R-sc	p > F quared R-squared	=	0.0000 0.0166 0.0160
Total		3,277	31.191405		MSE	=	5.5399
bmi		Std. Err.		P> t	[95% Co		Interval]
Z1 age _cons	3.939848	.6174998 .0218862 1.572287	6.38 -3.73 18.62	0.000 0.000 0.000	2.72912 124587 26.1998	3	5.150573 0387632 32.36537

- . use datos, clear
- . reg bmi Z1 age mujer $\,$

Source	SS	df	MS		er of obs	=	3,278 43.62
Model Residual	3928.34017	3 3,274	1309.44672 30.0201274	Prob R-sq	> F uared	=	0.0000
Total	102214.237	3,277	31.1914059	5	R-squared MSE	=	0.0376 5.4791
bmi		Std. Err.	t	P> t		nf.	Interval]
Z1 age mujer cons		.6110363 .0216502 .1925896	-3.60 8.61	0.000 0.000 0.000	2.57088 120318 1.2811 25.1943	9	4.966993 0354204 2.036377 31.31014

- . use datos, clear
- . reg bmi Z1 age mujer mujer_Z1

Source		df	MS	Number of ob F(4, 3273)	os = =	3,278 33.96
Model Residual	4073.37779	4 3,273	1018.34445 29.984986	Prob > F	=	0.0000
	+	. ,	31.1914059	· Adj R-square	ed = =	0.0387 5.4759
bmi	•	Std. Err.			Conf.	Interval]
Z1 age mujer mujer_Z1 _cons	1.88688 2.688477	.8463405 .0216402 .2186435 1.222413 1.558947	2.93 -3.63 8.63 2.20	0.003 .8207 0.0001210 0.000 1.458 0.028 .2917 0.000 25.13	0532 8188 7055	4.13961 0361937 2.315572 5.085248 31.24661

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 3 Referencia

- Probar si una función de regresión es diferente para un grupo versus otro grupo puede ser realizado probando la significancia conjunta de las variables dicotómicas y sus interacciones con otras variables.
- Alternativamente, una manera práctica de verificar que dos grupos tienen funciones de regresión distintas es empleando el test de Chow.
- Bajo este test se calculan tres regresiones y se compuntan la SCR asociados a cada regresión. La primera regresión es la regresión empleando todos los datos (SCR) y las regresiones restantes son para cada grupo $(SRC_1 \ y \ SRC_2)$
- Con las SRC se computa el estadístico $F = \frac{[SCR (SCR_1 + SCR_2)]/(k+1)}{(SCR_1 + SCR_2)/(n-2(k+1))}$

- Probar si una función de regresión es diferente para un grupo versus otro grupo puede ser realizado probando la significancia conjunta de las variables dicotómicas y sus interacciones con otras variables.
- Alternativamente, una manera práctica de verificar que dos grupos tienen funciones de regresión distintas es empleando el test de Chow.
- Bajo este test se calculan tres regresiones y se compuntan la SCR asociados a cada regresión. La primera regresión es la regresión empleando todos los datos (SCR) y las regresiones restantes son para cada grupo $(SRC_1 \text{ y } SRC_2)$
- Con las SRC se computa el estadístico $F = \frac{[SCR (SCR_1 + SCR_2)]/(k+1)}{(SCR_1 + SCR_2)/(n-2(k+1))}$

- Probar si una función de regresión es diferente para un grupo versus otro grupo puede ser realizado probando la significancia conjunta de las variables dicotómicas y sus interacciones con otras variables.
- Alternativamente, una manera práctica de verificar que dos grupos tienen funciones de regresión distintas es empleando el test de Chow.
- Bajo este test se calculan tres regresiones y se compuntan la SCR asociados a cada regresión. La primera regresión es la regresión empleando todos los datos (SCR) y las regresiones restantes son para cada grupo $(SRC_1 \text{ y } SRC_2)$
- Con las SRC se computa el estadístico $F = \frac{[SCR (SCR_1 + SCR_2)]/(k+1)}{(SCR_1 + SCR_2)/(n-2(k+1))}$

- Probar si una función de regresión es diferente para un grupo versus otro grupo puede ser realizado probando la significancia conjunta de las variables dicotómicas y sus interacciones con otras variables.
- Alternativamente, una manera práctica de verificar que dos grupos tienen funciones de regresión distintas es empleando el test de Chow.
- Bajo este test se calculan tres regresiones y se compuntan la SCR asociados a cada regresión. La primera regresión es la regresión empleando todos los datos (SCR) y las regresiones restantes son para cada grupo $(SRC_1 \text{ y } SRC_2)$
- Con las SRC se computa el estadístico $F = \frac{[SCR (SCR_1 + SCR_2)]/(k+1)}{(SCR_1 + SCR_2)/(n-2(k+1))}$

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 3 Referencia

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 3 Referencia

- Sea y una variable dicotómica. Entonces: E(y/x) = P(y = 1/x) * 1 + P(y = 0/x) * 0 = P(y = 1/x) * 1
- Entonces, en este caso: $E(y/x) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k = P(y = 1/x)$
- Por lo tanto, la interpretación de β_i es el cambio en la probabilidad de éxito cuando x_i cambia
- El valor que predice este modelo es la probabilidad de éxito, que tiene el inconveniente que podría estar fuera del intervalo esperado de [0,1].
- Otro problema que se tiene es que el modelo viola el supuesto de homocedasticidad (Probar!)

- Sea y una variable dicotómica. Entonces: E(y/x) = P(y = 1/x) * 1 + P(y = 0/x) * 0 = P(y = 1/x) * 1
- Entonces, en este caso: $E(y/x) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k = P(y = 1/x)$
- Por lo tanto, la interpretación de β_i es el cambio en la probabilidad de éxito cuando x_i cambia
- El valor que predice este modelo es la probabilidad de éxito, que tiene el inconveniente que podría estar fuera del intervalo esperado de [0,1].
- Otro problema que se tiene es que el modelo viola el supuesto de homocedasticidad (Probar!)

- Sea y una variable dicotómica. Entonces: E(y/x) = P(y = 1/x) * 1 + P(y = 0/x) * 0 = P(y = 1/x) * 1
- Entonces, en este caso: $E(y/x) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k = P(y = 1/x)$
- Por lo tanto, la interpretación de β_i es el cambio en la probabilidad de éxito cuando x_i cambia
- El valor que predice este modelo es la probabilidad de éxito, que tiene el inconveniente que podría estar fuera del intervalo esperado de [0,1].
- Otro problema que se tiene es que el modelo viola el supuesto de homocedasticidad (Probar!)

- Sea y una variable dicotómica. Entonces: E(y/x) = P(y = 1/x) * 1 + P(y = 0/x) * 0 = P(y = 1/x) * 1
- Entonces, en este caso: $E(y/x) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k = P(y = 1/x)$
- Por lo tanto, la interpretación de β_i es el cambio en la probabilidad de éxito cuando x_i cambia
- El valor que predice este modelo es la probabilidad de éxito, que tiene el inconveniente que podría estar fuera del intervalo esperado de [0,1].
- Otro problema que se tiene es que el modelo viola el supuesto de homocedasticidad (Probar!)

- Sea y una variable dicotómica. Entonces: E(y/x) = P(y = 1/x) * 1 + P(y = 0/x) * 0 = P(y = 1/x) * 1
- Entonces, en este caso: $E(y/x) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k = P(y = 1/x)$
- Por lo tanto, la interpretación de β_i es el cambio en la probabilidad de éxito cuando x_i cambia
- El valor que predice este modelo es la probabilidad de éxito, que tiene el inconveniente que podría estar fuera del intervalo esperado de [0,1].
- Otro problema que se tiene es que el modelo viola el supuesto de homocedasticidad (Probar!)

Contenido

- VARIABLES DUMMY
 - Variable dummy como variable independiente
 - Términos de interacción entre dicotómicas
 - Test de Chow o de quiebre estructural
- 2 Modelo de probabilidad lineal
 - Modelo de probabilidad lineal
- 3 Referencia

REFERENCIAS

- Referencia 1
- Referencia 2. colocar alguna referencia
- Referencia 3. colocar alguna referencia

• Agregar alguna nota

REFERENCIAS

Referencia 1

Referencia 2. colocar alguna referencia

Referencia 3. colocar alguna referencia

Econometría Básica

Capítulo 07: Dummys

José Valderrama & Freddy Rojas jtvalderrama@gmail.com & frojasca@gmail.com ▼ Universidad Católica Santo Toribio de Mogrovejo

Septiembre de 2021

