Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

By: Yaimara Narito

November 8th, 2021

Table of Contents

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network

IP Range: 192.168.1.0/24 Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.1 OS: Window

Hostname:

ML-REFVM-684427

IPv4: 192.168.1.90

OS: Linux

Hostname: Kali

IPv4: 192.168.1.100

OS: Linux

Hostname: ELK

IPv4: 192.168.1.105

OS: Linux

Hostname: Capstone

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
ML-REFVM-684427	192.168.1.1	Gateway with Hyper-V (NATSwitch)
Kali	192.168.1.90	Penetration Testing System (Attacker's VM)
ELK	192.168.1.100	SIEM System (receives logs from the Capstone VM)
Capstone	192.168.1.105	Web Server (Victim's Machine)

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Sensitive Data Exposure: CWE-200: Exposure of Sensitive Information to an Unauthorized Actor	The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.	According to CWE the common impact of sensitive data exposure is read application data
Brute Force Vulnerability : CWE-307: Improper Restriction of Excessive Authentication Attempts	The software does not implement sufficient measures to prevent multiple failed authentication attempts within in a short time frame, making it more susceptible to brute force attacks.	According to CWE the common impact of brute force vulnerability is bypass protection mechanism.
Remote Code Injection: CWE-94 - Improper Control of Generation of Code ('Code Injection')	The software constructs all or part of a code segment using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the syntax or behavior of the intended code segment.	According to CWE the common impacts of remote code injection include bypass protection mechanism, gain privileges or assume identity, execute unauthorized code or commands, and hide activities.

Exploitation: Sensitive Data Exposure (CWE-200)

01

02

Tools & Processes

- I. nmap for scanning the network.
- II. dirb for scanning the web.
- III. Firefox for browsing the mapped URLs.

Achievements

- I. Exposed Server's URLs.
 - Exposed files including the
 /company_folders/secre
 t folder
- II. Exposed **Ashton** as the user managing the

secret_folder.

Exploit Outcome

Apache/2.4.29 (Ubuntu) Server at 192.168

Ashton is 22 years young, with a masters degreee in aquatic jousting. "Moving over to managing everyone's credit card and security information has been terrifying. I can't believe that they have me managing the company_folders/secret_folder! I really shouldn't be here" We look forward to working more with Ashton in the future!

Exploitation: Brute Force Vulnerability (CWE-307)

01

Tools & Processes

- I. Hydra tool (parallelized login cracker).
- II. Firefox to login into the secret_folder.
- III. Cracking Station to decrypt Ryan's password hash.

md5

linux4u

d7dad0a5cd7c8376eeb50d69b3ccd352

Color Codes: Green: Exact match, Yellow: Partial match,

- Residual to

Exploitation: Remote Code Injection (CWE-94)

01

02

Tools & Processes

- I. msfvenom to create the reverse shell .php file.
- II. msfconsole
 exploit/multi/handler
 to exploit
 php/meterpreter/rever
 se tcp payload.
- III. File manager to upload the access_shell.php malicious file to the server.
- IV. meterpreter session to explore the Capsone server.

Achievements

- Successfully uploaded the access_shell.php payload to the WebDav server.
- II. Successfully established connection with the reverse shell on the victim's machine, Capstone Server.
- III. Found the target file,
 Flag.txt in the Capstone
 Server.

Exploit Outcome

locate flag.txt /flag.txt cat /flag.txt b1ng0w@5h1sn@m0

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

- The port scan occurred on October 28th, 2021 @ 01:37 am.
- There were **18,771** packets sent from **192.168.1.90** during the attack.
- The high volume of traffic during such a short time resulting in **401** and **404** error codes indicates that there is a port scanning occurring during that period of time.

Analysis: Finding the Request for the Hidden Directory

- Starting with the attack on October 28th, 2021 @ 01:37 hrs, **18,771** file requests were made, from which **15,851** were made to the hidden /company_folders/secret_folder directory.
- After successfully acquiring login credentials to the hidden folder, it is visible that the hidden file:

 http://192.168.1.105/company_folders/secret_folder/connect_to_corp_server was accessed @ 01:44

 hrs. The file contained sensitive information such as instructions to connect to the web server and the exposure of the hash
 for Ryan's password.
- Other files accessed include:
 - o http://192.168.1.105/webdav
 - o http://192.168.1.105/webdav/passwd,dav
 - o http://192.168.1.105/meet our team?ashton.txt

Analysis: Uncovering the Brute Force Attack

- During the brute force attack, hydra made a total of **15,943 requests**.
- In this screen it is evident that numerous requests were made to the password protected /company_folders/secret_folder directory returning several 401 (15,845 requests) and 404 (96 requests) errors for a total of 15,941 failed requests.
- In addition, out of a total of **15,943 requests**, only **2 successful requests** were made to the file inside the directory. This behavior is an indication of a brute force attack.

Analysis: Finding the WebDAV Connection

- After the attack, the /company_folders/secret_folder directory was requested several more times. Also, the confidential file, /company_folders/secret_folder/connect_to_corp_server, within this directory was requested 4 times.
- The WebDav server was requested **140 times** and the shell_access.php, the payload file, was requested **38 times**. The first successful request to the file was made @22:52 hrs.
- Here is visible that the WebDav server was accessed and that the breach took place successfully.

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

- Alarm to detect future port scans:
 - Alert when excessive requests for numerous ports per second are made from the same IP address within a set timeframe.
- Threshold to activate this alarm:
 - The alarm will flag a behavior as a port scan attack and activate when more than 10 different ports are requested from the same IP address within 0.005 seconds or 5000 microseconds.

- Future port scans can be mitigated by taking several precautions, including:
 - Configure local firewall to block incoming requests from unknown hosts.
 - Disable port forwarding on the routers.
 - Employ TCP wrappers to allow/deny access based on IP addresses and domain names.
 - Close unnecessary ports and services.

Mitigation: Finding the Request for the Hidden Directory

Alarm

- Alarm to detect future unauthorized access:
 - Alert when a non-whitelisted IP address attempts to connect to the server and access restricted files.
- Threshold to activate this alarm:
 - The alert will trigger only if it detects incoming traffic of an unauthorized (not whitelisted) IP address.

- To block unwanted access to restricted files, numerous steps can be taken:
 - Create an IP address whitelist.
 - Restrict access to confidential files to a specific user.
 - Remove confidential files from the server.
 - Encrypt data at rest.
 - Employ a stronger password policy.

Mitigation: Preventing Brute Force Attacks

Alarm

- Alarm to detect future brute force attacks:
 - Set up an alert that detects a sharp increase in login attempts over a certain period of time.
 - In addition, an alert needs to be set up that triggers when there is an increase in 401 errors in as specific period of time.
 - Alert when user_agent.original value includes Hydra
- Threshold to activate this alarm:
 - The alert will trigger when it detects more than 15 requests per second.
 - The alert will fire when it detects more than fifteen 401 errors per second.
 - The alert will notify when user agent.original value includes Hydra in the name.

- To prevent future brute force attacks several mitigation techniques can be implemented:
 - Monitor systems for vulnerabilities.
 - Strengthen the human firewall.
 - Unique/complex password/passphrases requirements.
 - Make the root user inaccessible via SSH
 by editing the sshd config file.
 - Store only SOLTED password hashes on servers.
 - CAPTCHA tool
 - Adopt passwordless authentication.

Mitigation: Detecting the WebDAV Connection

Alarm

- Alarm to detect future connections to WebDav:
 - Alert when requests are made to access the WebDav from a non-whitelisted IP address.
- Threshold to activate this alarm:
 - All requests to access files within WebDav from a non-whitelisted IP address will set off the alert.

- To prevent unwanted access to WebDav:
 - Whitelist IP addresses.
 - Set strict permissions and privileges.
 - Diligently monitor server logs.
 - Turn off unneeded functions.
 - Change defaults.
 - Do not keep sensitive information stored in WebDav.
 - Encrypt data at rest and in transit.
 - Implement separation of Privilege.

Mitigation: Identifying Reverse Shell Uploads

Alarm

- Alarm to identify reverse shell uploads:
 - Alarm that fires when it detects POST requests of unauthorized files, i.e., .php, to the server.
- Threshold to activate this alarm:
 - Notify when any user attempts to upload prohibited files.

- To defend against reverse shell uploads:
 - Define valid file types allowed to upload.
 - Do not allow .php files to be hosted on WebDay.
 - Restrict writing permissions.
 - Input validation.
 - Require authentication to upload files.

References

- Christopher, R. (2001, October 5). Port scanning techniques and the defense against them. SANS. https://sansorg.egnyte.com/dl/hEbx2UI5Hu
- CWE CWE-200: Exposure of sensitive information to an unauthorized actor (4.6). (2021, October 26). CWE Common Weakness Enumeration. https://cwe.mitre.org/data/definitions/200.html
- CWE CWE-307: Improper restriction of excessive authentication attempts (4.4). (2021, March 15). CWE Common Weakness Enumeration. https://cwe.mitre.org/data/definitions/307.html
- CWE CWE-434: Unrestricted upload of file with dangerous type (4.5). (2021, July 20). CWE Common Weakness Enumeration. https://cwe.mitre.org/data/definitions/434.html
- CWE CWE-94: Improper control of generation of code ('code injection') (4.6). (2021, October 26). CWE Common Weakness Enumeration.

 https://cwe.mitre.org/data/definitions/94.html
- Port-scan. (n.d.). Juniper Networks Global Leader in Al Networking, Cloud, and Connected Security Solutions.

 https://www.juniper.net/documentation/us/en/software/junos/denial-of-service/topics/ref/statement/security-edit-port-scan.html

