Assignment5 - Part1

By 2018101075

Dataset

$$x = 1 - (075 \% 40 + 1) / 100 = 0.64$$

 $y = 75 \% 3 = 0$

P(Observation = Red State = Red)	0.9
P(Observation = Green State = Green)	0.85

There are 5 states and two actions (Left, Right). States S1, S2, S5 are Red and S3, S5 are green.

When an agent takes action Left , it goes to the left state with a probability x and goes to the right state with a probability 1- x . Similarly when the action Right is chosen, the agent goes to the right state with a probability x and goes to the left state with a probability 1- x. When the agent is in one of the extreme states (S1 or S5) and decides to go in the direction of the wall, it remains in the same state.

Calculating Belief State

$$b'(s') = Pr(s' | o, a, b)$$

= $(O(s', a, o) * \sum T(s, a, s') b(s)) / Pr(o | a, b)$
Where s = old state,

b = old belief state, and b(s) probability of s given belief state b,
a = action,
b' = new belief state,
b'(s') = probability of s' given b',

We first calculate Ub'[s'] = O(s', a, o) * \sum T(s, a, s') b(s) Then b' = Ub' / \sum Ub'[s']

Step 1

o = observation.

Initially, the agent knows that it is in one of the red states i.e. S1, S2 or S5.

Therefore belief b = [1 / 3, 1 / 3, 0, 0, 1 / 3]

Agent took the action Right and observed Red

```
Ub'(s1) = Pr(Red | s1, Right) * [Pr(s1 | s1, Right) * b(s1) + Pr(s1 | s2, Right) * b(s2) + Pr(s1 | s3, Right) * b(s3) + Pr(s1 | s4, Right) * b(s4) + Pr(s1 | s5, Right) * b(s5)]
= 0.9 * [(1 - x) * 0.33 + (1 - x) * 0.33 + 0 + 0 + 0]
= 0.216
```

Ub'(s2) = Pr(Red | s2, Right) * [Pr(s2 | s1, Right) * b(s1) + Pr(s2 | s2, Right) * b(s2) + Pr(s2 | s3, Right) * b(s3) + Pr(s2 | s4, Right) * b(s4) + Pr(s2 | s5, Right) * b(s5)] = 0.9 * [x * 0.33 + 0 + 0 + 0 + 0] = 0.192

```
Ub'(s3) = Pr(Red | s3, Right) * [Pr(s3 | s1, Right) * b(s1) + Pr(s3 | s2, Right) * b(s2) + Pr(s3 | s3, Right) * b(s3) + Pr(s3 | s4, Right) * b(s4) + Pr(s3 | s5, Right) * b(s5)]
= 0.1 * [0 + x * 0.33 + 0 + 0 + 0]
= 0.02133
```

Let
$$p = sum(Ub') = 0.63333$$

b' = Ub' / p
Therefore b' = [0.34105, 0.30315, 0.03368, 0.01894, 0.30315]

Step 2

Now belief b = [0.34105, 0.30315, 0.03368, 0.01894, 0.30315]

Agent took the action Left and observed Green

```
Ub'(s1) = Pr(Green \mid s1, Left) * [Pr(s1 \mid s1, Left) * b(s1) + Pr(s1 \mid s1, Left) * b(s1) + Pr(s1) + 
s2, Left) * b(s2) + Pr(s1 | s3, Left) * b(s3) + Pr(s1 | s4, Left) * b(s4)
+ Pr(s1 | s5, Left) * b(s5)]
                                       = 0.15 * [x * b[s1] + x * b[s2] + 0 + 0 + 0]
                                       = 0.06184
Ub'(s2) = Pr(Green \mid s2, Left) * [Pr(s2 \mid s1, Left) * b(s1) + Pr(s2 \mid s2)]
s2, Left) * b(s2) + Pr(s2 | s3, Left) * b(s3) + Pr(s2 | s4, Left) * b(s4)
+ Pr(s2 | s5, Left) * b(s5)]
                                       = 0.15 * [(1 - x) * b[s1] + 0 + x * b[s3] + 0 + 0]
                                       = 0.02165
Ub'(s3) = Pr(Green \mid s3, Left) * [Pr(s3 \mid s1, Left) * b(s1) + Pr(s3 \mid s3) + Pr(s3 \mid 
s2, Left) * b(s2) + Pr(s3 | s3, Left) * b(s3) + Pr(s3 | s4, Left) * b(s4)
+ Pr(s3 | s5, Left) * b(s5)]
                                       = 0.85 * [0 + (1 - x) * b[s2] + 0 + x * b[s4] + 0]
                                       = 0.10307
Ub'(s4) = Pr(Green \mid s4, Left) * [Pr(s4 \mid s1, Left) * b(s1) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4 \mid s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4, Left) * [Pr(s4 \mid s4, Left) * b(s4) + Pr(s4, Left) * [Pr(s4 \mid s4, Left) * [Pr
s2, Left) * b(s2) + Pr(s4 | s3, Left) * b(s3) + Pr(s4 | s4, Left) * b(s4)
+ Pr(s4 | s5, Left) * b(s5)]
                                       = 0.85 * [0 + 0 + (1 - x) * b[s3] + 0 + x * b[s5]]
                                       = 0.17522
Ub'(s5) = Pr(Green \mid s5, Left) * [Pr(s5 \mid s1, Left) * b(s1) + Pr(s5 \mid
s2, Left) * b(s2) + Pr(s5 | s3, Left) * b(s3) + Pr(s5 | s4, Left) * b(s4)
+ Pr(s5 | s5, Left) * b(s5)]
                                       = 0.15 * [0 + 0 + 0 + (1 - x) * b[s4] + (1 - x) * b[s5]]
```

```
= 0.01739
```

Let
$$p = sum(Ub') = 0.37918$$

b' = Ub' / p
Therefore b' = [0.16309, 0.05709, 0.27182, 0.46210, 0.04587]

Step 3

Now belief b = [0.16309, 0.05709, 0.27182, 0.46210, 0.04587]

Agent took the action Left and observed Green

```
= 0.26885
```

```
Ub'(s4) = Pr(Green | s4, Left) * [Pr(s4 | s1, Left) * b(s1) + Pr(s4 | s2, Left) * b(s2) + Pr(s4 | s3, Left) * b(s3) + Pr(s4 | s4, Left) * b(s4) + Pr(s4 | s5, Left) * b(s5)]
= 0.85 * [0 + 0+ (1 - x) * b[s3] + 0 + x * b[s5]]
= 0.10813

Ub'(s5) = Pr(Green | s5, Left) * [Pr(s5 | s1, Left) * b(s1) + Pr(s5 | s2, Left) * b(s2) + Pr(s5 | s3, Left) * b(s3) + Pr(s5 | s4, Left) * b(s4) + Pr(s5 | s5, Left) * b(s5)]
= 0.15 * [0 + 0 + 0 + (1 - x) * b[s4] + (1 - x) * b[s5]]
= 0.02743

Let p = sum(Ub') = 0.46046
b' = Ub' / p
Therefore b' = [0.04590, 0.07579, 0.58388, 0.23483, 0.05957]
```

Output

2018101075

0.64 0

0.34105 0.30315 0.03368 0.01894 0.30315

0.16309 0.05709 0.27182 0.46210 0.04587

0.04590 0.07579 0.58388 0.23483 0.05957