SRG operator evolution

A. J. Tropiano¹, S. K. Bogner², R. J. Furnstahl¹

¹Department of Physics, The Ohio State University, Columbus, OH 43210, USA
²National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,
Michigan State University, East Lansing, MI 48824, USA

(Dated: May 31, 2019)

Abstract

Brief description of project.

I. INTRODUCTION

Results on SRG-evolved operators from several NN potentials:

- How operators evolve from band- and block-diagonal SRG transformations.
- Operator evolution for different potentials (regulators, chiral order, etc.)

II. BUILDING SRG UNITARY TRANSFORMATIONS

Brief description of how to make U(s).

Diagonalize initial and evolved Hamiltonians which we will call H(0) and H(s), respectively. This gives $\psi_{\alpha}(0)$ and $\psi_{\alpha}(s)$ for each eigenvalue indexed by α . Then the SRG unitary transformation can be computed by taking a sum over outer products of the evolved and initial wave functions:

$$U(s) = \sum_{\alpha=1}^{N} |\psi_{\alpha}(s)\rangle \langle \psi_{\alpha}(0)|, \qquad (1)$$

where N is the dimension of the Hamiltonian matrix. Here the weights are factored into the wave functions, thus U(s) is unitless.

To evolve operators, we simply apply U(s):

$$O(s) = U(s)O(0)U^{\dagger}(s), \tag{2}$$

where O(0) is the bare operator.

III. OPERATOR EVOLUTION

Organize this according to the figures: what story do the figures tell? Format should be description of the calculation, followed by the figure, followed by takeaways.

Add the following figures: momentum projection operator figures with accompanying momentum distributions for SRG transformations from N³LO non-local potential [1], N³LO

or N⁴LO semi-local potentials [2], and N²LO local potentials [3].

FIG. 1: Matrix elements of $\langle k|a_q^{\dagger}a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the Entem-Machleidt N³LO non-local potential with the Wegner generator (a) and block-diagonal generators decoupling at $\Lambda=2$ and 3 fm⁻¹ (b and c). Here q=3 fm⁻¹.

FIG. 2: Matrix elements of $\langle k|a_q^{\dagger}a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the Entem-Machleidt N³LO non-local potential with the Wegner generator. Here q=0.3 fm⁻¹.

FIG. 3: Momentum probability densities of the deuteron SRG-evolving the wave function to $\lambda=1.5$ fm⁻¹ from the Entem-Machleidt N³LO non-local potential with the Wegner generator (a) and block-diagonal generators decoupling at $\Lambda=2$ and 3 fm⁻¹ (b and c). The black dotted line corresponds to the momentum probability density of the initial deuteron wave function.

FIG. 4: Momentum probability densities of the continuum state at $\epsilon \approx 200$ MeV SRG-evolving the wave function to $\lambda = 1.5$ fm⁻¹ from the Entem-Machleidt N³LO non-local potential with the Wegner generator (a) and block-diagonal generators decoupling at $\Lambda = 2$ and 3 fm⁻¹ (b and c). The black dotted line corresponds to the initial momentum probability density.

FIG. 5: Matrix elements of $\langle k|a_q^\dagger a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the RKE N³LO semi-local potential with the Wegner generator (a) and block-diagonal generator decoupling at $\Lambda=2~{\rm fm^{-1}}$ (b). Here $q=3~{\rm fm^{-1}}$ and the EFT cutoff is 450 MeV.

FIG. 6: Matrix elements of $\langle k|a_q^\dagger a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the RKE N³LO semi-local potential with the Wegner generator (a) and block-diagonal generator decoupling at $\Lambda=2~{\rm fm^{-1}}$ (b). Here $q=3~{\rm fm^{-1}}$ and the EFT cutoff is 500 MeV.

FIG. 7: Matrix elements of $\langle k|a_q^\dagger a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the RKE N⁴LO semi-local potential with the Wegner generator (a) and block-diagonal generator decoupling at $\Lambda=2~{\rm fm^{-1}}$ (b). Here $q=3~{\rm fm^{-1}}$ and the EFT cutoff is 450 MeV.

FIG. 8: Matrix elements of $\langle k|a_q^{\dagger}a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the RKE N⁴LO semi-local potential with the Wegner generator (a) and block-diagonal generator decoupling at $\Lambda=2~{\rm fm^{-1}}$ (b). Here $q=3~{\rm fm^{-1}}$ and the EFT cutoff is 500 MeV.

FIG. 9: Momentum probability densities of the continuum state at $\epsilon \approx 200$ MeV SRG-evolving the wave function to $\lambda = 1.5$ fm⁻¹ from the RKE N⁴LO semi-local potential with the Wegner generator (a) and block-diagonal generators decoupling at $\Lambda = 2$ and 3 fm⁻¹ (b and c). The black dotted line corresponds to the initial momentum probability density. Here the EFT cutoff is 450 MeV.

FIG. 10: Matrix elements of $\langle k|a_q^{\dagger}a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the Gezerlis et al. N²LO local potential with the Wegner generator (a) and block-diagonal generators decoupling at $\Lambda=2$ and 3 fm⁻¹ (b and c). Here q=3 fm⁻¹ and the EFT cutoff is 1 fm.

FIG. 11: Matrix elements of $\langle k|a_q^{\dagger}a_q|k'\rangle$ SRG-evolving in λ right to left under transformations from the Gezerlis et al. N²LO local potential with the Wegner generator (a) and block-diagonal generator decoupling at $\Lambda=2~{\rm fm}^{-1}$ (b). Here $q=3~{\rm fm}^{-1}$ and the EFT cutoff is 1.2 fm.

[1] D. R. Entem and R. Machleidt, Phys. Rev. C $\mathbf{68}$, 041001 (2003), arXiv:nucl-th/0304018 [nucl-th].

[2] P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54, 86 (2018), arXiv:1711.08821 [nucl-th].

[3] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90, 054323 (2014), arXiv:1406.0454 [nucl-th].