ELECTRICAL ENERGY IN THE HOME QUIZ

1. A conductor has a resistance of 20Ω . Given that its length is doubled and the radius of its cross-sectional area is also doubled, what is its new resistance? (3 marks)

$$R_{\text{Orig}} = \frac{L}{A} = \frac{L}{\Pi r^2} = 20 \Omega$$

$$Rnew = \frac{2L}{\pi(2n)^2}$$

$$= \frac{2L}{4\pi r^2}$$

$$= \frac{1}{2} \cdot Rorig$$

$$= \frac{1}{2} \times 20$$

$$= 10.0. \#$$

 A current of 3A flows for a period of 1.5 seconds. How many coulombs of charge and hence how many electrons pass a given point in this time? (2 marks)

$$\begin{cases}
1 = 3A \\
t = 1.5 \text{ seconds} \\
9 = ? \\
0 = ? \\
0 = 1.6 \times 10^{-19} \text{ C}
\end{cases}$$

$$I = \frac{9}{t}$$

$$9 = It$$

$$= \frac{3}{4} \times 1.5$$

$$= 4.5 \text{ C}$$

$$f = ne$$
 $n = 9$
 e
 $= \frac{4.5}{1.0 \times 10^{-19}}$
 $= 2.8 \times 10^{19} e^{-1}$

3. $\begin{array}{c|c} (2A & 10.0 \ \Omega \\ \hline \end{array}$

24A

120 V

a) Calculate the total resistance of the circuit (2 marks)

b) Calculate the current and hence the voltage drop across the 10Ω resistor which is connected in parallel. (3 marks) \downarrow marked on diagram.

$$RT = 5.2$$
 $V_T = 120V$
 $V_{10.2} = 6A$
 $V_{10.2} = 10.2 R_{10.2}$
 $V_{10.2} = 10.2 R_{10.2}$

Calculate:

a) The total resistance and the total current (2 marks)

$$\frac{1}{Rp} = \frac{1}{20} + \frac{1}{10}$$

$$= \frac{3}{20}$$

$$Rp = \frac{20}{3} \text{ R}$$

$$RT = Rp + 5$$

$$= \frac{20}{3} + 5$$

$$= \frac{35}{3} \text{ R} \cdot \#$$

$$RT = \frac{35}{3}$$
 Q
 $V_{T} = \frac{24V}{R_{T}}$
 $V_{T} = \frac{24V}{35}$
 $V_{T} = \frac{24V}{35}$

c) The current and voltage drop of the 10Ω resistor

(2 marks)

Method 1: Pation

I202 = 1 XIT

$$I_{10,2} = \frac{2}{3}xI_{7}$$
 $= \frac{2}{3}x\frac{72}{35}$
 $= \frac{48}{35}A #$
 $V_{10,2} = I_{10,2}R_{10,2}$
 $= \frac{48}{35}x_{10} = \frac{9}{4}v$

d) The current and the voltage drop of the 20Ω

resistor (2 marks)

b)

Method 2: Kirch off law = V20x=V10.2 (connected in paralle))
= 96
7 #

$$I_{202} = \frac{V_{202}}{R_{202}}$$

$$= \frac{96}{7} = \frac{48}{35} + 4$$

 $\sqrt{20} = \frac{35}{40} \times 1000 = \frac{96}{7}$ 5. Sketch the magnetic field surrounding the following: (2 marks each)

Right Hand Grip

Two resistors R1=4 Ω and R2=3 Ω are connected in parallel t a 12V power supply. What is the power generated by the power supply and the power dissipated in each resistor? (3 marks)

$$\frac{1}{l_{+}} = \frac{1}{3} + \frac{1}{4}$$
$$= \frac{1}{4}$$

$$P_{T} = V_{T} I_{T}$$

$$= V_{T} \cdot V_{T}$$

$$= V_{T}^{2}$$

$$= V_{T}^{2}$$

$$P_{42} = \frac{V_{42}^2}{R_{42}}$$

$$= \frac{12^2}{4}$$

$$= 3bw #$$

$$P_{32} = \frac{V_{32}}{R_{32}}$$

$$= \frac{12^2}{3}$$

$$= 48 \text{ W}$$

Using Right Hand Coil Rule