Analysis II (Marciniak-Czochra)

Robin Heinemann

24. April 2017

Inhaltsverzeichnis

1	Metrische und normierte Räume		
	1.1	Metrische Räume	1
	1.2	Normierte Räume	3
	1.3	Hilberträume	4

1 Metrische und normierte Räume

1.1 Metrische Räume

Definition 1.1 Sei M eine Menge, $d: M \times M \to [0, \infty)$ heißt **Metrik** auf M genau dann wenn $\forall x, y, z \in M$

• (D1)
$$d(x, y) = 0 \Leftrightarrow x = y$$
 (Definitheit)

• (D2)
$$d(x, y) = d(y, x)$$
 (Symmetrie)

• (D3)
$$d(x, z) \le d(x, y) + d(z, y)$$
 (Dreiecksungleichung)

Beispiel 1.2 1. Charakterische (diskrete) Metrik

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & \text{sonst} \end{cases}$$

2. Sei $X=\mathbb{K}^n(\mathbb{K}=\mathbb{R} \text{ oder } \mathbb{C})$ mit Metrik

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{n}{2}}$$

(euklidische Metrik)

3. Sei $X=\mathbb{R}^n$. Für $1\leq \phi \leq \infty$. Sei

$$d_{\phi}(x,y) = \left(\sum_{i=1}^{n} \lvert x_{i} - y_{i} \rvert^{\phi}\right)^{\frac{n}{\phi}}$$

Ist $\phi = \infty$, so definieren wir

$$d_{\infty}(x,y) = \max_{i-1,\dots,n} \lvert x_i - y_i \rvert$$

4. $X = \mathbb{R}$ mit Metrik

$$d(x,y) = \frac{|x-y|}{1+|x-y|}$$

5. Der Raum der Folgen $a:\mathbb{N} \to \mathbb{R}$ (beziehungsweise $\mathbb{R}^\mathbb{N}$) kann mit der Metrik

$$d(x,y) = \sum_{k=0}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

Definition 1.3 Sei M eine Menge mit Metrik d. Wir definieren für $x \in M, \varepsilon > 0$, die offene ε-Kugel um x durch

$$K_{\varepsilon}(x) := \{ y \in M \mid d(x, y) < \varepsilon \}$$

und eine abgeschlossene Kugel durch

$$K_{\varepsilon}(x) := \{ y \in M \mid d(x, y) \le \varepsilon \}$$

 $A\subset M$ heißt **Umgebung** von $x\in M\Leftrightarrow \exists arepsilon: K_{arepsilon}(x)\subset A$

Konvergenz und Stetigkeit in metrischen Räumen

 $\begin{array}{ll} \textbf{Definition 1.4} \ \, \text{Eine Folge} \left(x_n \right)_{n \in \mathbb{N}} \text{in einem metrischen Raum} \left(X, d \right) \text{ist konvergent gegen einem} \\ x \in X \, \text{genau dann wenn} \, \forall \varepsilon > 0 \\ \exists n_0 \in \mathbb{N} : \forall n \geq n_0 \\ d(x_n, x) < \varepsilon \end{array}$

- 1. Sei (X,d) ein metrischer Raumn. Dann ist $A\subseteq X$ abgeschlosen genau dann wenn $(X_n)_{n\in\mathbb{N}}$ Folge in A mit $x_n\to x\Rightarrow x\in A$
 - 2. Seien $(X, d_1), (Y, d_2)$ zwei metrische Räume. Dann ist die Funktion stetig in $x \in X$ genau $\mathrm{dann}\,\mathrm{wenn}\,(x_n)_{n\in\mathbb{N}}\,\mathrm{Folge}\,\mathrm{in}\,X\,\mathrm{mit}\,x_n\to x\Rightarrow f(x_n)\to f(x).$

Definition 1.6 ((Cauchy Folgen und Vollständigkeit)) Sei (X, d) ein metrischer Raum. Eine Folge $(x_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge falls $d(x_n,x_m)\to 0$ für $n,m\to\infty$. Der metrische Raum heißt vollständig, falls jede Cauchy-Folge konvergent ist.

1.2 Normierte Räume

Definition 1.7 Ein normierter Raum $(X, \|\cdot\|)$ ist ein Paar bestehend aus einem \mathbb{K} -Vektorraum Xund einer Abbildung $\|\cdot\|: X \to [0, \infty)$ mit

- 1. $||x|| = 0 \Leftrightarrow x = 0$
- 2. $\|\lambda x\| = |\lambda| \|x\| \forall \lambda \in \mathbb{K}, x \in X$
- 3. $||x + y|| < ||x|| + ||y|| \forall x, y \in X$

1. Die Norm $\|\cdot\|$ induziert auf X eine Metrik $d(x,y) = \|x-y\|$

2. Eine Metrik d auf einem Vektorraum definiert die Norm ||d(x,0)|| nur dann, wenn

$$\forall \lambda \in \mathbb{K} \\ \forall x,y,z \in X: d(\lambda x,\lambda y) = |\lambda| d(x,y) \tag{Homagenität}$$

$$d(x+z,y+z) = d(x,y) \tag{Translations invarianz}$$

Definition 1.8 (Banachraum) Ein normierter Raum $(X, \|\cdot\|)$ heißt vollständig, falls X als metrischer Raum mit der Metrik d(x,y) = ||x-y|| vollständig ist. Ein solcher vollständiger normierter Raum heißt Banachraum

1. $(\mathbb{R}^n, \|\cdot\|_2)$, wobei Beispiel 1.9

$$\|x\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{n}{2}}$$

2. Sei K eine kompakte Menge:

$$C_{\mathbb{K}} := \{f: K \to \mathbb{K} \mid f \text{ stetig}\}$$

$$\left\| \cdot \right\|_{\infty} = \max_{\lambda \in K} \lvert f(x) \rvert$$

 $(C_{\mathbb{K}(K)}, \|\cdot\|_{\infty})$ ist ein Banachraum.

1. Jede Cauchy-Folge in \mathbb{K}^n konvergiert, das heißt $(\mathbb{K}^n,\|\cdot\|)$ ist vollständig **Bemerkung**

2. Jede beschränkte Folge in \mathbb{K}^n besitzt eine konvergente Teilfolge. (Bolzano-Weierstraß Satz gilt in \mathbb{R}^n) (Beweis für \mathbb{R}^n zum Beispiel in RR Ana2 Satz 1.1)

Satz 1.10 (Äquivalenz von Normen) Auf dem endlich dimesionalen Vektorraum \mathbb{K}^n sind alle Normen **äquivalent** zur Maximumnorm, das heißt zu jeder Norm $\|\cdot\|$ gibt es positive Konstanten w, M mit denen gilt

$$m\|x\|_{\infty} \leq \|x\| \leq M\|x\|_{\infty}, x \in \mathbb{K}^n$$

Beweis Sei $\|\cdot\|$ irgendeine Norm $\forall x \in \mathbb{K}^n$ gilt

$$\|x\| \leq \sum_{k=1}^n |x_k| \big\| e^{(k)} \big\| \leq M \|x\|_{\infty}$$

mit

$$M := \sum_{k=1}^n \! \big\| e^{(k)} \big\|$$

Wir setzen

$$S_1 := \{x \in \mathbb{K}^m \mid \|x\|_{\infty} = 1\}, m := \inf\{\|x\|, x \in S_1\} \ge 0$$

Zu zeigen m>0 (dann ergibt sich für $x\neq 0$ wegen $\|x\|_{\infty}^{-1}x\in S_1$ auch $m\leq \|x\|_{\infty}^{-1}\|x\|\Rightarrow 0< m\|x\|_{\infty}\leq \|x\|$ $x\in \mathbb{K}^n$) Sei also angenommen, dass m=0

Dann gibt eine eine Folge $\left(x^{(k)}\right)_{k\in\mathbb{N}}\in S_1$ mit $\left\|x^{(k)}\right\|\xrightarrow{k\to\infty}0$. Da diee Folge bezüglich $\left\|\cdot\right\|_{\infty}$ beschränkt ist, gibt ei nach dew B.-W. Satz eine Teilfolge auch von $(x^{(k)})$, die bezüglich $\|\cdot\|_{\infty}$ gegen ein $x \in \mathbb{K}^n$ konvergiert.

$$\left|1-\left\|x\right\|_{\infty}\right|=\left|\left\|x^{(k)}\right\|_{\infty}-\left\|x\right\|_{\infty}\right|\leq\left\|x^{(k)}-x\right\|_{\infty}\rightarrow0\Rightarrow\left\|x\right\|_{\infty}=1\Rightarrow x\in S_{1}$$

Anderseits gilt

$$\forall k \in \mathbb{N}: \|x\| \leq \left\|x-x^{(k)}\right\| + \left\|x^{(k)}\right\| \leq M \left\|x-x^{(k)}\right\|_{\infty} + \left\|x^{(k)}\right\| \xrightarrow{k \to \infty} \Rightarrow x = 0$$
 \frac{\frac{1}{2} \text{u} x \in S_1}

Definition 1.11 Eine Menge $M \subset K^n$ heißt kompakt (folgenkompakt), wenn jede beliebige Folge in M eine konvergente Teifolge besitzt, deren Grenzwert ebenfalls in M enthalten ist.

Beispiel 1.12 Mit Hilfe von dem Satz von B.W. folgt, dass alle abgeschlossene Kugeln im \mathbb{R}^n $(K_r(a), a \in$ K^n) kompakt sind. Ferner ist für beschränkte Mangen M der Rand ∂M kompakt. Jede endliche Menge ist auch kompakt.

1.3 Hilberträume

Definition 1.13 Sei $H\mathbb{K}$ Vektorraun. Ein **Skalarprodukt** auf eine Abbildung

$$(\cdot,\cdot):H\times H\to\mathbb{K}$$

mit

1.
$$\forall x, y, z \in H, \lambda \in \mathbb{K} : (z, x + \lambda y) = (z, x) + \lambda(z, y)$$

2.
$$\forall x, y \in H : (x, y) = \overline{(y, x)}$$

3.
$$\forall x \in H : (x, x) > 0 \land (x, x) = 0 \Leftrightarrow x = 0$$

 $(H,(\cdot,\cdot))$ nennt man einen Prähilbertraum.

Bemerkung Für $\mathbb{K} = \mathbb{C}$ ist das Skalarprodukt linar in der zweiten Komponente aber antilinear in der ersten $((\lambda x, y) = \bar{\lambda}(x, y)).$

Lemma 1.14 (Cauchy-Schwarz Ungleichung) Sei $(H, (\cdot, \cdot))$ Prähilbertraum, dann gilt

$$\forall x, y \in H : \left| (x, y) \right|^2 \le (x, x)(y, y)$$

Beweis Da die Ungleichung für y=0 bereits erfüllt ist, können wir ohne Beschränkung der Allgemeiheit annehmen $y \neq 0$. Für ein beliebiges $\alpha \in \mathbb{K}$ gilt

$$0 \leq (x + \alpha y, x + \alpha y) = (x, x) + \bar{\alpha}(y, x) + \alpha(x, y) + \alpha \bar{\alpha}(y, y)$$

Setze nun $\alpha := -(x, y)(y, y)^{-1}$

$$= (x,x) - \overline{(x,y)}(y,y)^{-1} - (x,y)(y,y)^{-1}(x,y) - |(x,y)^{2}|(y,y)^{-1}$$

$$= (x,x) - \underbrace{((y,x)(y,x) + (x,y)(x,y))(y,y)^{-1}}_{>0} - |(x,y)|^{2}(y,y)^{-1}$$

$$\leq (x,x) - |(x,y)|^{2}(y,y)^{-1}$$

$$\Leftrightarrow |(x,y)|^{2} \leq (x,x)(y,y)$$

Korollar 1.15 Sei $(H,(\cdot,\cdot))$ ein Prähilbertraum, dann ist $\|x\|:=\sqrt{(x,x)}$ eine Norm auf H.

Beweis Es ist nur die Dreiecksungleichung zu beweisen, weil der Rest klar ist. Für $x, y \in H$ gilt

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\Re(x, y) \le ||x||^2 + ||y||^2 + 2|(x, y)| \le ||x||^2 + ||y||^2 + 2||x|| ||y||$$

$$= (||x|| + ||y||)^2$$

Definition 1.16 Ein Prähilbertraum $(H, (\cdot, \cdot))$ heißt Hilbertraum, falls $(H, \|\cdot\|)$ mit $\|x\| := \sqrt{(x, x)}$ ein Banachraum ist.

1. $H = \mathbb{R}^n$ versehen mit $\underbrace{(x,y) := \sum_{i=1}^n x_i y_i}_{\text{euklidisches Skalarprodukt}}$ ist ein Hilbertraum Beispiel 1.17

2.
$$H=\mathbb{C}^n$$
 mit $\underbrace{(x,y):=\sum_{i=1}^n \bar{x}_i y_i}_{\text{euklidisches Skalarprodukt}}$ ist ein Hilbertraum

3. Sei $l^2\mathbb{K}:=\{\left(x_k\right)_{k\in\mathbb{N}}\mid x_k\in\mathbb{K}, \forall k\in\mathbb{N}\wedge\sum_{i=1}^\infty \left|x_k\right|^2<\infty\}$ versehen mit $(x,y):=\sum_{i=1}^\infty \left|x_i\right|^2$ $\sum_{i=1}^{\infty} \bar{x}_i y_i$ ist ein Hilbertraum.

$$\sum_{i=1}^{n} \lvert x_{i} \rvert \lvert y_{i} \rvert \leq \left(\sum_{i=1}^{n} \lvert x_{i} \rvert^{2} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} \lvert y_{i} \rvert^{2} \right)^{\frac{1}{2}} \leq \left\| x \right\|_{l^{2}} \left\| y \right\|_{l^{2}} < \infty$$

Lemma 1.18 (Höller-Ungleichung) Für das euklidische Skalarprodukt $(\cdot, \cdot)_2$ gilt für beliebige p, qmit $1 < p, q < \infty$ und $\frac{1}{p} + \frac{1}{q} = 1$ die Ungleichung

$$\forall x,y \in \mathbb{K}^n: \left|\left(x,y\right)_2\right| \leq \left\|x\right\|_p \left\|y\right\|_q, \left\|x\right\|_p:= \left(\sum_{i=1}^n \lvert x_i\rvert^p\right)^{\frac{1}{p}}$$

Darüber hinaus gilt die Ungleichung auch für $p=1, q=\infty$

Lemma 1.19 (Young'sche Ungleichung) Tür $p, q \in \mathbb{R}, 1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1$ gilt

$$\forall x, y \in \mathbb{K} : |(x, y)| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}$$

Lemma 1.20 (Minkowski-Ungleichung) Für ein beliebiges $p \in [1, \infty]$ gilt

$$\forall x,y \in \mathbb{K}^n: \left\|x+y\right\|_p \leq \left\|x\right\|_p + \left\|y\right\|_p$$

Satz 1.21 (Banachscher Fixpunktsatz) Sei (M,d) ein vollständiger, metrischer Raum und f: $M \to M$ ist eine strenge Kontraktion, das heißt

$$\exists 0 < \alpha < 1 \forall x, y \in M : d(f(x), f(y)) < \alpha d(x, y)$$

Dann existiert ein eindeutiger Fixpunkt von f, das heißt es existiert ein eindeutiges $x^* \in M$: $f(x^*) = x^*$

Beweis Existenz:

Wähle ein $x_0 \in M$ beliebig, aber fest und definiere dann $x_1 := f(x_0), x_2 := f(x_1), \dots$ Dann gilt für n < m

$$\begin{split} d(x_n, x_m) &= d(f(x_{n-1}), f(x_{m-1})) < \alpha d(x_{n-1}, x_{m-1}) \\ &= \alpha d(f(x_{n-2}), f(x_{m-2})) < \dots < \alpha^n d(x_0, x_{m-n}) \end{split}$$

Nun gilt aber

$$\begin{split} d(x_0, x_{m-n}) & \leq d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_{m-n-1}, x_{m-n}) \\ & \leq d(x_0, x_1) + \alpha d(x_0, x_1) + \dots + a^{m-n-1} d(x_0, x_1) \\ & = d(x_0, x_1) \sum_{i=0}^{m-n-1} \alpha^i \leq d(x_0, x_1) \sum_{i=0}^{\infty} \alpha^i \\ & = \frac{d(x_0, x_1)}{1 - \alpha} < \infty \\ \Rightarrow d(x_n, x_m) & \leq \frac{\alpha^n}{1 - \alpha} d(x_0, x_1) \end{split}$$

Also ist $(x_k)_{k\in\mathbb{N}}$ Cauchy-Folge. Da (M,d) vollständig ist existiert $x^*\in M$, sodass $x_k\xrightarrow{k\to\infty} x^*$. Zeige, dass x^* Fixpunkt von f ist:

$$\begin{split} 0 \leq d(x^*, f(x^*)) \leq d(x^*, x_k) + d(x_k, f(x^*)) \\ \leq d(x^*, x_k) + \alpha d(x_{k-1}, x^*) \xrightarrow{k \to \infty} 0 \end{split}$$

$$\Rightarrow f(x^*) = x^*$$

Eindeutigkeit: Angenommen $\exists x' \in M, x' \neq x^* : f(x') = x'$:

$$0 < d(x^*, x') = d(f(x^*), f(x')) < \alpha d(x^*, x') \Rightarrow \alpha > 1$$