J. Harner, A. Billings

Linear Relationship:
Regression and
Correlation

Chap. 3 Notes: Linear Relationships: Regression and Correlation

J. Harner A. Billings

Department of Statistics West Virginia University

Stat 211 Fall 2007

Chap. 3 notes: Linear Relationship Regression and Correlation

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots

Sect. 3.2: The Correlation Coefficient

Sect. 3.3: Regression

Sect. 3.4: The Question of Causation

Introduction:

LifeStats J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and

Introduction:

Sect. 3.1: Scatter Plots
Sect. 3.2: The Correlation
Coefficient
Sect. 3.3: Regression

Sect. 3.4: The Quest

Bivariate data:

Bivariate data consists of data for two variables for each individual in the sample.

Example: height and weight.

Example: gender and income.

Scatter Plots:

LifeStats J. Harner, A. Billings

Chap. 3 notes:
Linear Relationship
Regression and
Correlation

Sect. 3.1: Scatter Plots

Sect. 3.2: The Correlation Coefficient

- A scatter plot is a graph of all ordered pairs of numeric bivariate data on a coordinate axis system.
- Each plotted point represents the value of two variables for a single individual.

Example: Students' heights and weights;

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Sect. 3.1: Scatter Plots

Sect. 3.2: The Correlatio

Pearson Correlation Coefficient: r:

Recall: Bivariate data consists of measurements on two variables on each individual.

Example: Height and weight..

Age and Income.

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.2: The Correlation Coefficient

 The Pearson Correlation Coefficient, r, is computed as,

$$r = \frac{SS(XY)}{\sqrt{SS(X) \cdot SS(Y)}}$$

Where,

$$SS(XY) = \sum XY - \frac{(\sum X) \cdot (\sum Y)}{n}$$

$$SS(X) = \sum X^2 - \frac{(\sum X)^2}{n}$$

$$SS(Y) = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

The "SS" is called "Sum of Square".

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.2: The Correlation

Example: Data from 8 randomly selected individuals was collected on "number of hours of TV per day" (X) and "Cholesterol level" (Y).

Compute the Pearson Correlation Coefficient r.

Solution:

Χ	Υ	X ²	Y ²	XY
3.5	215	12.25	46225	752.5
1.5	180	2.25	32400	270.0
2.0	205	4.00	42025	40.0
1.0	175	1.00	30625	175.0
2.0	190	4.00	36100	380.0
2.5	200	6.25	40000	500.0
305	212	9.00	44944	636.0
3.0	220	9.00	48400	660.0
18.5	1597	47.75	320719	3783.5
$\sum X$	$\sum Y$	$\sum X^2$	$\sum Y^2$	$\sum XY$

LifeStats

J. Harner, A. Billings

hap. 3 notes: inear Relationship: egression and orrelation htroduction: eect. 3.1: Scatter Plots

Sect. 3.2: The Correlation Coefficient Sect. 3.3: Regression

ect. 3.3: Regression ect. 3.4: The Question of ausation Now, compute sums of squares:

$$SS(XY) = \sum XY - \frac{(\sum X) \cdot (\sum Y)}{n}$$

$$= 3783.5 - \frac{(18.5) \cdot (1597)}{8}$$

$$= 3783.5 - 3693.06$$

$$= 90.44$$

$$SS(X) = \sum X^2 - \frac{(\sum Y^2)}{n}$$

$$= 47.75 - \frac{18.5^2}{8}$$

$$= 47.75 - 42.78$$

$$= 4.97$$

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.2: The Correlation

J. Harner, A. Billings

Sect 3.2: The Correlation Coefficient

LifeStats

 $SS(Y) = \sum_{n} Y^2 - \frac{(\sum_{n} Y)^2}{n}$ 320719 - 318801.121917.88

Now, plug into formula for r,

$$r = \frac{SS(XY)}{\sqrt{SS(X).SS(Y)}}$$

$$= \frac{90.44}{\sqrt{(4.97).(1917.88)}}$$

$$= \frac{90.44}{97.63}$$

$$= 0.926$$

Interpretation:

- IF we conclude that X and X are correlated (hyp. test), it does not necessarily imply a "Causal relationship".
 - a. A third variable, W, may affect both X and Y.
 - b. Coincidence.
- II. r measures the strength of a linear (straight line) relationship.

LifeStats

J. Harner, A. Billings

Einear Relationship:
Regression and
Correlation
Introduction:
Sect. 3.1: Scatter Plots

Sect. 3.2: The Correlation Coefficient

Sect. 3.4: The Question of Causation

III. Outliers may disproportionately affect the value of r.

$$IV. \quad -1 \leq r \leq 1$$

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

ntroduction:

Sect. 3.2: The Correlation Coefficient

- V. $r \simeq 0$ means that X and Y are uncorrelated.
- VI. $\rm r>0$ (positive correlation) As X increases (decreases) the corresponding value of Y tends to increase (decrease).
- VII. r < 0 (negative correlation)
 As X increases (decreases) the corresponding value of the Y tends to decrease (increase).

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.2: The Correlation

Scatter diagram and Correlation:

strong nonlinear relationship, linear

Figure 3.4 Scatterplots of types of linear relationships.

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots

Sect. 3.2: The Correlation Coefficient

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

ntroduction:

Sect. 3.2: The Correlation Coefficient

> ect. 3.3: Regression ect. 3.4: The Question of ausation

Figure 3.6 Scatterplots illustrating different levels of correlation. In each plot both variables have mean 0 and standard deviation 1.

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Sect. 3.1: Scatter Plots

Sect. 3.2: The Correlation Coefficient

Regression Analysis - Introduction

 If we determine that two variables X and Y are correlated, we can use the value of one variable, X, to "predict" the corresponding value of the other variable, Y.

Example: Use height (X) to predict weight (Y)

Use education level (X) to predict income (Y).

LifeStats

J. Harner, A. Billings

egression and prelation troduction:
ect. 3.1: Scatter Plots

Sect. 3.3: Regression

• We use a "regression equation" to make prediction,

$$y=b_0+b_1X$$

where,

$$b_0 = y - intercept$$

 $b_1 = slope(regressioncoefficient)$

▶ Book uses:¹

$$y = mx + b$$

Figure 3.15 The line y = mx + b.

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots

Sect. 3.3: Regression

Sect. 3.4: The Question of Causation

¹refer to page 157 of the Text Book

Computing a Regression Equation:

 Given a set of bivariate data (X, Y), we can compute b₀ and b₁ as,

$$b_{1} = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{n}}{\sum X^{2} - \frac{(\sum X)^{2}}{n}}$$
$$= \frac{SS(XY)}{SS(X)}$$

and,

$$b_0 = \bar{Y} - b_1 \bar{X}$$

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots Sect. 3.2: The Correlation

Sect. 3.3: Regression

Example: (Contd. from Sect 3.2 notes)

$$X$$
 = hours of TV per day Y = cholesterol level

From Sect. 3.2, we computed

$$SS(XY) = \sum_{n} XY - \frac{(\sum_{n} X)(\sum_{n} Y)}{n}$$

$$= 90.4$$

$$SS(X) = \sum_{n} X^{2} - \frac{(\sum_{n} X)^{2}}{n}$$

$$= 4.97$$

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots
Sect. 3.2: The Correlation

Sect. 3.3: Regression

$$b_1 = \frac{SS(XY)}{SS(X)}$$

$$= \frac{90.44}{4.97}$$

$$= 18.2$$

Next,

$$\bar{X} = \frac{\sum X}{n} = \frac{18.5}{8}$$
= 2.31
 $\bar{Y} = \frac{\sum Y}{n} = \frac{1597}{8}$
= 199.63

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots

Sect. 3.3: Regression

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship Regression and

Introduction:

Sect. 3.1: Scatter Plots Sect. 3.2: The Correlation

Sect. 3.3: Regression

So,

$$b_0 = \bar{Y} - b_1 \bar{X}$$
= 199.63 - (18.2)(2.31)
= 199.63 - 42.04
= 157.59

So our regression equation is,

$$y = b_0 + b_1 X$$

 $y = 157.6 + 18.2 X$

Plotting the regression Line on the scatter Plot:

Example: (Contd.)

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

ntroduction:

Sect. 3.1: Scatter Plots

Sect. 3.3: Regression

Sect. 3.4: The Question of Causation

Sect. 3.3: Regression
Sect. 3.4: The Question of

Notes:

- Regression Line is the "line of best fit" in the the sense that this line is the line which is closest to all data points simultaneously.
- 2. The regression line $y = b_0 + b_1 X$ passes through (\bar{X}, \bar{Y}) .
- 3. Don't predict y values for X's outside of the range of the data.

Predicting values of y:

Example: (Contd.)

Predict the cholesterol level (Y) for a person who watches 2 hours TV a day (X).

For X = 2, the predicted Y is,

$$\hat{Y}$$
 = 157.6 + 18.2 X
 \hat{Y} = 157.6 + 18.2(2)
= 194.0

LifeStats

J. Harner, A. Billings

Sect. 3.3: Regression

Interpretation:

 The predicted y - value is the mean cholesterol level of all persons who watch 2 hours TV a day.

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

ntroduction:

ect. 3.1: Scatter Plots ect. 3.2: The Correlatio

Sect. 3.3: Regression

Residuals:

 For each y - value, we can compute a residuals the difference between the observed y - value and the predicted y - value.

$$residual = y - \hat{y}$$

Example: (Contd.)
For X = 2.2, the observed y = 200 and,

$$\hat{y} = 157.6 + 18.2X$$

= 157.6 + 18.2(2.5)
= 203.1

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship. Regression and Correlation

Introduction:

Sect. 3.2: The Correlatio

Sect. 3.3: Regression

Sect. 3.4: The Question of Causation

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots Sect. 3.2: The Correlatio

Sect. 3.3: Regression

Sect. 3.4: The Question of Causation

Thus, the residual for this observation is,

residual =
$$y - \hat{y}$$

= $200 - 203.1$
= -3.1

Note:

A residual may be positive or negative (or zero)

Interpretation:

 the observed y - value for X = 2.5 is 3.1 units less than the predicted y - value for X = 2.5.

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship: Regression and Correlation

Introduction:

Sect. 3.1: Scatter Plots
Sect. 3.2: The Correlatio

Sect. 3.3: Regression

Causation

LifeStats

J. Harner, A. Billings

Chap. 3 notes: Linear Relationship Regression and Correlation

Introduction:

Sect. 3.2: The Correlation

Sect. 3.3: Regress

Sect. 3.4: The Question of Causation

Read Sect. 3.4 of the Text Book²

²refer to page 187 of the Text Book