

DMA: Groups and friends

Jurij Volčič Institut for Matematiske Fag

Outline

- Binary operations
- Groups, monoids, semigroups
- Homomorphisms, isomorphisms

Reading: KBR 9.1-9.2 and 9.4

Note: No class on Friday!

Binary operations

Def. A binary operation on a set A is an (everywhere defined) function $f: A \times A \rightarrow A$.

Notes:

- A binary operation on A assigns to each ordered pair
 (a,b) ∈ A × A a unique element of A.
- Use symbols such as +, *, \circ , \odot , instead of f.
- Infix-notation: a * b instead of *(a,b).

Examples of binary operations

Def. A binary operation on a set A is an (everywhere defined) function $A \times A \rightarrow A$.

Examples

- + is a binary operation on \mathbb{Z} .
- – is not a binary operation on \mathbb{Z}^+ .
- — is a binary operation on \mathbb{Z} .
- / (division) is not a binary operation on \mathbb{R} .

Properties of binary operations

Def. We say that a binary operation * on a set A is

- commutative if a * b = b * a for all $a, b \in A$
- associative if a*(b*c) = (a*b)*c for all $a,b,c \in A$

Examples

- $(\mathbb{Z}, +)$ is both commutative and associative.
- $(\mathbb{Z}, -)$ is neither commutative nor associative. For example, $5 - (4 - 3) \neq (5 - 4) - 3$

Tables for binary operations

For binary operations, we can represent this table as a grid.

Example:

 $D_6 = \{1,2,3,6\}$ with binary operation \land (GCD).

\wedge	1	2	3	6
1	1	1	1	1
2	1	2	1	2
3	1	1	3	3
6	1	2	3	6

Groups

Def. A group (A, *) consists of a set A and binary operation * on A such that

- **1** (Associativity): The operation * is associative.
- ② (Identity Element): There exists $e \in A$ such that $e * \alpha = \alpha * e = \alpha$ for all $\alpha \in A$
- (Inverse): For each $\alpha \in A$ there exists an $\alpha' \in A$ such that $\alpha * \alpha' = \alpha' * \alpha = e$

Def. If the pair (A, *) satisfies

- (1) then it is called a semigroup;
- (1) and (2) then it is called a monoid.

Examples

Examples

- $(\mathbb{Z}, +)$ is a group. The inverse of $\alpha \in \mathbb{Z}$ is $-\alpha$.
- The set of invertible n × n matrices is a group under the operation of matrix multiplication.
- Is $(\mathbb{N}, +)$ a group?
- Is (N₀, +) a group?
- Is (\mathbb{R},\cdot) a group?
- Is $(\mathbb{R}_{>0},\cdot)$ a group?
- Is (ℤ, −) a group?
- The set of all permutations on {1,...,n} with composition is a group, denoted (S_n, \(\circ\)).

How to check if (A, *) is a semigroup/monoid/group?

Example.
$$(A, *) = (\mathbb{Z}, min(_, _))$$

- Is A closed under *? Yes
- Is * associative? Yes,

$$\begin{aligned} & \text{min}\left(\alpha, \text{min}(b, c)\right) = \text{min}(\alpha, b, c) \\ & = \text{min}\left(\text{min}(\alpha, b), c\right) \end{aligned}$$

- $\Rightarrow (A,*)$ is a semigroup
- Identity element?
- Is (ℤ, min) a monoid/group?

Example: The multiplicative group \mathbb{Z}_5^*

Let
$$\mathbb{Z}_5^* = \{1,2,3,4\}$$
, where \otimes is defined as $x \otimes y = (xy) \mod 5$

Then

$$2 \otimes 2 = 4$$
,
 $2 \otimes 3 = 1$
 $2 \otimes 4 = 3$.

Fill in the table for \otimes

\otimes	1	2	3	4
1				
2				
3				
4				

 (\mathbb{Z}_5^*,\otimes) is a

- semigroup
- monoid (1 is the identity element)
- group?
 - What are the inverse elements?

Very popular examples

For $n \in \mathbb{N}$ let $\mathbb{Z}_n = \{0, \dots, n-1\}$, and \oplus is defined as $x \oplus y = (x+y) \operatorname{mod} n$ Then (\mathbb{Z}_n, \oplus) is a group. Why?

For prime $p \in \mathbb{N}$ let $\mathbb{Z}_p^* = \{1, \dots, p-1\}$, and \otimes is defined as

$$x \otimes y = (xy) \operatorname{mod} p$$

Then $(\mathbb{Z}_p^*, \otimes)$ is a group. Why, and why ony for prime p?

Fermat's little theorem

Thm. If p is prime and α is not a multiple of p, then $\alpha^{p-1} = 1 \mod p.$

In particular, a^{p-2} is the inverse of a in \mathbb{Z}_p^* .

Identity element

Thm. Let (A, *) be a semigroup. There exists at most one identity element in A.

Proof. Let e and e' be two identity elements:

$$e * a = a = a * e$$

 $e' * a = a = a * e'$

for all $\alpha \in A$. In particular,

$$e = e * e' = e'$$

Corollary. In a monoid/group there is a unique identity element.

Inverses (Theorems 9.4.1–4 from KBR)

Let (G, *) be a group.

Thm. Every $\alpha \in G$ has exactly one inverse¹.

Thm. Let $a, b, c \in G$.

- $(a^{-1})^{-1} = a$
- $(a*b)^{-1} = b^{-1}*a^{-1}$

¹We denote the inverse of a with a^{-1} .

Homomorphism

Def. A homomorphism from a semigroup $(G, *_G)$ to a semigroup $(H, *_H)$ is an everywhere defined function $f: G \to H$ such that for all $a, b \in G$

$$f(\alpha *_G b) = f(\alpha) *_H f(b)$$

Example. Let $f: \mathbb{Z} \to \mathbb{Z}_2$ be given by $f(k) = k \mod 2$. The function f is a homomorphism from $(\mathbb{Z}, +)$ to (\mathbb{Z}_2, \oplus) , since for all $k, k' \in \mathbb{Z}$

$$\begin{split} f(k+k') &= (k+k') \, \text{mod} \, 2 \\ &= (k \, \text{mod} \, 2) \oplus (k' \, \text{mod} \, 2) \\ &= f(k) \oplus f(k') \end{split}$$

Isomorphism

Let $(G, *_G)$ and $(H, *_H)$ be semigroups.

Def. We say that $f: G \rightarrow H$ is an isomorphism if

- f is a bijection and
- $\textbf{②} \ f \ \text{is a homomorphism from} \ (G,*_G) \ \text{and} \ (H,*_H)$

Alternatively:

- f is everywhere defined, surjective, and injective.

Idea: Isomorphism between two mathematical structures means that they are "essentially the same".

Examples

• The groups (S_2, \circ) , (\mathbb{Z}_2, \oplus) , $(\mathbb{Z}_3^*, \otimes)$ are isomorphic:

$$\begin{split} &f: S_2 \rightarrow \mathbb{Z}_2, \qquad f(12) = 0 \, \text{mod} \, 2, \ f(21) = 1 \, \text{mod} \, 2 \\ &g: \mathbb{Z}_2 \rightarrow \mathbb{Z}_3^*, \qquad g(i \, \text{mod} \, 2) = 2^i \, \text{mod} \, 3 \end{split}$$

 Groups with the same size are not necessarily isomorphic, for example (Z₆,⊕) and (S₃,∘). Why?

$$(1,2) \circ (1,3) = (1,3,2) \neq (1,2,3) = (1,3) \circ (1,2)$$

• More challenging: if p is prime then (\mathbb{Z}_p^*,\otimes) and $(\mathbb{Z}_{p-1},\oplus)$ are isomorphic

Why do we like permutations?

 (S_n, \circ) is also called the **symmetric group** of degree n.

Thm. For every finite group (G, *) there exists an injective homomorphism

$$f: (G, *) \to (S_{|G|}, \circ).$$

Moral: a finite group can be "realized" with permutations (is a subgroup of the symmetric group)

What did we see today?

- Binary operations
- Group, monoid, and semigroup.
- How to check if (A,*) is a group/monoid/semigroup.
- Isomorphism and homomorphism between two (semi)groups.

The end

It's been a pleasure having you as my students. Best of luck with the rest of your studies!

