2020

COMPUTER SCIENCE — GENERAL

Paper: GE/CC-3
Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

 2×5

- (a) Write down any two characteristics of Von Neumann architecture.
- (b) Compare between SRAM and DRAM.
- (c) An 8 bit register contains the binary value 10011100. What is the register value after an arithmetic shift left?
- (d) What is the significance of high-impedance state?
- (e) Define Virtual Memory.
- (f) State the role of stack pointer.
- 2. (a) What do you mean by Instruction set completeness?
 - (b) Evaluate the following arithmetic expression:

$$X = (A + B - C + D) / (E - F)$$
 using zero address instruction format.

5+5

- 3. (a) A computer employs RAM chips of 256×8 and ROM chips of 1024×8. The computer system needs 2K bytes of RAM, 4K bytes of ROM, then how many RAM and ROM chips are needed? Draw a memory-address map table (address range in hexadecimal) for the system.
 - (b) Define hit ratio of cache memory.

[(2+2)+4]+2

- 4. (a) Write down the characteristics of Hardwired control unit and Microprogrammed control unit.
 - (b) Write down the significance of Priority Interrupt.
 - (c) State briefly any one bus arbitration technique.

 $(2\frac{1}{2}+2\frac{1}{2})+3+2$

- **5.** (a) Describe Booth's Multiplication algorithm.
 - (b) Apply this algorithm to multiply $(-7) \times (-3)$.

5+5

T(3rd Sm.)-Computer ScG/(GE/CC-3)/CBCS (2)			
6.	(a)	Explain the set associative cache mapping technique with the help of an example.	
	(b)	Write short notes on –	
		(i) register indirect addressing	
		(ii) immediate addressing.	6+(2+2)
7.	(a)	Explain the functions of PLA.	
	(b)	Compare between memory mapped I/O and I/O mapped I/O.	5+5
8.	(a)	Explain the concept of page fault in a virtual memory system.	
	(b)	Describe the working principle of VDU.	

3+5+2

(c) What is the importance of Program status word?