Movimento de Projéteis

Universidade de Aveiro

Ana Santos, Joana Santiago, Mafalda França

Movimento de Projéteis

Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

Ana Santos, Joana Santiago, Mafalda França 120039, 119705, 113808

24 de outubro 2024

Conteúdo

1	Sumário	1
2	Introdução do Relatório	2
3	Introdução Teórica	3
4	Procedimento Experimental 4.1 Parte A 4.2 Parte B 4.3 Parte C	4 4 5 6
5	Apresentação de Resultados 5.1 Parte A 5.1.1 Discussão 5.2 Parte B 5.2.1 Discussão 5.3 Parte C 5.3.1 Discussão	7 7 8 8 9 9
6	Conclusão	11
7	Bibliografia	12

Sumário

Este relatório descreve a análise experimental do movimento de projéteis, com foco na determinação da velocidade inicial, distância percorrida e ângulos de lançamento. Foram calculadas as incertezas associadas a cada parâmetro, como a distância e o tempo, resultando numa velocidade média de $2.322~\mathrm{m/s}$ com uma incerteza de $0.061~\mathrm{m/s}$ (2.624%). Estes valores indicam uma boa precisão e exatidão dos resultados obtidos, com baixos desvios padrão e margens de erro controladas. O objetivo principal do trabalho era verificar a concordância entre os resultados experimentais e as previsões teóricas do movimento de projéteis, além de calcular variáveis relacionadas com o pêndulo balístico. Todos os objetivos foram atingidos de acordo com as expectativas, e as discrepâncias observadas foram minimizadas através da repetição dos procedimentos.

Introdução do Relatório

Nesta atividade experimental, conseguimos colocar em prática os conhecimentos adquiridos nas aulas teóricas. Como na T1, onde aprendemos no capítulo 1 de cinemática, o movimento dos projéteis e o movimento curvilínio, retilíneo do projétil.

Introdução Teórica

As leis a verificar experimentalmente são as seguintes: Lei de movimento dos projéteis:

- $x = x_0 + v_0 t cos(\theta)$
- $y = y_0 + v_0 t sin(\theta) \frac{1}{2}gt^2$
- Significado físico dos símbolos:
 - − g: acelaração gravítica
 - -t: tempo
 - $-\ x_0$ e y_0 : posição inicial em x e y, respetivamente
 - $-\theta$: ângulo de lançamento

Ângulo correspondente ao alcance máximo:

- $\bullet \ \theta_{amax} = \arctan \frac{1}{\sqrt{1 + \frac{2g(y_i y_f)}{v_0^2}}}$
- Significado físico dos símbolos:
 - − g: acelaração gravítica
 - $-y_i$ e y_f : alturas inicial e final, respetivamente
 - $-v_0$: velocidade inicial

Relação entre a velocidade inicial e a altura num Pêndulo Balístico:

- $v_0 = (\frac{m+M}{m})\sqrt{2gh}$
 - -M: massa do pêndulo
 - m: massa da esfera de metal
 - g: acelaração gravítica
 - h: altura máxima atingida pelo pêndulo

Procedimento Experimental

4.1 Parte A

Figura 4.1: Esquema de Montagem da Parte A

Legenda:

- 1: Lançador de Projéteis
- 2: Base de Fixação para o Lançador de Projéteis
- 3: Sensor de passagem (controla o início da contagem do tempo)
- 4: Sensor de passagem (controla o fim da contagem do tempo)
- 5: Sistema de controlo dos sensores de passagem

Procedimento:

- 1: Efetuar a montagem de acordo com o esquema de montagem.
- 2: Medir a distância (s) entre os sensores.
- 3: Carregar o Lançador de Projéteis na posição de tiro curto ("SHORT RANGE").
- 4: Colocar o sistema de controlo na posição de "TWO GATES" e inicar o sistema.
- 5: Disparar o Lançador de Projéteis puxando o fio do disparador verticalmente.
- 6: Registar o tempo indicado pelo sistema de controlo.
- $\bullet\,$ 5: Repetir os passos de 1 a 6 mais 2 vezes.

4.2 Parte B

Figura 4.2: Esquema de Montagem da Parte B

Legenda:

- 1: Lançador de Projéteis
- 2: Base de Fixação para o Lançador de Projéteis
- 3: Alvo

- 1: Efetuar a montagem de acordo com o esquema, a fazer um ângulo de $30^{\underline{o}}$ com a horizontal.
- 2: Colocar o alvo a uma distância tal que a esfera caia sobre a sua superfície.
- 3: Carregar o Lançador de Projéteis com a esfera na posição "SHORT RANGE".
- 4: Disparar o Lançador de Projéteis. Registar o alcance, x, e o ângulo de lançamento, θ. Repetir mais 2 vezes.
- 5: Repetir os passos 1 a 4 para os ângulos 34° , 38° , 40° , 43°
- ullet 6: Medir a altura inicial, y_0 , a que a esfera foi lançada em relação à bancada.

4.3 Parte C

Figura 4.3: Esquema de Montagem da Parte C

- 1: Medir as massas do projétil, m, e do pêndulo, M.
- $\bullet\,$ 2: Medir o comprimento do pêndulo, I.
- 3: Carregar o Lançador de Projéteis na posição "SHORT RANGE".
- 4: Efetuar um disparo e medir o ângulo máximo α descrito pelo pêndulo.
- 5: Repetir o passo anterior mais 4 vezes.

Apresentação de Resultados

5.1 Parte A

Distância						
L ΔL média desvio incerteza						
mm	mm	mm	mm	mm		
103	1		0			
103	1	103	0	1		
103	1		0			

Figura 5.1: Resultados da distância da Parte A

Tempo						
t	Δt	média t	desvio	incerteza t		
S	S	S	S	S		
0.0438	1.00E-04		0.000566667			
0.0442	1.00E-04	0.044366667	0.000166667 7.33E			
0.0451	1.00E-04		0.000733333			

Figura 5.2: Resultados do tempo da Parte A

Velocidade					
V	Δv / v				
m/s	%				
2.322	0.061	2.624%			

Figura 5.3: Resultados da velocidade da Parte A

5.1.1 Discussão

Com base na distância e no tempo (L e t, respetivamente), calculámos a velocidade inicial através da seguinte formula:

•
$$v_i = \frac{L}{t}$$

A maior fonte de erro é a falta de consistência da força da mola e, também, a pessoa que dispara, disparar de maneiras diferentes para cada tentativa. Para melhorar o resultado obtido, um maior número de repetições da experiência, leva a uma maior precisão dos resultados.

5.2 Parte B

Ângulo de Tiro (º)	30	34	38	40.5	43
	757	760	752	748	734
Alcance (mm)	647	767	755	742	730
	662	754	755	744	738
Média (mm)	688.6667	760.3333	754.0000	744.6667	734.0000

Figura 5.4: Resultados do alcance da Parte B

Altura ou y (mm)	260	260	261	262	264
^θ máx Teórico	35.60				
⁶ máx Experimental	37.603				
Média y (mm)	0.2614				

Figura 5.5: Resultados da altura(y), O ângulo máximo Teórico e Experimental da Parte B

Figura 5.6: Gráfico da função polinomial do alcance em função do ângulo da Parte B

5.2.1 Discussão

Depois de calcular a média do alcance de cada ângulo, fomos capazes de calcular o melhor ângulo de lançamento teórico através da seguinte fórmula:

$$\bullet \ \arctan \frac{1}{\sqrt{1+\frac{2g(y_i-y_f)}{v_0^2}}}$$

Obtendo como valor do ângulo teórico, 35.60° . Comparado com o valor do ângulo experimental (37.603°), obtemos umma precisão de 94.4%. Como a nossa precisão foi elevada, os resultados obtidos não fugiram muito dos esperados.

5.3 Parte C

I (comprimento do pêndulo)	M (massa do pêndulo)	m (massa da bola)	Ângulo max	Ângulo medio	Incerteza Ângulo	h	Δh
m	kg	kg	0	0	0	m	m
			17				
			16.5				
0.252	0.265	0.06	16.8	16.6400	0.25	0.0106	0.0007
			16.6				
			16.3				

Figura 5.7: Resultados dos ângulos da Parte C

V	Δν	Erro relativo
m/s	m/s	%
2.4640	0.1218	4.94%

Figura 5.8: Resultados da velocidade da Parte C

5.3.1 Discussão

Depois de acabar o procedimento experimental da Parte C, registámos o ângulo a que o pêndulo chegou e calculámos os seguintes valores, com as respetivas fórmulas:

- $h = I I\cos(\theta)$
- $\Delta h = |1 \cos(\theta)| * 0.001 + |I\sin(\theta) * 0.5|$
- $v = (\frac{m+M}{m})\sqrt{2gh}$

A maior fonte de erro é a falta de consistência da força da mola. Para além disso, a pessoa que dispara, disparar de maneiras diferentes para cada tentativa. Também o atrito existente no pêndulo com o suporte pode ter afetado o resultado, bem como a incerteza dos intrumentos de medição utilizados. Para melhorar o resultado obtido, um maior número de repetições da experiência, leva a uma maior precisão dos resultados.

A velocidade inicial da Parte C (2.4640 m/s), comparada com a da Parte A (2.322 m/s) foi semelhante, apenas com uma diferença de 0.142 m/s.

O erro relativo foi de 4.94%, por isso, como é inferior a 5%, não houve uma discrepância muito grande entre os resultados teóricos e experimentais.

Conclusão

Os resultados experimentais obtidos confirmam, com uma margem de erro aceitável, as previsões teóricas do movimento de projéteis. No que toca à velocidade calculada, a incerteza média foi de 2.624%, o que demonstra uma boa precisão experimental. Além disso, o ângulo de lançamento experimentalmente obtido apresentou um desvio mínimo comparado com o valor teórico. Para o pêndulo balístico, o erro relativo na velocidade foi de 4.94%, o que se enquadra dentro das expectativas. De modo geral, os objetivos do trabalho foram atingidos, com a obtenção de resultados coerentes com as previsões teóricas. As pequenas discrepâncias observadas podem ser atribuídas a fatores externos durante as medições, e foram mitigadas tanto quanto possível através da repetição dos procedimentos.

Bibliografia

Durante a realização do trabalho, utilizámos os documentos "Guião de análise de dados" e "T1.1 Movimento de projéteis 2024/2025", disponibilizados pelos professores na plataforma digital elearning, acessível em https://elearning.ua.pt/.