Dendron: a simple library to assess stability of clustering patterns on HCA

Eugenio J. Llanos B. Wilmer Leal J.

ellanos@sciocorp.org

Universität Leipzig Max Planck Institut für Mathematik in den Naturwissenschaften Corporación SCIO

October 11, 2019

- 2. Ties in proximity
- 3. Perturbations
- 4. Dendron

- Ties in proximity
- Perturbations
- 4. Dendror

Clustering What is clustering?

Clustering is a frequently used technique of multivariate analysis that divides a dataset into groups that contain similar objects, while dissimilar objects fall into different groups. Generally, the aim is to relate similarity on attributes to similarity on behavior.

HCA Definition

In hierarchical clustering the input is a set X and the output is a nested collection of partitions $D_X(\delta)$, $\delta \geq 0$ (resolution parameter). For a given D_X , $x \sim x' \iff x, x' \in D_X$. If $x \sim x'$ at a given value δ_0 , then $x \sim x'$ for all $\delta \geq \delta_0$.

HCA in Python scipy.cluster.hierarchy

Package *scipy.cluster* offers the module *hierarchy*, which performs hierarchical clustering form a data set returning a *linkage matrix*. Such matrix can be transformed into a tree like structure (to_tree). The algorithm uses a data structure called a *heap* to store distances.

Dendrogram might be plotted using hierarchy.dendrogram().

- 2. Ties in proximity
- 3. Perturbations
- 4. Dendror

What are ties?

We don't have just one dendrogram

Ties in proximity Our implementation

```
def hcluster (vec,dmatrix):
    dist = find_min_dist(vec,dmatrix)
    res=[]
    if len(vec) == 2: return dist
    else:
        if len(dist) == 1:
            return hcluster(make_couple(vec,dist[0]),dmatrix)
        else:
            for i in range(len(dist)):
                nt = hcluster(make couple(vec,dist[i]),dmatrix)
                res += nt
            return res
```

Equidistance Felsenstein number

The extreme case when d(x,y) = 0 when x = y and d(x,y) = 1 whenever $x \neq y$ the number of dendrogram is given by the number of Felsenstein:

$$F(n) = \frac{(2n-3)!}{2^{n-2}(n-2)!} \tag{1}$$

Frequency of clusters Contrast functions

Frequency of clusters Real data

- 2. Ties in proximity
- 3. Perturbations
- 4. Dendror

Random Noise We don't have just one dendrogram

Adding random noise Testing groups

- 2. Ties in proximity
- 3. Perturbations
- 4. Dendron

Our implementation Main ideas

- Object Oriented approach.
- Recursive functions (clarity).
- Sets are represented as bit vectors.
- Graphs are represented as tuples.

Dendron What can be done using dendron

- Calculate all dendrograms taking into account ties in proximity.
- Get one random dendrogram from ties in proximity.
- Add random noise to objects and perform an HCA.
- Calculate frequency of patterns in a given set of replicas using four contrast functions.
- Calculate frequency of all patterns on a set of replicas.
- Convert dendrograms into linkage matrix format to plot them with scipy.