

Aprendizado de Máquina Aula 5.1 - Tuning de hyperparâmetros

Adriano Rivolli

rivolli@utfpr.edu.br

Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação

Conteúdo

- 1 Visão Geral
- 2 Abordagens
- 3 Metodologia

>

Visão Geral

Por que fazer tuning?

- Para melhorar o desempenho em tarefas específicas
 - Hiperparâmetros são configurações externas que afetam na escolha do melhor modelo
 - Alguns algoritmos são mais sensíveis as escolhas dos hyperparâmetros
- Diferentes conjuntos de dados requerem diferentes configurações
- A técnica de tentativa e erro é laboriosa e pouco precisa

Abordagens de Tuning

- Busca aleatória (Random search)
- Busca em grade (*Grid search*)
- Otimizações
 - Grdient-based optization
 - Bayesian Optimization
 - Meta-heurística

Dicas gerais

- Função objetivo
 - Escolha uma ou múltiplas métricas para otimizar
- Amplie o espaço de busca
 - ► Considere a avaliação de todo os pipeline
- Desenvolvimento e avaliação
 - Separe o conjunto de validação e de teste
- Paralelize as tarefas
 - Poupe tempo
- Previna-se das falhas
 - Şalve resultados intermediários

×

Abordagens

Busca aleatória

- Consiste na busca aleatória dos valores dos hyperparâmetros
- Requer que a especificação do espaço de busca
- Consiste em uma abordagem exploratória e não sistemática
- O número de modelos que serão avaliados é definido pelo usuário

Busca em grade

- Consiste em especificar uma grade de valores dos hyperparâmetros que serão analisados
- A quantidade de modelos avaliados é dado pela multiplicação dos números de valores considerado na grade
 - ightharpoonup C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
 - ightharpoonup Gamma = [0.01, 0.1, 1, 10, 100]
 - N. Modelos = 7 * 3 = 35
- Abordagem sistemática que avalia todas as combinações
 - Mais custosa computacionalmente

Exemplo da busca em grade

- \blacksquare C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
- \blacksquare Gamma = [0.01, 0.1, 1, 10, 100]
 - ightharpoonup C = 0.001, Gamma = 0.01
 - ightharpoonup C = 0.001, Gamma = 0.1
 - ightharpoonup C = 0.001, Gamma = 1
 - ightharpoonup C = 0.001, Gamma = 10
 - ightharpoonup C = 0.001, Gamma = 100
 - ightharpoonup C = 0.01, Gamma = 0.01

 - ► C=1000, Gamma = 100

×

Múltiplas grades

- Alguns hyperparâmetros são condicionais a outros
- Neste caso, múltiplas grades devem ser combinadas
- Exemplo:
 - No SVM algumas funções de kernels podem ter hyperparâmetros específicos
 - ▶ Ao combinar diferentes kernels, faz sentido testar valores diferentes para cada

Comparação: Grid x Random

Fonte: Bergstra, J., Bengio, Y. 2012. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research.

Outras abordagens

- Utilizam resultados das interações prévias para escolher os próximos valores candidatos
- Em alguns casos, isso impede a possibilidade de paralelismo
- Normalmente o processo para em um critério de convergência
- Cada abordagem usa uma forma distinta de explorar o caminho a ser percorrido

Metodologia

Processo de validação

- Treino, validação e teste
- Validação cruzada aninhada

Treino, validação e teste

- O conjunto de **treino** é utilizado para o treinamento
 - ▶ Um modelo para cada combinação dos hyperparâmetros
- O conjunto de validação é utilizado para avaliar os modelos
 - O melhor modelo é escolhido a partir desta avaliação
 - Modelo final:
 - Fazer um comitê com os X melhores modelos
 - Treinar um novo modelo com todos os dados
- O conjunto de **teste** é utilizado para avaliar o modelo final

Validação cruzada aninhada

- Para cada partição de treinamento, uma nova validação cruzada é usada para encontrar os valores dos hyperparâmetros
 - outer-loop é a validação cruzada externa, é utilizada para avaliar o modelo final
 - inner-loop é a validação cruzada interna, é utilizada para a escolha dos valores dos hyperparâmetros

Validação cruzada aninhada (ilustração)

Fonte: https://i.stack.imgur.com/wB9Zr.png

Modelo final

- O modelo relativo ao resultado da melhor partição
- Comitê com todos as partições
- Induzir um modelo com todos os dados usando os melhores valores dos hyperparâmetros