CSE 326: Data Structures Disjoint Set Union/Find (part 2)

Brian Curless Spring 2008

Announcements (5/21/08)

- Homework due beginning of class on Friday.
- Reading for this lecture: Chapter 8.

2

Decision Tree

The leaves contain all the possible orderings of a, b, c.

Alternate Explanation of the Comparison-based Sorting Bound

At each decision point, one child has $\leq \frac{1}{2}$ of the options remaining, the other has $\geq \frac{1}{2}$ remaining.

Worst case: we always end up with $\geq \frac{1}{2}$ remaining.

Best outcome, in the worst case: we always end up with exactly ½ remaining.

Thus, in the worst case, the best we can hope for is halving the space *d* times (with *d* comparisons), until we have an answer, i.e., until the space is reduced to size = 1.

The space starts at N! in size, and halving d times means multiplying by $1/2^d$, giving us a lower bound on the worst case:

$$\frac{N!}{2^d} = 1 \implies N! = 2^d \implies d = \log_2(N!) \in \Omega(N \log N)$$

Implementation: Take 1

Approach:

- Each set is a doubly-linked list (with pointer to last element).
- Store set name with object.

Find: get set name of object

– Worst case complexity?

Union: put one list on the end of the other, update set names of objects to be all the same

– Worst case complexity?

Implementation: Take 2

Approach:

- Each set is a doubly-linked list (with pointer to last element).
- · Front of list is set identifier.

Find: traverse linked list until reaching the front

– Worst case complexity?

Union: put one list on the end of the other

- Worst case complexity?

Union/Find Trade-off

- Known result:
 - Find and Union cannot both be done in worstcase O(1) time with any data structure.
- We will instead aim for good amortized complexity.
- For *m* operations on *n* elements:
 - Target complexity: O(m) i.e. O(1) amortized

Tree-based Approach

We'll build on the "fast union" approach (linked list, with head node as set name, no set names explicitly stored in nodes).

Improvements:

- Instead of linked lists, use a forest of trees (one tree per set).
- Root of each tree is the set name.
- · Allow large fanout. Why is this good?

6

7

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an **up-tree**.

Initial state

Intermediate state

3

Roots are the names of each set.

Find Operation

Find(x) follow x to the root and return the root.

Find(6) = 7

10

Union Operation

Union(i, j) - assuming i and j roots, point i to j.

Simple Implementation

Array of indices

Up[x] = -1 means x is a root.

Implementation

```
void Union(int x, int y) {
  up[y] = x;
}
```

```
int Find(int x) {
  while(up[x] >= 0) {
    x = up[x];
  }
  return x;
}
```

runtime for Union:

runtime for Find:

Amortized complexity is no better.

13

A Bad Case

14

Two Big Improvements

Can we do better? Yes!

1. Union-by-size

• Improve Union so that *Find* only takes worst case time of $\Theta(\log n)$.

2. Path compression

Improve Find so that, with Union-by-size,
 Find takes amortized time of almost Θ(1).

Union-by-Size

Union-by-size

 Always point the smaller tree to the root of the larger tree

S-Union(1,7)

٠,

Example Again

Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2^h.
- Proof by induction
 - Base case: h = 0. The up-tree has one node, $2^0 = 1$
 - Inductive hypothesis: Assume true for h-1
 - Inductive step: Then true for *h*.
 - Observation: tree gets taller only as a result of a union.

18

Analysis of Union-by-Size

 What is worst case complexity of Find(x) in an up-tree forest of n nodes?

Worst Case for Union-by-Size

n/2 Unions-by-size

n/4 Unions-by-size

• (Amortized complexity is no better.)

Example of Worst Cast (cont')

After n - 1 = n/2 + n/4 + ... + 1 Unions-by-size

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

Array Implementation

Can store separate size array:

	1	2	3	4	5	6	7
up	-1	1	-1	7	7	5	-1
size	2		1				4

21

Elegant Array Implementation

Better, store sizes in the up array:

Negative up-values correspond to sizes of roots.

Code for Union-by-Size

```
S-Union(i,j){
    // Collect sizes
    si = -up[i];
    sj = -up[j];

// verify i and j are roots
    assert(si >=0 && sj >=0)
    // point smaller sized tree to
    // root of larger, update size
    if (si < sj) {
        up[i] = j;
        up[j] = -(si + sj);
    else {
        up[i] = i;
        up[i] = -(si + sj);
    }
}</pre>
```

Path Compression

- To improve the amortized complexity, we'll borrow an idea from splay trees:
 - When going up the tree, *improve nodes on the path*!
- On a Find operation point all the nodes on the search path directly to the root. This is called "path compression."

Self-Adjustment Works

26

Your turn

Draw the result of Find(e):

27

Code for Path Compression Find

```
PC-Find(i) {
    j = i;

    //find root
    while (up[j] >= 0) {
        j = up[j];
        root = j;

    //compress path
    if (i != root) {
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
            parent = up[parent];
        }
    }
    return(root)
}
```

Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...
 - …a single Union-by-size is:
 - …a single PC-Find is:
- Time complexity for m ≥ n operations on n elements has been shown to be O(m log* n).
 [See Weiss for proof.]
 - Amortized complexity is then O(log* n)
 - What is log* ?

29

log* n

log* *n* = number of times you need to apply log to bring value down to at most 1

```
\log^* 2 = 1

\log^* 4 = \log^* 2^2 = 2

\log^* 16 = \log^* 2^{2^2} = 3 (log log log 16 = 1)

\log^* 65536 = \log^* 2^{2^2^2} = 4 (log log log 65536 = 1)

\log^* 2^{65536} = \dots \approx \log^* (2 \times 10^{19,728}) = 5
```

 $\log * n \le 5$ for all reasonable n.

30

The Tight Bound

In fact, Tarjan showed the time complexity for $m \ge n$ operations on n elements is:

 $\Theta(m \alpha(m, n))$

Amortized complexity is then $\Theta(\alpha(m, n))$.

What is $\alpha(m, n)$?

- Inverse of Ackermann's function.
- For reasonable values of *m*, *n*, grows even slower than log * *n*. So, it's even "more constant."

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!