The de Jongh property for bounded CZF set theory

TULIPS – The Utrecht Logic in Progress Series

Robert Passmann March 5, 2019

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- Heyting formalised the rules of reasoning behind intuitionistic mathematics as intuitionistic logic.
- Intuitionistic logic is a subsystem of classical logic.
- Thus allows to study intuitionistic systems that do not contradict classical mathematics/systems.

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- Heyting formalised the rules of reasoning behind intuitionistic mathematics as intuitionistic logic.
- Intuitionistic logic is a subsystem of classical logic.
- Thus allows to study intuitionistic systems that do not contradict classical mathematics/systems.

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- **Heyting** formalised the rules of reasoning behind intuitionistic mathematics as *intuitionistic logic*.
- Intuitionistic logic is a subsystem of classical logic.
- Thus allows to study intuitionistic systems that do not contradict classical mathematics/systems.

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- **Heyting** formalised the rules of reasoning behind intuitionistic mathematics as *intuitionistic logic*.
- · Intuitionistic logic is a subsystem of classical logic.
- Thus allows to study intuitionistic systems that do not contradict classical mathematics/systems.

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- **Heyting** formalised the rules of reasoning behind intuitionistic mathematics as *intuitionistic logic*.
- Intuitionistic logic is a subsystem of classical logic.
- Thus allows to study intuitionistic systems that do not contradict classical mathematics/systems.

ZF(C)

ZF(C) satisfies classical logic

ZF(C) satisfies classical logic

U\

IZF

ZF(C) satisfies classical logic

U

IZF impredicative, high proof-theoretic strength

```
ZF(C) satisfies classical logic

U↓

IZF impredicative, high proof-theoretic strength

U↓

CZF
```

ZF(C) satisfies classical logic
 U∤
 IZF impredicative, high proof-theoretic strength
 U∤
 CZF predicative, low proof-theoretic strength

```
ZF(C) satisfies classical logic
  1
 17F
        impredicative, high proof-theoretic strength
  1
 C7F
        predicative, low proof-theoretic strength
  1
```

Constructive set theory: axioms

- Extensionality
- Pairing
- Union
- Empty set
- Infinity
- Bounded separation schema
- Strong collection schema
- · Subset collection schema
- ←-induction

Motivation: de Jongh's theorem

Theorem (de Jongh, 1970)

The propositional logic **L**(HA) of Heyting arithmetic HA is intuitionistic propositional logic **IPC**.

Or, equivalently, we have for every propositional formula φ : IPC $\vdash \varphi$ if and only if HA $\vdash \varphi^{\sigma}$ for every substitution σ

Motivation: de Jongh's theorem

Theorem (de Jongh, 1970)

The propositional logic **L**(HA) of Heyting arithmetic HA is intuitionistic propositional logic **IPC**.

Or, equivalently, we have for every propositional formula φ : $\mathbf{IPC} \vdash \varphi \text{ if and only if HA} \vdash \varphi^{\sigma} \text{ for every substitution } \sigma.$

Propositional logics of theories

Definition

Let T be a theory in intuitionistic predicate logic, formulated in a language \mathcal{L} . We define the *propositional logic of* T:

$$\mathbf{L}(\mathsf{T}) = \{ \varphi \, | \, \mathsf{T} \vdash \varphi^{\sigma} \text{ for all } \sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}} \}$$

Г

We can now restate de Jongh's theorem...

Theorem (de Jongh, 1970)

L(HA) = IPC

...and easily generalise this property...

Definition

A theory T has the de Jongh property if L(T) = IPC

We can now restate de Jongh's theorem...

Theorem (de Jongh, 1970)

$$L(HA) = IPC$$

...and easily generalise this property...

Definition

A theory T has the de Jongh property if L(T) = IPC.

...even further:

Given an intermediate logic J (i.e., IPC \subseteq J \subseteq CPC), consider the closure T(J) of T under J. We then say:

Definition

T has the de Jongh property with respect to J if L(T(J)) = J.

Theorem (de Jongh, Verbrugge, Visser, 2010)

HA has the de Jongh property with respect to every intermediate logic that has the finite frame property.

...even further:

Given an intermediate logic J (i.e., IPC \subseteq J \subseteq CPC), consider the closure T(J) of T under J. We then say:

Definition

T has the de Jongh property with respect to J if L(T(J)) = J.

Theorem (de Jongh, Verbrugge, Visser, 2010)

HA has the de Jongh property with respect to every intermediate logic that has the finite frame property.

...even further:

Given an intermediate logic J (i.e., IPC \subseteq J \subseteq CPC), consider the closure T(J) of T under J. We then say:

Definition

T has the de Jongh property with respect to J if L(T(J)) = J.

Theorem (de Jongh, Verbrugge, Visser, 2010)

HA has the de Jongh property with respect to every intermediate logic that has the finite frame property.

...even further:

Given an intermediate logic J (i.e., IPC \subseteq J \subseteq CPC), consider the closure T(J) of T under J. We then say:

Definition

T has the de Jongh property with respect to J if L(T(J)) = J.

Theorem (de Jongh, Verbrugge, Visser, 2010)

HA has the de Jongh property with respect to every intermediate logic that has the finite frame property.

The de Jongh property for set theories: main result

For this work, we restrict our attention to BCZF, i.e., CZF with the collection schemes restricted to bounded formulas.

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

So let's prove this.

The de Jongh property for set theories: main result

For this work, we restrict our attention to BCZF, i.e., CZF with the collection schemes restricted to bounded formulas.

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

So let's prove this.

The de Jongh property for set theories: main result

For this work, we restrict our attention to BCZF, i.e., CZF with the collection schemes restricted to bounded formulas.

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

So let's prove this.

We will use a construction of Kripke models for BCZF due to Iemhoff.

- 1. Start with a Kripke frame (K, \leq) (i.e., partial order),
- 2. construct a sound assignment $\mathcal{M}: K \to V$ of models of ZF set theory such that $\mathcal{M}_v \subseteq \mathcal{M}_w$ for all $v \le w$, and this inclusion is an \in -homomorphism,
- 3. use this sound assignment as the domains of the Kripke model $K(\mathcal{M})$.

We will use a construction of Kripke models for BCZF due to Iemhoff.

- 1. Start with a Kripke frame (K, \leq) (i.e., partial order),
- 2. construct a sound assignment $\mathcal{M}: K \to V$ of models of ZF set theory such that $\mathcal{M}_v \subseteq \mathcal{M}_w$ for all $v \le w$, and this inclusion is an \in -homomorphism,
- 3. use this sound assignment as the domains of the Kripke model $K(\mathcal{M})$.

We will use a construction of Kripke models for BCZF due to Iemhoff.

- 1. Start with a Kripke frame (K, \leq) (i.e., partial order),
- 2. construct a sound assignment $\mathcal{M}: K \to V$ of models of ZF set theory such that $\mathcal{M}_v \subseteq \mathcal{M}_w$ for all $v \le w$, and this inclusion is an \in -homomorphism,
- 3. use this sound assignment as the domains of the Kripke model $K(\mathcal{M})$.

We will use a construction of Kripke models for BCZF due to Iemhoff.

- 1. Start with a Kripke frame (K, \leq) (i.e., partial order),
- 2. construct a sound assignment $\mathcal{M}: K \to V$ of models of ZF set theory such that $\mathcal{M}_v \subseteq \mathcal{M}_w$ for all $v \le w$, and this inclusion is an \in -homomorphism,
- 3. use this sound assignment as the domains of the Kripke model $K(\mathcal{M})$.

We will use a construction of Kripke models for BCZF due to Iemhoff.

- 1. Start with a Kripke frame (K, \leq) (i.e., partial order),
- 2. construct a sound assignment $\mathcal{M}: K \to V$ of models of ZF set theory such that $\mathcal{M}_v \subseteq \mathcal{M}_w$ for all $v \le w$, and this inclusion is an \in -homomorphism,
- 3. use this sound assignment as the domains of the Kripke model $K(\mathcal{M})$.

Models for BCZF: A sketch

Models for BCZF: A sketch

Models for BCZF: Forcing

We then define the forcing relation as expected:

- $K(\mathcal{M})$, $v \Vdash \varphi \land \psi$ iff $K(\mathcal{M})$, $v \Vdash \varphi$ and $K(\mathcal{M})$, $v \Vdash \psi$,
- $K(\mathcal{M})$, $v \Vdash \varphi \lor \psi$ iff $K(\mathcal{M})$, $v \Vdash \varphi$ or $K(\mathcal{M})$, $v \Vdash \psi$,
- $K(\mathcal{M})$, $v \Vdash \varphi \to \psi$ iff for all $w \ge v$, $K(\mathcal{M})$, $w \Vdash \varphi$ implies $K(\mathcal{M})$, $w \Vdash \psi$,
- $K(\mathcal{M}), v \Vdash \bot$ holds never.
- $K(\mathcal{M}), v \Vdash a \in b \text{ iff } \mathcal{M}_v \models a \in b$,
- $K(\mathcal{M}), v \Vdash a = b \text{ iff } a = b,$
- $K(\mathcal{M}), v \Vdash \exists x \varphi(x, \bar{y})$ iff there is some $a \in D_v$ with $K(\mathcal{M}), v \Vdash \varphi(a, \bar{y})$,
- $K(\mathcal{M}), v \Vdash \forall x \varphi(x, \overline{y})$ iff for all $w \ge v$ and $a \in D_w$ we have $K(\mathcal{M}), w \Vdash \varphi(a, \overline{y})$.

Theorem (lemhoff, 2010)

For every Kripke frame K, and every sound assignment \mathcal{M} , we have $K(\mathcal{M}) \Vdash BCZF$.

Models for BCZF: Forcing

We then define the forcing relation as expected:

- $K(\mathcal{M})$, $v \Vdash \varphi \land \psi$ iff $K(\mathcal{M})$, $v \Vdash \varphi$ and $K(\mathcal{M})$, $v \Vdash \psi$,
- $K(\mathcal{M})$, $v \Vdash \varphi \lor \psi$ iff $K(\mathcal{M})$, $v \Vdash \varphi$ or $K(\mathcal{M})$, $v \Vdash \psi$,
- $K(\mathcal{M})$, $v \Vdash \varphi \to \psi$ iff for all $w \geq v$, $K(\mathcal{M})$, $w \Vdash \varphi$ implies $K(\mathcal{M})$, $w \Vdash \psi$,
- $K(\mathcal{M}), v \Vdash \bot$ holds never.
- $K(\mathcal{M}), v \Vdash a \in b \text{ iff } \mathcal{M}_v \models a \in b,$
- $K(\mathcal{M})$, $v \Vdash a = b$ iff a = b,
- $K(\mathcal{M}), v \Vdash \exists x \varphi(x, \bar{y})$ iff there is some $a \in D_v$ with $K(\mathcal{M}), v \Vdash \varphi(a, \bar{y})$,
- $K(\mathcal{M}), v \Vdash \forall x \varphi(x, \overline{y})$ iff for all $w \ge v$ and $a \in D_w$ we have $K(\mathcal{M}), w \Vdash \varphi(a, \overline{y})$.

Theorem (lemhoff, 2010)

For every Kripke frame K, and every sound assignment \mathcal{M} , we have $K(\mathcal{M}) \Vdash BCZF$.

Proof Sketch I

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

Sketch of the proof. We need to show that

$$\mathsf{J} \vdash \varphi$$
 if and only if $\mathsf{BCZF}(\mathsf{J}) \vdash \varphi^{\sigma}$ for all $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.

We only need to prove the direction from right to left. By contraposition: Assume $J \not\vdash \varphi$, then there is some Kripke frame K, and a valuation V on K such that K, $V \not\vdash \varphi$. Without loss of generality, $V(p) = \emptyset$ for all p that do not appear in φ .

If we can find an assignment of models \mathcal{M} and a collection of sentences ψ_i in the language of set theory such that $K, V, v \Vdash p_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$, the proof can be finished by induction: $K(\mathcal{M}) \not\models \varphi^{\sigma}$.

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

Sketch of the proof. We need to show that

 $\mathbf{J} \vdash \varphi$ if and only if $\mathsf{BCZF}(\mathbf{J}) \vdash \varphi^{\sigma}$ for all $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.

We only need to prove the direction from right to left. By contraposition: Assume $J \not\vdash \varphi$, then there is some Kripke frame K, and a valuation V on K such that K, $V \not\vdash \varphi$. Without loss of generality, $V(p) = \emptyset$ for all p that do not appear in φ .

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

Sketch of the proof. We need to show that

 $\mathbf{J} \vdash \varphi$ if and only if $\mathsf{BCZF}(\mathbf{J}) \vdash \varphi^{\sigma}$ for all $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.

We only need to prove the direction from right to left. By contraposition: Assume $J \not\vdash \varphi$, then there is some Kripke frame K, and a valuation V on K such that K, $V \not\vdash \varphi$. Without loss of generality, $V(p) = \emptyset$ for all p that do not appear in φ .

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

Sketch of the proof. We need to show that

 $\mathbf{J} \vdash \varphi$ if and only if $\mathsf{BCZF}(\mathbf{J}) \vdash \varphi^{\sigma}$ for all $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.

We only need to prove the direction from right to left. By contraposition: Assume $J \not\models \varphi$, then there is some Kripke frame K, and a valuation V on K such that K, $V \not\models \varphi$. Without loss of generality, $V(p) = \emptyset$ for all p that do not appear in φ .

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

Sketch of the proof. We need to show that

 $\mathbf{J} \vdash \varphi$ if and only if $\mathsf{BCZF}(\mathbf{J}) \vdash \varphi^{\sigma}$ for all $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.

We only need to prove the direction from right to left. By contraposition: Assume $J \not\vdash \varphi$, then there is some Kripke frame K, and a valuation V on K such that K, $V \not\vdash \varphi$. Without loss of generality, $V(p) = \emptyset$ for all p that do not appear in φ .

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

Sketch of the proof. We need to show that

 $\mathbf{J} \vdash \varphi$ if and only if $\mathsf{BCZF}(\mathbf{J}) \vdash \varphi^{\sigma}$ for all $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.

We only need to prove the direction from right to left. By contraposition: Assume $J \not\vdash \varphi$, then there is some Kripke frame K, and a valuation V on K such that $K, V \not\models \varphi$. Without loss of generality, $V(p) = \emptyset$ for all p that do not appear in φ .

Theorem (P.)

The theory BCZF has the de Jongh property with respect to every intermediate logic that can be characterised by a class of Kripke frames.

Sketch of the proof. We need to show that

$$\mathbf{J} \vdash \varphi$$
 if and only if $\mathsf{BCZF}(\mathbf{J}) \vdash \varphi^{\sigma}$ for all $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.

We only need to prove the direction from right to left. By contraposition: Assume $J \not\vdash \varphi$, then there is some Kripke frame K, and a valuation V on K such that $K, V \not\models \varphi$. Without loss of generality, $V(p) = \emptyset$ for all p that do not appear in φ .

Left to do: Find \mathcal{M} and a collection of sentences ψ_i in the language of set theory such that $K, V, v \Vdash p_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

- 1. Σ_1 -formulas are evaluated locally in Kripke semantics,
- 2. the constructible universe L is absolute between models of ZFC set theory, and,
- 3. formulas relativised to L, i.e., ψ^{L} behave like Δ_0 -formulas.

Left to do: Find \mathcal{M} and a collection of sentences ψ_i in the language of set theory such that $K, V, v \Vdash p_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

- 1. Σ_1 -formulas are evaluated locally in Kripke semantics,
- 2. the constructible universe L is absolute between models of ZFC set theory, and,
- 3. formulas relativised to L, i.e., $\psi^{
 m L}$ behave like Δ_0 -formulas.

Left to do: Find \mathcal{M} and a collection of sentences ψ_i in the language of set theory such that $K, V, v \Vdash p_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

- 1. Σ_1 -formulas are evaluated locally in Kripke semantics,
- the constructible universe L is absolute between models of ZFC set theory, and,
- 3. formulas relativised to L, i.e., $\psi^{
 m L}$ behave like Δ_0 -formulas.

Left to do: Find \mathcal{M} and a collection of sentences ψ_i in the language of set theory such that $K, V, v \Vdash p_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

- 1. Σ_1 -formulas are evaluated locally in Kripke semantics,
- 2. the constructible universe L is absolute between models of ZFC set theory, and,
- 3. formulas relativised to L, i.e., $\psi^{
 m L}$ behave like Δ_0 -formulas.

Left to do: Find \mathcal{M} and a collection of sentences ψ_i in the language of set theory such that $K, V, v \Vdash p_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

- 1. Σ_1 -formulas are evaluated locally in Kripke semantics,
- 2. the constructible universe L is absolute between models of ZFC set theory, and,
- 3. formulas relativised to L, i.e., $\psi^{\rm L}$ behave like Δ_0 -formulas.

Proof Sketch III: Buttons

We will use the following sentences ψ_i :

There is an injection from \aleph_{i+2}^{L} to $\mathcal{P}(\aleph_{i}^{L})$.

Formally:

$$\exists x \exists y \exists g ((x = \aleph_{i+2})^{L} \land (y = \aleph_{i})^{L} \\ \land g \text{ "is an injective function"} \\ \land \mathsf{dom}(g) = x \\ \land \forall \alpha \in x \forall z \in g(\alpha) \ z \in y)$$

Observation

 ψ_i is evaluated locally, i.e., $K(\mathcal{M})$, $v \Vdash \psi_i$ if and only if $\mathcal{M}_v \vDash \psi_i$.

Proof Sketch III: Buttons

We will use the following sentences ψ_i :

There is an injection from \aleph_{i+2}^{L} to $\mathcal{P}(\aleph_{i}^{L})$.

Formally:

$$\exists x \exists y \exists g ((x = \aleph_{i+2})^{L} \land (y = \aleph_{i})^{L} \\ \land g \text{ "is an injective function"} \\ \land \mathsf{dom}(g) = x \\ \land \forall \alpha \in x \forall z \in g(\alpha) \ z \in y)$$

Observation

 ψ_i is evaluated locally, i.e., $K(\mathcal{M})$, $v \Vdash \psi_i$ if and only if $\mathcal{M}_v \vDash \psi_i$.

Proof Sketch III: Buttons

We will use the following sentences ψ_i :

There is an injection from \aleph_{i+2}^{L} to $\mathcal{P}(\aleph_{i}^{L})$.

Formally:

$$\exists x \exists y \exists g ((x = \aleph_{i+2})^{L} \land (y = \aleph_{i})^{L} \\ \land g \text{ "is an injective function"} \\ \land \mathsf{dom}(g) = x \\ \land \forall \alpha \in x \forall z \in g(\alpha) \ z \in y)$$

Observation

 ψ_i is evaluated locally, i.e., $K(\mathcal{M})$, $v \Vdash \psi_i$ if and only if $\mathcal{M}_v \vDash \psi_i$.

Proposition (Friedman, Fuchino and Sakai, 2017)

Let $A \in L$ such that $A \subseteq \omega$. Then there is a generic extension $L[G^A]$ such that for all $i \in \omega$, we have $L[G^A] \models \psi_i$ if and only if $i \in A$.

For every $v \in K$, let \mathcal{M}_v be the model $L[G^{V^{-1}(v)}]$. (Code the propositional letters as natural numbers.)

Then, we have:

$$K, V, v \Vdash p_i$$
 if and only if $\mathcal{M}_v \vDash \psi_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

Now, let σ be the assignment $p_i \mapsto \psi_i$. We finish the proof by an induction on subformulas χ of φ showing that:

$$K, V, v \Vdash \chi$$
 if and only if $K(\mathcal{M}), v \vDash \chi^{\sigma}$.

As $K, V, v \not\Vdash \varphi$, have $K(\mathcal{M}), v \not\models \chi^{\sigma}$.

Proposition (Friedman, Fuchino and Sakai, 2017)

Let $A \in L$ such that $A \subseteq \omega$. Then there is a generic extension $L[G^A]$ such that for all $i \in \omega$, we have $L[G^A] \models \psi_i$ if and only if $i \in A$.

For every $v \in K$, let \mathcal{M}_v be the model $L[G^{V^{-1}(v)}]$. (Code the propositional letters as natural numbers.)

Then, we have

$$K, V, v \Vdash p_i$$
 if and only if $\mathcal{M}_v \vDash \psi_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

Now, let σ be the assignment $p_i \mapsto \psi_i$. We finish the proof by an induction on subformulas χ of φ showing that:

$$K, V, v \Vdash \chi$$
 if and only if $K(\mathcal{M}), v \vDash \chi^{\sigma}$.

As $K, V, v \not\Vdash \varphi$, have $K(\mathcal{M}), v \not\models \chi^{\sigma}$.

Proposition (Friedman, Fuchino and Sakai, 2017)

Let $A \in L$ such that $A \subseteq \omega$. Then there is a generic extension $L[G^A]$ such that for all $i \in \omega$, we have $L[G^A] \models \psi_i$ if and only if $i \in A$.

For every $v \in K$, let \mathcal{M}_v be the model $L[G^{V^{-1}(v)}]$. (Code the propositional letters as natural numbers.)

Then, we have:

$$K, V, v \Vdash p_i$$
 if and only if $\mathcal{M}_v \vDash \psi_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

$$K, V, v \Vdash \chi$$
 if and only if $K(\mathcal{M}), v \vDash \chi^{\sigma}$.

Proposition (Friedman, Fuchino and Sakai, 2017)

Let $A \in L$ such that $A \subseteq \omega$. Then there is a generic extension $L[G^A]$ such that for all $i \in \omega$, we have $L[G^A] \models \psi_i$ if and only if $i \in A$.

For every $v \in K$, let \mathcal{M}_v be the model $L[G^{V^{-1}(v)}]$. (Code the propositional letters as natural numbers.)

Then, we have:

$$K, V, v \Vdash p_i$$
 if and only if $\mathcal{M}_v \vDash \psi_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

$$K, V, v \Vdash \chi$$
 if and only if $K(\mathcal{M}), v \vDash \chi^{\sigma}$.

Proposition (Friedman, Fuchino and Sakai, 2017)

Let $A \in L$ such that $A \subseteq \omega$. Then there is a generic extension $L[G^A]$ such that for all $i \in \omega$, we have $L[G^A] \models \psi_i$ if and only if $i \in A$.

For every $v \in K$, let \mathcal{M}_v be the model $L[G^{V^{-1}(v)}]$. (Code the propositional letters as natural numbers.)

Then, we have:

$$K, V, v \Vdash p_i$$
 if and only if $\mathcal{M}_v \vDash \psi_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

$$K, V, v \Vdash \chi$$
 if and only if $K(\mathcal{M}), v \vDash \chi^{\sigma}$.

Proposition (Friedman, Fuchino and Sakai, 2017)

Let $A \in L$ such that $A \subseteq \omega$. Then there is a generic extension $L[G^A]$ such that for all $i \in \omega$, we have $L[G^A] \models \psi_i$ if and only if $i \in A$.

For every $v \in K$, let \mathcal{M}_v be the model $L[G^{V^{-1}(v)}]$. (Code the propositional letters as natural numbers.)

Then, we have:

$$K, V, v \Vdash p_i$$
 if and only if $\mathcal{M}_v \vDash \psi_i$ if and only if $K(\mathcal{M}), v \Vdash \psi_i$.

$$K, V, v \Vdash \chi$$
 if and only if $K(\mathcal{M}), v \vDash \chi^{\sigma}$.

As
$$K, V, v \not\Vdash \varphi$$
, have $K(\mathcal{M}), v \not\models \chi^{\sigma}$.

Discussion: CZF or IZF?

This exact proof cannot easily be strengthened to full CZF or even IZF:

As soon as non-trivial generic extensions are involved, the axiom of exponentiation (a constructive consequence of full collection) fails in the models we use above.

There is even a model forcing the negation of exponentiation.

Discussion: CZF or IZF?

This exact proof cannot easily be strengthened to full CZF or even IZF:

As soon as non-trivial generic extensions are involved, the axiom of exponentiation (a constructive consequence of full collection) fails in the models we use above.

There is even a model forcing the negation of exponentiation.

Discussion: CZF or IZF?

This exact proof cannot easily be strengthened to full CZF or even IZF:

As soon as non-trivial generic extensions are involved, the axiom of exponentiation (a constructive consequence of full collection) fails in the models we use above.

There is even a model forcing the negation of exponentiation.

The de Jongh property is a *proof-theoretic* property. There's a *model-theoretic* side to the discussion above.

We call an algebra-valued model $M^{(A)}$:

faithful if for every $a \in A$, there is a set-theoretical sentence φ such that $\|\varphi\|^A = a$, and,

loyal if the propositional logic of the algebra-valued model is the same as the propositional logic of the algebra, i.e., $L(M^{(A)}) = L(A)$.

The de Jongh property is a *proof-theoretic* property. There's a *model-theoretic* side to the discussion above.

We call an algebra-valued model M^(A):

- **faithful** if for every $a \in A$, there is a set-theoretical sentence φ such that $\|\varphi\|^A = a$, and,
 - loyal if the propositional logic of the algebra-valued model is the same as the propositional logic of the algebra, i.e., $L(M^{(A)}) = L(A)$.

The de Jongh property is a *proof-theoretic* property. There's a *model-theoretic* side to the discussion above.

We call an algebra-valued model $M^{(A)}$:

faithful if for every $a \in A$, there is a set-theoretical sentence φ such that $[\![\varphi]\!]^A = a$, and,

loyal if the propositional logic of the algebra-valued model is the same as the propositional logic of the algebra, i.e., $L(M^{(A)}) = L(A)$.

The de Jongh property is a *proof-theoretic* property. There's a *model-theoretic* side to the discussion above.

We call an algebra-valued model $M^{(A)}$:

faithful if for every $a \in A$, there is a set-theoretical sentence φ such that $\|\varphi\|^A = a$, and,

loyal if the propositional logic of the algebra-valued model is the same as the propositional logic of the algebra, i.e., $L(M^{(A)}) = L(A)$.

The de Jongh property is a *proof-theoretic* property. There's a *model-theoretic* side to the discussion above.

We call an algebra-valued model $M^{(A)}$:

- **faithful** if for every $a \in A$, there is a set-theoretical sentence φ such that $[\![\varphi]\!]^A = a$, and,
 - **loyal** if the propositional logic of the algebra-valued model is the same as the propositional logic of the algebra, i.e., $L(M^{(A)}) = L(A)$.

The de Jongh property is a *proof-theoretic* property. There's a *model-theoretic* side to the discussion above.

We call an algebra-valued model $M^{(A)}$:

- **faithful** if for every $a \in A$, there is a set-theoretical sentence φ such that $[\![\varphi]\!]^A = a$, and,
 - **loyal** if the propositional logic of the algebra-valued model is the same as the propositional logic of the algebra, i.e., $L(M^{(A)}) = L(A)$.

Conclusions:

- We have shown that BCZF has the de Jongh property with respect to all Kripke-complete logics.
- We have a preliminary result on IZF.

- Further explore the connection between proof-theoretic and model-theoretic point of view.
- · Improve the results above.

Conclusions:

- We have shown that BCZF has the de Jongh property with respect to all Kripke-complete logics.
- We have a preliminary result on IZF.

- Further explore the connection between proof-theoretic and model-theoretic point of view.
- · Improve the results above

Conclusions:

- We have shown that BCZF has the de Jongh property with respect to all Kripke-complete logics.
- · We have a preliminary result on IZF.

- Further explore the connection between proof-theoretic and model-theoretic point of view.
- Improve the results above.

Conclusions:

- We have shown that BCZF has the de Jongh property with respect to all Kripke-complete logics.
- · We have a preliminary result on IZF.

- Further explore the connection between proof-theoretic and model-theoretic point of view.
- Improve the results above.

Conclusions:

- We have shown that BCZF has the de Jongh property with respect to all Kripke-complete logics.
- · We have a preliminary result on IZF.

- Further explore the connection between proof-theoretic and model-theoretic point of view.
- Improve the results above.

Conclusions:

- We have shown that BCZF has the de Jongh property with respect to all Kripke-complete logics.
- · We have a preliminary result on IZF.

- Further explore the connection between proof-theoretic and model-theoretic point of view.
- Improve the results above.

The de Jongh property for bounded constructive Zermelo-Fraenkel set theory (paper available on, e.g., my website)

Thank you! - Questions?

Robert Passmann Guest at ILLC, Universiteit van Amsterdam http://robertpassmann.github.io