

COLOR FADING/DISCOLORATION PREVENTIVE AGENT

BACKGROUND OF THE INVENTION

5 Field of the Invention

The present invention relates to a color fading/discoloration preventive agent having superior color fading/discoloration preventive effects against various types of pigments, and particularly various types of oil-soluble pigment.

10 The present invention relates to a composition comprising a color fading/discoloration preventive agent and various types of pigments, especially oil-soluble pigment. Specifically, the present invention relates to a color fading/discoloration preventive agent containing as its active ingredient a coumarin analog mixture obtained from the rind of citrus fruit and, particularly, a coumarin analog mixture obtained from citrus cold press oil.

Description of the Related Art

20 Although foods themselves inherently have their own unique color, the problem has been pointed out in which the color of edible pigments inherently present in foods ends up fading during food manufacturing, processing or storage. In order to solve this problem, or to satisfy the preferences of consumers, 25 attempts have been made to further add or blend in edible

pigments during food manufacturing and processing, but satisfactory results have not been obtained. In other words, the color of the food ends up fading or changing with the passage of time, even eventually becoming colorless in some cases.

5

In order to eliminate these disadvantages, namely as a contrivance for maintaining the color of foods, the addition and blending of color fading/descoloration preventive agents into foods is known, and numerous color fading/descoloration preventive agents have been developed and reported. For example, known examples of color fading/descoloration preventive agents for edible pigments include chlorogenic acid, α -tocopherol and vitamin C. However, these color fading/descoloration preventive agents are only effective for specific pigments, and their color fading/descoloration preventive effects are not adequate. Namely, although vitamin C, which is known to be a typical color fading/descoloration preventive agent, demonstrates superior color fading/descoloration preventive effects against β -carotene, it does not demonstrate color fading/descoloration preventive effects against anthocyanin pigment.

Moreover, chlorogenic acid, α -tocopherol, vitamin C, unsaponifiable rice bran oil (Japanese Patent Publication No. Sho 55-3383), arbutus species plant extracts (Japanese Unexamined Patent Publication No. Hei 6-234935) and so forth are known and

reported as examples of edible pigment color fading/discoloration preventive agents. However, these color fading/discoloration preventive agents had the problems of only being effective against specific pigments, having inadequate color fading/discoloration preventive effects, and being expensive to prepare.

In addition, pigments are also used in various fields other than foods, and colors inherently possessed by those pigments are also known to fade with the passage of time. Although development has progressed on color fading/discoloration preventive agents for suppressing color fading/discoloration, color fading/discoloration preventive agents that are friendly to both the environment and the human body, are effective against numerous pigments, and have superior color fading/discoloration prevention capabilities have not yet been reported.

SUMMARY OF THE INVENTION

The object of the present invention is to provide a color fading/discoloration preventive agent that demonstrates superior color fading/discoloration preventive effects. Moreover, the object of the present invention is to provide a color fading/discoloration preventive agent that can be easily prepared and supplied inexpensively. Another object of the present

invention is to provide a composition comprising a color fading/discoloration preventive agent and various types of pigments, especially oil-soluble pigment. In addition, another object of the present invention is to provide a color fading/discoloration preventive agent that is effective in preventing the deterioration of as wide a range of colorants as possible.

Moreover, still another object of the present invention is to provide a color fading/discoloration preventive agent that is friendly to the environment and human body, and is effective for as wide a range of colorants as possible.

As a result of earnest research to solve the above problems, the inventors of the present invention found that a coumarin analog mixture obtained from the rind of citrus fruit, and particularly a coumarin analog obtained from citrus cold press oil, demonstrates superior color fading/discoloration preventive effects.

In addition, the inventors of the present invention found that a specific coumarin analog demonstrates superior color fading/discoloration preventive effects, and by conducting additional studies, found a method by which this specific coumarin analog can be prepared easily and supplied inexpensively,

thereby leading to the present invention.

Namely, the present invention provides the following:

- 1) a color fading/discoloration preventive agent containing as
5 its active ingredient a coumarin analog represented by general
formula (1) below, a glycoside of that analog, or a plant extract
containing the coumarin analog or its glycoside:

(wherein R¹ represents a hydrogen atom, a hydroxyl group or a methoxy group, R² represents a hydrogen atom or a hydroxyl group, and R¹ and R² are not both hydrogen atoms);

- 2) a color fading/discoloration preventive agent wherein the
15 coumarin analog is a compound selected from esculetin, flaxetin
and daphnetin;
- 3) a color fading/discoloration preventive agent wherein the
plant extract containing a coumarin analog or its glycoside is an
extract from an olive plant;
- 20 4) a color fading/discoloration preventive agent wherein the

plant extract containing a coumarin analog or its glycoside is an extract from the bark or leaf of a Japanese horse chestnut tree; and,

- 5) a color fading/discoloration preventive agent wherein the plant extract containing a coumarin analog or its glycoside is an extract of a beefsteak plant.

In addition, the present invention provides the following:

- 1) a color fading/discoloration preventive agent containing as its active ingredient a coumarin analog mixture obtained from the rind of citrus fruit;
- 2) a color fading/discoloration preventive agent containing as its active ingredient a coumarin analog mixture obtained from citrus cold press oil;
- 3) a color fading/discoloration preventive agent wherein the coumarin analog mixture is a coumarin analog mixture obtained from the high boiling point component of citrus cold press oil;
- 4) a color fading/discoloration preventive agent wherein the coumarin analog mixture is obtained from the fraction eluted with a solvent after carrying the high boiling point component of citrus cold press oil on a carrier, and contains at least 50 wt% of the coumarin analog mixture; and,
- 20 5) a preparation method of a color fading/discoloration preventive agent that contains a coumarin analog mixture comprising carrying the residue following distillation treatment

of citrus cold press oil on a carrier in a column, and concentrating the fraction that is eluted from the column with a solvent.

5 DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following provides a detailed explanation of the present invention.

10 The color fading/discoloration preventive agent referred to in the present invention has for its active ingredient the coumarin analog represented by the above-mentioned general formula (1), its glycoside, or a plant extract containing the coumarin analog or its glycoside.

15 Particularly preferable examples of the above coumarin analog include esculetin represented by the following formula (2):

Formula (2)

flaxetin represented by the following formula (3):

Formula (3)

and daphnetin represented with the following formula (4):

Formula (4)

Glycosides of the above coumarin analogs are also effective
10 as color fading/discoloration preventive agents. Examples of
these glycosides include esculin, flaxin and daphnin.

The method for preparing these glycosides is known, and is
described in, for example, J. Pharm., 113 (9), 670-675, 1993

(Konishi, A., Wada, S. and Kiyosawa, O.) and J. Ethnopharmacology, 39, 205-208, 1993 (Kostova, I., Nikolov, N. and Chipinska, L.N.).

In the present invention, a plant extract containing a 5 coumarin analog or its glycoside may also be used as a color fading/discoloration preventive agent.

These color fading/discoloration preventive agents can be prepared and acquired in accordance with ordinary methods from 10 plants containing large amounts of coumarin analogs or their glycosides.

Specific examples of plant bodies containing large amounts of the above coumarin analogs or their glycosides that can be easily acquired include the bark and stem of ash trees (*Fraxinus*) and olive trees (*Olea*), the bark and root of Japanese horse chestnut and horse chestnut trees (*Aesculus*), the leaf and stem of beefsteak plants (*Perilla*), the leaf, flower, stem, bark or root of Daphne trees and *Zoisia macrostachya* trees (*Daphne*), the 20 tuber, leaf or stem of a potato plant, the flower of *Cytisus scoparius* (*Cytisus*), the root or rootstock of *Scopolia*, or the roots and so forth of plants of the *Oenanthe javanica* family such as *Scopolia* Rhizome (*Scopolia* and plants of the same species), parsley (*Petroselium*) and celery (*Apium*). In addition, examples 25 of plants containing comparatively large amounts of the above

compounds that can be used include the leaf of *Pulicaria dysenterica*, the leaf of *Haplopappus multifolius*, the above ground portion of *Gochnatica argentina*, the root of *Bupleurum fruticosum* and the above ground portion of *Pterocaulon*
5 *purpurascens*.

The bark and leaf of olive trees (*Olea*), the leaf and bark of Japanese horse chestnut trees and the leaf and stem of beefsteak plant (*Perilla*) are particularly preferable examples of
10 these plants.

The above plant raw materials may be used alone or by combining two or more types. There are no particular restrictions on the site used provided it contains a large amount of the above compounds.
5

These plant raw materials are dried and cut to a suitable size. Next, the plant raw materials are immersed in a solvent under fixed conditions followed by filtration and removal of
20 plant raw materials from the solvent and concentration. Moreover, purification treatment is then performed to obtain the desired compound.

The following provides a more detailed explanation of the
25 above procedure.

When extracting the above compounds from the plants, one type or two or more types of solvents are preferably used that are selected from water, lower alcohols, water-containing lower 5 alcohols, polyol-based organic solvents, petroleum ether, ethyl acetate, chloroform and hydrocarbons.

Here, lower alcohols refer to alcohols having 1 to 4 carbons, and methanol and ethanol, etc. are particularly preferable. In 10 addition, water-containing lower alcohols can be used having a water content of 10 to 75 wt%.

Moreover, specific examples of polyol-based organic solvents include ethylene glycol and propylene glycol.

Commercially available products are usually used for the petroleum ether, ethyl acetate and chloroform, etc. While examples of hydrocarbon solvents include aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons that are a 20 liquid at normal temperatures, aliphatic hydrocarbons and aromatic hydrocarbons that are a liquid at normal temperatures, and particularly hydrocarbons such as n-hexane (hereinafter referred to as hexane) and toluene, are preferable.

25 There are no particular restrictions on the extraction

procedure, and although the procedure varies depending on the above plant and solvent used, extraction is usually carried out by immersing or gently stirring the plant in the above solvent at a temperature of room temperature to 80°C.

5

Further, the use of an apparatus such as a Soxhlet extractor that was known prior to the present application allows an extract to be obtained efficiently.

10 The amount of time required for extraction is generally about 30 minutes to 12 hours. Furthermore, a multi-stage extraction procedure known prior to the present application may also be used.

15 In addition to extracts obtained according to the above methods, extracts obtained by performing some form of treatment on said extracts, such as a concentrate from which the solvent has been additionally removed from the extract, or a so-called extract in which a specific compound has been additionally 20 removed from the extract, are also included in the extract of the present invention.

25 In addition, the products of crushing the leaf, branch or trunk of the above plants followed by steam distillation and extraction from the resulting distillation residue are also

included in the extract of the present invention.

Next, a fraction is obtained by treating the extract by chromatography. Prior to the procedure for obtaining this fraction, the solvent within the above extract may be first removed to increase viscosity, or a solvent may be further added to lower viscosity. In this case, the fraction is usually prepared such that the amount of solvent is 0.1 to 30 parts by volume, and preferably 0.5 to 20 parts by volume, relative to 1 part by weight of extract.

The method used to obtain the fraction may be carried out in accordance with ordinary methods. For example, a method should be employed in which the above extract or pre-treated extract is poured into a chromatography column fabricated and prepared in advance, an eluent composed of a solvent is poured in, and the extract allowed to be temporarily retained in the column is allowed to flow through the column with the solvent, and the solvent that flows out of the column is divided into several portions using known means. In the case of using ordinary silica gel chromatography, the column is flushed with hexane, ethyl acetate or a mixed solvent thereof. In the case of using a mixed solvent, there are no particular restrictions on the ratio of the amounts of each solvent. While elution is usually carried out at room temperature, it may be carried out at low temperature.

Next, the solvent that flows out of the column in accordance with the above method is divided using ordinary means to obtain fractions. Each fraction or a mixture of several fractions is 5 subjected to reduced pressure to remove the solvent and obtain a concentrate. A purification procedure using high performance liquid chromatography is then repeated to allow the obtaining of the above coumarin analog.

10 It should be noted that the above coumarin analog can also be obtained by freeze-drying the above concentrate, re-dissolving it in a solvent, filtering out the precipitate, re-concentrating the resulting solution and repeatedly purifying by high performance liquid chromatography.

15 The coumarin analog mixture referred to in the present invention can be obtained from the rind of citrus fruit. Said mixture is a mixture containing a plurality of compounds selected from compounds having a coumarin skeleton and compounds having a flocoumarin skeleton. Of many known coumarin analog mixtures, typical examples of such compounds include aurapten, malumin, limetin, melanzin, 5-geranoxy-7-methoxycoumarin, citropten, bergapten, bergamotin, bergaptol, epoxybergamotin, dihydroxybergamotin and 5-geranoxypsoralen, the present invention 20 is not limited to these compounds.

Next, various methods are known for producing a coumarin analog mixture obtained from citrus cold press oil. Examples of such methods include extraction and distillation. More 5 specifically, after adding and mixing a solvent such as chloroform, ethyl acetate or ethanol to citrus cold press oil to transfer the coumarin analog mixture present in the citrus cold press oil to the solvent layer, a solvent containing the coumarin analog mixture can be obtained by separating said solvent from 10 the citrus cold press oil.

A liquid containing the coumarin analog mixture at a high concentration can then be obtained by then distilling off this solvent.

As another method for producing a coumarin analog mixture, the above coumarin citrus press oil is distilled and separated into a high boiling point fraction and low boiling point fraction. For example, after placing the citrus cold press oil in a 20 distillation apparatus and gradually heating under reduced pressure (e.g., approx. 133 kPa), the distillate is used as the low boiling point fraction while the residue remaining in the apparatus is used as the high boiling point fraction. More specifically, the residue remaining after heat-treating citrus 25 cold press oil at 90 to 120°C under reduced pressure is used as

the high boiling point fraction.

The high boiling point fraction is a mixture composed of non-volatile components. This mixture contains large amounts of 5 various coumarin analogs, and has the ability to prevent color fading/discoloration.

A color fading/discoloration preventive agent having even more superior color fading/discoloration prevention ability can 10 be prepared by performing treatment like that described below on this mixture.

Namely, this high boiling point fraction is further fractionated. Although various fractionation methods are known, the following provides an explanation of a method for fractionating by silica gel chromatography as a representative example of such methods.

To begin with, pre-treatment may be performed in advance on 20 the above high boiling point fraction. For example, the above high boiling point fraction may be heated to increase viscosity, or a solvent may be added to lower viscosity. In this case, a solvent is usually added so that the amount of solvent is preferably 0.1 to 30 parts by volume, and more preferably 0.5 to 25 20 parts by volume, relative to 1 part by weight of the fraction.

Next, the high boiling point fraction is then, for example, poured into a column pre-filled with silica gel, and the high boiling point fraction is allowed to temporarily be carried on 5 the silica gel, after which an eluent composed of solvent is poured into the column to elute the temporarily retained high boiling point fraction in the column with the solvent, and the solvent that runs out may be divided into several portions by known means. Examples of solvents that can be used include 10 hydrocarbons such as n-pentane, n-hexane, branched hexane, benzene and toluene, ethers such as ethyl ether, esters such as ethyl acetate and methyl acetate, and alcohols such as methanol, ethanol and propanol. In the case of using ordinary silica gel chromatography, it is preferable to elute the high boiling point 15 fraction with hexane, ethyl acetate or a mixed solvent thereof. In the case of using a mixed solvent, there are no particular restrictions on the ratio of each solvent. Although elution is normally carried out at room temperature, there are no particular restrictions on the elution temperature, and it may also be 20 carried out at either low temperature or high temperature.

In the present invention, it is particularly preferable to first elute with hexane alone, then reduce the content of hexane using a mixed solvent of hexane and ethyl acetate, and finally 25 elute with ethyl acetate alone.

Next, fractions are obtained by fractionating the eluted solvent according to the above method using known means. A fraction containing a large amount of coumarin analog or a 5 mixture of a plurality of fractions can be used to prepare a color fading/discoloration preventive component by distilling off the solvent under reduced pressure and obtaining a concentrate. Alternatively, some of the solvent may still remain. Moreover, the concentrate may be further subjected to a treatment process 10 consisting of repeated purification procedures by high performance liquid chromatography. The important factor is that a large amount of coumarin analog mixture be contained therein.

The coumarin analog mixture can also be obtained from the 15 rind of citrus fruit. In this case, the coumarin analog mixture is obtained by applying known methods. As a typical example of such a method, an extraction method is known in which the coumarin analog mixture is obtained by going through a step in which a rind is brought into contact with a solvent.

20 Since this coumarin analog mixture is effective as a color fading/discoloration preventive agent, the greater the content of coumarin analog mixture, the more effective its ability to prevent color fading/discoloration. More specifically, a color 25 fading/discoloration preventive agent having a coumarin analog

mixture content of 50 wt% or more, and preferably 80 wt% or more, is effective as a color fading/discoloration preventive agent.

By adding and blending a color fading/discoloration preventive agent prepared in this manner to a target article having color, it is possible to prevent color fading/discoloration of color possessed by the target article itself or pigment blended therein.

Examples of the above target article include foods or processed foods, fragrances, foundation cosmetics, hair cosmetics, toiletries, bath additives, body care products, detergents and softeners, deodorizers and pharmaceuticals, but are not limited to these.

Examples of the above foods or processed foods include beverages such as beverages containing no fruit juice, beverages containing fruit juice, lactic acid bacteria beverages and powdery beverages, frozen confections such as ice cream, sherbet and popsicles, desserts such as pudding, jelly, Bavarian cream and yogurt, confections such as gum and candy, and pressed marine products.

Preferred examples of the foods or processed foods include beverages, desserts, confections, frozen confections, daily foods,

snacks, and pressed marine products

Examples of the above fragrances include perfume, eau de toilette, eau de cologne and shower cologne.

5

Examples of the above basic cosmetics include skin cream, cleansing cream, cosmetic lotion, after shave lotion, foundation, lipstick and talcum powder.

10

Examples of the above hair cosmetics include hair washing products such as shampoo, rinse, conditioner, rinse-in-shampoo and hair treatment, hair dressing products such as pomade, hair tonic, hair liquid and hair gel as well as hair growth products, hair dyes and permanent wave lotion solutions.

15

Examples of the above toiletries include toilet soap, bath soap and transparent colored soap.

20

Examples of the above bath additives include powdered bath additive, solid bath additive, solid effervescent bath additive, bath oil and bubble bath.

25

Examples of the above detergents include powdered laundry detergent, liquid laundry detergent, softener, kitchen cleaner, toilet cleaner, bathroom cleaner, glass cleaner and mold remover.

Examples of the above deodorizers include gel deodorizers, liquid deodorizers, impregnated aerosol deodorizers and mist-type deodorizers.

5

Examples of the above pharmaceuticals include medicines such as tablets, liquid medicine, capsule type medicine and granules.

While the amount of color fading/discoloration preventive agent blended in these target articles varies considerably according to the target article, type of pigment and so forth, it is normally 1 ppm to 10 wt% relative to the target article, and larger amounts may also be blended.

Although the above color fading/discoloration preventive agent may be added and blended directly into the above target articles, a method is normally used in which the color fading/discoloration preventive agent is preliminarily added to a pigment liquid or pigment dispersion, after which this liquid or dispersion is added and blended into the target article. Various additives such as thickeners, surfactants, antioxidants or known color fading/discoloration preventive agents may be added in advance to this liquid or dispersion.

25 Examples of media used to obtain the above liquid or

dispersion include water, ethanol, glycerin and other medium chain fatty acid esters, purified vegetable oils such as coconut oil and corn oil, and edible oils.

5 Although the amount of the color fading/discoloration preventive agent to be added to the solvent varies considerably according to the pigment used, the target article added and blended, and so forth, it is, for example, 1 ppm to 50 wt%.

10 There are numerous examples of pigments on which the above color fading/discoloration preventive agent works effectively.

15 Examples of these pigments include carotinoid pigments such as β -carotene, paprika pigment and annatto pigment, anthocyanin pigments such as elderberry pigment, β -cyanin pigments such as beet red pigment, monascus pigments such as red yeast pigment and porphyrin pigments such as chlorophyll.

20 Among these, the above color fading/discoloration preventive agent is particularly effective against pigments such as carotinoid pigments, anthocyanin pigments and monascus pigments.

25 Color fading/discoloration of the color of a target article can be efficiently prevented by blending the color fading/discoloration preventive agent of the present invention

into foods and other target articles. Moreover, since a smaller amount of color fading/descoloration preventive agent can be used, it is economically advantageous. In the case of adding and blending into foods in particular, a highly appealing and 5 tasteful appearance can be imparted to the foods for a long period of time.

Examples

The present invention will be described below in more detail 10 by way of Examples and Comparative examples, but the present invention is not limited to these examples.

Example 1 Color fading/descoloration Preventive Agent Composed of Esculetin

Commercially available esculetin was used as a color fading/descoloration preventive agent, and the ability of this color fading/descoloration preventive agent to prevent color fading/descoloration was evaluated under the conditions indicated below. The results obtained are shown in Table 1.

20 A) Case of using elderberry pigment, gardenia pigment, red yeast pigment and beet red pigment as pigments:

a) Preparation of evaluation sample

Color fading/descoloration preventive agent 5 mg

Ethanol 2 ml

25 Pigment solution (0.1 M citrate buffer

containing 0.2% of pigment having a color	
titer of 3 (pH=3))	48 ml
Total	50 ml

5 It should be noted that color titer indicates the absorption value at the maximum absorption wavelength of the pigment solution in the case of measuring a 1% pigment solution by UV using a cell having a width of 1 cm.

10 b) Evaluation method: 10 ml of the above evaluation sample was transferred to a 10 ml clear vial followed by the performing of a photoextinction test under the conditions indicated below. Following completion of this test, the absorbance of the sample in a clear vial was measured at the maximum absorption wavelength indicated below using a spectrophotometer (Shimadzu, UV-1200) at room temperature followed by calculation of the percentage of residual pigment. The measured maximum absorption wavelength of elderberry pigment was 515 nm, while the measured maximum absorption wavelengths of gardenia pigment, red yeast pigment and 15 beet red pigment were 440 nm, 495 nm and 531 nm, respectively.

20

Photoextinction test conditions

Temperature: 70°C

Illuminance: 190,000 Lux • hr UV

25 Dose of radiation: 13.8 mW/cm²

Irradiation time: 5 hours

B) Case of using β -carotene, paprika pigment and annatto pigment as pigments:

5 b) Preparation of evaluation sample

Color fading/discoloration preventive agent	5 mg
Ethanol	1 ml
Pigment solution (5000 ppm chloroform solution)	0.5 ml
Medium chain fatty acid ester (Actar M2: Riken Vitamin)	q.s.
Total	50 g

Evaluation method

10 ml of the above evaluation sample was transferred to a 10 ml clear vial followed by the performing of a photoextinction test under the conditions indicated below. Following completion of this test, the absorbance of the sample in a clear vial was measured at the maximum absorption wavelength indicated below 20 using a spectrophotometer (Shimadzu, UV-1200) at room temperature followed by calculation of the percentage of residual pigment. The measured maximum absorption wavelength of β -carotene was 461.5 nm, while the measured maximum absorption wavelengths of paprika pigment and annatto pigment were 460 nm and 462 nm, 25 respectively.

Photoextinction test conditions
Temperature: 70°C
Illuminance: 190,000 Lux • hr UV
5 Dose of radiation: 13.8 mW/cm²
Irradiation time: 1, 3 or 7 hours
The irradiation time for the β-carotene was 1 hour, that of the paprika pigment was 3 hours, and that of the annatto pigment was 7 hours.

10
Table 1
Color fading/descoloration Preventive Effects of Esculetin on Various Pigments (Percentage of Residual Pigment)

Pigment	Control group	Chlorogenic acid addition group	α-Tocopherol addition group	Esculetin addition group
Elderberry pigment	39.6	51.3	-	69.6
Gardenia yellow pigment	1.5	15.7	-	23.4
Red yeast pigment	1.8	11.6	-	35.7
Beet red pigment	1.5	15.8	-	18.9
β-carotene	43.9	-	38.9	95.7
Paprika pigment	21.4	-	19.9	80.2
Annatto pigment	43.3	-	30.5	85.1

15 In the table, hyphens indicate that testing was not performed (and this applies similarly hereinafter). In addition, numbers in the table refer to the percentage of pigment remaining (this also applies similarly hereinafter).

Examples 2 to 3 Color fading/discoloration Preventive Agents

Composed of Flaxetin and Daphnetin

Commercially available flaxetin and daphnetin were used as
5 color fading/discoloration preventive agents, and the ability of
these color fading/discoloration preventive agents to prevent
color fading/discoloration was evaluated under the same
conditions as Example 1. The results obtained are shown in
Tables 2 and 3.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
134

Pigment	Control group	Chlorogenic acid addition group	α -Tocopherol addition group	Daphnetin addition group
Elderberry pigment	39.6	51.3	-	62.3
Gardenia yellow pigment	1.5	15.7	-	25.0
Red yeast pigment	1.8	11.6	-	33.8
Beet red pigment	1.5	15.8	-	18.1
β -carotene	43.9	-	38.9	95.3
Paprika pigment	21.4	-	19.9	83.8
Annatto pigment	43.3	-	30.5	87.9

Example 4 Preparation of Color fading/descoloration Preventive Agent Derived from Olive Extract

100 g of dried olive leaves were crushed with a mill and placed in a Soxhlet extractor followed by the addition of 1,000 ml of 50% hydrous ethanol and extracting for 8 hours at room temperature. A concentrate of the extract was distributed at room temperature with 2,000 ml of water-hexane mixed solvent (water:hexane = 1:1 ratio by volume). The above mixed solvent was left to stand overnight at 5°C followed by obtaining the aqueous fraction. The aqueous fraction was concentrated and dried to a solid by freeze-drying to obtain a color fading/descoloration preventive agent.

The yield was 18.0 wt% (relative to the dried olive leaves).

The ability of this color fading/descoloration preventive agent to prevent color fading/descoloration was evaluated under

the same conditions as Example 1. The results obtained are shown in Table 4.

Table 4

5 Color fading/discoloration Preventive Effects of Olive Extract on Various Pigments (Percentage of Residual Pigment)

Pigment	Control group	Chlorogenic acid addition group	α -Tocopherol addition group	Olive extract addition group
Elderberry pigment	39.6	51.3	-	65.5
Gardenia yellow pigment	1.5	15.7	-	23.6
Red yeast pigment	1.8	11.6	-	22.2
Beet red pigment	1.5	15.8	-	29.0
β -carotene	43.9	-	38.9	75.5
Paprika pigment	21.4	-	19.9	53.0
Annatto pigment	43.3	-	30.5	57.9

Example 5 Preparation of Color fading/discoloration Preventive Agent Derived from Beefsteak Plant (Perilla) Extract

15 A color fading/discoloration preventive agent was obtained by carrying out the same procedure as Example 4 with the exception of using dried beefsteak plant leaves and stems instead of dried olive leaves. The yield was 15.9 wt% (relative to the dried beefsteak plant leaves and stems).

The ability of this color fading/discoloration preventive agent to prevent color fading/discoloration was evaluated under the same conditions as Example 1. The results obtained are shown 5 in Table 5.

Table 5

Color fading/discoloration Preventive Effects of Beefsteak Plant (Perilla) Extract on Various Pigments (Percentage of 10 Residual Pigment)

Pigment	Control group	Chlorogenic acid addition group	α -Tocopherol addition group	Beefsteak plant addition group
Elderberry pigment	39.6	51.3	-	54.0
Gardenia yellow pigment	1.5	15.7	-	19.0
Red yeast pigment	1.8	11.6	-	21.2
Beet red pigment	1.5	15.8	-	17.8
β -carotene	43.9	-	38.9	66.1
Paprika pigment	21.4	-	19.9	41.7
Annatto pigment	43.3	-	30.5	68.3

Example 6 Preparation of Color fading/discoloration Preventive Agent Derived from Japanese Horse Chestnut Bark Extract

A color fading/discoloration preventive agent was obtained 15 by carrying out the same procedure as Example 4 with the exception of using dried Japanese horse chestnut bark and leaves instead of dried olive leaves. The yield was 15.6 wt% (relative to the dried Japanese horse chestnut bark and leaves). The

ability of this color fading/discoloration preventive agent to prevent color fading/discoloration was evaluated under the same conditions as Example 1. The results obtained are shown in Table 6.

5

Table 6

Color fading/discoloration Preventive Effects of Japanese Horse Chestnut Bark Extract on Various Pigments (Percentage of Residual Pigment)

Pigment	Control group	Chlorogenic acid addition group	α -Tocopherol addition group	Japanese horse chestnut bark extract addition group
Elderberry pigment	39.6	51.3	-	74.3
Gardenia yellow pigment	1.5	15.7	-	22.9
Red yeast pigment	1.8	11.6	-	28.7
Beet red pigment	1.5	15.8	-	15.6
β -carotene	43.9	-	38.9	71.0
Paprika pigment	21.4	-	19.9	48.3
Annatto pigment	43.3	-	30.5	62.5

10

Comparative Example 1 Chlorogenic Acid

The ability of chlorogenic acid to prevent color fading/discoloration was evaluated under the same conditions as Example 1. The results obtained are shown in Table 1. (It should be noted that the results for the test of chlorogenic acid are also shown in Tables 1 through 5 for reference purposes.)

15

Comparative Example 2 α -Tocopherol

The ability of α -tocopherol to prevent color fading/discoloration was evaluated under the same conditions as Example 1. The results obtained are shown in Table 1. (It should be noted that the results for the test of α -tocopherol are 5 also shown in Tables 1 through 5 for reference purposes.)

Comparative Example 3 Control

A pigment sample containing no color fading/discoloration preventive agent was evaluated under the same conditions as 10 Example 1. The results obtained are shown in Table 1. (It should be noted that the results for the test of control are also shown in Tables 1 through 5 for reference purposes.)

Example 7 Preparation of Highly Concentrated Coumarin

Analog Fraction Derived from Lemon Cold Press Oil

1 kg of cold press oil derived from lemon rind was placed in a heating container within a distillation apparatus (vacuum: approx. 133 kPa) followed by heating gradually. The volatile components evaporated, liquefied inside a cooling apparatus and 20 accumulated in a collection container. Heating was stopped when the temperature of the citrus cold press oil in the heating container reached 120°C. There were 67 g of the substance remaining in the heating container, namely the high boiling point fraction.

After adding a minute amount of ethyl acetate to 200 g of this high boiling point fraction, the fraction was poured into a silica gel chromatography column filled with 4 kg of silica gel at room temperature to carry the high boiling point fraction on 5 the silica gel.

Next, the column was eluted with 30 liters of n-hexane to obtain fraction 1. Subsequently, the column was eluted with 30 liters each of ethyl acetate-hexane mixed solvent (volume ratio: 10:90), ethyl acetate-hexane mixed solvent (volume ratio: 20:80), ethyl acetate-hexane mixed solvent (volume ratio: 30:70), ethyl acetate-hexane mixed solvent (volume ratio: 50:50) and finally ethyl acetate only to obtain fractions 2, 3, 4, 5 and 6.

Each fraction was placed in an evaporator to volatilize the solvent and obtain a solid. The amount of each fraction along with the coumarin analog content are shown in Table 7. It should be noted that the method for measuring the coumarin analog content consisted of dissolving 4 mg of solid product in 50 ml of ethanol followed by determining the amount of coumarin analog from the absorbance value when irradiated with ultraviolet light (wavelength: 311 nm).
20

Table 7

25 Yield and Coumarin Analog Content of Each Fraction

Fraction no.	Lemon	Lime	Grapefruit	Orange
1	30 (0)*	23 (1)	10 (1)	16 (1)
2	34 (18)	22 (31)	50 (26)	56 (25)
3	20 (87)	15 (100)	9 (73)	5 (95)
4	6 (99)	17 (100)	16 (81)	8 (87)
5	5 (99)	19 (91)	14 (94)	13 (99)
6	5 (63)	4 (89)	1 (90)	2 (78)

Units: (wt%)

*: X(Y): X = Yield relative to non-volatile fraction

Y = Content of coumarin analog in fraction

The product of combining the dried products obtained from fractions 3, 4, 5 and 6, respectively, was used as the coumarin analog high concentration fraction, while the product of combining the dried products obtained from fractions 1 and 2, respectively, was used as the coumarin analog low concentration fraction.

Test Example 1

The ability of this color fading/discoloration preventive agent to prevent color fading/discoloration was evaluated under 15 the conditions indicated below. The results obtained are shown in Table 8.

a) Preparation of evaluation sample

Color fading/discoloration preventive agent 5 mg

Ethanol 1 ml

Pigment solution	0.5 ml
(500 ppm chloroform solution)	
Medium chain fatty acid ester	q.s.
(Actar M2: Riken Vitamin)	
5 Total	50 ml

b) Evaluation method: 10 ml of the above evaluation sample was transferred to a 10 ml clear vial followed by the performing of a photoextinction test under the conditions indicated below. Following completion of this test, the absorbance of the sample in the above clear vial was measured at the maximum absorption wavelength indicated below using a spectrophotometer (Shimadzu, UV-1200) at room temperature followed by calculation of the percentage of residual pigment.

The measured maximum absorption wavelength of β -carotene was 461.5 nm, while the measured maximum absorption wavelengths of paprika pigment and annatto pigment were 460 nm and 462 nm, respectively.

20 Photoextinction test conditions
Temperature: 70°C
Illuminance: 190,000 Lux · hr UV
Quantity of radiation: 13.8 mW/cm²
25 Irradiation time: 1, 3 or 7 hours

The irradiation time for the β -carotene was 1 hour, that of the paprika pigment was 3 hours, and that of the annatto pigment was 7 hours.

5 Table 8

Color fading/discoloration Preventive Effects of Coumarin Analog High Concentration Fragment Derived from Lemon Oil on Various Pigments (Percentage of Residual Pigment)

Pigment	Control group	α -tocopherol addition group	Lemon coumarin analog low concentration fraction addition group	Lemon coumarin analog high concentration fraction addition group
β -carotene	43.9	38.9	47.5	92.8
Paprika pigment	21.4	19.9	28.8	79.2
Annatto pigment	43.3	30.5	45.2	86.1

Numerical values in the table refer to the percentage of pigment remaining (this applies similarly hereinafter).

Examples 8 to 10 Preparation of Coumarin Analog High Concentration Fraction Derived from Grapefruit Cold Press Oil,

15 Coumarin Analog High Concentration Fraction Derived from Orange Cold Press Oil and Coumarin Analog High Concentration Fraction Derived from Lime Cold Press Oil

A coumarin analog high concentration fraction derived from grapefruit cold press oil, coumarin analog high concentration fraction derived from orange cold press oil and coumarin analog

high concentration fraction derived from lime cold press oil were respectively obtained by respectively carrying out the same procedure as Example 7 with the exception of using grapefruit rind cold press oil, orange cold press oil and lime cold press
5 oil instead of lemon rind cold press oil.

The ability of these color fading/discoloration preventive agents to prevent color fading/discoloration was evaluated under the same conditions as Example 7. The results obtained are shown
10 in Tables 9 to 11.

Table 9

Color fading Preventive Effects of Coumarin Analog High Concentration Fragment Derived from Grapefruit (GF) on Various Pigments (Percentage of Residual Pigment)

Pigment	Control group	α -Tocopherol addition group	GF coumarin analog low concentration fraction addition group	GF coumarin analog high concentration fraction addition group
β -carotene	43.9	38.9	53.8	85.9
Paprika pigment	21.4	19.9	28.1	76.8
Annatto pigment	43.3	30.5	40.9	85.9

Table 10

Color fading Preventive Effects of Coumarin Analog High Concentration Fragment Derived from Orange on Various Pigments
20 (Percentage of Residual Pigment)

Pigment	Control group	α -Tocopherol addition group	Orange coumarin analog low concentration fraction addition group	Orange coumarin analog high concentration fraction addition group
β -carotene	43.9	38.9	49.8	82.5
Paprika pigment	21.4	19.9	25.6	74.3
Annatto pigment	43.3	30.5	44.3	79.8

Table 11

Color fading Preventive Effects of Coumarin Analog High Concentration Fragment Derived from Lime on Various Pigments
(Percentage of Residual Pigment)

Pigment	Control group	α -Tocopherol addition group	Lime coumarin analog low concentration fraction addition group	Lime coumarin analog high concentration fraction addition group
β -carotene	43.9	38.9	56.5	95.3
Paprika pigment	21.4	19.9	28.4	84.7
Annatto pigment	43.3	30.5	46.2	89.7

Comparative Example 4 α -Tocopherol

The ability of α -tocopherol to prevent color fading/discoloration was evaluated under the same conditions as 10 Example 7. The results obtained are shown in Table 8. (It should be noted that the results for α -tocopherol are also shown in Tables 9 through 11 for reference purposes.)

Comparative Example 5 Control

15 A pigment sample containing no color fading/discoloration

preventive agent was evaluated under the same conditions as Example 7. The results obtained are shown in Table 8. (It should be noted that the results for the control are also shown in Tables 9 through 11 for reference purposes.)