ENGINEERING TEST REPORT

BR-RFX100 Model: BR-RFX100 FCC ID: 2AHHP-X100

Applicant:

Bluerover Inc.

151 Charles Street West, Suite 117
Kitchener, Ontario
Canada N2G 1H6

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247 Frequency Hopping Spread Spectrum (FHSS)

UltraTech's File No.: 16BLRO006_FCC15247_DSS

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: June 17, 2016

Report Prepared by: Dharmajit Solanki Tested by: Hung Trinh

Issued Date: June 17, 2016 Test Dates: January 19 - March 12, 2016

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
 This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: wic@ultratech-labs.com, Email: wic@ultratech-labs.com, Email: wic@ultratech-labs.com, Email: www.ultratech-labs.com, <a href="ww

91038

1309

46390-2049

NVLAP LAB CODE 200093-0

AT-1945

 $ar{L}$

SL2-IN-E-1119R

CA2049

TL363_B

TPTDP DA1300

TABLE OF CONTENTS

EXHIB	IT 1.	INTRODUCTION	1
1.1.	SCOP	Е	1
1.2.	RELA	TED SUBMITTAL(S)/GRANT(S)	1
1.3.	NORN	MATIVE REFERENCES	1
EXHIB	IT 2.	PERFORMANCE ASSESSMENT	2
2.1.	CLIE	NT INFORMATION	2
2.2.		PMENT UNDER TEST (EUT) INFORMATION	
2.3.		S TECHNICAL SPECIFICATIONS	
2.4.		CIATED ANTENNA DESCRIPTIONS	
2.5.		OF EUT'S PORTS	
2.6.	ANCI	LLARY EQUIPMENT	3
EXHIB	IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1.		ATE TEST CONDITIONS	
3.2.	OPER	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	4
EXHIB	IT 4.	SUMMARY OF TEST RESULTS	5
4.1.	LOCA	TION OF TESTS	5
4.2.		ICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
4.3.	MOD	FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5
EXHIB	IT 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	6
5.1.		ER LINE CONDUCTED EMISSIONS [§15.207(a)]	
5.2.		PLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS	
5.3.		ISIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)]	
5.4.		CONDUCTED OUTPUT POWER [§ 15.247(b)(2)]	
5.5.		ISMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]	
5.6.	RF EX	XPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]	
EXHIB	IT 6.	TEST EQUIPMENT LIST	38
EXHIB	IT 7.	MEASUREMENT UNCERTAINTY	39
7.1.	LINE	CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	39
7.2	$R\Delta DI$	ATED EMISSION MEASUREMENT LINCERTAINTY	30

EXHIBIT 1. INTRODUCTION

1.1. **SCOPE**

Reference:	FCC Part 15, Subpart C, Section 15.247
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15
Purpose of Test:	Equipment Certification for Part 15C Spread Spectrum Transmitter Module
Test Procedures:	 ANSI C63.4 ANSI C63.10 FCC Public Notice DA 00-705
Environmental Classification:	[x] Commercial, industrial or business environment [] Residential environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None

NORMATIVE REFERENCES 1.3.

Publication	Year	Title
47 CFR Parts 0-19	2016	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances
FCC Public Notice DA 00-705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
FCC ET Docket No. 99-231	2002	Amendment to FCC Part 15 of the Commission's Rules Regarding to Spread Spectrum Devices

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Bluerover Inc.	
Address:	151 Charles Street West, Suite 117 Kitchener, Ontario Canada N2G 1H6	
Contact Person:	Harminder Banwait Phone #: 855-682-2874 Fax #: N/A Email Address: hbanwait@bluerover.ca	

MANUFACTURER		
Name:	Urtech Manufacturing Inc.	
Address:	835 Harrington Court, Unit 1 Burlington, Ontario Canada L7N 3P3	
Contact Person:	Jamal Qureshi Phone #: 905-667-2310 ext 405 Fax #: N/A Email Address: jamal@urtechmfg.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Bluerover Inc.
Product Name:	BR-RFX100
Model Name or Number:	BR-RFX100
Serial Number:	Test Sample
Type of Equipment:	FH Spread Spectrum Transmitter, Radio Module
Input Power Supply Type:	External Regulated DC Sources
Primary User Functions of EUT:	Transmit and receive sensory data to the Gateway

2.3. **EUT'S TECHNICAL SPECIFICATIONS**

Transmitter		
Equipment Type:	MobileBase Station (fixed use)	
Intended Operating Environment:	Commercial, industrial or business environment	
Power Supply Requirement:	3.0-3.6VDC @ 50mA	
RF Output Power Rating:	13.98 dBm	
Operating Frequency Range:	902.5 – 927.5 MHz	
RF Output Impedance:	50 Ω	
Duty Cycle:	Continuous	
Modulation Type:	2GFSK	
Antenna Connector Type:	U.FL/PCB	

2.4. **ASSOCIATED ANTENNA DESCRIPTIONS**

Manufacturer	Туре	Model/Part Number	Gain
Pulse Electronics	Dipole	W1063	3 dBi
Texas Instruments	Helical PCB	DN038	2.33 dBi

2.5. **LIST OF EUT'S PORTS**

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
¹ 1	RF IN/OUT Port	1	U.FL	Shielded coaxial cable with unique coupling connectors
2	External Sensor (J3)	1	Header	4" non-shielded
3	Power	1	Header	Non-shielded
4	² JTAG (J4)	1	Header	Non-shielded

Optional U.FL connector for an external dipole antenna

2.6. **ANCILLARY EQUIPMENT**

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	Switching Power Supply	
Brand name:	Tenma	
Model Name or Number:	72-7295	
Connected to EUT's Port:	Power	

ULTRATECH GROUP OF LABS

Page 3 of 39

²Factory use only

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power Input Source:	3.3VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	 Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements. The EUT operates in normal Frequency Hopping mode for occupancy duration, and frequency separation.
Special Test Software & Hardware:	Test software provided by the Applicant is installed to allow the EUT to operate in hopping mode or at each channel frequency continuously. For example, the transmitter will be operated at each of lowest, middle and highest frequencies individually continuously during testing.
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as non-integral/integral antenna equipment as described with the test results.

Transmitter Test Signals	
Frequency Band(s):	902.5 - 927.5 MHz
Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	902.5 MHz, 915.0 MHz and 927.5 MHz
RF Power Output: (measured maximum output power at antenna terminals)	13.98 dBm, 25 mW (conducted)
Normal Test Modulation:	2GFSK
Modulating Signal Source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2017-04-02.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirements	Yes
15.207(a)	AC Power Line Conducted Emissions	Yes
15.247(a)	Provisions for Frequency Hopping Systems	Yes
15.247(b)(2)	Peak Conducted Output Power	Yes
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes
15.247(i), 1.1307, 1.1310, 2.1091	RF Exposure	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

June 17, 2016

Page 5 of 39

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

5.1.1. Limit(s)

The equipment shall meet the limits of the following table:

Frequency of emission	Conducted Limits (dB _μ V)				
(MHz)	Quasi-peak	Average			
0.15–0.5 0.5–5 5-30	66 to 56* 56	56 to 46* 46 50			

^{*}Decreases linearly with the logarithm of the frequency

5.1.2. Method of Measurements

ANSI C63.4

5.1.3. Test Arrangement

5.1.4. Test Data

Plot 5.1.4.1. Power Line Conducted Emissions (Tx Mode) Line Voltage: 3.3 VDC; Line Tested: Positive

Plot 5.1.4.2. Power Line Conducted Emissions (Tx Mode) Line Voltage: 3.3 VDC; Line Tested: Negative

Plot 5.1.4.3. Power Line Conducted Emissions (Rx Mode) Line Voltage: 3.3 VDC; Line Tested: Positive

Plot 5.1.4.4. Power Line Conducted Emissions (Rx Mode) Line Voltage: 3.3 VDC; Line Tested: Negative

FCC Section	FCC Rules	Manufacturer's Clarification
15.203	Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.	The antenna employs a unique/integral antenna connector.
	The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed: > The application (or intended use) of the EUT > The installation requirements of the EUT > The method by which the EUT will be marketed	
15.204	Provided the information for every antenna proposed for use with the EUT: > type (e.g. Yagi, patch, grid, dish, etc), > manufacturer and model number > gain with reference to an isotropic radiator	See proposed antenna listed in user manual.
15.247(a)	Description of how the EUT meets the definition of a frequency hopping spread spectrum, found in Section 2.1. Based on the technical description.	See Operational Description
15.247(a)	Pseudo Frequency Hopping Sequence: Describe how the hopping sequence is generated. Provide an example of the hopping sequence channels, in order to demonstrate that the sequence meets the requirements specified in the definition of a frequency hopping spread spectrum system, found in Section 2.1	See Operational Description
15.247(a)	Equal Hopping Frequency Use: Describe how each individual EUT meets the requirement that each of its hopping channels is used equally on average (e.g. that each new transmission event begins on the next channel in the hopping sequence after final channel used in the previous transmission events).	See Operational Description
15.247(a)	System Receiver Input Bandwidth: Describe how the associated receiver(s) complies with the requirement that its input bandwidth (either RF or IF) matches the bandwidth of the transmitted signal.	See Operational Description

June 17, 2016

Page 11 of 39

FCC Section	FCC Rules	Manufacturer's Clarification
15.247(a)	System Receiver Hopping Capability: Describe how the associated receiver(s) has the ability to shift frequencies in synchronization with the transmitted signals	See Operational Description
15.247(g)	Describe how the EUT complies with the requirement that it be designed to be capable of operating as a true frequency hopping system	See Operational Description
15.247(h)	Describe how the EUT complies with the requirement that it not have the ability to coordinated with other FHSS is an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters	See Operational Description

5.3. PROVISIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)]

5.3.1. Limits

§ 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

§ 15.247(a)(1)(i): For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

5.3.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10

5.3.3. Test Arrangement

Page 13 of 39

5.3.4. Test Data

Test Description	FCC Specification	Measured Values		Comments
Frequency Hopping Systems Requirements	The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.			See Note 1
20 dB BW of	The maximum allowed 20 dB bandwidth	Frequency	20 dB Bandwidth	See Note 2
the hopping channel	of the hopping channel is 500 kHz	902.5 MHz	101.70 kHz	
Charine		915.0 MHz	102.71 kHz	
		927.5 MHz	101.70 kHz	
Channel Hopping Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.	503 kHz		See Note 2
Number hopping frequencies	If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies.	50 hopping frequencies		See Note 1 and 2
Average Time of Occupancy	If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall	Frequency	Dwell time in 20 second period	See Note 2
	not be greater than 0.4 seconds within a 20 second period.	902.5 MHz	24.85 ms	
	If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any	915.0 MHz	37.27 ms	
	frequency shall not be greater than 0.4 seconds within a 10 second period.	927.5 MHz	31.06 ms	

Note 1: See operational description exhibit for details.

Note 2: See the following plots for details.

File #: 16BLRO006_FCC15247_DSS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Plot 5.3.4.1. 20 dB Bandwidth, 902.5 MHz, 2GFSK

Plot 5.3.4.2. 20 dB Bandwidth, 915.0 MHz, 2GFSK

Plot 5.3.4.3. 20 dB Bandwidth, 927.5 MHz, 2GFSK

Plot 5.3.4.4. Carrier Frequency Separation, 915.0 MHz, 2GFSK, Random Hopping

Plot 5.3.4.5. Number of Hopping Frequencies 25 Hopping Channels from 902.5 – 914.5 MHz

Plot 5.3.4.6. Number of Hopping Frequencies 25 Hopping Channels from 914.5 – 927.5 MHz

Plot 5.3.4.7. Time of Occupancy, 902.5 MHz Dwell Time @ 902.5 MHz = 6.212425 ms

Plot 5.3.4.8. Time of Occupancy, 902.5 MHz Average time of occupancy = (Dwell Time) x (number of hops within a period) = 6.212425 ms x 4 = 24.85 ms

Plot 5.3.4.9. Time of Occupancy, 915.0 MHz Dwell Time @ 915.0 MHz = 6.212425 ms

Plot 5.3.4.10. Time of Occupancy, 915.0 MHz Average time of occupancy = (Dwell Time) x (number of hops within a period) = 6.212425 ms x 6 = 37.27 ms

Plot 5.3.4.11. Time of Occupancy, 927.5 MHz Dwell Time @ 927.5 MHz = 6.212425 ms

Plot 5.3.4.12. Time of Occupancy, 927.5 MHz Average time of occupancy = (Dwell Time) x (number of hops within a period) = 6.212425 ms x 5 = 31.06 ms

5.4. PEAK CONDUCTED OUTPUT POWER [§ 15.247(b)(2)]

5.4.1. Limits

§15.247(b)(2): For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

§15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.4.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10.

5.4.3. Test Arrangement

5.4.4. Test Data

Frequency (MHz)	Peak Output Power at Antenna Terminal (dBm)	Max. Antenna Gain (dBi)	EIRP (dBm)	Peak Conducted Output Power Limit (dBm)	EIRP Limit (dBm)
902.5	13.98	3	16.98	30	36
915.0	13.93	3	16.93	30	36
927.5	13.79	3	16.79	30	36

5.5. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.5.1. Limit

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Section 15.205(a) - Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
10.495–0.505	16.69475-16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	(2)
13.36–13.41.			l '

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Section 15.209(a) - Field Strength Limits within Restricted Frequency Bands

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2,400 / F (kHz)	300
0.490 - 1.705	24,000 / F (kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

File #: 16BLRO006_FCC15247_DSS

June 17, 2016

Page 22 of 39

²Above 38.6

FCC Public Notice DA 00-705, ANSI C63.10 and ANSI 63.4 procedures.

5.5.3. Test Arrangement

For Band-Edge

For Spurious and Harmonics

5.5.4. Test Data

Remark(s):

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.

5.5.4.1. EUT with 3 dBi Dipole Antenna

5.5.4.1.1. **Spurious Radiated Emissions**

Fundamental Frequency: 902.5 MHz Measured Conducted Power: 13.98 dBm

Frequency Te	Frequency Test Range: 30 MHz – 10 GHz							
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail	
902.5	113.10		V					
902.5	114.54		Н					
2707.5	46.62	36.66	V	54.0	94.5	-17.3	Pass*	
2707.5	48.52	40.59	Н	54.0	94.5	-13.4	Pass*	
3610.0	48.23	36.40	V	54.0	94.5	-17.6	Pass*	
3610.0	48.16	35.32	Н	54.0	94.5	-18.7	Pass*	
4512.5	50.47	39.32	V	54.0	94.5	-14.7	Pass*	
4512.5	50.25	40.16	Н	54.0	94.5	-13.8	Pass*	
8122.5	57.44	47.95	V	54.0	94.5	-6.1	Pass*	
8122.5	56.76	45.37	Н	54.0	94.5	-8.6	Pass*	
9025.0	57.08	43.87	V	54.0	94.5	-10.1	Pass*	

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Page 25 of 39 FCC ID: 2AHHP-X100

Fundamental Frequency: 915.0 MHz
Measured Conducted Power: 13.93 dBm
Frequency Test Range: 30 MHz – 10 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
915.0	112.87		V				
915.0	113.69		Н				
2745.0	46.99	38.18	V	54.0	93.7	-15.8	Pass*
2745.0	48.32	39.19	Н	54.0	93.7	-14.8	Pass*
3660.0	48.98	35.50	V	54.0	93.7	-18.5	Pass*
3660.0	47.23	34.22	Н	54.0	93.7	-19.8	Pass*
4575.0	51.42	44.79	V	54.0	93.7	-9.2	Pass*
4575.0	50.55	39.98	Н	54.0	93.7	-14.0	Pass*
8235.0	56.91	47.75	V	54.0	93.7	-6.3	Pass*
8235.0	54.33	41.98	Н	54.0	93.7	-12.0	Pass*
9150.0	58.04	46.13	V	54.0	93.7	-7.9	Pass*
9150.0	55.87	42.66	Н	54.0	93.7	-11.3	Pass*

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental Frequency: 927.5 MHz
Measured Conducted Power: 13.79 dBm

Frequency Test Range: 30 MHz – 10 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
927.5	112.21		V				
927.5	113.80		Н				
2782.5	46.55	38.2	V	54.0	93.8	-15.8	Pass*
2782.5	46.78	39.02	Н	54.0	93.8	-15.0	Pass*
3710.0	47.14	34.51	V	54.0	93.8	-19.5	Pass*
3710.0	47.22	34.05	Н	54.0	93.8	-20.0	Pass*
4637.5	51.91	43.68	V	54.0	93.8	-10.3	Pass*
4637.5	51.1	42.26	Н	54.0	93.8	-11.7	Pass*
8347.5	57.3	47.03	V	54.0	93.8	-7.0	Pass*
8347.5	54.94	41.97	Н	54.0	93.8	-12.0	Pass*

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

ULTRATECH GROUP OF LABS

File #: 16BLRO006_FCC15247_DSS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.5.4.1.2. Band –Edge RF Radiated Emissions

Plot 5.5.4.1.2.1. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.1.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

Plot 5.5.4.1.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.1.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

Plot 5.5.4.1.2.5. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Single Frequency Mode, High End of Frequency Band

Plot 5.5.4.1.2.6. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.1.2.7. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, High of Frequency Band

Plot 5.5.4.1.2.8. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

5.5.4.2. EUT with 2.3 dBi PCB Antenna

5.5.4.2.1. Spurious Radiated Emissions

Fundamental Frequency: 902.5 MHz
Measured Conducted Power: 13.98 dBm

Frequency Test Range: 30 MHz – 10 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
902.5	108.57		V				
902.5	115.85		Н				
2707.5	54.02	50.91	V	54.0	95.9	-3.1	Pass*
2707.5	51.43	47.59	Н	54.0	95.9	-6.4	Pass*
3610.0	53.26	48.16	V	54.0	95.9	-5.8	Pass*
3610.0	49.82	41.39	Н	54.0	95.9	-12.6	Pass*
4512.5	50.85	41.75	V	54.0	95.9	-12.3	Pass*
4512.5	49.96	39.61	Н	54.0	95.9	-14.4	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 915.0 MHz
Measured Conducted Power: 13.93 dBm

Frequency Test Range: 30 MHz – 10 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
915.0	109.33		V				
915.0	114.22		Н				
2745.0	48.62	42.52	V	54.0	94.2	-11.5	Pass*
2745.0	48.34	39.94	Н	54.0	94.2	-14.1	Pass*
4575.0	52.39	45.24	V	54.0	94.2	-8.8	Pass*
4575.0	49.87	40.8	Н	54.0	94.2	-13.2	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental Frequency:	927.5 MHz
Measured Conducted Power:	13.79 dBm
Frequency Test Range:	30 MHz – 10 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
927.5	110.55		V				
927.5	113.90		Н				
2782.5	48.52	41.97	V	54.0	93.9	-12.0	Pass*
2782.5	47.47	38.43	Н	54.0	93.9	-15.6	Pass*
4637.5	51.84	42.45	V	54.0	93.9	-11.6	Pass*
4637.5	50.58	38.23	Н	54.0	93.9	-15.8	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

5.5.4.2.2. Band-Edge RF Radiated Emissions

Plot 5.5.4.2.2.1. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.2.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

Plot 5.5.4.2.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.2.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

Plot 5.5.4.2.2.5. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Single Frequency Mode, High End of Frequency Band

Plot 5.5.4.2.2.6. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.2.2.7. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, High of Frequency Band

Plot 5.5.4.2.2.8. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

5.6. RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]

§ **1.1310:** The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
	(A) Limits for Occupational/Controlled Exposures								
0.3-3.0	614	1.63	*(100)	6					
3.0-30	1842/f	4.89/f	*(900/f ²)	6					
30-300	61.4	0.163	1.0	6					
300-1500			f/300	6					
1500-100,000			5	6					
	(B) Limits for Gener	al Population/Uncontrolle	d Exposure						
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	*(180/f ²)	30					
30-300	27.5	0.073	0.2	30					
300-1500			f/1500	30					
1500-100,000			1.0	30					

f = frequency in MHz

Note 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 36 of 39

^{* =} Plane-wave equivalent power density

5.6.1. Method of Measurements

Calculation Method of Power Density/RF Safety Distance:

$$S = \frac{PG}{4\pi \cdot r^2} = \frac{EIRP}{4\pi \cdot r^2}$$

Where, P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power.

S: power density mW/cm²

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

5.6.2. RF Evaluation

5.6.2.1. Standalone

Frequency (MHz)	EIRP (dBm)	EIRP (mW)	Evaluation Distance, r (cm)	Power Density, S (mW/cm²)	MPE Limit (mW/cm²)	Margin (mW/cm²)
902.5	17	50.119	20	0.010	0.602	-0.592

5.6.2.2. Co-location

Pursuant to KDB 447498 D01 General RF Exposure Guidance v06, Section 7.2:

Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneously transmitting antennas incorporated in a host device is ≤ 1.0 , according to calculated/estimated, numerically modeled, or measured field strengths or power density.

The maximum calculated MPE ratio of the EUT with 3 dBi Dipole Antenna

Frequency (MHz)	EUT EIRP (dBm)	EUT EIRP (mW)	Evaluation Distance (cm)	Power Density (mW/cm ²)	FCC MPE Limit (mW/cm²)	MPE Ratio
902.5	17	50.119	20	0.010	0.602	0.017

The maximum calculated MPE ratio for the EUT with 3 dBi dipole antenna is 0.017, this configuration can be colocated with other transmitting antennas provided the sum of the MPE ratios for all the other simultaneous transmitting antennas incorporated in a host device is $\leq 1.0 - 0.017 \leq 0.983$

Page 37 of 39

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Hewlett Packard	HP 8593EM	3412A00103	9 kHz–26.5 GHz	09 Apr 2017
Attenuator	Pasternack	PE7010-20	-	DC-2 GHz	03 Feb 2017
L.I.S.N	EMCO	3825/2	2209	0.10 -100 MHz	29 Sep 2016
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20Hz-40 GHz	21 Nov 2016
Attenuator	Pasternack	7024-10	4	DC-26.5 GHz	Cal on use
DC Block	Hewlett Packard	11742A	12460	0.045 – 26.5 GHz	Cal on use
EMI Receiver	Rohde & Schwarz	ESU40	100037	20Hz-40 GHz	08 May 2017
RF Amplifier	Com-Power	PAM-0118A	551052	0.5 – 18 GHz	13 Jul 2016
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	20 Aug 2016
Biconilog	EMCO	3142C	26873	26-3000 MHz	14 Apr 2016
Horn Antenna	EMCO	3155	6570	1 – 18 GHz	11 Sep 2016
High Pass Filter	K&L	11SH10- 1500/T8000	2	Cut off 900 MHz	Cal on use
Band Reject Filter	Micro-Tronics	BRM50701	105	Cut off 2.4-2.483 GHz	Cal on use
Log Periodic	ETS-Lindgren	3148	23845	200 – 2000 MHz	14 Apr 2016

File #: 16BLRO006_FCC15247_DSS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Page 38 of 39

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 2.89	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration

Page 39 of 39