(19) World Intellectual Property Organization International Bureau

1870 E 1 2011 (SE 1111 ANT ÉS 1871 ANT ÉS 1871 ANT ÉS ANT ÉS

(43) International Publication Date 25 March 2004 (25.03,2004)

PCT

(10) International Publication Number

- (51) International Patent Classification⁷: C07D 471/04, A61K 31/437, A61P 29/00, 11/00 // (C07D 471/04, 231:00, 221:00)
- (71) Applicant (for all designated States except US): GLAXO GROUP LIMITED [GB/GB]: Glaxo Wellcome House, Berkeley Avenue, Greenford, Middlesex UB6 0NN (GB).

WO 2004/024728 A2

- (21) International Application Number:
 PCT/EP2003/011814
- (72) Inventors; and

(22) International Filing Date:

(75) Inventors/Applicants (for US only): ALLEN, David, George (FdWF); Glasco-Mitth Kline, Gurnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). COE, Dlane, Mary (EB/RB); Glasco-Mitth Kline, Gurnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). COOK, Carroline, Mary (EB/RB); Glasco-Mitth Kline, Gurnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). DOVIL; E. Michael, Dennis (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). EDJIN, Christopher, David (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). HAMBILIN, Julin, Neboe (GB/RB); Glasco-Mitth Kline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB).

line, Gunnels Wood Road, Stevenage, Hertfordshire SG1

2NY (GB). JOHNSON, Martin, Redpath [GB/GB];

GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). JONES, Paul, Spencer

(25) Filing Language:
(26) Publication Language:

English English

(30) Priority Data: 0221455.9 0230045.7 0306595.0 0308017.3

0319708.4

0321074.7

16 September 2002 (16.09.2002) G 23 December 2002 (23.12.2002) G 21 March 2003 (21.03.2003) G 7 April 2003 (07.04.2003) G

12 September 2003 (12.09.2003)

21 August 2003 (21.08.2003) GB 9 September 2003 (09.09.2003) GB

[Continued on next page]

(54) Title: PYRAZOLO[3,4-B]PYRIDINE COMPOUNDS, AND THEIR USE AS PHOSPHODIESTERASE INHIBITORS

(dd)

(ee)

(57) Abstract: The invention relates to a compound of formula (I) or a salt thereof: wherein:R1 is C1-4alkyl, -CH2CH2OH C1-3fluoroalkyl, -CH2CH2CO2C1-2alkyl;R2 is a hydrogen atom (H), methyl or C1fluoroalkyl;R3 is optionally substituted C3-8cycloalkyl or optionally substituted mono-unsaturated-C5-7cvcloalkenvl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc); in which n1 and n2 independently are 1 or 2; and in which Y is O. S, SO2, or NR10; or R3 is a bicyclic group (dd) or (ee): ; and wherein X is NR4R5 or OR5a. The compounds are phosphodiesterase (PDE) inhibitors, in particular PDE4 inhibitors. Also provided is the use of a compound of formula (I), or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal such as a human, for example chronic obstructive pulmonary disease (COPD), asthma, or allergic rhinitis.

[GBKGB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), KNOWLES, RIchard, Graham [GBKGB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), LNDVALL, Mika, Kristlan [Fich]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG6]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG7 (2NY (GB), MTCHELL, Charles (BGGB); GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), TRIVEDI, Judith [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), TRIVEDI, Mailthaka [GBKGB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), WARD, Peter [GBKGB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), WARD, Peter [GBKGB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), WARD,

(74) Agent: WATERS, Davld, Martin; GlaxoSmithKline, CN925.1, Corporate Intellectual Property, 980 Great West Road, Brentford, Middlesex TW8 9GS (GB).

Stevenage, Hertfordshire SG1 2NY (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, C'Z, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, MH, HR, HU, ID, II., IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL. SY, TJ, TM, TN, TT, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW). Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), Buropean patent (AI, BE, BC, Ct, CY, CZ, DE, DE, AE, ES, FI, FR, GB, GR, HU, IR, TI, LU, MC, NI, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, CM, GQ, CW, ML, MR, NI, SN, TD, TO.

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette. WO 2004/024728 PCT/EP2003/011814

Pyrazolo[3,4-b]pyridine compounds, and their use as phosphodiesterase inhibitors

The present invention relates to pyrazolopyridine compounds, processes for their preparation, intermediates usable in these processes, and pharmaceutical compositions containing the compounds. The invention also relates to the use of the pyrazolopyridine compounds in therapy, for example as inhibitors of phosphodiesterases and/or for the treatment and/or prophylaxis of inflammatory and/or allergic diseases such as chronic obstructive pulmonary disease (COPD), asthma, rheumatoid arthritis or allergic rhinitis.

10

15

30

35

US 3,979,399, US 3,840,546, and US 3,966,746 (E.R.Squibb & Sons) disclose 4-amino derivatives of pyrazolo[3,4-b]pyridine-5-carboxamides wherein the 4-amino group NR3R4 can be an acyclic amino group wherein R3 and R4 may each be hydrogen, lower alkyl (e.g. butyl), phenyl, etc.; NR3R4 can alternatively be a 3-6-membered heterocyclic group such as pyrrolidino, piperidino and piperazino. The compounds are disclosed as central nervous system depressants useful as ataractic, analgesic and hypotensive agents.

US 3,925,388, US 3,856,799, US 3,833,594 and US 3,755,340 (E.R.Squibb & Sons) disclose 4-amino derivatives of pyrazolo[3,4-b]pyridine-5-carboxylic acids and esters.

The 4-amino group NR₃R₄ can be an acyclic amino group wherein R₃ and R₄ may each be hydrogen, lower alkyl (e.g. butyl), phenyl, etc.; NR₃R₄ can alternatively be a 5-6-membered heterocyclic group in which an additional nitrogen is present such as pyrrolidino, piperidino, pyrazolyl, pyrimidinyl, pyridazinyl or piperazinyl. The compounds are mentioned as being central nervous system depressants useful as ataractic agents or tranquilisers, as having antiinflammatory and analgesic properties. The compounds are mentioned as increasing the intracellular concentration of adenosine-3',5'-cyclic monophosphate and for alleviating the symptoms of asthma.

H. Hoehn et al., J. Heterocycl. Chem., 1972, 9(2), 235-253 discloses a series of 1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid derivatives with 4-hydroxy, 4-chloro, 4-alkoxy, 4-hydrazino, and 4-amino substituents.

CA 1003419, CH 553 799 and T.Denzel, Archiv der Pharmazie, 1974, 307(3), 177-186 disclose 4,5-disubstituted 1H-pyrazolo[3,4-b]pyridines unsubstituted at the 1-position.

Japanese laid-open patent application JP-2002-20386-A (Ono Yakuhin Kogyo KK) published on 23 January 2002 discloses pyrazolopyridine compounds of the following formula:

wherein R¹ denotes 1) a group -OR⁶, 2) a group -SR⁷, 3) a C2-8 alkynyl group, 4) a nitro group, 5) a cyano group, 6) a C1-8 alkyl group substituted by a hydroxy group or a C1-8 alkoxy group, 7) a phenyl group, 8) a group -C(O)R⁸, 9) a group -SO₂NR⁹R¹⁰, 10) a group -NR¹¹SO₂R¹², 11) a group -NR¹³C(O)R¹⁴ or 12) a group -CH=NR¹⁵. R⁶ and R⁷ denote i) a hydrogen atom, ii) a C1-8 alkyl group, iii) a C1-8 alkyl group substituted by a C1-8 alkoxy group, iv) a trihalomethyl group, v) a C3-7 cycloalkyl group, vi) a C1-8 alkyl group substituted by a phenyl group or vii) a 3-15 membered mono-, di- or tricyclic hetero ring containing 1-4 nitrogen atoms, 1-3 oxygen atoms and/or 1-3 sulphur atoms. R² denotes 1) a hydrogen atom or 2) a C1-8 alkoxy group. R³ denotes 1) a hydrogen atom or 2) a C1-8 alkyl group. R4 denotes 1) a hydrogen atom, 2) a C1-8 alkyl group, 3) a C3-7 cycloalkyl group, 4) a C1-8 alkyl group substituted by a C3-7 cycloalkyl group, 5) a phenyl group which may be substituted by 1-3 halogen atoms or 6) a 3-15 membered mono-, di- or tricyclic hetero ring containing 1-4 nitrogen atoms, 1-3 oxygen atoms and/or 1-3 sulphur atoms. R5 denotes 1) a hydrogen atom, 2) a C1-8 alkyl group, 3) a C3-7 cycloalkyl group, 4) a C1-8 alkyl group substituted by a C3-7 cycloalkyl group or 5) a phenyl group which may be substituted by 1-3 substituents. In group R³, a hydrogen atom is preferred. In group R4, methyl, ethyl, cyclopropyl, cyclobutyl or cyclopentyl are preferred. The compounds of JP-2002-20386-A are stated as having PDE4 inhibitory activity and as being useful in the prevention and/or treatment of inflammatory diseases and many other diseases.

10

15

20

25

30

EP 0 076 035 A1 (ICI Americas) discloses pyrazolo[3,4-b]pyridine derivatives as central nervous system depressants useful as tranquilisers or attractic agents for the relief of anxiety and tension states.

The compound cartazolate, ethyl 4-(n-butylamino)-1-ethyl-1H-pyrazolo[3,4-b]-pyridine-5-carboxylate, is known. J.W. Daly et al., Med. Chem. Res., 1994, 4, 293-306 and D. Shi et al., Drug Development Research, 1997, 42, 41-56 disclose a series of 4 (amino)substituted 1H-pyrazolo[3,4-b]pyridine-5-carboxylate acid derivatives, including ethyl 4-cyclopentylamino-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, and their affinities and antagonist activities at A₁- and A₂A-adenosine receptors, and the latter paper discloses their affinities at various binding sites of the GABA_A-receptor channel.

S. Schenone et al., Bioorg. Med. Chem. Lett., 2001, 11, 2529-2531 and F. Bondavalli et

al., J. Med. Chem., 2002, vol. 45 (Issue 22, 24 October 2002, allegedly published on Web 09/2/4/2002), pp. 4875-4887 disclose a series of 4-amino-1-(2-chloro-2-phenylethyl)-IH-pyrazolo[3,4-b]pyridine-5-carboxylic acid ethyl esters as h₁-adenosine receptor ligands.

- 5 WO 02/060900 A2 appears to disclose, as MCP-1 antagonists for treatment of allergic, inflammatory or autoimmune disorders or diseases, a series of bicyclic heterocyclic compounds with a -C(O)-NR⁴-C(O)-NR⁵R⁶ substituent, including isoxazolo[5,4-b]pyridines and 1H-pyrazolo[3,4-b]pyridines (named as pyrazolo[5,4-b]pyridines) with the -C(O)-NR⁴-C(O)-NR⁵R⁶ group as the 5-substituent and optionally substituted at the 1-, 3-, 4-, and/or 6-positions. Bicyclic heterocyclic compounds with a -C(O)NH₂ substituent instead of the -C(O)-NR⁴-C(O)-NR⁵R⁶ substituent are alleged to be disclosed in WO 02/060900 as intermediates in the synthesis of the -C(O)-NR⁴-C(O)-NR⁵R⁶ substituted compounds.
- 15 It is desirable to find new compounds which bind to, and preferably inhibit, phosphodiesterase type IV (PDE4).

The present invention provides a compound of formula (I) or a salt thereof (in particular, a pharmaceutically acceptable salt thereof):

20

$$\begin{array}{cccc}
& & & & & & & \\
& & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
R^1 & & & & & & & \\
R^1 & & & & & & & \\
\end{array}$$
(1)

wherein:

 R^1 is C_{1-4} alkyl, C_{1-3} fluoroalkyl, -CH₂CH₂OH or -CH₂CH₂CO₂C₁₋₂alkyl;

25

30

 R^2 is a hydrogen atom (H), methyl or C_1 fluoroalkyl;

 R^3 is optionally substituted $C_{3_gcycloalkyl}$ or optionally substituted mono-unsaturated-C_{5_7cycloalkenyl} or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc);

$$(aa)$$
 or (bb) or (cc)

in which n^1 and n^2 independently are 1 or 2; and in which Y is O, S, SO_2 , or NR^{10} ; where R^{10} is a hydrogen atom (H), C_{1-4} alkyl (e.g. methyl or ethyl), C_{1-2} fluoroalkyl, $CH_2C(O)NH_2$, $C(O)-CH_2$, $C(O)-C_{1-2}$ alkyl, $C(O)-C_1$ fluoroalkyl or $-C(O)-CH_2O-C_1$, alkyl;

and wherein in R3 the C3-8cycloalkyl or the heterocyclic group of sub-formula (aa), (bb) or (cc) is optionally substituted with one or two substituents independently being (e.g. being) oxo (=0); OH; C1-2alkoxy; C1-2fluoroalkoxy (e.g. trifluoromethoxy); NHR21 wherein R21 is a hydrogen atom (H) or C1-5 straight-chain alkyl (e.g. H or C1-4 straight-10 chain alkyl); C1_2alkyl; C1_2fluoroalkyl (e.g. C1fluoroalkyl such as -CH2F or -CHF2); -CH2OH; -CH2CH2OH; -CH2NHR22 wherein R22 is H or C1-2alkyl; -C(O)OR23 wherein R23 is H or C1-2alkyl; -C(O)NHR24 wherein R24 is H or C1-2alkyl; -C(O)R25 wherein R25 is C1_2alkyl; fluoro; hydroxyimino (=N-OH); or (C1_4alkoxy)imino (=N-OR26 where R26 is C1_4alkyl); and wherein any OH, alkoxy, fluoroalkoxy or 15 NHR²¹ substituent is not substituted at the R³ ring carbon attached (bonded) to the -NHgroup of formula (I) and is not substituted at either R³ ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc); and wherein, when R3 is optionally substituted mono-unsaturated-C5_7cycloalkenyl, then the cycloalkenyl is optionally substituted with one or two substituents being fluoro or 20 C1_2alkyl provided that if there are two substituents then they are not both C2alkyl, and the R3 ring carbon bonded to the -NH- group of formula (I) does not partake in the

25 or R³ is a bicyclic group of sub-formula (dd): (dd) or of sub-formula (ee):

cycloalkenyl double bond;

(ee) wherein Y^1 , Y^2 and Y^3 independently are CH₂ or oxygen (O) provided that no more than one of Y^1 , Y^2 and Y^3 is oxygen (O);

and X is NR4R5 or OR5a, in which:

- 5 $R^4 \ \text{is a hydrogen atom (H); C$_{1-6}$alkyl; C$_{1-3}$fluoroalkyl; or C$_{2-6}$alkyl substituted by one substituent R^{11}: and }$
- 10 R⁵ is a hydrogen atom (H); C₁₋₈alkyl; C₁₋₈ fluoroalkyl; C₃₋₈cycloalkyl optionally substituted by a C₁₋₂alkyl group; or -(CH₂)_n⁴-C₃₋₈cycloalkyl optionally substituted, in the -(CH₂)_n⁴-moiety or in the C₃₋₈cycloalkyl moiety, by a C₁₋₂alkyl group, wherein n⁴ is 1, 2 or 3;
- or R^5 is C_{2-6} alkyl substituted by one or two independent substituents R^{11} ;
 - wherein each substituent R¹¹, independently of any other R¹¹ substituent present, is: hydroxy (OH); C₁₋₆alkoxy; phenyloxy; benzyloxy; -NR¹²R¹³; -NR¹⁵-C(O)R¹⁶; -NR¹⁵-C(O)-NH-R¹⁵; or -NR¹⁵-SO₂R¹⁶; and wherein any R¹¹ substituent which is OH, alkoxy or -NR¹²R¹³ is not substituted at any carbon atom, of any R⁴ or R⁵ substituted alkyl, which is bonded to the nitrogen of NR⁴R⁵;
- or R^5 is -(CH₂)_n11-C(O)R¹⁶; -(CH₂)_n12-C(O)NR¹²R¹³; -CHR¹⁹-C(O)NR¹²R¹³; -(CH₂)_n12-C(O)OR¹⁶; -(CH₂)_n12-C(O)OH; -CHR¹⁹-C(O)OR¹⁶; -CHR¹⁹-C(O)OH; -(CH₂)_n12-SO₂-NR¹²R¹³; -(CH₂)_n12-SO₂R¹⁶; or -(CH₂)_n12-CN; wherein n¹¹ is 0, 1, 2 3 or 4 and n¹² is 1 2 3 or 4.
- or R⁵ is -(CH₂)n¹³-Het wherein n¹³ is 0, 1, 2, 3 or 4 and Het is a 4-, 5-, 6- or 7-membered saturated or partly-saturated heterocyclic ring containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-hetero-atoms present are not bound to the -(CH₂)n¹³- moiety when n¹³ is 1 and are not bound to the nitrogen of NR⁴R⁵ when n¹³ is 0; wherein any ring-nitrogens which are present and which are not unsaturated (i.e. which do not partake in a double bond) are present and NR¹⁷ where R¹⁷ is as defined herein; and wherein one or two of the carbon ring-atoms independently are optionally substituted by C₁-yalkyl;
 - or R^5 is phenyl optionally substituted with, independently, one, two or three of: a halogen atom; C_{1-6} alkyl (e.g. C_{1-4} alkyl or C_{1-2} alkyl); C_{1-2} fluoroalkyl (e.g. trifluoromethyl); C_{1-4} alkoxy (e.g. C_{1-2} alkoxy); C_{1-2} fluoroalkoxy (e.g. trifluoromethoxy);

C3_6cycloalkyloxy; -C(O)R16a; -C(O)OR30; -S(O)2-R16a (e.g. C1_2alkylsulphonyl or C1 2alkyl-SO2-); R16a-S(O)2-NR15a- (e.g. C1-2alkyl-SO2-NH-); R7R8N-S(O)2-; C1_2alkyl-C(O)-R15aN-S(O)2-; C1_4alkyl-S(O)-, Ph-S(O)-, R7R8N-CO-; -NR15-C(O)R16; R7R8N; OH; C1-4alkoxymethyl; C1-4alkoxyethyl;

C₁₋₂alkyl-S(O)₂-CH₂-; R⁷R⁸N-S(O)₂-CH₂-; C₁₋₂alkyl-S(O)₂-NR¹⁵a-CH₂-; 5 -CH2-OH; -CH2-CH2-OH; -CH2-NR⁷R⁸; -CH2-CH2-NR⁷R⁸; -CH2-C(O)OR³⁰; -CH2-C(O)-NR⁷R⁸; -CH2-NR^{15a}-C(O)-C₁₋₃alkyl; -(CH₂)_n¹⁴-Het¹ where n¹⁴ is 0 or 1; cyano (CN): Ar5a; or phenyl, pyridinyl or pyrimidinyl wherein the phenyl, pyridinyl or pyrimidinyl independently are optionally substituted by one or two of fluoro. chloro. C1-2alkyl, C1fluoroalkyl, C1-2alkoxy or C1fluoroalkoxy; or where two adjacent substituents taken together are -O-(CMe2)-O- or -O-(CH2)n14-O- where n14 is 1 or 2:

wherein R7 and R8 are independently a hydrogen atom (H); C1-4alkyl (e.g. C1_2alkyl such as methyl); C3_6cycloalkyl; or phenyl optionally substituted by one or two of: fluoro, chloro, C1_2alkyl, C1fluoroalkyl, C1_2alkoxy or C1fluoroalkoxy; or R7 and R^8 together are -(CH₂)_n6- or -C(O)-(CH₂)_n7- or -C(O)-(CH₂)_n7-C(O)- or $-(CH_2)_n^8 - X^7 - (CH_2)_n^9 - \text{ or } -C(O) - X^7 - (CH_2)_n^{10} - \text{ in which: } n^6 \text{ is } 3, 4, 5 \text{ or } 6, n^7 \text{ is } 2, 3,$ 4, or 5 (preferably n^7 is 2, 3 or 4), n^8 and n^9 and n^{10} independently are 2 or 3 (preferably independently 2), and X7 is O or NR 14 wherein R 14 is H, C1_2alkyl or C(O)Me (preferably H or C1_2alkyl);

or R5 has the sub-formula (x), (y), (y1) or (z):

10

15

20

30

wherein in sub-formula (x), n = 0, 1 or 2; in sub-formula (y) and (y1), m = 1 or 2; and in 25 sub-formula (z), r = 0, 1 or 2;

wherein in sub-formula (x) and (y) and (y1), none, one or two of A, B, D, E and F are independently nitrogen or nitrogen-oxide (N+O) provided that no more than one of A. B, D, E and F is nitrogen-oxide; and the remaining of A, B, D, E and F are independently CH or CR6:

provided that when n is 0 in sub-formula (x) then one or two of A, B, D, E and F are independently nitrogen or nitrogen-oxide (N+O) and no more than one of A, B, D, E and F is nitrogen-oxide;

wherein, each R6, independently of any other R6 present, is; a halogen atom; C1, calkyl 5 (e.g. C1_4alkyl or C1_2alkyl); C1_4fluoroalkyl (e.g. C1_2fluoroalkyl); C1_4alkoxy (e.g. C1-2alkoxy); C1-2fluoroalkoxy; C3-6cycloalkyloxy; -C(O)R16a; -C(O)OR30; -S(O)2-R^{16a} (e.g. C₁₋₂alkylsulphonyl, that is C₁₋₂alkyl-SO₂-); R^{16a}-S(O)2-NR^{15a}-(e.g. C1_2alkyl-SO2-NH-); R⁷R⁸N-S(O)2-; C1_2alkyl-C(O)-R¹⁵aN-S(O)2-; C1_4alkyl-S(O)-, Ph-S(O)-, R7R8N-CO-; -NR15-C(O)R16; R7R8N; OH; 10 C_{1_4} alkoxymethyl; C_{1_4} alkoxyethyl; C_{1_2} alkyl-S(O)2-CH2-; R^7R^8N -S(O)2-CH2-: C1 2alkyl-S(O)2-NR^{15a}-CH2-: -CH2-OH: -CH2-OH: -CH2-NR⁷R⁸: -CH2-CH2-NR⁷R⁸: -CH2-C(O)OR³⁰: -CH2-C(O)-NR⁷R⁸:

-CH2-NR^{15a}-C(O)-C₁₋₂alkyl; -(CH₂)_n¹⁴-Het¹ where n¹⁴ is 0 or 1; cyano (CN); Ar^{5b}; or phenyl, pyridinyl or pyrimidinyl wherein the phenyl, pyridinyl or pyrimidinyl 15 independently are optionally substituted by one or two of fluoro, chloro, C1-2alkyl, C_1 fluoroalkyl, C_{1-2} alkoxy or C_1 fluoroalkoxy; or where two adjacent R^6 taken together are -O-(CMe2)-O- or -O-(CH2)n14-O- where n14 is 1 or 2; wherein R7 and R8 are as herein defined;

wherein sub-formula (y) and (y1), independently, are optionally substituted by oxo (=0) at a ring carbon adjacent the 6-membered aromatic ring (for example, sub-formula (y) can

25

20

wherein in sub-formula (z), G is O or S or NR9 wherein R9 is a hydrogen atom (H), C1_4alkyl or C1_4fluoroalkyl; none, one, two or three of J, L, M and Q are nitrogen; and the remaining of J, L, M and Q are independently CH or CR6 where R6, independently of any other R6 present, is as defined herein:

- 8 -

or R^4 and R^5 taken together are –(CH₂)_p¹– or –C(O)-(CH₂)_p²– or –(CH₂)_p³–x⁵–(CH₂)_p⁴– or –C(O)-X⁵–(CH₂)_p⁵–, in which: p¹ = 3, 4, 5 or 6 (preferably p = 4 or 5), p² is 2, 3, 4, or 5 (preferably p² is 2, 3 or 4), and p³ and p⁴ and p⁵ independently are 2 or 3 (independently preferably 2) and X⁵ is O or NR¹⁷;

= 4 or 5), p² is 2, 3, 4, or 5 (preterably p² is 2, 3 or 4), and p³ and p³ and p³ independently are 2 or 3 (independently preferably 2) and X⁵ is O or NR¹⁷; and wherein, when R⁴ and R⁵ taken together are -(CH2)p¹- or -C(O)-(CH2)p²-, the NR⁴R⁵ heterocycle is optionally substituted by one R¹8 substituent wherein R¹8 is: C¹-4alkyl (e.g. C¹-2alkyl); C¹-2fluoroalkyl; C³-6cycloalkyl; C¹-2alkoxy (not substituted at a ring-carbon bonded to the NR⁴R⁵ ring-nitrogen); C¹ fluoroalkoxy (not substituted at a ring-carbon bonded to the NR⁴R⁵ ring-nitrogen); OH (not substituted at a ring-carbon bonded to the NR⁴R⁵ ring-nitrogen); OH (not substituted at a ring-carbon bonded to the NR⁴R⁵ ring-nitrogen); -(CH2)p²-C(O)R¹6 wherein p² is 0, 1, 2 or 3 (preferably p² is 0 or 1); -(CH2)p²-C(O)OR¹6; -(CH2)p²-OC(O)R¹6; -(CH2)p²-NR¹5C(O)NR¹2R¹3; -(CH2)p²-NR¹5C(O)NR¹2R¹3; -(CH2)p²-NR¹5C(O)OR¹6; -(CH2)p²-SO2R¹6; -(CH2)p²-SO2R¹6; or phenyl optionally substituted by one or two of: a halogen atom, C¹-2alkyl, C¹fluoroalkyl, C¹-2alkoxy or C¹fluoroalkoxy;

or R^4 and R^5 taken together are $-(CH_2)_p^{1-}$ or $-C(O)-(CH_2)_p^{2-}$ or $-(CH_2)_p^{3-}X^5-(CH_2)_p^{4-}$ or $-C(O)-X^5-(CH_2)_p^{5-}$ as defined herein, and wherein the

NR⁴R⁵ heterocycle is fused to a phenyl ring optionally substituted on the phenyl by one or two of: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy; and

 R^{5a} is C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} eycloalkyl; $-(CH_2)_n^{4a}$ - C_{3-6} eycloalkyl wherein n^{4a} is 1 or 2; phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy or trifluoromethoxy; or R^{5a} has the sub-formula (x), (y) or (z) as defined herein

and wherein:

5

15

25

30

 R^{12} and R^{13} independently are H; C_{1-5} alkyl (e.g. C_{1-3} alkyl); C_{3-6} cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

35 or R¹² and R¹³ together are -(CH₂)_n⁶- or -C(O)-(CH₂)_n⁷- or -C(O)-(CH₂)_n⁷-C(O)- or -(CH₂)_n⁸-X¹²-(CH₂)_n⁹- or -C(O)-X¹²-(CH₂)_n¹⁰- in which: n⁶ is 3, 4, 5 or 6 (preferably n⁶ is 4 or 5), n⁷ is 2, 3, 4, or 5 (preferably n⁷ is 2, 3 or 4), n⁸ and n⁹ and n¹⁰

independently are 2 or 3 (independently preferably 2) and X^{12} is O or NR^{14a} wherein R^{14a} is H, C_{1-2} alkyl or C(O)Me (preferably H or C_{1-2} alkyl);

R¹⁵ is a hydrogen atom (H); C₁₋₄alkyl (e.g. ^tBu or C₁₋₂alkyl e.g. methyl);
C₃₋₆cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom,
C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

 R^{15a} , independent of other R^{15a} , is a hydrogen atom (H) or C_{1-4} alkyl (e.g. H, 'Bu or C_{1-2} alkyl such as methyl; preferably R^{15a} is H or C_{1-2} alkyl, more preferably H);

R16 and R16a independently are:

10

15

25

30

35

C1-6alkyl (e.g. C1-4alkyl or C1-2alkyl);

C₃₋₆cycloalkyl (e.g. C₅₋₆cycloalkyl) optionally substituted by one oxo (=O), OH or C₁₋₂alkyl substituent (e.g. optionally substituted at the 3- or 4-position of a C₅₋₆cycloalkyl ring; and/or preferably unsubstituted C₁₋₆cycloalkyl);

C3_6cycloalkyl-CH2- (e.g. C5_6cycloalkyl-CH2-);

pyridinyl (e.g. pyridin-2-yl) optionally substituted on a ring carbon atom by one of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

Ar^{5c};

20 phenyl optionally substituted by one or two of: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy;

benzyl optionally substituted at an aromatic carbon atom by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; or

- a 4-, 5-, 6- or 7-membered saturated heterocyclic ring connected at a ring-carbon and containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-nitrogens which are present are present as NR27 where R27 is H, C1-2alkyl or -C(O)Me; and wherein the ring is optionally substituted at carbon by one C1-2alkyl or oxo (-O) substituent, provided that any oxo (-O) substituent is substituted at a ring-carbon atom bonded to a ring-nitrogen;
- wherein Ar^{5a}, Ar^{5b} and Ar^{5c} independently is/are a 5-membered aromatic heterocyclic ring containing one O, S or NR^{15a} in the 5-membered ring, wherein the 5-membered ring can optionally additionally contain one or two N atoms, and wherein the heterocyclic ring is optionally substituted on a ring carbon atom by one of: a halogen atom, C1-2alkyl, C1fluoroalkyl, -CH2OH, -CH2-OC1-2alkyl, OH (including the keto tautomer thereof) or

 $-\mathrm{CH}_2\text{-NR}^{28}\mathrm{R}^{29}$ wherein R^{28} and R^{29} independently are H or methyl;

and R^{17} is a hydrogen atom (H); C_{1-4} alkyl (e.g. C_{1-2} alkyl); C_{1-2} fluoroalkyl; C_{3-6} cycloalkyl; $-(CH_2)_p^6$ - $C(O)R^{16}$ wherein p^6 is 0, 1, 2 or 3 (preferably p^6 is 0);

-(CH₂)_p6-C(O)NR¹²R¹³; -(CH₂)_p6-C(O)OR¹⁶; -(CH₂)_p6-C(O)OH; -SO₂R¹⁶; -C(O)-CH₂-NR¹²R¹³; -C(O)-CH₂-NR¹⁵a-C(O)-C₁-3alkyl; -C(O)-CH₂-O-C₁-3alkyl; or phenyl or benzyl wherein the phenyl or benzyl is optionally substituted at an aromatic carbon atom by one or two of: a halogen atom, C₁-2alkyl, C₁fluoroalkyl, C₁-2alkoxy or C₁fluoroalkoxy;

 R^{19} is C_{1_4} alkyl; -(CH₂) $_n^{20}$ -OR²⁰ wherein n^{20} is 1, 2, 3 or 4 and R^{20} is a hydrogen atom (H) or C_{1_4} alkyl; -CH(Me)-OH; -CH₂-SH; -CH₂-CH₂-S-Me; benzyl; or (4-hydroxyphenyl)methyl (i.e. 4-hydroxy-benzyl); and

 $R^{30},$ independent of other $R^{30},$ is a hydrogen atom (H), $C_{1-4} \text{alkyl}$ or $C_{3-6} \text{cycloalkyl};$ and

Het¹, independent of other Het¹, is a 4-, 5-, 6- or 7-membered saturated heterocyclic ring connected at a ring-carbon and containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-nitrogens which are present are present as NR³¹ where R³¹ is H, C₁₋₂alkyl or -C(O)Me; and wherein the ring is optionally substituted at carbon by one C₁₋₂alkyl or oxo (=O) substituent, provided that any oxo (=O) substituent is substituted at a ring-carbon atom bonded to a ring-nitrogen;

20

10

provided that: when R^3 is the heterocyclic group of sub-formula (bb), n^1 is 1, and Y is NR^{10} , then: either (a) R^{10} is not $C_{1.48}$ lkyl, $C_{1.27}$ luoroalkyl or CH_2 C(O)NH2:

25 or (b) R¹⁰ is methyl and the compound is: 1-ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide or 1-ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

30

Preferably, where X is OR^{5a} , the compound is other than the compound wherein R^1 is methyl, X is OEt, and R^3 is cyclopentyl.

35

In one optional embodiment of the invention, R^1 is C_{1-4} alkyl or C_{1-2} fluoroalkyl. Alternatively or additionally, in one optional embodiment of the invention, R^2 is a hydrogen atom (H).

10

15

20

30

Alternatively or additionally, in one optional embodiment of the invention, R3 is

C3_gcycloalkyl or a heterocyclic group being

is O, S, SO₂, or NR 10 ; where R 10 is hydrogen, C₁₋₄alkyl, C₁₋₂fluoroalkyl, C(O)-C₁₋₂alkyl, or C(O)-CF₃;

and wherein in R³ the C₃₋₈cycloalkyl or heterocyclic group is optionally substituted with one or two substituents being OH, C₁₋₂alkoxy, trimethoxy, or C₁₋₂alkyl; and wherein any OH, alkoxy or trimethoxy substituent is not substituted at the (R³) ring carbon attached (bonded) to the -NH- group of formula (I) and is not substituted at either (R³) ring carbon bonded to the Y group of the heterocyclic group.

Alternatively or additionally, in one optional embodiment of the invention, R⁴ is hydrogen, C₁₋₂alkyl or C₁₋₂fluoroalkyl.

Alternatively or additionally, in one optional embodiment of the invention, R⁵ is hydrogen, C_{1.8}alkyl, C_{1.8} fluoroalkyl, or C_{3.8}eycloalkyl; or phenyl optionally substituted with one or two of: a halogen atom, C_{1.2}alkyl, trifluoromethyl, C_{1.2}alkoxy or trifluoromethoxy. or R⁵ has the sub-formula (x), (v) or (z):

wherein in sub-formula (x), n = 1 or 2; in sub-formula (y), m = 1 or 2; and in sub-formula (z), r = 1 or 2;

wherein in sub-formula (x) and (y), none, one or two of A, B, D, E and F are nitrogen; and the remaining of A, B, D, E and F are CH or CR^6 where R^6 is a halogen atom, C_{1-4} alkyl, C_{1-4} fluoroalkyl, C_{1-2} alkoxy, C_{1-2} fluoroalkyl, C_{1-2} alkyl-SO₂-), C_{1-2} alkyl-SO₂-NH-, R^7R^8 N-SO₂-, R^7R^8 N-CO-, R^7R^8 N, OH,

25 C₁₋₄alkoxymethyl, or C₁₋₂alkyl-SO₂-CH₂-, wherein R⁷ and R⁸ are independently hydrogen or C₁₋₂alkyl;

wherein in sub-formula (z), G is O or S or NR^9 wherein R^9 is C_{1_4} alkyl or C_{1_4} fluoroalkyl; none, one or two of J, L, M and Q are nitrogen; and the remaining of J, L. M and O are CH or CR^6 where R^6 is as defined herein.

In the alternative to the above R^4 and/or R^5 optional embodiments, in one optional embodiment of the invention, R^4 and R^5 taken together can be $-(\mathrm{CH_2})_p^{1}$ where $p^1=3$, 4 or 5 (preferably $p^1=4$ or 5).

10

15

20

25

30

35

In one optional embodiment of the invention, \mathbb{R}^3 is optionally substituted C_{3-8} eycloally or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc):

$$\bigvee_{n^1} \quad \text{or} \quad \bigvee_{n^2} n^2$$

in which n^1 and n^2 independently are 1 or 2; and in which Y is O, S, SO₂, or NR¹⁰; where R¹⁰ is a hydrogen atom (H), C₁₋₄alkyl (e.g. methyl or ethyl), C₁₋₂fluoroalkyl, CH₂C(O)NH₂, C(O)NH₂, C(O)-C₁₋₂alkyl, or C(O)-C₁fluoroalkyl;

and wherein in \mathbb{R}^3 the \mathbb{C}_{3-S} eycloalkyl or the heterocyclic group of sub-formula (aa), (bb) or (cc) is optionally substituted with one or two substituents being oxo (=O), OH, \mathbb{C}_{1-2} alkoxy, \mathbb{C}_{1-2} fluoromalkoxy (e.g. trifluoromethoxy), or \mathbb{C}_{1-2} alkyl; and wherein any OH, alkoxy or fluoromethoxy substituent is not substituted at the \mathbb{R}^3 ring carbon attached (bonded) to the -NH- group of formula (I) and is not substituted at either \mathbb{R}^3 ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc).

Alternatively or additionally to the above optional R^3 definition, in one optional embodiment of the invention, X is NR^4R^5 or OR^{5a} , in which:

 R^4 is a hydrogen atom (H); C_{1-6} alkyl; C_{1-3} fluoroalkyl; or C_{2-6} alkyl substituted by one substituent R^{11} ; and

 R^5 is a hydrogen atom (H); C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} cycloalkyl optionally substituted by a C_{1-2} alkyl group; or $-(CH_2)_n^4$ - C_{3-8} cycloalkyl optionally substituted, in the $-(CH_2)_n^4$ - moiety or in the C_{3-8} cycloalkyl moiety, by a C_{1-2} alkyl group, wherein n^4 is 1, 2 or 3;

or R⁵ is C₂₋₆alkyl substituted by one or two independent substituents R¹¹;

wherein each substituent R^{11} , independently of any other R^{11} substituent present, is: hydroxy (OH); C_{1-6} alkoxy; phenyloxy; benzyloxy; -NR 12 R 13 ; -NR 15 -C(O)R 16 ; -NR 15 -C(O)-O-R 16 ; -NR 15 -C(O)-NH-R 15 ; or -NR 15 -SO $_2$ R 16 ; and wherein any R 11 substituent which is OH, alkoxy or -NR 12 R 13 is not substituted at any carbon atom, of any R 4 or R 5 substituted alkyl, which is bonded to the nitrogen of NR 4 R 5 ;

15

20

25

30

or R^5 is -(CH₂)_n11-C(O)R¹⁶; -(CH₂)_n12-C(O)NR¹²R¹³; -CHR¹⁹-C(O)NR¹²R¹³; -(CH₂)_n12-C(O)OR¹⁶; -CHR¹⁹-C(O)OR¹⁶; -(CH₂)_n12-SO₂-NR¹²R¹³; -(CH₂)_n12-SO₂R¹⁶; or -(CH₂)_n12-CN; wherein n¹¹ is 0, 1, 2, 3 or 4 and n¹² is 1, 2, 3 or 4:

or R^5 is -(CH2) $_n^{13}$ -Het wherein n^{13} is 0, 1, 2, 3 or 4 and Het is a 4-, 5-, 6- or 7-membered saturated or partly-saturated heterocyclic ring containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-hetero-atoms present are not bound to the -(CH2) $_n^{13}$ - moiety when n^{13} is 1 and are not bound to the nitrogen of NR⁴R⁵ when n^{13} is 0; wherein any ring-nitrogens which are present and which are not unsaturated (i.e. which do not partake in a double bond) are present as NR¹⁷ where R¹⁷ is as defined herein; and wherein one or two of the carbon ring-atoms independently are optionally substituted by C₁-2alkyl;

or \mathbb{R}^5 is phenyl optionally substituted with one or two of: a halogen atom; C_{1-4} alkyl (e.g. C_{1-2} alkyl); C_{1-2} fluoroalkyl (e.g. trifluoromethyl); C_{1-4} alkoxy (e.g. C_{1-2} alkoxy); C_{1-2} fluoroalkoxy (e.g. trifluoromethoxy); C_{1-2} alkyl-sluphonyl (C_{1-2} alkyl-SO₂-); C_{1-2} alkyl-SO₂-NH-; $\mathbb{R}^7\mathbb{R}^8\mathbb{N}$ -SO₂-; $\mathbb{R}^7\mathbb{R}^8\mathbb{N}$ -CO-; -NR¹⁵-C(O) \mathbb{R}^{16} ; $\mathbb{R}^7\mathbb{R}^8\mathbb{N}$; OH; C_{1-4} alkoxymethyl; C_{1-4} alkoxyethyl; C_{1-2} alkyl-SO₂-CH₂-; cyano (CN); or phenyl optionally substituted by one or two of fluoro, chloro, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

wherein R^7 and R^8 are independently a hydrogen atom (H); C_{1-4} alkyl (e.g. C_{1-2} alkyl such as methyl); C_{3-6} cycloalkyl; or phenyl optionally substituted by one or two of: fluoro, chloro, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; or R^7 and R^8 together are $-(CH_2)_n^6$ - or $-C(O)-(CH_2)_n^7$ - or $-C(O)-(CH_2)_n^7$ --C(O)- or $-(CH_2)_n^8$ -X 7 - $-(CH_2)_n^9$ - or -C(O)-X 7 - $-(CH_2)_n^{10}$ - in which: n^6 is 3, 4, 5 or 6, n^7 is 2, 3, 4, or 5 (preferably n^7 is 2, 3 or 4), n^8 and n^9 and n^{10} independently are 2 or 3, and X^7 is 0 or NR^{14} wherein R^{14} is H or C_{1-2} alkyl:

or R⁵ has the sub-formula (x), (v) or (z):

wherein in sub-formula (x), n = 1 or 2; in sub-formula (y), m = 1 or 2; and in sub-formula (z), r = 0, 1 or 2;

wherein in sub-formula (x) and (y), none, one or two of A, B, D, E and F are nitrogen; and the remaining of A, B, D, E and F are independently CH or CR6;

where R^6 is a halogen atom; C_{1-4} alkyl (e.g. C_{1-2} alkyl); C_{1-4} fluoroalkyl (e.g. C_{1-2} fluoroalkyl); C_{1-4} alkoxy (e.g. C_{1-2} alkoxy); C_{1-2} fluoroalkoxy; C_{1-2} alkylsulphonyl (C_{1-2} alkyl-SO₂-); C_{1-2} alkyl-SO₂-NH-; R^7R^8N -SO₂-; R^7R^8N -CO-; - NR^{15} -C(O)R¹⁶; R^7R^8N ; OH; C_{1-4} alkoxymethyl; C_{1-4} alkoxyethyl; C_{1-2} alkyl-SO₂-CH₂-; cyano (CN); or phenyl optionally substituted by one or two of fluoro, chloro, C_{1-2} alkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; wherein R^7 and R^8 are as herein defined:

10

15

25

30

35

wherein in sub-formula (z), G is O or S or NR^9 wherein R^9 is a hydrogen atom (H), C_{1-4} alkyl or C_{1-4} fluoroalkyl; none, one, two or three of J, L, M and Q are nitrogen; and the remaining of J, L, M and Q are independently CH or CR^6 where R^6 is as defined herein;

or \mathbb{R}^4 and \mathbb{R}^5 taken together are $-(CH_2)_p^1 - \text{or} - C(O) - (CH_2)_p^2 - \text{or} - (CH_2)_p^3 - X^5 - (CH_2)_p^4 - \text{or} - C(O) - X^5 - (CH_2)_p^5 -, in which: <math>\mathbb{P}^1 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^2 = 4 \text{ or } 5$), $\mathbb{P}^2 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^2 = 3, 4, 5 \text{ or } 6$) (preferably $\mathbb{P}^2 = 3, 4, 5 \text{ or } 6$) (preferably $\mathbb{P}^2 = 3, 4, 5 \text{ or } 6$) and $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$. In $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$ (preferably $\mathbb{P}^3 = 3, 4, 5 \text{ or } 6$) independently are $\mathbb{P}^3 =$

$$\begin{split} &C_{3-6} \text{cycloalkyl}; \ -(CH_2)_p^6 - C(O)R^{16} \text{ wherein } p^6 \text{ is } 0, 1, 2 \text{ or } 3 \text{ (preferably } p^6 \text{ is } 0); \\ -(CH_2)_p^6 - C(O)NR^{12}R^{13}; \ -(CH_2)_p^6 - C(O)OR^{16}; \ -SO_2R^{16}; \text{ or phenyl or benzyl wherein } \\ \text{the phenyl or benzyl is optionally substituted at an aromatic carbon atom by one or two of: a halogen atom, C_{1-2}alkyl, C_{1}fluoroalkyl, C_{1-2}alkoxy \text{ or } C_{1}fluoroalkoxy; \end{split}$$

and wherein, when \mathbb{R}^4 and \mathbb{R}^5 taken together are $-(\operatorname{CH}_2)_p^{1-}$ or $-\operatorname{C(O)}$ $-(\operatorname{CH}_2)_p^{2-}$, the $\operatorname{NR}^4\mathbb{R}^5$ heterocycle is optionally substituted by one \mathbb{R}^{18} substitutent wherein \mathbb{R}^{18} is: C_{1-4} alkyl (e.g. C_{1-2} alkyl); C_{1-2} fluoroalkyl; C_{3-6} eycloalkyl; C_{1-2} alkoxy (not substituted at a ring-carbon bonded to the $\operatorname{NR}^4\mathbb{R}^5$ ring-nitrogen); CH fluoroalkoxy (not substituted at a ring-carbon bonded to the $\operatorname{NR}^4\mathbb{R}^5$ ring-nitrogen); OH (not substituted at a ring-carbon bonded to the $\operatorname{NR}^4\mathbb{R}^5$ ring-nitrogen); $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CO)}\mathbb{R}^{16}$ wherein \mathbb{P}^7 is 0, 1, 2 or 3 (preferably \mathbb{P}^7 is 0 or 1); $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CO)}\mathbb{R}^{16}$; $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CO)}\mathbb{R}^{16}$; $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CN})\mathbb{R}^{1-2}\mathbb{R}^{13}$; $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CN})\mathbb{R}^{1-2}\mathbb{R}^{13}$; $-(\operatorname{CH}_2)_p^{7-}$ $-(\operatorname{CH}_$

PCT/EP2003/011814

substituted by one or two of; a halogen atom, C1_2alkyl, C1 fluoroalkyl, C1_2alkoxy or C₁fluoroalkoxy;

or R4 and R5 taken together are -(CH2)p1- or -C(O)-(CH2)p2- or -(CH₂)_n³-X⁵-(CH₂)_n⁴- or -C(O)-X⁵-(CH₂)_n⁵- as defined herein, and wherein the NR⁴R⁵ heterocycle is fused to a phenyl ring optionally substituted on the phenyl by one or two of: a halogen atom, C1, 2alkyl, C1 fluoroalkyl, C1, 2alkoxy or C1 fluoroalkoxy; and

R5a is C1_8alkyl; C1_8 fluoroalkyl; C3_8cycloalkyl; phenyl optionally substituted with one or two of: a halogen atom, C1_2alkyl, trifluoromethyl, C1_2alkoxy or 10 trifluoromethoxy; or R5a has the sub-formula (x), (v) or (z) as defined herein

and wherein:

35

R12 and R13 independently are H; C1_5alkyl (e.g. C1_2alkyl); C3_6cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C1-2alkyl, C1 fluoroalkyl, C1_2alkoxy or C1fluoroalkoxy;

or R12 and R13 together are -(CH2)n6- or -C(O)-(CH2)n7- or -C(O)-(CH2)n7-C(O)- or $-(CH_2)_n^8 - X^{12} - (CH_2)_n^9 - \text{ or } -C(O) - X^{12} - (CH_2)_n^{10} - \text{ in which: } n^6 \text{ is } 3, 4, 5 \text{ or } 6$ 20 (preferably n⁶ is 4 or 5), n⁷ is 2, 3, 4, or 5 (preferably n⁷ is 2, 3 or 4), n⁸ and n⁹ and n¹⁰ independently are 2 or 3 (independently preferably 2) and X12 is O or NR14 wherein R^{14} is H or C_{1-2} alkyl;

R¹⁵ is a hydrogen atom (H); C₁₋₄alkyl (e.g. ^tBu or C₁₋₂alkyl e.g. methyl); C2_ccvcloalkyl; or phenyl optionally substituted by one or two of: a halogen atom. C1_2alkyl, C1 fluoroalkyl, C1_2alkoxy or C1 fluoroalkoxy;

R16 is C1_4alkyl (e.g. C1_2alkyl); C3_6cycloalkyl; pyridinyl (e.g. pyridin-2-yl); or phenyl optionally substituted by one or two of: a halogen atom, C₁₋₂alkyl, C₁ fluoroalkyl, C1-2alkoxy or C1fluoroalkoxy; and

R¹⁹is C₁ Aalkyl: -(CH₂)_r²⁰-OR²⁰ wherein n²⁰ is 1, 2, 3 or 4 and R²⁰ is a hydrogen atom (H) or C1_Aalkvl; -CH(Me)-OH; -CH2-SH; -CH2-CH2-S-Me; benzyl; or (4-hydroxyphenyl)methyl (i.e. 4-hydroxy-benzyl).

15

20

25

30

35

40

WO 2004/024728 PCT/EP2003/011814

In compounds, for example in the compounds of formula (I) (or formula (IA) or formula (IB), see later), an "alkyl" group or moiety may be straight-chain or branched. Alkyl groups, for example C_{1-2} alkyl or C_{1-4} alkyl or C_{1-4} alkyl or C_{1-2} alkyl, which may be employed include C_{1-6} alkyl or C_{1-4} alkyl or C_{1-2} alkyl such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, or n-hexyl or any branched isomers thereof such as isopropyl, t-butyl, sec-butyl, isobutyl, 3-methylbutan-2-yl, 2-ethylbutan-1-vl, or the like.

A corresponding meaning is intended for "alkoxy", "alkylene", and like terms derived from alkyl. For example, "alkoxy" such as C_{1-c}alkoxy or C₁₋₂alkoxy or C₁₋₂alkoxy or C₁₋₂alkoxy entoxy, ethoxy, propyloxy, and oxy derivatives of the alkyls listed above. "Alkylsulfonyl" such as C₁₋₄alkylsulfonyl includes methylsulfonyl (methanesulfonyl), ethylsulfonyl, and others derived from the alkyls listed above. "Alkylsulfonyloxy" such as C₁₋₄alkylsulfonyloxy includes methanesulfonyloxy (methylsulfonyloxy), ethanesulfonyloxy, et al.

"Cycloalkyi," for example C₃₋₈cycloalkyl, includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl, and the like. Preferably, a C₃₋₈cycloalkyl group is C₃₋₆cycloalkyl or C₅₋₆cycloalkyl, that is contains a 3-6 membered or 5-6 membered carbocyclic ring.

"Fluoroalkyl" includes alkyl groups with one, two, three, four, five or more fluorine substituents, for example C_{1-4} fluoroalkyl or C_{1-2} fluoroalkyl or C_{1-2} fluoroalkyl such as monofluoromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl (CF3CH2-), 2,2-difluoroethyl (CHF2CH2-), 2-fluoroalkoxyl (CH2FCH2-), etc. "Fluoroalkoxy" includes C_{1-4} fluoroalkoxy or C_{1-2} fluoroalkoxy such as trifluoromethoxy, pentafluoroethoxy, monofluoromethoxy, difluoromethoxy, etc. "Fluoroalkylsulfonyl" such as C_{1-4} fluoroalkylsulfonyl includes trifluoromethanesulfonyl, pentafluoroethylsulfonyl, etc.

A halogen atom ("halo") present in compounds, for example in the compounds of formula (I), can be a fluorine, chlorine, bromine or iodine atom ("fluoro", "chloro", "bromo" or "iodo").

When the specification states that atom or moiety A is "bonded" or "attached" to atom or moiety B, it means that atom/moiety A is directly bonded to atom/moiety B usually by means of one or more covalent bonds, and excludes A being indirectly attached to B via one or more intermediate atoms/moieties (e.g. excludes A-C-B); unless it is clear from the context that another meaning is intended.

Preferably, \mathbb{R}^1 is C_{1-4} alkyl (e.g. methyl, ethyl, n-propyl, isopropyl or n-butyl), C_{1-3} fluoroalkyl or $-CH_2CH_2OH$; \mathbb{R}^1 is more preferably C_{1-3} alkyl (e.g. methyl, ethyl or n-propyl), C_{1-2} fluoroalkyl, or $-CH_2CH_2OH$; still more preferably C_{1-3} alkyl, C_2 fluoroalkyl or $-CH_2CH_2OH$ such as methyl, ethyl, n-propyl or $-CH_2CH_2OH$. Yet more preferably, \mathbb{R}^1 is C_{2-3} alkyl (e.g. ethyl or n-propyl), C_2 fluoroalkyl (e.g.

PCT/EP2003/011814

C1fluoroalkyl-CH2- such as CF3-CH2-) or -CH2CH2OH; in particular ethyl, n-propyl or -CH2CH2OH. R1 is most preferably ethyl.

Preferably, R² is a hydrogen atom (H) or methyl, more preferably a hydrogen atom (H).

Preferably, in R³ there is one substituent or no substituent.

5

10

15

20

In one optional embodiment, R3 is the optionally substituted C3_gcycloalkyl or the optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc). In this embodiment, optionally, in R3, the C3_gcycloalkyl or the heterocyclic group of subformula (aa), (bb) or (cc) is optionally substituted with one or two substituents independently being (e.g. being) oxo (=O), OH, C1-2alkoxy, C1-2fluoroalkoxy (e.g. trifluoromethoxy), or C1-2alkyl; and wherein any OH, alkoxy or fluoroalkoxy substituent is not substituted at the R3 ring carbon attached (bonded) to the -NH- group of formula (I) and is not substituted at either R³ ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc).

In one optional embodiment, where R³ is optionally substituted C₃ scycloalkyl, it is not optionally substituted Cscycloalkyl, i.e. not optionally substituted cyclopentyl. In this case, more preferably, R3 is optionally substituted C6_2cycloalkyl.

Where R³ is optionally substituted C₃₋₈cycloalkyl, it is more preferably optionally substituted C₆cycloalkyl (i.e. cyclohexyl); for example C₆cycloalkyl optionally substituted with one or two substituents independently being (e.g. being) oxo (=O), OH, 25 C₁₋₂alkoxy, C₁₋₂fluoroalkoxy (e.g. trifluoromethoxy), or C₁₋₂alkyl, and wherein any OH, alkoxy or fluoroalkoxy substituent is not substituted at the R³ ring carbon attached (bonded) to the -NH- group of formula (I).

Where R³ is optionally substituted C₃₋₈cycloalkyl, the one or two optional substituents preferably comprise (e.g. is or independently are (e.g. is or are)) oxo (=O); OH; 30 C₁ alkoxy; C₁ fluoroalkoxy (e.g. trifluoromethoxy); NHR²¹ wherein R²¹ is a hydrogen atom (H) or C1-2 straight-chain alkyl; C1-2alkyl such as methyl; C1 fluoroalkyl such as -CH2F or -CHF2; -CH2OH; -CH2NHR22 wherein R22 is H; -C(O)OR23 wherein R23 is H or methyl: -C(O)NHR²⁴ wherein R²⁴ is H or methyl: -C(O)R²⁵ wherein R²⁵ is methyl; fluoro; hydroxyimino (=N-OH); or (C1-2alkoxy)imino (=N-OR26 where R26 is 35 C₁₋₂alkyl); and wherein any OH, alkoxy, fluoroalkoxy or NHR²¹ substituent is not substituted at the R3 ring carbon attached (bonded) to the -NH- group of formula (I) and is not substituted at either R³ ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc).

More preferably, where R^3 is optionally substituted C_{3-8} cycloalkyl, the one or two optional substituents comprise (e.g. is or independently are (e.g. is or are)) oxo (=0); OH; NHR²¹ wherein R^{21} is a hydrogen atom (H); C_{1-2} alkyl such as methyl; C_{1} fluoroalkyl such as -CH₂F or -CHF₂; -C(O)OR²³ wherein R^{23} is H or methyl; -C(O)NHR²⁴ wherein R^{24} is H or methyl; fluoro; hydroxyimino (=N-OH); or (C_{1-2} alkoxy)imino (=N-OR²⁶ where R^{26} is C_{1-2} alkyl).

Still more preferably, where R³ is optionally substituted C₃₋₈cycloalkyl, the one or two
optional substituents comprise (e.g. is or independently are (e.g. is or are)) oxo (=O); OH;
NHR²¹ wherein R²¹ is a hydrogen atom (H); methyl; -CH₂F; -CHF₂; -C(O)OR²³
wherein R²³ is H; fluoro; hydroxyimino (=N-OH); or (C₁₋₂alkoxy)imino (=N-OR²⁶
where R²⁶ is C₁₋₂alkyl). Yet more preferably, where R³ is optionally substituted
C₃₋₈cycloalkyl, the one or two optional substituents comprise (e.g. is or independently

15 are (e.g. is or are)) oxo (=O); OH; methyl; fluoro; hydroxyimino (=N-OH); or
(C₁₋₂alkoxy)imino (=N-OR²⁶ where R²⁶ is C₁₋₂alkyl).

Most preferably, where \mathbb{R}^3 is optionally substituted \mathbb{C}_{3-8} cycloalkyl, the one or two optional substituents comprise (e.g. is or independently are (e.g. is or are)) OH, oxo (=0) or oximo (=N-OH). For example, the one or two optional substituents can comprise (e.g. is or are) OH and/or oxo (=0).

Optionally, in R3, the C3_gcycloalkyl can be unsubstituted.

20

35

25 Where R³ is optionally substituted C₃₋₈cycloalkyl, e.g. optionally substituted C₅₋₈cycloalkyl such as optionally substituted C₆cycloalkyl (optionally substituted cyclohexyl), the one or two optional substituents if present preferably comprise a substituent (for example is or are substituent(s)) at the 3-, 4- or 5- position(s) of the R³ cycloalkyl ring. (In this connection, the 1-position of the R³ cycloalkyl ring is deemed to be the connection point to the -NH- in formula (f)).

Where R³ is optionally substituted C₃₋₈cycloalkyl, any OH, alkoxy, fluoroalkoxy,
-CH₂OH, -CH₂CH₂OH, -CH₂NHR²², -C(O)OR²³, -C(O)NHR²⁴, -C(O)R²⁵ or fluoro
substituent (particularly any OH substituent) is more preferably at the the 3-, 4- or 5position, e.g. 3- or 5-position, of the R³ cycloalkyl (e.g. C₆₋₈cycloalkyl) ring. For
example, any OH, alkoxy, fluoroalkoxy, -CH₂OH, -CH₂CH₂OH, -CH₂NHR²²,
-C(O)OR²³, -C(O)NHR²⁴, -C(O)R²⁵ or fluoro substituent (particularly any OH
substituent) can be at the 3-position of a R³ Ccycloalkyl (cyclopentyl) ring or at the 3-,

4- or 5- position, e.g. 3- or 5-position, of a R³ C₆cycloalkyl (cyclohexyl) ring. (In this connection, and also below, the 1-position of the R³ cycloalkyl ring is deemed to be the connection point to the -NH- in formula (II).

5 Where R³ is optionally substituted C₃₋₈cycloalkyl, any NHR²¹ substituent is preferably at the 2-, 3-, 4- or 5- position, preferably the 2- or 3-position or more preferably the 3-position, of the R³ cycloalkyl (e.g. C₆₋₈cycloalkyl e.g. cyclohexyl) ring.

Where R^3 is optionally substituted $C_{3\text{--}gcycloalkyl}$, any alkyl or fluoroalkyl substituent is preferably at the 1-, 2-, 3-, 4- or 5- position, more preferably the 1-, 2-, 3- or 5-position, still more preferably the 1- or 3-position, of the R^3 cycloalkyl (e.g. $C_{6\text{--}gcycloalkyl}$ e.g. cyclohexyl) ring,

10

Where R³ is optionally substituted C₃₋₈cycloalkyl, any oxo (=O), hydroxyimino (=N-OH); or (C₁₋₄alkoxy)imino (=N-OR²⁶) substituent is preferably at the 3- or 4-position, preferably at the 4-position, of the R³ cycloalkyl (e.g. C₆₋₈cycloalkyl e.g. cyclohexyl) ring.

Where R³ is optionally substituted C_{3-g}cycloalkyl, R³ is preferably cyclohexyl (i.e. unsubstituted), or cyclohexyl substituted by one oxo (=O), OH, NHR²¹, C₁₋₂alkyl, C₁₋₂filuoroalkyl, -CH₂OH, -C(O)OR²³, -C(O)NHR²⁴, -C(O)R²⁵, fluoro, hydroxyimino (=N-OH), (C₁₋₄alkoxy)imino (=N-OR²⁶) substituent, or cyclohexyl substituted by two fluoro substituents. More preferably, R³ is cyclohexyl (i.e. unsubstituted), or cyclohexyl substituted by one oxo (=O), OH, NHR²¹, C₁₋₂alkyl, C₁₋₂fluoroalkyl, -C(O)OR²³,

25 fluoro, hydroxyimino (=N-OH) or (C₁₋₄alkoxy)imino (=N-OR²⁶) substituent, or cyclohexyl substituted by two fluoro substituents. Still more preferably R³ is cyclohexyl (i.e. unsubstituted) or cyclohexyl substituted by one oxo (=O), hydroxyimino (=N-OH), C₁₋₂alkyl or OH substituent. The optional substituent can be at the 3- or 4- position, e.g. 3-position, of the R³ cyclohexyl ring; more preferably any OH substituent is preferably at the 3-position of the R³ cyclohexyl ring, and/or any oxo (=O), hydroxyimino (=N-OH) or (C₁₋₄alkoxy)imino (=N-OR²⁶) substituent is preferably at the 4-position of the R³ cyclohexyl ring.

Where R³ is optionally substituted C₆cycloalkyl, R³ can for example be 4-hydroxy35 cyclohexyl (i.e. 4-hydroxycyclohexan-1-yl), but R³ is more preferably cyclohexyl (i.e.
unsubstituted), 3-hydroxy-cyclohexyl (i.e. 3-hydroxycyclohexan-1-yl), 4-oxo-cyclohexyl
(i.e. 4-oxocyclohexan-1-yl), 4-(hydroxyimino)cyclohexyl (i.e.
4-(hydroxyimino)cyclohexan-1-yl), 1-(-1-2alkoxyimino)cyclohexyl, 1-methylcyclohexyl

or 3-methylcyclohexyl. Where R^3 is optionally substituted C_6 cycloalkyl, R^3 is most preferably cyclohexyl (i.e. unsubstituted), 4-oxo-cyclohexyl (i.e. 4-oxocyclohexan-1-yl) or 4-(hydroxyimino)cyclohexyl (i.e. 4-(hydroxyimino)cyclohexan-1-yl).

5 Where R³ is optionally substituted C₅cycloalkyl (optionally substituted cyclopentyl), R³ can for example be evclopentyl (i.e. unsubstituted) or 3-hydroxy-cyclopentyl.

Where \mathbb{R}^3 is optionally substituted mono-unsaturated-C₅₋₇cycloalkenyl, preferably it is optionally substituted mono-unsaturated-C₅₋₆cycloalkenyl, more preferably optionally substituted mono-unsaturated-C₆cycloalkenyl (i.e. optionally substituted mono-unsaturated-cyclohexenyl = optionally substituted cyclohexenyl). Still more preferably, the \mathbb{R}^3 cyclohexenyl is optionally substituted cyclohex-3-en-1-yl.

10

25

30

35

Where R³ is optionally substituted mono-unsaturated-C₅₋₇cycloalkenyl, preferably the

R³ cycloalkenyl is optionally substituted with one or two substituents being fluoro or
methyl provided that if there are two substituents then they are not both methyl.

Preferably, the R³ cycloalkenyl is optionally substituted with one substituent being fluoro
or C₁₋₂alkyl (e.g. methyl); more preferably the R³ cycloalkenyl is substituted with one
fluoro substituent or is unsubstituted. For R³ cycloalkenyl, the optional substituent(s) can
be at the 1-, 2-, 3-, 4- or 5- position(s) of the cycloalkenyl ring.

Where \mathbb{R}^3 is the heterocyclic group of sub-formula (aa), (bb) or (cc), then Y is preferably O, S, SO₂, NH or N-C(O)methyl, more preferably O, NH or N-C(O)methyl, still more preferably O or N-C(O)methyl, most preferably O. (When Y is NH or N-C(O)methyl, then \mathbb{R}^{10} is H or C(O)methyl).

Preferably, R^{10} is a hydrogen atom (H), methyl, ethyl, $C(O)NH_2$, C(O)methyl or $C(O)-CF_3$. Optionally, R^{10} can be a hydrogen atom (H), methyl, ethyl, C(O)methyl or $C(O)-CF_3$, more preferably H, C(O)methyl or $C(O)-CF_3$, still more preferably H or C(O)methyl.

Where \mathbb{R}^3 is the heterocyclic group of sub-formula (aa), (bb) or (cc), then it is preferable that \mathbb{R}^3 is the heterocyclic group of sub-formula (aa) or (bb), more preferably of sub-formula (bb).

In sub-formula (bb), n^1 is preferably 1. In sub-formula (cc), n^2 is preferably 1. That is, six-membered rings are preferred in the \mathbb{R}^3 heterocyclic group.

Suitably, in \mathbb{R}^3 , the heterocyclic group of sub-formula (aa), (bb) or (cc) is unsubstituted 40 (In this connection, where Y is $\mathbb{N}\mathbb{R}^{10}$, \mathbb{R}^{10} is not classified as a substituent).

In the R³ heterocyclic group of sub-formula (aa), (bb) or (cc), the one or two optional substituents preferably comprise (e.g. is or independently are ((e.g. is or are)) OH; oxo (=O); C1-2alkyl (e.g. methyl) or C1-2fluoroalkyl (e.g. C1fluoroalkyl such as -CH2F or -CHF2). More preferably, in the R3 heterocyclic group of sub-formula (aa), (bb) or (cc), 5 the one or two optional substituents comprise (e.g. is or independently are ((e.g. is or are)) OH and/or oxo; most preferably the one or two optional substituents comprise (e.g. is or are) oxo (=0). In the R³ heterocyclic group of sub-formula (aa), (bb) or (cc), any oxo (=O) substituents are preferably on a carbon atom bonded (adjacent) to X, and/or can be at the 2-, 3-, 4- or 5- position(s) of the R³ heterocyclic ring. (In this connection, the 1position of the R³ heterocyclic ring is deemed to be the connection point to the -NH- in formula (I)). Preferably, only C1-2alkyl, C1-2fluoroalkyl, fluoro or oxo (=0) substitution or no substitution is allowed at each of the 2- and 6-positions of the R3 heterocyclic ring.

When R3 is the heterocyclic group of sub-formula (aa) and Y is NR10, then preferably 15 R¹⁰ is not C(O)-Me. More preferably, when R³ is the heterocyclic group of sub-formula (aa) and Y is NR¹⁰, then R¹⁰ is preferably not C(O)R, i.e. or e.g. R¹⁰ is preferably not C(O)NH2, C(O)-C1-2alkyl or C(O)-C1fluoroalkyl. In one embodiment, Y is O, S, SO2 or NH when R³ is the heterocyclic group of sub-formula (aa).

20

30

10

Optionally, according to one embodiment of the invention, NHR3 is not HN More preferably, when R³ is the heterocyclic group of sub-formula (bb) and Y is NR¹⁰, and optionally when n¹ is 1, then preferably R¹⁰ is not methyl. More preferably, when R³ is the heterocyclic group of sub-formula (bb) and Y is NR¹⁰, and optionally when n¹ is 1, then R10 is preferably not alkyl or substituted alkyl, i.e. or e.g. R10 is preferably not 25 C1_4alkyl (e.g. methyl or ethyl), C1_2fluoroalkyl or CH2C(O)NH2. In one embodiment, when R³ is the heterocyclic group of sub-formula (bb), Y is preferably O, S, SO₂ or NR¹⁰, wherein R¹⁰ is H. C(O)NH₂, C(O)-C₁₋₂alkyl or C(O)-C₁fluoroalkyl, or more preferably Y is H or C(O)Me. More preferably, for sub-formula (bb). Y is O or NR 10.

Where R³ is a bicyclic group of sub-formula (dd) or (ee), preferably it is of sub-formula (ee). In sub-formula (ee), preferably Y^1 , Y^2 and Y^3 are all CH2.

Preferably, NHR³ is of sub-formula (a), (a1), (b), (c), (c 1), (c 2), (c 3), (c 4), (c 5), (c 6), (c 7), (d), (e), (f), (g), (g1), (g2), (g3), (g4), (h), (i), (j), (k), (k1), (L), (m), (m1), (m2), 35 (m3), (m4), (m5), (n), (o), (o1), (o2), (o3), (o4), (o5), (p), (p1), (p2), (p3), (p4), (p5), (p6), (p7), (p8) or (q):

10

15

25

30

In the sub-formulae (a) to (q) etc above, the -NH- connection point of the NHR3 group to the 4-position of the pyrazolopyridine of formula (I) is underlined.

Preferably, NHR³ is of sub-formula (c), (c1), (c2), (c3), (c4), (c5), (c6), (c7), (d), (e), (f), (g1), (g4), (h), (i), (i), (k), (k1), (L), (m), (m1), (m2), (m3), (m5), (n), (o), (o1), (o2), (o3), (o4), (o5), (p), (p2), (p3), (p5), (p6), (p7) or (q). More preferably, NHR³ is of subformula (c), (c1), (c4), (c5), (h), (i), (j), (k), (m1), (m2), (n), (o), (o2), (o3), (p2), (p5), (p6) or (q). Still more preferably, NHR³ is of sub-formula (c), (h), (k), (n), (o) or (o2); for example (c), (h), (o) or (o2). Most preferably, R³ is tetrahydro-2H-pyran-4-yl; that is NHR3 is most preferably of sub-formula (h), as shown above.

According to one embodiment, NHR³ is of sub-formula (a), (b), (c), (d), (e), (f), (g), (g1), (g2), (g3), (h), (i), (i), (k), (L), (m), (m1), (n), (o), (o1), (p) or (q). In this embodiment, preferably, NHR³ is of sub-formula (c), (d), (e), (f), (g1), (h), (i), (j), (k), (m), (m1), (n), (o), (o1), (p), or (q); and more preferably in this embodiment, NHR³ is of sub-formula (c), (h), (i), (i), (k), (m1), (n), (o) or (g). Still more preferably in this embodiment, NHR³ is of sub-formula (c), (h), (k), (n) or (o). Most preferably, R³ is tetrahydro-2H-pyran-4yl; that is NHR³ is most preferably of sub-formula (h), as shown above. 20

According to another embodiment, NHR3 is of sub-formula (a), (b), (c), (d), (e), (f), (g), (h), (i), (i) or (k). In this embodiment, preferably, NHR³ is of sub-formula (c), (d), (e), (f), (h), (i), (i) or (k); and more preferably in this embodiment, NHR³ is of sub-formula (c), (h), (i), (j) or (k). Most preferably, R³ is tetrahydro-2H-pyran-4-vl; that is NHR³ is most preferably of sub-formula (h), as shown above.

When NHR³ is of sub-formula (n), then preferably it is a cis-(3-hydroxycyclohex-1yl)amino group, eg in any enantiomeric form or mixture of forms but preferably racemic.

Preferably, X is NR4R5.

Where R4 is C1_6alkyl, then preferably it is C1_4alkyl or C1_2alkyl. Where R4 is 35 C1_3fluoroalkyl then preferably it is C1_2fluoroalkyl.

Most preferably, R4 is a hydrogen atom (H).

Where R⁴ is C₂₋₆alkyl substituted by one substituent R¹¹, then preferably R⁴ is 40 C2_4alkyl (e.g. C2_3alkyl) substituted by one substituent R11. More preferably, R4 is -(CH₂) $_n$ ³-R¹¹ wherein n³ is 2, 3 or 4. Still more preferably, n³ is 2 and/or R⁴ is -(CH₂) $_n$ ³-OH.

When R^5 is C_{2-6} alkyl substituted by one or two independent substituents R^{11} , it is preferable that R^5 is C_{2-4} alkyl (e.g. C_{2-3} alkyl) substituted by one or two independent substituents R^{11} . When R^5 is C_{2-6} alkyl (e.g. C_{2-4} alkyl or C_{2-3} alkyl) substituted by one or two independent substituents R^{11} , it is preferable that R^5 is C_{2-6} alkyl (e.g. C_{2-4} alkyl or C_{2-3} alkyl) substituted by one substituent R^{11} . It is more preferable that R^5 is $-(CH_2)_n^5-R^{11}$ wherein n^5 is 2, 3 or 4. Preferably n^5 is 2 or 3, more preferably 2.

10

15

25

30

35

Preferably, each substituent R^{11} , independently of any other R^{11} substituent present, is: hydroxy (OII), C_{1-6} alkoxy (e.g. C_{1-4} alkoxy such as t-but/loxy, ethoxy or methoxy); phenyloxy; benzyloxy; -NR¹²R¹³; -NR¹⁵-C(O)R¹⁶; -NR¹⁵-C(O)-NH-R¹⁵; or -NR¹⁵-SO₂R¹⁶ (more preferably C_{1-6} alkoxy, -NR¹⁵-C(O)-NH-R¹⁵, or -NR¹⁵-SO₂R¹⁶; most preferably -NR¹⁵-SO₂R¹⁶). In all cases, any R^{11} substituent which is OH, alkoxy or -NR¹²R¹³ is not substituted at any carbon atom, of any R^4 or R^5 substituted alkyl, which is bonded to the nitrogen of NR⁴R⁵.

Where R^5 is C_{1-8} alkyl, then preferably it is C_{1-5} alkyl or C_{1-3} alkyl. Where R^5 is C_{1-8} fluoroalkyl then preferably it is C_{1-3} fluoroalkyl or C_{1-2} fluoroalkyl. Where R^5 is C_{3-8} cycloalkyl optionally substituted by a C_{1-2} alkyl group, then preferably the C_{3-8} cycloalkyl is not substituted at thing-carbon bonded to the nitrogen of NR^4R^5 . Where R^5 is optionally substituted C_{3-8} cycloalkyl, then more preferably it is C_{3-8} cycloalkyl (i.e. unsubstituted).

When R^5 is optionally substituted -(CH₂)_n⁴-C₃₋₈cycloalkyl wherein n^4 is 1, 2 or 3, then n^4 is preferably 1 or 2 or more preferably 1, and/or preferably R^5 is optionally substituted -(CH₂)_n⁴-C₅₋₆cycloalkyl or optionally substituted -(CH₂)_n⁴-C₆cycloalkyl. When R^5 is optionally substituted -(CH₂)_n⁴-C₃₋₈cycloalkyl, preferably it is not substituted. Most preferably R^5 is (cyclohexyl)methyl-, that is -CH₂-cyclohexyl.

When R^{19} is C_{1-4} alkyl, then preferably it is isobutyl, sec-butyl, or C_{1-3} alkyl such as methyl or isopropyl. When R^{19} is $-(CH_2)_n^{20}$ -OR 20 , then preferably n^{20} is 1 and/or preferably R^{20} is a hydrogen atom (H).

20

30

35

 $\label{eq:when R5 is -(CH_2)_n} When R5 is -(CH_2)_n} (CO)_1 (12-C(O)_1 (12-C)_1 (12-C(O)_1 (12-C)_1 (12-C(O$

 $\label{eq:when R5 is -(CH_2)_n^{11}-C(O)R^{16}; -(CH_2)_n^{12}-C(O)NR^{12}R^{13}; -(CH_2)_n^{12}-C(O)OR^{16}; -(CH_2)_n^{12}-SO_2-NR^{12}R^{13}; -(CH_2)_n^{12}-SO_2R^{16}; or -(CH_2)_n^{12}-CN; then R^5 can for example be -(CH_2)_n^{11}-C(O)R^{16}; -(CH_2)_n^{12}-C(O)NR^{12}R^{13}; or -(CH_2)_n^{12}-CN; preferably -(CH_2)_n^{11}-C(O)R^{16}.$

Preferably, n^{11} is 1, 2, 3 or 4; more preferably n^{11} is 1 or 2. Advantageously, n^{12} is 1 or 2.

When R^5 is -(CH₂)_n13-Het, it is preferable that n^{13} is 0, 1 or 2, more preferably 0 or 1.

Preferably, Het is a 5- or 6-membered saturated or partly-saturated heterocyclic ring and/or preferably is a 4-, 5-, 6- or 7-membered saturated heterocyclic ring. Preferably, the heterocyclic ring Het contains one ring-hetero-atom selected from O, S and N. Preferably, the carbon ring-atoms in Het are not substituted. Het is most preferably one

When R⁵ is optionally substituted phenyl, then preferably it is phenyl optionally substituted with one or two of the substituents defined herein.

When R⁵ is optionally substituted phenyl, then preferably R⁵ is phenyl optionally substituted with, independently, one, two or three (preferably one or two; or one) of: a halogen atom (preferably fluoro and/or chloro); C₁₋₂alkyl; C₁₋₂fluoroakkyl (e.g. trifluoromethox); C₁₋₂alkylsulphonyl (C₁₋₂alkyl-SO₂-); C₁₋₂alkyl-SO₂-NH-; R⁷R⁸N-SO₂-; R⁷R⁸N-CO-; -NR¹⁵-C(O)R¹⁶; R⁷R⁸N; OH; C₁₋₂alkoynethyl; C₁₋₂alkyl-SO₂-CH₂-; cyano (CN); or phenyl optionally substituted by one of fluoro, C₁₋₂alkyl-C₁fluoroalkyl, C₁₋₂alkoyn or C₁fluoroalkoxy. More preferably R⁵ is phenyl optionally substituted with one or two (preferably one) of: a halogen atom, C₁₋₂alkyl, trifluoromethyl, C₁₋₂alkoxy.

trifluoromethoxy, R⁷R⁸N-SO₂-, R⁷R⁸N-CO-, or C₁₋₂alkyl-SO₂-CH₂-. When R⁵ is optionally substituted phenyl, then preferably one or all of the one or two optional substituents are substituted at the *meta*- (3- and/or 5-) and/or *para*- (4-) position(s) of the phenyl ring with respect to the phenyl ring-carbon bonded to the nitrogen of NR⁴R⁵.

Preferably, R^7 and/or R^8 are independently a hydrogen atom (H); C_{1-2} alkyl such as methyl; C_{3-6} cycloalkyl; or phenyl optionally substituted by one of: fluoro, chloro, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; or R^7 and R^8 together are $-(CH_2)_n^6$ - or $-(CH_2)_n^8$ - X^7 - $(CH_2)_n^9$ - wherein X^7 is NR^{14} or preferably O.

5

10

15

25

When \mathbb{R}^7 is cycloalkyl or optionally substituted phenyl, then preferably \mathbb{R}^8 is neither cycloalkyl nor optionally substituted phenyl.

Most preferably, \mathbb{R}^7 and/or \mathbb{R}^8 independently are a hydrogen atom (H) or C_{1-2} alkyl. It is preferable that \mathbb{R}^7 is a hydrogen atom (H).

Preferably n^6 is 4 or 5. Preferably n^7 is 2, 3 or 4. Preferably, $n^8,\,n^9$ and/or n^{10} is/are independently 2.

20 In general, it is preferable that R⁵ has the sub-formula (x) or (y) or (y1) or (z).

When R^5 has the sub-formula (x) or (y) or (y1) or (z), then preferably R^5 has the sub-formula (x) or (y) or (y1) or has the sub-formula (x) or (y) or (z). More preferably R^5 has the sub-formula (x) or (y), most preferably (x). In one embodiment, R^5 has the sub-formula (z).

Preferably, n is 1 or 2. More preferably, n=1. Preferably, m=1. Preferably, r=1 or 2, more preferably 1.

30 In sub-formula (x), (y) and/or (y1), it is preferred that none, one or two of A, B, D, E and F are nitrogen; none, one, two or three of A, B, D, E and F are CR⁶; and the remaining of A, B, D, E and F are CH. More preferably, none, one or two of A, B, D, E and F are nitrogen; none, one or two of A, B, D, E and F are CR⁶; and the remaining of A, B, D, E and F are CH.

35 In sub-formula (x), (y) and/or (y1), preferably, none or one of A, B, D, E and F are nitrogen, and/or preferably none, one or two of A, B, D, E and F are CR6. Preferably, sub-formula (x) is: benzyl; phenethyl (Ph-C₂H₄-); benzyl substituted on the phenyl ring with one or two R^6 substituents; phenethyl (Ph-C₂H₄-) substituted on the phenyl ring with one or two R^6 substituents; or one of the following:

5 , wherein R^{6a} is either R^{6} as defined herein or (preferably) hydrogen.

Most preferably, sub-formula (x) is benzyl or pyridinylmethyl

10

15

 R^{oa} , wherein R^{6a} is or independently are either R^{6} as defined herein or preferably hydrogen. Preferably, sub-formula (y) is not substituted by ∞ (=0) at the carbon between the 6-membered aromatic ring and the carbon bonded to the nitrogen of NR^4R^5 .

Preferably, sub-formula (v1) is:

5

10

15

20

25

30

, wherein R^{6a} is or independently are either R^6 as defined herein or preferably hydrogen.

In sub-formula (x), (y) and/or (z), preferably, each R⁶, independently of any other R⁶

Preferably, in sub-formula (z), none, one or two of J, L, M and Q are nitrogen.

present, is a fluorine, chlorine, bromine or iodine atom, methyl, ethyl, n-propyl, isopropyl, C₄alkyl, trifluoromethyl, -CH₂OH, methoxy, ethoxy, C₁ fluoroalkoxy (e.g. trifluoromethoxy or difluoromethoxy), OH, C₁-3alkylS(O)₂- (such as methylsulphonyl which is MeS(O)₂-), C₁-3alkylS(O)₂-NH- such as methyl-SO₂-NH-, Me₂N-S(O)₂-, H₂N-S(O)₂-, -CONH₂, -CONH₄, -CO₂H, cyano (CN), NNMe₂, t-butoxymethyl, or C₁-3alkylS(O)₂-CH₂- such as methyl-SO₂-CH₂-. More preferably, each R⁶, independently of any other R⁶ present, is a fluorine, chlorine, bromine or iodine atom, methyl, ethyl, n-propyl, isopropyl, isobutyl, trifluoromethyl, -CH₂OH, methoxy, ethoxy, C₁ fluoroalkoxy (e.g. trifluoromethoxy or difluoromethoxy), C₁-3alkylS(O)₂- such as methylsulphonyl, C₁-3alkylS(O)₂-NH- such as methyl-SO₂-NH-, Me₂N-S(O)₂-, H₂N-S(O)₂-, -CONH₂, or C₁-3alkylS(O)₂-CH₂- such as methyl-SO₂-CH₂. Still more preferably, each R⁶, independently of any other R⁶ present, is a fluorine, chlorine or

The above preferred R⁶ substituents are also, independently, the preferred phenyl optional and independent substituents for where R⁵ is optionally substituted phenyl.

bromine atom, methyl, ethyl, n-propyl, isopropyl, trifluoromethyl, -CH₂OH, methoxy, difluoromethoxy, methylsulphonyl, methyl-SO₂-NH- or methyl-SO₂-CH₂-.

In sub-formula (x) and/or (y), preferably, one, two or three R^6 substituents are present in B, D and/or E; so that for example in sub-formula (x), one, two or three R^6 substituents are present in the meta- (3- and/or 5-) and/or para- (4-) positions with respect to the – (CH₂)_n- side-chain.

Preferably, R^5 has the sub-formula (x), n is 1 and none of A, B, D, E and F are nitrogen or nitrogen-oxide (N⁺-O⁻); and all of A, B, D, E and F are independently CH or CR^6 ; that

is R5 has the sub-formula (x) and is optionally substituted benzyl. In this embodiment, preferably, a R6 substituent is present at the 4-position with respect to the -(CH2)n- sidechain (that is D is CR6: i.e. a R6 substituent is present in D); and/or preferably a R6 substituent is present at the 3- and/or 5- position with respect to the -(CH₂)_n- side-chain (that is B and/or E is CR6; i.e. one or two R6 substituents are present in B and/or E). For monosubstitution, i.e. where one of A, B, D, E and F is CR6, then the one R6 substituent is preferably present at the 4-position with respect to the -(CH2)n- side-chain (i.e. D is CR6). Where there is disubstitution, that is where two of A, B, D, E and F are independently CR6, then 3,4-disubstitution (B+D or D+E are independently CR6), 2,4disubstitution (A+D or D+F are independently CR6) or 2,3-disubstitution (A+B or E+F are independently CR6) is preferred.

In sub-formula (x) and/or (y), any optional R⁶ substituent can optionally be present only in B, D and/or E, so that in sub-formula (x) any optional R6 substituent is present only in the meta- (3- and/or 5-) and/or para- (4-) positions with respect to the -(CH2)n- sidechain. Alternatively, in sub-formula (x), any optional R6 substituent can be present in the ortho- (2- and/or 6-) position with respect to the -(CH2)n- side-chain, either alone or in combination with one or more other optional R6 substituents.

Overall for R5, it is preferable that R5 is a hydrogen atom (H); C1_6alkyl (e.g. 20 C1 20r3alkyl or C3_6alkyl); C1_4fluoroalkyl, C3_6cycloalkyl (e.g. C5_6cycloalkyl), (C5-6cycloalkyl)methyl-, phenyl optionally substituted with one or two of: a fluorine or chlorine atom, methyl, trifluoromethyl, methoxy or trifluoromethoxy: or R5 has the subformula (x), (y) or (z), for example as described above.

25

30

10

15

Still more preferably, R⁵ is a hydrogen atom (H), methyl, ethyl, n-propyl, iso-propyl, 2-ethylbutan-1-yl, cyclopentyl, cyclohexyl, (cyclohexyl)methyl-, optionally substituted phenyl e.g. fluorophenyl e.g. 4-fluorophenyl, optionally substituted benzyl, or optionally substituted pyridinylmethyl, or R5 has the sub-formula (z).

Ontionally, R5 can be benzyl, pyridinylmethyl (e.g. pyridin-4-ylmethyl, pyridin-3vlmethyl, or preferably pyridin-2-ylmethyl), or 4-fluorophenyl.

In one preferable embodiment, R5 has the sub-formula (x) and is: benzyl, (monoalkylphenyl)methyl, [mono(fluoroalkyl)-phenyl]methyl, (monohalo-phenyl)methyl, 35 (monoalkoxy-phenyl)methyl, [mono(fluoroalkoxy)-phenyl]methyl, [mono(N,Ndimethylamino)-phenyl]methyl, [mono(methyl-SO2-NH-)-phenyl]methyl, [mono(methyl-SO2-)-phenyl]methyl, (dialkyl-phenyl)methyl, (monoalkyl-monohalophenyl)methyl, [mono(fluoroalkyl)-monohalo-phenyl]methyl, (dihalo-phenyl)methyl, (dihalo-monoalkyl-phenyl)methyl, [dihalo-mono(hydroxymethyl)-phenyl]methyl, or 40

(dialkoxy-phenyl)methyl such as (3,4-dimethoxy-phenyl)methyl. The substituents can preferably be further defined, as defined in preferable embodiments herein.

In one preferable embodiment, R⁵ is of sub-formula (x) and is: (monoalkyl-phenyl)methyl, [mono(fluoroalkyl)-phenyl]methyl, (monoalkoxy-phenyl)methyl, [mono(N,N-dimethylamino)-phenyl)methyl, (dialkyl-phenyl)methyl, (monoalkyl-monohalo-phenyl)methyl, (dihalo-phenyl)methyl, (dihalo-phenyl)methyl or [dihalo-monoalkyl-phenyl)methyl or [dihalo-mono(hydroxymethyl)-phenyl]methyl. More preferably, in this embodiment, R⁵ is: -(monoC_{1.3}alkyl-phenyl)methyl such as (4-C_{1.3}alkyl-phenyl)methyl;

- (monoC1fluoroalkyl-phenyl)methyl such as (4-C1fluoroalkyl-phenyl)methyl;
- (monoC1-2alkoxy-phenyl)methyl such as (4-C1-2alkoxy-phenyl)methyl;

5

10

25

40

- $[mono(C_1fluoroalkoxy)-phenyi]$ methyl such as $(4-C_1fluoroalkoxy-phenyl)$ methyl; $(diC_{1-2}alkyl-phenyl)$ methyl or (dimethyl-phenyl)methyl such as (3,4-dimethyl-phenyl)methyl such as (3,4-dimethyl-phenyl)meth
- 15 phenyl)methyl, (2,4-dimethyl-phenyl)methyl, (3,5-dimethyl-phenyl)methyl, (2,3-dimethyl-phenyl)methyl or (2,5-dimethyl-phenyl)methyl; more preferably (3,4-dimethyl-phenyl)methyl; (monoC₁₋₂alkyl-monohalo-phenyl)methyl or (monoC₁₋₂alkyl-monohalo-phenyl)methyl or (monoC₁₋₂alkyl-monochloro-
 - (monoC₁₋₂alkyl-monohalo-phenyl)methyl or (monoC₁₋₂alkyl-monochlorophenyl)methyl such as (4-methyl-3-chloro-phenyl)methyl,
- 20 (3-methyl-4-chloro-phenyl)methyl, (2-methyl-4-chloro-phenyl)methyl; - (dihalo-phenyl)methyl such as (2-chloro-4-fluorophenyl)methyl or (2,4-difluorophenyl)methyl or (4-bromo-2-fluorophenyl)methyl or phenyl)methyl; for example (dichloro-phenyl)methyl such as (3,4-dichloro-phenyl)methyl or (2,4-dichloro-phenyl)methyl or (2,6-dichloro-phenyl)methyl or
 - preferably (2,3-dichloro-phenyl)methyl;
 (dihalo-monoC1_2alkyl-phenyl)methyl e.g. (2,4-dichloro-6-methyl-phenyl)methyl; or
 [dihalo-mono(hydroxymethyl)-phenyl]methyl such as [2,3-dichloro-6-(hydroxymethyl)-phenyl]methyl.
- 30 In an alternative preferable embodiment, R⁵ has the sub-formula (z), and one or preferably none of J, L, M or Q is CR⁶, and/or R⁹ is a hydrogen atom (H) or methyl. Preferably r is 1. Preferably, for (z), R⁶ is independently OH (including any keto tautomer thereof), or more preferably C1_2alkyl (e.g. methyl) or C1fluoroalkyl.
- 35 Preferably NR⁴R⁵ is not NH₂. R⁵ is preferably not a hydrogen atom (H).

When R^4 and R^5 taken together are optionally substituted $-(CH_2)_p^{1-}$ or optionally substituted $-(C(O)-(CH_2)_p^{2-}$ or $-(CH_2)_p^{3-}$ $X^5-(CH_2)_p^{4-}$ or $-(C(O)-X^5-(CH_2)_p^{5-}$ or a partially unsaturated derivative of any of the foregoing, preferably R^4 and R^5 taken together are optionally substituted $-(CH_2)_p^{1-}$ or optionally substituted $-(C(O)-(CH_2)_p^{2-})$

20

25

or -(CH₂) $_p$ 3-X5-(CH₂) $_p$ 4- or -C(O)-X5-(CH₂) $_p$ 5- (i.e. not a partially unsaturated derivative of any of these).

When R^4 and R^5 taken together are $-(CH_2)_p^{1-}$ optionally substituted by R^{18} , or $-(C(O)-(CH_2)_p^{2-}$ optionally substituted by R^{18} , or $-(CH_2)_p^{3-}X^5-(CH_2)_p^{4-}$, NR^4R^5 can

 $\label{eq:continuous_proposed_proposed} \text{for example be} \begin{picture}(20,20) \put(0,0){\line(0,0){100}} \put(0,0){\line$

substituted by R¹⁸, or optionally substituted by R¹⁸, or (i.e. R⁴)

and R⁵ taken together are -(CH₂)₂-N(R¹⁷)-(CH₂)₂-), or (i.e. R⁴ and R⁵ taken together are -(CH₂)₂-O-(CH₂)₂-).

Preferably, R^{17} is a hydrogen atom (H); C_{1-4} alkyl (e.g. C_{1-2} alkyl); C_{3-6} cycloalkyl; $-(CH_2)_p^6-C(O)R^{16}$, or the optionally substituted phenyl or benzyl. More preferably, R^{17} is H; C_{1-2} alkyl; $-(CH_2)_p^6-C(O)R^{16}$ or the optionally substituted phenyl.

15 When R⁴ and R⁵ taken together are -(CH₂)_p¹- or -C(O)-(CH₂)_p²-, the NR⁴R⁵ heterocycle is preferably not substituted by R¹⁸.

When R^4 and R^5 taken together are -(CH₂) $_p^{1-}$ or -C(O)-(CH₂) $_p^{2-}$, and if the NR⁴R⁵ heterocycle is substituted by R¹⁸, then optionally R¹⁸ is not substituted at a ring-carbon bonded to the NR⁴R⁵ ring-nitrogen.

When R^4 and R^5 taken together are $-(CH_2)_p^{1-}$ or $-C(O)-(CH_2)_p^{2-}$ or $-(CH_2)_p^{3-}$ $X^5-(CH_2)_p^{4-}$ or $-C(O)-X^5-(CH_2)_p^{5-}$ or a partially unsaturated derivative of any of these, and wherein the NR^4R^5 heterocycle is fused to a phenyl ring optionally substituted on the phenyl by one or two of: a halogen atom, C_{1-2} alkyl, C_1 fluoroalkyl, C_{1-2} alkoxy or C_1 fluoroalkoxy; then in one embodiment of the invention NR^4R^5 is

30 In one embodiment of the invention, NR^7R^8 and/or $NR^{12}R^{13}$ can for example independently be

(i.e. R¹² and R¹³ together or R⁷ and R⁸ together are -(CH₂)₂-N(R¹⁴)-(CH₂)₂-), or (i.e. R¹² and R¹³ together or R⁷ and R⁸ together are -(CH₂)₂-O-(CH₂)₂-), or NMe2.

Preferably, R¹⁵ is a hydrogen atom (H) or C₁₋₄alkyl (e.g. ^tBu or C₁₋₂alkyl e.g. methyl); more preferably, R¹⁵ is a hydrogen atom (H).

Preferably, however, R4 and R5 are not taken together, i.e. are not taken together to form the NR4R5 ring systems described herein.

(Similar preferances apply for R^{5a} as for R⁵, except that R^{5a} cannot be a hydrogen atom. Most preferably, R5a is ethyl.)

In an especially preferable embodiment, NR⁴R⁵ is the NR⁴R⁵ group as defined in any 15 one of: Examples 21-98, 100-182, 187-188, 191-200, 201-203, 210-353, 355-651, 653-658, 660-664 and 665-686.

10

35

It is particularly preferred that the compound of formula (I) or the salt thereof is:

- 20 Ethyl 4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 4-[(1-acetylpiperidin-4-v])amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 4-(cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (not this
- compound per se, and for the use or method of treatment preferably not this compound), 25 Ethyl 1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate. Ethyl 1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 1-ethyl-4-f(3R)-tetrahydrofuran-3-ylaminol-1H-pyrazolof3,4-blpyridine-5-carboxylate, Ethyl 1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, 30 Ethyl 1-ethyl-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,
- Ethyl 4-(cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 4-f(1.1-dioxidotetrahydrothien-3-yl)aminol-1-ethyl-1H-pyrazolof3,4-blpyridine-5carboxylate,
 - Ethyl 4-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5carboxylate,
 - N-Benzyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide.
 - 1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide.
- N-Cyclopentyl-4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 40

WO 2004/024728 PCT/EP2003/011814

4-(Cyclohexylamino)-N-cyclopentyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-Cyclopentyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-[(1-Acetylpiperidin-4-yl)amino]-N-cyclopentyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-5 carboxamide.

N-Cyclopentyl-1-ethyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrazolo[3,4-b]pyridin-4-amine,
N-Cyclohexyl-1-ethyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrazolo[3,4-b]pyridin-4-amine,
1-Ethyl-5-(pyrrolidin-1-ylcarbonyl)-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-b]pyridin-4-amine.

4-(Cyclopentylamino)-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide,

 $\label{lem:cyclohexylamino} \mbox{-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]} \mbox{pyridine-5-carboxamide,}$

1-Ethyl-N-(pyridin-4-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-15 5-carboxamide,

 $\hbox{$4$-(Cyclopentylamino)-1-ethyl-1$H-pyrazolo[3,4-b] pyridine-5-carbox amide,}\\$

4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-Benzyl-4-(cyclopentylamino)-l-ethyl-1H-pyrazolo[3,4-b] pyridine-5-carboxamide,

20 N-Benzyl-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

25

35

4-[(1-Acetylpiperidin-4-yl)amino]-N-benzyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclopentylamino)-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-(Cyclohexylamino)-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-N-(2-ethylbutyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

1-Ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

30 4-(Cyclopentylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

4-(Cyclopentylamino)-1-ethyl-N-n-propyl-IH-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-1-ethyl-N-n-propyl-IH-pyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-N-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-IH-pyrazolo[3,4-b]pyridine-5-carboxamide.

40 4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide. WO 2004/024728 PCT/EP2003/011814

- $\label{eq:continuous} \begin{tabular}{ll} $4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(pyridin-4-yl)methyl)-1$H-pyrazolo[3,4-b]pyridine-5-carboxamide, \end{tabular}$
- N-Benzyl-4-(cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-Benzyl-4-(cyclohexylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 5 N-Benzyl-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide.
 - 4-(Cyclopentylamino)-N-(2-ethylbutyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-N-(2-ethylbutyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-(2-Ethylbutyl)-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
- 10 carboxamide,
 4-(Cyclopentylamino)-N-(4-fluorophenyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 4-(Cyclohexylamino)-N-(4-fluorophenyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 N-(4-fluorophenyl)-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
- 15 4-(Cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-[(1-Acetylpiperidin-4-yl)amino]-N-benzyl-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-20 carboxamide.
 - 1-Ethyl-N,N-dimethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
 - 1-Ethyl-N-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-N-isopropyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
- 25 carboxamide.

carboxamide,

- N-Benzyl-1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-Benzyl-1-ethyl-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 30 N-Benzyl-1-ethyl-4-(tertahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-Benzyl-4-(cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-Benzyl-4-[(1,1-dioxidotetrahydrothien-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - N-Benzyl-4-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
 - N-Benzyl-1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - 1-Ethyl-N-(4-fluorophenyl)-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 40 1-Ethyl-N-(4-fluorophenyl)-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1- Ethyl-N-(4-fluorophenyl)-4-(tetrahydrothien-3-ylamino)-1 H-pyrazolo [3,4-b] pyridine-5-carboxamide.
- 5 4-(Cyclopropylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-[(1,1-Dioxidotetrahydrothien-3-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, or
 - $\label{lem:condition} $$4-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide;$
- or a salt thereof, e.g. a pharmaceutically acceptable salt thereof.

15

20

The structures of these specific compounds are given in Examples 1-98 hereinafter.

- Alternatively, it is particularly preferred that the compound of formula (I) or the salt thereof is:
- 1-Ethyl-N-[4-(methylsulfonyl)benzyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- 1-Ethyl-N-[3-(methylsulfonyl)benzyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- 1-Ethyl-5-{[5-methoxy-6-(trifluoromethyl)-2,3-dihydro-1*H*-indol-1-yl]carbonyl}-*N*-tetrahydro-2*H*-pyran-4-yl-1*H*-pyrazolo[3.4-b]byridin-4-amine.
- 25 N-[(5-Chloropyridin-2-yi)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - $N\hbox{-}(4\hbox{-}Chlorobenzyl)-1\hbox{-}ethyl-N\hbox{-}isopropyl-4\hbox{-}(tetrahydro-2H\hbox{-}pyran-4\hbox{-}ylamino)-1}H\hbox{-}pyrazolo[3,4-b]pyridine-5\hbox{-}carboxamide,$
- N-(3-Chlorobenzyl)-1-ethyl-N-(2-hydroxyethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-30 pyrazolo[3,4-*b*]pyridine-5-carboxamide,
 - 1-Ethyl-N-[(5-methyl-3-phenylisoxazol-4-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
 - N-(2-tert-Butoxycthyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridino-5-carboxamide,
- 35 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - $1\hbox{-Ethyl-} N\hbox{-(pyrimidin-4-ylmethyl)-4-(tetra$ hydro-2\$H\$-pyran-4-ylamino)-1\$H\$-pyrazolo [3,4-b] pyridine-5-carboxamide,
- 1-Ethyl-N-[(2-methyl-1,3-thiazol-4-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - $N\hbox{-}[3-(tert\hbox{-Butoxymethyl})\hbox{-benzyl}]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1$H-pyrazolo[3,4-b]pyridine-5-carboxamide,$

- $1- Ethyl-N-\{2-\lceil methyl(methylsulfonyl)amino]ethyl\}-4-(tetrahydro-2H-pyran-4-ylamino)-1- (tetrahydro-2H-pyran-4-ylamino)-1- (tetrahydro-2H-pyran-4-ylamino)$ 1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(pyrazin-2-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4b]pyridine-5-carboxamide.
- 1-Ethyl-5-{[4-(pyridin-2-ylcarbonyl)piperazin-1-yl]carbonyl}-N-tetrahydro-2H-pyran-4vl-1H-pyrazolo[3,4-b]pyridin-4-amine,
 - N-(2-Chloro-6-fluorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(6-oxo-1,6-dihydropyridin-3-yl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 10
 - N-[3-(Aminocarbonyl)benzyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide,
 - 1-Ethyl-N-{4-[(methylamino)carbonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[2-(1-methyl-1H-imidazol-4-yl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-15 pyrazolo[3,4-b]pyridine-5-carboxamide. N-{2-[(Anilinocarbonyl)amino]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-N-(1H-tetraazol-5-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- 20 pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[2-(1H-1,2,4-triazol-1-yl)ethyl]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide.
 - 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[4-(trifluoromethyl)phenyl]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide,
- 25 tert-Butyl 4-({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5yl]carbonyl}amino)piperidine-1-carboxylate, 1-Ethyl-N-{3-[(methylsulfonyl)amino]propyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide,
- $N\hbox{-}[2\hbox{-}(\text{Dimethylamino})\text{benzyl}]\hbox{-}1\hbox{-}\text{ethyl-}4\hbox{-}(\text{tetrahydro-}2H\hbox{-}\text{pyran-}4\hbox{-}\text{ylamino})\hbox{-}1H\hbox{-}$ 30 pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(1-ethylpyrrolidin-2-yl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide.
 - 1-Ethyl-N-(tetrahydrofuran-2-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide,
- $1\hbox{-ethyl-} \hbox{\it N-} tetrahydro\hbox{-} \hbox{\it 2H-pyran-4-yl-4-} (tetrahydro\hbox{-} \hbox{\it 2H-pyran-4-ylamino})\hbox{-} \hbox{\it 1H-pyran-4-yl-4-} (tetrahydro\hbox{-} \hbox{\it 2H-pyran-4-yl-4-})$ 35 pyrazolo[3,4-b]pyridine-5-carboxamide,

- N-{4-[(Dimethylamino)sulfonyl]benzyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{3-[(methylsulfonyl)amino]benzyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(4-methoxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4b]pyridine-5-carboxamide.

- 37 -

- 1-Ethyl-*N*-[3-(2-oxopyrrolidin-1-yl)propyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(1-methylpyrrolidin-2-yl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 5 1-Ethyl-N-(pyridin-3-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - 1- Ethyl-N-(1-methylpiperidin-4-yl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b] pyridine-5-carboxamide,
- 1-Ethyl-*N*-(1-ethylpropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-10 *b*]pyridine-5-carboxamide,
 - 1-Ethyl-N-(2-piperidin-1-ylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
 - 1-Ethyl-N-(3-morpholin-4-ylpropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 15 N-(3-Ethoxypropyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - N-(Cyclohexylmethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - N-[3-(Dimethylamino)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- 20 pyrazolo[3,4-b]pyridine-5-carboxamide,

30

- 1- Ethyl-N-neopentyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b] pyridine-5-carboxamide,
- 1-ethyl-N-(4-methoxybenzyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b] pyridine-5-carboxamide,
- 25 1-Ethyl-N-{2-[(phenylsulfonyl)amino]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-[2-(Acetylamino)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
 - 1-Ethyl-N-{2-[(methylsulfonyl)amino]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
 - pyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-N-{2-[(2-methoxyphenyl)(methyl)amino]ethyl}-4-(tetrahydro-2H-pyran-4-
 - ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
 - 1-Ethyl-N-(2-oxo-2-phenylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 35 N-(2,5-Difluorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - 1- Ethyl-4-(tetrahydro-2 H-pyran-4-ylamino)-N-[4-(trifluoromethyl)benzyl]-1 H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N,1-Diethyl-N-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-40 carboxamide,
 - N-Cyclopropyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- N-(2-amino-2-oxoethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b)pyridine-5-carboxamide,
- 1-Ethyl-N-(3-methoxyphenyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- 5 N-(3,4-Difluorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]hyridine-5-carboxamide.
 - Ethyl 3-({[1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridin-5-yllcarbonyl}amino)propanoate,
- N-(1-Benzylpiperidin-4-yl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-10 b]pyridine-5-carboxamide,
 - N-Butyl-4-{[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}piperazine-1-carboxamide,
 - 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-(1,3,4-thiadiazol-2-yl)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 15 N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - 1-Ethyl-N-[2-(2-oxoimidazolidin-1-yl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(3,4-Dimethoxybenzyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-20 *b*]pyridine-5-carboxamide,
 - N-(3-Chlorobenzyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
 - 1-Ethyl-5-[(4-methylpiperazin-1-yl)carbonyl]-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-b]pyridin-4-amine,
- 25 Î-Ethyl-N-(2-hydroxyethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-5-{[4-(4-methoxyphenyl)piperazin-1-yl]carbonyl}-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-b]pyridin-4-amine,
- 1-Ethyl-*N*-{4-[(methylsulfonyl)methyl]phenyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-30 pyrazolo[3,4-*b*]pyridine-5-carboxamide,
 - N-[3-(dimethylamino)-3-oxopropyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-N-[(1-methyl-1H-imidazol-5-yl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
 - 1-Ethyl-N-[(1-methyl-1*H*-imidazol-5-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamıno)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 35 1-Ethyl-N-{4-[(methylamino)sulfonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - N-(2-Cyanoethyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-*N*-[(1-methyl-1*H*-pyrazol-4-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-40 pyrazolo[3,4-*b*]pyridine-5-carboxamide,
 - 1-Ethyl-N-methyl-N-[(1-methyl-1H-imidazol-2-yl)methyl]-4-(tetrahydro-2H-ругап-4-ylamino)-1H-ругаzolo[3,4-b]ругіdіnе-5-carboxamide,

WO 2004/024728 PCT/EP2003/011814

- 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-(2-thien-2-ylethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- N-[2-(4-Chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(2-methoxyphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - $\label{lem:eq:harmonic} \begin{tabular}{ll} Ethyl 4-(cyclohexylamino)-1-(3-ethoxy-3-oxopropyl)-1$$H$-pyrazolo[3,4-$b]$ pyridine-5-carboxylate, \end{tabular}$
- Ethyl 1-n-propyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-10 carboxylate,
 - Ethyl 1-(2-hydroxyethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylate,
 - N-[4-(Methylsulfonyl)benzyl]-1-n-propyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(4-Fluorophenyl)-1-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - Ethyl 1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,
- Ethyl 4-(cyclohexylamino)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate,

 4-(Cyclohexylamino)-1-ethyl-6-methyl-*N*-[4-(methylsulfonyl)benzyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
 - N-Benzyl-4-(cyclohexylamino)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-(4-fluorophenyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine-25 5-carboxamide.
 - 4-(Cyclohexylamino)-1-ethyl-6-methyl-N-[4-(trifluoromethyl)benzyl]-1H-pyrazolo[3,4-b)pyridine-5-carboxamide.
 - 4-(Cyclohexylamino)-*N*-(2,3-dihydro-1*H*-inden-2-yl)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 30 N-Benzyl-1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - N-Benzyl-1-ethyl-4-[(2-oxoazepan-3-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-1-ethyl-4-[(3-hydroxycyclohexyl)amino]-1*H*-pyrazolo[3,4-*b*]pyridine-5-35 carboxamide,
 - N-Benzyl-1-ethyl-4-[(4-hydroxycyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 - $\label{eq:normalized} $$N$-Benzyl-1-ethyl-4-[(3-hydroxycyclopentyl)amino]-1$$H$-pyrazolo[3,4-b] pyridine-5-carboxamide, or$
- 40 N-Benzyl-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5carboxamide;
 - or a salt thereof, e.g. a pharmaceutically acceptable salt thereof.

The structures of these specific compounds are given in Examples 100-201 hereinafter.

Alternatively, the compound of formula (I) or the salt thereof can be:

1-Ethyl-N-(2-hydroxy-1-methylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, or
Methyl (25)-2-([1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl]amino)-3-hydroxypropanoate;
or a salt thereof, e.g. a pharmaceutically acceptable salt thereof. (See for example

or a salt thereof, e.g. a pharmaceutically acceptable salt thereof. (see for example 10 Examples 202-203).

Alternatively, it is particularly preferred that the compound of formula (I) or the salt thereof is one of Examples 204 to 664 or one of Examples 665 to 686, as a compound or a salt thereof, e.g. a pharmaceutically acceptable salt thereof. The structures of these specific compounds are given in Examples 204 to 664 and Examples 665 to 686 hereinafter, and their names are given in the Examples section.

In one embodiment, is still further preferred that the compound of formula (I) or the salt thereof is a compound of Example 260, 261, 263, 266, 431, 493, 494, 518, 528, 584, 626, 643, 653, 679, 680, 681, 682, 683, 684, 685 or 686 (more preferably Example 260, 518, 653, 679, 680, 681 or 684), as defined by the structures and/or names described herein, or a salt thereof, e.g. a pharmaceutically acceptable salt thereof. The structures and names of these Examples are described in the Examples section. These Examples are thought to be suitable for inhaled administration.

25

30

35

15

20

In another embodiment, is still further preferred that the compound of formula (I) or the salt thereof is a compound of Example 21, 22, 83, 100, 109, 167, 172, 178 or 600, as defined by the structures and/or names described herein, or a salt thereof, e.g. a pharmaceutically acceptable salt thereof. The structures and names of these Examples are described in the Examples section. These Examples are thought to be suitable for oral administration.

A second aspect of the present invention provides a compound of formula (IA) or a salt thereof (in particular, a pharmaceutically acceptable salt thereof):

wherein:

10

15

20

25

X is NR⁴R⁵ or OR^{5a}, in which:

5 R4 is hydrogen, C1-2alkyl or C1-2fluoroalkyl, and

 R^5 is hydrogen, C_{1-8} alkyl, C_{1-8} fluoroalkyl, or C_{3-8} cycloalkyl, phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy or trifluoromethoxy; or R^5 has the sub-formula (x), (y) or (z):

wherein in sub-formula (x) and (z), n = 1 or 2; and in sub-formula (y), m = 1 or 2; wherein in sub-formula (x) and (y), none, one or two of A, B, D, E and F are nitrogen; and the remaining of A, B, D, E and F are CH or CR⁶ where R⁶ is a halogen atom, C₁₋₄alkyl, C₁₋₂alkovalkyl, C₁₋₂alkovy, C₁₋₂alkovy, C₁₋₂alkylsulphonyl (C₁₋₂alkyl-SO₂-), C₁₋₂alkyl-SO₂-NH-, R⁷R⁸N-SO₂-, R⁷R⁸N-CO-, R⁷R⁸N, OH, C₁₋₄alkovymethyl, or C₁₋₂alkyl-SO₂-CH₂-, wherein R⁷ and R⁸ are independently hydrogen or C₁₋₂alkyl-SO₂-CH₂-

wherein in sub-formula (z), G is O or S or NR^9 wherein R^9 is C_{1-4} alkyl or C_{1-4} fluoroalkyl; none, one or two of J, L, M and Q are nitrogen; and the remaining of J, L, M and Q are CH or CR^6 where R^6 is as defined herein;

or \mathbb{R}^4 and \mathbb{R}^5 taken together are $-(\mathbb{C}H_2)_p$ where p=3,4 or 5 (preferably p=4);

 R^{5a} is C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} cycloalkyl; phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy or trifluoromethoxy; or R^{5a} has the sub-formula (x), (y) or (z) as defined herein;

30 R³ is C₃₋₈cycloalkyl or a heterocyclic group being in which Y is O, S, SO₂, or NR¹⁰; where R¹⁰ is hydrogen, C₁₋₄alkyl, C₁₋₂fluoroalkyl, C(O)-C₁₋₂alkyl, or C(O)-CF₃;

and wherein in R³ the C₃₋₈cycloalkyl or heterocyclic group is optionally substituted with one or two substituents being OH, C₁₋₂alkoyt, trimethoxy, or C₁₋₂alkyl group; and wherein any OH, alkoxy or trimethoxy substituent is not substituted at the ring carbon attached to the -NH- group of formula (IA) and is not substituted at either ring carbon bonded to the Y group of the heterocyclic group; and

 $R^{1} = C_{1}$ Alkyl or C_{1} 2 fluoroalkyl.

is NR¹⁰, then: either (a) R¹⁰ is hydrogen, C(O)-C₁₋₂alkyl, or C(O)-CF₃;

In formula (IA), preferably, when R³ is the heterocyclic group being

either (a) R¹⁰ is hydrogen, C(0)-C₁₋₂alkyl, or C(0)-CF₃;

or (b) \mathbb{R}^{10} is methyl and the compound is: 1-ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide or 1-ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-

15 carboxamide.

following:

5

10

In formula (IA), preferably, where X is OR^{5a} , the compound is other than the compound wherein R^1 is methyl, X is OEt, and R^3 is cyclopentyl.

- 20 In formula (IA), in sub-formula (x) and/or (y), it is preferred that none, one or two of A, B, D, E and F are nitrogen; none, one, two or three of A, B, D, E and F are CR⁶; and the remaining of A, B, D, E and F are CH. More preferably, none, one or two of A, B, D, E and F are nitrogen; none or one or two of A, B, D, E and F are CR⁶; and the remaining of A, B, D, E and F are CH. In formula (IA), in sub-formula (x) and/or (y), preferably, none or one of A, B, D, E and F are nitrogen.
- In formula (IA), preferably, sub-formula (x) is: benzyl; phenethyl (Ph- C_2H_4 -); benzyl or phenethyl being substituted on the phenyl ring with a single R^6 substituent, or one of the

, wherein R6a is

, wherein R6a is either R6 as defined herein or (preferably) hydrogen.

In formula (IA), preferably, sub-formula (y) is:

5 either R⁶ as defined herein or preferably hydrogen.

Examples 1-99 are examples of compounds or salts of the second aspect of the invention (Formula (IA)).

10

A third aspect of the present invention provides a compound of formula (IB) or a salt thereof (in particular, a pharmaceutically acceptable salt thereof):

15 wherein:

 $R^1 \text{ is } C_{1-4} alkyl, C_{1-3} fluoroalkyl, -CH_2 CH_2 OH \text{ or -CH}_2 CH_2 CO_2 C_{1-2} alkyl; \\$

20 \mathbb{R}^2 is a hydrogen atom (H), methyl or \mathbb{C}_1 fluoroalkyl;

 \mathbb{R}^3 is optionally substituted C3.8cycloalkyl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc);

15

25

$$\bigvee^{Y} \quad \text{or} \quad \bigvee^{}_{n^1} \quad \text{or} \quad \bigvee^{}_{}^{})_{n^2}$$

(aa) (bb) (cc)

in which n¹ and n² independently are 1 or 2; and in which Y is O, S, SO₂, or NR¹⁰; where R¹⁰ is a hydrogen atom (H), C₁₋₄alkyl (e.g. methyl or ethyl), C₁₋₂fluoroalkyl, CH₂C(O)NH₂, C(O)NH₂, C(O)-C₁₋₂alkyl, or C(O)-C₁fluoroalkyl;

and wherein in \mathbb{R}^3 the C_{3-8} cycloalkyl or the heterocyclic group of sub-formula (aa), (bb) or (cc) is optionally substituted with one or two substituents being oxo (=O), OH, C_{1-2} alkoxy, C_{1-2} fluoroalkoxy (e.g. trifluoroaletoxy), or C_{1-2} alkyl; and wherein any OH, alkoxy or fluoroalkoxy substituent is not substituted at the \mathbb{R}^3 ring carbon attached (bonded) to the -NH- group of formula (IB) and is not substituted at either \mathbb{R}^3 ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc):

and X is NR4R5 or OR5a, in which:

 R^4 is a hydrogen atom (H); C_{1-6} alkyl; C_{1-3} fluoroalkyl; or C_{2-6} alkyl substituted by one substituent R^{11} ; and

 R^5 is a hydrogen atom (H); C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} cycloalkyl optionally substituted by a C_{1-2} alkyl group; or $-(CH_2)_n^4$ - C_{3-8} cycloalkyl optionally substituted, in the $-(CH_2)_n^4$ -moiety or in the C_{3-8} cycloalkyl moiety, by a C_{1-2} alkyl group, wherein n^4 is 1, 2 or 3;

or R^5 is C_{2-6} alkyl substituted by one or two independent substituents R^{11} ;

wherein each substituent R¹¹, independently of any other R¹¹ substituent present, is: hydroxy (OH); C₁₋₆alkoxy; phenyloxy; benzyloxy; -NR¹²R¹³; -NR¹⁵-C(O)R¹⁶; -NR¹⁵-C(O)-NH-R¹⁵; or -NR¹⁵-SO₂R¹⁶; and wherein any R¹¹ substituent which is OH, alkoxy or -NR¹²R¹³ is not substituted at any carbon atom, of any R⁴ or R⁵ substituted alkyl, which is bonded to the nitrogen of NR⁴R⁵;

or R^5 is $-(CH_2)_n^{11}$ - $C(O)R^{16}$; $-(CH_2)_n^{11}$ - $C(O)NR^{12}R^{13}$; $-CHR^{19}$ - $C(O)NR^{12}R^{13}$; $-(CH_2)_n^{12}$ - $C(O)OR^{16}$; $-CHR^{19}$ - $C(O)OR^{16}$; $-(CH_2)_n^{12}$ - $-(CH_2)_n^{12}$ --

15

20

25

30

-(CH₂) $_n^{12}$ -SO₂R¹⁶; or -(CH₂) $_n^{12}$ -CN; wherein n¹¹ is 0, 1, 2, 3 or 4 and n¹² is 1, 2, 3 or 4:

or R^5 is -(CH₂)_n I^3 -Het wherein n^{13} is 0, 1, 2, 3 or 4 and Het is a 4-, 5-, 6- or 7-membered saturated or partly-saturated heterocyclic ring containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-hetero-atoms present are not bound to the -(CH₂)_n I^3 - moiety when n^{13} is 1 and are not bound to the nitrogen of NR^4R^5 when n^{13} is 0; wherein any ring-nitrogens which are present and which are not unsaturated (i.e. which do not partake in a double bond) are present as NR^{17} where R^{17} is as defined herein; and wherein one or two of the carbon ring-atoms independently are optionally substituted by $C_{1,2}$ alkyl;

or R^5 is phenyl optionally substituted with one or two of: a halogen atom; C_{1-4} alkyl (e.g. C_{1-2} alkyl); C_{1-2} fluoroalkyl (e.g. trifluoromethyl); C_{1-4} alkovy (e.g. C_{1-2} alkovy); C_{1-2} fluoroalkovy (e.g. trifluoromethoxy); C_{1-2} alkylsulphonyl $(C_{1-2}$ alkyl-SO₂-N); C_{1-2} alkyl-SO₂-NH-; R^7 R⁸N-SO₂-; R^7 R⁸N-CO-; -NR^{1.5}-CO()R¹⁶; R^7 R⁸N; OH; C_{1-4} alkoxymethyl; C_{1-2} alkyl-SO₂-CH₂-; cyano (CN); or phenyl optionally substituted by one or two of fluoro, chloro, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkyl or C_{1-2} alkyl or C_{1-2} fluoroalkyl;

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently a hydrogen atom (H); $\mathbb{C}_{1.4}$ alkyl (e.g. $\mathbb{C}_{1.2}$ alkyl such as methyl); $\mathbb{C}_{3.6}$ evcloalkyl; or phenyl optionally substituted by one or two of: fluoro, chloro, $\mathbb{C}_{1.2}$ alkyl, $\mathbb{C}_{1.7}$ alkyl, $\mathbb{C}_{1.2}$ alkoy or \mathbb{C}_{1} fluoroalkyl, $\mathbb{C}_{1.2}$ alkoy or \mathbb{C}_{1} fluoroalkoxy; or \mathbb{R}^7 and \mathbb{R}^8 together are $-(\mathbb{C}H_2)_n^6$ - or $-\mathbb{C}(\mathbb{O})-(\mathbb{C}H_2)_n^7$ - or $-\mathbb{C}(\mathbb{O})-(\mathbb{C}H_2)_n^7$ - $\mathbb{C}(\mathbb{O})$ - or $-(\mathbb{C}H_2)_n^8$ - \mathbb{X}^7 -($\mathbb{C}H_2)_n^9$ - or $-\mathbb{C}(\mathbb{C}H_2)_n^{1.0}$ - in which: \mathbb{n}^6 is 3, 4, 5 or 6, \mathbb{n}^7 is 2, 3, 4, or 5 (preferably \mathbb{n}^7 is 2, 3 or 4), \mathbb{n}^8 and \mathbb{n}^9 and \mathbb{n}^{10} independently are 2 or 3, and \mathbb{X}^7 is $\mathbb{C}_{1.7}$ 0 or \mathbb{N}^{14} wherein \mathbb{R}^{14} is \mathbb{H} or $\mathbb{C}_{1.7}$ alkyl:

or R5 has the sub-formula (x), (y) or (z):

wherein in sub-formula (x), n=1 or 2; in sub-formula (y), m=1 or 2; and in sub-formula (z), r=0,1 or 2;

wherein in sub-formula (x) and (y), none, one or two of A, B, D, E and F are nitrogen; and the remaining of A, B, D, E and F are independently CH or CR6;

where R⁶ is a halogen atom; C₁₋₄alkyl (e.g. C₁₋₂alkyl); C₁₋₄fluoroalkyl (e.g. C₁₋₂fluoroalkyl); C₁₋₄alkovy (e.g. C₁₋₂alkoxy); C₁₋₂fluoroalkoxy; C₁₋₂alkylsulphonyl (C₁₋₂alkyl-SO₂₋); C₁₋₂alkyl-SO_{2-NH-}; R⁷R⁸N-SO₂-; R⁷R⁸N-CO-; NR¹⁵-C(O)R¹⁶; R⁷R⁸N; OH; C₁₋₄alkoxymethyl; C₁₋₄alky-SO₂-CH₂-; cyano (CN); or phenyl optionally substituted by one or two of fluoro, chloro, C₁₋₂alkyl, C₁₋₂alkyl, C₁₋₁alkoxy or C₁fluoroalkyl, C₁₋₁alkoxy or C₁fluoroalkyl, C₁₋₁alkoxy or C₁fluoroalkyl, C₁₋₂alkyl,

wherein in sub-formula (z), G is O or S or NR⁹ wherein R⁹ is a hydrogen atom (H), C₁-4alkyl or C₁-4fluoroalkyl; none, one, two or three of J, L, M and Q are nitrogen; and the remaining of J. L. M and O are independently CH or CR⁶ where R⁶ is as defined herein;

or \mathbb{R}^4 and \mathbb{R}^5 taken together are $-(\mathrm{CH}_2)_p^1$ —or $-(\mathrm{CO})\cdot(\mathrm{CH}_2)_p^2$ - or $-(\mathrm{CH}_2)_p^3 \cdot \mathrm{X}^5 \cdot (\mathrm{CH}_2)_p^4$ - or $-(\mathrm{CO})\cdot \mathrm{X}^5 \cdot (\mathrm{CH}_2)_p^5$ -, in which: $p^1=3,4,5$ or 6 (preferably $p^2=4$ or 5), p^2 is 2, 3, 4, or 5 (preferably p^2 is 2, 3 or 4), and p^3 and p^4 and p^5 independently are 2 or 3 (independently preferably 2) and X^5 is O or NR^{17} ; wherein R^{17} is a hydrogen atom (H); C_{1-4} alkyl (e.g. C_{1-2} alkyl); C_{1-2} fluoroalkyl;

20 C_{3-6} cycloalkyl; -(CH₂) $_p$ 6-C(O)R¹⁶ wherein $_p$ 6 is 0, 1, 2 or 3 (preferably $_p$ 6 is 0); -(CH₂) $_p$ 6-C(O)NR¹²R¹³; -(CH₂) $_p$ 6-C(O)OR¹⁶; -SO₂R¹⁶; or phenyl or benzyl wherein the phenyl or benzyl is optionally substituted at an aromatic carbon atom by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

and wherein, when R⁴ and R⁵ taken together are -(CH₂)_p¹- or -C(O)-(CH₂)_p²-,

the NR⁴R⁵ heterocycle is optionally substituted by one R¹⁸ substituent wherein R¹⁸ is:
C₁₋₄alkyl (e.g. C₁₋₂alkyl); C₁₋₂fluoroalkyl; C₃₋₆cycloalkyl; C₁₋₂alkoxy (not substituted
at a ring-carbon bonded to the NR⁴R⁵ ring-nitrogen); C₁fluoroalkoxy (not substituted at
a ring-carbon bonded to the NR⁴R⁵ ring-nitrogen); OH (not substituted at a ring-carbon
bonded to the NR⁴R⁵ ring-nitrogen); -(CH₂)_p⁷-C(O)R¹⁶ wherein p⁷ is 0, 1, 2 or 3

(preferably p⁷ is 0 or 1): -(CH₂)_p⁷-C(O)R¹⁶· -(CH₂)_p⁷-C(O)R¹⁶·

30 (preferably p^7 is 0 or 1); -(CH₂) $_p^7$ -C(O)OR¹⁶; -(CH₂) $_p^7$ -OC(O)R¹⁶; -(CH₂) $_p^7$ -OC(O)NR¹²R¹³; -(CH₂) $_p^7$ -NR¹⁵C(O)NR¹⁶; -(CH₂) $_p^7$ -NR¹⁵C(O)NR¹²R¹³; -(CH₂) $_p^7$ -NR¹⁵C(O)OR¹⁶; -(CH₂) $_p^7$ -SO₂R¹⁶; -(CH₂) $_p^7$ -SO₂NR¹²R¹³; -(CH₂) $_p^7$ -NR¹⁵SO₂R¹⁶; -(CH₂) $_p^7$ -OH; -(CH₂) $_p^7$ -OR¹⁶; or phenyl optionally substituted by one or two of: a halogen atom, C₁₋₂alkyl, C₁fluoroalkyl, C₁₋₂alkoxy or C₁fluoroalkoxy:

PCT/EP2003/011814

or R4 and R5 taken together are -(CH2)n1- or -C(O)-(CH2)n2- or -(CH₂)_n³-X⁵-(CH₂)_n⁴- or -C(O)-X⁵-(CH₂)_n⁵- as defined herein, and wherein the NR⁴R⁵ heterocycle is fused to a phenyl ring optionally substituted on the phenyl by one or two of: a halogen atom, C1-2alkyl, C1 fluoroalkyl, C1-2alkoxy or C1 fluoroalkoxy; and

R5a is C1_8alkyl; C1_8 fluoroalkyl; C3_8cycloalkyl; phenyl optionally substituted with one or two of: a halogen atom, C1-2alkyl, trifluoromethyl, C1-2alkoxy or trifluoromethoxy: or R^{5a} has the sub-formula (x), (y) or (z) as defined herein

10 and wherein:

5

R12 and R13 independently are H; C1_5alkyl (e.g. C1_3alkyl); C3_6cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C1-2alkyl, C1 fluoroalkyl, C1_2alkoxy or C1 fluoroalkoxy;

15 or R¹² and R¹³ together are -(CH₂)_n⁶- or -C(O)-(CH₂)_n⁷- or -C(O)-(CH₂)_n⁷-C(O)- or $-(CH_2)_n^8 - X^{12} - (CH_2)_n^9 - \text{ or } -C(O) - X^{12} - (CH_2)_n^{10} - \text{ in which: } n^6 \text{ is } 3, 4, 5 \text{ or } 6$ (preferably n^6 is 4 or 5), n^7 is 2, 3, 4, or 5 (preferably n^7 is 2, 3 or 4), n^8 and n^9 and n^{10} independently are 2 or 3 (independently preferably 2) and X¹² is O or NR¹⁴ wherein 20 R14 is H or C1_2alkyl;

R¹⁵ is a hydrogen atom (H); C₁₋₄alkyl (e.g. ^tBu or C₁₋₂alkyl e.g. methyl); C3_6cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C1-2alkyl, C1fluoroalkyl, C1-2alkoxy or C1fluoroalkoxy;

- 25 R16 is C1_4alkyl (e.g. C1_2alkyl); C3_6cycloalkyl; pyridinyl (e.g. pyridin-2-yl); or phenyl optionally substituted by one or two of: a halogen atom, C1-2alkyl, C1 fluoroalkyl, C1-2alkoxy or C1 fluoroalkoxy; and
- R19is a hydrogen atom (H); C1-4alkyl (e.g. isobutyl, sec-butyl, or C1-3alkyl such as 30 methyl or isopropyl); -(CH₂)_n20-OR²⁰ wherein n²⁰ is 1, 2, 3 or 4 (preferably 1) and R²⁰ is a hydrogen atom (H) or C₁₋₄alkyl (preferably R²⁰ is H); -CH(Me)-OH; -CH₂-SH; -CH2-CH2-S-Me; benzyl; or (4-hydroxyphenyl)methyl (i.e. 4-hydroxy-benzyl).
- In formula (IB), preferably, when \mathbb{R}^3 is the heterocyclic group of sub-formula (bb), \mathbb{R}^1 is 35 and Y is NR¹⁰, then: either (a) R^{10} is not C_{1-4} alkyl, C_{1-2} fluoroalkyl or $CH_2C(O)NH_2$;

- 48 -

or (b) R¹⁰ is methyl and the compound is: 1-ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide or 1-ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

In formula (IB), preferably, where X is OR^{5a} , the compound is other than the compound wherein R^1 is methyl. X is OEt, and R^3 is evelopentyl.

5

10

20

25

30

35

40

In formula (IB), where R^3 is optionally substituted C_{3-8} cycloalkyl, the one or two optional substituents preferably comprise (e.g. is or are) OH and/or oxo (=O). In formula (IB), in the R^3 heterocyclic group of sub-formula (aa), (bb) or (cc), the one or two optional substituents preferably comprise (e.g. is or are) OH and/or oxo.

Examples 1-203 are examples of compounds or salts of the third aspect of the invention 15 (Formula (IB)).

The preferred or optional features for the compound or salt of formula (IA) and for the compound or salt of formula (IB) are the same as or similar to the preferred or optional features for the compound or salt of formula (I), with all necessary changes (for example to the formula, to the R groups and/or to substituents) having been made. Generally, whenever formula (I) is mentioned herein, then in alternative embodiments the statement mentioning formula (I) applies to formula (IA) or formula (IB), with all necessary changes having been made.

Salts, solvates, isomers, tautomeric forms, molecular weights, etc.

Because of their potential use in medicine, the salts of the compounds of formula (I) are preferably pharmaceutically acceptable. Suitable pharmaceutically acceptable salts can include acid or base addition salts. A pharmaceutically acceptable acid addition salt can be formed by reaction of a compound of formula (I) with a suitable inorganic or organic acid (such as hydrobromic, hydrochloric, sulfuric, nitric, phosphoric, succinic, maleic, acetic, fumaric, citric, tartaric, benzoic, p-toluenesulfonic, methanesulfonic or naphthalenesulfonic acid), optionally in a suitable solvent such as an organic solvent, to give the salt which is usually isolated for example by crystallisation and filtration. A pharmaceutically acceptable acid addition salt of a compound of formula (I) can be for example a hydrobromide, hydrochloride, sulfate, nitrate, phosphate, succinate, maleate, acetate, fumarate, citrate, tartrate, benzoate, p-toluenesulfonate methanesulfonate or naphthalenesulfonate salt. A pharmaceutically acceptable base addition salt can be

10

15

20

25

30

formed by reaction of a compound of formula (I) with a suitable inorganic or organic base, optionally in a suitable solvent such as an organic solvent, to give the base addition salt which is usually isolated for example by crystallisation and filtration. Other suitable pharmaceutically acceptable salts include pharmaceutically acceptable metal salts, for example pharmaceutically acceptable alkali-metal or alkaline-earth-metal salts such as sodium, potassium, calcium or magnesium salts; in particular pharmaceutically acceptable metal salts of one or more carboxylic acid moieties that may be present in the the compound of formula (I).

Other non-pharmaceutically acceptable salts, eg. oxalates, may be used, for example in the isolation of compounds of the invention, and are included within the scope of this invention.

The invention includes within its scope all possible stoichiometric and non-stoichiometric forms of the salts of the compounds of formula (I).

Also included within the scope of the invention are all solvates, hydrates and complexes of compounds and salts of the invention.

Certain groups, substituents, compounds or salts included in the present invention may be present as isomers. The present invention includes within its scope all such isomers, including racemates, enantiomers and mixtures thereof.

Certain of the groups, e.g. heteroaromatic ring systems, included in compounds of formula (I) or their salts may exist in one or more tautomeric forms. The present invention includes within its scope all such tautomeric forms, including mixtures.

Especially when intended for oral medicinal use, the compound of formula (I) can optionally have a molecular weight of 1000 or less, for example 800 or less, in particular 650 or less or 600 or less. Molecular weight here refers to that of the unsolvated "free base" compound, that is excluding any molecular weight contributed by any addition salts. solvent (e.g. water) molecules, etc.

Synthetic Process Routes

The following processes can be used to make the compounds of the invention:

$$\begin{array}{cccc}
& & & & & & & \\
& & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
R_1 & & & & & & & \\
\end{array}$$
(1)

35 Most of the following synthetic processes following are exemplified for compounds of Formula (I) wherein R² is a hydrogen atom (H). However, some or all of these processes can also be used with appropriate modification, e.g. of starting materials and reagents, for making compounds of Formula (I) wherein \mathbb{R}^2 is other than H.

Process A

5

10

20

25

Compounds of formula (I) where $X = OR^{5a}$, can be prepared according to a method, for example as described by Yu et. al. in J. Med Chem., 2001, 44, 1025-1027, by reaction of a compound of formula (II) with an amine of formula R^3NH_2 . The reaction is preferably carried out in the presence of a base such as triethylamine or N_1N -diisopropylethylamine, and/or in an organic solvent such as ethanol, dioxane or acetonitrile. The reaction may require heating e.g. to ca. 60-100 °C, for example ca. 80-90 °C:

15 Compounds of formula (II) are also described in the above reference and can be prepared by reaction of a compound of formula (III) with, for example, diethylethoxymethylene malonate (where R^{5a} = Et) with heating, followed by reaction with phosphorous oxychloride, again with heating:

Formula III Formula II

Where the desired amino pyrazole of formula (III) is not commercially available, preparation can be achieved using methods described by Dorgan et. al. in J. Chem. Soc., Perkin Trans. 1, (4), 938-42; 1980, by reaction of cyanoethylhydrazine with a suitable aldehyde of formula \mathbb{R}^{40} CHO in a solvent such as ethanol, with heating, followed by reduction with, for example sodium in a solvent such as t-butanol. \mathbb{R}^{40} should be chosen so as to contain one less carbon atom than \mathbb{R}^1 , for example \mathbb{R}^{40} = methyl will afford \mathbb{R}^1 = ethyl.

PCT/EP2003/011814

Formula III

In an alternative embodiment of Process A, the 4-chloro substituent in the compound of formula (II) can be replaced by a halogen atom, such as a bromine atom or preferably a chlorine atom, in a compound of formula (IIA) as defined below. In this embodiment of Process A, the compound of formula (IIA) is reacted with the amine of formula R³NH₂.

Process B

10

15

20

25

Compounds of formula (I) where $X = NR^4R^5$, can be prepared by reaction of a compound of formula (IV) with an amine of formula R^3NH_2 . The reaction is preferably carried out in the presence of a base, such as triethylamine or N_iN -diisopropylethylamine, and/or in an organic solvent such as ethanol. THF, dioxane or acetonitrile. The reaction

may require heating, e.g. to ca. 60-100 °C or ca. 80-90 °C, for example for 8-48 or 12-24 hours:

Compounds of formula (IV) can be prepared in a two step procedure as described by Bare et al. in *J. Med. Chem.* 1989, 32, 2561-2573. This process involves, first, reaction of a compound of formula (V) with thionyl chloride (or another agent suitable for forming an acid chloride from a carboxylic acid), either in an organic solvent such as chloroform or THF, or as a neat solution. This reaction may require heating and the thus-formed intermediate may or may not be isolated. Step two involves reaction with an amine of formula R⁴R⁵NH, in an organic solvent such as THF or chloroform and may also involve the use of a base such as triethylamine or diisopropylethyl amine:

Compounds of formula (V) can be prepared by hydrolysis of an ester of formula (II) according to the method described by Yu et. al. in J. Med Chem., 2001, 44, 1025-1027. This procedure preferably involves reaction with a base such as sodium hydroxide or potassium hydroxide in a solvent e.g. an aqueous solvent such as aqueous ethanol or aqueous dioxane:

10

5

In an alternative embodiment of Process B, the 4-chloro substituent in the compound of formula (IV) can be replaced by a halogen atom, such as a bromine atom or preferably a chlorine atom, in a compound of formula (IVA) as defined below. In this embodiment of Process B, the compound of formula (IVA) is reacted with the amine of formula R3NH2.

15

20

Process C

Compounds of formula (I) can also be prepared according to a method, for example as described by Bare et. al. in J. Med. Chem. 1989, 32, 2561-2573, which involves reaction of a compound of formula (VI), in which -O-R35 is a leaving group displaceable by an amine, with an amine of formula R3NH2. The -O-R35 leaving group can be -O-C₁₋₄alkyl (in particular -O-Et) or -O-S(O)₂-R³⁷, wherein R^{37} is $\mathrm{C}_{1\text{-8}}$ alkyl (e.g. C_{1_4} alkyl or C_{1_2} alkyl such as methyl), C_{1_6} fluoroalkyl (e.g. C_{1_4} fluoroalkyl or C1-2fluoroalkyl such as CF3 or C4F9), or phenyl wherein the phenyl is optionally 25 substituted by one or two of independently C1-2alkyl, halogen or C1-2alkoxy (such as phenyl or 4-methyl-phenyl). The reaction may be carried out with or without solvent and may require heating:

15

Compounds of formula (VI) (also described in the above reference) can be prepared by reaction of a compound of formula (VII) with a suitable alkylating agent of formula R¹-X, where X is a leaving group such as halogen. The reaction is preferably carried out in the presence of a base such as potassium carbonate, in an anhydrous solvent such as DMF:

The preparation of compounds of formula VII, e.g. where OR^{35} is OEt, by oxidative cleavage of compounds of formula VIII is described by Bare et. al. in *J. Med. Chem.* 1989, 32, 2561-2573 (further referred to Zuleski et. al. in *J. Drug. Metab. Dispos.*, 1985, 13,139).

In another embodiment of Process C, the compound of formula (VI) can be replaced by a compound of formula (VIA), wherein X is NR^4R^5 or OR^{5a} as defined herein:

In this embodiment of Process C, the compound of formula (VIA) is reacted with the amine of formula R³NH₂.

5 Process D:

10

15

20

To form a compound of formula (I) wherein $X = NR^4R^5$, a compound of formula (I) but wherein X = OH (a carboxylic acid, the compound of formula (IX) as defined below) can be converted into an activated compound of formula (I) but wherein X = a leaving group X^1 substitutable by an amine (a compound of formula (X) as defined below, wherein X^1 is a leaving group substitutable by an amine); and subsequently the activated compound can be reacted with an amine of formula R^4R^5NH :

For example, the activated compound (the compound of formula (X)) can be the acid chloride i.e. an activated compound of formula (I) but wherein the leaving group $X^1 = Cl$. This can be formed from the carboxylic acid (X = OH, the compound of formula (IX)) e.g. by reaction with thionyl chloride, either in an organic solvent such as chloroform or without solvent. See for example Examples 81-85. Alternatively, the activated compound (the compound of formula (X)) can be an activated ester wherein the leaving group X^1 is

$$X_2 = CH \text{ or } N$$

The latter activated compound of formula (X) can be formed from the carboxylic acid (X = OH, the compound of formula (IX)) either:

(a) by reaction of the carboxylic acid with a carbodiimide such as EDC, which is 1-ethyl-3-(3'-dimethylaminopropyl)-arbodiimide and is also 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, or a salt thereof e.g. hydrochloride salt, preferably followed by reaction of the resulting product with 1-hydroxybenzotriazole (HOBT); reaction (a) usually being carried out in the presence of a solvent (preferably anhydrous) such as dimethyl formamide (DMF) or acetonitrile and/or preferably under anhydrous conditions and/or usually at room temperature (e.g. about 20 to about 25 °C); or

(b) by reaction with 2-(IH-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) or O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), in the presence of a base such as diisopropylethylamine (Pr2NEt = DIPEA), and usually in the presence of a solvent such as dimethyl formamide (DMF) or acetonitrile and/or preferably under anhydrous conditions and/or usually at room temperature (e.g. about 20 to about 25 °C).

The carboxylic acid wherein X = OH (the compound of formula (IX) below) is usually prepared by hydrolysis of the corresponding ester of formula (I) wherein X is OR^{5a} . This ester can itself be prepared by any of Processes A, C, E or F as described herein.

20 Process D1

15

This is the same as Process D, but involves reaction of the activated compound of formula (X), wherein $X^{I} = a$ leaving group substitutable by an amine (for example a leaving group as defined herein), with an amine of formula $R^{4}R^{5}NH$.

Process E

2.5

30

35

Compounds of formula (I) can be prepared by reaction of a compound of formula (XI) with an alkylating agent of formula \mathbb{R}^{1} - \mathbb{X}^{3} , where \mathbb{X}^{3} is a leaving group displaceable by the 1-position pyrazolopyridine nitrogen atom of the compound of formula (XI):

A suitable alkylating agent of formula \mathbb{R}^1 - \mathbb{X}^3 can be used. For example, \mathbb{X}^3 can be a halogen atom such as a chlorine atom or more preferably a bromine or iodine atom, or \mathbb{X}^3 can be -0-S(O)₂- \mathbb{R}^{36} wherein \mathbb{R}^{36} is \mathbb{C}_{1-8} alkyl (e.g. \mathbb{C}_{1-4} alkyl or \mathbb{C}_{1-2} alkyl such as methyl), \mathbb{C}_{1-6} fluoroalkyl (e.g. \mathbb{C}_{1-4} fluoroalkyl or \mathbb{C}_{1-2} luoroalkyl such as \mathbb{C}_3 or \mathbb{C}_4 F9), or phenyl wherein the phenyl is optionally substituted by one or two of independently \mathbb{C}_{1-2} alkyl, halogen or \mathbb{C}_{1-2} alkoxy (such as phenyl or 4-methyl-phenyl). The reaction is

preferably carried out in the presence of a base; the base can for example comprise or be potassium carbonate, sodium carbonate, sodium hydride, potassium hydride, or a basic resin or polymer such as polymer-bound 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine. The reaction is preferably carried out in the presence of a solvent, e.g. an organic solvent such as DMF; the solvent is preferably anhydrous. Examples of alkylation Process B include Examples 183, 185, 186 and 354.

For preferable methods of making compounds of formula (XI), see for example (Reference) Examples 19-20, and Intermediates 48 and 54A.

10

40

- Process F: Conversion of one compound of formula (I) or salt thereof into another compound of formula (I) or salt thereof
- 15 One compound of formula (I) or salt thereof can be converted into another compound of formula (I) or salt thereof. This conversion preferably comprises or is one or more of the following processes F1 to F10:
- F1. An oxidation process. For example, the oxidation process can comprise or be oxidation of an alcohol to a ketone (e.g. using Jones reagent, e.g. see Example 205) or oxidation of an alcohol or a ketone to a carboxylic acid. The oxidation process can e.g. comprise or be conversion of a nitrogen-containing compound of formula (I) or salt thereof to the corresponding N-oxide (e.g. using meta-chloroperoxybenzoic acid), for example conversion of a pyridine-containing compound to the corresponding pyridine 25 N-oxide (e.g. Examples 210-212).
 - F2. A reduction process, for example reduction of a ketone or a carboxylic acid to an alcohol.
- 30 F3. Acylation, for example acylation of an amine (e.g. Examples 329-349, Example 353) or hydroxy group.
 - F4. Alkylation, for example alkylation of an amine or of a hydroxy group.
- 35 F5. Hydrolysis, e.g. hydrolysis of an ester to the corresponding carboxylic acid or salt thereof (e.g. Examples 351, 488, 489, 650, 651).
 - F6. Deprotection, e.g. deprotection (e.g. deacylation or t-butyloxycarbonyl (BOC) removal) of an amine group (e.g. Examples 320, (321), and (352)).
 - F7. Formation of an ester or amide, for example from the corresponding carboxylic acid.

F8. Conversion of a ketone into the corresponding oxime (e.g. Examples 652, 653, 654 and 680-686).

F9. Sulfonylation, e.g. sulfonamide formation by reaction of an amine with a sulfonyl halide e.g. a sulfonyl chloride (e.g. Examples 322-328).

and/or

5

15

20

F10. Beckmann rearrangement of one compound of formula (I) into another compound of formula (I), preferably using cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) together with a formamide such as DMF, e.g. at room temperature (see L.D. Luca, J. Org. Chem., 2002, 67, 6272-6274). The Beckmann rearrangement can for example comprise conversion of a compound of formula (I) wherein NHR³ is of sub-formula (o2)

The present invention therefore also provides a method of preparing a compound of formula (I) or a salt thereof:

$$\begin{array}{cccc}
& & & & & & & \\
& & & & & & & \\
N & & & & & & & \\
& & & & & & & \\
R^1 & & & & & & & \\
\end{array}$$
(1)

wherein R^1 , R^2 and R^3 are as defined herein and X is NR^4R^5 or OR^{5a} as defined herein, the method comprising :

(a) for a compound of formula (I) wherein $X = OR^{5a}$, reaction of a compound of formula 25 (IIA):

wherein Hal is a halogen atom (such as a bromine atom or preferably a chlorine atom), with an amine of formula R^3NH_2 , or

5 (b) for a compound of formula (I) wherein X = NR⁴R⁵, reaction of a compound of formula (IVA):

wherein Hal is a halogen atom (such as a bromine atom or preferably a chlorine atom), with an amine of formula $\mathbb{R}^3\mathrm{NH}_2$, or

(c) reaction of a compound of formula (VIA):

, in which -O-R 35 is a leaving group displaceable by an amine (such as -O-C $_{1-4}$ alkyl or -O-S(O) $_{2}$ -R 37),

- 15 with an amine of formula R³NH₂; or
 - (d) to form a compound of formula (I) wherein $X = NR^4R^5$, conversion of a compound of formula (IX) into an activated compound of formula (X) wherein $X^1 = a$ leaving group substitutable by an amine:

, and subsequent reaction of the activated compound of formula (X) with an amine of formula R^4R^5NH ; or

- 5 (d1) to form a compound of formula (I) wherein X = NR⁴R⁵, reaction of an activated compound of formula (X) as defined above with an amine of formula R⁴R⁵NH; or
 - (e) reaction of a compound of formula (XI):

- with an alkylating agent of formula R¹-X², where X² is a leaving group displaceable by the 1-position pyrazolopyridine nitrogen atom of the compound of formula (XI); or
 - (f) conversion of one compound of formula (I) or salt thereof into another compound of formula (I) or salt thereof;
- 15 and optionally converting the compound of formula (I) into a salt thereof e.g. a pharmaceutically acceptable salt thereof.
- In methods (d) and/or (d1), the activated compound of formula (X) wherein X¹ = a

 20 leaving group substitutable by an amine can be the acid chloride i.e. an activated compound of formula (X) wherein X¹ = Cl. Alternatively, the activated compound of formula (X) can be an activated ester wherein the leaving group X¹ is

$$X_2 = CH \text{ or } N$$

- 60 -

PCT/EP2003/011814

Preferred features of methods (a), (b), (c), (d), (d1) and (e), independently of each other, are as described above for Processes A, B, C, D, D1 and E, with all necessary changes being made.

5 The present invention also provides: (g) a method of preparing a pharmaceutically acceptable salt of a compound of formula (I) comprising conversion of the compound of formula (I) or a salt thereof into the desired pharmaceutically acceptable salt thereof. (See for example Examples 490, 491, 518A, 593).

The present invention also provides a compound of formula (I) or a salt thereof, prepared by a method as defined herein.

15 Medical uses

10

20

40

The present invention also provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use as an active therapeutic substance in a mammal such as a human. The compound or salt can be for use in the treatment and/or prophylaxis of any of the diseases / conditions described herein (e.g. for use in the treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal) and/or for use as a phosphodiesterase inhibitor e.g. for use as a phosphodiesterase 4 (PDE4) inhibitor.

"Therapy" may include treatment and/or prophylaxis.

- 25 Also provided is the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament (e.g. pharmaceutical composition) for the treatment and/or prophylaxis of any of the diseases / conditions described herein in a mammal such as a human, e.g. for the treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal such as a human.
- Also provided is a method of treatment and/or prophylaxis of any of the diseases /
 conditions described herein in a mammal (e.g. human) in need thereof, e.g. a method of
 treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal
 (e.g. human) in need thereof, which method comprises administering to the mammal (e.g.
 human) a thrapeutically effective amount of a compound of formula (I) as herein defined
 or a pharmaceutically acceptable salt thereof.

Phosphodiesterase 4 inhibitors are thought to be useful in the treatment and/or prophylaxis of a variety of diseases / conditions, especially inflammatory and/or allergic diseases, in mammals such as humans, for example: asthma, chronic obstructive pulmonary disease (COPD) (e.g. chronic bronchitis and/or emphysema), atopic

WO 2004/024728 PCT/EP2003/011814

dermatitis, urticaria, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, cosinophilic granuloma, psoriasis, rheumatoid arthritis, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury of the myocardium and brain, chronic glomerulonephritis, endotoxic shock, adult respiratory distress syndrome, multiple sclerosis, cognitive impairment (e.g. in a neurological disorder such as Alzheimer's disease), depression, or pain. Ulcerative colitis and/or Crohn's disease are collectively often referred to as inflammatory bowel disease.

In the treatment and/or prophylaxis, the inflammatory and/or allergic disease is preferably thronic obstructive pulmonary disease (COPD), asthma, rheumatoid arthritis or allergic rhinitis in a mammal (e.g. human). More preferably, the treatment and/or prophylaxis is of COPD or asthma in a mammal (e.g. human).

PDE4 inhibitors are thought to be effective in the treatment of asthma (e.g. see
M.A.Giembycz, Drugs, Feb. 2000, 59(2), 193-212; Z. Huang et al., Current Opinion in Chemical Biology, 2001, 5: 432-438; H.J.Dyke et al., Expert Opinion on Investigational Drugs, January 2002, 11(1), 1-13; C.Burnouf et al., Current Pharmaceutical Design, 2002, 8(14), 1255-1296; A.M.Doherty, Current Opinion Chem. Biol., 1999, 3(4), 466-473; and refs cited therein).

PDE4 inhibitors are thought to be effective in the treatment of COPD (e.g. see S.L. Wolda, Emerging Drugs, 2000, 5(3), 309-319; Z. Huang et al., Current Opinion in Chemical Biology, 2001, 5: 432-438; H.J.Dyke et al., Expert Opinion on Investigational Drugs, January 2002, 11(1), 1-13; C.Burnouf et al., Current Pharmaceutical Design, 2002, 8(14), 1255-1296; A.M.Doherty, Current Opinion Chem. Biol., 1999, 3(4), 466-473; and refs cited therein). COPD is often characterised by the presence of airflow obstruction due to chronic bronchitis and/or emphysema (S.L. Wolda, Emerging Drugs, 2000, 5(3), 309-319).

30 PDE4 inhibitors are thought to be effective in the treatment of allergic rhinitis (e.g. see B.M. Schmidt et al., J. Allergy & Clinical Immunology, 108(4), 2001, 530-536).

PDE4 inhibitors are thought to be effective in the treatment of rheumatoid arthritis and multiple sclerosis (e.g. see H.J.Dyke et al., Expert Opinion on Investigational Drugs, 35 January 2002, 11(1), 1-13; C.Burnouf et al., Current Pharmaceutical Design, 2002, 8(14), 1255-1296; and A.M.Doherty, Current Opinion Chem. Biol., 1999, 3(4), 466-473; and refs cited therein). See e.g. A.M.Doherty, Current Opinion Chem. Biol., 1999, 3(4), 466-473 and refs cited therein for atopic dermatitis use.

PDE4 inhibitors have been suggested as having analgesic properties and thus being

effective in the treatment of pain (A.Kumar et al., Indian J. Exp. Biol., 2000, 38(1), 26-30).

In the invention, the treatment and/or prophylaxis can be of cognitive impairment e.g. 5 cognitive impairment in a neurological disorder such as Alzheimer's disease. For example, the treatment and/or prophylaxis can comprise cognitive enhancement e.g. in a neurological disorder. See for example: H.T.Zhang et al. in: Psychopharmacology, June 2000, 150(3), 311-316 and Neuropsychopharmacology, 2000, 23(2), 198-204; and T. Egawa et al., Japanese J. Pharmacol., 1997, 75(3), 275-81. 10

PDE4 inhibitors such as rolipram have been suggested as having antidepressant properties (e.g. J. Zhu et al., CNS Drug Reviews, 2001, 7(4), 387-398; O'Donnell, Expert Opinion on Investigational Drugs, 2000, 9(3), 621-625; and H.T. Zhang et al., Neuropsychopharmacology, October 2002, 27(4), 587-595).

Pharmaceutical compositions and dosing

15

25

30

35

40

For use in medicine, the compounds of the present invention are usually 20 administered as a pharmaceutical composition.

The present invention therefore provides in a further aspect a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers and/or excipients.

The pharmaceutical composition can be for use in the treatment and/or prophylaxis of any of the conditions described herein.

The invention also provides a method of preparing a pharmaceutical composition comprising a compound of formula (I), as herein defined, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers and/or excipients.

the method comprising mixing the compound or salt with the one or more pharmaceutically acceptable carriers and/or excipients.

The invention also provides a pharmaceutical composition prepared by said method.

The compounds of formula (I) and/or the pharmaceutical composition may be administered, for example, by oral, parenteral (e.g. intravenous, subcutaneous, or intramuscular), inhaled or nasal administration. Accordingly, the pharmaceutical composition is preferably suitable for oral, parenteral (e.g. intravenous, subcutaneous, or intramuscular), inhaled or nasal administration. More preferably, the pharmaceutical composition is suitable for inhaled or oral administration, e.g. to a mammal such as a human. Inhaled administration involves topical administration to the lung e.g. by aerosol or dry powder composition. Oral administration to a human is most preferred.

10

15

20

25

30

35

40

PCT/EP2003/011814

A pharmaceutical composition suitable for oral administration can be liquid or solid: for example it can be a syrup, suspension or emulsion, a tablet, a capsule or a lozenge.

A liquid formulation will generally consist of a suspension or solution of the compound or pharmaceutically acceptable salt in a suitable pharmaceutically acceptable liquid carrier(s), for example an aqueous solvent such as water, ethanol or glycerine, or a non-aqueous solvent, such as polyethylene glycol or an oil. The formulation may also contain a suspending agent, preservative, flavouring and/or colouring agent.

A pharmaceutical composition suitable for oral administration being a tablet can comprise one or more pharmaceutically acceptable carriers and/or excipients suitable for preparing tablet formulations. Examples of such carriers include lactose and cellulose. The tablet can also or instead contain one or more pharmaceutically acceptable excipients, for example binding agents, lubricants such as magnesium stearate, and/or tablet disintegrants.

A pharmaceutical composition suitable for oral administration being a capsule can be prepared using encapsulation procedures. For example, pellets containing the active ingredient can be prepared using a suitable pharmaceutically acceptable carrier and then filled into a hard gelatin capsule. Alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutically acceptable carrier, for example an aqueous gum or an oil and the dispersion or suspension then filled into a soft gelatin capsule.

Preferably the composition is in unit dose form such as a tablet or capsule for oral administration, e.g. for oral administration to a human.

A parenteral composition can comprise a solution or suspension of the compound or pharmaceutically acceptable salt in a sterile aqueous carrier or parenterally acceptable oil. Alternatively, the solution can be lyophilised; the lyophilised parenteral pharmaceutical composition can be reconstituted with a suitable solvent just prior to administration.

Compositions for nasal or inhaled administration may conveniently be formulated as aerosols, drops, gels or dry powders.

Aerosol formulations, e.g. for inhaled administration, can comprise a solution or fine suspension of the active substance in a pharmaceutically acceptable aqueous or nonaqueous solvent. Aerosol formulations can be presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomising device or inhaler. Alternatively the sealed container may be a unitary dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve (metered dose inhaler) which is intended for disposal once the contents of the container have been exhausted.

Where the dosage form comprises an aerosol dispenser, it preferably contains a suitable propellant under pressure such as compressed air, carbon dioxide, or an organic propellant such as a chlorofluorocarbon (CFC) or hydrofluorocarbon (HFC). Suitable CFC propellants include dichlorodifluoromethane, trichlorofluoromethane and dichlorotetrafluoroethane. Suitable HFC propellants include 1.1.1.2.3.3.3WO 2004/024728 PCT/EP2003/011814 - 64 -

heptafluoropropane and 1,1,1,2-tetrafluoroethane. The aerosol dosage forms can also take the form of a pump-atomiser.

5

10

15

2.0

For pharmaceutical compositions suitable and/or adapted for inhaled administration, it is preferred that the compound or salt of formula (I) is in a particle-size-reduced form, and more preferably the size-reduced form is obtained or obtainable by micronisation. Micronisation usually involves subjecting the compound/salt to collisional and abrasional forces in a fast-flowing circular or spiral/vortex-shaped airstream often including a cyclone component. The preferable particle size (e.g. D50 value) of the size-reduced (e.g. micronised) compound or salt is about 0.5 to about 10 microns, e.g. about 1 to about 5 microns (e.g. as measured using laser diffraction). For example, it is preferable for the compound or salt of formula (I) to have a particle size defined by: a D10 of about 0.3 to about 3 microns (e.g. about 1 micron), and/or a D50 of about 1 to about 5 microns (e.g. about 2-5 or about 2-3 microns), and/or a D90 of about 2 to about 20 microns or about 3 to about 10 microns (e.g. about 5-8 or about 5-6 microns); for example as measured using laser diffraction. The laser diffraction measurement can use a dry method (suspension of compound/salt in airflow crosses laser beam) or a wet method [suspension of compound/salt in liquid dispersing medium, such as isooctane or (e.g. if compound soluble in isooctane) 0.1% Tween 80 in water, crosses laser beam]. With laser diffraction, particle size is preferably calculated using the Fraunhofer calculation; and/or preferably a Malvern Mastersizer or Sympatec apparatus is used for measurement.

25 An illustrative non-limiting example of a small-scale micronisation process is now given:

Micronisation Example: Micronisation of Example 518 or 518A

- Purpose: To micronize approximately 600-1000 mg of Example 518 or 518A (described hereinafter) using a Jetpharma MC1 micronizer.
- The parent (unmicronised) and micronised materials are analyzed for particle size by laser diffraction and crystallinity by PXRD.

Equipment and material

35

30

Equipment/material Description and specification

Jetpharma MC1 Micronizer Nitrogen supply: Air tank with 275psi

rate tubing

Analytical balance Sartorius Analytical
Top loader balance Mettler PM400
Digital Caliper VWR Electronic caliper
Vibrational spatula Auto-spat Dispenser
Materials to be micronised Example 518 or 518A

PCT/EP2003/011814

The Jetpharma MC1 Micronizer comprises a horizontal disc-shaped milling housing having: a tubular compound inlet (e.g., angled at ca. 30degrees to the horizontal) for entry of a suspension of unmicronised compound of formula (I) or salt in an gasflow, a separate gas inlet for entry of gases, a gas outlet for exit of gases, and a collection vessel for collecting micronised material. The milling housing has two chambers: an outer annular chamber in gaseous connection with the gas inlet the chamber being for receiving pressurised gas (e.g. air or nitrogen), an disc-shaped inner milling chamber within and coaxial with the outer chamber for micronising the input compound / salt, the two chambers being separated by an annular wall. The annular wall (ring R) has a plurality of narrow-bored holes connecting the inner and outer chambers and circumferentiallyspaced-apart around the annular wall. The holes open into the inner chamber directed at an angle (directed part-way between radially and tangentially), and in use act as nozzles directing pressurised gas at high velocity from the outer chamber into the inner chamber and in an inwardly-spiral path (vortex) around the inner chamber (cyclone). The compound inlet is is gaseous communication with the inner chamber via a nozzle directed tangentially to the inner chamber, within and near to the annular wall. Upper and lower broad-diameter exit vents in the central axis of the the inner milling chamber connect to (a) (lower exit) the collection vessel which has no air outlet, and (b) (upper exit) the gas outlet which leads to a collection bag, filter and a gas exhaust. Inside the tubular compound inlet and longitudinally-movable within it is positioned a venturi inlet (V) for entry of gases. The compound inlet also has a bifurcation connecting to an upwardlydirected material inlet port for inputting material.

In use, the narrow head of the venturi inlet (V) is preferably positioned below and 25 slightly forward of the material inlet port so that when the venturi delivers pressurised gas (eg air or nitrogen) the feed material is sucked into the gasstream thorough the compound inlet and accelerates it into the inner milling chamber tangentially at a subsonic speed. Inside the milling chamber the material is further accelerated to a supersonic speed by the hole/nozzle system around the ring (R) (annular wall) of the milling chamber. The 30 nozzles are slightly angled so that the acceleration pattern of the material is in the form of an inwardly-directed vortex or cyclone. The material inside the milling chamber circulates rapidly and particle collisions occur during the process, causing larger particles to fracture into smaller ones. "Centrifugal" acceleration in the vortex causes the larger particles to remain at the periphery of the inner chamber while progressively smaller 35 particles move closer to the center until they exit the milling chamber, generally through the lower exit, at low pressure and low velocity. The particles that exit the milling chamber are heavier than air and settle downward thorugh the lower exit into the collection vessel, while the exhaust gas rises (together with a miinority of small particles of micronised material) and escapes into the atmosphere at low pressure and low velocity.

Procedure:

40

5

10

15

20

The micronizer is assembled. The venturi protrusion distance from input port is adjusted to 1.0cm respectively (e.g. so that the narrow head of the venturi inlet is

positioned below and slightly forward of the material inlet port) and is measured with a micro-caliper to make sure that it is inserted correctly. The ring (R) and venturi (V) pressures are adjusted according to the values specified in the experimental design (refer to experimental section below) by adjusting the valves on the pressure gauges on the micronizer. The setup is checked for leakage by observing if there is any fluctuation in the reading of the pressure gauges.

pressure to prevent regurgitation of material, e.g. outwardly from the material inlet port.

Balance performance is checked with calibration weights. Specified amount of the parent material (see section on experimental run) is weighed into a plastic weigh boat. The material is then fed into the micronizer using a vibrational spatula (e.g. V-shaped in cross-section) at a specified feed rate. The material feeding time and equipment pressures are monitored during the micronization process.

Note that the venturi (V) pressure is kept at least 2 bars greater than the ring (R)

Upon completion of the micronising run, the nitrogen supply is shut off and the collection bag is tapped to allow particles to settle into the recovery/collection vessel at the bottom of the micronizer. The collection bag is removed and set aside. The micronised powder in the recovery vessel (collection vessel) and the cyclone (above the recovery vessel) are collected separately into different weighed+labelled collection vials. The weight of the micronised material is recorded. The micronizer is disassembled and residual PDE4 compound on the micronizer inner surface is rinsed with 70/30 isopropyl alcohol / water and collected into a flask. The micronizer is then thoroughly cleaned by rinsing and wiping with suitable solvent and dried before subsequent runs are performed.

Preferred Experimental Parameters

25 Parent (unmicronised) material (Procedure 1): Example 518 or 518A Parent (unmicronised) material (Procedure 2): Example 518 Balance(s) Used: Sartorius analytical

Venturi outlet insertion depth: 10.0 mm

Procedure no.	Material input amount (g)	Venturi (V) / ring (R) Pressure (bar)	Intended feed-rate	Time needed to feed material (min+sec)	Actual feed-rate (g/min)
1	0.8795g	V= 10 bar	200 mg/min	4 min 51	181 mg/min
		R= 6 bar		sec	
2	0.9075g	V= 8 bar	200 mg/min	4 min 43	192 mg/min
		R= 5.5 bar		sec	

30

5

10

15

20

The above parameters can be varied using the skilled person's knowledge.

Results and/or observations

% yield = [(Material from vessel + Material from cyclone)/Material input amount] x100

In general, very approximately 50-75% yields are achievable using this method. Procedure 1 has not been completed.

In Procedure 2, a 70.8% yield (0.6427g) of Example 518 micronised material was obtained, including material from collection vessel and material from inside walls of cyclone.

Particle size analysis of Example 518 micronised material from Procedure 2, using laser diffraction measurement with Malvern Mastersizer longbed version, dispersing medium 0.1% Tween 80 in water, stir rate 1500 rpm, 3 mins sonification prior to final dispersion and analysis, 300 RF (Reverse Fourier) lens, Fraunhofer calculation with Malvern software:

- material from collection vessel: D10 = 0.97 microns, D50 = 3.86 microns, D90 = 12.64 microns.

- material from inside walls of cyclone: D10 = 0.95 microns, D50 = 3.42 microns, D90 = 9.42 microns.

Alternative embodiment: Examples of the compounds/salts of the invention other than Examples 518 or 518A can be micronised.

20

2.5

30

35

40

5

10

15

For pharmaceutical compositions suitable and/or adapted for inhaled administration, it is preferred that the pharmaceutical composition is a dry powder inhalable composition. Such a composition can comprise a powder base such as lactose or starch, the compound of formula (I) or salt thereof (preferably in particle-size-reduced form, e.g. in micronised form), and optionally a performance modifier such as L-leucine, mannitol, trehalose and/or magnesium stearate. Preferably, the dry powder inhalable composition comprises a dry powder blend of lactose and the compound of formula (I) or salt thereof. The lactose is preferably lactose hydrate e.g. lactose monohydrate and/or is preferably inhalation-grade and/or fine-grade lactose. Preferably, the particle size of the lactose is defined by 90% or more (by weight or by volume) of the lactose particles being less than 1000 microns (micrometres) (e.g. 10-1000 microns e.g. 30-1000 microns) in diameter, and/or 50% or more of the lactose particles being less than 500 microns (e.g. 10-500 microns) in diameter. More preferably, the particle size of the lactose is defined by 90% or more of the lactose particles being less than 300 microns (e.g. 10-300 microns e.g. 50-300 microns) in diameter, and/or 50% or more of the lactose particles being less than 100 microns in diameter. Optionally, the particle size of the lactose is defined by 90% or more of the lactose particles being less than 100-200 microns in diameter, and/or 50% or more of the lactose particles being less than 40-70 microns in diameter. Most importantly, it is preferable that about 3 to about 30% (e.g. about 10%) (by weight or by volume) of the particles are less than 50 microns or less than 20 microns in diameter. For example, without limitation, a suitable inhalation-grade lactose is E9334 lactose (10% fines) (Borculo Domo Ingredients, Hanzeplein 25, 8017 JD Zwolle, Netherlands).

- 68 -

In the dry powder inhalable composition, preferably, the compound of formula (1) or salt thereof is present in about 0.1% to about 70% (e.g. about 1% to about 50%, e.g. about 5% to about 40%, e.g. about 20 to about 30%) by weight of the composition.

An illustrative non-limiting example of a dry powder inhalable composition follows:

5

10

15

20

40

Dry Powder Formulation Example - Dry powder Lactose Blend Preparation

Using a size-reduced e.g. micronised form of the compound of formula (I) or salt thereof (e.g. as prepared in the Micronisation Example above), the dry powder blend is prepared by mixing the required amount of the compound/salt (e.g. 10 mg, 1% w/w) with inhalation-grade lactose containing 10% fines (e.g. 990 mg, 99% w/w) in a TeflonTM (polytetrafluoroethene) pot in a Mikro-dismembrator ball-mill (but without a ball bearing) at ½ speed (ca. 2000-2500 rpm) for about 4 hours at each blend concentration. The Mikro-dismembrator (available from B. Braun Biotech International, Schwarzenberger Weg 73-79, D-34212 Melsungen, Germany; www.bbraunbiotech.com) comprises a base with an upwardly-projecting and sidewardly-vibratable arm to which is attached the Teflon TM pot. The vibration of the arm achieves blendine.

Other blends: 10% w/w compound/salt (50 mg) + 90% w/w lactose (450 mg, inhalation-grade lactose containing 10% fines).

Serial dilution of the 1% w/w blend can achieve e.g. 0.1% and 0.3% w/w blends.

Optionally, in particular for dry powder inhalable compositions, a pharmaceutical composition for inhaled administration can be incorporated into a plurality of sealed dose containers (e.g. containing the dry powder composition) mounted longitudinally in a strip 25 or ribbon inside a suitable inhalation device. The container is rupturable or peel-openable on demand and the dose, e.g. of the dry powder composition, can be administered by inhalation via a device such as the DISKUS TM device, marketed by GlaxoSmithKline. The DISKUS TM inhalation device is usually substantially as described in GB 2,242,134 30 A. In such device at least one container for the pharmaceutical composition in powder form (the at least one container preferably being a plurality of sealed dose containers mounted longitudinally in a strip or ribbon) is defined between two members peelably secured to one another; the device comprises: means defining an opening station for the said at least one container; means for peeling the members apart at the opening station to 35 open the container; and an outlet, communicating with the opened container, through which a user can inhale the pharmaceutical composition in powder form from the opened container

In the pharmaceutical composition, a or each dosage unit for oral or parenteral administration preferably contains from 0.01 to 3000 mg, more preferably 0.5 to 1000 mg, of a compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base. A or each dosage unit for nasal or inhaled administration

preferably contains from 0.001 to 50 mg, more preferably 0.01 to 5 mg, of a compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

A pharmaceutically acceptable compound or salt of the invention is preferably administered to a mammal (e.g. human) in a daily oral or parenteral dose of 0.001 mg to 50 mg per kg body weight per day (mg/kg/day), for example 0.01 to 20 mg/kg/day or 0.03 to 10 mg/kg/day or 0.1 to 2 mg/kg/day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

A pharmaceutically acceptable compound or salt of the invention is preferably administered to a mammal (e.g., human) in a daily nasal or inhaled dose of: 0.0001 to 5 mg/kg/day or 0.0001 to 1 mg/kg/day, e.g. 0.001 to 1 mg/kg/day or 0.001 to 0.3 mg/kg/day or 0.001 to 0.3 mg/kg/day or 0.001 to 0.1 mg/kg/day or 0.005 to 0.3 mg/kg/day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

The pharmaceutically acceptable compounds or salts of the invention is preferably administered in a daily dose (for an adult patient) of, for example, an oral or parenteral dose of 0.01 mg to 3000 mg per day or 0.5 to 1000 mg per day e.g. 2 to 500 mg per day, or a nasal or inhaled dose of 0.001 to 300 mg per day or 0.001 to 50 mg per day or 0.01 to 30 mg per day or 0.01 to 5 mg per day or 0.02 to 2 mg per day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.

Combinations

5

10

15

20

30

35

The compounds, salts and/or pharmaceutical compositions according to the invention may also be used in combination with another therapeutically active agent, for example, a β2 adrenoreceptor agonist, an anti-histamine, an anti-allergic or an anti-inflammatory agent.

The invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with another therapeutically active agent, for example, a β_2 -adrenoreceptor agonist, an anti-histamine, an anti-allertic, an anti-inflammatory agent or an antiinfective agent.

Preferably, the β_2 -adrenoreceptor agonist is salmeterol (e.g. as racemate or a single enantiomer such as the R-enantiomer), salbutamol, formoterol, salmefamol, fenoterol or terbutaline, or a salt thereof (e.g. pharmaceutically acceptable salt thereof), for example the xinafoate salt of salmeterol, the sulphate salt or free base of salbutamol or the fumarate salt of formoterol. Long-acting β_2 -adrenoreceptor agonists are preferred, especially those having a therapeutic effect over a 12-24 hour period such as salmeterol or formoterol. Preferably, the β_2 -adrenoreceptor agonist is for inhaled administration, e.g. once per day and/or for simultaneous inhaled administration; and more preferably the

40 e.g. once per day and/or for simultaneous inhaled administration; and more preferably the β₂-adrenoreceptor agonist is in particle-size-reduced form e.g. as defined herein. Preferably, the β₂-adrenoreceptor agonist combination is for treatment and/or

10

prophylaxis of COPD or asthma. Salmeterol or a pharmaceutically acceptable salt thereof, e.g. salmeterol xinofoate, is preferably administered to humans at an inhaled dose of 25 to 50 micrograms twice per day (measured as the free base). The combination with a β -adrenoreceptor agonist can be as described in WO 00/12078.

Preferred long acting β_2 -adrenoreceptor agonists include those described in WO 02/066422A, WO 03/024439, WO 02/070490 and WO 02/076933.

Especially preferred long-acting β_2 -adrenoreceptor agonists include compounds of formula(XX) (described in WO 02/066422):

HOCH₂,
$$R^{12X}$$
 CHCH₂NHCR^{14X}R^{15X}(CH₂)_mx—O—(CH₂)_nX— R^{11X} (XX)

or a salt or solvate thereof, wherein in formula (XX): m^{χ} is an integer of from 2 to 8;

nX is an integer of from 3 to 11,

with the proviso that $m^x + n^x$ is 5 to 19,

R^{11X} is -XSO₂NR ^{16X}R ^{17X} wherein X is -(CH₂)_px- or C_{2.6} alkenylene; R^{16X} and R^{17X} are independently selected from hydrogen, C₁₋₆alkyl, C₂₋₇cycloalkyl, C(O)NR ^{18X}R ^{19X}, phenyl, and phenyl (C₁₋₄alkyl)-,

or R^{16X} and R^{17X}, together with the nitrogen to which they are bonded, form a 5-, 6-, or 7membered nitrogen containing ring, and R^{16X} and R^{17X} are each optionally substituted by
one or two groups selected from halo, C₁₋₆alloyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, hydroxysubstituted C₁₋₆alkoxy, -CO₂R^{18X}, -SO₂NR^{18X}R^{19X}, -CONR^{18X}R^{19X}, -NR^{18X}C(O)R^{19X}, or
a 5-, 6- or 7-membered heterocylic ring:

 $R^{18\mathrm{X}}$ and $R^{19\mathrm{X}}$ are independently selected from hydrogen, $C_{1\text{-}6}alkyl$,

25 C₃₋₆cycloalkyl, phenyl, and phenyl (C₁₋₄alkyl)-; and p^X is an integer of from 0 to 6, preferably from 0 to 4;

R^{12X} and R^{13X} are independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, halo, phenyl, and C₁₋₆haloalkyl; and

R^{14X} and R^{15X} are independently selected from hydrogen and C₁₋₄alkyl with the proviso that the total number of carbon atoms in R^{14X} and R^{15X} is not more than 4.

Preferred β_2 -adrenoreceptor agonists disclosed in WO 02/066422 include: 3-(4-{[6-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)-phenyl]ethyl}amino)hexyl]oxy}butyl)benzenesulfonamide and

35 3-(3-{[7-({(2R)-2-hydroxy-2-[4-hydroxy-3-hydroxymethyl)phenyl]ethyl}amino)heptyl]oxy}propyl)benzenesulfonamide. A preferred β_2 -adrenoreceptor agonist disclosed in WO 03/024439 is: 4-{(1R)-2-[(6-{2-[(2,6-dichlorobenzyl)oxy]ethoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol.

5 A combination of a compound of formula (I) or salt together with an anti-histamine is preferably for oral administration (e.g. as a combined composition such as a combined tablet), and can be for treatment and/or prophylaxis of allergic rhinitis. Examples of anti-histamines include methapyrilene, or H1 antagonists such as cetirizine, loratadine (e.g. Clarityn TM), desloratadine (e.g. Clarityn TM), or fexofenadine (e.g. Allegra TM).

10

15

20

25

30

35

40

tiotropium.

The invention also provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with an anticholinergic compound, e.g. a muscarinic (M) receptor antagonist in particular an M₁, M₂, M₁/M₂, or M₃ receptor antagonist, more preferably a M₃ receptor antagonist, still more preferably a M₃ receptor antagonist which selectively antagonises (e.g. antagonises 10 times or more strongly) the M₃ receptor over the M₁ and/or M₂ receptor. For combinations of anticholinergic compounds / muscarinic (M) receptor antagonist with PDE4 inhibitors, see for example WO 03/011274 A2 and WO 02/069945 A2 / US 2002/0193393 A1 and US 2002/052312 A1, and some or all of these publications give examples of anticholinergic compounds / muscarinic (M) receptor antagonists which may be used with the compounds of formula (I) or salts, and/or suitable pharmaceutical compositions. For example, the muscarinic receptor antagonist can comprise or be an ipratropium salt (e.g. ipratropium bromide), an oxitropium salt (e.g. ipratropium bromide), or more preferably a tiotropium salt (e.g. icotropium bromide); see e.g. EP 418 716 A1 for

The anticholinergic compound or muscarinic (M) receptor antagonist, e.g. M₃ receptor antagonist, is preferably for inhaled administration, more preferably in particle-size-reduced form e.g. as defined herein. More preferably, both the muscarinic (M) receptor antagonist and the compound of formula (I) or the pharmaceutically acceptable salt thereof are for inhaled administration. Preferably, the anticholinergic compound or muscarinic receptor antagonist and the compound of formula (I) or salt are for simultaneous administration. The muscarinic receptor antagonist combination is preferably for treatment and/or prophylaxis of COPD.

Other suitable combinations include, for example, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with another anti-inflammatory agent such as an anti-inflammatory corticosteroid; or a non-steroidal anti-inflammatory drug (NSAID) such as a leukotriene antagonist (e.g. montelukast), an iNOS inhibitor, a tryptase inhibitor, a leastase inhibitor, a beta-2 integrin antagonist, a adenosine 2a agonist. a CCR3 antagonist, or a 5-lipoxogenase inhibitor); or an

PCT/EP2003/011814

antiinfective agent (e.g. an antibiotic or antiviral). An iNOS inhibitor is preferably for oral administration. Suitable iNOS inhibitors (inducible nitric oxide synthase inhibitors) include those disclosed in WO 93/13055, WO 98/30537, WO 02/50021, WO 95/34534 and WO 99/62875. Suitable CCR3 inhibitors include those disclosed in WO 02/26722.

5

10

15

20

In a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with an anti-inflammatory corticosteroid (which is preferably for treatment and/or prophylaxis of asthma, COPD or allergic rhinitis), then preferably the anti-inflammatory corticosteroid is fluticasone, fluticasone propionate (e.g. see US patent 4,335,121), beclomethasone, beclomethasone 17-propionate ester, beclomethasone 17,21-dipropionate ester, dexamethasone or an ester thereof, mometasone or an ester thereof, ciclesonide, budesonide, flunisolide, or a compound as described in WO 02/12266 A1 (e.g. as claimed in any of claims 1 to 22 therein), or a pharmaceutically acceptable salt of any of the above. If the anti-inflammatory corticosteroid is a compound as described in WO 02/12266 A1, then preferably it is Example 1 therein {which is 6α,9α-difluoro-17α-[(2-furanylcarbonyl)oxy]-11β-hydroxy-16α-methyl-3oxo-androsta-1.4-diene-17β-carbothioic acid S-fluoromethyl ester} or Example 41 therein {which is 6α,9α-difluoro-11β-hydroxy-16α-methyl-17α-[(4-methyl-1,3-thiazole-5carbonyl)oxyl-3-oxo-androsta-1.4-diene-17B-carbothioic acid S-fluoromethyl ester}, or a pharmaceutically acceptable salt thereof. The anti-inflammatory corticosteroid is preferably for intranasal or inhaled administration. Fluticasone propionate is preferred and is preferably for inhaled administration to a human either (a) at a dose of 250 micrograms once per day or (b) at a dose of 50 to 250 micrograms twice per day.

25 Also provided is a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with β₂-adrenoreceptor agonist and an anti-inflammatory corticosteroid, for example as described in WO 03/030939 A1. Preferably this combination is for treatment and/or prophylaxis of asthma, COPD or allergic rhinitis. The β₂-adrenoreceptor agonist and/or the anti-inflammatory
30 corticosteroid can be as described above and/or as described in WO 03/030939 A1. Most preferably, in this "triple" combination, the β₂-adrenoreceptor agonist is salmeterol or a pharmaceutically acceptable salt thereof (e.g. salmeterol xinafoate) and the anti-inflammatory corticosteroid is fluticasone propionate.

35

The combinations referred to above may conveniently be presented for use in the form of a pharmaceutical composition and thus a pharmaceutical composition comprising a combination as defined above together with one or more pharmaceutically acceptable carriers and/or excipients represent a further aspect of the invention.

40

The individual compounds of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical composition.

In one embodiment, the combination as defined herein can be for simultaneous inhaled administration and is disposed in a combination inhalation device. Such a combination inhalation device is another aspect of the invention. Such a combination inhalation device can comprise a combined pharmaceutical composition for simultaneous inhaled administration (e.g. dry powder composition), the composition comprising all the individual compounds of the combination, and the composition being incorporated into a plurality of sealed dose containers mounted longitudinally in a strip or ribbon inside the inhalation device, the containers being rupturable or peel-openable on demand; for example such inhalation device can be substantially as described in GB 2,242,134 A (DISKUS TM) and/or as described above. Alternatively, the combination inhalation device can be such that the individual compounds of the combination inhalation device can be such that the individual compounds of the combination are administrable simultaneously but are stored separately (or wholly or partly stored separately for triple combinations), e.g. in separate pharmaceutical compositions, for example as described in PCT/EP03/00598 filed on 22 January 2003 (e.g. as described in the claims thereof e.g. claim 1).

The invention also provides a method of preparing a combination as defined herein, the method comprising either

- (a) preparing a separate pharmaceutical composition for administration of the individual compounds of the combination either sequentially or simultaneously, or
 - (b) preparing a combined pharmaceutical composition for administration of the individual compounds of the combination simultaneously, ${\bf r}$
- wherein the pharmaceutical composition comprises the combination together with one or more pharmaceutically acceptable carriers and/or excipients.

The invention also provides a combination as defined herein, prepared by a method as defined herein.

5

10

15

20

25

2.5

30

PCT/EP2003/011814

BIOLOGICAL TEST METHODS

PDE 3, PDE 4B, PDE 4D, PDE 5, PDE 6 Primary assay methods

5 The activity of the compounds can be measured in the assay methods shown below. Preferred compounds of the invention are selective PDE4 inhibitors, i.e. they inhibit PDE4 (e.g. PDE4B and/or PDE4D, preferably PDE4B) more strongly than they inhibit PDE3 and/or more strongly than they inhibit PDE5 and/or more strongly than they inhibit PDE6.

PDE enzyme sources and literature references

Human recombinant PDE4B, in particular the 2B splice variant thereof (HSPDE4B2B), is disclosed in WO 94/20079 and also M.M. McLaughlin et al., "A low Km, rolipramsensitive, cAMP-specific phosphodiesterase from human brain: cloning and expression of cDNA, biochemical characterisation of recombinant protein, and tissue distribution of mRNA", J. Biol. Chem., 1993, 268, 6470-6476. For example, in Example 1 of WO 94/20079, human recombinant PDE4B is described as being expressed in the PDE-deficient yeast Saccharomyces cerevisiae strain GL.62, e.g. after induction by addition of 150 uM CuSO4, and 100,000 x g supernatant fractions of yeast cell lysates are described for use in the harvesting of PDE4B enzyme.

Human recombinant PDE4D (HSPDE4D3A) is disclosed in P. A. Baecker et al., "Isolation of a cDNA encoding a human rolipram-sensitive cyclic AMP phoshodiesterase (PDE IV_D)", *Gene.* 1994, 138, 253-256.

Human recombinant PDE5 is disclosed in K. Loughney et al., "Isolation and characterisation of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3',5'-cyclic nucleotide phosphodiesterase", Gene, 1998, 216, 139-147.

PDE3 was purified from bovine aorta as described by H. Coste and P. Grondin, "Characterisation of a novel potent and specific inhibitor of type V phosphodiesterase", Biochem. Pharmacol., 1995, 50, 1577-1585.

35 PDE6 was purified from bovine retina as described by: P. Catty and P. Deterre, "Activation and solubilization of the retinal cGMP-specific phosphodiesterase by limited proteolysis", Eur. J. Biochem., 1991, 199, 263-269; A. Tar et al. "Purification of bovine retinal cGMP phosphodiesterase", Methods in Enzymology, 1994, 238, 3-12; and/or D. Srivastava et al. "Effects of magnesium on cyclic GMP hydrolysis by the bovine retinal rod cyclic GMP phosphodiesterase", Biochem. J., 1995, 308, 653-658.

Inhibition of PDE 3, PDE 4B, PDE 4D, PDE 5 or PDE 6 activity: radioactive Scintillation Proximity Assay (SPA)

The ability of compounds to inhibit catalytic activity at PDE4B or 4D (human recombinant), PDE3 (from bovine aorta), PDE5 (human recombinant) or PDE6 (from 5 bovine retina) was determined by Scintillation Proximity Assay (SPA) in 96-well format. Test compounds (preferably as a solution in DMSO, e.g. 0.5 to 1 microlitre (ul) volume) were preincubated at ambient temperature (room temperature, e.g. 19-23°C) in Wallac Isoplates (code 1450-514) with PDE enzyme in 50mM Tris-HCl buffer pH 7.5 , 8.3mM MgCl₂, 1.7mM EGTA, 0.05% (w/v) bovine serum albumin for 10-30 minutes (usually 30 10 minutes). The enzyme concentration was adjusted so that no more than 20% hydrolysis of the substrate defined below occurred in control wells without compound, during the incubation. For the PDE3, PDE4B and PDE4D assays, [5',8-3H]Adenosine 3',5'-cyclic phosphate (Amersham Pharmacia Biotech, code TRK.559; or Amersham Biosciences UK Ltd, Pollards Wood, Chalfont St Giles, Buckinghamshire HP8 4SP, UK) was added to 15 give 0.05uCi per well and ~ 10nM final concentration. For the PDE5 and PDE6 assays, [8-3H]Guanosine 3',5'-cyclic phosphate (Amersham Pharmacia Biotech, code TRK.392) was added to give 0.05uCi per well and ~ 36nM final concentration. Plates, e.g. containing approx. 100 ul volume of assay mixture, were mixed on an orbital shaker for 5 minutes and incubated at ambient temperature for 1 hour. Phosphodiesterase SPA beads 20 (Amersham Pharmacia Biotech, code RPNQ 0150) were added (~1mg per well) to terminate the assay. Plates were sealed and shaken and allowed to stand at ambient temperature for 35 minutes to 1hour (preferably 35 minutes) to allow the beads to settle. Bound radioactive product was measured using a WALLAC TRILUX 1450 Microbeta 25 scintillation counter. For inhibition curves, 10 concentrations (1.5nM - 30uM) of each compound were assayed. Curves were analysed using ActivityBase and XLfit (ID Business Solutions Limited, 2 Ocean Court, Surrey Research Park, Guildford, Surrey GU2 7OB, United Kindgom) Results were expressed as pIC50 values.

30 In an alternative to the above radioactive SPA assay, PDE4B or PDE4D inhibition can be measured in the following Fluorescence Polarisation (FP) assay:

Inhibition of PDE4B or PDE4D activity: Fluorescence Polarisation (FP) assay

35

40

The ability of compounds to inhibit catalytic activity at PDE4B (human recombinant) or PDE4D (human recombinant) was determined by IMAP Fluorescence Polarisation (FP) assay (IMAP Explorer kit, available from Molecular Devices Corporation, Sunnydale, CA, USA; Molecular Devices code: R8062) in 384-well format. The IMAP FP assay is able to measure PDE activity in an homogenous, non-radioactive assay format. The FP assay uses the ability of immobilised trivalent metal cations, coated onto nanoparticles (tiny beads), to bind the phosphate group of FI-AMP that is produced on the hydrolysis of fluorescein-labelled (FI) cyclic adenosine mono-phosphate (FI-cAMP) to the non-cyclic FI-AMP form. FI-cAMP does not bind. Binding of FI-AMP product to the beads (coated with the immobilised trivalent cations) slows the rotation of

the bound FI-AMP and leads to an increase in the fluorescence polarisation ratio of parallel to perpendicular light. Inhibition of the PDE reduces/inhibits this signal increase.

Test compounds (small volume, e.g. 0.5 to 1 ul, of solution in DMSO) were preincubated at ambient temperature (room temperature, e.g. 19-23°C) in black 384-well microtitre plates (supplier: NUNC, code 262260) with PDE enzyme in 10mM Tris-HCl buffer pH 7.2, 10mM MgCl2, 0.1% (w/v) bovine serum albumin, and 0.05% NaN3 for 10-30 minutes. The enzyme level was set by experimentation so that reaction was linear throughout the incubation. Fluorescein adenosine 3',5'-cyclic phosphate (from Molecular Devices Corporation, Molecular Devices code: R7091) was added to give about 40nM final concentration (final assay volume usually ca. 25-40 ul). Plates were mixed on an orbital shaker for 10 seconds and incubated at ambient temperature for 40 minutes. IMAP binding reagent (as described above, from Molecular Devices Corporation, Molecular Devices code: R7207) was added (60ul of a 1 in 400 dilution in binding buffer of the kit stock solution) to terminate the assay. Plates were allowed to stand at ambient temperature for 1 hour. The Fluorescence Polarisation (FP) ratio of parallel to perpendicular light was measured using an Analyst TM plate reader (from Molecular Devices Corporation). For inhibition curves, 10 concentrations (1.5nM -30uM) of each compound were assayed. Curves were analysed using ActivityBase and XLfit (ID Businesss Solutions Limited, 2 Ocean Court, Surrey Research Park, Guildford, Surrey GU2 7QB, United Kindgom). Results were expressed as pIC₅₀ values.

In the FP assay, all reagents were dispensed using MultidropTM (available from Thermo Labsystems Ov, Ratastie 2, PO Box 100, Vantaa 01620, Finland).

For a given PDE4 inhibitor, the PDE4B (or PDE4D) inhibition values measured using the SPA and FP assays can differ slightly. However, in a regression analysis of 100 test compounds, the pIC50 inhibition values measured using SPA and FP assays have been found generally to agree within 0.5 log units, for PDE4B and PDE4D (linear regression coefficient 0.966 for PDE4B and 0.971 for PDE4D; David R.Mobbs et al., "Comparison of the IMAP Fluorescence Polarisation Assay with the Scintillation Proximity Assay for Phosphodiesterase Activity", poster to be presented at 2003 Molecular Devices UK & Europe User Meeting, 2nd October 2003, Down Hall, Harlow, Essex, United Kingdom).

Biological Data obtained for some of the Examples (PDE4B inhibitory activity, either as one reading or as an average of ca. 2-6 readings) are as follows, based on current measurements only. In each of the SPA and FP assays, absolute accuracy of measurement is not possible, and the readings given are accurate only up to about \pm 0.5 of a log unit, depending on the number of readings made and averaged:

Example number	PDE4B pIC ₅₀ (± about 0.5)
2	8.0
3	7.8
6	6.6
11	7.4

10

15

20

35

8.5
7.9
7.7
8.3
6.9
7.0 to 7.9
8.2 to 10.0
7.9
8.5

15

Examples 1-201 were generally tested for PDE4B inhibition using the radioactive SPA assay. Of Examples 207-665, and 677-686, all or almost all (except perhaps for Examples 451, 631-632, 635, 652) were tested for PDE4B inhibition; and of these some were tested by the radioactive SPA assay, some were tested by the FP assay. Examples 1-201, 207-450, 452-630, 633-634, 636-651, 653-665, and 677-686, but excluding reference examples 19-20, have PDE4B inhibitory activities in the range of pIC₅₀ = about 6 (\pm about 0.5) to about 10.0 (\pm about 0.5). Examples 666-676 are predicted to have PDE4B inhibitory activities in the range of pIC₅₀ = about 6 (\pm about 0.5) to about 10.0 (\pm about 0.5).

The Examples wherein R^3 = cyclohexyl (NHR 3 = sub-formula (c)), tetrahydro-2H-pyrand-yl (NHR 3 = group (h)), 4-oxocyclohexyl (NHR 3 = sub-formula (o)), or certain other types of substituted cyclohexyl or certain heterocycles, usually or often (especially with R^1 = ethyl) have a higher level of selectivity for PDE4B over PDE5, as measured in the above enzyme inhibition assays, compared to the selectivities of comparable Examples wherein R^3 = cyclopropyl (NHR 3 = sub-formula (b)). For example, based on current measurements only, and subject to cumulative assay inaccuracies:

Examples 21, 40, 90, 198 and 201 (wherein NHR³ = sub-formula (h), (c), (j), (n) and
 (o) respectively, R¹ = ethyl) have selectivities for PDE4B over PDE5 in the range of about 3 to 20 or more times greater than the selectivity achieved for the equivalent Example 39 wherein R³ = cyclopropyl (NHR³ = sub-formula (b));

WO 2004/024728 PCT/EP2003/011814 - 78 -

- Examples 43 and 44 (wherein NHR³ = sub-formula (c) and (h) respectively) have selectivities for PDE4B over PDE5 in the range of about 4 to 8 or more times greater than the selectivity achieved for the equivalent R³ = cyclopropyl Example 42;

- Examples 22 and 48 (wherein $\overline{NHR^3}$ = sub-formula (h) and (c) respectively) have selectivities for PDE4B over PDE5 in the range of about 2.5 to 10 or more times greater than the selectivity achieved for the equivalent R^3 = cyclopropyl Example 47; and

- Examples 2 and 3 (wherein NHR³ = sub-formula (c) and (h) respectively) have selectivities for PDE4B over PDE5 in the range of about 2 to 5 or more times greater than the selectivity achieved for the equivalent R³ = cyclopropyl Example 1.

Some known PDE4 inhibitors can cause emesis and/or nausea to greater or Emesis: lesser extents (e.g. see Z. Huang et al., Current Opinion in Chemical Biology, 2001, 5: 432-438, see especially pages 433-434 and refs cited therein). Therefore, it would be preferable, but not essential, if a PDE4 inhibitory compound or salt of the invention were to cause only limited or manageable emetic side-effects. Emetic side-effects can for example be measured by the emetogenic potential of the compound or salt when administered to ferrets; for example one can measure the time to onset, extent, frequency and/or duration of vomiting, retching and/or writhing in ferrets after oral or parenteral administration of the compound or salt. See for example In vivo Assay 4 hereinafter for a measurement method for anti-inflammatory effect, emetic side-effects and therapeutic index (TI) in the ferret. See also for example A. Robichaud et al., "Emesis induced by inhibitors of [PDE IV] in the ferret", Neuropharmacology, 1999, 38, 289-297, erratum Neuropharmacology, 2001, 40, 465-465. However, optionally, emetic side-effects and therapeutic index (TI) in rats can be conveniently measured by monitoring the pica feeding behaviour of rats after administration of the compound or salt of the invention (see In Vivo Assay 2 below).

Other side effects: Some known PDE4 inhibitors can cause other side effects such as headache and other central nervous sytem (CNS-) mediated side effects; and/or gastrointestinal (GI) tract disturbances. Therefore, it would be preferable but not essential if a particular PDE4 inhibitory compound or salt of the invention were to cause only limited or manageable side-effects in one or more of these side-effect categories.

In Vivo Biological Assays

10

15

20

25

30

35

40

The *in vitro* enzymatic PDE4B inhibition assay described above should be regarded as being the primary test of biological activity. However, additional *in vivo* biological tests, which are optional and which are not an essential measure of efficacy or side-effects, are described below.

10

15

20

25

30

35

40

45

WO 2004/024728 PCT/EP2003/011814

In Vivo Assay 1. LPS-induced pulmonary neutrophilia in rats: effect of orally administered PDE4 inhibitors

Pulmonary neutrophil influx has been shown to be a significant component to the family of pulmonary diseases like chronic obstructive pulmonary diseases (COPD) which can involve chronic bronchitis and/or emphysema (G.F. Filley, Chest. 2000; 117(5); 251s-260s). The purpose of this neutrophilia model is to study the potentially anti-inflammatory effects in vivo of orally administered PDE4 inhibitors on neutrophilia induced by inhalation of aerosolized lipopolysaccharide (LPS), modelling the neutrophil inflammatory component(s) of COPD. See the literature section below for scientific

background. Male Lewis rats (Charles River, Raleigh, NC, USA) weighing approximately 300-400 grams are pretreated with either (a) test compound suspended in 0.5% methylcellulose (obtainable from Sigma-Aldrich, St Louis, MO, USA) in water or (b) vehicle only, delivered orally in a dose volume of 10 ml/kg. Generally, dose response curves are generated using the following doses of PDE4 inhibitors: 10.0, 2.0, 0.4, 0.08 and 0.016 mg/kg. Thirty minutes following pretreatment, the rats are exposed to aerosolized LPS (Serotype E. Coli 026:B6 prepared by trichloroacetic acid extraction, obtainable from Sigma-Aldrich, St Louis, MO, USA), generated from a nebulizer containing a 100 ug/ml LPS solution. Rats are exposed to the LPS aerosol at a rate of 4 L/min for 20 minutes. LPS exposure is carried out in a closed chamber with internal dimensions of 45 cm length x 24 cm width x 20 cm height. The nebulizer and exposure chamber are contained in a certified fume hood. At 4 hours-post LPS exposure the rats are euthanized by overdose with pentobarbital at 90 mg/kg, administered intraperitoneally. Bronchoalveolar lavage (BAL) is preformed through a 14 gauge blunt needle into the exposed trachea. Five, 5 ml washes are performed to collect a total of 25 ml of BAL fluid. Total cell counts and leukocyte differentials are performed on BAL fluid in order to calculate neutrophil influx into the lung. Percent neutrophil inhibition at each dose (cf. vehicle) is calculated and a variable slope, sigmoidal dose-response curve is generated, usually using Prism Graph-Pad. The dose-response curve is used to calculate an ED50 value (in mg per kg of body weight) for inhibition by the PDE4 inhibitor of the LPS-induced neutrophilia.

Results: Based on current measurements, the compounds of Examples 22, 83 and 155, administered orally in the above procedure, exhibited neutrophilia-inhibition ED50 values in the range of about 0.5 mg/kg to about 2 mg/kg.

Alternative method and results: In an alternative embodiment of the procedure, single oral doses of 10 mg/kg or 1.0 mg/kg of the PDE4 inhibitor (or vehicle) is administered to the rats, and percent neutrophil inhibition is calculated and reported for that specific dose. In this embodiment, based on current measurements, the compounds of Examples 21, 100, 109, 167, 172 and 600, administered orally in the above procedure at a single dose of 1.0 mg/kg, exhibited percent neutrophilia-inhibition in the range of about 19% to about 69% (or in the range of about 32% to about 69% for Examples 21, 100, 109, 167 and 600).

Literature:

Filley G.F. Comparison of the structural and inflammatory features of COPD and asthma. Chest. 2000; 117(5) 251s-260s.

Howell RE, Jenkins LP, Fielding LE, and Grimes D. Inhibition of antigeninduced pulmonary eosinophilia and neutrophilia by selective inhibitors of - 80 -

phosphodiesterase types 3 and 4 in brown Norway rats. *Pulmonary Pharmacology*. 1995: 8: 83-89.

Spond J, Chapman R, Fine J, Jones H, Kreutner W, Kung TT, Minnicozzi M.

Comparison of PDE 4 inhibitors, Rolipram and SB 207499 (Artifo¹¹⁰), in a rat model of pulmonary neutrophilia. *Pulmonary Pharmacology and Therapeutics*. 2001; 14: 157-164

Underwood DC, Osbom RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, Romanic AM, Adams JL, Hay DWP, and Griswold DE. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol. 2000; 279: L895-L902.

In Vivo Assay 2. Rat Pica Model of emesis

10

25

30

35

40

45

Background: Selective PDE4 inhibitors have been shown to inhibit inflammation in various in vitro and in vivo models by increasing intracellular levels of cAMP of many immune cells (e.g. lymphocytes, monocytes). However, a side effect of some PDE4 inhibitors in many species is emesis. Because many rat models of inflammation are well characterized, they have been used in procedures (see e.g. In Vivo Assay 1 above) to show beneficial anti-inflammatory effects of PDE 4 inhibitors. However rats have no emetic response (they have no vomit reflex), so that the relationship between beneficial anti-inflammatory effects of PDE 4 inhibitors and emesis is difficult to study directly in rats.

However, in 1991, Takeda et al. (see Literature section below) demonstrated that the pica feeding response is analogous to emesis in rats. Pica feeding is a behavioural response to illness in rats wherein rats eat non-nutritive substances such as earth or in particular clay (e.g. kaolin) which may help to absorb toxins. Pica feeding can be induced by motion and chemicals (especially chemicals which are emetic in humans), and can be inhibited pharmacologically with drugs that inhibit emesis in humans. The Rat Pica Model, In Vivo Assay 2, can determine the level of pica response of rats to PDE 4 inhibition at pharmacologically relevant doses in parallel to in vivo anti-inflammatory Assays in (a separate set of) rats (e.g. In Vivo Assay 1 above). Anti-inflammatory and pica assays in the same species together can provide data on the "therapeutic index" (TI) in the rat of the compounds/salts of the invention. The Rat TI can for example be calculated as the ratio of a) the potentially-emetic Pica Response ED50 dose from Assay 2 to b) the rat anti-inflammatory ED50 dose (e.g. measured by rat neutrophilia-inhibition in eg In Vivo Assay 1), with larger TI ratios possibly indicating lower emesis at many anti-inflammatory doses. This might allow a choice of a non-emetic or minimal-emetic pharmaceutical dose of the compounds or salts of the invention which has an anti-inflammatory effect. It is recognised however that achieving a low-emetic PDE4 inhibitory compound is not essential.

Procedure: On the first day of the experiment, the rats are housed individually in cages without bedding or "enrichment". The rats are kept off of the cage floor by a wire screen. Pre-weighed food cups containing standard rat chow and clay pellets are placed in the cage. The clay pellets, obtainable from Languna Clay Co, City of Industry, CA, USA, are the same size and shape as the food pellets. The rats are acclimated to the clay for 72 hours, during which time the cups and food and clay debris from the cage are weighed daily on an electronic balance capable of measuring to the nearest 0.1 grams. By

the end of the 72 hour acclimation period the rats generally show no interest in the elay pellets.

At the end of 72 hours the rats are placed in clean cages and the food cups weighed. Rats that are still consuming clay regularly are removed from the study.

5 Immediately prior to the dark cycle (the time when the animals are active and should be eating) the animals are split into treatment groups and dosed orally with a dose of the compound/salt of the invention (different doses for different treatment groups) or with vehicle alone, at a dose volume of 2 ml/kg. In this oral dosing, the compound/salt is in the form of a suspension in 0.5% methylcellulose (obtainable Sigma-Aldrich, St. Louis, MO, USA) in water. The food and clay cups and cage debris are weighed the following day and the total clay and food consumed that night by each individual animal is calculated.

A dose response is calculated by first converting the data into quantal response, where animals are either positive or negative for the pica response. A rat is "pica positive" if it consumes greater than or equal to 0.3 grams of clay over the mean of is usually calculated using logistic regression performed by the Statistica software statistical package. A Pica Response ED50 value in mg per kg of body weight can then be calculated.

15

20

25

30

35

40

45

Results: Using the above procedure, and according to current measurements, the compounds of Examples 22, 83 and 155 exhibited a Pica Response ED50 in the range of about 4.8 mg/kg to greater than or equal to about 40 mg/kg. It can be seen that these Pica Response ED50 doses are higher than the neutrophilia-inhibition ED50 values for these three Examples (see In Vivo Assay 1 above), so that a Therapeutic Index (TI) in rats of >2, as measured by Assays 1+2 and according to current measurements, appears at first sight to have been achieved for these three Examples.

The Therapeutic Index (TI) calculated this way is often significantly different to, and often higher than, the TI calculated in the ferret (see In vivo Assay 4 below).

Literature:

Beavo JA, Contini, M., Heaslip, R.J. Multiple cyclic nucleotide

phosphodiesterases. Mol Pharmacol. 1994; 46:399-405.

Spond J, Chapman R, Fine J, Jones H, Kreutner W, Kung TT, Minnicozzi M.

Comparison of PDE 4 inhibitors, Rolipram and SB 207499 (ArifloTM), in a rat model of pulmonary neutrophilia. Pulmonary Pharmacology and Therapeuditics. 2001; 14:157-164.

Takeda N, Hasegawa S, Morita M, and Matsunaga T. Pica in rats is analogous to emesis: an animal model in emesis research. *Pharmacology, Biochemistry and Behavior*. 1991; 45:817-821.

Takeda N, Hasegawa S, Morita M, Horii A, Uno A, Yamatodani A and Matsunaga T. Neuropharmacological mechanisms of emesis. I. Effects of antiemetic drugs on motion- and apomorphine-induced pica in rats. Meth Find Exp Clin Pharmacol. 1995; 17(9) 589-596.

Takeda N, Hasegawa S, Morita M, Horii A, Uno A, Yamatodani A and Matsunaga T. Neuropharmacological mechanisms of emesis. II. Effects of antiemetic drugs on cisplatin-induced pica in rats. *Meth Find Exp Clin Pharmacol*. 1995; 17(9) 647-652.

- 82 -

In Vivo Assay 3. LPS induced pulmonary neutrophilia in rats: effect of intratracheally administered PDE4 inhibitors

This assay is an animal model of inflammation in the lung – specifically neutrophilia induced by lipopolysaccharide (LPS) – and allows the study of putative inhibition of such neutrophilia (anti-inflammatory effect) by intratracheally (i.t.) administered PDE4 inhibitors. The PDE4 inhibitors are preferably in dry powder or wet suspension form. I.t. administration is one model of inhaled administration, allowing topical delivery to the lung.

Animals: Male CD (Sprague Dawley Derived) rats supplied by Charles River, Raleigh, NC, USA were housed in groups of 5 rats per cage, acclimatised after delivery for at least 7 days with bedding/nesting material regularly changed, fed on SDS diet R1 pelleted food given ad lib, and supplied with daily-changed pasteurised animal grade drinking water.

10

15

2.0

25

30

35

Device for dry powder administration: Disposable 3-way tap between dosing needle and syringe. A 3-way sterile tap (Vycon Ref 876.00) was weighed, the drug blend or inhalation grade lactose (vehicle control) was then added to the tap, the tap closed to prevent loss of drug, and the tap was re-weighed to determine the weight of drug in the tap. After dosing, the tap was weighed again to determine the weight of drug that had left the tap. The needle, a Sigma Z21934-7 syringe needle 19-gauge 152 mm (6 inches) long with luer hub, was cut by engineering to approximately 132 mm (5.2 inches), a blunt end was made to prevent them damaging the rat's trachea, and the needle weighed prior to and after drug delivery to confirm that no drug was retained in the needles after dosing.

Device for wet suspension administration: This is the similar to the above but a blunt dosing needle, whose forward end was slightly angled to the needle axis, was used, with a flexible plastic portex canula inserted into the needle.

Drugs and Materials: Lipopolysaccharide (LPS) (Serotype:0127:B8) (L3129 Lot 61K4075) was dissolved in phosphate-buffered saline (PBS). PDE4 inhibitors are used in size-reduced (e.g. micronised) form, for example according to the Micronisation Example given above. For dry powder administration of the drug, the Dry Powder Formulation Example given above, comprising drug and inhalation-grade lactose, can be used. The inhalation-grade lactose usually used (Lot E98L4675 Batch 845120) has 10% fines (10% of material under 15um particle size measured by Malvern particle size). Wet suspensions of the drug can be prepared by adding the required volume of vehicle to

wet suspensions or me drug can be prepared by adming the required volume of veince to the drug; the vehicle used being a mixture of saline/tween (0.2% tween 80). The wet suspension was sonicated for 10 minutes prior to use.

10

15

20

25

30

35

40

WO 2004/024728 PCT/EP2003/011814

- 83 -

Preparation, and dosing with PDE 4 inhibitor: Rats were anaesthetised by placing the animals in a sealed Perspex chamber and exposing them to a gaseous mixture of isoflourane (4.5%), nitrous oxide (3 litres.minute⁻¹) and oxygen (1 litre.minute⁻¹). Once anaesthetised, the animals were placed onto a stainless steel i.t. dosing support table. They were positioned on their back at approximately a 35° angle. A light was angled against the outside of the throat to highlight the trachea. The mouth was opened and the opening of the upper airway visualised. The procedure varies for wet suspension and dry powder administration of PDE4 inhibitors as follows:

Dosing with a Wet suspension: A portex cannula was introduced via a blunt metal dosing needle that had been carefully inserted into the rat trachea. The animals were intratacheally dosed with vehicle or PDE4 inhibitor via the dosing needle with a new internal canula used for each different drug group. The formulation was slowly (10 seconds) dosed into the trachea using a syringe attached to the dosing needle.

Dosing with a Dry Powder: The three-way tap device and needle were inserted into the rat trachea up to a pre-determined point established to be located approximately 1 cm above the primary bifurcation. Another operator holds the needle at the specified position whilst 2x 4ml of air is delivered through the three-way tap by depressing the syringes (ideally coinciding with the animal inspiring), aiming to expel the entire drug quantity from the tap. After dosing, the needle and tap are removed from the airway and the tan closed off to prevent any retained drug leaving the tap.

After dosing with either wet suspension or dry powder, the animals are then removed from the table and observed constantly until they have recovered from the effects of anaesthesia. The animals are returned to the holding cages and given free access to food and water; they are observed and any unusual behavioural changes noted.

Exposure to LPS: About 2 hours after i.t. dosing with vehicle control or the PDE4 inhibitor, the rats were placed into sealed Perspex containers and exposed to an aerosol of LPS (nebuliser concentration 150 µg.ml⁻¹) for 15 minutes. Aerosols of LPS were generated by a nebuliser (DeVilbiss, USA) and this was directed into the Perspex exposure chamber. Following the 15-minute LPS-exposure period, the animals were returned to the holding cages and allowed free access to both food and water.

[In an alternative embodiment, the rats can exposed to LPS less than 2 hours after i.t. dosing. In another alternative embodiment, the rats can exposed to LPS more than 2 hours (e.g. ca. 4 or ca. 6 hours) after i.t. dosing by vehicle or PDE4 inhibitor, to test whether or not the PDE4 inhibitor has a long duration of action (which is not essential).]

Bronchoalveolar lavage: 4 hours after LPS exposure the animals were killed by overdose of sodium pentobarbitone (i.p.). The trachea was cannulated with polypropylene tubing and the lungs lavaged (washed out) with 3 x 5 mls of heparinised (25 units.ml⁻¹) phosphate buffered saline (PBS).

Neutrophil cell counts: The Bronchoalveolar lavage (BAL) samples were centrifuged at 1300 rpm for 7 minutes. The supernatant was removed and the resulting cell pellet resuspended in 1 ml PBS. A cell slide of the resuspension fluid was prepared by placing 100µl of resuspended BAL fluid into cytospin holders and then spun at 5000

rpm for 5 minutes. The slides were allowed to air dry and then stained with Leishmans stain (20 minutes) to allow differential cell counting. The total cells were also counted from the resuspension. From these two counts, the total numbers of neutrophils in the BAL were determined. For a measure of PDE4-inhibitor-induced inhibition of neutrophilia, a comparison of the neutrophil count in rats treated with vehicle and rats treated with PDE4 inhibitors is conducted.

By varying the dose of the PDE4 inhibitor used in the dosing step (e.g. 0.2 or 0.1 mg of PDE4 inhibitor per kg of body weight, down to e.g. 0.01 mg/kg), a dose-response curve can be generated.

10

30

5

In Vivo Assay 4. Evaluation of Therapeutic Index of PDE 4 inhibitors in the conscious ferret

1.1 Materials

The following materials are used for these studies:

15 PDE4 inhibitors are prepared for oral (p.o.) administration by dissolving in a fixed volume (1 ml) of acetone and then adding cremophor to 20% of the final volume. Acetone is evaporated by directing a flow of nitrogen gas onto the solution. Once the acetone is removed, the solution is made up to final volume with distilled water. IPS is dissolved in phosphate buffered saline.

20 1.2 Animals

Male ferrets (Mustela Pulorius Furo, weighing 1-2 kg) are transported and allowed to acclimatise for not less than 7 days. The diet comprises SDS diet C pelleted food given ad lib with Whiskers TM cat food given 3 times per week. The animals are supplied with pasteurised animal grade drinking water changed daily.

25 1.3 Experimental Protocol(s)

1.3.1 Dosing with PDE4 inhibitors

PDE4 inhibitors are administered orally (p.o.), using a dose volume of 1ml/kg. Ferrets are fasted overnight but allowed free access to water. The animals are orally dosed with vehicle or PDE 4 inhibitor using a 15cm dosing needle that is passed down the back of the throat into the oesophagus. After dosing, the animals are returned to holding cages fitted with perspex doors to allow observation, and given free access to water. The animals are constantly observed and any emetic episodes (retching and vomiting) or behavioural changes are recorded. The animals are allowed access to food 60 – 90 minutes after no. dosing.

35 1.3.2 Exposure to LPS

Thirty minutes after oral dosing with compound or vehicle control, the ferrets are placed into sealed perspex containers and exposed to an aerosol of LPS (30 µg/ml) for 10 minutes. Aerosols of LPS are generated by a nebuliser (DeVilbies, USA) and this is directed into the perspex exposure chamber. Following a 10-minute exposure period, the animals are returned to the holding cages and allowed free access to water, and at a later stage, food. General observation of the animals continues for a period of at least 2.5 hours post oral dosing. All emetic episodes and behavioural changes are recorded.

1.3.3 Bronchoalveolar lavage and cell counts

Six hours after LPS exposure the animals are killed by overdose of sodium pentobarbitone administered intraperitoneally. The trachea is then cannulated with polypropylene tubing and the lungs lavaged twice with 20 ml heparinised (10 units/ml)

- 5 phosphate buffered saline (PBS). The bronchoalveolar lavage (BAL) samples are centrifuged at 1300 rpm for 7 minutes. The supernatant is removed and the resulting cell pellet re-suspended in 1 ml PBS. A cell smear of re-suspended fluid is prepared and stained with Leishmans stain to allow differential cell counting. A total cell count is made using the remaining re-suspended sample. From this, the total number of neutrophils in the BAL sample is determined.
 - 1.3.4 Pharmacodynamic readouts
 - The following parameters are recorded:
 - a) % inhibition of LPS-induced pulmonary neutrophilia to determine the dose of PDE4 inhibitor which gives 50% inhibition (D50).
- b) Emetic episodes the number of vomits and retches are counted to determine the dose of PDE4 inhibitor that gives a 20% incidence of emesis (D20).
 - c) A therapeutic index (TI), using this assay, is then calculated for each PDE4 inhibitor using the following equation:
- 20 Therapeutic index (TI) = <u>D20 incidence of emesis</u> D50 inhibition of neutrophilia

It is noted that the Therapeutic index (TI) calculated using this in vivo Assay 4 is often significantly different to, and often lower than, that calculated using the rat oral inflammation and pica feeding Assays 1+2.

The calculation of TI using the PDE4 inhibitor roflumilast in this Assay 4 is: D20 for emesis = 0.5mg/kg p.o., D50 for neutroplilia = 0.49mg/kg p.o., TI = 1.02

30

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.

35

25

- 86 -

EXAMPLES

The various aspects of the invention will now be described by reference to the following examples. These examples are merely illustrative and are not to be construed as a

limitation of the scope of the present invention. In this section, "Intermediates" represent syntheses of intermediate compounds intended for use in the synthesis of the "Examples".

Abbreviations used herein:

10	DMSO	dimethyl sulfoxide
	DCM	dichloromethane
	EtOAc	ethyl acetate
	Et ₂ O	diethyl ether
	DMF	dimethyl formamide
15	MeOH	methanol
	HPLC	high pressure liquid chromatography
	SPE	solid phase extraction
	NMR	nuclear magnetic resonance (in which: s = singlet, d = doublet, t = triplet,
		q = quartet, $dd = doublet$ of doublets, $m = multiplet$, $H = no$. of protons)
20	LCMS	liquid chromatography/mass spectroscopy
	TLC	thin layer chromatography
	BEMP	2-t-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-
		diazaphosphazine
	EDC	1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
25	HATU	O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium
		hexafluorophosphate
	HBTU	O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
	HOBT	hydroxybenzotriazole = 1-hydroxybenzotriazole
	h	hours
30	DIPEA	diisopropylethyl amine (ⁱ Pr ₂ NEt)
	T_{RET}	retention time
	THF	Tetrahydrofuran
	Lawesson's re	eagent 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulphide

Machine Methods used herein:

Room temperature

35

LCMS (liquid chromatography/mass spectroscopy)

40 Waters ZQ mass spectrometer operating in positive ion electrospray mode, mass range 100-1000 amu.

this is usually in the range of about 20 to about 25 °C.

UV wavelength: 215-330nM

Column: 3.3cm x 4.6mm ID, 3µm ABZ+PLUS

- 87 -

Flow Rate: 3ml/min

Injection Volume: 5µl

Solvent A: 95% acetonitrile + 0.05% formic acid

Solvent B: 0.1% formic acid + 10mMolar ammonium acetate

5 Gradient: 0% A/0.7min, 0-100% A/3.5min, 100% A/1.1min, 100-0% A/0.2min

Mass directed autoprep HPLC

The prep column used was a Supelcosil ABZplus (10cm x 2.12cm)

(usually 10cm x 2.12cm x 5 μm). 10 UV wavelength: 200-320nM

Flow: 20ml/min

Injection Volume: 1ml; or more preferably 0.5 ml

Solvent A: 0.1% formic acid

Solvent B: 95% acetonitrile + 5% formic acid; or more usually 99.95% acetonitrile +

15 0.05% formic acid

Gradient: 100% A/1min, 100-80% A/9min, 80-1% A/3.5min, 1% A/1.4min, 1-100%A/0.1min

Intermediates and Examples

20

All reagents not detailed in the text below are commercially available from established suppliers such as Sigma-Aldrich. The addresses of the suppliers for some of the starting materials mentioned in the Intermediates and Examples below or the Assays above are as follows:

25

30

- ABCR GmbH & CO, KG, P.O. Box 21 01 35, 76151 Karlsruhe, Germany
- Aceto Color Intermediates (catalogue name), Aceto Corporation, One Hollow Lane, Lake Success, NY, 11042-1215, USA
- Acros Organics, A Division of Fisher Scientific Company, 500 American Road, Morris Plains, NJ 07950, USA
- Apin Chemicals Ltd., 82 C Milton Park, Abingdon, Oxon OX14 4RY, United Kingdom
- Apollo Scientific Ltd., Unit 1A, Bingswood Industrial Estate, Whaley Bridge,

Derbyshire SK23 7LY, United Kingdom

- Aldrich (catalogue name), Sigma-Aldrich Company Ltd., Dorset, United Kingdom, telephone:
- 5 +44 1202 733114; Fax: +44 1202 715460; ukcustsv@eurnotes.sial.com; or
 - Aldrich (catalogue name), Sigma-Aldrich Corp., P.O. Box 14508, St. Louis, MO 63178-9916, USA; telephone; 314-771-5765; fax: 314-771-5757; custsery@sial.com; or
 - Aldrich (catalogue name), Sigma-Aldrich Chemie Gmbh, Munich, Germany; telephone: +49 89 6513 0; Fax: +49 89 6513 1169; deorders@eurnotes.sial.com.
- Alfa Aesar, A Johnson Matthey Company, 30 Bond Street, Ward Hill, MA 01835-8099, USA
 - Amersham Biosciences UK Ltd, Pollards Wood, Chalfont St Giles, Buckinghamshire HP8 4SP, United Kingdom
 - Array Biopharma Inc., 1885 33rd Street, Boulder, CO 80301, USA

WO 2004/024728 PCT/EP2003/011814

- AstaTech, Inc., 8301 Torresdale Ave., 19C, Philadelphia, PA 19136, USA
- Austin Chemical Company, Inc., 1565 Barclay Blvd., Buffalo Grove, IL 60089, USA
- Avocado Research, Shore Road, Port of Heysham Industrial Park, Heysham Lancashire LA3 2XY, United Kingdom
- Bayer AG, Business Group Basic and Fine Chemicals, D-51368 Leverkusen, Germany
 - Berk Univar ple, Berk House, P.O.Box 56, Basing View, Basingstoke, Hants RG21 2E6, United Kingdom
 - Butt Park Ltd., Braysdown Works, Peasedown St. John, Bath BA2 8LL, United Kingdom
- Chemical Building Blocks (catalogue name), Ambinter, 46 quai Louis Bleriot, Paris, F-75016,
 France
 ChemBridge Europe, 4 Clark's Hill Rise, Hampton Wood, Evesham, Worcestershire WR11
 - 6FW, United Kingdom
 - ChemService Inc., P.O.Box 3108, West Chester, PA 19381, USA
 - Combi-Blocks Inc., 7949 Silverton Avenue, Suite 915, San Diego, CA 92126, USA
- 15 Dynamit Nobel GmbH, Germany; also available from: Saville Whittle Ltd (UK agents of Dynamit Nobel), Vickers Street, Manchester M40 8EF, United Kingdom
 - E. Merck, Germany; or E. Merck (Merck Ltd), Hunter Boulevard,
 - Magna Park, Lutterworth, Leicestershire LE17 4XN, United Kingdom
 - Esprit Chemical Company, Esprit Plaza, 7680 Matoaka Road, Sarasota, FL 34243, USA
- Exploratory Library (catalogue name), Ambinter, 46 quai Louis Bleriot, Paris, F-75016, France
 - Fluka Chemie AG, Industriestrasse 25, P.O. Box 260, CH-9471 Buchs, Switzerland
 - Fluorochem Ltd., Wesley Street, Old Glossop, Derbyshire SK13 7RY, United Kingdom
 - ICN Biomedicals, Inc., 3300 Hyland Avenue, Costa Mesa, CA 92626, USA
 - Interchim Intermediates (catalogue name), Interchim, 213 Avenue Kennedy, BP 1140,
- 25 Montlucon, Cedex, 03103, France
 - Key Organics Ltd., 3, Highfield Indusrial Estate, Camelford, Cornwall PL32 9QZ, United Kingdom
 - Lancaster Synthesis Ltd., Newgate, White Lund, Morecambe, Lancashire LA3 3DY, United Kingdom
- 30 Manchester Organics Ltd., Unit 2, Ashville Industrial Estate, Sutton Weaver, Runcorn, Cheshire WA7 3PF. United Kingdom
 - Matrix Scientific, P.O. Box 25067, Columbia, SC 29224-5067, USA
 - Maybridge Chemical Company Ltd., Trevillett, Tintagel, Cornwall PL34 0HW, United Kingdom
- Maybridge Reactive Intermediates (catalogue name), Maybridge Chemical Company Ltd.,
 Trevillett, Tintagel, Cornwall PL34 0HW, United Kingdom
 - MicroChemistry Building Blocks (catalogue name), MicroChemistry-RadaPharma, Shosse Entusiastov 56, Moscow, 111123, Russia
 - Miteni S.p.A., Via Mecenate 90, Milano, 20138, Italy
- 40 Molecular Devices Corporation, Sunnydale, CA, USA
 - N.D. Zelinsky Institute, Organic Chemistry, Leninsky prospect 47, 117913 Moscow B-334, Russia
 - Optimer Building Block (catalogue name), Array BioPharma, 3200 Walnut Street, Boulder, CO 80301, USA

WO 2004/024728 PCT/EP2003/011814

- 89 -

- Peakdale Molecular Ltd., Peakdale Science Park, Sheffield Road, Chapel-en-le-Frith, High Peak SK23 0PG. United Kingdom
- Pfaltz & Bauer, Inc., 172 East Aurora Street, Waterbury, CT 06708, USA
- Rare Chemicals (catalogue name), Rare Chemicals GmbH, Schulstrasse 6, 24214 Gettorf,
 Germany
- SALOR (catalogue name) (Sigma Aldrich Library of Rare Chemicals), Aldrich Chemical Company Inc. 1001 West Saint Paul Avenue. Milwaukee. WI 53233. USA
- Sigma (catalogue name), Sigma-Aldrich Corp., P.O. Box 14508, St. Louis, MO 63178-9916, USA: see "Aldrich" above for other non-US addresses and other contact details
- 10 SIGMA-RBI, One Strathmore Road, Natick, MA 01760-1312, USA
 - Synchem OHG Heinrich-Plett-Strasse 40, Kassel, D-34132, Germany
 - Syngene International Pvt Ltd, Hebbagodi, Hosur Road, Bangalore, India.
 - TCI America, 9211 North Harborgate Street, Portland, OR 97203, USA
 - TimTec Building Blocks A, TimTec, Inc., P O Box 8941, Newark, DE 19714-8941, USA
- 15 Trans World Chemicals, Inc., 14674 Southlawn Lane, Rockville, MD 20850, USA
 - Ubichem PLC, Mayflower Close, Chandlers Ford Industrial Estate, Eastleigh, Hampshire SO53 4AR, United Kingdom
 - Ultrafine (UFC Ltd.), Synergy House, Guildhall Close, Manchester Science Park, Manchester M15 6SY, United Kingdom

20

Table of Intermediates

Inter- mediate Number	Name
1	Ethyl 4-chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
2	Ethyl 4-ethoxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
3	Ethyl 1-methyl-4-ethoxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
4	Ethyl 1-benzyl-4-ethoxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
5	Ethyl 4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
6	1-Acetyl-4-aminopiperidine
7	1-Methyl-4-aminopiperidine
8	4-Aminotetrahydropyran
8A	Tetrahydro-2H-pyran-4-amine hydrochloride = 4-Aminotetrahydropyran hydrochloride
9	(R)-(+)-3-Amino tetrahydrofuran 4-toluene sulphonate
10	(S)-(-)-3-Amino tetrahydrofuran 4-toluene sulphonate
11	Tetrahydro-2H-thiopyran-4-amine
12	Tetrahydro-3-thiopheneamine
13	Tetrahydro-3-thiopheneamine 1,1-dioxide hydrochloride
14	Tetrahydro-2H-thiopyran-4-amine-1,1-dioxide hydrochloride

15	4-Chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
16	4-Chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carbonyl chloride
17	N-Benzyl-4-chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
18	4-Chloro-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
19	4-Chloro-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
20	4-Chloro-N-cyclopentyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
21	4-Chloro-1-ethyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrazolo[3,4-b]pyridine
22	4-Chloro-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
23	4-Chloro-1-ethyl-N-propyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
24	4-Chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
25	Ethyl 4-chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
26	4-Chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
27	4-Chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carbonyl chloride
28	N-Benzyl-4-chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
29	4-Chloro-1-methyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
30	4-Chloro-1-methyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
31	4-Chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
32	Ethyl 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylate
33	1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylic acid
34	Ethyl 1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylate
35	Ethyl 1-ethyl-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylate
36	Ethyl 1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-
	5-carboxylate
37	Ethyl 1-ethyl-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylate
38	Ethyl 4-(cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
39	Ethyl 4-[(1,1-dioxidotetrahydrothien-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-
	b]pyridine-5-carboxylate
40	Ethyl 4-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H-
	pyrazolo[3,4-b]pyridine-5-carboxylate
41	1-Ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylic acid
42	Ethyl 1-ethyl-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylic acid
43	1-Ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxylic acid

44	1-Ethyl-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
45	4-(Cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
46	4-[(1,1-Dioxidotetrahydrothien-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
47	4-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
48	Ethyl 4-(cyclohexylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
49	4-(Cyclohexylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
50	1-n-Propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid
51	Ethyl 4-chloro-1-ethyl-6-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
52	4-(Cyclohexylamino)-1-ethyl-6-methyl-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxylic acid
53	1-Ethyl-6-methyl-4-(tetrahydro-2 <i>H</i> -pyran-4-ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxylic acid
54	4-Aminocyclohexanone hydrochloride
76	1-Ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid

Intermediate 1: Ethyl 4-chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
Prepared from commercially available 5-amino-1-ethyl pyrazole as described by G. Yu
et. al. in J. Med Chem., 2001, 44, 1025-1027:

Intermediate 2: Ethyl 4-ethoxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
 Can be prepared by oxidative cleavage (SeO₂) of 1-furanylmethyl derivative, as
 described by T. M. Bare et. al. In J. Med. Chem., 1989, 32, 2561-2573, (further referenced to Zuleski, F. R., Kirkland, K. R., Melgar, M. D.; Malbica, J. Drug. Metab. Dispos., 1985, 13, 139)

Intermediate 3: Ethyl 1-methyl-4-ethoxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

5 A mixture of Intermediate 2 (0.47g) and anhydrous potassium carbonate (0.83g) (previously dried by heating at 100°C) in anhydrous dimethylfornamide (DMF) (4mI) was treated with iodomethane (0.26mI) and stirred vigorously for 3h. The mixture was then filtered and the filtrate concentrated in vacuo to afford a residual oil, which was partitioned between dichloromethane (DCM) (25mI) and water (25mI). The layers were 10 separated and the aqueous phase was extracted with further DCM (2x25mI). The combined organic extracts were dried over anhydrous sodium sulphate and evaporated to an orange solid which was applied to an SPE cartridge (silica, 20g). The cartridge was eluted sequentially with EtOAc: petrol (1:4, 1:2 and 1:1), then chloroform: methanol (49:1, 19:1 and 9:1). Fractions containing desired material were combined and 5 concentrated in vacuo to afford Intermediate 3 (0.165g). LCMS showed MH⁺= 250; T_{RET} = 2.59 min.

Intermediate 4; Ethyl 1-benzyl-4-ethoxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

20

25

30

A mixture of Intermediate 2 (0.47g) and anhydrous potassium carbonate (0.83g) (previously dried by heating at 100°C) in anhydrous DMF (4ml) was treated with benzyl bromide (0.72g) then stirred vigorously and heated at 55°C for 4.5h. The mixture was allowed to cool, then filtered and the filtrate concentrated in vacuo to afford a residual oil, which was partitioned between DCM (25ml) and water (25ml). The layers were separated and the aqueous phase was extracted with further DCM (2x25ml). The combined organic extracts were dried over anhydrous sodium sulphate and evaporated to a yellow oily solid which was dissolved in DCM and applied to an SPE cartridge (silica, 20g). The cartridge was eluted with a gradient of EtOAc: petrol (1:4, 1:2 and 1:1) then chloroform: methanol (49:1, 19:1 and 9:1). Fractions containing desired material were combined and concentrated in vacuo to afford Intermediate 4 (0.33g). LCMS showed MH⁺= 326; T_{RET} = 3.24 min.

Intermediate 5: Ethyl 4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

5 A mixture of 5-amino-1-phenyl pyrazole (2.0g) and diethylethoxymethylene malonate (2.54ml) was heated under Dean Stark conditions at 120°C for 16h. The solution was cooled, phosphorus oxychloride (16ml) was then added and the mixture heated under reflux for a further 20h. Excess phosphorus oxychloride was removed in vacuo and the residue partitioned between diethyl ether and water, proceeding with extreme caution on addition of water. The ethereal layer was washed with further water, then dried over magnesium sulphate and concentrated in vacuo to afford ethyl 4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (2.09g). LCMS showed MH⁺= 302; T_{RET} = 3.80 min.

15 Intermediate 6; 1-Acetyl-4-aminopiperidine

Prepared from commercially available N1-benzyl-4-aminopiperidine as described by Yamada et. al. In WO 00/42011;

20

Intermediate 7: 1-Methyl-4-aminopiperidine

Prepared from commercially available N-methyl-4-piperidone as described by C. M. Andersson *et. al.* in WO01/66521:

25

Intermediate 8: 4-Aminotetrahydropyran

Commercially available from Combi-Blocks Inc., 7949 Silverton Avenue, Suite 915, San Diego, CA 92126, USA (CAS 38041-19-9)

10

15

20

25

30

35

<u>Intermediate 8A:</u> __Tetrahydro-2H-pyran-4-amine hydrochloride = 4-Aminotetrahydropyran hydrochloride

$$\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$$

Step1: N.N-dibenzyltetrahydro-2H-pyran-4-amine

Dibenzylamine (34.5g) and acetic acid (6.7mc) were added to a stirred solution of tetrahydro-4H-pyran-4-one (16.4g, commercially available from e.g. Aldrich) in dichloromethane (260ml) at 0 °C to 5 °C. After 2.5 nt at 0 °C to 5 °C, sodium triacetoxyborohydride (38.9g) was added portionwise, and the mixture was allowed to warm to room temperature. After stirring at room temperature overnight, the reaction mixture was washed successively with 2M-sodium hydroxide (200ml and 50ml), water (2 x 50ml) and brine (50ml), then dried and evaporated to give a yellow oil (45g). This oil was stirred with methanol (50ml) at 4 °C for 30min to give the product as a white solid (21.5g). LCMS showed MHT = 282: There = 1.98 min.

Step 2: Tetrahydro-2H-pyran-4-amine hydrochloride

N,N-dibenzyltetrahydro-2H-pyran-4-amine (20.5g) was dissolved in ethanol (210ml) and hydrogenated over 10% palladium on carbon catalyst (4g) at 100 psi for 72h at room temperature. The reaction mixture was filtered and the filtrate was adjusted to pH 1 with 2M-hydrogen chloride in diethyl ether. Evaporation of solvents gave a solid which was triturated with diethyl ether to give the product as a white solid (9.23g). H NMR (400MHz in d₀-DMSO, 27°C, 8ppm) 8.24 (br. s, 3H), 3.86 (dd, 12, 4Hz, 2H), 3.31 (dt, 2, 12Hz, 2H), 3.20 (m, 1H), 1.84 (m, 2H), 1.55 (dq, 4, 12Hz, 2H).

<u>Intermediate 9:</u> (R)-(+)-3-Amino tetrahydrofuran 4-toluenesulphonate Commercially available from Fluka Chemie AG, Germany (CAS 111769-27-8)

Intermediate 10: (S)-(-)-3-Amino tetrahydrofuran 4-toluenesulphonate

Commercially available from E. Merck, Germany; or from E. Merck (Merck Ltd), Hunter Boulevard, Magna Park, Lutterworth, Leicestershire LE17 4XN, United Kingdom (CAS 104530-80-5)

10

Intermediate 11: Tetrahydro-2H-thiopyran-4-amine

Prepared from commercially available tetrahydrothiopyran-4-one as described by Subramanian et. al., *J. Org. Chem.*, 1981, 46, 4376-4383. Subsequent preparation of the hydrochloride salt can be achieved by conventional means.

Intermediate 12: Tetrahydro-3-thiopheneamine

Prepared in an analogous manner to Intermediate 11 from commercially available tetrahydrothiophene-4-one. The oxime formation is described by Grigg et.al., Tetrahedron, 1991, 47, 4477-4494 and the oxime reduction by Unterhalt et. al., Arch. Pharm. 1990, 317-318.

15 <u>Intermediate 13:</u> Tetrahydro-3-thiopheneamine 1,1-dioxide hydrochloride Commercially available from Sigma Aldrich Library of Rare Chemicals (SALOR) (CAS-6338-70-1). Preparation of the hydrochloride salt of the amine can be achieved by conventional means.

Intermediate 14: Tetrahydro-2H-thiopyran-4-amine-1,1-dioxide hydrochloride Prepared in an analogous manner to Intermediate 11 from commercially available tetrahydrothiophene-4-one. Oxidation to 1,1-dioxo-tetrahydro-1λ⁶-thiopyran-4-one is described by Rule et. al., in J. Org. Chem., 1995, 60, 1665-1673. Oxime formation is described by Truce et.al., in J. Org. Chem., 1957, 617, 620 and oxime reduction by Barkenbus et. al., J. Am. Chem. Soc., 1955, 77, 3866. Subsequent preparation of the hydrochloride salt of the amine can be achieved by conventional means.

20

25

15

Intermediate 15: 4-Chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid

A solution of Intermediate 1 (3.5g) in dioxane (28ml) was treated with potassium hydroxide (6.3g) as a solution in water (20ml). The mixture was stirred for 2h, then concentrated in vacuo, acidified to pH 3 with 2M aqueous hydrochloric acid and extracted with ethyl acetate. The layers were separated, the organic layer dried over sodium sulphate, then concentrated in vacuo to afford Intermediate 15 as a white solid (2.4g). LCMS showed MH = 226; Ther = 2.62min.

10 <u>Intermediate 17</u>: N-Benzyl-4-chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide

Intermediate 15 (3.5g) was dried over phosphorus pentoxide for 1h, then treated with thionyl chloride (47g). The mixture was stirred and heated at 75°C for 1.3h. Excess thionyl chloride was removed in vacuo and the residual oil azeotroped with dichloromethane (DCM) to afford Intermediate 16, presumed to be the acid chloride derivative of Intermediate 15, as a white solid (3.3g).

20 Intermediate 16 (0.473g) was dissolved in tetrahydrofuran (THF) (4ml) and treated with N,N-diisopropylethylamine (DIPEA) (0.509ml), then with benzylamine (0.209g) and the mixture stirred under nitrogen for 0.5h. The mixture was concentrated in vacuo, then partitioned between dichloromethane and water. The layers were separated and the organics concentrated in vacuo to afford Intermediate 17 (0.574g). LCMS showed MH⁺
25 = 315; T_{RFT} = 2.90min.

Similarly prepared were the following:

	NR ⁴ R ⁵	Amine reagent	MH ⁺ ion	T _{RET} (min)
Intermediate 18	HN	2-Ethyl-N- butylamine	309	3.07
Intermediate 19	HN—F	4-Fluoroaniline	319	3.08
Intermediate 20	○ NH	Cyclopentylamine	293	2.76
Intermediate 21	\Box	Pyrrolidine	279	2.46

Intermediate 22: 4-Chloro-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

5

10

15

20

Acid chloride Intermediate 16 was synthesised from Intermediate 15 using the method shown above for Intermediate 17. Intermediate 16 (0.473g) was dissolved in THF (4ml) and treated with diisopropylethylamine (DIPEA) (0.509ml), then with 4-(aminomethyl)pyridine (0.211g) and the mixture stirred under nitrogen for 0.5h. The mixture was concentrated in vacuo, then partitioned between DCM and water. The layers were separated and the organics concentrated in vacuo, then applied to an SPE cartridge (silica, 10g) which was eluted with a gradient of cyclohexane: EtOAc (2:1 increasing stepwise up to 0:1), followed by MeOH: EtOAc (5:95, then 10:90). Fractions containing desired material were combined and concentrated in vacuo to afford Intermediate 22 (0.086g). LCMS showed MH² = 316; T_{RFT} = 1.84min.

Intermediate 23: 4-Chloro-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

20

35

PCT/EP2003/011814

Acid ehloride Intermediate 16 was synthesised from Intermediate 15 using the method shown above for Intermediate 17. Intermediate 16 (0.473g) was dissolved in THF (4ml) and treated with DIPEA (0.509ml), then with n-propyl amine (0.115g) and the mixture stirred under nitrogen for 0.5h. A further portion of n-propyl amine (0.023g) was then added and stirring continued for 18h. The mixture was concentrated in vacuo, then partitioned between DCM and water. The layers were separated and the organics concentrated in vacuo to afford Intermediate 23 (0.405g), LCMS showed MH⁺ = 267: $T_{RET} = 2.54 min.$

10 Intermediate 24: 4-Chloro-1-ethyl-1H-pyrazolol3.4-blpyridine-5-carboxamide

Acid chloride Intermediate 16 was synthesised from Intermediate 15 using the method shown above for Intermediate 17. Intermediate 16 (0.30g) was dissolved in THF (3ml) and treated with a 0.5M solution of ammonia in dioxane (4.92ml). The mixture was stirred under nitrogen for 18h. A further portion of 0.5M ammonia in dioxane (4.92ml) was added and stirring continued for 72h. The mixture was concentrated in vacuo and the residue partitioned between DCM and 2M sodium hydroxide solution. The layers were separated and the organics concentrated to afford Intermediate 24 (0.278g). LCMS showed $MH^{+} = 225$; $T_{PHT} = 2.10min$.

Intermediate 25: Ethyl 4-chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

25 A mixture of 5-amino-1-methyl pyrazole (4.0g) and diethylethoxymethylene malonate (9.16ml) was heated at 150°C under Dean Stark conditions for 5h. Phosphorous oxychloride (55ml) was carefully added to the mixture and the resulting solution heated at 130°C under reflux for 18h. The mixture was concentrated in vacuo, then the residual oil cooled in an ice bath and treated carefully with water (100ml)(caution: exotherm). The 30 resulting mixture was extracted with DCM (3x100ml) and the combined organic extracts were dried over anhydrous sodium sulphate and concentrated in vacuo. The residual solid was purified by Biotage chromatography (silica, 90g), eluting with Et₂0: petrol (1:3). Fractions containing desired material were combined and concentrated in vacuo to afford Intermediate 25 (4.82g), LCMS showed $MH^+ = 240$; $T_{RET} = 2.98min$

Intermediate 26: 4-Chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid

A solution of Intermediate 25 (4.0g) in dioxane (30ml) was treated with potassium hydroxide (7.54g) as a solution in water (20ml). The mixture was stirred for 16h, then diluted with water (150ml) and acidified to pH 3 with 5M aqueous hydrochloric acid. The mixture was stirred in an ice bath for 15min, then collected by filtration, washed with ice-cold water and dried in vacuo over phosphorous pentoxide to afford Intermediate 26 as a white solid (2.83g). LCMS showed MH = 212: There = 2.26min.

10 Intermediate 28: N-Benzyl-4-chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide

Intermediate 26 (2.5g) (previously dried over phosphorus pentoxide) was treated with thionyl chloride (25ml) and the mixture heated under reflux for 1h. Excess thionyl chloride was removed in vacuo to afford Intermediate 27, presumed to be the acid chloride derivative of Intermediate 26, as a white solid (2.7g).

Intermediate 27 (0.68g) was dissolved in THF (10ml) and treated with DIPEA (0.77ml), 20 then with benzyl amine (0.339g) and the mixture stirred under nitrogen for 3h. The mixture was concentrated in vacuo, then partitioned between DCM (20ml) and water (10ml). The layers were separated and the organics concentrated in vacuo to afford Intermediate 28 (0.90g). LCMS showed MH⁺ = 301; T_{RET} = 2.72min.

25 Similarly prepared were the following:

	NR ⁴ R ⁵	Amine reagent	MH ⁺ ion	T _{RET} (min)
Intermediate 29	HN	4-Fluoroaniline	305	2.91

- 100 -

Intermediate 30	2-Ethyl-N- butylamine	295	2.97	
-----------------	--------------------------	-----	------	--

Intermediate 31: 4-Chloro-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

5 Acid chloride Intermediate 27 was synthesised from Intermediate 26 using the method shown above for Intermediate 28. Intermediate 27 (0.68g) was then treated with a 0.5M solution of ammonia in dioxane (17.7ml). Diisopropylethylamine (0.51ml) was then added and the mixture stirred for 21h. The mixture was then partitioned between DCM (100ml) and water (30ml). An insoluble solid was removed by filtration, washed with water (20ml) and dried in vacuo over phosphorous pentoxide to afford Intermediate 31 (0.544g). LCMS showed MH⁺ = 211; T_{BFT} = 1.84min.

<u>Intermediate 32</u> (= Example 3): Ethyl 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

15

Intermediate 1 (0.20g) and triethylamine (0.55ml) were suspended in ethanol (8ml) and 4aminotetrahydropyran (0.088g) was added. The mixture was stirred under nitrogen,
heated at 80°C for 16h, then concentrated in vacuo. The residue was partitioned between

DCM and water. The layers were separated and the organic layer was loaded directly
onto an SPE cartridge (silica, 5g) which was eluted sequentially with; (i) DCM, (ii) DCM

Et₂O (2:1), (iii) DCM : Et₂O (1:1), (iv) Et₂O and (v) EtOAc. Fractions containing
desired material were combined and concentrated in vacuo to afford Intermediate 32

(0.21g). LCMS showed Mtf = 319; T_{RET} = 2.93min.

25

In an alternative embodiment, Intermediate 32 (= Example 3) can be made as described below under "Example 3", in particular according to "Example 3, Method B" below.

15

20

25

30

Intermediate 33: 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid

A solution of Intermediate 32 (Example 3) (0.21g) in ethanol: water (95:5, 10ml) was treated with sodium hydroxide (0.12g). The mixture was heated at 50° C for 8h, then concentrated in vacuo, dissolved in water and acidified to pH 4 with acetic acid. The resultant white solid was removed by filtration and dried under vacuum to afford Intermediate 33 as an off-white solid (0.156g). LCMS showed MH⁺ = 291; $T_{RET} = 2.11$ min.

An alternative preparation of Intermediate 33 is as follows:

A solution of Intermediate 32 (Example 3) (37.8g) in ethanol: water (4:1, 375ml) was treated with sodium hydroxide (18.9g). The mixture was heated at 50 °C for 5 hours, then concentrated in vacuo, dissolved in water and acidified to pH 2 with aquous hydrochloric acid (2M). The resultant white solid was removed by filtration and dried under vacuum to afford Intermediate 33 as an off-white solid (29.65g). LCMS showed Mtf = 291; Tept = 2.17 min.

<u>Intermediate 34 (= Example 8):</u> Ethyl 1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

Intermediate 1 (0.05g) and (S)-(-)-3-aminotetrahydrofuran 4-toluenesulphonate (0.052g) were suspended in ethanol (1ml) and triethylamine (0.14ml) was added. The mixture was stirred under nitrogen and heated at 80°C for 24h. After cooling to room temperature, ethanol was removed by evaporation under a stream of nitrogen and the residue partitioned between DCM (2ml) and water (1.5ml). The layers were separated and the organic layer concentrated to dryness. Purification was carried out using an SPE cartridge (silica, 5g), eluting with a gradient of EtOAc: cyclohexane; (1:16 then, 1:8, 1:4, 1:2, 1:1 and 1:0). Fractions containing desired material were combined and concentrated in vacuo to afford Intermediate 34_(= Example 8) (0.052g). LCMS showed MH⁺ = 305; T_{RET} = 2.70min.

Similarly prepared were the following:

	NHR ³	Amine Reagent	MH ⁺	T _{RET} (min)
Intermediate 35 (= Example 9)	NH	(R)-(+)-3- Aminotetrahydrofuran 4-toluenesulphonate	305	2.73
Intermediate 36 (= Example 10)	HN—\s	Intermediate 11	335	3.21
Intermediate 37 (= Example 11)	SNH	Intermediate 12	321	3.10
Intermediate 38 (= Example 12)	МН	Cyclopropylamine	275	2.98

5

<u>Intermediate 39 (= Example 13):</u> Ethyl 4-[(1,1-dioxidotetrahydrothien-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

10 In tri 80

15

Intermediate 1 (0.05g) and Intermediate 13 (0.027g) were suspended in ethanol (1ml) and triethylamine (0.14ml) was added. The mixture was stirred under nitrogen and heated at 80°C for 24h. After cooling to room temperature, ethanol was removed by evaporation under a stream of nitrogen and the residue partitioned between DCM (2ml) and water (1.5ml). The layers were separated and the organic layer concentrated to dryness. Purification was carried out using an SPE cartridge (silica, 5g), eluting with a gradient of EtOAc: cyclohexane; (1:8 then 1:4, 1:2, 1:1 and 1:0). Fractions containing desired material were combined and concentrated in vacuo to afford Intermediate 39 (= Example 13) (0.045g) as a mixture of enantiomers. LCMS showed MH⁺ = 353; T_{RET} = 2.60min.

10

15

Similarly prepared was the following:

	NHR ³	Amine Reagent	MH ⁺ ion	T _{RET} (min)
Intermediate 40 (= Example 14)	HN-\si^0	Intermediate 14	367	2.64

<u>Intermediate 41:</u> 1-Ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid

A solution of Intermediate 34 (0.037g) in ethanol: water (95:5, 3ml) was treated with sodium hydroxide (0.019g). The mixture was heated at 50°C for 16h, then concentrated in vacuo. The residue was dissolved in water (1.5ml) and acidified to pH 4 with acetic acid. The resultant white solid precipitate was removed by filtration and dried under vacuum. The filtrate was extracted with ethyl acetate and the organic layer collected and concentrated in vacuo to afford a further portion of white solid. The two solids were combined to afford Intermediate 41 (0.033g). LCMS showed MH $^{\circ}$ = 277; T_{RET} = 2.05 min.

Similarly prepared were the following:

	NHR ³	Starting material	\mathbf{MH}^{+}	T _{RET} (min)
Intermediate 42	NH	Intermediate 35	277	2.05

10

Intermediate 43	HN—\(\s\)s	Intermediate 36	307	2.40
Intermediate 44	SNH	Intermediate 37	293	2.59
Intermediate 45	A _{NH}	Intermediate 38	247	2.24
Intermediate 46	HN S	Intermediate 39	325	2.05
Intermediate 47	HN—\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Intermediate 40	339	2.05

<u>Intermediate 48</u>: Ethyl 4-(cyclohexylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate

Intermediate 2 (0.69g) was suspended in cyclohexylamine (1.01ml), and the mixture was heated at 90 °C for 3h. The residual mixture was allowed to cool to room temperature and partitioned between chloroform (25ml) and water (25ml). The phases were separated and the organic phase was evaporated to dryness. The residue was triturated with Et₂O (25ml) and the insoluble solid was collected and dried to afford Intermediate 48 as a beige solid (0.58g). LCMS showed MH⁺=289; T_{RST} = 2.91min.

<u>Intermediate 49</u>: 4-(Cyclohexylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid

2M-Sodium hydroxide solution (0.5ml) was added to a stirred suspension of Intermediate 48 (0.2g) in dioxan (4ml) and water (0.5ml). After stirring overnight at room temperature, the reaction mixture was heated at 40 °C for 8h. A further quantity of 2M-sodium hydroxide solution (1.5ml) was added, and the reaction mixture was heated at 40 °C for 48h. The reaction solution was concentrated, diluted with water (10ml) and acidified with glacial acetic acid. The resulting precipitate was collected by filtration, washed with water and dried to give Intermediate 49 (0.18g). LCMS showed $MH^+ = 261$; $T_{RET} = 2.09$ min.

<u>Intermediate 50</u>: 1-n-Propyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid

15

20

10

2M-Sodium hydroxide solution (0.7ml) was added to a stirred suspension of Example 185 (0.23g, described hereinafter) in ethanol (5ml) and water (1.5ml). After stirring overnight at room temperature, a further quantity of 2M-sodium hydroxide solution (0.7ml) was added, and the reaction mixture was heated at 43 °C for 2.5h. The reaction solution was concentrated, diluted with water (5ml) and acidified with 2M-hydrochloric acid. The resulting precipitate was collected by filtration, washed with water and dried to give Intermediate 50 as a white solid (0.14g). LCMS showed $MH^* = 305$; $T_{RET} = 2.42min$.

Intermediate 51: Ethyl 4-chloro-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate

A mixture of 5-amino-1-ethylpyrazole (1.614g, 14.5mmol) and diethyl 2-(1-ethoxyethyliddene)malonate (3.68g, 16.0mmol, as described by P.P.T. Sah, *J. Amer. Chem. Soc.*, 1931, <u>52</u>, 1836) was heated at 150 °C under Dean Stark conditions for 5 hours. Phosphorous oxychloride (25ml) was carefully added to the mixture and the resulting solution was heated at 130 °C under reflux for 18 hours. The mixture was concentrated *in vacuo*, then the residual oil was carefully added, with cooling, to water (100ml). The resulting mixture was extracted with DCM (3x100ml) and the combined organic extracts were dried over anhydrous sodium sulphate and concentrated *in vacuo*. The residual oil was purified by Biotage chromatography (silica, 90g) cluting with ethyl acetate-petrol (1:19). Fractions containing the desired product were combined and concentrated in vacuo to afford Intermediate 51 (1.15g). LCMS showed MH = 268; T_{RET} 15 = 3.18min.

<u>Intermediate 52:</u> 4-(Cyclohexylamino)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylic acid

- 20 2M-Sodium hydroxide solution (0.39ml, 0.78mmol) was added to Example 190 (0.128g, 0.39mmol, described hereinafter) in ethanol (1.5ml), and the mixture was heated at 50 °C for 16 hours. The reaction mixture was concentrated, and the resulting aqueous solution was neutralised with 2M-hydrochloric acid to precipitate a solid which was collected by filtration. The filtrate was applied to an OASIS ® hydrophilic-lipophilic balance (HLB) Extraction cartridge * (1g) which was eluted with water followed by methanol. Evaporation of the methanol fraction gave a solid which was combined with the initial precipitated solid to afford Intermediate 52 (0.083g) as a white solid, presumed to be the carboxylic acid.
- * OASIS [®] HLB Extraction cartridges are available from Waters Corporation, 34
 30 Maple Street, Milford, MA 01757, USA. The cartridges include a column containing a

5

10

15

20

25

copolymer sorbent having a HLB such that when an aqueous solution is eluted through the column, the solute is absorbed or adsorbed into or onto the sorbent, and such that when organic solvent (e.g. methanol) is eluted the solute is released as an organic (e.g. methanol) solution. This is a way to separate the solute from aqueous solvent.

<u>Intermediate 53:</u> 1-Ethyl-6-methyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid

2M-Sodium hydroxide solution (0.75ml, 1.5mmol) was added to Example 189 (0.248g, 0.75mmol, described hereinafter) in ethanol (2ml), and the mixture was heated at reflux for 16 hours. The reaction mixture was concentrated, diluted with water (1ml) and acidified with 2M-hydrochloric acid (0.75ml) to precipitate a solid which was collected by filtration to afford Intermediate 53 (0.168g). LCMS showed MH $^+$ = 305; T_{RET} = 1.86min.

Intermediate 54: 4-Aminocyclohexanone hydrochloride

A solution of hydrogen chloride in dioxan (0.5ml, 2.0mmol, 4M) was added to a stirred solution of tert-butyl 4-oxocyclohexylcarbamate (0.043g, 0.20mmol, commercially available from Astatech Inc., Philadelphia, USA) in dioxan (0.5ml) and the mixture was stirred at room temperature. After 1h, the reaction mixture was evaporated to give Intermediate 54 as a cream solid (34mg). H NMR (400MHz in d₆-DMSO, 27°C, 5ppm) 8.09 (br. s, 3H), 3.51 (tt, 11, 3.5Hz, 1H), 2.45 (m, 2H, partially obscured), 2.29 (m, 2H), 2.16 (m, 2H), 1.76 (m, 2H).

Intermediate 54A: N-Benzyl-4-(cyclohexylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Benzylamine (0.16ml) was added to a stirred mixture of Intermediate 49 (0.13g), DIPEA (0.26ml) and HATU (0.285g) in DMF (3ml). The resultant mixture was heated with stirring at 85 °C for 16 hours. Further portions of HATU (0.14g), DIPEA (0.13ml) and benzylamine (0.082ml) were added and the mixture heated for 16 hours at 88 °C. The resultant solution was concentrated, diluted with dichloromethane (20ml) and washed with saturated sodium bicarbonate solution (20ml), separated by hydrophobic frit and the organic layer concentrated. The residue was purified on a SPE cartridge (silica, 20g) eluting with 60-80% ethyl acetate in cyclohexane. The residue was purified further on a SPE cartridge (Isolute SCX sulphonic acid cartridge, 5g x2), eluting with methanol (2x20ml) and 10% ammonia in methanol (4x20ml); the basic fractions were combined and concentrated to give Intermediate 54A as a white solid (0.07g). LCMS showed MH⁺ = 350; T_{RET} = 2.99min.

<u>Intermediate 55:</u> 4-Chloro-1-ethyl-N- {[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

20

25

15

5

10

$$\bigcap_{N \in \mathbb{N}^d \mathbb{R}^d} \bigcap_{N \in \mathbb{N}^d} \bigcap_{N \in \mathbb{N}^d \mathbb{R}^d} \bigcap_{N \in \mathbb{N}^d} \bigcap_{$$

That is, intermediate 55 is:

Intermediate 15 (1.04g) was treated with thionyl chloride (13.22g). The mixture was stirred and heated at 75 °C for 2h. Excess thionyl chloride was removed in vacuo and the residual oil azcotroped with toluene to afford Intermediate 16, presumed to be the acid chloride derivative of intermediate 15, as a cream solid (1.12g).

Intermediate 16 (0.997g) was dissolved in tetrahydrofuran (THF) (25ml) and treated with N,N-diisopropylethylamine (1.07ml) then with 1-[4-(methyloxy)phenyl]methanamine = 4-methoxybenzylamine (0.54ml) (obtainable from e.g. Aldrich, Acros, or Tetrahedron Lett., 2002, 43(48), 8735; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Organic Letters, 2002, 44(12), 2055) and the mixture was stirred for 3h. The solution was concentrated in vacuo, then partitioned between DCM and water. The layers were separated and the organics concentrated in vacuo. The solid was then triturated in 1:1 ethyl acetate: cyclohexane to give Intermediate 55 (1.27g). LCMS showed MH⁺= 345, T_{RF}= 2.86 min.

Similarly prepared were the following:

	NR ⁴ R ⁵	Source of HNR ⁴ R ⁵	MH ⁺ ion	T _{RET} (min)
Intermediate 56		Lis et al., <i>J. Med. Chem.</i> , 1990, 33(10), 2883, see Scheme III and ref. 24	408	2.60
Intermediate 57	NH—	Maybridge-Int; or Aldrich; or TCI-America	341	3.08

15

20

10

 $\underline{Intermediate\ 58}{:}\ 1-Ethyl-4-[(4-oxocyclohexyl)amino]-1\\ \underline{H-pyrazolo[3,4-b]pyridine-5-carboxylic\ acid}$

A solution of sodium hydroxide (0.053g, 1.32mmol) in water (0.41ml) was added to a stirred solution of Example 205 (0.1g, 0.303mmol) in ethanol (1ml), and the resulting mixture was heated at 50° C. After 1h, the cooled reaction mixture was adjusted to pH3 with 2M hydrochloric acid, and extracted with EtOAc (2 x 6ml). The combined organic extracts were dried (Na₂SO₄) and evaporated to give Intermediate 58 (0.072g) as a white solid. LCMS showed MH * = 303; T_{RFT} = 2.13min.

An alternative preparation of Intermediate 58 is as follows:

A solution of sodium hydroxide (0.792g, 19.8mmol) in water (6mI) was added to a stirred solution of Example 205 (1.487g, 4.5mmol) in ethanol (15mI), and the resulting mixture was heated at $50^{\circ}\mathrm{C}$. After 1 hour, the cooled reaction mixture was adjusted to pH4 with 2M hydrochloric acid, and extracted with EtOAc (3 x 30ml). The combined organic extracts were dried (Na₂SO₄) and evaporated to give Intermediate 58 (1.188g) as a white solid. LCMS showed $MH^{7} = 303$; $T_{RET} = 2.12min$.

<u>Intermediate 58A</u>: Ethyl 1-ethyl-4-(tetrahydro-2*H*-pyran-3-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate

20

25

30

5

10

15

Intermediate 1 (0.76g, 3.0mmol)) was dissolved in acetonitrile (10ml). Tetrahydro-2*H*-pyran-3-amine hydrochloride (0.5g, 3.6mmol), *Anales De Quimica*, 1988, 84, 148) and *N*,*N*-diisopropylethylamine (3.14ml, 18.0mmol) were added and the mixture was stirred at 85°C for 24h. After 24h a further portion of tetrahydro-2*H*-pyran-3-amine hydrochloride (0.14g, 1.02mmol) was added and stirring was continued at 85°C. After a further 8h, the mixture was concentrated *in vacuo*. The residue was partitioned between DCM (20ml) and water (12ml). The layers were separated and the aqueous layer was extracted with further DCM (12ml). The combined organic extracts were dried (Na₂SO₄), and concentrated *in vacuo* to give a brown solid which was purified on a SPE cartridge (silica, 20g) eluting with a gradient of ethyl acetate:cyclohexane (1:16, 1:8, 1:4, 1:2, 1:1, 1:0). Fractions containing the desired material were combined and evaporated to afford Intermediate 58A (0.89g.). LCMS showed MH⁺ = 319; T_{BET} = 2.92 min.

Intermediate 59: 1-Ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyrldine-5-carboxylic acid

A solution of Intermediate 58A (0.89g, 2.79mmol) in ethanol (16.7ml) was treated with sodium hydroxide (0.47g, 11.7mmol) as a solution in water (3.1ml). The mixture was stirred at 50 °C. After 12h, the reaction mixture was concentrated *in vacuo* to give a residual oil which was dissolved in water (16ml), then cooled and acidified to pH 3 with 2M hydrochloric acid. After stirring at 0°C for 30min, the resulting precipitate was collected by filtration, washed with cooled water (2ml) and dried in vacuo to afford Intermediate 59 as a white solid (0.73g). LCMS showed MH* = 291; Tggr = 2.19min.

5

10

15

20

<u>Intermediate 60:</u> 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylic acid

NH OOH

Aqueous sodium hydroxide solution (8.55ml, 2M) was added to a solution of Example 207 (1.55g) in E(OH (13ml). The mixture was heated at 50 °C for 18h then neutralised using aqueous hydrochloric acid and evaporated in vacuo to afford a mixture of 1-ethyl-4-(4-piperidinylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid and 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid

Acetic acid (0.36ml) was added to a stirred mixture of HATU (2.41g) and N,N-diisopropylethylamine (2.21ml) in N,N-dimethylformamide (65ml). After stirring for 15 min the mixture was added to the mixture of 1-ethyl-4-(4-piperidinylamino)-11-ethyl-11/2-pyrazolo[3,4-b]pyridine-5-carboxylic acid and 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-11/2-pyrazolo[3,4-b]pyridine-5-carboxylic acid and the reaction stirred for 15h. The reaction mixture was evaporated in vacuo and the residue purified by chromatography

5

10

15

20

2.5

using Biotage (silica 90g) eluting with DCM: MeOH (0% - 5% MeOH) to afford Intermediate 60 (1.36g) as a white solid. LCMS showed MH⁺ 334; T_{RFT} = 2.06 min.

Intermediate 61: 4-(Cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid

A solution of Example 2 (5.37g, 17mmol) in ethanol (30ml) was treated with a solution of sodium hydroxide (2.72g, 68mmol) in water (20ml), and the resulting mixture was stirred at 50°C for 3h. The reaction mixture was concentrated in vacuo, dissolved in water (250ml) and the cooled solution was acidified to pH 1 with 5M-hydrochloric acid. The resultant solid was collected by filtration and dried in vacuo to afford Intermediate 61 as a white solid (4.7g). LCMS showed MH* = 289: T_{PPT} = 2.83min.

Intermediate 62: 1,1-Dimethylethyl (4,4-difluorocyclohexyl)carbamate

(Diethylamino)sulphur trifluoride (DAST), (0.06ml, 0.47mmol), was added to a stirred solution of 1,1-dimethylethyl(4-oxocyclohexyl)carbamate, (250mg, 1.17mmol, commercially available from AstaTech Inc., Philadelphia, USA) in anhydrous dichloromethane (5ml) and the mixture was stirred under nitrogen at 20°C. After 22h, the reaction mixture was cooled to 0°C, treated with saturated sodium hydrogen carbonate solution (4ml), and then allowed to warm to ambient temperature. The phases were separated by passage through a hydrophobic frit and the aqueous phase was further extracted with DCM (5ml). The combined organic phases were concentrated in vacuo to give an orange solid (369mg) which was further purified by chromatography using a SPE cartridge (silica, 10g), eluting with DCM to afford Intermediate 62 (140mg) containing

- 113 -

20% of 1,1-dimethylethyl (4-fluoro-3-cyclohexen-1-yl)carbamate. ¹H NMR (400MHz in CDCl₂, 27°C, 5ppm)

Minor component: 85.11 (dm, 16Hz, 1H), 4.56 (br, 1H), 3.80 (br, 1H) 2.45-1.45 (m's, 6H excess), 1.43 (s, 9H). Major component: 84.43 (br, 1H), 3.58 (br, 1H), 2.45-1.45 (m's, 8H excess), 1.45 (s, 9H).

Intermediate 63: (4.4-Difluorocyclohexyl)amine hydrochloride

10

15

20

25

30

35

A solution of hydrogen chloride in dioxane (4M, 1.6ml) was added at 20°C to a stirred solution of Intermediate 62 (140mg, 0.6mmol), in dioxane (1.6ml). After 3h, the reaction mixture was concentrated in vacuo to afford intermediate 63 (96.5mg) containing 4-fluoro-3-cyclohexen-1-amine. ¹H NMR (400MHz in d₆-DMSO, 27°C, 8ppm) Minor component: 88.22 (br, 3H excess), 5.18 (dm, 16Hz, 1H), 3.28-3.13 (m, 1H excess), 2.41-1.53 (m's, 6H excess). Major component: 88.22 (br, 3H excess), 3.28-3.13 (m, 1H excess), 3.24-1.153 (m's, 8H excess). Impurities are also present.

Intermediate 64: 4-Chloro-1-ethyl-N-methyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide

Intermediate 15 (0.06g, 0.266mmol) was treated with thionyl chloride (0.48ml). The mixture was stirred and heated at 75°C for 2h. Excess thionyl chloride was removed in vacuo and the residual oil azeotroped with dichloromethane (DCM) to afford Intermediate 16, presumed to be the acid chloride derivative of Intermediate 15, as a white solid. Intermediate 16 was dissolved in anhydrous tetrahydrofuran (THF) (2ml) and treated with N,N-diisopropylethylamine (DIPEA) (0.069ml), then with methylamine (2M in tetrahydrofuran, 0.15ml) and the mixture stirred under nitrogen for 16h. A further 0.05ml of methylamine (2M in THF) was added and the solution stirred for 2h. The mixture was concentrated in vacuo, then partitioned between dichloromethane (2ml) and aqueous sodium hydroxide solution (2M, 2ml), then the organic layer washed with water (2ml). The layers were separated and the organics concentrated in vacuo to afford Intermediate 64 (0.052g). LCMS showed MH* = 239; Treet = 2.17min.

5

10

15

20

25

<u>Intermediate 65:</u> Ethyl 4-[(1-{[(1,1-dimethylethyl)oxy]carbonyl}-4-piperidinyl)amino]-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate

A mixture of Intermediate 17 (2.0g, 6.37mmol), 1,1-dimethylethyl 4-amino-1-piperidinecarboxylate (2.04g, 10.2mmol) and N,N,-diisopropylethylamine (5.54ml, 31.9mmol) in MeCN (40ml) was heated at 85 °C for 42h. The reaction was evaporated and the residues partitioned between DCM and water. The organic phase was dried (MgSO₄) then evaporated in vacuo. The residue was chromatographed on silica (Biotage, 90g) eluting with cyclohexane: EtOAc (1:1) to give Intermediate 65 as a white solid (2.70g), LCMS showed MH = 479; T_{RET} = 3.37min.

Intermediate 67: 3-Amino-N-cyclohexyl-N-methylbenzamide

- A solution of 3-nitrobenzoyl chloride (2.0g, 10.78mmol) in DCM (20ml) was added dropwise to a stirred mixture of N-methyleyclohexylamine (1.83ml, 14.01mmol), N,N,diisopropylethylamine (3.76ml, 21.56mmol) and N,N-dimethylaminopyridine (0.01g) in DCM at 20 °C. The reaction mixture was stirred for 56h then evaporated in vacuo. The residue was partitioned between ethyl acetate and water. The organic phase was washed with aqueous HCl then dried (MgSO₄) and evaporated in vacuo. The residue was purified by chromatography on silica eluting with cyclohexane: EtOAc (9:1 followed by 2:1) to afford N-cyclohexyl-N-methyl-3-nitrobenzamide (1.40g). MS showed MH ² 263.
- 30 A mixture of N-Cyclohexyl-N-methyl-3-nitrobenzamide (1.40g, 5.35mmol) and palladium on carbon (5%, 0.140g) in ethanol (10ml) was stirred under an atmosphere of hydrogen for 1 hour. The reaction mixture was filtered through Celite and the filtrate evaporated to afford Intermediate 67 as a brown solid (0.107g). LCMS showed MH⁺ = 233: T_{BFT} = 2.56min.

Intermediate 68: N-Ethyl-4-oxo-1-piperidinecarboxamide

5

10

15

A solution of ethyl isocyanate (2.31g, 32.5mmol) in DCM (40ml) was added, dropwise over 15min, to a vigorously stirred solution of 4-piperidone monohydrate hydrochloride (5.0g, 32.5mmol), commercially available from Aldrich) and sodium hydrogen carbonate (8.2g, 97.5mmol) in water (60ml) at 0°C. The reaction mixture was stirred at room temperature for 20h. Sodium chloride (7.0g) was added to the reaction mixture and the organic phase was separated. The aqueous phase was extracted with further DCM (3 x 75ml). The combined organic extracts were dried (Na₂SO₄) and evaporated in vacuo to give a white solid (4.0g). Recrystallisation from ethyl acetate: cyclohexane (10:1) afforded Intermediate 68 as a white solid (2.3g).

TLC (silica) gave R_f = 0.24 (ethyl acetate). Anal. Found: C, 56.7; H, 8.3; N, 16.35. C₂H₁₄N₂O₂ requires C. 56.5; H. 8.3; N, 16.5.

Intermediate 69: 4-Amino-N-ethyl-1-piperidinecarboxamide

20

A solution of Intermediate 68 (1.5g, 8.8mmol) and benzylamine (1.04g, 9.7mmol) in absolute ethanol (60ml) was hydrogenated over pre-reduced 10% palladium on charcoal catalyst (0.6g) in ethanol (20ml) until the uptake of hydrogen had ceased (22h). The reaction mixture was filtered through filter agent (Celite), and then through silica gel (100ml) eluting with ethanol:0.88-ammonia (100:1) to give a black oil. The oil was dissolved in ethanol (30ml) and treated with a solution of hydrogen chloride in ethanol (3M) until the solution was acidic. The solvent was evaporated and the residue was triturated with ethanol to afford Intermediate 69 as a white solid (1.09g). TLC (silica) gave R_f = 0.73 (ethyl acetate:methanol, 10:1). Anal. Found: C, 45.9; H, 8.4; N, 19.8. C4H:sCIN-O requires C, 46.3: H, 8.7; N, 20.2.

Intermediate 70: 1,1-Dimethylethyl ({4-[(cyclopropylamino)carbonyl]phenyl}methyl)carbamate

10

15

20

25

Cyclopropylamine (0.136g, 2.39mmol) and diisopropylethylamine (0.68ml, 3.9mmol) were added to a stirred solution of 4-[({{1}}(1,1-dimethylethyl)oxy]carbonyl}amino)-methyl|benzoic acid (0.501g, 2.0mmol), BDC (0.612g, 3.2mmol) and HOBT (0.35g, 2.6mmol) in DMF (2ml). The resulting mixture was stirred at room temperature overnight. Solvents were removed in vacuo, and the residue was dissolved in ethyl acetate (20ml) and washed with 0.5M-hydrochloric acid (3 x 20ml). The organic phase was dried (Na₂SO₄) and evaporated in vacuo to give the crude product which was purified by Biotage chromatography (silica) eluting with ethyl acetate:cyclohexane (1.3:1) to afford Intermediate 70 as a white solid (0.512g). LCMS showed MH⁺ = 291; T_{RET} = 2.75min.

30 Intermediate 71: 4-(Aminomethyl)-N-cyclopropylbenzamide hydrochloride

Intermediate 70 (0.506g, 1.74mmol) was dissolved in a solution of hydrogen chloride in dioxan (20ml, 4M) under nitrogen. After 1h, methanol (3ml) was added to the mixture and stirring was continued at room temperature overnight. Solvents were removed in vacuo to afford Intermediate 71 as a white solid (0.416g). LCMS showed MH+ = 191; $T_{RET} = 0.82min.$

Intermediate 72

10

5

Intermediate 33 (1.36g, 4.7mmol), EDC (1.26g, 6.57mmol) and HOBT (0.76g, 5.62mmol) were suspended in DMF (50ml) and stirred vigorously at room temperature for 0.5h, before adding 1.1-dimethylethyl 4-(aminomethyl)-1-piperidinecarboxylate (1.3g, 6.07mmol, commercially available from Maybridge Chemical Co. Ltd.,). After 15 stirring at room temperature overnight, a further quantity of 1,1-dimethylethyl 4-(aminomethyl)-1-piperidinecarboxylate (1.01g, 4.7mmol) was added to the reaction mixture which was then heated at 50°C. After 6h, diisopropylethylamine (0.25ml, 1.44mmol) was added, and the mixture was maintained at 50°C for a further 6h. Solvents were removed in vacuo and the residue was partitioned between DCM (100ml) and water (100ml). The phases were separated by passage through a hydrophobic frit, and the organic phase was evaporated in vacuo to give the crude product. Further purification using SPE cartridges (aminopropyl followed by silica) afford Intermediate 72 as a cream solid (1.24g). LCMS showed MH $^+$ = 487; T_{RET} = 2.97min.

25

20

Intermediate 73

Intermediate 73 is used in situ in the general procedure for Examples 360-414.

30 Intermediate 74: 1,1-Dimethylethyl ({3-[(acetylamino)methyl]phenyl}methyl)carbamate

10

Acetic anhydride (0.52ml, 5.5mmol) was added to a mixture of tert-butyl N-[3-aminomethyl)benzyl] carbamate (1.1g, 4.65mmol commercially available from Astatech) and triethylamine (0.7ml, 5mmol) in THF (20ml). The reaction mixture was stirred at 20 °C from 16h then concentrated in vacuo. The residue was partitioned between EtOAc and water. The organic phase was dried (MgSO4) and evaporated in vacuo. The residue was chromatographed over silica eluting with hexanes: EtOAc (1:1) followed by EtOAc to afford Intermediate 74 (1.2g) as a colourless oil. Anal. Found: C, 64.79; H, 7.93; N, 10.10. C, 3H.5N-O; requires C, 64.73; H, 7.97; N, 10.06. MS (M+Na) † 301.

Intermediate 75: N-{[3-(Aminomethyl)phenyl]methyl}acetamide hydrochloride

Hydrogen chloride in dioxane (4ml, 4M) was added to a solution of Intermediate 74 (1.0g, 3.6mmol) in dioxane (10ml) and the resultant mixture stirred for 6 hours at 20 °C. The reaction was diluted with Et₂O (20ml) and filtered to afford Intermediate 75 (0.7g) as a white solid. MS MH⁺ 179. ¹H NMR (300MHz in d6-DMSO, 27°C, 8ppm) 8 8.6 - 8.4 (br m, 3H), 7.38 - 7.26 (m, 3H), 7.22 (bm, 1H), 4.24 (d, J = 5.7Hz, 2H), 3.95 (dd, J = 11.6, 5.7Hz, 2H), 1.87 (s, 3H).

<u>Intermediate 76</u> 1-Ethyl-4-{[(1*SR*,3*RS*)-3-hydroxycyclohexyl]amino}-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylic acid

25 (cis-3-hydroxycyclohex-1-ylamino group, racemic)

A solution of Example 665 (0.681g, 2.05mmol) in ethanol (7ml) was treated with a solution of sodium hydroxide (0.362g, 9.05mmol) in water (2.9ml). The resulting mixture was stirred at 50°C. After 3h, the reaction mixture was concentrated in vacuo to give a residual oil which was dissolved in water (3ml), then cooled and acidified to pH 3 with 2M-hydrochloric acid. After stirring at 0°C for 1h, the resulting precipitate was collected by filtration, washed with cooled water (0.5ml) and dried in vacuo to afford Intermediate 76 as a white solid (0.491g). LCMS showed MH⁷ = 305; T_{RET} = 2.14min.

- 119 -

Table of Examples

Example Number	THATE
1	Ethyl 4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
2	Ethyl 4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
3	Ethyl 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
 	carboxylate
5	Ethyl 4-[(1-acetylpiperidin-4-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
6	Ethyl 4-(cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
7	Ethyl 1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
8	Ethyl 1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
9	Ethyl 1-ethyl-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
10	Ethyl 1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
11	Ethyl 1-ethyl-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5- carboxylate
12	Ethyl 4-(cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
13	Ethyl 4-[(1,1-dioxidotetrahydrothien-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-
	b]pyridine-5-carboxylate
14	Ethyl 4-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H-
	pyrazolo[3,4-b]pyridine-5-carboxylate
21	N-Benzyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
22	1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
23	N-Cyclopentyl-4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
24	4-(Cyclohexylamino)-N-cyclopentyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
25	N-Cyclopentyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
27	4-[(1-Acetylpiperidin-4-yl)amino]-N-cyclopentyl-1-ethyl-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
28	N-Cyclopentyl-1-ethyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrazolo[3,4-b]pyridin-4-
	amine
29	N-Cyclohexyl-1-ethyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrazolo[3,4-b]pyridin-4-

	amine
30	1-Ethyl-5-(pyrrolidin-1-ylcarbonyl)-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-
	b]pyridin-4-amine
31	4-(Cyclopentylamino)-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
32	4-(Cyclohexylamino)-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-
	5-carboxamide
33	1-Ethyl-N-(pyridin-4-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
34	4-(Cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
35	4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
36	1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
39	N-Benzyl-4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
40	N-Benzyl-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
41	4-[(1-Acetylpiperidin-4-yl)amino]-N-benzyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-
	5-carboxamide
42	4-(Cyclopentylamino)-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
43	4-(Cyclohexylamino)-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
44	1-Ethyl-N-(2-ethylbutyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
45	1-Ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
46	4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
47	4-(Cyclopentylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
48	4-(Cyclohexylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-
49	carboxamide
49	1-Ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
50	4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-
30	b]pyridine-5-carboxamide
51	4-(Cyclopentylamino)-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-b]pyridine-5-
31	carboxamide
52	4-(Cyclohexylamino)-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-b]pyridine-5-
52	carboxamide

- 121 -

53	1-Ethyl-N-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
55	4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
57	4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(pyridin-4-ylmethyl)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
61	N-Benzyl-4-(cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
62	N-Benzyl-4-(cyclohexylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
63	N-Benzyl-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
64	4-(Cyclopentylamino)-N-(2-ethylbutyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
65	4-(Cyclohexylamino)-N-(2-ethylbutyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
66	N-(2-Ethylbutyl)-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
67	4-(Cyclopentylamino)-N-(4-fluorophenyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-
	5-carboxamide
68	4-(Cyclohexylamino)-N-(4-fluorophenyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-
	carboxamide
69	N-(4-Fluorophenyl)-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
70	4-(Cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
71	4-(Cyclohexylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
74	4-[(1-Acetylpiperidin-4-yl)amino]-N-benzyl-1-methyl-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
81	1-Ethyl-N-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
82	1-Ethyl-N,N-dimethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
83	1-Ethyl-N-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-
	5-carboxamide
84	1-Ethyl-N-isopropyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
85	N-Benzyl-1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
86	N-Benzyl-1-ethyl-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
87	N-Benzyl-1-ethyl-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-

	carboxamide
88	N-Benzyl-4-(cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
89	N-Benzyl-4-[(1,1-dioxidotetrahydrothien-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-earboxamide
90	N-Benzyl-4-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H- pyrazolo[3,4-b]pyridine-5-carboxamide
91	N-Benzyl-1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
92	1-Ethyl-N-(4-fluorophenyl)-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
93	1-Ethyl-N-(4-fluorophenyl)-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4b]pyridine-5-carboxamide
94	1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H- pyrazolo[3,4-b]pyridine-5-carboxamide
95	1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
96	4-(Cyclopropylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
97	4-[(1,1-Dioxidotetrahydrothien-3-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H- pyrazolo[3,4-b]pyridine-5-carboxamide
98	4-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Example No.	Name
100	1-Ethyl-N-[4-(methylsulfonyl)benzyl]-4-(tetrahydro-2H-pyran-4-
	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
102	1-Ethyl-N-[3-(methylsulfonyl)benzyl]-4-(tetrahydro-2H-pyran-4-
	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
103	1-Ethyl-5-{[5-methoxy-6-(trifluoromethyl)-2,3-dihydro-1H-indol-1-
	yl]carbonyl}-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-b]pyridin-4-amine
104	N-[(5-Chloropyridin-2-yl)methyl]-1-ethyl-4-(tetrahydro-2 <i>H</i> -pyran-4-ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
105	N-(4-Chlorobenzyl)-1-ethyl-N-isopropyl-4-(tetrahydro-2H-pyran-4-
	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
106	N-(3-Chlorobenzyl)-1-ethyl-N-(2-hydroxyethyl)-4-(tetrahydro-2H-
	pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
107	1-Ethyl-N-[(5-methyl-3-phenylisoxazol-4-yl)methyl]-4-(tetrahydro-2H-
	pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

130	1-Ethyl-N-(tetrahydrofuran-2-ylmethyl)-4-(tetrahydro-2H-pyran-4-
	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
131	1-ethyl-N-tetrahydro-2H-pyran-4-yl-4-(tetrahydro-2H-pyran-4-ylamino)-
	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
132	N-{4-[(Dimethylamino)sulfonyl]benzyl}-1-ethyl-4-(tetrahydro-2H-
	pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
133	1-Ethyl-N-{3-[(methylsulfonyl)amino]benzyl}-4-(tetrahydro-2H-pyran-
	4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
135	1-Ethyl-N-(4-methoxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
136	1-Ethyl-N-[3-(2-oxopyrrolidin-1-yl)propyl]-4-(tetrahydro-2H-pyran-4-
	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
137	1-Ethyl-N-[2-(1-methylpyrrolidin-2-yl)ethyl]-4-(tetrahydro-2H-pyran-4-
	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
138	1-Ethyl-N-(pyridin-3-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
139	1-Ethyl-N-(1-methylpiperidin-4-yl)-4-(tetrahydro-2H-pyran-4-ylamino)-
	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
140	1-Ethyl-N-(1-ethylpropyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
141	1-Ethyl-N-(2-piperidin-1-ylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-
	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
142	1-Ethyl-N-(3-morpholin-4-ylpropyl)-4-(tetrahydro-2H-pyran-4-
	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
143	N-(3-Ethoxypropyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
144	N-(Cyclohexylmethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
·	pyrazolo[3,4-b]pyridine-5-carboxamide
145	N-[3-(Dimethylamino)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-
	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
146	1-Ethyl-N-neopentyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
147	1-ethyl-N-(4-methoxybenzyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
148	1-Ethyl-N-{2-[(phenylsulfonyl)amino]ethyl}-4-(tetrahydro-2H-pyran-4-
1.40	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
149	N-[2-(Acetylamino)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-
150	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
150	1-Ethyl-N-{2-[(methylsulfonyl)amino]ethyl}-4-(tetrahydro-2H-pyran-4-
152	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
152	1-Ethyl-N-{2-[(2-methoxyphenyl)(methyl)amino]ethyl}-4-(tetrahydro-
	2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

	- 125 -
150	
153	1-Ethyl-N-(2-oxo-2-phenylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-
154	H-pyrazolo[3,4-b]pyridine-5-carboxamide
154	N-(2,5-Difluorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
155	pyrazolo[3,4-b]pyridine-5-carboxamide
155	1-Ethyl-4-(tetrahydro-2 <i>H</i> -pyran-4-ylamino)- <i>N</i> -[4-
156	(trifluoromethyl)benzyl]-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
150	N,1-Diethyl-N-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
157	pyrazolo[3,4-b]pyridine-5-carboxamide
13/	N-Cyclopropyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
158	pyrazolo[3,4-b]pyridine-5-carboxamide
136	N-(2-amino-2-oxoethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-
159	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
139	1-Ethyl-N-(3-methoxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
160	pyrazolo[3,4-b]pyridine-5-carboxamide
100	N-(3,4-Difluorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
161	pyrazolo[3,4-b]pyridine-5-carboxamide
101	Ethyl 3-({[1-ethyl-4-(tetrahydro-2 <i>H</i> -pyran-4-ylamino)-1 <i>H</i> -pyrazolo[3,4-
162	b]pyridin-5-yl]carbonyl}amino)propanoate
102	N-(1-Benzylpiperidin-4-yl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-
163	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
100	N-Butyl-4-{[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}piperazine-1-carboxamide
164	1-Ethyl-4-(terahydro-2 <i>H</i> -pyran-4-ylamino)- <i>N</i> -(1,3,4-thiadiazol-2-yl)-
	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
165	N-(2,3-Dihydro-1 <i>H</i> -inden-2-yl)-1-ethyl-4-(tetrahydro-2 <i>H</i> -pyran-4-
	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
166	1-Ethyl- <i>N</i> -[2-(2-oxoimidazolidin-1-yl)ethyl]-4-(tetrahydro-2 <i>H</i> -pyran-4-
	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
167	N-(3,4-Dimethoxybenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-
	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
168	N-(3-Chlorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
169	1-Ethyl-5-[(4-methylpiperazin-1-yl)carbonyl]-N-tetrahydro-2H-pyran-4-
	yl-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridin-4-amine
170	1-Ethyl-N-(2-hydroxyethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
171	1-Ethyl-5-{[4-(4-methoxyphenyl)piperazin-1-vl]carbonyl}-M-tetrabydro
	2n-pyran-4-yl-1H-pyrazolo 3,4-b pyridin-4-amine
172	1-Ethyl-N-{4-[(methylsulfonyl)methyl]phenyl}-4-(tetrahydro-2H-pyron
	4-ylamino)-111-pyrazolo[3,4-b]pyridine-5-carboxamide
173	N [2 (dimently described) 2

N-[3-(dimethylamino)-3-oxopropyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-

ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

173

174	1-Ethyl-N-[(1-methyl-1H-imidazol-5-yl)methyl]-4-(tetrahydro-2H-
	pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
175	1-Ethyl-N-{4-[(methylamino)sulfonyl]phenyl}-4-(tetrahydro-2H-pyran-
	4-ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
176	N-(2-Cyanoethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
178	1-Ethyl-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-4-(tetrahydro-2H-pyran-
	4-ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
179	1-Ethyl-N-methyl-N-[(1-methyl-1H-imidazol-2-yl)methyl]-4-
	(tetrahydro-2 <i>H</i> -pyran-4-ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-
	carboxamide
180	1-Ethyl-4-(tetrahydro-2 <i>H</i> -pyran-4-ylamino)- <i>N</i> -(2-thien-2-ylethyl)-1 <i>H</i> -
	pyrazolo[3,4-b]pyridine-5-carboxamide
181	N-[2-(4-Chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-
	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
182	1-Ethyl-N-[2-(2-methoxyphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-
	ylamino)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridine-5-carboxamide
183	Ethyl 4-(cyclohexylamino)-1-(3-ethoxy-3-oxopropyl)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxylate
185	Ethyl 1-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
	b]pyridine-5-carboxylate
186	Ethyl 1-(2-hydroxyethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxylate
187	N-[4-(Methylsulfonyl)benzyl]-1-n-propyl-4-(tetrahydro-2H-pyran-4-
	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
188	N-(4-Fluorophenyl)-1-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
189	Ethyl 1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridine-5-carboxylate
190	Ethyl 4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-
	b]pyridine-5-carboxylate
191	4-(Cyclohexylamino)-1-ethyl-6-methyl-N-[4-(methylsulfonyl)benzyl]-
	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
192	N-Benzyl-4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
193	4-(Cyclohexylamino)-1-ethyl-N-(4-fluorophenyl)-6-methyl-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
194	4-(Cyclohexylamino)-1-ethyl-6-methyl-N-[4-(trifluoromethyl)benzyl]-
	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
195	4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-6-methyl-
l.	1H-pyrazolo[3,4-b]pyridine-5-carboxamide
196	N-Benzyl-1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-

	pyrazolo[3,4-b]pyridine-5-carboxamide
197	N-Benzyl-1-ethyl-4-[(2-oxoazepan-3-yl)amino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
198	N-Benzyl-1-ethyl-4-[(3-hydroxycyclohexyl)amino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide; also called
	N-benzyl-1-ethyl-4-[(3-hydroxycyclohexan-1-yl)amino]-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
199	N-Benzyl-1-ethyl-4-[(4-hydroxycyclohexyl)amino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide; also called
	N-benzyl-1-ethyl-4-[(4-hydroxycyclohexan-1-yl)amino]-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
200	N-Benzyl-1-ethyl-4-[(3-hydroxycyclopentyl)amino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide; also called
	N-benzyl-1-ethyl-4-[(3-hydroxycyclopentan-1-yl)amino]-1H-
	pyrazolo[3,4-b]pyridine-5-carboxamide
201	N-Benzyl-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide; also called
	N-Benzyl-1-ethyl-4-[(4-oxocyclohexan-1-yl)amino]-1H-pyrazolo[3,4-
	b]pyridine-5-carboxamide
202	1-Ethyl-N-(2-hydroxy-1-methylethyl)-4-(tetrahydro-2H-pyran-4-
	ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
203	Methyl (2S)-2-({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
	pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)-3-hydroxypropanoate

Exa- Name mple no.

pyrazolo[3,4-b]pyridine-5-carboxamide

- 204 Ethyl 1-ethyl-4-[(4-hydroxycyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
- 205 Ethyl 1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
- 207 Ethyl 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
- 209 Ethyl 4-[(4-aminocyclohexyl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
- 210 Ethyl-N-[(1-oxido-3-pyridinyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide
 211 l-Ethyl-N-[(1-oxido-2-pyridinyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide
 212 1-Ethyl-N-[(1-oxido-4-pyridinyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- 214 4-[(cis-4-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 221 4-(Cyclobutylamino)-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 222 4-(Cycloheptylamino)-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 223 1-Ethyl-4-[(4-methylcyclohexyl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-

carboxamide

- 224 1-Ethyl-4-[(3-methylcyclohexyl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 225 1-Ethyl-4-[(1-methylcyclohexyl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 226 4-[(IR,2R,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 227 4-[(1R,2S,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 228 1-Ethyl-4-{[(3S)-2-oxo-3-pyrrolidinyl]amino}-N-(phenylmethyl)-1H-pyrazolo[3,4-blpyridine-5-carboxamide
- 229 4-[(2,5-Dioxo-3-pyrrolidinyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 230 4-(1-Azabicyclo[2.2.2]oct-3-ylamino)-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 231 1-Ethyl-4-[(1-methylcyclohexyl)amino]-N-{[4-(methyloxy)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 233 4-(Cyclobutylamino)-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 234 4-(Cycloheptylamino)-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-blovridine-5-carboxamide
- $\begin{tabular}{ll} 235 & 4-[(1R,2R,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-\{[4-(methyloxy)phenyl]methyl\}-1\\ + 1-[4-(methyloxy)phenyl]methyl-1\\ + 1-[4$
- 236 1-Ethyl-4-[(4-methylcyclohexyl)amino]-N-{[4-(methyloxy)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 237 1-Ethyl-4-[(3-methylcyclohexyl)amino]-N-{[4-(methyloxy)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- $\begin{tabular}{ll} $4-[(1R,2S,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-\{[4-(methyloxy)phenyl]methyl\}-1$ $1-pyrazolo[3,4-b]pyridine-5-carboxamide $$1-pyrazolo[3,4-b]pyridine-5-carboxamide $$1-pyrazolo[3,4-b]p$
- $\label{eq:continuous} \begin{tabular}{ll} 4-[(cis-4-Aminocyclohexyl)amino]-1-ethyl-N-\{[4-(methyloxy)phenyl]methyl\}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide \\ \end{tabular}$
- 240 4-(Cycloheptylamino)-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 241 4-(Cyclobutylamino)-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 4-(1R,2R,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 243 4-[(1R,2S,4S)-Bicyclo[2.2.1]hcpt-2-ylamino]-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 244 1-Ethyl-4-[(4-methylcyclohexyl)amino]-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

- 245 1-Ethyl-4-[(3-methylcyclohexyl)amino]-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 247 1-Ethyl-4-[(1-methylcyclohexyl)amino]-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 248 4-[(cis-4-Aminocyclohexyl)amino]-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 249 4-(Cyclohexylamino)-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1Hnyrazolof3.4-blpyridine-5-carboxamide
- 250 4-(Cycloheptylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 251 4-(Cyclobutylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 253 N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(3-methylcyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 254 N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(4-methylcyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 255 4-[(1R,2R,4S)-Bicyclo[2.2.1]hept-2-ylamino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 256 4-[(1R,2S,4S)-Bicyclo[2.2.1]hept-2-ylamino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 257 N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(1-methylcyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 258 4-[(cis-4-Aminocyclohexyl)amino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 259 1-Ethyl-N-{4-[(methylsulfonyl)methyl]phenyl}-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 260 N-[(2,4-Dimethylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 261 N-[(3,4-Dimethylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 262 N-[(3,4-Dichlorophenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 263 1-Ethyl-N-{[4-(methyloxy)phenyl]methyl}-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 264 1-Ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 265 N-{[4-(Dimethylamino)phenyl]methyl}-1-ethyl-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 266 N-({4-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 267 1-Ethyl-4-[(4-oxocyclohexyl)amino]-N-{[4-(trifluoromethyl)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 268 1-Ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-4-[(4-oxocyclohexyl)amino]-1H-

- pyrazolo[3,4-b]pyridine-5-carboxamide
- 269 1-Ethyl-N-(4-fluorophenyl)-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 270 1-Ethyl-4-[(4-oxocyclohexyl)amino]-N-(2-pyridinylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide trifluoroacetate
- 271 N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 272 N-(1-Acetyl-4-piperidinyl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 273 1-Ethyl-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 274 N,1-Diethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 275 1-Ethyl-4-[(4-oxocyclohexyl)amino]-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 276 1-Ethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carbox mide
- 277 N-{(4-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolof3.4-b|pyridine-5-carboxamide
- 278 1-Ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-N-{[4-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 279 1-Ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolof 3.4-b|pyridine-5-carboxamide
- 280 1-Ethyl-N-{4-[(methylsulfonyl)methyl]phenyl}-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 281 1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-blovridine-5-carboxamide
- 282 1-Ethyl-N-(2-pyridinylmethyl)-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 283 N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 284 N-(1-Acetyl-4-piperidinyl)-1-ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide
- 285 1-Ethyl-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 286 N,1-Diethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 287 1-Ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide
- 288 4-[(4,4-Difluorocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide
- 289 l-Ethyl-4-[(4-fluoro-3-cyclohexen-1-yl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 290 4-[(1-Acetyl-4-piperidinyl)amino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

- 291 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(3,4-dichlorophenyl)methyl]-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 292 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-[(3-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 293 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(3,4-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 294 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(2,5-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 295 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-{[3-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 296 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-{[4-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 297 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(2,6-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]byridine-5-carboxamide
- 298 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(3-chlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b)pyridine-5-carboxamide
- 299 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 300 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-[4-(methyloxy)phenyl]-1H-pyrazolo[3,4-blovridine-5-carboxamide
- 301 4-[(1-Acetyl-4-piperidinyl)amino]-N-({4-[(dimethylamino)sulfonyl]phenyl}methyl)-1-ethyl-1H-pvrazolo[3.4-b]pyridine-5-carboxamide
- 302 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 303 4-[(1-Acetyl-4-piperidinyl)amino]-N-{[2-(dimethylamino)phenyl]methyl}-1-ethyl-1Hpyrazolo[3.4-b]pyridine-5-carboxamide
- 304 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(2,4-dichlorophenyl)methyl]-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 305 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 306 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(2-chloro-6-fluorophenyl)methyl]-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 307 4-[(1-Acetyl-4-piperidinyl)amino]-N-({4-[(difluoromethyl)oxy]phenyl}methyl)-1-ethyl-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 308 4-[(1-Acetyl-4-piperidinyl)amino]-N-{[3-chloro-4-(methyloxy)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 309 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(5-chloro-2-pyridinyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 310 4-[(1-Acetyl-4-piperidinyl)amino]-N-(5-chloro-2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 311 4-[(I-Acetyl-4-piperidinyl)amino]-1-ethyl-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 312 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-1H-

- pyrazolo[3,4-b]pyridine-5-carboxamide
- 313 4-[(1-Acetyl-4-piperidinyl)amino]-N-(2,2-diphenylethyl)-1-ethyl-1H-pyrazolo[3,4-blpvridine-5-carboxamide
- 314 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 315 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-({4-[(methylamino)carbonyl]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 316 4-[(1-Acetyl-4-piperidinyl)amino]-N-{[4-(aminosulfonyl)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 317 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-({3-[(methylamino)carbonyl]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 318 4-[(1-Acetyl-4-piperidinyl)amino]-N-{[4-(aminocarbonyl)phenyl]methyl}-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 319 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-{[6-(methyloxy)-3-pyridinyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 320 1-Ethyl-N-4-piperidinyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 321 1-Ethyl-N-(4-piperidinylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 322 1-Ethyl-N-[1-(ethylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 323 1-Ethyl-N-{1-[(1-methylethyl)sulfonyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 324 N-[1-(Cyclopentylsulfonyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 325 1-Ethyl-N-[1-(methylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 326 1-Ethyl-N-{1-[(phenylmethyl)sulfonyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 327 1-Ethyl-N-[1-(phenylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 328 1-Ethyl-N-[1-(propylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 329 N-[1-(Cyclopropylcarbonyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 330 1-Ethyl-N-[1-(3-furanylcarbonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 331 N-[1-(3,3-Dimethylbutanoyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 332 1-Ethyl-N-[1-(2-ethylbutanoyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 333 N-[1-(Cyclopentylacetyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

334 1-Ethyl-N-[1-(2-methylpropanoyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

- 133 -

- 335 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-4piperidinyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 336 1-Ethyl-N-(1-propanoyl-4-piperidinyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 337 N-[1-(N-Acetylglycyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 338 1-Ethyl-N-[1-(4-morpholinylacetyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 339 1-Ethyl-N-{1-[(4-oxocyclohexyl)carbonyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 340 1-Ethyl-N-[1-(1-piperidinylacetyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 341 1-Ethyl-N-{1-[(1-methyl-5-oxo-3-pyrrolidinyl)carbonyl]-4-piperidinyl}-4-(tetrahydro-2Hpyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 342 1-Ethyl-N-{1-[(3-methyl-3-oxetanyl)carbonyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 343 1-Ethyl-N-{1-[(4-fluorophenyl)acetyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 344 N-{[1-(3,3-Dimethylbutanoyl)-4-piperidinyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 345 N-{[1-(Cyclopentylacetyl)-4-piperidinyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 346 N-{[1-(Cyclopropylcarbonyl)-4-piperidinyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 347 1-Ethyl-N-({1-[(4-oxocyclohexyl)carbonyl]-4-piperidinyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 348 1-Ethyl-N-({1-[(4-fluorophenyl)acetyl]-4-piperidinyl}methyl)-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 349 1-Ethyl-N-({1-[(1-methyl-5-oxo-3-pyrrolidinyl)earbonyl]-4-piperidinyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 350 Methyl 3-[(1-ethyl-5-{[(phenylmethyl)amino]carbonyl}-1H-pyrazolo[3,4-b]pyridin-4yl)amino]cyclohexanecarboxylate
- $351 \quad 3-[(1-Ethyl-5-\{[(phenylmethyl)amino]carbonyl\}-1H-pyrazolo[3,4-b]pyridin-4-pyrazolo[3,4-b]pyrazolo[$ yl)amino|cyclohexanecarboxylic acid
- 352 1-Ethyl-N-(phenylmethyl)-4-(4-piperidinylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 353 Ethyl 1-ethyl-4-({1-[(methyloxy)acetyl]-4-piperidinyl}amino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
- 354 Ethyl 1-(1-methylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxylate
- 355 4-(Cyclohexylamino)-1-ethyl-N-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

- 356 1-Ethyl-N-(4-fluorophenyl)-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 357 1-Ethyl-6-methyl-N-{[4-(methylsulfonyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 358 N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolof 3,4-b]pyridine-5-carboxamide
- 360 1-Ethyl-N-[3-(1-piperidinylcarbonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 361 1-Ethyl-N-[4-(1-methylethyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 362 1-Ethyl-N-(2-fluorophenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 363 N-{3-[(Dimethylamino)carbonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 364 N-{4-[(Difluoromethyl)oxy]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 365 N-{4-[Acetyl(methyl)amino]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolof3.4-b]pyridine-5-carboxamide
- 366 1-Ethyl-N-(4-hydroxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pvridine-5-carboxamide
- 367 1-Ethyl-N-[4-(4-morpholinyl)-2-(trifluoromethyl)phenyl]-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 368 1-Ethyl-N-4-pyridinyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 369 1-Ethyl-N-{4-[(4-methyl-1-piperazinyl)carbonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 370 1-Ethyl-N-[2-(2-oxo-1-pyrrolidinyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 371 1-Ethyl-N-[3-(methylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 372 N-{3-[Acetyl(methyl)amino]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 373 1-Ethyl-N-{3-[(methylsulfonyl)amino]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 374 1-Ethyl-N-(4-fluoro-2-hydroxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 375 N-(4-Chlorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 376 N-(3-Chloro-2-cyanophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 377 1-Ethyl-N-[3-(1-piperidinylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 379 1-Ethyl-N-[2-(methylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-

- b]pyridine-5-carboxamide
- 380 N-{2-[Acetyl(methyl)amino]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolof3.4-b]pyridine-5-carboxamide
- 381 1-Ethyl-N-[3-(4-morpholinylcarbonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 382 N-(4-Chloro-3-cyanophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blovridine-5-carboxamide
- 383 1-Ethyl-N-(3-hydroxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 384 N-(3-Chlorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 386 N-[3-[(Acetylamino)methyl]-4-(methyloxy)phenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 387 1-Ethyl-N-[4-(1-piperidinylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolof 3.4-b pyridine-5-carboxamide
- 388 N-(3-{[Cyclohexyl(methyl)amino]carbonyl}phenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 389 1-Ethyl-N-[2-(4-morpholinyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 390 N-{3-[(Acetylamino)sulfonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 391 N-(3-Chloro-4-hydroxyphenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 392 1-Ethyl-N-{4-[(methylsulfonyl)amino]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 393 1-Ethyl-N-{3-[(methylamino)carbonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 394 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[3-(trifluoromethyl)phenyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 395 1-Ethyl-N-3-pyridinyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 396 N-(3,4-Dichlorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 397 N-[3-(Aminosulfonyl)-4-chlorophenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolof3.4-blpvridine-5-carboxamide
- 398 1-Ethyl-N-[3-(4-morpholinyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 399 1-Ethyl-N-[4-(4-morpholinylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 400 1-Ethyl-N-{2-[(4-methyl-1-piperazinyl)carbonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridino-5-carboxamide
- 401 N-{2-[(Dimethylamino)carbonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

- 402 N-[2-Chloro-4-(trifluoromethyl)phenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 403 N-{2-[(Acetylamino)methyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 404 N-(2-Chlorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 405 N-(3-Chloro-2-fluorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 406 1-Ethyl-N-(3-fluorophenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 407 N-(2-Cyano-3-fluorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 408 1-Ethyl-N-[4-(propylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 409 N-{4-[(Dimethylamino)carbonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 411 1-Ethyl-N-[4-(methylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 413 N-{4-[(Acetylamino)methyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 414 1-Ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- ${\bf 415} \quad N-[2-(Aminosulfonyl)ethyl] 4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide$
- 416 N-(2-Amino-2-oxoethyl)-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide (non-preferred name)
- 417 4-(Cyclohexylamino)-1-ethyl-N-{2-[(methylsulfonyl)amino]ethyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 418 4-(Cyclohexylamino)-1-ethyl-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 419 4-(Cyclohexylamino)-1-ethyl-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 420 4-(Cyclohexylamino)-1-ethyl-N-{[3-(methylsulfonyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 421 N-{[3-(Aminocarbonyl)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 422 4-(Cyclohexylamino)-1-ethyl-N-(tetrahydro-2-furanylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 423 4-(Cyclohexylamino)-N-({4-[(dimethylamino)sulfonyl]phenyl}methyl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 424 N-[(5-Chloro-2-pyridinyl)methyl]-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 425 4-(Cyclohexylamino)-1-ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

- 137 -

WO 2004/024728

- 426 4-(Cyclohexylamino)-1-ethyl-N-{[6-(methyloxy)-3-pyridinyl]methyl}-1H-pyrazolo[3,4-blpyridine-5-carboxamide
- 427 4-(Cyclohexylamino)-1-ethyl-N-{4-[(methylamino)carbonyl]phenyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 428 4-(Cyclohexylamino)-1-ethyl-N-({3-[(methylamino)carbonyl]phenyl}methyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 429 N-{[4-(Aminocarbonyl)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 430 4-(Cyclohexylamino)-1-ethyl-N-[(4-hydroxyphenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 431 4-(Cyclohexylamino)-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 432 4-(Cyclohexylamino)-N-[(3,4-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 433 4-(Cyclohexylamino)-1-ethyl-N-{[4-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 434 4-(Cyclohexylamino)-1-ethyl-N-({3-[(methylsulfonyl)amino]phenyl} methyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 435 4-(Cyclohexylamino)-N-[(2,5-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 436 4-(Cyclohexylamino)-1-ethyl-N-[(4-methylphenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 438 4-(Cyclohexylamino)-1-ethyl-N-(2-{4-[(methylsulfonyl)amino]phenyl}ethyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 439 4-(Cyclohexylamino)-1-ethyl-N-[(2-hydroxyphenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 440 4-(Cyclohexylamino)-N-[(3,4-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 441 4-(Cyclohexylamino)-N-[(3,5-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 442 4-(Cyclohexylamino)-1-ethyl-N-(2-phenylethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 443 4-(Cyclohexylamino)-1-ethyl-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 444 4-(Cyclohexylamino)-1-ethyl-N-{[2-(methylsulfinyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 445 4-(Cyclohexylamino)-1-ethyl-N-[2-(4-hydroxyphenyl)ethyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 446 N-{2-[4-(Aminosulfonyl)phenyl]ethyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 447 4-(Cyclohexylamino)-1-ethyl-N-({2-[(methylamino)carbonyl]phenyl}methyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 448 4-(Cyclohexylamino)-1-ethyl-N-{[2-(methylsulfonyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

- 449 Methyl 2-[({{{-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5yl|carbonyl}amino)methyl|benzoate
- 450 4-(Cyclohexylamino)-1-ethyl-N-{2-[4-(methylsulfonyl)phenyl]ethyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 451 N-[4,5-Bis(methyloxy)-2,3-dihydro-1H-inden-2-yl]-4-(cyclohexylamino)-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 452 4-(Cyclohexylamino)-1-ethyl-N-{[2-fluoro-3-(trifluoromethyl)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 453 4-(Cyclohexylamino)-N-[(3,4-dimethylphenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 454 4-(Cyclohexylamino)-1-ethyl-N-[2-(4-fluorophenyl)ethyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 455 4-(Cyclohexylamino)-1-ethyl-N-[2-(4-methylphenyl)ethyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 456 4-(Cyclohexylamino)-1-ethyl-N-{2-[4-(methyloxy)phenyl]ethyl}-1H-pyrazolo[3,4-blpvridine-5-carboxamide
- 457 4-(Cyclohexylamino)-1-ethyl-N-(2-pyridinylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide trifluoroacetate
- 458 4-(Cyclohexylamino)-N-[(3,5-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 459 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-1-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 460 4-(Cyclohexylamino)-N-{[4-(dimethylamino)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-blpvridine-5-carboxamide trifluoroacetate
- 461 4-(Cyclohexylamino)-1-ethyl-N-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 462 N-{[2,4-Bis(methyloxy)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 463 N-[(6-Chloro-2-pyridinyl)methyl]-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 464 N-({2-[Acetyl(methyl)amino]phenyl}methyl)-4-(cyclohexylamino)-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 465 4-(Cyclohexylamino)-1-ethyl-N-{[4-fluoro-3-(trifluoromethyl)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 466 4-(Cyclohexylamino)-N-[(1R)-2,3-dihydro-1H-inden-1-yl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 467 4-(Cyclohexylamino)-N-[(2,6-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 468 Methyl 3-[({{4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5vl]carbonyl}amino)methyl]benzoate
- 469 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 470 Methyl 4-[({[4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-

- 139 -
- 471 4-(Cyclohexylamino)-1-ethyl-N-(1H-tetrazol-5-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 472 4-(Cyclohexylamino)-N-({4-[(diffuoromethyl)oxy]phenyl}methyl)-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

yl]carbonyl}amino)methyl]benzoate

- 473 4-(Cyclohexylamino)-1-ethyl-N-[(2-methyl-1,3-thiazol-4-yl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 474 N-[(2-Chloro-6-fluorophenyl)methyl]-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 475 N-{[2-(Aminocarbonyl)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 477 4-(Cyclohexylamino)-N-{[2-(dimethylamino)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 478 4-(Cyclohexylamino)-1-ethyl-N-[(4-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 479 4-(Cyclohexylamino)-1-ethyl-N-{[3-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 480 4-(Cyclohexylamino)-N-[(2,6-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 481 4-(Cyclohexylamino)-1-ethyl-N-[(3-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 482 4-(Cyclohexylamino)-1-ethyl-N-{[2-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-blovridine-5-carboxamide
- 483 N-(5-Chloro-2,3-dihydro-1H-inden-2-yl)-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-blovridine-5-carboxamide
- 484 4-(Cyclohexylamino)-1-ethyl-N-({4-[(methylamino)carbonyl]phenyl}methyl)-1Hpyrazolo[3.4-b]pyridine-5-carboxamide
- 485 4-(Cyclohexylamino)-1-ethyl-N-[4-(methyloxy)phenyl]-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 486 4-(cyclohexylamino)-1-ethyl-N-[(6-oxo-1,6-dihydro-3-pyridinyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 487 4-(Cyclohexylamino)-1-ethyl-N-(3-pyridinylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 488 4-[([[4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoic acid
- 489 3-[({[4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5vl]carbonyl}amino)methyl]benzoic acid
- 490 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide hydrochloride
- 491 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5carboxamide methanesulphonate
- 492 N-{{2-[(1,1-Dimethylethyl)oxy]-3-pyridinyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate

- 493 N-[(3-Chloro-4-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 494 N-[(4-Chloro-2-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 495 N-({2-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 496 1-Ethyl-N-{{2-[(1-methylethyl)oxy]phenyl}methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 497 1-Ethyl-N-{{3-[(1-methylethyl)oxy]phenyl}methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 498 N-{{3-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 499 1-Ethyl-N-{[4-hydroxy-3-(methyloxy)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 500 N-[(5-Acetyl-2-hydroxyphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 501 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-{2-[3-(trifluoromethyl)phenyl]ethyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 502 N-{[4-(Acetylamino)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 503 1-Ethyl-N-[2-(3-hydroxyphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 504 N-[2-(3-Chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blovridine-5-carboxamide
- 505 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-(2-{4-[(trifluoromethyl)oxy]phenyl}ethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 506 1-Ethyl-N-{2-[3-(methyloxy)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 507 N-[2-(4-Acetylphenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 508 N-[2-(3,4-Dichlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 509 N-{2-[3-(Aminosulfonyl)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 510 N-{2-[3,4-Bis(methyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 512 N-[2-(2,3-Dichlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 513 N-{2-[3,5-Bis(methyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 514 1-Ethyl-N-{2-[3-methyl-4-(methyloxy)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 515 N-[2-(2,6-Difluorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-

- 141 -

- pyrazolo[3,4-b]pyridine-5-carboxamide
- 516 N-{2-[2,6-Bis(methyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 517 1-Ethyl-N-[2-(2-methylphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 518 N-[(3,4-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 519 N-[4,5-Bis(methyloxy)-2,3-dihydro-1H-inden-2-yl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 521 N-{2-[4-(Aminosulfonyl)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 522 1-Ethyl-N-{[2-(methylsulfinyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 523 1-Ethyl-N-(2-phenylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 524 N-{[4-(Dimethylamino)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 525 1-Ethyl-N-[2-(4-fluorophenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 526 1-Ethyl-N-[2-(4-methylphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 527 N-{[3-(Aminosulfonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 528 1-Ethyl-N-[(4-methylphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 530 1-Ethyl-N-{[4-fluoro-3-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 531 Methyl 2-[({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoate
- 532 N-[(6-Chloro-2-pyridinyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 533 N-(2,3-Dihydro-1H-inden-1-yl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-blbyridine-5-carboxamide
- 534 N-({2-[Acetyl(methyl)amino]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 535 N-[(1S)-2,3-Dihydro-1H-inden-1-yl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 536 N-[(1R)-2,3-Dihydro-1H-inden-1-yl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 537 1-Ethyl-N-{{3-[(methylsulfonyl)amino]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 538 1-Ethyl-N-(phenylmethyl)-N-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

- 540 N-[2-(Dimethylamino)ethyl]-1-ethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 541 N-Butyl-1-ethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpvridine-5-carboxamide
- 542 N,1-Diethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide
- 544 1-Ethyl-N-(1-phenyl-4-piperidinyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide
- 545 1-ethyl-N-{1-[(ethylamino)carbonyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolof3.4-b|pyridine-5-carboxamide
- 546 Formic acid 1-ethyl-N-[1-methyl-2-(4-methyl-1-pipcrazinyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide (1:1)
- 547 Methyl [4-({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yllcarbonyl\u00e4amino)-1-piperidinyl\u00e4cetate
- 548 1-Ethyl-N-{[4-(4-morpholinylmethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 549 1-Ethyl-N-{{3-[(4-methyl-1-piperazinyl)methyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 550 N-{[5-(Aminocarbonyl)-3-pyridinyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)lH-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 551 1-Ethyl-N-{[4-(1-methylethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 552 N-{[3-(Cyclopentyloxy)-4-(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 553 1-Ethyl-N-({4-[(4-methyl-1-piperazinyl)methyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 554 N-[(2,4-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 555 N-[(2,4-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 556 N-[(2-Chloro-4-fluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 557 N-{2-[2-Chloro-3-(methyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 558 Methyl 3-[({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoate
- 559 1-Ethyl-N-{[3-(1-pyrrolidinylmethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate
- 560 1-Ethyl-N-(2-{4-[(methylsulfonyl)amino]phenyl} ethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- N-{[2,5-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 562 N-{[2,6-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-

WO 2004/024728 PCT/EP2003/011814

- pyrazolo[3,4-b]pyridine-5-carboxamide
- 563 1-Ethyl-N-[(2-fluorophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 564 N-[(3,5-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 565 N-[(4-Chlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 567 N-Cyclohexyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5carboxamide
- 568 1-Ethyl-N-{2-[4-(methylsulfonyl)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolof3.4-b|pyridine-5-carboxamide
- 569 1-Ethyl-N-{[2-fluoro-3-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 570 N-({4-[(Cyclopropylamino)carbonyl]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 571 1-Ethyl-N-{[4-(4-methyl-1-piperazinyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 572 1-Ethyl-N-{[4-(1-pyrrolidinylmethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)lH-pyrazolo[3,4-b]pyridine-5-carboxamide
- 573 1-Ethyl-N-[6-(methyloxy)-1-oxo-2,3-dihydro-1H-inden-2-yl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 574 N-[(2,5-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 575 N-[(3,5-Diethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 576 N-[(2,3-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 577 1-Ethyl-N-{[2-(methylsulfonyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 578 1-Ethyl-N-[(3-hydroxyphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 579 N-{[3,5-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 580 1-Ethyl-N-[2-(4-hydroxyphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 581 N-[(3,5-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 582 N-{[2,4-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide
- 583 1-Ethyl-N-{[2-(methyloxy)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 584 N-[(2,4-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

WO 2004/024728 PCT/EP2003/011814

- 585 1-Ethyl-N-({2-[(methylamino)carbonyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 586 1-Ethyl-N-{2-[4-(methyloxy)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolof 3.4-b]pyridine-5-carboxamide
- 587 N-[(2-Chlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 588 1-Ethyl-N-[(2-hydroxyphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 589 N-(1,3-Benzodioxol-5-ylmethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolof3.4-blpyridine-5-carboxamide
- 590 1-Ethyl-N-[3-(methyloxy)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 591 N-(Cyclohexylmethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 592 1-Ethyl-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 593 Methyl 4-[({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoate
- 594 N-[(3,4-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 595 N-{[4-(Aminocarbonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide
- 596 N-[(2,6-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 597 N-{[3-(Aminocarbonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 598 1-Ethyl-N-[(4-hydroxyphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 599 1-Ethyl-N-{[6-(methyloxy)-3-pyridinyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 600 1-Ethyl-N-(2-pyridinylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 601 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-{[3-(trifluoromethyl)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 602 N-[4-(2-Amino-2-oxoethyl)phenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 603 1-Ethyl-N-({4-[(methylamino)carbonyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 604 1-Ethyl-N-{4-[2-(methylamino)-2-oxoethyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 605 1-Ethyl-N-[(3-fluorophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 606 1-Ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-

WO 2004/024728 PCT/EP2003/011814

- 145 -

- 1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 607 N-{[4-(Aminosulfonyl)phenyl|methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 608 N-{[2-(Aminocarbonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 609 N-({4-[(Difluoromethyl)oxylphenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 610 N-({3-[(Dimethylamino)methyl]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4vlamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 611 N-{[3-Chloro-4-(methyloxy)pheny[]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 612 N-(1-Acetyl-4-piperidinyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4blpyridine-5-carboxamide
- 613 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-{[2-(trifluoromethyl)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 615 N-(5-Chloro-2,3-dihydro-1H-inden-2-yl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 616 N-({3-[(Acetylamino)methyl]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 617 1-Ethyl-N-[(4-fluorophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4blpyridine-5-carboxamide
- 618 1-Ethyl-N-{[4-fluoro-2-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 619 1-Ethyl-N-[(2-ethylphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4blpvridine-5-carboxamide
- 620 1-Ethyl-N-{[2-fluoro-5-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 621 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[(2,3,4-trifluorophenyl)methyl]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 622 N-[(4-Chloro-2-fluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3.4-b]pyridine-5-carboxamide
- 623 N-[(4-Bromo-2-fluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3.4-b]pyridine-5-carboxamide
- 624 N-[(3,5-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 625 N-[(2,3-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 626 N-[(2,3-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 627 N-[(4-Cyanophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4b)pyridine-5-carboxamide
- 628 N-[(4-Bromophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4b]pyridine-5-carboxamide

- 629 1-Ethyl-N-{[5-fluoro-2-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4vlamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 630 1-Ethyl-N-[(4-iodophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 631 N-{[4-(1,1-Dimethylethyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 632 N-[(3-Cyanophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 633 N-[(2,6-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 634 N-[(5-Chloro-2-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 635 N-[(3,5-Dibromophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 636 1-Ethyl-N-[(4-ethylphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 637 1-Ethyl-N-{[3-fluoro-4-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 638 1-Ethyl-N-[(2-iodophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 639 N-[(2-Bromophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-lH-pyrazolo[3,4-b]pyridine-5-carboxamide
- 640 1-Ethyl-N-{[4-(hydroxymethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 641 1-Ethyl-N-{[3-(hydroxymethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 642 1-Ethyl-N-{[3-(hydroxymethyl)-2-methylphenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 643 N-{[2,3-Diohloro-6-(hydroxymethyl)phcnyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 644 N-[(2,4-Dichloro-6-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 645 1-Ethyl-N-{[4-(2-methylpropyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 646 N-[(2,5-dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 647 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[(2,4,5-trifluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 648 1-Ethyl-N-{[2-fluoro-4-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 649 N-[(2-Chloro-6-methylphenyl)methyl]-1-cthyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 650 4-[({[1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-

WO 2004/024728 PCT/EP2003/011814

- yl]carbonyl}amino)methyl]benzoic acid sodium salt
- 651 3-[({[1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoic acid
- 652 Ethyl 1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5carboxylate
- 653 1-Ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-N-{[4-(methyloxy)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 654 N-{[4-(Dimethylamino)phenyl]methyl}-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 655 1-Ethyl-4-({4-[(ethyloxy)imino]cyclohexyl}amino)-N-{[4-(methyloxy)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 656 1-Ethyl-4-({4-(methyloxy)imino]cyclohexyl}amino)-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 657 4-[(4-{[(1,1-Dimethylethyl)oxy]imino}cyclohexyl)amino]-1-ethyl-N-{[(4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 658 1-Ethyl-N-{[4-(methyloxy)phenyl]methyl}-4-[(7-oxohexahydro-1H-azepin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 659 Ethyl 1-ethyl-4-[(7-oxohexahydro-1H-azepin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5carboxylate
- 660 4-{[cis-4-(Butylamino)cyclohexyl]amino}-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide
- 661 4-[(trans-4-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 662 4-[(trans-2-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 663 4-[(cis-2-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 664 4-[(3-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5carboxamide

Example Name

No.

- 665 Ethyl 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-
- b]pyridine-5-carboxylate
 N,1-Diethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4
 - b]pyridine-5-carboxamide
 - 667 1-Ethyl-N-(4-fluorophenyl)-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1Hpyrazolo/3.4-b/pyridine-5-carboxamide
- 10 668 1-Ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
 - 669 1-ethyl-N-[(4-fluorophenyl)methyl]-4-([(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

WO 2004/024728 PCT/EP2003/011814

- 148 -

 670 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-{[4-(methylsulfonyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
 671 N-{[3.4-bis(methyloxy)phenyl]methyl}-1-ethyl-4-{[(1SR,3RS)-3-

hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

5 672 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-(2-pyridinylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

673 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

674 N-[(3,4-dimethylphenyl)methyl]-1-ethyl-4-{[(1SR,3RS)-3-

hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

675 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

676 N-[(2,4-dimethylphenyl)methyl]-1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

15 667 N-[(2,3-Dichlorophenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolof3.4-b]byridine-5-carboxamide

678 N-[(3-Chloro-4-methylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

679 N-[(4-Chloro-2-methylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-

20 pyrazolo[3,4-b]pyridine-5-carboxamide
680 N-[(2,4-Dimethylphenyl)methyl]-1-ethyl-4-{[4-

 $({\rm hydroxyimino}) {\rm cyclohexyl] amino} - 1 \\ H-{\rm pyrazolo} [3,4-b] {\rm pyridine-5-carboxamide}$

681 N-[(3,4-Dimethylphenyl)methyl]-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

25 682 N-[(2,3-Dichlorophenyl)methyl]-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

683 N-[(3-Chloro-4-methylphenyl)methyl]-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

684 N-[(4-Chloro-2-methylphenyl)methyl]-1-ethyl-4-{[4-

(hydroxyimino)cyclohexyl]amino}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

685 *N*-{{4-{Difluoromethyloxylphenyl}methyl}-1-ethyl-4-{{4-

685 N-([4-[(Difluoromethyl)oxy]phenyl]methyl)-1-ethyl-4-{[4-(hydroxyimino)eyelohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
686 1-Ethyl-4-{[4-(hydroxyimino)eyelohexyl]amino}-N-[4-

(trifluoromethyl)phenyl]methyl}-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

35

30

10

- 149 -

5 Intermediate 1 (0.051g) and cyclopentyl amine (0.019g) were suspended in ethanol (2ml) and triethylamine (0.14ml) was added. The mixture was stirred under nitrogen and heated at 80°C for 16h. After cooling to room temperature, ethanol was removed by evaporation under a stream of nitrogen and the residue partitioned between dichloromethane (DCM) and water. The layers were separated and the organic layer was loaded directly onto an solid phase extraction (SPE) cartridge (silica, 5g) which was eluted sequentially with; (i) DCM, (ii) DCM : Ei₂O (2:1), (iii) DCM : Ei₂O (1:1), (iv) Et₂O, (v) EtOAc, (vi) MeOH. Fractions containing desired material were combined and concentrated in vacuo to afford Example 1 (0.074g). LCMS showed MH* = 303; Terr = 3.45min.

15 Similarly prepared were the following:

	NHR ³	Amine reagent	MH ⁺ ion	T _{RET}
				(min)
Example 2	HN-	Cyclohexyl amine	317	3.65
Example 3	HN(>)	4-Amino	319	2.93
(= Intermediate 32)		tetrahydropyran		
Example 5	HN-{ N-{	Intermediate 6	360	3.20
(= Example 207*)				

^{*} For alternative synthesis of Example 5, see Example 207 hereinafter

10

15

20

25

Example 3 (=Intermediate 32): Ethyl 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

Instead of the method shown above for Examples 1-5 (called Method A), the compound of Example 3 can also be made: either using the minor variation of Method A described in detail under "Intermediate 32" hereinabove, or using the following Method B:

Example 3, Method B: Intermediate 1 (2.5g) was dissolved in acetonitrile (15ml).

4-Aminotetrahydropyran hydrochloride (1.1g) and N,N-diisopropylethylamine (9.4ml)
were added and the mixture stirred under nitrogen at 85°C for 16h. A trace of starting
material remained, so an additional portion of 4-aminotetrahydropyran hydrochloride
(0.11g) was added and stirring continued at 85°C for a further 16h. The mixture was then
concentrated in vacuo. The residue was partitioned between DCM and water. The layers
were separated and the organic layer was washed with further water (2x20ml) then dried
(Na₂SO₄) and concentrated in vacuo. The residue was further purified by chromatography
using Biotage (silica, 90g), eluting with cyclohexane: ethyl acetate to afford Example 3
(2.45g). LCMS showed MH* = 319; T_{RET} = 2.90min.

Example 6: Ethyl 4-(cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

Intermediate 3 (0.045g) was placed in a Reactivial[™] and treated with cyclopentyl amine (0.07ml). The mixture was heated at 90°C for 2h, then allowed to cool to room temperature and partitioned between chloroform (2ml) and water (1ml). The layers were separated and the organic phase was evaporated to a brown solid, which was purified by mass directed autoprep HPLC, to afford Example 6 as a white solid (0.008g). LCMS showed MH^{*}= 289; Tggr = 3.22 min.

25

<u>Example 7:</u> Ethyl 1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

5 Intermediate 3 (0.035g) was placed in a ReactivialTM and treated with 4-amino tetrahydropyran (0.06ml). The mixture was heated at 90°C for 2h, then allowed to cool to room temperature and partitioned between chloroform (2ml) and water (1ml). The layers were separated and the organic phase was concentrated, then applied to a preparative TLC plate (silica, 20cm x 20cm x 1mm) which was eluted with ethyl acetate. The 10 required band was removed from the plate and the silica washed with ethyl acetate (2 x 15ml). Concentration of the ethyl acetate solution in vacuo afforded Example 7 as a white solid (0.008g). LCMS showed MH¹= 305; T_{RET} = 2.67 min.

15 <u>Example 8:</u> Ethyl 1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

Intermediate 1 (0.05g) and (S)-(-)-3-aminotetrahydrofuran 4-toluene sulphonate (0.052g) were suspended in ethanol (1ml) and triethylamine (0.14ml) was added. The mixture was stirred under nitrogen and heated at 80°C for 24h. After cooling to room temperature, ethanol was removed by evaporation under a stream of nitrogen and the residue partitioned between DCM (2ml) and water (1.5ml). The layers were separated and the organic layer concentrated to dryness. Purification was carried out using an SPE cartridge (silica, 5g), eluting with a gradient of EtOAc: cyclohexane; (1:16 then, 1:8, 1:4, 1:2, 1:1 and 1:0). Fractions containing desired material were combined and concentrated in vacuo to afford Example 8 (0.052g). LCMS showed MH⁺ = 305; T_{BET} = 2.70min.

Similarly prepared were the following:

	NHR ³	Amine Reagent	MH ⁺	T _{RET} (min)
Example 9	Ċ,NH	(R)-(+)-3- Aminotetrahydrofuran 4-toluene sulphonate	305	2.73
Example 10	HN-\s	Intermediate 11	335	3.21
Example 11 (mixture of enantiomers)	Ç _S NH	Intermediate 12	321	3.10
Example 12	A_NH	Cyclopropyl amine	275	2.98

Example 13: Ethyl 4-[(1,1-dioxidotetrahydrothien-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

- Intermediate 1 (0.05g) and Intermediate 13 (0.027g) were suspended in ethanol (1ml) and triethylamine (0.14ml) was added. The mixture was stirred under nitrogen and heated at 80°C for 24h. After cooling to room temperature, ethanol was removed by evaporation under a stream of nitrogen and the residue partitioned between DCM (2ml) and water (1.5ml). The layers were separated and the organic layer concentrated to dryness.
 Purification was carried out using an SPE cartridge (silica, 5g), eluting with a gradient of EtOAc: cyclohexane; (1:8 then 1:4, 1:2, 1:1 and 1:0). Fractions containing desired material were combined and concentrated in vacuo to afford Example 13 (0.045g) as a mixture of enantiomers. LCMS showed MH* = 353; T_{RET} = 2.60min.
- 20 Similarly prepared was the following:

	NHR ³	Amine Reagent	MH [†] ion	T _{RET} (min)
Example 14	HN	Intermediate 14	367	2.64

5 <u>Example 19 (reference example, as an intermediate):</u> Ethyl 4-(cyclopentylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

10 Intermediate 2 (0.035g) was placed in a Reactivial[™] and treated with cyclopentyl amine (0.05ml). The mixture was heated at 90°C for 1.5h, then allowed to cool to room temperature and partitioned between chloroform (2ml) and water (1ml). The layers were separated and the organic phase was concentrated. The residual solid was triturated with Et₂O and the insoluble off-white solid collected and air-dried to afford Example 19 (0.016g). LCMS showed MH²=275; T_{RFT}=2.58 min.

Example 20 (reference example, as an intermediate): Ethyl 4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

Intermediate 2 (0.035g) was placed in a Reactivial™ and treated with 4-aminotetrahydropyran (0.05ml). The mixture was heated at 90°C for 1.5h, then allowed to cool to room temperature and partitioned between chloroform (2ml) and water (1ml). The layers were separated and the organic phase was concentrated. The crude product was purified by mass directed autoprep HPLC to afford Example 20 as an off-white solid (0.011g). LCMS showed MH*=291; T_{RET} = 2.08 min.

10 Alternative synthetic method for Example 20:

Intermediate 2 (2g) was suspended in 4-aminotetrahydropyran (2g), and the mixture was heated at 90 °C for 6h. The residual mixture was allowed to cool to room temperature and partitioned between chloroform (50ml) and water (50ml). The phases were separated and the organic phase was evaporated to dryness. The residue was triturated with Et₂O (30ml) and the insoluble solid was collected and dried to afford Example 20 as a cream solid (2.24e). LCMS showed MHT = 291: Ther = 2.19min.

Example 21: N-benzyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Three alternative methods, A, B and C, have been used to make Example 21, as follows:

Example 21, Method A:

5

10

15

A solution of the 4-chloro Intermediate 17 (0.031g, 0.1 mmol) in ethanol (1.9ml) was treated with triethylamine (0.07ml, 0.5 mmol), followed by a 0.1M ethanolic solution of 4-aminotetrahydropyran (Intermediate 8, 1.1ml of the 0.1M ethanolic solution = 0.11 mmol). The mixture was heated at reflux (80°C) for 18h. A further portion of 4-aminotetrahydropyran (0.01ml of undiluted amine, not a solution thereof) was then added and heating continued for a further 24h. Volatiles were removed in vacuo and the residue dissolved in dichloromethane (DCM), then applied to an solid phase extraction (SPE) cartridge (aminopropyl, 1g) which was eluted first with DCM, then with methanol. Fractions containing desired material were concentrated in vacuo to afford Example 21 (0.004g). LCMS showed MH⁺ = 380; T_{ERT} = 2.92min.

20 Example 21, Method B:

Intermediate 17 (0.031g, 0.1 mmol) was dissolved in acetonitrile (1ml).

4-Aminotetrahydropyran hydrochloride (Intermediate 8A, 0.015g, 0.11 mmol) and N,N-diisopropylethylamine (0.08ml, 0.5 mmol) were added and the mixture stirred under nitrogen at 85°C for 16h, then concentrated in vacuo. The residue was partitioned between dichloromethane (DCM) and water. The layers were separated and the organic layer was concentrated in vacuo to afford Example 21 (0.027g). LCMS showed MH⁺ = 380; T_{RET} = 2.92 min.

Example 21, Method C:

This alternative route C to Example 21 involves formation of the ester of Example 3 =

The following compounds can be similarly prepared using one or more of Methods A, B or C above, preferably Method A or B:

10

		Et				
	NR ⁴ R ⁵	NHR ³	Starting Material (for	Amine Reagent	MH ⁺	T _{RET} (min)
			Method A or B)			(11111)
Example 22	HNC-F	ни—Со	Intermediate 19	4-amino tetrahydropyran	384	3.09
Example 23	NH	HN	Intermediate 20	Cyclopentyl amine	342	3.29
Example 24	○ NH	ни—	Intermediate 20	Cyclohexyl amine	356	3.47
Example 25	○ NH	ны—	Intermediate 20	4-amino tetrahydropyran	358	2.79
Example 27	NH	HN	Intermediate 20	Intermediate 6	400	2.64
Example 28	$\langle \rangle$	HN \	Intermediate 21	Cyclopentyl amine	328	2.69
Example 29	$\stackrel{N}{\bigcirc}$	ни—	Intermediate 21	Cyclohexyl amine	342	2.87
Example 30	\square	ни—Со	Intermediate 21	4-amino tetrahydropyran	344	2.33
Example 31	HN ∕ ∕ N	HN	Intermediate 22	Cyclopentyl amine	365	2.38
Example 32	HN ∕ ĈN	HN-	Intermediate 22	Cyclohexyl amine	379	2.54

Example 33	HN N	н∾—О	Intermediate 22	4-amino tetrahydropyran	381	2.09
Example 34	NH ₂	HN 🔷	Intermediate 24	Cyclopentyl amine	274	2.59
Example 35	NH ₂	ни—	Intermediate 24	Cyclohexyl amine	288	2.79
Example 36	NH ₂	HN-C	Intermediate 24	4-amino tetrahydropyran	290	2.22

Example 39: N-Benzyl-4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

5

10

15

20

A solution of Intermediate 17 (0.031g, 0.1 mmol) in ethanol (1ml) was treated with triethylamine (0.07ml, 0.5 mmol), followed by a 0.1M ethanolic solution of cyclopentyl amine (1.1ml of the 0.1M ethanolic solution = 0.11 mmol). The mixture was heated at reflux (80°C) for 18h. A further portion of cyclopentyl amine (0.009ml of undiluted amine, not a solution thereof) was then added and heating continued for a further 24h. Volatiles were removed in vacuo and the residue dissolved in DCM, then applied to an SPE cartridge (aminopropyl, 1g) which was eluted first with DCM, then with methanol. The DCM fraction was concentrated in vacuo, then applied to an SPE cartridge (silica, 0.5g) which was eluted sequentially with (i) DCM, (ii) Et₂O, (iii) EtOAc and (iv) MeOH. Fractions containing desired material were combined to afford Example 39 (0.007g). LCMS showed MH⁺ = 364; T_{RET} = 3.38min.

Similarly prepared were the following:

	NR ⁴ R ⁵	NHR ³	Starting	Amine	MH ⁺	TRET
			Material	reagent	ion	(min)
Example	HN^	HN-	Intermediate	Cyclohexyl	378	3.43
40)	17	amine		
Example	HN \	HN-√\)N-(°	Intermediate	Intermediate	421	2.75
41		, ,	17	6		
Example	HN	HN~	Intermediate	Cyclopentyl	358	3.63
42	\sim	<u> </u>	18	amine		
Example	HN	HN{	Intermediate	Cyclohexyl	372	3.79
43	<u>~~</u>		18	amine		
Example	HN	HN-√>	Intermediate	4-amino	374	3.13
44	· ~~		18	tetrahydro-		
				pyran		
Example	HN.	HN-()v-	Intermediate	Intermediate	387	2.37
45	~~		18	7		
Example	HN	HN-(\)-(°	Intermediate	Intermediate	415	2.92
46	~~)	18	6		
Example	HN—F	HN	Intermediate	Cyclopentyl	368	3.61
47			19	amine		
Example	HN-F	ни—	Intermediate	Cyclohexyl	382	3.76
48			19	amine		
Example	HNF	HN()-	Intermediate	Intermediate	397	2.29
49			19	7		
Example	HN—F	HN-(Intermediate	Intermediate	425	2.88
50			19	6		
Example	HN ~	HN	Intermediate	Cyclopentyl	316	3.05
51			23	amine		
Example	HN ~	HN-	Intermediate	Cyclohexyl	330	3.26
52			23	amine		
Example	HN ~	ни—()	Intermediate	4-amino	332	2.58
53			23	tetrahydro-		
				pyran		
Example	HN ~	HN-\	Intermediate	Intermediate	373	2.46
55			23	6		

Example 57: 4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

5 A solution of Intermediate 22 (0.03g, ca. 0.1 mmol) in ethanol (1ml) was treated with triethylamine (0.07ml, 0.5 mmol), followed by a 0.1M ethanolic solution of Intermediate 6 (1.1ml of the solution = 0.11 mmol). The mixture was heated at reflux (80°C) for 18h. A further portion of Intermediate 6 (0.01ml, undiluted) was then added and heating continued for a further 24h. Volatiles were removed in vacuo and the residue dissolved in 10 DCM, then applied to an SPE cartridge (aminopropyl, 1g) which was eluted first with DCM, then with methanol.

The DCM fraction was concentrated in vacuo, then applied to an SPE cartridge (silica, 0.5g) eluting with (I) DCM, (ii) EtOAc and (iii) a stepwise gradient of chloroform: methanol (from 99:1 up to 4:1). Fractions containing desired material were combined to afford Example 57 (0.003a). LCMS showed MH⁻⁻ 422: T_{BFT} = 2.1 min.

15

20

25

Example 61: N-Benzyl-4-(cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

A solution of Intermediate 28 (0.03g, 0.1 mmol) in ethanol (1ml) was treated with a 0.1M ethanolic solution of cyclopentyl amine (1.1ml of solution = 0.11 mmol). Triethylamine (0.07ml, 0.5 mmol) was then added and the mixture heated at reflux (85°C), under

nitrogen for 12h. A further portion of cyclopentyl amine (0.009ml, undiluted) was then added and heating continued for a further 36h. The mixtures were concentrated in vacuo

added and heating continued for a further 36h. The mixtures were concentrated in vacuo and the residue treated with chloroform. A small amount of insoluble material was collected by filtration, then the filtrate applied to an SPE cartridge (aminopropyl, 1g) which was cluted first with DCM, then with methanol. Fractions containing desired material were combined to afford Example 61 (0.039g). LCMS showed MH = 350; Treet = 2.88min.

Similarly prepared were the following:

10

		Me				
	NR ⁴ R ⁵	NHR ³	Starting Material	Amine Reagent	MH + ion	T _{RET} (min)
Example 62	HN^	нк—	Intermediate 28	Cyclohexyl amine	364	3.05
Example 63	HN N	нн	Intermediate 28	4-amino tetrahydropyran	366	2.52
Example 64	× ×	HN ✓	Intermediate 30	Cyclopentyl amine	344	3.06
Example 65	N N	ни—	Intermediate 30	Cyclohexyl amine	358	3.23
Example 66	HN	HN—	Intermediate 30	4-amino tetrahydropyran	360	2.69
Example 67	HN	HN	Intermediate 29	Cyclopentyl amine	354	3.17
Example 68	HN———F	HN-	Intermediate 29	Cyclohexyl amine	368	3.33
Example 69	HN———F	ни—О	Intermediate 29	4-amino tetrahydropyran	370	2.72
Example 70	NH ₂	HN 🔷	Intermediate 31	Cyclopentyl amine	260	2.10
Example 71	NH ₂	ни—	Intermediate 31	Cyclohexyl amine	274	2.29

PCT/EP2003/011814 - 161 -

Example 74: 4-[(1-Acetylpiperidin-4-yl)amino]-N-benzyl-1-methyl-1H-pyrazolo[3,4blpvridine-5-carboxamide

that is, Example 74 is:

20

A solution of Intermediate 28 (0.03g, 0.1 mmol) in ethanol (1ml) was treated with a 0.1M ethanolic solution of Intermediate 6 (1.1ml of solution = 0.11 mmol). Triethylamine (0.07ml, 0.5 mmol) was then added and the mixture heated at reflux (85°C), under nitrogen for 12h. A further portion of Intermediate 6 (0.1 mmol) was then added and heating continued for a further 36h. The mixtures were concentrated in vacuo and the residue treated with chloroform. A small amount of insoluble material was collected by 10 filtration, then the filtrate applied to an SPE cartridge (aminopropyl, 1g) which was eluted first with DCM, then with methanol, Fractions containing desired material were combined and concentrated in vacuo. The residue was further purified by SPE (silica, 0.5g) eluting with (i) DCM, (ii) chloroform, (iii) EtOAc and (iv) a stepwise gradient of 15 chloroform: methanol (from 99:1 up to 4:1). Fractions containing desired material were combined to afford Example 74 (0.029g), LCMS showed MH⁺ = 407; T_{RFT} = 2.57 min.

Example 81: 1-Ethyl-N-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

Example 81 NR4R5 = NHMe

To a stirred suspension of Intermediate 33 (0.025g, ca. 0.08 to 0.09 mmol) in chloroform (2ml) was added thionyl chloride (0.025ml) and the mixture stirred at room temperature for 1h. The mixture was cooled to 0°C and methylamine added (2M solution in THF, 0.69ml = 1.38 mnol). After returning to room temperature the mixture was stirred for a further 1h, then quenched by addition of water (4ml) and the layers separated. The organic layer was concentrated then applied to an SPE cartridge (silica, 1g) which was eluted with (i) DCM, (ii) Et₂O (2:1), (iii) EtOAc, (iv) MeOH: EtOAc (1:9). Fractions containing desired material were combined to afford Example 81 (0.019g). LCMS showed MH⁺ = 304: Terr = 2.19min.

Similarly prepared:

10

20

		Lt		
	NR ⁴ R ⁵	Amine reagent	MH ⁺ ion	T _{RET} (min)
Example 82	NMe ₂	Dimethylamine (2M in THF)	318	2.06
Example 83	NHEt	Ethylamine (2M in THF)	318	2.31
Example 84	NH ⁱ Pr	Isopropylamine (2M in THF)	332	2.44

Example 83: N,1-Diethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide; also named 1-ethyl-N-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

In an alternative embodiment to the process described for Examples 81-84 above, Example 83 can be made according to the following method:

A mixture of Intermediate 33 (3.0g, 10.33mmol), EDC (2.25g, 11.7mmol), and HOBT (1.68g, 12.4mmol) was stirred at room temperature for 1 hour. Ethylamine (6.2ml,

12.4mmol, 2M-solution in THF) was added, and stirring was continued at room temperature for 22 hours. The solvents were removed in vacuo, and the residual solid was dissolved in chloroform (250ml) and washed successively with water (70ml) and 5%-sodium hydrogen carbonate solution (70ml). After drying over anhydrous sodium sulphate, the organic solution was evaporated in vacuo to give a pale orange solid (4.15g). This solid was dissolved in a mixture of dichloromethane (15ml) and chloroform (5ml) and purified by-column chromatography (Biotage, silica, 100g), eluting initially with EtOAc-cyclohexane (2:1) and finally with neat EtOAc. The product containing fractions were combined and evaporated to give Example 83 as a pale yellow solid (3.05g). LCMS showed MH[†] = 318; T_{RET} = 2.33min. ¹H NMR (400MHz in d₆-DMSO, 27°C, δppm) 9.76 (d, 1H) 8.35 (s, 1H) 7.94 (s, 1H) 5.99 (br m, 1H) 4.47 (q, 2H) 4.16-4.01 (m[†] s, 3H) 3.62 (m, 2H) 3.48 (m, 2H) 2.13 (m, 2H) 1.77 (m, 2H) 1.49 (t, 3H) 1.28 (t, 3H).

15

20

25

10

$\underline{\textbf{Example 85:}} \ \textbf{N-Benzyl-1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]} \\ \textbf{pyridine-5-carboxamide}$

Intermediate 41 (0.017g, 0.062 mmol) was dissolved in DMF (2ml), then treated with HATU (0.023g) followed by diisopropylethyl amine (0.021ml) and the mixture stirred for 10 min. Benzylamine (0.007ml) was then added and stirring continued for a further 64h. The mixture was concentrated in vacuo and the residue dissolved in DCM (1.5ml) then treated with saturated aqueous sodium bicarbonate solution (1.5ml). This mixture was stirred for 30 min, then the layers were separated and the organic layer was applied to an SPE cartridge (silica, 1g) which was eluted sequentially with a gradient of ethyl acetate: cyclohexane (1:4, then 1:2, 1:1, 2:1 and 1:0). Fractions containing desired material were concentrated in vacuo to afford Example 85 (0.017g). LCMS showed MH[†] = 366; T_{RET} = 2.80min.

30 Similarly prepared were the following:

PCT/EP2003/011814

	NHR ³	Starting material	MH ⁺ ion	T _{RET} (min)
Example 86	VNH VNH	Intermediate 42	366	2.80
Example 87	SNH	Intermediate 44	382	3.11
Example 88	△ _{NH}	Intermediate 45	336	3.00
Example 89	HN O	Intermediate 46	414	2.69
Example 90	HN-SSO	Intermediate 47	428	2.75

<u>Example 91:</u> N-Benzyl-1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

10

15

Intermediate 43 (0.019g) was dissolved in DMF (2ml), then treated with HATU (0.024g) followed by disopropylethyl amine (0.022ml) and the mixture stirred for 10 min. Benzylamine (0.007ml) was then added and stirring continued for a further 64h. The mixture was concentrated in vacuo and the residue dissolved in DCM (1.5ml) then treated with saturated aqueous sodium bicarbonate solution (1.5ml). This mixture was stirred for 30 min, then the layers were separated and the organic layer applied to an SPE cartridge (silica, 1g) which was eluted sequentially with a gradient of ethyl acetate: cyclohexane (1.4, then 1:2, 1:1 and 1:0). Fractions containing desired material were concentrated in vacuo to afford Example 91 (0.023g). LCMS showed MH* = 396; TRET = 3.26min.

<u>Example 92:</u> 1-Ethyl-N-(4-fluorophenyl)-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Intermediate 41 (0.017g) was dissolved in DMF (2ml), then treated with HATU (0.023g) followed by diisopropylethyl amine (0.021ml) and the mixture stirred for 10 min. 4-Fluoroaniline (0.006ml) was then added and stirring continued for a further 64h. The mixture was concentrated in vacuo and the residue dissolved in DCM (1.5ml) then treated with saturated aqueous sodium bicarbonate solution (1.5ml). This mixture was stirred for 30 min, then the layers were separated and the organic layer concentrated in vacuo. The crude mixture was purified by mass directed autoprep HPLC to afford Example 92 (0.013g). LCMS showed MH⁺ = 370; Tggr = 2.91 min.

15 Similarly prepared were the following:

5

10

	NHR ³	Starting material	MH ⁺	T _{RET}
			ion	(min)
Example 93	√ _{NH}	Intermediate 42	370	2.91
Example 94	HN—\s	Intermediate 43	400	3.37
Example 95	√ _S NH	Intermediate 44	386	3.27

Example 96	△ _{NH}	Intermediate 45	340	3.21
Example 97	HN S	Intermediate 46	418	2.80
Example 98	UNI_	Intermediate 47	432	2.84

Example 99

In all of Examples 22 to 98, where a 4-amino 5-carboxamide Example of the following Formula I has been synthesised from the 4-chloro derivative, then an alternative final-step synthesis is as follows:

10 An intermediate of Formula IV above (0.1mmol) was dissolved in acetonitrile (1ml). An amine of formula R3NH2 (0.11mmol, 1.1 mole equivalents) and N,Ndiisopropylethylamine (0.5mmol, 5 mole equivalents) were added and the mixture stirred under nitrogen at 85°C for 16h. After concentration in vacuo, the residue was partitioned between dichloromethane (DCM) and water. The layers were separated and the organic 15 layer was concentrated in vacuo to afford an Example of Formula I.

Formula IV

$$NH = NR^4R^5$$
Example 100 $NR^4R^5 = N$

5 Intermediate 33 (0.048mmol) was dissolved in DMF (0.5ml), then treated with HATU (0.048mmol) followed by diisopropylethyl amine (0.096mmol) and the mixture stirred for 10 min. 4-Methylsulfonylbenzylamine (0.052mmol, available from Acros Organics) was then added and stirring continued for a further 16 hours. The mixture was concentrated in vacuo. The crude mixture was purified by mass directed autoprep HPLC to afford Example 100 (0.013p). LCMS showed MH² 458; T_{Brr} = 2.22min.

Similarly prepared, but replacing the 4-methylsulfonylbenzylamine with the same or similar number of moles of another amine R⁴R⁵NH, were the following compounds (Examples 102 to 182):

15

	NR ⁴ R ⁵ (the N	Source of R ⁴ R ⁵ NH	Starting	МН	T _{RET}
	atom linking R ⁴		Material	⁺ ion	(min)
	and R ⁵ to the				
	-CO-pyrazolo-				
	pyridine moiety				
	is underlined)				
Example 102	HN CH ₃	J. Chem. Soc., 1945, 633	Intermediate 33	458	2.2

Example 103	N F F CH ₃	WO 98/52943	Intermediate 33	490	2.66
Example 104	HN N O	J. Org. Chem., 1979, 44(3), 396	Intermediate 33	415	2.28
Example 105		Seriya Khimicheskaya, 1989, (7), 1694	Intermediate 33	456	2.65
Example 106	HO CO	SALOR (Aldrich)	Intermediate 33	458	2.32
Example 107	H ₃ C O	Maybridge Chemical Company Ltd. Trevillett Tintagel Cornwall PL34 0HW United Kingdom	Intermediate 33	461	2.5
Example 108	H ₃ C CH ₃	MicroChemistry- RadaPharma Shosse Entusiastov 56 Moscow, 111123 Russia	Intermediate 33	390	2.28
Example 109	HN s	MicroChemistry-RadaPharma Shosse Entusiastov 56 Moscow, 111123 Russia. Alternatively, available from: Matrix Scientific (USA), or Synthesis 1998, 641, or Tetrahedron 1995, 51, 12731	Intermediate 33	387	2.13
Example 110	HN	Bulletin des Societes Chimiques Belges, (1982), 91(2), 153	Intermediate 33	382	1.98
Example 111	HN CH ₃	MicroChemistry- RadaPharma Shosse Entusiastov 56 Moscow, 111123 Russia	Intermediate 33	401	2.14

Example 112	HN CH3		Intermediate 33	466	2.67
Example 113	HN CH3	Ultrafine (UFC Ltd.), see above for address	Intermediate 33	425	2
Example 114	HN	Austin Chemical Company, Inc. 1565 Barclay Blvd. Buffalo Grove, IL, 60089 USA	Intermediate 33	382	2
Example 115		WO 02/83624	Intermediate 33	464	1.97
Example 116	HN	Fluka Chemie AG	Intermediate 33	432	2.52
Example 117	HZ	MicroChemistry- RadaPharma Shosse Entusiastov 56 Moscow, 111123 Russia	Intermediate 33	397	1.96
Example 118	HIN NH ₂	WO 02/85860	Intermediate 33	423	2.09
Example 119	HN CH,	Butt Park Ltd. Braysdown Works Peasedown St. John Bath, BA2 8LL, United Kingdom	Intermediate 33	423	2.19
Example 120	HN N=CH ₃	Sigma	Intermediate 33	398	1.77
Example 121	EN THE	US 4562184	Intermediate 33	452	2.21
Example 122	HAN NO	Dynamit Nobel GmbH, Germany; or Saville Whittle Ltd (UK agents of Dynamit Nobel), Vickers Street, Manchester M40 8EF, United Kingdom	Intermediate 33	372	1.93

Example 123	HN	WO 02/66470	Intermediate 33	385	1.93
Example 125	HN F	Aldrich	Intermediate 33	434	2.84
Example 126	HN N CC CH3	AstaTech, Inc. 8301 Torresdale Ave. 19C, Philadelphia, PA, 19136, USA	Intermediate 33	473	2.5
Example 127	HN SCH ₃		Intermediate 33	425	1.99
Example 128	HN CH ₃	J. Org. Chem., 2001, 66(6), 1999	Intermediate 33	423	1.97
Example 129	HN CH ₃	Acros Organics	Intermediate 33	401	1.82
Example 130	HN	Aldrich	Intermediate 33	374	2.08
Example 131	HN	Combi-Blocks Inc., 7949 Silverton Av., Suite 915, San Diego, CA 92126, USA (see also Intermediate 8A)	Intermediate 33	374	2.04
Example 132	H ₃ C ₁ O-CH ₃	J. Org. Chem., 1955, 20, 1657	Intermediate 33	487	2.39
Example 133	PH O CH ₃	J. Med. Chem., 1999, 42(14), 2504; or variation of: Lis et al., J. Med. Chem., 1990, 33(10), 2883, see Scheme III and ref. 24	Intermediate 33	473	2.24
Example 135	O_CH3	Aldrich	Intermediate 33	396	2.42

Example 136	HN	Aldrich	Intermediate 33	415	2.03
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Example 137	HN CH3	Aldrich	Intermediate 33	401	1.78
Example 138	HN	Aldrich	Intermediate 33	381	1.81
Example 139	HN_CH ₃	MicroChemistry- RadaPharma Shosse Entusiastov 56 Moscow, 111123 Russia	Intermediate 33	387	1.74
Example 140	CH ₃	Aldrich	Intermediate 33	360	2.16
Example 141	HN N	Aldrich	Intermediate 33	401	1.81
Example 142	EN N	Aldrich	Intermediate 33	417	1.75
Example 143	HN O CH ₃	Aldrich	Intermediate 33	376	2.16
Example 144	HN	Aldrich; or Baruah et al., Synlett, 1999, 4, 409	Intermediate 33	386	2.59
Example 145	HN CH ₃	Aldrich	Intermediate 33	375	1.73
Example 146	HN CH ₃	Fluorochem Ltd. Wesley Street Old Glossop Derbyshire SK13 7RY United Kingdom	Intermediate 33	360	2.16

			T	440	2.4
Example 147	HN	Aldrich; or Acros; or	Intermediate	410	2.4
		Jung et al.,	33		
		Tetrahedron Lett.,			
	ا ۲ ا	2002, 43(48), 8735; or			
	H₃C	Meindl et al., J. Med.			
		Chem., 1984, 27(9),			
		1111; or Organic Lett.,			
		2002, 4(12), 2055			
Example 148	HN V N S	Berk Univar plc	Intermediate	473	2.26
	H [)	Berk House	33		
		P.O.Box 56			
		Basing View			
		Basingstoke			
		Hants RG21 2E6,			
		United Kingdom			
Example 149	HN A L	Aldrich	Intermediate	375	1.9
	т үү сн,		33		
Example 150	9,10	MicroChemistry-	Intermediate	411	1.95
Zama-pro te o	HM CH.	RadaPharma	33		
		Shosse Entusiastov 56			
		Moscow, 111123			
		Russia			
Example 152	HN	Nippon Kagaku	Intermediate	453	1.96
1 ^	L _N _CH₃	Zasshi., 1960, 81	33		
	1 1 .0.	p.962.			
	СН	_			
				400	2.05
Example 153	HN. I	Aldrich	Intermediate	408	2.35
			33		
Example 154	HN- F	Aldrich	Intermediate	416	2.5
			33		
	()				
Evample 155	Ę	Aldrich; or Meindl et	Intermediate	448	2.68
Example 155	F C	al., J. Med. Chem.,	33	440	2.00
	HN F		33		
		1984, 27(9), 1111; or			
		Organic Letters, 2002,			
		4(12), 2055			

Example 156	CH ₃	Alfa Aesar, A Johnson Matthey Company 30 Bond Street Ward Hill, MA 01835-8099	Intermediate 33	360	2.16
		USA			
Example 157	HN	Aldrich	Intermediate 33	330	2.04
Example 158	HN NH ₂	Aldrich	Intermediate 33	347	1.83
Example 159	HN E	Aldrich	Intermediate 33	396	2.49
Example 160	E E	Aldrich	Intermediate 33	416	2.53
Example 161	HN O CH,	Aldrich	Intermediate 33	390	2.18
Example 162	HN \\	Aldrich	Intermediate 33	463	1.96
Example 163	N H CH,	US 4987132	Intermediate 33	458	2.13
Example 164	HN N	Aldrich	Intermediate 33	374	2.22
Example 165	HN	Aldrich; or TCI- America; or Maybridge-Int.	Intermediate 33	406	2.53
Example 166	HN NH	Maybridge Chemical Company Ltd. Trevillett Tintagel	Intermediate 33	402	1.93

		Cornwall PL34 0HW			
		United Kingdom			
Example 167	HN	Aldrich; or Baruah et	Intermediate	440	2.3
		al., Synlett, 1999, 4,	33		
	CH ₃	409			
	7 00.0.3				
	H³C C				
Example 168	HN	Aldrich; or Meindl et	Intermediate	414	2.58
		al., J. Med. Chem.,	33		
		1984, 27(9), 1111; or			
		Organic Letters,			
	° `CI	2002, 4(12), 2055			
Example 169	N	Aldrich	Intermediate	373	1.64
			33		
	CH ₃				
Example 170	HN OH	Aldrich	Intermediate	334	1.85
	N/^	411.1	33 Intermediate	167	
Example 171		Aldrich		465	2.29
			33		
	о н.с				
Example 172	HNY	EP 666258	Intermediate	458	2.25
_	S CH.		33		
Example 173	CH ₃	J. Chem. Soc., 1954,	Intermediate	389	1.98
	HN CH ₃	1171	33		
	Ö CH ₃		7	204	
Example 174	HN CH3	Peakdale Molecular Ltd. Peakdale Science	Intermediate 33	384	1.76
		Park, Sheffield Road,	33		
	N'	Chapel-en-le-Frith,			
		High Peak SK23 0PG,			
		United Kingdom			
Example 175	HN H	Fluorochem Ltd.	Intermediate	459	2.36
	S,N-CH,	Wesley Street	33		
	o″ `°	Old Glossop			
		Derbyshire SK13 7RY			
		United Kingdom			
Example 176	HN	Lancaster Synthesis	Intermediate	343	2.01
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ltd, Newgate, White	33		
		Lund, Morecambe,			
		Lancashire LA3 3DY,			

WO 2004/024728 PCT/EP2003/011814

		United Kingdom			
Example 178	HN	TimTec, Inc.	Intermediate	384	2.03
		P O Box 8941	33		
		Newark, DE, 19714-			
	N-N	8941			
	CH3	USA			
Example 179	CH ₃	ChemBridge Europe,	Intermediate	398	1.70
	<u>n</u>	4 Clark's Hill Rise,	33		
		Hampton Wood,			
	N CH3	Evesham,			
		Worcestershire WR11			
		6FW, United			
		Kingdom			
Example 180	HN	Aldrich	Intermediate	400	2.41
1	s_		33		
Example 181	HN~~	Aldrich	Intermediate	428	2.61
1			33.		
Example 182	O_CH3	Aldrich	Intermediate	424	2.49
1	HN-		33		
	<u>~</u>				

Example 109: 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-(1,3-thiazol-2-ylmethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

5

10

15

An alternative process for preparing Example 109 is given below:

1-Hydroxybenzotriazole (0.215g, 1.59mmol) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (0.357g, 1.86mmol) were added to a suspension of
Intermediate 33 (0.384g, 1.32mmol) in DMF (10ml). After stirring at room temperature
for 30 minutes, (1,3-thiazol-2-ylmethyl)amine (0.182g, 1.59mmol) (commercially
available from MicroChemistry Building Blocks (Russia) or Matrix Scientific (USA), or
preparable as disclosed in Synthesis 1998, 641, or Tetrahedron 1995, 51, 12731) was
added. The reaction was stirred for 18 hours and then partitioned between ether and
water. The organic phase was washed with brine, dried (MgSO₄) and evaporated in

vacuo. The residue was purified by chromatography (Biotage, silica90g) eluting with cyclohexane: EtOAc followed by EtOAc. The material was triturated with cyclohexane and filtered to afford Example 109 (0.244g) as a pale yellow solid. LCMS showed MH⁺ 387; T_{RET} = 2.49min. 1H NMR (400MHz in CDCl₃, δppm) δ 9.74 (d, 1H) 8.50 (s, 1H) 7.94 (s, 1H) 7.74 (d, 1H), 7.33 (d, 1H), 7.17 (m, 1H), 4.94 (d, 2H) 4.45 (q, 2H) 4.15 - 4.00 (m, 3H), 3.63 (m, 2H), 2.15 (m, 2H) 1.85 - 1.73 (m, 3H) 1.48 (t, 3H).

Example 167: N-{[3,4-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

5

25

In an alternative embodiment to the process described above for Examples 100-182, Example 167 can be made according to the following method: A mixture of Intermediate 33 (0.498g, 1.72mmol), EDC (0.46g, 2.41mmol), and HOBT (0.278g, 1.68mmol) was stirred at room temperature for 0.25 hours. Veratrylamine 10 (3,4-dimethoxybenzylamine, 0.31ml, 2.05mmol, obtainable from Aldrich or Synlett, 1999, 4, 409) was added, and stirring was continued at room temperature for 22 hours. The reaction mixture was partitioned between Et₂O and water. The aqueous phase was extracted with Et2O and the combined organic phases washed with brine, dried (MgSO4) and evaporated in vacuo. The residue was purified by chromatography (Biotage, silica 40g) eluting with EtOAc: cyclohexane (2:1). The material was further purified by SPE 15 (SCX-2, 10g) eluting with methanol then ammonia in methanol (0.5M). The ammonia methanol fractions were combined and evaporated in vacuo to afford Example 167 as a white foam (0.633g). LCMS showed MH $^+$ = 440; T_{RET} = 2.65min. ¹H NMR (400MHz in CDCl₃, 27°C, 5ppm) 9.78 (d, 1H) 8.37 (s, 1H) 7.94 (s, 1H) 6.94 - 6.82 (m, 3H) 6.29 (br 20 m, 1H) 4.56 (d, 2H) 4.46 (q, 2H) 4.15-4.01 (m's, 3H) 3.89 (s, 6H) 3.63 (m, 2H) 2.15 (m, 2H) 1.78 (m, 2H) 1.49 (t, 3H).

Example 178 1-Ethyl-N-[(1-methyl-1*H*-pyrazol-4-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

The $^1\mathrm{H}$ NMR data for Example 178 (as prepared by the process described in Examples 100-182 above) was as follows:

10

15

¹H NMR (400MHz in CDCl₃ δppm) δ 9.90 (m, 1H) 8.37 (s, 1H) 7.94 (s, 1H) 7.49 (s, 1H), 7.40 (s, 1H) 6.39 (m, 1H) 4.50 - 4.42 (m, 4H) 4.15 - 4.00 (m, 3H) 3.89 (s, 3H), 3.63 (m, 2H) 2.52 (m, 2H) 2.20-2.10 (m, 2H) 1.85 - 1.73 (m, 3H) 1.48 (t, 3H).

Example 183: Ethyl 4-(cyclohexylamino)-1-(3-ethoxy-3-oxopropyl)-1Hpyrazolo[3,4-b]pyridine-5-carboxylate

A vigorously stirred mixture of Intermediate 48 (40mg), anhydrous potassium carbonate (57mg) and ethyl 3-bromopropanoate (0.027ml) in anhydrous DMF (1ml) was heated at 65 °C overnight. The reaction mixture was concentrated, and the residue was partitioned between dichloromethane (5ml) and water (5ml). The phases were separated and the organic phase was evaporated to a residual oil which was purified by mass directed autoprep HPLC to afford Example 183 (5mg), LCMS showed MH⁺ = 389; T_{RFT} = 3.65min.

Example 185: Ethyl 1-n-propyl-4-(tetrahydro-2H-pyran-4-vlamino)-1Hpyrazolo[3,4-b]pyridine-5-carboxylate

20 Sodium hydride (0.067g, 60% dispersion in oil) was added to a stirred solution of Example 20 (0.47g) in DMF (19ml), followed by n-propyl iodide (0.17ml). The mixture was stirred at 23 °C for 16 hours, then concentrated, diluted with chloroform (30ml) and washed with 1:1 water:brine solution (30ml), separated and the organic layer concentrated. The residue was purified on a SPE catridge (silica, 10g) eluting with 10ml 25 volumes of dichloromethane, 1:1 diethyl ether:cyclohexane, and diethyl ether. The

10

15

20

25

combined 1:1 diethyl ether: cyclohexane, and diethyl ether, fractions were concentrated to give Example 185 as a clear gum (0.23g). LCMS showed MH $^+$ = 333; $T_{\rm RET}$ = 3.14min.

Example 186: Ethyl 1-(2-hydroxyethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylate

2-Bromoethanol (0.008ml) was added to a solution of Example 20 (0.03g) in anhydrous DMF (1.5ml), with 2-tert-butylimino-2-diethylamino-1,3-dimethyl-perhydro-1,3,2-diazaphosphorine (polymer bound, 2.3mmol/g loading, 0.045g). The mixture was shaken at 23 °C for 16 hours, then the solution drained from the resin, and the resin was washed with DMF. The combined organics were concentrated, and the residue purified on a SPE cartridge (silica, 1g) eluting with 70-100% ethyl acetate in cyclohexane. The combined fractions were concentrated to give Example 186 as a white solid (0.011g). LCMS showed $MH^+=335$: $T_{\rm EMF}=2.47min$.

Example 187: N-[4-(Methylsulfonyl)benzyl]-1-n-propyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

Intermediate 50 (0.03g) was stirred in DMF (1ml) with DIPEA (0.035ml) and HATU (0.038g) for 20 min. 4-(Methylsulfonyl)benzylamine hydrochloride (0.024g) was added to the mixture and the solution was stirred for 8 hours at 23 °C. The solution was concentrated and the residue dissolved in dichloromethane (6ml) then washed with saturated sodium bicarbonate solution (6ml) and 1:1 brine:water (6ml), separated by hydrophobic frit. The organic layer was concentrated to give Example 187 as a white solid (0.039g). LCMS showed MH* = 472; T_{REF} = 2.67min.

10

5 The synthetic method is as described in Example 187, except that in place of 4-(methylsulfonyl)benzylamine hydrochloride, 4-fluoroaniline (0.01ml) was added to the mixture. The resultant product required further purification, which was performed by mass directed autoprep HPLC, giving Example 188 as a clear gum (0.03g). LCMS showed MH⁺ = 398; T_{RET} = 3.13min.

Example 189: Ethyl 1-ethyl-6-methyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate

4-Aminotetrahydropyran hydrochloride (Intermediate 8A, 0.413g, 3.0mmol) was added to a mixture of Intermediate 51 (0.268g, 1.0mmol) and N,N-diisopropylethylamine (0.87ml, 5.0mmol) in acetonitrile (3ml). The resulting mixture was heated at 85 °C for 24 hours. Volatiles were removed in vacuo and the residue was dissolved in chloroform (1.5ml) and applied to a SPE cartridge (silica, 5g). The cartridge was eluted successively with Et₂O, EtOAc and EtOAc-MeOH (9/1). Fractions containing the desired product were combined and concentrated in vacuo to give the desired product contaminated with starting material (Intermediate 51). Further purification using a SPE cartridge (silica, 5g) eluting with ethyl acetate-cyclohexane (1/3) afforded Example 189 (0.248g). LCMS showed Mtt⁻¹ = 333; T_{BFT} = 2.75min.

- 181 -

Example 190: Ethyl 4-(cyclohexylamino)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylate

Cyclohexylamine (0.149g, 1.5mmol) was added to a mixture of Intermediate 51 (0.201g, 0.75mmol) and N,N-diisopropylethylamine (0.65ml, 3.73mmol) in accontaintic (3ml). The resulting mixture was heated at 85 °C for 40 hours. Volatiles were removed in vacuo and the residue was dissolved in chloroform (1.5ml) and applied to a SPE cartridge (silica, 5g). The cartridge was eluted successively with Et₂O, EtOAc and McOH. Fractions containing the desired product were combined and concentrated in vacuo to afford Example 190 (0.128g). LCMS showed MH⁺ = 331; T_{ENT} = 3.64min.

Example 191: 4-(Cyclohexylamino)-1-ethyl-6-methyl-N-[4-(methylsulfonyl)benzyll-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

10

15 A mixture of Intermediate 52 (0.014g, 0.046mmol), HATU (0.018g, 0.048mmol) and DIPEA (0.022ml, 0.125mmol) in DMF (ImI) was shaken at room temperature for 10min. 1-[4-(Methylsulfonyl)phenyl]methanamine (0.009g, 0.046mmol) was then added, and the mixture was shaken for several minutes to give a solution. This solution was stored at room temperature for 16 hours. The solution was concentrated in vacuo, and the residue was dissolved in chloroform (0.5ml) and applied to a SPE cartridge (aminopropyl, 0.5g). The cartridge was eluted successively with chloroform (1.5ml), EIOAc (1.5ml) and EIOAc-MeOH (9:1, 1.5ml). Fractions containing the desired product were concentrated in vacuo to afford Example 191 (0.005g). LCMS showed MH* = 470; Terr = 2.54min.

Example 192: N-Benzyl-4-(cyclohexylamino)-1-ethyl-6-methyl-1H-pyrazolo|3,4-b|pyridine-5-carboxamide

Example 192 was prepared from Intermediate 52 using a method analogous to Example 191. LCMS showed MH $^+$ = 392: T_{RET} = 2.43.

Example 193: 4-(Cyclohexylamino)-1-ethyl-N-(4-fluorophenyl)-6-methyl-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

10 Example 193 was prepared from Intermediate 52 using an analagous method to Example 191. LCMS showed MH $^+$ = 396; T_{RET} = 2.6min.

Example 194: 4-(Cyclohexylamino)-1-ethyl-6-methyl-N-[4-(trifluoromethyl)benzyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

15

Example 194 was prepared from Intermediate 52 using an analagous method to Example 191. LCMS showed MH $^+$ = 460; T_{RET} = 2.74min.

Example 195: 4-(Cyclohexylamino)-N-(2,3-dihydro-1*H*-inden-2-yl)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

Example 195 was prepared from Intermediate 52 using an analagous method to Example 191. LCMS showed MH* = 418; T_{RET} = 2.55min.

Example 196: N-Benzyl-1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Example 196 was prepared from Intermediate 53 using an analagous method to Example 191. LCMS showed MH⁺ = 394; T_{RET} = 2.02min.

Example 197: N-Benzyl-1-ethyl-4-[(2-oxoazepan-3-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

15

20

NH O

3-Aminoazepan-2-one (0.043g, 0.335mmol, commercially available from Sigma-Aldrich Company Ltd) was added to a mixture of Intermediate 17 (0.021g, 0.067mmol) and DIPEA (0.058ml, 0.335mmol) in acetonitrile (0.5ml). The resulting mixture was heated at

- 184 -

85 °C for 48 hours. Volatiles were removed in vacuo, and the residue was dissolved in chloroform (0.5ml) and applied to a SPE cartridge (silica, 0.5g) which was eluted successively with diethyl ether (1.5ml), ethyl acetate (1.5ml) and ethyl acetate-methanol (9/1, 1.5ml). Fractions containing the desired material were concentrated in vacuo to afford Example 197 (0.009g). LCMS showed MH = 407; Trep = 2.81 min.

Similarly prepared, but replacing the 3-aminoazepan-2-one with the same or similar number of moles of another amine R³NH₂ were the following compounds:

10

Example Number	NHR ³	Source of R ³ NH ₂	Starting Material	MH ⁺ ion	T _{RET} (min)
Example 198	HN—OH	J. Chem. Soc., Perkin Trans. 1, 1994, 537	Intermediate 17	394	2.75
Example 199	ни—Он	Aldrich; or TCI- America	Intermediate 17	394	2.82
Example 200	HN—OH	US 4219660	Intermediate 17	380	2.70

Example 201: N-Benzyl-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-15 b]pyridine-5-carboxamide

Intermediate 54 (0.048g, 0.32mmol) was added to a mixture of Intermediate 17 (0.050g, 0.16mmol) and DIPEA (0.17ml, 0.98mmol) in acetonitrile (3ml). The resulting mixture was heated under reflux. After 12 hours, further quantities of Intermediate 54 (0.044g, 0.29mmol), DIPEA (0.17ml, 0.98mmol) and acetonitrile (1ml) were added to reaction mixture which was maintained under reflux. After 36 hours, the reaction mixture was concentated in vacuo, and the residual oil was dissolved in dichloromethane (8ml) and washed with 5% sodium bicarbonate solution (2ml). Evaporation of the organic solution gave a viscous oil which was dissolved in dichloromethane (2ml) and applied to a SPE cartridge (silica, 5g). The cartridge was eluted successively with a gradient of ethyl acetate-cyclohexane (1:16, then 1:8, 1:4, 1:2, 1:1 and 1:0). Fractions containing the desired material were concentrated in vacuo to afford Example 201 (0.018g). LCMS showed MLT = 392: Test = 2.95min.

Example 202: 1-Ethyl-N-(2-hydroxy-1-methylethyl)-4-(tetrahydro-2*H*-pyran-4-15 ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

10

20

25

Intermediate 33 (0.1g, 0.34mmol), EDC (0.066g, 0.34mmol) and HOBT (0.05g, 0.37mmol)) were suspended in DMF (2ml) and stirred at room temperature under nitrogen for 15 min. 2-aminopropan-1-ol (0.026g, 0.34mmol) and triethylamine (0.036g, 0.36mmol) were added and the mixture was stirred at room temperature under nitrogen for 6 hours. Solvents were removed in vacuo and the residue partitioned between DCM and water. The organic layer was concentrated and applied to an SPE cartridge (aminopropyl, 5g), which was eluted with methanol. Concentration in vacuo afforded Example 202 (0.095e). LCMS showed MHf = 348, Tepp= 2.15min.

Example 203: Methyl (25)-2-({[1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl]carbonyl}amino)-3-hydroxypropanoate

5 Reaction scheme:

Intermediate 33

Intermediate 33 (0.1g, 0.34mmol), EDC (0.066g, 0.34mmol) and HOBT (0.05g, 0.37mmol) were suspended in DMF (2ml) and stirred at room temperature under nitrogen for 15 mins. L-Serine methyl ester hydrochloride (0.054g, 0.34mmol) and triethylamine (0.036g, 0.36mmol) were added and the mixture stirred at room temperature under nitrogen for 18 hours. Solvents were removed in vacuo and the residue was partitioned between DCM and water. The organic layer was concentrated in vacuo and applied to an SPE cartridge (aminopropyl, 5g), which was eluted with methanol. Concentration in vacuo afforded an impure residue which was further purified by SPE cartridge (silica, 5g), eluting with ethyl acetate followed by 5% methanol/ethyl acetate. The desired fractions were concentrated in vacuo to afford Example 203 (0.055g). LCMS showed MH^{*} = 393; T_{BKT} = 2.22min.

10

15

Intermediate 1 (1.5g, 5.9mmol) was dissolved in acetonitrile (80ml). Trans-4-aminocyclohexanol (0.817g, 7.1mmol, commercially available from TCI-America; alternatively (e.g. as the HCI sath) from Aldrich) and disopropylethylamine (6.18ml, 35.5mmol) were added and the mixture was stirred at 85°C for 16h. The mixture was concentrated in vacuo, and the residue was partitioned between DCM (120ml) and water (30ml). The phases were separated and the organic phase was dried (Na₂SO₄) and evaporated to give a pale yellow solid. The solid was dissolved in a mixture of DCM (10ml) and elitoroform (3ml), and applied in equal portions to two SPE cartridges (silica, 20g) which were eluted sequentially with a gradient of EiOAc:cyclohexane (1:16, then 1:8, 1:4, 1:2, 1:1 and 1:0). Fractions containing the desired material were combined and evaporated in vacuo to give Example 204 (1.893g) as a white solid. LCMS showed MHT = 333; T_{RET} = 2.79min.

<u>Example 205</u>: Ethyl 1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

Example 204 (1.893g, 5.7mmol) was suspended in acetone (12ml) and the stirred suspension was treated at 0°C with Jones reagent (1.81ml). After 30min, a further quantity of Jones reagent (1.81ml) was added to the reaction mixture which was maintained at 0°C. After a further 2h, a final portion of Jones reagent (1.44ml) was added to the reaction mixture, and stirring at 0°C was continued for 1h. Isopropanol (3.8ml) was added to the reaction mixture, followed by water (15ml). The resulting mixture was extracted with ethyl acetate (2 x 40ml). The combined organic extracts were washed with water (8ml), dried (Na₂SO₄) and evaporated to a grey solid. The solid was dissolved in DCM (10ml) and applied in equal portions to two SPE cartridges (silica, 20g) which were cluted sequentially with a gradient of ethyl acetate:cyclohexane (1:16, then 1:8, 1:4, 1:2, and 1:1). Fractions containing the desired material were combined and evaporated in vacuo to give Example 205 (1.893g) as a white solid. LCMS showed MH* 331; T_{RMT} = 2.84min.

WO 2004/024728 PCT/EP2003/011814 - 188 -

Example 207 (= Example 5): Ethyl 4-I(1-acetyl-4-piperidinyl)aminol-1-ethyl-1Hpyrazolo[3,4-b]pyridine-5-carboxylate

Intermediate 1 (2.58g), Intermediate 6 (2.0g) and N,N-diisopropylethylamine (8.9ml) were dissolved in acetonitrile (98ml). The reaction mixture was heated at 85 °C for 24h then an additional portion of Intermediate 6 (0.18g) was added and heating continued for a further 10h. The reaction was concentrated in vacuo and the residues partitioned between DCM and water. The phases were separated and the organic phase evaporated in vacuo. The residue was purified by chromatography using Biotage (silica 90g) eluting with DCM: MeOH (5%) to afford Example 207 (1.55g) as a white solid. LCMS showed MH+ 360; TRET= 2.71 min.

Example 209: Ethyl 4-[(4-aminocyclohexyl)amino]-1-ethyl-1H-pyrazolo[3,4blpvridine-5-carboxylate

Example 209 was prepared from Intermediate 1 and (4-aminocyclohexyl)amine using an analogous method to that used for the preparation of Example 207. LCMS showed $MH^{+} = 332$; $T_{RET} = 2.18min$

Example 210: 1-Ethyl-N-I(1-oxido-3-pyridinyl)methyll-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

A solution of meta-chloroperoxybenzoic acid (45mg, 0.26mmol) in chloroform (1ml) was added dropwise at 0°C to a stirred solution of Example 138 (0.1g, 0.26mmol) in chloroform (1.5ml). After 1.5h at 0°C, a further quantity of meta-chloroperoxybenzoic acid (45mg, 0.26mmol) in chloroform (1ml) was added, and stirring was continued at

0°C for 1.5h. A trace of starting material remained, so an additional quantity of metachloroperoxybenzoic acid (22mg, 0.13mmol) in chloroform (0.6ml) was added. After 3.5h at 0°C, 2M sodium carbonate solution (1ml), was added to the reaction mixture. The phases were separated by passage through a hydrophobic frit and the aqueous phase was extracted with more chloroform (2ml). The combined organic extracts were evaporated to a residual foam which was purified by mass directed autoprep HPLC to afford Example 210 (44mg). LCMS showed MH*= 397; T_{RET} = 2.13min.

Example 211: 1-Ethyl-N-[(1-oxido-2-pyridinyl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide

Example 211 was prepared from Example 600 using an analogous method to that used for the preparation of Example 210. LCMS showed MH⁺ = 397; T_{RET} = 2.20min

Example 212: 1-Ethyl-*N*-[(1-oxido-4-pyridinyl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

Example 212 was prepared from Example 33 using an analogous method to that used for the preparation of Example 210. LCMS showed MH $^{+}$ = 397; T_{RET} = 2.13min

Examples 214 to 230

General Procedure

Intermediate 17 (0.15mmol) was treated with an aliquot of the amine (0.95ml, equivalent to 0.19mmol) from a stock solution in acetonitrile (0.2M) and N,N-diisopropylethylamine (0.24mmol). The mixture was heated at reflux for 20th then concentrated in vacuo. The residue was purified by SPE (silica) to give the desired product.

Example no.	NHR ³	Source of	Starting	MH	LC-MC
ĺ		R ³ NH ₂	Material	+	Retention
				ion	time
214	H ₂ N-\ <u>NH</u>	J. Med. Chem., 1994, 37(17), 2360	Intermediate 17	393	2.16
221	NH D	Aldrich	Intermediate 17	350	3.18
222	NH NH	Aldrich	Intermediate 17	392	3.62
223	H _y C NH	Aldrich	Intermediate 17	392	3.63,3.68
224	H ₃ C NH	Pfaltz-Bauer	Intermediate 17	392	3.61,3.66
225	NH-	J. Org. Chem., 1985, 50(11), 1859	Intermediate 17	392	3.54
226	Had NH	Aldrich	Intermediate 17	390	3.56
227	H. MH	Aldrich	Intermediate 17	390	3.52
228	NH NH	WO 99/12933	Intermediate 17	379	2.66
229	NH NH	EP 1188744	Intermediate 17	393	2.58
230	ин-{{}	Aldrich	Intermediate 17	405	2.19

Example 225: 1-ethyl-4-[(1-methylcyclohexyl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b|pyridine-5-carboxamide

A preferred method for the preparation of Example 225 involving 1-methylcyclohexylamine and a longer reaction time is as follows:

A solution of Intermediate 17 (46mg), 1-methylcyclohexylamine (26mg) and diisopropylethylamine (94mg) in acetonitrile (1ml) was sirred and heated at reflux for 77h. More 1-methylcyclohexylamine (102mg), diisopropylethylamine (93mg) and acetonitrile (1ml) were added and the reaction mixture was heated at reflux for a further 68h. The solution was cooled and concentrated in vacuo. The residue was triturated in ethyl acetate and filtered. The filtrate was purified by mass directed autoprep. HPLC to give Example 225 (19mg). LCMS showed MH $^\circ$ = 392; T_{RET} = 3.46min.

Examples 231, 247 and 257, shown below and also involving 1-methylcyclohexylamine, can also preferably be prepared in a similar manner.

Examples 231 - 239

General Procedure

Intermediate 55 (0.15mmol) was treated with an aliquot of the amine (0.95ml, equivalent to 0.19mmol) from a stock solution in acetonitrile (0.2M) and N, N-diisopropylethylamine (0.24mmol). The mixture was heated at reflux for 20h then concentrated in vacuo. The residue was purified by SPE (silica) to give the desire product.

Example no.	NHR ³	Source of	Starting	MH	LC-MC
		R ³ NH ₂	Material	+	Retention
				ion	time
231	NH-	J. Org. Chem., 1985, 50(11), 1859	Intermediate 55	422	3.43
233	NH D	Aldrich	Intermediate 55	380	3.20
234	NH NH	Aldrich	Intermediate 55	422	3.58
235	H NH	Aldrich	Intermediate 55	420	3.52
236	H ₃ C NH	Aldrich	Intermediate 55	422	3.57,3.64
237	H ₂ C NH	Pfaltz-Bauer	Intermediate 55	422	3.56,3.62

238	Hand NH	Aldrich	Intermediate 55	420	3.48
239	H ₂ N NH	J. Med. Chem., 1994, 37(17), 2360	Intermediate 55	423	2.16

Examples 240 - 249

General Procedure

Intermediate 56 (0.15mmol) was treated with an aliquot of the amine (0.95ml, equivalent to 0.19mmol) from a stock solution in acetonitrile (0.2M) and N,N-diisopropylethylamine (0.24mmol). The mixture was heated at reflux for 20h then concentrated in vacuo. The residue was purified by SPE (silica) to give the desire product.

Example no.	NHR ³	Source of	Starting	MH	LC-MC
•		NH ₂ R ³	Material	+	Retention
				ion	time
240	NH.	Aldrich	Intermediate 56	485	3.26
241	NH	Aldrich	Intermediate 56	443	2.94
242	H NH	Aldrich	Intermediate 56	483	3.20
243	H. NH	Aldrich	Intermediate 56	483	3.14
244	H,C NH	Aldrich	Intermediate 56	485	3.25,3.33
245	H,C NH	Pfatlz-Bauer	Intermediate 56	485	3.24,3.31
247	NH	J. Org. Chem., 1985, 50(11), 1859	Intermediate 56	483	3.10

248	H ₂ N NH	J. Med. Chem., 1994, 37(17), 2360	Intermediate 56	486	2.05
249	○ _№	Aldrich	Intermediate 56	471	3.21

Examples 250 - 258

General Procedure

Intermediate 57 (0.15mmol) was treated with an aliquot of the amine (0.95ml, equivalent to 0.19mmol) from a stock solution in acetonitrile (0.2MJ) and N, N-diisopropylethylamine (0.24mmol). The mixture was heated at reflux for 20h then concentrated in vacuo. The residue was purified by SPE (silica) to give the desire product.

Example no.	NHR ³	Source of	Starting	МН	LC-MC
		NH ₂ R ³	Material	+ ion	Retention time
250	NH O	Aldrich	Intermediate 57	418	3.78
251	NH	Aldrich	Intermediate 57	376	3.42
253	H,C NH	Pfaltz-Bauer	Intermediate 57	418	3.78,3.84
254	H,C NH	Aldrich	Intermediate 57	418	3.82,3.86
255	H _{NH}	Aldrich	Intermediate 57	416	3.66
256	H _{NH}	Aldrich	Intermediate 57	416	3.77
257	NH	J. Org. Chem., 1985, 50(11), 1859	Intermediate 57	418	3.74

258	H ₂ N	J. Med. Chem.,	Intermediate	419	2.38	
		1994, 37(17),	57			
1		2360			Į.	

Examples 259 - 275

General Procedure

A mixture of Intermediate 58 (0.1mmol), HATU (0.1mmol) and DIPEA (0.4mmol) in DMF (0.4ml) was shaken at room temperature for 10 min. A solution of the amine (0.1mmol) in DMF (0.2ml) was then added and the mixture agitated for several minutes to give a solution. The solution was stored at room temperature for 16 hours then concentrated in vacuo. The residue was dissolved in chloroform (0.5ml) and applied to a SPE cartridge (aminopropyl, 0.5g). The cartridge was eluted successively with chloroform (1.5ml), EtOAc (1.5ml) and EtOAc:MeOH (9:1, 1.5ml). Fractions containing the desired product were concentrated in vacuo and the residue purified by mass directed autoprep HPLC.

Example no.	NR ⁴ R ⁵	Source of HNR ⁴ R ⁵	Starting Material	MH + ion	LC-MC Retention time
201	NH O	Aldrich	Intermediate 58	392	2.60
259	NH NH	EP 666258	Intermediate 58	470	2.44
260	NH CH ₃	Salor; or ICN Biomedicals, Inc.; or Synthesis, 1982, 12, 1036	Intermediate 58	420	3.09
261	CH ₉	CHMSRV-AS; or Matrix Scientific; or Chem. Ber., 1969, 102, 2770	Intermediate 58	420	3.09

262	NH CI	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.			3.20
263	CH ₃	Acros; or Aldrich; Tetrahedron Lett., 2002, 43(48), 8735; or J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4(12), 2055	Intermediate 58	422	2.86
264	III Oct	Lis et al., <i>J. Med. Chem.</i> , 1990, 33(10), 2883; see Scheme III and ref. 24	Intermediate 58	485	2.64
265	N NH	Aldrich	Intermediate 58	435	2.54
266	**************************************	Fluorochem; or WO 98/45268	Intermediate 58	458	2.81
267	NH F F	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4(12), 2055	Intermediate 58	460	2.96
268	NH S=0	Peakdale	Intermediate 58	470	2.39
269	NHF	Aldrich	Intermediate 58	396	2.80
270 (as CF ₃ CO ₂ H salt)	NH_	Aldrich	Intermediate 58	393	1.89
271	NH-	TCI-America; or Aldrich; or Maybridge-Int	Intermediate 58	418	2.77
272	NH-CV-C	WO 99/38877	Intermediate 58	427	2.13

273	NH N	N.D. Zelinsky Institute	Intermediate 58	396	2.15
274	NH	Aldrich	Intermediate 58	330	2.10
275	NH N	Matrix Scientific	Intermediate 58	399	2.29

Example 260 (Alternative Procedure)

N-[(2,4-dimethylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pvrazolo[3,4-b]pvridine-5-carboxamide

Alternative procedure for preparing Example 260:

A solution of Intermediate 58 (45mg), HATU (63mg) and DIPEA (39mg) in acetonitrile (5ml) was stirred for 10min. A solution of 2,4-dimethylbenzylamine (24mg) (available from Salor; or ICN Biomedieals, Inc.; or Symthesis, 1982, 12, 1936) in acetonitrile (1ml) was added. The reaction mixture was stirred for 18h. The solution was concentrated and the residue partitioned between ethyl acetate (25ml) and 0.5M sodium bicarbonate (20ml). The organic phase was separated, washed with water (20ml), dried over Na₂SO₄ and concentrated to leave a gum which was applied to an SFE cartridge (5g). The cartridge was eluted with ethyl acetate. Fractions containing the desired compound were combined and concentrated in vacuo to give Example 260 (32mg). LC-MS showed MH = 420; T_{RET} = 3.16min. Sp (CDCl₃): 1.49 (3H, t), 2.11 (2H, m), 2.33 (3H, s), 2.35 (3H, s), 2.40 (2H, m), 2.52 (2H, m), 2.61 (2H, m), 4.36 (1H, m), 4.47 (2H, q), 4.55 (2H, d), 6.14 (1H, t), 7.01 + 7.18 (2H, AA'BB'), 7.04 (1H, s), 8.01 (1H, s), 8.36 (1H, s), 9.96 (1H, d).

Example 276 - 287

- 197 -

General Procedure

A mixture of Intermediate 59 (0.1mmol), HATU (0.1mmol) and DIPEA (0.4mmol) in DMF (0.4ml) was shaken at room temperature for 10 min. A solution of the amine (0.1mmol) in DMF (0.2ml) was then added and the mixture agitated for several minutes to give a solution. The solution was stored at room temperature for 16 hours then concentrated in vacuo. The residue was dissolved in obloroform (0.5ml) and applied to a SPE cartridge (aminopropyl, 0.5g). The cartridge was eluted successively with obloroform (1.5ml), EtOAc (1.5ml) and EtOAc:MeOH (9:1, 1.5ml). Fractions containing the desired product were concentrated in vacuo and the residue purified by mass directed autoprep HPLC.

Example no.	NR⁴R⁵	Source of HNR ⁴ R ⁵	Starting Material	MH + ion	LC-MC Retention time
276	M=	Aldrich	Intermediate 59	392	2.60
277	NH PF	Fluorochem; or WO 98/45268	Intermediate 59	446	2.84
278	NH F	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4(12), 2055	Intermediate 59	448	3.0
279	NH S	Acros	Intermediate 59	458	2.40
280	NH Seo	EP 382570	Intermediate 59	458	2.47
281	<u>NH</u>	Aldrich	Intermediate 59	384	. 2.85
282 (as CF ₃ CO ₂ H salt)	NH_N=	Aldrich	Intermediate 59	381	1.89
283	NH-	TCI-America; or Aldrich; or Maybridge-Int	Intermediate 59	406	2.80
284	NH-CN-C	WO 99/38877	Intermediate 59	415	2.14
285	NH N	N.D. Zelinsky Institute	Intermediate 59	384	2.16
286	ИН	Aldrich	Intermediate 59	318	2.11

- 198 -

287	NH S	Matrix Scientific	Intermediate 59	399	2.29

Example 288: 4-[(4,4-Difluorocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1Hpyrazolo[3,4-b]pyridine-5-earboxamide and Example 289: 1-Ethyl-4-[(4-fluoro-3-cyclohexen-1-yl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5earboxamide.

Diisopropylethylamine (0.113ml, 0.65mmol) was added to a stirred mixture of Intermediate 17 (40mg, 0.13mmol) and Intermediate 63 (45mg, 0.26mmol) in acconitrile (2ml). The mixture was stirred at 85°C. After 18h, a further portion of Intermediate 63 (22.5mg, 0.13mmol) and diisopropylethylamine (0.113ml, 0.65mmol) was added to the reaction mixture and stirring was continued at 90°C for 24h. The mixture was then concentrated in vacuo and the residue was partitioned between DCM (20ml) and water (5ml). The phases were separated and the aqueous phase was extracted with further DCM (10ml). The combined organic extracts were dried (Na_SSO₄) and evaporated in vacuo to give a brown oil (65mg) which was partially purified on a SPE cartridge (silica, 10g), eluting with ethyl acetate: petroleum ether (18; 1:4; 1:2, 111 and 1:0). The resulting two-component pale-brown oil (34mg) was separated by mass directed auto prep HPLC to give Example 288 (19mg) as a white foam (LCMS showed MH* = 414; T_{RET} = 3.24min) and Example 289 (9mg) as a white solid (LCMS showed MH* = 44; T_{RET} = 3.21min).

Examples 290 - 319

General Procedure

A mixture of Intermediate 60 (0.1mmol), HATU (0.1mmol) and DIPEA (0.4mmol) in DMF (0.4ml) was shaken at room temperature for 10 min. A solution of the amine (0.1mmol) in DMF (0.2ml) was then added and the mixture agitated for several minutes to give a solution. The solution was stored at room temperature for 16 hours then concentrated in vacuo. The residue was dissolved in chloroform (0.5ml) and applied to a SPE cartridge (aminopropyl, 0.5g). The cartridge was eluted successively with chloroform (1.5ml), EtOAc (1.5ml) and EtOAc:MeOH (9:1, 1.5ml). Fractions containing the desired product were concentrated in vacuo and the residue purified by mass directed autoprep HPLC.

Example no.	NR ⁴ R ⁵	Source of HNR ⁴ R ⁵	Starting Material	MH + ion	LC-MC Retention time
290	NH-	Aldrich; or TCI-America; or Maybridge- Int	Intermediate 60	447	2.96
291	NH CI	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 60	488/ 490	3.16
292	NH	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4(12), 2055	Intermediate 60	439	2.84
293	NH F	Aldrich	Intermediate 60	457	2.92
294	NH F	Aldrich	Intermediate 60	457	2.87
295	NH F	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 60	489	3.06
296	NH F	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4(12), 2055	Intermediate 60	489	3.08

297	NH F	Aldrich	Intermediate 60	457	2.82
298	CI NH	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4(12), 2055	Intermediate 60	455	2.98
299	H.	Aldrich; or Acros; or Jung et al., Tetrahedron Lett., 2002, 43(48), 8735; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4(12), 2055	Intermediate 60	451	2.79
300	NH-C>-O	Aldrich	Intermediate 60	437	2.82
301	NH S-N	Peakdale Molecular Ltd	Intermediate 60	528	2.76
302	Ŭ,	Aldrich	Intermediate 60	461	3.00
303	NH	Peakdale Molecular Ltd	Intermediate 60	464	2.31
304	NH CI	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 60	489	3.16
305	NH F	Aldrich; or <i>Org.</i> Lett., 2002, 4(12), 2055	Intermediate 60	439	2.84
306	NH CI	Fluka	Intermediate 60	473	2.92
307	NH F	Fluorochem Ltd; or WO 98/45268	Intermediate 60	487	2.95

308	NH O	Apin	Intermediate 60	485	2.94
309	NHCI	Key Organics Ltd	Intermediate 60	456	2.65
310	NH-CI	J. Med. Chem., 2001, 44(26), 4628	Intermediate 60	481	3.16
311	NH S	Manchester Organics Ltd	Intermediate 60	428	2.28
312	NH S	Acros Chimica	Intermediate 60	499	2.37
313	NH C	Aldrich	Intermediate 60	511	3.18
314	HT COMPANY	Lis et al., J. Med. Chem., 1990, 33(10), 2883, see Scheme III and ref. 24	Intermediate 60	514	2.60
315	HILL	WO 94/17035	Intermediate 60	478	2.47
316	HIM NH ₂	Sigma	Intermediate 60	500	2.50
317	HN	Peakdale Molecular Ltd	Intermediate 60	478	2.49
318	HN NH ₂	WO 02/85860	Intermediate 60	464	2.42
319	NH NH	Syngene	Intermediate 60	452	2.45

Example 320 1-Ethyl-N-4-piperidinyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

A solution of hydrogen chloride in dioxan (30ml, 4M, 0.12mol) was added to a suspension of Example 126 (1.3g, 2.75mmol), in dioxan (10ml) and the mixture was stirred at room temperature for 6h. The reaction mixture was left to stand for 14h, then the solution was evaporated, azeotroping with DCM to give a white solid the hydrochloride salt. The solid was suspended in ethyl acetate (50ml) and washed with sodium hydroxide solution (2N, 50ml). The organic layer was dried over Na₂SO₄ and concentrated in vacuo to give Example 318 as a white solid (995mg). LCMS showed MH⁺ = 373; T_{ERF} = 1.89min.

Example 321 1-Ethyl-N-(4-piperidinylmethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide

A solution of hydrogen chloride in dioxan (30ml, 4M, 0.12mol) was added to a suspension of Intermediate 72 (1.2g, 2.5mmol), in dioxan (10ml) and the mixture was stirred at room temperature for 6h. The reaction mixture was left to stand for 14h, then the solution was evaporated, azeotroping with DCM to give a white solid (1.24g). A portion of the solid (68mg) was suspended in ethyl acetate and washed with 2M-sodium hydroxide solution. The organic layer was dried over Na_2SO_4 and concentrated in vacuo to afford Example 321 as a white solid (60mg). LCMS showed MH * = 387; T_{RET} = 1.92min.

WO 2004/024728 PCT/EP2003/011814 - 203 -

Triethylamine (0.023ml, 0.16mmol) was added to a solution of Example 320 (0.043g, 0.115mol) in DCM (1ml). The mixture was cooled (ice/water bath for 10min) and ethane sulfonyl chloride (0.014ml, 0.138mmol) was added. The resultant solution was stirred at room temperature for 18h, then the solvent was removed with a steam of nitrogen. The residue was dissolved in dichloromethane (1.5ml) and stirred with water (1.5ml). The organic layer was separated and blown down with nitrogen, and applied to a SPE cartridge (silica, 2g) eluting with 60%-100% ethyl acetate in cyclohexane. The desired fractions were concentrated in vacuo to afford Example 322 as a white solid (32mg). LCMS showed Mtl = 465; T_{Reff} = 2.52min

Similarly prepared were the following, using the same or a similar number of moles of reagents and the same or similar volumes of solvents:

Example no.	NR ⁴ R ⁵	Sulfonyl	Source of	MH	LC-MC
		chloride	sulfonyl	+ion	Retention
			chloride		time
323	HC S	н,с Да	Aldrich	479	2.58
324	S. MILL	O.L.	J. Org. Chem., 1952, 17, 1529	505	2.75
325	H,C N	H,C S CI	Aldrich	451	2.41
326	P _M	C.	Aldrich	527	2.90
327	O NH	O S CI	Aldrich	513	2.66
328	H,C NH	H _s c CI	Aldrich	479	2.42

Example 329 N-[1-(Cyclopropylcarbonyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Cyclopropane carboxylic acid (0.011ml, 0.138mmol), EDC (0.031g, 0.161mmol) and HOBT (0.019g, 0.138mmol) were suspended in DMF (2ml) and stirred at room temperature for 1h. Example 320 (0.043g, 0.115mmol) was added and the mixture was stirred at room temperature for 16 hours. Most of the solvent was removed using a stream of nitrogen and the residue was partitioned between DCM (3ml) and water (3ml). The organic layer was blown down with nitrogen and applied to a SPE cartridge (aminopropyl, 1g), which was eluted with methanol. Concentration by blowing down with nitrogen afforded an impure residue which was further purified by SPE cartridge (silica, 1g), eluting with 50-100% EtOAc in cyclohexane followed by 5% methanol in EtOAc. The desired fractions were concentrated in vacuo to afford Example 329 as a white solid (49mg), LCMS showed MH = 441; Trest = 2.23min

Similarly prepared, using the same or similar numbers of moles of reagents and volumes of solvents, and using Example 320 as the starting material to make Examples 330 to 343, but using Example 321 (similar number of moles) instead of Example 320 as the starting material to make Examples 344 to 349, were the following:

Example no.	NR ⁴ R ⁵	Carboxylic	Source of	MH+	LC-MC
		acid	Carboxylic	ion	Retention
			acid		time
330	S) NO NH	ОНО	Aldrich	467	2.50
331	H,C CH, MH	H ₃ C CH ₃ OH	Aldrich	471	2.73

332	CH ₃	CH ₃ OH	Aldrich	471	2.72
333	Q I O NH	C.L. OH	Aldrich	483	2.81
334	H ₃ C N NH	H ₃ C OH	Aldrich	443	2.27
335	NH NH	ОН	Combi-Blocks	485	2.17
336	H ₃ C N	н,с Он	Aldrich	429	2.38
337	HC I NO	H,C That	Aldrich	472	2.20
338		O.J.	Synchem OHG	500	1.91
339		НО	J. Med. Chem., 1998, 41(5), 760	497	2.17
340	On I NH	Chalon	Micro- Chemistry Building Blocks	498	1.94
341	O NH	H _A C OH	Interchim Intermediates	498	2.07
342	of O.	ОН	DE 3618135	471	2.33
343		"COJOH	Aldrich	509	2.75
344	H _i C CH ₃	H ₂ C CH ₃ OH	Aldrich	485	2.78

- 200 -									
345		Cl _o	Aldrich	497	2.85				
346	√ NH	ОН	Aldrich	455	2.50				
347		o lon	J. Med. Chem., 1998, 41(5), 760	511	2.42				
348		TO LOH	Aldrich	523	2.78				
349	~) NA	O CH	Interchim Intermediates	512	2.29				

Example 350 was prepared from Intermediate 17 and using an analogous method to that used for the preparation of Example 207. LCMS showed MH $^+$ = 436; Treet = 3.20.

 $\underline{Example~351}~3-[(1-Ethyl-5-\{[(phenylmethyl)amino]carbonyl\}-1\\ H-pyrazolo[3,4-b]pyridin-4-yl)amino]cyclohexanecarboxylic acid$

2M-Sodium hydroxide solution (0.5ml) was added to a stirred suspension of Example 350 (0.12g, 0.275mmol) in methanol (3.5ml) and water (0.8ml). After stirring overnight at room temperature, the reaction solution was concentrated, diluted with water (3ml) and acidified with 2M-hydrochloric acid. The resulting precipitate was collected by filtration, washed with water and dried to give Example 351, as a white solid (0.105g). LCMS showed MH⁺ = 422; T_{RFT} = 2.95min.

Example 352:1-Ethyl-N-(phenylmethyl)-4-(4-piperidinylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Aqueous hydrochloric acid (20ml, 5M) was added to a solution of Intermediate 65 (2.58g, 5.40mmol) in tetrahydrofuran (10ml). The reaction mixture was stirred at 20 $^{\circ}$ C for 22h then evaporated in vacuo. The residue was partitoned between DCM and water. The aqueous phase was basified with aqueous sodium hydroxide solution (2M) and extracted with diethyl ether. The organic phases was evaporated in vacuo to give Example 352 as a white solid (2.04g). LCMS showed MH $^{+}$ = 379; $T_{\rm RET}$ = 2.10min.

Example 353: Ethyl 1-ethyl-4-({1-[(methyloxy)acetyl]-4-piperidinyl}amino)-1*H*-pvrazolo[3,4-b]pvridine-5-carboxylate

Methoxyacetyl chloride (0.016mg, 0.144mmol) and triethylamine (0.02mol, 0.144mmol) were added to a solution of Example 352 (0.046g, 0.122mmol) in DCM in a Reactivial. The reaction was stirred for 22h at 20 °C then diluted with DCM and washed with aqueous sodium hydrogen carbonate solution. The organic phase was separated and applied directly to a SPE cartridge (silica 2g). The cartridge was eluted with DCM : MeOH (1% followed by 3%) to give Example 353 as a white solid (0.05g). LCMS showed MH $^{\rm t}=451$; $T_{\rm RET}=2.66{\rm min}$.

Example 354: Ethyl 1-(1-methylethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate

Prepared in a similar manner to example 186 using Example 20 (0.03g, 0.1mmol), with isopropylbromide (10uL, 0.11mmol), a further 0.11mmol of alkylating agent was added after 16 hours. The final compound was formed as a clear gum (16mg). LCMS showed MH⁺ = 333: Torr = 3.16min.

Example 355: 4-(Cyclohexylamino)-1-ethyl-N-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Intermediate 64 (0.02g, 0.084mmol) and diisopropylethylamine (0.044ml, 0.252mmol) were suspended in N-methyl pyrrolidinone (Iml) and cyclohexylamine (0.012ml, 0.1 mmol) was added. The mixture was heated at 85°C with stirring in a ReactivialTM for 8h, then concentrated in vacuo. The residue was partitioned between DCM (2ml) and water (2ml). The layers were separated and the organic layer was concentrated in vacuo, then purified by mass directed autoprep HPLC to afford Example 355 (0.012g). LCMS showed MH* = 302; T_{RET} = 2.85min.

$\underline{Example~356:}~1-Ethyl-N-(4-fluorophenyl)-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide$

Example 356 was prepared from Intermediate 53 using an analogous method to Example 191. LCMS showed MH $^+$ = 398; T_{RET} = 2.18min.

Example 357: 1-Ethyl-6-methyl-N-{[4-(methylsulfonyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

Example 357 was prepared from Intermediate 53 using an analogous method to Example 191. LCMS showed $MH^+ = 472$; $T_{RBT} = 2.15$ min.

Example 358: N-(2,3-Dihydro-1*H*-inden-2-yl)-1-ethyl-6-methyl-4-(tetrahydro-2*H*-nyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

Example 358 was prepared from Intermediate 53 using an analogous method to Example 191. LCMS showed $MH^+=394$; $T_{RBT}=2.04min$.

Examples 360 - 414

General Procedure

Intermediate 33 (1.89g) was treated with thionyl chloride (10ml) and the mixture heated under reflux for 2h. Excess thionyl chloride was removed in vacuo to afford Intermediate 73, presumed to be the acid chloride of Intermediate 33 as a cream solid. The solid was suspended in tetrahydrofuran (32.5ml) and an aliquot of the suspension added to a mixture of the amine (0.11mmol) and Ny-diisopropylethylamine (0.165 - 0.22mmol) in THF (0.5ml). The reaction mixture was agitated for 24h and the solvent removed in vacuo. The residue was purified by mass directed autoprep HPLC.

Example	NR ⁴ R ⁵	Source of	Starting	MH	LC-MC
Number		HNR ⁴ R ⁵	Material	+	Retention
240				ion	time
360		Interchim Intermediates	Intermediate 33	477	2.98
361		Aldrich	Intermediate 33	408	3.45
362	F _{NH}	Aldrich	Intermediate 33	384	3.09
363	A D	Butt Park Ltd.	Intermediate 33	437	2.69
364	TO M	Aldrich	Intermediate 33	432	3.21
365	J. C.	Maybridge Chemical Company Ltd.	Intermediate 33	437	2.72
366	HO	Aldrich	Intermediate 33	382	2.67
367		Interchim Intermediates	Intermediate 33	519	3.01
368	N.H	Aldrich	Intermediate 33	367	2.19
369	o'a.	Butt Park Ltd.	Intermediate 33	492	2.21
370	O NH	J. Chem. Soc. C, 1969, 1444	Intermediate 33	449	2.72
371	o NH	Peakdale Technologies Limited M	Intermediate 33	444	2.81
372	I P NH	J. Heterocycl. Chem., 1975, 12(2), 225	Intermediate 33	437	2.74
373	% []	Interchim Intermediates	Intermediate 33	459	2.79

374	F OH	Apollo Scientific Ltd.	Intermediate 33	400	2.99
375	CI_NH	Aldrich	Intermediate 33	400	3.35
376	CI NH	Lancaster	Intermediate 33	425	3.07
377	Of Can	Maybridge CombiChem	Intermediate 33	513	3.33
379	NH -S=0	Peakdale Technologies Limited	Intermediate 33	444	2.99
380		J. Heterocycl. Chem., 1975, 12(2), 225	Intermediate 33	437	2.64
381		Interchim Intermediates	Intermediate 33	479	2.68
382	S S S S S S S S S S S S S S S S S S S	Aceto Corporation	Intermediate 33	425	3.38
383	OH NH	Aldrich	Intermediate 33	382	2.78
384	CI	Aldrich	Intermediate 33	400	3.38
386	Y N N N N N N N N N N N N N N N N N N N	WO 03/32986	Intermediate 33	467	2.65
387	O/O.	Maybridge Chemical Company Ltd.	Intermediate 33	513	3.35
388		Intermediate 67	Intermediate 33	505	3.23

389	NH NH	Lancaster	Intermediate 33	451	3.17
390	170.	EP 538945	Intermediate 33	487	2.80
391	HO CI	Aldrich	Intermediate 33	416	2.99
392	~ O.	Interchim Intermediates	Intermediate 33	459	2.74
393	↓ Chu	Butt Park Ltd.	Intermediate 33	423	2.66
394	F NH	Aldrich	Intermediate 33	434	3.43
395	€ NH	Aldrich	Intermediate 33	367	2.40
396	CI CI NIH	Aldrich; or Reetz, Synthesis, 1999, 9, 1555	Intermediate 33	434	3.67
397	H,N-S=0	Bayer AG	Intermediate 33	479	2.89
398	O NH	Exploratory Library	Intermediate 33	451	2.91
399	O/O.	Maybridge Chemical Company Ltd.	Intermediate 33	515	3.02
400	NH.	TimTec	Intermediate 33	492	2.20
401	NH O	Exploratory Library	Intermediate 33	437	2.68

402	F/NH	Lancaster	Intermediate 33	468	3.53
403	O NH	Heterocycles, 1983 20(3), 445	Intermediate 33	437	2.70
404	Ci NH	Aldrich	Intermediate 33	400	3.09
405	F NH	Aldrich	Intermediate 33	418	3.21
406	L NH	Aldrich	Intermediate 33	384	3.19
407	NH NH	Aldrich	Intermediate 33	409	2.95
408	~~~	Helv. Chim. Acta, 1983 66(4), 1046	Intermediate 33	472	3.07
409	Y OM	Butt Park Ltd.	Intermediate 33	437	2.68
411	Mary CH	Salor	Intermediate 33	444	2.69
413	in O'i	Peakdale Molecular Limited	Intermediate 33	437	2.35

 $\underline{Example~414}: 1-Ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide$

Example 414 was prepared from Intermediate 59 using the general method described for examples 360 - 413 method. LCMS showed MH⁺ = 398; $T_{RET} = 2.90$ min.

Examples 415 - 487

General Procedure

A mixture of Intermediate 61 (0.1mmol), HATU (0.1mmol) and DIPEA (0.4mmol) in DMF (0.4ml) was shaken at room temperature for 10 min. A solution of the amine (0.1mmol) in DMF (0.2ml) was then added and the mixture agitated for several minutes to give a solution. The solution was stored at room temperature for 16 hours then concentrated in vacuo. The residue was dissolved in chloroform (0.5ml) and applied to a SPE cartridge (aminopropyl, 0.5g). The cartridge was eluted successively with chloroform (1.5ml), EtOAc (1.5ml) and EtOAc:MeOH (9:1, 1.5ml). Fractions containing the desired product were concentrated in vacuo and the residue purified by mass directed autoprep HPLC.

Example number	NR ⁴ R ⁵	Source of HNR ⁴ R ⁵	Starting Material	MH + ion	LC-MC Retention time
415	H,N,SI	Rare Chemicals GmbH	Intermediate 61	395	2.80
416	H ₂ N NH	Aldrich	Intermediate 61	345	2.64
417	S NH	Ultrafine (UFC Ltd)	Intermediate 61	409	2.84
418	o <u>NH</u>	Intermediate 8A; or Intermediate 8 (Combi- Blocks)	Intermediate 61	372	3.03
419	-N MH	N.D. Zelinsky Institute Organic Chemistry	Intermediate 61	382	2.96
420	₹ \	Peakdale Molecular	Intermediate 61	456	3.22

		Ltd.			
421	ну	Peakdale Molecular Ltd.	Intermediate 61	421	3.03
422	° NH	Aldrich	Intermediate 61	372	3.09
423	A COMM	J. Org. Chem., 1955, 20, 1657	Intermediate 61	485	3.44
424	NH CI	Key Organics Ltd	Intermediate 61	413	3.39
425	NH So _z Me	Acros	Intermediate 61	456	3.19
426	NH OMe	WO 00/17163	Intermediate 61	409	3.3
427	NH NHMe	Peakdale Molecular Ltd	Intermediate 61	421	3.23
428	18 TO HOLD	Peakdale Molecular Ltd	Intermediate 61	435	3.07
429	NH NH ₂	Peakdale Molecular Ltd	Intermediate 61	421	2.97
430	NH OH	Apin	Intermediate 61	394	3.25
431	NH OMe	Acros; or Aldrich; or Jung et al., Tetrahedron Lett., 2002, 43(48), 8735; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002, 4, 2055	Intermediate 61	408	3.51
432	NH F	Aldrich	Intermediate 61	414	3.68
433	NH CF ₃	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 61	446	3.81
434	NHSO ₂ Me	J. Med. Chem., 1999, 42(14), 2504	Intermediate 61	471	3.23

		- 210 -			
435	NH F	Aldrich	Intermediate 61	414	3.66
436	H ₂ C	Aldrich; or Organic Letters, 2002, 4(12), 2055	Intermediate 61	392	3.69
438	H,C \$ 0	Key Organics Ltd	Intermediate 61	485	3.25
439	OH	Buttpark	Intermediate 61	394	3.52
440	CI	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 61	446	4
441	CI NH	Lancaster; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 61	446	4.08
442	O _{NH}	Aldrich	Intermediate 61	392	3.62
443	₩.	Aldrich	Intermediate 61	418	3.83
444	H ₃ C _S =0	WO 01/38323	Intermediate 61	440	3.07
445	HO NH	Aldrich	Intermediate 49	408	3.31
446	H,N, S	Acros	Intermediate 61	471	3.13
447	CH, HN O	Peakdale Molecular Ltd	Intermediate 61	435	3.13
448	CH ₅ O=\$=0	Peakdale Molecular Ltd	Intermediate 61	456	3.32

449	CH ₂	Peakdale Molecular Ltd	Intermediate 61	436	3.56
450	H,C ,S NH	Aldrich	Intermediate 61	471	2.79
451	H'C-0	J. Med. Chem., 1982, 25(12), 1442	Intermediate 61	465	3.11
452	F F NH	ABCR	Intermediate 61	464	3.47
453	H ² C NH	Matrix Scientific; or Chem. Ber., 1969, 102, 2770	Intermediate 61	407	3.35
454	F NHI	Aldrich	Intermediate 61	411	3.18
455	H,C NH	Aldrich	Intermediate 61	407	3.3
456	H ₂ C ⁻⁰	Aldrich	Intermediate 61	423	3.09
457 (as CF ₃ C(O)OH salt)	NH NH	Aldrich	Intermediate 61	379	2.92
458	F NH	Aldrich	Intermediate 61	414	3.68
459	₩ MH	Aldrich	Intermediate 61	404	3.72
460 (as CF ₃ C(O)OH salt)	H ₂ C NH	Aldrich	Intermediate 61	421	3.29
461	NH.	Aldrich	Intermediate 61	396	3.58
462	H ₂ C NH	Aldrich	Intermediate 61	438	3.53

463 (as CF ₃ C(O)OH salt)	CI N NH	Inorganic Chemistry, 1997, 36(9), 1967	Intermediate 61	413	3.4
464 (as CF ₃ C(O)OH salt)	O N CH ₃	Peakdale Molecular Ltd	Intermediate 61	449	3.18
465	F F NH	ABCR	Intermediate 61	422	3.77
466	NH NH	Aldrich	Intermediate 61	404	3.72
467	C NH	Pfaltz-Bauer; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 61	446	3.85
468	NH CH _s	Peakdale Molecular Ltd	Intermediate 61	436	3.53
469	NH CO	Aldrich	Intermediate 61	404	3.66
470	NH C	Aldrich	Intermediate 61	435	3.52
471	NH H-N	Esprit	Intermediate 61	370	2.82
472	F D	Apollo	Intermediate 61	444	3.63
473	H ₃ C NH	MicroChemist ry- RadaPharma	Intermediate 61	399	3.16
474	CI NH	Fluka	Intermediate 61	430	3.72
475	H ₂ N ₂ O _{NH}	J. Am. Chem. Soc., 1977, 99, 3075	Intermediate 61	421	3.04

477	H ₃ C CH ₃	J. Org. Chem., 2001, 66(6), 1999	Intermediate 61	421	2.89
478	F NH	Aldrich	Intermediate 61	396	3.59
479	F ₃ C NH	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 61	446	3.80
480	NH NH	Aldrich	Intermediate 61	414	3.57
481	F NH	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 61	396	3.62
482	CF ₃	Aldrich	Intermediate 61	446	3.82
483	CI NIH	J. Med. Chem., 2001, 44(26), 4628	Intermediate 61	438	3.95
484	HC H	WO 9417035	Intermediate 61		
485	ин-О	Aldrich	Intermediate 61	394	3.61
486		MicroChemist ry- RadaPharma	Intermediate 61	395	2.78
487		Aldrich	Intermediate 61	379	2.71

Example 488: 4-[({[4-(Cyclohexylamino)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl]carbonyl}amino)methyl]benzoic acid

2M-Sodium hydroxide solution (29 μ L, 0.058mmol) was added to a stirred solution of Example 470 (6mg, 0.014mmol) in methanol (28 μ L) and water (2 μ L). The resulting solution was stirred at 50°C under nitrogen. After 16h, the mixture was diluted with water (0.5ml) and adjusted to pH 4 with acetic acid. The precipitated solid was collected by filtration and dried in vacuo to afford Example 488 as a white solid (4.5mg). LCMS showed MH $^+$ = 422; T_{RET} = 3.26min.

Example 489: 3-[({[4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoic acid

2M-Sodium hydroxide solution (83 μ L, 0.166mmol) was added to a stirred solution of Example 468 (18mg, 0.042mmol) in methanol (88 μ L) and water (5 μ L). The resulting solution was stirred at 50°C under nitrogen. After 16h, a further quantity of 2M-sodium hydroxide solution (29 μ L, 0.058mmol) was added to the reaction mixture. After 24h, the reaction mixture was diluted with water (0.5ml) and adjusted to pH 4 with acetic acid. The mixture was extracted with ethyl acetate (2 x 0.5ml), and the combined extracts were dried (Na₂SO₄) and evaporated in vacuo to give a solid (21mg). This solid was purified on an SPE cartridge (silica, 1g) eluting with ethyl acetate:cyclohexane (1:1) followed by methanol. Fractions containing the desired product were combined and concentrated to afford Example 489 as a white solid (4.6mg). LCMS showed MH⁺ = 422; $\tau_{RET} = 3.22min$.

- 221 -

Example 490: 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide hydrochloride

A solution of Example 469 (71mg, 0.17mmol) in anhydrous THF (2ml) was treated with hydrogen chloride in dioxane (4M, 0.3ml). After standing at ambient temperature for 16 hours the resulting solid was collected by filtration and dried under vacuum to give Example 490 as rod like crystals (36mg). LCMS showed MH $^+$ = 404; $T_{\rm RFT}$ = 3.60min.

Example 491: 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide methanesulphonate

A solution of Example 469 (71mg, 0.17mmol) in anhydrous THF (2ml) was treated with anhydrous methane sulphonic acid (11.4 μ L, 0.17mmol). After standing at ambient temperature for 16 hours the resulting solid was collected by filtration and dried under vacuum to give Example 491 as rod like crystals (23mg). LCMS showed MH † = 404; $T_{\rm RET}$ = 3.59min.

Examples 492 - 649

General Procedure

A mixture of Intermediate 33 (0.1mmol), HATU (0.1mmol) and DIPEA (0.4mmol) in DMF (0.4ml) was shaken at room temperature for 10 min. A solution of the amine (0.1mmol) in DMF (0.2ml) was then added and the mixture agitated for several minutes to give a solution. The solution was stored at room temperature for 16 hours then concentrated in vacuo. The residue was dissolved in chloroform (0.5ml) and applied to a SPE cartridge (aminopropyl, 0.5g). The cartridge was cluted successively with chloroform (1.5ml), EtOAc (1.5ml) and EtOAc:MeOH (9:1, 1.5ml). Fractions containing the desired product were concentrated in vacuo and the residue purified by mass directed autoprep HPLC.

Example	NR⁴R⁵	Source of	Starting	MH	LC-MC
number		HNR⁴R⁵	Material	+	Retention
				ion	time
492 (as CF ₃ C(O)OH salt)	NH NH	Peakdale Molecular Ltd.	Intermediate 33	453	2.90
493	O MH	Maybridge Chemical Company Ltd.; or WO 01/30745	Intermediate 33	428	2.92
494	CI	Trans World Chemicals, Inc.; or DE 1953059	Intermediate 33	428	2.91
495	F NH	Fluorochem Ltd.	Intermediate 33	446	2.70
496	NH	Peakdale Molecular Ltd.	Intermediate 33	438	2.83
497	NH.	Peakdale, Molecular Ltd.	Intermediate 33	438	2.79

498	F NH	Fluorochem Ltd.	Intermediate 33	446	2.73
499	HO NH	Aldrich	Intermediate 33	426	2.50
500	OH NH	Nippon Kagaku Zasshi; 1952, 73; 393	Intermediate 33	438	2.62
501	XQV≡	Apollo Scientific Ltd.	Intermediate 33	462	2.88
502	Ţ ^l C,m	Apin Chemicals Ltd.	Intermediate 33	437	2.19
503	OH NH	Sigma	Intermediate 33	410	2.60
504	G	Aldrich	Intermediate 33	428	2.80
505	XQ_=	Miteni S.p.A.	Intermediate 33	478	2.97
506	Š.	Aldrich	Intermediate 33	424	2.58
507	I CO	J. Med. Chem., 1997, 20(9), 1210	Intermediate 33	436	2.44
508	CI-CI-	Fluorochem Ltd.	Intermediate 33	462	2.99
509	PAY CONS	JP 11080156	Intermediate 33	473	2.2
510	NH O	Aldrich	Intermediate 33	454	2.41
512	CI C	Synchem OHG	Intermediate 33	462	2.96
513		Apin Chemicals Ltd.	Intermediate 33	454	2.59

514)	J. Chem. Soc. Perkin Trans. I, 1977, 386	Intermediate 33	438	2.75
515	Ç, NH	SIGMA-RBI	Intermediate 33	430	2.65
516	NH O	WO 9303022	Intermediate 33	454	2.67
517	CV_NH	SIGMA-RBI	Intermediate 33	408	2.73
518	H,C NH	Matrix Scientific; or Chem. Ber., 1969, 102, 2770	Intermediate 33	408	3.2
519	H ₂ C ₀	J. Med. Chem., 1982 25(12), 1442	Intermediate 33	466	3
521	OS NH	Acros	Intermediate 33	473	2.62
522	NH S-CO CH,	WO 01/38323	Intermediate 33	445	2.55
523		Aldrich	Intermediate 33	394	3
524	H ₃ C N NH	Aldrich	Intermediate 33	423	2.51
525	F NH	Aldrich	Intermediate 33	412	3.06
526	H ₂ C NH	Aldrich	Intermediate 33	408	3.16
527	H _s N-S=O	Yakugaku Zasshi; 1950 70, 71	Intermediate 33	459	2.6
528	н'с мн	Aldrich; or Organic Letters, 2002, 4(12), 2055	Intermediate 33	394	3.08

530	F F NH	Lancaster	Intermediate 33	466	3.31
531	H ^C C _O O	J. Am. Chem. Soc., 1976, 78(22), 6978	Intermediate 33	438	3
532 (as CF ₃ C(O)OH salt)	NH C	Inorganic Chemistry, 1997, 36(9), 1967	Intermediate 33	415	2.82
533	NH	Aldrich	Intermediate 33	406	3.14
534	NH CH ₃	Peakdale Molecular Ltd.	Intermediate 33	451	2.71
535	NH NH	Aldrich	Intermediate 33	406	3.15
536	NH	Aldrich	Intermediate 33	406	3.15
537	HO STATE OF THE	J. Med. Chem., 1999, 42(14), 2504	Intermediate 33	473	2.58
538	N CH _s	Chemical Building Blocks	Intermediate 33	422	2.92
540	H ₅ C ^N CH ₅	Aldrich	Intermediate 33	451	2.13
541	N CH ₃	Aldrich	Intermediate 33	436	3.15

542	N CH ₃	Aldrich	Intermediate 33	408	2.85
544	NH C	Janssen Pharma- ceuticals	Intermediate 33	449	2.67
545	MH COH,	Intermediate 69	Intermediate 33	444	2.34
546 (as H-C(O)OH salt = formic acid addition salt)	NH CH ₉	Arzneimittel Forschung, 1974, 24(4a), 584	Intermediate 33	430	1.95
547	NH CH'	WO 97/25323	Intermediate 33	445	1.96
548 (as CF ₃ C(O)OH salt)	O M	WO 03/32980	Intermediate 33	479	2.21
549 (as CF ₃ C(O)OH salt)	H,C N	WO 03/32980	Intermediate 33	492	2.24
550 (as CF ₃ C(O)OH salt)	N NH	WO 02/85860	Intermediate 33	424	2.33
551	H ₂ C MH	Salor	Intermediate 33	422	3.36
552	NH CH ₃	WO 95/00516	Intermediate 33	494	3.22
553 (as CF ₃ C(O)OH salt)	NA COLON	WO 03/32980	Intermediate 33	492	2.21
554	CI NH	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 33	448	3.4
555	NH F	Aldrich	Intermediate 33	416	3.06

556	CI NH	Salor	Intermediate 33	432	3.21
557	HC O C	DE 2300018	Intermediate 33	458	3.12
558	NH NH	Peakdale Molecular Ltd	Intermediate 33	436	3.41
559 (as CF ₃ C(O)OH salt)	NH NH	JP 10045736	Intermediate 33	463	2.28
560	FF. C.	WO 02/16318 EP 338793	Intermediate 33	487	2.74
561	H,C O	Maybridge Chemical Company Ltd.	Intermediate 33	440	2.99
562	H ₃ C NH	Lancaster	Intermediate 33	440	3.00
563	МН	Aldrich	Intermediate 33	398	3.01
564	F NH	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 33	416	3.11
565	CI NH	Aldrich; or Organic Letters, 2002, 4(12), 2055	Intermediate 33	414	3.19
567	NH NH	Aldrich	Intermediate 33	372	3.01
568	NH	J. Biol. Chem., 1997, 272(3),	Intermediate 33	472	2.69

	1493			
NH F F	Fluorochem Ltd.	Intermediate 33	466	3.29
	Intermediate 71	Intermediate 33	463	2.66
	Maybridge Reactive intermediates	Intermediate 33	478	2.25
, O	WO 99/67204	Intermediate 33	463	2.24
NH- CO	Eur. J. Med. Chem., 1987, 22(5), 417	Intermediate 33	450	2.90
NH CI	Lancaster	Intermediate 33	446/ 448/ 450	3.35
NH	Eur. J. Med. Chem., 1987, 33(5), 363	Intermediate 33	436	3.48
NH F	Avocado	Intermediate 33	416	3.06
NH S	WO 02/30930	Intermediate 33	458	2.80
NH OH	Apin	Intermediate 33	458	2.80
NH	Aldrich	Intermediate 33	458	2.80
<u>МН</u> — ОН	Aldrich	Intermediate 33		
NH CI	Lancaster; or J. Med. Chem., 1984, 27(9), 1111.	Intermediate 33	446/ 448/ 450	2.80
NH O	Aldrich	Intermediate 33	440	2.96
	INTERPORT OF THE COLUMN TO THE	Electric Fluorochem Ltd. Electric Fluorochem Electric Fluorochem Fluorochem Maybridge Reactive intermediates WO 99/67204 WO 99/67204 Electric J. Med. Chem., 1987, 22(5), 417 Electric Lancaster Electric Electric J. Med. Chem., 1987, 33(5), 363 Million Aldrich Aldrich Aldrich Aldrich Aldrich Electric Lancaster; or J. Med. Chem., 1984, 27(9), 1111. Aldrich Aldrich	Fluorochem Ltd. Intermediate 33 Intermediate 71 Maybridge Reactive intermediates 33 Intermediate 34 Int	St. Color Color

- 229

583	NH \$	Aldrich	Intermediate 33	410	2.98
584	NH_	ICN Biomedicals, Inc.; or Salor; or Synthesis, 1982, 12, 1036	Intermediate 33	408	3.18
585	NH T	WO 03/32986	Intermediate 33	437	2.62
586	NH-\-	Aldrich	Intermediate 33	424	3.05
587	NH CI	Aldrich	Intermediate 33	414/ 416	3.13
588	NH HO	Buttpark	Intermediate 33	396	2.14
589	NH O	Aldrich	Intermediate 33	424	2.76
590	NH-	Lancaster	Intermediate 33	396	2.95
591	NH	Aldrich; or Synlett, 1999, 4, 409	Intermediate 33	386	3.10
592		Aldrich	Intermediate 33		
593	M	Apin	Intermediate 33	438	2.82
594	NH G	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 33	448/ 450/ 452	3.26
595	NH NH,	WO 02/85860	Intermediate 33	423	2.29
596	NH.	Aldrich	Intermediate 33	416	3.0

597	NH.	Aldrich	Intermediate 33	423	2.56
598	№ — ОН	Apin	Intermediate 33	396	2.54
599	NH N	WO 00/17163	Intermediate 33	411	2.72
600	NH	Aldrich; or J. Med. Chem., 2003, 46(4), 461.	Intermediate 33	381	1.89
601	NHF	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 33	448	2.96
602	NH NH²	Peakdale Molecular Limited	Intermediate 33	423	2.28
603		WO 94/17035	Intermediate 33	437	2.28
604	NII OTT	J.Pharm Sci., 1987, <u>76</u> (1), 18-20	Intermediate 33	437	2.34
605	NH F	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Organic Letters, 2002, 4(12), 2055	Intermediate 33	398	2.71
606	ян Дабо	Lis et al., J. Med. Chem., 1990, 33(10), 2883, see Scheme III and ref. 24	Intermediate 33	473	2.40
607	NH O'S NH2	Sigma	Intermediate 33	459	2.31
608	H ₂ N CO	Peakdale Molecular Ltd.	Intermediate 33	423	2.55
609	NH O	Fluorochem Ltd.	Intermediate 33	446	2.82
610	NH N	DE 19937494	Intermediate 33	437	1.86

611	MH C	FluorochemL	Intermediate 33	444	2.80
612	NH CN CO	WO00/72834	Intermediate 33	415	2.12
613	MH F	Aldrich	Intermediate 33	448	2.96
615	NH CO	J. Med. Chem., 2001, 44(26), 4628	Intermediate 33	440	3.03
616	m. A.	Intermediate 75 (as HCl salt)	Intermediate 33	451	2.62
617	Mr F	Aldrich; or Organic Letters, 2002, 4(12), 2055	Intermediate 33	398	2.90
618	MT CF3	Alfa	Intermediate 33	466	2.98
619	M	Energy & Fuels, (1994), 8(4), 990- 1001	Intermediate 33	408	2.86
620	Mt CF ₃	Alfa	Intermediate 33	466	2.94
621	W. L	Apollo	Intermediate 33	434	2.82
622	ma	Acros	Intermediate 33	432	2.9
623	NF. Br	Acros	Intermediate 33	476	2.95
624	H	Apollo; or Eur. J. Med. Chem., 1998, 33(5), 363	Intermediate 33	408	2.88

625	W	Maybridge	Intermediate 33	408	2.83
626	W. C	Lancaster	Intermediate 33	448	3.02
627	R.	Apin	Intermediate 33	405	2.56
628	Mr Br	Ubi-Chem	Intermediate 33	458	2.89
629	m√c²	ABCR	Intermediate 33	466	2.97
630	M	Lancaster	Intermediate 33	505. 9	2.97
631	m Ok	Apollo	Intermediate 33	436	3.11
632	m , m	WO 98/33767; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111.	Intermediate 33	405	2.55
633	TH.	Pfaltz-Bauer; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111	Intermediate 33	448	2.88
634	THE CONTRACTOR OF THE CONTRACT	Transworld	Intermediate 33	428	3.22
635	W. B.	Apin (HNR ⁴ R ⁵ used as HCl salt)	Intermediate 33	536	3.47
636	M	Matrix	Intermediate 33	408	3.18
637	№ CF ₃	Avocado	Intermediate 33	466	3.25
638	m	Pfaltz-Bauer	Intermediate 33	505. 9	2.92

639	Br	Alfa	Intermediate	458	3.10
	M.		33		
640	OH OH	WO 03/35621 (HNR ⁴ R ⁵ used as HCl salt)	Intermediate 33	410	2.49
641	рд√Он Он	WO 03/35621 (HNR ⁴ R ⁵ used as HCl salt)	Intermediate 33	410	2.51
642	₩ ОН	DE 2136624 (HNR ⁴ R ⁵ used as HCl salt)	Intermediate 33	424	2.55
643	MT OH	(HNR ⁴ R ⁵ used as HCl salt)	Intermediate 33	478	2.96
644	Mi a	Aldrich	Intermediate 33	462	3.13
645	1		Intermediate 33	436	3.18
646	MI A	Matrix	Intermediate 33	408	2.84
647	Mi F	Apollo	Intermediate 33	434	2.80
648	M_CF _i	ABCR	Intermediate 33	466	2.99
649	M O	Lancaster	Intermediate 33	428	2.87

Example 518: N-[(3,4-dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide; also known as: N-(3,4-dimethylbenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

An alternative process for preparing Example 518 is given below: To a solution of Intermediate 33 (3.5g, 12.07mmol) in DMF (500ml) was added HATU (4.5g, 12.07mmol) and the mixture stirred at room temperature for 30 min. 3.4-Dimethylbenzylamine (1.63g, 12.07mmol, obtainable from Matrix Scientific, Columbia, USA or by a process described in Chem. Ber., 1969, 102, 2770) was added followed by DIPEA (4.5ml, 26.55mmol) and the solution stirred at room temperature for 16 hours. The solvent was removed under reduced pressure and the residue partitioned between saturated aqueous NaHCO3 (200ml) and ethyl acetate (250ml), the aqueous phase re-extracted with ethyl acetate (2x200ml), the organic extracts combined, dried (Na₂SO₄) and evaporated. The resultant viscous oil was recrystallised from hot ethyl acetate (ca. 100ml) to give the title compound as a white crystalline solid (3.36g, 80%), LCMS showed MH⁺= 408; T_{ret} = 3.06min. δ_H (D₆ DMSO) 1.36 (3H, t), 1.51 (2H, m), 2.00 (2H, m), 2.18 (3H, s), 2.19 (3H, s), 2.50 (2H, m), 3.61 (2H. m), 3.83 (2H, m), 4.17 (1H, m), 4.36 (2H, q), 4.38 (2H, d), 7.02-7.09 (3H, m), 8.17 (1H, s), 8.62 (1H, s), 8.93 (1H, t), 9.96 (1H, d): δ_C (D₆ DMSO) 14.65, 18.91, 19.33, 32.81, 41.06, 41.86, 48.57, 64.94, 101.69, 102.18, 124.44, 128.22, 129.24, 133.28, 134.31, 135.78, 136.91, 149.26, 149.59, 151.36, 168.81

Example 518A: N-[(3,4-dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2Hpyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide hydrochloride; also known as: N-(3,4-dimethylbenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide hydrochloride

A solution of Example 518 (1.3g, 3.19mmol) in anhydrous tetrahydrofuran (200ml) was treated with a solution of hydrogen chloride in dioxane (4M, 8ml) and the

mixture stirred at ambient temperature for 16 hours. The resultant white precipitate was collected by filtration and recrystallised from hot methanol (100ml) to give the title compound Example 518A as a white crystalline solid (1.12g, 79%).

LCMS showed MH $^+$ 408; $T_{\rm ret}$ = 3.21 min. $\delta_{\rm H}$ (D₆ DMSO) 1.39 (3H, t), 1.59 (2H, m), 2.01 (2H, m), 2.19 (3H, s), 2.20 (3H, s), 3.64 (2H, t), 3.83 (2H, m), 4.28 (1H, m), 4.40 (2H, d), 4.50 (2H, q), 7.04–7.11 (3H, m), 9.40 (1H, s (br)), 10.72 (1H, s (br)).

Example 650: 4-[({[1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl|benzoic acid sodium salt.

2M-Sodium hydroxide solution (98μL, 0.196mmol) was added to a stirred solution of Example 593 (22mg, 0.049mmol) in methanol (104μL) and water (6μL). The resulting solution was stirred at 50°C under nitrogen. After 16h, the reaction mixture was diluted with water (0.5ml) and adjusted to pH 4 with acetic acid. The mixture was extracted with ethyl acetate (2 x 0.5ml), and the combined extracts were dried (Na₂SO₄) and evaporated in vacuto to give a solid (15mg). This solid was suspended in water (0.5ml) and treated with 2M-sodium hydroxide solution (15μL). Evaporation of solvent in vacuto afforded Example 650 as a white solid (11mg). LCMS showed MH⁺ = 425; T_{BFT} = 2.69min.

Example 651: 3-[({1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b|pyridin-5-yl]carbonyl}amino)methyl]benzoic acid

WO 2004/024728 PCT/EP2003/011814 - 236 -

2M-Sodium hydroxide solution (98uL, 0.196mmol) was added to a stirred solution of Example 558 (22mg, 0.049mmol) in methanol (104μL) and water (6μL). The resulting solution was stirred at 50°C under nitrogen. After 16h, the reaction mixture was diluted with water (0.5ml) and adjusted to pH 4 with acetic acid. The precipitated solid was collected by filtration and dried in vacuo to afford Example 651 as a white solid (15mg). LCMS showed $MH^+=425$; $T_{RET}=2.72min$.

Example 652: Ethyl 1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-1Hpyrazolol3.4-blpyridine-5-carboxylate

A mixture of Example 205 (200mg), hydroxylamine hydrochloride (50mg) and anhydrous potassium carbonate (420mg) in acetonitrile (10 ml) was stirred and heated at reflux for 17 hours. The solution was cooled and concentrated in vacuo. The residue was partitioned between EtOAc and water. The organic phase was separated, dried over Na2SO4 and concentrated in vacuo to give Example 652 as a white powder (203mg), LCMS showed MH $^{+}$ = 346; T_{RET} = 2.84min.

1-Ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-N-{[4-Example (methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

A mixture of Example 263 (217mg), hydroxylamine hydrochloride (43mg) and anhydrous potassium carbonate (355mg) in acetonitrile (10 ml) was stirred and heated at reflux for 17 hours. The solution was cooled and concentrated in vacuo. The residue was partitioned between EtOAc and water. The organic phase was separated, dried over Na2SO4 and concentrated in vacuo to give Example 653 as a yellow solid (186mg). LCMS showed MH⁺ = 437; T_{RET} = 2.82min. δ_H (CDCl₃) 1.49 (3H, t), 1.80 (2H, m), 2.2-2.4 (4H, m), 2.54 (1H, m), 3.13 (1H, dt), 3.81 (3H, s), 4.13 (1H, m), 4.46 (2H, q), 4.54 (2H, d), 6.28 (1H, t), 6.90 + 7.28 (4H, AA'BB'), 7.98 (1H, s), 8.36 (1H, s), 9.84 (1H, d). Hydroxyl proton not visible.

The following examples were prepared by a similar procedure, e.g. using the same or a similar number of moles of reagents and the same or similar volumes of solvents:

Example No.	NR ⁴ R ⁵	[C C	10: 1	T = ===	
Example No.	NK.K.	Source of	Starting	MH	LC-MC
		HNR⁴R⁵	Material	+	Retention
				ion	time
654	N	Aldrich	Example 265	450	2.35
680	NH CH,	Salor; or ICN Biomedicals, Inc.; or Synthesis, 1982, 12, 1036	Example 260	435	3.10
681	CH ₃	CHMSRV- AS; or Matrix Scientific; or Chem. Ber., 1969, 102, 2770	Example 261	435	3.08
682	NH CI	Lancaster	Example 677	475	3.20
683	CH,	Maybridge Chemical Company Ltd.; or WO 01/30745	Example 678	455	3.17
684	NH CH ₉	Trans World Chemicals, Inc.; or DE 1953059	Example 679	455	3.17
685	MH	Fluorochem; or WO 98/45268	Example 266	473	3.00
686	NH F	Aldrich; or Meindl et al., J. Med. Chem., 1984, 27(9), 1111; or Org. Lett., 2002,	Example 267	475	3.13

- 238 -

	4(12), 2055		

See later for alternative preparation of Example 681.

Example 655: 1-Ethyl-4-((4-[(ethyloxy)imino]cyclohexyl}amino)-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

A mixture of Example 263 (25mg), ethoxyamine hydrochloride (R^{26} ONH₂ where R^{26} = Et, 20mg) and diisopropylethylamine (30mg) in acetonitrile (3 ml) was stirred and heated at reflux for 3.25 hours. The solution was cooled and concentrated in vacuo. The residue was applied to an SPE cartridge (5g). The cartridge was eluted with EtOAc. Fractions containing the desired product were concentrated in vacuo to give Example 655 as a colourless gum (20mg). LCMS showed MH * = 465; T_{RET} = 3.28min.

The following examples were prepared by a similar procedure, e.g. using the same or a similar number of moles of reagents and the same or similar volumes of solvents:

Example No	. R26	Source of R ²⁶ ONH ₂	Starting Material	MH +	LC-MC Retention
				ion	time
656	Me	Aldrich	Example 263	451	2.52
657	t _{Bu}	Aldrich	Example 263	493	3.66

Example 658: 1-Ethyl-N-{[4-(methyloxy)phenyl]methyl}-4-[(7-oxohexahydro-1H-azepin-4-yl)amino]-1H-pyrazolo[3.4-b]pyridine-5-carboxamide

A suspension of cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) (150mg) in DMF (0.2 ml) was stirred for 30 minutes at room temperature. The suspension was diluted to 7ml with DMF, with stirring. A 1.0ml portion of the resultant suspension was removed and added to Example 653 (52mg). The resultant suspension was removed and added to Example 653 (52mg). The resultant solution was stirred for 90 hours at room temperature, then concentrated in vacuo. The residue was partitioned between E10Ac and water. The organic phase was separated and washed consecutively with saturated sodium carbonate, 10% w/v citric acid and saturated brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was applied to an SPE cartridge (2g). The cartridge was eluted successively with EtOAc:cyclohexane (1:1), EtOAc and then a (100:8:1) mixture of dichloromethane, ethanol and ammonia. Fractions containing the desired product (eluted in the ammoniacal solution) were concentrated in vacuo to give Example 658 as a colourless oil (11mg). LCMS showed MHF = 437: Tagr = 2.50min.

Example 659: Ethyl 1-ethyl-4-[(7-oxohexahydro-1*H*-azepin-4-yl)amino]-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylate

Example 659 was prepared from Example 652, using an identical procedure to that used for Example 658. LCMS showed MH⁺ = 346; T_{RFT} = 2.56min.

Example 660: 4-{[cis-4-(Butylamino)cyclohexyl]amino}-N-(2,3-dihydro-1*H*-inden-2-yl)-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide

A solution of Example 258 (25mg), butyraldehyde (5mg) and glacial acetic acid (30mg) in DCM (3ml) was stirred for 10min. Sodium triacetoxyborohydride (21mg) was added. The reaction mixture was stirred for 1.5 hours. Sodium bicarbonate (1.0Molar, 3ml) was added dropwise, with stirring. After stirring for 5 min. the phases were separated. The organic phase was dried over Na₂SO₄ and applied to an SPE cartridge (5g). The cartridge was eluted with a (100.8:1) mixture of dichloromethane, ethanol and ammonia. Fractions containing the desired product were concentrated in vacuo to give Example 660 as an amorphous, cream solid (19mg). LCMS showed MHT = 346; T_{RST} = 2.56min.

Examples 661 to 664

General Procedure:

Intermediate 17 (0.16mmol) in acetonitrile (1ml) was treated with the R^3NH_2 amine (0.8mmol) in acetonitrile (1ml) and N_iN -diisopropylethylamine (0.8mmol). The mixture was heated at 50°C for 18h then concentrated in vacuo. The residue was diluted with water (3ml) and extracted with dichloromethane (2 x 5ml). The combined organic extracts were evaporated, and the residue was purified by mass directed autoprep HPLC to give the desired product containing formic acid. This material was dissolved in chloroform-methanol (10/1, 5.5ml) and washed with 5% sodium hydrogen carbonate solution (1ml) to give after evaporation of solvents the pure product.

ł	Example no.	NHR ³ **	Source of	Starting	MH	LC-MC
			R ³ NH ₂	Material	+	Retention
Į	-				ion	time
١	214	H ₂ N—_NH	J. Med. Chem.,	Intermediate	393	2.16
١		n ₂ N—_NH	1994, 37(17),	17		
			2360			

661	H ₂ N ···· <u>NH</u>	Aldrich	Intermediate 17	393	2.16
662	NH ₂	Aldrich	Intermediate 17	393	2.29
663	NH ₂	Aldrich	Intermediate 17	393	2.30
664	H ₂ N NH	Peakdale Molecular Ltd	Intermediate 17	393	2.21

** For NHR³ in Examples 214 and 661-663, NHR³ is the *cis* or *trans* isomer as shown. For Examples 662-664, NHR³ is the 3-amino- or 2-amino- cyclohex-1-ylamino group in a racemic form.

Example 665 Ethyl 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxylate

[cis-(3-hydroxycyclohex-1-yl)amino group, racemic]

3-Aminocyclohexanol (0.677g, 5.9mmol, as described in J. Chem. Soc., Perkin Trans 1, 1994, 537) in actonitrile (10ml) and ethanol (1ml) was added at room temperature to a stirred solution of Intermediate 1 (1.24g, 4.9mmol) and diisopropylethylamine (4.26ml, 24.5mmol) in actonitrile (25ml). The resulting mixture was stirred at 85°C for 17h. The mixture was concentrated in vacuo, and the residue was partitioned between DCM (50ml) and water (10ml). The phases were separated and the organic phase was dried (Na₂SO₄) and evaporated to give an orange-brown oil. The oil was purified by Biotage chromatography (silica 100g) eluting with 30-50% EtOAc in cyclohexane to give Example 665 as a white foam (0.681g). LCMS showed MH* = 333; T_{RET} = 2.76min.

Examples 666 - 676

[cis-(3-hydroxycyclohex-1-yl)amino group, racemic]

General Procedure:

A mixture of Intermediate 76 (0.1mmol), HATU (0.1mmol) and DIPEA (0.4mmol) in DMF (0.5ml) was shaken at room temperature for 10min. A solution of the amine $\mathrm{HNR'R^2}$ (0.12mmol) in DMF (0.5ml) was then added and the mixture agitated for several minutes to give a solution. The solution was stored at room temperature for 16h, then concentrated in vacuo. The residue was purified by mass directed autoprep HPLC .

Example no.	NR ⁴ R ⁵	Source of HNR ⁴ R ⁵	Starting Material	MH + ion	LC-MC Retention time
666	МН	Aldrich	Intermediate 76	332	2.35
667	Mb————F	Aldrich	Intermediate 76	398	2.96
668	NH S	Manchester Organics Ltd	Intermediate 76	401	2.48
669	MHF	Aldrich	Intermediate 76	412	2.88
670	MT - C	Acros	Intermediate 76	472	2.57
671		Aldrich	Intermediate 76	454	2.67
672	NH N	Aldrich	Intermediate 76	395	2.15
673	NH N	N.D. Zelinsky Institute	Intermediate 76	398	2.35
674	MT	Matrix Scientific; or Chem. Ber., 1969, 102, 2770	Intermediate 76	422	3.08

- 243 -

675	NH S	Aldrich	Intermediate 76	424	2.81
676	11H	ICN Biomedicals, Inc.; or Salor; or Synthesis, 1982, 12, 1036	Intermediate 76	422	3.08

Example 260 (Alternative Procedure)
N-[(2,4-dimethylphenyl)methyl-1-ethyl-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide

Alternative procedure for preparing Example 260:

A solution of Intermediate 58 (45mg), HATU (63mg) and DIPEA (39mg) in acetonitrile (5ml) was stirred for 10min. A solution of 2,4-dimethylbenzylamine (24mg) (available from Salor, or ICN Biomedicals, Inc.; or Synthesis, 1982, 12, 1036) in acetonitrile (1ml) was added. The reaction mixture was stirred for 18h. The solution was concentrated and the residue partitioned between ethyl acetate (25ml) and 0.5M osdium bicarbonate (20ml). The organic phase was separated, washed with water (20ml), dried over Na₂SO₄ and concentrated to leave a gum which was applied to an SPE cartridge (5g). The cartridge was eluted with ethyl acetate. Fractions containing the desired compound were combined and concentrated in vacuo to give Example 260 (32mg). LC-MS showed MH⁺ = 420; T_{RET} = 3.16min. Sq. (CDCl₃): 1.49 (3H, t), 2.11 (2H, m), 2.33 (3H, s), 2.35 (3H, s), 2.40 (2H, m), 2.52 (2H, m), 2.61 (2H, m), 4.36 (1H, m), 4.47 (2H, q), 4.55 (2H, d), 6.14 (1H, t), 7.01 + 7.18 (2H, AA'BB'), 7.04 (1H, s), 8.01 (1H, s), 8.36 (1H, s), 9.96 (1H, d).

The following Examples 677-679 were prepared in a similar manner to Example 260 (alternative procedure above), for example using the same or a similar number of moles of reagents and the same or similar volumes of solvents:

Example no.	NR⁴R⁵	Source of HNR ⁴ R ⁵	Starting Material	MH + ion	LC-MC Retention time
677	CI	Lancaster	Intermediate 58	460	3.28
678	CI CH3	Maybridge Chemical Company Ltd.; or WO 01/30745	Intermediate 58	440	3.25
679	£ 0	Trans World Chemicals, Inc.; or DE 1953059	Intermediate 58	440	3.24

 $\underline{\text{Examples 680-686}}$ and their $\underline{\text{preparation}}$ are shown above together with Example 653.

Alternative Preparation of Example 681: N-[(3,4-dimethylphenyl)methyl]-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide

A mixture of Example 261 (35mg), hydroxylamine hydrochloride (10mg) and diisopropylethylamine (26mg) in acetonitrile (4 ml) was stirred and heated at reflux for 2.5 hours. The solution was cooled and concentrated in vacuo. The residue was partitioned between EtOAc and water. The organic phase was separated, dried over Na₂SO₄ and concentrated in vacuo. The residue was applied to an SPE cartridge (10g). The cartridge was cluted with EtOAc:cyclohexane (1:1) and then EtOAc. Fractions containing the desired compound were combined and concentrated in vacuo give Example 681 as a white, amorphous solid (18mg). LCMS showed MH⁺ = 435; T_{RTT} = 3.08min. $\delta_{\rm H}$ (CDCl₃) 1.49 (3H, t), 1.79 (2H, m), 2.24 (6H, s), 2.19-2.38 (4H,

WO 2004/024728 PCT/EP2003/011814

- 245 -

m), 2.56 (2H, dt), 4.13 (1H, m), 4.46 (2H, q), 4.53 (2H, d), 6.36 (1H, t), 7.09 (2H, t), 7.12 (1H, s), 7.98 (1H, s), 8.38 (1H, s), 9.79 (1H, d). Hydroxyl proton not visible.

CLAIMS

A compound of formula (I) or a salt thereof:

wherein:

R¹ is C₁₋₄alkyl, C₁₋₃fluoroalkyl, -CH₂CH₂OH or -CH₂CH₂CO₂C₁₋₂alkyl;

R² is a hydrogen atom (H), methyl or C₁fluoroalkyl;

 \mathbb{R}^3 is optionally substituted $\mathbb{C}_{3,8}$ cycloalkyl or optionally substituted mono-unsaturated- $\mathbb{C}_{5,7}$ cycloalkenyl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc);

in which n^1 and n^2 independently are 1 or 2; and in which Y is O, S, SO_2 , or NR^{10} ; where R^{10} is a hydrogen atom (H), C_{1-4} alkyl, C_{1-2} fluoroalkyl, $CH_2CO)NH_2$, $C(O)NH_2$, $C(O)-C_{1-2}$ alkyl, $C(O)-C_1$ fluoroalkyl or $-C(O)-CH_2O-C_{1-2}$ alkyl;

and wherein in \mathbb{R}^3 the \mathbb{C}_{3-8} cycloalkyl or the heterocyclic group of sub-formula (aa), (bb) or (cc) is optionally substituted with one or two substituents independently being oxo (=O); OH; \mathbb{C}_{1-2} alkoxy; \mathbb{C}_{1-2} fluoroalkoxy; NHR 21 wherein \mathbb{R}^{21} is a hydrogen atom (H) or \mathbb{C}_{1-5} straight-chain alkyl; \mathbb{C}_{1-2} alkyl; \mathbb{C}_{1-2} fluoroalkyl; $-\mathbb{C}_{1-2}$ wherein \mathbb{R}^{21} is H or \mathbb{C}_{1-2} alkyl; $-\mathbb{C}(\mathbb{O})\mathbb{R}^{23}$ wherein \mathbb{R}^{23} is H or \mathbb{C}_{1-2} alkyl; $-\mathbb{C}(\mathbb{O})\mathbb{R}^{25}$ wherein \mathbb{R}^{23} is H or \mathbb{C}_{1-2} alkyl; $-\mathbb{C}(\mathbb{O})\mathbb{R}^{25}$ wherein \mathbb{R}^{25} is \mathbb{C}_{1-2} alkyl; fluoro; hydroxyimino (=N-OH); or (\mathbb{C}_{1-4} alkoxy)imino (=N-OR 26 where \mathbb{R}^{26} is \mathbb{C}_{1-4} alkyl); and wherein any OH, alkoxy, fluoroalkoxy or

 NHR^{21} substituent is not substituted at the R^3 ring carbon attached (bonded) to the -NH- group of formula (I) and is not substituted at either R^3 ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc);

and wherein, when \mathbb{R}^3 is optionally substituted mono-unsaturated- \mathbb{C}_{5-7} cycloalkenyl, then the cycloalkenyl is optionally substituted with one or two substituents being fluoro or \mathbb{C}_{1-2} alkyl provided that if there are two substituents then they are not both \mathbb{C}_2 alkyl, and the \mathbb{R}^3 ring carbon bonded to the -NH- group of formula (I) does not partake in the cycloalkenyl double bond;

or R³ is a bicyclic group of sub-formula (dd):

(dd) or of sub-formula (ee):

(ee) wherein Y¹, Y² and Y³ independently are CH₂ or oxygen (O) provided that no more than one of Y¹, Y² and Y³ is oxygen (O);

and X is NR4R5 or OR5a, in which:

 \mathbb{R}^4 is a hydrogen atom (H); C_{1-6} alkyl; C_{1-3} fluoroalkyl; or C_{2-6} alkyl substituted by one substituent \mathbb{R}^{11} ; and

 R^5 is a hydrogen atom (H); C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} eyeloalkyl optionally substituted by a C_{1-2} alkyl group; or -(CH₂)_n^4-C_3_eyeloalkyl optionally substituted, in the -(CH₂)_n^4- moiety or in the C_{3-8} eyeloalkyl moiety, by a C_{1-2} alkyl group, wherein n⁴ is 1, 2 or 3;

or R⁵ is C₂₋₆alkyl substituted by one or two independent substituents R¹¹;

wherein each substituent R^{11} , independently of any other R^{11} substituent present, is: hydroxy (OH); C_{1-6} alkoxy; phenyloxy; benzyloxy; -NR 12 R 13 ; -NR 15 -C(O)R 16 ; -NR 15 -C(O)-O-R 16 ; -NR 15 -C(O)-NH-R 15 ; or -NR 15 -SO $_2$ R 16 ; and wherein any

 R^{11} substitutent which is OH, alkoxy or -NR $^{12}R^{13}$ is not substituted at any carbon atom, of any R^4 or R^5 substituted alkyl, which is bonded to the nitrogen of NR $^4R^5$;

$$\begin{split} &\text{or } R^5 \text{ is -(CH}_{2)n}^{11}\text{-C(O)} R^{16}; \text{-(CH}_{2)n}^{12}\text{-C(O)} NR^{12}R^{13}; \text{-CH}_{R}^{19}\text{-C(O)} NR^{12}R^{13}; \\ &\text{-(CH}_{2)n}^{12}\text{-C(O)} OR^{16}; \text{-(CH}_{2)n}^{12}\text{-C(O)} OH; \text{-CH}_{R}^{19}\text{-C(O)} OR^{16}; \\ &\text{-CHR}^{19}\text{-C(O)} OH; \text{-(CH}_{2)n}^{12}\text{-SO}_2\text{-NR}^{12}R^{13}; \text{-(CH}_{2)n}^{12}\text{-SO}_2R^{16}; \text{ or -(CH}_{2)n}^{12}\text{-CN}; \text{ wherein } n^{11} \text{ is } 0, 1, 2, 3 \text{ or } 4 \text{ and } n^{12} \text{ is } 1, 2, 3 \text{ or } 4; \end{split}$$

or \mathbb{R}^5 is -(CH2)_n1³-Het wherein n¹³ is 0, 1, 2, 3 or 4 and Het is a 4-, 5-, 6- or 7-membered saturated or partly-saturated heterocyclic ring containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-hetero-atoms present are not bound to the -(CH2)_n1³- moiety when n¹³ is 1 and are not bound to the nitrogen of $\mathbb{N}^4\mathbb{R}^5$ when n¹³ is 0; wherein any ring-nitrogens which are present and which are not unsaturated (i.e. which do not partake in a double bond) are present as \mathbb{N}^{17} where \mathbb{R}^{17} is as defined herein; and wherein one or two of the carbon ring-atoms independently are optionally substituted by \mathbb{C}_{1-2} alkyl;

or ${\rm R}^5$ is phenyl optionally substituted with, independently, one, two or three of: a halogen atom; C1_6alkyl; C1_2fluoroalkyl; C1_4alkoxy; C1_2fluoroalkoxy; C3_6cycloalkyloxy; C(O)R^16a; -C(O)OR^30; -S(O)_2-R^16a; R^16a; R^16a; C(O)_2-NR^15a; R^7R^8N-S(O)_2-; C1_2alkyl-C(O)-R^15aN-S(O)_2-; C1_4alkyl-S(O)-; Ph-S(O)-; R^7R^8N-CO-; -NR^{15}_C(O)R^{16}; R^7R^8N; OH; C1_4alkoxymethyl; C1_4alkoxyethyl; C1_2alkyl-S(O)_2-CH2-; R^7R^8N-S(O)_2-CH2-; C1_2alkyl-S(O)_2-NR^{15a}_CH2-; -CH2-OH; -CH2-OH; -CH2-NR^7R^8; -CH2-CH2-NR^7R^8; -CH2-C(O)-NR^7R^8; -CH2-C(O)-NR^7R^8; -CH2-C(O)-NR^7R^8; -CH2-NR^7R^8; -CH2-NR^7R^8; -CH2-NR^7R^8; -CH2-NR^7R^8; -CH2-C12-NR^7R^8; -CH2-NR^7R^8; -CH2-C12-NR^7R^8; -CH2-NR^7R^8; -CH2-N

or where two adjacent substituents, on the R^5 optionally substituted phenyl, taken together are –O–(CMe₂)–O– or –O–(CH₂) $_{\rm n}^{14}$ –O– where $_{\rm n}^{14}$ is 1 or 2;

wherein R^7 and $\,R^8$ are independently a hydrogen atom (H); C_{1_4} alkyl; C_{3_6} eycloalkyl; or phenyl optionally substituted by one or two of: fluoro, chloro, C_{1_2} alkyl, C_{1} fluoroalkyl, C_{1_2} alkoxy or C_{1} fluoroalkoxy; or R^7 and R^8 together are $-(\mathrm{CH_2})_n{}^6$ - or $-\mathrm{C(O)}\cdot(\mathrm{CH_2})_n{}^7$ - or $-\mathrm{C(O)}\cdot(\mathrm{CH_2})_n{}^7$ - or $-\mathrm{C(O)}\cdot(\mathrm{CH_2})_n{}^8$ - $X^7\cdot(\mathrm{CH_2})_n{}^9$ - or $-\mathrm{C(O)}\cdot X^7\cdot(\mathrm{CH_2})_n{}^{10}$ - in which: n^6 is 3, 4, 5 or 6, n^7 is 2, 3, 4, or 5, n^8 and n^9 and n^{10} independently are 2 or 3 , and X^7 is O or NR^{14} wherein R^{14} is H, C_{1_2} alkyl or $\mathrm{C(O)}Me$;

or R5 has the sub-formula (x), (v), (v1) or (z):

wherein in sub-formula (x), n = 0, 1 or 2; in sub-formula (y) and (y1), m = 1 or 2; and in sub-formula (z), r = 0, 1 or 2;

wherein in sub-formula (x) and (y) and (y1), none, one or two of A, B, D, E and F are independently nitrogen or nitrogen-oxide (N[†]-O') provided that no more than one of A, B, D, E and F is nitrogen-oxide; and the remaining of A, B, D, E and F are independently CH or CR6:

provided that when n is 0 in sub-formula (x) then one or two of A, B, D, E and F are independently nitrogen or nitrogen-oxide (N+-O-) and no more than one of A, B, D, E and F is nitrogen-oxide;

wherein, each R^6 , independently of any other R^6 present, is: a halogen atom; C_{1-6} alkyl; C_{1-4} fluoroalkyl; C_{1-4} alkoxy; C_{1-2} fluoroalkoxy; C_{3-6} eycloalkyloxy; -C(O)R 16 s; -C(O)R 30 ; $-S(O)_2$ -R 16 s; R^{16} s. $S(O)_2$ -NR 15 s.; R^7 R 8 N-S $(O)_2$ -; C_{1-2} alkyl-C(O)-R 15 aN-S $(O)_2$ -; C_{1-4} alkyl-S(O)-; Ph-S(O)-; Ph-S(O)-; Ph-S(O)-; Ph-S(O)-Ph-S

or where two adjacent R⁶ taken together are -O-(CMe₂)-O- or -O-(CH₂)_n¹⁴-O- where n¹⁴ is 1 or 2;

wherein R⁷ and R⁸ are as herein defined:

wherein sub-formula (y) and (y1), independently, are optionally substituted by oxo (=O) at a ring earbon adjacent the 6-membered aromatic ring;

wherein in sub-formula (z), G is O or S or NR^9 wherein R^9 is a hydrogen atom (H), $C_{1.4}$ alkyl or $C_{1.4}$ fluoroalkyl; none, one, two or three of J, L, M and Q are nitrogen;

and the remaining of J, L, M and Q are independently CH or CR^6 where R^6 , independently of any other R^6 present, is as defined herein;

or R^4 and R^5 taken together are $-(CH_2)_p^{1-}$ or $-C(O)-(CH_2)_p^{2-}$ or $-(CH_2)_p^{3-}$ $X^5-(CH_2)_p^{4-}$ or $-C(O)-X^5-(CH_2)_p^{5-}$ as defined herein, and wherein the $NR^4R_5^5$ heterocycle is fused to a phenyl ring optionally substituted on the phenyl by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; and

 R^{5a} is C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} cycloalkyl; -(CH2) $_n^{4a}$ - C_{3-6} cycloalkyl wherein n^{4a} is 1 or 2; phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy or trifluoromethoxy; or R^{5a} has the sub-formula (x), (y), (y1) or (z) as defined herein;

and wherein:

 R^{12} and R^{13} independently are H; C_{1-5} alkyl; C_{3-6} cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

or R^{12} and R^{13} together are -(CH₂) $_n^6$ - or -C(O)-(CH₂) $_n^7$ - or -C(O)-(CH₂) $_n^7$ -C(O)-or -(CH₂) $_n^8$ - X^{12} -(CH₂) $_n^9$ - or -C(O)- X^{12} -(CH₂) $_n^{10}$ - in which: n^6 is 3, 4, 5 or 6, n^7 is 2, 3, 4, or 5, n^8 and n^9 and n^{10} independently are 2 or 3 and X^{12} is O or NR¹⁴a wherein R^{14a} is H, C₁₋₂alkyl or C(O)Me;

 R^{15} is a hydrogen atom (H); C_{1_4} alkyl; C_{3_6} cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C_{1_2} alkyl, C_{1} fluoroalkyl, C_{1_2} alkoxy or C_{1} fluoroalkoxy;

 R^{15a} , independent of other R^{15a} , is a hydrogen atom (H) or C_{1-4} alkyl;

R16 and R16a independently are:

C₁₋₆alkyl;

 $C_{3\text{-}6} \text{cycloalkyl}$ optionally substituted by one oxo (=0), OH or $C_{1\text{-}2} \text{alkyl}$ substituent;

C3-6cycloalkyl-CH2-;

pyridinyl optionally substituted on a ring carbon atom by one of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

Ar^{5c};

phenyl optionally substituted by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

benzyl optionally substituted at an aromatic carbon atom by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; or

a 4-, 5-, 6- or 7-membered saturated heterocyclic ring connected at a ring-carbon and containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-nitrogens which are present are present as NR^{2T} where R^{2T} is H, C_{1-2} alkyl or -C(O)Me; and wherein the ring is optionally substituted at carbon by one C_{1-2} alkyl or oxo (=O) substituent, provided that any oxo (=O) substituent is substituted at a ring-carbon atom bonded to a ring-nitrogen;

wherein Ar^{5a} , Ar^{5b} and Ar^{5c} independently is/are a 5-membered aromatic heterocyclic ring containing one O, S or NR^{15a} in the 5-membered ring, wherein the 5-membered ring can optionally additionally contain one or two N atoms, and wherein the heterocyclic ring is optionally substituted on a ring carbon atom by one of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, $-CH_{2}$ OH, $-CH_{2}$ -OC $_{1-2}$ alkyl, OH (including the keto tautomer thereof) or $-CH_{2}$ - $NR^{28}R^{29}$ wherein R^{28} and R^{29} independently are H or methyl;

and R^{17} is a hydrogen atom (H); C_{1-4} alkyl; C_{1-2} fluoroalkyl; C_{3-6} cycloalkyl; -(CH2)p 6 -C(O)R 16 wherein p 6 is 0, 1, 2 or 3; -(CH2)p 6 -C(O)NR 12 R 13 ;

 $\begin{array}{l} -(\mathrm{CH_2})_p 6 - \mathrm{C(O)OR^{16}}; -(\mathrm{CH_2})_p 6 - \mathrm{C(O)OH}; -\mathrm{SO_2R^{16}}; -\mathrm{C(O)-CH_2-NR^{12}R^{13}}; \\ -\mathrm{C(O)-CH_2-NR^{15a}-C(O)-C_{1-3}alkyl}; -\mathrm{C(O)-CH_2-O-C_{1-3}alkyl}; \text{ or phenyl or benzyl} \\ \text{wherein the phenyl or benzyl is optionally substituted at an aromatic carbon atom by one or two of: a halogen atom, $C_{1-2}alkyl, $C_{1}luoroalkyl, $C_{1-2}alkyl, $C_{1-1}luoroalkyl, $C_{1-2}alkyl, $C_{1-2}alk$

 $R^{19} is\ C_{1-4} alkyl;\ -(CH_2)_n^{20} - OR^{20}$ wherein n^{20} is 1, 2, 3 or 4 and R^{20} is a hydrogen atom (H) or $C_{1-4} alkyl;\ -CH(Me)-OH;\ -CH_2-SH;\ -CH_2-CH_2-S-Me;\ benzyl;$ or (4-hydroxyphenyl)methyl (i.e. 4-hydroxy-benzyl); and

 R^{30} , independent of other R^{30} , is a hydrogen atom (H), $C_{1\text{-}4}$ alkyl or $C_{3\text{-}6}$ cycloalkyl; and

Het¹, independent of other Het¹, is a 4-, 5-, 6- or 7-membered saturated heterocyclic ring connected at a ring-carbon and containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-hittogens which are present are present as NR^{31} where R^{31} is H, C_{1-2} alkyl or -C(O)Me; and wherein the ring is optionally substituted at carbon by one C_{1-2} alkyl or oxo (=O) substituent, provided that any oxo (=O) substituent is substituted at a ring-carbon atom bonded to a ring-nitrogen;

provided that:

when \mathbb{R}^3 is the heterocyclic group of sub-formula (bb), n^1 is 1, and Y is \mathbb{NR}^{10} , then: either (a) \mathbb{R}^{10} is not \mathbb{C}_{1-4} alkyl, \mathbb{C}_{1-2} fluoroalkyl or $\mathbb{CH}_2\mathbb{C}(\mathbb{O})\mathbb{NH}_2$; or (b) \mathbb{R}^{10} is methyl and the compound is: 1-ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide or 1-ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide;

and provided that: where X is OR^{5a} , the compound is other than the compound wherein R^1 is methyl, X is OEt, and R^3 is cyclopentyl.

2. A compound of formula (IA) or a salt thereof:

wherein:

X is NR4R5 or OR5a, in which:

R4 is hydrogen, C1-2alkyl or C1-2fluoroalkyl, and

 R^5 is hydrogen, C_{1-8} alkyl, C_{1-8} fluoroalkyl, or C_{3-8} cycloalkyl, phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy or trifluoromethoxy; or R^5 has the sub-formula (x), (y) or (z):

wherein in sub-formula (x) and (z), n = 1 or 2; and in sub-formula (y), m = 1 or 2;

wherein in sub-formula (x) and (y), none, one or two of A, B, D, E and F are nitrogen; and the remaining of A, B, D, B and F are CH or CR^6 where R^6 is a halogen atom, C_{1-4} alkyl, C_{1-4} fluoroalkyl, C_{1-2} alkoxy, C_{1-2} fluoroalkyl, C_{1-2} alkylsulphonyl (C_{1-2} alkyl-SO₂-), C_{1-2} alkyl-SO₂-NH-, R^7R^8N -SO₂-, R^7R^8N -CO-, R^7R^6N -, OH, C_{1-4} alkoxymethyl, or C_{1-2} alkyl-SO₂-CH₂-, wherein R^7 and R^8 are independently hydrogen or C_{1-2} alkyl-SO₂-

 $\label{eq:wherein in sub-formula (z), G is O or S or NR^9 wherein R^9 is C_{1_4} lluoroalkyl; none, one or two of J, L, M and Q are nitrogen; and the remaining of J, L, M and Q are CH or CR^6 where R^6 is as defined herein;$

or R^4 and R^5 taken together are $-(CH_2)_p$ where p = 3, 4 or 5;

 R^{5a} is C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} cycloalkyl; phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy or trifluoromethoxy; or R^{5a} has the sub-formula (x), (y) or (z) as defined herein;

 \mathbb{R}^3 is C₃₋₈cycloalkyl or a heterocyclic group being in which Y is O, S, SO₂, or NR¹⁰; where \mathbb{R}^{10} is hydrogen, C₁₋₄alkyl, C₁₋₂fluoroalkyl, C(O)-C₁₋₂alkyl, or C(O)-CF₃;

and wherein in \mathbb{R}^3 the C_{3-8} cycloalkyl or heterocyclic group is optionally substituted with one or two substituents being OH, C_{1-2} alkoxy, trimethoxy, or C_{1-2} alkyl group; and wherein any OH, alkoxy or trimethoxy substituent is not substituted at the ring carbon attached to the -NH- group of formula (IA) and is not substituted at either ring carbon bonded to the Y group of the heterocyclic group; and

 $R^1 = C_{1-4}$ alkyl or C_{1-2} fluoroalkyl;

provided that:

when ${\rm R}^3$ is the heterocyclic group being and Y is NR¹⁰, then: either (a) ${\rm R}^{10}$ is hydrogen, C(O)-C₁₋₂alkyl, or C(O)-CF₃;

or (b) \mathbb{R}^{10} is methyl and the compound is: 1-ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide or 1-ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide;

and provided that: where X is OR^{5a} , the compound is other than the compound wherein R^1 is methyl, X is OEt, and R^3 is cyclopentyl.

3. A compound of formula (IB) or a salt thereof:

wherein:

R1 is C1_4alkyl, C1_3fluoroalkyl, -CH2CH2OH or -CH2CH2CO2C1_2alkyl;

R2 is a hydrogen atom (H), methyl or C1 fluoroalkyl;

R³ is optionally substituted C₃₋₈cycloalkyl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc);

$$\bigvee^{Y} \quad \text{or} \quad \bigvee^{n_1} \quad \text{or} \quad \bigvee^{n_2}$$

(aa) (bb) (cc)

in which n^1 and n^2 independently are 1 or 2; and in which Y is O, S, SO₂, or NR¹⁰; where R¹⁰ is a hydrogen atom (H), C₁₋₄alkyl, C₁₋₂fluoroalkyl, CH₂C(O)NH₂, C(O)-C₁₋₂alkyl, or C(O)-C₁fluoroalkyl;

and wherein in \mathbb{R}^3 the C_{3-8} eycloalkyl or the heterocyclic group of sub-formula (aa), (bb) or (cc) is optionally substituted with one or two substituents being oxo (=O), OH, C_{1-2} alkoxy, C_{1-2} fluoroalkoxy, or C_{1-2} alkyl; and wherein any OH, alkoxy or fluoroalkoxy substituent is not substituted at the \mathbb{R}^3 ring carbon attached (bonded) to the -NH- group of formula (IB) and is not substituted at either \mathbb{R}^3 ring carbon bonded to the Y group of the heterocyclic group (aa), (bb) or (cc);

and X is NR4R5 or OR5a, in which:

 R^4 is a hydrogen atom (H); $C_{1\text{--}6}$ alkyl; $C_{1\text{--}3}$ fluoroalkyl; or $C_{2\text{--}6}$ alkyl substituted by one substituent R^{11} ; and

 R^5 is a hydrogen atom (H); C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} eycloalkyl optionally substituted by a C_{1-2} alkyl group; or $-(CH_2)_n^4$ - C_{3-8} eycloalkyl optionally substituted, in the $-(CH_2)_n^4$ - moiety or in the C_{3-8} eycloalkyl moiety, by a C_{1-2} alkyl group, wherein n^4 is 1, 2 or 3;

or R⁵ is C₂₋₆alkyl substituted by one or two independent substituents R¹¹;

wherein each substituent R¹¹, independently of any other R¹¹ substituent present, is: hydroxy (OH); C₁₋₆alkoxy; phenyloxy; benzyloxy; -NR¹²R¹³; -NR¹⁵-C(O)R¹⁶; -NR¹⁵-C(O)-O-R¹⁶; -NR¹⁵-C(O)-NH-R¹⁵; or -NR¹⁵-SO₂R¹⁶; and wherein any

 R^{11} substituent which is OH, alkoxy or -NR $^{12}R^{13}$ is not substituted at any carbon atom, of any R^4 or R^5 substituted alkyl, which is bonded to the nitrogen of NR $^4R^5$:

or R^5 is -(CH₂)_n¹¹-C(0)R¹⁶; -(CH₂)_n¹¹-C(0)NR¹²R¹³; -CHR¹⁹-C(0)NR¹²R¹³; -(CH₂)_n¹²-C(0)OR¹⁶; -CHR¹⁹-C(0)OR¹⁶; -(CH₂)_n¹²-SO₂-NR¹²R¹³; -(CH₂)_n¹²-SO₂R¹⁶; or -(CH₂)_n¹²-CN; wherein n¹¹ is 0, 1, 2, 3 or 4 and n¹² is 1, 2, 3 or 4:

or R^5 is -(CH₂)_n¹³-Het wherein n^{13} is 0, 1, 2, 3 or 4 and Het is a 4-, 5-, 6- or 7-membered saturated or partly-saturated heterocyclic ring containing one or two ring-hetero-atoms independently selected from O, S, and N; wherein any ring-hetero-atoms present are not bound to the -(CH₂)_n¹³- moiety when n^{13} is 1 and are not bound to the nitrogen of NR^4R^5 when n^{13} is 0; wherein any ring-nitrogens which are present and which are not unsaturated (i.e. which do not partake in a double bond) are present as NR^{17} where R^{17} is as defined herein; and wherein one or two of the carbon ring-atoms independently are optionally substituted by C_{1-2} alkyl:

or R^5 is phenyl optionally substituted with one or two of: a halogen atom; C1_4alkyl; C1_2fluoroalkyl; C1_2fluoroalkoxy; C1_2alkyl-slop-ind (C1_2alkyl-sO2-); C1_2alkyl-sO2-NH-; R^7R^8N-sO2-; R^7R^8N-CO-; -NR^{15}-C(O)R^{16}; R^7R^8N, OH; C1_4alkoxymethyl; C1_4alkoxyethyl; C1_2alkyl-sO2-CH2-; cyano (CN); or phenyl optionally substituted by one or two of fluoro, chloro, C1_2alkyl, C1_fluoroalkyl, C1_2alkoxy or C1_fluoroalkyl, C1_2alkoxy or C1_fluoroalkyl, C1_2alkoxy or C1_fluoroalkoxy;

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently a hydrogen atom (H); C_{1-4} alkyl; C_{3-6} cycloalkyl; or phenyl optionally substituted by one or two of: fluoro, chloro, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; or \mathbb{R}^7 and \mathbb{R}^8 together are $-(CH_2)_n^6$ - or -C(O)- $-(CH_2)_n^7$ - or -C(O)- $-(CH_2)_n^7$ --(CO)- or $-(CH_2)_n^8$ - $-(CH_2)_n^9$ - or $-(CH_2)_n^7$ - $-(CH_2)_n$

or R5 has the sub-formula (x), (y) or (z):

$$(CH_2)_n$$
 $(CH_2)_r$
 $(CH_2)_r$

wherein in sub-formula (x), n = 1 or 2; in sub-formula (y), m = 1 or 2; and in sub-formula (z), r = 0, 1 or 2;

wherein in sub-formula (x) and (y), none, one or two of A, B, D, E and F are nitrogen; and the remaining of A, B, D, E and F are independently CH or CR⁶;

where R^6 is a halogen atom; C_{1-4} alkyl; C_{1-4} fluoroalkyl; C_{1-4} alkoxy; C_{1-2} fluoroalkoxy; C_{1-2} alkyl-sO₂-); C_{1-2} alkyl-sO₂-NH-; R^7R^8 N-SO₂-; R^7R^8 N-CO-; -NR¹⁵-C(O)R¹⁶; R^7R^8 N; OH; C_{1-4} alkoxymethyl; C_{1-2} alkyl-SO₂-CH₂-; evano (CN); or phenyl optionally substituted by one or two of fluoro, chloro, C_{1-2} alkyl, C_{1} fluoroalkoxy; wherein R^7 and R^8 are as herein defined;

wherein in sub-formula (z), G is O or S or NR^9 wherein R^9 is a hydrogen atom (H), C_{1_4alkyl} or $C_{1_4Horoalkyl}$; none, one, two or three of J, L, M and Q are nitrogen; and the remaining of J, L, M and Q are independently CH or CR^6 where R^6 is as defined herein;

or R^4 and R^5 taken together are –(CH2) $_p$ 1– or -C(O)-(CH2) $_p^2$ -or -(CH2) $_p^3$ -X5-(CH2) $_p^4$ - or -C(O)-X5-(CH2) $_p^5$ -, in which: $_p^1$ = 3, 4, 5 or 6, $_p^2$ is 2, 3, 4, or 5, and $_p^3$ and $_p^4$ and $_p^5$ independently are 2 or 3 and X5 is O or NR17; wherein $_p^4$ is a hydrogen atom (H); $_{1_4}$ alkyl; $_{1_2}$ fluoroalkyl; $_{1_2}$ fluoroalkyl; $_{1_3}$ 6-(CO)NR12 $_{1_4}$ 8-C(O)NR12 $_{1_$

and wherein, when R^4 and R^5 taken together are $-(CH_2)_p 1$ — or $-C(O)-(CH_2)_p^{2-}$, the NR^4R^5 heterocycle is optionally substituted by one R^{18} substituent wherein R^{18} is: C_{1-4} alkyl; C_{1-2} fluoroalkyl; C_{3-6} cycloalkyl; C_{1-2} alkoxy (not substituted at a ring-carbon bonded to the NR^4R^5 ring-nitrogen); C_1 fluoroalkoxy (not substituted at a ring-carbon bonded to the NR^4R^5 ring-nitrogen); $-(CH_2)_p^{7-}$ C(O) R^{16} wherein p^7 is 0, 1, 2 or 3; $-(CH_2)_p^{7-}$ C(O) R^{16} ; $-(CH_2)_p^{7-}$ CO(O) R^{16} ; $-(CH_2)_p^{7-}$ CO(O) $R^{12}R^{13}$; $-(CH_2)_p^{7-}$ NR $^{15}C(O)R^{16}$; $-(CH_2)_p^{7-}$ NR $^{15}C(O)NR^{12}R^{13}$; $-(CH_2)_p^{7-}$ NR $^{15}C(O)OR^{16}$; $-(CH_2)_p^{7-}$ OP, $-(CH_2)_p$

or R^4 and R^5 taken together are $-(CH_2)_p^{1-}$ or $-C(O)-(CH_2)_p^{2-}$ or $-(CH_2)_p^{3}-X^5-(CH_2)_p^{4-}$ or $-C(O)-X^5-(CH_2)_p^{5-}$ as defined herein, and wherein the NR^4R^5 heterocycle is fused to a phenyl ring optionally substituted on the phenyl by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; and

 R^{5a} is C_{1-8} alkyl; C_{1-8} fluoroalkyl; C_{3-8} cycloalkyl; phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy or trifluoromethoxy; or R^{5a} has the sub-formula (x), (y) or (z) as defined herein

and wherein:

 R^{12} and R^{13} independently are H; C_{1-5} alkyl; C_{3-6} cycloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

or R^{12} and R^{13} together are -(CH₂) $_n^6$ - or -C(O)-(CH₂) $_n^7$ - or -C(O)-(CH₂) $_n^7$ -C(O)-or -(CH₂) $_n^8$ -X¹²-(CH₂) $_n^9$ - or -C(O)-X¹²-(CH₂) $_n^{10}$ - in which: n^6 is 3, 4, 5 or 6, n^7 is 2, 3, 4, or 5, n^8 and n^9 and n^{10} independently are 2 or 3 and X¹² is O or NR¹⁴ wherein R^{14} is H or C₁₋₂alkyl;

 R^{15} is a hydrogen atom (H); C_{1-4} alkyl; C_{3-6} eyeloalkyl; or phenyl optionally substituted by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy;

 R^{16} is C_{1-4} alkyl; C_{3-6} cycloalkyl; pyridinyl; or phenyl optionally substituted by one or two of: a halogen atom, C_{1-2} alkyl, C_{1} fluoroalkyl, C_{1-2} alkoxy or C_{1} fluoroalkoxy; and

 R^{19} is a hydrogen atom (H); C_{1-4} alkyl; $-(CH_2)_n^{20}$ - OR^{20} wherein n^{20} is 1, 2, 3 or 4 and R^{20} is a hydrogen atom (H) or C_{1-4} alkyl; -CH(Me)-OH; $-CH_2$ -SH; $-CH_2$ - CH_2 -S-Me; benzyl; or (4-hydroxyphenyl)methyl (i.e. 4-hydroxy-benzyl);

provided that:

when R^3 is the heterocyclic group of sub-formula (bb), n^1 is 1, and Y is NR¹⁰, then: either (a) R^{10} is not $C_{1.2}$ alkyl, $C_{1.2}$ fluoroalkyl or $CH_2C(O)NH_2$;

or (b) \mathbb{R}^{10} is methyl and the compound is: 1-ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide or 1-ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide:

and provided that: where X is OR^{5a} , the compound is other than the compound wherein R^1 is methyl, X is OEt, and R^3 is cyclopentyl.

- 4. A compound or salt as claimed in claim 1 or 3, wherein \mathbb{R}^2 is a hydrogen atom (H).
- 5. A compound or salt as claimed in claim 1, 2, 3 or 4, wherein \mathbb{R}^1 is C_{1-3} alkyl, C_{1-2} fluoroalkyl or -CH2CH2OH.
- A compound or salt as claimed in any preceding claim, wherein R¹ is ethyl, n-propyl, C₂fluoroalkyl or -CH₂CH₂OH.
- A compound or salt as claimed in any preceding claim, wherein R¹ is ethyl.
- A compound or salt as claimed in any preceding claim, wherein in R³ there is one substituent or no substituent.
- A compound or salt as claimed in any preceding claim, wherein, where R³ is
 optionally substituted C₃₋₈cycloalkyl, then R³ is not optionally substituted
 C₅cycloalkyl, i.e. it is not optionally substituted cyclopentyl.
- 10. A compound or salt as claimed in claim 9, wherein, where R^3 is optionally substituted C_{3-g} cycloalkyl, then R^3 is optionally substituted C_{6-g} cycloalkyl.
- 11. A compound or salt as claimed in claim 9, wherein, where R^3 is optionally substituted C_{3-8} ecycloalkyl, then R^3 is optionally substituted cyclohexyl.
- 12. A compound or salt as claimed in any preceding claim, wherein, where R^3 is optionally substituted C_{3-8} eycloalkyl, then the one or two optional substituents is or independently are: oxo (=0); OH; NHR 21 wherein R^{21} is a hydrogen atom (H); methyl; -CH₂F; -CHF₂; -C(O)OR 23 wherein R^{23} is H; fluoro; hydroxyimino (=N-OH); or (C₁₋₂alkoxy)imino (=N-OR 26 where R^{26} is C_{1-2} alkyl).
- 13. A compound or salt as claimed in any preceding claim, wherein, where R³ is optionally substituted C₃-geyeloalkyl, then the one or two optional substituents is or independently are OH, oxo (=O) or hydroxyimino (=N-OH).
- 14. A compound or salt as claimed in any preceding claim, wherein, where R³ is optionally substituted C₃₋₈cycloalkyl, then the one or two optional substituents if present is or are substituent(s) at the 3-, 4- or 5- position(s) of the R³ cycloalkyl ring,

(wherein the 1-position of the R³ cycloalkyl ring is deemed to be the connection point to the -NH- in formula (I) or (IA) or (IB)).

- 15. A compound or salt as claimed in any preceding claim, wherein, where R³ is optionally substituted C₆cycloalkyl, then R³ is cyclohexyl (i.e. unsubstituted), 3-hydroxy-cyclohexyn (i.e. 3-hydroxycyclohexan-1-yl), 4-(ox-cyclohexyl (i.e. 4-ox-cyclohexyl (i
- 16. A compound or salt as claimed in any preceding claim, wherein, where R³ is optionally substituted mono-unsaturated-C5_7cycloalkenyl, then R³ is optionally substituted mono-unsaturated-C6cycloalkenyl (i.e. optionally substituted mono-unsaturated-cyclohexenyl), and wherein the R³ cycloalkenyl is optionally substituted with one or two substituents being fluoro or methyl.
- 17. A compound or salt as claimed in any preceding claim, wherein, where R³ is the heterocyclic group of sub-formula (aa), (bb) or (cc), then Y is O, S, SO₂, NH or N-C(O)methyl.
- A compound or salt as claimed in any preceding claim, wherein, where R³ is the heterocyclic group of sub-formula (aa), (bb) or (cc), then Y is O.
- 19. A compound or salt as claimed in any preceding claim, wherein \mathbb{R}^{10} is a hydrogen atom (H) or C(O)methyl.
- 20. A compound or salt as claimed in any preceding claim, wherein where \mathbb{R}^3 is the heterocyclic group of sub-formula (aa), (bb) or (cc), then \mathbb{R}^3 is the heterocyclic group of sub-formula (bb) and \mathbb{n}^1 is 1.
- 21. A compound or salt as claimed in any preceding claim, wherein, in \mathbb{R}^3 , the heterocyclic group of sub-formula (aa), (bb) or (cc) is unsubstituted (wherein, where Y is $\mathbb{N}\mathbb{R}^{10}$, \mathbb{R}^{10} is not classified as a substituent).
- 22. A compound or salt as claimed in any of claims 1 to 20, wherein, in the R³ heterocyclic group of sub-formula (aa), (bb) or (cc), the one or two optional substituents is or are oxo (=0).
- A compound or salt as claimed in any preceding claim, wherein when R³ is the heterocyclic group of sub-formula (aa) then Y is O, S, SO₂ or NH. and
- when \mathbb{R}^3 is the heterocyclic group of sub-formula (bb) and Y is NR¹⁰, then \mathbb{R}^{10} is not $C_{1\text{-}4}$ alkyl, $C_{1\text{-}2}$ fluoroalkyl or CH₂C(O)NH₂.

- 24. A compound or salt as claimed in any preceding claim, wherein, where R^3 is a bicyclic group of sub-formula (dd) or (ee), then R^3 is of sub-formula (ee) wherein Y^1 , Y^2 and Y^3 are all CH₂.
- 25. A compound or salt as claimed in any preceding claim, wherein NHR³ is of sub-formula (a), (a1), (b), (c), (c 1), (c 2), (c 3), (c 4), (c 5), (c 6), (c 7), (d), (e), (f), (g), (g1), (g2), (g3), (g4), (h), (i), (j), (k), (k1), (L), (m), (m1), (m2), (m3), (m4), (m5), (n), (o), (o1), (o2), (o3), (o4), (o5), (p), (p1), (p2), (p3), (p4), (p5), (p6), (p7), (p8) or (q):

- A compound or salt as claimed in claim 25, wherein NHR3 is of sub-formula 26 (e), (c1), (c2), (c3), (c4), (c5), (c6), (c7), (d), (e), (f), (g1), (g4), (h), (i), (i), (k), (k1), (L), (m), (m1), (m2), (m3), (m5), (n), (o), (o1), (o2), (o3), (o4), (o5), (p), (p2), (p3), (p5), (p6), (p7) or (q).
- A compound or salt as claimed in claim 25, wherein NHR3 is of sub-formula 27. (c), (d), (e), (f), (g1), (h), (i), (j), (k), (m), (m1), (n), (o), (o1), (p), or (q).
- A compound or salt as claimed in claim 26 or 27, wherein NHR3 is of sub-28. formula (c), (c1), (c4), (c5), (h), (i), (j), (k), (m1), (m2), (n), (o), (o2), (o3), (p2), (p5), (p6) or (q).
- A compound or salt as claimed in claim 26 or 27, wherein NHR3 is of sub-29. formula (c), (h), (k), (n), (o) or (o2).
- A compound or salt as claimed in claim 25, wherein R3 is tetrahvdro-2H-30. pyran-4-vl; that is NHR3 is of sub-formula (h).
- A compound or salt as claimed in any preceding claim, wherein X is NR4R5. 31.
- A compound or salt as claimed in any preceding claim, wherein R4 is a 32. hydrogen atom (H), C₁₋₄alkyl, -(CH₂)_n³-OH or -(CH₂)_n³-NR¹²R¹³ wherein n³ is 2 and R12 and R13 independently are H or C1 alkyl.
- A compound or salt as claimed in any preceding claim, wherein R4 is a 33. hydrogen atom (H).
- A compound or salt as claimed in any preceding claim, wherein R⁵ is: 34. C₁₋₈alkyl;

C1_3fluoroalkyl;

C3_scycloalkyl (unsubstituted);

unsubstituted -(CH2)n4-C5-6cycloalkyl wherein n4 is 1 or 2;

-(CH2)_n5-R¹¹ wherein n⁵ is 2 or 3, and each substituent R¹¹, independently of any other R^{11} substituent present, is $C_{1\text{--}4}$ alkoxy, -NR¹⁵-C(O)-NH-R¹⁵, or -NR15-SO2R16, and any R11 substituent which is alkoxy is not substituted at any carbon atom, of the R5 substituted alkyl, which is bonded to the nitrogen of NR4R5;

-(CH2), 11-C(O)R16; -(CH2), 12-C(O)NR12R13; -(CH2), 12-C(O)OR16; -(CH₂)_n12-SO₂-NR¹²R¹³; -(CH₂)_n12-SO₂R¹⁶; or -(CH₂)_n12-CN wherein n¹¹ is 1 or 2 and n¹² is 1 or 2.

- 264 -

- 35. A compound or salt as claimed in any of claims 1 to 33, wherein \mathbb{R}^5 is $-(CH_2)_n$ 13-Het, n13 is 0, 1 or 2, and Het is a 5- or 6-membered saturated heterocyclic rine.
- 36. A compound or salt as claimed in any of claims 1 to 33, wherein \mathbb{R}^5 is phenyl optionally substituted with, independently, one or two of: a halogen atom; \mathbb{C}_{1-2} alkyl; \mathbb{C}_{1-2} alkuoroalkyl; \mathbb{C}_{1-2} alkoxy; trifluoromethoxy; \mathbb{C}_{1-2} alkylsulphonyl (\mathbb{C}_{1-2} alkyl-SO₂-); \mathbb{C}_{1-2} alkyl-SO₂-NH-; \mathbb{R}^7 R⁸N-SO₂-; \mathbb{R}^7 R⁸N-CO-; -NR¹⁵-C(O)R¹⁶; \mathbb{R}^7 R⁸N, OH; \mathbb{C}_{1-2} alkoxymethyl; \mathbb{C}_{1-2} alkyl-SO₂-CH₂-; cyano (CN); or phenyl optionally substituted by one of fluoro, \mathbb{C}_{1-2} alkyl, \mathbb{C}_{1} fluoroalkyl, \mathbb{C}_{1-2} alkoxy or \mathbb{C}_{1} fluoroalkoxy.
- 37. A compound or salt as claimed in claim 35, wherein R^5 is phenyl optionally substituted with one or two of: a halogen atom, C_{1-2} alkyl, trifluoromethyl, C_{1-2} alkoxy, trifluoromethoxy, R^7R^8N -SO₂-, R^7R^8N -CO-, or C_{1-2} alkyl-SO₂-CH₂-.
- 38. A compound or salt as claimed in any of claims 1 to 33, wherein R⁵ has the sub-formula (x) or (y) or (y1) or (z).
- 39. A compound or salt as claimed in any of claims 1 to 33, wherein \mathbb{R}^5 has the sub-formula (x).
- 40. A compound or salt as claimed in any preceding claim, wherein n=1, m=1, and r=1.
- 41. A compound or salt as claimed in any preceding claim, wherein, in sub-formula (x), (y) and/or (y1): none, one or two of A, B, D, E and F are nitrogen; none, one, two or three of A, B, D, E and F are CR⁶; and the remaining of A, B, D, E and F are CH.
- 42. A compound or salt as claimed in claim 41, wherein, in sub-formula (x), (y) and/or (y1), none or one of A, B, D, E and F are nitrogen.
- 43. A compound or salt as claimed in any preceding claim, wherein in subformula (x), (y), (y1) and/or (z), each R⁶, independently of any other R⁶ present, is a fluorine, chlorine, bromine or iodine atom, methyl, ethyl, n-propyl, isopropyl, C4alkyl, trifluoromethyl, -CH2OH, methoxy, ethoxy, C1fluoroalkoxy, OH, C1-3alkylS(O)2-, C1-3alkylS(O)2-, C1-3alkylS(O)2-, CONH2, -CONHMe, -CO2H, cyano (CN), NMe2, t-butoxymethyl, or C1-3alkylS(O)2-CH2-.
- 44. A compound or salt as claimed in claim 43, wherein in sub-formula (x), (y), (y1) and/or (z), each R⁶, independently of any other R⁶ present, is a fluorine, chlorine

or bromine atom, methyl, ethyl, n-propyl, isopropyl, trifluoromethyl, -CH₂OH, methoxy, difluoromethoxy, methylsulphonyl, methyl-SO₂-NH- or methyl-SO₂-CH₂-.

- 45. A compound or salt as claimed in any preceding claim, wherein R⁵ is of subformula (x) and is: benzyl, (monoalkyl-phenyl)methyl, [mono(fluoroalkyl)-phenyl)methyl, (monohalo-phenyl)methyl, (monoalkoxy-phenyl)methyl, [mono(fluoroalkoxy-phenyl)methyl, [mono(fluoroalkoxy-phenyl)methyl, [mono(methyl-SO2-NH-)-phenyl]methyl, [mono(methyl-SO2-phenyl)methyl, (dialkyl-phenyl)methyl, (monoalkyl-monohalo-phenyl)methyl, [mono(fluoroalkyl-monohalo-phenyl)methyl, (dihalo-monoalkyl-phenyl)methyl, (dihalo-monohalo-phenyl)methyl, (dihalo-monohalo-ph
- 46. A compound or salt as claimed in claim 45, wherein R5 is: (monoC1_3alkyl-phenyl)methyl; (monoC1_fluoroalkyl-phenyl)methyl; (monoC1_2alkoxy-phenyl)methyl; (monoC1_2alkoxy-phenyl)methyl; (diC1_2alkyl-phenyl)methyl; (monoC1_2alkyl-monohalo-phenyl)methyl; (dihalo-monoC1_2alkyl-phenyl)methyl; of [dihalo-mono(hydroxymethyl)-phenyl)methyl.
- 47. A compound or salt as claimed in claim 46, wherein R⁵ is: (4-C1_3alkyl-phenyl)methyl; (4-C1_fluoroalkyl-phenyl)methyl; (4-C1_2alkoxy-phenyl)methyl; (4-C1_fluoroalkoxy-phenyl)methyl; (3,4-dimethyl-phenyl)methyl; (2,4-dimethyl-phenyl)methyl; (3,5-dimethyl-phenyl)methyl; (2,5-dimethyl-phenyl)methyl; (2,5-dimethyl-phenyl)methyl; (2-methyl-4-chloro-phenyl)methyl; (2-methyl-4-chloro-phenyl)methyl; (2,4-difluoro-phenyl)methyl; (2,4-difluoro-phenyl)methyl; (3,4-dichloro-phenyl)methyl; (4-chloro-2-fluorophenyl)methyl; (3,4-dichloro-phenyl)methyl; (2,4-dichloro-phenyl)methyl; (2,3-dichloro-phenyl)methyl; (2,4-dichloro-6-methyl-phenyl)methyl; or [2,3-dichloro-6-(hydroxymethyl)-phenyl)methyl; or [2,3-dichloro-6-(hydroxymethyl)-phenyl]methyl;
- 48. A compound or salt as claimed in any of claims 1 to 44, wherein R⁵ has the sub-formula (z), r is 1, none or one of J, L, M or Q is CR⁶, and if one of J, L, M or Q is CR⁶ then R⁶ is methyl or C1fluoroalkyl, and R⁹ is a hydrogen atom (H) or methyl.
- 49. A compound or salt as claimed in claim 1, which is:

Ethyl 4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,
Ethyl 4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,
Ethyl 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,
Ethyl 4-{(1-acetylpiperidin-4-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,

Ethyl 1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,

Ethyl 1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 1-ethyl-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,

Ethyl 1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate.

Ethyl 1-ethyl-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,

Ethyl 4-(cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,

 $\label{lem:eq:condition} Ethyl \ 4-[(1,1-{\rm dioxidotetrahydrothien-3-yl}) a mino]-1-ethyl-1 H-pyrazolo [3,4-b] pyridine-5-carboxylate,$

Ethyl 4-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,

N-Benzyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-Cyclopentyl-4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-N-cyclopentyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-(Cyclonexylamino)-N-cyclopenyl-1-cutyl-111-pynazolo[-3, -6]pynidine-5carboxamide.

 $\label{lem:condition} $$4-[(1-Acetylpiperidin-4-yl)amino]-N-cyclopentyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$

N-Cyclopentyl-1-ethyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrazolo[3,4-b]pyridin-4-amine,
N-Cyclohexyl-1-ethyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrazolo[3,4-b]pyridin-4-amine,
1-Ethyl-5-(pyrrolidin-1-ylcarbonyl)-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-b]pyridin-4-amine,

4-(Cyclopentylamino)-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

4-(Cyclohexylamino)-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-N-(pyridin-4-ylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-carboxamide,

4-(Cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-Benzyl-4-(cyclopentylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-Benzyl-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-[(1-Acetylpiperidin-4-yl)amino]-N-benzyl-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-(Cyclopentylamino)-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

4-(Cyclohexylamino)-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-N-(2-ethylbutyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

- 1- Ethyl-N-(2-ethylbutyl)-4-[(1-methylpiperidin-4-yl)amino]-1 H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(2-ethylbutyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclopentylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- l-Ethyl-N-(4-fluorophenyl)-4-[(1-methylpiperidin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclopentylamino)-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-n-propyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1-Acetylpiperidin-4-yl)amino]-1-ethyl-N-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b)pyridine-5-carboxamide,
- N-Benzyl-4-(cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-4-(cyclohexylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclopentylamino)-N-(2-ethylbutyl)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-N-(2-ethylbuty)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-(2-Ethylbutyl)-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- $\label{lem:condition} \mbox{4-(Cyclopentylamino)-N-(4-fluorophenyl)-1-methyl-1H-pyrazolo[3,4-b]} pyridine-5-carboxamide,$
- $\label{lem:cyclohexylamino} \mbox{-N-(4-fluorophenyl)-1-methyl-1H-pyrazolo[3,4-b]} pyridine-5-carboxamide,$
- $\label{eq:N-(4-Fluorophenyl)-1-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 4-(Cyclopentylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- $\label{lem:condition} 4-[(1-Acetylpiperidin-4-yl)amino]-N-benzyl-1-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 1-Ethyl-N-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N,N-dimethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

- 268 -
- 1-Ethyl-N-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-isopropyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-1-ethyl-4-[(3S)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-1-ethyl-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-1-ethyl-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-4-(cyclopropylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-Benzyl-4-[(1,1-dioxidotetrahydrothicn-3-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-Benzyl-4-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-1-ethyl-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- $1- Ethyl-N-(4-fluorophenyl)-4-[(3S)-tetrahydrofuran-3-ylamino]-1 \\H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 1-Ethyl-N-(4-fluorophenyl)-4-[(3R)-tetrahydrofuran-3-ylamino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-thiopyran-4-ylamino)-1H-pyrazolo[3,4-blpvridine-5-carboxamide.
- 1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydrothien-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclopropylamino)-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- $\label{lem:condition} $$4-[(1,1-Dioxidotetrahydrothien-3-yl)amino]-1-ethyl-N-(4-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- $1\hbox{-Ethyl-}N\hbox{-}[4-(methylsulfonyl)benzyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 1-Ethyl-*N*-[3-(methylsulfonyl)benzyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-5-{[5-methoxy-6-(trifluoromethyl)-2,3-dihydro-1*H*-indol-1-yl]carbonyl}-*N*-tetrahydro-2*H*-pyran-4-yl-1*H*-pyrazolo[3,4-*b*]pyridin-4-amine,
- N-[(5-Chloropyridin-2-yl)methyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- N-(4-Chlorobenzyl)-1-ethyl-N-isopropyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- N-(3-Chlorobenzyl)-1-ethyl-N-(2-hydroxyethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3.4-*b*]pyridine-5-carboxamide.
- 1- Ethyl-N-[(5-methyl-3-phenylisoxazol-4-yl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 269 -

- N-(2-tert-Butoxyethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-(1,3-thiazol-2-ylmethyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-(pyrimidin-4-ylmethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3.4-*h*]pyridine-5-carboxamide.
- 1-Ethyl-N-[(2-methyl-1,3-thiazol-4-vl)methyl]-4-(tetrahydro-2H-pyran-4-vlamino)-
- 1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide, *N*-[3-(*tert*-Butoxymethyl)benzyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-
- pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{2-[methyl(methylsulfonyl)amino]ethyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-(pyrazin-2-ylmethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-5-{[4-(pyridin-2-ylcarbonyl)piperazin-1-yl]carbonyl}-*N*-tetrahydro-2*H*-pyran-4-yl-1*H*-pyrazolo[3,4-*b*]pyridin-4-amine.
- N-(2-Chloro-6-fluorobenzyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-[(6-oxo-1,6-dihydropyridin-3-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- N-[3-(Aminocarbonyl)benzyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{4-[(methylamino)carbonyl]phenyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-[2-(1-methyl-1*H*-imidazol-4-yl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- N-{2-[(Anilinocarbonyl)amino]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-*N*-(1*H*-tetraazol-5-ylmethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-[2-(1*H*-1,2,4-triazol-1-yl)ethyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-[4-(trifluoromethyl)phenyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- tert-Butyl 4-({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
- b]pyridin-5-yl]carbonyl}amino)piperidine-1-carboxylate,
- 1-Ethyl-*N*-{3-[(methylsulfonyl)amino]propyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- N-[2-(Dimethylamino)benzyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3.4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-[(1-ethylpyrrolidin-2-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*h*]pyridine-5-carboxamide.
- 1-Ethyl-*N*-(tetrahydrofuran-2-ylmethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-ethyl-*N*-tetrahydro-2*H*-pyran-4-yl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- $N-\{4-[(Dimethylamino)sulfonyl]benzyl\}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 1-Ethyl-N-{3-[(methylsulfonyl)amino]benzyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,

- 270 -

- 1-Ethyl-N-(4-methoxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[3-(2-oxopyrrolidin-1-yl)propyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(1-methylpyrrolidin-2-yl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-(pyridin-3-ylmethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-*N*-(1-methylpiperidin-4-yl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- 1-Ethyl-N-(1-ethylpropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-(2-piperidin-1-ylethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-(3-morpholin-4-ylpropyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- N-(3-Ethoxypropyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(Cyclohexylmethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[3-(Dimethylamino)propyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-neopentyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-ethyl-N-(4-methoxybenzyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{2-[(phenylsulfonyl)amino]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[2-(Acetylamino)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-{2-[(methylsulfonyl)amino]ethyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-{2-[(2-methoxyphenyl)(methyl)amino]ethyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-(2-oxo-2-phenylethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1H-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- N-(2,5-Difluorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-[4-(trifluoromethyl)benzyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- N,1-Diethyl-N-propyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-Cyclopropyl-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(2-amino-2-oxoethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-(3-methoxyphenyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- $N\mbox{-}(3,4\mbox{-Diffuorobenzyl})\mbox{-}1\mbox{-ethyl-}4\mbox{-}(tetrahydro\mbox{-}2H\mbox{-pyran-}4\mbox{-ylamino})\mbox{-}1H\mbox{-pyrazolo}[3,4\mbox{-}b]pyridine\mbox{-}5\mbox{-carboxamide,}$

- 271 -

- Ethyl 3-({[1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl]carbonyl}amino)propanoate,
- N-(1-Benzylpiperidin-4-yl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- N-Butyl-4-{[1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridin-5-yllcarbonyl}piperazine-1-carboxamide.
- 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-(1,3,4-thiadiazol-2-yl)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide, N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide,

 1-Ethyl-N-[2-(2-oxoimidazolidin-1-y]bethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(3,4-Dimethoxybenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(3-Chlorobenzyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-5-[(4-methylpiperazin-1-yl)carbonyl]-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-b]pyridin-4-amine,
- 1-Ethyl-*N*-(2-hydroxyethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-5-{[4-(4-methoxyphenyl)piperazin-1-yl]carbonyl}-N-tetrahydro-2H-pyran-4-yl-1H-pyrazolo[3,4-b]pyridin-4-amine,
- 1-Ethyl-N-{4-[(methylsulfonyl)methyl]phenyl}-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- N-[3-(dimethylamino)-3-oxopropyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(1-methyl-1*H*-imidazol-5-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-{4-[(methylamino)sulfonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-
- 1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide, *N*-(2-Cyanoethyl)-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-[(1-methyl-1*H*-pyrazol-4-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-N-methyl-N-[(1-methyl-1*H*-imidazol-2-yl)methyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-*N*-(2-thien-2-ylethyl)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-[2-(4-Chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 1-Ethyl-*N*-[2-(2-methoxyphenyl)ethyl]-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3.4-*h*]pyridine-5-carboxamide.
- Ethyl 4-(cyclohexylamino)-1-(3-ethoxy-3-oxopropyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate,
- Ethyl 1-n-propyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate.
- Ethyl 1-(2-hydroxyethyl)-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylate,
- $\label{eq:N-4-def} $$N-[4-(Methylsulfonyl)benzyl]-1-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$

- 272 -

- N-(4-Fluorophenyl)-1-n-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- Ethyl 1-ethyl-6-methyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylate,
- Ethyl 4-(cyclohexylamino)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate,
- 4-(Cyclohexylamino)-1-ethyl-6-methyl-N-[4-(methylsulfonyl)benzyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- N-Benzyl-4-(cyclohexylamino)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-*N*-(4-fluorophenyl)-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-6-methyl-*N*-[4-(trifluoromethyl)benzyl]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-N-(2,3-dihydro-1*H*-inden-2-yl)-1-ethyl-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-earboxamide,
- N-Benzyl-1-ethyl-6-methyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Benzyl-1-ethyl-4-[(2-oxoazepan-3-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-Benzyl-1-ethyl-4-[(3-hydroxycyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-Benzyl-1-ethyl-4-[(4-hydroxycyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-Benzyl-1-ethyl-4-[(3-hydroxycyclopentyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- $\label{lem:nonconstraint} $$N$-Benzyl-1-ethyl-4-[(4-oxocyclohexyl)amino]-1$$H$-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 1-Ethyl-N-(2-hydroxy-1-methylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- Methyl (2S)-2-({[1-ethyl-4-(tetrahydro-2*H*-pyran-4-ylamino)-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl]carbonyl}amino)-3-hydroxypropanoate,
- Ethyl 1-ethyl -4-[(4-hydroxycyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl 1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,
- Ethyl 4-[(1-acetyl-4-piperidinyl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,
- Ethyl 4-[(4-aminocyclohexyl)amino]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, Ethyl-N-[(1-oxido-3-pyridinyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b)pyridine-5-carboxamide
- 1-Ethyl-N-[(1-oxido-2-pyridinyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[(1-oxido-4-pyridinyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(cis-4-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclobutylamino)-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cycloheptylamino)-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-4-[(4-methylcyclohexyl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 273 -

```
1-Ethyl-4-[(3-methylcyclohexyl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
```

- 1-Ethyl-4-[(1-methylcyclohexyl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1R,2R,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1R,2S,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-4-{[(3S)-2-oxo-3-pyrrolidinyl]amino}-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- opyriume-o-carooxamide, 4-[(2,5-Dioxo-3-pyrrolidinyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(1-Azaboxalnut, 4-(1-Azaboxa
- 5-carboxamide,
 1-Ethyl-4-[(1-methylcyclohexyl)amino]-N-{[4-(methylcycy)phenyl]methyl}-1H-pyrazolo[3,4-
- b]pyridine-5-carboxamide, 4-(Cyclobutylamino)-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cycloheptylamino)-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1R,2R,4S)-Bioyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3.4-b]pyridine-5-earboxamide.
- 1-Ethyl-4-[(4-methylcyclohexyl)amino]-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4-[(3-methylcyclohexyl)amino]-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- +[(1R,2S,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3.4-b]pyridine-5-carboxamide.
- 4-[(cis-4-Aminocyclohexyl)amino]-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cycloheptylamino)-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclobutylamino)-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1R,2R,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-({4-
- [(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1R,2S,4S)-Bicyclo[2.2.1]hept-2-ylamino]-1-ethyl-N-({4-
- [(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4-[(3-methylcyclohexyl)amino]-N-({4-[(methylsulfonyl)amino]phenyl} methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4-[(1-methylcyclohexyl)amino]-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(cis-4-Aminocyclohexyl)amino]-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cycloheptylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclobutylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 274 -

N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(3-methylcyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

WO 2004/024728

- $\label{eq:normalized} $$N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(4-methylcyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 4-[(1R,2R,4S)-Bicyclo[2.2.1]hept-2-ylamino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1R,2S,4S)-Bicyclo[2.2.1]hept-2-ylamino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(1-methylcyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(cis-4-Aminocyclohexyl)amino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b)pyridine-5-carboxamide.
- 1-Ethyl-N-{4-[(methylsulfonyl)methyl]phenyl}-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(2,4-Dimethylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(3,4-Dimethylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(3,4-Dichlorophenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- b]pyridine-5-carboxamide, 1-Ethyl-N-{[4-(methyloxy)phenyl]methyl}-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-
- b]pyridine-5-carboxamide, 1-Ethyl-N-([4-[(methylsulfonyl)amino]phenyl}methyl)-4-[(4-oxocyclohexyl)amino]-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide, N-{[4-(Dimethylamino)phenyl]methyl}-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide, N-(4-[(Difluoromethy))oxy]phenyl}methyl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1Hpyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4-[(4-oxocyclohexyl)amino]-N-{[4-(trifluoromethyl)phenyl]methyl}-1Hpyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo]3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(4-fluor ophenyl)-4-[(4-oxocyclohexyl)amino]-1 H-pyrazolo[3,4-b] pyridine-5-carboxamide.
- 1-Ethyl-4-[(4-oxocyclohexyl)amino]-N-(2-pyridinylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate.
- N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(1-Acetyl-4-piperidinyl)-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N,1-Diethyl-4-[(4-oxocyclohexyl)amino]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide
- 1-Ethyl-4-[(4-oxocyclohexyl)amino]-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-({4-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-N-{[4-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{4-[(methylsulfonyl)methyl]phenyl}-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 1-Ethyl-N-(4-fluorophenyl)-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-(2-pyridinylmethyl)-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate.

WO 2004/024728

- N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-blpvridine-5-carboxamide.
- N-(1-Acetyl-4-piperidinyl)-1-ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- 1-Ethyl-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- pyrazolo[3,4-b]pyridine-5-carboxamide, N,1-Diethyl-4-(tetrahydro-2H-pyran-3-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4-(tetrahydro-2H-pyran-3-ylamino)-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- 4-[(4,4-Difluorocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-4-[(4-fluoro-3-cyclohexen-1-yl)amino]-N-(phenylmethyl)-1H-pyrazolo[3,4-blpvridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-
- b]pyridine-5-carboxamide,
 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(3,4-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-blbyridine-5-carboxamide.
- opyriome-5-carboxamide, 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-[(3-fluorophenyl)methyl]-1H-pyrazolo[3,4-blovridine-5-carboxamide.
- olpyridine-3-carboxamide, 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(3,4-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-blbyridine-5-carboxamide.
- 5-pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-{[3-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- harderyl-4-piperidinyl)amino]-1-ethyl-N-{[4-(trifluoromethyl)phenyl]methyl}-1H-pyrazolof3.4-b]byridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(2,6-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(3-chlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-[4-(methyloxy)phenyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-({4-[(dimethylamino)sulfonyl]phenyl}methyl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-{[2-(dimethylamino)phenyl]methyl}-1-ethyl-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide, 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(2,4-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-
- b]pyridine-5-earboxamide, 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]byridine-5-earboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(2-chloro-6-fluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-({4-[(difluoromethyl)oxy]phenyl}methyl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-{[3-chloro-4-(methyloxy)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 276 -

- 4-[(1-Acetyl-4-piperidinyl)amino]-N-[(5-chloro-2-pyridinyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-(5-chloro-2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-(1,3-thiazol-2-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-l-ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-lH-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-(2,2-diphenylethyl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-({4-[(methylamino)carbonyl]phenyl}methyl)-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- http://www.hopy.nom.o-Sectoramine, 4-([1-Acetyl-4-piperidinyl)amino]-N-{[4-(aminosulfonyl)phenyl]methyl}-1-ethyl-lH-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-[(1-Acetyl-4-piperidinyl)amino]-1-ethyl-N-({3-[(methylamino)carbonyl]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-[(1-Acetyl-4-piperidinyl)amino]-N-{[4-(aminocarbonyl)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- pyramic of the proposition of th
- 1-Ethyl-N-4-piperidinyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(4-piperidinylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[1-(ethylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-{1-[(1-methylethyl)sulfonyl]-4-piperidinyl} 4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- N-[1-(Cyclopentylsulfonyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[1-(methylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{1-[(phenylmethyl)sulfonyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[1-(phenylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[1-(propylsulfonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]byridine-5-carboxamide.
- N-[1-(Cyclopropylcarbonyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[1-(3-furanylcarbonyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[1-(3,3-Dimethylbutanoyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[1-(2-ethylbutanoyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[1-(Cyclopentylacetyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[1-(2-methylpropanoyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-4-piperidinyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 277 -

- 1-Ethyl-N-(1-propanoyl-4-piperidinyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[1-(N-Acetylglycyl)-4-piperidinyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[1-(4-morpholinylacetyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- J-Ethyl-N-{1-[(4-oxocyclohexyl)carbonyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4-ylamino)-IH-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[1-(1-piperidinylacetyl)-4-piperidinyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo(3,4-blpyridine-5-carboxamide.
- 1-Ethyl-N-{1-[(1-methyl-5-oxo-3-pyrrolidinyl)carbonyl]-4-piperidinyl}-4-(tetrahydro-2H-
- $\label{eq:pyran-4-ylamino} $$ pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, $$ 1-Ethyl-N-\{1-[(3-methyl-3-oxetanyl)carbonyl]-4-piperidinyl\}-4-(tetrahydro-2H-pyran-4-piperidinyl)-4-(tetrahydro-2H-pyran-4-pyran-4-piperidinyl)-4-(tetrahydro-2H-pyran-4-pyran$
- Jamino)-IH-pyrazolo[3,4-b]pyridine-5-carboxamide,
 1-Ethyl-N-[1-[(4-fluoropheny)]acetyl]-4-piperidinyl}-4-(tetrahydro-2H-pyran-4-vlamino)-
- H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 N-([1-(3,3-b)imethylbutanoyl)-4-piperidinyl|methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-
- N-{[1-(3,3-Dimentyloutanoyl)-4-piperiamyl[methyl}-1-tethyl-4-(tetranytro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
 N-{[1-(Cyclopentylacetyl)-4-piperidinyl[methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-
- N-{[1-(Cyclopentylacetyl)-4-piperidmyl]methyl}-1-emyl-4-(tetranydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[1-(Cyclopropylcarbonyl)-4-piperidinyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-({1-[(4-oxocyclohexyl)carbonyl]-4-piperidinyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-({1-[(4-fluorophenyl)acetyl]-4-piperidinyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-({1-[(1-methyl-5-oxo-3-pyrrolidinyl)carbonyl]-4-piperidinyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- Methyl 3-[(1-ethyl-5-{[(phenylmethyl)amino]carbonyl}-1H-pyrazolo[3,4-b]pyridin-4-yl)amino]cyclohexanecarboxylate,
- 3-[(1-Ethyl-5-{[(phenylmethyl)amino]carbonyl}-1H-pyrazolo[3,4-b]pyridin-4-yl)aminolcyclohexanecarboxylic acid,
- 1-Ethyl-N-(phenylmethyl)-4-(4-piperidinylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- $Ethyl\ 1-ethyl\ 4-(\{1-\{(methyloxy)acetyl\}\ 4-piperidinyl\}\ amino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate,$
- Ethyl I-(1-methylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate.
- 4-(Cyclohexylamino)-1-ethyl-N-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(4-fluorophenyl)-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-6-methyl-N-{[4-(methylsulfonyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(2,3-Dihydro-1H-inden-2-yl)-1-ethyl-6-methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[3-(1-piperidinylcarbonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[4-(1-methylethyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(2-fluorophenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-{3-[(Dimethylamino)carbonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide,
- N-{4-[(Difluoromethyl)oxy]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 278 -

- N-{4-[Acetyl(methyl)amino]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(4-hydroxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[4-(4-morpholinyl)-2-(trifluoromethyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-4-pyridinyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{4-[(4-methyl-1-piperazinyl)carbonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(2-oxo-1-pyrrolidinyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[3-(methylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(3-[Acetyl(methyl)amino]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-{3-[(methylsulfonyl)amino]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-(4-fluoro-2-hydroxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(4-Chlorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide.
- N-(3-Chloro-2-cyanophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[3-(1-piperidinylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[2-(methylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{2-[Acetyl(methyl)amino]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[3-(4-morpholinylcarbonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-(4-Chloro-3-cyanophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(3-hydroxyphenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-(3-Chlorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[3-[(Acetylamino)methyl]-4-(methyloxy)phenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[4-(1-piperidinylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-(3-{[Cyclohexyl(methyl)amino]carbonyl}phenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(4-morpholinyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-{3-[(Acetylamino)sulfonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(3-Chloro-4-hydroxyphenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{4-[(methylsulfonyl)amino]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{3-((methylamino)carbonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 279 -

- 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[3-(trifluoromethyl)phenyl]-1H-pyrazolo[3,4-blovridine-5-carboxamide.
- 1-Ethyl-N-3-pyridinyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(3,4-Dichlorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[3-(Aminosulfonyl)-4-chlorophenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[3-(4-morpholinyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[4-(4-morpholinylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-{2-[(4-methyl-1-piperazinyl)carbonyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino). 1H-pyrazylo[3,4-b]pyridine-5-carbovamide
- ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-{2-[(Dimethylamino)carbonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- $\label{eq:pyrazolo} pyrazolo[3,4-b] pyridine-5-carboxamide, N-[2-Chloro-4-(trifluoromethyl)phenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyran-4-ylamino-1H-pyra$
- pyrazolo[3,4-b]pyridine-5-carboxamide,
 N-{2-I(Acetylamino)methyl|bhenyl}-1-cthyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- 18422-[[Accey, animo]] learly [pricary] 1-eury 144 (lea anymo-211-pyran-4-yranimo) 141-pyracolo[3,4-b] pyridine-5-carboxamide,
 N-(2-Chlorophenyl) 1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino) 1H-pyrazolo[3,4-b] pyridine-
- 5-carboxamide,
- N-(3-Chloro-2-fluorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Bthyl-N-(3-fluorophenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(2-Cyano-3-fluorophenyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide,
- 1-Ethyl-N-[4-(propylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{4-[(Dimethylamino)carbonyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[4-(methylsulfonyl)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{4-[(Acetylamino)methyl]phenyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-4 (tetrahydro-2H-pyran-3-ylamino)-HT-pyrazolo[3,4-b]pyridine-5-carboxamide, N-[2-(Aminosulfonyl)ethyl]-4 (cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-(2-Amino-2-oxoethyl)-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-{2-[(methylsulfonyl)amino]ethyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-[(1-methyl-1H-pyrazol-4-yl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-{[3-(methylsulfonyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[[3-(Aminocarbonyl)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-(tetrahydro-2-furanylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-N-({4-[(dimethylamino)sulfonyl]phenyl}methyl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 280 -

- N-[(5-Chloro-2-pyridinyl)methyl]-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-{[4-(methylsulfonyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-{[6-(methyloxy)-3-pyridinyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-{4-[(methylamino)carbonyl]phenyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-({3-[(methylamino)carbonyl]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- pyrazolo[3,4-b]pyridine-3-carooxamide, N-{[4-(Aminocarbonyl)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-
- b)pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-[(4-hydroxyphenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-blbvridine-5-carboxamide.
- $\label{lem:condition} \begin{tabular}{ll} 4-(Cyclohexylamino)-N-[(3,4-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, \end{tabular}$
- 4-(Cyclohexylamino)-1-ethyl-N-{[4-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-({3-[(methylsulfonyl)amino]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- pyramics-3-aroxamide, 4-(Cyclohexylamino)-N-[(2,5-difluorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-[(4-methylphenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-(2-{4-[(methylsulfonyl)amino]phenyl}ethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-[(2-hydroxyphenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-N-[(3,4-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-N-[(3,5-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-(2-phenylethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-1-ethyl-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1H-pyrazolo[3,4-
- 4-(Cycionexylamino)-1-ethyl-iv-(1,2,3,4-tetranydro-1-naphthatenyl)-1-n-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-{[2-(methylsulfinyl)phenyl]methyl}-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- $\frac{4-(Cyclohexylamino)-1-ethyl-N-[2-(4-hydroxyphenyl)ethyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,\\$
- N-{2-[4-(Aminosulfonyl)phcnyl]ethyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-({2-[(methylamino)carbonyl]phenyl}methyl)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide,
- $\label{lem:condition} $$4-(Cyclohexylamino)-1-ethyl-N-{[2-(methylsulfonyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- Methyl 2-[({[4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-
- yl]carbonyl}amino)methyl]benzoate,
- 4-(Cyclohexylamino)-1-ethyl-N-{2-[4-(methylsulfonyl)phenyl]ethyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[4,5-Bis(methyloxy)-2,3-dihydro-1H-inden-2-yl]-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]hyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-{[2-fluoro-3-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 281 -

- $\label{lem:condition} 4-(Cyclohexylamino)-N-[(3,4-dimethylphenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.$
- 4-(Cyclohexylamino)-1-ethyl-N-[2-(4-fluorophenyl)ethyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-[2-(4-methylphenyl)ethyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-{2-[4-(methyloxy)phenyl]ethyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-(2-pyridinylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate.
- 4-(Cyclohexylamino)-N-[(3,5-diffuorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-1-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-N-{[4-(dimethylamino)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate,
- 4-(Cyclohexylamino)-1-ethyl-N-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-{[2,4-Bis(methyloxy)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-bhyridine-5-carboxamide.
- N-[(6-Chloro-2-pyridinyl)methyl]-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-
- $\label{eq:carboxamide trifluoroacetate} S-carboxamide trifluoroacetate, N-(\{2-[Acetyl(methyl)amino]phenyl\}methyl)-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-1]-ethyl-1H$
- b]pyridine-5-carboxamide trifluoroacetate, 4-(Cyclohexylamino)-1-ethyl-N-{[4-fluoro-3-(trifluoromethyl)phenyl]methyl}-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-N-[(1R)-2,3-dihydro-1H-inden-1-yl]-1-ethyl-1H-pyrazolo[3,4-
- b]pyridine-5-carboxamide
- 4-(Cyclohexylamino)-N-[(2,6-dichlorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- Methyl 3-[({[4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoate,
- 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- Methyl 4-[({[4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-
- yl]carbonyl}amino)methyl]benzoate, 4-(Cyclohexylamino)-1-ethyl-N-(1H-tetrazol-5-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-
- 4-(Cyclohexylamino)-1-etnyl-N-(1H-terrazoi-5-ylmemyl)-1H-pyrazoio[5,4-0]pyridine-5-carboxamide,
- $\label{lem:condition} $$4-(Cyclohexylamino)-N-(\{4-[(difluoromethyl)oxy]phenyl\}methyl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 4-(Cyclohexylamino)-1-ethyl-N-[(2-methyl-1,3-thiazol-4-yl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(2-Chloro-6-fluorophenyl)methyl]-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[2-(Aminocarbonyl)phenyl]methyl}-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-
- b]pyridine-5-carboxamide, 4-(Cyclohexylamino)-N-{[2-(dimethylamino)phenyl]methyl}-1-ethyl-1H-pyrazolo[3,4-
- 4-(Cyclonexylamino)-N-{[2-(dimenylamino)phenyl]methyl}-1-ethyl-1ri-pylazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-[(4-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-{[3-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- $\label{lem:condition} $$4^{-(Cyclohexylamino)-N-[(2,6-diffuorophenyl)methyl]-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, $$$

- 282 -

- 4-(Cyclohexylamino)-1-ethyl-N-[(3-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(Cyclohexylamino)-1-ethyl-N-{[2-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(5-Chloro-2,3-dihydro-1H-inden-2-yl)-4-(cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-blpvridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-({4-[(methylamino)carbonyl]phenyl}methyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 4-(Cyclohexylamino)-1-ethyl-N-[4-(methyloxy)phenyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 4-(cyclohexylamino)-1-ethyl-N-[(6-oxo-1,6-dihydro-3-pyridinyl)methyl]-lH-pyrazolo[3,4-
- $b] pyridine-5-carboxamide, \\ 4-(Cyclohexylamino)-1-ethyl-N-(3-pyridinylmethyl)-1H-pyrazolo[3,4-b] pyridine-5-carboxamide, \\ 4-(Cyclohexylamino)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl-N-(3-pyridinylmethyl)-1-ethyl-N-(3-pyridinylmethyl-N-(3-pyridinylmethyl-N-(3-pyridinylmethyl-N-(3-pyridinylmethyl-N-(3-pyridin$
- carboxamide, 4-[({[4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-
- vllcarbonyl}amino)methyllbenzoic acid,
- 3-[({[4-(Cyclohexylamino)-1-ethyl-1H-pyrazolo[3,4-b]pyridin-5-
- yl]carbonyl}amino)methyl]benzoic acid,
- 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide hydrochloride,
- 4-(Cyclohexylamino)-N-(2,3-dihydro-1H-inden-2-yl)-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxamide methanesulphonate,
- N-({2-[(1,1-Dimethylethyl)oxy]-3-pyridinyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate,
- N-[(3-Chloro-4-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(4-Chloro-2-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-({2-[(Diffluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-({2-[(1-methylethyl)oxy]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-({3-[(1-methylethyl)oxy]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-({3-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{[4-hydroxy-3-(methyloxy)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(5-Acetyl-2-hydroxyphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-{2-[3-(trifluoromethyl)phenyl]ethyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[4-(Acetylamino)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(3-hydroxyphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[2-(3-Chlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- I_Ethyl-4-(tetralhydro-2H-pyran-4-ylamino)-N-(2-{4-[(trifluoromethyl)oxy]phenyl}ethyl)-IH-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{2-[3-(methyloxy)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[2-(4-Acetylphenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 283 -

PCT/EP2003/011814

- N-[2-(3,4-Dichlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-{2-[3-(Aminosulfonyl)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide,
- N-{2-[3,4-Bis(methyloxy)phenyl]ethyl}-I-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[2-(2,3-Dichlorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{2-[3,5-Bis(methyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-IH-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-{2-[3-methyl-4-(methyloxy)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide, N-[2-(2,6-Difluorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- N-[2-(2,6-Difluorophenyl)ethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- $N-\{2-[2,6-Bis(methyloxy)phenyl]ethyl\}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- 1-Ethyl-N-[2-(2-methylphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(3,4-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[4,5-Bis(methyloxy)-2,3-dihydro-[H-inden-2-yl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-[H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{2-[4-(Aminosulfonyl)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{[2-(methylsulfinyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-(2-phenylethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[4-(Dimethylamino)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(4-fluorophenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide.
- 1-Ethyl-N-[2-(4-methylphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blyvridine-5-carboxamide.
- N-{[3-(Aminosulfonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(4-methylphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{[4-fluoro-3-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- Methyl 2-[({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yllcarbonyl}amino)methyllbenzoate.
- N-[(6-Chloro-2-pyridinyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate,
- N-(2,3-Dihydro-1H-inden-1-yl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- $\label{eq:normalized} $$N-(\{2-[Acetyl(methyl)amino]phenyl\}$ methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$
- N-[(1S)-2,3-Dihydro-1H-inden-1-yl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(1R)-2,3-Dihydro-1H-inden-1-yl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-({3-[(methylsulfonyl)amino]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 284 -

- 1-Ethyl-N-(phenylmethyl)-N-propyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpvridine-5-carboxamide.
- N-[2-(Dimethylamino)ethyl]-1-ethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Butyl-1-ethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N,1-Diethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- 1-Ethyl-N-(1-phenyl-4-piperidinyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blvvridine-5-carboxamide.
- opyricano-3 accommon letters and the second second
- Formic acid 1-ethyl-N-[1-methyl-2-(4-methyl-1-piperazinyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide (1:1),
- Methyl [4-({[1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yllcarbonyl}amino)-1-piperidinyllacetate.
- 1-Ethyl-N-{[4-(4-morpholinylmethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate.
- 1-Ethyl-N-({3-[(4-methyl-1-piperazinyl)methyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-[H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate,
- N-[[5-(Aminocarbonyl)-3-pyridinyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate,
- 1-Ethyl-N-{[4-(1-methylethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[3-(Cyclopentyloxy)-4-(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-blbyridine-5-carboxamide.
- 1-Ethyl-N-({4-[(4-methyl-1-piperazinyl)methyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate,
- N-[(2,4-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(2,4-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo(3,4-b)pyridine-5-carboxamide.
- N-[(2-Chloro-4-fluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolof3.4-b]pyridine-5-carboxamide.
- N-{2-[2-Chloro-3-(methyloxy)phenyl]ethyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- Methyl 3-[({[]-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl]carbonyl}amino)methyl]benzoate,
- 1-Ethyl-N-{[3-(1-pyrrolidinylmethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide trifluoroacetate,
- 1-Ethyl-N-(2-{4-[(methylsulfonyl)amino]phenyl}ethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[2,5-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[2,6-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(2-fluorophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(3,5-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(4-Chlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-Cyclohexyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 285 -

1-Ethyl-N-{2-[4-(methylsulfonyl)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-lH-pyrazolo[3.4-b]byridine-5-carboxamide.

WO 2004/024728

- 1-Ethyl-N-{[2-fluoro-3-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(\lambda-[(Cyclopropylamino)carbonyl]phenyl\methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-vlamino)-1H-pyrazolo[3.4-blpyridine-5-carboxamide.
- 1-Ethyl-N-{[4-(4-methyl-1-piperazinyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{[4-(1-pyrrolidinylmethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[6-(methyloxy)-1-oxo-2,3-dihydro-1H-inden-2-yl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-[(2,5-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide,
- pyrazolo[3,4-19]methyl]nethyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(2,3-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{[2-(methylsulfonyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[(3-hydroxyphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-{[3,5-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[2-(4-hydroxyphenyl)ethyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-[(3,5-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- N-{[2,4-Bis(methyloxy)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-{[2-(methyloxy)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(2,4-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-({2-[(methylamino)carbonyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolof3.4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-{2-[4-(methyloxy)phenyl]ethyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(2-Chlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(2-hydroxyphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(1,3-Benzodioxol-5-ylmcthyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[3-(methyloxy)phenyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(Cyclohexylmethyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Bthyl-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- $\label{lem:methyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-yl] amino) methyl] benzoate,} \\$
- N-[(3,4-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 286 -

- N-[[4-(Aminocarbonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(2,6-Difluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

WO 2004/024728

- N-{[3-(Aminocarbonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(4-hydroxyphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- 1-Ethyl-N-{[6-(methyloxy)-3-pyridinyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-(2-pyridinylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
- b]pyridine-5-earboxamide,

 1-Ethyl-4-(tertahydro-2H-pyran-4-ylamino)-N-{[3-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-earboxamide,
- N-[4-(2-Amino-2-oxochyl)phenyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide,
 1-Ethyl-N-({4-[(methylamino)carbonyl]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-
- 1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 1-Ethyl-N-{4-[2-(methylamino)-2-oxoethyl]phenyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide,
 1-Ethyl-N-[(3-fluorophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-
- b]pyridine-5-carboxamide, 1-Ethyl-N-({4-[(methylsulfonyl)amino]phenyl}methyl)-4-(tetrahydro-2H-pyran-4-ylamino)-
- 1H-pyrazolo[3,4-b]pyridine-5-carboxamide, N-{[4-(Aminosulfonyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- $pyrazolo[3,4-b]pyridine-5-carboxamide, \\ N-\{[2-(Aminocarbonyl)phenyl]methyl\}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyran-4-ylamino-1H-pyran-$
- pyrazolo[3,4-b]pyridine-5-carboxamide, N-({4-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-
- pyrazolo[3,4-b]pyridine-5-carboxamide,
 N-{{3-[Climethylamino)methyl]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)HH-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 111 112 113 114 -
- N-(1-Acetyl-4-piperidinyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide.
- 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-{[2-(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-(5-Chloro-2,3-dihydro-1H-inden-2-yl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-blpyridine-5-carboxamide,
- N-({3-[(Acetylamino)methyl]phenyl}methyl)-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide.
- 1-Ethyl-N-[(4-fluorophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-{[4-fluoro-2-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- 1-Ethyl-N-[(2-ethylphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-earboxamide,
- $1- Ethyl-N-\{[2-fluoro-5-(trifluoromethyl)phenyl]methyl\}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,\\$
- 1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[(2,3,4-trifluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
- N-[(4-Chloro-2-fluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 287 -

```
N-[(4-Bromo-2-fluorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide.
```

N-[(3,5-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

N-[(2,3-Dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]byridine-5-carboxamide.

N-[(2,3-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-

pyrazolo[3,4-b]pyridine-5-carboxamide, N-[(4-Cyanophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-

 $\label{eq:bpyridine-5-carboxamide} b] pyridine-5-carboxamide, N-[(4-Bromophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-tetrahydro-2H-pyran-4-ylamino]-1H-pyrazolo[3,4-tetrahydro-2H-pyra$

b]pyridine-5-carboxamide, 1-Ethyl-N-{[5-fluoro-2-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-

1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
1-Ethyl-N-[(4-iodophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-

1-tithyl-N-[(4-10dopnenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

 $N-\{[4-(1,1-Dimethylethyl)phenyl]methyl\}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$

 $\label{eq:new_power} N-[(3-Cyanophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,$

N-[(2,6-Dichlorophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-[(5-Chloro-2-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

pyrazoloj;,-rojpyridine-9-carboxamide, N-[(3,5-Dibromophenyl)]methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1Hpyrazoloj;4-b]pyridine-5-carboxamide,

1-Ethyl-N-[(4-ethylphenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridino-5-carboxamide,

1-Ethyl-N-{[3-fluoro-4-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

1-Ethyl-N-[(2-iodophenyl)methyl]-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-[(2-Bromophenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-N-{[4-(hydroxymethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3.4-b]pyridine-5-carboxamide.

1-Ethyl-N-{[3-{hydroxymethyl}phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-N-{[3-(hydroxymethyl)-2-methylphenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-{[2,3-Dichloro-6-(hydroxymethyl)phenyl]methyl}-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-[(2,4-Dichloro-6-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

1-Ethyl-N-{[4-(2-methylpropyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-[(2,5-dimethylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-N-[(2,4,5-trifluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.

1-Ethyl-N-{[2-fluoro-4-(trifluoromethyl)phenyl]methyl}-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

N-[(2-Chloro-6-methylphenyl)methyl]-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

```
- 288 -
4-[({[1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-
vllcarbonyl}amino)methyllbenzoic acid sodium salt.
3-[({[1-Ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-5-
vl]carbonyl}amino)methyl]benzoic acid,
Ethyl 1-ethyl-4-{[4-(hydroxyimino)cyclohexyllamino}-1H-pyrazolo[3,4-b]pyridine-5-
carboxylate,
1-Ethyl-4-{[4-(hydroxyimino)cyclohexyllamino}-N-{[4-(methyloxy)phenyllmethyl}-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide.
N-{[4-(Dimethylamino)phenyl]methyl}-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-
1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
1-Ethyl-4-({4-[(ethyloxy)imino]cyclohexyl}amino)-N-{[4-(methyloxy)phenyl]methyl}-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide.
1-Ethyl-4-({4-[(methyloxy)imino]cyclohexyl}amino)-N-{[4-(methyloxy)phenyl]methyl}-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide,
4-[(4-{[(1,1-Dimethylethyl)oxylimino}cyclohexyl)amino]-1-ethyl-N-{[4-
(methyloxy)phenyl]methyl}-1H-pyrazolo[3.4-b]pyridine-5-carboxamide.
1-Ethyl-N-{[4-(methyloxy)phenyl]methyl}-4-[(7-oxohexahydro-1H-azepin-4-yl)amino]-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide,
Ethyl 1-ethyl-4-[(7-oxohexahydro-1H-azepin-4-yl)amino]-1H-pyrazolo[3,4-b]pyridine-5-
carboxylate,
4-{[cis-4-(Butylamino)cyclohexyl]amino}-N-(2,3-dihydro-1H-inden-2-vl)-1-ethyl-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide,
4-[(trans-4-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-
5-carboxamide,
4-[(trans-2-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-
5-carboxamide.
4-[(cis-2-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-
carboxamide.
4-[(3-Aminocyclohexyl)amino]-1-ethyl-N-(phenylmethyl)-1H-pyrazolo[3,4-b]pyridine-5-
carboxamide,
Ethyl 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-
blpvridine-5-carboxylate.
N,1-Diethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-nyrazolo[3,4-
blpyridine-5-carboxamide.
1-Ethyl-N-(4-fluorophenyl)-4-{[(1SR,3RS)-3-hydroxycyclohexyllamino}-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide,
1-Ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-(1,3-thiazol-2-ylmethyl)-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide,
1-ethyl-N-[(4-fluorophenyl)methyl]-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-
pyrazolo[3.4-b]pyridine-5-carboxamide.
1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyllamino}-N-{[4-
(methylsulfonyl)phenyl]methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
N-{[3,4-bis(methyloxy)phenyl]methyl}-1-ethyl-4-{[(1SR,3RS)-3-
hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-(2-pyridinylmethyl)-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide,
1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyllamino}-N-[(1-methyl-1H-pyrazol-4-
yl)methyl]-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
```

N-[(3,4-dimethylphenyl)methyl]-1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, 1-ethyl-4-{[(1SR,3RS)-3-hydroxycyclohexyl]amino}-N-{[4-(methyloxy)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide,

- 289 -

```
N-[(2,4-dimethylphenyl)methyl]-1-ethyl-4-{[(1SR,3RS)-3-
hydroxycyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
N-[(2,3-Dichlorophenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)aminol-1H-
pvrazolo[3.4-b]pvridine-5-carboxamide.
N-[(3-Chloro-4-methylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide.
N-[(4-Chloro-2-methylphenyl)methyl]-1-ethyl-4-[(4-oxocyclohexyl)amino]-1H-
pyrazolo[3,4-b]pyridine-5-carboxamide.
N-[(2.4-Dimethylphenyl)methyl]-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-
1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
N-[(3,4-Dimethylphenyl)methyl]-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-
1H-pyrazolo[3,4-b]pyridine-5-carboxamide,
N-[(2,3-Dichlorophenyl)methyl]-1-ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-
1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
N-[(3-Chloro-4-methylphenyl)methyl]-1-ethyl-4-{[4-
(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
N-[(4-Chloro-2-methylphenyl)methyl]-1-ethyl-4-{[4-
(hydroxyimino)cyclohexyllamino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide.
N-({4-[(Difluoromethyl)oxy]phenyl}methyl)-1-ethyl-4-{[4-
(hydroxyimino)cyclohexyl]amino}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide, or
1-Ethyl-4-{[4-(hydroxyimino)cyclohexyl]amino}-N-{[4-
(trifluoromethyl)phenyl]methyl}-1H-pyrazolo[3,4-b]pyridine-5-carboxamide;
```

or a salt thereof.

- 50. A compound or salt as claimed in claim 1, which is a compound of Example 260, 261, 263, 266, 431, 493, 494, 518, 528, 584, 626, 643, 653, 679, 680, 681, 682, 683, 684, 685 or 686, as defined by the structures and/or names described herein, or a salt thereof.
- 51. A compound or salt as claimed in claim 1, which is a compound of Example 21, 22, 83, 100, 109, 167, 172, 178 or 600, as defined by the structures and/or names described herein, or a salt thereof.
- 52. A compound or salt as claimed any preceding claim, which is the compound or a pharmaceutically acceptable salt thereof.
- A compound or salt as claimed in any preceding claim, which is in a particlesize-reduced form.
- 54. A compound or salt as claimed in claim 53, wherein the particle size (D50 value) of the size-reduced compound or salt is about 0.5 to about 10 microns.
- 55. A compound or salt as claimed in any preceding claim, for use as an active therapeutic substance in a mammal such as a human.

- 56. A pharmaceutical composition comprising a compound of formula (I) or (IA) or (IB), as defined in any of claims 1 to 54, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers and/or excipients.
- 57. A pharmaceutical composition as claimed in claim 56 which is suitable for and/or adapted for inhaled administration.
- 58. A pharmaceutical composition as claimed in claim 57, in which the compound or salt is in a particle-size-reduced form.
- 59. A pharmaceutical composition as claimed in claim 58, wherein the particle size (D50 value) of the size-reduced compound or salt is about 0.5 to about 10 microns.
- 60. A composition as claimed in claim 56, for the treatment and/or prophylaxis of an inflammatory and/or allergic disease or cognitive impairment in a mammal such as a human.
- 61. The use of a compound of formula (I) or (IA) or (IB), as defined in any of claims 1 to 54, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment and/or prophylaxis of an inflammatory and/or allergic disease or cognitive impairment in a mammal such as a human.
- 62. A method of treatment and/or prophylaxis of an inflammatory and/or allergic disease or cognitive impairment in a mammal such as a human in need thereof, which method comprises administering to the mammal a therapeutically effective amount of a compound of formula (I), as defined in any of claims 1 to 49, or a pharmaceutically acceptable salt thereof.
- 63. A composition, the use or a method as claimed in claim 60, 61 or 62, wherein the composition or medicament or method is for the treatment and/or prophylaxis of chronic obstructive pulmonary disease (COPD), asthma, rheumatoid arthritis or allergic rhinitis in a mammal such as a human.
- 64. A composition, the use or a method as claimed in claim 60, 61 or 62, wherein the composition or medicament or method is for the treatment and/or prophylaxis of chronic obstructive pulmonary disease (COPD) in a mammal such as a human.
- 65. A composition, the use or a method as claimed in claim 60, 61 or 62, wherein the composition or medicament or method is for the treatment and/or prophylaxis of asthma in a mammal such as a human.
- 66. A composition, the use or a method as claimed in any of claims 60 to 65, wherein the composition or medicament is for oral administration and is a pharmaceutical composition as defined in claim 56, or wherein the method comprises oral administration to the mammal of a pharmaceutical composition suitable for oral administration and as defined in claim 56.

- 67. A composition, the use or a method as claimed in claim 64 or 65, wherein the composition or medicament is for inhaled administration and is a pharmaceutical composition as defined in claim 57, 58 or 59, or wherein the method comprises inhaled administration to the mammal of a pharmaceutical composition as defined in claim 57, 58 or 59.
- 68. A combination comprising a compound of formula (I), as defined in any of claims 1 to 54, or a pharmaceutically acceptable salt thereof, together with a β₂-adrenoreceptor agonist, an anti-histamine, an anti-allergic, or an anti-inflammatory agent.
- 69. A combination as claimed in claim 68, comprising the compound of formula (I) or the pharmaceutically acceptable salt thereof, together with a β_2 -adrenoreceptor agonist.
- A combination comprising a compound of formula (I), as defined in any of claims 1 to 54, or a pharmaceutically acceptable salt thereof, together with a muscarinic (M) receptor antagonist.
- 71. A combination as claimed in claim 70, wherein the muscarinic (M) receptor antagonist is a M_3 receptor antagonist.
- 72. A pharmaceutical composition comprising a combination as defined in any of claims 68 to 71, together with one or more pharmaceutically acceptable carriers and/or excipients, the composition being a separate or combined pharmaceutical composition for administration of the individual compounds of the combination either sequentially or simultaneously.
- 73. A pharmaceutical composition as claimed in claim 72 for inhaled administration, and wherein the combination is as defined in claim 69, 70 or 71.
- 74. A combination or pharmaceutical composition as claimed in any of claims 68 to 73, for the treatment and/or prophylaxis of chronic obstructive pulmonary disease (COPD) in a mammal such as a human.

(19) World Intellectual Property Organization International Bureau

PCT/EP2003/011814

English

(43) International Publication Date 25 March 2004 (25.03.2004)

(10) International Publication Number

- (51) International Patent Classification7: C07D 471/04, A61K 31/437, A61P 29/00, 11/00 // (C07D 471/04, 231:00, 221:00)
- 231:00, 221:00)
 (21) International Application Number:
- (22) International Filing Date:

12 September 2003 (12.09.2003)

(25) Filing Language:

0321074.7

- (26) Publication Language: English
- (30) Priority Data:
 6221455.9
 16 September 2002 (16.09.2002)
 GB

 0230045.7
 23 December 2002 (23.12.2002)
 GB

 0306595.0
 21 March 2003 (21.03.2003)
 GB

 0308017.3
 7 April 2003 (07.04.2003)
 GB

 0319708.4
 21 August 2003 (21.08.2003)
 GB

9 September 2003 (09.09.2003)

- WO 2004/024728 A3

 (71) Applicant (for all designated States except US): GLAXO GROUP LIMITED [GB/GB]: Glaxo Wellcome House, Berkeley Avenue, Greenford, Middlesev UB6 0NN (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ALLEN, David, George [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). COE, Diane, Mary [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). COOK, Caroline, Mary [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). DOWLE, Michael, Dennis [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). EDLIN, Christopher, David [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), HAMBLIN, Julie, Nicole [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB), JOHNSON, Martin, Redpath [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY (GB). JONES, Paul, Spencer

[Continued on next page]

(54) Title: PYRAZOLO(3.4-B)PYRIDINE COMPOUNDS, AND THEIR USE AS PHOSPHODIESTERASE INHIBITORS

(dd)

(ee)

(57) Abstract: The invention relates to a compound of formula (I) or a salt thereof: wherein:R1 is C1-4alkyl, C1-3fluoroalkyl, -CH2CH2OH -CH2CH2CO2C1-2alkyl;R2 is a hydrogen atom (H), methyl or C1fluoroalkyl;R3 is optionally substituted C3-8cycloalkyl optionally substituted mono-unsaturated-C5-7cycloalkenyl or an optionally substituted heterocyclic group of sub-formula (aa), (bb) or (cc); in which n1 and n2 independently are 1 or 2; and in which Y is O, S. SO2, or NR10; or R3 is a bicyclic group (dd) or (ee): ; and wherein X is NR4R5 or OR5a. The compounds are phosphodiesterase (PDE) inhibitors, in particular PDE4 inhibitors. Also provided is the use of a compound of formula (I), or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment and/or prophylaxis of an inflammatory and/or allergic disease in a mammal such as a human, for example chronic obstructive pulmonary disease (COPD), asthma, or allergic rhinitis.

WO 2004/024728 A3

[GB/GB]; GliaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12 Ny (GB), KNOWLES, Richard, Graham [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfordshire Sci 12Ny (GB), LNDWALL, Mika, Kristlan [Fl/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12Ny (GB), MITCHELL, Charlotte, Jane [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12Ny (GB), BEDGRAVE, Aligon, Judith [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12Ny (GB), TRIVEDI, Nalmisha [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12Ny (GB), WARD, Peter [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12Ny (GB), WARD, Peter [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12Ny (GB), WARD, Peter [GB/GB]; GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herfortshire Sci 12Ny (GB).

- (74) Agent: WATERS, David, Martin; GlaxoSmithKlinc, CN925.1, Corporate Intellectual Property, 980 Great West Road, Brentford, Middlesex TW8 9GS (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,

GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH. PL, PT, RO, RU, SC, SD, SE, SG, SK, SL. SY, TJ, TM, TN, TT, TZ, UA, UG, US, UZ, VC, VN, YU. ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GII, GM, KE, I.S., MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AI, BE, BG, CI, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, TI, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, CM, GQ, QW, ML, MR, NI, SY, NT, DT, GY

Published:

- with international search report
- (88) Date of publication of the international search report: 21 October 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Interponal Application No

A CLASSIFICATION OF SUBJECT MATTER IPC 7 C0770471/04 A61K31/437 A61P29/00 A61P11/00 //(C070471/04,231:00,221:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ll} \mbox{Minimum documentation searched} & \mbox{(classification system followed by classification symbols)} \\ \mbox{IPC 7} & \mbox{C07D} & \mbox{A61K} & \mbox{A61P} \\ \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	WO 00 15222 A (SQUIBB BRISTOL MYERS CO) 23 March 2000 (2000-03-23) claims 1,9	1,56,61		
	-/			

ı	X	Further documents are listed in the	continuation of box	C
---	---	-------------------------------------	---------------------	---

- Special categories of cited documents :
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or
- other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

19 February 2004

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 N.L – 2280 HV Rijswijk Tel. (+31-70) 340-2404, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

X Patent family members are listed in annex.

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the
- invention

 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
- involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention
 cannot be considered to involve an inventive step when the
 - cannot be considered to involve an invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of mailing of the international search report

03/03/2004

Authorized officer

Alfaro Faus, I

Interceptional Application No PC1/EP 03/11814

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α DATABASE CA 'Online! 1,56,61 CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; DALY, JOHN W. ET AL: "1-Methy1-4-substituted-1H-pyrazolo'3.4-b! pyridine-5-carboxylic acid derivatives: effect of structural alterations on activity at A1 and A2 adenosine receptors" retrieved from STN Database accession no. 122:45666 XP002270929 cited in the application abstract & MEDICINAL CHEMISTRY RESEARCH (1994), 4(5), 293-306,

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inter	mattonal Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	Claims Nos.: Decause they relate to subject matter not required to be searched by this Authority, namely: Although claim 62 is directed to a method of treatment of the human/animal
	body, the search has been carried out and based on the alleged effects of the compounds.
	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
	Claims Nos.:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a),
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4 D	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is
" L	restricted to the invention first mentioned in the claims; it is covered by claims Nos:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

	formation on patent family men					PCT/EP 03/11814		
Patent document cited in search report		Publication date		Patent family member(s)	,	Publication date		
WO 0015222	A	23-03-2000	AU CA EP JP WO US	75148 614389 234258 111379 200252451 001522 632637	99 A 33 A1 96 A1 12 T 22 A1	15-08-2002 03-04-2000 23-03-2000 11-07-2001 06-08-2002 23-03-2000 04-12-2001		
			US	632637		04-12-2001		