

Linear Circuits

DR. JOY HARRIS, ACADEMIC FACULTY
School of Electrical and Computer Engineering

Objectives: By the end of this lesson, you should understand the resistance property of materials as well as the relationship between resistance, current, and voltage.

Builds Upon

- Electric current (i) the quantity of charge that passes through a given area in a specified time.
- Voltage (V) the energy either gained or lost per coulomb of charge.

Resistance and Resistivity

$$ho_{metals}=10^{-8}~to~10^{-3}~\Omega m$$
 $ho_{rubber}=10^{5}~to~10^{15}~\Omega m$

- When charged particles flow through a material, they encounter electrical resistance (R).
- Electrical resistance is determined $R = \frac{\rho L}{A}$ by the material's cross sectional area (A), length (L), and resistivity (ρ) .
- The resistivity is an intrinsic property that quantifies the material's opposition to charge flow.
- Variable: *R*
- Unit: $\frac{v}{4}$, Ω , ohms

Conductance and Conductivity

- Electrical conductance measures how a material allows charge flow.
- Conductance (G) is the reciprocal $G = \frac{1}{R} = \frac{\sigma A}{I}$ of resistance.
- The conductivity (σ) is an intrinsic $\sigma = \frac{1}{2}$ property that quantifies the material's receptiveness to charge flow. Conductivity is the reciprocal of resistivity.
- Variable for conductance: G
- Unit: $\frac{A}{V}$, siemens, or ∇ , mhos

•
$$G = \frac{1}{R} = \frac{\sigma A}{L}$$

$$\sigma = \frac{1}{\mu}$$

Calculate resistance and conductance.

- Quiz: A 1 m long copper wire of area $0.001~m^2$. The copper's resistivity is $2\times 10^{-8}\Omega m$. Find the resistance the wire.
- Quiz: If the wire's area doubles, how do the resistivity and the conductivity change?

Ohms Law

Georgia Tech

- Charged particles flow through a material and encounter electrical resistance.
- The voltage (V) produced by the current flow (i) is proportional to the resistance (R) of that material.
- Ohm's Law: V = iR

Apply Ohm's Law

• Quiz: Find i_1 .

• Quiz: Find v_2 .

Key Concepts

 Electrical resistance and conductance are determined by a material's cross sectional area, length, and resistivity.

$$R = \frac{\rho L}{A}$$
 $G = \frac{\sigma A}{L}$

