Exercises on Exponential Functions for LS(sheet 3):

2020-2021

N°1)Extra Math Consider the function f defined over IR by $f(x) = (x-1)e^x$ and designate by (C) its representative curve in an orthonormal system $(0; \vec{\imath}, \vec{j})$.

- 1) Calculate $\lim_{x \to -\infty} f(x)$ & $\lim_{x \to +\infty} f(x)$. Deduce the equation of the asymptote.
- 2) Verify $f'(x) = xe^x$ and then set up the table of variations of f.
- 3) a. Write the equation of the tangent (T) to the curve (C) at the point of abscissa 1.
 - b. Verify that $f(x) y_{(T)} = (e^x e)(x 1)$
 - c. Deduce the relative position of (C) and (T).
- 4) Draw the curve (C) and tangent line (T).
- 5) Prove that for x>0 , the equation f(x)=x admits a unique root α such that $1.3<\alpha<1.4$

N°2)Extra Math

Part A Consider the function g defined over IR by $g(x) = a + b x e^{-x}$, where a and b are integers. The adjacent table is the table of variations of g.

x	-∞		1		+∞
g'(x)		_	0	+	
g(x)	+∞	•	$1-\frac{1}{e}$		1

- 1) Verify that ae + b = e 1
- 2) Determine g'(x) in terms of b and x.
- 3) Calculate a then deduce the value of b.

Part B Consider the function f defined over IR by $f(x) = x + (x+1)e^{-x}$ and designate by (C) its representative curve in an orthonormal system $(0; \vec{i}, \vec{j})$.

- 1) Calculate the limits of f at $-\infty$ and $+\infty$.
- 2) a. Verify that the straight line (d) with equation y = x is an oblique asymptote to (C) at $+\infty$.
 - b. Study the relative position of (C) and (d).
- 3) Prove that f'(x) = g(x) and then set up the table of variations of f.
- 4) Determine the coordinates of the point E of (C) for which the tangent (T) to (C) at E is parallel to the asymptote (d). Write the equation of (T).
- 5) Trace (C), (d) and (T).

N°3) Mastering Mathematics

Part A Consider the function g defined over IR by $g(x) = 2e^x - x - 2$ and designate by (C) its representative curve in an orthonormal system $(0; \vec{\imath}, \vec{\jmath})$.

- 1) Calculate $\lim_{x \to -\infty} g(x)$ & $\lim_{x \to +\infty} g(x)$.
- 2) Verify that the straight line (d) with equation y = -x 2 is an oblique asymptote to (C) as $x \to -\infty$, and that (C) is above (d).

- 3) Determine g'(x) then set up the table of variations of g.
- 4) Show that the equation g(x) = 0 admits two roots 0 and α and that $-1.6 < \alpha < -1.5$.
- 5) Trace (C) and (d).

Part B f is a function defined over IR by $f(x) = e^{2x} - (x+1)e^x$, and designate by (Γ) its representative curve in an orthonormal system $(0; \vec{i}, \vec{j})$.

- 1) Calculate $\lim_{x \to -\infty} f(x)$ & $\lim_{x \to +\infty} f(x)$. 2) Show that $f'(x) = e^x g(x)$ then draw the table of variations of f.
- 3) Show that $f(\alpha) = \frac{-\alpha^2 2\alpha}{4}$, then give an approximate value of $f(\alpha)$ to the nearest 10^{-2} knowing that $\alpha = -1.55$.
- 4) Trace (Γ) .
- 5) Show that the equation f(x) = 1 admits one and only one root β and that $0.813 < \beta < 0.815$.

 $N^{\circ}4$)In the figure below, one of the two graphs is for a function f defined over IR and the other one is that of the derivative function f'.

- 1) Assume the first curve (G) is that of a function g, and the second curve is that of a function h.
 - a. Set up the table of variations of both functions.
 - b. Verify that g(x) and h'(x) have the same sign.
 - c. Deduce the curve associated to f and the curve associated to f'.
- 2) Knowing that $f(x) = xe^{-x} + ax + b$, where a and b are two integers.
 - a. Show that b = 0.
 - b. Verify that $f(x) = xe^{-x} + x$.
- 3) Show that for every real number m, the equation $x = \ln(\frac{x}{m-x})$ admits a unique root.

Answers of Exercises on exponential functions (Sheet 3):

N°1) $f(x) = (x-1)e^x$ defined over IR

1)
$$\lim_{x \to -\infty} f(x) = (-\infty)(0) \text{ indeterminate form}$$

$$= \lim_{x \to -\infty} \frac{x - 1}{e^{-x}} = \frac{-\infty}{+\infty} \text{ indeterminate (L'HopitalRule)}$$

$$= \lim_{x \to -\infty} \frac{1}{-e^{-x}}$$

$$= \frac{1}{-\infty}$$

$$= 0$$

Then the straight line with equation y = 0 is a H.A as $x \to -\infty$

$$\lim_{x \to +\infty} f(x) = (+\infty)(+\infty) = +\infty \quad \text{P.O.A}$$

2)
$$f'(x) = u'v + u v'$$

= $(1)(e^x) + (x - 1)(e^x)$
= $(1 + x - 1)e^x$
= xe^x

Assume $f'(x) \ge 0$ then $xe^x \ge 0$ but $e^x > 0$ for any $x \in IR$ $x \ge 0$

X	-∞		0		+ ∞
f'(x)		_	0	+	
f(x)	0				_ +∞
			-1		*

3) a. The equation of the tangent (T) to the curve (C) at the point of abscissa 1:

$$y - f(1) = f'(1)(x - 1)$$
 $f(1) = 0$ & $f'(1) = e$
 $y - 0 = e(x - 1)$
 $y = e x - e$

b.
$$f(x) - y_{(T)} = (x - 1)e^x - (e x - e)$$

= $(x - 1)e^x - e(x - 1)$
= $(x - 1)(e^x - e)$

c. Assume $f(x) - y_{(T)} = 0$ then $(x - 1)(e^x - e) = 0$

$$x = 1$$
 or $x = \ln e = 1$

x	-∞	1	+∞
(x-1)	_	0	+
$(e^x - e)$	_	0	+
$f(x) - y_{(T)}$	+	0	+
. ,	(C)above(T)		(C)above(T)

$$(C) \cap (T)$$

At $(1,0)$

5)

Using the graph, for x > 0,

The curve (\mathcal{C}) intersects line y=x at one point then the equation f(x)=x admits a unique root α .

Now,
$$f(1.3) - 1.3 = -0.19 < 0$$

(C) below this line

$$f(1.4) - 1.4 = 0.2 > 0$$

(C) above this line

Then $1.3 < \alpha < 1.4$

N°2) Part A $g(x) = a + b x e^{-x}$ defined over IR

X	-∞		1		+ ∞
g'(x)		_	0	+	
g(x)	+∞ /	•	$1-\frac{1}{e}$		1

1) Using the given $g(1) = a + be^{-1}$ and using the table $g(1) = 1 - \frac{1}{e}$

Then $a + \frac{b}{e} = 1 - \frac{1}{e}$ $\frac{a + b}{e} = \frac{e - 1}{e}$ a + b = e - 1

- 2) $g'(x) = 0 + (b)(e^{-x}) + (bx)(-e^{-x}) \cdot \bullet \bullet \bullet$ = $(b - bx)e^{-x}$ = $b(1 - x)e^{-x}$
- $u = bx \rightarrow u' = b$ $v = e^{-x} \rightarrow v'$
- 3) Using $\lim_{x \to +\infty} g(x) = 1$ in above table of variation

 $\lim_{x \to +\infty} (a + b \times e^{-x}) = 1$ a + b(0) = 1 a = 1

 $\lim_{x \to +\infty} \frac{x}{e^x} = \frac{+\infty}{+\infty} indeterminate$ $= \lim_{x \to +\infty} \frac{1}{e^x} = 0$

Then a e + b = e - 1 (1)e + b = e - 1 b = e - 1 - eb = -1 so that $g(x) = 1 - x e^{-x}$

Part B $f(x) = x + (x+1)e^{-x}$ defined over IR

 $=+\infty$

1) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [x + (x+1)e^{-x}] = -\infty + (-\infty)(+\infty) = -\infty - \infty = -\infty$ Indeterminate

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [x + (x+1)e^{-x}] = +\infty + (+\infty)(0)$ $= \lim_{x \to +\infty} [x + \frac{x+1}{e^x}]$ $= +\infty + 0$

2) a. $\lim_{x \to +\infty} [f(x) - y_{(d)}] = \lim_{x \to +\infty} [x + (x+1)e^{-x} - x]$ = $\lim_{x \to +\infty} (x+1)e^{-x}$ = 0

b.
$$f(x) - y_{(d)} = (x+1)e^{-x}$$

Assume
$$f(x) - y_{(d)} \ge 0$$
 then $(x+1)e^{-x} \ge 0$

$$(x+1) \ge 0$$
 since $e^{-x} > 0$ for any $x \in IR$
 $x \ge -1$

x	-∞	-1	+ ∞
sign of $f(x) - y_{(d)}$		0	+
	(C)below (d)		(C)above(d)
		$(C) \cap (d)$	
	a	t(-1,-1))

3)
$$f'(x) = 1 + (1)e^{-x} + (x+1)(-e^{-x})$$

= $1 + e^{-x} - xe^{-x} - e^{-x}$
= $1 - xe^{-x}$
= $g(x)$

Then f'(x) and g(x) have the same sign but $g(x) \ge 1 - \frac{1}{e}$ and $1 - \frac{1}{e} = 0.63 > 0$ $g(x) > 0 \quad \text{for any } x \in IR$

x	-∞	+ ∞
f'(x)		+
f(x)		→ +∞
	8	

4)The tagent (T) is parallel to the asymptote (d)Then they have the same slope, $f'(x_E) = 1$

$$1 - x_E e^{-x_E} = 1$$

$$-x_E e^{-x_E} = 0$$

$$-x_E = 0 \quad where e^{-x_E} > 0$$

$$x_E = 0$$

Then $y_E = ???$

We may sustitute x_E in the equation of the function f:

$$y_E = f(x_E) = f(0) = 0 + e^0 = 1$$

Therefore, E(0,1)

Then, equation of tangent (T) at point E:

$$y - y_E = f'(x_E)(x - x_E)$$

 $y - 1 = f'(0)(x - 0)$ where $f'(0) = 1$
 $(T): y = x + 1$

$$a = \lim_{x \to -\infty} f'(x)$$

$$= \lim_{x \to -\infty} (1 - xe^{-x})$$

$$= 1 - (-\infty)(+\infty)$$

$$= 1 + \infty$$

$$= +\infty$$

The curve has asymptotic direction parallel to y'0y.

N°3) Part A $g(x) = 2e^x - x - 2$ defined over IR

1)
$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (2e^x - x - 2) = 2e^{-\infty} + \infty - 2 = +\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (2 e^x - x - 2) = 2e^{+\infty} - \infty - 2 = +\infty - \infty \quad \text{indeterminate form}$$

$$= \lim_{x \to +\infty} x \left(\frac{2 e^x}{x} - 1 - \frac{2}{x} \right)$$
$$= (+\infty)(+\infty - 1 - 0)$$
$$= +\infty$$

2)
$$\lim_{x \to -\infty} [g(x) - y_{(d)}] = \lim_{x \to -\infty} [2e^x - x - 2 - (-x - 2)]$$
$$= \lim_{x \to -\infty} 2e^x$$

Then the straight line (d) with equation y = -x - 2 is an oblique asymptote to (C) as $x \to -\infty$

$$g(x) - y_{(d)} = 2 e^x$$
 but $e^x > 0$ for any $x \in IR$

Then $g(x) - y_{(d)} > 0$ and (C) is above (d) for any $x \in IR$.

3)
$$g'(x) = 2e^x - 1$$

Assume $g'(x) \ge 0$ then $2e^x - 1 \ge 0$

$$2e^x \geq 1$$

$$e^x \ge \frac{1}{2}$$

$$x \ge \ln\left(\frac{1}{2}\right)$$

$$x \ge -\ln 2$$

x	$-\infty$	α	− ln 2	0	+ ∞
g'(x)		_	0	+	
g(x)	+∞ .				+ ∞
		0			
			$-1 + \ln 2$		

Since
$$g(-\ln 2) = 2e^{-\ln 2} + \ln 2 - 2 = 2e^{\ln \frac{1}{2}} + \ln 2 - 2 = 2\left(\frac{1}{2}\right) + \ln 2 - 2 = -1 + \ln 2 \cong -0.306$$

4) Now $g(0) = 2e^{0} - 0 - 2 = 0$ then x = 0 is the first root

For $x \in]-\infty$, $-\ln 2$ [, the function g is continuous, strictly decreasing and change sign from $+\infty$ to $-1+\ln 2$ then g(x)=0 admits here a unique root α such that $g(\alpha)=0$

$$g(-1.6) \times g(-1.5) = (0.00379)(-0.0537) < 0$$

Then $-1.6 < \alpha < -1.5$

5)

Part B $f(x) = e^{2x} - (x+1)e^x$ defined over IR

1)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [e^{2x} - (x+1)e^x] = 0 - (-\infty)(0)$$
 indeterminate form $= \lim_{x \to -\infty} [e^{2x} - \frac{x+1}{e^{-x}}]$

Then y = 0 is H.A as $x \to -\infty$

 $\lim_{x \to -\infty} \frac{x+1}{e^{-x}} = \frac{-\infty}{+\infty} \quad indeterminate$ (L'Hopital Rule) $=\lim_{x\to-\infty}\frac{1}{-e^{-x}}=0^-$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [e^{2x} - (x+1)e^x] = +\infty - \infty$$

$$= \lim_{x \to +\infty} e^{2x} \left[1 - \frac{x+1}{e^x}\right]$$

$$= (+\infty)[1-0]$$

$$= +\infty$$

$$\lim_{x \to +\infty} \frac{x+1}{e^x} = \frac{+\infty}{+\infty} indeterminate$$

$$= \lim_{x \to +\infty} \frac{1}{e^x} = 0$$

2)
$$f'(x) = 2e^{2x} - [(1)e^x + (x+1)e^x]$$

 $= 2e^{2x} - (x+2)e^x$
 $= e^x[2e^x - (x+2)]$
 $= e^x[2e^x - x - 2]$
 $= e^x g(x)$

Assume $f'(x) \ge 0$ then $e^x g(x) \ge 0$

$$g(x) \ge 0$$
 since $e^x > 0$ for any $x \in IR$

Using part A:

x	-∞	α	- ln 2	0	+ ∞
g'(x)		_	0	+	
g(x)	+∞ ′				+ ∞
		0		0	
		7	$-1 + \ln 2$		

$$x \in]-\infty$$
, $\alpha] \cup [0,+\infty[$

x	-∞	α		0		+ ∞
f'(x)	+	0	_	0	+	
f(x)	0	$f(\alpha)$		\ 0 -		+ ∞

$$3)f(\alpha) = e^{2\alpha} - (\alpha + 1)e^{\alpha}$$

$$= e^{\alpha}(e^{\alpha} - \alpha - 1)$$

$$= \left(\frac{\alpha + 2}{2}\right)\left(\frac{\alpha + 2}{2} - \alpha - 1\right)$$

$$= \left(\frac{\alpha + 2}{2}\right)\left(\frac{\alpha + 2 - 2\alpha - 2}{2}\right)$$

$$= \left(\frac{\alpha + 2}{2}\right)\left(\frac{-\alpha}{2}\right)$$

$$= \frac{-\alpha^2 - 2\alpha}{4}$$

but
$$g(\alpha) = 0$$

$$2e^{\alpha} - \alpha - 2 = 0$$

$$e^{\alpha} = \frac{\alpha + 2}{2}$$

Then
$$f(-1.55) = \frac{-(-1.55)^2 - 2 (-1.55)}{4} \approx 0.17$$

4)

5)For $x \in]0$, $+\infty[$, f is continuous and strictly increasing from 0 to $+\infty$, then straight line y=1 intersects (\mathcal{C}) at one point and f(x)=1 admits one and only one root β

Now, f(0.813) - 1 = -0.0042 < 0 where (C)below this line

& f(0.815) - 1 = 0.0034 > 0 where (*C*) above this line Then $0.813 < \beta < 0.815$.