

* Example: earth rotates with a period of 1 day, and has radius of 6400 lem

What is the speed with which we are rotating right now? (assume equals)

$$v = \frac{2\pi R}{T} = \frac{2\pi}{6400 \times 10^3 \text{m}} = \frac{450 \text{ M}}{F} = \frac{920 \text{ mph}}{F}$$
* Angular velocity

$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{1 \text{ mad}}{At} = \frac{2\pi R}{F} = \frac{1}{T}$$

$$\Delta t = \frac{1}{R} \Delta t = \frac{2\pi R}{T} = \frac{2\pi}{T}$$

$$\omega = \frac{2\pi}{T} : \text{ angular velocity or frequency}$$

$$f = \frac{1}{T} : \text{ frequency}$$

$$\omega = 2\pi f$$
Since $v = \frac{2\pi R}{T} \rightarrow v = \omega R$

w>0: CCW rolation

CW rotation

Q Velocity and acceleration : kinematics

Since V is changing (direction), there must be our acceleration!

$$\vec{\alpha}_c = \frac{\Delta \vec{v}}{\Delta t} = centrepetal acceleration$$

It turns out that $a_c = \frac{v^2}{R}$ or $a_c = \frac{(R\omega)^2}{R} = R\omega^2$

There must be a force that generales the acceleration as laxed on Newton's 2nd law: Fnet = mac Since à points to the center of notation there must be a net force pointing to the center of rotation as well. $\alpha_{c} = \frac{v^{2}}{R} = R\omega^{2}$ force is tension in string $T = mac = \frac{mv^2}{R}$ inwards x with gravily $x : -T \cos \theta = -m\alpha_c = -m\frac{v^2}{R} \Rightarrow mg \frac{\cos \theta}{\sin \theta} = m\frac{v^2}{R}$ $y : T \sin \theta - mg = 0$ G = mg

* Angular acceleration: dynamics

Q Hill	
V 1000	* Car on a flat road in a curvo:
	what provides the force that generates a ??
	friction! $\vec{f} = m\vec{a}_{c}$, eath painting inwards
	To a serious
	+)
Q Car c	n unve
	8