Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Work Sheet 7

Instructions for week 7 (June 1^{st} to June 5^{th}):

- Work through the introductory part of Chapter 3 as well as Section 3.1 of the lecture notes.
- Answer the control questions 1) to 4), and solve Problems 1 to 4 of the exercises below.
- Please hand in your solutions to the exercises for correction until the morning of Monday, June 8th. For the procedure, please have a look at the general information in Ilias. The submission of solutions is voluntary.

Control questions to monitor your progress:

1) Consider the probability space specified by $\Omega := \{\omega_1, \dots, \omega_m\}, A := \mathcal{P}(\{\omega_1, \dots, \omega_m\}), m \geqslant 3$, and

$$\mathbb{P}(\omega_j) = \frac{1}{m}, \quad j = 1, \ldots, m.$$

For each $j \in \{1, ..., m\}$, let $C_j = B(0, j) \subset \mathbb{R}^d$. Define $X_1, ..., X_k : \Omega \to \mathcal{C}'$ through

$$X_i(\omega_j) = C_j, \qquad i = 1, \ldots, k, \ j = 1, \ldots, m.$$

Put $\Phi = \sum_{i=1}^k \delta_{X_i}$. Can you verify that Φ is a particle process in \mathbb{R}^d ? What is the probability that X_1 is contained in $[-3,3]^d$? If you where to observe $Z := \bigcup_{i \in \mathbb{N}} X_i$, what would you see?

- 2) Give two examples of a center function in the sense of Definition 3.2 (other than the center of the circumball of a compact set).
- 3) Let (E,\mathcal{O}_E) be a locally compact Hausdorff space with a countable base of topology. Consider the collection of closed subsets of E, denoted by $\mathcal{F}(E)$, endowed with the Fell-topology and the corresponding Borel- σ -field $\mathcal{B}(\mathcal{F}(E))$, and $\mathcal{F}'=\mathcal{F}(E)\setminus\{\varnothing\}$. Let Θ be a measure on $(\mathcal{F}',\mathcal{B}(\mathcal{F}(E))\cap\mathcal{F}')$. Convince yourself that Θ is locally finite, in the sense that $\Theta(\mathcal{H})<\infty$ for every compact subset of the (locally compact) space $(\mathcal{F}',\mathcal{O}_{\mathcal{F}(E)}\cap\mathcal{F}')$, if, and only if, $\Theta(\mathcal{F}_C)<\infty$ for every $C\in\mathcal{C}(E)$.

(Hint: Use parts (2) and (3) of Theorem 1.2)

4) Denote by $\mathfrak{C}' = \mathfrak{C}^d \setminus \{\varnothing\}$ the collection of non-empty compact subsets of \mathbb{R}^d . Endow \mathfrak{C}' with the topology induced by the Hausdorff metric δ and write $\mathfrak{B}(\mathfrak{C}')$ for the corresponding Borel- σ -field. Can you verify that a locally finite measure Θ on $\mathfrak{F}' = \mathfrak{F}^d \setminus \{\varnothing\}$ satisfies $\Theta(\mathfrak{H}) < \infty$ for every bounded set $\mathfrak{H} \in \mathfrak{B}(\mathfrak{C}')$?

(**Hint:** If $\mathcal H$ is a (measurable) bounded subset of $(\mathcal C',\delta)$, then (by definition of the Hausdorff metric) there exists a compact set $C\in\mathcal C'$ such that $K\subset C$ for each $K\in\mathcal H$. Thus, $\mathcal H\subset\mathcal F_C^d\cap\mathcal C'$.)

Exercises for week 7:

Problem 1 (Estimation of the intensity of a Poisson process)

Let Φ be a Poisson process in \mathbb{R}^d with intensity measure $\gamma \cdot \lambda^d$, where $\gamma > 0$.

- a) Prove that $\widehat{\gamma}_B := \frac{\Phi(B)}{\lambda^d(B)}$, for bounded $B \in \mathcal{B}(\mathbb{R}^d)$ such that $\lambda^d(B) > 0$, is an unbiased estimator for γ .
- b) Let $W_1, W_2, \ldots \in \mathcal{B}(\mathbb{R}^d)$ be Borel sets such that $0 < \lambda^d(W_n) < \infty$, $n \in \mathbb{N}$, and $\lambda^d(W_n) \stackrel{n \to \infty}{\longrightarrow} \infty$. Prove that the estimator $\widehat{\gamma}$ is weakly consistent, in the sense that, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\Big(\big|\widehat{\gamma}_{W_n} - \gamma\big| > \varepsilon\Big) = 0.$$

c) Let $W_1, W_2, \ldots \in \mathcal{B}(\mathbb{R}^d)$ such that $0 < \lambda^d(W_n) < \infty$, $n \in \mathbb{N}$, and $\sup_{n \in \mathbb{N}} \frac{n^{1+\delta}}{\lambda^d(W_n)} < \infty$ for some $\delta > 0$. Prove that the estimator $\widehat{\gamma}$ is strongly consistent, in the sense that

$$\lim_{n\to\infty}\widehat{\gamma}_{W_n}=\gamma\quad \mathbb{P}\text{-almost surely}.$$

Hint: Recall from probability theory that if random variables X, $\{X_n\}_{n\in\mathbb{N}}$ in \mathbb{R} satisfy $\sum_{n=1}^{\infty}\mathbb{P}(\left|X_n-X\right|>\epsilon)<\infty$, for every $\epsilon>0$, then $X_n\to X$ \mathbb{P} -almost surely.

d) Simulate a homogeneous Poisson process in $[-25,25]^3$ with intensity $\gamma=0.005$, that is, simulate a mixed binomial process with parameters $\tau \sim Po(50^3 \cdot 0.005)$ and $V=\mathcal{U}\big([-25,25]^3\big)$. Proceed to estimate the intensity on the growing observation windows $W_n:=B(0,n)\subset\mathbb{R}^3$, for $n=1,\ldots,25$, and see how the estimator behaves.

Problem 2 (Particle processes)

Defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, let Ψ be a stationary point process in $\mathbb{R}^d \times \mathbb{C}'$ such that $\mathbb{E}\big[\Psi(\cdot \times \mathbb{C}')\big]$ is locally finite. Let $\gamma \geqslant 0$ and the probability measure \mathbb{Q} on \mathbb{C}' be as in Theorem 2.42 (that is, $\mathbb{E}\Psi = \gamma \cdot \lambda^d \otimes \mathbb{Q}$) and assume that

$$\int_{\mathfrak{C}'} \lambda^d(K+C) \, d\mathbb{Q}(K) < \infty, \qquad C \in \mathfrak{C}'.$$

Prove that

$$\Phi := \int_{\mathbb{R}^d \times \mathcal{C}'} \mathbb{1}\{K + x \in \cdot\} \, \mathsf{d}\Psi(x, K)$$

is a particle process.

Problem 3 (Continuity of the circumball mapping)

a) Let $C \in \mathbb{C}^d$ be non-empty, that is, $C \in \mathbb{C}' = \mathbb{C}^d \setminus \{\emptyset\}$. Denote by

$$B(x,r) = \{ y \in \mathbb{R}^d : ||y-x|| \leqslant r \}, \qquad x \in \mathbb{R}^d, \ r \geqslant 0,$$

the ball in \mathbb{R}^d of radius r around x. Prove that among all balls that contain C there exists a unique ball B(C) with smallest radius (the circumball of C).

- b) Prove that the map $r: \mathcal{C}' \to [0, \infty), C \mapsto r(C)$, where r(C) denotes the radius of the circumball B(C), is continuous with respect to the Hausdorff metric.
- c) Prove that the map $c: \mathcal{C}' \to \mathbb{R}^d$, $C \mapsto c(C)$, where c(C) denotes the center of the circumball B(C), is continuous with respect to the Hausdorff metric.
- d) Conclude that the map $\mathcal{C}' \to \mathcal{C}'$, $C \mapsto B(C)$ is continuous with respect to the Hausdorff metric.

Problem 4 (On Theorem 3.6 and Remark 3.9)

Let Φ be a stationary particle process in \mathbb{R}^d with locally finite intensity measure $\Theta \neq 0$. Let $c: \mathbb{C}' \to \mathbb{R}^d$ be some center function (in the sense of Definition 3.2). As in the lecture, we define $\mathbb{C}_0 := \big\{ C \in \mathbb{C}' : c(C) = 0 \big\}$. By Theorem 3.6 there exists a unique $\gamma > 0$ and a unique probability measure \mathbb{Q} on \mathbb{C}' such that $\mathbb{Q}(\mathbb{C}_0) = 1$ and

$$\Theta(\mathcal{H}) = \gamma \int_{\mathbb{R}^d} \int_{\mathcal{C}'} \mathbb{1}_{\mathcal{H}}(C + x) \, d\mathbb{Q}(C) \, dx, \qquad \mathcal{H} \in \mathcal{B}(\mathcal{C}').$$

- a) Prove that γ does not depend on the choice of c.
- b) Let $c': \mathcal{C}' \to \mathbb{R}^d$ be another center function, and $\mathbb{Q}_{c'}$ the corresponding shape distribution. Also put $\mathcal{C}_{0,c'} := \big\{ C \in \mathcal{C}' : c'(C) = 0 \big\}$. Prove that

$$\mathbb{Q}=\mathbb{Q}_{c'}\circ T^{-1},$$

where
$$T: \mathcal{C}_{0,c'} \to \mathcal{C}_0$$
, $C \mapsto C - c(C)$.

c) Find a center function c' such that $\mathbb{Q} \neq \mathbb{Q}_{c'}$.

The solutions to these problems will be uploaded on June 8th. Feel free to ask your questions about the exercises in the optional MS-Teams discussion on June 4th (09:15 h).