VERIFICATION PLAN

AHB-Lite Interface

Khadija Ali 2021-MS-EE-28

AHB-Lite Protocol:

AHB-Lite implements the features required for HIGH-performance, HIGH clock frequency systems including:

- burst transfers.
- single-clock edge operation.
- non-tristate implementation.
- wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

The most common AHB-Lite slaves are internal memory devices, external memory interfaces, and HIGH bandwidth peripherals. Although LOW-bandwidth peripherals can be included as AHB-Lite slaves, they typically reside on the AMBA Advanced Peripheral Bus (APB) for system performance reasons. Bridging between this HIGHer level of bus and APB is done using a AHB-Lite slave, known as an APB bridge. The bus interconnect logic consists of one address decoder and a slave-to-master multiplexor. The decoder monitors the address from the master so that the appropriate slave is selected and the multiplexor routes the corresponding slave output data back to the master. Figure 1-1 shows a single master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves.

• Global Signals:

Name	Destination	Description
HCLK	Clock source	Clock source for all operations on the
		protocol. Input signals are sampled at
		rising edge and changes in output
		signals happen after the rising edge
HRESTn	Reset Controller	Asynchronous primary reset for all bus
		elements

• Master Signals:

Name	Destination	Description		
HADDR [31:0]	Slave and	Address bus of 32 bits		
	Decoder			
HBURST [2:0]	Slave	Indicates the type of burst signal		
		including wrapping and incrementing		
		bursts		
HSIZE [2:0]	Slave	Indicates the size of transfer from 8 bits		
		to 1024 bits		

• Slave Signals:

Name	Destination	Description	
HRDATA [31:0]	Multiplexor	Read data bus to transfer the data from	

		a Slave's location to the Master via
		multiplexor
HREADYOUT	Multiplexor	Indicates transfer has finished on the
		bus and is used to extend the data phase
HRESP	Multiplexor	Provides additional information that the
	_	transfer was successful or failed

• Decoder Signals:

Name	Destination	Description
HSELx	Slave	Indicates current transfer is for
Note: x is a unique identifier		intended for selected slave
for AHB lite slave		

• Multiplexor Signals:

Name	Destination	Description	
HRDATA [31:0]	Master	Read data bus to rout to Master	
HREADY	Master and Slave	Indicates completion of previous	
		transfer	
HRESP	Master	Transfer response	

Figure 1.1

Working Protocol:

The transfer is started by the master when it drives the address and control signals. These signals provide information about the address, direction, width of the transfer, and indicate if the transfer forms part of a burst.

Transfers can be of different types for example: single, incrementing bursts that do not wrap at address boundaries, wrapping bursts that wrap at particular address boundaries, etc. The write data bus moves data from the master to the destination slave, and the read data bus moves data from a slave towards the master.

Every transfer consists of two phases:

- 1. Address phase: one cycle for address and control
- 2. **Data phase**: one or more cycles for the data.

The address phase is for only one cycle. A slave cannot request for the address phase to be extended. Therefore all slaves must be capable of sampling the address during this time. However, a slave can request that the master extends the data phase by using HREADY. This signal when LOW, causes wait states to be inserted into the transfer and enables the slave to have extra time to process or sample data.

The slave uses a response signal HRESP to indicate the success or failure of a transfer.

Verification Plan:

No.	Feature	Test Description	Ref.	Type	Results	Comments
1	Write Transfer from Master to Slave	When HWRITE is HIGH then the Master will broadcast the data on the HWDATA [31:0] bus for individual burst types i.e., HBURST [2:0] including incrementing and wrapping types.	3.1	TR		Successful write. HRESP should be LOW HREADY should be HIGH
2	Read Transfer from Slave to Master	When HWRITE is LOW then the slave must generate the data on the HRDATA [31:0] bus for individual burst types i.e., HBURST [2:0] including incrementing and wrapping type.	3.1	TR		Successful read. HRESP should be LOW HREADY should be HIGH
3	Write-Read Transfer	Write transfer followed by Read transfer at a particular address A.	3.1	TR		HRESP is LOW, HREADY is HIGH The address location must have the updated

					value
4	Read-Write Transfer	Read transfer followed by Write transfer at a particular address A.	3.1	TR	HRESP is LOW, HREADY is HIGH The slave must return the previous Data (A).
5	Continuous writing to the same slave (same address)	When HWRITE is HIGH, the Master will broadcast the data packets on the HWDATA [31:0] bus.	3.1	TR	Successful write. HRESP should be LOW HREADY should be HIGH for the successive data packets
6	Continuous reading from the same slave (same address)	When HWRITE is LOW, the slave must generate the data packets on the HRDATA [31:0] bus.	3.1	TR	Successful read. HRESP should be LOW HREADY should be HIGH for the successive data packets
7	Global Signal: HCLK	A clock signal is generated in the top module	7.1.1	A	All input signals must be sampled at the rising edge of the clock and changes in the output signals must occur after the rising edge.
8	Global Signal: HRESTn	It is an active LOW signal. When asserted then it must reset all bus elements. Note: Slaves must ensure that HREADYOUT is HIGH. HTRANS [1:0] must indicate IDLE.	7.1.2	TR	All previous binary information in the bust elements will be lost.
9	Master Signal: IDLE HTRANS [1:0] =b00	When IDLE transfer is inserted to an address, the slave should not do any action on that address for the IDLE signal.	3.2	TR	The HREADY must be LOW during the IDLE transfer. The transfer must be ignored by the slave. Slave must provide an OKAY response.
10	Transfer type changed during waited states: Scenario 1	Transfer type changes from IDLE to NONSEQ during waited states. The HTRANS signal must be kept constant after the transition until HREADY is HIGH	3.6.1	A	Successfully transfer type changed. Slave must give OKAY response.
11	Transfer type changed during waited states:	Transfer type changes from BUSY to SEQ during waited states for fixed length bursts.	3.6.1	A	Successfully transfer type changed. Slave must give an

	Scenario 2	The HTRANS signal must be kept constant after the transition until READY is HIGH			OKAY response.
12	Transfer type changed during waited states: Scenario 3	Transfer type changes from BUSY to any other type during waited states for undefined length burst. The burst continues if an SEQ transfer is performed but terminates if an IDLE or NONSEQ transfer is performed.	3.6.1	A	Successfully transfer type changed. Slave must give an OKAY response.
13	Transfer type changed during waited states: Scenario 4	Any scenario other than scenario 1 2 and 3 for example Transfer type changed from IDLE to SEQ .	3.6.1	A	Slave will give an ERROR response.
14	Slave response: Transfer done	Transfer is completed successfully.	5.1.1	A	Slave must give HREADY HIGH HRESP OKAY
15	Slave response: Transfer pending	Transfer is pending	5.1.2	A	Slave must give HREADY LOW HRESP OKAY
16	Slave response: transfer failed	Transfer is not completed successfully	5.1.3	A	HRESP must be HIGH. Two cycle response is required for an error condition.
17	HREADYOUT	When HIGH the transfer has finish on bus	2.3	A	When HIGH, the HREADYOUT signal indicates that a transfer has finished on the bus. This signal can be driven LOW to extend a transfer.
18	HREADY	When HIGH, the HREADY signal indicates to the master and all slaves, that the previous transfer is complete	2.5 6.1.1	A	If the transfer is extended than the master must hold the valid data until the transfer completes, as indicated by HREADY HIGH