NASA TECHNICAL NOTE

NASA TN D-4632

CASEFILE

AN INVESTIGATION OF FULL-SCALE
HELICOPTER ROTORS AT HIGH ADVANCE RATIOS
AND ADVANCING TIP MACH NUMBERS

by

John L. McCloud III and James C. Biggers

Ames Research Center

and

Robert H. Stroub

Army Aeronautical Research Laboratory

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - JULY 1968

AN INVESTIGATION OF FULL-SCALE HELICOPTER ROTORS AT HIGH ADVANCE RATIOS AND ADVANCING TIP MACH NUMBERS

By John L. McCloud III and James C. Biggers Ames Research Center Moffett Field, Calif.

and

Robert H. Stroub Army Aeronautical Research Laboratory Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AN INVESTIGATION OF FULL-SCALE HELICOPTER ROTORS

AT HIGH ADVANCE RATIOS AND ADVANCING

TIP MACH NUMBERS

By John L. McCloud III and James C. Biggers
Ames Research Center

and

Robert H. Stroub Army Aeronautical Research Laboratory

SUMMARY

Five full-scale rotors were investigated at various advance ratios and advancing tip Mach numbers in the Ames 40- by 80-Foot Wind Tunnel. The primary differences between rotors were twist, articulation, and tip airfoil section. Four of the rotors incorporated the NACA 0012 airfoil section over the entire blade length. The fifth rotor had tapering thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius.

The fully articulated rotor with zero twist blades was tested at advance ratios from 0.30 to 1.05. The other rotors were investigated in the 0.30 to 0.50 advance-ratio range. The teetering rotor with tapered tip blades was tested at advancing blade tip Mach numbers up to 1.00.

Force, moment, power, and control-setting data were obtained for a wide range of lift and propulsive forces, and are presented without discussion.

INTRODUCTION

Modern helicopter design requires a knowledge of rotor performance characteristics at high forward speeds. Theoretical predictions have not been substantiated in this area, and only a limited amount of experimental data has been available. Because of the changing environment of rotor operation encountered at high speed, many of the assumptions and approximations of rotor theory become questionable. Questions arise regarding not only the magnitudes of rotor forces and moments, but also the character of rotor operation, for example, flapping stability at advance ratios as high as 1.0.

In order to investigate these questionable areas, several full-scale rotors have been tested in the 40- by 80-foot wind tunnel. The results should be useful for helicopter designs for the near future, and should provide a basis of comparison for rotor performance prediction techniques and advanced rotor systems.

Fully articulated rotors, 56 feet in diameter, and teetering rotors 48 and 34 feet in diameter, were operated at advance ratios up to 1.05 and at advancing tip Mach numbers up to 1.00.

Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

NOTATION

Positive directions of forces and moments are shown in the following sketch.

A_{ls}, B_{ls} coefficients in the representation of rotor-blade cyclic pitch, that is, $\theta_{\rm C}$ = -A_{ls} cos ψ - B_{ls} sin ψ , deg

 a_{1_S} , b_{1_S} first harmonic flapping coefficients relative to shaft normal plane, deg

 $\frac{c_H}{\sigma}$ rotor drag coefficient in shaft-axes system, $\frac{\text{shaft-axes drag}}{\rho S(\Omega R)^2}$

 $\frac{c_{L_R}}{\sigma}$ rotor lift coefficient in wind-axes system, $\frac{\text{lift}}{\rho S(\Omega R)^2}$

 $\frac{c_{m_X}}{\sigma} \qquad \qquad \text{resultant rolling-moment coefficient about rotor center in wind-axes system, } \frac{rolling\ \text{moment}}{\rho S(\Omega R)^2 R}$

 ${\tt C_{m_{_{\rm X}}}}_{\tt B}$ rolling-moment coefficient about rotor center in shaft-axes system resultant pitching-moment coefficient about rotor center (same in both wind-axes and shaft-axes systems), pitching moment $\frac{C_{m_{Z}}}{\sigma}$ resultant yawing-moment coefficient about rotor center in wind axes system, $\frac{\text{yawing moment}}{\text{oS}(\Omega R)^2 R}$ rotor power coefficient, $\frac{(\text{torque})(\Omega)}{\rho S(\Omega R)^3}$, (a) for articulated-rotor data, based on rotor-shaft torsion (b) for teetering-rotor data, based on wind-tunnel balance data rotor profile-power coefficient, $\frac{C_P}{\sigma} - \left(\frac{C_{L_R}}{\sigma}\right)^2 \frac{\sigma}{2(V/\Omega_R)} - \frac{C_{X_R}}{\sigma} \frac{V}{\Omega_R}$ rotor yawing-moment coefficient in shaft-axes system, shaft-axes yawing moment $oS(\Omega R)^2 R$ rotor thrust coefficient (shaft-axes lift coefficient), $\frac{\text{thrust}}{\text{os}(\text{or})^2}$

$$\frac{c_{YR}}{\sigma}$$
 rotor side-force coefficient, $\frac{\text{side force}}{\rho S(\Omega R)^2}$ (same in both wind-axes and shaft-axes systems)

$$M_{(1)(90)}$$
 rotor-blade tip Mach number at 90° azimuth position q free-stream dynamic pressure, $(1/2)\rho V^2$, $1b/ft^2$ R rotor radius, ft

S reference area [(number_of blades)
$$\times$$
 (blade chord) \times (rotor radius)], ft

T	free-stream temperature, ^O R
V	free-stream velocity, ft/sec
$\frac{V}{\Omega R}$	advance ratio
$\alpha_{\mathbf{e}}$	angle of attack of control axis (swash plate) relative to tunnel centerline, positive tilted aft, $\alpha_{\rm S}$ - ${\rm B_{1_S}},$ deg
$\alpha_{\mathtt{S}}$	angle of rotor shaft from vertical, positive shaft tilted aft, deg
ρ	air density, slugs/ft ³
Ω	rotor rotational speed, radians/sec
σ	rotor solidity, $\frac{S}{\pi R^2}$
$\theta_{ extsf{c}}$	cyclic pitch, deg*
θ_1	twist, deg*
^θ 0. 7 5	collective pitch at 0.75R, deg*
$\theta_{ m grip},\; \theta_{ m g}$	collective pitch at 2.33-ft radial distance from hub center, deg*
Ψ	rotor-blade azimuth angle measured from downwind position in direction of rotation, deg

MODEL DESCRIPTION

General

Figure 1 shows the rotor systems installed in the wind-tunnel test section. Rotor-shaft angle of attack was remotely controlled using an extendable tail strut. Rotor power was provided by a 1500-hp, variable-frequency electric motor inside the faired bodies. Collective and cyclic pitch were remotely controlled and monitored from the control room. First-harmonic rotor flapping coefficients relative to the shaft were obtained from electronic flapping resolvers.

^{*}Pitch angles are measured from a plane perpendicular to the rotor shaft and the line of zero lift of the airfoil section.

Fully Articulated Rotors

The two sets of blades investigated with the fully articulated rotor system were dimensionally identical except for twist. One set had -8° linear twist, and the other 0° . The dimensional information related to the fully articulated rotors is listed below.

Rotor radius, R, ft	28
Blade chord, c, ft	1.337
Cutout radius, ft	4.48
Rotor solidity, $bc/\pi R$	0.062
Reference area, ft ²	153.1
Blade moment of inertia about flapping hinge,	
ft-lb-sec ²	1264
Blade weight moment about flapping hinge, lb-ft	2265
Flapping hinge offset, ft	1.0
Number of blades, b	4
Airfoil	NACA 0012
Blade taper ratio	1.0

A standard H-34 transmission and rotor shaft were driven by the 1500-hp motor, and a special high-strength rotor control system was used.

Teetering Rotors

Three sets of blades were used on the teetering rotor system. The standard blades (48-ft diameter) and the 34-ft blades had NACA 0012 airfoil sections. The third blade set (48-ft diameter) was linearly tapered in thickness ratio from 0.8 R to the tip, which was approximately the NACA 21006 airfoil. The tip airfoil is described in detail in table I. The dimensional information related to the teetering rotors is given below.

Rotor radius, R, ft	24.0	17.0
Blade chord, c, ft	1.75	1.75
Cutout radius, ft	2.04	2.04
Rotor solidity, bc/πR	0.0464	0.0656
Reference area, ft ²	84.0	59•5
Blade twist, linear, deg	-10.9	- 7 • 7
Blade taper ratio	1.0	1.0
Hub precone angle, deg	2.75	
Blade moment of inertia about	2458	
'flapping hinge, ft-lb-sec ²	2289 *	1584
Number of blades	2	2
Airfoil	NACA OO12*	NACA 0012

^{*}The tapered tip blades were NACA 0012 from the root to 0.8 R, and linearly tapered in thickness from 0.8 R to the 6-percent-thick tip. The zero lift line of the cambered tip sections was varied so that the twist distribution was linear. (See table I.)

A standard UH-1D transmission and rotor shaft were used in conjunction with a speed-increasing transmission to match the motor speed to the UH-1D transmission. The rotor was controlled by a modified UH-1B control system.

OPERATING PROCEDURES

Tunnel speed and rotor rotational speed were adjusted to obtain the desired advance ratio and advancing tip Mach number. At each combination of α_{S} and collective pitch, the cyclic pitch was adjusted to minimize first harmonic blade flapping, and data were then recorded. Collective pitch or α_{S} was then changed and the above procedure repeated until a limit was reached in motor power, control position, or structural loading.

Data Reduction

Six-component forces and moments were measured by the wind-tunnel balance system. Tare corrections were applied to the balance data to account for forces and moments produced by the exposed model support struts, the faired body, and the rotating hub. The rotating hub tares included all hardware inboard of 0.0814 R for the articulated hub. For the teetering rotor, all rotating hardware inboard of the 2.66 ft radius station were included in the tares. The tares applied were based on wind-tunnel dynamic pressure and $\alpha_{\rm S}$. Rotor downwash effects on the tares were neglected because of a lack of confidence in any known technique for assessing their magnitude. The tares used are the faired curves in figures 2, 3, and 4. The control-axis angle of attack $(\alpha_{\rm C})$ was determined by the equation

$$\alpha_{c} = \alpha_{s} - B_{l_{s}}$$

where longitudinal cyclic coefficient, $\mathrm{B}_{\mathbf{1}_{\mathrm{S}}}$, was obtained from model instrumentation.

Rotor torque and rotational speed were used to compute the total power coefficient C_P/σ . For the teetering rotor, rotor torque was measured with the wind-tunnel balance. For the articulated rotor, torque was measured with a shaft torsion gage as well as with the wind-tunnel balance. The shaft power data are presented in the figures since these data are independent of rotor wake interference effects on the fuselage. Comparison of torque obtained from the rotor shaft with that obtained from the wind-tunnel balance indicates that these interference effects are small. The maximum difference between these torques corresponds to 3 percent of maximum power. The rotor profile power coefficient is based on the assumption of uniform downwash distribution over the rotor disk.

Data Presentation

Test conditions for both the articulated and teetering rotors are illustrated on the rotor velocity diagrams in figure 5. Numbers adjacent to the symbols on these diagrams refer to figure numbers which present the plotted data for that condition. (An index to the figures is given in table II.)

Tabulated data from the articulated and teetering rotor tests are indexed in table III and are presented in both the wind-axes and shaft-axes systems in tables IV-1 through IV-62.

Although the technique used in these tests was selected to obtain data with $a_{1_S} = b_{1_S} = 0$, numerous data were recorded for which flapping was not zero. Of those data, only those for which $|a_{1_S}|$ or $|b_{1_S}|$ was greater than 0.2 are so noted and listed in the tabulated data. For the plotted data, nonzero flapping is not noted except in figures 7 and 8 where $\pm 5^{\circ}$ of lateral flapping was intentionally induced for several points.

Ames Research Center

National Aeronautics and Space Administration Moffett Field, Calif. 94035, March 5, 1968 721-01-00-13-00-21

TABLE I.- UPPER AND LOWER SURFACE COORDINATES FOR BLADE TIP AIRFOIL SECTION

FOR TEETERING ROTOR TAPERED TIP BLADE

[All dimensions are in inches]

х	y _{upper}	y _{lower}
0 .105 .210 .420 .630 .840 1.050 1.575 2.100 2.625 3.150 4.200 5.250 6.300 7.350 8.400 10.500 12.600 14.700 18.900 19.950 21.000	-0.25082002 .110 .193 .260 .318 .415 .485 .532 .562 .603 .623 .630 .625 .609 .556 .479 .385 .152 .085 .020	-0.25 343 373 398 417 435 451 490 545 562 603 623 625 625 625 625 479 385 085 020

Leading-edge radius = 0.062 at y = -0.250.

TABLE II.- INDEX TO FIGURES

Figure No.	Title
1	General view of rotor systems. (a) Articulated rotor system. (b) Teetering rotor system.
2	Tare data No. 1 (used for articulated rotor data with fairing over tail-strut dynamic absorber).
3	Tare data No. 2 (used for articulated rotor data without fairing over tail-strut dynamic absorber).
4	Tare data No. 3 (used for teetering rotor data).
5	Rotor velocity diagrams.
	Articulated rotor with $\theta_1 = -8^{\circ}$,
6	$V/\Omega R = 0.30, M_{(1)(90)} = 0.74$
7	$V/\Omega R = 0.40, M_{(1)(90)} = 0.82$
8	$V/\Omega R = 0.46, M_{(1)(90)} = 0.82$
	Articulated rotor with $\theta_1 = 0^{\circ}$,
9	$V/\Omega R = 0.30, M_{(1)(90)} = 0.73$
10	$V/\Omega R = 0.40, M_{(1)(90)} = 0.83$
11	$V/\Omega R = 0.46, M_{(1)(90)} = 0.82$
12	$V/\Omega R = 0.50, M_{(1)(90)} = 0.83$
13	$V/\Omega R = 0.62, M_{(1)(90)} = 0.73$
14	$V/\Omega R = 0.71, M_{(1)(90)} = 0.68$
15	$V/\Omega R = 0.82, M_{(1)(90)} = 0.62$
16	$V/\Omega R = 0.83, M_{(1)(90)} = 0.62$
17	$V/\Omega R = 1.05, M_{(1)(90)} = 0.54$
18	$V/\Omega R = 0.40, M_{(1)(90)} = 0.67$
19	$V/\Omega R = 0.41, M_{(1)(90)} = 0.87$

TABLE II.- INDEX TO FIGURES - Concluded

Figure No.	Title
	Articulated rotor with $\theta_1 = 0^{\circ}$,
20	$V/\Omega R = 0.39, M_{(1)(90)} = 0.89$
21	$V/\Omega R = 0.39, M_{(1)(90)} = 0.93$
	Teetering 48-ft rotor with standard blades,
22	$V/\Omega R = 0.30, M_{(1)(90)} = 0.79$
23	$V/\Omega R = 0.30, M_{(1)(90)} = 0.85$
24	$V/\Omega R = 0.30, M_{(1)(90)} = 0.95$
25	$V/\Omega R = 0.35, M_{(1)(90)} = 0.85$
26	$V/\Omega R = 0.35, M_{(1)(90)} = 0.95$
27	$V/\Omega R = 0.40, M(1)(90) = 0.85$
	Teetering 48-ft rotor with tapered-tip blades,
28	$V/\Omega R = 0.30, M_{(1)(90)} = 0.85$
29	$V/\Omega R = 0.30, M_{(1)(90)} = 0.95$
30	$V/\Omega R = 0.30, M_{(1)(90)} = 1.00$
31	$V/\Omega R = 0.35, M_{(1)(90)} = 0.85$
32	$V/\Omega R = 0.35, M_{(1)(90)} = 0.94$
33	$V/\Omega R = 0.40, M_{(1)(90)} = 0.84$
	Teetering 34-ft rotor,
34	$V/\Omega R = 0.51, M_{(1)(90)} = 0.65$
35	$V/\Omega R = 0.66, M_{(1)(90)} = 0.55$
36	$V/\Omega R = 0.79, M_{(1)(90)} = 0.52$

TABLE III.- INDEX TO TABLES*

Table numbers

Wind axes	Shaft axes	Description
		Articulated rotor with $\theta_1 = -8^{\circ}$,
IV- 1	IV-32	$V/\Omega R = 0.30, M(1)(90) = 0.74$
IV- 2	IV-33	$V/\Omega R = 0.40, M(1)(90) = 0.82$
IV- 3	IV-34	$V/\Omega R = 0.46, M_{(1)(90)} = 0.82$
		Articulated rotor with $\theta_1 = 0^{\circ}$,
IV- 4	IV-35	$V/\Omega R = 0.30, M_{(1)(90)} = 0.73$
IV- 5	IV - 36	$V/\Omega R = 0.40, M(1)(90) = 0.83$
IV- 6	IV-37	$V/\Omega R = 0.46, M_{(1)(90)} = 0.82$
IV- 7	IV-38	$V/\Omega R = 0.50, M(1)(90) = 0.83$
IV- 8	IV-39	$V/\Omega R = 0.62, M_{(1)(90)} = 0.73$
IV- 9	IV-40	$V/\Omega R = 0.71, M_{(1)(90)} = 0.68$
IV-10	IV-41	$V/\Omega R = 0.82, M_{(1)(90)} = 0.62$
IV-11	IV-42	$V/\Omega R = 0.83, M(1)(90) = 0.62$
IV-12	IV-43	$V/\Omega R = 1.05, M_{(1)(90)} = 0.5^{14}$
IV-13	IV-7+7+	$V/\Omega R = 0.40, M_{(1)(90)} = 0.67$
IV-14	IV-45	$V/\Omega R = 0.41, M(1)(90) = 0.87$
IV-15	IV-46	$V/\Omega R = 0.39, M(1)(90) = 0.89$
IV-16	IV-47	$V/\Omega R = 0.39, M_{(1)(90)} = 0.93$

*Abbreviations in tables are:

no fairing over

TABLE III. - INDEX TO TABLES - Concluded

Table	numbers	
Wind axes	Shaft axes	Description
		Teetering rotor, standard blades:
IV-17	IV-48	$V/\Omega R = 0.30, M_{(1)(90)} = 0.79$
IV-18	IV-49	$V/\Omega R = 0.30, M_{(1)(90)} = 0.85$
IV - 19	IV-50	$V/\Omega R = 0.30, M_{(1)(90)} = 0.95$
IV-20	IV - 51	$V/\Omega R = 0.35, M_{(1)(90)} = 0.85$
IV-21	IV - 52	$V/\Omega R = 0.35, M_{(1)(90)} = 0.95$
IV-22	IV - 53	$V/\Omega R = 0.40, M_{(1)(90)} = 0.85$
		Teetering rotor, 48-ft tapered-tip blades:
IV-23	IV - 54	$V/\Omega R = 0.30, M_{(1)(90)} = 0.85$
IV-24	IV-55	$V/\Omega R = 0.30, M_{(1)(90)} = 0.95$
IV-25	IV-56	$V/\Omega R = 0.30 M(1)(90) = 1.00$
IV-26	IV-57	$V/\Omega R = 0.35, M_{(1)(90)} = 0.85$
IV-27	IV-58	$V/\Omega R = 0.35, M_{(1)(90)} = 0.94$
IV-28	IV-59	$V/\Omega R = 0.40, M_{(1)(90)} = 0.84$
		Teetering rotor, 34-ft blades:
IV-29	IV - 60	$V/\Omega R = 0.51, M_{(1)(90)} = 0.65$
IV-30	IV - 61	$V/\Omega R = 0.66, M_{(1)(90)} = 0.55$
IV-31	IV - 62	$V/\Omega R = 0.79, M_{(1)(90)} = 0.52$

Tare

No. 1

V 000000000000000000000000000000000000
WIND AXES DATA CPO CPO TR4 0.0014990 784 0.0014665 130 0.0016613 347 0.00116515 358 0.0013828 874 0.0013828 874 0.0013828 875 0.0013828 876 0.0013828 877 0.0013828 878 0.0013828 878 0.0013828 878 0.0013828 878 0.0013828 878 0.0013828 878 0.0013828 878 0.0013828 878 0.0013828 878 0.0013828 878 0.0015728 878 0.0015728 878 0.0013818 878 0.0023185 878 0.0023185 878 0.0023185
SPEED) WIND C 0.0025095 C 0.0042784 C 0.0061470 C 0.0061470 C 0.0061470 C 0.0061470 C 0.0062784 C 0.006288 C 0.006888 C 0.006888 C 0.006888 C 0.006888 C 0.006888
ROTOR TIP SF CAZ CAZ 1 0.004492 7 0.005159 7 0.001293 7 0.004159 2 0.004159 2 0.006415 3 0.006415 5 0.001899 6 0.001268 6 0.001268 6 0.001350 7 0.00091 8 0.00091 8 0.00091 8 0.00099 9 0.001350 9 0.001350 9 0.001350 9 0.001350 9 0.001350 9 0.001350 9 0.001350 9 0.001350
AREA AND CAN CONTROL C
RGTOR BLADE CMX CMX 13 -0.000420 87 -0.000343 51 -0.000119 99 -0.000320 49 -0.000141 80 -0.000141
ASED ON CONTRACTOR OF CONTRACT
CXR 0.00349 0.00349 0.00349 0.00365 0.0036 0
CONTRACTOR
A L L L L L L L L L L L L L L L L L L L
င်း ကုဏ္ထဲပြုံ ပုံ ကုဏ္ထဲပြုံ ပုံ လုဏ္ထဲပြုံ မှ လုံ

410000110004001100000011000400001000444

M.AT 0.7450 0.7450 0.7450 0.7450 0.7450 0.7450 0.73

For the following data points als and/or $\log \neq 0^4$, 2^0 or 2^6 or 2^6

No. 1 Tare

٧.	6.0-	-1.5	-2.5	-3.7	-2.4	-3.0	-7.9	÷0.8	-1.2	-2.1	w. 	-7.7	-3.2	-4.5	-1.2	-1.7	-0.3	-1.7	3.9	-7.3	-2.9	-2.9	0.1	1.1	0.4	-0.1	-0.5	-1.1	-1.9	-3.1	ο.	0.3	9.5
<	0.826	.82	.82	. 81	8.	. 82	.82	.81	.82	.81	.81	.81	.81	.81	.81	.81	.81	.81	.81	.81	.81	.81	.81	.83	.81	.81	.81	.81	.81	.81	0	.83	.81
V/08	0,396	٣,	٣,		₹.	₹.	r.	~	٣.	٣,	₹.	₹.	₹.	₹.	٣.	₩.	₩.	٣.	٣.	٣.	٣.	₹.	٣.	ĸ.	٣.	ņ	₹.	٣.	٣.	Υ,	0.399	ň	-
WIND AXES DATA	.001872	.001935	.002180	.002504	.002115	.002279	.002074	.001826	.001876	.002177	.002246	.002082	.002614	.003375	.001948	.002302	.001843	.002282	.002414	.002137	.002941	.005781	.001814	.001990	.001947	.002048	.002218	.002739	.003752	166500	0.0024177	.002684	.003066
SPEED) WIND A	.001321	,003094	.005151	.007195	.005065	.005278	.004965	.001686	.002731	.003993	.003901	.004045	.005445	.007270	.001440	.002168	.001085	.002200	.002146	.002390	.003628	.006718	.000932	.001096	.000357	.000129	.000116	.000273	.001676	.004223	-0.0008179	.001663	.001993
ROTOR TIP SPI	.00139	.00328	.00533	.00763	• 00539	• 00595	.00497	.00186	.00295	.00422	.00437	.00413	.00589	.00767	• 00160	.00233	.00126	.00234	.00226	.00251	.00375	• 00645	.00100	.00119	ካ ካ ዐ ዐ ዐ •	60000	.0000	.00028	.00166	.00396	-0.000943	.00183	.00218
AREA AND RO	000	.00023	•0000	.00047	.00042	.00047	• 0000	.00024	.00043	.00083	.00070	.00084	.00111	.00095	.00061	.00104	.00021	.00101	.00095	66000	66000.	.00076	.00006	.00018	.00013	.00022	.00062	.00101	.00115	.00121	-0.000268	•00025	.00108
BLADE	000596	-0.000749	0013	0015	0011	0001	0028	000	0001	0003	0014	0021	000	0005	0003	000	0003	1000	0022	0016	0001	0010	0003	0003	000	9000	0007	0008	00083	00065	00	0000	00027
ASED ON ROTOR	00034	00027	0000	00075	00012	00511	00434	00035	44000	00072	00511	00584	00169	00133	00149	00163	00125	00153	00554	00769	00195	00022	00125	00215	00213	00207	00187	00182	00162	00151	-0.002626	00244	00222
CXB	-0.001	0.002	0.007	0.010	0.006	0.006	0.006	-0.000	0.001	0.003	0.003	0.004	0.00	0.008	-0.001	-0,001	-0.002	-0.001	-0.001	000.0-	0.000	0.000	-0.002	-0.002	+00°0-	-0.005	-0.006	-0.007	-0.006	-0.006	ċ	-0.01	-0.013
DEFF	6	.02	Ţ0.	90.	70.	o.	70.	0	ō.	0	90.	0	Ö,	õ	0	90.	0.	90.	90.	90.	30.	ŝċ.	[ĕ	0.	70.	0	0	Č.	7	0.033681	•	• 06
ALPHA	-14.4	-16.1	-17.8	-18° 4	-18.0	-19.4	-16.9	-9.3	-11.0	-12.9	-14.3	-12.0	-14.4	-16,3	-2°6	-7.5	0.4-	-7.6	6*8-	-6.4	-9.5	-11.6	-2.1	5.0	3.6	1.8	0	-2.2	-4.3	-6.3	6 7	7.6	5.4
ALPHA	10	10.	10.	10.	ċ	10.	•	5	-5.0	-5.0	-5.0	-5.0	-5.0	-5.0	•	0	0	•	•	•	•	•	•	5.0	5.0	5.0	5.0	2.0	5.0	5.0	10.0	10.0	10.0
9.75	9	ಹೆ	or Or	12.	or or	10	or Or	4,	••	ထံဖ	ထံဖ	သံ ု	o :	15.	વ•	••	તંં	•	•	ė	ఴఄ	10.	o.	†	'S	ċ	'n	4	•	. ش	-4-	-5	ċ

For the following data point als and/or $b_{Ls} \neq 0^{0} \pm .2^{0}$

ας θ,τς α1ς bls -10 10 .2 5.0 -10 10 0 -5.0 -5 8 .2 5.0 -6 6 .2 -5.0 0 6 .2 -5.0 0 6 .2 -5.0 0 6 .2 -5.0 0 6 .2 -5.0

No. 1 Tare

& i i i i i i i i i i i i i i i i i i i	
M.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A	0.000000000000000000000000000000000000
00000000000000000000000000000000000000	00000000000000000000000000000000000000
WIND AXES DATA CPO 904 0.0024863 897 0.0025112 1164 0.0029164 359 0.0023286 897 0.0023286 897 0.0023286 898 0.0023790 353 0.0023790 198 0.0021786 832 0.0027998 198 0.002737737 982 0.0022377	7.0049418 7.0024211 0.0024648 0.0026648 0.0025934 0.0033352 0.0033352 0.0043500 0.00331248 0.0051248 0.0051248
SPEED) WIND CP 7 0.0020904 2 0.0041897 6 0.0064164 9 0.00203259 7 0.0024503 7 0.0024953 0 0.0049280 4 0.0050832 6 0.0069189 6 0.0069189 6 0.0069189 7 0.0050832 6 0.0069189 7 0.0050832 7 0.0050832 8 0.0050832	0.0008710 0.0008710 0.0001891 -0.0002049 0.0003145 0.0001883 0.0018893 0.0018893 0.0018893 0.0019049
CMZ CMZ C9 0.002217 77 0.006856 77 0.006856 78 0.001715 78 0.002737 78 0.002737 78 0.005866 79 0.005966 79 0.005966 79 0.005976 79 0.002575 79 0.002575 79 0.002575	0.000924 0.000924 0.000285 0.000208 0.000208 0.000211 0.001700 0.001700 0.001700 0.001700 0.001700
AREA LO CON CONTRACT LO CONTRA	-0.001340 -0.000040 -0.000021 -0.0000705 -0.0000705 -0.0000705 -0.0000705 -0.0000705 -0.0000705 -0.0000705 -0.0000705 -0.0000705 -0.0000363
ROTOR BLADE CMX CM - CO CO 30 41 - 0.00130 36 -0.001797 74 - 0.00299 93 -0.000110 77 -0.000129 77 -0.000129 77 -0.000130 77 -0.000130 77 -0.000130 77 -0.000130 77 -0.000130 77 -0.000130 78 -0.000130	-0.000128 0.000646 0.000646 0.000646 0.000646 0.000646 0.000646 0.000646 0.000646 0.000646 0.000646 0.0006466 0.0006466
BASED ON ROT CYR 0 9.000508 5 0.000136 6 0.000136 6 0.000136 6 0.000533 5 0.000577 1 0.0005874 1 0.0005874 1 0.0005874 1 0.0005874 1 0.0005874 2 0.0005874 1 0.0005874 2 0.0005874 4 0.0001436 6 0.001447 6 0.001447 7 0.001447 7 0.001486 6 0.001486 6 0.001486	0.002469 -0.002449 -0.002337 -0.002337 -0.002337 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414 -0.002414
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.000506 -0.003362 -0.006045 -0.0060397 -0.006939 -0.006939 -0.007363 -0.007363 -0.007363 -0.007363 -0.007363 -0.007363
CCCEFFICE C.012481 -0 C.012481 -0 C.012481 -0 C.012331 -0 C.012331 -0 C.012331 -0 C.01233 -0 C.01233 -0 C.01233 -0 C.010188 -0 C.010188 -0 C.01248 -0 C.055455 -0 C.055455 -0 C.055456 -0 C.05546 -0 C.0554	0.081465 0.006790 0.025105 0.040928 0.052410 0.052410 0.096283 0.096283 0.096283 0.096283 0.096283 0.096283
CONTROL 116.18 116.30 117.00 1	200414001400 W.W. W. H. W. C.
AH-00000000000	
စ. က ထုပ်ကျဲထုထွားနှုတ်ထုပ်ပြုံပွဲပွဲ ပွဲနှုတ်တို့တွ	ည်ခံ လိုဝံလိလိုလိခံ လိထိခံ လိုဝဲလိ

For the following data points als and/or bls \neq 00 \pm .20

	A],	-5.t	-3.1	-4.2	-4.5	-1.5	-1.4	-2.0	-2.7	-3.6	-5.1	-5.9	6.0-	-1.7	-2.4	-3.5	-4.3	-5.9	-0.1	-0.5	-1.0	-1.7	-2.3	<u>ب</u> م،	8.4-	-6.3	-0.	-0.7	-1.2	-1.6	-2.2	٠ <u>٠</u> ٠	-5.2
	TA .	0.739	0.738	0.740	0.738	735	737	735	0.736	0.737	0.739	0.739	0.734	0.734	0.735	0.735	0.735	0.736	0.735	0.729	0.733	0.733	0.733	٠.	0.737	0.737	0.738	0.731	0.734	0.730	0.734	0.735	0.735
	80/2	0.303	0.305	0.304	0.304	0.300	0.303	908.0	0.304	0.305	0.304	0.305	0.305	0.305	0.304	0.304	0.304	0.305	0.306	0.307	0.305	0.306	0.302	0.307	0.304	0.304	0.306	0.305	0.303	0.304	0.303	0.305	0.305
	WIND AXES DATA	0.0016075	0.0017514	0.0019905		0.0015759	0.0014965	0.0015596	0.0016622	0.0018957	0.0028998		0.0015121	0.0015172	0.0015711	0.0018691	0.0028106	0.0050897	0.0014786	0.0014893	0.0015417	0.0016497	0.0019391	0.0030121	0.0051679	0.0076175	0.0015515	0.0016936	0.0018058	0.0021921	0.0029543	0.0049089	0.0087280
	SPEED) WIND	0.0028365	0.0045869	0.0065951		0.0013347	0.0013201	0.0022134	0.0032726	0.0044824	0.0066488		0.0011352	0.0012594	0.0016157	0.0024500	0.0041493	0.0070781	0.0013605	0.0006891	0.0002064	-0.0000382	0.0000836	0.0015526	0.0043886	0.0071835	0.0000982	-0.0009616	-0.0016640	-0.0020845	-0.0014361	0.0012540	0.0048350
	ROTOR TIP SP	0.002801	0.004641	0.006833	0.007901	0.001237	0.001342	0.002236	0.003311	0.004521	0.006987	0.008191	0.001089	0.001298	0.001669	0.002497	0.004261	0.007246	0.001436	0.000738	0.000183	-0.000054	0.000048	0.001559	0.004355	0.006824	0.000046	-0.001063	-0.001774	-0.002261	-0.001610	0.001070	0.003783
	AREA AND RO	0.000026	-0.000315	-0.000578	-0.000516	0.000000	0.000034	-0.000105	-0.000525	-0.001017	-0.000882	-0.000659	0.000191	-0.000188	-0.000561	-0.000935	-0.001205	-0.001253	0.000426	0.000287	-0.000087	-0.000394	-0.001153	-0.001385	-0.001403	-0.001271	-0.000132	-0.000468	-0.000936	-0.001350	-0.001746	-0.001537	-0.002023
	ROTOR BLADE A	-0.000599	-0.000177	-0.000949	-0.001426	-0.000483	-0.000309	-0.000148	-0.000057	-0.000334	-0.000196	-0.000237	-0.00000-0-	0.000186	0.000478	0.000409	0.000391	0.000570	-0.000099	-0.000044	0.000305	0.000610	0.000800	0.000958	0.001123	0.000776	0.000209	0.000165	0.000257	0.000319	0.000679	0.001173	0.001073
	BASED ON ROT	0.000335	-0.000101	-0.000995	-0.000908	0.000637	0.000302	0.000122	-0.000340	-0.000892	-0.002553	-0.003243	-0.000000-	-0.000482	-0.001013	-0.001676	-0.002817	-0.003175	-0.000235	-0.000633	-0.000915	-0.001534	-0.001937	-0.002672	-0.003403	-0.002479	-0.001071	-0.001455	-0.001875	-0.002268	-0.002733	-0.003495	-0.002669
	STS.	0.003840	0.008496	0.013409	0.015462	-0.000806	-0.000598	0.001797	0.004266	0.006604	0.009460	0.009578	-0.001281	-0.001256	-0.000996	-0.000384	0.001206	0.002847	-0.000417	-0.002668	-0.004846	-0.006773	-0.008555	-0.008180	-0.006575	-0.005727	-0.004846	-0.009224	-0.012725	-0.016471	-0.017961	-0.016171	-0.017300
	(COEFFICIE	0.025630	0.049258	0.071694	0.080413	_	_	0.032069	_	.075162	.092491	_4	.011575	.035131	.058405	.082647		.104978	.009605	-4			.084087	.102068	.109527		.016385		.061465	0.084323	0.101766	.111988	0.117120
	ALPHA	- 14 3	-15.6	-17.1	-17.8	-12.8	-6.8	9.8-	-10.3	-11.8	-13.5	-13.9	-1.3	-2.8	7.4-	-6.1	-8-1	6.6-	5.9	4.6	3.1	1.5	-0.2	-2.6	1.4-	-6.3	10.2	9.0	7.2	5.7	3.5	9.0	-1.2
l Tare	ALPHA		-10.0																													10.0	
No.	θ	ب د	ထံ	oi Oi	Ħ	ત્રં	તં	⇒.	6	യ്	ġ	ਸ਼ਂ	ं	તં	†	9	ထံ	Ċ,	ᅻ	4,	o	ď		જે	ಹ	ģ	₹	Ġ	o'	ď	4	છ	ల

For the following data points

als and/or bls ≠ 0° ± .2°

as θ.78 als bls

-5 11 -.4 -.1

5 10 -.2 -.3

10 6 .5 0

10 8 ..4 .3

		$^{ m A1_{s}}$	-2.5	-3.3	-4-3	6.4-	۳. ن-	-3.0	 8.	-5.5	-1.2	-1.8	-2.5	-3.6	9.4-	-6.1	0.0	-0.7	-1.2	-1.9	-2.4	-3.9	-5.3	-6.3	٥٠٥	-0.7	-1.2
		H.AT	0.839	0.840	0.840	0.837	0.835	0.837	0.837	0.839	0.835	0.834	0.835	0.834	0.832	0.832	0.835	0.832	0.834	0.830	0.833	0.830	0.832	0.829	0.832	0.832	0.859
		V/OR	0.402	0.403	0.404	0.401	0.401	0.401	0.402	0.401	0.402	0.402	0.401	0.401	0.403	0.403	0.399	0.400	0.399	0.403	0.399	0.402	0.401	0.401	0.402	0.400	0.401
	WIND AXES DATA	CPO	0.0022338	0.0023805	0.0027495		0.0020494	0.0023313	0.0025365	0.0032373	0.0019035	0.0019486	0.0021425	0.0025414	0.0038625	0.0051965	0.0018855	0.0019600	0.0019795	0.0022047	0.0027957	0.0042465	0.0064563	0.0078472	0.0021052	0.0023689	0.0028229
	SPEED! WIND	3	0.0019477	0.0037725	0.0057733		0.0020579	0.0033016	0.0044389	0.0062635	0.0011897	0.0013326	0.0016867	0.0025761	0.0044248	0.0065302	0.0010325	0.0005419	-0.0000276	-0.0000980	0.0002768	0.0021985	0.0048449	0.0063007	-0.0009748	-0.0018646	-0.0022574
	ROTOR TIP SPI	CMZ	0.001879	0.003778	0.005822	0.007093	0.002092	0.003298	0.004637	0.006507	0.001282	0.001410	0.001769	0.002563	0.004519	0.006792	0.001145	0.000530	0.000018		0.000258	0.002233	0.004911	0.006394	-0.001065	-0.00200-0-	-0.002478
	AREA AND RO	CM≺	0.000015	-0.000117	-0.000488	-0.000602	-0.000184	-0.000548	-0.000812	-0.001303	0.000142	-0.000277	-0.000516	-0.000893	-0.001156	-0.001349	0.000145	-0.00000-	-0.000315	-0.000676	-0.000891	-0.001318	-0.001543	-0.001190	-0.000263	-0.000671	-0.001030
	BASED ON ROTOR BLADE AREA AND	C.W.	-0.000892	-0.001243	-0.001264	-0.001547	-0.000482	-0.000555	-0.000521	-0.000319	-0.000120	-0.000002	0.000314	0.000062	0.000390	0.000613	0.000000	0.000122	0.000303	0.000525	0.000720	0.000661	0.001533	0.001176	0.000019	-0.000005	0.000028
	ASED ON ROT	CYR	0.001025	0.000632	0.000146	-0.000113	0.000358	-0.000133	-0.000838		-0.000137		-0.000987	-0.001581		-0.003889	-0.000598			-0.001798	-0.002573	-0.003846	-0.003808	-0.004124	-0.001619	-0.002018	-0.002487
	ENTS	CXR	-0.000716	0.003336	0.007136	0.009500	-0.000037	0.002143	0.004134	0.006636	-0.001797	-0.001692	-0.001610	-0.000770	0.000106	0.001876	-0.002139	-0.003610	-0.005309	-0.006320	-0.007404	-0.006607	-0.005774	-0.005709	-0.007836	-0.011039	-0.013491
	(COEFFICE	CLR	0.004963	0.024990	0.042669	0.052771	0.017354		0.055746	0.068525	0.010644	0.028737	0.049499	0.066657	0.082204	0.086655	0.001537		0.037958	0.056138	0.075066	0.088635		0.098072	0.029977	0.048863	0.065931
	ALPHA	CONTROL	-14.9	-16.4	-18.3	-19.1	4.6-	-11.4	-13.3	-15.1	-2.1	-4.2	0.9-	-8-1	6.6-	-11.6	5.1	3.6	1.6	-0.5	-2.6	8.4-	-6.8	-7.8	9.5	7.5	5.6
l Tare		SHAFT	-10.0			10.0				-5.0														5.0		10.0	
No. 1	θ	Ċ	Ø	œĭ	ဌ	4	‡	٠	8	oj.	o	ณ์	±ં	Ġ	ಹ	9.5	4-	ď	ं	ત	⊸‡'	જ	ထံ	6	₹	2	ं

		$^{\mathrm{A}_{\mathrm{1s}}}$	-3.2 2.5	-4.1	-5.4	-2.3	-3.0	-3.9	-5.0	-1,1	1.	-2.7	-3.4	9.4-	-6.2	-0.1	-0.7	-1.3	-1.9	-2.8	-4.1	-5.7	-0.5	-1.0	-1.6	-2.0
		M. AT	0.831	0.829	0.831	0.828	0.829	0.830	0.826	0.818	0.827	0.826	0.827	0.823	0.824	0.823	0.820	0.823	0.822	0.821	0.822	0.820	0.821	0.817	0.819	0.816
		V/0R	0.456	0.456	0.456	0.458	0.456	0.455	0.459	0.467	0.459	0.461	0.458	0.458	0.457	0.458	0.460	0.461	0.460	0.460	0.462	0.462	0.460	0.462	0.461	0.461
	WIND AXES DATA	CPO	0.0027422	0.0029104	0.0032912	0.0023566	0.0025497	0.0028206	0.0034853	0.0021558	0.0022500	0.0024308	0.0027909	0.0038999	0.0055522	0.0021992	0.0022197	0.0023844	0.0026461	0.0032578	0.0043418	0.0069258	0.0026844	0.0029558	0.0034215	0.0042197
	SPEED) WIND	<u>a</u>	0.0028498	0.0045374	0.0067514	0.0019366	0.0028780	0.0040667	0.0055890	0.0011371	0.0013150	0.0017257	0.0023762	0.0039900	0.0064566	0.0008925	0.0002743	-0.0001480	-0.0001792	0.0003043	0.0018501	0.0044210	-0.0014461	-0.0022074	-0.0025558	-0.0023020
	ROTOR TIP SP	CMZ	0.002904	0.004619	0.00700.0	0.002036	0.002994	0.004271	0.005896	0.001262	0.001433	0.001827	0.002461	0.004079	0.006788	0.001025	0.000365	-0.000117	-0.000188	0.000262	0.001697	0.004365	-0.001566	-0.002372	-0.002733	
	AREA AND RO	Ç#\	-0.000122	-0.000121	-0.000415	0.00008	-0.000244	-0.000777	-0.001042	0.000054	-0.000248	-0.000414	-0.001118	-0.000808	-0.001798	0.000426	0.000169	-0.000333	-0.000411	-0.000642	-0.000827	-0.001455	-0.000302	-0.000529	-0.001071	-0.001262
	FOR BLADE /	CMX CMX	-0.001116	-0.001446	-0.001259	-0.000499	-0.000415	0.000225	0.000143	-0.000062	0.000030	0.000153	0.000403	0.000186	0.000244	0.000012	0.000161	0.000400	0.000593	0.000869	0.000601	0.000925	0.000069	0.000024	0.000127	0.000277
	ENTS BASED ON ROTOR BLADE	CYR	0.000657	0.000439	-0.000334	0.000465	0.000049	-0.000620	-0.001702	-0.000116	-0.000515		-0.001684	-0.002886	-0.004263	-0.000746	-0.001235	-0.001758	-0.002052	-0.002998	-0.003738	-0.004710	-0.002263	-0.002619	-0.003255	-0.003694
	-	CXR	0.000217	0.003462	0.007300	96000.0-	0.000607	0.002464	0.004091	-01000190			-010010-	0.000571	0.001045	-0.002856	.0.004296	-0.005700	-0.006561	0.007153	0.006352	0.006607	0.009159	0.011564	-0.013622	-0.015108
	(COEFFIC	CLR	0.011314	0.026313	0.043778		_	0.042727		0:007521 -							0.021283				0.081036	- 696060*0	0.035152	0.051303	0.066925	0.081219
	ALPHA	CCNTRCL	-16.6	-18.7	-20.5	8-6-	-11.6	-13.6	-15.3	-2.5	-4.6	9.9-	-8-4	-10.4	-12.5	5.0	3.5	1.2	-1.0	4.6-	-5.6	4.4-	8.7	6.9	4.6	2.7
Tare	ALPHA	SHAFT	-10.0	-10.0	-10.0	-5.0	-5.0	-5.0	-5.0	•	•	•	ò	•	•	2.0	5.0	5.0	5.0	5.0	5.0	5.0	10.0	10.0	10.0	10.0
No. 1	9	0.	ထံ	10.	12.	†	•	ထံ	.01	ċ	જં	. ‡		ထံ	10.	†	-5	o	· ሌ		•	ထံ	₹	ૡં	ਂ	å

For the following data point alg and/or bls \neq 00 \pm .2

ыв

θ.75

ဗွ

..

		$A1_S$	-3·5	۲۰۰	1.7.		i d	-3.7	-5.0	9. 9.	6.0	-1.4	-2.6	-3.2	 8.	-5.3	6.0	-1.3	-2.0	-2.7	- 3.	-4.3	9.5	0	-0.7	-1.4	-5.0	9.6	ج. م.	-5.6	9.0	-1.1	-1.8	-2.0	φ.	-4.5
		M, AT	0.848	0.845	\$ 6	0.040	9 4	0.839	0.839	0.841	0.837	0.833	0.838	0.837	0.835	0.837	0.833	0.834	0.833	83	0.832	0.831	0.833	0.829	0.827	0.825	0.825	0.828	0.826	0.825	0.826	0.825	0.824	82	æ	0.826
		V/OR	0.496	0.498	0.00	0.500	0.499	0.502	0.502	0.498	0.498	0.502	0.507	0.505	0.508	0.508	0.506	0.507	0.509	0.513	0.511	0.510	0.514	0.508	0.507	0.509	0.509	0.506	0.507	0.509	0.507	0.509	0.508	0.509		0.507
	WIND AXES DATA	CPO	0.0033385	003474	•	0.0045269	0.0030491	0.0033803	0.0040666	•	0.0027509	0.0027683	0.0029470	0.0032315	0.0036706	0.0044296	0.0027168	0.0026809	0.0029940	0.0032762	0.0639160	0.0055057	0.0079014	0.0628271	0.0028622	0.0029403	0.0032633	0.0040467	0.0054481		•	•	•	•	.0068	0.0089844
	SPEED! WIND	d C	0.0021093	0.0038675	0.0061269	0.0018699	.002767	0.0038801	0.0055022	0.0078646	0.0011179	0.0015050	0.0020969	0.0028218	0.0338687	0.0054718	0.0011087	0.0008782	2006000*0	0.0012728	0.0020862	0.0039808	0.0065304	0.0067412	0.0002813	-0.0001665	-0.0001835	0.0002636	0.0017072	0.0342200	-0.0018233	-0.0024326	-0.0026697	-0.0021863	08000	0.0020733
	ROTOR TIP SP		0.002210	0.004018	0.000493	0.001807	0.002805	0.003976	0.005605	0.008233	0.001116	0.001505	0.002075	0.002833	0.003887	0.005645	0.001053	0.000848							C-000238	•	-0.000281	0.000130	0.001505	0.003976	-0.001758	-0.002468			-0.001047	0.001370
	AREA AND RO	CMY	-0.000310	00023	10.000408		-0.000962	-0.000965	-0.001766	-0.000842	-0.000161	-0.000308	-0.000677	-0.001220	-0.001422	-0.001636	-0.000293	-0.000357	-0.000839	-0.001232	-0.001609	-0.001705	-0.002315	0.000012	-0.000303	-0.000375	-0.000663	-0.001352	-0.001451	-0.001554	-0.000447	-0.000736	-0.000941	<u> </u>	00	0.000674
	ROTOR BLADE A	CMX			874100-0-	790700-0-		0				9	٩	ċ	0	0	-	٩	0.000213	0.000287	0.000529	0.000944	0.000512	-0.000140	-0.000063	0.00000	0.000317	ċ	0.00055	•	•		ô	o ·	ċ	0.000961
	BASED ON ROT	CYR	0.000942	0.000834	0.1000.0	• •	-0.00000	-0.000557	-0.001791	-0.003602	0.000200	0.000028	-0.000150	-0.000662	-0.001168	-0.002406	-0.000233	-0.000647	-0.001165	-0.001450	-0.002390	-0.002973	-0.003706	-0.000686	-0.001148	-0.001595	-0.002033	-0.002553	-0.003960		-0.032820	-0.003078	-0.003878	-0.003847	-0.004742	-0.005047
, 5, 10	CLENTS		-0.002477	0.000756		• •	-0.000618	0.000841	0,002555	0.304097		-0.002520	0.001720	.000944	0.000132	0.001678	0.003178	.003604	0.004256	0.004168	-0.004006	0.003638	0.003429	0.004114	0.005151	06269	0.007092	0.008000	.008147	ċ	•	٠	ċ	-0.016092	9	-0.015600
= -10 = -5, -3, 2,	(COEF	CLR	0.001020	0.016522	さんのうび かんかん	56	02055	8	04976	06408	01010	00523	01856	03309	04635	9	00400	01957	03470	04400	02650	07356	0.080522	03826	#	03750	05209	06616	0798	08623	04090	0546	0000	08456	0985	0.106878
ALPHA SHAFT ALPHA SHAFT	ALPHA	CONTROL	-16.3	181	0.67	100	-11.5	-13.4	-15.4	-16.8	-3.6	1-9-	-8.5	-10.2	-12.3	-14.4	0.9	6.0-	-3.2	-5.4	-7.5	9.6-	-11.5	5.1	3.2	T•1	-1-	-3.3	6.4-	-7.9	8.4	6.7	6. 3	1.9	-0-1	-3.1
No. 1	ALPHA	SHAFT	-10.0	0.01		-5.0	-5.0	-5.0	-5.0	-5.0	-3.0	-3.0	-3.0	•		•			•	•	•	•	2.0	٠	ص س	٠ • •	2.0	٥ • •	2.0	5.0	10.0	ċ	10.0	10.0	10.0	10.0
Tare	9	Ç.	သင့	5 6	4 2	i -i		ထံ	S	51	o ·	αi.	4,	٥٠	ΰ	ġ	- -	o	ď.	4	9	ထံ	ġ.	†	လုံ (ਂ	വ്.	4 , ′	•	യ് .	†	-	ċ	₫.	• † †	•

For the following data point a_{1s} and/or $b_{1s} \neq 0^{\circ} + .2^{\circ}$ $c_{s} = 0.75$ $c_{s} = 0.75$ $c_{s} = 0.75$

2

10B
RUN
276.0
TEST

Tare

No. 2

	Alg	-2.1	-2.5	-3.2	-4.5	-1.3	-2.0	-2.4	-3.7	-4.2	-1.3	-1.7	-2.4	-3.6	- 0.4	-1.0	-1.6	-2.2	-3.3	†. †-	-5.9	-4.1	φ. 0-	-1.5	-2.0	-5.6	-3.6
	H, AT	0.738	0.741	0.734	0.735	0,735	0.734	0.736	0.734	0.734	0.733	0.733	0.731	0.732	0.732	0.732	0.733	0.732	0.732	0.738	0.733	0.731	0.733	0.731	0.733	0.733	0,732
	V/0R	0.613	0.614	0.621	0.619	0.618	0.619	0.618	0.619	0.620	0.618	0.619	0.621	0.624	0.624	0.624	0.622	0.620	0.621	0.634	0.621	0.624	0.618	0.620	0.618	0.619	0.619
WIND AXES DATA	CPO	0.0043591	0.0045175	0.0051638	0.0056114	0.0038180	0.0039299	0.0042067	0.0047124	0.0053845	0.0035853	0.0037132	0.0040805	0.0045353	0.0039035	0.0036654	0.0041199	0.0044357	0.0047768	0.0055615	0.0075886	0.0060063	0.0045139	0.0047705	0.0048378	0.0055209	0.0065527
SPEED) WIND	3	0.0001550	0.0012434	0.0023533	0.0041091	0.0009333	0.0014692	0.0021852	0.0029071	0.0039295	0.0013013	0.0014230	0.0016787	0.0021739	0.0008965	0.0005782	0.0004525	0.0004523	0.0009415	0.0018995	0.0036808	0.0019345	-0.0012784	-0,0015088	-0.0014244	-0.0013052	-0.0002317
ROTOR TIP SPI		-0.000013	0.001164	0.002400	0.004125	0.000886	0.001442	0.002254	0.002967	0.004101	0.001266	0.001349	0.001605	0.002146	0.000799	0.000487	0.000142	0.000219	0.000607	0.001585	0.003548	0.001700	-0.001220	-0.001532	-0.001401	-0.001451	-0.000277
AREA AND RO		0.000075	0.000074	-0.000320	0.000153	-0.000151	-0.000229	-0.000330	-0.000490	-0.000564	-0.000435	-0.000226	-0.000571	-0.000512	-0.000230	-0.000358	-0.000384	-0.000577	-0.000777	0.000033	0.000046	0.000670	-0.000194	-0.000255	0.000188	0.001460	0.000704
BLADE	X	-0.000308	-0.000335	-0.000365	-0.000708	-0.000298	-0.000131	-0.000029	-0.000196	+600000-0-	-0.000079	0.000104	0.000173	-0.000020	-0.000014	-0.000095	0.000028	0.000178	0.000042	0.000332	0.000264	0.000433	-0.000250	-0.000168	0.000072	0.000274	0.000370
BASED ON ROTOR		0.000525	0.000165	-0.000175	-0.000579	0.000100				-0.001591	-0.000245	-0.000740	-0.000973				-0.001567	-0.002003	-0.002727	-0.003668	-0.004969	-0.003534	-0.002532	-0.003451	-0.003779	-0.004541	-0.005131
NTS	· ~	-0.006889	-0.005340	-0.004524	-0.002453	-0.004677	-0.003976	-0.003283	-0.002949	-0.002426	-0.003693	-0.003718	-0.003920	-0.003877	-0.004822	-0.004968	-0.005959	-0.006557	-0.006372	-0.006085	-0.006689	-0.006868	-0.009465	-0.010299	-0.010390	-0.011444	-0.011470
COFFFICIE	C. P.	-0.018372	-0.006915	0.002570	0.017413	-0.012523	-0.002084	0.010472	0.020839	0.031783	0.000526	0.014925	0.024862	0.034521	0.006577											_	
AH PHA	CONTROL			-16.7					-12.7	-14.7	-2.5	-4-3	-6.8	-8-7	4.6	2.5	0.2	-2.0	-4-3	-6.5	-8-7	6.9-	7.2	5.1	2.6	0.1	-2.2
AH DHA	SHAFT	-8		0.8-																							8.0
	θ.75	9	œ	10.	12.	ď	. 	9	ထံ	10.	o	'n	4	. 6	-4-	-25	ċ	ď	4	9	ထံ	9.	-4-	-5	Ö	તં	;

For the following data points a_{1s} and/or $b_{1s} \neq 0^{\circ} + .2^{\circ}$ ත් **ο** 00

_
7
S S
æ
0
276.
Ē
~
EST
S
w

		$^{\mathrm{A}_{\mathrm{1s}}}$	۳. د. د. د	ر. د د	بار. ۱۵۰۷	, c.	-2.1	-2.7	-3.1	-3.9	-4.5	1.1	-1.7	-2.3	0.6	-3.6	-4.3	-0.5	-1.1	-1.2	-5.5	-2.8	-3 -3 -3	-3.9	-0.7	-1.1	.i.	-2.4	-3.1	-4.1	-4.7	٠ ، د ،	1	10.	, r.	. d	-1.5	-5.5	-2.9
		į	.68	99	0.685	9	689	19.	.68	.68	0.679	.67	0.675	•	0.679	29	0.678	0.676	0.676	•	0.676	0.676	0.677	0.676	0.675	0.674	0.676	•	•	0.676	.67	0.075	7	0.675	•	67	67	.67	.67
		V/OR	0.695	0.695	703	0.706	0.706	0.705	0.709	0.716	0.707	0.710	0.710	0.706	0.707	0.712	90.00	0.711	0.710	0.712	0.711	0.711	0.711	0.710	0.708	0.711	0.710	0.709	0.709	0.709	0.711	200	708	0.708	0.706	0.706	0.708	707.0	0.714
	WIND AXES DATA		0.0055241	666400	0.0069363	0.0094128	0.0051609	0.0057204	0.0064748	0.0067383	C.0085641	0.0048718	0.0049398	0.0049977	0.0057787	•006659	0.0079320	0.0051640	.004858	0.0049084	0.0050263	0.0054014	0.0061191	0.0073263	0.0052323	0.0051887	0.0049803	0.0053158	0.0062179	0.0069660	0.0088313	0.0051283	0.0050659	0.0055928	.006542	0.0064876	.006401	0.0067485	9
	SPEED) WIN		0.0015680	25651000	0.0026571	005271	001585	0.0018773	002414	8	0.0045285	0.0014147	0.0014930	0.0015940	0.0019131	0.0026320	0.0037148	0.0012621	0.0011982	0.0011985	0.0011662	0.0013900	0.0018694	0.0028914	0.0007825	0.0005639	0.0006550	0.0006229	0.0012619	0.0020923	0.0033669	-0-0001757	-0.0002715	0,0000160	0.0009658	-0.0014529	-0.0013893	-0.0012935	-0.0005022
	ROTOR ITEP SP	CMZ	0.001608	0.00215	0.002836	0.00566	ö	ċ	0.002417	ö	6	•	٠	•	•		•	0.001210	٠	٠			•	o i	o	ó	0.000426	0.000273	ó	5 (.	-0.000341	0.000229	0000	0.000923	-0.001339	۴	.001159	-0.000373
	9			•	-0.000476	•	•	٠	ç	•	-0.000492	•	o o	o		٩	ô		ė	ģ	ė	ė	ė	o.		ö		1	o o	7	Š	o c	ò	-0-00001	ò	-0.00032	ö	-0.0004	-0.000692
	OR BLADE	CMX	-0.000173	602000-0-	610000-0-	-0.000158	-0.000106	0.000018	0	060000*0	0.000129	0.000058	0.00000	0.00000	0.000029	0.000116	0.000201	-0.000189	-0.000014	0.000150	0.000147	0.000299	0.000000	0.000422	-0.000273	-0.000066	0.000084	-0.000000-	0.000192	0.000134	744000°0	-0.00041	0-000140		0.000285		$\boldsymbol{\circ}$	0.000017	\sim
	BASED ON ROTOR	CYR		40	-0-001343	-0.003588	0044	-0.000745	-0.001374	-0.002449	-0.003101	-0.000653	-0.000716	-0.000830	-0.001158	-0.002389	-0.002925	-0.000407	-0.000960	-0.001038	-0.001460	-0.001843	-0.001956	-0.002942	-0-001008	-0.001375	-0.001798	-0.001814	-0.002555	-0.003241	-0.00.00.0	-0.002220	-0.003237	-0.003408	-0.004288	91600	-0.003695	-0.004419	-0.005115
	CIENTS	CXR CXR	9		-0-006137	-0.005943	-0.005063	-0.005458	-0.005	-0.00501	Ģ	-0.004866			264500	005713	20900	-0.005490	05156	05221	05461	05687	06043	06341	-0.006299	-0.006527	-0.006129	-0.006695	07103	20070	-0-001876	-0.007822	0763	-0.008012		-0.011347	_	01156	.011
	(COEFFI	CLR	-0.000823	0.00000	0.021382	0.034737	0.003982	0.011521	0.019636																						5 5	0.034042	6	*	0.053930	Ň	9	0.056809	.06411
	ALPHA	CONTROL	-10.6	-17.0	-16.6		4.7-	8-6-	-11-6	-13.4	-15.6	6	M .	-6.5	-8-1	-10.6	-12.5	M	1.3	-1.0	-3.3	-5.6	-7.6	8.6-	4 .	2.4		-2.3	9.4.	· ·	200	7.6	101	-1.4	-3.6	9.9	4.4	2-0	-0 -0 -0
Tare	ALPHA	SHAFT																																					
No. 2	9.75	<u>.</u>	် α	غ د	ដុំ	13.7	. ≠*	•	ထံ	9	15.	o ·	ď.	4,	۰.	တ်	ဒ္	₹	2	ં	ď.	æ* \	ó	တ် -	†	્યં	o •	ni.	4 (ó	o	i d	id	۲,	.‡	₹	<u>-</u> ن	ö	ณ๋

For the following data points a_{1s} and/or $b_{1s} \neq 0^0 + .2^0$ a14. a_{1s} -1.0 - .3 8 400

7.0.7	Tare
-	a
2	М.

	Als	-1.1	-1.2	-1.5	2.I.	0.4 -	-2.	-2.6	-2.8	-3.2	-3.5	0.4	-4.2	0.0	٥. د	-1.0	-1.5	2.2	-2.6	-3.1	3.7	က္ ဝှ	တ္	-1.5	-2.3	-2.7	-3.0	3.6	9.0	-1.2	-1.9	2.5	 	۳. ۳.
	H, AT	0.635	0.630	0.630	0.631	0.630	0.625	0.626	0.627	0.625	0.628	0.619	0.622	0.624	0.622	0.622	0.622	0.622	0.621	0.618	0.617	0.618	0.617	0.616	0.615	0.615	0.614	0.613	0.614	0.614	0.614	0.615	0.613	0.613
	V/0R	0.808	0.815	0.807	0.811	0.812	0.799	0.815	0.820	0.818	0.826	0.813	0.824	0.819	0.814	0.816	0.818	0.818	0.818	0.820	0.828	0.824	0.832	0.829	0.837	0.838	0.834	0.833	0.829	0.830	0.830	0.834	0.831	0.831
WIND AXES DATA	CPO	0.0064688	0.0067975	0.0068318	0.0075528	0.0076556	0.0088360	0.0087639	0.0089871	0.0101618	0.0100040	0.0127707	0.0126186	0.0067932	0.0065304	0.0059958	0.0065526	0.0071377	0.0079161	0.0090545	0.0106835	0.0071463	0.0065606	0.0067397	0.0068886	0.0075357	0.0088101	0.0099256	0.0076285	0.0071563	0.0070827	0.0073001	0.0085577	0.0090193
SPEED! WIN	a S	0.0014225	0.0014537	0.0014822	0.0015267	0.0014907	0.0014906	0.0017233	0.0017724	0.0021552	0.0023731	0.0029568	0.0030948	0.0014026	0.0015742	0.0014945	0.0014974	0.0015401	0.0015855	0.0019502	0.0027199	0.0011311	0.0011909	0.0011904	0.0012943	0.0016961	0.0018292	0.0023272	0.0006202	0.0007101	0.0007101	0.0008910	0.0016922	0.0019625
ROTOR TIP SP		0.001412	0.001390	0.001362	0.001274	0.001441	0.001668	0.001841	0.002000	0.002344	0.002632	0.003080	0.003390	0.001168	0.001311	0.001369	0.001356	0.001370	0.001573	0.001856	0.002707	0.001013	0.001072	0.001161	0.001140	0.001347	0.001613	0.002113	0.000303	0.000314	5.000463	0.000567	0.001073	0.001694
AREA AND RO		-0.000830	-0.000697	-0.000666	-0.001346	-0.000362	-0.001067	-0.001098	-0.001188	-0.000705	-0.000793	-0.001203	-0.001113	-0.000074	-0.000337	-0.000704	-0.001149	-0.000315	-0.000718	-0.001052	-0.000448	-0.000112	-0.00001	-0.000261	-0.000652	-0.000711	-0.001288	-0.000984	-0.000470	-0.000563	-0.000496	-0.000357	-0.000657	-0.000613
ROTOR BLADE A					11100	-0.000067	00042	-0.00001	000042	27000		-0.000255	-0.000665	-0.000616	-0.000221	-0.000227	-0.000240	-0.000115	0.000363	0.000095	-0.000364	-0.000598	-0.000339	-0.000196	-0.000359	-0.000211	0.000143	-0.000019	-0.000849	-0.000977	-0.000302	-0.000400	0.000152	-0.000059
BASED ON ROT			-0.000332	-0.000675		-0.001115	-0.001370	-0.001600			-0.002581	-0.003315	-0.003326	0.000380	-0.000272	-0.000270	-0.000782			-0.002162	-0.003555	-0.000285	-0.000675	-0.001068	-0.001159	-0.001372	-0.002513	-0.002907	-0.001225	-0.001002	-0.001616	-0.001999	-0.003185	-0.003352
FNTS	×	•	.006557	.006628	.007428	.007593	-0.009199	.008639	.008804		-0.009245	-0.012090			-0.006089	-0.005514		-	-0.007747	-0.008680		-0.007301	-	-0.006706	-0.006698	•		•	-0.008480	-0.007794	-0.007718		-0.008318	-0.008550
COFFERC	CLR	-0.003983 -		•	_	0.001027	_		0.007990						-0.002999								_	_						_			0.034693	
At PHA	CONTROL	-5.0				-9.5	-10.5	-11.4	-12.5	-13.7	-14.5	-15.9	-17.7				-4.3	-6.3	-8.8	-10.8	-12.9	2.9	1.2	6.0-	-4.3	-6.1	-7.8	-10.0	4.5	2.1	-0-3	-2.4	-5.1	-7.2
	SHAFT		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	•	•	ò	ċ	•	•	•	•	2.0	2.0	2.0	2.0	2.0	2.0	2.0	4.0	4.0	4.0	4.0	4.0	4.0
.	0.5	જં	ښ	.†	ν,	9.	7.	∞	6	10.	111-	12.	12.8	. † .	-2.	o	તં	.	9	œ́	10.	. †	-2.	ċ	ત્યં	.‡	જું	ထံ	4-	-5-	ċ	તં.		•

For the following data points a_{1s} and/or $b_{1s} \neq 0.0 \pm .2^{\circ}$ $c_{s} \quad \theta.7s \quad a_{1s} \quad b_{1s}$ $-2 \quad 9 \quad .4 \quad .1$ $0 \quad 10 \quad .3 \quad .1$ $2 \quad 6 \quad .3 \quad .1$ $4 \quad 6 \quad .3 \quad .1$

					,	'	'	'	'	'	'	'	•	,	'
					0.619	0.619	0.619	0.619	0.617	0.617	0.615	0.616	0.618	0.616	0.614
				V/0R	0.825	0.826	0.828	0.828	0.829	0.829	0.832	0.829	0.827	0.831	0.834
) = 0.62.			XXES DATA	CPO	0.0071661	0.0066269	0.0079696	0.0076719	0.0074600	0.0079624	0.0091010	0.0091361	0.0088766	0.0085649	0.0097128
IV-11 ARTICULATED ROTOR; O TWIST, $V/\Omega R = 0.83$, $M_{(1)}(so) = 0.62$.			EFFICIENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED) WIND AXES DATA	3	0.0007839	0.000631 0.0007429	-0.0003065	-0.0004378	-0.0001760	0.0003526	0.0012020	-0.0017688	-0.0017080	-0.0007089	-0.0000895
nr = 0.83			OTOR TIP SP	CMZ	51 -0.007752 -0.001121 -0.000495 -0.000000 0.000761 0.0007839	0.000631	0.000132 -0.000352 -0.0003065	0.000123 -0.000450 -0.0004378	77 -0.009306 -0.002903 -0.000535 -0.000286 -0.000133 -0.0001760	0.000321	0.000921	14 -0.013277 -0.003927 -0.001069 -0.000016 -0.001501 -0.0017688	51 -0.012940 -0.004307 -0.000545 -0.000188 -0.001525 -0.0017080	74 -0.011305 -0.004778 -0.000587 -0.000727 -0.000601 -0.0007089	17 -0.011957 -0.006416 -0.000044 -0.000434 0.000153 -0.0000895
rwist, v/			AREA AND RO	CM	-0.000000-	34 -0.007159 -0.001881 -0.000657 -0.000374	0.000132	0.000123	-0.000286	76 -0.009300 -0.003551 -0.000316 0.000270	18 -0.009619 -0.004074 -0.000092 -0.000460	-0.000016	-0.000168	-0.000727	-0.000434
TOR; O			TOR BLADE	CMX	-0.000495	-0.000657	17 -0.010048 -0.002327 -0.000862	49 -0.009874 -0.002596 -0.000501	-0.000535	-0.000316	-0.000092	-0.001069	-0.000565	-0.000587	-0.000044
JLATED RO			ASED ON RO	CYR	-0.001121	-0.001881	-0.002327	-0.002596	-0.002903	-0.003551	-0.004074	-0.003927	-0.004307	-0.004778	-0.006416
ARTICU			FICTENTS B	CXR	-0.007752	-0.007159	-0.010048	-0.009874	-0.009306	-0.009300	-0.009619	-0.013277	-0.012960	-0.011305	-0.011957
			(COEF	CLR	0.015851	0.027084	0.033317	0.041549	0.045377	0.050676	0.052808	0.050514	0.059451	0.058174	0.067017
TABLE	RUN 13A		ALPHA	CONTROL	4.7	0.1	5.7	9.4	1.1	-1.6	-3.6	9.9	4.3	1.5	-0.7
	TEST 276.0	No. 2 Tare	ALPHA	SHAFT	4.0	4.0	0.9	0.9	0.9	9.0	6.0	8.0	8.0	8.0	9°
	TESI	No.	9 75		7.4	o o	ν. Ω.	3.4	i,	-1.5	-3.7	6.7	4.4	1.5	7

For the following data points a_{1s} and/or $b_{1s} \neq 0^{-\frac{1}{2}} \cdot 2^{0}$

TEST 276.0 RUN 13B

No. 2 Tare

A,	S	-0.1	8.0-	-1.5	-1.0	-1.6	6.0-	-0.5	-1.0	-0.4	-1.1	-1.6	-1.5	-2.2	-1.8	-1.9	-1.4	-1.4	-1.4	-2.5	-2.7	-1.3	-2.2	-2.2	-3.1	-3.1
							545	544	544	244	245						3.542			541	245		540		245	
			1.745	1.051	1.558	1.058	1.053	1.051	1.049	1.349	1.057	1.059	1.051	1.052	1.052	1.059	1.049	1.357	1.059	1.357	1.053	1.251	1.057	1.051	1.052	1.053
WIND AXES DATA	CPO	0.0136225	0.0112602	0.5104204	0.0115279	3.0127411	0.0142713	0.0172443	3.0236549	0.0136973	3.2116996	0.0122670	0.0111730	3.0136644	0.3152468	3.0183743	0.0144569	0.0142324	0.0126703	0.0121217	0.0135607	5.3179394	3.3152742	9.0143552	0.0135379	0.3163277
SPEED) WIND !	CP	5.0034270	0.0014757	0.0216330	0.0014382	0.0012965	0.0004275	-0.0003562	-0.0003561	-0.0001424	0.0013027	0.0013328	3.0015007	0.0012885	0.0005311	0.0013050	-0.0012165	-3.0005382	0.0007261	0.0013368	0.0012927	-0.0030157	-0.0013180	-0.0001436	0.0005745	0.0013645
ROTOR TIP SP	CMZ	0.000029	0.001075	0.001000	0.001008	0.000409	-0.000369	-0.001157	-0.031241	-0.003416	0.000727	0.000772	0.001123	0.000198	0.000045	0.000431	-0.001361	-0.000706	0.000535	0.000853	0.000758	-0.302805	-0.001393	-0.000333	0.003248	969000*0
AREA AND RO	CMY	0.000534	-0.001374	-0.002799	-0.001946	0.001388	0.002443	-0.000346	0.301765	0.003482	0.000251	-0.000353	-0.001241	-0.000704	-0.0006600	0.003200	9.000000	-0.000372	-0.000232	-0.000304	-0.000919	0.000535	-0.000523	-0.000205	0.000408	0.001127
BLADE	CMX	0.000447	-0.001133	-6.003341	-0.002039	-0.001163	-0.000385	0.000887	0.001626	-0.000692	-5.001862	0.000175	-0.001009	-0.001387	-0.003198	0.000274	-D.001343	-0.000906	0.000367	-0.001568	-0.031913	0.000198	-0.000838	-0.000983	-0.001659	0.000338
BASED ON ROTOR	CYR	0.000641	9,0000.0	0.000956	0.001111	-0.000351	-0.000445	-0.000234	-0.002303	-0.000414	0.000156	-0.001086	-0.000719	-0.000424	-0.000823	-0.034101	-0.002338	-0.001504	-0.002145	-0.002165	-0.002837	-0.004603	-0.003213	-0.003703	-0.003868	-0.004372
SIN	· ~	-0.012551	-0.039363	00.0-	0.00	-0.01	-0.01	-0.01	-0.02	-0.01	0.0	-0-01	00-0-	-0.01	10.0-	-0.01	-0.015001		-0.011339		-0.011206	-0.02	-0-01	-0.01	-0.01	-0.01
(COEFFICIE	CLR		0.001981	-0.010139	-0.012657	-0.000865	-0.012238	-0.024233	-0.011436	0.026288	0.025610	0.027072	960600*0	0.006390	-0.005611	0.009791	0.044457	0.051927	0.044998	0.037892	0.031877	0.069819	0.065862	0.064844	0.061455	0.060753
AH PHA	CONTROL	6.46	8 0								!						5.2	2.9		-2.9	6.4-	. 6	2.0	4	-2.1	-4.2
VHQ IV	CHAFT				0	1.0	1.0	0.1	0.1	0	1	0.6	9.0	9.6	3.0	3.0	5.0	5.0		i c	2,0	0.7	0		7.0	7.0
•	.75	.	5.	ó	ď	.	9	ထံ	9	4-	-5-	Ö	ď	4.	•	ŵ	- †	-5-	ċ	ď	4	4-		id	s d	4

For the following data points als and/or $b_{1g} \neq 0^{0} \pm .2^{0}$

$^{b_{1g}}$	٦.	0	رب 1	₹. -	۲.	ď	٠.3	٠ د	۳.	2.5	0	7.	7.	 	. :	۲.
8 ₁ 8	7	.† -	ņ	≠	4	≠ .	≠	1.0	ď	⊅ .	8	ω.	≠ :-	.⇒.	ņ	-
θ.7.5	7	٦,	0	. ‡	9	₹	0	ณ	.≠	9	ω	ç	†	ç	CU.	7
გ გ	т	٦	-1	H	Н	m	m	m	m	m	m	ζ.	_	7	7	1

TEST 276.0 RUN 10A

No. 2 Tare

	Als		-3.2	-4.1	-5.3	9.2	5.3	, ci	7.7	-4.7	9.0	7.7-	-1.1	-2.1	-2.9	۔ عن	9.4-	-5.7	8-3	-0.5	-1.1	-1.0	-2.3	-2.7	 	-5.3	-7.8	۰ 9	-0.7	-2.0	-2.0	5.9	0.4	4.0
	H, AT	0.672	0.673	0.674	0.675	0.674	0.671	0.672	0.671	0.671	0.672	0.672	0.671	0.673	0.673	0.673	0.672	0.672	0.672	0.672	0.674	0.672	0.674	0.671	0.673	0.673	0.672	0.672	0.674	0.673	0.672	0.672	0.672	0.672
	V/0R	0.402	0.404	0.401	0.402	0.401	0.399	0.401	0.401	0.400	0.402	0.402	0.400	0.399	0.399	0.398	0.400	0.400	0.400	0.401	0.400	0.401	0.399	0.400	0.399	0.399	0.395	0.401	0.399	0.399	0.397	0.402	0.401	0.401
WIND AXES DATA	CPO	0.0019938	0.0021088	0.0022716	0.0026616	0.0032038	0.0018578	0.0020567	0.0021750	0.0025821	0.0035527		0.0017508	0.0017673	0.0019415	0.0023113	0.0029155	0.0044718	0.0065366	0.0017905	0.0018106	0.0019257	0.0021530	0.0025616	0.0033961	0.0052637	0.0076849	0.0021076	0.0023872	0.0026962	0.0032076	0.0043508	0.0064958	0.0098250
SPEED) WIND	d S	0.0015330	0.0032886	0.0049983	0.0070739	0.0091686	9606100.0	0.0029229	0.0039219	0.0053379	0.0073486		0.0010234	0.0012048	0.0014980	0.0020846	0.0033660	0.0057295	0.0086631	0.0010236	0.0004505	-0.0001372	-0.0003667	-0.0000739	0.0011209	0.0034045	0.0063979	-0.0007703	-0.0017286	-0.0022942	-0.0024194	-0.0016780	0.0003060	0.0039923
ROTOR TIP SP		0.001444	0.003288	0.005108	0.007246	0.009553	0.001820	0.002876	0.004040	0.005521	0.007595	0.011192	0.001013	0.001174	0.001492	0.002074	0.003443	0.005869	0.009011	0.001136	0.000515	-0.000123	-0.000328	-0.000080	0.001148	0.003520	0.006525	-0.000605	-0.001732	-0.002224	-0.002442	-0.001626	0.000339	0.004076
AREA AND RO		0.000175	-0.000120	-0.000364	-0.000487	-0.000628	-0.000252	-0.000469	-0.000637	-0.000719	-0.000947	-0.000181	-0.000047	-0.000371	-0.000544	-0.000735	-0.000824	-0.000961	-0.000324	0.000103	-0.000147	-0.000393	-0.000523	-0.000764	-0.000955	-0.001008	-0.001040	-0.000326	-0.000503	-0.001007	-0.001155	-0.001164	-0.001333	-0.001208
ROTOR BLADE /		-0.000226	-0.000522	-0.000670	096000-0-	-0.001558	-0.000185	-0.000093	-0.000089	-0.00000-	-0.000239	-0.000015	0.000054	0.000144	0.000241	0.000262	0.000302	0.000726	0.000636	-0.000049	0.000030	0.000247	0.000325				0.000826	-0.000176	-0.000161	•	0.000018	0.000390	0.000757	0.001363
BASED ON ROT	CYR	0.000423	-0.00000	-0.000616	-0.001423	-0.001862	0.000169	-0.000434	-0.001223	-0.001480	-0.002794	-0.003847	-0.000033	-0.000415	-0.001146	-0.001403	-0.002697	-0.003523	-0.005635	-0.000456	-0.000190	-0.000944	-0.001851	-0.002419	-0.002897	-0.004564	-0.006141	-0.001599	-0.001697	-0.002678	-0.002533	-0.003817	-0.004886	-0.006337
SNTS	CXR	ė	ö	ö	ö	ö	ó	0.001945	ö	0.005949	ö	ö	ė.	ė	ė	ė	ė	ö	ċ	ė	ė	ģ	ė	ဝုံ	ġ	ė	ė	ė	ė	-0.013265	-0.015461	-0.016796	-0.017762	-0.017275
(COEFF	CLR	0.001434	0.021859	0.039007	0.056795	0.070765	0.017141	0.033562	0.054116	0.069572	0.081331	0.092569	0.007603	0.023469	0.046033	0.064394	0.078677	0.091774	0.101101	-0.001690	0.015804	0.035191	0.054979	0.071824	0.086899	0.100620	0.107038	0.025138	0.044191	9	0.080894	960.	011	989811-0
ALPHA	CONTROL	-14.4	-15.9	-17.5	-19.1	-20.7	0.6-	-11.0	-12.4	-14.4	-15.7	-17.2	-1.9	13.8	-5.6	-7.5	-9.3	-41.0	-12.5	5.7	8.6	2.2	0.3	-1.6	0.4	-5.9	-7.5	9.6	8.2	5.7	3.7	4.	0, 0	4.7-
ALPHA	SHAFT	-10.0	-10.0	-10-0	-10.0	-10.0	-5.0	-5.0	-5.0	15.0	-5.0	15.0	ċ	ċ	ċ	ċ	•	ö	•	5.0	2.0	5.0	2.0	o. 0	o.	S.0	5.0	10.0	10.0	10.0	10.0	10.0	0.0	7.01
9	C	ė	ထံ	ġ	15.	14.	4	•	ά	ខ្មុំ	કૃ	14.	ċ	å.	₫,	ġ.	ထံ	ġ	12.	‡	ૡ૽	o	તં.	4,	ø	ထံ	oi Oi	. †	ģ	o	તાં.	4,	•••	င်

For the following data points a_{1g} and/or $b_{1g} \neq 0^{\circ} + .2^{\circ}$ 9.75 41 90 8 ဗွ 3,403

1.1. 5.0. £4.

......

TEST 276.0 RUN 14A

	A_1	-2.4	-3.5	-4.2	-2.3	-2.9	-4.3	9.4-	6.0-	-1.5	-2.7	-3.1	6.4-	-5.0	-0,1	-0.5	-1.0	-1.4	-2.2	-3.8	-5,3	7.0-	-0.7	6.0-	-1.6	-2.9	-4.2
	H, AT	0.874	0.875	0.872	0.868	0.869	0.869	0.869	0.869	0.864	0.864	0.865	0.867	0.866	0.864	0.865	0.864	0.865	0.864	0.865	0.865	0.861	0.863	0.862	0.863	0.861	0.862
	V/0R	404.0	0.411	0.401	0.410	0.408	0.408	0.408	0.407	0.407	0.407	0.405	0.404	0.407	0.409	904.0	904.0	0.408	0.407	0.405	904.0	0.410	904.0	0.409	104.0	0.408	604.0
	WIND AXES DATA CPO	0.0026353	0.0028299	0.0030403	0.0024608	0.0026445	0.0029977	0.0036813	0.0022516	0.0022898	0.0024611	0.0030541	0.0045670	0.0055443	0.0022790	0.0022805	0.0024250	0.0026455	0.0033554	0.0048797	0.0075041	0.0025440	0.0027813	0.0033565	0.0042563	0.0057889	0.0089209
	SPEED! WIND	0.0023297	0.0041235	0.0060811	0.0023414	0.0034658	0.0049115	0.0063453	0.0013287	0.0014322	0.0019840	0.0028793	0.0050107	0.0062052	0.0011342	0.0004982	÷	-0.0000788	0.0005132	0.0026430	0.0055087	-0.0008117	-0.0018153	-0.0023862	-0.0020165	-0.0001855	0.0029564
		0.002303	0.004110	0.006220	0.002307	0.003527	0.004937	0.006534	0.001290	0.001396	0.001955	0.002766	0.005085	0.006269	0.001198	0.000511	Ĭ.	:	0.000464	0.002624			_	•	-0.002065	-	0.002924
	AREA AND ROTOR TIP	-0.000204	-0.000315	-0.000484	-0.000367	-0.000675	-0.000867	-0.001322	-0.000267	-0.000415	-0.001065	-0.001279	-0.001152	-0.001265	-0.000103	-0.000262	-0.000500	-0.000607	-0.001399	-0.001270	-0.001436	-0.000384	-0.000852	-0.001102	-0.001508	-0.001479	-0.001517
		-0.000278	-0.000772	-0.001077	-0.000179	-0.000199	-0.000329	-0.000051	0.000059	0.000243	0.000221	0.000459	0.000355	0.000735	0.000151	0.000240	0.000320	0.000437	0.000726		0.001072	-0.000125	-0.000237	-0.000110	0.000141		0.001322
	BASED ON ROTOR BLADE CYR CMX	0.000267	-0.000086	-0.000507	-0.000002	-0.000508	-0.001383	-0.001981	-0.000175	-0.000599	-0.001257		-0.003499	-0.003118	-0.000633	-0.000946				-0.003604	-0.003537		-0.002187		-0.003179		-0.004410
	NTS.	-0.000760	0.003031	0.007109				0.0		-0.002307	-0.001597	0.0	ò	•	-0.002804	-0.004468	ò		9			-0.008366	-0.011792	ô	0-0-	9	9
	(COEFFICIE	0.006806	0.025439	0.043890	0.019107	0.038313	0.057393	0.070614	0.011827	0.032476	0.047536	0.069491	0.084096	0.086917	0.002688	0.020328	0.041419	0.059848	0.075421	0.089803	0.096737	0.039553	0.049408	0.069595	0.086706	0.098382	0.106512
	ALPHA	-15.0	-16.5	-18.2	9.6-	-11.2	-13.2	-14.3	-2.3	-4.2	-6.2	-8-2	-10.2	-11.2	5.1	3.6	1.7	4.0-	-2.4	-5.0	-7.3	8.9	7.6	5.5	3.1	0.3	-2.5
2 Tare	ALPHA	-10.0	-10.0	-10.0	-5.0	-5.0	-5.0	0.81	•	6	•	å	ó	ò	8.0	5.0	2.0	5.0	5.0	5.0	5.0	10.0	10.0	10.0	10.0	10.0	10.0
No.	θ .75	6.	ω	01		٠.	φ.	9.5	o	ď	4	9	ထံ	8. 8	,	-	ċ	તાં	ં	•	ထ	4-		ċ	ά.	4	•

For the following data point a_{1_S} and/or $b_{1_S} \neq 0^{\circ} + .2^{\circ}$ $c_S = 0.7 \cdot s$ $a_{1_S} = 0.1 \cdot s$ $b_{1_S} = 0.1 \cdot s$ $b_{1_S} = 0.1 \cdot s$

		A ₁	-2.6	-2.4	-3.0	8.8	-2.0	-2.8	-3.1	-3.7	8.0-	-1.4	-2.7	-3.5	-4.6	-3.9	-0.1	-0.7	-1.4	-1.8	-2.4	-3.1	-4.1	4.0-	-0.5	-1.0	-1.3	-2.7
		M, AT	0.888	0.888	0.889	0.889	0.887	0.888	0.888	0.830	0.889	0.890	0.892	0.892	0.891	0.890	0.890	0.887	0.887	0.887	0.887	0.888	0.891	0.889	0.891	0.888	0.889	0.885
		V/OR	0.395	0.397	0.397	0.397	0.394	0.396	0.395	0.395	0.394	0.394	0.394	0.394	0.394	0.394	0.391	0.392	0.391	0.392	0.391	0.393	0.390	0.391	0.391	0.393	0.391	0.389
	P SPEED	CPO	0.0027976	0.0028245	0.0029542	0.0031488	0.0025791	0.0028462	0.0029642	0.0034327	0.0023667	0.0024800	0.0027305	0.0033443	0.0046919	0.0038127	0.0023949	0.0024186	0.0026318	0.0029274	0.0035767	0.0054294	0.0068897	0.0025907	0.0029383	0.0034380	0.0042513	0.0063634
	AND ROTOR TIP	g G	0.0026583	0.0034465	0.0045260	0.0054339	_	0.0037772	0.0043896	0.0053794	0.0014758	0.0016954	0.0021720	0.0031184	0.0053871	0.004000	0.0013824	0.0006717	0.0002198	0.0001099	0.0008547	0.0031266	0.0046038	-0.0006316	-0.0015588	-0.0019785	-0.0017735	0.0003905
	BLADE AREA /	CMZ	0.002561	0.003410	0.004558	0.005540	0.002563	0.003825	0.004411	0.005473	0.001459	0.001664	0.002121	0.003136	0.005506	0.004032	0.001449	0.000752	0.000196	0.000103	0.000841	0.003124	0.004656	-0.000572	-0.001578	-0.002083	-0.001835	0.000252
	ON ROTOR BE	CMY	-0.000192	-0.000260	-0.000239	-0.000506	-0.000491	-0.000752	-0.000844	-0.001076	-0.000110	-0.000559	-0.000845	-0.001073	-0.001067	-0.001211	0.000142	-0.000150				-0.001116	-0.001090	-0.000344	-0.000683	-0.001134	-0.001335	-0.001101
		CMX	-0.000543	-0.000548	-0.000718	-0.001039	-0.000166	-0.000067	-0.000150	-0.000118	0.000115	0.000254	0.000253	0.000427	0.000441	0.000486	0.000176	0.000295	0.000372	0.000484	0.000743	0.000905	0.001096	0.000002	0.000073	0.000081	0.000251	0.000623
	COEFFICIENTS+ BASED	CYR	0.000310	0.000099	0.000080	-0.000275	0.000056	-0.000457	-0.000643	-0.001347	-0.000154	-0.000374	-0.001176	-0.002304	-0.003225	-0.002672	-0.000441	-0.001024	-0.001546	-0.002122	-0.002689	-0.003551	-0.003187	-0.001747	-0.002099	-0.002608	-0.003069	-0.003652
	WIND AXES	CXR	P	ö	9	9	9	0	5	6	0.0	0.0	0.0	0-0-	0	0.0	0-0	0.0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	-0.017418
		CLR	0.009190	0.018531	0.029829	0.037373	0.020747	0-041696	0.021224	0.062110	0.011745	0.030602	0.051233	0.072397	0.084307	0.078381	0.001551	0.020504	0.042226	0.062692	0.079256	0.092118	0.095584	0.030199	0.050683	0.068305	0.086241	0.100581
RUN 14B	AH DHA	CONTROL	-15.1	-15.8	-16.7	-17.6	6.6-	-11.6	7.21-	-13.2	6-7-	n •	-6.2	6.7-	-10.4	-9.2	8.4	 	1.7	-0-3	-2.1	-5.1	2.0	9.1	7.5	5.6	3.6	0.7
TEST 276.0	2 Tare	SHAFT	-10.0	-10.0	-10.0	-10.0	0.10	0.0	0 1	٠ ٠ ٠	;	;	•	•	•	0	٥. ٥	0.0	0.0	n (0.0	0.0	0.0	10.0	10.0	0.01	10.0	10.0
TEST	No.	θ .75	•	7.	œ [*]	6	*	.	• (.	?	•	¢	∞ •	7.	-4-	-2•	ċ	5 •	,	•	7.	-4-	-2•	ં	2.	;

For the following data points a_{1s} and/or $b_{1s} \neq 0^{\circ} + .2^{\circ}$ $\alpha_s \quad \theta.7s \quad a_{1s} \quad b_{1s}$ $0 \quad 8 \quad .3 \quad 0$ $5 \quad 6 \quad .3 \quad .2$

No. 2 Tare

Ą,	¬s	-2.1	-3.0	-2.1	-2.8	-3.1	8.0-	-1.7	-2.3	-3.4	-4.0	7.0-	-1.2	-1.8	-2.6	-4.4	-0.2	-0.7	6.0-	-1.6	-3.0	-4.1
	MAAT	0.943	0.944	0.941	0.940	0.939	0.937	0.937	0.937	0.936	0.937	0.936	0.935	0.936	0.931	0.931	0.927	0.926	0.923	0.926	0.925	0.925
	V/OR	0.392	0.392	0.391	0.392	0.392	0.393	0.393	0.393	0.393	0.392	0.393	0.391	0.390	0.391	0.394	0.393	0.392	0.392	0.391	0.393	0.392
WIND AXES DATA	CPO	0.0041969					0.0035853	0.0036386	0.0040513	0.0047569	0.0054052			0.0039578	0.0050571	0.0067377	0.0038361	0.0039230	0.0044327	0.0057773	0.0076779	0.0098649
	5	0.003670 0.0038033		0.0035185	0.0049081		0.0023821	0.0024694	0.0031699	0.0042480	0.0052501	0.0015547	0.0011364	0.0009811	0.0020498	0.0042996	• 0	-0.0009813	-0.0014819	-0.0006680	0.0014661	0.003651 0.0042077
TOR TIP SP	CHZ	0.003670		0.003713	0.005235	0.006032	0.002307	0.002410	0.003076	0.004327	0.005368	0.001713	0.001203	0.000912	0.001945	0.004039	0.000045	-0.001021	-0.001563	-0.000733	0.001261	
ENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED!	CMY	0,000160	-0,000185				0.000027	-0.000240	-0.000408	-0.001183	-0.001011			-0.000535	0.000384 -0.000939	0.000507 -0.000761	0.000236 -0.000069	0.000161 -0.000273	-0.001041	0.000367 -0.001269	0.000749 -0.001193	0.001334 0.000164
OR BLADE A	CMX	0.000710 -0.001085		0.000110 -0.000440	-0.000388	-0.000350	-0.000169	0.000034	0.000165	0.000328	0.000426	0.000267	0.000328	0.000396	0.000384	0.000507	0.000236	0.000161	0.000119	0.000367	0.000749	0.001334
SED ON RET	CYR	0.000710		-0.000110	-0.000711	-0,001160	0.000124	-0.000398	-0.000821	002339 -0.002002	001689 -0.002781	-0.000954	-0.001398	-0.001780	-0.002916	-0.003250	-0.001812	-0.002289	-0.002532	-0.003098	-0.003233	016655 -0.003393
		-0.001031	0.002967				-0.003088				-0.001689			-0.008437		.007864	-0.009983	.013070	.016083	.018093	-0.017814	
(60666	CER	0.011491	0.031844	0:016348	0.038069	0.048326	0.011120	0.035761	01055327	0.072025	0.080004	01017897	0:038243		_			_	0.070666	6.089679	0.099741	0-105515 -0
ALP HA	CENTROL	-14.6	-16.6	-9.1	-11.2	-12.4	-2.4	-4.2	-5	-1.3	-8.2	3.7	1.6	-0-	-2.2	F-4-7	6	7.8	0.9	3.8	1.0	-2.0
AHO 1A	SHAFT	-10.0	-10.0	-5.0	-540	-5.0	•	•	•	0		5.0	530	9	5.0	5.0	10.0	10.0	10.00	1010	10.0	10.0
l !	Ç	٠,	ထံ	4	•	~		ά.	, - 1	9	7.	2	0	ď	4	9	-	-5	i o	ζ.	4	•

For the following data points

alg and/or bls = 00 ± .20

cs 0.75 alg bls

-5 4 .3 --2

0 0 .3 -0

5 0 .3 -1

174

Z

TEST 274.0

3 TARE

No.

0.48 A₁ 0.60 0.84 09.0 -0.12 0.48 0.36 0.12 0.12 0.72 0.72 0.72 0.00 0.00 0.00 0.00 M.AT 0.787 0.785 0.786 0.786 0.786 0.785 0.785 0.785 0.785 0.786 0.787 0.787 0.787 V/OR 0.299 0.290 0.300 0.300 0.300 0.300 0.300 0.299 0.299 0.299 0.299 0.298 0.0014819 0.0014037 0.0018014 0.0020173 0.0014542 0.0017073 0.0017073 0.0015269 0.0015269 0.0016228 0.0016228 0.0016228 0.0014803 AXES) 0.0029354 0.0047901 0.0023599 0.0012251 0.0046497 0.0054156 0.0024834 0.0045017 0.0016297 0.0024628 0.0019731 0.0010737 (WIND 0.0012231 0.0010785 0.0006205 SPEED 0.002947 0.004119 0.004787 0.001262 0.005367 0.002470 0.001630 0.001630 0.001630 0.002004 0.001074 ROTOR 0.000272 -0.000319 0.000217 -0.000173 0.000004 -0.000588 -0.000106 -0.000728 -0.000375 -0.000091 -0.000416 -0.000618 -0.00074 -0.000726 -0.000221 -0.000532 -0.000319 -0.000676 -0.000457 ANO AREA -0.000106 -0.000222 -0.000859 -0.000271 0.000268 0.000268 0.000268 -0.000062 -0.000465 -0.000748 BLADE ROTOR -0.000113 -0.000105 -0.000053 -0.000222 -CYR -0.000464 -0.000317 -0.000370 -0.001030 -0.000254 -0.000709 -0.001151 -0.000243 -0.001620 -0.001937 -0.001194 -0.001313 -0.000940 (COEFFICIENTS BASED CLR CXR 0.001406 -0.000447 0.003721 0.006105 0.00210 -0.000774 0.006938 0.003123 0.003123 0.00857 0.008970 -0,001216 0.000235 -0.001366 -0.004407 0.052881 0.076891 0.076485 0.024645 0.054286 0.054280 0.01620 0.010097 0.01620 0.030189 0.041078 0.003484 0.044860 0.025323 ALPHA CCNTRCL -8.7 -10.2 -11.8 -12.8 -12.8 -15.5 -15.5 -18.8 -6.5 15.00 11.10 10.00 11.10 000044 ALPHA SHAFT ; $\theta_{\rm grip}$

TEST 274.0 RUN 16

No. 3 TARE

~		_	_	_	_	_	_	~	_	_	_	_	_	_	_	_	_							ı		
	M, AT	0.847	0.846	0.846	0.846	0.849	0.844	0.847	0.844	0.847	0.844	0.847	0.847	0.845	0.845	0.844	0.846	0.844	0.847	0.844	0.843	0.847		0.0	0.845	
	v/0R	0.302	0.299	0.302	0.301	0.301	0.302	0.303	0.301	0.302	0.301	0.300	0.360	0.302	0.302	0.302	0.301	0.302	0.301	0.302	0.304	10.401		0000	0.304	
ES)	CPO	C.0016230	0.0015865	0.0017558	0.0016003	0.0017155	0.0016741	0.0017740	0.0016657	0.0017962	0.0015437	0.0015511	0.0015741	0.0015772	0.0015962	0.0017409	0.0020262	0.0016113	0.0016627	0.0017349	0.0017108	0.0017725	74-700	6 T C D Z D D * D	0.0018659	
SPEED) (WIND AXES)	3	0.0025190	0.0021264	0.0030943	0.0025683	0.0039842	0.0026944	0.0044686	0.0019142	0.0046523	0.0024783	0.0013597	0.0020749	0.0014750	0.0013309	0-0017560	0.0025366	0.0011724	0.0012050	0.0002380	0.0004081	4070000		0.002559	0.0036741	
ROTOR TIP SP		0.002518	0.002132	0.003092	0.002574	0.003940	0.002673	0.004398	0.001907	0.004600	0.002468	0.001379	0.002076	0.001492	0.001331	0.001756	0.002537	0.001172	0.001205	0.000215	0.000392	04000	*******************	0.002556	0.003666	
ARFA AND RD		-0.000402	-0.000437	-0.000354	-0.000321	-0.000468	-0.000120	-0.000221	-0.000183	-0.000505	-0.000309	-0.000341	-0.000320	775000-0-	-0.000377	00400	764000	-0.000341	-0-000608	-0.000393	-0.000445		300000-D-	-0.000494	-0.000395	
AI ADE	X	-0.000117	-0.000025	-0.000163	-0.000195	-0.000600	-0.000433	-0.000850	-0.000278	-0-000702	-0.000277	0.000010	-0.000079				77000	00000	461000	1,000,0	10000		******	0.000217	-0.000248	
ACED ON ROTOR		-0-000321	-0.000287	-0.000547	-0-000017	0.000234	0.000088	0.000208	95000000	01200000	9800000	800000-0-	-0.000298	90400		140100	1071000	7290000	- 0000 · 0-	600000	604100	7777000	-0.001/02	-0.001831	-0.000456	
A STUDILLE		0.302487	0.001507	0.003748	0.003033	0007000	0.003291	0.008574	20800	747800-0	6.000	0.000	4000				42400000	0.00000	404400	2010000	46466	0.010000	-0.006415	-0.000051	0.004985	
3000	2 2	0-043314	0.033843	0.051805	0.024500	0.045795	0.018718	0.045	0.0000	0.0650	0.028420	0.00.708.9	000000	000000000000000000000000000000000000000	7074700		110290.0	0.00000	0.02530.0	0.004924	V 1000 0	V400000	0.054309	0.082340	0.062146	
	٦	•																							-11.2	
	ALVIA		0 0	0 C	0 0				1	0.0			201-) () ()	•	•		.	•	0 (2.0	2.0	ď	-5.0	
($^{\theta}$ grip	13	17.	17.	• T	}	10.	• 0 T	• u	17,	•/1	14 .	17.	17 .	• o	10.	12.	14.	×° v	ا گُ	•,	• •	&	14.	15.	

A₁ 0.060 0.72 0.34 0.34 0.96 0.96 0.72 0.73

S S S S

TEST 274.0

TARE

M. AT 0.951 0.952 0.953 0.955 0.955 0.955 0.956 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 V/OR 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.0028514 0.0028949 0.0028841 0.0028841 0.002885 0.0028133 0.0028133 0.0028133 0.0028133 0.0028133 0.0030842 0.0031742 0.0031522 0.0035661 0.0033803 0.0032595 0.0035092 AXES 0.0023449 0.0023449 0.0022429 0.0048741 0.0035588 0.0052907 0.0028683 0.0029460 0.0038973 0.0040870 0.0046172 0.0052022 0.0056690 0.0035227 0.0034836 0.0029090 SPEED) (WIND CMZ 0.003526 0.003951 0.003961 0.003968 0.003496 0.003496 0.003134 0.003134 0.002456 0.002345 0.002345 0.002345 0.002345 0.002345 0.00246 0.005642 E AREA AND RCITOR TIP S CMY CMZ

18 -0.000298 0.003526

13 -0.000770 0.003961

8 -0.000884 0.004845 -0.000274 -0.000639 -0.000754 -0.000219 -0.000312 -0.000271 -0.000112 -0.000172 -0.000586 -0.000586 -0.000586 -0.000380 0.000294 -0.000862 -0.000743 -0.000058 -0.000758 -0.000312 -0.000277 -0.000215 -0.000016 -0.00063 -0.000349 0.000328 0.000328 0.000375 CMX -0.000288 -0.000363 -0.000027 -0.000649 -0.000618 (COEFFICIENTS BASED ON ROTOR BLADE 0.000194 0.000242 0.000232 0.000340 0.000256 0.000256 0.000254 0.000254 0.0000357 -0.000673 -0.000607 -0.000884 -0.000419 -0.000395 0.000223 ςγR CXR 0.002052 0.003253 0.0052088 0.004464 0.007069 0.007160 0.00160 0.002084 0.002094 0.002994 0.002994 -0.003256 -0.003357 -0.002088 0.002145 0.004198 0.027469 0.034772 0.045339 0.019081 0.027292 0.036528 0.025542 0.017488 0.052202 0.042904 0.032500 0.024909 0.042569 0.044667 0.061862 0.059231 0.052590 CLR ALPHA CCNTRGL -13.1 -10.5 -9.7 -16.1 SHAFT 110000 110000 110000 111500 110000 115000 115000 115000 115000 115000 115000 2.0 -5.0 -5.0 -15.0 0000 $\theta_{\mathtt{grip}}$

```
0.48
0.24
0.36
0.48
                                                                                                                                                                                                                                                                                                                0.60
0.60
0.60
0.96
0.96
                                                                                                                                                                                                                                      M, AT
0.947
                                                                                                                                                                                                                                                                                                                                                    0.949
                                                                                                                                                                                                                                                                                                               0.948
                                                                                                                                                                                                                                                                                                                                            0.947
                                                         0.847
                                                                                                                                 0.847
                                                                                                                                                                                                                                                                                                                                     0.948
                                                  0.846
                                                                 0.849
                                                                        0.849
                                                                                      0.848
                                                                                              0.849
                                                                                                           0.850
                                                                                                                   0.849
                                                                                                                          0.848
                                                                                                                                                                                                                                                                                                         M, AT
                                                                                                      0.849
                                                                                                                                                                                                                                                                                                                                     0.350
0.349
0.349
                                                                                                                                                                                                                                                                                                                      0.350
                                                                                                                                                                                                                                                                                                               0.349
                                                                 0.349
                                                                                                                    0.349
                                                                                                                                                                                                                                              0.350
                                                                                              0.349
                                                          0.349
                                                                         0.349
                                                                                0.348
                                                                                       0.348
                                                                                                      0.349
                                                                                                             0.348
                                                                                                                            0.348
                                                                                                                                          0.349
                                                                                                                                                                                                                                                                                                                                            0.0034870
                                                                                                                                                                                                                                                                                                                       0.0037406
                                                                                                                                          0.0019169
                                                                                                                                                                                                                                                                                                                                    0.0034254
                                                                                                                                                                                                                                               0.0035994
                                                                                                                                                                                                                                                                                                               0.0034737
                                                                                                                                                                                                                                                                                                                                                            0.0036143
              0.0018369
                                                        0.0021164
                                                                 0.0021657
                                                                                 0.0021469
                                                                                       0.0018645
                                                                                              0.0020969
                                                                                                    0.0019280
                                                                                                             0.0018628
                                                                                                                   0.0019213
                                                                                                                            0.0020272
                                                                                                                                  0.0019792
                                          0.0019677
                                                    0.0019574
                                   0.0020484
                                                                        0.0618571
                             0.0018821
                                                                                                                                                                     IV-21.- TEFTERING ROTOR; STANDARD BLADES, V/\OmegaR = 0.35, M(1)(90)
                                                                                                                                                                                                                               (COEFFICIENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED) (WIND AXES) CLR CXR CYR CMX CMY CM2
                                                                                                                                                                                                                                                                                                  SPEED! (WIND AXES)
AREA AND ROTOR TIP SPEED! (WIND AXES)
                                                                                                                                                                                                                                                                                                                       0.0041043
                                                                                                                                                                                                                                                                                                                                             0.0040242
                                                                                                                                           0.0005729
                                                                                                                                                                                                                                                0.0034398
                                                                                                                                                                                                                                                                                                               0.0036392
                                                                                                                                                                                                                                                                                                                                     0.0037011
                                                                                                            0.0012625
                                                                                                                           0.0003994
                                                                        0.0015823
                                                                                                     0.0014439
                                                                                                                    0.0012950
                                                         0.0037754
                                                                  0.0047494
                                                                                0.0035615
                                                                                       0.0014572
                                                                                              0.0018096
                                                                                                                                    0.0004460
                                                    0.0028411
                                                                                                                                                                                                                                                                                                                0.003664
0.004109
0.004076
                                                                                                                                                                                                                                                                                                                                             0.004014
                                                                                                                                                                                                                                               0.000170 -0.000083 -0.000554 0.003446
                                                                                       0.001472
                                                                                                                                                                                                                                                                                                                                     0.003701
                                                                                                                                                                                                                                                                                                                                                            0.004319
                                                                                                            0.001262
                                                                                                                                    0.000435
                                                                                                                                                                                                                                                                                                                                                                     0.004596
                                                                                                      0.001444
                                                                                                                            0.000388
                                                                                                                                          0.000564
                                     0.003559
                                            0.001960
                                                                                0.003562
                                                                                                                     0.001295
              0.002047
                      0.003014
                                                    0.002841
                                                          0.003772
                                                                   0.004716
                                                                          0.001591
                                                                                                                                                   0.002601
                                                                                                                                                                                                                                                                                                  TIP
                                                                                                                                                                                                                                                                                                  (COEFFICIENTS BASED ON ROTOR BLADE AREA AND ROTOR
                                                          -0.000319
-0.000793
-0.000275
                                                                                                      -0.000592
                                                                                                                                                                                                                                                                                                                        -0.000837
                                                                                                                                                                                                                                                                                                                                -0.000854
                                                                                                                                                                                                                                                                                                                                      -0.000911
                                                                                                                                                                                                                                                                                                                                             -0.000785
                                                                                                                                                                                                                                                                                                                 -0.000931
                                                                                                                                                                                                                                                                                                                                                      -0.000666
                                                                                                                                                                                                                                                                                                                                                             -0.000861
                                            -0.000124
                                                    -0.000239
                                                                                                                     -0.000176
                                                                                                                            -0.000523
                                                                                                                                                  -0.000546
               -0.000615
                                                                                 -0.000726
                                                                                         -0.000276
                                                                                              -0.000617
                                                                                                                                    -0.000441
                                     -0.000508
                                                                                                                                           -0.000511
                                                                                                                                                                                                                                                                                                                        -0.000126
                                                                                                                                                                                                                                                                                                                                       0.000396 -0.000324
0.000375 -0.000408
0.000368 -0.000407
                                                                                                                                                                                                                                                                                                                 0.000121
                                                                                                                                                                                                                                                                                                                                -0.000262
                                                                                                                                                                                                                                                                                                                                                              -0.000405
                                                                                                                                                                                                                                                                                                                                                                     -0.000667
                             -0.000114 -0.000186
                                                                                               96100000
                                                                                                      0.000179
                                     0.004154 -0.000210 -0.000428
                                            0.008736 -0.000189 -0.000165 -0.000051
0.017791 0.002468 -0.000180 -0.000374
                                                            -0.000508
                                                                  -0.00000-0-
                                                                          -0.000092
                                                                                 -0.000153
                                                                                         0.000107
                                                                                                              0.000000
                                                                                                                      0.000045
                                                                                                                              0.000173
                                                                                                                                                   0.000182
                                                                                                                                     0.000177
(COEFFICIENTS BASED ON ROTOR BLADE
                                                                                                                                                                                                                                                                                                                 -0.000721
-0.000565
-0.000186
                                                                                                                                                                                                                                                                                                                                                             0.000342
               -0.000593
                                                            -0.000208
                                                                   -0.000262
                                                                                                       -0.001293
                                                                                                                              -0.001973
                                                                                  -0.001071
                                                                                         -0.000404
                                                                                                 -0.001874
                                                                                                               -0.000997
                                                                                                                      -0.000751
                                                                                                                                                                                                                                                                                                                  0.000047
                                                    0.002468
                                                                                                                                                                                                                                                                                                                                                      0.001680
0.001808
0.002516
                                                                                                                                                                                                                                                -0.000835
                                                                                                                                                                                                                                                                                                                                 0.001111
                                                                                                                                                                                                                                                                                                                                       0.000654
                                                                                                                                                                                                                                                                                                                                               0.001349
                       0.002379
                0.000425
                               69600000
                                                                    0.006950
                                                                          -0.000804
                                                                                                       -0.001679
                                                                                                                       -0.001804
                                                                                                                                                    -0.000656
                                                                                                               -0.001824
                                                                                  0.003457
                                                                                         -0.001193
                                                                                                 -0.001448
                                                                                                                                                                                                                                                                                                                   0.047342
                                                                                                                                                                                                                                                                                                                                       0.026645
                                                                                                                                                                                                                                                0.044738
                                                                                                                                                                                                                                                                                                                                                              0.034128
                                                                                  0.056380
         CLR
0.026294
                                                                          0.000000
                                                                                                                                                                                                                                                                                                                                 0.043036
                                                                                                                                                                                                                                                                                                                                                        0.033094
                                                                                                 0.057284
                                                                                                        0.039003
                                                                                                               0.022603
                                                                                                                                                    0.075409
                               0.018214
                                       0.034674
                                                            0.025547
                                                                    0.048797
                                                                                                                       0.006432
                                                                                                                                                                                                                                                                                                           CLR
                                                                                                                                                                                                                                                                                                    ALPHA
CONTROL
                                                                                                                                                                                                                                   ALPHA
CONTROL
                                                                                                                                                                                                                                                                        7
        CONTROL
                               -8.2
-8.7
                                                                                                                                                                                                                                                                                                                                -10.2
-12.5
-12.7
                                                                                                                                                                                                                                                                                                                                                       -13.2
-13.2
-13.4
                -8.9
                      -10.7
                                                                                                                                                                                                      Š
                                                                                                                                                                                                                                                                                                                                 -7.0
                                                                                                                                                                                                                                                                                                                                                        -10.0
                                                                                                                                                                                                                                                                                                                                                               -10.0
                                                                                                                                                                                                                                   AL PHA
SHAFT
                                                                                                                                                                                                                                                                                                    AL PHA
SHAFT
                                                                                                                                                                                                                                                                                                                   -5.0
                                                    -15.0
                                                                   11000
                                                                                                                                                                                                                                                                        274.0
                                                                                                                                                                                                                                                                                                                           -5.0
                                                                                                                                                                                                                                                                                                                                         -10.0
                                                                                                                                                                                                                                                                                                                                                -10.0
                               -10.0
                                       -10.0
                                                            -15.0
                                              -15.0
          SHAFT
                                                                                                        ;
                                                                                                               6
                                                                                                                                                                                                                     3 TARE
                                                                                                                                                                                                                                     \theta_{\mathrm{grip}}
                                                                                                                                                                                                                                                                        TEST
                                                                                                                                                                                                                                                                                                                   13.3
                                                                                                                                                                                                                                                                                                                                         14.
                                                                                                                                                                                                                                                                                                                           14.
                                       16.
17.
18.
                                                                            13.
15.
10.
10.
8.
8.
6.
6.
```

R N

TEST 274.0

A₁
8
0.48
0.072
0.72
0.72
0.72
0.72
0.72
0.60
0.60
0.60
0.72
0.72
0.72
0.72
0.72
0.72 M. AT 0.846 0.843 0.845 846 0.844 0.845 846 846 0.849 0.849 847 848 846 0.847 0.847 0.847 0.849 0.847 0.844 V/OR 0.399 0.397 0.401 0.400 0.402 0.402 0.399 0.400 0.399 0.399 0.396 0.397 0.398 0.399 0.398 0.401 CPO 0.0024091 0.0022293 0.0024388 0.0023360 0.0026266 0.0025627 0.0022942 0.0023078 0.0022212 0.0023309 0.0021925 0.0021065 0.0020781 0.0024165 0.0022012 0.0023877 0.0023058 0.0021176 0.0026096 0.0024907 0.0028747 (COEFFICIENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED) (WIND AXES) 0.0028242 0.0035425 0.0035425 0.0022411 0.0039022 0.0015402 0.0018487 0.0024387 0.0017767 0.0002944 0.0033824 0.0039525 0.0018089 0.0013903 0.0003189 0.0012910 0.0003962 C.0015725 0.002840 0.002343 0.003546 0.003283 0.003123 0.003123 0.001870 0.002672 0.001785 0.001785 0.001573 0.001291 0.000370 0.000295 0.003995 0.003967 CMY -0.000778 -0.000553 -0.000840 7 -0.000663 7 -0.000961 7 -0.000961 5 -0.000641 6 -0.000705 -0.000784 -0.000521 -0.000270 -0.000146 -0.000688 -0.000413 -0.000334 -0.000142 -0.000697 -0.000676 -0.000699 1 0.000745 -0.001028 0.000131 -0.000165 -0.000168 -0.000015 -0.000168 -0.000015 -0.000168 -0.000015 -0.000259 -0.000222 -0.000254 -0.000043 -0.000037 -0.00037 -0.00038 -0.00037 -0.000189 -0.000127 0.000006 -0.000189 -0.000127 0.000006 -0.000167 -0.000169 -0.000169 -0.000167 -0.000169 -0.000167 -0.000169 -0.000167 -0.000169 -0.000167 -0.000169 -0.000167 -0.000006 0.000021 0.000244 0.000141 0.000052 0.000415 0.000457 0.000061 0.000073 0.000447 0.000388

			48 24	24 72 00	36									_		_								
			A ₁ -00.48 -00.24	-00.24	00.00 -00.36			$^{A}_{1}$	s 00.36	00.24	00.12	00.36	00.24	00.60	-00.24	-00.35	00.00	-00.24	-00.72	-00.84	-00.72	00.00	00.12	
			X	00 00 00 0	0 00			¥. A	- ~	നാ	റഹ	~ ~	നം	സ	64.0	34.	344	4 4	346	4 6	9 4	345	0.845	
·.			> ~ ~	0.301 0.299 0.300	<i>y</i> 60			80//	0.302	0.307	0.305	0.303	0.306	0.303	0.304	0.303	0.301	0.300	0.301	0.301	0.306	0.303	30	
90) = 0.85			AXES) CPO 0.001645 0.001513	0.0015075 0.0020131 0.0014763	0.0016551			AXES)	200	200		.00		99	0.0016471	000	.00		.00	003		001549	0.0015235	
0.30, M(1)(90)			CP (WIND CP 0.0014838 0.0011380	0.0010701 0.0021981 0.0018981	00284			EED) (WIND.	0.0012224	0.0023960	0.0053558	0.0024066	0.0042276	0.0009534	0.0028679	0.0009638	0.0012303	0.0004182	0.0001029	0.0003886	0.0015796	0.0019930	0.0013620	
$V/\Omega R = 0$			OFOR TIP SP CMZ 0.001484 0.001138	0.001070 0.002198 0.001901				DTOR TIP SPE							0.002864									
RED TIP,			1REA AND R CMY 0.000160	-0.000121 0.000175 -0.000216	ò			AREA AND RE							-0.000548									
-FT TAPERED			OR BLADE CMX 0.000285 0.000202	0.000125	Ť			OR BLADE	-0.000114	-0.000301	-0.000358	-0.000603	-0.001114	-0.000156	-0.000176	0.000049	0.000160	0.000101	0.000245	0.000384	000000	-0.000041	-0.000129	
ROTOR; 48.			ASED ON ROT CYR -0.001826 -0.001357	-0.001003 -0.002625 -0.000506	666000-0-			ASED ON ROT	0.000143	760000-0	-0.000114	0.000667	60200000	0.000493	-0.000788	-0.000345	-0.000775	-0.001495	-0.002754	995500-0-	-0-035607	-0.000470	0.000098	
TEETERING			LENTS B CXR .001435		0.00322			FICIENTS BA	0888	32787	10515	12996	08330	1823	33350	0.002290	0.001331	34408	0.007278	0.008285	0.00120	01215	00553	
-23			(CDEF CLR •059190	0.020436 0.081876 0.032134	.05380			COEFF	.00511	.02490	.04240	.01766	.03520	.00048	0.051513	.03786	.00200	.03166	06903	.08812	.06150	03140	.00782	
TABLE IV	A NUA		ALPHA CONTROL -3.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.6-	RUN		ALPHA	-11.	-13.2	• •		.			•	•			ċ.			•	
-	274.0	TARE	ALPHA SHAFT 0.	1 1 0 0 0 N N O 0		274.0	TARE	Ξu	; ;		::		•		J. 7.	,		N 10		•		Š	•	
	TEST	No. 3	⁶ grip 12. 10.	14. 12.	14.	TEST	No. 3	$\theta_{ exttt{grip}}$	12.	12.	ပ္ ထုံ	19	ညှံ မှ	ÇŢ		၌တံ	•	ં લે	ទុំ	12.	מיני	15.	12.	

A₁ 0.36

M+AT 0.844

V/OR 0.301

(COEFFICIENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED) (WIND AXES)

CLR
CKR
CYR
CMX
CMY
CAZ
0.028863 0.001134 -0.000422 -0.000034 -0.000585 0.001923 0.0019190 0.0015130

ALPHA CONTROL -7.8

ALPHA SHAFT -5.0

 $\theta_{
m grip}$

14 R S S

TEST 274.0

No. 3 TARE

TEST 274.0 RUN 194

No. 3 TARE

$^{\rm A}_{\rm 1}$	0.24	0.24	0.12	-0.12	0.36	0.48	-0.00	-0.00	-0.12	0.00	-0.12	0.12	-0.12	-0.24	-0.36	-0.36	-0.48
M.AT	0.848	0.848	0.849	0.850	0.849	0.848	0.848	0.848	0.849	0.849	0.849	0.848	0.847	0.850	0.850	0.850	0.851
V/08	0.300	0.300	0.299	0.300	0.300	0.300	0.300	0.300	0.300	0.301	0.301	0.300	0.300	0.299	0.299	0.299	0.300
XES) CPO	0.0017344	0.0018182	0.0020389	0.0022278	0.0017068	9.60100.0			0.0021941			0.0018264	0.0019659	0.0020160	0.0023005	0.0024646	0.0026558
ENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED) (WIND AXES) XR CYR CMX CMY CAZ	0.0020991	0.0029786	0.0040848	0.0047918	0.0020496	0.0024457	0.0028607	0.0033690	0.0039314	0.0041896	0.0045519	0.0017628	0.0020677	0.0024203	0.0028850	0.0031710	0.0036094
TOR TIP SP CMZ	0.002085	0.002955	0.004056	0.004752	0.002037	0.002436	0.002850	0.003358	0.003916	0.004170	0.004537	0.001763	0.002068	0.002420	0.002885	0.003171	0.003609
REA AND RO	-0.000753	-0.000564	-0.000406	-0.000479	-0.000615	-0.000668	-0.000471	-0.000460	-0.000571	-0.000570	-0.000525	-0.000510	-0.000501	-0.000432	-0.000229	-0.000195	0.001662
TOR BLADE A	-0.000256	-0.000394 -0.000564	-0.000506	-0.000668	-0.000291	-0.000247	-0.000273	-0.000303	-0.000401	-0.000491	-0.000411	-0.000082	-0.000120	-0.000180	-0.000222	-0.000192	001160 -0.002220 -0.006248
ASED ON ROT CYR	.001023 -0.000201	-0.000365	-0.000580	-0.000898	-0.000232	-0.003398	.002325 -0.000830	0.000982	160100.0	0.001056	0.001145		-0.001380	-0.001594	-0.001859	-0.002016	-0.002220
ICIENTS BA	0.001023	0.003276	0.005699	0.007015	0.000752	0.001529	0.002325	0.003478	0.004224 -	0.004712	0.005270	-0.001005	-0.000863	-0.000167	0.000065	0.000299	0,001160
A (COEFFICIE	0.027365	0.047940	0.066284	0.076953	0.038909	924640.0	0.059786	0.067131	0.077887	0.080970	0.086136	0.055484	0.068285	0.076500	0.085340	0.089211	0.088459
ALPHA CONTROL	-7.9	-9.5	-11-1	-11.8	-5.9	-6.8	-7.7	-8.7	4.6 -	8 • 6 -	-10.2	-3.5	-4.5	-5.5	-6.2	-6.5	-7.5
ALPHA SHAFT	-5.0	15.0	-5.0	-5.0	-3.0	-3•€ -	-3.0	-3.0	-3.0	5 -3.0	-3.0	ċ	ċ	ċ	•	5 0.	់
$ heta_{ m grlp}$	12.	14.	16.	17.	12.	Ę,	14.	15.	16.	16.	17.	12.	13.	14.	15.	15.	16.

TEETERING ROTOR; 48-FT TAPERED TIP, $V/\Omega R = 0.30$, $M_{(1)(90)} = 0.95$. TABLE IV-24.-

TEST 274.0 RUN 158

No. 3 TARE

80/>	0.298	0.299	0.299	0.299	0.298	0.297	0.297	0.297	0.297	0.297	0.298	0.298	0.297
XES)	0.0021042	0.0023518	0.0025384	0.0026607	0.0020961	0.0022373	0.0023204	0.0025394	0.0022025	0.0023744	0.0024489	0.0026637	0.0028301
(COEFFICIENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED) (WIND AXES) Clr cxr cyr chx chy cmz cp	0.003091 0.0031059	0.0037494	0.0043444	0.0046664	0.0023168	0.0027292	0.0031324	0.0036129	0.0019677	0.0022475	0.0025137	0.0027610	0.0030569
STOR TEP SP	0.003091	0.003730		0.004641	0.002306	0.002720	0.003124			_	0.002514	0.002761	
AREA AND RE CMY	-0.000559	-0.000562	-0.000714	-0.000571	-0.000436	-0.000395	-0.000358	-0.000078	-0.000509	-0.000354	0.072013 -0.001136 -0.001709 -0.000139 -0.000011	-0.000176	-0.000114
TOR BLADE ,	0.002717 -0.000641 -0.000306 -0.000559	-0.000383	0.004787 -0.000935 -0.000490 -0.000714	-0.000490	-0.000274	-0.000245	-0.000242	-0.000354	0.000015	-0.000142	-0.000139	-0.000120	0.083275 -0.001057 -0.002033 -0.000131 -0.000114
ASED ON REC	-0.000641	-0.000761	-0.000935	-0.000957	-0.000540	-0.000779	-0.001010	-0.001302	-0.001317	-0.001393	-0.001709	-0.001848	-0.002033
FICIENTS B	0.002717	0.003738	0.004787	0.005314	0.000282	0.000930	0.001752	0.002348	-0.001666	-0.001733	-0.001136	-0.001281	-0.001057
(COEF	0.049546	0.060165	0.069405	0.073377	01041884	0.052528	0.061069	0.069888	0.057761	0.070441	0.072013	0.078514	0.083275
ALBHA	-8.7	6.6-	-10.0	-10.2	-5.5	-6.0	-7.0	-7.5	-3.0	-3.6	-4.2	-4.5	1.44-
ALPHA													
$ heta_{ ext{grlp}}$	14.	15.	16.	16.5	12.	13.	14.	15.	12.	13.	13.5	14.	14.5

1

Z Z

274.0

No. 3 TARE

```
0.60
0.24
0.48
0.60
0.48
0.48
0.48
0.00
0.00
              -0.12
                                                                                        -0.24
-0.12
-0.00
-0.36
             0.949
0.951
0.950
0.949
                                                              0.951
0.950
0.951
0.951
0.951
0.951
                                                  0.950
        V/OR
0.299
0.299
0.298
0.298
0.298
0.298
0.298
0.298
                                                                                0.297
0.298
0.299
0.299
             0.0020699
0.0018886
0.0020258
0.001760
0.0017894
0.001845
0.0020002
0.0019699
                                                                                0.0021034
0.0020301
0.0019936
0.0019369
  AREA AND ROTOR TIP SPEED! (WIND AXES)
CMY CHY C
                                0.0025436
                                             0.0018467
                                                              0.0025488
0.0022102
0.0018707
                                                                                             0.0014973
                                                        0.0031918
                          0.0038339
                                                                                       0.0016069
                                                                                                         0.0003159
              0.0030198
                    0.0025557
                                                                                 0.0018231
             0.003027
0.002547
0.003798
                                0.002530
0.003305
0.001854
0.001986
0.003169
0.00221
                                                                                 0.001823
0.001607
0.001497
0.001410
                                -0.000295
-0.000324
-0.000430
             -0.000368
-0.000372
-0.000625
                                                         -0.000761
                                                                                 -0.000913
                                                                     -0.000827
                                                                            -0.000767
                                                                                        -0.000546
                                                                                                    -0.000628
                                                                                              -0.000641
                          -0.000537
-0.000386
-0.000157
-0.000119
-0.0000411
-0.000006
-0.000070
                                                                                       0.000240
0.000311
0.000217
              -0.000047
                    -0.000273
  BASED ON ROTOR BLADE
                          0.000277
0.000295
0.000512
0.000326
0.000165
        CYR
-0.000943
0.000135
                                                                                              -0.001426
                                                                                  -0.001855
                                                                -0.000725
                                                                            -0.000371
                                                                                         -0.001486
                                                                      -0.000472
                          0.005569
0.002499
0.004800
0.000173
0.000388
                                                                                              -0.002078
                                                                      0.000569
               0.002534
                    0.002088
                                                               0-001423
                                                                           -0.000154
                                                                                   -0.001880
                                                                                          -0,002028
                                                                                                           -04007322
   (COEFFICIENTS
         CXR
               0.049827
                           0.017089
0.024906
0.024906
0.008598
0.014639
0.033404
                                                                                              0.039922
                                                                                  0.059723
                                                                            0.021508
                                                                                          0.048358
                                                                       0:030174
                                                                                                            0.058853
         CLR
   ALPHA
                     -112.6
-18.0
-18.0
-114.9
-112.0
-13.2
               -8.5
                                                                      -7 -0
-8 -9
-3 -0
                                                                                         -2.2
                                                                                                      6.0-
                                              -15.0
-10.0
-10.0
                                                                      -5.0
    ALPHA
SHAFT
                -5.0
                      -10.0
                            -10.0
                                        -15.0
                                                                  -5.0
                                                                                    ċ
               \theta_{\mathtt{gr1p}}
```

= 0.30, $M_{(1)(90)}$ V/ΩR TAPERED TIP, 48-FT ROTOR; TEETERING IV-25.-TABLE

0.1

SCN TEST 274.0

TARE c No.

6	4 M O 1 4	VI Q	R STUBLULES OF STREET	FICTENTS BA	RASED ON ROT	ROTOR BLADE A	AREA AND ROTOR TIP	TOR TIP SP	SPEED) (WIDND AXES	ES)			A
grip	CHAFT	CONTROL		CXR	CYR		CMY	CM2	ر د د	CP0	V/0R	M, AT	S
12.		-2.8	0.059227	-0.002587	9	0.000161	-0.000547	0.002381	0.0023814	0.0028908	0.301	966.0	00.0
12.5		8.2-	0.063700	-0.002655	-2.001565	0.000207	-0.000613	0.002462	0.0024625	0.0029521	0.302	0.600	00.0
		-5.3	0.040948	-0.000397	-0.000751	0.000008	-0.000323	0.002637	0.0026335	0.0026254	0.303	0.988	0.24
12.		-6.2	0.034551	-0.000148	-0.000635	0.00000	-0.000413	0.002695	0.0026879	0.0026416	0.304	0.987	0.24
12.		6.9-	0.030143	-0.000023	-0.000465	-0.000057	-0.000328	0.002676	0.0026705	0.0026081	0.304	986.0	0.36
12.		-7.8	0.025232	-0.000126	-0.000254	-0.000136	-0.000499	0.002617	0.0026166	0.0026066	0.304	7.987	0.36
12.5	_	-8.1	0.030834	0.000566	-0.000184	-0.000185	-0.000305	0.002796	0.0028000	0.0025552	0.305	0.987	0.48
13.		4.8-	0.035733	0.001040	-0.000276	-0.000138	-0.000426	0.003027	0.0030249	0.0026104	0.305	9.686	0.48
1-1		0.6-	0.044562	0.002002	-0.000350	-0.000209	-0.000559	0.003530	0.0035325	0.0027701	9366	3.986	0.48
15.		-9-5	0.054968	0.002906	-0.000487	-0.000335		0.004274	0.0042851	0.0031780	0.301	966.0	0.12
ř		0.0-	0.030972	0.000788	-0.000127	-0.000259	-0.000496	0.003162	0.0031702	0.0028591	0.301	0.996	0.48
- -		-6-7	0.040470	0.002024		-0.000271	-0.000594	0.003598	0.0036042	0.0028688	0.301	3.995	0.48
-		-11.3	0.030289	0.001799		-0.000390	-0.000462	0.003381	0.0034007	0.0027877	0.302	0.995	0.60
, <u>, , , , , , , , , , , , , , , , , , </u>		-12.0	0.038256	0.003246		-0.000499	-0.000595	0.003844	0.0038746	0.0027820	0.302	966.0	09.0
, c		-10.6	0.020039	0.000132		-0.000276	-0.000397	0.002836	0.0028443	0.0027735	0.301	0.993	0.72
קר		-10-1	6.011824	-0.001142		-0.000223	-6.000412	0.002409	0.0024141	0.0027474	0.301	0.993	0.72
<u> </u>		7-9-	0.017183	-0.001082	i	-0.000067	-0.000359	0.002448	0.0024414	0.0027447	0.301	0.993	0.48
10.		-6.3	0.009154	-0.001924		0.000023	-0.000371	0.002223	0.0022052	0.0027758	0.300	3.995	0.60
13		-5.6	0.052279	0.000066		0.000013	-0.000630	0.003398	0.0030931	0.0028632	0.302	066.0	0.12
2		6.4-	0.042503	-0.000640	-0.000766	-0.00000	-0.000426	0.002861	0.0028571	0.0029100	008.0	966.0	0.24
; ; ;		-4-2	0.032503	-0.001096		-0.00000-	-0.000330	0.002576	0.0025727	0.0028191	0.299	2.66.0	0.24
2		-3.5	0.023706	-0.001576		0.000050	-0.000422	0.002415	0.0024088	0.0028372	0.299	2.66.0	0.36
<u>;</u> =		-1.6	0.050257	-0.002989		0.000229	-0.000706	0.002329	3.0023286	0.0030270	0.299	966.0	0.00
i	: ,		A 61.41.08	A AMORTO	¢	A.000159	-0.000475	0.002145	0.0021454	0.0029116	0.297	0.999	0.24

TEST 274.0 RUN 6

	A ₁ 0.54 0.00 0.00	0.36 0.12 0.12 0.00 0.00 0.48 0.48	7				
	A ₁ 0.5 0.00 0.00	'			A ₁ 0.48 0.148 0.12 0.12 0.24 0.60		A ₁ s 0.60 0.72 0.72 0.72 0.96 0.48
	E 0 0 0 0	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	5		M. AT 0.942 0.944 0.945 0.946 0.946 0.939 0.941		M. AT 0.942 0.943 0.938 0.935 0.935
		00.00000000000000000000000000000000000	0		V/OR 0.358 0.348 0.354 0.354 0.355 0.356 0.358		000 000 000 000 000 000 000 000 000 00
		000000000000000000000000000000000000000	2 "		XES) CPO C.0025016 0.0023758 0.0023504 0.0023441 0.0022278		S) CPO 0.0024399 0.0021459 0.0022246 0.0022194 0.0022194
	0.001242 0.001242 0.001163 0.001257 0.001289		= 0.35, M ₍₁₎₍₉₀₎		SPEED) (WIND AXES) CP		SPEED!(WIND AXES) CP 0.0030401 0 5 0.0022216 0 4 0.0028097 0 9 0.0034185 0 9 0.0034185 0 9 0.0029364 0
	CM2 CM2 0.00124 0.00116 0.00125 0.00158	0.002261 0.001303 0.001303 0.0020841 0.002086 0.002086 0.002086 0.002086 0.002086 0.002086	P, V/AR		ROTOK TIP SPE CMZ 8 0.003084 7 0.002608 5 0.002191 9 0.001611 1 0.001877 2 0.002270 4 0.001777		ROTOR TIP SPE CMZ LI 0.003040 -8 0.002215 1 0.002794 5 0.003369 9 0.001859 10 0.002945 5 0.002598
	CMY CMY -0.00055 -0.00054 -0.000985	-0.000629 -0.0006895 -0.000881 -0.000391 -0.000391 -0.000397 -0.000391 -0.00061			AREA AND ROCHY -0.000568 -0.000935 -0.000453 -0.000462 -0.000662		AREA AND RO CMY -0.000641 -0.000548 -0.000541 -0.000615 -0.000615
	ROTOR BLADE CMX 38 0.000160 68 0.000164 71 0.000211	0.000291 0.000110 0.000110 0.0000207 0.0002077 0.000125 0.000125 0.000125 0.000125	48-FT		BLADE CMX .000058 .000029 .000251 .000274 .000206		OR BLADE CMX -0.000130 -0.000231 -0.000335 -0.000237 0.000237
	CYR CYR -0.0009 -0.0011 -0.0014	-0.002636 -0.0006810 -0.00081180 -0.0001180 -0.0001180 -0.0001180 -0.0000180 -0.0000180 -0.0000098	G ROT		BASED ON ROTOR CYR 6 -0.000666 -0 11 -0.000439 0 13 -0.001738 0 13 -0.001735 0 18 -0.006479 0 18 0.006206 -0		BASED ON ROTOR CYR 0 -0.000615 -0 5 0.000255 -0 0 0.000283 -0 74 0.000535 -0 9 -0.000652 0
	-0.00191 -0.00191 -0.00191	-0.001248 -0.001306 0.0002130 0.0004097 0.0004131 0.0002312 -0.0002312 -0.0004364 0.0004364	HEL		DEFFICIENTS BA CXR 109 0.001306 130 0.000428 768 -0.000321 235 -0.002549 978 -0.001088 179 0.000158		COEFFICIENTS BA LR CXR 3538 0.001350 6497 0.000165 4041 0.001550 2308 0.001393 6624 -0.000974 2150 0.001399
	0000	0.074851 0.008023 0.008023 0.046127 0.061822 0.035420 0.008829 0.008829 0.024035	IV-27		(CDEFF CLR 0.042109 0.034130 0.052768 0.05278 0.016179		(COEFF CLR 0.043538 0.016497 0.024041 0.032308 0.006624 0.042150
	CON	0.0 0.0 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	TA TIN	•	ALPHA CONTROL -9.2 -8.2 -7.5 -3.7 -2.9 -6.6 -13.0	RUN 9	ALPHA CONTROL -9.2 -13.0 -14.5 -14.5 -9.2
3 TARE	ALPHA SHAFT 0. 0.	0.000000000000000000000000000000000000	274.0	TARE	ALPHA SHAFT -5.0 -5.0 -5.0 0.0 -10.0		3 TARE ALPHA SHAFT -5.0 -10.0 -15.0 -5.0
, N	6grip 6. 8. 10.		TEST		8rtp 14. 13. 12. 12. 11. 11.	-	0 8 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15

V/OR 0.399 0.401 0.401 0.403 0.403 0.403 0.403 0.0020992 0.0022876 0.0022965 0.0023614 0.0023614 0.0026411 SPEED)(WIND AXES) 0.0019478 0.0027220 0.0023813 0.0031482 0.0031482 0.0031482 0.0043353 0.0043355 0.0012553 0.0012553 0.0003516 0.001367 ROTOR TEP CMZ -0.000639 -0.000761 -0.000731 -0.000629 BLADE AREA AND ROTOR 8 BASED (COEFFICIENTS CLR CXR ALPHA CONTROL S S S S 0.00000000444 0.4 SHAFT TEST 274.0 ~ Φ

0.001965 0.002733 0.002312 0.002319 0.002319 0.004368 0.001259 0.001259 0.001373 -0.000677 -0.000926 -0.000688 -0.000867 -0.000612 -0.000455 -0.000545 -0.000746 -0.001053 -0.000602 0.000180 -0.000181 -0.000173 -0.000173 -0.000450 -0.000450 -0.000450 -0.000450 -0.000450 -0.000450 -0.000450 -0.000450 -0.000450 -0.000450 0.028193 -0.000495 -0.000797 0.004789 0.000794 -0.001045 0.0021366 0.000146 -0.001069 -0.001045 0.0021366 0.0021486 -0.0010692 -0.0014696 -0.0014695 -0.0014695 -0.0014695 -0.0014695 0.0052280 0.002045 -0.00138 0.0057266 0.002045 -0.001512 0.005127 0.002495 0.005987 -0.001123 0.0059815 -0.005224 -0.001123 0.0059815 -0.005128 -0.005286 -0.001123 0.0059815 -0.005189 -0.001123 0.0059815 -0.005189 -0.001071 -0.005026 0

0.48 0.24 0.48 0.60 0.72 0.72 0.72 0.36 0.36 0.00

0.843

0.841

0.844 0.845

0.402

0.843

0.844 0.843

M.AT 0.846 0.844

0.12 -0.36

0.844

0.400 0.401 0.398 0.400

0.0022991 0.0026815 0.0020867 0.0029157 0.0023156 0.0021648

0.847

0.842

0.403

A₁ 0.48 0.24 0.24 M.AT 0.847 0.846 0.845 v/OR 0.399 0.401 0.401 0.0025252 0.0026741 0.0029428 (COEFFICIENTS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED) (WIND AXES) CLR CXR CYR CMX CMY CMZ 0.0026118 0.0029931 0.0035022 CMZ 0.002617 0.002995 0.003504 -0.000816 -0.000697 -0.000791 0.000108 -0.000011 -0.000002 -0.000207 -0.001356 0.000259 -0.001537 0.000684 -0.001800 CXR 0.053944 · 0.060952 0.070202 ALPHA CONTROL -7.7 -8.7 ALPHA SHAFT -2°0 -2°0 -2°0 $\theta_{\mathtt{gr1p}}$ ‡ 5,5

RUN 23

TEST 274.0

A ₁ -0.36 -0.36 -0.24 -0.24 -0.24 -0.24 -0.36	A ₁ -0.36	0.000000000000000000000000000000000000
00.00 M 00.00	M, AT 0.652 0.650	00000000000000000000000000000000000000
V/DR 0.508 0.508 0.508 0.509 0.509 0.509	V/OR 0.508 0.509	00000000000000000000000000000000000000
ES) CPO 0.0034260 0.0040349 0.00308124 0.00308137 C.0043856 0.0039830 0.0032830	U .	0.004822 0.0048232 0.0038160 0.0038160 0.0038030 0.0038534 0.003831 0.003831 0.003831 0.0038850 0.0038856 0.0058856
SPEED) (WIND AXES) C C C C C C C C C C C C C C C C C C C	SPEED! (WIND AXES) CP 3 0.0032010 0. 7 0.0036742 3.	0.0010385 0.0026379 0.0026379 0.002857 0.0028657 0.002203 0.0017011 0.0017011 0.0017011 0.0010038 0.0010038 0.0010038
ROTOR TIP SPI CMZ 8 0.002533 13 0.003467 12 0.003467 14 0.001939 15 0.003393 14 0.002291 19 0.004588	ROTOR TIP SPI CMZ 02 0.003233 5 0.003707	0.001655 0.002655 0.002655 0.002655 0.002633 0.001736 0.001736 0.001736 0.001736 0.001736 0.001736 0.001736
AREA AND RC CMY -0.000418 -0.000123 -0.000124 -0.000665 -0.000528 -0.000254	AREA AND CMY -0.00016	
BLADE CMX CO0436 .000436 .0006036 .000164 .000238	BLADE 1900353 1000353	0.000254 0.000254 0.000251 0.000239 0.000398 0.0003462 0.0003462 0.0003463 0.0003463 0.0003648 0.0003648
4SED ON ROT -0.001352 -0.001342 -0.001382 -0.001987 -0.001987 -0.000550 -0.000550	≪	
NTS R 0194 0143 00222 0127 0127	NTS 0162 0145	-0.00593 -0.00593 -0.005635 -0.005635 -0.005632 -0.005632 -0.003694 -0.00593 -0.00593 -0.00593 -0.00593 -0.00593 -0.00593 -0.00593 -0.00593 -0.00593 -0.00593 -0.00593
(COEFICIE CLR CX 0.029793 -0.0 0.049524 -0.0 0.052638 -0.0 0.018401 -0.0 0.048248 -0.0 0.020478 -0.0	<u> </u>	
ALPHA CONTROL -11.5 -13.5 -12.5 -12.8 -10.9	RUN 26 ALPHA CONTROL -10.8	11111111111111111111111111111111111111
No. 3 TARE ALPHA Brip SHAFT 124.0 164.0 104.0 154.0 154.0 156.0 166.0 166.0	3 TA 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

= 0.66, $M_{(1)(90)}$ = 0.55. BLADES, V/OR 34-FT TEFTERING ROTOR; IV-30.-TABLE

TEST 274.0 RUN 27

```
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
                                                                                                                                                                                                                                                  -1.44
-1.56
-1.08
-0.96
                       0.664
                                                                                                                                         0.665
0.666
0.666
0.666
                                                                                                                                                                                                                0.668
                                                                                                                                                                                                                                      0.667
                        V/OR
0.652
0.653
0.653
                                                                           0.655
                                                                                               0.663
                                                                                                                                                                                  999.0
                                                                                                                                                                                                       799.0
                                                                                                                                                                                                                            .668
                                                                                                                                                                                                                                                                     .667
                                 0.0053196
0.0050395
0.0043070
0.0057644
0.0051870
0.0051870
                                                                                                                                                            0.0068466
0.0071202
0.0059209
0.0056244
0.0052029
                                                                                                                                                                                                                          0.0074101
                                                                                                                                                                                                                                                                     0.0058888
                                                                                                                                         0.0062245
                                                                                                                                                  0.0065877
              SPEED) (WIND AXES)
                                 0.0017767
0.0018478
0.0015239
0.00165239
0.00165230
0.0019652
0.0017030
0.0017030
0.0019682
0.0020378
0.0025213
0.0025213
                                                                                                                                                                                                                                     0.0016433
0.0003276
-0.0000645
0.0004007
                                                                                                                                                                                                       0.0012499
0.0011251
0.0021582
                                                                                                                                                                                 0.001785
0.001490
0.001184
0.001125
0.002086
0.001613
                      CM2
0.001777
0.001848
0.001524
0.0016615
0.001746
0.001753
0.002187
0.002088
0.002643
                                                                                                                                                                                                                                                                     .000321
            ROTOR TIP
                                 0.002759
0.002152
0.002090
0.001460
0.00243
0.00261
                                                                                                                                                                                 -0.001182
0.000742
0.001691
0.001288
0.002338
0.0020716
                                                                                                                              0.000900
                                                                                                                                                  -0.001733
                                                                                                                                                             -0.000049
                                                                                                                                                                       -0.000253
                                                                                                                                                                                                                                                                     .003084
                                                                                                                     -0.000633
                                                                                                                                          -0.001914
             CMY
              AREA
                                 0.001644
0.001644
0.000883
0.000863
0.001548
0.001625
0.001144
0.001638
0.001638
                                                                                                                                                                                 0.001209
                                                                                                                                                                                                       0.001905
                                                                                                                                                                                                                           0.002114
                                                                                                                                                                                                                                                                     0.001158
                                                                                                                                                                       0.000906
                                                                                                                                                                                                                                                          -0.000472
            (COEFFICEENTS BASED ON ROTOR BLADE CLR CXR CYR CMX
                                                    -0.002417
-0.001786
-0.004611
-0.003623
-0.002126
-0.002139
                        CYR
-0.003018
-0.003125
                                                                                                                              -0.002909
                                                                                                                                        -0.001933
                                                                                                                                                   -0.002052
                                                                                                                                                            -0.002493
                                                                                                                                                                         -0.001935
                                                                                                                                                                                                        -0.003564
                                                                                                                                                                                                                   -0.001829
                                                                                                                                                                                                                            -0.005192
                                                                                                                                                                                                                                                -0.004067
                                                                                                                                                                                              -0.004032
                                                                                                                                                                                                                                        -0.003877
                                                                                                                                                                                   -0.001611
                                 -0.005523
-0.004954
-0.004698
-0.006042
-0.006892
-0.005298
                                                                                                                                                                                                                                                           -0.006952
-0.008436
-0.009058
                                                                                                                    -0.004403
                                                                                                                                         -0.006435
                                                                                                                                                              -0.006586
                                                                                                                                                                                                                                      -0.007537
                                                                                                                                                                                  -0.006364
                                                                                                                                                                                                       -0.006018
                                                                                                                                                                                                                            -0,008063
                                                                                                                                                                                                                                                -0.007430
                                                                                                                                                                                              -0.006331
                                                                                                                                                                                                                   -0.005342
                                 0.034002
0.029013
0.022101
0.012812
0.042426
0.025905
                                                                                                                   0.028656
0.028386
0.023386
0.028385
0.028385
                                                                                                                                                                                 0.042321
0.042321
0.035765
0.028333
                                                                                                                                                                                                                                       0.050186
                                                                                                                                                                                                                                                            0.042675
                                                                                                                                                                                                                                                                     0.053789
                                                                                                                                                                                                                                                                                 0.059673
              ALPHA
CCNTRCL
                                   10.4
                                                                                                                                         AL PHA
SHAFT
TARE
m
```

= 0.79, $M_{(1)(90)} = 0.52$ 34-FT BLADES, V/OR ROTOR; TEETERING IV-31.-TABLE

TEST 274.0 RUN 29

ž		
?		
2		
_		
ű		

	$^{ m A}_{ m 1}_{ m s}$	-0.48	96.0-	96.0-	-1.08	-1.20	96.0-	-1.20	-1.44	-0.72	-1.20	-1.32
	H. AT	0.528	0.527	0.526	0.526	0.526	0.524	0.524	0.523	0.523		0.523
	90/A	0.785	0.787	0.786	0.787	0.787	0.789	0.792	0.792	0.792	0.789	0.791
	(S)	0.0091856	0.0085359	0.0082048	0.0074131	0.0071167	0.0086706				0.0087201	0.0086136
	ITS BASED ON ROTOR BLADE AREA AND ROTOR TIP SPEED)(WIND AXES)	0.0013745	0.0011111	0.0013843	0.0011575	0.0017933	0.0008226	0.0011398	0.0007047	0.0012866	0.0006717	0.0017683
	TOR TEP SPE	0.001374	0.001111	0.001384	0.001157	0.001793	0.000779	0.001067	0.000680		0.000606	
	AREA AND RO	0.002000	0.002954	0.002489	0.002025	0.002071	0.002300	0.002630	0.005380	0.001554	0.001203	0.001909
	TOR BLADE A	0.001102	0.001343	0.002411	-0.000395	0.000774	0.001255	0.002092	0.000732	0.001395	0.001879	9 0.002183
	ASED ON RCI	-0.003442	-0.004031	-0.003761	-0.002090	-0.002337	-0.003583	-0.004759	-0.003609	-0.004786	-0.004718	0 684600 -0.003789 0
	FICIENTS B.	-0.009999	-0.009479	-0.008726	-0.007974	-0.006787	-0.010028	-0.009461	-0.007894	-0.010249	-0.010278	-0.008690
	FA (COEFFICIENT	C.031178	0.030857	C.029976	0.023137	0.020888	0.039647	0.035874	0.040683	0.037808	0.039812	0.027435
	ALPHA	10 4CL	(E)	-7.1	-6-1	0.61	-6.2	-5.2	-4.1	-7.6	E - 9-	-7.1
No. 3 TARE	ALPHA						2.0	2.0	2.0	2.0	2.0	
No.	$ heta_{ m grip}$	13	11.			, a	.	.	• •	• :		10.

R

TEST 276.0

	Als	1.6.0 6.7.0	8.0-	1.8	 	4.4-	6.0-	-2.0	 	-0.5	0 1.0 1.8	1.0	-1.5.	-3.3	6.7	90	, o	-1.0	-2.6	7.7.7	-					
	H.AT	0.741	74	0.740	0,740	0.741	0.736	0.736	0.733	0.735	0.735	0.733	0.734	0.732	0.734	0.731	``		0.732							
	V/OR	0.303	300	303	303	301	303	304	307	306	304	.301	303	.303	. 303 303	306	909	.305	ĕ,) 					
	CPO	0.0013774	0013613	0014515	.0021929	.0032341	.0013973	.0017053	.0025074	.0016025	.0015728	.0015549	.0026335	.0045202	.0073218	.0018002	.0023185	.0030837	6986400	.0081016 .0081016						
	IP SPEED) CP	0.0025095	0.0012130	0.0029923	0.0042396	0.0073419	0.0010874	0.0022957	0.0038793	0.0011893	0.0005808	0.0000378	0.0013827	0.0040210	0.0070642	-0.0009103	-0.0017822	-0.0011000	0.0011755	0.0044183						
	APEA AND T CG	0.002645	00129	00317	.00640	8000		.0024	. 00 40 . 00 40	.0012	.0005	0000	.000.	.0041	.000.	.000	0019	.0011	0118	.0035						
	RETCR BLADE Chy	-0.000166 -0.000311	000	000	000	9000	000	90	0012	0000	0000	000	00100	0013	.00 I.	0.000		0.0017	.001	0.0020						
	ASED ON CMXB	0.000040		8		900	0.000354	30		8	99	3		8		9		8	9							
	S CCEFFICIENTS. B CH CYR	0.000273	0007	0005	.0003	7100.	000	100	.0016 .0031	.0014	-0.001539	.0015	-0.0014	-0.0013	-0.0010	-0.0020	9100-0-	-0.0008	-0.0022	0.0018			րյ _s	ณห	iviv	5
	AXES CCEFF -CH	-0.001231 -0.000492		ŏ	ĕŏ	ÖĞ	0	ĕ	öğ	Ş	00	9	0-00-0	0	-0-001919	8		80	8	400	data	×.			iviv	
	(SEAFT CT	FO FO	0.0	05745	.07826 .09529	10063	03765	0.8280	10201	.00359	01878	06164	.08619 .10291	11074	11611	.04426	26690.	10497	.11475	1217	the follo	s and/or b	θ		, 01 10 10 10 10 10 10 10 10 10 10 10 10 1	
	ALPFA Centacl	115.6	- 4	9	- E				80					'n	ė.	8	• •		•) 	Ě	ασ				
1 Tare	ALPHA Shaft	10.0	ינונ	ישי	ທະ	S	õ	;;	. 6	5.0	ν η Ο Ο	. W.	ທູທ		0.0	0.01	10.0	10.01	10.0	900						
No.	θ.75	ယ်ထံ ငှိ	5 0 ±	• •	ထံဝံ့	i c	เด้≕	i vi	ထံ ငျှ	-	4 0	รี ณ๋ -	± 46	တ်	á 4	សុំ -	් ෆ්	. 4	છ 1	-'బీ 0	•					

TEST 276.0 RUN 4

$^{ m Als}$	-0.9	-2.5	-3.7	13.4	6.2-	-0.8	-1.2		-7.7	-3.5	-4.5	-1.2	-1.7	9.0	-T-	-7.3	-2.9	-2.9	0.1	1.1	-0.1	5.0	-1:1	-1.9	, c	0.3	-0.2
M. AT	0.826		•	0.818		•				•	•	•	•	•			•	•		0.815		•	8	8	0.808	.81	0.810
V/0R	0.396	:	÷		: -	<u>.</u>	÷.	: :		•	•	•	•	•	٦,	• •	Ę,	4	۳.	0.396	୍ଦ	4	. ·	m (, m		0.400
CPO	0.0018729	.0021	.002	.002	.0020	.001	.0018	700	.002082	.002614	.003375	.001948	.002302	.001843	707700	.002137	.002941	.005781	.001814	0.0019909	.00200	.002218	.002739	.003752	0.0024177	.OC2684	0.0030662
TIP SPEED) CP	0.0013218 0.0030944																										-0.0019932
AREA ANG T	0.001473	.00547	.00779	.00552	.00539	.00186	.00295	7400.	.00431	.00589	•9200•	.00160	233	2100.	0.007344	35	.0037	.00645	0.001084	0.000483	.00003	•0000	. coc3	-0017	-0.004005	.0017	-0.002105
RCTCR BLADE CMY	-0.000024	,00054	00047	-0.000422	00063	.00024	.00043	FR000	00084		.00095	.00C61	.00104	.00021	•	66000.0	.00099	.00C76	.0000	-0.600136	.00C22	-00062	.00101	.00115	71000	00055	-0.001081
ASED CN CMXB	-0.000345	-0.00035	-0.0002	1	-0.00195	0.00004	o o		Ö	0	ö	Ö	Ö	o c	j c	9	ပ	ö	Ö	o o	000	•	000	•	060000	.00072	0.000650
ICIENTS, B	0.000348	-0.000087	-0.000750	-0.000128	-0.004349	-0.000359	\sim	0-005119	-0.005840	-0.001691	-0.001334	-0.001494	-0.001637	•	875555	-0.007691	-0.001955	-0.000220	-0.001250	-0.002157	.00207	187	.00182	.00162	-0.007676	00244	-0.002225
AXES COEFFICIENT -CH CYR	-0.002357	001	.00074	00116		00212	.0016E	9 6	00035	4 C 0 0 D	.00052		.00128	00210		00022		.00047	.00224	-0.002208	.0021	.0013	9000-	200	0024	.00212	.00136
(SPAFT CT	0.005538	.0472	*0664	0465	0432	10195	.0403	2000	.0538	1970.	.0881	.0521	5690*	•0318	7007	.0662	.0849	.0982	.0119	.0004	.0423	.0585	.0783	.0912	101.	.0538	•070•
ALPFA	-14.4	~	13	-18.0	91	-6.3	-11.0	77	12	-14.4	16	-5.6	R	D• f	0 0 0 0	r 4	-9.5	-11.6	-2.1	N E	8 • 1		-2.2	4. (1)	0 C	9.2	2.4
1 Tare	-10.0	-10.0	2	0.0	22	-5.C	150	1 1 0 th	, N	-5.0	-5.0	;	0	.	• •	: 6	:	•	•	w r.	2.0	5.0	5.0	ιν (0.0	10.0	10.0
νο. θ	ဖ်ထံ	10.	12,	ខ្ពុំខ្	ផ្គំនុំ	4	ý c	တ် ထိ	တ်	10,	12,	,	છ	તં.	ن هٔ	စ်ဖိ	ထံ	10.	Ó.	∔ (ió	તં	4,	ဖ်	ಌೆ ⊣	· ~	ਂ

 Por the following data point

 a.s.
 and/or bls # 0° ± .2°

 cs
 9.75
 a.ls
 bls

 -10
 10
 .2
 5.0

 -10
 10
 .2
 5.0

 -5
 8
 .2
 5.0

 -5
 8
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0
 6
 .2
 5.0

 0<

u۱
Z S S
276.0
TEST

Als		
F A e	0.827 0.827 0.825 0.825 0.825 0.825 0.822 0.822 0.828 0.828 0.828 0.818	00.815 00.815 00.815 00.816 00.817 00.813 00.813 00.816 00.816
V/0R	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
,040	0.0024863 0.0026712 0.0026714 0.0029164 0.0023790 0.0028995 0.00217998 0.0021797 0.0023790 0.0021737 0.0023790	0.0049418 0.0024211 0.0024387 0.0026534 0.0025534 0.0023352 0.0033352 0.00331248 0.0031248
TIP SPEED) CP	0.0020904 0.0041897 0.0025359 0.0025359 0.0014897 0.0014897 0.00149353 0.0016198 0.0016198 0.0016198 0.0016198 0.0016198	0.0056222 0.0008710 0.0001891 -0.0002145 0.0003145 0.001582 0.0011824 -0.0011824
AREA AND CG	0.002310 0.004528 0.007064 0.002038 0.0020316 0.005235 0.005235 0.005235 0.005138 0.001198 0.002238 0.002238	0.004572 0.000963 0.000320 0.000327 0.000327 0.000340 0.001767 0.00340 0.00340
ROTOR BLACE CMY	-0.0000657 -0.000287 -0.000334 -0.000334 -0.000334 -0.001031 -0.001031 -0.001122 -0.001122 -0.001122 -0.001122	-0.001500 0.000040 0.000021 -0.000225 -0.000328 -0.000328 -0.000328 -0.000328 -0.000328 -0.000328 -0.000328
ASEC ON CPXB	-0.0003374 -0.0003234 -0.000573 -0.0001669 -0.000085 -0.000689 -0.	0.000125 0.000411 0.000555 0.000557 0.000627 0.000637 0.002647 0.002647 0.002647
:ICIENTS, B	0.000292 0.000292 0.002292	0.000070 -0.002494 -0.002449 -0.002337 -0.002534 -0.002534 -0.002534 -0.002534 -0.002546 -0.003084 -0.002820
AXES CCEFFICIENT -CH CYR	-0.00363 -0.00383 -0.001585 -0.002917 -0.002515 -0.002188 -0.002439 -0.002671 -0.002671 -0.002673 -0.002673 -0.002673	0.000506 -0.002757 -0.002454 -0.002819 -0.001018 -0.001018 -0.002653 -0.002271 -0.001281
(SHAFT CT	0.012137 0.031738 0.050653 0.011995 0.011995 0.0297169 0.064966 0.064966 0.059672 0.059672 0.059672	0.081465 0.007057 0.02544 0.051259 0.052449 0.05749 0.096547 0.096557 0.057372 0.057372
ALPHA CONTRCL		
1 Tare ALPHA SHAFI	11111 00000000000000000000000000000000	
No. θ.75	ထပ္ပံုထွထုသ္ကေလာင္ပိုပ္ခံုခဲ့တဲ့တွေထာက္လွတ္လွတ္လွတ္သည္လွတ္သည္လွတ္သည္လွတ္သည္လွတ္သည့္သည့္သည့္သည့္သည့္သည့္သည့္သည့္သည့္သည့	વ્યં તંવળતાંળવ્યાં જેવવં પંવળ

For the following data points als and/or bls ≠ 00 ± .20

i i o i

3 3 5 3

00,00

8

TEST 276.0 RUN

A _{1s}	-2.t -3.1	4.5	۲. د	-5.0	-2.7	٠, م. د	10.	6.0	-1.7	-2.4	-3.5 C	m (, c	.0	-1.0	-1.7	. s. s.	بار در در	6.4	, o	-0.7	-1.2	-1.6	ر د د د	ب. ښو	2٠٢-
H A T	0.739	0.738	735	0.735	0.736	736	150	0.734	0.734	0.735	0.735	7.00	0.7.0	0.729	0.733	0.733	5.		•	٠.	۲.	۲.	۲.	6.	-	0.735
V/0R		0.304	0.300	0.306	0.304	302	0.305	0.305	0.302	0.304	0.304	1000	206.0	0.307	0.305	0.306	0.302	2000	200.0	0.306	0.305	8	2	606.0	2 5	0.305
CPO	0.0016075	<066100-0	0.0015759	0.0015596	0.0016622	0.0018957	• 60 7 00 •	0.0015121	0.0015172	0.0015711	0.0018691	0.0028106	76226000	0.0014893	0.0015417	.001649	0.0019391	1210500.0	2 0 1 C 0 C 0	0.0015515	0.0016936	0.0018058	0.0021921	.002954	0.0049089	0.0087280
TIP SPEED) CP	000	_	0		0.003272	0.0044824		0.0011352	.001259		.002450	0.0041493	0.00.00	689000				744100.	0.0043886	0.0000982	-0.0009616	-0.0016640	-0.0020845			0.0048350
AREA ANG T	0.002863	0.006894	0.001302	0.002240	0.003304	.00453	0.008180	0.001089	0.001298	0.001669	0.002497	0.004261	0.007246	0.000731	0.000208	-0.000000 - D-	1000.	0.001637	64400.	0.000000	-0.001019	-0.001703	-0.002171	-0.001468	.00125	0.003912
RETCR BLADF CMY	0.000026	-0.000578	0.000000	-0.000105	-0.000525	-0.001017	-0-000659	0.000191	-0.000188	-0.000561	-0.000935	-0.001205	-0.001253	0.000287	-0.00087	-0.000394	-0.001153	-0-001385	-0.001403	-0-00197	-0.000468	-0.000936	-0.001350	-0.001746	.00153	-0-005053
BASED CN RE CMXB	.000103	-0.000032	-0.000261	0.000047	0.000232	0.000062	0.000413	900000-0-	0	0	0.000409	0.000391	0.000570	, ,	0	0	0	0	.000739	0.000.0	.000347					0.000400
COEFICIENTS B	.00033	-0.00000-0-	0.000637	0-000302	-0.000340	-0.000892	-0.00253	060000-0-	-0.000482	-0.001013	-0.001676	-0.002817	-0.003175	662000-0-	-0.000915	-0.001534	-0.001937	-0.002672	-0.003403	-0.002479	-0.001455	-0.001875	-0.002268	-0.002733	.00349	-0.002669
AXES COEFF -CH	00	0.000756	0,	-0-001194	0	0.000028	0.001362	-0.001281	.001256	956000	000384	001206	002847	207700	775100	.001397	001154	000747		0.004179			•	•	•	0.003361
CSHAFT CJ	0.025908	07293	00186	03210	05568	07545	9626 0 -	01157	.03513	.05840	.08264	.09765	.10497	000000	.03757	.06174	.08451	10239	.10968	01134	04044	.06274	.08590	* 10333	11309	11834
ALPFA CENTRCL	-14.3	-17.1	-12.8	9 9	0	_	1 1 1 1 1 1	` =	-2.8	14.4	-6.1	-8.1	6.6	7 · (9.6	 	-0-5	-2.6	-4-7	M 0	0.6	7.2	5.7	15 ° E	9.0	-1.2
1 Tare	-10.0	0.01-	-10.0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.0	-5.0	1 1 0 0			•		6		יי ה היי	9 0	2.0	2.0	o.	o.	0.0	0.01	10.0	10.0	10.0	10.0	10.0
No. θ.75	ు బి	10. 11.	#	ಗ⊶	6	ထံ	i :	jó	તં.	4	9,	ූත්	ું -	• ·	v o	ં લે	**	9,0	ထံ	10	, d	ó	લં	4.	•	ಹ

For the following data points a_{1g} and/or $b_{1g} \neq 0^{\circ} \pm .2^{\circ}$

12°° 8 ~~35

TEST 276.0 RUN 7

No. 1 Tare

$^{\rm A_{1_S}}$	2.5		-4.9	- 6.3	-3.8	ر در در	1.4	5.5	-3.6	9.4-	-6.1	0.0	-0.7	-1.2	-1.9	-2.4	-3.9	-5.3	-6.3	-0.2	-0.7	-1.2
H A T	0.839	0.840	0.837	0.837	0.837	0.835	0.834	0.835	0.834	0.832	0.832	0.835	0.832	0.834	0.830	0.833	0.830	0.832	0.829	0.832	0.832	0.829
V/0R	0.402	0.404	0.401	0.401	0.402	0.401	0.402	0.401	0.401	0.403	0.403	0.399		_		0.399	0.402	0.401	0.401	0.462	0.400	0.401
CPO	0.0022338	0.0027495		0.0023313	0.0025365	0.0019035	0.0019486	0.0021425	0.0025414	0.0038625	0.0051985	0.0018855	0.0019600	0.0019795	0.0022047	0.0027957	0.0042465	0.0064563	0.0078472	0.0021052	0.0023689	0.0028229
TIP SPEED) CP	0.0019477	0.0057733		0.0033016	0.0044389	0.0062635	0.0013326	0.0016867	0.0025761	0.0044248	0.0065302	0.0010325	0.0005419	-0.0000276	-0.00000-0-	0.0002768	0.0021985	0.0048449	0.0063007	-0.0009748	-0.0018646	-0.0022574
AREA ANE T CC	0.002005	0.005953	0.007254	0.002126	0.004664	C.001282	0.001410	0.001769	0.002563	0.004519	0.006792	0.001146	0.000539	0.000045	-0.000047	0.000320	0.002282	0.005026	0.006472	-0.001046	-0.C01979	-0.002436
RETCR BLACE CNY	0.600015	-0.000488	-0.000602	-0.000184 -0.000548	-0.000812	0.001303	-0.000277	-0.000516	-0.000893	-0.001156	-0.001349	0.000145	060000.0-	-0.000315	-0.000676	-0.000891	-0.001318	-0.001543	-0.001190	-0.000263	-0.000671	-0.001030
BASED CN RE CMXB	-0.000552	-0.000234	-0.000292	-0.000265	-0.000115	-0-000120	-0.00002	0.000314	0.000062	0.000390	0.000613	-0.000040	0.000075	0.000301	0.000532	0.000695	0.000464	0.001059	0.000614	0.000204	0.000344	0.000458
	0.001025	0.000146	-0.000113	-0.000133	-0.000838	-0.000137	-0.000399	-0.000987	-0.001581	-0.003161	-0.003889	-0.000598	-0.000951	-0.001405	-0.001798	-0.002573	-0.003846	-0.003808	-0.004124	-0.001619	-0.002018	-0.002487
AXES COEFFICIENTS. -CH CYR	-0.001567	-0.000382	0.000153	-0.001549	-0.000740	-0.001797	-0.001692	-0.001610	-0.000170	0.000106	0.001876	-0.001997	-0.002026	-0.001981	-0.001403	-0.000833	0.001143	0.002551	0.002860	-0.002512	-0.002367	-0.001837
SFAET	0.004764	0.043260	0.053619	0.038023	0.055895	0.008843	0.028737	554640-0	0.066657	0.082204	0.086655	C.001718	0.018260	C.036276	0.056475	0.075426	0.088873	C.095402	951860*3	0.030682	C.050037	C.067272
ALREA	-14.9	18.3	-19.1	-11.4	u u u	1.2.	14.6	0.9-	-8.1	6.6-	-11.6	5.1	3.6	1.6	-0-5	-2.6	-4.8	-6.8	- 4 . B	9.2	7.5	5.6
ALPFA	-10.0				~																	
9.75	∨် ထံ	10	1		် သံ င္		αi	.‡	ý.	ಥ	9.5	₹		ं	'n	ᠥ	ં	ထံ	6,	4-	Ų.	ં

For the following data points alg and/or $bl_s \neq 00 + .20$

α₈ θ,75 a₁₈ b₁₈ -5 10 .4 -.4 5 8 .3 .2 5 9 .2 -.3

TEST 276.0 RLN 8

$^{\Lambda_{ m 1s}}$		
M . A T	00.8331 00.8331 00.8331 00.8330 00.8330 00.8330 00.8330 00.8331 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330 00.8330	
V/0R	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	
CPO	0.0029102 0.0029102 0.0023566 0.0023566 0.00238206 0.0021858 0.0022500 0.0022500 0.002197 0.002197 0.0023818 0.0026684 0.0026684 0.0026684	
TIP SPEED) CP	0.0045374 0.0045374 0.0067514 0.0019366 0.0028780 0.0058990 0.0033742 0.0033742 0.0033742 0.0033742 0.0064566 0.0064566 0.0064566 0.0064566 0.0064566	
AREA ANC CG	0.00048053 0.0004121 0.0004121 0.0004235 0.0012621 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827 0.001827	
RCTCR BLADE CMY	-0.000122 -0.0001212 -0.0001213 -0.0000244 -0.0000248 -0.0000248 -0.0000248 -0.0000248 -0.0000248 -0.0000248 -0.0000248 -0.0000233 -0.0000233 -0.0000224 -0.0000223	
BASED CA RI	-0.000621 -0.000623 -0.000623 -0.000659 0.000657 0.000657 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184	
ES COEFICIENTS, E-CH	0.0000435 0.0000435 0.0000434 0.0000465 0.0000465 0.0000465 0.0000465 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466 0.0000466	
× ×	-0.001159 -0.001159 -0.001948 -0.001948 -0.001949 -0.001949 -0.001949 -0.0019494 -0.0019494 -0.0019494 -0.0019494 -0.0019494 -0.0019494 -0.0019494	
(SHAFT CT	0.0111180 0.026515 0.0443815 0.011502 0.042745 0.055110 0.055110 0.0551610 0.0551610 0.015164 0.051610 0.015164 0.05160 0.05160 0.05160 0.052536	
ALPFA Centrel		
No. 1 Tare		
No. θ.75	ထွင် ပုံနှုလ်ရာ ဝီဝပန်လုံထွာ ဝိုန် ပုံဝပန်ကွေ့ နှံ ပုံဝပ	1

For the following data point als and/or $\log \approx 0^{-1}$.

α_s θ,75 al_s bl_s 5 8 -.3 0

46

σ
\simeq
H
\mathcal{I}
\sim
•
$\stackrel{\circ}{\varphi}$
~
0
11
贤
V/0R =
\geq
덛
ISI
5
LMISIML
`
ARTICULATED ROTOR; O' IM
Ī.
œ.
Ö
ROTOR
8
А
뙨
¥
닌
5
$ \cong $
턴
#
-4
1
·
$\tilde{\omega}$
Ţ
IV-37
1-1
TABLE
떮
\mathbb{Z}
\vdash

Ø	α.	- 1 -	_	m	0	6	0	Н.	∞	<u>ر</u>	4 \	9	Cu i	-	_	m	<i>ا</i> ری	1 000	7	7	r)	0	Q	0	
$^{ m A}{ m 1}_{ m S}$	-3.2	-	-5.4		-3.0						4.										0.		-1.6	-2.0	
A. A.	0.831	0.829	0.831	0.828	0.829	0.830	0.826	0.818	0.827	0.826	0.827	0.823	0.854	0.823	0.820	0.823	0.822	0.821	0.822	0.820	0.821	0.817	0.819	0.816	
V/0R	0.456	0.456	0.456	0.458	0.456	0.455	0.459	0.467	0.459	0.461	0.458	0.458	0.457	0.458	0.460	0.461	0.460	0.460	0.462	0.462	•	0.462	0.461	0.461	
CPO	-002742	0.0029104	0.0032912	0.0023566	0.0C25497	0.0028206	0.0034853	0.0021558	0.0022500	0.0024308	0.0027909	0.0038999	0.0055522	0.0021992	0.0022197	0.0023844	0.0026461	0.0032578	0.0043418	0.0069258	.002684	0.0029558	0.0034215	0.0042197	
TIP SPEED) CP	.002849	0.0045374	.006751	0.0019366	0.0028780	0.0040667	0.0055890	0.0011371		0.0017257	0.0023762	0.0039900	0.0064566	0.0008925	C.0002743	-0.0101480	-0.0001792	0.0003043	C.0018501	0.0044210	-0.0014461	-0.0022074	-0.0025558	-0.0023020	
AREA AND T	0.003053	0.004800	0.007121	C.002072	0.003019			0.001262	0.001433	0.001827	0.002461	0.004079	0.006788	0.001022	0.000378	-0.000082	-0.000135	0.000337	0.001743	0.004429	-0.001530	-0.002331	-0.002679	-0.002407	
RCTCR BLADE CMY	-0.000122	-0.000121	-0.000415	0.00000	-0.000244	-0.000777	-0.001042	0.000054	-0.00C248	-0.00C414	-0.001118	-0.000BCP	-0.001798	0.000426	0.000169	-0.000333	-0.000411	-0.000642	-0.000827	-0.001455	-0.000302	-0.000529	-0.001071	-0-001262	
BASED CA RC CMXB	-0.000595	-0.000621	-0.000023	-0.000320	-0.00C153	0.000596	0.000657	-0.00062	0.000030	0.000153	0.000403	0.000186	0.000244	-0.00078	0.000129	0.000408	0.000607	0.000843	0.000450	0.000541	0.000340	0.000436	0.000599	0.000706	
COEFFICIENTS. B CYR	0.000657				0.000049	-0.000620	-0.001702	-0.000116	-0.000515	-0.001109	-0.001684	-0.002886	-0.004263	-0.000746	-0.001235	-0.001758	-0.002052	-0.00299B	-0.003738	-0.004710	-0.002263	-0.002619	-0.003255	-0.003694	
I	127103.0-	-0.00.1159	ĕ	-0.001948	ĕ	9	91600		02134	31775	11363	17500	31045	32434	32425	32437	19610	75600	30735	01294	12916	02480	11794		
CSHAFT AXES	0.011180	.026515	.044381	.011502	C.027511	.042779		.007521	.025336	.040930	0.055761	.072057	.079317	.004948	.021577	.037544	.053551	.070716	.081282	.090601	.036208	.052532	-068274	0.082609	
ALPFA	-16.6	-18.7	-20.5	8.6-	-11.6	-13.6	-15.3	-2.5	9.4-	9.91	4.8	-10.4	-12.5	5	3.5	1.2	-1.0	4.60	-5.6	-7-4	8.7	6.9	9-6	2.7	
No. 1 Tare .75 ALP+A	-10.0	-10.0	-10.0	0.0	-5.0	5.6	10.0	•		6			9	0.0	0.0	5.0	5.0	0.0	5.0	5.0	10.0	10.0	10.0	10.0	
No. 1 8.75	89	10.	15	. †	ø	యే	10	ċ	તું	. ‡	6.	ಹ	10.	4	-8-	ó	તં	4	Ó	φ.	-7-	\d.	ď	ં તં	1

For the following data point al_B and/or $bl_B \neq 0^O \pm .2^O$

_ըը

 $\theta_{.75}$ als

ဗ္ဗ

ω

46

TEST 276.0 RLN

Ħ

276.0

Tare

```
ݭݭᠰᠰݵݥݭݭᠰᡠݟݷݹݭݭᠰݥݷݥݥݭݷݥݥݷݷݥݷݭݭݭݥݷݷݷݥݕݥ
ݥݭݭݾݥݚݥݡݸݺݥݵݡݭݾݥݥݔݥݾݕݥݥݷݞݥݥݖݚ
                                              00.8848
00.8849
00.8849
00.8849
                                                                                                          M, AT
                                                                                                                           0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
                                                                                                                                                                                                                                  0.508
0.508
0.507
0.509
                                                                                                                                                                                                                                                                                      504
                                                       0.495
0.500
0.502
0.502
0.502
0.502
0.502
                                                                                                                                                                                                                                                                                                               0.509
                                                                                                                                                            0.0025633
0.0026809
0.0026809
0.0026809
0.0039160
0.0029160
0.0028623
0.0029603
                                             0.0033385
0.0034745
0.0038928
                                                                        0.0043269
                                                                                                          0040666
                                                                                          0.0030491
                                                                                                                                             0.0029470
                                                                                                                                                                                                                                                                                      0054481
                                                                                                                                                                                                                                                                                                                                                   0089844
                                                                                                                                    0027683
                                                             0.00018699
0.0018699
0.0018699
0.0018699
0.0018696
0.0018696
0.0018696
0.0018696
0.0018696
0.0018696
0.0018687
0.0018687
0.0018687
0.0018687
0.0018687
0.0018687
0.0018687
0.0018687
                                                                                                                                                                                                                                                                                                                        -0.0026697
-c.0021863
-0.0008009
                                             0.0021093
                                                                                                                                                                                                                                                                                                                                                   0.0020733
                     SPEED)
                     AND TIP
                                            0.002380
0.004206
0.006644
0.007766
0.001822
0.002813
                                                                                                                                                                                                                                                                    -C.C00252
0.000189
0.001548
0.003989
                                                                                                          0.0005613
0.001122
0.001122
0.00102360
0.00103830
0.00103830
0.00103830
0.00103830
0.00103830
0.00103830
0.00103830
0.00006534
                                                                                                                                                                                                                                                                                                                                                  0.001516
                     AREA
                                                                                                                                                                                                                                 -0.002315
-0.00303
-0.00375
-0.000863
-0.001352
                                                             -0.000408
-0.000532
-0.000962
-0.000962
                                                                                                                                                                                                        -0.001232
-0.001609
-0.001705
                                                                                                                                                                                                                                                                                              -0.001554
                                                                                                                                                                                                                                                                                                                        -0.000941
-0.001340
                                             -0.000310
                                                                                                          -0.001766
-0.000842
-0.000161
                                                                                                                                             -0.000677
                                                                                                                                                              -0.001422
-0.001636
                                                                                                                                                                                                                                                                                                               -0.000736
                                                                                                                                                                                                                                                                                                                                                  0.000674
                    BLADE
                                                                                                                                    -0.000308
                                                                                                                                                                                       -0.000357
                                                                                                                                                                                               -0.000839
                                                                                                                                                                               -0.000293
                     ROTOR
                                                             0.000023
0.000023
0.0000154
0.0000154
0.0000154
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
0.0000174
                                                                                                                                                                                                                                                                                                       0.000084
0.000038
0.000250
                                             -0.000771
                                                                                                                                                                                                                                                                                                                                0.000462
                                                                                                                                                                                                                                                                                                                                                  0.000000
                     BASED ON
                                                             0.000156
                                                                                                          0.001791
0.003602
0.003602
0.000028
0.000150
0.0001662
0.00024062
0.00024064
                                                                                                                                                                                                                                                   -0.001148
                                             0.000942
                                                                                                                                                                                                -0.001165
                                                                                                                                                                                                                                   -0.003706
-0.000686
                                                                                                                                                                                                                                                                    -0.002033
-0.002553
-0.003960
                                                                                                                                                                                                                                                                                                              -0.003078
-0.003878
-0.003847
-0.004742
                                                                                                                                                                                                                  -0.002390
-0.002973
                                                                                                                                                                                                                                                                                              -0.004174
                   (SHAFT AXES COEFFICIENTS,
                              ςR
                                                                                                         -0.001792
-0.001504
-0.001504
-0.002689
-0.002689
-0.002689
-0.001241
-0.002919
-0.002919
-0.002919
-0.002919
-0.002919
                                                                                                                                                                                                                                                                            -0.00212
-0.001155
-0.000311
-0.003585
                                                             -0.001411
-0.001321
-0.002803
-0.002407
-0.002255
                                                                                                                                                                                                                                                   -0.003230
-0.002977
-0.002525
                                             -0.002616
                                                                                                                                                                                                                                          -0.003352
                                                                                                                                                                                                                                                                                                                                                                  potnt
.2<sup>0</sup>
                                                                                                                                                                                                                                                                                                                                                                                           bl.
                              Ŧ
J
         -5, -3, 2, 5, 10
                                                                                                                                                                                                                                                                                                                                                                data
00+1
                                                                                                                                                                                                                                                                                                                                                                                          818
                                            0.000575 - 0.001872 - 0.001872 - 0.001872 - 0.005721 - 0.005725 - 0.0057203 - 0.00575 - 0.010355 - 0.010355
                                                                                                                                   0.005094
0.018446
0.018496
0.046299
0.004209
0.004209
0.004209
0.004209
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.034835
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0.03483
0
                                                                                                                                                                                                                                                                                                                                                                                                          ₹
                                                                                                                                                                                                                                                                                                                                086077
                                                                                                                                                                                                                                                                                                                                          606660
                                                                                                                                                                                                                                                                                                                                                               following
                                                                                                                                                                                                                                                                                                                                                                         Ъ<sub>18</sub> 4.
                             ᇈ
                                                                                                                                                                                                                                                                                                                                                                                          975
                                                                                                                                                                                                                                                                                                                                                                         and/or
         Ц
ALPHA SHAFT
                                                                                                                                                                                                                                                                                                                                                                $
                                                                                                                                                                                                                                                                                                                                                                                           8
                                             ALPHA
                             CONTROL
                                                                                                                                                                                                                                                                                                                                                                g
                                             ALPHA
                             SHAFT
No. 1
No. 2
         Tare
                                            œ္ဍน์ และ เลือด เลือด
                         5
```

S

	Als	-2.5		-1.3	2.0	-3.7	-4.2	-1.7	-2.4	-3.6	4.0-	0,1	-1.6	2.5	0.4	-5.9	-4-1	9.0	-1.5	-2.0	-2.6	-3.6
	M, AT	0.738	0.734	0.735	0.736	0.734	0.734	0.733	0.731	0.732	0.732	0.732	0.733	0.732	0.738	0.733	0.731	0.733	0.731	0.733	0.733	0.732
	V/0R	0.613	0.621	0.618	0.618	0.619	0.620	0.619	0.621	0.624	0.624	0.624	0.622	0.620	0.634	0.621	0.624	0.618	0.620	0.618	0.619	0.619
	043	0.0043591	0.0051638	0.0038180	C.0042067	0.0047124	0.0053845	0.0037132	0.0040805	0.0045353	0.0039035	0.0036654	0.0041199	0.0044357	0.0055615	0.0075886	0.0060063	0.0045139	0.0047705	0.0048378	0.0055209	0.0065527
	TIP SPEED) CP	0.0001550	0.0023533	0.000933	0.0021852	0.0029071	0.0039295	0.0014233	6.0016787	0.0021739	0.0008965	0.0005782	0.0004525	0.0004523	0.0018995	0.0036808	0.0019345	-0.0012784	-0.0015088	-0.0014244	-0.0013052	-0.0002317
		0.000030	C.CC2427		0.002250		0.004098	6.001349	0.001605	0.302146	0.000796	0.000479	0.300143	0.5005.0	0.001606	0.003557	0.001726	-0.001243	-0.001540	-0.001377	-0.001399	-0.000223
	S COEFFICIENTS, BASED ON ROTOR BLADE AREA AND CH CYR CMXB CMY CQ	0.000075	-0.000320	-0.030151	-0.006330	-0.000490	-0.000564	-0.000226	-0.000571				-0.000384	-0.000577	0.000033	0.000046	0.000670	-0.000194	-0.000255	0.000188	0.001460	0.000704
	SASED ON RI CMXB	-0.000307			0.000030	0.000012	0.000192			-0.00000-	-0.000c70	-0.006129	0.00018	0.000162	0.00020	0.000.16	0.000313	-0.000078	C.000046	0.000266	0.000474	0.000405
	ICIENTS, E	0.000525	-0.000175	0.000100	-0.000310	-0.000799	-0.001591	-0.000740	-0.000973	-0.001655	-0.000853	-0.001090	-0.001567	-0.602003	-0.003668	-3.004969	-0.003534	-0.002532	-0.003451	-0.003779	-0.004541	-0.005131
	AXES COEFF -CH	-0.004265		003792	ှ် ဝှ	ဝှ	-0.004637	303718	003920	o	ô	ဝှ	-0.003914	-0.003778	-0.001662	-0.301750	-0.002299				-0.001257	-0.000392
	(SHAFT AXE	-0.019152	3.001915	-0.012819	C.01C218	0.020583	0.031536	0.014925	C.024862	0.034521	°•0°6898	0.016763	0.029464	796650	0.063457	0.070873	0.065587	0.035681	0.C47628	0.05712.	0.073283	3.679625
	ALPHA CONTRUL	-12.5	-16.7	-6.2	-10.7	-12.7	-14.7	-4.3	-6.8	-8.7	4.6	2.5	0.5	0.2-	1 6	-8-7	6.9-	7.2	5.1	2.6	0.1	-2.2
2 Tare	ALPHA SHAFT	0 0 8 - 1	0 4 0 4 0 4	4.	0.4) • • · ·	40	•	ċ	•	0	0.4	ु •) c	0	4	4.0	6.0	8.0	8	္ မ	ထ
No.	52° _θ	•ં &ં	10.	0.4	60	ထံ ငွ	j o	ď.	4,	.	. 47 -	તું (•	ં (, d	9	ထံ	٠.	-7-	-5-	ં	oi.	.

For the following data points als and/or blg # 00 + .20

გ**ი o** ∞

TEST 276.0 KUN 10B

R N	
o.	
276	
_	

	$^{A_1}_{s}$	2.3	-3.5	ا ا ا	7.0	-2.7	-3.1	٠ ٠ .9		-1:1		n c	קיי) -	ָ קייני קייני	-	7.7	-2.2	-2.8	-3.3	-3.9	20.		η. 	4.0	-3.1	1 -	- c		1.	-2.5	-3.5	-1.2	-1.5		-2.9			
	M, AT	0.687	•	•	•		•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	.67	0.676	0	0 7	•	9	.67	.67	.67	19.	• 67	.67			
	V/0R	0.695	0.699	0.703	90.40	0.705	0.709	0.716	0.707	0.710	31.0	0.0		77.0	2.5	0.710	0.712	0.711	0.711	0.711	0.710	0.708	0.711	0.710	0.709	0.739	707.0	117.0	900	0.708	0.738	6.706	0.706	0.738	0.707	0.714			
	CPO	0.0055241	900	200.	000	005	900	.006	008	3400		100	200		- K		900	600	.0054	.0061	.0073	.005	.0051	400	000	900	900	200	100	005	.005	900	900	900	900				
	IP SPEED) CP	0.0015680	57	M i	- K	77	7.	75	28	4	5	* :	3:	7	1 4	3 6	98	9	3	69	161	82	63	55	25	9	7	9 1	746000-0	0.000271	116	65	52	0.001389	.031293	• ୧୯୯ ୭୭୨			
	AREA AND T	0.001616	0.002831	0.003868	000000000000000000000000000000000000000	0.001761	0.002414	0.003332	0.004761	0.001258	6.001304	7/670100	071100.0	0.00471 0.00471	2010101	0-001162	0-000951	0.001006	0.031254	0.001570	0.002605	0.000495	0.000301	0.000431	3.000268	0.000681	3.001/23	963696	000353		0900000	0.000948	198100	01253	01145	00329			
	ROTOR BLADE CMY	000°0-	-0.00047	0000		0000-0-	-0.000	0000-	0000-	0000-0-	-0.000	200	20.00					-0.000	0-0-0-	-0.000	0.000	-0-030	-0.000	000.0-	CC0.0-		0.000	0.000.0	0.0000	0.000214	-0.000017	-2.000028	-0.000328	-0.000547	-0.000474	269000.			
	BASED ON RE CMXB	-0.000061	o	o o	Š	ö	ó	ó	o i	o (o o	Š	s c	Š	š 6	5 6	Ċ	ó	ပ	ŏ	ö	q	o ·	o .	o ·	o (Š	o q	5 6	Ö	o	Ö	Ŷ	o 	ò	0.,5633			
	COEFFICIENTS.	99	-0.0013	-0.0018	0.00	7000-0-	-0.0013	-0.0024	-0.0031	-0.0006	7000-0-	2000-0-	770000	0000	4000 CT	0000	-0.0010	-0.0014	-0.0018	-0.0019	-0.0029	-0.0010	-0.0013	-0-0317	-0.0018	-0.0025	2600-0-		70000	-0.0032	-0.0034	-0.0042	-0.0031	-0.0036	-0.0044	-0.0051	w		
	AXES COEF -CH	-0.005620									ř	Š	ָ ו	9	Š (5	Ġ	Õ	q	ő	Õ	Ö	Ö	o ·	Õ	ò	P (o c	3 6	q	0	ç	9	9	ó	ŏ	g data points		als bls
	(SHAFT CT	-G.001218 0.005154	01426	0209	24400	01132	01942	02563	03406	000046	3	9 (9 () (7	ייי מייי	90	200	021	027	033	039	013	C 2 0	025	034	440	940	\supset c	7 6	040	047	054	.041	4	.057	• 065	the following and/or bls≠	,	α _s θ, ε
	ALPHA CONTROL	-10.6	;	٠.	٠	8 6-		m	m.	-	•	0 (0 0 0	7 6) - (0.11	ויי) ו	-5.6	~	8-6-	4.5	5.4	0.1	;	-4.6	0.0	- 0 20 11	, ,	1.5	-1.4	-3.6	9•9	4.4	2.0	ر - ۲ • ۶	For a		Ü
, 2 Tare	ALPHA SHAFT	44	0.4-	0.4	֓֞֞֞֞֜֞֞֜֞֜֞֜֞֜֞֜֞֜֜֞֜֞֜֞֜֜֞֜֜֞֜֜֞֜֜֞֜֜֞	7-2-0	-2.0	-2°C	-2.0	•	• •	• •	•	•) (្ត • •	2.0	2.0	2.0	2.0	4.0	4.0	0.4	4.0	ن پ	0	o (9	0.9	0•9		8		?• 8			
No.	θ.75	ဖ်ထံ	10.	12.) Y	9	ω	10.	12.	ċ	نه أنه	.	٥٥	ن د	7	ď	ó	ณ่	4.	•	ထံ	-4-	-2-	ċ	ດໍ.	4,	هٔ د		• c			. .	-7-	ď	°	o,			

± 0.€

0.1.0

ដូងដ

400

TEST 276.0 RUN 12

No. 2 Tare

Als	-1.1	-1.2	-1.5	-1.8	-2.0	-2.4	-2.6	-2.8	-3.5	-3.5	0.4-	-4.2	0.0-	-0.2	-1.0	-1.5	-2.5	-2.6	-3.1	3.7	6.9	٠ 9	-1.5	-2.3	-2.7	-3.0	-3.6	9.0-	-1.2	-1.9	-2.5	-3.1	9.8		
H.AT	0.635	0.630	0.630	0.631	0.630	0.625	0.626	0.627	0.625	0.628	0.619	0.622	0.624	0.622	0.622	0.622	0.622	0.621	0.618	0.617	0.618	0.617	3	0.615	3	3	2	51	3	5	0.615	51	21		
V/0R	0.808	0.815	0.807	0.811	0.812	0.799	0.815	0.820	0.818	0.826	0.813	0.824	0.819	0.814	0.816	0.818	0.818	0.818	0.820	0.828	0.824	0.832	0.829	0.837	0.838	0.834	0.833	0.829	0.830	0.830	8	0.831	80		
CPO	0.0064688	0.0067975	0.0068318	0.0075528	0.0076556	0.0088360	0.0087639	0.0089871	0.0101618	0.0100040	0.0127707	0.0126186	0.0067932	0.0065304	0.0059958	0.0065526	0.0071377	0.0079161	0.0093545	0.0106835	0.0071463	0.0065606	C.0067397	0.0068886	0.0075357		.009925	007628	0071	007082	073	008557	0.0090193		
TIP SPEED) CP	00	0.0014537	200	200	0.0014997	0.0014906	0.0017233	0.0017724	0.0021552	0.0023731	0.0029568	3.0030948	0.0014026	0.0015742	0.0014945	0.0014974	0.0015401	0.0015855	0.0019502	0.0027199	0.0011311	0.0011909	0.0011904	0.0012943	0.0016961	0.0018292	0.0023272				0.0008910	0.0616922	001962		
AREA AND TE	0.001420																							0.001127											
ROTOR BLADE CMY	9083	-0.000697	-0.000666	-0.001346	-0.000362	-0.001067	-0.001098	-0.001188	-0.000705	-0.000793	-0.001203	-0.091113	-0.000074	-0.000337	-0.000704	-6.001149	-0.000315	-0.000718	-0.001052	-0.030448	-0.030112	-0.000001	-0.000261	-0.000652	-0.000711	-0.001288	-0.000984	-0.000470				-0.000657	-0.000613		
BASED ON RO	-0.000201	0-0-	0.000013	990000*0-	-0.000016	0.000016	0.000063	0.000028	1000003.0	-0.000147	-0.000148	-0.360546	-0.000616	-0.000221	-0.000227	-0.000240	-0.000115	0.000363	0.000095	-0.000364	-0.000633	-0.000376	-0.000236	-0.000399	-0.000258	0.000087	-0.00000-0-	1	0-0-	ı	200-0-	C)	000.		
OEFFICIENTS, B CYR	-0.000265	-0.000332	-0.000675	-0.000813	-0.001115	-0.001370	-0.001600	-0.002218	-0.002146	-0.002581	-0.003315	-0.003326	0.000380	-0.000272	-0.000270	-0.000782	-0.001206	-0.001899	-0.002162	-0.003555	-0.000285	-0.000675	-0.001068	-0.001159	-0.001372	-0.002513	-0.002907	-0.001225	-0.001002	-0.001616	-0.001999	.00318	.0033		
٠ ±	1019	5403	5549		7624	9348	3920	9078	1228	-0.309736	2740	2231	5583	9809	5514	5177	5847	-0.007747	3680	3645	7036	2009	5147	-0.006059	5241	7580	8182	-0.006932	2609	5600	-0.005366	-0.305877	-0.006054	ig o	ų HI
(SHAFT AXES CT -C	-0.004198	.034511				_		0.007678	0.012094	0.013893	0.018392	0.018486	-6.003950		0.000272					0.024631			.016142	.018414		0	0.02795;	6.022449	0.024611	0.030563	0.034386	035189	0.035997	For the following	**************************************
ALPHA CONTROL	-5 -5	0.9-	•	-8.3	-9.5	-10.5	-11.4	-12.5	-13.7	-14.5	-15.9	-17.7	1.9	1.0	-1.9	-4.3	-6.3	-8.8	-10.8	-12.9	2.9	1.2	6.0-	-4.3	-6.1	-7.8	-10.0	4.5	2.1	-0-3	-2.4	-5.1	-7.2	For t	13
ALPHA SHAFT										-2.0														2•0											
9.75	2.	m.	+	5.	•	٦.	ထံ	9.	10.	11.	12.	12.8	-4-	ญ่	°.	ď.	4.	• •	ထံ	10.	-4-	-5	ó	તં.	4.	••	φ.	-4-	.5	ċ	ณ๋.	.4	• 9		

1111

60,00

4004

50

RUN 13A

TEST 276.0

H, AT 0.0071661 0.0066269 0.0079696 0.0076719 0.0074600 0.0091010 0.0091361 0.0088766 0.0085649 0.016353 -0.006627 -0.001121 -0.000507 -0.000000 0.000725 0.0007839 0.027517 -0.005252 -0.001881 -0.000700 -0.000374 0.000584 0.0007429 0.034184 -0.006510 -0.000327 -0.000820 0.000132 -0.0006440 -0.0003065 0.042353 -0.005477 -0.002594 -0.000451 0.000123 -0.0006440 -0.0003065 0.042353 -0.005477 -0.002596 -0.000451 0.000123 -0.000500 -0.0003065 0.046101 -0.004512 -0.0002596 -0.0004518 -0.000123 -0.000500 -0.000437 0.051371 -0.005407 -0.000188 -0.000348 0.000375 0.051371 -0.005407 -0.000188 -0.000348 0.000395 0.0017688 0.005187 -0.004977 -0.000188 -0.000168 -0.001689 -0.0017688 0.005181 -0.005407 -0.00498 -0.000451 -0.000498 -0.000427 -0.000168 -0.000787 -0.000789 0.000789 -0.0002513 -0.000518 -0.000553 -0.000553 -0.000553 -0.000065 -0.0006434 0.000145 -0.0000895 AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED)
-CH CYR CP the following data points and/or $b_{L_B} \neq 0^{\circ} \pm .2^{\circ}$ b_{1s} 4.000 (SHAFT CT 4400 තී 4008 For ALPHA CONTROL Tare ALPHA SHAFT a 8 θ.75

_
\mathbb{Z}
0
Ä
п
/SIR
\sim
>
TMIST,
)
0
ROTOR;
ARTICULATED ROTOR; O
ı
43
7 - 7I
TABLE

	$^{\rm A}_{\rm 1g}$	-0.1	6. 0-	-1.5	0.1-	-1.6	6.0	-0.5	-1.0	†. 0-	-1.1	-1.6	-1.5	2.5	-1.8	-1.9	-1.4	-1.4	-1.4	-2.5	-2.7	-1.3	-2.2	-2.5	-3.1	-3.1	
	M, AT	0.545	0.546	0.545	0.543	0.543	0.545	0.544	0.544	0.544	3.542	0.542	0.543	0.543	3.543	0.542	0.542	0.540	0.541	0.541	0.542	0.542	0.540	0.542	0.542	0.543	
	V/0R	1.052	1.045	1.051	1.058	1.058	1.053	1.051	1.049	1.049	1.057	1.059	1.051	1.052	1.052	1.059	1.049	1.057	1.059	1.057	1.053	1.051	1.057	1.051	1.052	1.053	
	СРО	0.0136225	0.0112602	P.0104264	0.0115279	0.0127411	0.0142713	0.0172443	C.0206549	0.0136973	5.0116996	0.0122673	0.0111730	•					0.0126700	3.0121217	0.0130607	C.0179394	0.0152742	0.0140552	C.0135679	0.0163277	
	TIP SPEED) CP	0.0004270	0.0014757	0.0016330	0.0014382	0.0012965	0.0004275	-0.0003562	-0.0003561	-0.0001424	0.0013027	0.0013028	0.0015007	0.0012885	0.0005011	0.0013050	-0.0012165	-0.0005082	0.0007261	0.0013068	0.0012927	-0.0030157	-0.0610180			0.0013645	
	AREA AND T	0.000037	0.001055	0.000950	0.000972	0.000388	-C.000376	-0.001142	-0.001212	-0.000452	0.000629	3.000781			0.000035	0.000445	-0.001473		0.000565	0.000713	0.000589	-0.002760	-0.001186	-0.000450	0.000045	0.000732	
	ROTOR BLADE CMY	0.000534	-0.001374	-0.002799	-0.001946	0.001388	0.002443	-0.000346	0.001765	0.000482	0.000251	-0.000350	-0.001241	-0.00010+	-0.000600	0.0CE00	0.000896	-0.000072	-0.000232	-0.000304	-0.000919	0.000535	-0.000520	-0.000205	0.000408	0.001127	
		0.000447	- 1				-0.000379	0.000907		ı	ı		ı	-			-0.001219	-0.000841	0.000319	-0.001636	-0.001969	0.000538	-0.000698	-0.000935			
	S COEFFICIENTS, BASED ON CH CYR CMXB	0.000641	0.000748	0.000956	0.001111	-0.000351	-0.000445	-0.000234	-0.002303	-0.000414	0.000156	-0.001086	-0.000719		-0.000823	-0.004101			-0.002145	-0.002165	-0.002837			-0.003703	-0.003868		
	AXES COEFF	-0.012283	0-0-	9	ò	0	ö	ė	ö	o	-0.008496	o	o	-0.011412	-0.014287	ę	q	q	o	o	ç	ė	9	-0-005624	-0-004813	-0.006800	
	(SHAFT AXE	0.01543	0.002144	-0.009992	-0.012489	-0.000676	-0.012007	-0.023937	-0.011085	0.026943	0.026091	0.027578	0.009567	0.006997	-0.004870	0.010621	0.045595	0-052950	0.045815	0.038643	0.032732	0.071745	0.067264	0.066021	3.062507	0.062044	
	ALPHA CONTROL	3.3	0.0	-1.5	-4-1	-6.2	-8.2	-10.7	-12.5	4.3	1.7	6.0-	-3.6	-5.8	-8-1	-9-7	5.7	2.9	-0-2	-2.9	0.4-	5.0	2.0	9	-2-1	-4.2	F
2 Tare	ALPHA SHAFT	1.0	1.0	0-1	0		1-0	1.0	1.0	0.6	3 6	 	0.6	3.0	3.0	3 M			2.0	5,0	0.46	0 - 2	0 - 2	7.0	7.0	2.0	
No.	.75	4	, d	ó	ς,	i≟	9	ω,	0	4	: c	ò	, a	1-1	v	άα	-	· c	įċ	, o	۔ ا	7	, c	į c	, c	, 4	

For the following data points a_{1g} and/or $b_{1g} \neq 0^{+} \cdot 2^{0}$

TEST 276.0 RUN 13B

10A	
RUN	
0.9	
276	
FEST	

	Als	. s. s.	ν - -		9	-2.3	-3.5	-4.1	-4.7	-6.0	-7.7	-1,1	-2.1	-2.9	-3.3	9.4-	-5.7	6	-0.5	-1:1	-1.0	-2.3	-2.7	-3.5	-5.3	<u>-</u> ص	φ. Ω.	-0.7	-5.0	-2.0	-2.9	-4.0	1 .9-
	M, AT	0.672	676	0.675	9.674	0.671	0.672	129.0	0.671	0.672	0.672	0.671	0.673	0.673	0.673	3.672	0.672	0.672	0.672	0.674	0.672	0.674	3.671	0.673	0.673	0.672	0.672	9.674	0.673	0.672	0.672	5.672	0.672
	V/0R	0.402	104	0.402	0.401	0.399	0.401	0.401	0.400	0.402	0.402	0.400	0.399	0.399	0.398	0.400	0.400	00 +00	0.401	0.400	0.401	0.399	0.400	0.399	0.399	0.395	0.401	0.399	0.399	0.397	0.402	0.401	0.401
	CPO	0.0019938						5.0021750				0.0017508	0.0017673	0.0019415	0.0023113	0.0029155	0.0044718	0.0065366	3.0017905	0.0018106	0.0019257	0.0021530	0.0025616	3.0033961	0.0052637		•	0.0023872	•	0.0032076	ĕ	•	0.0098250
	TIP SPEED) CP	0.0015330	0.0026060	0.0370739	0.0091686	9606100.0	0.0029229	0.0039219	0.0053379	0.0073686		0.5010234	0.0012048	0.0014980	0.0020846	3998600-0	0.0057295	0.0086631	0.0010236	0.0004505	-0.0001372	-0.0003667	-0.0000139	0.0011239	0.0034045	0.0063979	-0.0067703	-0.0017286	-0.0022942	-0.0024194	-5.0016783	0.0003960	0.0039923
	AREA AND T	0.001461	0.005146	0.007303	0.009678	C.001829	0.002873	0.004032	0.005501	0.007587	0.011150	0.001013	0.001174	0.001492	0.002074	0.003443	0.005869	0.009011	0.001127	0.000515	-0.0000-0-	-0.000298	-0.00031	c.001213	0.003559	0.006572		-0.001734 -	-0.002230 -	-0.002402	.001533	0.000465	0.004251
	ROTOR BLADE CMY	0.000175	-0.000364	-0.030487	-0.000628		ġ	ဝှ	į,	ဝှိ		ģ	ė	o o	-0.00073	Ģ		-0.000324	0.000103	-6-000147	-0.000393	-0.000523	-C.000764	-0.000955	-0.001008	-0.001040	ဝုံ	020203	001007	S	-0.001164	-0.001333	-0.001208
	BASED ON RC CMXB	0.000029	0.000277	0	•	•		0.000263									0.000726	0.000636	-0.000148	-0.000015	0.000256	0.000352	0.000567	0.000692	0.000297	0.000254	-0.000068	ċ	ċ	ċ	0.000667	0.00687	0.000634
	S COEFFICIENTS, E	0.000423	-0-000616	-0.001423	-0.001862	691000*0	-0.000434	-0.001223	-0.001480	-0.002794	-0.003847	-0.000033	-0.000415	-0.001146	-0.001403	-0.002697	-0.003523				-0.000944	-0.001851	-0.002419	-0.002897	-0.004564	-0.006141	-0.001599	-0.031697	-0.002678	-0.002533	-0.003817	-0.004886	-0.006337
	AXES COEF	-0.001378	-0-000364		0.001417	-0.001422	-0.000988	-0.303940	761000-0-	0.001111	0.002351	-0.001830	-0.001517	-0.001525	-0.001378	-0.000072	0.001512	0.003334	-0.002052	-0.00000-0-	-0.002302	-0.000077	-0.001298	0.000429	0.002153	0.003821	-0.002830	-0.002848	-0.002236	-0.001179	0.000248	0.001659	0.003597
	(SHAFT CT	6.001213	0.039545	0.057731	0.072136	0.017082	0.033604	0.054240	0.009820	0.081/39	0.093128	0.007603	C.023469	0.046033	0.064394	0.078677	0.091774	0.101101	-0.001517	0.016045	0.035527	0.055371	0.072212	0.087193	0.100816	0.107113	0.026025	0.045375	0.063708	0.082350	0.098131	0.111693	0.119883
a)	ALPHA CONTROL	14.4		-19.1	-20.7	0.6-	11.	12.	•	ή:	-17.2	-1.9	8 · 6	-5.6	-7.5	-6-3	-11.0	-12.5	2.7	3.8	5. 5	0.3	-1.6	. . .	0.5	-7.5	9.6	8.2	2.1	3.7	1.4	0.0	-2.4
. 2 Tare	ALPHA SHAFT	-10°C	-10.0	-10.0	-10.0	_5.€ ر	٠ - ا	ှ (၅	ا د د) () ()	0	•	.	Ġ	•	ċ	င်	ပ်	0	0.0	0.0	ာ က	0.0	0.0	0	2.0	70.0	10.0	10.0	10.0	10.0	30.0	10.0
No.	θ·75	ဖ်စံ	ij	12.	1 .	₫,	٥٥	ာ် ငှ	; c	7	; c	. (ง๋ -=	;	٥٥	တံ မှ	10.	T	. †	એ (o ʻ (N-	,	် င	់ មុ	:	ŕ	્યું લ	ં	ณ์.	4,	ó	တ်

For the following data points a_{1g} and/or $b_{1g} \neq 0^{\circ} + .2^{\circ}$ $c_{g} = 0.75 \quad a_{1g} \quad b_{1g}$ $c_{g} = 0.75 \quad a_{1g} \quad b_{1g}$ $c_{g} = 0.75 \quad a_{1g} \quad b_{1g}$ $c_{g} = 0.75 \quad a_{1g} \quad a_{1g}$ $c_{g} = 0.75 \quad a_{1g}$

		Als	4.6.4	6.00	6.4- 4.4-	-1.5	-2.7	-4.9	-0.1	0.1.	-1.4	ښ ش در	4.0	-0·0-	-1.6	-2.9 -4.2
		M, AT	0.874	0.868 0.869	0.869 0.869	0.869 0.864	0.864 0.865	0.867 0.866	0.864	0.864	0.864	0.865	0.861	0.863	0.863	0.861 0.862
•		V/0R	0.407	0.410	0.408 0.408	0.407	0.407	0.404	904.0	904.0	0.404 0.404	0.405	0.410	0.406	0.407	0.408
ARTICULATED ROTOR; 0° TWIST, $V/\Omega R = 0.41$, $M_{(1)(90)} = 0.87$.		CPO	0.0026353 0.0028299	0.0024608	0.0029977	2.0022898 C.0022898	0.0024611	G.0045070 C.0055443	0.0022790	0.0624250	0.0026455	0.0048797	0.002544B	0.0027813	0.0042563	0.0057889 0.0089209
⁴ 1, Μ(1)(9		IP SPEED) CP	0.0023297	0.0023414	0.0049115	C.0C13287 0.0014322	0.0019840	0.0050107	0.0011342	-0-	-0.0000/88 0.0005132	0.0026430	-0.0008117	-0.0018153 -0.0023862	-0.0020165	-0.0001855 0.0029564
7/0R = 0.		AREA AND TIP	0.002316	0.002314	0.004947	0.001290	0.001955	0.005085			0.000076	0.002688		-0.001803		0.003109
TWIST, V		ROTOR BLADE CMY	-0.000204	-0.000367	-0.000867	-0.000267	-0.001065	-0.001152	-0.000103	-0.000500	-0.000667 -0.001399	-0.001270	-0.000384	-0.0000852	-0.001508	-0.001479
otor; o ^o		BASED ON RO CMXB	0.0000126								0.000445	0.000621		0.000078		0.000753 0.000795
ULATED R		COEFFICIENTS, B.	0.000267	-0.000002	-0.001383 -0.001981	-0.000175	-0.001257	-0.003499	-0.000633	-0.001435	-0.001962 -0.002342	-0.003604	-0.001832	-0.002187	-0.003179	-0.004059 -0.004410
		AXES COEFF -CH	-0.001931	-0.002023	-0.000937	-0.002293	-0.001597	0.000209	-0.002559	-0.202662	-0.002110	0.000816	-0.002934	-0.003633	-0.001518	0.000874 0.002082
TABLE IV-45		(SHAFT CT	0.026571	0.019003 0.038319	0.057531	0.011827 0.032476	0.047536	0.084096	0.002922	C.041811	0.060261	0.090075	0.031542	0.050705	0.088311	0.099745
ŢŢ	RUN 14A	ALPHA CONTROL	116.5	2.01-	-13.2	-2.3	-6.2	-10.2	5.1	1.7	-0.4	-5.0	6.0	7.6 7.5	, w	6.3
	EST 276.0 No. 2 Tare	75 ALPHA SHAFT	616.0 810.0													

For the following data point a_{1g} and/or $b_{1g} \neq 0^0 \pm .2^0$

δ₁ς -,4

9.75

% 9

54

8

θ.75

0.891 0.890 0.890 0.887 0.888 0.891 0.889 0.888 0.889 0.885 0.889 0.889 0.887 0.888 0.888 890 688 0.892 0.892 0.887 0.890 0.393 0.390 0.391 0.391 0.391 0.395 0.0029274 0.0033443 0.0028245 0.0031488 C.0027305 0.0038127 0.0023949 0.0024186 0.0026318 0.0054294 0.0068897 0.0025907 0.0029542 0.0028462 0.0029642 C.0034327 0.0023667 0.0024800 0.0053794 0.0014758 0.0016954 0.0021720 0.0031184 0.00508717 0.0066717 0.0026563 0.0034465 0.0045260 0.0054339 0.0025742 0.0037772 0.0001099 3.0046038 -0.0019785 -0.0017735 0.0031266 (SHAFT AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED) 0.004734 0.001664 0.002121 0.003136 0.005506 0.004032 0.001459 0.005636 0.002567 0.003817 0.004467 0.060228 0.000145 0.000903 0.000356 0.005463 0.004613 0.001459 0.003191 -0.000239 -0.000506 -0.000491 -0.000752 -0.000110 -0.000845 -0.001073 -0.001067 -0.001211 0.000142 -0.000512 -0.001335 -0.010344 -0.000844 -0.001076 -0.001186 -0.001116 -0.001090 -0.000683 0.000254 0.000254 0.000427 0.000486 0.000288 0.000288 -0.000093 0.000084 -0.000081 0.000088 0.000288 0.000288 199000.0 0.000629 0.000686 0.000.00 0.000346 0.000570 0.000080 0.000056 -0.002689 -0.000643 -0.000154 -0.000374 -0.001176 -0.003225 -0.000441 -0.001024 -0.001546 -0.002122 -0.003187 -0.003652 -0.001347 -0.002304 -0.002672 -0.003551 -0.001620 -0.000344 -0.000747 -0.002446 -0.002732 -0.002822 -0.003052 -0.0003653 --0.041965 -0.01740 -0.01449 -0.01090 -0.01907 -0.001425 -0.001265 -0.302287 0.000489 -0.002176 0.063149 -0.002481 C.079671 -0.001286 -0.001675 0.030602 0.051233 0.072397 0.008986 0.018510 0.030034 0.03757 0.02666 0.041712 0.062236 6.042634 C.C79671 0.092427 0.001771 0.051626 0.020821 0.095893 0.087867 0.078381 C ALPHA CONTROL RUN 14B 00000000000 Tare ALPHA SHAFT 276.0 0000 Q TE ST

For the following data points a_{1s} and/or $b_{1s} \neq 0^{\circ} \pm .2^{\circ}$ 0 0 8,1,8 9,75 ω 9 **ფ** 0 10 8₁₈

TEST 276.0 RUN 15

No. 2 Tare

Als		
M, AT	0.928 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
V/0R		
CPO	0.0046513 0.0036883 0.0046513 0.0046513 0.00546513 0.00546569 0.00539578 0.0063377 0.00633620 0.0064327 0.0064327	
IP SPEED) CP	0.0038033 0.0035185 0.0049081 0.0024694 0.0024694 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.0042480 0.00424080 0.0042440 0.0042047	
AREA AND T	0.003438 0.003738 0.0060339 0.0060339 0.0023410 0.0023410 0.004327 0.003368 0.001227 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043	
S COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP CH CYR CMXB CMY CQ	0.000160 -0.000185 -0.005243 -0.005243 -0.001183 -0.000939 -0.000939 -0.000939 -0.000273 -0.001193	
ASED ON RO CMXB	0.000710 -0.000431 0.000711 0.000069 0.000124 -0.000177 0.000398 0.00034 0.002002 0.000165 0.002002 0.000165 0.002002 0.000165 0.002002 0.000165 0.002002 0.000165 0.002002 0.00038 0.002002 0.00038 0.00200333 0.00038	
CYR	002608 -0.000116 -0.0001160 003235 -0.000398 002355 -0.000398 002856 -0.000309 001853 -0.000201 001853 -0.0002181 001853 -0.001780 001853 -0.001780 001853 -0.001780 001853 -0.001780 001855 -0.001812 00224 -0.003233	
AXE	-0.002608 -0.002608 -0.002335 -0.002339 -0.001689 -0.001856 -0.001853 -0.001853 -0.001853 -0.001853 -0.001853 -0.001853 -0.001853 -0.001853 -0.001853 -0.001853	
(SHAFT CT	0.011138 0.031875 0.031831 0.037831 0.048139 0.048139 0.05327 0.05327 0.053835 0.063230 0.091921 0.053862 0.091921 0.053862 0.091921 0.091838	
ALPHA CONTROL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ALPHA SHAFT		
θ·75	ό το ο ο το το το ο ο ο ο ο ο ο ο ο ο ο	

For the following data points als and/or bls \neq 00 \pm .20 $\alpha_{\rm S}$ $\alpha_{\rm S}$

...

'nοn

RUN 17A

TEST 274.C No. 3 TARE

A ₁ s	0.60	0.48	-0.00	09.0	0.36	0.12	0.48	0.72	0.12	-0.36	00.00	0.00	0.12	00.00
M. A.	0.787	0.786	0.786	0.786	0.787	0.785	0.786	0.785	0.787	0.787	0.787	0.788	0.786	0.786
V/0R	0.299	0.299	300	0.300	0.300	0.300	0.299	0.300	0.299	0.299	0.299	0.298	0.300	0.299
CPO	0.0014819	0.0016044	0.0020173	0.0014683	6.0015788	0.0017073	0.0015269	0.0015347	0.0016228	0.0019047	0.0014554	0.0014338	0.0015728	0.0015046
TIP SPEED) CP	0.0019731	0.0029354	0.0047901	0.0012251	0.0038131	0.0054156	0.0024834	0.0017995	0.0016297	0.0024628	0.0012231	0.0010785	0.0004073	0.0006205
AREA AND T	0.001973	0.002935	0.004790	0.001225	0.003813	0.004650	0.002483	0.001799	0.001630	0.002463	0.001223	87.01.00.0	0.000407	0.000621
ES COEFFICIENTS. BASED ON ROTOR BLADE AREA AND -CH CYR CMXB CMY CQ	-0.000319			-0.000335		-0.000726	-0.000142	-0.000091	-0.000618		-0.000457	-0-000319		-0.000231
ASED ON RC	0.000446	0.000261	0.000169	0.000318	0.000200	0.000210	0.000276	0.000253	0.000271	0.000290	0.000308	0.000208	0.000339	0.000242
ICIENTS B	-0.000464	-0.000370	-0.001151	-0.000105	-0.000053	-0.000254	-0.000040	-0.000014	-0.001620	-0.001937	-0.001194	-0.000709	-0.001691	-0.001313
AXES COEFF	-0.001230	-0.000902	0 9	ö	ဝုံင	-0.00000-0-	ġ,	-0.001786	ģ	o.	ဝှံ	-0.001366	ပုံ	-0.001346
(SHAFT AXES CT -CI	0.030197	0.053004	0.079846	0.005794	0.045304	C.063458	0.017828	0.009975	0-062302	C.079271	C.041078	0.003484	0.045058	C.025479
ALPHA	-8.7	-10.2	-12.7	-12.8	-15.5	-17.1	-19.7	-18.8	9.4	-6.5	13.0	-0-2	1.6	3.0
ALPHA SHAFT	-5.0	15.0	15.0	-10.0	-10.0	-10.0	-15.0	-15.0		6	.	• •	4.0	4.0
$^{ heta}_{ m grip}$	12 . 10 .	14. 16.	17.	12.	16.	18. 18.	16.	15.	12.	14.	10.	• •	∞	•9

 $^{\mathrm{A}}_{\mathrm{1}}$ 0.72 0.96 0.84 0.96 0.72 0.72 0.96 0.60 0.60 0.24 0.24 0.60 0.00 0.24 0.00 -0.12 0.847 0.846 0.846 0.846 0.846 0.847 0.847 0.847 0.847 0.847 0.847 0.846 0.847 0.847 0.844 0.843 0.847 0.843 0.845 M, AT 0.301 0.301 0.302 0.303 0.301 0.301 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.302 0.0017558 0.0016741 0.0017755 0.0017740 0.00179657 0.0015741 0.0015741 0.0015741 0.0015741 0.0017725 0.001627 0.0016230 0.0018659 0.0019142 0.0046523 0.0024783 0.0013597 0.0020749 0.0014750 0.0017560 0.0025366 0.0011724 0.0012050 0.0002380 0.0004081 0.0000703 0.0039842 0.0026944 0.0044686 0.0030943 0.0025190 0.0036741 SPEED) TIP 0.004469 0.001914 0.004652 0.002478 0.001360 0.002075 0.001475 0.001331 0.001756 0.002537 0.003094 0.002568 0.003984 0.002694 0.000238 0.000408 0.000070 0.002556 0.002519 AREA AND -0.000402 -0.000437 -0.000354 -0.000321 -0.000120 -0.000221 -0.000221 -0.000505 -0.000530 -0.000494 -0.000395 -0.000341 ROTUR BLADE -0.000409 -0.000393 -0.000445 -0.000437 -0.000341 -0.000608 -0.000377 0.000255 0.000255 0.000274 0.000317 0.000225 0.000125 0.000125 0.000225 0.000217 0.000117 0.000117 0.000234 0.000103 BASED ON CMXB 0.000214 0.000234 0.000234 0.000208 0.000210 0.000210 0.000210 -0.001831 -0.000321 -0.001011 -0.000406 -0.000677 -0.001623 -0.001696 -0.000667 -0.001423 AXES COEFFICIENTS. -0.001871 -0.001398 -0.001662 -0.001367 -0.000929 -0.001298 -0.001666 -0.000999 -0.001848 -0.000585 -0.001562 -0.000051 -0.000782 -0.001581 -0.001629 -0.001526 -6.901613 -0.001657 -0.001059 0.026624 0.026624 0.0368932 0.0368932 0.036868 0.036868 0.043494 0.062328 0.062328 0.063328 0.063328 0.063328 0.063328 0.063328 (SHAFT CT 0.043366 ALPHA CCNTRCL -6.5 RUZ ALPHA SHAFT 3 TARE No. θ_{grip}

TEST 274.0 RUN 19

A s	0.84	0.84 1.08	1.08 1.08	1.08	1.08	09.0	0.72	96.0	0.36	0.38	0.84	00.0	00.00	0.24	09.0	0.72
M, AT	0.951	0.952	0.954	0.952	0.950	656.0	0.952	0.954	0.953	0.954	0.951	0.954	0.951	0.949	0.954	0.951
V/0R	0.298 0.300	0.298	0.298	0.298	0.298	0.299	0.297	0.298	0.298	0.298	0.298	0.297	0.299	0.300	0.299	0.298
040	0.0028514	0.0031956	0.0029885	0.0028133	0.0028836	0.0030626	0.0030361	0.0031221	0.0033842	0.0031742	0.0031522	0.0032242	0.0032595	0.0035661	0.0034197	0.0035092
TIP SPEED) CP	0.0035227	0.0048741	0.0043579	0.0028683	0.0029460	0.0038973	0.0031281	0.0029090	0.0027950	0.0023449	0.0022429	0.0018837	0.0040870	0.0052022	0.0056690	0.0063238
AREA AND CQ	0.003523	0.004874	0.004358	0.002868	-	0.003897	0.003128	0.002909	0.002795	0.002345	0.002243	0.001884	0.004087	0.005202	0.005669	0.006324
ROTCR BLADE CMY							-0.000271		-0.000636			1	0.000053	1	-0.000862	-0.000743
	0.000329	0.000232	0.000383	0.000446	0.000301	0.000325	0.000208	0.000224	0.000349	0.000228	0.000315	0.000309	0.000310	0.000320	0.000341	0.000144
COEFFICIENTS, BASED ON H CYR CMXB	0.000194	0.000307	0.000340	0.000049	0.000254	-0.000445	0.000037	-0.000197	-0.001255	-0.000673	-0.000607	-0.000884	-0.000419	-0.000725	0.000223	0.000590
	-0.002749	-0.002862	-0.002810	-0.002834			-0.002800	\mathbf{c}	-0.002994				-0.002387			-0.001893
SHAFT AXES				0.011156		0.052185		0.024738	0.062407				0.051242	0.069941	0.052974	0.059811
ALPHA CCNTRCL	-13.1 -14.1	-14.6	-19.5	-17.9	-12.3	0 .	1.0-	9-9-	-3.5 4.01	-1.9	-1.1	v.0	0.61	-10.5	-15.4	-16.1
No. 3 TARE rip ALPHA	-10.0	-10.0	-15.0	-15.0	-10.0	0,0	יי פיני	-5.0	• •			0°2	2,4	-5.0	-10.0	-10.0
No. 3 $ heta_{ m grip}$	14 . 15.	16 .	17 . 18.	15.	13.	14.	13. 12.	11.	12.	i 01	6	6	14.	16.	17.	18.

TABLE IV-51.- TEETERING ROTOR; STANDARD BLADES, $V/\Omega R = 0.35$, $M_{(1)(90)} = 0.85$.

A	0.18 0.18 0.18 0.60 0.60 0.60 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.7			$^{\rm A}_{\rm l}$	1.56		$^{\rm A}_{\rm l}$	0.60 0.60 0.96 0.96 0.96 0.96
M, AT	0.847 0.847 0.847 0.847 0.847 0.846 0.850 0.850 0.848 0.850 0.850 0.848 0.850 0.850 0.878 0.778			M. A.	0.947		M, AT	0.948 0.947 0.946 0.948 0.949 0.948
v/0R	00000000000000000000000000000000000000	0.95.		V/0R	0.350		V/0R	0.349 0.350 0.350 0.350 0.349 0.349
CPO	0.0018369 0.0020435 0.0020484 0.0019574 0.00211657 0.0021469 0.0021469 0.0021469 0.00208571 0.0018628 0.0020272 0.0019282 0.0019280	$M_{(1)(90)} = 0$		CPO	0.0035994		CPO	0.0034737 0.0037406 0.0035658 0.0034254 0.0034870 0.0036057 0.0036143
TIP SPEED) CP	0.0020311 0.0022426 0.0022426 0.0019068 0.0019068 0.0015821 0.0015823 0.0016439 0.0016439 0.0012625 0.0012625 0.0012950 0.0002994	0.35, M ₍₁		IP SPEED) CP	0.0034398		IP SPEED) CP	0.0036392 0.0041043 0.0040775 0.0037011 0.0042647 0.0042647
AREA AND CQ	0.002031 0.003006 0.002243 0.003579 0.002841 0.002841 0.001749 0.001810 0.001862 0.001862 0.001262 0.001264 0.001264 0.001265 0.001264 0.001265	3, V/MR =		AREA AND T	0.003440		AREA AND TI	0.003639 0.004104 0.004078 0.003701 0.004265 0.004323
ROTOR BLADE CMY	-0.000612 -0.000812 -0.000508 -0.000124 -0.000139 -0.000726 -0.000275 -0.000276 -0.000517 -0.000617 -0.000617 -0.000617 -0.000617 -0.000617 -0.000617	RD BLADES,		ROTOR BLADE CMY	-0.000554		ROTOR BLADE CMY	-0.000931 -0.000837 -0.000911 -0.000854 -0.000866 -0.000861
BASED ON R CMXB	0.000267 0.000222 0.000206 0.000458 0.000184 0.000186 0.000196 0.000179 0.000179 0.000179 0.000179	; STANDARD		BASED ON RI CMXB	0.000218		BASED ON RI CMXB	0.000440 0.000233 0.005237 0.000324 0.000358 0.000351
COEFFICIENTS, B	-0.000593 -0.000873 -0.000114 -0.0001165 -0.000208 -0.000208 -0.000208 -0.001071 -0.001874 -0.001873 -0.001973 -0.001973 -0.001973 -0.001973	ROTOR		COEFFICIENTS, BA	0.000170		CDEFFICIENTS, B. CYR	-0.000721 -0.000186 0.000396 0.000375 0.000368 0.000368
AXES COEFF -CH	0.001868 0.001208 0.002208 0.002444 0.002221 0.002251 0.002358 0.002358 0.001470 0.001470 0.001824 0.001824 0.001824 0.001824	- TEETERING		AXES COEFF -CH	-0.004731		AXES COEFF -CH	-0.004079 -0.004200 -0.004142 -0.003983 -0.004168 -0.004168 -0.004168
(SHAFT	0.026231 0.018106 0.018106 0.034869 0.017824 0.025873 0.06467 0.057284 0.057284 0.057284 0.057284 0.057284 0.057284 0.057284	.E IV-52		(SHAFT CT	0.044495		4 SHAFT CT	0.047166 0.053637 0.042850 0.026354 0.031405 0.033924 0.038721
ALPHA CCNTRCL	11.1.00.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	T^{\prime}	RUN 20	ALPHA CCNTRGL	6.9-	RUN 21	ALPFA CCNTRCL	1108.72
No. 3 TARE $\theta_{\rm grip}$ ALPHA SHAFT	125.0 1410.0 1610.0 1615.0 1715.0 1715.0 1815.0 195.0 105.0 106.0 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.		TEST 274.0	No. 3 TARE ALPHA Borrin SHAFT	12.5 -5.0	TEST 274.0	, , ,	13.3 -5.0 145.0 1410.0 14.5 -10.0 1510.0 1510.0 1510.0

17B

RUN

TEST 274.0

TABLE IV-53.- TEFTERING ROTOR; STANDARD BLADES, V/ Ω R = 0.40, M(1)(90) = 0.85.

TEST 274.0 RUN 18

	A ₁ s	0.48	0.72	0.72	0.84	0.84	09.0	0.84	0.84	09.0	0.48	-0.00	-0.00	-0.24	0.24	-0.48	0.12	0.24	-0.36	-0.72	-0.24	0.60	00.00
	M, AT	0.846	0.847	0.843	0.844	0.844	0.845	0.846	0.846	0.847	0.845	0.845	0.846	0.849	0.849	0.847	0.847	0.847	0.849	0.848	0.848	0.846	0.844
	v/0R	0.399	0.397	0.401	0.399	0.400	0.402	0.400	0.399	0.399	0.400	0.400	00+00	0.399	0.398	0.399	0.399	0.400	0.396	0.397	0.398	0.399	0.401
	CPO	0.0024091	0.0022293	0.0024388	0.0023360	0.0026266	0.0025627	0.0022942	0.0023078	0.0022212	0.0023309	0.0021925	0.0021065	0.0020781	0.0024165	0.0022012	0.0023058	0.0021176	0.0026096	0.0024907	0.0023877	0.0026458	0.0028747
	IP SPEED) CP	0.0028242	0.0023227	0.0035425	0.0022411	0.0031285	0.0039022	0.0015402	C.0028642	0.0018487	0.0024387	0.0020619	0.0017767	0.0015184	0.0018089	0.0013903	0.0015725	0.0012910	0.0003962	0.0003189	0.0002944	0.0033824	.0.0039525
	AREA AND TIP SPEED CQ CP	0.002824	0.002323	0.003543	0.002241	0.003128	0.003902	0.001540	0.002864	C.001849	0.002439	0.002062	0.001777	0.001518	0.001809	0.001390	0.001573	0.001291	0.000396	0.000319	0.000294	0.003382	0.003953
	TOR BLADE CMY	-0.000778	-0.000553	-0.000840	-0.000663	-0.001456	-0.000961	-0.000641	-0.000105	-0.600651	-0.000784	-0.000521	-0.000270	-0.000146	-0.000670	-0.000413	-0.000334	-0.000142	-0.000697	-0.000676	-0.000688	-0.000709	-0.000699
	COEFFICIENTS, BASED ON ROTOR BLADE CYR CMXB CMY	0.000329	0.000311	0.000274	0.000438	0.000303	0.000260	0.000334	0.000297		0.000415	0.000285	0.000176	0.000362	0.000415	0.000299	0.000447	0.000361	0.000361	0.000335	0.000437	0.000298	0.000349
	CYR	-0.001028	-0.000168	-0.000259	-0.000043		-0.000033		-0.000088				-0.000795			-0.001944	-0.001850	-0.001347	-0.002901		-0.002497	-0.001072	-0.001669
	I	-0.002395	-0.002875	-0.002759	-0.003291	-0.003687	-0.003044	-0.003378	-0.002849	-0.002996	-0.002502	-0.002463	-0.002369	-0.002389	-0.001924	-0.002244	-0.002140	-0.002196	-0.001850	-0.002134	-0.002350	-0.602244	-0.002070
	(SHAFT AXES	0.044933	0.021640	0.037938	C.014187	0.023004	0.029752	0.006784	0.029387	0.014393	0.036816	0.028813	0.021111	0.013653	0.052218	0.038206	0.045736	0.029722	0.061586	0.053886	0.046301	0.052752	0.060546
	ALPHA CENTRCL	-10.4	-13.1	-14.7	-17.5	-18.2	-19.2	-16.5	-13.7	-12.0	E*6-	-8-5	-7.5	6.9-	0.9-	0.4-	6.4-	-3°C	-1.3	-0-4	9.0	-11.2	-12.1
No. 3 TARE	ALPHA	ः ५-	0.8-	0.8-	-12.0	-12.0	-12.0	-12.0	-8.0	0.8-	0.4-	0.4-	-4.0	0.4-	•	ċ	ö	.0	4.0	4.0	4.0	0.4-	-4.0
No.	ar in	14.	14.	16.	16.	17.	10	18.	15.	13.	13.	12.	11.	10.	12.	10.	11.	6	10.	6	ထံ	15.	16.

3 TARE ALPHA A			TABLE	IV-54	TEETERING	NG ROTOR;	48-FT TA	TAPERED TIP,	P, V/ΩR =	0.30, M(1)(90)	11	0.85.		
ALPHA ALPHA ALPHA ALPHA (SHAFT AXES COEFFICIENTS) BASED ON ROTOR BLADE AREA AND TIP SPEED) C. 1-15 0.0059190 -0.001435 -0.001826 0.0000285 0.0001640 0.001481 0.00101813 0.0011	TEST	274								•	·			
ALPHA CAPTER CENTREL COURTER OF ROTTOR BLADE AREA AND TIP SPEED! O3.5 O.059100 -0.001435 -0.001025 0.0000216 0.0011484 0.00114918 0.00115133 0.00115133 0.00115133 0.0011510 0.001151 0.000151 0.000152 0.001152 0.00	No.													
01.5 0.051910 - 0.001455 - 0.001256 0.0000285 0.0001049 0.00011340 0.0011	rîp	ALPHA SHAFT	ALPHA CONTROL	(SHAFT CT	AXES -CH				AND	ο.	CPO	V/0R	M . AT	$^{\rm A}_{\rm 1}$
01.8 0.03181	12.	•	13.5	0.059190	-0.001435	-0.001826	0.000285	0.000160			0.0016454	0.301	•	-00.48
-5.0 0.021311 -0.000166 -0.000156 0.000199 0.0001199 0.0001991 0.0001991 0.0001991 0.0001478 -5.0 -7.3 0.001343 0.001478 -5.0 -5.1 0.001343 0.001478 -5.0 -5.1 0.001343 0.001343 0.001478 -5.0 -5.1 0.001343 0.0013443 0.001478 -5.0 0.0013443 0.001478 -5.0 0.0013443 0.001478 -5.0 0.0013443 0.001478 -5.0 0.0013443 0.001478 0.00147	01.00	•	-1.8	52	-0.001653	-0.001957	0.000125	-0.000121			0.0015075	0.301	0.846	-00.24 00.24
TATALON NON S TARE ALCONOMISTORY OF CONTROL	1 ⁴ .	0	-5.0	5	-0.001117	-0.002625	0.000352	0.000175			0.0020131	0.299	•	-00.72
-5.0 -9.0 G.053879 -G.001476 -G.0000199 G.000103 -G.0002848 G.002848 G.0028482 G.0016551 3 TARE APPHA ALPHA (1SHAFT AXES COEFFICIENTS, BASED ON RGTOR BLADE AREA AND TIP SPEED) CT. CHA. CHA. CHA. CT. CHA. CHA. CHA. CHA. CHA. CHA. CHA. CHA	19	ກທ	15.3	25	-0.001686	-0.000300	0.0000111	-0.000516			0.0014785	0.299	0.845	00.00
3 TARE 3. Jarrel 3. Jarrel 3. Jarrel 3. Jarrel 4. Chiral 4. Chiral 4. Chiral 5. Chiral 5. Chiral 5. Chiral 5. Chiral 5. Chiral 6.	14.	5	0.6-	E	-0.001476	666000*0-	0.000103	-0.000275			0.0016551	0.301	0.846	-00.36
3 TARE ALPHA ALPHA ALPHA ALPHA CONTROL CT CYR CHASB CHY CONTROL CT CYR CHASB CHY CONTROL CT CYR CHASB CHY CONTROL CT CT CYR CHASB CHY CONTROL CHY CHY CHY CHY CHY CHY CHY CHY CHY CH	TESĮ	274												
ALPHA ALPHA TAPHA TAXES COEFFICIENTS, BASED ON RCITCR BLADE AREA AND TIP SPEED! CONTROL CT	No.													
SHAFT CONTROL -10.0 -11.5 G.004884 -0.001763 G.000103 G.000131 G.001222 G.0012224 G.001224 G.0012014 G.0012014 G.0001763 G.0001763 G.0001763 G.0001763 G.0001763 G.0001763 G.0001763 G.0001771 G.0001777 G.001777		ALPHA	ALPHA	SHAFT	AXES	•			AND		6		:	A,
-10.0 -11.5 0.004884 - 0.0011763 0.0001143 0.000113 0.001222 0.0012224 0.0012224 0.001224 0.001221 0.002596 0.002596 0.0002396 0.0012224 0.00114937 0.000114937 0.0001149 0.000114937 0.000114937 0.00011493 0.000286 0.000286 0.0003770 0.0016499 0.001224 0.002596 0.002596 0.0002596 0.0002596 0.0012270 0.0016499 0.0016499 0.0016799 0.000286 0.0001679 0.000286 0.0001679 0.001679 0.0002867 0.0002867 0.0002868 0.0016860 0.001679 0.000286 0.0001629 0.0001679 0.0002867 0.0002867 0.001629 0.001679 0.001679 0.000286 0.0001895 0.001689 0.000028 0.000028 0.0002867 0.001629 0.001629 0.001629 0.001629 0.0001895 0.001895 0.000028 0.000028 0.0002867 0.001629 0	rlp	SHAFT	CONTROL	13	Ŧ Y	CYR	CXXB	Σ	g	ಕ್ಷಿ	CPO	V/0R	₩. A.	s
11.00	12. 51			400.	9 9	0.000143	0.000100	-0.000313	0.001222	0.0012224	0.0014883	0.302		00.36
-10.0 -16.5 G.062354 -0.0000217 -0.000028 -0.000057 G.000556 G.00053558 G.0016462 G.00164737 -15.0 -20.1 G.0016478 G.00016479 G.0000057 G.000057 G.000228 G.00164737 -15.0 -20.1 G.001866 G.00016479 G.0000052 G.0001642 G.00164796 G.0016479 G.0001866 G.0001869 G.0001866 G.000186 G.000187 G.000186 G.000186 G.000186 G.000186 G.000186 G.000186 G.000186	16.	-10.0	1 4	.043	P	-0.000114	0.000000	-0.000260	0.003771	0.0037707	0.0016409	0.305		00.12
15.0 - 10.0 10	36.	-10.0	90	0.062354	-0.000317	-0.000027	-0.000028	-0.000267	0.005356	0.0053558	0.0018602	0.305		00.00
-15.0 -18.0 0.0008172 -0.001886 0.0000649 -0.0000026 0.0016266 0.00016264 0.0015084 -15.0 -17.1 -0.0000060 -0.001885 0.0000493 0.0000934 0.0000934 0.00015084 0.0001647 0.0016483 0.0001648 0.0000184 0.0000184 0.0001849 0.0001849 0.0001849 0.0001849 0.0001849 0.0001849 0.0001849 0.0001849 0.0001849 0.0001849 0.0001849 0.001849 0.000184 0.000184 0.0001844 0.000184 0.000184 0.000184 0.000184 0.0001844 0.0001844 0.0001844 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.0001844 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.0001844 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.0001844 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.0001844 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.000184 0.0001844 0.000184 0.00	8	-15.0	00	0.036158	-0.001065	0.000709	-0.000020	-0.000140	0.004228	0.0042276	0.0015866	0.306		00.24
-15.0 -17.1 -0.000006- 0.000185 5.000493 0.000094 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.0000954 0.000186 0.0000186 0.000186 0.000186 0.000186 0.0000186 0.0000186 0.0000186 0.000018	15.	-15.0	80	0.008172	-0.001806	0.000649	-0.00000	-0.000026	0.001626	0.0016264	0.0015084	0.304		09.00
-5.0 -10.8 0.071808 -0.000546 -0.0001290 0.000087 -0.0001243 0.004025 0.C040253 0.C019007 -5.0 -4.7 -0.008030 -0.001596 -0.000133 -0.0001346 0.0000568 0.0012073 0.0016512 -6.0 0.002054 -0.001596 -0.000175 0.000139 0.0010290 0.00121203 0.0016512 5.0 0.031924 -0.001632 -0.001495 0.0000297 0.000418 0.0012203 0.0016512 5.0 0.031924 -0.001632 -0.001495 0.0000297 0.000418 0.0012203 0.0016512 5.0 0.050930 -0.001799 -0.002015 0.0000297 0.000418 0.0016587 5.0 0.050930 -0.001799 -0.002015 0.0000237 0.000034 0.0000129 0.0016957 5.0 0.050930 -0.001799 -0.002015 0.0000237 0.0000129 0.001029 0.0016957 5.0 0.050930 -0.001079 -0.0020179 0.000034 0.0000129 0.001029 0.0016957 5.0 0.01391 -0.000107 -0.002007 0.000237 -0.000038 0.0000872 0.0016958 5.0 0.031391 -0.001077 -0.000107 0.000139 -0.000139 0.001993 0.0019581 5.0 0.031391 -0.001903 0.000110 -0.000280 0.001362 0.0011362 0.0011529 5.0 0.001820 -0.001903 0.000110 -0.000280 0.001362 0.0011362 0.0011523 5.0 0.001820 0.001903 0.000110 -0.000280 0.001362 0.0011362 0.0011523 5.0 0.001820 0.001919 0.0001919 0.0011919 0.001919 0.001919 0.001919 0.001919 0.0015814	<u>.</u>	S S	17 -9	-0.000006	-0.001885	0.000493 -0.000788	0.000094	-0.000092	0.002868	0.0028679	0.0015958	0.303	0.841	00.24
-5.0 -4.7 -0.008030 -0.00133 -0.000145 -0.000138 -0.000138 0.0001530 0.00103038 0.00103038 0.00103038 0.00103038 0.00103030 0.00103120 0.00103130 0.00103120 0.001031	16.	S	01	0.071808	-0.000546	-0.001290	0.000087	-0.000243	0.004025	0.0040253	0.0019007	0.303		-00.36
5.0 5.0 0.031924 -0.001632 -0.001495 0.000065 -0.000269 0.0000418 0.000182 0.0016683 5.0 3.6 0.050330 -0.001799 -0.002015 0.000269 0.000021 0.0000321 0.000129 0.001293 0.001293 0.001291 0.001293 0.001293 0.001293 0.001291 0.001293 0.001293 0.001293 0.001291 0.001293 0.001293 0.001293 0.001291 0.001293 0.001291 0.001293 0.001291 0.001293 0.001293 0.001293 0.001291 0.001293 0.00129130 0.00129130 0.00129130 0.00129130 0.00129130 0.00129130 0.00129130 0.00129130 0.00129130 0.0012914 0.00129130 0.00129130 0.00129130 0.00129130 0.00129130 0.00129130 0.0012914 0.00129130 0.00129130 0.0012914 0.00129130 0.00129	.	ς Ο	7.9	0.008030	-0.001596	-0.000345	0.000133	-0.000138	0.001230	0.0012303	0.0016312	0.301		00.00
5.0 1.7 0.069401 -0.001759 -0.00231 -0.000384 0.000312 0.00019230 5.0 1.7 0.069401 -0.0001234 -0.000394 0.000388 0.00019230 5.0 1.7 0.069401 -0.0001234 -0.000394 0.000388 0.00019230 5.0 1.7 0.069401 -0.0001393 -0.000391 -0.000398 0.000388 0.00019230 0.00019230 0.00019230 0.00019230 0.00019230 0.0001393 -0.0001393 -0.000199 -0.000380 0.0001972 0.00019588 0.0001958 0.001993 0.001993 0.0019588 0.001979 0.0001993 0.001993 0.001979 0.0019814	ó á	5.0	0.0	0.031924	-0.001632	-0.001495	0.000065	-0.000297	0.000418	0.0004182	0.0016683	0.301		-00.24
5.0 0.1 0.088511 -0.000573 -0.003399 0.000351 -0.000398 0.0003886 0.00022875 3.0 -1.3 0.078719 -0.001007 -0.002807 0.000233 -0.000369 0.000872 0.000872 0.0019588 0.0019588 0.0018719 -0.001007 0.001974 0.000199 -0.000351 0.001569 0.0019793 0.0019794 0.0019794 0.0019793 0.0019793 0.0019793 0.0019794 0.0017194 0.007609 -0.001903 0.001909 0.00110 -0.000219 0.001993 0.0019793 0.0015796 0.0017194 0.007609 -0.001903 0.00110 -0.000219 0.001362 0.001932 0.0015735 0.0015735 0.0019190 0.0015735 0.0019190 0.0019190 0.0019190 0.0019190 0.0019190 0.0019190 0.0019190 0.0019190 0.0019190 0.0019190 0.0019190 0.00198142 -0.000673 -0.000505 0.000197 -0.000588 0.002829 0.0019190 0.0015814	0		9.6	0.050930	-0.001799	-0.002015	0.000144	-0.000269	0.600021	0.0003210	0.0016957	0.301		-00.48
-1.3 0.078719 -0.001007 -0.002807 0.000233 -0.003672 0.000872 0.0019588 -3.6 0.061509 -0.001393 -0.0001794 0.0001391 0.001569 0.0015796 0.0011794 -0 -7.5 0.031391 -0.001527 -0.000470 0.000133 -0.000280 0.001993 0.0015796 0.0017194 -0 -11.4 0.007609 -0.001903 0.000110 -0.000219 0.001362 0.0019930 0.0015735 RUN 14 RUN 14 CAMPHA (SHAFT AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED) G.028852 -0.001386 -0.000422 0.000134 -0.000585 0.0019199 0.0019190 5.0015135 0.0015814	, i	2.0	0.1	980	-0.000573	-0.003399	0.000351		0.000389	0.0003886	0.0022875	0.301		-00.84
-7.5 0.031391 -0.001527 -0.000470 0.000133 -0.000280 0.001993 0.0019930 0.0015491 0 -11.4 0.007609 -0.001903 C.020098 0.000110 -0.000219 0.001362 0.0013620 0.0015235 RUN 14 CHAFT AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED) G.028852 -0.001386 -0.000422 0.000134 -0.000585 0.001919 C.0019190 5.0015135 0.0048442 -0.000673 -0.000505 0.000197 -0.000688 0.002829 0.0028293 0.0015814		9.0	- ~	.078	7	-0.002807	0.000233		0.000872	0.0008722	0.0019588	0.304	836	-00.72
-11.4 0.007609 -0.001903 C.020098 0.000110 -0.000219 0.001362 0.0013620 0.0015235 RUN 14			; -	.031	0-0-	-0.000470	0.000133	-0.000280	0.001993	0.0019930	649	0.303	.842	00.00
UN 14 ALPHA (SHAFT AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED) CAC CAC CAC CAC CAC CAC CAC C		O	-	.007	-0-0		_	-0.000219	.00136	0.0013620	523	0.301	.845	00.12
UN 14 ALPHA (SHAFT AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED) CAC CA CP CAC CT CAC CP CA														
(SHAFT AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED) CT -CH CYR CMXB CMY G.028852 -0.001386 -0.300422 0.000134 -0.000585 0.001919 0.0019190 0.048442 -0.000673 -0.000505 0.000197 -0.000588 0.002829 0.0028293			٠ ح											
-0.001386 -0.000422 0.000134 -0.000585 0.001919 0.0019190 -0.000673 -0.000505 0.000197 -0.000688 0.002829 0.002829		•	ALPHA		AXES -CH		0 € 8 0	JTOR BLADE CMY	AND	SPEED CP	CPO	V/0R	M, AT	$^{\rm A}_{\rm 1}$
			n	0.028852	0.0	-0.00042	0.000134	-0.000585 -0.000688	0.001919	C.0019190 P.0028293	5.0015130 0.0015814	0.301	0.844	0.36

TEST 274.0 RUN 15A

	$^{\mathrm{A}}_{\mathrm{1_{S}}}$	0.24	0.24	0.12	-0.12	0.36	0.48	-0.00	-0.00	-0.12	00.0	-0.12	0.12	-0.12	-0.24	-0.36	-0.36	-0.48
	M, AT	0.848	0.848	0.849	0.850	0.849	0.848	0.848	0.848	0.849	0.849	0.849	0.848	0.847	0.850	0.850	0.850	0.851
	V/0R	0.300	0.300	0.299	0.300	0.300	0.300	0.300	0.300	0.300	0.301	0.301	0.300	0.300	0.299	0.299	0.299	0.300
	040	0.0017344	0.0016182	0.0020389	0.0022278	0.0017068	0.0017976	0.0018868	0.0019769	0.0021941	0.0022664	0.0023951	0.0018264	0.0019659	0.0020160	0.0023005	0.0024646	0.0026558
	TIP SPEED) CP	0.0020991	0.0029786	0.0040848	0.0347918	0.0020496	0.0024457	0.0028607	0.0033690	0.0039314	0.0041896	0.0045519	0.0017628	0.0020677	0.0024203	0.0028850	0.0031710	0.0036094
	AREA AND T	0.002099	0.002979	0.004085	0.004792	0.002050	0.002446	0.002861	0.003369	0.003931	0.004190	0.004552	0.001763	0.002068	0.002420	0.002885	0.003171	0.003609
	COEFFICIENTS, BASED ON ROTOR BLADE AREA AND CYR CMXB CMY CQ	-0.000753		-0.000406	-0.000479	-0.000615	-0.000668	-0.000471	-0.000460	-0.000571	-0.000570	-0.000525	-0.000510	-0.00c501	-0.000432	-0.000229	-0.000195	0.001662
	SASED ON RC CMXB	-C.C00074	-0.000135	-0.000151	-0.000252	-0.000184	-0.000119	-0.000124	-0.000126	-0.000196	-0.000272	-0.000173	-0.000082	-0.000120	-0.000180	-0.000222	-0.000192	-0.002220 -0.000248
	FICIENTS, E	-0.000201	-0.000365	-0.000580	-0.000898	-0.000232	-0.000398	-0.000830	-0.000982	-0.001091	-0.001056	-0.001145	-0.001015	-0.001380	-0.001594		-0.002016	-0.002220
	AXES -C	-0.001366	-0.000914	-0.000100	0.000282	-0.001286	-0.001063	-0.000808	-0.000040-	0.000142	0.000468	0.000755	-0.001005	-0.000863	-0.000167	0.000065	0.000299	0.001160
	CT CT	0.027350	0.048043	0.066528	0.077271	0.038895	0.049487	0.059825	0.067221	0.078001	0.081106	0.086294	0.055484	0.068285	0.076500	0.085340	0.089211	0.088459
	ALPHA CONTROL	-7.9	-9.5	-11.1	-11.8	-5.9	-6.8	1.1-	-8.7	4.6-	8-6-	-10.2	-3.5	-4.5	-5,5	-6.2	-6.5	-7.5
No. 3 TARE	ALPHA SHAFT																	•
No.	$^{ heta}_{ ext{grip}}$	12.	14.	16.	17.	12.	13.	14.	15.	16.	16.5	17.	12.	13,	14.	15.	15.5	16.

TABLE IV-55.- TEFTERING ROTOR; 48-FT TAPERED TIP, V/ Ω R = 0.30, M(1)(90) = 0.95.

RUN 15B

TEST 274.0

	$^{\mathrm{A}_{1}}_{\mathrm{s}}$	-0.12	0.12	-0.00	-0.00	0.12	0.12	-0.00	-0.12	-0.00	-0.00	-0.24	-0.12	-0.24
	M, AT	176.0	0.951	0.950	0.948	0.949	0.951	0.951	0.951	0.949	0.948	676.0	0.950	0.950
	V/0R	0.298	0.299	0.299	0.299	6.298	0.297	0.297	0.297	0.297	0.297	0.298	0.298	0.297
	СРО	0.0021042	C.0023518	0.0025384	0.0026607	0.0020961	0.0022373	0.0023204	0.0025334	0.0022025	0.0023744	0.0024489	0.0026637	0.0028301
	IP SPEED)	0.0031059	0.0037494	0.0043444	0.0046664	0.0023168	0.0027292	0.0031324	0.0036129	0.0019677	0.0022475	6.0025137	C.0027610	0.0030569
	AREA AND T	0.003196	0.003749	0.004344	C.004666	0.002317	0.062729	0.003132	0.003613	0.001968	0.002247	0.002514	0.002761	0.003057
	JTOR BLADE CMY	-0.000559	-0.000562	-0.000714	-0.900571	-0.000436	-0.000395	-0.000358	-0.000078	-0.000509	-0.000354	-0.000011	-0.000176	-0.006114
	AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED) -CH CYR CMXB CMY CQ CP	-0.00035	-0.000057	-0.000112	-0.000084	-0.000153	-0.000102	-0.000078	-0.000165	0.000015	-0.000142	-0.000139	-0.000120	75 -0.001057 -0.002033 -0.000131 -0.000114 0
	FICIENTS, E	-0.000641	-0.000761	-0.000935	-0.000957	-0.000540	-0.000779	-0.001010	-0.001302	-0.001317	-0.001393	-0.001709	-0.001848	-0.002033
	AXES COEF	-0.001612	-0.001520	-0.001280	-0.001101	-0.001910	-0.001820	-0.001446	-0.001312	-0.001666	-0.001733	-0.001136	-0.001281	-0.001057
	(SHAFT CT	0.049594	0.060262	0.069558	0.673561	0.041842	0.052505	0.061077	0.069915	0.057761	0.070441	0.072013	0.078514	0.083275
	ALPHA CCNTROL	-8.7	-9.3	-10.0	-10.2	-5.2	0.9-	-7.0	-7.5	-3.0	-3.5	-4.2	-4.5	L.4-
No. 3 TARE	агір SHAFI													14.5 0.

No. 3 TARE No. 3 TARE SHAFT 1145.0 1145.0 11515.0 11515.0 11715.0 11810.0 1195.0 1195.0 1195.0 1195.0 1195.0 1195.0 1195.0 1195.0 1195.0 1195.0 1195.0 1195.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0 1196.0	ALV-72 ALPHA CONTROL -18.0 -19.0 -19.0 -19.0 -19.0	CT CT CT CT CT CT CT CT	COEFFE COEFFE	CYR 10 CLENTS 10 CCYR	A SED O O O O O O O O O O O O O O O O O O O	OR BLADE CMY CMY CO00336 0.0000372 0.0000323 0.0000420 0.0000420 0.0000420 0.0000420 0.0000413 0.0000413 0.0000420 0.0000420 0.0000420 0.0000420 0.0000420 0.0000420 0.0000420 0.0000420 0.0000420	REA AND T CQ 0.003029 0.002556 0.003388 0.002544 0.002544 0.002549 0.002210 0.002210 0.002210 0.002210 0.002462 0.0026381 0.0026331 0.0026331 0.0026331 0.0026331 0.002633 0.002633 0.002633 0.002633 0.002631 0.0	(0.30) , $M_{(1)}(90) = 0.9$		деед	A I S S S S S S S S S S S S S S S S S S
0 0 0 0 0 0 0 0	0.2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.01150 .01697 .00890 .05221 .03240	888888888		00000000	999999999	00000000		00000000	0.993 0.993 0.995 0.994 0.997 0.997	0.72 0.48 0.60 0.12 0.24 0.36 0.00

RCN

TEST 274.0
No. 3 TARE

A ₁ s	0.24 0.00 0.00 0.00 0.00 0.36 0.48 0.48	A ₁ s	0.48 0.36 0.48 0.12 0.24 0.60	A ₁	0.60 0.72 0.72 0.72 0.96 0.48
H, AT	0.851 0.847 0.847 0.845 0.845 0.847 0.850 0.850 0.850 0.850 0.850	H, AT	0.942 0.944 0.945 0.939 0.939 0.941	H, AT	0.942 0.938 0.938 0.941 0.933
V/0R	00000000000000000000000000000000000000	0.94.	0.351 0.349 0.348 0.354 0.354 0.355 0.355	V/0R	0.352 0.353 0.353 0.355 0.354
CPO	0.0018159 0.0018019 0.0018262 0.0017426 0.0017447 0.0017447 0.0019586 0.0019688 0.0017482 0.0017688 0.0017688 0.0017688	11	0.0025016 0.0023758 0.0022504 0.0025154 0.002278 0.0021987	CPO	0.0024399 0.0021459 0.0022246 0.002194 0.002194
TIP SPEED) CP	0.0012421 0.0011635 0.0012571 0.0012892 0.0012884 0.0019244 0.0039334 0.0039334 0.0039334 0.0039334 0.0039334 0.0039334 0.0039334	0.35, M(1)(90) IP SPEED! CPO	0.0030775 0.0026028 0.0021797 0.0018115 0.0016185 0.0022717	TIP SPEED) CP	0.0030401 0.0022216 0.0028097 0.0034185 0.0029364
AREA AND T	0.001242 0.001163 0.001589 0.001281 0.001281 0.002838 0.002838 0.003433 0.003433 0.003433 0.003433 0.003433	, $V/\mathfrak{AR}=0$, are a and tipe \mathfrak{CQ}	0.003077 0.002603 0.002180 0.001811 0.001619 0.001858	AREA AND T	0.003040 0.00222 0.002810 0.003418 0.001855 0.002586
ROTOR BLADE CMY	-0.000552 -0.000544 -0.000624 -0.000622 -0.000623 -0.0006384 -0.0006391 -0.000698 -0.000698 -0.00061816 -0.00061816 -0.0001816 -0.0001816	TAPERED TIP, N ROTOR BLADE AF	-0.000568 -0.000807 -0.000935 -0.000453 -0.000661 -0.000662	ROTOR BLADE CMY	-0.000641 -0.000548 -0.000541 -0.000615 -0.000359 -0.000379
BASED ON RC CMXB	0.000164 0.000111 0.000221 0.000224 0.000153 0.000155 0.000187 0.000187 0.000293 0.000293 0.000215 0.000215	48-FT TAE	0.000211 0.000170 0.000219 0.000251 0.000274 0.000191	BASED ON RO	0.000135 0.000157 0.000155 0.000014 0.000258 0.000268
OEFFICIENTS, B CYR	-0.000938 -0.001168 -0.001171 -0.0001830 -0.000180 -0.0001180 -0.0001180 -0.0001180 -0.0001180 -0.0001471 -0.0001030 -0.000030	ROTOR; ICIENTS, CYR	-0.000668 -0.000628 -0.001738 -0.001355 -0.000479 0.000206	COEFFICIENTS, E	-0.000615 0.000255 0.000283 0.000450 0.000535 -0.000662
AXES COEFF -CH	-0.001650 -0.001910 -0.0011899 -0.001248 -0.002053 -0.002082 -0.002082 -0.002421 -0.002443 -0.002443 -0.002443 -0.002443 -0.002443 -0.002443 -0.002443 -0.002443	TEETERING AXES COFFF	-0.002369 -0.002548 -0.002479 -0.002649 -0.0026443 -0.002677	AXES COEFF -CH	-0.002449 -0.002703 -0.002648 -0.002476 -0.002656 -0.002280
(SHAFT CT	0.004132 0.038385 0.038385 0.057006 0.057669 0.061944 0.061944 0.017213 0.008030 0.052346 0.052346 0.052346	IV-58 T	0.042062 0.034038 0.024648 0.055235 0.046148 0.015823	(SHAFT CT	0.043490 0.016275 0.023945 0.032370 0.06146 0.042112
ALPHA CCNTROL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TABLE I RUN 10 ALPHA CONTROL	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RUN 9 ALPHA CCNTROL	113.0 113.0 114.5 18.5 19.2
AL PHA SHAFT	2000 2000 2000 2000 2000 2000 2000 200	274.0 TARE ALPHA SHAFT	-5.0 -5.0 -5.0 0 0 -5.0 -10.0	274.0 3 TARE ALPHA SHAFI	-10.0 -10.0 -10.0 -15.0
$ heta_{f grip}$	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	TEST No. 3	12. 12. 12. 12. 13.	resr No. 3 θ grip	**************************************

	TABLE	TABLE IV-59 T	TEETERING	ROTOR; 4	48-FT TAP	TAPERED TIP,	, V/ΩR = (). ⁴⁰ , M(1)	TIP, $V/\Omega R = 0.40$, $M_{(1)(90)} = 0.85$	85.		
TEST 274.0	N N	4										
No. 3 TARE	32											
ALP $ heta_{ m grip}$ SHA	ALPHA ALPHA SHAFT CONTROL	(SHAFT AXES		COEFFICIENTS, BASED ON CARB		ROTOR BLADE CMY	AREA AND TIP SPEED CQ CP	IP SPEED) CP	СРО	V/OR	M.AT	$^{\mathrm{A}}_{\mathrm{1}}$
	-4.0 -7.3	0.028090	-0.002460	-0.000197	0.000317	-0.000629	0.001948	0.0019478	0.0020992	0.399	0.846	0.48
14.	•		-0.002829	690000-0-	0.000297		0.002192	0.0021921	0.0021072	0.401	0.843	0.48
		0.037772	-0.002798	-0.000092	0.000300	-0.000761	0.003381	0.0021482	0.0022965	0.403	0.842	0.60
•				0.000353	0.000386		0.003753	0.0037530	0.0023614	0.403	0.843	0.72
	-8.0 -15.3 -4.0 -10.8	0.059774	-0.002130	-0.001376	0.000322	-0.000428	0.003669	0.0036688	0.0026411	0.403	0.843	0.36
			0.0	-0.001512	0.000470	-0.000867	0.004336	0.0043355	0.0028833	0.403	0.841	0.24
	14.5	0.0512/0	-0.002032	-0.002075	0.000416	-0.000612	0.001634	0.0016337	0.0026815	0.400	0.844	0.00
			-0.002264	-0.001562	0.000347	-0.000455	0.001255	0.0012553	0.0020867	0.400	0.845	00.0
			000	-0.001123	0.000286	-0.000545	0.001137	0.0011367	0.0019577	0.401	0.844	0.12
	4.0 -0.1	0.060134	-0.002193	-0.003007	0.000391	-0.001053	0.000352	0.0003516	0.0026938	0.400	0.846	-0.36
		0.01198		-0.000625		-0.000602	0	0.0015365	0.0021640	0.403	0.842	0.36
		0.004671	-0.002877	-0.000071	0.000163	-0.000535	0.001367	0.0013674	J.0022488	0.402	0.845	0.36
TEST 27	274.0 RUN 1	15A										
No. 3 TARE	RE											
ALF Grip SH	ALPHA ALPHA SHAFT CONTROL	SHAFT AXES		COEFFICIENTS, B	BASED ON RC CMXB	ROTOR BLADE CMY	AREA AND TIP CQ	IP SPEED) CP	CPO	V/0R	M, AT	$^{\rm A}_{\rm l}$
	-2.0 -7.7 -2.0 -8.7 -2.0 -9.5	0.053904 0.060924 0.070183	-0.002089 -0.001868 -0.001766	-0.001356 -0.001537 -0.001600	0.000200 0.000093 0.000120	-0.000816 -0.000697 -0.000791	0.002612 0.002993 0.003502	0.0026118 0.0029931 0.0035022	0.0025252 0.0026741 0.0029428	0.399 0.401 0.401	0.847 0.846 0.845	0.48 0.24 0.24

TEST 274.0 RUN 23

No. 3 TARE

A Is	-0.36 -0.36 -0.24 -0.72 -0.24 -0.24 -0.36		$\mathbf{A_{1}}_{\mathbf{s}}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M. AT	0.651 0.651 0.650 0.650 0.650 0.648 0.648		M, AT	00000000000000000000000000000000000000
V/0R	0.508 0.509 0.509 0.509 0.509 0.509		V/0R	0.508 0.509 0.510 0.510 0.511 0.512 0.512 0.512 0.513 0.513 0.513
CPO	0.0034260 0.0040349 0.0048124 0.0030237 0.0039830 0.0032830		CPO	0.0039255 0.0044074 0.0048232 0.0038160 0.0038178 0.0032775 0.0035775 0.0035039 0.0039831 0.0039831 0.0039831 0.0039831 0.0039831 0.0039831 0.0039831
IP SPEED) CP	0.0024969 0.0034306 0.0045844 0.0019128 0.0038693 0.0033992		TIP SPEED) CP	0.0032010 0.0036742 0.0040195 0.0026379 0.0025857 0.0019896 0.0017901 0.002203 0.0017434 0.0013115 0.00191865 0.0019768
AREA AND TIP	0.002497 0.004584 0.004584 0.001913 0.003869 0.002303		AREA AND T	0.003201 0.003674 0.004676 0.004678 0.002588 0.002588 0.002588 0.002220 0.001730 0.001443 0.001443 0.001917 0.001917
ROTOR BLADE C	-0.000418 -0.000123 -0.00062 -0.000124 -0.000528 -0.000554		ROTOR BLADE CMY	-0.000162 -0.000415 -0.000154 0.000335 0.000517 0.001272 0.000737 0.000572 0.000572 0.000572 0.000572 0.000572 0.000572 0.000572 0.000572 0.000572
BASED ON RO. CMXB	0.000611 0.000681 0.000687 0.000435 0.00010		BASED ON RC CMXB	0.000577 0.000605 0.000582 0.000581 0.000541 0.000131 0.000462 0.0000463 0.000464 0.0000464 0.0000464 0.0000464 0.0000164 0.0000164 0.0000164 0.0000164
COEFFICIENTS, B.	-0.001352 -0.001942 -0.002382 -0.001100 -0.001987 -0.000650		S COEFFICIENTS, E	-0.001795 -0.002071 -0.002071 -0.002182 -0.002044 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069 -0.002069
AXES COEFF -CH	-0.00462 -0.004469 -0.004469 -0.004669 -0.004669 -0.0046894		AXE	-0.004618 -0.004616 -0.004619 -0.004071 -0.004071 -0.003805 -0.003619 -0.003619 -0.003819 -0.003819 -0.003819 -0.003819 -0.003819
(SHAFT CT	0.029585 0.043319 0.052454 0.018201 0.048039 0.0201891		(SHAFT CT	0.039714 0.051116 0.0581112 0.058228 0.0543659 0.032691 0.032691 0.056846 0.056880 0.056880 0.0568464 0.0568464 0.0568464
ALPHA CCNTROL	-19.6 -13.5 -12.5 -12.8 -10.9	RUN 26	ALPHA CENTRUL	11111111111111111111111111111111111111
ALPHA SHAFT	44444000	274.0 3 TARE	ALPHA SHAFT	444444444444444444444444444444444444444
$\theta_{ t grip}$	12. 14. 16. 10. 15. 14. 12.	TEST No. 3		13, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18

-1.20 -0.36 -0.06 -0.36 -0.72 -0.72 -0.96 -0.24 -0.24 -0.24 -0.36 -0.36 -0.36 -0.36 -1.08 -1.32 -0.84 -0.84 -1.44 -0.96 -1.08 -1.20 -0.96 -1.20 0.553 0.550 0.550 0.550 0.549 0.549 0.548 0.548 0.548 0.547 0.550 .548 0.552 0.549 0.528 M. AT 0.554 0.549 0.549 0.548 0.548 0.526 0.554 M, AT 0.668 0.655 999.0 0.666 0.666 0.667 199.0 0.652 0.655 0.663 0.662 0.663 199.0 0.654 0.785 0.787 0.786 V/OR 0.664 0.665 0.666 0.668 V/0R 34-FT BLADES, $V/\Omega R = 0.79$, $M_{(1)(90)} = 0.52$ TABLE IV-61.- TEFTERING ROTOR; 34-FT BLADES, $V/\Omega R = 0.66$, $M_{(1)(90)} = 0.55$. 0.0062758 0.0068466 0.0059209 0.0043070 0.0052029 0.0046526 0.0051903 0.0050373 0.0074101 0.0065476 0.0044893 0.0058888 0.0057644 0.0051870 0.0043955 0.0065877 0.0050395 0.0045693 0.0082048 0.0091856 0.0085359 0.0074131 0.0025011 0.0025213 0.0016964 0.0014957 0.0012499 0.0016705 0.0026153 0.0019652 0.0017092 0.0017030 0.0016433 0.0017767 0.0018478 0.0015239 0.0019682 0.0013843 0.0011575 0.0017933 0.0013745 0.0004007 .0010260 AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED! #SHAFT AXES COEFFICIENTS, BASED ON ROTOR BLADE AREA AND TIP SPEED!
CT -CH CYR CHXB CMY 0.001478 0.001968 0.002038 0.002501 0.001696 0.001696 0.001848 0.001671 0.002615 0.001965 0.001709 0.001026 0.001374 0.001111 0.001184 0.001157 0.001793 0.001823 0.000705 0.001287 0.001125 -0.000065 0.002158 0.001643 0.000328 0.000.0 -0.001733 0.002338 0.001516 0.002071 0.004750 0.000742 0.002759 0.002152 0.002090 0.001460 -0.000633 -0.001914 -0.000253 -0.001182 0.001288 0.001774 .003084 0.002000 0.002954 0.002025 0.002025 0.002300 0.002300 0.001554 0.001554 -0.001044 0.00000 0.001040 0.001085 0.001174 -0.0011786 -0.001780 -0.001081 -0.001084 -0.001868 0.002040 0.001133 -0.000395 0.000774 0.001227 0.002053 0.001851 0.001851 0.001343 0.001042 0.001112 -0.000469 0.000883 0.000963 CMXB TEETERING ROTOR; -0.004611 -0.003623 -0.002126 -0.002139 -0.002052 -0.002493 -0.001935 -0.001611 -0.002090 -0.003018 -0.061829 -0.002909 -0.003564 -0.005192 -0.003877 -0.004067 -0.004300 -0.001786 -0.001933 -0.003761 -0.002417 -0.004031 -0.009479 -0.008726 -0.007974 -0.006787 -0.004954 -0.004042 -0.006537 -0.005892 -0.008484 -0.005662 -0.007449 -0.004767 -0.004967 -0.003958 -0.006199 -0.009207 -0.004350 -0.006257 -0.004663 -0.004873 -0.007303 -0.007854 -0.004850 -0.005781 IV-62.-0.017263 0.011297 0.028443 0.020079 0.022799 0.027806 0.012812 0.042426 0.034672 0.025705 0.029976 0.029137 0.02988 0.039972 0.036183 0.015289 0.028502 0.050418 (SHAFT 0.029013 0.022101 0.035953 0.043056 0.054246 0.060159 5 TABLE ALPFA CCNTRCL 29 27 ALPHA CCNTROL 4.6-Š SCN -2°C -2.0 0.4-0.4-ALPHA SHAFT ALPHA SHAFT TEST 274.0 3 TARE 3 TARE No. No. $\theta_{\mathtt{grip}}$ θ_{grip} 112, 110, 110, 111, 112, 113, 113, 113, 113, 114, 115, 116, 117,

0.526 0.524 0.523 0.523 0.523 0.523

0.787

0.0071167

0.792 0.792 0.792 0.789

0.0085787

0.0008226 0.0011398 0.0007047 0.0012866

-0.003583 -0.004759 -0.003609

-0,008638

-0.008204

-0.004718

-0.006469 -0.008924 -0.008883 -0.008690

0.040146

0.038143

00000

0.0087201

0.0006717

0.001768

A-37645 (a) Articulated rotor system.

A-37408

(b) Teetering rotor system.

Figure 1.- General view of rotor systems.

Figure 2. - Tare data No. 1 (used for articulated rotor with fairing over tail-strut dynamic absorber).

Figure 3.- Tare data No. 2 (used for articulated rotor without fairing over tail-strut dynamic absorber).

Figure 4. - Tare data No. 3 (used for teetering rotor).

(a) Articulated rotors.

(b) Teetering rotors.

Figure 5. - Rotor velocity diagrams.

(a) Control axis and propulsive force coefficients.

Figure 6.- Articulated rotor with $\theta_1 = -8^{\circ}$, $V/\Omega R = 0.30$, $M_{(1)}(90) = 0.74$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 7.- Articulated rotor with $\theta_1 = -8^{\circ}$, $V/\Omega R = 0.40$, $M_{(1)(90)} = 0.82$.

(a) Control axis and propulsive force coefficients.

(a) Control axis and propulsive force coefficients.

Figure 8.- Articulated rotor with $\theta_1 = -8^{\circ}$, $V/\Omega R = 0.46$, $M_{(1)}(90) = 0.82$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

(b) Power coefficients.

Figure 9.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.30$, $M_{(1)(90)} = 0.73$.

(a) Control axis and propulsive force coefficients.

Figure 10.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.40$, $M_{(1)}(90) = 0.83$.

(a) Control axis and propulsive force coefficients.

Figure 11.- Articulated rotor with $\theta_1 = 0^\circ$, $V/\Omega R = 0.46$, $M_{(1)(90)} = 0.82$.

(a) Control axis and propulsive force coefficients.

Figure 12.- Articulated rotor with $\theta_1 = 0^\circ$, $V/\Omega R = 0.50$, $M_{(1)}(90) = 0.82$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 13.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.62$, $M_{(1)(90)} = 0.73$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 14.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.71$, $M_{(1)}(90) = 0.68$. (b) Power coefficients.

91

(a) Control axis and propulsive force coefficients.

Figure 15.- Articulated rotor with $\theta_1=0^{\circ}$, V/GR = 0.82, M(1)(90) = 0.62. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 16.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.83$, $M_{(1)}(90) = 0.62$.

(a) Control axis and propulsive force coefficients.

(b) Power coefficients.

Figure 17.- Articulated rotor with $\theta_1 = 0^\circ$, $V/\Omega R = 1.05$, $M_{(1)}(90) = 0.54$.

(a) Control axis and propulsive force coefficients.

Figure 18.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.40$, $M_{(1)}(90) = 0.67$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 19.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.41$, $M_{(1)}(90) = 0.87$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 20.- Articulated rotor with $\theta_1 = 0^\circ$, $V/\Omega R = 0.39$, $M_{(1)}(90) = 0.89$. (b) Power coefficients.

103

(a) Control axis and propulsive force coefficients.

Figure 21.- Articulated rotor with $\theta_1 = 0^{\circ}$, $V/\Omega R = 0.39$, $M_{(1)(90)} = 0.93$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 22.- Teetering 48-ft rotor with standard blades, V/ $\Omega R = 0.30$, M(1)(90) = 0.79. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 23.- Teetering 48-ft rotor with standard blades, $V/\Omega R = 0.30$, M(1)(90) = 0.85. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 24.. Teetering 48-ft rotor with standard blades, V/ $\Omega R = 0.30$, M(1)(90) = 0.95. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 25.- Teetering 48-ft rotor with standard blades, $V/\Omega R = 0.35$, $^{M}(1)(90) = 0.85$.

(b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 26.- Teetering 48-ft rotor with standard blades, $V/\Omega R = 0.35$, M(1)(90) = 0.95. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 27.- Teetering 48-ft rotor with standard blades, V/ $\Omega R = 0.40$, M(1)(90) = 0.85. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 28.- Teetering 48-ft rotor with tapered tip blades, $V/\Omega R = 0.30$, $^{M}(1)(90) = 0.85$. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 29.- Teetering 48-ft rotor with tapered tip blades, $V/\Omega R = 0.30$, M(1)(90) = 0.95. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 30.- Teetering 48-ft rotor with tapered tip blades, $V/\Omega R = 0.30$, M(1)(90) = 1.00. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 31.- Teetering 48-ft rotor with tapered tip blades, V/ $\Omega R = 0.35$, M(1)(90) = 0.85. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 32.- Teetering 48-ft rotor with tapered tip blades, V/ $\Omega R = 0.35$, M(1)(90) = 0.94. (b) Power coefficients.

(a) Control axis and propulsive force coefficients.

(b) Power coefficients.

Figure 33.- Teetering 48-ft rotor with tapered tip blades, V/ $\Omega R = 0.40$, M(1)(90) = 0.84.

(a) Control axis and propulsive force coefficients.

(b) Power coefficients.

Figure 3^{μ} . Teetering 3^{μ} -ft rotor $V/\Omega R = 0.51$, $M_{(1)(90)} = 0.65$.

(a) Control axis and propulsive force coefficients.

Figure 35.- Teetering 34-ft rotor $V/\Omega R = 0.66$, $M_{(1)(90)} = 0.55$.

(b) Power coefficients.

(a) Control axis and propulsive force coefficients.

Figure 36.- Teetering 34-ft rotor $V/\Omega R = 0.79$, $M_{(1)(90)} = 0.52$. (b) Power coefficients.