Household Savings and Monetary Policy under Individual and Aggregate Stochastic Volatility

Yuriy Gorodnichenko,¹ Lilia Maliar,² Serguei Maliar,³ & Christopher Naubert⁴

¹University of California at Berkeley and NBER; ²CUNY Graduate Center and CEPR; ³Santa Clara University;

⁴CUNY Graduate Center

August 25, 2023

Household Savings and Monetary Policy under Individual and Aggregate Stochastic Volatility

Yuriy Gorodnichenko,¹ Lilia Maliar,² Serguei Maliar,³ & Christopher Naubert⁴

¹University of California at Berkeley and NBER; ²CUNY Graduate Center and CEPR; ³Santa Clara University;

⁴CUNY Graduate Center

August 25, 2023

Motivation

- Four major developments in macroeconomics:
 - heterogeneity in income or productivity and assets with differing liquidity (machine, liquid bonds)
 - aggregate (and idiosyncratic) uncertainty done right
 - global solutions
 - redistribution
- These are usually done in isolation.

This paper: We do all four in one framework

HANK Model

Households

- Two assets: bonds (liquid) and machines (illiquid)
- Two borrowing constraints
- Idiosyncratic shocks to productivity level and variance
- Sticky wages

Firms

- · CRS with machines and labor
- Aggregate shocks to TFP level and variance

Government

- Fiscal policy (progressive income taxation as in Heathcote, Storesletten, and Violante 2017)
- Monetary policy (Taylor rule with ZLB)

Levels and Uncertainty Shocks

Household productivity

risk:
$$\eta_{\ell,t}\left(j\right) = \rho^{\ell}\eta_{\ell,t-1}\left(j\right) + \\ \exp\left(\sigma_{\ell,t-1} - \frac{\sigma_{\sigma_{\ell}}}{\sqrt{1-(\rho^{\sigma_{\ell}})^{2}}}\right)\bar{\sigma}_{\ell}\varepsilon_{\ell,t}\left(j\right) \\ \text{uncertainty:} \quad \sigma_{\ell,t} = \rho^{\sigma_{\ell}}\sigma_{\ell,t-1} + \sigma_{\sigma_{\ell}}\varepsilon_{\sigma_{\ell},t}$$

Aggregate TFP

risk:
$$\eta_{\theta,t} = \rho^{\theta} \eta_{\theta,t-1} + \exp\left(\sigma_{\theta,t-1} - \frac{\sigma_{\sigma_{\theta}}}{\sqrt{1 - (\rho^{\sigma_{\theta}})^2}}\right) \bar{\sigma_{\theta}} \varepsilon_{\theta,t}$$
 uncertainty:
$$\sigma_{\theta,t} = \rho^{\sigma_{\theta}} \sigma_{\theta,t-1} + \sigma_{\sigma_{\theta}} \varepsilon_{\sigma_{\theta},t}$$

where
$$\varepsilon_{\ell,t}$$
, $\varepsilon_{\sigma_{\ell},t}$, $\varepsilon_{\theta,t}$, $\varepsilon_{\sigma_{\theta},t} \sim \mathcal{N}\left(0,1\right)$

Relation to Literature about Uncertainty

- 1. Aggregate uncertainty in RA models.
 - Different sources of uncertainty: TFP (Fernández-Villaverdeet al. 2015); monetary and fiscal policy (Born and Pfeifer 2014), fiscal instruments (Fernández-Villaverde et al. 2015); political factors (Kelly, Pastor and Veronesi 2016); preference shocks (Basu and Bundick 2017)
- 2. Idiosyncratic uncertainty on the production side.
 - Assume representative household uncertainty does not affect households of different income and wealth levels.
 - E.g., Bloom et al. (2018), Bahmann and Bayer (2013, 2014).
- 3. Stochastic volatility in HA models.
 - Bayer et al. (2019) and Schabb (2020).

Proper Solution Methods for Models with Uncertainty

- Fernandez-Villaverde (2016):
 - Perturbation solutions must be at least of order three
 ⇒ Volatility of shocks nontrivially enters decision rules
- Groot (2020):
 - Even third-order perturbation methods may not be sufficient.

"The answer is often no. A key parameter - the standard deviation of stochastic volatility innovations - does not appear in the coefficients of the decision rules of endogenous variables until a fourth- or sixth-order perturbation approximation (depending on the functional form of the stochastic volatility process)."

Need global solutions to capture effects of volatility on decision rules

Relation to HANK Literature

- Aggregate MIT risk shocks + No idiosyncratic or aggregate uncertainty shocks
 - Kaplan, Moll and Violante (2018), Alves, Kaplan, Moll and Violante (2020)
- Aggregate MIT risk shocks + Idiosyncratic uncertainty shocks
 + No aggregate uncertainty shocks
 - Bayer, Luetticke, Pham-Dao and Tjaden (2019)
- Aggregate risk shocks + Idiosyncratic MIT uncertainty shocks
 - + No aggregate uncertainty shocks
 - Schabb (2020)

This paper: the first HANK model with both

- aggregate uncertainty shocks
- aggregate risk shocks

Relation to HANK Computational Literature

- Based on Reiter (2009):
 - Idea: local (perturbation) solutions at the aggregate level +
 Global solutions at the individual level
 - Papers: Ahn et al. (2018), Boppart et al. (2018), Bayer and Luetticke (2019), and Auclert et al. (2020).
 - \Rightarrow No TFP dynamics over time.
- Thus, approaches in the HANK literature
 - MIT aggregate shocks
 - Low-order perturbation
- We address these problems with AI and deep learning
 - Aggregate shocks in the solution procedure
 - Global nonlinear solutions

Introduction 000000000

Deep Learning Analysis of Maliar, Maliar, Winant (2019)

- 1. HANK model: $\begin{cases} E_{\epsilon}\left[f_{1}\left(X\left(s\right),\epsilon\right)\right]=0\\ ...\\ E_{\epsilon}\left[f_{n}\left(X\left(s\right),\epsilon\right)\right]=0 \end{cases}$ $s = \text{state}, X(s) = \text{decision function}, \epsilon = \text{innovations}.$
- 2. Parameterize $X(s) \simeq \varphi(s; \theta)$ with a **deep neural network**.
- 3. Construct **objective function** $\Xi^n(\theta)$ for DL training $\min_{\alpha} \left(E_{\epsilon} \left[f_{1} \left(\varphi \left(s; \theta \right), \epsilon \right) \right] \right)^{2} + ... + \left(E_{\epsilon} \left[f_{n} \left(\varphi \left(s; \theta \right), \epsilon \right) \right] \right)^{2} \to 0$
- 4. All-in-one expectation operator is a critical novelty:

$$(E_{\epsilon}[f_{j}(\varphi(s;\theta),\epsilon)])^{2} = E_{(\epsilon_{1},\epsilon_{2})}[f_{j}(\varphi(s;\theta),\epsilon_{1}) \cdot f_{j}(\varphi(s;\theta),\epsilon_{2})]$$

with $\epsilon_{1},\epsilon_{2}$ = two independent draws.

- 4. Stochastic gradient descent for training (random grids)
- 5. Google **TensorFlow** platform software that leads to ground-breaking applications (image, speech recognition, etc).

Krusell and Smith (1998) versus the Present Paper

- Krusell and Smith (1998) use a reduced state space:
 - X_i (variables of agent i, aggregate moments)
 - ⇒ few state variables
- The present paper uses the true state space:
 - X_i (variables of all agents, distributions)
 - ⇒ hundreds of state variables

How do we deal with such a large state space?

- 1. Neural network automatically performs the model reduction
 - it learns to summarize information from many inputs into a smaller set of hidden layers.
- 2. Neural network deals with ill conditioning
 - it learns to ignore collinear and redundant variables.

Agent *i* solves

$$\max_{\left\{c_{t}, i_{t}, b_{t}, k_{t}\right\}_{t=0}^{\infty}} E_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ \frac{c_{t} \left(j\right)^{1-\gamma} - 1}{1-\gamma} - \psi \frac{\left(h_{t} \left(j\right)\right)^{1+\vartheta} - 1}{1+\vartheta} \right\}$$

s.t.
$$c_{t}(j) + i_{t}(j) + b_{t}(j) + \Psi(i_{t}(j), k_{t-1}(j)) = \frac{R_{t-1}}{\pi_{t}} b_{t-1}(j) + w_{t} h_{t}(j) \exp\left(\eta_{\ell, t}(j) - \frac{\bar{\sigma_{\ell}}}{\sqrt{1 - (\rho^{\ell})^{2}}}\right) - \tau_{t}(j)$$

$$k_{t}(j) = \left[1 - d + r_{t}^{k}\right] k_{t-1}(j) + i_{t}(j)$$
$$k_{t}(j) > 0, \ b_{t}(j) > \overline{b}$$

 $\Psi(\cdot,\cdot)$: adjustment costs on machines; $\tau_t(j)$: taxes;

Adjustment-Cost and Tax Functions

• Adjustment costs on machines (Kaplan et al. 2018)

$$\Psi\left(i_{t}\left(j\right),k_{t-1}\left(j\right)\right) = \Gamma_{1}\left|i_{t}\left(j\right)\right| + \frac{\Gamma_{2}}{\Gamma_{3}}\left(\frac{\left|i_{t}\left(j\right)\right|}{\left[1-d+r_{t}^{k}\right]k_{t-1}\left(j\right)+\varepsilon} - \xi\right)^{\Gamma_{3}} \times \left(\left[1-d+r_{t}^{k}\right]k_{t-1}\left(j\right)+\varepsilon\right)$$

Tax function

$$\tau_{t}(j) = y_{t}(j) - \tau_{1}y_{t}(j)^{1-\tau_{2}}$$

$$y_{t}(j) \equiv w_{t}h_{t}(j) \exp\left(\eta_{\ell,t}(j) - \frac{\bar{\sigma_{\ell}}}{\sqrt{1-(\rho^{\ell})^{2}}}\right).$$

Labor Union

$$\begin{aligned} \max_{W_{t}(m)} E_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ \frac{c_{t} \left(j \right)^{1-\gamma} - 1}{1-\gamma} - \psi \frac{\left(h_{t} \left(j \right) \right)^{1+\vartheta} - 1}{1+\vartheta} \right\} \\ - \frac{\mu_{w}}{1-\mu_{w}} \frac{1}{2\kappa_{w}} \left[\log \left(\frac{W_{t} \left(m \right)}{W_{t-1} \left(m \right)} \frac{1}{\pi^{*}} \right) \right]^{2} H_{t} \end{aligned}$$

$$\text{s.t. } H_{t} \left(m \right) = \left(\frac{W_{t} \left(m \right)}{W_{t}} \right)^{\mu_{w} - 1} H_{t}$$

$$h_{t} \left(j \right) = \int \left(\frac{W_{t} \left(m \right)}{W_{t}} \right)^{\mu_{w} - 1} H_{t} dm$$

Labor Union (Continued)

• Wage Phillips curve

$$\log \left(\frac{\pi_t}{\pi^*}\right) = \kappa_w \left(\psi H_t^{1+\vartheta} - \mu_w \left(1 - \tau_2\right) Z_t \widetilde{\Lambda}_t\right) + \beta E_t \log \left(\frac{\pi_{t+1}}{\pi^*}\right)$$

• Z_t : the average after-tax income

$$Z_{t} \equiv \tau_{1} \left(w_{t} H_{t} \right)^{(1-\tau_{2})} \int_{0}^{1} (\exp \left(\eta_{\ell,t} \left(j \right) - \frac{\bar{\sigma_{\ell}}}{\sqrt{1 - \left(\rho^{\ell} \right)^{2}}} \right))^{(1-\tau_{2})} dj$$

• $\widetilde{\Lambda}_t$: weighted average of the individual marginal utilities

Firms

Production function

$$Y_t = \overline{A} \exp \left(\eta_{\theta,t} - rac{\sigma_{\theta}}{\sqrt{1 - \left(
ho^{ heta}
ight)^2}}
ight) K_{t-1}^{lpha} H_t^{1-lpha}$$

Central Bank

Taylor rule subject to ZLB

$$R_t \equiv \max\{1.0,$$

$$R_* \left(\frac{R_{t-1}}{R_*}\right)^{\mu} \left[\left(\frac{\pi_t}{\pi_*}\right)^{\phi_{\pi}} \left(\frac{Y_t}{Y_*}\right)^{\phi_y} \right]^{1-\mu} \exp\left(\eta_{R,t} - \frac{\sigma_R}{\sqrt{1-\left(\rho^R\right)^2}}\right) \right\}$$

Monetary policy shock

$$\eta_{R,t} = \rho^R \eta_{R,t-1} + \sigma_R \varepsilon_{R,t}, \qquad \varepsilon_{R,t} \sim \mathcal{N}(0,1)$$

Market Cleaning

Market clearing

$$\int_{0}^{1} b_{t}(j) dj = 0$$

$$C_{t} + K_{t} - (1 - d) K_{t-1} + \int_{0}^{1} AC(i) di = Y_{t}$$

• $\int_0^1 AC(i) di = \int_0^1 \Psi(i_t(j), k_{t-1}(j)) dj$: aggregate cost of adjustment; $C_t = \int_0^1 c_t(j) dj$; $K_{t-1} = \int_0^1 k_{t-1}(j) dj$

Calibration

Parameter	Description	Target/Source		
Household				
$\gamma = 2.0$	Risk aversion	standard		
$\beta = .975$	Discount factor	standard		
d = 0.0135	Depreciation rate	standard		
$\Gamma_2 = 1.1686$	Illiquid asset adjustment cost			
$\Gamma_3 = 2.0$	Illiquid asset adjustment cost			
$\xi = 0.0$	Illiquid asset adjustment cost			
$\varepsilon = 0.25$	Illiquid asset adjustment cost			
$\overline{b} = -0.1$	Liquid asset borrowing constraint	75% of people have liquid assets		
		Kaplan, Violante, and Weidner 2014		
$\tau_1 = 0.8$	Tax function parameter	Heathcote, Storesletten, and Violante 2017		
$\tau_2 = 0.181$	Tax function parameter	Heathcote, Storesletten, and Violante 2017		
Labor Union				
$\vartheta = 1.0$	Labor supply elasticity	standard		
$\psi = 0.8796$	Disutility of labor shift	H=1 in model without agg risk		
$\mu_{\rm w} = 1.1$	Elasticity of substitution among goods	profits share of 10%		
$\kappa_{w} = 0.15$	Slope of wage Phillips curve	Auclert et al. 2021		
Firm				
$\alpha = 0.325$	Capital share	standard		
$\overline{A} = 0.4735$	Constant in production function	Y=1 in model without agg risk		

Calibration (Continued)

Parameter	Description	Target/Source			
Monetary Policy					
$\mu = 0.0$	Nominal rate persistence				
$R_* = 1.0175$	Long run nominal rate				
$Y_* = 1$	Long run output				
$\pi_* = 1.005$	Inflation target				
$\phi_{\pi} = 1.5$	MP response to inflation				
$\phi_y = \frac{.25}{4}$	MP response to output				
Exogenous Variables					
$ ho^{\ell} = 0.966$	Persistence of idiosyncratic shocks	Auclert et al. 2021			
$\sigma_\ell^* = 0.2379$	Standard deviation of idioslevel shocks	Auclert et al. 2021			
	(in the absence of uncertainty shocks)				
$ ho^{\sigma_\ell}=0.84$	Persistence of idiosvolatility shocks	Based on Bayer et al. (2019)			
$\sigma_{\sigma_{\ell}} = 0.02$	Standard deviation of idiosvolatility shocks	Based on Bayer et al. (2019)			
$\rho^{\theta} = 0.9$	Persistence of TFP-level shocks	standard			
$\sigma_{\theta}^* = 0.016$	Standard deviation of TFP-level shocks	standard			
	(in the absence of uncertainty shocks)				
$\rho^{\sigma_{\theta}} = 0.73$	Persistence of TFP-volatility shocks	Based on Fernandez-Villaverde et al. (2015)			
$\sigma_{\sigma_{\theta}} = 0.04$	Standard deviation of TFP-volatility shocks	Based on Fernandez-Villaverde et al. (2015)			
$\rho^{R} = 0.5$	Persistence of monetary-policy shocks	standard			
$\sigma_{R} = 0.01$	Standard deviation of monetary-policy shocks	standard			

DL Algorithm of Maliar, Maliar, Winant (2021)

Steps

- 1. Initialize the algorithm
 - construct a loss function $\Xi^n(\theta)$ to be minimized
 - define a topology of neural network parameterizing unknown decision functions $\varphi\left(\cdot,\theta\right)$
 - fix initial vector of coefficients θ
- 2. Train the machine, i.e., find θ that minimizes $\Xi^n(\theta)$
 - i) simulate the model to produce data using $\varphi\left(\cdot,\theta\right)$
 - ii) construct the gradient of the loss function, $\nabla \Xi^n(\theta)$, using backpropagation
 - iii) update the coefficients $\theta' = \theta \lambda \nabla \Xi^n (\theta)$ and go to step 2i) End Step 2 if the convergence criterion is satisfied $\|\theta' \theta\| \le \varepsilon$
- 3. Assess the accuracy of the constructed approximation $\varphi\left(\cdot,\theta\right)$ on a new sample

Key Features of the DL Algorithm for Heterogeneous Models

- 1 Represent the model as a DL objective
- 2 Use an all-in-one expectation operator
- 3 Work with the entire state space in Krusell-Smith type of model

1 Representing the Model as a DL Objective

Consumption-saving problem

$$\max_{\left\{c_{t}, w_{t+1}\right\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \right]$$
s.t. $w_{t+1} = r\left(w_{t} - c_{t}\right) + e^{z_{t}},$
 $c_{t} \leq w_{t},$
 $z_{j,t+1} = \rho_{j} z_{j,t} + \sigma_{j} \epsilon_{j,t} \text{ and } \epsilon_{j,t} \sim \mathcal{N}\left(0,1\right)$

 c_t , w_t : consumption & the beginning-of-period cash-on-hand; z_t : exogenous shock

 Euler equation and Kuhn-Tucker conditions: Use a Fischer-Burmeister (FB) function

$$\Psi^{FB}(a,b) = a + b - \sqrt{a^2 + b^2} = 0;$$

where a = w - c and $b = u'(c) - \beta r E_{\epsilon} [u'(c')]$. It leads to the solution $a \ge 0$, $b \ge 0$ and ab = 0 but is differentiable

1 Representing the Model as a DL Objective

• Euler-equation residuals: select a consumption decision rule $c(\cdot; \theta)$, draw a random state $s \equiv (z, w)$ and define residuals in $\Psi^{FB}(a, b)$

$$E_{(z,w)}\left[\Psi^{FB}\left(w-c,u'\left(c\right)-\beta rE_{\epsilon}\left[u'\left(c'\right)\right]\right)\right]^{2}$$

Not all-in-one-expectation operator yet!

Re-write

$$\min_{\theta} E_{(z,w)} \left\{ \left[\Psi^{FB} \left(w - c, u'(c) - \mu \right) \right]^2 + v \left[\beta r E_{\epsilon} \left[u' \left(c' \right) \right] - \mu \right]^2 \right\}$$

 μ : expectation function; ν : exogenous weight

2. All-in-one-expectation Operator

Combines integration with respect to z, w and ϵ in one place

$$\begin{split} \min_{\theta} E_{(z,w,\epsilon_{1},\epsilon_{2})} \left\{ \left[\Psi^{FB} \left(w - c, u'(c) - \mu \right) \right]^{2} \right. \\ \left. + v \left[\beta r \left[u'\left(c'\right) \big|_{\epsilon = \epsilon_{1}} \right] - \mu \right] \left[\beta r \left[u'\left(c'\right) \big|_{\epsilon = \epsilon_{2}} \right] - \mu \right] \right\} \end{split}$$

 μ : expectation function; ν : exogenous weight

3. Working with the Entire State Space

Krusell-Smith (1998) model

• A set of heterogeneous agents $i=1,...,\ell$

$$\begin{aligned} \max_{\left\{c_{t}^{i}, k_{t+1}^{i}\right\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}^{i}\right) \right] \\ \text{s.t. } c_{t}^{i} + k_{t+1}^{i} = R_{t} k_{t}^{i} + W_{t} z_{t}^{i} \\ z_{t+1}^{i} = \rho_{z} z_{t}^{i} + \sigma_{z} \epsilon_{t}^{i} \text{ with } \epsilon_{t}^{i} \sim \mathcal{N}\left(0, 1\right) \\ k_{t+1}^{i} \geq 0, \quad \left(k_{0}^{i}, z_{0}^{i}\right) \text{ is given} \end{aligned}$$

 c_t^i , k_t^i , z_t^i : consumption, capital, labor productivity

• Cobb-Douglas production function $z_t k_t^{\alpha}$ with $k_t = \sum k_t^i =$ aggregate capital, $z_t =$ aggregate productivity shock

$$R_t = 1 - d + z_t \alpha k_t^{\alpha - 1}$$
 and $W_t = z_t (1 - \alpha) k_t^{\alpha - 1}$ $z_{t+1} = \rho z_t + \sigma \epsilon_t$ with $\epsilon_t \sim \mathcal{N}(0, 1)$

• State space: $(\{k_t^i, z_t^i\}_{i=1}^\ell, z_t)$.

All-in-one-expectation

Objective function

$$\min E_{(K,Z,z,\Sigma_{1},\Sigma_{2},\epsilon_{1},,\epsilon_{2})} \left\{ \left[\Psi^{FB} \left(w^{i} - c^{i}, u'(c^{i}) - \mu^{i} \right) \right]^{2} + v \left[\beta \left[u' \left(c^{i'} \right) \Big|_{\Sigma = \Sigma_{1},\epsilon = \epsilon_{1}} \right] - \mu^{i} \right] \left[\beta \left[u' \left(c^{i'} \right) \Big|_{\Sigma = \Sigma_{2},\epsilon = \epsilon_{2}} \right] - \mu^{i} \right] \right\},$$

- $K = (k^1, ..., k^{\ell}), Z = (z^1, ..., z^{\ell})$
- $\Sigma_1 = (\epsilon_1^1, ..., \epsilon_1^{\ell}), \Sigma_2 = (\epsilon_2^1, ..., \epsilon_2^{\ell})$
- $\epsilon_{1,i}$, ϵ_{2} : two uncorrelated random draws for the aggregate productivity shocks

DL Solution Algorithm

- Krusell and Smith (1998): replace distributions with a finite set of moments $m_t \Rightarrow$ approximate state space by $\{k_{it}, z_{it}, z_t, m_t\}$.
- We work directly with the actual state space: $K = (k^1,...,k^\ell)$, $Z = (z^1,...,z^\ell)$

Procedure:

- (i) draw initial state $z_0 \& \{K_0, Z_0\} = \{k_0^i, z_0^i\}_{i=1}^{\ell};$
- (ii) compute aggregate capital k_0 and prices R_0 , W_0 ;
- (iii) train neural network for ℓ agents;
- (iv) compute next period distribution z_1 & $\{K_1, Z_1\} = \left\{k_1^i, z_1^i\right\}_{i=1}^\ell$.

Proceed iteratively until convergence.

Solution Algorithm for HANK

- Use algorithm of Maliar, Maliar and Winant (2021)
- 13 agg. variables $\left\{ \begin{array}{l} C_t, H_t, K_t, I_t, Y_t, \pi_t, w_t, r_t^k, \\ R_{t-1}, \eta_{R,t}, \eta_{\theta,t}, \sigma_{\theta,t}, \sigma_{\ell,t} \end{array} \right\}$
- 8 individual variables $\left\{\begin{array}{c} c_{t}\left(j\right), k_{t}\left(j\right), i_{t}\left(j\right), b_{t}\left(j\right), \\ q_{t}\left(j\right), \eta_{\ell, t}\left(j\right), v_{t}\left(j\right), \varphi_{t}\left(j\right) \end{array}\right\},$

 $v_t(j), \varphi_t(j) = \text{Lagrange multipliers}; q_t(j) = \text{value of an additional unit of illiquid assets}$

5 aggregate state variables:

$$\underbrace{\{R_{t-1}\}}_{\textit{endogenous}}\underbrace{\left\{\eta_{R,t},\eta_{\theta,t},\sigma_{\theta,t},\sigma_{\ell,t}\right\}}_{\textit{exogenous}}$$

• 3 individual state variables:

$$\underbrace{\left\{k_{t-1}\left(j\right),b_{t-1}\left(j\right)\right\}}_{endogenous}\underbrace{\left\{\eta_{\ell,t}\left(j\right)\right\}}_{exogenous}$$

• 3J + 5 dimensional state space, where J = number of agents

Neural Networks

- 2 neural networks (NN) with 4 hidden layers each and 128 neurons in each layer.
- Leaky relu as activation function. ADAM optimization algorithm. Batch size of 10.
- Outputs of NNs:
 - 1st NN (\mathcal{N}^{agg}) : aggregate variables $\{H_t, \pi_t\}$
 - 2d NN (\mathcal{N}^{indiv}) : individual variables

$$\left\{ \xi_{t}^{c}\left(j\right), \xi_{t}^{k}\left(j\right), \upsilon_{t}\left(j\right), \varphi_{t}\left(j\right) \right\}$$

- $\xi_t^c(j)$: share of consumption out of income, net the borrowing limit
- \$\xi_t^k(j)\$: share of capital out of income, net the borrowing limit and consumption
- $v_t(j)$, $\varphi_t(j)$: multipliers
- Need to approximate six decision function each of which is of dimensionality 3J + 5

Recovering Aggregate Variables

Use weights of NNs to compute aggregate variables

$$\mathcal{N}^{\mathsf{agg}}\left(\Sigma\right)
ightarrow \left(\mathcal{H}_{t}, \pi_{t}
ight) \ k\left(j
ight)
ightarrow \mathcal{K}_{t} \ \left(\mathcal{H}_{t}, \mathcal{K}_{t}, \eta_{ heta, t}
ight)
ightarrow \left(w_{t}, r_{t}^{k}, Y_{t}
ight) \ \left(\pi_{t}, Y_{t}, \mathcal{R}_{t-1}, \eta_{R, t}
ight)
ightarrow \mathcal{R}_{t}$$

Recovering Individual Variables

NN for individuals

$$\mathcal{N}^{indiv}\left(\Sigma\right) \rightarrow \left(\xi_{t}^{k}\left(j\right), \xi_{t}^{c}\left(j\right), \upsilon_{t}\left(j\right), \varphi_{t}\left(j\right)\right)$$
 (1)

resources

$$M_{t}(j) \equiv \frac{R_{t-1}}{\pi_{t}} b_{t-1}(j) \left[1 - d + r_{t}^{k} \right] k_{t-1}(j)$$

$$+ \tau_{1} \left[w_{t} H_{t} \exp \left(\eta_{\ell, t}(j) - \frac{\bar{\sigma_{\ell}}}{\sqrt{1 - (\rho^{\ell})^{2}}} \right) \right]^{1 - \tau_{2}}$$

$$(2)$$

consumption

$$c_t(j) = \xi_t^c \left(M_t(j) - \overline{b} \right)$$

Recovering Individual Variables (Continued)

machines

$$k_{t}\left(j\right) = \max\left(\xi_{t}^{k}\left(j\right) \cdot \left[M_{t}\left(j\right) - \overline{b} - c_{t}\left(j\right)\right], 0.0\right)$$

adjustment cost

$$(k_t(j), k_{t-1}(j)) \rightarrow i_t(j) \rightarrow (\Psi_t(j), q_t(j))$$

bonds

$$b(j) = \max\left(\left\lceil M_t(j) - \overline{b} - c_t(j) - k_t(j) - \Psi_t(j)\right\rceil, \overline{b}\right)$$

Model Generated Statistics

	Wealth Gini	Consumption Gini	Net Income Gini
Data	0.79		
Model	0.66	0.276	0.360
95% CI	(0.655,0.684)	(0.274,0.277)	(0.359,0.361)

Generalized Impulse Response

- Koop, Pesaran, and Potter (1996)
- Period 0:
 - "No innovation": ε_0
 - "Innovation": $\varepsilon_0 + 1$
- Period 1 to T:
 - "No innovation": $\{\varepsilon_t\}_{t=1}^T$
 - "Innovation": $\{\varepsilon_t\}_{t=1}^T$
- Relative response:

$$\frac{X^{innovation} - X^{no_innovation}}{X^{no_innovation}} \times 100$$

Generalized Impulse Response (Continued)

TFP uncertainty

$$\sigma_{\theta,0} = \rho^{\sigma_{\theta}} \sigma_{\theta,-1} + \sigma_{\sigma_{\theta}} \left(\varepsilon_{\sigma_{\theta},0} + 1 \right)$$

Individual uncertainty

$$\sigma_{\ell,0} = \rho^{\sigma_{\ell}} \sigma_{\ell,-1} + \sigma_{\sigma_{\ell}} \left(\varepsilon_{\sigma_{\ell},0} + 1 \right)$$

- 100 initial conditions
- 100 draws of innovations for each initial condition
- Time period: 1 quarter
- 200 agents

Wealth

Wealth Gini

Average Labor Earnings

Net Income Gini

Aggregate Impulse Responses to TFP Uncertainty

Aggregate Impulse Responses to Individual Uncertainty

Conclusion

- Response to individual uncertainty shocks is much larger than the response to TFP uncertainty shocks
- Individual uncertainty shocks lead to a persistent increase in wealth following an initial reduction.
- Individual uncertainty shocks increase income inequality.
- Future versions:
 - Assume correlation between individual and aggregate uncertainty.
 - Compare to Azinovic, Luca and Scheidegger (2021):
 Young's (2010) deterministic simulation with Markov chains.
 - Analyze the effects of FP and MP on inequality

Thank you!

Aggregate Impulse Responses to TFP Risk Shock

Aggregate Impulse Responses to Monetary Policy Shock

