Project 1: Computational Physics - FYS3150

Fredrik Hoftun & Mikkel Metzsch Jensen

September 09, 2020

Contents

1	Introduction				
2	Met	hod	2		
	2.1	defining the problem	2		
	2.2	Rewritting the problem as a set of linear equations	2		
	2.3	General solution using Gausian elimination	4		
	2.4	Simplified problem specific solution	5		
	2.5	LU decomposition			
		<u>=</u>	6		
	2.7	Implementation	6		
3	Results				
	3.1	General algorithm	8		
	3.2	Special algorithm	8		
	3.3	LU decomposition	8		
4	Discussion		8		
5	Con	clusion	8		
6	Ref	erences	8		

Abstract

The goal of this project were to... What did we do? What did we find?

1 Introduction

- 1. Motivate the reader
- 2. What have I done
- 3. The structure of the report
- 4. conlusion?

In this project we will investegate different approaches to solve the onedimensional Poisson equation with Dirichlet boundary conditions given as follows:

$$u''(x) = f(x), \quad x \in (0,1), \quad u(0) = u(1) = 0$$

We will rewrite this as a set of linear equations, and solve it by a number of different computational approaches on either gaussian elimination or LU decomposition. We will solve the equation above with the function:

$$f(x) = 100e^{-10x}$$

Where the analytical solution then is given as:

$$u(x) = 1 - (1 - e^{-10})x - e^{-10x}$$

We will use the analytical solution to evaluate the precision of the numerical solutions for different steplength between the discretized gridpoints x_i .

2 Method

Show test and example og code somewhere in method. Show that your code works before showing results later.

2.1 defining the problem

2.2 Rewritting the problem as a set of linear equations

In order to solve the Poisson equation numerically we discretize u as v_i with grid points $x_i = ih$ in the interval $x \in [x_0 = 0, x_1 = 1]$. We then have

the step length h = 1/(n+1). We use the following second derivative approximation

$$-u''(x_i) \approx -\frac{v_{i+1} + 2v_i - v_{i+1}}{h^2} = f(x_i)$$

 \iff

$$-v_{i-1} + 2v_i - v_{i+1} = h^2 f(x_i)$$

We define the colum vector $\mathbf{v} = [v_1, v_2, \dots, v_{n+1}]$ and try to setup the equation for every step i. As we do this we see a pattern appearing

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} v_0 \\ \vdots \\ v_{n+1} \end{bmatrix} = h^2 f(x_0)$$

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots \end{bmatrix} \begin{bmatrix} v_0 \\ \vdots \\ v_{n+1} \end{bmatrix} = h^2 \begin{bmatrix} f(x_0) \\ f(x_1) \end{bmatrix}$$

:

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots \\ 0 & -1 & 2 & -1 & 0 & \cdots \\ \vdots & & & \ddots & \ddots & \cdots \\ 0 & \cdots & & -1 & 2 & -1 \\ 0 & \cdots & & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} v_0 \\ \vdots \\ v_{n+1} \end{bmatrix} = h^2 \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f_{n+1} \end{bmatrix}$$

From this we see that we can write the problem as a linear set of equation:

$$\mathbf{A}\mathbf{v} = \mathbf{g}$$

With the following definitions:

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots \\ 0 & -1 & 2 & -1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & & -1 & 2 & -1 \\ 0 & \cdots & & 0 & -1 & 2 \end{bmatrix} \quad , \mathbf{v} = \begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_{n+1} \end{bmatrix} \quad , \tilde{\mathbf{g}} = h^2 \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f_{n+1} \end{bmatrix}$$

In this project we use $f(x) = 100e^{-10x}$. The solution for the Poisson equation in this case is given to be $u(x) = 1 - (1 - e^{-10})x - e^{-10x}$. We can ensure that this is true by inserting it and checking that the equation holds remains true. First find the double derivative of u(x):

$$u'(x) = -(1 - e^{-10}) + 10e^{-10x}, \quad u''(x) = -100e^{-10x}$$

We now see that the solution satisfy the Poisson equation:

$$-u''(x) = 100e^{-10x} = f(x)$$

2.3 General solution using Gausian elimination

Do Gaussial elimination... (or not)

We can solve our problem generally using Gaussian elimination on the matrix $\mathbf{A}\mathbf{v} = \mathbf{g}$, where a_i are the elements below the diagonal, b_i are the elements on the diagonal and c_i are the elements above the diagonal.

Algorithm 1 General algorithm

1: **for** $i=2,\ldots,n$ **do** \Rightarrow Forward substitution eliminating a_i \Rightarrow Update b_i \Rightarrow Update b_i \Rightarrow Update g_i \Rightarrow Eackward substitution obtaining v_i \Rightarrow Eackward substitution obtaining

We can calculate the algorithms number of Floating Point Operations Per Second (FLOPS) easily. Each arithmetic operation is one FLO(PS). So in our forward substitution we have $2 \cdot 3$ FLOPS and in the backward substitution we have 1+3 FLOPS. The forward substitution goes from 2 to n, totaling n-2 points. The backward substitution also has n-2 points. Then the total number of FLOPS are:

$$(6+3)(n-2)+1=9n-17$$

2.4 Simplified problem specific solution

In this specific case we have a=-1, b=2, c=-1 which means we can further simplify our matrix **A**:

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots \\ 0 & -1 & 2 & -1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & & -1 & 2 & -1 \\ 0 & \cdots & & 0 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ 0 & 3/2 & -1 & 0 & \cdots & \cdots \\ 0 & -1 & 2 & -1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & & -1 & 2 & -1 \\ 0 & \cdots & & 0 & -1 & 2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ 0 & 3/2 & -1 & 0 & \cdots & \cdots \\ 0 & 0 & 4/3 & -1 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & & -1 & 2 & -1 \\ 0 & \cdots & & 0 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ 0 & 3/2 & -1 & 0 & \cdots & \cdots \\ 0 & 0 & 4/3 & -1 & 0 & \cdots \\ 0 & 0 & 4/3 & -1 & 0 & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & i_n/i_n - 1 & -1 \\ 0 & \cdots & 0 & 0 & i_n + 1/i_n \end{bmatrix}$$

Where we have called the last diagonal element i_n . We see that $b_i = \frac{i+1}{i}$, reducing the computation time. With our new b_i we can create a new algorithm.

Algorithm 2 Special algorithm, where $a_i = -1$, $b_i = 2$, $c_i = -1$

1: **for** $i=2,\ldots,n$ **do**2: $b_i=i+1/i$ \Rightarrow Update b_i 3: $g_i=g_i+g_{i-1}/b_{i-1}$ \Rightarrow Update g_i 4: **end for**5: $v_n=0$ \Rightarrow Backward substitution obtaining v_i 6: **for** $i=n-1,\ldots,1$ **do**7: $v_i=\frac{g_i+v_{i+1}}{b_i}$

Similarly to the general algorithm we can calculate total FLOPS:

$$(2*2+2)(n-2)+1=6n-11$$

Which for large *n* is considerably less.

8: end for

2.5 LU decomposition

For the LU decomposition we ... FLOPS $O(n^3)$ se https://en.wikipedia.org/wiki/LU_decomposition,søk etter "float"

2.6 Comparing precision and error

2.7 Implementation

We used C++ to implement our algorithms ... and we used Pythons library Matplotlib to plot our results.

3 Results

GITHUB LINK HERE Max error:

Figure 1: Log10 of the maximum error for each numerical solution compared to the analytical solution for different number of gridpoints n and different numerical methods.

Table 1: CPU Time

N	General algorithm [s]	Special algorithm	LU Decomposition
10^{1}	3×10^{-6}	3×10^{-6}	9.81×10^{-4}
10^{2}	4×10^{-6}	4×10^{-6}	1.96×10^{-4}
10^{3}	3.8×10^{-5}	3.7×10^{-5}	1.02×10^{-2}
10^{4}	3.41×10^{-4}	3.54×10^{-4}	2.45
10^{5}	3.79×10^{-3}	3.50×10^{-3}	nan
10^{6}	3.57×10^{-2}	3.24×10^{-2}	nan
10^{7}	3.16×10^{-1}	3.24×10^{-1}	nan

- 3.1 General algorithm
- 3.2 Special algorithm
- 3.3 LU decomposition

4 Discussion

Error analysis

5 Conclusion

In this report we have used three different ways of computing $A\mathbf{v} = \mathbf{g}$ and have seen that efficiency of the methods vary greatly. We have witnessed the importance of efficient implementation of algorithms ...

6 References

References

[1] Test