1. 数 $x^* = 2.1972246$ ···的六位有效数字的近似数的绝对误差限是。
2. 已知函数 $y = f(x)$ 在点 $x_1 = 2$ 和 $x_2 = 5$ 处的函数值分别是 12 和 18, 已知 $f'(5) \approx 2$,
则 $f'(2)$ ≈
3. 过 n 对不同数据 $\left(x_i,y_i\right),i=1,2,\cdots,n$,的拟合直线 $y=a_1x+a_0$,那么 a_1,a_0 满足的法方程组是
4. 已知函数 $f(x)$ 的函数值 $f(0)$, $f(2)$, $f(3)$, $f(5)$, $f(6)$,以及均差如下
f(0) = 0, f(0,2) = 4, f(0,2,3) = 5, f(0,2,3,5) = 1, f(0,2,3,5,6) = 0
那么由这些数据构造的牛顿插值多项式的最高次幂的系数是
$y(x_{k+1}) - y(x_k) = hf(\zeta_k, y(\zeta_k)), \zeta_k \in [x_k, x_{k+1}], k = 0, 1, 2, \dots, n-1$
中的平均斜率 $f\left(\zeta_{k},y(\zeta_{k})\right)$, 其中 h,x_{k} 分别是 n 等分 $\left[a,b\right]$ 的步长合节点。若用 x_{k} 点
处的斜率近似平均斜率 $f\left(\zeta_{k},y(\zeta_{k})\right)$, 得到初值问题的数值解的近似公式
$y(x_{k+1}) \approx y_{k+1} = y_k +$
 π 的近似值 3.1428 是准确到近似值。
7. 满足 $f(x_a) = x_a$, $f(x_b) = x_b$, $f(x_c) = x_c$ 的拉格朗日插值余项为。
8. 用列主元法解方程组时,已知第 2 列主元为 $\left a_{42}^{(1)}\right $ $\left a_{42}^{(1)}\right =$ 。
9. 乘幂法师求实方阵的一种迭代方法。10. 欧拉法的绝对稳定实区间为。
11. 取 $x = 3.142$ 作为 $x = 3.141$ 592 654的近似值,则 x 有位有效数字.
12. 消元法的步骤包括
13. 龙贝格积分法是将区间 $[a,b]$
的求法。
14. 乘幂法可求出实方阵 A 的
15. 欧拉法的绝对稳定实区间为。
16. 二阶均差f (x ₀ , x ₁ , x ₂) =
17. 在区间 $[a,b]$ 上内插求积公式的系数 A_0, A_1, \dots, A_n 满足 $A_0 + A_1 + \dots + A_n = $

18. 已知 n=3 时,科茨系数
$$C_0^{(3)} = \frac{1}{8}$$
, $C_1^{(3)} = \frac{3}{8}$, $C_2^{(3)} = \frac{3}{8}$, 那么 $C_3^{(3)} =$ ______.

- 19. 标准四阶龙格一库塔法的绝对稳定域的实区间为_____.
- 20. 高斯消去法能进行到底的充分必要条件为_____。

$$21 设 A = \begin{bmatrix} 1 & 5 & -2 \\ -2 & 1 & 0 \\ 3 & -8 & 2 \end{bmatrix}, 则 ||A||_{\infty} = \underline{\qquad}.$$

- 22 对于方程组 $\begin{cases} 2x_1 5x_2 = 1 \\ 10x_1 4x_2 = 3 \end{cases}$, Jacobi 迭代法的迭代矩阵是 $G_J =$ ______.
- 23 $\sqrt[3]{x^*}$ 的相对误差约是 x^* 的相对误差的_____ 倍.
- 25 设 $f(x) = x^3 + x 1$,则差商 $f[0,1,2,3] = _____$.
- 26 设 $n \times n$ 矩阵 G 的特征值是 $\lambda_1, \lambda_2, \dots, \lambda_n$,则矩阵 G 的谱半径 $\rho(G) = \dots$

27 已知
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
,则条件数 $Cond_{\infty}(A)$ ______.

- 28 为了提高数值计算精度, 当正数x充分大时, 应将 $\ln(x-\sqrt{x^2-1})$ 改写为_____.
- 29 n个求积节点的插值型求积公式的代数精确度至少为____次.
- 30 拟合三点 $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))$ 的水平直线是______.
 - 31. 解非线性方程f(x)=0 的牛顿迭代法具有 ______收敛
 - 32. 迭代过程 **x₂₂₁ = φ(x₂)** (k=1,2,...)收敛的充要条件是 **b f(x)** _____
 - 33. 己知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有效数字是_____
 - 34. 高斯--塞尔德迭代法解线性方程组

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 3 \\ 2x_1 + 2x_2 + 5x_3 = 0 \end{cases}$$

- 35. 通过四个互异节点的插值多项式p(x),只要满足______,则p(x)是不超过二次的多项式
- 36. 对于n+1 个节点的插值求积公式 【【/(x)dx≈ ∑ A_/(x_x) 至少具有____次

代数精度.

值范围 _____

39. 若
$$A = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$
则矩阵A的谱半径 $(A) =$ _____

40. 解常微分方程初值问题 $y' = f(x,y), y(x_0) = y_0$ 的梯形格式

41.设 $x^* = 2.3149541...$,取 5 位有效数字,则所得的近似值 $x = ____.$

42.设一阶差商
$$f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{1 - 4}{2 - 1} = -3$$
,

$$f(x_2,x_3) = \frac{f(x_3) - f(x_2)}{x_3 - x_2} = \frac{6 - 1}{4 - 2} = \frac{5}{2}$$
,则二阶差商 $f(x_1,x_2,x_3) =$ _____.

43. 数值微分中,已知等距节点的函数值 $(x_0,y_0)(x_1,y_1)(x_2,y_2)$,则由三点的求导公式,有 $f'(x_1) = ____.$

44.求方程 $x^2-x-1.25=0$ 的近似根,用迭代公式 $x=\sqrt{x+1.25}$,取初始值 $x_0=1$,那么 $x_1=$ _____.

45. 解初始值问题
$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$
 近似解的梯形公式是 $y_{k+1} \approx$ _____.

46.
$$A = \begin{pmatrix} 1 & 1 \\ -5 & 1 \end{pmatrix}$$
,则 A 的谱半径 $\rho(A) = ____$, A 的 $cond(A)_1 = ____$.

47. 设
$$f(x) = 3x^2 + 5$$
, $x_k = kh$, $k = 0,1,2,\cdots$,则 $f[x_n, x_{n+1}, x_{n+2}] = ____$

和
$$f[x_n, x_{n+1}, x_{n+2}, x_{n+3}] =$$
______.

48. 若线性代数方程组 AX=b	的系数矩阵 A 为严格对角占优阵,	则雅可比迭代和高斯-塞德
尔迭代都		

49. 解常微分方程初值问题的欧拉(Euler)方法的局部截断误差为_____

50. 设
$$A = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & a \\ a & a & 1 \end{bmatrix}$$
, 当 $a \in$ _____ 时,必有分解式 $A = LL^T$,其中 L 为下三角阵,

当其对角线元素 L_{ii} (i=1,2,3) 足条件 _____ 时,这种分解是唯一的。

- 51. 数值稳定的算法是指: ____。
- 52. 方程 $xe^x 1 = 0$ 的一个有根区间为:______,可构造出它的一个收敛的迭代格式为:______。
- 54. 解三角线性方程组的方法是_____ 过程。
- 56. 线性方程组 Ax = b 中令 A = D + L + U,其中 D 是 A 的对角部分构成的矩阵,L 和 U 分别 是 A 的(负)严格下(上)三角矩阵,则 Jacobi 迭代法的迭代矩阵是 _____。
- 57. f(x)的差分形式的 Newton 插值多项式:

$$N_n(x_0 + th) = f(x_0) + \Delta f_0 t + \frac{\Delta^2 f_0}{2!} t(t - 1) + \dots + \frac{\Delta^n f_0}{n!} t(t - 1) \dots (t - n + 1) .$$

- 58、数值方法中需要考虑的误差为 _____。
- 59、若 $y_n = 2^n$,则 $\Delta y_n =$ _______, $\nabla y_n =$ ______。
- 60、辛普森公式的代数精度为____。
- 61、函数 f(x) 的线性插值余项表达式为____。
- 62、若非线性方程 f(x)=0 可以表成 $x=\varphi(x)$,用简单迭代法求根,那么 $\varphi(x)$ 满足______,近似根序列 $x_1,x_2,\cdots,x_k,\cdots$ 一定收敛。
- 63、取X⁽⁰⁾=(1, 1, 1)^T用Gauss-Seidel方法求解方程组

$$\begin{cases} 4x_1 + x_2 - x_3 = 5 \\ 2x_1 + 5x_2 + 2x_3 = -4 \\ x_1 + x_2 + 3x_3 = 3 \end{cases}$$

迭代一次所得结果为: $X^{(1)} = (\underline{\hspace{1cm}})^T$ 。

64、用列主元素消去法求解线性方程组

$$\begin{cases} 4x_1 - x_2 + x_3 = 5 \\ -18x_1 + 3x_2 - x_3 = -15 \\ x_1 + x_2 + x_3 = 6 \end{cases}$$

- 第二次所选择的主元素的值为____。
- 65、运用梯形公式和 Simpson 公式,计算积分 $\int_0^1 x^3 dx$,其结果分别为_____。
- 66、设方程 f(x)=0 的有根区间为 [a,b] ,使用二分法时,误差限为 $\left|x_{k+1}-x^*\right| \le$ $(其中 x_{k+1} = \frac{a_k + b_k}{2}).$
- 67、用改进的欧拉方法求解初值问题 $\begin{cases} y'=-y-y^3x \\ y(1)=1 \end{cases}$,取步长 h=0.2,则 $y(1.2) \approx _______。$
- 68、计算 $f = (\sqrt{2} 1)^6$,取 $\sqrt{2} \approx 1.4$,利用算式 $\frac{1}{(\sqrt{2} + 1)^6}$, $(3 2\sqrt{2})^3$, $\frac{1}{(3 + 2\sqrt{2})^3}$, $99 70\sqrt{2}$ 计算,得到的结果最好的算式为_____。
- 69、由序列 **{1,** *x* **,** ··· **,** *x* ⁿ **,** ··· **}** 正交化得到的 Chebyshev 多项式的权函数为_____, 区间为____。
- 70.《计算方法》主要讲述的五部分内容为____。
- 71. 根据误差引起的因素,误差一般可以分为 _____四种。
- 72. 已知 $\pi = 3.1415926...$,取 $\pi \approx 3.14159$,那么 π 具有的有效数字是_____。

73. 若非线性方程 f(x)=0 可以表成 $x=\varphi(x)$, 用简单迭代法求根, 那么 $\varphi(x)$ 满 足________,近似根序列 $x_1, x_2, \dots, x_k, \dots$ 一定收敛。 74. 取X⁽⁰⁾=(1, 1, 1)^T用*Gauss-Seidel*方法求解方程组 $\begin{cases} 4x_1 + x_2 - x_3 = 5 \\ 2x_1 + 5x_2 + 2x_3 = -4 \\ x_1 + x_2 + 3x_3 = 3 \end{cases}$ 迭代一次所得结果为: $X^{(1)} = (\underline{\hspace{1cm}})^T$ 。 75. 用列主元素消去法求解线性方程组 $\begin{cases} 4x_1 - x_2 + x_3 = 5 \\ -18x_1 + 3x_2 - x_3 = -15 \\ x_1 + x_2 + x_3 = 6 \end{cases}$ 第二次所选择的主元素的值为____。 76. 运用梯形公式和 Simpson 公式,计算积分 $\int_0^1 x^3 dx$,其结果分别为_____。 77.设方程 f(x)=0 的有根区间为 $\left[a,b\right]$, 使用二分法时, 误差限为 $\left|x_{k+1}-x^*\right|\le$ (其中 $x_{k+1} = \frac{a_k + b_k}{2}$)。 78. 用改进的欧拉方法求解初值问题 $\begin{cases} y' = -y - y^3 x \\ y(1) = 1 \end{cases}$, 取步长 h = 0.2 , 则 $y(1.2) \approx _{---}$ 79. 由序列 $\{1, x, \dots, x'', \dots\}$ 正交化得到的 Chebyshev 多项式的权函数为_____, 区间 80.sin1 有 2 位有效数字的近似值 0.84 的相对误差限是 . 解数列一定收敛. 82. 已知 f(1)=1, f(2)=3,那么 y=f(x)以 x=1,2 为节点的拉格朗日线性插值多项式为_____

确成立,而至少有一个m+1次多项式不成立。则称该求积公式具有m次代数精度.

85.如果用二分法求方程 $x^3 + x - 4 = 0$ 在区间[1,2] 内的根精确到三位小数,需对分_______次。

86. 迭代格式 $x_{k+1} = x_k + \alpha(x_k^2 - 2)$ 局部收敛的充分条件是 α 取值在_____。

性______。
87. 已知
$$S(x) = \begin{cases} x^3 & 0 \le x \le 1 \\ \frac{1}{2}(x-1)^3 + \alpha(x-1)^2 + b(x-1) + c & 1 \le x \le 3 \end{cases}$$
 是三次样条函数,则

 $a = ____, b = _____, c = ______$

88. $l_0(x), l_1(x), \cdots, l_n(x)$ 是以整数点 x_0, x_1, \cdots, x_n 为节点的Lagrange插值基函数,则

$$\sum_{k=0}^{n} l_k(x) = \underbrace{\sum_{k=0}^{n} x_k l_j(x_k)}_{, \quad \text{if}} = \underbrace{\sum_{k=$$

$$\sum_{k=0}^{n} (x_k^4 + x_k^2 + 3) l_k(x) = \underline{\hspace{1cm}}$$

90.5个节点的牛顿-柯特斯求积公式的代数精度为______,5个节点的求积公式最高代数精度为。。

 $91. \{ \varphi_k(x) \}_{k=0}^{\infty}$ 是区间 [0,1] 上权函数 $\rho(x) = x$ 的最高项系数为 1 的正交多项式族,其中 $\varphi_0(x) = 1$,则 $\int_0^1 x \varphi_4(x) dx =$ _______。 92. 给定方程组

$$\begin{cases} x_1 - ax_2 = b_1 \\ -ax_1 + x_2 = b_2 \end{cases}$$

a为实数,当a满足_____,且0< ω <2时,SOR迭代法收敛。

93.解初值问题
$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$
的改进欧拉法
$$\begin{cases} y_{n+1}^{[0]} = y_n + hf(x_n,y_n) \\ y_{n+1} = y_n + \frac{h}{2}[f(x_n,y_n) + f(x_{n+1},y_{n+1}^{[0]})] \end{cases}$$

94. 设
$$A = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & a \\ a & a & 1 \end{bmatrix}$$
 当 $a \in ($) 时,必有分解式 $A = LL^T$,

其中L为下三角阵,当其对角线元素 l_{ii} (i=1,2,3)满足 条件时,这种分解是唯一

95. 设
$$f(x) = 9x^8 + 3x^4 + 21x^2 + 10$$
 , 则均差 $f[2^0,2^1,\cdots,2^8] =$ ______, $f[3^0,3^1,\cdots,3^9] =$ ______。

96. 设函数 f(x) 于区间 [a,b] 上有足够阶连续导数, $p \in [a,b]$ 为 f(x) 的一个 m 重零点,

97. 区间[a,b]上的三次样条插值函数S(x)在[a,b]上具有直到 阶的连续导数。

98. 向量
$$X = (1,-2)^T$$
,矩阵, $A = \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix}$ 则, $\|AX\|_1 =$ ______, $cond(A)_{\infty} =$ ______,

99.为使两点的数值求积公式: $\int_{-1}^{1} f(x)dx \approx f(x_0) + f(x_1)$ 具有最高的代数精确度,则其

100. 设 $A \in \mathbb{R}^{n \times n}$, $A^T = A$, 则 $\rho(A)$ (谱半径) ______ $\|A\|_2$ 。(此处填小于、大于、 等于

答案

- 1. 0.5×10^{-5}
- **2.** 2

3.
$$\begin{cases} na_2 + a_1 \sum_i x_i = \sum_i y_i \\ a_0 \sum_i x_i + a_1 \sum_i x_i^2 = \sum_i x_i y_i \end{cases}$$

- 5. $hf(x_k, y(x_k))$ 或 $hf(x_k, y_k)$
- 6. 10^{-2}

7.
$$R(x) = \frac{f'''(\xi)}{3!} (x - x_a)(x - x_b)(x - x_c)$$

8
$$\left|\alpha_{42}^{(1)}\right| = \max_{i \ge 2} \left|\alpha_{i2}^{(1)}\right|$$
 9.按规模最大的特征值与特征向量

$$9. \begin{bmatrix} 1 & 5 \\ 5 & 2 \end{bmatrix}$$

10.
$$[-2,0]$$

- 11.4
- 12 消元和回代
- 13.逐次分半
- 14.按模最大
- 15. [-2,0]
- 16. $[f(x_0, x_1) f(x_1, x_2)] / (x_0 x_2)$
- 17. b-a
- 18.1/8.
- 19. [-2.78, 0]
- 20. 系数矩阵 A 的各阶顺序主子式不为零
- 21.13.

22.
$$\begin{bmatrix} 0 & 2.5 \\ 2.5 & 0 \end{bmatrix}$$
 °

23. 1/3

24.
$$x_{n+1} = x_n - \frac{x_n - f(x_n)}{1 + f'(x_n)}$$

- 25. 1
- 26. $\max_{1 \le i \le n} |\lambda_i|$
- 27. 6

$$28. - \ln(x + \sqrt{x^2 + 1})$$

29.
$$n-1$$

30.
$$y = \frac{1}{3} \sum_{i=1}^{3} f(x_i)$$

- 31.局部平方收敛
- 32.< 1
- 33. 4

$$34. x_3^{(k+1)} = \frac{-2x_1^{(k+1)} - 2x_2^{(k+1)}}{5}$$

- 35.三阶均差为0
- 36.n
- 37.b-a

- 39. 1
- 40. 二阶方法

41. 2.3150

42.
$$f(x_1, x_2, x_3) = \frac{f(x_2, x_3) - f(x_1, x_2)}{x_3 - x_1} = \frac{\frac{5}{2} - (-3)}{4 - 1} = \frac{11}{6}$$

43.
$$\frac{1}{2h}(-y_0 + y_2)$$

44. 1.5

45.
$$y_k + \frac{h}{2} [f(x_k, y_k) + f(x_{k+1}, y_{k+1})]$$

46.
$$\rho(A) = \sqrt{6}$$
, $cond(A)_1 = 6$

47.
$$f[x_n, x_{n+1}, x_{n+2}] = 3$$
, $f[x_n, x_{n+1}, x_{n+2}, x_{n+3}] = 0$

48. 收敛

49.0 (h)

$$50. a \in (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \quad l_{ii} > 0 \ (i = 1, 2, 3)$$

- 51. 数值稳定的算法是指: 舍入误差对计算结果影响不大的算法。
- 52. 方程 $xe^x 1 = 0$ 的一个有根区间为: (0, 1),可构造出它的一个收敛的迭代格式为: $x_k = 1/e^{x_{k-1}}$ 。
- 53. 解方程 f(x) = 0 的 Newton 迭代公式为 $x_k = x_{k-1} f(x_{k-1}) / f'(x_{k-1})$,Newton 迭代法 对于单根是 二 阶局部收敛的。
- 54. 解三角线性方程组的方法是回代过程。
- 55. 矩阵 A 的谱半径定义为 $\rho(A) = \max\{|\lambda| | |\lambda I A| = 0\}$,它与矩阵范数的关系是 $\rho(A) \le ||A||$ 。
- 56. 线性方程组 Ax = b 中令 A = D + L + U,其中 D 是 A 的对角部分构成的矩阵,L 和 U 分别 是 A 的(负)严格下(上)三角矩阵,则 Jacobi 迭代法的迭代矩阵是 $-D^{-1}(L + U)$ 。
- 57. f(x)的差分形式的 Newton 插值多项式:

$$N_n(x_0 + th) = f(x_0) + \Delta f_0 t + \frac{\Delta^2 f_0}{2!} t(t - 1) + \dots + \frac{\Delta^n f_0}{n!} t(t - 1) \dots (t - n + 1) .$$

58. 截断误差,舍入误差

59.
$$2^n$$
, 2^n

60.3

61.
$$\frac{f''(\xi)}{2!}\omega_2(x)$$
 $\xi \in (x_0, x_1)$

62.
$$|\varphi'(x)| < 1$$

63. 5/4, -17/10, 23/20

64.7/6

65.0.5, 0.5

66. $(b-a)/2^{k+1}$

67. 0.71408

68.
$$\frac{1}{(3+2\sqrt{2})^3}$$

69.
$$\frac{1}{\sqrt{1-x^2}}$$
, [-1, 1]

70. 插值与拟合,数值微积分,线性方程组的解法,非线性方程的解法,常微分方程数值解

71. 模型误差,观测误差,舍入误差,截断误差

72. 5

73.
$$|\varphi'(x)| < 1$$

75. 7/6

77.
$$(b-a)/2^{k+1}$$

78. 0.71408

79.
$$\frac{1}{\sqrt{1-x^2}}$$
 [-1,1]

80.
$$\frac{1}{2 \times 8} \times 10^{-2+1} = \frac{1}{16} \times 10^{-1} = 0.00625$$

81. 高斯一赛德尔

82. 2x-1.

83.
$$\sum_{k=1}^{n} (y_k - \varphi(x_k))^2 \stackrel{\text{deg}}{=} \sum_{k=1}^{n} (y_k - a_0 - a_1 x_k - a_2 x_k^2)^2$$

84. 不超过 m 次

85.10

86.
$$(-\frac{\sqrt{2}}{2},0)$$
 $(0,\frac{\sqrt{2}}{2})$

87.
$$a = 3$$
 , $b = 3$, $c = 1$

88.1,
$$x^{4} + x^{2} + 3$$

89. 6
$$\frac{7! \times 6}{2^7} = 945 / 4 = 236.25$$

90. 9

91. 0

92.
$$|a| < 1$$

93. 2
 $-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, l_{ii} > 0$
95. $9 \times 8!$ 、 0
96. 2
97. 2
98.16、 90
99. $-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
100. 小于、大于