

SAR TEST REPORT

No. I18Z60072-SEM01

For

TCL Communication Ltd.

UMTS/GSM Smartphone

Model Name: 5009A/5009U

With

Hardware Version: PIO

Software Version: V1.0

FCC ID: 2ACCJB102

Issued Date: 2018-4-2

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I18Z60072-SEM01	Rev.0	2018-3-26	Initial creation of test report
			Update the ConvF on page65/66
I18Z60072-SEM01	Rev.1	2018-4-2	And add the SIM card evaluation on
			page140

TABLE OF CONTENT

1 T	EST LABORATORY	5
1.1	TESTING LOCATION	5
1.2	TESTING ENVIRONMENT	5
1.3	PROJECT DATA	
1.4	SIGNATURE	5
2 S	STATEMENT OF COMPLIANCE	6
3 C	LIENT INFORMATION	8
3.1	APPLICANT INFORMATION	8
3.2	Manufacturer Information	8
4 E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1	ABOUT EUT	
4.2	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	9
4.3	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	9
5 T	EST METHODOLOGY	10
5.1	APPLICABLE LIMIT REGULATIONS	10
5.2	APPLICABLE MEASUREMENT STANDARDS	10
6 S	SPECIFIC ABSORPTION RATE (SAR)	11
6.1	Introduction	11
6.2	SAR Definition	11
7 T	ISSUE SIMULATING LIQUIDS	12
7.1	TARGETS FOR TISSUE SIMULATING LIQUID	12
7.2	DIELECTRIC PERFORMANCE	
8 S	SYSTEM VERIFICATION	17
8.1	SYSTEM SETUP	17
8.2	System Verification	18
9 N	MEASUREMENT PROCEDURES	19
9.1	TESTS TO BE PERFORMED	19
9.2	GENERAL MEASUREMENT PROCEDURE	21
9.3	WCDMA MEASUREMENT PROCEDURES FOR SAR	22
9.4	BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	23
9.5	Power Drift	23
10	AREA SCAN BASED 1-G SAR	24
10.1	REQUIREMENT OF KDB	24
10.2	FAST SAR ALGORITHMS	24
11	CONDUCTED OUTPUT POWER	25

11.1	GSM MEASUREMENT RESULT	25
11.2	WCDMA MEASUREMENT RESULT	26
11.3	WI-FI AND BT MEASUREMENT RESULT	27
12	SIMULTANEOUS TX SAR CONSIDERATIONS	30
12.1	Introduction	30
12.2	Transmit Antenna Separation Distances	
12.3	SAR MEASUREMENT POSITIONS	31
12.4	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	31
13	EVALUATION OF SIMULTANEOUS	32
14	SAR TEST RESULT	33
14.1	EVALUATION OF MULTI-BATTERIES	33
14.2	SAR RESULTS	34
14.3	FULL SAR	40
14.4	WLAN EVALUATION	41
15	SAR MEASUREMENT VARIABILITY	44
16	MEASUREMENT UNCERTAINTY	45
16.1	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHZ~3GHz)	45
16.2	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	46
16.3	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	47
16.4	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	
17	MAIN TEST INSTRUMENTS	50
ANNE	EX A GRAPH RESULTS	51
ANNE	EX B SYSTEM VERIFICATION RESULTS	71
ANNE	EX C SAR MEASUREMENT SETUP	80
ANNE	EX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTO	OM86
ANNE	EX E EQUIVALENT MEDIA RECIPES	89
ANNE	EX F SYSTEM VALIDATION	90
ANNE	EX G PROBE CALIBRATION CERTIFICATE	91
ANNE	EX H DIPOLE CALIBRATION CERTIFICATE	102
ANNE	EX I DAE CALIBRATION CERTIFICATE	134
ANNE	EX J SPOT CHECK FOR 5009U	139
ANNE	EX K ACCREDITATION CERTIFICATE	157

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	March 5, 2018
Testing End Date:	March 8, 2018

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Lu Bingsong

当场本

Deputy Director of the laboratory

(Approved this test report)

2 Statement of Compliance

The 5009A is a new product for this measurement. The 5009U is a variant product of 5009A and shares the test results of original sample. The results of spot check are presented in the annex J.

The maximum results of SAR found during testing for TCL Communication Ltd. UMTS/GSM Smartphone 5009A/5009U is as follows:

Table 2.1: Highest Reported SAR (1g)

idalo 2111 ingliost reported of in (19)				
Exposure Configuration	Technology Band	Highest Reported SAR 1g (W/Kg)	Equipment Class	
	GSM 850	0.29		
	PCS 1900	0.15		
Head	WCDMA1900-BII	0.17	PCE	
(Separation Distance 0mm)	WCDMA1700-BIV	0.09		
	WCDMA850-BV	0.32		
	WLAN 2.4 GHz	0.55	DTS	
	GSM 850	0.95		
	PCS 1900	0.73		
Hotspot	WCDMA1900-BII	0.66	PCE	
(Separation Distance	WCDMA1700-BIV	1.00		
10mm)	WCDMA850-BV	0.46		
	WLAN 2.4 GHz	0.13	DTS	
Body worn	PCS 1900	0.68		
(Separation Distance	WCDMA1900-BII	0.53	PCE	
15mm)	WCDMA1700-BIV	0.37		

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm or 15mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.00 W/kg (1g).

Table 2.2: The sum of reported SAR values for main antenna and WiFi(10mm)

	Position	Main antenna	WiFi	Sum
Highest reported				
SAR value for	Right hand, Touch cheek	0.29	0.55	0.84
Head				
Highest reported				
SAR value for	Rear	0.95	0.13	1.08
Body				

Note: The WiFi SAR with 15mm <0.01, and the main antenna with 15mm are smaller than 10mm, so we only assessed the values with 10mm.

Table 2.3: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	ВТ	Sum
Maximum reported SAR value for Head	Left hand, Touch cheek	0.32	0.13	0.45
Maximum reported SAR value for Body	Rear	0.95	0.07	1.02

^{[1] -} Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is 1.08 **W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd.
Address /Dook	7/F, Block F4, TCL International E City, Zhong Shan Yuan Road,
Address /Post:	Nanshan District, Shenzhen, Guangdong, P.R. China 518052
City:	Shanghai
Postal Code:	201203
Country:	China
Contact Person:	Gong Zhizhou
E-mail:	zhizhou.gong@tcl.com
Telephone:	0086-755-36611722
Fax:	0086-75536612000-81722

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd.
Address /Post:	7/F, Block F4, TCL International E City, Zhong Shan Yuan Road,
Address / Post.	Nanshan District, Shenzhen, Guangdong, P.R. China 518052
City:	Shanghai
Postal Code:	201203
Country:	China
Contact Person:	Gong Zhizhou
E-mail:	zhizhou.gong@tcl.com
Telephone:	0086-755-36611722
Fax:	0086-75536612000-81722

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	UMTS/GSM Smartphone
Model name:	5009A/5009U
Operating mode(s):	GSM 850/900/1800/1900 WCDMA850/900/1700/1900/2100
Operating mode(s).	, BT, WLAN
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
Tested Tx Frequency:	826.4-846.6 MHz (WCDMA 850 Band V)
rested 1x r requertcy.	1712.4 – 1752.6 MHz (WCDMA 1700 Band IV)
	1852.4–1907.6 MHz (WCDMA1900 Band II)
	2412 – 2462 MHz (Wi-Fi 2.4G)
GPRS/EGPRS Multislot Class:	12
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support
Product dimension	Long 146.9mm ;Wide 70.6mm ; Overall Diagonal 162.9mm

4.2 Internal Identification of EUT used during the test

EUTID	IMEI	HW Version	SW Version	
1	355399090000057	PIO	V1.0	
2	355399090000800	PIO	V1.0	
3	355399090001378	PIO	V1.0	
4	355399090000164	PIO	V1.0	
5	355428090002670	PIO	V1.0	

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 to 2 and conducted power with the EUT3. It is performed to test Spot check with the EUT4 and conducted power with the EUT5.

4.3 Internal Identification of AE used during the test

AE ID	Description	Model	SN	Manufactory	
AE1	Battery	CAC2400008C1	/	BYD	
AE2	Battery	CAC2400009C7	/	VEKEN	
AE3	Headset	CCB0046A10C1	/	JUWEI	
AE4	Headset	CCB0046A10C4	/	MEIHAO	

 $^{{}^{\}star}\text{AE ID:}$ is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

<u> </u>					
Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1750	Head	1.37	1.30~1.44	40.08	38.1~42.1
1750	Body	1.49	1.42~1.56	53.4	50.7~56.1
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2018/3/5	835 MHz	Head	42.26	1.83	0.905	0.56
		Body	54.35	-1.54	0.967	-0.31
2018/3/6	1750 MHz	Head	40.07	-0.02	1.397	1.97
		Body	53.21	-0.36	1.48	-0.67
2018/3/7	1900 MHz	Head	39.78	-0.55	1.385	-1.07
		Body	54.1	1.50	1.525	0.33
2018/3/8	2450 MHz	Head	39.25	0.13	1.767	-1.83
		Body	52.83	0.25	1.967	0.87

Note: The liquid temperature is 22.0 $^{\rm o}{\rm C}$

Picture 7-1 Liquid depth in the Head Phantom (835MHz)

Picture 7-2 Liquid depth in the Flat Phantom (835MHz)

Picture 7-3 Liquid depth in the Head Phantom (1750 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1750MHz)

Picture 7-5 Liquid depth in the Head Phantom (1900 MHz)

Picture 7-6 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-7 Liquid depth in the Head Phantom (2450MHz)

Picture 7-8 Liquid depth in the Flat Phantom (2450MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup