▶ Recall: our goal is to implement a bit-serial multiplier, i.e.,

as a case-study of data- and control-paths; we more or less have the data-path, but what about the control-path ...

Question

Design an FSM-based component that replicates the behaviour of a loop counter, for example \mathtt{i} within a \mathtt{C} -style for loop such as

```
1 for( int i = m; i < n; i++ ) { 2 \ldots 3 }
```

noting that

- 1. like C, we'll allow the loop counter i to equal n once the loop is complete,
- 2. we'll need a mechanism that informs us when this is, plus also allows us to start iteration, and
- 3. we'll look at a solution, not all solutions.

- ▶ Question: given a user C_1 of some component C_2 , how does
 - 1. C_2 know when to start computation (e.g., when any input x is available), and
 - 2. C_1 know when computation has finished (e.g., when any output r = f(x) is available).
- ► Solution(s):
 - 1. use a shared clock signal to synchronise events somehow, or
 - 2. use a simple **control protocol** based on two signals
 - 2.1 req (or request), and
 - 2.2 ack (or acknowledge).

Algorithm $\begin{array}{c|c} req = 1 \\ \hline ack = 1 \\ \hline x \\ r = f(x) \end{array}$

Algorithm $\begin{array}{c|c} req = 1 \\ \hline ack = 1 \\ \hline \\ r = f(x) \end{array}$

Algorithm $\begin{array}{c|c} req = 0 \\ \hline & ack = 1 \\ \hline & r = f(x) \end{array}$

Algorithm $\begin{array}{c|c} req = 0 \\ \hline ack = 1 \\ \hline c_1 \\ r = f(x) \end{array}$ $\begin{array}{c|c} r = f(x) \end{array}$

A controlled "loop counter" component (1)

A controlled "loop counter" component (2)

- Our FSM can be in one of 4 states:
 - in S_{wait} it waits for a request (i.e., for req = 1),
 - ▶ in S_{init} it uses any input to initialise itself (e.g., setting the initial loop counter value),
 - in S_{step} it performs an iteration of the loop, and
 - in S_{done} it waits for req = 0 (while setting ack = 1) once the loop is complete.
- ▶ Since $2^2 = 4$, we can assign a concrete 2-bit value

$$\begin{array}{ccc} S_{wait} & \mapsto & \langle 0, 0 \rangle \\ S_{init} & \mapsto & \langle 1, 0 \rangle \\ S_{step} & \mapsto & \langle 0, 1 \rangle \\ S_{done} & \mapsto & \langle 1, 1 \rangle \end{array}$$

to each abstract label; this basically means we can talk about

- 1. $Q = \langle Q_0, Q_1 \rangle$ as being the current state, and
- 2. $Q' = \langle Q'_0, Q'_1 \rangle$ as being the next state.

A controlled "loop counter" component (3)

Algorithm (control-path, tabular)	Algorithm (control-path, diagram)

Algorithm (control-path, tabular)

		δ		ω		
	Q	Q'		ack		
		cmp = 0	cmp = 1	cmp = 0	cmp = 1	
(S_{wait}	S_{wait}	S_{wait}	0	0	
req = 0	S_{init}	S_{wait}	S_{wait}	0	0	
	S_{step}	S_{wait}	S_{wait}	0	0	
	S_{done}	S_{wait}	S_{wait}	1	1	
req = 1	S_{wait}	S_{init}	S_{init}	0	0	
	S_{init}	S_{step}	S_{step}	0	0	
	S_{step}	S_{done}	S_{step}	0	0	
	S_{done}	S_{done}	S_{done}	1	1	

Algorithm (control-path, diagram)

A controlled "loop counter" component (4)

Algorithm (control-path, truth table)

Rewriting the abstract labels yields the following concrete truth table:

				δ		ω
req	стр	Q_1	Q_0	Q_1'	Q'_0	ack
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	1 0	0	0	0
0	0	1	1	0	0	1
0	1	1 0 0	0	0	0	0
0	1		1	0	0	0
0	1	1	1 0 1 0	0	0	0
0	1 0 0	1 0 0	1 0 1 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1
1	0	0	0	0	1	0
1	0	0	1	1	0	0
1	0	1	0	1	1	0
1	0	1 0	1 0	1 0	1	1
1	1	0		0	1	0
0 0 0 0 0 0 0 0 1 1 1 1 1	1	0	1 0	1	1 1 1 0	0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
1	1	1	0	1	0	0
1	1	1	1	1	1	1

A controlled "loop counter" component (5)

Circuit (control-path, δ)

Translating the truth table into a set of Karnaugh maps

yields the following Boolean expressions:

A controlled "loop counter" component (5)

Circuit (control-path, δ)

Translating the truth table into a set of Karnaugh maps

yields the following Boolean expressions:

A controlled "loop counter" component (6)

Circuit (control-path, ω)

Translating the truth table into a set of Karnaugh maps

yields the following Boolean expressions:

A controlled "loop counter" component (6)

Circuit (control-path, ω)

Translating the truth table into a set of Karnaugh maps

yields the following Boolean expressions:

$$ack = Q_1 \wedge Q_0$$

A controlled "loop counter" component (7)

A controlled "loop counter" component (8)

Demo and discussion

Conclusions

- Next steps (or, the lab. session):

 - We now have the loop counter component implemented as specified ...
 ... the next challenge is clearly then *using* it to realise the original goal, e.g., specifying
 - 1. any additional data-path components required, and
 - 2. how loop counter (the control-path) controls them

so we end up with a bit-serial multiplier.