State:

 The hierarchical structure of human languages what do you think

- The first stage of speech recognition
 - Classification: input → acoustic feature, output → state

Each state has a stationary distribution for acoustic features

Gaussian Mixture Model (GMM)

Each state has a stationary distribution for acoustic features

- In HMM-GMM, all the phonemes are modeled independently
 - Not an effective way to model human voice

Modularization

Vu, Ngoc Thang, Jochen Weiner, and Tanja Schultz. "Investigating the Learning Effect of Multilingual Bottle-Neck Features for ASR." *Interspeech*. 2014.

Output of hidden layer reduce to two dimensions

- ➤ The lower layers detect the manner of articulation
- ➤ All the phonemes share the results from the same set of detectors.
- Use parameters effectively

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer (given **enough** hidden neurons)

Yes, shallow network can represent any function.

However, using deep structure is more effective.

Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

less gates needed

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

less parameters

less data?

This page is for EE background.

Analogy

• E.g. parity check

With multiple layers, we need only O(d) gates.

More Analogy

More Analogy

 x_2

 x_1

 x_2

More Analogy - Experiment

Different numbers of training examples

End-to-end training:

What each function should do is learned automatically

- Speech Recognition
- Shallow Approach

Each box is a simple function in the production line:

- Speech Recognition
- Deep Learning

Less engineering labor, but machine learns more

- Image Recognition

:hand-crafted

Shallow Approach

http://www.robots.ox.ac.uk/~vgg/research/encod ing_eval/ monkey? classification pooling [monkey, dog, tree, ...] encoding feature extr.

:learned from data

End-to-end Learning - Image Recognition

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV* 2014 (pp. 818-833)

Deep Learning

Complex Task ...

Very similar input, different output

Very different input, similar output

Complex Task ...

A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.

 Speech recognition: Speaker normalization is automatically done in DNN

Complex Task ...

A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.

 Speech recognition: Speaker normalization is automatically done in DNN

MNIST

To learn more ...

- Do Deep Nets Really Need To Be Deep? (by Rich Caruana)
- http://research.microsoft.com/apps/video/default.aspx?id= 232373&r=1

Do deep nets really need to be deep?

Rich Caruana Microsoft Research

Lei Jimmy Ba MSR Intern, University of Toronto

Thanks also to: Gregor Urban, Krzysztof Geras, Samira Kahou, Abdelrahman Mohamed, Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong Yes!

Thank You

Any Questions?

To learn more ...

- Deep Learning: Theoretical Motivations (Yoshua Bengio)
 - http://videolectures.net/deeplearning2015_bengio_the oretical motivations/
- Connections between physics and deep learning
 - https://www.youtube.com/watch?v=5MdSE-N0bxs
- Why Deep Learning Works: Perspectives from Theoretical Chemistry
 - https://www.youtube.com/watch?v=klbKHlPbxiU