$$\Xi_c(2970)$$
 was $\Xi_c(2980)$

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: ***

$\Xi_c(2970)$ MASSES

$\Xi_c(2970)^+$ MASS

VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT **2969.4±0.8 OUR FIT** Error includes scale factor of 1.1. **2970.7±2.2 OUR AVERAGE** Error includes scale factor of 1.5. See the ideogram below. 14 BELL $e^+e^- \Upsilon(1S)$ to $\Upsilon(5S)$ $2974.9 \pm 1.5 \pm 2.1$ 244 ± 39 **KATO** 08J BABR $e^+e^-\approx 10.58 \text{ GeV}$ $2969.3 \pm 2.2 \pm 1.7$ 756 ± 206 **AUBERT** $2967.7\!\pm\!2.3\!+\!1.1\\-1.2$ 08 BELL 78 ± 13 **LESIAK** $e^+e^-\approx \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc.

 $2978.5 \pm 2.1 \pm 2.0$ **CHISTOV** $405\,\pm\,51$ 06 BELL See KATO 14

WEIGHTED AVERAGE 2970.7±2.2 (Error scaled by 1.5)

$\Xi_{c}(2970)^{0}$ MASS

The evidence is statistically weaker for this charge state.

		DOCUMENT ID		TECN	COMMENT
2967.8±0.8 OUR FIT					
2968.0±2.6 OUR AVE	RAGE Error in	ncludes scale fac	tor o	f 1.2.	
$2972.9\!\pm\!4.4\!\pm\!1.6$	67 ± 44	AUBERT	180	BABR	$e^+e^-pprox~10.58~{\rm GeV}$
$2965.7 \pm 2.4 {+1.1 \atop -1.2}$	57 ± 13	LESIAK	80	BELL	$e^+e^-pprox \ \varUpsilon(4S)$
$2977.1\!\pm\!8.8\!\pm\!3.5$	42 ± 24	CHISTOV	06	BELL	$e^+e^-pprox \ \varUpsilon(4S)$

$\Xi_c(2970) - \Xi_c$ MASS DIFFERENCES

$m_{\Xi_c(2970)}$)+ –	$m_{=0}$
-E(-310)	,	

VALUE (MeV)	EVTS	DOCUMENT II	ס	TECN	COMMENT
498.5±0.8 OUR FIT	Error includ	des scale factor	of 1.1.		
$498.1 \pm 0.8 \pm 0.2$	916	YELTON	16	BELL	e^+e^- , γ regions

$m_{\Xi_c(2970)^0} - m_{\Xi_c^+}$

	•				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	

499.9 $^{+0.8}_{-0.7}$ **OUR FIT** Error includes scale factor of 1.1.

499.9\pm0.7\pm0.2 1443 YELTON 16 BELL e^+e^- , Υ regions

$\Xi_c(2970)^+ - \Xi_c(2970)^0$ MASS DIFFERENCE

VALUE (MeV) DOCUMENT ID TECN COMMENT

1.6\pm1.1 OUR FIT Error includes scale factor of 1.1.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $-4.8\pm0.1\pm0.5$ YELTON 16 BELL 916 and 1443 evts

Ξ_c (2970) WIDTHS

$\Xi_{c}(2970)^{+}$ WIDTH

U ()				
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT

20.9^{+2.4}_{-3.5} **OUR AVERAGE** Error includes scale factor of 1.2.

$28.1 \pm 2.4 {+1.0 \atop -5.0}$	916	YELTON	16	BELL	e^+e^- , γ regions
$14.8\!\pm\!2.5\!\pm\!4.1$	244 ± 39	KATO	14	BELL	$e^+e^ \Upsilon(1S)$ to $\Upsilon(5S)$
27 ± 8 ± 2	756 ± 206	AUBERT	08J	BABR	$e^+e^-pprox~10.58~{\rm GeV}$
18 ± 6 ± 3	78 ± 13	LESIAK	80	BELL	$e^+e^-pprox \ \varUpsilon(4S)$
14/ 1 .			· · ·	10 0.	

• • • We do not use the following data for averages, fits, limits, etc. • •

 $43.5\pm7.5\pm7.0$ 405 ± 51 CHISTOV 06 BELL See KATO 14

$\Xi_c(2970)^0$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT

28.1^{+3.4}_{-4.0} OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.

$30.3 \pm 2.3 {+1.0 \atop -1.8}$	1443	YELTON	16 BELL	e^+e^- , γ regions
31 ± 7 ± 8	67 ± 44	AUBERT	08J BABR	$e^+e^-pprox~10.58~\text{GeV}$
15 ± 6 ± 3	57 ± 13	LESIAK	08 BELL	$e^+e^-pprox \Upsilon(4S)$

Ξ_c (2970) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
	$\Lambda_c^+ \overline{K}_{\pi}$	seen
Γ_2	$\Sigma_c(2455)\overline{K}$ $\Lambda_c^+\overline{K}$	seen
Γ3	$\Lambda_c^+ \overline{K}$	not seen
Γ_4	$\Xi_c 2\pi$	seen
Γ_5	$\Xi_c 2\pi$ $\Xi_c (2645) \pi$	seen

Ξ_c (2970) BRANCHING RATIOS

$\Gamma(\Lambda_c^+ \overline{K}\pi)/\Gamma_{\text{total}}$						Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT		
seen	AUBERT	U80	BABR	$e^+e^-\approx$	$\Upsilon(4S)$	
seen	CHISTOV	06	BELL	$e^+e^-\approx$	$\Upsilon(4S)$	
$\Gamma(\Sigma_c(2455)\overline{K})/\Gamma(\Lambda_c^+\overline{K}\pi)$					Γ	₂ /Γ ₁
VALUE	DOCUMENT ID		TECN	COMMENT		
$0.55 \pm 0.07 \pm 0.13$	AUBERT	08J	BABR	$e^+e^-\approx$	$\Upsilon(4S)$	
$\Gamma(\Xi_c(2645)\pi)/\Gamma_{\text{total}}$						Г ₅ /Г
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>		
seen	LESIAK	80	BELL	$e^+e^-\approx$	$\Upsilon(4S)$	

Ξ_c (2970) REFERENCES

YELTON	16	PR D94 052011	J. Yelton <i>et al.</i>	(BELLE Collab.)
KATO	14	PR D89 052003	Y. Kato et al.	(BELLE Collab.)
AUBERT	08J	PR D77 012002	B. Aubert <i>et al.</i>	(BABAR Collab.)
LESIAK	80	PL B665 9	T. Lesiak <i>et al.</i>	(BELLE Collab.)
CHISTOV	06	PRL 97 162001	R. Chistov et al.	(BELLE Collab.)