Coursework 2 - Perfect Matching

Oskar Mampe

Tutorial Session: Thursday 1pm

1. In the first graph, there is no perfect match as only one of e_1, e_2 can be chosen meaning either v_2 or v_3 is M-unsaturated. Similar argument can be made for the edges e_4, e_5 and v_5, v_6 .

Further, this second graph also does not have a perfect match. According to Hall's Theorem, $|N(S)| \geq |S|$. However, when checking for this equality, if you count the green vertices as |S| = 18 and red nodes as |N(S)| = 17, the size of |S| is larger. Therefore, at this point in the algorithm, there will always be one node M-unsaturated, which was v_n in this case.

- 2. Prove or disprove by counterexample:
 - (a) For every connected graph G and every vertex v of G there is a maximum matching M of G such that v is M-saturated.

This is false, as if every vertex v is M-saturated then the maching M is a perfect matching, which is not always true. Given a matching:

This matching $M=\{G\}$ is a maximum one, and it has two M-unsaturated vertices, namely $v_2,v_3.$

(b) For every graph G without perfect matching and every vertex v of G there is a maximum matching M of G such that v is M-unsaturated.

This is false, as a connected graph will always have a maximum matching with at least two vertices that is M-saturated. Given a matching:

This matching $M = \{G\}$ is a maximum one, and it has two M-saturated vertices, namely v_1, v_2 .