Exponentielle, Gamma et Poisson

	Description	Е	Var	PDF/PMF	CDF	MFG
Poisson	Il modélise la probabilité qu'un certain nombre d'évènements (donc variable discrète) se produisent durant une période de temps ou d'espace, à partir d'un taux λ . C'est une approximation de la loi binomiale pour un p très petit et un n très grand (on a $\lambda = np$)		λ	$rac{\lambda^x}{x!}e^{-\lambda}$	$e^{-\lambda} \sum_{k=0}^{x} \frac{\lambda^k}{k!}$	$e^{\lambda(e^t-1)}$
Exponentielle	Modélise le temps entre deux évènements dans un processus de Poisson. Elle est continue et memoryless . Exemple Si un client arrive toutes les 2 minutes, $\lambda = \frac{1}{2}$.		$\frac{1}{\lambda^2}$	$\lambda e^{-\lambda t}$ si t > 0 sinon 0	$1 - e^{-\lambda t}$	$\frac{\lambda}{\lambda - t}$ si $t < \lambda$
Gamma	La distribution gamma est utilisée pour modéliser le temps d'attente avant α évènements dans un processus de Poisson. L'exponentielle est un cas particulier de la gamma avec $\alpha=1$. β est le taux.		$\frac{\alpha}{\beta^2}$	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$ si x > 0 sinon 0		

Binomiale, Géométrique, Hypergéométrique

	Description	E	Var	PDF/PMF	CDF	MFG
Binomiale	Modélise le nombre de succès dans n essais indépendants (donc v.a. discrète), avec une probabilité p de succès à chaque essai.	np	np(1-p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$\sum_{k=0}^{x} \binom{n}{k} p^k (1-p)^{n-k}$	$(1-p+pe^t)^n$
Binomiale négative	Modélise le nombre d'essais nécessaires (donc v.a. discrète) pour obtenir r succès, avec une probabilité p de succès à chaque essai.	$\frac{r(1-p)}{p}$	$r\frac{1-p}{p^2}$	${\binom{x+r-1}{k}}p^r(1-p)^x$		
Géométrique	Modélise le nombre d'essais nécessaires (donc v.a. discrète) pour obtenir un succès.	$\frac{1}{p}$	$rac{1-p}{p^2}$	$p(1-p)^{x-1}$	$1-(1-p)^{\lfloor x\rfloor}$	$p \frac{e^t}{1 - (1 - p)e^t}$ for $t < -\log(1 - p)$
Hypergéométrique	Modélise le nombre de succès dans un échantillon de taille n sans remise (donc v.a. discrète), avec K succès dans la population de taille N .	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$	$\sum_{k=0}^{x} \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$	

Distribution normale

aussi appelée "courbe de Gauss", distribution Gaussienne, en cloche :

	Description	Е	Var	PDF/PMF	CDF	MFG
Normale	Elle est symétrique autour de sa moyenne μ et son écart-type σ contrôle la largeur de la cloche.	μ	σ^2	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	$e^{\mu t + \sigma^2 rac{t^2}{2}}$
Normale standard	La normale standard est centrée autour de 0 et a un écart-type de 1.	0	1	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$	$\Phi(x)$	$e^{rac{t^2}{2}}$

Si on veut $\Phi(1.51),$ on prend la ligne $1.5({\rm colonne})$ et la colonne 1.

27	0	1	2	3	4	5	6	7	8	9
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56750	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84850	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92786	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169