INTRODUCTION TO FEEDBACK SYSTEM

Topic Outcomes

- Discuss the concept of negative feedback
- Differentiate feedback connection types
- Compute parameters with feedback connections

- A circuit may have positive or negative feedback depending on the polarity of the signal being fed back to the system.
- Positive feedback drives a circuit into oscillation, while negative feedback decreases the voltage gain of the system but improves a number of circuit features.
- A simple block diagram of a feedback amplifier system is shown in the figure. Input Signal V_s is applied to mixer circuit combined with the feedback signal, V_f .
- The difference of V_s and V_f is the input voltage of the amplifier A. Then the output voltage V_{out} is connected to the feedback circuit that causes reduction to the output signal as feedback signal to the input mixer network.

Feedback amplifier

- In negative feedback, the polarity of the input signal is opposite to the feedback signal.
- Negative feedback reduces overall voltage gain but improves the following areas:
 - 1. Higher input impedance
 - 2. Better stabilized voltage gain
 - 3. Improved frequency response
 - 4. Lower output impedance
 - 5. Noise Reduction
 - 6. More linear operation

- There are four basic ways to implement feedback signal to other system. Both voltage and current may be fed back to the input to a system either in series or parallel.
 - Voltage refers to connecting the output voltage as input to the feedback network.
 - Current refers to tapping off some output current through the feedback network.
 - Series refers to connecting the feedback signal in series with the input signal voltage.
 - Shunt refers to connecting the feedback signal in shunt (parallel) with an input current source.

Feedback Connection Types

Voltage-series feedback

Current-series feedback

Voltage-shunt feedback

Current-shunt feedback

Feedback Connection Types

Summary of Gain, Feedback and Gain with Feedback

		Voltage-Series	Voltage-Shunt	Current-Series	Current-Shunt
Gain without feedback	A	$\frac{V_o}{V_i}$	$\frac{V_o}{I_i}$	$\frac{I_o}{V_i}$	$rac{I_o}{I_i}$
Feedback	β	$rac{V_f}{V_o}$	$rac{I_f}{V_o}$	$\frac{V_f}{I_o}$	$rac{I_f}{I_o}$
Gain with feedback	A_f	$rac{V_o}{V_{s}}$	$\frac{V_o}{I_s}$	$rac{I_o}{V_s}$	$\frac{I_o}{I_s}$

Voltage-Series Feedback

When there is no feedback:

$$A = \frac{V_o}{V_S} = \frac{V_o}{V_i}$$

When V_f is connected in series with the input:

$$V_i = V_S - V_f$$

$$V_o = AV_i = A(V_S - V_f) = AV_S - AV_f$$

$$V_o = AV_S - A\beta V_o$$

$$(1 + \beta A)V_O = AV_S$$

$$A \to A_f$$

$$A_f = \frac{V_o}{V_S} = \frac{A}{1+\beta A}$$
 = overall gain of feedback amplifier (decreased by $1+\beta A$)

$$A = \frac{V_o}{V_i}$$
 =gain of amplifier when there is no feedback

$$\beta = \frac{V_f}{V_O}$$
=feedback

Voltage-Shunt Feedback

When there is no feedback:

$$A = \frac{V_o}{I_S} = \frac{V_o}{I_i}$$

When a feedback signal is connected in parallel with

the input is connected in parallel with the input:
$$A_f = \frac{V_o}{I_s} = \frac{AI_i}{I_i + I_f} = \frac{AI_i}{I_i + \beta V_o} = \frac{AI_i}{I_i + \beta AI_i}$$

$$A = \frac{V_O}{I_i}$$
 =gain of amplifier when there is no feedback

Input Impedance (Voltage Series)

Input Impedance (Voltage Shunt)

Output Impedance

Voltage Series Feedback

$$Z_{of} = \frac{Z_o}{(1 + \beta A)}$$

Voltage Shunt Feedback

$$Z_{of} = \frac{Z_o}{(1 + \beta A)}$$

Current Series Feedback

$$Z_{of} = Z_o(1 + \beta A)$$

Current Shunt Feedback

$$Z_{of} = Z_o(1 + \beta A)$$

Impedances Summary

Voltage-Series	Current-Series	Voltage-Shunt	Current-Shunt
$Z_{if} Z_i(1 + \beta A)$	$Z_i(1 + \beta A)$	$\frac{Z_i}{1 + \beta A}$	$\frac{Z_i}{1 + \beta A}$
(increased)	(increased)	(decreased)	(decreased)
$Z_{of} = \frac{Z_o}{1 + \beta A}$	$Z_o(1 + \beta A)$	$\frac{Z_o}{1+\beta A}$	$Z_o(1 + \beta A)$
(decreased)	(increased)	(decreased)	(increased)

Effects of Negative Feedback

Reduction in Frequency Distortion

- For a negative-feedback amplifier having $\beta A \gg 1$, the gain with feedback is Af $\approx 1/\beta$
- This value indicates that the feedback network is purely resistive and the gain of the feedback is not dependent on frequency (even the gain is dependent on the frequency).
- The frequency distortion arising because of varying amplifier gain with frequency is considerably reduced in a negative-voltage feedback amplifier circuit.

Reduction in Noise and Nonlinear Distortion

- Signal feedback tends to hold down the amount of noise signal (such as power-supply hum) and nonlinear distortion.
- The factor (1+βA) reduces the input noise and improvement of nonlinear distortion. As trade-off, there is a reduction in overall gain.
- An additional amplifier stage will increase the overall gain but it will introduce as much noise (reduced by the feedback amplifier).
- This may be improved by readjusting the gain of the feedback amplifier circuit to obtain higher gain while also providing reduced noise signal.

Gain and Bandwidth

• The overall gain with negative feedback is described by the equation:

$$A_f = \frac{A}{1+\beta A} \cong \frac{A}{\beta A} = \frac{1}{\beta} \text{ for } \beta A >> 1$$

- As long $\beta A \gg 1$, the overall gain is approximately $1/\beta$.
- In a basic amplifier, the open loop gain has open-loop drops because of the active devices and capacitances at high frequencies.
- At low frequencies for capacitively coupled amplifier stages the gain may also drop.
- Once the open-loop gain A drops low enough and the factor $\beta A \gg 1$, then based on the equation described by $\Delta f \approx 1/\beta$ is no longer holds true.

Gain and Bandwidth

Gain and Bandwidth

Gain Stability

• Differentiating the gain equation with feedback:

$$\left| \frac{dA_F}{A_f} \right| = \frac{1}{|1 + \beta A|} \left| \frac{dA}{A} \right|$$

$$\left| \frac{dA_f}{A_f} \right| \cong \left| \frac{1}{\beta A} \right| \left| \frac{dA}{A} \right| \text{ for } \beta A >> 1$$

• The magnitude of the relative change in gain ($\left|\frac{dA_F}{A_f}\right|$) is reduced by the factor $|\beta A|$ compared to that with feedback ($\left|\frac{dA}{A}\right|$)

Feedback Amplifier Circuits

Voltage Series Feedback

Voltage Series Feedback

$$A = \frac{V_o}{V_s} = \frac{V_o}{V_i} = A = -g_m (r_d \parallel R_D \parallel R_L \parallel (R_1 + R_2))$$
$$\beta = \frac{V_f}{V_o} = -\frac{R_2}{R_1 + R_2}$$

The overall gain of the feedback FET Amplifier is:

$$A_{f} = \frac{V_{o}}{V_{s}} = \frac{A}{1 + \beta A}$$

$$A_{f} = \frac{-g_{m}(r_{d} \parallel R_{D} \parallel R_{L} \parallel (R_{1} + R_{2}))}{1 + \left[\frac{R_{2}}{R_{1} + R_{2}}\right]g_{m}(r_{d} \parallel R_{D} \parallel R_{L} \parallel (R_{1} + R_{2}))}$$

Voltage Shunt Feedback

$$A = \frac{V_o}{I_i} = \infty$$

$$\beta = \frac{I_f}{V_o} = -\frac{1}{R_o}$$

The transfer resistance gain with feedback

$$A_f = \frac{V_o}{V_S} = \frac{V_o}{I_i} = \frac{A}{1 + \beta A} = \frac{1}{\beta} = -R_o$$

The usual gain

$$A_f = \frac{V_o}{I_s} \frac{I_s}{V_1} = (-R_o) \frac{1}{R_1} = \frac{-R_o}{R_1}$$

Current Series Feedback

$$I_{R1} = I_{S} = \frac{V_{1}}{R_{1}}$$

$$A = \frac{V_{o}}{I_{i}} = \infty$$

$$\beta = \frac{I_{f}}{V_{o}} = -\frac{1}{R_{f}}$$

$$A_{f} = \frac{V_{o}}{I_{S}} = \frac{V_{o}}{I_{i}} = \frac{A}{1 + \beta A} = -R_{f}$$

$$A_{vf} = \frac{V_{o}}{V_{1}} = \frac{V_{o}}{I_{S}} \frac{I_{S}}{V_{1}} = -\frac{R_{f}}{R_{1}}$$

End

