Examen 1

Alec Zabel-Mena 801-16-9720 alec.zabel@upr.edu

February 26, 2021

Mate 6540

Tarea 1

Problema 1.	Show that if d is a metric for X , then
	d'(x, y) = d(x, y)/(1 + d(x, y))
	is a bounded metric that gives the topology of X . [Hint: If $f(x) = x/(1+x)$ for $x > 0$, use the mean-value theorem to show that $f(a+b) - f(b) \le f(a)$.]
Problema 2.	If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X , show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X . Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X ?
Problema 3.	Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X . Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .
Problema 4.	Show that the collection
	$\mathcal{C} = \{ [a, b) \mid a < b, a \text{ and } b \text{ rational} \}$
	is a basis that generates a topology different from the lower limit topology on \mathbb{R} .
Problema 5.	Sea $X = \{f \mid f: [0,1] \rightarrow [0,1]$ es una función}. Para cada subconjunto A de $[0,1]$, defina
	$B_A = \{ f \in X \mid f(x) = 0, \ \forall x \in A \}.$
	<u>Demuestre</u> que $\mathscr{B} = \{B_A \mid A \subseteq [0,1]\}$ es una base para una topología sobre X .

(1) Let d be a metric on X, and define $d': X \times X \to \mathbb{R}$ by $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$. We would like to show that d' is a metric on X.

Lemma 0.0.1. d' is a metric on X.

Proof. We have that $d(x,y) \geq 0$, and d(x,y) = 0 if and only if x = y. Then notice that $1 + d(x,y) \geq 1 > 0$, and that $\frac{d(x,y)}{1+d(x,y)} \geq 0$. Moreover, $\frac{d(x,y)}{1+d(x,y)} = 0$ if and only if x = y. Notice as well that

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)} = \frac{d(y,x)}{1 + d(y,x)} = d'(y,x)$$

Finally, letting $x, y, z \in X$, we have:

$$d'(x,z) = \frac{d(x,z)}{1 + d(x,z)}$$

$$\leq \frac{d(x,y) + d(y,z)}{1 + d(x,y) + d(y,z)}$$

$$\leq \frac{d(x,y)}{1 + d(x,y)} + \frac{d(y,z)}{1 + d(y,z)}$$

$$= d'(x,y) + d'(y,z)$$

Hence, the triangle inequality is satisfied, and d' is a metric on X.

We have a further property of this metric.

Corollary. d' is a bounded metric.

Proof. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{1+x}$, which is continuous on an interval [a, b] and differentiable on (a, b). Then by the mean value theorem, we have that there is a point $x \in (a, b)$ for which

$$\frac{b}{1+b} - \frac{a}{1+a} = \frac{b-a}{x^2}$$

Then we have that

$$\frac{a+b}{1+a+b+ab} = \frac{b-a}{x^2} \le \frac{a+b+2ab}{1+a+b+ab}$$

Hence we have that $f(a+b) \leq f(a) + f(b)$. Then composing f with d, we get $d' = f \circ d$, and so this shows that d' is a bounded metric.

Corollary. d' induces the same topology as d.

Proof. Consider the ϵ -ball $B_d(x, \epsilon)$. By definition, we have that $d'(x, y) \leq d(x, y)$, Then $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)} \leq d(x, y) < \epsilon$, it follows that there is a δ -ball $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$.

On the other hand, we have d'(x,y) + d(x,y)d'(x,y) = d(x,y), suppose then, that $y \in B_d(x,\epsilon)$, then $d'(x,y) + d(x,y)d'(x,y) < \epsilon$, then we also have that $d'(x,y) < \epsilon$; that is to say $B_d(x,\epsilon)B_{d'}(x,\epsilon)$.

(2)

Lemma 0.0.2. Let $\{\mathcal{T}_{\alpha}\}$ be a collection of topological spaces on X. Then $\mathcal{T} = \bigcap \mathcal{T}_{\alpha}$ is also a topological space on X.

Proof. Let $\{\mathcal{T}_{\alpha}\}$ be a collection of topological spaces on a set X, and consider $\mathcal{T} = \bigcap \mathcal{T}_{\alpha}$. Clearly, $\emptyset, X \in \mathcal{T}$, as $X \in \mathcal{T}_{\alpha}$ for all α . Now consider a collection $\{U_{\alpha}\}$, where U_{α} is open in X under \mathcal{T}_{α} . Then $u_{\alpha} \in \mathcal{T}_{\alpha}$, hence so is $\bigcup U_{\alpha}$. This implies that $\bigcup U_{\alpha} \in \mathcal{T}$.

Similarly let $\{U_i\}_{i=1}^n$ be a collection with U_i open in X under \mathcal{T}_i , for $1 \leq i \leq n$, then by similar reasoning, $U_i \in \mathcal{T}_i$, and hence so is $\bigcap_{i=1}^n U_i$, hence $\bigcap_{i=1}^n U_i \in \mathcal{T}$. This makes \mathcal{T} a topology on X.

Remark. Consider $X = \{a, b, c\}$ and the topologies $\mathcal{T}_1 = \{\emptyset, \{a\}, X\}$ and $\mathcal{T}_2 = \{\emptyset, \{b\}, X\}$. Then $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{a\}, \{b\}, X\}$, which is not a topology for it does not contain $\{a, b\}$. In general, $\mathcal{T} = \bigcup \mathcal{T}_{\alpha}$ is not a topology on arbitrary X.

(3)

Lemma 0.0.3. Let $\{\mathcal{T}_{\alpha}\}$ be a collection of topologies on X. Then there exists a unique coarsest topology on X containing all \mathcal{T}_{α} , and there exists a unique finest toplogy on X contained in all of \mathcal{T}_{α} .

Proof. From lemma 0.0.2, we have that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Now define \mathcal{T}_s to be the topology on X generated by the subbasis $\mathcal{S} = \bigcup \mathcal{T}_{\alpha}$ (which is a subbasis by definition), and suppose there is another topology \mathcal{T}'_s on X generated by \mathcal{S} , then $\mathcal{S} \in \mathcal{T}'_s$. Now take $U \in \mathcal{T}_s$ with $U \not\subseteq \mathcal{S}$, then either $U = \bigcup U_{\alpha}$ or $U = \bigcap_{i=1}^n U_i$ (with U_{α} , U_i open in X). Since $U \not\subseteq \mathcal{S}$, and if $U = \bigcup U_{\alpha}$, then $U \notin \mathcal{T}'_s$, a contradiction. On the otherhand, if $U = \bigcap_{i=1}^n U_i$, then $U \subseteq \mathcal{S}$, another contradiction. Hence \mathcal{T}_s is the coarsest such topology.

Now let $\mathcal{T}_l = \bigcap \mathcal{T}_{\alpha}$, and suppose there is another topology \mathcal{T}'_l for which $\mathcal{T}_l \subseteq \mathcal{T}'_l$ and $\mathcal{T}'_l \subseteq \mathcal{T}_{\alpha}$ for all α . Then take $U_{\alpha} \in \mathcal{T}'$, then $U_{\alpha} \in \mathcal{T}_{\alpha}$, for all α hence $U_{\alpha} \in \bigcap \mathcal{T}_{\alpha} = \mathcal{T}_l$, thush $\mathcal{T}'_l \subseteq \mathcal{T}_l$. Then \mathcal{T}_l is the finest such topology.

(4)

Lemma 0.0.4. The collection $C = \{[a,b) : a,b \in \mathbb{Q} \text{ and } a < b\}\}$ forms a basis generating a topology different from the lower limit topology \mathbb{R}_l .

Proof. First, consider an element $[c,d) \in \mathcal{C}$, by the nested interval theorem, we have that there is a $[c',d') \subseteq [c,d)$, then taking $\mathcal{C}' = \{[c',d') \in \mathcal{C} : [c',d') \subseteq [c,d)\}$ We get that for $U \neq \emptyset$ open in \mathbb{R}_l that $U = \bigcap_{C \in \mathcal{C}'} C$. Thus \mathcal{C} forms a basis for a topology on \mathbb{R}_l .

Now consider \mathbb{R}_l in the lower limit topology, and let $[a,b) \in \mathbb{R}_l$ be a basis element. Since \mathbb{Q} is dense in \mathbb{R} , there exists a $[c,d) \subseteq [a,b)$; however, \mathbb{R} is not dense in \mathbb{Q} , so $[a,b) \subseteq [c,d)$ does not hold, for $c,d \in \mathbb{Q}$. So \mathcal{C} forms a basis that generates a topology different from that of \mathbb{R}_l .

(5)

Lemma 0.0.5. Let $X = \{f : f : [0,1] \to [0,1]\}$, and for each subset $A \subseteq [0,1]$, let $B_A = \{f \in X : f(x) = 0 \text{ for all } x \in A\}$, and define $\mathcal{B} = \{B_A : A \subseteq [0,1]\}$. Then \mathcal{B} is a basis for a topology on X.

Proof. Since A[0,1], by the nested interval theorem, there is an interval C such that $C \subseteq A \subseteq [0,1]$. Then for some $x \in C$, we have f(x) = 0, that is $B_C \subseteq B_A$. Now take $\mathcal{B}' = \{B_C : C \subseteq A\}$, then $\mathcal{B}' \subseteq \mathcal{B}$, and given $U \neq \emptyset$ open in X, since X was arbitrary, $U = \bigcup_{B \in \mathcal{B}'} B$. Therefore \mathcal{B} is a basis for a topology on X.