

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

3

AD-A171 415 g

READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER 2. GOVT ACCESSION NO. ARO 23448.1-MA N/A N/A 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subsists)
Mixtures, Generalized Convexity and Balayages Technical 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*) 7. AUTHOR(a) James Lynch DAALO3-86-K-0010 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 3. PERFORMING ORGANIZATION NAME AND ADDRESS University of South Carolina Columbia, SC 29208 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE June, 1986 U. S. Army Research Office 13. NUMBER OF PAGES Post Office Box 12211 Research Triangle Park NC 27700
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

SELECTE AUG 2 7 1986

NA

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

designated by other documentation.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Mixtures. Toherweld for a content. Total a month of the content.

Mixtures, Tchebycheff system, Total positivity, Generalized convexity, Dilations, Balayages.

20. ABSTRACT (Continue on reverse side H recovery and identify by block number)

How the dispersiveness of the mixing distribution carries over to the mixed model is qualified in terms of generalized convex functions. These ideas are extensions of those in Shaked (1980) and Schweder (1982). A representation akin to the one for dilations is also given for balayages defined in terms of these generalized convex functions.

IL FILE CO

DD 1 1473

EDITION OF 1 NOV 68 IS OBSOLETE

UNCLASSIFIED

Mixtures, Generalized Convexity and Balayages

by

James Lynch

University of South Carolina Statistics Technical Report No. 120 60B05-14

June, 1986

Department of Statistics University of South Carolina Columbia, SC 29208

Research supported by the U. S. Army Research Office Grant No. DAAL03-86-K-0010.

Key Words: Mixtures, Tchebycheff system, Total positivity, Generalized convexity, Dilations, Balayages.

AMS 1980 Subject Classification Numbers: Primary: 60B05, 62E10

Secondary: 26A51, 46A55

Abstract

How the dispersiveness of the mixing distribution carries over to the mixed model is qualified in terms of generalized convex functions. These ideas are extensions of those in Shaked (1980) and Schweder (1982). A representation akin to the one for dilations is also given for balayages defined in terms of these generalized convex functions.

1. Introduction. In certain statistical problems, one typically has in mind a family $\{F_{\Theta}: \Theta \in \Theta\}$ of models (distributions) for the observations. As sometimes happens, though, the observed data may be "more dispersed" than might be expected of the above family. This could suggest that a "mixed model" may be a more appropriate fit since mixing introduces more dispersion into the model.

In this paper we qualify just how "dispersiveness" in the mixing distribution carries over to the mixed model for certain types of models. This extends the work of Shaked (1980) and of Schweder (1982). More specifically (and ignoring obvious measure theoretic technicalities), for a mixing distribution λ on Θ , let $F_{\lambda} = \int F_{\Theta} d\lambda$ denote the mixed model. When the models, F_{Θ} , $\Theta \in \Theta$, arise from a family of densities $\{f_{\Theta} \colon \Theta \in \Theta\}$ with respect to a σ -finite measure m, $f_{\lambda} = \int f_{\Theta} d\lambda$ will denote the mixed density with respect to m. Note that $f_{\Theta} = f_{\delta}$ when δ_{Θ} is the mixing distribution degenerate at Θ .

Shaked (1980) investigated two types of dispersiveness for one parameter exponential families. One type was in terms of sign changes and the other in terms of dilations. (A distribution G is said to be a <u>dilation</u> of another distribution F, written G > F, if $\int cdF \le \int cdG$ for all convex c.) Shaked showed that $f_{\lambda} - f_{\alpha}$ has two sign changes and the order is +, -, + when λ satisfies the first "moment" condition $\int u(\theta)d\lambda(\theta) = u(\theta^*)$ where $u(\theta) = \int xf_{\theta}(x)dm(x)$. He also showed that if $u(\theta)$ is linear in θ and $\chi > \lambda$, then $F_{\psi} > F_{\lambda}$.

DTIC COPY INSPECTED

Schweder (1982) further investigated this second type of dispersiveness d d and showed that $F_{\gamma} > F_{\lambda}$ whenever $\gamma > \lambda$ if and only if the family $\{F_{\Theta} \colon \Theta \in \Theta\}$ is convexly parameterized. That is, $c(\Theta) = \int c(x) dF_{\Theta}(x)$ is convex whenever c is convex.

The above two types of dispersiveness might be considered first order notions of dispersiveness. The sign change since if is compared to fix which arises from the degenerating mixing distribution δ is the dilation of the dispersiveness and δ if and only if $\gamma(\cdot) = \int P(\cdot|\theta) d\lambda(\theta)$, where $P(\cdot|\theta) > \delta_{\theta}$ is a probability distribution for each θ . (See Strassen, 1965, Theorems 2 and 8.)

Here we are interested in higher order (k-order, $k \ge 1$) notions of dispersiveness. These higher order notions involve Tchebycheff systems (T-systems) of functions $U = \{u , \dots, u_{2k-1}\}$ and U-convex functions which are defined in terms of U.

In Section 2, a rudementary account on T-systems and U-convexity is given and a simple characterization of U-convexity is proved (Theorem 2.1). Very thorough accounts on T-systems and generalized convexity can be found in Karlin and Studden (1966) and in Karlin (1968). A palatable introduction to generalized convexity can be found in Roberts and Varberg (1973).

In Section 3, U-U convexly parameterized families are defined for T-systems U and U. It is shown that $\{F_{\Theta}\colon \Theta \in \Theta\}$ is U-U convexly parameterized if and only if $F_{V} > F_{\lambda}$ whenever $\gamma > \lambda$ where > and > are partial orderings defined in terms of U and U (Theorem 3.1). In addition it is shown that under the (equivalent) moment conditions

or
$$\int \tilde{u}_{j} d\lambda = \int \tilde{u}_{j} d\lambda_{k} \qquad j=0,\dots,2k-1$$
 or
$$\int u_{j} dF_{\lambda} = \int u_{j} dF_{\lambda_{k}} \qquad j=0,\dots,2k-1$$

 $f_{\lambda} - f_{\lambda_k}$ has 2k sign changes and the order is +,-,+,...,-,+ where λ is discrete with k mass points (Theorems 3.2, 3.3 and 3.4). The latter result is useful in determining "if you've gone for enough" when fitting a mixed model using a method of moments approach.

Finally, in Section 4, a necessary and sufficient condition is given to show when a probability measure γ has the representation

$$\gamma(\cdot) = \int P(\cdot | \mathbf{x}_1, \dots, \mathbf{x}_k) \prod_{i=1}^k d\lambda(\mathbf{x}_i)$$

$$P(\cdot | \mathbf{x}_1, \dots, \mathbf{x}_k) > F_{\mathbf{x}}$$

where

and $F_{\underline{x}}$ is the empirical distribution function for the sample $\underline{x} = (x_1, \dots, x_k)$ (Theorem 4.1).

2. U-Convexity. Fundamental to the notion of U-convexity is the definition of a Tchebycheff system. (Throughout this section, $X = \{x_i : i=0,1,\ldots,n+1\}$, $x_0 < x < \ldots < x_{n+1}$.)

<u>Definition</u>. A family of functions $U = \{u_i : i=0,1,...,n\}$ defined on X is said to be a <u>Tchebycheff system (T-system) on X</u> if the determinant

$$u(x') = u(x'_0, ..., x'_n) = \begin{bmatrix} u_0(x'_0) & ... & u_0(x'_n) \\ u_1(x'_0) & ... & u_1(x'_n) \\ & & & & \\ u_n(x'_0) & ... & u_n(x'_n) \end{bmatrix}$$

is positive whenever $X' = \{x'_0 < ... < x'_n\} \subseteq X$. For a set Y of cardinality greater than n+1, the family U is said to be a T-system on Y if U is a T-system for each $X \subseteq Y$.

<u>Definition</u>. Let $U = \{u_i : i=0,...,n\}$ be a T-system on X. A function f is said to be U-convex on X if the determinant

$$u_{1}(x_{0}) \dots u_{0}(x_{n+1})$$

$$u_{1}(x_{0}) \dots u_{1}(x_{n+1})$$

$$\vdots$$

$$u_{n}(x_{0}) \dots u_{n}(x_{n+1})$$

$$f(x_{0}) \dots f(x_{n+1})$$

If U is a T-system on a set Y of cardinality greater than n+1, f is said to be \underline{U} -convex on Y if f is U-convex on each $X \subset Y$. A function f is said to be \underline{U} -concave if -f is \hat{U} -convex.

Remark. Note that a polynomial in the u's, $P(x) = A_0 u_0(x) + A_1 u_1(x) + ... + A_n u_n(x)$, is both U-convex and U-concave.

The next theorem gives a useful characterization of U-convexity. For the usual definition of convexity, i.e., $u_0 = 1$ and $u_1(x) = x$, it corresponds to the midpoint of the chord between two points on the graph of a convex function lying above the function.

For this characterization we need the following notation. Let $k = \left[\frac{n+2}{2}\right]$ where [x] denotes the integer part of x. For $X = \{x_0 < x < \dots < x_{n+1}\}$, let $t_k = x_n$, $t_{k-1} = x_{n-2}$, $t_{k-2} = x_{n-4}$, ..., i.e., $t_{k-j} = x_{n-2j}$ for $j = 0,1,\dots,k-1$. For $\underline{t} = (t_1,t_2,\dots,t_k)$, let $F_{\underline{t}}$ denote both the probability distribution and probability measure which places mass k^{-1} at t_i . $F_{\underline{t}}$ is just the empirical distribution for the sample t_1,\dots,t_k .

Theorem 2.1. A function f is U-convex on X if and only if

$$(2.1) \qquad \int f dF_{\underline{t}} \leq \int f d\lambda$$

for each finite measure λ with support contained in X satisfying

(2.2)
$$\int u_j dF_{\underline{t}} = \int u_j d\lambda \text{ for } j=0,1,...,n.$$

<u>Proof.</u> (\rightarrow) If f is not U-convex, then $u_f(X) < 0$. So,

$$(2.3) \quad \underline{A}\underline{\Delta} = \begin{bmatrix} u_0(x_0) & \cdots & u_0(x_{n+1}) \\ u_1(x_0) & \cdots & u_1(x_{n+1}) \\ \vdots & \vdots & \ddots & \vdots \\ u_n(x_0) & \cdots & u_n(x_{n+1}) \\ f_0(x_0) & \cdots & f(x_{n+1}) \end{bmatrix} \begin{bmatrix} \Delta_0 \\ \Delta_1 \\ \vdots \\ \Delta_n \\ \Delta_n \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -1 \end{bmatrix} = -1 \underline{e}$$

has a solution Δ .

By Cramer's rule, $\Delta_j = (-1)^{n+4+j} u(X_j) / u_f(X)$ where $X_j = X - \{x_j\}$. Since $u_f(X) < 0 < u(X_j)$, Δ_j alternates in sign with $\Delta_{n+1} < 0$. So,

 $c = \max\{\Delta_i: j=n, n-2, ... \} > 0.$

Let $\alpha_j = c - \Delta_j$ for j=n,n-2,... and $= -\Delta_j$ for the other values of j. Then, by (2.3),

and
$$0 = \sum_{j=0}^{n+1} u_{i}(x_{j}) \Delta_{j} = c \sum_{j=n, n-2, \dots} u_{i}(x_{j}) - \sum_{j=0}^{n+1} u_{i}(x_{j}) \alpha_{j}$$

$$\vdots -1 = \sum_{j=0}^{n+1} f(x_{j}) \Delta_{j} = c \sum_{j=n, n-2, \dots} f(x_{j}) - \sum_{j=0}^{n+1} f(x_{j}) \alpha_{j}.$$

Setting $\lambda(\{x_j\}) = \alpha_j(kc)^{-1} \ge 0$, we have from the above that (2.2) is satisfied but $\int f d\lambda < \int f F_t$. This proves the "if" part of the theorem.

(+) Now let f be U-convex. If $u_f(X) = 0$, then f is a polynomial in the u's. In this case, from (2.2) equality holds in (2.1). Thus to complete the proof, we only need to consider when $u_f(X) > 0$.

Let λ denote a measure whose support is contained in X and which satisfies (2.2). Let $\Delta_{\underline{i}} = \Delta(\{x_{\underline{i}}\}) = \lambda(\{x_{\underline{i}}\}) - F_{\underline{t}}(\{x_{\underline{i}}\})$ and $c = \int f d\Delta$. Then for A and \underline{e} as defined in (2.3), $A\underline{\Delta} = c\underline{e}$. So, from Cramer's rule, $0 \le \lambda(\{x_{\underline{n+1}}\}) = \Delta_{\underline{n+1}} = c(-1)^{2(\underline{n+2})}u(X_{\underline{n+1}}) / u_f(X)$. Since $u_f(X) > 0$ and $u(X_{\underline{n+1}}) > 0$, it follows that $\int f d\lambda - \int f dF_{\underline{t}} = c \ge 0$.

U-convex functions can be used to define a measure of dispersiveness for probability measures. This is needed in the next section to qualify how dispersiveness of the mixing distribution carries over to the mixed model. The terminology is from Meyer (1966).

Definition. Let $U = \{u_0, \dots, u_n\}$ be a T-system on a Borel set $Y \subseteq \mathbb{R}$. Let λ and ν be two finite measures on Y. If $\int f d\lambda \leq \int f d\nu$ for all integrable U-convex f, then ν is called a balayage of λ . This is written U as $\lambda < \nu$ or $\nu > \lambda$. Note that if u=1 is in U, then $\int d\lambda = \int d\nu$.

3. U-U Convexly Parameterized Families. Let $\{F_{\theta}: \theta \in \theta\}$ be a family of distribution functions on $X \subseteq R$ where $\theta \subseteq R$. For a (integrable) function g, let $g(\theta) = \int g(x) dF_{\theta}(x)$.

Definition. Let $\mathbf{U} = \{\mathbf{u}_0, \dots, \mathbf{u}_n\}$ be a T-system on \mathbf{X} and let $\mathbf{U} = \{\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_n\}$. The family $\{\mathbf{F}_{\boldsymbol{\theta}} \colon \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ is said to be $\underline{\mathbf{U}}$ - $\underline{\mathbf{U}}$ convexly parameterized if (1) $\underline{\mathbf{U}}$ is a T-system on $\boldsymbol{\theta}$, and (2) $\underline{\mathbf{C}}$ is $\underline{\mathbf{U}}$ -convex whenever $\underline{\mathbf{C}}$ is $\underline{\mathbf{U}}$ -convex. (Implicit here is that $\underline{\mathbf{U}}_{\mathbf{j}}(\mathbf{x})$ is integrable for each $\mathbf{F}_{\boldsymbol{\theta}}$ and that the cardinalities of \mathbf{X} and of $\boldsymbol{\theta}$ are greater than \mathbf{n} .)

Example 1. Let F_{Θ} be absolutely continuous with respect to some σ -finite measure m on X. Let $f_{\Theta} = dF_{\Theta} | dm$. If $f_{\Theta}(x)$ is strictly totally positive (STP) of order n+1, (see Karlin, 1968, pages 11 and 12 for the definition), then \tilde{U} is a T-system whenever U is a T-system. This follows from the basic composition formula on page 98 of Karlin (1968) (see also Theorem 3.2 on page 284).

Example 2. The one parameter exponential family with density $f_{\Theta}(x) = e^{x\Theta}B(\theta)$ is STP of all orders up to the minimum of the cardinalities of θ and X. Such a family includes the binomial family, the Poisson, the gamma with fixed shape parameter, and the normal with fixed variance. See Karlin (1968), page 19, for details.

Analogous to Schweder's (1982) theorem on on page 166 for convexly parameterized families, the following theorem points out the connection between U-U convexly parameterized families and balayages.

Theorem 3.1. Let $U = \{u_0, \ldots, u_n\}$ be a T-system for which U is a T-system for the family $\{F_\theta\colon \theta \in \theta\}$. Then $\{F_\theta\colon \theta \in \theta\}$ is U-U convexly parameterized if and only if $F_\lambda < F_\nu$ whenever $\lambda < \nu$.

<u>Proof.</u> (+) Let $\theta_{n+1} = \{\theta_0 < \theta_1 < \ldots < \theta_{n+1}\} \subset \theta$. For $k = \lfloor \frac{n+2}{2} \rfloor$ and $j=0,1,\ldots,k-1$, let $t_{k-j} = x_{n-2j}$. Let $F_{\underline{t}}$ denote the probability distribution placing mass 1/k at each of the points t_1,\ldots,t_k and let λ be any other finite measure with support contained in θ_n and satisfying

$$\begin{split} \int \tilde{u}_j d\lambda &= \int \tilde{u}_j dF_{\underline{t}} & j = 0, \dots, n. \\ &\tilde{U} & U \\ \text{Then, by Theorem 2.1, } F_{\underline{t}} &< \lambda. \text{ So, } F_{\underline{t}} &< F_{\lambda}. \text{ Thus, if } c \text{ is U-convex,} \\ &\int \tilde{c} dF_{\underline{t}} &= \int \int c(x) dF_{\theta}(x) dF_{\underline{t}}(\theta) \\ &= \int c(x) dF_{\underline{t}}(x) \leq \int c(x) dF_{\lambda}(x) \\ &= \int \int c(x) dF_{\theta}(x) d\lambda(\theta) = \int \tilde{c} d\lambda \end{split}$$

This with another application of Theorem 2.1 yields that c is U-convex.

(+) Let $\lambda < \nu$ and let c be U-convex. Since $\{F_{\theta}: \theta \in \Theta\}$ is U-U convexly parameterized, c is U convex. So,

In the next three theorems sign change results are given for $\ \mathbf{f}_{\lambda}$ - $\mathbf{f}_{\lambda_{k}}$ when

(3.1)
$$\int \tilde{u}_j d\lambda = \int \tilde{u}_j d\lambda_k \quad \text{for } j=0,1,\dots,2k-1,$$

and $\lambda_{\mathbf{k}}$ is discrete with \mathbf{k} mass points. In these three theorems it is

assumed that, for each $\theta \in \theta$, F_{θ} has a density f_{θ} with respect to a θ -finite measure m which is STP_{2k+1} on $\theta \times X$, X the support of m. Throughout it also is assumed that, for each j, u_j is integrable with respect to f_{λ} and f_{λ_k} .

The first theorem deals with the classical T-system $U = \{1, x^1, \dots, x^{2k-1}\} \quad \text{and generalizes Theorem 1 of Shaked (198)}.$

Theorem 3.2. Let λ and λ_k be two mixing distributions satisfying (3.1) for $\mathbf{U} = \{1, \mathbf{x}^1, \dots, \mathbf{x}^{2k-1}\}$ where λ_k is discrete with k mass points. If $\mathbf{m}(\{\mathbf{f}_{\lambda} \neq \mathbf{f}_{\lambda_k}\}) > 0$, then $\mathbf{f}_{\lambda} - \mathbf{f}_{\lambda_k}$ has 2k sign changes on \mathbf{X} and the order is $+,-,+,\dots,-,+$.

<u>Proof.</u> Note that from the definition of STP_{2k+1} it is implicit in the statement of the theorem that both Θ and X are of cardinality greater than 2k.

For θ a mass point of λ_k , let $s(\theta) = -1$ if $\lambda(\{\theta\}) \le \lambda_k(\{\theta\})$ and let $s(\theta) = 1$ otherwise. So $s(\theta)$ has at most 2k sign changes.

Let μ be the measure given by $d\mu=s(\cdot)d(\lambda-\lambda_k)$. Since $\Delta(x)=f_\lambda(x)-f_{\lambda_k}(x)=\int s(\theta)f_\theta(x)d\mu(\theta)$ and $f_\theta(x)$ is STP_{2k+1} , it follows from the variation diminishing theorem (Karlin, 1968, page 233) that $\Delta(\cdot)$ can have at most 2k sign changes. If there are less than 2k sign changes, say 1 sign changes, then there are 1 points in X, $x_1 < x_2 < \ldots < x_1$, such that $\Delta(x)\Delta(y) \leq 0$ when $x \in I_j$ and $y \in I_{j+1}$, $j=0,\ldots,l-1$ and $I_0=(-\infty,x_1)$, $I_1=(x_1,x_2),\ldots,I_1=(x_1,\infty)$. Let $P(x)=(x-x_1)(x-x_2)\ldots(x-x_1)$. Since P(x) is a polynomial of degree $1\leq 2k-1$, it follows from (3.1) that

(3.2) $\int P(x)\Delta(x)dm(x) = 0.$

Since $P(x)\Delta(x)$ is of the same sign and $P(x) \neq 0$ except at x_1, \ldots, x_1 ,

(3.3) $\Delta(x) = 0 \text{ a.e. } \{m\} \text{ on } x-x_0, \ x_0 = \{x_1, \dots, x_1\} \text{ from } (3.2).$ Thus, for $m_n = \Delta(x_n)m(\{x_n\}),$ $0 = \sum_{n=1}^{1} x_n^j m_n, \ j=0,\dots, l-1$

from (3.1) and (3.3). So m = 0. This with (3.3) implies that $f_{\lambda_k} = f_{\lambda}$ a.e. [m] which contradicts the hypotheses of the theorem.

When $U = \{u_0, \dots, u_{2k-1}\}$ is a <u>Haar system</u>, i.e. $\{u_0, \dots, u_j\}$ is a T-system for $j=0,1,\dots,2k-1$, then the next theorem is a consequence of Theorem 5.2 on page 30 of Karlin and Studden (1966) and the above proof with x^j replaced by $u_j(x)$.

Theorem 3.3. Assume that the support of m, X, is contained in a finite interval [a,b]. Let $U=\{u_0,u_1,\ldots,u_{2k-1}\}$ be a Haar system, of continuous functions on [a,b]. Let λ and λ_k be two mixing distributions satisfying (3.1) where λ_k is discrete with k mass points. If $m(\{f_{\lambda} \neq f_{\lambda_k}\}) > 0$, then $f_{\lambda} - f_{\lambda_k}$ has 2k sign changes on X and the order is $+,-,+,\ldots,-,+$.

For the next theorem, it is assumed that $\mathbf{U} = \{\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{2k}\}$ is a Descartes system, i.e., $\{\mathbf{u}_{\mathbf{i}_1}, \mathbf{u}_{\mathbf{i}_2}, \dots, \mathbf{u}_{\mathbf{i}_m}\}$ is a T-system for each $\{\mathbf{i}_1, < \dots <, \mathbf{i}_m\} \subset \{0, \dots, 2k\}$.

Theorem 3.4. Let $U=\{u_0,\ldots,u_{2k}\}$ be a Descartes system on X. Let λ and λ_k be two mixing distributions satisfying (3.1) where λ_k is discrete with k mass points. If $m(\{f_{\lambda} \neq f_{\lambda_k}\}) > 0$, then $f_{\lambda} - f_{\lambda_k}$ has 2k sign changes on X and the order is $+,-,+,\ldots,-,+$.

<u>Proof.</u> As in the first part of the proof of Theorem 3.2, $\Delta = f_{\lambda} - f_{\lambda_k}$ has at most 2k sign changes by the variation diminishing theorem (page 233 of Karlin, 1968).

Since U is a Descartes system, $u_j(x)$ is STP_{2k+1} on $\{0,1,\ldots,2k\} \times X$. If Δ has less than 2k sign changes, say $1 \le 2k-1$ sign changes, another application of the variation diminishing theorem shows that $g(j) = \int u_j(x)\Delta(x)dm(x)$ can have at most 1 sign changes on $\{0,1,\ldots,2k\}$ where zeroes of g can be arbitrarily assigned either sign. But this leads to a contradiction since g(j) = 0 for $j=0,\ldots,2k-1$.

Remark. These Theorems should be compared with Theorems 5.4 and 5.5 on pages 409 and 410 of Karlin and Studden (1966). Note that there U is an extended complete T-system (or what might be called an extended Haar system) which involves assumptions on the derivatives of the u's.

= 2k-1, the following determinants are all positive:

$$\begin{vmatrix} u_0(x_{q_1}) & u_0'(x_{q_1}) & \dots & u_0^{(q_1)}(x_{q_1}) & u_0(x_{q_2}) & \dots & u_0(x_{q_1}) & \dots & u_0^{(q_1-q_1-1+1)} \\ u_1(x_{q_1}) & u_1'(x_{q_1}) & \dots & u_1^{(q_1)}(x_{q_1}) & u_1(x_{q_2}) & \dots & u_1(x_{q_1}) & \dots & u_1^{(q_1-q_1-1+1)} \\ \vdots & \vdots \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_2}) & \dots & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots \\ u_{2k-1}(x_{q_1}) & u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) \\ u_{2k-1}(x_{q_1}) & \dots & u_{2k-1}(x_{q_1}) & \dots \\ u_{2k-1}(x_{q_1}) & \dots$$

(See Karlin and Studden, 1966, page 6.) In this section a representation is obtained for balayages defined in terms of U-convex functions which is akin to the (Hardy-Littlewood-Polya-Blackwell-Stein-Sherman-Cartier-Fell-Meyer-Strassen) representation for dilations (see Strassen, 1965, Theorems 2 and 8).

To state the representation theorem requires the following notation. Let $F = \{f: f \text{ is } U\text{-concave on } I\}$. Note that since U is a T-system of continuous functions, any $f \in F$ is continuous. Furthermore, when U is an ET-system with k > 1, $f \in F$ is differentiable. (Theorems B and D on pages 248 and 249 of Roberts and Varberg, 1973, or Theorem 3.4 on page 188 of Karlin, 1968).

For $\underline{x} \in I^k$ and f a real valued function on I, let $\overline{f}(\underline{x}) = (f(x_1) + \ldots + f(x_k))/k$. Let B and B^k denote the Borel subsets of R and R^k , respectively. For v a probability measure (p.m.) on (R,B), let $S(v) = \{x: v((x-\varepsilon,x+\varepsilon)) > 0 \text{ for every } \varepsilon > 0\}$ denote the support of v. Note that S(v) is always closed.

. The following conditions are imposed in the representation theorem:

- (c1) ν and λ are two p.m.'s on (R,B) with supports contained in a compact interval K \subset I and satisfying
- (c2) $\int f_1 \wedge ... \wedge f_m dv \leq \int \overline{f}_1 \wedge ... \wedge \overline{f}_m \Pi_1^k d\lambda$ whenever $f_i \in \mathbb{F}$, i=1,...,m,m=1,2,...

the second of th

Below $P(\cdot|\cdot)$ denotes a <u>Markov kernel</u> on $B \times K^k$, i.e., $P(\cdot|\cdot)$ is a p.m. on (R,B) for each $\underline{x} \in K^k$ and $P(A|\cdot)$ is B_{K^k} (= {Borel subsets of K^k }) measurable for each $A \in B$.

Theorem 4.1. Under condition (c1), (c2) is necessary and sufficient for $v(A) = \int P(A|\underline{x}) \ \Pi_1^k \ d\lambda(x_{\underline{i}}) \quad \text{for every } A \in B \quad \text{where} \quad P(\cdot|\cdot) \quad \text{is a Markov}$ kernel on $B \times K^k$ with $P(\cdot|\underline{x}) > F_{\underline{x}}$ for every $\underline{x} \in K^k$.

The proof of Theorem 4.1, though somewhat involved, is really along the line of Strassen's (1965) proof for dilations. Before giving the proof some further quantities need to be defined and some lemmas need to be stated and proved.

Let K be a compact interval contained in I. Later K will be chosen to contain $S(\nu)$ and $S(\lambda)$. Let D denote the set of discrete p.m.'s on (K,B_K) with at most k mass points.

Let M denote the moment space $\{\underline{m} \in \mathbb{R}^{2k}: m_j = \int u_{j-1} dD, j=1,...,2k,DeD\}$.

Note that Theorem 2.1 and case 2 (ii) on pages 42 and 46, respectively, of Karlin and Studden (1966) guarantee that if $\underline{m} \in \mathbb{N}$ are the "moments" of a p.m. with support contained in K, then there is a (unique) $D_{\underline{m}} \in D$ with moments \underline{m} . Consequently \underline{M} is convex and, since the u's are continuous, it is easy to see that \underline{M} is compact.

Let $f \in C(K)$. For $\underline{m} \in M$ and $\underline{x} \in K^k$, let $f \in C(K)$. $1_{\underline{f}}(\underline{m}) = \sup\{\int f d\mu \colon \mu > D_{\underline{m}}, S(\lambda) \subset K\}$ $h_{\underline{f}}(\underline{x}) = \sup\{\int f d\mu \colon \mu > F_{\underline{x}}, S(\lambda) \subset K\}$

and

where $\mathbf{F}_{\underline{\mathbf{x}}}$ is the empirical distribution of the sample $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$. Note that in the definition of $\mathbf{l}_{\mathbf{f}}$ and $\mathbf{h}_{\mathbf{f}}$, μ is a p.m. since $\mathbf{u}_0 = 1$.

Let $m(\cdot): \mathbb{R}^k \to \mathbb{H}$ be given by $m_j = \int u_{j-1} dF_{\underline{x}} = \sum_{i=1}^k u_{j-1}(x_i)/k$. Obviously $m(\cdot)$ is continuous and it follows from the definition of l_f and $h_f(\underline{x}) = l_f(m(\underline{x}))$.

In Lemma 4.2, the relative interior of M refers to the interior of M when M is viewed as a subset of the smallest affine set containing it (see Rockafellar, 1970).

Lemma 4.2. $l_f(\cdot)$ is concave on M, and consequently, continuous on the relative interior of M.

<u>Proof.</u> That $l_{\mathbf{f}}(\cdot)$ is continuous on the relative interior of M is immediate from Theorem 10.1 of Rockafellar (1970) once $l_{\mathbf{f}}(\cdot)$ is shown to be concave on M.

To do this, let \underline{m}_1 and $\underline{m}_2 \in \mathbb{M} \ (m_1 \neq m_2)$, $\alpha \in (0,1)$ and $\overline{\alpha} = 1-\alpha$. Since \mathbb{M} is convex, $\underline{m}_3 = \alpha \, \underline{m}_1 + \overline{\alpha} \, \underline{m}_2 \in \mathbb{M}$. For i=1 and 2, let $\lambda_i > D_{\underline{m}_i}$ and let

ቔዸቔዸቔጜጜቔዸቔዹቔዹጚዀቔጜኯዄኯቔዹቔዹቔጜጚጜኯጜኯጜኯጜዺቔዺቔጜኯጜጜጚዹጚዹጚዹዀጜጜዹጜዹጜ

 $\lambda_3 = \alpha \ \lambda_1 + \overline{\alpha} \ \lambda_2$. That $\mathbf{l_f}$ is concave on M will follow immediately from the definition of $\mathbf{l_f}$ once it is shown that $\lambda_3 > D_{\underline{m}_3}$. Since > is transitive, it suffices to show that $D = \alpha \ D_{\underline{m}_1} + \overline{\alpha} \ D_{\underline{m}_2} > D_{\underline{m}_3}$.

<u>Case 1: k=1</u>. Let x < y < z denote the three mass points of D and D mand let g be U-convex. To avoid trivialities, assume that $u_q(x,y,z) > 0$.

First we show that y is the mass point corresponding to D_{m3} . If not assume that x is the mass point corresponding to D_{m3} . Then

$$\begin{bmatrix} 1 & 1 & 1 \\ u_1(x) & u_1(y) & u_1(z) \\ g(x) & g(y) & g(z) \end{bmatrix} \begin{bmatrix} -1 \\ \alpha \\ -\overline{\alpha} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix}, c = \int gd(D-D_{\underline{m}_3}).$$

By Cramer's rule, $-1 = cxu(y,z)/u_g(x,y,z)$ and $0 < \overline{\alpha} = cxu(x,y)/u_g(x,y,z)$ which is a contradiction since u(x,y), u(y,z) and $u_g(x,y,z)$ are all positive. Similarly z cannot be a mass point of D_{m_2} .

Since y is the mass point corresponding to $\ensuremath{\,D_{m_2}}$

$$\begin{bmatrix} 1 & 1 & 1 \\ u_1(x) & u_1(y) & u_1(z) \\ g(x) & g(y) & g(z) \end{bmatrix} \begin{bmatrix} \alpha \\ -1 \\ \overline{\alpha} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix}, c = \int gd(D-D_{\underline{m}_3}).$$

Again by Cramer's rule, $0 < \alpha = cxu(y,z)/u_g(x,y,z)$. So, 0 < c since u(y,z) and $u_{\alpha}(x,y,z)$ are both positive.

Case 2: k > 1. Let $x_i \in K$, $i=1,\ldots,l \le k$ denote the mass points of $D_{\underline{m}_3}$. If 1 < k, let $x_i \in K$, $i=k-l+1,\ldots,k$ be chosen so that x_1,\ldots,x_k are all distinct. Let $y_1 < y_2 < \ldots < y_k$ denote the ordered x's.

Let g be U-convex. Since U is an ET-system, recall that g is differentiable and $u^*(y_1,y_1,y_2,y_2,\ldots,y_k,y_k)>0$. So there exists a polynomial

P(x) in the u's such that $P(x_i) = g(x_i)$ and $P'(x_i) = g'(x_i)$ for i-1,...,k. By Theorem 2.2 on pages 282 and 283 of Karlin (1968), $g(x) \ge P(x)$ on K. Thus, since the "moments" of D agree with those of D_{m_2} ,

<u>Proof.</u> That $h_f \ge \overline{f}$ is immediate from the definition of h_f .

CANADA CONTRACTOR CONTRACTOR CONTRACTOR

Let $\underline{x} \in K^k$. If the coordinates of \underline{x} are all distinct, it follows from Theorem 2.1 on page 42 of Karlin and Studden (1966) that $\underline{m}(\underline{x})$ must be in the relatively interior of M. Since $h_{\underline{f}}(\underline{x}) = l_{\underline{f}}(\underline{m}(\underline{x}))$, it follows from Lemma 4.2 that $h_{\underline{f}}$ is continuous at \underline{x} .

Now consider the case when at least two coordinates of \underline{x} agree. Let $y_1 < \ldots < y_1$, 1 < k denote the distinct values of x_1, \ldots, x_k . First we show that $\lambda = F_x$ if $\lambda > F_x$ with $S(\lambda) \subseteq K$, in which case, $h_f(\underline{x}) = \overline{f}(\underline{x})$.

Since 1 < k, by Theorem 5.2 on page 30 of Karlin and Studden there exists a nonnegative polynomial P(x) in the u's whose only zeroes on K are y_1, \ldots, y_1 . Since P(·) is both U-concave and U-convex, $\int Pd(\lambda - F_{\underline{x}}) = 0$ whenever $\lambda > F_{\underline{x}}$ and $S(\lambda) \subset K$. But this implies that $S(\lambda) \subset \{y_1, \ldots, y_1\}$. So $\lambda \in D$. Since the "moments", \underline{m} , uniquely determine $D_{\underline{m}}$ and $\lambda > F_{\underline{x}}$ implies that $\int u_1 d\lambda = \int u_1 dF_{\underline{x}}$ for each j, $\lambda = F_{\underline{x}}$.

Let $\underline{x}_n \to \underline{x}$ through points in K^k as $n \to \infty$. Now we will show that $h_f(\underline{x}_n) \to \overline{f}(\underline{x}) = h_f(\underline{x})$. Let $\varepsilon_n \downarrow 0$, $\varepsilon_n > 0$ as $n \to \infty$. Choose $\mu_n > F_y$ with $g(\mu_n) \subset K$ such that $h_f(\underline{x}_n) \leq \int f d\mu_n + \varepsilon_n$. Since $f \in C(K)$, it suffices to show that $\mu_n \to F_{\underline{x}}$ in distribution since then

$$\overline{f}(\underline{x}) = \lim \overline{f}(\underline{x}_n) \leq \underline{\lim} h_{\underline{f}}(\underline{x}_n) \\
\leq \overline{\lim} h_{\underline{f}}(\underline{x}_n) \leq \lim \int f d\mu_n = \int f dF_{\underline{x}} = \overline{f}(\underline{x}).$$

Since K is compact, $\{\mu_n\}$ is tight. Thus to show that $\mu_n \to \mathbb{F}_{\underline{X}}$ in distribution it suffices to show that if $\{\mu_m\}$ is a convergent subsequence of $\{\mu_n\}$, say converging to μ , then $\mu > \mathbb{F}_{\underline{X}}$.

To see this, let g be U-convex. Since g is U-convex, g is continuous on K. Since $\mu_{\rm m}$ > ${\rm F_{X_m}}$

$$\int g d\mu = \lim \int g d\mu_{m} \ge \lim \int g dF_{\underline{x}_{m}} = \int g dF_{\underline{x}}.$$

So
$$\mu > F_{\underline{x}}$$
.

Now let K denote the set of functions on K^k which are uniform limits on K^k of functions of the form $\overline{f}_1 \wedge \overline{f}_2 \wedge \ldots \wedge \overline{f}_m$, $f_i \in F$, $i=1,\ldots,m$, $m=1,2,\ldots$. For two p.m.'s $\underline{\lambda}$ and $\underline{\nu}$ on (K^k,B_k) write $\underline{\nu} \stackrel{?}{>} \underline{\lambda}$ if $\int \underline{f} d\underline{\nu} \leq \int \underline{f} d\underline{\lambda}$ for every $\underline{f} \in K$, i.e., $\underline{\nu}$ is a balayage of $\underline{\lambda}$ under $\stackrel{?}{>}$. Let $\delta_{\underline{x}}$ denote the p.m. which is degenerate at \underline{x} .

The following lemma characterizes K in terms of balayages of $\frac{\delta_{\underline{x}}}{\underline{x}}$. The proof is the same as the proof of Theorem 47 on page 240 of Meyer (1966). As a corollary, we get that $h_{\varepsilon} \in K$.

Lemma 4.4. Let $\underline{f} \in C(\mathbb{R}^k)$. Then $\underline{f} \in \mathbb{R}$ if and only if $\int \underline{f} d\underline{\lambda} \leq \underline{f}(\underline{x})$ whenever $\underline{\lambda} \stackrel{*}{>} \delta_{\underline{x}}$, $\underline{x} \in \mathbb{R}^k$.

Corollary 4.5. h, & K.

<u>Proof.</u> Note that $h_{\underline{f}} \in C(K^k)$ by Lemma 4.3. So, by Lemma 4.4, it suffices to show that $\int h_{\underline{f}} d\underline{\lambda} \leq h_{\underline{f}}(\underline{x})$ whenever $\underline{\lambda} \stackrel{*}{>} \delta_{\underline{x}}$ and $\underline{x} \in K^k$.

Since K is compact, it is easy to see that $h_{f}(\underline{x})$ is a support function

on C(K) (i.e., subadditive and nonnegative homogeneous as a function in f) for each \underline{x} satisfying the conditions of Strassen's (1965) Theorem 1 (Theorem 51 on page 244 of Meyer, 1966). Thus $h(f) = \int h_f d\underline{\lambda}$ is the support function of p.m.'s of the form

(4.1)
$$v(A) = \int P(A|\underline{y}) d\underline{\lambda}(\underline{y}) \text{ where } P(\cdot|\underline{y}) > F_{\underline{y}} \text{ is a}$$
Markov kernel on $B_{\underline{y}} \times K^{k}$.

If $g \in F$, then $\overline{g} \in K$ and it is immediate from (4.1) that, for such a v, $\int g dv = \iint g(z)P(dz|\underline{y})d\underline{\lambda}(\underline{y}) \leq \int \overline{g}(\underline{y})d\underline{\lambda}(\underline{y}) \leq \overline{g}(\underline{x}) = \int g dF_{\underline{x}} \quad \text{whenever} \quad \underline{\lambda} \stackrel{*}{>} \delta_{\underline{x}}.$ So, $v > F_{\underline{x}}$. Thus, since $h(f) = \sup\{\int f dv : v \text{ is of the form (4.1)}\}$ (by the Hahn-Banach Theorem – see (5) on page 424 of Strassen, 1964), $h(f) \leq h_f(\underline{x}).$

For a p.m. ν on (R,B) let ν_0 be the p.m. on (R^k,B^k) defined by $\nu_0(B_1 \times \ldots \times B_k) = \nu(B_1 \cap B_2 \cap \ldots \cap B_k)$ for $B_i \in B$, $i=1,\ldots,k$. In other words, ν_0 is just the p.m. which is concentrated on the diagonal of R and having univariate marginals ν .

Lemma 4.6. Let ν and λ be two p.m.'s on (R,B) with $S(\nu) \cup S(\lambda) \subset K$. Then condition (c2) is equivalent to

(c2') $\int \underline{f} dv_0 \leq \int \underline{f} \Pi_1^k d\lambda$ for every $\underline{f} \in \mathbb{R}$.

<u>Proof.</u> From the definition of v_0 it is clear that

$$(4.2) \qquad \int \, \overline{f}_1 \, \wedge \ldots \wedge \, \overline{f}_m \, d\nu_0' = \int \, f_1 \, \wedge \ldots \wedge \, f_m \, d\nu$$

$$\leq \int \, \overline{f}_1 \, \wedge \ldots \wedge \, \overline{f}_m \, \Pi_1^k \, d\lambda$$

for $f_i \in F$, i=1,...,m, m=1,2,... is equivalent to (c2). The equivalence of (c2) and (c2') follows from (4.2) since $f \in K$ is the uniform limit of functions of the form $\overline{f}_1 \wedge ... \wedge \overline{f}_m$.

Proof of Theorem 4.3. (Necessity) Let $f_i \in F$, i=1,...,m. Then, since U $P(\cdot|\underline{x}) > F_{\underline{x}}$, $\int f_i(y)P(dy|\underline{x}) \leq \overline{f}_i(\underline{x})$, and so,

$$\int f_1 \wedge \ldots \wedge f_m(y) P(dy | \underline{x}) \leq \overline{f}_1 \wedge \ldots \wedge \overline{f}_m(\underline{x}).$$

Thus,

$$\int f_1 \wedge \dots \wedge f_m dv = \iint f_1 \wedge \dots \wedge f_m(y) P(dy | \underline{x}) \prod_{i=1}^k d\lambda(x_i)$$

$$\leq \int \overline{f}_1 \wedge \dots \wedge \overline{f}_m(\underline{x}) \prod_{i=1}^k d\lambda(x_i).$$

(Sufficiency) Let f ϵ C(K). Then, by Lemma 4.3, Corollary 4.5, Lemma 4.6 and the definition of ν ,

$$\int f dv = \int \overline{f} dv_0 \leq \int h_f dv_0 \leq \int h_f(\underline{x}) \ \Pi_1^k \ d\lambda(x_i).$$

This with Theorem 1 of Strassen (1965) gives the representation of ν in terms of λ and a Markov kernel $P(\cdot|\underline{x}) > F_{\underline{x}}$.

Remark 4.7. Let $v(A) = \int P(A|\underline{x}) \, dA^k \, d\lambda(x_1)$. Then $P(\cdot|\underline{x}) > F_{\underline{x}}$ for all \underline{x} is equivalent to $E(\int f dF_{\underline{y}}|\underline{x}) \geq \int f dF_{\underline{x}}$ where X_1, X_2, \ldots, X_k are i.i.d. λ and, given $\underline{x} = \underline{x}$, Y_1, \ldots, Y_k are i.i.d. $P(\cdot|\underline{x})$. When \underline{u} is an ET-system an argument like that in Case 2 of Lemma 4.2 shows that this is equivalent to the martingale type of formula $E(\int u_j dF_{\underline{y}}|\underline{x}) = \int u_j dF_{\underline{x}}$, $j=0,\ldots,2k-1$. For the classical ET-system $u_j(x) = x^j$, an apt name for a sequence $\underline{x}_1,\underline{x}_2,\ldots$ of random k-vectors satisfying

 $E(\int x^j dF_{\underline{X}_{n+1}} | \underline{x}_n, \dots, \underline{x}_1) = \int x^j dF_{\underline{X}_n} \text{ for } j=0, \dots, 2k-1 \text{ is a } k\text{-mart}$ sequence. Theorem 4.1 characterizes the marginal p.m.'s that can correspond to a k-mart sequence.

References

- Karlin, S. (1968). Total Positivity. Stanford University Press, Stanford, CA.
- Karlin, S. and Studden, W. (1966). <u>Tchebycheff Systems: With Applications in</u>
 Analysis and Statistics. Interscience, NY.
- Meyer, P. A. (1966). Probability and Potentials. Blaisdell, London.
- Roberts, A.W. and Varberg, D.E. (1973). Convex Functions. Academic Press, NY.
- Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton, NJ.
- Schweder. T. (1982). On the dispersion of mixtures. Scand. J. Statist., 9, 165-169.

- Shaked, M. (1980). On the mixtures from exponential families.

 J. R. Statist, B, 42, 192-198.
- Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist., 36, 423-439.