Controlli Automatici T

Parte 4: Risposta al gradino di sistemi elementari

Prof. Giuseppe Notarstefano Prof. Andrea Testa

Department of Electrical, Electronic, and Information Engineering Alma Mater Studiorum Università di Bologna giuseppe.notarstefano@unibo.it

a.testa@unibo.it

Queste slide sono ad uso interno del corso Controlli Automatici T dell'Università di Bologna a.a. 22/23.

Risposte di sistemi elementari

Ricordiamo che

$$G(s) = \frac{\rho \Pi_i(s+z_i) \Pi_i(s^2 + 2\zeta_i \alpha_{ni} s + \alpha_{ni}^2)}{s^g \Pi_i(s+p_i) \Pi_i(s^2 + 2\xi_i \omega_{ni} s + \omega_{ni}^2)}$$

Consideriamo il caso di poli distinti. Da quanto visto fino ad ora risulta che per x(0) = 0 (risposta forzata)

$$Y(s) = G(s)U(s) = \left(\sum_{i} \frac{k_i}{s + p_i} + \sum_{i} \frac{a_i s + b_i}{s^2 + 2\xi_i \omega_{n,i} s + \omega_{n,i}^2}\right) U(s)$$

$$U(s) \xrightarrow{\frac{k}{s + p_i}} \xrightarrow{Y(s)}$$

$$\vdots$$

$$\vdots$$

$$\frac{a_i s + b_i}{s^2 + 2\xi_i \omega_{n,i} s + \omega_{n,i}^2}$$

Quindi è importante studiare le risposte di sistemi elementari.

Richiami: teoremi del valore iniziale e finale

Teorema del valore iniziale Se f(t) reale con trasformata razionale F(s) con grado denominatore maggiore grado numeratore, allora

$$f(0) = \lim_{s \to \infty} sF(s)$$

Teorema del valore finale Se f(t) reale con trasformata razionale F(s) con grado denominatore maggiore grado numeratore e poli nulli o a parte reale negativa, allora

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

Sistema del primo ordine: cruise control

"Cruise control" (controllo velocità di crociera)

Equazione della dinamica

$$M\ddot{z}(t) = -b\dot{z}(t) + F_{\mathsf{m}}(t)$$

Scriviamo equazioni del sistema. Nella dinamica non compare z(t), quindi definiamo $x:=\dot{z}$, $u:=F_{\rm m}$ e consideriamo come uscita la velocità y:=x.

$$\dot{x} = -\frac{b}{M}x + \frac{1}{M}u$$

$$y = x$$

$$G(s) = C(sI - A)^{-1}B = \frac{1}{Ms + b}$$

funzione di trasferimento

Sistemi del primo ordine

$$G(s) = \frac{\mu}{1+Ts}$$
 $U(s) = \frac{k}{s}$

$$Y(s) = G(s)U(s) = \frac{\mu k}{s(1+Ts)}$$

$$\mu > 0$$
, $k > 0$, $T > 0$

Nota: se T < 0 sistema instabile

$$y(t) = \mu k (1 - e^{-\frac{t}{T}}) 1(t)$$

$$y(0) = 0, \ \dot{y}(0) = \frac{\mu K}{T}, \ y_{\infty} = \mu k$$

Tempo di assestamento $T_{a,\epsilon}$: tempo tale che $(1-0.01\epsilon)y_{\infty} \leq y(t) \leq (1+0.01\epsilon)y_{\infty} \ \forall t \geq T_{a,\epsilon}$

Sistemi del primo ordine

$$G(s) = \frac{\mu}{1+Ts}$$
 $U(s) = \frac{k}{s}$

$$Y(s) = G(s)U(s) = \frac{\mu k}{s(1+Ts)}$$

$$\mu > 0$$
, $k > 0$, $T > 0$

Nota: se T < 0 sistema instabile

$$y(t) = \mu k (1 - e^{-\frac{t}{T}}) \mathbf{1}(t)$$

$$y(0) = 0, \ \dot{y}(0) = \frac{\mu K}{T}, \ y_{\infty} = \mu k$$

$$T_{a,\epsilon} = T \ln \left(\frac{1}{0.01\epsilon} \right) \qquad \Rightarrow \qquad T_{a,5} \approx 3T, \quad T_{a,1} \approx 4.6T$$

$$T_{-1} \approx 4.6T$$

Sistemi del primo ordine: considerazioni

- Per calcolare la risposta riscrivere $G(s)=\frac{\mu}{T}\frac{1}{s+\frac{1}{T}}$ e sviluppare Y(s)=G(s)U(s) in fratti semplici;
- risposta monotona, modi presenti: 1(t) dell'ingresso e $e^{-\frac{t}{T}}$ del sistema;
- valore asintotico è μk , quindi se l'ingresso fosse un riferimento k da seguire, avremmo un errore a regime $e_{\infty} = |1 \mu|k$;
- $T_{a,\epsilon}$ legato alla costante di tempo T

Sistemi del primo ordine: dalla fdt allo spazio degli stati

In generale, un sistema del primo ordine può essere rappresentato nello spazio degli stati (rappresentazione NON unica) come

$$\dot{x} = -\frac{1}{T}x + \frac{\mu}{T}u$$

$$y = x$$
(*)

Infatti, la funzione di trasferimento associata a (*) è

$$G(s) = C(sI - A)^{-1}B = \frac{\mu}{1 + Ts}$$

Perciò

- il parametro T in (\star) è la costante di tempo associata al polo,
- il parametro μ in (\star) è il guadagno.

Sistemi del primo ordine su Matlab

Creazione sistema e risposta al gradino

$$G(s) = \frac{\mu}{1+Ts} \qquad \begin{array}{c} \texttt{s} = \texttt{tf('s');} \\ \texttt{G} = \texttt{mu/(1+T*s);} \\ \texttt{step(G);} \end{array}$$

Elenco dei poli

```
pole(G)
```

Diagramma poli/zeri

```
pzmap(G);
```

Tempo di assestamento

```
sinfo = stepinfo(G, 'SettlingTimeThreshold', epsilon/100);
fprintf('T = %.2f\n', sinfo.SettlingTime);
```


Sistema del secondo ordine: carrello

Equazioni del sistema nello spazio degli stati

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{b}{M} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

$$G(s) = C(sI - A)^{-1}B$$

$$= \frac{1/M}{s^2 + \frac{b}{M}s + \frac{k}{M}}$$

$$= \mu \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

funzione di trasferimento

con
$$\mu = \frac{1}{k}$$
, $\omega_n = \sqrt{\frac{k}{M}}$, $\xi = \frac{b}{2\sqrt{kM}}$.

$$G(s) = \mu \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \mu k \frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

 ξ coefficiente di smorzamento ($|\xi| < 1$)

 ω_n pulsazione naturale $(\omega_n>0)$

$$y(t) = \mu k (1 - Ae^{-\xi \omega_n t} \sin(\omega t + \varphi)) 1(t)$$

$$A = \frac{1}{\sqrt{1-\xi^2}}, \ \omega = \omega_n \sqrt{1-\xi^2}, \ \varphi = \arccos(\xi)$$

$$y(0) = \dot{y}(0) = 0, \ \ddot{y}(0) = \mu \omega_n^2, \ y_\infty = \mu k$$

Tempo di assestamento $T_{a,\epsilon}$: tempo tale che $(1-0.01\epsilon)y_{\infty} \leq y(t) \leq (1+0.01\epsilon)y_{\infty} \ \forall t \geq T_{a,\epsilon}$

$$G(s) = \mu \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$
 $U(s) = \frac{k}{s}$

$$Y(s) = G(s)U(s) = \mu k \frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

 ξ coefficiente di smorzamento ($|\xi| < 1$)

 ω_n pulsazione naturale $(\omega_n>0)$

$$y(t) = \mu k (1 - Ae^{-\xi \omega_n t} \sin(\omega t + \varphi)) 1(t)$$

$$A = \frac{1}{\sqrt{1 - \xi^2}}, \ \omega = \omega_n \sqrt{1 - \xi^2}, \ \varphi = \arccos(\xi)$$

$$y(0) = \dot{y}(0) = 0, \ \ddot{y}(0) = \mu \omega_n^2, \ y_\infty = \mu k$$

Approssimazioni di
$$T_{a,\epsilon}$$
: $T_{a,5} \approx \frac{3}{\xi \omega_n}$ $T_{a,1} \approx \frac{4.6}{\xi \omega_n}$

$$G(s) = \mu \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \mu k \frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

 ξ coefficiente di smorzamento ($|\xi| < 1$)

 ω_n pulsazione naturale $(\omega_n>0)$

$$y(t) = \mu k (1 - Ae^{-\xi \omega_n t} \sin(\omega t + \varphi)) 1(t)$$

$$A = \frac{1}{\sqrt{1 - \xi^2}}, \ \omega = \omega_n \sqrt{1 - \xi^2}, \ \varphi = \arccos(\xi)$$

$$y(0) = \dot{y}(0) = 0, \ \ddot{y}(0) = \mu \omega_n^2, \ y_\infty = \mu k$$

Sovraelongazione percentuale: $S\% = 100 \frac{y_{\max} - y_{\infty}}{y_{\infty}}$

con y_{\max} valore massimo e y_{∞} valore asintotico della risposta.

$$G(s) = \mu \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$
 $U(s) = \frac{k}{s}$

$$Y(s) = G(s)U(s) = \mu k \frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

 ξ coefficiente di smorzamento ($|\xi| < 1$)

 ω_n pulsazione naturale $(\omega_n>0)$

$$y(t) = \mu k (1 - Ae^{-\xi \omega_n t} \sin(\omega t + \varphi)) 1(t)$$

$$A = \frac{1}{\sqrt{1 - \xi^2}}, \ \omega = \omega_n \sqrt{1 - \xi^2}, \ \varphi = \arccos(\xi)$$

$$y(0) = \dot{y}(0) = 0, \ \ddot{y}(0) = \mu \omega_n^2, \ y_\infty = \mu k$$

Per sistemi del secondo ordine si trova:

$$S\% = 100e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$$

Sovraelongazione percentuale in funzione dello smorzamento

La sovraelongazione S% dipende solo da ξ ed è una funzione monotona decrescente.

Nota: dato un valore massimo di sovraelongazione, S^* , possiamo ricavare dal grafico il valore ξ^* corrispondente.

Nota: Vista la monotonicità, si ha che $S\% \leq S^*$ per ogni $\xi \geq \xi^*$.

Sistemi del secondo ordine su Matlab

$$G(s) = \mu \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

```
s = tf('s');
G = mu*omegan^2/(s^2 + 2*xi*omegan*s + omegan^2);
step(G);
pzmap(G);
```


Sistemi del secondo ordine: dalla fdt allo spazio degli stati

In generale, un sistema del secondo ordine può essere rappresentato nello spazio degli stati (rappresentazione NON unica) come

$$\dot{x}_1 = x_2
\dot{x}_2 = -\omega_n^2 x_1 - 2\xi \omega_n x_2 + \mu \omega_n^2 u
y = x_1$$
(*)

Infatti, la funzione di trasferimento associata a (*) è

$$G(s) = C(sI - A)^{-1}B = \mu \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Perciò

- il parametro ξ in (\star) è il coefficiente di smorzamento,
- il parametro ω_n in (\star) è la pulsazione naturale,
- il parametro μ in (\star) è il guadagno.

Luogo di punti a tempo di assestamento costante

Obiettivo: caratterizzare i sistemi del secondo ordine (con poli complessi coniugati) la cui risposta al gradino ha lo stesso tempo di assestamento.

Ricordiamo che

- abbiamo approssimato $T_{a,5} pprox rac{3}{\xi \omega_n}$ e $T_{a,1} pprox rac{4.6}{\xi \omega_n}$ e
- abbiamo visto che $-\xi\omega_n$ è la parte reale dei poli complessi coniugati.

Quindi sistemi con poli complessi coniugati che hanno la stessa parte reale avranno una risposta al gradino con stesso tempo di assestamento.

Luogo di punti a tempo di assestamento costante

Sul piano complesso i luoghi di punti a tempo di assestamento costante sono rette parallele all'asse immaginario.

Luogo di punti a sovraelongazione costante

Obiettivo: caratterizzare i sistemi del secondo ordine (con poli complessi coniugati) la cui risposta al gradino ha la stessa sovraelongazione.

Ricordiamo che

- $S\% = 100e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$ e
- $\arccos(\xi)$ è l'angolo formato con l'asse reale.

Quindi sistemi con stesso coefficiente di smorzamento ξ avranno una risposta al gradino con stessa sovraelongazione.

Luogo di punti a sovraelongazione costante

Sul piano complesso i luoghi di punti a sovraelongazione costante sono semirette uscenti dall'origine.

Mappatura di specifiche temporali nel piano complesso

Obiettivo: caratterizzare i sistemi del secondo ordine (con poli complessi coniugati) con $S\% \leq S^*$ e $T_{a.5} \leq T^*$.

Le specifiche sono soddisfatte per $\xi \geq \xi^*$ (con $\xi \leq 1$) e $\xi \omega_n \geq \frac{3}{T^*}$

Nota: i poli complessi coniugati devono trovarsi nella zona colorata.

Caso $T_1 \neq T_2$, $T_1 > T_2$

$$G(s) = \frac{\mu}{(1+T_1s)(1+T_2s)} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \frac{\mu k}{s(1+T_1s)(1+T_2s)}$$

$$\mu > 0, \ k > 0, \ T_1 > 0, \ T_2 > 0$$

$$y(t) = \mu k \left(1 - \frac{T_1}{T_1 - T_2} e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} e^{-\frac{t}{T_2}}\right) 1(t)$$

$$y(0) = 0, \ \dot{y}(0) = 0, \ \ddot{y}(0) = \frac{\mu K}{T_1 - T_1}, \ y_{\infty} = \mu k$$

Nota: I modi presenti sono 1(t) (ingresso), $e^{-\frac{t}{T_1}}$ e $e^{-\frac{t}{T_2}}$ (sistema).

Sistemi a polo dominante

Consideriamo $T_1 \gg T_2$

Nella risposta $e^{-\frac{t}{T_2}}\to 0$ velocemente e $\frac{T_2}{T_1-T_2}\ll \frac{T_1}{T_1-T_2}\approx 1$, quindi

$$y(t) \approx \mu k(1 - e^{-\frac{t}{T_1}})1(t)$$

Sistemi del secondo ordine con poli reali coincidenti

Caso $T_1 = T_2$

$$G(s) = \frac{\mu}{(1+T_1s)^2} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \frac{\mu k}{s(1+T_1s)^2}$$

$$\mu > 0, \ k > 0, \ T_1 > 0$$

$$y(t) = \mu k (1 - e^{-\frac{t}{T_1}} - \frac{t}{T_1} e^{-\frac{t}{T_1}}) 1(t)$$

Nota: I modi presenti sono 1(t) (ingresso), $e^{-\frac{t}{T_1}}$ e $te^{-\frac{t}{T_1}}$ (sistema).

Sistemi del secondo ordine con poli reali: considerazioni

- risposta monotona
- se $T_1 \gg T_2$ polo dominante allora comportamento simile a sistema del primo ordine;
- $\dot{y}(0) = 0$ quindi continuità in zero anche della derivata prima;
- $T_{a,\epsilon}$ funzione non semplice di T_1 e T_2 .

Sistemi del primo ordine con uno zero

$$G(s) = \mu \frac{1+\alpha Ts}{1+Ts} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \mu k \frac{1+\alpha Ts}{s(1+Ts)}$$

$$\mu > 0, \ k > 0, \ T > 0$$

$$y(t) = \mu k (1 + (\alpha - 1)e^{-\frac{t}{T}})1(t)$$

$$y(0) = \mu \alpha k, \ y_{\infty} = \mu k$$

Nota: grado relativo zero (grado numeratore = grado denominatore) allora collegamento algebrico ingresso-uscita ($y(0) = \mu \alpha k \neq 0$).

$$G(s) = \mu \frac{1+\tau s}{(1+T_1s)(1+T_2s)} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \mu k \frac{1+\tau s}{s(1+T_1s)(1+T_2s)}$$

$$\mu > 0, \ k > 0, \ T_1 > 0, \ T_2 > 0$$

$$y(t) = \mu k \left(1 - \frac{T_1 - \tau}{T_1 - T_2} e^{-\frac{t}{T_1}} + \frac{T_2 - \tau}{T_1 - T_2} e^{-\frac{t}{T_2}}\right) 1(t)$$

$$y(0) = 0, \ \dot{y}(0) = \frac{\mu K \tau}{T_1 - T_2}, \ y_{\infty} = \mu k$$

Nota: il segno della derivata $\dot{y}(0) = \frac{\mu K \tau}{T_1 T_2}$ dipende da τ .

Caso $T_1 > T_2$, $\tau < 0$, sistemi a fase NON minima

$$\begin{split} G(s) &= \mu \frac{1+\tau s}{(1+T_1 s)(1+T_2 s)} \qquad U(s) = \frac{k}{s} \\ Y(s) &= G(s)U(s) = \mu k \frac{1+\tau s}{s(1+T_1 s)(1+T_2 s)} \\ \mu &> 0, \ k > 0, \ T_1 > 0, \ T_2 > 0 \end{split}$$

$$y(t) = \mu k \left(1 - \frac{T_1 - \tau}{T_1 - T_2} e^{-\frac{t}{T_1}} + \frac{T_2 - \tau}{T_1 - T_2} e^{-\frac{t}{T_2}}\right) 1(t)$$

$$y(0) = 0, \ \dot{y}(0) = \frac{\mu K \tau}{T_1 T_2}, \ y_{\infty} = \mu k$$

Nota: sottoelongazione ($\dot{y}(0) = \frac{\mu K \tau}{T_1 T_2} < 0$), il sistema inizialmente risponde "in senso contrario" (< 0) rispetto all'ingresso (> 0).

Caso $\tau > T_1 > T_2$, sistemi a fase minima (sovraelongazione)

$$G(s) = \mu \frac{1+\tau s}{(1+T_1 s)(1+T_2 s)} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \mu k \frac{1+\tau s}{s(1+T_1 s)(1+T_2 s)}$$

$$\mu > 0, \ k > 0, \ T_1 > 0, \ T_2 > 0$$

$$\tau > 0$$
 Im
$$-\frac{\mathbf{x}}{T_2} - \frac{\mathbf{x}}{T_1} - \frac{1}{\tau}$$
 Re

Nota: è presente una sovraelongazione tanto più accentuata quanto più lo zero è vicino all'origine (ovvero al crescere di τ).

Caso $\tau \approx T_1 \gg T_2$, sistemi a fase minima (code di assestamento)

$$G(s) = \mu \frac{1+\tau s}{(1+T_1 s)(1+T_2 s)} \qquad U(s) = \frac{k}{s}$$

$$Y(s) = G(s)U(s) = \mu k \frac{1+\tau s}{s(1+T_1 s)(1+T_2 s)}$$

$$\mu > 0, \ k > 0, \ T_1 > 0, \ T_2 > 0$$

$$T_2 \ll T_1$$
 $au > 0$ Im Re $-\frac{1}{T_2}$ $-\frac{1}{T_1} \approx -\frac{1}{\tau}$

$$\begin{split} y(t) &= \mu k (1 - \frac{T_1 - \tau}{T_1 - T_2} e^{-\frac{t}{T_1}} + \frac{T_2 - \tau}{T_1 - T_2} e^{-\frac{t}{T_2}}) \mathbf{1}(t) \\ y(0) &= 0, \ \dot{y}(0) = \frac{\mu K \tau}{T_1 T_2}, \ y_{\infty} = \mu k \end{split}$$

Nota: a causa della non perfetta cancellazione polo/zero ($\tau \approx T_1$) il modo "lento" $e^{-\frac{t}{T_1}}$ è presente e il suo transitorio si esaurisce lentamente.

Interconnessione schemi a blocchi

