# Solutions to Practical 3 Using WinBUGS

#### Section 1: Estimating the sex ratio

```
A combined version of BUGS code for (a) and (b):

model
{
    y ~ dbin(theta, n)
    theta ~ dbeta(alpha, beta)
    ratio <- (1-theta)/theta
}

Data for (a):
list(n=98, y=43, alpha=1, beta=1)

Data for (b):
list(n=98, y=43, alpha=48.5, beta=51.5)

Inits:
```

#### Results for (a):

list(theta=0.5)







| Parameter | posterior mean | posterior SD | 95% credible interval |
|-----------|----------------|--------------|-----------------------|
| theta     | 0.44           | 0.05         | 0.34 - 0.54           |
| ratio     | 1.30           | 0.27         | 0.84 – 1.91           |

### Results for (b):

| node  | mean   | sd      | MC error2.5%   | median | 97.5%  | start | sample |
|-------|--------|---------|----------------|--------|--------|-------|--------|
| ratio | 1.175  | 0.1705  | 0.0019130.8772 | 1.162  | 1.55   | 1     | 10000  |
| theta | 0.4625 | 0.03569 | 3.985E-40.3922 | 0.4625 | 0.5328 | 1     | 10000  |





| Parameter | posterior mean | posterior SD | 95% credible interval |
|-----------|----------------|--------------|-----------------------|
| theta     | 0.46           | 0.04         | 0.39 - 0.53           |
| ratio     | 1.18           | 0.17         | 0.88 - 1.55           |

#### (c) non-conjugate prior:

```
model
{
    y ~ dbin(theta, n)
    theta1 ~ dunif(0.2, 0.3)
    theta2 ~ dunif(0.2, 0.3)
    theta <- theta1+theta2
    ratio <- (1-theta)/theta
}</pre>
```

#### Data for (c):

list(n=98, y=43)

#### Inits:

list(theta1=0.21, theta2=0.29)

#### Results:

| node  | mean   | sd      | MC error 2.5%  | median | 97.5%  | start | sample |
|-------|--------|---------|----------------|--------|--------|-------|--------|
| ratio | 1.118  | 0.1417  | 0.0014930.8537 | 1.112  | 1.399  | 501   | 9500   |
| theta | 0.4742 | 0.03187 | 3.427E-40.4168 | 0.4734 | 0.5395 | 501   | 9500   |





| Parameter | posterior mean | posterior SD | 95% credible interval |
|-----------|----------------|--------------|-----------------------|
| theta     | 0.47           | 0.03         | 0.42 - 0.54           |
| ratio     | 1.12           | 0.14         | 0.85 – 1.40           |

## (d) $Pr(\theta < 0.485|y)$

| Prior            | posterior prob. that $\theta$ < 0.485 |
|------------------|---------------------------------------|
| uniform          | 0.81                                  |
| Beta(48,5, 51.5) | 0.74                                  |
| triangular       | 0.63                                  |

Section 2: MCMC Diagnostics for estimating the sex ratio History



Chain appears to converge relatively rapidly. In the bgr plot, the pooled and within values only appear to be really steady after about 2000 runs so could select a burn-in of 2000.

Using the values 2,001 to 10,000 to produce summary statistics we get:

| node  | mean   | sd      | MC error | 2.5%   | median | 97.5%  | start | sample |
|-------|--------|---------|----------|--------|--------|--------|-------|--------|
| dif   | 0.8166 | 0.387   | 0.002484 | 0.0    | 1.0    | 1.0    | 2001  | 24000  |
| ratio | 1.303  | 0.2686  | 0.001755 | 0.8608 | 1.275  | 1.914  | 2001  | 24000  |
| theta | 0 44   | 0 04958 | 3 216E-4 | 0 3432 | 0 4396 | 0 5374 | 2001  | 24000  |

Note that this uses 8,000 values from each chain giving 24,000 values in total.

MC error also less than 1% of the SD in each case.







#### Section 3:

#### Infant weight gain

Means for the two groups: 18 -52 Sds for the two groups: 60 88

Boxplot of the weight change for the two groups



This shows clear differences in the weight gain between the two groups...

Here we just show the bgr plots after 50,000 iterations, as only after 20,000 do the pooled and within group variance for mu[1] and mu[2] appear to be stable although other variables appeared to have reached convergence earlier. So, summary statistics are calculated using runs 20,001 to 50,000 for the two chains.

95% credible interval for the mean difference is (-110.8, -28.9) suggesting that there is an increase in weight gain for the group exposed to the recorded sound of the mother's heartbeat.



#### Log-normal survival times

```
model
{
           # mean for prior of mu - enter value
           mu0 < -log(30)
           # parameters of prior for tau - enter value
           beta <- 1.5
           alpha <- 2*beta
           # prior for tau
                            - enter distribution
           tau ~ dgamma(alpha, beta)
           # prior for mu, given tau
                                          enter distribution
           mu ~ dnorm(mu0,tau)
           for(i in 1:N) {
                 y[i] <- log(survtime[i])
                y[i] ~ dnorm(mu, tau)
           sigma <- 1/sqrt(tau)</pre>
           # predicted value - enter distribution
           y.new ~ dnorm(mu, tau)
           # greater than log(150)?
           y.dif \leftarrow step(y.new - log(150))
}
list(survtime=c(25, 45, 238, 194, 16, 23, 30,
                          16, 22, 123, 51, 412, 45, 162,
                          14, 72, 5, 43, 45, 91),
                           N=20)
```

Inits:

```
list(mu=0, tau=1, y.new=0)
list(mu=1, tau=2, y.new=1)
```

#### Results: node mean sd MC error 2.5% median 97.5% start sample mu 3.84 0.2278 0.001261 3.387 3.841 4.288 15001 30000 30000 1.378 15001 1.034 0.788 1.017 sigma 0.151 9.638E-4 0.1302 0.3366 0.00193 30000 y.dif 0.0 0.0 1.0 15001 y.new 3.837 1.071 0.006668 1.713 3.841 5.949 15001 30000 mu chains 1:2 sample: 30000 sigma chains 1:2 sample: 30000 2.0 1.5 1.0 0.5 0.0 3.0 2.0 1.0 0.0 2.0 3.0 4.0 0.5 1.0 1.5 2.0 y.dif chains 1:2 sample: 30000 y.new chains 1:2 sample: 30000 1.0 0.75 0.5 0.4 0.2 0.25 0.0 0.0 7.5 -2.5 0.0 2.5 5.0

30,000 iterations for 2 chains- converged after 15,000