Rajalakshmi Engineering College

Name: Jenell S G

Email: 240701212@rajalakshmi.edu.in

Roll no: 2116240701212 Phone: 7418493255

Branch: REC

Department: I CSE AH

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
Input: 3
5 10 15
Output: 15 10 5
The minimum value in the BST is: 5
Answer
#include <stdio.h>
#include <stdlib.h>
struct Node {
  int data:
  struct Node* left;
  struct Node* right;
struct Node* createNode(int data) {
  struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
  newNode->data = data;
  newNode->left = newNode->right = NULL;
  return newNode;
}
#include <stdio.h>
#include <stdlib.h>
struct Node {
  int data;
  struct Node *left, *right;
```

```
struct Node* createNode(int data) {
  struct Node* node = (struct Node*)malloc(sizeof(struct Node));
  node->data = data;
  node->left = node->right = NULL;
  return node:
}
struct Node* insert(struct Node* root, int data) {
  if (root == NULL)
    return createNode(data);
  if (data < root->data)
    root->left = insert(root->left, data);
  else
    root->right = insert(root->right, data);
  return root;
void postOrder(struct Node* root) {
  if (root == NULL) return;
  postOrder(root->left);
  postOrder(root->right);
  printf("%d ", root->data);
}
int findMin(struct Node* root) {
  if (root == NULL) return -1;
  while (root->left != NULL)
    root = root->left;
  return root->data;
int main() {
  int n, i, val;
  scanf("%d", &n);
  struct Node* root = NULL;
  for (i = 0; i < n; i++) {
    scanf("%d", &val);
    root = insert(root, val);
  postOrder(root);
  printf("\nThe minimum value in the BST is: %d\n", findMin(root));
  return 0:
```

```
int main() {
    struct Node* root = NULL;
    int n, data;
    scanf("%d", &n);

for (int i = 0; i < n; i++) {
        scanf("%d", &data);
        root = insert(root, data);
    }

    displayTreePostOrder(root);
    printf("\n");

int minValue = findMinValue(root);
    printf("The minimum value in the BST is: %d", minValue);

    return 0;
}</pre>
```

Status: Correct Marks: 10/10