Math 285: Differential Equations

Practice for midterm 2, Spring 2020

READ THE	FOLLOWING	INFORMATION

- This is a 90-minute exam.
- No books, notes, calculators, or electronic devices allowed.
- You must not communicate with other students during this test.
- There are several different versions of this exam.
- Do not turn this page until instructed to.

1. Fill in your informat	ion:
--------------------------	------

Full Name:				-
UIN (Student Number):				_
NetID:				-
Circle your section:	B1 (9 am)	C1 (10 am)	E1 (1 pm)	F1 (2 pm)

2. Fill in the following answers on the Scantron form:

95. D

96. C

Multiple Choice Questions: Mark answers to questions 1 to 10 on your scantron form.

1. (5 points) If $y_1 = e^{-t} + e^{3t}$ and $y_2 = 2e^{-t} + 3e^{3t}$, then the Wronskian $W[y_1, y_2](t)$ is

- (A) $9e^{6t}$
- (B) None of these
- (C) $e^{2t} e^{-2t}$
- (D) $2e^{2t} + 3e^{6t}$
- (E) $4e^{2t}$

2. (5 points) The motion of a certain spring–mass system is governed by

$$u'' + \gamma u + 9 = 0$$

for some constant $\gamma > 0$. The motion is underdamped if

- (A) $\gamma \in (0,6)$
- (B) $\gamma \in (6, \infty)$
- (C) None of these
- (D) $\gamma \in (-6, 6)$
- (E) $\gamma = 6$

3. (5 points) What can you say for the method of undetermined coefficients?

$$y'' + p(x)y' + q(x)y = g(x)$$
 (1)

- (A) None of these
- (B) It applies to system (1) with non-constant coefficients p and q
- (C) It is more general than the method of variation of parameter.
- (D) It helps to find the general solution to the homogeneous equation corresponding to (1)
- (E) It provides us a formula for finding a specific solution to (1) provided that we know the general solution of the corresponding homogeneous equation

4. (5 points) Identify the correct form of a particular solution for the following differential equation.

$$y'' - y = t^2 e^{-t} + 10t^3.$$

(A)
$$Y(t) = (A_0 + A_1t + A_2t^2)e^{-t} + (B_0 + B_1t + B_2t^2 + B_3t^3)$$

(B)
$$Y(t) = t(A_0 + A_1t + A_2t^2)e^{-t} + (B_0 + B_1t + B_2t^2 + B_3t^3)$$

(C)
$$Y(t) = t^2(A_0 + A_1t + A_2t^2)e^{-t} + (B_0 + B_1t + B_2t^2 + B_3t^3)$$

- (D) None of these
- (E) $Y(t) = (A_0 + A_1t + A_2t^2 + A_3t^3)e^{-t}$

- 5. (5 points) The general solution of y'' + 4y' + 5y = 0 is
- (A) None of these

(B)
$$y(t) = e^{-2t} (C_1 \cos t + C_2 \sin t)$$

(C)
$$y(t) = e^{2t}(C_1 + C_2 t)$$

(D)
$$y(t) = C_1 e^{-5t} + C_2 e^t$$

(E)
$$y(t) = e^{-t}(C_1 \cos 2t + C_2 \sin 2t)$$

6. (5 points) What can you say for the vibration system?

$$ms'' + rs' + ks = F_0 \cos(\omega t) \tag{1}$$

- (A) When $F_0 = 0$ $r^2 \ge 4mk$, the general solution eventually becomes monotone and decays to 0.
- (B) When $F_0 = 0$ $r^2 < 4mk$, the general solution oscillates and decays to 0.
- (C) Resonance happens when r=0 and $\sqrt{\frac{k}{m}}=\omega.$
- (D) When $F_0 = 0$ r = 0, the general solution is periodic function.
- (E) All of these.

- 7. (5 points) Which of these is NOT a set of linearly independent solutions?
- (A) $\cos x, \sin x, \cos 2x$
- (B) $1, x, x^2$
- (C) $x, x^2 + x, 2x^2$
- (D) e^x, e^{2x}, e^{3x}
- (E) None of these

8. (5 points) Find the general solution of the following differential equation.

$$y''' + 8y = 0.$$

- (A) $C_1 e^{-2t} + C_2 e^t \cos \sqrt{3}t + C_3 e^t \sin \sqrt{3}t$
- (B) $C_1 e^{2t} + C_2 e^t \cos \sqrt{3}t + C_3 e^t \sin \sqrt{3}t$
- (C) $C_1 e^{2t} + C_2 e^{-t} \cos \sqrt{3}t + C_3 e^{-t} \sin \sqrt{3}t$
- (D) $C_1 e^{-2t} + C_2 e^{-t} \cos \sqrt{3}t + C_3 e^{-t} \sin \sqrt{3}t$
- (E) None of these

9. (5 points) The motion of a certain spring—mass system is governed by

$$u'' + 4u = 0$$

- with u(0) = 1 and u'(0) = 1. What are the amplitude and the natural frequency?
- (A) $R = \sqrt{2}$ and $\omega_0 = 1$
- (B) $R = \sqrt{5}/2$ and $\omega_0 = 1$
- (C) $R = \sqrt{5}/2$ and $\omega_0 = 2$
- (D) None of these
- (E) $R = \sqrt{2}$ and $\omega_0 = 2$

- 10. (5 points) The equation $t^2y'' 4ty' + 6y = 0$ has a solution $y_1(t) = t^2$. If $y_2(t) = v(t)y_1(t)$ is another solution to the equation, then the function v(t) satisfies
- (A) None of these
- (B) v'' = 0
- (C) $t^2v'' + 2t(t-2)v' = 0$
- (D) $t^4v'' + 2t^3(t-2)v' = 0$
- (E) tv'' 4v' = 0

11. (5 points) The existence and uniqueness theorem guarantees that there exists a unique solution of the initial value problem $(t-1)(t+3)y'' + (t-4)y' + \sin ty = e^{-3t}$ with y(-1) = 2 and y'(-1) = 0 on an open interval

- (A) (1,4)
- (B) (-3,1)
- (C) None of these
- (D) $(-\infty, -3)$
- (E) $(4,\infty)$

12. (5 points) The function $u(t) = -\cos 2t + \sin 2t$ can be written as $u(t) = R\cos(\omega_0 t - \delta)$ where

- (A) $R = \sqrt{3}, \, \omega_0 = 2, \, \delta = 3\pi/4$
- (B) $R = \sqrt{2}, \, \omega_0 = 2, \, \delta = 3\pi/4$
- (C) $R = \sqrt{2}, \, \omega_0 = 2, \, \delta = \pi/4$
- (D) None of these
- (E) $R = \sqrt{3}, \, \omega_0 = 1, \, \delta = 5\pi/4$

Free Response Questions: Make sure you show your work. You may get partial credit.

- 13. (10 points) Consider $t^2y'' t(t+2)y' + (t+2)y = 0$ for t > 0.
 - (i) Verify that $y_1(t) = t$ is a solution to the equation.

(ii) Find the general solution to the equation using the method of reduction of order.

 $14.\ (10\ \mathrm{points})$ Find the solution to the following initial value problem

$$y'' - 2y' - 3y = 3te^{2t},$$
 $y(0) = 1,$ $y'(0) = 0.$

This page is intentionally left blank.