

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2,4-Dichlorobenzyl 2-methoxybenzoate

Arun M. Isloor, B. Garudachari, Thomas Gerber, Eric Hosten and Richard Betz^b*

^aNational Institute of Technology-Karnataka, Department of Chemistry, Surathkal, Mangalore 575 025, India, and ^bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
Correspondence e-mail: richard betz@webmail.co.za

Received 26 February 2013; accepted 4 March 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.029; wR factor = 0.080; data-to-parameter ratio = 18.6.

In the title compound, $C_{15}H_{12}Cl_2O_3$, the aromatic rings make a dihedral angle of 10.78 (4)°. In the molecule, there is a short $C-H\cdots O$ contact. In the crystal, $C-H\cdots O$ contacts connect the molecules into C(7)C(8) chains along the b axis. The shortest intercentroid distance between two benzoic acid aromatic systems is 3.7416 (8) Å.

Related literature

For pharmacological properties of phenyl benzoates, see: Oxford *et al.* (2005); Ostergaard (1994). For graph-set analysis of hydrogen bonds, see: Bernstein *et al.* (1995); Etter *et al.* (1990).

Experimental

Crystal data

 $C_{15}H_{12}Cl_{2}O_{3}$ $M_{r} = 311.15$ Monoclinic, $P2_{1}/c$ a = 12.1816 (5) Å b = 15.2481 (6) Å c = 7.4207 (4) Å $\beta = 99.299$ (2)° $V = 1360.25 \ (11) \ \text{Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.48 \ \text{mm}^{-1}$ $T = 200 \ \text{K}$ $0.38 \times 0.37 \times 0.15 \ \text{mm}$ Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.847$, $T_{\max} = 0.982$ 12933 measured reflections 3379 independent reflections 2868 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.015$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.080$ S = 1.033379 reflections

182 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.26$ e Å $^{-3}$ $\Delta \rho_{\rm min} = -0.23$ e Å $^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} C3-H3A\cdots O2^{i} \\ C15-H15\cdots O2^{i} \end{array} $	0.98 0.95	2.59 2.51	3.5433 (18) 3.3945 (15)	165 154
C16−H16···O3	0.95	2.48	3.3989 (15)	163

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

AMI thanks Professor Swapan Bhattacharya, Director of the National Institute of Technology Karnataka, Surathkal, India, for encouragement and for providing research facilities. He also thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5318).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). *Acta Cryst.* B**46**, 256–262. Farrugia, L. J. (2012). *J. Appl. Cryst.* **45**, 849–854.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Ostergaard, E. (1994). Acta Odontol. Scand. 52, 335-345.

Oxford, J. S., Lambkin, R., Gibb, I., Balasingam, S., Chan, C. & Catchpole, A. (2005). *Antivir. Chem. Chemother.* **16**, 129–134.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2013). E69, o509 [doi:10.1107/S1600536813006156]

2,4-Dichlorobenzyl 2-methoxybenzoate

Arun M. Isloor, B. Garudachari, Thomas Gerber, Eric Hosten and Richard Betz

Comment

For decades, phenyl benzoate derivatives have found ample application in the identification of organic acids. 2,4-Dichlorobenzyl derivatives show pharmacological activity such as acting as mild antiseptics and showing the ability to kill bacteria and viruses associated with mouth and throat infections (Oxford *et al.*, 2005; Ostergaard 1994). In continuation of our research focused on the crystal structures of medical compounds, the title compound was synthesized.

The molecule is essentially flat. The atom deviating most from the least-squares plane defined by all non-hydrogen atoms is the chlorine atom in *para* position to the benzyloxy moiety with a deviation of 0.237 (1) Å. The least-squares planes defined by the respective carbon atoms of the aromatic systems intersect at an angle of 10.78 (4) $^{\circ}$ (Fig. 1).

In the crystal, intermolecular C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii are observed. These are established between one of the hydrogen atoms of the methoxy group as well as one of the two hydrogen atoms in *ortho* position to the chlorine atom in *para* position to the benzyloxy group and chelate the ketonic oxygen atom of the ester moiety. In total, the molecules are connected to chains along the crystallographic b axis. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for these contacts is $C^{1}_{1}(7)C^{1}_{1}(8)$ on the unary level. Information about metrical parameters as well as the symmetry of those contacts has been summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 3.7416 (8) Å and is apparent between the benzoic acid moiety and its symmetry-generated equivalent (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

A mixture of 1-(bromomethyl)-2,4-dichlorobenzene (0.1 g, 0.0004 mol), potassium carbonate (0.062 g, 0.00045 mol) and 2-methoxybenzoic acid (0.068 g, 0.00045 mol) in dimethylformamide (5 ml) was stirred at 60 °C for 2 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized from ethanol (yield: 0.120 g, 93.0%).

Refinement

Carbon-bound H atoms were placed in calculated positions (C-H 0.95 Å for aromatic carbon atoms and C-H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C-C bond to best fit the experimental electron density with U(H) set to $1.5U_{eq}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008);

Acta Cryst. (2013). E69, o509 Sup-1

software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Acta Cryst. (2013). E69, o509

Figure 2 Intermolecular contacts, viewed along [0 0 1]. Symmetry operators: i -x + 1, y + 1/2, -z + 1/2; ii -x + 1, y - 1/2, -z + 1/2.

Acta Cryst. (2013). E**69**, o509

Figure 3Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

2,4-Dichlorobenzyl 2-methoxybenzoate

Crystal data	
$C_{15}H_{12}Cl_2O_3$	$V = 1360.25 (11) \text{ Å}^3$
$M_r = 311.15$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 640
Hall symbol: -P 2ybc	$D_{\rm x} = 1.519 {\rm \ Mg \ m^{-3}}$
a = 12.1816 (5) Å	Melting point = $376-374 \text{ K}$
b = 15.2481 (6) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
c = 7.4207 (4) Å	Cell parameters from 6565 reflections
$\beta = 99.299 (2)^{\circ}$	$\theta = 2.7 - 28.3^{\circ}$

Acta Cryst. (2013). E**69**, o509

 $\mu = 0.48 \text{ mm}^{-1}$ T = 200 K

Data collection

Bruker APEXII CCD diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2008)

 $T_{\min} = 0.847, T_{\max} = 0.982$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.080$

S = 1.03

3379 reflections 182 parameters 0 restraints

Primary atom site location: structure-invariant

direct methods

Block, colourless $0.38 \times 0.37 \times 0.15 \text{ mm}$

12933 measured reflections 3379 independent reflections 2868 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.015$

 $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ $h = -16 \rightarrow 16$

 $k = -20 \rightarrow 20$

 $l = -9 \rightarrow 9$

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0407P)^2 + 0.3593P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.26 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.83729(2)	0.13621 (2)	0.22173 (5)	0.03453 (10)
C12	0.93726(3)	0.47791 (2)	0.20393 (6)	0.05086 (12)
O1	0.50796 (7)	0.23368 (5)	0.32072 (13)	0.0302 (2)
O2	0.42680(8)	0.10301 (6)	0.32410 (15)	0.0417 (2)
O3	0.39479 (7)	0.37220 (5)	0.34997 (14)	0.0354 (2)
C1	0.60253 (9)	0.19251 (7)	0.26253 (17)	0.0260 (2)
H1A	0.5802	0.1629	0.1435	0.031*
H1B	0.6354	0.1483	0.3532	0.031*
C2	0.42351 (9)	0.18141 (7)	0.34359 (16)	0.0250 (2)
C3	0.37406 (13)	0.46402 (9)	0.3289 (2)	0.0465 (4)
H3A	0.4363	0.4920	0.2823	0.070*
H3B	0.3664	0.4896	0.4473	0.070*
H3C	0.3053	0.4735	0.2425	0.070*
C11	0.68490 (9)	0.26426 (7)	0.24577 (15)	0.0234 (2)
C12	0.79427 (9)	0.24488 (7)	0.22730 (16)	0.0244 (2)
C13	0.87222 (10)	0.30935 (8)	0.21331 (17)	0.0291 (3)
H13	0.9464	0.2945	0.2012	0.035*
C14	0.83948 (10)	0.39622 (8)	0.21735 (17)	0.0303 (3)
C15	0.73151 (10)	0.41879 (8)	0.23178 (18)	0.0306 (3)
H15	0.7097	0.4786	0.2319	0.037*
C16	0.65539 (10)	0.35254 (8)	0.24611 (17)	0.0274 (2)
H16	0.5810	0.3678	0.2564	0.033*
C21	0.32638 (9)	0.22915 (7)	0.39497 (16)	0.0249 (2)
C22	0.31284 (9)	0.32091 (8)	0.39762 (16)	0.0268 (2)

sup-5 Acta Cryst. (2013). E69, o509

C23	0.21596 (10)	0.35594 (9)	0.44706 (18)	0.0327 (3)	
H23	0.2066	0.4177	0.4505	0.039*	
C24	0.13359 (10)	0.30135 (10)	0.49094 (18)	0.0355 (3)	
H24	0.0686	0.3260	0.5261	0.043*	
C25	0.14469 (10)	0.21127 (10)	0.48428 (18)	0.0351 (3)	
H25	0.0870	0.1740	0.5113	0.042*	
C26	0.24091 (10)	0.17634 (8)	0.43777 (17)	0.0296 (3)	
H26	0.2491	0.1144	0.4349	0.036*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02915 (16)	0.02768 (16)	0.0483 (2)	0.00585 (11)	0.01086 (13)	-0.00228 (12)
C12	0.03554 (19)	0.03606 (19)	0.0846(3)	-0.00991 (14)	0.02065 (18)	0.00427 (17)
O1	0.0219 (4)	0.0242 (4)	0.0472 (5)	-0.0005(3)	0.0138 (4)	-0.0033(3)
O2	0.0334 (5)	0.0234 (4)	0.0723 (7)	-0.0010(4)	0.0204 (5)	-0.0008(4)
О3	0.0301 (4)	0.0218 (4)	0.0571 (6)	0.0015(3)	0.0155 (4)	0.0014 (4)
C1	0.0220 (5)	0.0230 (5)	0.0345 (6)	0.0021 (4)	0.0090(4)	-0.0009(5)
C2	0.0220 (5)	0.0251 (5)	0.0280 (6)	-0.0011 (4)	0.0040 (4)	0.0020(4)
C3	0.0460(8)	0.0234 (6)	0.0740 (11)	0.0030(6)	0.0218 (8)	0.0014 (6)
C11	0.0219 (5)	0.0261 (5)	0.0227 (5)	0.0005 (4)	0.0048 (4)	0.0003 (4)
C12	0.0244 (5)	0.0259 (5)	0.0235 (5)	0.0033 (4)	0.0052 (4)	-0.0005(4)
C13	0.0218 (5)	0.0350(6)	0.0318 (6)	0.0008 (5)	0.0086 (4)	0.0001 (5)
C14	0.0282 (6)	0.0295 (6)	0.0347 (6)	-0.0058(5)	0.0092 (5)	0.0012 (5)
C15	0.0311 (6)	0.0252 (6)	0.0372 (7)	0.0006 (5)	0.0102 (5)	0.0013 (5)
C16	0.0231 (5)	0.0276 (6)	0.0329 (6)	0.0023 (4)	0.0085 (5)	0.0009 (5)
C21	0.0220 (5)	0.0277 (6)	0.0250 (6)	0.0003 (4)	0.0036 (4)	-0.0007(4)
C22	0.0224 (5)	0.0291 (6)	0.0290(6)	0.0003 (4)	0.0044 (4)	-0.0006(5)
C23	0.0274 (6)	0.0362 (7)	0.0346 (7)	0.0064 (5)	0.0053 (5)	-0.0045(5)
C24	0.0238 (6)	0.0517 (8)	0.0318 (6)	0.0049 (5)	0.0068 (5)	-0.0059(6)
C25	0.0245 (6)	0.0493 (8)	0.0328 (7)	-0.0062(5)	0.0089 (5)	-0.0022 (6)
C26	0.0271 (6)	0.0330 (6)	0.0293 (6)	-0.0041(5)	0.0063 (5)	-0.0003(5)

Geometric parameters (Å, °)

C11—C12	1.7403 (12)	C13—C14	1.3849 (17)
C12—C14	1.7374 (12)	C13—H13	0.9500
O1—C2	1.3337 (13)	C14—C15	1.3804 (17)
O1—C1	1.4383 (13)	C15—C16	1.3869 (17)
O2—C2	1.2057 (15)	C15—H15	0.9500
O3—C22	1.3592 (14)	C16—H16	0.9500
O3—C3	1.4267 (15)	C21—C26	1.3929 (16)
C1—C11	1.5033 (15)	C21—C22	1.4093 (16)
C1—H1A	0.9900	C22—C23	1.3973 (16)
C1—H1B	0.9900	C23—C24	1.3826 (19)
C2—C21	1.4902 (16)	C23—H23	0.9500
С3—Н3А	0.9800	C24—C25	1.382 (2)
С3—Н3В	0.9800	C24—H24	0.9500
С3—Н3С	0.9800	C25—C26	1.3811 (17)
C11—C12	1.3929 (16)	C25—H25	0.9500

Acta Cryst. (2013). E69, o509 Sup-6

C12—C13	C11—C16	1.3933 (16)	C26—H26	0.9500
C2—O1—C1			C20—1120	0.7300
C22—03—C3 117.96 (10) C13—C14—C12 118.81 (9) O1—C1—C11 106.55 (9) C14—C15—C16 118.79 (11) O1—C1—H1A 110.4 C14—C15—H15 120.6 C11—C1—H1B 110.4 C15—C16—C11 121.85 (11) C11—C1—H1B 110.4 C15—C16—H16 119.1 H1A—C1—H1B 108.6 C11—C16—H16 119.1 O2—C2—O1 122.41 (11) C26—C21—C22 118.51 (11) O2—C2—C21 123.93 (11) C26—C21—C2 126.02 (10) O1—C2—C21 113.66 (10) C22—C21—C2 126.02 (10) O3—C3—H3A 109.5 O3—C22—C21 118.37 (10) H3A—C3—H3B 109.5 C33—C22—C21 118.37 (10) H3A—C3—H3B 109.5 C23—C22—C22 120.50 (12) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C24—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—H23 119.8	C12—C13	1.3623 (17)		
01—C1—C11 106.55 (9) C14—C15—C16 118.79 (11) 01—C1—H1A 110.4 C14—C15—H15 120.6 C11—C1—H1A 110.4 C16—C15—H15 120.6 O1—C1—H1B 110.4 C15—C16—C11 121.85 (11) C11—C1—H1B 110.4 C15—C16—H16 119.1 H1A—C1—H1B 108.6 C11—C16—H16 119.1 02—C2—O1 122.41 (11) C26—C21—C2 118.51 (11) 02—C2—C21 123.93 (11) C26—C21—C2 115.44 (10) 01—C2—C21 113.66 (10) C22—C21 115.44 (10) 03—C3—H3B 109.5 O3—C22—C23 122.36 (11) 03—C3—H3B 109.5 C3—C22—C21 118.37 (10) 13A—C3—H3C 109.5 C23—C22—C21 119.27 (11) 03—C3—H3B 109.5 C23—C22—C21 119.27 (11) 03—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C24—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—H24 119.6 C12—C1	C2—O1—C1	116.68 (9)	C15—C14—C12	119.76 (10)
01—C1—C11 106.55 (9) C14—C15—C16 118.79 (11) 01—C1—H1A 110.4 C14—C15—H15 120.6 C11—C1—H1A 110.4 C16—C15—H15 120.6 O1—C1—H1B 110.4 C15—C16—C11 121.85 (11) C11—C1—H1B 110.4 C15—C16—H16 119.1 H1A—C1—H1B 108.6 C11—C16—H16 119.1 02—C2—O1 122.41 (11) C26—C21—C2 118.51 (11) 02—C2—C21 123.93 (11) C26—C21—C2 115.44 (10) 01—C2—C21 113.66 (10) C22—C21 115.44 (10) 03—C3—H3B 109.5 O3—C22—C23 122.36 (11) 03—C3—H3B 109.5 C3—C22—C21 118.37 (10) 13A—C3—H3C 109.5 C23—C22—C21 119.27 (11) 03—C3—H3B 109.5 C23—C22—C21 119.27 (11) 03—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C24—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—H24 119.6 C12—C1	C22—O3—C3	117.96 (10)	C13—C14—C12	118.81 (9)
01—C1—H1A 110.4 C14—C15—H15 120.6 C11—C1—H1A 110.4 C16—C15—H15 120.6 O1—C1—H1B 110.4 C15—C16—C11 121.85 (11) C11—C1—H1B 110.4 C15—C16—H16 119.1 H1A—C1—H1B 108.6 C11—C16—H16 119.1 O2—C2—O1 122.41 (11) C26—C21—C2 118.51 (11) O2—C2—C21 113.66 (10) C22—C21—C2 126.02 (10) O1—C2—C21 113.66 (10) C22—C21—C2 126.02 (10) O3—C3—H3A 109.5 O3—C22—C23 122.36 (11) O3—C3—H3B 109.5 C33—C22—C21 118.37 (10) H3A—C3—H3B 109.5 C23—C22—C22 120.50 (12) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C24—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—C23 120.74 (12) C12—C11—C16 117.15 (11) C25—C24—H23 119.8 C12—C11—C1 121.81 (10) C25—C24—H24 119.6 <	O1—C1—C11	` '	C14—C15—C16	* *
C11—C1—H1A		` '		* *
O1—C1—H1B 110.4 C15—C16—H16 119.1 H1A—C1—H1B 110.4 C15—C16—H16 119.1 H1A—C1—H1B 108.6 C11—C16—H16 119.1 O2—C2—O1 122.41 (11) C26—C21—C22 118.51 (11) O2—C2—C21 123.93 (11) C26—C21—C2 115.44 (10) O1—C2—C21 113.66 (10) C22—C21—C2 126.02 (10) O3—C3—H3A 109.5 O3—C22—C23 122.36 (11) O3—C3—H3B 109.5 C3—C22—C21 118.37 (10) H3A—C3—H3C 109.5 C24—C23—C22 120.50 (12) O3—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C22—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—C23 120.50 (12) C12—C11—C16 117.15 (11) C25—C24—H24 119.6 C13—C12—C11 121.81 (10) C23—C24—H24 119.6 C13—C12—C11 122.94 (11) C26—C25—H25 120.5				
C11—C1—H1B 110.4 C15—C16—H16 119.1 H1A—C1—H1B 108.6 C11—C16—H16 119.1 O2—C2—O1 122.41 (11) C26—C21—C22 118.51 (11) O2—C2—C21 123.93 (11) C26—C21—C2 115.44 (10) O1—C2—C21 113.66 (10) C22—C21—C2 126.02 (10) O3—C3—H3A 109.5 O3—C22—C21 118.37 (10) H3A—C3—H3B 109.5 C3—C22—C21 119.27 (11) H3A—C3—H3B 109.5 C23—C22—C21 119.27 (11) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C22—C23—H23 119.0 C12—C11—C16 117.15 (11) C25—C24—H24 119.6 C12—C11—C1				
H1A—C1—H1B				` ′
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
O1—C2—C21 113.66 (10) C22—C21—C2 126.02 (10) O3—C3—H3A 109.5 O3—C22—C23 122.36 (11) O3—C3—H3B 109.5 O3—C22—C21 118.37 (10) H3A—C3—H3B 109.5 C23—C22—C21 119.27 (11) O3—C3—H3C 109.5 C24—C23—C22 120.50 (12) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C22—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—C23 120.74 (12) C12—C11—C1 121.04 (10) C25—C24—H24 119.6 C13—C12—C11 122.14 (11) C26—C25—C24 118.96 (12) C13—C12—C11 122.24 (11) C26—C25—H24 119.6 C13—C12—C11 117.53 (9) C26—C25—H25 120.5 C12—C13—C14 118.35 (11) C25—C26—L25 120.5 C12—C13—H13 120.8 C25—C26—H26 119.0 C14—C13—H13 120.8 C21—C26—H26 119.0 C15—C14—C13 121.43 (11) C26—C21—C22 -171.70 (12) <		, ,		` '
03—C3—H3A 109.5 03—C22—C21 118.37 (10) 03—C3—H3B 109.5 03—C22—C21 118.37 (10) H3A—C3—H3B 109.5 C23—C22—C22 119.27 (11) 03—C3—H3C 109.5 C24—C23—C22 120.50 (12) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C22—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—C23 120.74 (12) C12—C11—C1 121.04 (10) C25—C24—H24 119.6 C16—C11—C1 121.81 (10) C23—C24—H24 119.6 C13—C12—C11 122.41 (11) C26—C25—C24 118.96 (12) C13—C12—C11 117.53 (9) C26—C25—H25 120.5 C11—C12—C11 120.05 (9) C24—C25—H25 120.5 C12—C13—H13 120.8 C25—C26—C21 121.99 (12) C12—C13—H13 120.8 C25—C26—H26 119.0 C15—C14—C13 121.43 (11) C2—O1—C2—C21 -171.70 (12) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 -173.90 (10) </td <td></td> <td>1 /</td> <td></td> <td>* *</td>		1 /		* *
03—C3—H3B 109.5 03—C22—C21 118.37 (10) H3A—C3—H3B 109.5 C23—C22—C21 119.27 (11) 03—C3—H3C 109.5 C24—C23—C22 120.50 (12) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C22—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—C23 120.74 (12) C12—C11—C1 121.04 (10) C25—C24—H24 119.6 C13—C12—C11 122.81 (10) C23—C24—H24 119.6 C13—C12—C11 122.41 (11) C26—C25—C24 118.96 (12) C13—C12—C11 120.05 (9) C24—C25—H25 120.5 C11—C12—C11 120.05 (9) C24—C25—H25 120.5 C12—C13—C14 118.35 (11) C25—C26—C21 121.99 (12) C12—C13—H13 120.8 C25—C26—H26 119.0 C14—C13—H13 120.8 C21—C26—H26 119.0 C15—C14—C13 121.43 (11) C2—C2—C21—C26 -173.90 (10) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C22 -171.70 (
H3A—C3—H3B 109.5 C23—C22—C21 119.27 (11) O3—C3—H3C 109.5 C24—C23—C22 120.50 (12) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C22—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—C23 120.74 (12) C12—C11—C1 121.04 (10) C25—C24—H24 119.6 C13—C12—C11 122.41 (11) C26—C25—C24 118.96 (12) C13—C12—C11 117.53 (9) C26—C25—H25 120.5 C11—C12—C11 120.05 (9) C24—C25—H25 120.5 C12—C13—C14 118.35 (11) C25—C26—C21 121.99 (12) C12—C13—H13 120.8 C25—C26—H26 119.0 C15—C14—C13 121.43 (11) C2—O1—C26—H26 119.0 C15—C14—C13 121.43 (11) C2—O1—C26—H26 119.0 C15—C14—C13 121.43 (11) C2—C21—C26 6.06 (18) C1—O1—C2—C21 177.14 (10) O2—C2—C21—C26 -173.90 (10) C1—C1—C16 -13.58 (15) C3—O3—C22—C23				` ′
03—C3—H3C 109.5 C24—C23—C22 120.50 (12) H3A—C3—H3C 109.5 C24—C23—H23 119.8 H3B—C3—H3C 109.5 C22—C23—H23 119.8 C12—C11—C16 117.15 (11) C25—C24—C23 120.74 (12) C12—C11—C1 121.04 (10) C25—C24—H24 119.6 C16—C11—C1 121.81 (10) C23—C24—H24 119.6 C13—C12—C11 122.41 (11) C26—C25—C24 118.96 (12) C13—C12—C11 117.53 (9) C26—C25—H25 120.5 C11—C12—C11 120.05 (9) C24—C25—H25 120.5 C12—C13—C14 118.35 (11) C25—C26—C21 121.99 (12) C12—C13—H13 120.8 C25—C26—H26 119.0 C14—C13—H13 120.8 C25—C26—H26 119.0 C15—C14—C13 121.43 (11) 121.43 (11) C2—O1—C1—C1 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 -171.70 (12)				* /
H3A—C3—H3C				* *
H3B—C3—H3C				` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` '		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` '		
C13—C12—C11 117.53 (9) C26—C25—H25 120.5 C11—C12—C11 120.05 (9) C24—C25—H25 120.5 C12—C13—C14 118.35 (11) C25—C26—C21 121.99 (12) C12—C13—H13 120.8 C25—C26—H26 119.0 C14—C13—H13 120.8 C21—C26—H26 119.0 C15—C14—C13 121.43 (11) 12.05 119.0 C2—O1—C1—C11 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 -173.90 (10) C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—C3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.79.23 (11) C11—C12—C13—C		` '		
C11—C12—C11 120.05 (9) C24—C25—H25 120.5 C12—C13—C14 118.35 (11) C25—C26—C21 121.99 (12) C12—C13—H13 120.8 C25—C26—H26 119.0 C14—C13—H13 120.8 C21—C26—H26 119.0 C15—C14—C13 121.43 (11) 119.0 C2—O1—C1—C11 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 -173.90 (10) C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15		1 /		* /
C12—C13—C14 118.35 (11) C25—C26—C21 121.99 (12) C12—C13—H13 120.8 C25—C26—H26 119.0 C14—C13—H13 120.8 C21—C26—H26 119.0 C15—C14—C13 121.43 (11) 119.0 C2—O1—C1—C11 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 -173.90 (10) C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C		* *		
C12—C13—H13 120.8 C25—C26—H26 119.0 C14—C13—H13 120.8 C21—C26—H26 119.0 C15—C14—C13 121.43 (11) 119.0 C2—O1—C1—C11 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 -173.90 (10) C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13		* /		
C14—C13—H13 120.8 C21—C26—H26 119.0 C15—C14—C13 121.43 (11) 119.0 C2—O1—C1—C11 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 -173.90 (10) C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C15 -1.10 (19) C22—C23—C24—C25 -0.9 (2)		` '		` '
C15—C14—C13 121.43 (11) C2—O1—C1—C11 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 -173.90 (10) C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2)				
C2—O1—C1—C11 179.67 (10) O2—C2—C21—C26 6.06 (18) C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 —173.90 (10) C1—O1—C2—C21 —177.14 (10) O2—C2—C21—C22 —171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 —13.58 (15) C3—O3—C22—C23 —7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 —179.38 (11) C26—C21—C22—O3 —177.87 (11) C16—C11—C12—C11 —178.92 (9) C2—C21—C22—O3 —0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 —0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 —1.10 (19) C21—C22—C23—C24 —0.73 (18) C12—C13—C14—C15 —1.10 (19) C21—C22—C23—C24 —0.73 (18) C12—C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C13—C14—C15—C16 —1.78.68 (10) C24—C25—C			C21 C20 1120	117.0
C1—O1—C2—O2 2.90 (17) O1—C2—C21—C26 —173.90 (10) C1—O1—C2—C21 —177.14 (10) O2—C2—C21—C22 —171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 —13.58 (15) C3—O3—C22—C23 —7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 —179.38 (11) C26—C21—C22—O3 —177.87 (11) C16—C11—C12—C11 —178.92 (9) C2—C21—C22—O3 —0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 —0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 —1.10 (19) C21—C22—C23—C24 —0.73 (18) C12—C13—C14—C15 —1.10 (19) C22—C23—C24—C25 —0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C13—C14—C15—C16 —178.68 (10) C24—C25—C26—C21 —0.90 (19) C14—C15—C16—C11 —0.19 (19) C22—C21—C26		121.13 (11)		
C1—O1—C2—C21 -177.14 (10) O2—C2—C21—C22 -171.70 (12) O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C2	C2—O1—C1—C11	179.67 (10)	O2—C2—C21—C26	6.06 (18)
O1—C1—C11—C12 167.09 (10) O1—C2—C21—C22 8.34 (16) O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C1—O1—C2—O2	2.90 (17)	O1—C2—C21—C26	-173.90 (10)
O1—C1—C11—C16 -13.58 (15) C3—O3—C22—C23 -7.76 (18) C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C1—O1—C2—C21	-177.14 (10)	O2—C2—C21—C22	-171.70 (12)
C16—C11—C12—C13 1.25 (18) C3—O3—C22—C21 171.63 (12) C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	O1—C1—C11—C12	167.09 (10)	O1—C2—C21—C22	8.34 (16)
C1—C11—C12—C13 -179.38 (11) C26—C21—C22—O3 -177.87 (11) C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	O1—C1—C11—C16	-13.58 (15)	C3—O3—C22—C23	-7.76 (18)
C16—C11—C12—C11 -178.92 (9) C2—C21—C22—O3 -0.17 (18) C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C16—C11—C12—C13	1.25 (18)	C3—O3—C22—C21	171.63 (12)
C1—C11—C12—C11 0.44 (16) C26—C21—C22—C23 1.53 (17) C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C1—C11—C12—C13	-179.38 (11)	C26—C21—C22—O3	-177.87(11)
C11—C12—C13—C14 -0.22 (18) C2—C21—C22—C23 179.23 (11) C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C16—C11—C12—C11	-178.92 (9)	C2—C21—C22—O3	-0.17(18)
C11—C12—C13—C14 179.96 (9) O3—C22—C23—C24 178.65 (12) C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C1—C11—C12—C11	0.44 (16)	C26—C21—C22—C23	1.53 (17)
C12—C13—C14—C15 -1.10 (19) C21—C22—C23—C24 -0.73 (18) C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C11—C12—C13—C14	-0.22 (18)	C2—C21—C22—C23	179.23 (11)
C12—C13—C14—C12 178.88 (9) C22—C23—C24—C25 -0.9 (2) C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C11—C12—C13—C14	179.96 (9)	O3—C22—C23—C24	178.65 (12)
C13—C14—C15—C16 1.3 (2) C23—C24—C25—C26 1.7 (2) C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C12—C13—C14—C15	-1.10 (19)	C21—C22—C23—C24	-0.73 (18)
C12—C14—C15—C16 -178.68 (10) C24—C25—C26—C21 -0.90 (19) C14—C15—C16—C11 -0.19 (19) C22—C21—C26—C25 -0.73 (18) C12—C11—C16—C15 -1.04 (18) C2—C21—C26—C25 -178.67 (11)	C12—C13—C14—C12	178.88 (9)	C22—C23—C24—C25	-0.9 (2)
C14—C15—C16—C11	C13—C14—C15—C16	1.3 (2)	C23—C24—C25—C26	1.7 (2)
C12—C11—C16—C15 —1.04 (18)	Cl2—C14—C15—C16	-178.68 (10)	C24—C25—C26—C21	-0.90 (19)
	C14—C15—C16—C11	-0.19 (19)	C22—C21—C26—C25	-0.73 (18)
C1—C11—C16—C15 179.60 (11)	C12—C11—C16—C15	-1.04 (18)	C2—C21—C26—C25	-178.67 (11)
	C1—C11—C16—C15	179.60 (11)		

Acta Cryst. (2013). E69, o509 sup-7

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
C3—H3 <i>A</i> ···O2 ⁱ	0.98	2.59	3.5433 (18)	165
C15—H15···O2 ⁱ	0.95	2.51	3.3945 (15)	154
C16—H16···O3	0.95	2.48	3.3989 (15)	163

Symmetry code: (i) -x+1, y+1/2, -z+1/2.

Acta Cryst. (2013). E69, o509 sup-8