

- Einleitung: Was ist InceptionNet?
- Besonderheiten:
 - Inception Module
 - Auxiliary Classifier
- Weiterentwicklung: Inception v3
 - Verbesserungen aus Inception v2
 - Zusätzliches in Inception v3
- Experimente

Was ist InceptionNet?

- Inception:
 - Deep Convolutional Neural Network Architecture
 - Ziel: Optimale Nutzung der Rechenleistung im neuronalen Netz
 - Lösung: Architekturdesign was es erlaubt, die Tiefe und Breite des Netzes bei konstantem Rechenbudget zu erhöhen
- GoogLeNet (Inception v1):
 - Konkrete Umsetzung der Inception Architektur
 - State of the Art in ImageNet Large-Scale Visual Recognition Challenge 2014
 - 22 Schichten tief (27 wenn man pooling layers mitzählt)
 - Insgesamt ca. 100 Layer

Besonderheiten

Probleme, die gelöst werden sollten:

- Wesentliche Bestandteile des Bildes können unterschiedlich groß im Bild sein
- Probleme von sehr tiefen Netzen: overfitting, vanishing gradient
- Steigender Rechenaufwand

Lösungsansätze:

- Mehrere Filter verschiedener Größe auf einer Ebene
- Sparsely Connected vs Fully Connected
- Zusätzliche Filter zum Reduzieren der Dimensionen
- Zusammenfassen der Outputs aus den Filtern

Besonderheiten: Inception Module

Seminar Deep Learning - InceptionNet - Jens Ullrich - Informatik Master - Hochschule Offenburg

Besonderheiten: Auxiliary Classifiers

Problem:

• Gradient Backpropagation durch relative tiefe Netze kann ineffizient werden.

Lösung:

- Kleine CNNs, die an die mittleren Inception Module angehängt werden
- Total Loss wird aus allen Outputs berechnet
- Loss der Auxiliary Classifier wird dabei mit 0.3 gewichtet
- Auxiliary Classifier werden natürlich nur beim Training genutzt

Weiterentwicklung: Inception v3

- Verbesserungen aus Inception v2:
 - Faktorisierung der größeren Filter
 - Beispiel: 1x3 + 3x1
 - 33% günstiger als 3x3

Weiterentwicklung: Inception v3

- Zusätzliche Verbesserungen in Inception v3:
 - RMSProp Optimizer
 - BatchNorm in Auxiliary Classifiers
 - Label Smoothing
- Weitere Versionen: Inception v4, Inception-ResNet

• Code:

- Pytorch
- Torchvision Models: GoogLeNet (Inception v1) + Inception (Inception v3)

Features:

- Daten im Format *ImageFolder* laden und vorverarbeiten
- Modelle für InceptionNet v1 und v3 initialisieren
- Modelle trainieren, Trainings- und Validierungsergebnisse ausgeben
- Visualisierung mit TensorBoard
- Confusion Matrix erstellen und visualisieren

Daten: MagmaDataSet

• 8 Klassen

Trainset: 4917 Bilder

• Testset: 1230 Bilder

Format: ImageFolder

 Bilder sind nach Klasse sortiert in Unterordnern gespeichert

• Beispiel:

- root_path/train/0/123.png
- root_path/train/6/456.png
- root_path/train/1/789.png
- root_path/train/5/101.png
- root_path/test/4/112.png
- root_path/test/6/131.png
- root path/test/6/415.png
- root_path/test/7/161.png

Daten: MagmaDataSet

Seminar Deep Learning - InceptionNet - Jens Ullrich - Informatik Master - Hochschule Offenburg

Experimente: Parameter

- Folgende Parameter wurden untersucht:
 - Batch Size
 - Learning Rate + Reduction
 - Anzahl Epochen
- Folgende Werte wurden für die folgenden Ergebnisse genutzt:
 - Batch Size: 16
 - Learning Rate: 0.001
 - Anzahl Epochen: 16
- Bestes Ergebnis: InceptionNet v3, vortrainiert (mit ImageNet Daten)
 - Best validation Accuracy: 0.994309

Ergebnisse: Accuracy

v1 not pretrained / v1 pretrained / v3 not pretrained / v3 pretrained

Ergebnisse: Loss

v1 not pretrained / v1 pretrained / v3 not pretrained / v3 pretrained

Informatik Master - Hochschule Offenburg

Links:

- Paper:
 - InceptionNet v1: https://arxiv.org/pdf/1409.4842v1.pdf
 - InceptionNet v2 & v3: https://arxiv.org/pdf/1512.00567.pdf
- Hilfreiche Artikel:
 - https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
 - https://www.analyticsvidhya.com/blog/2018/10/understa

 nding-inception-network-from-scratch/
- Code:
 - https://github.com/jensullrich/DL-Seminar
- Tutorials:
 - Using TorchVision Models: https://pytorch.org/tutorials/beginner/finetuning torchvision models tutorial.html
 - TensorBoard: <u>https://pytorch.org/docs/stable/tensorboard.html</u>
 - Confusion Matrix: https://deeplizard.com/learn/video/0LhiS6yu2qQ

Seminar Deep Learning - InceptionNet - Jens Ullrich - Informatik Master - Hochschule Offenburg