3. Многомерные случайные величины

<u>1.</u> Задан закон распределения двумерной случайной величины $(\xi; \eta)$:

ξ\η	- 1	0	1	2
- 1	0,05	0,3	0	0,05
1	0	p	0,2	0

Требуется:

- **а)** определить значение параметра p;
- **б)** найти $P(\xi \ge \eta)$;
- в) найти законы распределения случайных величин ξ и η ;
- Γ) вычислить математические ожидания $M\xi$ и $M\eta$;
- д) вычислить дисперсии $D\xi$ и $D\eta$;
- е) найти коэффициент корреляции между ξ и η;
- ж) выяснить, зависимы ли случайные величины ξ и η .
- <u>2.</u> Задан закон распределения двумерной случайной величины $(\xi; \eta)$:

ξ\η	20	40	60
10	3λ	λ	0
20	2λ	4λ	2λ
30	λ	2λ	5λ

Требуется:

- a) определить значение параметра λ ;
- **б)** найти законы распределения компонент двумерной случайной величины;
- **в)** выяснить, зависимы ли компоненты двумерной случайной величины $(\xi; \eta);$
 - г) вычислить математические ожидания $M\xi$ и $M\eta;$
 - д) вычислить дисперсии $D\xi$ и $D\eta$;
 - e) найти коэффициент корреляции между ξ и η ;
 - ж) найти $P(\xi \ge \eta)$.
- **3.** Найти ковариацию между ξ и η , если задан закон распределения двумерной случайной величины $(\xi; \eta)$:

ξ\η	3	10	12
4	0,17	0,13	0,25
5	0,1	0,3	0,05

4. Пусть $P(\xi=-1;\,\eta=0)=P(\xi=1;\,\eta=0)=P(\xi=0;\,\eta=-1)=P(\xi=0;\,\eta=1)=0,25.$

- **a)** Записать закон распределения двумерной случайной величины $(\xi; \eta)$ в виде таблицы.
 - б) Являются ли случайные величины ξ и η независимыми?
 - в) Являются ли случайные величины ξ и η некоррелированными?

<u>5.</u> Задана плотность распределения двумерной случайной величины $(\xi; \eta)$:

$$p(x;y) = \begin{cases} a(x+y), & \text{если } 0 \le x \le y \le 1, \\ 0 & \text{во всех остальных случаях.} \end{cases}$$

Требуется найти:

- a) коэффициент a;
- **б)** математические ожидания $M\xi$ и $M\eta$;
- **в)** дисперсии $D\xi$ и $D\eta$;
- г) коэффициент корреляции между ξ и η ;
- д) выяснить, зависимы ли компоненты двумерной случайной величины $(\xi;\eta);$
 - e) найти плотности распределения случайных величин ξ и η ;
 - ж) вероятность $P(\xi + \eta < 0,5)$.
 - **6.** Найти $P\bigg(0 < \xi < \frac{\pi}{2}; 0 < \eta < \frac{\pi}{4}\bigg)$, если двумерная случайная величина

 $(\xi;\eta)$ задана плотностью распределения

$$p(x; y) = \begin{cases} a \sin(x + y), & \text{если } 0 < x < \frac{\pi}{2} \text{ и } 0 < y < \frac{\pi}{2}, \\ 0 & \text{в остальных случаях.} \end{cases}$$

 $\underline{7}$. Найти коэффициент корреляции между ξ и η , если двумерная случайная величина (ξ ; η) задана плотностью распределения

$$p(x; y) = \begin{cases} x + y, & \text{если } 0 < x < 1 \text{ и } 0 < y < 1, \\ 0 & \text{в остальных случаях.} \end{cases}$$

<u>8.</u> Задана функция распределения двумерной случайной величины $(\xi; \eta)$:

$$F(x; y) = \begin{cases} (1 - e^{-3x})(1 - e^{-5y}), & \text{если } x > 0, y > 0, \\ 0 & \text{в остальных случаях.} \end{cases}$$

Требуется найти:

- a) плотность распределения двумерной случайной величины $(\xi; \eta);$
- **б)** вероятность $P(0 < \xi < 1; 0 < \eta < 1)$.
- **9.** Задана функция распределения двумерной случайной величины $(\xi; \eta)$:

$$F(x; y) = \begin{cases} (1-x^{-7})(1-y^{-5}), & \text{если } x > 1, y > 1, \\ 0 & \text{в остальных случаях.} \end{cases}$$

Требуется:

- **a)** найти плотность распределения двумерной случайной величины $(\xi;\eta);$
 - **б)** найти вероятность $P(0 < \xi < 2; 2 < \eta < 4);$
 - в) определить, зависимы ли случайные величины ξ и η .
- **10.** Случайная величина $(\xi; \eta)$ распределена равномерно в треугольнике, ограниченном осью Ox и прямыми y = 2x, x = 1. Требуется найти:
 - **а)** плотность распределения двумерной случайной величины $(\xi; \eta)$;
 - **б)** вероятность $P(\xi + \eta < 1)$;
 - в) плотности распределения случайных величин ξ и η;
 - Γ) математические ожидания $M\xi$ и $M\eta$;
 - д) дисперсии $D\xi$ и $D\eta$;
 - e) коэффициент корреляции между ξ и η ;
- **ж)** выяснить, зависимы ли компоненты двумерной случайной величины $(\xi;\eta)$.
- **11.** Найти коэффициент корреляции между ξ и η , если двумерная случайная величина (ξ ; η) задана функцией распределения

$$F(x; y) = \begin{cases} 0 & \text{при } x \le 0 \text{ или } y \le 0, \\ \sin x \sin y & \text{при } 0 < x < \frac{\pi}{2} \text{ и } 0 < y < \frac{\pi}{2}, \\ \sin x & \text{при } 0 < x < \frac{\pi}{2} \text{ и } y \ge \frac{\pi}{2}, \\ \sin y & \text{при } x \ge \frac{\pi}{2} \text{ и } 0 < y < \frac{\pi}{2}; \\ 1 & \text{при } x \ge \frac{\pi}{2} \text{ и } y \ge \frac{\pi}{2}. \end{cases}$$

- <u>12.</u> Записать плотность распределения двумерной случайной величины $(\xi; \eta)$, если ее компоненты ξ и η независимы и распределены по следующим законам:
 - а) равномерно на отрезках [-1; 1] и [0; 2] соответственно;
 - **б)** нормально с параметрами $M\xi = 3$, $M\eta = -2$; $D\xi = 4$, $D\eta = 16$.
 - <u>13.</u> Найти коэффициент корреляции случайных величин ξ и $\eta = 1 2\xi$.
- <u>14.</u> Чему равен коэффициент корреляции случайных величин $\eta = 2\xi + 3$ и $\zeta = 1 3\xi$?
- <u>15.</u> Найти числовые характеристики и коэффициент корреляции случайных величин $\zeta_1 = 2 \xi + 3\eta$ и $\zeta_2 = 3\xi + \eta$, если

$$M\xi = -1$$
; $D\xi = 4$; $M\eta = 0$; $D\eta = 9$; $cov(\xi; \eta) = -2$.

<u>16.</u> Найти числовые характеристики и коэффициент корреляции случайных величин $\zeta_1 = 3\xi - 2\eta$ и $\zeta_2 = 2\xi + 4\eta$, если

$$M\xi = 2$$
; $D\xi = 1$; $M\eta = -1$; $D\eta = 16$; $cov(\xi; \eta) = 3$.

17. Найти числовые характеристики и коэффициент корреляции случайных величин $\zeta_1 = 5\xi + \eta$ и $\zeta_2 = -\xi - 2\eta$, если

$$M\xi = 3$$
; $D\xi = 4$; $M\eta = -2$; $D\eta = 1$; $r_{\xi;\eta} = 0.5$.

<u>18.</u> Найти числовые характеристики и коэффициент корреляции случайных величин $\zeta_1 = 4 - 3\xi - 2\eta$ и $\zeta_2 = 2\xi + 3\eta$, если

$$M\xi = 0$$
; $D\xi = 16$; $M\eta = 3$; $D\eta = 4$; $r_{\xi;\eta} = -0.25$.

- 19. Производятся два независимых выстрела по мишени в неизменных условиях. Вероятность попадания в мишень при одном выстреле равна 0,7. Рассматривается двумерная случайная величина $(\xi; \eta)$, где ξ число выстрелов до первого попадания $(\xi = 2, \xi)$ если попаданий не было); η число промахов. Требуется найти:
 - **а)** распределение двумерной случайной величины $(\xi; \eta)$;
 - **6)** $P(\xi = \eta);$
- **в**) выяснить, зависимы ли компоненты двумерной случайной величины $(\xi;\eta);$
 - г) найти коэффициент корреляции между ξ и η .
- **<u>20.</u>** Бросаются две игральные кости. Введем случайные величины: ξ число выпавших шестерок; η число выпавших нечетных цифр. Требуется:
 - а) найти распределение двумерной случайной величины $(\xi; \eta)$;
- **б)** построить условный закон распределения случайной величины ξ при условии, что $\eta = 0$;
- **в)** построить условный закон распределения случайной величины ξ при условии, что $\eta = 1$;
- Γ) выяснить, зависимы ли компоненты двумерной случайной величины $(\xi;\eta)$.

Ответы. **1. а)** p = 0.4; **б)** 0.65;

в)	ξ	- 1	1
	P	0,4	0,6

η	- 1	0	1	2
P	0,05	0,7	0,2	0,05

- г) $M\xi = 0.2$; $M\eta = 0.25$; д) $D\xi = 0.96$; $D\eta = 0.3875$; е) 0.164; ж) зависимы.
- **2.** a) $\lambda = 0.05$;

б)	ξ	10	20	30
	P	0,2	0,4	0,4

η	20	40	60
Р	0,3	0,35	0,35

- в) зависимы; г) $M\xi = 22$; $M\eta = 41$; д) $D\xi = 56$; $D\eta = 259$; е) 0,5646; ж) 0,15. **3.** -0,0195.
- 4. a)

ξ\η	- 1	0	1
- 1	0	0,25	0
0	0,25	0	0,25
1	0	0,25	0

б) нет; в) да.

5. a)
$$a = 2$$
; **6)** $M\xi = \frac{5}{12}$; $M\eta = \frac{3}{4}$; **B)** $D\xi = \frac{43}{720}$; $D\eta = \frac{3}{80}$; **r)** 0,4402;

д) зависимы; е)
$$p_{\xi}(x) = \begin{cases} 1 + 2x - 3x^2, & \text{если } x \in [0;1], \\ 0, & \text{если } x \notin [0;1]; \end{cases}$$

$$p_{\eta}(y) = \begin{cases} 3y^2, & \text{если } y \in [0;1], \\ 0, & \text{если } y \notin [0;1]; \end{cases}$$
 ж) $\frac{1}{24}$. 6. 0,5. 7. $-\frac{1}{11}$.

8. а)
$$p(x; y) = \begin{cases} 15e^{-3x-5y}, & \text{если } x > 0, y > 0, \\ 0 & \text{в остальных случаях;} \end{cases}$$
 6) $(1-e^{-3})(1-e^{-5}).$

9. а)
$$p(x; y) = \begin{cases} 35x^{-8}y^{-6}, & \text{если } x > 1, y > 1, \\ 0 & \text{в остальных случаях}; \end{cases}$$
6) $(1-2^{-7})(2^{-5}-4^{-5}) \approx 0.03;$

в) независимы. 10. а)
$$p(x; y) = \begin{cases} 1, & \text{если } (x; y) \in D, \\ 0, & \text{если } (x; y) \notin D, \end{cases}$$
 где D – треугольник,

ограниченный осью
$$Ox$$
 и прямыми $y = 2x$, $x = 1$; **б**) $\frac{1}{3}$;

в)
$$p_{\xi}(x) = \begin{cases} 2x, & \text{если } x \in [0;1], \\ 0, & \text{если } x \notin [0;1]; \end{cases}$$
 $p_{\eta}(y) = \begin{cases} 1 - \frac{y}{2}, & \text{если } y \in [0;2], \\ 0, & \text{если } y \notin [0;2]; \end{cases}$

г)
$$M\xi = \frac{2}{3}$$
; $M\eta = \frac{2}{3}$; д) $D\xi = \frac{1}{18}$; $D\eta = \frac{2}{9}$; е) 0,5; ж) зависимы. 11.0.

12. a)
$$p(x; y) = \begin{cases} 0.25, & \text{если} -1 \le x \le 1 \text{ и } 0 \le y \le 2, \\ 0 & \text{в остальных случаях;} \end{cases}$$

6)
$$p(x; y) = \frac{1}{16\pi} \exp\left\{-\frac{1}{2}\left(\frac{(x-3)^2}{4} + \frac{(y+2)^2}{16}\right)\right\}$$
. **13.** -1. **14.** -1.

15.
$$M\zeta_1 = 3$$
; $D\zeta_1 = 97$; $M\zeta_2 = -3$; $D\zeta_2 = 33$; $r_{\zeta_1;\zeta_2} = -\frac{1}{\sqrt{3201}} \approx -0.0177$.

16.
$$M\zeta_1 = 8$$
; $D\zeta_1 = 37$; $M\zeta_2 = 0$; $D\zeta_2 = 308$; $r_{\zeta_1;\zeta_2} = -\frac{7\sqrt{7}}{\sqrt{407}} \approx -0.918$.

17.
$$M\zeta_1 = 13$$
; $D\zeta_1 = 111$; $M\zeta_2 = 1$; $D\zeta_2 = 12$; $r_{\zeta_1;\zeta_2} = -\frac{11}{2\sqrt{37}} \approx -0.904$.

18.
$$M\zeta_1 = -2$$
; $D\zeta_1 = 136$; $M\zeta_2 = 9$; $D\zeta_2 = 76$; $r_{\zeta_1; \zeta_2} = -\frac{47}{2\sqrt{646}} \approx -0.925$.

20.

6) ξ 0 1 2 P 4/9 4/9 1/9

в)

)	χ	0	1
	P	2/3	1/3

г) зависимы.