ECE 111 HW 1 Report

Homework 6a: gray_code_to_binary_converter

a. SystemVerilog RTL model

```
module gray code to binary convertor #(parameter N = 4) (
      input logic clk, rstn,
 3
      input logic[N-1:0] gray value,
 4
      output logic[N-1:0] binary value
 5
 6
7
  □function automatic [N-1:0] gray to binary(logic [N-1:0] value);
        begin
9
             gray to binary [N-1] = value[N-1];
10
             for(int i=N-1; i>0; i = i - 1)
11
             gray to binary[i-1] = value[i] ^ value[i - 1];
12
        end
13
   endfunction
14
15 palways_ff @ (posedge clk or negedge rstn) begin
16
        if (!rstn) begin
17
            binary value <= 0;
18
        end
19 白
        else begin
            binary value <= gray to binary(gray value);</pre>
21
        end
   end
23
    endmodule: gray_code_to_binary_convertor
24
25
```

b. RTL schematic

c. Post mapping schematic

d. Post fitting schematic

e. Resource Usage table

	Resource	Usage
1	Estimated ALUTs Used	3
1	Combinational ALUTs	3
2	Memory ALUTs	0
3	LUT_REGs	0
2	Dedicated logic registers	4
3		
4	Estimated ALUTs Unavailable	0
1	Due to unpartnered combinational logic	0
2	Due to Memory ALUTs	0
5	·	
6	Total combinational functions	3
7	Combinational ALUT usage by number of inputs	
1	7 input functions	0
2	6 input functions	0
3	5 input functions	0
4	4 input functions	0
5	<=3 input functions	3
8	·	
9	Combinational ALUTs by mode	
1	normal mode	3
2	extended LUT mode	0
3	arithmetic mode	0
4	shared arithmetic mode	0
10		
11	Estimated ALUT/register pairs used	4
12		
13	Total registers	4
1	Dedicated logic registers	4
2	I/O registers	0
3	LUT_REGs	0
14		
15		
16	I/O pins	10
17		
18	DSP block 18-bit elements	0
19		
20	Maximum fan-out node	clk~input
21	Maximum fan-out	4
22	Total fan-out	32
23	Average fan-out	1.19

Number of ALUT: 3 (10 I/O pins) Number of Functions: 3 (3 input functions)

f. Waveform simulation

g. Transcript and explanations

The waveform simulation matches the gray code value to binary value table and diagram provided below. Depending on the N value there are N-1 XOR gate, where each output, except for the N-1 output feeds into the input of the next XOR gate.

Gray Code Value			Binary Value				
G3	G2	G1	G0	В3	B2	B1	В0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

$$\begin{array}{c} a \\ b \end{array} \longrightarrow \begin{array}{c} \text{out} = a \oplus b = a \overline{b} + \overline{a} b \end{array}$$

a	Ь	a⊕b		
O	0	0		
0	١	1		
l	0	1		
l	1	0		

Homework 6b: carry lookahead adder

a. SystemVerilog RTL model

```
`include "fulladder.sv"
     module carry_lookahead_adder#(parameter N=4)
 3
 4
       input logic[N-1:0] A, B,
 5
       input logic CIN,
 6
       output logic[N:0] result
 8
     logic [3:0] G, P, S;
     logic [N:0] C;
10
11
     assign C[0]=CIN;
12
13
     genvar i;
14
     generate
15
         for (i=0; i<N; i=i+1)</pre>
16
             begin: fa loop
17
                  fulladder fa_inst(.a(A[i]),.b(B[i]),.cin(C[i]),.sum(S[i]),.cout());
18
              end: fa loop
19
     endgenerate
20
21
     genvar j;
22
     generate
23
         for (j=0; j<N; j=j+1)</pre>
24
             begin: gen_and_prop_loop
25
                  assign G[j] = A[j] & B[j];
26
                  assign P[j] = A[j] | B[j];
27
                  assign C[j+1] = G[j] \mid (P[j] \& C[j]);
28
              end
29
     endgenerate
30
31
     assign result = {C[4], S};
32
33
     endmodule:carry lookahead adder
34
35
36
     alternatively
37
38
     \label{eq:fulladder} fulladder inst0 \; (.a(A[0]),.b(B[0]),.cin(C[0]),.sum(S[0]),.cout());
39
     fulladder inst1 (.a(A[1]),.b(B[1]),.cin(C[1]),.sum(S[1]),.cout());
40
     \label{eq:full-adder} full-adder inst2 \; (.a(A[2]),.b(B[2]),.cin(C[2]),.sum(S[2]),.cout());
41
     fulladder inst3 (.a(A[3]),.b(B[3]),.cin(C[3]),.sum(S[3]),.cout());
42
43
       // Gi=A.B
       assign G[0] = A[0] \& B[0];
44
45
       assign G[1] = A[1] \& B[1];
46
       assign G[2] = A[2] \& B[2];
       assign G[3] = A[3] & B[3];
47
48
49
       // Pi=A+B
50
       assign P[0] = A[0] | B[0];
51
       assign P[1] = A[1] | B[1];
52
       assign P[2] = A[2] | B[2];
53
       assign P[3] = A[3] | B[3];
54
55
       // Carry
56
       assign C[0] = CIN;
57
       assign C[1] = G[0] | (P[0] & C[0]);
58
       assign C[2] = G[1] | (P[1] & C[1]);
       assign C[3] = G[2] | (P[2] & C[2]);
60
       assign C[4] = G[3] | (P[3] & C[3]);
61
62
       assign result = \{C[4], S\};
```

b. RTL schematic

c. Post mapping schematic

d. Post fitting schematic

e. Resource Usage table

	Resource	Usage
1	Estimated ALUTs Used	8
1	Combinational ALUTs	8
2	Memory ALUTs	0
3	LUT_REGs	О
2	Dedicated logic registers	0
3		
4	Estimated ALUTs Unavailable	0
1	Due to unpartnered combinational logic	0
2	Due to Memory ALUTs	0
5		
6	Total combinational functions	8
7	Combinational ALUT usage by number of inputs	
1	7 input functions	0
2	6 input functions	О
3	5 input functions	2
4	4 input functions	2
5	<=3 input functions	4
8	·	
9	Combinational ALUTs by mode	
1	normal mode	8
2	extended LUT mode	О
3	arithmetic mode	0
4	shared arithmetic mode	О
10		
11	Estimated ALUT/register pairs used	8
12		
13	Total registers	0
1	Dedicated logic registers	О
2	I/O registers	0
3	LUT_REGs	О
14		
15		
16	I/O pins	14
17		
18	DSP block 18-bit elements	О
19		
20	Maximum fan-out node	C[2]~2
21	Maximum fan-out	3
22	Total fan-out	48
23	Average fan-out	1.33

Number of ALUT: 8 (14 I/O pins)

Number of Functions: 3

2 5 input functions

2 4 input functions

4 3 input functions

f. Waveform simulation

g. Transcript and explanations

```
# Top level modules:
       carry lookahead adder testbench
# End time: 16:19:47 on Feb 16,2021, Elapsed time: 0:00:00
# Errors: 0, Warnings: 0
ModelSim> vsim work.carry lookahead adder testbench
# vsim work.carry_lookahead_adder_testbench
# Start time: 16:19:51 on Feb 16,2021
# Loading sv std.std
# Loading work.carry lookahead adder testbench
# Loading work.carry lookahead adder
# Loading work.fulladder
add wave -position insertpoint sim:/carry_lookahead_adder_testbench/*
VSIM 6> run -all
  time=0 A=0 B=0
                        CIN=0
                               result= 0
                   B= 1
 time=100
            A= 2
                          CIN=1
                                   result= 4
 time=150
                   B= 1
                           CIN=0
                                   result= 2
  time=200
                    B= 2
                           CIN=0
                                   result= 4
             A= 2
  time=250
             A= 3
                    B= 1
                           CIN=0
                                   result= 4
  time=300
             A= 4
                    B= 7
                           CIN=1
                                   result=12
  time=350
             A=15
                    B= 2
                           CIN=0
                                   result=17
            A=10 B= 5 CIN=0 result=15
  time=400
```

The N=4 bits carry lookahead adder implements the full adder module with procedure to generate and propagate cary. The output result is Result = A+B+carryin, which matches the values shown in the transcript above.

Homework 6c: clock divide by 3

a. SystemVerilog RTL model

```
1
     //clock divide by 3 RTL code
 2
     module clock divide by 3 (
 3
      input logic clkin, reset,
 4
      output logic clkout);
 5
 6
     logic [1:0] posedge count, negedge count;
 8
     //posedge clock counter, using 2nd implementation
 9
     always ff @ (posedge clkin) begin
10
         if (reset==1)
11
              posedge count<=0;</pre>
12
13
         else if (posedge count==2)
14
              posedge count<=0;</pre>
15
         else
16
              posedge count<=posedge count+1;</pre>
17
     end
18
19
     always ff @ ( negedge clkin) begin
20
         if (reset==1)
21
              negedge count<=0;</pre>
22
23
         else if (negedge count==2)
24
              negedge count<=0;</pre>
25
         else
26
              negedge count<=negedge count+1;</pre>
27
     end
28
29
     assign clkout=((posedge count==2))(negedge count==2));
30
31
     endmodule: clock divide by 3
```

b. RTL schematic

c. Post mapping schematic

d. Post fitting schematic

e. Resource Usage table

	Resource	Usage	
1	Estimated ALUTs Used	5	
1	Combinational ALUTs	5	
2	Memory ALUTs	0	
3	LUT_REGs	0	
2	Dedicated logic registers	4	
3			
4	Estimated ALUTs Unavailable	0	
1	Due to unpartnered combinational logic	0	
2	Due to Memory ALUTs	0	
5			
6	Total combinational functions	5	
7	Combinational ALUT usage by number of inputs		
1	7 input functions	0	
2	6 input functions	0	
3	5 input functions	0	
4	4 input functions	1	
5	<= 3 input functions	4	
8			
9	Combinational ALUTs by mode		
1	normal mode	5	
2	extended LUT mode	0	
3	arithmetic mode	0	
4	shared arithmetic mode	0	
10			
11	Estimated ALUT/register pairs used	5	
12			
13	Total registers	4	
1	Dedicated logic registers	4	
2	I/O registers	0	
3	LUT_REGs	0	
14			
15			
16	I/O pins	3	
17			
18	DSP block 18-bit elements	0	
19			
20	Maximum fan-out node	reset~input	
21	Maximum fan-out	4	
22	Total fan-out	28	
23	Average fan-out	1.87	

Number of ALUT: 5 (3 I/O pins)

Number of Functions: 5 1 5 input functions

4 3 input functions

f. Simulation waveform

g. Transcript

We can see that the output is 3 times the input clock cycle, and repeats every 3 clock cycles. The clk output is from the outputs of two flipflops which were determined by the equation $2^n > 3$.