Cpts570-hw2

Mengxiao Zhang-11651502 October 23, 2019

1 Programming and Empirical Analysis Part

1.1 Problem 1

1.1.1 a

Since I use LinearSVC, I cannot plot the number of support vectors. And finally I find the best C is 0.001.

1.1.2 b

The testing accuracy: 77.69%.

The corresponding confusion matrix:

Γ	699	9	2	56	16	0	204	1	12	1]
	2	943	1	31	6	0	14	1	1	1
	17	6	256	10	258	0	444	0	8	1
	21	17	3	818	57	1	77	2	2	2
	0	2	8	31	760	1	195	0	3	0
	0	1	0	1	0	830	2	98	12	56
	90	4	21	44	140	0	675	0	26	0
	0	0	0	0	0	11	0	970	0	19
	4	5	2	8	12	10	34	13	911	1
L	0	0	0	0	0	7	3	83	0	907

1.1.3 c

'train accuracy': array([0.76897917, 1., 1., 1.]), 'validatio naccuracy': array([0.74391667, 0.88141667, 0.87016667, 0.8565]), 'test accuracy': array([0.7366, 0.8755, 0.8671, 0.8477]), 'Number of Support Vectors': [0, array([1841, 216, 2075, 1563, 2119, 959, 2810, 947, 498, 520], dtype = int32), array([1539, 169, 1720, 1301, 1815, 941, 2491, 857, 374, 463], dtype = int32), array([1362, 149, 1460, 1148, 1556, 993, 2245, 766, 321, 399], dtype = int32)] The best degree: 2

1.2 Problem 2

 $train\ accuracy: 90.120833333333333$

 $validation\ accuracy: 89.516666666666667\%$

 $test\ accuracy:90.0\%$

1.3 Problem 3

1.3.1 b

 $training\ Accuracy: 100\%$ $validation\ Accuracy: 65.00\%$

 $testing\ Accuracy: 74.28571428571429\%$

1.3.2 d