NOM: ______PRENOM: _____

Contrôle de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM (5 points ; pas de points négatifs)

Entourer la bonne réponse

1- La norme de la résultante \vec{R} de deux vecteurs forces $\vec{F_1}$ et $\vec{F_2}$ (non nuls) et orthogonaux est

a)
$$R = 0$$

b)
$$R = |F_1 - F_2|$$

c)
$$R = F_1 + F_2$$

b)
$$R = |F_1 - F_2|$$
 c) $R = F_1 + F_2$ d) $R = \sqrt{F_1^2 + F_2^2}$

2- Les composantes du vecteur force \vec{F}_1 sur le schéma ci-dessous sont :

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \cdot \sin(\alpha) \\ -F_1 \cdot \cos(\alpha) \end{pmatrix}$$
 b) $\vec{F}_1 = \begin{pmatrix} -F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$ c) $\vec{F}_1 = \begin{pmatrix} -F_1 \cdot \cos(\alpha) \\ F_1 \cdot \sin(\alpha) \end{pmatrix}$

b)
$$\vec{F}_1 = \begin{pmatrix} -F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$$

c)
$$\vec{F}_1 = \begin{pmatrix} -F_1 \cdot \cos(\alpha) \\ F_1 \cdot \sin(\alpha) \end{pmatrix}$$

3- Le produit scalaire entre deux vecteurs colinéaires et de sens opposé est

- a) strictement négatif
- b) nul
- c) strictement positif

4- Le produit vectoriel des deux vecteurs $\vec{V}_1 \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ et $\vec{V}_2 \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}$ est

a)
$$\vec{W} = \begin{pmatrix} 1 \\ 9 \\ 13 \end{pmatrix}$$

$$\mathbf{b)} \ \vec{W} = \begin{pmatrix} 1 \\ -9 \\ 13 \end{pmatrix}$$

a)
$$\vec{W} = \begin{pmatrix} 1 \\ 9 \\ 13 \end{pmatrix}$$
 b) $\vec{W} = \begin{pmatrix} 1 \\ -9 \\ 13 \end{pmatrix}$ c) $\vec{W} = \begin{pmatrix} 1 \\ -11 \\ 12 \end{pmatrix}$

5- Le vecteur vitesse en coordonnées polaires s'écrit :

a)
$$\vec{V} = \stackrel{\bullet}{\rho} \cdot \vec{u}_{\rho} + \rho \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$
 b) $\vec{V} = \stackrel{\bullet}{\rho} \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$ c) $\vec{V} = \rho \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$

b)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$

c)
$$\vec{V} = \rho \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$

6- Le vecteur accélération en coordonnées polaires est donné par

$$\vec{a} = (\rho - \rho(\theta)^2)\vec{u}_o + (2\rho\theta + \rho\theta)\vec{u}_\theta$$

Dans le cas d'un mouvement circulaire uniforme de rayon R, le vecteur accélération s'écrit

a)
$$\vec{a} = \begin{pmatrix} 0 \\ R.\theta \end{pmatrix}$$

b)
$$\vec{a} = \begin{pmatrix} -R(\hat{\theta})^2 \\ \vdots \\ R.\hat{\theta} \end{pmatrix}$$

a)
$$\vec{a} = \begin{pmatrix} 0 \\ \cdot \cdot \cdot \\ R.\theta \end{pmatrix}$$
 b) $\vec{a} = \begin{pmatrix} -R(\dot{\theta})^2 \\ \cdot \cdot \cdot \\ R\theta \end{pmatrix}$ c) $\vec{a} = \begin{pmatrix} -R(\dot{\theta})^2 \\ 0 \end{pmatrix}$ d) $\vec{a} = \begin{pmatrix} R(\dot{\theta})^2 \\ 0 \end{pmatrix}$

d)
$$\vec{a} = \begin{pmatrix} R(\hat{\theta})^2 \\ 0 \end{pmatrix}$$

7- Dans la base de Frenet le vecteur vitesse s'écrit :

a)
$$\vec{V} = R(t) \vec{\theta}(t) \vec{u}_N$$
 b) $\vec{V} = R(t) \vec{\theta} \vec{u}_T$ c) $\vec{V} = R(t) \vec{\theta}(t) \vec{u}_T$

b)
$$\vec{V} = R(t) \vec{\theta} \vec{u}_1$$

c)
$$\vec{V} = R(t) \stackrel{\bullet}{\theta}(t) \vec{u}$$

8- Le vecteur accélération en base de Frenet \vec{a} s'écrit

a)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R^2} \end{pmatrix}$$
 b) $\vec{a} = \begin{pmatrix} a_T = \frac{d\rho}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$ c) $\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$

b)
$$\vec{a} = \begin{pmatrix} a_T = \frac{d\rho}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$$

c)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$$

Exercice 1 (6 points)

Les équations horaires dans le plan (xoy) d'un point matériel sont données par :

$$\begin{cases} x(t) = 2a \cdot \cos(\omega t) \\ y(t) = a \sin(\omega t) \end{cases}$$
 (a et ω sont des constantes positives).

- 1- a) Montrer que la trajectoire de ce point matériel est elliptique. On rappelle l'équation analytique d'une ellipse de centre 0, de demis-axes A et B : $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ (A et B sont des constantes positives).
 - b) Identifier les constantes A et B en fonction de a.

2-Exprimer le vecteur vitesse, en déduire la norme de ce vecteur.
3- Même question pour le vecteur accélération.
Exercice 2 (sur 9 points)
<u>Partie A</u> Coordonnées cartésiennes
Un point matériel M est repéré dans par ses coordonnées cartésiennes (x, y, z) telles que :
$\begin{cases} x(t) = R.\cos(\omega t) \\ y(t) = R.\sin(\omega t) & \text{Où R, } \omega \text{ et H sont des constantes positives.} \\ z(t) = H.\omega.t \end{cases}$
$\begin{cases} y(t) = R.\sin(\omega t) & \text{Où R, } \omega \text{ et H sont des constantes positives.} \end{cases}$
1- Exprimer le vecteur vitesse du point M dans la base cartésienne $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$. Calculer sa norme.

2- Exprimer le vecteur accélération du point M dans la base cartésienne $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$. Calculer sa norme.
3- a) Quel est le mouvement du point M dans le plan (xOy)? Justifier votre réponse en donnant
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy).
l'équation de la trajectoire dans le plan (xoy). b) Quel est le mouvement du point M suivant la direction de l'axe Oz ? Justifier votre réponse.

Partie B

<u>Partie B</u> Coordonnées cylindriques On utilise les équations horaires données dans la partie A.

1- Exprimer le vecteur position dans la base cylindrique $(\vec{u}_{\rho},\vec{u}_{\theta},\vec{u}_z)$. Utiliser les équations de passage.
2- Exprimer le vecteur vitesse du point M dans la base cylindrique $(\vec{u}_{\rho}, \vec{u}_{\theta}, \vec{u}_z)$.
3- Exprimer le vecteur accélération du point M dans la base cylindrique $(\vec{u}_{\rho}, \vec{u}_{\theta}, \vec{u}_z)$.