10/581717 (AP20 Rec'd PCT/PTO 05 JUN 2006

SEQUENCE LISTING

```
<110> KOGA, Jinichiro
      BABA, Yuko
      NAKANE, Akitaka
      HANAMURA, Satoshi
      NISHIMURA, Tomoko
      GOMI, Shuichi
      KUBOTA, Hidetoshi
      KONO, Toshiaki
<120> ENDOGLUCANASE STCE AND CELLULASE PREPARATION CONTAINING THE SAME
<130> Q95277
<150> PCT/JP2004/015733
<151> 2004-10-22
<150> JP 2003-404020
<151> 2003-12-03
<160> 37
<170> PatentIn version 3.1
<210> 1
<211> 25
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 1
Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser Cys
                                    1.0
            5
Ser Trp Pro Gly Lys Ala Ser Val Asn
            20
<210> 2
<211> 951
<212> DNA
<213> Staphylotrichum coccosporum IFO 31817
<220>
<221> sig_peptide
<222>
      (1)..(63)
<220>
<221> CDS
      (64)..(951)
<222>
<400> 2
atgcgttcct cccccgtcct ccgcacggcc ctggccgctg ccctccccct ggccgccctc
                                                                     60
gct gcc gat ggc aag tcg acc cgc tac tgg gac tgt tgc aag ccg tcg
                                                                    108
   Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser
                                       10
                                                           15
    1
```

tgc Cys	tcg Ser	tgg Trp	ccc Pro	ggc Gly 20	aag Lys	gcc Ala	tcg Ser	gtg Val	aac Asn 25	cag Gln	ccc Pro	gtc Val	ttc Phe	gcc Ala 30	tgc Cys	156
						atc Ile										204
gac Asp	ggc Gly	ggc Gly 50	tcc Ser	gcc Ala	tac Tyr	gcc Ala	tgc Cys 55	gcc Ala	gac Asp	cag Gln	acc Thr	ccg Pro 60	tgg Trp	gcc Ala	gtc Val	252
aac Asn	gac Asp 65	aac Asn	ttc Phe	tcg Ser	tac Tyr	ggc Gly 70	ttc Phe	gcc Ala	gcc Ala	acg Thr	tcc Ser 75	atc Ile	tcg Ser	ggc Gly	ggc Gly	300
aac Asn 80	gag Glu	gcc Ala	tcg Ser	tgg Trp	tgc Cys 85	tgt Cys	ggc Gly	tgc Cys	tac Tyr	gag Glu 90	ctg Leu	acc Thr	ttc Phe	acc Thr	tcg Ser 95	348
ggc Gly	ccc Pro	gtc Val	gct Ala	ggc Gly 100	aag Lys	acc Thr	atg Met	gtt Val	gtc Val 105	cag Gln	tcc Ser	acc Thr	tcg Ser	acc Thr 110	ggc Gly	396
ggc Gly	gac Asp	ctc Leu	ggc Gly 115	acc Thr	aac Asn	cac His	ttc Phe	gac Asp 120	ctg Leu	gcc Ala	atg Met	ccc Pro	ggt Gly 125	ggt Gly	ggt Gly	444
gtc Val	ggc Gly	atc Ile 130	ttc Phe	gac Asp	ggc Gly	tgc Cys	tcg Ser 135	ccc Pro	cag Gln	ttc Phe	ggc Gly	ggc Gly 140	ctc Leu	gcc Ala	ggc Gly	492
gac Asp	cgc Arg 145	tac Tyr	ggc Gly	ggc Gly	gtc Val	tcg Ser 150	tcg Ser	cgc Arg	agc Ser	cag Gln	tgc Cys 155	gac Asp	tcg Ser	ttc Phe	ccc Pro	540
gcc Ala 160	gcc Ala	ctc Leu	aag Lys	ccc Pro	ggc Gly 165	tgc Cys	tac Tyr	tgg Trp	cgc Arg	ttc Phe 170	gac Asp	tgg Trp	ttc Phe	aag Lys	aac Asn 175	588
gcc Ala	gac Asp	aac Asn	ccg Pro	acc Thr 180	ttc Phe	acc Thr	ttc Phe	cgc Arg	cag Gln 185	gtc Val	cag Gln	tgc Cys	ccg Pro	tcg Ser 190	gag Glu	636
ctc Leu	gtc Val	gcc Ala	cgc Arg 195	acc Thr	ggc Gly	tgc Cys	cgc Arg	cgc Arg 200	aac Asn	gac Asp	gac Asp	ggc	aac Asn 205	ttc Phe	ccc Pro	.684
gtc Val	ttc Phe	acc Thr 210	cct Pro	ccc Pro	tcg Ser	ggc Gly	ggt Gly 215	cag Gln	tcc Ser	tcc Ser	tcg Ser	tct Ser 220	tcc Ser	tcc Ser	tcc Ser	732
						tcc Ser 230										780
gct Ala 240	acc Thr	tcc Ser	acc Thr	acc Thr	tcg Ser 245	acc Thr	gcc Ala	tcc Ser	Ser	Gln 250	acc Thr	tcg Ser	tcg Ser	tcc Ser	acc Thr 255	828
							,		2/14	<u>l</u>						

ggc ggc ggc t Gly Gly Gly C				Gly Gly I									
ttc tcg ggc t Phe Ser Gly C													
aac gac tgg t Asn Asp Trp T 290		-			951								
<210> 3 <211> 295 <212> PRT <213> Staphylotrichum coccosporum IFO 31817													
<400> 3													
Ala Asp Gly L 1	ys Ser Thr 5	Arg Tyr Trp	Asp Cys Cys 10	Lys Pro S									
Ser Trp Pro G	Gly Lys Ala 20	Ser Val Asn 25	Gln Pro Val	Phe Ala C	ys Ser								
Ala Asn Phe G 35	Gln Arg Ile	Ser Asp Pro 40	Asn Val Lys	Ser Gly C	ys Asp								
Gly Gly Ser A 50	Ala Tyr Ala	Cys Ala Asp 55	Gln Thr Pro	Trp Ala V	al Asn								
Asp Asn Phe S	Ser Tyr Gly 70	Phe Ala Ala	Thr Ser Ile 75	Ser Gly G	ly Asn 80								
Glu Ala Ser T	Orp Cys Cys 85	Gly Cys Tyr	Glu Leu Thr 90	Phe Thr S									
Pro Val Ala G 1	Gly Lys Thr	Met Val Val 105	Gln Ser Thr	Ser Thr G	ly Gly								
Asp Leu Gly T 115	Thr Asn His	Phe Asp Leu 120	Ala Met Pro	Gly Gly G 125	ly Val								
Gly Ile Phe A	ap Gly Cys	Ser Pro Gln 135	Phe Gly Gly 140	Leu Ala G	ly Asp								
Arg Tyr Gly G 145	Gly Val Ser 150	Ser Arg Ser	Gln Cys Asp 155	Ser Phe P	ro Ala 160								

Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys Asn Ala 165 170 Asp Asn Pro Thr Phe Thr Phe Arg Gln Val Gln Cys Pro Ser Glu Leu 180 185 Val Ala Arg Thr Gly Cys Arg Arg Asn Asp Asp Gly Asn Phe Pro Val 200 Phe Thr Pro Pro Ser Gly Gly Gln Ser Ser Ser Ser Ser Ser Ser 215 Ser Ala Lys Pro Thr Ser Thr Ser Thr Ser Thr Thr Ser Thr Lys Ala 235 Thr Ser Thr Thr Ser Thr Ala Ser Ser Gln Thr Ser Ser Ser Thr Gly 245 250 Gly Gly Cys Ala Ala Gln Arg Trp Ala Gln Cys Gly Gly Ile Gly Phe 260 Ser Gly Cys Thr Thr Cys Val Ser Gly Thr Thr Cys Asn Lys Gln Asn 280 Asp Trp Tyr Ser Gln Cys Leu 290 <210> 4 <211> 8 <212> PRT <213> Staphylotrichum coccosporum IFO 31817 <400> 4 Pro Ser Cys Ser Trp Pro Gly Lys 1 5 <210> 5 <211> 9 <212> PRT <213> Staphylotrichum coccosporum IFO 31817 <400> 5

<210> 6

Ser Thr Arg Tyr Trp Asp Cys Cys Lys 1

```
<211> 10
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 6
Asn Ala Asp Asn Pro Thr Phe Thr Phe Arg
               5
<210> 7
<211> 10
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 7
Ala Ser Val Asn Gln Pro Val Phe Ala Cys
<210> 8
<211>
      7
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 8
Pro Gly Cys Tyr Trp Arg Phe
        5
<210> 9
<211> 7
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 9
Thr Met Val Val Gln Ser Thr
<210> 10
<211> 9
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
Gln Asn Asp Trp Tyr Ser Gln Cys Leu
               5
<210> 11
<211> 8
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 11
Pro Ser Cys Ser Trp Pro Gly Lys
```

```
5
1
<210> 12
<211> 9
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 12
Ser Thr Arg Tyr Trp Asp Cys Cys Lys
               5
<210> 13
<211>
      10
<212>
      PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 13
Asn Ala Asp Asn Pro Thr Phe Thr Phe Arg
<210> 14
<211> 16
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 14
Ala Ser Val Asn Gln Pro Val Phe Ala Cys Ser Ala Asn Phe Gln Arg
                                   10
               5
<210> 15
<211> 22
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 15
Ser Gly Cys Asp Gly Gly Ser Ala Tyr Ala Cys Ala Asp Gln Thr Pro
Trp Ala Val Asn Asp Asn
            20
<210> 16
<211> 11
<213> Staphylotrichum coccosporum IFO 31817
Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys
```

```
<210> 17
<211>
      16
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 17
Thr Met Val Val Gln Ser Thr Ser Thr Gly Gly Asp Leu Gly Thr Asn
                                   10
<210> 18
<211>
      26
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized Primer STCE1-CN
<400> 18
gcggatccat gcgttcctcc cccgtc
                                                                     26
<210> 19
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized Primer STCE1-CC
<400> 19
                                                                     28
gcggatcctt aaaggcactg cgagtacc
<210> 20
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized Primer STCE-HNBam
<400> 20
                                                                     39
gggggatcct gggacaagat gcgttcctcc cccgtcctc
<210> 21
<211>
      35
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized Primer STCE-HCBam
<400> 21
                                                                     35
gggggatccg ctcaaaggca ctgcgagtac cagtc
```

```
<210> 22
<211> 1037
<212> DNA
<213>
      Staphylotrichum coccosporum IFO 31817
<220>
<221>
       sig_peptide
<222>
       (1)..(63)
<220>
<221>
       exon
<222>
      (64)..(333)
<220>
<221>
      exon
<222>
      (420)..(1037)
<220>
<221>
       Intron
<222>
      (334)..(419)
<400> 22
atgcgttcct cccccgtcct ccgcacggcc ctggccgctg ccctccccct ggccgccctc
                                                                       60
get gee gat gge aag teg ace ege tae tgg gae tgt tge aag eeg teg
                                                                      108
    Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser
tgc tcg tgg ccc ggc aag gcc tcg gtg aac cag ccc gtc ttc gcc tgc
                                                                      156
Cys Ser Trp Pro Gly Lys Ala Ser Val Asn Gln Pro Val Phe Ala Cys
                20
age gee aac tte cag ege ate age gae eee aac gte aag teg gge tge
                                                                      204
Ser Ala Asn Phe Gln Arg Ile Ser Asp Pro Asn Val Lys Ser Gly Cys
            35
                                40
gac ggc ggc tcc gcc tac gcc tgc gcc gac cag acc ccg tgg gcc gtc
                                                                      252
Asp Gly Gly Ser Ala Tyr Ala Cys Ala Asp Gln Thr Pro Trp Ala Val
        50
                            55
aac gac aac ttc tcg tac ggc ttc gcc gcc acg tcc atc tcg ggc ggc
                                                                      300
Asn Asp Asn Phe Ser Tyr Gly Phe Ala Ala Thr Ser Ile Ser Gly Gly
    65
                        70
aac gag gcc tcg tgg tgc tgt ggc tgc tac gag tgagtgcttc ccccccccc
                                                                      353
Asn Glu Ala Ser Trp Cys Cys Gly Cys Tyr Glu
80
                    85
cccccccac cccggttcg gtcccttgcc gtgccttctt catactaacc gcctacccc
                                                                      413
tccagg ctg acc ttc acc tcg ggc ccc gtc gct ggc aag acc atg gtt
                                                                      461
       Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Thr Met Val
                       95
gtc cag tcc acc tcg acc ggc ggc gac ctc ggc acc aac cac ttc gac
                                                                      509
Val Gln Ser Thr Ser Thr Gly Gly Asp Leu Gly Thr Asn His Phe Asp
105
                                        115
                                                             120
ctg gcc atg ccc ggt ggt gtc ggc atc ttc gac ggc tgc tcg ccc
                                                                      557
```

Leu	Ala	Met	Pro	Gly 125	Gly	Gly	Val	Gly	Ile 130	Phe	Asp	Gly	Cys	Ser 135	Pro	
					gcc Ala											605
					ttc Phe											653
cgc Arg	ttc Phe 170	gac Asp	tgg Trp	ttc Phe	aag Lys	aac Asn 175	gcc Ala	gac Asp	aac Asn	ccg Pro	acc Thr 180	ttc Phe	acc Thr	ttc Phe	cgc Arg	701
					tcg Ser 190											749
aac Asn	gac Asp	gac Asp	ggc Gly	aac Asn 205	ttc Phe	ccc Pro	gtc Val	ttc Phe	acc Thr 210	cct Pro	ccc Pro	tcg Ser	ggc Gly	ggt Gly 215	cag Gln	797
					tcc Ser											845
					acc Thr											893
					tcc Ser											941
gcg Ala 265	Gln	tgc Cys	ggc Gly	ggc Gly	atc Ile 270	ggg ggg	ttc Phe	tcg Ser	ggc Gly	tgc Cys 275	acc Thr	acg Thr	tgc Cys	gtc Val	agc Ser 280	989
					aag Lys										tga	1037
<210> 23																
<22 <22		Chem	ical	ly s	ynthe	esiz	ed P	rime	r NC	E4-N	-Bami	HI				
<40 ggg	-	23 ctg	ggac	aaga	tg c	gttc	ctcc	c ct	ctcc	tcc						39
<21	0>	24														

<211> 37 <212> DNA <213> Artificial Sequence

<220> <223>	Chemically synthesized Primer NCE4-C-BamHI	
<400> ggggat	24 cctg cgtttacagg cactgatggt accagtc	37
<210> <211> <212>		
<213>	Artificial Sequence	
<220> <223>	Chemically synthesized Primer STCE1-N-S9A4	
<400>	25	
gggatc	ctgc gtttaaaggc actgcgagta ccag	34
<210> <211>	26 24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Chemically synthesized Primer STCE1-C-FokF	
<400>	26	
gggatg	caag ccgtcgtgct cgtg	24
<210> <211>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Chemically synthesized Primer STCE1-N-FokR4	
<400>	27	
gggatg	ggcc cagccgcacg aag	23
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Chemically synthesized Primer STCE1-C-BamF	
<400>	28	
	ctgg gacaagatgc	20
<210>	29	
<211><212>		
	Artificial Sequence	

```
<220>
<223> Chemically synthesized Primer STCE1-N-SmaI
<400> 29
                                                                    35
cagecegggg egeateatge gtteeteece tetee
<210> 30
<211>
      33
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized Primer STCE1-C-XhoI
<400> 30
                                                                     33
gcctcgagta ccttaaaggc actgcgagta cca
<210> 31
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized Primer STCE1-M-SphI
<400> 31
                                                                     26
ccgcatgcgc tgatggcaag tccacc
<210> 32
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized Primer STCE1-C-XhoI
gcctcgagta ccttaaaggc actgcgagta cca
                                                                     33
<210> 33
<211> 21
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 33
Met Arg Ser Ser Pro Val Leu Arg Thr Ala Leu Ala Ala Leu Pro
Leu Ala Ala Leu Ala
           20
```

<210> 34

<211> 20

<212> PRT

<213> Humicola insolens

<400> 34

Met Arg Ser Ser Pro Leu Leu Arg Ser Ala Val Val Ala Ala Leu Pro 1 5 10 15

Val Leu Ala Leu 20

<210> 35

<211> 286

<212> PRT

<213> Humicola insolens

<400> 35

Ala Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser 1 10 15

Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro Val Phe Ser Cys 20 25 30

Asn Ala Asn Phe Gln Arg Leu Thr Asp Phe Asp Ala Lys Ser Gly Cys 35 40 45

Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln Thr Pro Trp Ala 50 55 60

Val Asn Asp Asp Phe Ala Phe Gly Phe Ala Ala Thr Ser Ile Ala Gly 65 70 75 80

Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu Leu Thr Phe Thr 85 90 95

Ser Gly Pro Val Ala Gly Lys Lys Met Val Val Gln Ser Thr Ser Thr 100 105 110

Gly Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn Ile Pro Gly Gly
115 120 125

Gly Val Gly Ile Phe Asp Gly Cys Thr Pro Gln Phe Gly Gly Leu Pro 130 135 140

Gly Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu Cys Asp Arg Phe 145 150 155 160 Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys 170 165 Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val Gln Cys Pro Ala 185 Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp Asp Gly Asn Phe 200 Pro Ala Val Gln Ile Pro Ser Ser Thr Ser Ser Pro Val Gly Gln 215 220 Pro Thr Ser Thr Ser Thr Ser Thr Ser Thr Thr Ser Ser Pro Pro 230 235 Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu Arg Trp Ala Cys 250 Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys Leu 280 <210> 36 <211> 17 <212> PRT <213> Humicola insolens <400> 36 Met Gln Leu Pro Leu Thr Thr Leu Leu Thr Leu Leu Pro Ala Leu Ala 10 5 Ala <210> 37 <211> 206 <212> PRT <213> Humicola insolens <400> 37

Pro Ser Cys Ala Trp Pro Gly Lys Gly Pro Ala Pro Val Arg Thr Cys
13/14

Ala Gln Ser Gly Ser Gly Arg Thr Thr Arg Tyr Trp Asp Cys Cys Lys

Asp	Arg	Trp 35	Asp	Asn	Pro	Leu	Phe 40	Asp	Gly	Gly	Asn	Thr 45	Arg	Ser	Gly
Cys	Asp 50	Ala	Gly	Gly	Gly	Ala 55	Tyr	Met	Cys	Ser	Asp 60	Gln	Ser	Pro	Trp
Ala 65	Val	Ser	Asp	Asp	Leu 70	Ala	Туr	Gly	Trp	Ala 75	Ala	Val	Asn	Ile	Ala 80
Gly	Ser	Asn	Glu	Arg 85	Gln	Trp	Cys	Cys	Ala 90	Cys	Tyr	Glu	Leu	Thr 95	Phe
Thr	Ser	Gly	Pro 100	Val	Ala	Gly	Lys	Arg 105	Met	Ile	Val	Gln	Ala 110	Ser	Asn
Thr	Gly	Gly 115	Asp	Leu	Gly	Asn	Asn 120	His	Phe	Asp	Ile	Ala 125	Met	Pro	Gly
Gly	Gly 130	Val	Gly	Ile	Phe	Asn 135	Ala	Cys	Thr	Asp	Gln 140	Tyr	Gly	Ala	Pro
Pro 145	Asn	Gly	Trp	Gly	Gln 150	Arg	Tyr	Gly	Gly	Ile 155	Ser	Gln	Arg	His	Glu 160
Cys	Asp	Ala	Phe	Pro 165	Glu	Lys	Leu	Lys	Pro 170	Gly	Cys	Tyr	Trp	Arg 175	Phe
Asp	Trp	Phe	Leu 180	Asn	Ala	Asp	Asn	Pro 185	Ser	Val	Asn	Trp	Arg 190	Gln	Va1

Ser Cys Pro Ala Glu Ile Val Ala Lys Ser Gly Cys Ser Arg 195 200 205