Project Management Analysis

Using the functions and capabilities of Python and the data analyis libraries, we tackle the analysis of the Project Management dataset. We will explore the key attributes: Project Name, Project Description, Project Type, Project Manager, Region, Department, Project Cost, Project Benefit, Complexity, Status, Completion, Phase, Year, Month, Start Date & End Date to gain insight on what influences the projects' progresse and state. Visualizing the findings using data visualization techniques and conducting analysis to identify: trends, patterns and correlations within the dataset to provide a satisfactory report.

Import Library

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Import CSV File

```
df = pd.read_csv("12_Project Management Analysis.csv")
```

Data Preprocessing

.head()

Using .head() to display the first 5 rows of our dataset.

```
df.head()
{"summary":"{\n \"name\": \"df\",\n \"rows\": 99,\n \"fields\": [\n
       \"column\": \"Project Name\",\n \"properties\": {\n
\"dtype\": \"string\",\n
                              \"num_unique_values\": 99,\n
                         \"Next Gala\",\n
\"samples\": [\n
                                                  \"The Coding
Expert\",\n
                    \"Debug Entity\"\n
\"semantic type\": \"\",\n
                                \"description\": \"\"\n
                                                             }\
                \"column\": \"Project Description\",\n
            {\n
                         \"dtype\": \"string\",\n
\"properties\": {\n
\"num unique values\": 95,\n
                                   \"samples\": [\n
                                                            \"Uses
Continuous Continuous Learning Algorithms To Constantly Improve The
Recommendations; We Constantly See Product Changes And Improvements.
The More You Use Our Platform, The More We Learn Which Leads To Our
Clients Benefiting More And More.\",\n
                                              \"If You Are Making
Less Than $50,000 With Your Startup Company, You\\u2019Re In Luck.
```

```
Companies Who Are Making Less Than That Are Eligible For The
Associations Now Program. Associations Now Is An Algorithm That Helps
Startups Find Niche Or Narrow Topics That Are Related To Your Industry
Or Target Audience. It Is Like Word Of Mouth Marketing, But You Pay
For It!\",\n \"In A Saturated Market Of Founders Turning To
Content Marketing, Finding A Way To Stand Out From The Crowd Is A
Competitive Advantage. \\u2019S Ai Takes A Deep Dive Into A Topic\\
u2019S Domain And Produces A Content Strategy In Minutes In A
Standalone Ai Tool. Rapid, Accurate, And Tailored Content Is A Step
Towards Building A Meaningful Audience That Can Amplify Your Voice.\"\
                     ],\n \"semantic_type\": \"\",\n
\ensuremath{\mbox{"description}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox{"}}\ensuremath{\mbox
                                                                              },\n {\n
                                                                                                                     \"column\":
\"Project Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\":
[\n \"PROCESS IMPROVEMENT\",\n \"COST REDUCTION\",\n
\"INCOME GENERATION\"\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n }\n {\n \"column\":
\"Project Manager\",\n \"properties\": {\n \"dtype\":
\"category\",\n \"num_unique_values\": 7,\n \"samples\":
[\n \"Yael Wilcox\",\n \"Brenda Chandler\",\n
\"Aleena Khan\"\n ],\n \"semantic_type\": \"\",\n
\"samples\":
}\n },\n {\n \"column\": \"Department\",\n
\"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 5,\n \"samples\": [\n
\"eCommerce\",\n \"Supply Chain\",\n
                                                                                                                          \"Warehouse\"\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n },\n {\n \"column\": \" Project Cost \",\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\":
1076543,\n \"min\": 2418301,\n \"max\": 5974815,\n
\"num_unique_values\": 99,\n \"samples\": [\n 3261249,\n 3978102,\n 4790417\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n \,\n \"column\": \" Project Benefit \",\n \"properties\": \{\n \"dtype\": \"number\",\n \"std\":
216401,\n \"min\": 8422578,\n \"max\": 9165877,\n
\"num_unique_values\": 99,\n \"samples\": [\n 8696481,\n 848880,\n 8872443\n
n },\n {\n \"column\": \"Complexity\",\n \"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 3,\n \"samples\": [\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"Status\",\n \"properties\":
```

```
\"dtype\": \"category\",\n \"num_unique_values\":
{\n
4,\n
            \"samples\": [\n \"Cancelled\",\n
                                                                     \"0n -
Hold\",\n \"In - Progress\"\n
                                                  ],\n
\"semantic type\": \"\",\n \"description\": \"\"\n
                                                                    }\
n },\n {\n \"column\": \"Completion%\",\n
\"properties\": {\n \"dtype\": \"category\",\n
\"num_unique_values\": 22,\n \"samples\": [\n \"77%\",\n \"86%\",\n \"72%\"\n ] \"semantic_type\": \"\",\n \"description\": \"\"\n
\"dtype\": \"category\",\n \"num_unique values\": 5,\n
\"samples\": [\n \"Phase 2 - Develop\",\n
- Plan\",\n \"Phase 5 - Measure\"\n ],\n
                                                                 \"Phase 3
\"semantic_type\": \"\",\n \"description\": \"\"\n
\"max\": 2025,\n \"num_unique_values\": 5,\n \"samples\": [\n 2022,\n 2025,\n
       les\": [\n 2022,\n 2025,\n 2023\n \"semantic_type\": \"\",\n \"description\": \"\"\n
],\n
       },\n {\n \"column\": \"Month\",\n \"properties\":
}\n
{\n \"dtype\": \"number\",\n \"std\": 3,\n \\"min\": 1,\n \"max\": 12,\n \"num_unique_values\": 12,\
         \"samples\": [\n 12,\n \"semantic_type\": \"\",\n
                                                                       2\n
                                                     11,∖n
                                                  \"description\": \"\"\n
],\n
                {\n \ "column\": \"Start Date\",\n
}\n
       },\n
\"properties\": {\n \"dtype\": \"object\",\n
\"num_unique_values\": 49,\n \"samples\": [\n
\"3/1/2022\",\n \"8/1/2025\",\n \"11/1/2025\"\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n },\n {\n \"column\": \"End Date\",\n
\"properties\": {\n \"dtype\": \"object\",\n
\"num_unique_values\": 43,\n
                                      \"samples\": [\n
\"8/1/2025\",\n \"12/1/2023\",\n \"2/1/2024\"\n \",\n \"semantic_type\": \"\",\n \"description\": \"\"\n
       }\n ]\n}","type":"dataframe","variable name":"df"}
}\n
```

.tail()

Using .tail() to show the last 5 rows of the dataset.

```
df.tail()
{"repr_error":"0","type":"dataframe"}
```

.shape

With .shape, we can get the total rows and columns of the dataset.

```
df.shape
```

```
(99, 16)
```

.columns

.columns allow us to identify all columns present in the dataset.

.dtypes

With .dtypes, we can identify the data types assigned to each column

```
df.dtypes
Project Name
                        object
Project Description
                        object
Project Type
                        object
Project Manager
                        object
Region
                        object
Department
                        object
Project Cost
                         int64
Project Benefit
                         int64
Complexity
                        object
Status
                        object
Completion%
                        object
Phase
                        object
Year
                         int64
Month
                         int64
Start Date
                        object
End Date
                        object
dtype: object
```

.unique()

.unique() shows the unique values in a specified column.

.nunique()

.nunique() on the other hand provides us the number of unique values in each columns.

```
df.nunique()
                        99
Project Name
Project Description
                        95
Project Type
                         4
                         7
Project Manager
Region
                         4
                         5
Department
Project Cost
                        99
                        99
Project Benefit
Complexity
                         3
                         4
Status
Completion%
                        22
Phase
                         5
                         5
Year
                        12
Month
Start Date
                        49
End Date
                        43
dtype: int64
```

.describe()

Shows the count, mean, median, etc. of columns with Int64 datatypes.

```
df.describe()
{"summary":"{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n
{\n \"column\": \" Project Cost \",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 2012891.024302758,\n
\"min\": 99.0,\n \"max\": 5974815.0,\n
\"num_unique_values\": 8,\n \"samples\": [\n
4156649.3636363638,\n 4172827.0,\n
                               99.0\n
     \"semantic_type\": \"\",\n \"description\": \"\"\n
n
99.0\n
n
],\n
\"Month\",\n \"properties\": {\n \"dtype\": \"number\",\n
\"std\": 32.92770843152441,\n \"min\": 1.0,\n
                                 \"max\":
```

```
99.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 7.151515151515151,\n 7.0,\n 99.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n ]\n]\n,"type":"dataframe"}
```

.value_counts()

Returns the number of all unique values in a column.

```
df['Project Type'].value_counts()

Project Type
INCOME GENERATION 27
PROCESS IMPROVEMENT 25
WORKING CAPITAL IMPROVEMENT 25
COST REDUCTION 22
Name: count, dtype: int64
```

.isnull()

Checks for null values.

```
df.isnull()
{"summary":"{\n \"name\": \"df\",\n \"rows\": 99,\n \"fields\": [\n
{\n \"column\": \"Project Name\",\n \"properties\": {\n
\"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n
\"samples\": [\n false\n
                                         ],\n
\"semantic_type\": \"\",\n
                                      \"description\": \"\"\n
                                                                      }\
n },\n {\n \"column\": \"Project Description\",\n
\"properties\": {\n \"dtype\": \"boolean\",\n
\"num unique values\": 1,\n \"samples\": [\n
                                                                    false\n
             \"semantic_type\": \"\",\n \"description\": \"\"\n
],\n
}\n },\n {\n \"column\": \"Project Type\",\n
\"properties\": {\n \"dtype\": \"boolean\",\n
\"num_unique_values\": 1,\n \"samples\": [\n
                                                                    false\n
             \"semantic_type\": \"\",\n
                                                  \"description\": \"\"\n
],\n
}\n },\n {\n \"column\": \"Project Manager\",\n
\"properties\": {\n \"dtype\": \"boolean\",\n
\"num_unique_values\": 1,\n \"samples\": [\n false\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
                         \"column\": \"Region\",\n
}\n
                                                            \"properties\":
        },\n {\n
            \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\
{\n
n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n },\n {\n \"column\": \"Department\",\n \"properties\": {\n \"dtype\": \"boolean\",\n
                                                                      }\
\"num_unique_values\": 1,\n \"samples\": [\n
                                                                    false\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
                {\n \ "column\": \" Project Cost \",\n
}\n
```

```
\"properties\": {\n \"dtype\": \"boolean\",\n
\"num_unique_values\": 1,\n \"samples\": [\n
                                                                           false\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n },\n {\n \"column\": \" Project Benefit \",\n
\"properties\": {\n \"dtype\": \"boolean\",\n
\"num_unique_values\": 1,\n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"n
}\n },\n {\n \"column\": \"Complexity\",\n
\"properties\": {\n \"dtype\": \"boolean\",\n
\"num unique values\": 1,\n \"samples\": [\n
                                                                          false\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
        },\n {\n \"column\": \"Status\",\n \"properties\":
}\n
            \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\
{\n
n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n },\n {\n \"column\": \"Completion%\",\n \"properties\": {\n \"dtype\": \"boolean\",\n
\"num_unique_values\": 1,\n \"samples\": [\n
                                                                          false\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n },\n {\n \"column\": \"Phase\",\n \"properties\":
        \"dtype\": \"boolean\",\n \"num unique values\": 1,\
{\n
n \"samples\": [\n false\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"Year\",\n \"properties\": {\n \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n
\"samples\": [\n false\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
n },\n {\n \"column\": \"Month\",\n \"properties\": {\
n \"dtype\": \"boolean\",\n \"num_unique_values\": 1,\n
\"samples\": [\n false\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
                                                                             }\
n },\n {\n \"column\": \"Start Date\",\n \"properties\": {\n \"dtype\": \"boolean\",\n
\"num_unique_values\": 1,\n \"samples\": [\n false\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n    },\n    {\n     \"column\": \"End Date\",\n
\"properties\": {\n     \"dtype\": \"boolean\",\n
\"num_unique_values\": 1,\n    \"samples\": [\n
                                                                          false\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n }\n ]\n}","type":"dataframe"}
sns.heatmap(df.isnull())
<Axes: >
```


Data Analysis

```
df["Start Date"] = pd.to datetime(df["Start Date"])
df["End Date"] = pd.to_datetime(df["End Date"])
df['Start Month'] = df['Start Date'].dt.month_name()
df['End Month'] = df['End Date'].dt.month name()
print(df)
                 Project Name \
0
                   Rhinestone
       A Triumph Of Softwares
1
2
                The Blue Bird
3
    Remembering Our Ancestors
4
                     Skyhawks
94
              Strive Training
```

95 96 97 98	7	[oug Entity Made By Me Revolution L Workshop									
0 1 2 3 4	Project Description \ Associations Now Is A Casual Game To Teach You Is A Fully Managed Content Marketing Software Most Content Marketers Know The Golden Rule: Y Utilize And Utilizes (Verb Form) The Open, Inc Is A Solution For Founders Who Want To Win At											
94 95 96 97 98	Was Built To Help Founders Create Optimized Co In This Ecosystem, Association Content Is Simp With 15 Five, We Take The Guesswork Out Of Con Was Founded To Help Founders And Entrepreneurs											
0 Adm 1 eCo	artment in & BI mmerce ehouse	INCOM	Project Type GENERATION GENERATION GENERATION	Y Brenc	'ael Ia Ch	Wilcox	Region North West North					
3 Mar 4	keting		IMPROVEMENT IMPROVEMENT			kenzie	East East	Sales	and			
94 Cha 95			IMPROVEMENT GENERATION	-		Hunter Norris	South North		Supply			
War 96 Cha 97		PR0CESS	IMPROVEMENT ST REDUCTION	Y	'ael	Wilcox kenzie	West		Supply			
98	mmerce WORKINO keting	G CAPITAL	IMPROVEMENT	Nya	sia	Hunter	West	Sales	and			
Com 0	Project pletion%	ct Cost 5 \ 3648615	-	nefit 443980	Comp	lexity High	In - P	Status				
77% 1 80%		4018835		012225		High		ncelled				
2		4285483	90	978339		High	Co	mpleted	k			

100	ગ ૃ							
3		5285	864		8719006	5 High	n Canc	elled
75 ⁹	6	F 7 0 F	CO1		0020140)	C	l a k a d
4 10	ગ ુક	5785	0001		8630148	B High	n Comp	leted
		F2F0	426		0017017	7 NA	0.5	11-1-1
94 80 ⁹	<u>)</u>	5259	1436		8817917	Medium	n Un -	Hold
95	0	4790	417		8872443	B Medium	n In - Pro	gress
739	6	4202	401		0005153			latad
96 10	ગ ુક	4283	481		8895152	2 Low	<i>I</i> Comp	leted
97		4606	575		8658343	B High	n In - Pro	gress
779	96	EOE 4	402		0422570) Liah	. In Dro	aross
98 83 ⁹	26	5054	402		8422578	B High	n In - Pro	gress
\			Phase	Year	Month	Start Date	End Date	Start Month
0	Phase 4	4 - I	mplement	2021	2	2021-02-01	2021-06-01	February
1	Phase	e 2 -	Develop	2021	3	2021-03-01	2021-06-01	March
2			mplement	2021	2	2021-03-01	2021 06 01	March
			•					
3	Phase	e 5 -	Measure	2021	3	2021-03-01	2021-06-01	March
4	Phase	e 1 -	Explore	2021	3	2021-03-01	2021-06-01	March
94	Phase	e 2 -	Develop	2025	8	2025-08-01	2025-11-01	August
95	Phase 4	4 - I	mplement	2025	9	2025-09-01	2025-12-01	September
96			3 - Plan	2025	11	2025-11-01	2026-03-01	November
97	Phase 4	4 - 1	mplement	2025	11	2025-11-01	2020-03-01	November
98	Pl	hase	3 - Plan	2025	12	2025-12-01	2026-03-01	December
0 1 2 3 4	End Mon- Jui Jui Jui Jui Jui	ne ne ne ne						

```
94 November

95 December

96 March

97 March

98 March

[99 rows x 18 columns]
```

Data Visualization

```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Project Type')
plt.xlabel('Project Type')
plt.ylabel('Distribution')
plt.title('Distribution of Project Type')
plt.show()
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Project Type', hue='Department')
plt.xlabel('Project Type')
plt.ylabel('Department')
plt.title('Project Type by Department')
plt.show()
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Department', hue='Status')
plt.xlabel('Department')
plt.ylabel('Status')
plt.title('Status of Projects by Department')
plt.show()
```



```
stats = df.groupby('Status').size()

plt.figure(figsize=(8,8))
plt.pie(stats, labels=stats.index,autopct='%1.1f%%', startangle=140)
plt.title('Project Status')
plt.axis('equal')
plt.show()
```



```
plt.figure(figsize=(8,6))
sns.countplot(data=df, x='Complexity')
plt.xlabel('Complexity')
plt.ylabel('Distribution')
plt.title('Distribution of Project Complexity')
plt.show()
```

Distribution of Project Complexity


```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Status', hue='Phase')
plt.xlabel('Status')
plt.ylabel('Phase')
plt.title('Status of Projects and the Project Phase')
plt.show()
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Project Type', hue='Complexity')
plt.xlabel('Type')
plt.ylabel('Complexity')
plt.title('Distribution of Project Types by Complexity')
plt.show()
```



```
Start_Month = df['Start Month'].value_counts()
End_Month = df['End Month'].value_counts()

Start_Month.plot(kind='bar')
plt.xlabel('Start Month')
plt.ylabel('Count')
plt.title('Project Start Months')
plt.show()
```



```
End_Month.plot(kind='bar')
plt.xlabel('End Month')
plt.ylabel('Count')
plt.title('Project End Months')
plt.show()
```

