The Making of Micromouse

ENGINEERING WORKSHOP SEM-3

TEAM

PHANI KRISHNA K S S S
KAMBHAMPATI GANESH PAVAN KUMAR
GALLA VINOD KUMAR NAIDU
KASHYAP KOMPELLA

The Problem

Components

- Microcontroller
- Motor
- Sensors
- PCB
- Battery
- Chassis
- Software

Microcontroller

• ATMEL 89C52

- Cheap & easy to use
- 8KB of EEPROM and 256B of internal RAM
- 64KB of external RAM

Configuration

- Port 0 and Port 2 to interface external RAM of 32K
- Port 1 to drive both motors (4 coils each)
- Port 3 for sensor control

Motor

- Choices
 - DC Motor
 - High torque
 - Low Power Consumption
 - Smaller size and lighter
 - Cheaper
 - Complex speed control
 - Difficult to achieve accurate movement
 - Stepper Motor
 - High holding torque
 - High Power Consumption
 - Bulky
 - Costlier
 - Easy to achieve accurate movement

Problem with Stepper Motor

- Limited choice available in market
- Data sheet and specification not easily available
- Difficult to judge suitability for micromouse

Sensors

- Choices
 - Ultrasonic
 - InfraRed
 - Mechanical Sensor
- InfraRed
 - Need for modulation
 - TSOP IR Receiver and filter package

Sensing Strategies

- Sideways and front looking distance measurement
- Sideways and front looking wall presence measurement
- Down looking wings sensors
- Combination of above
- Our Choice
 - Sideways and front looking wall presence measurement
 - Placement and no of sensors

Sensor and Motor

Battery

- Choices
 - Alkaline
 - NiMH Nickel Metal Hydride
 - NiCd Nickel Cadmium
 - Lead Acid
- Our Choice
 - Our requirement 12 V / 1.5 Amp
 - Lead Acid (12V / 1.6 AmpH)

PCB

- Eagle software for design
- Points to consider
 - VCC and GND tracks should be thicker
 - Track width 0.3 mm minimum
 - Distance between two tracks 0.4 mm minimum
 - PCB manufacturing takes 3-4 days at least

PCB

Chassis

- Wheel Design
 - 4/3/2 Wheels
- Our Choice
 - 2 wheels with castor
 - Easy to achieve accurate turns
 - Easy to design and make
 - Ball castor
- Points to consider
 - Center of gravity as low as possible.
 - Moment of inertia as small as possible
 - Balance of weight on wheels and castor
 - Light and Compact

Chassis

Chassis

Software

- Written in C, compiled using Keil
- Simple BFS algorithm (see simulator)
- Features
 - Guaranteed to reach the destination
 - Will eventually find the shortest route
 - Maintains limited history
 - Avoids jerky motion during exploration
- Correction Strategy
 - Both side walls present
 - One side wall present
 - Wall edge detected

Thank You.

- For more information check
 - www.it.iitb.ac.in/~nirav/umouse