Analysis 1 – Tutorium 1 robin.mader@campus.lmu.de 6.11.2020

Unten findet ihr ausgewählte Lösungen zu den Aufgaben. Lösungen zu den hier gelisteten Aktivierungselementen finden sich in Uni2Work.

Aufgabe 1 (Aussagenlogik, Wahrheitstabellen). (a) Es seien A, B, C Aussagen. Zeige, dass es sich bei folgenden Formeln um Tautologien handelt:

(i) Beweis einer Disjunktion (Aktivierungselement 1.7):

$$((C \Rightarrow A) \lor (\neg C \Rightarrow B)) \Rightarrow A \lor B,$$

(ii) Formel von Peirce:

$$((A \Rightarrow B) \Rightarrow A) \Rightarrow A,$$

(iii) Kettenschluss:

$$(A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

- (b) Aktivierungselement 1.8: Seien A, B Aussagen. Zeige: $\neg(A \Rightarrow B)$ und $A \land \neg B$ sind gleichwertig.
- (c) Für Aussagen A, B, C sind die Formeln $A \Rightarrow (B \Rightarrow C)$ und $A \land B \Rightarrow C$ gleichwertig.

Lösung. (a)(ii) Wir schreiben folgende Wahrheitstabelle:

A	$\mid B \mid$	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow A$	$\big \; ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$
\overline{w}	w	w	w	w
w	$\int f$	f	w	w
f	w	w	f	w
f	$\int f$	w	f	w

Da die letzte Spalte nur den Wahrheitswert "w" hat, ist die Formel von Peirce eine Tautologie.

(c) Wir schreiben wieder eine Wahrheitstabelle:

A	$\mid B \mid$	C	$B \Rightarrow C$	$A \Rightarrow (B \Rightarrow C)$	$A \wedge B$	$A \wedge B \Rightarrow C$
\overline{w}	w	w	w	w	w	w
w	w	$\int f$	f	f	w	f
w	\int	w	w	w	f	w
w	$\int f$	$\int f$	w	w	f	w
f	w	w	w	w	f	w
f	w	$\int f$	f	w	f	w
f	\int	w	w	w	f	w
f	$\mid f \mid$	$\mid f \mid$	w	w	f	w

Wir erkennen die Gleichwertigkeit der beiden Aussagen anhand ihrer übereinstimmenden Spalten in der Wahrheitstabelle. $\hfill\Box$

Aufgabe 2 (Beispiele zu Mengenoperationen und Funktionen).

- (a) Aktivierungselement 1.11: Gegeben seien die Mengen $M = \{1, 2, 3\}$ und $N = \{2, 3, 4\}$. Berechne $M \cup N$, $M \cap N$, $M \setminus N$ und $M \triangle N$.
- (b) Aktivierungselement 1.12: Gegeben seien die Mengen $A = \{1, 2, 3\}$ und $B = \{4, 5, 6\}$ und eine Abbildung $f: A \to B$, definiert durch f(1) = 4, f(2) = 5, f(3) = 5.
 - 1. Ist f injektiv? Ist f surjektiv? Ist f bijektiv?
 - 2. Schreibe f als Teilmenge von $A \times B$.
 - 3. Berechne das Bild $f[\{2,3\}]$ und das Urbild $f^{-1}[\{5,6\}]$.

Aufgabe 3 (Prädikatenlogik). (a) Aktivierungselement 1.10: Betrachte den prädikatenlogischen Ausdruck

$$\forall x \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{R} : (|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon).$$

Formuliere das Gegenteil dieses Ausdrucks.

- (b) Es sei M eine Menge. Formuliere mit Hilfe der Existenz- und Allquantoren (und " $\in M$ "), der Junktoren und "=" die folgenden Aussagen:
 - (i) Es gibt mindestens drei verschiedene Elemente in M.
 - (ii) Es gibt genau drei verschiedene Elemente in M.

Aufgabe 4.

(a) Rechtskürzbarkeit von Surjektionen: Es seien X,Y,Z Mengen, und $f:Y\to Z,$ $g:Y\to Z,$ $s:X\to Y$ Abbildungen. Angenommen, s ist surjektiv. Beweise die Implikation

$$f \circ s = q \circ s \implies f = q.$$

(b) Linkskürzbarkeit von Injektionen: Wieder seien X, Y, Z Mengen. Diesmal betrachten wir Abbildungen $f: X \to Y, g: X \to Y, i: Y \to Z$. Angenommen i ist injektiv. Zeige

$$i \circ f = i \circ q \implies f = q$$
.

Lösung. (a) Um die Implikation $f \circ s = g \circ s \implies f = g$ zu beweisen, nehmen wir $f \circ s = g \circ s$ an, und zeigen f = g. Unsere Annahme ist äquivalent zu

$$\forall x \in X : f \circ s(x) = g \circ s(x). \tag{1}$$

Das Beweisziel "f = g" ist gleichbedeutend mit

$$\forall y \in Y : f(y) = g(y). \tag{2}$$

Um eine Aussage der Form $\forall y \in Y : \varphi(y)$ zu beweisen, müssen wir für ein beliebig vorgegebenes $y \in Y$ die Aussage $\varphi(y)$ zeigen. Bei uns soll $\varphi(y)$ genau die Aussage f(y) = g(y) sein. Es sei nun also ein beliebiges $y \in Y$ gegeben. Unser Beweisziel ist jetzt nicht mehr (2), sondern f(y) = g(y).

Um (1) anwenden zu können, wollen wir die Surjektivität von s nutzen. Wir erinnern uns: $s: X \to Y$ ist surjektiv genau dann, wenn

$$\forall y' \in Y \exists x' \in X : y' = s(x'). \tag{3}$$

Wir führen eine Allquantorentfernung durch, indem wir in (3) für y' unser gegebenes y substituieren, und folgern:

$$\exists x' \in X : y = s(x'). \tag{4}$$

Die Formel (4) liefert nun ein $x' \in X$ mit y = s(x'). Das erlaubt es uns, Formel (1) anzuwenden, denn nun können wir durch Substitution von x' für x den Allquantor in (1) entfernen, um $f \circ s(x') = g \circ s(x')$ zu erhalten. Erinnern wir uns an die Komposition von Funktionen, und folgern:

$$f(y) = f(s(x')) = f \circ s(x') = g \circ s(x') = g(s(x')) = g(y).$$

Diese Schreibweise bietet sich wegen der Transitivität von "=" an. Insgesamt folgt das Beweisziel f(y) = g(y).

(b) Diesmal argumentieren wir etwas knapper. Angenommen, $i \circ f = i \circ g$. Es sei $x \in X$ gegeben. Wir zeigen f(x) = g(x).

Zunächst bemerken wir i(f(x)) = i(g(x)). Injektivität von i ist gleichbedeutend mit

$$\forall y_1 \in Y \forall y_2 \in Y : i(y_1) = i(y_2) \implies y_1 = y_2. \tag{5}$$

Wir wenden dies auf $y_1 = f(x)$ und $y_2 = g(x)$ an, und folgern f(x) = g(x). Da $x \in X$ beliebig war, folgt f = g.

Aufgabe 5 (Relationen, Quotienten).

(a) Aktivierungslement 1.14: Es sei $M = \{0, 1, 2, 3, 4, 5\}$, und die Relation $\sim \subseteq M \times M$ definiert durch

$$x \sim y \quad :\Leftrightarrow \quad 3 \text{ teilt } x - y.$$

Wir nehmen ohne Beweis an: \sim ist eine Äquivalenzrelation.

- 1. Schreibe M/\sim als Menge in aufzählender Notation.
- 2. Es sei $f: M \to M/\sim$ die kanonische Abbildung. Schreibe f(1) als Menge in aufzählender Notation.
- (b*) Injektiv-machen mittels Faktorisieren durch den Quotienten: Es sei $f: X \to Y$ eine Abbildung von Mengen X und Y. Definiere eine Relation $\sim \subseteq X \times X$ durch

$$x \sim y :\Leftrightarrow f(x) = f(y).$$

Zeige:

1. \sim ist eine Äquivalenzrelation.

^{*}Die Bearbeitung einer mit * versehenen Aufgabe sollte erst nach dem Lösen der übrigen Aufgaben erfolgen.

2. Die Abbildung

$$\overline{f}: X/\sim \to Y, \quad [x]_{\sim} \mapsto f(x)$$

ist wohldefiniert, und injektiv.

Lösung. (b) 1. Zu prüfen ist Reflexivität, Symmetrie und Transitivität von \sim .

Reflexivität: Für $x \in X$ gilt offenbar f(x) = f(x), also $x \sim x$.

Symmetrie: Seien $x \in X$ und $y \in X$ mit $x \sim y$ gegeben. Das bedeutet f(x) = f(y). Da "=" symmetrisch ist, folgt f(y) = f(x). Also auch $y \sim x$.

Transitivität: Es seien $x, y, z \in X$ mit $x \sim y$ und $y \sim z$ gegeben. Zu zeigen ist $x \sim z$. Unsere Annahmen bedeuten f(x) = f(y) und f(y) = f(z). Da "=" transitiv ist, folgt f(x) = f(z), also $x \sim z$.

2. Wohldefiniertheit der Abbildung \overline{f} bedeutet, dass

$$\overline{f} = \{([x]_{\sim}, f(x)) \in X / \sim \times Y \mid x \in X\}$$

nicht nur eine Relation, sondern sogar eine Funktion ist, d.h.

$$\forall x \in X \forall y \in X : [x]_{\sim} = [y]_{\sim} \implies f(x) = f(y).$$

Um das zu zeigen, seien also $x,y\in X$ mit $[x]_{\sim}=[y]_{\sim}$ gegeben. Wegen $x\sim x$ gilt $x\in [x]_{\sim}=[y]_{\sim}=\{z\in X\mid z\sim y\}$, also $x\sim y$. Das bedeutet f(x)=f(y), also ist \overline{f} wohldefiniert.

Um zu sehen, dass \overline{f} injektiv ist, müssen wir

$$\forall \overline{x} \in X / \sim \ \forall \overline{y} \in X / \sim : \overline{f}(\overline{x}) = \overline{f}(\overline{y}) \implies \overline{x} = \overline{y}$$
 (6)

zeigen. Es seien also $\overline{x}, \overline{y} \in X/\sim \operatorname{mit} \overline{f}(\overline{x}) = \overline{f}(\overline{y})$ gegeben. Wegen $X/\sim = \{[z]_\sim \mid z \in X\}$ finden wir $x \in X$ und $y \in X$ mit $\overline{x} = [x]_\sim$ und $\overline{y} = [y]_\sim$. (Slogan: "Die kanonische Projektion $X \to X/\sim, z \mapsto [z]_\sim$ ist surjektiv.") Wir haben

$$f(x) = \overline{f}([x]_{\sim}) = \overline{f}(\overline{x}) = \overline{f}(\overline{y}) = \overline{f}([y]_{\sim}) = f(y),$$

also $x \sim y$.

Wir zeigen, dass daraus bereits $[x]_{\sim} = [y]_{\sim}$ folgt. Um diese Gleichheit von Mengen zu zeigen, zeigen wir zunächst $[x]_{\sim} \subseteq [y]_{\sim}$. Sei dazu $z \in [x]_{\sim}$. Das bedeutet $z \sim x$. Wegen $x \sim y$ und der Transitivität von \sim folgt $z \sim y$, also $z \in [y]_{\sim}$. Da $z \in [x]_{\sim}$ beliebig war, folgt die Inklusion $[x]_{\sim} \subseteq [y]_{\sim}$.

Um die umgekehrte Inklusion $[y]_{\sim} \subseteq [x]_{\sim}$ zu sehen, bemerken wir $y \sim x$ aus der Symmetrie von \sim . Nun folgt $[y]_{\sim} \subseteq [x]_{\sim}$ mit dem gleichen Argument wie eben, durch Vertauschung der Rollen von x und y.

Insgesamt folgt also $\overline{x} = [x]_{\sim} = [y]_{\sim} = \overline{y}$, und damit ist die Behauptung (6) bewiesen.