实验四:整数安全函数的设计

一、实验目标

- 1. 第二章-字符串、第五章-整数安全
- 2. 掌握常用的字符串函数;
- 3. 了解微软的 SafeInt 库(https://msdn.microsoft.com/en-us/library/dd570023.aspx);
- 4. 理解整数溢出问题。

二、内容与要求

- 1. 所在模块: MathSafe
- 2. 编写函数: int8_t my_atoi8(char* str, int* of);

功能:将 str 指向的整数字符串转换为一个整数类型。本函数只针对[-128,127]范围内的整数执行转换。

参数 str: C 字符串。

参数 of:整数指针,返回转换中的错误情况。Str 合规且转换成功,(*of) = 0; str 不指向数字或者为空,(*of) = -1; str 指向的数字不合法,(*of) = -2.

返回值:返回转换后的整数,如果参数 str 不正确或者指向的数字越界,则返回 0. 提示: p164 例程改造。

- 3. 编写有符号整数运算函数:
- (1) int iAdd_Safe(int8_t a, int8_t b, int* of); 功能: a+b
- (2) int iSubtract_Safe(int8_t a, int8_t b, int* of); 功能: a-b
- (3) int iMultiply_Safe(int8_t a, int8_t b, int* of); 功能: a*b
- (4) int iDivide_Safe(int8_t a, int8_t b, int* of); 功能: a/b

功能:分别实现有符号数 int8 t 的加减乘除运算。

参数 of: 整数指针,返回计算中的错误情况。(*of) = 0 计算成功; (*of) = -1 表示除零错; (*of) = -2 表示溢出错。

返回值: 计算成功返回计算结果, 否则返回 0.

- 4. 编写无符号整数运算函数:
- (1) UINT Add_Safe(uint8_t a, uint8_t b, int* of); 功能: a+b
- (2) UINT Subtract_Safe(uint8_t a, uint8_t b, int* of); 功能: a-b
- (3) UINT Multiply_Safe(uint8_t a, uint8_t b, int* of); 功能: a*b

(4) UINT Divide_Safe(uint8_t a, uint8_t b, int* of); 功能: a/b

功能:分别实现无符号数 uint8_t 的加减乘除运算。

参数 of: 整数指针,返回计算中的错误情况。(*of) = 0 计算成功; (*of) = -1 表示除零错; (*of) = -2 表示回绕错。

返回值: 计算成功返回计算结果, 否则返回 0.

- 5. 在 main 函数中对所编写函数进行测试,说明所使用的测试用例。
- 6. MSDN: https://msdn.microsoft.com/en-us/library/hh875057.aspx
- 7. MSDN: SafeInt Library, https://msdn.microsoft.com/en-us/library/dd570023.aspx
- 8. 建议学时: 2 学时。

三、参考测试用例

序号	int8_t my_atoi8(char* str, int* of);	
1	my_atoi8("-128"), my_atoi8("127"), my_atoi8("0"), my_atoi8("-1")	(*of) = 0
2	my_atoi8("1285"), my_atoi8("-129"), my_atoi8("130")	(*of) = -2
3	my_atoi8(""), my_atoi8(0), my_atoi8("abc"), my_atoi8("12a")	(*of) = -1
4	my_atoi8("123a"), my_atoi8("12a"), my_atoi8("-12a")	(*of) = -1
5	my_atoi8("00123"), my_atoi8("-00123")	(*of) = -2
6	my_atoi8(" 123 "), my_atoi8("-23 "), my_atoi8("-2 3 ")	(*of) = 0

序号	有符号整数加减乘除	
1	iAdd_Safe(12,13), iAdd_Safe(127,0),	(*of) = 0
1	iAdd_Safe(-12, -13), iAdd_Safe(-127, 13)	
2	iAdd_Safe(127,3), iAdd_Safe(-126,-13),	(*of) = -2
3	iSubtract_Safe(12,13), iSubtract_Safe(127,0),	(*of) = 0
3	iSubtract_Safe(-12, -13), iSubtract_Safe(-127, 1)	
4	iSubtract_Safe(127,-1), iSubtract_Safe(-126,13),	(*of) = -2
5	iMultiply_Safe(2,30), iMultiply_Safe(127,1), iMultiply_Safe(-2,30),	(*of) = 0
3	iMultiply_Safe(-12, -3), iMultiply_Safe(-128, 1)	

6	iMultiply_Safe(127,3), iMultiply_Safe(-28,6), iMultiply_Safe(-128,-1),	(*of) = -2
7	iDivide_Safe(127,3), iDivide_Safe(-28,7), iDivide_Safe(-128,-1),	(*of) = 0
8	iDivide_Safe(-128,-1),	(*of) = -2
9	iDivide_Safe(127,0), iDivide_Safe(-28,0), iDivide_Safe(-128,0),	(*of) = -1

序号	无符号整数加减乘除	
1	Add_Safe(12,13), Add_Safe(255,0), Add_Safe(132, 13)	(*of) = 0
2	Add_Safe(255,1), Add_Safe(124,123)	(*of) = -2
3	Subtract_Safe(17,13), Subtract_Safe(127,0), Subtract_Safe(232, 13)	(*of) = 0
4	Subtract_Safe(127,128), Subtract_Safe(2,255)	(*of) = -2
5	Multiply_Safe(2,30), Multiply_Safe(127,1), Multiply_Safe(122,2),	(*of) = 0
6	Multiply_Safe(127,3), Multiply_Safe(28,26)	(*of) = -2
7	Divide_Safe(234,3), Divide_Safe(228,7)	(*of) = 0
8	iDivide_Safe(127,0), iDivide_Safe(0,0)	(*of) = -1

实验五: SafeInt 库的使用

一、实验目标

- 1. 了解整数运算过程可能出现的错误
- 2. 了解微软的整数安全数据类型—SafeInt 类
- 3. 了解微软的整数安全运算函数—SafeInt 函数
- 4. 理解 c++异常处理机制

二、内容与要求

1. 学会使用 SafeInt 类来完成整数安全运算。

使用 SafeInt 类完成整数算术运算、逻辑运算与比较运算。

使用 try、catch 块捕获算术溢出和除零错。

头文件: <safeint. h>

命名空间:msl:utilities

SafeInt 类原型:

template<typename T, typename E = _SAFEINT_DEFAULT_ERROR_POLICY>
class SafeInt;

创建 SafeInt 对象(示例):

SafeInt $\langle int \rangle$ i1, i2(-5); SafeInt $\langle uint8_t \rangle$ u1, u2(10);

执行加法运算(示例):

i1 = i2 + (uint8 t)u2;

2. 学会使用 SafeInt 函数来完成整数安全运算。

使用 SafeInt 函数完成整数算术运算、逻辑运算与比较运算。

示例: $int8_t i1 = 126, res; int16_t i2 = 1, i3 = 2; bool b1, b2;$

b1 = SafeAdd(i1, i2, res); b2 = SafeAdd(i1, i3, res);

3. 掌握 c++异常处理机制

在创建 SafeInt 对象时使用自定义异常处理策略。

class MySafeIntException: public SafeIntException:

要求: 发生算术溢出时输出" SafeInt Arithmetic Overflow!" 发生除零错误时输出" SafeInt Divide By Zero!"

三、参考测试用例

序号	uint64_t+uint64_t	
1	0x00000007ffffffe, 0x000000000000000	true
2	0xfffffffffff, 0x00000000000000000000000	false
3	0x00000007ffffffe, 0x00000007fffffff	true
4	0x7fffffffffff, 0x80000000000001	false

序 号	uint64_t+uint16_t	
1	0x7ffffffffffff, 0x7ffe	true
2	0x800000000000001, 0x8001	true
3	0xfffffffffffe, 0x8001	false
4	0xfffffffffffe, 0xffff	false

序号	uint64_t+int32_t	
1	0x00000007ffffffe, 0x7ffffffe	true
2	0xffffffffffffe, 0x7ffffffe	false
3	0x00000000000001, 0xffffffff	true
4	0x000000000000000, 0xffffffff	false

序号	int64_t+uint32_t	
1	0x00000007ffffffe, 0x00000001	true
2	0x7ffffffffffe, 0x00000001	true
3	0x7fffffffffff, 0x00000001	false
4	0x8000000000000000, 0x00000001	true

序号	uint64_t-int32_t	
1	0x000000000000000, 0x00000001	false
2	0x000000000000000, 0x80000000	true
3	0xfffffffffffe, 0x80000000	false

4	0xffffffffffffe, 0xffffffff	true	
---	-----------------------------	------	--

序号	uint32_t*int64_t	
1	0x7fffffff, 2	true
2	0x80000000, 2	false
3	0x7fffffff, 0x7fffffff	false
4	1, 0x7ffffffffffff	false

序号	uint64_t/int32_t	
1	0x7fffffff,0	false
2	0x80000000,0x7fffffff	true
3	0x80000000,0x80000000	false
4	1, 0xffffffff	false

更多测试用例见: https://github.com/dcleblanc/SafeInt