

Recurrent Neural Networks

Mikhail Arkhipov

Laboratory of Neural Systems and Deep Learning MIPT

$$h = f(Wx + b)$$

Variable sequence length

Variable sequence length

Variable sequence length

Convolutional Neural Networks

$$h_i = f_h(Wx_i + Vh_{i-1} + b_h)$$
 $\hat{y}_i = f_y(Uh_i + b_y)$

$$h_i = f_h(Wx_i + Vh_{i-1} + b_h)$$
 $\hat{y}_i = f_y(Uh_i + b_y)$

$$h_i = f_h(Wx_i + Vh_{i-1} + b_h)$$
 $\hat{y}_i = f_y(Uh_i + b_y)$

$$h_i = f_h(Wx_i + Vh_{i-1} + b_h)$$
 $\hat{y}_i = f_y(Uh_i + b_y)$

$$h_i = f_h(Wx_i + Vh_{i-1} + b_h)$$
 $\hat{y}_i = f_y(Uh_i + b_y)$

Forward pass:

 h_t , \hat{y}_t , L_t , L

Forward pass:

$$h_t$$
, \hat{y}_t , L_t , L

Backward pass:

$$\frac{\partial L}{\partial U}, \frac{\partial L}{\partial V}, \frac{\partial L}{\partial W}, \\ \frac{\partial L}{\partial b_x}, \frac{\partial L}{\partial b_h}$$

We backpropagate through layers and time

$$\frac{\partial L}{\partial U} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial U}$$

$$\frac{\partial L}{\partial U} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial U}$$

$$\frac{\partial L_t}{\partial U} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

$$\hat{y}_t = f_y(Uh_t + b_y)$$

this is the only dependence

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$
$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$
This is NOT the only dependence!

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$L_{t-2} \qquad L_{t-1} \qquad L_t$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$
This is NOT the only dependence!
$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \left(\frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W} + \dots \right)$$

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$

$$This is NOT the only dependence!$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \left(\frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W} + \dots \right)$$

$$f(x, y(x)) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h} \sum_{t=0}^{t} \left(\prod_{t=0}^{t} \frac{\partial h_t}{\partial h_{t-t}} \right) \frac{\partial h_t}{\partial W}$$

$$rac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \Biggl(\prod_{i=k+1}^t rac{\partial h_i}{\partial h_{i-1}}\Biggr) rac{\partial h_k}{\partial W}$$

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\|_2 < 1$$
 Vanishing gradients

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\|_2 > 1$$
 Exploding gradients

Unstable learning curve

If the gradients contain NaNs you end up with NaNs in the weights

Gradient clipping

Gradient
$$g=rac{\partial L}{\partial heta}$$
 , $~ heta$ - all the network parameters

If
$$||g|| >$$
threshold:
$$g \leftarrow \frac{threshold}{||g||} g$$

Simple but still very effective!

Truncated BPTT

Forward pass through the entire sequence to compute the loss

Backward pass through the entire sequence to compute the gradient

Truncated BPTT

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps.

Truncated BPTT

Truncated BPTT is much faster but it doesn't come without a price! Dependencies longer than the chunk size don't affect the training but at least they still work at forward pass.

e.g. Image Captioning image -> sequence of words

e.g. Sentiment Classification sequence of words -> sentiment

e.g. Machine Translation seq of words -> seq of words

e.g. Machine Translation seq of words -> seq of words

Aggregation methods

Spasibo