Simplex Example

Consider the above network with one hidden layer. For simplicity, I have omitted the bias variable. Suppose we want to check the property $x_1 \in [0,1]$ and $x_4 \notin [0.5,1]$. To verify this property we simply negate it and try to find a solution with the given constraints.

Equations for this network are:

- $x_2 x_1 = x_5$ Equation 1 $x_3 + x_1 = x_6$ Equation 2 $x_4 x_3 x_2 = x_7$ Equation 3

Bounds are:

- $x_1 \in [0, 1]$
- $x_4 \in [0.5, 1]$
- x₂, x 3 unbounded
- x_5 , x_6 , $x_7 \in [0, 0]$

Variable	Lower Bound	Value	Upper Bound
X ₁	0	0	1
X ₂	-INF	0	+INF
x ₃	-INF	0	+INF
X ₄	0.5	0	1
X ₅	0	0	0
X ₆	0	0	0
x ₇	0	0	0

Update $x_4 = x_4 + 0.5$. This updates x_7 in equation 3, which is now out of bounds. We pivot x_7 and x_2 giving equation:

$$x_2 = x_4 - x_3 - x_7$$

Now replace the value of x_2 in equation 1 and get the following set of equations:

• $x_5 = x_4 - x_3 - x_7 - x_1$ Equation 1 • $x_6 = x_3 + x_1$ Equation 2 • $x_2 = x_4 - x_3 - x_7$ Equation 3

This would given the following table:

Variable	Lower Bound	Value	Upper Bound
X ₁	0	0	1
X ₂	-INF	0.5	+INF
X ₃	-INF	0	+INF
X ₄	0.5	0.5	1
X ₅	0	0.5	0
X ₆	0	0	0
X ₇	0	0	0

Now, $\mathbf{x_5}$ is out of bounds. So, we pivot $\mathbf{x_5}$ and $\mathbf{x_1}$,

• $x_1 = x_4 - x_3 - x_7 - x_5$ [Pivot operation] Equation 1

• $x_6 = x_4 - x_7 - x_5$ [change value of x_1] Equation 2

• $x_2 = x_4 - x_3 - x_7$ Equation 3

Also, do $x_5 = x_5 - 0.5$

Variable	Lower Bound	Value	Upper Bound
X ₁	0	0.5	1
X ₂	-INF	0.5	+INF
X ₃	-INF	0	+INF
X ₄	0.5	0.5	1
X ₅	0	0	0
X ₆	0	0.5	0
X ₇	0	0	0

Clearly, we cannot pivot $\mathbf{x}_{\scriptscriptstyle{6}}$ with any other variables in equation 2. Hence, this is an UNSAT.