Trabalho 1 – Criação de um Sistema Computacional

RA: 107115

Aluno: Matheus Augusto Schiavon Parise

Descrição do trabalho

Implementação de um SISTEMA COMPUTACIONAL completo, contendo memória, barramentos, registradores internos, ULA e unidade de controle. Todo o processo de execução deverá ser automático (busca na memória, decodificação e execução). Toda a implementação será feita utilizando a ferramenta Circuit Maker.

Para colocar os valores manualmente ligue o input "Manual" ele fica abaixo do PC, no barramento de endereço coloque os valores para selecionar a posição desejada e insira os valores ativando o input "Vlibera" que está em cima da memória, desligue o input manual e ligue o Input "Auto" para iniciar a contagem e começar as operações.

O input "reset" ele reinicia a contagem do contador e temporizador para 0 em binario.

Para colocar os valores manualmente em A, B ou C insira as informações no seletor de 2bits acima dos registradores A, B e C onde Vbit2 tem maior relevância que Vbit1, siga a tabela do seletor abaixo para as combinações possíveis de seleção.

Valores	Registradores
Vbit2 = 0 e Vbit1 = 0	A
Vbit2 = 0 e Vbit1 = 1	В
Vbit2 = 1 e Vbit1 = 0	С
Vbit2 = 1 e Vbit1 = 1	Nada

Tabela de OPCODE

MNEMÔNICO	OPCODE
MOV A, B	0000
MOV B, C	0001
MOV C, A	0010
ADD A, B	0011
ADD B, C	0100
ADD C, A	0101
AND A, B	0110
AND B, C	0111
AND C, A	1000
OR A, B	1001
OR B, C	1010
XOR A, B	1011
XOR B, C	1100
LOAD(LD) A	1101
STORE(ST) A	1110
DESVIO(JMP)	1111

Elementos do circuito

1. Contador de 0 a 15

CONTADOR DE 0 a 15 Com opção de incrementar 1 ou 2 $\,$

2. Temporizador de 4 bits

3. PC, Barramento de dados e seletor de memoria

4. 16 palavras de 4 bits cada

6. Operações Logicas.

7. Registradores A, B e C em cima a forma de inserir as informações neles manualmente.

8. Registador de saída das operações logicas

Considerações sobre o circuito

1 – O registrador predefinido do LOAD e STORE é o A.

2 – Para as operações logicas existe um registrador para armazenar as respostas.

3 – Existe um certo momento no seletor de memória quando ocorre um LOAD, STORE OU DESVIO onde o circuito vai informar a próxima palavra que a operação precisa ler é exatamente 1 instante de tempo depois dele decodificar a informação da operação especial, porém em um curto espaço de tempo durante a troca da informação o seletor fica "vago", ou seja, sem receber informação, isso faz com que durante um certo momento ele receba "0000" consequentemente gerando bug's visuais e até erro dependendo do tempo em que ficou, também pode aparentar que o circuito está com defeito, mas logo em seguida a informação fica certa. Exemplo com a imagem a seguir de quando isso ocorre.

