In [1]: %matplotlib inline

Data Analysis & Visualisation of COVID-19 Cases by Adit Kotak

```
In [2]:
          import matplotlib as mpl
          import matplotlib.pyplot as plt
          import numpy as np
          import pandas as pd
In [3]:
          data = pd.read_csv('district.csv')
          # Describe the statistics of all the the columns.
In [4]:
          data.describe()
In [5]:
Out[5]:
                 districtData/0/active
                                      districtData/0/confirmed
                                                               districtData/0/deceased
                                                                                       districtData/0/recov
                           33.000000
                                                                                                     33.00
          count
                                                    33.000000
                                                                            33.000000
                          249.818182
                                                   317.909091
                                                                            13.878788
                                                                                                     54.21
          mean
                          994.971936
                                                  1238.750034
                                                                            51.887955
                                                                                                    193.10
            std
           min
                            0.000000
                                                     1.000000
                                                                             0.000000
                                                                                                      0.00
           25%
                            2.000000
                                                     3.000000
                                                                             0.000000
                                                                                                      1.00
           50%
                           14.000000
                                                    25.000000
                                                                             1.000000
                                                                                                      5.00
           75%
                           69.000000
                                                                             4.000000
                                                                                                     22.00
                                                    79.000000
                         5679.000000
                                                  7061.000000
                                                                           290.000000
                                                                                                   1092.00
           max
In [6]:
          data.head(15)
```

localhost:8888/nbconvert/html/Assignment- Dhaval Sir.ipynb?download=false

10.107111	, long mind End of						
Out[6]:	dist	rictData/0/district	districtData/0/active	districtData/0/confirmed	districtData/0/deceased		
	0	Ahmadnagar	17	42	2		
	1	Yavatmal	69	79	0		
	2	Washim	1	2	0		
	3	Solapur	93	99	6		
	4	Sindhudurg	1	2	0		
	5	Satara	21	32	2		
	6	Sangli	3	29	1		
	7	Ratnagiri	2	8	1		
	8	Raigarh	44	71	3		
	9	Parbhani	1	2	0		
	10	Palghar	119	169	4		
	11	Osmanabad	0	3	0		
	12	Nashik	179	197	12		
	13	Nandurbar	10	11	1		
	14	Nanded	3	3	0		
					•		
In [7]:	# Plot	a line diagram	including active,	confirmed, deceased &	recovered cases.		
		.1 .50 .41					

```
In [8]: A = data.iloc[0:,1].values
R = data.iloc[0:,4].values
D = data.iloc[0:,3].values
C = data.iloc[0:,2].values
X = data.iloc[0:,0]
```



```
In [10]: plt.plot(X,C, label="Confirmed cases", color="r", linewidth=2, marker='*')
    plt.xlabel('District')
    plt.ylabel('No. of cases')
    plt.title('COVID-19 cases')
    plt.legend()
    plt.show()
```



```
In [11]: plt.plot(X,D, label="Deceased cases", color="orange", linewidth=2, marker='x')
    plt.ylabel('No. of cases')
    plt.title('COVID-19 cases')
    plt.legend()
    plt.show()
```



```
In [12]: plt.plot(X,R, label="Recovered cases", color="cyan", linewidth=2, marker='+')
    plt.xlabel('District')
    plt.ylabel('No. of cases')
    plt.title('COVID-19 cases')
    plt.legend()
    plt.show()
```

Recovered cases 1000 - Recovered cases 1000 - Section 1000 - Sec

District

```
In [13]: plt.plot(X,A, label="Active cases", color="b", linewidth=2, marker='o')
   plt.plot(X,C, label="Confirmed cases", color="r", linewidth=2, marker='*')
   plt.plot(X,D, label="Deceased cases", color="orange", linewidth=2, marker='x')
   plt.plot(X,R, label="Recovered cases", color="cyan", linewidth=2, marker='+')
   plt.xlabel('District')
   plt.ylabel('No. of cases')
   plt.title('COVID-19 cases')
   plt.legend()
   plt.show()
```



```
In [14]: # Plot a bar diagram including active, confirmed, deceased & recovered cases.

In [15]: plt.bar(X, A, label="Active cases", color="b")
    plt.xlabel('District')
    plt.ylabel('No. of cases')
    plt.title('COVID-19 cases')
    plt.legend()
    plt.show()
```



```
In [16]: plt.bar(X, C, label="Confirmed cases", color="r")
   plt.xlabel('District')
   plt.ylabel('No. of cases')
   plt.title('COVID-19 cases')
   plt.legend()
   plt.show()
```



```
In [17]: plt.bar(X, D, label="Deceased cases", color="orange")
   plt.xlabel('District')
   plt.ylabel('No. of cases')
   plt.title('COVID-19 cases')
   plt.legend()
   plt.show()
```



```
In [18]: plt.bar(X, R, label="Recovered cases", color="cyan")
   plt.xlabel('District')
   plt.ylabel('No. of cases')
   plt.title('COVID-19 cases')
   plt.legend()
   plt.show()
```



```
In [19]: plt.bar(X, A, label="Active cases", color="b")
   plt.bar(X, C, label="Confirmed cases", color="r")
   plt.bar(X, D, label="Deceased cases", color="orange")
   plt.bar(X, R, label="Recovered cases", color="cyan")
   plt.xlabel('District')
   plt.ylabel('No. of cases')
   plt.title('COVID-19 cases')
   plt.legend()
   plt.show()
```



```
In [20]: plt.hist(A, label="Active cases", color="b")
  plt.hist(C, label="Confirmed cases", color="r")
  plt.hist(D, label="Deceased cases", color="orange")
  plt.hist(R, label="Recovered cases", color="cyan")
  plt.xlabel("No. of cases")
  plt.ylabel("Frequency")
  plt.title("COVID-19 cases")
  plt.legend()
  plt.show()
```



```
In [21]: plt.pie(A, autopct='%1.1f%%')
   plt.title('Active cases')
   plt.show()
```

Active cases


```
In [22]: plt.pie(C, autopct='%1.1f%%')
   plt.title('Confirmed cases')
   plt.show()
```

Confirmed cases


```
In [23]: plt.pie(D, autopct='%1.1f%%')
   plt.title('Deceased cases')
   plt.show()
```

Deceased cases


```
In [24]: plt.pie(R, autopct='%1.1f%%')
   plt.title('Recovered cases')
   plt.show()
```

Recovered cases


```
In [25]: plt.boxplot(A)
   plt.title('COVID-19 cases')
   plt.xlabel('Active cases')
   plt.ylabel('No. of cases')
   plt.show()
```



```
In [26]: plt.boxplot(C)
    plt.title('COVID-19 cases')
    plt.xlabel('Confirmed cases')
    plt.ylabel('No. of cases')
    plt.show()
```



```
In [27]: plt.boxplot(D)
    plt.title('COVID-19 cases')
    plt.xlabel('Deceased cases')
    plt.ylabel('No. of cases')
    plt.show()
```



```
In [28]: plt.boxplot(R)
    plt.title('COVID-19')
    plt.xlabel('Recovered cases')
    plt.ylabel('No. of cases')
    plt.show()
```



```
In [29]: COVID_cases = [A,C,D,R]
    plt.boxplot(COVID_cases)
    plt.title('COVID-19 cases')
    plt.title('COVID-19 cases in Top 5 Districts')
    plt.xlabel(' Active Confirmed Deceased Recovered plt.ylabel('No. of cases')
    plt.show()
```


In [30]: # Plot active vs recovered cases for top 5 districts having highest no. of cases.
In [31]: data.sort_values(['districtData/0/active', 'districtData/0/district'], ascending =

Out[31]:		districtData/0/district	districtData/0/active	districtData/0/confirmed	districtData/0/deceased
-	30	Mumbai	5679	7061	290
	32	Pune	912	1248	88
	31	Thane	755	943	16
	12	Nashik	179	197	12
	10	Palghar	119	169	4
	27	Aurangabad	102	131	7
	15	Nagpur	100	139	2
	3	Solapur	93	99	6
	1	Yavatmal	69	79	0
	8	Raigarh	44	71	3
	19	Jalgaon	30	40	9
	29	Akola	30	39	1
	22	Dhule	22	25	3
	5	Satara	21	32	2
	28	Amravati	17	28	7
	0	Ahmadnagar	17	42	2
	20	Hingoli	14	15	0
	13	Nandurbar	10	11	1
	17	Kolhapur	10	14	0
	6	Sangli	3	29	1
	14	Nanded	3	3	0
	16	Latur	3	12	1
	18	Buldana	3	21	1
	24	Buldana	3	21	1
	7	Ratnagiri	2	8	1
	2	Washim	1	2	0
	4	Sindhudurg	1	2	0
	9	Parbhani	1	2	0
	26	Bhandara	1	1	0
	11	Osmanabad	0	3	0
	21	Gondiya	0	1	0
	23	Chandrapur	0	2	0
	25	Bid	0	1	0
					.
[32]:	Son	ted = data.sort_val	.ues(['districtData	n/0/active', 'district	Data/0/district'], as

localhost:8888/nbconvert/html/Assignment- Dhaval Sir.ipynb?download=false

4

In [33]: Sorted.head(5)

Out[33]:		districtData/0/district	districtData/0/active	districtData/0/confirmed	districtData/0/deceased
	30	Mumbai	5679	7061	290
	32	Pune	912	1248	88
	31	Thane	755	943	16
	12	Nashik	179	197	12
	10	Palghar	119	169	4

```
In [34]: Sorted_head = Sorted.head(5)

In [40]: a = Sorted_head.loc[:,"districtData/0/active"]
    r = Sorted_head.loc[:,"districtData/0/recovered"]
    plt.bar(a,r, width = 500, color="violet")
    plt.xlabel("Active cases")
    plt.ylabel("Recovered cases")
    plt.title("COVID-19 cases in Top 5 Districts ")
    plt.show()
```



```
In [41]: size = [100,200,100,200,100]
  plt.scatter(a,r, marker = '^')
  plt.xlabel("Active cases")
  plt.ylabel("Recovered cases")
  plt.title("COVID-19 cases in Top 5 Districts ")
  plt.show()
  plt.show()
```



```
In [37]: labels= ['Mumbai', 'Pune', 'Thane', 'Nashik', 'Palghar']
  colors = ['red', 'crimson', 'palevioletred', 'lightpink', 'mistyrose']
  plt.pie(a, labels=labels, colors=colors, autopct='%1.1f%%')
  plt.title('Actve cases in Top 5 Districts')
  plt.show()
```

Actve cases in Top 5 Districts


```
In [38]: labels= ['Mumbai', 'Pune', 'Thane', 'Nashik', 'Palghar']
  colors = ['darkgreen', 'green', 'forestgreen', 'lime', 'limegreen']
  plt.pie(r, labels=labels, colors=colors, autopct='%1.1f%%')
  plt.title('Actve cases in Top 5 Districts')
  plt.show()
```

Actve cases in Top 5 Districts


```
In [39]: COVID_cases = [a,r]
```

```
plt.boxplot(COVID_cases)
plt.title('COVID-19 cases in Top 5 Districts')
plt.xlabel(' Active cases
plt.ylabel('No. of cases')
plt.show()
Recovered cases')
```

