Matemáticas discretas II

Lenguajes y gramáticas carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S. Raúl E Gutierrez de Piñerez R.

Facultad de Ingeniería. Universidad del Valle

Marzo 2018

- 1 Lenguajes
- 2 Autómatas finitos
- 3 Gramáticas
- 4 Máquinas de Turing

Contenido

- 1 Lenguajes
- 2 Autómatas finitos
- 3 Gramáticas
- 4 Máquinas de Turing

El alfabeto

Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos.

- Sea $\Sigma = \{a, b\}$ el alfabeto que consta de los símbolos a y b. Las siguientes son cadenas sobre Σ : aba, abaabaaa, aaaab.
- El alfabeto binario $\Sigma = \{0,1\}$ son las cadenas sobre Σ que se definen como secuencias finitas de ceros y unos.
- Las cadenas son secuencias ordenadas y finitas de símbolos. Por ejemplo, w = aaab ≠ w₁ = baaa.
- Sea $\Sigma = \{a, b, c, \dots, x, y, z\}$ el alfabeto del idioma castellano.
- El alfabeto utilizado por muchos lenguajes de programación.
- Sea $\Sigma = \{a, b, c\}$ entonces podemos formar todas las cadenas sobre Σ incluyendo la cadena vacía.

Notación de alfabetos, cadenas y lenguajes

Notación usada en la teoría de lenguajes	
Σ, Γ	denotan alfabetos.
Σ^*	denota el conjunto de todas las cadenas que se pueden formar con los símbolos del alfabeto $\Sigma.$
a, b, c, d, e, \dots	denotan símbolos de un alfabeto.
u, v, w, x, y, z, \dots $\alpha, \beta, \gamma, \dots$	denotan cadenas, es decir, sucesiones finitas de símbolos de un alfabeto. $$
iε	denota la cadena vacía, es decir, la única cadena que no tiene símbolos.
$A, B, C, \ldots, L, M, N, \ldots$	denotan lenguajes (definidos más adelante).

- Si bien un alfabeto Σ es un conjunto finito, Σ^* es siempre un conjunto infinito (enumerable).
- Hay que distinguir entre los siguientes cuatro objetos, que son diferentes entre sí: \emptyset , ϵ , $\{\emptyset\}$, $\{\epsilon\}$

Alfabetos

Operaciones con alfabetos

Si Σ es un alfabeto, $\sigma \in \Sigma$ denota que σ es un símbolo de Σ , por tanto, si

$$\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$$

se puede decir que $0\in \Sigma$

Un alfabeto es simplemente un conjunto finito no vacío que cumple las siguientes propiedades, Dados Σ_1 y Σ_2 alfabetos

- Entonces $\Sigma_1 \cup \Sigma_2$ también es un alfabeto.
- \blacksquare $\Sigma_1\cap\Sigma_2, \Sigma_1-\Sigma_2$ y $\Sigma_2-\Sigma_1$ también son alfabetos.

Conjunto Universal

El conjunto de todas las cadenas sobre un alfabeto $\Sigma,$ incluyendo la cadena vacía, se denota por Σ^*

- Sea $\Sigma = \{0, 1\}$ $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 010, 110, \ldots\}$
- Sea $\Sigma = \{a, b, c\}$, entonces $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, abc, baa, . . . \}$
- Sea $\Sigma = \{a, b\}$, entonces $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, baa, ...\}$

Concatenación de cadenas

Cadenas

Dado un alfabeto Σ y dos cadenas $u,v\in\Sigma^*$, la concatenación de u y v se denota como $u\cdot v$ o simplemente uv y se define así:

- Si $v=\epsilon$, entonces $u\cdot\epsilon=\epsilon\cdot u=u$, es decir, la concatenación de cualquier cadena u con la cadena vacía, a izquierda o derecha, es igual a u.
- 2 Si $u = a_1 a_2 ... a_n$, $v = b_1 b_2 ... b_m$, entonces

$$u \cdot v = a_1 a_2 \dots a_n b_1 b_2 \dots b_m$$

Es decir, $u \cdot v$ es la cadena formada de escribir los símbolos de u y a continuación los símbolos de v.

Potencia de una cadena

Dada $w \in \Sigma^*$ y $n \in \mathbb{N}$, se define w^n de la siguiente forma

$$w^n = \begin{cases} \epsilon & \text{si } n = 0\\ \underbrace{uu \dots u}_{n-\text{veces}} & \text{si } n \ge 1 \end{cases}$$

Potencia de una cadena de manera recursiva

La potencia de una cadena se define como $w \in \Sigma^*$ para $n \in \mathbb{N}$

$$w^{n} = \begin{cases} \epsilon, & \text{si } n = 0\\ ww^{n-1}, & \text{si } n > 0 \end{cases}$$

Ejemplo. Sea una cadena w = acc sobre $\Sigma = \{a, c\}$ entonces podemos obtener $w^3 = ww^2 = www^0 = accaccacc \in = (acc)^3$

Inversa de una cadena

Longitud de una cadena

La longitud de una cadena $w \in \Sigma^*$ se denota |w| y se define como el número de símbolos de w (contando los símbolos repetidos), es decir:

$$|w| = \begin{cases} 0, & \text{si } w = \varepsilon \\ n, & \text{si } w = a_1 a_2 \dots a_n \end{cases}$$

$$|aba| = 3$$
, $|baaa| = 4$

Reflexión o inversa de una cadena

La reflexión o inversa de una cadena $w \in \Sigma^*$ se denota como w^I y se define así:

$$w' = \begin{cases} \epsilon, & \text{si } w = \varepsilon \\ a_n \dots a_2 a_1, & \text{si } w = a_1 a_2 \dots a_n \end{cases}$$

Inversa de una cadena de manera recursiva

La Inversa de una cadena Sea $u \in \Sigma^*$ entonces u^{-1} es la inversa.

$$w' = \begin{cases} w & \text{si } w = \varepsilon \\ y'a & \text{si } w = ay, a \in \Sigma, y \in \Sigma^* \end{cases}$$

Sea x='able' entonces obtener x^{l}

$$x^{l} = (able)^{l} = (ble)^{l}a$$
 $= (le)^{l}ba$
 $= (e)^{l}lba$
 $= (e)^{l}elba$
 $= elba$

- Sea la concatenación de las cadenas "ab" y "cd" que forma "abcd" sobre un alfabeto. Sabemos que $(abcd)^l = dcba$, por tanto $dcba = (cd)^l (ab)^l$. Por lo tanto, si $w \in y$ son cadenas y si x = wy, entonces $x^l = (wy)^l = y^l w^l$
- En general, $(x^l)^l = x$, para demostrar, suponga que $x = a_1 a_2 \dots a_n$.

Sufijos y prefijos

Cadena

Definición formal: Una cadena v es una subcadena o subpalabra de u si existen x, y tales que u=xvy. Nótese que x o y pueden ser ϵ y por lo tanto, la cadena vacía es una subcadena de cualquier cadena.

- Un *prefijo* de u es una cadena v tal que u = vw para alguna cadena $w \in \Sigma^*$. Se dice que v es un **prefijo propio** si $v \neq u$.
- Un *sufijo* de u es una cadena de v tal que u = wv para alguna cadena $w \in \Sigma^*$. Se dice que v es un **sufijo propio** si $v \neq u$.

Ejemplo de cadenas que son sufijos y prefijos

```
Prefijos de u
                                       bc
Sea \Sigma = \{a, b, c, d\} y u = bcbaadb
                                       bcb
                                       bcba
                                       bcbaa
                                       bcbaad
                                       bcbaadb
 Sufijos de u
 \epsilon
 b
 db
 adb
 aadb
 baadb
 cbaadb
```

bcbaadb

La concatenación como una operación binaria

Operación binaria

Una **operación binaria** en un conjunto A es una función $f: A \times A \rightarrow A$, esta deberá satisfacer las siguientes propiedades:

- La operación binaria deberá estar definida para cada par ordenado de A, es decir, f asigna a UN elemento f(a, b) de A a cada par ordenado (a, b) de elementos de A.
- Como una operación binaria es una función, sólo un elemento de A se asigna a cada par (a, b).
- Sea A = Z, se define a * b como a + b. Entonces, * es una operación binaria en Z.
- Sea A = Z⁺, se define a * b como a b. Entonces * no es una operación binaria ya que no asigna un elemento de A a cualquier par ordenado de elementos de A.

Concatenación de cadenas como una operación binaria

Concatenación

La operación de la concatenación \cdot es una operación binaria entre cadenas de un alfabeto Σ , esto es:

$$\cdot: \Sigma^* \times \Sigma^* \to \Sigma^*$$

Sean $u, v \in \Sigma^*$ y se denota por $u \cdot v$ o simplemente uv.

$$|uv|=|u|+|v|$$

- Dado el alfabeto Σ y dos cadena $w, u \in \Sigma^*$
 - Entonces $w \cdot \epsilon = \epsilon \cdot w = w$.
 - Si $u = a_1 a_2 a_3 \dots a_n$, $w = b_1 b_2 b_3 \dots b_m$, entonces,

$$u \cdot w = a_1 a_2 a_3 \dots a_n b_1 b_2 b_3 \dots b_m$$

Por tanto
$$|u \cdot w| = n + m$$

■ La concatenación de cadenas es asociativa. Es decir, si $u, v, w \in \Sigma^*$, entonces:

$$(uv)w = u(vw)$$

Semigrupos

Semigrupo

Sea (Σ^*, \cdot) es un **semigrupo** el cual es un conjunto no vacío Σ^* junto con una operación binaria asociativa \cdot definida en Σ^* .

El conjunto P(S), donde S es un conjunto, junto con la operación de la unión (P(S), ∪) es un semigrupo y es también un semigrupo conmutativo.

$$*: P(S) \times P(S) \rightarrow P(S)$$

Sea
$$S = \{a, b\}$$
 entonces $\{a, b\} \cup (\emptyset \cup \{b\}) = (\{a, b\} \cup \emptyset) \cup \{b\}$

- El semigrupo (Σ^* , ·) no es un semigrupo cunmutativo porque para $u, w \in \Sigma^*$ no se cumple que $u \cdot w = w \cdot u$.
- Sea w = ac, $w_1 = ab$ y $w_2 = bb$ tal que $w, w_1, w_2 \in \Sigma^*$ entonces

$$w(w_1w_2) = (ww_1)w_2$$

 $ac(abbb) = (acab)bb$
 $acabbb = acabbb$

Monoide

Monoide

Un **monoide** es un semigrupo (S, *) que tiene idéntico.

■ El semigrupo P(S) con la operación de la unión tiene como idéntico a Ø ya que

$$\emptyset * A = \emptyset \cup A = A = A \cup \emptyset$$

- Sea $(\Sigma^*, \cdot, \epsilon)$ un **monoide** con las siguientes propiedades:
 - **II** Es una operación binaria, es decir la concatenación es cerrada. $\forall x, y \in \Sigma^*$, entonces $x \cdot y \in \Sigma^*$.
 - **2** La concatenación es un semigrupo (Σ^*, \cdot) y por tanto \cdot es asociativa $\forall x, y, z \in \Sigma^*, (xy)z = x(yz)$
 - 3 La cadena vacía ϵ es la idéntica para la concatenación: $\forall x \in \Sigma^*$, $\epsilon \cdot x = x \cdot \epsilon = x$

Lenguaje

Un *lenguaje* es un conjunto de palabras o cadenas. Un lenguaje L sobre un alfabeto Σ es un subconjunto de Σ^* y si $L=\Sigma^*$ es el lenguaje de todas las cadenas sobre Σ .

- Sea $L = \emptyset$ el lenguaje vacío
- $\blacksquare \emptyset \subseteq L \subseteq \Sigma^*$
- $\Sigma = \{a, b, c\}. \ L = \{a, aba, aca\}$
- $\Sigma = \{a, b, c\}$. $L = \{a, aa, aaa\} = \{a^n : n \ge 1\}$
- $\Sigma = \{a, b, c\}$. $L = \{\epsilon, aa, aba, ab^2a, ab^3a\} = \{ab^na : n \ge 0\} \cup \{\epsilon\}$
- $\Sigma = \{a, b, c\}$. $L = \{w \in \Sigma^* : w \text{ no contiene el símbolo } c\}$. Por ejemplo, $abbaab \in L$ pero $abbcaa \notin L$.
- Sobre $\Sigma = \{0, 1, 2\}$ el lenguaje de las cadenas que tienen igual número de ceros, unos y dos's en cualquier orden.

Operaciones entre lenguajes

- Operaciones entre lenguajes; Sean A, B lenguajes sobre Σ entonces $A \cap B$, $A \cup B$, A B operaciones de conjuntos.
- Las operaciones lingüísticas son la concatenación, potencia, inverso y clausura.
- Sean A, B lenguajes sobre Σ entonces,

$$A \cup B = \{x | x : x \in A \quad o \quad x \in B\}$$

$$\{a\} \cup \{b\} = \{a, b\} \ \{a, ab\} \cup \{ab, aab, aaabb\} = \{a, ab, aab, aaabb\}$$

Operaciones entre lenguajes

■ Sean A, B lenguajes sobre Σ entonces,

$$A \cap B = \{x | x : x \in A \quad y \quad x \in B\}$$
$$\{a, ab\} \cap \{ab, aab\} = \{ab\}$$
$$\{a, aab\} \cap \{a, ab, aab, aaabb\} = \{a, aab\}$$
$$\{\epsilon\} \cap \{a, ab, aab, aaabb\} = \emptyset$$

Complemento en Σ*:

$$\sim A = \{x \in \Sigma^* | x \notin A\}$$

 $\sim A = \Sigma^* - A$

 $A = \{$ Cadenas de longitud par $\}$ sobre $\Sigma = \{a, b\}$, entonces $\sim A = \{$ cadenas de longitud impar $\}$.

Operaciones entre lenguajes

■ Sean A, B lenguajes sobre Σ entonces,

$$A - B = \{x | x : x \in A \mid y \mid x \notin B\}$$

Sea *B*: El lenguaje de todas las cadenas de ceros de cualquier longitud. Entonces:

Sea $A = \{0, 1\}^*$ y $B = \{0\}^*$ entonces

$$A - B = \{0, 1\}^* - \{0\}^* = 0^* 1(0 \cup 1)^*$$

 ${\it A}-{\it B}$ es el lenguaje de todas las cadenas de unos y ceros con almenos un uno.

Lenguaje Universal

Si $\Sigma \neq \emptyset$, entonces Σ^* es el conjunto de todas las cadenas sobre Σ . Se le llama **lenguaje universal.**

lacksquare es un conjunto infinito de cadenas de longitud finita sobre Σ .

Teorema

Sean A y B dos lenguajes sobre el alfabeto Σ . Entonces A = B si y sólo si $A \subseteq B$ y $B \subseteq A$.

- \Rightarrow) Suponiendo que A=B, entonces si $x\in A$, como A=B entonces $x\in B$ por tanto $A\subseteq B$ de la misma forma si $x\in B$ entonces como A=B entonces $x\in A$ por lo tanto $B\subseteq A$.
- \Leftarrow) Se demuestra que si $A \subseteq B$ y $B \subseteq A$ entonces A = B.

 Sea el lenguaje del conjunto de cadenas con igual número de ceros y unos.

$$L_1 = \{\epsilon, 01, 10, 0011, 0101, 1001, 000111, \ldots\}$$

y sea

$$L=\{a^nb^n:n\geq 0\}\subset L_1\subset\{0,1\}^*$$

- La concatenación de lenguajes de dos lenguajes A y B sobre Σ, notada por A.B o simplemente AB.
- $AB = \{uv : u \in A, v \in B\}$
- $A \cdot \emptyset = \emptyset \cdot A = \emptyset$

$$\mathbf{A} \cdot \emptyset = \{ \mathbf{u} \mathbf{w} : \mathbf{u} \in \mathbf{A}, \mathbf{w} \in \emptyset \} = \emptyset$$

$$A \cdot \{\varepsilon\} = \{\varepsilon\} \cdot A = A$$

$$A \cdot \{\epsilon\} = \{uw : u \in A, w \in \{\epsilon\}\} = \{u : u \in A\} = A$$

Las propiedad distributiva generalizada de la concatenación con respecto a la unión.

$$A \cdot \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cdot B_i)$$

$$x \in A \cdot \bigcup_{i \in I} B_i \iff x = u \cdot v, u \in A, v \in \bigcup_{i \in I} B_i$$
 $\iff x = u \cdot v, u \in A, v \in B_j,$
 $\exists j \in I$
 $\iff x \in A \cdot B_j, \exists j \in I$
 $\iff x \in \bigcup_{i \in I} (A \cdot B_i)$

■ Ejemplo. Sean $A = \{ab\}, B_1 = \{a, b\}, y B_2 = \{abb, b\}$

$$A \cdot \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cdot B_i)$$

$$\begin{array}{lcl} A \cdot \bigcup_{i \in I = 2} B_i & = & A \cdot (B_1 \cup B_2) \\ \\ A \cdot \bigcup_{i \in I = 2} B_i & = & \{ab\} \cdot (\{a,b\} \cup \{abb,b\}) \\ \\ \{ab\} \cdot (\{a,b\} \cup \{abb,b\}) & = & (\{ab\} \cdot (\{a,b\}) \cup (\{ab\} \cdot \{abb,b\}) \end{array}$$

■ De igual forma se puede demostrar que:

$$\left(\bigcup_{i\in I}B_i\right)\cdot A=\bigcup_{i\in I}(B_i\cdot A)$$

La concatenación no es distributiva con respecto a la intersección, es decir, no se cumple que $A \cdot (B \cap C) = A \cdot B \cap A \cdot C$. Contraejemplo: Sea $A = \{a, \epsilon\}$, $B = \{\epsilon\}$, $C = \{a\}$ se tiene:

$$A \cdot (B \cap C) = \{a, \epsilon\} \cdot \emptyset = \emptyset$$

Por otro lado,

$$A \cdot B \cap A \cdot C = \{a, \epsilon\} \cdot \{\epsilon\} \cap \{a, \epsilon\} \cdot \{a\}$$
$$= \{a, \epsilon\} \cap \{a^2, a\} = a$$

Potencia del lenguaje

Potencia del lenguaje Dado un lenguaje A sobre Σ y $(A \subseteq \Sigma^*)$ y $n \in \mathbb{N}$, se define

$$A^{n} = \left\{ \begin{array}{ll} \{\epsilon\}, & \text{si } n = 0 \\ A \cdot A^{n-1}, & \text{si } n \ge 1 \end{array} \right.$$

Ejemplo. Sea $A = \{ab\}$ sobre un alfabeto $\Sigma = \{a, b\}$, entonces:

$$A^{0} = \{\epsilon\}$$

$$A^{1} = A = \{ ab \}$$

$$A^{2} = A \cdot A^{1} = \{ abab \}$$

$$A^{3} = A \cdot A^{2} = \{ ababab \}$$

Def. formal de Cerradura de Kleene

La cerradura de Kleene de un lenguaje $A\subseteq \Sigma^*$ es la unión de las potencias: se denota por A^*

$$A^* = \bigcup_{i \geq 0} A^i = A^0 \cup A^1 \cup A^2 \cup \ldots \cup A^n$$

■ Observación: *A** se puede describir de la siguiente manera:

$$A^* = \{u_1 u_2 \dots u_n : u_i \in A, n \geq 0\}$$

Es el conjunto de todas las concatenaciones de la cadena A, incluyendo ϵ

■ la cerradura positiva se denota por A⁺

$$A^+ = \bigcup_{i>1} A^i = A^1 \cup A^2 \cup A^3 \cup \ldots \cup A^n$$

- Observe que $A^* = A^+ \cup \{\epsilon\}$ y $A^* = A^+$ si y solamente si $\epsilon \in A$
- $A^+ = A^* \cdot A = A \cdot A^*$

$$A \cdot A^* = A \cdot (A^0 \cup A^1 \cup A^2 \cup \ldots)$$

=
$$(A^1 \cup A^2 \cup A^3 \cup \ldots)$$

=
$$A^+$$

Se demuestra lo mismo que $A^+ = A^* \cdot A$

$$A^* \cdot A^* = A^*$$

1 ⇒), Sea un $x \in A^* \cdot A^*$, entonces $x = u \cdot v$, con $u \in A^*$ y $v \in A^*$ Por tanto $x = u \cdot v$, con $u = u_1 u_2 \dots u_n$, $u_i \in A$, $n \ge 0$ y $v = v_1 v_2 \dots v_m$, $v_i \in A$, $m \ge 0$ De donde

$$X = U \cdot V = U_1 U_2 \dots U_n \cdot V_1 V_2 \dots V_m$$

con $u_i \in A$, $v_i \in A$, por lo tanto x, es una concatenación de n + m cadenas de A, así que $x \in A^*$.

≥ (⇒) Recíprocamente, si $x \in A^*$, entonces $x = x \cdot \varepsilon \in A^* \cdot A^*$. Esto prueba la igualdad de los conjuntos $A^* \cdot A^*$ y A^* .

- $(A^*)^n = A^*$, para todo $n \ge 1$
- $(A^*)^* = A^*$
- $\blacksquare A^+ \cdot A^+ \subseteq A^+$

Contraejemplo de $A^+ \cdot A^+ = A^+$. Sea $\Sigma = \{a, b\}$, $A = \{a\}$ se tiene que

$$A^{+} = (A^{1} \cup A^{2} \cup A^{3} \cup ...)$$
$$= \{a\} \cup \{aa\} \cup \{aaa...\}$$
$$= \{a^{n} : n \ge 1\}$$

Por otro lado,

$$A^{+} \cdot A^{+} = \{a, a^{2}, a^{3}, \ldots\} \cdot \{a, a^{2}, a^{3}, \ldots\}$$
$$= \{a^{2}, a^{3}, \ldots\}$$
$$= \{a^{n} : n \ge 2\}$$

$$(A^*)^+ = A^*$$

$$(A^*)^+ = (A^*)^1 \cup (A^*)^2 \cup (A^*)^3 \cup \dots$$

= $A^* \cup A^* \cup A^* \dots$
= A^*

 $(A^+)^* = A^*$

$$(A^{+})^{*} = (A^{+})^{0} \cup (A^{+})^{1} \cup (A^{+})^{2} \cup \dots$$

$$= \{\epsilon\} \cup A^{+} \cup A^{+}A^{+} \cup \dots$$

$$= A^{*} \cup \text{(conjuntos contenidos en } A^{+})$$

$$= A^{*}$$

 $(A^+)^+ = A^+$

$$(A^+)^+ = (A^+)^1 \cup (A^+)^2 \cup (A^+)^3 \cup \dots$$

= $(A^+)^1 \cup (\text{conjuntos contenidos en } A^+)$
= A^+

Operaciones claves

Operaciones claves en los lenguajes:

$$\quad \blacksquare \ A^* \subseteq \Sigma^* \qquad A^+ \subseteq \Sigma^+$$

$$A^+ \subseteq A^*$$

$$\blacksquare \ \{\varepsilon\}^* = \{\varepsilon\} = \{\varepsilon\}^+$$

$$\quad \blacksquare \ \emptyset^* = \{\varepsilon\} \qquad \emptyset^+ = \emptyset$$

Inverso de un lenguaje

Inverso de un lenguaje

Sea A sobre Σ , se define A^{I} como:

$$A^{\prime} = \{u^{\prime} : u \in A\}$$

 \iff $x = B^I A^I$

Sean A y B lenguajes sobre Σ tal que $(A, B \subseteq \Sigma^*)$

$$(A.B)^{I} = B^{I}.A^{I}$$

$$x \in (A \cdot B)^{I} \iff x = u^{I}, \text{ donde, } u \in A \cdot B$$

$$\iff x = u^{I}, \text{ donde, } u = vw, v \in A, w \in B$$

$$\iff x = (vw)^{I}, \text{ donde, } v \in A, w \in B$$

$$\iff x = w^{I}v^{I}, \text{ donde, } v \in A, w \in B$$

Propiedades del inverso de un lenguaje

Sean A y B lenguajes sobre Σ tal que $(A, B \subseteq \Sigma^*)$

$$(A \cup B)^I = A^I \cup B^I$$

$$\blacksquare (A \cap B)^l = A^l \cap B^l$$

$$(A')' = A$$

$$\blacksquare (A^*)^l = (A^l)^*$$

$$(A^+)' = (A')^+$$

Lenguajes regulares

Los lenguajes regulares sobre un alfabeto Σ se definen recursivamente como:

- \emptyset , $\{\varepsilon\}$ y $\{a\}$, $a \in \Sigma$ son lenguajes regulares.
- si *A* y *B* son lenguajes regulares, también lo son:

 $A \cup B$ (Unión) $A \cdot B$ (Concatenación) A^* (Cerradura de Kleene)

Ejemplo 1. Dado $\Sigma = \{a, b\}$ el lenguaje A de todas las palabras que tienen exactamente una a: $A = \{b\}^* \cdot \{a\} \cdot \{b\}^*$

 $\mbox{Ejemplo 2. Lenguaje de todas las cadenas que comienzan con b:} \\$

$$B = \{b\} \cdot \{(a \cup b)\}^*$$

Ejemplo 3. Lenguaje de todas las cadenas que contienen la cadena ba:

$$C = \{(a \cup b)\}^* \cdot \{ba\} \cdot \{(a \cup b)\}^*$$

Propiedades de clausura

Teorema

Si L, L_1 y L_2 son lenguajes regulares sobre un alfabeto Σ , también lo son:

- 1 $L_1 \cup L_2$
- L_1L_2
- 3 L+
- $\overline{L} = \Sigma^* L$
- 5 L*
- 6 $L_1 \cap L_2$
- $\frac{7}{1} L_1 L_2$
- 8 $L_1 \triangle L_2$

Observación

Un sublenguaje (subconjunto) de un lenguaje regular no es necesariamente regular, es decir, la familia de los lenguajes regulares no es cerrada para subconjuntos.

Propiedades de clausura

Observación

- Un lenguaje regular puede contener sublenguajes No-regulares. Sea $L = \{a^n b^n\}$ es un sublenguaje del lenguaje regular a^*b^*
- Todo lenguaje finito es regular y la unión finita de lenguajes regulares es regular.
- La unión infinita de lenguajes no necesariamente es regular.

$$L = \{a^n b^n : n \ge 1\} = \bigcup_{i > 1} \{a^i b^i\}$$

Donde cada $\{a^ib^i\}$ regular, pero L No lo es.

Definición formal de expresiones regulares

Las expresiones regulares sobre un alfabeto Σ se definen recursivamente como:

- \emptyset , ϵ y a, $a \in \Sigma$ son expresiones regulares.
- si A y B son expresiones regulares, también lo son:

 $A \cup B$ (Unión) $A \cdot B$ (Concatenación) A^* (Cerradura de Kleene)

- Son expresiones regulares *aab**, *ab*⁺, (*aaba**)⁺
- Sea el conjunto $\{\epsilon, aa, aba, ab^2a, ab^3a, ab^4a, ...\}$ entonces $\{\epsilon\} \cup ab^*a$ es una expresión regular.
- **E**xpresión regular de todas las cadenas impares sobre $\Sigma = \{a, b\}$

$$a(aa \cup ab \cup ba \cup bb)^* \cup b(aa \cup ab \cup ba \cup bb)^*$$

Expresiones regulares

Teorema

Sean r, s y t expresiones regulares sobre Σ , entonces:

1.
$$r \cup s = s \cup r$$

2.
$$r \cup \emptyset = r = \emptyset \cup r$$

3.
$$r$$
 ∪ r = r

$$4. (r \cup s) \cup t = r \cup (s \cup t)$$

5.
$$r\varepsilon = r = \varepsilon r$$

6.
$$r\emptyset = \emptyset = \emptyset r$$

$$7. (rs)t = r(st)$$

8.
$$r(s \cup t) = rs \cup rt \ y \ (r \cup s)t = rt \cup st$$

9.
$$r^* = r^{**} = r^*r^* = (\varepsilon \cup r)^* = r^*(r \cup \varepsilon) = (r \cup \varepsilon)r^* = \varepsilon \cup rr^*$$

10.
$$(r \cup s)^* = (r^* \cup s^*)^* = (r^* s^*)^* = (r^* s)^* r^* = r^* (sr^*)^*$$

11.
$$r(sr)^* = (rs)^* r$$

12.
$$(r^*s)^* = \varepsilon \cup (r \cup s)^*s$$

13.
$$(rs^*)^* = \varepsilon \cup r(r \cup s)^*$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$

15.
$$rr^* = r^*r$$

Ejemplos expresiones regulares

Ejemplo 1. Muestre que si $r = s^*t$ implica que $r = sr \cup t$

$$r = s^*t = (\varepsilon \cup s^+)t$$
 ya que $s^* = \varepsilon \cup s^+$
 $= (\varepsilon \cup ss^*)t$
 $= \varepsilon t \cup s\underbrace{s^*t}_r$
 $= t \cup sr$
 $= sr \cup t$

Ejemplo 2. Probar que $(b \cup aa^*b) \cup (b \cup aa^*b)(a \cup ba^*b)^*(a \cup ba^*b)$ y $a^*b(a \cup ba^*b)^*$ son equivalentes.

Ejemplos expresiones regulares

Ejemplo 3. ¿Las siguientes expresiones regulares representan el mismo lenguaje?

$$(a^*b)^*$$
 y $\epsilon \cup (a \cup b)^*b$

Ejemplo 4. Demostrar que $r(sr)^* = (rs)^*r$

 \Rightarrow) Sea $w \in r(sr)^*$, entonces

$$w = r_0(s_1r_1)(s_2r_2)...(s_nr_n)$$
, para $n \ge 0$

$$W = r_0(s_1r_1)(s_2r_2)...(s_nr_n)$$

$$W = (r_0s_1)(r_1s_2)(r_2s_3)...(r_{n-1}s_n)r_n$$

Por lo tanto,
$$r(sr)^* \subseteq (rs)^*r$$

 \Leftarrow)

Sea $w \in (rs)^* r$, entonces

$$w = (r_0 s_0)(r_1 s_1) \dots (r_{n-1} s_{n-1}) r_n$$
, para $n \ge 0$

Encontrar las expresiones regulares de los siguientes lenguajes

Ejemplo 5. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que comienzan con b y terminan con a.

$$b(a \cup b)^*a$$

Ejemplo 6. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen exactamente dos a's

Ejercicios resueltos de expresiones regulares

Ejemplo 7. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número par de símbolos (palabras de longitud par)

$$(aa \cup ab \cup ba \cup bb)^*$$

Ejemplo 8. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número impar de símbolos (palabras de longitud impar)

$$a(aa \cup ab \cup ba \cup bb)^* \cup b(aa \cup ab \cup ba \cup bb)^*$$

Ejemplo 9. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número par de a's.

$$b^*(ab^*a)^*b^*$$

Ejercicios resueltos de expresiones regulares

Ejemplo 10. Sobre $\Sigma = \{0, 1\}$ lenguaje de todas las cadenas que tienen exactamente dos ceros:

Ejemplo 11. Sobre $\Sigma = \{0,1\}$ lenguaje de todas las cadenas cuyo penúltimo símbolo, de izquierda a derecha, es un 0.

$$(0 \cup 1)^*0(0 \cup 1)$$

Expresiones regulares en la computación

- Las expresiones regulares sirven para la construcción de analizadores léxicos.
- http://regexpal.com/ es un testeador de expresiones regulares en java.

```
'[A-Z][a-z]*[][A-Z][A-Z]'
```

Representa palabras que comienzan por una letra mayúscula seguida de un espacio en blanco y de dos letras mayúsculas. Ejemplo, reconocería Ithaca NY. Por ejemplo, Palo Alto CA no la reconocería.

Contenido

- 1 Lenguajes
- 2 Autómatas finitos
- 3 Gramáticas
- 4 Máquinas de Turing

Introducción a los autómatas finitos

Uso de transiciones- ε para ayudar a reconocer palabras clave.

Un AFN-ε que acepta números decimales.

Autómatas finitos

Son máquinas abstractas que procesan cadenas, las cuales son aceptadas o rechazadas.

El autómata posee **unidad de control** que inicialmente escanea o lee la casilla desde el extremo izquierdo de la cinta. Tiene unos estados o configuraciones internas.

Función de transición

Sea un autómata $M = (Q, \Sigma, q_0, T, \delta)$

δ	a	b
$q_{\scriptscriptstyle 0}$	$q_{\scriptscriptstyle 0}$	q_1
q_1	q_1	q_2
q_2	q_1	$q_{\scriptscriptstyle 1}$

$$\begin{split} &\delta(q_{\scriptscriptstyle 0},a)=q_{\scriptscriptstyle 0} & \delta(q_{\scriptscriptstyle 0},b)=q_{\scriptscriptstyle 1} \\ &\delta(q_{\scriptscriptstyle 1},a)=q_{\scriptscriptstyle 1} & \delta(q_{\scriptscriptstyle 1},b)=q_{\scriptscriptstyle 2} \\ &\delta(q_{\scriptscriptstyle 2},a)=q_{\scriptscriptstyle 1} & \delta(q_{\scriptscriptstyle 2},b)=q_{\scriptscriptstyle 1}. \end{split}$$

 $F=\{q_{\scriptscriptstyle 0},q_{\scriptscriptstyle 2}\},$ estados de aceptación.

1. u = aabab.

v = aababa.

Lenguaje aceptado por un autómata

Caso especial: la cadena λ es la cadena de entrada.

Dado un autómata M,el lenguaje aceptado o reconocido por M se denota ${\cal L}(M)$ y se define por

$$L(M) \ := \ \{u \in \Sigma^* : M \text{ termina el procesamiento de la cadena}$$
 de entrada u en un estado $q \in F\}.$

Autómatas finitos (FSAs: Finite State-Automata)

Los autómatas finitos se dividen en autómatas finitos deterministas (AFD) (es función) y en autómatas finitos no deterministas (AFN)(es una relación).

Autómata finito determinista

Sea $M = (Q, \Sigma, q_0, T, \delta)$ un AFD entonces:

- Σ: es el alfabeto de entrada.
- Q: es el conjunto de estados
- q₀:Estado inicial
- T: Conjunto de estados finales.
- $\delta: Q \times \Sigma \longrightarrow Q$ determina un único estado siguiente para el par $\delta(q_i, \gamma)$ correspondiente al estado actual y la entrada.

Un AFD puede ser representado por un grafo dirigido y etiquetado.

Ejemplo 1. Diseñar el AFD sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje $L = a^* = \{\varepsilon, a, a^2, a^3, \ldots\}$

δ	a	b
\mathbf{q}_0	\mathbf{q}_0	\mathbf{q}_1
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_1

$$\begin{split} &\delta(q_0,a)=q_0 \quad \delta(q_0,b)=q_1 \\ &\delta(q_1,a)=q_1 \quad \delta(q_1,b)=q_1 \end{split}$$

Ejemplos finitos deterministas

Ejemplo 2. Diseñar el AFD sobre $\Sigma=\{a,b\}$ que reconozca el lenguaje $L=a^+=\{a,a^2,a^3,\ldots\}$

Ejemplo 3. Diseñar el AFD sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje de todas las cadenas que tienen un número par de símbolos

Ejemplo 4. AFD que reconoce a^+b^+

Ejemplo 5. El diagrama y tabla de transición en cierta forma determinan si es un autómata finito determinista o no determinista.

Sea
$$\Sigma = \{a, b\}, Q = \{q_0, q_1, q_2\}$$

 q_0 : estado inicial

 $T = \{q_0, q_2\}$ estados finales o de aceptación.

δ	a	b
\mathbf{q}_0	\mathbf{q}_0	\mathbf{q}_1
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2
\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_1

$$\delta(q_0, a) = q_0$$
 $\delta(q_0, b) = q_1$
 $\delta(q_1, a) = q_1$ $\delta(q_1, b) = q_2$
 $\delta(q_2, a) = q_1$ $\delta(q_3, b) = q_1$

Es importante anotar que en la tabla de transición por cada pareja (q_i, γ) hay un sólo estado q_i por eso δ es una función de transición. el lenguaje que reconoce este AFD es:

$$a^*(b(a+ba+bb)^*b) + a^*$$

Ahora como el estado inicial es un estado final este AFD reconoce ε

Ejemplo 6. Diseñar el AF sobre $\Sigma = \{0,1\}$ que reconozca en binario el lenguaje de todos los múltiplos de 2.

Binario	Decima
0	0
10	2
100	4
110	6
1000	8
1010	10
1100	12
1110	14
:	:

Autómatas finitos No determinísticos

Autómatas finitos No determinísticos

Sea $M = (Q, \Sigma, q_0, T, \triangle)$ un AFN entonces:

- Σ: es el alfabeto de entrada.
- Q: es el conjunto de estados
- q₀:Estado inicial
- T: Conjunto de estados finales.
- △: es una relación tal que:

$$(Q \times \Sigma) \rightarrow 2^Q$$

Donde 2^Q denota el conjunto potencia de Q o el conjunto de todos los subconjuntos de Q.

$$2^Q = \{A | A \subseteq Q\}$$

Ejemplo 1. Diseñar el AFN sobre $\Sigma = \{a,b\}$ que reconozca el lenguaje regular $a^*b \cup ab^*$

Δ	а	b
q_0	$\{q_1, q_4\}$	{q ₃ }
q_1	$\{q_1\}$	{q2}
92	Ø	Ø
q_3	Ø	Ø
q_4	Ø	{94}

Ejemplo 2. Diseñar el AFN sobre $\Sigma = \{a, b\}$ que reconozca el lenguaje $(ab \cup aba)^*$

Ejemplo 3. Diseñar el AF sobre $\Sigma = \{0,1\}$ que reconozca el lenguaje de todas las cadenas que terminan en 01

Ejemplo 4. Obtener la expresión regular del siguiente AFN sobre $\Sigma = \{a, b\}$.

 $(a \cup b)^*(aa \cup bb)(a \cup b)^*$

Equivalencia de AFN y AFD

Teorema

Sea $M = (Q, \Sigma, q_0, T, \triangle)$ un AFN. Entonces existe un AFD $M' = (Q', \Sigma', q'_0, T', \delta)$ tal que L(M) = L(M').

- El conjunto q₀ se corresponde con q₀'
- El conjunto de estados finales T' de Q' se corresponde con los conjuntos de estados de Q que contienen un estado de T
- El conjunto de estados de Q' se corresponde con el conjunto de estados de Q que se vaya formando mediante el análisis de una cadena sobre M

Equivalencia entre autómatas

Autómatas equivalentes

Dos AFD son equivalentes M_1 y M_2 son equivalentes si $L(M_1) = L(M_2)$.

Sean M_1 y M_2 sobre el alfabeto $\sum = \{a\}$,

$$M_1: \longrightarrow \stackrel{a}{\longrightarrow} \stackrel{a}{\longrightarrow} \circ$$
, $M_2: \longrightarrow \stackrel{a}{\longrightarrow} \circ$

$$L(M_1) = L(M_2) = a^+$$

Ejemplos equivalencia de AFN y AFD

Ejemplo 1. Consideremos el AFN M que acepta $a \cup (ab)^+$

Para este AFN se tiene:

$$\triangle(q_0, a) = \{q_1, q_2\} \qquad \triangle(q_0, b) = \emptyset$$

$$\triangle(\{q_1, q_2\}, a) = \emptyset \qquad \triangle(\{q_1, q_2\}, b) = \{q_3\}$$

$$\triangle(\emptyset, b) = \triangle(\emptyset, b) = \emptyset \qquad \triangle(q_3, a) = \{q_2\}$$

$$\triangle(q_3, b) = \emptyset \qquad \triangle(q_2, a) = \emptyset$$

$$\triangle(q_2, b) = \{q_3\}$$

Ejemplos equivalencia de AFN y AFD

Entonces se verifica que la regla de transición es una función. Por tanto, $M' = (Q', \Sigma', q'_0, T', \delta)$ donde:

$$\begin{array}{lcl} Q' & = & \{\emptyset, \{q_0\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}\} \\ \Sigma' & = & \Sigma \\ s' & = & \{q_0\} \\ T' & = & \{\{q_3\}, \{q_1, q_2\}\} \end{array}$$

y δ viene dada por la siguiente tabla:

δ	а	b
Ø	Ø	Ø
$\{q_0\}$	$\{q_1, q_2\}$	Ø
$\{q_2\}$	Ø	{q ₃ }
$\{q_3\}$	$\{q_2\}$	Ø
$\{q_1, q_2\}$	Ø	{q3}

Ejemplos equivalencia de AFN y AFD

Ejemplo 2. Consideremos el AFN M que acepta $(0 \cup 1)^*0(0 \cup 1)$

Caso desfavorable para la construcción de subconjuntos

Este AFN no tiene un AFD equivalente con menos de 2^n estados.

Intersección entre lenguajes regulares

Teorema

Si L_1 y L_2 son lenguajes regulares, también lo es $L_1 \cap L_2$.

Sean
$$L_1 = L(M_1)$$
 y $L_2 = L(M_2)$ donde: $M_1 = (Q_1, \Sigma_1, q_1, T_1, \delta_1)$ y $M_2 = (Q_2, \Sigma_2, q_2, T_2, \delta_2)$ Entonces construimos:

$$M = (Q_1 \times Q_2, \Sigma_1 \cup \Sigma_2, (q_1, q_2), T_1 \times T_2, \delta)$$

donde

$$\begin{array}{rcl} \delta: Q_1 \times Q_2 \times \Sigma & \to & Q_1 \times Q_2 \\ \delta((q_i, q_j), a) & = & (\delta_1(q_i, a), \delta_2(q_j, a)) \end{array}$$

Esta función satisface:

$$L(M) = L(M_1) \cap L(M_2)$$

Ejemplo intersección de lenguajes

Ejemplo. Construir el AFD que acepte el lenguaje L de todas las palabras sobre $\Sigma = \{a, b\}$ que tienen un número par de a's y un número par de b's.

Entonces el lenguaje $L(M) = L(M_1) \cap L(M_2)$ tiene cuatro estados: $Q_1 \times Q_2 = \{(q_1, q_2), (q_1, q_4), (q_3, q_2), (q_3, q_2)\}$ $T_1 \times T_2 = \{(q_1, q_2)\}$

Ejemplo intersección de lenguajes

Entonces δ se define como:

$$\begin{array}{lll} \delta((q_1,q_2),a) & = & (\delta_1(q_1,a),\delta_2(q_2,a)) = (q_3,q_2) \\ \delta((q_1,q_2),b) & = & (\delta_1(q_1,b),\delta_2(q_2,b)) = (q_1,q_4) \\ \delta((q_1,q_4),a) & = & (\delta_1(q_1,a),\delta_2(q_4,a)) = (q_3,q_4) \\ \delta((q_1,q_4),b) & = & (\delta_1(q_1,b),\delta_2(q_4,b)) = (q_1,q_2) \\ \delta((q_3,q_2),a) & = & (\delta_1(q_3,a),\delta_2(q_2,a)) = (q_1,q_2) \\ \delta((q_3,q_4),a) & = & (\delta_1(q_3,b),\delta_2(q_2,b)) = (q_3,q_4) \\ \delta((q_3,q_4),a) & = & (\delta_1(q_3,a),\delta_2(q_4,a)) = (q_1,q_4) \\ \delta((q_3,q_4),b) & = & (\delta_1(q_3,b),\delta_2(q_4,b)) = (q_3,q_2) \end{array}$$

Toerema de Kleene

Autómatas con ε -transiciones

Autómatas con ε -transiciones: Un autómata con ε -transiciones es un AFN $M=(Q,\Sigma,q_0,T,\triangle)$ en el que la relación de transición está definida así:

$$\triangle: Q \times (\Sigma \cup \varepsilon) \longrightarrow 2^Q$$

La ε -transición permite al autómata cambiar internamente de estado sin consumir el símbolo leído sobre la cinta.

Donde 2^Q denota el conjunto potencia de Q o el conjunto de todos los subconjuntos de Q.

$$2^{\textit{Q}} = \{\textit{A}|\textit{A} \subseteq \textit{Q}\}$$

Ejemplos

Ejemplo 1. Se puede representar el lenguaje de la expresión regular a^* sin necesidad de colocar el estado inicial como estado final.

Ejemplos

Ejemplo 2. Sea el siguiente AFN- ε

La ε -transición en el AFN permite que se reconozcan cadenas como:

w=aaab

w=abbbbaaa

w=a

w=b

Expresión regular del autómata

*a** *b* ∪ *ab** *a**

Ejemplos

Ejemplo 3. Construir un AFN- ε que reconozca sobre $\Sigma = \{a, b, c\}$, el lenguaje $L = a^*b^*c^*$

El siguiente AFN reconoce el mismo lenguaje que reconoce el AFN- ε anterior.

Teorema de Kleene

Teorema

Teorema de Kleene. Un lenguaje regular si y sólo si es aceptado por un autómata finito (AFD o AFN o AFN-ɛ)

- Construcción de autómatas finitos a partir de expresiones regulares.
- Construcción de expresiones regulares a partir de autómatas:
 - 1 Lema de Arden (Ecuaciones de Lenguaje)
 - Conversión de AFN a expresiones regulares por eliminación de estados.

Teorema

Dado un AFN- ε $M = (Q, \Sigma, q_0, T, \triangle)$, se puede construir un AFN M' equivalente a M, es decir L(M) = L(M').

Teorema

Un lenguaje regular si y sólo si es aceptado por un autómata finito (AFD o AFN o AFN- ε)

Teorema

Para toda expresión regular R se puede construir un AFN- ϵ M tal que L(R) = L(M).

Paso Básico

EL autómata

acepta el lenguaje vacío ∅

■ EL autómata

acepta el lenguaje $\{\epsilon\}$

■ EL autómata

PASO INDUCTIVO

1. Existe un autómata que acepta $R \cup S$

Sean $M_1=(Q_1,\Sigma_1,s_1,T_1,\triangle_1)$ y $M_2=(Q_2,\Sigma_2,s_2,T_2,\triangle_2)$ para el nuevo $M=(Q,\Sigma,s,T,\triangle)$ tenemos que:

- ${\color{red} 1} \; \; \Sigma = \Sigma_1 \cup \Sigma_2$
- **2** En T se agrega un estado s' si y sólo si

$$\triangle = \triangle_1 \cup \triangle_2 \cup \{(s, \epsilon, s_1), (s, \epsilon, s_2)\} \cup \{(T_1, \epsilon, s'), (T_2, \epsilon, s')\}$$

s' es un estado final NUEVO.

Por ejemplo se construye $ab \cup ba$.

Ejemplo. Sobre $\Sigma = \{a,b\}$ el lenguaje de todas las palabras sobre Σ que tienen un n

2. Autómata que acepta $R \cdot S$

Sean $M_1=(Q_1,\Sigma_1,s_1,T_1,\triangle_1)$ y $M_2=(Q_2,\Sigma_2,s_2,T_2,\triangle_2)$ para el nuevo AFN $M=(Q,\Sigma,s,T,\triangle)$ que acepta $L(M_1)\cdot L(M_2)$ tenemos que:

- $s_1 = s$
- $T = T_2$

$$\triangle = \triangle_1 \cup \triangle_2 \cup (T_1 \times \{\epsilon\} \times s2)$$

3. Autómata que reconoce R*

Sean $M_1 = (Q_1, \Sigma_1, s_1, T_1, \triangle_1)$ entonces el nuevo AFN $M = (Q, \Sigma, s, T, \triangle)$ que acepta $L(M) = (L(M_1))^*$ viene dado por

- **1** $Q = Q_1 \cup \{s\} \cup \{s'\}$, donde s' es un nuevo estado final.
- $T = \{s'\}$

Ecuaciones de lenguaje

Ecuacion del lenguaje

Sea Σ un alfabeto y sean E y A subconjuntos de Σ^* , entonces la ecuación del lenguaje $X = E \cup A \cdot X$ admite la solición $X = A^* \cdot E$ cualquier otra solución Y deberá contener $A \cdot X$, además $\epsilon \notin A$, $X = A^* \cdot E$ es la única solución.

Ejemplos ecuaciones de lenguaje

Ejemplo 1. Encontrar la expresión del siguiente AFD.

Entones el sistema de ecuaciones a resolver:

$$x_0 = ax_1$$

 $x_1 = ax_2 + bx_4$
 $x_2 = ax_3 + bx_4$
 $x_3 = ax_3 + bx_4 + \epsilon$
 $x_4 = bx_4 + \epsilon$

Ejemplos ecuaciones de lenguaje

Ejemplo 2. Encontrar la expresión regular del siguiente AFD usando el lema del Arden:

El siguiente es el sistema de ecuaciones a resolver:

$$x_0 = ax_0 + bx_1 + \epsilon$$

$$x_1 = ax_1 + bx_2$$

$$x_2 = (a \cup b)x_1 + \epsilon$$

Ecuaciones de lenguaje

Teorema

Sean $n \ge 2$ considere el sistema de ecuaciones cuyas incognitas x_1, x_2, \ldots, x_n dado por:

$$x_{1} = E_{1} \cup A_{11}x_{1} \cup A_{12}x_{2} \cup ... \cup A_{1,n}x_{n}$$

$$x_{2} = E_{2} \cup A_{21}x_{1} \cup A_{22}x_{2} \cup ... \cup A_{2,n}x_{n}$$

$$\vdots$$

$$x_{n-1} = E_{n-1} \cup A_{(n-1)1}x_{1} \cup ... \cup A_{(n-1),n}x_{n}$$

$$x_{n} = E_{n} \cup A_{n1}x_{1} \cup A_{n2}x_{2} \cup ... \cup A_{n,n}x_{n}$$

Entonces el sistema tiene una única solución:

 $\blacksquare En \, \forall i,j \in \{1,\ldots,n\}, \, \epsilon \notin A_i$

Ecuaciones de lenguaje

■ Entonces el nuevo sistema se obtiene hasta n-1:

$$\begin{array}{rcl}
x_1 & = & \widehat{E}_1 \cup \widehat{A}_{11} x_1 \cup \widehat{A}_{12} x_2 \cup \ldots \cup \widehat{A}_{1,(n-1)} x_{n-1} \\
x_2 & = & \widehat{E}_2 \cup \widehat{A}_{21} x_1 \cup \widehat{A}_{22} x_2 \cup \ldots \cup \widehat{A}_{2,(n-1)} x_{n-1} \\
\vdots & & & \\
x_{n-1} & = & \widehat{E}_{n-1} \cup \widehat{A}_{(n-1)1} x_1 \cup \ldots \cup \widehat{A}_{(n-1),(n-1)} x_{n-1}
\end{array}$$

Entonces \hat{E}_i y \hat{A}_{ij} se definen como:

$$\begin{array}{lcl} \widehat{E}_{i} & = & E_{i} \cup (A_{in}A_{nn}^{*}E_{n}), & i=1,\ldots,n-1 \\ \widehat{A}_{ij} & = & A_{ij} \cup (A_{in}A_{nn}^{*}A_{nj}), & \forall_{i,j}=1,\ldots,n-1 \end{array}$$

Donde:

$$E_i = \left\{ \begin{array}{ll} \emptyset & \mathrm{si} & q_i \notin F \\ \epsilon & \mathrm{si} & q_i \in F \end{array} \right.$$

Ejemplo ecuaciones de lenguaje

Ejemplo 1. Obtener la expresión regular del siguiente AFD usando ecuaciones del lenguaje y la solución única.

El sistema de ecuaciones inicial es:

$$x_1 = ax_1 + bx_2$$

$$x_2 = bx_1 + ax_2 + \epsilon$$

Ejemplo ecuaciones de lenguaje

Se aplica el teorema de solución de ecuaciones:

$$x_1 = \widehat{E}_1 + \widehat{A}_{11}x_1$$

Se obtiene \widehat{E}_1

$$\widehat{E}_1 = E_1 + (A_{12}A_{22}^*E_2)
\widehat{E}_1 = \emptyset + (b \cdot a^* \cdot \epsilon)$$

 $\widehat{E}_1 = ba^*$

Se obtiene \widehat{A}_{11}

$$\hat{A}_{11} = A_{11} + (A_{12}A_{22}^*A_{21})
\hat{A}_{11} = a + (b \cdot a^* \cdot b)
\hat{A}_{11} = a + ba^*b$$

Ejemplo ecuaciones de lenguaje

Reemplazando \widehat{E}_1 y \widehat{A}_{11} en x_1

$$x_1 = \widehat{E}_1 + \widehat{A}_{11}x_1$$

 $x_1 = ba^* + (a + ba^*b)x_1$

Aplicando solución única se tiene:

$$x_1 = (a + ba^*b)^*ba^*$$

Sistema de ecuaciones por reducción de variables

$$x_1 = ax_3 + bx_2 + \varepsilon$$

$$x_2 = ax_4 + bx_1$$

$$x_3 = ax_1 + bx_4$$

$$x_4 = ax_2 + bx_3$$

$$\begin{array}{rcl} x_1 & = & \widehat{E}_1 \cup \widehat{A}_{11} x_1 \cup \widehat{A}_{12} x_2 \cup \widehat{A}_{13} x_3 \\ x_2 & = & \widehat{E}_2 \cup \widehat{A}_{21} x_1 \cup \widehat{A}_{22} x_2 \cup \widehat{A}_{23} x_3 \\ x_3 & = & \widehat{E}_3 \cup \widehat{A}_{31} x_1 \cup \widehat{A}_{32} x_2 \cup \widehat{A}_{33} x_3 \end{array}$$

Contenido

1 Lenguajes

- 2 Autómatas finitos
- 3 Gramáticas
- 4 Máquinas de Turing

LENGUAJES Y GRAMATICAS

Según Chomsky los tipos de gramáticas se clasifican así:

Gramáticas

Gramáticas Regulares (Tipo 3)

Una gramática regular G es una 4-tupla $G=(N,\Sigma,S,P)$ que consiste de un conjunto N de no terminales, un alfabeto Σ , un símbolo inicial S y de un conjunto de producciones P. Las reglas son de la forma $A \to w$, donde $A \in N$ y w es una cadena sobre $\Sigma \cup N$ que satisface lo siguiente:

- w contiene un no terminal como máximo.
- Si w contiene un no terminal, entonces es el símbolo que está en el extremo derecho de w.
- 3 El conjunto de reglas *P* se define así:

$$P \subseteq N \times \Sigma^*(N \cup \epsilon)$$
 o $P \subseteq N \times (N \cup \epsilon)\Sigma^*$

Definición de gramática regular por la derecha

Gramáticas regulares

Sobre

$$G = (N, \Sigma, S, P)$$

Una gramática es regular por la derecha si sus producciones son de la forma:

$$) \{ \begin{array}{l} A \longrightarrow wB, & w \in \sum^*, B \in N \\ A \longrightarrow \varepsilon \end{array} \})$$

Ejemplo Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera a^* , donde $\Sigma = \{a, b\}$, $N = \{S, A\}$

$$P: S \rightarrow aA \mid \varepsilon$$

$$A \rightarrow aA$$

Ejemplo. Sea la siguiente gramática regular $G = (N, \Sigma, S, P)$ que genera el lenguaje de la expresión regular $(a \cup b)^*$

$$\Sigma = \{\textit{a},\textit{b}\}$$

$$N = \{S, A\}$$

$$P: S \longrightarrow aS \mid bS \mid \varepsilon$$

Gramáticas regulares

Ejemplo Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera $(a \cup b)^+$, donde $\Sigma = \{a,b\}$, $N = \{S,A\}$

$$P: S \rightarrow aS \mid bS \mid a \mid b$$

Ejemplo Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera a^+b^+ , donde $\Sigma = \{a,b\}$, $N = \{S,A\}$

$$P: S \rightarrow aS \mid aA$$

$$A \rightarrow bA \mid b$$

Ejemplo Considere la siguiente gramática regular $G = (N, \Sigma, S, P)$, que genera a^*b^* , donde $\Sigma = \{a,b\}$, $N = \{S,A\}$

$$P: S \rightarrow aS \mid bA \mid \varepsilon$$

$$A o bA \mid \varepsilon$$

Gramáticas independientes del contexto

Gramáticas tipo 2

Una gramática independiente del contexto $G = (N, \Sigma, S, P)$ consiste de un conjunto N de no terminales, un alfabeto Σ , un símbolo inicial S y de un conjunto de producciones P.

Definición

Sea $G = (N, \Sigma, S, P)$ una gramática independiente del contexto. El lenguaje generado por G (o el lenguaje de G) denotado por L(G), es el conjunto de todas las cadenas de terminales que se derivan del estado inicial S. en otras palabras:

$$L(G) = \{ w \in \Sigma^* / S \Rightarrow^* w \}$$
$$P \subseteq N \times (N \cup \Sigma)^*$$

Ejemplo de gramática tipo 2

Sea $G = (N, \Sigma, S, P)$ una gramática con $\Sigma = \{0, 1\}$ el conjunto $N = \{S\}$ y P el conjunto de producciones:

$$S \longrightarrow 0S1$$

Ejemplo. Una GIC que genera el lenguaje de los palíndromes sobre $\Sigma = \{a, b\}$

$$S \longrightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon$$

Ejemplo. Una GIC que genera el siguiente lenguaje sobre $\Sigma = \{a,b\}$ Sea

$$L = \{a^n b^m | n \le m \le 2n\}$$

$$S \longrightarrow aSb \mid aSbb \mid \varepsilon$$

GICs especiales

El lenguaje de todas las cadenas de paréntesis anidados y equilibrados, por ejemplo:

(())(()), entonces la gramática sería:

$$S \longrightarrow (S)S \mid \varepsilon$$

2 Sea $T = \{0, 1, (,), +, *, \emptyset, \varepsilon\}$. T es el conjunto de símbolos usados para definir el lenguaje de las expresiones regulares sobre $\Sigma = \{0, 1\}$. Se puede diseñar un GIC que genere las expresiones regulares.

$$S \longrightarrow S + S \mid SS \mid S^* \mid (S) \mid 0 \mid 1 \mid \emptyset \mid \varepsilon$$

Gramáticas no restringidas

Sea una 4-tupla $G = (N, \Sigma, S, P)$ que consiste de un conjunto N de no terminales, un alfabeto Σ , un símbolo inicial S y de un conjunto de producciones P.

- *N* es el alfabeto de símbolos no terminales
- Σ al alfabeto tal que $N \cap \Sigma = \emptyset$
- $S \in N$ es el símbolo inicial
- P es el conjunto de reglas de producciones de la forma $\alpha \to \beta$, donde $\alpha \in (N \cup \Sigma)^+$ y $\beta \in (N \cup \Sigma)^*$, es decir

$$P \subset (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$$

Gramáticas no restringidas (Gramáticas de tipo 0 y 1)

Ejemplo Sea $G = (N, \Sigma, S, P)$ una gramática con $\Sigma = \{0, 1, 2\}$ el conjunto $N = \{S, A, B\}$ y P el conjunto de producciones:

$$S \longrightarrow 0SAB \mid \varepsilon$$
 S $\longrightarrow 0SAB$
 $BA \longrightarrow AB$ 00SABAB
 $0A \longrightarrow 01$ 00ABAB
 $1A \longrightarrow 11$ 00AABB
 $1B \longrightarrow 12$ 001ABB
 $2B \longrightarrow 22$ 0011BB
00112B
001122

El lenguaje que genera esta gramática dependiente del contexto es:

$$L(G) = \{0^n 1^n 2^n / n = 0, 1, 2,\}$$

Sea w=001122 una cadena que puede ser reconocida por la gramática y que además pertenece al lenguaje.

Tipos de gramáticas

Tipos de gramáticas			
Tipo	Transiciones	Restrictiones en la productiones $w_1 \rightarrow w_2$	
0		Sin restricciones	
1		$l(w_1) < l(w_2)$, o $w_2 = \varepsilon$	
2	$P \subseteq N \times (N \cup \Sigma)^*$	$w_1 = A$, siendo A un símbolo no terminal	
3	$P \subseteq N \times \Sigma^{*}(N \cup \varepsilon)$ 0 $P \subseteq N \times (N \cup \varepsilon)\Sigma$	$w_1=A$ y $w_2=aB$ o $w_2=\alpha$ siendo $A,B\in N$ y $\alpha\in T$ o $S\to\varepsilon$	

- la familia de los lenguajes de tipo i contiene a la familia de tipo i + 1.
- $\blacksquare \ \textit{GR} \subseteq \textit{GIC} \subseteq \textit{GDC} \subseteq \textit{GEF}$

Gramática	Lenguaje	Máquina
Tipo 0: Gramática sin restricciones	Recursivamente enumerables/sin restricciones	Máquina de Turing (MT)
Tipo 1: Gramática sensible del contexto	Dependiente del contexto	Autómata Linealmente Acotado (ALA
Tipo 2: Gramática de contexto libre	Independiente del contexto	Autóm ata de Pila (AP
Tipo 3: Gramática Regular	Regular	Autóm ata finito (AF)

Arboles de derivación

Ambigüedad

Una gramática se dice que es ambigua si hay dos o más árboles de derivación distintos para la misma cadena. una gramática en la cual, para toda cadena w, todas las derivaciones de w tienen el mismo árbol de derivación, es no ambigua.

Ejemplos arboles de derivación

Ejemplo 2. Consideremos la siguiente gramática:

 $S \longrightarrow SbS \mid ScS \mid a$

y se la cadena w = abaca y sus derivaciones:

■ $S \Rightarrow SbS \Rightarrow SbScS \Rightarrow SbSca \Rightarrow abaca$

■
$$S \Rightarrow ScS \Rightarrow SbScS \Rightarrow abScS \Rightarrow abacS \Rightarrow abaca$$

La forma de Backus-Naur

Forma de Backus-Naur

La forma de Backus-Naur se emplea para especificar reglas sintácticas de muchos lenguajes de programación y de lenguaje natural: En lugar de utilizar el símbolo → usamos ::= y colocamos los símbolos no terminales entre <>.

La forma BNF se usa frecuentemente para especificar la sintaxis de lenguajes de programación, como Java y LISP; lenguajes de bases de datos, como SQL, y lenguajes de marcado como XML.

La forma de Backus-Naur

```
Ejemplo 1. sea la siguiente GIC:
O \longrightarrow SN SV
SN → articulo sustantivo
SV --- verbo sustantivo
articulo \longrightarrow el
verbo \longrightarrow come
sustantivo --> perro | salchicha
La forma Backus-Naur es:
< O > := < SN > < SV >
< SN >::=< articulo >< sustantivo >
< SV >::=< verbo >< sustantivo >
< articulo >::= el
< verbo >::= come
< sustantivo >::= perro | salchicha
```


La forma de Backus-Naur

Ejemplo 2. Sea la siguiente gramática:

 $A \longrightarrow Aa \mid a \mid AB$

La forma Backus-Naur es:

$$< A > ::= < A > a | a | < A > < B >$$

Ejemplo 3. La producción de enteros son signo en notación decimal. (Un **entero con signo** es un natural precedido por un signo más o un signo menos). La forma Backus-Naur para la gramática que produce los enteros con signo es:

Contenido

- 1 Lenguajes
- 2 Autómatas finitos
- 3 Gramáticas
- 4 Máquinas de Turing

Introducción

- Su nombre se debe a Alan Mathinson Turing. Quien introdujo el concepto en 1936
- Es un autómata que se puede representar como un dispositivo mecánico
- Se tiene una cinta infinita divida en celdas
- Contiene un cabezal de escritura/lectura que se mueve sobre la cinta, avanzando una celda cada vez

Introducción

El movimiento de la máquina de Turing depende del símbolo explorado como la cabeza y el estado actual de la máquina, el resultado puede ser:

- Cambio de estado
- Imprime un símbolo en la cinta, reemplazando el símbolo leido
- Se mueve la cabeza de la cinta a la izquierda o derecha o se para

Definición

Formalmente, una máquina de Turing es un autómata, el cual esta formando por una quintupla de la forma MT = (E, S, Q, f, g), sin embargo suele utilizarse la siguiente denotación:

$$MT = (Q, \Sigma, \Gamma, \delta, q_o, B, F)$$

- Q es un conjunto de estados
- Γ conjunto de símbolos permitidos en la cinta
- $B \in \Gamma$ símbolo blanco
- lacksquare $\Sigma \in \Gamma$ conjunto de símbolos de entrada
- lacksquare δ Función de movimiento (Derecha (D), izquierda (I), Parar (S))
- $q_o \in Q$ Estado inicial
- lacksquare $F \subset Q$ Conjunto estados finales

Definición

El lenguaje aceptado por una máquina de Turing, lo denotaremos como L(MT). Inicialmente una MT está situada a la izquierda de la cadena a reconocer y su estado inicial es q_0 . La MT es capaz de reconocer a un lenguaje L si para una palabra dada, la máquina termina en un estado de aceptación.

Ejemplo

Diseñar una máquina de Turing que reconozca el Lenguaje $L = \{0^n1^n, n \ge 1\}$. La cinta contendrá 0^n1^n con ambos lados rodeados de blancos. El algoritmo de reconocimiento será asi:

- La cabeza se mueve al 0 más a la izquierda
- Este es reemplazado por X
- La cabeza se mueva el 1 más a la izquierda
- Es es reemplazado por Y
- Después se mueva la izquierda hasta encontrar el X y se mueve uno a la derecha, repitiendo el ciclo

Ejemplo

- $\blacksquare Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $\Gamma = (0, 1, X, Y, B)$
- $\Sigma = (0,1)$
- \blacksquare $F = \{q_4\}$ Conjunto estados finales

Ejemplo

La función δ es de la siguiente forma:

δ	0	1	Х	Υ	В
q_0	q ₁ ,X,D	-	-	<i>q</i> ₃ ,Y,D	-
q_1	q ₁ ,0,D	q ₂ ,Y,I	-	q ₁ ,Y,D	-
q_2	q ₂ ,0,1	-	q_0,X,D	q_2,Y,I	-
q ₃	-	-	-	q ₃ ,Y,D	q_4,B,D
q ₄	S	S	S	S	S

Los guiones (-) significan estados imposibles. La máquina primero escribe, luego cambia de estado y por último se mueve.

Ejemplo

 $\begin{array}{l} q_0 \ 0011 \to Xq_1011 \to X0q_111 \to Xq_20Y1 \to q_2 \ X0Y1 \to Xq_00Y1 \to XXq_1Y1 \\ \to XXYq_11 \to XXq_2YY \to Xq_2XYY \to XXq_0YY \to XXYq_3 \ Y \to XXYYq_3 \to \\ XXYYBq_4 \to S \end{array}$

Computabilidad

La máquinas de Turing proveen un marco teórico para definir los problemas computacionales. Los problemas estudiandos a través de la máquina de Turing son los problemas de decisión, los cuales tiene como respuesta **si** o **no**.

Decibilidad

Si un problema se puede solucionar con una máquina de Turing es solucionable o decidible. En caso contrario, es no solucionable o no decidible.

Decibilidad

El problema de la parada, se considera un problmea no decidible o no solucionable, este consiste en:

- La entrada es una máquina de Turing MT' codificada en la cinta de entrada
- Así mismo, se tiene en la cinta una entrada X para esa máquina de Turing
- El objetivo es diseñar un algoritmo en la (MT) de tal forma se pueda determinar que para la entrada X la máquina MT′ encuentre la solución en tiempo finito

Clases de problemas

Tenemos dos clases de problemas de decisión

- Clase P, el cual se puede solucionar en tiempo polinomial en una MT determinista. Son conocidos como problemas tratables.
- Clase NP, el cual se puede solución en tiempo polinomial en una MT no determinista. Son conocidos como problemas no-tratables.

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011.

Chapter 13. Modeling Computation.

