Conjuntos

Elementos de Álgebra Segundo Cuatrimestre 2022

Mg. María del Carmen Vannicola

Facultad de Informática Departamento de Matemática

Conjunto - Definición

Algunas de las acepciones de las palabras conjunto y elemento que aparece en la RAE son:

Definición

Un conjunto es la totalidad de elementos o cosas poseedores de una propiedad común, que los distingue de otros.

Definición

Un elemento es la parte constitutiva o integrante de algo, cada uno de los componentes de un conjunto.

Los conceptos de "conjunto" y "elemento" se utilizan, en matemática, como términos básicos y su significado coincide con los que conocemos en nuestro idioma.

Notación:

Conjuntos: letras mayúsculas: A, B, C, ..., X, Y, Z

Elementos: letras minúsculas: a, b, c, \ldots, x, y, z

Símbolos $\in y \notin$

Dado un conjunto A

- $a \in A$: "a" es un objeto de A, es decir, "a" cumple con la condición que define al conjunto A.
- $a \in A$ se lee: "a" pertenence a A, "a" es un elemento de A, "a" está en A o "a" en A.
- $a \notin A$: "a" no es un objeto de A, es decir, "a" no cumple con la condición que define al conjunto A.
- $a \notin A$ se lee: "a" no pertenence a A, "a" no es un elemento de A o "a" no está en A.
- $a \notin A$ equivale $a \sim (a \in A)$, esto es,

$$a \notin A \iff \sim (a \in A).$$

Conjuntos numéricos.

Algunos conjuntos numéricos importantes poseen su propio símbolo:

 \mathbb{N} : es el conjunto de todos los números naturales.

 \mathbb{N}_0 : es el conjunto de todos los números naturales más el número cero.

 \mathbb{Z} : es el conjunto de todos los números enteros.

 \mathbb{Z}^+ : es el conjunto de todos los números enteros positivos, este conjunto coincide con el conjunto de los números naturales.

 \mathbb{Z}^- : es el conjunto de todos los números enteros negativos.

① : es el conjunto de todos los números racionales.

I : es el conjunto de todos los números irracionales.

 \mathbb{R} : es el conjunto de todos los números reales.

 \mathbb{R}^+ : es el conjunto de todos los números reales positivos.

 \mathbb{R}^- : es el conjunto de todos los números reales negativos.

 \mathbb{R}^* : es el conjunto de todos los números reales no nulos.

 \mathbb{C} : es el conjunto de todos los números complejos.

Descripción de un conjunto

Los conjunto pueden describirse por "extensión" o por "comprensión".

Extensión: se enumeran cada uno de los elementos que componen el conjunto, nombrándolos. Se utiliza habitualmente para conjuntos con una cantidad finita de objetos.

Comprensión: se indica por medio de una proposición la propiedad común que satisfacen todos sus elementos.

Ejemplos de conjuntos por extensión:

$$A = \{-4, -1, 3, 6, 10\}$$
 $B = \{\alpha, \beta, \delta, \phi, \mu\}$

 $C = \{ Plácido Domingo, José Carreras, Luciano Pavarotti \}$

Al describir un conjunto por extensión, no importa el orden en que se enumeran sus elementos y habitualmente no se escribe un elemento más de una vez.

Ejemplos de conjuntos por comprensión:

$$A = \{x \in \mathbb{Q} : 2x \le 1\}$$
 S es el conjunto de todos los vegetales y frutas.

$$G = \{x \in S : x \text{ es una fruta que se cultiva en nuestra zona } \}$$

Conjuntos especiales

Conjunto Universal: está formado por todos los elementos que intervienen en la disciplina de estudio.

Al conjunto universal lo fijaremos con anterioridad al desarrollo del tema que estemos tratando. Lo denotaremos con \mathcal{U} .

Conjunto vacío: es el conjunto que carece de elementos.

Puede ser definido por cualquier propiedad que sea una contradicción. Lo notaremos por " \emptyset " o $\{ \}$.

Ejemplo

Indicar los elementos del conjunto $A = \{x \in \mathbb{R} : x^2 < 0\}.$

En la definición de A, se está considerando que el conjunto universal es el conjunto de los números reales, es decir,

$$\mathcal{U} = \mathbb{R}$$
.

Como $x^2 < 0$ es falso cualquiera sea el número real elegido, entonces $\forall x \in \mathbb{R} : x^2 < 0$ es una contradicción, luego A no posee elementos, es decir,

$$A = \emptyset$$
.

Conjuntos especiales

Conjunto Unitario: es el que tiene un único elemento.

Ejemplo

Hallar los elementos del conjunto $B = \{x \in \mathbb{Q} : x^2 \leq 0\}.$

En el conjunto B debemos hallar elementos racionales entonces \mathbb{Q} es el conjunto universal que estamos considerando, esto es, $\mathcal{U} = \mathbb{O}$.

La proposición $x^2 \le 0$ es verdadera sólo si x = 0 y $0 \in \mathbb{Q}$, entonces B es un conjunto unitario, ya que,

$$B=\{0\}.$$

Ejemplo

Sean $A = \{a, t, s, r, z\}$ y $B = \{x \in \mathbb{Z} : x < 0 \land 4 \le x^2 < 36\}$. Analizar si las siguientes proposiciones son verdaderas o falsas. Justificar los razonamientos.

- Existe una única letra perteneciente a la palabra "expediciones" que pertenece al conjunto A.
- **2** $\forall x \in A : x \text{ es una consonante.}$

Conjuntos especiales - Ejemplo

Definamos el conjunto L como el conjunto que tiene las letras de la palabra "expediciones", entonces

$$A = \{a, t, s, r, z\}$$
 y $L = \{e, x, p, d, i, c, o, n, s\}$

La proposición es verdadera pues la única letra que pertenece a L y también pertenece a A es "s", ya que,

$$\begin{array}{lll} e \in L \wedge e \notin A & d \in L \wedge d \notin A & o \in L \wedge o \notin A \\ x \in L \wedge x \notin A & i \in L \wedge i \notin A & n \in L \wedge n \notin A \\ p \in L \wedge p \notin A & c \in L \wedge c \notin A & \end{array}$$

La proposición es falsa pues

$$\exists~a\in A/~a$$
 no es consonante.

Observemos que $-\frac{5}{2} \notin B$ ya que no es un número entero, luego la implicación

$$-\frac{5}{2} \in B \implies -3 \in B$$

es verdadera pues su antecedente es falso.

Ejercicio

Ejercicio

Sean
$$A = \{a, t, s, r, z\}, B = \{x \in \mathbb{Z} : x < 0 \land x^2 < 9\}$$

Analizar si las siguientes proposiciones son verdaderas o falsas. Justificar los razonamientos.

- El conjunto B tiene 4 elementos en total.
- 2 Con los elementos del conjuntos A se puede formar la palabra "tazas".
- **3** 5 ∈ $B \lor -5 ∈ B$.
- \bigcirc $\exists x \in \mathbb{N} / x \in B$.
- **6** $\forall x \in B : x < -2 \implies -x > 3$.

Relación de inclusión

Definición

Dados dos conjuntos A y B, se dice que A está incluido en B, si todo elemento de A pertenece a B y se nota $A \subseteq B$, esto es,

$$A \subseteq B \iff (\forall a \in \mathcal{U} : a \in A \implies a \in B)$$

Si $A \subseteq B$, diremos que A es un subconjunto de B, o que A es una parte de B, o que A está contenido en B, o que B contiene a A.

Diagrama de Venn de $A \subseteq B$

Relación de inclusión - Negación

Negación de la relación de inclusión $A \nsubseteq B$

$$A \nsubseteq B \iff^{(1)} \sim (A \subseteq B) \iff^{(2)} \sim (\forall \ a \in \mathcal{U} : \ a \in A \implies a \in B) \iff$$

$$\stackrel{(3)}{\iff} \exists \ a \in \mathcal{U} / \sim (a \in A \implies a \in B) \iff^{(4)} (\exists \ a \in \mathcal{U} / \ a \in A \land \ a \notin B)$$

$$A \nsubseteq B \iff (\exists \ a \in \mathcal{U} / \ a \in A \land \ a \notin B)$$

Referencias:

- (1) Cambio de notacion. (2) Definición de inclusión.
- (3) Negación del cuantificador universal.
- (4) Negación de la implicación.

Cuando el conjunto universal está sobrentendido no se expresa en la definición de inclusión o en su negación, es decir, escribiremos

$$A \subseteq B \iff (\forall a: a \in A \implies a \in B), \quad A \nsubseteq B \iff (\exists a/a \in A \land a \notin B)$$

Igualdad de conjuntos

Definición

Dos conjuntos A y B se dicen iguales si y sólo si A está contenido en B y B está contenido en A. Lo notaremos A = B

$$A = B \iff A \subseteq B \land B \subseteq A$$

Veamos que la igualdad de conjuntos se traduce en una equivalencia lógica

$$A = B \iff A \subseteq B \land B \subseteq A \iff$$

$$\stackrel{(2)}{\Longleftrightarrow} (\forall a \in \mathcal{U}: a \in A \implies a \in B) \land (\forall a \in \mathcal{U}: a \in B \implies a \in A) \iff$$

$$\iff \forall a \in \mathcal{U}: (a \in A \implies a \in B) \land (a \in B \implies a \in A) \iff$$

$$\stackrel{(3)}{\Longleftrightarrow} \forall a \in \mathcal{U} : a \in A \iff a \in B$$

$$A = B \iff (\forall a \in \mathcal{U} : a \in A \iff a \in B)$$

Referencias: (1) Definición de igualdad de conjuntos.

(2) Definición de inclusión. (3) Definición de equivalencia lógica.

Igualdad de conjuntos - Negación

Cuando el conjunto universal esté sobrentendido no lo escribirimos al usar la definición de igualdad de conjuntos, es decir,

$$A = B \iff (\forall a : a \in A \iff a \in B)$$

Se deja como ejercicio demostrar que:

$$A \neq B \iff \exists a \in \mathcal{U} : (a \in A \land a \notin B) \lor (a \in B \land a \notin A)$$

Observaciones:

• Si $A \subseteq B$ pero $A \neq B$ diremos que A está contenido o incluido estrictamente en B y notaremos

$$A \subset B$$
 o $A \subseteq B$

Lógicamente la inclusión estricta se puede expresar

$$A \subset B \iff (\forall x : x \in A \implies x \in B) \land (\exists x/x \in B \land x \notin A)$$

La demostración de esta equivalencia se deja como ejercicio.

Ejemplo

Dados los conjuntos

$$A = \{x \in \mathbb{R}: \ 2x^2 + 3x - 1 = 0\} \quad y \quad B = \{x \in \mathbb{R}: \ 4x + 3 = \sqrt{17}\},$$

analizar si $A \subseteq B$ o $B \subseteq A$ o A = B

Los elementos de A son aquellos que verifican la ecuación $2x^2 + 3x - 1 = 0$. Hallamos dichos elementos.

$$2x^{2} + 3x - 1 = 0 \iff x = \frac{-3 \pm \sqrt{9 + 8}}{4} = -\frac{3}{4} \pm \frac{\sqrt{17}}{4}, \text{ luego}$$
$$A = \{x \in \mathbb{R} : 2x^{2} + 3x - 1 = 0\} = \{-\frac{3}{4} - \frac{\sqrt{17}}{4}; -\frac{3}{4} + \frac{\sqrt{17}}{4}\}$$

Los elementos de B satisfacen la ecuación $4x + 3 = \sqrt{17}$. Despejemos x.

$$4x + 3 = \sqrt{17} \iff 4x = -3 + \sqrt{17} \iff x = -\frac{3}{4} + \frac{\sqrt{17}}{4}$$
, es decir,

$$B = \{-\frac{3}{4} + \frac{\sqrt{17}}{4}\}$$
 es un conjunto unitario.

$$A = \{-\frac{3}{4} - \frac{\sqrt{17}}{4}; -\frac{3}{4} + \frac{\sqrt{17}}{4}\}$$
 y $B = \{-\frac{3}{4} + \frac{\sqrt{17}}{4}\}$, entonces

$$B \subseteq A$$
, ya que $\forall x \in B : x = -\frac{3}{4} + \frac{\sqrt{17}}{4} \land -\frac{3}{4} + \frac{\sqrt{17}}{4} \in A$, es decir,

$$\forall x \in B : x \in A$$

$$A \nsubseteq B$$
, pues $\exists x, \ x = -\frac{3}{4} - \frac{\sqrt{17}}{4} / x \in A \land x \notin B$

 $A \neq B$, porque $A \nsubseteq B$

Ejemplo

Sea
$$C = \{x \in \mathbb{R}: \ x^2 = \frac{13}{8} - \frac{3}{8}\sqrt{17} \ \lor \ x^2 = \frac{13}{8} + \frac{3}{8}\sqrt{17}\},$$

demostrar que $A \subseteq C$, siendo A el conjunto enunciado en el ejercicio anterior.

Probar que $A \subseteq C$ equivale a demostrar que

$$\forall x: x \in A \Longrightarrow x \in C$$
.

Demostración:
$$A = \{x \in \mathbb{R} : x = -\frac{3}{4} - \frac{\sqrt{17}}{4} \ \lor \ x = -\frac{3}{4} + \frac{\sqrt{17}}{4} \}$$

$$x \in A \implies x = -\frac{3}{4} \pm \frac{\sqrt{17}}{4} \implies x^2 = \left(-\frac{3}{4} \pm \frac{\sqrt{17}}{4}\right)^2 \implies$$

$$x^2 = \ \frac{9}{16} \mp \frac{3}{8} \sqrt{17} + \frac{17}{16} \ = \ \frac{26}{16} \mp \frac{3}{8} \sqrt{17} \ = \ \frac{13}{8} \mp \frac{3}{8} \sqrt{17} \implies$$

$$\implies x^2 = \frac{13}{8} - \frac{3}{8}\sqrt{17} \ \lor \ x^2 = \frac{13}{8} + \frac{3}{8}\sqrt{17} \implies x \in C$$

Probamos que $\forall x: x \in A \Longrightarrow x \in C$, es decir,

$$A \subseteq C$$

Ejemplo

Sean $A = \{x \in \mathbb{Z} : x \text{ es impar}\}\ y\ B = \{x \in \mathbb{Z} : x + 5 \text{ es par }\}.$ Probar que A = B.

Observemos que $\mathcal{U} = \mathbb{Z}$.

En primer lugar demostremos que $A \subseteq B$, es decir, probemos que:

$$\forall x \in \mathbb{Z}: \ x \in A \Longrightarrow x \in B.$$

$$x \in A \stackrel{(1)}{\Longrightarrow} x \text{ es impar} \stackrel{(2)}{\Longrightarrow} \exists t \in \mathbb{Z}/x = 2t+1 \implies \exists t \in \mathbb{Z}/x+5 = 2t+1+5 \implies$$

$$\implies \exists t \in \mathbb{Z}/x+5 = 2t+6 = 2(t+3) \implies$$

$$\implies \exists h \in \mathbb{Z}, \ h = t+3/x+5 = 2h \stackrel{(3)}{\Longrightarrow}$$

$$\implies x+5 \text{ es par} \stackrel{(4)}{\Longrightarrow} x \in B$$

Luego $A \subseteq B$.

Probemos ahora que $B \subseteq A$, esto es, $\forall x \in \mathbb{Z} : x \in B \Longrightarrow x \in A$.

$$x \in B \stackrel{(4)}{\Longrightarrow} x + 5 \text{ es par } \stackrel{(3)}{\Longrightarrow} \exists s \in \mathbb{Z}/x + 5 = 2s \implies \exists s \in \mathbb{Z}/x = 2s - 5 \implies$$

$$\implies \exists s \in \mathbb{Z}/x = 2s - 4 - 1 = 2(s - 2) - 1 \implies$$

$$\implies \exists r \in \mathbb{Z}, \ r = s - 2/x = 2r - 1 \stackrel{(2)}{\Longrightarrow} x \text{ es impar } \stackrel{(1)}{\Longrightarrow} x \in A$$

Entonces $B \subseteq A$

Como $A\subseteq B$ \wedge $B\subseteq A$, podemos deducir usando la definición de igualdad de conjuntos que

$$A = B$$

Referencias:

- (1) Definición del conjunto A. (2) Definición de número impar.
- (3) Definición de numero par. (4) Definición del conjunto B.

Propiedades de la relación de inclusión

La relación de inclusión verifica las siguientes propiedades

• Reflexiva: cualquiera sea el conjunto A satisface,

$$A \subseteq A$$

Antisimétrica: cualesquiera sean los conjuntos A y B se tiene,

$$(A \subseteq B \land B \subseteq A) \implies A = B$$

• Transitiva: cualesquiera sean los conjuntos A, B y C se verifica,

$$(A \subseteq B \land B \subseteq C) \implies A \subseteq C$$

Propiedades de la igualdad

La relación de igualdad verifica las siguientes propiedades

• Reflexiva: cualquiera sea el conjunto A verifica,

$$A = A$$

Simétrica: cualesquiera sean los conjuntos A y B satisfacen,

$$A = B \implies B = A$$

• Transitiva: cualesquiera sean los conjuntos A, B y C se verifica,

$$(A = B \land B = C) \implies A = C$$

Operaciones entre conjuntos - Complemento de un conjunto

Sea \mathcal{U} un conjunto universal y sea A un subconjunto de \mathcal{U}

Definición

El complemento de A consiste de todos los elementos de U que no pertenecen a A. Notaremos

$$A' = \{ x \in \mathcal{U} : x \notin A \}$$

Lógicamente: $x \in A' \iff x \notin A \iff \sim (x \in A)$ y

$$x \notin A' \iff \sim (x \in A') \iff \sim \sim (x \in A) \iff x \in A$$

Notaciones: $A' = A^{C} = CA = -A$

Diagrama de Venn de A'

Complemento de un conjunto - Ejemplo

Ejemplo '

Hallar los complementos de A y de B, siendo

$$A = \{x \in \mathbb{Z} : x \text{ es par}\}$$
 $B = \{x \in \mathbb{R} : 2x + 3 > 0\}$

• Si $A = \{x \in \mathbb{Z} : x \text{ es par}\}$ entonces el conjunto universal con el que estamos trabajando es

$$\mathcal{U} = \mathbb{Z}$$

 $x \in A' \iff \sim (x \in A) \iff x \text{ no es par} \iff x \text{ es impar}$

$$A' = \{x \in \mathbb{Z} : x \text{ es impar}\}\$$

• Si $B = \{x \in \mathbb{R}: 2x + 3 > 0\}$ entonces el conjunto universal con el que estamos trabajando es

$$\mathcal{U} = \mathbb{R}$$

$$x \in B' \iff \sim (x \in B) \iff \sim (2x + 3 > 0) \iff 2x + 3 \le 0$$

$$B' = \{x \in \mathbb{R} : 2x + 3 \le 0\}$$

Complemento de un conjunto - Ejemplo

Ejemplo

Analizar el valor de verdad de las siguientes proposiciones:

- \bigcirc $x \in A \land x \in A'$ es una contradicción
- **2** $x \in A \lor x \in A'$ es una contradicción
- La proposición es verdadera pues

$$x \in A \land x \in A' \iff x \in A \land \sim (x \in A)$$

y como tenemos la conjunción de una proposición y su negación entonces tenemos una contradicción

La proposición es falsa pues

$$x \in A \lor x \in A' \iff x \in A \lor \sim (x \in A)$$

y como tenemos la disyunción de una proposición y su negación entonces tenemos una tautología

Operaciones entre conjuntos - Unión

Definición

Dados dos conjuntos A y B, se llama unión de A y B al conjunto formado por todos los elementos que pertenecen a A más todos los elementos que pertenecen a B. Notaremos

$$A \cup B = \{x \in \mathcal{U} : x \in A \lor x \in B\}$$

Lógicamente:

$$x \in A \cup B \iff (x \in A \lor x \in B)$$

Diagrama de Venn de $A \cup B$

Operaciones entre conjuntos - Unión - Ejemplo

Ejemplo

Sean $A = \{x \in \mathbb{N} : 3x + 1 > 1 \land 3x + 1 \le 18\}$ y $B = \{x \in \mathbb{Z} : 2x \text{ divide a } 12\}$

- 2 Dar un ejemplo de un subconjunto C de B tal que $A \cup C = A$
- 3 ¿ Qué relación existe entre el conjunto C del inciso anterior y el conjunto A?
- Hallemos el conjunto A

$$3x + 1 > 1 \land 3x + 1 \le 18 \iff 3x > 0 \land 3x \le 17 \iff x > 0 \land x \le \frac{17}{3}$$

Como $x \in \mathbb{N}$ entonces $A = \{1, 2, 3, 4, 5\}$

Ahora calculemos B

$$2x$$
 divide a $12 \iff 2x \in \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\} \iff$

$$\iff x \in \{\pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2, \pm 3, \pm 6\}.$$

Como $x \in \mathbb{Z}$ entonces $B = \{\pm 1, \pm 2, \pm 3, \pm 6\}$

$$A \cup B = \{1, 2, 3, 4, 5, -1, -2, -3, \pm 6\}$$

Operaciones entre conjuntos - Unión.

2 Sabemos que $A = \{1, 2, 3, 4, 5\}$ y $B = \{\pm 1, \pm 2, \pm 3, \pm 6\}$

Necesitamos que $C \subseteq B$ y que $A \cup C = A$

Podemos elegir $C = \{1, 3\}$ entonces

$$C \subseteq B$$
 ya que $1 \in B \land 3 \in B$ y

 $A \cup C = A$, pues todos los elementos de C pertenecen a A entonces no le estamos agregado elementos nuevos a A, cuando calculamos $A \cup C$

Observamos que

$$C \subseteq A$$

ya que $\{1, 3\} \subseteq \{1, 2, 3, 4, 5\}$, es decir,

$$C \subseteq A \iff A \cup C = A$$

Operaciones entre conjuntos - Intersección.

Definición

Dados dos conjuntos A y B, se llama intersección entre A y B al conjunto formado por todos los elementos que pertenecen a A y a B en forma simultánea. Notaremos

$$A \cap B = \{x \in \mathcal{U} : x \in A \land x \in B\}$$

Lógicamente:

$$x \in A \cap B \iff (x \in A \land x \in B)$$

Diagrama de Venn de $A \cap B$

Operaciones entre conjuntos - Intersección - Ejemplo

Definición

Dados los conjuntos A v B se dice que son disjuntos si v sólo si $A \cap B = \emptyset$

Retomamos los conjuntos del ejemplo de la página 24

Ejemplo

Sean $A = \{x \in \mathbb{N} : 3x + 1 > 1 \land 3x + 1 \le 18\}$ y $B = \{x \in \mathbb{Z} : 2x \text{ divide a } 12\}$

- 2 Si $\mathcal{U} = \{x \in \mathbb{Z} : -8 \le x < \frac{15}{2}\}$, calcular $(A \cap B)'$ y $A' \cap B'$
- **3** Analizar el valor de verdad de la siguiente proposición: $(A \cap B)' = A' \cap B'$
- Por lo desarrollado anteriormente

$$A = \{1, 2, 3, 4, 5\}$$
 y $B = \{\pm 1, \pm 2, \pm 3, \pm 6\}$,

entonces

$$A \cap B = \{1, 2, 3\}$$

Operaciones entre conjuntos - Intersección - Ejemplo

Calculemos el conjunto universal $\mathcal{U} = \{x \in \mathbb{Z} : -8 \le x < \frac{15}{2} \}$,

$$\mathcal{U} = \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

$$(A \cap B)' = \{1, 2, 3\}' = \{x \in \mathcal{U} : x \notin A \cap B\} =$$

$$= \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 4, 5, 6, 7\}$$

$$A' = \{1, 2, 3, 4, 5\}' = \{x \in \mathcal{U} : x \notin A\} =$$

$$= \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 6, 7\}$$

$$B' = \{\pm 1, \pm 2, \pm 3, \pm 6\}' = \{x \in \mathcal{U} : x \notin B\} =$$

$$= \{-8, -7, -5, -4, 0, 4, 5, 7\}$$

$$A' \cap B' = \{-8, -7, -5, -4, 0, 7\}$$

La proposición es falsa. Observemos que $(A \cap B)' \neq A' \cap B'$, ya que

$$\exists -6 \in \mathcal{U}/-6 \in (A \cap B)' \land -6 \notin A' \cap B'$$

Operaciones entre conjuntos - Ejercicio

Ejercicio

Sean $A = \{x \in \mathbb{N} : 2 < 3x + 1 < 18\}$ y $B = \{x \in \mathbb{Z} : 2x \text{ divide a } 12\}$

- Analizar el valor de verdad de las siguientes proposiciones y justificar cada uno de los casos.
 - $-3 \in A' \lor 7 \in A'$

•
$$\exists x \in \mathbb{Z}/x \in A \land x \in B'$$

•
$$\forall x \in \mathbb{N} : x \in A \implies x < 5$$
 • $\emptyset \subseteq A$

•
$$\exists S/S \subseteq B \implies S \subseteq A'$$

- 2 j Qué conjunto universal utilizamos para calcular A', si no se especifica ninguno? ; Y para obtener B'?
- **3** Calcular $A \cap B'$ y $A' \cap B$. Expresar estos dos conjuntos por comprensión

Unión - Intersección - Negación

Veamos que

$$x \notin A \cup B \iff x \notin A \land x \notin B$$

en efecto,

$$x \notin A \cup B \stackrel{(1)}{\iff} \sim (x \in A \cup B) \stackrel{(2)}{\iff} \sim (x \in A \lor x \in B) \stackrel{(3)}{\iff}$$

 $\iff \sim (x \in A) \land \sim (x \in B) \stackrel{(1)}{\iff} x \notin A \land x \notin B$

Demostremos que

$$x\notin A\cap B\iff x\notin A\ \lor\ x\notin B$$

$$x \notin A \cap B \iff^{(1)} \sim (x \in A \cap B) \iff^{(4)} \sim (x \in A \land x \in B) \iff^{(5)}$$
$$\iff \sim (x \in A) \lor \sim (x \in B) \iff^{(1)} x \notin A \lor x \notin B$$

Referencias:

- (1) Cambio de notación (2) Definición de unión
- (3) De Morgan (negación de la disyunción)
- (4) Definición de intersección
- (5) De Morgan (negación de la conjunción)

Propiedades

Sea \mathcal{U} un conjunto universal v A, B v C subconjuntos de \mathcal{U}

- **1** Idempotencia: $A \cup A = A$, $A \cap A = A$
- 4 Asociativa: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
- **6** Conmutativa: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- **1** $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$, $A \cup \mathcal{U} = \mathcal{U}$, $A \cap \mathcal{U} = A$
- O Distributivas: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- **1** Leyes de absorción: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$

- ② De Morgan: $(A \cup B)' = A' \cap B'$, $(A \cap B)' = A' \cup B'$

• Demostremos que $\emptyset \subseteq A$

Probar que $\emptyset \subseteq A$ equivale afirmar que $\forall x : x \in \emptyset \implies x \in A$ es verdadero

Esta última implicación es verdadera pues el antecedente de la misma es falso.

• Probemos que $A \subseteq \mathcal{U}$

La inclusión es verdadera si y sólo si la implicación $\forall x: x \in A \implies x \in \mathcal{U}$ lo es y esta implicación es verdadera porque su consecuente es verdadero.

• Demostremos que $A \subseteq A \cup B$

Debemos probar que $\forall x: x \in A \Longrightarrow x \in A \cup B$ y lo hacemos por el método directo $x \in A \stackrel{(1)}{\Longrightarrow} x \in A \lor x \in B \stackrel{(2)}{\Longrightarrow} x \in A \cup B$. por lo tanto $A \subseteq A \cup B$

Referencias: (1) Adición: $p \Longrightarrow p \lor q$ (2) Definición de unión

• Probemos que $A \cap B \subseteq B$. Lo que equivale a demostrar que

$$\forall x: x \in A \cap B \implies x \in B$$

Demostración (método directo)

$$x \in A \cap B \stackrel{\text{(1)}}{\Longrightarrow} x \in A \land x \in B \stackrel{\text{(2)}}{\Longrightarrow} x \in B$$

(2) Simplificación: $(p \land a) \Longrightarrow a$ Referencias: (1) Definición de intersección

• Demostremos que $A \cup (B \cup C) = (A \cup B) \cup C$

Probar la igualdad enunciada equivale a demostrar que

$$\forall x: x \in A \cup (B \cup C) \iff x \in (A \cup B) \cup C$$

Demostración (método directo)

$$x \in A \cup (B \cup C) \stackrel{(1)}{\Longleftrightarrow} x \in A \lor x \in (B \cup C) \stackrel{(1)}{\Longleftrightarrow} x \in A \lor (x \in B \lor x \in C) \stackrel{(2)}{\Longleftrightarrow}$$

$$\iff (x \in A \lor x \in B) \lor x \in C \stackrel{(1)}{\iff} x \in (A \cup B) \lor x \in C \stackrel{(1)}{\iff} x \in (A \cup B) \cup C$$

Referencias: (1) Definición de unión

- (2) Asociativa de la disyunción: $p \lor (q \lor r) \iff (p \lor q) \lor r$
- Hagamos la demostración de la propiedad $A \subseteq B \Longrightarrow B' \subseteq A'$

H)
$$A \subseteq B \iff \forall a : a \in A \implies a \in B$$

T)
$$B' \subseteq A' \iff \forall x : x \in B' \implies x \in A'$$

Demostración (método directo)

$$x \in B' \stackrel{(1)}{\Longrightarrow} x \notin B \stackrel{(2)}{\Longrightarrow} \sim (x \in B) \stackrel{(3)}{\Longrightarrow} \sim (x \in A) \stackrel{(2)}{\Longrightarrow} x \notin A \stackrel{(1)}{\Longrightarrow} x \in A'$$

Luego probamos que $A \subseteq B \Longrightarrow B' \subseteq A'$

- Referencias: (1) Definición de complemento (2) Cambio de notación
 - (3) Contrarrecíproco de la implicación: $(p \Longrightarrow q) \Longleftrightarrow (\sim q \Longrightarrow \sim p)$

En la página 31 enunciamos como propiedad

$$A \subseteq B \iff B' \subseteq A'$$

y sólo hemos demostrado una implicación.

Se deja como ejercicio la demostración de la implicación recíproca para poder asegurar la equivalencia

• Probemos que $A \cap A' = \emptyset$

Demostración (método indirecto)

Supongamos que $A \cap A' \neq \emptyset$, es decir, $\exists x / x \in A \cap A'$

$$x \in A \cap A' \stackrel{\text{(1)}}{\Longrightarrow} x \in A \land x \in A' \stackrel{\text{(2)}}{\Longrightarrow} x \in A \land x \notin A \stackrel{\text{(3)}}{\Longrightarrow} x \in A \land \sim (x \in A)$$
 (4)

Esta última proposición es una contradicción lógica. Luego $A \cap A' = \emptyset$

Referencias: (1) Definición de intersección (2) Definición de complemento

- (3) Cambio de notación
- (4) $p \land \sim p \Longrightarrow c$, donde c es una contradicción

Operaciones entre conjuntos - Diferencia

Definición

Sean A y B subconjuntos de un conjunto universal, se llama diferencia entre A y B, al conjunto formado por los elementos que pertenecen a A y no pertenecen a B. Notaremos A-R

$$A-B = \{x \in \mathcal{U} : x \in A \land x \notin B\}$$

Lógicamente

$$x \in A - B \iff x \in A \land x \notin B$$

Diagrama de Venn de $A \cap B$

Operaciones entre conjuntos - Diferencia

Observemos que:

$$x \notin A - B \stackrel{\text{(1)}}{\Longleftrightarrow} \sim (x \in A - B) \stackrel{\text{(2)}}{\Longleftrightarrow} \sim (x \in A \land x \notin B) \stackrel{\text{(1)}}{\Longleftrightarrow}$$

$$\iff \sim (x \in A \land \sim (x \in B)) \stackrel{\text{(3)}}{\Longleftrightarrow} \sim (x \in A) \lor \sim (\sim (x \in B)) \stackrel{\text{(4)}}{\Longleftrightarrow}$$

$$\iff \sim (x \in A) \lor x \in B \stackrel{\text{(1)}}{\Longleftrightarrow} x \notin A \lor x \in B$$

Luego

$$x \notin A - B \iff x \notin A \lor x \in B$$

Referencias:

(1) Cambio de notación

- (3) De Morgan (negación de la conjunción)
- (2) Definición de diferencia
- (4) Doble negación

Ejemplo

Sean

$$A = \{x \in \mathbb{N} : 1 < 3x + 1 \le 18\} \ \ y \ \ B = \{x \in \mathbb{Z} : 2x \ \ divide \ a \ 12\}$$

Hallar
$$A - B$$
 y $B - A$

Propiedades de la diferencia entre conjuntos

Por un ejemplo anterior sabemos que

$$A = \{1,\ 2,\ 3,\ 4,\ 5\} \qquad B = \{\pm 1,\ \pm 2,\ \pm 3,\ \pm 6\}$$

Entonces

$$A-B=\{4,\ 5\}\quad y\quad B-A=\{-1,\ -2,\ -3,\ \pm 6\}$$

Es evidente que $A-B \neq B-A$, lo que nos permite observar que es importante el orden en que efectuamos la operación

Proposición

Sea \mathcal{U} un conjunto universal y A y B sunconjuntos de \mathcal{U} . Entonces

- \bigcirc $A B \subseteq A$, $B A \subseteq B$
- $\bigcirc A = B \implies A B = \emptyset \land B A = \emptyset$

Propiedades de la diferencia entre conjuntos

Demostremos que $A \subseteq B \implies A-B = \emptyset$

$$H) A \subseteq B \iff \forall x : x \in A \Longrightarrow x \in B$$

$$T) A - B = \emptyset$$
 $\sim T) A - B \neq \emptyset$

Demostración (método indirecto)

Supongamos que
$$A - B \neq \emptyset$$
, es decir, $\exists x / x \in A - B$

$$x \in A - B \stackrel{\text{(1)}}{\Longrightarrow} x \in A \ \land \ x \in B' \stackrel{\text{(2)}}{\Longrightarrow} x \in A \ \land \ x \notin B \stackrel{\text{(H)}}{\Longrightarrow} x \in B \ \land \ x \notin B \stackrel{\text{(3)}}{\Longrightarrow}$$

$$\implies x \in B \land \sim (x \in B)$$
 (4) y esto es una contradicción

Luego:

$$A \subseteq B \implies A-B = \emptyset$$

- Referencias: (1) Definición de diferencia (2) Definición de complemento
 - (3) Cambio de notación
 - (4) $p \land \sim p \Longrightarrow c$, donde c es una contradicción

El resto de los items de la proposición se dejan como ejercicios