Esercitazione Algebra lineare

Marco Gattulli

ESERCIZIO 1. Si consideri al variare di $\alpha \in \mathbb{C}$, la matrice

$$A_{\alpha} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & \alpha & 0 \\ 1 & 0 & \alpha & 1 \end{bmatrix}.$$

- (a) Trovare per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure P^TLU .
- (b) Per $\alpha = 1$ si trovi una base ortogonale di $C(A_1)$.
- (c) Si interpreti A_1 come la matrice completa di un sistema lineare e si trovino tutte le soluzioni del sistema.

SVOLGIMENTO.

(a) Applichiamo l'Eliminazione di Gauss alla matrice A_{α} :

Quindi se $\alpha \neq 1$:

$$A_{\alpha\neq 1} = LU$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & \alpha & 0 \\ 1 & 0 & \alpha & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & \alpha - 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & \frac{\alpha-1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Mentre se $\alpha=1$, per la U basta fermarsi con l'eliminazione di Gauss a prima di eseguire $E_3(\frac{1}{\alpha-1})$ e sostituire ad ogni α il valore 1, per la L nel posto (3,3) va messo 1 poichè non si è eseguita nessuna operazione del tipo $E_3(x)$. Dunque:

$$A_{1} = LU$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Abbiamo così dato la scomposizione LU per ogni valore di $\alpha \in \mathbb{C}$.

(b) Prendiamo in considerazione A_1 :

$$A_1 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

1

Per trovare una base ortogonale di $C(A_1)$ dobbiamo prima trovare una base di tale spazio; riprendiamo anche la forma ridotta U di A_1 (che abbiamo già calcolato):

$$U = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Siccome le colonne dominanti sono le prime due, una base (che chiameremo \mathscr{B}) di $C(A_1)$ è data dalle prime due colonne di A_1 :

$$\mathscr{B} = \left\{ \begin{array}{c} v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} & v_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right\}$$

Per dare una base ortogonale (che chiameremo $\mathcal{D})$ applichiamo l'algoritmo di Gram-Schmidt:

$$u_1 = v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$u_2 = v_2 - \frac{(u_1|v_2)}{(u_1|u_1)}u_1 = \begin{bmatrix} 0\\2\\0 \end{bmatrix} - \frac{\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0\\2\\0 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix}} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} 2\\-4\\2 \end{bmatrix}$$

Per comodità possiamo prendere $u_2=\begin{bmatrix}2&-4&2\end{bmatrix}^T$ tanto l'importante è che sia orogonale a u_1 . Dunque la base ortogonale di $C(A_1)$ è:

$$\mathcal{D} = \left\{ \begin{array}{cc} u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} & u_2 = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix} \right\}$$

(c) Riprendiamo la forma ridotta di A_1 e pensiamo
la come matrice completa di un sistema lineare:

$$\left[\begin{array}{cc|cc|c} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Si vede subito che sia la matrice dei coefficienti che la matrice completa hanno lo stesso rango che è 2 quindi per il teorema di Rouchè-Capelli il sistema ha infinite soluzioni dipendenti da un parametro.

Il vettore soluzione è (con il parametro t):

$$\begin{bmatrix} 1-t\\ -\frac{1}{2}\\ t \end{bmatrix}.$$