UNIDADE III

RELAÇÕES E FUNÇÕES

1. Plano Cartesiano

É o sistema formado por dois eixos orientados, perpendiculares entre si e que se cruzam no ponto **0**, chamado de origem.. A cada eixo é associado o conjunto dos números reais.

O eixo horizontal é chamado de eixo das abscissas ou eixo dos "x"; o eixo vertical é chamado de eixo das ordenadas ou eixo dos "y".

2. Par Ordenado

A partir de dois números reais a e b, é possível obter um novo elemento, representado por (a, b) que chama-se **par ordenado**. O par ordenado , no plano cartesiano, representa um único ponto.

LEMBRE-SE: Se a \neq b, então o par ordenado (a, b) \neq (b,a).

3. Produto Cartesiano

Sejam dois conjuntos A e B, não vazios, chama-se produto cartesiano de A por B o conjunto de todos os pares ordenados (x,y) com $x \in A$ e $y \in B$. O produto cartesiano é representado por AxB (lê-se "A cartesiano B").

$$AxB = \{ (a,b) \mid a \in A \ e \ b \in B \}$$

LEMBRE-SE:

- Se A \neq B, temos A x B \neq B x A.
- O produto cartesiano de um conjunto A por ele mesmo é simbolizado por A² (lê-se "A dois"), isto é, AxA = A².

Exercícios

01. Dados $A = \{1, 2, 3, 4\}$ e $B = \{1,2,3\}$, represente graficamente:

- a) AxB
- b) BxA
- c) $\{(x, y) \in A \times B \mid y = x\}$
- d) $[(x, y) \in A \times B | x < y]$

02. Se (x, 2) = (5, y), então o valor de x + y é:

- a) 3
- b) 4
- c) 7
- d) 10

e) 12

03. (ESAN-SP) Os valores de "x" e "y" de modo que os pares ordenados (x - 3, 2y + 1) e (2x + 2, -y - 8) sejam iguais são:

a) -1, 7

c) -5, -9

e) -3, -5

b) -9, -5

d) -5, -3

04. (CESGRANRIO) Sejam F = {1, 2, 3, 4} e G = {3, 4, 7}. Então:

a) F x G tem 12 elementos.

d) F \cap G tem 3 elementos.

b) G x F tem 9 elementos.

e) G x G tem 6 elementos.

c) F \cup G tem 7 elementos.

05. Se A x B = $\{(1, 5); (1,3); (1,2); (7, 5); (7, 3); (7, 2)\}$, então:

a) $A = \{1, 7\} \in B = \{5, 3, 2\}$

d) $A = \{1, 2\} e B = \{1, 5, 3\}$

b) $A = \{5, 3, 2\} e B = \{1, 7\}$

e) $A = \{1, 7\}$ e $B = \{1, 2, 7\}$

c) $A = \{1, 5, 3\} e B = \{1, 2\}$

06. (UFMT) Sejam os conjuntos A e B tais que:

A x B = {(-1, 0); (2, 0); (-1, 2); (2, 2); (-1, 3); (2, 3)}. O número de elementos do conjunto A \cap B é:

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4

07. Se A = {-2, 0, 2}, B = {5, 6} e C = { -4 }, determine:

- a) A x C =
- b) $C \times B =$
- c) A x B =

08. Assinale a alternativa verdadeira:

- a) $\{1, 5\} \times \{3, 4\} = \{3, 4, 15, 20\}$
- b) $\{1, 5\} \times \{3, 4\} = \{3, 4\} \times \{1, 5\}$
- c) $\{1, 5\} \times \{3, 4\} = \{(1, 3); (1, 4); (3, 5); (4, 5)\}$
- d) $\{1, 5\} \times \{3, 4\} = \{(1, 3); (1, 4); (5, 3); (5, 4)\}$

09. (PUC) O número de elementos do conjunto A é 2^m e o número de elementos do conjunto B é 2ⁿ. Então, o número de elementos de AxB é:

a) $2^m + 2^n$

c) 2^{m.n}

e) m+n

b) 2^{m+n}

d) m.n

10. (ULBRA) Sendo A = $\{1, 2\}$, B = $\{3, 4\}$ e C = $\{4, 5\}$, o produto cartesiano A x (B \cap C) é:

a) $\{(1, 4); (2, 4)\}$

d) {(1, 4); (1, 5); (2, 4); (2,5)}

b) {(1, 4); (1, 5)}

e) Ø

c) {(1,3); (1,4); (2, 3); (2, 4)}

4. Relações

4.1 Definição

Dados dois conjuntos A e B não vazios, chama-se **relação de A em B** qualquer subconjunto de AxB. Uma relação de A em B é denotada pelo símbolo \Re : A \rightarrow B.

Exemplos: Se A = $\{2, 5\}$ e B = $\{3, 4, 7\}$, então: AxB = $\{(2, 3), (2, 4), (2, 7), (5, 3), (5, 4), (5, 7)\}$

Observando este conjunto temos:

 $\Re_1 = \{ (2, 3); (2, 4) \}$ e $\Re_2 = \{ (5, 3); (5, 4) \}$, são relações de A em B.

4.2 Domínio e Imagem

Chama-se **domínio** de uma relação qualquer de A em B, ao conjunto de todos os elementos de A que estão associados a, pelo menos, um elemento de B, e representa-se por $D(\Re)$.

Chama-se **imagem** de uma relação qualquer de A em B, ao conjunto de todos os elementos de B que estão associados a, pelo menos, um elemento de A, e representa-se por $Im(\Re)$.

Prof Brund

4.3 Relação Inversa

A relação inversa de uma relação \Re é aquela obtida invertendo-se a ordem dos termos dos pares ordenados de \Re , e representa-se por \Re^{-1} .

Exemplo: Se $\Re = \{ (0,1); (1,2); (2,3) \} \Rightarrow \Re^{-1} = \{ (1,0); (2,1); (3,2) \}$

LEMBRE-SE : $D(\Re) = Im(\Re^{-1})$ e $D(\Re^{-1}) = Im(\Re)$

Exercícios

11. Dê o domínio e a imagem das relações representadas a seguir pelos diagramas cartesianos.

- 12. Construa o gráfico das relações de A = {-2, -1, 0, 1, 2} em R definidas por:
- a) $\{(x, y) \in A \times R \mid y = 2x\}$
- b) $\{(x, y) \in A \times R \mid y = |x| \}$
- c) $\{(x, y) \in A \times R \mid y = -x^2\}$
- **13.** Sendo A = { -3, -2, -1, 0, 1, 2, 3} e B = { 0, 1, $\sqrt{2}$, $\sqrt{3}$ } designe os pares da relação \Re : { (x, y) \in A x B | y = \sqrt{x} }

5. Funções

5.1 Conceitos

Uma relação \Re : A \to B é uma função de A em B se, **e somente se**, o domínio for o conjunto A, isto é, todos os elementos de A, e cada um deles se relaciona com apenas **um** elemento de B.

As funções são, usualmente, representadas pelas letras f, g, h, ...

Uma função f de A em B é representada por f: $A \rightarrow B$.

- O domínio da função, D(f) é o conjunto A.
- O contra domínio da função, CD(f) é o conjunto B.
- A **imagem** da função Im(f) é o conjunto dos elementos de B associados aos elementos de A. A imagem de uma função f é representada por f(x) onde x é um elemento do domínio e lê-se "f de x".

$$\begin{array}{l} f\colon A \to B \\ D(f) = A = \{x_1, \, x_2, \, x_3\} \\ CD(f) = B = \{\, y_1, \, y_2, \, y_3, \, y_4, \, y_5\} \\ Im(f) = \{y_1, \, y_2, \, y_3\} \end{array}$$

LEMBRE-SE: Im(f) ⊂ B (contra domínio).

5.2 Gráficos de uma função

Para obtermos o gráfico de uma função f, devemos representar no plano cartesiano, os pares ordenados (x,y), onde $x \in D(f)$ e $y \in Im(f)$. Dependendo do domínio de f, o gráfico da função pode ser um ponto, alguns pontos ou ainda, infinitos pontos.

Para reconhecer se um gráfico representa uma função, verificamos se a cada x do domínio corresponde uma única imagem traçando retas paralelas ao eixo das ordenadas e observamos se cada uma delas corta o gráfico em um único ponto.

OBSERVAÇÃO: A projeção do gráfico de uma função sobre o eixo x (abscissas) é o domínio da mesma, e a projeção sobre o eixo y (ordenadas) é a imagem.

5.3 Raiz ou zero de uma função

É o valor de $x \in D(f)$ que faz f(x) = 0. É o ponto onde o gráfico corta o eixo das abscissas.

Exemplo: Considere o gráfico a seguir:

Exercícios

14. (ACAFE) Qual dos gráficos abaixo representa uma função:

a)

b)

c)

d) y

e)

15. O conjunto imagem da função representada no gráfico abaixo é:

- a) [0, 4]
- b) [1, 2]
- c) [-3, 5]
- d) [0, 5]
- e) [-2, 3]

16. Determine o domínio das funções abaixo:

a)
$$f(x) = \frac{1}{x - 3}$$

b)
$$f(x) = \frac{x+2}{x-4}$$

c)
$$f(x) = \frac{1}{x^2 - 6x + 5}$$

d)
$$f(x) = \sqrt{3+x}$$

e)
$$f(x) = \sqrt{\frac{7 - x}{x + 3}}$$

f)
$$f(x) = \frac{1}{x+5} + \frac{1}{x^2-9}$$

g)
$$f(x) = \frac{3}{\sqrt[3]{3x-6}}$$

$$h) \quad f(x) = \frac{\sqrt{x}}{\sqrt{2x - 1}}$$

i)
$$f(x) = \sqrt{\frac{x-2}{x-3}}$$

j)
$$f(x) = \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x^2 - 4}}$$

$$k) \quad f(x) = \frac{\sqrt{x-4}}{3x}$$

17. Ao lado vê-se parte de um gráfico que mostra o valor y a ser pago (em reais), pelo uso de um estacionamento por um período de x horas.

Suponha que o padrão observado no gráfico não se altere quando x cresce. Nessas condições, quanto deverá pagar uma pessoa que estacionar seu carro das 22 horas de um dia até as 8 horas e 30 minutos do dia seguinte?

- **18.** Dada a função f(x) = -3x + 6, calcule:
- a) f(5)
- b) $f(\frac{1}{5})$
- c) f(2,5)
- **19.** (FUVEST) Se $f(x) = \frac{1}{x^2 + 1}$, quanto vale $f(\sqrt[4]{7})$?
- **20.** (FUVEST) As funções f e g são dadas por $f(x) = \frac{3}{5}x 1$ e $g(x) = \frac{4}{3}x + a$.

Sabe-se que $f(0) - g(0) = \frac{1}{3}$. O valor de $f(3) - 3 \cdot g\left(\frac{1}{5}\right)$ é:

a) 0

c) 2

e) 4

b) 1

- d) 3
- 21. Complete a tabela a seguir.

Função definida de R→ R	f(0)	f(1)	f(-1)	f(1/3)	f(2,5)	f(√3)
a) $f(x) = \sqrt{3}$						
b) $f(x) = x + 5$						
c) $f(x) = x^2 + 1$						
d) $f(x) = 2 + 2x $						
$e) f(x) = \frac{1}{x+1}$						
$f) f(x) = \sqrt{x+1}$						

- **22.** Dada a função f(x) = -2x + 3, definida de $R \rightarrow R$, calcule x para que:
- a) f(x) = 5
- b) f(x) = -9

5.4 Classificação das funções

a) Quanto ao contra domínio

- injetora Uma função é injetora quando para $x_1 \neq x_2 \leftrightarrow y_1 \neq y_2$

- sobrejetora

A função é sobrejetora quando lm(f) = CD(f). "Não sobra elemento em y ".

- bijetora

A função é bijetora quando é injetora e sobrejetora ao mesmo "tempo".

b) Função par e ímpar

- função par

Uma função $f(x):A \rightarrow B$ é par quando para valores simétricos de x, as imagens são iguais, isto é, f(x) = f(-x). O gráfico de uma função par é sempre simétrico em relação ao eixo dos y.

Exemplo: $f(x) = x^2$

$$f(1) = 1$$
, $f(2) = 4$
 $f(-1) = 1$, $f(-2) = 4$

- função ímpar

Uma função $f(x):A \to B$ é ímpar quando para valores simétricos de x, as imagens são simétricas, isto é, f(x) = -f(-x). O gráfico de uma função ímpar é sempre simétrico em relação a origem do plano cartesiano.

Exemplo:
$$f(x) = 2x$$

$$f(1) = 2$$
, $f(2) = 4$
 $f(-1) = -2$, $f(-2) = -4$

c) Função crescente e decrescente

- função crescente

Uma função $f(x):A \rightarrow B$ é crescente quando aumentando o valor de x, a imagem aumenta, isto é, $x_2 > x_1 \rightarrow f(x_2) > f(x_1)$.

- função decrescente

Uma função f(x): A \rightarrow B é decrescente quando aumentando o valor de x, a imagem diminui, isto é, $\mathbf{x_2} > \mathbf{x_1} \rightarrow \mathbf{f(x_2)} < \mathbf{f(x_1)}$.

$f(x_2) = x_1 + x_2 + x$

Exercícios

- **23.** Classifique as funções abaixo, definidas de R ightarrow R, em pares, ímpares ou sem paridade.
- a) f(x) = 4
- b) f(x) = 2x
- c) $f(x) = x^2 1$
- d) $f(x) = x^2 5x + 6$
- f) f(x) = |x 5|

24. Das funções abaixo, definidas de R ightarrow R, assinale com C as crescentes e com D as decrescentes.

- a) () y = 3x
- b) () y = -2x
- c) () y = x + 2
- d) () y = -2x + 2
- **25.** Seja a função f: A \to B definida por y = $\frac{x}{2}$ + 1, com A = {0, 2, 4, 6} e

B = { 1, 2, 3, 4}. Esta função f é:

- 01. sobrejetora
- 02. injetora
- 04. bijetora
- 08. simples
- 16. par
- 32. ímpar

d) Função composta

Supondo-se uma função f(x): $A \to B$ e g(x): $B \to C$, pode-se estabelecer uma terceira função h(x): $A \to C$ conhecida como função composta de f(x) e g(x), representa-se por g(f(x)) ou gof(x).

Exercícios

26. Se f(x) = 2x + 1 e g(x) = x + 6, encontre gof(x).

27. Dados f(x) = x - 1 e $g(x) = x^2$, determine g(f(x)).

28. Se f(x) = 2x + 3, obtenha f(f(x)).

29. Dadas as funções f(x) = 3x + 2 e g(x) = x - 1, calcule:

Prof. Bruno

a) g(f(1))	c) f(f(0))			
b) f(g(0))	d) g(g(1)			
30. Dadas as funções $f(x) = x^2 + 1$ e $g(x) = 3x - 4$, determines				
a) $f(g(x)) =$				
b) $g(f(x)) =$				
c) $f(g(0)) + g(f(1)) =$				

- **31.** Calcule o valor de **a**, sabendo que f(x) = 4x + 5, g(x) = 2x + a e f(q(x)) = q(f(x)).
- **32.** Se $f(x) = x^2 2x + 1$, encontre f(x + 1)
- **33.** Se $f(x) = \frac{x+1}{x-1}$, obtenha f(f(x)).
- **34.** (PUC-MG) Se $f(x) = \frac{1}{x-1}$, o valor de x de modo que f(f(x)) = 1 é:
- a) 1.0

- b) 2,0 c) 1,5 d) -1,0 e) -1.5
- **35.** (FCC-BA) Sejam f e g funções de R em R definidas por f(x) = 1 2x e g(x) = 2x - 1, respectivamente. Nestas condições, o valor de f[g(-2)] é:
- a) -11
- b) -9
- c) 5
- d) 9
- e) 11
- **36.** Dadas as funções f(x) = 5x 3, $g(x) = x^2 1$ e $h(x) = 2x^2$:
- a) simplifique a expressão dada por f[h(x)] 4.g(x);
- b) calcule x, para que f [h(x)] = 7
- 37. (UECE) Sejam "f" e "g" funções de R em R definidas por $f(x) = x^2 1$ e g(x) = 2x + 1. Então a função composta fog assume o menor valor em um ponto do intervalo:

- a)]-1, 0[b)]0, 1[c) $\frac{1}{2}$,2[d) $\frac{1}{2}$,1[
- **38.** Dadas as funções f(x) = 3x + 4 e f(g(x)) = x 5. Determine g(x).
- e) Função inversa

Dada uma função f(x): A \rightarrow B, **bijetora**, pode-se obter uma função de B em A, chamada de função inversa, invertendo-se a ordem dos pares ordenados de f(x), e representa-se por $f^{-1}(x)$.

LEMBRE-SE: Quando uma função f(x) não é bijetora, ela não admite função inversa, pois a inversão dos pares ordenados não define uma função

Exercícios

39. Encontre a função inversa de cada função:

a)
$$f(x) = \frac{x+1}{2}$$

b) $f(x) = \frac{x-1}{3}$
c) $f(x) = \frac{x-1}{3}$
d) $f(x) = \frac{3\sqrt{x}-1}{2}$
f) $f(x) = \frac{x-2}{3-x}$
g) $f(x) = \frac{1-x}{x} + 3$
h) $f(x) = \frac{3\sqrt{x}-1}{2}$

e)
$$f(x) = \frac{x+1}{x}$$

40. Determine a função inversa, caso ela exista, de:

a)
$$f(x) = 3x - 5$$

b)
$$f(x) = \frac{2x+3}{3x-5} (x \neq \frac{5}{3})$$

c)
$$f(x) = x^2 + 2x - 1$$

41. (CESGRANRIO) Sejam f : $]0,+\infty[\rightarrow]0,+\infty[$ a função dada por f(x) = $\frac{1}{x^2}$ e

f⁻¹ a função inversa da f. O valor de f⁻¹ no ponto 4 é:

a)
$$\frac{1}{4}$$
 b) $\frac{1}{2}$ c) 1 d) 2 e) 4

42. (UFPA) O gráfico de uma função f é a reta que corta os eixos coordenadas em x = 2 e y = -3. O valor de f[f⁻¹(0)] é:

a)
$$\frac{15}{2}$$

c)
$$-\frac{10}{3}$$

d)
$$\frac{10}{3}$$

e)
$$-\frac{5}{2}$$

43. (CESGRANRIO) O gráfico que representa a inversa da função $f(x) = 3 - \frac{3}{4}x$ é:

44. Dada a função $f(x) = \frac{x}{3} + \frac{2}{3}$, determine:

a)
$$f^{-1}(x) =$$

b)
$$f^{-1}(2x) =$$

6. Principais Funções

6.1 Função constante

É a função f: $\mathbb{R} \to \mathbb{R}$ definida por f(x) = K onde $K \in R$

Domínio: $D(f) = \mathbf{R}$

Imagem: $Im(f) = \{ K \}$

Gráfico: é uma reta paralela ao eixo x.

Exercícios

45. Determine o valor de **a** para que a função $f(x) = (a^2 - 1)x + 2$ seja uma função constante.

46. Sabendo que f(x) = (2m + 1)x - 3n e g(x) = n x, calcule os valores de **m** e **n** de modo que:

- a) f(x) seja uma função constante
- b) f(g(x)) seja uma função constante

6.2 Função de 1º Grau

É a função $f:\mathbb{R} \to \mathbb{R}$ definida por f(x) = ax + b, com a e b $\in a \neq 0$.

Domínio: $D(f) = \mathbb{R}$ Imagem: $Im(f) = \mathbb{R}$

Gráfico: é uma reta que forma com o eixo x um ângulo θ .

a < 0 decrescente b b $\frac{-b}{a}$ x

Zero ou raiz da função:

 $\mathbf{x} = -\frac{\mathbf{b}}{\mathbf{a}}$

LEMBRE-SE:

Toda função de 1º grau é injetora

Toda função do 1º grau definida R → R é bijetora

O ponto do gráfico que corta o eixo y é o valor da constante b

A função de 1º grau é ímpar quando b = 0

Exercícios

47. Dada a função de 1° grau, f(x) = x + 3, calcule:

a) f(0)

d) f(-1)

b) f(1)

e) f(8)

c) f(4)

48. Para que valores reais de m, f(x) = (m - 3)x + 6 é crescente?

49. Para que valores reais de a, f(x) = (a + 2)x - 1 é decrescente?

50. Sendo
$$f(x) = \frac{1}{3}x + \frac{1}{4}$$
, calcule o valor de $f\left(\frac{1}{3}\right) + f\left(-\frac{1}{4}\right)$.

51. Se g(x) = mx + 4, calcular m de modo que g(2) = 10.

52. Se g(x) = 2x + b, calcular b para que g(-1) = 3.

53. Dada a função $f:R \rightarrow R$, f(x) = 2x + m. Calcular m, sendo f(f(1)) = 13.

54. (UFMA) O gráfico da função f(x) = ax + b intercepta o eixo dos x no ponto de abscissa 4 e passa pelo ponto (1, -3), então a função f(x) é:

a)
$$f(x) = x - 3$$

c)
$$f(x) = 2x - 5$$

e)
$$f(x) = 3x - 6$$

b)
$$f(x) = x - 4$$

d)
$$f(x) = -2x - 1$$

55. (FCC-BA) Seja a função $f: R \rightarrow R$, tal que f(x) = ax + b. Se os pontos (0, -3) e (2, 0) pertencem ao gráfico de f, então a + b é igual a:

a)
$$\frac{9}{2}$$

c)
$$\frac{2}{3}$$

c)
$$\frac{2}{3}$$
 d) $\frac{-3}{2}$

56. (UFCE) Seja f uma função real, de variável real, definida por f(x) = ax + b. Se f(1) = -9 e $b^2 - a^2 = 54$, calcule o valor de a - b.

57. Um recipiente contendo certa T (°C) substância, foi levado ao fogo durante 12 minutos. A figura a seguir mostra a variação da temperatura substância em função do tempo do experimento. Determine a expressão da função que associa a temperatura T ao tempo t.

58. Dada a função f(x) = ax + b, calcule "a" e "b" sabendo que f(0) = 3 e f(-3) = 0.

59. (ACAFE) A função representada no gráfico abaixo é:

a)
$$y = 2x + 2$$

b)
$$y = -2x + 2$$

c)
$$y = x + 2$$

d)
$$y = x - 2$$

e)
$$y = 2x - 2$$

6.3 Função de 2º Grau ou função quadrática

É a função f: $\mathbb{R} \to \mathbb{R}$ definida por f(x) = ax² + bx + c, com a, b e c $\in \mathbb{R}$ e a $\neq 0$.

Domínio: $D(f) = \mathbb{R}$

Gráfico: é uma parábola, com o eixo de simetria paralelo ao eixo dos y.

Coordenadas do vértice:

$$V = (x_v, y_v)$$

$$x_v = -\frac{b}{2a}$$

$$y_v = -\frac{\Delta}{4a}$$

, onde
$$\Delta=b^2$$
 - 4ac

Valor máximo e valor mínimo

Se a > 0, o valor mínimo é y_v pois a concavidade é para cima Se a < 0, o valor máximo é y_v pois a concavidade é para baixo.

Imagem: Se a > 0, Im(f) = $\{y \in R \mid y \ge y_v \}$ Se a < 0, Im(f) = $\{y \in R \mid y \le y_v \}$

Zeros da função: Báscara: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Exercícios

60. Dada a função $f(x) = (m + 3) x^2 + 5x - 4$, determine **m** para que f seja uma função quadrática.

61. Sabe-se que $f(x) = (2m + 5) x^2 + 6x + 4 m^2$ é uma função de 2^0 grau e que f(0) = 25. Calcule o valor de **m**.

62. Obtenha as coordenadas dos pontos comuns dos gráficos de y = x + 5 e $y = x^2 - x + 2$.

63. (F.D.B - DF) Na função de 2^{0} grau $y = ax^{2} + bx + c$, tem-se a < 0, b > 0 e c = 0. Então o gráfico dessa função tem a seguinte configuração.

64. Some os valores associados às afirmativas verdadeiras:

- 01. $y = x^2 3x + 2$, admite um ponto de mínimo.
- 02. $y = -x^2 + 8x + 3$, admite um ponto de mínimo.
- 04. $y = x^2 6x 4$, admite um ponto de máximo.
- 08. $y = -x^2 + 9x + 3$, admite um ponto de máximo.

65. Determine as coordenadas do vértice de:

- a) $f(x) = x^2 4x + 3$
- b) $f(x) = x^2 + 8x$

- c) $f(x) = x^2 3$
- d) $f(x) = x^2 + 10x 1$
- e) $f(x) = -x^2 + 6x 7$
- f) $f(x) = -x^2 + 2x$
- **66.** Dada a função quadrática f:R \rightarrow R, sendo f(x) = -x² + 6x 1, o seu vértice é:
- a) máximo, V = (3, 8)

c) mínimo, V = (3, -8)

b) máximo, V = (-3, -8)

- d) mínimo, V = (-3, 8)
- **67.** Construa os gráficos das funções f: R → R:
- a) $v = x^2 2x + 1$
- b) $y = x^2 4x$
- c) $y = -x^2 + 2x$
- d) $y = -x^2 3x + 2$
- e) $y = -x^2 + 3x$
- f) $y = x^2 + 4x + 5$
- **68.** Encontre a ordenada de cada vértice e responda qual é o conjunto imagem das seguintes funções:
- a) $f(x) = x^2 2x + 1$
- b) $f(x) = 3x^2 6x + 7$
- c) $f(x) = -x^2 + 2x$
- **69.** O custo para se produzir x unidades de um determinado produto é dado pela função $C(x) = 2x^2 100x + 5000$. Encontre o custo mínimo.
- **70.** (UFPA) A parábola abaixo representa graficamente a função quadrática $v = ax^2 + bx + c$.

Assim sendo, podemos afirmar que:

- b) a > 0, b > 0 e c < 0
- c) a > 0, b > 0 e c = 0
- d) a > 0, b < 0 e c > 0
- e) a > 0, b < 0 e c < 0

71. (CESGRANRIO) Considere o gráfico a seguir, que representa a função definida por $y = 2x^2 - 5x + c$. As coordenadas do vértice V da parábola são:

Prof. Bruno

a)
$$\left(\frac{5}{4}, -\frac{9}{8}\right)$$

a)
$$\left(\frac{5}{4}, -\frac{9}{8}\right)$$
 c) $\left(-\frac{5}{4}, -2\right)$

b)
$$\left(\frac{5}{4}, -\frac{3}{5}\right)$$
 d) $\left(\frac{1}{2}, -\frac{2}{3}\right)$

d)
$$\left(\frac{1}{2}, -\frac{2}{3}\right)$$

72. Observando-se o gráfico, onde estão representados três parábolas (I), (II) e (III), de equações $f(x) = ax^2$, $f(x) = bx^2$ e $f(x) = cx^2$, respectivamente, conclui-se que:

a)
$$a < b < c < 0$$

b)
$$0 < c < b < a$$

d)
$$c < b < a < 0$$

73. (ACAFE - 90) Com relação ao gráfico podemos afirmar que:

- a) O vértice é (2, -1) e Δ = 0.
- b) O ponto de intersecção com y é (3, 0) e Δ = 0.
- c) Os zeros são 1 e 3 e Δ > 0.
- d) A imagem da função é]-1, ∞[.
- e) Os pontos de intersecção com os eixos coordenados são (3, 0) e (1, 3).

74. (OSEC-SP) O trinômio do 2° grau $y = (m-1)x^2 + mx + m$, onde $m \in R$, é sempre positivo se, e somente se:

c) m >
$$\frac{4}{3}$$

e) m < 0 ou m >
$$\frac{4}{3}$$

d)
$$1 < m < \frac{4}{3}$$

75. (UFPE) O custo C, em reais, para se produzir n unidades de determinado produto é dado por C = 2510 - 100n + n². Quantas unidades deverão ser produzidas para se obter o custo mínimo?

76. (FGV-SP) O lucro mensal de uma empresa é dado por $L = -x^2 + 30x - 5$, onde x é a quantidade mensal vendida. Pergunta-se:

- a) Qual o lucro mensal máximo possível?
- b) Entre quais valores deve variar x para que o lucro mensal seja, no mínimo, igual a 195?

77. (UFBA) Considere a função quadrática representada por uma parábola que intercepta o eixo 0y em P(0, -2) e cujo vértice é $V\left(\frac{3}{4}, -\frac{25}{8}\right)$. Pode-se, então, afirmar:

- I. $V\left(\frac{3}{4}, -\frac{25}{8}\right)$ é o ponto máximo da função.
- II. A intersecção da parábola com o eixo 0x é (-3, 0).
- III. A equação do eixo de simetria da parábola é $x = \frac{3}{4}$.
- IV. A parábola e a reta y = -x + 2 se interceptam nos pontos (2, 0) e (-1, 3). Quais afirmações são verdadeiras?

78. (PUCC-SP) A trajetória de um projétil foi representada no plano cartesiano por $y = \frac{-x^2}{64} + \frac{x}{16}$, com uma unidade representado o quilômetro. A altura máxima que o projétil atingiu foi:

a) 40 m

c) 16,5 m

e) 62,5 m

b) 64 m

d) 32 m

79. (ACAFE) Para que valores de **p** a função $y = (2 - p)x^2 - 2x - 1$ tem como gráfico uma parábola com a concavidade voltada para baixo e não intercepta o eixo x?

a) p > 2

c) 2

e) p < 3

b) p > 3

d) p < 2

6.4 Função modular

a) Módulo

Denomina-se módulo de um número real qualquer, ao próprio número (se este é positivo ou nulo) ou ao seu oposto (se este é negativo), ou seja,

logo,
$$|x| = x, \text{ se } x \ge 0 \\ |x| = -x, \text{ se } x < 0$$

$$|x| \ge 0, \forall x \in \mathbb{R}$$

Na reta dos números reais, o módulo de um número representa a distância deste número ao número zero.

Exemplo: |-a| = a, |a| = a

b) Equações modulares

São as equações que apresentam a incógnita em uma expressão em módulo. Para encontrar a solução da equação modular, reduzindo a equação a uma outra de solução conhecida.

Exemplos:
$$|2x| = 4 \Rightarrow 2x = 4 \rightarrow x = 2 \Rightarrow S = \{-2, 2\}$$

 $-2x = 4 \rightarrow x = -2$

|2x| = -4 \Rightarrow como o módulo é sempre um número positivo, não existe $x \in \mathbb{R}$, que satisfaça a equação, logo a solução $S = \emptyset$.

c) Função modular

É a função f: \mathbb{R} → \mathbb{R} definida por $f(\mathbf{x}) = |\mathbf{x}|$,

Domínio: $D(f) = \mathbb{R}$

Imagem: $Im(f) = \mathbb{R} +$

Gráfico: são duas retas, acima do eixo x e simétricas ao eixo dos y.

As retas se interceptam na origem do plano cartesiano.

LEMBRE-SE: $\sqrt{x^2} = |x|$

d) Funções compostas com função modular

Existem funções com a incógnita no módulo que são obtidas a partir da função composta da modular (f(x) = |x|) e outra função real (1º grau, 2º grau, etc.).

Exemplo 1: A função y = |x| + a, definida de $R \rightarrow R$, é obtida da composição de g(x) = x + a e f(x) = |x|, ou seja g(f(x)) = y = |x| + a

Neste caso o domínio $D(gof) = \mathbf{R}$ porém a imagem será o intervalo fechado $[a,\infty)$, isto é $Im(gof) = \{ y \in \mathbf{R} \mid y \geq a \}$ e o gráfico apresenta duas retas acima do eixo x, simétricas em relação ao eixo y que se cruzam no ponto y = a

e) {-1, 1, 4}

Exemplo 2: A função y = |x + a|, definida de $R \rightarrow R$, é obtida da composição de g(x) = |x| e f(x) = x + a, ou seja g(f(x)) = y = |x + a|.

Neste caso o domínio $D(gof) = \mathbf{R}$ porém a imagem será o intervalo fechado $[0,\infty)$, isto é $Im(gof) = \{ y \in \mathbf{R} \mid y \geq 0 \}$, e o gráfico apresenta duas retas acima do eixo x que se cruzam no ponto x = -a. Observe que $\underline{não}$ existe simetria em relação ao eixo y.

Exercícios

80. (UCS-RS) O conjunto solução da equação $|x|^2 + 3|x| - 4 = 0$ é:

a) {1}

- c) {4}
- d) {1, 4}
- b) {-1, 1}
- 81. Resolva as equações:
- a) |x 1| = 4
- b) |x + 1| = 9
- c) |x-3|=5
- d) |x + 1| = -5
- 82. Encontre o conjunto solução de:
- a) |x 2| = x
- b) |2x 1| = x
- c) |2x + 1| = x
- d) |x| = x 3

7. Inequações

Seja a função real y = f(x) na variável real x. Inequação é uma das seguintes desigualdades:

$$f(x) \ge 0$$

$$f(x) \leq 0$$

Resolver uma inequação é determinar os valores da variável x para os quais ocorre uma das desigualdades citadas.

7.1 Inequações de 1º grau

São expressões do tipo: ax + b > 0 $ax + b \ge 0$ ax + b < 0 $ax + b \le 0$ Solução gráfica:

Prof. Bruno

7.2 Inequações de 2º grau

São expressões do tipo: $ax^2 + bx + c > 0$

 $ax^2 + bx + c < 0$

 $ax^2 + bx + c \ge 0$ $ax^2 + bx + c \le 0$

Solução gráfica:

$$a < 0 e \Delta = 0$$

7.3 Inequações modulares

São expressões do tipo: $|x| \ge a \Rightarrow x \ge a$

x ≤ -a

Solução gráfica:

-a

 $|x| \le a \Rightarrow -a \le x \le a$ -a

7.4 Inequações simultâneas ou sistema de inequações

São inequações do tipo:
$$f(x) \le g(x) \le h(x)$$
 ou $\begin{cases} f(x) > 0 \rightarrow S_1 \\ g(x) \le 0 \rightarrow S_2 \end{cases}$

A solução deste sistema será a intersecção S_1 e S_2 ., isto é, $S_1 \cap S_2$.

7.5 Inequações produto ou quociente

Chamam-se inequações produto aquelas redutíveis a forma $f(x) \cdot g(x) > 0$ (ou <, \leq , \geq e \neq), onde f(x) e g(x) são funções de variável x. Para resolver, faz-se o estudo do sinal de f(x) e g(x) e aplica-se a regra dos sinais.

Chamam-se inequações quociente aquelas redutíveis a forma $\frac{f(x)}{g(x)} > 0$

(ou <, \le , \ge e \ne), onde f(x) e g(x) são funções de variável x.

Para resolver, faz-se o estudo do sinal de f(x) e g(x) e aplica-se a regra dos sinais, observando, apenas, que o denominador não pode ser nulo, ou seja, $g(x) \neq 0$.

Exercícios

83. Resolva as inequações:

a)
$$3x - 4 \ge 0$$

g)
$$-3x^2 + 5x - 7 < 0$$

b)
$$-5x - 1 < 0$$

h)
$$(x^2 - 25).(3x - 6) < 0$$

c)
$$3-4x > x-7$$

i)
$$\frac{-x^2+9x-20}{2x-6} \ge 0$$

d)
$$\frac{x}{4} - \frac{3.(x-1)}{10} \le 1$$

e) $\begin{cases} 3x - 1 > 0 \\ -x - 2 > 0 \end{cases}$

$$j) \quad \frac{x+15}{x^2-10x+25} \, \leq 1$$

k)
$$\begin{cases} x^2 + 16x - 80 < 0 \\ 2x + 7 \ge 0 \end{cases}$$

$$1) \quad 6 \le x^2 + 4x + 1 < 3x + 3$$

m)
$$|x - 5| < 2$$

n)
$$|x + 6| - 1 > 0$$

f)
$$x^2 + 14x + 49 > 0$$

84. Resolva as inequações do 2º grau, no conjunto R:

a)
$$x^2 - 5x + 6 \le 0$$

b)
$$x^2 - 7x + 6 \ge 0$$

c)
$$x^2 - 6x < 0$$

d)
$$x^2 - 4x + 4 \ge 0$$

e)
$$x^2 - x - 2 < 0$$

f)
$$x^2 - 1 \ge 0$$

$$\textbf{85.}(\text{UEMT}) \text{ A solução do sistema } \begin{cases} 3x+2<7-2x\\ 48x<3x+10 & \text{\'e o conjunto de} \\ 11-2(x-3)>1-3(x-5) \end{cases}$$

todos os números reais x, tais que:

a)
$$-1 < x < 0$$

c)
$$-1 < x < 1$$

e)
$$-1 < x < \frac{2}{9}$$

b)
$$-1 < x < \frac{1}{3}$$

c)
$$-1 < x < 1$$

d) $-1 < x < \frac{4}{9}$

86. As figuras 1 e 2 mostram as funções f(x) e g(x) representadas pelos seus gráficos cartesianos.

Fig. 1

Qual a solução da inequação $\frac{f(x)}{g(x)} \ge 0$?

87.(PUC-MG) O conjunto solução da inequação $\frac{3x-2}{x-3} \le 1$ é $S = \{x \in R \mid a \le x < b\}$.

O valor de $\left| \frac{b}{a} \right|$ é:

a)
$$\frac{3}{2}$$

b)
$$\frac{5}{3}$$

88. (PUC-MG) A solução da inequação $\frac{3}{3-2x-x^2}$ < 1 é o conjunto de valores

de x, tais que:

a)
$$-3 < x < -2$$
 ou $0 < x < 1$

b)
$$x < -3$$
 ou $-2 < x < 0$ ou $x > 1$

c)
$$x < -2$$
 ou $x > 0$

d)
$$-3 < x < 1$$

e)
$$x < -3$$
 ou $x > 0$

89. (FUVEST) O conjunto solução de $(-x^2 + 7x - 15).(x^2 + 1) < 0$ é:

a) Ø

c) R

e) R₊

b) [3,5]

d) [-1, 1]

90. (MACK-SP) O conjunto solução de 1 < |x - 3| < 4 é o conjunto dos números x tais que:

a) 4 < x < 7 ou -1 < x < 2

d) 0 < x < 4

b) -1 < x < 7 ou -3 < x < -1

e) -1 < x < 4 ou 2 < x < 7

c) -1 < x < 7 ou 2 < x < 4

91. (FEI-SP) Se $|x + 1| \le |2x - 3|$, então:

- a) $x \ge \frac{2}{3}$
- b) $x \le \frac{2}{3}$ ou $x \ge 4$
- c) $x \le 0$ ou $x \ge 3$
- d) não existe $x \in R$ que satisfaça a desigualdade
- e) $0 \le x \le \frac{2}{3}$

92. (UERJ) No sistema de coordenadas cartesianas estão representadas as funções f(x) = 4x - 4 e $g(x) = 2x^2 - 12x + 10$.

b) o conjunto solução da inequação $\frac{g(x)}{f(x)} < 0$, $f(x) \neq 0$.