

Hypoxia and Circulating Tumor Cells in Pancreatic Cancer

Douglas Wu Lambowitz lab

Pancreatic cancer

- Low survival rate
- Highly metastatic

Metastasis

Circulating tumor cells

Adapted from National Cancer Institute

Cancer stem cells

The cancer stem cell model

Epithelial-mesenchymal transition promotes invasion

Hypoxic environment promotes EMT

Hypoxic environment promotes EMT

Hypothesis

Hypoxic environment promotes CTC production, intravasation and tumorigenicity

Hypothesis: Hypoxic environment promotes CTC production, intravasation and tumorigenicity

Challenge: No clear definition of CTCs

Hypothesis: Hypoxic environment promotes CTC production, intravasation and tumorigenicity

CTC heterogeneity

Ting et al.. Cell Reports. 2014

HIF1-a mRNA is more abundant in CTCs

 HIF1-a can be post-transcriptionally regulated through its 3' UTR

Yasuda et al. BBRC, 2014

annotation

circulating tumor cells (n=109)

primary tumor (TuGMP3) (n=38)

Thanks to Pubmed's GEO Datasets!

Hypothesis: Hypoxic environment promotes CTC production, intravasation and tumorigenicity

Specific aims

1. Investigate up-regulation of molecules in the hypoxia signaling pathway in CTCs.

2. Identify the effects of hypoxia on CTC biogenesis.

3. Investigate hypoxia-mediated enhanced tumorigenicity of CTCs.

Aim 1: Investigate up-regulation of molecules in the hypoxia signaling pathway.

Hypothesis

Hypoxia signaling is up-regulated in CTCs

Aim 1: Investigate up-regulation of molecules in the hypoxia signaling pathway.

Tumor model

KPC mice

Aim 1: Approach

Aim 1: Immunofluorescence stain

Aim 1: Immunofluorescence stain

Vimentin
E-cadherin
DAPI

Aim 1: Immunofluorescence stain

Expected results in CTCs

- Vimentin
- HIF1-a
- DAPI

Aim 1: Investigate up-regulation of molecules in the hypoxia signaling pathway.

Predictions

- 1. Immunofluorescence staining shows HIF1-a in CTCs
- 2. Downstream targets also up-regulated

HIF1-a is a master regulator in hypoxia signaling

Single cell RNA-seq of CTCs had active hypoxia signaling

Downstream targets of HIF1-a are also up-regulated

Single cell RNA-seq of CTCs had active hypoxia signaling

Biplot: HIF1-a downstream targets introduce variations between CTCs and primary tumor cells

Aim 1: Investigate up-regulation of molecules in the hypoxia signaling pathway.

Summary

- CTCs show EMT markers with hypoxia phenotype
- Downstream targets of HIF1-a upregulated in CTCs

Hypothesis: Hypoxic environment promotes CTC production, intravasation and tumorigenicity

Specific aims

1. Investigate up-regulation of molecules in the hypoxia signaling pathway in CTC.

2. Identify the effects of hypoxia on CTC biogenesis.

3. Investigate hypoxia-mediated enhanced tumorigenicity of CTCs.

Aim 2: Identify the effects of hypoxia on CTC biogenesis

Hypothesis

Loss of HIF1-a reduces CTCs production

Aim 2: Approach

Aim 2: Predictions HIF1-a knockdown cells tumor xenograft shows slower growth rate

Tumor size

correlate to previous study

Schwab et al. BCR. 2012

Aim 2: Predictions Mice implanted with HIF1-a knockdown cells have fewer CTCs

- CTC count
 - Decrease in HIF1-a knockout
- Change in CTC subtypes
 - Decrease in CTC EMT+ subtype

Aim 2: Identify the effects of hypoxia on CTC biogenesis

Summary

- Tumor size decreases
- Fewer CTCs
- Change in CTC count is due to loss of EMT+ subtype

Hypothesis: Hypoxic environment promotes CTC production, intravasation and tumorigenicity

Specific aims

1. Investigate up-regulation of molecules in the hypoxia signaling pathway in CTC.

2. Identify the effects of hypoxia on CTC biogenesis.

3. Investigate hypoxia-mediated enhanced tumorigenicity of CTCs.

Aim 3: Investigate hypoxia-mediated enhanced tumorigenicity of CTCs.

Hypothesis

Loss of HIF1-a reduces CTC tumorigenicity

Aim 3: Approcah

SEPARATION

FOCUSING

LABELING

SORTING

Xenograft

Aim 3: Approcah

Aim 3: Investigate hypoxia-mediated enhanced extravasation of CTCs.

Alternative: 3D soft fibrin matrix assay

Aim 3: Expected result

 Decrease in tumorigenicity from CTCs collected from mice implanted with HIF1a knockdown MIA PaCa-2 cells

Summary

