Teoria da Computação

Reduções e Problemas Indecidíveis

Thiago Alves

- IND = {"G"#"k" | G tem um conjunto independente de tamanho k}
- Um conjunto independente em um grafo é um conjunto de vértices que não tem ligações entre si

- CLIQUE = {"G"#"k" | G tem uma clique de tamanho k}
- Uma clique de um grafo é um subgrafo em que todos os vértices são ligados entre si

- Imagine que já temos um algoritmo para decidir CLIQUE
- Será que podemos usar esse algoritmo para decidir o IND?

- Vamos construir uma função tal que "G"#"k" ∈ IND sse f("G"#"k") ∈ CLIQUE
 - Transforma uma entrada do IND em uma entrada do CLIQUE
 - Se "G"#"k" ∈ IND então f("G"#"k") ∈ CLIQUE

- Nossa função f vai ser a função que retorna o complemento de um grafo de entrada
 - Se G tem um conjunto independente de tamanho k então o complemento de G tem clique de tamanho k
 - Se G não tem conjunto independente de tamanho k então o complemento de G não tem clique de tamanho k

Como usar a função que retorna o complemento de um grafo e um algoritmo que decide o CLIQUE para decidir o IND?

```
temIndSet(g, k)
g2,k2 = complement(g,k)
return temClique(g2,k2)
```

Definição

- Uma redução de L₁ para L₂ é uma função computável f tal que
 - $X \in L_1$ se e somente se $f(x) \in L_2$
- Com a redução f e um algoritmo que decide L₂ conseguimos decidir L₁
- Dizemos que L₁ se reduz a L₂
- \bullet $L_1 \leq_m L_2$

Redução

- ♦ Se $L_1 \leq_m L_2$ e L_2 é decidível
 - O que podemos dizer de L₁?

Redução

- ♦ Se $L_1 \leq_m L_2$ e L_2 é decidível
 - O que podemos dizer de L₁?
 - L₁ também é decidível!

Reduções

- ◆ Teorema: Se L_2 é decidível e $L_1 \leq_m L_2$ então L_1 é decidível
- Prova:
 - Seja M₂ a máquina que decide L₂ e M_r a máquina da redução
 - Podemos construir M_1 que executa M_r com a entrada e depois executa M_2
 - \mathbf{M}_1 decide \mathbf{L}_1

Reduções

- Vamos utilizar reduções para mostrar outros problemas indecidíveis
- Forma mais fácil de mostrar que um problema não é decidível

 $L_{\epsilon} = \{ "M" \mid M \text{ pára com } \epsilon \} \text{ não é decidível}$

- Prova:
 - Suponha L_ε decidível
 - Vamos mostrar que H ≤_m L_ε
 - Seja "M"#"w" uma entrada de H
 - Podemos construir M' que escreve w na fita se na configuração inicial tem B
 - Nesse caso, depois M' simula M

◆ Entendendo a redução H ≤_m L_ε:

```
reduction(M, w)
return M'(x)
  if x == &
    return M(w)
  return False
```

- ◆ Entendendo a redução H ≤_m L_ε:
 - Se M' pára com ε então M pára com w
 - Se M' não pára com ε então M não pára com w
- "M"#"w" \in H sse "M"" \in L_{ϵ}
- "M"#"w" \in H sse f("M"#"w") \in L_{ϵ}
- ♦Logo, $H \leq_m L_ε$

- Prova:
 - Fizemos a suposição de que L_ε é decidível. Logo, H também é decidível.
 - Absurdo! Logo, L_ε não é decidível.

♦ $S = \{ "M" \mid L(M) \neq \emptyset \}$ não é decidível

- Prova:
 - Suponha S decidível
 - Vamos mostrar que A ≤_m S
 - Seja "M"#"w" uma entrada de A
 - Vamos construir M' que verifica se sua entrada x é igual a w
 - Se não for, rejeita
 - Se for igual, simular M com w e aceitar se e somente se M aceitar w

◆ Entendendo a redução A ≤_m S:

```
reduction(M, w):
  return M'(x):
      if x == w:
         return M(w)
      return False
```

- Se M aceita w então M' só aceita w
- Se M não aceita w então M' não aceita nenhuma string

- Prova:
 - M aceita w sse M' aceita alguma entrada
 - M''' "M''' "M''" M''" M''"
 -) "M"#"w" ∈ A sse "M" ∈ S
 - M'' "M''" "M''"
 - Logo, A ≤_m S

- Prova:
 - Fizemos a suposição de que S é decidível. Logo, A também é decidível.

Absurdo! Logo, S não é decidível.

◆ Seja duas linguagens L_1 e L_2 . Se $L_1 \le_m L_2$ e L_1 não é decidível então L_2 não é decidível.

- ◆ Seja duas linguagens L_1 e L_2 . Se $L_1 \le_m L_2$ e L_1 não é decidível então L_2 não é decidível.
- Prova:
 - Suponha L₂ decidível.
 - ▶ Logo, L₁ é decidível.
 - Absurdo! Logo, L₂ não é decidível.

◆ Seja duas linguagens L_1 e L_2 . Se $L_1 \le_m L_2$ e L_1 não é r.e. então L_2 não é r.e.

- Prova:
 - Suponha L₂ r.e.
 - Seja M₂ a máquina que reconhece L₂ e M_r a máquina da redução
 - Podemos construir M_1 que executa M_r com a entrada e depois executa M_2
 - M₁ reconhece L₁
 - Logo, L₁ é r.e. Absurdo! Portanto, L₂ não é r.e.