## Планирование эксперимента

Георгий Калашнов, Ольга Сучкова

16 марта 2020 г.

#### План на сегодня

Планирование эксперимента Генерация treatment переменной

Publication bias и пререгистрация

Коррекция Бонферони Контроль Family-wise ошибки

Контрольные переменные, чтобы измежать смещения

Примеры

Confounders

#### Table of Contents

Планирование эксперимента Генерация treatment переменной

Publication bias и пререгистрация

Коррекция Бонферони Контроль Family-wise ошибки

Контрольные переменные, чтобы измежать смещения

Confounders

Contounders

## Что важно предусмотреть при генерации переменной

- Престратификация
- ▶ Проверить баланс ковариатов
- Предусмотреть воспроизводимость

### Воспроизводимость

- ▶ Если вы генерировали случайные числа, как их воспроизвести?
- С помощь seed value.
- Как в эксперименте на выборах в Государственную Думу
- Обобщение идеи с Государственной Думой: Хэш функция

#### Table of Contents

Планирование эксперимента Генерация treatment переменной

#### Publication bias и пререгистрация

Коррекция Бонферони Контроль Family-wise ошибки

Контрольные переменные, чтобы измежать смещения

Примеры

Confounders

#### Table of Contents

Планирование эксперимента Генерация treatment переменной

Publication bias и пререгистрация

Коррекция Бонферони Контроль Family-wise ошибки

Контрольные переменные, чтобы измежать смещения

Примеры

Confounders

### Пример

1. Мы верим, что эксперимент влияет хоть на что-то. Мы провели много тестов и все они провалились. А давайте проверим еще эффект на заработную плату через 2 года после выпуска в подгруппе людей до 23 лет. Там то эффект есть?

## Почему так нельзя

 $H_0$ : treament ни на что не влияет

$$P(test1|H_{0t1}) = 0.05$$
  
 $P(test2|H_{0t2}) = 0.05$ 

Family-wise уровень значимости (FWER): вероятность отвергнуть верную нулевуюю гипотезу хотя бы в одном тесте.

Предположим test1 и test2 распределены независимо, тогда

$$FWER = 1 - (1 - P(test1|H_0))(1 - P(test2|H_0)) > 0.05$$

В случае зависимости проблема сохраняется



## Коррекция Бонферрони

Просто поделить уровень значимости на количество тестов  $\alpha' = \frac{\alpha}{m}$ 

$$\mathsf{FWER} \leq \sum_{i=1}^{m} P(\mathit{testi}|H_0)) = m\alpha' = \alpha$$

## Восходящая процедура Хольма

- 1. Отсортировать увовни значимости тестов по возрастанию:  $P_{(1)},\ P_{(2)},\ ...,\ P_{(m)}$
- 2. Найти минимальный k такой, что  $P_{(k)} > rac{lpha}{m+1-k}$
- 3. отвергнуть все гипотезы с индексом i < k

## Еще варианты

- Коррекция Бонферрони
- Коррекция Сидака (альтернатива Бонферрони)
- Восходящая процедура Хольма
- Нисходящая процедура Сидака (альтернатива Хольму)

#### Table of Contents

Планирование эксперимента Генерация treatment переменной

Publication bias и пререгистрация

Коррекция Бонферони Контроль Family-wise ошибки

Контрольные переменные, чтобы измежать смещения

Примеры

Confounders

## Пример: эффект от обучения на результаты по математике (Barnard и др. 2003)

- Абитуриентам из бедных семей случайным образом предлагалась грант на обучение в частной школе
- Предполагалось выдавать грант случайным образом, но
  - Детям из сильных школ давали грант с большей вероятностью
- ▶ Выполнено ли  $(X, Y_1, Y_0) \perp T$ ?

Φ

$$\frac{N_{H}}{N} \left( \frac{1}{N_{TH}} \sum_{T=1,S=H} Y - \frac{1}{N_{CH}} \sum_{T=0,S=H} Y \right) + \frac{N_{L}}{N} \left( \frac{1}{N_{TL}} \sum_{T=1,S=L} Y - \frac{1}{N_{CL}} \sum_{T=0,S=L} Y \right)$$

## Проверка баланса ковариатов

Table 2. Design Comparisons in Balance of Background Variables: Single-Child Families. The Numbers Are
Z Statistics From Comparing Observed Values of Variables Between Assignments

|                               | Ар                   | Periods 2–5              |       |                     |
|-------------------------------|----------------------|--------------------------|-------|---------------------|
| Variable                      | Simple random sample | Stratified random sample | PMPD  | Randomized<br>block |
| Applicant's school (low/high) | 98                   | 0                        | .11   | .21                 |
| Grade level                   | -1.63                | .03                      | 03    | 39                  |
| Pretest read score            | 38                   | .65                      | .48   | -1.05               |
| Pretest math score            | −. <b>5</b> 1        | 1.17                     | .20   | -1.37               |
| African-American              | 1.80                 | 1.68                     | 1.59  | 1.74                |
| Mother's education            | .16                  | .14                      | .09   | 1.67                |
| In special education          | .31                  | 1.66                     | 17    | .22                 |
| In gifted program             | .42                  | -1.16                    | 13    | .75                 |
| English main language         | -1.06                | 02                       | -1.03 | 44                  |
| AFDC                          | 28                   | .49                      | .83   | -1.57               |
| Food stamps                   | -1.08                | 27                       | .94   | -1.31               |
| Mother works                  | -1.26                | 30                       | -1.18 | .40                 |
| Educational expectations      | .50                  | 1.79                     | .57   | .19                 |
| Children in household         | -1.01                | -1.75                    | .41   | -1.02               |
| Child born in U.S.            | .49                  | .73                      | -1.40 | 69                  |
| Length of residence           | .42                  | .71                      | .66   | 78                  |
| Father's work missing         | 1.09                 | .70                      | 0     | .16                 |
| Catholic religion             | -1.84                | 19                       | 74    | 80                  |
| Male                          | .88                  | 1.22                     | .76   | .53                 |
| Income                        | 38                   | 62                       | .74   | -1.21               |
| Age as of 4/97                | -1.57                | .18                      | 47    | 87                  |

## Пример 2: Долгосрочный эффект от RD (Schweiger, Stepanov и Zacchia 2018)



## Проблема в Confounders

- ▶ Covariates X, коррелирующие с Y
- ► Confounders X, коррелирующие с Y и с T

Схема

## Иллюстрация 1

|           | $Y_1$ | <i>Y</i> <sub>0</sub> | X         |
|-----------|-------|-----------------------|-----------|
| Пациент 1 | -     | 37.8                  | Из Европы |
| Пациент 2 | _     | 37.6                  | Из Европы |
| Пациент 3 | _     | 40                    | Из Азии   |
| Пациент 4 | 36.6  | -                     | Из Европы |
| Пациент 5 | 38    | -                     | Из Азии   |
| Пациент 6 | 39.2  | -                     | Из Азии   |

В чем проблема и что можно сделать?

- Нет баланса по X!
- ▶ Что с  $T_i \perp (Y(1)_i, Y(0)_i, X_i)$  ?

## Иллюстрация 2

|           | $Y_1$ | Y <sub>0</sub> | X                           |
|-----------|-------|----------------|-----------------------------|
| Пациент 1 | -     | 37.8           | Эксперимент в 2019 Р = 0.33 |
| Пациент 2 | _     | 37.6           | Эксперимент в 2019 Р = 0.33 |
| Пациент 4 | 36.6  | -              | Эксперимент в 2019 Р = 0.33 |
| Пациент 3 | -     | 40             | Эксперимент в 2020 Р = 0.66 |
| Пациент 5 | 38    | _              | Эксперимент в 2020 Р = 0.66 |
| Пациент 6 | 39.2  | _              | Эксперимент в 2020 Р = 0.66 |

- ▶ В экспериментах разные Р. По чему теперь нет баланса?
- ► Что с  $T_i \perp (Y(1)_i, Y(0)_i, X_i)$  ?

## Иллюстрация 3

|           | $Y_1$ | Y <sub>0</sub> | X                        |
|-----------|-------|----------------|--------------------------|
| Пациент 1 | -     | 37.8           | Эксперимент в 2019 Р = 0 |
| Пациент 2 | _     | 37.6           | Эксперимент в 2019 Р = 0 |
| Пациент 4 | _     | 36.6           | Эксперимент в 2019 Р = 0 |
| Пациент 3 | 40    | _              | Эксперимент в 2020 Р = 1 |
| Пациент 5 | 38    | -              | Эксперимент в 2020 Р = 1 |
| Пациент б | 39.2  | -              | Эксперимент в 2020 Р =1  |

▶ Можем что-то сделать?

## Unconfoundedness и Overlap

- $ightharpoonup T_i \perp (Y(1)_i, Y(0)_i, X_i)$  идеальный эксперимент
- Вероятность попасть в тритмент-группу известна и одинакова для всех
- $ightharpoonup T_i \perp (Y(1)_i, Y(0)_i | X_i)$  unconfoundedness (CIA, conditional independence assumption). Если взять людей с одинаковыми харатеристиками, то факт, что они в такой-то группе, не зависит от потенциальных исходов
- $e(X_i) = E(D_i|X_i) \in (0,1)$  overlap. Вероятность попадания в тритмент-группу зависит от характеристик и ненулевая для всех значений X

# Литература: книжки

## Литаратура: статьи

- Barnard, John и др. (2003). «Principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City». в: Journal of the American Statistical Association 98.462, с. 299—323.
- Schweiger, Helena, Alexander Stepanov и Paolo Zacchia (2018). «The long-run effects of R&D place-based policies: evidence from Russian science cities». В: