Threat Modeling at Scale

From One to Many

Today's Agenda

01

Threat Modeling?

02

Once

03

Many

04

Takeaways

01: Threat Modeling?

- Seeks to identify security deficiencies in a system
- System can be an application, environment, or ecosystem
- Prioritization of threats based on decompressing the system
- Commonly applied to developer workflows, but can apply elsewhere
- With enough information, anything can be threat modeled

But... Why?

Prevent issues from reaching production

Analyze the full scope and intent of the target of the threat model

Prioritize security controls and resources that will have the most impact

Optimize usage of internal resources, skills, and capabilities

Initial Infection Vector (When Identified)

Benefits of Threat Models

Sample Findings / "Core Benefits"

Business Logic Issues

- Payment processing orchestration on client-side
- Lack of controls applied to business process

Operational Issues

- Lack of monitoring, use cases, response planning
- Unauthenticated access to infrastructure

Development and DevOps Issues

- Hardcoded secrets
- Vulnerable third-party dependencies in use
- Lack of CI/CD pipeline segmentation

Secondary Benefits

Testing and Validation

 Threat model outputs can be used when scoping or executing validation (e.g., penetration testing).

Threat Hunting

 Threat scenarios can feed into threat hunt programs and adopted as the basis for threat hunt hypothesis.

Threat Detection

 Threat scenarios and reference architecture can be used to inform or define threat detection use cases.

• Threat Response

 Threat modeling can be used to identify incident response playbooks or 'plays' to be developed for common scenarios.

Timing Considerations

Where it fits:

- During the development process, based on design or development artifacts - be cautious
- Before production deployments during the development lifecycle, based on design or development artifacts
- After production deployments, based on architectural diagrams or configuration data
- Within other organizational processes (e.g., procurement, architecture reviews, risk assessments, etc.)

When to revisit:

- Significant architecture or technology changes
- Significant shift in threat actor tactics or motivations
- An incident impacting the system

O2: How to Threat Model Once

Many common methodologies exist, all with pros and cons:

- STRIDE
- PASTA
- VAST
- LIDDUN
- MAESTRO
- Adam Shostack's 4-Question Framework
- NIST SP 800-154

The high-level flow outlined leverages multiple frameworks/methods

High-Level Flow

Learn and Build Reference Architecture

Understand the target system's components, connections, and workflows

Collect Threat Intelligence

For our target system, understand what threat actors are motivated by and their TTPs

Create Threat Scenarios and Attack Paths

Using the reference architecture, determine how threat actors can achieve their objectives

Prioritization and Remediation

Determine which threats are likely, and how to prevent, detect, or respond to them

03: How to Threat Model at Scale

Centralized Model

"All for one..."

- Dedicated threat modeling team
- All requests for exercises flow through a static team
- Excels when threat modeling functionalities are purpose-built
- E.g., performed by security operations team for use case development

Centre of Excellence Model

"...And one for all"

- Dedicated multidisciplinary threat modeling function
- All requests for exercises flow through a dynamic team
- Excels at providing scalability and subject matter expertise
- Encourages development of Threat Model
 Champions across organizational units and teams

Developing a Program: Establishing the Program Constructs

Developing a Program: Operationalization Considerations

Implementation and Requirements

Objectives

- Develop program document and requirements
- and threat modeling team
- Communicate program to key stakeholders

Key Milestones

- Program document drafte
- Requirements assigned
- Governance model selected

Exit Criteria

- Initial program requirements are satisfied
- Program governance is determined and communicate

Trials and Training

Objectives

- Ensure team knows their roles
- Trial the program and method
- Perform training where required
- Collect and implemen feedback

Key Milestones

- Teams understand roles and responsibilities in the program
- Teams understand how to threat model
- Trial exercises are scheduled

Exit Criteria

- At minimum, one threat model has been performed
- Feedback was collected and implemented

Program Adoption

Objective

- Communicate program to wider organization
- Accept exercise requests from additional teams o entire organization

Key Milestones

- Program and capabilities communicated to organization
- Integrations with organizational processes completed or in progress
- Method to receive requests established and tested

Exit Criteria

- Program is understood by organization
- Program is operational
- Celebratory pizza party

Developing a Program: Continual Improvement

Methods to assist with continual improvement of the exercises and program:

- Program governance
 - Program maintainers and members
- Metrics
 - Definition of metrics to capture
 - Collection of metrics (manual and automated)
- Feedback forms
 - Two layers of feedback:
 - Activity team members
 - Stakeholders/participants
- Considerations
 - Continually adjust and change
 - Measure against a maturity model

04: Key Takeaways

Thanks for attending!

Thanks to the Prairie Dev Con organizers!

<u>github.com/Aurora-Cyber</u> <u>security/rtmf</u>

Questions?

dylan@auroracyber.ca

Threat Modeling...

- Is a method to determine where security can be introduced or enhanced in a given system
- Outputs can help support the organization from many perspectives
- Can help us focus where to spend our resources
- Can help us optimize the usage of our tools, technologies, or capabilities
- STRIDE, 4-Question Framework, NIST SP 800-154

• A Threat Modeling Program...

- Can help us consistently and regularly conduct threat modeling
- o Can be implemented using a centralized or decentralized model
- Provides a framework to conduct activities, scale, and continually improve

To get started...

- Adopt a methodology
- Conduct one threat model
- Continue to add-on, scale, and grow start slow and build for purpose