1 Исчисление предикатов

1.1 Исчисление предикатов

1.1.1 Язык исчисления предикатов

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - (a) Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - (b) Функциональные выражения: $f(\theta_1, \dots, \theta_n)$, метапеременные f, g, \dots
 - (c) Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные α , β , γ , . . .
 - (a) Предикатные выражения: $P(\theta_1, \dots, \theta_n)$, метапеременная P. Имена: A, B, C, \dots
 - (b) Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.
 - (c) Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

1.1.2 Сокращения записи, метаязык

- 1. Метапеременные:
 - (a) ψ , ϕ , π , ... формулы
 - (b) P, Q, \ldots предикатные символы
 - (c) θ , ...— термы
 - (d) f, g, \ldots функциональные символы
 - (e) x, y, \ldots предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. \ A \lor B \lor C \to \exists b. \underbrace{D \ \& \neg E}_{\exists b...}) \ \& \ F$$

- 3. Дополнительные обозначения при необходимости:
 - (a) $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$
 - (b) $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$
 - (c) 0 вместо z
 - (d) ...

1.1.3 Оценка исчисления предикатов

Определение. Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V \qquad V = \{ \Pi, \Pi \}$$

4. E — оценка для предметных переменных.

$$E(x) \in D$$

1.1.4 Оценка формулы

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x))] \lor R]\!]^{x:=1, f(t):=t^2, R:=H} = M$$

1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;

2.
$$[f_n(\theta_1, \theta_2, \dots, \theta_n)] = F_{f_n}([\theta_1], [\theta_2], \dots, [\theta_n])$$

3.
$$[P_n(\theta_1, \theta_2, \dots, \theta_n)] = P_{T_n}([\theta_1], [\theta_2], \dots, [\theta_n])$$

4.

$$\llbracket\forall x.\phi\rrbracket = \left\{ \begin{array}{ll} \mathbf{H}, & \text{если } \llbracket\phi\rrbracket^{x:=t} = \mathbf{H} \text{ при всех } t \in D \\ \mathbf{\Pi}, & \text{если найдётся } t \in D, \text{ что } \llbracket\phi\rrbracket^{x:=t} = \mathbf{\Pi} \end{array} \right.$$

5.

$$\llbracket\exists x.\phi\rrbracket = \left\{ \begin{array}{l} \mathbf{H}, \quad \text{если найдётся } t \in D, \text{ что } \llbracket\phi\rrbracket^{x:=t} = \mathbf{H} \\ \mathbf{\Pi}, \quad \text{если } \llbracket\phi\rrbracket^{x:=t} = \mathbf{\Pi} \text{ при всех } t \in D \end{array} \right.$$

1.2 Общезначимость, следование, выводимость

1.2.1 Общезначимость

Определение. Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$= \phi$$

To есть истинна при любых D, F, P и E.

1.2.2 Следование, выводимость

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

11.
$$(\forall x.\varphi) \to \varphi[x := \theta]$$

12.
$$\varphi[x := \theta] \to \exists x. \varphi$$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

$$\frac{\varphi \to \psi}{\varphi \to \forall x. \psi}$$
 Правило для \forall

$$\frac{\psi \to \varphi}{(\exists x.\psi) \to \varphi}$$
 Правило для \exists

Определение. Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

1.3 Теорема о дедукции для исчисления предикатов

1.3.1 Теорема

Теорема. Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

1.3.2 Следование

Определение. $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \dots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \dots, \gamma_n$.

Теорема. Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

1.4 Корректность

1.4.1 Теорема

Теорема. Если θ свободен для подстановки вместо x в φ , то $\llbracket \varphi \rrbracket^{x:=\llbracket \theta \rrbracket} = \llbracket \varphi[x:=\theta] \rrbracket$

2 Непротиворечивое множество формул

2.1 Непротиворечивое множество формул

2.1.1 Определение

Определение. Γ — *непротиворечивое множество формул*, если $\Gamma \not\vdash \alpha \& \neg \alpha$ для любого α

2.1.2 Примеры

- 1. непротиворечиво:
 - $\Gamma = \{A \to B \to A\}$
 - $\Gamma = \{P(x,y) \rightarrow \neg P(x,y), \forall x. \forall y. \neg P(x,y)\};$
- 2. противоречиво:
 - $\Gamma = \{P \to \neg P, \neg P \to P\}$ так как $P \to \neg P, \neg P \to P \vdash \neg P \& \neg \neg P$
- 3. пусть $D = \mathbb{Z}$ и $P(x) \equiv (x > 0)$, аналогом для этой модели будет $\Gamma = \{P(1), P(2), P(3), \dots\}$

2.2 Полное непротиворечивое множество формул

Определение. Γ — *полное* непротиворечивое множество замкнутых бескванторных формул, если:

- 1. Г содержит только замкнутые бескванторные формулы;
- 2. если α некоторая замкнутая бескванторная формула, то $\alpha \in \Gamma$ или $\neg \alpha \in \Gamma$.

Определение. Γ — *полное* непротиворечивое множество замкнутых формул, если:

- 1. Г содержит только замкнутые формулы;
- 2. если α некоторая замкнутая формула, то $\alpha \in \Gamma$, или $\neg \alpha \in \Gamma$.

Теорема. Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда, какова бы ни была замкнутая (бескванторная) формула φ , хотя бы $\Gamma \cup \{\varphi\}$ или $\Gamma \cup \{\neg \varphi\}$ — непротиворечиво.

2.3 Доказательство существования моделей у непротиворечивых множеств формул в бескванторном исчислении предикатов.

2.3.1 Модель для множества формул

Определение. Моделью для множества формул F назовём такую модель \mathcal{M} , что при всяком $\varphi \in F$ выполнено $\|\varphi\|_{\mathcal{M}} = \mathbf{N}$

Альтернативное обозначение: $\mathcal{M} \models \varphi$.

2.3.2 Теорема

Теорема. Любое непротиворечивое множество замкнутых бескванторных формул имеет модель.

2.3.3 Доказательство теоремы о существовании модели

Лемма. Пусть φ — бескванторная формула, тогда $\mathcal{M} \models \varphi$ тогда и только тогда, когда $\varphi \in M$ Докозательство теоремы.

Пусть M — непротиворечивое множество замкнутых бескванторных формул.

По теореме о пополнении существует M' — полное непротиворечивое множество замкнутых бескванторных формул, что $M \subseteq M'$.

По лемме M' имеет модель, эта модель подойдёт для M.

2.4 Теорема Гёделя о полноте исчисления предикатов

2.4.1 Теорема

Теорема. Если M — замкнутое непротиворечивое множество формул, то оно имеет модель.

2.5 Полнота исчисления предикатов

2.5.1 Следствие

Следствие (из теоремы Гёделя о полноте). Исчисление предикатов полно.

3 Машина Тьюринга. Задача об останове, её неразрешимость. Неразрешимость исчисления предикатов.

3.1 Машина Тьюринга.

Определение. Машина Тьюринга:

- 1. Внешний алфавит q_1,\ldots,q_n , выделенный символ-заполнитель $q_{arepsilon}$
- 2. Внутренний алфавит (состояний) $s_1, \ldots, s_k; s_s$ начальное, s_f допускающее, s_r отвергающее.
- 3. Таблица переходов $\langle k, s \rangle \Rightarrow \langle k', s', \leftrightarrow \rangle$

Определение. Состояние машины Тьюринга:

- 1. Бесконечная лента с символом-заполнителем q_{ε} , текст конечной длины.
- 2. Головка над определённым символом.
- 3. Символ состояния (состояние в узком смысле) символ внутреннего алфавита.

3.2 Задача об останове, её неразрешимость.

3.2.1 Разрешимость.

Определение. Язык — множество строк

Определение. Язык L разрешим, если существует машина Тьюринга, которая для любого слова w переходит в допускающее состояние, если $w \in L$, и в отвергающее, если $w \notin L$.

3.2.2 Неразрешимость задачи останова.

Определение. Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема. Язык всех останавливающихся машин Тьюринга неразрешим.

3.3 Неразрешимость исчисления предикатов: доказательство

Теорема. Язык всех доказуемых формул исчисления предикатов неразрешим Т.е. нет машины Тьюринга, которая бы по любой формуле α определяла, доказуема ли она.

Доказательство. Пусть существует машина Тьюринга, разрешающая любую формулу. На её основе тогда несложно построить некоторую машину Тьюринга, перестраивающую любую машину S (с допускающим состоянием s_f и входом y) в её ограничения C и разрешающую формулу ИП $C \to \exists w_l. \exists w_r. F_{S,y}(w_l, w_r, s_f)$. Эта машина разрешит задачу останова.

4 Порядок теории (0, 1, 2). Теории первого порядка. Аксиоматика Пеано. Арифметические операции. Формальная арифметика.

4.1 Порядок теории (0, 1, 2).

4.1.1 Теория первого порядка

Определение. Теорией первого порядка назовём исчисление предикатов с дополнительными («нелогическими» или «математическими»):

- 1. предикатными и функциональными символами;
- 2. аксиомами.

Сущности, взятые из исходного исчисления предикатов, назовём логическими

4.1.2 Порядок логики/теории

Порядок	Кванторы	Формализует суждения	Пример
нулевой	запрещены	об отдельных значениях	И.В.
первый	по предметным переменным	о множествах	И.П.
	$\{2, 3, 5, 7, \dots\} = \{t \mid \forall p. \forall q. (p \neq 1)\}$	$1 \& q \neq 1) \to (t \neq p \cdot q)\}$	
второй	по предикатным переменным	о множествах множеств	Типы
	$S = \{\{t \mid P(t)\} \mid \varphi[p := P]\}$		

4.2 Аксиоматика Пеано.

4.2.1 Натуральные числа: аксиоматика Пеано 1889, или \mathbb{N}_0^1 : 0, 1, 2, или \mathbb{N}_0^1 : 0, 1, 2,

Определение «Мтрихи, боле томоприка (не) соетем передеранси x = y', то x назовём следующим за y, а y — предшествующим x.

- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») $P: N \to V$, если:
 - (a) P(0)
 - (b) При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

- 1. N язык, порождённый грамматикой $\nu ::= 0 \mid \nu$ «'»
- 2. 0 9TO <0>, <math>x' 9TO x + < < >

4.3 Арифметические операции.

4.3.1 Обозначения и определения

4.3.2 Коммутативность сложения.

Теорема. a + b = b + a

4.4 Формальная арифметика.

Определение. Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими . . .

- 1. двухместными функциональными символами (+), (\cdot) ; одноместным функциональным символом ('), нульместным функциональным символом 0;
- 2. двухместным предикатным символом (=);

3. восемью нелогическими аксиомами:
$$(A1) \ a=b \to a=c \to b=c \qquad (A5) \ a+0=a \\ (A2) \ a=b \to a'=b' \qquad \qquad (A6) \ a+b'=(a+b)' \\ (A3) \ a'=b' \to a=b \qquad \qquad (A7) \ a\cdot 0=0 \\ (A4) \ \neg a'=0 \qquad \qquad (A8) \ a\cdot b'=a\cdot b+a$$

4. нелогической схемой аксиом индукции $\psi[x:=0] \& (\forall x.\psi \to \psi[x:=x']) \to \psi$ с метапеременными x и ψ .

5

- 5 Примитивно-рекурсивные и рекурсивные функции. функций вычисления простых чисел. Частичный логарифм. Выразимость отношений и представимость функций в формальной арифметике. Характеристические функции. Функция Аккермана.
- 5.1 Примитивно-рекурсивные функции

Определение (Примитивы Z, N, U, S).

- 1. Примитив «Ноль» (Z) $Z: \mathbb{N}_0 \to \mathbb{N}_0, \quad Z(x_1) = 0$
- 2. Примитив «Инкремент» (N) $N : \mathbb{N}_0 \to \mathbb{N}_0, \quad N(x_1) = x_1 + 1$
- 3. Примитив «Проекция» (U) семейство функций; пусть $k, n \in \mathbb{N}_0, k \leqslant n$ $U_n^k : \mathbb{N}_0^n \to \mathbb{N}_0, \qquad U_n^k(\overrightarrow{x}) = x_k$
- 4. Примитив «Подстановка» (S) семейство функций; пусть $g: \mathbb{N}_0^k \to \mathbb{N}_0, \ f_1, \dots, f_k: \mathbb{N}_0^n \to \mathbb{N}_0$

$$S\langle g, f_1, f_2, \dots, f_k \rangle(\overrightarrow{x}) = g(f_1(\overrightarrow{x}), \dots, f_k(\overrightarrow{x}))$$

5.2 Примитивная рекурсия

5.2.1 Определения.

Определение. [примитив «примитивная рекурсия», R] Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$. Тогда $R\langle f,g \rangle: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y) = \left\{ \begin{array}{ll} f(\overrightarrow{x}), & y=0 \\ g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)), & y>0 \end{array} \right.$$

Определение. Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема. f(x) = x + 2 примитивно-рекурсивна **Лемма.** f(a,b) = a + b примитивно-рекурсивна

5.2.2 Какие функции примитивно-рекурсивные?

- 1. Сложение, вычитание
- 2. Умножение, деление
- 3. Вычисление простых чисел
- 4. Неформально: все функции, вычисляемые конечным числом вложенных циклов for:

5.3 Частичный логарифм.

$$plog_k(p^n \cdot m^t \cdot k^a) = a$$

5.4 Выразимость отношений и представимость функций в формальной арифметике.

Теорема. Любая рекурсивная функция представима в Ф.А.

Теорема. Любая представимая в Ф.А. функция рекурсивна.

Определение. Будем говорить, что функция $f: \mathbb{N}_0^n \to \mathbb{N}_0$ представима в ΦA , если существует формула φ , что:

- 1. если $f(a_1,\ldots,a_n)=u$, то $\vdash \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 2. если $f(a_1,\ldots,a_n) \neq u$, то $\vdash \neg \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 3. для всех $a_i \in \mathbb{N}_0$ выполнено $\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x)) \& (\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \rightarrow p = q)$

Определение. Будем говорить, что отношение $R \subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ρ , что:

- 1. если $\langle a_1, \ldots, a_n \rangle \in R$, то $\vdash \rho(\overline{a_1}, \ldots, \overline{a_n})$
- 2. если $\langle a_1, \dots, a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1}, \dots, \overline{a_n})$

Теорема. отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

5.5 Характеристические функции.

Характеристическая функция арифметического отношения R - это функция $C_R(x_1,...,x_n) = \begin{cases} 0 & R(x_1,...,x_n) \\ 1 & R(x_1,...,x_n) \end{cases}$ неверно

5.6 Функция Аккермана.

Определение. Функция Аккермана:

$$A(m,n) = \begin{cases} n+1, & m=0\\ A(m-1,1), & m>0, n=0\\ A(m-1,A(m,n-1)), & m>0, n>0 \end{cases}$$

6 Бета-функция Гёделя. Гёделева нумерация. Рекурсивность представимых в формальной арифметике функций.

6.1 Бета-функция Гёделя.

Задача: закодировать последовательность натуральных чисел произвольной длины. Определение. β -функция Гёделя: $\beta(b,c,i) := b\%(1+(i+1)\cdot c)$

Здесь (%) — остаток от деления.

Теорема. β -функция Гёделя представима в Ф.А. формулой

$$\hat{\beta}(b, c, i, d) := \exists q. (b = q \cdot (1 + c \cdot (i + 1)) + d) \& (d < 1 + c \cdot (i + 1))$$

Деление b на x с остатком: найдутся частное (q) и остаток (d), что $b = q \cdot x + d$ и $0 \le d < x$. **Теорема.** Если $a_0, \ldots, a_n \in \mathbb{N}_0$, то найдутся такие $b, c \in \mathbb{N}_0$, что $a_i = \beta(b, c, i)$

6.2 Гёделева нумерация.

1. Отдельный символ.

Номер	Символ	Номер	Символ	Имя	k, n	Гёделев номер
3	(17	&	0	0, 0	27 + 6
5)	19	A	(')	0, 1	$27 + 6 \cdot 3$
7	,	21	3	(+)	0, 2	$27 + 6 \cdot 9$
9	•	23	⊢	(.)	1, 2	$27 + 6 \cdot 2 \cdot 9$
11	\neg	$25+6\cdot k$	x_k	(=)	0, 2	$29 + 6 \cdot 9$
13	\rightarrow	$27 + 6 \cdot 2^k \cdot 3^n$	f_k^n			
15	V	$29 + 6 \cdot 2^k \cdot 3^n$	P_{k}^{n}			

- 2. Формула. $\phi \equiv s_0 s_1 \dots s_{n-1}$. Гёделев номер: $\lceil \phi \rceil = 2^{\lceil s_0 \rceil} \cdot 3^{\lceil s_1 \rceil} \cdot \dots \cdot p_{n-1}^{\lceil s_{n-1} \rceil}$.
- 3. Доказательство. $\Pi=\delta_0\delta_1\dots\delta_{k-1},$ его гёделев номер: $\Pi^{"}=2^{"\delta_0"}\cdot 3^{"\delta_1"}\cdot\dots\cdot p_{k-1}^{"\delta_{k-1}"}$

6.3 Рекурсивность представимых в формальной арифметике функций.

6.3.1 Представимость рекурсивных функций в Ф.А.

Теорема. Пусть функция $f: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$ представима в Φ . А. формулой $\varphi(x_1, \dots, x_n, y, r)$. Тогда примитив $M\langle f \rangle$ представим в Φ . А. формулой

$$\mu(x_1, \dots, x_n, y) := \varphi(x_1, \dots, x_n, y, 0) \& \forall u.u < y \to \neg \varphi(x_1, \dots, x_n, u, 0)$$

Теорема. Если f — рекурсивная функция, то она представима в Φ . А.

6.3.2 Рекурсивность представимых функций в Ф.А.

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

- 1. Закодируем доказательства натуральными числами.
- 2. Напишем рекурсивную функцию, проверяющую доказательства на корректность.
- 3. Параллельный перебор значений и доказательств: $s = 2^y \cdot 3^p$. Переберём все s, по s получим y и p. Проверим, что p код доказательства $\vdash \varphi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y})$.
- 7 Непротиворечивость (эквивалентные определения), ω-непротиворечивость. Первая теорема Гёделя о неполноте арифметики. Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера. Синтаксическая и семантическая неполнота арифметики. Неполнота расширений формальной арифметики. Ослабленные варианты: арифметика Пресбургера, система Робинсона.
- 7.1 Непротиворечивость (эквивалентные определения), ω -непротиворечивость.
- 7.2 Первая теорема Гёделя о неполноте арифметики.

Определение. Если для любой формулы $\phi(x)$ из $\vdash \phi(0)$, $\vdash \phi(\overline{1})$, $\vdash \phi(\overline{2})$, . . . выполнено $\not\vdash \exists x. \neg \phi(x)$, то теория *омега-непротиворечива*.

Теорема. Первая теорема Гёделя о неполноте арифметики

- Если формальная арифметика непротиворечива, то $\not\vdash \sigma(\overline{\sigma})$.
- Если формальная арифметика ω -непротиворечива, то $\not\vdash \neg \sigma(\overline{\sigma})$.

7.3 Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера.

7.4 Синтаксическая и семантическая неполнота арифметики.

Определение. Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Cинтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$. **Теорема.** Формальная арифметика с классической моделью семантически неполна.

7.5 Неполнота расширений формальной арифметики.

Определение. Теория S — расширение теории T, если из $\vdash_T \alpha$ следует $\vdash_S \alpha$

Определение. Теория S — рекурсивно-аксиоматизируемая, если найдётся теория S' с тем же языком, что:

- 1. $\vdash_{\mathcal{S}} \alpha$ тогда и только тогда, когда $\vdash_{\mathcal{S}'} \alpha$;
- 2. Множество аксиом теории \mathcal{S}' рекурсивно.

Теорема. Если S — непротиворечивое рекурсивно-аксиоматизируемое расширение формальной арифметики, то в ней можно доказать аналоги теорем Γ ёделя о неполноте арифметики.

7.6 Ослабленные варианты: арифметика Пресбургера, система Робинсона.

7.6.1 Арифметика Пресбургера

Определение. Теория первого порядка, использующая нелогические функциональные символы 0, 1, (+), нелогический предикатный символ (=) и следующие нелогические аксиомы, называется арифметикой Пресбургера.

$$\neg (0 = x + 1)$$

$$x + 1 = y + 1 \rightarrow x = y$$

$$x + 0 = x$$

$$x + (y + 1) = (x + y) + 1$$

$$(\varphi(0) \& \forall x. \varphi(x) \rightarrow \varphi(x + 1)) \rightarrow \forall y. \varphi(y)$$

Теорема. Арифметика Пресбургера разрешима и синтаксически и семантически полна.

7.6.2 Сужение: система Робинсона

Определение. Теория первого порядка, использующая нелогические функциональные символы 0, (+) и (\cdot) , нелогический предикатный символ (=) и следующие нелогические аксиомы, называется системой Робинсона.

$$\begin{array}{lll} a=a & a=b\rightarrow b=a\\ a=b\rightarrow b=c\rightarrow a=c & a=b\rightarrow a'=b'\\ a'=b'\rightarrow a=b & \neg 0=a'\\ a=b\rightarrow a+c=b+c\&c+a=c+b & a=b\rightarrow a\cdot c=b\cdot c\&c\cdot a=c\cdot b\\ \neg a=0\rightarrow \exists b.a=b' & a+0=a\\ a+b'=(a+b)' & a\cdot 0=0\\ a\cdot b'=a\cdot b+a & \end{array}$$

Система Робинсона неполна: аксиомы — в точности утверждения, необходимые для доказательства теорем Гёделя. Система Робинсона не имеет схем аксиом.

- 8 Вторая теорема Гёделя о неполноте арифметики, *Consis*. Лемма об автоссылках. Условия Гильберта-Бернайса-Лёба. Неразрешимость формальной арифметики. Теорема Тарского о невыразимости истины.
- 8.1 Вторая теорема Гёделя о неполноте арифметики, Consis.

8.1.1 Consis

Лемма. $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение. Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle {}^r\xi^{\scriptscriptstyle 1},p\rangle \in {\rm Proof},$ если p — гёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x, p)$

Определение. Формулой Consis назовём формулу $\neg \pi(\overline{^{r}1=0})$

Неформальный смысл: «формальная арифметика непротиворечива»

8.1.2 Вторая теорема Гёделя о неполноте арифметики

Теорема. Если Consis доказуем, то формальная арифметика противоречива.

8.2 Лемма об автоссылках.

Лемма. Лемма об автоссылках. Для любой формулы $\phi(x_1)$ можно построить такую замкнутую формулу α (не использующую неаксиоматических предикатных и функциональных символов), что $\vdash \phi(\overline{\alpha}) \leftrightarrow \alpha$.

8.3 Условия Гильберта-Бернайса-Лёба.

Определение. Будем говорить, что формула ψ , выражающая отношение Proof, формула π и формула Consis соответствуют условиям Гильберта-Бернайса-Лёба, если следующие условия выполнены для любой формулы α :

- 1. $\vdash \alpha$ влечет $\vdash \pi(\overline{\lceil \alpha \rceil})$
- 2. $\vdash \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \pi(\overline{\lceil \alpha \rceil}) \rceil})$
- 3. $\vdash \pi(\overline{\lceil \alpha \to \beta \rceil}) \to \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \beta \rceil})$

8.4 Неразрешимость формальной арифметики.

Теорема. Если формальная арифметика непротиворечива, то формальная арифметика неразрешима

8.5 Теорема Тарского о невыразимости истины.

Теорема. Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathbb{N}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in \mathrm{Tr}_{\Phi A}$.

Однако, если взять $D = \mathbb{R}$, истина становится выразима (алгоритм Тарского).

- 9 Лямбда-исчисление. Пред-лямбда-термы и лямбда-термы. Альфаэквивалентность, бета-редукция и бета-эквивалентность. Теорема Чёрча-Россера. Комбинатор неподвижной точки. Комбинаторный базис SK. Истина и ложь. Чёрчевские нумералы. Натуральный вывод. Импликативный фрагмент интуиционистского исчисления высказываний. Просто-типизированное лямбда исчисление. Изоморфизм Карри-Ховарда (высказывание, доказательство, импликация, конъюнкция, дизъюнкция, ложь).
- 9.1 Лямбда-исчисление.

$$\Lambda ::= (\lambda x.\Lambda)|(\Lambda \Lambda)|x$$

Мета-язык:

- 1. Мета-переменные:
 - (a) A ... Z мета-переменные для термов.
 - (b) x, y, z мета-переменные для переменных.
- 2. Правила расстановки скобок аналогичны правилам для кванторов:
 - (а) Лямбда-выражение ест всё до конца строки
 - (b) Аппликация левоассоциативна

Примеры.

1.
$$a \ b \ c \ (\lambda d.e \ f \ \lambda g.h) \ i \equiv \left(\left(((a \ b) \ c) \ \left(\lambda d.((e \ f) \ (\lambda g.h))\right)\right) \ i\right)$$

2.
$$0 := \lambda f \cdot \lambda x \cdot x$$
; $(+1) := \lambda n \cdot \lambda f \cdot \lambda x \cdot n$ $f(f(x))$; $(+2) := \lambda x \cdot (+1) \cdot ((+1) \cdot x)$

- 9.2 Пред-лямбда-термы и лямбда-термы.
- 9.3 Альфа-эквивалентность, бета-редукция и бета-эквивалентность.
- 9.3.1 Альфа-эквивалентность

$$FV(A) = \begin{cases} \{x\}, & A \equiv x \\ FV(P) \cup FV(Q), & A \equiv P \ Q \\ FV(P) \backslash \{x\}, & A \equiv \lambda x.P \end{cases}$$

Определение. $A =_{\alpha} B$, если и только если выполнено одно из трёх:

- 1. $A \equiv x$, $B \equiv y$, $x \equiv y$;
- 2. $A \equiv P_a Q_a$, $B \equiv P_b Q_b$ и $P_a =_{\alpha} P_b$, $Q_a =_{\alpha} Q_b$;
- 3. $A\equiv (\lambda x.P),\, B\equiv (\lambda y.Q),\, P[x:=t]=_{\alpha}Q[y:=t],$ где t не входит в A и B.

9.3.2 Бета-редукция

Определение. Терм вида $(\lambda x.P) \ Q$ — бета-редекс.

Определение. $A \rightarrow_{\beta} B$, если:

- 1. $A \equiv (\lambda x.P) Q$, $B \equiv P [x := Q]$, при условии свободы для подстановки;
- 2. $A \equiv (P \ Q), B \equiv (P' \ Q')$, при этом $P \rightarrow_{\beta} P'$ и Q = Q', либо P = P' и $Q \rightarrow_{\beta} Q'$;
- 3. $A \equiv (\lambda x.P), B \equiv (\lambda x.P'), \text{ и } P \rightarrow_{\beta} P'.$

9.3.3 Бета-эквивалентность

Определение. $(=_{\beta})$ — транзитивное, рефлексивное и симметричное замыкание (\rightarrow_{β}) .

9.4 Теорема Чёрча-Россера.

Теорема (Чёрча-Россера). Для любых термов N, P, Q, если $N \twoheadrightarrow_{\beta} P, N \twoheadrightarrow_{\beta} Q$, и $P \neq Q$, то найдётся $T: P \twoheadrightarrow_{\beta} T$ и $Q \twoheadrightarrow_{\beta} T$.

Теорема. Если у терма N существует нормальная форма, то она единственна

9.5 Комбинатор неподвижной точки.

Теорема. Для любого терма N найдётся такой терм R, что $R =_{\beta} N$ R. $Y = \lambda f.(\lambda x.f\ (x\ x))\ (\lambda x.f\ (x\ x)).$

9.6 Комбинаторный базис SK.

Определение. Комбинатор — лямбда-терм без свободных переменных

Определение. $S:=\lambda x.\lambda y.\lambda z.x\ z\ (y\ z),\ K:=\lambda x.\lambda y.x,\ I:=\lambda x.x$

Теорема. Пусть N — некоторый замкнутый лямбда-терм. Тогда найдётся выражение C, состоящее из комбинаторов S,K, что $N=_{\beta}C$

9.7 Истина и ложь.

$$T = \lambda x. \lambda y. x$$

$$F = \lambda x. \lambda y. y$$

9.8 Чёрчевские нумералы.

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

11

Определение. Чёрчевский нумерал $\overline{n} = \lambda f.\lambda x. f^{(n)}(x)$

9.9Натуральный вывод.

1. Формулы языка (секвенции) имеют вид: $\Gamma \vdash \alpha$. Правила вывода:

$$\frac{\text{посылка 1}}{\text{заключение}} \frac{\text{посылка 2}}{\dots}$$
 (аннотация)

2. Аксиома:

$$\overline{\Gamma, \alpha \vdash \alpha}$$
 (akc.)

3. Правила введения связок:
$$\frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \quad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta}, \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \qquad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \& \beta}$$

4. Правила удаления связок:
$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \alpha \to \beta}{\Gamma \vdash \beta} \quad \frac{\Gamma \vdash \alpha \to \gamma \quad \Gamma \vdash \beta \to \gamma \quad \Gamma \vdash \alpha \lor \beta}{\Gamma \vdash \gamma} \quad \frac{\Gamma \vdash \alpha \& \beta}{\Gamma \vdash \alpha} \quad \frac{\Gamma \vdash \alpha \& \beta}{\Gamma \vdash \beta} \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash \alpha}$$

5. Пример доказательства:

$$\frac{\overline{A \& B \vdash A \& B}}{\underbrace{A \& B \vdash B}} \overset{\text{(акс.)}}{\text{(удал\&)}} \quad \frac{\overline{A \& B \vdash A \& B}}{A \& B \vdash A} \overset{\text{(акс.)}}{\text{(удал\&)}} \\ A \& B \vdash B \& A \qquad \qquad \text{(введ\&)}$$

9.10Импликативный фрагмент интуиционистского исчисления высказыва-

Определение. Импликационный фрагмент интуиционистской логики:

$$\frac{\Gamma, \varphi \vdash \to \varphi}{\Gamma, \varphi \vdash \to \varphi} \qquad \frac{\Gamma, \varphi \to \vdash \psi}{\Gamma \vdash \to \varphi \to \psi} \qquad \frac{\Gamma \vdash \to \varphi \qquad \Gamma \vdash \to \varphi \to \psi}{\Gamma \vdash \to \psi}$$

9.11Просто-типизированное лямбда исчисление.

Теорема. Если $\Gamma \vdash \alpha$, то $\Gamma \vdash \rightarrow \alpha$.

Из корректности моделей Крипке следует, что что если $\Gamma \vdash \alpha$, то $\Gamma \Vdash \alpha$. Требуемое следует из того, что $\Gamma \Vdash \alpha$ влечёт $\Gamma \vdash \rightarrow \alpha$.

Изоморфизм Карри-Ховарда (высказывание, доказательство, имплика-9.12ция, конъюнкция, дизъюнкция, ложь).

Определение. Ложь (\bot) — необитаемый тип; failwith/raise/throw : $\alpha \to \bot$; $\neg \varphi \equiv \varphi \to \bot$ Например, контрапозиция: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

$$\frac{\overline{\Phi \vdash a : \alpha} \ Ax}{\Phi \vdash f : \alpha \to \beta} \frac{Ax}{App} \frac{\overline{\Phi \vdash n : \beta \to \bot}}{\overline{\Phi \vdash n : \beta \to \bot}} \frac{Ax}{App}$$

$$\frac{f : \alpha \to \beta, n : \beta \to \bot, a : \alpha \vdash n \ (f \ a) : \bot}{f : \alpha \to \beta, n : \beta \to \bot \vdash \lambda a^{\alpha}.n \ (f \ a) : \neg \alpha} \lambda$$

$$\frac{f : \alpha \to \beta \vdash \lambda n^{\beta \to \bot}.\lambda a^{\alpha}.n \ (f \ a) : \neg \beta \to \neg \alpha}{\lambda f^{\alpha \to \beta}.\lambda n^{\beta \to \bot}.\lambda a^{\alpha}.n \ (f \ a) : (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)} \lambda$$

Снятие двойного отрицания: $((\alpha \to \bot) \to \bot) \to \alpha$, то есть $\lambda f^{(\alpha \to \bot) \to \bot}$.? : α . f угадывает, что передать $x: \alpha \to \bot$. Тогда надо по f угадать, что передать x.