Cardiovascular Death Rates in the United States

and an illustration in the importance of a good feature set...

Zachary Wimpee

November 9, 2020

In the United States, heart disease is...

In the United States, heart disease is...

the cause of about 1 in every 4 deaths.¹

¹CDC. URL: https://www.cdc.gov/heartdisease/facts.htm.

In the United States, heart disease is...

- the cause of about 1 in every 4 deaths.¹
- the leading cause of death, with a mortality rate of 200 deaths per 100,000 population.²

¹CDC.

²NCHS. URL: https://www.cdc.gov/nchs/fastats/heart-disease.htm □ ▶ ◀ 🗇 ▶ ◀ 볼 ▶ ◀ 볼 ▶ 🧸 🥠 🤇

In the United States, heart disease is...

- the cause of about 1 in every 4 deaths.¹
- the leading cause of death, with a mortality rate of 200 deaths per 100,000 population.²
- the leading cause of death for almost every population demographic.

¹CDC

²NCHS

³HHS. URL: https://millionhearts.hhs.gov/data-reports/factsheets/ABCS:httml. ← ≧ → ← ≧ → ♀ ← ♀ ← ♀

There are a variety of resources and information available related to cardiovascular issues and how to prevent them, such as the *ABCS of Heart Health* guide from the Million Hearts initiative.³

A. take aspirin as directed

- A. take aspirin as directed
- B. control blood pressure

- A. take aspirin as directed
- B. control blood pressure
- C. manage cholesterol

- A. take aspirin as directed
- B. control blood pressure
- C. manage cholesterol
- S. don't smoke

Project Motivation

In the United States cardiovascular health issues are widespread.

Project Motivation

The ABCS of Heart Health and similar resources focus on an individual's lifestyle choices.

Project Motivation

Project Goal

By examining data on the **population level**, can a similar set of **recommendations** be made for large-scale systematic changes that would help **prevent increases in cardiovascular death rates**?

1. Compile dataset of cardiovascular death rates and population variables.

- 1. Compile dataset of cardiovascular death rates and population variables.
- 2. Create a model to predict changes in cardiovascular death rates for the populations.

- 1. Compile dataset of cardiovascular death rates and population variables.
- 2. Create a model to predict changes in cardiovascular death rates for the populations.
- Determine which variables were most important in making the best predictions.

- 1. Compile dataset of cardiovascular death rates and population variables.
- Create a model to predict changes in cardiovascular death rates for the populations.
- Determine which variables were most important in making the best predictions.
- 4. Propose recommendations for preventing increases in cardiovascular death rates from these results.

2010-2018 cardiovascular mortality data by county obtained using the **CDC WONDER**⁴ interface:

⁴WONDER. URL: https://wonder.cdc.gov/ucd-icd10.html.

2010-2018 cardiovascular mortality data by county obtained using the **CDC WONDER**⁴ interface:

county population

2010-2018 cardiovascular mortality data by county obtained using the **CDC WONDER**⁴ interface:

- county population
- cardiovascular related fatality count

2010-2018 cardiovascular mortality data by county obtained using the **CDC WONDER**⁴ interface:

- county population
- cardiovascular related fatality count
- estimated crude death rate (deaths per 100,000 population)

⁵Census. URL: https://www.census.gov/data/developers/data-sets.html. > ← 🗇 > ← 🛢 > → 🛢 → 💆 🐓 🔾 🤇

2010-2018 census data by county obtained using the **Census Data API**⁵:

educational attainment rates

- educational attainment rates
- economic characteristic variables

- educational attainment rates
- economic characteristic variables
- housing costs as a proportion of income

- educational attainment rates
- economic characteristic variables
- housing costs as a proportion of income

2010-2018 census data by county obtained using the **Census Data API**⁵:

- educational attainment rates
- economic characteristic variables
- housing costs as a proportion of income

Both the current value and the change from the previous year's value were acquired for each of the census variables.

Exploring the Data

Exploring the Data

Exploring the Data

Searching for Visual Relationships

Crude death rate vs. educational attainment of population age 25 and over

Searching for Visual Relationships

Refining the goal

 Group the samples by their change in death rate from the previous year.

Refining the goal

- Group the samples by their change in death rate from the previous year.
- Are the distributions of the census variables different between the groups?

Refining the goal

- Group the samples by their change in death rate from the previous year.
- Are the distributions of the census variables different between the groups?
- If so, can a binary classification model be made to predict which group each sample belongs to?

Statistical Analysis

With the samples partitioned by the sign change in death rate from the previous year, each census variable was checked for a significant difference between the mean value of each group.

Model Selection

The initial choice of model algorithm was a **Decision Tree**.

Pros

- Requires minimal pre-processing or data preparation
- Results are easy to interpret, which lends itself to the goal of providing recommendations

Cons

Tend to be prone to overfitting training data

If there are issues with overfitting we can try using a **Random Forest**, which introduces elements of randomness that might reduce generalization error.

Starting with the decision tree, there are several parameters that need to be tuned.

max_depth

- max_depth
- min_samples_split

- max_depth
- min_samples_split
- min_samples_leaf

- max_depth
- min_samples_split
- min_samples_leaf
- max_features

- max_depth
- min_samples_split
- min_samples_leaf
- max_features
- max_leaf_nodes

Decision Tree - Results

A grid search cross-validation of hyperparameter values was performed using scoring metric of *roc_auc*. A reduced feature set was also determined using the feature importance attribute of the best estimator returned by the grid search. The test set *roc_auc* scores for the full and reduced feature set were 0.495 and 0.526, respectively. Are these results due to the limitations of using a decision tree, or is the issue related to the data set?

Random Forest - Results

A grid search cross-validation of hyperparameter values was performed for the random forest, and a reduced feature set determined as was done for the decision tree. The test set *roc_auc* scores for the full and reduced feature set were 0.527 and 0.523, respectively. Therefore it can be concluded that the failure to produce a model is likely due to an issue with the data itself.

Conclusion

 Failure to produce a good model prevents any meaningful recommendations to be made.

Conclusion

- Failure to produce a good model prevents any meaningful recommendations to be made.
- Future work on this project will require careful selection of population variables.