Curso de Pós-Graduação em Ciências Veterinárias - UFRRJ

Métodos Estatísticos

Prof: Wagner Tassinari

wagner.tassinari@ini.fiocruz.br

Estatística Descritiva

Estatística Descritiva

Descrição dos Dados

- Organização e descrição dos dados;
- Identificação de valores que represente o elemento típico;
- Avaliação e quantificação da variabilidade do conjunto de dados;
- Familiarização com os dados; forma da distribuição dos dados;
- Identificar estruturas interessantes, como a de valores atípicos.

Descrição dos Dados

Formas de sumarizar os dados:

- Tabelas
- Gráficos
- Medidas-resumo

Medidas de Tendência Central (Medidas de Centro)

Medidas de Tendência Central (Medidas de Centro)

- Caracterizam o conjunto de dados por valores que representem todos os outros valores da amostra
- É uma forma de resumir o conjunto de dados em um único valor
- Medidas: média, mediana e moda.

Média

- Somam-se todos os n valores da amostra e divide-se pela quantidade total de valores n da amostra.
- O valor da média não necessariamente pertence ao conjunto original de valores.
- \blacksquare Não é uma medida robusta \to influenciada por valores extremos.
- É expressa por: $\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$

Média

• Exemplo: Pressão sistólica de uma amostra de 5 pacientes

Pacientes	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅
Pressão Sistólica	15	20	14	14	12

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

$$\bar{X} = \frac{15 + 20 + 14 + 14 + 12}{5} = \frac{75}{5} = 15$$

Média

Exemplo: Influência de valores extremos na média

Pacientes	1	2	3	4	5	6	7
Dados	2	2	5	7	6	4	5

$$\bar{X} = \frac{2+2+5+7+6+4+5}{7} = \frac{32}{7} = 4,4$$

$$\bar{X} = \frac{2+2+5+7+6+4+55}{7} = \frac{81}{7} = 11,6$$

- Definição: valor que divide o conjunto de dados em duas partes iguais
- 50% das observações ficam acima da mediana e 50% ficam abaixo
- Medida mais robusta \rightarrow n\(\tilde{a} \) sofre influ\(\tilde{e} \) ncia de valores extremos.

- Colocar os valores em ordem e, em seguida, aplicar um dos dois processos abaixo:
- 1. Se o número de valores é **ímpar**, a posição da mediana é dada pelo elemento de ordem: $\frac{n+1}{2}$
 - $x_1, x_2, x_3 \rightarrow \frac{3+1}{2} = 2 \rightarrow md = x_2$, ou seja, elemento de ordem 2
- 2. Se o número de valores é **par**, a mediana é dada pela média dos elementos de ordem $\frac{n}{2}$ e $\frac{n+2}{2}$:
 - $x_1, x_2, x_3, x_4 \rightarrow md = \frac{x_2 + x_3}{2}$

- **Exemplo 1:** (1, 2, 5, 6, 7)
 - Número **ímpar** de elementos \rightarrow mediana é dada pelo valor que ocupa a terceira posição $\frac{5+1}{2}$, que é igual a 5.
- **Exemplo 2:** (1, 2, 5, 6, 7, 7)
 - Número par de elementos \rightarrow mediana será dada por $md = \frac{5+6}{2} = 5,5$

- Exemplo: Influência de valores extremos na mediana
- (2,2,4,5,6,7)
 - Número **ímpar** de elementos \rightarrow mediana é dada pelo valor que ocupa a quarta posição $\frac{7+1}{2}$, que é igual a 5.
- (2, 2, 4, 5, 6, 7, 55)
 - Número **ímpar** de elementos \rightarrow mediana é dada pelo valor que ocupa a quarta posição $\frac{7+1}{2}$, que é igual a 5.

Moda

- Definição: valor que ocorre com maior frequência;
- A moda sempre pertence ao conjunto original de valores;
- Uma distribuição pode ser unimodal, bimodal, multimodal ou amodal.
- Exemplos:
 - $(1,1,1,3,5,6,8) \rightarrow \mathsf{Moda} = 1$
 - $\bullet \ (1,1,2,2,3,4,5) \rightarrow \mathsf{Moda} = 1 \ \mathsf{e} \ 2$
 - $(M, F, M, M, M, F) \rightarrow \mathsf{Moda} = M$
 - $(1, 2, 5, 9, 11) \rightarrow \mathsf{Amodal}$

Mediana versus Média - Qual medida escolher?

Média

- Medida mais usada na prática;
- Facilidade de tratamento estatístico;
- Muito influenciada por valores extremos.

- Não é tão influenciada por valores extremos;
- Utiliza no máximo dois valores da amostra (desvantagem).

Forma da Distribuição das Medidas de Tendência Central

- Uma distribuição de dados é simétrica se a metade esquerda do seu histograma é praticamente uma imagem espelhada de sua imagem direita.
- A distribuição de dados é assimétrica quando se estende mais para um lado que para o outro.

Prática

- Qual a média de pesos de recém nascidos na Maternidade N. S. da Luz no dia de ontem ?
 - Bebê 1 = 3,2 Kg
 - Bebê 2 = 2,8 Kg
 - Bebê 3 = 2,7 Kg
 - Bebê 4 = 3,4 Kg
 - Bebê 5 = 3,1 Kg

Qual a média de pesos de recém nascidos na Maternidade N. S. da Luz no dia de ontem ?

$$\bar{X} = \frac{3,2+2,8+2,7+3,4+3,1}{5} = 3,04$$
Kg

- Qual a mediana dos dados abaixo ?
 - Dados 1: (1, 2, 4, 6, 7)
 - Dados 2: (1,2,5,6,7,7)

- Colocando os valores em ordem, temos:
- 1. Dados 1 (**ímpar**), a posição da mediana é dada pelo elemento de ordem: $\frac{n+1}{2}$
 - $(1,2,4,6,7) \rightarrow \frac{5+1}{2} = 3 \rightarrow md = x_3$, ou seja, elemento de ordem 3
 - *md* = 4
- 2. Se o número de valores é **par**, a mediana é dada pela média dos elementos de ordem $\frac{n}{2}$ e $\frac{n+2}{2}$:
 - $(1,2,5,6,7,7) \rightarrow md = \frac{x_2 + x_3}{2} = \frac{5+6}{2}$
 - md = 5, 5

• Em qual gráfico a moda é maior do que a mediana e a média ?

- Em qual gráfico a moda é maior do que a mediana e a média ?
 - Gráfico A

- Percentil: O percentil de ordem k (onde k é qualquer valor entre 0 e 100), denotado por Pk, é o valor tal que k% dos valores do conjunto de dados são menores ou iguais a ele. Divide a distribuição em 100 partes iguais em um conjunto ordenado de valores.
- Quartil: Divide a distribuição em 4 partes iguais em um conjunto ordenado de valores.
- Decil: Divide a distribuição em 10 partes iguais em um conjunto ordenado de valores.

- lacktriangle Percentis: 10, 20, 30, ..., 90 ightarrow Decis
- Percentil 25 ightarrow Primeiro quartil (Q_1)
- Percentil $50 o \mathsf{Segundo}$ quartil $(Q_2) o \mathsf{Mediana}$
- Percentil 75 \rightarrow Terceiro quartil (Q_3)

	50)%		Me		50%			
P_{10}	P ₂₅			P ₅₀		\mathbf{P}_{7}	5	P ₉₀	
	(Ω_1		$\dot{Q_2}$		Q	3		
D_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	D ₅	D_6	\mathbf{D}_7	D ₈	D ₉	

 Exemplo: A tabela abaixo lista 40 níveis ordenados de nicotinina para fumantes.

	1								
87	103	112	121	123	130	131	149	164	167
173	173	198	208	210	222	227	234	245	250
253	265	266	277	284	289	290	313	477	491

• Ache o percentil 30.

$$L_{30} = \frac{30}{100}.40 = 12$$

- Como o L é inteiro, tiramos a média entre o elemento L=12 e L+1=13
- Assim, $P_{30} = \frac{103 + 112}{2} = 107,5$

Medidas de Dispersão ou Variabilidade

Medidas de Dispersão

- A dispersão fornece uma medida da proximidade da série de dados em torno de um valor de tendência central, tomado como comparação.
- Medidas para avaliar a dispersão de um conjunto de dados:
 Amplitude Total, Variância, Desvio Padrão e Coeficiente de Variação.

Amplitude total

$$AT = x_{mximo} - x_{mnimo}$$

- Maior amplitude total \rightarrow maior dispersão.
- Problema: somente são usados os extremos do conjunto.
- Elemento auxiliar na análise → mostra a faixa de variação onde encontramos todos os elementos do conjunto.

Amplitude Total

• Exemplo: Pressão sistólica de uma amostra de 5 pacientes

Pacientes	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>X</i> ₅
Pressão Sistólica	15	20	14	14	12

$$AT = 20 - 14 = 8$$

O Desvio

 Poderíamos então pensar na soma das diferenças entre cada valor do conjunto de dados e a média, mas:

$$(x_1 - \bar{x}) + (x_2 - \bar{x}) + ... + (x_n - \bar{x}) = \sum_{i=1}^n (x_i - \bar{x}) = 0$$

- Então essa medida não serve como medida de dispersão. Segundo ela, todos os conjuntos de dados teriam variabilidade nula.

Variância

- Medida direta da dispersão → conjunto com os dados mais dispersos terá maior variância.
- A variância mede a variabilidade ao redor da média, fornecendo o grau de precisão da média.
- Medida em unidade quadrada (exemplo: anos 2) \to o que dificulta a sua interpretação.

Variância e Desvio padrão

A Variância é dada por:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

 Desvio padrão → é obtido por meio da extração da raiz quadrada da variância. Representa o desvio médio dos valores em relação a média. Dado por:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

 O desvio-padrão possui a mesma unidade de medida que os dados originais.

Variância e Desvio padrão

• **Exemplo:** média = 15

Pressão sistólica	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
15	15 - 15 = 0	$0^2 = 0$
20	20 - 15 = 5	$5^2 = 25$
14	14 - 15 = -1	$(-1)^2 = 1$
14	14 - 15 = -1	$(-1)^2 = 1$
12	12 - 15 = -3	$(-3)^2 = 9$

$$S^2 = \frac{36}{4} = 9 \text{ e } S = \sqrt{9} = 3$$

Variância e Desvio padrão

Desvio padrão - Interpretação

- Uma pergunta que pode surgir é se um desvio padrão é grande ou pequeno → depende da ordem de grandeza da variável.
- Um desvio padrão de 10 unidades é grande ou pequeno ?
- Se a média é $10.000 \rightarrow \text{desvio}$ é pequeno (0,1% da média).
- Se a média é 100 o desvio é grande (10% da média).

Coeficiente de variação

- É uma medida de dispersão relativa (%) que mede a variação do desvio padrão em relação à média aritmética;
- Vantagem: permite a comparação entre variáveis ou populações distintas
- Quanto menor é o coeficiente de variação de um conjunto de dados, menor é a sua variabilidade.
- Medida adimensional
- O Coeficiente de Variação é dado por:

$$CV(\%) = \frac{S}{\bar{x}}.100$$

Coeficiente de variação

Exemplo:

Pressão sistólica	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
15	15 - 15 = 0	$0^2 = 0$
20	20 - 15 = 5	$5^2 = 25$
14	14 - 15 = -1	$(-1)^2 = 1$
14	14 - 15 = -1	$(-1)^2 = 1$
12	12 - 15 = -3	$(-3)^2 = 9$

$$\bar{x} = 15$$
, $S^2 = \frac{36}{4} = 9$ e $S = \sqrt{9} = 3$
$$CV(\%) = \frac{3}{15}.100 = 20\%$$

Regra do Desvio-padrão (Distribuições Simétricas)

Figura 3.4 – Ilustração da regra do desvio padrão para dados com distribuição simétrica.

Gráfico - Boxplot

Gráfico – Boxplot

São úteis na comparação da dispersão de dois ou mais grupos (tamanho da caixa ou distância entre os extremos);

Adicionalmente utilizado para identificar a amplitude dos dados, a presença de pontos discrepantes (outliers).

Se não existirem observações discrepantes a distância entre as extremidades do gráfico correspondem a amplitude total.

Outliers são marcados com "o" ou "*" por quase todos os pacotes estatísticos.

Gráfico – Boxplot

- Boxplot e assimetria
 - Simétrica: mediana fica

- Assimetria à direita: mediana fica mais próxima do valor mínimo;
- Assimetria à esquerda: mediana fica mais próxima do valor máximo.

Gráfico – Boxplot

- Banco de dados: low birth weight
- Variável: peso materno no último período menstrual, em kg.
- Observa-se a grande variabilidade da variável e a presença de valores extremos (os número identificam os pacientes).
- Obs: Outliers moderados entre 1.5 e 3 x IQR. Outliers extremos: acima de 3 x IQR.

IQR = Inter Quartile Range (Q3 – Q1)

9

Variância vs Coeficiente de Variação

Variância

- A variância mede a variabilidade ao redor da média, fornecendo o grau de precisão da média.
- Medida em unidade quadrada.

Coeficiente de Variação

- É uma medida de dispersão relativa (%) que mede a variação do desvio padrão em relação à média aritmética.
- Permite a comparação entre variáveis ou populações distintas.

- Importar o arquivo "ExemploBDdiarreia.xlsx"
 - Rcommander \rightarrow Dados \rightarrow Importar arquivos de dados \rightarrow do arquivo Excel

- Sumário (resumo) estatístico de todo o banco
 - lacksquare Rcommander o Resumos o Conjunto de dados ativo

- Sumário (resumo) estatístico de todo o banco
 - ullet Rcommander ightarrow Resumos ightarrow Resumos numéricos ...

Sumário (resumo) estatístico personalisado por variável

- Plotar Boxplot
 - lacktriangledown Rcommander o Gráficos o Boxplot

- Plotar Boxplot por grupos de variáveis
 - $\blacksquare \ \ \, \mathsf{Rcommander} \to \mathsf{Gr\'{a}ficos} \to \mathsf{Boxplot}$

- Distribuição de frequência da variável RACA
 - Rcommander \rightarrow Estatísticas \rightarrow Resumo \rightarrow Distribuições de frequência ...

- Média da variável PESO por RACA
 - Rcommander \rightarrow Estatísticas \rightarrow Resumo \rightarrow Tabela de Estatísticas ...

