MATH703: Martingales et Chaînes de Markov

Contrôle continu nº 2

Documents autorisés : polycopié de cours, table des lois usuelles

Jeudi 19 décembre 2019.

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes; pour tout $n\geq 1$, X_n suit la loi de Bernoulli de paramètre $p_n\in [0,1]$. On pose $S_0=Z_0=0$, $\mathcal{F}_0=\{\emptyset,\Omega\}$ et, pour $n\geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad Z_n = (X_1 - p_1) + \ldots + (X_n - p_n), \qquad \mathcal{F}_n = \sigma(X_1, \ldots, X_n).$$

- 1. Montrer que $(S_n)_{n\geq 0}$ est une sous-martingale par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$.
- 2. On suppose que $\sum_{n\geq 1} p_n < +\infty$.
 - (a) Montrer que $(Z_n)_{n>0}$ est une martingale par rapport à $(\mathcal{F}_n)_{n\geq 0}$ bornée dans L².
- (b) En déduire que, lorsque n tend vers $+\infty$, $(S_n)_{n\geq 0}$ converge presque sûrement et dans L^2 vers une variable aléatoire S_{∞} de carré intégrable.

Exercice 2. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $E=\{1,2,3,4\}$ de matrice de transition

$$P = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1/2 & 0 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

- 1. (a) Préciser les valeurs de $\mathbb{P}_3(X_1=2)$ et de $\mathbb{E}_2[X_1]$.
- (b) On suppose dans cette question que la loi de X_0 est $\mu=(1/6-1/3-1/3-1/6)$. Déterminer la loi de X_1 puis $\mathbb{E}_{\mu}[X_1]$.
- 2. (a) Faire le graphe des transitions de la chaîne.
 - (b) Montrer que la chaîne est irréductible récurrente positive.
- 3. (a) Déterminer la probabilité invariante.
 - (b) Que vaut $\mathbb{E}_2[S_2]$ où $S_2 = \inf\{n \ge 1 : S_n = 2\}$?
- 4. Quelles sont les limites presque sûres de

$$\frac{1}{n} \sum_{k=0}^{n-1} X_k, \qquad \frac{1}{n} \sum_{k=0}^{n-1} X_k^2 ?$$

- 5. (a) Montrer que $P^2(2,2) > 0$ et que $P^3(2,2) > 0$.
 - (b) En déduire que la chaîne est apériodique.
 - (c) Préciser $\lim_{n\to\infty} P^n$.

Exercice 3. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $E=\{0,1,2,3\}$ de matrice de transition

$$P = \begin{pmatrix} p & 1 - 2p & p & 0 \\ p & 1 - 2p & p & 0 \\ 0 & p & 1 - 2p & p \\ 0 & 0 & p & 1 - p \end{pmatrix},$$

où 0 .

- 1. Montrer que la chaîne est irréductible récurrente positive.
- 2. Déterminer la probabilité invariante π de cette chaîne.
- 3. On note $T_3 = \inf\{n \ge 0 : X_n = 3\}$ et, pour $k \in E$, $u(k) = \mathbb{E}_k[T_3]$.
 - (a) Préciser le système linéaire vérifié par (u(0), u(1), u(2)).
 - (b) Déterminer u(0).