Pracovní úkol

1. S využitím krystalu LiF jako analyzátoru byla provedena měření následujících rentgenových spekter:

a. Rentgenka s Cu anodou:

- I. jemné proměření (s krokem 0,1° a clonou o průměru 2mm) krátkovlnných oblastí spekter brzdného záření při napětích od 9 kV (10 kV) do 33 kV při vhodných podmínkách (emisní proud katody mezi 0,8 a 1 mA, časový interval odpovídající intenzitě měřeného záření) a v takové oblasti Braggova úhlu, aby byla proměřena i charakteristická spektra, případně spektrum druhého řádu;
- II. tvar spektra s Zr absorbérem tloušťky 0,05 mm;
- III. tvar spektra s Ni absorbérem tloušťky 0,01 mm.

b. Rentgenka s Fe anodou:

- I. charakteristické spektrum rentgenky při napětí 33 kV/0,8 mA, krok 0,1° a clona 2mm ;
- II. tvar spektra se Zr absorbérem;
- III. tvar spektra s Ni absorbérem.

c. Rentgenka s Mo anodou:

- I. charakteristické spektrum rentgenky při napětí 33 kV/0,8 mA, krok 0,1° a clona 2mm ;
- 2. Interpretujte naměřené výsledky (pro mezirovinnou vzdálenost krystalu LiF používejte hodnotu *d* = 201,4 pm):

a. Krátkovlnná mez brzdného záření

- I. Ze změřených mezních vlnových délek (respektive frekvencí) určete hodnotu Planckovy konstanty a oceňte přesnost měření
- II. Jaký je původ počátečního (pro úhel 2°) poklesu intenzit? Proč jej pozorujeme pouze pro dostatečně vysoká napětí?

b. Moseleyův zákon

- I. Přesvědčte se, že naměřené úhlové frekvence spektrálních čar K_{α} a K_{β} pro různé prvky splňují Moseleyův zákon. Ze směrnice příslušné závislosti určete hodnotu Rydbergovy úhlové frekvence a využitím této hodnoty určete též průměrnou hodnotu stínící konstantv.
- II. Přesvědčte se, že i naměřené polohy absorpčních hran Zr a Ni splňují Moseleyův zákon.
- III. Všimněte si, že absorpční hrana Ni koinciduje se spektrální čarou K_β mědi; této skutečnosti se využívá v rentgenové difraktografii pro monochromatizaci charakteristického spektra mědi. Z provedeného měření určete filtrační efekt niklu pro čáru K_β. Jste schopni odhadnout filtrační efekt niklu pro čáru K_β druhého řádu?

c. Úhlová disperze

 Ze změřených spekter molybdenu určete velikost úhlové disperze pro různé řády difrakce.

Poznámka I: mřížková konstanta LiF je 201,4 pm!!!

Poznámka II:

Složky charakteristického záření (v 10-10 m)				
anoda	$K_{\alpha 1}$	$K_{\alpha 2}$	K_{α}	\mathbf{K}_{β}
Cu	1,54050	1,54434	1,5418	1,39217
Co	1,78889	1,792801	1,79019	1,620703
Mo	0,70261	0,71354	0,706253	0,632253

Střední vlnová délka K_q se používá, není-li dublet rozlišitelný.

Poznámka III: Úhel orientace krystalu LiF přesně neodpovídá zobrazovanému úhlu. Pomocí tabelovaných hodnot charakteristického spektra určete systematickou odchylku a vylučte chybu tím vzniklou.