

Parameter sharing between dependency parsers for related languages

Miryam de Lhoneux, Johannes Bjerva, Isabelle Augenstein and Anders Søgaard

Parsing Architecture

Sharing strategies

STRATEGIES:

BiLSTM parameters not shared
HARD SHARING: MLP or word/character lookup
and BiLSTM parameters shared
SOFT SHARING: Sharing + concatenating a language
embedding to the configuration vector, or word or
character vectors at the input of the BiLSTM.

NOT SHARING: MLP or word/character lookup and

Kiperwasser and Goldberg (2016); de Lhoneux et al. (2017)

We test the $3^3 = 27$ combinations on 5 language pairs.

Results

ISO	Lang	Tokens	Family	Word order	
ar	Arabic	208,932	Semitic	VSO	
he	Hebrew	161,685	Semitic	SVO	
et	Estonian	60,393	Finnic	SVO	
fi	Finnish	67,258	Finnic	SVO	
					Dataset
hr	Croatian	109,965	Slavic	SVO	Dataset
ru	Russian	90,170	Slavic	SVO	
it	Italian	113,825	Romance	SVO	
es	Spanish	154,844	Romance	SVO	
					
nl	Dutch	75,796	Germanic	No dom. order	
no	Norwegian	76,622	Germanic	SVO	

						-
	W	C	Ours	Mono	δ	
ar	X	Х	77.2	77.1	0.1	LAS on the test
he	✓	X	80.0	79.8	0.3	LAS OII tile test
— et		— ID	 71.4	70.5	0.8	sets of the best
fi	X	X	71.4	71.6	0.1	() 1 .
<u> </u>	_	_	———			of 9 sharing
hr	✓	X	77.9	78.0	-0.1	strategies and
ru	✓	X	83.5	82.7	0.8	24240
—	—					the monolingual
it	ID	✓	85.0	84.0	1.0	O
es	ID	✓	84.3	83.8	0.5	baseline. δ is
	_					(1 1.00
nl	ID	✓	75.5	74.1	1.4	the difference
no	X	ID	81.1	80.1	1.0	- between Ours
av.			78.8	78.2	0.6	- between oons
	I		1			- AND MONO.

best strategies vs monolingual

best strategies vs monolingual

Conclusions

- Generally, multi-task learning helps.
- Sharing the MLP parameters always helps. It helps to share MLP parameters when training a parser on a pair of related languages, and it also helps if the languages are unrelated.
- Sharing word and character parameters is differently helpful depending on the language.
- Sharing too many parameters does not help, when the languages are unrelated.

References

- Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional LSTM feature representations. *Transactions of the Association for Computational Linguistics*, 4:313–327.
- Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. 2017. Arc-Hybrid Non-Projective Dependency Parsing with a Static-Dynamic Oracle. In *Proceedings of the 15th International Conference on Parsing Technologies*, pages 99–104, Pisa, Italy. Association for Computational Linguistics.