Cambridge AI+: Exercises for Supervision 1 (k-NN and Regression)

Question 1. In this question, we will apply 2-NN to a small problem coming from image classification.

We are given a database of 4 images, two are labelled - and two are labelled +. Classify the two new images using the 2-NN rule. Use the hamming distance (number of differently coloured cells) as the distance function.

Question 2. Consider the following data set, where the second column is the only feature and the third column is the label:

Student	$TV\ hours$	$Exam\ Grade$
1	2	8
2	4	5
3	3	5.5
4	5	4
5	6	4.5
6	8	2
7	3	6.5
8	5.5	5
9	7	1.5
10	9	3

Apply the 2-NN rule to this data set and sketch the function you obtain. What is your predicted exam grade for a new student with (i) 0 TV hours and (ii) 6.5 TV hours. Discuss the results.

Question 3 ((advanced, requires programming)). The following represents a 2-dimensional data set with two numerical features and two binary classes.

$Point\ i$	(x_1^i, x_2^i)	(y^i)
1	(2.78, 25.5)	-1
2	(1.46, 23.6)	-1
3	(3.39, 44.4)	-1
4	(1.38, 18.5)	-1
5	(3.06, 30.1)	-1
6	(7.62, 27.9)	+1
7	(5.33, 20.8)	+1
8	(6.93, 17.7)	+1
9	(8.67, -2.4)	+1
10	(7.67, 35.1)	+1

- 1. Do you recognise any issues about the data set? If so, apply some preprocessing before proceeding to the next part of the question.
- 2. Consider now the unlabelled point

$$\mathbf{x} = (x_1, x_2) = (4.41, 25.0),$$

which we would like to classify. Perform a k-nearest neighbour search for k = 1, 3, 5 and Use majority vote to determine if x should get label -1 or +1. If you like, you can also experiment with different distance functions.

Question 4. Consider the following data set, which records several phone calls of clients to a company.

Client	Length of Call in minutes	Number of Purchased Items
1	13	2
2	17	1
3	32	2
4	36	4
5	45	4
6	53	3
7	67	6
8	74	5
9	83	7
10	132	11

- 1. Fit the data to a linear regression model and compute the R^2 -value.
- 2. Consider a client that calls the company for 90 minutes. Can you estimate the number of purchased items?
- 3. Somebody tells you that a recent client purchased 3 items, but you do not know the length of the call. Can you estimate that number?

Question 5. A medical study examined 300 people with high blood pressure and 200 people with low blood pressure. During the period of the study, 30 of these people in the low-blood-pressure group and 100 in the high-blood pressure group suffered from cardiovascular disease (heart disease).

- 1. Sketch how the data set looks like (i.e., explanatory variables and outcomes).
- 2. Apply logistic regression.
- 3. Consider now the classification problem. How would you classify a person with high-blood-pressure? How could you try to refine your prediction?