Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Кафедра	Информатики												
	100	1	2	3	4	5	6	7	8	9	10	11	12
	90												
	80												
	70												
	60												
	50												
	40												
	30												
	20												
	10												
	0												
	OTU	ŒŢ	Γ										
по лабо	раторн	ой ј	раб	оте	No3	3							
«Напря	жения	и де	ефо	рма	аци	И							
	учени												
	· -												

по дисциплине Методы и средства предотвращения нештатных ситуаций в ОТС

1306.558308.000 ПЗ

(обозначение документа)

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев Д.Н.			
Консультант	Минасов Ш. М.			
Принял				

Содержание

Введение	
1 Ход работы	^Z
Заключение	9
Список питературы	10

					1306.558308.000 ПЗ					
Изм	Лист	№ докум	Подп	Дата						
Раз	раб	Гараев Д.Н.			F-CNo.	Лит	Лист	Листов		
Про	вер.	Минасов Ш. М.			Лабораторная работа №1 «Напряжения и деформации при		2	10		
					«папряжения и оеформации при кручении стержней»					
Н. к	Н. контр				тручений стержней»		УГАТУ СТС-407			
Уте	3				1 1 ,,,,,,,					

Введение

В работе рассматривается стержень круглого поперечного сечения (Рисунок 1), нагруженный сосредоточенными моментами, приложенными в плоскости, перпендикулярной его продольной оси.

Рисунок 1 – Расчетная схема

Для вала необходимо назначить диаметр поперечного сечения из условий прочности и жесткости. Расчет на прочность необходимо выполнить по методу допускаемых напряжений.

Таблица 1 – Исходные данные для проектирования

а, м	Т, кН∙м;	D:d	R _{cp} , МПа	[θ], %м.п	G, МПа
0,55	7	1,15	165	0,45	$0.8 \cdot 10^5$

Изм.	Лист	№ докум	Подп	Дата

1 Ход работы

Для решения поставленной задачи потребуется определить сечение, в котором касательное напряжение достигает максимума, и найти тот участок вала, на котором возникает максимальный угол закручивания. Это достигается при построении эпюр крутящих моментов T, касательных напряжений τ и углов закручивания вала ϕ .

Для построения эпюр крутящих моментов и касательных напряжений вал разбивается на характерные участки (Рисунок 2 — Расчетная схема, разделенная на участки), границами которых служат те сечения, где прикладываются сосредоточенные нагрузки или изменяется диаметр вала.

Рисунок 2 — Расчетная схема, разделенная на участки Сечение I (0 \leq x₁ \leq 2a):

$$T_1 = -2T = -14 \cdot 10^3 H \cdot \text{M}.$$

Значение максимального касательного напряжения в сечении может быть получено в общем виде:

$$\tau_1 = \frac{T_1}{W_{\rho 1}} = \frac{-16 \cdot 2T}{\pi \cdot d^3} = \frac{-0.0713}{d^3}.$$

Сечение II $(0 \le x_2 \le a)$:

$$T_2 = -2T + 4T = 2T = 14 \cdot 10^3 H \cdot \text{M}.$$

			·	
Изм.	Лист	№ докум	Подп	Дата

Значение максимального касательного напряжения в сечении с учетом знака внутреннего усилия может быть получено в общем виде:

$$\tau_2 = \frac{T_2}{W_{\rho 2}} = \frac{16 \cdot 2T}{\pi \cdot d^3} = \frac{0.0713}{d^3}.$$

Сечение III ($0 \le x_2 \le a$):

$$T_3 = -2T + 4T = 2T = 14 \cdot 10^3 H \cdot M.$$

Выражая диаметр вала D на этом участке как D=1,15d, получим значение напряжения:

$$\tau_3 = \frac{T_3}{W_{03}} = \frac{16 \cdot 2T}{\pi \cdot (1,15)^3 \cdot d^3} = \frac{0,0465}{d^3}.$$

Максимальное (по модулю) касательное напряжение действует в сечении второго участка вала, следовательно условие прочности составляется для этого участка:

$$\begin{split} \tau_2 &= \left|\tau_{max}\right| \left|\frac{0,0756}{d^3}\right|^{\frac{1}{3}} \\ d &\geq \sqrt[3]{0,0756/165} = 0,077 \textit{м}. \\ \tau_2 &= \left|\tau_{max}\right| = \frac{0,0713}{d^3} \leq R_{\rm cp} \rightarrow d \geq \left(\frac{0,0713}{165}\right)^{0,3} = 0,0756 \textit{м} \end{split}$$

Из условия прочности по касательным напряжениям:

$$d = 75.6 \text{ MM}, D = 86.9 \text{ MM}.$$

Для расчета на жесткость необходимо определить значения углов закручивания вала на каждом участке.

Абсолютный угол закручивания первого участка вала:

$$\varphi_1 = \frac{T_1 L}{3GI_{o1}} = \frac{-2T \cdot 2a \cdot 32}{3G\pi d^4} = \frac{-42,67Ta}{G\pi d^4}.$$

Относительный угол закручивания первого участка вала:

$$\theta_1 = \frac{T_1}{GI_{\rho 1}} = \frac{-2T \cdot 32}{G\pi d^4} = \frac{-64T}{G\pi d^4}.$$

Абсолютный угол закручивания второго участка вала:

Изм.	Лист	№ докум	Подп	Дата

$$\varphi_2 = \frac{T_2 L}{3GI_{\rho 2}} = \frac{2T \cdot a \cdot 32}{3G\pi d^4} = \frac{21,33Ta}{G\pi d^4}.$$

Относительный угол закручивания второго участка вала:

$$\theta_2 = \frac{T_2}{GI_{02}} = \frac{2T \cdot 32}{G\pi d^4} = \frac{64T}{G\pi d^4}.$$

Абсолютный угол закручивания третьего участка вала (D = 1,15d):

$$\varphi_3 = \frac{T_3 L}{3GI_{\rho 3}} = \frac{2T \cdot a \cdot 32}{3G\pi (1,15)^4 d^4} = \frac{12,197Ta}{G\pi d^4}.$$

Относительный угол закручивания третьего участка вала:

$$\theta_3 = \frac{T_3}{GI_{\rho 3}} = \frac{2T \cdot 32}{G\pi (1,15)^4 d^4} = \frac{36,591T}{G\pi d^4}.$$

Построение эпюры углов закручивания следует начинать с третьего участка вала, так как в сечении, примыкающем к жесткой заделке, деформация сдвига равна 0.

Полный угол закручивания вала получаем при суммировании углов закручивания на каждом участке:

$$\varphi_n = \sum \varphi_i;$$

$$\varphi_n = (-42,67 + 21,33 + 12,197) \frac{Ta}{G\pi d^4} = 12,197 \cdot \frac{Ta}{G\pi d^4}.$$

Максимальный по модулю относительный угол закручивания θ_{2} . Тогда условие жесткости:

$$\theta_2 = \theta \frac{64T}{G\pi d^4}_{max}$$

Из условия жесткости требуемый диаметр поперечного сечения вала:

$$d \ge \sqrt[4]{64T/G\pi[\theta]}.$$

После подстановки численных значений в полученное выражение и перевода величины $[\theta]$ в радианы, получим:

$$d \ge \sqrt[4]{64 \cdot 7 \cdot 10^{-3} \cdot 180/0.8 \cdot 10^5 \cdot 3.14^2 \cdot 0.445} = 0.123_{M}.$$

По условию жесткости принято d = 123мм, тогда D = 141,54 м.

			·	
Изм.	Лист	№ докум	Подп	Дата

Так как размеры поперечного сечения вала, полученные из условия жесткости, больше, чем из условия прочности, окончательно назначено:

$$d = 123$$
 mm, $D = 141,54$ m.

Эпюры крутящих моментов, касательных напряжений и углов закручивания вала показаны на Рисунок 3.

Изм	Лист	№ докум	Подп	Дата

Рисунок 3 - Эпюры крутящих моментов, касательных напряжений и углов закручивания вала

Изм.	Лист	№ докум	Подп	Дата

Заключение

В ходе выполнения лабораторной работы был рассмотрен вал, для которого было необходимо назначить диаметр поперечного сечения из условий прочности и жесткости. Расчет на прочность был выполнен по методу допускаемых напряжений. Максимальное касательное напряжение было выявлено на втором участке вала, с помощью него были рассчитаны значения d = 75.6 мм, D = 86.9 мм.

Далее размеры сечения были рассчитаны из условия жесткости, так как размеры поперечного сечения вала, полученные из условия жесткости, больше, чем из условия прочности, окончательно назначено, что d = 123мм, D = 141,54 м.

Также были построены эпюры крутящих моментов, касательных напряжений и углов закручивания вала.

Изм.	Лист	№ докум	Подп	Дата

Список литературы

- 1. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. Для вузов. М.: Высш. шк., 2001 560 с.
- 2. Дарков А.В., Шпиро Г.С. Сопротивление материалов: Учеб. для вузов. М.: Высш. шк., 1989-624 с.
- 3. Сопротивление материалов с основами теории упругости и пластичности: Учеб. для вузов/под ред. Г.С. Варданяна М.: Издв-во АСВ, 1995 $568~\rm c.$
- 4. Сопротивление материалов: Учеб. для вузов/под ред. Г.С. Писаренко Киев: Высш. шк, 1986 736 с.

Изм	Лист	№ докум	Подп	Дата