Sistemas Operacionais - Sistemas de Informação - EACH-USP Prof. Alexandre da Silva Freire Prova Substitutiva - 6 de novembro de 2018

Nome:	NUSP:	NOTA:

Boa Prova!

Questão 1 (Valor: 2.5 pontos). Considere os processos $\{P_0, P_1, P_2, P_3, P_4\}$ e os recursos $\{A,B,C\}$. A tabela abaixo descreve como encontra-se o sistema no instante t_0 .

Processos	Instâncias Alocadas			Máximo Permitido		Instâ	Instâncias Disponíveis		
	Α	В	С	Α	В	С	Α	В	С
P ₀	0	1	0	7	5	3	3	3	2
P ₁	2	0	0	3	2	2		•	
P_2	3	0	2	9	0	2			
P ₃	2	1	1	2	2	2			
P ₄	0	0	2	4	3	3			

- Item(a): No instante t₁, o processo P₁ requisita mais uma instância do recurso A e duas instâncias do recurso C. Simule o Algoritmo do Banqueiro e determine se a requisição será atendida ou não.
- Item(b): No instante t₂, o processo P₀ requisita 2 instâncias do recurso B. Simule o Algoritmo do Banqueiro e determine se a requisição será atendida ou não (assuma que no instante anterior a decisão de atender ou não a requisição foi tomada de acordo com o que você determinou na resposta do item a).

Questão 2 (Valor: 2.5 pontos). Responda os itens abaixo considerando recursos de uma única instância.

- Item (a): Para que serve o Algoritmo do Grafo de Alocação de Recursos (AGAR)?
- Item (b): Descreva como o AGAR funciona.
- Item (c): Qual é a diferença entre deadlock e estado inseguro?
- Item (d): Construa um exemplo no qual um processo solicita um recurso disponível mas o sistema operacional, após executar o AGAR, não o aloca, para evitar uma possibilidade de ocorrência de deadlock no futuro. Atenção: seu exemplo não deve ser do tipo que cause um deadlock imediatamente, caso o sistema operacional atendesse a requisição.

Questão 3 (Valor: 2.5 pontos).

- Item (a): O que é uma assinatura digital?
- Item (b): Para que serve uma assinatura digital?
- Item (c): O que é um certificado digital?
- Item (d): Para que serve um certificado digital?

Questão 4 (Valor: 2.5 pontos).

Processo	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆
Tempo de burst	4	5	1	5	3	1
Instante de chegada	1	2	3	6	7	8

- Item (a): Simule os escalonadores Shortest Job First (SJF) e Round Robin (RR), com quantum de tempo de 2, para o cenário acima.
- **Item (b)**: Em sua simulação, qual desses dois escalonadores obteve o melhor tempo de resposta médio e qual obteve o melhor tempo de retorno médio?
- **Item (c)**: É verdade que, independentemente do cenário considerado, a resposta da pergunta do item (b) será sempre a mesma? Justifique.