Министерство науки и образования Российской Федерации Санкт-Петербургский Государственный Политехнический Университет

Plunge Drone

Отбор проб

Отбор проб

Воды

Основным условием эффективного производства объектов аква-культуры соблюдение ветеринарно-санитарных правил. Поскольку рыбохозяйственные водоемы и источники их водоснабжения зачастую находятся вблизи населенных пунктов и сельскохозяйственных предприятий, происходит поступление в них стоков (городских, животноводческих и др.), которые, наряду с накоплением в водоеме остатков не потребленного рыбой корма и их экскрементов при недостаточной проточности, приводят к загрязнению водоемов и эпизоотическому неблагополучию.

- 2. Отбор и транспортировка проб воды и грунта
- 2.1. Отбор проб воды из больших водоемов производится в нескольких местах с учетом гидробиологических особенностей каждого участка (заросли, отмели, песчаные и заболоченные участки и т.д.). Водоемы однотипные по гидробиологическим условиям исследуют в одном-двух местах на расстоянии 3-4 м от берега. Пробы берут на глубине 10-15 см от поверхности и не менее 10-15 см от дна, в зимовальных прудах и в других водоемах в зимний период из проруби на глубине 10-15 см от нижней поверхности льда. Для контроля над течением микробиологических процессов и состоянием рыбы в прудах отбирают также несколько проб по вертикали. Выемку проб осуществляют на притоке, в средней части и у водовыпуска. В неблагополучных по инфекционным заболеваниям водоемах пробы воды отбирают 1 -2 раза в месяц через равные промежутки времени. При комплексных исследованиях сначала отбирают пробы для микробиологических, затем химических и гидробиологических исследований.
- 2.2. Способы отбора проб воды могут быть различными, но обязательным условием является соблюдение асептики и взятие материала в стерильную посуду. Пробы воды в количестве 500 мл отбирают в стерильную посуду с притертой каучуковой или корковой пробкой. Наполняют флаконы или склянки с таким расчетом, чтобы при транспортировке не замочить пробку. Посуду и батометры стерилизуют завернутыми в бумагу и разворачивают их непосредственно перед взятием проб воды.
- 2.3. Пробы воды исследуют не позднее, чем через 2 ч после отбора. При невозможности выполнения этих условий допускается проведение анализа не позднее, чем через 24 ч после отбора проб, сохраняя при этом пробы при температуре от 1 до 5°С. При этом обязательным условием является фиксация их формалином из расчета 2-3 капли (0,1 мл) 40%-ного раствора на 100 мл воды. Склянки с зафиксированными пробами плотно закрывают притертыми пробками, на которые надевают резиновые колпачки. Посуду с

пробами упаковывают в сумки-холодильники или в ящики с теплоизолирующей прокладкой. При транспортировке проб избегают различных толчков, которые могут привести к намоканию пробок.

- 2.4. Отобранные пробы сопровождаются документом, содержащим следующие сведения:
- точное месторасположение водоема;
- дату отбора (с указанием года, месяца, числа и часа);
- количество отобранных проб и место их отбора;
- цель исследования: сделан ли отбор в порядке текущего санитарного надзора или по особым показаниям (сигналы об эпизоотологическом неблагополучии и т.д.);

Сопроводительный документ подписывает лицо, отбиравшее пробы, с указанием места работы и должности.

2.5. В стационарно неблагополучных по инфекционным заболеваниям рыбохозяйственных водоемах следует иметь микробиологическую характеристику грунта ложа водоема. Грунт обследуют до и после проведения оздоровительных мероприятий (дезинфекции, летования и др.).

Пробы грунта отбирают стеклянными трубочками или специальными колонками в емкости и транспортируют в лаборатории, соблюдая правила асептики. Учитывается масса ила, взятого для исследования (внесенного в емкость для разведения физраствором), для получения общепринятым методом дальнейших разведении определенной кратности (десятикратного, стократного и т.д. до 1 млрд.).

Дальнейшие исследования проводят теми же методами, что и анализ воды. Расчет количества микроорганизмов ведется на 1,0 г поверхностного слоя грунта.

3. Методы исследований

Санитарно-бактериологическую оценку водоема проводят по следующим показателям: МАФАнМ - мезофильно-аэробные и факультативно анаэробные микроорганизмы (общее микробное число - ОМЧ или сапрофитные микроорганизмы); коли-титр (определение титра бактерий группы кишечных палочек) - показатель фекального загрязнения; наличие аэромонад и псевдомонад (показатели возможного неблагополучия водоемов по аэромонозу и псевдомонозу).

3.1. Определение микробного числа (МАФАнМ КОЕ/см3 (г) воды (грунта).

Микробное число определяют чашечным методом, методом предельных разведении или - ориентировочно, - пробой с резазуринатом натрия.

3.1.1. Проба с резазуринатом натрия

Метод используют как ориентировочный, не исключающий определение микробного числа чашечным методом или методом предельных разведении. В зависимости от количества микроорганизмов в исследуемой пробе через определенное время происходит изменение синего цвета раствора резазурината натрия в фиолетовый, красный или обесцвечивание.

К 9,0 мл исследуемой воды добавляют 1,0 мл стерильного мясо-пептонного бульона (МПБ) и 1,0 мл 0,01%-ного водного раствора резазурината натрия (резазурина). Содержимое пробирок перемешивают, и пробы помещают в термостат при температуре 37°С. Одновременно ставится контроль: 9 мл дистиллированной воды +1,0 мл МПБ + 1,0 мл 0,01%-ного водного раствора резазурината натрия. Через каждый час визуально учитывают результаты. Изменение цвета в фиолетовый через 2-3 часа и в красный (розовый) через 3-4 часа свидетельствует о неудовлетворительном, а в фиолетовый через 4-5 и красный (розовый) через 6-7 часов - о сомнительном, в более поздние сроки об удовлетворительном качестве воды. Цвет среды в контрольных пробирках должен быть синим. Раствор резазурината натрия готовят перед использованием.

3.1.2. Чашечный метод.

Сущность метода заключается в высеве определенного объема исследуемой воды или ее разведении в чашки Петри в глубину агара и последующем подсчете выросших колоний. При этом исходят из того, что каждая колония является результатом размножения одной клетки. Работа этим методом включает три этапа: приготовление разведений, посев в чашки Петри, подсчет выросших колоний.

Разведения готовят в стерильном физрастворе, пользуясь постоянным коэффициентом разведения, равным 10.

Для приготовления разведений физраствор разливают по 9,0 (4,5) мл в стерильные сухие пробирки. Затем 1,0 (0,5) мл исследуемой воды, взятой стерильной пипеткой, переносят в пробирку с физраствором - это первое разведение 1:10. Полученную в первом разведении суспензию тщательно перемешивают стерильной пипеткой. Этой же пипеткой берут 1,0 (0,5) мл полученного разведения и переносят во вторую пробирку с физраствором - это второе разведение 1:100. Таким же образом готовят и последующие разведения.

Заранее приготовленный МПБ подогревают на водяной бане до 45°C. Стерильные чашки Петри раскладывают на столе и подписывают на крышках номер пробы, дату посева и степень разведения. Из каждой пробы воды и её разведений производят посев по 1,0 мл параллельно на две чашки с таким расчетом, чтобы на чашках выросло от 30 до 300 колоний.

С флаконов, содержащих исследуемую воду, снимают бумажные колпачки, вынимают пробки, горлышки фламбируют, после чего воду тщательно перемешивают осторожным продуванием воздуха через стерильную пипетку. Эту операцию производят перед приготовлением разведений.

Стерильной пипеткой отбирают 1 мл воды (и ее разведений) вносят в стерильные чашки, слегка приоткрывая крышку. При этом для каждой пробы воды и для каждого разведения используется отдельная стерильная пипетка. Посевы из разведений можно делать одной пипеткой, но начинать следует обязательно из большего разведения.

После внесения воды (и ее разведений) в эти чашки, с соблюдением условий стерильности, заливают остуженный питательный агар в количестве 10,0-12,0 мл. Воду быстро смешивают с агаром, осторожно наклоняя или вращая чашку. Необходимо полностью заливать дно чашки, избегая попадания среды на края и образования пузырьков воздуха. Чашки оставляют на горизонтальной поверхности до застывания среды. Чашки с посевом помещают в термостат вверх дном. Посевы выращивают при температуре 27°С в течение 5 суток.

Подсчет колоний, выросших на поверхности и в глубине агара, производят при помощи лупы. Если в чашке с наиболее высоким разведением выросло свыше 300 колоний и анализ нельзя повторить, то допускается подсчет колоний при помощи счетной пластинки с лупой при сильном боковом освещении Подсчитывают не менее 20 квадратов площадью в 1 см2 в разных местах чашки, выводят среднее арифметическое число колоний на 1 см2, величину которого умножают на площадь чашки по формуле S = ПR2. где R - радиус чашки (см).

Результат подсчета колоний на каждой чашке выражают в количестве бактерий в 1,0 мл с учетом произведенных разведений. За окончательное количество бактерий в 1,0 мл исследуемой воды или разведении принимают среднее арифметическое из результатов подсчета на двух параллельных чашках.

Учет количества колоний можно вести, ориентируясь на одну чашку в случаях, если на другой: а) при посеве из разведения выросло менее 20 колоний; б) ползучий рост бактерий, распространившийся на всю

поверхность чашки или значительные зоны, маскирует рост других колоний; в) количество колоний превышает 300.

3.1.3. Метод предельных разведений.

Метод включает приготовление разведений, посев в жидкую питательную среду МПБ, регистрацию наличия или отсутствия роста после инкубации и расчет наиболее вероятного числа клеток в единице объема исследуемой воды по таблице Мак-Креди (см. приложение 1).

Чашечный метод определения количества микробных клеток обеспечивает большую точность по сравнению с методом предельных разведении, однако при посеве на МПА в чашки иногда происходит зарастание агара микрофлорой, обладающей ползучим ростом. В этом случае метод предельных разведении является более приемлемым. Приготовление разведений производится точно так же, как и для чашечного метода. Посев в мясо-пептонный бульон производится при соблюдении условий стерильности в количестве 1,0 мл каждого разведения параллельно в 3-5 пробирок, содержащих по 5,0 мл МПБ. Результаты учитывают через 5 суток. После инкубации при температуре 27°С регистрируют наличие или отсутствие роста микроорганизмов визуально (помутнение среды, образование пленки, осадка). Наиболее вероятное количество микробных клеток в единице объема определяют с помощью таблицы, разработанной на основании методов вариационной статистики Мак-Креди (см. приложение 1).

3.2. Определение бактерий группы кишечных палочек (БГКП)

Обнаружение в воде кишечных палочек следует рассматривать как показатель поступления в пруды животноводческих или городских сточных вод, а их количество позволяет судить о степени этого загрязнения. Наличие и количественный учет кишечных палочек определяют бродильным методом. Сущность метода заключается в посеве определенных объемов анализируемой воды в среды накопления и подращивания при температуре 37±0,5°C с последующим пересевом на плотную питательную среду Эндо и дифференциацией выросших бактерий. Пробы воды и их разведения высевают по 1,0 или 0,5 мл (в зависимости от количества среды в соотношении 1:10) в глюкозо-пептонную среду (ГПС) или среду ВНИИВС. Посевы инкубируют при температуре 43 ± 0.5 °C в течение 24 ч. Отсутствие помутнения, образование кислоты и газа в ГПС или помутнение и изменение цвета среды ВНИИВС из сиреневого в салатный дают основание предположить наличие бактерий группы кишечной палочки. В этих случаях производят пересев на среду Эндо. Посевной материал следует брать с таким расчетом, чтобы выросли изолированные колонии. Для этого производят пересев бактериологической петлей штрихами по поверхности среды. Чашки

с посевами помещают в термостат и инкубируют при температуре 37±0,5°C в течение 24-48 ч.

При росте на среде Эндо темно-красных колоний с металлическим блеском их принадлежность к БГКП подтверждают микроскопированием мазков, окрашенных по Граму, и постановкой оксидазного теста. Наличие мелких неспорообразующих грамотрицательных палочек в мазках и отрицательный оксидазный тест позволяют дать заключение о содержании кишечной палочки в анализируемой пробе воды.

Для постановки оксидазного теста берут петлей 2-3 изолированные колонии, выросшие на среде Эндо, и наносят штрихом на фильтровальную бумагу, смоченную соответствующим реактивом (см. приложение 3. п.б). При отрицательной реакции на оксидазный тест фильтровальная бумага не изменяет цвета в течение 1-2 мин. после нанесения бактериальной массы. При активной реакции на оксидазу фильтровальная бумага синеет в течение 1-2 мин.

Определение титра БГКП (коли-титра) проводят установлением наименьшего количества воды, в котором находится одна кишечная палочка.

- 3.3. Индикация и количественный учет условно-патогенной для рыб микрофлоры.
- 3.3.1. Индикация и количественный учет аэромонад.

Наличие А. hydrophila определяют следующим образом. Пробы воды и их разведения высевают по 0,2 мл на среду Эндо с молоком. Посевы инкубируют в термостате при температуре 28±0,5°C в течение 24-48 ч. Рост матовых слегка выпуклых колоний с зоной просветления позволяет предположить наличие аэромонад. Для подтверждения производят микроскопирование мазков, окрашенных по Граму, и проверяют на оксидазную активность. Наличие мелких неспорообразующих грамотрицательных палочек в мазках и положительный оксидазный тест позволяют дать заключение о содержании в исследуемой воде аэромонад.

Двухэтапный метод. Пробы воды и их разведения высевают по 0,5 мл в жидкую среду накопления, в состав которой входят: сульфат магния, К2Н Р04, желатин, крахмал (среда А-1). Через 24 ч инкубирования посевов в термостате при температуре 30 °C производят пересев на плотную дифференциально-элективную среду, в состав которой кроме перечисленных компонентов (среда А-1) входят: водный раствор кристаллического фиолетового и трифенилтетрахлорид (среда А-2). Посевы на плотной элективной среде инкубируют в термостате при температуре 28-30 °C в течение 42-48 ч. Характеристика колоний аэромонад на плотной

дифференциально-элективной среде (среда А-2): крупные с вишневым центром и узким бесцветным ободком.

3.3.2. Индикация и количественный учет псевдомонад.

Наличие P. fluorescens определяют трехэтапным методом:

- 1. Накопление в жидкой среде обогащения;
- 2. Выделение на плотной селективно-дифференциальной среде;
- 3. Идентификация с использованием ограниченного набора наиболее необходимых тестов.

Первый этап: из разведении проб воды производят посев в среду обогащения - жидкую среду с трифенилтетразолхлоридом (TTX) (состав среды см. в Приложении 3). 8%-ный водный раствор ТТХ в дистиллированной воде прибавляют к среде в соотношении 1:10, Посевы инкубируют при температуре 42°С в течение 24-42 ч.

Второй этап: из среды обогащения производят пересев на плотную селективно-дифференциальную среду "блеск", разлитую в чашки Петри. Для получения изолированных колоний целесообразнее производить высев бактериологической петлей. Засеянные чашки помещают в термостат при температуре 28-37 °C на 24-42 4. Колонии Р. fluorescens либо сплошь покрыты золотистым налетом, либо имеют многочисленные вкрапления, обрамленные светло-красным ободком или бесцветным венчиком. Характерным признаком является появление золотистого или металлического блеска. Наиболее типичные колонии на среде "блеск" подвергают идентификации путем высевов: на среду Кинга-А; специальную среду для определения оксидации мальтозы с бромтимоловым синим; среду для определения теста Хью-Лсйфсона (оксидация и ферментация) с феноловым красным, среду для определения нитрат-нитритредуктазы и на реакцию цитохромоксидазы по Гэби и Хедли.

Грунта

В приведенной таблице продемонстрированы возможные для взятия дроном пробы, в соответствии с гостами, как прибор для взятия грунта было решено использовать дночерпатель

Вид анализа	Как отбирать	Объем пробы,	Условия хранения –
		необходимый для	сроки хранения
		анализа	' '
ДОННЫЕ ОТЛОЖЕНИЯ			
Химический	Для отбора проб в	Масса пробы должна	Хранить в емкостях из
	зависимости от задач	быть не менее 1 кг.	химически
	исследования и схем		нейтрального
	отбора проб		материала. При
	применяются		температуре выше 4-5
	дночерпатели, драги		°C – 2 суток. При
	и др. Материал		температуре ниже -
	рабочих органов		20°C – до 30 суток.
Сухой остаток,	устройств для отбора	Масса пробы должна	Отобранные пробы
Прокаленный сухой	проб донных	быть не менее 1 кг.	хранят в стеклянных
остаток	отложений		сосудах с плотно
	(непосредственно		закрывающейся
	контактирующих с		крышкой не более 3
	пробой) не должен		суток при
	изменять состав		температуре (4-8)°С.
Щелочность общая	пробы. Сосуды для	Масса пробы должна	Определение
Щелочность	хранения проб	быть не менее 1 кг.	проводят не позднее
свободная	должны герметически		чем через 6 часов
	закрываться. Для		после отбора пробы.
	хранения проб могут		Пробу не
	быть использованы		консервируют. При
	широкогорлые		отборе жидких проб
	сосуды из химически		емкость заполняют
	стойкого стекла или		доверху, чтобы не
	пластмасс типа		осталось пузырьков
	тефлона и		воздуха. При
	полиэтилена		транспортировке
	высокого давления с		предохраняют от
	герметически		нагревания.
Цианиды	закрывающимися	Пробы отбирают в	Хранить в емкостях из
	крышками или	емкости (банки) из	химически
	термосы.	темного стекла с	нейтрального
		Хранить в емкостях из	материала. При
		химически	температуре выше 4-5
		нейтрального 2 Отбор	°C – 2 суток. При
		проб донных	температуре ниже -
		отложений LABCLUSTER	20°C – до 30 суток.
		притертой или плотно завинчивающейся	
		завинчивающейся крышкой, заполняя	
		· ·	
		емкости под горло.	

		1
	Масса отобранной	
	пробы должна	
	составлять не менее	
	100 г.	
Бактериологический,	Масса пробы должна	При температуре от 4
Паразитологический	быть не менее 1 кг.	°C до 5 °C не более 24
		ч.
Радиологический	Масса пробы должна	Хранить в емкостях из
	быть не менее 1 кг.	химически
		нейтрального
		материала. При
		температуре выше 4-5
		°C – 2 суток. При
		температуре ниже -
		18 °C – до 30 суток.
Токсикологический	Масса пробы должна	Пробы анализируют
	быть не менее 1 кг.	не позднее 12 ч с
		момента отбора. Если
		данное условие
		нельзя выполнить, то
		пробы хранят в
		холодильнике в
		емкостях с плотно
		закрытой крышкой до
		одной недели при
		температуре от (+2)
		до (+4)°C.
		Консервирование не
		допускается

Для определения необходимых проб и замеров использовались следующие госты:

ГОСТ 17 .1.5.01-8 0

ГОСТ 12071—2014

ГОСТ 5180- 2015

ГОСТ 17.1.5.04-81

P 52.24.353-2012

ГОСТ 31861-2012

ГОСТ 31942-2012

ΓΟCT P 70282-2022

ГОСТ 31861-2012

ГОСТ 31942-2012