wherein:

- (a) Z is oxygen, NX_1 , or sulfur, where X_1 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
 - (b) n is 0, 1, 2, 3, or 4;
- (c) A_2 , A_3 , A_4 and A_5 are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

A₁ is nitrogen or carbon;

- (d) R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
 - (iv) benzyl;
 - (v) halogen or trihalomethyl;
- (vi) a ketone of formula -CO-X₄, where X₄ is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
- (vii) a carboxylic acid of formula $-(X_5)_{n5}$ -COOH or ester of formula $-(X_6)_{n6}$ -COOX₇, where X_5 , X_6 , and X_7 and are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n5 and n6 are each independently 0 or 1;

- (viii) an alcohol of formula $-(X_8)_{n8}$ -OH or an alkoxy moiety of formula $-(X_8)_{n8}$ -OX₉, where X_8 and X_9 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n8 is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (ix) -NHCOX $_{10}$, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (x) -SO₂NX₁₁X₁₂, where X₁₁ and X₁₂ are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and
- (xi) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;
- (xii) -OX₇, where X₇ is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and a five-membered or six-membered aryl or heteroaryl ring moiety;
- (e) any adjacent R₃, R₄, and R₅ or any adjacent R₆, R₇, R₈, and R₉ are fused together to form a five-membered or six-membered heteroaryl or six-membered aryl ring moiety, wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of said quinazoline-based compound to which R₃, R₄, and R₅ or R₆, R₇, R₈, and R₉ are attached; and
 - (f) R_{11} and R_{12} are independently selected from the group consisting of
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl; and
- (g) Z' is carbon or nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member, wherein said ring is optionally substituted with one, two or three alkyl, halogen, trihalomethyl, carboxylate, and ester moieties.
- 11. (Twice amended) The method of claim 1, wherein said quinazoline-based compound has the formula set forth in structure I or III:

R₁₃ Z' R₁₄ R₁

(III)

wherein:

(2

- (a) Z is oxygen, NX_1 , or sulfur, where X_1 is selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (b) n is 0, 1 or 2;
- (c) A_2 , A_3 , A_4 and A_5 are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

- (d) R₁ and R₂ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iv) halogen or trihalomethyl; and
 - (v) five-membered or six-membered heteroaryl ring moiety;
- (e) R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;

- (iii) NX_4X_5 , where X_4 and X_5 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iv) halogen or trihalomethyl;
- (v) $C(X_6)_3$ where X_6 is selected from the group consisting of fluorine, chlorine, bromine and iodine; and
- (vi) $-OX_7$, where X_7 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and a five-membered or six-membered aryl or heteroaryl ring moiety;
- (f) any adjacent R₃, R₄, and R₅ or any adjacent R₆, R₇, R₈ and R₉ are fused together to form a five-membered or six-membered heteroaryl or six-membered aryl ring moiety, wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of said quinazoline-based compound to which R₃, R₄, and R₅ or R₆, R₇, R₈, and R₉ are attached;
 - (g) R₁₁ and R₁₂ are independently selected from the group consisting of
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl; and
- (h) Z' is nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member, wherein said ring is optionally substituted with one, two, or three alkyl, halogen, trihalomethyl, carboxylate, and ester moieties.
- 12. (Twice amended) The method of claim 1, wherein said quinazoline-based compound has the formula set forth in formula V:

$$R_{13}$$
 R_{14}
 R_{1}
 R_{1}
 R_{2}
 R_{4}
 R_{5}

wherein:

- (a) R_1 and R_2 are independently selected from the group consisting of:
 - (i) hydrogen;
- (ii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and

62

- (iii) benzyl;
- (b) R₃, R₄, and R₅ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl; and
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and
- (c) Z' is nitrogen and R_{13} and R_{14} taken together form a five-membered heteroaryl ring.
- 15. (Amended) The method of claim 1, wherein said quinazoline-based compound has a structure set forth in formula X:

$$R_0$$
 R_0
 R_0
 R_1
 R_1
 R_2
 R_2
 R_3
 R_4

wherein

- (a) R₁ and R₂ are independently selected from the group consisting of hydrogen, -NH₂, provided at least one of R₁ and R₂ is -NH₂;
 - (b) R₆, R₇, R₈, and R₉ are independently selected from the group consisting of
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iv) halogen;
- (v) $C(X_6)_3$, where X_6 is selected from the group consisting of fluorine, chlorine, bromine, and iodine; and
- (vi) OX_7 , where X_7 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and a five-membered or six-membered aryl or heteroaryl ring moiety.
- 17. (Twice amended) A method of treating an abnormal condition in an organism in need thereof, wherein said abnormal condition is a disease associated with an aberration in a signal transduction pathway characterized by an interaction between a

serine/threonine protein kinase and a natural binding partner, said method comprising the step of administering a quinazoline-based compound of formula I or III to said organism:

$$R_{13}$$
 R_{14}
 R_{1}
 R_{1}
 R_{2}

04

wherein:

(III)

- (a) Z is oxygen, NX_1 , or sulfur, where X_1 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
 - (b) n is 0, 1, 2, 3, or 4;
- (c) A₂, A₃, A₄and A₅ are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

 A_1 is carbon or nitrogen;

- (d) R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
 - (iv) halogen or trihalomethyl;

- (v) a ketone of formula -CO-X₄, where X₄ is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
- (vi) a carboxylic acid of formula $-(X_5)_{n5}$ -COOH or ester of formula $-(X_6)_{n6}$ -COOX₇, where X_5 , X_6 , and X_7 and are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n5 and n6 are each independently 0 or 1;
- (vii) an alcohol of formula $-(X_8)_{n8}$ -OH or an alkoxy moiety of formula $-(X_8)_{n8}$ -OX₉, where X_8 and X_9 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n8 is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (viii) -NHCOX₁₀, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (ix) $-SO_2NX_{11}X_{12}$, where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and
- (x) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;
- (e) any adjacent R₃, R₄, and R₅ or any adjacent R₆, R₇, R₈, and R₉ are fused together to form a five-membered or six-membered heteroaryl or six-membered aryl ring moiety, wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of said quinazoline-based compound to which R₃, R₄, and R₅ or R₆, R₇, R₈, and R₉ are attached;
 - (f) R₁₁ and R₁₂ are independently selected from the group consisting of
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl; and
- (g) Z' is carbon or nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member.

20. (Amended) The method of claim 17, wherein said quinazoline-based compound has a structure set forth in formula X:

$$R_{0}$$
 R_{0}
 R_{0}
 R_{1}
 R_{2}
 (X)

wherein

- (a) R_1 and R_2 are independently selected from the group consisting of hydrogen and -NH₂, provided at least one of R_1 and R_2 is -NH₂;
 - (b) R_6 , R_7 , R_8 , and R_9 are independently selected from the group consisting of
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iv) halogen;
- (v) $C(X_6)_3$, where X_6 is selected from the group consisting of fluorine, chlorine, bromine, and iodine; and
- (vi) OX_7 , where X_7 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and a five-membered or six-membered aryl or heteroaryl ring moiety.
- 23. (Amended) The method of claim 1, wherein said cancer is selected from the group consisting of lung cancer, ovarian cancer, breast cancer, brain cancer, intra-axial brain cancer, colon cancer, prostate cancer, Kaposi's sarcoma, melanoma, and glioma.
 - 26. (Twice amended) A quinazoline compound having the formula I or III:

C 7

$$\begin{array}{c} R_7 \\ R_8 \\ A_2 \\ A_5 \\ (CR_{11}R_{12})h \\ R_3 \\ R_4 \\ \end{array}$$

 $R_{13} \xrightarrow{R_{14}} R_{1}$ $R_{3} \xrightarrow{R_{4}} R_{5}$ $R_{4} \xrightarrow{R_{5}} R_{5}$

(7) wherein:

- (i) Z is oxygen, NX_1 , or sulfur, where X_1 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
 - (ii) n is 0, 1, 2, 3, or 4;
- (iii) A_2 , A_3 , A_4 and A_5 are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

- (iv) R₁ and R₂ are independently selected from the group consisting of:
 - (a) hydrogen;
 - (b) saturated or unsaturated alkyl;
- (c) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (d) halogen or trihalomethyl; and
 - (e) five-membered or six-membered heteroaryl ring moiety;
- (v) R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are independently selected from the group consisting of:
 - (a) hydrogen;
 - (b) saturated or unsaturated alkyl;

- (c) $NX_{13}X_{14}$, where X_{13} and X_{14} are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered aryl or heteroaryl ring moieties;
 - (d) halogen or trihalomethyl;
- (e) a ketone of formula -CO-X₄, where X₄ is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
- (f) a carboxylic acid of formula $-(X_5)_{n5}$ -COOH or ester of formula $-(X_6)_{n6}$ -COOX₇, where X_5 , X_6 , and X_7 and are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n5 and n6 are each independently 0 or 1;
- (g) an alcohol of formula $-(X_8)_{n8}$ -OH or an alkoxy moiety of formula $-(X_8)_{n8}$ -OX₉, where X_8 and X_9 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n8 is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (h) -NHCOX₁₀, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (i) $-SO_2NX_{11}X_{12}$, where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and
- (j) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;
- (vi) any adjacent R₃, R₄, and R₅ or any adjacent R₆, R₇, R₈, and R₉ are fused together to form a five-membered or six-membered heteroaryl or six-membered aryl ring moiety, wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of said quinazoline compound to which R₃, R₄, and R₅ or R₆, R₇, R₈, and R₉ are attached;
 - (vii) R₁₁ and R₁₂ are independently selected from the group consisting of
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl; and

(viii) Z' is carbon or nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member; with the proviso that the compound of formula (I) or (III) is not

27. (Twice amended) A quinazoline compound having the formula I or III:

(I)

(III)
$$R_{13} \xrightarrow{Z_{1}} R_{14} \xrightarrow{R_{1}} R_{1}$$

wherein:

- (a) Z is oxygen, NX_1 , or sulfur, where X_1 is selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (b) n is 0, 1, or 2;
- (c) A_2 , A_3 , A_4 and A_5 are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

- (d) R₁ and R₂ are independently selected from the group consisting of:
 - (i) hydrogen;

- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iv) halogen or trihalomethyl; and
 - (v) five-membered or six-membered heteroaryl ring moiety;
- (e) R₃, R₄, R₅, R₆, R₇, R₈ and R₉ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) NX_4X_5 , where X_4 and X_5 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iv) halogen or trihalomethyl;
- (v) $C(X_6)_3$, where X_6 is selected from the group consisting of fluorine, chlorine, bromine and iodine;
- (vi) $-OX_7$, where X_7 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and a five-membered or six-membered aryl or heteroaryl ring moiety;
- (f) any adjacent R₃, R₄, and R₅ or any adjacent R₆, R₇, R₈ and R₉ are fused together to form a five-membered or six-membered heteroaryl or six-membered arylring moiety, wherein said five-membered or six-membered aryl or six-membered heteroaryl ring comprises two carbon atoms of said quinazoline compound to which R₃, R₄, and R₅ or R₆, R₇, R₈, and R₉ are attached;
 - (g) R₁₁ and R₁₂ are independently selected from the group consisting of
 - (i) hydrogen; and
 - (ii) saturated or unsaturated alkyl; and
- (h) Z' is nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member, wherein said ring is optionally substituted with one, two, or three alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;

with the proviso that the compound of formula (I) or (III) is not

28. (Twice amended) A quinazoline compound having the structure set forth in formula V:

wherein:

07

- (a) R_1 and R_2 are independently selected from the group consisting of:
 - (i) hydrogen;
- (ii) NX_1X_2 , where X_1 and X_2 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and
 - (iii) benzyl;
 - (b) R₃, R₄, and R₅ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl; and
- (iii) NX_3X_4 , where X_3 and X_4 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
- (c) Z' is nitrogen and R_{13} and R_{14} taken together form a five-membered heteroaryl ring;

with the proviso that the compound of formula (V) is not

- 34. (Twice amended) A method for synthesizing a compound of claim 26, comprising the steps of:
- C8
- (a) reacting a first reactant with a second reactant to yield said compound, wherein said first reactant has a structure of formula XI:

$$R_3$$
 R_4
 R_5
 R_5
 R_1
 R_2
 R_2

and wherein said second reactant has a structure of formula (XII):

$$\begin{array}{c} R_7 \\ R_8 \\ R_6 \\ \end{array} \begin{array}{c} R_7 \\ A_1 \\ (CR_1 R_{12})_n \\ ZH \end{array}$$

wherein,

- (a) Z is oxygen or sulfur;
- (b) n is 0, 1, 2, 3, or 4;
- (c) A_2 , A_3 , A_4 , and A_5 are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

- (d) R₁ and R₂ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iv) halogen or trihalomethyl; and
 - (v) five-membered or six-membered heteroaryl ring moiety;
- (e) R₃, R₄, R₅, R₆, R₇, R₈, and R₉ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
- (iii) $NX_{13}X_{14}$, where X_{13} and X_{14} are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered aryl or heteroaryl ring moieties;

- (iv) halogen or trihalomethyl;
- (v) a ketone of formula -CO-X₄, where X₄ is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
- (vi) a carboxylic acid of formula - $(X_5)_{n5}$ -COOH or ester of formula - $(X_6)_{n6}$ -COOX₇, where X_5 , X_6 , and X_7 and are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n5 and n6 are 0 or 1;
- (vii) an alcohol of formula $-(X_8)_{n8}$ -OH or an alkoxy moiety of formula $-(X_8)_{n8}$ -OX₉, where X_8 and X_9 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n8 is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (viii) -NHCOX₁₀, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (ix) $-SO_2NX_{11}X_{12}$, where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and
- (x) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;
- (f) any adjacent R₃, R₄, and R₅ or any adjacent R₆, R₇, R₈, and R₉ are fused together to form a five-membered or six-membered heteroaryl or or six-membered aryl ring moiety wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of the ring to which R₃, R₄, and R₅ or R₆, R₇, R₈, and R₉ are attached;
 - (g) R_{11} and R_{12} are independently selected from the group consisting of
 - (i) hydrogen; and
 - (ii) saturated or unsaturated alkyl; and
 - (b) collecting a precipitate comprising said compound.