Development of a Robotic Center Pivot for ML/AI Enabled Near-Field Sensing, Edge-Computing, and Control for Agricultural Experimentation "At Scale"

J. V. Krogmeier, D. Buckmaster, J. Evans, C. G. Brinton, D. J. Love, C.-C. Wang

The Proposed Instrument

- □ Commercially available irrigation system as a moveable platform for:
 - + Sensing: soil, water, plant, micro-climate, robotic scouting and tissue sampling
 - + Actuation: water, fertilizer, crop protection, spot tillage or weeding
- □ The land below equipped with a dense drainage tile system instrumented for water and soil sensing, drainage control, underground comms.

The Research Enabled

The Enabled Research Activities [1/3]

- Pheno-typing and management practice studies
 - + Hyperspectral imaging
 - + RGB imaging and video
 - + Lidar, infrared
- Micro-climate studies
 - + Heat, mass, and momentum transfers between organisms and the atmosphere
 - + Greenhouse gas emissions from ag operations
 - + Solar UV radiation and effects on crops

The Enabled Research Activities [2/3]

- □ Radar conventional and synthetic aperture
 - + Ground penetrating for mapping soil layers, especially evidence of hardpan and compaction
 - + Soil moisture estimation
 - + At scale tomographic root imaging
 - + Lidar, infrared
- Robotics joint control of gantry mounted robotic arms and the pivot assembly
 - + Weeding
 - + Insect scouting
 - + Targeted application of water, fertilizer, and/or herbicides

The Enabled Research Activities [3/3]

- mmWave and THz Sensing of crops and atmospheric gases, IoT4Ag style sensors
- □ Cornfield (Beans, wheat, pumpkins ···) as a system
 - + Synchronized and simultaneous measurement (spatial and temporal) of all parameters
 - + Study of system under or after stress event (drought, hail, insects, etc.)
 - + Characterize the effect of hard constraints on applied water, nutrients, pesticides, etc.
 - + Measure soil borne carbon over growing season
- □ Prove concepts of AI/ML at scale and in real time

How the Proposed Instrument Fits in the Puzzle

Partner Institutions

- □ U. Arizona, U. Illinois, Saint Louis U., G. Washington U., Wash. U., K. State, Clemson
- □ D. Danforth Plant Science Center

Funding: ARPA-E

□ > \$10M, 2015 - 2020

Primary Use: Platform for phenotyping of sorghum as a bio-energy source; drought stress

Compare to TerraRef

- Order of magnitude larger in area
- Potential for actuation
- Deployable at much lower cost
- Sensing, comms, robotic innovations have the potential to impact farming practice, not just research
- Potential for lowering cost and democratizing "at scale" agronomic experimentation

Design of the Instrument Itself

The Pivot Instrument Is ···

- □ Three sub-systems:
 - + A nearly conventional irrigation pivot (precision application of water and water soluble crop treatments + sensing)
 - + A data, sensing, robotic actuation pivot as a gantry (limited water, etc. application --- it provides power and high bandwidth wired networking and a standardized port for connecting experimental packages)
 - + Earth buried sensing and instrumented drainage tile with wireless short range connection to the pivot for wireless power and sensor readout
- □ Think "minute" hand, "hour" hand on a clock minute hand cannot pass the hour hand, but it is much faster.
 - + Could have "minute" hand only ... say in Indiana.

Pivot Instrument Design Considerations [1/2]

- □ Networking along the gantry (~300 m):
 - + Several fiber strands and periodically placed power ports and ethernet connections (~10 m spacing)
 - + Need to enable fixed fiber optic link to interface with rotating hub in the center pivot (mmWave short range wireless, optical rotary joint ...)
 - + Must operate in harsh environment and high temperatures
- □ Pivot drive design for the "minute" hand pivot. Forward/ backward and faster than conventional
- □ Pivot rotation point design for minute and hour hand
- □ High precision GPS at every tower

Pivot Instrument Design Considerations [2/2]

- □ Instrumented and Controllable Tile Drainage System
- Beta Instruments and Control Experiments
 - + "Plug-and-play" compatible with research designed sensor packages ... standard interface
 - + Back of the envelop rate calculations. With pivot gantry covering 16 acres per hour ~ 1 Gbps for RGB Flea cameras, Velodyne VLP 32C, Headwall VNIR, and a thermal camera compared to Purdue pheno-rover machine. Likely need considerably more bandwidth, but it is feasible.
- □ Agronomy: experimental plot designs for using such instrument

ML/Al Contest for Crop Production Under Constraints

NATIONAL WINNERS FOR 2020 CORN YIELD CONTEST CONDUCTED BY THE NATIONAL CORN GROWERS ASSOCIATION

Rank	Entrant Name	City	Field	Hybrid Brand	Number	Yield
A: Conventional Non-Irrigated						
1	Sam Santini	Stewartsville	NJ	DEKALB	DKC70- 27RIB	381.5595
2	Landy Thomas	Cades	SC	Pioneer	P1847VYHR *	370.8320
3	Robert A Santini Jr	Phillipsburg	NJ	Pioneer	P1197	365.6086
B: Con	ventional Non-Irrigated**					
1	Kevin Kalb	Dubois	IN	DEKALB	DKC67- 44RIB	385.4405
2	Rhylan Kalb	Dubois	IN	DEKALB	DKC67- 44RIB	345.9045
3	Troy Uphoff	Findlay	IL	DEKALB	DKC63- 57RIB	323.7983
C: No-	Till Non-Irrigated					
1	Dan Gause Sr.	Scranton	SC	Pioneer	P1847VYHR *	387.0916
2	Chris Santini	Stewartsville	NJ	Pioneer	P1464AML ™*	357.4564
3	Justice Family Farms	Daniels	WV	Pioneer	P1197	355.8628
I: Conventional Irrigated						
1	Don Stall	Charlotte	MI	Pioneer	P0720AM™	476.9052
2	George Andrew	Evansville	WI	Pioneer	P0720Q™	324.7783
3	Ashton Peterson	Bertrand	NE	Pioneer	P1563AML™	324.5989

Imagine ···

- Create a contest for teams designing algorithms for operating the robotic pivot with a growing season long contest for crop production:
 - + After planting all sensing/scouting must be carried out with the shared platform (collaboration is required)
 - + Water/nutrient application post planting must use pivot platform
 - + Crop protection too ...
- □ At the beginning of the year teams write code to operate the sensors and actuators. No hands in the field. No human intervention.
- □ To give statistical significance to the ranking we randomize and replicate. "Teams" are the treatments.
- Apply constraints in rules. Measure runoff. Limit water.

UNEARTHING THE SUBTERRANEAN ENVIRONMENT

SUBTERRANEAN CHALLENGE

Revolutionize how we operate in the underground domain

