Transformasi Laplace

Slide: Tri Harsono

PENS - ITS

Pendahuluan

- Transformasi Laplace dapat digunakan untuk menyatakan model matematis dari sistem linier waktu kontinu tak ubah waktu,
- Transformasi Laplace dapat menyelesaikan penyelesaian persamaan differensial sistem linier waktu kontinu tak ubah waktu,
- Transformasi Laplace dapat digunakan untuk mencari kestabilan sistem linier waktu kontinu tak ubah waktu,
- Dalam ilmu pengaturan, transformasi Laplace dinyatakan sebagai teori kontrol klasik, yang digunakan untuk mencari kestabilan sistem,
- Transformasi Laplace dapat mencari respon atau fungsi tanggapan sistem linier waktu kontinu tak ubah waktu

2. Definisi Transformasi Laplace

- Suatu fungsi (sinyal atau gelombang) f(t) yang dinyatakan dalam interval waktu t positif, dapat dinyatakan dalam bidang s dengan menggunakan transformasi Laplace, dengan hasil transformasi F(s),
- Definisi tranformasi Laplace :

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

2. Definisi Transformasi Laplace

Penulisan transformasi Laplace:

$$F(s) = L\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

Dimana:

L = tranformator,

f(t) = fungsi waktu,

F(s) = hasil transformasi (dalam bidang frekwensi atau bidang s

3. Transformasi Laplace untuk fungsi konstan

- Contoh: Carilah transformasi Laplace untuk fungsi
 f(t) = 1; t≥0
- Transformasi Laplace:

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$
$$= \int_{0}^{\infty} e^{-st} .1 dt$$
$$= \frac{1}{s}$$

3. Transformasi Laplace untuk fungsi konstan

- Contoh: Carilah transformasi Laplace untuk fungsi f(t) = k; $t \ge 0$
- Transformasi Laplace:

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$
$$= \int_{0}^{\infty} e^{-st} .k dt$$
$$= \frac{k}{s}$$

Transformasi Laplace untuk fungsi konstan, dengan interval waktu terbatas

- Untuk interval waktu terbatas $t_a \le t \le t_b$
- Transformasi Laplace dari fungsi konstan f(t)=k:

$$F(s) = \int_{t_a}^{t_b} e^{-st} f(t) dt$$

$$= \int_{t_a}^{t_b} e^{-st} .k dt$$

$$= \frac{k}{s} (e^{-t_a s} - e^{-t_b s})$$

4. Transformasi Laplace untuk fungsi konstan, dengan interval waktu terbatas

- Contoh: Carilah transformasi Laplace untuk fungsi f(t) = 1; $0 \le t \le 10$
- Transformasi Laplace:

$$F(s) = \int_{0}^{10} e^{-st} f(t) dt$$
$$= \int_{0}^{10} e^{-st} .1 dt$$
$$= \frac{1}{s} (1 - e^{-10s})$$

4. Transformasi Laplace untuk fungsi konstan, dengan interval waktu terbatas

- Contoh: Carilah transformasi Laplace untuk fungsi f(t) = k; a ≤ t ≤ b
- Transformasi Laplace:

$$F(s) = \int_{a}^{b} e^{-st} f(t) dt$$
$$= \int_{a}^{b} e^{-st} .k dt$$
$$= \frac{k}{s} (e^{-as} - e^{-bs})$$

4. Transformasi Laplace untuk fungsi konstan, dengan interval waktu terbatas

- *Kesimpulan:* Untuk fungsi step (konstan) f(t) = k; dengan interval waktu terbatas $t_a \le t \le t_b$
- Transformasi Laplace:

$$F(s) = \frac{k}{s} (e^{-t_a s} - e^{-t_b s})$$

$$= \frac{k}{s} e^{-t_a s} - \frac{k}{s} e^{-t_b s}$$

$$= F_{t_a}(s) - F_{t_b}(s)$$

Transformasi Laplace untuk fungsi konstan, dengan interval waktu terbatas

Soal:Carilah transformasi Laplace dari fungsi

1.
$$f(t) = 10;$$
 $2 \le t \le 7$

$$2. f(t) = 3;$$
 $0 \le t \le 4$

$$3. f(t) = 12;$$
 $12 \le t \le 23$

$$4. f(t) = A; \qquad a \le t \le d$$

$$5. f(t) = C; \quad 0 \le t \le T$$

Linieritas dari Transformasi Laplace

- Transformasi Laplace adalah operasi linier,
- Yaitu: Bila terdapat beberapa fungsi, misal f(t) dan g(t) yang masing-masing mempunyai transformasi Laplace dan ada bilangan skalar a, b, maka berlaku hukum linieritas sbb:

$$L\{af(t) + bg(t)\} = aL\{f(t)\} + bL\{g(t)\}$$
$$= aF(s) + bG(s)$$

. Linieritas dari Transformasi Laplace

Pembuktian linieritas di atas dengan definisi:

$$L\{af(t) + bg(t)\} = \int_{0}^{\infty} e^{-st} [af(t) + bg(t)] dt$$

$$= a \int_{0}^{\infty} e^{-st} f(t) dt + b \int_{0}^{\infty} e^{-st} g(t) dt$$

$$= aL\{f(t)\} + bL\{g(t)\}$$

$$= aF(s) + bG(s)$$

5. Transformasi Laplace dari gabungan fungsi konstan

• *Contoh*: Dapatkan transformasi Laplace dari fungsi seperti pada gambar berikut:

6. Transformasi Laplace dari gabungan fungsi konstan

 Contoh: Dapatkan transformasi Laplace dari fungsi seperti pada gambar berikut:

6. Transformasi Laplace dari gabungan fungsi konstan

• *Contoh*: Dapatkan transformasi Laplace dari fungsi seperti pada gambar berikut:

6. Transformasi Laplace dari fungsi eksponensial Positif

• Contoh: Dapatkan transformasi Laplace dari fungsi: $f(t) = e^{at}$; $t \ge 0$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$= \int_{0}^{\infty} e^{-st} e^{at} dt$$

$$= \frac{1}{s - a}$$

6. Transformasi Laplace dari fungsi eksponensial Negatif

• Contoh: Dapatkan transformasi Laplace dari fungsi: $f(t) = e^{-at}$; $t \ge 0$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$=\int_{0}^{\infty}e^{-st}.e^{-at}dt$$

$$=\frac{1}{s+a}$$

6. Transformasi Laplace dari fungsi Sinusoida

• Contoh: Dapatkan transformasi Laplace dari fungsi: $f(t) = \sin \omega t; t \ge 0$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$= \int_{0}^{\infty} e^{-st} \cdot \sin \omega t dt$$

$$=\frac{\omega}{s^2+\omega^2}$$

6. Transformasi Laplace dari fungsi Sinusoida

• Contoh: Dapatkan transformasi Laplace dari fungsi: $f(t) = \cos \omega t; t \ge 0$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$=\int_{0}^{\infty}e^{-st}.\cos\omega tdt$$

$$=\frac{S}{S^2+\omega^2}$$

6. Transformasi Laplace dari fungsi Ramp (Tanjakan)

Contoh: Dapatkan transformasi Laplace dari fungsi ramp:

$$f(t) = t; t \ge 0$$

Solusi:

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$=\int_{0}^{\infty}e^{-st}.tdt$$

$$=\frac{1}{s^2}$$

Transformasi Laplace dari fungsi Ramp (Tanjakan)

Contoh: Dapatkan transformasi Laplace dari fungsi ramp:

$$f(t) = t^n; t \ge 0$$

Solusi:
$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$=\int_{0}^{\infty}e^{-st}.t^{n}dt$$

$$=\frac{n!}{s^{n+1}}$$

7. Tabel Transformasi Laplace

Contoh Tabel Transformasi Laplace

No.	F(t)	F(s)
1	k	$\frac{k}{s}$
2	e ^{-at}	$\frac{1}{s+a}$
3	kt	$\frac{k}{s^2}$
4	t ⁿ	$\frac{n!}{s^{n+1}}$
5	sin <i>wt</i>	$\frac{\omega}{s^2 + \omega^2}$
6	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$

Frequence domain (kawasan frekwensi *s*)

$$e^{at}f(t) \rightarrow F(s-a)$$

$$f(t-a) \rightarrow e^{-as} F(s)$$

Time domain (kawasan waktu *t*)

Carilah transformasi Laplace dari fungsi-fungsi berikut untuk t ≥ 0:

$$1.g(t) = 0.5t^2 e^{-3t}$$

$$2.g(t) = e^{-t/2} \sin \frac{t}{4}$$

$$3.g(t) = e^{-t}\sin(\omega t + \theta)$$

$$4.g(t) = e^{-\alpha t} (A\cos\beta t + B\sin\beta t)$$

$$5.g(t) = e^t(c+bt)$$

- Transformasi Laplace dari differensial orde satu fungsi f(t) secara sederhana merupakan: perkalian antara F(s) dengan s
- Definisi:

$$L(f') = L(\frac{df}{dt}) = sL(f) - f(0)$$

$$= sF(s) - f(0)$$

Ket.: F(s) adalah transformasi Laplace dari f(t), f(0) adalah nilai awal fungsi f(t)

Bukti:

 Menggunakan definisi transformasi Laplace dan integral parsial

$$L(f') = \int_{0}^{\infty} e^{-st} f'(t) dt$$

$$= \left[e^{-st} f(t)\right]_0^\infty + s \int_0^\infty e^{-st} f(t) dt$$
$$= sF(s) - f(0)$$

 Dari definisi transformasi Laplace untuk derivatif pertama fungsi f(t), maka dapat dinyatakan transformasi Laplace untuk derivatif kedua, ketiga dan seterusnya

$$L(f'') = s^{2}F(s) - sf(0) - f'(0)$$

$$L(f''') = s^{3}F(s) - s^{2}f(0) - sf'(0) - f''(0)$$
:

$$L(f^{(n)}) = s^n F(s) - s^{n-1} f(0) - s^{(n-2)} f'(0) - \cdots - f^{(n-1)}(0)$$

- Contoh: Carilah transformasi Laplace dari turunan pertama fungsi berikut:
 - 1. $f(t)=t^2$
 - 2. $f(t) = \sin^2 t$
 - 3. $f(t) = t \sin 2t$
 - 4. $f(t) = t \cos 2t$

Transformasi Laplace dari integral suatu fungsi f(t) adalah

$$L(\int_{0}^{t} f(\tau)d\tau) = \frac{1}{s}L\{f(t)\}$$

$$L(\int_{0}^{t} f(\tau)d\tau) = \frac{1}{s}F(s) + \frac{1}{s}\int_{0}^{t} f(t)dt\Big|_{t=0}$$

Ket.: operasi invers dari diferensial adalah integral, sehingga Hasil transformasi Laplace dari differensial f(t)

Hasil transformasi Laplace dari integral f(t)

$$= (1/s)F(s)$$
 (Pembagian)

Dimana pembagian adalah operasi invers dari perkalian

• Contoh: Diketahui $F(s) = \frac{1}{s(s^2 + \omega^2)}$

Tentukan f(t)

10. Invers Transformasi Laplace [Transformasi Laplace Balik]

Cara Penulisan Invers T.L.:

$$f(t) = \mathcal{L}^{-1}\{F(s)\}$$

- Ada 2 cara invers transformasi Laplace :
- 1. Pecah Parsial (menggunakan *Tabel T.L.*)
- Integral Invers T.L. (menggunakan Teorema Residu)

10.1. Invers Transformasi Laplace [Pecah Parsial]

- Yang perlu diperhatikan dalam F(s) adalah penyebutnya G(s), bukan pembilangnya H(s),
- Derajad s dari G(s) lebih besar atau sama dengan derajad s dari H(s),
- G(s) berbentuk faktorisasi,
- Dalam *ilmu kontrol*, untuk mencari kestabilan sistem, dapat digunakan nilai faktorisasi dari G(s).

10.1. Invers Transformasi Laplace [Pecah Parsial]

- Ada beberapa bentuk faktorisasi dari G(s), yaitu:
 - i. Faktor tak berulang (*s-a*)
 - ii. Faktor Berulang (*s-a*)
 - iii. Faktor Kompleks tak berulang $(s-a)(s-\overline{a})$
 - iv. Faktor Kompleks berulang $[(s-a)(s-\overline{a})]^2$

i: Faktor tak berulang (s-a)

$$F(s) = \frac{H(s)}{G(s)} = \frac{A}{(s-a)} + W(s)$$

$$f(t) = AL^{-1} \left\{ \frac{1}{s - a} \right\} + L^{-1} \left\{ W(s) \right\}$$
$$= Ae^{at} + w(t)$$

i. Faktor tak berulang (s-a)

Contoh:

Carilah invers T.L. dari fungsi² F(s) berikut

$$1.F(s) = \frac{1}{(s-3)(s+5)}$$

$$2.F(s) = \frac{s^2}{s(s-3)(s+5)}$$

$$3.F(s) = \frac{s}{s(s+1)(s-3)}$$

$$4.F(s) = \frac{1}{s(s-0.3)(s+3.4)}$$

ii. Faktor Berulang (*s-a*)

$$F(s) = \frac{H(s)}{G(s)} = \frac{A}{(s-a)} + \frac{B}{(s-a)^2} + W(s)$$

$$f(t) = AL^{-1} \left\{ \frac{1}{s-a} \right\} + BL^{-1} \left\{ \frac{1}{(s-a)^2} \right\} + L^{-1} \left\{ W(s) \right\}$$
$$= Ae^{at} + Bte^{at} + w(t)$$

ii. Faktor Berulang (s-a)

Contoh:

Carilah invers T.L. dari fungsi² F(s) berikut

$$1.F(s) = \frac{1}{(s-3)^2 s}$$

$$2.F(s) = \frac{s^2}{s(s^2 + 4s + 4)}$$

$$3.F(s) = \frac{s}{s(s+3)^2(s-1)}$$

$$4.F(s) = \frac{1}{s(s^2 - 0.6s + 0.09)(s + 1)}$$

- Invers T.L. dari suatu fungsi F(s) dapat dicari dengan menggunakan integral invers T.L.
- Integral invers T.L., dapat dihitung dengan menggunakan teorema residu
- **Teorema residu** dari suatu fungsi f(t) adalah :

$$f(t) = \frac{1}{2\pi j} \oint_{c} \frac{G(s)}{(s-a)^{n}} ds = \lim_{s \to a} \frac{G^{(n-1)}(s)}{(s-a)^{n}} \cdot (s-a)^{n}$$

Integral Invers T.L. dari suatu fungsi *F*(*s*) :

$$f(t) = \frac{1}{2\pi j} \oint_{c} F(s).e^{st} ds$$

Analogi integral invers dengan teorema residu :

$$f(t) = \frac{1}{2\pi j} \int_{c}^{c} F(s) \cdot e^{st} ds = \frac{1}{2\pi j} \int_{c}^{c} \frac{G(s)}{(s-a)^{n}} ds = \lim_{s \to a} \frac{G^{(n-1)}(s)}{(s-a)^{n}} \cdot (s-a)^{n}$$

 Untuk faktor yang lebih dari satu, (s-a)^m,(s-b)ⁿ $(S-C)^k$

$$f(t) = \frac{1}{2\pi i} \int_{c} F(s) \cdot e^{st} ds$$

$$f(t) = \frac{1}{2\pi j} \iint_{c} \frac{G(s)}{(s-a)^{m} (s-b)^{n} (s-c)^{k}} ds$$

$$f(t) = \frac{G^{(m-1)}(s)}{(s-b)^{n}(s-c)^{k}} \bigg|_{s=a} + \frac{G^{(n-1)}(s)}{(s-a)^{m}(s-c)^{k}} \bigg|_{s=b} + \frac{G^{(k-1)}(s)}{(s-a)^{m}(s-b)^{n}} \bigg|_{s=c}$$

 Contoh: Tentukan f(t) dengan menggunakan teorema Residu

1.
$$F(s) = \frac{s}{(s+1)^2}$$

2.
$$F(s) = \frac{4s+4}{s^2+16}$$

$$3.F(s) = \frac{2s^2 - 3s}{(s - 2)(s - 1)^2}$$

4 .F (s) =
$$\frac{s}{s^2 + 2s + 2}$$

$$5.F(s) = \frac{s^2 + s - 2}{(s + 1)^3}$$

6.
$$F(s) = \frac{s^2 + 2s}{(s^2 + 2s + 2)^2}$$

 Contoh: Tentukan f(t) dengan menggunakan teorema Residu

7.
$$F(s) = \frac{s}{(s^2 + 4)s^2}$$

$$8.F(s) = \frac{2s+10}{s(s^2+2s+5)}$$

9.
$$F(s) = \frac{s^2}{(s+3)^2(s^2+9)^2}$$

$$10.F(s) = \frac{3s^2}{s^2(s^2 + 2s + 5)^2}$$

11. Transformasi Laplace untuk Penyelesaian Persamaan Differensial

- Transformasi Laplace (TL) dapat digunakan untuk menyelesaikan *Persamaan Differensial* (PD),
- Bila PD digunakan sebagai model matematika dari sistem linier tak ubah waktu, maka TL dapat digunakan untuk menyelesaikan sistem linier tersebut, dalam arti mencari output system,
- Dalam penyelesaian atau mencari output system terdapat fungsi penghubung antara input dengan output, yang dinamakan dengan "Fungsi Alih (Transfer Function)".
- Fungsi Alih sangat penting dalam ilmu kontrol sebagai indikator untuk menentukan kestabilan sistem linier tak ubah waktu

11. Transformasi Laplace untuk Penyelesaian Persamaan Differensial

Contoh: Tentukan penyelesaian PD di bawah ini dengan menggunakan TL

1.
$$y'' + 4y' + 3y = 0$$
; $y(0) = 3$ $y'(0) = 1$
2. $y'' + y = 2t$; $y(0) = 0$ $y'(0) = 0$
3. $y'' + 25y = t$; $y(0) = 1$ $y'(0) = 0.04$
4. $y'' - 4y' + 4y = 0$; $y(0) = 0$ $y'(0) = 2$
5. $y'' - 3y' + 2y = 4t$; $y(0) = 1$ $y'(0) = -1$
6. $y'' + 3y' + 2y = \delta(t - a)$; $y(0) = 0$ $y'(0) = 0$

1. Transformasi Laplace untuk Penyelesaian Persamaan Differensial

$$7.y'' + 2y = u(t)$$
 $y(0) = 0$ $y'(0) = 0$

dimana *u*(*t*) adalah unit step function, seperti pada gambar di bawah ini

12. Implementasi Transformasi Laplace 🛚 🛂 pada Rangkaian Listrik

8. Rangkaian RC seri dengan *harga awal dari muatan* kapasitor q_0 dengan polaritas seperti pada gambar. Tegangan terpasang adalah konstan 1/pada saat switch ditutup. Arus yang mengalir pada rangkaian adalah:

2. Implementasi Transformasi Laplace pada Rangkaian Listrik

9. Diketahui suatu rangkaian RC seri, pada saat switch ditutup dihubungkan dengan sumber tegangan DC seperti pada gambar. Tentukan arus *i(t)* yang mengalir pada rangkaian RC seri tersebut, bila muatan awal kapasitor NOL.

2. Implementasi Transformasi Laplace pada Rangkaian Listrik

10. Diketahui suatu rangkaian RL seri, pada saat switch ditutup, tegangan terpakai pada rangkaian adalah konstan *V.* Arus yang mengalir pada rangkaian adalah :

Terima kasih