Casimir Force in Microgravity Experiment

Noah Kurinsky

January 22, 2015

1 Expanded Proximity Force Approximation

Most of this section taken from Fosco et al. (2011)

Normal energy of Casimir Effect:

$$E_{pp}(z) = -\frac{\pi^2}{1440z^3}$$

For R >> a:

$$E_C \approx E_{PFA} = \int_{\Sigma} E_{pp}(z) d\sigma$$

We don't expect this to hold much past this condition, but can use the derivative expansion to first order to obtain a slightly more accurate term. The formula for the derivative expansion in terms of some surface separation $z = \psi(\mathbf{x}_{\parallel})$ is

$$E_{DE} = -\frac{\pi^2}{1440} \int \frac{1}{\psi^3} \left(1 + \frac{2}{3} (\partial_\alpha \psi)^2 \right) d\mathbf{x}_{\parallel}$$

and if we add in the correction factor $\eta_E(z)$ (see next section), we get

$$E_{DE} = -\frac{\pi^2}{1440} \int \frac{\eta_E(\psi)}{\psi^3} \left(1 + \frac{2}{3} (\partial_\alpha \psi)^2 \right) d\mathbf{x}_{\parallel}$$

which, given the complexity of η_E , is best evaluated numerically. We can parameterize the surface of a sphere as

$$\psi_0(r) = R\left(1 - \sqrt{1 - \frac{r^2}{R^2}}\right)$$

where the surface separation would be $\psi = a + \psi_0(r)$ and a the minimal separation between sphere and plane. Given that the derivative with respect to θ is 0, the integral simplifies to

$$E_{DE} = -\frac{2\pi^3}{1440} \int \frac{\eta_E(\psi)}{\psi^3} \left(1 + \frac{2}{3} (\partial_r \psi)^2\right) dr$$

and we can write, as well,

$$(\partial_r \psi)^2 = R^2 \left[-\frac{1}{2} \left(1 - \frac{r^2}{R^2} \right)^{-1/2} \left(\frac{-2r}{R^2} \right) \right]^2 = \frac{r^2}{R^2 (1 - \frac{r^2}{R^2})} = \frac{r^2}{R^2 - r^2} = \left(\frac{R^2}{r^2} - 1 \right)^{-1}$$

we can see that the derivative is undefined if we integrate to R, so as long as we integrate to $r_{limit} < R$ we should have a convergent integral; this shouldn't affect the accuracy given the r^{-3} dependence. The effect of the derivative expansion correction in a perfectly conducting system can be seen below.

Figure 1: Illustration of the effect of the first order correction on the PFA; blue line shows expansion, orange line is PFA, green line is first order correction.

Bulgac et al. (2006) calculate the force between plane and sphere exactly, and compare to PFA. Canaguier-Durand et al. (2012) explore various temperature and geometry effects as a function of radius and separation.

1.1 Dielectric Correction

Bimonte et al. (2012); Lambrecht and Reynaud (2000): dielectric effects, non-perfect conductivity. The following mostly from Lambrecht and Reynaud (2000)

The dielectric constant is large at frequencies smaller than the plasma frequency ω_p , so corrections are more relevant at separations smaller than the plasma wavelength

$$\lambda_p = \frac{2\pi c}{\omega_p}$$

where

$$\omega_p^2 = \frac{Nq^2}{\epsilon_0 m^*} = \frac{ZN_a q^2}{\epsilon_0 m^*} = \frac{\rho q^2}{\epsilon_0 m^* m_z}$$

and in turn, N is the number of conduction electrons per unit volume, Z is the number of free electrons per atom (taken to just be Z=1), N_a is the atomic number density, q is the electron charge, and m^* is effective electron mass, also taken to be 1 for Au though not necessarily for SiO². We in turn calculate N_a as the density ρ divided by the atomic mass m_Z for the species.

Thermal corrections relevant at distances larger than

$$\lambda_T = \frac{\hbar c}{k_B T}$$

The reduction factor for the Casimir energy is given by

$$\eta_E = -\frac{180L^3}{c\pi^4} \int_0^\infty \kappa d\kappa \int_0^{c\kappa} \sum_{p=\parallel,\perp} \log\left(1 - r_{p,1}(i\omega, i\kappa) r_{p,2}(i\omega, i\kappa) e^{-2\kappa L}\right) d\omega \tag{1}$$

where $r_{p,i}(i\omega, i\kappa)$ is the reflection amplitude of surface i for polarization p, where $i\omega$ is the imaginary frequency and $i\kappa$ is the imaginary wave vector along the longitudinal direction of the cavity, or the normal to the plane. The reflection coefficients for thick slabs are given by

$$r_{\perp} = -\frac{\sqrt{\omega^2(\epsilon(i\omega) - 1) + c^2\kappa - c\kappa}}{\sqrt{\omega^2(\epsilon(i\omega) - 1) + c^2\kappa + c\kappa}}$$
(2)

$$r_{\parallel} = \frac{\sqrt{\omega^2(\epsilon(i\omega) - 1) + c^2\kappa} - c\kappa\epsilon(i\omega)}{\sqrt{\omega^2(\epsilon(i\omega) - 1) + c^2\kappa} + c\kappa\epsilon(i\omega)}$$
(3)

Lambrecht and Reynaud (2000) suggest numerical integration over the range 10^{-4} to 10^{3} eV for distances 0.1 to 10 μ m

1.2 Expected accuracy

We are limited by the validity of the proximity force approximation, which assumes the (roughly) Casimir forces are additive, which is known not to be the case, and assumes the sphere and plane are close enough such that the plane appears infinite and the curvature is relatively small. We include the first order correction to the PFA, which may not extend validity very far and still assumes the plane is long enough to be effectively infinite.

2 Numerical Computation

A Scuff-EM

B Casimir Force Code

References

- G. Bimonte, T. Emig, R. L. Jaffe, and M. Kardar. Casimir forces beyond the proximity approximation. *EPL (Europhysics Letters)*, 97:50001, March 2012. doi: 10.1209/0295-5075/97/50001.
- Aurel Bulgac, Piotr Magierski, and Andreas Wirzba. Scalar casimir effect between dirichlet spheres or a plate and a sphere. *Phys. Rev. D*, 73:025007, Jan 2006. doi: 10.1103/Phys-RevD.73.025007. URL http://link.aps.org/doi/10.1103/PhysRevD.73.025007.
- Antoine Canaguier-Durand, Romain Guerot, Paulo A. Maia Neto, Astrid Lambrecht, and Serge Reynaud. The casimir effect in the sphere-plane geometry. *International Journal of Modern Physics: Conference Series*, 14:250–259, 2012. doi: 10.1142/S2010194512007374. URL http://www.worldscientific.com/doi/abs/10.1142/S2010194512007374.
- César D. Fosco, Fernando C. Lombardo, and Francisco D. Mazzitelli. Proximity force approximation for the casimir energy as a derivative expansion. *Phys. Rev. D*, 84:105031, Nov 2011. doi: 10.1103/PhysRevD.84.105031. URL http://link.aps.org/doi/10.1103/PhysRevD.84.105031.
- A. Lambrecht and S. Reynaud. Casimir force between metallic mirrors. *European Physical Journal D*, 8:309–318, July 2000. doi: 10.1007/s100530050041.