CS 542 Stats RL Homework 2

Name: Kai-Jie Lin November 19, 2024

1. (4 pts) Let \mathcal{X} be a finite and discrete space, and $p, q \in \Delta(\mathcal{X})$ are two distributions over \mathcal{X} . $f: \mathcal{X} \to [0,1]$ is a function. Let X_1, \ldots, X_n be sampled i.i.d. from q. Recall that the importance sampling estimator for $\mathbb{E}_p[f]$ is

$$v = \frac{1}{n} \sum_{i=1}^{n} \frac{p(X_i)}{q(X_i)} f(X_i).$$

Assume that $\|p/q\|_{\infty} := \max_x p(x)/q(x) \le C < \infty$. This means $\frac{p(X_i)}{q(X_i)} f(X_i)$ are i.i.d. random variables with range [0, C]. If we use Hoeffding's inequality, we'd conclude that to guarantee $|v - \mathbb{E}_p[f]| \le \epsilon$ with high probability (i.e., w.p. $\ge 1 - \delta$), we will need $n = O(C^2 \ln(1/\delta)/\epsilon^2)$ samples.

Prove an improved result that we should only need $n = O(C \ln(1/\delta)/\epsilon^2)$. Hint: check out Bernstein's inequality given by Lemma 7.37 of https://www.stat.cmu.edu/~larry/=sml/Concentration.pdf.¹ Show that $\operatorname{Var}\left[\frac{p(X_i)}{q(X_i)}f(X_i)\right] = O(C)$.

Proof:

First we show that $\operatorname{Var}\left[\frac{p(X_i)}{q(X_i)}f(X_i)\right] = O(C)$.

Let
$$\rho = \frac{p(X_i)}{q(X_i)} f(X_i)$$
. Var $[\rho] = \mathbb{E}[\rho^2] - \mathbb{E}^2[\rho] \le \mathbb{E}[\rho^2] - 1 = \sum_{x_i} q(x_i) \left(\frac{p(x_i)}{q(x_i)} f(x_i)\right)^2 - 1 = C - 1 = O(C)$. By Bernstein's inequality, w.p. $\geq 1 - \delta$, $|v - \mathbb{E}_p[f]| \le \sqrt{\frac{2 \operatorname{Var}[\rho] \log 1/\delta}{n}} + \frac{2C \log((1/\delta))}{n} \le \sqrt{\frac{C \log(1/\delta)}{2n}}$ $\implies n = O(C \log(1/\delta)/\epsilon^2)$. \square

¹In Eq.(7.38), σ^2 is the variance of X_i ; this is stated in Lemma 7.26.

²In general, for a random variable with bounded range [0,C], the worst-case variance is $O(C^2)$.

2. Low-rank/linear MDPs (6 pts)

Low-rank/linear MDPs have been a popular setting in recent theoretical RL works. In this problem you will be asked to establish some essential properties of linear MDPs. First, a low-rank MDP $M=(\mathcal{S},\mathcal{A},P,R,\gamma,d_0)$ is one such that for any (s,a,s'), we have $P(s'|s,a)=\phi(s,a)^{\top}\psi(s')$, where ϕ and ψ are two maps from (s,a) and s' respectively to d-dimensional real vectors. In other words, the transition matrix P has low rank and can be factorized into the product of two matrices, $\Phi \times \Psi$, where Φ has $\phi(s,a)^{\top}$ as its rows and Ψ has $\psi(s')$ as its columns.

Two further common assumptions for this model:

- $R(s,a) = \phi(s,a)^{\top}\theta_R$, $\forall (s,a)$, that is, reward is linear in ϕ .
- $d_0(s) = \psi(s)^{\top} \eta_0$, $\forall s$, that is, the initial distribution is linear in ψ .

The above model is known as a low-rank MDP. A linear MDP refers to the situation where $\phi : \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$ is known to the learner (ψ is unknown).

A useful special case of the model is where $\Phi \in \mathbb{R}^{|\mathcal{S} \times \mathcal{A}| \times d}$ and $\Psi \in \mathbb{R}^{d \times |\mathcal{S}|}$ are both row-stochastic, i.e., each row of Φ represents a distribution over d discrete possible outcomes, and each row of Ψ (denoted as ψ_i) represents a distribution over \mathcal{S} . We also assume that d_0 is a probability mixture of $\{\psi_i\}$, i.e., $\eta_0 \in \Delta([d])$. This model is sometimes known as low-rank/linear MDPs with simplex features.

Let $\mathcal{F} := \{(s, a) \mapsto \phi(s, a)^{\top}\theta : \theta \in \mathbb{R}^d\}$, i.e., the linear function space w.r.t. feature map ϕ . Prove the following:

- 1. For any $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ and any π , $\mathcal{T}^{\pi}f$, $\mathcal{T}f \in \mathcal{F}$. (Remark: this directly implies closure of \mathcal{F} under \mathcal{T} and \mathcal{T}^{π} , a.k.a. completeness, and is quite a bit stronger.)
- 2. For any policy π , let d_t^{π} be the t-th step state distribution induced by π from d_0 . Show that d_t^{π} is linear in ψ , i.e., there exists $\eta \in \mathbb{R}^d$, such that $d_t^{\pi}(s) = \psi(s)^{\top} \eta, \forall s$.

In the simplex feature setting, show further that $\eta \in \Delta([d])$, i.e., d_t^{π} is a probability mixture of $\{\psi_i\}_{i=1}^d$.

3. Recall that the concentrability condition states that a data distribution μ (often used in offline learning) satisfies

$$\forall s, a, \pi, t, \frac{d_t^{\pi}(s, a)}{\mu(s, a)} \le C. \tag{1}$$

Now consider a low-rank MDP M with simplex features. Construct a distribution μ , such that concentrability is satisfied with $C = d \times |\mathcal{A}|$. (Hint: the only property of d_t^{π} that matters is what you proved in the previous problem, i.e., it is a probability mixture of $\{\psi_i\}_{i=1}^d$.)

Proof:

- 1. $\forall f \in \mathcal{F}, \forall (s, a), f(s, a) = \phi(s, a)^{\top} \theta \text{ and } \theta \in \mathbb{R}^{d}.$ $(\mathcal{T}^{\pi} f)(s, a) = R(s, a) + \gamma \left\langle P(\cdot | s, a), f(\cdot, \pi) \right\rangle = \phi(s, a)^{\top} \theta_{R} + \gamma \left\langle \phi(s, a)^{\top} \psi(\cdot), \phi(\cdot, \pi)^{\top} \theta \right\rangle = \phi(s, a)^{\top} (\theta_{T} + \gamma \left\langle \psi, \theta \right\rangle)$ $\implies \mathcal{T}^{\pi} f \in \mathcal{F} \text{ since } \theta_{R} + \gamma \left\langle \psi, \theta \right\rangle \in \mathbb{R}^{d}. \quad \Box$
- 2. First we show that d_t^π is linear in ψ . $\forall s, d_t^\pi(s) = (P^\pi)^\top d_{t-1}^\pi(s) \implies d_t^\pi = ((P^\pi)^\top)^t d_0 \implies d_t^\pi = ((\phi(\cdot, \pi)^\top \psi(\cdot))^\top)^t \psi(\cdot)^\top \eta_0 \implies d_t^\pi = \psi(\cdot)^\top [\phi(\cdot, \pi)(\psi(\cdot)^\top \phi(\cdot, \pi))^{t-1} \psi(\cdot)^\top \eta_0] \implies d_t^\pi \text{ is linear in } \psi. \text{ since } (\phi(\cdot, \pi)(\psi(\cdot)^\top \phi(\cdot, \pi))^{t-1} \psi(\cdot)^\top \eta_0) \in \mathbb{R}^d$ Second we show that d_t^π is a probability mixture of $\{\psi_i\}_{i=1}^d$ by induction. When $t = 0, d_0 = \psi^\top \eta_0, \eta_0 \in \Delta([d])$. Suppose for $t 1, d_{t-1}^\pi = \psi^\top \eta_{t-1}, \eta_{t-1} \in \Delta([d])$. For $t, d_t^\pi = (P^\pi)^\top d_{t-1}^\pi = \psi^\top \eta_{t-1} \implies d_t^\pi = \psi^\top \eta_t, \eta_t \in \Delta([d])$.

³Under such an assumption, the transition dynamics can be interpreted as the following: $s' \sim P(\cdot|s,a) \Leftrightarrow z \sim \phi(s,a), s' \sim \psi_z(\cdot)$, i.e., a latent variable $z \in [d]$ ([d] is a shorthand for $\{1,2,\ldots,d\}$) is sampled from $\phi(s,a) \in \Delta([d])$, and then the next state s' is drawn from the "emission distribution" ψ_z , which is the z-th row of Ψ .

3. Construct μ :

Suppose μ is linear in $\psi \implies \mu = \psi^{\top} \eta$. μ have uniform distribution over $|\mathcal{A}|$ given any s. $\implies \forall (s, a) \mu(s, a) = \psi(s)^{\top} \eta \frac{1}{|\mathcal{A}|}$.

Given that $d_t^{\pi}(s,a) = \psi(s)^{\top} \eta_t \pi(a|s)$. $\forall s, a, \pi, t, \frac{d_t^{\pi}(s,a)}{\mu(s,a)} \leq \left\| \frac{d_t^{\pi}(\cdot,a)}{\mu(\cdot,a)} \right\|_{\infty} = \left\| \frac{\psi^{\top} \eta_t \pi(a|\cdot)}{\psi^{\top} \eta_{|A|}^{-1}} \right\|_{\infty} \leq \|d\pi(a|\cdot)|\mathcal{A}|\|_{\infty} \leq d|\mathcal{A}| = C.$

(Optional; 3 pts) Prove Q2(3) without the simplex feature assumption (i.e., general low-rank MDPs). For simplicity you can assume that for Eq.(1) the $\forall \pi, t$ only considers policies from a finite class Π and all $t \leq T_0$ for some finite T_0 . Hint: look up barycentric spanner.

3. Pessimism in face of uncertainty (5 pts)

Let $M = (S, A, P, R, \gamma, d_0)$ be the true MDP, and we want to compute a good policy. As usual we do not have direct access to M, and are instead given the following items:

- An approximate model $\widehat{M} = (\mathcal{S}, \mathcal{A}, \widehat{P}, \widehat{R}, \gamma, d_0)$, which is also a valid MDP. Rewards are bounded in $[0, R_{\text{max}}]$ in both M and \widehat{M} .
- A set $K \subseteq \mathcal{S} \times \mathcal{A}$ and two numbers ϵ_R, ϵ_P . It is guaranteed that $\forall (s, a) \in K$,

$$|R(s,a) - \widehat{R}(s,a)| \le \epsilon_R$$
, $||P(\cdot|s,a) - \widehat{P}(\cdot|s,a)||_1 \le \epsilon_P$.

However, there is no guarantee on the accuracy of \widehat{R} and \widehat{P} on $(s,a) \notin K$.

Design an algorithm that computes a good policy $\hat{\pi}$ and provide the following kind of guarantee about $J_M(\hat{\pi}) := \mathbb{E}_{s \sim d_0}[V_M^{\hat{\pi}}(s)]$: Show that for any policy π such that $d^{\pi}(s,a) = 0 \ \forall (s,a) \notin K$, $J_M(\pi) - J_M(\hat{\pi})$ can be upper-bounded by some function of ϵ_R and ϵ_P , which goes to 0 when $\epsilon_R = \epsilon_P = 0$.

Make your guarantee more general by providing an upper bound on $J_M(\pi) - J_M(\hat{\pi})$ for an arbitrary policy π , where the upper bound can depend on ϵ_R , ϵ_P , and a term that measures the violation of the aforementioned condition that $d^{\pi}(s,a) = 0 \ \forall (s,a) \notin K$.

Hints:

- 1. The situation could arise when the approximate model is estimated from incomplete data, where you only have enough samples for $(s, a) \in K$ but not elsewhere, and you are essentially asked to make the best effort with this incomplete dataset,⁴ i.e., you are asked to exploit existing information.
- 2. The idea is to use pessimism, which we briefly talked about at the end of the FQI section. Here you are asked to perform a similar analysis for the tabular case yourself.

Algorithm:

- 1. Construct $M' = (\mathcal{S}, \mathcal{A}, P', R', \gamma, d_0)$ such that $\forall s \in \mathcal{S}, a \in \mathcal{A}, s' \in \mathcal{S}$ If $(s, a) \in K, P'(s'|s, a) = \widehat{P}(s'|s, a), R'(s, a) = \widehat{R}(s, a)$. If $(s, a) \notin K, P'(s'|s, a) = \mathbf{I}[s' = s], R'(s, a) = 0$. (Self loop with zero reward)
- 2. Compute the optimal policy $\hat{\pi}$ for M'.
- 3. Output $\hat{\pi}$.

⁴To make your life easier, the accuracy of \hat{R} and \hat{P} on K is given directly, and you do not need to turn sample size into these accuracy parameters. The example of incomplete data, therefore, is only to provide you with some intuitions.

Guarantees:

- 1. Consider $\forall \pi$ s.t. $d^{\pi}(s, a) = 0 \forall (s, a) \notin K$. $\forall (s, a) \notin K, d^{\pi}_{t}$ and $d^{\hat{\pi}}_{t}$ are both zero. $J_{M}(\pi) J_{M}(\hat{\pi}) = J_{M}(\pi) J_{M'}(\hat{\pi}) + J_{M'}(\hat{\pi}) J_{M}(\hat{\pi}) \leq J_{M}(\pi) J_{M'}(\pi) + J_{M'}(\hat{\pi}) J_{M}(\hat{\pi}) = \mathbb{E}_{d_{0}}[V^{\pi}_{M} V^{\pi}_{M'}] + \mathbb{E}_{d_{0}}[V^{\hat{\pi}}_{M'} V^{\hat{\pi}}_{M}] = \mathbb{E}_{d_{0}}[V^{\pi}_{M'} V^{\pi}_{M'}] + \mathbb{E}_{d_{0}}[V^{\pi}_{M'} V^{\pi}_{M'}] + \mathbb{E}_{d_{0}}[V^{\pi}_{M'} V^{\pi}_{M'}] = \mathbb{E}_{d_{0}}[V^{\pi}_{M'} V^{\pi}_{$
- 2. Cinsider general case, $\forall \pi$. From 1., we can see that $J_M(\pi) J_M(\hat{\pi}) \leq \mathbb{E}_{d_0}[V_M^{\pi} V_{M'}^{\pi}] + \mathbb{E}_{d_0}[V_{M'}^{\hat{\pi}} V_M^{\hat{\pi}}]$