

	A TOTAL IN	2020 9 23	-2 10/070	hal Æ	-9 M	fird lind	120 73 71	
	学 号		班 级		姓	名		
	题号	_	=		Ξ		总分	
	得 分							
一、填空题(每小题 4 分,共 40 分)								
1、								
2. $\frac{\pi}{6}a > 0$, $\lim_{x \to 0} \frac{1}{x - \sin x} \int_0^x \frac{t^2}{\sqrt{a + t}} dt = \lim_{x \to \frac{\pi}{6}} \left[\sin \left(\frac{\pi}{6} - x \right) \tan 3x \right]$, $\mathbb{M} a = \underline{36}$.								
3、已知当 $x \to \frac{1}{2}$ 时, $\pi - 3\arccos x = a(x - \frac{1}{2})^b$ 为等价无穷小,								
$\mathbb{M} a = 2\sqrt{3}, b = 1$								
4、5. 设 $f(x,y)$, $g(x)$ 均可微, $z = f(xy, \ln x + g(xy))$,则								
$x \frac{\partial z}{\partial x}$	$-y\frac{\partial z}{\partial y} = \mathcal{L}$	· ·						
5. ∫.	$\int_{1}^{2} xe^{- x }dx = \frac{2}{4}$	$\frac{2}{e^2} - \frac{3}{e^2}$.						

6、设函数
$$f(x)$$
 由方程 $y-x=e^{x(1-y)}$ 确定,则 $\lim_{n\to\infty} n(f(\frac{1}{n})-1)=1$ 。

7、设
$$f(x)$$
是 x 到离 x 最近的整数的距离,则 $\int_{0}^{20} f(x)dx = 5$.

9、设函数
$$y = (x^2 - 3x + 2)^n \cos \frac{\pi x^2}{16}$$
,则 $f^{(n)}(2) = \frac{\sqrt{2}}{2} n!$ 。

10、函数
$$f(x) = \frac{x}{|1-x|} \ln |x|$$
 的可去间断点为 $x = 0$ 。

二、计算下列图(每小图 10 分,共 40 分)
$$1, \ \ \partial_t f(t) = \int_1^t e^{-x^2} dx, \ \ _0^1 t^2 f(t) dt \ \ _0^1$$

$$\begin{split} \int_{0}^{1} t^{2} f'(t) dt &= \frac{1}{3} \int_{0}^{1} f'(t) dt^{2} \\ &= -\frac{1}{3} \int_{0}^{1} t^{2} e^{-t^{2}} dt = \frac{1}{3e} - \frac{1}{6} \end{split} \tag{4' + 3' + 3'}$$

2、设函数
$$f(x)$$
 在 $[0,1]$ 上连续,且满足 $\int_0^1 f(x) dx = \frac{1}{3} + \int_0^1 f^2(x^2) dx$, 来 $f(1)$ 的值。

$$\Re : \int_{0}^{1} f(x) dx \underline{x = u^{2}} 2 \int_{0}^{1} u f(u^{2}) du = 2 \int_{0}^{1} x f(x^{2}) dx$$
 (3')

$$\begin{split} & : \int_{0}^{1} 2xf(x^{2})dx = \frac{1}{3} + \int_{0}^{1} f^{2}(x^{2})dx \\ & = \int_{0}^{1} f^{2}(x^{2})dx - \int_{0}^{1} 2xf(x^{2})dx + \int_{0}^{1} x^{2}dx = 0 \\ & = \int_{0}^{1} [f(x^{2}) - x]^{2}dx = 0 \\ & = f(x^{2}) = x \quad : f(1) = 1 \end{split}$$

$$f(x) = \begin{cases} \lim_{n \to \infty} \frac{1}{n} \left(1 + \cos \frac{x}{n} + \dots + \cos \frac{n-1}{n} x \right), & x > 0 \\ \lim_{n \to \infty} \left[1 + \frac{1}{n!} \left(\int_0^1 \sqrt{x^3 + x^3 + 1} dx \right)^n \right], & x = 0 \\ f(-x), & x < 0 \end{cases}$$

讨论 f(x) 在 x=0 处的可导性。

$$x > 0, f(x) = \lim_{n \to \infty} \frac{1}{n} \left(1 + \cos \frac{x}{n} + \dots + \cos \frac{n-1}{n} x \right)$$

$$\emptyset \emptyset : = \int_{0}^{1} \cos x t dt = \frac{\sin x}{x}$$

$$(3')$$

 $x = 0, 1 \le \int_{0}^{1} \sqrt{x^{2} + x^{3} + 1} dx \le \sqrt{3}$ $\Rightarrow \frac{1}{n!} \le \frac{1}{n!} \left(\int_{0}^{1} \sqrt{x^{3} + x^{3} + 1} dx \right)^{n} \le \frac{\sqrt{3}}{n!}$ $\therefore f(x) = \lim_{n \to \infty} \left[1 + \frac{1}{n!} \left(\int_{0}^{1} \sqrt{x^{3} + x^{3} + 1} dx \right)^{n} \right] = 1$ (3')

$$x < 0, f(x) = f(-x) = \frac{\sin x}{x},$$

$$\therefore f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 (2')

$$\therefore f'(0) = \lim_{x \to 0} \frac{\frac{\sin x}{x} - 1}{x} = 0 \tag{2'}$$

4、过坐标原点,作曲线 $y=\ln x$ 的切线,该切线与曲线以及 x 轴围成的平面图形为 D 。

(1) 求D的面积A; (2) 求D绕直线x = e旋转一周所得旋转体的体积V。

$$A = \int_0^1 (e^y - ey) dy = \frac{e}{2} - 1 \tag{4'}$$

$$V = \pi \int_0^1 ((e - ey)^2 - (e - e^y)^2) dy = \pi \left(\frac{5}{6}e^2 - 2e + \frac{1}{2}\right)$$
 (4')

三、证明题(每题10分,共20分)

$$I = \int_{1}^{e} dy \int_{0}^{1} |y - e^{x}| x dx$$

$$\begin{split} \Re \colon &= \int_0^1 dx \int_{r'}^r (y - e^x) x dy - \int_0^1 dx \int_1^{r'} (y - e^x) x dy \\ &= \left(\frac{3}{8}e^2 - e + \frac{1}{8}\right) - \left(\frac{5}{8} - \frac{1}{8}e^2\right) = \frac{1}{2}e^2 - e - \frac{1}{2} \end{split}$$

2、设
$$f(x)$$
在 $[a,b]$ 上连续,在 (a,b) 内二阶可导,且 $\int_a^b f(x)dx = (b-a)f\left(\frac{a+b}{2}\right)$

证明: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = 0$ 。

$$i\mathbb{E}\colon \Leftrightarrow F(x) = \int_0^x f(t)dt - (x-a)f\left(\frac{a+x}{2}\right) \tag{2'}$$

则
$$F(a) = F(b) = 0, \exists x_1 \in (a,b), 使 F'(x_1) = 0$$

$$\mathbb{H} f(x_1) - f\left(\frac{a + x_1}{2}\right) - \frac{1}{2}(x_1 - a)f'\left(\frac{a + x_1}{2}\right) = 0$$
 (3')

曲拉格朝日中值定理,
$$\exists x_2 \in \left(\frac{a+x_1}{2}, x_i\right), f\left(x_i\right) - f\left(\frac{a+x_1}{2}\right) = f'\left(x_2\right)\frac{1}{2}\left(x_i - a\right)$$

帶入得:
$$f'\left(\frac{a+x_1}{2}\right) = f'\left(x_2\right)$$
, (3')

从而存在
$$\xi \in \left(\frac{a+x_1}{2}, x_2\right) \in (a,b)$$
 . 使得 $f^*(\xi) = 0$. (2')