数字逻辑

第三章 组合逻辑电路分析与设计

北京理工大学 计算机学院

张磊

leizhang@bit.edu.cn

本章内容

二. 组合逻辑功能模块

- □ 1. 组合功能模块
- □ 2. 基本逻辑函数
- □ 3. 译码和译码器
- □ 4. 基于译码器的组合电路
- □ 5. 编码和编码器
- □ 6. 选择和复用器
- □ 7. 基于复用器的组合电路

1. 组合功能模块

- □ 组合功能模块
 - > 在电路设计中经常使用的公共模块
 - > 每个功能模块对应一个组合电路实现
- □ 按集成度高低的不同
 - > 小规模集成电路 (SSI): 10-100 个晶体管
 - > 中规模集成电路 (MSI): 100-1000
 - > 大规模集成电路 (LSI): 1000-100000
 - ➤ 超大规模集成电路 (VLSI): 100000以上

- □ 芯片(集成电路)工艺 (nm)
 - > 晶体管栅极的宽度,也称栅长
 - > 栅长越短
 - > 同尺寸的硅片可集成更多晶体管
 - > 频率越高, 功耗更低
- □ 目前水平: 5nm, 迈向3nm

□芯片产业链

- > 制造设备: 光刻机、蚀刻机和薄膜沉积
- > 设计
- > 生产
- > 封测

□制造设备

- > 蚀刻机: 中微半导体 7nm
- > 光薄膜沉积:北方华创 28nm
- > 光刻机:

- > 差距最大
- □芯片设计
 - > 华为海思, 5nm, ARM架构需要授权

□芯片生产

- > 台积电: 3nm
- > 中芯国际: 14nm, 有望2020年四季度量产7nm

□芯片封测

- > 技术含量相对较低
- > 长电科技、华天科技、通富微电
- > 世界第一梯队

2. 基本逻辑函数

- □单变量函数
- □ 多位函数
- □使能函数

□ 单变量函数

- > 一个变量X的函数
- > 可以在输入处用作功能块

$$X F = 0 F = X F = \overline{X} F = 1$$

$$0 0 0 1 1$$

$$1 0 1 0 1$$

$$V_{CC} or V_{DD}$$

$$1 F = 1 X (c)$$

$$0 F = 0$$

$$= (b) (d)$$

□ 多位函数

- > 1位函数的向量
- > 粗线代表总线, 其是一个向量信号, 如图(b)
- > 可以从总线中分割出一个位子集,如(c,d)

$$\overline{A} - F_3 \overline{A}$$
 $1 - F_2 \overline{A}$
 $0 - F_1 \overline{A}$
 $0 - F_1 \overline{A}$
 $0 - F_0 \overline{A}$

□ 使能函数

- 是否允许信号从输入传到输出
- > 引入使能信号EN
 - ➤ EN=1 允许信号传输
 - ➤ EN=0 阻止信号传输
 - ▶ 输出用固定值替代,可能是0或者1
- □ 固定值是 0

□ 固定值是 1

3. 译码和译码器

□译码

- \rightarrow 输入n位, 输出m $(n \le m \le 2^n)$ 位
- 例子:輸入二进制码,在輸出中将对应位置1
 - **>**010→00000100

□ 编码

- \rightarrow 输入最大m $(n \le m \le 2^n)$ 位,输出n位
- 例子: 输入中某位为1, 输出中编码出位置
 - > 00000100 → 010

□ 译码和编码互逆

□译码

- \rightarrow 输入n位, 输出m $(n \le m \le 2^n)$ 位
- 例子:輸入二进制码,在輸出中将对应位置1
 - **>010→00000100**

□译码器

- > 实现译码功能的电路
- ▶ n-m 译码器
- > 例子:
 - 输入: 1的位置的编码,如010
 - 输出: 只有1位是1的输出,如 00000100

□ 如何设计一个1-2 译码器?

A	\mathbf{D}_0	\mathbf{D}_1
0	1	0
1	0	1

$$D_0 = \overline{A}$$

$$D_1 = A$$

$$\mathbf{D}_0 = \overline{\mathbf{A}}$$

$$\mathbf{D}_0 = \overline{\mathbf{A}}$$

$$\mathbf{D}_1 = \mathbf{A}$$

□ 如何设计一个2-4译码器?

\mathbf{A}_{1}	\mathbf{A}_{0}	\mathbf{D}_{0}	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$D_0 = \overline{A}_1 \, \overline{A}_0$$

$$D_1 = \overline{A}_1 \, A_0$$

$$D_2 = A_1 \, \overline{A}_0$$

$$D_3=A_1\,A_0$$

□1-2译码器和2-4译码器有什么联系?

2-4译码器构成:

- > 2个1-2译码器
- > 4个与门

- □ n-2ⁿ 译码器展开:
 - ▶需要2ⁿ 个与门
 - > 每个输出与门被两个译码器驱动
 - > 这两个译码器输入相等或相差1
 - > 将这两个译码器按照同样过程展开
 - ▶ 直至到1-2译码器
- □ 上述过程可经修改应用到输出≠ 2n 的译码器

分级思想+与门组合

- □例子: 3-8 译码器
 - > 需要8个输出与门
 - > 每个输出与门被两个译码器驱动
 - > 最相近的两个译码器
 - > 2-4 译码器
 - > 1-2 译码器
- □ 2-4译码器
 - > 需要4个输出与门
 - > 每个输出与门被两个译码器驱动
 - ▶ 最相近的两个译码器
 - > 2个 1-2 译码器

□ 如何构建一个7-128 译码器?

□ 7-128 译码器

- > 需要128个输出与门
- > 每个输出与门被两个译码器驱动
 - > 最相近的两个译码器
 - > 4-16 译码器
 - > 3-8 译码器
- □ 4-16译码器
 - > 需要16个输出与门
 - > 每个输出与门被两个译码器驱动
 - ▶ 最相近的两个译码器
 - > 2个 2-4 译码器

- □ 带有使能的译码器
 - > 电路输出增加使能信号-EN
- □ 真值表
 - > 注意X可以表示0和1
- □也被称为1-4 多路分配器
 - > EN为输入数据
 - ➤ A₁A₀ 为输出端选择信号
 - > 可以看作使能信号
 - > 将数据输出到选择输出端
- □ 同一电路,两个视角

(a)

(b)

4. 基于译码器的组合电路

- □ 实现1个函数, 其中有n个变量
 - ▶ 最小项之和的表达式,即标准型
 - ➤ 一个n-2ⁿ 译码器, 译码器输出对应最小项
 - ▶1个或门,将最小项或起来
- □ 方法1:
 - > 得到函数的真值表
 - 如果1在真值表中,就连接译码器输出和或门
- □ 方法2:
 - > 得到输出函数的最小项
 - > 将最小项用或门连接起来

4. 基于译码器的组合电路

■ 1位二进制加法器

X	Υ	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S(X,Y,Z) = \sum m(1,2,4,7)$$

$$C(X,Y,Z) = \sum m(3,5,6,7)$$