#### Университет ИТМО Факультет ФПИ и КТ

#### Отчёт

# Дисциплина: Моделирование УИР 3 «Исследование СМО произвольного вида»

Студент:

Ляо Ихун

Гр.Р34131

Предподаватель:

Алиев Тауфик Измайлович

#### Оглавление

| Цель работы                                                                                                                 | 4    |
|-----------------------------------------------------------------------------------------------------------------------------|------|
| Задание                                                                                                                     | 4    |
| Описание исследуемой системы                                                                                                | 4    |
| Выполнения                                                                                                                  | 4    |
| Проведение имитационного эксперимента и сравнение результата с результатами, полученным УИР 2.                              |      |
| Исследование влияния потока на среднее время ожидания, среднее время пребывания заявок системе и вероятность потерь законов |      |
| Исследование влияния ёмкости накопители на верятность потери, время пребывание заявок и время ожидание заявок               | 6    |
| Исследование модели из УИР 2                                                                                                | 7    |
| Вариант 1                                                                                                                   | 8    |
| '<br>Вариант 2                                                                                                              |      |
| Вариант 3                                                                                                                   |      |
| Вариант 4                                                                                                                   |      |
| ·                                                                                                                           |      |
| Вариант 5                                                                                                                   |      |
| Вариант 6                                                                                                                   |      |
| Вариант 7                                                                                                                   |      |
| Вариант 8                                                                                                                   | 11   |
| Вариант 9                                                                                                                   | 11   |
| Анализ результата                                                                                                           | . 12 |
| Вывод                                                                                                                       | . 15 |
| Таблицы                                                                                                                     |      |
| Таблица 1 сравнение результата эксперимента с результатами, полученными в УИР 2 при услови заявок миллион                   |      |
| Таблица 2 модель с потоком поступления распредления из УИР 1                                                                |      |
| Таблица 3 модель с потоком простейшим                                                                                       |      |
| Таблица 4 модель с потоком поступления распредления аппроксимирующего УИР 1Таблица 5 Исследование при 10000 заявок          |      |
| Таблица 7 варианты исследования                                                                                             |      |
| Таблица 8 варианты исследования                                                                                             | 7    |
| Таблица 9 результат исследования варианта 1                                                                                 |      |
| Таблица 10 результат исследования варианта 2<br>Таблица 11 результат исследования варианта 3                                |      |
| Таблица 12 результат исследования варианта 4                                                                                |      |
| Таблица 13 результат исследования варианта 5                                                                                | 9    |
| Таблица 14 результат исследования варианта 6                                                                                |      |
| Таблица 15 результат исследования варианта 7                                                                                |      |
| Таблица 16 результат исследования варианта 8                                                                                |      |

#### Рисунки

| Рисунок 1 исследуемая система | 4 |
|-------------------------------|---|
| Рисунок 2 верятность потери   |   |
| Рисунок 3 длина очереди       |   |
| Рисунок 4 загрузка            |   |
| Рисунок 5 время ожидания      |   |

#### Цель работы

Исследование свойств простейших одно- и многоканальных СМО типа G/G/K/E с однородным потоком заявок с использованием системы имитационного моделирования GPSS при различных предположениях о параметрах структурно-функциональной организации и нагрузки в соответствии с заданной программой исследований.

#### Задание

В качестве исходной модели следует воспользоваться моделью системы, выбранной в качестве наилучшей в УИР 2, или (в исключительных случаях по согласованию с преподавателем) — простейшей базовой моделью одноканальной СМО, задав в качестве параметров входящего потока заявок (среднее значение и коэффициент вариации интервалов между поступающими в систему заявками) значения, полученные в процессе обработки случайной последовательности в УИР1. Для этого необходимо скорректировать предлагаемую имитационную GPSS-модель СМО типа G/G/K/E (файл smo GGKE.gps).

Описание исследуемой системы



Рисунок 1 исследуемая система

Система является системой выбранной в качестве наилучшей в УИР 2.

#### Выполнения

### Проведение имитационного эксперимента и сравнение результата с результатами, полученными в УИР 2.

| Исх, данные        | Количество данные      | средний интервал между поступающими заявками | Длительность<br>обслуживание |  |
|--------------------|------------------------|----------------------------------------------|------------------------------|--|
|                    | 1000000                | 10                                           | 40                           |  |
| Характеристики     | Результат УИР 2        | Результат                                    | Погрешногсть,%               |  |
|                    |                        | модерирования                                |                              |  |
| Загрузка           | 0.9493                 | 0.9880                                       | 4.08                         |  |
| Длина очередь      | 1.6403                 | 1.6950                                       | 3.33                         |  |
| Верятность потери  | 0.7626                 | 0.7524                                       | 1.34                         |  |
| Число заявок       | 2.5896                 | 2.6830                                       | 3.61                         |  |
| Время пребывание   | 109.0817               | 108.5740                                     | 0.47                         |  |
| Время ожидания     | Время ожидания 69.0944 |                                              | 0.74                         |  |
| Производительность | 0.02374                | 0.02476                                      | 4.30                         |  |

Погрешности все меньше чем 5%. Означает что мы в предыдующей

## Исследование влияния потока на среднее время ожидания, среднее время пребывания заявок в системе и вероятность потерь законов

В этом шаге трудно достигать конкретной точности загрузки. Поэтому если разница между полученной загрузкой и ожиданной загрузкой меньше 0.01 то счиаем что параметры подходят.

Таблица 2 модель с потоком поступления распредления из УИР 1

| Исх, данные | Количество заявок | Распределение   | Интервал.   |               |
|-------------|-------------------|-----------------|-------------|---------------|
|             |                   |                 | поступления |               |
|             | 1000000           | Заданная трасса | 172.64      |               |
| Загрузка    | Время             | Ср.вр.ож        | Вр.пр       | Вер-ть Потери |
|             | обслуживания      |                 |             |               |
| 0.3         | 52                | 9.531           | 61.531      | 0.0037        |
| 0.6         | 115               | 69.732          | 184.709     | 0.0689        |
| 0.9         | 250               | 316.061         | 565.955     | 0.3604        |

Таблица 3 модель с потоком простейшим

| Исх, данные | Количество заявок     | Распределение    | Инт.        |               |
|-------------|-----------------------|------------------|-------------|---------------|
|             |                       |                  | поступления |               |
|             | 1000000               | Простейший поток | 172.64      |               |
| Загрузка    | Время<br>обслуживания | Ср.вр.ож         | Вр.пр       | Вер-ть Потери |
| 0.3         | 53                    | 18.683           | 71.658      | 0.0202        |
| 0.6         | 120                   | 91.279           | 211.313     | 0.1329        |
| 0.9         | 280                   | 366.213          | 646.095     | 0.4469        |

Таблица 4 модель с потоком поступления распредления аппроксимирующего УИР 1

| Исх, данные | Количество заявок | Распределение    | Инт.        |               |
|-------------|-------------------|------------------|-------------|---------------|
|             |                   |                  | поступления |               |
|             | 1000000           | Аппроксимирующее | 172.64      |               |
| Загрузка    | Время             | Ср.вр.ож         | Вр.пр       | Вер-ть Потери |
|             | обслуживания      |                  |             |               |
| 0.3         | 53                | 10.892           | 63.875      | 0.0046        |
| 0.6         | 110               | 66.454           | 176.437     | 0.0660        |
| 0.9         | 250               | 319.718          | 569.556     | 0.3719        |

При сравнении таблицы 4 с таблицей 2 мы заметили что их характеристики систем близки друг к другу. То есть наша аппроксимация хороша выполнена в первой лабораторной работе.

При сравнени таблицами можем делать такой вывод ,что при одной и той же загрузке и одном законе распределения длительности обслуживания, поток поступления слабо влияет на время обслуживание и сильнее влияет на время ожидания, время пребывание и верятность потери.

### Исследование влияния ёмкости накопители на верятность потери, время пребывание заявок и время ожидание заявок

В процессе исследования применяется модель из УИР 2. То есть мы будем изменять ёмкость накопителя до того момента, когда можем считать что система с неорганиченой ёмкостью. Для исследования тоже будем создавать 10000 заявок и 100000 при разных ёмкостях накопители.

Таблица 5 Исследование при 10000 заявок

| Число заявок | 10000            |                |                   |
|--------------|------------------|----------------|-------------------|
| Ёмкость      | Время пребывания | Время ожидания | Верятность потери |
| 1            | 39.603           | 0.757          | 75.51             |
| 10           | 48.492           | 9.638          | 74.24             |
| 100          | 137.781          | 98.991         | 73.95             |
| 1000         | 976.983          | 938.047        | 71.77             |
| 10000        | 9424.708         | 9384.992       | 49.54             |
| 100000       | 14676.427        | 14637.028      | 0                 |

Таблица 6 Исследование при 100000 заявок

| Число заявок | 100000           |                |                   |
|--------------|------------------|----------------|-------------------|
| Ёмкость      | Время пребывания | Время ожидания | Верятность потери |
| 1            | 40.432           | 0.761          | 76.1332           |
| 10           | 49.658           | 9.667          | 74.9371           |
| 100          | 139.651          | 99.66          | 74.9346           |
| 1000         | 1038.986         | 998.992        | 74.9138           |
| 10000        | 9972.804         | 9932.799       | 74.7005           |
| 100000       | 93974.846        | 93934.861      | 72.434            |

В принципе когда ёмкость больше или равна количеству заявок, верятность потери дожна быть 0. А в результате мы видим что нет. Это потому что START 10000 не значит что в процессе только было сгенерировано 10000 заявок. Могут быть больше 10000.

Исследуя влияние ёмкости накопители на верятность потери, время пребывание заявок и время ожидание заявок, видим что чем больше ёмкость, тем больше время вребывания и время ожидания и тем меньше верятность потери. При 10000 заявок когда ёмкость 100000 можем считать что система без органиченной накопителем.

При сравнении таблицы 5 с таблицы 6 можем делать такой вывод что чем больше количество заявок, тем больше ёмкость нам нужно чтобы система могла работать без потери.

Видно что чем больше ёмкость накопители, тем больше время ожидания и время пребывания и тем меньше вреятность потери.

#### Исследование модели из УИР 2

Таблица 7 варианты исследования

| Номер варианта   | 1             | 2      | 3            | 4      | 5       | 6            |         |
|------------------|---------------|--------|--------------|--------|---------|--------------|---------|
| Количество прибо | ров           | 1      | 1            | 1      | 1       | 1            | 1       |
| Емкость накопите | ПЯ            | 2      | 2            | 2      | 2       | 2            | 2       |
| Интервалы        | Ср.значение   | 172.64 | 172.64       | 172.64 | 172.64  | 172.64       | 172.64  |
| между заявками   | Вид поток     | Трасса | Аппр(Эрланга | прост  | Трасса  | Аппр(Эрланга | прост   |
| входящего        |               | из УИР | 2-го)        |        | из УИР  | 2-го)        |         |
| потока           |               | 1      |              |        | 1       |              |         |
| Длительность     | Ср.значение   | 250    | 250          | 250    | 250     | 250          | 250     |
| обслуживания     | Коэф-т        | 2      | 2            | 2      | 2       | 2            | 2       |
| заявок           | вариации      |        |              |        |         |              |         |
|                  | Вид           | экспон | экспон       | экспон | эрланга | эрланга      | эрланга |
|                  | распределения |        |              |        |         |              |         |

#### Таблица 8 варианты исследования

| Номер варианта |               | 7               | 8               | 9      |
|----------------|---------------|-----------------|-----------------|--------|
| Количество при | боров         | 1               | 1               | 1      |
| Емкость накопи | теля          | 2               | 2               | 2      |
| Интервалы      | Ср.значение   | 172.64          | 172.64          | 172.64 |
| между          | Вид поток     | Трасса из УИР 1 | Аппр(Эрланга 2- | прост  |
| заявками       |               |                 | го)             |        |
| входящего      |               |                 |                 |        |
| потока         |               |                 |                 |        |
| Длительность   | Ср.значение   | 250             | 250             | 250    |
| обслуживания   | Коэф-т        | 2               | 2               | 2      |
| заявок         | вариации      |                 |                 |        |
|                | Вид           | гипер           | гипер           | гипер  |
|                | распределения |                 |                 |        |

По требованию нам нужно провести исследование при разных распределениях длительности обслуживания и поступления заявок. Средний интервал между поступающими заявками и средняя длительность обслуживания заявок в прибре из таблицы 2 при загрузке 0.9. Остальные параметры модели поставятся как из УИР2.

Нам нужно рассчитать  $t_1$  и  $t_2$  для гиперэкспоненционого распределения. Процесс рассчитания:

b = 250, 
$$q_1$$
 = 0.3, v=2. Эти условии из УИР 2 и УИР 1.  $t_1$  =  $\left[1+\sqrt{\frac{1-q}{2q}(v^2-1)}\right]b$  = 717.71  $t_2$  =  $\left[1-\sqrt{\frac{q}{2(1-q)}(v^2-1)}\right]b$  = 49.55

#### Вариант 1

Таблица 9 результат исследования варианта 1

| Исх, д | анные  | К         | Е     | поток       | а        | b        | КВ    | Рас.обс |        |       |
|--------|--------|-----------|-------|-------------|----------|----------|-------|---------|--------|-------|
| (вари  | ант ): | 1         | 2     | Tpacca      | 172.64   | 250      | 2     | экспон  |        |       |
|        |        |           |       | из<br>УИР 1 |          |          |       |         |        |       |
| Заявок | Потери | Вер-ть    | П(%)  | Длина       | Загрузка | Ср.вр.ож | O(%)  | СКО     | Дов.   | Д(%)  |
|        |        | Потери, % | , ,   | Очер.       |          |          | , ,   | вр.ож   | инт.   | ,     |
| 10     | 1      | 10.00     | -     | 0.790       | 0.924    | 217.080  | -     | 153.408 | ±95.08 | 51.76 |
| 50     | 8      | 16.00     | 6.00  | 0.919       | 0.848    | 215.543  | -0.71 | 201.921 | ±55.97 | 26.12 |
| 100    | 29     | 29.00     | 13.00 | 1.045       | 0.897    | 259.541  | 16.95 | 342.430 | ±67.12 | 25.57 |
| 200    | 66     | 33.00     | 4.00  | 1.129       | 0.923    | 286.327  | 9.36  | 332.079 | ±46.02 | 16.32 |
| 500    | 153    | 30.60     | 2.4   | 1.093       | 0.902    | 274.523  | -4.3  | 313.249 | ±27.46 | 10.00 |
| 1000   | 337    | 33.70     | 3.1   | 1.131       | 0.898    | 301.673  | 9     | 344.344 | ±21.34 | 7.07  |
| 5000   | 1731   | 34.62     | 0.88  | 1.143       | 0.902    | 308.701  | 2.28  | 330.613 | ±9.16  | 2.97  |
| 10000  | 3472   | 34.72     | 0.10  | 1.142       | 0.904    | 309.346  | 0.21  | 332.631 | ±6.52  | 2.11  |
| 50000  | 17649  | 35.30     | 0.58  | 1.145       | 0.908    | 312.696  | 1.07  | 334.500 | ±2.93  | 0.94  |
| 100000 | 35454  | 35.45     | 0.15  | 1.144       | 0.906    | 313.520  | 0.26  | 337.394 | ±2.09  | 0.67  |
| 500000 | 179005 | 35.80     | 0.35  | 1.146       | 0.907    | 315.844  | 0.74  | 341.297 | ±2.12  | 0.67  |

За длину переходного режима возьмем значение 5000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 2

Таблица 10 результат исследования варианта 2

| Исх, да | анные  | К      | Е    | поток        | а        | b        | КВ    | Рас.обслуживания |        |       |
|---------|--------|--------|------|--------------|----------|----------|-------|------------------|--------|-------|
| (вари   | ант ): | 1      | 2    | Аппр(Эрланга | 172.64   | 250      | 2     | экспон           |        |       |
|         |        |        |      | 2-го)        |          |          |       |                  |        |       |
| Заявок  | Потери | Вер-ть | П(%) | Длина        | Загрузка | Ср.вр.ож | O(%)  | СКО              | Дов.   | Д(%)  |
|         |        | Потери |      | Очер.        |          |          |       | вр.ож            | инт.   |       |
| 10      | 0      | 0      | -    | 0.131        | 0.709    | 36.105   | -     | 48.851           | ±30.28 | 83.41 |
| 50      | 14     | 28.00  | 28   | 1.009        | 0.896    | 237.734  | 84.81 | 209.298          | ±58.01 | 24.40 |
| 100     | 32     | 32.00  | 4    | 1.066        | 0.873    | 266.336  | 10.74 | 322.331          | ±63.18 | 24.55 |
| 500     | 166    | 33.20  | 1.2  | 1.080        | 0.900    | 272.923  | 2.41  | 299.294          | ±26.23 | 9.62  |
| 1000    | 354    | 35.40  | 2.2  | 1.112        | 0.906    | 291.528  | 6.38  | 327.202          | ±20.28 | 6.97  |
| 5000    | 1790   | 35.80  | 0.4  | 1.122        | 0.899    | 302.340  | 3.58  | 329.793          | ±9.14  | 3.02  |
| 10000   | 3652   | 36.52  | 0.72 | 1.147        | 0.904    | 312.124  | 3.13  | 336.800          | ±9.33  | 2.99  |
| 50000   | 18305  | 36.61  | 0.09 | 1.155        | 0.908    | 315.596  | 1.1   | 335.984          | ±2.94  | 0.93  |
| 100000  | 36876  | 36.88  | 0.27 | 1.158        | 0.908    | 317.113  | 0.48  | 338.907          | ±2.10  | 0.66  |
| 500000  | 185357 | 37.07  | 0.19 | 1.161        | 0.908    | 319.190  | 0.65  | 341.823          | ±0.94  | 0.30  |
| 1000000 | 371925 | 37.19  | 0.12 | 1.163        | 0.908    | 319.718  | 0.17  | 342.553          | ±0.67  | 0.21  |

За длину переходного режима возьмем значение 5000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 3

Таблица 11 результат исследования варианта 3

| Исх, д | анные  | К      | Е     | поток | а        | b        | КВ    | Рас.обслуживания |         |       |
|--------|--------|--------|-------|-------|----------|----------|-------|------------------|---------|-------|
| (вари  | ант ): | 1      | 2     | прост | 172.64   | 250      | 2     | экспон           |         |       |
| Заявок | Потери | Вер-ть | П(%)  | Длина | Загрузка | Ср.вр.ож | O(%)  | СКО              | Дов.    | Д(%)  |
|        |        | Потери |       | Очер. |          |          |       | вр.ож            | инт.    |       |
| 10     | 5      | 50.00  | -     | 0.982 | 0.740    | 289.016  | -     | 270.974          | ±167.95 | 55.63 |
| 50     | 18     | 36.00  | 14.00 | 1.025 | 0.865    | 242.957  | -     | 209.048          | ±57.94  | 23.24 |
|        |        |        |       |       |          |          | 18.96 |                  |         |       |
| 100    | 35     | 35.00  | 1     | 0.976 | 0.813    | 251.448  | 95.37 | 360.711          | ±70.69  | 28.45 |
| 500    | 178    | 35.60  | 0.6   | 1.030 | 0.855    | 273.702  | 8.13  | 312.995          | ±27.43  | 9.99  |
| 1000   | 382    | 38.20  | 2.6   | 1.085 | 0.865    | 299.526  | 8.62  | 338.619          | ±20.99  | 7.01  |
| 5000   | 1931   | 38.61  | 0.41  | 1.063 | 0.863    | 299.639  | 0.04  | 331.761          | ±9.20   | 3.07  |
| 10000  | 3933   | 39.33  | 1.28  | 1.067 | 0.862    | 303.909  | 1.41  | 335.899          | ±6.58   | 2.17  |
| 50000  | 19854  | 39.70  | 0.37  | 1.077 | 0.868    | 307.633  | 1.21  | 335.451          | ±2.94   | 0.96  |
| 100000 | 39765  | 39.77  | 0.07  | 1.079 | 0.868    | 309.092  | 0.47  | 337.552          | ±2.09   | 0.68  |
| 500000 | 199426 | 39.88  | 0.11  | 1.079 | 0.868    | 310.425  | 0.43  | 339.985          | ±0.74   | 0.3   |

За длину переходного режима возьмем значение 5000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 4

Таблица 12 результат исследования варианта 4

| Исх, д | анные  | К      | Е     | поток         | а        | b        | КВ    | Рас.обслуживания |         |       |
|--------|--------|--------|-------|---------------|----------|----------|-------|------------------|---------|-------|
| (вари  | ант ): | 1      | 2     | Tpacc         | 172.64   | 250      | 2     | эрланга          |         |       |
|        |        |        |       | а из<br>УИР 1 |          |          |       |                  |         |       |
| Заявок | Потери | Вер-ть | П(%)  | Длина         | Загрузка | Ср.вр.ож | O(%)  | СКО              | Дов.    | Д(%)  |
|        |        | Потери |       | Очер.         |          |          |       | вр.ож            | инт.    |       |
| 10     | 1      | 10.00  |       | 0.611         | 0.781    | 129.663  | -     | 196.081          | ±121.53 | 85.17 |
| 50     | 11     | 22.00  | 12.00 | 0.838         | 0.896    | 210.434  | 38.38 | 184.243          | ±51.07  | 27.15 |
| 100    | 38     | 38.00  | 16.00 | 1.138         | 0.94     | 325.214  | 35.29 | 315.276          | ±61.79  | 19.00 |
| 500    | 179    | 35.80  | 2.20  | 1.201         | 0.953    | 325.719  | 0.16  | 280.659          | ±24.60  | 7.62  |
| 1000   | 324    | 32.40  | 3.40  | 1.189         | 0.951    | 310.221  | -5    | 255.031          | ±15.81  | 5.10  |
| 5000   | 1667   | 33.34  | 0.94  | 1.208         | 0.951    | 319.965  | 3.05  | 268.382          | ±7.43   | 2.32  |
| 10000  | 3375   | 33.75  | 0.41  | 1.203         | 0.948    | 321.128  | 0.36  | 267.696/321.128  | ±5.25   | 1.63  |
| 50000  | 16833  | 33.66  | 0.09  | 1.200         | 0.946    | 320.016  | -0.35 | 265.930/320.023  | ±2.33   | 0.73  |
| 100000 | 33418  | 33.42  | 0.24  | 1.194         | 0.945    | 317.281  | -0.86 | 264.312/317.28   | ±1.64   | 0.52  |
| 500000 | 165600 | 33.12  | 0.30  | 1.189         | 0.945    | 314.378  | -0.92 | 262.457/314.378  | ±0.73   | 0.23  |

За длину переходного режима возьмем значение 10000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 5

Таблица 13 результат исследования варианта 5

| Исх, д | анные   | К      | Е    | поток        | а        | b        | КВ   | Рас.обслуживания |      |      |
|--------|---------|--------|------|--------------|----------|----------|------|------------------|------|------|
| (вари  | іант ): | 1      | 2    | Аппр(Эрланга | 172.64   | 250      | 2    | эрланга          |      |      |
|        |         |        |      | 2-го)        |          |          |      |                  |      |      |
| Заявок | Потери  | Вер-ть | П(%) | Длина        | Загрузка | Ср.вр.ож | O(%) | СКО              | Дов. | Д(%) |

|        |        | Потери |       | Очер. |       |         |       | вр.ож           | инт.   |        |
|--------|--------|--------|-------|-------|-------|---------|-------|-----------------|--------|--------|
| 10     | 1      | 10.00  |       | 0.240 | 0.612 | 63.641  |       | 82.222/50.798   | ±50.96 | 100.32 |
| 50     | 17     | 34.00  | 24.00 | 1.036 | 0.849 | 263.308 | 75.83 | 244.807/264.909 | ±67.86 | 25.61  |
| 100    | 41     | 41.00  | 7.00  | 1.338 | 0.923 | 382.746 | 31.21 | 269.245/355.572 | ±52.77 | 14.84  |
| 500    | 192    | 38.40  | 3.00  | 1.223 | 0.935 | 333.394 | -14.8 | 281.599/334.943 | ±24.63 | 7.37   |
| 1000   | 365    | 36.50  | 1.90  | 1.168 | 0.931 | 311.859 | -6.91 | 271.396/311.201 | ±16.82 | 5.41   |
| 5000   | 1762   | 35.24  | 1.26  | 1.214 | 0.944 | 324.182 | 3.8   | 270.840/324.099 | ±7.51  | 2.32   |
| 10000  | 3507   | 35.07  | 0.17  | 1.215 | 0.949 | 323.204 | -0.3  | 268.759/323.184 | ±5.27  | 1.63   |
| 50000  | 17450  | 34.90  | 0.17  | 1.206 | 0.948 | 320.959 | -0.7  | 264.312/320.967 | ±2.32  | 0.72   |
| 100000 | 34866  | 34.87  | 0.03  | 1.203 | 0.946 | 319.168 | -0.56 | 264.453/319.166 | ±1.64  | 0.51   |
| 500000 | 172818 | 34.56  | 0.31  | 1.201 | 0.945 | 317.488 | -0.53 | 262.789/317.487 | ±0.73  | 0.23   |

За длину переходного режима возьмем значение 10000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 6

Таблица 14 результат исследования варианта 6

| Исх, д | анные  | К      | E     | поток | а        | b        | КВ    | Рас.обслуживания |         |       |
|--------|--------|--------|-------|-------|----------|----------|-------|------------------|---------|-------|
| (вари  | ант ): | 1      | 2     | прост | 172.64   | 250      | 2     | эрланга          |         |       |
| Заявок | Потери | Вер-ть | П(%)  | Длина | Загрузка | Ср.вр.ож | O(%)  | СКО              | Дов.    | Д(%)  |
|        |        | Потери |       | Очер. |          |          |       | вр.ож            | инт.    |       |
| 10     | 2      | 20.00  |       | 1.218 | 0.780    | 282.658  |       | 177.375/255.228  | ±109.94 | 43.07 |
| 50     | 18     | 36.00  | 16.00 | 1.119 | 0.914    | 259.165  | -9.06 | 195.294/263.557  | ±54.13  | 20.54 |
| 100    | 41     | 41.00  | 5.00  | 1.186 | 0.928    | 337.563  | 23.22 | 240.891/309.485  | ±47.21  | 15.26 |
| 500    | 205    | 41.00  | 0.00  | 1.103 | 0.870    | 319.492  | -5.66 | 287.369/320.717  | ±25.19  | 7.85  |
| 1000   | 391    | 39.10  | 2.00  | 1.079 | 0.885    | 302.905  | -5.48 | 271.217/302.905  | ±16.81  | 5.55  |
| 5000   | 1920   | 38.40  | 0.70  | 1.084 | 0.899    | 304.416  | 0.5   | 269.909/304.480  | ±7.48   | 2.46  |
| 10000  | 3855   | 38.55  | 0.15  | 1.086 | 0.901    | 305.264  | 0.28  | 268.088/305.171  | ±5.25   | 1.72  |
| 50000  | 19120  | 38.24  | 0.31  | 1.095 | 0.904    | 305.221  | -0.01 | 266.133/305.225  | ±2.33   | 0.76  |
| 100000 | 37926  | 37.93  | 0.31  | 1.090 | 0.903    | 303.092  | -0.7  | 265.881/303.092  | ±1.65   | 0.54  |
| 500000 | 188104 | 37.62  | 0.31  | 1.083 | 0.902    | 300.107  | -0.99 | 263.486/300.108  | ±0.73   | 0.24  |

За длину переходного режима возьмем значение 10000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 7

Таблица 15 результат исследования варианта 7

| Исх, д      | Исх, данные К |        | Е    | поток  | а        | b        | КВ   | Рас.обслуживания |        |       |
|-------------|---------------|--------|------|--------|----------|----------|------|------------------|--------|-------|
| (вариант ): |               | 1      | 2    | Tpacca | 172.64   | 250      | 2    | гипер            |        |       |
|             |               |        |      | ИЗ     |          |          |      |                  |        |       |
|             |               |        |      | УИР 1  |          |          |      |                  |        |       |
| Заявок      | Потери        | Вер-ть | П(%) | Длина  | Загрузка | Ср.вр.ож | O(%) | СКО              | Дов.   | Д(%)  |
|             |               | Потери |      | Очер.  |          |          |      | вр.ож            | инт.   |       |
| 10          | 4             | 40.00  |      | 0.839  | 0.624    | 243.996  | -    | 112.247/72.361   | ±69.57 | 96.14 |

| 50     | 15     | 30.00 | 10.00 | 0.738 | 0.586 | 205.879 | -     | 444.689/205.879 | ±123.26 | 59.87 |
|--------|--------|-------|-------|-------|-------|---------|-------|-----------------|---------|-------|
|        |        |       |       |       |       |         | 18.51 |                 |         |       |
| 100    | 43     | 43.00 | 13.00 | 0.906 | 0.705 | 280.057 | 26.49 | 472.150/280.257 | ±92.54  | 33.02 |
| 500    | 210    | 42.00 | 1.00  | 0.988 | 0.752 | 295.812 | 5.33  | 488.121/288.892 | ±42.78  | 14.81 |
| 1000   | 443    | 44.30 | 1.00  | 1.084 | 0.783 | 342.749 | 13.69 | 602.952/343.615 | ±37.37  | 10.88 |
| 5000   | 2279   | 45.58 | 1.28  | 1.106 | 0.789 | 358.77  | 4.47  | 673.380/358.777 | ±18.66  | 5.20  |
| 10000  | 4531   | 45.31 | 0.27  | 1.112 | 0.791 | 359.749 | 0.27  | 669.058/359.749 | ±13.11  | 3.65  |
| 50000  | 22355  | 44.71 | 0.60  | 1.109 | 0.791 | 354.825 | -1.39 | 662.751/654.804 | ±5.81   | 0.89  |
| 100000 | 44592  | 44.59 | 0.12  | 1.108 | 0.790 | 353.539 | -0.36 | 663.830/353.539 | ±4.11   | 1.16  |
| 500000 | 221741 | 44.34 | 0.25  | 1.101 | 0.788 | 349.885 | -1.04 | 659.964/349.884 | ±1.83   | 0.52  |

За длину переходного режима возьмем значение 10000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 8

Таблица 16 результат исследования варианта 8

| Исх, д | анные  | К      | Е     | поток | а        | b        | КВ    | Рас.обслуживания |         |        |
|--------|--------|--------|-------|-------|----------|----------|-------|------------------|---------|--------|
| (вари  | ант ): | 1      | 2     | аппр  | 172.64   | 250      | 2     | гипер            |         |        |
| Заявок | Потери | Вер-ть | П(%)  | Длина | Загрузка | Ср.вр.ож | O(%)  | СКО              | Дов.    | Д(%)   |
|        |        | Потери |       | Очер. |          |          |       | вр.ож            | инт.    |        |
| 10     | 1      | 10.00  |       | 0.363 | 0.556    | 112.521  | -     | 201.810/112.970  | ±125.08 | 110.72 |
| 50     | 16     | 32.00  | 22.00 | 0.742 | 0.688    | 180.994  | 37.83 | 427.924/180.994  | ±118.61 | 65.53  |
| 100    | 40     | 40.00  | 8.00  | 0.975 | 0.774    | 274.456  | 34.05 | 476.451/270.086  | ±93.38  | 34.58  |
| 500    | 210    | 42.00  | 2.00  | 1.029 | 0.779    | 296.933  | 7.57  | 488.368/291.642  | ±42.81  | 14.68  |
| 1000   | 456    | 45.60  | 3.00  | 1.115 | 0.797    | 346.882  | 14.4  | 603.913/345.682  | ±37.43  | 10.83  |
| 5000   | 2303   | 46.06  | 0.46  | 1.124 | 0.795    | 360.503  | 3.78  | 666.692/360.452  | ±18.48  | 5.13   |
| 10000  | 4648   | 46.48  | 0.42  | 1.128 | 0.797    | 364.174  | 1.01  | 670.790/364.211  | ±13.15  | 3.61   |
| 50000  | 22831  | 45.66  | 0.82  | 1.122 | 0.794    | 357.822  | -1.78 | 665.158/357.822  | ±5.83   | 1.63   |
| 100000 | 45656  | 45.66  | 0.00  | 1.121 | 0.793    | 356.430  | -0.39 | 663.944/356.393  | ±4.12   | 1.15   |
| 500000 | 226788 | 45.35  | 0.31  | 1.113 | 0.791    | 352.355  | -1.16 | 660.225/352.349  | ±1.83   | 0.52   |

За длину переходного режима возьмем значение 10000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Вариант 9

Таблица 17 результат исследования варианта 9

| Исх, д | анные       | К      | Е     | поток | а        | b        | КВ    | Рас.обслуживания |         |        |
|--------|-------------|--------|-------|-------|----------|----------|-------|------------------|---------|--------|
| (вари  | (вариант ): |        | 2     | прост | 172.64   | 250      | 2     | гипер            |         |        |
| Заявок | Потери      | Вер-ть | П(%)  | Длина | Загрузка | Ср.вр.ож | O(%)  | СКО              | Дов.    | Д(%)   |
|        |             | Потери |       | Очер. |          |          |       | вр.ож            | инт.    |        |
| 10     | 3           | 30.00  |       | 0.932 | 0.716    | 237.627  | -     | 280.848/170.979  | ±174.07 | 101.81 |
| 50     | 20          | 40.00  | 10.00 | 1.017 | 0.705    | 260.126  | 8.65  | 503.505/242.536  | ±139.56 | 57.54  |
| 100    | 39          | 39.00  | 1.00  | 1.155 | 0.786    | 320.339  | 18.8  | 501.559/320.339  | ±98.30  | 30.69  |
| 500    | 215         | 43.00  | 4.00  | 0.992 | 0.732    | 299.353  | -7.01 | 512.242/299.353  | ±44.90  | 15.00  |
| 1000   | 475         | 47.50  | 4.50  | 1.107 | 0.771    | 358.948  | 16.6  | 620.730/358.948  | ±38.47  | 10.72  |
| 5000   | 2412        | 48.24  | 0.74  | 1.081 | 0.759    | 361.257  | 0.64  | 672.282/360.558  | ±18.63  | 5.17   |

| 10000  | 4822   | 48.22 | 0.02 | 1.099 | 0.769 | 366.759 | 1.5   | 669.338/366.819 | ±13.12 | 3.58 |
|--------|--------|-------|------|-------|-------|---------|-------|-----------------|--------|------|
| 50000  | 23794  | 47.58 | 0.64 | 1.102 | 0.773 | 362.193 | -1.26 | 666.993/362.191 | ±5.84  | 1.61 |
| 100000 | 47138  | 47.13 | 0.45 | 1.094 | 0.772 | 357.043 | -1.44 | 663.220/357.006 | ±4.11  | 1.15 |
| 500000 | 234532 | 46.90 | 0.23 | 1.086 | 0.769 | 353.534 | -0.99 | 658.733/353.528 | ±1.83  | 0.52 |

За длину переходного режима возьмем значение 10000. Так как в дальнейшем вероятность потери, загрузка, длина очередь и время ожидания перестают значительно изменяться.

#### Анализ результата

Для анализа выбираем данные из таблицы при количестве заявок 100000.



Рисунок 2 верятность потери



Рисунок 3 длина очереди



Рисунок 4 загрузка



Рисунок 5 время ожидания

При сравнении графики мы может делать следующие выводы:

- 1. Закон распределения длительности обслуживания влияет на загрузку системы, веряность потери, время ожидания и длину очередь. Потому что по картинкам мы видим, что варианты 1-3, варианты 4-6 и варианты 7-9 имеют явные различия в этих характеристиках.
- 2. Поток значительно влияет на верятность потери , длину очередь, и загрузку, потому что мы видим, что при тех же условиях всегда существует:
  - а. С точки зрения длины очереди и загрузки: простейшие значительно меньше чем другие два потока.
  - b. С точки зрения верятности потери: простейшие значительно больше чем другие два потока.

А влияние потока поступления на время ожидание не так видно.

#### Вывод

В ходе выполнения работы мы сначала провели имитационный эксперимент и сравнили результата с теми, которые были получены в УИР 2. Мы рассчитали погрешности всех характеристик и обнаружили что погрешности не превышают 5%. Это означаем что мы в предыдующей лабораторной работе правильно рассчитали характеристики.

Во-вторых мы исследовали влияние потока поступления на среднее время ожидания, среднее время пребывания заявок в системе и вероятность потерь законов. Мы заметили что характеристики систем близки друг к другу при сравнении потока аппроксимируемого с потоком трассы. То есть наша аппроксимация выполнена в первой лабораторной работе является успешной. И делали такой вывод что при одинаковой загрузке и одном законе распределения длительности обслуживания, поток поступления слабо влияет на время обслуживание и сильнее влияет на время ожидания, время пребывание и верятность потери.

После этого мы провели исследование влияния ёмкости накопители на верятность потери, время пребывание заявок и время ожидание заявок. Сделали вывод, что чем больше количество заявок, тем больше ёмкость нам нужна, чтобы система могла работать без потерь. Заметили, что с увеличением ёмкости накопителя увеличивается время ожидания и время пребывания, а вероятность потери уменьшается.

Мы в конце исследовали как поток поступления и закон обслуживания влияют на характеристики систем. Мы делали такие выводы что:

- Закон распределения длительности обслуживания влияет на загрузку системы, веряность потери, время ожидания и длину очередь. Потому что по картинкам мы видим, что варианты 1-3, варианты 4-6 и варианты 7-9 имеют явные различия в этих характеристиках.
- 2. Поток значительно влияет на верятность потери , длину очередь, и загрузку, потому что мы видим, что при тех же условиях всегда существует:
  - а. С точки зрения длины очереди и загрузки: простейшие значительно меньше чем другие два потока.
  - b. С точки зрения верятности потери: простейшие значительно больше чем другие два потока.

А влияние потока поступления на время ожидание не так видно.

Наблюдали переходные процессы, при которых характеристики системы перестают значительно изменяться при различных вариантах. Переходные процессы могут зависеть от закона распределения длительности обслуживания, как показано в результатах наших вариантов.