3. Ejercicios de Física III.

Docente: Mario D. Melita

Ejercicio 1. Calcular los coeficientes de Fourier A_n de una cuerda de tensión T_0 , densidad ρ_0 y longitud L: $\psi(z,t) = \sum_{n=1}^{\infty} A_n \sin(k_n z) \cos(\omega_n t)$, con $k_n = \frac{n\pi}{L}$ y $\omega_n = v k_n$ con $v^2 = T_0/\rho_0$,

- i. Para una condición inicial de la distribución espectral de tipo triangular $\psi\left(z,0\right)=C.z$, con z=0..L.
- ii. Para una condicion inicial de la distribución espectral de tipo cuadrada: $\psi(z,0) = C$ con z = 0..L.

Ejercicio 2. Considere que la solución de la ecuación de onda en una cuerda, de longitud L, masa m y sometida a una tension T en los extremos, es del tipo:

 $\psi(x,t) = A\sin(k.x)\sin(\omega.t) + B\cos(k.x)\cos(\omega.t)$

con condiciones de borde: $\psi(0,t) = 0$ y $\psi(L,t) = 0$.

Deducir las longitudes de onda y las frecuencias de los modos estacionarios de vibración y escribir la solución general.

Ejercicio 3. Escribir las soluciones armónicas de la ecuación de onda en forma de exponencial compleja.

Ejercicio 4. Considerar la superposición de 2 ondas con números de onda k_1 y k_2 y frecuencias f_1 y f_2 . Graficar cualitativamente. Cuál es la velocidad ed fase y cuál es la velocidad de grupo.

Ejercicio 5. Considere una relación de dispersión e tipo: $\omega(k)^2 = \omega_0^2 + c^2 \cdot k^2$. Calcular la velocidad de grupo.