NÚMEROS COMPLEXOS

Folhas de Apoio da disciplina de Teoria dos Sinais e dos Sistemas

Abril de 2004 Isabel Milho

Índice

1.	Representação de Números Complexos 1
2.	Complexo Conjugado1
3.	Adição, Multiplicação e Divisão
	Relações Úteis
5.	MATLAB
	Exemplos
	ografia

1. Representação de Números Complexos

Seja um número complexo z, que expresso na forma cartesiana (rectangular ou algébrica) vem FORMA CARTESIANA

z = a + jb, (1)

PARTES REAL E **IMAGINÁRIA**

onde $j = \sqrt{-1}$, a = Re[z] é a parte real de z e b = Im[z] é a parte imaginária de z,

Na forma polar, o número complexo z vem

$$z = re^{j\theta}, (2)$$

FORMA POLAR MÓDULO E FASE

onde r > 0 é o módulo de z, r = |z|, e $\theta = \arg[z]$ é o ângulo (ou fase) de z.

Figura 1: O plano complexo.

PLANO COMPLEXO DIAGRAMA - ARGAND

Na Figura 1 vêm ilustradas as representações cartesiana e polar para o número complexo z. Esta representação geométrica dos números complexos é conhecida por plano complexo (ou diagrama de Argand). Através da Figura 1, ou usando a fórmula de Euler,

FÓRMULA DE EULER

$$e^{j\theta} = \cos\theta + j\sin\theta \,,$$

as relações entre as representações cartesiana e polar são

POLAR→CARTESIANA

$$a = r\cos\theta \qquad b = r\sin\theta$$
, (4)

$$r = \sqrt{a^2 + b^2}$$
 $\theta = \arctan \frac{b}{a}$. (5)

2. Complexo Conjugado

COMPLEXO **C**ONJUGADO

O *complexo conjugado* de
$$z$$
 é designado por z^* e é dado por

 $z^* = a - ib = re^{i\theta}$. (6)

Adição, Multiplicação e Divisão 3.

Sejam os números complexos $z_1 = a_1 + jb_1$ e $z_2 = a_2 + jb_2$. Para a adição de complexos temos de usar a representação cartesiana.,

ADIÇÃO

$$z_1 + z_2 = (a_1 + jb_1) + (a_2 + jb_2) = (a_1 + a_2) + j(b_1 + b_2).$$
 (7)

Para a multiplicação e a divisão, ambas as representações são possíveis para obter o resultado. Na forma cartesiana, temos que

MULTIPLICAÇÃO

$$z_1 z_2 = (a_1 + jb_1)(a_2 + jb_2) = (a_1 a_2 - b_1 b_2) + j(a_1 b_2 + b_1 a_2),$$
(8)

DIVISÃO

$$\frac{z_1}{z_2} = \frac{a_1 + jb_1}{a_2 + jb_2} = \frac{\left(a_1 + jb_1\right)\left(a_2 - jb_2\right)}{\left(a_2 + jb_2\right)\left(a_2 - jb_2\right)} = \frac{\left(a_1a_2 + b_1b_2\right) + j\left(-a_1b_2 + b_1a_2\right)}{a_2^2 + b_2^2}.$$
 (9)

Na forma polar o resultado é imediato. Sendo $z_1 = r_1 e^{i\theta_1}$ e $z_2 = r_2 e^{i\theta_2}$, vem

MULTIPLICAÇÃO

RELAÇÕES ÚTEIS

$$z_1 z_2 = r_1 e^{j\theta_1} r_2 e^{j\theta_2} = r_1 r_2 e^{j(\theta_1 + \theta_2)}, \tag{10}$$

DIVISÃO

$$\frac{z_1}{z_2} = \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)} . \tag{11}$$

Relações Úteis 4.

Usando a definição de complexo conjugado (6), temos algumas relações úteis:

$$zz^* = r^2, (12)$$

$$z + z^* = 2\operatorname{Re}[z], \tag{13}$$

(3)

$$z - z^* = j2 \operatorname{Im}[z], \tag{14}$$

$$(z_1 + z_2)^* = z_1^* + z_2^*,$$
 (15)

$$(z_1 z_2)^* = z_1^* z_2^*.$$
 (16)

Aplicando (13) e (14), a fórmula de Euler (3) pode ser usada para derivar fórmulas para as funções coseno e seno em termos de $e^{i\theta}$:

COSENO

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2},\tag{17}$$

SENO

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} \,. \tag{18}$$

5. MATLAB

O MATLAB suporta tratamento de números complexos. Para definir um número complexo na forma cartesiana, escreve-se:

FORMA CARTESIANA

Ambos os símbolos i e j são iniciados com $\sqrt{-1}$ pelo MATLAB. Do mesmo modo, o símbolo pi é iniciado com o valor da constante π . Assim, também podemos usar as funções cos e sin para definir um número complexo na forma cartesiana:

FORMA POLAR

Na forma polar, podemos usar a função exp:

OPERAÇÕES

As operações aritméticas sobre números complexos usam-se como para os números reais:

```
>> z3-z1
ans =
    -4.0000 - 1.0000i
>> z3*z1
ans =
    -3.0000 - 3.0000i
>> z1/z3
ans =
    -0.3333 - 0.3333i
>> z1^2
ans =
    0 + 2.0000i
```

A Tabela 1 mostra algumas funções disponíveis no MATLAB para realizar operações, como o complexo conjugado, o módulo e a fase do número.

FUNÇÕES ÚTEIS

Função	Significado	Definição $(z = a + jb)$
real	parte real	a
imag	parte imaginária	b
abs	valor absoluto (módulo)	r = z
angle	fase do ângulo (argumento)	θ = arctan (b/a)
conj	complexo conjugado	$z^* = a - jb$

Tabela 1: Funções MATLAB de complexos

Para representar graficamente números complexos no MATLAB podemos usar as funções compass ou plot:

```
>> compass(z1), hold on, compass(-z2)
```

O resultado desta sequência de comandos produz o gráfico da Figura 2(a). O resultado obtido com o comando plot,

```
>> plot(real(z1), imag(z1), '*'), hold on
>> plot(real(-z2), imag(-z2), '*'), axis([-2 2 -2 2])
```

não é tão claro (ver Figura 2(b)), embora se possa marcar a origem e traçar linhas da origem até aos pontos.

Figura 2: Representações gráficas dos números complexos $z_1 = 1-j1$ e $-z_2 = -\sqrt{2}/2 - j\sqrt{2}/2$, usando os comandos compass e plot.

6. Exemplos

Para melhor compreensão das representações apresentam-se exemplos de números complexos na Tabela 2. Os complexos são representados nas duas formas, cartesiana e polar, e a sua representação gráfica no plano complexo ilustra-se na Figura 3.

	Forma cartesiana	Forma polar
$z_1 = 1 + j1$	1 + j1	$\sqrt{2}$ $e^{j\pi/4}$
$z_2 = -z_1$	-1 - <i>j</i> 1	$\sqrt{2} e^{-j3\pi/4}$
$z_3 = z_1^*$	1 - <i>j</i> 1	$\sqrt{2} e^{-j\pi/4}$
$z_4 = 2 z_2$	2 + j2	$2\sqrt{2} e^{-j3\pi/4}$
$z_5 = 3 e^{-j\pi}$	-3	$3 e^{-j\pi}$
$z_6 = z_2 + z_5$	-4 - <i>j</i> 1	$\sqrt{(4^2+1)} e^{\text{jarctan}(-4/-1)}$
$z_7 = z_2 / z_5$	1/3 + j1/3	$\sqrt{2/3}$ $e^{j\pi/4}$
$z_8 = z_2 z_5$	3 + j3	$3\sqrt{2} e^{j\pi/4}$

Tabela 2: Números complexos nas formas cartesiana e polar.

Note que a conversão de coordenadas (cartesianas para polares e vice-versa), assim como as operações de adição, multiplicação e divisão, se podem realizar graficamente no plano complexo. O número complexo z_6 é o único caso da Tabela 2 que, depois de adicionar os dois vectores graficamente, é necessário aplicar a transformação da forma cartesiana para a forma polar em (5), a fim de determinar os valores do módulo e do argumento.

Figura 3: Representação gráfica dos números complexos da Tabela 2 no plano complexo.

Bibliografia

- [1] S. Haykin, B. V. Veen, Signals and Systems, John Wiley & Sons, 1999.
- [2] H. P. Hsu, Signals and Systems, McGraw-Hill, 1995.
- [3] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Second Edition, Prentice Hall, 1999.
- [4] P. Smith, *Part IB Computing Course Tutorial Guide to Matlab*, http://mi.eng.cam.ac.uk/~pas1001/Teaching/tutorial.pdf, 2003.