DPD Problem

Костенок Елизавета Николаевна

Московский физико-технический институт Факультет радиотехники и компьютерных технологий, 2 курс https://github.com/KostenokLisa kostenok.en@phystech.edu

Cupuyc 2020 г.

Постановка DPD задачи

Как выглядят базовые станции?

Построение модели и поиск ее параметров

В результате нелинейных искажений меняется спектральный состав сигнала

Постановка DPD задачи

Что мы хотим получить на практике?

Команда

- Бредихин Александр поиск архитектуры модели
- 2 Гребенькова Ольга различные алгоритмы обучения модели
- Костенок Елизавета сравнение различных вариантов модели, поиск точек старта
- Шурыгин Антон поиск задержек модели, поиск точек старта

Это мы

Индивидуальная работа

- Реализация линейных и полиномиальных моделей, LS и LMS estimation, подбор задержек на данных Сергея Бахурина.
- Обучение модели Baseline с подбором batch size и стартовой точки(значений задержек). Максимальное значение точности, полученное без модификаций клетки и слоя на данных BlackBoxData 80: -41.78 dB.
- Обучение модели Baseline на данных Сергея Бахурина, подбор стартовой точки и оптимизатора. Неплохие результаты даже на сложных для обработки данных удалось получить с помощью оптимизатора QHAdam.

Сигнал lte 2c data1

Индивидуальная работа

- Реализация моделей клеток Cell_2, Cell_3, построение графиков сходимости для различных моделей клеток с различными задержками и сравнение полученных результатов(см. "Сводная таблица результатов клеток")
- Реализация и сравнение однородного слоя из оптимальной клетки Cell_2 со слоями из разных видов клетов и Baseline слоем; подбор стартовой точки для слоя. Результаты и графики представлены далее в работе.

Модель, данная в качестве baseline:

Клетка, из которой состоит модель

Структура модели

Почему клетка должна быть такой?

Первая попытка — $Cell_1$

Используемые задержки:

Bapua+⊤ A Bapua+⊤ B delays1 1 0 delays1 -3 2 delays2 -1 1 delays2 1 2 delays3 0 -1 delays3 3 -1 delays4 0 1 delays4 4 0

Первая попытка — Cell 1

delays 1: 10, delays 2: -11

delays 1: -3 2, delays 2: 1 2

delays 3: 0 -1, delays 4: 0 1

delays 3: 3-1, delays 4: 40

Используемые задержки:

baseline delay 0 cell1 delays -3 2 cell2 delays -1 0 1

Cell_1 ассимптотически приближается к baseline модели, однако продолжает ей проигрывать. Cell_2 проигрывает обоим клеткам на старте, но начинает выигрывать после 60 эпохи и продолжает обучаться даже после 120.

Пришли к той же модели?

baseline cell

Получили практически ту же клетку, что и в baseline модели. Наш вариант отличается лишь те, что полином домножается на x — входной сигнал — и на выходе операция сумма вместо умножения.

При одинаковом количестве параметров Cell_3 уступает клетке baseline. При этом клетка Cell_2 продолжает выигрывать у них.

"Стекаем"слои и будет performance?

Пробуем объединять разные виды клеток

Сравнение моделей одинаковой ширины с разной комбинацией лучших клеток:baseline и Cell $_2$

Итог поиска архитектуры

- За счёт увеличения параметров клетки удалось подобрать клетку Cell_2, которая обучается лучше, чем Baseline Cell
- Однородные слои из клеток типа Cell_2 и разнородные слои показывают худший результат по сравнению с однородным слоем из клеток Baseline: при большем количестве параметров обучается хуже
- "Стекать" слои лучше всего из первоначальных клеток Baseline

- ullet уменьшаем шаг с помощью scheduler: каждые 5 эпох умножаем learning rate на константу
- рекурсивно меням размер batch каждые 100 эпох обучения для увеличении точности каждого шага
- используем другой оптимизатор для дообучения, когда перестала меняться функция ошибки

Оптимизационные алгоритмы

Были попробованы следующие варианты оптимайзеров.

- Adam
- QHAdam
- DiffGrad
- LBFGS
- 6 Метод трёх квадратов
- 6 BDGM (https://arxiv.org/pdf/2002.09050.pdf)

Method of Three Squares

Choose $L \geq L_F$. For $k \geq 0$ iterate:

$$x_{k+1} = \arg\min_{y \in \mathbb{R}^n} \left\{ \frac{L}{2} \|y - x_k\|^2 + \frac{1}{2f_1} (x_k) [f_1^2(x_k) + \|F(x_k) + F'(x_k)(y - x_k)\|^2] \right\}.$$

Костенок Е.

Лучшие результаты

 ${
m NMSE} = -42.09$ модель: 3 слоя в длину из 7 клеток Baseline

NMSE = -43.42 модель: 4 слоя в длину из 7 клеток Baseline

Сводная таблица результатов клеток

Model	Parameters	Time, min	NMSE, dB	Data	Optimizer
baseline_cell	FIR: 2 Delay:1 Poly8: 1 N = 39	1:58	-25.83	BlackBoxData_80	Adam
cell_1	FIR: 4 Delay: 2 Poly8: 2 N = 78	2:17	-25.96	BlackBoxData_80	Adam
cell_2	FIR: 3 Delay: 3 Poly2: 1 Poly10: 1 N = 59	2:10	-27.31	BlackBoxData_80	Adam
cell_3	FIR: 2 Delay: 2 Poly10: 1 N = 41	2:05	-26.11	BlackBoxData_80	Adam
b_cell_poly10	FIR: 2 Delay: 1 Poly10: 1 N = 41	2:03	-26.29	BlackBoxData_80	Adam

Сводная таблица результатов моделей

Model	Parameters	Time, min	NMSE, db	Data
Baseline model long	28 Poly 64 FIR N = 1212	$\sim 1000 iter$	-43.42	BlackBoxData_80
Baseline model short	21 Poly 50 FIR N = 939	$\sim 1000 iter$	-42.09	BlackBoxData_80
Cell_1 model	42 Poly 84 FIR N = 1638	$\sim 1000 iter$	-40.80	BlackBoxData_80