Gauss-Markov Assumptions

Assumption	Expression & Explanation	Potential Violations	Impact of Violations on Estimates
Model is linear in parameters MLR 1	β , not $\ln(\beta)$ or β^2 in the model. X_i can be transformed to be nonlinear, but all β s are linear	If actual relationship is not linear, involves quadratic, etc.	
Samples are independent and random MLR 2	Each individual equally as likely to be a part of our sample used for estimation of the β , and they all come from the population of interest. Implies no serial correlation in the errors	Non-random sampling, panel data	Increasing your sampling variance for β -hat. Will still be unbiased, but will be more efficient if serial correlation is in the <i>data</i> .
No perfect collinearity in regressors MLR 3	$R^2 = 1$ This would imply that all of y is perfectly explained by x_1	High collinearity (e.g. 0.9) As R2 $\rightarrow \infty$, Var(β -hat) $\rightarrow \infty$ Including same var in different units	Increases the $Var(\beta-hat)$, meaning that your estimates are no longer efficient .
Zero conditional mean of error term MLR 4	$E(u \mid x) = 0$ $Cov(u_i, x_i) = 0$ Knowing x tells me nothing about the error term. Being at some relative point in the x-range does not imply that my error will be positive or negative.	Omitted variable bias Reverse Causality Measurement Error in Indep Var (bad proxy variables \rightarrow more ME \rightarrow more biased β -hat)	Estimates of β will be biased , not centered around the true value of β Said that x is endogenous , and impacting the bias of the estimate of β
Homoskedasticity of the errors (u _i) MLR 5	$Var(u_i \mid x_i) = \sigma^2$ Error term has constant variance (ties in with zero conditional mean). Variance doesn't change dependent upon x-value.	Heteroskedasticity (variance in errors) is a function of x. Can arise from grouping data or aggregating data (error depends on the size of the groupings; avg errors no longer equal to one another)	Estimates are unbiased, but not efficient . Have a higher sampling variance for estimates of β . Fix with weighted least squares. Zero conditional mean is still preserved. Do <u>not</u> need homoskedasticity for <i>consistency</i> .
Errors are normally distributed MLR 6			
No serial correlation in the errors	Implied by random sampling, but if we have no random sample, this assumption has to hold on its own. Important with panel data. $E(y_i,y_j)=0, \text{ replace with the model relationship with } x_i \text{ to derive } Cov(u_i,u_j)=0$	Occurs in panel data (efficiency) Functional misspecification (bias) Omitted variables (bias) Measurement variable (bias)	Increasing your sampling variance for β -hat. Will still be unbiased, but will be more efficient if the serial correlation is in the data. Can be unbiased w/ right model. Can also be symptomatic of model specification, which also \rightarrow bias.

Non-zero sample variance in x	X cannot be so closely clustered so as to not have any variance, and x cannot be a constant. You need variance to pick up an effect.	If x is a constant	
Var(x) ≠ 0	This is a technical assumption; not much focus.		

If these assumptions are met, the estimators are said to be **BLUE**

Best (efficient)

Linear (MLR1)

Unbiased (centered around the true value of β)

Estimators

BLUE estimators have the characteristics of being:

- 1. Unbiased
 - a. Distribution of β -hat estimates are centered around true β
- 2. Consistent
 - a. As sample size increases, the β -hat estimates get closer to true β
 - b. Distribution starts wide and non-normal, then narrows and becomes normal as n increases
- 3. Efficient
 - a. β -hat distribution has the lowest sampling variance (σ^2) of all possible β -hat estimates
 - b. Narrower, taller distribution making it more efficient in that it is *more* centered around true β and the estimates of β from that distribution have less variance