LAST NAME:					FIRST NAME:					CIRCLE:						
												Martynova 8:30am	Martyn 1pm	nova	Zweck	
1	/7	2		/10	3	/12	4	/10	5	/12	6	/12	7	/12	Т	/75

MATH 2415 (Spring 2017) Exam II, Mar 31st

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 90 minute exam is worth 75 points.

(1) [7 pts] Find the equation of the tangent plane to the surface $z = e^x \cos(xy)$ at $(x, y, z) = (1, \pi/2, 0)$.

((2)	[10]	pts	Let	f	(x,y)	=	xy^2

(a) Find the direction in which f increases most rapidly at the point (x, y) = (2, 3). What is the rate of change of f in this direction?

(b) In what directions is the rate of change of f equal to zero at the point (2,3)?

(3) [12 pts] (a) Suppose that $z = f(x,y) = \sin(3x^2 + 4y^2)$ where x = x(t) and y = y(t). If x(0) = 2, y(0) = 1, x'(0) = 3, and y'(0) = -4, find $\frac{dz}{dt}$ at t = 0.

(b) Evaluate the iterated integral $\int_0^{\sqrt{\pi}} \int_y^{\sqrt{\pi}} \cos(x^2) dx dy$ by reversing the order of integration.

) [10 pts] Find the volume of the solid under the surface $z = xy + 1$ and above the region in the (x, y) -planted by the curves $y = \sqrt{x}$, $y = 0$, and $x = 4$.	ıne

(5) [12 pts] Let S be the surface with parametrization

 $(x, y, z) = \mathbf{r}(u, v) = u \cos v \,\mathbf{i} + 2u \sin v \,\mathbf{j} + u \,\mathbf{k}$ for $0 \le u \le 2$ and $0 \le v \le \pi/2$.

(a) Find an equation of the form F(x, y, z) = 0 for this surface.

(b) Sketch the surface, S, together with the "grid" curves on S where (i) u=1 and (ii) $v=\pi/4$.

(c) Calculate the tangent vector to the grid curve u=1 at the point where $(u,v)=(1,\pi/4)$.

(6) [12 pts] Find and classify all critical points of $f(x,y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$.

(7) [12 pts] Use the method of Lagrange multipliers to find the absolute maximum and absolute minimum of the function $f(x,y) = x^2 + y^2$ on the ellipse $x^2 + 2(y+1)^2 = 8$.