Extra Class

Advanced CNN

Nguyen Quoc Thai

CONTENT

- (1) Review: CNN
- (2) Batch Normalization
- **(3) Dropout**
- (4) Skip Connection

[!

Convolutional Layer

*

0	3	1	1
3	1	2	0
3	4	2	3
3	0	0	2

Input: M x N

radding. (r, Q)					
0	0	0	0	0	0
0	0	3	1	1	0
0	3	1	2	0	0
0	3	4	2	3	0
0	3	0	0	2	0
0	0	0	0	0	0

Padding: (P O)

Shape: $(M+2P) \times (N+2Q)$

1	1	1
1	1	1
0	1	0
Kerr	nel: K	хО

Stride: (S, T)

1

!

Pooling Layer

Max Pooling

3 2 3 0 00 3 $\mathbf{0}$ 3 2 $\mathbf{0}$ 4 3 0 0 0 3

Input: 6 x 6

Kernel Size: 2

Stride: 2

3	3	3
4	4	4
4	4	4

Output: 3 x 3

***** Average Pooling

3	2	1	0	0	3
0	3	3	1	1	0
3	1	4	1	1	0
2	4	1	1	0	4
1	0	3	0	3	0
3	4	4	3	3	4

Input: 6 x 6

Kernel Size: (3, 2) Stride: 2

21.70.81.81.61.3

Output: 2 x 3

!

Multiple Input – Output Channels

LeNet Model

(!

TextCNN Model

Data Normalization

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

$$\mu = 2$$
 $\sigma^2 = 1.5$ $\sigma = 1.224$

$$\sigma^2 = 1.5 \qquad \sigma = 1.22^2$$

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2}}}$$

$$\widehat{X_0} = \frac{1-2}{1.224} - 0.817$$

Data Normalization

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

$$\mu = 2$$

$$\mu = 2$$
 $\sigma^2 = 1.5$ $\sigma = 1.224$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2}}}$$

12

4

$$\widehat{X}_0 = \frac{2-2}{1.224}$$

Data Normalization

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

$$\mu = 2$$

$$\mu = 2$$
 $\sigma^2 = 1.5$ $\sigma = 1.224$

$$\sigma = 1.224$$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2}}}$$

Batch Normalization

Get batch data (m: batch size)

$$X = \{X_1, X_2, ..., X_m\}$$

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

$$Y_i = \gamma \hat{X}_i + \beta$$
 γ and β are two learning parameters

$$\epsilon = 1e^{-5}$$
 $\gamma = 1$

$$\beta = 0$$

Batch Normalization

Get batch data (m: batch size)

$$X = \{X_1, X_2, ..., X_m\}$$

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

$$Y_i = \gamma \hat{X}_i + \beta$$
 γ and β are two learning parameters

Batch Normalization

Get batch data (m: batch size)

$$X = \{X_1, X_2, ..., X_m\}$$

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

$$Y_i = \gamma \hat{X}_i + \beta$$
 γ and β are two learning parameters

$$\widehat{X}_{0} = \frac{2 - 2.25}{\sqrt{1.479^{2} + 1e^{-5}}} - 0.169$$
4
1.183
0
-1.521
3

Batch Normalization

Get batch data (m: batch size)

$$X = \{X_1, X_2, ..., X_m\}$$

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

$$Y_i = \gamma \hat{X}_i + \beta$$
 γ and β are two learning parameters

Batch Normalization

Get batch data (m: batch size)

$$X = \{X_1, X_2, ..., X_m\}$$

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

$$Y_i = \gamma \hat{X}_i + \beta$$
 γ and β are two learning parameters

		2	2	1	ϵ	$= 1e^{-5}$
		4	1	0	γ	' = 1
		0	4	0	β	R = 0
		3	3	4		
			\			
mean	2.25		2.5		1.25	
variance	1.479		1.118	3	1.639	

- 0.169	- 0.447	- 0.153
1.183	- 1.342	- 0.763
-1.521	- 1.342	- 0.763
0.507	0.447	1.677
	\widehat{X}_{i}	

- 0.169	- 0.447	- 0.153
1.183	- 1.342	- 0.763
-1.521	- 1.342	- 0.763
0.507	0.447	1.677

Batch Normalization - Demo

Get batch data (m: batch size)

$$X = \{X_1, X_2, ..., X_m\}$$

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

Scale and shift \widehat{X}_i

```
\gamma and \beta are two
Y_i = \gamma \widehat{X}_i + \beta
                          learning parameters
```

```
input = torch.randint(5, (4, 3), dtype=torch.float32)
input
tensor([[2., 2., 1.],
        [4., 1., 0.],
        [0., 4., 0.],
        [3., 3., 4.]])
batch norm layer = nn.BatchNorm1d(num features=3)
batch norm layer.weight
Parameter containing:
tensor([1., 1., 1.], requires grad=True)
batch_norm_layer.bias
Parameter containing:
tensor([0., 0., 0.], requires_grad=True)
output = batch norm layer(input)
output
tensor([[-0.1690, -0.4472, -0.1525],
        [1.1832, -1.3416, -0.7625],
        [-1.5213, 1.3416, -0.7625],
        [ 0.5071, 0.4472, 1.6775]], grad fn=<NativeBatchNormBackward0>)
```


Batch Normalization - Demo

```
inputs = torch.randint(5, (3, 32, 32), dtype=torch.float32)
labels = torch.tensor([0, 1, 1])
model = nn.Sequential(
      nn.Flatten(),
      nn.Linear(32 * 32, 16),
      nn.BatchNorm1d(16), ____
      nn.ReLU(),
      nn.Linear(16, 2)
predictions = model(inputs)
loss function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss = loss_function(predictions, labels)
loss.backward()
optimizer.step()
```

```
Parameter containing:
requires_grad=True)
Parameter containing:
requires_grad=True)
```

```
Parameter containing:
tensor([-0.0074, 0.0227, -0.0200, -0.0058, 0.0272, -0.0055, 0.0181, 0.0027,
       -0.0221, -0.0286, 0.0310, -0.0004, -0.0141, 0.0302, 0.0015, -0.0182],
      requires grad=True)
Parameter containing:
tensor([1.0001, 1.0001, 0.9999, 0.9999, 0.9999, 1.0001, 1.0001, 1.0001,
       0.9999, 0.9999, 1.0001, 1.0001, 0.9999, 0.9999, 1.0001],
      requires_grad=True)
```


Normalization during Inference

Get batch data (m: batch size)

$$X = \{X_1, X_2, ..., X_m\}$$

Compute mean and variance

$$\mu = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu)^2$

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

 \diamond Scale and shift \widehat{X}_i

$$Y_i = \gamma \hat{X}_i + \beta$$
 γ and β are two learning parameters

How to compute mean and variance with a sample?

 μ_{pop} : estimated mean of the studied population

 σ^2_{pop} : estimated standard-deviation of the studied population

computed using all the (μ _batch, σ _batch) determined during training

Normalization during Inference

Normalize X_i

$$\widehat{X}_{i} = \frac{X_{i} - \mu_{pop}}{\sqrt{\sigma_{pop}^{2} + \epsilon}}$$
 ϵ is a very small value (1e-05)

Scale and shift \widehat{X}_i

$$Y_i = \gamma \widehat{X}_i + \beta$$
 γ and β are two learning parameters

How to compute mean and variance with a sample?

$\mu_{ m pop}$	2.25	2.5	1.25
$\sigma_{ m pop}$	1.479	1.118	1.639

$$\widehat{X}_{i}$$
 - 0.169 - 0.447 - 0.153 $\gamma = 0.5$ $\beta = 0.05$ Y_{i} - 0.035 - 0.129 - 0.027

MNIST using Batch Normalization

MNIST dataset

- > Images: 70.000
- Class: 10
- > Image Size: 28 x 28

Al VIET NAM $_{\text{@aivietnam.edu.vn}} 2 - Batch Normalization$

MNIST using Batch Normalization - Demo

MNIST dataset

Preprocessing

```
VALID RATIO = 0.9
n_train_examples = int(len(train_data) * VALID_RATIO)
n_valid_examples = len(train_data) - n_train_examples
train_data, valid_data = data.random_split(
    train data,
    [n_train_examples, n_valid_examples]
```

```
# compute mean and std
mean = train_data.dataset.data.float().mean() / 255
std = train_data.dataset.data.float().std() / 255
mean, std
(tensor(0.1307), tensor(0.3081))
train transforms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[mean], std=[std])
1)
test_transforms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[mean], std=[std])
1)
train_data.dataset.transform = train_transforms
valid_data.dataset.transform = test_transforms
```


MNIST using Batch Normalization - Demo

MNIST dataset

> Base Model

```
base_model = nn.Sequential(
    nn.Conv2d(1, 6, 5, stride=2),
    nn.Flatten(),
   nn.Linear(6 * 12 * 12, 64),
   nn.ReLU(),
   nn.Linear(64, 32),
    nn.ReLU(),
    nn.Linear(32, 10)
```

```
summary(base_model, (1, 28, 28))
```

Layer (type)	Output Shape	Param #
Conv2d-1 Flatten-2 Linear-3 ReLU-4 Linear-5 ReLU-6 Linear-7	[-1, 6, 12, 12] [-1, 864] [-1, 64] [-1, 64] [-1, 32] [-1, 32] [-1, 10]	156 0 55,360 0 2,080 0 330

Total params: 57,926

Trainable params: 57,926 Non-trainable params: 0

Input size (MB): 0.00

Forward/backward pass size (MB): 0.01

Params size (MB): 0.22

Estimated Total Size (MB): 0.24

MNIST using Batch Normalization - Demo

MNIST dataset

Model with BatchNorm Layer

```
batchnorm_model = nn.Sequential(
    nn.Conv2d(1, 6, 5, stride=2),
    nn.Flatten(),
    nn.Linear(6 * 12 * 12, 64),
    nn.BatchNorm1d(64),
    nn.ReLU(),
    nn.Linear(64, 32),
    nn.BatchNorm1d(32),
    nn.ReLU(),
    nn.Linear(32, 10)
```

Summary (Duccimorm model) (1) 20, 20,	summary(batchnorm_	model,	(1,	28.	28))	
---------------------------------------	--------------------	--------	-----	-----	------	--

Layer (type)	Output Shape	Param #
Conv2d-1 Flatten-2 Linear-3 BatchNorm1d-4 ReLU-5 Linear-6 BatchNorm1d-7 ReLU-8 Linear-9	[-1, 6, 12, 12] [-1, 864] [-1, 64] [-1, 64] [-1, 64] [-1, 32] [-1, 32] [-1, 32] [-1, 10]	156 0 55,360 128 0 2,080 64 0 330

Total params: 58,118

Trainable params: 58,118 Non-trainable params: 0

Input size (MB): 0.00

Forward/backward pass size (MB): 0.02

Params size (MB): 0.22

Estimated Total Size (MB): 0.24

MNIST using Batch Normalization

MNIST dataset

> Training

Evaluation

w/o BN: 97.53

w BN: 97.85

(!

Dropout

- Removing units at random during the forward pass and putting them all back during test
- Probability of an element to be zeroed (P)

Without Dropout

Output Layer

Hidden Layer

Input Layer

With Dropout

Dropout - Demo

```
model = nn.Sequential(
    nn.Flatten(),
    nn.Linear(3 * 2, 5),
    nn.ReLU(),
    nn.Dropout(0.2),
    nn.Linear(5, 2)
)
```

Initial

Updated

```
for p in model.parameters():
   print(p)
Parameter containing:
tensor([[ 0.0339, 0.2694, -0.0702, -0.1022, -0.0501, -0.1658],
        [-0.3597, -0.1011, 0.3167, 0.2188, -0.1090, 0.2430],
        [0.3705, 0.2145, -0.3251, 0.0081, -0.0650, 0.0284],
        [0.3639, -0.1841, 0.0548, 0.3922, 0.1981, 0.0232],
        [0.3353, 0.0434, -0.1930, -0.0349, -0.3071, -0.3159]],
      requires_grad=True)
Parameter containing:
tensor([-0.1539, -0.1738, -0.4064, 0.3608, 0.2249], requires_grad=True)
Parameter containing:
tensor([[-0.1894, -0.3698, -0.1071, 0.3176, -0.0480],
        [ 0.0826, 0.3068, 0.1251, 0.4449, -0.3024]], requires_grad=True)
Parameter containing:
tensor([ 0.4070, -0.1317], requires grad=True)
```

```
for p in model.parameters():
    print(p)
Parameter containing:
tensor([[ 0.0339, 0.2694, -0.0702, -0.1022, -0.0501, -0.1658],
        [-0.3587, -0.1001, 0.3177, 0.2198, -0.1080, 0.2440],
        [0.3695, 0.2155, -0.3241, 0.0071, -0.0640, 0.0294],
        [0.3629, -0.1831, 0.0558, 0.3912, 0.1991, 0.0242],
        [0.3363, 0.0444, -0.1930, -0.0339, -0.3071, -0.3149]]
       requires_grad=True)
Parameter containing:
tensor([-0.1539, -0.1728, -0.4074, 0.3598, 0.2259], requires grad=True)
Parameter containing:
tensor([[-0.1894, -0.3688, -0.1061, 0.3186, -0.0470],
        [ 0.0826, 0.3058, 0.1241, 0.4439, -0.3034]], requires grad=True)
Parameter containing:
tensor([0.4080, -0.1327], requires grad=True)
```


MNIST using Dropout - Demo

MNIST dataset

Model with Dropout Layer

```
summary(dropout_model, (1, 28, 28))
```

Layer (type)	Output Shape	Param #
Conv2d-1 Flatten-2 Linear-3 ReLU-4 Dropout-5 Linear-6 ReLU-7 Dropout-8 Linear-9	[-1, 6, 12, 12] [-1, 864] [-1, 64] [-1, 64] [-1, 64] [-1, 32] [-1, 32] [-1, 32] [-1, 10]	156 0 55,360 0 2,080 0 0 330

Total params: 57,926

Trainable params: 57,926 Non-trainable params: 0

Input size (MB): 0.00

Forward/backward pass size (MB): 0.02

Params size (MB): 0.22

Estimated Total Size (MB): 0.24

27

(!

MNIST using Dropout

MNIST dataset

> Training

> Evaluation

w/o Dropout: 97.53

w Dropout: 97.58

[

MNIST using Dropout - Demo

Probability of an element to be zeroed (P)

!

MNIST using Dropout

Probability of an element to be zeroed (P)

!

Degradation Problem

The deeper model doesn't perform as well as the shallow one

!

Degradation Problem

(!

Skip Connection

[

Skip Connection Example

140	0	5
8	47	175
133	203	217

Conv2d				R	eLU
-12.1794	-2.7855	6.7117	0	0	6.7117
-14.4943	-105.878	-17.4401	0	0	0
-67.1033	-84.1202	29.6049	0	0	29.6049

	Conv2d	
0.2087	1.9920	-1.4108
0.2087	2.4680	4.0437
0.2087	8.0747	-6.9349

ReLU

140.2087	1.9920	3.5892
8.2087	49.4680	179.0437
133.2087	211.0747	210.0651

140.2087	1.9920	3.5892
8.2087	49.4680	179.0437
133.2087	211.0747	210.0651

!

Skip Connection Variants

Skip Connection Variants

Implementation – No Skip Connection


```
class NoSkipConnection(nn.Module):
   def __init__(self):
       super(NoSkipConnection, self).__init__()
       self.conv1 = nn.Conv2d(1, 1, kernel_size=3, padding=1)
       self.conv2 = nn.Conv2d(1, 1, kernel_size=3, padding=1)
   def forward(self, x):
       out = self.conv1(x)
       out = F.relu(out)
       out = self.conv2(out)
       out = F.relu(out)
       return out
```


Implementation – Skip Connection


```
class SkipConnection(nn.Module):
   def __init__(self):
        super(SkipConnection, self).__init__()
        self.conv1 = nn.Conv2d(1, 1, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(1, 1, kernel_size=3, padding=1)
   def forward(self, x):
       out = self.conv1(x)
       out = F.relu(out)
       out = self.conv2(out)
       out += x
       out = F.relu(out)
        return out
```


!

MNIST using Skip Connection - Demo

Training Evaluation

15.0

17.5

Thanks! Any questions?