Estimating Abundance from Camera Data

Introductions

Schedule / Format

- Today
 - Morning
 - Understand the camera problem
 - Sampling
 - Introduce estimators
 - Afternoon
 - Estimation details
 - Assumptions
 - Field considerations

Schedule / Format

- Tomorrow
 - Morning
 - Participants work on their own data

- Please ask questions
 - We can modify the schedule to meet your needs

Motivating the Camera Problem

Camera data are unique!

Camera Observations

- Photo
 - Is there an animal in the photo?
 - What kind of animal (species/age/sex)?
 - Where was the camera?
 - When was the photo taken?
 - Is the animal marked in some way?
 - Can you read the mark with certainty?

Common Analysis Methods

- Occupancy
- Capture-recapture
- Spatial capture-recapture
- N-mixture

All miss fundamental issues with camera data

Issues with Camera Data

- Movement
 - Animals must move to get into the field of view
 - Trigger motion sensor

Issues with Camera Data

- Logistical complexity
 - Cameras are expensive
 - Deployment is complex
 - Maintenance is complicated
 - Number of photos is huge
 - Animal populations operate at large spatial scales

Issues with Camera Data

- Individual identification
 - Animals can be difficult to enumerate in a photo
 - Individual ID may not be possible

Objective

- Estimator for camera data
 - Not affected by movement
 - Does not require marked animals
 - Does not require counts of animals in a photo
 - Logistically feasible at large scales
 - Estimates abundance

Sampling

The answer is hidden in plain sight

Sampling

- Basics are common knowledge
 - Use a subset to make inference to the whole
- Details are not intuitive

- Sampling frame (entire blue area)
 - Area of inference
 - Study area
- Sampling Units (smaller squares)
 - Area measured
 - Camera viewshed
 - Survey plot

- Sample
 - Selected sampling units for inference
- Sampling distribution
 - All possible combinations of samples of the same size
 - How many combinations of samples of size 1 are there?
 - How many of size 2?

- Sample of size 1
 - Represents ¼ of sampling frame
 - Estimate = Count / (1/4)

- Sample of size 1
 - Represents ¼ of sampling frame
 - Estimate = Count / (1/4)

Plot	Count	Fraction	Estimate	
А	0	0.25	0	
В	0	0.25	0	
С	0	0.25	0	
D	1	0.25	4	
Average			1	

Motivating Example – now add movement

- Sample of size 1
 - Represents ¼ of sampling frame
 - Estimate = Count / (1/4)

Motivating Example – now add movement

- Sample of size 1
 - Represents ¼ of sampling frame
 - Estimate = Count / (1/4)

5 1.		•		
Plot	Count	Fraction	Estimate	
Α	0	0.25	0	
В	1	0.25	4	
С	0	0.25	0	
D	1	0.25	4	
Average			2	

Motivating Example – now add movement

- Bias how did it happen?
 - No double counting
 - No plots repeated across samples

Plot	Count	Fraction	Estimate
Α	0	0.25	0
В	1	0.25	4
С	0	0.25	0
D	1	0.25	4
Average			2

Sampling – take home messages

 Sampling provides unbiased estimates of anything you can measure without a model

 Movement of the object of interest (animal) must be slow relative to the duration of the survey

Camera data estimators

- Photo
 - Time photo was taken
 - Area visible in the photo
 - Animal present or not
 - Camera with the detection
 - Time Lapse or motion trigger

• When will be get a picture of a cougar?

- Distributions
 - What is the distribution of times to the next photo?

- Distributions
 - What is the distribution of times to the next photo?
 - Exponential

- Distributions
 - What is the distribution of times to the next photo?
 - Exponential

• Let's step through the distribution on the whiteboard...

Cameras

$$\widehat{N} = \frac{total\ counted}{\#\ plots\ sampled} * \frac{study\ area\ size}{\pi r^2 \frac{\theta}{360}}$$

Abundance # Photos Abundance # Cameras with animals Abundance # Cameras until detection

Want to estimate

"Event"

Observe

"Waiting Time"

Space-to-Event

6:00 am

Space-to-Event Model

6:00	8:00	10:00	12:00	2:00	4:00
3					

Camera 4 Camera 5 Camera 6

Space-to-Event Model

6:00	8:00	10:00	12:00	2:00	4:00
3	2				

8:00 am

Space-to-Event Model

6:00	8:00	10:00	12:00	2:00	4:00
3	2	5	NA	1	NA

$$\mathcal{L}(\lambda|T_{ij}) = \prod_{j=1}^{J} \prod_{i=1}^{M} \sum_{z=0}^{\infty} \left(I_{(T \le t)} p(1-p)^{z} \frac{\lambda_{i}^{z+1}}{\Gamma(z+1)} T_{ij}^{z} e^{-\lambda_{i} T_{ij}} + I_{(1-(T \le t))} p(1-p)^{z} \int_{t}^{\infty} \frac{1}{\Gamma(z+1)} \gamma(z+1, \lambda_{i} T_{ij}) d\lambda \right)$$

8:00 am

8:00 am

T = 1

8:00 am

T=1

9:00 am

$$\frac{T=1}{T=2}$$

9:00 am

$$T = 1$$
$$T = 2$$

10:00

$$T = 1$$

$$T = 2$$

$$T = 3$$

10:00 am

$$T = 1$$

$$T = 2$$

$$T = 3$$

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
Cam 1	3					
Cam 2						
Cam 3						
Cam 4						

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
Cam 1	3	1	NA	5	NA	NA
Cam 2	NA	NA	NA	NA	2	NA
Cam 3	NA	5	4	NA	NA	NA
Cam 4	5	NA	NA	NA	NA	4

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
Cam 1	3	1	NA	5	NA	NA
Cam 2	NA	NA	NA	NA	2	NA
Cam 3	NA	5	4	NA	NA	NA
Cam 4	5	NA	NA	NA	NA	4

6:00 am

Camera 4 Camera 5 Camera 6

Space-to-Event Model

6:00	8:00	10:00	12:00	2:00	4:00
3					

8:00 am

Camera 1

Camera 2

Camera 3

Camera 4

Camera 5

Camera 6

Space-to-Event Model

6:00	8:00	10:00	12:00	2:00	4:00
3	2	5	NA	1	NA

$$N \sim Pois(\lambda)$$

 $S \sim Exp(\lambda)$

Abundance # Photos 1

Abundance Time until detection

Want to estimate

"Event"

Observe

"Waiting Time"

8:00 am

8:00 am

$$T = 1$$

8:00 am

$$T=1$$

9:00 am

$$\frac{T=1}{T=2}$$

9:00 am

$$T = 1$$
$$T = 2$$

$$T=2$$

10:00

$$\frac{T=1}{T=2}$$

$$T=2$$

$$T=3$$

10:00 am

$$T=1$$

$$T = 1$$

$$T = 2$$

$$T=3$$

	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	Obs 6
Cam 1	3					
Cam 2						
Cam 3						
Cam 4						

	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	Obs 6
Cam 1	3	1	NA	5	NA	NA
Cam 2	NA	NA	NA	NA	2	NA
Cam 3	NA	5	4	NA	NA	NA
Cam 4	5	NA	NA	NA	NA	4

	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	Obs 6
Cam 1	3	1	NA	5	NA	NA
Cam 2	NA	NA	NA	NA	2	NA
Cam 3	NA	5	4	NA	NA	NA
Cam 4	5	NA	NA	NA	NA	4

 $N \sim Pois(\lambda)$ $T \sim Exp(\lambda)$

Three estimators

- Instantaneous
- Space-to-Event
- Time-to-Event

More details...

Space-to-event

- Algorithm
 - Time lapse photos
 - At each photo event
 - List all active cameras
 - Randomize list order
 - Sum area covered by cameras until the first animal of interest is detected
 - Repeat for each time lapse event
 - Fit exponential distribution to the areas
 - Rate parameter is animals per unit area
 - Multiply by total sampling frame area to estimate abundance

Time-to-Event

- Algorithm
 - Motion trigger photos
 - For each camera
 - Measure time steps to next detection
 - Repeat for each camera event
 - Fit exponential distribution to the time steps
 - Rate parameter is animals per unit area
 - Multiply by total sampling frame area to estimate abundance

Instantaneous Estimator

- Algorithm
 - Time lapse photos
 - At each photo event
 - Count animals in each photo
 - Repeat for each time lapse event
 - Fit average animals per unit area
 - Multiply by total sampling frame area to estimate abundance

Assumptions

Sample Size

Potential Problems

Kenneth

Field logistics

- Camera placement
- Numbers of cameras
- Study duration

Photo storage and processing

Future directions