

Bruce M. Boghosian

Confidence intervals for two-sample problem

Summary

Two-sample inferences

Confidence intervals for the two-sample problem

Bruce M. Boghosian

Department of Mathematics

Tufts University

1 Confidence intervals for two-sample problem

Summary

Two-sample hypothesis testing with normal r.v.s

Bruce M. Boghosian

Confidence intervals for two-sample problem

Summary

- \blacksquare Meaningful H_0 can always be defined for two-sample tests
- Let x_1, \ldots, x_n and y_1, \ldots, y_m be independent random samples drawn from normal distributions with means μ_X and μ_Y , respectively, and with the same standard deviation σ .
- Let s_p denote the pooled standard deviation.
- A $100(1-\alpha)\%$ confidence interval for $\mu_X \mu_Y$ is given by

$$\left(\overline{x} - \overline{y} - t_{\alpha/2, n+m-2} s_{\rho} \sqrt{\frac{1}{n} + \frac{1}{m}}, \overline{x} - \overline{y} + t_{\alpha/2, n+m-2} s_{\rho} \sqrt{\frac{1}{n} + \frac{1}{m}}\right)$$

Two-sample hypothesis testing with normal r.v.s

Bruce M. Boghosian

Confidence intervals for two-sample problem

Summary

■ Pf.:

■ We know $\frac{\overline{X}-\overline{Y}-(\mu_X-\mu_Y)}{S_p\sqrt{\frac{1}{n}+\frac{1}{m}}}$ is Student T distributed with n+m-2 df, so

$$P\left(-t_{\alpha/2,n+m-2} \leq \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{S_p\sqrt{\frac{1}{n} + \frac{1}{m}}} \leq +t_{\alpha/2,n+m-2}\right) = 1 - \alpha$$

Rearrange inequality to isolate $\mu_X - \mu_Y$ to obtain confidence interval.

Confidence intervals for the variance ratio

Bruce M. Boghosia

Confidence intervals for two-sample problem

Summary

Let x_1, \ldots, x_n and y_1, \ldots, y_m be independent random samples drawn from normal distributions with standard deviations σ_X and σ_Y , respectively. A $100(1-\alpha)\%$ confidence interval for the variance ratio σ_X^2/σ_Y^2 is

$$\left(\frac{s_X^2}{s_Y^2} F_{\alpha/2, m-1, n-1}, \frac{s_X^2}{s_Y^2} F_{1-\alpha/2, m-1, n-1}\right)$$

- **■** Pf.:
 - Note that $\frac{S_Y^2/\sigma_Y^2}{S_Y^2/\sigma_Y^2}$ is F distributed with m-1 and n-1 df.
 - Same strategy: Write probability

$$P\left(f_{1-\alpha/2,m-1,n-1} \leq \frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2} \leq f_{\alpha/2,m-1,n-1}\right) = 1 - \alpha.$$

■ Isolate σ_X^2/σ_Y^2 in inequality.

Confidence intervals for two-sample Bernoulli trials

Bruce M. Boghosiar

Confidence intervals for two-sample problem

Summary

- Let x and y denote the number of successes in two independent sets of n and m Bernoulli trials, respectively.
- If p_X and p_Y denote the true success probabilities, an approximate $100(1-\alpha)\%$ confidence interval for p_X-p_Y is given by

$$\left(\frac{x}{n} - \frac{y}{m} - z_{\alpha/2}\sqrt{\frac{\frac{x}{n}\left(1 - \frac{x}{n}\right)}{n} + \frac{\frac{y}{m}\left(1 - \frac{y}{m}\right)}{m}}, \frac{x}{n} - \frac{y}{m} + z_{\alpha/2}\sqrt{\frac{\frac{x}{n}\left(1 - \frac{x}{n}\right)}{n} + \frac{\frac{y}{m}\left(1 - \frac{y}{m}\right)}{m}}\right)$$

Tufts Summary

- We have studied two-sample confidence intervals for σ_X^2/σ_Y^2 .
- We have studied them for both Bernoulli trials and normally distributed data.