

Klasifikasi

PENGANTAR KECERDASAN BUATAN

UNIVERSITAS INDONESIA

Copyright © Universitas Indonesia

Dr. Prima Dewi Purnamasari Program Studi Teknik Komputer FTUI

Mampu menjelaskan metode kelasifikasi dalam pembelajaran mesin

UNIVERSITAS INDONESIA

Klasifikasi

Mempelajari hubungan antara sekumpulan variabel independent (disebut fitur) dan variabel dependen (disebut kelas/target)

UNIVERSITAS

Atribut target dalam klasifikasi adalah variabel kategorikal atau nilai diskrit.

Bagaimana cara klasifikasi bekerja

sekilas mirip baik bentuk maupun warnanya

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
51	7	3.2	4.7	1.4	Iris-versicolor
52	6.4	3.2	4.5	1.5	Iris-versicolor
53	6.9	3.1	4.9	1.5	Iris-versicolor
54	5.5	2.3	4	1.3	Iris-versicolor
55	6.5	2.8	4.6	1.5	Iris-versicolor
101	6.3	3.3	6	2.5	Iris-virginica
102	5.8	2.7	5.1	1.9	Iris-virginica
103	7.1	3	5.9	2.1	Iris-virginica
104	6.3	2.9	5.6	1.8	Iris-virginica
105	6.5	3	5.8	2.2	Iris-virginica

Bunga IRIS dapat dibedakan berdasarkan ciri:

- Sepal length
- Sepal width
- Petal length
- Petal width

Contoh data dari Fisher's Iris

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
51	7	3.2	4.7	1.4	Iris-versicolor
52	6.4	3.2	4.5	1.5	Iris-versicolor
53	6.9	3.1	4.9	1.5	Iris-versicolor
54	5.5	2.3	4	1.3	Iris-versicolor
55	6.5	2.8	4.6	1.5	Iris-versicolor
101	6.3	3.3	6	2.5	Iris-virginica
102	5.8	2.7	5.1	1.9	Iris-virginica
103	7.1	3	5.9	2.1	Iris-virginica
104	6.3	2.9	5.6	1.8	Iris-virginica
105	6.5	3	5.8	2.2	Iris-virginica

Bunga IRIS dapat dibedakan berdasarkan ciri:

- Sepal length
- Sepal width
- Petal length
- Petal width

FITUR (feature)

KELAS

4 fitur

3 kelas

Tujuan Algoritma Klasifikasi

Jika diberikan informasi

- Sepal length
- Sepal width
- Petal length
- Petal width

Dapat diketahui jenis Iris:

- Setosa
- Versicolor
- Virginica

Tujuan Algoritma Klasifikasi

Jika diberikan informasi **FITUR**

Dapat diketahui **KELAS**

Algoritma Klasifikasi Populer

Decision Trees

Naïve Bayes

K-nearest neighbor

Logistic regression

Support Vector Machines

Neural Networks

K-Nearest Neighbor (KNN)

KNN

Metode untuk mengklasifikasi sebuah sampel data (data testing) berdasarkan kemiripannya dengan sampel data lain yang sudah memiliki label (data training)

Sampel yang mirip disebut "neighbor"

Data Fisher's Iris

Membagi data yang dimiliki menjadi:

data training
dan
data testing

40 sampel → data training

10 sampel → data testing

40 sampel → data training

10 sampel → data testing

40 sampel → data training

10 sampel \rightarrow data testing

SETOSA

VERSICOLOR

VIRGINICA

Titik x akan diklasifikasikan sebagai Setosa karena jika dihitung jaraknya paling dekat ke neighbor sampel data training Setosa

Menghitung jarak 2 titik

Euclidean distance

Manhattan distance

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \qquad d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

dengan:

x = titik pertama

y = titik kedua

Algoritma KNN

- 1. Pilih jumlah *neighbor* yang diinginkan > K
- Ambil 1 titik baru yang ingin diketahui kelasnya
- 3. Hitung jarak dari semua data training ke titik baru tersebut
- 4. Urutkan titik data training dari jarak terdekat ke terjauh terhadap titik baru
- 5. Ambil sejumlah k titik di urutan teratas
- 6. Mayoritas kelas dari titik terdekat akan menjadi kelas untuk titik baru ini

Lihat contoh sebelumnya

Misal k = 4
Dapat dihitung 4
titik terdekat
semua berwarna
kuning → kelas
Setosa

Lihat contoh sebelumnya

Misal k = 4

Titik x

- 3 neighbor pink
- 1 neighbor hijau

kelas = pink (Virginica)

Bagaimana cara memilih nilai K yang tepat?

- Menghitung akurasi untuk setiap K yang dipilih
- Akurasi (paling sederhana) → Recognition rate

$$Recognition\ rate\ (\%) = \frac{\sum data\ yang\ diklasifikasi\ dengan\ benar}{\sum data}$$

Mulai dari k =1, lalu tingkatkan k, dan lihat k mana yang terbaik untuk model yang dibuat

Bagaimana cara kerja algoritma klasifikasi yang

Copyright Quitersine Indonesia

