

Informe Tarea N^2

Departamento de Ingeniería Eléctrica Universidad de La Frontera

18 de julio de 2025

Resumen

Índice

1.	Resumen						
2.	Ajuste de función de transferencia						
	2.1.	Cálcul	o del valor en estado estacionario	4			
	2.2.	Cálcul	o del sobreimpulso	4			
3.	Pru	Pruebas de funcion.					
	3.1.	Respue	esta un impulso y escalón unitario	6			
		3.1.1.	Aplicación de un impulso	6			
		3.1.2.	Cálculo de fracciones parciales en MATLAB	6			
		3.1.3.	Expresión en fracciones parciales	6			
		3.1.4.	Transformada inversa término por término	7			
		3.1.5.	Resultado final	7			
		3.1.6.	Respuesta del sistema ajustado ante una entrada escalón unitario	8			
		3.1.7.	Entrada escalón unitario en el dominio de Laplace	8			
		3.1.8.	Función de salida en el dominio de Laplace	8			
		3.1.9.	Descomposición en fracciones parciales	8			
		3.1.10.	Transformada inversa de Laplace	9			
		3.1.11.	Respuesta final en el dominio del tiempo	9			
	3.2.	Estima	ar la respuesta frente a la señal de Prueba 1	10			
		3.2.1.	Señal de entrada como suma de tramos	10			
		3.2.2.	Propiedad de la transformada de Laplace	10			
		3.2.3.	Transformadas parciales	11			
		3.2.4.	Transformada total	11			
		3.2.5.	Función de transferencia	11			
		3.2.6.	Entrada transformada simplificada	11			
		3.2.7.	Producto en Laplace	11			
		3.2.8.	Descomposición en fracciones parciales	11			
		3.2.9.	Transformada inversa término a término	12			
		3.2.10.	Respuesta en el dominio del tiempo	12			
4.	Con	clusiór	n y Referencias	13			
			ısión	13			
	4.2.	Refere	ncias	13			

1. Resumen

En este trabajo se diseñó y ajustó una función de transferencia de cuarto orden

$$H(s) = \frac{100.9 \, s^3 + 3480 \, s^2 + 38330 \, s + 132398}{s^4 + 52 \, s^3 + 1061 \, s^2 + 10108 \, s + 37828}$$

a partir de una función base $F_2(s)$, incorporando ceros y polos adicionales y escalando la ganancia para lograr un valor en estado estacionario de 3.5 ante escalón unitario.

Se comprobo que la respuesta al escalon ajustado presenta un sobreimpulso del 25.97 %, un tiempo de asentamiento de 0.37s y un tiempo de subida de 0.046s, cumpliendo holgadamente los objetivos de diseño (2030 % de OS, $t_s < 80$ s, $t_r < 15$ s).

Además, se realizó la descomposición en fracciones parciales de la salida ante impulso y ante escalón, obteniendo expresiones cerradas de y(t) que combinan componentes exponenciales amortiguadas y oscilatorios. Estas fórmulas, junto con las simulaciones gráficas (impulso y escalón), confirman la validez del diseño y su comportamiento dinámico.

En conclusión, el sistema ajustado logra una respuesta rápida, estable y con sobreimpulso controlado, satisfaciendo de forma robusta los requisitos de desempeño temporal propuestos.

2. Ajuste de función de transferencia

Se pide ajustar la función de transferencia $F_2(s)$, definida como:

$$F_2(s) = \frac{15s^2 + 330s + 1575}{s^4 + 52s^3 + 1061s^2 + 10108s + 37828}$$
(1)

para cumplir con los siguientes requisitos:

• Valor en estado estacionario: 3.5 ± 1

• Sobreimpulso: 20% - 30%

■ Tiempo de asentamiento: < 80 segundos

■ Tiempo de subida: < 15 segundos

2.1. Cálculo del valor en estado estacionario

Se evalúa el límite directamente en s = 0:

Numerador:
$$15(0)^2 + 330(0) + 1575 = 1575$$
 (2)

Denominador:
$$0^4 + 52(0)^3 + 1061(0)^2 + 10108(0) + 37828 = 37828$$
 (3)

Finalmente, el valor en estado estacionario es:

$$y_{ss} = \lim_{s \to 0} F_2(s) = \frac{1575}{37828} \approx 0.04163$$
 (4)

Queremos aumentar este valor en estado estacionario a 3,5.

$$K = \frac{3.5}{0.04163} \approx 84.06 \tag{5}$$

La función ajustada queda:

$$\tilde{F}_2(s) = K \cdot F_2(s) = \frac{1260,93s^2 + 27740,53s + 132398,0}{s^4 + 52s^3 + 1061s^2 + 10108s + 37828}$$
(6)

Finalmente, se verifica nuevamente el valor en estado estacionario:

$$\lim_{s \to 0} \tilde{F}_2(s) = \frac{132398,0}{37828} = \boxed{3,5} \tag{7}$$

2.2. Cálculo del sobreimpulso

Inicialmente, el sobreimpulso de la respuesta al escalón era inferior al 20 %. Para incrementarlo, se modificó el numerador agregando un cero más cercano al origen, específicamente en s = -0.08:

```
num_modificado = conv([0.08, 1], [1260.93, 27740.53, 132398.0]);
den = [1, 52, 1061, 10108, 37828];
H2 = tf(num_modificado, den);
[y, t] = step(H2);
y_ss = dcgain(H2);
y_max = max(y);
OS = (y_max - y_ss) / y_ss * 100;
fprintf('Sobreimpulso: %.2f%%n', OS);
```

Listing 1: Modificación del numerador para ajustar sobreimpulso

Resultado:

Sobreimpulso =
$$25.97\%$$
 \Rightarrow Cumple con el criterio requerido. (8)

c) Cálculo del tiempo de asentamiento

El tiempo de asentamiento corresponde al tiempo en que la respuesta permanece dentro del $\pm 2\%$ del valor final. Se calcula con el siguiente código:

```
margen = 0.02 * y_ss;
lim_inf = y_ss - margen;
lim_sup = y_ss + margen;
fuera = find((y < lim_inf) | (y > lim_sup));
ts = t(fuera(end)); % ultimo punto fuera del 2%
fprintf('Tiempo de asentamiento: %.2f s\n', ts);
```

Listing 2: Cálculo del tiempo de asentamiento

Resultado:

$$t_s = 0.37 \text{ segundos} \quad \Rightarrow \quad \text{Cumple con } t_s < 80 \text{ s.}$$
 (9)

d) Cálculo del tiempo de subida

El tiempo de subida es el tiempo que tarda la respuesta en subir desde el $10\,\%$ al $90\,\%$ del valor final. Se calcula como sigue:

Listing 3: Cálculo del tiempo de subida

Resultado:

$$t_r = 0.0461 \text{ segundos} \quad \Rightarrow \quad \text{Cumple con } t_r < 15 \text{ s.}$$
 (10)

Resumen de desempeño

Métrica	Resultado	Requisito	¿Cumple?
Valor en estado estacionario	3.5	$3,5 \pm 1$	Sí
Sobreimpulso	25.97%	20% - 30%	Sí
Tiempo de asentamiento	$0.37 \mathrm{\ s}$	< 80 s	Sí
Tiempo de subida	$0.0461 { m \ s}$	< 15 s	Sí

Cuadro 1: Resumen del desempeño del sistema ajustado

Finalmente, la funcion de transferencia ajustada es:

$$H(s) = \frac{100.9 \, s^3 + 3480 \, s^2 + 38330 \, s + 132398}{s^4 + 52 \, s^3 + 1061 \, s^2 + 10108 \, s + 37828} \tag{11}$$

3. Pruebas de funcion.

Se considera la función de transferencia ajustada:

$$H(s) = \frac{100.9 \, s^3 + 3480 \, s^2 + 38330 \, s + 132398}{s^4 + 52 \, s^3 + 1061 \, s^2 + 10108 \, s + 37828}$$
(12)

3.1. Respuesta un impulso y escalón unitario

Para analizar la respuesta del sistema, se evalúa la función de transferencia H(s) ante dos entradas comunes: un impulso unitario y un escalón unitario.

3.1.1. Aplicación de un impulso

Ante una entrada impulso $\delta(t)$, la salida del sistema es simplemente la transformada inversa de Laplace de H(s):

$$y(t) = \mathcal{L}^{-1} \{ H(s) \}$$
 (13)

Esto representa la respuesta natural del sistema, revelando cómo reacciona instantáneamente ante un cambio abrupto.

3.1.2. Cálculo de fracciones parciales en MATLAB

Para facilitar el análisis, se realiza la descomposición en fracciones parciales utilizando el siguiente código en MATLAB:

Listing 4: Fracciones parciales de H(s)

Esto entrega los siguientes resultados:

$$r_1 = 5,5433,$$
 $p_1 = -14,0$
 $r_2 = 18,6491,$ $p_2 = -14,0$
 $r_3 = 47,6783 + 40,2545i,$ $p_3 = -12 + 7i$
 $r_4 = 47,6783 - 40,2545i,$ $p_4 = -12 - 7i$

3.1.3. Expresión en fracciones parciales

La función se expresa como:

$$H(s) = \frac{5,5433}{s+14} + \frac{18,6491}{(s+14)^2} + \frac{47,6783 + 40,2545i}{s+12-7i} + \frac{47,6783 - 40,2545i}{s+12+7i}$$
(14)

3.1.4. Transformada inversa término por término

Aplicando propiedades conocidas de la transformada de Laplace inversa:

$$\mathcal{L}^{-1}\left\{\frac{5,5433}{s+14}\right\} = 5,5433 \,e^{-14t} \tag{15}$$

$$\mathcal{L}^{-1}\left\{\frac{18,6491}{(s+14)^2}\right\} = 18,6491 \, t \, e^{-14t} \tag{16}$$

$$\mathcal{L}^{-1}\left\{\frac{47,6783 \pm 40,2545i}{s+12 \mp 7i}\right\} = 124,27 e^{-12t}\cos(7t+0,70) \tag{17}$$

donde:

$$|r_3| = \sqrt{47,6783^2 + 40,2545^2} \approx 62,135, \quad A = 2|r_3| \approx 124,27, \quad \phi = \arctan\left(\frac{40,2545}{47,6783}\right) \approx 0,70$$

3.1.5. Resultado final

La respuesta al impulso queda expresada como:

$$y(t) = 5,5433 e^{-14t} + 18,6491 t e^{-14t} + 124,27 e^{-12t} \cos(7t + 0,70)$$
(18)

Y su grafica en MATLAB es la siguiente:

Figura 1: Respuesta al impulso de la función de transferencia ajustada

Para esta grafica se utilizó el siguiente código en MATLAB:

Listing 5: Respuesta al impulso del sistema ajustado

3.1.6. Respuesta del sistema ajustado ante una entrada escalón unitario

Se considera la función de transferencia ajustada del sistema:

$$H(s) = \frac{100.9 \, s^3 + 3480 \, s^2 + 38330 \, s + 132398}{s^4 + 52 \, s^3 + 1061 \, s^2 + 10108 \, s + 37828} \tag{19}$$

3.1.7. Entrada escalón unitario en el dominio de Laplace

La entrada escalón unitario $\mu(t)$ tiene la siguiente transformada de Laplace:

$$\mathcal{L}\{\mu(t)\} = \frac{1}{s} \tag{20}$$

3.1.8. Función de salida en el dominio de Laplace

La salida del sistema ante esta entrada se obtiene como:

$$Y(s) = H(s) \cdot \frac{1}{s} = \frac{100.9 \, s^3 + 3480 \, s^2 + 38330 \, s + 132398}{s^5 + 52 \, s^4 + 1061 \, s^3 + 10108 \, s^2 + 37828 \, s}$$
(21)

3.1.9. Descomposición en fracciones parciales

La función Y(s) se descompone en fracciones parciales utilizando MATLAB, obteniendo los siguientes residuos y polos:

$$\begin{array}{ll} r_1 = -0.4911, & p_1 = -14 \\ r_2 = -1.3321, & p_2 = -14 \\ r_3 = -1.5044 - 4.2321i, & p_3 = -12 + 7i \\ r_4 = -1.5044 + 4.2321i, & p_4 = -12 - 7i \\ r_5 = 3.5, & p_5 = 0 \end{array}$$

Expresando Y(s) término a término:

$$Y(s) = \frac{-0.4911}{s+14} + \frac{-1.3321}{(s+14)^2} + \frac{-1.5044 - 4.2321i}{s+12-7i} + \frac{-1.5044 + 4.2321i}{s+12+7i} + \frac{3.5}{s}$$
(22)

3.1.10. Transformada inversa de Laplace

Aplicando la transformada inversa término por término, se obtiene:

$$\mathcal{L}^{-1}\left\{\frac{3,5}{s}\right\} = 3,5\tag{23}$$

$$\mathcal{L}^{-1}\left\{\frac{-0.4911}{s+14}\right\} = -0.4911 e^{-14t} \tag{24}$$

$$\mathcal{L}^{-1}\left\{\frac{-1,3321}{(s+14)^2}\right\} = -1,3321 \, t \, e^{-14t} \tag{25}$$

$$\mathcal{L}^{-1}\left\{\frac{-1,5044 \pm 4,2321i}{s+12 \mp 7i}\right\} = 8,986 e^{-12t}\cos(7t+1,91)$$
(26)

3.1.11. Respuesta final en el dominio del tiempo

Sumando todos los términos obtenidos:

$$y(t) = 3.5 - 0.4911 e^{-14t} - 1.3321 t e^{-14t} + 8.986 e^{-12t} \cos(7t + 1.91)$$
 (27)

Y su respectiva gráfica en MATLAB es:

Figura 2: Respuesta del sistema ante la entrada escalón unitario

El codigo de MATLAB utilizado para obtener la respuesta del sistema ante la entrada escalón unitario es el siguiente:

Listing 6: Respuesta al escalón unitario del sistema ajustado

3.2. Estimar la respuesta frente a la señal de Prueba 1

$$y(t) = \underbrace{\left(\frac{4}{3}t + \frac{14}{3}\right)}_{\text{de }(-2, -0, 5)} \left[u(t+2) - u(t+\frac{1}{2}) \right]$$

$$+ \underbrace{\left(-\frac{4}{9}t + \frac{34}{9}\right)}_{\text{de }(-0, 5, 4)} \left[u(t+\frac{1}{2}) - u(t-4) \right]$$

$$+ \underbrace{\left(-t+4\right)}_{\text{de }(4, 5)} \left[u(t-4) - u(t-5) \right]$$

$$+ \underbrace{\left(\frac{1}{2}t - 3, 5\right)}_{\text{o} \to -1} \left[u(t-5) - u(t-7) \right].$$

$$\underbrace{\left(\frac{1}{2}t - 3, 5\right)}_{\text{o} \to -1} \left[u(t-5) - u(t-7) \right].$$

$$\underbrace{\left(\frac{1}{2}t - 3, 5\right)}_{\text{o} \to -1} \left[u(t-5) - u(t-7) \right].$$

3.2.1. Señal de entrada como suma de tramos

$$y(t) = \underbrace{\left(\frac{4}{3}t + \frac{14}{3}\right)}_{f_1(t)} \left[u(t+2) - u(t+0.5)\right] + \underbrace{\left(-\frac{4}{9}t + \frac{34}{9}\right)}_{f_2(t)} \left[u(t+0.5) - u(t-4)\right]$$
(29)
+
$$\underbrace{\left(-t+4\right)}_{f_3(t)} \left[u(t-4) - u(t-5)\right] + \underbrace{\left(\frac{1}{2}t - 3.5\right)}_{f_4(t)} \left[u(t-5) - u(t-7)\right].$$
(30)

3.2.2. Propiedad de la transformada de Laplace

$$\mathcal{L}\{(m\,t+b)\,u(t-a)\} = m\left(\frac{e^{-as}}{s^2} + \frac{a\,e^{-as}}{s}\right) + b\,\frac{e^{-as}}{s}.\tag{31}$$

3.2.3. Transformadas parciales

$$Y_1(s) = \mathcal{L}\{f_1(t)[u(t+2) - u(t+0.5)]\} = \frac{4}{3} \left[\frac{e^{-2s}}{s^2} + 2\frac{e^{-2s}}{s} - \frac{e^{-0.5s}}{s^2} - 0.5\frac{e^{-0.5s}}{s} \right] + \frac{14}{3} \frac{e^{-2s} - e^{-0.5s}}{s}$$
(32)

$$Y_2(s) = \mathcal{L}\{f_2(t)[u(t+0.5) - u(t-4)]\} = -\frac{4}{9} \left[\frac{e^{-0.5s}}{s^2} + 0.5 \frac{e^{-0.5s}}{s} - \frac{e^{-4s}}{s^2} - 4 \frac{e^{-4s}}{s} \right] + \frac{34}{9} \frac{e^{-0.5s} - e^{-4s}}{s}$$
(33)

$$Y_3(s) = \mathcal{L}\{f_3(t)[u(t-4) - u(t-5)]\} = -3\left[\frac{e^{-4s}}{s^2} + 4\frac{e^{-4s}}{s} - \frac{e^{-5s}}{s^2} - 5\frac{e^{-5s}}{s}\right] + 14\frac{e^{-4s} - e^{-5s}}{s}$$
(34)

$$Y_4(s) = \mathcal{L}\{f_4(t)[u(t-5) - u(t-7)]\} = \frac{1}{2} \left[\frac{e^{-5s}}{s^2} + 5\frac{e^{-5s}}{s} - \frac{e^{-7s}}{s^2} - 7\frac{e^{-7s}}{s} \right] - 3,5\frac{e^{-5s} - e^{-7s}}{s}$$
(35)

3.2.4. Transformada total

$$Y(s) = Y_1(s) + Y_2(s) + Y_3(s) + Y_4(s)$$
(36)

Simplificando la expresión, se obtiene:

$$Y(s) = \frac{1}{s^2} \left[\frac{4}{3} e^{-2s} - \frac{16}{9} e^{-0.5s} - \frac{23}{9} e^{-4s} + \frac{7}{2} e^{-5s} - \frac{1}{2} e^{-7s} \right]$$

$$+ \frac{1}{s} \left[-\frac{16}{3} e^{-2s} + \frac{29}{18} e^{-0.5s} - \frac{155}{18} e^{-4s} + \frac{63}{2} e^{-5s} - \frac{13}{2} e^{-7s} \right]$$
(37)

3.2.5. Función de transferencia

$$H(s) = \frac{100.9 \, s^3 + 3480 \, s^2 + 38330 \, s + 132398}{s^4 + 52 \, s^3 + 1061 \, s^2 + 10108 \, s + 37828}$$
(38)

3.2.6. Entrada transformada simplificada

$$Y(s) = \frac{1}{s^2} \left(\frac{4}{3} e^{-2s} - \frac{16}{9} e^{-0.5s} - \frac{23}{9} e^{-4s} + \frac{7}{2} e^{-5s} - \frac{1}{2} e^{-7s} \right) + \frac{1}{s} \left(-\frac{16}{3} e^{-2s} + \frac{29}{18} e^{-0.5s} - \frac{155}{18} e^{-4s} + \frac{63}{2} e^{-5s} - \frac{13}{2} e^{-7s} \right)$$

$$(39)$$

3.2.7. Producto en Laplace

$$R(s) = H(s) Y(s) \tag{40}$$

3.2.8. Descomposición en fracciones parciales

$$R(s) = \sum_{i=1}^{n} \frac{A_i}{s - p_i} \tag{41}$$

 $(con A_i y p_i obtenidos numéricamente)$

3.2.9. Transformada inversa término a término

$$r(t) = \sum_{i=1}^{n} A_i e^{p_i t} u(t)$$

$$= A_1 e^{p_1 t} + A_2 e^{p_2 t} + \dots + A_n e^{p_n t}$$
(42)

3.2.10. Respuesta en el dominio del tiempo

$$r(t) = \sum_{i=1}^{n} A_i e^{p_i t} u(t)$$
(44)

4. Conclusión y Referencias

4.1. Conclusión

Se ha diseñado y validado un sistema de control de cuarto orden cuyo comportamiento dinamico cumple ampliamente los requisitos de desempeño especificados. Al aplicar ajustes en ceros y ganancia, la respuesta al escalon presenta un sobreimpulso del 25.97 %, un tiempo de asentamiento de 0.37s y un tiempo de subida de 0.046s, cumpliendo con los criterios de diseño (20-30 % OS, $t_s < 80$ s, $t_r < 15$ s). La descomposición en fracciones parciales permitió obtener expresiones analíticas cerradas, y las simulaciones gráficas validan la robustez de este diseño. En resumen, el sistema logra una respuesta rápida, estable y bien controlada, satisfaciendo los objetivos de forma consistente y demostrable.

4.2. Referencias

Referencias

- [1] Transient Response Improvement, in *Introduction to Control Systems (Iqbal)*, Engineering LibreTexts, 2023. MGain insights on rise time, overshoot and settling time definitions and formulas. :contentReference[oaicite:0]index=0
- [2] "Settling time," Wikimedia Foundation, defining settling time and its practical metrics in control theory. :contentReference[oaicite:1]index=1