DatasetGAN

Ознобихин Арсений

Постановка задачи

Проблема:

Хотим быстро получать размеченный датасет для pixel-wise задач с минимальными усилиями человека.

Решение:

Применим генеративные модели.

В чем идея?

Давайте попробуем создать автоматический генератор размеченных датасетов на основе StyleGAN.

В статье рассматриваются датасеты для pixel-wise сегментации и выделения точек. Для создания каждого датасета используется не более 40 размеченных изображения.

Извлечение маски сегментации. Style-interpreter

Вывод уровней с AdaIN апсемплится до максимального разрешения, разворачиваются в вектор, конкатенируются и подаются на вход в несколько MLP (в статье их 10), которые голосуют за маску пикселя. При этом, веса в MLP для всех пикселей одинаковые.

Обучение. Алгоритм

- 1. Обучается StyleGAN (на неразмеченном датасете).
- 2. StyleGAN генерирует несколько изображений, которые размечают вручную.
- 3. На размеченных изображениях обучают Style-interpreter.

Стоит понимать, что если учить Style-interpreter на всех пикселях изображения, то это выйдет крайне затратно. Поэтому для каждого изображения пиксели, на которых будет учиться Style-interpreter выбираются случайно (при этом гарантируется, что каждой значение маски будет представлено в такой выборке).

Обучение. Размеченный датасет

Примеры созданных датасетов

Результаты

Testing Dataset	ADE-Car-12	ADE-Car-5	Car-20	CelebA-Mask-8 (Face)	Face-34	Bird-11	Cat-16	Bedroom-19
Num of Training Images	16	16	16	16	16	30	30	40
Num of Classes	12	5	20	8	34	11	16	19
Transfer-Learning	24.85	44.92	33.91 ± 0.57	62.83	45.77 ± 1.51	21.33 ± 1.32	21.58 ± 0.61	22.52 ± 1.57
Transfer-Learning (*)	29.71	47.22	X	64.41	X	×	X	×
Semi-Supervised [41]	28.68	45.07	44.51 ± 0.94	63.36	48.17 ± 0.66	25.04 ± 0.29	24.85 ± 0.35	30.15 ± 0.52
Semi-Supervised [41] (*)	34.82	48.76	X	65.53	X	×	X	X
Ours	45.64	57.77	62.33 ± 0.55	70.01	53.46 ± 1.21	36.76 ± 2.11	31.26 ± 0.71	36.83 ± 0.54

X means that the method does not apply to this setting due to missing labeled data in the domain.

Testing Dataset		Car	r-20		CUB-Bird				
Metric	L2 Loss ↓	PCK th-15 ↑	PCK th-10↑	PCK th-5 ↑	L2 Loss↓	PCK th-25 ↑	PCK th-15 ↑	PCK th-10 ↑	
Transfer Learn.	4.4×10^{-4}	43.54	36.66	18.53	5.3×10^{-4}	23.17	18.21	12.74	
Ours	2.4×10^{-4}	79.91	67.14	35.17	4.3×10^{-4}	60.61	46.36	32.00	
Fully Sup.	X	X	X	X	3.2×10^{-4}	77.54	65.00	53.73	

Table 1: Comparisons on Part Segmentation. (*) denotes In-domain experiment, where training and testing are conducted on the same dataset but a different split. Otherwise, training is conducted on our generated images. Note that In-domain setting does not apply to our approach, as we do not train StyleGAN on the provided datasets.

Table 2: Comparisons on Keypoint Detection. Our method leads to significantly better results than those obtained by baseline methods.

Источники

1. https://doi.org/10.48550/arXiv.2104.06490