Astronomía Extragaláctica

Práctico 2: Morfología y Propiedades de las Galaxias

¿Qué es un catálogo de galaxias? ¿Qué es el Sloan Digital Sky Survey (SDSS)? Mirar la página http://www.sdss.org/. y analizar.

- a) ¿Qué son las magnitudes petrosianas?
- b) ¿Qué son las magnitudes model?
- c) ¿Es aconsejable utilizar magnitudes obtenidas a partir de los perfiles de luminosidad de SDSS para analizar propiedades de las galaxias?

Problema 1: Obtención de datos de SDSS. Galaxias.

http://casjobs.sdss.org/CasJobs/

y generar una cuenta. Inspeccionar el entorno de CasJobs. Programación SQL.

• Descargar de la página anterior 20000 galaxias del DR17 SDSS spectroscópico, con sus respectivas coordendas (α,δ,z) , números únicos de identificación en el catálogo ObjID y SpectObjID (qué son?), magnitudes petrosiana y model en las 5 bandas, extinción en las 5 bandas, radio petrosiano r_{50} , r_{90} y fracDeV en la banda r (r-band), y dispersión de velocidades. Con la condición: 0.02 < z < 0.05 y 14 < r < 18 donde r es la magnitud petrosiana en la banda r corregida por extinción.

Problema 2:

- a) Graficar la distribución (α, δ) de las galaxias SDSS y la distribución de redshift de las mismas.
- b) Graficar magnitud petrosiana en la banda corregida por extinción vs. redshift. Seleccionar una submuestra con $14.5 \le r \le 17.77$.

Problema 3: Realizar un programa que genere una salida con las coordenadas (α,δ) , redshift, magnitudes absolutas petrosianas y models en todas las bandas en el sistema AB, color (u-r) y (g-r), y en la banda r: r_{50} y r_{90} en kpc , el parámetro de concentración C, fracDeV $_r$, brillo superficial μ_{50} y dispersión de velocidades. Considerar: $H_0=70\mathrm{Mpc}^{-1}\mathrm{km\,s^{-1}}$, $\Omega_M=0.3$ y $\Omega_\Lambda=0.7$. Restringuir la muestra según los siguientes items.

- a) Galaxias con $14.5 \le r \le 17.77$. con r la magnitud petrosiana en la banda r, corregida por extinción,
- b) galaxias con $r_{50} > 1.5$ ".

¿Por qué considera que se le piden estas condiciones?

Problema 4: Graficar:

- a) M_r vs. redshift. ¿Cómo definiría una muestra completa por volumen y una completa por flujo?
- b) En una sóla figura, pero en distintos paneles, distribución de los colores (u-r) y (g-r). Realizar un ajuste bimodal de los colores.
- c) Distribución normalizada de C y fracDeV $_r$. Para qué sirven estos parámetros, qué información nos dan? Hay algura relación entre ellos, de ser así, graficarla. Aunque no tenemos la relación bulge-to-disk entre los parámetros, que puede decir al respecto?
- d) Considerando el índice de concentración para separar a las galaxias en de tipo temprano y de tipo tardío, y el color u-r (valor constante) para clasificar en rojas y azules.
- i) Hay correlación entre C y u-r?
- ii) **Diagrama color-magnitud**: relación entre la magnitud absoluta petrosiana M_r y el color (u-r): sequencia roja, nube azul.
 - A) Incialmente graficar un scatter plot separando por C y por u-r.
 - B) Determinar la nube azul y la secuencia roja en 4 bines de magnitud realizando un ajuste bimodal.

iii) Relación tamaño-luminosidad:

- A) Graficar la magnitud M_r versus $\log r_{50}$ para la muestra total, considerando las galaxias de tipo temprano y de tipo tardío, y las galaxias rojas y azules. De ser posible hacer un ajuste lineal.
- B) ¿Cómo resulta este gráfico se además se seleccionan rojas y de tipo temprano vs azules y de tipo tardío?

Presentar un informe.