Tutorial letter 101/0/2024

Linear Algebra II

MAT2611

Year Module

Department of Mathematical Sciences

TUTORIAL RESOURCE FOR MAT2611

IMPORTANT INFORMATION:

This tutorial letter contains Assignment 1 for the module MAT2611

BAR CODE

ADDENDUM D: ASSIGNMENTS

Instructions for the Assignments

Take care to explain all your arguments. Only PDF files will be accepted.

ASSIGNMENT 01 Due date: Friday, 19 April 2024

Note: This assignment is related to Addendum A of Tutorial Letter $101/0/2024$.	
Problem 1. (a) Give an example of a set A such that there is a set B with $B \in A$ but $B \nsubseteq A$. (b) Give an example of a set A such that there is a set B with $B \subseteq A$ but $B \notin A$.	[10 marks]
Problem 2. Calculate the following powersets: (1) $P(\{\emptyset\})$. (2) $P(\{\emptyset, \{\emptyset\}\})$. (3) $P(\{\{\emptyset\}\})$. (4) $P(P(\emptyset))$. (5) $P(P(\{\emptyset\}))$.	[10 marks]
Problem 3. For each of the following functions determine the image of $S = \{x \in \mathbb{R} : 4 \le x^2\}$. (a) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 3x + 1$. (b) $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = e^{2x}$.	[10 marks]
Problem 4. Consider the following two functions: (1) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 3x - 4$. (2) $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 4x^2$. Determine whether the given functions are one-to-one correspondences.	[10 marks]
[Total: 40 marks]	

- End of assignment -