# Implicit Large Eddy Simulation: Performance of WENO Schemes for Burger's Equation

Melodie Sloneker

Mentors: Dr. Hsien Shang, Somdeb Bandopadhyay

August 31, 2021

# Objectives:

- 1. Implement high order finite difference WENO schemes for Burger's Equation
- 2. Compute and test the energy spectra for Burger's turbulence
- 3. Understand the basics of Large Eddy Simulation

# Why ILES...?

Consider the Incompressible Navier-Stokes Equation:

$$\frac{\partial \overrightarrow{u}}{\partial t} + (\overrightarrow{u} \cdot \nabla) \overrightarrow{u} = \frac{1}{Re} \nabla^2 \overrightarrow{u} - \nabla p$$

$$\nabla \cdot \overrightarrow{u} = 0$$

where Reynolds Number is: 
$$Re = \frac{\rho v_0 L}{\mu}$$
  $v_0, L \Rightarrow \text{characteristic}_{\text{velocity, length}}$   $\rho \Rightarrow \text{density}$   $\mu \Rightarrow \text{dynamic viscosity}$ 

# Why ILES...? ... DNS is costly

$$\frac{\partial \overrightarrow{u}}{\partial t} + (\overrightarrow{u} \cdot \nabla) \overrightarrow{u} = \frac{1}{Re} \nabla^{2} \overrightarrow{u} - \nabla p$$

convective term: can produce too many dynamically relevant scales

According to Kolmogorov: Reynold's Number Relates to smallest spatial and temporal scale (Frisch 1995)

$$\begin{cases} \delta t \sim Re^{-\frac{1}{2}} \\ \delta x \sim Re^{-\frac{3}{4}} \end{cases}$$

assuming a perfect algorithm scaling, this is often too high a computation/memory cost for DNS...

...we opt for Large Eddy Simulation!

# Large Eddy Simulation

# <u>turbulent flow</u>: characterized by eddies of different shapes/sizes







convenient to use Fourier domain to describe eddy size using relationship with wavenumber:

$$k = \frac{2\pi}{D}$$

the low wavenumber eddies contain most turbulent kinetic energy (TKE)

<u>Large Eddy Simulation</u>: we aim to resolve low-mid wavenumber eddies to capture most of the eddies' TKE

### LES & ILES

- Explicit Large Eddy Simulation (LES) ⇒ apply low pass filters to Navier-Stokes
  - (Smagorinski 1963, Lilly 1992)
- Implicit Large Eddy Simulation (ILES) ⇒ LES
   without filtering
  - inherent numerical dissipations acts as SGS filter



Turbulent Flow [University of Iowa Fluids Laboratory]

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \frac{\partial \vec{u}}{\partial x} = \nu \frac{\partial^2 \vec{u}}{\partial x^2}, \quad \nu \Rightarrow_{\text{viscosity}}^{\text{kinematic}}$$

Model Equation: 1D Viscous Burger's Equation

## Discretization of Burger's Equation: Flux Splitting

#### **Burger's Eqn. Conserved Form:**

$$\frac{\partial \vec{u}}{\partial t} + \frac{\partial}{\partial x} \left( \frac{\vec{u}^2}{2} \right) = \nu \frac{\partial^2 \vec{u}}{\partial x^2}$$

flux calculation

$$F = F^{+} + F^{-}$$

$$F^{+} = \frac{1}{2}(F + \alpha U)$$

$$F^{-} = \frac{1}{2}(F - \alpha U)$$

$$\frac{\partial \vec{u}}{\partial t} + \frac{\partial F}{\partial x} = \nu \frac{\partial^2 \vec{u}}{\partial x^2} \Rightarrow \frac{\partial \vec{u}}{\partial t} = -\frac{1}{\Delta x} \left[ \hat{F}_{i+\frac{1}{2}} - \hat{F}_{i-\frac{1}{2}} \right] + \frac{\nu}{(\Delta x)^2} \left[ \vec{u}_{i+2} - 2\vec{u}_i + \vec{u}_{i-1} \right]$$

$$\frac{\nu}{\left(\Delta x\right)^{2}} \left[\overrightarrow{u}_{i+2} - 2\overrightarrow{u}_{i} + \overrightarrow{u}_{i-1}\right]$$

$$G(u) = R(u) + L(u)$$

# Discretization of Burger's Equation: Flux Splitting (cont.)

For the Calculation of R(u), following Lax-Friedrichs

Splitting: 
$$\widehat{F}_{i+\frac{1}{2}} = F^{+}_{i+\frac{1}{2}} + F^{-}_{i+\frac{1}{2}}$$

$$\widehat{F}_{i+\frac{1}{2}} = \left[ \left( F^+ \right) \underset{i+\frac{1}{2}}{lef t} + \left( F^- \right) \underset{i+\frac{1}{2}}{right} \right]$$

**Reconstruct using WENO** schemes



flux reconstruction at each interface

# Discretization of Burger's Equation: Time Integration

For time integration, we use TVD RK3:

$$\begin{cases} u^{(1)} = u_j^l + \Delta t G(u_j^l) \\ u^{(2)} = \frac{3}{4} u_j^l + \frac{1}{4} u^{(1)} + \frac{1}{4} \Delta t G(u^{(1)}) \\ u^{(l+1)} = \frac{1}{3} u_j^l + \frac{2}{3} u^{(2)} + \frac{2}{3} \Delta t G(u^{(2)}) \end{cases}$$

### **ENO/WENO Schemes**

## Weighted Essentially Non-Oscillatory Schemes

discontinuities in solutions of hyperbolic conservation laws ⇒ spurious oscillations:

choose interpolation points over a stencil (avoid initiation of oscillations)

choose smoothest candidate stencil

avoids spurious oscillations near discontinuities, obtains information from smooth regions only!

#### **ENO Schemes** (Harten et al. 1986, 1987, 1997):

- first successful higher order spatial discretization method for hyperbolic conservation laws that achieves ENO property
- finite-difference ENO scheme (Shu & Osher 1998, 1999)

## **WENO Schemes** (Liu et al. 1994, Jiang & Shu 1996):

- weighted ENO
- uses convex combination of all ENO candidate sub-stencils and assigns weight based on smoothness indicator

#### We are testing 6 different 5th order WENO Schemes:

WENO5-JS, WENO5-Z, WENO5-ZP, WENO5-NS, WENO5-M, WENO5-YC

#### Formulation For WENO5-JS

(Jiang & Shu 1996)

$$q^{L}_{i+\frac{1}{2}} = (q_{i-2}, q_{i-1}, q_{i}, q_{i+1}, q_{i+2})$$

$$\beta_{1} = \frac{13}{12} \left( q_{i-2} - 2q_{i-1} + q_{i} \right)^{2} + \frac{1}{4} \left( q_{i-2} - 4q_{i-1} + 3q_{i} \right)^{2}$$

$$\beta_{2} = \frac{13}{12} \left( q_{i-1} - 2q_{i} + q_{i+1} \right)^{2} + \frac{1}{4} \left( q_{i-1} - q_{i+1} \right)^{2}$$

$$\beta_{3} = \frac{13}{12} \left( q_{i} - 2q_{i+1} + q_{i+2} \right)^{2} + \frac{1}{4} \left( 3q_{i} - 4q_{i+1} + q_{i+2} \right)^{2}$$

$$\alpha_{1} = \frac{d_{1}}{\left(\beta_{1} + \varepsilon\right)^{2}}$$

$$\alpha_{2} = \frac{d_{2}}{\left(\beta_{2} + \varepsilon\right)^{2}}$$

$$\alpha_{3} = \frac{d_{3}}{\left(\beta_{3} + \varepsilon\right)^{2}}$$

$$\alpha_{3} = \frac{d_{3}}{\left(\beta_{3} + \varepsilon\right)^{2}}$$

$$\alpha_{3} = \frac{d_{3}}{\left(\beta_{3} + \varepsilon\right)^{2}}$$

$$\alpha_{3} = \frac{\alpha_{3}}{\alpha_{1} + \alpha_{2} + \alpha_{3}}$$

$$\alpha_{3} = \frac{d_{3}}{\left(\beta_{3} + \varepsilon\right)^{2}}$$

$$\alpha_{3} = \frac{\alpha_{3}}{\alpha_{1} + \alpha_{2} + \alpha_{3}}$$

$$\begin{split} q^{L}_{i+\frac{1}{2}} &= \omega_{1} \left( \frac{1}{3} q_{i-2} - \frac{7}{6} q_{i-1} + \frac{11}{6} q_{i} \right) \\ &+ \omega_{2} \left( -\frac{1}{6} q_{i-1} + \frac{5}{6} q_{i} + \frac{1}{3} q_{i+1} \right) \\ &+ \omega_{3} \left( \frac{1}{3} q_{i} + \frac{5}{6} q_{i+1} - \frac{1}{6} q_{i+2} \right) \end{split}$$

other schemes are variations of WENO-JS (calculating smoothness differently)

### Formulation for Mapped Weighted ENO Schemes (WENO5-M):

(Henrik, Aslam, & Powers 2005)

 $\begin{array}{l} \text{ $\beta$ and $\beta$$ 

$$q^{L}_{i+\frac{1}{2}} = (q_{i-2}, q_{i-1}, q_{i}, q_{i+1}, q_{i+2})$$

$$\begin{cases} a_{1} = \frac{1}{10} \\ d_{2} = \frac{6}{10} \end{cases} = \frac{a_{1,js}}{\alpha_{1,js}} = \frac{\alpha_{1,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}} \\ a_{2,js} = \frac{d_{2}}{(\beta_{2} + \varepsilon)^{2}} \\ a_{3} = \frac{3}{10} \end{cases} = \frac{a_{2,js}}{\alpha_{3,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\alpha_{3,js} = \frac{d_{3}}{(\beta_{3} + \varepsilon)^{2}}$$

$$\alpha_{3,js} = \frac{\alpha_{3,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\alpha_{3,js} = \frac{\alpha_{3,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\alpha_{3,js} = \frac{\alpha_{3,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\alpha_{2,js} = \frac{\alpha_{2,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\alpha_{3,js} = \frac{\alpha_{3,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\alpha_{2,js} = \frac{\alpha_{3,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\alpha_{3,js} = \frac{\alpha_{3,js}}{\alpha_{1,js} + \alpha_{2,js} + \alpha_{3,js}}$$

$$\omega_1 = \frac{\alpha_1}{\alpha_1 + \alpha_2 + \alpha_3}$$

$$\omega_2 = \frac{\alpha_2}{\alpha_1 + \alpha_2 + \alpha_3}$$

$$\omega_3 = \frac{\alpha_3}{\alpha_1 + \alpha_2 + \alpha_3}$$

$$\omega_{1} = \frac{1}{\alpha_{1} + \alpha_{2} + \alpha_{3}}$$

$$\omega_{2} = \frac{\alpha_{2}}{\alpha_{1} + \alpha_{2} + \alpha_{3}}$$

$$\omega_{3} = \frac{\alpha_{3}}{\alpha_{1} + \alpha_{2} + \alpha_{3}}$$

$$\omega_{3} = \frac{\alpha_{3}}{\alpha_{1} + \alpha_{2} + \alpha_{3}}$$

$$+ \omega_{3} \left(\frac{1}{3}q_{i-1} + \frac{5}{6}q_{i} + \frac{1}{3}q_{i+1}\right)$$

$$+ \omega_{3} \left(\frac{1}{3}q_{i} + \frac{5}{6}q_{i+1} - \frac{1}{6}q_{i+2}\right)$$

# Defining the Problem: Decaying Burger's

Turbulence

Following the model problem of Maulik & San: (Maulik & San 2017)

$$\frac{\partial \overrightarrow{u}}{\partial t} + \frac{\partial}{\partial x} \left( \frac{\overrightarrow{u}^2}{2} \right) = \nu \frac{\partial^2 \overrightarrow{u}}{\partial x^2}$$

### **Domain & Boundary:**

$$x \in [0, 2\pi]$$
, periodic

### **Viscosities:**

$$\nu = 1 \times 10^{-4}$$

$$\nu = 5 \times 10^{-4}$$

$$\nu = 1 \times 10^{-3}$$

### # of Grid Points:

512, 1024, 2048

### Initialization

# Goal: initialize u(x) in real space

1. Start from initial energy spectra in Fourier Domain:

$$E(k) = Ak^4 e^{-\left(\frac{k}{k_0}\right)^2}, \int E(k) dk = \frac{1}{2}$$

$$A = \frac{2k_0^{-5}}{3\sqrt{\pi}}, \ k_0 = 10$$

2. Energy is related to Fourier Coefficients:

$$E = \frac{1}{2}u^2$$

$$\downarrow \downarrow$$

$$|\widehat{u}(k)| = \sqrt{2E(k)}$$

3. Our velocity field in Fourier Space has an amplitude and a randomly generated phase:

$$\widehat{u}(k) = |\widehat{u}(k)| e^{i \cdot 2\pi \cdot \Psi(k)}$$

$$\Psi(k) \Rightarrow \text{Random Number Generator: [0, 1]}$$

4. Our velocity field is found from the inverse DFT of the Fourier domain field.

### **Initial Conditions**

#### Initial velocity field





$$E(k) = Ak^{4}e^{-\left(\frac{k}{k_{0}}\right)^{2}},$$

$$A = \frac{2k_{0}^{-5}}{3\sqrt{\pi}}, k_{0} = 10$$

# Python Code Structure

Selects boundary conditions

Sets domain and creates mesh

Main Driver: Selects problem/simulation to run

Create initial field u

- Defines physical problem (picks calculation of
  - F and characteristic speed)
  - Define computation of parabolic (i.e. diffusion) and hyperbolic (i.e. advection) terms

Solves 1D Equations of the form:

Time Integration Methods (TVD RK3)

- ArrayUtilities.py
- BCFunction\_Classes.py
- Definitions.py
- Domain\_Classes.py
- Driver.py
- ICSetups.py
- IOUtilities.py
- PhysicsModel\_Classes.py
- PlotUtilities.py
- RFunction\_Classes.py
- RWUtilities.py
- Solvers1D.py
- StatisticsUtilities.py
- TSFunction\_Classes.py

# Results

# **Evolution of the Velocity Fields:**





# Reference Case - Spectral Methods

**Parameters:** 

N = 4096

Coefficient of Viscosity: 5.e-4



CASE 1: N = 512 V = 1.e-41D Viscous Burgers Spectra, visc\_coeff = 1.e-4, N = 512 WENO JS WENO Z WENO ZP  $10^{-2}$  $10^{-2}$ 10-2  $10^{-4}$  $10^{-4}$  $10^{-4}$ 10-6 — Time 0.01001 Time 0.01001 — Time 0.01001 Time 0.02002 Time 0.02002 Time 0.02002 Time 0.03003 Time 0.03003 Time 0.03003 — Time 0.04003 Time 0.04003 — Time 0.04003 — Time 0.05003 Time 0.05003 — Time 0.05003 --- Reference Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> WENO NS WENO YC WENO M 10-2  $10^{-2}$ 10-2  $10^{-4}$  $10^{-4}$  $10^{-4}$ E(k) E(K) 10-6 Time 0.01001 — Time 0.01001 Time 0.01001 Time 0.02002 Time 0.03003 Time 0.03003 Time 0.03003 Time 0.04003 Time 0.04003 - Time 0.04003 -- Time 0.05003 Time 0.05003 - Time 0.05003

--- Reference

10<sup>1</sup>

10<sup>2</sup>

--- Reference

10<sup>1</sup>

10<sup>2</sup>

--- Reference

10<sup>1</sup>

10<sup>2</sup>

CASE 2: N = 1024  $V = 1.e^{-4}$ 1D Viscous Burgers Spectra, visc\_coeff = 1.e-4, N = 1024 WENO JS WENO Z WENO ZP 10-1  $10^{-2}$ 10-3 10-3  $10^{-4}$ € 10<sup>-7</sup> E(K)  $10^{-7}$ 10<sup>-8</sup> — Time 0.01001 Time 0.01001 Time 0.01001 Time 0.02002 Time 0.02002 Time 0.02002 Time 0.03003 Time 0.03003 Time 0.03003 — Time 0.04003 — Time 0.04003 Time 0.04003 - Time 0.05003 Time 0.05003 Time 0.05003 --- Reference Reference Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> WENO NS WENO YC WENO M  $10^{-1}$  $10^{-2}$  $10^{-2}$  $10^{-3}$  $10^{-4}$  $10^{-4}$ E(K) ¥ 10-€ 10-7 10<sup>-8</sup> Time 0.01001 Time 0.01001 Time 0.01001 Time 0.02002 - Time 0.03003 — Time 0.03003 - Time 0.03003 Time 0.04003 - Time 0.04003 — Time 0.04003 Time 0.05003 Time 0.05003 Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup>



CASE 4: N = 512 V = 5.e-41D Viscous Burgers Spectra, visc\_coeff = 5.e-4, N = 512 WENO JS WENO Z WENO ZP  $10^{-2}$ 10-2  $10^{-2}$  $10^{-4}$  $10^{-4}$  $10^{-4}$  $10^{-6}$ 10-6 Time 0.01001 Time 0.01001 Time 0.01001 Time 0.03003 Time 0.04004 Time 0.04004 Time 0.04004 — Time 0.05003 — Time 0.05003 — Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup>  $10^{1}$ 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> WENO NS WENO YC WENO M  $10^{-1}$  $10^{-2}$ 10-2  $10^{-3}$  $10^{-4}$  $10^{-4}$ 10-5 10-6 Time 0.01001 — Time 0.01001 — Time 0.01001 Time 0.02002 Time 0.02002 Time 0.04004 Time 0.04004 — Time 0.04004 — Time 0.05003 - Time 0.05003 - Time 0.05003 --- Reference --- Reference --- Reference

10<sup>1</sup>

10<sup>2</sup>

10<sup>1</sup>

10<sup>2</sup>

10<sup>1</sup>

10<sup>2</sup>

CASE 5: N = 1024 V = 5.6-41D Viscous Burgers Spectra, visc\_coeff = 5.e-4, N = 1024 WENO JS WENO Z WENO ZP  $10^{-1}$ 10-1  $10^{-3}$  $10^{-3}$  $10^{-3}$ 10-5 10-5  $10^{-7}$  $10^{-7}$  $10^{-7}$ Time 0.01001 10-9 Time 0.02002 Time 0.02002 Time 0.02002 — Time 0.03003 Time 0.03003 — Time 0.03003 — Time 0.04003 - Time 0.04003 Time 0.04003 Time 0.05003 Time 0.05003 — Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> WENO NS WENO YC WENO M 10-1  $10^{-2}$ 10-2 10-3  $10^{-4}$  $10^{-4}$ 10-¥ 10⁻⁻ 10-6 10-6  $10^{-8}$ 10<sup>-8</sup> Time 0.01001 Time 0.02002 Time 0.02002 Time 0.02002 - Time 0.03003 Time 0.03003 — Time 0.03003 - Time 0.04003 Time 0.04003 - Time 0.04003 - Time 0.05003 — Time 0.05003 - Time 0.05003 --- Reference --- Reference --- Reference

101

10°

 $10^{2}$ 

10<sup>1</sup>

 $10^{2}$ 

10<sup>1</sup>

 $10^{2}$ 

CASE 6: N = 2048  $V = 5.e^{-4}$ 1D Viscous Burgers Spectra, visc\_coeff = 5.e-4, N = 2048 WENO JS WENO Z WENO ZP  $10^{-1}$ 10-1  $10^{-3}$  $10^{-3}$  $10^{-4}$ 10-5 10-5 10-6 E(K) 을 10<sup>-7</sup> 10<sup>-8</sup> 10-9 10-9 Time 0.01001 Time 0.01001 Time 0.01001 Time 0.03003 Time 0.03003 Time 0.03003 — Time 0.04003 — Time 0.04003 Time 0.04003 Time 0.05003 Time 0.05003 Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>1</sup> 10<sup>2</sup>  $10^{3}$ 10<sup>1</sup> 10<sup>2</sup> WENO NS WENO YC WENO M  $10^{-1}$ 10-1  $10^{-2}$  $10^{-3}$  $10^{-3}$  $10^{-4}$ 10-5 10-6 ¥ 10⁻¹ E(K) 10<sup>-8</sup> 10-9 10-9 Time 0.01001 Time 0.01001 Time 0.01001 10-10 Time 0.02002 — Time 0.04003 Time 0.04003 Time 0.05003 Time 0.05003 - Time 0.05003 --- Reference Reference 10<sup>2</sup> 10<sup>3</sup> 10<sup>1</sup> 10<sup>2</sup>  $10^{3}$ 10<sup>1</sup> 10<sup>2</sup>  $10^{3}$  CASE 7: N = 512 V = 1.e-31D Viscous Burgers Spectra, visc\_coeff = 1.e-3, N = 512 WENO JS WENO Z WENO ZP  $10^{-2}$  $10^{-2}$  $10^{-4}$  $10^{-4}$  $10^{-4}$ E(K) E(K) 10-6 10-6 Time 0.01001 Time 0.01001 Time 0.01001 Time 0.02002 Time 0.02002 — Time 0.04003 — Time 0.04003 Time 0.04003 — Time 0.05003 Time 0.05003 — Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> WENO NS WENO YC WENO M  $10^{-1}$ 10-2  $10^{-2}$  $10^{-3}$  $10^{-4}$  $10^{-4}$ 10-6 — Time 0.01001 — Time 0.02002 — Time 0.03003 Time 0.03003 Time 0.03003 Time 0.04003 - Time 0.04003 Time 0.04003 — Time 0.05003 - Time 0.05003 — Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> CASE 8: N = 1024  $V = 1.e^{-3}$ 1D Viscous Burgers Spectra, visc\_coeff = 1.e-3, N = 1024 WENO JS WENO Z WENO ZP 10-1 10-1 10-3  $10^{-3}$ 10-3 10-5 10-5 10-5 ₩ <sub>10-7</sub> ≆ 10⁻⁻ ≆ 10⁻⁻ — Time 0.01001 — Time 0.01001 Time 0.01001 Time 0.02002 Time 0.02002 Time 0.02002 Time 0.03003 — Time 0.04003 — Time 0.04003 — Time 0.04003 Time 0.05003 Time 0.05003 Time 0.05003 --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> WENO NS WENO YC WENO M 10-1  $10^{-2}$  $10^{-2}$  $10^{-3}$  $10^{-4}$  $10^{-4}$ 10-6 ≆ 10⁻⁻ ¥ 10⁻⁵ E(k) 10<sup>-8</sup> 10-8 Time 0.01001 Time 0.02002 Time 0.02002 Time 0.03003 Time 0.03003 Time 0.03003 10-10 Time 0.04003 — Time 0.05003 — Time 0.05003 Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>1</sup>  $10^{2}$  CASE 9: N = 2048 N = 1.6-3 N = 1.6-31D Viscous Burgers Spectra, visc\_coeff = 1.e-3, N = 2048 WENO JS WENO Z WENO ZP  $10^{-1}$ 10-1  $10^{-3}$  $10^{-3}$  $10^{-4}$ 10-5 10-5 10-6 ¥ 10⁻¹ E(k) ¥ 10⁻⁻ 10-8 10-9 10-9 Time 0.01001 Time 0.01001 — Time 0.01001 Time 0.02002 Time 0.03003 — Time 0.04003 Time 0.04003 — Time 0.04003 Time 0.05003 — Time 0.05003 Time 0.05003 --- Reference --- Reference --- Reference 10<sup>2</sup> 10<sup>1</sup> 10<sup>2</sup> 10<sup>2</sup> WENO NS WENO YC WENO M  $10^{-1}$  $10^{-1}$ 10-2  $10^{-3}$  $10^{-3}$ 10-4 10-5 10-¥ 10<sup>-7</sup> ¥ 10-8  $10^{-9}$ 10-9  $10^{-10}$ — Time 0.01001 Time 0.01001 - Time 0.01001 Time 0.02002 Time 0.02002 10-11 -Time 0.02002 Time 0.03003 Time 0.03003 Time 0.03003 Time 0.04003 Time 0.04003 Time 0.04003 - Time 0.05003 — Time 0.05003 Time 0.05003 --- Reference --- Reference --- Reference 10<sup>1</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>1</sup> 10<sup>2</sup>  $10^{3}$ 10<sup>1</sup> 10<sup>2</sup>  $10^{3}$ 

# **Total Dissipation Rates**

$$D(t) = -\frac{\partial E(t)}{\partial t},$$

where 
$$E(t) = \int_{-k_m}^{k_m} E(k) dk$$



### Conclusions & Further Work

#### What we've done...

- Applied ILES model with WENO to 1D Burger's Equation
- Simulation energy cascade followed the k<sup>-2</sup> relation
- Compared to spectral results, the
   WENO schemes performed well for ILES

### Looking ahead to the future...

- want to examine effect of ensembling
- want to examine other LES models