Dimension Reduction

April 6, 2021 Slides Courtesy of Jiayu Zhou

Some slides from "Principal Component Analysis" by Frank Wood

Announcements

- HW 8: Individual & Due April 9 at midnight
- HW 9: Group & Due April 16 at midnight
- HW 10: Probably due April 21
- ullet Optional HW 11 o Dropping one instead
- Exam 3 will be "take home"
- Remaining Lectures: Clustering, Neural Networks, Open Topics (Piazza Post)
- Mimir Code: Code 6 & 7 need to be changed.
 All due April 21? 25?

Today's Lecture

Feature Reduction

- Principal Component Analysis (PCA)
 - Introduction
 - Derivation

- Dimension/ality reduction: reduce the number of random variables we need to consider by obtaining a set of principal values
- In ML, typically refer to dimension reduction as **feature reduction** because dimension corresponds to the number of features
- Think of it as trying to find the most important features for the model's prediction
- PCA
 - Main linear technique for dimension/feature reduction
 - Linear mapping of data to lower-dimension space such that the variance is maximized

High-dimensional Data

Gene expression

Face images

Challenges with High-dimensional Data

- Most machine learning and data mining techniques may not be effective for high-dimensional data
 - Curse of Dimensionality
 - Model accuracy and efficiency degrade rapidly as the dimension increases

Challenges with High-dimensional Data

- Most machine learning and data mining techniques may not be effective for high-dimensional data
 - Curse of Dimensionality
 - Model accuracy and efficiency degrade rapidly as the dimension increases

Intrinsic Dimension

- Number of variables needed for minimal representation of data
- May be small
- For example, the number of genes responsible for a certain type of disease may be small

- Feature Reduction
 - All original features are used
 - The transformed features are linear combinations of the original features
- Feature Selection
 - Only a subset of original features are used

- Feature reduction refers to the mapping of the original high-dimensional data onto a lower-dimensional space
- Criterion for feature reduction can be different based on different problem settings
 - Supervised setting: maximize model's classification ability
 - Unsupervised setting: minimize information loss

- Feature reduction refers to the mapping of the original high-dimensional data onto a lower-dimensional space
- Criterion for feature reduction can be different based on different problem settings
 - Supervised setting: maximize model's classification ability
 - Unsupervised setting: minimize information loss
- Given a set of data points of p variables $\{x_1, x_2, \dots, x_n\}$, compute the linear transformation (projection)

$$G \in \mathbb{R}^{p \times d} : \mathbf{x} \in \mathbb{R}^p \to \mathbf{y} = G^T \mathbf{x} \in \mathbb{R}^d$$
 (typically $d \ll p$)

Other Benefits of Feature Reduction

- Visualization: projection of high-dimensional data onto 2D or 3D
- Data compression: efficient storage and retrieval
- Noise removal: positive effect on query accuracy

Applications of Feature Reduction

- Face recognition
- Handwritten digit recognition
- Text mining
- Image retrieval
- Microarray data analysis
- Protein classification

Feature Reduction Techniques

- Unsupervised
 - Latent Semantic Indexing (LSI): truncated SVD
 - Independent Component Analysis (ICA)
 - Principal Component Analysis (PCA)
 - Canonical Correlation Analysis (CCA)
- Supervised
 - Linear Discriminant Analysis (LDA)

Principal Component Analysis (PCA)

Principal Component Analysis

- Principal Component Analysis (PCA)
 - Reduces the dimensionality of a dataset by finding a new set of variables, smaller than the original set of variables
 - Retains most of the sample's variance
 - Useful for the compression and classification of data

Principal Component Analysis

- Principal Component Analysis (PCA)
 - Reduces the dimensionality of a dataset by finding a new set of variables, smaller than the original set of variables
 - Retains most of the sample's variance
 - Useful for the compression and classification of data
- Principal Components (PCs): the new variables
 - Are uncorrelated
 - Are ordered by the fraction of total information each retains, where information means the variation present in the sample, given by the correlations between the original variables

Data Distribution (Input in Regression/Classification)

Figure: Gaussian PDF

Uncorrelated Projections of Principal Variation

Figure: Gaussian PDF with PC eigenvectors

Geometric Picture of Principal Components (PCs)

- ullet The 1st PC z_1 is a minimum distance fit to a line in X space
- \bullet The 2nd PC z_2 is a minimum distance fit to a line in the plane perpendicular to the 1st PC

Geometric Picture of Principal Components (PCs)

- ullet The 1st PC z_1 is a minimum distance fit to a line in X space
- ullet The 2nd PC z_2 is a minimum distance fit to a line in the plane perpendicular to the 1st PC
- PCs are a series of linear least squares fits to a sample, each orthogonal to all the previous PCs

In Other Words

- In PCA, we identify a first axis that accounts for largest amount of variance in training dataset
- Second axis will be orthogonal to the first and account for largest amount of remaining variance
- ullet For higher dimensions, we can find a 3^{rd} & 4^{th} , and so on, as many axes as the number of dimensions in dataset
- These axes == principal components of data

Idea

- We want to find the best fit hyperplane (closest to data) and project our data onto it
- Want a projection that: preserves most of the variance → which means it loses the least info → which means it minimizes the squared distance between the original dataset and its projection on axis

How to Implement PCA

High-level view of the algorithm:

- Compute the covariance matrix of the data
- Compute the eigenvalues and eigenvectors of this covariance matrix
- Use the eigenvalues and eigenvectors to select the most important feature vectors
- Transform your data onto those vectors for reduced dimensionality

PCA Algorithm: Covariance Matrix

- First normalize data to have zero-mean and unit-variance
 - This ensures that each feature will be weighted equally

PCA Algorithm: Covariance Matrix

- First normalize data to have zero-mean and unit-variance
 - This ensures that each feature will be weighted equally
- Covariance of 2 variables measures how correlated they are
 - Positive covariance: when one variable increases/decreases, the other increases/decreases
 - Negative covariance: values of feature variables change in opposite directions
 - Covariance matrix: array where each value specifies covariance between 2 feature variables based on x-y position in the matrix

PCA Algorithm: Covariance Matrix

- First normalize data to have zero-mean and unit-variance
 - This ensures that each feature will be weighted equally
- Covariance of 2 variables measures how correlated they are
 - Positive covariance: when one variable increases/decreases, the other increases/decreases
 - Negative covariance: values of feature variables change in opposite directions
 - Covariance matrix: array where each value specifies covariance between 2 feature variables based on x-y position in the matrix

$$\Sigma = \frac{1}{n-1}((X - \bar{x})^T(X - \bar{x}))$$

PCA Algorithm: Eigenvectors & Eigenvalues

- Eigenvectors == Principal Components
 - From the covariance matrix
 - Represent vector directions of new feature space
- Eigenvalues
 - Represent magnitude of vectors
 - Quantify the contributing variance of each vector

PCA Algorithm: Eigenvectors & Eigenvalues

- Eigenvectors == Principal Components
 - From the covariance matrix
 - Represent vector directions of new feature space
- Eigenvalues
 - Represent magnitude of vectors
 - Quantify the contributing variance of each vector
- Magnitude of eigenvector's corresponding eigenvalue
 - High magnitude (length) → data has high variance along that vector in feature space → vector holds a lot of information about dataset
 - ullet Small eigenvalue o low variance o data doesn't vary greatly along that vector
 - Changing the value of this feature vector doesn't affect data, so we can say the feature isn't that important and remove it

PCA Algorithm: Selection

- Have list of eigenvectors sorted in order of importance to dataset (sort based on eigenvalues)
- Need to select most important feature vectors and discard the rest

PCA Algorithm: Selection

Explained Variance Percentage

- Quantifies how much information (variance) can be associated to each of the PCs
- \bullet For example: a dataset with 10 feature vectors has the following eigenvalues: [12,10,8,7,5,1,0.1,0.03,0.005,0.0009]

$$\Sigma$$
 of array = 43.1359

$$\Sigma$$
 of [12, 10, 8, 7, 5, 1] = 43

So
$$43/43.14 = 99.68\%$$
 of total variance

PCA Algorithm: Selection

Explained Variance Percentage

- Quantifies how much information (variance) can be associated to each of the PCs
- For example: a dataset with 10 feature vectors has the following eigenvalues: [12,10,8,7,5,1,0.1,0.03,0.005,0.0009] Σ of array = 43.1359 Σ of [12, 10, 8, 7, 5, 1] = 43 So 43/43.14 = 99.68% of total variance
- Define a threshold (usually 95% or higher) and keep or discard feature vectors (or use top k)

PCA Algorithm: Projection Matrix

- Final step is to build a projection matrix to project our data onto the new vectors
- Projection matrix = concatenate most important eigenvectors
- Calculate the dot product of original data and our projection matrix

Extra Slides

Algebraic Definition of PCs

Given a sample of n observations on a vector of p variables

$$\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathbb{R}^p, \ \mathbf{x}_j = (x_{1j}, x_{2j}, \dots, x_{pj})$$

define the first principal component of the sample by the linear transformation

$$z_1 = \mathbf{a}_1^T \mathbf{x}_j = \sum_{i=1}^p a_{i1} x_{ij}, j = 1, \dots, n$$

where the vector

$$\mathbf{a}_1 = (a_{11}, a_{21}, \dots, a_{p1})$$

is chosen such that $var[z_1]$ is maximum.

Algebraic Definition of PCs

To find a_1 first note that

$$\begin{aligned} \mathsf{Var}[z_1] &= \mathbb{E}((z_1 - \bar{z}_1)^2) = \frac{1}{n} \sum_{i=1}^n (\mathbf{a}_1^T \mathbf{x}_i - \mathbf{a}_1^T \bar{\mathbf{x}})^2 \\ &= \frac{1}{n} \sum_{i=1}^n \mathbf{a}_1^T (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \mathbf{a}_1 = \mathbf{a}_1^T S \mathbf{a}_1 \end{aligned}$$

where

- $S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \bar{\mathbf{x}}) (\mathbf{x}_i \bar{\mathbf{x}})^T$: the covariance matrix
- $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$: the mean.

Algebraic Definition of PCs

To find a_1 first note that

$$\begin{aligned} \mathsf{Var}[z_1] &= \mathbb{E}((z_1 - \bar{z}_1)^2) = \frac{1}{n} \sum_{i=1}^n (\mathbf{a}_1^T \mathbf{x}_i - \mathbf{a}_1^T \bar{\mathbf{x}})^2 \\ &= \frac{1}{n} \sum_{i=1}^n \mathbf{a}_1^T (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \mathbf{a}_1 = \mathbf{a}_1^T S \mathbf{a}_1 \end{aligned}$$

where

•
$$S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$
: the covariance matrix

$$\bullet$$
 $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$: the mean.

In the following, we assume the data is centered, i.e., $\bar{\mathbf{x}}=0$, e.g., each feature has zero mean.

To find \mathbf{a}_1 : $\max_{\mathbf{a}_1} \mathsf{Var}[z_1]$, s.t. $\mathbf{a}_1^T \mathbf{a}_1 = 1$ Let λ be a Lagrange multiplier

$$L = \mathbf{a}_1^T S \mathbf{a}_1 - \lambda (\mathbf{a}_1^T \mathbf{a}_1 - 1)$$
$$\frac{\partial L}{\partial \mathbf{a}_1} = S \mathbf{a}_1 - \lambda \mathbf{a}_1 = 0$$

To find \mathbf{a}_1 : $\max_{\mathbf{a}_1} \mathsf{Var}[z_1]$, s.t. $\mathbf{a}_1^T \mathbf{a}_1 = 1$ Let λ be a Lagrange multiplier

$$L = \mathbf{a}_1^T S \mathbf{a}_1 - \lambda (\mathbf{a}_1^T \mathbf{a}_1 - 1)$$
$$\frac{\partial L}{\partial \mathbf{a}_1} = S \mathbf{a}_1 - \lambda \mathbf{a}_1 = 0$$

 \bullet Therefore ${\bf a}_1$ is an eigenvector of S corresponding to the largest eigenvalue $\lambda=\lambda_1$

• We want an uncorrelated direction for our next direction z_2 , i.e., $\mathsf{Cov}[z_2,z_1]=0.$

- We want an uncorrelated direction for our next direction z_2 , i.e., $Cov[z_2, z_1] = 0$.
- To find the next coefficient vector **a**₂:

$$\max_{\mathbf{a}_2} \mathsf{Var}[z_2] \quad \mathbf{a}_2^T \mathbf{a}_2 = 1, \mathsf{Cov}[z_2, z_1] = 0$$

We note that

$$\mathsf{Cov}[z_2, z_1] = \mathbf{a}_1^T S \mathbf{a}_2 = \lambda_1 \mathbf{a}_1^T \mathbf{a}_2$$

Therefore

$$\max_{\mathbf{a}_2} \mathsf{Var}[z_2] \quad \mathbf{a}_2^T \mathbf{a}_2 = 1, \mathbf{a}_1^T \mathbf{a}_2 = 0$$

$$L = \mathbf{a}_2^T S \mathbf{a}_2 - \lambda (\mathbf{a}_2^T \mathbf{a}_2 - 1) - \gamma \mathbf{a}_1^T \mathbf{a}_2$$

$$\Rightarrow \frac{\partial L}{\partial \mathbf{a}_2} = S \mathbf{a}_2 - \lambda \mathbf{a}_2 - \gamma \mathbf{a}_1 = 0 \Rightarrow \gamma = 0$$

$$\Rightarrow S \mathbf{a}_2 = \lambda \mathbf{a}_2$$

- ullet We find that ${f a}_2$ is also an eigenvector of S
- ullet whose eigenvalue $\lambda=\lambda_2$ is the second largest.

In general

$$\mathsf{Var}[z_k] = \mathbf{a}_k^T S \mathbf{a}_k = \lambda_k$$

- The kth largest eigenvalue of S is the variance of the kth PC.
- The *k*th PC retains the kth greatest fraction of the variation in the sample.

- Main steps for computing PCs
 - Standarize the dataset $X \in \mathbb{R}^{n \times p}$
 - Form the covariance matrix $S = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \frac{1}{n} X^{T} X^{T}$

 - Compute its eigenvectors $\{\mathbf{a}_i\}_{i=1}^p$ • Use the first d eigenvectors $\{\mathbf{a}_i\}_{i=1}^d$ to form the d PCs.
 - The transformation $G = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_d]$
- Apply PCA: $\mathbf{x} \in \mathbb{R}^p \to G^T \mathbf{x} \in \mathbb{R}^d$

Optimality Property of PCA

• Main theoretical result:

The matrix G consisting of the first d eigenvectors of the covariance matrix S solves the following min problem:

$$\min_{G \in \mathbb{R}^{p \times d}} \|X^T - G(G^T X^T)\|_F^2 \quad \text{subject to:} \quad G^T G = I_d$$

- \bullet $G(G^TX^T)$ is the "reconstructed data matrix", and the objective minimizes reconstruction error.
- ullet PCA projection minimizes the reconstruction error among all linear projections of size d.

Application on Image Compression

Original Image