Chapter 4 Network Layer

KUROSE ROSS

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Chapter 4: network layer

chapter goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - broadcast, multicast
- instantiation, implementation in the Internet

Chapter 4: outline

4.1 introduction

- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers
 segments to transport
 layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Three key network-layer functions

- forwarding: move packets from router's input link to appropriate router output link
- routing: determine route taken by packets from source to dest.
 - The algorithms that calculate these paths
 - are referred to as routing algorithms
- connection setup

Interplay between routing and forwarding

routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Connection setup

- ❖ 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagram's flow, two end hosts and intervening routers establish virtual connection routers get involved, this process is referred to as connection setup
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Connection, connection-less service

- datagram network provides network-layer connectionless service
- virtual-circuit network provides network-layer connection service
- analogous to TCP/UDF connection-oriented / connectionless transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

Virtual circuits

- "source-to-dest path behaves much like telephone circuit"
 - performance-wise
 - network actions along source-to-dest path
- call setup, for each call before data can flow
- each packet carries <u>VC identifier (not destination host address)</u>
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

Virtual circuits: signaling protocols

- used in ATM, frame-relay, X.25
- not used in today's Internet

Datagram networks

- no <u>call setup</u> at network layer
- * routers: no state about end-to-end connections
- packets forwarded using destination <u>host address</u>

Datagram forwarding table

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

Datagram or VC network: why?

Internet (datagram)

- data exchange among computers
 - "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"

ATM (VC)

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
 - "dumb" end systems
 - telephones
 - complexity inside network

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Router architecture overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

IP addressing: introduction

- IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

IP addressing: introduction

A: wired Ethernet interfaces

b: wireless WiFi interfaces connected by WiFi base station

Subnets

*IP address:

- subnet part high order bits
- host part low order bits

*what 's a subnet ?

 device interfaces with same subnet part of IP address

network consisting of 3 subnets

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

subnet mask: /24

Subnets

how many?

