

TECHNIKA DZIEL I ZWYCIĘŻAJ

Dziel i zwyciężaj jest ogólnym paradygmatem projektowania algorytmów:

- Podział: podziel dane wejściowe S na dwa rozłączne podzbiory SI i S2
- Rekurencja: rozwiąż problem dla SI i S2
- Scalanie: połącz rozwiązania dla SI i S2 w jedno rozwiązanie dla S
 Krokiem podstawowym rekurencji są podproblemy o rozmiarze 0 lub I

© 2004 Goodrich, Tamassi

Sortowanie przez scalanie jest

algorytmem sortującym bazującym na technice dziel i zwyciężaj Podobnie jak dla sortowania kopcowego

- wykorzystuje komparator
- Posiada złożoność O(n log n)
 Inaczej niż dla sortowania kopcowego
- Nie wykorzystuje zewnętrznej kolejki priorytetowej
- Pobiera dane w sposób sekwencyjny (odpowiedni do sortowania danych na dysku zewnętrznym)

SORTOWANIE PRZEZ SCALANIE

Sortowanie przez scalanie listy S zawierającej n elementów składa się z trzech kroków:

- Podział: podział S na dwie sekwencje SI i S2 zawierającymi ok. n/2 elementów każda
- Rekurencja: posortuj rekurencyjnie ST i S2
- Scalanie: połącz SI i S2 w jedną posortowaną listę

© 2004 Goodrich, Tamassia

Algorytm mergeSort(S, C)

Wejście lista *S* z *n* elementami, komparator *C*

Wyjście lista S posortowana zgodnie z komparatorem C

if S.size() > 1

 $(S_1, S_2) \leftarrow podziel(S, n/2)$ $mergeSort(S_1, C)$

 $mergeSort(S_1, C)$ $mergeSort(S_2, C)$

 $S \leftarrow \text{pusta lista}$

 $potacz(S_1, S_2, S)$

 $\left|S_1\right| = \left\lceil \frac{n}{2} \right\rceil$ and $\left|S_2\right| = \left\lceil \frac{n}{2} \right\rceil$

ŁĄCZENIE DWÓCH POSORTOWANYCH SEKWENCJI

Ostatni krok sortowania przez scalanie składa się ze scalania dwóch posortowanych sekwencji S1 i S2 zaimplementowanych jako lista w jedną posortowaną sekwencję S zawierającą połaczenie elementów z S1 i S2

Scalanie dwóch posortowanych sekwencji zawierających po n/2 elementów i zaimplementowane z zastosowaniem listy dwukierunkowej zabiera O(n) czasu

© 2004 Goodrich, Tamassia

Algorytm $merge(S_1, S_2, S)$

Wejście sekwencje S_I i S_2 zawierające po n/2 elementów, pusta sekwencja S **Wyjście** posortowana sekwencja $S: S_1 \cup S_2$

while $\sim S_1$.isEmpty() $\land \sim S_2$.isEmpty() if S_1 .first().element() $\leq S_2$.first().element() S.addLast(S_1 .remove(S_1 .first()))

 $S.addLast(S_2.remove(S_2.first())) \\$

while ~S₁.isEmpty() S.addLast(S₁.remove(S₁.first()))

S.addLast(S_1 .remove(S_1 .first() while $\sim S_2$.isEmpty()

S.addLast(S_2 .remove(S_2 .first()))

DRZEWO SORTOWANIA PRZEZ SCALANIE

Działanie sortowania przez scalanie jest zobrazowane przez drzewo binarne

- każdy węzeł reprezentuje wywołanie rekurencyjne sortownia i zawiera
 nieposortowaną sekwencję przez wywołaniem i podziałem
 posortowaną sekwencję po zakończeniu wywołania
- korzeń jest początkowym wywołaniem
- liście są wywołaniami podsekwencji o rozmiarze 0 lub 1

PODSUMOWANIE ALGORYTMÓW SORTOWANIA Czas Uwagi Algorytm $O(n^2)$ przez wybór wolne (dobre dla małych weiść) $O(n^2)$ przez wstawianie wolne (dobre dla małych wejść) $O(n \log n)$ in-situ, losowe najszybsza (dobra dla dużych danych) szybkie O(n2) najgorszy n-situ przez kopcownie $O(n \log n)$ szybka (dobra dla dużych danych)

SORTOWANIE KUBF KOWF

 $O(n \log n)$

Niech S będzie sekwencją n wpisów (klucz, wartość) z kluczami w przedziale [0, N – 1] Sortowanie kubełkowe (Bucket-sort) wykorzystuje klucze jako indeksy w zewnętrznej tablicy B sekwencji (kubełki)

Faza I: Przenosimy wszystkie wpisy (k,o) S do kubła B[k]

Faza 2: Dla i = 0, ..., N-1, przenieś wpisy kubła B[i] na koniec sekwencji S Analiza:

•Faza I zabiera O(n)

przez scalanie

•Faza 2 zabiera O(n + N)

Sortowanie kubełkowe zabiera czas O(n + N)

Algorytm bucketSort(S, N)

sekwencyjny dostęp do danych szybka (dobra dla b. dużych danych)

for każda pozycja p w S do

 $e \leftarrow S.remove(p)$ $k \leftarrow e.getKey()$

B[k]. addLast(e)for $i \leftarrow 0$ to N-1

for każdy wpis $e \le B[i]$ do

 $p \leftarrow B[i].first()$

 $e \leftarrow B[i].remove(p)$

S.addLast(e)

© 2004 Goodrich, Tamassia

WŁAŚCIWOŚCI I ROZSZERZENIA

Właściwości typu kluczy

- •Klucze są wykorzystywane jako indeksy tablicy i nie mogą być dowolnymi obiektami
- •Brak zewnętrznego komparatora Właściwość stałości sortowania
- Relatywne uporządkowanie dowolnych dwóch wpisów o tym samym kluczu jest zachowane po zakończeniu działania algorytmu

- •Klucze są integerami w przedziale [a, b] •Umieść wpis (k, o) w kuble B[k – a]
- •Klucze z łańcuchami znakowymi ze zbioru D możliwych łańcuchów, gdzie D ma stały rozmiar (e.g., nazwy krajów członkowskich UE)
 - Posortuj D i wyznacz indeks r(k) dla każdego łańcucha k w D w posortowanej sekwencji
 - Umieść wpis (k,o) w kuble B[r(k)]

© 2004 Goodrich, Tamassia

UPORZĄDKOWANIE LEKSYKOGRAFICZNE

d-krotka jest sekwencją d kluczy $(k_1, k_2, ..., k_d)$, gdzie klucz k_i będzie i-tym wymiarem krotki

Przykład:

Współrzędne Kartezjańskie punktu w przestrzeni są 3-krotką

Uporządkowanie leksykograficzne dwóch d-krotek jest zdefiniowane rekurencyjnie w nastepuiacy sposób:

$$(x \mid, x2, ..., xd) \leq (y \mid, y2, ..., yd)$$

$$x \mid \langle y \mid \mathbf{v} \mid x \mid = y \mid \mathbf{A} (x2, ..., xd) \langle (y2, ..., yd) \rangle$$

Tzn., krotki są porównywane z przez pierwszy wymiar, potem przez drugi, itd.

© 2004 Goodrich, Tamassia

SORTOWANIE **LEKSYKOGRAFICZNE**

Niech Ci będzie komparatorem, który porównuje dwie krotki

Niech stableSort(S, C) będzie stałym algorytmem sortowania wykorzystującym komparator C

Sortowanie leksykograficzne sortuje sekwencję d-krotek w sposób leksykograficzny poprzez wywołanie d razy algorytmu stableSort. Raz dla każdego wymiaru. Sortowanie leksykograficzne działa w czasie O(dT(n)), gdzie T(n) jest czasem działania stableSort

© 2004 Goodrich, Tamassia

Algorytm lexicographicSort(S)

Weiście sekwencja S z d-krotkami **Wyjście** sekwencja *S* posortowana leksykograficznie

for $i \leftarrow d$ downto 1 $stableSort(S, C_i)$

Przvkład:

(7,4,6)(5,1,5)(2,4,6)(2,1,4)(3,2,4)(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6) (2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6) (2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

SORTOWANIE POZYCYJNE

Sortowanie pozycyjne jest specyficzną odmianą sortowania leksykograficznego, które wykorzystuje sortowanie kubełkowe jako algorytm sortowania stałego. Sortowanie pozycyjne ma zastosowanie do krotek, których klucze w każdym wymiarze są integerami w przedziale [0, N - 1] Sortowanie pozycyjne działa w czasie O(d(n + N))

© 2004 Goodrich, Tamassia

Algorytm radixSort(S, N)

Wejście sekwencja S z d-krotkami takie, że $(0, ..., 0) \le (x_1, ..., x_d)$ i $(x_1, ..., x_d) \le (N-1, ..., N-1)$ dla każdej krotki $(x_1, ..., x_d)$ w SWyjście sekwencja S posortowana eksykograficznie for $i \leftarrow d$ downto

bucketSort(S, N)

Tutaj 18.04

PR7YKł AD

Posortuj podane wartości z zastosowaniem sortowania pozycyjnego: {21, 38, 241, 973, 100, 333}

© 2004 Goodrich, Tama

Rozważ sekwencję n-bitowyh integerów

zastosujemy sortowanie pozycyjne z N=2Ta modyfikacja algorytmu pozycyjnego działa w czasie O(bn)

Dla przykładu, możemy posortować sekwencję 32-bitowych integerów w liniowym czasie

SORTOWANIE POZYCYJNE DLA LICZB BINARNYCH

Algorytm binaryRadixSort(S)

Wejście sekwencja S z bbitowymi integerami **Wyjście** posortowana sekwencja S zamień każdy element x z S z

elementem (0, x)for $i \leftarrow 0$ to b-1

zamień klucz k każdego elementu (k, x) w Sz bitem x_i

bucketSort(S, 2)

PRZYKŁAD Sortowanie sekwencji 4-bitowych integerów 1001 0010 1001

DRZEWA AVL

Adel'son-Vel'skii & Landis

BALANSOWANIE DRZEWA PO USUNIĘCIU *Niech z będzie pierwszym niezbalansowanym węzłem napotkanym przy

- •Niech z będzie pierwszym niezbalansowanym węzłem napotkanym przy trawersowaniu drzewa w górę począwszy od węzła w. Jednocześnie niech y będzie synem z o większej wysokości i niech x będzie synem y o większej wysokości
- •wywołujemy restructure(x) do przywrócenia balansu w z.
- Ponieważ restrukturyzacja może naruszyć balans w węzłach na wyższych poziomach drzewa musimy kontynuować sprawdzanie aż do osiągnięcia korzenia.

ZŁOŻONOŚĆ OBLICZENIOWA DRZEW AVL

- •pojedyncza zmiana O(1)
 - stosując strukturę listy dla drzewa binarnego
- •szukanie O(log n)
 - •wysokość drzewa O(log n), brak restrukturyzacji
- •wstawianie O(log n)
 - •wstępne szukanie O(log n)
 - •Restrukturyzacja dla zachowania wysokości O(log n)
- •usuwanie O(log n)
 - •wstępne szukanie O(log n)
 - •Restrukturyzacja dla zachowania wysokości O(log n)

© 2004 Goodrich, Tamassia

PORÓWNANIE IMPLEMENTACJI SŁOWNIKÓW

Metoda	Tablica Haszująca (później)	Tablica przeszukiwań (Lista uporządkowana)	$ \begin{array}{c} \mathbf{BST} \\ \log n \le h \le n \end{array} $	AVL
size, isEmpty	O(1)	O(1)	O(1)	O(1)
entries	O(n)	O(n)	O(n)	O(n)
find	O(1) oczekiwany, O(n) przyp. najgorszy	O(log n) oczekiwany, O(log n) przyp. najgorszy	O(h)	O(log n)
findAll	O(1 + s) oczekiwany, O(n) przyp. najgorszy	O(log n + s) oczekiwany, O(log n + s) przyp. najgorszy	O(h+s)	$O(\log n + s)$
insert	O(1) oczekiwany, O(n) przyp. najgorszy	O(n) oczekiwany, O(n) przyp. najgorszy	O(h)	O(log n)
remove	O(1) oczekiwany, O(n) przyp. najgorszy	O(n) oczekiwany, O(n) przyp. najgorszy	O(h)	O(log n)