Tabella dei limiti

$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$
$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x \to 0 \ pos} \left(1 + \frac{1}{x} \right)^x = 1$	$\lim_{x \to -1 negat} \left(1 + \frac{1}{x} \right)^x = +\infty$
$\lim_{x \to -1 pos} \left(1 + x\right)^{\frac{1}{x}} = +\infty$	$\lim_{x\to 0} \left(1+\alpha x\right)^{\frac{1}{x}} = e^{\alpha}$	$\lim_{x \to +\infty} \left(1 + x \right)^{\frac{1}{x}} = 1$
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a a > 0$	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$	$\lim_{x \to 0} \frac{(1+x)^{\lambda} - 1}{x} = \lambda$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$	$\lim_{x \to 0} \frac{\tan x}{x} = 1$
$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$	$\lim_{x \to 0} \frac{\arctan x}{x} = 1$	$\lim_{x \to 1} \frac{(\arccos x)^2}{1 - x} = 2$
$\lim_{x \to \infty} \log_{\alpha} \left(1 + \frac{1}{x} \right)^{x} = \log_{\alpha} e$	$\lim_{x \to \infty} \ln \left(1 + \frac{1}{x} \right)^x = \ln e = 1$	$\lim_{x \to 0} \frac{x}{\log_{\alpha}(1+x)} = \frac{1}{\log_{\alpha} e}$
$\lim_{x \to +\infty} \log_a x = +\infty$	$\lim_{x \to -\infty} a^x = 0$	$\lim_{x \to \pm \infty} \left(1 + \frac{a}{x} \right)^{bx} = e^{ab}$

<u>Tabella degli Asintotici (per $x \rightarrow 0$)</u> \Rightarrow = asintotico a..

$\sin x \Rightarrow x$	$\sin x - x \implies \frac{x^3}{6}$
$e^x-1 \Rightarrow x$	$ \ln\left(1+x\right) \ \Rightarrow \ x $
$\log_a(1+x) \Rightarrow \frac{x}{\ln a}$	$a^x - 1 \Rightarrow x \ln a$
$(1+x)^k \Rightarrow 1+k x$	$tanh x \Rightarrow x$
$1 - \cos x \Rightarrow \frac{x^2}{2}$	$\tan x \Rightarrow x$
$ sinh x \Rightarrow x $	$\arctan x \Rightarrow x$
$ \cosh x - 1 \Rightarrow \frac{x^2}{2} $	$\arcsin x \Rightarrow x$
$x - \sin x \Rightarrow \frac{x^3}{6}$	

Forme indeterminate

$$\frac{0}{0}$$
 $\frac{\infty}{\infty}$ $0 \cdot \infty$ 1^{∞} 0^{0} ∞^{0} $+\infty-\infty$