

## Optimización del ciclo de vida de un proyecto MI

Un caso de uso de Mlflow

#### <u>Plan</u>

- 1. Una situación bastante común
- 2. Presentación de Mlflow
- 3. Demo

Una situación bastante común ...

#### Semana 1 - comienzas tu proyecto









#### Semana 2: tienes más datos

















## Semana 3: otro científico de datos se une al proyecto





#### Semana 4: empiezas a ver resultados





| Fichiers    | Actifs        | Grappes              |                 |  |  |
|-------------|---------------|----------------------|-----------------|--|--|
| électionner | des élément   | ts pour leur appliqu | er des actions. |  |  |
| □ 0 ▼       | ■ / exp       | orts                 |                 |  |  |
| <u></u>     |               |                      |                 |  |  |
|             | nodel_v11_al  | lice_best.pkl        |                 |  |  |
|             | nodel_v1_alid | ce_all_data.pkl      |                 |  |  |
|             | nodel_v1_bo   | b.pkl                |                 |  |  |
|             | nodel_v1_bo   | b_auc_0-Copy1.76     | .pkl            |  |  |
|             | nodel_v1_bo   | b_auc_0.76.pkl       |                 |  |  |
|             | nodel_v2_bo   | b.pkl                |                 |  |  |
| □ □ m       | nodel_v3_alid | ce.pkl               |                 |  |  |

#### Semana 5: se le pide información





- ¿Cuáles son las métricas de rendimiento del mejor modelo?
- **En qué datos y variables se entrenó este modelo?**
- ¿Qué diferentes experimentos ha realizado cada científico de datos?
- **¿**Es posible implementar los dos mejores modelos para equipos comerciales?



# m flow

### Una plataforma para organizar el ciclo de vida de sus modelos de AA

"MLflow es una plataforma de código abierto para administrar el ciclo de vida de ML, incluida la experimentación, la reproducibilidad, la implementación y un registro de modelo central. MLflow ofrece actualmente cuatro componentes "

#### **MLflow Tracking**

Record and query experiments: code, data, config, and results

Read more

#### **MLflow Projects**

Package data science code in a format to reproduce runs on any platform

Read more

#### **MLflow Models**

Deploy machine learning models in diverse serving environments

Read more

#### Model Registry

Store, annotate, discover, and manage models in a central repository

Read more

#### Integrado en todo el ecosistema de ciencia de datos



#### Y adoptado por varias empresas





#### Soluciones alternativas











#### El ciclo de vida de un proyecto de AA



## MLflow nos impulsa a aplicar las mejores prácticas de MLOps

#### MLOps = Aprendizaje automático + DEV + OP

- **DEV:** empaquetado, implementación, prueba, lanzamiento
- **OPS: c**onfiguración, monitoreo

- 1. Una cultura que unifica desarrollos y operaciones
- Aboga por la automatización y el monitoreo en todas las etapas de la construcción (integración, prueba, lanzamiento e implementación)
- 3. Permite acelerar la transición a la producción.
- 4. Permite la detección rápida de errores y fallos



#### Qué permite MLflow tracker?

- **parámetros:** n\_estimators, max\_depth, epochs, kernel\_size, dropout, batch\_size?
- métricas: AUC, MAE, MSE; Puntuación F1, accuracy, R cuadrado (r2)
- datos: ¿en qué versión de los datos (es decir, volumen y número de características) se entrenó dicho modelo?
- **□** artefactos:
  - los modelos: guardados en disco en formato binario (pickle, h5, joblib, etc.)
  - salidas (que no sean plantillas, por ejemplo, imágenes, csv, texto, html, etc.)
- **u fuente:** ¿qué script / cuaderno inició este experimento?
- etiquetas y comentarios: información y anotaciones (colaborativas y / o individuales) sobre una ejecución

#### Terminología de MLflow: ejecuciones y experimentos







**Experiment** 





#### Auto logging - Keras

```
import mlflow
import mlflow.keras
# Build, compile, enable autologging, and train your model
keras_model = ...
keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])
# autolog your metrics, parameters, and model
mlflow.keras.autolog()
results = keras_model.fit(
    x_train, y_train, epochs=20, batch_size=128, validation_data=(x_val, y_val))
```

Enables (or disables) and configures autologging from Keras to MLflow. Autologging captures the following information:

#### **Metrics and Parameters**

- Training loss; validation loss; user-specified metrics
- Metrics associated with the EarlyStopping callbacks: stopped\_epoch, restore\_best\_weight, last\_epoch, etc
- fit() or fit\_generator() parameters; optimizer name; learning rate; epsilon
- fit() or fit\_generator() parameters associated with EarlyStopping: min\_delta, patience, baseline, restore\_best\_weights, etc

#### MLflow Projects



#### MLflow Models



#### Recursos

- <a href="https://kaskada.com/insights/a-quide-to-mlops-for-data-scientists-part-1">https://kaskada.com/insights/a-quide-to-mlops-for-data-scientists-part-1</a>
- <a href="https://medium.com/swlh/hyperparameter-tuning-with-mlflow-tracking-b67ec4de1">https://medium.com/swlh/hyperparameter-tuning-with-mlflow-tracking-b67ec4de1</a>
  8c9
- <a href="https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html">https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html</a>