

การบ้านปฏิบัติการ11 Artificial Intelligence (ID3)(20 คะแหน)

1) **20คะแนน**(HW11_5XXXXXXXX.py)ให้เขียนโปรแกรมเพื่ออ่านข้อมูลตัวอย่าง (training data) จากไฟล์ input.txt จากนั้นนำข้อมูลที่ได้มาทำการสร้าง Decision tree โดยใช้วิธีคำนวณตามหลักการ ID3 และแสดงผลลัพธ์ดังตัวอย่าง ที่กำหนดให้

ตัวอย่างข้อมูล training data

Film	Country of origin	Big Star	Genre	Success
1	USA	yes	Science	true
2	USA	no	Comedy	false
3	USA	yes	Comedy	true
4	Europe	no	Comedy	true
5	Europe	yes	Science	false
6	Europe	yes	Romance	false
7	Rest of world	yes	Comedy	false
8	Rest of world	no	Science	false
9	Europe	yes	Comedy	true
10	USA	yes	Comedy	true

training dataอยู่ในไฟล์โดยมีรูปแบบดังนี้	ผลลัพธ์ให้แสดงดังนี้
2;USA;no;Comedy;false	First factor is Country of origin The next factor of USA is Big star The next factor of Europe is Genre

- 1. ให้เขียนฟังก์ชันinformation_gain(feature)เพื่อคืนค่าinformation gainของ feature แต่ละตัวของข้อมูล ตามหลักการของID3โดยสามารถมีการเรียกฟังก์ชันย่อยที่เหมาะสมได้
- 2. ให้เขียนฟังก์ชัน factor_list()เพื่อแสดงผลลำดับของปัจจัยของ Decision Tree ที่ได้ ตามตัวอย่างด้านบน

หลักการคำนวณโดยใช้ ID3 มีรายละเคียดดังนี้

Entropy = $E(S) = -p_1 \log_2 p_1 - p_0 \log_2 p_0$

จากข้อมูล training data จะหา**ปัจจัยตัวแรก**ได้ดังนี้

กรณีปัจจัย Country of originจะหา Entropy ของค่าตัวแปร 3 ค่าได้ดังนี้

$$E(USA) = -(3/4) \log_2 (3/4) - (1/4) \log_2 (1/4)$$

$$= 0.311 + 0.5 = 0.811$$

$$E(Europe) = -(2/4) log_2 (2/4) - (2/4) log_2 (2/4) = 1$$

E(Rest of world) =
$$-0 - (2/2) \log_2 (2/2) = 0$$

จากนั้นนำมาคำนวณหาค่า Information gain ของ Country of origin

Country of origin = 1-P(USA)x E(USA)- P(Europe)x E(Europe)- P(Rest of world)x E(Rest of world)

$$= 1-(0.4x0.811) - (0.4x1) - (0.2x0)$$

= 0.2756

กรณีปัจจัย Big Starจะหา Entropy ของค่าตัวแปร 2 ค่าได้ดังนี้

$$E(yes) = -(4/7) \log_2 (4/7) - (3/7) \log_2 (3/7)$$

= 0.9852

 $E(no) = -(1/3) log_2 (1/3) - (2/3) log_2 (2/3) = 0.9151$

จากนั้นนำมาคำนวณหาค่า Information gain ของ Big Star

Big Star =
$$1-P(yes)x E(yes) - P(no) x E(no)$$

= 0.044

กรณีปัจจัย Genreจะหา Entropy ของค่าตัวแปร 3 ค่าได้ดังนี้

E(science) =
$$-(1/3) \log_2 (1/3) - (2/3) \log_2 (2/3) = 0.9151$$

$$E(comedy) = -(4/6) \log_2 (4/6) - (2/6) \log_2 (2/6) = 0.9151$$

$$E(romance) = 0 - 1 log_2 (1) = 0$$

จากนั้นนำมาคำนวณหาค่า Information gain ของ Genre

Genre =
$$1-(0.6\times0.9151)-(0.3\times0.9151)-(0.1\times0)$$

= 0.176

ดังนั้น ปัจจัยตัวแรกของ Decision Tree คือ Country of origin และได้ tree ดังรูป

ขั้นถัดมา หาปัจจัยตัวที่สองที่ต่อจาก USA พิจารณาเฉพาะข้อมูลที่มี Country เป็น USA

Film	Country of origin	Big Star	Genre	Success
1	USA	yes	Science	true
2	USA	no	Comedy	false
3	USA	yes	Comedy	true
4	USA	yes	Comedy	true

กรณีปัจจัย Big Starจะหา Entropy ของค่าตัวแปร 2 ค่าได้ดังนี้

$$E(yes) = -1 log_2(1) = 0$$

$$E(no) = 0 - 1 log_2(1) = 0$$

จากนั้นนำมาคำนวณหาค่า Information gain ของ Big Star

Big Star =
$$0.811 - P(yes)x E(yes) - P(no) x E(no)$$

 $= 0.811 - (0.75 \times 0) - (0.25 \times 0) = 0.811$

คิดภายใต้เงื่อนไขของ USA เลยต้องใช้ E(USA)

กรณีปัจจัย Genreจะหา Entropy ของค่าตัวแปร 3 ค่าได้ดังนี้

$$E(science) = -1 log_2 (1) = 0$$

$$E(comedy) = -(2/3) log_2 (2/3) - (1/3) log_2 (1/3) = 0.9151$$

E(romance) = 0เพราะไม่มีค่าในส่วนนี้

จากนั้นนำมาคำนวณหาค่า Information gain ของ Genre

คิดภายใต้เงื่อนไขของ USA เลยต้องใช้

E(USA)

ดังนั้น ปัจจัยตัวถัดมาของ Decision Treeที่ต่อจากUSA คือ Big Starและได้ tree ดังรูป

ขั้นถัดมา หาปัจจัยตัวที่สองที่ต่อจาก Europe พิจารณาเฉพาะข้อมูลที่มี Country เป็น Europe

Film	Country of origin	Big Star	Genre	Success
1	Europe	no	Comedy	true
2	Europe	yes	Science	false
3	Europe	yes	Romance	false
4	Europe	yes	Comedy	true

คิดภายใต้เงื่อนไขของ Europe เลยต้องใช้

คิดภายใต้เงื่อนไขของ Europe เลยต้องใช้

E(Europe)

E(Europe)

กรณีปัจจัย Big Starจะหา Entropy ของค่าตัวแปร 2 ค่าได้ดังนี้

$$E(yes) = -(1/3) \log_2 (1/3) - (2/3) \log_2 (2/3) = 0.9151$$

$$E(no) = -1 log_2(1) = 0$$

จากนั้นนำมาคำนวณหาค่า Information gain ของ Big Star

Big Star =
$$1 - P(yes)x E(yes) - P(no) x E(no)$$

$$= 1 - (0.75 \times 0.9151) - (0.25 \times 0) = 0.314$$

กรณีปัจจัย Genreจะหา Entropy ของค่าตัวแปร 3 ค่าได้ดังนี้

$$E(science) = 0$$

E(comedy) = 0

E(romance) = 0

จากนั้นนำมาคำนวณหาค่า Information gain ของ Genre

ดังนั้น ปัจจัยตัวถัดมาของ Decision Tree ที่ต่อจาก Europe คือ Genre และได้ tree ดังรูป

<u>การ</u>ส่งงาน

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผลจะ<u>ต้องเป็นไปตามที่</u>ระบุในตัวอย่างการ run
- 2. ไฟล์งาน/ใบงานที่ส่ง จะต้องมีการแทรก comment/หัวกระดาษ ตามข้อกำหนดใน website รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการ<u>แทรก pseudocode</u> เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยัง website ที่ใช้ส่งการบ้าน http://hw.cs.science.cmu.ac.th ตาม section ที่นักศึกษาเรียน