1

Utilização de fibras ópticas em sistemas de telecomunicação

Felipe C. S. Santos, Thiago K. Lago Universidade Federal do Rio de janeiro Escola Politécnica Departamento de Engenharia Eletrônica

Resumo-

Index Terms—Telecomunicações, fibras ópticas, optoeletrônica

As fibras ópticas tem diversas finalidades, sendo uma das mais importantes a utilização em telecomunicações. O avanço das tecnologias de fabricação, modulação e também instrumentação tem tornado cada vez mais viável a utilização das mesmas para transmissões de dados a grandes distâncias com altas taxas de bits. Busca-se através deste paper mostrar o processo de escolha de dimensionamento de uma rede baseada em componentes óticos.

I. INTRODUCÃO

II. CONSTRUÇÃO DA FIBRA

Comentar sobre os materiais que são construídos, as janelas de transmissão, os tipos de dispersão, custo-benefício de cada uma delas.

III. COMPONENTES ÓTICOS

Comentar sobre alguns componentes óticos utilizados como fbg para filtragem dos sinais e amplificadores ópticos

IV. Instrumentros de Medida

É necessário se preocupar também com a qualidade do sinal recebido e a integridade da fibra óptica. Para isto são utilizados alguns equipamentos que permitem fazer a inspeção das mesmas e analisar o sinal recebido.

Ao instalar uma fibra de grande comprimento, a mesma pode sofrer avarias durante o percurso, prejudicando a recepção do sinal. Outro fator que pode ser determinante na qualidade do sinal recebido é a presença de emendas entre os pedaços das fibras. Existem alguns instrumentos utilizados para resolver este problema. Um deles é o OTDR (Optical Time Domain Reflectometer).

A. OTDR

O *OTDR* utiliza o efeito de retroespalhamento (*backscattering*) dos raios de luz durante a passagem dos sinais luminosos pela fibra óptica. Assim sendo, torna-se possível medir a atenuação do sinal conforme a distância, assim como visto [1]

Esse instrumento possui um laser que emite luz em uma frequência pré-determinada e através da diferença de tempo e da potência do sinal medido após o retroespalhamento é possível determinar a relação entre o sinal recebido e a reflexão em uma dada distância de fibra, assim como visto na figura 1. Com isso se torna possível fazer uma inspeção na fibra sem a necessidade de retirar-la do local onde está instalada.

Figura 1. Experimento de bancada com OTDR

O equipamento deve ser conectado conforme a figura [2], sendo que o cabo de teste pode ter comprimento de alguns quilômetros e ainda sim pode ser possível realizar a análise com certa clareza. Após uma certa distância, que depende da potência do sinal emitido, da atenuação e reflexão sofrida durante o percurso, o sinal fica num nível comparável ao ruído, conforme visto à esquerda da figura 2:

Figura 2. Experimento de bancada com OTDR

Uma maneira de aumentar a distância que o sinal chega sem ser muito atrapalhado por ruído é diminuindo o comprimento de onda do laser utilizado na inspeção da fibra. Todavia, isto faz com que a resolução do caminho percorrido diminua, sendo assim, obtêm-se menos informação sobre o caminho percorrido pelo sinal. Cabe ao operador do OTDR ajustar o equipamento de forma a obter o melhor compromisso entre distância e resolução, assim como visto em [2].

A inclinação da curva na parte linear indica o coeficiente de atenuação da fibra (db/km). Quanto

menor a inclinação, mais longe consegue-se transmitir um sinal até que ele chegue à uma razão sinal ruído (**SNR**) mínima pré-determinada.

Ao utilizar o equipamento para medir a atenuação do sinal conforme a distância da fibra, pode-se observar um gráfico similar ao visto na figura 3:

Figura 3. Experimento de bancada com OTDR

Busca-se observar os pontos onde existem descontinuidades na reta de potência do sinal por distância. Estes pontos podem indicar a utilização de um conector mecânico, solda ou até mesmo um rompimento na fibra. Quando a conexão entre fibras é bem feita, a observa-se pouca atenuação no sinal, sendo que a solda bem feita atenua menos que um conector mecânico. Caso observe-se que a inclinação cai bruscamente e o nível do sinal fica próximo ao ruído, pode-se suspeitar de uma fibra rompida ou de uma conexão mal feita.

Existem OTDRs com diferentes finalidades. Antes de fazer a compra do mesmo, necessita-se avaliar o resultado que deseja-se obter com o equipamento. Algumas das perguntas que podem ser feitas são: Há necessidade de ser portátil? Precisa ter bateria? Se precisar, esta deseja-se que esta dure por longo período? A tela precisa ser grande? Qual distância máxima da fibra que desejá-se trabalhar? Qual resolução que se espera nos resultados obtidos? Conforme a pesquisa de preço feito no site mercado livre no dia 30/11/2018 [3], um OTDR novo pode variar entre R\$3.981, e R\$35.000.

V. ESPECTRÔMETRO

VI. CONCLUSÃO

REFERÊNCIAS

- I. The Fiber Optic Association, "Optical time domain reflectometer (otdr)."
 A. Zólomy, "Otdr optical time domain reflectometer," 1997.
- [3] "Otdr optical time domain reflectometer," Nov.