ISYS1055 - Database Design Project

S4068455 - Aswin kumar Sridhar

Part B: Designing the Database

ER diagram:

Assumption:

- *per_hundred* and *per_million* attribute can be identified in the runtime and hence it is redundant
- Using *iso_code* as the key to identify the location thus creating as an entity which reduce anomalies
- Age group is created as an entity and all the age group classification happens same categories.
- Last_observation_date is invoked between vaccine and iso_code
- Considering per hundred in vaccination-by-age-group entity as no data is given with respect to actual number for segregation by age
- No state information is given except us_state_vaccination and the data of states cannot be derived from vaccination hence new entity with same attribute as vaccination per states
- Not all country in **Vaccination** entity is been observed in **Observation** entity

• Not all the country is have source

Normalisation Challenge:

- location → iso_code, source_name → source_website hence separated it to a strong entity
- age_group is redundant and might cause anomalies hence separated as a strong entity
- vaccination by country is a redundant information which can be derived from vaccination entity and removed.
- All the entity are dependent on *location* or *dates* hence made a weak entity.
- Auto increment source id as same source name have different source_website
- Not all country in **Vaccination** entity is been observed in **Observation** entity
- Certain vaccine are not in manufacture_date entity and are available in vaccination
- "2023-05-10" is in state_vaccination but not in vaccination table thus new entry is created.

Database schema

- 1. Strong entity
 - 1. Age group(age group)
 - 2. Vaccine(vaccine)
 - 3. Country(iso code, location)
 - 4. **Source**(source_id, source_name, source_website)

2. Weak entity

- 1. Manufacture date(<u>iso code*, date, vaccine</u>*, total vaccinations)
- 2. **Vaccination**(<u>iso_code</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_booster, daily_vaccination_raw, daily_vaccination, daily_people_vaccinated)
- 3. **State_Vaccinations**(<u>iso_code*, date*, states</u>, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated, daily vaccination raw, daily vaccinations, share doses used, total boosters)

- 4. Vaccination_age(iso_code*, date*, age_group*, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people with booster per hundred)
- 3. One-One relationship:- No 1-1 relationship between entity
- 4. One-Many relationship:-
 - 1. Country(iso code*, location, source id*, last observation date)
- 5. Many-Many relationship:-
 - 1. CountryVaccine(iso code*, vaccine*)
- **6. Multivalued attribute:-** No multivalued attribute as the vaccine type itself is created as an strong entity
- 7. Degree of relationship:- There is no degree of relationship exist

Final Schema:

- CountryVaccine(iso code*, vaccine*)
- Country(iso code*, location, source id*, last observation date)
- Manufacture date(<u>iso code*, date, vaccine</u>*, total vaccinations)
- Vaccination(<u>iso_code</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_booster, <u>daily_vaccination_raw</u>, <u>daily_vaccination</u>, <u>daily_people_vaccinated</u>)
- State_Vaccinations(iso_code*, date*, states, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated, daily_vaccination_raw, daily_vaccinations, share_doses_used, total_boosters)
- Vaccination_age(<u>iso_code*</u>, <u>date*</u>, <u>age_group*</u>, people_vaccinated_per_hundred, people fully vaccinated per hundred, people with booster per hundred)
- Age group(age group)
- Vaccine(vaccine)
- Source(source_id, source_name, source_website)