Lecture 5

Introduction to Relational Algebra - 2

Some more about Traditional Set Operators

- Commutative
 - Union, Intersect and Times are Commutative:
 - A UNION B is equal to B UNION A
 - A INTERSECT B is equal to B INTERSECT A
 - A TIMES B is equal to B TIMES A
 - MINUS is not Commutative i.e.,
 - A MINUS B is not equal to B MINUS A
- Associative
 - Union, Intersect and Times are Associative:
 - (A UNION B) UNION C is equal to A UNION (B UNION C)
 - (A INTERSECT B) INTERSECT C is equal to A INTERSECT (B INERSECT C)
 - (A TIMES B) TIMES C is equal to A TIMES (B TIMES C)
 - MINUS is not Associative i.e.,
 - (A MINUS B) MINUS C is not equal to A MINUS (B MINUS C)

RESTRICTION

- is actually abbreviation for θ-restriction, where "θ" stands for any simple scalar comparison operator(=,<,>,=)
- θ-restriction of relation A on attributes X and Y(in that order)
 A where X θ Y

is a relation with the same heading as $\bf A$ and with a body consisting of the set of all tuples of $\bf A$ such that the condition " $\bf X$ $\bf \theta$ $\bf Y$ " evaluates true for those tuples.

- X and Y must be defined on the same domain
- operator must make sense for that domain

RESTRICTION

 Returns a relation consisting of all tuples from a specified relation that satisfy a specified condition.

A

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

A WHERE Department="Sales"

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S3	Karim	21	Sales	255-79-256369
S5	Sadiq	32	Sales	245-68-345371

PROJECTION

- the projection of relation A on X,Y,...,Z (where each of X,Y,...,Z is an attribute of A) is a relation with heading {X,Y,...,Z} and body consisting of the set of all tuples {X:x,Y:y,...,Z:z} such that a tuple appears in A with X-value x, Y-value y,..., Z-value z.
- projection yields a vertical subset of relation

PROJECTION

 Returns a relation consisting of all tuples that remain as (sub) tuples in a specified relation after specified attributes have been eliminated

A

ID	Name	Age	Department	NIC
S1	Ahmad	23	Sales	245-77-245367
S2	Salman	34	Marketing	234-66-245368
S3	Karim	21	Sales	255-79-256369
S4	Tariq	29	Admin	245-71-325370
S5	Sadiq	32	Sales	245-68-345371

A [Name]

Name	
Ahmad	
Salman	
Karim	
Tariq	
Sadiq	

A where Department="Sales"

[Name Denartment]				
Name	Age	Department		
Ahmad	23	Sales		
Karim	21	Sales		
Sadiq	32	Sales		

JOIN(NATURAL JOIN)

Let relations A and B have headings [X,...,Y] and [X,...,Z] respectively, then

A JOIN B

is a relation with heading [X,...,Y,...,Z] and with a body consisting of the set of all tuples [X:x,Y:y,Z:z] such that a tuple appears in A with X-value x and Y-value y and in B with X-value x and Z-value z.

there should be some common attribute(s)

JOIN(NATURAL JOIN)

 Returns a relation consisting of all possible tuples that are combination of two tuples, one from each of the two specified relations, such that two tuples contributing to any given combination have a common value for the common attributes (and that value appears just once)

A

ID	Name
S1	Ahmad
S2	Salman
S3	Karim

P

ID	Subject
S1	Math
S2	Urdu
S1	English

A JOIN B

ID	Name	Subject
S1	Ahmad	Math
S1	Ahmad	English
S2	Salman	Urdu

θ-JOIN

 Let relations A and B have no attribute names in common (as in Cartesian Product), and let \(\theta\) be as defined in restriction. Then the \(\theta\text{-}\) JOIN of relation A on attribute X with relation B on attribute Y is defined by the result of the expression

(A TIMES B) where X θ Y

- it is a relation with same heading as Cartesian Product of A and B and with a body consisting of the set of all those tuples belonging to that Cartesian Product of that evaluate true for X θ Y.
- if *\mathcal{\theta}* is "equals", the *\mathcal{\theta}*-JOIN is called an EQUIJOIN.

• *θ*- JOIN

A

ID	Name
S1	Ahmad
S2	Salman
S3	Karim

B

ID	Subject	
S1	Math	
S2	Urdu	
S1	English	

(A TIMES B) where IDA > IDB

IDA	Name	IDB	Subject
S2	Salman	S1	Math
S2	Salman	S1	English
S3	Karim	S1	Math
S3	Karim	S1	English
S3	Karim	S2	Urdu

(A TIMES B) where IDA = IDB

IDA	Name	IDB	Subject
S1	Ahmad	S1	Math
S1	Ahmad	S1	English
S2	Salman	S2	Urdu

DIVISION

Let relations A and B have headings

$$\{x_1, x_2, ..., x_m, y_1, y_2, ..., y_n\}$$
 and $\{y_1, y_2, ..., y_n\}$

respectively; i.e., attributes $y_1, y_2, ..., y_n$ are common, A additionally has attributes $x_1, x_2, ..., x_m$, B has no other attributes. Then division of A by B

A DIVIDEDBY B

is a relation with heading $x_1, x_2, ..., x_m$ and body consisting of the set of all tuples $\{X_1:x_1,X_2:x_2,...,X_m:x_m\}$ such that a tuple $\{X_1:x_1,X_2:x_2,...,X_m:x_m, Y_1:y_1,Y_2:y_2,...,Y_n:y_n\}$ appears in A for all tuples $\{Y_1:y_1,Y_2:y_2,...,Y_n:y_n\}$ appearing in B.

A is called dividend(DEND) and B is called divisor(DOR)

DIVISION

 Take two relations, one binary and one unary, and returns a relation consisting of all values of one attribute of binary relation that match(in the other attribute) all the values in the unary relation.

Α

ID	Subject
S1	Math
S2	Urdu
S1	English
S1	Urdu

B

ID	
S1	
S2	

A DIVIDEBY B

Some Facts

- If A and B have no common attribute names in common,
 A JOIN B is equal to A TIMES B
- In EQUIJOIN, if one of the two attributes having common values is eliminated (may be through projection), then the result is equal to the natural join.
- JOIN is both commutative and associative i.e.,
 A JOIN B = B JOIN A
 A JOIN (B JOIN C) = (A JOIN B) JOIN C

Quiz # 2

- Consider relations A and B such that
 - Cardinalty of A= 12, Degree of A= 4
 - Cardinalty of B= 10, Degree of B= 4
 - Cardinalty of A UNION B = 20

what would be the value of following:

- Cardinalty and Degree of A INTERSECT B
- Cardinalty and Degree of A TIMES B
- Degree of A UNION B
- Cardinalty and Degree of A MINUS B
- Cardinalty and Degree of B MINUS A