California City Segmentation for Real Estate Industry

Rui Luo

May 12 2019

City Segmentation is important for decision making

- This project aims to cluster a group of cities in California in order to split the cities into different groups so that the cities within a group are very similar type.
- Obtaining venues data for each city is the necessary process, and the cities will be grouped based on the most common ten venue types of each city.
- Real estate companies would be very interested in city segmentation since they could utilize this to find similar cities and build business strategy that can be applied to these similar cities.
- This could reduce the cost and potentially increase the profits.

Data Acquisition and Cleaning

- California cities data can be obtained from simplemaps.com
- The venues data for each city can be obtained from Foursquare
- · City name, latitude, longitude, and population density for each city
- Cities with 1000.0 or higher density
- Dataset will be sorted into a new dataset that has city name, 1st most common venue type, 2nd most common venue type, until 10th most common venue type.

Gathering venues for each city from Foursquare API

```
In [134]: # explorer the dataset
    print(cities_venues.shape[:])
    cities_venues.head()

(52166, 7)
```

Out[134]:

	city	city Latitude	city Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Kensington	37.9084	-122.2805	The Little Farm	37.909633	-122.264792	Farm
1	Kensington	37.9084	-122.2805	Blake Garden	37.912217	-122.281758	Garden
2	Kensington	37.9084	-122.2805	Indian Rock Park	37.892207	-122.273088	Park
3	Kensington	37.9084	-122.2805	Zachary's Chicago Pizza	37.891453	-122.278608	Pizza Place
4	Kensington	37.9084	-122.2805	Rivoli	37.891095	-122.286327	New American Restaurant

Integrated into a dataset that will be used for k-means

```
In [146]: num_top_venues = 10
          indicators = ['st', 'nd', 'rd']
          # create columns according to number of top venues
          columns = ['city']
          for ind in np.arange(num_top_venues):
                  columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
                  columns.append('{}th Most Common Venue'.format(ind+1))
          # create a new dataframe
          cities_venues_sorted = pd.DataFrame(columns=columns)
          cities_venues_sorted['city'] = CA_grouped['city']
          for ind in np.arange(CA_grouped.shape[0]):
           cities_venues_sorted.iloc[ind, 1:] = return_most_common_venues(CA_grouped.iloc[ind, :], num_
          # explorer the sorted dataset that will be used for modeling
          print(cities_venues_sorted.shape)
          cities_venues_sorted.head()
         (605, 11)
```

Out[146]

	city	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8t Ce Ve
0	Agoura Hills	Deli / Bodega	Breakfast Spot	Brewery	American Restaurant	Hotel	Gym / Fitness Center	Mexican Restaurant	Fa
1	Alameda	Café	Beach	Coffee Shop	Mexican Restaurant	Grocery Store	Deli / Bodega	Sushi Restaurant	w
2	Albany	Coffee Shop	Pizza Place	Grocery Store	Trail	Flower Shop	Brewery	Mexican Restaurant	Ва
3	Alhambra	Chinese Restaurant	Mexican Restaurant	Convenience Store	Burger Joint	Italian Restaurant	Bakery	Dessert Shop	Pa
4	Aliso Viejo	Park	Pizza Place	Grocery Store	Burger Joint	Bakery	Sushi Restaurant	Breakfast Spot	Me Re
5	Alondra Park	Japanese Restaurant	Burger Joint	Convenience Store	Cosmetics Shop	Noodle House	Coffee Shop	Mediterranean Restaurant	Vi Re
6	Alpaugh	Fast Food Restaurant	Sandwich Place	Mexican Restaurant	Discount Store	Pizza Place	Convenience Store	Pharmacy	De

Clustering results – 6 groups

Groups overview

Conclusion

- Acquired California city data from Simplemaps
- Extracted the cities with 1000.00 or higher population density
- Retrieved venues of each city from FourSquare API and integrated them with city data
- K-means machine learning technique and 6 clusters of cities
- Real Estate company could use the results to apply strategy to the similar cities