Matrices

Numbers are used to give information on a quantity. Matrices can be used to give information of two or more quantities such an occasion given below.

Example:

Three students named A, B & C got prized for their performances in the examination. There were,

6 exercise books and 3 pens in A's parcel

4 exercise books and 2 pens in B's parcel

3 exercise books in C's parcel

We can show this information in a table.

	Exercise books	Pens
A	6	3
В	4	2
C	3	0

This information can be forwarded as below.

$$\begin{pmatrix} 6 & 3 \\ 4 & 2 \\ 3 & 0 \end{pmatrix} \longleftarrow \mathsf{Matrix}$$

Definition of a Matrix

A matrix is a rectangular array of numbers. If the array has 'm' number of rows and 'n' number of columns, then it is a $m \times n$ matrix. The number of m and n are called dimensions of the matrix.

$$\begin{pmatrix} 6 & 3 \\ 4 & 2 \\ 3 & 0 \end{pmatrix}$$
 This matrix contains 3 rows and 2 columns

Notations:

Matrices are commonly written in box brackets or parentheses. Matrices are usually symbolized using upper case letters, while lower case letters representing the entries/elements.

$$A = \left(a_{ij}\right)_{m \times n}$$

where,

i is the row number

j is the column number

We will use A_{ij} to represent the entry in i^{th} row and j^{th} column of matrix A.

Types of Matrices

1. Null Matrix

If all the elements of a matrix are zero then it is called as a null matrix or zero matrix.

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{2\times 3}$$

2. Row Matrix

If a matrix has just one row, then it is called as a row matrix.

$$(6 \ 4 \ 5)_{1\times 3}$$

3. Column Matrix

If a matrix has just one column, then it is called as a column matrix.

$$\begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}_{3 \times 1}$$

4. Square Matrix

A square matrix is a matrix with the same number of rows and columns.

$$\begin{pmatrix} 4 & 2 & 7 \\ 3 & 6 & 1 \\ 1 & 5 & 2 \end{pmatrix}_{3 \times 3}$$

5. Diagonal Matrix

A diagonal matric is a matrix having non zero elements only in the diagonal running from upper left to the lower right.

Note: Every diagonal matrix is a square matrix.

$$\begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}_{2 \times 2} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}_{3 \times 3}$$

If all entries of A below the main diagonal are zero, then A is called as an upper triangular matrix.

$$\left(\begin{array}{ccc}
1 & 3 & 2 \\
0 & 4 & 1 \\
0 & 0 & 5
\end{array}\right)_{3\times 3}$$

If all entries of A above the main diagonal are zero, then A is called as a lower triangular matrix.

$$\begin{pmatrix}
1 & 0 & 0 \\
4 & 3 & 0 \\
5 & 2 & 4
\end{pmatrix}_{3\times 3}$$

6. Identity Matrix

The identity matrix I_n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to zero.

Note: Every identity matrix is a square matrix.

$$I_{1} = \begin{bmatrix} 1 \end{bmatrix}_{1 \times 1} \qquad I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2 \times 2} \qquad I_{n} = \begin{bmatrix} 1 & 0 & . & . & 0 \\ 0 & 1 & . & . & 0 \\ . & . & . & . & . \\ 0 & 0 & . & . & 1 \end{bmatrix}_{n \times n}$$

7. Equal Matrices

Two matrices are said to be equal if all three of the following conditions are met.

- Each matrix has same number of rows.
- Each matrix has same number of columns
- Corresponding elements within each matrix are equal.

Example:

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $Y = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$

When

$$a = p$$

$$b = q$$

$$c = r$$

$$d = s$$

Then X and Y are equal matrices. i.e X = Y.

Matrix Operations

1. Addition of matrices

Two matrices can be added if and only if they are of the same order. A matrix of the same order is obtained as the sum of two matrices by adding the corresponding elements.

Example

1. If
$$A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}_{2 \times 2}$$
 and $B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}_{2 \times 2}$, then find A+B.
$$A + B = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}_{2 \times 2} + \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}_{2 \times 2} = \begin{pmatrix} 2+3 & 4+2 \\ 1+1 & 3+0 \end{pmatrix}_{2 \times 2} = \begin{pmatrix} 5 & 6 \\ 2 & 3 \end{pmatrix}_{2 \times 2}$$

2. If
$$A = \begin{pmatrix} 2 & 8 & 3 & -4 \\ 1 & 2 & 5 & 0 \end{pmatrix}_{2\times 4}$$
 and $= \begin{pmatrix} 1 & -3 & 2 & 7 \\ 5 & -6 & 3 & 1 \end{pmatrix}_{2\times 4}$, then find A+B.

$$A + B = \begin{pmatrix} 2 & 8 & 3 & -4 \\ 1 & 2 & 5 & 0 \end{pmatrix}_{2\times 4} + \begin{pmatrix} 1 & -3 & 2 & 7 \\ 5 & -6 & 3 & 1 \end{pmatrix}_{2\times 4}$$

$$= \begin{pmatrix} 2+1 & 8+(-3) & 3+2 & (-4)+7 \\ 1+5 & 2+(-6) & 5+3 & 0+1 \end{pmatrix}_{2\times 4} = \begin{pmatrix} 3 & 5 & 5 & 3 \\ 6 & -4 & 8 & 1 \end{pmatrix}_{2\times 4}$$

3. If
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 5 & 0 & -3 \end{pmatrix}_{2\times 3}$$
 and $B = \begin{pmatrix} 1 & 2 & 6 \\ 7 & 8 & 0 \\ 3 & 2 & 1 \end{pmatrix}_{3\times 3}$ then find A+B.

2. Subtraction of matrices

Two matrices can be subtracted if and only if they are of the same order. A matrix of the same order is obtained as the difference of two matrices by subtracting the corresponding elements.

Example:

1. If
$$A = \begin{pmatrix} 2 & 4 \\ 1 & 8 \end{pmatrix}_{2 \times 2}$$
 and $= \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}_{2 \times 2}$, then find A-B.
$$A - B = \begin{pmatrix} 2 & 4 \\ 1 & 8 \end{pmatrix}_{2 \times 2} - \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}_{2 \times 2} = \begin{pmatrix} 2 - 1 & 4 - 2 \\ 1 - 0 & 8 - 4 \end{pmatrix}_{2 \times 2} = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}_{2 \times 2}$$

2. If
$$A = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 6 & 9 \end{pmatrix}_{2\times 3}$$
 and $= \begin{pmatrix} -2 & 0 & -5 \\ -3 & 4 & 7 \end{pmatrix}_{2\times 3}$, then find A-B.
$$A - B = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 6 & 9 \end{pmatrix}_{2\times 3} - \begin{pmatrix} -2 & 0 & -5 \\ -3 & 4 & -7 \end{pmatrix}_{2\times 3}$$

$$= \begin{pmatrix} 1 - (-2) & -1 - 0 & 3 - (-5) \\ 0 - (-3) & 6 - 4 & 9 - 7 \end{pmatrix}_{2\times 3}$$

$$= \begin{pmatrix} 3 & -1 & 8 \\ 3 & 2 & 2 \end{pmatrix}_{2\times 3}$$

3. Multiplication by a scalar

When a matrix is multiplied by an integer, all elements should be multiplied by the particular integer.

Example:

If
$$A = \begin{pmatrix} 1 & 5 & 3 \\ 8 & 1 & 0 \end{pmatrix}_{2\times 3}$$
, then find 5A.

$$5A = 5 \begin{pmatrix} 1 & 5 & 3 \\ 8 & 1 & 0 \end{pmatrix}_{2\times 3} = \begin{pmatrix} 5 \times 1 & 5 \times 5 & 5 \times 3 \\ 5 \times 8 & 5 \times 1 & 5 \times 0 \end{pmatrix}_{2\times 3} = \begin{pmatrix} 5 & 25 & 15 \\ 40 & 5 & 0 \end{pmatrix}_{2\times 3}$$

Exercise 01

Given that
$$A = \begin{pmatrix} 2 & -1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} 2 & 3 & 0 \\ 4 & 1 & 2 \end{pmatrix}$ $C = \begin{pmatrix} 4 & 3 \\ 0 & 6 \end{pmatrix}$

$$D = (5 -3 4)$$
 $E = \begin{pmatrix} 5 & -2 \\ 2 & 1 \end{pmatrix}$ $F = \begin{pmatrix} 2 & 4 \\ 1 & 5 \\ 3 & 2 \end{pmatrix}$

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 3 \end{pmatrix} \qquad H = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 4 & 1 \end{pmatrix}$$

- I. Write down the order of the matrices given above.
- II. Write down the pairs of matrices conformable for addition.
- III. Find, if it exists
 - a. A+D
 - b. B+G
 - c. C+E
 - d. F+H
- IV. If a_{ij} , b_{ij} , c_{ij} , ... are typical elements of A, B, C, ... write down the values of a_{12} , b_{23} , c_{22} , d_{13} , e_{11} , f_{31} , g_{12} , h_{32} .
- V. Find
 - a. 2A
 - b. -2C
 - c. 3E
 - d. 4G
 - e. -3H
- VI. Find
 - a. 2B+3G
 - b. 2E-3C
 - c. 3F+5H

Transpose of a Matrix

The transpose of $m \times n$ matrix A, written as A^T , is defined as the $n \times m$ matrix whose i^{th} row is the i^{th} column of A and j^{th} column is the j^{th} row of A. This means that, if $A = \left(a_{ij}\right)_{m \times n}$, then $A^T = \left(a_{ji}\right)_{n \times m}$.

Example:

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 4 & 5 & 6 \end{pmatrix}_{2\times 3}$$
, then $A^T = \begin{pmatrix} 1 & 4 \\ 3 & 5 \\ 2 & 6 \end{pmatrix}_{3\times 2}$

Note: square matrix A is said to be symmetric if $A = A^T$.

Example:

If
$$B = \begin{pmatrix} 2 & 4 \\ 1 & 5 \\ 3 & 2 \end{pmatrix}$$
, then $B^T = \begin{pmatrix} 2 & 1 & 3 \\ 4 & 5 & 2 \end{pmatrix}$

If
$$C = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
, then $C^T = \begin{pmatrix} 5 \\ -3 \\ 4 \end{pmatrix}$

If
$$D = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
, then $D^T = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ 3)

Find the transpose of following matrices and hence identify which matrices can be considered as symmetric matrices.

$$A = \begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix}_{2 \times 2} \qquad B = \begin{pmatrix} 1 & 4 & 3 \\ 4 & 0 & 5 \\ 3 & 5 & 2 \end{pmatrix}_{3 \times 3}$$

Matrix Multiplication

Let A and B be two matrices. If the number of columns in A is equal to the number of rows in B; we say that A and B are conformable for the matrix product AB.

If A is an order $m \times n$ and B is of order $n \times p$, then the product AB is defined and is a matrix of order $m \times p$.

Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times p}$. Then the product AB is defined as follows.

$$AB = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right]$$

That is if
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$

Then AB =
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$=\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21}+a_{13}b_{31} & a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{32} & a_{11}b_{13}+a_{12}b_{23}+a_{13}b_{33} \\ a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31} & a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32} & a_{21}b_{13}+a_{22}b_{23}+a_{23}b_{33} \end{bmatrix}$$

In general $AB \neq BA$.

Example:

Let $A = \begin{pmatrix} 3 & 2 & 1 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 3 \\ 3 & 2 & 5 \end{pmatrix}$. Since A is a 2×3 and B is a 3×3 AB is

defined and is given by,

AB

$$AB$$

$$= \begin{pmatrix} 3 \times 1 + 2 \times (-1) + 1 \times 3 & 3 \times 2 + 2 \times 0 + 1 \times 2 & 3 \times 0 + 2 \times 3 + 1 \times 5 \\ 4 \times 1 + 5 \times (-1) + 6 \times 3 & 4 \times 2 + 5 \times 0 + 6 \times 2 & 4 \times 0 + 5 \times 3 + 6 \times 5 \end{pmatrix}$$

$$= \begin{pmatrix} 3 - 2 + 3 & 6 + 0 + 2 & 0 + 6 + 5 \\ 4 - 5 + 18 & 8 + 0 + 12 & 0 + 15 + 30 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 8 & 11 \\ 17 & 20 & 45 \end{pmatrix}$$

Exercise 02

Let
$$A = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$

- I. Obtain product AB and BA.
- Check whether AB = BA or not. II.

Determinant of a square matrix

Every square matrix can be associated with a real number called its determinant.

Definition of the Determinant of a 2×2 matrix

The determinant of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by

$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ab - cd$$

Note that the determinant is the difference of the products of the two diagonals of the matrix.

Exercise 03

Find the determinant of each matrix.

$$I. \quad A = \begin{pmatrix} 2 & -3 \\ 1 & 2 \end{pmatrix}$$

II.
$$B = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

III.
$$C = \begin{pmatrix} 0 & \frac{3}{2} \\ 2 & 4 \end{pmatrix}$$

Definition of the determinant of a 3×3 matrix.

Consider 3×3 matrix
$$A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$

Its determinant is calculated as follows.

$$|A| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$= a_1(b_2c_3 - c_2b_3) - b_1(a_2c_3 - c_2a_3) + c_1(a_2b_3 - b_2a_3)$$

Example

Find the determinant of each matrix.

$$A = \begin{pmatrix} 5 & 7 & 3 \\ 4 & 8 & 2 \\ 4 & 6 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 2 & -1 \\ 0 & 4 & -6 \\ 2 & -1 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 7 & 3 \\ 4 & 8 & 2 \\ 4 & 6 & 3 \end{pmatrix}$$

$$|A| = \begin{vmatrix} 5 & 7 & 3 \\ 4 & 8 & 2 \\ 4 & 6 & 3 \end{vmatrix} = 5(24 - 12) - 7(12 - 8) + 3(24 - 32) = 5 \times 12 - 7 \times 4 + 3 \times (-8)$$

$$= 60 - 28 - 24$$

$$= 8$$

Adjoint Matrix

Transpose of the matrix including cofactors is called as the Adjoint matrix.

Minors and Cofactor of a square matrix

If A is a square matrix, the minor M_{ij} of the entry a_{ij} is the determinant of the matrix obtained by deleting the i^{th} row and j^{th} column of A.

The cofactor C_{ij} of the entry a_{ij} is,

$$C_{ij} = (-1)^{i+j} \ M_{ij}$$

For example if $A=\begin{pmatrix}a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{pmatrix}$ the minor of a_1 is $\begin{vmatrix}b_2&c_2\\b_3&c_3\end{vmatrix}$ and the minor of b_2 is $\begin{vmatrix}a_2&c_1\\a_3&c_3\end{vmatrix}$

Note: sign pattern for cofactors

1.
$$3 \times 3$$
 matrix $\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$
2. 4×4 matrix $\begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix}$

For 3×3 matrix
$$\begin{bmatrix} M_{11} & -M_{12} & M_{13} \\ -M_{21} & M_{22} & -M_{23} \\ M_{31} & -M_{32} & M_{33} \end{bmatrix}$$

For 4× 4 matrix
$$\begin{bmatrix} M_{11} & -M_{12} & M_{13} & -M_{14} \\ -M_{21} & M_{22} & -M_{23} & M_{24} \\ M_{31} & -M_{32} & M_{33} & -M_{34} \\ -M_{41} & M_{42} & -M_{43} & M_{44} \end{bmatrix}$$

Example:

Find the adjoint matrix of A where $A = \begin{pmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{pmatrix}$

To find the minor M_{11} , delete the first row and first column of A and evaluate the determinant of the resulting matrix.

$$M_{11} = \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = (-1)(1) - 2 \times 0 = -1 - 0 = -1$$

Similarly, to find $M_{12}\,$, delete the first row and second column.

$$\begin{pmatrix}
0 & 2 & 1 \\
3 & -1 & 2 \\
4 & 0 & 1
\end{pmatrix}$$

$$M_{12} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = (3 \times 1) - (4 \times 2) = 3 - 8 = -5$$

By continuing this pattern, you will obtain the minors as,

$$M_{11} = -1$$
 $M_{12} = -5$ $M_{13} = 4$ $M_{21} = 2$ $M_{22} = -4$ $M_{23} = -8$ $M_{31} = 5$ $M_{32} = -3$ $M_{33} = -6$

Now, to find the cofactors, combine these minors with the pattern of signs for a 3×3

$$C_{11} = -1$$
 $C_{12} = 5$ $C_{13} = 4$ $C_{21} = -2$ $C_{22} = 4$ $C_{23} = 8$ $C_{31} = 5$ $C_{32} = 3$ $C_{33} = -6$

Therefore adjoint matrix of A,

$$adj(A) = \begin{bmatrix} -1 & 5 & 4 \\ -2 & -4 & 8 \\ 5 & 3 & -6 \end{bmatrix}^{T} = \begin{bmatrix} -1 & -2 & 5 \\ 5 & -4 & 3 \\ 4 & 8 & -6 \end{bmatrix}$$

Exercise 04

Find all minors and cofactors of matrix B. Hence obtain adj(B) where

$$B = \begin{bmatrix} 4 & 0 & 2 \\ -3 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

Inverse of a matrix

Let A be a $n \times n$ square matrix and let I be the $n \times n$ identity matrix. If there exist a matrix A^{-1} such that

$$AA^{-1} = I_n = A^{-1}A.$$

Then A^{-1} is called as the inverse of A.

Finding inverse of a matrix

- If a matrix A has an inverse, A is called invertible (or non- singular); otherwise A is called as non-invertible (or singular).
- A non-singular matrix cannot have an inverse.

Example:

Find the inverse of $A = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}$. To find the inverse of A try to solve the matrix equation $AA^{-1} = I$.

$$AA^{-1} = I$$

$$\begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a+4c & b+4d \\ -a-3c & -b-3d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$a + 4c = 1$$
 -----01

$$b + 4d = 0$$
-----02

$$-a - 3c = 0$$
 -----03

$$-b - 3d = 1$$
-----04

By solving above equations;

$$a = -3$$

$$b = -4$$

$$c = 1$$

$$d = 1$$

Therefore
$$A^{-1} = \begin{bmatrix} -3 & -4 \\ 1 & 1 \end{bmatrix}$$
.

For a 2×2 matrix, many people prefer to use a formular for the inverse. This simple formular which is only for 2×2 matrix is explained as follows.

If A is a 2 ×2 matrix given by $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then Ais invertible if and only if

$$|A| = ad - bc \neq 0$$

The inverse is given by

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \text{ or } A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Exercise 05

Find the inverse of each matrix if exists.

$$A = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -1 \\ -6 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \qquad D = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$$

For any $n \times n$ matrix A: $A^{-1} = \frac{adj(A)}{det(A)}$

$$A^{-1} = \frac{adj(A)}{\det(A)}$$

Example:

Find the inverse of A =
$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{bmatrix}$$

$$\det(A) = |A| = 1(0-2) - (-1)(-3+6) + 0(-2-0) = -2+3 = 1 \neq 0$$

Therefore A^{-1} exists.

$$C_{11} = +(-2) = -2$$
 $C_{12} = -(-3+6) = -3$ $C_{13} = (-2-0) = -2$ $C_{21} = -(3-0) = -3$ $C_{22} = (-3-0) = -3$ $C_{23} = -(-2+6) = -4$ $C_{31} = (1-0) = 1$ $C_{32} = -(-1-0) = 1$ $C_{33} = (0+1) = 1$

$$adj(A) = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}^{T} = \begin{bmatrix} -2 & -3 & -2 \\ -3 & -3 & -4 \\ 1 & 1 & 1 \end{bmatrix}^{T} = \begin{bmatrix} -2 & -3 & 1 \\ -3 & -3 & 1 \\ -2 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} adj(A) \\ \det(A) \end{bmatrix} = \begin{bmatrix} 1 \\ -3 & -3 & 1 \\ -2 & -4 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & -3 & 1 \\ -3 & -3 & 1 \\ -2 & -4 & 1 \end{bmatrix}$$

Exercise 06

Find the inverse of A if exists.

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & 4 & -6 \\ 2 & -1 & 3 \end{bmatrix}$$

Applications of matrices and determinants

Cramer's Rule

This rule uses determinants to write the solution of a system of linear equations. If a system of n linear equations in n variables has a coefficient matrix A with a non-zero determinant|A|, the solution of the system is,

$$X_i = \frac{\det(A_i)}{\det(A)}$$
; $i = 1,2,3,...,n$

Therefore
$$X_1 = \frac{|A_1|}{|A|}$$

Therefore
$$X_1=\frac{|A_1|}{|A|}$$
 $X_2=\frac{|A_2|}{|A|}$,, $X_n=\frac{|A_n|}{|A|}$

Where the i^{th} column of A_i is the column of constants in the system of equation. If the determinant of the coefficient matrix is zero, the system has either no or infinitely many solutions.

Example:

Use Cramer's rule to solve the system of linear equations.

$$4x - 2y = 10$$

$$3x - 5y = 11$$

Coefficient matrix
$$A = \begin{bmatrix} 4 & -2 \\ 3 & -5 \end{bmatrix}$$

Solution matrix
$$b = \begin{bmatrix} 10 \\ 11 \end{bmatrix}$$

First, find the determinant of the coefficient matrix.

$$|A| = \begin{vmatrix} 4 & -2 \\ 3 & -5 \end{vmatrix} = 4 \times (-5) - (-2) \times 3 = -20 + 6 = -14 \neq 0$$

Therefore the linear system has finite solutions.

Apply the Cramer's Rule.

$$|A_x| = \begin{vmatrix} 10 & -2 \\ 11 & -5 \end{vmatrix} = -50 + 22 = -28$$

$$x = \frac{|A_x|}{|A|} = \frac{-28}{-14} = 2$$

$$|A_y| = \begin{vmatrix} 4 & 10 \\ 3 & 11 \end{vmatrix} = 44 - 30 = 14$$

$$y = \frac{|A_y|}{|A|} = \frac{14}{-14} = -1$$

Exercise 07

Use Cramer's Rule to solve the system of linear equations.

Solutions

$$\begin{aligned}
\mathbf{I} &= z\mathbf{E} - \sqrt{2} + x - \mathbf{I} \\
0 &= z + \mathbf{I} &= \mathbf{I} \mathbf{I} \\
0 &= z + \mathbf{I} &= \mathbf{I} \mathbf{I} \\
0 &= z + \mathbf{I} &= \mathbf{I} \mathbf{I} \\
0 &= z + \mathbf{I} \\$$

$$\frac{1}{\varepsilon} - \frac{1}{\varepsilon} - \frac{1}{\varepsilon} = \frac{1}$$