Extra notes: stable formulas

Advanced Model Theory

March 23, 2022

In class, we have given several equivalent definitions of stability:

- 1. No formula has the order property.
- 2. All types over models are definable.
- 3. T is λ -stable for some λ .
- 4. No formula has the dichotomy property.

It turns out that these equivalences hold formula-by-formula:

Theorem A. Let $\varphi(\bar{x}; \bar{y})$ be a formula. The following are equivalent:

- 1. $\varphi(\bar{x}; \bar{y})$ does not have the order property.
- 2. For any model M, any φ -type over M is definable.
- 3. For any set A, the number of φ -types over A is at most $|A| + \aleph_0$.
- 4. There is an infinite cardinal λ such that if A has size at most λ , then the number of φ -types over A is at most λ .
- 5. For any set A, any φ -type over A is definable.
- 6. $\varphi(\bar{x}; \bar{y})$ does not have the dichotomy property.

(See §1 below for the definition of φ -types and definability of φ -types.) A formula is said to be **stable** if it satisfies the equivalent conditions listed above. A theory is stable iff all formulas are stable.

We prove the equivalence of the first four conditions in §2, and the last two in §3. Section 3 builds off the earlier set of notes dichotomy-and-definable-types.pdf, which otherwise isn't used here. In the process, we will resolve some loose ends from class:

• Fact 15 from the March 17 notes said that the dichotomy property and order property are equivalent. This follows from Theorem A.

• Proposition 10 in the March 3 notes said that if some formula has the dichotomy property, then the theory isn't λ -stable for any λ . We give a new proof of this fact here, not using D_{α} and the suspicious application of compactness in Proposition 5 of the March 3 notes.¹

1 φ -types

(This section is entirely copied from the file dichotomy-and-definable-types.pdf. If you've read those notes, you can skip this section.)

Fix a theory T, a monster model \mathbb{M} , and a formula $\varphi(x_1,\ldots,x_n;\bar{y})$.

Definition 1. If $B \subseteq \mathbb{M}$ is a set and $\bar{a} \in \mathbb{M}^n$, then $\operatorname{tp}^{\varphi}(\bar{a}/B)$ is the partial type

$$\{\varphi(\bar{x};\bar{b}):\bar{b}\in B,\ \mathbb{M}\models\varphi(\bar{a},\bar{b})\}\ \cup\ \{\neg\varphi(\bar{x};\bar{b}):\bar{b}\in B,\ \mathbb{M}\models\neg\varphi(\bar{a},\bar{b})\}.$$

In other words, $\operatorname{tp}^{\varphi}(\bar{a}/B)$ is the set of formulas in $\operatorname{tp}(\bar{a}/B)$ of the form φ or $\neg \varphi$.

Remark 2. Suppose $\bar{a}, \bar{b} \in \mathbb{M}^n$.

1. $\operatorname{tp}^{\varphi}(\bar{a}/C) = \operatorname{tp}^{\varphi}(\bar{b}/C)$ if and only if

$$\forall \bar{c} \in C : \mathbb{M} \models (\varphi(\bar{a}, \bar{c}) \leftrightarrow \varphi(\bar{b}, \bar{c}))$$

So \bar{a} and \bar{b} have the same φ -type over C iff they satisfy exactly the same formulas of the form $\varphi(\bar{x}, \bar{c})$ with $\bar{c} \in C$.

2. $\bar{b} \in \mathbb{M}^n$ realizes $\operatorname{tp}^{\varphi}(\bar{a}/C)$ if and only if $\operatorname{tp}^{\varphi}(\bar{a}/C) = \operatorname{tp}^{\varphi}(\bar{b}/C)$.

Warning 3. Some authors like Pillay in his book Geometric Stability Theory use " φ -type" to mean something slightly different. But the definition here is more common in contemporary research.

Definition 4. $S_{\varphi}(B)$ is the set $\{\operatorname{tp}^{\varphi}(\bar{a}/B) : \bar{a} \in \mathbb{M}^n\}$.

Definition 5. A φ -type $p \in S_{\varphi}(B)$ is definable if there is an L(B)-formula $\psi(\bar{y})$ such that

For any
$$\bar{b} \in B$$
, $\varphi(\bar{x}, \bar{b}) \in p(\bar{x}) \iff \mathbb{M} \models \psi(\bar{b})$.

¹Proposition 5 in the March 3 notes said that if φ has the dichotomy property, then D_{α} is consistent for any ordinal α . Supposedly this follows from compactness. I'm sure this is correct and one can write down a valid proof. But it seems to me that the proof would be very messy, which is why I skipped it in class.

2 Stable formulas

Theorem 6. The following are equivalent for a formula $\varphi(\bar{x}; \bar{y})$.

- 1. φ does not have the order property.
- 2. For any model $M \leq M$, every φ -type over M is definable.
- 3. For any set $A \subseteq \mathbb{M}$, we have $|S_{\varphi}(A)| \leq |A| + \aleph_0$.
- 4. There is a cardinal λ such that if $A \subseteq \mathbb{M}$ and $|A| \leq \lambda$, then $|S_{\varphi}(A)| \leq \lambda$.

Proof. We will prove the following implications:

$$(1) \longrightarrow (2)$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(4) \longleftarrow (3)$$

The solid arrows work in general. We will prove $(2) \Longrightarrow (3)$ when the language is countable, and then prove $(1) \Longrightarrow (3)$ for the general case.

- $(1) \Longrightarrow (2)$: Proposition 12 in the March 17 notes.
- (2) \Longrightarrow (4): Take any $\lambda \geq |L|$. Given $A \subseteq \mathbb{M}$ with $|A| \leq \lambda$, there is a small model $M \leq \mathbb{M}$ containing A with $|M| \leq \lambda$, by the Löwenheim-Skolem theorem. Every φ -type over A extends to a φ -type over M, and so $|S_{\varphi}(A)| \leq |S_{\varphi}(M)|$. By (2), every φ -type over M is definable. A φ -type $p \in S_{\varphi}(M)$ is determined by the definable set $\{\bar{b} \in M : \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\}$. The number of such sets is at most $|L(M)| \leq \lambda$. Therefore $|S_{\varphi}(A)| \leq |S_{\varphi}(M)| \leq \lambda$.
- (2) \Longrightarrow (3) when L is countable: Condition (3) says that condition (4) holds for any $\lambda \geq \aleph_0$. When L is countable, the proof of (2) \Longrightarrow (4) gives this stronger statement.
- $(3) \Longrightarrow (4)$: Clear.
- (4) \Longrightarrow (1): Similar to the proof of Theorem 8 in the March 17 notes. For completeness, here are the details. Suppose for the sake of contradiction that φ has the order property. Fix λ as in (4). By Lemma 7 in the March 17 notes, there is a linear order I with a dense subset $S \subseteq I$ such that $|I| > \lambda$ and $|S| \le \lambda$. Take \bar{a}_i, \bar{b}_i for $i \in I$ such that

$$\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}_j) \iff i < j.$$

Let $C = {\bar{b}_j : j \in S}$. As in the proof of Theorem 8 in the March 17 notes, there is an injection

$$I \setminus S \to S_{\varphi}(C)$$

 $i \mapsto \operatorname{tp}^{\varphi}(\bar{a}_i/C).$

Then $|C| \leq |S| \leq \lambda$ but $|S_{\varphi}(C)| \geq |I \setminus S| > \lambda$, contradicting (4).

This completes the proof in the case when L is countable. In particular, (1)–(4) are equivalent in any structure over a countable language.

It remains to show that $(1) \Longrightarrow (3)$. If $L_0 \subseteq L$ and φ is an L_0 -formula, then the truth of (1) and (3) doesn't change when we pass to the reduct $\mathbb{M} \upharpoonright L_0$. Passing to a reduct, we may assume the language is countable. Then $(1) \Longrightarrow (3)$ was proved above.

Definition 7. A formula φ is *stable* if it satisfies the equivalent conditions of Theorem 6, that is, φ doesn't have the order property.

A theory is stable iff all formulas are stable. By Corollary 14 in the March 17 notes, it suffices to check stability of formulas of the form $\varphi(x; y_1, \ldots, y_m)$ (with x being a single variable rather than a tuple of variables).

3 Stability and the dichotomy property

Here are two more equivalent definitions of stability of φ :

Theorem 8. The following are equivalent for a formula φ :

- 1. φ does not have the dichotomy property.
- 2. For any set $A \subseteq M$, any φ -type over A is definable (in the sense of Definition 5).
- 3. φ is stable.
- *Proof.* (1) \Longrightarrow (2): Theorem 10 in the document dichotomy-and-definable-types.pdf.
- (2) \Longrightarrow (3): If all φ -types over arbitrary sets are definable, then all φ -types over models are definable, which is condition (2) in Theorem 6.
- (3) \Longrightarrow (1): Suppose φ has the dichotomy property. Then " D_{ω} " is consistent, which means there are \bar{a}_{σ} for $\sigma \in 2^{\omega}$ and \bar{b}_{τ} for $\tau \in 2^{<\omega}$ such that if σ extends $\tau 0$, then $\varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds, and if σ extends $\tau 1$, then $\neg \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds. Let $A = \{\bar{b}_{\tau} : \tau \in 2^{<\omega}\}$. Then A is countable. As in the proof of Proposition 10 in the March 3 notes, the elements \bar{a}_{σ} all have distinct φ -types over A, and so $|S_{\varphi}(A)| = 2^{\aleph_0} > |A| + \aleph_0 = \aleph_0$, contradicting condition (3) in Theorem 6.

(If one doesn't care about condition (2) and only wants to show (1) \iff (3), the direction (1) \implies (3) can also be proved more directly using Remark 12 below.)

Corollary 9. φ has the dichotomy property iff φ has the order property.

This was stated as Fact 15 in the March 17 notes.

Corollary 10. T is stable iff no formula of the form $\varphi(x; \bar{y})$ has the dichotomy property.

This was condition (4) in Theorem 2 in the March 10 notes.

Corollary 11. If φ has the dichotomy property, then for any λ there is a set A with $|A| \leq \lambda$ and $|S_{\varphi}(A)| > \lambda$. (This is the negation of condition (4) in Theorem 6.) Every φ -type over A extends to a complete n-type, so $|S_n(A)| > \lambda$ as well.

This recovers Proposition 10 in the March 3 notes, without using dubious Proposition 5 in the March 3 notes, and without any use of D_{α} for $\alpha > \omega$.

Remark 12. The fact that the dichotomy property and order property are equivalent is a combinatorial statement, and there are combinatorial proofs. One direction is easy: Suppose $\varphi(\bar{x}, \bar{y})$ has the order property. Consider the order on $I = 2^{\omega} \cup 2^{<\omega}$ used in Lemma 7 in the March 17 notes. Because φ has the order property, there are \bar{a}_i, \bar{b}_i for $i \in I$ such that $\varphi(\bar{a}_i, \bar{b}_j) \iff i < j$. Now one can check that $(\bar{a}_{\sigma} : \sigma \in 2^{\omega})$ and $(\bar{b}_{\tau} : \tau \in 2^{<\omega})$ witness the dichotomy property.

The other direction is harder. If I remember correctly, there is a proof in the final chapter of Hodges' *Shorter Model Theory*.