Nr. 27

Zeeman-Effekt

Sara Krieg Marek Karzel sara.krieg@udo.edu marek.karzel@udo.edu

Durchführung: 22.02.2021 Abgabe: 30.02.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	orie	3				
	1.1	Versuchsziel	3				
	1.2						
	1.3 Verschiedene Drehimpulskopplungen						
		1.3.1 jj-Kopplung	3				
		1.3.2 LS-Kopplung	3				
	1.4	Zeeman-Aufspaltung im Magnetfeld	4				
	1.5	Auswahlregeln	5				
	1.6	Normaler Zeeman-Effekt	5				
	1.7	Anormaler Zeeman-Effekt	6				
2	Durchführung						
3	Vorbereitungsaufgaben						
	3.1 Dispersionsgebiet und Auflösungsvermögen der Lummer-Gehrcke-Platte .						
	3.2	Termschemata zu den Spektrallinien	8				
4	Aus	Auswertung					
5	Diskussion		9				

1 Theorie

1.1 Versuchsziel

Ziel des Versuches ist es, die Zeeman-Aufspaltung und Polarisation atomarer Spektrallinien unter Einfluss eines äußeren Magnetfeldes zu untersuchen. Die Größe und Vielfalt der Aufspaltung werden für rote und blaue Cd-Spektrallinien der zugehörigen optischen Übergänge analysiert.

1.2 Elektrondrehimpulse und daran gekoppelte magnetische Momente

Atomare Hüllenelektronen besitzen einen Bahndrehimpuls \vec{l} und Spin \vec{s} mit den zugehörigen Beträgen

 $|\vec{s}| = \hbar \sqrt{s(s+1)}$ $|\vec{l}| = \hbar \sqrt{l(l+1)}$ (1)

und Quantenzahlen l und s=1/2. l kann dabei abhängig von der Hauptquantenzahl n, welche das Energieniveau der Elektronen angibt, ganzzahlige Werte zwischen 0 und n-1annehmen. Über die Spin-Bahn-Kopplung können den Drehbewegungen der Elektronen die magnetischen Momente

$$\vec{\mu_l} = -\frac{\mu_{\rm B}}{\hbar} \cdot \vec{l}, \qquad |\vec{\mu_l}| = -\mu_{\rm B} \sqrt{l(l+1)}$$

$$\vec{\mu_s} = -g_s \frac{\mu_{\rm B}}{\hbar} \cdot \vec{s}, \qquad |\vec{\mu_s}| = -g_s \mu_{\rm B} \sqrt{s(s+1)}$$

$$(3)$$

$$\vec{\mu_s} = -g_s \frac{\mu_{\rm B}}{\hbar} \cdot \vec{s}, \qquad |\vec{\mu_s}| = -g_s \mu_{\rm B} \sqrt{s(s+1)}$$
 (3)

mit dem Bohrschen Magneton $\mu_B=-\frac{e_0\hbar}{2m_0}$ zugeordnet werden. Der Landé-Faktor $g_s\approx 2$ beschreibt die magnetomechanische Anomalie des Elektrons.

1.3 Verschiedene Drehimpulskopplungen

1.3.1 jj-Kopplung

Die jj-Kopplung dominiert in schweren Atomen hoher Ordnungszahl. Bahndrehimpulse i und Spin $\vec{s_i}$ der einzelnen Elektronen wechselwirken jeweils miteinander und ergeben die Gesamtdrehimpulse $\vec{j}_i = \vec{l}_i + \vec{s}_i$. Diese wechselwirken mit jenen anderer Elektronen und summieren sich zu einem Gesamtdrehimpuls der Elektronenhülle

$$\vec{J} = \sum_{i} \vec{j}_{i} \ . \tag{4}$$

1.3.2 LS-Kopplung

Die LS-Kopplung hingegen dominiert in leichten Atomen niedriger Ordnungszahl und ist daher von größerer Bedeutung für diesen Versuch. In der Elektronenhülle wechselwirken im Gegensatz zur jj-Kopplung jeweils die Bahndrehimpulse \tilde{l}_i der Elektronen stärker untereinander und das gleiche gilt auch für die Spins $\vec{s_i}$. Danach ergeben sich der Bahndrehimpuls \vec{L} und der Spin \vec{S} der gesamten Elektronenhülle als Summen der Einzelmomente zu

$$\vec{L} = \sum_{i} \vec{l}_{i} , \qquad |\vec{L}| = \hbar \sqrt{L(L+1)}$$
 (5)

$$\vec{S} = \sum_{i} \vec{s_i} , \qquad |\vec{S}| = \hbar \sqrt{S(S+1)}$$
 (6)

mit der ganzzahligen Quantenzahlen L und S, wobei S auch halbzahlig sein kann. An \vec{L} und \vec{S} koppeln die magnetischen Momente

$$|\vec{\mu_L}| = \mu_{\rm B} \sqrt{L(L+1)} , \qquad \qquad |\vec{\mu_S}| = g_S \mu_{\rm B} \sqrt{S(S+1)} .$$
 (7)

Der Gesamtdrehimpuls der Elektronenhülle ergibt sich schließlich zu

$$\vec{J} = \vec{L} + \vec{S}$$
, $|\vec{J}| = \hbar \sqrt{J(J+1)}$. (8)

Die Quantenzahl J ist abhängig von S ganz- oder halbzahlig. Dem Gesamtdrehipuls wird das magnetische Moment

$$\vec{\mu_J} = \vec{\mu_L} + \vec{\mu_S}, \qquad |\vec{\mu_J}| = g_J \mu_B \sqrt{J(J+1)}$$
 (9)

zugeordnet. Allerdings stimmen die Richtungen von \vec{J} und $\vec{\mu_J}$ meist nicht überein und nur die zu μ_J parallele \vec{J} -Komponente wird berücksichtigt - mit dem zugehörigen Landé-Faktor

$$g_J = \frac{3J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \,. \tag{10}$$

1.4 Zeeman-Aufspaltung im Magnetfeld

Im äußeren Magnetfeld \vec{B} ist eine Richtungsquantisierung des magnetischen Moments μ_J zu beobachten, welche durch die ganzzahlige magnetische Quantenzahl m beschrieben wird. Die Komponente $\mu_{J,z}$ ist dabei ein Vielfaches des Bohrschen Magnetons mit

$$\mu_{J,z} = -mg_J \mu_{\rm B} \,, \qquad \qquad {\rm mit} \ m = -J, \, -J+1, \, \ldots 0, \, \ldots J-1, \, J \,. \eqno(11)$$

Im Magnetfeld \vec{B} erhält $\vec{\mu_J}$ abhängig von seiner Orientierung zu \vec{B} die zusätzliche Energie

$$E_{\text{magn}} = -\vec{\mu}_J \cdot \vec{B} = mg_J \mu_B |\vec{B}|. \tag{12}$$

Für verschiedene Orientierungen spalten sich die Energieniveaus eines Atoms jeweils in 2J+1 äquidistante Unterniveaus auf. Daraus resultiert eine Aufspaltung der möglichen Übergänge zwischen den verschiedenen atomaren Energiezuständen und deren zugehörigen Spektrallinien, was als Zeeman-Effekt bezeichnet wird.

1.5 Auswahlregeln

Optische Übergänge zwischen verschiedenen Zeeman-Linien der angeregten Zustände und Grundzustände gehen unter der Beachtung der Auswahlregeln des elektrischen Dipolübergangs mit einer Änderung der magnetischen Orientierungsquantenzahl um $\Delta m = 0$ oder ± 1 einher. Für die Fälle $\Delta m = \pm 1$ werden linkszirkular σ^+ oder rechtszirkular σ^- -polarisierte Photonen emittiert, welche eine Drehimpulsänderung des Atoms mit Abführung ihres eigenen Drehimpulses ausgleichen, sodass der Gesamtdrehimpuls erhalten bleibt. Andernfalls wird linear π -polarisiertes Licht emittiert, welches keine Drehimpulsänderung überträgt.

1.6 Normaler Zeeman-Effekt

Der normale Zeeman-Effekt liegt vor, wenn der Gesamtspin der Hüllenelektronen S=0 beträgt und somit der Landé-Faktor für spinlose Zustände immer $g_J=1$ beträgt. Es ergibt sich nach Gleichung (12) die Zeeman-Verschiebung der Niveaus um

$$\Delta E = m\mu_{\rm B}|\vec{B}|\,. \tag{13}$$

Die daraus resultierende Zeeman-Aufspaltung ist in Abbildung 1 dargestellt. Die optischen Übergänge sind nach ihrer Lichtpolarisation zur Magnetfeldachse geordnet.

Abbildung 1: Schema des normalen Zeeman-Effekts [1].

Die Spektrallinien sind abhängig von ihrer Polarisation und vom Beobachtungswinkel unterschiedlich wahrnehmbar. In \vec{B} -Richtung bzw. longitudinaler Richtung ist das linear π -polarisierte Spektrallicht nicht zu erkennen, jedoch kann die Händigkeit des zirkular σ^+/σ^- -polarisierten Lichtes unterschieden werden. In transversaler Richtung, senkrecht zu \vec{B} ist das π -polarisierte Licht zu sehen, allerdings erscheint zirkular polarisiertes Licht ebenfalls linear polarisiert. Dieser Sachverhalt ist auch in Abbildung 2 dargestellt. Ohne angelegtes Magnetfeld wird nur π -polarisiertes Licht beobachtet.

Abbildung 2: Aufspaltungsbilder abhängig vom Beobachtungswinkel [1].

1.7 Anormaler Zeeman-Effekt

Der anormale Zeeman-Effekt berücksichtigt Zustände, deren Gesamtspin der Elektronenhülle nicht verschwindet: $S \neq 0$. Es finden dieselben optischen Auswahlregel des normalen Zeeman-Effektes Anwendung. Anders als beim normalen Zeeman-Effekt ist die Aufspaltung zwischen den Unterniveaus vom Spin abhängig, da der Landé-Faktor auch andere Werte als $g_J=1$ annimmt. Die Energieverschiebung bei Übergängen ergibt sich demnach zu

$$E = (m_1 g(L_1, S_1, J_1) - m_2 g(L_2, S_2, J_2)) \mu_{\rm B} |\vec{B}| + E_0$$
(14)

mit der Energie E_0 ohne eingeschaltetes Magnetfeld und den Landé-Faktoren und magnetischen Ordnungszahlen m_i der beiden Übergangsniveaus. Ein beispielhaftes Termschema des anormalen Zeeman-Effektes ist in Abbildung 3 dargestellt.

Abbildung 3: Schema des anormalen Zeeman-Effekts [1].

2 Durchführung

Der Versuchsaufbau ist in Abbildung 4 schematisch dargestellt. Eine Cadmium-Spektrallampe ist dem äußeren magnetischen Feld des Elektromagneten ausgesetzt. Der restliche optische Aufbau dient zur Analyse ihres Lichtes. Der Srahl wird senkrecht zur Magnetfeldrichtung kollimiert und trifft auf ein Geradsichtprisma, welches das Spektrum räumlich nach den Wellenlängen auflöst. Über den zweiten Spalt kann eine Spektrallinie ausgewählt werden und der Polarisationsfilter filtert eine zu untersuchende Polarisation dieser Linie heraus.

Abbildung 4: Versuchsaufbau der Messung [1].

Für Cadmium sind im wesentlichen zwei Spektrallininen zu beobachten - eine rote und eine blaue. Anhand der roten Linie soll der normale Zeeman-Effekt und anhand der blauen der anormale Zeeman-Effekt untersucht werden.

Die Wellenlängen λ der einzelnen Spektrallinien können mithilfe der Lummer-Gehrcke-Platte bestimmt werden, indem ihr Interferenzverhalten verschiedener teilreflektierter Strahlen analysiert wird. Konstruktive Interferenz tritt auf, sobald die Bragg-Bedingung

$$2 \cdot d \cdot \cos(\beta) = n \cdot \lambda$$
, $n = \frac{\sin(\alpha)}{\sin(\beta)}$ (15)

mit der Plattendicke d und dem Brechungsindex n erfüllt ist. Mit eingeschaltetem Magnetfeld verschieben sich die Wellenlängen der optischen Übergänge um $\partial \lambda$ und daraus resultierend die Interferenzmaxima um ∂s . Die maximale Differenz, die zwischen den Wellenlängen zweier Strahlen bestehen darf, ohne dass sie sich überlagen sollen, ist definiert als Dispersionsgebiet

 $\Delta \lambda_{\rm D} = \frac{\lambda^2}{2d} \sqrt{\frac{1}{n^2 - 1}} \,. \tag{16}$

Das Auflösungsvermögen der Platte lässt sich dann als

$$A = \frac{\lambda}{\Delta \lambda_{\rm D}} = \frac{L}{\lambda} (n^2 - 1) \tag{17}$$

bestimmen, wobei L die Plattenlänge angibt. Zur Eichung des Elektromagneten wird die Hysterese des Magnetfeldes \vec{B} in Abhängigkeit des Feldstromes I gemessen. Schließlich werden zur Bestimmung der Zeeman-Aufspaltung der Wellenlängen die Interferenzbilder beider Spektrallinien mithilfe einer Digitalkamera für die verschiedenen gefilterten Polarisationen aufgenommen. Damit ist auch eine Berechnung der Landé-Faktoren möglich.

3 Vorbereitungsaufgaben

3.1 Dispersionsgebiet und Auflösungsvermögen der Lummer-Gehrcke-Platte

Nach den Gleichungen (16) und (17) lassen sich mithilfe der Angaben $L=0.12\,\mathrm{m},$ $d=4\,\mathrm{mm},$ $n_{\mathrm{rot}}=1.4567$ $n_{\mathrm{blau}}=1.4635$ die Dispersionsgebiete und Auflösungsvermögen der beiden Spektrallinien berechnen zu

$$\begin{split} \lambda_{\rm rot} &= 643.8\,{\rm nm}: & \Delta \lambda_{\rm D,rot} = 48.91\,{\rm pm}\;, & A_{\rm rot} &= 208\,749\;, \\ \lambda_{\rm blau} &= 480\,{\rm nm}: & \Delta \lambda_{\rm D,blau} = 27.0\,{\rm pm}\;, & A_{\rm blau} &= 285\,458\;. \end{split}$$

3.2 Termschemata zu den Spektrallinien

Abbildung 5: Die Termschemata der möglichen optischen Übergänge.

Die beiden Cadmium-Spektrallinien entsprechen Übergängen zwischen Zuständen verschiedener Elektronenkonfigurationen. Dabei entspricht die rote Linie den Übergängen $^1P_1 \leftrightarrow ^3S_1$ und die blaue den Übergängen $^3S_1 \leftrightarrow ^3P_1$.

Die zugehörigen Quantenzahlen und daraus nach Gleichung (10) berechneten Landé-Faktoren g_J der verschiedenen Zustände sind in Tabelle 1 aufgezeigt. Die Aufspaltungen der Zeeman-Linien $\Delta E = g_{kl} \mu_{\rm B} |\vec{B}|$ können nach Gleichung (14) und mit der Kurzschreibweise $g_{kl} = m_k g_k - m_l g_l$ bestimmt werden und sind für ausgewählte Niveaus in Tabelle 2 aufgelistet. Schließlich sind die Termschemata der beiden Spektrallinien in Abbildung 5 dargestellt.

Tabelle 1: Quantenzahlen und Landé-Faktoren der Zustände.

Zustand	L	S	J	g_J
$^{-1}P_{1}$	1	0	1	1
1D_2	2	0	2	1
${}^{3}S_{1}^{2}$	0	1	1	2
${}^{3}P_{1}$	1	1	1	3/2

Tabelle 2: Energieniveau
unterschiede für ausgeählte Anfangsniveaus mit m_1 und optische Übergänge mi
t $\Delta m.$

	$\Delta m = -1$	$\Delta m = 0$	$\Delta m = +1$
rot	$-\mu_{\mathrm{B}}B$	0	$\mu_{ m B} B$
blau, $m_1 = +1$	$^{3/2}\mu_{ m B}B$	$-1/2\mu_{ m B}B$	-
blau, $m_1 = 0$	$2\mu_{ m B}B$	0	$-2\mu_{\mathrm{B}}B$
blau, $m_1 = -1$	_	$^1/_2\mu_{ m B}B$	$-3/2\mu_{ m B}B$

4 Auswertung

5 Diskussion

Literatur

[1] TU Dortmund. Altanleitung zum Versuch 27: Zeeman-Effekt.