Predict Airbnb Listings' Availability in San Francisco

In fulfillment of Springboard's Capstone Project I Fan Dong

Outline

- Motivation and Goal
- The Data
- The Model
- What Does Our Model Tell Us?
- A Real Life Application
- Directions worth exploring in the future

The Pioneer of 'Sharing Economy', Airbnb provides a platform on which hosts rent out their own places for extra cash and guests find suitable accommodations for reasonable prices and different travel experiences.

Listings are the key products that users on the two sides of the market are sharing. We are interested in evaluating their values.

While price is readily available, the quantity - number of nights a place has been booked is not.

Thus, in this project, we aims to build a model that predicts a given listing's availability for a given time period.

Data

Detailed information of 392 Airbnb listings in San Francisco, with their daily availability info from September 2015 to September 2017.

Obtained from: http://insideairbnb.com/get-the-data.html

The Data Wrangle Process

We went through the following steps to turn the original data into a tidy form that is readable by the models:

- Truncate and combine the raw files (for each month, there are one file with listing info and one with calendar availability info, more than 40 files in total) into one dataset
- Check for anomalies in the dataset and fix them
- Convert all variables to appropriate format (make numeric variables truly numeric; turn string variables into dummies)
- Make full use of 'Missing Values' by creating informative variables
- Drop uninformative variables and rows
- Create a series of date-related features

The 'Ready-for-Modeling' Data

286558 Observations, 123 Features

Here's how the data look like (the first row):

accommodat	tes	bathrooms	bedrooms	beds	calcul	ated_host_listings	count	extra_	people	guests_inclu	ided ho	st_ha	s_profile_pic	host_ident	tity_verified
	4	2.0	3.0	3.0			16		50.0		4		True		False
has_host	sui	mmary_len	holiday	host	for	book_month	book	_year	book_v	weekday	weekei	nd	book_week	target	
0		192	False		64	9		2015		1	Fal	se	36	1	-

Some Key Features

Price Booking date

of ppl accommodated Maximum/minimum nights

of bedrooms/bathrooms/beds Length of being a host

Property/bed type Host's listing counts

Neighborhood Text length of the listing's summary

Availability of key amenities Number of Reviews

The Model

Method: Binary Classification Prediction that returns the probability of whether a listing will be available on a given day; we say the listing is available if the probability is greater than 0.5, otherwise it is unavailable.

The testing results of a series of classification models are listed on the right. 4-fold cross-validation is used in all cases.

Model	Accuracy
LASSO	70.45%
SGD	60.61%
AdaBoost	77.32%
Neural Network	78.02%
Random Forest	79.23%
Gradient Boosting	93.17%
★ XGBoost	95.85%

XGBoost appears to be the clear winner.

What Does Our Model Tell Us?

Features that play an important role in booking-decision-making process:

What Does Our Model Tell Us?

Amenities that help your place sell fast:

What Does Our Model Tell Us?

The neighborhoods that matter:

A Real Life Application

ENTIRE HOUSE

Spacious, clean, quiet suite

San Francisco

2 guests 1 1 bedroom = 1 bed = 1 bath

Business travelers, welcome! Undisturbed privacy.

Separate entrance, access to lovely garden and deck. Close to SFO airport, public transit and freeways. Direct Muni light rail to Kaiser and UCSF Mission Bay, as well as AT&T stadium, 2.3 miles from Cow Palace.

Free street parking near listing if you find a spot. WiFi included. Nice home away from home for business travelers on longer stays.

Registration #STR- (Phone number hidden by Airbnb)

Read more about the space ~

Contact host

Amenities

Kitchen

As a guest...

We want to book this "Spacious, clean, quiet suite" from June 25, 2019 to June 30, 2019 for a work trip. The place is not available for booking yet. If we come back in early June 2019, will this place be available for the period of time we want?

And the model says...

real_case_pred = clf.predict(real_case)

real_case_pred

array([0, 0, 0, 0, 0], dtype=int8)

Six 0's!

All six days of June 25 2019 to June 30 2019 will be booked!

As a host...

Suppose LayKoon, the host of this listing, is using our model. She wants the model to answer the following questions:

- How's my place's booking rate for the summer (June 3 2019 $^{\sim}$ September 1 2019)?
- How will the booking rate/total revenue change if I adjust the price?

For the first question...

The model gives the following result:

We can translate it to a more human-readable format...

	June								
MONDAY 27	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY			
27	28	29	30	31	01	02			
03	04	05	06	07	08	09			
10	11	12	13	14	15	16			
17	18	19	20	21	22	23			
24	25	26	27	28	29	30			
				E E					
2019	Aug	gust							
MONDAY 29	TUESDAY 30	WEDNESDAY 31	THURSDAY 01	FRIDAY 02	SATURDAY 03	SUNDAY 04			
05,000			01	02	03	04			
05	06	07	08	09	10	11			
12	13	14	15	16	17	18			
19	20	21	22	23	24	25			
26	27	28	29	30	31	01			
1000000	10.00	3755 T. S. S.	1000			_			

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY				
01	02	03	04	05	06	07				
08	09	10	11	12	13	14				
15	16	17	18	19	20	21				
22	23	24	25	26	27	28				
29	30	31	01	02	03	04				

Unavailable: dates marked in gray

Available: otherwise

July

2019

Booking rate = 59.3%

Total projected revenue = \$ 6310

For the second question...

Let's try a couple of scenarios as an example:

	Booking Rate	Total Revenue
Decrease price by \$10	29.7%	\$2987
Original	59.3%	\$6310
Increase price by 25%	46.2%	\$6190
Increase price by 40%	47.3%	\$7155

Directions worth exploring in the future

- Get more data and train the model for a longer period of time / for other cities
- Dynamic prediction (exactly on what day has a booking/cancellation taken place)
- Integrate spatial analysis into the model