SUMMARY OF STATISTICAL ANALYSIS OF DECADAL CHANGE

Concentrations of key constituents analyzed between Cycle 1 (1988-2002) and Cycle 2 (2002-2012) of the NAWQA program. Priority for analysis is based on:

- 1) Constituents that exceeded a Maximum Contaminant Level or other human-health benchmark in more than 1 percent of public or domestic-supply wells (1,2,3); or
- 2) Constituents that exceeded a Secondary Maximum Contaminant Level in more than 1 percent of public or domestic-supply wells (1,2,3), or
- 3) The five most frequently detected pesticides and VOCs $^{(4,5)}$; or
- 4) Constituents of special or regional interest.

Constituents meeting analysis criteria, results mapped

 $[\mu g/L,\,micrograms\,per\,liter;\,mg/L,\,milligrams\,per\,liter;\,SMCL,\,Secondary\,Maximum\,Contaminant\,Level]$

Constituent name	Constituent class	Benchmark	Units	Why study
Arsenic	inorganic	10	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Boron	inorganic	6,000	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells
Chloride	inorganic	250	mg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Fluoride	inorganic	4	mg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells
Iron	inorganic	300	μg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Manganese	inorganic	300	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells
Molybdenum	inorganic	40	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Nitrate	inorganic	10	mg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Orthophosphate	inorganic	None	mg/L	Constituent of special or regional interest: Possible source of discharge to surface water bodies
Strontium	inorganic	4,000	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells
Sulfate	inorganic	250	mg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Total Dissolved Solids	inorganic	500	mg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Uranium	inorganic	30	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Atrazine	organic	3	μg/L	One of the five most frequently detected pesticides in the nation
Chloroform	organic	80	μg/L	One of the five most frequently detected volatile organic compounds in the nation
Deethylatrazine	organic	None	μg/L	One of the five most frequently detected pesticides in the nation
Dieldrin	organic	0.002	μg/L	Exceeded human-health benchmark in more than 1 percent of public-supply wells
Methyl tert-butyl ether	organic	20	μg/L	One of the five most frequently detected volatile organic compounds in the nation
Metolachlor	organic	700	μg/L	One of the five most frequently detected pesticides in the nation
Simazine	organic	4	μg/L	One of the five most frequently detected pesticides in the nation
Prometon	organic	400	μg/L	One of the five most frequently detected pesticides in the nation
Tetrachloroethene	organic	5	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Toluene	organic	1,000	μg/L	One of the five most frequently detected volatile organic compounds in the nation
Trichloroethene	organic	5	μg/L	One of the five most frequently detected volatile organic compounds in the nation
	Constituent	s meeting analysis	criteria, insuffici	ent data for analysis, not mapped
Gross Alpha	inorganic	15	picocuries per Liter	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Radium 226 plus Radium 228	inorganic	5	picocuries per Liter	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells
Radon	inorganic	300 (Alternate 4,000)	picocuries per Liter	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells

References

1-DeSimone, L.A., Hamilton, P.A., and Gilliom, R.J., 2009, Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991-2004 - Overview of Major Findings: Reston, VA, U.S. Geological Survey, p. 48 Circular http://pubs.usgs.gov/circ/circ1332/

2-Toccalino, P.L., and Hopple, J.A., 2010, The quality of our Nation's waters-Quality of water from public-supply wells in the United States, 1993-2007-Overview of major findings, U.S. Geological Survey, p. 58 Circular http://pubs.usgs.gov/circ/1346/

3-Ayotte, J.D. Gronberg, J.M., and Apodaca, L.E., 2011, Trace Elements and Radon in Groundwater Across the United States: U.S. Geological Survey Scientific Investigations Report 2011-5059, 115 p. http://water.usgs.gov/nawqa/trace/pubs/sir2011-5059/

4-Zogorski, J.S., Carter, J.M., Ivahnenko, T., Lapham, W.W., Moran, M.J., Rowe, B.L., Squillace, P.J., and Toccalino, P.L., 2006, The Quality of our Nation's waters--Volatile Organic Compounds in the Nation's Ground Water and Drinking-Water Supply Wells: Reston, VA, U.S. Geological Survey, p. 101 Circular. http://pubs.usgs.gov/circ/circ1292/

5-Gilliom, R.J., Barbash, J.E., Crawford, C.G., Hamilton, P.A., Martin, J.D., Nakagaki, N., Nowell, L.H., Scott, J.C., Stackelberg, P.E., Thelin, G.P., and Wolock, D.M., 2006, The Quality of our Nation's Waters--Pesticides in the Nation's Streams and Ground Water, 1992-2001: Reston, VA, U.S. Geological Survey, p. 172 Circular. http://pubs.usgs.gov/circ/2005/1291/

Details of statistical analysis and data management (6,7).

6-Toccalino, P.L., Gilliom, R.J., Lindsey, B.D., and Rupert, M.G., Pesticides in Groundwater of the United States: Decadal-Scale Changes, 1993-2011, 2014, Groundwater, DOI: 10.1111/gwat.12176

7-Lindsey, B.D., and Rupert, M.G., 2012, Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988–2010: U.S. Geological Survey Scientific Investigations Report 2012–5049, 46 p.