Recommender Systems for Yelp Users

Srikanth Mandru

mandru.s@husky.neu.edu

Problem Definition

- > Given the ratings for businesses by yelp users (known ratings), predict the probable ratings (unknown ratings)
- > Goal is to build a recommender system with the following properties:
 - Robust Resilient to variances in data
 - High prediction accuracy Estimate ratings likely to be given by the user

Existing Methods

- > Content-Based recommendation system
 - Recommendations based on item and user profiles manually selecting features
- Collaborative filtering (CF)
 - o Item-Item CF
 - Extrapolate item rating based on ratings of similar items.
 - User-User CF
 - Identifying similar users and recommending what similar users like
- ➤ Latent Factor Models
 - Singular Value Decomposition (SVD)
 - Represent users and items using latent (hidden) factors

Proposed Method

- ➤ Build Recommender systems using the different existing methods (stated below) and compare the models based on the average of RMSE values computed through k-fold cross-validation
- ➤ Methods implemented:
 - Baseline approach
 - Item-Item collaborative filtering
 - Similarity metric used Pearson correlation coefficient
 - o SVD
 - SVD with Regularization
 - O Hybrid methods:
 - Baseline and Item Item collaborative filtering
 - Baseline and SVD with Regularization

Data Description & Experimental Setup

➤ Data (after filtering) used for building models comprises of 200,000 ratings given by 31,824 users to 2061 food-related businesses

> Handling Cold Start problem:

- Filtered data with constraints:
 - Business rated by minimum 20 users
 - Users with a minimum of 2 ratings

> Experimental setup to obtain RMSE:

- 1. Divide data into k-folds
- 2. For each model do
 - i. Repeat k times
 - Run model on k-1 folds and compute RMSE on hold out fold
- 3. Report the RMSE of each fold for all models

Results and Discussion

- > Model efficiency: Across all models,
 - Non-hybrid models do not have enough parameters to capture the patterns in data which resulted in high error
 - Hybrid methods performed well showing low errors on all folds

> Robustness:

 Models with regularization gave better results with less deviations in RMSE values

Takeaway Points & Future Work

- Use combinations of different methods
- Regularization prevents overfitting
- > Future Work: Extend to incorporate the seasonal biases

