INTRODUCTION TO MACHINE LEARNING

LINEAR MODELS

Elisa Ricci

MACHINE LEARNING MODELS

MACHINE LEARNING MODELS

Some machine learning approaches make strong assumptions about the data

- If the assumptions are true it can often lead to better performance
- O If the assumptions aren't true, the approach can fail miserably

Other approaches don't make many assumptions about the data

- This can allow us to learn from more varied data
- But, they are more prone to overfitting and generally require more training data

WHAT IS THE DATA GENERATING DISTRIBUTION?

ACTUAL MODEL

MODEL ASSUMPTIONS

If you don't have strong assumptions about the model, it can take you a longer to learn

Assume now that our model of the blue class is two circles

WHAT IS THE DATA GENERATING DISTRIBUTION?

MACHINE LEARNING MODELS

What are the **model assumptions** (if any) that k-NN make about the data? k-nn non fa alcuna assunzione sulla distribuzione dei dati

Are there data sets that could never be learned correctly by it?

K-NEAREST NEIGHBOR (K-NN)

No model assumptions. Assumes that proximity relates to class kNN can learn any arbitrary separation between the classes

BIAS

The "bias" of a model is how strong the model assumptions are.

- low-bias classifiers make minimal assumptions about the data (k-NN and DT are generally considered low bias)
- high-bias classifiers make strong assumptions about the data

LINEAR MODELS

A strong high-bias assumption is linear separability:

- o in 2 dimensions, can separate classes by a line
- o in higher dimensions, need hyperplanes

A linear model is a model that assumes the data is linearly

separable

quindi no multi class classification massimo 2 classi

DEFINING A LINE

Any pair of values (w_1, w_2) defines a line through the origin:

$$0 = w_1 f_1 + w_2 f_2$$

$$0 = 1 f_1 + 2 f_2$$

$$-2 \quad 1$$

$$-1 \quad 0.5$$

$$0 \quad 0$$

$$1 \quad -0.5$$

$$2 \quad -1$$

DEFINING A LINE

Any pair of values (w_1, w_2) defines a line through the origin:

$$0 = w_1 f_1 + w_2 f_2$$

$$0 = 1 f_1 + 2 f_2$$

$$w = (1,2)$$

$$w = (1,2)$$
We can also view it as the line perpendicular to the weight vector

CLASSIFYING WITH A LINE

Mathematically, how can we classify points based on a line?

The sign indicates which side of the line

DEFINING A LINE

weights

Any pair of values (w_1, w_2) defines a line through the origin:

$$-1 = 1f_1 + 2f_2$$

- 0.5
- -1 0
- 0 -0.5
- 1 -
- 2 -1.

LINEAR MODELS

A linear model in n-dimensional space (i.e. n features) is defined by n+1 weights. In two dimensions, we have a line:

$$0 = w_1 f_1 + w_2 f_2 + b$$
 (where b = -a)

In three dimensions, a plane:

$$0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$$

In *n*-dimensions, a **hyperplane**

$$0 = b + \sum_{i=1}^{n} w_i f_i$$

CLASSIFYING WITH A LINEAR MODEL

We can classify with a linear model by checking the sign:

inference phase

$$b + \sum_{i=1}^{n} w_i f_i > 0$$

$$0 + \sum_{i=1}^{n} w_i f_i < 0$$

ONLINE LEARNING

HOW DO WE LEARN A LINEAR MODEL?

Given a linear model (i.e. a set of weights w_i and b) we can classify examples

How do we learn a linear model?

(data with labels)

LEARNING A LINEAR MODEL

Positive or negative?

LEARNING A LINEAR MODEL

Positive or negative?

ONLINE LEARNING ALGORITHM

We only see one example at the time!

ONLINE LEARNING ALGORITHM

We only see one example at the time!

LEARNING A LINEAR MODEL

When we need online learning?

Data Streams!

LEARNING A LINEAR MODEL

When we need online learning?

Privacy-preserving applications

LESSON LEARNED: ONLINE VS BATCH

• Batch: Given training data $\{(x_i, y_i) : 1 \le i \le n\}$, typically i.i.d.

indipendenti identicamente distribuiti

- Online: data points arrive one by one
 - \circ The algorithm receives an unlabeled example x_i
 - The algorithm predicts a classification of this example.
 - \circ The algorithm is then told the correct answer y_i , and update its model

LEARNING A LINEAR MODEL

According to the rule we have seen before:

$$0 = w_1 f_1 + w_2 f_2$$

Now a new sample arrive. It is a positive sample:

$$1 * f_1 + 0 * f_2 =$$

$$1*-1+0*1=-1$$

Negative, wrong!

Now a new sample arrive. It is a positive sample:

$$1*f_1 + 0*f_2 =$$
 $1*-1+0*1 = -1$ prediction

Negative, wrong!

Model must be updated!

A CLOSER LOOK AT WHY WE GOT IT WRONG

A CLOSER LOOK AT WHY WE GOT IT WRONG

$$0 = w_1 f_1 + w_2 f_2$$

$$0 * f_1 + 1 * f_2 =$$

$$0 * 1 + 1 * -1 = -1$$

Is it correct? YES

$$0 = w_1 f_1 + w_2 f_2$$

$$0 * f_1 + 1 * f_2 =$$

$$0*1+1*-1=-1$$

Do we need to update the model? NO!

PERCEPTRON LEARNING ALGORITHM

```
repeat until convergence (or for some # of iterations):
                                                                auesto è un esempio
 for each training example (f_1, f_2, ..., f_n, label):
                                                              label is -1/1
    check if it is correct based on the current model label = ground truth
    if not correct, update all the weights:
      for each w;:
       w_i = w_i + f_i^* \text{label}
      b = b + label
                                            il for non è presente nel caso dell'
                                            online learning
```

PERCEPTRON LEARNING ALGORITHM

```
repeat until convergence (or for some # of iterations):
  for each training example (f_1, f_2, ..., f_n, label):
       prediction = b + \sum_{i=1}^{n} w_i f_i
     if prediction is different from label prediction * label <= 0
                               moltiplicazione da come risultato un numero negativo
      for each w;:
                               se i segni non sono concordi
                               il perceptron crea una linea che separa i sample
        W_i = W_i + f_i^* \text{label in positivi e negativi}
      b = b + label
```

PERCEPTRON IN ACTION

WHICH LINE WILL THE PERCEPTRON FIND?

Only guaranteed to find some line that separates the data!

LINEAR SEPARABLE SETS

The training instances are linearly separable if there exists a hyperplane that will separate the two classes.

NUMBER OF ITERATIONS

```
repeat until convergence (or for some # of iterations):
 for each training example (f_1, f_2, ..., f_n, label):
   check if it is correct based on the current model
   if not correct, update all the weights:
     for each w;:
       w_i = w_i + f_i^* \text{label}
     b = b + label
```


- ordine di arrivo dei sample
- itarazioni

```
repeat until convergence (or for some # of iterations):
  random sample one example (f_1, f_2, ..., f_n, label):
   check if it is correct based on the current model
   if not correct, update all the weights:
     for each w;:
      w_i = w_i + f_i^* \text{label}
     b = b + label
```

QUESTIONS?

