アルゴリズムとデータ構造⑩

~ 最大流問題 ~

鹿島久嗣

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

最大流問題

ネットワーク: 辺に容量をもった、入口と出口をもつ有向グラフ

- ■グラフG = (V, E): 頂点を辺(= 枝)でつないだもの
 - -V:頂点集合(有限集合)
 - -E: 辺の集合 (V上の2項関係; $E \subseteq V \times V$)
 - 辺e = (v, w)に向きがある場合が有向グラフ
- ■ネットワーク:
 - $-特別な頂点<math>v_s$ (入口)と v_t (出口)をもつ有向グラフ
 - -各辺e = (v, w)が容量 $c(e) \ge 0$ をもつ
 - ※以下、簡単のため始点からは出る方向の辺のみ、 終点には入る方向の辺のみがあるとする(これは本質的でない)

ネットワークのフロー: ネットワークの入り口から出口までモノを流す

- ■ネットワーク上で入口から出口までモノを流すことを考える
- $\mathbf{7}\mathbf{D} f: E \to \mathfrak{R}_+$
 - $-f(e) \ge 0$ は辺 $e \in E$ の上を通す物量のようなもの
 - ただし、 $f(e) \le c(e)$: 辺の容量より多くは通せない
- (出入り口以外の) 各頂点vにおいて以下の関係が成立

$$\sum_{e \in V^+(v)} f(e) = \sum_{e \in V^-(v)} f(e)$$
 出入りのバランスが 取れている

 $-V^+(v)$ はvに入る辺; $V^-(v)$ はvから出る辺

ネットワークの最大流問題: 容量制約を満たしながら、できるだけモノを流す

- ■最大流問題:
 - -入口から出る量(=出口に入る量)を最大化する

$$\max_{f} \sum_{e \in V^{-}(v_S)} f(v_S) \left(= \max_{f} \sum_{e \in V^{+}(v_t)} f(v_t) \right)$$

s.t.
$$0 \le f(e) \le c(e) \ \forall e \in E$$

-問題の解として決定すべきはJローf(各辺に通す量)

最大流問題のアルゴリズム: フォード・ファルカーソン

- ■フォード・ファルカーソンの基本的な考え方:
 現在の解(フロー)に新たなフローを逐次的に足していく
 - -現在のフローfがあるとする
 - -ある条件(後述)を満たす v_s から v_t へのパスpをみつける
 - そのパスに沿って追加のフロー Δf を流す $f(e) \leftarrow f(e) + \Delta f(e)$ for $\forall e \in p$
 - ―条件(後述)を満たすパスがなくなるまで以上を繰り返す

フォード・ファルカーソンにおける解の更新:フローを追加できる「余裕」のあるパスを見つける

- v_s から v_t への(辺の向きを無視した)パスpを考える
- ■パスに含まれる各辺 $e = (v, w) \in p$ に対して2つの場合:
 - 1. 正順:パスの向きと、辺の向きが一致している場合
 - 2. 逆順:一致していない場合
- ■各辺eについて「余裕」g(e)を考える
 - -正順の場合:g(e) = c(e) f(e):新たに流せる余裕
 - -逆順の場合:g(e) = f(e):逆向きに流せる(減らせる)余裕がある

フォード・ファルカーソンにおける解の更新:フローを追加できる「余裕」のあるパスを見つける

■「パスの余裕」をパス上の辺の余裕の最小値で定義する:

$$g(p) = \min_{e \in p} g(e)$$

- *g*(*p*)が正であれば、このパスに沿ってさらに*g*(*p*)の物流を新たに流せるはず
 - -正順の辺については物流を増やす $f(e) \leftarrow f(e) + g(p)$
 - -逆順の辺については物流を減らす(逆向きに流す) $f(e) \leftarrow f(e) g(p)$

余裕のあるパスの発見:たとえば、幅優先探索

- g(p)が正であるようなパスpを見つけるには?
 - -フォード・ファルカーソンではpの見つけ方は決められていない
- ■たとえば、幅優先探索で正の余裕をもつパスの中で最も短いパスを用いる(=エドモンズ・カープ法)
 - -幅優先探索でg(e)が正である(余裕のある)辺をつな げていく
 - -以前見た、グラフの頂点列挙と同じ方式

カット: 最大フローと最小カットは等しい

- ■カット: v_s を含む頂点集合 $S \subseteq V$ から出て、V = Sに含まれる頂点のいずれかに入る辺の集合
- ■最大フロー最小カット定理: カットに含まれる辺の容量の和の最小値 = 最大流量
 - -気持ち: どんなカットをとっても、必ずフローの流量が、SからV Sに流れているはずなので、実際に流せるのはその中で最小の量のはず

マッチング

- 2部グラフ:
- 2つの集合の関係を表すグラフ
- 2部グラフ
 - -頂点集合が2つの集合UとVに分かれている
 - -枝は2つの集合間にしか存在しない

- 2部グラフのマッチング:
- 2グループ間で成立するペアの数を最大化する
- ■マッチング問題:
 - -2部グラフにおいて、以下の条件を満たす辺の集合を選ぶ
 - すべての頂点は、たかだか1つの辺にしか含まれない
 - -もっとも大きい辺の集合を見つける
- ■例:マッチングアプリ的な何か
 - -2 つのグループ間で、各人が(互いに)パートナーを組んでいいと思う人の間に辺があるとする
 - -成立するペアの数を最大化したい

マッチング問題のアルゴリズム: 最大流に帰着できる

- ■最大流問題に帰着可能
 - $-v_s$ からUの各頂点に容量1の辺
 - -UとVの間の辺に容量1
 - -Uから v_t の各頂点に容量1の辺
- ■フォード・ファルカーソンを適用すればマッチングが得られる
 - -フォード・ファルカーソンでは、すべての辺の容量が整数であれば、その解も整数
 - •この場合、UとVの間の辺を流れる量は0か1

割り当て問題:マッチング問題の一般化

- ■マッチングを多対多の対応に一般化
- 学生とゼミのマッチング:
 - -学生は2つのゼミに所属
 - -各ゼミは最大10名まで受け入れ可能
- ■最大流に帰着できる:
 - -2部グラフの構成法:
 - v_s からUの各頂点に容量2の辺
 - \bullet Uから v_t の各頂点に容量10の辺

割り当て問題のアルゴリズム: やはり最大流に帰着できる

- ■懸念:最大流が保証するのは、容量を超えないということ だけなので、各学生が必ず2つのゼミに所属することは保 証できない?
 - ―条件が満たされているなら最大流の総流量は、学生数の 2倍になっているはず
 - そうでないなら、そもそも不可能
 - 一できるならやっているはずなので、解がみつかるということは 少なくともそのような解のひとつを見つけていることになる

全域木

全域木: グラフを木で近似

- ●グラフGの全域木とは、Gの全頂点を含む部分グラフであって、木となっているもの
- ■辺にコストがある場合は、コストの和が最小となるものを最小全域木という
 - -グラフを木で近似したものとして利用できる

最小全域木の構成: 貪欲法

- 貪欲法:
 - -逐次的に解を構成する(辺をひとつづつ追加する)
 - -最も評価の高いものを選ぶ(最もコストの小さい辺を選ぶ)
 - -一旦選んだものは変えない
- 最小全域木における貪欲法:
 - -最もコストの小さい辺を選んでいく
 - ―ただし、閉路ができないという条件(木でなくなるため)

クラスカル法: 貪欲法による最小全域木の構成

- ■初期設定:全頂点を別々の(頂点1つの)木とする
- ■各ステップで、2つの木を連結する(=閉路をつくらない) 辺の中でコスト最小のものを選び、2つの木を統合する
 - -辺が2つの木を連結するかどうかは、辺の両端の頂点がひとつの木に含まれるかどうかをチェックする
- 素集合データ構造:互いに素な部分集合を管理する
 - -Find操作:ある要素がどの部分集合に属するかを返す
 - -Union操作:2つの部分集合を1つにまとめる