

GRUNDLAGEN DER ELEKTROTECHNIK 1

Vorlesung 11 Wechselspannung – Impedanz und Admittanz

WECHSELSTROM

Inhalte der Kapitel 5 bis 7: Wechselstrom

7 WECHSELSPANNUNG

- 7.1 Sinusförmige Größen
- 7.2 Komplexe Wechselstromrechnung
- 7.3 Elektrische Impedanz
- 7.4 Admittanz
- 7.5 Wechselstromleistung
- 7.6 Blindstromkompensation
- 7.7 Leistungsanpassung bei Impedanzen
- 7.8 Wechselstrom-Messbrücken

SPULE

Spannung und Strom an der Spule:

$$u =$$

Komplexe Strom- und Spannungsgrößen an der Spule:

$$\underline{i}(t) = \underline{I}e^{j\omega t} \, \mathrm{mit} \, \underline{I} = I = \hat{\imath} \, / \, \sqrt{2} \, \text{(komplexer Effektivwert des Stroms)}$$

$$\Rightarrow \underline{u} = \underline{U}e^{j\omega t} =$$

$$\Rightarrow \underline{U} =$$

statt Ableiten nur noch mit jw multiplizieren

VERGLEICH MIT DEM OHMSCHEN WIDERSTAND

Widerstand bei Gleichstrom:

U =

Spule bei Wechselstrom:

 $\underline{U} =$

 $j\omega L$ ist mit Widerstand bei Gleichstromnetzwerk vergleichbar

 $\Rightarrow j\omega L$ nennen wir:

Impedanz

IMPEDANZ Z

Verallgemeinerung des Widerstands auf Wechselstrom

$$\underline{Z} = \frac{\underline{U}}{\underline{I}} = \frac{\hat{\underline{u}}}{\hat{\underline{l}}}$$

 \underline{Z} ist ein komplexer Zeiger mit der Einheit [\underline{Z}] = 1Ω

Definitionen:

•
$$Z = |\underline{Z}|$$

•
$$\varphi = \arg(\underline{Z})$$

•
$$R = Re\{\underline{Z}\}$$

•
$$X = Im\{\underline{Z}\}$$

Absolutwert der Impedanz

Phasenwinkel der Impedanz

Widerstand

Blindwiderstand (Reaktanz)

IMPEDANZ Z

in der komplexen Ebene:

$$\underline{Z} = R + jX = Z e^{j\varphi}$$

Widerstand Blindwiderstand

Es gilt:

- R > 0
- X kann auch negativ sein

AUFGABE

Sei $\underline{U} = 12V \angle 0^{\circ}$ und $\underline{I} = 2A \angle -34^{\circ}$.

Bestimmen Sie Impedanz, Widerstand und Reaktanz.

$$\underline{Z} =$$

$$R =$$

$$X =$$

IMPEDANZ EINER SPULE

Komplexer Strom und Spannung an Spule:

$$\underline{U} = j\omega L\underline{I}$$

Impedanz einer Spule:

$$\underline{Z} = \\
R = \\
X =$$

Im allgemeinen nennt man eine Last \underline{Z} induktiv, wenn X > 0.

AUFGABE: IMPEDANZ EINES KONDENSATORS

Kondensatorgleichung:

$$i =$$

Es sei:
$$\underline{u}(t) = \underline{U}e^{j\omega t}$$
 mit $\underline{U} = U = \hat{u}/\sqrt{2}$ (komplexer Effektivwert)

$$\Rightarrow \underline{i} = \underline{I}e^{j\omega t} =$$

$$\Rightarrow \underline{I} =$$

Impedanz eines Kondensators: $\underline{Z} =$

IMPEDANZ EINES KONDENSATORS

Komplexe Spannung und Strom am Kondensator:

$$\underline{U} = \frac{1}{j\omega C} \, \underline{I} = -j \, \frac{1}{\omega C} \, \underline{I}$$

Impedanz eines Kondensators:

$$\underline{Z} =$$

$$R =$$

$$X =$$

Man nennt eine Last kapazitiv, wenn X < 0.

IMPEDANZ EINES WIDERSTANDES

Komplexe Spannung und Strom am Widerstand:

$$\underline{U} =$$

Impedanz eines Widerstandes:

$$\underline{Z} =$$

$$R =$$

$$X =$$

Man nennt eine Last ohmsch, wenn X = 0 und R = const.

ZUSAMMENFASSUNG: IMPEDANZ

Widerstand

$$\underline{Z} = R$$

Spule

$$\underline{Z} = j\omega L$$

Kondensator

$$\underline{Z} = \frac{1}{j\omega C}$$

BEISPIEL: RECHNEN MIT IMPEDANZEN

Serien- und Parallelschaltung von Impedanzen rechnet man genau wie bei Widerständen

Alternative Darstellung:

AUFGABE

Wie groß ist die Impedanz der Serienschaltung?

Alternative Darstellung:

$$\underline{Z} =$$

7 WECHSELSPANNUNG

- 7.1 Sinusförmige Größen
- 7.2 Komplexe Wechselstromrechnung
- 7.3 Elektrische Impedanz
- 7.4 Admittanz
- 7.5 Wechselstromleistung
- 7.6 Blindstromkompensation
- 7.7 Leistungsanpassung bei Impedanzen
- 7.8 Wechselstrom-Messbrücken

ADMITTANZ Y

Leitwert in Gleichstromnetzwerken:

$$G =$$

In Wechselstromnetzwerken nennt man den korrespondierenden komplexen Leitwert auch:

Admittanz
$$\underline{Y} =$$

$$\underline{Y} = G + j B$$

mit:

$$G = Re\{\underline{Y}\}$$

$$B = Im\{\underline{Y}\}$$

Wirkleitwert oder Konduktanz Blindleitwert oder Suszeptanz

AUFGABE: BESTIMMEN SIE Z UND Y

$$\widehat{\underline{U}} =$$

$$\hat{\underline{I}} =$$

$$\underline{Z} =$$

$$\underline{Y} =$$

BEISPIEL: REIHENSCHALTUNG

Wir haben berechnet:

$$Z = 750 \Omega + j 1299 \Omega$$

$$\underline{Y} = 0.333 \, mS - j \, 0.577 \, mS$$

Sei <u>Z</u> eine Reihenschaltung von Widerstand und Spule. Welche Werte haben die Bauelemente?

$$f =$$

$$R =$$

$$\omega L =$$

BEISPIEL: PARALLELE IMPEDANZEN

über Impedanz

über Admittanz

AUFGABE: PARALLELSCHALTUNG

Wir haben berechnet:

$$Z = 750 \Omega + j 1299 \Omega$$

$$Y = 0.333 \, mS - j \, 0.577 \, mS$$

Tipp: Bei Parallelschaltung addieren sich die Leitwerte.

$$f = 1/60 \ \mu s = 16\ 667\ Hz \Rightarrow \omega = 2\pi f = 104\ 720\ s^{-1}$$

$$G =$$

$$B =$$

AUFGABE: BESTIMMEN SIE DIE IMPEDANZ

FRAGE

Was sind die grundsätzlichen Unterschiede zwischen einer ohmschen Last und einer kapazitiven oder induktiven Last?

ANWENDUNG: BRÜCKENSCHALTUNG BEI WECHSELSPANNUNG

Wechselspannung zur Speisung einer Wheatstone-Brücke

⇒ Messung von induktiven und kapazitiven Elementen

Brückenabgleich:

Brückenspannung:

7 WECHSELSPANNUNG

- 7.1 Sinusförmige Größen
- 7.2 Komplexe Wechselstromrechnung
- 7.3 Elektrische Impedanz
- 7.4 Admittanz
- 7.5 Wechselstromleistung
- 7.6 Blindstromkompensation
- 7.7 Leistungsanpassung bei Impedanzen
- 7.8 Wechselstrom-Messbrücken

BRÜCKENSCHALTUNG BEI WECHSELSPANNUNG

Wechselspannung zur Speisung einer Wheatstone-Brücke

⇒ Messung von induktiven und kapazitiven Elementen

Brückenabgleich:

Brückenspannung:

WECHSELSTROMMESSBRÜCKEN

Es gibt Brückenschaltungen für spezielle Messaufgaben (als Abgleichbrücke)

- Spule L_1 (mit Verlustwiderstand R_1)
 - → Maxwell-Wien-Brücke

- Kondensator C_1 (mit parasitärem Element R_1)
 - → Kapazitätsbrücke
- Frequenz ω
 - → Wien-Robinson-Brücke

MAXWELL-WIEN BRÜCKE FÜR SPULEN

Prinzip für alle Wechselstrom-Messbrücken:

Sowohl der **Real-** als auch der **Imaginärteil** müssen übereinstimmen

- → 2 Abgleichbedingungen
- \rightarrow 2 Parameter (R_4, C_4)

Unbekannte Spule:

$$\underline{Z}_1 = R_1 + j\omega L_1$$

Warum der Widerstand R_1 ?

→ Spulen- Ersatzschaltbild

L Induktivität (ideal)

R_{Cu} Kupferwiderstand

R_{Fe} frequenzabhängiger Kernwiderstand

C_P Wicklungs- & Anschlusskapazität

MAXWELL-WIEN BRÜCKE: ERGEBNIS

Unbekannte Spule:

$$\underline{Z}_1 = R_1 + j \omega L_1$$

Abgleichbedingungen:

$$R_1 = \frac{R_2 R_3}{R_4}$$

$$L_1 = R_2 R_3 C_4$$

KAPAZITÄTSMESSBRÜCKE

Aufgabe:

Die Brücke werde abgeglichen. Man liest R_2 und C_2 an einer Skala ab.

• Wie groß sind R_1 und C_1 ?

Hinweis: Admittanz nutzen!

Wheatstonesche Brücke zur Bestimmung unbekannter Kondensatoren.

Wozu der Widerstand R_1 ?

C Kapazität

 R_{isol} bzw. Isolationswiderstand des Dielektrikums

 R_{Leak} bzw. Reststrom bei Elektrolyt-

kondensatoren

ESR (engl. Equivalent Series Resistance)

- ohmschen Leitungs- und die

dielektrischen Umpolungsverluste

ESL (engl. Equivalent Series Inductivity)

- parasitäre Induktivität

KAPAZITÄTSBRÜCKE: ERGEBNIS

unbekannte Kapazität:

$$\underline{Y}_1 = 1/R_1 + j\omega C_1$$

Abgleichbedingungen:

$$R_1 = \frac{R_2 R_3}{R_4}$$

$$C_1 = \frac{C_2 R_4}{R_3}$$

WIEN-ROBINSON-BRÜCKE

Zur Messung einer Frequenz ω

Abgleichbedingungen:

$$1 = \omega^2 R_1 R_2 C_1 C_2 \text{ und } \frac{C_1}{C_2} + \frac{R_2}{R_1} = \frac{R_4}{R_3}$$

Sei
$$C_1 = C_2 = C$$
, $R_1 = R_2$ und $R_4 = 2R_3$

$$\Rightarrow \omega = \frac{1}{RC}$$

WIEN-ROBINSON-BRÜCKE

Abgleichbedingungen:

$$1 = \omega^2 R_1 R_2 C_1 C_2 \text{ und } \frac{C_1}{C_2} + \frac{R_2}{R_1} = \frac{R_4}{R_3}$$

Aufgabe:

Wählen Sie $C_1 = C_2 = C$ und $R_1 = R_2 = R$ und $R_4 = 2 R_3$.

Wenn Sie C und R kennen bzw. an einer Skala ablesen können, wie ergibt sich dann die gesuchte Frequenz?

WECHSELSTROMMESSBRÜCKEN

Reihenschaltung

Parallelschaltung

ANWENDUNG: KAPAZITIVER DRUCKSENSOR

Ceracore UCS2 Foto: Endress+Hauser www.endress.com

ANWENDUNG: DIFFERENTIALDRUCKSENSOR

$$C_1 = \varepsilon \frac{A}{d-x}$$
, $C_2 = \varepsilon \frac{A}{d+x}$, $R_3 = R_4 = R$

$$C_1$$

$$\Rightarrow U_a = U_0 \cdot \frac{1}{2} \cdot \frac{A}{k \cdot d} \cdot p \propto p$$

mit k: Federkonstante

NEBENRECHNUNGEN DRUCKSENSOR

WAS SIE MITNEHMEN SOLLEN...

Impedanz und Admittanz

- Definition + Begriffe Reaktanz, Wirkleitwert und Blindleitwert kennen
- Rechnen mit Impedanzen beherrschen
 - 1. Impedanz bestimmen (oder Admittanz)
 - 2. Rechnen wie mit Widerständen aber komplex

•	lm	pe	da	nz	von
---	----	----	----	----	-----

R:

L:

C:

WAS SIE MITNEHMEN SOLLEN ...

Wechselstrommessbrücken

- Brückenarten und deren Anwendung verstehen
- Abgleichbedingung anwenden
- A) Maxwell-Wien-Brücke
- B) Kapazitätsmessbrücke
- C) Wien-Robinson-Brücke