Tema VI: Евклидовы и унитарные пространства

§3. Метод наименьших квадратов

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Снова о решении несовместных систем

Обсудим решение несовместных систем линейных уравнений подробнее.

Типичный источник таких систем — обработка экспериментальных данных.

Число неизвестных мало (в данном примере ищется прямая y=ax+b, и неизвестные — это коэффициенты a и b), а число уравнений велико (в данном примере каждая точка (x_i,y_i) задает уравнение $y_i=ax_i+b$).

Псевдорешения

Псевдорешение системы линейных уравнений $A{f x}={f b}$ — это вектор ${f x}_0$, минимизирующий расстояние между векторами $A{f x}$ и ${f b}$.

В конце прошлой лекции был намечен такой план поиска псевдорешений:

- найти ортогональную проекцию b_S вектора b на образ S линейного отображения $x \mapsto Ax$ (т.е. на подпространство, порожденное столбцами матрицы A);
- \bullet решить совместную систему $A\mathbf{x} = \mathbf{b}_S$.

Было показано, что любое решение системы $A\mathbf{x}=\mathbf{b}_S$ действительно является псевдорешением исходной системы $A\mathbf{x}=\mathbf{b}$, так как наименьшее расстояние от вектора \mathbf{b} до подпространства S есть расстояние от \mathbf{b} до \mathbf{b}_S .

В реальных задачах ранг матрицы A равен числу неизвестных. (Например, в задаче проведения прямой y=ax+b через набор точек $\{(x_i,y_i)\}$ ранг равен 1 только, если все эти точки лежат на одной вертикальной прямой.) При таком условии система $A\mathbf{x}=\mathbf{b}_S$ имеет единственное решение, а значит, имеется *единственное* псевдорешение исходной системы $A\mathbf{x}=\mathbf{b}$.

Если псевдорешение неединственно, то обычно интересуются псевдорешением наименьшей длины (*нормальное* псевдорешение). К вопросу о нормальных псевдорешениях мы вернемся позже.

Метод наименьших квадратов

Концептуально подход, описанный и проиллюстрированный выше, прост. Однако вычисление ортогональной проекции с помощью процесса Грама–Шмидта приводит к громоздким и *неустойчивым* вычислениям.

Опишем простое соображение, которое позволяет находить псевдорешения без вычисления ортогональной проекции. Его называют методом наименьших квадратов, поскольку речь идет о минимизации длины вектора $A\mathbf{x} - \mathbf{b}$, т.е. минимизации скалярного квадрата этого вектора.

Для определенности ограничимся случаем евклидова пространства; именно этот случай важен для практики.

Теорема (обоснование метода наименьших квадратов)

Пусть $A-k\times n$ -матрица над \mathbb{R} , а S — образ линейного отображения $\mathbf{x}\mapsto A\mathbf{x}$ пространства \mathbb{R}^n в пространство \mathbb{R}^k . Для произвольного вектора $\mathbf{b}\in\mathbb{R}^k$ системы линейных уравнений $A\mathbf{x}=\mathbf{b}_S$ и $A^TA\mathbf{x}=A^T\mathbf{b}$ равносильны.

Таким образом, вектор $\mathbf{x} \in \mathbb{R}^n$ будет псевдорешением системы $A\mathbf{x} = \mathbf{b}$ тогда и только тогда, когда \mathbf{x} является решением системы $A^TA\mathbf{x} = A^T\mathbf{b}$.

Метод наименьших квадратов (2)

Доказательство. Подпространство S порождается образами базисных векторов пространства \mathbb{R}^n , т.е. столбцами матрицы A. Столбцы матрицы A- это строки матрицы A^T . Из ортогонального разложения пространства \mathbb{R}^k относительно подпространства S имеем $\mathbf{b} = \mathbf{b}_S + \mathbf{b}^\perp$. Умножая это равенство слева на матрицу A^T и вспоминая формулу, выражающую скалярное произведение в евклидовом пространстве через координаты в ортонормированном базисе (т.е. формулу $\mathbf{u}\mathbf{v} = [\mathbf{u}]^T[\mathbf{v}]$), получаем:

$$A^{T}\mathbf{b} = A^{T}(\mathbf{b}_{S} + \mathbf{b}^{\perp}) = A^{T}\mathbf{b}_{S} + A^{T}\mathbf{b}^{\perp} = A^{T}\mathbf{b}_{S}, \quad (\star)$$

поскольку вектор \mathbf{b}^\perp ортогонален всем векторам из S. Из (\star) , если $\mathbf{x} \in \mathbb{R}^n$ — решение системы $A\mathbf{x} = \mathbf{b}_S$, то

$$A^T A \mathbf{x} = A^T \mathbf{b}_S \stackrel{(\star)}{=} A^T \mathbf{b}.$$

Обратно, пусть $\mathbf{x} \in \mathbb{R}^n$ является решением системы $A^T A \mathbf{x} = A^T \mathbf{b}$. Возьмем произвольный вектор $\mathbf{y} \in \mathbb{R}^n$ и перемножим вектора $A \mathbf{y}$ и $A \mathbf{x} - \mathbf{b}_S$. Имеем (снова используя формулу $\mathbf{u} \mathbf{v} = [\mathbf{u}]^T [\mathbf{v}]$)

$$(A\mathbf{y})^T(A\mathbf{x} - \mathbf{b}_S) = \mathbf{y}^T A^T(A\mathbf{x} - \mathbf{b}_S) = \mathbf{y}^T(A^T A\mathbf{x} - A^T \mathbf{b}_S) \stackrel{(\star)}{=} \mathbf{y}^T(A^T A\mathbf{x} - A^T \mathbf{b}) = 0.$$

Итак, вектор $A\mathbf{x}-\mathbf{b}_S$ ортогонален любому вектору из S, в частности, самому себе. Отсюда $A\mathbf{x}-\mathbf{b}_S=\mathbf{0}$ и $A\mathbf{x}=\mathbf{b}_S$.

Метод наименьших квадратов (3)

Отметим, что если ранг $k \times n$ -матрицы A равен n, то $n \times n$ -матрица $A^T A$ будет обратимой (упражнение). В этом случае при любой правой части $\mathbf{b} \in \mathbb{R}^k$ система $A\mathbf{x} = \mathbf{b}$ имеет единственное псевдорешение, для которого есть простая формула:

 $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}.$

Метод наименьших квадратов изобрел (по его словам — в 1795 г.) и с большим успехом применял Карл Фридрих Гаусс (1777–1855).

Заключительные замечания

- 1. Метод наименьших квадратов работает и для унитарных пространств, т.е. для систем с комплексными коэффициентами. Единственное отличие состоит в том, что для отыскания псевдорешений системы линейных уравнений $A\mathbf{x}=\mathbf{b}$ надо решать систему $A^*A\mathbf{x}=A^*\mathbf{b}$, где $A^*-\mathfrak{p}$ митово сопряженная матрица к матрице A. (Эрмитово сопряженная матрица получается, если исходную матрицу транспонировать и заменить каждый элемент его сопряженным: если $A=(a_{ij})_{k\times n}$, то $A^*:=(\overline{a_{ji}})_{n\times k}$.)
- 2. Имеются и другие методы нахождения псевдорешений несовместных системы линейных уравнений, например, итерационный метод Качмажа.

Решение упражнения

Утверждалось, что если ранг $k \times n$ -матрицы A равен n, то $n \times n$ -матрица A^TA будет обратимой. На самом деле, справедлив более общий факт:

Предложение

Для любой матрицы A над $\mathbb R$ ее ранг равен рангу матрицы A^TA .

Доказательство. Выше установлено, что системы линейных уравнений $A\mathbf{x} = \mathbf{b}_S$ и $A^T A \mathbf{x} = A^T \mathbf{b}$ равносильны для произвольного вектора \mathbf{b} . Полагая $\mathbf{b} = \mathbf{0}$, заключаем, что у однородных систем $A\mathbf{x} = \mathbf{0}$ и $A^T A \mathbf{x} = \mathbf{0}$ одно и то же пространство решений; обозначим его через R. Применяя к каждой из этих систем теорему о размерности пространства решений линейной однородной системы, получаем, что размерность R равна разности между числом неизвестных и рангом матрицы A и в то же время равна разности между числом неизвестных и рангом матрицы $A^T A$. Следовательно, эти ранги равны.

Вопрос

Верен ли аналогичный факт для матриц над произвольными полями?