

An Ontology-based Method and Tool for Cross Domain Requirements Visualization

Nirav Ajmeri, Kumar Vidhani, Manoj Bhat, Smita Ghaisas

Introduction

- Requirement Analysts / Subject Matter experts aware of intricacies of their respective domain of expertise.
- Project Requirements span across multiple domains.
- Lack of understanding of cross-domain interactions results in-
 - Incomplete Requirements
 - Wrong Estimation
 - and Schedule Slippage thereof.
- Ontologies used as a way of representing domain knowledge.
 - Vocabulary of knowledge elements
 - and Relationships between them.

Ontology-based method identifies *interfaces between multiple domains* and generate *conceptual model of requirements*

How the customer explained it

How the Project Leader understood it

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant described it

How the project was documented

What operations installed

What the customer really needed

Agenda

- Introduction
- Motivation
- Semantic Similarity Method for Identifying Interfaces
 - Syntactic Similarity
 - Sense Similarity
 - Context Similarity
- Method for Deriving Conceptual Model
- Experimental Results
- Conclusion

Motivational Example

BANKING ONTOLOGY V

US_1 - As an Insurance Company, we want *health insurance policyholder to make payment for premium online through internet banking*

HEALTHCARE ONTOLOGY

Method For Identifying Interfaces

- Semantically similar concepts between multiple domain ontologies defined as interfaces.
- Semantic Similarity is a combination of -
 - Syntactic Similarity based on the syntactic structure of concept
 - Sense Similarity based on similar usage sense of concept
 - Context Similarity based on context defined by neighborhood of concept

US_1 - As an Insurance Company, we want *health insurance* **policyholder** to make **payment** for premium online through internet banking

Method For Deriving Conceptual Model

Criteria

- 1. Identify if interface concept represent functionality?
 - check if interface concept part of verb phrase or prefixed by a verb phrase.
- 2. Domain of the User Story?
 - map extracted concepts of User Story with Domain Ontology.
- If User Story executes in *Peripheral domain*.

Conceptual Model = C_{interface} + C_{complementary_central} + C_{ack} + Associated Constraints #

If User Story executes in Central domain.

Conceptual Model = C_{interface} + C_{complementary_central} + C_{complementary_peripheral} + Associated Constraints #

$C_{interface}$ – interface concept, $C_{complementary_central}$ – complementary concepts from central domain, $C_{complementary_peripheral}$ – complementary concepts from peripheral domain, C_{ack} – acknowledgement concept

Experimental Results

Table1. Insurance domain User Stories found to be interacting with Banking and Healthcare domain

User Story	Description	User Story Domain	Interface and Complementary Concepts#
US_1	As Insurance Company, we want policyholders to make payment of premium online through internet banking.	Banking	Payment(C _{interface}), Premium, Risk, Transaction(C _{ack})
US_2	As a Claim Scrutinizer, I should be able to view insured's medical history in claims scrutiny screen.	Insurance	Insured-Patient(C _{interface}), Policy, Personal Details, Contact Details, Medical Report, Prescription, Disease, Healthcare provider
US_3	As Claims Manager, I want system to find out symptoms which are pointers to terminal diseases in health records furnished by customer.	Insurance	Symptom(C _{interface}), Disease, Insurance, Insurance policy, Syndrome, Organ

[#] $C_{interface}$ – interface concept, C_{ack} – acknowledgement concept

Conceptual model of US_1

Conclusion

- Method helps in explicitly visualize cross domain scope of requirements.
- Asking right questions to right people.
- Completeness of ontologies is a precursor.
- A step towards improving completeness of requirements.

Thank you

email: {nirav.ajmeri, kumar.vidhani, manoj.bhat, smita.ghaisas}@tcs.com

Appendix 1: Criteria 1 Example

As Insurance Company, we want policyholders to make payment of premium online through internet banking.

Appendix 2: Criteria 2 Example

As a Claim Investigator, I want hospitalization claim verification functionality in the insurance application to investigate claim submitted by the policyholder.