List of Posters

Title	Authors	Affiliation
A soft computing approach for estimating the specific heat	Ahmed Abdelhalim M. Hassan ¹ ,	¹ Cairo University.
capacity ofmolten salt-based nanofluids	Debjyoti Banerjee ²	² Texas A&M University
A framework for reduced-order modeling of turbulent reacting flows	Opeoluwa Owoyele ¹ , Tarek Echekki ² , Pinaki Pal ²	¹ Argonne National Laboratory, ² North Carolina State University
Neural network flame closure model for liquid propellant rocket engine	Zeinab Shadram	University of California Irvine
Subgrid-scale parametrization of unresolved scales in forced	Jeric Alcala,	University of Houston
Burgers equation using Generative Adversarial Networks (GAN)	Ilya Timofeyev	
Oil production analysis by machine learning methods	Darkhan Akhmed-Zaki Timur Imankulov, Yedil Nurakhov, Yerzhan Kenzhebek	al-Farabi Kazakh National University
Multi-fidelity learning with heterogeneous domains	Soumalya Sarkar, Michael Joly, Paris Perdikaris	University of Pennsylvania
In-situ coupled OpenFOAM and TensorFlow: Generic data science for CFD	Romit Maulik ¹ , Himanshu Sharma ¹ , Saumil Patel ² , Bethany Lusch ¹ , Elise Jennings ¹	¹ Argonne Leadership Computing Facility Argonne National Laboratory ² Computational Physics Division Argonne National Laboratory
Data-driven modeling for fluid dynamics: Turbulence closure model order reduction and superresolution	Suraj Pawar ¹ , Shady E. Ahmed ¹ , Harsha Vaddireddy ¹ , Romit Maulik ² , Omer San ¹ , Adil Rasheed ³	¹ Oklahoma State University ² Argonne National Laboratory ³ Norwegian University of Science and Technology
PDE discovery using convolutional LSTM	Kazem Meidani	Carnegie Mellon University
Machine learning potential for phonon transport in perfect Si and Si with vacancies	Ruiqiang Guo, Hasan Babaei, Amirreza Hashemi, Sangyeop Lee	University of Pittsburgh, Pittsburgh

List of Posters

Title	Authors	Affiliation
Machine learning enabled study of phonon transport from first principles	Sangyeop Lee,	University of Pittsburgh
	Ruiqiang Guo	
Predicting time dependent solutions to the viscous Burger's equation using Gaussian Process Regression	Francis Ogoke ¹ ,	¹ Carnegie Mellon University ² Sandia National Laboratories
	Michael Glinsky²,	
	Amir Barati Farimani ¹	
Data-driven prediction of a multi-scale Lorenz 96 chaotic	Pedram Hassanzadeh	
system using deep learning methods: Reservoir computing	Ashesh Chattopadhyay	Rice University
ANN and RNN-LSTM	Devika Subramanian	
Learn a low-rank arbitrary Lagrangian Eulerian frame to reduce	Rambod Mojgani	University of Illinois at Urbana-Champaign
the dimensionality of convection dominated nonlinear flows	Maciej Balajewicz	Offiversity of fillifols at orbaffa-champaign
KiNet: A deep neural network representation of chemical	Weiqi Ji,	Massachusetts Institute of Technology
kinetics	Sili Deng	
	Arvind T. Mohan ¹ ,	¹ Los Alamos National Laboratory ² University of Arizona
Physics embedded neural networks for spatio-temporal turbulence	Nicholas Lubbers ¹ ,	
	Daniel Livescu ¹ ,	
	Misha Chertkov ²	
Machine Learning for Turbulence in Supernovae	Platon Karpov	Los Alamos National Laboratory
	Chengkun Huang	
	Ghanshyam Pilania	
	Stan E. Woosley	
	Chris Fryer	
Deep learning for transport in heterogeneous media: forward and inverse problems	Haiyi Wu,	Virginia Polytechnic Institute and State University
	Wen-Zhen Fang,	
	Hongwei Zhang,	
	Qinjun Kang,	
	Guoqing Hu,	
	Wen-Quan Tao,	
	Rui Qiao	
Neural Network potential for lattice dynamics calculations and thermal conductivity prediction	Jie Gong,	Carnegie Mellon University
	Hyun-Young Kim,	
	Alan J. H. McGaughey	