PLCedu Educational PLC with Snap!

What is a PLC?

A programmable logic controller (PLC) or programmable controller is an industrial computer that has been ruggedized and adapted for the control of manufacturing processes, such as assembly lines, machines, robotic devices, or any activity that requires high reliability, ease of programming, and process fault diagnosis.

What is PLCedu?

A basic programmable logic controller (PLC) based on IoT-Vertebrae (Open Source Hardware)

Glossary

VU is VU-Meter input. Analog grounding

I AN is analog ground

BT is red button output. Digital grounding

POT is potentiometer output. Analog grounding

+D is 12 volts digital power supply. Digital grounding

-D is digital ground

DIO .. **DI3** are 4 digital inputs. Digital grounding

DOO .. **DO3** are 4 digital outputs. Digital grounding

Al1 .. Al4 are 4 analog inputs. Analog grounding

AO1 .. AO4 are 4 analog outputs. Analog grounding

VU-Meter reads voltage from 0 to 10 volts. Analog grounding (GND is \bot AN) **Red button** gives 12 volts when pressed (0 otherwise). Digital grounding (GND is -D) **Potentiometer** output voltage is from 0 to 10 volts. Analog grounding (GND is \bot AN)


```
dout bits(4) 0100

dout bits(4) 0100

dout bits(4) 0000

dout bits(4) 0000

dout bits(4) 0000

dout bits(4) 0000

dout bits(0-3) 2 valor(0-1) 1

from plcEdu import *
import time

doutbit bit(0-3) 2 valor(0-1) 0

doutbit bit(0-3) 2 valor(0-1) 0
```



```
from plcEdu import *

reading = din()
print("Reading: %s"%reading)

from plcEdu import *
import time

for bit in range(4):
    readBit = dinbit(bit)
    print("bit %d: %s"%(bit,readBit))
    time.sleep(0.1)
```

Digital inputs


```
from plcEdu import *

reading = din()
print("Reading: %s"%reading)

from plcEdu import *
import time

for bit in range(4):
    readBit = dinbit(bit)
    print("bit %d: %s"%(bit,readBit))
    time.sleep(0.1)
```

DI1 (digital input 1) is connected to BT (when red button is pressed BT gives 12 volts)

Analog inputs

Al4 (analog input 4) is connected to POT (potentiometer output voltage is from 0 to 10 volts)

Analog outputs


```
from plcEdu import *
canal = 4
value = 7.5
aout(canal, value)
print("Sending ", value," volts to channel ", canal)
from plcEdu import *
import time
canal = 4
for value in range(11):
    aout(canal, value)
    print("Sending ", value," volts to channel ", canal)
    time.sleep(0.5)
    if value != 10:
        aout(canal,value+0.5)
        print("Sending ", value+0.5," volts to channel ", canal)
        time.sleep(0.5)
value = 5
aout(canal.value)
print("Sending ", value," volts to channel ", canal)
```

AO4 (analog output 4) is connected to VU (VU-Meter reading from 0 to 10 volts)

Practical demonstration

PLCedu Snap! example link on GitHub

Thank you for watching!

This presentation on GitHub

by Jordi Binefa: jordibinefa@gmail.com

