二维离散型随机变量

主要概念

- 二维离散型随机变量的联合分布率
- 二维离散型随机变量的边缘分布率

设(X,Y)为二维离散型随机变量,(X 取值 $x_1, x_2, \cdots; Y$ 取值 y_1, y_2, \cdots 令

$$(p_{ij}=P(X=x_i,Y=y_j), i \geq 1, j \geq 1,$$

其中
$$p_{ij} \geq 0$$
 $(i \geq 1, j \geq 1), \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1.$

二维随机变量 (X,Y) 的分布律也可表示为

Y	x_1	x_2		x_i	
y_1	p_{11}	p_{21}		p_{i1}	
$egin{array}{c} y_2 \ dots \ y_j \end{array}$	$egin{array}{c} oldsymbol{p_{12}} \ oldsymbol{p_{1j}} \end{array}$	$egin{array}{c} p_{22} \ dots \ p_{2j} \end{array}$: 	$egin{array}{c} p_{i2} \ dots \ p_{ij} \end{array}$:

例1 设随机变量X在1,2,3,4四个整数中等可能地取值,另一个随机变量Y

在 $1\sim X$ 中等可能地取一个整数值,试求(X,Y)的联合分布律

解: (X,Y)的可能取值为 (i,j), i=1,2,3,4, j取不大于i的一个正整数.

$$P(X = i, Y = j) = P(Y = j | X = i)P(X = i) = \frac{1}{i} \cdot \frac{1}{4}, \ 1 \le j \le i \le 4$$

$$P(X = i, Y = j) = P(Y = j | X = i)P(X = i) = \frac{1}{i} \cdot \frac{1}{4}, \quad 1 \le j \le i \le 4$$

Y	1	2	3	4
1	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$	1 16
2	0	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{16}$
3	0	0	$\frac{1}{12}$	1 16
4	0	0	0	$\frac{1}{16}$

二维离散型随机变量(X,Y) 的联合分布函数用联合分布律表示为:

$$F(x,y) = P(X \le x, Y \le y) = \sum_{\{i: x_i \le x\}} \sum_{\{j: y_j \le y\}} P(X = x_i, Y = y_j)$$

$$F_X(x) = P(X \le x, Y \le \infty) = \sum_{\{i: x_i \le x\}} \sum_{j=1}^{\infty} P(X = x_i, Y = y_j)$$

$$F_Y(x) = P(X \le \infty, Y \le y) = \sum_{i=1}^{\infty} \sum_{\{j: y_j \le y\}} P(X = x_i, Y = y_j)$$

例2 一个袋中有三个球,依次标有数字 1,2,2,从中任取一个,不放回并再任取一个,

设每次取球时,各球被取到的可能性相等,以X,Y分别记第一次和第二次取到的

球上标有的数字, $\bar{x}(X, Y)$ 的联合分布律与联合分布函数.

解(X,Y)	的可能取值为	(1,2),	(2,1), (2,2).	$p_{12} = p_{21} = p_{22} =$	1 2
		\ / //	() // () /		3

YX	1	2	
1	0	1/3	
2	1/3	1/3	

$$F(x,y) = P(X \le x, Y \le y) = \sum_{\{i: x_i \le x\}} \sum_{\{j: y_j \le y\}} P(X = x_i, Y = y_j)$$

1. 当
$$1 \le x < 2, y \ge 2$$
 时,

$$F(X,Y) = p_{12} = \frac{1}{3}$$

2. 当
$$x \ge 2, 1 \le y < 2$$
 时,

$$F(X,Y) = p_{21} = \frac{1}{3}$$

3.
$$\exists x \geq 2, y \geq 2 \text{ fi}, F(X,Y) = p_{12} + p_{21} + p_{22} = 1$$

$$F(x,y) = \begin{cases} \frac{1}{3}, & 1 \le x < 2, y \ge 2 \text{ if } x \ge 2, 1 \le y < 2; \\ 1, & x \ge 2, y \ge 2; \\ 0, & \text{if } C \end{cases}$$

设 p_{ij} $(i \ge 1, j \ge 1)$ 为二维离散型随机变量(X, Y)的联合分布律,

分别用 $p_i(X)$ $(i \ge 1)$, $p_j(Y)$ $(j \ge 1)$ 表示X 和Y的分布律,则

$$p_i(X) = P(X = x_i) = P(X = x_i, -\infty < Y < \infty)$$

$$= P\left(\sum_{j\geq 1} \{X = x_i, Y = y_j\}\right) = \sum_{j\geq 1} P(X = x_i, Y = y_j) = \sum_{j\geq 1} p_{ij}$$

$$p_j(Y) = P(Y = y_j) = P(-\infty < X < \infty, Y = y_j)$$

$$= P\left(\sum_{i\geq 1} \{X = x_i, Y = y_j\}\right) = \sum_{i\geq 1} P(X = x_i, Y = y_j) = \sum_{i\geq 1} p_{ij}$$

设 p_{ij} $(i \ge 1, j \ge 1)$ 为二维离散型随机变量(X, Y)的联合分布律,

$$(p_i(X) = \sum_{j \geq 1} p_{ij} \qquad i \geq 1$$

$$(p_j(Y) = \sum_{i \ge 1} p_{ij} \qquad j \ge 1$$

分别称 $p_i(X)$, $p_i(Y)$ 为(X,Y)关于X和Y的边缘分布律

Y	x_1	x_2		(x_i)		$p_j(Y)$
y_1	p_{11}	p_{21}		p_{i1}		$p_1(Y)$
y ₂	$m{p_{12}}$:	p ₂₂ :	::	$p_{i2} = 1$:	$p_2(Y)$:
(y_j)	$<\!$	p_{2j}		p_{ij}		$(p_j(Y))$
$p_i(X)$	$p_1(X)$	$p_2(X)$		$(p_i(X))$		1

$$p_i(X) = \sum_{j\geq 1} p_{ij}$$
 $i\geq 1$ $p_j(Y) = \sum_{i\geq 1} p_{ij}$ $j\geq 1$

例3 一个袋中有两只红球,三只白球,令

$$X =$$
 $\begin{cases} 1, & \text{第一次取到红球} \\ 0, & \text{第一次取到白球} \end{cases}$ $Y = \begin{cases} 1, & \text{第二次取到红球} \\ 0, & \text{第二次取到白球} \end{cases}$

分不放回和放回两种情形摸球两次,求(X,Y)的联合分布律与边缘分布律

不放回

放回

Y	0	1	$p_j(Y)$	Y	0	1	$p_j(Y)$
0	$\left(\frac{3}{5} \times \frac{2}{4}\right)$	$\frac{2}{5} \times \frac{3}{4}$	$\frac{\sqrt{3}}{5}$	0	$\left(\frac{3}{5}\times\frac{3}{5}\right)$	$\frac{2}{5} \times \frac{3}{5}$	$\left \frac{3}{5} \right $
1	$\frac{3}{5} \times \frac{2}{4}$	$\frac{2}{5} \times \frac{1}{4}$	$\left \frac{2}{5}\right $	1	$\frac{3}{5} \times \frac{2}{5}$	$\frac{2}{5} \times \frac{2}{5}$	2 5
$p_i(X)$	$\frac{3}{5}$	$\frac{2}{5}$		$p_i(X)$	$\frac{3}{5}$	$\frac{2}{5}$	

X	0	1
P	$\frac{3}{5}$	2 5

Y	0	1
P	$\frac{3}{5}$	2
	5	5

结 1

(X, Y)为二维离散型随机变量

联合分布律

$$p_{ij} = P(X = x_i, Y = y_j), \qquad i \geq 1, j \geq 1$$

$$i \geq 1, j \geq 1$$

边缘分布律

$$p_i(X) = \sum_{j \ge 1} p_{ij} \qquad i \ge 1$$

$$p_j(Y) = \sum_{i\geq 1} p_{ij} \qquad j\geq 1$$