Problem Set 19: 子群与群分解

提交截止时间: 5月13日10:00

Problem 1

设 H 是 G 的子群,证明 H 在 G 中的所有左陪集中有且只有一个是 G 的子群,即 $\exists ! K \in \{aH \mid a \in G\}$ 使得 K 是 G 的子群。

Problem 2

设 G 是有限群,A 与 B 是 G 的两个非空子集,且 |A|+|B|>|G|,求证 G=AB

Problem 3

设 H 是群 G 的子群, $x \in G$, 令 $xHx^{-1} = \{xhx^{-1}|h \in H\}$, 证明 xHx^{-1} 是 G 的子群, 称为 H 的共轭子群.

Problem 4

设 H 和 K 分别为群 G 的 r,s 阶子群, 若 r 与 s 互素, 证明 $H \cap K = \{e\}$.

Problem 5

证明: 若 G 中只有一个 2 阶元,则这个 2 阶元一定与 G 中所有元素可交换。

Problem 6

证明: 在群 G 中, 如果 $g,h \in G$ 满足 gh = hg, 并且 gcd(|g|,|h|) = 1, 那

 $\angle |gh| = |g||h|$

(提示: 令 N = |gh||g|, 使用阶的性质和交换律)

Problem 7

设群 G 有子群 H, H 是正规子群当且仅当

 $\forall g \in G, \forall h \in H : ghg^{-1} \in H$

证明: 如果群 G 有且只有一个 d 阶子群,那么这个子群是正规的。

Problem 8

证明: 使用阶的概念证明费马小定理。即对素数 p 和任意整数 a, 均有 $a^p \equiv a \pmod{p}$ 。

(提示: 考虑集合 $\mathbb{Z}_n^* := \{ [m]_n \in \mathbb{Z}_n | \gcd(m,n) = 1 \}$ 在乘法下构成的群。使用拉格朗日定理的拓展: 元素的阶和群的阶之间的关系)