MEASURE ENERGY CONSUMPTION

PHASE 3 import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns plt.style.use('ggplot') df = pd.read_parquet('../input/est_hourly.paruqet') Data index is the date/hour, columns are for different regions within PJM. Regions joined at different times, so not all have data for all dates. Regions also split (PJM_Load split to East and West) from IPython.display import Image Image(url= "http://slideplayer.com/4238181/14/images/4/PJM+Evolution.jpg") OUTPUT:

df.head()

OUTPUT:

							AEP		COME	DAYTO	N DEO	K
	DOM	DUQ	EKPC	FE	NI	PJME	PJMW	PJM_Lo	oad			
Datetime												
1998-1	.2-31 01: NaN	00:00 29309.	NaN 0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1998-1	.2-31 02: NaN	00:00 28236.	NaN 0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1998-1	.2-31 03: NaN	00:00 27692.	NaN 0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

1998-12-31 04:00:00 NaN 27596.0 1998-12-31 05:00:00 NaN 27888.0

df.describe().T

OUTPUT:

	CO	unt	me	ean	std			std	
min	25%		50%	75%	max				
AEP	121273.0 17200.00	15499.513717 25695.0	2591.399065	9581.0	13630.0		15310.0)	
COMED 66497.0 23753.0		11420.152112	2304.139517	7237.0	9780.0 11152.0		12510.00		
DAYTO	N 121275 3746.0	2037.85	51140 393.403	3153	982.0	1749.0	2009.0	2279.00	
DEOK	57739.0	3105.096486	599.859026	907.0	2687.0	3013.0	3449.00	5445.0	
DOM	116189.0 21651.0	10949.203625	2413.946569	1253.0	9322.0	10501.0)	12378.00	
DUQ	119068.0	1658.820296	301.740640	1014.0	1444.0	1630.0 1819.0		3054.0	
EKPC	45334.0	1464.218423	378.868404	514.0	1185.0	1386.0	1699.00	3490.0	
FE	62874.0 14032.0	7792.159064	1331.268006	0.0	6807.0	7700.0	8556.00)	
NI	58450.0 23631.0	11701.682943	2371.498701	7003.0	9954.0	954.0 11521.0		12896.75	
PJME	145366.0 35650.00	32080.222831 62009.0	6464.012166	14544.0		27573.0		31421.0	
PJMW	143206.0	5602.375089	979.142872	487.0	4907.0	5530.0	6252.00	9594.0	
PJM_Lo	oad 32896. 29655.0	29766.4 33073.25	427408 5849.76 54030.0	69954	17461.0)	25473.0)	

_ = df['PJME'].plot.hist(figsize=(15, 5), bins=200, title='Distribution of PJME Load')

OUTPUT:

_ = df['DOM'].plot.hist(figsize=(15, 5), bins=200, title='Distribution of DOMINION Load')

OUTPUT:

_ = df.plot.hist(figsize=(15, 5), bins=200, title='Distribution of Load by Region')

OUTPUT:

Plot Time Series

plot = df.plot(style='.', figsize=(15, 8), title='Entire PJM Load 1998-2001')

OUTPUT:

Plotting Regions

_ = df[['PJM_Load','PJME','PJMW']] ¥

.plot(style='.', figsize=(15, 5), title='PJM Load 1998-2002 - Split East and West 2002-2018')

OUTPUT:

Summer Demand vs Winter Demand

Note the dips mid-day in the winter months. Conversely in summer months the daily load is more bell shaped. This is due to high mid-day energy consumtion by air conditioning. In winter months people tend to use less energy mid-day.