Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2019-20

Αλγόριθμοι και Δομές Δεδομένων (ΙΙ) (γράφοι και δένδρα)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Στοίβα (Stack)

- ΕισαγωγήΣτοίβες και Ουρές
- Μια βοηθητική αφηρημένη δομή δεδομένων
 - Ακολουθία δεδομένων
 - Με τη γνωστή λειτουργία LIFO (Last-In-First-Out): θα πάρουμε πρώτο ό,τι βάλαμε στη στοίβα τελευταίο
- Λειτουργίες
 - Ωθηση (push)
 - εισαγωγή στοιχείου στην κορυφή
 - Απώθηση (pop)
 - εξαγωγή στοιχείου από την κορυφή
 - push και pop από την ίδια άκρη!

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

3

Αφηρημένες Δομές Δεδομένων

• Εισαγωγή

- Abstract Data Types (ADTs)
- Αφηρημένα μοντέλα δομών δεδομένων
 - Χωρίς τις λεπτομέρειες υλοποίησης!
 - Προσδιορίζονται μόνο από τις λειτουργίες που εφαρμόζονται σε αυτά
- Στη συνέχεια
 - μια γλώσσα προγραμματισμού χρησιμοποιώντας συγκεκριμένες δομές
 - όπως οι πίνακες ή οι διασυνδεδεμένες λίστες
 - προσφέρει υλοποιήσεις των αφηρημένων δομών δεδομένων

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

2

Υλοποίηση στοίβας

• Εισαγωγή

- Στοίβες και Ουρές
- Με τη χρήση πίνακα (array)
- Αποδοτικό σχήμα όταν
 - Η ώθηση και η απώθηση γίνεται στο τέλος του πίνακα
 - Η πολυπλοκότητα είναι O(1) και στις δύο περιπτώσεις!

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Ουρά (Queue)

- Εισαγωγή • Στοίβες και Ουρές
- Μια άλλη βοηθητική αφηρημένη δομή δεδομένων
 - Πρόκειται επίσης για ακολουθία δεδομένων
 - Με λειτουργία FIFO (First-In-First-Out): θα πάρουμε πρώτο ό,τι βάλαμε στην ουρά πρώτο
- Λειτουργίες
 - Εισαγωγή (enqueue)
 - εισαγωγή στοιχείου στη μία άκρη
 - Εξαγωγή (dequeue)
 - εξαγωγή στοιχείου από την άλλη άκρη
 - enqueue και dequeue από διαφορετικές άκρες!

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Γράφοι (Graphs)

- Εισαγωγή • Στοίβες και Ουρές
- Γράφοι

Ένα από τα βασικότερα "αλγοριθμικά εργαλεία"

- Πάρα πολλά προβλήματα ανάγονται σε γράφους και στη συνέχεια επιλύονται με αλγορίθμους γράφων!
- Έννοιες γράφων
 - Ένα σύνολο κορυφών (κόμβων nodes) που διασυνδέονται μέσω ακμών (edges).
 - Οι ακμές μπορούν να έχουν κατεύθυνση ή όχι
 - Προσανατολισμένοι και μη γράφοι (directed & undirected graphs)
 - Οι ακμές μπορούν να έχουν βάρη ή όχι

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Υλοποίηση ουράς

• Εισαγωγή • Στοίβες και Ουρές

- Η "φυσική" υλοποίηση είναι με διπλά διασυνδεδεμένη λίστα
 - Ξέρουμε και τις δύο άκρες και μπορούμε να διασχίσουμε τη λίστα και προς τις δύο κατευθύνσεις
 - Εισαγωγή και εξαγωγή με O(1)

• Όμως

- Σε πολλά συστήματα η ουρά υλοποιείται ως "κυκλικός" πίνακας
 - πεπερασμένο μέγεθος, η άκρη εξαγωγής "κυνηγά" την άκρη εισαγωγής
 - και οι δύο άκρες, στο τέλος του πίνακα επιστρέφουν στην αρχή!

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Γράφοι (Graphs)

• Εισαγωγή

- Στοίβες και Ουρές
- Γράφοι
- Έννοιες γράφων
 - Οι κορυφές που ενώνει μια ακμή ονομάζονται γειτονικές (adjacent)
 - Διαδρομή (path) είναι μία ακολουθία κορυφών, η μία γειτονική με την επόμενη
 - Χωρίς να επισκεφτούμε ξανά κάποια από τις κορυφές αυτές
 - Αν η διαδρομή τελειώνει στην αρχική κορυφή, πρόκειται για κύκλο (cycle)
 - Τυπικά, τουλάχιστον τρεις κορυφές
 - Ένας γράφος είναι συνδεδεμένος αν μπορούμε από κάθε κορυφή να μεταβούμε σε κάθε άλλη

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι

• Λίστα γειτνίασης (adjacency list)

- Για κάθε κορυφή του γράφου
- Διατηρούμε μια λίστα με όλες τις γειτονικές κορυφές
- Ενδεχομένως και το βάρος της ακμής (αν υπάρχει)

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

.

Διάσχιση Γράφου (Graph Traversal)

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι
- Πολύ συχνά η επίλυση ενός προβλήματος απαιτεί την εύρεση μιας "σωστής" διαδρομής μεταξύ δύο κορυφών
 - "Σωστή": με τα κριτήρια του εκάστοτε προβλήματος
 - Αναζητώντας τη διαδρομή αυτή πρέπει αλγοριθμικά να διασχίσουμε τον γράφο
 - Ξεκινώντας από μία κορυφή
 - Επισκεπτόμενοι διάφορες άλλες κορυφές (ενδεχομένως όλες)
- Αν ο γράφος έχει κύκλους
 - Πρέπει να εξασφαλιστεί ότι δεν θα επισκεφθούμε ξανά τον ίδιο κόμβο!

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

11

Υλοποίηση γράφων (2)

• Εισαγωγή

- Στοίβες και Ουρές
- Γράφοι
- Πίνακας γειτνίασης (adjacency matrix)
 - NxN πίνακας, πληροφορία για κάθε ζεύγος κορυφών
 - Αν ο γράφος είναι μη προσανατολισμένος, ο πίνακας είναι συμμετρικός

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

10

Διάσχιση με προτεραιότητα βάθους

• Εισαγωγή

- Στοίβες και Ουρές
- Γράφοι
- Depth-First Search (DFS)
 - Η ιδέα της αναδρομικής επίσκεψης των γειτόνων:
 visit(node) {
 for each neighbor
 visit(neighbor)
- Μπορεί να υλοποιηθεί επαναληπτικά με τη βοήθεια στοίβας
 - Όταν επισκεφθούμε μια κορυφή, αν δεν την έχουμε ήδη επισκεφτεί, ωθούμε στη στοίβα όλους τους γείτονές της
 - Από τη στοίβα παίρνουμε τον στόχο της επόμενής μας επίσκεψης, έως ότου η στοίβα να αδειάσει

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Παράδειγμα διάσχισης DFS

- Εισαγωγή • Στοίβες και
- Ουρές
- Γράφοι
- Για τον γράφο του σχήματος
 - Και την εικονιζόμενη λίστα γειτνίασης
- Η σειρά επίσκεψης ξεκινώντας από τον Α είναι Α Γ Ε Δ Β

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Παράδειγμα διάσχισης BFS

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι
- Για τον γράφο του σχήματος
 - Και την εικονιζόμενη λίστα γειτνίασης
- Η σειρά επίσκεψης ξεκινώντας από τον Α είναι Α Β Γ Δ Ε

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Διάσχιση με προτεραιότητα εύρους

- Εισαγωγή
- Στοίβες και
- Γράφοι
- Τι θα συμβεί αν αντικαταστήσουμε τη στοίβα του προηγούμενου αλγορίθμου με μια ουρά;
 - Breadth-First Search (BFS)

Πρακτικά:

- Επισκεπτόμαστε πρώτα τις κορυφές που βρίσκονται κοντύτερα στην αρχή
 - σε ζώνες (επίπεδα) απόστασης από εκεί που ξεκινήσαμε
- Η αναζήτηση BFS θα βρει λύσεις με συντομότερες διαδρομές (shortest paths)
 - απαιτεί μεγαλύτερο χώρο αποθήκευσης

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Δένδρα (Trees)

• Εισαγωγή

- Στοίβες και Ουρές
- Γράφοι
- Δένδρα

ρίζα

- Υποκατηγορία γράφων
 - Συνδεδεμένοι και χωρίς κύκλους γράφοι
 - Με πολλές αλγοριθμικές εφαρμογές, ιδίως στην αναζήτηση
- Έννοιες δένδρων:
 - Διασυνδεδεμένοι κόμβοι (nodes), με προγόνους και απογόνους
 - στην κορυφή η ρίζα (root) και στο τέλος τα φύλλα (leaves)
 - siblings: κόμβοι με τον ίδιο πατέρα
 - Επίπεδο κόμβου: η απόστασή του από τη ρίζα
 - Ύψος δένδρου: το μήκος (σε κόμβους) της μέγιστης διαδρομής ρίζα-φύλλο

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Υλοποίηση δένδρων

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι
- Δένδρα
- Δεν υπάργει ένας και μοναδικός τρόπος
 - Ανάλογα με το είδος του δένδρου
 - Υπάρχουν πολλοί τύποι δένδρων
 - Ανάλογα με το πρόβλημα που καλούνται να λύσουν
- Σε γενικές γραμμές
 - Σύνολο διασυνδεδεμένων πινάκων (arrays)
 - αποθηκεύουν τα δεδομένα κάθε κόμβου, τις διασυνδέσεις με τα παιδιά του κόμβου, και όποιες άλλες πληροφορίες διαχείρισης του δένδρου

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Παράδειγμα επεξεργασίας σε διάσχιση DFS

- Εισαγωγή
- Στοίβες και
- Ουρές

Preorder:

Postorder: 8

Inorder:

Ποια σειρά επεξεργασίας αποδίδει το αριθμητικό νόημα του δένδρου;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Διάσχιση δένδρων

• Εισαγωγή

- Στοίβες και Ουρές
- Γράφοι
- Δένδρα
- Τα δένδρα είναι υποκατηγορία γράφων
 - Συνεπώς μπορούμε να εφαρμόσουμε οποιαδήποτε τεχνική διάσχισης (π.χ. DFS ή
 - Σε κάθε κόμβο μπορούμε να εφαρμόσουμε κάποια μορφή επεξεργασίας

• Επεξεργασία κατά τη διάσχιση DFS

- Preorder: πριν προγωρήσουμε στα παιδιά του
- Postorder: αφού επιστρέψουμε από την επεξεργασία των παιδιών
- Ειδικά για δυαδικά δένδρα (όχι πάνω από δύο παιδιά): inorder επεξεργασία, αριστερό παιδί κόμβος - δεξί παιδί

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

18

Η δυαδική αναζήτηση (ξανά)

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι
- Δένδρα
- Δυαδική αναζήτηση
- Η ισχύς του log, η για γρήγορη εύρεση σε μεγάλο αριθμό δεδομένων

αναζήτησης

Όμως

Χρειαζόμαστε ταξινομημένους πίνακες

Έχουμε ήδη δει την ισχύ της δυαδικής

- Πόσο εύκολο αν τα δεδομένα αλλάζουν συνεχώς;
- Και οι διασυνδεδεμένες λίστες δεν αποτελούν
 - Απώλεια του Ο(1) για την εύρεση (ή μη) ενός στοιχείου
- Τι άλλο μπορούμε να κάνουμε;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

Πρώτη λύση: αποφυγή αναζήτησης!

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι
- Δένδρα
- Δυαδική αναζήτηση

Μέθοδος κατακερματισμού (hashing)

- Για εύρεση κλειδιού (membership test) ή αντιστοίχιση κλειδιού-τιμής (mapping) χωρίς αναζήτηση
- Πώς γίνεται;
 - Κάθε κλειδί μετατρέπεται σε έναν αριθμό μέσω συνάρτησης κατακερματισμού (hash function)
 - ο αριθμός αυτός (ή κάποια bits αυτού) χρησιμοποιούνται ως δείκτης i σε έναν πίνακα
 - Διαλέγουμε συναρτήσεις που κατανέμουν ομοιόμορφα τα κλειδιά στις θέσεις του πίνακα
 - Εναλλακτικές θέσεις σε περίπτωση σύγκρουσης (collision)
 - Πολυπλοκότητα (σχεδόν) O(1)!

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

21

Δεύτερη λύση: δένδρα δυαδικής αναζήτησης

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι
- Δένδρα
- Δυαδική
- αναζήτηση
- Εισαγωγή νέου στοιχείου
 - Αναζητούμε το σημείο όπου θα έπρεπε να είναι το νέο στοιχείο
 - Και το εισάγουμε στην κατάλληλη θέση
 - Προσοχή: η μορφή του δένδρου εξαρτάται από τη σειρά εισαγωγής των στοιχείων

Ισορροπία (balance) δένδρου

- Το απλό δυαδικό δένδρο μετά από εισαγωγή νέων στοιχείων μπορεί να πάψει να έχει ισορροπία (να είναι ομοιόμορφα επεκταμένο)
 - Η απόδοση της αναζήτησης μειώνεται
- Υπάρχουν εξελιγμένες μορφές δένδρων που φροντίζουν για τη διατήρηση της ισορροπίας τους κατά την εισαγωγή ή διαγραφή στοιχείων

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"

23

Δεύτερη λύση: δένδρα δυαδικής αναζήτησης

- Εισαγωγή
- Στοίβες και Ουρές
- Γράφοι • Δένδρα
- Δυαδική αναζήτηση
- Δυαδικά δένδρα με τοποθέτηση των κλειδιών σε κάθε κόμβο
 - Με τη σημαντική ιδιότητα: όλα τα κλειδιά στο αριστερό υποδένδρο είναι μικρότερα (ή ίσα) από το κλειδί του κόμβου
 - Και όλα τα κλειδιά στο δεξί υποδένδρο είναι μεγαλύτερα από το κλειδί του κόμβου

• Αναζήτηση

- Σε κάθε βήμα, συγκρίνουμε την επιθυμητή τιμή με το κλειδί του τρέχοντος κόμβου και στη συνέχεια προχωράμε ανάλογα στο αριστερό ή στο δεξί υποδένδρο
 - από τη ρίζα προς τα φύλλα σε λογαριθμικό χρόνο

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αλγόριθμοι και Δομές Δεδομένων (ΙΙ)"