Colle 22 MPSI/MP2I Jeudi 25 avril 2024

Planche 1

- 1. Formule de Taylor avec reste intégral. Énoncé et démonstration.
- 2. Soit $f:[0,1] \to \mathbb{R}$ continue. On note pour tout n dans \mathbb{N} , $J_n = \int_0^1 f(x^n) dx$. Montrer que la suite $(J_n)_{n \in \mathbb{N}}$ converge et déterminer sa limite.
- 3. Soit P un polynôme complexe non constant. Montrer que

$$\left\{ x \in \mathbb{R} | \int_0^x P(t)e^{it}dt = 0 \right\}$$

est un ensemble fini.

Planche 2

- 1. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. On suppose que f ou g est de rang fini. Que dire du rang de $g \circ f$? Le démontrer
- 2. Soit a et b deux réels strictement positfs. Soit $f:[0,a] \to [0,b]$ une bijection de classe C^1 strictement croissante. Montrer que

$$ab = \int_0^a f(x)dx + \int_0^b f^{-1}(y)dy$$

Interpréter géométriquement.

3. Soit $f:[0,1] \to \mathbb{R}$ continue. Déterminer la limite de

$$\frac{1}{n^2} \sum_{1 \le k < l \le n} f\left(\frac{k}{n}\right) f\left(\frac{l}{n}\right)$$

quand *n* tend vers $+\infty$.

Planche 3

- 1. Définition d'un projecteur. Caractérisation. Énoncé et démonstration.
- 2. Pour tout n non nul, on note $u_n = \sum_{k=1}^n \frac{n}{k^2 + n^2}$. Montrer que la suite $(u_n)_{n \geqslant 1}$ converge. En notant ℓ sa limite, déterminer un équivalent simple de $u_n \ell$ quand n tend vers $+\infty$.
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 et 2π périodique. Pour tout n dans \mathbb{N} , pour tout x dans \mathbb{R} , on note $D_n = \sum_{k=-n}^n e^{ikx}$. Montrer que

$$\forall x \in \mathbb{R}, \int_{-\pi}^{\pi} D_n(x-t)f(t)dt \xrightarrow[n \to +\infty]{} f(x)$$