

1 Multi-Element Case

- We've seen the undeformed single-element case already, with $\Omega = \hat{\Omega} = [-1, 1]^2$, and the deformed single-element case.
- We now turn to spectral elements, where Ω consists of multiple deformed spectral subdomains,

$$\Omega = \bigcup_{e=1}^{E} \Omega^{e}. \tag{1}$$

• Here, the energy inner product simply becomes the integral over all elements,

$$a(v,u) := \int_{\Omega} \nabla v \cdot \nabla u \, d\mathbf{x} = \sum_{e=1}^{E} \int_{\Omega^{e}} \nabla v \cdot \nabla u \, d\mathbf{x}. \tag{2}$$

• Given that we know how to integrate over one element, we now know how to integrate over all of Ω and we are almost ready to implement the variational statement for the Poisson problem, Find $u \in X_0^N$ such that, for all $v \in X_0^N$,

$$a(v,u) = (v,f). (3)$$

- It will be helpful to introduce some spaces.
- Let \mathcal{L}^2 denote the set of square-integrable functions on Ω ,

$$\mathcal{L}^2 := \left\{ v \mid \int_{\Omega} v^2 \, dV < \infty \right\}. \tag{4}$$

• Let \mathcal{H}^1 denote the set of functions in \mathcal{L}^2 whose gradient is also square-integrable,

$$\mathcal{H}^1 := \left\{ v \in \mathcal{L}^2 \middle| \int_{\Omega} \nabla v \cdot \nabla v \, dV < \infty \right\}. \tag{5}$$

- Practically, we think of \mathcal{H}^1 as the space of continuous functions, C^0 , which is a subset of \mathcal{H}^1 .
- We are particularly interested in an important subspace, namely, \mathcal{H}_0^1 , which is the space of functions in \mathcal{H}^1 that vanish on the domain boundary wherever Dirichlet conditions are applied,

$$\mathcal{H}_0^1 := \left\{ v \in \mathcal{H}^1 | v = 0 \text{ on } \partial \Omega_D \right\}. \tag{6}$$

• The continous weak form for the Poisson equation reads Find $\tilde{u} \in \mathcal{H}_0^1$ such that, for all $v \in \mathcal{H}_0^1$,

$$a(v, \tilde{u}) = (v, f). \tag{7}$$

• Our goal is to find a continuous $u(\mathbf{x}) \approx \tilde{u}$.

• As in the mono-domain case, we can think of functions in the SEM as basis functions.

• In particular, on element Ω^e , we will have

$$|v(\mathbf{x})|_{\Omega^e} = \sum_{p=0}^{N} \sum_{q=0}^{N} l_p(r) l_q(s) v_{pq}^e \in \mathbb{P}_N(r,s)$$
 (8)

$$u(\mathbf{x})|_{\Omega^e} = \sum_{i=0}^{N} \sum_{j=0}^{N} l_i(r)l_j(s)u_{ij}^e$$
(9)

$$\mathbf{x}|_{\Omega^{e}} = \sum_{i=0}^{N} \sum_{j=0}^{N} l_{i}(r)l_{j}(s)\mathbf{x}_{ij}^{e}.$$
(10)

• Define

$$\hat{X}^{N} := \{ v |_{\Omega^{e}} \in \mathbb{P}_{N}(r, s), e = 1 : E \} \subset \mathcal{L}^{2}(\Omega)$$

$$\tag{11}$$

$$X^{N} := \{ v \in \hat{X}^{N} \mid v \in \mathcal{H}^{1} \} \subset \mathcal{H}^{1}(\Omega)$$

$$(12)$$

$$X_0^N := \{ v \in X^N \mid v = 0 \text{ on } \partial \Omega_D \} \subset \mathcal{H}_0^1(\Omega)$$
(13)

- ullet The key point is that functions in X_0^N are
 - representable in our SEM basis $(\in \hat{X}^N)$
 - $continuous \qquad (\in X^N)$
 - vanishing on $\partial\Omega_D$ $(\in X_0^N)$
- To cast our variational statement into matrix form we introduce the following notation.

$$\underline{u}^e = \begin{pmatrix} u^e_{00} \\ u^e_{10} \\ \vdots \\ u^e_{NN} \end{pmatrix} - local \ basis \ coefficients \ on \ \Omega^e$$

$$\underline{u}_L = \left(egin{array}{c} \underline{u}^1 \\ \underline{u}^2 \\ \vdots \\ \underline{u}^E \end{array}
ight) - unassembled \ set \ of \ local \ basis \ coefficients$$

$$ar{\underline{u}} = \left(egin{array}{c} u_1 \\ u_2 \\ dots \\ u_{ar{n}} \end{array}
ight)$$
 — set of global (aka nodal) basis coefficients, including boundary nodes

$$\underline{u} = R\underline{\overline{u}} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
 - interior-only nodal values.

- *Note:* Generally one simply defines $\underline{u} = R\underline{\bar{u}}$.
 - It's not typical that R = [I O].
 - We will not usually expect $\underline{u} = [\bar{u}_1 \ \bar{u}_2 \dots \bar{u}_n]^T$.
- With these definitions and (as a reminder),

$$egin{array}{lll} v(\mathbf{x})|_{\Omega^e} &=& \sum_{p=0}^N \sum_{q=0}^N l_p(r) l_q(s) v_{pq}^e \, \in \, \mathbb{P}_N(r,s) \ & \ u(\mathbf{x})|_{\Omega^e} &=& \sum_{i=0}^N \sum_{j=0}^N l_i(r) l_j(s) u_{ij}^e \ & \ \mathbf{x}|_{\Omega^e} &=& \sum_{i=0}^N \sum_{j=0}^N l_i(r) l_j(s) \mathbf{x}_{ij}^e, \end{array}$$

our unknowns are the local basis coefficients, \underline{u}_L .

• Given these, we can reconstruct approximation solutions on each Ω^e and, hence, on all of Ω .

• For any $v, u \in \hat{X}^N$,

$$a(v,u) = \sum_{e=1}^{E} \int_{\Omega^{e}} \nabla v \cdot \nabla u \, d\mathbf{x}$$
 (14)

$$= \sum_{e=1}^{E} (\underline{v}^e)^T A^e \underline{u}^e \tag{15}$$

$$= \underbrace{\begin{pmatrix} \underline{v}^{1} \\ \underline{v}^{2} \\ \vdots \\ \underline{v}^{e} \\ \vdots \\ \underline{v}^{E} \end{pmatrix}}^{T} \underbrace{\begin{pmatrix} A^{1} \\ A^{2} \\ \vdots \\ A^{e} \\ \vdots \\ \underline{v}^{E} \end{pmatrix}}_{A_{L}} \underbrace{\begin{pmatrix} \underline{u}^{1} \\ \underline{u}^{2} \\ \vdots \\ \underline{u}^{e} \\ \vdots \\ \underline{u}^{E} \end{pmatrix}}_{\underline{u}_{L}}$$

$$(16)$$

$$= \underline{v}_L^T A_L \underline{u}_L. \tag{17}$$

• A_L is the unassembled system matrix

• A^e is the local system matrix, which we've seen in the monodomain case,

$$A^{e} = \frac{2}{L_{x}^{e}} \left(\hat{B} \otimes \hat{A} \right) + \frac{2}{L_{y}^{e}} \left(\hat{A} \otimes \hat{B} \right) \quad \text{if } \Omega^{e} = L_{x} \times L_{y} \text{ rectangle}$$
 (18)

$$A^e = \mathbf{D}^T \mathbf{G}^e \mathbf{D}$$
 for general geometries, (19)

$$\mathbf{D} = \begin{pmatrix} \hat{I} \otimes \hat{D} \\ \hat{D} \otimes \hat{I} \end{pmatrix}, \qquad G_{ij}^e \Big|_{\xi_p \xi_q} = \sum_{k=1}^d \left. \left(\frac{\partial r_i}{\partial x_k^e} \frac{\partial r_j}{\partial x_k^e} \right) \right|_{\xi_p \xi_q}$$
(20)

• In a similar fashion, we have for all $v, f \in \hat{X}^N$,

$$(v,f) = \underline{v}_L^T B_L \underline{f}_L \tag{21}$$

$$B_L = \text{block-diag}(B^e)$$
 (diagonal matrix) (22)

$$B^{e} = \frac{L_{x}^{e} L_{y}^{e}}{4} \left(\hat{B} \otimes \hat{B} \right) \quad \text{if } \Omega^{e} = L_{x} \times L_{y} \text{ rectangle}$$
 (23)

$$B^e = \mathcal{J}^e \left(\hat{B} \otimes \hat{B} \right)$$
 for general geometries. (24)

- The key point is that we already know how to evaluate all of the operators.
- In fact, that is the central operation for *matrix-free* forms, which are needed for timestepping and for iterative solvers.
- There is one more novel item that we need, and it relates to ensuring that our solution is continuous, $u \in X^N \subset \hat{X}^N$.

- The easiest way to ensure that $u \in X^N \subset \mathcal{H}^1$ is to require that $u(\mathbf{x})$ is continuous.
- Thus, for any two elements Ω^e and $\Omega^{\hat{e}}$,

$$\mathbf{x}_{ij}^e = \mathbf{x}_{\hat{\imath},\hat{\jmath}}^{\hat{e}} \implies u_{ij}^e = u_{\hat{\imath},\hat{\jmath}}^{\hat{e}}. \tag{25}$$

- Imposition of function continuity follows just as it did with the periodic restriction/prolongation operator.
- There, we let $Q = R^T$ be the operator that mapped from the *necessary* unknown coefficients to the *representation* coefficients.
- At that point, we had some discussion as to whether the operator should be called R^T or Q, with the former being associated with boundary conditions and the latter associated with function continuity.
- Here, we will need both, distinct, operators.

- Let Q be a rectangular $N_L \times \bar{n}$ Boolean matrix a single "1" on each of $N_L = E(N+1)^d$ rows.
- \bullet The number of columns of Q is equal to the number of unique vertices.
- \bullet Application of Q to a vector, $\underline{\bar{u}},$ yields a local vector,

$$\underline{u}_L = Q\underline{\bar{u}}, \tag{26}$$

such that entries in \underline{u}_L are copies of data in $\underline{\bar{u}}$.

- By having redundant values stored along shared edges, we know that the function representation associated with $\underline{u}_L = Q\underline{\bar{u}}$ is $continuous \ (\in X^N)$.
- An example is illustrated in the figures above and below.

• Q: How many columns does Q have in this case? How many rows?

- As in the monodomain case, if $u(\mathbf{x}) \in X_0^N$, there exists a rectangular restriction matrix R such that $\underline{\bar{u}} = R^T \underline{u}$ will be zero for all nodes $\mathbf{x}_i \in \partial \Omega_D$.
- The full Laplacian matrix for the SEM is thus,

$$A = R \underbrace{Q^T A_L Q}_{\bar{A}} R^T \tag{27}$$

- We refer to A_L as the unassembled Laplacian matrix and \bar{A} as the assembled Neumann operator.
- It has a null space corresponding to the constant function.
- In a similar fashion, the mass matrix and discrete convection operator are

$$B = R \underbrace{Q^T B_L Q}_{\bar{B}} R^T, \qquad C = R \underbrace{Q^T C_L Q}_{\bar{C}} R^T, \tag{28}$$

where $B_L = \text{block-diagonal}(B^e)$ and $C_L = \text{block-diagonal}(C^e)$, with B^e and C^e the element-based counterparts to (??) and (??), respectively.

- We remark that the factor QR^T on the right of each of (27)–(28) results from $u \in X^N$ (Q) and $u \in X_0^N \subset X^N$ (R^T), whereas the prefactor RQ^T results from the test functions v being in the same space.
- The governing mathematics/physics dictates the contents of the block-diagonal matrices, A_L , B_L , and C_L , which are sandwiched between these operators.
- It is thus relatively easy to construct new operators provided that one understands the constraints on spaces for the test (v) and trial (u) functions.
- Since we know how to *apply* the operators, we also know how to *solve* the relevant systems given that we will use iterative methods.

- It is somewhat remarkable that the SEM works, i.e., that we get exponential convergence even though our basis functions are only C^0 continuous.
- Why is the convergence so fast?
- It has to do with the fact that, for smooth solutions, our *approximation* is converging exponentially fast on *each* local subdomain.
- High-order continuity is not requisite.
- If the solution is C^{∞} , we will converge exponentially fast to that solution.
- Note that our derivatives are *not* continuous.
- The jump, however, goes to zero exponentially fast with N.

- Some comments about data structures.
- We generally like to keep things in *local representation*, \underline{u}_L , which allows us to trivially evaluate gradients, integrals, etc.
- This form is convenient for parallel computing.
- It does change, however, how one implements a matrix-vector product of the form $\underline{w} = A\underline{u}$.
- Assuming that \underline{u}_L denotes a function that is already in X_0^N , we would modify the matrix-vector product as

$$\underline{w} = A\underline{u} = RQ^T A_L Q R^T \underline{u} \tag{29}$$

$$\underline{w}_L = QR^T R Q^T A_L Q R^T \underline{u} \tag{30}$$

$$= QR^T RQ^T A_L \underline{u}_L \tag{31}$$

- Note that $M := R^T R$ is a diagonal mask matrix comprising 1s and 0s on the diagonal, with 0 for any points on $\partial \Omega_D$.
- Its action is to zero out any Dirichlet values.
- We can also zero out when the data is in its *local* representation by defining a diagonal matrix $M_L \in \mathbb{R}^{n_L \times n_L}$, where $n_L = E(N+1)^d$.

• The matrix-vector product then becomes

$$\underline{w}_L = QR^T R Q^T A_L Q R^T \underline{u} \tag{32}$$

$$= M_L Q Q^T A_L \underline{u}_L. (33)$$

- QQ^T ensures that " $A\underline{u}$ " is in \mathcal{H}^1 and M_L assures that \underline{w}_L is in \mathcal{H}^1_0 , which is what we require.
- It is important to recognize that we can apply conjugate gradients to vectors in $\mathcal{R}(M_L)$ because it is a *projector*.
- As long as the rhs is in $\mathcal{R}(M_L)$, all of the Krylov search directions will also be in $\mathcal{R}(M_L)$ and the iteration will converge.

Figure 1: Illustration of $\underline{u}_L = Q \underline{u} = Q R^T \underline{u}$ for (E, N) = (2, 2): (center) $\underline{u} = [u_1 \ u_2 \ u_3]^T$ is the set of active (interior) basis coefficients; $\underline{\bar{u}} = [u_1 \ \dots \ u_{15}]^T = R^T \underline{u}$ is the set of all global basis coefficients, extended by zero to the domain boundary; (right) $\underline{u}_L = Q \underline{\bar{u}}$ is the set of local basis coefficients represented element-by-element (i.e., as \underline{u}^e , $e=1,\dots,E$). For any $u \in X_0^N \subset \mathcal{H}_0^1$, all representations contain the same information.

- The easiest way to ensure that $u \in X^N \subset \mathcal{H}^1$ is to require that $u(\mathbf{x})$ is continuous.
- For any two elements Ω^e and $\Omega^{\hat{e}}$,

$$\mathbf{x}_{ij}^e = \mathbf{x}_{\hat{\imath},\hat{\jmath}}^{\hat{e}} \implies u_{ij}^e = u_{\hat{\imath},\hat{\jmath}}^{\hat{e}}. \tag{34}$$

- Imposition of continuity for functions in X^N is accomplished by assigning a global numbering, $i_g = g_{i,j}^e$ for each vertex $i, j \in \{0, \dots, N\}^2$ in each element, $e = 1, \dots, E$.
- Vertex pairs (or triplets, etc.) satisfying (34) are assigned the same global index, i_q .
- For example, in Fig. 1, we have $i_g = 2$ for $\mathbf{x}_{1,2}^1$ and $\mathbf{x}_{1,0}^2$.
- The global index is $g_{1,2}^1 = g_{1,0}^2 = 2$.

- From the global numbering, one can construct a Boolean matrix Q such that the set of basis coefficients $\underline{u}_L = Q\underline{\bar{u}}$ represents a C^0 -continuous function $u(\mathbf{x})$, where $\underline{\bar{u}}$ is the vector of globally(i.e., uniquely) numbered coefficients, including the boundary values.
- Assume that there are \bar{n} contiguously-numbered global vertices, $i_g \in \bar{\mathcal{I}} := \{1, \dots, \bar{n}\}$, and let $k = 1 + i + (N+1)j + (N+1)^2(e-1) \in \{1, \dots, E(N+1)^2\}$ represent a lexicographical indexing of the local degrees-of-freedom (dofs), $\{u_{ij}^e\}$.
- Then the kth row of Q will be $\underline{\hat{e}}_{i_g}^T$, where $i_g = g_{ij}^e$ and $\underline{\hat{e}}_{i_g}$ is the i_g th column of the $\bar{n} \times \bar{n}$ identity matrix.
- Note that the action of Q is to copy (scatter) values of a global vector to their local counterparts.
- (In Fig. 1, compare the center panel, \underline{u} , to the right panel, $\underline{u}_L = Q\underline{u}$.)
- \bullet Conversely, application of Q^T sums (gathers) local contributions to their global counterparts.
- Thus, the action of QQ^T is equivalent to an exchange-and-sum of values among shared dofs (sometimes referred to as direct-stiffness summation [Strang & Fix, '73].
- This gather-scatter operation is the communication intensive phase of parallel operator evaluation.
- Note that, in contrast to high-order finite difference stencils, the SEM/FEM stencil depth is unity—one only needs to pass surface data between subdomain interfaces, rather than multiple layers of data.
- In this sense, SEM operator evaluation is communication minimal.