PRAYAS

FOR JEE 2022

TOPICS TO BE COVERED

Z effect

Pw

Extended or Long Form of the Periodic Table

p-block Elements s-Block Elements IA 0 Group, (1) (18)Metals Period н He HA ША IVA VA VIA VIIA 1.0079 4.0026 (2) (13)(14)(15)(17)Non Metals (16)Helium Hydrogen Metalloids 10 6 L Be Ne 0 2 d-Block Elements 9.0122 12.011 15.999 6.940 10.811 14.007 18,998 20.180 Oxygen Beryllium Carbon Lithium Boron Nitrogen Fluorine Argon 11 13 14 17 18 15 16 Si Mg 24,305 Al S CI Ar Na 3 IVB ШВ VB VIB VIIB VIII IB HB 22.990 26,982 28,086 32.066 35,453 39.948 30.974 (5) (3) (3)(3) (4) (6) (7) (8)(9)(10)Silicon Argon Lagnesium 21 27 20 26 28 30 31 34 35 36 19 32 Ti Sc V Cr Fe Co Z Ca Mn Cu Zn Ga Kr Ge As Br 4 44,956 47.867 50.941 65.39 55.847 58.693 63,546 69,723 83.80 40.078 51.996 54.938 58.693 74,922 78.96 79.904 39.098 72.61 Scandium Titanium Vanadarm Cobalt Nickel Calcium Zimc Gallium Arsenic Selenium Krypton **Potassium** Bromine Sermanium 39 40 37 43 48 49 50 53 54 38 Y Zr Ż Te Pd Rh Cd RbIn Sn Sb Te Xe Sr Mo Ru V2.906 91.224 88,906 102.91 112.4185.468 87.62 95.94 98 101.07 106.42 107.87 114.82 118.71 121.76 127.60 126.90 131.29 Boron Znicommun rubidium cadmium Indium Tellurium Strontium Tin antimony Iodine Xenon 57 72 73 74 76 78 56 75 81 82 55 80 86 Hf Ta W Re Os Ir Hg 200.59 TI Ri Ba La Pt Pb Rn Cs At Au Po 6 138.91 178.49180.95 183.84 192.22 195.08 196.97 222 137.33 186.21 190.23 132.91 204.38 207.2 208.98 208.98 210 Hafnium Iridium tantaium tungsten Osmium Gold Barium Mercury **Challium** Lead Radon Caseium Pologium Bismuth Astutune 89 87 104 105 106 107 110 111 88 112 108 109 The symbols for elements 104 109 used in this table Ac** Unq Fr Ra Unp Uuu Unh Uns Uno Une Uun Uub are those proposed by the American Chemical 227 223 226 261 262 272 277 266 264 268 281269 Society and 110.112 proposed by IPUAC Radaum Trendscream mes applace Umnrium Character Street Unonhium

PF

d-Block

← d-Block Elements →										
(3)	IVB (4)	VB (5)	VIB (6)	VIIB (7)	(8)	- VIII -	(10)	(3)	IIB (3)	
21 Sc 44.956 Scandium	22 Ti 47.867 Titanium	V 50.941 Vanadium	Cr 51.996 Chromium	25 Mn 54.938 Manganese	26 Fe 55.847 Iron	27 Co 58.693 Cobalt	28 Ni 58.693 Nickel	29 Cu 63.546 Copper	30 Zn 65.39 Zinc	
39 Y 88.906 Boron	40 Zr 91.224 Zriconium	41 Nb 92.906 Niobium	Mo 95.94 Molybdenum	43 Tc 98 Technetium	44 Ru 101.07 Ruthenium	45 Rh 102.91 Rhodium	46 Pd 106.42 Palladium	47 Ag 107.87 Silver	48 Cd 112.41 cadmium	
57 La 138.91 Lanthanum	72 Hf 178.49 Hafnium	73 Ta 180.95 tantaium	74 W 183.84 tungsten	75 Re 186.21 osmium	76 Os 190.23 Osmium	77 Ir 192.22 Iridium	78 Pt 195.08 Platinum	79 Au 196.97 Gold	Hg 200.59 Mercury	
Ac** 227 Actinium	104 Unq 261 Unniquadium	105 Unp 262 Unnipentum	106 Unh 266 Unnihenium	107 Uns 264 Unniseptium	108 Uno 269 Unnioctium	109 Une 268 Unniennium	Uun 281 Unnrium	Uuu 272 Unnurium	Uub 277 Ununbium	

d-Block

- (a) Last electron enters into (n 1)d orbital are called d-block elements.
- (b) The general electronic configuration $(n-1)s^2,p^6,d^{1-10},ns^{1-2}$
- (c) The d-block elements are placed in the groups named IIIB, IVB, VB, VIB, VIIB, VIII, IB and IIB.
- (d) All of these elements are metals.
- (e) d-block elements lies between s & p block elements.
- (f) Volatile metal Zn, Cd, Hg
- (g) Coin metal Cu, Ag, Au
- (h) Noble metal Ag, Au, Hg, Pt
- (i) First man made element Tc
- (j) Best electricity conductor among metals Ag
- (k) Maximum oxidation state +8 (Os, Ru)
- Maximum density (Os < Ir)

All transition elements are called d-block elements but vice-versa is not true.

Zn, Cd, Hg are d-block elements but not transition elements. Reason d-orbitals are fully field in ground state or in excited state.

 $\frac{70}{64} - \frac{7}{41} + \frac{1}{42}$ $\frac{70}{49} - \frac{1}{41} + \frac{1}{42}$ $\frac{70}{40} - \frac{1}{41} + \frac{1}{42}$

 $2n \rightarrow 15^{2}25^{2}29^{6}35^{2}39^{6}3d^{9}45^{2}$ $2n \rightarrow 15^{2}25^{2}29^{6}35^{2}39^{6}3d^{9}45^{9}$

 $CU \longrightarrow 15^{2}25^{2}29^{6}35^{2}39^{6}3d^{10}45^{1}$ $CU^{+} \longrightarrow -11 \longrightarrow 11 \longrightarrow 11 \longrightarrow 7d^{10}45^{0}$ $CU^{+2} \longrightarrow -11 \longrightarrow 11 \longrightarrow 7d^{9}45^{0}$

f-Block

6	**Lanthanide series	58 Ce 140.12 Cerium	59 Pr 14091	60 Nd 144.24 Nandymian	Pm 145 Protesthism	62 Sm 150.96 Samarium	63 Eu 151.96 Europium	64 Gd 157.25 Gadlloom	65 Tb 158.92 terbium	66 Dy 162.50 dysprosium	67 Ho 164.93 Holmium	68 Er 167.26 Erbium	69 Tm 168.934 Thulium		71 Lu 174.97 Lutetium
7	**Actinide Series	90 Th 232.4 Thorium	91 Pa 231.04 protestinism	92 U 238.03 Uranium	93 Np 237 Neptunium	94 Pu 244 Photonium	95 Am 243 Americlum	96 Cm 247 Curium	97 Bk 247 brekelium	98 Cf 251 Californiam	99 Es 252 Emilionem	Frm 257 Fermium	Md 258 Mandelsvium	No 259 Nobelium	Lr 262 Lamerium

- (a) Last electron enters into (n − 2) f-orbital are called f- block elements.
- (b) The general electronic configuration of these elements is $(n-2)f^{1-14}$, $(n-1)d^{0-1}$, ns^{1-2} .
- (c) Lanthanides: 58 to 71.
- (d) Actinides: 90 to 103.
- (e) The lanthanides occur in nature in low abundance and therefore, these are called <u>rare</u> earth elements.
- (f) All the actinide elements are radioactive.
- (g) Pm is the only synthetic radioactive lanthanide.
- (h) Th, Pa and U first three actinides are natural elements.
 - (i) Most poisonous element : Pu
- (j) Maximum stable oxidation state +6 (U)
- (k) Maximum unstable oxidation state +7 (Np & Pu)

Q.S.P

- (a) 2nd period elements (Li, Be, B) shows diagonal relationship with 3rd period elements (Mg, Al, Si).
- (b) 3rd period elements (Na, Mg, Al, Si, P, S, Cl) except inert gases are called typical elements because they represent the properties of other element of their respective groups.
- (c) Representative or normal elements
 - Outermost shell of these elements is incomplete. The number of electrons in the outermost shell is less than eight.
 - (ii) s and p-block elements except inert gases are called normal or representative elements.

(d) Transuranic Elements:

All the elements after atomic number 92 (i.e. U₉₂) are transuranic elements.

All transuranic elements are radioactive & artificial.

(e) Bridge elements have similar electronic configuration and group nomenclature e.g.

(f) Atomicity: Number of atoms in a molecule. Example:

$$S_8$$
 Se_8 Te_8 Po
 N_2 O_2 H_2 X_2 $[X o F, Cl, Br, I]$
 P_4 As_4 Sb_4 Bi

$$(\rightarrow F, Cl, Br, I]$$

(g) Metalloid : Element which shows both metallic and non-metallic property Example : Si, Ge, As, Sb, Se, Te

(h) Compound : Made up of two or more than two different type of atom. Example :

H ₂ O	oxidane	NH_3	azane	PH_3	phosphane
CH ₄	methane	BH_3	borane	PbH₃∕	plumbane

13	\mathcal{C}	\sim	0	F
A	151	P	5	d
Ga	Ge	AS	<u>Se</u>	Br
In	Sh	Sh	Te	I
T	Pls	Pop	Po	At

Defects

- (a) Position of hydrogen in not settled.
- (b) Position of helium cannot be justified. It is the only element which belong to s-block but placed in p-block.
- (c) Lanthanides & Actinides have not been given space in the main bod of periodic table.

Nomenclature of elements:

(a) IUPAC gave names to elements above atomic number 100 as follows-

0	1	2	3	4	5	6	7	8	9
Nil	Un	Bi	Tri	Quad	Pent	Hex	Sept	Oct	en

(b) In all the elements suffix is – ium.

Ex.

Atomic No.	IUPAC Name	Symbol	Elemental Name	Symbol
101	Unnilunium	Unu	Mendelevium	Md
102	Unnilbium	Unb	Nobelium	No
103	Unniltrium	Unt	Lawrencium	Lr
104	Unnilquadium	Unq	Rutherfordium	Rf
105	Unnilpentium	Unp	Dubnium	Db
106	Unnilhexium	Unh	Seaborgium	Sg
107	Unnilseptium	Uns	Bohrium	Bh
108	Unniloctium	Uno	Hassnium	Hs
109	Unnilennium	Une	Meitnerium	Mt
110	Ununnilium	Uun	Darmstadtium	Ds

The atomic number of the element unnilennium is:

[JEE-Main (Sept.) 2020]

108

109

119

102

Sol. (B)

9 27-3

Exception of electronic configuration:

PW

 $\int_{\mathcal{L}} \int_{\mathcal{L}} \int$

Ac

Identification of group, period and block:

The last electron enters in which subshell gives idea of its block.

Period number = Principal quantum number of valence shell electron in ground state

electronic configuration. (Higher value of n)

Group number for s block = number of valence shell electrons

Group number for p block = 10 + number of valence shell electrons

Group number for d block = number of electrons [ns + (n - 1)d]

Group number for f-block = 3

4f-> Lath. 5f Act.

S-Block no no no no no no no de - gli no

P-Block ns np two n- Period Mork-P no of e in ns+np

12+28 35²3P³ Period -> 3 Plock -> P 92 000 - MA 15

Sixth typical element is

Αl

Mg

S

0

Sol. (C)

Which of the following statement is wrong

All the actinides are synthetic (man made) elements

In the Lanthanides last electron enters in 4f orbitals

3rd period elements are typical elements

Lanthanum is d-block element

Sol. (A)

According to the Periodic law of elements, the variation in properties of elements is related to their

[AIEEE-2003]

Nuclear masses

Atomic numbers

Nuclear neutron-proton number ratio

Atomic masses

Sol. (B)

In the long form of the periodic table, the valence shell electronic configuration of 5s²5p⁴ corresponds to the element present in:

[JEE-MAIN 2015 (On-Line)]

Group 16 and period 5

Group 17 and period 6

Group 17 and period 5

Group 16 and period 6

Sol. (A)

SCREENING EFFECT (s) AND EFFECTIVE NUCLEAR CHARGE (Z_{eff}):

- (b) The decrease in force of attraction on valence electron due to inner shell electron is called screening effect or shielding effect
- (c) Due to screening effect, net attractive force felt by the test electron is measured by effective nuclear charge, $(Z_{\rm eff})$
- (d) If nuclear charge = Z, then effective nuclear charge = Z σ (Where σ 'sigma' is called screening/shielding constant) So, Z_{eff} = Z σ

90 THORIUM POTASSIUM NITROGEN 92 8 URANIUM **OXYGEN**