HarvardX: CalcAPL1x Calculus Applied!

Help

Course > Section 5: Population Dynamics Part I: the Evolution of Population Models > 1.6 Summary Quiz: Population Models > 1.6.1 Summary Quiz: A General Predator-Prey Phase Plane

1.6.1 Summary Quiz: A General Predator-Prey Phase Plane

□Bookmark this page

Question 1

1/1 point (graded)

Let's look at the general predator prey system with constants ${f a},{f b},{f c},{f d}>0$ and

$$rac{dS}{dt} = \mathbf{a}S - \mathbf{b}SM$$

$$rac{dM}{dt} = -\mathbf{c}M + \mathbf{d}SM$$

There are two nullclines on which $rac{dM}{dt}=0$. One of these is the line M=0. What is the equation of the other line?

$$\circ$$
 $S=0$

$$S = \frac{\mathbf{a}}{\mathbf{b}}$$

•
$$S = \frac{\mathbf{c}}{\mathbf{d}} \checkmark$$

$$M = \frac{\mathbf{a}}{\mathbf{b}}$$

$$M = \frac{\mathbf{c}}{\mathbf{d}}$$

None of the above.

Explanation

Factoring $rac{dM}{dt}$ we get $rac{dM}{dt}=0$ if M=0 or $(-\mathbf{c}+\mathbf{d}S)=0$. Thus the other nullcline equation is $S = \frac{\mathbf{c}}{\mathbf{d}}$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Question 2

1/1 point (graded)

Let's look at the general predator prey system with constants a,b,c,d>0 and

$$rac{dS}{dt} = \mathbf{a}S - \mathbf{b}SM$$

$$rac{dM}{dt} = -\mathbf{c}M + \mathbf{d}SM$$

There is one equilibrium point at (0,0) (meaning no sardines and no marlin). There is one other equilibrium point. What is it?

- \circ (c/d, 0)
- $(0, (\mathbf{a}/\mathbf{b})$
- \bigcirc (a/b, c/d)
- None of the above.

Explanation

The other equilibrium point is $(\mathbf{c}/\mathbf{d}, \mathbf{a}/\mathbf{b})$. We can solve for these by finding where $\frac{dS}{dt}$ and $rac{dM}{dt}$ are both zero. This the same as finding the points at which the nullclines for Sintersect the nullclines for M.)

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

Question 3

1/1 point (graded)

The nullcline you found above is separated into two parts by a nullcline on which $\frac{dS}{dt}=0$. On the part of the $rac{dM}{dt}$ nullcline closest to the $m{S}$ axis, how is the value of $m{S}$ changing with time? (Hint: Think about values of M very close to 0.)

lacksquare S is constant.

lacksquare is decreasing.

Explanation

S is increasing, and if Mpprox 0, then $rac{dS}{dt}pprox {f a}S$ so the population of sardine would be increasing almost exponentially.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Learn About Verified Certificates

© All Rights Reserved

© 2012–2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

