OPTICAL CHARACTER RECOGNITION

PATTERN RECOGNITION(EEL 6825) SPRING 2016 UNIVERSITY OF FLORIDA

SARAVANAN SETTY UFID: 3329 9221

OCR PROBLEM

- Convert images of text to an machine readable text document format.
- Image Types: Scanned Text Documents,
 Computer Generated Text Screenshots,
- Text Types : Computer Generated Text, Handwritten Text
- Handwritten text : Further classified into cursive and block

OCR APPLICATIONS

- Problems with physical documents: fragile, uses a lot of space, searching particular piece of information can be hard.
- Using a scanned image, fragility and space problem is solved, but others remain.
- Introduces new problem of taking lot of space in memory.
- OCR, extracts only the text information from image and stores it in machine readable format and hence search is possible.

STEPS OF OCR

- There are 6 six steps involved in the process of OCR.
- They are: Obtaining Raw Images, Preprocessing, Segmentation, Feature Extraction, Classification, Post processing

STEP 1: Obtaining Raw Images

 Sources: Screenshots of computer generated text, Images of handwritten text.

APPLES ARE RED

ORANGE IS ORANGE

STEP 2: Preprocessing

- The document is binarized by using adaptive thresholding.
- Adaptive thresholding: Different thresholds for different region of image.
- Works even when different areas of image have different levels of illumination.

Preprocessing: Thresholding on Sample Image

- In case of image, salt and pepper noise is present which needs to be removed.
- Image has been negated to show noise, clearly.

APPLES ARE RED

ORANGE IS ORANGE

ORANGE

BALL

Preprocessing: Removing Noise

- Median Blurring can be used to remove the noise.
- A filter is applied and each pixel is replaced by the median of the pixel intensities present in the filter.

ORANGE

BALL

STEP 3: SEGMENTATION

- Here we identify the text regions in the image first.
- First, we need to detect each word in the image.
- For this, dilation is applied so that each word forms a blob.

APPLES ARE RED

ORANGE IS ORANGE

SEGMENTATION : Bounding Boxes and Order

- Maximally Stable Extremal Regions(MSER) is used to locate the text blobs.
- A bounding box is created around each word.
- The words are sorted from top to bottom and then left to right. Characters inside a box are sorted in x-coordinate order.

Segmentation: Fixing the Order

- Order is messed up because even though "ARE" and "APPLES" appear on same line, "ARE" is higher.
- Solution: Use custom sort which allows equivalence for approximately same height.

Segmentation : Detecting Characters

- Once the word rectangles are isolated, MSER is applied again on cropped portion of image.
- This allows us to isolate characters in each word.

STEP 4: Feature Extraction

- In this step, image corresponding to a character is taken as input and features are extracted from it which are used for classification.
- Features used are: Mean X Value, Mean Y Value, Number of black islands, Grid vector, Hu Moments.

Feature: Mean X and Y Value

 For image f(x,y), mean X and mean Y value are defined as follows:

$$\bar{x} = \frac{\sum_{x} \sum_{y} f(x, y) \cdot x}{\sum_{x} \sum_{y} f(x, y)} \qquad \bar{y} = \frac{\sum_{x} \sum_{y} f(x, y) \cdot y}{\sum_{x} \sum_{y} f(x, y)}$$

Feature: Number of Black Islands

• Example : A has 6 black islands, O has 3.

Feature: Grid Vector

Feature: Hu Moments

Moment M of order (i+j) is defined as :

$$M_{ij} = \sum_{x=1} \sum_{y=1} x^i y^j I(x,y)$$

 This can be used to get Hu Moments which are invariant to translation, rotation and scaled. The 7 Hu Moments are:

$$H_{1} = M_{20} + M_{02}$$

$$H_{2} = (M_{20} - M_{02})^{2} + 4(M_{11})^{2}$$

$$[(M_{30} + M_{12})^{2} - (M_{21} + M_{03})^{2}]$$

$$H_{3} = (M_{30} - 3M_{12})^{2} + (3M_{21} - M_{03})^{2}$$

$$H_{4} = (M_{30} + M_{12})^{2} + (M_{21} + M_{03})^{2}$$

$$H_{5} = (M_{30} - 3M_{12})(M_{30} + M_{12})$$

$$[(M_{30} + M_{12})^{2} - 3(M_{21} + M_{03})^{2}]$$

$$+ 3(M_{21} - M_{03})(M_{21} + M_{03})$$

$$[3(M_{30} + M_{12})^{2} - (M_{21} + M_{03})^{2}]$$

$$- (M_{30} - 3M_{12})(M_{21} + M_{03})$$

$$[3(M_{30} + M_{12})^{2} - (M_{21} + M_{03})^{2}]$$

$$[3(M_{30} + M_{12})^{2} - (M_{21} + M_{03})^{2}]$$

STEP 5: Classification

- Features are supplied here to a classifier to get a class label, which indicates which character it possibly is.
- Methods used here are K-Nearest Neighbors Classifier and Support Vector Machines.
- For each model character, the features are extracted and labeled samples are used for training of the algorithm, which returns a model as output.

Classification: K-Nearest Neighbors

- It is a supervised learning algorithm.
- Each new instance gets assigned the class label which is most common among it's K Nearest Neighbors.
- It is a lazy learning algorithm, since KNN doesn't perform any operation on the training data till a query is received.
- Different distance measures : Taxi Cab Distance, Euclidean Distance, Minkowski Distance.

KNN Example

Distance Measure : Euclidean and Taxi Cab Distance

• Euclidean Distance : $\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+...+(p_n-q_n)^2}$

• Manhattan Distance : $|p_1 - q_1| + |p_2 - q_2| + ... + |p_n - q_n|$

Euclidean vs TaxiCab Distance [Wikipedia]

Distance Measure : Minkowski Distance

Taxi Cab distance can also be written as

$$(|p_1 - q_1|^1 + |p_2 - q_2|^1 + ... + |p_n - q_n|^1)^{\frac{1}{1}}$$

and Euclidean distance as

$$(|p_1-q_1|^2+|p_2-q_2|^2+...+|p_n-q_n|^2)^{\frac{1}{2}}$$

 The general form, Minkowski Distance of order x is defined as follows:

$$(|p_1-q_1|^x+|p_2-q_2|^x+...+|p_n-q_n|^x)^{\frac{1}{x}}$$

Classification : Support Vector Machines

- It is a supervised learning algorithm.
- Constructs a set of hyperplanes which acts as decision boundaries.
- Boundaries used to decide which class an element belongs to.
- In its default form can be used for only binary classification problem.
- Multi-class classification is done by splitting the problem into multiple binary classification problems.

SVM: Mapping to Feature Space

- In easy case, data is linearly separable, but this need not be always the case.
- In that scenario, SVM maps input to a higher dimensional feature space where the input is linearly separable.

Mapping Input space to Feature Space : [Cheng, Chun-Tian, et al]

SVM: Choosing Decision Plane

- There might be more than one plans which linearly separates the data.
- In such a case, SVM chooses the plane which maximizes the distance between training points and decision plane on either side.

Selecting Optimal Decision Plane : [Wikipedia]

STEP 6: Post Processing

- Once words are detected, we check for them in a dictionary.
- If not present, could be case of wrong character detected.
- Suggest possible corrections based on similarity of characters.

Results: Computer Generated Text

TABLE I
Features Used vs Accuracy Attained for a 26 Class Classifier of Alphabets A-Z

Feature Used	Accuracy Attained
Mean X Value	0.45
Mean Y Value	0.36
Mean X and Y Value	0.72
Black Islands	0.09
Mean X and Y Value + Black Islands	0.81
Grid Vector	0.91
Hu Moments	0.54
All Combined	0.91

Results: Handwritten Text

TABLE II

Features Used vs Accuracy Attained for a 26 Class
Classifier of Alphabets A-Z

Features Used	Accuracy Attained
Mean X Value	0.2
Mean Y Value	0.4
Mean X and Y Value	0.4
Black Islands	0
Mean X and Y Value + Black Islands	0.2
Grid Vector	0.6
Hu Moments	0
All Combined	0.6

Summary

- The accuracy attained for computer generated images is higher than handwritten images in general.
- This makes sense since handwritten text does not have uniformity. Ratios not maintained, holes not maintained.

Summary

 The feature that works the best is the grid vector since it is not as sensitive to minor changes in the character.

