ENCAPSULATION DES MAREES NOIRES

10429 Rémi MOUSTAMSIK BILLAH

SOMMAIRE

A) PRESENTATIONI) INTRODUCTION

- Présentation des marées noires
- · Présentation du phénomène d'encapsulation

II) JUSTIFICATIONS THEORIQUES

- · Modèle du radeau particulaire
- Mise en équation

B) RECHERCHE DES CONDITIONS OPTIMALES

- Présentation des expériences
- I) INFLUENCE DU MILIEU
 - Agitation (vagues)
 - Salinité
 - · Effets de bord

II) PARAMETRES EXTERIEURS

- Granulométrie
- Utilisation d'une tige
- Présence de tensioactifs

C) CONCLUSION

I) INTRODUCTION

Le Monde, Au Pérou, une marée noire met en péril la flore et la faune

II) JUSTIFICATIONS THEORIQUES

II) JUSTIFICATIONS THEORIQUES

On cherche le rayon limite tel que la capsule soit maintenue à la surface:

$$0 = 2\pi g R_c^2 e \rho_s + \frac{2}{3} \pi R_c^3 g (\rho_h - \rho_e) - 2\gamma \pi R_c$$

$$Donc 0 = -Rc g e \rho_s + \frac{1}{3} R_c^2 g (\rho_e - \rho_h) + \gamma$$

$$\Delta = (ge\rho_s)^2 - \frac{4\gamma g (\rho_e - \rho_h)}{3}$$

$$R_c = \frac{3e\rho_s}{2(\rho_e - \rho_h)} \left(1 - \sqrt{1 - \frac{4\gamma(\rho_e - \rho_h)}{3e^2\rho_s^2g}}\right)$$

II) JUSTIFICATIONS THEORIQUES

Pour
$$ho_s=1480kg$$
.m $^{-3}$ on obtient $R_{\rm th\acute{e}orique}=3,7mm$ $ho_h=920kg$. m^{-3} $\gamma=52m$. s^{-2}

Expérimentalement, on mesure

 $R_{expérimental} = 4.5 mm$

Nature du polluant	Volume encapsulé (mL)
Huile (tournesol)	12,3
Pétrole	15,4

20mL de polluant et 8g de sable

I) INFLUENCE DU MILIEU Pour 20mL d'huile et 8g de sable, on réalise 7 mesures:

Essai nº:	Volume encapsulé (mL)
1	12
2	10
3	8
4	11
5	12
6	9
7	12

L'incertitude

vaut:
$$u(V) = \frac{s(V)}{\sqrt{n}}$$
 où $s(V) = \sqrt{\frac{\sum (V_i - m)^2}{n}}$

Le volume encapsulé est avec un taux de confiance de 95%: V=10,6<u>+</u> 1,2mL

AGITATION

B)
RECHERCHE
DES
CONDITIONS
OPTIMALES

I) INFLUENCE DU MILIEU

	Volume encapsulé (mL)
Sans vagues	$11,4 \mp 0,8$
Avec vagues	$13,6 \mp 1,2$

SALINITE

B)
RECHERCHE
DES
CONDITIONS
OPTIMALES

I) INFLUENCE DU MILIEU

	Volume encapsulé (mL)
Eau salée	$7,3 \pm 0,7$
Eau non salée	$11,2 \mp 1$

Concentration: $C = 35g.L^{-1}$

Salinité moyenne des océans, d'après l'UNESCO, *Tables océanographiques internationales*.

EFFETS DE BORDS

B)
RECHERCHE
DES
CONDITIONS
OPTIMALES

	Rayon (cm)	Volume encapsulé (mL)
Cristallisoir	7,5	$10,5 \mp 0,8$
Bécher	4,7	$7,8 \mp 0,9$
Eprouvette	1,5	$3,4 \mp 1,2$

I) INFLUENCE DU

MILIEU

Tamis moléculaire:

B)
RECHERCHE
DES
CONDITIONS
OPTIMALES

II) Paramètres extérieurs

Résultats pour 100g de sable de Fontainebleau:

Rayon (mm)	Masse (g)
1-0,5	1,21
0,5-0,25	47,7
0,25-0,125	45,75
<0,125	3,6

GRANULOMETRIE

B)
RECHERCHE
DES
CONDITIONS
OPTIMALES

II) Paramètres extérieurs

0.002

0.004

0.006

épaisseur e

0.008

0.010

$$R = \frac{3e\rho_s}{2(\rho_e - \rho_h)} \left(1 - \sqrt{1 - \frac{4\gamma(\rho_e - \rho_h)}{3e^2\rho_s^2g}}\right)$$

GRANULOMETRIE

B)
RECHERCHE
DES
CONDITIONS
OPTIMALES

$$V_1 = \frac{4}{3}\pi R^3$$

$$V_2 = 2 \times \frac{4}{3}\pi \left(\frac{R}{2}\right)^3 = \frac{1}{4}V_1$$

UTILISATION D'UNE TIGE

B) RECHERCHE DES CONDITIONS OPTIMALES

UTILISATION D'UNE TIGE

B) RECHERCHE DES CONDITIONS OPTIMALES

		Volume des remontées (mL)
Avec tige	9,5	3,3
Sans tige	11,4	5

Présence de tensioactifs

B)
RECHERCHE
DES
CONDITIONS
OPTIMALES

Tensioactif	Volume encapsulé (mL)
Aucun	11
SDS	0
Céthyltriméthylammonium bromide	12
H ₃ C	O O O O Na+

$R = \frac{3(e\rho_s - \gamma)}{g(\rho_h - \rho_e)}$	Tension superficielle (g.s ⁻²)	Volume encapsulé (mL)
Huile (tournesol)	52	12,3
Pétrole	57	15,4

Mesure de la tension superficielle par la technique de la goutte pendante, Pierre-Marie Gassin, Ecole nationale supérieure de chimie de Montpelier

Méthode de Lecomte du Nouv

Méthode de la goutte pendante

$$\gamma = \frac{\Delta \rho g d e^2}{H}$$

Calcul de la tension superficielle

D _S /D _E	1/H
0.19718	19.8809
0.26222	9.91608
0.30920	6.58245
0.34730	4.91547
0.37995	3.91516
0.40884	3.24923
0.43497	2.77166
0.45897	2.41419
0.48127	2.13607
0.50218	1.91351
0.52193	1.73134
0.54070	1.57947

D _S /D _E	1/H
0.55862	1.45089
0.57581	1.34063
0.59234	1.24501
0.60834	1.16128
0.62383	1.08735
0.63887	1.02158
0.65350	0.96268
0.67	0.90174
0.69	0.93471
0.71	0.77434
0.73	0.71981
0.75	0.67040

D _S /D _E	1/H
0.78	0.60458
0.81	0.54725
0.83	0.51306
0.85	0.48165
0.87	0.45272
0.89	0.42600
0.91	0.40121
0.93	0.37810
0.95	0.35643
0.97	0.33587
1	0.30586

A.W. Adamson Physical Chemistry of Surfaces

$$\frac{ds}{de} = \frac{3,01}{5,93} = 0,507$$
 Donc $\gamma = 52mN.m^{-1}$

Tensioactif	Volume des remontés (mL)
Aucun	4,2
Céthyltriméthylammonium bromide	2,5

CONCLUSION

ANNEXE 1

Evaluation numérique du rayon de rupture

```
from math import *
import numpy as np
import matplotlib.pyplot as plt
##rayon critiquedu radeau
def
rayon_critique(e,psable,phuile,peau,gamma):
    A=3*e*psable/(2*(peau-phuile))
    return(A*(1-(sqrt(1-(4*gamma*(peau-
phuile))/(3*(e**2)*(psable**2)*9.8)))))
X=np.linspace(10**(-3),0.01,1000)
Y=[rayon rupture1(e, 2.6*10**3, 0.923*10**3, 10*
*3,24*10**(-3)) for e in X
plt.xlabel('épaisseur e')
plt.ylabel('rayon critique')
plt.plot(X,Y)
plt.show()
```

ANNEXE2

Evaluation de l'influence de la tension superficielle

```
from math import *
import numpy as np
import matplotlib.pyplot as plt
##rayon critique du radeau
def
rayon critique(e,psable,phuile,peau,gamma):
    A=3*e*psable/(2*(peau-phuile))
    return(A*(1-(sqrt(1-(4*gamma*(peau-
phuile))/(3*(e**2)*(psable**2)*9.8)))))
X=np.linspace(20*10**(-3),100*10**(-3),1000)
Y=[rayon rupture1(10**(-3),1480,923,10**3,g)]
for g in X]
plt.clf()
plt.xlabel('tension superficielle')
plt.ylabel('rayon critique')
plt.plot(X,Y)
plt.show()
```

ANNEXE3

La tension superficielle

ANNEXE4 Tensioactifs

Types de tensioactif	Exemple courant	emploi
Cationique	ammoniums quaternaires	Désinfectants,
Anionique	lauryl sulfate de sodium	détergents, savons, agents moussants
Non-ionique	esters de glycol ou de glycérol	cosmétique et en alimentaire comme détergents
Amphotères	phospholipides	produits cosmétiques et pharmaceutiques

ANNEXE5 Tensioactifs

i	σ	C
	mS.m^2	mmol/L
0	0,0200	3,000
1	0,0360	4,000
2	0,0500	5,000
3	0,0610	6,000
4	0,0695	7,000
5	0,0730	8,000
6	0,0750	9,000
7	0,0760	10,00
8	0,1050	20,00
9	0,1350	30,00
10	0,1650	40,00
11	0,2000	50,00
12		

Cmc(SDS)=7,2mmol/L

10

0,05

Détermination de la concentration micellaire critique par titrage conductimétrique

30

40

20

v c(mmol/L)

Huile de tournesol:

ANNEXE8

$$\rho = 920 kg.m^{-3}$$

$$\gamma = 27mN.m^{-1}$$

Composée à 98% d'acides gras comme l'acide linoléique:

https://fr.wikipedia.org/wiki/Acide_linol%C3%A9ique

Pétrole brut:

ANNEXE9
Polluants utilisés:
le pétrole

Fournisseur: Total

$$\rho = 837 kg.m^{-3}$$

$$\gamma = 31 mN. m^{-1}$$

Composé d'un grand nombre d'hydrocarbures à longues chaînes carbonées

ANNEXE10 Incertitudes de type B

$$u(V) = \sqrt{u^2_{instru} + u^2_{lecture} + u^2_{méthode}}$$
 $u_{instru} = 0.1 mL$
 $u_{lecture} = 0.5 mL$
 $u_{méthode} = 0.5 mL$
Donc, avec un taux de confiance à 95%, $u(V)=1.4 mL$