# CALIBRATION DES RÉSEAUX DE NEURONES MODERNES

ANASS BEN BOUAZZA

SERGIO BOSSOU



# CONFIANCE DES MODÈLES

• Étant donnée une observation, le réseau fournit sa probabilité d'appartenance à chacune des classes



• Les réseaux doivent non seulement être précis, mais aussi indiquer lorsqu'ils sont susceptibles d'être incorrectes

Ex: Domaine médical : Diagnostic d'un patient

## DIAGRAMME DE CONFIANCE

• Soit (Bm) l'ensemble des observations dont la prédiction appartient à l'intervalle [  $\frac{m-1}{M}$  ;  $\frac{m}{M}$  ]. On définit :

- La précision : 
$$\operatorname{acc}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbf{1}(\hat{y}_i = y_i),$$

■ La confiance : 
$$\operatorname{conf}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i$$
,

 Pour un réseau parfaitement calibré, ces deux quantités sont égales.



# QUELQUES MÉTRIQUES

Calibration

#### Expected calibration error (ECE)

$$ECE = \sum_{m=1}^{M} \frac{|B_m|}{n} \left| acc(B_m) - conf(B_m) \right|$$



#### Maximum calibration error (MCE)

$$MCE = \max_{m \in \{1, \dots, M\}} |acc(B_m) - conf(B_m)|$$



### TEMPERATURE SCALING

Trouver le paramètre T



• On utilise la Negative log-likelihood loss sur les données de validation pour optimiser T. Heuristiquement, un réseau bien calibré à une NLL loss plus faible.

## AUTRES MÉTHODES DE CALIBRATION

#### Platt scaling

 On optimise les matrices W et b (généralisation de la temperature scaling).

$$\hat{q}_i = \max_k \, \sigma_{\text{SM}}(\mathbf{W}\mathbf{z}_i + \mathbf{b})^{(k)},$$

#### Isotonic regression

 Trouver, pour chaque classe, la bonne fonction continue par morceau qui recalibre la sortie du réseau

$$\min_{\substack{M \\ \theta_1, \dots, \theta_M \\ a_1, \dots, a_{M+1}}} \sum_{m=1}^M \sum_{i=1}^n \mathbf{1} (a_m \le \hat{p}_i < a_{m+1}) (\theta_m - y_i)^2$$
subject to 
$$0 = a_1 \le a_2 \le \dots \le a_{M+1} = 1,$$

$$\theta_1 \le \theta_2 \le \dots \le \theta_M.$$

## TABLEAU RÉCAPITULATIF

• Réseau : DenseNet-40 entraîné sur 300 epochs

• Données : CIFAR-100

|                   |                     | Accuracy | Avg confidence | ECE   | MCE   |
|-------------------|---------------------|----------|----------------|-------|-------|
| Validation<br>set | Uncalibrated        | 67.56    | 87.34          | 20.46 | 37.93 |
|                   | Temperature scaling | 67.56    | 65.62          | 1.54  | 9.26  |
|                   | Platt scaling       | 68.06    | 67.96          | 1.37  | 8.44  |
|                   | Isotonic regression | 70.18    | 70.17          | 0.07  | 8.38  |
| Test set          | Uncalibrated        | 65.74    | 85.50          | 22.04 | 40.99 |
|                   | Temperature scaling | 65.74    | 67.12          | 1.17  | 13.19 |
|                   | Platt scaling       | 65.88    | 67.16          | 1.59  | 3.59  |
|                   | Isotonic regression | 65.62    | 72.23          | 5.34  | 31.38 |

## INFLUENCE DE L'ARCHITECTURE

5 réseaux entraînés sur CIFAR100 pour 50 epochs :

- DenseNet 121 et 161
- ResNet 18 et 50
- MobileNet

#### Comportement attendu:

MobileNet < DenseNet121 < ResNet18

< ResNet50 < DenseNet161

#### Comportement réel :

MobileNet < ResNet50 < DenseNet161

< ResNet18 < DenseNet121



## CALIBRATION PAR FOCAL LOSS

#### ResNet50 entraîné sur CIFAR10 pour 50 epochs

Cross entropy : Minimise la différence entre probabilités de sortie et labels one-hot encodés

Focal loss:  $FL(p_t) = -(1-p_t)^{\gamma} \log(p_t)$   $p_t = \begin{cases} p & \text{if } y = 1 \\ 1-p & \text{otherwise.} \end{cases}$ 

Reliability Diagram

$$p_{t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise} \end{cases}$$

#### Cross-entropy loss





#### Focal loss

