PAT-NO:

JP02001359247A

DOCUMENT-IDENTIFIER: JP 2001359247 A

TITLE:

ROTOR FOR PERMANENT MAGNET MOTOR

PUBN-DATE:

December 26, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

YAMAMOTO, YOSHIYUKI

TANAKA, KENJI

N/A

TANAKA, TSUNEAKI

N/A N/A

MANO, SHOJI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

AICHI EMERSON ELECTRIC CO LTD

N/A

APPL-NO:

JP2000215222

APPL-DATE:

June 12, 2000

INT-CL (IPC): H02K001/27, H02K001/22

ABSTRACT:

PROBLEM TO BE SOLVED: To improve the performance of a motor and suppress generation of noise and vibration by intensifying magnetic flux at an inverter energizing section, in a permanent magnet embedded rotor driven by an inverter.

SOLUTION: This rotor includes a permanent magnet, embedded inside a rotor core which has a shaft hole. An accommodating hole for embedding the permanent magnet is substantially recessed shape. This rotor is structured so that the bottom accommodating hole of the accommodating hole of roughly recessed shape faces the shaft hole, the edge of a side accommodating hole extends toward the outer periphery of the rotor, its magnetism is oriented at right angles to the concentrate between the energizing sections of the inverter.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-359247 (P2001-359247A)

(43)公開日 平成13年12月26日(2001.12.26)

(51) Int.Cl.7	酸別記号	FΙ		テーマュート*(参考)			
H02K 1/	27 5 0 1	H 0 2 K	1/27	501	A 5	H002	;
1/23				5010	5	H622	;
		•		5 0 1 D			
			5 0 1 K				
	22		1/22	Α			
		審查請求	未請求	請求項の数7	書面	(全 7	頁)
(21)出願番号	特顧2000-215222(P2000-215222)	(71) 出願人	0001008	0100872			
			アイチーエマソン電機株式会社				
(22)出願日	平成12年6月12日(2000.6.12)		愛知県春日井市愛知町 2 番地				
		(72)発明者	山本	學之			
			爱知県和	学日井市愛知町 2	2番地	アイチ・	ーエ
			マソン	建模株式会社内			
		(72)発明者	田中 第	刘治			
			愛知県和	等日井市愛知町 2	2番地	アイチ	ーエ
			マソン	电機株式会社内			
		(72)発明者	田中名	常明			
			爱知県和	擎日井市愛知町 2	2番地	アイチ・	工一
			マソン	电機株式会社内			
					,	最終頁に	続く

(54) 【発明の名称】 永久磁石形電動機の回転子

(57)【要約】

【課題】インバータによって駆動される永久磁石埋め込み回転子においてインバータ通電区間での磁束の増強を図り電動機の性能を向上、及び、音、振動を低減する。

【解決手段】軸孔を有する回転子鉄心内部に永久磁石を埋め込む回転子において前記永久磁石を埋め込む収容孔が略凹字状であって、この略凹字状収容孔の底部収容孔が前記軸孔に面し、側部収容孔がの縁が回転子外周に向い伸びており、この回転子外周に向く収容孔面に直角に磁気配向させインバータの通電区間に磁束が集中する様に構成する。

10

1

【特許請求の範囲】

【請求項1】 軸孔を有する回転子鉄心内部に永久磁石 を埋め込む回転子において、前記永久磁石を埋め込む収 容孔が略凹字状であって、略凹字底部が前記回転子軸孔 に面し、略凹字側部の縁が回転子外周に向い伸びている ものであって、略凹字状の収容孔が回転子外周に向く収 容孔面に対して前記永久磁石の磁気配向が直角に配向さ れていることを特徴とする永久磁石埋め込み回転子。

【請求項2】 前記略凹字状の収容孔を有する前記回転 子において、収容孔と収容孔の間の磁極継鉄部の形状 が、回転子外周面側が広く回転子内径側に向いて狭くな っていることを特徴とする請求項1記載の永久磁石埋め 込み回転子。

【請求項3】 前記略凹字状の収容孔に埋め込まれる永 久磁石は一体成形であることを特徴とする請求項1また は請求項2のいずれかに記載の永久磁石埋め込み回転 子。

【請求項4】 前記略凹字状の収容孔幅において、側部 収容孔幅より底部収容孔幅の方が広いことを特徴とする 請求項1及至請求項3のいずれかに記載の永久磁石埋め 20 込み回転子。

【請求項5】 前記略凹字状の収容孔幅において、一方 の側部収容孔幅と底部収容孔幅が同じであり、他方の側 部収容孔幅が一方の収容孔幅と底部収容孔幅より広いこ とを特徴とする請求項1及至請求項4のいずれかに記載 の永久磁石埋め込み回転子。

【請求項6】 前記略凹字状の収容孔が多重に配置され ていることを特徴とする請求項1及至請求項5記載のい ずれかに記載の永久磁石埋め込み回転子。

【請求項7】 前記回転子内部の磁束変化が少ない位置 30 にピン孔が設けられていることを特徴とする請求項1及 至請求項6のいずれかに記載の永久磁石埋め込み回転 子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電動機に代表され る永久磁石を装着した内転型回転子に関し、特に回転子 鉄心内部の収容孔に永久磁石を埋め込んで構成した永久 磁石埋め込み回転子に関するものである。

[0002]

【従来の技術】従来の電動機の回転子としては、図8に 示す構成のものが知られている。例えば、図8に示す回 転子は円柱状の回転子鉄心1の中心に設けた軸孔2に軸 を嵌入し、この軸孔2と平行に複数の収容孔6を設け て、この収容孔6に永久磁石7をそれぞれ挿入して構成 されている。回転子鉄心1は所定形状に打ち抜いた薄鉄 板を軸方向に多数積層して形成されており、各薄鉄板に 設けた打ち出し突起による凹凸部を軸方向に隣接する薄 鉄板相互で嵌合させて固定する周知のカシメクランプ手 段によって固定されている。この鉄心の構成は後述する 50 クタンストルクTrを増やすことができる。その結果、

固定子の構成についても同様である。永久磁石7はフェ ライト磁石または希土類磁石よりなり、回転子の外側へ 向けて逆円弧状となるように回転子鉄心1の収容孔6へ 挿着されている。そして、隣接する永久磁石7が互いに 異極となるように着磁されている。図8に示した回転子 はN極、S極が交互に配置された4極構造である。

【0003】また、図9に示すような回転子も知られて いる。図9に示す回転子は、図8と同様に円柱状の回転 子鉄心1の中心に設けた軸孔2に軸を嵌入し、この軸孔 2と平行に複数の収容孔8を設けて、この収容孔8に永 久磁石9を挿入し構成されている。図8と同様に各収容 孔8に異極となるように着磁されている。上記永久磁石 型電動機は、三相巻線を有する固定子内に回転子を配置 されて構成し、制御回路を介して固定子巻線に励磁する ことによって回転子の回転を行うようになっている。

【0004】制御回路は、スイッチング回路内のトラン ジスタを制御することにより固定子巻線U、V、Wの隣 接する2相分の固定子巻線に120°づづ位相をずらし 電流を通電させる周知の120°通電制御をしている。 また、制御回路は電動機の回転子の回転により固定子巻 線U、V、Wに誘起される誘起電圧を検出して回転子の 回転位置に応じた電動機の駆動信号が得られるようにな っている。

[0005]

【発明が解決しようとする課題】従来の永久磁石型電動 機においては、制御回路の制御方式による関係から電動 機に通電する通電区間は電気角で120°区間であるた め、電動機が発生する各極の磁束は電気角で120°の 区間しか有効に利用されていない。つまり、各極におけ る非通電区間が存在するため電動機に装着された永久磁 石の磁束が有効に利用されていないことになる。この有 効に利用されない非通電区間は、電気角で0°から30 。及び、150°から180°区間である。この非通電 区間の永久磁石の磁束は電動機を駆動させるためのトル クとしては有効に使用されていない。また、従来は電動 機の性能を向上させるには、電動機の体格を大きくした りして対応している。

【0006】また、図8、図9に示した従来の電動機の 永久磁石埋め込み回転子を有する電動機のトルクを次の 式(1)で表すことができる。

 $T=Tm+Tr\cdots(1)$

 $Tm = \Phi \cdot Iq \cdots (2)$

 $Tr = (Ld-Lq) Id \cdot Iq \cdots (3)$

 $T = \Phi \cdot Iq + (Ld - Lq) Id \cdot Iq \cdots (4)$

磁石による磁束量をΦ、d軸電流をΙd、q軸電流をΙ q、q軸インダクタンスをLq、d軸インダクタンスを Ldである。前記式よりも明らかな様に永久磁石の磁束 が増加することによりマグネットトルクTmが増え、ま た、リラクタンストルク成分が増加することによりリラ

12/16/05, EAST Version: 2.0.1.4

総合トルクTを上げることができる。図10は前記式を トルク特性として表したものである。Tmはマグネット トルク、Trはリラクタンストルク、Tはマグネットト ルクTmとリラクタンストルクTrを合成したものであ る。縦軸をトルク、横軸βは位相角度を示している。図 10では、回転子を機械角で反時計方向に90°回転さ せた場合のトルク特性であります。

[0007]

【課題を解決するための手段】請求項1の発明は、軸孔 を有する回転子鉄心内部に永久磁石を埋め込む回転子に 10 おいて、前記永久磁石を埋め込む収容孔が略凹字状であ って、略凹字底部が前記回転子軸孔に面し、略凹字側部 の縁が回転子外周に向い伸びているものであって、略凹 字状の収容孔が回転子外周に向く収容孔面に対して前記 永久磁石の磁気配向が直角に配向されている永久磁石を 挿入することで達成される。請求項2の発明は、略凹字 状の収容孔を有する前記回転子において磁極間の継鉄部 形状が、回転子外周面側が広く回転子内径側に向い狭く なっているロート形状にすることにより固定子と回転子 における磁束の流出入を多くさせることができ、モータ 20 性能に寄与するリラクタンストルクを増加させることが できる。請求項3の発明は、収容孔を略凹字状に形成し 前記収容孔に倣う様な形状に一体成形された永久磁石を 隙間なく埋め込むことにより、磁束量を増加させること で達成される。請求項4の発明は、略凹字状の収容孔幅 において、側部収容孔幅より底部収容孔幅の方が広くす ることにより達成される。請求項5の発明は、略凹字状 の収容孔幅において、一方の側部収容孔幅と底部収容孔 幅が同じであり、他方の側部収容孔幅が一方の側部収容 孔幅と底部収容孔幅より広くすることにより達成され る。請求項6の発明は、略凹字状の収容孔が、多重に配 置されていることにより達成される。請求項7の発明 は、前記回転子内部の磁束の変化が少ない位置にピン孔 が設けられていることにより達成される。

[0008]

【発明の実施の形態】本発明の永久磁石埋め込み回転子 の実施の形態は、積層された鉄心コアの軸孔に回転軸を 圧入または、焼き嵌め等により挿入して固定される。次 に鉄心コアの収容孔に永久磁石を挿入し鉄心コアの軸方 向両端部に端板を装着させる。この端板の材質としては 40 非磁性の材料を選ぶことが好ましい。次に、この端板に 設けられたピン孔と鉄心コアに設けられたピン孔にカシ メピンを挿入し鉄心コアを一体化固着させる。カシメピ ンの材質としては、鉄心等の磁性体や非磁性体を用いる ことができる。尚、鉄心コアのピン孔は、磁束の変化が 少く電動機特性を悪化させない位置や、機械応力の影響 が受け難い位置に設けるのが好ましい。また、永久磁石 埋め込み回転子を形成する方法は前記方法に限定される ものではない。

【0009】次に図面を用いて説明する。尚、本発明に 50 能を上げることができる。

おいて永久磁石埋め込み回転子の構成要素が同様のもの は同じ符号を付して説明を省略する。図1は、第1の実 施例の形態での回転子の平面断面図であり、本実施例の 形態では4 板の永久磁石埋め込み回転子を示している。 図2は、図1の回転子鉄心1の各極に埋め込まれた永久 磁石3が隣り合う極を異極とし着磁を施された永久磁石 3の磁気配向を表すための部分拡大図である。本実施の 形態の永久磁石埋め込み回転子は、回転子鉄心1 に略凹 字状の永久磁石3が略凹字状の収容孔5に倣う様に挿入 されており、この永久磁石3の磁気配向を回転子外周面 に面した収容孔5側面に対して直角に磁気配向されてい る。また略凹字底部収容孔5aが回転子の軸孔2に面 し、略凹字側部収容孔5b、5cの縁が回転子外周に向 い伸びている。磁気配向が回転子外周面に面した収容孔 5側面に対して直角に配向させていることにより、該回 転子鉄心1の該磁気中心側において側部収容孔5b、5 cの側面からの磁束と底部収容孔5aの側面からの磁束 を交差させることができる。この交差させた磁束集中区 間θを制御回路における通電区間とすることにより、今 まで分散して有効に使われなかった非通電区間の磁束を 通電区間θ全域に集中させることにより有効に使うこと ができ、先に述べた周知の電動機のトルクを表す式 (1)、(2)、(4)に記載の回転子表面に出てくる 磁束量Φを増加させることが出来る。

【0010】図3は、図1、図2の永久磁石埋め込み回 転子を使用した場合の固定子巻線U、V、Wの隣接する 任意の2相を使用し固定子巻線に120°づつ位相をず らし電流を通電させる周知の120°通電制御をした場 合のタイミングチャート図である。上段は誘起電圧波形 30 E、下段は通電電流波形 I を示す。本実施例の図1、図 2では、4極の永久磁石埋め込み回転子であるので制御 回路の通電区間120°における磁束集中区間日は60 ・(機械角)であり、この区間の全範囲において非通電 区間0°~30°及び150°~180°の磁束を通電 区間に集中させることによって有効に磁束量Φを増加さ せることができる。尚、本図のタイミングチャート図の 上段においての誘起電圧波形Eの破線部分30は従来の 磁束を集中させない場合であり、実線部分31は本発明 においての磁束を集中させた場合を示している。

【0011】更に、本発明の第2の実施例の形態を図1 を用いて説明する。本実施の形態は、略凹字状の収容孔 5を回転子ラジアル方向に90°等配されている永久磁 石埋め込み回転子であり隣り合う異極の収容孔間、つま り磁極間の継鉄部18の形状が、回転子外周面側に広く 形成され、回転子内径側に向い狭く形成されたロート形 状にすることにより固定子と回転子間の磁束の流出入を 多くさせることができる。その結果、回転子の収容孔5 と内径軸孔2の間の継鉄部に磁束が多く流れることにな りリラクタンストルクを増加させることができモータ性

【0012】第3の実施例の形態は、前記略凹字状の収 容孔5に埋め込まれる永久磁石を一体成型して埋め込む ことにより、複数の永久磁石を収容孔5に挿入する場合 と比べて寸法のバラツキを考慮しなくてすみ永久磁石と 収容孔5との隙間を大きくする必要がなくなる。 つまり 複数の永久磁石を使用する場合は各永久磁石の寸法のバ ラツキを考慮しなくてはならず、収容孔5に複数の永久 磁石が必ず入るようにするために、収容孔5を大きく設 定しなくてはならないが一体成形にした場合、永久磁石 を複数使用するわけではないため寸法のバラツキ範囲が 小さくなり収容孔5と永久磁石3の隙間を小さくするこ とができる。また、この隙間が小さくなることにより、 隙間による磁気抵抗が減少し電動機の性能を向上させる ことができる。更に、隙間が小さくなることで音、振動 等も小さくなる。

【0013】以上の実施の形態では略凹字状の収容孔幅 は等しい場合について説明してきたが、略凹字状の収容 孔を異ならせた場合においての実施の形態について図を 用いて説明する。第4の実施の形態では図4の略凹字状 の収容孔10に倣う様に永久磁石11を挿入して構成さ 20 れており略凹字状の収容孔10において、側部収容孔幅 より底部収容孔幅が広く設定されている。本実施の形態 では、底部収容孔10aの永久磁石11の厚さをTa 1、側部収容孔10b、10cの永久磁石11の厚さを Tb1、Tc1とした時Ta1>Tb1=Tc1となる ように設定している。ここでTa1=Tb1=Tc1の 状態からTb1、Tc1をそのままでTa1を大きくし ていくことにより回転子鉄心外周面に出てくる磁束が大 きくなり式(1)、(2)、(4)の式からもわかるよ うに磁束Φが増加しマグネットトルクTmを増加するこ とができる。

【0014】次に、本発明の第5の実施例では、図5の 略凹字状収容孔幅を一方の側部収容孔幅と底部収容孔幅 が同じであり他方の側部収容孔幅が一方の側部収容孔幅 と底部収容孔幅より広く設定されている。本実施例の形 態では、底部収容孔12aの永久磁石13の厚さTa 2、側部収容孔12b、12cの永久磁石13の厚さT b2、Tc2とした時Tc2=Ta2<Tb2となるよ うに設定している。ここでTa2=Tb2=Tc2の状 態からTa2、Tc2をそのままでTb2を大きくして 40 いくことにより永久磁石13の磁束Φの集中をα分だけ 位相をずらせることができる。このことは、図6に示し たトルク特性として表すことができる。図6に付された 符号は図10と同一意味を示しているため、ここでは符 号の説明を省略することにする。マグネットトルクTm の磁東 Φ の集中が α 分だけ位相がずれている。尚、ここ では図5での回転子を機械角で反時計方向に90゜回転 させた場合のトルク特性である。この様に磁束Φの集中 箇所を適宜調整させ該電動機のマグネットトルクTmの ピークをα分ずらせることにより総合トルクTのピーク 50 平面断面図である。

を突出させないように全体的に安定した電動機トルク特 性が得ることができるようになる。即ち、このような回 転子は従来問題にしているコギングトルクによる音、振 動を小さくすることができる。

【0015】以上の実施の形態では、各極に収容孔を設 け単層構造としたが、各極の収容孔を所定間隔に開けて 複数個設けて多層構造とすることもできる。多層構造に 形成した本発明における第6の実施の形態を図7に示 す。本実施の形態では、略凹字状収容孔15、14は軸 方向に垂直な断面であり、略凹字底部収容孔14a、1 5 a が前記回転子軸孔 2 に面し、略凹字側部収容孔 1 4 b、14c、15b、15cの縁が回転子外周に向い伸 びて形成され、また各永久磁石16、17の厚さがほぼ 等しい厚さに設定されている。本実施の形態では各極毎 に所定間隔を開けて2つの収容孔14、15を設けてい るが、収容孔の層数及び形状を限定する物ではない。内 周側の収容孔14に挿通されている永久磁石16と外周 側の収容孔15に挿通されている永久磁石17の極性は 同一となるように構成されている。また、それぞれの実 施の形態については個別に説明したが、これらの方法を 適宜組み合わせて用いることもできる。更に、各収容孔 に挿通する永久磁石を複数個挿入させ、側部収容孔と底 部収容孔に挿通させている永久磁石の特性を異ならせる 方法や、各極毎の多層構造に形成され層毎の特性及び 厚さをことならせる方法等もある。

[0016]

【発明の効果】以上説明したように請求項1及至請求項 7に記載の回転子を用いることで回転子鉄心内部の略凹 字状である収容孔に永久磁石を埋め込み、この収容孔側 面に対して直角に磁気配向させることにより、回転子が 発生する各極の磁束を制御回路の非通電区間に存在する 磁束を通電区間に集中させることによって通電区間全域 にわたり磁束量を増加させることができる。更に、磁極 間の継鉄部を回転子外周面側を広く回転子内径側に向い 狭くしたことによって磁束の流出入を増加させることが できリラクタンストルクを増加させモータ性能を向上さ せることができる。また、永久磁石を一体成形すること により永久磁石を隙間なく埋め込むことにより磁束量を 増加することができる。また、収容孔の幅を適宜設定す ることによりマグネットトルクを増加させコギングトル クによる音、振動を小さくすることができる。また、収 容孔を多層にすることによってマグネットトルクとリラ クタンストルクを増加させることができる。また、ピン 孔を磁束の変化が少ない位置や機械応力の影響が受け難 い位置に設けることにより電動機特性を悪化させること はない。

[0017]

【図面の簡単な説明】

【図1】本発明の第1及至第3実施例の形態の回転子の

【図2】図1の磁気配向を表すための部分拡大図である。

【図3】図1、図2の回転子を用いた場合と従来例とを 比較した誘起電圧波形と通電電流波形を示したタイミン グチャート図である。

【図4】本発明の第4実施例の形態の回転子の平面断面 図である。

【図5】本発明の第5実施例の形態の回転子の平面断面 図である。

【図6】図5の回転子を用いた場合のトルク特性である。

【図7】本発明の第6実施例の形態の回転子の平面断面図、

【図8】従来例を示す回転子の平面断面図。

【図9】別の従来例を示す回転子の平面断面図。

【図10】従来例の回転子を用いた場合のトルク特性である。

【符号の説明】

1…回転子鉄心、2…軸孔、3,7,9,11,13,16,17…永久磁石、4…ピン孔、5,6,8,10,12,14,15…収容孔、5a,10a,12a,14a,15a…底部収容孔、5b,5c,10b,10c,12b,12c,14b,14c,15b,15c…側部収容孔、18…継鉄部、T…総合トルク、Tm…マグネットトルク、Tr…リラクタンストルク、の…磁束集中範囲、E…誘起電圧波形、I…通電電流波形、α…ずれ位相角度、β…位相角度、Tal,Ta2…底部収容孔の永久磁石厚さ、Tbl,Tb2,Tcl,Tc2…側部収容孔の永久磁石の厚さ、30…従来品の誘起電圧波形、31…発明品の誘起電圧波形。

12/16/05, EAST Version: 2.0.1.4

フロントページの続き

(72)発明者 真野 鐘治 愛知県春日井市愛知町2番地 アイチーエ マソン電機株式会社内 F ターム(参考) 5H002 AA01 AB07 AC07 AE07 AE08 5H622 AA03 CA02 CA05 CA07 CA10 CA13 PP03 PP07 PP10 QA10