Name:

Linear Algebra I: Exam 3 (Summer 2019)

<u>Show ALL work, as unjustified answers may receive no credit</u>. Calculators are not allowed on any quiz or test paper. <u>Make sure to exhibit skills discussed in class</u>. Box all answers and simplify answers as much as possible.

Good Luck! [©]

1. <u>Linearly Independent Sets; Bases</u>

Let
$$\vec{v}_1 = (1,1,1)$$
, $\vec{v}_2 = (1,2,3)$, $\vec{v}_3 = (1,1,2)$.

- (a) [5 pts] Show that the vectors are Linearly Independent.
- (b) [5 pts] Find the unique weights(scalars) c_1 , c_2 , c_3 such that $\vec{v}=(2,1,3)$ can be written as $\vec{v}=c_1\vec{v}_1+c_2\vec{v}_2+c_3\vec{v}_3$

2. Null Spaces, Column Spaces, and Linear Transformations

Define the Linear Transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_2 - x_3 \\ x_1 + x_4 \end{bmatrix}$.

- (a) [5 pts] Find the column space of *T*.
- (b) [5 pts] Find the null space of *T*.
- (c) [2 pts] Find a basis for the column space of *T*.
- (d) [2 pts] Find the basis for the null space of *T*.

Hint: The column space of T is Col(A) and the null space of T is Nul(A), where A is the standard matrix of T \odot

3. <u>Vector Spaces and Subspaces</u>

Let H and K be subspaces of a vector space V. Let $H+K=\{\vec{w}: \vec{w}=\vec{u}+\vec{v} \ , \ \vec{u}\in H \ and \ \vec{v}\in K\}$. [9 pts] Show that H+K is a subspace of V.

4. Null Spaces, Column Spaces, and Linear Transformations

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation and $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be a basis for \mathbb{R}^3 . Suppose that $T(\vec{v}_1) = (-2, 1, 1), T(\vec{v}_2) = (0, 1, -1), T(\vec{v}_3) = (-2, 2, 0)$.

- (a) [5 pts] Determine whether $\vec{w}=(-6,5,0)$ is in the range of T.
- (b) [5 pts] Find a basis for the kernel of *T*.

5. <u>Coordinate Systems</u>

The set $B=\{\,1+t^2\,,\,\,2t-t^2\,,1-t+t^2\,\}$ be a basis for \mathbb{P}_2 .

[5pts] Find the coordinate vector $p(t) = 1 + 16t - 6t^2$ relative to B.

Bonus Question: <u>Coordinate Systems</u>

Let $B = \left\{ \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 9 \end{bmatrix} \right\}$. Since the coordinate mapping determined by B is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 , this mapping must be implemented by some 2 x 2 matrix A.

[5pts] Find it.

Scratch Work (Not Graded)