

Agenda

- ◆ Technology Program Leveraging
- ◆ NASA Technology Programs Overview
- ◆ MSFC Identified Ares Technology Needs
- ◆ Ares Technology Needs Process Definition
- ◆ Ares Candidate Technology Needs

Ares I & V Technology Program Leveraging

- ◆ Ares Program Office (APO) requested an investment strategy to leverage a variety of technology programs to provide emerging capabilities in support of Program goals
 - Operability
 - Manufacturing
 - Processing
 - Operations
 - Vehicle Performance Improvements
 - Vehicle Risk Mitigation
 - Ares 5 Advanced Development Needs
- Technology programs available to leverage in 2007
 - Constellation University Institutes Program (CUIP)
 - National Space Science and Technology Center (NSSTC) Collaborations
 - Small Business Innovation Research (SBIR)
 - Small Business Technology Transfer (STTR)
 - Innovative Partnership Program (IPP)
 - Exploration Technology Development Program (ETDP)
 - Rocket Propulsion Test Management Board (RPTMB)

Ares Technology Needs Definition Process

Technology Portfolio Philosophy Demonstrated during Ares

- Multiple Organizations Contribute to Technology Development
 - Universities
 - Small Business
 - Medium/Large Business (Primes)
- Each Organizational Class fits differing Technology Development Needs Differently
 - Universities (Basic Research)
 - Basic Research TRL 1-3
 - Low cost tasks
 - Higher risk areas
 - Path finding new and novel approaches
 - Technology Demonstration TRL 4-6
 - Low to moderate cost tasks
 - Proof of Concept
 - Small Business (Application Development)
 - Basic Research TRL 1-3
 - Low cost tasks
 - Application driven
 - Technology Demonstration- TRL 4-6
 - Moderate cost tasks
 - Application driven
 - Medium/Large Business (Product Demonstration)
 - Technology Demonstration TRL 4-6
 - Moderate to high cost tasks
 - Product driven
 - Technology Maturation TRL 7-9
 - Moderate to high cost tasks
 - Proof of Operational viability in Targeted Application

Technology Needs Definition

Ares Candidate Technology Needs Identification Process

- ◆ Survey conducted of engineering and research organizations at ARC, GRC, LaRC, MSFC
- Input developed identifying proposed Technology
 - Brief description
 - Clear need statement
 - CxP Milestone supported
- ◆ MSFC inputs collected in July 2007 to path find collection process
- Research Centers and Exploration Technology Development Program (ETDP) Office briefed on process – August 2007
- ◆ Research Centers provided input September 2007
- Inputs consolidated into a single list

Ares Capabilities Value Stream

- Abbreviated process with 2 objectives
 - 1. Identify development needs not met with current capabilities
 - 2. Formulate capability/technology development to meet defined capabilities
- Two phases to the process
- Phase 1: Identify development needs not met with current capabilities
 - Input from system designers, chief engineers, lead system engineers, etc.
 - Simple survey questions to identify needs
 - From your point of view describe the key technical challenges in designing to meet your requirements. If we could overcome the challenges what capability/technology would allow us to significantly improve margins or push the requirement further?
 - Examples
 - Mass of subsystem
 - Reliability of subsystem
 - Number of maintenance items
 - Thermal capability
 - Specific material properties
 - Can you identify any worthwhile technologies that could address your technical challenges?
 - Input evaluated and prioritized by a Technology Review Panel

Ares V Technology Needs Prioritization Phase I VSM Event November 1, 2007

- Multi-voting Technique
 - Purpose
 - To assess which ideas have the most group energy behind them.
 - What does it do?
 - Prioritizes the list of technology needs through a weighting process.
- Method: Dot-Voting- Multiple vote per item
- ◆ Each Review Panel member has votes equal to 1.33*technology needs
- ♦ Each team member votes for each technology. The more votes given, the higher the priority given by the voter.
- ◆ Tabulate the results. The highest priority is determined by the highest number of total votes from the panel.
- ♦ Discuss, adjust voting based on subjective considerations, and reach consensus on priority.
- In the event that several items have equal high priority, a second round of voting using a single vote process was used to refine the list
 - Each panel member gets number of votes equal to 0.33*high technology needs. Each panel member can give one vote per technology need.
 - Tabulate the results. The highest priority is determined by the highest number of total votes from the panel.
 - Technology needs with no votes in this round get ranked at the bottom of the high priority list.

APO Technology Priority Groups

♦ Composites (15/232)

◆ Cryogenic Fluid Management (6/88)

♦ Solids (4/57)

◆ Automation (6/38)

♦ Liquid Propulsion (5/28)

◆ Control/Separation (6/26)

Ares Capabilities Value Stream

- ◆ Phase 2: Formulate Technology Plan
 - Aligned capability needs with technology providers
 - Defined specific approaches/products which satisfy the design needs
 - Reviewed candidate technologies
 - Initial filtering to match capability needs with candidate technologies
 - Obtain feedback from system designers on candidate technologies
 - If matured, would any of the proposed technologies significantly improve the ability for you to meet or exceed your requirements or decrease the risk in doing so?
 - Identify those as high, medium, or low to no improvement
 - If you have time provide a few words as to why
 - Design Teams worked with Technology Providers to formulate technology development
 - NASA Research Centers
 - MSFC Engineering Directorate
 - Industry Partners
 - Universities
 - Results documented in the Customer Supplier Agreement (CSA) or other documentation of agreed to technology products and approach

CxP Technology Prioritization Panel (TPP) Input

- Phase 1 Ares Identified Technology Needs mapped to Candidate Technology inputs from MSFC Engineering Directorate, ARC, GRC, LaRC
 - Matched needs with candidate technologies
 - Removed candidates without any pull
 - Review for potential referral to design teams for consideration
- Request technology proposers to develop final package for Ares Project Office input to CxP TPP
 - Package to be reviewed by customer design teams to ensure proper focus
- ◆ Input Packages provided to CxP TPP 7 Dec 2007
- Appropriate needs were input to SBIR/STTR/IPP for 2008 Topic/Subtopic development
- Appropriate needs were input to CUIP for formulation of University projects
- Needs list provided to Von Braun Center for Science and Innovation (VCSI) and other industry partners for external development consideration
- ◆ CxP TPP Ranking input on 15 Dec 2007
- Phase 2: Formulated approved projects with ETDP 2nd Quarter FY2008
 Produce Customer Supplier Agreements (CSA)

Constellation Technology Prioritization Panel (TPP) Prioritization Methodology

- Prior to the TPP, members were responsible to:
 - Review justification packages
 - Verify appropriate criticality (critical, HD, desirable)
 - Rank needs independently
- TPP as a panel was responsible to:
 - 1. Ask ROs questions
 - 2. Blind Vote
 - 3. TPP members review results of the "voting"
 - 4. Discuss results and adjust if required
 - 5. Reach consensus or agree to disagree

Count of ID																
	Initial Capability			Lunar Surface				Lunar Transport				Mars				
		Highly		IC		Highly		LS		Highly		LT		Highly		Grand
Submitting Project/SIG	Critical	Desirable	Desirable	TOTAL	Critical	Desirable	Desirable	TOTAL	Critical	Desirable	Desirable	TOTAL	Critical	Desirable	TOTAL	Total
Project - Ares	5			5					10			10				15
Project - EVA Systems	1			1					7			7				8
Project - Ground Operations	11			11												11
Project - Lunar Lander									10	4	6	20				20
Project - Lunar Surface Systems		1		1	36	50	18	104	2	3	1	6				111
Project - Mission Operations		7		7		7		7		7		7				21
Project - Orion	7	6		13	1			1	7	7		14		1	1	29
SIG - Environments & Constraints					1	6		7		3		3				10
SIG - Ground & Mission Ops						2		2	1			1				3
SIG - Integrated Loads, Struct & Mech	6	5	1	12	7	14	11	32	1	1		2				46
SIG - Integrated Power Loads		1		1	3	1		4	1	2		3				8
SIG - Supportability, Oper, Afford						4		4								4
SIG - SW & Avionics Integration Office	2	3		5	4	2	1	7	4	12		16	3		3	31
SIG - Thermal & ECLSS	1	4		5	13	15	2	30	4	12	2	18				53
SIG- Flight Performance	1			1					3			3				4
Grand Total	34	27	1	62	65	101	32	198	50	51	9	110	3	1	4	374

TPP Inputs - Linked to Ares Projects Office Risks

Risk ID	Risk Title	Risk Score	Technology Title				
2736	Shell Buckling Factors	L=4 C=4	Shell Buckling				
1144	Welding Development on Low TRL Processes	L=2 C=4	Friction Stir Welding of Spun Formed Dome				
1146	Lack of a Manufacturing Technique for Close Out of Through-thickness Holes Resulting from Friction Stir Welded Circumferential Welds	L=2 C=5	Friction Stir Welding of Spun Formed Dome				
2728	Solid Rocket Motor Fault Detection Technology	L=3 C=5	Solid Rocket Motor Health Management./Ares 1-X Gound Experiment				
<u>2725</u>	Large Composite Manufacturing Technology	L=4 C=5	Large Composite Manufacturing				
<u>2647</u>	First Stage TVC Risk Mitigation	L=4 C=4	TVC architecture development to minimize operations (EHA Ares I upgrade)				
2738	HTPB Propellant Characterization	L=4 C=4	HTPB Propellant				
2727	Long-term Cryogenic Storage	L=4 C=5	Long-term Cryogenic Storage				
2730	Composite damage tolerance/detection	L=4 C=5	Composite damage tolerance/detection				
2729	EDS state determination/abort	L=4 C=5	EDS state determination/abort				
<u>2731</u>	Composite joining technology	L=4 C=5	Composite joining technology				
2732	EDS Tank On-orbit Fluid Measurement	L=4 C=5	Liquid Level Measurement				
2733	Large Tank Multi-layer Insulation Techniques	L=4 C=5	Multi-layer Insulation				
2734	On-orbit Leak Detection	L=4 C=5	Leak detection				
2735	Nozzle sensitivity to pocketing/ ply lifting using HTPB with higher heat flux	L=4 C=5	Nozzle sensitivity to pocketing/ ply lifting using HTPB with higher heat flux				
2737	Pneumatic actuator stage seperation systems	L=4 C=5	Pneumatic actuator system- primarily guided actuator (related to gas struts)				

Technology Maturation Path for Ares Project Office (APO)

NASA Technology Development Programs Overview

7/17/2014 10:25:57 AM

Constellation University Institutes Program (CUIP)

Constellation University Institutes Project (CUIP)

- Project managed by GRC/Claudia Meyer and Jeff Rybak
- Consists 6 Virtual Institutes with NASA Experts as Technical Leads
 - Thrust Chamber Assembly (MSFC//Kevin Tucker)
 - Propellant Storage and Delivery (MSFC/Dan Dorney)
 - Reentry Aerothermodynamics (ARC/Mike Wright)
 - Structures and Materials for Extreme Environments (LaRC/Kevin Rivers)
 - Solids (MSFC/Robert Garcia)
 - Systems Engineering and Integration (GRC/Claudia Meyer)
- A Consortium of Universities funded through a Cooperative Agreement
 - Funding: (\$4M/year) by Constellation; ESMD contributes \$3.5M for FY08 only
 - Reformulating to include Ares technology needs from CUIP into other funded areas if funding not provided by Constellation
 - Allocation of funds depends on research requests against the tasks established in each Virtual Institute
 - Funding is nominally in the \$150K/task range
 - New Cooperative Agreement
 - University of Maryland is lead university
 - 1 October 2007 start date
 - Maximum duration: 5 years

Constellation University Institutes Program (CUIP)

Thrust Chamber Assembly Virtual Institute

- MSFC/Kevin Tucker
- Research Areas
 - CFD Code Development and Verification
 - Validation at the Injector Unit Physics Problem Level
 - Validation at the Injector Model Problem Level
 - Thrust Chamber Assembly Performance
 - Thermal Environments
 - Combustion Stability

Propellant Storage and Delivery Virtual Institute

- MSFC/Dan Dorney
- Research Areas
 - Computational and Experimental Investigation of Cavitation
 - Mesh Generation
 - Turbomachinery design optimization
 - Multi-phase CFD Code Development and Verification

Reentry Aerothermodynamics Virtual Institute

- ARC/Mike Wright
- Research Areas
 - Aerothermodynamics of Earth re-entry
 - TPS modeling and flight performance
 - Mid-term architecture improvements for Block-III

Constellation University Institutes Program (CUIP)

Structures and Materials for Extreme Environments Virtual Institute

- LaRC/Kevin Rivers
- Research Areas
 - Modeling of durability of metals and composites
 - Joining of dissimilar materials
 - Integrated structural health monitoring
 - MMOD resistant back-shell TPS
 - Modeling of oxidation in ceramic composites

Solids Virtual Institute

- MSFC//Robert Garcia
- Research Areas
 - Erosive Propellant Burning Simulation in Solid Rocket Motors
 - Validation Data for Erosive Burning Simulations
 - Solid Propellant Characterization Techniques
 - Solid Rocket Motor Nozzle Material Performance

Systems Engineering and Integration Virtual Institute

- GRC/Claudia Meyer (acting)
- Research Areas
 - Detailed Lunar Exploration Campaign Logistics Analysis
 - Lunar Environment Modeling and Data Analysis
 - Liftoff Acoustics Characterization
 - Trajectory Planning and Tracking

SBIR/STTR/IPP

Small Business Innovation Research (SBIR)

- Development of a High TRL technology by a small business with or without subcontractors
- Phase 1: \$100K, 6 months
- Phase 2: \$650K, 2 years
- Phase 3: Project funded, no funding or time limits mandated
 - APO is committed to providing Phase 3 funding for those activities which show benefit to Ares developments

Small Business Technology Transfer and Research (STTR)

- Joint Development of a Technology by a Small Business and Non-Profit such as an FFRDC, University (JPL is not eligible beginning this year)
- Phase I: \$100K/contract, 1 year
- Phase II: \$700K/contract, 2 years

Innovative Partnership Program (IPP)

- A joint development program consisting of NASA and Industry partners focusing on high TRL capabilities
- \$9.2M available in FY08 across the agency
 - MSFC can submit 8 proposals center wide
 - Typically \$750K \$1.5M, 1 year
- Partnership Funding Split
 - 1/3 IPP
 - 1/3 NASA Program or Center
 - Can be in kind (e.g., FTE support)
 - 1/3 Industry Partner
- 7/17/2014 10:25:57 AM FY07: \$974K HQ/MSFC IPP Funds; \$640K MSFC Funds; \$3.7M Partner Funds

SBIR/STTR/IPP Topics in Support of Ares I & V Development

Manufacturing

- Digital Design to Manufacturing
- Rapid Prototyping
- Human Motion Tracking Analysis Tools

◆ Thermal Protection System (TPS)

- High Temp Ablative for Boosters
- Cryogenic Tank Insulation (Lightweight)
- MMOD Protective MLI for Cryo Tanks

Metallic Structure

- Lightweight Materials and Structures
- Friction Stir Welding

Composite Structures

- Composite Failure Detection and Identification
- Composite Cryo Tanks
- Dry Composite Structure
- Composite SRM

Solid Propulsion

- Pyrotechnic Design Tools
- SRM/Hybrid Motor Analysis Tools

Valves and Actuators for Liquid Engines

- Advanced Component Design
 - Advanced TVC
 - Fault Tolerant Ball Screws
 - Electronic Control Relief Valves
 - Redundant Piezo-Electric Actuators
- Analysis and Design Tools
 - Valve Sizing and Mass Estimation Tools

SBIR/STTR/IPP Topics in Support of Ares I & V Development

Cryogenic Fluid Management

- Leak Detection
- Thermal Protection
- Pressure Control
- Mass Gauging

Liquid Engine Propulsion

- Simulation and Modeling Techniques
 - Multiphase Flow
 - Transient State Models
 - Turbo Machinery Modeling
- Cryogenic Seals

GN&C

Adaptive/Augmented GN&C

Integrated System Health Management (ISHM)

- Vehicle State Determination
 - Algorithm and Sensor Approaches to Measure Vehicle States and Conditions

Separation Systems

- Gas Struts
- Other Innovative Techniques

National Space Science and Technology Center (NSSTC)

Partnership between NASA and Academia

- Marshall Space Flight Center
- University of Alabama in Huntsville (UAH)
 - NSSTC Executive Director
- Alabama A&M University
- Auburn University
- Tuskegee University
- University of Alabama
- University of Alabama in Birmingham (UAB)
- University of South Alabama
- Cooperative Agreement extended through 2010

Encompasses several research areas

- Global Hydrology and Climate Center (GHCC)
- Propulsion Research Center
- Material Science Research Center
- Biotechnology Research Center
- Space Science
- Information Technology
- Advanced Optics

Funding through

- Competitive Procurements
- Direct NASA Program Support
- Congressional Initiatives

Von Braun Center for Science and Innovation

- ♦ Not-for-profit organization (501(c) 3) incorporated in August 2006
- Integrates government, industry, and academic R&T assets to provide customers with science applications and engineering solutions through collaborative programs
- Member-based organization comprised of corporate, government, university, and other strategic organizations
- ◆ Governed by industry and university affiliated Board of Directors also includes key government liaisons (MSFC, SMDC, AMRDEC, TVA, MDA)

VCSI's objectives are to:

- Develop and implement requirements-driven technology programs
- Identify and link emerging technologies from the national R&T community to address customer requirements
- Promote/implement innovative management approaches to technical solutions

VCSI Requirements-Driven Model

Other Technology Programs

- Rocket Propulsion Test Management Board (RPTMB)
 - Managed out of Stennis Space Center (SSC)
 - Focuses on technology to improve propulsion testing quality, reliability, and consistency
 - Funds approximately 8 projects/year
 - Funding distributed among several centers
- NASA NonDestructive Evaluation (NDE) Working Group (NNWG)
 - Funds NDE technology development
- Space Communications and Navigation (SCAN)
 - SCAN provides funding for communication technology

Exploration Technology Development Program (ETDP)

- Exploration System Mission Directorate (ESMD) technology development program (\$316M in FY08)
- ◆ A peer program to Constellation
 - Constellation and the Lunar Architecture Team (LAT) are the only customers driving ETDP projects
 - There are some legacy International Space Station (ISS) experiment tasks in the ETDP budget
- Constellation went through an initial prioritization task with Constellation and LAT in Spring 2007
 - Inputs were collected quickly and Constellation does not have a complete set of technology needs identified
 - Expect a new prioritization effort this Fall
 - APO input two tasks
 - RS68 turbopump development for Ares V
 - Cancelled due to instabilities with Air Force agreements
 - Solid Rocket Motor (SRM) Health Management
 - Funded through 2009
 - APO had two other existing projects
 - Friction Stir Welding
 - Funded jointly by ETDP and APO
 - 600 lb Thruster
 - Cancelled and funded in-house by APO as a required Ares component

ETDP – Crew Systems (CEV, LSAM, MTV)

ETDP is organized into several elements with projects under each one

- Structures, Materials, and Mechanisms
 - *Advanced Radiation Shielding
- Protection Systems
 - Ablative Thermal Protection System for CEV
 - *Future Aerocapture Technologies
- Non-Toxic Propulsion
 - Propulsion and Cryogenic Advanced Development (PCAD)
 - *Cryogenic Fluid Management
 - *Advanced Propulsion Technologies
- Energy Storage and Power Systems
 - Energy Storage
- Environmental Control and Life Support
 - Exploration Life Support
 - Advanced Environmental Monitoring and Control
 - Fire Prevention, Detection, & Suppression
 - *Advanced Waste Techniques
 - *Planetary Protection Technologies
- Crew Support and Accommodation
 - EVA
 - *Advanced EVA
- Advanced Fission Based Power Systems
- Avionics and Software
 - Radiation Hardened Electronics for Space Environments
 - Integrated System Health Management
 - Automation for Operations
 - Reliable Software
 - Auto Precision Landing, Guidance, Navigation
 - Autonomous Rendezvous and Docking (AR&D) Sensors
 - Mini-RF/LRO
 - *High Bandwidth Optical Communications
 - Non Line of Sight High Frequency (HF) Communications

ETDP – Surface Systems

- Avionics and Software
 - Radiation Hardened Electronics for Space Environments
 - Automation for Operations
 - Reliable Software
 - Non Line of Sight High Frequency (HF) Communications
 - *Surface System Sensors
- In-Situ Resource Utilization
 - ISRU
 - *Mars Propellant ISRU
- Protection Systems
 - Dust Mitigation
- Thermal Control for Surface Systems
- Robotics, Operations & Supportability
 - Supportability
 - Human Robotic Systems

ETDP – Launch Vehicles

- Structures, Materials, and Mechanisms
 - Structures, Materials, and Mechanisms
- Energy Storage and Power Systems
 - Energy Storage
- Avionics and Software
 - Radiation Hardened Electronics for Space Environments
 - Integrated System Health Management

ETDP – Overhead

- Program Support
 - Program Support
 - System Design and Analysis Tool Development
 - Systems Analysis and Technology Assessment
- ISS Research Development and Operations
 - Exploration Research
 - Non-Exploration Research
- ETDP Special Projects
 - NEOO
 - Earmarks
 - ETDPO Operations
 - ETDPO Integration
 - NASA Institute for Advanced Concepts (NIAC)
 - ETDP New Start Projects
 - Technology Validations

Summary

- Ares Program Office developed a technology development model that incorporated research organizations with appropriate research tasks
- ◆ APO was successful in defining, defending (in tough budget periods) and progressing all vital technology needs
 - Strong dependent on the coupling of design team needs to appropriate technology providers (needs driven technology development)
- ◆ APO model is valid today and provides a road map to involve all levels of research and development organizations to productively contribute to a programs technology needs
- ◆ APO model is readily adapted to new research and development structures as demonstrated in the APO model adaption to various late changes in technology program structures
 - TPP emergence to drive ETDP needs
- ◆ There are several new trends...

Current and Future Trends

Current and Future focus is on collaboration of Universities through a centralized contract

- National Institutes
 - National Institute for Rocket Propulsion Systems (NIRPS)
 - Digital Manufacturing and Design Institute (DMDI)
 - National Additive Manufacturing Innovation Institute (NAMI)
 - Lightweight & Modern Metals Manufacturing Innovation Institutes
 - Next Generation Power Electronics Manufacturing Innovation Institute
- Research Consortiums
 - University Institutes Program (UIP) model
 - DoD System Engineering Research Center (SERC)
 - NASA System Engineering Research Consortium
 - NSF e-design Center

National Initiatives

- Cuts across and coordinates Multiple Funding Organization Opportunities
- National Nanotechnology Initiative
- National Robotics Initiative