CO-303 DESIGN AND ANALYSIS OF ALGORITHMS

Introduction

What is Algorithm?

Introduction

What is Algorithm?

- An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.
- Word defined by a Persian Mathematician, Abu Ja'far Mohammed ibn Musa al Khowarizmi (825 A.D.)

Introduction...

Characteristics of an Algorithm

Introduction...

- Characteristics of an Algorithm
 - Input: ?
 - Output: ?
 - Definiteness: ?
 - Finiteness: ?
 - Effectiveness: ?

Introduction...

Characteristics of an Algorithm

- Input: zero or more inputs, taken from a specified set of objects
- Output: At least one quantity is produced relation to the inputs
- Definiteness: Each instruction must be precisely defined
- Finiteness: It terminates after a finite number of steps
- Effectiveness: All operations to be performed must be sufficiently basic that they can be done exactly and in finite length.

Problems vs Algorithms vs Programs

Problems vs Algorithms vs Programs

- For each problem or class of problems, there may be many different algorithms.
- For each algorithm, there may be many different implementations (programs).

Problems vs Algorithms vs Programs

- For each problem or class of problems, there may be many different algorithms.
- For each algorithm, there may be many different implementations (programs).

Analysis of algorithms

Analysis of algorithms

- Measuring efficiency of an algorithm
 - Time: How long the algorithm takes (running time)
 - Space : Memory requirement

Time and space

Time and space

- Time depends on processing speed
 - Not possible to change for given hardware
- Space is a function of available memory
 - Easier to reconfigure
- Typically, we will focus on time, not space

Measuring running time

Measuring running time

- Analysis independent of underlying hardware
 - Don't use actual time
 - Measure in term of "Basic operations"

Input size

Input size

- Running time depends on input size
- Measure time efficiency as function of input size
 - Input size n
 - Running time t(n)
 - Typically t(n) is worst case estimate

Worst-case analysis

Worst-case analysis

- Why do we usually focus on the worst case analysis?
 - Being upper bound, the worst case guarantees that the algorithm will not take any longer.
 - Fairly occurs in many applications.
 - Average case is often roughly as bad as the worst case.

• Sorting as array with n elements

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours
 - 115700 days

Sorting as array with n elements

- Basic algorithms : time proportional to n^2
- Best algorithms : time proportional to $n \log n$
- Typical CPUs process up to 10^8 operation per second (for approximate calculation)
- Telephone directory for mobile phone users in India
- India has about 1 billion = 10^9 phones
- Basic n^2 algorithm requires 10^{18} operations
- -10^8 operation per second => 10^{10} seconds
- 2778000 hours
- 115700 days
- 300 years!!!

Sorting as array with n elements

- Basic algorithms : time proportional to n^2
- Best algorithms : time proportional to $n \log n$
- Typical CPUs process up to 10^8 operation per second (for approximate calculation)
- Telephone directory for mobile phone users in India
- India has about 1 billion = 10^9 phones
- Basic n^2 algorithm requires 10^{18} operations
- -10^8 operation per second => 10^{10} seconds
- 2778000 hours
- 115700 days
- 300 years!!!

• Best $n \log n$ algorithm takes only about 3×10^{10} operations

Sorting as array with n elements

- Basic algorithms : time proportional to n^2
- Best algorithms : time proportional to $n \log n$
- Typical CPUs process up to 10^8 operation per second (for approximate calculation)
- Telephone directory for mobile phone users in India
- India has about 1 billion = 10^9 phones
- Basic n^2 algorithm requires 10^{18} operations
- -10^8 operation per second => 10^{10} seconds
- 2778000 hours
- 115700 days
- 300 years!!!

- Best $n \log n$ algorithm takes only about 3×10^{10} operations
- About 300 seconds

• Sorting as array with n elements

- Basic algorithms : time proportional to n^2
- Best algorithms : time proportional to $n \log n$
- Typical CPUs process up to 10^8 operation per second (for approximate calculation)
- Telephone directory for mobile phone users in India
- India has about 1 billion = 10^9 phones
- Basic n^2 algorithm requires 10^{18} operations
- -10^8 operation per second => 10^{10} seconds
- 2778000 hours
- 115700 days
- 300 years!!!

- Best $n \log n$ algorithm takes only about 3×10^{10} operations
- About 300 seconds
- About 5 minutes

Typical functions

Problem #1

• Problem: print "Hello NIT Surat" for n times

Problem #1

- Problem: print "Hello NIT Surat" for n times
- Algorithm: Print

Problem #1

- Problem: print "Hello NIT Surat" for n times
- Algorithm: Print

```
_____
```

What could be the running time of the solution?

Prepare a table as shown below

Statement	cost	times_executed
1		
2		
3		
4		
5		

- Problem: print "Hello NIT Surat" for n times
- Algorithm/ pseudo code: Print (n)
- 1. i = 1
- 2. While $i \leq n$
- 3. Print "Hello NIT Surat"
- 4. i = i + 1
- 5. Exit

- Problem: print "Hello NIT Surat" for n times
- Algorithm/ pseudo code: Print (n)

1.
$$i = 1$$
..... C_1

- 3. Print "Hello NIT Surat"..... C_3
- 5. Exit..... \mathcal{C}_5

- Problem: print "Hello NIT Surat" for n times
- Algorithm/ pseudo code: Print (n)

1.
$$i = 1$$
..... C_1

- 2. While $i \leq n$ \mathcal{C}_2
- 3. Print "Hello NIT Surat"..... C_3
- 4. $i = i + 1 \dots C_4$
- 5. Exit..... \mathcal{C}_5

Total steps = Total time =
$$C_1 + (n+1)C_2 + nC_3 + nC_4 + C_5$$

Problem #2

• Problem: To determine the largest of n nos.

- Problem: To determine the largest of n nos.
 - Running time if the input is strictly ascending/strictly descending?

Algorithm Largest $1(x_i, n)$

- 1 Let $max = x_1$
- 2 For i = 2 to n
- 3 Do if $x_i > max$
- 4 Then $max = x_i$
- 5 Print *max*

Algorithm Largest2 (x_i, n)

- 1 For i = 1 to (n 1)
- 2 Do if $x_i > x_{i+1}$
- 3 Then swap $\langle x_i, x_{i+1} \rangle$
- 4 Print x_n

- Problem: To determine the largest of n nos.
 - Running time if the input is strictly ascending/strictly descending?

Algorithm Largest1 (x_i, n) 1 Let $max = x_1$ C_1 2 For i = 2 to n..... C_2 3 Do if $x_i > max$ C_3 4 Then $max = x_i$ C_4 5 Print max...... C_5

```
Algorithm Largest2 (x_i, n)

1 For i = 1 to (n - 1) ......C_1

2 Do if x_i > x_{i+1} .....C_2

3 Then swap < x_i, x_{i+1} > ... C_3

4 Print x_n ......C_4
```

- Problem: To determine the largest of n nos.
 - Running time if the input is strictly ascending/strictly descending?

Algorithm Largest $1(x_i, n)$

2 For
$$i = 2$$
 to n C_2

4 Then
$$max = x_i.....C_4$$

5 Print
$$max$$
..... C_5

Algorithm Largest2 (x_i, n)

1 For
$$i = 1$$
 to $(n - 1)$ C_1

2 Do if
$$x_i > x_{i+1}$$
..... C_2

3 Then swap
$$< x_i, x_{i+1} > ... C_3$$

4 Print
$$x_n$$
...... C_4

Total steps = Total time =
$$C_1 + nC_2 + (n-1)C_3 + (n-1)C_4 + C_5$$

Total steps = Total time =
$$nC_1$$
 + $(n-1)C_2 + (n-1)C_3 + C_4$

Problem #3

Consider the code snippet

```
For i=1 to n
For j=1 to n

Print "DAA 2019"
```

What is the cost of execution?

For
$$i=1$$
 to n \mathcal{C}_1

For $j=1$ to n \mathcal{C}_2

Print " DAA 2019"..... \mathcal{C}_3

Total time =
$$C_1(n+1) + C_2n(n+1) + C_3n^2$$

For
$$i=1$$
 to n \mathcal{C}_1
For $j=1$ to n \mathcal{C}_2

Print " DAA 2019".... \mathcal{C}_3

Total time =
$$C_1(n+1) + C_2n(n+1) + C_3n^2$$

= $C_1(n+1) + C_2(n^2+n) + C_3n^2$

Problem #4

Consider the code snippet

```
For i=1 to n
For j=1 to i
Print "DAA 2019"
```

What is the cost of execution?

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

For
$$i=1$$
 to n C_1

For $j=1$ to i C_2

Print " DAA 2019"..... C_3

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

= $C_1(n+1) + C_2\left(\frac{n^2+3n}{2}\right) + C_3\left(\frac{n^2+n}{2}\right)$

Problem #5

Consider the code snippet

```
For i = 1 to n

For j = i to n

Print "DAA 2019"
```

What is the cost of execution?

For
$$i=1$$
 to n \mathcal{C}_1

For $j=i$ to n \mathcal{C}_2

Print " DAA 2019"..... \mathcal{C}_3

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

= $C_1(n+1) + C_2\left(\frac{n^2+3n}{2}\right) + C_3\left(\frac{n^2+n}{2}\right)$

Problem #6

• Problem: Insertion sort

• Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

• Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

How do we analyze the time complexity?

• Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- How do we analyze the time complexity?
- We need to analyze how many times the while loop is executed?

Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- How do we analyze the time complexity?
- We need to analyze how many times the while loop is executed?
 - Assume while loop is executed t_i times...

Then the running time is given by the expression

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

Then the running time is given by the expression

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} t_j + C_5 \sum_{j=2}^{n} (t_j - 1) + C_6 \sum_{j=2}^{n} (t_j - 1) + C_7 (n-1)$$

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

When does the **best case** occur?

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the **best case** occur?
 - $t_j = 1$ in every case
 - i.e. when the array is sorted

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the **best case** occur?
 - $t_i = 1$ in every case
 - i.e. when the array is sorted
- Then the best case running time is
- $C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} 1 + C_5 \sum_{j=2}^{n} 0 + C_6 \sum_{j=2}^{n} 0 + C_7 (n-1)$

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the **best case** occur?
 - $t_i = 1$ in every case
 - i.e. when the array is sorted
- Then the best case running time is

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} 1 + C_5 \sum_{j=2}^{n} 0 + C_6 \sum_{j=2}^{n} 0 + C_7 (n-1)$$

$$= C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1) + C_7 (n-1)$$

When does the worst case occur?

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$.

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

Analyzing Problem #6

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$. Therefore the expression is
 - $C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^n j + C_5 \sum_{j=2}^n (j-1) + C_6 \sum_{j=2}^n (j-1) + C_7 (n-1)$

```
1 For j = 2 to n

2 Do key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 Do A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

Analyzing Problem #6

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$. Therefore the expression is

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} j + C_5 \sum_{j=2}^{n} (j-1) + C_6 \sum_{j=2}^{n} (j-1) + C_7 (n-1)$$

$$= C_1 n + C_2(n-1) + C_3(n-1) + C_4\left(\frac{n(n+1)}{2} - 1\right) + C_5\left(\frac{n(n-1)}{2}\right) + C_6\left(\frac{n(n-1)}{2}\right) + C_6\left(\frac{n(n-1)}{2}\right)$$

$$+ C_7(n-1)$$

Analyzing Problem #6

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$. Therefore the expression is

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} j + C_5 \sum_{j=2}^{n} (j-1) + C_6 \sum_{j=2}^{n} (j-1) + C_7 (n-1)$$

$$= C_1 n + C_2(n-1) + C_3(n-1) + C_4\left(\frac{n(n+1)}{2} - 1\right) + C_5\left(\frac{n(n-1)}{2}\right) + C_6\left(\frac{n(n-1)}{2}\right) + C_6\left(\frac{n(n-1)}{2}\right)$$

$$+ C_7(n-1)$$

$$= C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right)$$

$$+ C_7 (n-1)$$

Consider

• An algorithm A which for a problem, does 2n basic operation & $2C_1n$ total operations, while some other algorithm B does 4.5n basic operations & $4.5C_2n$ total operations.

Consider

- An algorithm A which for a problem, does 2n basic operation & $2C_1n$ total operations, while some other algorithm B does 4.5n basic operations & $4.5C_2n$ total operations.
 - Consider constant of proportionality representing overhead operations.

Consider

- An algorithm A which for a problem, does 2n basic operation & $2C_1n$ total operations, while some other algorithm B does 4.5n basic operations & $4.5C_2n$ total operations.
 - Consider constant of proportionality representing overhead operations.
- Which algorithm of the two do you think is better?

n	2 <i>n</i>	4.5 <i>n</i>	
5	10	22	
10	20	45	
100	200	450	
1000	2000	4500	
10000	20000	45000	
100000	$2.0*10^{5}$	$4.5 * 10^5$	
$1000000 = 10^6$	$2.0*10^{6}$	4.5 * 10 ⁶	

- Consider
 - Another such example with algo1 taking $\frac{n^3}{2}$ multiplicative steps while algo2 taking $5n^2$ steps.

- Consider
 - Another such example with algo1 taking $\frac{n^3}{2}$ multiplicative steps while algo2 taking $5n^2$ steps.
 - Consider constant of proportionality representing overhead operations.
 - Which algorithm of the two do you think is better?

n	2 <i>n</i>	4.5n	$n^3/2$	$5n^2$
5	10	22	62	125
10	20	45	500	500
100	200	450	$5*10^5$	$5*10^4$
1000	2000	4500	5 * 10 ⁸	5 * 10 ⁶
10000	20000	45000	$5*10^{11}$	5 * 10 ⁸
100000	$2.0*10^{5}$	$4.5*10^5$	$5*10^{14}$	$5*10^{10}$
$ \begin{array}{r} 1000000 \\ = 10^6 \end{array} $	2.0 * 10 ⁶	4.5 * 10 ⁶	5 * 10 ¹⁷	5 * 10 ¹²

• A relook at costs of insertion sort with $oldsymbol{\mathcal{C}}_{oldsymbol{i}}'oldsymbol{s}=\mathbf{1}$

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_7(n-1)$$

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_7(n-1)$$

= 5n - 4

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_7(n-1)$$

= 5n - 4

Worst Case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_7 (n-1)$$

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_7(n-1)$$

= 5n - 4

Worst Case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_7 (n-1)$$

$$= \frac{1}{2} (3n^2 + 7n - 8)$$

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_7(n-1)$$

= 5n - 4

Worst Case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_7 (n-1)$$

$$= \frac{1}{2} (3n^2 + 7n - 8)$$

• Which term dominates the overall result in the above expression, especially at large values of n?

• Which term dominates the overall result in the above expression, especially at large values of n?

n	$T(n) = 3n^2 + 7n - 8$	$T(n)=3n^2$	
10	362	300	
100	30692	30000	
1000	$3.006992*10^{6}$	$3.00*10^{6}$	
10000	$3.0000699992*10^{10}$	$3.00*10^{10}$	

 Does constant of proportionality matter when n gets very large?

- Does constant of proportionality matter when n gets very large?
- Then, what is asymptotic growth rate, asymptotic order or order of functions?

- Does constant of proportionality matter when n gets very large?
- Then, what is asymptotic growth rate, asymptotic order or order of functions?
- Is it reasonable to ignore smaller values and constants?

Hence, we shall now also drop the all the terms

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm
- Example

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm
- Example
- Insertion sort Best case complexity ...

$$T(n)=5n-4$$

So, we will say that complexity is of the order of n

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm
- Example
- Insertion sort Best case complexity ...

$$T(n)=5n-4$$

- So, we will say that complexity is of the order of n
- Insertion sort Best case complexity ...

$$T(n) = \frac{1}{2}(3n^2 + 7n - 8)$$

• So, we will say that **complexity is of the order of** n^2

 So, now we have assumed/abstracted at three different levels viz.

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.
 - Level 3 ignore all the terms except for the one with the highest degree in the expression of time complexity

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.
 - Level 3 ignore all the terms except for the one with the highest degree in the expression of time complexity
- Such analysis is based on the asymptotic growth rate,

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.
 - Level 3 ignore all the terms except for the one with the highest degree in the expression of time complexity
- Such analysis is based on the asymptotic growth rate,
 - Asymptotic order or order or functions and called asymptotic analysis

Primary Observations ...

- There can be at least three different ways of analyzing the algorithms
 - Empirical analysis
 - Mathematical analysis
 - Asymptotic analysis

Typical functions

- We are interested in order of magnitude
- t(n) may proportional to $\log n, ..., n^2, n^3, ..., 2^n$
- Logarithmic, polynomial, exponential ...

Basic Asymptotic Efficiency classes

1	Constant		
$\log n$	Logarithmic		
n	Linear		
$n \log n$	$n \log n$		
n^2	Quadratic		
n^3	Cubic		
2^n	Exponential		
n!	Factorial		

Typical functions t(n)

Input	log n	n	n log n	n^2	n^3	2^n	n!
10	3.3	10	33	100	1000	1000	10 ⁶
100	6.6	100	66	10^{4}	10^{6}	10^{30}	10^{157}
1000	10	1000	10 ⁴	10^{6}	10 ⁹		
10 ⁴	13	10^{4}	10^{5}	10^{8}	10^{12}		
10 ⁵	17	10 ⁵	10^{6}	10^{10}			
10 ⁶	20	10^{6}	10 ⁷				
10 ⁷	23	10 ⁷	108				
10 ⁸	27	108	10 ⁹				
10 ⁹	30	10 ⁹	10 ¹⁰				
10^{10}	33	10^{10}					

Typical functions t(n)

An interesting "seconds" conversion

10^2	1.7 min
10 ⁴	2.8 hours
10^5	1.1 days
10 ⁶	1.6 weeks
10 ⁷	3.8 months
10 ⁸	3.1 years
10 ⁹	3.1 decades
10 ¹⁰	3.1 centuries

Definition

• For a given function g(n), we say that $Oig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq f(n)\leq cg(n)$ for all $n\geq n_0\}$

Definition

- For a given function g(n), we say that $Oig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq f(n)\leq cg(n)$ for all $n\geq n_0\}$
- Defines an upper bound for a function within a constant factor.

Definition

• For a given function g(n), we say that $Oig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ $c ext{ and } n_0 ext{ such that } 0 \leq f(n) \leq cg(n)$ for all $n \geq n_0\}$

- Defines an upper bound for a function within a constant factor.
- $f(n) = O(g(n)) \Rightarrow$
 - f(n) is dominated in the growth by g(n)
 - f(n) is of the order at most g(n)
 - g(n) grows at least as fast as f(n)

- Definition
 - For a given function g(n), we say that $Oig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq f(n)\leq cg(n)$ for all $n\geq n_0\}$
- Defines an upper bound for a function within a constant factor.
- $f(n) = O(g(n)) \Rightarrow$
 - f(n) is dominated in the growth by g(n)
 - f(n) is of the order at most g(n)
 - g(n) grows at least as fast as f(n)
- Can f(n) grow faster than g(n)?
- Can g(n) grow faster than f(n)?

The Big-oh notation

Figure: Big-oh notation: $t(n) \in O(g(n))$

The Big-O notation: Illustrations

Function	Notation in O
f(n) = 5n + 8	f(n) = O(?)
$f(n) = n^2 + 3n - 8$	f(n) = O(?)
$f(n) = 12n^2 - 11$	f(n) = O(?)
$f(n) = 5 * 2^n + n^2$	f(n) = O(?)
f(n) = 3n + 8	$f(n) = O(n^2) ?$
f(n) = 5n + 8	f(n) = O(1) ?

The Big-O notation: Illustrations

- The big-O notation
 - Allows us to keep track of the leading team while ignoring smaller terms...
 - Allows us to make concise statements that give approximations to the quantities to analyze.
 - If f(n) = O(g(n))
 - g(n) is the upper bound, but do we specify **how tight this upper bound** is?
- Consider that $f(n) = O(n) \& g(n) = O(n^2)$
 - Is f(n) = O(g(n)) saying the same as reverse i.e. g(n) = O(f(n))?
- The symbol "=" is not proper
 - Truly it is ϵ which should be used i.e. $f(n)\epsilon O(g(n))$

Definition

• For a given function g(n), we say that $\Omegaig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq cg(n)\leq f(n)$ for all $n\geq n_0\}$

Definition

• For a given function g(n), we say that $\Omegaig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ $c ext{ and } n_0 ext{ such that } 0 \leq cg(n) \leq f(n)$ for all $n \geq n_0\}$

Defines an lower bound for a function within a constant factor.

The Big-omega notation

Figure: Big-omega notation: $t(n) \in \Omega(g(n))$

The Big-omega notation: Illustrations

Function	Notation in Ω
f(n) = 3n + 8	$f(n) = \Omega(?)$
$f(n) = n^2 + 3n - 8$	$f(n) = \Omega(?)$
$f(n) = 12n^2 - 11$	$f(n) = \Omega(?)$
$f(n) = 6 * 2^n + n^2$	$f(n) = \Omega(?)$
f(n) = 3n + 8	$f(n) = \Omega(n^2) ?$
f(n) = 5n + 8	$f(n) = \Omega(1) ?$

Definition

• For a given function g(n), we say that $hetaig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$ for all $n\geq n_0\}$

Definition

- For a given function g(n), we say that $hetaig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$ for all $n\geq n_0\}$
- $f(n) = \theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Definition

- For a given function g(n), we say that $hetaig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$ for all $n\geq n_0\}$
- $f(n) = \theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- Neither the big-O notation nor the big- Ω notation describe the asymptotically tight bounds.

Definition

• For a given function g(n), we say that $hetaig(g(n)ig)=\{f(n)| ext{ if there exists positive constants}$ c and n_0 such that $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$ for all $n\geq n_0\}$

- $f(n) = \theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- Neither the big-O notation nor the big- Ω notation describe the asymptotically tight bounds.
- θ -notation to express tighter bounds

The Big-theta notation

Figure: Big-theta notation: $t(n) \in \theta(g(n))$

The Big-theta notation: Illustrations

Function	Notation in Ω
f(n) = 3n + 8	$f(n) = \theta(?)$
$f(n) = 10n^2 + 3n - 8$	$f(n) = \theta(?)$
$f(n) = 12n^2 - 11$	$f(n) = \theta(?)$
$f(n) = 6 * 2^n + n^2$	$f(n) = \theta(2^n)?$
$f(n) = 6 * 2^n + n^2$	$f(n) = \theta(n^2)?$
f(n) = 3n + 8	$f(n) = \theta(n^2) ?$
f(n) = 5n + 8	$f(n) = \theta(1) ?$

Calculating complexity

- Iterative programs
- Recursive programs

Problem: Maximum value in an array

- Problem: Maximum value in an array
- Solution:

```
Function MaxElement(A, n)
```

```
1 \quad maxval = A[1]
```

2 For
$$i = 2$$
 to n

3 If
$$A[i] > maxval$$

$$4 maxval = A[i]$$

5 Return *maxval*

Problem: Check if all element in an array are distinct

- Problem: Check if all element in an array are distinct
- Solution:

```
Function NoDuplicates(A, n)
```

```
For i = 1 to n

For j = i + 1 to n

If A[i] == A[j]

Return False

Return True
```

Problem: Matrix multiplication

- Problem: Matrix multiplication
- Solution:

Function MatrixMultiply(A, B)

1. For
$$i = 1$$
 to n

2. For
$$j = 1$$
 to n

$$3. C[i][j] = 0$$

4. For
$$k = 1$$
 to n

5.
$$C[i][j] = c[i][j] + A[i][k] \times B[k][j]$$

6.Return C

Problem: Towers of Hanoi

- Problem: Towers of Hanoi
 - Three pegs, A, B and C
 - Move n disks from A to B
 - Never put a larger disk above a smaller one
 - C is transit peg

Recursive solution

Recursive solution

- Move n-1 disks from A to C, using B as transit peg
- Move largest disk from A to B
- Move n-1 disks from C to B, using A as transit peg

- Recursive solution
 - Move n-1 disks from A to C, using B as transit peg
 - Move largest disk from A to B
 - Move n-1 disks from C to B, using A as transit peg
- Solve recurrence by repeated substitution
 - M(n): Number of moves to transfer n disks

Recursive solution

- Move n-1 disks from A to C, using B as transit peg
- Move largest disk from A to B
- Move n-1 disks from C to B, using A as transit peg

- M(n): Number of moves to transfer n disks
- M(n) = M(n-1) + 1 + M(n-1)

Recursive solution

- Move n-1 disks from A to C, using B as transit peg
- Move largest disk from A to B
- Move n-1 disks from C to B, using A as transit peg

- M(n): Number of moves to transfer n disks
- M(n) = M(n-1) + 1 + M(n-1)
- M(1) = 1

Recursive solution

- Move n-1 disks from A to C, using B as transit peg
- Move largest disk from A to B
- Move n-1 disks from C to B, using A as transit peg

- M(n): Number of moves to transfer n disks
- M(n) = M(n-1) + 1 + M(n-1)
- M(1) = 1
- Answer?

Recursive solution

- Move n-1 disks from A to C, using B as transit peg
- Move largest disk from A to B
- Move n-1 disks from C to B, using A as transit peg

- M(n): Number of moves to transfer n disks
- M(n) = M(n-1) + 1 + M(n-1)
- M(1) = 1
- Answer $\Rightarrow M(n) = 2^n 1$