

Le modèle booléen

Plan

- > Définition du modèle booléen
- Les concepts du modèle booléen.
- > Principe d'Appariement du modèle booléen.
- > Avantages du modèle booléen
- > Limites du modèle booléen

Définition de modèle booléen

- Le modèle booléen ou logique, est historiquement le premier modèle de RI. Le modèle booléen de base (strict) repose sur la théorie des ensembles et la logique des propositions.
- ➤ Un document est représenté par une liste de termes (termes d'indexation).
- ➤ Une requête est représentée sous forme d'une équation (ou expression) logique (ou booléenne).
- Les termes d'indexation au sein des documents et des requêtes sont reliés par des **opérateurs logiques** (connecteurs logiques)[1] :

OU (\vee), ET (\wedge) et NON (\neg).

Définition du modèle booléen

- Le modèle booléen est [3] :
 - Un modèle exact match le plus commun,
 - Un document est un ensemble de termes,
 - Une requête est une expression logique formée de:
 - Termes
 - Opérateurs booléens ET / OU / NON (SAUF)

- Le modèle de recherche booléen est défini par un quadruplet (T, Q, D, F) Où:
 - \blacksquare T: Ensemble des termes d'indexation $T=\{t1,t2,...tn\}$
 - D : Ensemble des documents de la collection: **D**={**d1,d2,....dm**), ex: d1(t1,t2,t5);
 - Q : Ensemble de requêtes Q= $\{q1,q2,...,qk\}$ ex: $q = t1 \land (t2 \lor \neg t3);$
 - F: Fonction de pertinence définie par:

F: D x Q
$$\longrightarrow$$
 {0,1}

$$F(d,t) = \begin{cases} 1 & \text{si } t \in d \\ 0 & \text{sinon} \end{cases}$$

- ➤ Modèle de documents [1]
 - Pour le modèle booléen de base, un document est représenté par ensemble de termes indépendants noté : d(t1,t2,...,tn).
 - Exemple : soient 3 documents:

d1(t1,t2,t5); d2(t1,t3,t5,t6); d3(t1,t2,t3,t4,t5)

- ➤ Modèle de requête [1]
 - Pour l'utilisateur, une requête est un ensemble de termes reliés avec des opérateurs booléens : AND (\land) , OR (\lor) , NOT (\neg)
 - L'ensemble de requêtes est noté: $Q = \{q1, q2, \dots, qk\}$ ou k représente le nombre de requêtes.
 - Exemple : soit la requête q:

$$q = t1 \wedge (t2 \vee \neg t3)$$

- ➤ Une requête est le plus souvent formulée dans un langage de requête spécifique au système. Plusieurs types de langage de requêtes peuvent être utilisés :
 - Simples
 - Ensemble de mots ou sac de termes: Bag of words
 - Une phrase ou un paragraphe en langage naturel;
 - Complexes
 - Expressions booléennes ;
 - Expressions régulières ;
 - Langage structuré précisant la valeur d'attributs tels que les noms d'auteurs, les mots du titre etc.;
 - Expression de relations de proximités pondérées entre les mots.

- ▶ Une requête est une expression booléenne qui peut se modéliser avec un arbre où les feuilles sont des termes (pondérés ou non), et les nœuds internes sont des opérateurs AND (Λ), OR(V), NOT (\neg)[5].
- ➤ Par Exemple : la requête q=(A et B) ou C est représentée par l'arbre de la figure suivante:

Arbre de la requête (A et B) ou C [4]

- > Avec le modèle Booléen, le module de recherche mis en œuvre consiste à effectuer des opérations sur l'ensemble de documents afin de réaliser un appariement exact avec l'équation de la requête.
- L'appariement exact est basé sur la présence ou l'absence des termes de la requête dans les documents.
- La décision binaire sur laquelle est basée la sélection d'un document ne permet pas d'ordonner les documents renvoyés à l'utilisateur selon un degré de pertinence.
- La fonction de correspondance est basée sur l'implication logique en logique des propositions (logique d'ordre 0)[5]. 11

- ➤ Appariement Exact est basé sur la présence ou l'absence des termes de la requête dans les documents.
- À cette étape d'Appariement, le modèle booléen permet de calculer la fonction de pertinence appelée également score de similarité ou Relevance Status Value (RSV) pour un couple (document, requête). Cette mesure est notée RSV (di, qj) et retourne le score de similarité du document di par rapport à la requête qj[5].

La correspondance RSV(d, q) entre une requête et un document est déterminée de la façon suivante:

$$R(d, t_i) = 1 \text{ si } t_i \in d; 0 \text{ sinon.}$$

$$R(d, q_1 \land q_2) = 1 \text{ si } R(d, q_1) = 1 \text{ et } R(d, q_2) = 1; 0 \text{ sinon.}$$

$$R(d, q_1 \lor q_2) = 1 \text{ si } R(d, q_1) = 1 \text{ ou } R(d, q_2) = 1; 0 \text{ sinon.}$$

$$R(d, \neg q_1) = 1 \text{ si } R(d, q_1) = 0; 0 \text{ sinon.}$$

- ➤ Le score de similarité RSV(d,q)
 - La mesure RSV(d,q) est une fonction de correspondance (de similarité, de similatité) entre un document et une requête.
 - Dans le modèle booléen de base, tous les documents qui satisfont une requête sont retrouvés (généralement classés dans un ordre chronologique).
 - Ils ne sont pas classés selon leur pertinence. Cela est dû au fait qu'un document satisfait une requête ou ne la satisfait pas (1 ou 0).

- Le modèle booléen peut être utilisé efficacement sur des collections de documents spécialisés dans le cas où les utilisateurs ont une bonne connaissance du vocabulaire associé à ces collections.
- Pas pour un large public.

Avantages du modèle booléen

- > Simple à mettre en œuvre
- > Transparent pour l'utilisateur dans la mesure où les documents sont retournés selon un appariement exact avec le besoin en information.
- La clarté conceptuelle des systèmes booléens[2].

Limites du modèle booléen

- Tous les termes dans un document ou dans une requête étant pondérés de la même façon simple (0 ou 1) c à d, indexation binaire,
- La sélection d'un document est basée sur une décision binaire,
- > Pas d'ordre pour les documents sélectionnés,
- La formulation ou écriture d'une requête booléenne est difficile pas toujours évidente pour beaucoup l'utilisateurs (simple utilisateur),
- > Problème de collections volumineuses : le nombre de documents retournés peut être considérable,
- Le modèle ne permet pas de retourner un document s'il ne contient qu'une partie des mots de la requête (si le connecteur ET est utilisé)[2,3].

Références bibliographiques

- [1] https://www.irit.fr/~Mohand.Boughanem/slides/RI/chap4-mod-bool-vect.pdf
- [2] http://univ.encyeducation.com/uploads/1/3/1/0/13102001/mi3an10-recherche_information.pptx
- [3] https://lipn.univ-paris13.fr/~rozenknop/Cours/MICR_REI/Seance6/modeles-RI-1.pdf
- [4]https://tel.archivesouvertes.fr/file/index/docid/785143/filename/2006_these_A_mercier_417I.pd
- [5] https://www.youtube.com/watch?v=BDi3drDPibY