# Właściwości notacji $O(\cdot)$ (tzw. rachunek $O(\cdot)$ )

jeśli F(N) jest funkcją złożoności algorytmu, to spełnienie warunku

$$\lim_{N\to\infty}\frac{F(N)}{g(N)}=C<\infty$$

jest zapisywane F(N) = O(g(N))

i odczytywane " złożoność algorytmu jest rzędu nie wyższego niż g(N)" lub krócej "złożoność algorytmu jest  $\mathrm{O}(g(N))$ "

 $\succ$  równość w zapisie F(N) = O(g(N)) powinna być rozumiana w ten sposób, że funkcja F(N) jest jedną z funkcji, które spełniają powyższy warunek lub precyzyjniej, że funkcja F(N) należy do zbioru wszystkich funkcji spełniających powyższy warunek

 $\langle \Box \Box \rangle$ 

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.



O(g(N)) + O(h(N)) = O(g(N) + h(N)) O(g(N)) O(g(N)) O(g(N) + h(N))

 $\succ$  Jeśli spełniony jest warunek  $\lim_{N \to \infty} \frac{g(N)}{h(N)} = 0$  , czyli  $g(N) \prec h(N)$ ,

to 
$$O(g(N)) + O(h(N)) = O(g(N) + h(N)) = O(h(N))$$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.







## Złożoność czasowa przykładowych algorytmów

Algorytm sortowania bąbelkowego w pierwotnej wersji (iteracja zagnieżdżona w iteracji)

- 1. wykonaj co następuje N 1 razy:
  - 1.1. ... ,
  - 1.2. wykonaj co następuje N-1 razy:
    - 1.2.1. porównaj wskazany element listy z następnym

9

11

 $\langle \Box \Box \rangle$ 

7

- 1.2.2. ... .
- 1.2.3. ... .

Liczba porównań par elementów (powtórzeń kroku 1.2.1.)  $F(N) = (N-1)\cdot(N-1) = N^2 - 2N + 1$ 

 $1 \prec 2N \prec N^2$ , czyli złożoność  $F(N) = \mathbf{O}(N^2)$ 

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Algorytm sortowania bąbelkowego w poprawionej wersji (zmniejszająca się liczba powtórzeń w iteracji wewnętrznej)

- 1. wykonaj co następuje N-1 razy:

  - 1.2. wykonaj co następuje N K razy:
    - 1.2.1. porównaj wskazany element listy z następnym
    - 1.2.2. ... .
    - 1.2.3. ... .

Liczba porównań par elementów (powtórzeń kroku 1.2.1.)

$$F(N) = (N-1) + (N-2) + (N-3) + ... + 2 + 1 = 0,5 \cdot N^2 - 0,5 \cdot N$$

 $N \prec N^2$ , czyli złożoność  $F(N) = \mathbf{O}(N^2)$ 

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

 $\langle \Box \Box \rangle$ 

**Algorytm sumowania** *N* **liczb** (pojedyncza iteracja)

Liczba dodawań dwóch wartości  $F(N) = \mathbf{O}(N)$ 

#### Algorytm "brute force" znajdowania największej przekątnej w wielokącie wypukłym

(przegląd tablicy dwuwymiarowej)

Liczba porównań par wartości w celu znalezienia odcinka o maksymalnej długości

$$F(N) = (N-1) + (N-2) + (N-3) + ... + 2 + 1 = 0,5 \cdot N^2 - 0,5 \cdot N$$
czyli złożoność  $F(N) = \mathbf{O}(N^2)$ 

Najlepszy algorytm znajdowania największej przekątnej w wielokącie wypukłym (obracanie pary prostych równoległych wokół wielokąta – pojedyncza iteracja)

Liczba możliwych obrotów  $F(N) = \mathbf{O}(N)$ 

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2006 r.

## Rekurencyjny algorytm dla problemu wież Hanoi

Procedura przenieś (N) krążków ...

- 1. jeśli N = 1, ...
- 2. w przeciwnym razie (tj. jeśli N > 1) wykonaj co następuje:
  - 2.1. Wywołaj procedurę **przenieś** (N-1) **krążków** ...
  - 2.2. Wypisz ruch " $X \rightarrow Y$ ",
  - 2.1. Wywołaj procedurę **przenieś** (N 1) **krążków** ...

Oznaczmy nieznaną funkcję złożoności przez T(N) i ułóżmy równanie, które T(N) musi spełniać (tzw. **równanie rekurencyjne**):

$$T(1) = 1$$

$$T(N) = 2 \cdot T(N-1) + 1$$

T(N) – liczba przeniesień pojedynczego krążka w zadaniu z N krążkami

Równanie spełnia funkcja  $F(N) = 2^N - 1 = \mathbf{O}(2^N)$ 

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

10

## Algorytm sortowania drzewiastego

(dwa etapy: budowa drzewa BST i przegląd drzewa)

Etap budowy drzewa BST ma pesymistyczną złożoność  $\mathbf{O}(N^2)$ :



Liczba porównań par elementów

$$F(N) = 1 + 2 + \dots + (N-2) + (N-1) = 0,5 \cdot N^2 - 0,5 \cdot N = \mathbf{O}(N^2)$$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

Etap lewostronnego obejścia drzewa BST ma złożoność **O**(*N*)

Zatem cały algorytm ma pesymistyczną złożoność  $O(N^2) + O(N) = O(N^2)$ 

Algorytm sortowania drzewiastego z samoorganizacją drzewa (poprawiony etap budowy drzewa BST)



Etap budowy drzewa BST ma pesymistyczna złożoność **O**(*N*·**lg***N*)

Zatem cały algorytm ma złożoność  $O(N \cdot \lg N) + O(N) = O(N \cdot \lg N)$ 

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

#### Porównanie rzędów złożoności:

| Długość listy | Sortowanie bąbelkowe      | Sort. drzewiaste |
|---------------|---------------------------|------------------|
| N             | N <sup>2</sup>            | $N \cdot \lg N$  |
| 10            | 100                       | 33               |
| 100           | 10 000                    | 664              |
| 1 000         | 1 000 000                 | 9 965            |
| 1 000 000     | 1 000 000 000 000         | 19 931 568       |
| 1 000 000 000 | 1 000 000 000 000 000 000 | 29 897 352 853   |

 $\langle \Box \Box \rangle$ 

15

13

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

# Algorytm sortowania przez scalanie (rekurencja)

#### Procedura sortuj (L)

- jeśli lista L zawiera tylko jeden element, to jest posortowana,
- 2. w przeciwnym przypadku wykonaj co następuje:
  - 2.1. podziel listę L na dwie połowy  $L_1$  i  $L_2$ ,
  - 2.2. wywołaj **sortuj**  $(L_1)$ ,
  - 2.3. wywołaj **sortuj**  $(L_2)$ ,
  - 2.4. scal posortowane listy  $L_1$  i  $L_2$  w jedną posortowaną listę .
- 3. wróć do poziomu wywołania

Ułóżmy równanie rekurencyjne dla nieznanej funkcji złożoności:

T(N) – liczba porównań par elementów

 $T(N) = 2 \cdot T(N/2) + N$ 

← w najgorszym przypadku

Równanie spełnia funkcja  $F(N) = N \cdot \lg N = \mathbf{O}(N \cdot \lg N)$ Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

 $\langle \Box \Box \rangle$ 14

# Średnia złożoność v. pesymistyczna złożoność

Analiza średniego przypadku v. analiza najgorszego przypadku

W analizie średniego przypadku istotną rolę odgrywają założenia o rozkładzie prawdopodobieństwa w zbiorze dopuszczalnych danych wejściowych.

| Algorytm                                          | Śr. złożoność      | Pes. złożoność     |
|---------------------------------------------------|--------------------|--------------------|
| sumowanie n liczb                                 | <b>O</b> (N)       | <b>O</b> (N)       |
| sortowanie bąbelkowe                              | O(N <sup>2</sup> ) | O(N <sup>2</sup> ) |
| sortowanie drzewiaste z<br>samoorganizacją drzewa | O(N·lgN)           | O(N·lgN)           |
| sortowanie przez scalanie                         | $O(N \cdot \lg N)$ | O(N·lgN)           |
| Quicksort                                         | $O(N \cdot lgN)$   | O(N <sup>2</sup> ) |

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2006 r.

- Sortowanie przez scalanie jest jednym z najlepszych algorytmów sortowania pod względem pesymistycznej złożoności, choć ma nie najlepszą złożoność pamięciową O(N)
- ➤ Średnia złożoności algorytmu Quicksort jest najlepsza ze wszystkich algorytmów sortowania i wynosi  $1,4\cdot N\cdot \lg N$ i dlatego jest często stosowany w praktyce
- > Algorytm Quicksort oparty jest na metodzie "dziel i zwyciężaj" i można go implementować w kilku wariantach różniących się sposobami wyboru miejsca podziału listy i głębokością rekurencji http://en.wikipedia.org/wiki/Quicksort

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2006 r.

16

Przykład analizy złożoności algorytmu

Problem algorytmiczny wyznaczania powłoki wypukłej dla zadanego zbioru N punktów na płaszczyźnie:



Algorytm "brute force" ma złożoność  $\mathbf{O}(N^3)$  :

dla każdego z N punktów trzeba dobierać kolejno po jednym z pozostałych N-1 punktów i sprawdzać czy dla prostej, która przechodzi przez taką parę reszta punktów (N-2) leży tylko po jednej jej stronie;  $F(N) = N \cdot (N-1) \cdot (N-2)$ 

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

17 

Algorytm "przyrostowy" o niższej złożoności (?)

- 1. znajdź punkt P<sub>1</sub> o najmniejszej współrzędnej Y,
- posortuj pozostałe punkty rosnąco według kątów tworzonych przez odcinki  $\overline{P_iP_I}$  z linią poziomą przechodzącą przez  $P_1$  - powstanie lista  $P_2, \dots, P_N$
- 3. dołącz do powłoki punkty  $P_1$  i  $P_2$ ,
- 4. dla J od 3 do N wykonaj co następuje:
  - 4.1. dołącz do powłoki punkt  $P_J$ ,
  - 4.2. cofając się wstecz po odcinkach aktualnej powłoki, usuwaj z niej te punkty  $P_K$ , dla których prosta przechodząca przez  $P_K$  i  $P_{K-I}$  przecina odcinek  $\overline{P_1P_J}$ , aż do napotkania pierwszego punktu nie dającego się usunąć.

sław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2006 r.

18









