Calculus

Notes on 2023/06/9

shaozewxy

June 2023

1 Five big theorems (Ch 1.6)

Algebra is all about eqaulity, calculus is all about inequality.

1.1 Convergent subsequence

The first theorem is a sequence in a compact set has a convergent subsequence.

1.1.1 Basic concepts

 $X \subset \mathbb{R}^n$ is **bounded** if it is contained in a ball in \mathbb{R}^n centered at origin, i.e.

$$X \subset B_R(0)$$

 $C \subset \mathbb{R}^n$ is **compact** if it is closed and bounded.

1.1.2 Compact set contains convergent subsequences

 $C \subset \mathbb{R}^n$ a compact set contains a sequence $i \mapsto x_i$, then x_i contains a subsequence $j \mapsto (x_i)_j$ whose limit is in C.

Basic idea: Because the regoin is bouned, can infinitely divide into smaller regions where one region contains infinitely many points from x_i . Find an element $(x_i)_j$ from each such region to create a subsequence, it will be convergent.

Proof:

Now we need to show that the $(x_i)_j$ created above is convergent in C:

Divide each dimension by 10, so that each element in the same region will have the decimal places and so on.

Then we construct x with the decimal place of each picked region, it is clear that $(x_i)_j \to x$.

1.1.3 Difficulty in finding actual box

Define $x_m = \sin 10^m$ to be contained in [-1,1], a compact space. Which box contains infinitely many points from x_m ?

Dividing [-1,1] into [-1,0),[0,1),1, either [-1,0) or [0,1) could work. Say it is [0,1).

This means that $10^m = k \cdot 2\pi$, where the decimal place of k < 5 (so that $\sin k \cdot 2\pi > 0$).

This can be turned into $k = \frac{1}{2\pi} \cdot 10^m$, i.e. we are asking if there are infinitely many 0, 1, 2, 3, 4 in $\frac{1}{2\pi}$.

The last conclusion is very hard to prove, therefore picking an actual box is very difficult.

1.2 Bounded functions in compact set

To put formerly, given $C \subset \mathbb{R}^n$, and $f: C \to \mathbb{R}$ continuous, then $\exists a, b \in C, \forall x \in C, f(x) \geq f(b), f(x) \leq f(a)$.

Basic idea: If f is unbouned, then can create an ever increasing sequence. However then some subsequence would have to be convergent to a limit, i.e. all large indices correspond to a small ball around this limit, meaning f is not continuous around this limit.

Proof:

Suppose f is unbounded, then we can create a sequence $i \mapsto x_i$ where $f(x_i) > i$, i.e. ever increasing sequence.

Since $x_i \subset C$ a compact set, we know that $\exists j \to (x_i)_j$ such that $(x_i)_j \to b \in C$.

Since f continous at b, we know that $\forall \epsilon > 0, \exists \delta > 0$ such that $|x - b| < \delta \rightarrow |f(x) - f(b)| < \epsilon$.

Also because $(x_i)_j \to b$, we know for such δ , $\exists N$ such that $\forall j > N, |(x_i)_j - b| < \delta$.

This means that $\forall j > N, |f((x_i)_j) - f(b)| < \epsilon$, which is a contradiction.

Now we have shown that f is bounded. Then we NTS that f achieves its maximum.

Denote sup f = M, WTS $\exists a \in C, f(a) = M$.

By the definition of supremum, $\exists i \mapsto x_i$ such that $f(x_i) \to M$.

Then simply find a convergent subsequence $j \mapsto (x_i)_j$ that converges to $(x_i)_j \to a \in C$, then we know that $f((x_i)_j) \to f(a) = M$.

1.3 Uniform continuity in compact set

Given $X \subset \mathbb{R}^n$ a compact set, $f: X \to \mathbb{R}$ continuous, then f uniformly continuous on X.

Basic idea: Given ϵ , non-uniform indicates for any δ , exists some x,y such that $|x-y| < \delta, |f(x)-f(y)| > \epsilon$. Create two sequences x_i, y_i from these, then extract converging subsequences. The subsequences converge to the same point, because all the time the distance of f(x) and f(y) is larger than ϵ , this contradicts that continuity.

Proof:

Suppose f is not uniformly continuous, this means that given $\epsilon, \forall \delta, \exists x, y \in C, |x-y| < delta, |f(x)-f(y)| > \epsilon$.

Create $i \mapsto x_i, y_i$ by $|x_i - y_i| < \frac{1}{i}, |f(x_i) - f(y_i)| > \epsilon$. Find the converging subsequence $(x_i)_j, (y_i)_j$. It is clear that $(x_i)_j, (y_i)_k$ converge to the same point a.

Because f continuous at a, for the same $\epsilon, \exists \delta > 0$ such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \frac{\epsilon}{2}$.

Then for efficiently large M such that $\frac{1}{M} < \delta$, we know that given j > M, $|f((x_i)_j) - f((y_i)_j)| > \epsilon$ and $|(x_i)_j - (y_i)_j| < \frac{1}{j} < \delta$, i.e. $|f((x_i)_j) - f(a)| < \frac{\epsilon}{2}$, $|f((y_i)_j) - f(a)| < \frac{\epsilon}{2}$, contradiction.

1.4 Mean value theorem

The first result is that the derivative at maximum or minimum of a function is zero.

This is easily proven by looking that the derivative from bot sides, one side ≥ 0 , one side ≤ 0 . Therefore the derivative = 0.

The **mean value theorem** states that given $f:[a,b]\to\mathbb{R}$ is continuous, and differentiable on (a,b), then $\exists c\in(a,b)$ such that $f'(c)=\frac{f(a)-f(b)}{a-b}$.

Basic idea: This is saying that $\exists c \in (a,b), f'(c) - \frac{f(a) - f(b)}{a - b} = 0$. Look at this value as the derivative of the difference between f and a linear function from a to b.

Proof:

Define function $g:[a,b]\to\mathbb{R}$ by $g(x)=f(a)+\frac{x-a}{b-a}f(b)-f(a)$.

Then f-g is clearly continuous and (f-g)(a)=(f-g)(b)=0. Assuming f-g is not 0 everywhere, then there is a maxima c of f-g, therefore $(f-g)'(c)=0=f'(c)-g'(c)=f'(c)-\frac{f(b)-f(a)}{b-a}$.

1.5 Fundamental theorem of algebra

Basic idea:

- 1. Find a global minimum for |p(z)|. While |p(z)| is not necessarily in a compact set, we find a circle $B_R(0)$ such that any point outside is larger than the minimum z_0 in the circle. Thus the local minimum in the circle will be global.
- 2. Divide the components of p(z) into three parts, M, a fixed value $p(z_0)$, R, lowest term with non-zero coefficients, and L, the rest. Both R and L is controlled by $u = \rho(\cos \theta + i \sin \theta)$.
- 3. Find a θ that positions R between 0 and M, then find a ρ such that |L|<|R|<|M|, thus |p(u)|<|p(z+0)|, contradiction.

Proof:

1. Global minimum. Need to find a circle $B_R(0)$ such that $\forall z \notin B_R(0), |p(z)| > |p(0)|$. Then a minimum $z_0 \in B_R(0)$ will be globally minimum.

Observe $p(z) = z^k + a_{k-1}z^{k-1} + ... + a_0$, the first term z^k will domintate p(z) as z grows larger and therefore we will be able to find such $B_R(0)$.

Take $A = \max\{|a_{k-1}|, ..., |a_0|\},\$

$$|p(z)| = |z^{k} + a_{k-1}z^{k-1} + \dots + a_{0}|$$

$$\geq |z^{k}| - (|a_{k-1}z^{k-1}| + |a_{0}|)$$

$$\geq |z^{k}| - kA|z|^{k-1} = |z|^{k-1}(|z| - kA)$$

Therefore, take $z \ge \max\{(k+1)A, 1\}$, we have that $|p(z)| \ge A|z|^{k-1} \ge |a_0| = |p(0)|$.

i.e. the minimum $z_0 \in B_R(0)$ is globally minimum.

2. NTS $|p(z_0)| = 0$.

Take $z = z_0 + u$, then

$$p(z) = z^{k} + a_{k-1}z^{k-1} + \dots + a_{0}$$

$$= (z_{0} + u)^{k} + a_{k-1}(z_{0} + u)^{k-1} + \dots + a_{0}$$

$$= u^{k} + b_{k-1}u^{k-1} + \dots + b_{0} = q(u)$$

q(u) has three parts, $F = b_0 = p(z_0)$ is a fixed value, $R = b_j u^j$ is the lowest term with non-zero coefficients, and $L = (b_{j+1}u^{j+1} + ... + u^k)$. Both R and L are controlled by $u = \rho(\cos \theta + i \sin \theta)$.

The general idea is that as u gets smaller, L gets smaller much quicker than does R.

We know that $M = F + R = b_0 + b_j \rho^j (\cos j\theta + i \sin j\theta)$, this says that regardless of ρ , M revolves around $F = b_0$ as θ changes.

Therefore we can find a θ that places M between F and 0.

Then fixing such θ , find a ρ small enough so that $|L| \leq |R|$. This way D = q(u) = F + R + L will be closer to 0 than $q(0) = b_0$, i.e. $|q(u)| < |b_0|$, contradictory to the fact that $|b_0|$ is the global minimum of p(z).

Such u is easy to find:

Take $A = \max\{b_{j+1}, ..., 1\}$

$$|R| - |L| = |b_j u^j| - |b_{j+1} u^{j+1} + \dots + u^k|$$

$$\ge |b_j u^j| - (k-j)A|u|^{j+1}$$

$$= |u|^j (b_j u - (k-j)A)$$

Then take u to be sufficiently small, we have that $|R| \geq |L|$.

Corollary of Fundamental Algebra Theorem

Given $p(z) = (z - c_1)^{k_1} ... (z - c_m)^{k_m}$ where $k_1 + ... + k_m = k$, k_j is called the **multiplicity** of rott c_j .

Any complex p(z) with degree k can be factored into $p(z)=(z-c_1)^{k_1}...(z-c_m)^{k_m}$ with $k_1+...+k_m=k$.

Proof:

Denote \tilde{p} to be the monic polynomial with the highest degree that divides p and is the product of 1 degree polynomials, \tilde{p} has largest degree \tilde{k} .

We can then write $p(z) = \tilde{p}(z)q(z)$, with q(z) having $k - \tilde{k}$ degrees.

NTS that $\tilde{k} = k$:

Suppose $\tilde{k} < k$, then $\exists c$ such that q(c) = 0, then we can write $q(z) = (z - c)\tilde{q}(z)$.

I.e., we can write $p(z) = ((z - c)\tilde{p}(z))\tilde{q}(z)$, so \tilde{p} is not such polynomial with highest degrees, contradiction.

Therefore $\tilde{k} = k$.

This corollary can be limited to real polynomials with a looser condition:

Any real polynomial can be factored as polynomials of 1 or 2 degrees.

Basic idea: Do the same thing as the complex case, if the root is complex, then transform it into a 2-degree real polynomial.

Proof:

Define \tilde{p} similar as above, **but real**.

Then $p(z) = \tilde{p}(z)q(z)$ and suppose $\tilde{k} < k$, then $\exists c$ such that q(c) = 0.

Now if c is real then we are done. So suppose c is complex.

Since q is a polynomial, given c = a + bi, $\overline{c} = a - bi$, $(\overline{c})^2 = (a - bi)(a - bi) = a^2 - b^2 - 2abi = \overline{c^2}$. Therefore $q(\overline{c}) = \overline{q(c)} = \overline{0} = 0$.

Now we can say that $q(z)=(z-c)(z-\overline{c})\tilde{q}(z)=(z^2-2az+a^2+b^2)\tilde{q}(z),$ therefore $p(z)=((z^2-2az+a^2+b^2)\tilde{p}(z))\tilde{q}(z),$ contradiction.