STAT 37797: Mathematics of Data Science

Autumn 2021

Homework 1

Due date: 11:59pm on Oct. 21st

You are allowed to drop 1 subproblem without penalty. But you cannot drop problems on simulation.

1. Concentration of gaussian random variable (20 points)

a. (5 points) Let X be a standard normal random variable. Prove that

$$\mathbb{P}(|X| \le t) \le 2\exp(-t^2/2).$$

b.(5 points) Let $X_1, X_2, ..., X_n$ be n i.i.d. standard normal random variables. Prove that with probability at least $1 - O(n^{-10})$, one has

$$\max_{i} |X_i| \le 5\sqrt{\log n}.$$

c.(10 points) Let $\mathbf{x} \in \mathbb{R}^n$ be a random vector where each coordinate is an independent standard normal random variable. Using the the conclusion above, one can show that $\|\mathbf{x}\|_2 \lesssim \sqrt{n \log n}$ with high probability. However, this falls short in two aspects. First, the upper bound on $\|\mathbf{x}\|_2$ is not tight. Second, it doesn't provide a high-probability lower bound of $\|\mathbf{x}\|_2$. In this part, prove that for all $t \in (0,1)$, one has

$$\mathbb{P}(|\|\boldsymbol{x}\|_{2}^{2} - n| \ge nt) \le 2\exp(-nt^{2}/8).$$

(Hint: Laplace transform method with control of moment generating function)

2. Norm of Gaussian random matrices (40 points)

Recall that in class, we have used the bound $\|E\| \lesssim \sqrt{n}$ where $E \in \mathbb{R}^{n \times n}$ is composed of i.i.d. standard normal random variables.

a.(10 points) Use matrix Bernstein's inequality to show that with high probability $\|E\| \lesssim \sqrt{n \log n}$. (Hint: truncation)

As before, the bound proved in part (a) is off by a $\sqrt{\log n}$ factor. In the following, we will prove the tighter version. Recall the definition of ||E||:

$$\|m{E}\| = \sup_{\|m{v}\|_2=1} \|m{E}m{v}\|_2$$

Hence it suffices to show that with high probability $\sup_{\|\boldsymbol{v}\|_2=1} \|\boldsymbol{E}\boldsymbol{v}\|_2 \lesssim \sqrt{n}$.

b.(5 points) Let's first focus on a fixed vector $||v||_2 = 1$. Prove that for any fixed $v \in \mathbb{R}^n$, one has

$$\mathbb{P}(\|Ev\|_2 \ge 10\sqrt{n}) \le 2\exp(-100n).$$

It is tempting to apply "union bound" and "obtain"

$$\mathbb{P}(\sup_{\|{\boldsymbol v}\|_2=1}\|{\boldsymbol E}{\boldsymbol v}\|_2 \geq 10\sqrt{n}) \leq \sum_{\|{\boldsymbol v}\|_2=1} \mathbb{P}(\|{\boldsymbol E}{\boldsymbol v}\|_2 \geq 10\sqrt{n}).$$

However this argument is TOTALLY wrong as one cannot apply union bound to a uncountable set. Therefore, to properly apply union bound, one needs to restrict attention to a finite subset of the unit sphere in \mathbb{R}^n that can approximate the unit sphere well.

c.(10 points) Let $\mathcal{N}_{\varepsilon}$ be a subset of $\{v \in \mathbb{R}^n : ||v||_2 = 1\}$ such that for any point v in $\{v \in \mathbb{R}^n : ||v||_2 = 1\}$, one can find an element $u \in \mathcal{N}_{\varepsilon}$ such that $||u - v||_2 \le \varepsilon$. In particular, set $\mathcal{N}_{\varepsilon}$ be such a set with smallest cardinality. Prove that

$$|\mathcal{N}_{\varepsilon}| \leq (1 + \frac{2}{\varepsilon})^n$$
,

where $|\mathcal{N}_{\varepsilon}|$ denotes the cardinality of $\mathcal{N}_{\varepsilon}$.

d.(5 points) Fix some $\varepsilon \in (0,1)$. Prove that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$\|\boldsymbol{A}\| \leq \frac{1}{1-arepsilon} \cdot \max_{oldsymbol{v} \in \mathcal{N}_{arepsilon}} \|\boldsymbol{A}oldsymbol{v}\|_2.$$

This shows the usefulness of $\mathcal{N}_{\varepsilon}$ in terms of approximating $\|A\|$.

e.(10 points) Combine the previous steps to show that with high probability $||E|| \lesssim \sqrt{n}$.

3. Matrix concentration in matrix completion (10 points) Consider the matrix completion problem introduced in class where $M^* = U^* \Sigma^* V^{*\top} \in \mathbb{R}^{n \times n}$ is a rank-r matrix. Let μ be its incoherence parameter. Prove that with high probability

$$\|\boldsymbol{M} - \boldsymbol{M}^\star\| \lesssim \sqrt{\frac{\mu r \log n}{np}} \|\boldsymbol{M}^\star\|$$

as long as $np \ge C\mu r \log n$ for some sufficiently large constant C > 0.

- 4. Community detection experiments (20 points) Consider the SBM model discussed in class. Fix the number n of nodes in a graph to be 100. Set $p = \frac{1+\varepsilon}{2}$ and $q = \frac{1-\varepsilon}{2}$ for some quantity $\varepsilon \in [0, 1/2]$. Generate a random graph and then use the spectral method to cluster the nodes. Please plot the mis-clustering rate vs. the probability gap ε . At the minimum, you should take 50 different values of ε (with linear spacing) in [0, 1/2]. For each value of ε , you need to run the experiment with at least 200 Monte-Carlo trials to calculate the average mis-clustering rate across trials.
- 5. Matrix completion experiments (20 points) Consider the SBM model discussed in class. Fix the number n of nodes in a graph to be 100. Set $p = \frac{1+\varepsilon}{2}$ and $q = \frac{1-\varepsilon}{2}$ for some quantity $\varepsilon \in [0, 1/2]$. Generate a random graph and then use the spectral method to cluster the nodes. Please plot the mis-clustering rate vs. the probability gap ε . At the minimum, you should take 50 different values of ε (with linear spacing) in [0, 1/2]. For each value of ε , you need to run the experiment with at least 200 Monte-Carlo trials to calculate the average mis-clustering rate across trials.