Annexe : liste des leçons pour la session 2009

Le (L) après un titre de leçon indique qu'il s'agit d'une leçon de synthèse (L pour Large). Le symbole \spadesuit signifie que la leçon est traitée dans ce document.

Le symbole \Diamond signifie que la leçon est traitée de façon squelettique dans ce document.

Leçons d'algèbre et géométrie

- 101 Groupes monogènes, groupes cycliques. Exemples.
- 102 Permutations d'un ensemble fini, groupe symétrique. Applications.
- 103 \spadesuit Congruences dans \mathbb{Z} , anneau $\mathbb{Z}/n\mathbb{Z}$. Applications.
- 104 ♠ Nombre premier. (L)
- 105 ♠ pgcd, ppcm dans ℤ, théorème de Bézout. Applications.
 - 106 pgcd dans $\mathbb{K}[X]$, où \mathbb{K} est un corps commutatif, théorème de Bézout. Applications.
- 107 \(\bigcha \) Écriture décimale d'un nombre réel; cas des nombres rationnels.
 - 108 Dimension d'un espace vectoriel admettant une famille génératrice finie. Rang. (L)
- 109 Formes linéaires, hyperplans, dualité. On se limitera à des espaces vectoriels de dimension finie. Exemples.
 - 110 Polynômes d'endomorphismes en dimension finie. Applications.
 - 111 Changements de bases en algèbre linéaire. Applications.
- 112 \(\ldot\) Opérations élémentaires sur les lignes ou les colonnes d'une matrice. Applications.
 - 113 Déterminants. Applications.
 - 116 Homothéties-translations. Applications. (L)
- 118 Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3.
 - 120 Endomorphismes symétriques d'un espace vectoriel euclidien (de dimension finie). Applications.
- 122 \(\bar{\pi} \) Réduction et classification des formes quadratiques sur un espace vectoriel euclidien de dimension finie. Applications géométriques.
- 123 \(\bar{\pi} \) Nombres complexes et géométrie.
 - 125 Isométries du plan affine euclidien, formes réduites. Applications.
 - 126 Isométries de l'espace affine euclidien de dimension 3, formes réduites.
 - 127 Géométrie du triangle.
 - 128 Barycentres. Applications.

- 130 Droites et plans dans l'espace. (L)
- 131 Projections et symétries dans un espace affine de dimension finie.
- 137 Cercles et droites dans le plan affine euclidien. (L)
- 139 Cinématique du point : vitesse, accélération. Exemples de mouvements. On pourra se limiter aux mouvements plans.
- 140 Division euclidienne.
- 142 Utilisation des groupes en géométrie.
- 143 Polynômes à une indéterminée à coefficients réels ou complexes. (L)
- 144 Rang en algèbre linéaire. (L)
- 145 Utilisation des transformations en géométrie. (L)
- 146 \spadesuit Coniques. (L)
 - 147 Courbes planes paramétrées. (L)
 - 148 Angles. (L)
 - 149 Équations et géométrie. (L)
 - 150 Factorisation de matrices. (L)
 - 151 Réduction d'un endomorphisme d'un espace vectoriel de dimension finie. Applications. (L)
 - 154 Trigonométrie.
 - 155 Systèmes linéaires. (L)
- 156 ♠ Valeurs propres. (L)
 - 157 Arithmétique dans \mathbb{Z} .
 - 158 Actions de groupes. Exemples et applications.

Leçons d'analyse et probabilité

- 201 Etude de suites numériques définies par différents types de récurrence. Applications.
- 202 \(\ldots \) Séries à termes réels positifs. Applications
- 203 Séries à termes réels ou complexes : convergence absolue, semi-convergence (les résultats relatifs aux séries termes réels positifs étant supposés connus).
- 204 \(\bigchtarrow\) Espaces vectoriels normés de dimension finie, normes usuelles, équivalence des normes.
- 205 \(\bigcap \) Espaces pr\(\hat{e}\) illibertiens : projection orthogonale sur un sous-espace de dimension finie. Application \(\hat{a} \) l'approximation des fonctions.
 - 206 Parties compactes de \mathbb{R}^n . Fonctions continues sur une telle partie. Exemples et applications.
- 207 \(\bigcap \) Théorème des valeurs intermédiaires. Applications.
 - 208 Théorème du point fixe. Applications.
 - 209 Séries de fonctions. Propriétés de la somme, exemples.
- 210 \(\hightarrow \) Séries entières. Rayon de convergence. Propriétés de la somme. Exemples.
 - 212 Série de Fourier d'une fonction périodique; propriétés. Exemples.
- 213 \spadesuit Exponentielle complexe; fonctions trigonométriques, nombre π .

- 215 Comparaison d'une série et d'une intégrale. Applications.
- 216 \(\bigcap \) Théorèmes des accroissements finis. Applications.
- 217 Fonctions convexes d'une variable réelle. Applications.
- 218 \(\bigcap \) Différentes formules de Taylor pour une fonction d'une variable réelle. Applications.
 - 219 Fonction réciproque d'une fonction définie sur un intervalle. Continuité, dérivabilité. Exemples.
- 220 \(\lambda \) Méthodes de calcul approché d'une intégrale. Majoration de l'erreur.
 - 221 Intégrale impropre d'une fonction continue sur un intervalle de \mathbb{R} (l'intégration sur un segment étant supposée connue). Exemples.
 - 222 Intégrale d'une fonction numérique continue par morceaux sur un intervalle compact. Propriétés.
 - 223 Intégrales de fonctions dépendant d'un paramètre. Propriétés, exemples et applications.
 - 224 Équations différentielles linéaires d'ordre deux : x'' + a(t) x' + b(t) x = c(t), où a, b, c sont des fonctions continues sur un intervalle de \mathbb{R} , à valeurs réelles ou complexes.
- 225 A Systèmes différentiels linéaires à coefficients constants; écriture matricielle. Exemples.
 - 227 Fonctions de plusieurs variables : dérives partielles, différentielle. Fonctions composées. Fonctions de classe C^1 . Exemples.
 - 228 Applications de classe C^1 définies sur un ouvert connexe de \mathbb{R}^n à valeurs réelles : accroissements finis, extrema.
 - 229 Suites de variables aléatoires indépendantes de même loi de Bernoulli, variable aléatoire de loi binomiale, approximation de cette loi.
 - 230 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples.
- 231 \(\bigcap \) Espérance, variance; loi faible des grands nombres.
 - 232 Variables aléatoires possédant une densité. Exemples.
 - 233 Approximation d'un nombre réel. Théorèmes et méthodes. (L) (supprimée pour 2010)
 - 234 Equations différentielles. (L)
 - 235 Exponentielles et logarithmes. (L)
 - 236 Continuité, dérivabilité des fonctions d'une variable réelle. (L)
 - 237 Intégrales et primitives. (L)
- 238 \spadesuit Le nombre π . (L)
 - 240 Problèmes d'extremums pour une fonction d'une ou plusieurs variables réelles.
 - 241 Diverses notions de convergence (on pourra se placer dans des contextes variés). Exemples. (L)
- 242 Suites de nombres réels. (L)
 - 243 Fonctions numériques de deux variables réelles; courbe de niveau, gradient.
 - 244 Égalités et inégalités (par exemple Cauchy-Schwarz, Parseval, convexité, ...).
- 245 \(\bigsim \) Equations fonctionnelles.
 - 246 Applications de l'analyse au calcul des grandeurs (aires, volumes, ...).
 - 247 Limites à l'infini.
 - 248 Mouvement à accélération centrale.

- 249 Loi normale.
- 250 Algorithmes de résolution approchée d'une équation numérique.
 - 1. Algorithmes de calcul du terme général d'une suite numérique et de la somme partielle d'une série numérique.
 - 2. Algorithmes de calcul approché d'intégrales.
 - 3. Algoritmes d'approximation des solutions d'une équation différentielle.
 - 4. Algorithmes d'approximation d'un réel.
 - 5. Algorithmes d'approximation de π .
 - 6. Vitesses et ordres de convergence. Accélération.