Sumeat tiivisteet

Soveltaminen haittaohjelma-analyysissa

Sumea tiivistys

- Tunnistettavan syötteistä samankaltaisuuksia
- Ominaisuuksien valinta
- Tiivistetty ominaisuusjono
 - Syötteestä valitaan ominaisuuksia tiivistettäväksi
- Tavujono
 - Syöte tietyn kokoisiksi lohkoiksi
 - Lohkoista rakennetaan tiiviste

Paloittain määritelty tiiviste

- Koko syöte lohkotaan
- Ominaisuudet syötteen lohkoja
- Ominaisuuksien tiivistys
- Tiivisteen muodostus
- Lohkokoko
 - Vakio
 - Kontekstista riippuva
- Suorituu heikosti ohjelmistojen analysoinnissa

Epätodennäköiset ominaisuudet

- Samankaltaisissa syötteissä samoja epätyypillisyyksiä
- Ominaisuudet muusta syötteestä poikkeavimpia
- Vertailussa etsitään toisesta syötteestä näitä
- Sopii katkelmien löytämiseen
 - Esim. tietyn koodinpätkän sisältävän ohjelman tunnistus
- Vajaa syötekattavuus
 - Ei hyvä kokonaisten tiedostojen vertailussa
 - Mahdollistaa tietynlaisia hyökkäyksiä
- Sdhash

Enemmistö

- Enemmistö ei muutu pienistä muutoksista
- Jaetaan syöte lohkoihin
- Arvo alkioiden enemmistön perusteella
- Ei mahdollista suurta määrää hyökkäystapoja
- Mvhash-b

Ohjelmistot

Ssdeep

- Palottain määritelty, kontekstiriippuvainen
- Tunnistaa heikoimmin haitallista sisältöä
- Asteikko 0-100

Sdhash

- Epätyypilliset ominaisuudet
- Ominaisuudet 64 tavun merkkijonoja
- Soveltuu haittaohjelma-analyysiin
- Asteikko 0-100

Mvhash-b

- Lohkon alkioiden enemmistö skaalattuna arvoon 0 tai 255
- Suorituskykyinen
- Asteikko 0-100, käänteinen

Haittaohjelma-analyysi sumein tiivistein

- Käytössä staattisessa analyysissa
 - Kryptografiset tiivisteet soveltuvat heikosti
- Ohjelmisto
 - Verrataan tiivisteindeksiin
 - Osuma?
- Katkelma
 - Etsitään tiettyjä piirteitä sisältävä ohjelmisto
 - Tietty versio, kirjasto, koodinpätkä ym.

Harhauttaminen

- Haittaohjelman naamiointi
 - Lähdekoodin muuttaminen
 - Käännös ja linkitys
- Aiheettomat osumat
 - Muutetaan merkityksetöntä dataa
 - Tiiviste samankaltainen kuin haittaohjelman
 - Kuluttaa tutkintaresursseja
- Ohjelmistot reagoivat eri tavoin
- Osa alttiimpia tietynlaisille hyökkäyksille

Esimerkki naamioidusta roskapostista (Oliver, Forman ja Cheng, 2014)

Haasteet

- Semanttista merkitystä ei tulkita
- Käyttö ja tulkinta haastavaa
- Johdettavissa harhaan
- Dataa on helppo naamioida
- Pakattua dataa ei voi vertailla
- Ohjelmistojen erot