香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

Course Examination 1st Term, 2008-2009

Course Code & Tit	le: CSC3130: Form	nal languages and automata theory
Time allowed	: 2 hours	
Student I.D. No.	:	Seat No.:
	Problem 1:	
	Problem 2:	
	Problem 3:	
	Problem 4:	
	Total:	
Remember that it is alv	ways to your advantag given no credit. A pa	d. When given multiple choices circle one answer. ge to explain your answer. An incorrect answer with artially correct answer with a reasonable explanation

Problem 1 (42 points)

For each of these statements, say if it is true or false. Give a proof or provide a counterexample for your answer.

(a) (6 points) There is a 2-state NFA for the language $(01)^*$.

true false

(b) (6 points) There is a 2-state DFA for the language $(01)^*$.

true false

(c) (6 points) If L is regular over $\Sigma=\{0,1\}$, then L' is also regular, where $L'=\{x:x\in L \text{ and } x \text{ starts and ends with the same symbol}\}.$

true false

(d) (6 points) The grammar $S \to aSb \mid a \text{ is } LR(0)$.

true false

(e) (6 points) The following language is decidable:

 $L = \{\langle R \rangle : R \text{ is a regular expression for the language } (0+1)^*\}$

true false

(f) (6 points) The language $L=\{wxw^R: x,w\in \Sigma^*\}$ is context-free over alphabet $\Sigma=\{a,b\}.$

true false

(g) (6 points) The language $L = \{wxw^Rx^R : x, w \in \Sigma^*\}$ is context-free over alphabet $\Sigma = \{a, b\}$.

true false

Problem 2 (20 points)

Prove the following statements. You can use these facts:

- $A_{TM} = \{(\langle M \rangle, w) : M \text{ is a TM that accepts } w\}$ is undecidable.
- $ALL_{TM} = \{\langle M \rangle : M \text{ is a TM that accepts all inputs} \}$ is not recognizable.
- (a) (12 points) $L_1=\{(\langle M_1\rangle,\langle M_2\rangle,\langle M_3\rangle,x):$ at least two of TM M_1,M_2 and M_3 accept $x\}$ is undecidable but is recognizable.

(b) (8 points) $L_2 = \{\langle M \rangle : M \text{ is a TM accepts all inputs that end in 0} \}$ is not recognizable.

Problem 3 (18 points)

For each of the following languages, say whether it is decidable or not. Justify your answer by describing an appropriate Turing Machine (algorithm), or using the following facts:

- $ALL_{CFG} = \{\langle G \rangle : G \text{ is a CFG that accepts all inputs} \}$ is not decidable.
- $AMBIG = \{\langle G \rangle : G \text{ is an ambiguous CFG} \}$ is not decidable.
- (a) (9 points) $L_1 = \{(\langle G_1 \rangle, \langle G_2 \rangle) : G_1 \text{ and } G_2 \text{ are CFGs that generate the same strings}\}.$

decidable

undecidable

(b) (9 points) $L_2 = \{\langle G \rangle : G \text{ is a CFG such that the language of } G \text{ is infinite}\}.$

decidable

undecidable

Problem 4 (20 points)

The Computer Science department at CUHK has n students and offers m different classes. Each student is enrolled in some subset of the classes (zero, one, or more). At the end of the semester the dean wants to gather a group of at most k students so that each one of the classes is represented. A student may represent several classes he or she is enrolled in.

(a) (4 points) Formulate this problem as a language L.

(b) (6 points) Show that L is in NP.

(c) (10 points) Show that L is NP-hard. (Use the fact that vertex cover is NP-hard. Your classes may be small.)