Generative Representational Instruction Tuning

Niklas Muennighoff (Twitter: @Muennighoff)

Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, Douwe Kiela

Two types of language models

Advantages of combining them

Performance:

Get better on both?

Generation benchmarks: AlpacaEval..

Efficiency:

Speed-up joint use cases

Traditional RAG

Simplicity: Unify endpoints

Embedding endpoint

```
curl https://api.openai.com/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
    "input": "Your text string goes here",
    "model": "text-embedding-3-small"
}'
```

Generation endpoint

Unifying representation & generation

Given a scientific paper title, retrieve the paper's abstract

Bitcoin: A Peer-to-Peer Electronic Cash System

If an obscure legal term is given as the query, fetch text from law books or legal databases that can help explain the term.

celestial res nullius

Please write me a blog post about my recent hike of Mt. Fuji at midnight.

You have two ropes, each takes exactly 1 hour to burn. How would you use them to time exactly 15 minutes? The ropes are of uneven densities, so half the rope does not necessarily take half the time.

Representational **Instruction Tuning** 0.42, 1.52, -0.01... Generative Representational 0.01, -1.01, 0.45... Instruction Tuning Sure, here is the blog post. **GRIT** It was August the 10th when I arrived at Lake Kawaguchi from... You start by... Generative

Embedding instructions ideally contain: Domain, intent & unit

Instruction Tuning

Differing instructions, format & attention

Representation

Mean Pooling

<s><|user|>
{instruction}
 <|embed|>
{sample to represent}

Language Modeling Head


```
<s><|user|>
{instruction}
<|assistant|>
{response}</s>
<|user|>
```

Combining losses

Contrastive embedding loss with hard negatives

$$\mathcal{L}_{\text{Rep}} = -\frac{1}{M} \sum_{i=1}^{M} \log \frac{\exp(\tau \cdot \sigma(f_{\theta}(q^{(i)}), f_{\theta}(d^{(i)})))}{\sum_{i=1}^{M} \exp(\tau \cdot \sigma(f_{\theta}(q^{(i)}), f_{\theta}(d^{(i)})))} \qquad \mathcal{L}_{\text{Gen}} = -\frac{1}{N} \sum_{i=1}^{N} \log P(f_{\theta, \eta}(x^{(i)}) | f_{\theta, \eta}(x^{(i)}))$$

Next token prediction loss for generation

$$\mathcal{L}_{\mathsf{Gen}} = -rac{1}{N} \sum_{i=1}^N \log P(f_{ heta, \eta}(x^{(i)}) | f_{ heta, \eta}(x^{(< i)}))$$

Combining both with adjustable weights

$$\mathcal{L}_{GRIT} = \lambda_{Rep} \mathcal{L}_{Rep} + \lambda_{Gen} \mathcal{L}_{Gen}$$

GritLM-7B & GritLM-8x7B

1234

Embedding Data

E5S: ELI5, GPT4 Synthetic, MSMARCO, S2ORC, SQuAD...

Generative Data

Tülu-2: FLAN, Open Assistant, ShareGPT, LIMA, Open-Orca...

Finetune Mistral 7B with GRIT

... Mixtral 8x7B ...

... GRIT should work with any LM ...

GritLM-7B

GritLM-8x7B

GritLM-7B & GritLM-8x7B

Embedding Performance

Generative Performance

Task (\rightarrow) Metric (\rightarrow) Dataset # (\rightarrow)	CLF Acc.	Clust. V-Meas.	PairCLF AP 3	Rerank MAP 4	Retrieval nDCG 15	STS Spear. 10	Summ. Spear.	Avg.	Dataset (\rightarrow) Setup (\rightarrow) Metric (\rightarrow)	MMLU 0 FS EM	GSM8K 8 FS, CoT EM	BBH 3 FS, CoT EM	TyDi QA 1 FS, GP F1	HumanEval 0 FS pass@1	Alpaca 0 FS, 1.0 % Win	Avg.
Dataset II (-7)	12	11	Proprietary 1			10	1		Metric (-7)	LIMI	2555000	oprietary mod		pass@1	70 WIII	
OpenAI v3	75.5	49.0	85.7	59.2	55.4	81.7	29.9	64.6	GPT-4-0613	81.4	95.0	89.1	65.2	86.6 [†]	91.2	84.8
		(Other Open	Models♥							Oth	ner Open Mod	lels♥			
Llama 2 70B	60.4	29.0	47.1	38.5	9.0	49.1	26.1	35.6	Zephyr 7B β	58.6	28.0	44.9	23.7	28.5	85.8	44.9
Mistral 7B	63.5	34.6	53.5	43.2	13.2	57.4	19.7	40.5	Llama 2 70B	64.5	55.5	66.0	62.6	29.9◆	0.0	46.4
Mistral 7B Instruct	67.1	34.6	59.6	44.8	16.3	63.4	25.9	43.7	Llama 2 Chat 13B	53.2	9.0	40.3	32.1	19.6 [†]	91.4	40.9
GPT-J 6B	66.2	39.0	60.6	48.9	19.8	60.9	26.3	45.2	Llama 2 Chat 70B	60.9	59.0	49.0	44.4	34.3 [†]	94.5	57.0
SGPT BE 5.8B	68.1	40.3	82.0	56.6	50.3	78.1	31.5	58.9	Tülu 2 13B	55.4	46.0	49.5	53.2	31.4	78.9	52.4
Instructor XL 1.5B	73.1	44.7	86.6	57.3	49.3	83.1	32.3	61.8	Tülu 2 70B	67.3	73.0	68.4	53.6	41.6	86.6	65.1
BGE Large 0.34B	76.0	46.1	87.1	60.0	54.3	83.1	<u>31.6</u>	64.2	Mistral 7B Inst.	53.0	36.0	38.5	27.8	34.0	75.3	44.1
E5 Mistral 7B	78.5	50.3	88.3	60.2	56.9	84.6	31.4	66.6	Mixtral 8x7B Inst.	68.4	65.0	55.9	24.3	53.5	94.8	60.3
			GRITI	LM						~		GRITLM				
Genonly 7B	65.4	32.7	54.2	43.0	13.7	60.2	21.1	41.2	Embonly 7B	23.5	1.0	0.0	21.0	0.0	0.0	7.6
Embonly 7B	78.8	51.1	87.1	60.7	57.5	83.8	30.2	66.8	Genonly 7B	57.5	52.0	55.4	56.6	34.5	75.4	55.2
GRITLM 7B	79.5	<u>50.6</u>	<u>87.2</u>	<u>60.5</u>	<u>57.4</u>	83.4	30.4	<u>66.8</u>	GRITLM 7B	57.6	57.5	54.8	55.4	32.8	74.8	55.5
GritLM 8x7B	78.5	50.1	85.0	59.8	55.1	83.3	29.8	65.7	GRITLM 8x7B	66.7	61.5	70.2	58.2	53.4	84.0	65.7

GritLM-7B & GritLM-8x7B

Questions thus far?

Next: RAG with GRIT

RAG with GRIT

Traditional RAG

RAG with GRIT

RAG with GRIT

Attention mismatch problem

1) Combining bidirectional & causal attention

Embed query/doc bidirectionally & cache

Reuse bidirectionally attended cache for causal generation

2) Combining separately attended texts (only if caching both, query-doc/doc-query)

Reuse separately attended caches for causal generation

Embed doc & cache

Caching Performance

	Match (0-shot, ↑)
No RAG	21.00
RAG	<u>30.50</u>
Query Caching	25.46
	21.63

Caching
Generation
Prompt

| Caching | Caching

RAG 30.47
Doc Caching 33.38
Doc-Query Caching 18.39

Scaling Query Length

Scaling Document Length

Questions thus far?

Next: GRIT Ablations

Ablations: Attention & Pooling

|--|

-							
Atten Instruction	tion Emb Sample	Attention Instruction	Gen Sample	Pooling	Emb	Gen	
	Embedding Only						
C	ausal			Wmean	60.0	_	
Causal	Bidirectional			Mean	61.0	-	
Bidi	rectional			Mean	61.8		

Ablations: Attention & Pooling

Bidirectional

Instruction

Causal

					1 2 3 4	AB
Attenti uction	on Emb Sample	Attention Instruction	Gen Sample	Pooling	Emb	Gen
		Embedding	Only			
Ca	usal			Wmean	60.0	-
usal	Bidirectional			Mean	61.0	_
Bidire	ectional			Mean	61.8	- 82
		Generative	Only			
		Causa	al		× ×-	55.2

Causal

50.7

Ablations: Attention & Pooling

					34	
Attenti Instruction	on Emb Sample	Attention Instruction	Gen Sample	Pooling	Emb	Gen
		Embedding	Only			
Ca	usal			Wmean	60.0	-8
Causal	Bidirectional			Mean	61.0	-
Bidire	ectional			Mean	61.8	-22
81		Generative	Only			
		Causa	1		-	55.2
		Bidirectional	Causal		-	50.7
		Unified				
Ca	usal	Causa	L	Last token	61.2	53.0
Ca	usal	Causa	1	Wmean	62.8	52.8
Bidire	ctional	Causa	l	Mean	64.0	52.9

Ablations: Base Model

		1234	AB
_	Variant	Emb	Gen
4	Mistral 7B	54.6	22.4
0	Llama 2 7B	48.2	20.8
	GPT-J 6B	51.9	14.0

Finetuned with GRIT

Embedding Performance after GRIT ≠ Raw performance

0	0
h	i

Task (\rightarrow)	CLF	Clust.		Avg.
Metric (\rightarrow) Dataset # (\rightarrow)	Acc. 12	V-Meas.		56
Llama 2 70B Mistral 7B Mistral 7B Instruct GPT-J 6B	60.4 63.5 67.1 66.2	29.0 34.6 34.6 39.0	•••	35.6 40.5 43.7 45.2

Only pretrained

Ablations: Base Dataset

Ablations: Embedding Head

2	1234	AB
Variant	Emb	Gen
No head -> 1024	62.7 62.1	49.2 48.0

Ablations: Batch Size (BS)

Increases M
$$\mathcal{L}_{\text{Rep}} = -\frac{1}{M} \sum_{i=1}^{M} \log \frac{\exp(\tau \cdot \sigma(f_{\theta}(q^{(i)}), f_{\theta}(d^{(i)})))}{\sum_{j=1}^{M} \exp(\tau \cdot \sigma(f_{\theta}(q^{(i)}), f_{\theta}(d^{(j)})))}$$

Ablations: Precision

	1234	AB
Precision	Emb	Gen
FP32	66.3	52.4
▶ BF16*	66.5	55.0

*Pooling & cosine similarity still in FP32 i.e. cast BF16->FP32 here

<s><|user|>
 {instruction}
 <|embed|>
{sample to represent}

Ablations: In-Batch-Negatives (IBN)

		1234	AB
IBN ori	gin	Emb	Gen
Any data Same data		66.0 66.0	50.9 51.1
Massive boost on Retrieval though:	Retrieva nDCG 54.9 56.2		

Ablations: Format

Format | Gen

Tülu 2 | 55.2

Zephyr β | 49.0

Additional end-of-sequence token after user utterance

Ablations: Loss

-		
	A	В

Gen loss type	$\mathcal{L}_{Rep}/\mathcal{L}_{Gen}$	Emb	Gen
Token	2.4	66.1	54.4
Token	6.0	66.5	55.0
Mix (32 -> 8)	4.1	66.7	55.4
WIIX (32 -> 6)	4.1	00.7	33

Ratio adjusted via weights:

$$\mathcal{L}_{GRIT} = \lambda_{Rep} \mathcal{L}_{Rep} + \lambda_{Gen} \mathcal{L}_{Gen}$$

Future Directions

1) Solving the attention mismatch issues

Simple finetuning may suffice?

2) GritLM Agents

Teaching the model to invoke its own embedding capabilities, maybe via finetuning

3) GRIT Doc Caching with multiple documents

Likely solved once the attention mismatch issue is solved

Thanks!

More about GRIT:

Open-source code:

ContextualAl/gritIm()

Open-source models:

hf.co/GritLM

Niklas Muennighoff (Twitter: @Muennighoff)

Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, Douwe Kiela

Reranking with GritLM further boosts performance

Table 3: Reranking (Rerank) using GRITLM as both Bi- and Cross-Encoder.

MTEB DS (↓)	No Rerank	Rerank top 10
ArguAna	63.24	64.39
ClimateFEVER	30.91	31.85
CQADupstack	49.42	50.05
DBPedia	46.60	47.82
FiQA2018	59.95	60.39
FEVER	82.74	82.85
HotpotQA	79.40	80.46
NFCorpus	40.89	41.23
NQ	70.30	71.49
MSMARCO	41.96	42.47
QuoraRetrieval	89.47	88.67
SCIDOCS	24.41	24.54
SciFact	79.17	79.28
TRECCOVID	74.80	75.24
Touche2020	27.93	28.41
Average	57.4	57.9

Few-shot embedding does not work

Table 4: **Few-shot embedding.** The 12 MTEB datasets ("DS") are grouped by the 7 main MTEB tasks in the same order as in Table 1.

Train DS (\rightarrow)	E:	5S	MEDI2		
MTEB DS (↓)	0 FS	1 FS	0 FS	1 FS	
Banking77	88.5	88.3	88.1	87.9	
Emotion	52.8	51.0	52.5	51.9	
IMDB	95.0	93.9	94.3	92.2	
BiorxivS2S	39.8	39.4	37.6	37.4	
SprintDup.	93.0	94.9	95.2	95.7	
TwitterSem	81.1	77.9	76.8	73.9	
TwitterURL	87.4	87.1	85.9	86.1	
ArguAna	63.2	51.7	53.5	53.2	
SCIDOCS	24.4	19.7	25.5	25.5	
AskUbuntu	67.3	64.7	66.6	66.0	
STS12	77.3	78.0	76.6	73.5	
SummEval	30.4	29.5	29.1	31.5	

GRIT + KTO

Table 5: **Aligning GRITLM with KTO after GRIT.** The upper table depicts embedding performance while the lower depicts generative performance.

Task (\rightarrow) Metric (\rightarrow)	CLF Acc.	Clust. V-Meas.	PairCLF AP	Rerank MAP		ieval CG	STS Spear.	Summ. Spear.	Avg.
Dataset # (\rightarrow)	12	11	3	4	1	5	10	1	56
GritLM-7B	79.5	50.6	87.2	60.5	57	7.4	83.4	30.4	66.8
GritLM-7B-KTO	79.6	50.1	87.1	60.5	57	7.1	83.5	30.5	66.7
GritLM-8x7B	78.5	50.1	85.0	59.8	55	5.1	83.3	29.8	65.7
GritLM-8x7B-KTO	78.7	50.0	84.4	59.4	54	4.1	82.5	30.8	65.2
Dataset (\rightarrow)	MMLU	GSM8K	BBH	TyD	i QA	Hum	anEval	Alpaca	Avg
Setup (\rightarrow)	0 FS	8 FS, CoT	3 FS, Co	T 1 FS	S, GP	0 FS		0 FS, 1.0	
Metric (\rightarrow)	EM	EM	EM	F1		pass	@1	% Win	
GritLM-7B	57.6	57.5	54.8	55.4	į.	32.8		74.8	55.5
GritLM-7B-KTO	57.6	57.5	55.4	55.8	3	31.5		86.7	57.4
GritLM-8x7B	66.7	61.5	70.2	58.2	2	53.4		84.0	65.7
GritLM-8x7B-KTO	66.8	79.5	67.1	31.4	ĺ.	56.8		95.3	66.2