Object Recognition with CNNs & Transfer Learning (CIFAR-10)

https://www.researchgate.net/publication/391119246_Enhancing_CNNs_via_structural_intervention _with_XGBoost?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJIY3QiLCJwYWdIIjoiX2RpcmVjdCJ9fQ

CIFAR-10: 60k images, 10 classes, 32×32×3

Dataset & Pre-processing

Train/Val/Test split: 45k/5k/10k

Normalisation, one-hot encoding, consistent preprocessing

Random flip, rotation, zoom, translation

Data Augmentation

Enhances diversity and generalisation

Applied during training to both models

Conv-Conv-Pool $\times 2 \rightarrow$ Conv \rightarrow Dense(256) \rightarrow Dropout \rightarrow Softmax(10)

Model 1 – Baseline CNN (from scratch)

Optimizer: Adam (1e-3),

Loss: CCE, Dropout

regularisation

Input Layer

--- Custom CNN Model Summary (without data augmentation) ---Model: "sequential_2"

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 29, 29, 32)	1,568
max_pooling2d_2 (MaxPooling2D)	(None, 14, 14, 32)	0
conv2d_3 (Conv2D)	(None, 11, 11, 32)	16,416
max_pooling2d_3 (MaxPooling2D)	(None, 5, 5, 32)	0
flatten_2 (Flatten)	(None, 800)	0
dense_4 (Dense)	(None, 256)	205,056
dense_5 (Dense)	(None, 10)	2,570

Total params: 676,832 (2.58 MB)

Trainable params: 225,610 (881.29 KB)

Non-trainable params: 0 (0.00 B)
Optimizer params: 451,222 (1.72 MB)

Base: VGG16 pretrained on ImageNet, include_top=False

Model 2 – Transfer Learning (VGG16 fine-tune)

Freeze early layers; fine-tune last block

Custom head: GAP →
Dense(256) → Dropout →
Softmax(10)

--- VGG16 Model Summary ---

Model: "sequential_3"

Layer (type)	Output Shape	Param #
vgg16 (Functional)	(None, 3, 3, 512)	14,714,688
flatten_3 (Flatten)	(None, 4608)	0
dense_6 (Dense)	(None, 256)	1,179,904
dense_7 (Dense)	(None, 10)	2,570

Total params: 18,262,112 (69.66 MB) Trainable params: 1,182,474 (4.51 MB)

Non-trainable params: 14,714,688 (56.13 MB)

Optimizer params: 2,364,950 (9.02 MB)

Compare CNN vs VGG16 training & validation accuracy

Training Curves (Accuracy/Loss)

VGG16 converges faster; CNN may overfit earlier

Validation/Test Accuracy for both models

Results & Confusion Matrices

Confusion matrices highlight misclassifications

VGG16 reduces class confusion vs CNN

Model	Data Augmentation	Test Loss	Test Accuracy
Custom CNN	No	1.0458	67.20%
Custom CNN	Yes	1.0458	70.78%
VGG16	Yes	0.6369	78.03%

Predicted Label

Class	Precision	Recall	F1-Score	Support
airplane	0.7	0.76	0.73	1000
automobile	0.81	0.74	0.78	1000
bird	0.6	0.5	0.54	1000
cat	0.51	0.45	0.48	1000
deer	0.58	0.64	0.61	1000
dog	0.55	0.58	0.57	1000
frog	0.74	0.77	0.76	1000
horse	0.73	0.72	0.73	1000
ship	0.81	0.76	0.78	1000
truck	0.69	0.79	0.74	1000
Accuracy	nan	nan	0.67	10000
Macro avg	0.67	0.67	0.67	10000
Weighted avg	0.67	0.67	0.67	10000

CNN no augmentation

Class	Precision	Recall	F1-Score	Support
airplane	0.76	0.73	0.74	1000
automobile	0.81	0.83	0.82	1000
bird	0.74	0.5	0.6	1000
cat	0.57	0.47	0.52	1000
deer	0.67	0.69	0.68	1000
dog	0.65	0.56	0.6	1000
frog	0.69	0.84	0.76	1000
horse	0.74	0.77	0.75	1000
ship	0.84	0.8	0.82	1000
truck	0.63	0.91	0.75	1000
Accuracy	nan	nan	0.71	10000
Macro avg	0.71	0.71	0.7	10000
Weighted avg	0.71	0.71	0.7	10000

CNN with augmentation

Class	Precision	Recall	F1-Score	Support
airplane	0.86	0.82	0.84	1000
automobile	0.82	0.92	0.86	1000
bird	0.71	0.76	0.73	1000
cat	0.61	0.64	0.63	1000
deer	0.78	0.68	0.73	1000
dog	0.65	0.74	0.69	1000
frog	0.81	0.81	0.81	1000
horse	0.89	0.74	0.81	1000
ship	0.85	0.9	0.87	1000
truck	0.9	0.79	0.84	1000
Accuracy	nan	nan	0.78	10000
Macro avg	0.79	0.78	0.78	10000
Weighted avg	0.79	0.78	0.78	10000

VGG16

Discussion – Strengths & Trade-offs

CNN: lightweight, flexible, lower compute

Transfer Learning: higher accuracy, faster convergence, heavier mode

Lessons Learned & Insights

Hyperparameter tuning

Importance of Validation Set

Power of dataaugmentation

Autonomous Vehicles, Biometric Authentication, Medical Imaging

Applications, Ethics & Future Work

Ethical and practical dimensions of Al

ResNet50/MobileNetV2

https://stanfordmag.org/contents/in-two-years-there-could-be-10-million-self-driving-cars-on-the-roads

References

Bender, E.M., Gebru, T., McMillan-Major, A. and Shmitchell, S. (2021) On the dangers of stochastic parrots: Can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT '21). New York: ACM Press.

Esteva, A., et al. (2019) A guide to deep learning in healthcare. Nature Medicine, 25, pp.24–29.

Goodfellow, I., Bengio, Y. and Courville, A. (2016) *Deep learning*. Cambridge, MA: MIT Press.

Hien, B. M. (2023) *Solving CIFAR-10 dataset with VGG16 pre-trained architect using PyTorch*. Available at: https://medium.com/@buiminhhien2k/solving-cifar10-dataset-with-vgg16-pre-trained-architect-using-pytorch-validation-accuracy-over-3f9596942861.

Howard, J. and Ruder, S. (2018) *Universal language model fine-tuning for text classification*. In: *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL)*. Melbourne: ACL, pp.328–339.

Jobin, A., Ienca, M. and Vayena, E. (2019) *The global landscape of AI ethics guidelines. Nature Machine Intelligence*, 1(9), pp.389–399.

Kingma, D.P. and Ba, J. (2015) Adam: A method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR 2015). Available at: https://arxiv.org/abs/1412.6980

Krizhevsky, A., Nair, V. and Hinton, G. (2009) *The CIFAR-10 dataset*. Toronto: University of Toronto. Available at: https://www.cs.toronto.edu/~kriz/cifar.html

References Continued

LeCun, Y., Bengio, Y. and Hinton, G. (2015) *Deep learning. Nature*, 521(7553), pp.436–444.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) *Gradient-based learning applied to document recognition*. *Proceedings of the IEEE*, 86(11), pp.2278–2324.

Shorten, C. and Khoshgoftaar, T.M. (2019) A survey on image data augmentation for deep learning. *Journal of Big Data*, 6(1), 60.

Simonyan, K. and Zisserman, A. (2015) *Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations (ICLR 2015).* Available at: https://arxiv.org/abs/1409.1556

Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. (2014) How transferable are features in deep neural networks? In: Proceedings of the 27th International Conference on Neural Information Processing Systems (NeurIPS 2014). Montréal, Canada.

Zhang, Y., Bengio, S., Hardt, M., Recht, B. and Vinyals, O. (2021) *Understanding deep learning requires rethinking generalization. International Conference on Learning Representations (ICLR 2021).* Available at: https://arxiv.org/abs/1611.03530

