Lista 1 - Mecânica de Sistemas Inteligentes - COM783

Aluno: Matheus Schueler de Carvalho

25 de agosto de 2025

1ª Questão

A abordagem generalizada é importante para que as funções implementadas para os métodos possam ser reutilizadas para qualquer outro novo sistema a ser resolvido. A implementação dos métodos RK4 e DOPRI45 foi realizada no código python em anexo. Para validar os métodos foi considerado ooscilador massa-mola amortecido sob excitação harmônica

$$\ddot{x} + 2\zeta\omega_n \,\dot{x} + \omega_n^2 \,x = \gamma \sin(\Omega t),\tag{1}$$

escrito como sistema de primeira ordem $\dot{\mathbf{y}} = \mathbf{f}(t, \mathbf{y})$ com $\mathbf{y} = [x \ v]^T$:

$$\dot{x} = v, \qquad \dot{v} = \gamma \sin(\Omega t) - 2\zeta \omega_n v - \omega_n^2 x.$$
 (2)

Os parâmetros usados nos testes foram $\zeta = 0.05$, $\omega_n = 2\pi$ (1 Hz), $\Omega = 1.2 \omega_n$, $\gamma = 1$, e condição inicial x(0) = 0, v(0) = 0.

Solução analítica. Para $\zeta < 1$, a resposta é a soma de um transitório subamortecido e de uma resposta forçada estacionária. Definindo $\omega_d = \omega_n \sqrt{1 - \zeta^2}$,

$$X = \frac{\gamma}{\sqrt{(\omega_n^2 - \Omega^2)^2 + (2\zeta\omega_n\Omega)^2}},\tag{3}$$

$$\phi = \arctan 2(2\zeta \omega_n \Omega, \ \omega_n^2 - \Omega^2), \tag{4}$$

e, com $A = x(0) + X \sin \phi$ e $B = (v(0) - X\Omega \cos \phi + \zeta \omega_n A)/\omega_d$, tem-se

$$x(t) = e^{-\zeta \omega_n t} \left(A \cos \omega_d t + B \sin \omega_d t \right) + X \sin(\Omega t - \phi).$$
 (5)

Essa é a expressão da solução analítica usada como referência para as análises do erro numérico. Primeiramente, os resultados numéricos fornecidos por ambos os métodos são mostrados para os primeiros 20s, e é possível observar uma congruência nas respostas na Fig. 1.

Métdodos implementados

RK4 (passo fixo). O método clássico de 4ª ordem com passo Δt constante avança $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{\Delta t}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$, com os incrementos padrão calculados em $\{t_n, t_n + \Delta t/2, t_n + \Delta t\}$.

Figura 1: Solução numérica do oscilador harmônico linear utilizando o RK4 e DOPRI45 em comparação com a solução analítica.

DOPRI45 (passo adaptativo). Implementou-se o esquema de Dormand-Prince embutido 5(4) com controle de erro escalar:

- dois approximantes de ordem 5 e 4 são construídos a cada passo; o erro embutido é $e = y^{[5]} y^{[4]}$;
- a norma adimensional do erro é $||e|| = \sqrt{\frac{1}{m} \sum_{i} (e_i/\text{scale}_i)^2}$, $\text{scale}_i = \text{atol} + \max(|y_i|, |y_i^{[5]}|) \text{ rtol}$;
- o passo é aceito se $||e|| \le 1$; caso contrário, é rejeitado;
- a atualização do passo segue $h_{\text{novo}} = \text{safety } h \|e\|^{-1/(p+1)}$, com p = 5, fator de segurança safety = 0,9 e limites h_{min} , h_{max} . O último passo é truncado para coincidir exatamente com t_f .

Foram usados por padrão rtol = 10^{-6} , atol = 10^{-9} e $h_{\text{initial}} = 8 \times 10^{-3}$.

Estudo de convergência

A convergência dos métodos foi avaliada pelo erro RMS da coordenada de deslocamento, amostrado na malha temporal de cada método:

$$RMS = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(x_{\text{num}}(t_n) - x_{\text{ref}}(t_n) \right)^2}.$$
 (6)

Para o **RK4**, variou-se diretamente o passo fixo de integração, observando a redução do erro conforme o passo diminui, em concordância com a ordem 4 do método (Fig. 2). Para o **DOPRI45**, foi realizado um estudo em função da *tolerância relativa* imposta ao

controle de erro. O erro RMS obtido é comparado com a solução analítica de referência, mostrando a relação direta entre a tolerância especificada e o erro (Fig. 3). Adicionalmente, foi avaliado o número de passos aceitos pelo integrador, ilustrando o aumento do custo computacional à medida que a tolerância é tornada mais restritiva (Fig. 4).

Figura 2: Estudo de convergência para o método RK4.

Figura 3: Estudo de convergência para o método DOPRI45.

Figura 4: Custo em função da tolerância para o DOPRI45.

Adaptação do passo (DOPRI45). Foi reportado também a série $\Delta t_k = t_{k+1} - t_k$ ao longo da integração, evidenciando regiões em que o método reduziu/expandiu o passo de acordo com a oscilação e o amortecimento do sistema (Fig. 5).

Figura 5: Adaptação do passo ao longo da integração para o DOPRI45.

Discussão. O RK4 de passo fixo é adequado para sistemas não rígidos, de dinâmica conhecida e em aplicações didáticas, quando simplicidade e previsibilidade importam mais que eficiência. Já o DOPRI45 adaptativo é preferível em problemas com forte não linearidade, transientes rápidos ou quando se deseja controle automático de erro e economia de tempo de simulação.

Ambos, porém, podem ser ineficientes em sistemas rígidos, ou sistemas não suaves que possuem batentes, onde são mais indicados métodos implícitos como o BDF. Em sistemas conservativos de longo prazo, uma alternativa são os métodos simpléticos, que preservam invariantes físicos como energia e fase.

2ª Questão

Para uma excitação $f(t) = \gamma \sin(\Omega t)$, o período do forçamento é $T = 2\pi/\Omega$. O mapa de Poincaré \mathcal{P} é obtido pela amostragem estroboscópica: dado o estado \mathbf{y}_k no instante $t_k = kT$, integra-se a EDO até $t_{k+1} = t_k + T$ e define-se $\mathbf{y}_{k+1} = \mathcal{P}(\mathbf{y}_k) = \mathbf{y}(t_{k+1})$. Esse procedimento é repetido após um número inicial de períodos descartados (transientes), armazenando (x, \dot{x}) ou $(\phi, \dot{\phi})$.

Integração. Usou-se RK4 de passo fixo com $\Delta t = T/m$ (com $m \in \mathbb{N}$) para que as amostras ocorram exatamente em múltiplos de T. Para DOPRI45 (método 5(4) de Dormand-Prince) foi implementado um passo adaptativo com controle de erro embutido; para preservar a fase de amostragem, integrou-se período a período.

Letra a) Mapas de Poincaré com o RK4

Foram usados m_T pontos por período, com transiente descartado e número de pontos do mapa conforme o script.

- Oscilador linear não dissipativo ($\omega_n = 1, \ \gamma = 0.3$). Avaliaram-se razões $\Omega/\omega_n \in \{0.5, 1.0, 1.5\}$. Sem amortecimento, não há atrator; o mapa estroboscópico exibe órbitas periódicas finitas (para razões racionais) ou preenchimento de curvas invariantes (para razões irracionais). Próximo à ressonância ($\Omega = \omega_n$) observa-se crescimento de amplitude. Veja os mapas nas Figuras 6, 7 e 8.
- Duffing biestável (três casos):

1.
$$\zeta = 0.05$$
, $\alpha = 1$, $\beta = 1$, $\gamma = 0.2$, $\Omega = 1.0$;

2.
$$\zeta = 0.1$$
, $\alpha = 1$, $\beta = 1$, $\gamma = 0.37$, $\Omega = 1.2$;

3.
$$\zeta = 0.05$$
, $\alpha = 1$, $\beta = 1$, $\gamma = 0.35$, $\Omega = 1.0$.

Para forçamento pequeno (caso 1) o mapa tende a um ponto fixo 1T em um dos poços. Com maior amplitude e/ou desajuste de frequência (casos 2–3), surgem multiperíodos e/ou curvas quase-periódicas; a topologia de fase exibe ilhas associadas aos dois poços e, para parâmetros mais energéticos, regiões com mistura de órbitas. Veja os mapas nas Figuras 9, 10 e 11.

• Pêndulo forçado (três casos):

1.
$$\zeta = 0.05$$
, $\omega_n = 1$, $\gamma = 0.5$, $\Omega = 1.0$;

2.
$$\zeta = 0.05$$
, $\omega_n = 1$, $\gamma = 1.2$, $\Omega = 0.8$;

3.
$$\zeta = 0.1, \, \omega_n = 1, \, \gamma = 1.5, \, \Omega = 2.0.$$

Figura 6

Figura 7

Figura 8

Figura 9

Figura 10

Figura 11

Com γ pequeno, predominam órbitas oscilatórias ao redor do equilíbrio e mapas 1T; aumentando γ e/ou alterando Ω surgem rotações (ϕ contido em $(-\pi,\pi]$) e combinações multi-periódicas, refletidas em múltiplos pontos no mapa. Veja os mapas nas Figuras 12, 13 e 14.

Figura 12

Letra b) Uso do DOPRI45 e dificuldades encontradas

Métodos adaptativos não produzem amostras exatamente nos tempos $t_k = kT$. A aproximação por "ponto mais próximo" introduz erro de fase acumulativo e distorce o mapa. Mesmo com tolerâncias rígidas, o DOPRI45 escolhe tempos internos ligeiramente diferentes a cada período; combinando isso com erros de arredondamento no $sen(\Omega t)$ o resultado é a "nuvem" na trajetória e no mapa de Poincaré, em vez de uma curva única e um ponto fixo. Este problema é ilustrado na Figura 15.

Para contornar, adotou-se integração período a período onde a fase do forçamento é travada para que o RHS do sistema dependa do tempo dentro do período ($\tau = t \mod T$) e não do tempo absoluto t. Assim, cada período vê exatamente a mesma excitação e o mapa volta a ser determinístico. Nas Figuras 16, 17 e 18, são mostrados os mapas com o DOPRI45 para um exemplo de cada um dos 3 sistemas analisados.

3ª Questão

Seja um sistema autônomo $\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y})$. Pontos de equilíbrio \mathbf{y}^* satisfazem $\mathbf{g}(\mathbf{y}^*) = \mathbf{0}$. A natureza local decorre do jacobiano $\mathbf{J} = \partial \mathbf{g}/\partial \mathbf{y}|_{\mathbf{y}^*}$: se todos os autovalores possuem parte

Figura 13

Figura 14

Figura 15: Exemplo da "nuvem" na trajetória e no mapa de Poincaré devido ao erro de fase acumulativo no método de passo adaptativo.

real negativa, o equilíbrio é assintoticamente estável; se algum possui parte real positiva, é instável. Autovalores com parte real nula caracterizam casos limite, nos quais a linearização é inconclusiva quanto à assintoticidade.

(a) Oscilador tipo Duffing

$$\ddot{x} + 2\zeta \dot{x} + \alpha x + \beta x^3 = 0.$$

Com $\mathbf{y} = [x, \dot{x}]^{\mathsf{T}}$, $\dot{\mathbf{y}} = [\dot{x}, -2\zeta\dot{x} - \alpha x - \beta x^3]^{\mathsf{T}}$. Os equilíbrios satisfazem $\dot{x} = 0$ e $\alpha x + \beta x^3 = 0$, isto é

$$x^* = 0$$
 e $x^* = \pm \sqrt{-\alpha/\beta}$ (se $\alpha\beta < 0$).

O jacobiano em $(x^*, 0)$ vale

$$\mathbf{J} = \begin{bmatrix} 0 & 1 \\ -(\alpha + 3\beta x^{*2}) & -2\zeta \end{bmatrix}, \qquad \lambda^2 + 2\zeta\lambda + (\alpha + 3\beta x^{*2}) = 0.$$

Para $\zeta > 0$, se $\alpha + 3\beta x^{\star 2} > 0$ o equilíbrio é estável (nó/foco); se $\alpha + 3\beta x^{\star 2} < 0$ é do tipo sela (instável). Em particular: $\alpha > 0, \beta > 0 \Rightarrow x^{\star} = 0$ estável; $\alpha < 0, \beta > 0 \Rightarrow x^{\star} = 0$ é sela e $x^{\star} = \pm \sqrt{-\alpha/\beta}$ são estáveis. No caso conservativo ($\zeta = 0$) com $\alpha + 3\beta x^{\star 2} > 0$, os autovalores são puramente imaginários (centro; apenas estabilidade de Lyapunov).

Oscilador linear — Poincaré (RK4 × DOPRI45)

Figura 16

Figura 17

Pêndulo — Poincaré (RK4 × DOPRI45) 2 1 trajetória RK4 0 trajetória DOPRI45 Poincaré RK4 Poincaré DOPRI45 -1-2 -2 -3 -11 2 3

Figura 18

φ (mod 2π)

(b) Pêndulo simples com amortecimento

$$\ddot{\phi} + \zeta \dot{\phi} + \omega_n^2 \sin \phi = 0, \qquad \dot{\mathbf{y}} = \begin{bmatrix} \dot{\phi} \\ -\zeta \dot{\phi} - \omega_n^2 \sin \phi \end{bmatrix}.$$

Os equilíbrios são $\phi^{\star}=k\pi,\,\dot{\phi}^{\star}=0.$ O jacobiano em $(\phi^{\star},0)$ é

$$\mathbf{J} = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 \cos \phi^* & -\zeta \end{bmatrix}, \qquad \lambda^2 + \zeta \lambda + \omega_n^2 \cos \phi^* = 0.$$

Logo, para $\zeta > 0$:

$$\phi^{\star} = 2k\pi \Rightarrow \Re\{\lambda\} < 0 \implies \text{assintoticamente estável (no/foco)}, \qquad \phi^{\star} = (2k+1)\pi \Rightarrow \text{sela (instável)}.$$

No limite conservativo ($\zeta=0$), $\phi^{\star}=2k\pi$ são centros (linearização inconclusiva sobre assintoticidade).

(c) Sistema de Lorenz

$$\dot{x} = \sigma(y - x), \qquad \dot{y} = x(\rho - z) - y, \qquad \dot{z} = xy - \beta z.$$

Os equilíbrios são $E_0 = (0,0,0)$ e, se $\rho > 1$, $E_{\pm} = (\pm \sqrt{\beta(\rho-1)}, \pm \sqrt{\beta(\rho-1)}, \rho-1)$. Em E_0 , o espectro é $\{-\sigma, -\beta, \rho-1\}$, logo E_0 é assintoticamente estável para $\rho < 1$ e instável para $\rho > 1$. Em E_{\pm} , ocorre uma bifurcação de Hopf em

$$\rho_H = \frac{\sigma(\sigma + \beta + 3)}{\sigma - \beta - 1} \quad (\sigma > \beta + 1),$$

tornando E_{\pm} estáveis em $1 < \rho < \rho_H$ e instáveis para $\rho > \rho_H$. Com $(\sigma, \beta) = (10, 8/3)$, obtém-se $\rho_H \approx 24{,}74$.

(d) Sistema multiestável com 2 graus de liberdade

$$\ddot{x}_1 + 2\zeta_1\dot{x}_1 - 2\zeta_2(\dot{x}_2 - \dot{x}_1) + (1 + \alpha_1)x_1 + \beta_1x_1^3 - \rho\Omega_s^2(x_2 - x_1) = 0,$$

$$\rho \ddot{x}_2 + 2\zeta_2(\dot{x}_2 - \dot{x}_1) + \alpha_2x_2 + \beta_2x_2^3 + \rho\Omega_s^2(x_2 - x_1) = 0.$$

No equilíbrio $\dot{x}_1 = \dot{x}_2 = \ddot{x}_1 = \ddot{x}_2 = 0$, as coordenadas $(x_1^{\star}, x_2^{\star})$ satisfazem

$$(1 + \alpha_1 + \rho \Omega_s^2)x_1 - \rho \Omega_s^2 x_2 + \beta_1 x_1^3 = 0, \qquad -\rho \Omega_s^2 x_1 + (\alpha_2 + \rho \Omega_s^2)x_2 + \beta_2 x_2^3 = 0.$$

Linearizando em $\mathbf{y} = [x_1, \dot{x}_1, x_2, \dot{x}_2]^{\top}$ obtém-se o jacobiano 4×4 mostrado no texto. A estabilidade local decorre do espectro de \mathbf{J} : todas as partes reais negativas implicam estabilidade assintótica. Para parâmetros representativos, aparecem três equilíbrios: a origem tipo sela e dois equilíbrios estáveis simétricos.

Implementação generalizada. A busca de equilíbrios é feita por Newton multivariável com jacobiano numérico e varredura de sementes em uma caixa prescrita; duplicatas são removidas por tolerância. A classificação é baseada no espectro de **J** (com refinamento traço—determinante em 2D). Para visualização, usa-se um *heatmap* do campo linearizado

$$S(\mathbf{y}) = \min_{i} \| \mathbf{J}_{i}(\mathbf{y} - \mathbf{y}_{i}^{\star}) \|,$$

o que realça as regiões de influência de cada equilíbrio.

Casos em que a linearização é inconclusiva. Quando alguma parte real é nula (e.g., pêndulo com $\zeta=0$ em $\phi^\star=2k\pi$), a análise linear não infere assintoticidade. Nesses casos, recorre-se a funções de Lyapunov/energia ou a termos não lineares de ordem superior para uma conclusão definitiva. As Figuras 19 até 26 mostram os heatmaps plotados com os pontos de equilíbrio obtidos para os exemplos.

4ª Questão

Considere um sistema autônomo $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y}), \ \mathbf{y} \in \mathbb{R}^n$. Um ponto \mathbf{y}^* é de equilíbrio se $\mathbf{f}(\mathbf{y}^*) = \mathbf{0}$. A bacia de atração de um equilíbrio assintoticamente estável \mathbf{y}^* é o conjunto $\mathcal{B}(\mathbf{y}^*) = \{\mathbf{y}_0 : \mathbf{y}(t; \mathbf{y}_0) \to \mathbf{y}^* \text{ quando } t \to \infty\}$.

Metodologia numérica adotada

1. (Bônus) Detecção automática de atratores. Em uma caixa do espaço de estados, buscamos raízes de f por Newton multivariável, com jacobiano numérico por diferenças. Duplicatas são fundidas por tolerância. Cada raiz é classificada pela linearização local; se todos os autovalores do jacobiano possuem parte real negativa, o ponto é marcado como atrator.

Figura 19

Figura 20

Q

 $Figura\ 22$

Figura 23

Lorenz (ρ =28.0) — heatmap linearizado global (fatia z=z*) + equilíbrios

Figura 25

2-GL — heatmap linearizado global $(x_1 \times x_2)$ + equilíbrios

Figura 26

- 2. Classificação de cada condição inicial. Escolhe-se um subespaço bidimensional (conforme o enunciado) e gera-se uma malha. Para cada ponto, integra-se a dinâmica por blocos com odeint (LSODA), parando antecipadamente quando a trajetória entra em uma vizinhança de algum atrator e a norma de f no estado é pequena. A distância usada é ponderada (posição com peso maior que velocidade) e admite variáveis periódicas (menor diferença angular módulo 2π).
- 3. **Visualização.** Cada subespaço resulta em um mapa categórico (uma cor por atrator). Pontos não classificados (no tempo máximo) são mostrados em cinza. Os equilíbrios estáveis são marcados com estrelas.

Casos solicitados

(a) Duffing no plano $x \times \dot{x}$. Para parâmetros biestáveis $(\alpha < 0, \beta > 0, \zeta > 0)$ há dois atratores simétricos $(\pm \sqrt{-\alpha/\beta}, 0)$. A bacia é particionada pela separatriz associada ao equilíbrio do tipo sela (Figura 27).

Figura 27

- (b) Pêndulo amortecido no plano $\phi \times \dot{\phi}$. Dentro de $\phi \in [-\pi, \pi]$, os equilíbrios são $\{-\pi, 0, \pi\} \times \{0\}$; com $\zeta > 0$, apenas $\phi^* = 0$ é atrator. A classificação considera a periodicidade angular, evitando múltiplas imagens do mesmo poço (Figura 28).
- (d) Sistema multiestável 2-GL. As bacias são calculadas nas projeções $x_1 \times x_2$ (com $\dot{x}_1 = \dot{x}_2 = 0$), $x_1 \times \dot{x}_1$ (com $x_2 = \dot{x}_2 = 0$) e $x_2 \times \dot{x}_2$ (com $x_1 = \dot{x}_1 = 0$). Para um conjunto representativo de parâmetros, aparecem dois atratores estáveis simétricos e separatrizes em torno da origem do tipo sela (Figuras 29 até 31).

Figura 28

Figura 29

Figura 30

Figura 31

Parada antecipada. Próximo a separatrizes o campo é pequeno e a convergência é lenta; integrar por blocos e interromper quando $\|\mathbf{y} - \mathbf{y}^*\|$ e $\|\mathbf{f}(\mathbf{y})\|$ são pequenas acelera a classificação e evita falsas trocas.

Pesos e ângulos. Atribuir menor peso às velocidades melhora a robustez da métrica. Para o pêndulo, usa-se distância angular mínima (mód. 2π).

Caixa de busca. A detecção automática encontra atratores na janela analisada; atratores fora da caixa não são considerados.

(Bônus) Estruturas genéricas

O código fornece duas rotinas reutilizáveis:

- 1. stable_equilibria(f, params, box) encontra e classifica equilíbrios estáveis de qualquer sistema autônomo.
- 2. gerar_bacia_atracao(...) constrói a bacia em uma malha 2D, com pesos e tratamento de variáveis periódicas.

5ª Questão (Bônus)

No código em anexo foi construído um algoritmo, baseado no conceito de *mapas de Poincaré*, capaz de classificar automaticamente a resposta de qualquer sistema dinâmico sob excitação harmônica em: *período-1*, *período-k* (sub-harmônico), *quase-periódico* ou *caótico*; além de detectar *divergência*.

Considera-se um sistema periódico em t:

$$\dot{\mathbf{y}} = \mathbf{f}(t, \mathbf{y}), \qquad \mathbf{f}(t + T, \mathbf{y}) = \mathbf{f}(t, \mathbf{y}),$$

com período $T = \frac{2\pi}{\Omega}$. O mapa de Poincaré é a aplicação $\mathbf{P} : \mathbf{y}_k \mapsto \mathbf{y}_{k+1}$ definida por $\mathbf{y}_{k+1} = \Phi_T(\mathbf{y}_k)$, onde Φ_T é o fluxo em um período.

Metodologia numérica

- 1. Amostragem estroboscópica. Integra-se de t a t+T com RK4 de passo fixo $\Delta t = T/m$, com m suficientemente grande para garantir amostragem phase-locked. Após descartar n_{trans} períodos de transiente, registram-se N pontos do mapa $\{\mathbf{y}_k\}_{k=1}^N$.
- 2. Padronização. Os pontos do mapa são padronizados (whitening): $\tilde{\mathbf{y}} = (\mathbf{y} \boldsymbol{\mu}) \oslash \boldsymbol{\sigma}$. Isso elimina o efeito de escalas distintas nas variáveis.
- 3. Detecção de periodicidade por agrupamento. Aplica-se um DBSCAN minimalista em $\tilde{\mathbf{y}}$ com raio ε e m_{\min} vizinhos. Se o número de clusters k satisfaz $1 \le k \le k_{\max}$, com raios médios compactos e baixa fração de ruído, classifica-se como período-k.
- 4. Quase-periódico vs. caótico. Quando não há poucos clusters compactos, usa-se o teste 0-1 para caos (Gottwald-Melbourne) sobre uma coordenada estroboscópica x_k . Para diversos $c \in (0,\pi)$, projeta-se (p,q) por somas cumulativas, calcula-se o deslocamento quadrático médio $M(\tau)$ e o coeficiente de correlação $K = |\text{corr}(M(\tau),\tau)| \in [0,1]$. Classifica-se como caótico se $K \geq 0.80$ e como quase-periódico caso contrário.

Foram avaliados três sistemas: (i) linear amortecido forçado (tipicamente período-1); (ii) Duffing forçado (transições entre período-k, quase-periódico e caótico conforme γ e Ω); (iii) pêndulo forçado (regimes quase-periódicos e caóticos para excitações mais fortes). A classificação foi obtida automaticamente com $N \approx 400$ pontos do mapa.

Valores recomendados na escala padronizada: $\varepsilon \in [0.03, 0.08]$, $m_{\min} = 3$, $k_{\max} = 8$. O teste 0–1 usa a mediana de K sobre diversos c para robustez. A amostragem estroboscópica evita desalinhamento de fase mesmo com passos fixos.