Семинарское занятие №24

Воробьёв Сергей

Март 2020

Признаки сходимости

Пусть $a_n \geq 0$ или $a_n \leq 0$, тогда S называется знакочередующимся, где

$$S = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$

Признак Лейбница

Если $lim_{n\to\infty}a_n=0$ и $\forall n\Rightarrow a_n\geq a_{n+1}\geq 0,$ то

$$S = \sum_{n=1}^{\infty} (-1)^{n-1} a_n \to$$

Признак Дирихле Рассмотрим ряд $S^* = \sum_{n=1}^{\infty} a_n b_n$

- 1) Частичные суммы ряда $\sum_{n=1}^{\infty} b_n$ ограниченны 2) Последовательность $\{a_n\}$ монотонно стремится к нулю To ряд S^* сходится

Признак Абеля

Рассмотрим также ряд $S^* = \sum_{n=1}^{\infty} a_n b_n$

Если:

- 1) $\sum_{n=1}^{\infty} b_n$ сходится 2) Последовательность $\{a_n\}$ монотонна и ограниченна

To ряд S^* сходится

Задание 1. Исследовать ряд на абсолютную сходимость:

$$a_n = \frac{(n+1)\cos(2n)}{\sqrt[3]{n^7 + 3n + 4}}$$

Решение:

$$\sum_{n=1}^{\infty} \left| \frac{(n+1)cos(2n)}{\sqrt[3]{n^7} + 3n + 4} \right| \leq \sum_{n=1}^{\infty} \frac{n+1}{\sqrt[3]{n^7}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^4}} + \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^7}}$$

Ряд сходится абсолютно

Ответ: сходится абсолютно

Задание 2. Исследовать на сходимость:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

Решение:

Заметим, что ряд абсолютно не сходится. Исследуем на условную сходимость:

 $\{a_n\}$ монотонно стремится к нулю. Выполняются все условия признака Лейбница. Ряд сходится условно

Ответ: сходится условно

Задание 3:

Пусть последовательность $\{a_n\}$ монотонно стремится к нулю. Верно ли, что $\forall \alpha \in R$ ряд $\sum_{n=1}^{\infty} a_n sin(n\alpha)$ сходится?

Решение:

Рассмотрим $S_n = \sum_{k=1}^n sin(k\alpha)$

$$2sin\left(\frac{\alpha}{2}\right)S_n = cos\left(\frac{\alpha}{2}\right) - cos\left(n\alpha + \frac{\alpha}{2}\right) = 2sin(n\alpha)sin\frac{(n+1)\alpha}{2}$$
$$S_n = \frac{sin(n\alpha)sin\frac{(n+1)\alpha}{2}}{sin(\frac{\alpha}{2})}$$
$$|S_n| \le \frac{1}{sin(\frac{\alpha}{2})}$$

Таким образом, выполняются все условия признака Дирихле. Следовательно, ряд сходится

Ответ: верно

Задание 4. Сходится ли ряд?

$$\sum_{n=1}^{\infty} \frac{\sin(n\alpha)}{\ln(\ln(n+2))} \cos\left(\frac{1}{n}\right)$$

Репление:

Рассмотрим $S = \sum_{n=1}^{\infty} \frac{\sin(n\alpha)}{\ln(\ln(n+2))}$. Такой ряд сходится по признаку Дирихле (следствие из предыдущей задачи). Далее, последовательность $cos\left(\frac{1}{n}\right)$ монотонна и ограниченна. Таким образом, выполнены все условия признака Абеля. Следовательно, ряд сходится

Ответ: ряд сходится