

Fundamentals of Data Engineering

Trainer: Nilesh Ghule

Big Data

Big Data

Buiz 1 > 15th 7 10 mcg.

Sque

Sque

Sque

Middle end quiz 3 20mcg.

- 1) Databases
- 2 Big Data
- 3) Cloud Computing
- (4) ···

Pre-requisites

- 1) Compuder Ruedaneentaly
- 2 Openation Systems
- 3 Networking
- (4) beodermont : bypon Dard ...

Introduction

Big Data Fundamentals

• Evolution of Data Engineering | V's: Volume, Velocity, Variety, Veracity, Value

Databases

RDBMS - ACID, SQL (basic concept only) I NoSQL - BASE, CAP theorem

Data warehouse - OLAP vs OLTP

Data cleansing, Data transformations and Data modelling I Data warehouse vs Data mart

Data Engineering Life Cycle

- Source → Ingestion → Storage → Transformation → Serving
- Ingestion: ETL vs ELT
- Storage: Distributed storage, Storage services I Processing: Batch vs Stream

Cloud computing fundamentals

Virtualization, Scaling, Elasticity, Cloud service models, Vendors

Big Data Technologies

- Frameworks: Hadoop, Hive, Spark, Kafka
- Applications and Job profiles.

Data Engineering at a Glance

Database & Warehouse

- File IO - Data

~ 1970 : E.F. Codd -> Relational Dems

~ 1980; RDBMS popular

~ 1991: Data Warehouse ~ 1995: Jara Ly Data analysis. **591**

Internet & **DotCom**

~1993; www - business on internet.

popular

NoSQL Database

~1998: Co-610 St0221 ~ High perfrance,

Huge Data,

~ GPU A. data process: 2005

~ Grid Computing - Shoer Computer

V Distributed Computing Storage

Cloud Computing

v Data centers LAWS, GCP, Azure, Sonact - Pay per use.

Big Data characteristics

Types of Data

RDBMS DBMS: CRUD ops > Corale/Invert, Retrieve/Solver, Update/drange, Delete

- Every enterprise application need to manage data.
- RDBMS is relational DBMS than manages structured data.
- Data is organized into tables, rows and columns. Tables are related to each other.
- All enterprise RDBMS follow serverclient architecture, have built-in relational capabilities, fully ACID transactions, based on Codd's rules.
- DB2, <u>Oracle</u>, <u>MS-SQL</u>, <u>MySQL</u>, <u>Postgre-SQL</u>, <u>MS-Access</u>, SQLite, etc.

SQL – Structured Query language

- RDBMS data is processed with SQL queries.
- ANSI standardised in 1986, ISO Std in 1987.
- · Five major categories: related to standard scheme of data.
 - DDL: Data Definition Language e.g. CREATE, ALTER, DROP, RENAME.
 - CREATE TABLE people(id INT, name CHAR(40), birth DATE);
 - DML: Data Manipulation Language e.g. INSERT, UPDATE, DELETE.
 - INSERT INTO people VALUES(1, 'Nilesh', '1983-09-28');
 - UPDATE people SET name='NILESH' WHERE id=1;
 - DELETE FROM people WHERE id=1;
 - DQL: Data Query Language e.g. SELECT.
 - **SELECT** * FROM people;
 - DCL: Data Control Language e.g. CREATE USER, GRANT, REVOKE.
 - TCL: Transaction Control Language e.g. SAVEPOINT, COMMIT, ROLLBACK.

RDBMS — ACID Transactions

-	accounts	_		account	S	inconsistent
bi	type	balance	bi	type	balance	¥
1 2	Saving	2000 2 3000	2		2000	1000 EUPDATE Dal = 2000 X X X
3	Saving	50000 20000	3	(urrent Saving	20000	Tox is set of DML queries that is executed as a
	START	TRASACTION;				single unit.
2	UPDATE	acrounts SET	pala	7000 6	NHERE	Either all queries in the
					id=1;	should be completed > commit
3	UPDATE	accounts SET	bal:	5500 (NHERE id=2;	OR .
4	COMMIT	; or ROLLE	ACK;		10.2	all queries in to should be discarded> ROLLBACK
(1) ATOMIC -> All queries success or fail.						
2 CONSISTENT -> Same data visible to all clients. 3) ISOLATED -> Multiple tox will execute independently.						
4	DURABL	E > First res	the steri	Jens	e होगक	on dist.

Scalability

NoSQL Databases

- 1998 Carlo Stoozzi NOSAL= Anti-SAL.
- Stands for Not Only SQL his own db
- Lost for interestional conference 1 data - mosql become popular.

> Partition Tolerance

- Manages structured and semi-structured data.
- Prioritizes high performance, high availability and scalability
- Designed for Horizontal scaling. Reliable, fault tolerant, Better performance/Speed.
- · No declarative query language different languages for diff bbs.
- Uses: Huge data (TBs), Many Read/Write ops, Scalable, Flexible schema.
- Don't use if: Need high consistency, Multiple relations
- BASE transactions and Based on CAP Theorem

-> Consistency Availability

- Consistency Data is consistent after operation. After an update operation, all clients see the same data.
- Availability System is always on (i.e. service guarantee), no downtime.
- Partition Tolerance System continues to function even the communication among the servers is unreliable.

NoSQL — Partition Tolerance and BASE Transactions

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

