A Proposal for an OpenMath JSON Encoding

Tom Wiesing Michael Kohlhase Computer Science, FAU Erlangen-Nürnberg

July 10, 2019
OpenMath Workshop
Conference on Intelligent Computer Mathematics
Prague, Czech Republic

What is JSON?

- JSON = JavaScript Object Notation
 - lightweight data-interchange format
 - subset of JavaScript (used a lot on the web)
 - defined independently
- Primitive types
 - Strings (e.g. "Hello, world")
 - Numbers (e.g. 42 or 3.14159265)
 - Booleans (true and false)
 - null
- Composite types
 - Arrays (e.g. [1, "two", false])
 - Objects (e.g. {"foo": "bar", "answer": 42})

Why an OpenMath encoding for JSON?

- an OpenMath JSON encoding would make it easy to use across many languages
 - JSON support exists in most modern programming languages
 - corresponding native types common
 - serialization to/from JSON without external library
- some existing approaches for an OpenMath JSON encoding
 - discussed / suggested on the OpenMath mailing list
 - we will look at two examples here

XML as JSON

- Idea: Generically encode XML as JSON
- use the JSONML standard for this
- e.g. plus(x, 5) corresponds to:

```
[
   "OMOBJ",
   {"xmlns":"http://www.openmath.org/OpenMath"},
   [
        "OMA",
        ["OMS", {"cd": "arith1", "name": "plus"}],
        ["OMV", {"name": "x"}],
        ["OMI", "5"]
]
```

XML as JSON (2)

- Advantages
 - based on well-known XML encoding
 - easy to understand based on it
- does not make use of JSON structures
 - all attributes are encoded as strings, even numbers
 - e.g. 1e-10 (a valid JSON literal) can not be used
- retains some of the XML akwardness
 - introduces unnecessary overhead
 - e.g. some pseudo-elements (such as OMATP) are needed

OpenMath-JS

- OpenMath-JS
 - an (incomplete) implementation of OpenMath in JavaScript
 - developed by Nathan Carter for use with Lurch Math on the web
 - written in literate coffee script, a derivative language of JavaScript
- e.g. plus(x, 5) corresponds to:

```
{
    "t": "a",
    "c": [
        {"t": "sy", "cd": "arith1", "n": "plus"},
        {"t": "v", "n": "x"},
        {"t": "i", "v": "5"}
    ]
}
```

OpenMath-JS (2)

- does make use of JSON native structures
 - much better than JSON-ML
 - small property names keep size of transmitted objects small
- comes with some problems
 - hard to read for humans
 - written for JavaScript, not JSON
 - no formal schema

Towards an OpenMath JSON Formalization

- we need to write a new OpenMath JSON encoding
 - combine advantages of the above two
 - should be close to the XML encoding
 - should make use of JSON concepts
- we want to formalize this JSON encoding
 - to verify JSON objects
 - not done by existing approaches
- comes with some positive side effects
 - formalization of JSON ⇒ structure definition in most languages
 - trivial to use advanced serialization tools
 - e.g. Protocol Buffers, ZeroMQ
- we can use JSON Schema
 - a vocabulary allowing us to validate and annotate JSON documents
 - tools for verification exist

Towards an OpenMath JSON Formalization (2)

- JSON schema is often tedious to write and read
 - especially when it comes to recusrive data types
 - but implementation of it still exist
- Idea: Write schema in a TypeScript Definition file, compile into a JSON schema
 - TypeScript = JavaScript + Type Annotations
 - easily writeable and understandable
 - a compiler from TypeScript Definitions into JSON Schema exists
- We have done this, will present some examples

Towards an OpenMath JSON Formalization (3)

- Wrote a JSON Schema
 - was written as described above
 - we will give an overview how this looks below
- Wrote a translator from OpenMath XML to JSON (we have actually built two)
 - web demo on (https://omjson.openmath.org)
 - as part of MMT (i.e. Scala) in the form of a RESTful API
- Wrote an extension of the OpenMath Standard to make it an official encoding

 \Rightarrow Let's look at the concrete proposal for examples