Estatística para Cursos de Engenharia e Informática

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia

São Paulo: Atlas, 2004

Cap. 11 – Correlação e Regressão

APOIO:

Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC)

Departamento de Informática e Estatística – UFSC (INE/CTC/UFSC)

Correlação

 X e Y estão positivamente correlacionadas quando elas caminham num mesmo sentido;

• Estão negativamente correlacionadas quando elas caminham em sentidos opostos.

Exemplo 11.1

- Processo de queima de massa cerâmica para pavimento
 - $-X_1 = \text{retração linear (\%)},$
 - $-X_2$ = resistência mecânica (MPa) e
 - $-X_3$ = absorção de água (%).

Exemplo 11.1 - Dados:

ensaio	X_1	X_2	X_3	ensaio	X_{1}	X_2	X_3
1	8,70	38,42	5,54	10	13,24	60,24	0,58
2	11,68	46,93	2,83	11	9,10	40,58	3,64
3	8,30	38,05	5,58	12	8,33	41,07	5,87
4	12,00	47,04	1,10	13	11,34	41,94	3,32
5	9,50	50,90	0,64	14	7,48	35,53	6,00
6	8,58	34,10	7,25	15	12,68	38,42	0,36
7	10,68	48,23	1,88	16	8,76	45,26	4,14
8	6,32	27,74	9,92	17	9,93	40,70	5,48
9	8,20	39,20	5,63	18	6,50	29,66	8,98

Exemplo 11.1 - Diagramas de dispersão:

Interpretar a correlação entre as duas variáveis.

Exemplo 11.1 - Diagramas de dispersão:

Interpretar a correlação entre as duas variáveis.

Exemplo 11.1 - Diagramas de dispersão:

Interpretar a correlação entre as duas variáveis.

Idéia de construção do Coef. de Correlação de Pearson

• Padronização $(x_i, y_i) \rightarrow (x_i', y_i')$:

$$x_i' = \frac{x_i - \overline{x}}{s_x}$$

$$y_i' = \frac{y_i - \overline{y}}{s_y}$$

$$(i = 1, 2, ..., n)$$

Padronização (Ex. 11.1 a):

Padronização (Ex. 11.1 a):

Idéia de construção do Coef. de Correlação de **Pearson**

$$x_i' = \frac{x_i - \overline{x}}{s_x}$$

$$x'_{i} = \frac{x_{i} - \overline{x}}{S_{x}}$$
 $y'_{i} = \frac{y_{i} - \overline{y}}{S_{y}}$ $(i = 1, 2, ..., n)$

$$(i = 1, 2, ..., n)$$

Considere os produtos dos valores padronizados:

$$x_i, y_i,$$

Idéia de construção do Coef. de Correlação de Pearson

Padronização (x_i, y_i) → (x_i', y_i') :

$$x_i' = \frac{x_i - \overline{x}}{s_x}$$

$$x'_{i} = \frac{x_{i} - \overline{x}}{s_{x}}$$
 $y'_{i} = \frac{y_{i} - \overline{y}}{s_{y}}$ $(i = 1, 2, ..., n)$

$$(i = 1, 2, ..., n)$$

Coef. de Correlação de Pearson:

$$r = \frac{\sum_{i=1}^{n} (x_i' y_i')}{n-1}$$

Valores possíveis de r e interpretação da correlação

BARBETTA, REIS e BORNIA - Estatística para Cursos de Engenharia e Informática. Atlas, 2004

Exemplo 11.1. Matriz de correlações

	retração linear	resistência mecânica	absorção de água
retração linear	1,00	0,75	-0,88
resistência mecânica	0,75	1,00	-0,84
absorção de água	-0,88	-0,84	1,00

Interpretar.

Outra forma de calcular r

$$r = \frac{n\sum(x_{i}.y_{i}) - (\sum x_{i})(\sum y_{i})}{\sqrt{n\sum x_{i}^{2} - (\sum x_{i})^{2}} \cdot \sqrt{n\sum y_{i}^{2} - (\sum y_{i})^{2}}}$$

Coeficiente de correlação populacional

$$\rho = Corr(X, Y) = E\left\{ \left(\frac{X - \mu_X}{\sigma_X} \right) \cdot \left(\frac{Y - \mu_Y}{\sigma_Y} \right) \right\}$$

$$\mu_{X} = E(X)$$
 $\sigma_{X} = \sqrt{V(X)}$

$$\mu_{Y} = E(Y)$$
 $\sigma_{Y} = \sqrt{V(Y)}$

Inferência sobre p

Dada uma amostra aleatória simples (x₁, y₁), (x₂, y₂), ..., (x_n, y_n) do par de variáveis aleatórias (X, Y), o coeficiente r pode ser considerado uma estimativa do verdadeiro e desconhecido coeficiente ρ

Teste de significância de p

- H_0 : $\rho = 0$ (as variáveis $X \in Y$ são *não correlacionadas*)
- H₁: ρ ≠ 0 (as variáveis X e Y são correlacionadas)
 (pode também ser unilateral)
- Admitindo (X, Y) com distribuição normal bivariada, a
 Tabela 10 apresenta o valor absoluto mínimo de r para se rejeitar H₀.
 - Ver continuação do Exemplo 11.1 no livro.

Regressão linear simples

Variável independente, X		Variável dependente, Y
Temperatura do forno (°C)		Resistência mecânica da cerâmica (MPa)
Quantidade de aditivo (%)		Octanagem da gasolina
Renda (R\$)		Consumo (R\$)
Memória RAM do computador (Gl	D)	Tempo de resposta do sistema (s)
Área construída do imóvel (m²)		Preço do imóvel (R\$)

Exemplo 11.2:

- X = % de aditivo
- Y = Índice de octanagem da gasolina

Resultados de n = 6 ensaios experimentais:

X	Y
1	80,5
2	81,6
3	82,1
4	83,7
5	83,9
6	85,0

Exemplo 11.2:

Regressão - Modelo

Modelo de regressão linear simples

- Em termos das variáveis: $E\{Y\} = \alpha + \beta X$
- Em termos dos dados: $Y_i = \alpha + \beta x_i + \varepsilon_i$
- Suposições:
 - os termos de *erro* $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$ são variáveis aleatórias *independentes*;
 - $E\{\varepsilon_i\} = 0;$
 - $V(\varepsilon_i) = \sigma^2$; e
 - ε_i tem distribuição normal (i = 1, 2, ..., n).

Método dos mínimos quadrados para estimar α e β

Minimizar em relação a α e β :

$$S = \sum \varepsilon_i^2 = \sum \{Y_i - (\alpha + \beta x_i)\}^2$$

$$\frac{\partial S}{\partial \alpha} = 0$$

$$\frac{\partial S}{\partial \beta} = 0$$

Método dos mínimos quadrados para estimar α e β

Resultado das derivadas parciais:

Estimativa de
$$\beta$$
:
$$b = \frac{n \cdot \sum (x_i y_i) - (\sum x_i) \cdot (\sum y_i)}{n \cdot \sum x_i^2 - (\sum x_i)^2}$$

Estimativa de
$$\alpha$$
: $a = \frac{\sum y_i - b \sum x_i}{n}$

Reta de regressão construída com os dados:

$$\hat{y} = a + bx$$

i	X _i	y _i
1	20	98
2	25	110
3	30	112
4	35	115
5	40	122

i	X _i	y_i	x_i^2	$x_i y_i$	
1	20	98	400	1960	
2	25	110	625	2750	
3	30	112	900	3360	
4	35	115	1225	4025	
5	40	122	1600	4880	
\sum	150	557	4750	16975	

reta de regressão:

$$\dot{y} = a + b.x$$

$$b = \frac{n \cdot \sum (x_i y_i) - (\sum x_i) \cdot (\sum y_i)}{n \cdot \sum x_i^2 - (\sum x_i)^2} \qquad a = \frac{\sum y_i - b \sum x_i}{n}$$

$$\sum x_i \quad \sum y_i \quad \sum x_i^2 \quad \sum x_i y_i$$
150 557 4750 16975

$$b = \frac{n \cdot \sum (x_i y_i) - (\sum x_i) \cdot (\sum y_i)}{n \cdot \sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{5.(16975) - (150).(557)}{5.(4750) - (150)^2}$$

$$b = 1,06$$

$$\Sigma x_i$$
 Σy_i Σx_i^2 $\Sigma x_i y_i$
150 557 4750 16975

$$b = 1,06$$

$$a = \frac{557 - (1,06).(150)}{5} = 79,6$$

reta de regressão:

$$\dot{y} = a + b.x$$

$$\hat{y} = 79.6 + 1.06x$$

$$\hat{y} = 79.6 + 1.06x$$

$$x = 20 \implies \hat{y} = 100.8$$

$$x = 40 \Longrightarrow \hat{y} = 122,0$$

Diagrama de dispersão

Qualidade do ajuste

- Ajustou-se uma equação de regressão entre X e Y. E a qualidade do ajuste?
 - análise de variância do modelo
 - análise dos resíduos

Reta de regressão e resíduos

Valores preditos:

$$\hat{y}_i = a + bx_i$$

• Resíduos:

$$e_i = y_i - \hat{y}_i$$

Análise de variância do modelo

Desvio em relação à média aritmética:

$$d_i = y_i - \overline{y}$$

Desvio em relação à reta de regressão (resíduo da regressão):

$$e_i = y_i - \hat{y}_i$$

Somas de quadrados

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum (y_i - \hat{y}_i)^2$$

SQT

variação total

SOR

variação explicada pela equação de regressão SQE

variação não explicada

Somas de quadrados

$$SQT = \sum (y_i - \overline{y})^2 = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$$

$$SQE = \sum (y_i - \hat{y}_i)^2 = \sum y_i^2 - a \sum y_i - b \sum x_i y_i$$

$$SQR = SQT - SQE$$

Coeficiente de determinação:

$$R^2 = \frac{SQR}{SQT} = 1 - \frac{SQE}{SQT}$$

Medida da qualidade do ajuste:

Coeficiente de determinação (R2)

$$R^{2} = \frac{\text{Variação}}{\text{explicada}} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

$$Variação \qquad \qquad \sum (y_{i} - \bar{y})^{2}$$

$$total$$

$$0 \le R^2 \le 1$$

Matematicamente, R² é o quadrado do Coef. de Correlação de Pearson.

Exemplo 11.2:

Interpretar.

Análise de variância do modelo

Fonte de variação	gl	SQ	QM	Razão f
Regressão	1	$SQR = \sum (\hat{y}_i - \overline{y})^2$	$QMR = \frac{SQR}{1}$	$f = \frac{QMR}{QME}$
Erro	n-2	$SQE = \sum (y_i - \hat{y}_i)^2$	$QME = \frac{SQE}{n-2}$	
Total	n – 1	$SQT = \sum (y_i - \overline{y})^2$		

Teste de significância do modelo

$$E\{Y\} = \alpha + \beta.X$$

- H_0 : $\beta = 0$ e H_1 : $\beta \neq 0$
- Distribuição de referência para a razão f:
 distribuição F com gl = 1 no numerador e
 gl = n 2 no denominador (Tabela 6).

Exemplo 11.2:

Fonte de variação	gl	SQ	MQ	Razão f
Regressão	1	13,73	13,729	156,26
Erro	4	0,35	0,088	
Total	5	14,08		

Usar a Tabela 6 e fazer o teste de significância do modelo.

Distribuição f com gl = 1 e 4

Possíveis valores de f, sob H₀

Valor p na distribuição F

Abordagem clássica: regra de decisão

Suposições do modelo

- Modelo: $Y_i = \alpha + \beta x_i + \varepsilon_i$
- os termos de *erro* (ε_1 , ε_2 , ..., ε_n) são variáveis aleatórias independentes;
- $E\{\varepsilon_i\} = 0;$
- $V(\varepsilon_i) = \sigma^2$; e
- ε_i tem distribuição normal (i = 1, 2, ..., n).

Análise dos resíduos: um diagnóstico das suposições do modelo

Valores preditos:

$$\hat{y}_i = a + bx_i$$

Resíduos:

$$e_i = y_i - \hat{y}_i$$

Gráfico dos dados:

$$(x_i, y_i)$$

Gráfico dos resíduos:

$$(x_i, e_i)$$

As suposições do modelo parecem satisfeitas?

Gráfico dos dados:

$$(x_i, y_i)$$

Gráfico dos resíduos:

$$(x_i, e_i)$$

Gráfico dos resíduos: (x_i, e_i)

Gráfico dos dados:

$$(x_i, y_i)$$

Gráfico dos resíduos:

$$(x_i, e_i)$$

Busca de um modelo adequado

- Suposição de linearidade entre x e y: uso de transformações;
- Suposição de variância constante: transformações para estabilizar a variância ou uso do método dos mínimos quadrados generalizados;
- Suposição de independência entre as observações: transformações, uso do método dos mínimos quadrados generalizados ou aplicação de técnicas de séries temporais;
- Suposição de distrib. normal para os erros: uso de transformações.

Regressão Modelos Linearizáveis

$$y = \alpha + \beta \log(X)$$
 $y = \alpha + \beta \log(x)$

Regressão Modelos Linearizáveis

Regressão Transformações para estabilizar a variância

Regressão

Transformações para estabilizar a variância: alguns resultados teóricos

V com distrib. de Poisson

$$y' = \sqrt{y}$$

y com distrib. binomial

$$y' = \operatorname{sen}^{-1}(\sqrt{y})$$

Regressão

Transformações para estabilizar a variância

Se o desvio padrão de y aumenta proporcionalmente em relação ao valor esperado de y $(\sigma_v \approx \mu_v)$

$$y' = log(y)$$

