CloudOpen Japan 2014

Hiroshi Miura (@miurahr) NTT DATA Corporation.

Disclaimer

- Any product name, service name, software name and other marks are trade mark or registered mark of corresponding companies.
- This presentation is in a purpose of providing current information on emerging technologies and there is no grantee of correctness and/or persistence of features in any future.
- A presenter and NTT Data Corporation provide information in as-is basis and have no responsiveness for results that you got according to information in this presentation material.

Who am I?

- Production work
 - OpenStack SI team
 - Swift object storage

- OSS devel:
 - Vagrant-KVM
 - Linux Kernel
 - · etc...

Github.com/nttdata-osscloud
Github.com/miurahr

Agenda

- 1. What is DevOps
- 2. Introduction to Vagrant
- 3. Vagrant-KVM
- 4. Infrastructure chages
- 5. Future

Mike Loukides, 2012, @Velocity conference

"If you're going to do operations reliably,

you need to make it reproducible and programmatic."

What is DevOps?

The nature of "operations"

Cloud changes

- Growing distributed systems
- Software development practice

 "cooperation and collaboration" between dev and ops

DevOps for developer

- Gap between Development and Operations
 - Goals
 - Process and approach
 - Tools
- Infrastructure engineering becomes like a development.
 - Infrastructure as a code
 - Adoption of Vagrant

What is Vagrant

- development environment on VM, container or cloud
- same
 - among team members.
 - among production and development.
 - VirtualBox, AWS EC2

"Mature, stable, proven."

by author, Mr. Mitchell Hashimoto

Targeted Vagrant Users

Web application developers

CC-BY-ND by Tim Samoff https://www.flickr.com/photos/timsamoff/3248639569

New Vagrant Users

- Infrastructure engineer programmer
- Deploy on VMwarevCenter, OpenStack
- Test Puppet, Chef or Ansible

Vagrant work flow

Just run

\$ vagrant up

It download "vagrant box" and start and provision guest OS.

Config file: "Vagrantfile"

What is Vagrant box

- Preconfigured VM images
 - Base for environment
 - Community shared
- VagrantCloud.com: shares boxes

CC-BY-ND by Renee Hawk https://flic.kr/p/a4QFRg

Brief history

- Launched at 2010
- 2013, March, Version 1.1+
 - Plugins: 3rd party projects
 - Vagrant-KVM plugin start

- 2014, March
 - Vagrant Cloud

Vagrant provisioner

- Shell, Puppet, Ansible, Docker and Chef
- 3rd party: Salt etc.

Vagrant Plugins

- Supprted plugins from 1.1+ (2013.2~)
 - Provider: Driver for VM monitor
 - Provisioner: Configure guest images
 - Synced_folder: folder sync between guest/host

Now we can made Vagrant work on my Linux and KVM!

Supported Providers

Many provider plugins

vmware

Vagrant-KVM

Usage Vagrant provider plugin to utilize KVM

Auther Alexandre Drahon, UK

License MIT

Language Ruby

libraries Ruby-libvirt, libvirt, qemu and kvm

Current Status of Vagrant-KVM

- V0.1.8 March, 2014
 - Basic Vagrant features(private nw, NFS, provisioning, GUI, customize)
 - Plan9 host file share
 - QEMU 1.1 1.7
- V0.2.0 will come May, 2014
 - Multiple guests and networks
 - Bridged network
 - Address conflict resolver

Vagrant-KVM vs. -libvirt

- kvm plugin: simple, single host
- libvirt plugin: multi-host, multivmm

Features	Vagrant-KVM	Vagrant-libvirt
KVM	Yes	Yes
Xen	N.A.	Plan
Remote	N.A.	Experimental
Multiple guests	Yes	Plan
File share	Plan9, NFS	NFS, rsync
Snapshot	Yes(sahara)	Yes(sahara)
Image convert	Yes(mutate)	Yes(mutate)
Multiple arch	Plan	N.A.
Current Version	0.1.8	0.0.16

Dependencies

There are small amount of dependency.

Name	libvirt	
Usage	Virtualization abstraction library	
Language	Ruby, C	
Name	Ruby-libvirt	
Usage	Ruby bridge to libvirt	
Language	C, C++	

Quality and Test

- Rspec to test the plugins
- Test vagrant-kvm in guest OS on KVM prepared by vagrant-kvm.

- CI: Github/Travis-CI combination
 - Github.com: development platform
 - Travis-Cl: test automation platform
 - RVM: Ruby Virtual Machines prepare versions of ruby

OSS and CI

 Every commit/patch and PRs are tested with Travis-Cl and Rspec.

Github.com
Pull-Request example: Green

OSS and CI

Every commit/patch and PRs are tested with Travis-Cl and Rspec.

Travis-Cl.org: Test history

Issues fixed

There are many issues to be fixed in related projects.

No	Component	Problem	Resolution
1	libvirt	security treatment for plan9 file share	Dynamic AppArmor policy update
			External SELinux label control work around
		Dynamic permission control not to restore permission	Lack of restore function in libvirt. Work around in a plugin.
2	Ruby-libvirt	Not updated 2 yrs. Unsupported new API	Push developer to update. Release 0.5.x in Dec. 2013
3	Linux kernel	Fail to configure AppArmor rule	Wait kernel update
4	CentOS6	Unsupported plan9fs (not configured in kernel)	Provide special VM image.

Vagrant-kvm: Future plan

- Support full features of Vagrant
- Multiple architecture(ARM)
- Linux kernel debug support

CC-BY by Simon Cuningham https://flic.kr/p/iU3qg9

New trend on DevOps

 Infrastructure development is Changing

 New technology comes on Infrastructure Engineering / development

Blue Green Deployment

- No change to production environment
- New/Change for environment => create new instance and switch it

http://www.nttdata.com/jp/ja/insights/trend_keyword/2013122601.html

Copyright © 2014 NTT DATA Corporation

Packaging for deploy

 Application container help agile deployment of Application

Application container(Packer) technology

Packer

- http://www.packer.io/
- Create virtual machine image for several kind of cloud / virtulization infrastructures.
- Use JSON as profile description language.
- Infra can be managed as same as source code.

Packer

Docker

Portable container for Application

Containers vs. VMs

Agility:

Low overhead and quick setup

Portability:

dependency packed into container image.

Containers are isolated, but share OS and, where appropriate, bins/libraries

Vagrant and Docker

- Prepare Docker environment on Vagrant
 - Auto detect guest OS and install proper packages.
 - Start Docker environment only one line command.

Vagrant 1.5+ Provisioner

Vagrant 1.6+ Provisioner/Provider

•

Stack of DevOps infrastructure

Vagrant enables control over infrastructure tool sets

Container images Provisioner (Puppet, Chef, Docker) Box Images Vagrant (Fedora, Ubuntu, etc) Command (Snapshot Provider mutate) (VirtualBox, KVM, LXC Libvirt, AWS) Host OS/Hypervisor(VB, VMware, KVM)

Work flow example(1/2)

Creation of Guest Images

,

Work flow example(2/2)

Test on local Virtual Machines

Then run on production

Provisioner
(Puppet, Chef, Docker)

Box Images
(Fedora, Ubuntu, etc)

Remote Host

Future of Vagrant/vagrant-kvm

- Embedded development with ARM support
- Various cloud and private platform support
- Packer/Docker integration
- Test automation

NTTData

Global IT Innovator

Contact

miurahr <u>at</u> nttdata co jp @miurahr (Twitter/LinkedIn/Github)

Copyright © 2011 NTT DATA Corporation