

Design and Analysis of Algorithms I

QuickSort

Proof of Correctness

Induction Review

Let P(n) = assertion parameterized by positive integers n.

For us : P(n) is "Quick Sort correctly sorts every input array of length n"

How to prove P(n) for all $n \ge 1$ by induction :

- 1. [base case] directly prove that P(1) holds.
- 2. [inductive step] for every n>=2, prove that:

 If P(k) holds for all k<n, then P(n) holds as well.

Correctness of QuickSort

P(n) = "QuickSort correctly sorts every input array of length n "

<u>Claim</u>: P(n) holds for every $n \ge 1$ [no matter how pivot is chosen]

Proof by induction:

- [base case] every input array of length 1 is already sorted.
 Quick Sort returns the input array which is correct (so P(1) holds)
- 2. [inductive step] Fix $n \ge 2$. Fix some input array of length n.

<u>Need to show</u>: if P(k) holds for all k < n, then P(n) holds as well.

INDUCTIVE STEP

Tim Roughgarden

Correctness of QuickSort (con'd)

Recall: QuickSort first partitions A around some pivot p.

Note: pivot winds up in the correct position.

Let k_1, k_2 = lengths of 1st, 2nd parts of partitioned array.

Using $P(k_1)$, $P(k_2)$

By inductive hypothesis: 1st, 2nd parts get sorted correctly by recursive calls. So after recursive calls, entire array correctly sorted.