適応的分散アルゴリズム 第3章 分散システムの安定性

川染翔吾

3.6 トークン巡回

トークン

- 相互排除問題を解決する別の方法
- 分散システムに属するプロセス間をトークンと呼ばれる特別なメッセージがちょうど 1 個だけ巡回するようにする
- トークンを保持している間はアクセスを許す

トークン巡回

トークンリング:リングに沿ってトークンを巡回させることで相互排除を行う システム

条件

- 通信ネットワークは**単方向リング**
 - $\circ E = \{(P_i, P_{(i+1) \mod n}) \mid 0 \le i \le n-1\}$

TOKEN-RING

プロセス P_i 上のアルゴリズム

- 1. トークンを受信したら
 - \circ トークンをプロセス P_{i+1} に送信する
- ullet トークンリングの初期化時に P_0 がトークンを生成するものとする

TOKEN-RING

- なんらかの故障でトークンが失われたら、回復できない
- タイムアウト機構を導入すると?
 - 通信遅延や、トークンを受信してから送信するまでの時間などの上限が既知なら、トークンの消失を感知できる
 - トークンの数が増える故障には無力

SS-TOKEN-RING

プロセス P_i の局所状態を $s_i \in \{0,1,\ldots,K-1\}$ とする (K は n 以上の任意の自然数)

プロセス P_0 上のアルゴリズム	プロセス $P(eq P_0)$ 上のアルゴリズム
$s_{n-1}=s_0$ なら	$s_{i-1} eq s_i$ なら
$s_0 \leftarrow (s_0 + 1) \mod K$	$s_i \leftarrow s_{i-1}$

SS-TOKEN-RING

$$n=3, K=3$$
 の場合

$$egin{aligned} (0,0,0) & o (1,0,0) o (1,1,0) o (1,1,1) \ (1,1,1) & o (2,1,1) o (2,2,1) o (2,2,2) \ (2,2,2) & o (0,2,2) o (0,0,2) o (0,0,0) \end{aligned}$$

故障したとき

$$egin{array}{l} (2,1,0)
ightarrow (2,2,0)
ightarrow (2,2,2) \ (2,1,0)
ightarrow (2,1,1) \end{array}$$

SS-TOKEN-RINGの大域状態間の推移

自己安定アルゴリズム

- 一時故障が起こっても、自動的に回復するようなアルゴリズムを**自己安定 アルゴリズム**という
- SS-TOKEN-RINGは自己安定トークン巡回アルゴリズムである
 - 証明は 7.3.3

3.7 探索

探索

- ullet 時刻 t によって変化する通信ネットワーク $G_t = (V, E_t)$ で、プロセス $P \in V$ から開始してプロセス $Q \in V$ を探索する問題を考える
- ullet Q の発見に焦点を当てると、探索問題を Q へある情報を伝達する問題と見做せる
- Q の位置が不明
 - すべてのプロセスにある情報を伝達する、放送問題

条件

- 同期システム
- ullet G_t は連結無向グラフ

FLOOD1

並列幅優先探索

プロセス P_0 上のアルゴリズム	プロセス $P(eq P_0)$ 上のアルゴリズム
隣接プロセスにメッセージ m を放送する	if m を初めて受信した $then$ 隣接プロセスにメッセージ m を放送する

- $V = \{P, Q, R\}$
- 始動プロセスは P
- $E_1 = \{(P,R), (Q,R)\}$
- ullet $t\geq 2$ のとき $E_t=\{(P,Q),(P,R)\}$

ullet Q は m を受信できない

FLOOD2

FLOOD2

定理

FLOOD2 は G_t が動的に変化しても、同期システム上で放送問題を解くことが出来る

証明

n=1のときは自明。 $n\geq 2$ で 時刻 $t(1\leq t\leq n-1)$ の放送を終了したとき、少なくとも t+1 個のプロセスに放送が終了することを数学的帰納法で示す。

t=1 のとき、 G_1 が連結であるため、 P_0 の次数が 1 以上であり、 P_0 が放送することで P_0 以外のあるプロセスが情報を受信する。

時刻 t-1 のとき成り立つと仮定。

時刻 t-1 の終了時点で情報を受信しているプロセスの集合を $U_{t-1} (\subseteq V)$ とする。

仮定から $|U_{t-1}| \geq t$ 。

 $|U_{t-1}|=n$ の場合、 $|U_t|=n\geq t+1$ 。

 $|U_{t-1}| < n$ の場合、 $V \setminus U_{t-1}$ に含まれる任意のプロセスを P とすると、 G_t は連結だから、 P_0 と P を結ぶ道 π が存在する。 π を P_0 から辿ったときに、最初に到達する $V \setminus U_{t-1}$ に含まれるプロセスを Q と置く。 π における Q の直前のプロセスを R とすると $R \in U_{t-1}$ である。時刻 t には Q は R から情報を受信できるので、 $Q \in U_t \setminus U_{t-1}$ すなわち、 $|U_t| \ge t+1$ である。 20 / 27

FLOOD2

- ullet FLOOD2の通信複雑度は $O(n^3)$
 - \circ 隣接プロセス数が O(n)
 - \circ プロセスの数がn
 - \circ O(n) 回繰り返す

RAND-SEARCH

プロセス P_0 上のアルゴリズム

隣接プロセスの一つを等確率で選択し、そこにmを送信する

repeat

if m を受信した then

隣接プロセスの一つを等確率で選択

し、そこに m を送信する

until forever

プロセス $P(eq P_0)$ 上のアルゴリズム

repeat

if m を受信した then

隣接プロセスの一つを等確率で選択し、そこにmを送信する

until forever

RAND-SEARCH

- ullet Q に m が到達すると、その事実を P に伝え終了する
- メッセージmが G_t の中を**乱歩** (random walk) する

G が変化しないとき

- 頂点 u から v に到達するまでに必要な道長の平均 (**平均初到達時間**) を $H_G(u,v)$ とする
- $ullet \ H_G = \max_{u,v \in V} H_G(u,v) = O(|V||E|)$

G が変化するとき

• 第8章で扱う

3.8 乱択アルゴリズム

乱択アルゴリズム

• よく知られた乱択アルゴリズムに乱択クイックソートがある

一般的なクイックソートの実装

```
void quicksort(int arr[], int left, int right) {
    if (left >= right) return;
    int pivot = arr[right];
    int i = left;
    for (int j = left; j < right; j++) {</pre>
        if (arr[j] < pivot) {</pre>
            swap(&arr[i], &arr[j]);
            i++;
    swap(&arr[i], &arr[right]);
    quicksort(arr, left, i - 1);
    quicksort(arr, i + 1, right);
```

クイックソート

- 配列をピボットより大きいか小さいかで分割し前後にわけ、分割したもの に対して再帰的にこれを適用する
- ullet すべての入力が同じ確率で出現するなら、平均時間複雑度は $O(\log n)$
- ullet 入力によっては、平均時間複雑度は $\Omega(n^2)$

乱択クイックソート

- ピボットをランダムに選ぶ
- 入力によらず、平均時間複雑度が $O(\log n)$