Low-Level Design (LLD)

Generated by Avinesh Masih – View on GitHub: AVINESH MASIH

Project Name: Cryptocurrency Liquidity Prediction for Market Stability

1. Data Ingestion

- Files Used:
 - o coin_gecko_2022-03-16.csv
 - o coin_gecko_2022-03-17.csv
- Steps:
 - Load both CSVs using pandas.read_csv()
 - Merge datasets into a single DataFrame using pd.concat()

2. Data Cleaning

- Drop missing values using dropna()
- Remove duplicate rows using drop_duplicates()
- Convert columns to appropriate types (e.g., date to datetime, numeric conversions)

3. Feature Engineering

- Price Moving Average (2-period):
- df['price_MA_2d'] = df['price'].rolling(window=2).mean()
- Market Cap Moving Average (2-period):
- df['market_cap_MA_2d'] = df['mkt_cap'].rolling(window=2).mean()
- Volatility:
- df['volatility'] = (df['24h'] df['1h']).abs()
- Liquidity Ratio:
- df['liquidity_ratio'] = df['24h_volume'] / df['mkt_cap']

4. Exploratory Data Analysis (EDA)

• Plot Ethereum price trends over time using matplotlib

- Generate a correlation heatmap using seaborn.heatmap()
- Summarize data using df.describe(), info(), etc.

5. Model Building

- Train-Test Split:
 - Use train_test_split() from sklearn.model_selection
- Models Used:
 - o Linear Regression (LinearRegression)
 - o Random Forest Regressor (Random Forest Regressor)
- (Optional): Hyperparameter tuning using GridSearchCV or RandomizedSearchCV

6. Model Evaluation

- Metrics:
 - o Root Mean Squared Error (RMSE)
 - Mean Absolute Error (MAE)
 - o R² Score

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

7. Model Saving

• Save the trained model using Joblib:

import joblib

joblib.dump(model, 'models/ crypto_liquidity_rf_model.pkl')

8. Local Deployment

- Build a **Streamlit** web application
- Load the .pkl model
- Accept user inputs (price, volume, market cap)
- Display predicted liquidity ratio

LLD Flow Diagram

```
[Start]
                 [Load CSV Files]
         [Clean Missing / Duplicate Data]
[Feature Engineering: MA, Volatility, Liquidity Ratio]
           [ Perform EDA: Plots & Stats ]
                 [Train/Test Split]
         [Train Linear Regression (Basic)]
           [Train Random Forest (Final)]
        [Evaluate Model (RMSE, MAE, R<sup>2</sup>)]
            [Save Final Model as .pkl]
         [ Build Web App for Predictions ]
                      [End]
```