Fizyka ogólna, 20.06.2018 Imię i nazwisko, nr indeksu

	za 1 punkt					za 2 punkty										BONUS:				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15					
a																				
b																				
С																				
d																				

- 1. Która z wymienionych sił jest potencjalna?
 - (a) grawitacji (b) Coulomba (c) tarcia (d) sprężystości
- 2. Jaka barwę ma światło, którego długość wynosi $6.5 \cdot 10^{-11} m$?
 - (a) zieloną (b) niebieską (c) czerwoną (d) długość spoza widzialnego zakresu
- 3. Gęstość liniową niejednorodnego pręta o długości l i masie M opisuje funkcja $\rho(x) = \frac{2M}{l^2}x$, gdzie x to odległość od początku pręta. W jakim miejscu znajduje się środek masy pręta?
 - (a) $x_{cm} = \frac{1}{2}$ (b) $x_{cm} = \frac{1}{3}$ (c) $x_{cm} = \frac{2}{3}$ (d) $x_{cm} = \frac{3}{4}$
- 4. W jakich jednostkach można wyrazić indukcję magnetyczną?
 - (a) $\frac{amper}{metr}$ (b) $\frac{om \cdot kulomb}{metr^2}$ (c) $\frac{kilogram}{amper \cdot sekunda^2}$ (d) $\frac{kulomb}{metr^2}$
- 5. Przez 5 ścianek pustego szęścianu przenika strumień pola elektrycznego równy Φ. Jaki strumień przenika przez szóstą ściankę?
 - (a) $\frac{1}{5}\Phi$ (b) $-\frac{1}{5}\Phi$ (c) $-\Phi$ (d) 0
- 6. Które zdanie jest prawdziwe?
 - (a) przyspieszenie normalne i radialne w układzie biegunowym są sobie równe wyłącznie w przypadku ruchu po okręgu ze stałą prędkością
 - (b) przyspieszenie styczne nie zależy od toru ruchu
 - (c) przyspieszenie styczne i normalne nie zależą od układu odniesienia
 - (d) składowa transwersalna prędkości w układzie biegunowym równa jest prędkości kątowej
- 7. Na cząstkę działa stała siła oraz przeciwnie skierowana siła proporcjonalna do prędkości.
 - (a) cząstka osiągnie prędkość maksymalną, po czym zacznie zwalniać
 - (b) położenie cząstki będzie opisywać równanie $x=x_0+v_0t+\frac{1}{2}at^2$
 - (c) prędkość cząstki dążyć będzie do wartości granicznej wykładniczo w czasie
 - (d) równanie ruchu będzie miało postać $\frac{dv}{dt} = -kv$ (k stała)
- 8. Który z układów opisuje równanie $\frac{d^2x}{dt^2} = -\omega^2x$?
 - (a) punktowa masa na nici w polu grawitacyjnym przy niewielkich wychyleniach
 - (b) układ szeregowy składający się z kondensatora, cewki indukcyjnej i opornika
 - (c) masa przymocowana do sprężyny przy braku grawitacji
 - (d) cylindryczny spławik częściowo zanurzony w wodzie
- 9. Która z wymienionych sił jest potencjalna? (a, b stałe)
 - (a) F(x) = a bx
 - (b) $\vec{F}(\vec{r}) = \frac{a}{r}\vec{i_r}$
 - (c) $F(x) = ax + b\frac{dx}{dt}$
 - (d) $\vec{F}(\vec{r}) = (y^2)\vec{i_x} + (2xy)\vec{i_y}$

- 10. Obracamy się bez tarcia na krześle obrotowym, trzymając w obu wyprostowanych rękach ciężarki. Następnie przyciągamy ciężarki do siebie.
 - (a) nasza prędkość wzrośnie
 - (b) moment pędu układu będzie stały
 - (c) energia kinetyczna układu będzie stała
 - (d) przyciągając ciężarki do siebie wykonujemy dodatnią pracę, a oddalając ujemną.
- 11. Które z wymienionych fal są poprzeczne?
 - (a) fala elektromagnetyczna
 - (b) fala akustyczna
 - (c) fala morska
 - (d) światło
- 12. Stalowa nakrętka w temperaturze pokojowej jest ferromagnetykiem. Które zdanie jest prawdziwe?
 - (a) po ogrzaniu powyżej 800 st. C stanie się trwałym paramagnetykiem
 - (b) po ogrzaniu powyżej 800 st. C stanie się paramagnetykiem, po schłodzeniu znów będzie ferromagnetykiem
 - (c) po schłodzeniu poniżej -200 st. C stanie się diamagnetykiem
 - (d) po schłodzeniu poniżej -200 st. C stanie się paramagnetykiem
- 13. Nieskończenie długą nić naładowano jednorodnie ładunkiem elektrycznym.
 - (a) pole elektryczne będzie miało symetrię sferyczną
 - (b) praca przeniesienia punktowego ładunku z odległości d do 2d od nici nie zależy od d
 - (c) natężenie pola elektrycznego maleje jak $\frac{1}{r^2}$, gdzie r to odległość od nici
 - (d) potencjał elektryczny jest wprost proporcjonalny do gęstości ładunku na nici
- 14. Które zdanie jest prawdziwe?
 - (a) substancje: woda, powietrze, aluminium, żelazo są uszeregowane rosnąco wg podatności magnetycznej
 - (b) ferromagnetyki wzmacniają pole magnetyczne, a paramagnetyki je osłabiają
 - (c) prąd płynący w przewodniku jest źródłem pola magnetycznego
 - (d) energia pola magnetycznego jest wprost proporcjonalna do indukcji magnetycznej
- 15. Na nieskończonych przewodnikach utworzono wygięcia o tym samym promieniu krzywizny, jak na rysunku. Przez przewodniki płynie prąd o jednakowym natężeniu. Które zdania dotyczące indukcji magnetycznej w środku krzywizny są prawdziwe?

(a)
$$\vec{B}_A - 2\vec{B}_B - \vec{B}_C = 0$$

(b)
$$2(\vec{B}_A - \vec{B}_D) - \vec{B}_B = 0$$

(c)
$$\vec{B}_C + 2\vec{B}_D + 3(\vec{B}_B - \vec{B}_A) = 0$$

(d)
$$|\vec{B}_A| - |\vec{B}_C| = 0$$

