Long-read sequence analysis

Applications

Why long reads?

Applications

- (Genome) assembly
- Variant analysis
- Transcriptome analysis
- Epigenetics
- Metagenomics

Assembly

- Reconstructing a DNA sequence out of fragmented sequences:
 - Better understand variations between and within species
 - Reduces resources and increases accuracy for many applications
- Longer reads:
 - Less assembly errors
 - Higher contiguity (longer contigs)
 - Lower computational resources required

LR assembly software

- Microbial:
 - Flye
 - Miniasm
 - Unicycler
 - Trycycler
- Large(r) genomes:
 - Shasta (ONT only)
 - Falcon (PacBio only)
 - Canu
 - Flye
 - Hifiasm
 - IPA
 - Peregrine
 - Verkko (integration PacBio and ONT)

Variant analysis

- Low accuracy long reads: not particularly good at variant analysis
- HiFi: good for large and short variation
- Major applications
 - Structural variation/large repeats
 - Phasing of variants

Phasing

- Variant calling:
 - DeepVariant (Pacbio + ONT)
 - Clair3 (ONT)
- Phasing: Whatshap

Repeat expansion

Transcriptome analysis

Transcriptome analysis

- Full transcripts: less ambiguous identification + quantification of transcript isoforms
- Better gene model prediction (e.g. for genome annotation)
- ONT direct RNA-seq:
 - No PCR amplification
 - No reverse transcription
 - Base modification identification

Epigenetics

- Base modification in non-amplified libraries (Pacbio and ONT)
- No multiplexing

Time (s)

Also possible in direct RNA-seq (ONT)

11

Metagenomics

- Full length 16S genes: better classification (PacBio CCS)
- Metagenome Assembled Genomes (MAGs) -> flye --meta

Downstream analysis

- ONT:
 - Workflows on EPI2ME
- PacBio:
 - pbbioconda
- nf-core
 - https://nf-co.re/bacass
 - https://nf-co.re/viralrecon
 - https://nf-co.re/isoseq
 - https://nf-co.re/mag
 - https://nf-co.re/nanoseq
 - https://nf-co.re/ampliseq

