## Wprowadzenie do modeli liniowych 2

Krystyna Grzesiak

## Uogólniony model liniowy

$$g(\mathbb{E}(Y)) = X\beta \tag{1}$$

#### Parametry:

- Y wektor losowy o znanej realizacji
- X znana macierz deterministyczna
- $\beta = (\beta_0, \beta_1, \dots, \beta_p)$  nieznany wektor deterministyczny
- ullet  $g:\mathbb{R}^n o\mathbb{R}^n$  znana funkcja różnowartościowa (funkcja linkująca/wiążąca)

Estymacja: MLE

#### Rodzina wykładnicza

Definicja: Rodziną wykładniczą nazywamy rodzinę rozkładów, których funkcje gęstości prawdopodobieństwa są postaci:

$$f_{\theta}(x) = C(\theta)e^{xQ(\theta)}h(x), \theta \in \Theta,$$

gdzie C i Q nie zależą od x, a h nie zależy od  $\theta$ .

Jeśli w uogólnionym modelu zmienne  $Y_1, \ldots, Y_n$  należą do rodziny wykładniczej, to funkcja Q jest kanoniczną funkcją linkującą dla tej rodziny rozkładów.

## Przykłady kanonicznych funkcji wiążących

Rodzina rozkładów zerojedynkowych:

$$f_p(k) = p^k (1-p)^{1-k} = (1-p) \left(rac{p}{1-p}
ight)^k = (1-p) e^{k \log rac{p}{1-p}}$$

Stąd mamy  $Q(p) = \log \frac{p}{1-p}$  (tzw. logit).

• Rodzina rozkładów Poissona:

$$f_{\lambda}(k) = e^{-\lambda} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{k \log \lambda} \frac{1}{k!}$$

Stąd mamy  $Q(\lambda) = \log \lambda$ .

#### Regresja logistyczna

•  $Y_i \sim b(1, p_i)$  gdzie  $p_i \in (0, 1), i = 1, ..., n$ 

Zauważmy, że przy powyższych ząłożeniach  $\mathbb{E}(Y_i)=p_i$  dla każdego  $i=1,\ldots,n$ . Stąd postać ogólnego wzoru modelu

$$g(\mathbb{E}(Y)) = \mathsf{X}\beta$$

dla regresji logistycznej jest następująca

$$g(p) = X\beta$$

gdzie  $p = (p_1, \ldots, p_n)$ .

## Funkcje linkujące w modelu logistycznym

| Name    | Link Function               | Response Probability                        | Properties                                                                           |
|---------|-----------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|
| Logit   | $z = \log{(\frac{p}{1-p})}$ | $p = \frac{e^z}{1 + e^z}$                   | Coefficients explained using odds; canonical link for binary family                  |
| Probit  | $z = \Phi^{-1}(p)$          | $p = \Phi(z)$                               | Coefficients explained as impact on z-score for Normal distribution                  |
| Cauchit | Na                          | $p = \frac{1}{\pi}\arctan(z) + \frac{1}{2}$ | Heavier tails than logit or probit                                                   |
| Cloglog | Na                          | $p = 1 - e^{-e^z}$                          | Inverse cdf of extreme value<br>distribution; curv near probability of 1<br>is sharp |

## Funkcje linkujące w modelu logistycznym



#### Predykcja w modelu logistycznym

- Predykcja dotyczy wnioskowania na temat wartości oczekiwanej zmiennej  $Y \colon \mathbb{E}(Y)$
- Klasyfikacja dotyczy "przydzielania" wartości zmiennej Y dla danego zestawu cech X na podstawie predykcji

#### Predykcja w modelu logistycznym

- Predykcja dotyczy wnioskowania na temat wartości oczekiwanej zmiennej  $Y \colon \mathbb{E}(Y)$
- Klasyfikacja dotyczy "przydzielania" wartości zmiennej Y dla danego zestawu cech X na podstawie predykcji

### Klasyfikacja - confusion matrix

$$\begin{aligned} accuracy &= \frac{TP + TN}{TP + FP + TN + FN} \\ precision &= \frac{TP}{TP + FP} \\ sensitivity &= recall = \frac{TP}{TP + FN} \\ specificity &= \frac{TN}{TN + FP} \end{aligned}$$

|                 |          | True class                 |                    |  |
|-----------------|----------|----------------------------|--------------------|--|
|                 |          | Positive                   | Negative           |  |
| Predicted Class | Positive | True<br>Positives          | False<br>Positives |  |
|                 | Negative | False<br><b>N</b> egatives | True<br>Negatives  |  |

## ROC curve - Receiver Operating Characteristic curve



#### AUC - Area Under the ROC Curve

- AUC < 0.5
- AUC = 0.5
- AUC > 0.5

AUC może być używane do porównywania modeli.

#### Regresja Poissona

• 
$$Y_i \sim Poiss(\lambda_i) \ i = 1, \ldots, n$$

- $\mathbb{E}(Y_i) = \lambda_i$
- $g(\lambda) = \log(\lambda)$

Formuła:

$$\log(\lambda) = X\beta,$$

$$\mathsf{gdzie}\ \lambda = (\lambda_1, \ldots, \lambda_i).$$

## Overdispersion - nadmierna dyspersja?

Przy założeniach rozkładu Poissona zachodzi VarY = EY.

#### Ocena:

- Czy w zbiorze danych znajdują się obserwacje różniące się znacznie od pozostałych?
- Czy  $\frac{\mathbb{E}Y}{VarY} \approx 1$ ?
- Co mówią testy statystyczne?

Jak sobie z tym radzić?

- zero-inflated models
- zero-truncated models
- negative binomial distribution

# Kaczy alarm



### Bibliografia

- https: //sdcastillo.github.io/PA-R-Study-Manual/glms-for-classification.html
- Tom Fawcett. "An introduction to ROC analysis". en. In: Pattern Recognition Letters. ROC Analysis in Pattern Recognition 27.8 (June 2006), pp. 861–874. issn: 0167-8655. doi: 10.1016/j.patrec.2005.10.010. url: https://www.sciencedirect.com/science/article/pii/S016786550500303X (visited on 07/26/2021).