Principles of Mathematical Analysis

1 Measure Theory

1.1 Riemann Integral

For a bounded function $f:[a,b] \to \mathbb{R}$ and any partition of the interval [a,b], $P=\{a=x_0 < x_1 < \ldots < x_n = b\}$, we consider on each subinterval $I_j = [x_{j-1}, x_j], \quad j=1,\ldots,n$, the quantities:

$$M_j = \sup_{x \in I_j} f(x), \quad m_j = \inf_{x \in I_j} f(x).$$

We also define the upper and lower sums of f with respect to the partition P as:

$$U_f(P) = \sum_{j=1}^n M_j(x_j - x_{j-1}), \quad L_f(P) = \sum_{j=1}^n m_j(x_j - x_{j-1}).$$

For any two partitions P and Q of [a, b], we have:

$$L_f(P) \leq \text{Area under } f \leq U_f(Q).$$

If P has a value I such that:

$$\sup_{P} L_f(P) = I = \inf_{P} U_f(P),$$

then we say that f is Riemann integrable on [a,b] and define the Riemann integral of f over [a,b] as:

$$\int_{a}^{b} f(x) \, dx = I.$$

Continuous functions on closed intervals are Riemann integrable.

1.2 The Lebesgue Integral

A bounded function $f:[a,b] \to \mathbb{R}$ is said to be *Lebesgue integrable* on [a,b] if the set of points where f is discontinuous has zero measure.

A set $B \subset \mathbb{R}$ has measure zero if for every $\epsilon > 0$, it can be covered by a countable collection of open intervals $\{(a_n, b_n)\}$ such that:

$$B \subset \bigcup_{n=1}^{\infty} (a_n, b_n)$$
 and $\sum_{n=1}^{\infty} (b_n - a_n) < \epsilon$.

1.2.1 Example: Dirichlet Function

The Dirichlet function:

$$f(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}, \end{cases}$$

On the interval [0,1]:

We see that f is not Riemann integrable since it is discontinuous everywhere. But consider,

$$\mathbb{Q} = \{q_1, q_2, q_3, \ldots\}$$

and define:

$$f_1(x) = \chi_{\{q_1\}}(x) \to \text{integrable on } [0,1]$$

 $f_2(x) = \chi_{\{q_1, q_2\}}(x) \to \text{integrable on } [0, 1]$

:

$$f_n(x) = \chi_{\{q_1,q_2,\dots,q_n\}}(x) \to \text{integrable on } [0,1]$$

Then,

$$\lim_{n \to \infty} f_n(x) = \chi_{\mathbb{Q}}(x).$$

1.2.2 Characteristic Function

For any set $A \subset \mathbb{R}$, the characteristic function $\chi_A : \mathbb{R} \to \{0,1\}$ is defined as:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

$$\int_0^1 f_1(x) \, dx = 0 = \int_0^1 f_2(x) \, dx = \dots = \int_0^1 f_n(x) \, dx = 0.$$

Example

Let

$$f_n(x) = \begin{cases} x^n & \text{if } 0 \le x < 1, \\ 0 & \text{if } 1 \le x. \end{cases}$$

Then, with $f_n(x)$ continuous on \mathbb{R} , we have:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x \le 1. \end{cases}$$

so we can see that there is a discontinuity at x = 1.

Example

Let

$$f_n(x) = \begin{cases} -1 & \text{if } x \le -\frac{1}{n}, \\ \sin\left(\frac{n\pi x}{2}\right) & \text{if } -\frac{1}{n} \le x \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le x. \end{cases}$$

Then, with $f_n(x)$ continuous and differentiable on \mathbb{R} , we have:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Example

The Dirichlet function is not integrable but it is the limit of a sequence of integrable functions, all with integral equal to zero.

We need to define a new kind of convergence.

1.3 Convergences

A sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ converges punctually to a function f on Dom(f) if:

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \forall x \in Dom(f).$$

$$\forall \epsilon > 0, \quad \forall x \in Dom(f), \quad \exists N(\epsilon, x) \in \mathbb{N} : n > N \implies |f_n(x) - f(x)| < \epsilon.$$

A sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to a function f on Dom(f) if:

$$\forall \epsilon, \exists N : n > N \implies |f_n(x) - f(x)| < \epsilon, \forall x \in Dom(f).$$

Example

Let

$$f_n(x) = \frac{1}{n}\sin(nx), \quad x \in \mathbb{R}. \to^{n \to \infty} f(x) = 0.$$

1.3.1 Uniform Convergence

1. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and each f_n is continuous, then:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

- 2. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and each f_n is continuous in [a,b], then f is continuous on [a,b].
- 3. If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of differentiable functions on [a,b] that converges punctually to some continuous function f on [a,b] and if the sequence of derivatives $\{f'_n\}_{n\in\mathbb{N}}$ converges uniformly to some continuous function g, then f is differentiable on (a,b) and:

$$f'(x) = g(x) = \lim_{n \to \infty} f'_n(x).$$

1.4 Henri Lebesgue (1875-1941)

How can we count money in bills?

- 1. Add each amount as the bills come in. (Riemann)
- 2. Make groups by denomination and count each group. (Lebesgue)