Recitation 7

Wednesday $10^{\rm th}$ December, 2014

Contents

1	Transformation matrices	2
2	Completing to a Basis	2
	2.1 Method	2

1 Transformation matrices

Example 1. B and E are bases of V, which is the set of all 2×2 matrices.

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$
$$E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Find $[E]_B$ which holds $[m]_B = [E]_B[m]_E$, $\forall m \in V$.

Solution. For ease of calculation, $[E]_B$ can be written as $[B]_E^{-1}$.

$$\begin{split} [E]_B &= [B]_E^{-1} \\ &= \left(\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}_E \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{bmatrix}_E \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}_E \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{bmatrix}_E^{-1} \\ &= \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \end{pmatrix} \end{split}$$

2 Completing to a Basis

Definition 1. Let V be a n dimensional vector space. Let $W \subset V$ be a subset of V and let its basis B have m < n vectors.

We can find a set D having n-m vectors, s.t. $B \cup D$ will be a basis of V.

The vectors in D will be linearly independent, and $\operatorname{span}(B) \cap \operatorname{span}(D) = \{0\}.$

2.1 Method

In order to find the set D, we will write a matrix that has the vectors of B as its rows, and will add row vectors having all zeroes except in the positions corresponding to the free variables, which have 1.