Answer **THREE** of the four questions. If more than THREE questions are attempted, then credit will be given for the best THREE answers.

- **1.** As usual, $\mathbb{C}\langle x\rangle$ denotes the free algebra with one generator x. We equip $H=\mathbb{C}\langle x\rangle$ with the unique Hopf algebra structure where x is a primitive element. An element of H of the form $c1_H$, with $c\in\mathbb{C}$ (where the coefficient of any monomial x^n with n>0 is zero) will be called a *constant*.
- (a) If $f \in H$ is a constant, explain, referring to the Hopf algebra axioms, why $\Delta f = f \otimes 1_H$. Let now $h \in H$ be such that $\Delta h = h \otimes 1_H$; show that h is a constant.

Answer. If f is a constant then $f=c\cdot 1_H$ for some $c\in\mathbb{C}$. By definition of a Hopf algebra, the coproduct $\Delta\colon H\to H\otimes H$ is a homomorphism of associative unital algebras; in particular it takes the identity element 1_H of H to the identity element $1_H\otimes 1_H$ of $H\otimes H$. Moreover, linearity of Δ means that $\Delta f=c\Delta 1_H=c(1_H\otimes 1_H)=(c1_H)\otimes 1_H=f\otimes 1_H$.

Assume that $\Delta h = h \otimes 1_H$. One way to show that h is constant is to recall the counit law: $h = \epsilon(h_{(1)})h_{(2)}$ for all $h \in \mathbb{C}\langle x \rangle$, where $\epsilon \colon \mathbb{C}\langle x \rangle \to \mathbb{C}$ is the counit. Substituting $h_{(1)} \otimes h_{(2)} = h \otimes 1_H$, we obtain $h = \epsilon(h)1_H$. Since $\epsilon(h) \in \mathbb{C}$, this shows h is constant.

Write $\mathbb{C}[y]$ for the commutative algebra of polynomials in the variable y. Define the linear map $D \colon \mathbb{C}[y] \to \mathbb{C}[y]$ by Dg = g' for all $g \in \mathbb{C}[y]$ (i.e., D is the differentiation operator on $\mathbb{C}[y]$). Given $f = a_0 + a_1x + \cdots + a_nx^n \in H$, let f(D) be the element $a_0 + a_1D + \cdots + a_nD^n$ of $\mathrm{End}\,\mathbb{C}[y]$. You are given that the bilinear map $\triangleright \colon H \otimes \mathbb{C}[y] \to \mathbb{C}[y]$ defined for $f \in H$, $g \in \mathbb{C}[y]$ by $f \triangleright g = f(D)(g)$, is an action of the algebra H on the vector space $\mathbb{C}[y]$, and you do not have to prove this.

(b) Prove that the action \triangleright makes the algebra $\mathbb{C}[y]$ an H-module algebra.

Answer. Since we are given that \triangleright is an action, we only need to check the axioms

$$f \rhd (gh) = (f_{(1)} \rhd g)(f_{(2)} \rhd h),$$
 (1)

$$f \rhd 1_{\mathbb{C}[u]} = \epsilon(f) \tag{2}$$

for all $f \in \mathbb{C}\langle x \rangle$. Since both sides of each axiom are linear in f, it is enough to check them in the case where $f = x^n$ is a monomial, $n \geq 0$. Since $\Delta x^n = (x \otimes 1 + 1 \otimes x)^n = \sum_{i=0}^n \binom{n}{i} x^i \otimes x^{n-i}$, axiom (1) for $f = x^n$ reads

$$D^{n}(gh) = \sum_{i=0}^{n} \binom{n}{i} (D^{i}g)(D^{n-i}h),$$

which is true by a well-known higher-order Leibniz rule [easy to prove by induction]. Since $\epsilon(x^n) = 0$ if n > 0, $\epsilon(1) = 1$, axiom (2) reads

$$D^n 1 = 0$$
 if $n > 0$, $D^0 1 = 1$

which is clearly true and finishes the proof.

(c) Given $u \in \mathbb{C}[y]$, define $I_u = \{ f \in H : f \triangleright u = 0 \}$. Show that I_u is an ideal of the algebra H.

Answer. Since \triangleright is bilinear, the condition $f \triangleright u = 0$ is linear in f, so I_u is a subspace of H.

Since H is commutative, it is enough to show that $h\in H$, $f\in I_u$ implies $hf\in I_u$. Indeed, $(hf)\rhd u=h\rhd (f\rhd u)=h\rhd 0=0$, so $hf\in I_u$. Manchester, 2025

Page 1 of 7 P.T.O.

(d) Determine all polynomials $u \in \mathbb{C}[y]$ such that I_u is a coideal of H. Hint: if I_u is a coideal, then $\mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle/I_u$ must be a coalgebra morphism.

Answer. Suppose that I_u is a coideal of $\mathbb{C}\langle x \rangle$.

Note that, as coalgebras, $\mathbb{C}\langle x\rangle=\mathbb{C}[x]$ because all monomials in one variable x are obviously standard (with respect to the only total order that exists on the one-element set $X=\{x\}$). So, using the Hint, we have a coalgebra morphism

$$\pi \colon \mathbb{C}[x] \to \mathbb{C}[x]/I_u$$
.

In the course, we proved the Heyneman-Radford theorem for the polynomial coalgebra, which says that π is injective if, and only if, the restriction $\pi|_{\mathbb{C}x}$ is injective.

Yet π cannot be injective: we have $\ker \pi = I_u$ which is not zero because I_u contains x^N for all N such that $D^N u = 0$, that is for $N > \deg u$.

So if I_u is a coideal, $\pi|_{\mathbb{C}x}$ cannot be injective, and so we must have $\pi(cx)=0$ for some $c\neq 0$, equivalently $\pi(x)=0$, equivalently $x\rhd u=0$, equivalently u'=0 so that u is a constant.

Note that u=0 must be excluded because $I_0=H$ is not a coideal: the definition of a coideal requires $\epsilon(I)=\{0\}$. Thus, u can be any non-zero constant in $\mathbb{C}[y]$, so that $I_u=\ker\epsilon$, the subspace of $\mathbb{C}\langle x\rangle$ spanned by $x,x^2,x^3\dots$ [20 marks]

- **2.** In this question, Γ denotes a finite cyclic group of order n with identity element e. Let $\mathbb{C}\Gamma$ be the group algebra of Γ , viewed as a Hopf algebra in the standard way, and let $(\mathbb{C}\Gamma)^*$ be the Hopf algebra dual to $\mathbb{C}\Gamma$. Choose a generator γ of Γ so that $e, \gamma, \ldots, \gamma^{n-1}$ is a basis of $\mathbb{C}\Gamma$, and let $\delta_0, \ldots, \delta_{n-1}$ be the dual basis of $(\mathbb{C}\Gamma)^*$.
- (a) Formally prove that $\mathbb{C}\langle x\mid x^n=1\rangle$ is a presentation of the algebra $\mathbb{C}\Gamma$. You need to define an algebra homomorphism from the free tensor algebra $\mathbb{C}\langle x\rangle$ onto $\mathbb{C}\Gamma$ and prove that the kernel of this homomorphism is the ideal generated by x^n-1 in $\mathbb{C}\langle x\rangle$. You can identify $\mathbb{C}\langle x\rangle$ with the polynomial algebra $\mathbb{C}[x]$.

Answer. Consider the map $\{x\} \to \mathbb{C}\Gamma$, $x \mapsto \gamma$. By the universal mapping property of the free tensor algebra, this extends to an algebra homomorphism $\pi \colon \mathbb{C}[x] = \mathbb{C}\langle x \rangle \to \mathbb{C}\Gamma$. We have $\pi(x^i) = \pi(x)^i = \gamma^i$ so π is surjective (the image contains a spanning set).

If $f(x) \in \mathbb{C}[x]$, divide f by x^n-1 with remainder and write $f(x)=(x^n-1)g(x)+r(x)$ with $\deg r < n$. Note that $\pi(x^n-1)=\gamma^n-e=0$. So $r(x)=r_0+r_1x+\cdots+r_{n-1}x^{n-1}$ and $\pi(f)=0+\pi(r)=r_0e+r_1\gamma+\cdots+r_{n-1}\gamma^{n-1}$. Since $e,\gamma,\ldots,\gamma^{n-1}$ are a basis, $\pi(f)=0$ iff $r_0=r_1=\cdots=r_{n-1}=0$ iff r=0, so $f\in\ker\pi$ iff $f\in(x^n-1)\mathbb{C}[x]$, as required.

(b) Let ω be any nth root of unity in \mathbb{C} . Show that $\sum_{i=0}^{n-1} \omega^i \delta_i$ is a grouplike element of $(\mathbb{C}\Gamma)^*$. Give a brief but convincing explanation why all grouplike elements of $(\mathbb{C}\Gamma)^*$ are of this form.

Answer. Clearly $z_\omega:=\sum_{i=0}^{n-1}\omega^i\delta_i$ is not zero (as $\{\delta_i\}$ is a basis) so to show z_ω is grouplike in $(\mathbb{C}\Gamma)^*$, it is enough to check that $\Delta z_\omega=z_\omega\otimes z_\omega$. By evaluating both sides against a basis of $\mathbb{C}\Gamma\otimes\mathbb{C}\Gamma$, this is equivalent to

$$(\Delta z_{\omega})(\gamma^i \otimes \gamma^j) = (z_{\omega} \otimes z_{\omega})(\gamma^i \otimes \gamma^j)$$
 for all $i, j = 0, \dots, n-1$,

Page 2 of 7 P.T.O.

which by definition of the coproduct in $(\mathbb{C}\Gamma)^*$ rewrites as $z_{\omega}(\gamma^i\gamma^j)=z_{\omega}(\gamma^i)z_{\omega}(\gamma^j)$. Both sides are equal to ω^{i+j} , proving that z_{ω} is grouplike.

We found n distinct grouplikes, labelled by the nth roots of unity in \mathbb{C} . Since grouplikes are linearly independent by a result from the course, there cannot be more grouplikes in a Hopf algebra of dimension n. Therefore, we found all the grouplikes in $(\mathbb{C}\Gamma)^*$.

(c) Deduce from the result of (b) that the group $G((\mathbb{C}\Gamma)^*)$ of grouplike elements in $(\mathbb{C}\Gamma)^*$ is cyclic.

Answer. By (b), we have $G((\mathbb{C}\Gamma)^*) = \{z_\omega : \omega^n = 1\}.$

We show that $z_{\omega}z_{\eta}=z_{\omega\eta}$. Evaluate both sides against γ^i : $(z_{\omega}z_{\eta})(\gamma^i)=(z_{\omega}\otimes z_{\eta})(\Delta\gamma^i)=(z_{\omega}\otimes z_{\eta})(\gamma^i\otimes \gamma^i)=z_{\omega}(\gamma^i)z_{\eta}(\gamma^i)=\omega^i\eta^i$, which is equal to $z_{\omega\eta}(\gamma^i)$.

It follows that the group $G((\mathbb{C}\Gamma)^*)$ is isomorphic to the group $\{\omega\in\mathbb{C}:\omega^n=1\}$, which is cyclic and is generated by $e^{2\pi\sqrt{-1}/n}$.

(d) Show: if ω is a primitive nth root of unity, then $R(\omega) = \frac{1}{n} \sum_{a,b=0}^{n-1} \omega^{ab} \gamma^a \otimes \gamma^b$ is a universal R-matrix on $\mathbb{C}\Gamma$. You may assume that $R(\omega)R(\omega^{-1}) = 1 \otimes 1$.

Answer. Write $R=R(\omega)$. We will verify the axioms by direct calculation. To make the calculation more streamlined, we rewrite R as $\sum\limits_{a=0}^{n-1}\Bigl(\gamma^a\otimes\frac{1}{n}\sum\limits_{b=0}^{n-1}(\omega^a)^b\gamma^b\Bigr)$. We recognise the elements $\frac{1}{n}\sum\limits_{b=0}^{n-1}(\omega^a)^b\gamma^b$ of $\mathbb{C}\Gamma_n$ as the **orthogonal idempotents** p_a , $a=0,1,\ldots,n-1$. Indeed, one has

$$p_a^2 = p_a, p_a p_c = 0 if a \neq c.$$

To verify this property of the p_a , calculate

$$p_a p_c = \frac{1}{n^2} \sum_{b,d=0}^{n-1} (\omega^a)^b (\omega^c)^d \gamma^{b+d} = \frac{1}{n^2} \sum_{k=0}^{n-1} \left(\sum_{b=0}^{n-1} (\omega^a)^b (\omega^c)^{k-b} \right) \gamma^k = \frac{1}{n^2} \sum_{k=0}^{n-1} \omega^{ck} \left(\sum_{b=0}^{n-1} (\omega^{a-c})^b \right) \gamma^k.$$

Now, if a=c then $\omega^{a-c}=1$ and $\sum_{b=0}^{n-1}(\omega^{a-c})^b=n$. We get $p_cp_c=p_c$.

If $a \neq c$ then $\omega^{a-c} \neq 1$ because ω is a primitive nth root of unity. Then $\sum_{b=0}^{n-1} (\omega^{a-c})^b = 0$ (use the formula for the sum of geometric progression with ratio ω^{a-c}) which proves $p_a p_c = 0$.

We now return to $R=\sum_{a=0}^{n-1}g^a\otimes p_a$. We are given that $R(\omega)R(\omega^{-1})=1\otimes 1$. Therefore, R is invertible with $R^{-1}=R(\omega^{-1})$. Axiom 1. of quasitriangular structure is thus verified.

Axiom 2. of quasitriangular structure is trivial in this case: indeed, $\mathbb{C}\Gamma\otimes\mathbb{C}\Gamma$ is a commutative algebra so $R(x_{(1)}\otimes x_{(2)})R^{-1}=RR^{-1}(x_{(1)}\otimes x_{(2)})=x_{(1)}\otimes x_{(2)}$; and also $x_{(2)}\otimes x_{(1)}=x_{(1)}\otimes x_{(2)}$ because $\mathbb{C}\Gamma$ is cocommutative.

To verify axiom 3., we use the orthogonal idempotent property of the p_a to calculate

$$(\Delta \otimes \mathrm{id})R = \sum_{a=0}^{n-1} \gamma^a \otimes \gamma^a \otimes p_a = \sum_{a,b=0}^{n-1} \gamma^a \otimes \gamma^b \otimes p_a p_b = R_{13}R_{23}.$$

The identity $(\mathrm{id} \otimes \Delta)R = R_{13}R_{12}$ is verified similarly, by writing $R = \sum_{a=0}^{n} p_a \otimes \gamma^a$.

[20 marks]

- **3.** Let the Lie algebra \mathfrak{sl}_2 be spanned over \mathbb{C} by X,H,Y with the Lie bracket given by [H,X]=2X, [H,Y]=-2Y, [X,Y]=H. Let $U=U(\mathfrak{sl}_2)$ be the universal enveloping algebra of \mathfrak{sl}_2 ; consider \mathfrak{sl}_2 as a subspace of U. Let $\mathfrak b$ be the subspace of $\mathfrak {sl}_2$ spanned by X and H; clearly, $\mathfrak b$ is a Lie subalgebra of $\mathfrak {sl}_2$.
- (a) Explain why the inclusion $\mathfrak{b} \subset \mathfrak{sl}_2$ gives rise to a homomorphism $\psi \colon U(\mathfrak{b}) \to U$ of associative unital algebras. Your answer should refer to the universal mapping property of the universal enveloping algebra. (Note that ψ , if exists, is uniquely determined by the condition $\psi(z) = z$ for all $z \in \mathfrak{b}$.)

Answer. By the universal mapping property proved in the course, any Lie map $\mathfrak{b} \xrightarrow{f} A$ where A is an associative algebra, uniquely extends to a morphism $U(\mathfrak{b}) \xrightarrow{\widehat{f}} A$ of associative algebras. A Lie map is such that $f([x,y]_{\mathfrak{b}}) = f(x)f(y) - f(y)f(x)$ in A. The embedding $\mathfrak{b} \subset \mathfrak{sl}_2 \subset U(\mathfrak{sl}_2)$ is a Lie map, so the above applies.

(b) Prove that the map $\psi \colon U(\mathfrak{b}) \to U$ from part (a) is injective.

Answer. By the Poincaré-Birkhoff-Witt theorem, $U(\mathfrak{b})$ has basis $\{X^mH^n: m, n\in\mathbb{Z}_{\geq 0}\}$. Since ϕ is an algebra homomorphism and $\psi(X)=X$, $\psi(H)=H$, one has $\psi(X^mH^n)=X^mH^n\in U(\mathfrak{sl}_2)$. But the standard monomials X^mH^n are linearly independent in $U(\mathfrak{sl}_2)$, again by the PBW theorem. Thus, ψ carries a basis to a linearly independent set, hence is injective.

(c) Give an example of a coideal K of U such that $U=\psi(U(\mathfrak{b}))\oplus K$; justify your example. Is your choice of K a Hopf ideal? Give brief reasons.

Answer. Recall that by the PBW theorem, $\{X^mH^nY^p:m,n,p\in\mathbb{Z}_{\geq 0}\}$ is a basis of U. So if

$$K=UY=\operatorname{span}\{X^mH^nY^p:p>0\}$$

then $U = \operatorname{span}\{X^m H^n\} \oplus K = \psi(U(\mathfrak{b})) \oplus K$. To show that UY is a coideal, observe that if p > 0, $\Delta(X^m H^n Y^p) = (\Delta(X^m H^n Y^{p-1}))(Y \otimes 1 + 1 \otimes Y) \in UY \otimes U + U \otimes UY$, and that $\epsilon(UY) = 0$ because $\epsilon(Y) = 0$. The coideal UY is not an ideal, because $Y \in UY$ but $XY - YX = H \notin UY$.

(d) (i) Show that there exists an action \triangleright of the algebra U on the vector space U, which is defined on the generators z=X,H,Y of U by $z\triangleright A=zA-Az$ for $A\in U$. (Note that the action, if exists, is unique because it is defined on generators. You only need to prove existence.)

Answer. Let $d_z \colon U \to U$ be defined by $d_z(A) = zA - Az$. The linear map $\mathfrak{sl}_2 \to \operatorname{End} U$, $z \mapsto d_z$ is a Lie morphism because

$$(d_z d_t - d_t d_z)(A) = z(tA - At) - (tA - At)z - t(zA - Az) + (zAt - Az)t$$

= $(zt - tz)A - A(zt - tz) = d_{[z,t]}(A).$

Hence $z\mapsto d_z$ extends to a map $U\to\operatorname{End} U$ of associative algebras, which is the action of U on the vector space U.

(ii) Let $U^0 = \{A \in U : u \rhd A = \epsilon(u)A \text{ for all } u \in U\}$ where ϵ is the counit of U. Find $\lambda \in \mathbb{C}$ such that $XY + YX + \lambda H^2 \in U^0$.

Answer. We need to ensure that $\Omega_{\lambda}:=XY+YX+\lambda H^2=2XY-H+\lambda H^2$ commutes with X,Y and H in U. It is easy to see that $[H,\Omega_{\lambda}]=0$ for all λ . Now,

$$[Y, H] = 2Y,$$
 $[Y, XY] = [Y, X]Y - X[Y, Y] = -HY - 0 = -HY,$

 $[Y,H^2]=H[Y,H]+[Y,H]H=2HY+2YH=2HY+2HY-2[H,Y]=4HY+4Y,$ so $[Y,\Omega_{\lambda}]=-2HY-2Y+\lambda(4HY+4Y)$ and we must put $\lambda=1/2$. One checks that $[X,\Omega_{1/2}]=0$ so $\lambda=1/2$ is the answer.

4. Let the Hopf algebra $U_q=U_q(\mathfrak{sl}_2)$ be generated over $\mathbb C$ by E,F,K,K^{-1} subject to relations $KK^{-1}=1$, $K^{-1}K=1$, $KE=q^2EK$, $KF=q^{-2}FK$, $EF-FE=(q-q^{-1})^{-1}(K-K^{-1})$, where the coalgebra structure is given by $\Delta E=1\otimes E+E\otimes K$, $\Delta F=K^{-1}\otimes F+F\otimes 1$, $\epsilon(E)=\epsilon(F)=0$ and K being grouplike. Let $S\colon U_q\to U_q$ be the antipode. For the purposes of this question, we treat q as a complex number which is neither 0 nor a root of unity. Let $\mathcal B=\{E^mK^nF^p:m,p\in\mathbb Z_{\geq 0},n\in\mathbb Z\}$ be the PBW-type basis of U_q .

(a) Express $S(EKF^2)$ as a linear combination of elements of \mathcal{B} .

Answer. Recall that $S(K^{\pm 1})=K^{\mp 1}$ as K is grouplike, $S(E)=-EK^{-1}$, S(F)=-KF. The first step is to use antimultiplicativity of S: $S(EKF^2)=S(F)^2\cdot S(K)S(E)=-KFKF\cdot K^{-1}EK^{-1}$, then use $KF=q^{-2}FK$ and $EK^{-1}=q^2K^{-1}E$ to write this as $-q^{-6}F^2K^2\cdot q^2K^{-2}E$, so that

$$S(EKF^2) = -q^{-4}F^2E.$$

We have

$$F^{2}E = EF^{2} - [E, F^{2}] = EF^{2} - [E, F]F - F[E, F] = EF^{2} - \{F, [E, F]\},$$

where we write [a, b] := ab - ba, $\{a, b\} := ab + ba$. Since

$$[E,F] = \frac{K-K^{-1}}{q-q^{-1}}, \qquad \{F,K\} = (q^2+1)KF, \qquad \{F,K^{-1}\} = (1+q^{-2})K^{-1}F,$$

we have

$$F^{2}E = EF^{2} - \frac{(q^{2}+1)KF - (1+q^{-2})K^{-1}F}{q - q^{-1}},$$

so the final answer is $-q^{-4}EF^2 + \frac{q^{-2}+q^{-4}}{q-q^{-1}}KF - \frac{q^{-4}+q^{-6}}{q-q^{-1}}K^{-1}F$.

(b) Let $\rho \colon U_q \to M_{n \times n}(\mathbb{C})$ be a homomorphism of associative unital algebras. Explain why $\widetilde{\rho} \colon U_q \to M_{n \times n}(\mathbb{C})$ defined by $\widetilde{\rho}(h) = \rho(S(h))^T$ is also a homomorphism of associative unital algebras. (Here T denotes matrix transposition.) Prove that if n=1, then necessarily $\rho = \widetilde{\rho}$.

Answer. An acceptable conceptual explanation is: interpret the matrix algebra $M_{n\times n}(\mathbb{C})$ as the endomorphism algebra $\mathrm{End}(V)$ where $V=\mathbb{C}^n$, and consider the action \rhd of U_q on the space V, defined by ρ . As seen in the course, since U_q is a Hopf algebra, it acts on the dual space V^* via $(h\blacktriangleright\xi)(v)=\xi(Sh\triangleright v)$ for $\xi\in V^*$, $v\in V$. Thus, the map $h\blacktriangleright\colon V^*\to V^*$ is the contragredient of $Sh\triangleright\colon V\to V$, and so its matrix the transpose of $\rho(Sh)$.

However, the fact that $\widetilde{\rho}$ is a homomorphism can be checked directly: it is linear since S and $()^T$ are linear, and is multiplicative, because both S and $()^T$ are antimultiplicative.

Assume now that n=1. Since the matrix algebra $M_{1\times 1}(\mathbb{C})\cong\mathbb{C}$ is commutative, $\rho(K)\rho(E)=q^2\rho(E)\rho(K)$ translates into $(1-q^2)\rho(K)\rho(E)=0$. Note that $1-q^2\neq 0$ as q is not a root of unity, and $\rho(K)\rho(K^{-1})=1$ so $\rho(K)\neq 0$. It follows that $\rho(E)=0$, and $\widetilde{\rho}(E)=\rho(-EK^{-1})=-\rho(K^{-1})0=0$.

In the same way $\widetilde{\rho}(F)=\rho(F)=0$. Finally, $\rho(K)-\rho(K^{-1})=(q-q^{-1})(\rho(E)\rho(F)-\rho(F)\rho(E))=0$, so one has $\rho(K)=\rho(K^{-1})=\rho(S(K))^T=\widetilde{\rho}(K)=\widetilde{\rho}(K^{-1})$.

We conclude that the homomorphisms ρ and $\widetilde{\rho}$ agree on generators of U_a , hence are equal.

(c) You are given that $\sigma \colon U_q \to M_{3\times 3}(\mathbb{C})$ is such that $\sigma(E) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & q^3 + q & 0 \end{pmatrix}$, $\sigma(K) = \begin{pmatrix} q^{-2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & q^2 \end{pmatrix}$ Show that $\sigma(F)$ is uniquely determined by these conditions. Find $\sigma(F)$.

$$\Rightarrow \sigma(F)\sigma(K) - q^2\sigma(K)\sigma(F) = \begin{pmatrix} (q^{-2} - 1)a & 0 & (q^2 - 1)c \\ (-q^2 + q^{-2})d & (-q^2 + 1)e & 0 \\ (-q^4 + q^{-2})g & (-q^4 + 1)h & (-q^4 + q^2)i \end{pmatrix}, \text{ this must be zero so }$$

 $\sigma(F) = \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & f \\ 0 & 0 & 0 \end{pmatrix}$ as the polynomials in q which appear above are not 0 due to q not being a

root of unity. Calculate $\sigma(E)\sigma(F)-\sigma(F)\sigma(E)=\mathrm{diag}(-b,\ b-(q^3+q)f,\ (q^3+q)f)$, this must be equal to $(\sigma(K)-\sigma(K)^{-1})/(q-q^{-1})=\mathrm{diag}(-(q+q^{-1}),\ 0,\ q+q^{-1})$. It follows that

$$\sigma(F) = \begin{pmatrix} 0 & q + q^{-1} & 0 \\ 0 & 0 & q^{-2} \\ 0 & 0 & 0 \end{pmatrix}.$$

(d) Let $q=e^{\hbar}$ and let $\mathcal{R}=\exp(\frac{\hbar}{2}H\otimes H)\exp_{q^{-2}}((q-q^{-1})E\otimes F)$ be the universal R-matrix for $U_q(\mathfrak{sl}_2)$ constructed in the course; in particular, H is a primitive element such that $K=\exp(\hbar H)$. Show, by explicit calculation, that $(\epsilon\otimes\mathrm{id})\mathcal{R}=1_{U_q}$, briefly explaining the assumptions made in your calculation.

Answer. We assume that the usual properties of ϵ , e.g., linearity and multiplicativity, extend to infinite sums and their products. (This is because $U_q(\mathfrak{sl}_2)$ is a \mathbb{C} -subalgebra of the \hbar -adic $\mathbb{C}[[\hbar]]$ -algebra $U_{\hbar}(\mathfrak{sl}_2)$.) Recall that $\exp_{q^{-2}}((q-q^{-1})E\otimes F)$ is defined as

$$\sum_{n=0}^{\infty} \frac{1}{[n; q^{-2}]!} ((q-q^{-1})E \otimes F)^n = 1_{U_q} \otimes 1_{U_q} + \frac{1}{[n; q^{-2}]!} (q-q^{-1})E \otimes F + \dots,$$

and observe that the terms where $n \ge 1$ contain E^n in the left leg. Since $\epsilon(E^n) = \epsilon(E)^n = 0^n = 0$, the operator $\epsilon \otimes \operatorname{id}$ gives zero when applied to each of the $n \ge 1$ terms; only the n = 0 term survives. Thus,

$$(\epsilon \otimes \mathrm{id}) \left(\exp_{q^{-2}} ((q - q^{-1})E \otimes F) \right) = (\epsilon \otimes \mathrm{id}) (1_{U_q} \otimes 1_{U_q}) = 1_{\mathbb{C}} \otimes 1_{U_q} = 1_{U_q}.$$

We are left to calculate $(\epsilon \otimes id)$ $(\exp(\frac{\hbar}{2}H \otimes H))$. Similarly to the above,

$$\exp(\frac{\hbar}{2}H\otimes H)\sum_{n=0}^{\infty}\frac{(\hbar/2)^n}{n!}H^n\otimes H^n=1_{U_q}\otimes 1_{U_q}+\frac{\hbar}{2}H\otimes H+\ldots,$$

where the n>0 terms contain a positive power of H in the left leg. Since H is primitive, $\epsilon(H)=0$ and $\epsilon(H^n)=\epsilon(H)^n=0$. Therefore,

$$(\epsilon \otimes \mathrm{id}) \left(\exp(\frac{\hbar}{2} H \otimes H) \right) = (\epsilon \otimes \mathrm{id}) (1_{U_q} \otimes 1_{U_q}) = 1_{\mathbb{C}} \otimes 1_{U_q} = 1_{U_q}.$$

We conclude:

$$(\epsilon \otimes \mathrm{id})\mathcal{R} = (\epsilon \otimes \mathrm{id}) \left(\exp(\frac{\hbar}{2} H \otimes H) \right) \cdot (\epsilon \otimes \mathrm{id}) \left(\exp_{q^{-2}} ((q - q^{-1}) E \otimes F) \right) = 1_{U_q} \cdot 1_{U_q} = 1_{U_q}.$$

[20 marks]