1 Шаг первый

Исходная система уравнений:

$$\begin{cases} \dot{s} = ay + \gamma \\ \dot{y} = -cy - s - xs \\ \dot{x} = cx + ys \end{cases}$$
 (1)

Сделаем подстановку в виде $s=\frac{s_0}{\tau^k},\,y=\frac{y_0}{\tau^l},\,x=\frac{x_0}{\tau^m}$ Найдём $\dot{s},\,\dot{y},\,\dot{x}$:

$$\begin{cases} \dot{s} = -\frac{ks_0}{\tau^{k+1}} \\ \dot{y} = -\frac{ly_0}{\tau^{l+1}} \\ \dot{x} = -\frac{mx_0}{\tau^{m+1}} \end{cases}$$

Полученные выражения подставим в исходную систему (1):

$$\begin{cases}
-\frac{ks_0}{\tau^{k+1}} = a\frac{y_0}{\tau^l} + \gamma \\
-\frac{ly_0}{\tau^{l+1}} = -c\frac{y_0}{\tau^l} - \frac{s_0}{\tau^k} - \frac{x_0}{\tau^m} \frac{s_0}{\tau^k} \\
-\frac{mx_0}{\tau^{m+1}} = -c\frac{x_0}{\tau^m} + \frac{y_0}{\tau^l} \frac{s_0}{\tau^k}
\end{cases} \tag{2}$$

Учитывая, что $k, l, m \in \mathbb{Z}$, получим:

$$\left\{ \begin{array}{l} k+1=l \\ l+1=k \text{ или } l+1=m+k \\ m+1=l+k \end{array} \right.$$

Отбросив l+1=k, и решив данную систему, однозначно получим что $m=2,\,k=1,\,l=2.$ В итоге получим систему:

$$\begin{cases}
-\frac{s_0}{\tau^2} = a\frac{y_0}{\tau^2} + \gamma \\
-\frac{2y_0}{\tau^3} = -c\frac{y_0}{\tau^2} - \frac{s_0}{\tau} - \frac{x_0s_0}{\tau^3} \\
-\frac{2x_0}{\tau^3} = -c\frac{x_0}{\tau^2} + \frac{y_0s_0}{\tau^3}
\end{cases}$$
(3)

2 Шаг второй

Рассмотрим коэффициенты при одинаковых степенях τ в формуле (3) для нахождения x_0, y_0, s_0

3 Шаг третий

Сделаем подстановку в виде

$$\begin{cases} s = \frac{s_0}{\tau} + \alpha \tau^{r-1} \\ y = \frac{y_0}{\tau^2} + \beta \tau^{r-2} \\ x = \frac{x_0}{\tau^2} + \theta \tau^{r-2} \end{cases}$$

Найдём \dot{s} , \dot{y} , \dot{x} :

$$\begin{cases} \dot{s} = -\frac{s_0}{\tau^2} + \alpha(r-1)\tau^{r-2} \\ \dot{y} = -\frac{2y_0}{\tau^3} + \beta(r-2)\tau^{r-3} \\ \dot{x} = -\frac{2x_0}{\tau^3} + \theta(r-2)\tau^{r-3} \end{cases}$$

Полученные выражения подставим в исходную систему (1):

$$\begin{cases}
-\frac{s_0}{\tau^2} + \alpha(r-1)\tau^{r-2} = a\left(\frac{y_0}{\tau^2} + \beta\tau^{r-2}\right) + \gamma \\
-\frac{2y_0}{\tau^3} + \beta(r-2)\tau^{r-3} = -c\left(\frac{y_0}{\tau^2} + \beta\tau^{r-2}\right) - \left(\frac{s_0}{\tau} + \alpha\tau^{r-1}\right) - \left(\frac{x_0}{\tau^2} + \theta\tau^{r-2}\right)\left(\frac{s_0}{\tau} + \alpha\tau^{r-1}\right) \\
-\frac{2x_0}{\tau^3} + \theta(r-2)\tau^{r-3} = -c\left(\frac{x_0}{\tau^2} + \theta\tau^{r-2}\right) + \left(\frac{y_0}{\tau^2} + \beta\tau^{r-2}\right)\left(\frac{s_0}{\tau} + \alpha\tau^{r-1}\right)
\end{cases}$$
(4)

Немного преобразуем данную систему

$$\begin{cases} -\frac{s_0}{\tau^2} + \alpha(r-1)\tau^{r-2} = a\left(\frac{y_0}{\tau^2} + \beta\tau^{r-2}\right) + \gamma \\ -\frac{2y_0}{\tau^3} + \beta(r-2)\tau^{r-3} = -c\left(\frac{y_0}{\tau^2} + \beta\tau^{r-2}\right) - \left(\frac{s_0}{\tau} + \alpha\tau^{r-1}\right) - \left(\frac{x_0s_0}{\tau^3} + \tau^{r-3}(x_0\alpha + s_0\theta) + \alpha\theta\tau^{2r-3}\right) \\ -\frac{2x_0}{\tau^3} + \theta(r-2)\tau^{r-3} = -c\left(\frac{x_0}{\tau^2} + \theta\tau^{r-2}\right) + \left(\frac{y_0s_0}{\tau^3} + \tau^{r-3}(y_0\alpha + s_0\beta) + \alpha\beta\tau^{2r-3}\right) \end{cases}$$

Рассмотрим коэффициенты при τ^{r-2} , τ^{r-3} , τ^{r-3} в первом, во втором и в третьем уравнении соответственно

$$\begin{cases} \alpha(r-1) = \alpha\beta \\ \beta(r-2) = -\alpha x_0 - \theta s_0 \\ \theta(r-2) = \alpha y_0 + \beta s_0 \end{cases}$$
(5)

Перепишем данную систему в следующем виде:

$$\begin{cases} \alpha(r-1) - a\beta & +0 = 0\\ \alpha x_0 + \beta(r-2) & +\theta s_0 = 0\\ -\alpha y_0 - \beta s_0 & +\theta(r-2) = 0 \end{cases}$$
(6)

Составим матрицу из коэффициентов при α , β , θ

$$\begin{pmatrix} r-1 & -a & 0 \\ x_0 & r-2 & s_0 \\ -y_0 & -s_0 & r-2 \end{pmatrix}$$
 (7)

Найдем определитель данной матрицы и приравняем его к нулю:

$$(r-1)(r-2)(r-2) + as_0y_0 + s_0^2(r-1) + ax_0(r-2) = 0$$

$$(r-1)(r^2-4r+4)+as_0y_0+rs_0^2-s_0^2+rax_0-2ax_0=0$$

$$r^3-4r^2+4r-r^2+4r-4+as_0y_0+rs_0^2-s_0^2+rax_0-2ax_0=0$$

$$r^3-5r^2+(8+s_0^2+ax_0)r-s_0^2+as_0y_0-2ax_0-4=0$$
 При подстановке в данное уравнение выражений для x_0 , y_0 , s_0 , уравнение разбивается на 2.

Первый случай: $x_0 = -\frac{2}{a}$, $y_0 = \frac{2}{a}i$, $s_0 = -2i$:

$$r^{3} - 5r^{2} + (8 - 4 + a(-\frac{2}{a}))r - 4 + a(-2i)(\frac{2}{a}i) + 4 + 2a(\frac{2}{a}) = 0$$

$$r^{3} - 5r^{2} + 2r + 8 = 0$$

Второй случай: $x_0 = -\frac{2}{a}$, $y_0 = -\frac{2}{a}i$, $s_0 = 2i$:

$$r^{3} - 5r^{2} + (8 - 4 + a(-\frac{2}{a}))r - 4 + a(2i)(-\frac{2}{a}i) + 4 + 2a(\frac{2}{a}) = 0$$

$$r^{3} - 5r^{2} + 2r + 8 = 0$$

Видно, что уравнения получились одинаковые. Корни уравнения:

$$\begin{bmatrix}
r = -1 \\
r = 2 \\
r = 4
\end{bmatrix}$$