CS372 FORMAL LANGUAGES & THE THEORY OF COMPUTATION

Dr. Nguyen Thi Thu Huong

Phone: +84 24 38696121, Mobi: +84 903253796

Email: huongnt@soict.hust.edu.vn,

huong.nguyenthithu@hust.edu.vn

Description

- Computational models and how they relate to each other.
- Contents:
 - Finite automata
 - Regular expressions and languages
 - context-free grammars and languages
 - Turing machines
 - Un-decidable and intractable problems

Course Objectives

- Introduction to the formal language theory
- Understanding computation models and their usage in the design and construction of important kinds of software
- Skills of using formal proofs

What is the course about

- Formal Languages
- Automata
- Computability
- Complexity

Textbooks

- Michael Sipser. Introduction to the Theory of Computation (3rd edition). Required.
- Thomas A. Sudkamp. Languages and Machines. (3rd edition). Optinal.
- Savage, J. E. Models of Computation.
 Exploring the Power of Computing.
 Optional.

Evaluation

Attendance	10%
Homework assignments	25%
Presentation	15%
Midterm	20%
Final exam	30%

Assignment of Grades

A	90 - 100
В	80 - 89
С	70 – 79
D	60 – 69
F	59 and below

Unit 1 Introduction

Introduction

- Formal Languages
- Automata
- Computability
- Complexity
- Mathematical preliminaries
- String and languages
- Types of proof

What is theory of computation

- Computation → Writing programs → Running programs
- Program: algorithm expressed by a programming language
- Algorithm: a recipe for carrying out input to output transformation
- Every algorithm computes a function
 f: D (input) → R (output)

What is theory of computation

- Can we use computers to compute all the function? Are all functions algorithm?
- Basic goal: Identify the class of functions which admit an algorithm to compute them.
- Solve set membership problem:

Given a set S and a. $a \in S$?

membership problem for

$$graph(f) = \{(a,b) | f(a) = b\}$$

 No algorithm to solve the set membership problem for graph(f) → no algorithm to compute function f.

What is theory of computation

- Graph (f): Set of finite strings
- Concepts of symbol, string, languages
- Formal Language

Containment hierarchy of classes of formal languages

Formal Languages

- An abstraction of the notion of a "problem"
- Problems are call computational processes can be reduced to one of Determining membership in a set (of strings)
- Formalize the concept of mechanical computation
- Define of the term "algorithm"
- Characterize problems that are or are not suitable for mechanical computation.

Formal Languages

- Finite State Automata.
- Regular Expressions and Regular Grammars.
- Context-free Grammars and Pushdown Automata.

Automata

- Automata (singular Automaton) are abstract mathematical devices that can
 - Determine membership in a set of strings
 - Transduce strings from one set to another
- They have all the aspects of a computer
 - input and output
 - memory
 - ability to make decisions
 - transform input to output
- Memory is crucial:
 - Finite Memory
 - Infinite Memory
 - Limited Access
 - Unlimited Access

Automata

- There are different types of automata for different classes of languages.
- They differ in
 - the amount of memory then have (finite vs infinite)
 - what kind of access to the memory they allow.
- Automata can behave non-deterministically
- A non-deterministic automaton can at any point, among possible next steps, pick one step and proceed
- This gives the conceptual illusion of (infinitely) parallel computation for some classes of automata. All branches of a computation proceed in parallel (sort of)

Computability

- What is computational power?
- What does computational power depend on?
- What does it mean for a problem to be computable?
- Are there any uncomputable functions or unsolvable problems?

Computability

- Computation models: Turing machines (TM).
- Turing-decidable and Turing-recognizable languages.
- Enhancements of TMs: multi-tape TMs, nondeterministic TMs. Equivalence of these and the standard TM.
- Diagonalization. Acceptance problem is undecidable;
 Acceptance problem is recognizable; the complement of the Acceptance problem is unrecognizable.
- Reductions. Examples of other undecidable languages. Rice's theorem. Post's Correspondence Problem (PCP) is undecidable.

Complexity

- Running time of Turing Machines. The classes P, NP, NP-hard, and NP-complete.
- Cook-Levin Theorem. SAT is NP-complete.
 Some reductions.

Applications

- Pattern matching
- Design and Verification
- Parsing Languages
- Natural language processing
- Algorithm design and analysis

Mathematical Preliminaries

- Sets
- Sequences and Tuples
- Functions and Relations
- Strings and Languages
- Boolean Logic

Strings and Languages

- Alphabets
- Strings
- Languages
- Operations on Languages

Alphabet

Symbol

A physical entity that we shall not formally define; we shall rely on intuition.

<u>Alphabet</u>

A finite, non-empty set of symbols

- We often use the symbol \sum (sigma) to denote an alphabet
- Examples of alphabet
 - Binary: $\sum = \{0,1\}$
 - All lower case letters: $\sum = \{a,b,c,..z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: ∑ = {a,c,g,t}(guanine, adenine, thymine, and cytosine)
 - C character set

C character set

Types	Character Set
Lowercase Letters	a –z
Uppercase Letters	A - Z
Digits	0-9
Special Characters	~! # \$% ^ & *()_ + \' - = { } [] : " ; <> ? , . /
White Spaces	Tab Or New line Or Space

Strings

String (sentence)

A finite sequence of symbols chosen from some alphabet

- Empty string is ε
- Length of a string w, denoted by |w|, is equal to the number of symbols in the string

$$- E.g., x = 010100$$

$$|x| = 6$$

$$- x = 01 \epsilon 0 \epsilon 1 \epsilon 00 \epsilon$$

$$|x| = ?$$

String Operations

- xy = concatenation of two strings x and y
- x^R= reversion of x

Powers of an Alphabet

If Σ is an alphabet, we can express the set of all strings of a certain length from that alphabet by using the exponential notation:

 \sum^{k} = the set of all strings of length k

Examples:

- Σ⁰ = {ε},regardless of what alphabet Σ is. That is the only string of length 0
- If $\Sigma = \{0,1\}$, then: $\Sigma^1 = \{0,1\}$ $\Sigma^2 = \{00, 01,10,11\}$ $\Sigma^3 = \{000, 001, 010, 011, 100,101,110,111\}$

Star

- Σ*: The set of all strings over alphabet Σ
 Σ* = Σ⁰ U Σ¹ U Σ² U ...
- The symbol * is called Kleene star and is named after the mathematician and logician Stephen Cole Kleene.
- Thus $\sum * = \sum + \cup \{\epsilon\}, \sum + = \sum * \{\epsilon\}$

Languages

L is a said to be a language over alphabet \sum , only if $L \subseteq \sum^*$

→ this is because ∑* is the set of all strings (of all possible length including 0) over the given alphabet ∑

Examples:

1. Let L₁ be *the* language of <u>all strings consisting of *n*</u> 0's followed by *n* 1's:

$$L_1 = \{\epsilon, 01, 00011, 000111, \ldots\}$$

2. Let L₂ be *the* language of <u>all strings with equal</u> number of 0's and 1's:

$$L_2 = \{\varepsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \ldots\}$$

Definition: Ø denotes the Empty language

■ Let
$$L = \{\varepsilon\}$$
; Is $L = \emptyset$?

Examples of Languages

Some examples of languages:

- The set of all words over {a, b},
- The set { $a^n \mid n$ is a prime number },
- Programming language Pascal: the set of syntactically correct programs in Pascal
- The set of inputs upon which a certain Turing machine halts.

Operations on Languages

Several operations can be used to produce new languages from given ones. Suppose L_1 and L_2 are languages over some common alphabet.

- The concatenation L_1L_2 consists of all strings of the form vw where v is a string from L_1 and w is a string from L_2 .
- The *intersection* of L_1 and L_2 consists of all strings which are contained in L_1 and also in L_2 .
- The union of L₁ and L₂ consists of all strings which are contained in L1 or in L₂.
- The *complement* of the language L_1 consists of all strings over the alphabet which are not contained in L_1 .
- The star(Kleene star) L_1^* consists of all strings which can be written in the form $w_1w_2...w_n$ with strings wi in L_1 and $n \ge 0$. Note that this includes the empty string ε because n = 0 is allowed
- The reverse L_1^R contains the reversed versions of all the strings in L_1 .

Sets of Languages

• The power set of Σ^* , the set of all its subsets, is denoted as $P(\Sigma^*)$

Describing Languages

- Interesting languages are infinite
- Computers cannot work with infinite object.
- We need finite descriptions of infinite sets
- L = {aⁿbⁿ : n ≥ 0} is fine but not terribly useful!
- We need to be able to use these descriptions in mechanizable procedures

Chomsky's Hierarchy

- Type-0 languages (recursive enumerable)
 recognized by a Turing machine
 generated by a type-0 grammar
- Type-1 languages (context-sensitive)
 recognized by a linear bounded automaton
 generated by a context sensitive grammar
- Type-2 languages (context-free)
 recognized by a non-deterministic pushdown automaton
 generated by a context free grammar
- Type-3 languages (regular)
 denoted by a regular expression,
 generated by a regular grammar
 recognized by a finite state automaton

Chomsky's Hierarchy

Types of proof

- Definition, theorems and proof
- Types of proof
- Proof by induction

Definition, theorems and proof

- Definitions describe the objects and notions that we use
- A proof is a convincing logical argument that a statement is true
- A theorem is a mathematical statement proved true

Types of proof

- Proof by construction
- Proof by contradiction
- Proof by induction

Proof by induction

- Consider infinite set of the natural numbers,
 N = {1,2,3, ...}, and the predicate P.
- Our goal is to prove that P(n) is true for each natural number n ≥ k.
- Proof by induction consists of two parts, the basis and the induction step
- Basis: Prove that P(k) is true.
- For each n ≥ k, assume that P(k),...P(n) are true and use this assumption (*Induction* hypothesis) to show thatP(n + 1) is true.

Example of proof by induction

• Assume $S_1(n) = 0 + 1 + ... + n$. For all $n \ge 0$, prove that $S_1(n) = n(n + 1)/2$.

Proof

- Predicate P on n, P(n), is True if S₁(n) = n(n + 1)/2 and False otherwise.
- BASIS STEP: Clearly, S₁(0) = 0
- INDUCTION HYPOTHESIS: $S_1(k) = k(k + 1)/2$ for k = 0,1,2,...,n.
- INDUCTION STEP:
 - By the definition of the sum for S_1 $S_1(n+1) = S_1(n) + n + 1$.
 - It follows that $S_1(n + 1) = n(n + 1)/2 + n + 1$.
 - Factoring out n + 1 and rewriting the expression, we have $S_1(n + 1) = (n + 1)((n + 1) + 1)/2$, exactly the desired form. Thus, the statement of the theorem follows for all values of n.