UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

2ª REVISIÓN DE ECONOMETRÍA I 16 de diciembre de 2010 – 18 horas

Ejercicio 1 (22 puntos)

Se cuenta con información respecto al peso al nacer de 1191 niños y datos respecto a características de sus familias. Se desea analizar los determinantes del peso del niño al nacer.

Se tiene información sobre las siguientes variables

peso: peso en kg. del niño al nacer

cigs: cantidad de cigarrillos que fuma la madre

norden: número de orden del niño, por ejemplo si tiene 2 hermanos mayores

norden vale 3

faminc: ingreso del la familia

motheduc: años de educación de la madrefatheduc: años de educación del padre

Parte I

Se pide:

- 1. Explique brevemente en qué consiste el supuesto de homoscedasticidad en el contexto del modelo de regresión neo-clásico (aclaración neo-clásico es el modelo que considera que las X son estocásticas).
- 2. Señale las propiedades del estimador MCO cuando se cumplen todos lo supuestos del modelo de regresión neo-clásico (indique dichos supuestos) excepto el de homoscedasticidad.
- **3.** Describa brevemente UNA técnica adecuada para estimar modelos de regresión cuando se cumplen todos lo supuestos del modelo neo-clásico excepto el de homoscedasticidad.
- **4.** Analice brevemente las estadísticas descriptivas que se suministran a continuación. En particular se espera que:
 - **a.** Comente los hechos que le parece relevante tener en cuenta a la hora de estudiar los determinantes del peso al nacer de los niños.
 - **b.** Indique si en las estadísticas disponibles encuentra alguna señal de la potencial existencia de heteroscedasticidad asociada a la variable *norden*. Justifique.

Media, desvío estándar y rango de las variables bajo análisis

. sum peso cigs norden faminc motheduc fatheduc

Variable	Obs	Media	Desvío Estándar	Min	Max
peso	1191	3.388613	.5709945	.6520391	7.682721
cigs	1191	1.769102	5.343771	0	40
norden	1191	1.61377	.8746352	1	6
faminc	1191	32.21914	17.9562	.5	65
motheduc	1191	13.1251	2.417437	2	18
fatheduc	1191	13.19144	2.741274	1	18

Matriz de correlaciones simples entre las variables bajo análisis (* significa que la correlación es significativa al 5%)

. pwcorr peso	cigs 	norden peso				star(0.0 motheduc	•
	+						
peso	1	.0000					
cigs	-0	.1646*	1.0000				
norden	0	.0695*	0.0419	1.0000			
faminc	0	.0799*	-0.1554*	-0.0567	1.0000		
motheduc	0	.0451	-0.2167*	-0.0960*	0.4271*	1.0000	
fatheduc	0	.0830*	-0.1803*	-0.0452	0.4477*	0.6435*	1.0000

Estadísticas del peso del niño al nacer según el valor de la variable norden:

norden	media	varianza	No. observaciones
1 2 3 4 o más		.3182887 .3093426	690 333 124 44
Total	3.388613	.3260347	1191

Parte II

Se estimó el siguiente modelo utilizando el estimador MCO:

(1) $peso = \beta_0 + \beta_1 cigs + \beta_2 norden + \beta_3 fa \min c + \beta_4 mothereduc + \beta_5 fathereduc + U$

Los resultados fueron:

*REGRESIÓN 1

. reg peso cigs norden faminc motheduc fatheduc

Source	SS	df	MS		Number of obs F(5, 1185)	
Model Residual	15.0335709 372.947745		0671417 4723836		Prob > F R-squared Adi R-squared	= 0.0000 = 0.0387
Total	387.981316	1190 .3	2603472		Root MSE	= .561
peso	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cigs norden faminc motheduc fatheduc cons	0168945 .0506777 .0015887 0105021 .0133922 3.24671	.0031283 .0186938 .0010365 .0090677 .0080128 .1056999	-5.40 2.71 1.53 -1.16 1.67 30.72	0.000 0.007 0.126 0.247 0.095 0.000	0230321 .014001 0004448 0282927 0023287 3.03933	0107569 .0873544 .0036223 .0072885 .029113 3.45409

A continuación se obtuvieron los residuos del modelo (\hat{u}) y se calculó su cuadrado (\hat{u}^2) . Seguidamente se estimaron los siguientes dos modelos para el cuadrado de los residuos.

(2)
$$\hat{u}^2 = \alpha_0 + \alpha_1 cigs + \alpha_2 norden + \alpha_3 fa \min c + \alpha_4 mothereduc + \alpha_5 fathereduc + V$$

(3)
$$\hat{u}^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + W$$
,

donde $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 cigs + \hat{\beta}_2 norden + \hat{\beta}_3 fa \min c + \hat{\beta}_4 mothereduc + \hat{\beta}_5 fathereduc$

Los resultados fueron:

* REGRESIÓN 2

_	igs norden fam			С	Number of also	_ 1101
Source	SS +	df 	MS 		Number of obs F(5, 1185)	
Model Residual	.562606214 712.143308	5 .11: 1185 .60			Prob > F R-squared Adj R-squared	= 0.9675 = 0.0008
Total	712.705914	1190 .59	8912533		Root MSE	= .77522
resi2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cigs norden faminc motheduc fatheduc _cons	0013763 0090813 0002587 .0061064 .0018109 .234528	.0043228 .025832 .0014323 .0125302 .0110725 .1460609	-0.32 -0.35 -0.18 0.49 0.16 1.61	0.750 0.725 0.857 0.626 0.870 0.109	0098576 0597629 0030688 0184775 0199129 0520389	.007105 .0416002 .0025514 .0306903 .0235347 .5210949

* REGRESIÓN 3

. reg resi2 ygorro ygorro2

Source	SS	df	MS		Number of obs F(2, 1188)	
Model Residual 	.060461038 712.645453 712.705914	1188 .59			Prob > F R-squared Adj R-squared Root MSE	= 0.9509 = 0.0001
resi2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ygorro ygorro2 _cons	.4275061	4.939406 .7530549 8.095814	0.09 -0.07 -0.06	0.931 0.941 0.951	-9.263425 -1.533287 -16.37752	10.11844 1.421644 15.38986

Se pide:

- **1.** Analice breve pero rigurosamente los resultados de la estimación MCO de la REGRESIÓN 1.
- 2. Someta a prueba la hipótesis de existencia de heteroscedasticidad en el modelo estimado utilizando SOLO UNO de los siguientes contrastes: Breusch_Pagan o White modificado.
 - **a.** Indique la hipótesis nula y la alternativa del contraste elegido.
 - **b.** Explique cómo se implementa el contraste elegido, cuál es el estadístico utilizado y la región crítica del contraste.
 - **c.** Concluya respecto a la existencia o no de heteroscedasticidad en el modelo estimado basándose en la evidencia empírica.
- **3.** En base a la información que dispone ¿Qué estimador recomendaría ud. utilizar para analizar los determinantes del peso del niño al nacer? Justifique.

EJERCICIO 2 (14 puntos) -

(extraído de Wooldridge, ejemplo 4.9)

Se cuenta con información respecto del peso al nacer de 1191 niños y datos respecto a las características de sus familias. Se desea contrastar la siguiente hipótesis "*la educación de los padres no afecta el peso del niño al nacer* una vez que se ha controlado por la cantidad de cigarrillos que fuma la madre, la cantidad de hermanos menores y el ingreso del hogar". (Sugerencia: antes de continuar asegúrese que entendió perfectamente la hipótesis que se desea contrastar)

Se tiene información sobre las siguientes variables

peso: peso en kg. del niño al nacer

cigs: cantidad de cigarrillos que fuma la madre

norden: número de orden del niño, por ejemplo si tiene 2 hermanos mayores

norden vale 3

faminc: ingreso del la familia

motheduc: años de educación de la madrefatheduc: años de educación del padre

A continuación se presenta una serie de estimaciones realizadas con la información disponible.

*REGRESION 1 Se realiza una regresión donde la variable dependiente es *peso* y los regresores *cigs* norden faminc motheduc fatheduc

. reg peso cigs norden faminc motheduc fatheduc

Source	SS	df	MS		Number of obs = 1191 F(5, 1185) = 9.55
Model Residual	15.0335709 372.947745		3.00671417		Prob > F = 0.0000 R-squared = 0.0387 Adj R-squared = 0.0347
Total	387.981316	1190	.32603472		Root MSE = .561
peso	Coef.	Std. E	Err. t	P> t	[95% Conf. Interval]
cigs norden faminc motheduc fatheduc _cons	0168945 .0506777 .0015887 0105021 .0133922 3.24671	.00312 .01869 .00103 .00906 .00801	938 2.71 865 1.53 577 -1.16 .28 1.67	0.007 0.126 0.247 0.095	02303210107569 .014001 .0873544 0004448 .0036223 0282927 .0072885 0023287 .029113 3.03933 3.45409

```
. matrix Varcovar=e(V)
. matrix list Varcovar
symmetric Varcovar[6,6]
                             norden faminc motheduc fatheduc
                  cigs
                                                                                     cons
   cigs 9.786e-06
norden -1.259e-06 .00034946
faminc 1.913e-07 4.332e-07 1.074e-06
motheduc 3.330e-06 .00001319 -1.803e-06
                                                    .00008222
fatheduc 9.702e-07 -4.159e-06 -2.054e-06 -.00004001
                                                                    .0000642
   _cons -.00007795 -.00069394 .0000151 -.00052047 -.00025061 .01117246
. matrix INVVarcovar=inv(Varcovar)
. matrix list INVVarcovar
symmetric INVVarcovar[6,6]
                         norden faminc motheduc fatheduc
                ciqs
                                                                               cons
   cigs 119816.16
 norden 11543.454 12747.684
faminc 159320.63 193391.77 5147468.4 motheduc 77283.628 79387.06 1670388.3 674006.78 fatheduc 78328.989 80149.633 1691699 671328.24 686929.22
```

cons 6694.7583 6106.9413 121925.94 49668.942 49919.956 3784.2701

*REGRESION 2

Se realiza una regresión donde la variable dependiente es *peso* y los regresores *motheduc fatheduc*

. reg peso motheduc fatheduc

Source	SS	df	MS		Number of obs F(2, 1188)		
Residual	2.722022 385.259294	1188 .324			Prob > F	= 0.0153 = 0.0070	
	'		2603472		Root MSE		
peso			t		[95% Conf.	Interval]	
fatheduc	0033753 .0192129	.0089211 .0078672	-0.38 2.44	0.705 0.015	0208781 .0037778 2.992166	.0346481	
. matrix Varco	ovar2=e(V)						
. matrix list Varcovar2							
symmetric Vard mo motheduc .00 fatheduc00	otheduc fat 0007959		_cons				
_cons00	004488200	02237 .00	911392				

[.] matrix INVVarcovar2=inv(Varcovar2)

*REGRESION 3

Se realiza una regresión donde la variable dependiente es *peso* y los regresores cigs norden faminc

. reg peso cigs norden faminc

Source	SS	df	MS		Number of obs	
Model Residual	14.1288854 373.852431	3 4.70 1187 .314			F(3, 1187) Prob > F R-squared Adj R-squared	= 0.0000 = 0.0364
Total	387.981316	1190 .32	603472		Root MSE	= .56121
peso	Coef.	Std. Err.			[95% Conf.	Interval]
cigs norden faminc	0169488 .0519441 .0019012	.0030836 .018641 .0009183	-5.50 2.79 2.07	0.000 0.005 0.039	0229987 .0153712 .0000994	0108989 .088517 .0037029

Se calculan los residuos de la regresión 3

*REGRESION 4

Se realiza una regresión de los residuos de la regresión 3 sobre las variables cigs norden faminc motheduc fatheduc

. reg residuos cigs norden faminc motheduc fatheduc

norden 11534.955 12738.299 faminc 159203.34 193249.39 5143678.7 _cons 6689.8294 6102.4453 121836.18 3781.484

Source	SS	df	MS		Number of obs F(5, 1185)	= 1191 = 0.57
Model Residual	.904685456 372.947748		.80937091 314723838		Prob > F R-squared Adj R-squared	= 0.7193 = 0.0024
Total	373.852434	1190 .3	314161709		Root MSE	= .561
residuos	Coef.	Std. Err	t	P> t	[95% Conf.	Interval]
cigs norden faminc motheduc fatheduc _cons	.0000543 0012664 0003124 0105021 .0133922 0268072	.0031283 .0186938 .0010365 .0090677 .0080128	-0.07 -0.30 -1.16 1.67	0.986 0.946 0.763 0.247 0.095 0.800	0060833 0379431 002346 0282927 0023287 234187	.0061919 .0354103 .0017212 .0072885 .029113 .1805725

```
. matrix Varcovarresi=e(V)
. matrix list Varcovarresi
symmetric Varcovarresi[6,6]
                 cigs
                            norden
                                        faminc
                                                   motheduc
                                                                  fatheduc
                                                                                    cons
    cigs 9.786e-06
  norden -1.259e-06 .00034946
faminc 1.913e-07 4.332e-07 1.074e-06 motheduc 3.330e-06 .00001319 -1.803e-06
                                                   .00008222
fatheduc 9.702e-07 -4.159e-06 -2.054e-06 -.00004001
                                                                .00006421
   cons -.00007795 -.00069394 .0000151 -.00052047 -.00025061 .01117246
. matrix INVVarcovarresi=inv(Varcovarresi)
. matrix list INVVarcovarresi
symmetric INVVarcovarresi[6,6]
                cias
                        norden
                                    faminc motheduc fatheduc
                                                                             cons
    cigs 119816.15
  norden 11543.454 12747.684
faminc 159320.63 193391.77 5147468.4 motheduc 77283.628 79387.059 1670388.2 674006.78 fatheduc 78328.989 80149.633 1691699 671328.24 686929.22
```

cons 6694.7582 6106.9413 121925.94 49668.942 49919.956 3784.2701

Se pide:

- 1) Escriba las ecuaciones del modelo restringido y del modelo no restringido y las hipótesis nula y la alternativa, para someter a prueba la hipótesis "después de controlar por la cantidad de cigarrillos que fuma la madre, el número de orden del niño y el ingreso del hogar, la educación de los padres no afecta el peso de los niños al nacer".
- 2) Realice formalmente la prueba con un nivel de significación del 5% utilizando:
 - a. El contraste de Wald
 - **b.** El contraste de Ratio de Verosimilitudes
 - c. El contraste de los Multiplicadores de Lagrange
- 3) Concluya respecto a la pregunta de interés.

EJERCICIO 3 (14 puntos) –

Considere un sistema lineal de ecuaciones simultáneas (MELS) de dos ecuaciones:

$$Y_{1} = \alpha_{1}Y_{2} + \alpha_{2} + \alpha_{3}X_{1} + u_{1} (demanda)$$

$$Y_{2} = \alpha_{4}Y_{1} + \alpha_{5} + \alpha_{6}X_{2} + \alpha_{7}X_{3} + u_{2} (oferta)$$

Las variables intervinientes son:

- Y_1 cantidad, Y_2 precio (variables endógenas)
- X_1 renta de las personas, X_2 salario, X_3 tipo de interés.

(Las perturbaciones estructurales tienen esperanza cero y covarianza cero con las X_i).

- 1. Escriba el MELS en forma matricial, $BY = \Gamma X + u$. Halle la forma reducida del sistema: $Y = \Pi X + v$.
- 2. Estudie la identificabilidad de cada una de las ecuaciones del MELS.

3. A partir de una muestra, se obtuvo una estimación MCO de la matriz de la forma reducida: $\hat{\Pi} = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 4 & -6 & -2 & 4 \end{bmatrix}$. Obtenga, cuando le sea posible, estimaciones consistentes de los coeficientes estructurales del MELS.

<u>Sugerencia</u>: Quizás le sea de utilidad en los cálculos del punto **3.** definir un vector fila que sea combinación lineal de las filas de la matriz de la forma reducida: $\Pi^* = \Pi_{2\bullet} - \alpha_4 \Pi_{1\bullet}$ (siendo α_4 el coeficiente estructural de la variable *cantidad* en la ecuación de oferta).