TOPOLOGÍA. Examen del Tema 5

Nombre:

- 1. Estudiad los axiomas ANI y ANII de la topología de los complementos finitos.
- 2. Sea un espacio topológico (X, τ) y p un elemento que no pertenece a X. Sea $X' = X \cup \{p\}$. Se define en X' la topología dada por $\tau' = \tau \cup \{X'\}$. Estudiad los axiomas de separación de (X', τ') .
- 3. Estudiad los axiomas de numerabilidad de la topología en $\mathbb R$ que tiene por base $\beta = \{(a, \infty); a \in \mathbb R\}.$
- 4. Probad que un subconjunto cerrado de un espacio normal también es normal.

1. Estudiad los axiomas ANI y ANII de la topología de los complementos finitos.

Solución. Supongamos que X es numerable. Entonces el conjunto de cerrados $\mathcal{F} = \{F \subset X; F \text{ es finito }\}$ es numerable. Como hay tantos abiertos como cerrados, entontes la topología es numerable. Esto prueba que es ANII y, en consecuencia, también ANI.

Si X no es numerable, demostramos que no es ANI (y por tanto, tampoco ANII). Sea $x \in X$ y $\beta_x = \{U_n; n \in \mathbb{N}\}$ una base de entornos de x ($U_n = X - F_n$, con F_n un conjunto finito y $x \notin F_n$). Para cada $y \in X$, $y \neq x$, $U = X - \{y\}$ es un entorno de x. Por tanto, existe $n_y \in \mathbb{N}$ tal que $U_{n_y} \subset X - \{y\}$, es decir, $y \in F_{n_y}$. Luego

$$X - \{y\} \subset \bigcup_{y \neq x} F_{n_y}.$$

El conjunto $\{n_y; y \in X, y \neq x\}$ es numerable. Entonces $X - \{x\}$, que no es numerable, está incluído en una unión numerable de conjuntos finitos (que es un numerable): contradicción.

2. Sea un espacio topológico (X, τ) y p un elemento que no pertenece a X. Sea $X' = X \cup \{p\}$. Se define en X' la topología dada por $\tau' = \tau \cup \{X'\}$. Estudiad los axiomas de separación de (X', τ') .

Solución. Observemos que el conjunto de cerrados es

$$\mathcal{F}' = \{\emptyset\} \cup \{F \cup \{p\}; F \in \mathcal{F}\}.$$

El espacio no es T_1 ya que el único entorno de p es X' (también porque si $x \in X$, el conjunto $\{x\}$ no es cerrado). El espacio es T_0 si X lo es (si $x \in X$, $\mathcal{U'}_x = \mathcal{U}_x \cup \{X'\}$). Para ello, la propiedad es cierta si $x, y \in X$. Si $x \in X$ y $p \in X'$, tomamos X entorno de x. Entonces $p \notin X$, probando que X' es T_0 .

Veamos la propiedad de 'regularidad'. Sea $x \notin F' := F \cup \{p\}$. Como el único abierto que contiene al cerrado F' es X' (ya que tiene que contener a p), el espacio no es regular.

Como dos cerrados no triviales siempre se intersecan, el espacio es normal.

3. Estudiad los axiomas de numerabilidad de la topología en \mathbb{R} que tiene por base $\beta = \{(a, \infty); a \in \mathbb{R}\}.$

Solución. El espacio es ANII (y así ANI) pues $\beta' = \{(q, \infty); q \in \mathbb{Q}\}$ es una base de abiertos: si O es un abierto y $x \in O$, entonces existe $a \in \mathbb{R}$ tal que $x \in (a, \infty) \subset O$. En particular, a < x. Sea $q \in \mathbb{Q}$ tal que a < q < x. Entonces $x \in (q, \infty) \subset (a, \infty) \subset O$.

El espacio es separable ya que \mathbb{N} es un conjunto denso: todo elemento de β interseca a \mathbb{N} .

4. Probad que un subconjunto cerrado de un espacio normal también es normal.

Solución. Sea A un subconjunto cerrado de un espacio normal X. Sean $F_1, F_2 \in \mathcal{F}_A$ y $F_1 \cap F_2 = \emptyset$. Como $F_i = F_i' \cap A$, siendo F_i' un cerrado de X, entonces F_i' es intersección de dos cerrados de X, es decir, es un cerrado de X. Como el espacio es normal, existen abiertos O_i tales $O_i \supset F_i'$ y $O_1 \cap O_2 = \emptyset$. Llamamos $G_i = O_i \cap A \in \tau_A$. Como $F_i \subset A$, entonces $G_i \supset F_i$. Por otro lado, $G_1 \cap G_2 \subset O_1 \cap O_2 = \emptyset$.

TOPOLOGÍA. Examen del Tema 5

Nombre:

- 1. Estudiad los axiomas ANI y ANII de la topología de los complementos finitos.
- 2. Sea un espacio topológico (X, τ) y p un elemento que no pertenece a X. Sea $X' = X \cup \{p\}$. Se define en X' la topología dada por $\tau' = \tau \cup \{X'\}$. Estudiad los axiomas de separación de (X', τ') .
- 3. Estudiad los axiomas de numerabilidad de la topología en $\mathbb R$ que tiene por base $\beta = \{(a, \infty); a \in \mathbb R\}.$
- 4. Probad que un subconjunto cerrado de un espacio normal también es normal.

1. Estudiad los axiomas ANI y ANII de la topología de los complementos finitos.

Solución. Supongamos que X es numerable. Entonces el conjunto de cerrados $\mathcal{F} = \{F \subset X; F \text{ es finito }\}$ es numerable. Como hay tantos abiertos como cerrados, entontes la topología es numerable. Esto prueba que es ANII y, en consecuencia, también ANI.

Si X no es numerable, demostramos que no es ANI (y por tanto, tampoco ANII). Sea $x \in X$ y $\beta_x = \{U_n; n \in \mathbb{N}\}$ una base de entornos de x ($U_n = X - F_n$, con F_n un conjunto finito y $x \notin F_n$). Para cada $y \in X$, $y \neq x$, $U = X - \{y\}$ es un entorno de x. Por tanto, existe $n_y \in \mathbb{N}$ tal que $U_{n_y} \subset X - \{y\}$, es decir, $y \in F_{n_y}$. Luego

$$X - \{y\} \subset \bigcup_{y \neq x} F_{n_y}.$$

El conjunto $\{n_y; y \in X, y \neq x\}$ es numerable. Entonces $X - \{x\}$, que no es numerable, está incluído en una unión numerable de conjuntos finitos (que es un numerable): contradicción.

2. Sea un espacio topológico (X, τ) y p un elemento que no pertenece a X. Sea $X' = X \cup \{p\}$. Se define en X' la topología dada por $\tau' = \tau \cup \{X'\}$. Estudiad los axiomas de separación de (X', τ') .

Solución. Observemos que el conjunto de cerrados es

$$\mathcal{F}' = \{\emptyset\} \cup \{F \cup \{p\}; F \in \mathcal{F}\}.$$

El espacio no es T_1 ya que el único entorno de p es X' (también porque si $x \in X$, el conjunto $\{x\}$ no es cerrado). El espacio es T_0 si X lo es (si $x \in X$, $\mathcal{U'}_x = \mathcal{U}_x \cup \{X'\}$). Para ello, la propiedad es cierta si $x, y \in X$. Si $x \in X$ y $p \in X'$, tomamos X entorno de x. Entonces $p \notin X$, probando que X' es T_0 .

Veamos la propiedad de 'regularidad'. Sea $x \notin F' := F \cup \{p\}$. Como el único abierto que contiene al cerrado F' es X' (ya que tiene que contener a p), el espacio no es regular.

Como dos cerrados no triviales siempre se intersecan, el espacio es normal.

3. Estudiad los axiomas de numerabilidad de la topología en \mathbb{R} que tiene por base $\beta = \{(a, \infty); a \in \mathbb{R}\}.$

Solución. El espacio es ANII (y así ANI) pues $\beta' = \{(q, \infty); q \in \mathbb{Q}\}$ es una base de abiertos: si O es un abierto y $x \in O$, entonces existe $a \in \mathbb{R}$ tal que $x \in (a, \infty) \subset O$. En particular, a < x. Sea $q \in \mathbb{Q}$ tal que a < q < x. Entonces $x \in (q, \infty) \subset (a, \infty) \subset O$.

El espacio es separable ya que \mathbb{N} es un conjunto denso: todo elemento de β interseca a \mathbb{N} .

4. Probad que un subconjunto cerrado de un espacio normal también es normal.

Solución. Sea A un subconjunto cerrado de un espacio normal X. Sean $F_1, F_2 \in \mathcal{F}_A$ y $F_1 \cap F_2 = \emptyset$. Como $F_i = F_i' \cap A$, siendo F_i' un cerrado de X, entonces F_i' es intersección de dos cerrados de X, es decir, es un cerrado de X. Como el espacio es normal, existen abiertos O_i tales $O_i \supset F_i'$ y $O_1 \cap O_2 = \emptyset$. Llamamos $G_i = O_i \cap A \in \tau_A$. Como $F_i \subset A$, entonces $G_i \supset F_i$. Por otro lado, $G_1 \cap G_2 \subset O_1 \cap O_2 = \emptyset$.

TOPOLOGÍA. Examen del Tema 5

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11 Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. Probar que si en un espacio topológico todo punto tiene una base de entornos cerrados, entonces es regular.
- 2. En \mathbb{R}^2 se considera la topología τ que tiene por base $\beta=\{B_a;a\in\mathbb{R}\}$ y $B_a=\{(x,y)\in\mathbb{R}^2;x\geq a\}$. Estudiar si (X,τ) es normal.
- 3. Estudiar los axiomas de numerabilidad en \mathbb{R} con la topología $\tau = \{O \subset \mathbb{R}; \mathbb{Q} \subset O\} \cup \{\emptyset\}$.
- 4. Estudiar la propiedad Haussdorf y regular en $(X,\tau),~X=(0,1),~\tau=\{(0,1-\frac{1}{n});n\in\mathbb{N}\}\cup\{\emptyset,X\}.$

- 1. Probar que si en un espacio topológico todo punto tiene una base de entornos cerrados, entonces es regular.
 - Solución. Sea F un cerrado y $x \notin F$. Entonces X F es un abierto que contiene a x y por tanto, existe un entorno cerrado U de x tal que $U \subset X F$. Tomamos O = X U. Entonces O es abierto que contiene a F y U es un entorno de x con $U \cap O = \emptyset$.
- 2. En \mathbb{R}^2 se considera la topología τ que tiene por base $\beta = \{B_a; a \in \mathbb{R}\}$ y $B_a = \{(x,y) \in \mathbb{R}^2; x \geq a\}$. Estudiar si (X,τ) es normal.

Solución. La familia de abiertos es

$$\tau = \{\emptyset, \mathbb{R}^2\} \cup \beta \cup \{(a, \infty) \times \mathbb{R}; a \in \mathbb{R}\}.$$

La familia de cerrados está constituida por los conjuntos complementarios de los anteriores, es decir,

$$\mathcal{F} = \{\emptyset, \mathbb{R}^2\} \cup \{(-\infty, a) \times \mathbb{R}; a \in \mathbb{R}\} \cup \{(-\infty, a] \times \mathbb{R}; a \in \mathbb{R}\}.$$

Por tanto, dos cerrados distintos del vacío siempre se intersecan, demostrando que el espacio es normal.

3. Estudiar los axiomas de numerabilidad en $\mathbb R$ con la topología $\tau = \{O \subset \mathbb R; \mathbb Q \subset O\} \cup \{\emptyset\}.$

Solución. Una base de entornos de x es $\beta_x = \{\mathbb{Q} \cup \{x\}\}$. Al haber en β_x un elemento, el espacio satisface el primer axioma de numerabilidad.

La familia $\beta = \{\mathbb{Q}, \mathbb{Q} \cup \{x\}; x \in \mathbb{R} - \mathbb{Q}\}$ es una base de abiertos de la topología. Si el espacio satisface el segundo axioma de numerabilidad, entonces existe una base numerable $\beta' \subset \beta$. Sea $\beta' = \{\mathbb{Q}, \mathbb{Q} \cup \{x_n\}; n \in \mathbb{N}, x_n \in \mathbb{R} - \mathbb{Q}\}$. Sea x un número irracional tal que $x \neq x_n$ $\forall n \in \mathbb{N}$. Ya que $x \in \mathbb{Q} \cup \{x\}$, por ser β' una base de abiertos, existirá $m \in \mathbb{N}$ tal que $x \in \mathbb{Q} \cup \{x\}$. Ya que x_m y x son irracionales, entonces $x = x_m$: contradicción. Esto prueba que el espacio no satisface el segundo axioma de numerabilidad.

4. Estudiar la propiedad Haussdorf y regular en $(X,\tau),\ X=(0,1),\ \tau=\{(0,1-\frac{1}{n});n\in\mathbb{N}\}\cup\{\emptyset,X\}.$

Solución. El espacio no es Hausdorff ya que dos abiertos siempre se intersecan. El espacio no es regular ya que $1/4 \notin [\frac{1}{2}, 1)$ y $[\frac{1}{2}, 1) \in \mathcal{F}$ y el único abierto que contiene a este cerrado es el espacio total (0, 1).