

Mathematics Specialist

Year 11

Student name:	Teacher name:
Date: Friday 24 September 2021	
Task type:	Response
Time allowed:	40 mins
Number of questions:	7
Materials required:	Notes on two unfolded sheets of paper (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates and up to three calculators approved for use in the WACE examinations
Marks available:	40 marks
Task weighting:	10%
Formula sheet provided: Yes	
Scientific Calculator and CAS: Not Permitted	
Note: All part questions worth more than 2 marks require working to obtain full marks.	

Question 1 (2.2.1, 2.2.2)

(6 marks)

Given that A, B and C are 2×2 matrices, $X = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $Y = \begin{bmatrix} 3 & 4 \end{bmatrix}$, $Z = \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$ and I is the 2×2 identity matrix, find the following where possible

(b) YX (1 mark)

(c) Matrix W given that 3Z - W = I

(2 marks)

$$-\omega = I - 3Z$$

vivi

$$W = 3Z - I \quad \forall \text{ rearranges}$$

$$= 3 \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & -3 \\ 0 & 5 \end{bmatrix} \quad \forall \text{ correct matrix}$$

(d) An expression for matrix V in terms of other matrices given that V-ABV=C

(2 marks)

$$(I - AB)V = C$$
 V factorises correctly
 $(I - AB)^{-1}(I - AB)V = (I - AB)^{-1}C$
 $V = (I - AB)^{-1}C$ V correct
expression

Question 2

(2.2.3, 2.2.11)

(5 marks)

(a) For what values of a is the matrix $\begin{bmatrix} a & 5 \\ 3 & a \end{bmatrix}$ singular?

(2 marks)

$$det\left(\begin{bmatrix} a & 5 \\ 3 & a \end{bmatrix}\right) = 0$$
 when $a^2 - 15 = 0$

Vequation for determinant v both values of a

(b) Use matrices to find the point of intersection of the lines given by the equations 3x+y=2 and 5x+2y=1.

(3 marks)

$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 matrix equation

$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

vare-multiply by inverse

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{6-5} \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

[3]
V correct value

x = 3, y = -7

Question 3 (2.1.4)

(5 marks)

Using the same scale, sketch the graphs of $y = \sin(2x)$ and $y = \csc(2x + \pi)$ on the grid below for $0 \le x \le 2\pi$

$$\frac{1}{\sin x} = \operatorname{CoSec} x$$

$$\operatorname{cosec}(2x + \pi) = \operatorname{cosec}\left[2(x + \frac{\pi}{2})\right]$$

Question 4 (2.1.5, 2.1.6, 2.1.8)

(5 marks)

Prove the identity below

$$\frac{1-\sin(2\theta)}{\sin\theta-\cos\theta}=\sin\theta-\cos\theta$$

LHS =
$$\frac{1-\sin 2\theta}{\sin \theta - \cos \theta}$$

= $\frac{1-\sin 2\theta}{\sin \theta - \cos \theta} \times \frac{\sin \theta - \cos \theta}{\sin \theta - \cos \theta}$ / multiplies
= $\frac{(1-\sin 2\theta)(\sin \theta - \cos \theta)}{\sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta}$ / expands
= $\frac{(1-\sin 2\theta)(\sin \theta - \cos \theta)}{1-2\sin \theta \cos \theta}$ / uses Pythagorean
= $\frac{(1-\sin 2\theta)(\sin \theta - \cos \theta)}{1-\sin 2\theta}$ identity and
 $\frac{1-\sin 2\theta}{1-\sin 2\theta}$ / double-angle formula
= $\sin \theta - \cos \theta$ / Simplifies
= RHS as required

accept other valid proofs

Question 5

(2.2.5, 2.2.7, 2.2.10)

(5 marks)

- (a) Find the matrices that produce each of the transformations described below
 - i. A reflection in the line y=x

(1 mark)

A rotation clockwise about the origin by 90°

$$\begin{bmatrix} \cos(-90^\circ) & -\sin(-90^\circ) \\ \sin(-90^\circ) & \cos(-90^\circ) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

V substitutes -90°

V correct matrix

(b) Find and describe a single transformation matrix T that is a result of a reflection in the line y=x followed by a 90 ° clockwise rotation about the origin. (2 marks)

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 correct matrix

reflection in the x-axis

V correct description

correct matrix

Question 6

(2.2.6, 2.2.9)

(9 marks)

(a) Find the matrix of the linear transformation such that $(1,2) \rightarrow (12,7)$ and $(-3,1) \rightarrow (-1,0)$ (4 marks)

let the matrix be
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 12 & -1 \\ 7 & 0 \end{bmatrix} \quad \text{forms matrix equation}$$

$$V \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 12 & -1 \\ 7 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}$$

$$\text{post-multiply by} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 12 & -1 \\ 7 & 0 \end{bmatrix} \times \frac{1}{7} \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix} \quad \text{correct}$$

$$= \frac{1}{7} \begin{bmatrix} 12 & -1 \\ 7 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix} \quad \text{Inverse}$$

$$= \frac{1}{7} \begin{bmatrix} 14 & 25 \\ 7 & 21 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} V$$

(b) The matrix $\begin{bmatrix} t & t \\ 1 & t \end{bmatrix}$ maps the unit square into a parallelogram of area 2 square units. Find the possible value(s) of t (5 marks)

Area of image =
$$|\det(\begin{bmatrix} t & t \\ 1 & t \end{bmatrix})| \times \text{ area of original}$$
 $2 = |t^2 - t| \times 1$ equation using abs. and det.

either $t^2 - t = 2$ or $t^2 - t = -2$ two regulations

 $t^2 - t - 2 = 0$ or $t^2 - t + 2 = \text{forms}$
 $(t-2)(t+1)=0$ $\Delta = (-1)^2 - 4(1)(2)$
 $t=-1$ or $t=2$ in oreal solutions

Finds both values

Question 7 (2.1.7)

(5 marks)

Find the general solution of $3\cos(x) - \sqrt{3}\sin(x) = 3$

$$\Gamma = \sqrt{9+3} \qquad \text{Casa} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$$

$$= \sqrt{12}$$

$$= 2\sqrt{3}$$

$$\sin \alpha = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}$$

$$\therefore \alpha = \frac{\pi}{6}$$

$$3\cos x - \sqrt{3}\sin x = 3$$

$$\Rightarrow 2\sqrt{3}\cos(x + \frac{\pi}{6}) = 3$$

$$\cos(x + \frac{\pi}{6}) = \frac{3}{2\sqrt{3}}$$

$$\cos(x + \frac{\pi}{6}) = \frac{3}{2}$$

$$(x + \frac{\pi}{6}) = \sqrt{3}$$

$$\cos(x + \frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$

$$(x + \frac{\pi}{6}) = 2n\pi \pm \cos^{-1}(\frac{\sqrt{3}}{2}), n \in \mathbb{Z}$$

$$= 2n\pi \pm \frac{\pi}{6} \quad \text{obtains an expression}$$

$$x = 2n\pi \pm \frac{\pi}{6} - \frac{\pi}{6} \quad \text{for } x + \frac{\pi}{6} \text{ or } x$$

$$x = 2n\pi + \frac{\pi}{6} - \frac{\pi}{6} \quad \text{of } x = 2n\pi - \frac{\pi}{6} - \frac{\pi}{6}$$

 $X = 2n\pi \sqrt{}$ or $2n\pi - \frac{\pi}{3}\sqrt{}$ $n \in \mathbb{Z}$