Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів

розгалуженяя»

Варіант 15

Виконав студен	г <u>ІП-12, Кириченко Владислав Сергійович</u>
·	(шифр, прізвище, ім'я, по батькові)
Поморімур	
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота №2

Назва роботи: Дослідження алгоритмів розгалуження.

Мета: дослідити подання керувальної дії чергування у вигляді умовної та альтернативної

форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 15

Умова задачі:

 \boldsymbol{x}

Обчислити y = f(x), де функція f(x) задана графіком:

Постановка задачі: Задана координата X, обчислити координату У, за функцією, що задана даним графіком. Результатом розв'язку задачі є координата У(дійсне число).

Побудова математичної моделі: Маємо координату X і графік, за яким ми повинні знайти значення У.

Залежність наступна:

якщо $\mathbf{X} \le 0$: то y = 1якщо $\mathbf{X} \ge \Pi$ и: то y = -1якщо $0 \le \mathbf{X} \le \Pi$ и: то $y = \cos(x)$

Для побудови алгоритма знадобиться функція $\cos(x)$ - що дозволяє обрахувати значення косинуса для агрумента - X.

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
Координата Х	Дійсний	X	Початкові дані
Значення Пи	Дійсний	Pi	Початкові дані
Координата Ү	Дійсний	Y	Результат

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми:

```
Крок 1. Визначимо основні дії.
Крок 2. Деталізація перевірки чи X<Pi та X.
Крок 3. Деталізаці перевірки чи X \ge Pi, чи X \le 0.
Псевдокод:
Крок 1.
початок
  введення Х
  <u>перевірка чи X<Pi та X>0</u>
  перевірка чи X>=Pi, чи X<=0
  виведення Ү
кінень
Крок 2.
початок
  введення Х,Рі
  якщо X<Pi та X>0
    To Y = cos(X)
  інакше
    перевірка чи X>=Pi, чи X<=0
  все якщо
  виведення Ү
кінець
Крок 3.
початок
  введення Х,Рі
  якщо X<Рі та X>0
    To Y = cos(X)
  інакше
    якщо Х >= Рі
      To Y = -1
    інакше
      Y = 1
```

все якщо

все якщо

Блок схема:

Перевірка алгоритму:

Блок	Дія	Дія	Дія
	Початок	Початок	Початок
1	Введення X =34,	Введення	Введення X =-3,
	Pi =3.14	X =0.5* Pi , Pi =3.14	Pi =3.14
2	0<34<3.14 - false	0<1.57<3.14 - true	0<-3<3.14 - false
3	34>0 - true	$\mathbf{Y} = \cos(0.5 \cdot \mathbf{Pi}) = 0$	-3>0 - false
4	$\mathbf{Y} = -1$	Вивід: 0	$\mathbf{Y} = 1$
5	Вивід: -1	Кінець	Вивід: 1
		•	700
	Кінець		Кінець

Висновок - Було досліджено подання керувальної дії чергування у вигляді умовної та альтернативної форм та набуто практичних навичок їх використання під час складання програмних специфікацій.