SimCSE: Simple Contrastive Learning of Sentence Embeddings

Author: Tianyu Gao, Xingcheng Yao, Danqi Chen

Presenter: Sunyoung Song

Contrastive Learning

- 의미적으로 가까운 것들은 끌어당기고, 아닌 것들은 밀어냄으로써 효과적인 표현을 배우는 기법
- Contrastive learning은 모든 관측치를 클래스로 간주하고 softmax를 사용할 수 없기 때문에 다른 관측치들의 일부만을 샘플링하여 손실함수를 계산하는 noise contrastive estimation (NCE) 방식을 사용
- NCE loss란?
 - CBOW와 Skip-Gram 모델에서 사용하는 비용 계산 알고리즘
 - 전체 데이터셋에 대해 softmax 함수를 적용하는 것이 아니라 샘플링으로 추출한 일부에 대해서만 적용하는 방법

$$L_{infoNCE} = -log \frac{exp(sim(q, k_+)/\tau)}{exp(sim(q, k_+)/\tau) + \sum_{i=0}^{K} exp(sim(q, k_i)/\tau)}$$

SimCSE

SimCSE

Unsupervised SimCSE

- Positive pair
 - Dropout을 noise로 사용
 - 동일한 문장을 사전 훈련된 encoder에 두 번 전달
 - 서로 다른 dropout mask가 적용되어 두 개의 다른 embedding을 positive pair로 얻음
 - Dropout는 완전 연결층에 배치된 dropout으로 기본값 p=0.1
- Negative pair
 - 같은 mini-batch 내의 다른 문장들을 negative pair로 사용
- loss

$$\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i, \mathbf{h}_j^+)/\tau}},$$

 τ : temperature hyperparameter $sim(h_i, h_i^+)$: cosine similarity

분자: positive 와의 유사도 분모: negative 와의 유사도

SimCSE

2. supervised SimCSE

- Dataset: NLI datasets (SNLI + MNLI)
 - QQP, Flickr30k, paraNMT, NLI datasets으로 실험 진행 결과, NLI datasets이 학습에 가장 효과적이였음
 - NLI datasets label entailment, neutral, contradiction
- Positive pair : entailment
- Negative pair: contradiction을 hard negative로 사용
- Loss

$$-\log \frac{e^{\sin(\mathbf{h}_i,\mathbf{h}_i^+)/\tau}}{\sum_{j=1}^N \left(e^{\sin(\mathbf{h}_i,\mathbf{h}_j^+)/\tau} + e^{\sin(\mathbf{h}_i,\mathbf{h}_j^-)/\tau}\right)} \qquad \begin{array}{l} h_i: \text{premise} \\ h_i^+: \text{entailment} \\ h_i^+: \text{contradiction} \end{array}$$

Alignment and Uniformity

- Representation의 quality를 측정하기 위해 Alignment와 Uniformity를 측정
- Alignment
 - Positive pair간의 거리가 얼마나 가까운지를 나타냄
 - 값이 작을수록 좋음
 - Positive pair인 P_{pos} 가 있을 때, pair의 embedding 사이의 거리를 계산
 - Representation을 정규화한 후 진행

$$\ell_{\text{align}} \triangleq \mathbb{E}_{(x,x^+) \sim p_{\text{pos}}} ||f(x) - f(x^+)||^2.$$

- Uniformity
 - Embedding이 균일하게 분포하는지를 나타냄
 - 값이 작을수록 좋음
 - Embedding space가 hypersphere에서 넓고 고르게 분포하여 각 단어가 고유한 의미를 보존하는 것이 중요하기 때문에 uniformity를 측정함

$$\ell_{\text{uniform}} \triangleq \log \quad \mathop{\mathbb{E}}_{x,y} \mathop{\sim}\limits_{\stackrel{i.i.d.}{\sim} p_{\text{data}}} e^{-2\|f(x) - f(y)\|^2}$$

Unsupervised SimCSE의 positive를 위한 데이터 증강 방법에 따른 성능 비교

Data augmentation			STS-B
None (unsup. SimCSE)			82.5
Crop	10%	20%	30%
	77.8	71.4	63.6
Word deletion	10%	20%	30%
	75.9	72.2	68.2
Delete one word			75.9
w/o dropout			74.2
Synonym replacement			77.4
MLM 15%			62.2

• 자르기, 단어 삭제, 단어 교체 등의 일반적인 데이터 증강 방법이 모두 dropout noise를 능가하지 못했음

• 두 개의 encoder를 사용하는 대신 하나의 encoder를 사용하는 것이 더 좋은 성능을 보임을 확인

Training objective	$f_{ heta}$	$(f_{ heta_1},f_{ heta_2})$
Next sentence	67.1	68.9
Next 3 sentences	67.4	68.8
Delete one word	75.9	73.1
Unsupervised SimCSE	82.5	80.7

• 다양한 dropout mask를 실험

p	0.0	0.01	0.05	0.1
STS-B	71.1	72.6	81.1	82.5
p	0.15	0.2	0.5	Fixed 0.1
STS-B	81.4	80.5	71.0	43.6

- Transformers의 기본 dropout인 0.1이 가장 좋은 성능을 보임
- Fixed 0.1 (= 기본 dropout인 0.1을 사용하지만 pair에 동일한 dropout mask를 적용) 에서 급격한 성능 저하를 보임

- Alignment와 Uniformity 실험
 - 훈련 중 10단계마다 시각화

- 모든 모델의 uniformity가 향상됨
- No dropout, Fixed 0.1은 alignment가 안 좋아졌지만, Unsupervised SimCSE는 alignment가 유지됨

- STS (semantic textual similarity) task
 - 7개의 STS task에서 실험 진행
 - Unsupervised: 영어 Wikipedia에서 무작위로 선택된 문장(106)으로 학습
 - Supervised: MNLI와 SNLI dataset의 조합(314k)로 학습

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
Unsupervised models								
GloVe embeddings (avg.).	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT _{base} -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} ♡	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CT-BERT _{base}	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
* SimCSE-BERT _{base}	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
RoBERTa _{base} (first-last avg.)	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTa _{base} -whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
DeCLUTR-RoBERTabase	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.99
* SimCSE-RoBERTabase	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.57
* SimCSE-RoBERTalarge	72.86	83.99	75.62	84.77	81.80	81.98	71.26	78.90
		Supe	rvised mod	dels				
InferSent-GloVe*	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder.	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT _{base} ♣	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT _{base} -flow	69.78	77.27	74.35	82.01	77.46	79.12	76.21	76.60
SBERT _{base} -whitening	69.65	77.57	74.66	82.27	78.39	79.52	76.91	77.00
CT-SBERT _{base}	74.84	83.20	78.07	83.84	77.93	81.46	76.42	79.39
* SimCSE-BERT _{base}	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.57
SRoBERTa _{base} *	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa _{base} -whitening	70.46	77.07	74.46	81.64	76.43	79.49	76.65	76.60
* SimCSE-RoBERTabase	76.53	85.21	80.95	86.03	82.57	85.83	80.50	82.52
$* SimCSE-RoBERTa_{\texttt{large}} \\$	77.46	87.27	82.36	86.66	83.93	86.70	81.95	83.76

• 다양한 pooling 방법에 따른 성능 비교

Pooler	Unsup.	Sup.
[CLS]		
w/ MLP	81.7	86.2
w/ MLP (train)	82.5	85.8
w/o MLP	80.9	86.2
First-last avg.	81.2	86.1

- Unsupervised: 훈련 중에만 MLP로 하는 것이 가장 성능이 좋았음
- Supervised: 어떤 방법을 사용하든 상관 없었음

- Hard negative의 영향
 - Contradiction와 neutral hypothese를 hard negative로 같이 사용해봤을 때 lpha값을 다르게 하면서 실험

$$-\log \frac{e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^{N} \left(e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_j^+)/\tau} + \alpha^{\mathbb{I}_i^j} e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_j^-)/\tau}\right)},$$

• 그 결과, $\alpha = 1,29$ 때 가장 성능이 좋았음

Hard neg	N/A	Co	ntradict	Contra.+ Neutral	
α	-	0.5	1.0	2.0	1.0
STS-B	84.9	86.1	86.2	86.2	85.3

- DiffCSE: sentence representation을 학습하는 Unsupervised contrastive learning framework
- SimCSE와의 차이
 - SimCSE
 - MLM(Masked Language Model)이 모델의 성능을 떨어뜨렸기 때문에 MLM과 같은 transformation을 contrastive learning에 적용하는 것이 적절하지 않다고 주장했음
 - DiffCSE
 - MLM 기반의 transformation을 학습에 사용함
 - 그러기 위해 Conditional한 Discriminator를 활용
 - ELECTRA 모델은 Generator와 Discriminator로 이루어짐
 - DiffCSE는 ELECTRA 모델의 Discriminator를 Conditional한 Discriminator로 변형시켜주어 encoder를 학습 함

- Input sentence x 가 있을 때, x 를 contrastive learning 기법을 사용하여 sentence encoder를 통해 학습함
 - x와 동일한 encoder에 dropout mask만 다르게 적용하여 나온 hidden vector를 positive pair, N 크기만큼의 batch에서 다른 문장들과를 negative pair로 두어 학습

- 1. Input sentence x 가 있을 때, 15% masking ratio로 토큰에 masking을 해줌
- 2. Masking을 해준 후, Generator를 통과하여 masking된 sentence를 생성
- 3. Sentence Encoder에서 나온 output hidden vector를 condition으로 걸어 (2)에서 생성된 sentence와 함께 Discriminator 에 input으로 넣어줌
- 4. Discriminator는 Replaced Token Detection (RTD) 방식으로 학습을 진행

- RTD 는 cross-entropy loss를 가지고 학습함
- ELECTRA 와는 달리 Generator는 freeze 시켜 학습을 하지 않음
- 오직 Discriminator만 학습함
- 학습 후 테스트 과정에서는 discriminator 부분을 버리고 sentence encoder만 활용함
- DiffCSE의 loss
 - Sentence encoder에서 나온 contrastive learning loss와 conditional한 Discriminator에서의 RTD loss를 결합하여 total loss를 정의함
 - Contrastive learning loss $\mathcal{L}_{\text{contrast}} = -\log \frac{e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{i=1}^{N} e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}},$
 - RTD loss $\mathcal{L}_{\text{RTD}}^{x} = \sum_{t=1}^{T} \left(-1 \left(x_{(t)}'' = x_{(t)} \right) \log D \left(x'', \mathbf{h}, t \right) 1 \left(x_{(t)}'' \neq x_{(t)} \right) \log \left(1 D \left(x'', \mathbf{h}, t \right) \right) \right)$
 - DiffCSE의 Total loss

$$\mathcal{L} = \mathcal{L}_{contrast} + \lambda \cdot \mathcal{L}_{RTD}$$

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
GloVe embeddings (avg.)♣	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.) [♦]	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT _{base} -flow [♦]	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening [♦]	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} ♥	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CMLM-BERT _{base} • (1TB data)	58.20	61.07	61.67	73.32	74.88	76.60	64.80	67.22
CT-BERT _{base} ♦	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
SG-OPT-BERT _{base} †	66.84	80.13	71.23	81.56	77.17	77.23	68.16	74.62
SimCSE-BERT _{base} ♦	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
* SimCSE-BERT base (reproduce)	70.82	82.24	73.25	81.38	77.06	77.24	71.16	76.16
* DiffCSE-BERT _{base}	72.28	84.43	76.47	83.90	80.54	80.59	71.23	78.49
RoBERTa _{base} (first-last avg.) [♦]	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTabase-whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
DeCLUTR-RoBERTa _{base} ♦	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.99
SimCSE-RoBERTa _{base} ♦	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.57
* SimCSE-RoBERTa _{base} (reproduce)	68.60	81.36	73.16	81.61	80.76	80.58	68.83	76.41
* DiffCSE-RoBERTa _{base}	70.05	83.43	75.49	82.81	82.12	82.38	71.19	78.21

-> SoTA 달성

Thank You

감사합니다.