Questions de cours

- 1 Énoncer et démontrer la caractérisation de l'injectivité et de la surjectivité d'un morphisme de groupes puis montrer que $(Aut(G), \circ)$ est un groupe.
 - 2 Démontrer que l'intersection de sous-groupes de (G,*) est un sous-groupe de (G,*)
- 3 Énoncer et démontrer les propriétés sur le symétrique d'un élément.

Exercices

Exercice 1:

On note $i\mathbb{Q} = \{ir, r \in \mathbb{Q}\}\ \text{et } \mathbb{Q}[i] = \{a + ib, (a, b) \in \mathbb{Q}^2\}.$

- 1 Montrer que $i\mathbb{Q}$ et $\mathbb{Q}[i]$ sont des sous-groupes de $(\mathbb{C},+)$.
- 2 $\mathbb{Q} \cup i\mathbb{Q}$ est-il un sous-groupe de $(\mathbb{C}, +)$?

Exercice 2:

Soient G un ensemble et * une loi de composition interne sur E.

On suppose que * est associative et qu'elle admet un élément neutre e.

1 - On suppose que (G,*) est un groupe.

Montrer que pour tout $a \in G$, l'application $f_a: x \longmapsto x * a$ est bijective et préciser sa bijection réciproque.

2 - Réciproquement, on suppose que pour tout $a \in G$, l'application $f_a: x \longmapsto x * a$ est bijective.

Montrer que (G, *) est un groupe.

Exercice 3:

Soit G un groupe noté multiplicativement.

On définit un relation binaire \mathcal{R} sur G par :

$$\forall x, y \in G, (x\mathcal{R}y) \iff \exists a \in G \mid y = axa^{-1}$$

Montrer que \mathcal{R} est une relation d'équivalence sur G.

Exercice 4:

Soient G un groupe noté multiplicativement et A un sous-groupe de G.

Pour $x \in G$, on note:

$$Ax = \{ax, a \in A\}$$
 et $xA = \{xa, a \in A\}$

On considère l'ensemble B des éléments $x \in G$ tels que Ax = xA.

- 1 Montrer que $A \subseteq B$.
- 2 Montrer que pour tout $x \in B$ et tout $a \in A$, on a $xax^{-1} \in A$.
- 3 Montrer que pour tout $x \in B$, on a $x^{-1} \in B$.
- 4 L'ensemble B est-il un sous-groupe de G?

Exercice 5:

Soient (G,*) un groupe de cardinal fini et H un sous-groupe de (G,*).

- 1 Montrer que pour tout $a \in G$. H et $aH = \{ah, h \in H\}$ ont le même nombre d'éléments.
- 2 Soient $a, b \in G$.

Démontrer que aH = bH ou $aH \cap bH = \emptyset$.

3 - En déduire que le cardinal de H divise le cardinal de G.

Exercice 6:

On note G =]-1;1[et pour $x,y \in G$, on note $x*y = \frac{x+y}{1+xy}$.

Montrer que * est une loi de composition interne sur G et que (G,*) est un groupe abélien.

Exercice γ :

Soit f un morphisme non constant d'un groupe fini (G,*) dans (\mathbb{C}^*,\times) . Calculer $\sum_{g \in G} f(g)$.

$$g \in G$$