Assignment #2

Diego Oniarti - 257835

1 Missing Progress Cases

Write the proof for the progress theorem for the following cases

- $t \equiv inl \ t_1$
- $t \equiv \text{case } t_0 \text{ of } \begin{vmatrix} inl \ x_1 \mapsto t_1 \\ inr \ x_2 \mapsto t_2 \end{vmatrix}$

Theorem:

if
$$\emptyset \vdash t : \tau$$
 then either $\vdash t.VAL$ or $\exists t'.t \leadsto t'$

Prof by induction on the typing derivation of t. Base cases t-var and t-nat seen in class

1.1 $t \equiv inl \ t_1$

if $\emptyset \vdash inl \ t : \tau_1 \uplus \tau_2$ then either $\vdash inl \ t.VAL \ or \exists t'. \ inl \ t \leadsto t'$

$$\begin{array}{ccc} & \frac{\emptyset \vdash t : \tau_1}{\emptyset \vdash inl \ t : \tau_1 \uplus \tau_2} \text{T-inl} \\ \text{t.s. either} & \vdash inl \ t. \text{VAL} \\ & \text{or} & \exists t'. \ inl \ t \leadsto t' \\ \text{by I.H. either} & \vdash t. \text{VAL} \\ & \text{or} & \exists t".t \leadsto t" \end{array} \qquad \begin{array}{c} \text{I1} \\ \text{I2} \end{array}$$

Assuming I1 $\,$ $\,$ inl t. VAL by I1 and definition of $\,$ inl . $_{\square}$

Assuming I2

by inversion on I2 w.h.
$$t \equiv E[t_0]$$
 HE1
 $t'' \equiv E[t_0"]$ HE1'
 $t_0 \leadsto^p t_0"$ HPR
by HE1, HE1' t.s. $inl \ E[t_0] \leadsto inl \ E[t_0"]$
by ctx with HPR and $E' = inl \ E_{\square}$

1.2
$$t \equiv \mathbf{case} \ t_0 \ \mathbf{of} \ \begin{vmatrix} inl \ x_1 \mapsto t_1 \\ inr \ x_2 \mapsto t_2 \end{vmatrix}$$

2 Missing Compatibility Lemmas

Write the proof for these compatibility lemmas: