Estructura de la Materia 2 Segundo cuatrimestre 2018 Guía 5: Electrones libres

1. TEORIA CLASICA DE UN GAS DE ELECTRONES (MODELO DE DRUDE)

Tomemos un metal típico, el K, como ejemplo.

- i) Calcule cuál es la densidad de electrones de conducción, suponiendo Z=1. Encuentre cuál es el valor de r_s (compare con la distancia a primeros vecinos 4.53 Å)
- ii) Encuentre como varía el tiempo de relajación en función de T, sabiendo que $\rho(77\text{K})=1,38$ $\mu\Omega.\text{cm}$ y $\rho(273\text{K})=6.1~\mu\Omega.\text{cm}$
- iii) A partir de la relación 1/2m $v_o^2=3/2$ k $_b$ T, calcule el camino libre medio electrónico en este modelo.
- iv) Calcule la constante Hall y compare con el valor experimental (R_H =-4.964 10^{-24} CGS). Densidad del K=0.86 g cm⁻³. N_A =6.02217 10^{23} mol⁻¹. A = 39.

2. ELECTRONES LIBRES

- i) Demuestre que la energía cinética de un gas tridimensional de N electrones libres a T = 0K es $E_o = 3/5$ N E_F , donde E_F es la energía de Fermi del sistema.
- ii) Derive la relación que conecta la presión y el volumen para un gas de electrones a 0 K. Note que puede ser escrita como $p = (2/3)(E_o/V)$
- iii) Muestre que el módulo de bulk de un gas de electrones a 0 K es $B = 5p/3 = 10E_o/9V$
- 3. Estime la temperatura de Fermi de:
 - i) 3He líquido (densidad 81 kg m $^{-3}$)
 - ii) los neutrones en una estrella de neutrones (densidad $10^{17}~{\rm kg}~{\rm m}^{-3}$)

4. DENSIDAD DE NIVELES Y DE ESTADOS

Para un gas de electrones libres calcule la densidad de niveles en el espacio \mathbf{k} y la densidad de estados en función de la energía para los siguientes casos:

- i) una caja unidimensional de longitud L.
- ii) una caja bidimensional cuadrada de lado L.
- iii) una caja tridimensional cúbica de arista L.

Tenga en cuenta el spin de lo electrones.

5. GAS DE ELECTRONES BIDIMENSIONAL

Sea un gas de electrones libres bidimensional:

- i) ¿Cuál es la relación entre n y k_F ?.
- ii) Utilizando la densidad de estados calculada en el punto ii) del item anterior, encuentre que

$$\mu + k_B T \ln(1 + e^{-\mu/k_B T}) = E_F$$

iii) Repita el cálculo a partir de la expansión de Sommerfeld. Explique que sucede.

6. SUSCEPTIBILIDAD DE PAULI

Analice la contribución de los electrones de conducción a la susceptibilidad magnética de un metal a T=0K. Para ello suponga que los mismos son libres y considere un campo magnético aplicado \mathbf{H} según $\hat{\mathbf{z}}$. Descomponga la densidad total de estados en una suma de dos contribuciones, $g_{\uparrow}(E)$ y $g_{\downarrow}(E)$, que representen la contribución de electrones con spin paralelo y antiparalelo al campo magnético aplicado. Recuerde que la energía de un electrón en presencia de un campo magnético \mathbf{H} es

$$E = \frac{\hbar^2 k^2}{2m} - g\mu_B \frac{\mathbf{S.H}}{\hbar} ,$$

donde g=2 es el factor giromagnético y μ_B es el magnetón de Bohr.

- i) Calcule el número de electrones con 'spin up' N_{\uparrow} y con 'spin down' N_{\downarrow} en función del campo \mathbf{H} .
- ii) Calcule la magnetización total $\mathbf{M} = \mu_B(\mathbf{N}_{\uparrow} \mathbf{N}_{\downarrow})\hat{\mathbf{z}}$ en función de \mathbf{H} .
- **iii**) Calcule la susceptibilidad magnética $\chi = M/H$.

7. CALOR ESPECIFICO DE METALES

- i) Demuestre que el calor específico de un gas de electrones libres depende linealmente de la temperatura.
- ii) Calcule la contribución de los electrones de conducción a la energía libre de Helmholtz y al coeficiente de expansión térmica de un metal.