(96 | 10) > (1 \ \frac{1}{9} \ $\begin{pmatrix} 1 & 0 & \frac{1}{4} & -\frac{1}{6} \\ 0 & 1 & \frac{7}{6} & \frac{7}{6} \end{pmatrix} \Rightarrow \tilde{0} = \begin{pmatrix} \frac{7}{4} & -\frac{1}{6} \\ 0 & \frac{7}{6} & \frac{7}{6} \end{pmatrix} \Rightarrow \tilde{0} = \begin{pmatrix} \frac{7}{4} & -\frac{1}{6} \\ 0 & \frac{7}{6} & \frac{7}{6} \end{pmatrix}$ $949 = \begin{pmatrix} \frac{1}{2} & \frac{-6}{20} \\ 0 & \frac{2}{2} \end{pmatrix} \begin{pmatrix} 10 \\ 01 \end{pmatrix} \begin{pmatrix} 96 \\ 0C \end{pmatrix} = \begin{pmatrix} 10 \\ 01 \end{pmatrix} \begin{pmatrix} 10 \\ 0C \end{pmatrix} \begin{pmatrix} 10 \\ 01 \end{pmatrix} \begin{pmatrix} 10 \\$ 072)> HOG 101 9 HOSH 106. H= 2 21: XEF3, G= 61n (F) .3 9·11-2·91=29 2 I.g. 29 => 92 == 2ty 94-49 Minty H poli 6-Q/2 noxxx you)

6-Q/2 noxxx 9=1 20 pm, et 2007 9ER 658

 $\left[q+2=\frac{n}{m}+2\right] \sim \gamma \sim \left[-3\right] \sim \left[-6\right]$

(m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 0+2 = 66) (m + 2) = (m + 2 = (1+2 = 66) (m + 2) = (m + 2 = 66) (m + 2 1) 1370 SEE N show (1) NET 2 1""> -1/30/1513 11.00 916 NK

 $x_{1}, x_{2}, y_{1}, y_{1} \in \mathcal{X}_{2}, x_{1}, x_{2}, y_{1}, y_{1} \in \mathcal{X}_{2}, x_{1}, y_{2}, y_{2}, y_{3}, y_{4} \in \mathcal{X}_{3}, y_{4}, y_{5}, y_$

しいっていとっからいいいかけるとりかんくがれまり 200 1-91 200 KW E-2 25K P- 10-00 KJ.(07 1). K

7-7-64/2 - 1-12 - 1-12 - 1-12 - 1-12 - 1-12 - 1-12 - 1-12 - 1-12 - 1-12 - 1-12 - 12 -

さ/てミル*・フ いいっち・5 ·60> you 607 R- (XER: X70) 7- { ZEC: 2/:13 $0: \zeta_{*} \longrightarrow \zeta$ Ja162=c 2 2 72 9/6 eR mi CER+ dif of of ye with fi in(1)=et m, Z=a+i6 /100 Zet sinn, k mi) y(2·r): /2·v/ - |2/·/v/ = y(2)·p(r) Ker (M)-k 20m Ker(4) = {210x | y(2)=ex}= (/ Lei(y) - C* = in(y)- 1 #X+12/2.... Al 2000 x for 1/2/2 for

te) pri 6000 × 600 horison pri H1 X ... • XHn

ipori on3470 of the pri pri know pri $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$ $(h_1, \ldots, h_n) \in H_1 \times \cdots \times H_n$ $\vdots \wedge h$ (g_1, \dots, g_n) (h_1, \dots, h_n) (g_1, \dots, g_n) - $(g_1, h_1, \dots, g_n, h_n)$ (g_1, \dots, g_n) $= (91h_1\hat{9}_1, \dots, 9nh_n\hat{g})$ $= g \cdot h \cdot g \cdot (H) \in H \cdot (G) \quad (10)$ $\frac{1}{4} \times \frac{1}{4} \times \frac{1}$ $(g_1, \dots, g_n) \rightarrow (g_1 \mid 1_1, \dots, g_n \mid 1_n)$ Solf Solf Solf of Solf · 61× · · × 6n) (91; · · 9n) nin) (91 ··· 9a) ·) (51 ··· 9i) = (91 H1 ··· 51 H1) · (91 H1 ··· 51 H1) · -(919/-14. 9-9:Hn) - Y(9191. ... 9-9i)= - y ((g₁ ... g_n) · (g₁ ··· g_n'))

 $\begin{aligned}
& = \{(g_{1} \cdot g_{2}) \in G_{1} \times \cdots \times G_{n}\} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{2}) \in G_{n} \times G_{n}\} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{2}) \in G_{n} \times G_{n}\} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{2}) \in G_{n} \times G_{n}\} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{2}) \in G_{n} \times G_{n}\} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{2}) \in G_{n} \times G_{n}\} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{2}) \in G_{n} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{2}) \in G_{n} \times (g_{n} \cdot g_{n}) = \{(g_{1} \cdot g_{n}) \in G_{n} \times (g_{n} \cdot g_{n}) =$