Lecture 6 Internet Traffic Engineering

Introduction of Traffic Engineering

- Traffic engineering is concerned with the <u>performance</u> optimization of operational networks
- The objective of traffic engineering is to reduce congestion hot spots and improve resource utilization across the network through carefully managing the traffic distribution inside a network

Fish Problem

- Extremely unbalanced traffic distribution: all traffics from A and B to G go over one of the two paths
- Reasons
 - Destination-based IP routing: all packets to the same prefix address have the same next hop
 - Local optimization-based decision making in current routing protocols
 - From the viewpoint of service providers, traffic split is preferred
 - ATM VCs with IP routing on top of VCs
 - Traffic distribution is managed by carefully mapping VCs to the physical network topology

Solutions of Traffic Engineering (1)

Overlay model

- Allowing service providers to build arbitrary virtual topologies over the network's physical topology
- Usually build a full mesh of logical connections between all edge nodes
 - Collecting the info of network topology and traffic demands
 - Calculating a set of optimal routes with constraint-based routing
 - These logical connections are set up as MPLS explicit routes
- Cooperate with BGP routers
 - Dotted line: logical connection
 - Solid line: physical connection
 - A, B, C, D, E: BGP edge routers
 - The difference of with and without overlay model
 - LSPs vs. IGP-based approach

Solutions of Traffic Engineering (2)

- (+) Flexibility
- (–) Scalability (N-square problem)
- (–) Breakdown of a single physical trunk may cause multiple LSPs to fail

There are 4 paths from A to C: $A \rightarrow G \rightarrow H \rightarrow C$; $A \rightarrow F \rightarrow H \rightarrow C$; $A \rightarrow F \rightarrow G \rightarrow H \rightarrow C$

With overlaying, any of 4 paths can be used, and is decided based on traffic between other BGP nodes

Without overlaying, path from A to C is determined by an IGP such as OSPF

Solutions of Traffic Engineering (3)

Peer model

- Achieving balanced traffic distribution by manipulating link weights in OSPF routing protocol
- Much more scalable than overlay model

Optimization Objectives (1)

- The objectives could be:
 - Minimization of congestion and packet loss
 - Improvement of link utilization
 - Minimization of experienced delay
 - Increase of served customers
- Factors of congestion
 - Inadequate network resources
 - Unbalanced traffic distribution
 - The problem can be formulated to "minimize the maximum of link utilization in a network"
 - Interesting observation: relationship between link utilization and queueing delay
 - The maximum of link utilization is minimized, the total delay the packets experience is also minimized

Optimization Objectives (2)

- Assume all links have the same capacity
- Wode A can split traffic from itself to node C
- What's the optimal allocation among the 2 paths?
 - Queueing delay increases more rapidly as the utilization increases
 - − The increase of the delay on path $A \rightarrow D \rightarrow C$ is always larger than the decrease of the delay on path $A \rightarrow B \rightarrow C$

Building Blocks of Internet TE (1)

Pata repository: a central database and persistent storage for all shared data objects (e.g., network topology, link state, and traffic demand)

Building Blocks of Internet TE (2)

- Topology and state discovery: monitor topology and link state changes
 - Possible approaches
 - Static information: network configuration
 - Dynamic information: residual bandwidth, link utilization (SNMP & polling)
 - Routing protocol extension (to broadcast link state periodically in OSPF)
- Traffic demand estimation
 - Service agreement between service providers and customers
 - Traffic measurement
 - Aggregated traffic statistics (ex., traffic load between any pair of ingress and egress nodes)

Building Blocks of Internet TE (3)

Route computation

- Calculated based on traffic demands
- Constraint-based routing
 - Off-line mode
 - Route computation is performed for all routes periodically with current info
 - The network cuts over to the new routes during maintenance periods
 - (+) Yielding optimal results
 - (-) Traffic flow disruption
 - (-) Extra delays for adding new traffic demands
 - On-line mode
 - Route computation is performed in an incremental fashion and only calculates for new demands
 - (+) Minimizing rerouting of existing flows
 - (-) Inefficient resource utilization
- Utilizing both modes at different time scales alternatively

Building Blocks of Internet TE (4)

Wetwork interface

- Configuring network elements in the network accordingly
- Two approaches
 - Web-based user interface (usually vendor specific)
 - (+) Highly flexible
 - (–) Vender-specific
 - Standard-based approach: SNMP/Common open policy server protocol (COPS)
 - COPS: proposed as a standard for a traffic-engineering system to instruct an edge node to set up MPLS explicit routes

Constraint-Based Routing (1)

Consist of two basic elements

- Route optimization: selecting routes for traffic demands subject to a given set of constraints
- Route placement: implement the selected routes in the network so that the traffic flows will follow them

Mathematical formulation

- Assumptions include
 - Network links and capacities are directional (directed graph)
 - Average traffic demand is known (either through measurement or through configuration parameters)
 - Traffic demand is directional

Constraint-Based Routing (2)

Objectives

- All traffic demands are fulfilled
- Minimizing the maximum of link utilization

Notations

- G = (V, E)
- $c_{i,j}$: the capacity of link $(i,j), \forall (i,j) \in \mathbf{E}$
- K: the set of traffic demands between a pair of edge nodes
- (bw_k, s_k, t_k) : bandwidth demand, source node, destination node, $\forall k \in \mathbf{K}$
- Note that a demand may be split over multiple paths
- $X_{i,j}^k$: the percentage of k's bandwidth demand satisfied by link (i,j)
- α : the maximum of link utilization among all the links

Constraint-Based Routing (3)

- Linear-programming formulation (LPF)
 - Objective is to minimize the maximum of link utilization, i.e., $\min \alpha$
 - Constraints:
 - The traffic flowing into a node must equal the traffic flowing out of the node for any node other than the source node and the destination node for each demand, i.e.,

$$\sum_{j:(i,j)\in \mathbf{E}} X_{i,j}^k - \sum_{j:(j,i')\in \mathbf{E}} X_{j,i'}^k = 0, \quad k \in \mathbf{K}, j \neq s_k, j \neq t_k$$

- The net flow out of the source node is 1 (the assumed total required bandwidth), i.e.,

$$\sum_{j:(i,j)\in \mathbf{E}} X_{i,j}^k - \sum_{j:(j,i)\in \mathbf{E}} X_{j,i}^k = 1, \quad k \in \mathbf{K}, i = s_k, j \neq t_k$$

$$\sum_{j:(i,j)\in \mathbf{E}} X_{i,j}^k = 1, \quad k \in \mathbf{K}, i = s_k, j \neq t_k$$

Constraint-Based Routing (4)

 The total bandwidth consumed by all logical connections on a link should not exceed the max utilization rate times the total capacity of the link, i.e.,

$$\sum_{\forall k} b w_k X_{i,j}^k \le c_{i,j} \alpha, (i,j) \in \mathbf{E}$$

All variables are nonnegative real numbers and no more than 1, i.e.,

$$0 \le \alpha \le 1$$

$$0 \le X_{i,j}^k \le 1$$

Constraint-Based Routing (5)

- Constraint-based routing in overlay model
 - Shortest path (SP)
 - When there is a demand, the shortest-path algorithm is used to set up an LSP to the destination
 - Link metric for link (*i*,*j*) is inversely proportional to the bandwidth
 - Minimum hop (MH)
 - Link metric is set to 1 uniformly for each hop
 - Still run shortest path algorithm
 - Shortest-widest path (SWP)
 - Link metric is set to as bandwidth
 - Always selecting the path with largest bottleneck bandwidth
 - The one with minimum hops or shortest distance is chosen when multiple paths are available

Constraint-Based Routing (6)

Hybrid algorithm

- Concerning the basic tradeoff between avoiding bottleneck links and taking a longer path, and trying to balance the two objectives
- How? Assigning appropriate weights for them
- Weight: link utilization, instead of residual bandwidth
- Metric combines the cost of a path and the contribution to the maximum of link utilization
- Notations
 - $f_{i,j}$: current load (used capacity) of link (i,j); initial value is 0
 - $c_{i,j}$: total capacity of link (i,j)
 - $-\alpha$: current maximum link utilization; initial value is 0
 - $\alpha_{i,j}$: link (i,j) cost metric [link (i,j) utilization]

$$\alpha_{i,j} = \frac{f_{i,j} + bw_k}{c_{i,j}} + T \times \max \left[0, \frac{f_{i,j} + bw_k}{c_{i,j}} - \alpha \right],$$

where T is a tunable parameter

Constraint-Based Routing (7)

- Constraint-based routing in peer model
 - The basic idea behind peer model is link cost adjustment
 - Challenge: how to find a systematic approach of link weight assignment
 - An example
 - Traffic demands: $(A \rightarrow B, 4)$, $(A \rightarrow F, 4)$, $(B \rightarrow F, 4)$, $(A \rightarrow E, 4)$
 - Link utilization: 36/45=80%

Original topology

Constructed path

Link weight for OSPF route computation

Multipath Load Sharing (1)

- ¥ Load-balancing system: distribute traffic equally or proportionally
- Basic requirements
 - Traffic splitting is in the packet-forwarding path, and executed for every packet
 - To reduce implementation complexity, the system should preferably keep no or little state info
 - Traffic-splitting schemes produce stable traffic distribution across multiple outgoing links with minimum fluctuation
 - Traffic-splitting algorithms must maintain per-flow packet ordering

Multipath Load Sharing (2)

- Packet-by-packet round robin
 - (+) Low overheads
 - (+) Good performance
 - (-) Per-flow ordering (sequence numbers/states)
- Weight in the Hashing based traffic-splitting schemes
 - (+) Stateless
 - (+) Easy to implement
 - (+) Even traffic load distribution

Multipath Load Sharing (3)

Direct hashing

- Hashing of destination address
 - $H(\bullet)$ =DestIP mod N
 - *N*: the number of outgoing links
- Hashing using XOR folding of source/destination addresses
 - $H(\bullet)=(S_1\otimes S_2\otimes S_3\otimes S_4\otimes D_1\otimes D_2\otimes D_3\otimes D_4) \bmod N$
 - ⊗: XOR operation
 - S_i : the i^{th} octet of the source address
 - D_i : the ith octet of the destination address

Multipath Load Sharing (4)

Table-based hashing

- Split a traffic stream into M bins.
- The *M* bins are mapped to *N* outgoing links based on an allocation table, i.e., compute the corresponding hash value
- By changing the allocation of the bins to the outgoing links, we can distribute traffic in a predefined ratio

