LAB RECORD

2018 - 2019

Mathematical Models Using Python Programming MAT 451

Name: Jeevan Koshy Reg. No: 1740256

TABLE OF CONTENTS

SI No. Name Date Pg No

2	Inverse Determinant & Eigen Values	15th November 2018	3 – 4
3	Transpose & Upper/Lower Triangular Parts	17th November 2018	5 – 6
4	Solving Linear Systems	22nd November 2018	6 – 10
5	Plotting of scalar & vector fields	24th November 2018	10 – 13
6	Mathematical model: interest rates	10th January 2019	14
7	Mathematical model: Growth of population/Exponential model	12 th January 2019	15 – 16
8	Mathematical model: Logistic Growth	24 th January 2019	17 - 19

Lab 2

Topic: Inverse, Determinant & Eigen Values

Date: 15th November 2018

<u>Aim:</u> To find the determinant, inverse and eigen values of matrices.

Source Code:

```
import numpy as np
matrix = np.matrix([[1,4],[2,0]])
det=np.linalg.det(matrix)
print(det)
A = ([[1,5,6,7],[8,9,1,0],[2,3,4,5],[4,5,2,3]])
A_det=np.linalg.det(A)
print(A)
print(A_det)
inverse=np.linalg.inv(matrix)
A_inv=np.linalg.inv(A)
print(inverse)
print(A_inv)
B=np.linalg.inv(A_inv)
print(B)
A=([[1,3,2],[2,3,1],[4,2,1]])
B=([[2,4,6],[3,2,1],[7,6,2]])
det_A=np.linalg.det(A)
det_B=np.linalg.det(B)
print(det_A)
print(det_B)
inv_A=np.linalg.inv(A)
inv_B=np.linalg.inv(B)
print(inv_A)
print(inv_B)
AB=np.dot(A,B)
AB_INV=np.linalg.inv(AB)
B_INV_A_INV=np.dot(inv_B,inv_A)
```

```
E=np.matrix([[1,4,7],[9,1,9],[0,0,1]])
eigvals=np.linalg.eigvals(E)
print(eigvals)
```

print(B_INV_A_INV)
print(AB_INV)

```
[[1, 5, 6, 7], [8, 9, 1, 0], [2, 3, 4, 5], [4, 5, 2, 3]]
-86.0
[[ 0.
         0.5 1
 [0.25 -0.125]
[[-0.39534884 0.09302326 0.65116279 -0.1627907 ]
 [ 0.34883721 -0.02325581 -0.6627907
                                    0.290697671
 [ 0.02325581  0.46511628  0.75581395  -1.31395349]
 [-0.06976744 - 0.39534884 - 0.26744186 0.94186047]]
   1.00000000e+00
                   5.00000000e+00
                                   6.00000000e+00
                                                   7.00000000e+001
   8.00000000e+00
                   9.00000000e+00
                                   1.00000000e+00
                                                   2.35922393e-16]
  2.00000000e+00
                                  4.00000000e+00
                   3.00000000e+00
                                                   5.00000000e+001
   4.00000000e+00
                   5.00000000e+00 2.0000000e+00
                                                   3.00000000e+0011
-9.0
24.0
[[-0.111111111 -0.111111111 0.33333333]
             0.77777778 -0.333333333]
 [-0.2222222
 [ 0.88888889 -1.11111111
[[-0.08333333 1.16666667 -0.333333333]
 [[-0.5462963
             1.28703704 -0.527777781
 [ 0.93981481 -1.97685185 0.76388889]
 [-0.46296296 \quad 0.87037037 \quad -0.27777778]]
[-0.5462963]
              1.28703704 -0.52777778]
 [ 0.93981481 -1.97685185  0.76388889]
 [-0.46296296 0.87037037 -0.27777778]]
[ 7. -5. 1.]
```

Conclusion:

From the above output, we have calculated the determinants of a matrix as well as found it's eigen values with it's inverse. Using these codes, we can find for any matrix – it's determinant, inverse & eigen value.

Lab 3

Topic: Transpose & Upper/Lower Triangular Parts

Date: 17th November 2018

<u>Aim:</u> To find the transpose, upper & lower triangular parts of a matrix.

Source Code:

```
a=np.array([[1,2,3],[4,5,6],[7,8,9]])
print(a)
tri_upper_diag=np.triu(a,k=0)
print(tri_upper_diag)
tri_upper_diag_no_diag=np.triu(a,k=1)
print(tri_upper_diag_no_diag)
tri_upper_diag_no_diag=np.triu(a,k=2)
print(tri_upper_diag_no_diag)
tri_upper_diag_no_diag=np.triu(a,k=3)
print(tri_upper_diag_no_diag)
# Program to transpose a matrix using nested loop
X = [[12,7],
    [4 ,5],
[3 ,8]]
result = [[0,0,0],
          [0,0,0]]
# iterate through rows
for i in range(len(X)):
   # iterate through columns
   for j in range(len(X[0])):
        result[j][i] = X[i][j]
```

Output (Graphs/Tables):

```
[[1 2 3]
[4 5 6]
[7 8 9]]
[[1 2 3]
[0 5 6]
[0 0 9]]
[[0 2 3]
[0 0 6]
[0 0 0]]
[[0 0 3]
 [0 0 0]
 [0 0 0]]
[0 \ 0 \ 0]
[0 0 0]
[0 0 0]]
[12, 4, 3]
[7, 5, 8]
```

for r in result:
 print(r)

From the above codes, we have found the transpose, upper & lower triangular parts of a matrix.

Lab 4

Topic: Solving Linear Systems

Date: 22nd November 2018

<u>Aim:</u> To solve linear systems in Python

Source Code:

Example 01. Solve y'' + y' - 2y = 0

```
In [14]:
    print("Solution to the given linear differential equation is given by: ")
    c1 = sympy.Symbol('c1')
    c2 = sympy.Symbol('c2')
    x = sympy.Symbol('x')
    m = np.poly([0])
    f = m**2+m-2
    coeff = [1,1-2]
    r = np.nots(coeff)
    y = c1*sympy.exp(r[0]*x)+c2*sympy.exp(r[0]*x)
    print("y = ",y)
```

Example 02. Solve y'' + 6y' + 9y = 0

```
In [3]:
print("Solution to the given linear differential equation is given by: ")
c1 = sympy.Symbol('c1')
c2 = sympy.Symbol('c2')
x = sympy.Symbol('x')
m = np.poly([0])
f = m*2+6*m+9;
r=np.roots([1,6,9])
y=(c1+x*c2)*sy.exp(r[0]*x)
print(r)
print("y = ",y)
```

Linear Differential equations with constant coefficients

Q1: Solve the differential equation $\frac{d^2}{dx^2} - 5f = 0$

```
In [16]: #to print neatly
from sympy.interactive import printing
printing.init_printing(use_latex=True)
import sympy as sp
from sympy import *
In [17]: x=Symbol('x')
x #defining symbol using symbol
Out[17]: x
```

```
In [18]: from sympy import *
f = Function('f')(x) #defining f as a function of x
diffeq = Eq(f.diff(x,x)-5*f,0) #define the differential equation
diffeq #to print the differential equation
```

Out[18]: $-5f(x) + \frac{d^2}{dx^2}f(x) = 0$

In [19]: dsolve(diffeq,f) #solving the differential equation

Q2: Solve the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6 = 0$

```
In [20]: x = Symbol('x')
y = Function('y')(x)  #defining y as a function of x
diffeq = Eq(y.diff(x,x)+5*y.diff(x)+6*y,0)  #define the #define the differential equation
print('The differential equation is: ')
print(diff)
print('The solution is: ')
dsolve(diffeq,y)
```

In [21]: x = Symbol('x')
y = Function('y')(x) #defining y as a function of x
diffeq = Eq(y.diff(x,x,x)+y,0) #define the differential equation
print('The differential equation is: ')
print(diff)
print('The solution is: ')
dsolve(diffeq,y)

Q6. Solve $(D^2 + 4)y = \cos 3x$

```
In [22]: x = Symbol('x')
y = Function('y')(x)  #defining y as a function of x
diffeq = Eq(y.diff(x,x)+4*y,cos(3*x))  #define the differential equation
print('The differential equation is: ')
print(diff)
print('The solution is: ')
dsolve(diffeq,y)
```

Q7: Solve $(D^2 + 4D + 4)y = e^{-3x}$

```
In [23]: diffeq = Eq(y.diff(x,x)+4*y.diff(x)+4*y,exp(-3*x)) #define the differential equation
print('The differential equation is: ')
print(diff)
print('The solution is: ')
dsolve(diffeq,y)
```

1. Solve
$$\frac{dy}{dx} = x - y, y_0 = 1$$

```
In [27]: x = sy.Symbol('x')
f = sp.Function('f')(x)
diffe = Eq(f.diff(x)-x+f,0)
diffe
dsolve(diffe,f)
```

Linear Differential equations using ODEINT

- 1. Model: Fuction name that returns derivative values at requested y and t values as dy_dt = model(y,t)
- 2. y0: Initial conditions of the differential states
- 3. t: Time points at which the solution should be reported. Additional internal points are often calculated to maintain accuracy of the solution but are not reported.

Solve
$$\frac{dy}{dx} = x - y$$
, $y_0 = 1$

```
In [6]: import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    from scipy.integrate import odeint
```

```
In [8]: #Define a function that calculates the derivative
def dy_dx(y,x):
    return x-y
    xs = np.linspace(0,10,100)
    y0 = 1.0 #the initial condition
    ys = odeint(dy_dx,y0,xs)
```

```
In [9]: #plot results
plt.plot(xs,ys)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
print(ys)
```

```
Solve \frac{dy}{dx} = -ky(t) with parameter k = 0.1,0.2,0.5 and the initial condition y_0 = 5
In [12]: #function that returns dy/dt
    def model(y,t):
                 k=0.2
dydt = -k*y
                   return dydt
              # initial condition
              y0=5
              # time points
              t = np.linspace(0,20,100)
              #solve ODE
              y = odeint(model,y0,t)
              #plot results
              plt.plot(t,y)
plt.xlabel('time')
plt.ylabel('y(t)')
              plt.show()
              print(y)
 In [9]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
              from scipy.integrate import odeint
             #function that returns dy/dt
             def model(y,t,k):
dydt = -k*y
return dydt
              # initial condition
             y0=5
             # time points
t = np.linspace(0,20)
              #solve ODE
             y1 = odeint(model,y0,t,args=(k,))
k = 0.2
             y2 = odeint(model,y0,t,args=(k,))
k = 0.5
             y3 = odeint(model,y0,t,args=(k,))
             #plot results
plt.plot(t,y1,'r-',linewidth=2,label='k=0.1')
plt.plot(t,y2,'b--',linewidth=2,label='k=0.1')
plt.plot(t,y3,'g.',linewidth=2,label='k=0.5')
plt.xlabel('time')
plt.ylabel('y(t)')
plt.legend()
nlt.show()
             plt.show()
  In [14]: #function that returns dy/dt
              def model(y,t):

if t<10.0:
                          u=0
                     else:
                    u=2
dydt = (-y + u)/5.0
return dydt
               # initial condition
               y0 = 0
              # time points
t = np.linspace(0,40,1000)
               y = odeint(model,y0,t)
               #plot results
               plt.plot(t,y,'r-',label='Output (y(t))')
plt.plot([0,10,10,40],[0,0,2,2],'b-',label='Input (u(t))')
plt.xlabel('values')
plt.ylabel('time')
              plt.legend(loc='best')
plt.show()
```

```
Solution to the given linear differential equation is given by:
y = c1*exp(1.0*x) + c2*exp(1.0*x)
Solution to the given linear differential equation is given by:
[-3. +3.72529030e-08j -3. -3.72529030e-08j]
         (c1 + c2*x)*exp(x*(-3.0 + 3.72529029846191e-8*I))
          The differential equation is:
<function diff at 0x000002719CE4E268>
The solution is:
Out[20]: y(x) = (C_1 + C_2 e^{-x}) e^{-2x}
          The differential equation is:
          <function diff at 0x000002719CE4E268>
          The solution is:
Out[21]:
          The differential equation is: <function diff at 0x000002719CE4E268>
          The solution is:
Out[22]: y(x) = C_1 \sin(2x) + C_2 \cos(2x) - \frac{1}{5} \cos(3x)
          The differential equation is: <function diff at 0x000002719CE4E268>
          The solution is:
Out[23]: y(x) = (C_1 + C_2 x + e^{-x}) e^{-2x}
          The differential equation is: <function diff at 0x000002719CE4E268>
          y(x) = \left(C_1 \sin(x) + C_2 \cos(x) - \frac{1}{3} \cos(2x)\right) e^x
 8
 6
                                                                       3
                                                                     퓻
                                                                       2
 2
                                                                       0
                                                                                         5.0
                                                                                                      10.0
                                                                                                                          17.5
                                                              10
                                                          k=0.1
                                                                      2.00
                                                          k=0.1
                                                          k=0.5
    4
                                                                      1.50
                                                                      1.25
 팢
                                                                    월 1.00
                                                                      0.75
                                                                      0.50
                                                                      0.25
                                                                                                                        Output (y(t))
                                                                                                                        Input (u(t))
    0
                                                                      0.00
        0.0
                     5.0
                                 10.0
                                        12.5
                                              15.0
                                                                                                15
                                                                                                       20
                                                                                                                    30
                                                                                                                          35
```

With the above codes & outputs, we have solved and found linear systems in Python. A few graphs have also been plotted for the different linear differential equations.

<u>Lab 5</u>

Topic: Plotting of scalar & vector fields

Date: 24th November 2018

<u>Aim:</u> To plot scalar & vector fields using Python and to find the cross product of vectors

Source Code:

```
In [19]: from mpl toolkits.mplot3d import Axes3D
                   import matplotlib.pyplot as plt
import numpy as np
                   from pylab import *
from matplotlib import cm
                    %matplotlib inline
                   plt.style.use('seaborn-white')
  In [20]: ax=Axes3D(figure())
                   x=arange(-3*pi,3*pi,0.1)
y=arange(-3*pi,3*pi,0.1)
xx,yy=meshgrid (x,y)
                   z=sin(xx)+sin(yy)
ax.plot_surface(xx,yy,z,cmap=cm.jet,cstride=1)
                   plt.show()
In [21]: #Vector Field Plots
fig=plt.figure()
                   ax=fig.gca(projection='3d')
                   x,y,z=np.meshgrid(np.arange(-0.8,1,0.2),np.arange(-0.8,1,0.2),np.arange(-0.8,1,0.8))
                  w=np.sin(np.pi*x)*np.cos(np.pi*y)*np.cos(np.pi*z)
v=-np.cos(np.pi*x)*np.sin(np.pi*y)*np.cos(np.pi*z)
w=(np.sqrt(2.0/3.0)*np.cos(np.pi*x)*np.cos(np.pi*y)*np.sin(np.pi*z))
ax.quiver(x,y,z,u,v,w,length=0.1)
                  plt.show()
In [22]: # Line PLot
    ax = Axes3D(figure())
    phi = linspace(0, 2*pi, 400)
    x = cos(phi)
    y = sin(phi)
    z = 0
               z = 0
ax.plot(x, y, z, label = 'x') #circle
z = sin(4*phi) #Modulated in Z plane
ax.plot(x, y, z, label = 'x')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
show()
```

```
In [23]: #Scalar Field
    x = np.linspace(-3, 3, 256)
    y = np.linspace(-3, 3, 256)
    X, Y = np.meshgrid(x, y)
    Z = np.sinc(np.sqrt(X ** 4 + Y ** 4))
    fig = plt.figure()
    ax = fig.gca(projection = '3d')
    ax.plot_surface(X, Y, Z, cmap=cm.gray)
    nlt.show()
                              plt.show()
In [24]: x = np.linspace(0,5,50)
y = np.linspace(0,5,40)
def f(x,y):
    return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)
X, Y = np.meshgrid(x,y)
Z = f(X, Y)
nlt contour(X, Y, Z, colors='pink')
                              plt.contour(X, Y, Z, colors='pink')
   In [25]: def func(x,y):
                                        return 3*(x-2)**2 + (y+1)**2
                            #setup grid
nx=200 #number of points in x direction
                              for j in range(ny):
    Z[i,j]=func(X[i,j], Y[i,j])
                              #--contor plot
plt.figure() #dtart a new figure
plt.contour(X,Y,Z,50,cmap-'bone') #using 50 contour lines
plt.colorbar() #add a colorbar
plt.xlabel('x') #labels for axes
plt.ylabel('y')
plt.shew() #shew plot
                               plt.show() #show plot
    In [26]: x= np.linspace(0,5,50)
y= np.linspace(0,5,40)
                               def f(x,y):
    return np.sin(x)**10+ np.cos(10+y*x)* np.cos(x)
X,Y= np.meshgrid(x,y)
                                Z=f(X,Y)
                               plt.contour(X,Y,Z, colors='pink')
                               plt.contour(X,Y,Z,20, cmap='ocean')
   In [27]: a = np.linspace(-3, 3, 100)
b = np.linspace(-3, 3, 100)
X , Y = np.meshgrid(a, b)
Z = (((X+Y*1j)**2-1)*(((X+Y*1j)-2-1j)**2))/((X+Y*1j)**2+2+2j)
      In [31]: a=np.linspace(5,30,1000)
                                  b=np.linspace(5,30,1000)
X,Y=np.meshgrid(a,b)
Z=(X+Y*1j)*(X-Y*1j)
                                   import matplotlib.pyplot as plt
                                   plt.contour(X,Y,Z)
                                  imaginary part
                                 order=order, subok=True, ndmin=ndmin)
In [32]: a=np.linspace(-5,5,150)
                              b=np.linspace(-5,5,150)
                             X,Y=np.meshgrid(a,b)
Z=(X+Y*1j)*(X-Y*1j)
                             plt.contour(X,Y,Z)
                            C: \label{linear} C: \label{
                            imaginary part
                            order=order, subok=True, ndmin=ndmin)
```


From the above graphs, we can understand how scalar and vector fields are plotted with the codes entered.

<u>Lab 6</u>

Topic: Mathematical model: Interest rates

Date: 10th January 2019

Aim:

Source Code:

```
In [2]: # Compute simple interest for the user inputs p,n,r
#!/usr/bin/python

def calculate_simple_interest(p,n,r):
    si=0.0
    si=float(p*n*r)/float(100);
    return si;

def calc_amount(p,si):
    amt=p+si
    return amt

if __name__=='__main__':
    p=float(input("Enter value\np:"));
    n=int(input("n: "));
    r=float(input("r:"));
    simple_interest=calculate_simple_interest(p,n,r);
    print("Simple interest value: %.2f" % simple_interest);
    amt=calc_amount(p,simple_interest)
    print("Amount: %.2f" % amt);
```

Compund interest is an interest calculated on the inital principal and also calculated on the interest of previous periods of deposit. Formulae is A=P*(1+R/100)^t

CI=A-P P-Principal A-Tota Amount CI-Compound Interest

```
In [1]:
    principle=float(input("Enter principle amount: "))
    time=int(input("Enter time duration: "))
    rate=float(input("Enter rate of interest: "))
    amount=(principle * (1 + (float(rate)/100))**time)
    compound_interest=amount-principle;
    print("Total amount: ",amount)
    print("Compound interest: * %0.2f"%compound_interest)
```

Output (Graphs/Tables):

```
Enter value
p:100
n: 10
r:5.0
Simple interest value: 50.00
Amount: 150.00
Enter principle amount: 100
Enter time duration: 10
Enter rate of interest: 12
Total amount:- 310.5848208344212
Compound interest:- 210.58
```

Conclusion:

This is how interest rates are calculated in Python.

<u>Lab 7</u>

<u>Topic:</u> Mathematical model: Growth of population/Exponential model

Date: 12th January 2019

Aim: To find the bacterial growth of a population

Source Code:

BACTERIAL GROWTH

Example 01: A culture has P_0 number of bacteria. At t=1 h the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria Pt present at the time t, the determine the time necessary for the number of bacterial to triple.

Example 02: Plot the function $y = P_0 e^{0.405465108164}, y_0 = 20$

```
In [27]: t = arange(0,10,0.5)
P0 = 20
y = 20*exp(0.405465108108164*t)
plt.plot(t,y)
plt.xlabel('time')
plt.ylabel('Number of bacteria')
plt.title('Law of Natural Growth')
plt.show()
```


Conclusion:

The law of natural growth has been plotted with help of a few python codes. There is also an example or two have been used to find the time for bacteria to grow.

Lab 8

Topic: Mathematical model: Logistic Growth

Date: 24th January 2019

<u>Aim:</u> To build a mathematical model finding the logistic growth in a population

Source Code:

Equation for Logistic Population Growth

$$\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$$

We can also look at logistic growth as a mathematical equation. Population growth rate is measured in number of individuals in a population (N) over time (t). The term for population growth rate is written as (dN/dt). The d just means change. K represents the carrying capacity per individual for a population. The logistic growth equation growth equation assumes that K and r do not change over time in a population.

Logistic Growth

```
In [26]: import numpy as np
            import math
            from numpy import
from sympy import
from pylab import
            import matplotlib.pyplot as plt
            from scipy.integrate import odeint
           from sympy.interactive import printing
printing.init_printing(use_latex=True)
 In [3]: def f(N,t,r,K):
    return r * N * (1-N/K)
            r = 1
K = 50
N0 = 10
            t = np.linspace(0,10,100)
            N = odeint(f,N0,t,args = (r,K))
            plt.plot(t,N)
            plt.ylim([0,100])
            plt.axhline(y=K,color='k',linewidth=0.5)
            plt.show()
In [5]: N0 = 80
          t = np.linspace(0,10,100)
          N = odeint(f, N0, t, args = (r,K))
          plt.plot(t,N)
plt.ylim([0,100])
          plt.axhline(y=K,color='k',linewidth=0.5)
          plt.show()
  In [6]: NØ = 30
            t = np.linspace(0,10,100)
            N = odeint(f, N0, t, args = (r,K))
            plt.plot(t,w)
plt.ylim([0,100])
plt.axhline(y=K,color='k',linewidth=0.5)
            plt.show()
```

Example 02

Let's start with the logistic equation, now with any parameters for growth rate and carrying capacity:

$$\frac{dx}{dt} = rx(1-\frac{x}{K})$$
 with $r=2, K=10$ and $x0=0.1$

```
In [13]: t = arange(0,10,1)
# parameters
r = 2
K = 10
# initial condition
x0 = 0.1

# Let's define the right - hand side of the differential equation
# It must be a function of the dependendent variable (x) and of the time (t), even if time does not appear explicit; y.
# this is how you define a function:

def f(x,t,r,K):
    # in python, there are no curling braces '{}' to start or end a function, nor any special keyword:
    # the block is defined by leading spaces (usually 4)
    # arithmetic is done the same as in other languages: +, -, *, /
    return 'r*(1-x/K)

# call the function that performs intergration
# the order of the arguments as below: the derivative function, the initial condition, the points where you want the solution
# and the list of the parameters
x = odein(f,x,0,t,(r,K))

#plot the solution
plt.plot(t,x,'.')
plt.ylabel('x')
t = arange(0,10,0.01)
# plot analytical solution
# notice that 't' is an array when you do an arithmetic operation
# with an array, it is the same as doing it for each element.
plt.plot(t,K*x0*exp(r*t)/(K+x0*(exp(r*t)-1)))
plt.legend(['approximation', 'analytical solution'],loc = 'best') # draw legend
plt.show()
```

Output (Graphs/Tables):

From the above graph, the logistic growth of a population has been calculated and a few graphs have also been plotted in Python with the help of some code to demonstrate the growth.
