Étude cinématique des systèmes de solides de la chaîne d'énergie – Analyser, Modéliser, Résoudre

Chapitre 4 – Étude des chaînes fermées : Détermination des lois Entrée – Sortie

Industrielles de l'Ingénieur

Sciences

Les ingénieurs du MIT ont mis au point une prothèse active permettant aux personnes amputées en dessous du genou d'avoir une marche s'approchant d'une marche d'une personne valide.

Objectif Dans le but de valider le moteur électrique utilisé sur la prothèse ainsi que la structure mécanique, on cherche à valider l'exigence 1.3.1.

On donne un extrait du cahier des charges.

On s'intéresse d'abord au système de basculeur du pied. La pièce 3_1 est liée à l'écrou du système vis-écrou. Ainsi la translation de l'écrou provoque un basculement du pied 1.

Le repère $\mathcal{R}_0(O, \overrightarrow{x}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est lié au tibia noté 0 fixe dans toutes nos études. Ce repère est supposé galiléen (hypothèse justifiée dans le sujet).

Le repère $\mathcal{R}_1(O, \overrightarrow{x}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est lié au pied artificiel noté 1, supposé indéformable. On note $\theta(t) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = (\overrightarrow{z_0}, \overrightarrow{z_1})$ l'angle de rotation du pied par rapport au tibia. D'autre part, le vecteur unitaire $\overrightarrow{n_1}$ définit la direction des ressorts avec $\delta = (\overrightarrow{y_1}, \overrightarrow{n_1})$ considéré comme constant tout au long du cycle de marche.

Le repère $\Re_2(O, \overrightarrow{x}, \overrightarrow{y_2}, \overrightarrow{z_2})$ est lié au basculeur noté 2. On note $\alpha(t) = (\overrightarrow{y_0}, \overrightarrow{y_2}) = (\overrightarrow{z_0}, \overrightarrow{z_2})$ l'angle de rotation du basculeur par rapport au tibia.

Le repère $\Re_3(A, \overrightarrow{x}, \overrightarrow{y_3}, \overrightarrow{z_3})$ est lié à l'ensemble $3_1 + 3_2$. On note $\beta(t) = (\overrightarrow{y_0}, \overrightarrow{y_3}) = (\overrightarrow{z_0}, \overrightarrow{z_3})$ l'angle de par rapport au tibia.

On pose: $\overrightarrow{OA} = a \overrightarrow{z_0}$, $\overrightarrow{BA} = \lambda(t) \overrightarrow{y_3}$, $\overrightarrow{BO} = b \overrightarrow{y_2}$ et $\overrightarrow{SO} = b \overrightarrow{z_2}$ avec $b = 0,039 \ m$ et $a = 0,117 \ m$.

En l'absence d'action sur la prothèse, une position repos est identifiée par les paramètres θ_R , α_R , et δ_R . Cette position est obtenue lorsque le tibia est vertical et que le pied est en appui horizontalement sur le sol. Les valeurs numériques sont alors : $\theta_R = 0^\circ$, $\alpha_R = 9^\circ$ et $\delta_R = \delta = -17^\circ$.

Modélisation cinématique pour $\theta = 0^{\circ}$

Question 1 Quel type de mouvement y-a t-il en sortie des blocs «Moteur à courant continu », «Réducteur poulie-courroie», «Vis-écrou à billes» ? Quel est le mouvement final du pied ?

Question 2 Compléter le schéma cinématique permettant de modéliser la transmission de mouvement du moteur jusqu'à la vis 3₁. Donner la relation entre le taux de rotation du moteur et la vitesse de déplacement de la vis.

1

Question 3 Réaliser les figures planes correspondantes aux différents changements de repères.

Question 4 Déterminer la loi entrée-sortie entre $\lambda(t)$ et $\alpha(t)$.

La loi entrée sortie correspondant au mouvement de la cheville est donnée sur la courbe plus haut.

Question 5 Commenter l'allure de la courbe le choix des bornes de variation. En linéarisant le comportement du système, déterminer l'équation de le droite.

Question 6 Donner le schéma bloc du système depuis la sortie du moteur jusqu'à la rotation α de la prothèse.

Question 7 L'exigence 1.1.3 est-elle satisfaite?