

NASA CR-137521

AVAILABLE TO THE PUBLIC

TEST OF ACOUSTIC TONE SOURCE AND
PROPULSION PERFORMANCE OF C8A BUFFALO SUPPRESSOR NOZZLE

by C. C. Marrs, D. L. Harkonen, and J. V. O'Keefe

May 1974

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

(NASA-CR-137521) TEST OF ACOUSTIC TONE
SOURCE AND PROPULSION PERFORMANCE OF C8A
BUFFALO SUPPRESSOR NOZZLE (Boeing
Commercial Airplane Co., Seattle) 408 p
HC \$23.50

N74-33456

Unclassified
CSCL 01C G3/02 50852

Prepared under contract NAS2-7641 by

BOEING COMMERCIAL AIRPLANE COMPANY

P.O. Box 3707

Seattle, Washington 98124

for

AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

1. Report No. NASA CR-137521	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle TEST OF ACOUSTIC TONE SOURCE AND PROPULSION PERFORMANCE OF C8A BUFFALO SUPPRESSOR NOZZLE		5. Report Date May 1974	
		6. Performing Organization Code	
7. Author(s) C.C. Marrs, D.L. Harkonen, and J.V. O'Keefe		8. Performing Organization Report No. D6-41324-2	
		10. Work Unit No.	
9. Performing Organization Name and Address Boeing Commercial Airplane Company P.O. Box 3707 Seattle, Washington 98124		11. Contract or Grant No. NAS2-7641	
		13. Type of Report and Period Covered Contractor Report	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		14. Sponsoring Agency Code	
15. Supplementary Notes			
16. Abstract <p>Results are presented for a static acoustic and propulsion performance ground test conducted at the Boeing hot nozzle facility on the C8A Buffalo noise suppressor nozzle.</p> <p>Various methods to remove a nozzle-associated 2000-Hz tone are evaluated. Results of testing this rectangular-array lobed nozzle for propulsion performance and acoustic directivity are reported. Recommendations for future nozzle modifications and further testing are included.</p> <p>Appendix A contains the test plan. Appendix B presents the test log. Appendix C contains plots of the one-third octave sound pressure levels recorded during the test. Appendix D describes the acoustic data recording and reduction systems. The performance data is tabulated in Appendix E.</p>			
NOTE: Further work, based on the conclusion/recommendations listed here, is reported in NASA CR-137522.			
17. Key Words (Suggested by Author(s)) Lobed nozzle C8A Buffalo Rectangular-array nozzle Full scale test Ground microphone	18. Distribution Statement Unclassified-unlimited		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 408	22. Price*

*For sale by the National Technical Information Service, Springfield, Virginia 22151

CONTENTS

	Page
INTRODUCTION AND SUMMARY	1
PROCEDURAL DISCUSSION	3
Test Hardware and Facility Description	3
Test Procedures	3
TEST RESULTS	5
Acoustic Measurements	5
Nozzle Performance	7
RECOMMENDATIONS	9
REFERENCES	11
FIGURES	13
APPENDIX A- ORIGINAL TEST PLAN	43
APPENDIX B- TEST LOG	49
APPENDIX C- PLOTS OF RECORDED DATA, SOUND PRESSURE LEVEL	55
APPENDIX D- ACOUSTIC RECORDING AND REDUCTION SYSTEM	353
APPENDIX E- TABULATION OF PROPULSION PERFORMANCE DATA	359

TEST OF ACOUSTIC TONE SOURCE AND PROPULSION PERFORMANCE OF C8A BUFFALO SUPPRESSOR NOZZLE

by C. C. Matts, D. L. Harkonen, and J. V. O'Keefe
Boeing Commercial Airplane Company

INTRODUCTION AND SUMMARY

Following completion of the full scale test of the suppressor nozzle on the C8A Buffalo airplane (ref. 1), three factors still required clarification: (1) the origin and removal of a 2000-Hz tone believed to be caused by the lobed nozzle, (2) the acoustic directivity effect relative to the major and minor axis of the rectangular-array nozzle, and (3) measurement of the nozzle performance.

To accomplish the above objectives, one of the lobed nozzles was tested on the hot nozzle facility, figures 1 and 2, at North Boeing Field. This facility could not provide sufficient air to flow the full nozzle area; therefore, the four outside lobes were blocked initially. With this blockage, nozzle pressure ratios up to 1.5 were achieved with exhaust gas temperatures up to 510°C (950°F).

Acoustic data, on a 15.2-m (50-ft) polar array, were recorded simultaneously with performance data. Ground-mounted microphones were used so that ground reflections would be eliminated and not confuse the acoustic analysis. (For use of flush-mounted microphones, see ref. 2). Various configurations were evaluated in a step-by-step procedure until the 2000-Hz tone was eliminated.

The testing showed that no appreciable change in the tone came about with internal upstream fairing changes, but that when the lobe exits were suitably altered, in relation to each other, the tone was eliminated. The lobe exit relationship was changed in three ways: by blocking every other lobe, as in figure 3, thus doubling the lobe spacing; by adding a splitter plate between the lobes per figures 4 and 5, extending 12.7 cm (5 in.) aft of the nozzle exit; and by adding plugs with tubes for more exit breakup, per figure 6. All three of these procedures eliminated the tone. The assumption that the tone is generated by the nozzle exit geometry and spacing seems well-founded. The exact mechanism involved is still not completely understood.

The acoustic directivity of the rectangular-array nozzle was determined by recording data with the nozzle in the horizontal and then in the vertical plane. Figure 7 shows the nozzle in the vertical position. A marked reduction in the one-third octave SPL and OASPL levels occurs when the data is

recorded off the minor axis of the nozzle. The original estimate (ref. 1) of 2 PNdB reduction (at 1.5 NPR) due to directivity has now been altered to 6 PNdB per the results of this test program. Figure 8 (from ref. 1) shows the acoustic characteristics confirmed during this test program, and predicted levels for an advanced (BNS-3) nozzle discussed in the recommendation section of this report.

Velocity- and discharge-coefficient measurements were made on the partially blocked nozzle by using the facility's single-component thrust measurement cell and sonic venturi airflow meter. As indicated in figure 9, a velocity coefficient of 0.95 was measured at a nozzle pressure ratio of 1.5. This can be extrapolated to about 0.96 at the Buffalo airplane takeoff pressure ratio of 1.9. Some air leakage was evident around the rotation bearing attachment flange, with resultant lowering of the C_V value. The measured C_V levels are therefore somewhat below the true level. As indicated in figure 9, the fences installed in the secondary passages did not result in any measurable penalty in static performance.

It is recommended that research be continued to identify the mechanism of the 2000-Hz tone and to specify the means for eliminating or avoiding it.

PROCEDURAL DISCUSSION

TEST HARDWARE AND FACILITY DESCRIPTION

The hot nozzle facility, located at the north end of Boeing Field, is capable of airflows in the order of 20 kg (40 lb) per second at temperatures of 500°C (950°F). The interface duct at the exit of the facility is 30.5 cm (12 in.) in diameter. Thus, to adapt the "pants" section from a Spey split-flow Rolls Royce engine, a transition was fabricated (fig. 1) connecting the duct to the pants section.

As the facility was to be used for testing only one nozzle, a splitter plate was installed in the pants section and transition so the flow would duplicate as much as possible the full scale flow lines. The exit for the second nozzle on the pants section was sealed off at the rotation flange.

The airflow capacity of the test facility was not adequate to fill all 13 lobes of the nozzle; therefore the four outer lobes were blocked internally. This did not impair the acoustic characteristics of the nozzle: the baseline sound spectrums obtained from this test closely matched those obtained from the airplane static test reported in reference 1.

The area surrounding the test facility is made up of smooth concrete and is ideal for ground surface mounted microphone installations (ref. 2).

Nine microphones were located on a 15.2-m (50-ft) polar array, as measured from the nozzle exit plane and centerline. The microphones were located with the diaphragm 1.27 cm (0.5 in.) above the concrete surface, at angles of 90°, 100°, 110°, 115°, 120°, 125°, 130°, 135°, 140° relative to the inlet (see appendix A).

As illustrated in appendix A, total pressure and temperature instrumentation was installed at the entrance to the split-flow plenum and pants section, and total pressure rakes were fitted at the lobe nozzle exit plane. Performance coefficients (velocity and discharge) were computed using both rake locations as charging stations. The thrust produced by the lobe nozzle was measured by a single-component load cell of 900-kg (2000-lb) range. Nozzle airflow was measured with a calibrated sonic venturi installed upstream of the facility burner.

TEST PROCEDURES

Following the completion of a configuration buildup, the propulsion and acoustic instrumentation was checked and calibrated. If the weather was within specifications shown in appendix A, the

test was started with a nozzle pressure ratio (NPR) of 1.2 and an exhaust gas temperature of 371.1°C (700°F). Then the pressure ratio and temperature were increased in 0.1 NPR steps to a maximum of 1.7 NPR at 510°C (950°F). Propulsion and acoustic data were recorded at each NPR increment.

In the event of light rain, a single microphone at 115° from the inlet was used to measure the acoustic data. This data was displayed on-line from the one-third octave analyzer described in appendix D. No magnetic tape recording was made. It should be noted that even when the weather was good and the full microphone array was being recorded, the 115° microphone was tied into the on-line one-third octave analyzer and the traces recorded. Therefore, a quick comparison could be made between the various configurations.

TEST RESULTS

ACOUSTIC MEASUREMENTS

The first step in the test program was to run the lobed nozzle on the test rig and establish a baseline, with emphasis on being able to produce the 2000-Hz tone which existed during the NASA Ames airplane test program (ref. 1).

Runs 1 and 2 were made with nine lobes of the nozzle flowing. The weather was very marginal but data was recorded "on-line" at the 115° location for nozzle pressure ratios of 1.2 through 1.6. The acoustic results proved to be satisfactory and the 2000-Hz tone was reproduced at NPR 1.6. See figure 10.

Attempts were made to remove the 2000-Hz tone by a process of elimination. Figure 11 shows that adding a fairing to the leading and trailing edge of the secondary flow area struts was ineffective. It had been thought that the angle of attack of these struts, relative to the airstream, could have caused turbulence which resulted in the problem tone. Next it was decided to block all flow through the secondary channels. This was accomplished by fitting a piece of aluminum sheet over all the lobes and filling any voids with asbestos cloth. Results of this run (No. 4) are also shown in figure 11. No reduction of the tone occurred.

The next step was to remove an aerodynamic fairing which originally was installed internally between each lobe. This fairing was closed on the upstream end, but open on the downstream end, a configuration which left the possibility of the creation of a resonating chamber or whistle type of noise generator. Results of removing the tube fairings are shown in figure 12. The tone was still not affected.

In order to reduce the number of lobes involved in the remaining tone source tests, the nozzle was blocked down to five lobes flowing. Figure 13 shows the resultant one-third octave spectra; the 2000-Hz tone is still evident. In the remainder of the acoustic tests five lobes were used and run 6 was considered the baseline. Tube nozzle ends were then added (fig. 6) to the exit of the primary lobes. Nine lobes were fitted with these tube ends, with a resultant flow area equivalent to five lobes in the normal configuration. The tube ends removed the 2000-Hz tone, and effectively reduced the noise level relative to the lobed nozzle (fig. 13). However, this was not a practical solution due to the high thrust loss and weight penalties for a flight tube nozzle configuration.

While the tube nozzle ends were installed, the acoustic directivity of the rectangular array nozzle was evaluated before continuing the tone source tests. This evaluation was best made at this point of the test program because of the number of lobes in operation (nine) and hardware for the next test configuration was in fabrication.

To determine the nozzle directivity, an acoustic run was made with the nozzle major axis projecting through the centerline of the 90° microphone; then the nozzle was rotated 90° and acoustic data were again recorded. Figures 14 through 18 show the results. In summary, the noise measured off the short axis was 2 to 6 dB quieter than off the long axis. This difference depended on the power setting, with the directivity effect diminishing as the NPR was increased. It should be noted that the tube ends were installed in this test series, but as the overall aspect ratio was near three, the results of the directivity evaluation should be valid for the proposed BNS-3 lobe nozzle.

The tests completed prior to the directivity evaluation indicated that the 2000-Hz tone was related to an interaction between the lobes of the nozzle, probably at the exit plane. In an attempt to pinpoint the exact cause, three test configurations were run: five alternate lobes flowing, with four blocked (fig. 19); four alternate lobes flowing (fig. 19), namely the lobes which were blocked for the previous run; and with fences or splitters installed in the secondary flow channels extending 12.7 cm (5 in.) aft of the nozzle exit plane (fig. 20.). All three configurations removed the tone. It was originally thought that the tone was caused by upstream turbulence in each lobe, and that because of the relationship of the lobe exits the tones were amplified externally. Narrow band analysis (10-cycle bandwidth) per figures 21 through 29 shows that no such tone exists in the individual lobes and therefore the amplification theory is invalid.

The final conclusion as to the cause of the tone is that it is created by an interaction engendered by the shape and spacing of the lobes. It is not known what effect small changes in lobe spacing would have on the frequency of the tones, nor just what the minimum spacing change would be to completely eliminate the tone.

Methods of eliminating the tone are:

- 1) Change the lobe spacing.
- 2) Alter the lobe exit by converging near the exit plane, in effect, changing the exit flow characteristics slightly. (This solution is speculative.)

- 3) Change the lobe exit shape to a multi-element, large breakup configuration (deep corrugations on lobe exits).
- 4) Add a splitter (fence) between the lobes. Further testing would be required to determine the minimum size fence required.

NOZZLE PERFORMANCE

It was hoped that the transition-diffuser with the internal splitter plate would provide even pressure profiles at the entrance to the engine split-flow "pants" section. Examination of the pressures sensed by the two 4-probe total pressure rakes at the "D" shaped section revealed considerable distortion (as much as 3.5 psia out of 23 psia) at an average nozzle pressure ratio of 1.5. The brief test period did not allow investigation of the cause of the problem but evidently the area rate change was too severe to control the flow expansion immediately downstream of the burner choke plate. Performance data based on the distorted upstream conditions would be meaningless and are not presented here.

Nozzle performance was instead computed on the basis of total pressure measurements at the lobe exit plane. Two 4-probe rakes were positioned in the center of the lobes to sense the nozzle supply pressure. This is a sound practice provided the lobes are not unreasonably long. To minimize the effects of spanwise distortion, believed caused by the poor entrance conditions, the total pressure rakes were alternately positioned on lobes 1 and 4 and lobes 2 and 3, as shown in figure 9. Because of facility airflow limitations, six of the outer lobes were blocked to decrease the flow area. This was accomplished during the first tests by internally blocking the lobes. Levels of C_V as low as 0.90 were measured. The problem was traced to a large amount of leakage around the nozzle internal blocker plates. In the C_V equation, any mass flow that is leaking (not producing thrust) will drive the C_V parameter down. The unused lobes were then sealed externally. The C_V level rose to 0.95 at a nozzle pressure of 1.5 as indicated in figure 9. This level can be extrapolated to about 0.96 at takeoff power ($NPR = 1.9$). Some leakage is still evident around the nozzle-rotation bearing-attachment flange. This means that the measured C_V level is somewhat below the true level.

The discharge coefficient (C_D) level of the lobe nozzle was measured also. The C_D levels for ambient and heated air, presented in figure 30, are essentially constant at 0.95 through the range of pressure ratios tested. The discharge coefficient levels are not particularly important with regard to nozzle thrust performance but are useful in selecting the target nozzle exit area to provide proper engine match. The C_D values measured with 11 lobes flowing during the engine tests (ref. 1) varied from 0.93 to 0.94 for this range of pressure ratios.

RECOMMENDATIONS

This test program has shown that the 2000-Hz tone can be eliminated, and that greater noise suppression exists due to nozzle directivity than was originally predicted. With this knowledge in mind, it is recommended that further design and testing can provide a flight nozzle with the suppression shown in figure 8 (shown as BNS-3).

Model BNS-3 would consist of a lobe-type nozzle similar to the one tested (BNS-1), the main change occurring in the lobe exits. These would have deep penetration (high perimeter) corrugated ends.

To determine the actual effect of changing the lobe exit geometry, a Boeing hot-nozzle-facility test of a BNS-1 nozzle modified to BNS-3 geometry is recommended. The lobes of the BNS-1 nozzle would be removed, and seven new lobes of the BNS-3 configuration would be welded in place.

Propulsion and acoustic tests would be performed on the modified nozzle, and the results supplied in time to support a design effort for flight hardware.

Boeing Commercial Airplane Company
P.O. Box 3707
Seattle, Washington 98124, May 30, 1974

PRECEDING PAGE BLANK NOT FILMED

REFERENCES

1. Marrs, C. C.; Harkonen, D. L.; and O'Keefe, J. V.: Static Noise Tests on Augmentor Wing-Jet STOL Research Aircraft (C8A Buffalo). Boeing document D6-41324-I, May 1974. [NASA CR-137520]
2. McKaig, Merle B.: Use of Flush-Mounted Microphone to Acquire Free-Field Data. AIAA paper 74-92, February 1974.

FIGURE 1.—C8A BUFFALO LOBED NOZZLE MOUNTED
ON BOEING HOT NOZZLE TEST FACILITY

FIGURE 2.—C8A BUFFALO 13-LOBE SUPPRESSOR NOZZLE

FIGURE 3.—INSIDE VIEW OF C8A BUFFALO SUPPRESSOR NOZZLE, UPSTREAM LOBE BLOCKERS INSTALLED

FIGURE 4.—C8A BUFFALO LOBED NOZZLED WITH SECONDARY FLOW SPLITTERS (FENCES) INSTALLED

FIGURE 5.—AFT VIEW OF SECONDARY FLOW SPLITTERS (FENCES)

FIGURE 6.—TUBE ENDS INSTALLED ON NINE LOBES, REMAINING FOUR BLOCKED

FIGURE 7.—C8A LOBE NOZZLE IN VERTICAL POSITION FOR DIRECTIVITY EVALUATION

All data, colander removed.

Con 317 = conical, 2045 cm² (317 in.²)

Lobe 300 = lobe, 1936 cm² (300 in.²)

C = peak reduction confirmed during hot nozzle rig test

T = BNS-3 target values

FIGURE 8.—FIXED AREA NOZZLE ACOUSTIC SUMMARY CHART

run	exit rake loc.	T_{AIR}	fences (6)
○ 14	lobes 1 & 4	hot*	on
□ 16	lobes 2 & 3	hot	on
▽ 18	lobes 2 & 3	hot	off
△ 19	lobes 1 & 4	hot	off

FIGURE 9.—LOBE NOZZLE PERFORMANCE, SEVEN LOBES FLOWING

Add 4.9 dB to obtain octave band level

FIGURE 10.—LOBED NOZZLE SPL BASELINE, 115° LOCATION

Add 4.9 DB to obtain octave band level

FIGURE 11.—FAIRING AND SECONDARY FLOW BLOCKAGE EFFECTS ON SPL SPIKE

FIGURE 12.—EFFECT ON SPL SPIKE OF REMOVING UPSTREAM TUBE FAIRINGS

FIGURE 13.—EFFECT ON SPL SPIKE UPON ADDING TUBE ENDS

See figure 16 for nozzle orientation with respect to microphones

FIGURE 14.—ACOUSTIC DIRECTIVITY EFFECT AT 110° ANGLE

See figure 16 for nozzle orientation with respect to microphones

FIGURE 15.—ACOUSTIC DIRECTIVITY EFFECT AT 130° ANGLE

FIGURE 16.—ACOUSTIC DIRECTIVITY AT NOZZLE PRESSURE RATIO OF 1.5

See figure 16 for nozzle orientation with respect to microphones

FIGURE 17.—ACOUSTIC DIRECTIVITY AT NOZZLE PRESSURE RATIO OF 1.6

See figure 16 for nozzle orientation with respect to microphones

FIGURE 18.—ACOUSTIC DIRECTIVITY AT NOZZLE PRESSURE RATIO OF 1.7

Run 6: 5 center primary lobes flowing.

Run 10: 5 alternate primary lobes flowing.

Run 11: 4 alternate primary lobes flowing.

FIGURE 19.—SPL SPIKE REMOVAL WITH ALTERNATE LOBES FLOWING

FIGURE 20.—SPL SPIKE REMOVAL WITH SECONDARY-FLOW SPLITTERS

FIGURE 21.—NARROW-BAND ACOUSTICS OF RUN 10 AT 115° ANGLE

FIGURE 22.—NARROW-BAND ACOUSTICS OF RUN 10 AT 120° ANGLE

FIGURE 23.—NARROW-BAND ACOUSTICS OF RUN 10 AT 130° ANGLE

FIGURE 24.—NARROW-BAND ACOUSTICS OF RUN 11 AT 115° ANGLE

FIGURE 25.—NARROW-BAND ACOUSTICS OF RUN 11 AT 120° ANGLE

FIGURE 26.—NARROW-BAND ACOUSTICS OF RUN 11 AT 130° ANGLE

FIGURE 27.—NARROW-BAND ACOUSTICS OF RUN 12 AT 115° ANGLE

40

FIGURE 28.—NARROW-BAND ACOUSTICS OF RUN 12 AT 120° ANGLE

FIGURE 29.—NARROW-BAND ACOUSTICS OF RUN 12 AT 130° ANGLE

FIGURE 30.—LOBE NOZZLE PERFORMANCE, DISCHARGE COEFFICIENT VERSUS PRESSURE RATIO

APPENDIX A

ORIGINAL TEST PLAN

Acoustic and performance tests will be conducted on one of the lobe suppressor nozzles that was tested on the Buffalo aircraft. The mechanical laboratories' hot nozzle test facility (HNTF) will be used; it is equipped with heated air and thrust measurement capability and is located in an acoustic arena. A transition diffuser will be built to adapt the facility interface to the split-flow plenum "pants" and nozzle assembly. Facility burner and airflow limitations allow tests on only one lobe nozzle with several lobes blocked.

The objectives of the test are to:

- 1) Identify and eliminate a 2000-Hz tone that was measured during a previous test.
- 2) Measure the acoustic directivity effect of the rectangular-array lobe nozzle.
- 3) Measure the thrust performance of the suppressor nozzle.

See figure A-1 for a plan view of the test setup, acoustic arena, and the proposed tone source identification tests. The tone source identification tests are exploratory in nature and will examine several potential causes of the tone, varying from edge effects (Aeolian tones) in both secondary and primary passages to lobe nozzle aerodynamic characteristics. The tube breakup nozzles are intended to completely alter the lobe nozzle flow characteristics in the event that the tones are not eliminated by any of the other methods. See figure A-2 for tone source hardware.

The acoustic directivity effect of the nozzle will be measured by recording acoustic data with the nozzle rotated 90° relative to the normal position. The maximum nozzle pressure ratio will be limited to about 1.3 ($T_{air} = 750^{\circ}\text{F}$) with four lobes blocked (nine lobes flowing).

Facility thrust and mass flow measurement capability will be used to determine the nozzle velocity and discharge coefficients under heated air conditions. The performance coefficients will be determined at two charging stations: (1) entrance to the split-flow plenum; and (2) the nozzle exit station (see fig. A-1).

PERFORMANCE INSTRUMENTATION AND CALCULATIONS

The fully expanded jet velocity and the ideal mass flow will be computed from the arithmetic average of the two P_T rakes at station 1 and the arithmetic average of the probes on the nozzle exit rake at station 2.

$$V_{II} = \sqrt{\frac{2\gamma g R T_1}{\gamma - 1} \left[1 - \left(\frac{P_A}{\bar{P}_{T1}} \right)^{\frac{\gamma-1}{\gamma}} \right]}$$

$$W_{II} = A_{geo} \frac{\bar{P}_{T1}}{\sqrt{T_1}} \sqrt{\frac{\gamma g}{R}} \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{\bar{P}_{T1}}{P_A} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right]} \sqrt{\left(\frac{\bar{P}_{T1}}{P_A} \right)^{-\frac{\gamma+1}{\gamma}}}$$

Repeat the above computations based on the average pressure ratio measured at the nozzle exit station and obtain V_{I2} and W_{I2} . Compute and print out the velocity and discharge coefficients for the two charging stations:

$$C_V = \frac{F_m}{m_m \cdot V_I}, C_D = \frac{m_m}{m_I}$$

The total temperature to be used will be the average of the five measured at station 1. The geometric nozzle exit area will be the cold area plus 2 percent:

$$A_{geo} = \text{No. of Lobes Flowing} \times 13.2 \text{ in.}^2 \times 1.02$$

Compute γ as a function of the total temperature at station 1.

Print out the individual total pressure and temperature measurements for each probe in psia and degrees fahrenheit.

ACOUSTICS

The acoustic microphone array will consist of eight 1/2-in. microphones located on a 50-ft radius centered on the nozzle exit. All microphones on the 50-ft radius will be ground mounted with the microphone face 1/2 in. above the ground surface.

The acoustic data will be recorded on 1-in. magnetic tape with a record speed of 30 in./sec.

Data presentation will be in one-third octave, and OASPL at the microphone location. Extrapolation to sideline distances, if required, will be decided on later in the program.

On-line one-third octave data will be used for the 110 microphone location. This will help in making decisions which will support the 2 kHz tone evaluation.

Atmospheric conditions will fall within the following limits:

Wind: no greater than 10 kt maximum
no gusts greater than ± 1.5 kt

Humidity: 30 to 90 percent (no mist or rain)

Temperature: 32° to 90°F

TEST CONFIGURATIONS AND TEST CONDITIONS

Nozzle	Tone source configuration	Nozzle rotation	P_T exit rake	Station ⁻¹ pressure ratios and temperature settings
9 Lobe	None	90°	On	1.1, 650° F; 1.2, 700° F; 1.3, 750° F _a
9 Lobe	None	0°	On	1.1, 650° F; 1.2, 700° F; 1.3, 750° F _a
7 Lobe	None ^b	0°	On	1.3, 750° F; 1.4, 800° F; 1.5, 850° F; 1.6, 900° F _c
	None ^b	0°	Off	1.3, 750° F; 1.4, 800° F; 1.5, 850° F; 1.6, 900° F _c
	1	0°	Off	c
	2	0°	Off	c
	3	0°	Off	c
	4	0°	Off	c
	5 d	0°	Off	c
7 Lobe	6 d	0°	Off	c

^aMax. flow condition will be controlled by burner operation limits.

^bBaseline.

^cFlow conditions where 2 kHz tone occurs will be noted and set during tone source tests.

^dThese configuration changes will require nozzle removal and installation in the fabrication shop.

Note: A back pressure device (choke plate) may be required at the facility - transition interface to keep the burner mach number (0.2) within operation limits. The acoustic signature and level produced by the choke plate versus flow rate will be identified and accounted for prior to recording any test nozzle data.

FIGURE A-1.—TONE SOURCE IDENTIFICATION FACILITY AND TESTS

a) Secondary strut leading and trailing edge modification

b) Full span lower edge extension

c) Lobe, plan view

d) Internal modifications—to be determined

e) Lobe splitter

f) Tube nozzles

FIGURE A-2.—TONE SOURCE IDENTIFICATION HARDWARE

APPENDIX B

TEST LOG

Run	Condition	O.A.T. ° F	Humidity	Pressure ratio	Exhaust temp. ° F	Configuration	Notes
1 ^a	1		Rain	1.6	900	Baseline 9 lobes flowing.	1 microphone, in a plastic bag, at 115° F loc. 12-12-73
2	1	47	92	1.2	700	Baseline 9 lobes flowing.	1 microphone at 115° loc. (no bag) on line data only. 12-17-73
	2	47	92	1.3	750		
	3	47	92	1.4	800		
	4	47	92	1.5	850		
	5	47	92	1.6	900		
3	1	48	86	1.4	800	Fairings on fwd and aft. end of secondary struts.	1 microphone at 115° loc. on line data only. 12-17-73
	2	48	86	1.5	850		
	3	48	86	1.6	900		
4	1	47	86	1.4	800	All flow through second- ary al. plate over top. of lobes and asbestos in secondary channels.	Full microphone array recorded. 12-18-73
	2	47	86	1.5	850		
	3	47	86	1.6	900		
5	1	52	82	1.4	800	Secondary blocked per run # 4, tube fairings. In primary flow removed.	Full microphone array recorded, extra exit probe. In outer lobe number 5 press probe broke. Splitter in diffuser broken loose on one side. 12-19-73
	2	52	82	1.5	850		
	3	52	82	1.6	900		
6	1	51	62	1.3	750	5 primary lobes flowing. No secondary block.	Single microphone at 115° on line data only. 12-19-73
	2	51	62	1.4	800		
	3	51	62	1.5	850		
	4	51	62	1.6	900		
7	1	52	88	1.3	750	9 lobes with tube ends.	1 microphone at 115° F location, on line data only. No 5 press probe repaired-no exit rakes. 12-20-73
	2	52	88	1.4	800		
	3	52	88	1.5	850		
	4	52	88	1.6	900		

Run	Condition	O.A. T. ° F.	Humidity	Pressure ratio	Exhaust tempo. ° F.	Configuration	Notes
8	1	52	88	1.3	750	9 lobes with tube ends.	Directionality test, Full microphone array 12-20-73
	2	52	11	1.4	800		
	3	52	11	1.5	850		
	4	52	11	1.6	900		
	5	52	11	1.7	950		
9	1	34	66	1.3	750	9 lobes with tube ends.	Directionality test, 1-2-74
	2	34	66	1.4	800		
	3	34	66	1.5	850		
	4	34	66	1.6	900		
	5	34	66	1.7	950		
10	1	32		1.3	750	5 lobes flowing alternate lobes blocked	Tone source test, full mic. array, 1-3-74
	2	32		1.4	800		
	3	32		1.5	850		
	4	32		1.6	900		
11	1	21		1.3	750	4 lobes flowing alternate but opposite lobes from run 10.	Full microphone array. 1-7-74
	2	21		1.4	800		
	3	21		1.5	850		
	4	21		1.6	900		
12	1	21		1.3	750	5 center lobes flowing with splitters in the secondary flow, extending 5" aft of the nozzle exit.	Full microphone array.
	2	21		1.4	800		
	3	21		1.5	850		
	4	21		1.6	900		
13	1			1.2	Amb	7 lobes-fences in secondary exit rakes on lobes 1 & 4.	Performance run only.
	2			1.3			
	3			1.4			
	4			1.5			

Run	Condition	O.A.T. ° F	Humidity	Pressure ratio	Exhaust temp. ° F	Configuration	Notes
14	1			1.2	700	Same as run 13.	Performance run only.
	2			1.3	750		
	3			1.4	800		
	4			1.5	850		
	5			1.6	900		
15	1			1.2	Amb	Same as run 13 except rakes on lobes (2) & (3)	Performance only cold flow.
	2			1.3			
	3			1.4			
	4			1.5			
16	1			1.2	700	Same as run 15	Performance only hot flow.
	2			1.3	750		
	3			1.4	800		
	4			1.5	850		
	5			1.6	900		
17	1			1.2	Amb	P.T. rakes on lobes 2 & 3 7 lobes flowing. Secondary fences removed.	Performance, only, cold flow.
	2			1.3			
	3			1.4			
	4			1.5			
	5			1.6			
18	1			1.2	700	Same as run 17 rakes on 2 & 3	Hot flow. performance only.
	2			1.3	750		
	3			1.4	800		
	4			1.5	850		
	5			1.6	900		
19	1			1.2	700	Baseline rakes on 1, 4	Performance only 1-16-74
	2			1.3	750		
	3			1.4	800		
	4			1.5	850		
	5			1.6	900		

Run	Condition	O.A.T. ° F	Humidity	Pressure ratio	Exhaust temp. ° F	Configuration	Notes
20	1	49	56	1.2	700	Baseline 7 lobes flowing	Acoustic array (full) 1.17-74
	2	49	56	1.3	750		
	3	49	56	1.4	800		
	4	49	56	1.5	850		
	5	49	56	1.6	900		EGT thermocouple broke on cond 5.

APPENDIX C

**PLOTS OF RECORDED DATA, ONE-THIRD OCTAVE
BAND SOUND PRESSURE LEVEL**

PRECEDING PAGE BLANK NOT FILMED

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RIV NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL	GAIN SETTING	SPECIAL ID
•	45	800	1.400	90	SOFP	103.1	113.8	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
8	46	800	1.400	100	50FP	115.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
○	46	800	1.400	110	SOFP	116.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL IO
o	4G	800	1.400	115	SOFP	116.4	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
e	4G	800	1.400	120	SOFP	116.9	10	

INFLATE SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
•	46	800	1.400	125	SOFP	118.2	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL
•	46	800	1.400	130	SOFP	119.9	10	ID

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL
•	46	800	1.400	135	SOPP	119.5	10	ID

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL
e	46	800	1.400	140	SOFP	119.0	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	4G	850	1.500	90	50FP	116.5	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
○	4G	850	1.500	100	SOFP	118.0	G	

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL 10
•	45	850	1.500	110	SOFP	119.3	0	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL IO
*	46	850	1.500	115	SCFP	119.1	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (CBT)	GAIN SETTING	SPECIAL ID
e	4G	850	1.500	120	SOFP	118.3	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL 1031	GAIN SETTING	SPECIAL ID
e	46	850	1.500	125	SOFP	120.4	0	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL TO
o	46	850	1.500	130	SOPP	122.3	0	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	46	850	1.500	135	SOFP	121.9	0	TO

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 1081	GAIN SETTING	SPECIAL ID
e	46	850	1.500	140	50FP	121.6	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
e	46	900	1.600	90	50FP	119.0	C	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL
•	46	900	1.600	100	50FP	120.4	0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	46	900	1.600	110	SOFP	122.0	0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	46	900	1.600	115	SOFP	121.8	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL
e	4G	900	1.600	120	SOFP	120.4	0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	4G	900	1.600	125	SOFP	123.2	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
•	46	900	1.600	130	SOFP	125.0	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
*	46	900	1.600	135	SOFP	124.2	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1081	GAIN SETTING	SPECIAL ID
•	46	900	1.603	140	SOFP	124.0	0	

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL IC
•	SG	800	1.400	90	50FP	113.5	10	REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTINGS	SPECIAL ID
•	5G	800	1.400	100	SOFP	114.8	10	REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (dB)	GAIN SETTING	SPECIAL ID
e	SG	800	1.430	110	SCFP	116.3	10	REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	SG	800	1.400	115	SOFF	116.3	10	:3 REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [dB]	GAIN SETTING	SPECIAL 10
•	56	800	1.400	120	50FP	116.8	10	REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	0ASPL [DB]	GAIN SETTING	SPECIAL
•	5G	800	1.400	125	SQFP	117.4	10	REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL
o	56	800	1.400	130	50FP	117.9	10	10 REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP 800	PRESSURE RATIO 1.400	ANGLE RE INLET 135	OBSERVER LOCATION 50FP	DASPL (DB) 119.7	GAIN SETTING 10	SPECIAL REF NOZZLE
e	5G							

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - NOT NOZZLE TEST FACILITY

PLT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 10B1	GAIN SETTING	SPECIAL ID
•	5G	800	1.400	140	SOFP	119.5	10	REF NOZZLE

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (CB)	GAIN SETTING	SPECIAL ID
•	SG	850	1.500	90	SOFP	115.7	C	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATECH	CASPL	GAIN SETTING	SPECIAL ID
θ	56	850	1.500	100	50FPP	1091	117.0	0

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
•	56	850	1.500	110	SOFP	118.3	0	

BUFFALO-SUPPRESSOR-NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GRIN SETTING	SPECIAL
e	5G	850	1.500	115	50FP	118.4	0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
e	5G	850	1.500	120	SOFP	118.8	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
•	56	850	1.503	125	50FP	119.3	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	50	850	1.500	130	SOPP	119.8	C	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
•	50	850	1.500	135	SD/P	121.7	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
θ	50	850	1.500	140	50FP	121.6	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
•	5G	900	1.600	90	SGFP	118.3	0	ID

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
8	56	900	1.600	100	SCFP	119.2	0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
•	56	900	1.600	110	50FP	123.6	0	

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
e	5G	900	1.600	115	50FP	120.8	0	10

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - NOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL FDBK	GAIN SETTING	SPECIAL ID
•	50	900	1.600	120	SOFP	121.3	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	55	900	1.600	125	50FP	121.5	0	10

BUFFALO-SUPPRESSOR NOZZLE-TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL IO
•	SG	900	1.600	130	SQFP	122.0	0	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL IO
6	56	900	1.600	135	SOFP	123.9	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL IDB	GAIN SETTING	SPECIAL ID
e	SG	900	1.600	140	SOPP	123.9	0	

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (CB1)	GAIN SETTING	SPECIAL
e	89	750	1.300	90	SOPP	99.2	20	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL [dB]	GAIN SETTING	SPECIAL ID
e	86	750	1.300	100	SOFP	100.3	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	80	750	1.303	110	SOFP	102.0	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - MFT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
•	86	750	1.300	115	50FP	101.8	20	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL [dB]	GAIN SETTING	SPECIAL ID
e	86	750	1.300	120	SOFP	102.2	20	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	JASPL ID#	GAIN SETTING	SPECIAL ID
e	86	750	1.300	125	SOFP	102.6	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
•	8G	750	1.300	130	SOPP	102.0	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL IDB1	GAIN SETTING	SPECIAL
e	8G	750	1.300	135	50FP	102.8	20	10

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1091	GAIN SETTINGS	SPECIAL ID
8G	750	1.300	140	SOFP	102.8	20		

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
e	86	830	1.400	90	SOPP	101.9	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
•	8G	800	1.400	100	SOFP	102.6	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 1081	GAIN SETTING	SPECIAL ID
•	8G	800	1.400	110	SOFP	104.5	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL [dB]	GAIN SETTING	SPECIAL ID
•	8G	800	1.400	115	50FP	104.5	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL 1081	GAIN SETTING	SPECIAL ID
•	86	850	1.500	115	SOPP	107.8	13	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	86	800	1.400	120	SOFP	105.1	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
•	8G	800	1.400	125	SOFP	105.8	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	8G	800	1.400	130	SGFP	103.3	20	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	86	800	1.400	135	SOFP	105.6	20	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL 1081	GAIN SETTING	SPECIAL ID
e	80	800	1.400	140	SOFP	105.5	20	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	86	850	1.500	90	SOFP	104.7	20	10

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL TO
•	8G	850	1.500	100	SO:P	105.6	20	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PILOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL
e	86	850	1.500	110	SOFP	107.7	20	IO

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	CAIN SETTING	SPECIAL ID
•	86	850	1.500	120	50FP	108.1	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL	GAIN SETTING	SPECIAL ID
e	86	850	1.500	125	50FP	108.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - NOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
•	86	850	1.500	130	50rP	100.2	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1081	GAIN SETTING	SPECIAL ID
e	86	850	1.500	135	SOFP	108.7	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLC1 SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
•	86	850	1.500	140	SOFP	108.3	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1031	GAIN SETTING	SPECIAL ID
•	8G	900	1.600	90	SOPP	105.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	86	900	1.600	100	SOFP	107.3	20	

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL FDBI	GAIN SETTING	SPECIAL
•	86	900	1.500	110	50 ft P	109.3	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	86	900	1.600	115	SOFP	109.4	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
•	8G	900	1.600	120	50FP	109.8	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 10BT	GAIN SETTING	SPECIAL
•	86	900	1.600	125	SOFP	110.2	10	10

BUFFALO SUPPRESSOR NOZZLE TONE-ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
o	86	900	1.603	130	50FP	107.2	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL 1091	GAIN SETTING	SPECIAL ID
o	86	900	1.600	135	SCFP	110.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL IDB	GAIN SETTING	SPECIAL ID
e	8G	900	1.600	140	SOFP	110.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 10B1	GAIN SETTING	SPECIAL
•	86	950	1.700	90	SCFP	107.2	10	IO

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL	GAIN SETTINGS	SPECIAL
•	8G	950	1.700	100	SOFP	108.1	108.9	10

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - NOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL DB	GAIN SETTING	SPECIAL
•	8G	950	1.700	110	SQFP	109.0	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1091	GAIN SETTING	SPECIAL ID
e	66	950	1.703	115	SOFP	110.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - NOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	86	950	1.700	120	50F P	111.7	13	

~~W~~FFALB SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	8G	950	1.700	125	SDFP	112.0	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	8G	950	1,700	130	SOFP	108.7	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
e	86	950	1.700	135	SCFP	111.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL IDBT	GAIN SETTING	SPECIAL ID
•	86	950	1.700	140	SOPP	111.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL 1031	GAIN SETTING	SPECIAL 10
•	90	750	1.300	90	50FP	104.1	20	

BUFFALO SUPPRESSOR NOZZLE TONE IB TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
θ	9G	750	1.300	100	50FP	105.3	20	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1081	GAIN SETTING	SPECIAL ID
•	96	750	1.300	115	SOFP	106.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL TD81	GAIN SETTING	SPECIAL ID
•	96	750	1.300	110	50FP	105.9	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (dB)	GAIN SETTING	SPECIAL ID
•	96	750	1.300	120	SOFP	106.9	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	96	750	1.300	125	SOFP	106.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	96	750	1.300	130	50FP	137.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
•	96	750	1.300	135	50FP	107.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1001	GAIN SETTING	SPECIAL ID
•	96	750	1.300	140	SOPP	106.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	96	800	1.400	90	50FP	106.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	90	800	1.400	100	SOFP	108.0	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	95	800	1.400	110	SOFP	109.4	10	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	96	800	1.400	115	SOFP	109.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PICT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL
•	9G	800	1.400	120	SOFP	110.2	20	10

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (0B)	GAIN SETTING	SPECIAL
•	96	800	1.400	125	SOFP	110.5	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUR NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL
e	9G	800	1.400	130	SOPP	110.9	10	ID

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
•	96	800	1.400	135	SOP	110.5	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DBSPL [09]	GAIN SETTING	SPECIAL ID
o	96	800	1.400	140	50FP	109.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
•	96	850	1.500	90	50FP	108.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 1081	GAIN SETTING	SPECIAL 10
•	96	850	1.500	100	SOFP	110.0	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (CB)	GAIN SETTING	SPECIAL
•	9G	850	1.500	110	50FP	111.0	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL [DB]	GAIN SETTING	SPECIAL IO
•	90	850	1.500	115	SOFP	112.0	10	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL IO
θ	96	850	1.500	120	SOFP	112.7	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
•	96	850	1.500	125	50FP	112.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL IO
e	96	850	1.500	130	SOPP	113.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
•	96	850	1.500	135	SOFP	1091	112.0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
o	96	850	1.500	140	SQFP	111.7	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
e	90	900	1.600	90	SOPP	110.1	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1081	GAIN SETTING	SPECIAL ID
•	96	900	1.600	100	SOFP	111.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
•	9G	900	1.600	110	SCFP	112.4	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	SG	900	1.600	115	SOFP	113.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
•	96	900	1.600	120	SOFP	114.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL [DB]	GAIN SETTING	SPECIAL
•	96	900	1.600	125	SOFP	114.5	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	90	900	1.600	130	SOPP	115.2	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
o	9G	900	1.600	135	SOFP	114.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [108]	GAIN SETTING	SPECIAL ID
•	96	900	1.600	140	SOPP	113.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
o	96	950	1.700	90	SOP	111.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
•	96	950	1.700	100	50FP	113.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
e	96	950	1.700	110	SOFP	113.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL IDB1	GAIN SETTING	SPECIAL ID
•	96	950	1.700	115	SOFP	114.5	0	

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL TOBT	GAIN SETTING	SPECIAL ID
•	96	950	1.700	120	SOFP	115.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
•	9G	950	1.700	125	SOPP	116.0	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
o	9G	950	1.700	130	SDFP	116.5	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLGT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	96	950	1.700	135	SOFP	1081	115.6	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	96	950	1.700	140	SOFP	114.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	106	750	1.300	90	SOFP	105.4	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL [DB]	GAIN SETTING	SPECIAL ID
•	106	750	1.300	100	SOFP	106.5	20	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 1081	GAIN SETTING	SPECIAL ID
•	10G	750	1.300	110	SOPP	107.8	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL	GAIN SETTING	SPECIAL
•	106	750	1.300	115	SOPP	108.7	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
•	106	750	1.300	120	SOFP	108.5	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL IO
•	106	750	1.300	125	SQFP	109.0	IC	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
e	106	750	1.300	130	50FP	109.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (CBT)	GAIN SETTING	SPECIAL ID
o	100	750	1.300	135	50FP	110.2	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	106	750	1.300	140	SOFP	110.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	100	800	1.400	90	SOFP	107.7	10	10

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL
e	106	800	1.400	100	SQFP	108.9	20	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL TOB1	GAIN SETTING	SPECIAL ID
•	10G	800	1.400	110	50FP	110.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	106	800	1.400	115	SOFP	110.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP 800	PRESSURE RATIO 1.400	ANGLE RE INLET 120	OBSERVER LOCATION SOFP	GASPL 1081 111.9	GAIN SETTING 10	SPECIAL ID
•	106							

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
•	10G	800	1.400	125	SCFP	112.4	10	

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
•	106	800	1.400	130	50FP	113.2	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL [DB]	GAIN SETTING	SPECIAL ID
•	106	800	1.400	135	SOFP	113.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (CBT)	GAIN SETTING	SPECIAL
•	100	800	1.400	140	SOFP	113.9	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
•	10G	850	1.500	90	50FP	109.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
*	106	850	1.500	100	50FP	110.6	10	:3

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL	GAIN SETTING	SPECIAL
•	106	850	1.500	110	SOFP	1081	10	10
						112.7		

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATED	OASPL (DB)	GAIN SETTING	SPECIAL ID
e	106	850	1.500	115	5QFP	112.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 10B1	GAIN SETTING	SPECIAL ID
•	10G	850	1.500	120	SOFP	113.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
•	106	850	1.500	125	50FP	114.4	10	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL
•	106	850	1.500	130	SOFP	115.1	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
e	106	850	1.500	135	SOFP	115.8	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
•	106	850	1.500	140	50FP	115.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL IDB	GAIN SETTING	SPECIAL ID
•	106	900	1.600	90	SOFP	110.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL TO
o	100	900	1.600	100	SQFP	111.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
•	106	900	1.600	110	SOFP	113.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	10G	900	1.600	115	SQFP	114.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
•	106	900	1.600	120	50FP	115.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL TDPI	GAIN SETTING	SPECIAL ID
•	105	900	1.600	125	SOFP	115.9	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - NOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL [dB]	GAIN SETTING	SPECIAL ID
•	106	900	1.600	130	50FP	116.5	C	

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 10DB	GAIN SETTING	SPECIAL
o	10G	900	1.600	135	50FP	117.1	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
e	106	900	1.600	140	SOFP	117.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL 1091	GAIN SETTING	SPECIAL ID
•	116	750	1.300	90	SOFP	102.4	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	750	1.300	100	50f.p	103.4	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
o	116	750	1.300	110	50FP	104.4	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - MOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
o	116	750	1.300	815	SOFP	104.8	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
•	116	750	1.300	120	50FP	106.0	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	116	750	1.300	125	50FP	106.6	10	10

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL
•	116	750	1.300	130	SOFP	107.5	20	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
•	315	750	1.300	135	SOFP	108.0	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
o	116	750	1.300	140	SCFP	108.5	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	800	1.400	80	50FP	104.8	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL ID
•	11G	800	1.400	100	SOFP	106.5	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL
•	116	800	1.400	110	SQFP	137.5	20	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	800	1.400	115	SOFP	107.7	10	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - NOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 108.7	GAIN SETTING	SPECIAL IC
•	116	800	1.400	120	SCFP	108.7	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	800	1.400	125	SOFP	109.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPE (dB)	GAIN SETTING	SPECIAL ID
•	116	800	1.400	130	SOFP	109.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	116	800	1.400	135	50FP	110.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 10B1	GAIN SETTING	SPECIAL ID
•	116	800	1.400	140	SOFP	110.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL
•	116	850	1.500	90	SOFP	107.0	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	850	1.500	100	SOFP	108.7	20	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	850	1.500	110	SOFP	109.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	850	1.500	115	53FP	110.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
•	116	850	1.500	120	SOPP	111.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
G	116	850	1.500	125	50FP	111.7	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL TO
•	116	850	1.500	130	SOFP	112.4	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
e	116	850	1.500	135	50FP	112.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	850	1.500	140	SOPP	113.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	11G	900	1.600	90	SOFP	109.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL 1081	GAIN SETTING	SPECIAL ID
•	116	900	1.600	100	SOPP	111.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
e	110	900	1.600	110	SOFP	112.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	900	1.600	115	SCFP	113.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (CB1)	GAIN SETTING	SPECIAL
e	11G	900	1,600	120	SOFP	114.0	10	10

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	116	900	1.600	125	SOFP	114.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL TO
θ	11G	900	1.600	130	SOFP	115.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL TO
•	116	900	1.600	135	SOFP	115.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL IDB	GAIN SETTING	SPECIAL
•	116	900	1.600	140	SOFP	116.2	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL
e	126	750	1.300	90	50FP	108.1	10	ID

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
o	120	750	1.300	100	SOF P	109.1	20	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	126	750	1.300	110	SOFP	110.2	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	126	750	1.300	115	50FP	109.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL	GAIN SETTING	SPECIAL ID
•	12G	750	1.300	120	SOFP	1081	110.5	20

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
•	120	750	1.300	125	SOPP	110.8	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL
•	126	750	1.300	130	SOFP	111.4	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL TO
•	126	750	1.300	135	SOP	111.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	126	750	1.300	140	50FP	111.9	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL
•	120	800	1.400	90	50FP	1081	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
e	126	800	1.400	100	50FP	111.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE IO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL 1081	GAIN SETTING	SPECIAL 10
e	126	000	1.400	110	SOFP	113.0	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
e	120	800	1.400	115	SOFP	112.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
•	120	800	1.400	120	50FP	113.5	10	ID

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
•	126	800	1.400	125	50FP	114.1	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
•	120	800	1.400	130	50FP	114.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL	GAIN SETTING	SPECIAL
*	126	800	1.400	135	SOFP	1081	115.0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
•	126	800	1.400	140	SOFP	115.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
•	12G	850	1.500	90	50FP	112.2	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GAIN SETTING	SPECIAL ID
e	126	850	1.500	100	SOFP	113.4	10	ID

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL 10
•	126	850	1.500	110	SCFP	114.9	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL 10DB1	GAIN SETTING	SPECIAL 10
•	126	850	1.500	115	SOP	114.6	10	

C - 4

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATED	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	12G	850	1.500	120	SOFP	115.5	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PICT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	12G	850	1.500	125	SOFP	116.0	10	13

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL
•	126	850	1.500	130	SOFP	116.7	10	ID

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
•	12G	850	1.500	135	SDFP	1081	117.0	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
•	126	850	1.500	140	SOFP	117.7	10	10

BUFFALO SUPPRESSOR NOZZLE TONE IN TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (0B)	GAIN SETTING	SPECIAL
•	126	900	1.600	90	50FP	113.6	10	10

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
•	12G	900	1,600	100	SOFP	114.6	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1081	GAIN SETTING	SPECIAL ID
•	126	900	1.600	110	SOFP	116.3	10	

BUFFALO SUPPRESSOR NOZZLE TONE TO TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
e	126	900	1.600	115	50FP	116.1	0	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL [DB]	GAIN SETTING	SPECIAL ID
•	12G	900	1.600	120	50FP	117.2	10	

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATED	CASPL (DB)	GAIN SETTING	SPECIAL
•	126	900	1.600	125	SOFP	117.5	C	13

BUFFALO SUPPRESSOR NOZZLE TONE ID TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
•	126	900	1.600	130	50FP	118.2	0	

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
•	12G	900	1.600	135	SOFP	118.6	10	10

BUFFALO SUPPRESSOR NOZZLE TONE 10 TEST - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1001	GAIN SETTING	SPECIAL 10
•	126	900	1.600	140	50FP	119.4	0	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL	GAIN SETTING	SPECIAL ID
○	206	700	1.200	90	SOFP	1081	107.2	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (OBI)	GAIN SETTING	SPECIAL
○	206	700	1.200	100	SOPP	107.9	20	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (DB)	GATE SETTING	SPECIAL
○	20G	700	1.200	110	SOFP	108.8	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATED	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
○	200	700	1.200	115	50FP	108.2	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
○	20G	700	1.200	120	SOFP	108.3	20	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	SPL 1081	GATE SETTINGS	SPECIAL EG
○	206	700	1.200	125	5QFP	108.9	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASP [DB]	GAIN SETTING	SPECIAL
○	206	700	1.200	130	SOFP	109.2	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL 1031	GAIN SETTING	SPECIAL
○	206	700	1.200	135	SOFP	109.2	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
○	200	700	1.200	140	SOFP	109.0	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL TOB1	GAIN SETTING	SPECIES
Θ	200	750	1.300	90	SOFP	110.3	10	-

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
○	20G	750	1.300	100	50FP	111.7	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (dB)	GAIN SETTING	SPECIAL ID
○	206	750	1.300	110	SOFP	112.1	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL 1031	GAIN SETTING	SPECIAL IO
○	20G	750	1.300	115	SOFP	111.9	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
○	20G	750	1.350	120	50FP	112.1	10	13

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
○	20G	750	1.300	125	SOPP	112.5	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
○	206	750	1.300	130	50FP	112.4	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL	GAIN SETTING	SPECIAL
○	206	750	1.300	135	SOFP	1031	112.3	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL
o	236	750	1.300	140	SOFP	112.3	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
○	206	800	1.400	90	SOFP	113.6	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL
o	206	800	1.400	100	SOP	114.3	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTING	SPECIAL
○	20G	800	1.400	110	SOP	115.2	10	ES

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
○	200	800	1.400	115	SOFP	115.0	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	GASPL (DB)	GAIN SETTING	SPECIAL ID
○	206	800	1.400	120	50FP	115.1	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
○	206	800	1.400	125	SOFP	115.6	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1031	GAIN SETTING	SPECIAL
○	203	800	1.400	130	SOFP	115.7	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATED	SASPL (DB)	GAIN SETTING	SPECIAL
○	206	800	1.400	135	SOFP	115.5	10	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	SPL (DB)	GAIN SETTING	SPECIAL ID
○	20G	800	1.400	140	SOFP	115.5	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLCT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
○	206	850	1.500	90	SOFP	115.8	0	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL IO
○	206	850	1.500	100	50FP	117.4	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL [DB]	GAIN SETTING	SPECIAL ID
○	206	850	1.500	110	50FP	117.0	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	OASPL (dB)	GAIN SETTING	SPECIAL ID
○	206	850	1.500	115	SOFP	116.5	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	CASPL (DB)	GAIN SETTINGS	SPECIAL
○	206	850	1.500	120	SOPP	116.5	10	ED

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL ID
0	200	850	1.500	125	SOFP	117.1	0	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	ONE THIRD OCTAVE SPL [DB]	GAIN SETTING	SPECIAL ID
○	206	850	1.500	135	50FP	117.3	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL
○	206	850	1.500	130	SOFP	1081	117.2	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL ID
○	200	850	1.500	140	SOPP	117.3	10	-

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
○	206	900	1.600	90	SOP	117.9	0	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	ONE THIRD OCTAVE SPL	GAIN SETTING	SPECIAL
○	206	900	1.600	100	50F.P.	120.0	0	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
Θ	200	900	1.600	110	SOFP	120.1	0	13

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL 10
0	206	900	1.600	115	SOFP	119.8	0	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL 1081	GAIN SETTING	SPECIAL ID
○	206	900	1.600	120	50FP	118.7	10	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (DB)	GAIN SETTING	SPECIAL ID
○	206	900	1.600	125	SOFP	119.0	0	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	QASPL (08)	GAIN SETTING	SPECIAL ID
○	206	900	1.600	130	50FP	118.9	0	

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (dB)	GAIN SETTING	SPECIAL
○	200	900	1.600	135	SOFP	119.1	0	10

BUFFALO NOZZLE JET NOISE SUPPRESSION - HOT NOZZLE TEST FACILITY

PLOT SYMBOL	RUN NUMBER	JET TEMP	PRESSURE RATIO	ANGLE RE INLET	OBSERVER LOCATION	DASPL (DB)	GAIN SETTING	SPECIAL
0	200	900	1.600	140	SOFP	119.3	0	10

APPENDIX D

ACOUSTIC RECORDING AND REDUCTION SYSTEM

SYSTEM CALIBRATIONS

Two types of calibration are performed on the data acquisition system prior to recording test data. The first determines the frequency response of the microphone, preamplifier, cables, and signal conditioning equipment. This is performed before and after each test, using the electrostatic actuator method illustrated in figure D-1. The sweep oscillator frequency is referenced to an electronic counter, certified and calibrated by the Boeing Flight Test Laboratory. The laboratory maintains test standards, references, and equipment with calibration accuracy traceable to the U.S. Bureau of Standards. When the frequency response of the system relative to 250 Hz has been determined, corrections are computed for each one-third octave band and applied to the data during reduction to obtain true SPL in dB.

The second calibration is an end-to-end sensitivity check performed each day before and after a test. An acoustic pistonphone calibrator with a constant, known SPL at 250 Hz is applied to each microphone, and the calibrator signal recorded on magnetic tape. This reference is used during the data reduction process to determine system sensitivity. The device used, a Brüel & Kjaer model 4220 pistonphone, has a certification traceable to the U.S. Bureau of Standards through a secondary standard maintained by the Boeing Metrology Laboratory.

The tape recorder and reproducer is not included in frequency response calibrations performed in the field. The tape machines are tested and certified by the Boeing Flight Test Laboratory for a flat frequency response when operated in the FM mode. Response at 30 in./sec is flat from dc to 10 kHz.

DATA ACQUISITION PROCEDURES

The complete data acquisition system is shown in figure D-2. Microphones are placed in their windscreens in an inverted position over a smooth concrete surface with the diaphragm 1/2 in. above and parallel to the ground plane. The measurement point locations are shown in figure D-3 with respect to the nozzle exit plane.

Each microphone is calibrated to determine its sensitivity and then placed in the physical configuration that is to be used for data acquisition. The noise floor of each channel is then

determined and recordings made prior to the engine test runs. The noise floor of the B & K 1/2-in. microphone systems used for this test is on the order of 10 to 15 microvolts electrical output, equivalent to 32 to 37 dB SPL overall. The recorded noise floor, however, contains both electrical noise floor and acoustic ambient background noise. The latter usually dominates the noise floor recordings, particularly at frequencies below 1000 Hz.

Data recordings are made for 16 sec during a stabilized nozzle pressure ratio setting. The tape recorded sample includes voice identification and an IRIG 'B' time code reference on track 14. A written tape log includes:

- Run identification
- Gain settings used for recording each condition
- Time code at the start of the recording
- Equivalent SPL of the calibration signal
- Date, engineer, and serial numbers of recording equipment and microphones

ACOUSTIC DATA REDUCTION PROCEDURE

Acoustic data recorded on 14-track analog tape was reproduced and analyzed in one-third octave bands at Acoustic Laboratory facilities in Seattle. The basic analysis system, figure D-4, consists of an analog tape reproducer, General Radio model 1921 one-third octave analyzer, time code reader, PDP8-I computer, digital magnetic tape recorder, and associated monitor, control, interface, and peripheral service equipment.

The operator controls the analysis through a teletype keyboard, used for entering calibration, frequency response compensation, and measurement point identification information into the computer. The General Radio analyzer includes a bank of 24 one-third octave band filters, covering the frequency range of 50 to 10 kHz. The filters meet International Standard IEC 225 and USA Standard 51.11-1966 Class III requirements and are calibrated with both sine wave and random noise inputs. The true rms detector section of the analyzer has a dynamic range of 60 dB and a resolution of ± 0.25 dB. The square law response of the detector is verified by the "two sine wave" insert method per IEC 179, par. 8.5.

Frequency response compensation and sensitivity calibration information are added to the one-third octave band data in the computer and output on a digital magnetic tape in a format compatible with existing CDC-6600 computer software.

All components of the reduction system are periodically certified to manufacturer's specifications by the Boeing Flight Test Calibration Laboratory.

FIGURE D-1.—DATA ACQUISITION SYSTEM CALIBRATION SCHEMATIC

FIGURE D-2.—DATA ACQUISITION SYSTEM

FIGURE D-3.—DATA ACQUISITION MICROPHONE ARRAY

FIGURE D-4.—ACOUSTIC DATA REDUCTION SYSTEM

APPENDIX E

TABULATION OF PROPULSION

PERFORMANCE DATA

PERFORMANCE DATA OUTPUT NOMENCLATURE*

APRI	cold geometric nozzle exit area, in. ²
AEFF	effective primary area (discharge coefficient X the geometric area), in. ²
APRIH	hot geometric area using a factor adjusted for the gas temperature, in. ²
APRIH2	hot geometric area (cold geometric area adjusted by 2% for heat), in. ²
A*	throat area of the sonic venturi, in. ²
P2	sonic venturi throat static pressure, psia
P1	sonic venturi upstream static pressure, psia
TT	total temperature of airflow through venturi, °F
PT	sonic venturi upstream total pressure, psia
Gamma	specific heat ratio of air flowing through venturi
Z	compressibility factor based on venturi conditions
REYN	flow Reynolds number at venturi
CD	sonic venturi discharge coefficient
WA	measured airflow rate, lb _f /sec
W-Fuel	burner fuel flow rate, lb _f /sec
PTARE	rig static tare pressure used for force measurement tare adjustment, psig
FTARE	force measurement tare adjustment due to rig static pressure, lb _f

*Listed in sequence encountered in following computer printout.

FX	measured nozzle thrust, lb _f
FCOR	measured nozzle thrust corrected for ambient pressure, lb _f
FIP	isentropic thrust, lb _f
FIDL	not used
PTN	average split flow plenum entrance total pressure (P_{T1} in test plan), psia
TTN	average split flow plenum entrance total temperature (T_{T1} in test plan), °F
PTE	average nozzle exit total pressure (P_{T2} in test plan), psia
PTN/PAMB	average split flow plenum entrance total pressure ratio
TTN/TAMB	average split flow plenum entrance total temperature ratio
WPRI	measured airflow plus fuel flow, lb _f /sec
WCOR	flow rate corrected to standard temperature and pressure
WSUM	not used
WIP	isentropic flow rate based on cold geometric area (A_{pri}), lb _f /sec
WIPH	isentropic flow rate based on APRIH, lb _f /sec
WIPH2	isentropic flow rate based on APRIH2, lb _f /sec
VIP	isentropic velocity based on P_{TN}/P_{AMB}
GAMMAP	specific heat ratio based on TTN
ZP	compressibility factor based on test nozzle conditions
CDP	nozzle discharge coefficient based on P_{TN}/P_{AMB} and A_{pri}
CDPH	nozzle discharge coefficient based on P_{TN}/P_{AMB} and APRIH

CDPH2	nozzle discharge coefficient based on P_{TN}/P_{AMB} and APRIH2
CVP	nozzle velocity coefficient based on P_{TN}/P_{AMB}
C_V	same as CVP
CGP	nozzle thrust coefficient based on P_{TN}/P_{AMB} and APRI
CGPH	nozzle thrust coefficient based on P_{TN}/P_{AMB} and APRIH
CGPH2	nozzle thrust coefficient based on P_{TN}/P_{AMB} and APRIH2
CDPE	nozzle discharge coefficient based on P_{TNE}/P_{AMB} and APRI
CDPEH2**	nozzle discharge coefficient based on P_{TNE}/P_{AMB} and APRIH2
CVPE**	nozzle velocity coefficient based on P_{TNE}/P_{AMB}
WIPE	isentropic airflow rate based on P_{TNE}/P_{AMB} and APRI
WIPEH	isentropic airflow rate based on P_{TNE}/P_{AMB} and APRIH
VIPE	isentropic jet velocity based on P_{TNE}/P_{AMB}
GAMMAPE	specific heat ratio based on nozzle exit conditions
ZPE	compressibility factor based on nozzle exit conditions
VE1	not used
VE2	not used

**Used in final performance data in figures 9 and 30.

LAB595 12/ 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TP - HNTF

INPUT DATA

RUN 13.	COND 1.	DATE 11074.	TEST NO 2399.	PAMB 14.802	TAMB 34.20	APRI 92.400	AEFF 81.858	1.02 APRI	
								APRIH 92.299	APRIH2 94.248

PRIMARY FLOW DATA

A# 8.5519	P2 59.642	P1 124.678	TT 35.980	FT 125.514	GAMMA 1.4194	Z .9954	REYN 12034283.	CD .9939	WA 25.6599	W-FUEL .0000
--------------	--------------	---------------	--------------	---------------	-----------------	------------	-------------------	-------------	---------------	-----------------

PTARE 25.640	FTARE .385	FX 363.693	FCOR 361.066	FIP 421.371	FIDL 421.371	PTN 17.539	TTN 31.633	PTE 17.107
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	---------------	---------------

PTN/PAMB 1.185	TTN/TAMB .995	WPRI 25.660	WCOR 20.926	WSUM 25.660	WIF 28.964	WIPH 28.933	WIPH2 29.544	VIF 528.341	GAMMAP 1.4028	ZP .9993
-------------------	------------------	----------------	----------------	----------------	---------------	----------------	-----------------	----------------	------------------	-------------

CDP .8859	CDPH .8869	CDPH2 .8685	CVP .8631	CV .8631	CGF .7646	CGPH .7655	CGPH2 .7497
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9644	CDPEH2 .9455	CVPE .9329	WIPE 26.607	WIPEH 27.139	VIPE 488.837	GAMMAPE 1.4027	ZPE .9993	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	-----------------	-----------------	-------------------	--------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.140 2) 17.599 3) 17.909 4) 17.739 5) 17.080 6) 17.340 7) 17.699 8) 17.809

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 32.100 2) ***** 3) ***** 4) 31.900 5) 31.090 6) 31.950 7) ***** 8) ***** 9) 31.850 10) 30.950

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 17.360 2) 17.360 3) 17.230 4) 17.090
 5) 16.490 6) 16.970 7) 17.130 8) 17.210

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	FAMB	TAMB	APR1	AEFF	APRH	APRH2
13.	2.	11074.	2399.	14.802	34.20	92.400	82.716	92.276	94.248

1.02 APR1

PRIMARY FLOW DATA

A*	P2	P1	TT	FT	GAMMA	Z	REYN	CD	WA	W-FUEL
6.5519	75.032	156.851	37.320	157.903	1.4242	.9944	15135950.	.9940	32.2974	.0000

PTARE	FTARE	FX	FCOR	FIP	FIOL	PTN	TTN	FTE
35.700	.535	562.188	558.159	644.416	644.416	19.077	31.317	18.436

PTN/FAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIF	WIPH	WIPH2	VIF	GAMMAP	ZP
1.269	.994	32.297	24.208	32.297	36.079	36.030	36.800	641.955	1.4030	.9993

CDP	CDPH	CDPH2	CVP	CV	CGF	CGPH	CGPH2
.8952	.8964	.8776	.8724	.8724	.7810	.7820	.7657

CDPE	CDPEH2	CVPE	WIFE	WIFEH	VIPE	GAMMAPE	ZFE	VE1	VE2
.9685	.9505	.9355	33.314	33.981	598.637	1.4029	.9993	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1) 18.728 2) 19.647 3) 19.857 4) 19.368 5) 18.438 6) 18.508 7) 18.888 8) 19.178

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 32.350 2) ***** 3) ***** 4) 31.250 5) 30.500 6) 32.000 7) ***** 8) ***** 9) 31.150 10) 30.650

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 18.898 2) 18.818 3) 18.588 4) 18.408
5) 17.589 6) 18.199 7) 18.399 8) 16.588

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LAB595 12/6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TP - HNTF

INPUT DATA

RUN 13.	COND 3.	DATE 11074.	TEST NO 2399.	FAMB 14.802	TAMB 34.20	AFRI 92.400	AEFF 82.791	AFRIH 92.257	1.02 AFRI AFRIH2 94.248
------------	------------	----------------	------------------	----------------	---------------	----------------	----------------	-----------------	-------------------------------

PRIMARY FLOW DATA

A*	P2 8.5519	P1 86.622	P1 181.275	TT 38.360	PT 182.491	GAMMA 1.4279	Z .9936	REYN 17487728.	CD .9941	WA 37.3386	W-FUEL .0000
----	--------------	--------------	---------------	--------------	---------------	-----------------	------------	-------------------	-------------	---------------	-----------------

PTARE 43.690	FTARE .655	FX 740.779	FCOR 735.469	FIP 842.132	FIDL 842.132	FTN 20.541	TTN 31.200	FTE 19.707
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	---------------	---------------

PTN/FAMB 1.388	TTN/TAMB .994	WPRI 37.339	WCOR 25.988	WSUM 37.339	WIP 41.672	WIPH 41.608	WIPH2 42.506	VIF 725.650	GAMMAP 1.4033	ZP .9992
-------------------	------------------	----------------	----------------	----------------	---------------	----------------	-----------------	----------------	------------------	-------------

CDF .8960	CDPH .6974	CDPH2 .8784	CVP .8796	CV .8796	CGF .7882	CGPH .7894	CGPH2 .7727
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9674	CDPEH2 .9484	CVPE .9384	WIPE 38.598	WIPH 39.370	VIPE 680.201	GAMMAPE 1.4031	ZPE .9992	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	----------------	-----------------	-------------------	--------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 19.877 2) 20.796 3) 21.266 4) 20.766 5) 19.717 6) 20.167 7) 20.626 8) 20.916

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 30.980 2) ***** 3) ***** 4) 31.800 5) 30.300 6) 31.250 7) ***** 8) ***** 9) 32.100 10) 30.800

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 20.307 2) 20.227 3) 19.897 4) 19.637
 5) 18.518 6) 19.487 7) 19.747 8) 19.837

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LA8595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN 13.	COND 4.	DATE 11074.	TEST NO 2399.	PAMB 14.802	TAMB 34.25	APRI 92.400	AEFF 83.264	1.02 APRI	
								APRIH	APRIH2
								92.240	94.248

PRIMARY FLOW DATA

A# 6.5519	P2 97.532	P1 203.517	TT 38.860	FT 204.681	GAMMA 1.4312	Z .9930	REYN 19651250.	CD .9943	WA 41.9506	W-FUEL .0000

PTARE 50.260	FTARE .754	FX 917.706	FCOR 911.128	FIP 1035.853	FIOL 1035.853	FTN 22.010	TTN 31.083	FTE 21.016

PTN/PAMB 1.487	TTN/TAMB .994	WPRI 41.951	WOR 27.246	WSUM 41.951	WIF 46.554	WIPH 46.473	WIPH2 47.485	VIF 794.448	GAMMAF 1.4035	ZP .9991

CDP .9011	CDPH .9027	CDPH2 .8835	CVP .8859	CV .8859	CGF .7983	CGPH .7997	CGPH2 .7827

CDPE .9684	CDPEH2 .9494	CVPE .9394	WIPE 43.320	WIPEH 44.186	VIPE 749.203	GAMMAPE 1.4033	ZPE .9992	VE1 .000	VE2 .000

PRIMARY NOZZLE TOTAL PRESSURES

1) 21.166	2) 22.385	3) 23.114	4) 22.474	5) 20.896	6) 21.396	7) 22.105	8) 22.544

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 31.000	2) *****	3) *****	4) 32.000	5) 30.000	6) 32.000	7) *****	8) *****	9) 31.500	10) 30.000

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 21.645	2) 21.665	3) 21.256	4) 20.986

NOZZLE STATIC PRESSURES - PSNE

1) *****	2) *****

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

RUN	COND	PTN/PAMB	TTN/TAMB	CDF	CDPH	CVP	CV	CGP	CGPH	APRIH
13.	1.	1.185	.995	.8859	.8869	.8631	.8631	.7646	.7655	92.299
13.	2.	1.289	.994	.8952	.8964	.8724	.8724	.7810	.7820	92.276
13.	3.	1.388	.994	.8960	.8974	.8796	.8796	.7882	.7894	92.257
13.	4.	1.487	.994	.9011	.9027	.8859	.8859	.7983	.7997	92.240

CDPH2	CGPH2	CDPE	CDPEH2	CVPE	APRIH2
.8665	.7497	.9644	.9455	.9329	94.248
.8776	.7657	.9695	.9505	.9355	94.248
.8784	.7727	.9674	.9484	.9384	94.248
.8835	.7827	.9684	.9494	.9394	94.248

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB		TAMB	AFRI	AEFF	APRIH	1.02 AFRI	
				14.	1.					11074.	2399.

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	38.110	79.705	34.750	80.239	1.4125	.9970	7681411.	.9937	16.3604	.0167

PTARE	FTARE	FX	FCOR	FIP	FIDL	FTN	TTN	PTE
19.490	.292	360.048	357.515	413.367	413.367	17.474	719.250	17.038

FTN/PAMB	TTN/TAMB	WFRI	WCOR	WSUM	WIP	WIFH	WIFH2	VIF	GAMMAP	ZP
1.181	2.387	16.397	20.791	16.397	18.428	18.666	18.796	811.099	1.3716	1.0210

CDP	CDPH	CDPH2	CVP	CV	CGP	CGPH	CGPH2
.8898	.8785	.8724	.8710	.8710	.7750	.7651	.7598

CDPE	CDPEH2	CVPE	WIPF	WIPFH	VIPE	GAMMAFE	ZPE	VE1	VE2
.9713	.9523	.9443	16.881	17.219	748.148	1.3712	1.0010	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	16.818	2)	17.457	3)	18.087	4)	17.937	5)	16.798	6)	16.928	7)	17.457	8)	18.307
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	729.400	2)	*****	3)	*****	4)	720.000	5)	707.000	6)	729.800	7)	*****	8)	*****	9)	720.500	10)	708.800
----	---------	----	-------	----	-------	----	---------	----	---------	----	---------	----	-------	----	-------	----	---------	-----	---------

NOZZLE EXIT TOTAL PRESSURES - FTNE

1)	17.328	2)	17.368	3)	17.188	4)	17.008
5)	16.309	6)	16.858	7)	17.068	8)	17.158

NOZZLE STATIC PRESSURES - FSNE

1)	*****	2)	*****
----	-------	----	-------

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TP - HNTF

INPUT DATA

RUN 14.	COND 2.	DATE 11074.	TEST NO 2399.	PAMB 14.800	TAMB 34.30	APRI 92.400	AEFF 81.740	1.02 APRI		
								APRIH 93.635	APRIH2 94.248	

PRIMARY FLOW DATA

A*	P2 6.5519	P1 43.550	T1 91.146	T2 35.080	P1 91.758	GAMMA 1.4142	Z .9966	REYN 8787190.	CD .9937	WA 18.7364	W-FUEL .0197
----	--------------	--------------	--------------	--------------	--------------	-----------------	------------	------------------	-------------	---------------	-----------------

PTARE 24.640	FTARE .370	FX 488.510	FCOR 485.074	FIP 554.085	FIDL 554.085	PTN 18.483	TTN 759.283	PTE 17.661
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	----------------	---------------

PTN/PAMB 1.249	TTN/TAMB 2.468	WPRI 18.758	WCOR 22.865	WSUM 18.758	WIP 21.204	WIPH 21.468	WIPH2 21.629	VIF 950.368	GAMMAP 1.3704	ZP 1.0008
-------------------	-------------------	----------------	----------------	----------------	---------------	----------------	-----------------	----------------	------------------	--------------

CDP .8846	CDPH .8730	CDPH2 .8673	CVP .8817	CV .8817	CGF .7799	CGPH .7697	CGPH2 .7646
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9686	CDPEH2 .9496	CVPE .9564	WIFEPE 19.367	WIFEPH 19.754	VIFPE 876.131	GAMMAPE 1.3697	ZPE 1.0108	VE1 .000	VE2 .000
---------------	-----------------	---------------	------------------	------------------	------------------	-------------------	---------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.617	2) 18.466	3) 19.615	4) 19.336	5) 17.547	6) 17.657	7) 18.277	8) 19.326
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 769.500	2) *****	3) *****	4) 756.500	5) 750.000	6) 770.000	7) *****	8) *****	9) 758.500	10) 751.200
------------	----------	----------	------------	------------	------------	----------	----------	------------	-------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 18.257	2) 18.337	3) 18.067	4) 17.847
-----------	-----------	-----------	-----------

5) 16.868	6) 17.607	7) 17.877	8) 18.007
-----------	-----------	-----------	-----------

NOZZLE STATIC PRESSURES - PSNE

1) *****	2) *****
----------	----------

LAD595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB	TAMB	ARRI	AEFF	ARIH	1.02 ARRI
14.	3.	11074.	2399.	14.800	34.40	92.400	81.914	93.689	94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	49.000	102.534	35.560	103.221	1.4160	.9962	9884290.	.9938	21.0835	.0237

PTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	PTE
30.140	.452	633.968	629.509	716.701	716.701	19.669	809.450	18.879

PTN/PAMB	TTN/TAMB	WR1	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAP	ZP
1.329	2.569	21.107	24.669	21.107	23.809	24.141	24.285	1092.477	1.3686	1.0005

CDP	CDPH	CDPH2	CVF	CV	CGF	CGPH	CGPH2
.8865	.8743	.8691	.8846	.8846	.7842	.7734	.7688

CDPE	CDPEH2	CVPE	WIPE	WIPEH	VIPE	GAMMAPE	ZPE	VE1	VE2
.9664	.9474	.9536	21.841	22.278	1013.411	1.3678	1.0005	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1) 18.476	2) 19.425	3) 21.024	4) 20.894	5) 18.456	6) 18.606	7) 19.485	8) 20.984
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 820.500	2) #####	3) #####	4) 806.000	5) 800.600	6) 820.500	7) #####	8) #####	9) 807.600	10) 801.500
------------	----------	----------	------------	------------	------------	----------	----------	------------	-------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 19.346	2) 19.485	3) 19.166	4) 18.856
5) 17.637	6) 18.566	7) 18.886	8) 19.086

NOZZLE STATIC PRESSURES - PSNE

1) #####	2) #####
----------	----------

LAE595 127 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO.	PAMB	TAMB	APRI	AEFF	APRIH	APRIH2
14.	4.	11074.	2399.	14.800	34.40	92.400	82.445	93.753	94.248

1.02 APRI

PRIMARY FLOW DATA

A ₀	P ₂	P ₁	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	53.390	111.729	36.020	112.478	1.4174	.9959	10767762.	.9938	22.9758	.0276

FTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	PTE
34.740	.521	774.559	769.111	668.681	668.681	20.793	863.366	19.890

PTN/PAMB	TTN/TAMB	WFRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAF	ZP
1.405	2.678	23.003	25.966	23.003	25.781	26.159	26.297	1214.992	1.3666	1.0002

CDF	CDFH	CDFH2	CVF	CV	CGF	CGFH	CGFH2
.8923	.8794	.8748	.8916	.8916	.7956	.7841	.7800

CFPE	CFPE2	CVFE	WIFE	WIFH	VIFE	GAMMAFE	ZFE	VE1	VE2
.9656	.9467	.9534	23.822	24.299	1136.251	1.3658	1.0002	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	19.306	2)	20.275	3)	22.373	4)	22.422	5)	19.356	6)	19.495	7)	20.524	8)	22.592
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	875.000	2)	*****	3)	*****	4)	859.800	5)	854.000	6)	876.500	7)	*****	8)	*****	9)	859.400	10)	855.500
----	---------	----	-------	----	-------	----	---------	----	---------	----	---------	----	-------	----	-------	----	---------	-----	---------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	20.414	2)	20.574	3)	20.225	4)	19.895
5)	18.416	6)	19.555	7)	19.925	8)	20.115

NOZZLE STATIC PRESSURES - PSNE

1)	*****	2)	*****
----	-------	----	-------

LAD595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB	TAMB	APRI	AEFF	APRIH	APRIH2
14.	5.	11074.	2399.	14.800	34.65	92.400	82.947	93.822	94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	57.170	119.549	36.400	120.350	1.4185	.9956	11519098.	.9939	24.5857	.0318

FTARE	FTARE	FX	FCR	FIP	FIOL	FTN	TTN	PTE
39.190	.588	910.932	904.525	1017.267	1017.267	21.924	920.667	20.938

PTN/PAMB	TTN/TAMB	WFRI	WCR	WSUM	WIF	WFH	WFH2	VIF	GAMMAP	ZP
1.481	2.792	24.617	26.919	24.617	27.423	27.845	27.971	1329.528	1.3645	1.0000

CDP	CDPH	CDPH2	CVF	CV	CGP	CGPH	CGPH2
.8977	.8841	.8801	.8955	.8955	.8039	.7917	.7881

CDPE	CDPEH2	CVPE	WIPE	WIPEH	VIPE	GAMMAPE	ZPE	VE1	VE2
.9644	.9455	.9501	25.526	26.036	1253.034	1.3635	.9999	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1) 20.225	2) 21.274	3) 23.561	4) 23.691	5) 20.295	6) 20.454	7) 21.733	8) 24.161
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 937.800	2) *****	3) *****	4) 912.500	5) 910.600	6) 938.600	7) *****	8) *****	9) 913.500	10) 911.000
------------	----------	----------	------------	------------	------------	----------	----------	------------	-------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 21.563	2) 21.733	3) 21.274	4) 20.904
5) 19.256	6) 20.594	7) 20.974	8) 21.204

NOZZLE STATIC PRESSURES - PSNE

1) *****	2) *****
----------	----------

LAB595 12/ 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

RUN	COND	FTN/FAMB	TTN/TAMB	CDP	CDPH	CVP	CV	CGP	COPH	APRH
14.	1.	1.181	2.387	.8898	.8785	.8710	.8710	.7750	.7651	93.594
14.	2.	1.249	2.468	.8846	.8730	.8817	.8817	.7799	.7697	93.635
14.	3.	1.329	2.569	.8885	.8743	.8846	.8846	.7842	.7734	93.689
14.	4.	1.405	2.678	.8923	.8794	.8916	.8916	.7956	.7841	93.753
14.	5.	1.481	2.792	.8977	.8841	.8955	.8955	.8039	.7917	93.822

CDPH2	CGPH2	CDPE	CDPEH2	CVPE	APRH2
.8724	.7598	.9713	.9523	.9443	94.248
.8673	.7646	.9686	.9496	.9564	94.248
.8691	.7638	.9664	.9474	.9536	94.248
.8748	.7600	.9656	.9467	.9534	94.248
.8801	.7681	.9644	.9455	.9501	94.248

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUFFRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN 15.	COND 1.	DATE 11174.	TEST NO 2399.	PAMB 14.765	TAMB 26.30	APR1 92.400	AEFF 80.210	1.02 APR1	
								APR1H 92.285	APR1H2 94.248

PRIMARY FLOW DATA

A*	P2 6.5519	P1 59.995	TT 125.519	PT 30.050	GAMMA 1.4202	Z .9951	REYN 12321138.	CD .9939	WA 25.9984	W-FUEL .0000
----	--------------	--------------	---------------	--------------	-----------------	------------	-------------------	-------------	---------------	-----------------

PTARE 25.900	FTARE .389	FX 369.771	FCOR 368.041	FIP 435.819	FIDL 435.819	PTN 17.665	TTN 25.517	PTE 17.309
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	---------------	---------------

PTN/PAMB 1.196	TTN/TAMB .998	WPRI 25.998	WCOR 20.919	WSUM 25.998	WIP 29.950	WPH1 29.912	WPH2 30.549	VIF 539.341	GAMMAP 1.4029	ZP .9993
-------------------	------------------	----------------	----------------	----------------	---------------	----------------	----------------	----------------	------------------	-------------

CDP .8681	CDPH .8692	CDPH2 .8510	CVP .8465	CV .8485	CGP .7365	CGPH .7374	CGPH2 .7221
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9260	CDPEH2 .9079	CVPE .8998	WIPE 28.075	WIPEH 28.636	VIE 508.551	GAMMAPE 1.4028	ZPE .9993	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	-----------------	----------------	-------------------	--------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.293	2) 17.742	3) 18.002	4) 17.812	5) 17.233	6) 17.492	7) 17.842	8) 17.902
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 26.000	2) *****	3) *****	4) 26.000	5) 25.000	6) 26.000	7) *****	8) *****	9) 25.500	10) 24.600
-----------	----------	----------	-----------	-----------	-----------	----------	----------	-----------	------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 17.253	2) 17.472	3) 17.293	4) 17.213
5) 17.173	6) 17.432	7) 17.392	8) 17.243

NOZZLE STATIC PRESSURES - PSNE

1) *****	2) *****
----------	----------

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

1.02 AFRI									
RUN	COND	DATE	TEST NO	PAMB	TAMB	APRI	AEFF	APRIH	APRIH2
15.	2.	11174.	2399.	14.765	26.60	92.400	80.897	92.264	94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
6.5519	73.525	153.612	30.825	154.642	1.4246	.9941	15093604.	.9940	31.8463	.0000

FTARE	FTARE	FX	FCOR	FIP	FIDL	FTN	TTN	PTE
34.640	.520	546.200	543.724	633.321	633.321	19.063	24.763	18.531

PTN/PAMB	TTN/TAMB	WPR1	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAF	ZP
1.291	.996	31.846	23.727	31.846	36.375	36.321	37.102	639.637	1.4031	.9992

CDP	CDPH	CDPH2	CVP	CV	CGF	CGPH	CGPH2
.8755	.8768	.8583	.8626	.8626	.7552	.7563	.7404

CDPE	CDPEH2	CVPE	WIPE	WIPEH	VIPE	GAMMAFE	ZPE	VE1	VE2
.9342	.9158	.9129	34.091	34.773	654.561	1.4030	.9992	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	18.711	2)	19.590	3)	19.840	4)	19.361	5)	18.401	6)	18.551	7)	18.921	8)	19.131
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	26.000	2)	*****	3)	*****	4)	24.600	5)	23.800	6)	25.900	7)	*****	8)	*****	9)	25.000	10)	23.800
----	--------	----	-------	----	-------	----	--------	----	--------	----	--------	----	-------	----	-------	----	--------	-----	--------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	18.451	2)	18.741	3)	18.481	4)	18.421
5)	18.362	6)	18.681	7)	18.691	8)	18.421

NOZZLE STATIC PRESSURES - PSNE

1)	*****	2)	*****
----	-------	----	-------

LAD595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	FAMB	TAMB	APRI	AEFF	APRIH	1.02 APRI
15.	3.	11174.	2399.	14.765	26.40	92.400	81.777	92.242	94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	87.045	161.798	31.075	183.017	1.4291	.9931	17907466.	.9942	37.7453	.0000

FTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	PTE
43.880	.658	751.682	748.164	857.704	857.704	20.707	23.867	20.017

PTN/FAMB	TTN/TAMB	WFRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAP	ZP
1.402	.995	37.745	25.866	37.745	42.649	42.575	43.501	731.104	1.4034	.9991

CDF	CDPH	CDPH2	CVF	CV	CGF	CGPH	CGPH2
.8850	.8866	.8677	.8764	.8764	.7756	.7770	.7634

CDFE	CDFEH2	CVE	WIFE	WIFEH	VIPE	GAMMAPE	ZPE	VE1	VE2
.9399	.9214	.9216	40.161	40.964	695.220	1.4033	.9932	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	20.030	2)	21.059	3)	21.368	4)	20.889	5)	19.860	6)	20.270	7)	20.909	8)	21.269
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	24.200	2)	*****	3)	*****	4)	24.600	5)	23.000	6)	24.200	7)	*****	8)	*****	9)	23.800	10)	23.400
----	--------	----	-------	----	-------	----	--------	----	--------	----	--------	----	-------	----	-------	----	--------	-----	--------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	19.990	2)	20.320	3)	19.930	4)	19.850
5)	19.820	6)	20.240	7)	20.130	8)	19.860

NOZZLE STATIC PRESSURES - PSNE

1)	*****	2)	*****
----	-------	----	-------

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUFFRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION

TEST 2399TF - HNTF

INPUT DATA

RUN 15.	COND 4.	DATE 11174.	TEST NO 2399.	PAMB 14.765	TAMB 26.50	APRI 92.400	AEFF 82.559	APRIM 92.223	1.02 APRI	
									APRIM2 94.246	

PRIMARY FLOW DATA

AA 8.5519	P2 97.745	P1 204.169	TT 30.925	PT 205.538	GAMMA 1.4327	Z .9923	REYN 2017000.	CD .9943	WR 42.4554	W-FUEL .0000
--------------	--------------	---------------	--------------	---------------	-----------------	------------	------------------	-------------	---------------	-----------------

PTARE 50.410	FTARE .756	FX 926.084	FCOR 921.750	FIP 1051.862	FIDL 1051.862	PTN 22.175	TTN 23.000	PTE 21.352
-----------------	---------------	---------------	-----------------	-----------------	------------------	---------------	---------------	---------------

PTN/PAMB 1.502	TTN/TAMB .993	WPRI 42.455	WCOR 27.142	WSUM 42.455	WIP 47.516	WIPH 47.425	WIPH2 48.466	VIF 797.133	GAMMAP 1.4037	ZP .9991
-------------------	------------------	----------------	----------------	----------------	---------------	----------------	-----------------	----------------	------------------	-------------

CDP .8935	CDPH .8952	CDPH2 .8760	CVP .8804	CV .8804	CDP .7867	CDPH .7882	CDPH2 .7712
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9459	CDPEH2 .9274	CVPE .9220	WIPE 44.882	WIPEH 45.779	VIPE 761.215	GAMMAPE 1.4035	ZPE .9991	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	-----------------	-----------------	-------------------	--------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 21.448	2) 22.687	3) 23.057	4) 22.407	5) 21.169	6) 21.628	7) 22.268	8) 22.717
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 23.400	2) #####	3) #####	4) 23.400	5) 22.210	6) 23.000	7) #####	8) #####	9) 23.800	10) 22.200
-----------	----------	----------	-----------	-----------	-----------	----------	----------	-----------	------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 21.260	2) 21.708	3) 21.249	4) 21.169
5) 21.059	6) 21.568	7) 21.558	8) 21.199

NOZZLE STATIC PRESSURES - PSNE

1) #####	2) #####
----------	----------

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUFFRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

RUN	COND	PTN/PAMB	TTN/TAMB	COP	CDPH	CVP	CV	CGP	CGPH	APRIH
15.	1.	1.196	.998	.8681	.8692	.8485	.8485	.7365	.7374	92.285
15.	2.	1.291	.996	.8755	.8768	.8626	.8626	.7552	.7563	92.264
15.	3.	1.402	.995	.8850	.8866	.8764	.8764	.7756	.7770	92.242
15.	4.	1.502	.993	.8935	.8952	.8804	.8804	.7867	.7882	92.223

CDPH2	CGPH2	CDPE	CDPEH2	CVPE	APRIH2
.8510	.7221	.9260	.9079	.8998	94.248
.8583	.7404	.9342	.9158	.9129	94.248
.8677	.7604	.9399	.9214	.9216	94.248
.8760	.7712	.9459	.9274	.9220	94.248

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	FAMB	TAMB	APRI	AEFF	APRH	APRH2
16.	1.	11174.	2399.	14.764	26.50	92.400	82.804	93.559	94.248

1.02 APRI

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	38.074	79.639	25.825	80.173	1.4131	.9967	7869766.	.9937	16.5216	.0161

PTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	FTE
19.580	.294	359.266	357.609	412.062	412.062	17.409	700.617	17.068

PTN/FAMB	TTN/TAMB	WFRI	WOCR	WSUM	WIP	WIPH	WIRH2	VIF	GAMMAP	ZP
1.179	2.367	16.536	20.680	16.536	18.454	18.686	18.623	801.665	1.3727	1.0012

CDP	CDPH	CDPH2	CVP	CV	CGP	CGPH	CGPH2
.8962	.8850	.8786	.8719	.8719	.7813	.7717	.7680

CDPE	CDPEH2	CVPE	WIPFH	VIPE	GAMMAP	ZPE	VE1	VE2
.9592	.9404	.9282	17.241	17.586	753.028	1.3724	1.0012	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	16.792	2)	17.391	3)	18.021	4)	17.821	5)	16.742	6)	16.862	7)	17.401	8)	18.241
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	706.800	2)	*****	3)	*****	4)	703.000	5)	692.000	6)	708.800	7)	*****	8)	*****	9)	701.400	10)	692.000
----	---------	----	-------	----	-------	----	---------	----	---------	----	---------	----	-------	----	-------	----	---------	-----	---------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	17.042	2)	17.252	3)	17.032	4)	16.952
5)	16.902	6)	17.172	7)	17.162	8)	17.012

NOZZLE STATIC PRESSURES - PSNE

1)	*****	2)	*****
----	-------	----	-------

LAD595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB	TAMB	APRI	AEFF	APRIH	1.02 APRI
16.	2.	11174.	2399.	14.764	26.75	92.400	82.375	93.629	94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	FT	GAMMA	Z	REYN	CD	WA	W-FUEL
.5519	44.074	92.322	26.400	92.941	1.4151	.9962	9121788.	.9937	19.1567	.0203

PTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	PTE
25.440	.362	504.596	502.271	574.695	574.695	18.564	758.700	18.065

PTN/PAMB	TTN/TAMB	WFRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIP	GAMMAP	ZP
1.257	2.505	19.177	23.267	19.177	21.511	21.797	21.941	964.187	1.3705	1.0008

CDP	CDPH	CDPH2	CVP	CV	CGF	CGPH	CGPH2
.8915	.6798	.8740	.8780	.8780	.7828	.7725	.7674

CDPE	CDPEH2	CVPE	WIPF	WIPH	VIFP	GAMMPE	ZPE	VE1	VE2
.9552	.9365	.9338	20.077	20.478	906.617	1.3700	1.0008	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	17.671	2)	18.530	3)	19.669	4)	19.459	5)	17.631	6)	17.711	7)	18.361	8)	19.479
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	766.600	2)	*****	3)	*****	4)	756.500	5)	751.600	6)	768.000	7)	*****	8)	*****	9)	757.500	10)	752.000
----	---------	----	-------	----	-------	----	---------	----	---------	----	---------	----	-------	----	-------	----	---------	-----	---------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	18.031	2)	18.321	3)	17.991	4)	17.901
5)	17.691	6)	18.231	7)	18.201	8)	17.951

NOZZLE STATIC PRESSURES - FSNE

1)	*****	2)	*****
----	-------	----	-------

LAB595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB	TAMB	APRI	AEFF	APRIH	APRIH2
16.	3.	11174.	2399.	14.764	27.00	92.400	82.531	93.694	94.248

1.02 APRI

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
6.5519	48.634	101.728	27.375	102.410	1.4166	.9959	10034351.	.9938	21.0992	.0238

PTARE	FTARE	FX	FCOR	FIP	FIDL	FTN	TTN	PTE
30.030	.450	634.049	631.125	715.717	715.717	19.587	811.617	18.986

FTN/PAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WIPH	WIRH2	VIP	GAMMAP	ZP
1.327	2.612	21.123	24.812	21.123	23.649	23.980	24.122	1090.180	1.3685	1.0005

CDF	CDFH	CDFH2	CVF	CV	CGF	CGFH	CGFH2
.8932	.8809	.8757	.8859	.8859	.7913	.7803	.7758

CFE	CFEH2	CFE	WFE	WFEH	VFE	GAMMAFE	ZFE	VE1	VE2
.9529	.9342	.9372	22.166	22.610	1030.492	1.3679	1.0005	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	18.390	2)	19.290	3)	20.908	4)	20.826	5)	18.410	6)	18.530	7)	19.379	8)	20.958
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	816.400	2)	*****	3)	*****	4)	805.000	5)	800.200	6)	815.800	7)	*****	8)	805.500	10)	827.000
----	---------	----	-------	----	-------	----	---------	----	---------	----	---------	----	-------	----	---------	-----	---------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	18.930	2)	19.320	3)	18.920	4)	18.820
5)	18.730	6)	19.160	7)	19.150	8)	18.860

NOZZLE STATIC PRESSURES - PSNE

1)	*****	2)	*****
----	-------	----	-------

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN 16.	COND 4.	DATE 11174.	TEST NO 2399.	PAMB 14.764	TAMB 26.90	APRI 92.400	AEFF 82.543	1.02 APRI	
								APRIH 93.772	APRIH2 94.248

PRIMARY FLOW DATA

A*	P2 8.5519	P1 53.484	T1 111.833	T2 28.575	T3 112.582	GAMMA 1.4161	Z .9956	REYN 11006439.	CD .9938	WA 23.1802	W-FUEL .0286
----	--------------	--------------	---------------	--------------	---------------	-----------------	------------	-------------------	-------------	---------------	-----------------

PTARE 35.410	FTARE .531	FX 789.189	FCOR 785.549	FIP 892.650	FIOL 892.650	FTN 20.938	TTN 877.566	FTE 20.190
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	----------------	---------------

PTN/PAMB 1.418	TTN/TAMB 2.748	WPRI 23.209	WCOR 26.156	WSUM 23.209	WIP 25.980	WIPEH 26.366	WIPH2 26.500	VIP 1237.467	GAMMAP 1.3660	ZF 1.0002
-------------------	-------------------	----------------	----------------	----------------	---------------	-----------------	-----------------	-----------------	------------------	--------------

CDP .8933	CDPH .8802	CDPH2 .8758	CVF .8841	CV .8841	CGF .7898	CGPH .7782	CGPH2 .7743
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9509	CDPEH2 .9322	CVFE .9318	WIPE 24.408	WIPEH 24.897	VIPE 1174.106	GAMMAPE 1.3653	ZPE 1.0002	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	-----------------	------------------	-------------------	---------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 19.439 2) 20.468 3) 22.456 4) 22.436 5) 19.449 6) 19.649 7) 20.758 8) 22.846

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 887.600 2) ***** 3) ***** 4) 871.000 5) 869.000 6) 888.800 7) ***** 8) ***** 9) 875.000 10) 874.000

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 20.139 2) 20.608 3) 20.099 4) 19.979
5) 19.699 6) 20.408 7) 20.349 8) 20.039

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LAB595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN 16.	COND 5.	DATE 11174.	TEST NO 2399.	FAMB 14.764	TAMB 26.95	APRI 92.400	AEFF 83.141	1.02 AFRI	
								APRIH 93.793	AFRIH2 94.248

PRIMARY FLOW DATA

A*	P2 57.224	P1 119.672	TT 29.450	PT 120.475	GAMMA 1.4193	Z .9953	REYN 11759367.	CC .9939	WA 24.7942	W-FUEL .0316
----	--------------	---------------	--------------	---------------	-----------------	------------	-------------------	-------------	---------------	-----------------

FTARE 39.570	FTARE .594	FX 921.226	FCOR 916.977	FIP 1022.660	FIDL 1022.660	FTN 21.914	TTN 905.533	PTE 21.110
-----------------	---------------	---------------	-----------------	-----------------	------------------	---------------	----------------	---------------

FTN/FAND 1.484	TTN/TAMB 2.805	WFRI 24.826	WCOR 27.010	WSUM 24.826	WIP 27.591	WFPH 28.007	WFPH2 28.142	VIF 1325.384	GAMMAF 1.3654	ZP 1.0000
-------------------	-------------------	----------------	----------------	----------------	---------------	----------------	-----------------	-----------------	------------------	--------------

CDF .8998	CDFH .8864	CDFH2 .8821	CVF .9008	CV .9008	CGP .8105	CGPH .7985	CGPH2 .7946
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9529	CDPEH2 .9342	CVFE .9444	WIFE 26.052	WIFPH 26.573	VIPE 1264.226	GAMMAFE 1.3646	ZFE 1.0000	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	-----------------	------------------	-------------------	---------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 20.229	2) 21.258	3) 23.595	4) 23.725	5) 20.319	6) 20.436	7) 21.647	8) 24.105
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 916.800	2) *****	3) *****	4) 899.400	5) 897.500	6) 918.400	7) *****	8) *****	9) 902.800	10) 896.500
------------	----------	----------	------------	------------	------------	----------	----------	------------	-------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 21.038	2) 21.577	3) 21.998	4) 20.878
5) 20.738	6) 21.358	7) 21.328	8) 20.968

NOZZLE STATIC PRESSURES - PSNE

1) *****	2) *****
----------	----------

LAB595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION

TEST 2399TP - MNTF

RUN	COND	PTN/PAMB	TTN/TAMB	COP	COPH	CVP	CV	CGP	CGPH	APRIM
16.	1.	1.179	2.387	.8962	.8850	.8719	.8719	.7813	.7717	93.559
16.	2.	1.257	2.505	.8915	.8798	.8780	.8780	.7828	.7725	93.629
16.	3.	1.327	2.612	.8932	.8809	.8859	.8859	.7913	.7803	93.694
16.	4.	1.418	2.748	.8933	.8802	.8841	.8841	.7898	.7762	93.772
16.	5.	1.484	2.805	.8998	.8864	.9006	.9006	.8105	.7965	93.793

COPH2	CGPH2	COPE	COPH2	CVPE	APRIM2
.8786	.7660	.9592	.9404	.9282	94.248
.8740	.7674	.9552	.9365	.9338	94.248
.8757	.7758	.9529	.9342	.9372	94.248
.8758	.7743	.9509	.9322	.9318	94.248
.8821	.7946	.9529	.9342	.9444	94.248

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION

TEST 2399TP - HNTF

INPUT DATA

RUN 17.	COND 1.	DATE 11174.	TEST NO 2399.	PAMB 14.741	TAMB 32.70	APRI 92.400	AEFF 82.582	1.02 APRI		
								APRIH 92.300	APRIH2 94.248	

PRIMARY FLOW DATA

A*	P2 8.5519	P1 60.941	TT 127.401	PT 37.320	GAMMA 1.4197	Z .9954	REYN 12254680.	CD .9939	WA 26.1873	W-FUEL .0000
----	--------------	--------------	---------------	--------------	-----------------	------------	-------------------	-------------	---------------	-----------------

PTARE 26.280	FTARE .394	FX 377.006	FCOR 375.852	FIP 437.212	FIDL 437.212	PTN 17.562	TTN 32.633	FTE 17.167
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	---------------	---------------

PTN/PAMB 1.191	TTN/TAMB 1.000	WFRI 26.187	WCOR 21.354	WSUM 26.187	WIP 29.301	WIPH 29.269	WIPH2 29.887	VIF 537.164	GAMMAP 1.4028	ZP .9993
-------------------	-------------------	----------------	----------------	----------------	---------------	----------------	-----------------	----------------	------------------	-------------

CDP .8937	CDPH .8947	CDPH2 .8762	CVP .8623	CV .8623	CGP .7707	CGPH .7715	CGPH2 .7556
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9628	CDPEH2 .9439	CVPE .9229	WIPH 27.199	WIPH 27.743	VIFP 501.912	GAMMAP 1.4027	ZPE .9993	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	----------------	-----------------	------------------	--------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.169	2) 17.696	3) 17.928	4) 17.708	5) 17.099	6) 17.329	7) 17.726	8) 17.846
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 33.000	2) *****	3) *****	4) 32.500	5) 32.500	6) 33.000	7) *****	8) *****	9) 32.500	10) 33.500
-----------	----------	----------	-----------	-----------	-----------	----------	----------	-----------	------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 17.119	2) 17.346	3) 17.149	4) 17.099
5) 17.009	6) 17.279	7) 17.249	8) 17.069

NOZZLE STATIC PRESSURES - FSNE

1) *****	2) *****
----------	----------

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	FANS	TAMB	1.02 APRI		
						APRI	AEFF	APRIH
17.	2.	11174.	2399.	14.741	32.65	92.400	.83.537	92.277
								94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
0.5519	78.601	164.073	38.860	165.173	1.4251	.9943	15776685.	.9941	33.7430	.0000

PTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	PTE
37.670	.565	613.395	611.518	700.195	700.195	19.374	34.667	18.822

PTN/FAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAF	ZF
1.314	1.004	33.743	24.988	33.743	37.323	37.274	38.070	667.637	1.4030	.9993

CDP	CDPH	CDPH2	CVF	CV	CGF	CGPH	CGPH2
.9041	.9053	.8863	.8760	.8760	.7920	.7931	.7765

CDPE	CDPEH2	CVPE	WIPF	WIPFH	VIPE	GAMMAPE	ZPE	VE1	VE2
.9621	.9432	.9245	35.074	35.775	632.649	1.4029	.9993	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1) 18.947 2) 19.566 3) 19.596 4) 19.227 5) 18.757 6) 19.217 7) 19.766 8) 19.916

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 33.000 2) ***** 3) ***** 4) 33.000 5) 37.000 6) 33.000 7) ***** 8) ***** 9) 32.500 10) 39.500

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 18.787 2) 19.077 3) 18.767 4) 18.677
5) 18.657 6) 18.997 7) 18.937 8) 18.677

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION

TEST 2399TP - HNTF

INPUT DATA

RUN 17.	COND 3.	DATE 11174.	TEST NO 2399.	PAMB 14.741	TAMB 32.55	AR1 92.400	AEFF 83.467	1.02 AFRI	
								AFRIH 92.257	AFRIH2 94.248

PRIMARY FLOW DATA

A# 8.5519	P2 88.601	P1 185.053	TT 39.700	PT 186.294	GAMMA 1.4282	Z .9936	REYN 17791946.	CD .9942	WA 38.0700	W-FUEL .0000
--------------	--------------	---------------	--------------	---------------	-----------------	------------	-------------------	-------------	---------------	-----------------

PTARE 44.230	FTARE .663	FX 768.936	FCOR 766.584	FIP 871.823	FIDL 871.823	PTN 20.656	TTN 32.500	FTE 19.960
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	---------------	---------------

PTN/PAMB 1.401	TTN/TAMB .998	WFRI 38.070	WCOR 26.384	WSUM 38.070	WIF 42.144	WIPH 42.079	WIPH2 42.987	VIF 736.800	GAMMAP 1.4032	ZP .9992
-------------------	------------------	----------------	----------------	----------------	---------------	----------------	-----------------	----------------	------------------	-------------

CDF .9033	CDFH .9047	CDFH2 .8856	CVP .8820	CV .8820	CGF .7967	CGFH .7980	CGFH2 .7811
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDFE .9602	CDFH2 .9414	CVFE .9283	WIFE 39.647	WIFEH 40.440	VIPE 700.036	GAMMAFE 1.4031	ZFE .9992	VE1 .000	VE2 .000
---------------	----------------	---------------	----------------	-----------------	-----------------	-------------------	--------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 20.066	2) 21.035	3) 21.325	4) 20.795	5) 19.786	6) 20.166	7) 20.865	8) 21.175
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 33.000	2) *****	3) *****	4) 32.500	5) 31.500	6) 33.000	7) *****	8) *****	9) 33.000	10) 32.000
-----------	----------	----------	-----------	-----------	-----------	----------	----------	-----------	------------

NOZZLE EXIT TOTAL PRESSURES ~ PTNE

1) 19.946	2) 20.266	3) 19.876	4) 19.816
5) 19.746	6) 20.146	7) 20.076	8) 19.806

NOZZLE STATIC PRESSURES ~ PSNE

1) *****	2) *****
----------	----------

LAB595 12/ 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TP - HNTF

INPUT DATA

RUN 17.	COND 4.	DATE 11174.	TEST NO 2399.	PAMB 14.741	TAMB 32.55	APRI 92.400	AEFF 85.734	APRISH 92.243	1.02 APRI	
									APRH2	APRH2

PRIMARY FLOW DATA

A*	P2	P1	TT	FT	GAMMA	Z	REYN	CD	WA	W-FUEL
6.5519	96.761	202.036	39.650	203.391	1.4308	.9931	19462688.	.9942	41.6071	.0000

FTARE	FTARE	FX	FCOR	FIP	FIDL	FTN	TTN	FTE
50.030	.750	905.749	902.978	1020.777	1020.777	21.788	31.833	20.962

FTN/PAMB	TTN/TAMB	WFRI	WCOR	WSUN	WF	WFH	WFH2	VIF	GAMMAP	ZF
1.478	.999	41.607	27.319	41.607	45.913	45.835	46.832	789.349	1.4034	.9992

CDP	CDPH	CDPH2	CVF	CV	CGP	CGPH	CGPH2
.9062	.9078	.8884	.8873	.8873	.8041	.8055	.7883

CDPE	CDPEH2	CVPE	WIE	WIFH	VIF	GAMMAPE	ZPE	VE1	VE2
.9627	.9438	.9321	43.220	44.085	751.384	1.4033	.9992	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1) 21.065 2) 22.254 3) 22.533 4) 21.954 5) 20.805 6) 21.315 7) 22.034 8) 22.353

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 31.500 2) ***** 3) ***** 4) 32.500 5) 31.500 6) 31.500 7) ***** 8) ***** 9) 33.000 10) 31.000

NOZZLE EXIT TOTAL PRESSURES - FTNE

1) 20.905 2) 21.335 3) 20.835 4) 20.765
 5) 20.755 6) 21.215 7) 21.125 8) 20.765

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LAD595 12/ 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	FAMB	TAMB	APRI	AEFF	AFRIH	1.02 APRI
17.	5.	11174.	2399.	14.741	32.80	92.400	84.376	92.226	APRIH2
									94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	FT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	105.681	220.761	39.225	222.241	1.4338	.9924	21334654.	.9943	45.5335	.0000

FTARE	FTARE	FX	FCOR	FIP	FIDL	FTN	TTN	PTE
55.510	.833	1064.547	1061.290	1169.604	1169.604	23.074	30.333	22.135

FTN/FAMB	TTN/TAMB	WFRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAP	ZP
1.565	.995	45.533	28.168	45.533	49.864	49.770	50.861	840.575	1.4037	.9991

CDF	CDFH	CDFH2	CVP	CV	CGF	CGFH	CGFH2
.9132	.9149	.8953	.8949	.8949	.8172	.8187	.8011

CDFE	CDFD2	CVFE	WIFE	WIFEH	VIPE	GAMMAFE	ZFE	VE1	VE2
.9674	.9484	.9367	47.067	48.008	803.020	1.4035	.9991	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	2)	3)	4)	5)	6)	7)	8)	9)
22.034	23.372	24.272	23.672	21.874	22.373	23.203	23.792	

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
30.000	*****	*****	31.000	29.500	31.000	*****	*****	31.000	29.500

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	2)	3)	4)
21.984	22.543	22.054	21.964
21.764	22.363	22.393	22.014

NOZZLE STATIC PRESSURES - PSNE

1)	2)
*****	*****

C-S

390

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

RUN	COND	FTN/FAMB	TTN/TAMB	COP	CDPH	CVF	CV	CGP	CGPH	APRIH
17.	1.	1.191	1.000	.8937	.8947	.8623	.8623	.7707	.7715	92.300
17.	2.	1.314	1.004	.9041	.9053	.8760	.8760	.7920	.7931	92.277
17.	3.	1.401	.998	.9033	.9047	.8820	.8820	.7967	.7980	92.257
17.	4.	1.478	.999	.9062	.9078	.8873	.8873	.8041	.8055	92.243
17.	5.	1.565	.995	.9132	.9149	.8949	.8949	.8172	.8187	92.226

CDPH2	CGPH2	CPF	CDPH2	CVF	APRIH2
.8762	.7556	.9628	.9439	.9229	94.248
.8863	.7765	.9621	.9432	.9245	94.248
.8856	.7611	.9602	.9414	.9283	94.248
.8864	.7683	.9627	.9438	.9321	94.248
.8953	.8011	.9674	.9484	.9367	94.248

LAB595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TP - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB	TAMB	APRI	AEFF	APR1H	APR1H2
18.	1.	11574.	2399.	14.349	53.28	92.400	83.437	93.592	94.248

1.02 APRI

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	36.769	81.206	46.500	81.750	1.4119	.9973	7579452.	.9937	16.4891	.0165

FTARE	FTARE	FX	FCOR	FIP	FIDL	FTN	TTN	FTE
20.830	.312	372.688	381.063	425.356	425.356	17.068	720.683	16.699

FTN/PAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAP	ZP
1.189	2.301	16.506	21.439	16.506	18.279	18.514	18.644	829.140	1.3717	1.0010

CDP	CDPH	CDPH2	CVP	CV	CGP	CGPH	CGPH2
.9030	.8915	.8853	.8748	.8748	.7899	.7799	.7744

CDPE	CDPH2	CVPE	WIPF	WIPFH	VIFP	GAMMAP	ZPE	VE1	VE2
.9701	.9511	.9342	17.014	17.355	776.394	1.3714	1.0010	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1)	16.397	2)	16.937	3)	17.676	4)	17.496	5)	16.377	6)	16.497	7)	17.066	8)	18.075
----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------	----	--------

PRIMARY NOZZLE TOTAL TEMPERATURES

1)	727.400	2)	*****	3)	*****	4)	724.500	5)	710.000	6)	727.400	7)	*****	8)	*****	9)	724.000	10)	710.600
----	---------	----	-------	----	-------	----	---------	----	---------	----	---------	----	-------	----	-------	----	---------	-----	---------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1)	16.707	2)	16.907	3)	16.667	4)	16.577
----	--------	----	--------	----	--------	----	--------

5)	16.517	6)	16.837	7)	16.777	8)	16.607
----	--------	----	--------	----	--------	----	--------

NOZZLE STATIC PRESSURES - PSNE

1)	*****	2)	*****
----	-------	----	-------

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

RUN 18.	COND 2.	DATE 11574.	TEST NO 2399.	FAMB 14.349	TAMB 53.36	1.02 APRI		
						APRI 92.400	AEFF 83.170	APRIH 93.606

PRIMARY FLOW DATA

A*	P2 8.5519	P1 43.559	T _T 91.236	P _T 47.040	GAMMA 91.848	Z 1.4133	REYN .9970	CD 8511976.	WA .9937	W-FUEL 18.5259	.0188
----	--------------	--------------	--------------------------	--------------------------	-----------------	-------------	---------------	----------------	-------------	-------------------	-------

PTARE 25.040	FTARE .376	FX 472.264	FCOR 483.682	FIP 542.011	FIDL 542.011	PTN 17.687	TTN 743.267	PTE 17.369
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	----------------	---------------

PTN/FAMB 1.247	TTN/TAMB 2.345	WFRI 18.545	WOR 23.204	WSUM 18.545	WIP 20.603	WFH 20.672	WFH2 21.015	VIF 940.354	GAMMAP 1.3713	ZP 1.0009
-------------------	-------------------	----------------	---------------	----------------	---------------	---------------	----------------	----------------	------------------	--------------

CDP .9001	CDPH .8885	CDPH2 .8825	CVF .8713	CV .8713	CGF .7843	CGPH .7742	CGPH2 .7689
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9696	CDPEH2 .9806	CVPE .9314	WIFE 19.126	WIFPH 19.506	VIFE 879.667	GAMMARE 1.3707	ZPE 1.0009	VE1 .000	VE2 .000
---------------	-----------------	---------------	----------------	-----------------	-----------------	-------------------	---------------	-------------	-------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.046 2) 17.916 3) 18.895 4) 18.655 5) 16.996 6) 17.076 7) 17.686 8) 18.825

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 751.200 2) ***** 3) ***** 4) 742.800 5) 735.000 6) 751.600 7) ***** 8) ***** 9) 743.200 10) 735.800

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 17.346 2) 17.636 3) 17.346 4) 17.256
5) 17.156 6) 17.526 7) 17.536 8) 17.306

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LAB595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

RUN 16.	COND 3.	DATE 11574.	TEST NO 2399.	FAMB 14.349	TAMB 53.36	APRI 92.400	AEFF 83.598	1.02 APRI	
								APRIH	APRIH2
								93.682	94.248

PRIMARY FLOW DATA

A# 8.5519	P2 48.519	P1 101.613	TT 47.640	PT 102.294	GAMMA 1.4148	Z .9967	REYN 9474764.	CD .9938	WA 20.6323	W-FUEL .0229

PTARE 30.410	FTARE .456	FX 616.164	FCOR 631.060	FIP 691.437	FIOL 691.437	PTN 18.940	TTN 803.083	FTE 18.354

PTN/FAMB 1.320	TTN/TAMB 2.461	WPRI 20.655	WCOR 25.007	WSUM 20.655	WIP 22.830	WIPH 23.147	WIPH2 23.287	VIP 1077.032	GAMMAP 1.3689	ZP 1.0006

CDP .9047	CDPH .8924	CDPH2 .8870	CVF .8911	CV .8911	CGF .8062	CGPH .7952	CGPH2 .7904

CDPE .9669	CDPEH2 .9480	CVFE .9443	WIPE 21.362	WIPEH 21.789	VIPE 1016.397	GAMMAPE 1.3683	ZPE 1.0005	VE1 .000	VE2 .000

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.736	2) 18.665	3) 20.303	4) 20.243	5) 17.766	6) 17.856	7) 18.635	8) 20.313

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 809.600	2) *****	3) *****	4) 802.000	5) 796.600	6) 811.200	7) *****	8) *****	9) 802.500	10) 796.600

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 18.295	2) 18.675	3) 18.295	4) 18.185

NOZZLE STATIC PRESSURES - PSNE

1) *****	2) *****

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB	TAMB	APRI	AEFF	APRIH	APRIH2
18.	4.	11574.	2399.	14.349	53.52	92.400	83.621	93.762	94.248

1.02 APRI

PRIMARY FLOW DATA

A ₁	P ₂	P ₁	T _T	P _T	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	52.629	110.177	48.175	110.916	1.4160	.9965	10267413.	.9938	22.3696	.0268

PTARE	FTARE	FX	FCOR	FIP	FIOL	FTN	TTN	PTE
35.030	.525	744.134	762.124	840.705	840.705	20.056	866.783	19.347

FTN/PAMB	TTN/TAMB	WFR1	WCR	WSUM	WIP	WIPIH	WIPIH2	VIF	GAMMAP	ZP
1.398	2.585	22.396	26.244	22.396	24.748	25.112	25.243	1207.730	1.3664	1.0002

CDP	CDPH	CDPH2	CVP	CV	CGP	CGPH	CGPH2
.9050	.8918	.8872	.8851	.8851	.8010	.7694	.7853

CDPE	CDPEH2	CVPE	WIPE	WIPEH	VIPE	GAMMAPE	ZPE	VE1	VE2
.9650	.9461	.9347	23.208	23.672	1143.687	1.3656	1.0002	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1) 18.575 2) 19.524 3) 21.722 4) 21.822 5) 18.655 6) 18.725 7) 19.664 8) 21.762

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 673.000 2) ##### 3) ##### 4) 865.400 5) 859.400 6) 874.500 7) ##### 8) ##### 9) 667.000 10) 661.400

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 19.224 2) 19.744 3) 19.304 4) 19.154
5) 18.994 6) 19.564 7) 19.534 8) 19.254

NOZZLE STATIC PRESSURES - PSNE

1) ##### 2) #####

LAD395 12/6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN 18.	COND 5.	DATE 11574.	TEST NO 2399.	PAMB 14.349	TAMB 53.56	APRI 92.400	AEFF 84.307	APR1H 93.803	1.02 APRI	
									APRIH2 94.246	

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
6.5519	56.809	118.958	48.875	119.756	1.4172	.9962	11074550.	.9938	24.1468	.0303

PTARE	FTARE	FX	FCOR	FIF	FIDL	PTN	TTN	PTE
39.700	.595	887.344	908.797	988.240	988.240	21.144	908.466	20.392

PTN/PAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WPH	WPH2	VIP	GAMMAP	ZP
1.474	2.666	24.177	27.292	24.177	26.498	26.900	27.028	1315.113	1.3651	1.0000

CDP	CDPH	CDPH2	CVP	CV	CGP	CDPH	CDPH2
.9124	.8988	.8945	.8979	.8979	.8193	.8070	.8032

CDPE	CDPEH2	CVPE	WIFE	WIPEH	VIPE	GAMMAPE	ZPE	VE1	VE2
.9654	.9464	.9408	25.044	25.545	1255.210	1.3643	1.0000	.000	.000

PRIMARY NOZZLE TOTAL PRESSURES

1) 19.464 2) 20.373 3) 22.861 4) 23.160 5) 19.674 6) 19.594 7) 20.673 8) 23.350

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 916.400 2) ***** 3) ***** 4) 906.200 5) 902.200 6) 916.000 7) ***** 8) ***** 9) 905.800 10) 904.200

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 20.293 2) 20.643 3) 20.353 4) 20.183
5) 19.944 6) 20.633 7) 20.593 8) 20.293

NOZZLE STATIC PRESSURES - PSNE

1) ***** 2) *****

LAD595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

RUN	COND	PTN/FAMG	TTN/TANG	CDF	CDPH	CVF	CV	CGP	CGPH	AFRIH
16.	1.	1.189	2.301	.9030	.8915	.8748	.8748	.7899	.7799	93.592
16.	2.	1.247	2.345	.9001	.8885	.8713	.8713	.7843	.7742	93.606
16.	3.	1.320	2.461	.9047	.8924	.8911	.8911	.8062	.7952	93.682
16.	4.	1.398	2.565	.9050	.8918	.8851	.8851	.8010	.7894	93.762
16.	5.	1.474	2.666	.9124	.8968	.8979	.8979	.8193	.8070	93.803

CDPH2	CGPH2	CDPE	CDPH2	CVPE	AFRIH2
.8853	.7744	.9701	.9511	.9342	94.248
.8825	.7689	.9696	.9506	.9314	94.248
.8870	.7904	.9669	.9480	.9443	94.248
.8872	.7853	.9650	.9461	.9347	94.248
.8945	.8032	.9654	.9464	.9408	94.248

LAB595 12/ 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	FAMB	TAMB	APRI	AEFF	APRIH	APRIH2
19.	1.	11574.	2399.	14.354	54.16	92.400	83.450	93.587	94.248

1.02 APRI

APRIH2

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	36.244	79.990	49.400	80.526	1.4116	.9975	7406977.	.9937	16.1932	.0160

PTARE	FTARE	FX	FCR	FIP	FIDL	PTN	TTN	PTE
20.150	.302	350.138	358.478	409.049	409.049	16.961	715.783	16.519

PTN/FAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIP	GAMMAP	ZP
1.182	2.288	16.209	21.142	16.209	17.948	18.178	18.307	811.929	1.3719	1.0011

CDP	CDPH	CDPH2	CVP	CV	CGP	CGPH	CGPH2
.9031	.8917	.8854	.8560	.8560	.7731	.7633	.7579

CDPE	CDPH2	CVPE	WIPF	WIPDH	VIPE	GAMMAP	ZPE	VE1	VE2
.9097	.9703	.9313	16.378	16.706	746.263	1.3714	1.0011	49.581	65.612

PRIMARY NOZZLE TOTAL PRESSURES

1) 16.332	2) 16.842	3) 17.381	4) 17.251	5) 16.312	6) 16.462	7) 17.091	8) 18.020
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 719.200	2) *****	3) *****	4) 721.000	5) 706.000	6) 721.000	7) *****	8) *****	9) 720.500	10) 707.000
------------	----------	----------	------------	------------	------------	----------	----------	------------	-------------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 16.812	2) 16.842	3) 16.632	4) 16.462
5) 15.853	6) 16.362	7) 16.552	8) 16.642

NOZZLE STATIC PRESSURES - PSNE

1) 14.334	2) 14.319
-----------	-----------

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

1.02 APRI									
RUN	COND	DATE	TEST NO	PAMB	TAMB	APRI	AEFF	APRIH	APRIH2
19.	2.	11574.	2399.	14.354	53.92	92.400	82.693	93.617	94.248

PRIMARY FLOW DATA

A#	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	44.204	92.492	51.150	93.112	1.4132	8535336.	.9937	18.7036	.0192

PTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	PTE
25.830	.367	486.392	497.978	558.196	558.196	18.029	751.650	17.402

PTN/PAMB	TTN/TAMB	WFRI	WCOR	WSUM	WIF	WIPH	WIPH2	VIP	GAMMAP	ZP
1.256	2.358	18.723	23.323	18.723	20.921	21.196	21.339	959.214	1.3709	1.0009

CDP	CDPH	CDPH2	CVF	CV	CGF	CGPH	CGPH2
.8949	.8833	.8774	.8714	.8714	.7798	.7697	.7645

CDPE	CDPEH2	CVPE	WIPE	WIPEH	VIPE	GAMMPE	ZPE	VE1	VE2
.9608	.9616	.9458	19.090	19.471	883.722	1.3703	1.0006	62.724	78.418

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.111 2) 17.951 3) 19.049 4) 18.860 5) 17.121 6) 17.181 7) 17.871 8) 19.089

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 762.200 2) **** 3) **** 4) 755.500 5) 726.200 6) 761.800 7) **** 8) **** 9) 755.000 10) 749.200

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 17.781 2) 17.881 3) 17.621 4) 17.371
5) 16.452 6) 17.131 7) 17.421 8) 17.561

NOZZLE STATIC PRESSURES - PSNE

1) 14.322 2) 14.304

LAB595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN 19.	COND 3.	DATE 11574.	TEST NO 2399.	PAMB 14.354	TAMB 53.96	1.02 APR1			
						APRI 92.400	AEFF 83.302	APRIH 93.689	APRIH2 94.248

PRIMARY FLOW DATA

A*	P2 49.234	P1 102.998	TT 52.675	PT 103.689	GAMMA 1.4146	Z .9999	REYN 9476010.	CD .9938	WA 20.8060	W-FUEL .0227
----	--------------	---------------	--------------	---------------	-----------------	------------	------------------	-------------	---------------	-----------------

FTARE 30.730	FTARE .461	FX 618.559	FCOR 633.293	FIP 707.805	FIDL 707.805	FTN 19.083	TTN 809.700	FTE 18.330
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	----------------	---------------

FTN/PAMB 1.329	TTN/TAMB 2.471	WFRI 20.831	WCOR 25.096	WSUM 20.831	WIF 23.106	WIFH 23.428	WIFH2 23.568	VIF 1093.241	GAMMAF 1.3687	ZP 1.0005
-------------------	-------------------	----------------	----------------	----------------	---------------	----------------	-----------------	-----------------	------------------	--------------

CDP .9015	CDPH .8891	CDPH2 .8839	CVP .8739	CV .8739	CGF .7879	CGPH .7770	CGPH2 .7724
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE .9810	CDPEH2 .9617	CVPE .9406	WIPE 21.235	WIPEH 21.659	VIPE 1015.756	GAMMAPE 1.3679	ZPE 1.0005	VE1 62.727	VE2 62.997
---------------	-----------------	---------------	----------------	-----------------	------------------	-------------------	---------------	---------------	---------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.881	2) 16.900	3) 20.398	4) 20.268	5) 17.970	6) 18.000	7) 18.820	8) 20.428
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 810.800	2) *****	3) *****	4) 802.000	5) 800.200	6) 809.600	7) *****	8) *****	9) 802.000	10) 773.600
------------	----------	----------	------------	------------	------------	----------	----------	------------	-------------

NOZZLE EXIT TOTAL PRESSURES - FTNE

1) 18.800	2) 16.900	3) 18.570	4) 18.300
5) 17.181	6) 16.010	7) 18.340	8) 18.540

NOZZLE STATIC PRESSURES - PSNE

1) 14.322	2) 14.298
-----------	-----------

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

1.02 APR1									
RUN	COND	DATE	TEST NO	FAHB	TAHB	APR1	AEFF	APRH	APRH2
19.	4.	11574.	2399.	14.354	53.88	92.400	83.558	93.758	94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	FT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	53.124	111.183	53.560	111.928	1.4157	.9967	10212977.	.9938	22.4510	.0265

PTARE	FTARE	FX	FCOR	FIF	FIDL	PTN	TTN	PTE
35.460	.532	744.106	761.832	845.824	845.824	20.105	865.466	19.234

PTN/FAHB	TTN/TAHB	WFRI	WCOR	WSUM	WIF	WPH	WPH2	VIP	GAMMAP	ZP
1.401	2.580	22.478	26.262	22.478	24.856	25.221	25.353	1210.702	1.3665	1.0002

CDP	CDPH	CDPH2	CVF	CV	CGF	CGPH	CGPH2
.9043	.8912	.8866	.8797	.8797	.7956	.7840	.7800

CDPE	CDPEH2	CVFE	WIFE	WIFEH	VIFE	GAMMPE	ZPE	VE1	VE2
.9791	.9599	.9411	22.958	23.417	1131.714	1.3656	1.0002	74.361	97.971

PRIMARY NOZZLE TOTAL PRESSURES

1) 18.630 2) 19.629 3) 21.697 4) 21.787 5) 18.790 6) 18.780 7) 19.729 8) 21.797

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 871.800 2) ***** 3) ***** 4) 864.600 5) 859.000 6) 871.800 7) ***** 8) ***** 9) 865.800 10) 859.800

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 19.729 2) 19.699 3) 19.569 4) 19.239
5) 17.841 6) 18.880 7) 19.249 8) 19.469

NOZZLE STATIC PRESSURES - PSNE

1) 14.309 2) 14.276

LAE595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN	COND	DATE	TEST NO	PAMB	TAMB	1.02 APRI			
						APRI	AEFF	APRIH	APRIH2
19.	5.	11574.	2399.	14.354	53.96	92.400	83.783	93.796	94.248

PRIMARY FLOW DATA

A#	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	56.654	118.534	54.300	119.329	1.4167	.9965	10874542.	.9938	23.9268	.0297

PTARE	FTARE	FX	FCOR	FIP	FIOL	FTN	TTN	PTE
39.560	.593	867.926	688.600	973.171	973.171	21.077	903.233	20.145

PTN/PAMB	TTN/TAMB	WPRI	WCOR	WSUM	WF	WPH	WPH2	VIP	GAMMAP	ZP
1.468	2.653	23.956	27.076	23.956	26.420	26.820	26.949	1306.986	1.3653	1.0000

COP	COPH	COPH2	CVP	CV	COP	COPH	COPH2
.9067	.8932	.8890	.8919	.8919	.8067	.7966	.7928

COP	COPH2	CVPE	WIFE	WIPEN	VIFP	GAMMAP	ZPE	VE1	VE2
.9744	.9553	.9467	24.587	25.078	1231.268	1.3644	1.0000	77.629	99.228

PRIMARY NOZZLE TOTAL PRESSURES

1) 19.439	2) 20.496	3) 22.955	4) 23.115	5) 19.619	6) 19.549	7) 20.508	8) 22.936
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 910.200	2) *****	3) *****	4) 901.000	5) 898.500	6) 909.800	7) *****	8) *****	9) 901.400	10) 698.500
------------	----------	----------	------------	------------	------------	----------	----------	------------	-------------

NOZZLE EXIT TOTAL PRESSURES - FTNE

1) 20.696	2) 20.868	3) 20.528	4) 20.218
5) 18.580	6) 19.789	7) 20.128	8) 20.348

NOZZLE STATIC PRESSURES - PSNE

1) 14.305	2) 14.274
-----------	-----------

LAB595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

RUN	COND	PTN/PAMB	TTN/TAMB	CDP	CDPH	CVF	CV	CGP	CGPH	AFRIH
19.	1.	1.182	2.268	.9031	.8917	.8560	.8560	.7731	.7633	93.587
19.	2.	1.256	2.358	.8949	.8833	.8714	.8714	.7790	.7697	93.617
19.	3.	1.329	2.471	.9015	.8891	.8739	.8739	.7879	.7770	93.689
19.	4.	1.401	2.560	.9043	.8912	.8797	.8797	.7956	.7840	93.758
19.	5.	1.468	2.653	.9067	.8932	.8919	.8919	.8087	.7966	93.796

CDPH2	CGPH2	CDP	CDPH2	CVF	AFRIH2
.8854	.7579	.9697	.9703	.9313	94.248
.8774	.7645	.9608	.9616	.9458	94.248
.8839	.7724	.9810	.9617	.9406	94.248
.8866	.7801	.9791	.9599	.9411	94.248
.8690	.7928	.9744	.9553	.9467	94.248

LAB595 12/ 6/73

CALCULATION DATE 2/19/74

HOT NOZZLE TEST FACILITY

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN 20.	COND 1.	DATE 11774.	TEST NO. 2399.	PAMB 14.814	TANG 45.48	APRI 92.400	AEFF 86.764	APR1H 93.580	1.02 APR1	
									APR1H2 94.248	

PRIMARY FLOW DATA

A# 8.5519	P2 40.164	P1 84.063	TT 47.020	PT 84.627	GAMMA 1.4123	Z .9973	REYN 7837444.	CD .9937	WA 17.0630	W-FUEL .0157
--------------	--------------	--------------	--------------	--------------	-----------------	------------	------------------	-------------	---------------	-----------------

PTARE 21.010	FTARE .315	FX 376.665	FCOR 373.662	FIP 418.177	FIDL 418.177	FTN 17.370	TTN 699.375	FTE 16.923
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	----------------	---------------

PTN/PAMB 1.173	TTN/TANG 2.294	WFRI 17.079	WCR 21.600	WSUM 17.079	WIP 18.188	WIPH 18.416	WIPH2 18.552	VIF 787.792	GAMMAP 1.3728	ZP 1.0012
-------------------	-------------------	----------------	---------------	----------------	---------------	----------------	-----------------	----------------	------------------	--------------

CDP .9390	CDPH .9274	CDPH2 .9206	CVP .9007	CV .9007	CGP .8458	CGPH .8353	CGPH2 .8292
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDPE 1.0324	CDPEH2 1.0121	CVPE .9833	WIFE 16.543	WIFEH 16.874	VIPE 721.661	GAMMAPE 1.3723	ZPE 1.0012	VE1 53.020	VE2 67.597
----------------	------------------	---------------	----------------	-----------------	-----------------	-------------------	---------------	---------------	---------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 16.742	2) 17.302	3) 17.691	4) 17.731	5) 16.722	6) 16.662	7) 17.441	8) 18.271
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 693.500	2) 703.500	3) *****	4) *****	5) *****	6) 695.000	7) 705.500	8) *****	9) *****	10) *****
------------	------------	----------	----------	----------	------------	------------	----------	----------	-----------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 17.232	2) 17.272	3) 17.052	4) 16.682
5) 16.223	6) 16.732	7) 16.942	8) 17.052

NOZZLE STATIC PRESSURES - PSNE

1) 14.790	2) 14.775
-----------	-----------

LAE595 12/ 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUFFRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

INPUT DATA

RUN #	COND 2.	DATE 11774.	TEST NO 2399.	PAMB 14.814	TAMB 45.48	1.02 APR1			
						APRI 92.400	AEFF 85.075	APRH 93.632	APRH2 94.248

PRIMARY FLOW DATA

A*	P2 45.584	P1 95.404	TT 46.780	PT 96.044	GAMMA 1.4140	Z .9969	REYN 8910953.	CD .9937	WA 19.3821	M-FUEL .0195
----	--------------	--------------	--------------	--------------	-----------------	------------	------------------	-------------	---------------	-----------------

PTARE 26.290	FTARE .394	FX 499.526	FCOR 495.543	FIP 568.415	FIDL 568.415	FTN 18.439	TTN 757.000	FTE 17.780
-----------------	---------------	---------------	-----------------	----------------	-----------------	---------------	----------------	---------------

PTN/PAMB 1.245	TTN/TAMB 2.408	WFRI 19.402	WOR 23.683	WSUM 19.402	WIF 21.072	WIPH 21.353	WIPH2 21.494	VTP 942.614	GAMMAP 1.3705	ZP 1.0008
-------------------	-------------------	----------------	---------------	----------------	---------------	----------------	-----------------	----------------	------------------	--------------

CDP .9207	CDPH .9086	CDPH2 .9027	CVF .8788	CV .8788	CGP .8091	CGPH .7985	CGPH2 .7933
--------------	---------------	----------------	--------------	-------------	--------------	---------------	----------------

CDE 1.0159	CDEH2 .9980	CVPE .9601	WIPE 19.097	WIPEH 19.479	VIPE 862.762	GAMMACE 1.3698	ZPC 1.0008	VE1 63.102	VE2 82.450
---------------	----------------	---------------	----------------	-----------------	-----------------	-------------------	---------------	---------------	---------------

PRIMARY NOZZLE TOTAL PRESSURES

1) 17.521	2) 18.301	3) 19.350	4) 19.150	5) 17.521	6) 17.691	7) 18.420	8) 19.559
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 749.200	2) 764.200	3) *****	4) *****	5) *****	6) 750.000	7) 764.600	8) *****	9) *****	10) *****
------------	------------	----------	----------	----------	------------	------------	----------	----------	-----------

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 18.171	2) 18.261	3) 17.981	4) 17.751
5) 16.812	6) 17.521	7) 17.801	8) 17.941

NOZZLE STATIC PRESSURES - PSNE

1) 14.780	2) 14.756
-----------	-----------

LAB595 12/ 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
 NOZZLE NOISE TONE SOURCE IDENTIFICATION
 TEST 2399TF - HNTF

INPUT DATA

RUN 20.	COND 3.	DATE 11774.	TEST NO 2399.	PAMB	TAMB	APRI	AEFF	APRIH	1.02 APRI	
				14.814	45.64	92.400	85.062	93.711	APRIH2 94.248	

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	50.334	105.349	46.460	106.056	1.4155	.9966	9658452.	.9938	21.4215	.0234

FTARE	FTARE	FX	FCOR	FIP	FIDL	FTN	TTN	FTE
31.350	.470	630.910	625.680	718.468	718.468	19.497	816.000	18.730

FTN/PAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAF	ZP
1.316	2.528	21.445	25.370	21.445	23.295	23.625	23.761	1077.927	1.3680	1.0005

CDP	CDPH	CDPH2	CVP	CV	CGP	CGPH	CGPH2
.9206	.9077	.9025	.8781	.8781	.8084	.7971	.7925

CDPE	CDPEH2	CVPE	WIPF	WIPFH	VIPE	GAMMAPE	ZPE	VE1	VE2
1.0044	.9847	.9477	21.351	21.778	998.775	1.3672	1.0105	68.475	86.636

PRIMARY NOZZLE TOTAL PRESSURES

1) 18.251 2) 19.060 3) 20.568 4) 20.558 5) 18.351 6) 18.470 7) 19.459 8) 21.218

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 809.200 2) 827.400 3) ***** 4) ***** 5) ***** 6) 809.600 7) 825.800 8) ***** 9) ***** 10) *****

NOZZLE EXIT TOTAL PRESSURES - FTNE

1) 19.210 2) 19.330 3) 19.010 4) 18.700
 5) 17.521 6) 18.440 7) 18.750 8) 18.680

NOZZLE STATIC PRESSURES - PSNE

1) 14.774 2) 14.750

LAE593 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN #	COND 4.	DATE 11774.	TEST NO 2399.	FAMB 14.814	TAMB 45.80	APRI 92.400	AEFF 85.191	1.02 APRI	
								APR1H	APR1H2
								93.777	94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	54.754	114.604	46.360	115.372	1.4168	.9963	16737624.	.9938	23.3178	.0273

PTARE	FTARE	FX	FCOR	FIP	FIDL	PTN	TTN	FTE
36.270	.544	778.556	772.349	873.849	873.849	20.628	873.600	19.747

PTN/FAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIF	GAMMAP	ZP
1.392	2.638	23.345	26.665	23.345	25.321	25.698	25.827	1204.333	1.3659	1.0002

CDP	CDPH	CDPH2	CVP	CV	CGF	CGPH	CGPH2
.9220	.9084	.9039	.8909	.8909	.8214	.8084	.8053

CDPE	CDPEH2	CVPE	WIPF	WIPFH	VIFP	GAMMAPF	ZPE	VE1	VE2
.9984	.9788	.9535	23.382	23.850	1125.350	1.3650	1.0012	78.093	99.682

PRIMARY NOZZLE TOTAL PRESSURES

1) 19.120	2) 20.089	3) 22.127	4) 22.257	5) 19.270	6) 19.280	7) 20.339	8) 22.546
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 865.000	2) 884.400	3) *****	4) *****	5) *****	6) 863.400	7) 881.600	8) *****	9) *****	10) *****
------------	------------	----------	----------	----------	------------	------------	----------	----------	-----------

NOZZLE EXIT TOTAL PRESSURES - FTNE

1) 20.289	2) 20.428	3) 20.059	4) 19.749
5) 18.331	6) 19.429	7) 19.729	8) 19.959

NOZZLE STATIC PRESSURES - PSNE

1) 14.762	2) 14.729
-----------	-----------

LAD595 127 6/73

HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SUPPRESSOR

NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TP - HNTF

INPUT DATA

RUN 2D.	COND 5.	DATE 11774.	TEST NO 2399.	FAMB 14.814	TAMB 45.92	APRI 92.400	AEFF 85.584	APR1H 93.642	1.02 APRI	
									APR1H2 94.248	APR1H2 94.248

PRIMARY FLOW DATA

A*	P2	P1	TT	PT	GAMMA	Z	REYN	CD	WA	W-FUEL
8.5519	.58.034	121.458	46.580	122.272	1.4178	.9961	11380991.	.9939	24.7163	.0309

PTARE	FTARE	FX	FCOR	FTP	FIDL	FTN	TTN	PTE
40.390	.606	905.874	898.652	1003.706	1003.706	21.582	925.875	20.657

PTN/FAMB	TTN/TAMB	WPRI	WCOR	WSUM	WIP	WIPH	WIPH2	VIP	GAMMAP	ZP
1.457	2.740	24.747	27.541	24.747	26.718	27.135	27.253	1304.926	1.3639	.9999

CDP	CDPH	CDPH2	CVP	CV	CDP	CDPH	CDPH2
.9262	.9120	.9061	.9025	.9025	.8359	.8231	.8196

CDPE	CDPEH2	CVPE	WIPF	WIPFH	VIFP	GAMMAPE	ZPE	VE1	VE2
.9942	.9747	.9574	24.891	25.389	1230.156	1.3630	.9999	81.776	106.372

PRIMARY NOZZLE TOTAL PRESSURES

1) 19.879 2) 20.908 3) 23.336 4) 23.625 5) 20.079 6) 20.009 7) 21.108 8) 23.715

PRIMARY NOZZLE TOTAL TEMPERATURES

1) 916.800 2) 934.500 3) ##### 4) ##### 5) ##### 6) 917.200 7) 935.000 8) ##### 9) ##### 10) #####

NOZZLE EXIT TOTAL PRESSURES - PTNE

1) 21.198 2) 21.368 3) 21.038 4) 20.718
5) 19.090 6) 20.339 7) 20.648 8) 20.858

NOZZLE STATIC PRESSURES - PSNE

1) 14.757 2) 14.714

LAE595 12/ 6/73
HOT NOZZLE TEST FACILITY

CALCULATION DATE 2/19/74

BUFFALO SILENCER
NOZZLE NOISE TONE SOURCE IDENTIFICATION
TEST 2399TF - HNTF

RUN	COND	PTN/PAMB	TTN/TAMB	CDP	CDPH	CVF	CV	CGP	CGPH	APRIH
20.	1.	1.173	2.294	.9390	.9274	.9007	.9007	.8458	.8353	93.560
20.	2.	1.245	2.408	.9207	.9066	.8788	.8788	.8091	.7985	93.632
20.	3.	1.316	2.528	.9206	.9077	.8781	.8781	.8084	.7971	93.711
20.	4.	1.392	2.638	.9220	.9084	.8909	.8909	.8214	.8094	93.777
20.	5.	1.457	2.740	.9262	.9120	.9025	.9025	.8359	.8231	93.842

CDPH2	CGPH2	CDPE	CDPH2	CVPE	APRIH2
.9206	.8292	1.0324	1.0121	.9833	94.248
.9027	.7933	1.0159	.9960	.9601	94.248
.9025	.7925	1.0044	.9847	.9477	94.248
.9039	.8053	.9984	.9768	.9535	94.248
.9081	.8196	.9942	.9747	.9574	94.248