中华人民共和国

行业标准

XX/T XXXXX—XXXX

研发运营一体化(DevOps)能力成熟度模型 第6部分安全风险管理

点击此处添加标准英文译名 The Capability Maturity Model of DevOps

Part 1: Security Risk Management

点击此处添加与国际标准一致性程度的标识

(征求意见稿)

XXXX - XX - XX 发布

 $XXXX - XX - \rangle$

目 次

前言		
1	范围	1
2	规范性引用文件	1
3	术语	1
4	概述	1
5	控制研发运营一体化总体风险	2
6	研发运营一体化控制开发过程风险	3
7	研发运营一体化控制交付过程风险	4
8	控制研发运营一体化技术运营过程的安全风险。	5
参え	号文献	1

前 言

研发运营一体化是指在IT软件及相关服务的研发及交付过程中,将应用的需求、开发、测试、部署和运营统一起来,基于整个组织的协作和应用架构的优化,实现敏捷开发、持续交付和应用运营的无缝集成。帮助企业提升IT效能,在保证稳定的同时,快速交付高质量的软件及服务,灵活应对快速变化的业务需求和市场环境。

本标准是"研发运营一体化 (DevOps) 能力成熟度模型"系列标准的第 6 部分 安全风险管理,该系列标准的结构和名称如下:

第1部分: 总体架构

第2部分: 敏捷开发管理

第3部分: 持续交付

第4部分: 技术运营

第5部分:应用设计

第6部分:安全风险管理

第7部分:组织结构

本标准按照GB/T 1.1-2009给出的规则起草。

本标准由中国通信标准化协会提出并归口。

本标准起草单位:中国信息通信研究院、DevOps时代社区、高效运维社区

本标准主要起草人: 韩方、赵锐、公丽丽、李滨、毛茂德、王广清、郭雪、侯大鹏、

陈雪秀、王永霞、叶林、周麟

研发运营一体化(DevOps)能力成熟度模型 第6部分:安全风险管理

1 范围

本标规定了IT软件或相关服务在采用研发运营一体化(DevOps)统一开发模式下,如何保障IT软件和相关服务的安全,进行风险管理。

本标准适用于具备IT软件研发交付运营能力的组织实施IT软件开发和服务过程的能力进行评价和指导;可供其他相关行业或组织进行参考;也可作为第三方权威评估机构衡量软件开发交付成熟的标准依据。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- [1] GB/T 32400-2015 信息技术 云计算 概览与词汇
- [2] GB/T 32399-2016 信息技术 云计算 参考架构
- [3] 银监发〔2016〕44号 银行业金融机构全面风险管理指引

3 术语

下列术语和定义适用于本文件。

3.1 研发运营一体化 DevOps

指在IT软件及相关服务的研发及交付过程中,将应用的需求、开发、测试、部署和运营统一起来,基于整个组织的协作和应用架构的优化,实现敏捷开发、持续交付和应用运营的无缝集成。

3.2 OWASP TOP 10 The Open Web Application Security Project TOP 10

中文全称开放Web应用程序安全项目,Top 1 0的首要目的是教导开发人员、设计人员、架构师、经理和企业组织,让他们认识到最严重Web应用程。

4 概述

本标规定了IT 软件或相关服务在采用研发运营一体化(DevOps)统一开发模式下,相比于传统开发模型开发流程发生变化,如图一所示。

在 DevOps 开发模式下,安全将贯穿整个流程,每个参与人都是安全责任人,要保障 IT 软件或服务安全开发运行,需要对特定风险进行管理,包括控制安全责任人变更风险、控制人员协作风险、控制自动化工具风险、控制自动化平台风险、第三方合作风险等,同时对开发、交付、运营过程进行安全风险管理。

5 研发运营一体化控制总体风险

在 DevOps 开发模式下,开发、测试、运营人员责任发生变化,同时引入自动化工具,需要综合考虑人员、自动化工具、内部共享代码、外部第三方合作的安全风险管理。

级别	人员管理	自动化工具管理	共享代码管理	第三方合作管理
1	无统一的人员管理	不涉及自动化工具管	无共享代码管理	无第三方合作管理
		理		
2	明确每个人的权利和	监测自动化工具运行	需要对第三方库文件	控制第三方软件接入
	权限;	状态,提前制定应急预	或代码进行安全风险	风险;
	降低对于职责分离的	案,保证自动化工具可	评估,安全策略应用到	
	依赖度;	用性	共享代码或共享服务	
	明确不同团队协作流		过程中;	
	程和规范。			
3	明确每个人的权利和	同上	同上	同上
	权限;	4		
	设立信息安全管理的			
-	职能部门			
	明确不同团队协作流			
	程和规范。			
	加强各管理人员之间、			
	不同团队之间的沟通			
	交流, 定期或不定期召			
	开会议,共同协作处理			
	关键问题;			
	开发人员、测试人员和			
	运营测试人员分离。			
4	明确每个人的权利和	监测自动化工具运行	同上	控制第三方人员操作

		10구 된프리스스		
	权限;	状态,提前制定应急预		风险;控制第三方软件
	设立信息安全管理的	案,保证自动化工具可		接入风险。
	职能部门,配备安全主	用性;		
	管;	对自动化平台进行分		
	明确不同团队协作流	级认证、分级授权。		
	程和规范。			
	加强各管理人员之间、			
	不同团队之间的沟通			_ 7
	交流, 定期或不定期召			-777
	开会议,共同协作处理			
	关键问题。			π \mathcal{L}
	开发人员、测试人员和		> /-	
	运营测试人员分离。		113	
5	明确每个人的权利和	同上	需要对第三方库文件	控制第三方人员操作
	权限;		或代码进行安全风险	风险;控制第三方软件
	设立信息安全管理的		评估,安全策略应用到	接入风险;控制第三方
	职能部门,配备安全主		共享代码或共享服务	合作数据安全风险,保
	管;		过程中,	证数据主体权利,控制
	安全责任人的认命、安		共享库或代码管理应	处理过程合规。
	全管理制度的制定,必	7 -	该进行安全策略控制	
	要时应征求国家指定		和评估。	
	部门或机构的意见;			
	明确不同团队协作流			
	程和规范;	1/2		
	加强各管理人员之间、			
	不同团队之间的沟通	, V.7		
	交流,定期或不定期召			
	开会议,共同协作处理			
	关键问题;			
	开发人员和、测试人员	*		
	和运营人员分离。			
	п о пу суги пу			

6 研发运营一体化控制开发过程风险

为降低后续交付、运营中的安全风险,保障研发运营一体化的整体安全,必须提前实施安全风险管理工作。在制定计划的每个步骤时纳入安全风险管理,确定整体的安全风险需求,并在过程中实施安全风险管理。通过自动化、智能化的方式实现,这是研发运营一体化的基础。

级别	计划管理	需求管理	过程管理
1	计划管理中无安全内容	无安全需求	无安全的过程管理

2	将安全纳入测试计划	有安全需求	过程中每位成员均参与安全 过程
3	将安全纳入质量、测试计划	在需求收集、需求分析、需求与用例、需求验收四部分均实现安全,根据根据业务逻辑和已知风险,确定安全需求,包括基础平台、开源工具、编码安全。	过程中每位成员均参与安全过程,产品每次迭代中按照安全线性过程进行管控
4	将安全纳入开发、质量、测试计划	在需求收集、需求分析、需求与用例、需求验收四部分均实现安全,根据根据业务逻辑和已知风险,确定安全需求,包括基础平台、开源工具、编码安全、接口服务安全。	过程中每位成员均参与安全过程,产品每次迭代中按照安全线性过程进行管控,并将这些安全过程进行可视化
5	将安全纳入整体计划,在需求、设计、开发、测试所有 阶段	在需求收集、需求分析、需求与用例、需求验收四部分均实现安全,根据根据业务逻辑和已知风险,确定安全需求,包括基础平台、开源工具、编码安全、接口服务安全、业务安全、整体架构安全。	过程中每位成员均参与安全过程,产品每次迭代中按照完整的安全生命周期过程进行管控,并将这些安全过程进行可视化

7 研发运营一体化控制交付过程风险

在系统整个生命周期中,安全交付是实现安全运营的前提条件。在智能化、自动化地实现配置管理、环境管理、测试管理、数据管理的过程中,纳入安全风险管理,通过反馈和度量不断发现、评估、处置安全风险问题,让系统、产品、服务在最佳状态下交付。

级别	配置管理	环境管理	测试管理	数据管理	度量与反馈
1	配置管理中不涉	无安全环境管理	无安全测试	无数据安全	无安全的度量
	及安全				与反馈
	制定交付清单,根				
	据清单进行清点。				
2	对源代码进行安	区分生产、非生产环	使 用 符 合	非生产环境中没	在持续交付各
	全管理	境,并对基础环境进	OWASPTOP10 等最	有未清洗的敏感	个阶段定义安
<		行加固	佳实践的安全测	数据	全度量指标,
			试或静态代码扫		报告并跟踪在
			描工具进行安全		测试或其他过
			测试和合规扫描。		程中发现的安
					问题
3	对源代码、配置库	区分生产、非生产环	使 用 符 合	非生产环境中没	在持续交付各
	进行安全管理	境,两个环境中的安	OWASPTOP10 等最	有未清洗的敏感	个阶段定义安
		全基线一致	佳实践的安全测	数据,上线系统	全度量指标,
			试或静态代码扫	中没有开发、测	报告并跟踪在
			描工具进行安全	试数据	测试或其他过
			测试和合规扫描,		程中发现的安

)→ III 14.)) II.
			具备业务发布上		问题,将这些
			线自动化安全评		内容通过可视
			估和扫描能力,并		化的方式进行
			补充有手工安全		管理
			测试		
4	对源代码、配置	区分生产、非生产环	使 用 符 合	非生产环境中没	
	库、变更过程进行	境, 非生产环境中没	OWASPTOP10 等最	有未清洗的敏感	
	自动化的安全管	有未清洗的敏感数	佳实践的安全测	数据,上线系统	_ 1
	理	据,两个环境中的安	试或静态代码扫	中没有开发、测	777
		全防护方式一致	描工具进行安全	试数据, 非生产	
			测试和合规扫描,	环境中的数据按	
			具备业务发布上	数据安全生命周	同上/
			线自动化安全评	期进行管理)
			估和扫描能力,并	X "//\	
			补充有手工安全	X	
			测试,将测试结果	X	
			可视化		
5	同上	区分生产、非生产环	使 用 符 合	自动生成非生产	
		境, 非生产环境中没	OWASPTOP10 等最	环境中的使用数	
		有未清洗的敏感数	佳实践的安全测	据,上线系统中	
		据,两个环境中的安	试或静态代码扫	没有开发、测试	
		全管控一致	描工具进行安全	数据,非生产环	
			测试和合规扫描,	境中的数据按数	
		1//	具备业务发布上	据安全生命周期	
		V// :	线自动化安全评	进行管理	同上
			估和扫描能力,并		
	4	7/7.	补充有手工安全		
			测试,将测试结果		
			可视化并与前后		
			过程进行自动关		
	(X)		联		

8 研发运营一体化控制技术运营过程的安全风险

在技术运营过程中对监控服务、数据服务和运营反馈三部分的安全风险管理不可或缺,监控服务中 应该考虑到对于安全风险的监控能力,以及自动化和智能安全能力监控融入到整体监控服务中,数据服 务尤其是涉及到用户数据和敏感数据相关的安全要求显得尤为重要,以及在整个数据生命周期的安全要 求,运营反馈是指有针对性的对安全问题的融合。

级别	监控服务	数据服务	运营反馈
1	监控服务中无集成安	数据服务没有考虑安	无安全问题反馈
	全监控	全要求;	机制
2	具有基本的安全监控,	数据服务符合当地法	反馈的安全问题

	能够覆盖部分业务场	律法规要求; 数据服	能够同业务问题
	景;	务具有明确的安全要	统一跟踪状态;
		求并能够形成指导规	
		范,覆盖部分数据生	
		命周期,以及部分业	
		务场景;数据具有明	
		确的分级管理办法和	
		相关密级管理规定;	
		具有数据安全事件预	
		警能力;	
3	具有完善的安全监控	数据安全要求覆盖整	能够制定详细的
	指标; 具有自动化安全	个数据生命周期,包	安全问题等级和
	监控体系;	括数据采集,传输,	跟进流程并执
		存储,使用,分享和	行; 自动化整合
		销毁等场景安全要	到问题跟踪管理
		求,数据服务安全要	流程中。
		求覆盖全部业务场	
		景;数据使用具有完	
		善的审批和审计机	
		制;	
4	监控服务的安全指标。	数据服务能够自动化	安全问题的反馈
	覆盖全部业务场景和	服务化统一安全技术	和处理机制和流
	基础运营环境;并能够	框架,包括但不限于	程能够持续的优
	形成安全自动化监控	加解密、秘钥管理和	化;
	服务体系;	脱敏等统一数据安全	
	//	服务框架;	
5	安全监控服务智能化	数据流向可视化管	具有反馈安全问
		理;智能预测数据安	题智能分级分类
		全风险和事件;	机制;

参 考 文 献

- 1. John, Willis, Patrick, Debois, Jez, Humble, Gene, Kim. The DevOps Handbook[M]. 美国:IT Revolution Press, 2016-10.
- 2. Neil, MacDonald, Ian, Head. DevSecOps: How to Seamlessly Integrate Security Into DevOps[EB/OL].
 - https://www.gartner.com/doc/3463417/devsecops-seamlessly-integrate-security -devops, 2016-9.
- 3. Mark, Horvath, Neil, MacDonald, Ayal, Tirosh. Integrating Security Into the DevSecOps Toolchain[EB/OL].

https://www.gartner.com/doc/3463417/devsecops-seamlessly-integrate-security -devops, 2017-11.

