

1. FINITE-DIFFERENCE NUMERICAL METHODS FOR ODE SOLVING

- Start with something like: $\partial_t^2(u) = RHS(u,t)$, *this stands for "Right-Hand Side" *
 - Re-formulate to coupled, first-order in time system $\partial_t u = v$, $\partial_t v = \mathrm{RHS}(u,t)$
- Discretize in time using finite time-steps: $f(t) \to f^n \equiv f(t_n), f^{n+1} \equiv f(t_n + \Delta t), \cdots$
- Starting from f^n , apply some update-rule to determine f^{n+1}
 - First-order explicit Euler step: $f^{n+1} = f^n + \Delta t RHS(f^n, t_n)$
 - First-order implicit Euler step: $f^{n+1} = f^n + \Delta t RHS(f^{n+1}, t_{n+1})$
 - Something better & higher-order with substeps (RK4, etc.)

2. GRID-BASED NUMERICAL METHODS FOR *PDE* SOLVING