Analysis of Time Series Data Using R

Preliminaries

Always remember to load the packages that we need to use for analyzing time series in R. I've listed them below:

```
library(tidyquant)
library(gridExtra)
library(tibbletime)
library(forecast)
library(itsmr)
library(tsibble)
library(fpp2)
knitr::opts_chunk$set(comment=NA,tidy=FALSE)

#library(future) Not needed yet
#library(doFuture) Not needed yet
#library(rbenchmark) Not needed yet
```

Developing intuition on simulated data

- Can use the arima.sim function to generate data according to various ARMA models
- arima.sim requires two arguments (there are others, but defaults are OK for our purposes): a model specification and a number of points in the series to generate
- Specify models by using a named list
- Ex.

```
true_ar_coef=c(0.6,0.2)
true_ma_coef=c(0.4)
my_ARMA_2_1_model = list(ar=true_ar_coef, ma=true_ma_coef)
my_ARMA_2_1_model

$ar
[1] 0.6 0.2
$ma
[1] 0.4
```

- The above code specifies an ARMA(2,1) model where $\phi = (\phi_1, \phi_2) = (0.6, 0.2)$ and $\theta = (\theta_1) = 0.4$. If you want only an AR or MA model, you can either leave out that component of the vector or set it to NULL.
- We can find (and plot the inverse of) the roots of the AR and MA polynomials using the code below. Note that we plot the *inverse* of the roots, as in most cases we will have causal and/or invertible series, so this keeps the plots nice as the roots will be inside of the circle instead of potentially far outside of it.

```
ar_roots<-polyroot(c(1,-my_ARMA_2_1_model$ar))
ar_roots</pre>
```

[1] 1.192582-0i -4.192582+0i

Inverse roots of AR polynomial


```
ma_roots<-polyroot(c(1,my_ARMA_2_1_model$ma))
ma_roots</pre>
```

[1] -2.5+0i

Inverse roots of MA polynomial

Simulating the data

• With these cofficients, we can now generate an ARMA(2,1) model using the arima.sim function:

```
my_arma_2_1_data = arima.sim(my_ARMA_2_1_model,n=500)
glimpse(my_arma_2_1_data)
```

```
Time-Series [1:500] from 1 to 500: 1.0052 3.5077 2.3267 -0.0776 -0.2365 ...

autoplot(my_arma_2_1_data) + ylab("Simulated Data")
```


autoplot(window(my_arma_2_1_data,end=20)) + ylab("Simulated Data")

• Note if we want to be able to replicate our simulations (i.e. obtain the same dataset each time we run our code), we need to set a random seed (different seeds or running two sims without resetting the seed

leads to different data):

```
set.seed(19750606)
my_arma_2_1_data = arima.sim(my_ARMA_2_1_model,n=500)
glimpse(my_arma_2_1_data)
```

Time-Series [1:500] from 1 to 500: 1.663 0.446 0.93 1.449 -1.426 ...

autoplot(my_arma_2_1_data) + ylab("Simulated Data")

autoplot(window(my_arma_2_1_data,end=50)) + ylab("Simulated Data")

Sample autocorrelation

- Recall we can plot the autocorrelation for various lags using the ${\tt ggAcf}$ function:

ggAcf(my_arma_2_1_data)

Series: my_arma_2_1_data

ggPacf(my_arma_2_1_data)

Series: my_arma_2_1_data

• Can compute theoretical ACF and PACF values using the ARMAacf function and them to the plot:

```
ARMAacf(ar=true_ar_coef,ma=true_ma_coef,lag.max=10)

0 1 2 3 4 5 6 7
1.0000000 0.8693182 0.7215909 0.6068182 0.5084091 0.4264091 0.3575273 0.2997982
8 9 10
0.2513844 0.2107903 0.1767510

ARMAacf(ar=true_ar_coef,ma=true_ma_coef,lag.max=25) %>% head(.)

0 1 2 3 4 5
1.0000000 0.8693182 0.7215909 0.6068182 0.5084091 0.4264091

ARMAacf(ar=true_ar_coef,ma=true_ma_coef,lag.max=25,pacf=TRUE) %>% head(.)

[1] 0.869318182 -0.139685476 0.055668203 -0.022254154 0.008900822
[6] -0.003560275

ggAcf(my_arma_2_1_data) +
geom_point(aes(y=ARMAacf(ar=true_ar_coef,ma=true_ma_coef,lag.max=26)[-1]))
```

Series: my_arma_2_1_data

Series: my_arma_2_1_data

Functions for estimating coefficients

AR estimation

• First let's generate some true AR(4) data:

```
true_ar_coef_2=c(0.4,0.15,0,0.3)
my_AR4_model = list(ar=true_ar_coef_2,ma=NULL)
```

• Check the roots to make sure it is stationary

```
ar_roots<-polyroot(c(1,-my_AR4_model$ar))
ar_roots</pre>
```

```
[1] 1.073196-0.000000i -1.433037+0.000000i 0.179920-1.461179i
```

[4] 0.179920+1.461179i

Inverse roots of AR polynomial

 $\bullet\,$ Now generate some data and compare sample ACF and PACF to truth

my_ar_4_data = arima.sim(my_AR4_model,n=500)
autoplot(my_ar_4_data) + xlab("Simulated AR(4)")


```
ggAcf(my_ar_4_data,lag.max=20) +
geom_point(aes(y=c(ARMAacf(ar=true_ar_coef_2,ma=0,lag.max=20)[-1])))
```

Series: my_ar_4_data


```
ggPacf(my_ar_4_data,lag.max=10) +
geom_point(aes(y=c(ARMAacf(ar=true_ar_coef_2,pacf=TRUE),rep(0,6))))
```

Series: my_ar_4_data

Estimation via Yule-Walker, Burg, and MLE

```
# A tibble: 10 x 5
  method coef_ind truth
                            coef
                                     se
            <int> <dbl>
                           <dbl> <dbl>
 1 yw
                1 0.4
                          0.406 0.0452
 2 yw
                2
                   0.15 0.0847 0.0488
                3
                   0
                          0.0745 0.0489
3 yw
 4 yw
                4
                   0.3
                          0.302 0.0489
                5
                          0.0127 0.0508
 5 yw
                   0
 6 yw
                   0
                         0.0275 0.0508
```

```
7 0
                        -0.0805 0.0489
7 vw
                        -0.0122 0.0489
8 yw
                  0
9 yw
                9 0
                         0.0137 0.0488
10 yw
               10 0
                         0.0264 0.0452
my_ar_map %>% filter(method=="burg")
# A tibble: 10 x 5
  method coef_ind truth
                           coef
            <int> <dbl>
                          <dbl> <dbl>
                         0.406 0.0445
                1 0.4
 1 burg
2 burg
                2 0.15 0.0834 0.0481
3 burg
                3 0
                         0.0710 0.0482
                4 0.3
                         0.312 0.0482
4 burg
                5 0
                         0.0140 0.0500
5 burg
6 burg
                6 0
                         0.0339 0.0500
                7 0
                        -0.0774 0.0482
7 burg
8 burg
                8 0
                        -0.0203 0.0482
9 burg
                9 0
                         0.0137 0.0481
                         0.0191 0.0445
               10 0
10 burg
my_ar_map %>% filter(method=="mle")
# A tibble: 10 x 5
  method coef ind truth
                           coef
  <chr>
            <int> <dbl>
                          <dbl> <dbl>
1 mle
                1 0.4
                         0.406 0.0446
2 mle
                2 0.15 0.0820 0.0481
3 mle
                3 0
                         0.0692 0.0482
4 mle
                4 0.3
                         0.308 0.0482
5 mle
                5 0
                         0.0143 0.0501
6 mle
                6 0
                         0.0278 0.0501
7 mle
                7 0
                        -0.0755 0.0482
8 mle
                8 0
                       -0.0138 0.0482
9 mle
                9 0
                         0.0125 0.0481
               10 0
                         0.0251 0.0446
10 mle
ggplot(my_ar_map,aes(x=factor(coef_ind),y=coef,colour=method,ymin=coef-1.96*se, ymax=coef+1.96*se)) +
 geom_errorbar(position=position_dodge(width=1)) + geom_point(position=position_dodge(width=1)) +
 xlab("Coefficient index") + ylab("Coefficient estimate") +
 geom_hline(yintercept=c(0,true_ar_coef_2),linetype=1:5)
```


Alternate method for estimating AR models with diagnostics

```
arima_mod_ar4<-Arima(my_ar_4_data,order=c(4,0,0))
summary(arima_mod_ar4)</pre>
```

Series: my_ar_4_data

ARIMA(4,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 mean 0.4120 0.0817 0.0479 0.3144 0.0370 s.e. 0.0424 0.0462 0.0463 0.0426 0.2976

sigma^2 estimated as 0.9757: log likelihood=-701.42
AIC=1414.84 AICc=1415.01 BIC=1440.13

Training set error measures:

Training set -0.007352168

autoplot(arima_mod_ar4)

Inverse AR roots

checkresiduals(arima_mod_ar4)

Residuals from ARIMA(4,0,0) with non-zero mean

Ljung-Box test

data: Residuals from ARIMA(4,0,0) with non-zero mean Q* = 4.2365, df = 5, p-value = 0.5159

Model df: 5. Total lags used: 10

Estimating MA model via Innovations algorithm

• First simulate some MA data:

```
true_ma_coef_2=c(0.6, 0, 0.3)
my_MA3_model = list(ma=true_ma_coef_2,ar=NULL)
```

• Check the roots to make sure it is invertible

```
ma_roots<-polyroot(c(1,true_ma_coef_2))
ma_roots</pre>
```

```
[1] 0.532073+1.687988i -1.064145+0.000000i 0.532073-1.687988i
```

Inverse roots of MA polynomial

 $\bullet\,$ Now generate some data and compare sample ACF and PACF to truth

```
my_ma_3_data = arima.sim(my_MA3_model,n=500)
autoplot(my_ma_3_data) + xlab("Simulated MA(3)")
```



```
ggAcf(my_ma_3_data,lag.max=20) +
geom_point(aes(y=c(ARMAacf(ma=true_ma_coef_2,ar=0,lag.max=20)[-1])))
```

Series: my_ma_3_data


```
ggPacf(my_ma_3_data,lag.max=20) +
geom_point(aes(y=c(ARMAacf(ma=true_ma_coef_2,ar=0,pacf=TRUE,lag.max=20))))
```


 $\bullet\,$ Now estimate MA coefficients from innovations algorithm

 $ia(my_ma_3_data,q=4,m=20)$

\$phi

[1] 0

\$theta

[1] 0.5455685 0.1240171 0.3871978 0.0831271

\$sigma2

[1] 0.9976035

\$aicc

[1] 1428.693

\$se.phi

[1] 0

\$se.theta

[1] 0.04472136 0.05094399 0.05124500 0.05409154

acf_vals<-acf(my_ma_3_data)</pre>

Series my_ma_3_data

Autocorrelations of series 'my_ma_3_data', by lag

0	1	2	3	4	5	6	7	8	9	10
1.000	0.482	0.247	0.287	0.051	-0.006	-0.044	-0.032	-0.038	-0.039	0.046
11	12	13	14	15	16	17	18	19	20	21
0.053	0.042	0.025	-0.050	-0.059	-0.115	-0.165	-0.139	-0.070	-0.017	-0.018
22	23	24	25	26						
0 038	0 061	0.036	0 085	0 105						