Tugas WRKP Pengganti Percobaan HUKUM SUPERPOSISI

1. Hitung arus I_L pada gambar dibawah ini menggunakan hukum superposisi, jika diketahui nilaia resistor sbb : $R_1 = 5 \text{ K}\Omega$, $R_2 = 4 \text{ K}\Omega$, $R_3 = 3 \text{ K}\Omega$ dan $R_L = 2 \text{ K}\Omega$, sedangkan nilai tegangan E berturut turut seperti yang tercantum pada tabel 1.

Saat Kondisi $E_1 \neq 0$, $E_2 = 0$, $E_3 = 0$

Rangkaian dengan kondisi $E_1 \neq 0$, E_2 dan $E_3 = 0$

Jadi I_L yang dihitung, baru arus I_L yang menggunakan satu sumber E_1 saja, maka arus yang dihitung belum merupakan arus I_L yang sebenarnya, sehingga disebut I_{L1} yang besarnya dapat dihitung menggunakan rumus sebagai berikut :

$$I_{L1} = \frac{R_2 /\!/ R_3}{R_L + R_2 /\!/ R_3} \times \frac{E_1}{R_1 + (R_2 /\!/ R_3 /\!/ R_L)}$$

Saat Kondisi $E_2 \neq 0$, $E_1 = 0$ dan $E_3 = 0$

Gambar dibawah menunjukkan bahwa rangkaian hanya menggunakan satu sumber E_2 saja, maka arus yang dihitung hanyalah I_{L2} yang besarnya dapat dihitung menggunakan rumus sebagai berikut :

$$I_{L2} = \frac{R_1 /\!/ R_3}{R_L + (R_1 /\!/ R_3)} \times \frac{E_2}{R_2 + R_1 /\!/ R_3 /\!/ R_L}$$

$$R_1 \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Rangkaian dengan kondisi $E_2 \neq 0$, E_1 dan $E_3 = 0$

Saat Kondisi $E_3 \neq 0$, E_1 dan $E_2 = 0$

Rangkaian dengan kondisi $E_3 \neq 0$, E_1 dan $E_2 = 0$

Gambar diatas menunjukkan bahwa rangkaian hanya menggunakan satu sumber E_3 saja, maka arus yang dihitung hanyalah I_{L3} yang besarnya dapat dihitung menggunakan rusmus sebagai berikut :

$$I_{L3} = -\frac{R_1 // R_2}{R_L + (R_1 // R_2)} \times \frac{E_3}{R_3 + R_1 // R_2 // R_L}$$

 $\label{eq:lambda} \mbox{ Jadi perhitungan besarnya arus } \mbox{ I_L secara superposisi } \mbox{ merupakan penjumlah dari }$

ketiga arus tsb yaitu :
$$I_{L} = I_{L1} + I_{L2} + I_{L3}$$

Tabel 1. Data hasil perhitungan

No	E ₁ (Volt)	E ₂ (Volt)	E ₃ (Volt)	I _{L1} (mA)	I _{L2} (mA)	I _{L3} (mA)	I _L ' (mA)
1	10	5	3				
2	10	5	-3				
3	8	6	4				
4	8	6	-4				

2. Ulangi perhitungan dengan merubah nilai kombinasi tegangan E₁, E₂, E₃ seperti pada tabel 1, setelah itu rangkumlah semua hasil perhitungan pada tabel tersebut.