group project

Import packages, set seeds.

Initial Data Preprocessing

Read data, rename columns

```
df = read.csv("CommViolPredUnnormalizedData.txt", header = F)

variables = c(
  'communityname',
  'state',
  'countyCode',
  'communityCode',
  'fold',
```

```
'population',
'householdsize',
'racepctblack',
'racePctWhite',
'racePctAsian',
'racePctHisp',
'agePct12t21',
'agePct12t29',
'agePct16t24',
'agePct65up',
'numbUrban',
'pctUrban',
'medIncome',
'pctWWage',
'pctWFarmSelf',
'pctWInvInc',
'pctWSocSec',
'pctWPubAsst',
'pctWRetire',
'medFamInc',
'perCapInc',
'whitePerCap',
'blackPerCap',
'indianPerCap',
'AsianPerCap',
'OtherPerCap',
'HispPerCap',
'NumUnderPov',
'PctPopUnderPov',
'PctLess9thGrade',
'PctNotHSGrad',
'PctBSorMore',
'PctUnemployed',
'PctEmploy',
'PctEmplManu',
'PctEmplProfServ',
'PctOccupManu',
'PctOccupMgmtProf',
'MalePctDivorce',
'MalePctNevMarr',
'FemalePctDiv',
```

```
'TotalPctDiv',
'PersPerFam',
'PctFam2Par',
'PctKids2Par',
'PctYoungKids2Par',
'PctTeen2Par',
'PctWorkMomYoungKids',
'PctWorkMom',
'NumKidsBornNeverMar',
'PctKidsBornNeverMar',
'NumImmig',
'PctImmigRecent',
'PctImmigRec5',
'PctImmigRec8',
'PctImmigRec10',
'PctRecentImmig',
'PctRecImmig5',
'PctRecImmig8',
'PctRecImmig10',
'PctSpeakEnglOnly',
'PctNotSpeakEnglWell',
'PctLargHouseFam',
'PctLargHouseOccup',
'PersPerOccupHous',
'PersPerOwnOccHous',
'PersPerRentOccHous',
'PctPersOwnOccup',
'PctPersDenseHous',
'PctHousLess3BR',
'MedNumBR',
'HousVacant',
'PctHousOccup',
'PctHousOwnOcc',
'PctVacantBoarded',
'PctVacMore6Mos',
'MedYrHousBuilt',
'PctHousNoPhone',
'PctWOFullPlumb',
'OwnOccLowQuart',
'OwnOccMedVal',
'OwnOccHiQuart',
```

```
'OwnOccQrange',
'RentLowQ',
'RentMedian',
'RentHighQ',
'RentQrange',
'MedRent',
'MedRentPctHousInc',
'MedOwnCostPctInc',
'MedOwnCostPctIncNoMtg',
'NumInShelters',
'NumStreet',
'PctForeignBorn',
'PctBornSameState',
'PctSameHouse85',
'PctSameCity85',
'PctSameState85',
'LemasSwornFT',
'LemasSwFTPerPop',
'LemasSwFTFieldOps',
'LemasSwFTFieldPerPop',
'LemasTotalReq',
'LemasTotReqPerPop',
'PolicReqPerOffic',
'PolicPerPop',
'RacialMatchCommPol',
'PctPolicWhite',
'PctPolicBlack',
'PctPolicHisp',
'PctPolicAsian',
'PctPolicMinor',
'OfficAssgnDrugUnits',
'NumKindsDrugsSeiz',
'PolicAveOTWorked',
'LandArea',
'PopDens',
'PctUsePubTrans',
'PolicCars',
'PolicOperBudg',
'LemasPctPolicOnPatr',
'LemasGangUnitDeploy',
'LemasPctOfficDrugUn',
```

```
'PolicBudgPerPop',
 'murders',
 'murdPerPop',
 'rapes',
 'rapesPerPop',
 'robberies',
 'robbbPerPop',
 'assaults',
 'assaultPerPop',
 'burglaries',
 'burglPerPop',
 'larcenies',
 'larcPerPop',
 'autoTheft',
 'autoTheftPerPop',
 'arsons',
 'arsonsPerPop',
 'ViolentCrimesPerPop',
 'nonViolPerPop'
names(df) = variables
```

Filter out data where the target is missing:

```
df = df[df["ViolentCrimesPerPop"] != "?", ]
```

Filter out non-predictive features

The first five are non-predictive features

```
df = df[, -(1:5)]
```

The last 18 are target variables. We are only interested in 1 of them.

```
df = df[, -(ncol(df) + c(0, -2:-17))]
```

Explore data, model building

Initial train test split

```
# shuffled index of test set, 20% percent of the data
  idx_test = sample(1:nrow(df))[1:floor(nrow(df) * 0.2)]
  # shuffled index of train set
  idx_train = sample((1:nrow(df))[-idx_test])
  train_set = df[idx_train, ]
  test_set = df[idx_test, ]
Look at missing data
  missing_pct = apply(df == "?", \frac{2}{2}, \(x) sum(x) / length(x))
  train_set = train_set[, !(names(train_set) %in% names(missing_pct[missing_pct > 0]))]
  test_set = test_set[, !(names(test_set) %in% names(missing_pct[missing_pct > 0]))]
  train_x = train_set[, -ncol(train_set)]
  train_y = train_set[, ncol(train_set)]
PCA
  library(nFactors)
Loading required package: lattice
Attaching package: 'nFactors'
The following object is masked from 'package:lattice':
   parallel
  library(EFA.dimensions)
EFA.dimensions 0.1.8.1
Please contact Brian O'Connor at brian.oconnor@ubc.ca if you have questions or suggestions.
```

```
library(GPArotation)
library(psych)

Attaching package: 'psych'

The following objects are masked from 'package:GPArotation':
    equamax, varimin

The following objects are masked from 'package:ggplot2':
    %+%, alpha

pca_result = prcomp(train_x, scale = T)
```

Determine the number of components

Scree plot

```
prop_var_expl = summary(pca_result)$importance[2,]

plot(prop_var_expl, type="b", xlab="Component number (sc.)",
ylab="Proportion variance explained", ylim=c(0, 0.26))
```


Parallel analysis

```
ev = eigen(cor(train_x))
ap = parallel(subject = nrow(train_x), var = ncol(train_x), rep = 1000)
nS = nScree(x = ev$values, aparallel = ap$eigen$qevpea)
plotnScree(nS, main = "")
```


MAP test

MINIMUM AVERAGE PARTIAL (MAP) TEST

Number of cases = 1596

Number of variables = 101

Specified kind of correlations for this analysis: Pearson

Total Variance Explained (Initial Eigenvalues):

		Eigenvalues	Proportion	of	Variance
Factor	1	24.30			0.24
Factor	2	16.14			0.16
Factor	3	9.07			0.09
Factor	4	7.87			0.08
Factor	5	6.49			0.06
Factor	6	4.37			0.04
Factor	7	3.55			0.04
Factor	8	2.99			0.03
Factor	9	2.24			0.02
Factor	10	1.62			0.02
Factor	11	1.59			0.02
Factor	12	1.51			0.01
Factor	13	1.45			0.01
Factor	14	1.09			0.01
Factor	15	1.03			0.01
Factor	16	0.96			0.01
Factor	17	0.91			0.01
Factor	18	0.87			0.01
Factor	19	0.79			0.01
Factor	20	0.77			0.01
Factor	21	0.71			0.01
Factor	22	0.64			0.01
Factor	23	0.61			0.01
Factor	24	0.55			0.01
Factor	25	0.53			0.01
Factor	26	0.50			0.00
Factor	27	0.48			0.00
Factor	28	0.46			0.00
Factor		0.42			0.00
Factor	30	0.39			0.00
Factor		0.37			0.00
Factor	32	0.35			0.00
Factor	33	0.34			0.00
Factor	34	0.32			0.00
Factor	35	0.29			0.00
Factor	36	0.27			0.00
Factor	37	0.26			0.00
Factor	38	0.25			0.00
Factor		0.23			0.00
Factor		0.23			0.00
Factor		0.22			0.00
Factor	42	0.19			0.00

Factor 43	0.19	0.00
Factor 44	0.18	0.00
Factor 45	0.16	0.00
Factor 46	0.15	0.00
Factor 47	0.15	0.00
Factor 48	0.14	0.00
Factor 49	0.13	0.00
Factor 50	0.12	0.00
Factor 51	0.11	0.00
Factor 52	0.10	0.00
Factor 53	0.10	0.00
Factor 54	0.09	0.00
Factor 55	0.08	0.00
Factor 56	0.07	0.00
Factor 57	0.07	0.00
Factor 58	0.07	0.00
Factor 59	0.07	0.00
Factor 60	0.06	0.00
Factor 61	0.06	0.00
Factor 62	0.06	0.00
Factor 63	0.05	0.00
Factor 64	0.05	0.00
Factor 65	0.04	0.00
Factor 66	0.04	0.00
Factor 67	0.03	0.00
Factor 68	0.03	0.00
Factor 69	0.03	0.00
Factor 70	0.03	0.00
Factor 71	0.03	0.00
Factor 72	0.03	0.00
Factor 73	0.02	0.00
Factor 74	0.02	0.00
Factor 75	0.02	0.00
Factor 76	0.02	0.00
Factor 77	0.02	0.00
Factor 78	0.02	0.00
Factor 79	0.02	0.00
Factor 80	0.01	0.00
Factor 81	0.01	0.00
Factor 82	0.01	0.00
Factor 83	0.01	0.00
Factor 84	0.01	0.00
Factor 85	0.01	0.00

Factor 86	0.01	0.00
Factor 87	0.01	0.00
Factor 88	0.01	0.00
Factor 89	0.01	0.00
Factor 90	0.00	0.00
Factor 91	0.00	0.00
Factor 92	0.00	0.00
Factor 93	0.00	0.00
Factor 94	0.00	0.00
Factor 95	0.00	0.00
Factor 96	0.00	0.00
Factor 97	0.00	0.00
Factor 98	0.00	0.00
Factor 99	0.00	0.00
Factor 100	0.00	0.00
Factor 101	0.00	0.00
	Cumulative Prop. Variance	
Factor 1	0.24	
Factor 2	0.40	
Factor 3	0.49	
Factor 4	0.57	
Factor 5	0.63	
Factor 6	0.68	
Factor 7	0.71	
Factor 8	0.74	
Factor 9	0.76	
Factor 10	0.78	
Factor 11	0.79	
Factor 12	0.81	
Factor 13	0.82	
Factor 14	0.83	
Factor 15	0.84	
Factor 16	0.85	
Factor 17	0.86	
Factor 18	0.87	
Factor 19	0.88	
Factor 20	0.89	
Factor 21	0.89	
Factor 22	0.90	
Factor 23	0.91	
Factor 24	0.91	
Factor 25	0.92	
Factor 26	0.92	

Factor	27	0.93
Factor	28	0.93
Factor	29	0.94
Factor	30	0.94
Factor	31	0.94
Factor	32	0.95
Factor	33	0.95
Factor	34	0.95
Factor	35	0.96
Factor	36	0.96
Factor	37	0.96
Factor	38	0.96
Factor	39	0.97
Factor	40	0.97
Factor	41	0.97
Factor	42	0.97
Factor	43	0.97
Factor	44	0.98
Factor	45	0.98
Factor	46	0.98
Factor	47	0.98
Factor	48	0.98
Factor	49	0.98
Factor	50	0.98
Factor	51	0.99
Factor	52	0.99
Factor	53	0.99
Factor	54	0.99
Factor	55	0.99
Factor	56	0.99
Factor	57	0.99
Factor	58	0.99
Factor	59	0.99
Factor	60	0.99
Factor	61	0.99
Factor	62	0.99
Factor	63	0.99
Factor	64	0.99
Factor	65	1.00
Factor	66	1.00
Factor	67	1.00
Factor	68	1.00
Factor	69	1.00

Factor	70	1.00
Factor	71	1.00
Factor	72	1.00
Factor	73	1.00
Factor	74	1.00
Factor	75	1.00
Factor	76	1.00
Factor	77	1.00
Factor	78	1.00
Factor	79	1.00
Factor	80	1.00
Factor	81	1.00
Factor	82	1.00
Factor	83	1.00
Factor	84	1.00
Factor	85	1.00
Factor	86	1.00
Factor	87	1.00
Factor	88	1.00
Factor	89	1.00
Factor	90	1.00
Factor	91	1.00
Factor	92	1.00
Factor	93	1.00
Factor	94	1.00
Factor	95	1.00
Factor	96	1.00
Factor	97	1.00
Factor	98	1.00
Factor	99	1.00
Factor	100	1.00
Factor	101	1.00

Velicer's Average Squared Correlations

root	Avg.Corr.Sq.	Avg.Corr.power4
0	0.09917	0.03918
1	0.07690	0.02731
2	0.06206	0.01955
3	0.05606	0.01678
4	0.05890	0.01724

5	0.04537	0.01071
6	0.04439	0.00992
7	0.03142	0.00646
8	0.02830	0.00602
9	0.02720	0.00518
10	0.02653	0.00502
11	0.02421	0.00446
12	0.02226	0.00409
13	0.01995	0.00368
14	0.01879	0.00348
15	0.01853	0.00342
16	0.01846	0.00338
17	0.01886	0.00337
18	0.01926	0.00340
19	0.01970	0.00345
20	0.01924	0.00336
21	0.01896	0.00333
22	0.01892	0.00338
23	0.01962	0.00340
24	0.02059	0.00356
25	0.02123	0.00370
26	0.02124	0.00366
27	0.02191	0.00374
28	0.02275	0.00393
29	0.02343	0.00412
30	0.02387	0.00413
31	0.02478	0.00423
32	0.02545	0.00420
33	0.02605	0.00432
34	0.02567	0.00408
35	0.02584	0.00403
36	0.02650	0.00431
37	0.02729	0.00443
38	0.02801	0.00463
39	0.02938	0.00505
40	0.02961	0.00514
41	0.03035	0.00517
42	0.03075	0.00547
43	0.03035	0.00564
44	0.03108	0.00568
45	0.03186	0.00579
46	0.03271	0.00570
47	0.03224	0.00590

48	0.03219	0.00611
49	0.03438	0.00696
50	0.03259	0.00622
51	0.03387	0.00640
52	0.03369	0.00654
53	0.03485	0.00688
54	0.03507	0.00715
55	0.03542	0.00688
56	0.03619	0.00716
57	0.03691	0.00722
58	0.03914	0.00793
59	0.04209	0.00887
60	0.04408	0.00960
61	0.04479	0.00995
62	0.04558	0.01044
63	0.04716	0.01062
64	0.04867	0.01084
65	0.04947	0.01178
66	0.04854	0.01136
67	0.04716	0.01080
68	0.05060	0.01176
69	0.05257	0.01247
70	0.05670	0.01398
71	0.06034	0.01583
72	0.06328	0.01725
73	0.06632	0.01922
74	0.07075	0.02045
75	0.07181	0.02082
76	0.07999	0.02462
77	0.07771	0.02258
78	0.08191	0.02534
79	0.09023	0.03014
80	0.09488	0.03354
81	0.10064	0.03540
82	0.11857	0.04282
83	0.11865	0.04156
84	0.12167	0.04464
85	0.11114	0.03919
86	0.11839	0.04256
87	0.12837	0.04891
88	0.14036	0.05682
89	0.15886	0.07128
90	0.19909	0.09945

91	0.24482	0.13467
92	0.23692	0.13104
93	0.26339	0.15088
94	0.34013	0.21884
95	0.36310	0.24250
96	0.42021	0.29943
97	0.57566	0.46447
98	NA	NA
99	NA	NA
100	NA	NA

The smallest average squared correlation is 0.01846

The smallest average 4rth power correlation is 0.00333

The number of components according to the original (1976) MAP Test is = 16

The number of components according to the revised (2000) MAP Test is = 21

```
avgsqrs = map_res$avgsqrs
plot(avgsqrs[10:30, 1], avgsqrs[10:30, 3])
```


Oblimin 21

```
n_axis = 21
# PCA
train_x_scaled = scale(train_x, center = F, scale = T)

eigen_res = eigen(cov(train_x_scaled))

l = eigen_res$values
q = eigen_res$vectors

sum(eigen_res$values[1:n_axis]) / sum(eigen_res$values)

[1] 0.9372965
```

```
# create correlation loadings from principal axis, then rotate
principal_axis_rot = oblimin(q[, 1:n_axis], maxit = 10000)$loadings

scores = scale(train_x_scaled %*% principal_axis_rot)
colnames(scores) = paste("PC", 1:n_axis, sep = "")
```

```
values = round(principal_axis_rot, 1)
  variable_names = colnames(train_x_scaled)
  for (i in 1:n_axis) {
    values_i = values[, i]
    ord_gt0 = order(values_i, decreasing = T)
    ord_lt0 = order(values_i, decreasing = F)
    values_i_gt0 = values_i[ord_gt0]
    values_i_lt0 = values_i[ord_lt0]
    variables_gt0 = variable_names[ord_gt0][values_i_gt0 > 0]
    variables_lt0 = variable_names[ord_lt0][values_i_lt0 < 0]</pre>
    message("PC", i)
    message("gt 0")
    message(paste(variables_gt0, values_i_gt0[values_i_gt0 > 0], " "))
    message("lt 0")
    \label{lem:message} $$ message(paste(variables_lt0, values_i_lt0[values_i_lt0 < 0], " "), "\n") $$
  }
PC1
gt 0
population 0.4 numbUrban 0.4 NumUnderPov 0.4 NumKidsBornNeverMar 0.4 NumImmig 0.4 NumIns
1t 0
PC2
gt 0
pctWPubAsst 0.1 MalePctDivorce 0.1 FemalePctDiv 0.1 TotalPctDiv 0.1 PctHousNoPhone 0.1
lt 0
```

```
PctRecentImmig -0.4 PctRecImmig5 -0.4 PctRecImmig8 -0.4 PctRecImmig10 -0.4 PctNotSpeakEng
PC3
gt 0
pctUrban 0.1
1t 0
OwnOccLowQuart -0.4 OwnOccMedVal -0.4 OwnOccHiQuart -0.4 OwnOccQrange -0.4 perCapInc -0.5
PC4
gt 0
racepctblack 0.8 PctKidsBornNeverMar 0.5 pctUrban 0.1 whitePerCap 0.1 HispPerCap 0.1 Pc
1t 0
racePctHisp -0.2 racePctWhite -0.1 PctKids2Par -0.1 PctTeen2Par -0.1 PctImmigRecent -0.1
PC5
gt 0
racePctHisp 0.1 PctNotSpeakEnglWell 0.1 PctVacMore6Mos 0.1 PctForeignBorn 0.1
lt 0
PctImmigRecent -0.6 PctImmigRec5 -0.5 PctImmigRec8 -0.4 PctImmigRec10 -0.3 pctUrban -0.1
PC6
gt 0
```

```
lt 0
LandArea -1 HousVacant -0.1
PC7
gt 0
LemasPctOfficDrugUn 1 pctUrban 0.1
1t 0
PC8
gt 0
MalePctDivorce 0.2 HousVacant 0.2 agePct65up 0.1 PctBSorMore 0.1 FemalePctDiv 0.1 Total
lt 0
PctLargHouseOccup -0.6 PctLargHouseFam -0.5 PctPersDenseHous -0.3 racePctHisp -0.2 house
PC9
gt 0
indianPerCap 1
lt 0
PC10
```

gt 0

```
agePct16t24 0.1 pctUrban 0.1 PctEmplManu 0.1 NumImmig 0.1 PctPersDenseHous 0.1 NumStree
1t 0
PctUsePubTrans -0.9 HousVacant -0.1 PctVacMore6Mos -0.1 RentQrange -0.1 MedOwnCostPctInc
PC11
gt 0
agePct12t21 0.1 pctUrban 0.1 medIncome 0.1 pctWInvInc 0.1 medFamInc 0.1 perCapInc 0.1
lt 0
racePctHisp -0.4 PctHousNoPhone -0.4 pctWPubAsst -0.3 PctPopUnderPov -0.2 PctUnemployed
PC12
gt 0
racePctAsian 0.9 pctWPubAsst 0.1 PctRecImmig8 0.1 PctRecImmig10 0.1 PctForeignBorn 0.1
1t 0
racePctHisp -0.1 PctLess9thGrade -0.1 PctNotHSGrad -0.1 PctKidsBornNeverMar -0.1 PctNotS
PC13
gt 0
blackPerCap 1 racePctHisp 0.1 medIncome 0.1 perCapInc 0.1 HispPerCap 0.1 PctLess9thGrade
1t 0
```

OwnOccQrange -0.1

PC14

```
gt 0
```

PctEmplManu 0.6 PctOccupManu 0.4 PctLess9thGrade 0.2 PctNotHSGrad 0.2 PctKidsBornNeverMax

lt 0

pctUrban -0.4 racePctHisp -0.2 PctBSorMore -0.2 PctEmplProfServ -0.2 PctOccupMgmtProf -0

PC15

gt 0

NumImmig 0.1 PctPersDenseHous 0.1 NumInShelters 0.1 NumStreet 0.1

1t 0

PctVacantBoarded -0.9 PctVacMore6Mos -0.2 pctUrban -0.1 PctUnemployed -0.1 PctKidsBornNew

PC16

gt 0

pctWFarmSelf 0.9 perCapInc 0.1 whitePerCap 0.1 HispPerCap 0.1 PctLess9thGrade 0.1 PctBSe

1t 0

pctUrban -0.2 agePct16t24 -0.1 pctWPubAsst -0.1 pctWRetire -0.1 PctUnemployed -0.1 PctE

PC17

gt 0

PctHousLess3BR 0.1 RentQrange 0.1

1t 0

AsianPerCap -0.9 HispPerCap -0.2 medIncome -0.1 medFamInc -0.1 perCapInc -0.1 whitePerCap

```
PC18
```

pctWRetire 0.1 PctKidsBornNeverMar 0.1 PctLargHouseFam 0.1 HousVacant 0.1

lt 0

PctWOFullPlumb -1 racePctHisp -0.1 HispPerCap -0.1 PctLess9thGrade -0.1 PctBSorMore -0.1 PC19

gt 0

agePct65up 0.5 pctWSocSec 0.4 pctWRetire 0.3 pctWPubAsst 0.2 PctPopUnderPov 0.2 PctLess

racePctHisp -0.1 agePct12t21 -0.1 agePct12t29 -0.1 agePct16t24 -0.1 medIncome -0.1 pctW PC20

gt 0

agePct16t24 0.5 agePct12t21 0.4 PctPopUnderPov 0.3 MalePctNevMarr 0.3 agePct12t29 0.2 Polit 0

pctUrban -0.2 MalePctDivorce -0.2 FemalePctDiv -0.2 TotalPctDiv -0.2 agePct65up -0.1 med PC21

gt 0

PopDens 0.8 pctUrban 0.3 agePct12t29 0.1 agePct16t24 0.1 pctWPubAsst 0.1 PctEmplManu 0. lt 0

 $Hous Vacant -0.2 \\ Pct Vac More 6 \\ Mos -0.2 \\ race Pct \\ Hisp -0.1 \\ med Income -0.1 \\ med Fam Inc -0.1 \\ white fam Inc -0.1 \\ med Fam Inc -0.1$

```
# library(mclust)
#
# mod <- Mclust(scores)
#
# plot(mod, what = "BIC")
# summary(mod, parameters = TRUE)

fit = lm(train_y ~ scores)
summary(fit)</pre>
```

Call:

lm(formula = train_y ~ scores)

Residuals:

Min 1Q Median 3Q Max -1662.98 -181.73 -37.81 121.36 2316.44

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	575.059	9.143	62.894	< 2e-16	***
scoresPC1	41.248	9.947	4.147	3.55e-05	***
scoresPC2	-1.942	22.689	-0.086	0.931788	
scoresPC3	-41.090	18.046	-2.277	0.022920	*
scoresPC4	268.697	13.347	20.132	< 2e-16	***
scoresPC5	-19.904	12.529	-1.589	0.112354	
scoresPC6	-9.086	9.627	-0.944	0.345407	
scoresPC7	38.668	10.066	3.841	0.000127	***
scoresPC8	-6.209	16.140	-0.385	0.700528	
scoresPC9	-5.011	9.464	-0.529	0.596550	
scoresPC10	12.498	12.849	0.973	0.330868	
scoresPC11	-263.269	21.229	-12.401	< 2e-16	***
scoresPC12	6.691	12.661	0.528	0.597238	
scoresPC13	-20.734	11.302	-1.835	0.066752	
scoresPC14	-69.134	13.413	-5.154	2.87e-07	***
scoresPC15	-70.216	12.436	-5.646	1.94e-08	***
scoresPC16	-27.142	10.770	-2.520	0.011833	*
scoresPC17	-12.615	11.238	-1.122	0.261823	
scoresPC18	28.749	11.904	2.415	0.015845	*
scoresPC19	20.543	12.694	1.618	0.105778	
scoresPC20	-80.581	12.060	-6.682	3.27e-11	***

```
scoresPC21 19.768 15.462 1.278 0.201281
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 365.3 on 1574 degrees of freedom
Multiple R-squared: 0.6406,
                               Adjusted R-squared: 0.6358
F-statistic: 133.6 on 21 and 1574 DF, p-value: < 2.2e-16
Varimax 21
  n_axis = 21
  # PCA
  train_x_scaled = scale(train_x, center = F, scale = T)
  eigen_res = eigen(cov(train_x_scaled))
  1 = eigen_res$values
  q = eigen_res$vectors
  sum(eigen_res$values[1:n_axis]) / sum(eigen_res$values)
[1] 0.9372965
  # create correlation loadings from principal axis, then rotate
  principal_axis_rot = varimax(q[, 1:n_axis])$loadings
  scores = scale(train_x_scaled %*% principal_axis_rot)
  colnames(scores) = paste("PC", 1:n_axis, sep = "")
  values = round(principal_axis_rot, 1)
  variable_names = colnames(train_x_scaled)
  for (i in 1:n_axis) {
    values_i = values[, i]
    ord_gt0 = order(values_i, decreasing = T)
    ord_lt0 = order(values_i, decreasing = F)
```

values_i_gt0 = values_i[ord_gt0]
values_i_lt0 = values_i[ord_lt0]

```
variables_gt0 = variable_names[ord_gt0][values_i_gt0 > 0]
    variables_lt0 = variable_names[ord_lt0][values_i_lt0 < 0]</pre>
    message("PC", i)
    message("gt 0")
    message(paste(variables_gt0, values_i_gt0[values_i_gt0 > 0], " "))
    message("lt 0")
    \label{lem:message} $$ message(paste(variables_lt0, values_i_lt0[values_i_lt0 < 0], " "), "\n") $$
  }
PC1
gt 0
population 0.4 numbUrban 0.4 NumUnderPov 0.4 NumKidsBornNeverMar 0.4 NumImmig 0.4 NumIn
1t 0
PC2
gt 0
pctWPubAsst 0.1 PctHousNoPhone 0.1 NumInShelters 0.1 NumStreet 0.1 PctBornSameState 0.1
1t 0
PctRecentImmig -0.4 PctRecImmig5 -0.4 PctRecImmig8 -0.4 PctRecImmig10 -0.4 PctNotSpeakEng
PC3
gt 0
pctWFarmSelf 0.1 AsianPerCap 0.1 PctPopUnderPov 0.1 PctHousNoPhone 0.1
1t 0
```

```
OwnOccLowQuart -0.4 OwnOccMedVal -0.4 OwnOccHiQuart -0.4 OwnOccQrange -0.4 perCapInc -0.5
PC4
gt 0
racepctblack 0.8 PctKidsBornNeverMar 0.4 pctUrban 0.1 whitePerCap 0.1 HispPerCap 0.1
lt 0
racePctHisp -0.3 racePctWhite -0.1 PctKids2Par -0.1 PctNotSpeakEnglWell -0.1 PopDens -0.
PC5
gt 0
racePctHisp 0.1 PctNotSpeakEnglWell 0.1 PctVacMore6Mos 0.1 PctForeignBorn 0.1 PopDens 0.
1t 0
PctImmigRecent -0.6 PctImmigRec5 -0.5 PctImmigRec8 -0.4 PctImmigRec10 -0.3 PctBSorMore -
PC6
gt 0
lt 0
LandArea -1 HousVacant -0.1
PC7
gt 0
LemasPctOfficDrugUn 1 pctUrban 0.1
```

```
lt 0
```

gt 0

PC8 gt 0 pctUrban 0.2 pctWRetire 0.1 AsianPerCap 0.1 PctEmplManu 0.1 HousVacant 0.1 RentLowQ 0.1 lt 0 pctWFarmSelf -0.9 PctHousNoPhone -0.2 PopDens -0.2 whitePerCap -0.1 PctPopUnderPov -0.1 PC9 gt 0 indianPerCap 1 lt 0 PC10 gt 0 pctUrban 0.1 pctWFarmSelf 0.1 HispPerCap 0.1 PctEmplManu 0.1 NumImmig 0.1 PctPersDenseH lt 0 PctUsePubTrans -0.9 PopDens -0.2 PctKidsBornNeverMar -0.1 HousVacant -0.1 PctVacMore6Mos PC11

```
PctLargHouseFam 0.5 PctLargHouseOccup 0.5 PctPersDenseHous 0.4 racePctHisp 0.3 household
1t 0
agePct65up -0.2 racePctWhite -0.1 pctWInvInc -0.1 pctWSocSec -0.1 perCapInc -0.1 blackPo
PC12
gt 0
racePctAsian 0.9 pctWPubAsst 0.1 OwnOccLowQuart 0.1
1t 0
racePctHisp -0.2 PctNotSpeakEnglWell -0.2 pctUrban -0.1 PctLess9thGrade -0.1 PctNotHSGrade
PC13
gt 0
blackPerCap 1 racePctHisp 0.1 HispPerCap 0.1 PctLess9thGrade 0.1 PctUnemployed 0.1 PctN
1t 0
OwnOccQrange -0.1
PC14
gt 0
NumImmig 0.1 PctPersDenseHous 0.1 NumInShelters 0.1 NumStreet 0.1
1t 0
PctVacantBoarded -0.9 HousVacant -0.2 PctVacMore6Mos -0.2 pctUrban -0.1 PctUnemployed -0
PC15
```

```
gt 0
```

pctUrban 0.3 racePctHisp 0.2 PctBSorMore 0.2 PctEmplProfServ 0.2 PctOccupMgmtProf 0.2 H

lt 0

PctEmplManu -0.5 PctOccupManu -0.4 PctLess9thGrade -0.2 PctNotHSGrad -0.2 PctBornSameStar

PC16

gt 0

agePct65up 0.2 pctUrban 0.2 medIncome 0.1 pctWFarmSelf 0.1 pctWSocSec 0.1 pctWRetire 0.

1t 0

agePct16t24 -0.5 agePct12t21 -0.4 agePct12t29 -0.3 PctPopUnderPov -0.3 MalePctNevMarr -0

PC17

gt 0

pctUrban 0.1 RentQrange 0.1

1t 0

AsianPerCap -0.9 pctWPubAsst -0.1 perCapInc -0.1 whitePerCap -0.1 HispPerCap -0.1 PctPop

PC18

gt 0

HousVacant 0.1

1t 0

PctWOFullPlumb -0.9 racePctHisp -0.1 pctWPubAsst -0.1 HispPerCap -0.1 PctPopUnderPov -0.

```
PC19
gt 0
PctPersOwnOccup 0.2 PctHousOwnOcc 0.2 PctVacMore6Mos 0.2 householdsize 0.1 agePct12t21 0
1t 0
MalePctDivorce -0.3 FemalePctDiv -0.3 TotalPctDiv -0.3 PctHousNoPhone -0.3 PopDens -0.3
PC20
gt 0
PctEmploy 0.2 PctEmplManu 0.2 agePct12t29 0.1 medIncome 0.1 pctWWage 0.1 pctWFarmSelf 0
1t 0
agePct65up -0.5 pctWSocSec -0.4 pctWPubAsst -0.3 pctWRetire -0.3 PctPopUnderPov -0.2 Pc
PC21
gt 0
PopDens 0.7 pctUrban 0.5 pctWInvInc 0.1 pctWRetire 0.1 HispPerCap 0.1 PctLargHouseFam 0
1t 0
PctHousNoPhone -0.3 HousVacant -0.2 racePctHisp -0.1 PctPopUnderPov -0.1 PctLess9thGrade
  # library(mclust)
  # mod <- Mclust(scores)</pre>
  # plot(mod, what = "BIC")
```

summary(mod, parameters = TRUE)

```
fit = lm(train_y ~ scores)
summary(fit)
```

Call:

lm(formula = train_y ~ scores)

Residuals:

Min 1Q Median 3Q Max -1662.98 -181.73 -37.81 121.36 2316.44

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	575.059	9.143	62.894	< 2e-16	***
scoresPC1	27.152	10.292	2.638	0.00842	**
scoresPC2	-33.986	21.052	-1.614	0.10665	
scoresPC3	-32.738	17.460	-1.875	0.06098	
scoresPC4	224.091	12.772	17.546	< 2e-16	***
scoresPC5	-16.984	11.932	-1.423	0.15483	
scoresPC6	-4.949	9.641	-0.513	0.60776	
scoresPC7	40.792	10.001	4.079	4.76e-05	***
scoresPC8	19.964	10.572	1.888	0.05916	
scoresPC9	-5.597	9.382	-0.597	0.55092	
scoresPC10	7.971	12.983	0.614	0.53933	
scoresPC11	76.374	16.565	4.611	4.34e-06	***
scoresPC12	-15.825	11.495	-1.377	0.16882	
scoresPC13	-9.904	10.412	-0.951	0.34163	
scoresPC14	-70.577	12.114	-5.826	6.86e-09	***
scoresPC15	54.311	13.122	4.139	3.68e-05	***
scoresPC16	64.135	11.377	5.637	2.04e-08	***
scoresPC17	-20.170	10.568	-1.909	0.05648	
scoresPC18	15.857	13.871	1.143	0.25316	
scoresPC19	-264.446	17.213	-15.363	< 2e-16	***
scoresPC20	-36.020	12.320	-2.924	0.00351	**
scoresPC21	-13.015	14.536	-0.895	0.37073	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 365.3 on 1574 degrees of freedom Multiple R-squared: 0.6406, Adjusted R-squared: 0.6358 F-statistic: 133.6 on 21 and 1574 DF, p-value: < 2.2e-16

Violent crime, defined by FBI Why choose 21? Something that is related, something that are not related?