

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE180400704

FCC REPORT

Applicant: HUNG WAI HOLDINGS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: 10.1" LCD non-touch screen android quad core player

Model No.: DT101-AS4G1-800

FCC ID: 2AB6Z-DT101-AS4G1

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 03 Apr., 2018

Date of Test: 03 Apr., to 23 Apr., 2018

Date of report issued: 24 Apr., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE180400704

2 Version

Version No.	Date	Description
00	24 Apr., 2018	Android player Main board with wireless module (FCC ID: 2AB6Z-A18RK31) and same antenna were used by the device, only AC Power Line Conducted Emission and Radiated emission were re-tested.

Tested by: Mike OU Date: 24 Apr., 2018

Test Engineer

Reviewed by: Date: 24 Apr., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	MEASUREMENT UNCERTAINTY	7
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	16
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
	6.8	FREQUENCY STABILITY	
7	TES	T SETUP PHOTO	61
Ω	FUT	CONSTRUCTIONAL DETAILS	62

4 Test Summary

Test Item	Section in CFR 47	Test Result
Antenna requirement	15.203 & 15.407 (a)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass*
26dB Occupied Bandwidth	15.407 (a) (5)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a) (1) (iv) & (a) (3)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard. N/A: Not Applicable. Test according to ANSI C63.4:2014 and ANSI C63.10:2013

Pass*: The test data refer to FCC ID: 2AB6Z-A18RK31.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI HOLDINGS LIMITED
Address: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Si Hong Kong	
Manufacturer/ Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address:	3rd floor, NO. 1, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	10.1" LCD non-touch screen android quad core player
Model No.:	DT101-AS4G1-800
Operation Frequency:	Band 1: 5180MHz-5240MHz, Band 4: 5745MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11acH20/802.11n20: 4, 802.11n40/802.11acH40: 2, 802.11acH80: 1 Band 4: 802.11a/802.11acH20/802.11n20: 5, 802.11n40/802.11acH40: 2, 802.11acH80: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac: 20/40/80MHz
Modulation technology (IEEE 802.11a):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11n):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11ac):	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	External Antenna
Antenna gain:	2.0 dBi
Power supply:	AC 120V/60Hz
AC adapter:	Model No.:PS30D120K 1500UD Input: AC100-240V, 50/60Hz, 800mA Output: DC 12V, 1500mA

Operation Frequ	Operation Frequency each of channel						
Band 1							
802.11a/8	02.11n20	802	2.11n40	80	2.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
		Ba	and 4	·			
802.11a/8	02.11n20	802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/802.11n20		802.11n40		802.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz	
Middle channel	5200MHz	Highest channel	5230MHz			
Highest channel	5240MHz					
		Band	4			
802.11a/8	302.11n20	802.11n40		802.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz	
Middle channel	5785MHz	Highest channel	5795MHz			
Highest channel	5825MHz					

5.3 Test environment and test mode

Operating Environment:						
Temperature:	24.0 °C	24.0 °C				
Humidity:	54 % RH	54 % RH				
Atmospheric Pressure:	1010 mbar					
Test mode:						
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.					
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:						
Per-scan all kind of data rate, an	d found the follow lis	et were the worst case.				
Mode		Data rate				
802.11a		6 Mbps				
802.11n20		6.5 Mbps				
802.11n40		13 Mbps				
802.11ac		29.3 Mbps				

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
FLY POWER	Switching Adapter	PS24A120K2000UD	N/A	N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty (Confidence of 95%)	
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	4.56 dB (k=2)	

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE180400704

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2018	02-24-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2018	02-24-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2018	02-24-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	02-25-2018	02-24-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an external antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15	5.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kH	Z					
Limit:	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	,				
	0.15-0.5	66 to 56*	0.15-0.5				
	0.5-5	56	0.5-5				
	5-30	60	5-30				
	* Decreases with the loga	arithm of the frequency.					
Test procedure	line impedance s 50ohm/50uH couplir 2. The peripheral device a LISN that provide termination. (Please photographs). 3. Both sides of A.C. lift interference. In orde	 a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 					
Test setup:	Refe	rence Plane					
	AUX Equipment E	.U.T Filter	— AC power				
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilizat Test table height=0.8m	tion Network					
Test Instruments:	Refer to section 5.9 for d	etails					
Test mode:	Refer to section 5.3 for d	etails.					
Test results:	Passed						

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)				
Test Method:	ANSI C63.10: 2013, KDB789033				
Limit:	Band 1: 24dBm Band 4: 30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-A18RK31				

6.4 Occupy Bandwidth

0.4 Occupy Bullawiatii	
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)
Test Method:	ANSI C63.10:2013 and KDB 789033
Limit:	Band 1/2/3/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-A18RK31

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a)(3)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-A18RK31				

6.6 Band Edge

Test Requirement:	FCC Part 15 E Sec	tion 15.407 (b)						
Test Method:	ANSI C63.10;2013	FCC Part 15 E Section 15.407 (b) ANSI C63.10:2013, KDB 789033						
Receiver setup:	Detector	RBW	VBW	Remark				
Receiver setup.	Peak	1MHz	3MHz	Peak Value				
	RMS	1MHz	3MHz	Average Value				
Limit:	Band		ıV/m @3m)	Remark				
Liiiiii			3.20	Peak Value				
	Band 1		1.00	Average Value				
			3.20	Peak Value				
	Band 4		1.00	Average Value				
	more above or belo 25 MHz above or belo the band edge increasing line edge increasing line Remark: 1. Band 1 limit: E[dBµV/m] = EIR E[dBµV/m] = EIR E[dBµV/m] = EIR E[dBµV/m] = EIR	be limited to a low the band edge elow the band edge easing linearly to band edge, and early to a level of P[dBm] + 95.2=68 P[dBm] + 95.2=10 P[dBm] + 95.2=11	level of -27 dB e increasinglinea lge, and from 25 o a level of 15.6 from 5 MHz abo 27 dBm/MHz at .2 dBuV/m, for EIF 5.2 dBuV/m, for E	m/MHz at 75 MHz or arly to 10 dBm/MHz at 5 MHz above or below 6 dBm/MHz at 5 MHz ove or below the band at the band edge. PR[dBm]=-27dBm. PR[dBm]=10dBm. PR[dBm]=15.6dBm.				
Test Procedure:	1. The EUT was perfect the ground at a to determine the control of the EUT was antenna, which tower. 3. The antenna has the ground to a Both horizonta make the measure of the EUT was antenna, which to ground to a Both horizonta make the measure of the suspension of the emission the limit specification of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and the suspension of the EUT was have 10dB mare and 10dB ma	colaced on the top a 3 meter camber in a meter camber in position of the set 3 meters away in was mounted or eight is varied from the and vertical polar surement. The antenna was a rotatable was to imum reading. The system was so width with Maxim level of the EUT ed, then testing ould be reported. Or gin would be re-	of a rotating taker. The table was highest radiation by from the interference of a value of a rizations of the left to Peak Detection Hold Mode in peak mode we could be stopped otherwise the ertested one by or highest and the ertested one by or highest and the left to Peak Detection of the left to Peak De	ference-receiving striable-height antenna four meters above the field strength, antenna are set to anged to its worst is from 1 meter to 4 grees to 360 degrees out Function and				

Measurement Data (worst case):

Band 1:

	Band 1 - 802.11a								
	Test channel: Lowest channel								
			Dete	ector: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.47	31.38	7.05	41.93	42.97	68.20	-25.23	Horizontal	
5150.00	46.46	31.38	7.05	41.93	42.96	68.20	-25.24	Vertical	
			Detec	tor: Average '	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.49	31.38	7.05	41.93	33.99	54.00	-20.01	Horizontal	
5150.00	37.44	31.38	7.05	41.93	33.94	54.00	-20.06	Vertical	
			-	1.18.1					
				nnel: Highest					
				ector: Peak Va	alue	l			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.59	30.82	7.11	41.89	43.63	68.20	-24.57	Horizontal	
5350.00	47.37	30.82	7.11	41.89	43.41	68.20	-24.79	Vertical	
			Detec	tor: Average '	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.11	30.82	7.11	41.89	33.15	54.00	-20.85	Horizontal	
5350.00	37.64	30.82	7.11	41.89	33.68	54.00	-20.32	Vertical	
Pomark:									

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT20)									
	Test channel: Lowest channel									
			D	etector: Peal	k					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.39	31.38	7.05	41.93	42.89	68.20	-25.31	Horizontal		
5150.00	46.21	31.38	7.05	41.93	42.71	68.20	-25.49	Vertical		
			De	tector: Avera	ge					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.27	31.38	7.05	41.93	33.77	54.00	-20.23	Horizontal		
5150.00	37.46	31.38	7.05	41.93	33.96	54.00	-20.04	Vertical		
				nnel: Highest						
	T		Dete	ector: Peak V	alue			T		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	47.52	30.82	7.11	41.89	43.56	68.20	-24.64	Horizontal		
5350.00	47.43	30.82	7.11	41.89	43.47	68.20	-24.73	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.11	30.82	7.11	41.89	33.15	54.00	-20.85	Horizontal		
5350.00	37.09	30.82	7.11	41.89	33.13	54.00	-20.87	Vertical		
5 /										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT40)									
	, ,								
Test channel: Lowest channel									
			1	ector: Peak V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.23	31.38	7.05	41.93	42.73	68.20	-25.47	Horizontal	
5150.00	46.37	31.38	7.05	41.93	42.87	68.20	-25.33	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.35	31.38	7.05	41.93	33.85	54.00	-20.15	Horizontal	
5150.00	37.36	31.38	7.05	41.93	33.86	54.00	-20.14	Vertical	
			Test char	nnel: Highest	channel				
			Dete	ector: Peak V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.54	30.82	35.37	7.11	41.89	68.20	-26.31	Horizontal	
5350.00	47.46	30.82	35.37	7.11	41.89	68.20	-26.31	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.12	30.82	7.11	41.89	33.16	54.00	-20.84	Horizontal	
5350.00	37.03	30.82	7.11	41.89	33.07	54.00	-20.93	Vertical	
Damadu							-		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT20)								
Test channel: Lowest channel								
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	46.39	31.38	7.05	41.93	42.89	68.20	-25.31	Horizontal
5150.00	46.44	31.38	7.05	41.93	42.94	68.20	-25.26	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	37.45	31.38	7.05	41.93	33.95	54.00	-20.05	Horizontal
5150.00	37.46	31.38	7.05	41.93	33.96	54.00	-20.04	Vertical
				nnel: Highest				
				ector: Peak Va	alue			I
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.54	30.82	7.11	41.89	37.58	68.20	-30.62	Horizontal
5350.00	42.71	30.82	7.11	41.89	38.75	68.20	-29.45	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	31.39	30.82	7.11	41.89	27.43	54.00	-26.57	Horizontal
5350.00	32.43	30.82	7.11	41.89	28.47	54.00	-25.53	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT40)								
Test channel: Lowest channel								
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	46.34	31.38	7.05	41.93	42.84	68.20	-25.36	Horizontal
5150.00	46.23	31.38	7.05	41.93	42.73	68.20	-25.47	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	37.29	31.38	7.05	41.93	33.79	54.00	-20.21	Horizontal
5150.00	37.42	31.38	7.05	41.93	33.92	54.00	-20.08	Vertical
				nnel: Highest				
				ector: Peak Va	alue			I
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.63	30.82	7.11	41.89	38.67	68.20	-29.53	Horizontal
5350.00	41.32	30.82	7.11	41.89	37.36	68.20	-30.84	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.83	30.82	7.11	41.89	28.87	54.00	-25.13	Horizontal
5350.00	31.14	30.82	7.11	41.89	27.18	54.00	-26.82	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT80)								
Test channel: Lowest channel								
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	46.32	31.38	7.05	41.93	42.82	68.20	-25.38	Horizontal
5150.00	46.39	31.38	7.05	41.93	42.89	68.20	-25.31	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	37.34	31.38	7.05	41.93	33.84	54.00	-20.16	Horizontal
5150.00	37.43	31.38	7.05	41.93	33.93	54.00	-20.07	Vertical
				nnel: Highest				
				ector: Peak Va	alue			I
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.24	30.82	35.37	7.11	41.89	68.20	-26.31	Horizontal
5350.00	42.59	30.82	35.37	7.11	41.89	68.20	-26.31	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.81	30.82	7.11	41.89	28.85	54.00	-25.15	Horizontal
5350.00	33.13	30.82	7.11	41.89	29.17	54.00	-24.83	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ra	nd 4 – 802.1	1a				
	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	46.36	31.03	7.69	41.94	43.14	78.20	-35.06	Horizontal	
5725.00	46.52	31.03	7.69	41.94	43.30	78.20	-34.90	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.36	31.03	7.69	41.94	33.14	54.00	-20.86	Horizontal	
5725.00	36.39	31.03	7.69	41.94	33.17	54.00	-20.83	Vertical	
				nnel: Highest					
			Dete	ctor: Peak Va	alue	T		T	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	46.42	31.37	7.90	42.03	43.66	78.20	-34.54	Horizontal	
5850.00	45.81	31.37	7.90	42.03	43.05	78.20	-35.15	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	36.36	31.37	7.90	42.03	33.60	54.00	-20.40	Horizontal	
5850.00	35.34	31.37	7.90	42.03	32.58	54.00	-21.42	Vertical	

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11n(HT20)												
	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	46.39	31.03	7.69	41.94	43.17	78.20	-35.03	Horizontal				
5725.00	46.54	31.03	7.69	41.94	43.32	78.20	-34.88	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	36.29	31.03	7.69	41.94	33.07	54.00	-20.93	Horizontal				
5725.00	36.36	31.03	7.69	41.94	33.14	54.00	-20.86	Vertical				
			Test chai	nnel: Highest	channel							
				ector: Peak V								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	46.44	31.37	7.90	42.03	43.68	78.20	-34.52	Horizontal				
5850.00	45.86	31.37	7.90	42.03	43.10	78.20	-35.10	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	36.36	31.37	7.90	42.03	33.60	54.00	-20.40	Horizontal				
5850.00	35.17	31.37	7.90	42.03	32.41	54.00	-21.59	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT40)										
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.37	31.03	7.69	41.94	43.15	78.20	-35.05	Horizontal			
5725.00	46.43	31.03	7.69	41.94	43.21	78.20	-34.99	Vertical			
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.37	31.03	7.69	41.94	33.15	54.00	-20.85	Horizontal			
5725.00	36.33	31.03	7.69	41.94	33.11	54.00	-20.89	Vertical			
				nnel: Highest							
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.56	31.37	7.90	42.03	43.80	78.20	-34.40	Horizontal			
5850.00	45.81	31.37	7.90	42.03	43.05	78.20	-35.15	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.24	31.37	7.90	42.03	33.48	54.00	-20.52	Horizontal			
5850.00	35.23	31.37	7.90	42.03	32.47	54.00	-21.53	Vertical			
Domorle								· · · · · · · · · · · · · · · · · · ·			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT20)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.37	31.03	7.69	41.94	43.15	78.20	-35.05	Horizontal			
5725.00	45.59	31.03	7.69	41.94	42.37	78.20	-35.83	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.33	31.03	7.69	41.94	33.11	54.00	-20.89	Horizontal			
5725.00	35.44	31.03	7.69	41.94	32.22	54.00	-21.78	Vertical			
				nnel: Highest							
				ector: Peak Va	alue	T		1			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.76	31.37	7.90	42.03	44.00	78.20	-34.20	Horizontal			
5850.00	45.31	31.37	7.90	42.03	42.55	78.20	-35.65	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.36	31.37	7.90	42.03	33.60	54.00	-20.40	Horizontal			
5850.00	35.31	31.37	7.90	42.03	32.55	54.00	-21.45	Vertical			
Pomork:											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.23	31.03	7.69	41.94	43.01	78.20	-35.19	Horizontal			
5725.00	45.34	31.03	7.69	41.94	42.12	78.20	-36.08	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.76	31.03	7.69	41.94	33.54	54.00	-20.46	Horizontal			
5725.00	35.44	31.03	7.69	41.94	32.22	54.00	-21.78	Vertical			
			Test cha	nnel: Highest	channel						
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.33	31.37	7.90	42.03	43.57	78.20	-34.63	Horizontal			
5850.00	45.26	31.37	7.90	42.03	42.50	78.20	-35.70	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.12	31.37	7.90	42.03	33.36	54.00	-20.64	Horizontal			
5850.00	35.39	31.37	7.90	42.03	32.63	54.00	-21.37	Vertical			
Domark:	·	·	·				·	•			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)										
			Test cha	nnel: Middle	channel						
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.43	31.03	7.69	41.94	43.21	78.20	-34.99	Horizontal			
5725.00	45.79	31.03	7.69	41.94	42.57	78.20	-35.63	Vertical			
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.51	31.03	7.69	41.94	43.29	54.00	-10.71	Horizontal			
5725.00	35.41	31.03	7.69	41.94	32.19	54.00	-21.81	Vertical			
			Test cha	nnel: Middle	channel						
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.46	31.37	7.90	42.03	43.70	78.20	-34.50	Horizontal			
5850.00	45.27	31.37	7.90	42.03	42.51	78.20	-35.69	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.19	31.37	7.90	42.03	33.43	54.00	-20.57	Horizontal			
5850.00	35.32	31.37	7.90	42.03	32.56	54.00	-21.44	Vertical			
								,			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band										
	Test Requirement:	FCC Part15 E Section 15.407(b)									
	Test Method:	ANSI C63.10: 2013									
	Test Frequency Range:	4.5 GHz to 5.15	GHz and	5.35	GHz to 5.46G	Hz					
	Test site:	Measurement Di	stance: 3	3m							
	Receiver setup:	Frequency	Detec		RBW	VB		Remark			
		Above 1GHz	Pea RMS		1MHz 1MHz	3M 3M		Peak Value Average Value			
	Limit:	Frequency Limit (dBuV/m @3m) Remark									
			Above 1GHz 74.00 Peak Value								
		54.00 Average Value									
	Test setup:	the ground a to determine 2. The EUT was antenna, wh tower. 3. The antenna the ground to Both horizon make the m 4. For each su case and the meters and to find the m 5. The test-reconspecified Base 6. If the emissing the limit specified Base of the EUT whave 10dB in the second s	at a 3 me e the pos as set 3 me as set 3 me as height to determental and easurem spected en the an the rota maximum seiver sys andwidth fon level cified, the would be margin w	eter casition of meters mount is varionine the vertical emission tents of the enter tent	amber. The tape of the highest is away from the top of the don the top of the done of the	ble was radiatishe interpretation of a value	is rota on. erferent variable to four of the fe e ante errange ets Fulle. was 1 ed ante emissione us	ted 360 degrees ace-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees			
		Ground Reference Plane Test Receiver									
	Test Instruments:	Refer to section 5.9 for details									
	Test mode:	Refer to section									
	Test results:	Passed									
		•									

Measurement Data (worst case):

Band 1:

			Ва	nd 1 – 802.1	1a						
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.34	29.30	6.80	42.05	41.39	74.00	-32.61	Horizontal			
4500.00	46.63	29.30	6.80	42.05	40.68	74.00	-33.32	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.32	29.30	6.80	42.05	31.37	54.00	-22.63	Horizontal			
4500.00	37.64	29.30	6.80	42.05	31.69	54.00	-22.31	Vertical			
			Test cha	nnel: Highest	channel						
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.49	30.54	7.18	41.85	42.36	74.00	-31.64	Horizontal			
5460.00	47.71	30.54	7.18	41.85	43.58	74.00	-30.42	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.26	30.54	7.18	41.85	32.13	54.00	-21.87	Horizontal			
5460.00	35.71	30.54	7.18	41.85	31.58	54.00	-22.42	Vertical			
Damanda	·	·	·	·	·	·	·	·			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT20)										
	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.31	29.30	6.80	42.05	41.36	74.00	-32.64	Horizontal			
4500.00	46.35	29.30	6.80	42.05	40.40	74.00	-33.60	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.32	29.30	6.80	42.05	31.37	54.00	-22.63	Horizontal			
4500.00	37.17	29.30	6.80	42.05	31.22	54.00	-22.78	Vertical			
				nnel: Highest							
			Dete	ctor: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.49	30.54	7.18	41.85	42.36	74.00	-31.64	Horizontal			
5460.00	47.76	30.54	7.18	41.85	43.63	74.00	-30.37	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.21	30.54	7.18	41.85	32.08	54.00	-21.92	Horizontal			
5460.00	35.74	30.54	7.18	41.85	31.61	54.00	-22.39	Vertical			
Domorke					<u> </u>	<u> </u>					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT40)										
	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.64	29.30	6.80	42.05	41.69	74.00	-32.31	Horizontal			
4500.00	46.23	29.30	6.80	42.05	40.28	74.00	-33.72	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.37	29.30	6.80	42.05	31.42	54.00	-22.58	Horizontal			
4500.00	37.26	29.30	6.80	42.05	31.31	54.00	-22.69	Vertical			
				nnel: Highest							
			Dete	ctor: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.42	30.54	7.18	41.85	42.29	74.00	-31.71	Horizontal			
5460.00	47.63	30.54	7.18	41.85	43.50	74.00	-30.50	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.40	30.54	7.18	41.85	32.27	54.00	-21.73	Horizontal			
5460.00	35.89	30.54	7.18	41.85	31.76	54.00	-22.24	Vertical			
Domorke					<u> </u>	<u> </u>					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT20)										
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.69	29.30	6.80	42.05	41.74	74.00	-32.26	Horizontal			
4500.00	46.54	29.30	6.80	42.05	40.59	74.00	-33.41	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.59	29.30	6.80	42.05	31.64	54.00	-22.36	Horizontal			
4500.00	36.44	29.30	6.80	42.05	30.49	54.00	-23.51	Vertical			
				nnel: Highest							
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	47.53	30.54	7.18	41.85	43.40	74.00	-30.60	Horizontal			
5460.00	46.34	30.54	7.18	41.85	42.21	74.00	-31.79	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	37.53	30.54	7.18	41.85	33.40	54.00	-20.60	Horizontal			
5460.00	36.64	30.54	7.18	41.85	32.51	54.00	-21.49	Vertical			
Romark.											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT40)										
	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.53	29.30	6.80	42.05	41.58	74.00	-32.42	Horizontal			
4500.00	46.59	29.30	6.80	42.05	40.64	74.00	-33.36	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.43	29.30	6.80	42.05	31.48	54.00	-22.52	Horizontal			
4500.00	36.34	29.30	6.80	42.05	30.39	54.00	-23.61	Vertical			
				nnel: Highest							
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	47.63	34.90	7.18	41.85	47.86	74.00	-26.14	Horizontal			
5460.00	46.44	34.90	7.18	41.85	46.67	74.00	-27.33	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	37.59	34.90	7.18	41.85	37.82	54.00	-16.18	Horizontal			
5460.00	36.41	34.90	7.18	41.85	36.64	54.00	-17.36	Vertical			
Domorke											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT80)											
	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	47.38	29.30	6.80	42.05	41.43	74.00	-32.57	Horizontal				
4500.00	46.46	29.30	6.80	42.05	40.51	74.00	-33.49	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	37.64	29.30	6.80	42.05	31.69	54.00	-22.31	Horizontal				
4500.00	36.23	29.30	6.80	42.05	30.28	54.00	-23.72	Vertical				
				nnel: Highest								
			1	ector: Peak Va	alue	T						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	47.69	30.54	7.18	41.85	43.56	74.00	-30.44	Horizontal				
5460.00	46.63	30.54	7.18	41.85	42.50	74.00	-31.50	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	37.47	30.54	7.18	41.85	33.34	54.00	-20.66	Horizontal				
5460.00	36.56	30.54	7.18	41.85	32.43	54.00	-21.57	Vertical				
Pomork:												

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Band 4 – 802.11a												
	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	46.46	30.82	7.11	41.89	42.50	74.00	-31.50	Horizontal				
5350.00	45.71	30.82	7.11	41.89	41.75	74.00	-32.25	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	36.26	30.82	7.11	41.89	32.30	54.00	-21.70	Horizontal				
5350.00	35.31	30.82	7.11	41.89	31.35	54.00	-22.65	Vertical				
			Test cha	nnel: Lowest	channel							
				ector: Peak Va								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.46	30.54	7.18	41.85	42.33	74.00	-31.67	Horizontal				
5460.00	45.32	30.54	7.18	41.85	41.19	74.00	-32.81	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.16	30.54	7.18	41.85	32.03	54.00	-21.97	Horizontal				
5460.00	35.43	30.54	7.18	41.85	31.30	54.00	-22.70	Vertical				

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT20)											
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	46.56	30.82	7.11	41.89	42.60	74.00	-31.40	Horizontal				
5350.00	45.31	30.82	7.11	41.89	41.35	74.00	-32.65	Vertical				
			Detec	tor: Average '	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	36.36	30.82	7.11	41.89	32.40	54.00	-21.60	Horizontal				
5350.00	35.33	30.82	7.11	41.89	31.37	54.00	-22.63	Vertical				
			Toot obo	nnel: Lowest	ahannal							
				ector: Peak Va								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.32	30.54	7.18	41.85	42.19	74.00	-31.81	Horizontal				
5460.00	45.49	30.54	7.18	41.85	41.36	74.00	-32.64	Vertical				
			Detec	tor: Average '	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.23	30.54	7.18	41.85	32.10	54.00	-21.90	Horizontal				
5460.00	35.33	30.54	7.18	41.85	31.20	54.00	-22.80	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 - 802.11n(HT40)											
	Test channel: Lowest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	46.61	30.82	7.11	41.89	42.65	74.00	-31.35	Horizontal				
5350.00	46.36	30.82	7.11	41.89	42.40	74.00	-31.60	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	34.31	30.82	7.11	41.89	30.35	54.00	-23.65	Horizontal				
5350.00	35.29	30.82	7.11	41.89	31.33	54.00	-22.67	Vertical				
				nnel: Lowest								
			1	ector: Peak Va	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.34	30.54	7.18	41.85	42.21	74.00	-31.79	Horizontal				
5460.00	45.33	30.54	7.18	41.85	41.20	74.00	-32.80	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.31	30.54	7.18	41.85	32.18	54.00	-21.82	Horizontal				
5460.00	35.36	30.54	7.18	41.85	31.23	54.00	-22.77	Vertical				
	·	·	·		·	·	·					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT20)											
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	46.49	30.82	7.11	41.89	42.53	74.00	-31.47	Horizontal			
5350.00	45.71	30.82	7.11	41.89	41.75	74.00	-32.25	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	36.26	30.82	7.11	41.89	32.30	54.00	-21.70	Horizontal			
5350.00	35.21	30.82	7.11	41.89	31.25	54.00	-22.75	Vertical			
			Tost cha	nnel: Lowest	channol						
				ector: Peak V							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.48	30.54	7.18	41.85	42.35	74.00	-31.65	Horizontal			
5460.00	45.34	30.54	7.18	41.85	41.21	74.00	-32.79	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.29	30.54	7.18	41.85	32.16	54.00	-21.84	Horizontal			
5460.00	35.43	30.54	7.18	41.85	31.30	54.00	-22.70	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)											
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	46.54	30.82	7.11	41.89	42.58	74.00	-31.42	Horizontal				
5350.00	45.62	30.82	7.11	41.89	41.66	74.00	-32.34	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	36.37	30.82	7.11	41.89	32.41	54.00	-21.59	Horizontal				
5350.00	35.43	30.82	7.11	41.89	31.47	54.00	-22.53	Vertical				
			Test cha	nnel: Lowest	channel							
			Dete	ector: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.53	30.54	7.18	41.85	42.40	74.00	-31.60	Horizontal				
5460.00	45.44	30.54	7.18	41.85	41.31	74.00	-32.69	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.23	30.54	7.18	41.85	32.10	54.00	-21.90	Horizontal				
5460.00	35.51	30.54	7.18	41.85	31.38	54.00	-22.62	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)											
Test channel: Middle channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	46.61	30.82	7.11	41.89	42.65	74.00	-31.35	Horizontal				
5350.00	46.53	30.82	7.11	41.89	42.57	74.00	-31.43	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	34.34	30.82	7.11	41.89	30.38	54.00	-23.62	Horizontal				
5350.00	35.39	30.82	7.11	41.89	31.43	54.00	-22.57	Vertical				
			Test cha	ınnel: Middle	channel							
			Dete	ctor: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.41	30.54	7.18	41.85	42.28	74.00	-31.72	Horizontal				
5460.00	45.46	30.54	7.18	41.85	41.33	74.00	-32.67	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.35	30.54	7.18	41.85	32.22	54.00	-21.78	Horizontal				
5460.00	35.36	30.54	7.18	41.85	31.23	54.00	-22.77	Vertical				
				·								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Method: ANSI C63.10: 2013 Test Frequency Range: Measurement Distance: 3m Frequency Detector RBW VBW Remark AND C63.10: 2013 Test Site: Measurement Distance: 3m Frequency Detector RBW VBW Remark AND C63.10: 2013 SMHz 2 Peak 1MHz 300kHz 0uasi-peak Value Above 1GHz Peak 1MHz 30kHz Average Value Frequency Limit (dBuV/m @3m) Remark 30MHz-89MHz 43.5 Quasi-peak Value 216MHz-960MHz 45.0 Quasi-peak Value 216MHz-960MHz 45.0 Quasi-peak Value Above 1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value Remark: Above 1GHz imit: EIGBy/Wm] = EIRP[dBm] + 95.2-68.2 dBuV/m, for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 m(below 1GHz)/f. 5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and verifical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was tuned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values	6.7.2 Unwanted Emission										
Test site: Measurement Distance: 3m Receiver setup: Frequency Jounsi-peak 120kHz 300kHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Above 1GHz RNS 1MHz 3MHz Peak Value Above 1GHz RNS 1MHz 3MHz Peak Value Above 1GHz RNS 1MHz 3MHz Average Value Limit: Frequency Limit (BBu/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-950MHz 45.0 Quasi-peak Value 216MHz-950MHz 45.0 Quasi-peak Value Above 1GHz 54.0 Average Value Above 1GHz 54.0 Average Value Remark: Above 1GHz Imit: El@Bu/mi = EIRP[dBm] + 95.2=68.2 dBu/m, for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz]/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup:	Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205							
Test site: Measurement Distance: 3m RBW VBW Remark	Test Method:	ANSI C63.10: 20)13								
Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak Value Above 1GHz Peak 1120kHz 30MHz Quasi-peak Value Above 1GHz RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 88MHz-216MHz 44.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value 46.0 Qua	Test Frequency Range:	30MHz to 40GHz									
30MHz-1GHz	Test site:	Measurement Di	stance: 3m								
SOMHz-16Hz Quasi-peak 120kHz 300kHz Quasi-peak Value	Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark				
Limit: Frequency Limit (JBUVIM @3m) Remark 300Hz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-16Hz 54.0 Quasi-peak Value Above 1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Quasi-peak Value Remark: Above 1GHz 154.0 Quasi-peak Value Above 1GHz 154.0 Quasi-peak Value Remark: Above 1GHz 154.0 Quasi-peak Value Remark: Above 1GHz 154.0 Quasi-peak Value 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotal table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup:	'	30MHz-1GHz	Quasi-peak	120kHz	300)kHz	Quasi-peak Value				
Limit: Frequency		Above 1GHz	Above 1GHz								
30MHz-28MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 68.20 Peak Value Above 1GHz Imit: 54.00 Average Value Above 1GHz Imit: E[dByV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz					•	1Hz					
B8MHz-216MHz	Limit:										
### Test Procedure: 216MHz-960MHz											
Above 1GHz Above 1GHz Above 1GHz Remark: Above 1GHz limit: EldByLVm] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Below 1GHz											
Above 1GHz Remark: Above 1GHz limit: Above 1GHz limit: EldByU/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and then the antenna was tuned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
Remark: Above 1GHz limit: E[dByVm] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz		68 20 Peak Value									
Above 1GHz limit: E[dByVm] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz		Above 1GH	Above 1(iHz								
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup:		Remark:									
1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz	T . D . I										
table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz	l est Procedure:										
radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz		2. The EUT was set 3 meters away from the interference-receiving									
3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz			nich was mour	ited on the top	of a va	ariable [.]	-height antenna				
ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz			a height is var	ied from one m	neter to	o four n	neters above the				
horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz Antenna Towor Antenna Towor											
maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz											
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz Antenna Tower Antenna Tower Antenna Tower Antenna Tower Antenna Tower Antenna Tower					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 000 (aogroco to fina tifo				
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz		5. The test-red	eiver system				ction and				
limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz Below 1GHz		· ·									
EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz Antenna Tower											
10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Below 1GHz Below 1GHz Antenna Tower Antenna Tower Antenna Tower RF Test Receiver Tum Table 0.8m Antenna Antenna											
Test setup: Below 1GHz Below 1GHz Antenna Tower											
Antenna Tower Search Antenna RF Test Receiver Tum Table 0.8m A		average me	thod as speci	ied and then re	eporte	d in a c	lata sheet.				
Antenna Tower Search Antenna RF Test Receiver Tum Table 0.8m Antenna	Test setup:	Below 1GHz									
Search Antenna RF Test Receiver Tum Jo.8m A											
Antenna RF Test Receiver Tum Table A A Table			Ī	$\overline{\Pi}$	'	Antenna	Tower				
Antenna RF Test Receiver Tum Table A A Table				.							
4m RF Test Receiver			> 3m <								
Tum Table 0.8m Im		EUT	1			Antenn	ia				
Tum O.8m Im A											
Tum Table 0.8m 1m							\				
			Toble U.om			\ [i	<u>↓</u>				
/		_				_ 겓					
Ground Plane ———			/	///// ////////////////////////////////	/////	// _					
			Ground Plane								

Measurement Data (worst case):

Below 1GHz

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

Test channel: Lowest channel Detector: Peak Value
Frequency (MHz)
Level (dBuV)
Test channel: Middle channel Detector: Peak Value
Prequency (MHz)
Frequency (MHz)
Cable Cable Cas
Test channel: Middle channel
Test channel: Middle channel
Prequency (MHz)
Frequency (MHz) Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) polarization (dB) 10400.00 46.59 36.96 9.85 41.95 51.45 68.20 -16.75 Vertical 10400.00 46.96 36.96 9.85 41.95 51.82 68.20 -16.38 Horizontal Detector: Average Value Frequency (MHz) Read Level (dBwV) Cable Loss (dB) Preamp Factor (dB) Level (dBwV/m) Limit Line (dBwV/m) Over Limit (dBwV/m) polarization 10400.00 36.81 36.96 9.85 41.95 41.67 54.00 -12.33 Vertical 10400.00 37.69 36.96 9.85 41.95 42.55 54.00 -11.45 Horizontal
Level (dBuV) (dB/m)
10400.00
Prequency (MHz) Read Level (dBuV) (dB/m) Cable Loss (dB) Factor
Frequency (MHz) Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) polarization 10400.00 36.81 36.96 9.85 41.95 41.67 54.00 -12.33 Vertical 10400.00 37.69 36.96 9.85 41.95 42.55 54.00 -11.45 Horizontal
Frequency (MHz) Level (dBuV) Factor (dB/m) Cable Loss (dB) Factor (dB) Level (dBuV/m) Line (dBuV/m) Limit (dB) polarization 10400.00 36.81 36.96 9.85 41.95 41.67 54.00 -12.33 Vertical 10400.00 37.69 36.96 9.85 41.95 42.55 54.00 -11.45 Horizontal
10400.00 37.69 36.96 9.85 41.95 42.55 54.00 -11.45 Horizontal
Test channel: Highest channel
Detector: Peak Value
Frequency (MHz) Read Level (dBuV) Read Level (dB/m) Cable Loss (dB) Cable Factor (dB) Figure Factor (dB) Figure Factor (dB) Cable Factor (dB) Figure Factor (dB) Figure Factor (dBuV/m) Figu
10480.00 47.63 37.49 10.81 42.29 53.64 68.20 -14.56 Vertical
10480.00 46.53 37.49 10.81 42.29 52.54 68.20 -15.66 Horizontal
Detector: Average Value
Frequency (MHz) Read Level (dBuV) (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Level (dBuV/m) Cable Factor (dB) Cable Factor (dB) Factor (dB) Cable Factor (dB) Ca
10480.00 38.62 37.49 10.81 42.29 44.63 54.00 -9.37 Vertical
10480.00 37.31 37.49 10.81 42.29 43.32 54.00 -10.68 Horizontal

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test chann	- 802.11n(l				
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.69	36.94	9.75	42.02	52.36	68.20	-15.84	Vertical
10360.00	47.64	36.94	9.75	42.02	52.31	68.20	-15.89	Horizonta
			Detector	: Average	Value			•
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	37.29	36.94	9.75	42.02	41.96	54.00	-12.04	Vertical
10360.00	37.41	36.94	9.75	42.02	42.08	54.00	-11.92	Horizonta
			Test chann	nel: Middle	channel			
			Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	46.63	36.96	9.85	41.95	51.49	68.20	-16.71	Vertical
10400.00	46.91	36.96	9.85	41.95	51.77	68.20	-16.43	Horizonta
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	36.82	36.96	9.85	41.95	41.68	54.00	-12.32	Vertical
10400.00	37.69	36.96	9.85	41.95	42.55	54.00	-11.45	Horizonta
			Test channe	el: Highest or: Peak Va				
_	Read	Antenna		Preamp		Limit	Over	
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Cable Loss (dB)	Factor (dB)	Level (dBuV/m)	Line (dBuV/m)	Limit (dB)	polarizatio
10480.00	47.64	37.49	10.81	42.29	53.65	68.20	-14.55	Vertical
10480.00	46.59	37.49	10.81	42.29	52.60	68.20	-15.60	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	38.48	37.49	10.81	42.29	44.49	54.00	-9.51	Vertical
10480.00	37.62	37.49	10.81	42.29	43.63	54.00	-10.37	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Test channel: Lowest channel											
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10380.00	47.76	36.94	9.75	42.02	52.43	68.20	-15.77	Vertical				
10380.00	47.61	36.94	9.75	42.02	52.28	68.20	-15.92	Horizontal				
Detector: Average Value												
Frequency (MHz)	· · I LOVAL I FACTOR I FACTOR I LINA I LINA I LINATIVATION I											
10380.00	37.23	36.94	9.75	42.02	41.90	54.00	-12.10	Vertical				
10380.00	37.42	36.94	9.75	42.02	42.09	54.00	-11.91	Horizontal				
			-	11111								
			Test chann									
	T		Detecto	or: Peak V	alue		Г _					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10460.00	46.54	37.49	10.81	42.29	52.55	68.20	-15.65	Vertical				
10460.00	46.93	37.49	10.81	42.29	52.94	68.20	-15.26	Horizontal				
			Detector	: Average	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10460.00	36.92	37.49	10.81	42.29	42.93	54.00	-11.07	Vertical				
10460.00	37.69	37.49	10.81	42.29	43.70	54.00	-10.30	Horizontal				

Band 1 - 802.11n(HT40)

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1 –	802.11ac	(HT20)		Band 1 – 802.11ac(HT20)										
			Test chann	el: Lowest	channel												
			Detecto	or: Peak V	alue												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization									
10360.00	47.62	36.94	9.75	42.02	52.29	68.20	-15.91	Vertical									
10360.00	47.69	36.94	9.75	42.02	52.36	68.20	-15.84	Horizontal									
			Detector	: Average	Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization									
10360.00	37.55	36.94	9.75	42.02	42.22	54.00	-11.78	Vertical									
10360.00	37.62	36.94	9.75	42.02	42.29	54.00	-11.71	Horizontal									
	Test channel: Middle channel																
			Detecto	or: Peak V	alue												
Frequency (MHz) Read Level Factor (dBuV) Read Level Factor (dB/m) Cable Factor (dB) Cable Factor (dB) Factor (dB) Factor (dB) Cable Factor (dBuV/m) Factor (dBuV/m) Cable Factor (dBuV/m) Factor (dBuV/m) Factor (dBuV/m) Factor (dBuV/m) Factor (dBuV/m)																	
10400.00	46.66	36.96	9.85	41.95	51.52	68.20	-16.68	Vertical									
10400.00	46.91	36.96	9.85	41.95	51.77	68.20	-16.43	Horizontal									
			Detector	: Average	Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization									
10400.00	36.89	36.96	9.85	41.95	41.75	54.00	-12.25	Vertical									
10400.00	37.63	36.96	9.85	41.95	42.49	54.00	-11.51	Horizontal									
			Took obour	al. I liabaat	ah ann al												
			Test channe														
	Dood	Austonia	Detecti	or: Peak V	alue	1 !!4	Over										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization									
10480.00	47.64	37.49	10.81	42.29	53.65	68.20	-14.55	Vertical									
10480.00	46.53	37.49	10.81	42.29	52.54	68.20	-15.66	Horizontal									
			Detector	: Average	Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization									
10480.00	38.47	37.49	10.81	42.29	44.48	54.00	-9.52	Vertical									
10480.00 37.63 37.49 10.81 42.29 43.64 54.00 -10.36 Horizontal																	
Remark: 1. Final Level = I	Receiver Read	level + Ante	nna Factor + 0	Cable Loss	– Preamplifie	Factor.											

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Lowest channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	47.82	36.94	9.75	42.02	52.49	68.20	-15.71	Vertical
10380.00	47.63	36.94	9.75	42.02	52.30	68.20	-15.90	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	37.24	36.94	9.75	42.02	41.91	54.00	-12.09	Vertical
10380.00	37.49	36.94	9.75	42.02	42.16	54.00	-11.84	Horizontal
			Test channe					
			Detecti	or: Peak V	alue		0	I
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	46.52	37.49	10.81	42.29	52.53	68.20	-15.67	Vertical
10460.00	46.93	37.49	10.81	42.29	52.94	68.20	-15.26	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	36.92	37.49	10.81	42.29	42.93	54.00	-11.07	Vertical
10460.00	37.63	37.49	10.81	42.29	43.64	54.00	-10.36	Horizontal

Band 1 - 802.11ac(HT40)

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT80)								
	Test channel: Lowest channel								
			Detecto	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10420.00	47.89	36.96	9.85	41.95	52.75	68.20	-15.45	Vertical	
10420.00	47.66	36.96	9.85	41.95	52.52	68.20	-15.68	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10420.00	37.44	96.96	9.85	41.95	102.30	54.00	48.30	Vertical	
10420.00	37.61	36.96	9.85	41.95	42.47	54.00	-11.53	Horizontal	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Band 4:								
			Band	l 4 – 802.1	1a			
Test channel: Lowest channel								
			Detect	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.37	37.49	10.81	42.29	53.38	74.00	-20.62	Vertical
11490.00	46.63	37.49	10.81	42.29	52.64	74.00	-21.36	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.29	37.49	10.81	42.29	42.30	54.00	-11.70	Vertical
11490.00	37.14	37.49	10.81	42.29	43.15	54.00	-10.85	Horizontal
	Test channel: Middle channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.26	37.55	10.78	42.27	51.32	74.00	-22.68	Vertical
11570.00	46.33	37.55	10.78	42.27	52.39	74.00	-21.61	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.03	37.55	10.78	42.27	42.09	54.00	-11.91	Vertical
11570.00	35.52	37.55	10.78	42.27	41.58	54.00	-12.42	Horizontal
			Test chann					
			Detect	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.24	37.60	10.76	42.26	52.34	74.00	-21.66	Vertical
11650.00	46.37	37.60	10.76	42.26	52.47	74.00	-21.53	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.63	37.60	10.76	42.26	42.73	54.00	-11.27	Vertical
11650.00 Remark:	35.86	37.60	10.76	42.26	41.96	54.00	-12.04	Horizontal
nemark.								

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 -	- 802.11n(l	HT20)			
	Test channel: Lowest channel							
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.12	37.49	10.81	42.29	53.13	74.00	-20.87	Vertical
11490.00	47.03	37.49	10.81	42.29	53.04	74.00	-20.96	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.17	37.49	10.81	42.29	42.18	54.00	-11.82	Vertical
11490.00	37.06	37.49	10.81	42.29	43.07	54.00	-10.93	Horizontal
	Test channel: Middle channel							
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.12	37.55	10.78	42.27	51.18	74.00	-22.82	Vertical
11570.00	46.49	37.55	10.78	42.27	52.55	74.00	-21.45	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.12	37.55	10.78	42.27	42.18	54.00	-11.82	Vertical
11570.00	35.58	37.55	10.78	42.27	41.64	54.00	-12.36	Horizontal
			Test channe					
	1		Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.36	37.60	10.76	42.26	52.46	74.00	-21.54	Vertical
11650.00	46.27	37.60	10.76	42.26	52.37	74.00	-21.63	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	37.06	37.60	10.76	42.26	43.16	54.00	-10.84	Vertical
11650.00 Remark:	36.12	37.60	10.76	42.26	42.22	54.00	-11.78	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 4 – 802.11n(HT40)							
	Test channel: Lowest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	45.89	37.50	10.81	42.29	51.91	74.00	-22.09	Vertical
11510.00	46.12	37.50	10.81	42.29	52.14	74.00	-21.86	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.58	37.50	10.81	42.29	41.60	54.00	-12.40	Vertical
11510.00	36.85	37.50	10.81	42.29	42.87	54.00	-11.13	Horizontal
			Test channe	el· Highest	channel			
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.38	37.56	10.77	42.27	52.44	74.00	-21.56	Vertical
11590.00	45.21	37.56	10.77	42.27	51.27	74.00	-22.73	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	35.57	37.56	10.77	42.27	41.63	54.00	-12.37	Vertical
11590.00	36.42	37.56	10.77	42.27	42.48	54.00	-11.52	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 –	802.11ac	(HT20)			
	Test channel: Lowest channel							
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.24	37.49	10.81	42.29	53.25	74.00	-20.75	Vertical
11490.00	46.69	37.49	10.81	42.29	52.70	74.00	-21.30	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.86	37.49	10.81	42.29	42.87	54.00	-11.13	Vertical
11490.00	37.24	37.49	10.81	42.29	43.25	54.00	-10.75	Horizontal
	Test channel: Middle channel							
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.66	37.55	10.78	42.27	51.72	74.00	-22.28	Vertical
11570.00	46.32	37.55	10.78	42.27	52.38	74.00	-21.62	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.27	37.55	10.78	42.27	42.33	54.00	-11.67	Vertical
11570.00	35.63	37.55	10.78	42.27	41.69	54.00	-12.31	Horizontal
			Test channe					
	ı		Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.76	37.60	10.76	42.26	52.86	74.00	-21.14	Vertical
11650.00	46.61	37.60	10.76	42.26	52.71	74.00	-21.29	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.69	37.60	10.76	42.26	42.79	54.00	-11.21	Vertical
11650.00 Remark:	35.75	37.60	10.76	42.26	41.85	54.00	-12.15	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 4 – 802.11ac(HT40)							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	45.86	37.50	10.81	42.29	51.88	74.00	-22.12	Vertical
11510.00	46.67	37.50	10.81	42.29	52.69	74.00	-21.31	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.62	37.50	10.81	42.29	41.64	54.00	-12.36	Vertical
11510.00	36.83	37.50	10.81	42.29	42.85	54.00	-11.15	Horizontal
			Test channe	el: Highest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.34	37.56	10.77	42.27	52.40	74.00	-21.60	Vertical
11590.00	45.29	37.56	10.77	42.27	51.35	74.00	-22.65	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	35.63	37.56	10.77	42.27	41.69	54.00	-12.31	Vertical
11590.00	36.41	37.56	10.77	42.27	42.47	54.00	-11.53	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)								
	Test channel: Middle channel								
			Detect	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	46.89	37.54	10.81	42.29	52.95	74.00	-21.05	Vertical	
11550.00	46.61	37.54	10.81	42.29	52.67	74.00	-21.33	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	35.83	37.54	10.81	42.29	41.89	54.00	-12.11	Vertical	
11550.00	36.87	37.54	10.81	42.29	42.93	54.00	-11.07	Horizontal	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

0.0 Trequency stability						
Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Temperature Chamber					
	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-A18RK31					