

7(X) = [0.4,03,02,0,1] # media 1,2,3 44 b) P(x) = 2(x) 1=1,2,3,4 e) P(X:/x) = 2(x/20) 7(X) 1,1=1,2,4 をv: 人(x/xj)T(xi) d) noranchizada Made mis portable X=3 Myse paranetrs X=277 a) $\hat{\lambda} = \sum \lambda_1 \pi(\lambda_1) \hat{\lambda} = (1)(0.4) + (1)(0.3) + (3)(0.2) + (4)(0.1)$ 1=0.4+0.6+0.6+0.4=2 b) L(=) = \(\lambda_i\) = \(\l λ=3)(4|3)=3e⁻³81.e⁻³ λ=2)(4|2)=24e⁻² 16.e⁻² ~ 0.0701 x=4 [(4|4)=4"=" = 256 e-4 = 0.1563 $P(\lambda_i/2) = \frac{1}{2} \frac{1}{2}$ (0.1563)(0.1) + (0.168)(0.2) + (0.0077)(0.4) + (0.0902)(0.3) = 0.00303 + 0.02706 +0.0336 +0.01363 = 0.07937 = P(21/2) = (0.0077)(0.4) ~ 0.0388

6) alamodar 5 de 7 libros. P(7,5) = 71 = 7 x 6 x 5 x 4 x 3 = 2570 7) comite de 2 alumnos, entre 10 alumnos, lles pares en la elemento. C(10,2) = 101 = 45 8) Ptalabras deforentes en REMENBER permutacion > 8! - 40320 = 1680. a) equipo de 6 on 12, Sienpre con Malin C(11,5) = 11! = 11x10x9x8x7 -462 16) jugos den 4 lutur, un jugo minimo 2 /10/5 ((4,2) + ((4,3) + ((4,4) = 6+4+1=11 11) prosidente en wiso 10 estudentes, prosi, visce surborg P(10,3) = 10! = 10×9×8=720. 12) premio jampein y subcampéon es 8 equip p(9/2) = 8! = 8 × 7 = 56 13) rémeros 3 union distinta, 1-7 p(7,3) = 7' = 7x6x5 = 210 94) réneros 3 al 102 1-7 7 7 7 7 7 = 343 15) comité de 3 estudiantes en un grupo de 16 C(10, 3) = 10! - 120

3-combinacións de S Sea 3= 12-a, 1-6,3-01 Si S tiene Kobjeta de dotiatos tipos 11-a, 1-b, 1-c/ 41-a, 2-c4 at hay 11-1 combinaciones 41-6,200 33-6 Den: Sea : n-tipos de objetos de s a, az, -- , ax ta 5= 100-01/00-02, -- , 00-0x1 adquer f-combinación de 5 de la forma 3x1-a1, x2-a2, --, xx-ax4 En xentido contrario Cada sevenua 71+x2+-++ xx=1 corresponde a Una r- rombinación de s el número de selverenes para la evarien. X1+X2+ -- + XK = (X1, X2, 2-- XK EN. El número de solocionez es igual a las permotaciones t = <1.1, (K-1)-+ 4 de (+K-1 objets, de do) Dado Via pernutación de t X+1 * s divide (-1 s in Kgipps).

Sea xilsa la izqueida del primer * X2 15 enta entre di primero or el xgindo x

xils esta a la derecha del sitimo * . x1, x2, ... xx en

xil x2 + ... + xx = (. A la inversa, sean x1, x2, ..., xk con x1+x2+... + xx = 1

podemos invertir los pasos unteriores y construir una parmutación de T. Así, el número de r-combinaçiones del multiret S es igual al número de permutaciones del nulticonjunto T. El número de l'- combinaciones de ((+ K-1)! = (+ N-1) m distintos objetos, no finitas cl (n-1)! 5=100-1,00-2, --, 00-KY El júmero de xuemuas Es cierto si la repetición de nimeros de

2 dados a) suma es 8 P(ANB) SP(A) -> (2,6) (3,5) (4,4) P(A) = 36 (5,3) (6,2) P(AQB) = 2 =1 + P(A)-RB) = 5 = 36 = Ay B son eventos independientes 6) 3 dados & 1 par? (1,4) (2,2,2) (5,3,3) (4,0,0,0) (5,5,5) (1, x, 1) (2,2, x) (3,3,x) (4,4,x) (5,5,x) (1,2,1) (6,6,2) (1,2,1) (5,5,4) 216 treasur un pan 276 (2/1/1) -> sueces x 6 wer. 96 1 par P(A) = 25 4 moma S dodos de 6 caran 1,1, x,y 7) x st 2 pares P(B-75 1, x, 1, y, 7 (1,x,y,1, z) xsi (1,x,y, z, 1) xsi (x,1,1,y,z) xsi 10 xs 1 (x,1,4,1,2) x51 (x,1,7,2,1) x 5! (x,7,1,1,2) x51 (x,y,1,2,1)x5! (x,y, t, 1, 1) x 5!

e) De la primera les de tamadramica $\frac{1}{4} = \left(\frac{2\varepsilon}{92}\right)^N = \left(\frac{2\varepsilon}{92}\right)^N \left(\frac{2\varepsilon}{9x}\right)^N$ $\chi(T) = \frac{1}{1 + e^{+\frac{\Delta E}{K_{aT}}}}$ 35 = -KBNCIOX+1 -10(1-x)-1] = -KBN[10 x] $x = \frac{1}{N(E_1 - E_0)} (E - N_{E_0}) \frac{\partial x}{\partial E} = \frac{1}{N(E_1 - E_0)}$ 1 -- KBN[10 x]. 1 -- KB 10 x 1-x] N(E1-E0) -- KB 10 x -- KB 10 x 1-x $\frac{10 \times - \underbrace{\epsilon_1 - \epsilon_0}}{1 - \chi} = \underbrace{\epsilon_{1} - \epsilon_0}_{K_BT} \times \underbrace{\epsilon_{1} - \epsilon_0}_{1 + e^{-K_BT}}$ 1) Para bajas y altos temperaturos T-> 0, T-> 0 , enwente alt) Enteria (im SCT) = KBNIN(2) T->0 / e KAT -> 1 => x(T) -> 1 (las particulas distribuidas) a alta temperatura. (m S(T) = KB N in (2) (a alta temperatura al sixtema a canza T>00 Probabilidad en cada estado 9 de control de un bolomen vi=v a un volumen vi=2v. d'alule el la entropia a alta :
la entropia a alta :
temperation. Ambos tionen In2.
por lo que crecen de manera
similari debido a la expansión
den igual distribución de portiula AS= ORIOV2 = Orio2 da = da = Pdv = nRdv Sds = fordv As= Jdo DS=OR Sidu DS=ORIO(V2)

11) Sea X = ax Xx + ax Xx + ... + craxa ax ax ex モ(メ)コモ(スプオ) = ので(スプ) Van(x) = Van(a/x) + a cov(x)a av mother avoignade X1 4 ((2, 2) X2 4 NEG. 1) 23 - U(0,10) N=10! X= X1 +2 X2 - X2 COV(X,X) = Van(X)= & d) demostre que Van (1 2 x2) = 12 2 Van(x0+ 2 2 2 (000(x0,x)) COV(X, Y) = ER X - EC x3)(Y + EC Y3) X = (X1, -, X) o mitie (10 10) = (COV(X1, X1) COV(X1, X2) -- - COV (X1, X1) Z: ; = (0 v (× (×)) ZEE = COVCXE, XE) = Van (XC) CON(XN, XN) GOCXA, XN - GOV(XN, XN) = \(\frac{1}{2} \acq, \(\frac{1}{2} \cdot \)\) 4= 1 2 (x - P)2 = 1 2 (x 2 - 2 NX + N3) = (1 = x2) - 2 p (1 = x,) + p2 = # tx2 2 - p2 N= ECX:] = 1 = 2 = (1 = x.2) 32 = 1 2 (x,-x,)2 = 1 2 (x,-x,)2

 $\delta^2 = \frac{1}{N^2} \sum_{(x_i - x_j)^2} (x_i - x_j)^2 = \frac{1}{2N^2} \sum_{(i=1)}^{N} (x_i - x_j)^2$ $\frac{1}{2N^{2}}\sum_{i,j=1}^{N}(x_{i}-x_{j})^{2}=\frac{1}{2N^{2}}\sum_{i,j=1}^{N}(x_{i}^{2}-2x_{i}x_{j}+x_{j}^{2})$ = 1 \(\lambda \lambda \lambda \times \rangle \lambda \times \lambda \times \lambda \times \lambda \times \lamb = 1 (82+p2)-p2+1 (82+p2)-= 82 Suponga X1, X2, -.. , Xn independentes vandsler Sea S= X1 + X2+ .. + X0 Van [5] = COV [5,5] = COV [X1+X2+ ... + X1, X1+X2+ ... + X1] = Z Van [Xi] + Z Z COV[Xi,X,] = Z Van [Xi] dado Xis i=1 jti Son independente \Rightarrow $cov\left(\sum_{i=1}^{\infty}X_{i},\sum_{j=1}^{\infty}(ov(X_{i},X_{j}))\right)$ Van(X+7) = Van(X) + Van(Y) Van (£ xi) = £ Van (xi) + 2 € (av (xi, xj)) $Van\left(\frac{1}{2} \times i\right) = cov\left(\frac{1}{2} \times i, \frac{1}{2} \times i\right)$ -2001(X,Y) 2 2 (ov (xi, x)) = 5 Van(Xi) + 2 5 (OV(Xi, Xi)) 1 Van (5 x) = 1 2 Van (x;) + 2 5 (ov (xi, x)) var (1 \(\frac{1}{N}\) = \(\frac{1}{N^2}\) \(\frac{2}{N^2}\) \(\fr