

Amplificadores Operacionais

JOÃO PAULO ASSUNÇÃO DE SOUZA

- O amplificador operacional é um elemento fundamental da instrumentação eletrônica.
- Instrumentação é o estudo de instrumentos de medição de grandezas físicas
 - Tensão
 - Corrente
 - Pressão
 - Temperatura
- O amplificador operacional é uma unidade eletrônica que se comporta como uma fonte de tensão controlada por tensão.
- Também pode ser utilizado na construção de uma fonte controlada de corrente.
- É capaz de realizar operações matemáticas com sinais como: somar, amplificar, integrar e diferenciar
- Analisaremos apenas os terminais utilizando o método nodal.

- Formado por um arranjo complexo de transistores, resistores, capacitores e diodos.
- Vamos considerar o amplificador operacional como um elemento <u>básico</u> de circuitos elétricos e, estudar somente o que acontece em seus terminais.

Amplificador Operacional

- Formado por um arranjo complexo de transistores, resistores, capacitores e diodos.
- Vamos considerar o amplificador operacional como um elemento <u>básico</u> de circuitos elétricos e, estudar somente o que acontece em seus terminais.

Amplificador Operacional

- Formado por um arranjo complexo de transistores, resistores, capacitores e diodos.
- Vamos considerar o amplificador operacional como um elemento <u>básico</u> de circuitos elétricos e, estudar somente o que acontece em seus terminais.

Amplificador Operacional

- Formado por um arranjo complexo de transistores, resistores, capacitores e diodos.
- Vamos considerar o amplificador operacional como um elemento <u>básico</u> de circuitos elétricos e, estudar somente o que acontece em seus terminais.

Amplificador Operacional

- Formado por um arranjo complexo de transistores, resistores, capacitores e diodos.
- Vamos considerar o amplificador operacional como um elemento <u>básico</u> de circuitos elétricos e, estudar somente o que acontece em seus terminais.

- Formado por um arranjo complexo de transistores, resistores, capacitores e diodos.
- Vamos considerar o amplificador operacional como um elemento <u>básico</u> de circuitos elétricos e, estudar somente o que acontece em seus terminais.

Circuito equivalente do AMPOP

Alimentação do AMPOP

Saturação: se trata de uma limitação prática dos amplificadores operacionais.

A amplitude da saída não pode exceder | Vcc |

Um AMPOP 741 tem um ganho de tensão em malha aberta igual a 2×10^5 , resistência de entrada de 2 M Ω e resistência de saída de 50 Ω . O AMPOP é utilizado na figura abaixo. Determine o ganho em malha fechada V_o/V_s . Determine a corrente i quando $V_s=2V$.

Um AMPOP 741 tem um ganho de tensão em malha aberta igual a 2×10^5 , resistência de entrada de 2 M Ω e resistência de saída de 50 Ω . O AMPOP é utilizado na figura abaixo. Determine o ganho em malha fechada V_o/V_s . Determine a corrente i quando $V_s=2V$.

Para o mesmo amplificador utilizado no circuito anterior, utilizado no circuito a seguir, calcule o ganho em malha fechada e determine i_0 quando $V_s=1\ V$.

O amplificador ideal

O amplificador operacional ideal apresenta as seguintes características:

- Ganho de malha aberta infinito (A $\approx \infty$)
- Resistência de entrada infinita ($R_i \approx \infty$)
- Resistência de saída zero($R_o \approx 0$)

Parâmetro	Faixas de valores	Valores ideais
Ganho de malha aberta (A)	10 ⁵ para 10 ⁸	∞
Resistência de entrada (R_i)	10^5 para $10^{13}~\Omega$	$\Omega \propto$
Resistência de saída (R _o)	10 para 100 Ω	0 Ω
Tensão de alimentação (V_{CC})	5 para 24 V	

O amplificador ideal

Utilizando o modelo do amplificador ideal, calcule o ganho em malha fechada e determine i_0 quando $V_{\!\scriptscriptstyle S}=1~V$.

Amplificador Inversor

O amplificador inversor inverte a polaridade do sinal de entrada amplificando-o ao mesmo tempo.

Amplificador Inversor

O amplificador inversor inverte a polaridade do sinal de entrada amplificando-o ao mesmo tempo.

Determina a tensão de saída e a corrente no resistor de 10 k Ω .

Determine a tensão de saída

Amplificador não inversor

Um amplificador não inversor é um circuito com amplificador operacional projetado para fornecer ganho de tensão positivo.

Seguidor de tensão

Se $R_f=0$ e $R_1=\infty$, ou ambos, a entrada será igual a saída. Este circuito é conhecido como seguidor de tensão.

Calcule a tensão de saída do circuito abaixo.

Calcule Vo no circuito abaixo.

Amplificador Somador

O amplificador somador é um circuito com amplificador operacional que combina várias entradas e produz uma saída que é a soma ponderada das entraadas.

Calcule Vo e lo no circuito abaixo.

Determine Vo e lo no circuito da figura abaixo.

Amplificador diferencial

Um amplificador diferencial é um dispositivo que amplifica a diferença entre as duas entradas, porém rejeita quaisquer sinais comuns as duas entradas.

Projete um circuito com amplificador operacional com entradas V1 e V2 tal que a saída seja Vo=3V2-5V1

Um amplificador de instrumentação, mostrado na figura abaixo, é um amplificador de sinais de baixo nível usado em controle de processos ou em aplicações de medição, e se encontra disponível comercialmente em um único encapsulamento (CI).

Demonstre que
$$v_o = \frac{R_2}{R_1} \left(1 + \frac{2R_3}{R_4} \right) (v_2 - v_1)$$

Obtenha i_o no amplificador de instrumentação da figura abaixo.

Circuitos com amplificadores operacionais em cascata

Uma conexão em cascata é um arranjo em sequência de dois ou mais circuitos com amplificadores operacionais conectados de forma que a saída de um seja a na entrada do seguinte.

Quando circuitos com amplificadores operacionais estão em cascata, cada circuito é denominado estágio.

$$A = A_1 A_2 A_3$$

Determine $i_o e v_o$

Determine v_o

Determine v_o

Determine v_o

Resumo

Circuito com AOP	Nome/relação entrada/saída
	Amplificador inversor $v_o = -\frac{R_2}{R_1} v_l$
	Amplificador não inversor $v_o = \left(1 + \frac{R_2}{R_1}\right) v_l$
v _l c + 0 v _b	Seguidor de tensão $v_o = v_l$

Conversor Digital Analógico

O amplificador operacional pode ser utilizado para implementar um conversor digital-analógico

Bibliografia

• [1] SADIKU, M.N.O; ALEXANDER, A, K. Fundamentos de Circuitos Elétricos. 5ª edição, AMGH Editora LTDA, 2013. 840 p.