Тема IV: Векторные пространства

§ 3. Подпространства

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Определение подпространства

Определение

Непустое подмножество M векторного пространства V над полем F называется подпространством пространства V, если выполняются следующие условия:

- 1) если $\mathbf{x}, \mathbf{y} \in M$, то $\mathbf{x} + \mathbf{y} \in M$ (замкнутость подпространства относительно сложения векторов);
- 2) если $\mathbf{x} \in M$, а $t \in F$, то $t\mathbf{x} \in M$ (замкнутость подпространства относительно умножения вектора на скаляр).

Примеры подпространств

Пример 1. Пусть V – любое векторное пространство. Очевидно, что все пространство V и множество $\{ {\bf 0} \}$ являются подпространствами в V.

Множество всех подпространств векторного пространства с отношением включения является частично упорядоченным множеством (чумом). Подпространство V является наибольшим элементом этого чума, а подпространство $\{\mathbf{0}\}$ – наименьшим. Первое из этих двух утверждений очевидно, а второе вытекает из следующего замечания.

Замечание о нулевом векторе и подпространствах

Нулевой вектор содержится в любом подпространстве M пространства V.

Доказательство. Если ${\bf x}$ – произвольный вектор из M, то, по условию 2) из определения подпространства, ${\bf 0}=0\cdot{\bf x}\in M$.

Пример 2. Пусть V — обычное трёхмерное пространство, а M — множество векторов из V, коллинеарных некоторой плоскости π . Ясно, что сумма двух векторов, коллинеарных π , и произведение вектора, коллинеарного π , на любое число коллинеарны π . Значит, M — подпространство в V. Аналогично доказывается, что подпространством в V является множество векторов, коллинеарных некоторой прямой.

Примеры подпространств (2)

Пример 3. В пространстве строк F^n подпространством будет, например, множество строк, у которых первая компонента равна нулю. Чуть более тонкий пример – множество строк, у которых сумма компонент равна нулю, $M:=\{(x_1,x_2,\ldots,x_n)\in F^n: x_1+x_2+\cdots+x_n=0\}.$ Оба этих примера – специальные случаи общего (в каком-то смысле универсального) примера, который мы будем обстоятельно изучать. А именно, рассмотрим произвольную систему линейных однородных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Тогда множество ее решений – подпространство в пространстве строк ${\cal F}^n.$

Пример 4. В пространстве многочленов F[x] подпространством будет множество $F_n[x]$ многочленов степени не выше n.

Пример 5. В пространстве функций из \mathbb{R} в \mathbb{R} подпространства образуют, например, все непрерывные функции и все дифференцируемые функции.

Линейная оболочка

Пусть V — произвольное векторное пространство и $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V$. Обозначим через M множество всевозможных линейных комбинаций векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Пусть $\mathbf{x}, \mathbf{y} \in M$, т.е.

$$\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k$$
 u $\mathbf{y} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$

для некоторых скаляров s_1, s_2, \ldots, s_k и t_1, t_2, \ldots, t_k . Пусть, далее, t – произвольный скаляр. Тогда

$$\mathbf{x} + \mathbf{y} = (s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) + (t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k) =$$

$$= (s_1 + t_1) \mathbf{a}_1 + (s_2 + t_2) \mathbf{a}_2 + \dots + (s_k + t_k) \mathbf{a}_k \quad \mathbf{u}$$

$$t \mathbf{x} = t(s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) = (ts_1) \mathbf{a}_1 + (ts_2) \mathbf{a}_2 + \dots + (ts_k) \mathbf{a}_k.$$

Мы видим, что $\mathbf{x} + \mathbf{y}, t\mathbf{x} \in M$, т. е. M – подпространство пространства V. Оно называется подпространством, порождённым векторами $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$, или линейной оболочкой векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$, и обозначается через $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k \rangle$.

Линейная оболочка (2)

Ясно, что если ${\bf a}_1,{\bf a}_2,\dots,{\bf a}_k$ — система образующих пространства V, то $\langle {\bf a}_1,{\bf a}_2,\dots,{\bf a}_k \rangle=V.$ Таким образом,

• любое подпространство конечномерного векторного пространства порождено некоторым конечным набором векторов.

Замечание о подпространстве, порождённом набором векторов

Пусть V – векторное пространство и ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k \in V$. Тогда $\langle {\bf a}_1, {\bf a}_2, \dots, {\bf a}_k \rangle$ – наименьшее подпространство пространства V, содержащее вектора ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$.

Доказательство. Пусть M – подпространство пространства V, содержащее вектора $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. По определению подпространства любая линейная комбинация векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ лежит в M. Следовательно, $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle \subseteq M$.

Размерность подпространства

Подпространство векторного пространства само является векторным пространством. Это позволяет говорить о размерности и базисе подпространства.

Предложение о размерности подпространства

Пусть M — подпространство векторного пространства V . Тогда $\dim M \leqslant \dim V$, причем $\dim M = \dim V$ тогда и только тогда, когда M = V .

Доказательство. Если M или V — нулевое пространство, то оба утверждения предложения выполняются тривиальным образом. Будем поэтому считать, что M и V — ненулевые пространства. Пусть $\dim M = k$, $\dim V = n$. Неравенство $k \leqslant n$ следует из того, что базис M — это линейно независимая система в V, а любую линейно независимую систему векторов из V можно дополнить до базиса V по теореме о продолжении. При этом для дополнения нужно n-k векторов. Поэтому если n=k, то базис M уже является базисом V, т.е. M=V. Обратное утверждение очевидно.

Алгоритм нахождения базиса и размерности подпространства, порождённого данным набором векторов

Укажем способ нахождения базиса и размерности подпространства, порождённого данным набором векторов.

Алгоритм нахождения базиса и размерности подпространства, порождённого данным набором векторов

Запишем координаты данных векторов в некотором фиксированном базисе пространства в матрицу по строкам и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом нашего подпространства, а число этих строк равно его размерности.

Обоснование этого алгоритма будет дано в следующем разделе.

Сумма и пересечение подпространств

К подпространствам векторного пространства можно применять все теоретико-множественные операции. Но важной для линейной алгебры является только одна из них — операция пересечения подпространств. Как и пересечение любых множеств, пересечение подпространств обозначается символом \cap . Введем еще одну важную операцию над подпространствами.

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Сумма подпространств M_1 и M_2 — это множество M_1+M_2 всех сумм векторов из M_1 с векторами из M_2 :

$$M_1 + M_2 := \{ \mathbf{x}_1 + \mathbf{x}_2 : \mathbf{x}_1 \in M_1, \ \mathbf{x}_2 \in M_2 \}.$$

Замечание о сумме и пересечении подпространств

Если M_1 и M_2 – подпространства пространства V, то M_1+M_2 и $M_1\cap M_2$ также являются подпространствами в V.

Доказательство. В силу замечания о нулевом векторе и подпространствах, каждое из подпространств M_1 и M_2 содержит нулевой вектор. Следовательно, $\mathbf{0} = \mathbf{0} + \mathbf{0} \in M_1 + M_2$ и $\mathbf{0} \in M_1 \cap M_2$. В частности, множества $M_1 + M_2$ и $M_1 \cap M_2$ — непустые.

Сумма и пересечение подпространств (2)

Пусть $\mathbf{x},\mathbf{y}\in M_1+M_2$ и t – скаляр. Тогда $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$ и $\mathbf{y}=\mathbf{y}_1+\mathbf{y}_2$ для некоторых $\mathbf{x}_1,\mathbf{y}_1\in M_1$ и $\mathbf{x}_2,\mathbf{y}_2\in M_2$. Учитывая, что M_1 и M_2 – подпространства, получаем, что

$$\mathbf{x} + \mathbf{y} = (\mathbf{x}_1 + \mathbf{x}_2) + (\mathbf{y}_1 + \mathbf{y}_2) = (\mathbf{x}_1 + \mathbf{y}_1) + (\mathbf{x}_2 + \mathbf{y}_2) \in M_1 + M_2,$$

 $t\mathbf{x} = t(\mathbf{x}_1 + \mathbf{x}_2) = t\mathbf{x}_1 + t\mathbf{x}_2 \in M_1 + M_2.$

Итак, M_1+M_2 — подпространство в V. Далее, пусть $\mathbf{x},\mathbf{y}\in M_1\cap M_2$ и t — скаляр. Тогда $\mathbf{x},\mathbf{y}\in M_1$ и $\mathbf{x},\mathbf{y}\in M_2$. Раз M_1 и M_2 — подпространства, имеем $\mathbf{x}+\mathbf{y}\in M_1$, $\mathbf{x}+\mathbf{y}\in M_2$, $t\mathbf{x}\in M_1$ и $t\mathbf{x}\in M_2$. Следовательно, $\mathbf{x}+\mathbf{y}\in M_1\cap M_2$ и $t\mathbf{x}\in M_1\cap M_2$, т.е. $M_1\cap M_2$ — подпространство в V. \square

Замечание о сумме подпространств

Если M_1 и M_2 – подпространства пространства V, то M_1+M_2 – наименьшее подпространство в V, содержащее M_1 и M_2 .

Доказательство. Если $\mathbf{x}\in M_1$, то $\mathbf{x}\in M_1+M_2$, поскольку $\mathbf{x}=\mathbf{x}+\mathbf{0}$ и $\mathbf{0}\in M_2$. Следовательно, $M_1\subseteq M_1+M_2$. Аналогично, $M_2\subseteq M_1+M_2$. Пусть теперь подпространство M содержит и M_1 , и M_2 , и $\mathbf{x}\in M_1+M_2$. Тогда $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$ для некоторых $\mathbf{x}_1\in M_1$ и $\mathbf{x}_2\in M_2$. Следовательно, $\mathbf{x}_1\in M$ и $\mathbf{x}_2\in M$, откуда $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2\in M$. Итак, $M_1+M_2\subseteq M$.

Сумма и пересечение набора подпространств

Операцию пересечения множеств можно применять к любому (в том числе бесконечному) числу множеств. Поэтому можно говорить о пересечении любого (в том числе бесконечного) набора подпространств данного векторного пространства. Операцию суммы подпространств также можно применять к любому набору подпространств. Если M_1, M_2, \ldots, M_k — подпространства векторного пространства V и k>2, то по индукции положим

$$M_1 + M_2 + \cdots + M_k := (M_1 + M_2 + \cdots + M_{k-1}) + M_k.$$

При этом скобки в левой части равенства можно не ставить, поскольку операция сложения двух подпространств, очевидно, ассоциативна.

Придумайте, как определить сумму бесконечного набора подпространств.

Теорема о размерности суммы и пересечения подпространств

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Тогда размерность суммы подпространств M_1 и M_2 равна сумме размерностей этих подпространств минус размерность их пересечения.

Доказательство. Из предложения о размерности подпространства $\dim(M_1\cap M_2)\leqslant \dim M_1$ и $\dim(M_1\cap M_2)\leqslant \dim M_2$. Положим

$$\dim(M_1 \cap M_2) = k$$
, $\dim M_1 = k + \ell$ u $\dim M_2 = k + m$.

Если $M_1=\{{\bf 0}\}$, то, очевидно, $M_1\cap M_2=\{{\bf 0}\}$, $\dim M_1=\dim(M_1\cap M_2)=0,\ M_1+M_2=M_2$ и потому

$$\dim(M_1 + M_2) = \dim M_2 = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Аналогично разбирается случай, когда $M_2=\{\mathbf{0}\}$. Итак, далее можно считать, что пространства M_1 и M_2 – ненулевые, и, в частности, каждое из них имеет базис.Будем также считать, что $M_1\cap M_2\neq \{\mathbf{0}\}$ (в противном случае следует во всех дальнейших рассуждениях заменить базис пространства $M_1\cap M_2$ на пустой набор векторов; рассуждения при этом только упростятся). Пусть $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ – базис пространства $M_1\cap M_2$.

Размерность суммы подпространств (2)

По теореме о продолжении ${f a}_1,{f a}_2,\ldots,{f a}_k$ можно дополнить как до базиса M_1 , так и до базиса M_2 . Пусть ${f a}_1,{f a}_2,\ldots,{f a}_k,{f b}_1,{f b}_2,\ldots,{f b}_\ell$ — базис M_1 , а ${f a}_1,{f a}_2,\ldots,{f a}_k,{f c}_1,{f c}_2,\ldots,{f c}_m$ — базис M_2 . Докажем, что набор векторов

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_\ell, \mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m \tag{1}$$

является базисом пространства M_1+M_2 . Этого достаточно для доказательства теоремы, так как число векторов в этом наборе равно

$$k + \ell + m = (k + \ell) + (k + m) - k = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Пусть $\mathbf{x} \in M_1 + M_2$. Тогда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, где $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Ясно, что \mathbf{x}_1 – линейная комбинация векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ , а \mathbf{x}_2 – линейная комбинация векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m . Отсюда вектор $\mathbf{x}_1 + \mathbf{x}_2$ есть линейная комбинация векторов (1). Таким образом, (1) – система образующих пространства $M_1 + M_2$. Остается доказать, что эта система векторов линейно независима. Предположим, что

$$t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \dots + t_k\mathbf{a}_k + s_1\mathbf{b}_1 + s_2\mathbf{b}_2 + \dots + s_\ell\mathbf{b}_\ell + r_1\mathbf{c}_1 + r_2\mathbf{c}_2 + \dots + r_m\mathbf{c}_m = \mathbf{0}$$
(2)

для некоторых скаляров $t_1, t_2, \dots, t_k, s_1, s_2, \dots, s_\ell, r_1, r_2, \dots, r_m$. Требуется доказать, что все эти скаляры равны 0.

Размерность суммы подпространств (3)

Положим $\mathbf{y}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$. Очевидно, что $\mathbf{y}\in M_1$. С другой стороны, из (2) вытекает, что

$$\mathbf{y} = -t_1 \mathbf{a}_1 - t_2 \mathbf{a}_2 - \dots - t_k \mathbf{a}_k - r_1 \mathbf{c}_1 - r_2 \mathbf{c}_2 - \dots - r_m \mathbf{c}_m \in M_2.$$

Следовательно, $\mathbf{y}\in M_1\cap M_2$. Тогда \mathbf{y} есть линейная комбинация векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$. Таким образом, существуют скаляры q_1,q_2,\ldots,q_k такие, что $\mathbf{y}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell=q_1\mathbf{a}_1+q_2\mathbf{a}_2+\cdots+q_k\mathbf{a}_k$. Следовательно,

$$q_1\mathbf{a}_1 + q_2\mathbf{a}_2 + \dots + q_k\mathbf{a}_k - s_1\mathbf{b}_1 - s_2\mathbf{b}_2 - \dots - s_\ell\mathbf{b}_\ell = \mathbf{0}.$$
 (3)

Поскольку вектора ${\bf a}_1,\,{\bf a}_2,\,\ldots,\,{\bf a}_k,\,{\bf b}_1,\,{\bf b}_2,\,\ldots,\,{\bf b}_\ell$ образуют базис пространства M_1 , они линейно независимы. Поэтому линейная комбинация в левой части (3) тривиальна. В частности, $s_1=s_2=\cdots=s_\ell=0$. Следовательно, равенство (2) принимает вид

$$t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \dots + t_k\mathbf{a}_k + r_1\mathbf{c}_1 + r_2\mathbf{c}_2 + \dots + r_m\mathbf{c}_m = \mathbf{0}.$$

Учитывая, что вектора ${\bf a}_1,\,{\bf a}_2,\,\ldots,\,{\bf a}_k,\,{\bf c}_1,\,{\bf c}_2,\,\ldots,\,{\bf c}_m$ образуют базис пространства M_2 (и, в частности, линейно независимы), мы получаем, что $t_1=t_2=\cdots=t_k=r_1=r_2=\cdots=r_m=0$. Итак, все коэффициенты в левой части равенства (2) равны 0, что и требовалось доказать.

Алгоритм нахождения базиса и размерности суммы подпространств

Учитывая алгоритм нахождения базиса и размерности подпространства, порождённого данным набором векторов, получаем

Алгоритм нахождения базиса и размерности суммы подпространств

Пусть даны базисы подпространств M_1 и M_2 . Запишем в матрицу по строкам координаты векторов, входящих в эти базисы, в некотором фиксированном базисе пространства и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом суммы подпространств M_1 и M_2 , а число этих строк равно ее размерности.

Отметим, что, найдя размерность суммы подпространств M_1 и M_2 , мы сможем найти и размерность их пересечения, так как, в силу теоремы о размерности суммы и пересечения,

$$\dim(M_1 \cap M_2) = \dim M_1 + \dim M_2 - \dim(M_1 + M_2).$$

Базис пересечения ищется несколько сложнее. Способ решения этой задачи будет указан в следующем разделе.

Прямая сумма

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Говорят, что сумма подпространств M_1 и M_2 является их *прямой суммой*, если $M_1\cap M_2=\{\mathbf{0}\}$. Прямая сумма подпространств M_1 и M_2 обозначается через $M_1\oplus M_2$ или $M_1\dotplus M_2$.

Из доказательства теоремы о размерности суммы и пересечения подпространств вытекает

Замечание о базисе прямой суммы подпространств

Если
$$V=M_1\oplus M_2$$
, \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ – базис M_1 , а \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m – базис M_2 , то \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m – базис пространства V .

Прямая сумма (2)

Теорема о прямой сумме подпространств

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Следующие условия эквивалентны:

- 1) $M_1 + M_2$ является прямой суммой подпространств M_1 и M_2 ;
- 2) $\dim(M_1 + M_2) = \dim M_1 + \dim M_2$;
- 3) любой вектор из $M_1 + M_2$ единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 ;
- 4) нулевой вектор пространства V единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 .

Доказательство. Эквивалентность условий 1) и 2) непосредственно вытекает из теоремы о размерности суммы и пересечения и того факта, что размерность нулевого пространства равна 0. Импликация 3) \Longrightarrow 4) очевидна. Поэтому достаточно доказать импликации 1) \Longrightarrow 3) и 4) \Longrightarrow 1).

Прямая сумма (3)

- 1) \Longrightarrow 3). Пусть $\mathbf{x} \in M_1 + M_2$. По определению суммы подпространств $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, где $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Остается доказать, что такое представление вектора \mathbf{x} единственно. Предположим, что $\mathbf{x} = \mathbf{y}_1 + \mathbf{y}_2$, где $\mathbf{y}_1 \in M_1$ и $\mathbf{y}_2 \in M_2$. Из равенств $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 = \mathbf{y}_1 + \mathbf{y}_2$ имеем $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2$. Ясно, что $\mathbf{x}_1 \mathbf{y}_1 \in M_1$, а $\mathbf{y}_2 \mathbf{x}_2 \in M_2$. Следовательно, $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2 \in M_1 \cap M_2$. Но $M_1 \cap M_2 = \{\mathbf{0}\}$. Поэтому $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2 = \mathbf{0}$, откуда $\mathbf{x}_1 = \mathbf{y}_1$ и $\mathbf{x}_2 = \mathbf{y}_2$.
- ${f 4})$ \Longrightarrow 1). Предположим, что $M_1\cap M_2 \neq \{{f 0}\}$, т. е. существует ненулевой вектор ${f x}\in M_1\cap M_2$. Тогда вектор ${f 0}$ может быть двумя различными способами представлен в виде суммы вектора из M_1 и вектора из M_2 : ${f 0}={f x}+(-{f x})$ и ${f 0}={f 0}+{f 0}$. Мы получили противоречие с условием 4).

При решении задач полезно иметь в виду следующее

Замечание о прямой сумме подпространств

 $V=M_1\oplus M_2$ тогда и только тогда, когда

$$\dim(M_1+M_2)=\dim M_1+\dim M_2=\dim V.$$

Необходимость сразу следует из теоремы о прямой сумме подпространств. *Достаточность* следует из теоремы о размерности сумм и пересечения. □

Проекция вектора на подпространство

Определение

Пусть $V=M_1\oplus M_2$ и $\mathbf{x}\in V$. В силу теоремы о прямой сумме подпространств существуют однозначно определенные векторы $\mathbf{x}_1\in M_1$ и $\mathbf{x}_2\in M_2$ такие, что $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$. Вектор \mathbf{x}_1 называется проекцией \mathbf{x} на M_1 параллельно M_2 , а вектор \mathbf{x}_2 — проекцией \mathbf{x} на M_2 параллельно M_1 .

Не путать с проекцией вектора на ось!

Алгоритм нахождения проекции вектора на подпространство

Пусть $V=M_1\oplus M_2$ и $\mathbf{x}\in V$. Предположим, что нам известны базис $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k$ подпространства M_1 и базис $\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_\ell$ подпространства M_2 . В силу замечания о базисе прямой суммы подпространств $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k,\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_\ell$ – базис пространства V. Найдем координаты вектора \mathbf{x} в этом базисе. Пусть они имеют вид $(t_1,t_2,\dots,t_k,s_1,s_2,\dots,s_\ell)$. Тогда $t_1\mathbf{a}_1+t_2\mathbf{a}_2+\dots+t_k\mathbf{a}_k$ – проекция \mathbf{x} на M_1 параллельно M_2 , а $s_1\mathbf{b}_1+s_2\mathbf{b}_2+\dots+s_\ell\mathbf{b}_\ell$ – проекция \mathbf{x} на M_2 параллельно M_1 .

Обоснование алгоритма очевидно: если $\mathbf{y} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$ и $\mathbf{z} = s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell$, то $\mathbf{y} \in M_1$, $\mathbf{z} \in M_2$ и $\mathbf{x} = \mathbf{y} + \mathbf{z}$.

Линейные многообразия

Определение

Пусть V — векторное пространство, $\mathbf{x}_0 \in V$, а M — подпространство в V. Множество всех векторов вида $\mathbf{x}_0 + \mathbf{y}$, где $\mathbf{y} \in M$, называется линейным многообразием в V и обозначается через $\mathbf{x}_0 + M$. Вектор \mathbf{x}_0 называется начальным вектором многообразия $\mathbf{x}_0 + M$, а подпространство M — направляющим подпространством этого многообразия. Размерность подпространства M называется размерностью многообразия $\mathbf{x}_0 + M$.

Пример 1. Если $\mathbf{x}_0 = \mathbf{0}$, то $\mathbf{x}_0 + M = M$. Таким образом, всякое подпространство пространства V является линейным многообразием в V.

Пример 2. Если $M=\{\mathbf{0}\}$, то $\mathbf{x}_0+M=\{\mathbf{x}_0\}$. Таким образом, всякий вектор из V является линейным многообразием в V (размерности 0).

Пример 3. Обычные прямые и плоскости трехмерного пространства – линейные многообразия.

С помощью понятия линейного многообразия геометрия обычных прямых и плоскостей поднимается в пространства с любым числом измерений.