

Praktikum AI

RECURRENT NEURAL NETWORK (RNN)

Komang Niko Romano Prodi | 222011356 | 3SD1

Pendahuluan

Pada praktikum RNN ini, digunakan data sentiment yaitu Tweets.csv (Twitter US Airline Sentiment). Data diperoleh dari Kaggle.com. Data berisi label sentiment positif, negatif, dan netral.

Praktikum RNN

1. Persiapan (Baca Data dan Import Library)

▼ Persiapan

Mounted at /content/drive

2. Lakukan Preprocessing

Processing menggunakan library tweet-preprocessor dimana dilakukan penghilangan pada tanda baca dan ubah huruf menjadi huruf kecil.

```
[4] !pip install tweet-preprocessor
    Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
    Collecting tweet-preprocessor
      Downloading tweet_preprocessor-0.6.0-py3-none-any.whl (27 kB)
    Installing collected packages: tweet-preprocessor
    Successfully installed tweet-preprocessor-0.6.0
    df['text_clean'] = ''
     import preprocessor as p
    import re
     #forming a separate feature for cleaned tweets
    for i,v in enumerate(df['text']):
      df.loc[i,'text_clean'] = p.clean(v)
     # converting all text to lower case
    df['text_clean'] = df['text_clean'].apply(str.lower)
     # using regex to remove punctuation
    df['text_clean'] = df['text_clean'].apply(lambda x: re.sub(r'[^\w\s]', '', x))
[6] df[['text', 'text_clean']]
```


3. Lakukan Split Data

Split dataset menjadi 80% training set, 10% validation set, dan 10% test set. Jangan lupa mengatur seed = 43

```
[8] import numpy as np
       \texttt{df\_train, df\_val, df\_test = np.split(tweets.sample(frac=1, random\_state=seed), [[int(.8*len(tweets)), int(.9*len(tweets))]) } \\
df_train.info()
 class 'pandas.core.frame.DataFrame'
      Int64Index: 11712 entries, 5747 to 10724
Data columns (total 2 columns):
# Column Non-Null Count Dtype
       0 text_clean
                                   11712 non-null object
      1 airline_sentiment 11712 non-null object dtypes: object(2)
      memory usage: 274.5+ KB
[10] df val.info()
      <class 'pandas.core.frame.DataFrame'>
      Int64Index: 1464 entries, 2676 to 9289
Data columns (total 2 columns):
                                   Non-Null Count Dtype
      # Column
       0 text_clean
                                   1464 non-null
                                                       object
      1 airline_sentiment 1464 non-null dtypes: object(2) memory usage: 34.3+ KB
```

4. Membuat Dataloader

```
# dataloaders
batch_size = 5

# make sure to SHUFFLE your data
pad_idx = 0

train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size,
collate_fn = MyCollate(pad_idx=pad_idx), worker_init_fn=seed_worker,
generator=g)

valid_loader = DataLoader(valid_data, shuffle=True, batch_size=batch_size,
collate_fn = MyCollate(pad_idx=pad_idx), worker_init_fn=seed_worker,
generator=g)

test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size,
collate_fn = MyCollate(pad_idx=pad_idx), worker_init_fn=seed_worker,
generator=g)
```

5. Cek apakah menggunakan GPU atau CPU

```
import torch
is_cuda = torch.cuda.is_available()

# If we have a GPU available, we'll set our device to GPU. We'll use this device variable later in our code.

if is_cuda:
    device = torch.device("cuda")
    print("GPU is available")
else:
    device = torch.device("cpu")
    print("GPU not available, CPU used")
```

GPU not available, CPU used

6. Mendefinisikan Model RNN

```
import torch.nn as nn
import torch.nn.functional as F
class SentimentRNN(nn.Module):
  def __init__(self,no_layers,vocab_size,hidden_dim,embedding_dim,output_dim,drop_prob=0.5):
    super(SentimentRNN,self).__init__()
    self.output_dim = output_dim
    self.hidden_dim = hidden_dim
    self.no_layers = no_layers
    self.vocab_size = vocab_size
    self.embedding = nn.Embedding(vocab_size, embedding_dim)
    self.rnn = nn.RNN(input_size=embedding_dim,hidden_size=self.hidden_dim, num_layers=no_layers, batch_first=True)
    self.dropout = nn.Dropout(0.3)
    self.fc = nn.Linear(self.hidden dim, output dim)
    self.softmax = nn.LogSoftmax(dim=1)
  def forward(self,x):
    batch_size = x.size(0)
    embeds = self.embedding(x)
    rnn_out, hidden = self.rnn(embeds)
    out = self.dropout(hidden.squeeze(0))
    out = self.fc(out)
    output = self.softmax(out)
    return output
```

```
no_layers = 1
     vocab_size = len(train_data.vocab) + 2 #extra 2 for padding and unknown
     embedding dim = 64
     output dim = 3
     hidden dim = 256
     model = SentimentRNN(no layers, vocab size, hidden dim, embedding dim, output dim, drop prob=0.5)
     #moving to gpu
     model.to(device)
 SentimentRNN(
       (embedding): Embedding(2956, 64)
       (rnn): RNN(64, 256, batch_first=True)
       (dropout): Dropout(p=0.3, inplace=False)
       (fc): Linear(in features=256, out features=3, bias=True)
       (softmax): LogSoftmax(dim=1)
[23] import torch.optim as optim
     criterion = nn.CrossEntropyLoss()
     optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```

7. Arsitektur Model

a. Model 3 label

b. Model 2 label

8. Hitung Akurasi Validasi

Proses training dilakukan dengan menggunakan epoch sebesar 10. Model diambil dari tingkat epoch yang memiliki akurasi pada set validasi tertinggi

a. Model 3 label

```
500] loss: 0.939
[1,
[1,
    1000] loss: 0.879
   1500] loss: 0.856
[1,
[1, 2000] loss: 0.861
val accuracy:58.67%
time elapsed: 0.64 min
[2,
    500] loss: 0.841
[2,
    1000] loss: 0.867
[2, 1500] loss: 0.867
[2, 2000] loss: 0.891
val accuracy:60.93%
time elapsed: 1.09 min
    500] loss: 0.824
[3,
[3, 1000] loss: 0.893
[3, 1500] loss: 0.882
[3, 2000] loss: 0.846
val accuracy:61.89%
time elapsed: 1.53 min
ſ4,
     500] loss: 0.878
[4, 1000] loss: 0.865
[4, 1500] loss: 0.894
[4, 2000] loss: 0.878
val accuracy:61.34%
time elapsed: 2.00 min
     500] loss: 0.855
[5, 1000] loss: 0.845
[5, 1500] loss: 0.843
[5, 2000] loss: 0.849
val accuracy:55.74%
time elapsed: 2.42 min
[6, 500] loss: 0.833
[6, 1000] loss: 0.826
[6, 1500] loss: 0.851
[6, 2000] loss: 0.836
val accuracy:60.86%
time elapsed: 2.84 min
[7,
    500] loss: 0.839
[7, 1000] loss: 0.842
[7, 1500] loss: 0.835
[7, 2000] loss: 0.833
val accuracy:61.61%
time elapsed: 3.29 min
```

```
[8,
      500] loss: 0.837
[8,
    1000] loss: 0.834
    1500] loss: 0.842
[8,
    2000] loss: 0.832
[8,
val accuracy:61.41%
time elapsed: 3.75 min
[9,
      500] loss: 0.841
    1000] loss: 0.826
[9,
[9,
    1500] loss: 0.814
[9, 2000] loss: 0.837
val accuracy:56.28%
time elapsed: 4.19 min
[10,
      500] loss: 0.873
[10, 1000] loss: 0.853
[10, 1500] loss: 0.831
[10, 2000] loss: 0.855
val accuracy:58.61%
time elapsed: 4.63 min
```

Accuracies on Validation Set

b. Model 2 label

```
[1, 500] loss: 0.578
[1, 1000] loss: 0.495
```

```
[1, 1500] loss: 0.474
val accuracy:80.50%
time elapsed: 0.54 min
[2, 500] loss: 0.496
[2, 1000] loss: 0.451
[2, 1500] loss: 0.485
val accuracy: 79.98%
time elapsed: 0.82 min
[3, 500] loss: 0.505
[3, 1000] loss: 0.465
[3, 1500] loss: 0.466
val accuracy:80.42%
time elapsed: 1.25 min
[4, 500] loss: 0.471
[4, 1000] loss: 0.467
[4, 1500] loss: 0.465
val accuracy:79.90%
time elapsed: 1.59 min
[5, 500] loss: 0.438
[5, 1000] loss: 0.491
[5, 1500] loss: 0.489
val accuracy:79.90%
time elapsed: 1.87 min
[6, 500] loss: 0.462
[6, 1000] loss: 0.529
[6, 1500] loss: 0.498
val accuracy: 79.72%
time elapsed: 2.18 min
[7, 500] loss: 0.499
[7, 1000] loss: 0.495
[7, 1500] loss: 0.476
val accuracy:77.56%
time elapsed: 2.46 min
[8, 500] loss: 0.479
[8, 1000] loss: 0.439
[8, 1500] loss: 0.521
val accuracy:77.82%
time elapsed: 2.75 min
[9, 500] loss: 0.472
[9, 1000] loss: 0.477
[9, 1500] loss: 0.495
val accuracy:77.99%
time elapsed: 3.03 min
     500] loss: 0.494
[10,
[10, 1000] loss: 0.478
[10, 1500] loss: 0.460
val accuracy:81.02%
time elapsed: 3.30 min
```


9. Hitung Akurasi Testing

a. Model 3 label

```
[ ] compute_accuracy(model_terbaik, test_loader, device)
tensor(61.7486)
```

b. Model 2 label

```
[ ] compute_accuracy(model_terbaik, test_loader, device)
tensor(79.7403)
```

10. Perbandingan

Model	Akurasi Testing (%)	Akurasi Validasi Terbaik (%)_
3 label	61.75	61.89 (epoch = 3)
2 label	79.74	81.02 (epoch = 10)

Dari output dan tabel di atas, dapat disimpulkan bahwa:

- a. Model 3 label mencapai akurasi validasi terbaik pada epoch ke-3 yaitu sebesar 61.89%
- b. Model 2 label mencapai akurasi validasi terbaik pada epoch ke-10 yaitu sebesar 81.02%
- c. Model pada 2 label memiliki akurasi testing lebih besar dibandingkan model 2 label yaitu sebesar 79.74%. Sementara itu model 3 label memiliki akurasi testing sebesar 61.75%