Homework 1

April 25, 2023

1 Homework 1

1.1 FINM 37500 - 2023

1.1.1 UChicago Financial Mathematics

- Mark Hendricks
- hendricks@uchicago.edu

Students: Danny Stein, Joseph Padilla

2 Context

For use in these problems, consider the data below, discussed in Veronesi's *Fixed Income Securities* Chapters 9, 10. * interest-rate tree * current term structure

```
[]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'
import sympy
```

```
[]: rate_tree = pd.DataFrame({'0':[.0174,np.nan],'0.5':[.0339,.0095]})
   rate_tree.columns.name = 'time $t$'
   rate_tree.index.name = 'node'
   rate_tree.style.format('{:.2%}',na_rep='')
```

[]: <pandas.io.formats.style.Styler at 0x127afc03040>

The "tree" is displayed as a pandas dataframe, so it does not list "up" and "down" for the rows but rather an index of nodes. The meaning should be clear.

```
term_struct.set_index('maturity',inplace=True)
term_struct.style.format({'price':'{:.4f}','continuous ytm':'{:.2%}'}).

oformat_index('{:.1f}')
```

[]: <pandas.io.formats.style.Styler at 0x127b5fb5d60>

This is the current term-structure observed at t = 0.

3 1. Pricing a Swap

3.0.1 1.1

Calculate the tree of bond prices for the 2-period, T = 1, bond.

3.0.2 1.2

What is the risk-neutral probability of an upward movement of interest rates at t = .5?

3.1 The option contract

Consider a single-period swap that pays at time period 1 (t=0.5), the expiration payoff (and thus terminal value) is * Payoff = $\frac{100}{2}(r_1-c)$ * with c=2% * payments are semiannual

Take the viewpoint of a fixed-rate payer, floating rate receiver.

3.1.1 1.3

What is the replicating trade using the two bonds (period 1 and period 2)?

3.1.2 1.4

What is the price of the swap?

```
dt = .5
    r0 = .0174
Rates = [.0339,.0095]
Z = np.exp(-r0 * .5)
A = np.exp(r0*.5)
P_1u = 100* np.exp(-rate_tree.iloc[0,1]*dt)
P_1d = 100*np.exp(-rate_tree.iloc[1,1]*dt)
P_df = pd.DataFrame([P_1u,P_1d], columns=['Period_1'])
P_df.insert(0,'Period_0',97.8925)
P_df.iloc[1,0] = 0
P_df['Period_2'] = 100
```

```
[ ]: P_df
```

```
[]: Period_0 Period_1 Period_2
0 97.8925 98.319284 100
1 0.0000 99.526126 100
```

3.2 1.2

• The risk neutral probability of an upward movement in interest rates at T = .5 is equal to this:

```
p^* = \frac{AP_{0|2} - P_{1d|2}}{P_{1u|2} - P_{1d|2}}
```

```
[]: p = (A*P_df.loc[0,'Period_0'] - P_1d)/(P_1u-P_1d)

print(f'The probability of an upward movement in interest rates at time t=0.5

is {np.round(p,5)}')
```

The probability of an upward movement in interest rates at time t=0.5 is 0.64486

- []: <pandas.io.formats.style.Styler at 0x127b6129220>
 - The value of the time-0 swap is \$0.2595

4 2. Using the Swap as the Underlying

As in the note, W.1, consider pricing the followign interest-rate option, * Payoff is $100 \max(r_K - r_1, 0)$ * strike is r_K is 2% * expires at period 1, (t = 0.5)

Unlike the note, price it with the swap used as the underlying, not the two-period (t = 1) bond. You will once again use the period-1 (t = 0.5) bond as the cash account for the no-arbitrage pricing.

So instead of replicating the option with the two treasuries, now you're replicating/pricing it with a one-period bond and two-period swap.

4.0.1 2.1

Display the tree of swap prices.

4.0.2 2.2

What is the risk-neutral probability of an upward movement at t = .5 implied by the underlying swap tree?

Is this the same as the risk-neutral probability we found when the bond was used as the underlying?

4.0.3 2.3

What is the price of the rate option? Is it the same as we calculated in the note, W.1.?

```
[]: swap 0 = position df.iloc[2,2]
     rk = .02
     payoffs = 100*(rk - np.array(rate_tree.iloc[:,1]))
     payoffs[payoffs<0] = 0</pre>
[]: swap_tree = pd.DataFrame(np.array(b),columns=['Period_1'])
     swap_tree.insert(0,'Period_0',swap_0)
     swap_tree.iloc[1,0] = 0
     swap_tree
[]:
                 Period_0
                                       Period_1
     0 0.259491206443485
                             0.6950000000000000
     1
                         0 -0.525000000000000
[]: P_UP = (swap_0-(swap_tree.iloc[1,1]))/(swap_tree.iloc[0,1]-(swap_tree.
      \hookrightarrowiloc[1,1]))
     P UP
```

- []: 0.643025579052037
 - Yes, the probability is exactly the same as the risk-neutral probability of an interest rate increase at time = .5.

4.1 2.3 | Pricing The Rate Option

```
[]: payoffs
[]: array([0. , 1.05])

[]: A_ = sympy.Matrix([[100,.695],[100,-.525]])
    b_ = sympy.Matrix(payoffs)
    alpha_, beta_ = A_.solve(b_)
    A_.solve(b_)

[]: [0.00598155737704918]
    -0.860655737704918]
```

- []: <pandas.io.formats.style.Styler at 0x127b3e31dc0>
 - Yes the price of the interest rate floor price is the same as we calculated in workbook 1.

Answer The price of the interest rate floor is \$0.3696.

5 3. Pricing a Call on a Bond

Try using the same tree to price a call on the period-2 bond, (1-year), at period 1 (6-months). * Payoff = $\max(P_{1|2} - K, 0)$ * Strike = \$99.00

5.0.1 3.1

What is the replicating trade using the two bonds (period 1 and period 2) as above? (That is, we are no longer using the swap as the underlying.)

5.0.2 3.2

What is the price of the European call option? * expiring at T = .5 * written on the bond maturing in 2 periods, (t = 1)

```
[ ]: P_df
```

```
[]: Period_0 Period_1 Period_2
0 97.8925 98.319284 100
1 0.0000 99.526126 100
```

```
[]: K = 99
    payoffs_call = (P_df['Period_1'].values - K)
    payoffs_call[payoffs_call <0] = 0
    payoffs_call
    A_call = sympy.Matrix([[100,98.319284],[100,99.526126]])
    b_call = sympy.Matrix(payoffs_call)
    alpha_c, beta_c = A_call.solve(b_call)</pre>
```

```
[]: position_call = pd.DataFrame(index=['1-period bond','2-period_\( \sigma \) bond'],columns=['price','position','$ holding'],dtype=float)

position_call['price'] = term_struct.iloc[0:2,0].values

position_call["position"] = [alpha_c,beta_c]
```

```
position_call['$ holding'] = position_call['price']*position_call['position']
position_call.loc['net','$ holding'] = position_call['$ holding'].sum()
position_call.style.format('${:,.4f}')
```

[]: <pandas.io.formats.style.Styler at 0x127afd16cd0>

Answer: The price of the call is \$0.1852.

6 4 Two-Period Tree

Consider an expanded, **2 period** tree. (Two periods of uncertainty, so with the starting point, three periods total.)

```
[]: new_col = pd.Series([.05,.0256,.0011],name='1')
    rate_tree_multi = pd.concat([rate_tree,new_col],ignore_index=True,axis=1)
    rate_tree_multi.columns = pd.Series(['0','0.5','1'],name='time $t$')
    rate_tree_multi.index.name = 'node'
    rate_tree_multi.style.format('{:.2%}',na_rep='')
```

[]: <pandas.io.formats.style.Styler at 0x127b60f7dc0>

6.0.1 4.1

Calculate and show the tree of prices for the 3-period bond, T = 1.5.

6.0.2 4.2

Report the risk-neutral probability of an up movement at t = 1.

(The risk-neutral probability of an up movement at t = 0.5 continues to be as you calculated in 2.3.

6.0.3 4.3

Calculate the price of the European call option? * expiring at T=1 * written on the bond maturing in 3 periods, (t=1.5)

6.0.4 4.4

Consider a finer time grid. Let dt in the tree now be 1/30 instead of 0.5.

Using this smaller time step, compute the t=0 price of the following option: * option expires at t=1 * written on bond maturing at t=1.5

```
[]: # 4.1
P_2p = P_df[['Period_1']]
P_2p.insert(0,'Period_0',96.1462)
P_2p.iloc[1,0] = 0
P_2p.loc[0,'Period_2'] = 100*np.exp(-0.05*dt)
P_2p.loc[1,'Period_2'] = 100*np.exp(-.0256*dt)
```

```
P_2p.loc[2,'Period_2'] = 100*np.exp(-.0011*dt)
P_2p['Period_3'] = 100
P_2p = P_2p.fillna(0)
```

```
[]: P_UP
P_up_sq = np.array((P_UP**2))
P_D = 1-P_UP
P_dd = np.array(P_D**2)
P_u_d = 1-(P_up_sq)
P_d_u = 1-(P_dd)

print(f'The probability of an up movement at t = 1 is equal to {P_up_sq}')
```

The probability of an up movement at t = 1 is equal to 0.413481895315208

```
[]: Option_period1 = P_dd*(0.945015)
Option_period1
```

 $[\]:_{0.120423958125579}$

```
[]: Option_0 = P_UP*(0) + P_D *Option_period1
Option_0
```

[]: 0.0429882727201404

```
[]: P_2p['Period_2'] = P_2p['Period_2']-99
P_2p[P_2p <0] = 0
P_2p
```

```
[]: Period_0 Period_1 Period_2 Period_3
0 96.1462 98.319284 0.000000 100
1 0.0000 99.526126 0.000000 100
2 0.0000 0.000000 0.945015 100
```

```
[]: print(f'The price of the two-period option is ${Option_0}')
```

The price of the two-period option is \$0.0429882727201404

7 5 American Style

7.0.1 5.1

Use the two-period tree from part 4, but this time to price an American-style **put** option.

Use a grid of dt = .5. * What is its value at t = 0? * Which nodes would you exercise it early?

7.0.2 5.2

Change the grid to dt = 1/30, as in 4.4. * What is its value at t = 0? * Make a visualization showing which nodes have early exercise. (I suggest using a dataframe and the heatmap from seaborn.