压力表校验及压力变送器标定实验

能动A71 宋德培 2174110112

2020年6月15日

I 实验用仪器

- 1. 活塞式压力计: 用于压力表校验和压力变送器标定的专用设备。型号为YS-250, 精度等级为0.05。
- 2. 标准砝码: YS-60型: 0.1 MPa(4块), 0.5 MPa(7块); YS-250型: 2.5MPa(4块); 0.5 MPa(3块)。
- 3. 被校压力表: 型号YB-150; 规格 0-16MPa,; 精度等级1.5级。
- 4. 电容式压力变送器: 压力范围 $0\sim6$ MPa,精度0.5 %FS; 压阻式压力变送器: 压力范围 $0\sim15$ MPa,精度0.5%FS,为 $4\sim20$ mA电流输出型。
- 5. Fluke 8808A数字多用表,直流电源。

II 实验原理

2.1 压力表的校验

压力表在使用过程中需要定期校验,以判断其准确度是否合格,本实验所用压力表精度等级1.5,量程15 Mpa,因此测量压力时准确度为±0.225 Mpa。

在校验时,将压力表安装在活塞式压力计上,由活塞式压力计提供在其量程内的不同的标准压力值,若在每个标准压力值下,压力表的测量误差均不超过其精度等级所允许的偏差,则该压力表合格,可以继续使用;若在任一标准压力值下,压力表的测量误差超过了其精度等级所允许的偏差,则该压力表不合格,此时需要更换压力表。

2.2 变送器的标定

本实验使用电流型变送器,其电流输出值与压力值成线性关系,压力变送器在使用一段时间后,其输出电信号可能会发生漂移,因此,压力变送器也需要定期进行标定,以得到新的准确的压力-电信号的线性关系,或改变压力变送器变送电路的参数,将变送器的输出值重新调整为标准输出值。

压力变送器标定时,将压力变送器安装在活塞式压力计上。以电流型变送器为例,由活塞式压力计 提供在其量程内的不同的标准压力值,从而得到一系列电流与压力的对应关系值,根据最小二乘拟合得 到电流与压力的线性关系式:

$$p = a + bI$$

由于本实验使用绝压型压力变送器,式中的p为绝对压力。

III 实验操作要点

- 在实验前打开阀门V₁, 逆时针转动手轮使泵的气缸内充满液压油
- 顺时针旋转手轮时一定要缓慢, 否则由于压力迅速上升会将砝码座弹出
- 加载砝码或卸载后,转动手轮使砝码座底盘底面升起至略超过指示板上缘2~3毫米处。双手顺时针 转动砝码,使底盘及砝码以不小于30转/分的初角速度旋转,以克服摩擦力的影响
- 首先测量上行程, 然后依次卸载砝码测量下行程
- 一定要先降低压力计内的压力,再卸载砝码

IV 实验数据记录与处理

4.1 原始数据记录

实验数据记录表

压力表精度等级: 1.5

压力变送器: 量程: 0-15 MPa; 精度: 0.5%; 电流型; 绝压型

砝码 / MPa		压力 / MPa	压力表读数 / MPa		数字多用表读数 / mA	
YS-60	YS-250	/E/J / WIFa	第一组	第二组	第一组	第二组
0	0	0.096	0.0	0.0	4.1075	4.1077
1	3	3.096	3.2	3.2	7.2922	7.2932
2	6	6.096	6.2	6.2	10.4781	10.4785
3	9	9.096	9.2	9.2	13.6651	13.6655
4	12	12.096	12.2	12.2	16.8544	16.8544
3	9	9.096	9.2	9.2	13.6660	13.6657
2	6	6.096	6.2	6.2	10.4790	10.4788
1	3	3.096	3.2	3.2	7.2935	7.2932
0	0	0.096	0.0	0.0	4.1077	4.1076

V 作业及思考题

5.1 压力表

5.1.1 上下行程曲线

图 1: 压力表上下行程曲线

5.1.2 校验精度

本实验所用压力表精度等级1.5,量程16 Mpa,因此测量压力时准确度为±0.24 Mpa。而校验中最大误差为0.2Mpa,因此校验合格。

5.2 压力变送器

5.2.1 最小二乘拟合

对于更为一般的最小二乘拟合(多变量),可以将问题转换为求使得下式取得最小值的矩阵w

$$min||\mathbf{B} - \mathbf{A}w||^2 = min\{(\mathbf{B} - \mathbf{A}w)^T(\mathbf{B} - \mathbf{A}w)\}$$

对上式求导并令导数为零、略去其中的数学推导、可得

$$w = (\mathbf{A}^{\mathbf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathbf{T}}\mathbf{B}$$

在本问题中,B为绝对压力值组成的一维列向量,A为输出电流及1构成的 5×2 的矩阵,通过编程求解,

得到如下的拟合直线方程

$$p = 0.9414I - 3.7701$$

标准关系曲线(4~20mA)方程为

$$p = 0.9375I - 3.75$$

画出压力特性曲线

图 2: 压力变送器电流-压力标准线性关系偏离图

5.2.2 实验作图

图 3: 压力变送器特性曲线

偏差分析:从图中可以看出,压力变送器的实际特性曲线与其设计曲线并不重合,并且偏离程度随着压力的增大而增大,因此需要进行校准,重新拟合出压力-电流特性曲线,以便以后的使用。

5.2.3 技术指标计算

以压力为自变量,变送器输出电流为因变量,计算其技术指标。 非线性度误差

$$\delta_L = \frac{|\Delta_{max}|}{Y_{max}} \times 100\%$$

$$= 0.02045\%$$
(1)

迟滞误差

$$\delta_H = \frac{|\Delta H_m|}{Y_{F \cdot S}}$$

$$= 0.003857\%$$
(2)

重复性误差

$$\delta_R = \frac{\Delta R}{Y_{F \cdot S}}$$

$$= 0.005933\%$$
(3)