Math 480 Homework 7: An Experiment in LaTex and Logic

Dwight Hohnstein

May 23, 2013

Demonstrating the Basics of Logic While Learning LaTex Typesetting

Abstract

A brief introduction to propositional calculus.

1 Introduction

The project that myself, Jessica Junk and Tanner Missler are working on is the betterment and completion of logic.py modules in the Sage library. In this paper I will go over some basic propositional logic.

2 STOP, READ NO FURTHER IF...

Not mentioned in 1, this paper will not have the following:

- 1. Formulas of the form $a^2 + b^2 = c^2$
- 2. Rigorous Mathematical Proofs
- 3. Theory that underlies any type of nontrivial mathematical concepts.

Р	Q	$(P \lor Q)$	R
Т	Т	Т	Т
\overline{T}	F	Т	Т
F	Т	Т	Т
\overline{F}	F	F	F

Table 1: The corresponding truth table for $(P \vee Q) \to R$

3 Meat and Potatoes: An Introduction to Propositional Calculus

Let P, Q, R represent any proposition. Let \rightarrow represent implies. Let \neg represent not. Consider the following statement:

$$P \rightarrow \neg P$$

Interpreted in english, the statement reads "P implies not P." In a more concrete example, let P represent the proposition of having oranges. What the above says that if you have oranges, you can't have not oranges. It's converse is also true,

$$\neg P \rightarrow P$$

3.1 Truth Tables

Consider the following statuent:

$$(P \lor Q) \to R$$

For P, Q, R propositions, and \vee representing the phrase 'or'. A truth table is a table that shows the truth or falsity of a given proposition. As stated above, you can either have P or \neg P. Having P corresponds to true, and \neg P false similarily. The truth table goes through all possible truth assignments for P and Q to determine the truth or falsity of R. Table 1 shows just that, toggling all possibilities of Q when P is held true, then all assignments of Q when P is held false. $(P \vee Q)$ only becomes false when both P and Q are both false, and thus we do not have the statement R.