#Frequência fundamental [32] f0 = 6N = 64#Número de amostras fs = 64 #Frequência de amostragem n = [x for x in range(0,N,1)] $x_n = [np.sin(2*np.pi*(f0/fs)*i) for i in range(N)]$ #Gráfico de x[n] plt.figure(figsize=[9,4]) plt.title("Sequência Discreta x[n] para \$f_0\$ = 6Hz") plt.xlabel("n") plt.ylabel("x[n]") plt.stem(n, x_n, linefmt = (':','k'), markerfmt = ('o','r'), basefmt = 'k', use_line_collection = True) plt.show() Sequência Discreta x[n] para $f_0 = 6Hz$ 1.00 0.75 0.50 0.25 0.00 -0.25

EA614 - Análises de Sinais

import matplotlib.pyplot as plt

Questão A - Gerando a sequência x[n]

from scipy import signal

Bryan Wolff - RA: 214095

Bibliotecas Utilizadas

[19] import numpy as np

EFC5 - Transformada Discreta de Fourier

e, portanto: ▼ Questão C - DFT da sequência x[n] $\Omega=2\pirac{f_0}{f_0}pprox 0.58$) que lembra uma função de impulso unitário. espectro de uma senoide pura no domínio da frequência. outros picos. [33] DFT N amostras = abs(np.fft.fft(x n, N)) #DFT da sequência x[n] para N amostras omega = [2*np.pi*(i/N) for i in range(0,N-1,1)] #Escala de frequências #Transformada de Fourier da sequência x[n] Ω , $X\Omega$ = signal.freqz(x_n) $X\Omega = abs(X\Omega)$

#Podemos analisar apenas a faixa de frequências de 0 a π (0 a N/2).

plt.stem(omega[0:32], DFT N amostras[0:32], linefmt = (':','r'), \

plt.figure(figsize=[9,4])

markerfmt = ('o', 'r'), basefmt = 'k', label = "Função discreta: |X(k)|", use_line_collection = True) plt.plot(Ω , $X\Omega$, label = "Função contínua: $|X(e^{j\Omega})|$ ", color = "k", linewidth = 1) plt.title("Módulo da DFT e da Transformada de Fourier da sequência x[n]") plt.xlabel("Ω") plt.legend(loc="upper right") plt.show() [33] Módulo da DFT e da Transformada de Fourier da sequência x[n] Função contínua: |X(e^{/Ω})| 30 Função discreta: |X(k)| 25 20 15 10 5 2.0 2.5 0.0 0.5 1.0 1.5 3.0 Questão D - DFT utilizando 2N pontos Analisando o gráfico, é notável que ao aumentar o número de amostras o espectro da função |X(k)| passa a apresentar mais

basefmt = 'k', label = "Função discreta: |X(k)|", use_line_collection = True) plt.plot(Ω , $X\Omega$, label = "Função contínua: $|X(e^{j\Omega})|$ ", color = "k", linewidth = 1) plt.title("Módulo da DFT e da Transformada de Fourier da sequência x[n]") plt.xlabel(" Ω ") plt.legend(loc="upper right") plt.show() Módulo da DFT e da Transformada de Fourier da sequência x[n] Função contínua: |X(e^{/Ω})| 30 Função discreta: |X(k)| 25 20 15 10 [22] 5 1.5 2.0 2.5 0.5 1.0 3.0 ▼ Questão E - Análise para frequência f_0 = 6,5 Hz

▼ Gerando a sequência x[n] [34] f0 = 6.5 #nova frequência fundamental $x_n = [np.sin(2*np.pi*(f0/fs)*i) for i in range(0,N,1)] #Nova sequência x[n]$ #gráfico de x[n] plt.figure(figsize=[9,4]) plt.title("Sequência Discreta x[n] para \$f 0\$ = 6.5 Hz") plt.xlabel("n") plt.ylabel("x[n]") plt.stem(n, x_n, linefmt = (':','k'), markerfmt = ('o','r'), basefmt = 'k', use_line_collection = True) plt.show() [34] Sequência Discreta x[n] para $f_0 = 6.5$ Hz 1.00 0.75 0.50 0.25 0.00 -0.25-0.50-0.75-1.0010 20 30 50 60

▼ DFT e Transformada de Fourier anteriormente. $X\Omega$ novo f0 = abs($X\Omega$ novo f0) #Podemos analisar apenas a faixa de frequências de 0 a π (0 a N/2)

Analisando o gráfico, ao alterar a freqência natural para f_0 = 6,5Hz, os valores do seno que antes atingiam os valores nulos (por serem multiplos de π), agora atingem valores não nulos. Além disso, os valores de picos apresentam deslocados em comparação com os obtidos anteriormente, valendo ressaltar que, neste caso, não existe o comportamento de uma senoide pura como visto para [31] DFT_novo_f0 = $abs(np.fft.fft(x_n, N))$ #DFT da sequência x[n] com f0 = 6.5Hz Ω _novo_f0, $X\Omega$ _novo_f0 = signal.freqz(x_n) #Nova transformada de Fourier da sequência x[n] plt.figure(figsize=[9,4]) plt.stem(omega[0:32], DFT_novo_f0[0:32], linefmt = (':','r'), markerfmt = ('o','r'),\ basefmt = 'k', label = "Função discreta: |X(k)|", use line collection = True) plt.plot(Ω _novo_f0, $X\Omega$ _novo_f0, label = "Função contínua: $|X(e^{j\Omega})|$ ", color = "k", linewidth = 1) plt.title("Módulo da DFT e da Transformada de Fourier da sequência x[n] com \$f_0\$ = 6.5Hz") plt.xlabel("Ω") plt.legend(loc="upper right") plt.show() Módulo da DFT e da Transformada de Fourier da sequência x[n] com $f_0 = 6.5$ Hz

1.0

1.5

30

25

[31]

Função contínua: $|X(e^{/\Omega})|$

Função discreta: |X(k)|

2.5

2.0

[22] $N_2 = 2*N$

plt.figure(figsize=[9,4])

 $X(e^{j\Omega}) = \frac{j}{2} \cdot \left[\frac{sen(\frac{N}{2} \cdot (\Omega + 2\pi \frac{f_0}{f_s}))}{sen(\frac{1}{2} \cdot (\Omega + 2\pi \frac{f_0}{f_s}))} \cdot e^{-j \cdot (\frac{N-1}{2}) \cdot (\Omega + 2\pi \frac{f_0}{f_s})} - \frac{sen(\frac{N}{2} \cdot (\Omega - 2\pi \frac{f_0}{f_s}))}{sen(\frac{1}{2} \cdot (\Omega - 2\pi \frac{f_0}{f_s}))} \cdot e^{-j \cdot (\frac{N-1}{2}) \cdot (\Omega - 2\pi \frac{f_0}{f_s})} \right]$ da simetria par do módulo da resposta em frequência. Ao análisar o gráfico, obtido, é possivel perceber que o gráfico em sua grande parte apresenta valores nulos, com excessao um valor de pico no ponto correspondente à frequência fundamental do sinal x[n] (Além disso, para um grande número de amostras, o comportamente do espectro da função $|X(j\omega)|$ também se aproxima de um impulso unitário localizado no ponto referente à esta frequência fundamental. Vale ressaltar que este comportamento corresponde ao Analisando agora a função $|X(e^{j\Omega})|$, é possível perceber que apesar da correspondência dos pontos nulos e do pico, não há amostras suficientes que demonstrem semelhanças com o espectro da DFT além destas pontuadas, devido a função contínua apresentar vários

semelhanças com o espectro da função $|X(e^{j\Omega})|$, pois com 2N amostras é possível visualizar outros pontos que não são nulos, não

sendo mais possível observar o comportamento de uma senoide pura no domínio da frequência com um único valor de pico.

DFT_2N_amostras = $abs(np.fft.fft(x_n, N_2))$ #DFT da sequência x[n] para 2N amostras

plt.stem(omega2N[0:N], DFT_2N_amostras[0:N], linefmt = (':','r'), markerfmt = ('o','r'),\

omega2N = [2*np.pi*(i/N 2) for i in range(N 2)] #Nova escala de frequências

#análogamente, podemos analisar apenas a faixa de frequências de 0 a π (0 a N).

• $F\{sen(\omega_0 n)\}=\frac{\pi}{i}\cdot [\delta(\Omega-\omega_0)-\delta(\Omega+\omega_0)]$ com $\omega_0=2\pi\cdot \frac{f_0}{f_0}$; • $F\{\omega_N[n]\}$ = Transformada de Fourier de um pulso retangular deslocado de $\frac{N-1}{2}$ ou, de maneira análoga, a Transformada de Fourier de u[n]-u[n-N]: $\therefore F\{\omega_N[n]\} = \frac{sen(N \cdot \frac{\Omega}{2})}{sen(\frac{\Omega}{2})} \cdot e^{-j \cdot (\frac{N-1}{2}) \cdot \Omega} .$ Como os sinais em questão são reais, podemos analisar apenas a faixa de frequências de 0 a π, ou seja, de 0 a N/2. Isso se dá por conta

ullet Questão B - Transformada de Fourier $X(e^{j\Omega})$ associada à x[n] Sabemos que: $X(e^{j\Omega}) = F\{x[n]\} = F\{sen(\omega_0 n) \cdot \omega_N[n]\} = \frac{1}{2\pi} \cdot F\{sen(\omega_0 n)\} * F\{\omega_N[n]\}$ A partir de valores já tabelados para cada uma das funções acima temos: Dessa forma, obtemos a seguinte expressão: $X(e^{j\Omega}) = \frac{1}{2\pi} \cdot \{\frac{\pi}{j} \cdot [\delta(\Omega - \omega_0) - \delta(\Omega + \omega_0)] * [\frac{sen(N \cdot \frac{\Omega}{2})}{sen(\frac{\Omega}{2})} \cdot e^{-j \cdot (\frac{N-1}{2}) \cdot \Omega}]\} \Rightarrow$ $\Rightarrow X(e^{j\Omega}) = \frac{j}{2} \cdot \big[\frac{sen(\frac{N}{2} \cdot (\Omega + \omega_0))}{sen(\frac{1}{2} \cdot (\Omega + \omega_0))} \cdot e^{-j \cdot (\frac{N-1}{2}) \cdot (\Omega + \omega_0)} - \frac{sen(\frac{N}{2} \cdot (\Omega - \omega_0))}{sen(\frac{1}{2} \cdot (\Omega - \omega_0))} \cdot e^{-j \cdot (\frac{N-1}{2}) \cdot (\Omega - \omega_0)} \big]$

[32] -0.50-0.75-1.00