PREDICTING HOUSE PRICES IN KING COUNTY, WASHINGTON, USA

Panagiotis Petsas

This presentation is part of the course "Applied Data Science Capstone" from "IBM Data Science Professional Certificate" on Coursera.

Table of contents

- Introduction
- Data acquisition and manipulation
- Models for price prediction
- Results
- Discussion
- Conclusion

Introduction

Background

- King County is one of the most important counties in USA
- ▶ It has a population of more than 2.25m people
- ▶ It covers almost 6000 km², where 490 of them being water
- It contains many big cities like Seattle as well as many historical places
- If we are looking for a house in King County, on what factors should we pay attention?

Introduction

State of the problem

- ► Houses are one of the most important type of tangible assets
- Many factors can affect their price (house features, neighborhood features, spatial and temporal factors)
- Can we quantify how much each characteristic affect the house price?

Individuals interested in this problem

- Real estate agents, who want to determine the house prices for sell
- Individuals who want to buy or sell their house in the right price

Data acquisition and manipulation

Data sources

King County house records from Kaggle

More than 21.000 house records with features such as price, number of bedrooms, bathrooms etc.

Getzips.com

Helped to classify the houses with area phone code, in order to select a portion of them to work with the models (i.e. houses with code 253)

Foursquare API

Using the longitude and latitude of the houses, we extracted the top 30 popular venues in a radius of 500 from each house

Distribution of houses (area code 253) in KC, Washington

Data acquisition and manipulation

At this point we have two data sets

- One with the house records
- One with the venue records near the houses

Data cleaning

- Checked for any missing values (did not find any)
- Removed strange records (houses with no bedrooms or bathrooms)
- Created new feature (representing whether a house was renovated or not)
- Grouped the venues into broader categories (i.e. places to eat, attractions)
- Summarized each venue group per house (i.e. how many places to eat are near each house)
- Combined the two datasets

Data acquisition and manipulation

Feature selection

- Discarded irrelevant features (id, date, zipcode etc.)
- Performed Pearson correlation to identify highly correlated features and discarded them

The final features that will be used to predict house prices are:

Bedrooms	Bathrooms	Total inter area	Total lot area	Floors
Waterfront	View	Condition	Total basem. area	Year build
Is renovated	Longitude	Latitude	Places to eat	Places to drink
Places with sweets	Amusement	Facilities	Places for sports	Transport
Shops	Services	Beauty services	Attractions	Landmarks
Accomodation	The features in <i>italics</i> represent the amount of venues of a specific type in the proximity of the house.			

Machine Learning implementation

- Split the data into two sets (75% 25%, one for training and one for testing)
- Train the models based on the training set
- Use the features from the test set to predict a house price value
- Evaluate the predicted values by comparing them to the real house price values

Machine Learning algorithms used:

- Linear
- Polynomial (degree of 2)
- Ridge linear
- Random forest
- Gradient boosting

Permutation importance

We will identify the most important features per model Then we will repeat the modeling with that features

Model evaluation (Check the report for more details)

- Root mean squared error (RMSE)
- Mean absolute error (MAE)
- R squared, both on training and test set
- Cross validation, splitting the data into four parts

The models created:

With permutation importance, we extracted the top features of each model, and tried it only with them. Therefore we have more than one model from each category

- 3 linear (all features, top 15 and top 10)
- 4 polynomial (all features, top 350, top 300 and top 15 from linear model)
- 3 ridge linear regression (all features, top 15 and top 10)
- 6 random forest (with 50, 100, 200, 300, 400 and 500 trees each)
- 7 gradient boosting
 - ▶ 6 are combinations of number of trees (300, 400, 500) and learning rate (0.1 and 0.05),
 - the last was with top 21 features of 500 trees and learning rate of 0.05

Linear and ridge linear models:

- ► RMSE: ~ 50300 50800
- MAE: ~ 34100 34500
- R^2: ~ 0.75 and ~ 0.72 on cross validation
- Improved for the top 15 features

Polynomial models

- Due to many features, their scores are poor (RMSE > 54000, MAE > 35000)
- ► High R^2 on training set that suggest overfitting
- Improved when using only the top 15 features of linear model, but still not good enough

Random forest

- ▶ Better performance in general (RMSE ~ 48000, MAE ~ 31500)
- Greater values in R^2 test (~ 0.77) and cross validation (~ 0.74)
- ► Higher values in R^2 train (~ 0.95) that might suggest overfitting

Gradient boosting

- ► The best performing models (RMSE ~ 44000, MAE ~ 30500)
- ► Even better values in R^2 test (~ 0.8) compared to random forest
- More manageable values in R^2 train (~ 0.9)

The best performing models per category

Linear and ridge linear models:

- Describe the peak of the distribution better
- Cannot predict houses with higher values that well

Polynomial model:

- Predicts way more houses with a price of 300000 (see the peak in the top right)
- Produces negative values

Gradient boosting model:

- Describes the peak well
- Describes values higher than 400000 better than the other models

Top features identified:

- Total amount of living area was found among all models as impotant
- Lot and basement areas are also found important
- View was the most important feature in polynomial models
- The 13 features directly related to houses were found important in most models
- Food, sweet and service related venues were found important in linear models
- Shops and landmarks were found important in gradient boosting

Discussion

- Tree-based models (random forest and gradient boosting) performed better
- ► House features had low linear relationship with house price (low Pearson correlation, as seen in the figure:

Discussion

- Polynomial models did not perform well. But they can improve if fewer features are used
- The most important features are directly related to the house
- This analysis can be further improved if more data are available (e.g. type of heating, available garages or other spatial and temporal data such as elevation, mean temperature etc)

Conclusion

- We created models in order to predict house prices
- We identified the most important features that drive the house price
- These findings can be utilized by real estate agents or individuals who want to sell/buy a house
- ► This results may apply in other areas with similar characteristics
- This methodology, given the right data, can be expanded for houses in an entire state or country
- Individuals who want to get the upper hand in real estate market must collect data and identify patterns among house features and their respective price

Thank you for your time!