

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Programação em Lógica com Restrições

Novembro de 2019

Parcialmente baseado em slides anteriores de Henrique Lopes Cardoso (hlc@fe.up.pt),
Luís Paulo Reis (lpreis@fe.up.pt),
Pedro Barahona, John Hooker,
Willem-Jan van Hoeve
e outros autores

Daniel Castro Silva dcs@fe.up.pt

Conteúdo

- 1. Introdução à Programação com Restrições
- Exemplos de Problemas de Satisfação e Otimização
- 3. Exemplos de Resolução de Problemas em PLR
- 4. Complexidade e Métodos de Pesquisa
- 5. Definições Formais e Conceitos
- 6. Manutenção de Consistência
- 7. Pesquisa, Otimização e Eficiência
- 8. Sistemas de PR e PLR
- 9. Conclusões e Leituras Adicionais

Programação em Lógica com Restrições

1. INTRODUÇÃO À PROGRAMAÇÃO COM RESTRIÇÕES

Bibliografia base:

Edward Tsang, Foundations of Constraint Satisfaction, Academic Press, London and San Diego, 1993 Kim Marriott e Peter J. Stuckey. Programming with Constraints: an Introduction, MIT Press, 1998

Programação com Restrições

"Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it."

Eugene Freuder, 1997 ('In Pursuit of the Holy Grail', Constraints: An International Journal, 2, 57-61)

Programação em Lógica com Restrições

- A Programação em Lógica com Restrições PLR, ou CLP (Constraint Logic Programming) – é uma classe de linguagens de programação combinando:
 - Declaratividade da programação em lógica
 - Eficiência da resolução de restrições
- Aplicações principais na resolução de problemas de pesquisa / otimização combinatória (tipicamente NP-completos):
 - Escalonamento (scheduling), geração de horários (timetabling), alocação de recursos, planeamento, gestão da produção, verificação de circuitos, ...
- Vantagens:
 - Clareza e brevidade dos programas
 - Reduzido tempo de desenvolvimento
 - Facilidade de manutenção
 - Eficiência na Resolução

Contexto Histórico

- Anos '60 e '70: Alguns desenvolvimentos prévios em tópicos e aplicações relacionadas
- Anos '70: Prolog ('PROgrammation en LOGique')
 - Roussel, Colmerauer, Kowalsky et al.
- Anos '80: Programação (em Lógica) com Restrições
 - Prolog III, CHIP, ...
 - Constraint & Generate vs Generate & Test
- Anos '90: Programação por restrições, primeiros solvers industriais (ILOG, ...) e aplicações
- Anos 2000: Restrições globais, linguagens de modelação, ...

- Aplicações usando programação com restrições:
 - Lufthansa
 - Escalonamento de pessoal a curto prazo
 - Renault
 - Planeamento de produção a curto prazo
 - Nokia
 - Configuração de software para telemóveis
 - Airbus
 - Layout de cabine
 - Siemens
 - Verificação de circuitos
 - Ver Helmut Simonis (1999), <u>Building Industrial Applications with</u> <u>Constraint Programming</u>, in Constraints in Computational Logics (CCL 1999)

- Escalonamento desportivo
 - Vários tipos de ligas / torneios
- 1997/1998 ACC basketball league (9 equipas)
 - Várias restrições laterais complicadas

 As 179 soluções existentes foram encontradas em 24h usando enumeração e programação linear inteira

[Nemhauser & Trick, 1998]

 As 179 soluções foram encontradas em menos de um minuto usando programação com restrições [Henz, 1999, 2001]

- Escalonamento de operações
- Aeroporto de Hong Kong
 - Alocação de gates no Aeroporto Internacional de Hong Kong

- Sistema foi implementado em apenas quatro meses, e

inclui tecnologia de programação com restrições (ILOG)

 Faz o escalonamento de ~1100 voos por dia (mais de 70 milhões de passageiros em 2016)

- Escalonamento de operações
- Porto de Singapura
 - Um dos maiores centros de transbordo do mundo
 - Faz a ligação a uma rede de 200 empresas de expedição com ligações a 600 portos em 123 países
 - Necessidade de atribuir localizações e planos de carga / descarga sob restrições operacionais e de segurança
 - Sistema de planeamento, baseado em programação com restrições (ILOG)

- Escalonamento de operações
- Netherlands Railways
 - Uma das redes ferroviárias mais densas do mundo, com mais de 5.500 comboios por dia
 - Programação com restrições é uma das partes do software de planeamento, usado para obter um novo horário a partir do zero (2008)
 - Escalonamento mais robusto e eficiente, leva a lucro anual adicional de 75M
 - Vencedor do prémio INFORMS Edelman (2008)

Problema de Satisfação de Restrições

- Um Problema de Satisfação de Restrições PSR, ou CSP (Constraint Satisfaction Problem) - é modelizado através de:
 - Variáveis representando diferentes aspetos do problema, juntamente com os seus domínios
 - Restrições que limitam os valores que as variáveis podem tomar dentro dos seus domínios
- Porquê representar problemas como CSPs?
 - Representação muito próxima da original
 - Clareza e brevidade dos programas
 - Rapidez no desenvolvimento de programas
 - Maior garantia de correção dos programas
 - Algoritmos para resolver CSPs são muito eficientes

Solução de um CSP

- A solução de um CSP é uma atribuição de um valor (do seu domínio) a cada variável, de forma a que todas as restrições sejam satisfeitas
- Podemos estar interessados em:
 - Descobrir se o problema tem solução
 - Encontrar unicamente uma solução
 - Encontrar todas as soluções do problema
 - Encontrar uma solução ótima, de acordo com uma função objetivo, definida em termos de algumas ou de todas as variáveis
- A solução de um CSP é encontrada através de uma pesquisa sistemática, usualmente guiada por uma heurística, através de todas as atribuições possíveis de valores às variáveis

Definição Formal de um CSP

- Mais formalmente, um CSP é um tuplo $\langle V, D, C \rangle$:
 - $-V = \{x_1, x_2, ..., x_n\}$ é o conjunto de variáveis de domínio
 - -D é uma função que mapeia cada variável de V num conjunto de valores os domínios das variáveis
 - $D:V \rightarrow conjunto\ finito\ de\ valores$
 - D_{x_i} : domínio de x_i
 - $-C = \{C_1, C_2, ..., C_n\}$ é o conjunto de restrições que afetam um subconjunto arbitrário de variáveis de V
 - Para cada restrição $c_i \in C$
 - $-Vars(c_i)$ é o conjunto de variáveis envolvidas em c_i
 - Simetricamente, $Cons(x_i)$ é o conjunto de restrições nas quais a variável $x_i \in V$ está envolvida

Definição Formal de um CSP

 Solução de um CSP: atribuição de um valor a cada variável de forma a que todas as restrições sejam respeitadas:

```
-Sol = \{\langle x_1, v_1 \rangle, \langle x_2, v_2 \rangle, \dots, \langle x_n, v_n \rangle\}:
```

- $\forall x_i \in V (\langle x_i, v_i \rangle \in Sol \land v_i \in D_{x_i})$
- $\forall c_k \in C \ satisfaz \ (Sol, c_k)$

Problema de Otimização com Restrições

- Um Problema de Otimização com Restrições –
 POR, ou COP (Constraint Optimization Problem) –
 é um CSP com a adição de uma função objetivo a ser otimizada (maximizada / minimizada)
- A solução de um COP é uma atribuição de um valor (do seu domínio) a cada variável, de forma a que todas as restrições sejam satisfeitas e não haja nenhuma outra atribuição que resulte num valor superior (/ inferior) da função de avaliação

Restrições em CSPs

- Tipos de Restrições:
 - Unárias
 - X > 10
 - $X \in \{1,2,5\}$
 - Binárias
 - X < Y
 - Y+20 >= X
 - Qualquer restrição de aridade superior pode ser transformada num conjunto de restrições binárias
 - Logo, os CSPs binários podem ser considerados como representativos de todos os CSPs

- Domínios:
 - Números complexos
 - Reais
 - Racionais
 - Inteiros
 - Booleanos
- Tipos Simples de Restrições:
 - Lineares
 - 2*X + 4 < 4*Y + Z
 - Não Lineares
 - W*Z + 3*X > Y Z*Z

Restrições em CSPs

 Um CSP pode ser visto como um híper-grafo, em que os nós representam variáveis (com domínios associados), e as restrições são (híper-)arcos que

ligam os nós

Restrições

- As restrições de um CSP/COP podem ser:
 - Rígidas (Hard Constraints): são aquelas que têm obrigatoriamente de ser cumpridas
 - Todas as restrições num CSP são restrições rígidas
 - Flexíveis (Soft Constraints): são aquelas que podem ser quebradas
 - Deve existir um custo associado a quebrar este tipo de restrições, o qual deve ser somado na função de avaliação do COP
 - Restrições flexíveis permitem relaxamento
 - Aumenta complexidade do modelo

Resolução de um CSP

- Passos envolvidos:
 - Declarar as variáveis e os seus domínios (finitos)
 - Especificar as restrições existentes
 - Pesquisar para encontrar a solução

Resolução de um CSP

- Técnicas utilizadas na resolução:
 - Determinísticas: técnicas de consistência
 - Não determinísticas: pesquisa ("search")

- Forma de resolução:
 - Computação determinística é efetuada sempre que possível
 - Durante a propagação, sempre que é colocada uma restrição
 - Pesquisa é efetuada quando não é possível efetuar mais propagação

Mecanismo Constrain and Generate

 O mecanismo de unificação do Prolog é substituído por um mecanismo de manipulação de restrições num dado domínio

 A pesquisa do tipo "generate and test" do Prolog (pouco eficiente) é substituída por técnicas mais inteligentes de pesquisa (técnicas de consistência), resultando num mecanismo do tipo "constrain and generate"

Propagação e Consistência

- Se existir uma restrição binária C_{ij} entre as variáveis X_i e X_j , então o arco (X_i, X_j) é consistente se para cada valor $a \in D_{X_i}$, existe um valor $b \in D_{X_j}$, tal que as atribuições $X_i = a$ e $X_j = b$ satisfaçam a restrição C_{ij} .
- Qualquer valor $a \in D_{X_i}$ para o qual isto não se verifique pode ser removido de D_{X_i} (pois não pode fazer parte de nenhuma solução consistente)

Х	X 1 Z < y	у
{15}		{15}
x	x + 2 < y	у у
{1,2}		{15}
x	x + 2 < y	у у
{1,2}		{4,5}

x + 2 < y

- A remoção de todos estes valores torna o arco (X_i, X_i) consistente
- Se todos os arcos de um CSP binário forem tornados consistentes, então todo o problema é consistente nos arcos

Propagação e Consistência

<u>Tarefa</u>	Duração	Precede
Α	3	B,C
В	2	D
С	4	D
D	2	

<u>Variável</u>	<u>Domínio</u>
Inicio	{0}
InicA	{011}
InicB	{011}
InicC	{011}
InicD	{011}
Fim	{011}

Propagação e Consistência

- Problema é consistente nos arcos, mas será que é possível x=2?
- Próximo passo: considerar triplos de variáveis em que dois pares de variáveis têm uma restrição não trivial entre eles

- Caminho (X_i, X_j, X_k) é consistente nos caminhos se para cada par de valores $v_i \in D_{X_i}$ e $v_k \in D_{X_k}$, permitidos pela restrição C_{ik} , existe um valor $v_j \in D_{X_i}$ tal que (v_i, v_j) satisfaz C_{ij} e (v_j, v_k) satisfaz C_{jk}
- Se não existir, então (v_i, v_k) deve ser removido da restrição \mathcal{C}_{ik}

Programação em Lógica com Restrições

2. EXEMPLOS DE PROBLEMAS DE SATISFAÇÃO E OTIMIZAÇÃO

Adaptado de:

Pedro Barahona, *Página da Disciplina de Programação por Restrições, Ano Lectivo 2003/04,* disponível em:

http://ssdi.di.fct.unl.pt/~pb/cadeiras/pr/0304/index.htm

[consultado em Setembro de 2004]

Restrições: Exemplos de Problemas

- Planeamento de Testes em Circuitos Digitais
 - Deteção de Avarias
- Gestão de Tráfego em Redes
- Gestão da Produção
- Escalonamento de Tarefas (scheduling)
- Geração de Horários (timetabling)
- Caixeiro Viajante
 - Simples ou Múltiplo
- Colocação de Objetos
 - 2D: Corte de peças (tecido, vidro, madeira, etc.)
 - 3D: Preenchimento de contentores / Empacotamento

Circuitos Digitais

- Planeamento de testes para deteção de avarias
 - Objetivo:
 - Determinar um padrão de entrada que permita detetar se uma "gate" está avariada
 - Variáveis:
 - Modelizam o valor do nível elétrico (high/low) nos vários fios do circuito
 - Domínios:
 - Variáveis Booleanas: 0/1.
 - Restrições:
 - Restrições de igualdade entre o sinal de saída e o esperado pelo funcionamento das "gates"

Circuitos Digitais


```
E = A \oplus B \oplus A \cdot B  % E = or(A,B)
```

$$% E = or(A,B)$$

•
$$\mathbf{F} = \mathbf{1} \oplus \mathbf{B} \cdot \mathbf{C}$$

$$% F = nand(B,C)$$

•
$$G = C \cdot D$$

$$% G = and(C,D)$$

$$H = 1 \oplus E \cdot F$$

$$% H = nand(E,F)$$

•
$$I = 1 \oplus F \cdot G$$

$$% I = nand(F,G)$$

(⊕ representa xor; · representa and)

Gestão de Tráfego em Redes

- Determinação do tráfego em redes de telecomunicações, transporte de água/eletricidade, ...
 - Objetivo:
 - Determinar a quantidade de informação que flui em cada um dos troços de uma rede de comunicações
 - Variáveis:
 - Modelam o fluxo nos diversos troços
 - Domínio:
 - Reais não negativos
 - Restrições:
 - Limites de capacidade dos troços, não perda de informação nos vários nós

Gestão de Tráfego em Redes

- X_{ij} é o fluxo entre os nós i e j
 - Restrições de capacidade

$$X_{ab} \leq 15$$

Restrições de manutenção de informação

$$X_{ab} + X_{db} = X_{bc}$$

Gestão da Produção

- Determinação das quantidades ideais de itens a produzir
 - Objetivo:
 - Determinar as quantidades de itens que devem ser produzidos
 - Variáveis:
 - Modelizam o número de exemplares de cada produto
 - Domínio:
 - Inteiros / Reais não negativos
 - Restrições:
 - Limites dos recursos existentes, restrições sobre o plano produzido

Gestão da Produção

- Limites dos recursos existentes
 - R_i é a quantidade de unidades do recurso i

$$a_{i1} X_1 + a_{i2} X_2 + a_{i3} X_3 + \dots \leq R_i$$

- a_{ij} é a quantidade do recurso i necessária para produzir uma unidade do produto j
- X_i é a quantidade do produto j produzida
- Restrições sobre o plano produzido
 - Objetivos mínimos de produção

$$X_1 + X_2 \ge 50$$

Equilíbrio na produção

$$| X_4 - X_5 | < 20$$

Escalonamento de Tarefas

- Determinação do escalonamento de um conjunto de tarefas no tempo (eventualmente espaço)
 - Objetivo:
 - Determinar os tempos de início de um conjunto de tarefas (eventualmente os recursos utilizados também)
 - Variáveis:
 - Modelam o início da execução das tarefas
 - Domínio:
 - Inteiros/Reais não negativos
 - Restrições:
 - Não sobreposição de tarefas que utilizam os mesmos recursos
 - Precedências de tarefas

Escalonamento de Tarefas

- Job-Shop
 - $-S_{ij}/D_{ij}/M_{ij}$: início/duração/máquina da tarefa i para o trabalho j
 - Precedência entre tarefas: S_{ii} + D_{ii} ≤ S_{ki} para i < k
 - Não sobreposição de tarefas na mesma máquina

$$(M_{ij} \neq M_{kl}) \lor (S_{ij} + D_{ij} \le S_{kl}) \lor (S_{kl} + D_{kl} \le S_{ij})$$

Geração de Horários

- Especificação dos horários (e.g. escolares ou universitários) de um conjunto de eventos/tarefas
 - Objetivo:
 - Determinar o início das várias aulas/eventos num horário
 - Variáveis:
 - Modelam o tempo de início da aula, e eventualmente a sala, o professor, outros recursos, etc.
 - Domínio:
 - Finitos (horas certas) para os tempos de início
 - Finitos para as salas/recursos/professores
 - Restrições:
 - Não sobreposição de aulas na mesma sala, nem com o mesmo professor, respeito pelas impossibilidades, etc.

Caixeiro Viajante

- Determinação de percursos de caixeiros viajantes (frotas de carros, empresas de distribuição, etc.)
 - Objetivo:
 - Determinar o melhor (mais curto/mais rápido) caminho para ser seguido pelos veículos de uma empresa de distribuição
 - Variáveis:
 - Ordem em que cada localidade é atingida
 - Domínio:
 - Finitos (número de localidades existentes)
 - Restrições:
 - Não repetir localidades, garantir ciclo global, não existência de sub-ciclos

Empacotamento

- Colocação de componentes no espaço (2D/3D) sem sobreposição
 - Objetivo:
 - Determinar formas de conseguir colocar componentes num dado espaço
 - Variáveis:
 - Coordenadas (X,Y) dos elementos
 - Rotações/espelhamentos dos elementos
 - Domínio:
 - Reais / Finitos (grelha)
 - Restrições:
 - Não sobrepor componentes, não ultrapassar os limites do "contentor"

Empacotamento

Não ultrapassar os limites do "contentor"

$$X_a + Lx_a \le X_{max}$$

$$Y_a + Ly_a \le Y_{max}$$

Não sobrepor componentes

$$X_a + Lx_a \le X_b \lor X_b + Lx_b \le X_a$$

 $Y_a + Ly_a \le Y_b \lor Y_b + Ly_b \le Y_a$

Decisão vs. Otimização

- Em certos (muitos) casos o que se pretende determinar não é uma solução qualquer para o problema, mas sim a melhor solução (segundo um dado critério)
 - Necessário definir uma função de avaliação

Otimização: Exemplos

- Planeamento de Testes em Circuitos Digitais
 - Teste com menos entradas especificadas
- Gestão de Tráfego em Redes
 - Tráfego com menor custo / mais curto
- Gestão da Produção
 - Plano com maior lucro / menores custos
- Escalonamento de Tarefas
 - Solução com o final mais cedo

- Geração de Horários
 - Solução com menos furos
 - Solução que melhor respeita preferências de horário
- Caixeiro Viajante
 - Solução com menor distância/custo percorrida
- Empacotamento ou Corte
 - Corte / Colocação do maior número de peças
 - Menor desperdício de material