Defense-DDPM to Denoise DL Adversarial Attacks

Daniel Hassler, Matthew Dim, Austin Burcham

04/23/2024

Background

Problem

- FGSM and other deep learning attacks are very strong
- Defenses have strong limitations
- Fast, black-box denoising algorithms are preferred

Huge Security Threats

- Autonomous vehicle object detection
 - EX: Stop sign classified as 30 MPH speed limit sign
- Facial recognition classifiers
 - EX: Gaining access to sensitive information via faceID attack
- Medical diagnosis
 - EX: Tampering with X-ray data classifying tumors as cancerous or non-cancerous

Related Works

Defenses:

- Image Denoising Auto-encoder
 - Venkataraman, Prashanth. "Image denoising using convolutional autoencoder." arXiv preprint arXiv:2207.11771 (2022).
- Image Denoising Using Generative Model
 - "Denoising Adversarial Examples with PixelCNN" by Zhang et al.
- Noise2Noise: Learning Image Restoration without Clean
 Data
 - "Noise2Noise: Learning Image Restoration without Clean Data" Lehtinen et al. (2018)

Introduction

Our Novel Approach

- Denoise: Combine power of input transformations and diffusion model to denoise images.
 - NL-Means or Wavelet Transform as preprocessing step
 - DDPM (Denoising Diffusion Probabilistic Model) in defense setting
- Evaluate: Classification and FID evaluation on produced images

Methodology

NL-Means

NL-Means: Background

What it is

- NL Means: image denoising algorithm.
- Compares and averages similar **patches**

How it Works

- Compares and averages image patches
- Reduces various types of noise

Advantages

- Effective for Gaussian, impulse noise
- Preserves image details, textures

Figure 6.1: NL-means denoising on part of the Lena image. Left: noisy image. Right: image after NL-means denoising. Taken from [10].

The Algorithm

Fundamental Idea

- Compare **patches**, not individual pixels
- Similar patches likely contain meaningful information.
- Use **weighted avg. of pixels** for denoising

Patch Comparison

- Use **sliding window** approach.
- Compare pixel patch with every pixel's patch in window

Similarity Measure

• Use metric for similarity of patches: mean squared difference

Weight Calculation

- Calculate weights for each pixel in patch.
- Higher weights for more similar patches.

Sliding window approach

$$\frac{1}{N} \sum_{i=1}^{N} (p_1(i) - p_2(i))^2$$

Mean Squared difference between corresponding pixels in compared pixel patches.

P1 and p2 corresponding pixels between patches

Weight Calculation Specifics

Gaussian Weighting:

- Use Gaussian function to assign weights.
- Normalize weights
- Multiply each pixel value by its weight.
- Sum these products to get the denoised pixel value

Resulting Pixel Value:

- Pixel value becomes the **weighted average of patch values**.
- More similar patches contribute more to the average.

$$w_{ij} = e^{-\frac{MSD_{ij}}{h^2}}$$

Gaussian weight function.

MSD: Mean Square Difference between patches.

H smoothing parameter

Wavelet Transform

Wavelet Transform Overview

- A wavelet is a function that oscillates like a wave but quickly attenuates (short lived)
 - Extrapolates scale of a wave, localized in time
 - Better with dealing with noisy signals
 - For example: ECG data which is typically noisy
- Goal: Break a function into key components
 - Similar to a fourier transform, but localized in time (not explicitly

R-peak extraction of ECG data which correlates to heart rate and variability (HRV)

Wavelet Implementation

Separable 2D DWT

- Decompose image into two levels of wavelet composition
- Three wavelet equations where m and n are coordinates of the image
- Denoise wavelet coefficients using thresholding
- Apply inverse wavelet transform on modified coefficients to obtained denoised images

$$\psi^{1}(m,n) = \phi(m)\psi(n)$$
 LHwavelet,
 $\psi^{2}(m,n) = \psi(m)\phi(n)$ HLwavelet,
 $\psi^{3}(m,n) = \psi(m)\psi(n)$ HHwavelet,
 $\psi^{4}(m,n) = \psi(m)\psi(n)$

Denoising Diffusion Probabilistic Model

DDPM Training Background

Our DDPM Approach Methodology

Evaluation

Dataset

Birds dataset:

- ~90,000 labeled bird images
- 525 species (labels)
- 84635 train, 2625 test, 2625 validation images
- Dimension: 224x224x3 (RGB)

Evaluation Procedure

Denoising Results

- Successful denoising is the percentage of classifications that were reverted back to the true label after defending successful attacks.
- Using NL-Means as a preprocessing denoising transformation greatly improved our Defense-DDPM results

	Successful Denoising of FGSM eps=0.05 Attack w/ Different Input Transformations		
	None	Wavelet Transform	NL-Means
DDPM t=1	23.66	27.94	45.65
DDPM t=2	23.92	28.91	46.26
DDPM t=5	28.30	34.66	51.20
DDPM t=10	35.22	44.02	48.45
DDPM t=20	42.19	46.97	44.33
DDPM t=30	41.53	48.14	40.76
DDPM t=40	41.48	44.07	36.49
DDPM t=100	35.06	35.67	24.94

Example of Attack Denoising on DDPM

Defense-DDPM Denoising on FGSM (eps=0.05) Attack

Original Image

SATYR TRAGOPAN CABOTS TRAGOPAN SATYR TRAGOPAN

Examples of our Transformation Effects on DDPM

Defense-DDPM Denoising w/ NL-Means on FGSM (eps=0.05) Attack

Defense-DDPM Denoising w/ Wavelet Transform on FGSM (eps=0.05) Attack

Frechet Inception Distance (FID) Results

- Lower FID = better generated images
- DDPM with NL-Means produced best quality generated denoised images.
- DDPM T=5 produced best results with NL-Means, scoring 8.73 FID

	Denoising FID w/ Different Input Transformations (FGSM eps=0.05 Attack)		
	None	Wavelet Transform	NL-Means
DDPM t=1	24.95	12.29	9.06
DDPM t=2	24.92	12.44	8.89
DDPM t=5	24.52	12.66	8.73
DDPM t=10	27.31	16.35	11.21
DDPM t=20	36.91	24.45	19.74
DDPM t=30	44.39	31.67	28.00
DDPM t=40	50.83	37.96	35.39
DDPM t=100	72.54	60.26	62.21

Discussion

Limitations

- Training and inference time for DDPM.
 - Training > 12 hours for 200 epochs on very small dataset
 - Inference time is dependent on "t" parameter (up to 15 hours for 100 denoising steps)
 - Resource intensive ~ 16 GB of VRAM
- NL-Means inference time
 - Hyperparameter tuning is expensive.
- Slow defense due to above limitations.

Future Work

- Denoise various other attacks (CW, JSMA, PGD)
- Attempt different DDPM setups, maybe including forward noise.
- Post-processing output of DDPM model.
- SVD to Learn Wavelet Transform Coefficients.
- Try out different patch sizes for NL-Means and further hyperparameter tuning.

Questions