- c) Sea w un vector aleatorio de 7×1 . Encuentre h, la proyección de w sobre H y p, la proyección de w sobre H^{\perp} (vea el problema 7 de esta sección de MATLAB). Verifique que $\mathbf{w} = \mathbf{p} + \mathbf{h}$. Repita para otros tres vectores w.
- d) Verifique que $BB^{T} + CC^{T} = I$, donde I es la matriz identidad.
- e) (Lápiz y papel) Pruebe la relación en el inciso d).
- **9.** a) (Lápiz y papel) Suponga que $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ es una base ortonormal para \mathbb{R}^n y B es la matriz $[\mathbf{u}_1 \dots \mathbf{u}_n]$. Sea v un vector en \mathbb{R}^n . Haciendo uso del teorema 6.1.4, explique por qué se pueden encontrar las coordenadas de v respecto a la base $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ mediante $B^\mathsf{T} \mathbf{v}$.
 - b) (Lápiz y papel) Recuerde que si θ es el ángulo entre \mathbf{u} y \mathbf{w} , entonces $\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{w}}{|\mathbf{u}||\mathbf{w}|}$. Suponga que $|\mathbf{w}| = 1$. Usando el teorema 6.1.4, pruebe que las coordenadas de \mathbf{w} respecto a una base ortonormal se pueden interpretar como los cosenos de los ángulos que forma \mathbf{w} con cada uno de los vectores de la base; es decir, la coordenada de \mathbf{w} que corresponde al coeficiente del *i*-ésimo vector de la base es igual al coseno del ángulo entre \mathbf{w} y ese vector.
 - c) Verifique esta interpretación encontrando los ángulos entre el vector dado w y la base ortonormal $\{v_1, v_2\}$ para \mathbb{R}^2 . Primero, haga un bosquejo a mano para decidir qué ángulos espera (utilice el comando acos de MATLAB. Con doc acos se obtiene una descripción. Para cambiar el ángulo de radianes a grados, multiplique por $\frac{180}{\pi}$).
 - i) $\mathbf{w} = \text{vector de longitud 1 en la dirección de } \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

ii)
$$\mathbf{w} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

 $\mathbf{v}_1 = \text{vector de longitud 1 en la dirección de} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 \mathbf{v}_2 = vector de longitud 1 en la dirección de $\begin{pmatrix} -1\\1 \end{pmatrix}$

d) Verifique que
$$\left\{\begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}, \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}\right\}$$
 es una base ortonormal para \mathbb{R}^3 . Sea $\mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Encuentre los ángulos entre s y cada vector de la base. Primero construya $\mathbf{w} = \frac{\mathbf{s}}{|\mathbf{s}|}$. Los ángulos entre \mathbf{w} y los vectores de la base serán iguales a los ángulos entre \mathbf{s} y estos vectores. Repita para otro vector \mathbf{s} .

10. Verifique que las siguientes matrices son ortogonales.

$$a) \left(\frac{1}{\sqrt{2}}\right) \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = B$$

b)
$$\left(\frac{1}{14}\right)\begin{pmatrix} -4 & -6 & 12\\ 6 & -12 & -4\\ 12 & 4 & 6 \end{pmatrix} = B_1$$

c)
$$\left(\frac{1}{39}\right) \begin{pmatrix} -13 & 14 & -34\\ -26 & -29 & -2\\ -26 & 22 & 19 \end{pmatrix} = B_2$$

$$d$$
) orth(rand(3)) = B_3