Implications and open sentences

Implications and open sentences

Implications and open sentences

Consider the statement:

For all $x \in \mathbb{Z}$, if x is divisible by 6 then x is even.

- "x is divisible by 6" is an open sentence P(x)
- "x is even" is an open sentence Q(x)
- "if x is divisible by 6 then x is even" is an open sentence $P(x) \implies Q(x)$.

Analysis of quantified implication

"For all $x \in \mathbb{Z}$, if x is divisible by 6 then x is even"

is a statement that "ands" together $P(x) \implies Q(x)$ as x runs over

is a statement that "ands" together
$$P(x) \Longrightarrow Q(x)$$
 as x runs over the integers:

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \Longrightarrow Q(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \Longrightarrow Q(x) \Longrightarrow Q(x) \text{ as } x \text{ runs over}$$

$$P(x) \Longrightarrow Q(x) \Longrightarrow$$

true:

- \triangleright x is not divisible by 6, so P(x) is false for that x
- \triangleright x is divisible by 6 and x is even meaning P(x) and Q(x) are true for that x.

It will be false if there is at least one x that is divisible by 6 but not even.

Conventional interpretation

It is a common convention to read a statement like

"If x is an integer divisible by 6, then x is even" — For all $x \in \mathbb{Z}$, if x is divisible by 4 as including an implicit quantifier "for all $x \in \mathbb{Z}$."

- ▶ If $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function, then it is continuous.
- ▶ If $x \in \mathbb{R}$, then $x^2 = x$ implies x = 0 or x = 1.

If
$$x \in \mathbb{R}$$
, then $x^2 = x$ implies $x = 0$ or $x = 1$.
 $\forall x \in \mathbb{R}$, $\left[x^2 = x\right] = x = 0$ or $x = 1$.