1 原理

1.1 レーザーの共振原理

Light Amplification by Stimulated Emission of Radiation (LASER, レーザー) は誘導放射により増幅された光である。放射とは励起した媒質原子が基底状態に遷移する際に電磁波を放出する過程であり、誘導放射と自発放射の2種類がある。自発放射は励起した原子がある確率で自発的に基底状態に遷移する現象であるのに対し、誘導放射は電場との相互作用により原子の状態が遷移する現象である。誘導放射により放出される電磁波は外部の電場と同位相である。したがって誘導放射が支配的な電磁波は位相が時間的、空間的に均一であり、このような電磁波をコヒーレント (coherent) 光と呼ぶ。

媒質中を進行する光は上記のように誘導放射と自発放射の成分があり、その輻射強度 I の変化は (1) のように表される.

$$\frac{\mathrm{d}I}{\mathrm{d}x} \propto AN_u + BIN_u - BIN_l = AN_u - BI(N_l - N_u) \tag{1}$$

ここで N_u は励起状態, N_l は基底状態の原子の密度である. (1) の第 1 項は自発放射, 第 2 項は誘導放射による自発放射, 第 3 項は媒質による吸収を表す. 吸収は誘導放射の逆過程であるため同じ係数が掛かっている. (1) は非同時線形微分方程式であり, その解は以下のようになる.

$$I(x) = \frac{AN_u}{B(N_l - N_u)} + Ce^{-B(N_l - N_u)x}$$
 (2)

ここで $N_l>N_u$ のときは $x\to\infty$ で第 2 項が 0 に収束することから自発放射が支配的に, $N_u>N_l$ のときは第 2 項が発散することから誘導放射が支配的になるとわかる. レーザーでは $N_u>N_l$ なる状態を人工的に作り, 共振器を用いて媒質中での進行距離を大きくすることで誘導放射が支配的な光を生成する. また $N_u>N_l$ なる分布を反転分布と呼ぶ.

共振器は図1のような構成になっている。レーザーが実際に発振するには前述の反転分布よりも強い条件が必要になる。それは共振器から半透鏡や窓を用いて光を取り出したり,回折などにより損失が発生するためである。したがって実際に発振が起きるには $N_u-N_l>N_{th}$ なる条件が必要になる。ここで N_{th} は損失の大きさによって定まる閾値である。

図1 共振器の概略図

また実際に放射される光は図 2 のように媒質の熱運動によるドップラー効果や自発放射によりある程度の幅 $f\pm\Delta f$ を持っている.この中で共振器の内部で定在波として存在できる波長のみが選択的に増幅される.共振器の長さを L とすると周波数 ν の光が共振器内で定在波として存在する条件は

$$\nu_m = \frac{mc}{2L} \qquad (m \in \mathbb{N}) \tag{3}$$

であり ν_m が放射光の分布幅 $2\Delta f$ に収まっていれば増幅され発振する. それぞれの m に対応する 光軸方向の電磁場の分布を縦モードと呼ぶ. また電磁場は光軸に垂直な方向にも分布を持ち、これ を横モードと呼ぶ. 横モードは軸からの距離 r と軸方向 z について

$$E = E_0(z)e^{-(r/w(z))^2}$$
(4)

で表され、このようなビームをガウスビームと呼ぶ. w(z) はビーム幅に関する値でスポットサイズという.

図 2 共振器のモード

1.2 ガウスビームの拡散

ガウスビームは回折によって伝搬に伴い広がりを持つようになり、やがて球面波となる。任意の位置でのガウスビームのスポットサイズ w(z) と波面の曲率半径は以下で与えられる。 また図 3、図 4 に w(z)、R(z) のプロットを示す。図 3 は片対数である。 ただし $w_0=1\mathrm{mm}$ 、 $\lambda=600\mathrm{nm}$ とした。図 3 から $z\simeq10\mathrm{m}$ 程度までは一定のビーム幅でその後急速に拡散しているのがわかる。

$$w(z) = \sqrt{w_0^2 + \left(\frac{\lambda z}{\pi w_0}\right)^2} \tag{5}$$

$$R(z) = z + \frac{\pi^2 w_0^4}{\lambda^2 z} \tag{6}$$

図 3 z-w(z) の関係

図 4 z-R(z) の関係

2 実験装置の原理

2.1 分光計について

分光計の模式図を図 5 に示す。有限の幅を持ったスリット S_1 から入射した光が回折格子で反射し S_2 から出る。このとき入射角 $\alpha=\gamma+\theta$,出射角 $\beta=\gamma-\theta$ であり,それぞれ $\delta\alpha$, $\delta\beta$ の幅を持つ。ここで回折条件は格子定数 d として

$$\lambda \pm \delta \lambda = d|\sin(\alpha \pm \delta \alpha) - \sin(\beta \pm \delta \beta)|$$

$$\simeq d|\sin \alpha - \sin \beta \pm (\cos \alpha \delta \alpha - \cos \beta \delta \beta)|$$
(7)

となる. ここで $\delta\alpha$, $\delta\beta\ll 1$ として近似した. λ に関する部分を見ると

$$\pm \lambda = d(\sin \alpha - \sin \beta)$$

$$= 2d \sin \theta \cos \gamma$$
(8)

となり、回折格子を回転させることで任意の波長の光を取り出せることがわかる。 また $\delta\lambda$ に関する部分を見ると

$$\delta\lambda = d|\cos\alpha\delta\alpha - \cos\beta\delta\beta|\tag{9}$$

ここで誤差の伝搬則を用いると

$$|\delta\lambda| = d\sqrt{(\cos\alpha\delta\alpha)^2 + (\cos\beta\delta\beta)^2}$$
 (10)

となる. ここで幾何学的に

$$F\delta\alpha \simeq x_1 \cos\gamma \tag{11}$$

なので $x_1 = x_2 = x$ のもとで

$$|\delta\lambda| = d\sqrt{\left(\frac{x\cos\gamma}{F}\cos\alpha\right)^2 + \left(\frac{x\cos\gamma}{F}\cos\beta\right)^2}$$
 (12)

さらに γ , α , $\beta \ll 1$ と仮定するとスペクトルの幅は以下のようになる.

$$|\delta\lambda| \simeq \frac{\sqrt{2}d}{F}x\tag{13}$$

分光計に単色光を入射した場合の出力が半値幅 $2|\delta\lambda|$ すなわち $\sigma_a=\delta\lambda/2\sqrt{2\ln 2}$ のガウス関数であるとする. このとき σ_λ のガウス関数型スペクトルを持った光を入射すると, その出力のスペクトル H は以下の畳み込み積分で表される.

$$H(\lambda) = \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_a\sigma_\lambda} e^{-(t/\sqrt{2}\sigma_a)^2} e^{-((\lambda-t)/\sqrt{2}\sigma_\lambda)^2} dt$$

$$= \frac{e^{-\lambda^2/2(\sigma_a^2 + \sigma_\lambda^2)}}{2\pi\sigma_a\sigma_\lambda} \int_{-\infty}^{\infty} \exp\left(-\frac{\sigma_a^2 + \sigma_\lambda^2}{2\sigma_a^2\sigma_\lambda^2} \left(t - \frac{\sigma_a^2\sigma_\lambda^2}{\sigma_a^2 + \sigma_\lambda^2} \frac{\lambda}{\sigma_\lambda^2}\right)^2\right)$$

$$= \frac{1}{\sqrt{2\pi(\sigma_a^2 + \sigma_\lambda^2)}} \exp\left(-\frac{t^2}{2(\sigma_a^2 + \sigma_\lambda^2)}\right)$$
(14)

すなわちガウス関数型のスペクトル分布を持った光を分光器に入力した場合も同様にガウス関数型 のスペクトルが得られることがわかる.

fig/fig2.png

図 5 分光計の模式図

2.2 FPI について

Fabry-Perrot Interderometer (FPI, ファブリ・ペロー干渉計) は任意の波長を選択的に取り出す光学機器である。図 7 に FPI の模式図を示す。2 つの半透鏡が向かいあわせに設置され、共振器長 D が可変できるようになっている。このとき周波数 ν の光が共振器内で定在波として存在する条件は

$$\nu_m = \frac{mc}{2D} \qquad (m \in \mathbb{N}) \tag{15}$$

であり D を可変することで特定の波長を選択的に取り出すことができる. D を一定の速度で掃引するとモードの異なるスペクトルパターンが周期的に現れ、これを測定することでスペクトルを高い分解能で測定できる.

FPI を用いて He-Ne レーザーのスペクトルを調べることを考える. He-Ne レーザーは多モード 発振しておりそのここでは λ_1 と λ_2 にピークを持つとする. したがって FPI スペクトルは図 6 のようになる. したがって以下が成り立つ.

$$\Delta D_1 = \frac{(m+1)\lambda_1}{2} - \frac{m\lambda_1}{2} = \frac{\lambda_1}{2} \tag{16}$$

$$\Delta D_2 = \frac{m\lambda_2}{2} - \frac{m\lambda_1}{2} = \frac{m\Delta\lambda}{2} \tag{17}$$

ここで実際に測定されるのはピーク間の時間間隔であるが D の掃引速度が一定 (=v) であるならば図 6 のように $\Delta_1=vT, \Delta_2=vt$ となるので

$$\frac{t}{T} = \frac{\Delta D_2}{\Delta D_1} = \frac{m\Delta\lambda}{\lambda} \tag{18}$$

である. 更に干渉条件 $D \sim \frac{m \lambda}{2}$ より m を消去すると

$$\frac{t}{T} = \frac{2\Delta\lambda}{\lambda^2}D\tag{19}$$

となるので λ, D が既知ならば t/T から $\Delta\lambda$ が求まる.

図 6 He-Ne レーザーの FPI スペクトル

図7 FPI装置の模式図

2.3 光電子増倍管

光電子増倍管は応答性, 感度, 低雑音などに優れた光検出器である. 図 8 に光電子増倍管の模式図を示す. 光電子増倍管はカソード, 数段のダイノード, アノードから成る. 各ダイノードには分圧抵抗を用いて数十から数百 kV の電圧が掛けられている. カソードに電子が衝突すると光電効果により電子が放出される. これがダイノードに衝突するとダイノードからさらに複数の電子が放出される. したがって数段のダイノードに衝突を繰り返すに従い 10^4 から 10^6 倍程度に増幅された電流がアノードから出力される.

光電子増倍管は熱電子放射や漏洩電流により光が入射していなくてもある程度の電流が流れており、これを暗電流と呼ぶ.

図8 光電子増倍管の模式図

3 実験方法

3.1 測定1:半導体レーザーの発振閾値測定

3.1.1 準備

レーザーダイオード (LD) に定電流電源装置, 電流計を接続し印加電流を測定できるようにした. 次に光電子増倍管に LD からのレーザー光を導入し ADC の出力が -0.7V 程度になるように高圧電源の電圧を調整した. この際光電子増倍管に室内光のような強い光が入射しないように注意した.

3.1.2 測定

LD への印加電流を 0 から 30 mA 程度まで 1.5 mA ごとに変えながら ADC の出力値を記録した. 記録した値からグラフを作成し, ゲインが変化する電流の閾値を読み取った.

3.2 測定 2: レーザー光の分光

3.2.1 準備

3.1.1 節と同様に LD をと定電流電源装置, 電流計を接続した. 次に LD からのレーザー光を分光計に導入する. レンズを用いて分光計のスリット上にレーザー光が像結ぶように調整した. その後分光計の波長ハンドルを回し, 出力を中心波長に合わせた. この状態で 3.1.1 と同様に ADC の出力が -0.7V 程度になるように高圧電源の電圧を調整した.

3.2.2 測定

表 2 の各条件において分光計の掃引機能を用いて波長を掃引しながら ADC の出力値を記録した。その後各条件での測定結果をガウス関数 $f(x)=a+c\exp(-(x-x_0)^2/2\sigma^2)$ で fit し半値全幅と中心波長を求める。 fitting には gnuplot の fit の機能を用いた。 また B1 から B4 の測定では光電子増倍管による線形なドリフトが現れていたため $f(x)=a+bx+cx\exp(-(x-x_0)^2/2\sigma^2)$ という関数で fit した。 掃引の条件は表 1 の通りである。

表 1 掃引条件

条件	内容	
掃引速度	$30 \mathrm{nm s^{-1}}$	
掃引範囲	$665 \sim 670 \ \mathrm{nm}$	

表 2 測定条件

測定番号	スリット幅 / μm	印加電流 / µm
A1	500	30
A2	400	30
A3	300	30
A4	200	30
A5	100	30
B1	500	25
B2	500	20
В3	500	10
B4	500	5

3.3 測定 3: FPI によるレーザ光の分光

3.3.1 準備

この実験では FPI により He-Ne レーザーの多モード発振の発振周波数を調べた. 測定装置は図9 のような構成になっている. まず検出器をアンプに, その出力をオシロスコープへ接続した. また反射鏡とアンプ, アンプと鋸波発生器, 鋸波発生器のモニター端子とオシロスコープを接続した. 次にフォトダイオードの受光面にレーザー光が当たるように検出器とレーザー光源の位置関係を調整した. その後 M2 を設置し, 光軸と M2 の中心を合わせた. そしてマイクロメーターを回して光軸と M2 が垂直になるよう調整した. その際に反射した光を光源と合わせるようにした. 同様に M1 を設置し位置, 角度を調整した. 最後にオシロスコープの出力を見ながら細いスペクトルが見えるように反射鏡の角度を更に追い込んだ.

図9 測定3の構成

3.3.2 測定

オシロスコープの測定モードを 16 回平均とし、スペクトルが見やすい部分を拡大して記録した。また、その時の反射鏡間隔 D をノギスで測定した。反射鏡間隔を 5 mm ずつ変化させながら同様の実験を繰り返した。

3.4 測定 4:2 台レーザー間のうなりの測定

3.4.1 準備

この実験では 2 台のレーザーを混合させ、そのときに発生するうなりを測定する. 測定装置は図 10 のような構成になっている. まず光源 1 からのレーザー光が M2 表面上で光源 2 の光点と一致 するように M1 の角度を調整した. 次に光源 1 からのレーザ光と LD2 からのレーザ光の光線が一致するように M2 の角度を調整した. 最後にレーザー光がフォトダイオードの受光面に当たるよう に調整した.

図 10 測定 4

3.4.2 測定

オシロスコープを調整しうなりの波形を記録した. 次に一方の LD からの光線に偏光板を通し、その状態でのうなりの波形を記録した.

4 結果

4.1 測定1:半導体レーザーの発振閾値測定

図 11 に測定結果を示す.

図11 測定1の結果

4.2 測定 2: レーザー光の分光

表 3 に各測定での標準偏差 σ , 中心波長 λ_0 を示す.スリット幅,印加電流と半値全幅の関係を図 12, 図 13 示す.また各測定で得られたスペクトル,fitting 結果は補遺に残した.半値全幅は $2\sigma\sqrt{2\log 2}$ より求めた.

表3 各測定での標準偏差と中心波長

測定番号	標準偏差 σ	中心波長 λ_0
A1	0.7047 ± 0.0006	658.8 ± 0.0
A2	0.5675 ± 0.0003	658.9 ± 0.0
A3	0.4365 ± 0.0002	658.8 ± 0.0
A4	0.2783 ± 0.0003	658.8 ± 0.0
A5	0.1785 ± 0.0018	658.8 ± 0.0
B1	1.217 ± 0.001	658.8 ± 0.0
B2	5.704 ± 0.006	657.8 ± 0.0
В3	7.575 ± 0.006	657.2 ± 0.0
B4	8.613 ± 0.011	656.7 ± 0.0

図 12 スリット幅と半値全幅の関係

図 13 印加電流と半値全幅の関係

4.3 測定 3: FPI によるレーザー光の分光

表 4 に共振器長 D と T, t の関係を示す. また図 14 に D と t/T の関係を示す.

表 4 共振器長と T, t の関係

T / ms	t / ms
6.28	1.58
4.74	1.38
5.64	1.98
5.30	2.14
5.68	2.38
5.48	2.46
	6.28 4.74 5.64 5.30 5.68

図 14 D と t/T の関係

4.4 測定 4:2 台のレーザー間のうなりの測定

偏光板あり、なしの状態でのうなりの周波数 F_1 と基本周波数 F_2 を表に示す.

表 5 うなりの周波数と基本周波数

	うなりの周波数 $F_1 \ / imes 10^6 { m Hz}$	基本周波数 $F_2 / \times 10^7 \mathrm{Hz}$
偏光板なし	2.73	8.93
偏光板あり	-	4.00

5 考察

5.1 半導体レーザーの発振閾値

図 11 を x < 22.5 と $22.5 \le x$ それぞれの区間を直線で fitting した. その結果を図 15 に示す. fitting により各直線は

図 15 図 11 に対する fitting