Visualizing proportions

Claus O. Wilke

last updated: 2021-03-09

The archetypal visualization of proportions: pie chart

Party composition of the 8th German Bundestag, 1976–1980

Pie chart vs stacked bars vs side-by-side bars

Example where stacked bars are preferred

Change in the gender composition of the Rwandan parliament from 1997 to 2016

	Pie	Stacked	Side-by-side
	chart	bars	bars
Allows easy comparison of relative proportions	*	*	✓

	Pie chart	Stacked bars	Side-by-side bars
Allows easy comparison of relative proportions	*	*	✓
Shows data as proportions of a whole	✓	•	*

	Pie chart	Stacked bars	Side-by-side bars
Allows easy comparison of relative proportions	*	*	✓
Shows data as proportions of a whole	~	•	*
Emphasizes simple fractions (1/2, 1/3,)	✓	*	*

	Pie chart	Stacked bars	Side-by-side bars
Allows easy comparison of relative proportions	*	*	✓
Shows data as proportions of a whole	~	~	*
Emphasizes simple fractions (1/2, 1/3,)	✓	*	*
Visually appealing for small datasets	✓	×	•

	Pie chart	Stacked bars	Side-by-side bars
Allows easy comparison of relative proportions	*	*	✓
Shows data as proportions of a whole	✓	•	*
Emphasizes simple fractions (1/2, 1/3,)	✓	*	*
Visually appealing for small datasets	~	*	✓
Works well for a large number of subsets	*	*	✓

	Pie chart	Stacked bars	Side-by-side bars
Allows easy comparison of relative proportions	*	*	✓
Shows data as proportions of a whole	•	~	*
Emphasizes simple fractions (1/2, 1/3,)	•	*	*
Visually appealing for small datasets	~	*	~
Works well for a large number of subsets	*	*	~
Works well for time series and similar	*	•	*

No one visualization fits all scenarios!

Making pie charts with ggplot

We have three options:

• geom_bar()/geom_col() with poolar coordinates

Pros: simple

Cons: hard to customize

- geom_arc_bar() with stat_pie()
 Pros: relatively simple, some customization
 Cons: requires ggforce & some more complex code
- geom_arc_bar() with manual computation
 Pros: maximum flexibility for customization
 Cons: requires ggforce & much more complex code

```
# the data
bundestag <- tibble(
  party = c("CDU/CSU", "SPD", "FD
  seats = c(243, 214, 39)
)
bundestag</pre>
```

```
# the data
bundestag <- tibble(
  party = c("CDU/CSU", "SPD", "FD
  seats = c(243, 214, 39)
)

# make bar chart
ggplot(bundestag) +
  aes(seats, "YY", fill = party)
  geom_col()</pre>
```



```
# the data
bundestag <- tibble(
  party = c("CDU/CSU", "SPD", "FD
  seats = c(243, 214, 39)
)

# make bar chart in polar coords
ggplot(bundestag) +
  aes(seats, "YY", fill = party)
  geom_col() +
  coord_polar()</pre>
```



```
# the data
bundestag <- tibble(</pre>
  party = c("CDU/CSU", "SPD", "FD
  seats = c(243, 214, 39)
# make bar chart in polar coords
ggplot(bundestag) +
  aes(seats, "YY", fill = party)
  geom_col() +
  coord_polar() +
  scale_x_continuous(
    name = NULL, breaks = NULL
  scale_y_discrete(
    name = NULL, breaks = NULL
  ) +
  ggtitle("German Bundestag 1976-
```

German Bundestag 1976-1980


```
library(ggforce)

ggplot(bundestag) +
  aes(
    x0 = 0, y0 = 0, # position of
    r0 = 0, r = 1, # inner and o
    amount = seats, # size of pie
    fill = party
    ) +
    geom_arc_bar(stat = "pie")
```



```
library(ggforce)

ggplot(bundestag) +
  aes(
    x0 = 0, y0 = 0, # position of
    r0 = 0, r = 1, # inner and o
    amount = seats, # size of pie
    fill = party
    ) +
    geom_arc_bar(stat = "pie") +
    coord_fixed()
```



```
library(ggforce)

ggplot(bundestag) +
  aes(
    x0 = 0, y0 = 0, # position of
    r0 = 0, r = 1, # inner and o
    amount = seats, # size of pie
    fill = party
    ) +
    geom_arc_bar(stat = "pie") +
    coord_fixed(
     xlim = c(-1, 3), ylim = c(-1,
    )
```



```
library(ggforce)

ggplot(bundestag) +
  aes(
    x0 = 1, y0 = 1, # position of
    r0 = 0, r = 1, # inner and o
    amount = seats, # size of pie
    fill = party
    ) +
    geom_arc_bar(stat = "pie") +
    coord_fixed(
     xlim = c(-1, 3), ylim = c(-1,
    )
```



```
library(ggforce)

ggplot(bundestag) +
  aes(
    x0 = 1, y0 = 1, # position of
    r0 = 1, r = 2, # inner and o
    amount = seats, # size of pie
    fill = party
    ) +
    geom_arc_bar(stat = "pie") +
    coord_fixed(
    xlim = c(-1, 3), ylim = c(-1,
    )
```



```
# prepare pie data
pie_data <- bundestag %>%
  arrange(seats) %>% # sort so pie slices end up sorted
  mutate(
    end_angle = 2*pi*cumsum(seats)/sum(seats) # ending angle for each
)
pie_data
```

3.20

1 FDP 39 0.494

3 CDU/CSU 243 6.28

2 SPD 214 3.20 0.494

```
# prepare pie data
pie_data <- bundestag %>%
  arrange(seats) %>% # sort so pie slices end up sorted
  mutate(
    end_angle = 2*pi*cumsum(seats)/sum(seats), # ending angle for each
    start_angle = lag(end_angle, default = 0), # starting angle for ea
    mid_angle = 0.5*(start_angle + end_angle), # middle of each pie s.
pie_data
# A tibble: 3 x 5
 party seats end_angle start_angle mid_angle
 <chr> <dbl> <dbl>
                            <dbl>
                                     <dbl>
1 FDP 39 0.494
                                     0.247
2 SPD 214 3.20 0.494 1.85
3 CDU/CSU 243 6.28
                            3.20 4.74
```

```
# prepare pie data
pie_data <- bundestag %>%
  arrange(seats) %>% # sort so pie slices end up sorted
  mutate(
    end_angle = 2*pi*cumsum(seats)/sum(seats), # ending angle for each
    start_angle = lag(end_angle, default = 0),  # starting angle for ea
    mid_angle = 0.5*(start_angle + end_angle), # middle of each pie s.
    # horizontal and vertical justifications for outer labels
    hjust = ifelse(mid_angle > pi, 1, 0),
    vjust = ifelse(mid_angle < pi/2 | mid_angle > 3*pi/2, 0, 1)
pie_data
# A tibble: 3 \times 7
 party seats end_angle start_angle mid_angle hjust vjust
 <chr> <dbl> <dbl>
                             <dbl> <dbl> <dbl> <dbl> <dbl> <
                             0 0.247
1 FDP
          39 0.494
2 SPD 214 3.20 0.494 1.85 0
```

3.20

4.74 1

3 CDU/CSU 243 6.28

```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0, r = 1
    start = start_angle, end = en
    fill = party
) +
  geom_arc_bar() +
  coord_fixed()
```



```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0, r = 1
    start = start_angle, end = en
    fill = party
) +
  geom_arc_bar() +
  geom_text( # place amounts insi
  aes(
    x = 0.6 * sin(mid_angle),
    y = 0.6 * cos(mid_angle),
    label = seats
  )
) +
  coord_fixed()
```



```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0, r = 1
    start = start_angle, end = en
    fill = party
) +
  geom_arc_bar() +
  geom_text( # place amounts insi
  aes(
    x = 0.2 * sin(mid_angle),
    y = 0.2 * cos(mid_angle),
    label = seats
  )
) +
  coord_fixed()
```



```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0, r = 1
    start = start_angle, end = en
    fill = party
) +
  geom_arc_bar() +
  geom_text( # place amounts insi
  aes(
    x = 0.8 * sin(mid_angle),
    y = 0.8 * cos(mid_angle),
    label = seats
)
) +
  coord_fixed()
```



```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0, r = 1
    start = start_angle, end = en
    fill = party
) +
  geom_arc_bar() +
  geom_text( # place amounts insi
  aes(
    x = 0.6 * sin(mid_angle),
    y = 0.6 * cos(mid_angle),
    label = seats
  )
) +
  coord_fixed()
```



```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0, r = 1,
    start = start_angle, end = end_a
    fill = party
  geom_arc_bar() +
  geom_text( # place amounts inside
    aes(
      x = 0.6 * sin(mid_angle),
      y = 0.6 * cos(mid_angle),
      label = seats
  geom_text( # place party name out
    aes(
      x = 1.05 * sin(mid_angle),
      y = 1.05 * cos(mid_angle),
      label = party,
      hjust = hjust, vjust = vjust
```



```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0, r = 1,
    start = start_angle, end = end_a
    fill = party
  geom_arc_bar() +
  geom_text( # place amounts inside
    aes(
      x = 0.6 * sin(mid_angle),
      y = 0.6 * cos(mid_angle),
      label = seats
  geom_text( # place party name out
    aes(
      x = 1.05 * sin(mid_angle),
      y = 1.05 * cos(mid_angle),
      label = party,
      hjust = hjust, vjust = vjust
```



```
ggplot(pie_data) +
  aes(
    x0 = 0, y0 = 0, r0 = 0.4, r = 1
    start = start_angle, end = end_a
    fill = party
  geom_arc_bar() +
  geom_text( # place amounts inside
    aes(
      x = 0.7 * sin(mid_angle),
      y = 0.7 * cos(mid_angle),
      label = seats
  geom_text( # place party name out
    aes(
      x = 1.05 * sin(mid_angle),
      y = 1.05 * cos(mid_angle),
      label = party,
      hjust = hjust, vjust = vjust
```


Further reading

- Fundamentals of Data Visualization: Chapter 10: Visualizing proportions
- Fundamentals of Data Visualization: Chapter 11: Visualizing nested proportions
- ggplot2 reference documentation: position_stack(), position_fill()
- ggplot2 reference documentation: position_dodge()
- **ggforce** reference documentation: geom_arc_bar()