Student ID Number:

Graph Theory, Discrete Mathematics, and Optimization Graph Theory and Discrete Mathematics module

1	2	3	4	5	6

Exam duration: one hour. The test is composed by 6 multiple-choice questions (one point each), and one open question (up to two points). For the multiple-choice questions please insert the correct answer into the above grid. No cheating or collaboration is allowed. Good luck!

1. (2 point) The following system

$$\begin{cases} 2x_1 & -2x_2 & = 0\\ x_1 & +2x_2 & +2x_3 & = 1\\ \alpha x_1 & -\alpha x_2 & +x_3 & = 1 \end{cases}$$

is consistent for

- a) $\alpha = 0$ c) $\alpha > 0$
- b) $\alpha < 0$ d) for all real values α

2. (2 point) Let

$$A = \left\{ \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} \right\}; \ B = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\};$$

- a) A and B are linearly independent c) A is linearly independent and B is linearly dependent
- b) A and B are linearly dependent d) B is linearly independent and A is linearly dependent
- **3.** (2 point) Let

$$A = \left[\begin{array}{rrrr} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 0 \\ 1 & 2 & 1 & 5 \end{array} \right]$$

and $N(A) = \{ \mathbf{x} : A\mathbf{x} = \mathbf{0} \}, dim(N(A)) =$

- a) 0 c) 1
- b) 3 d) 2
- **4.** (2 point) Define the linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ by

$$T(\mathbf{x}) = \left[\begin{array}{c} x_1 + x_2 - x_3 \\ x_1 + x_3 \end{array} \right],$$

the corresponding matrix A is

(a)
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$

5. (2 point) Let $\mathbf{x} = [1 \ 1]^T$, $\mathbf{y} = [-2 \ 0]^T$, \mathbf{v} the vector projection of \mathbf{x} onto \mathbf{y} , and \mathbf{w} the vector projection of \mathbf{y} onto \mathbf{x} , then

a)
$$\mathbf{v} = [1 \ 0]^T$$
, $\mathbf{w} = [-1 \ -1]^T$ c) $\mathbf{v} = [0 \ 1]^T$, $\mathbf{w} = [-1 \ -1]^T$

b)
$$\mathbf{v} = [1 \ 0]^T$$
, $\mathbf{w} = [1 \ 1]^T$ d) $\mathbf{v} = [-1 \ 0]^T$, $\mathbf{w} = [1 \ 1]^T$

6. (2 point) The following vector is one eigenvector for the given matrix corresponding to the given eigenvalue,

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 4 & 1 & 3 \end{bmatrix}, \ \lambda = 3,$$

a)
$$[0 \ 0 \ 0]^T$$
 c) $[1 \ 1 \ 1]^T$

b)
$$[1 \ 1 \ 0]^T$$
 d) $[0 \ 0 \ 2]^T$

Exercise. (4 points) Find the eigenvalues and eigenvectors of the following matrix A

$$A = \left[\begin{array}{cc} 3 & -2 \\ -2 & 3 \end{array} \right].$$