26. Matematická indukce

Úloha 1. Dokažte matematickou indukcí následující vztahy platné pro všechna $n \in \mathbb{N}$:

(a)
$$1+2+\cdots+n=\frac{1}{2}n(n+1)$$

(b)
$$1+3+5+\cdots+(2n-1)=n^2$$

(c)
$$1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

(d)
$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

(e)
$$1 \cdot 2^0 + 2 \cdot 2^1 + 3 \cdot 2^2 + \dots + n \cdot 2^{n-1} = n \cdot 2^n - 2^n + 1$$

Úloha 2. U následujících součtů stanovte hypotézu, jakému (jednoduššímu) výrazu by se mohly rovnat, a dokažte ji matematickou indukcí:

(a)
$$2^0 + 2^1 + \cdots + 2^n$$
,

(b)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)}$$
.

Úloha 3. Dokažte matematickou indukcí, že pro každé přirozené číslo n jsou následující výrazy dělitelné šesti:

(a)
$$2n^3 + 3n^2 + n$$
,

(b)
$$4n^3 - 3n^2 - n$$
.

Úloha 4. Pro každé přirozené číslo n dokažte

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{1}{2}.$$

Úloha 5. Dokažte, že pro každé přirozené n je možné pokrýt tabulku $2^n \times 2^n$, ze které odstraníme jedno rohové pole, triminy tvaru L. Obrázek znázorňuje jedno takové pokrytí pro n=2.

(Nápověda: Útvar o straně 2^{k+1} se dá "skoro" poskládat z těch o straně 2^k , pak už stačí jen něco málo přidat.)

Úloha 6. Mějme v rovině $n \in \mathbb{N}$ různoběžných přímek takových, že žádné tři se neprotínají v jednom bodě. Dokažte, že tyto přímky dělí rovinu na $1+\frac{1}{2}n(n+1)$ oblastí. Obrázek znázorňuje situaci pro n=3 s rozdělením na $7=1+\frac{1}{2}\cdot 3\cdot 4$ oblastí.

- * Úloha 7 (Bernoulliho nerovnost). Dokažte, že pro všechna reálná x > -1 a všechna přirozená n platí $(1+x)^n \ge 1 + nx$.
- \star Úloha 8. Pro všechna $n\in\mathbb{N}$ a $x\in\mathbb{R},\,x\neq 2k\pi$ $(k\in\mathbb{Z})$ dokažte

$$\sin x + \sin 2x + \dots + \sin nx = \frac{\sin(\frac{n+1}{2}x)\sin(\frac{n}{2}x)}{\sin \frac{x}{2}}.$$

- * Úloha 9. Dokažte, že pro každé $n \in \mathbb{N}$ existuje n-ciferné přirozené číslo, které je dělitelné 2^n a jeho cifry jsou pouze 1 nebo 2.
- ★* Úloha 10. Dokažte pro všechna n ∈ N, že mezi libovolnými 3ⁿ⁺¹ přirozenými čísly lze najít 3ⁿ čísel, jejichž součet je dělitelný 3ⁿ. (Nápověda: V indukčním kroku nahlédněte, že mezi 3^{k+2} čísly lze nalézt pět disjunktních skupin, jejichž součet je dělitelný 3^k, a rozdělte je podle zbytku po dělení 3^{k+1}.)