Prof. Esp. Thalles Canela

- **Graduado:** Sistemas de Informação Wyden Facimp
- Pós-graduado: Segurança em redes de computadores Wyden Facimp
- Consultor de Tecnologia [aXR6] Cyber Security e NtecSoftware
- Professor no Senac (contratado)
- Professor na Wyden Facimp (contratado)
 - Pós-graduação: Segurança em redes de computadores Wyden Facimp
- Professor na Wyden Facimp (Efetivado)
 - Graduação: Análise e desenvolvimento de sistemas Wyden Facimp

Redes sociais:

- Linkedin: https://www.linkedin.com/in/thalles-canela/
- **YouTube:** https://www.youtube.com/aXR6CyberSecurity
- **Facebook:** https://www.facebook.com/axr6PenTest
- **Instagram:** https://www.instagram.com/thalles_canela
- **Github:** https://github.com/ThallesCanela
- **Github:** https://github.com/aXR6
- **Twitter:** https://twitter.com/Axr6S

PROTOCOLOS DE APLICAÇÃO DA INTERNET

Camada de aplicação

- Princípios de aplicações de rede
- Web e HTTP
- FTP
- Correio eletrônico
 - SMTP, POP3, IMAP
- DNS

Camada de aplicação

Nossos objetivos:

- Conceitual, aspectos de implementação de protocolos de aplicação de redes
 - Modelos de serviço da camada de transporte
 - Paradigma cliente-servidor
 - Paradigma peer-to-peer
 - Aprender sobre protocolos examinando protocolos da camada de aplicação populares: HTTP, FTP, SMTP/ POP3/ IMAP, DNS

Algumas aplicações de rede

- E-mail
- Web
- Mensagem instantânea
- Login remoto
- P2P file sharing
- Jogos de rede multi-usuário
- Streaming stored videoclipes
- Telefonia via Internet
- Videoconferência em tempo real
- Computação paralela massiva

Criando uma nova aplicação de rede

- Escrever programas que:
 - Executem sobre diferentes sistemas finais;
- Se comuniquem através de uma rede.

Ex.: Web – software de servidor Web se comunicando com software do browser.

Nenhum software é escrito para dispositivos no núcleo da rede

- Dispositivos do núcleo da rede não trabalham na camada de aplicação
- Esta estrutura permite um rápido desenvolvimento de aplicação

Camada de aplicação

- Princípios de aplicações de rede
- Web e HTTP
- FTP
- Correio electrônico SMTP, POP3, IMAP
- DNS

Arquiteturas de aplicação

- Cliente-servidor
- Peer-to-peer (P2P)
- Híbrida de cliente-servidor e P2P

Arquitetura cliente-servidor

• Servidor:

- Sempre ativo
- Endereço IP permanente
- Fornece serviços solicitados pelo cliente

• Clientes:

- Comunicam-se com o servidor
- Pode ser conectado intermitentemente
- Pode ter endereço IP dinâmico
- Não se comunicam diretamente uns com os outros

a. Aplicação cliente-servidor

Arquitetura P2P pura

- Nem sempre no servidor
- Sistemas finais arbitrários comunicam-se diretamente
- Pares são intermitentemente conectados e trocam endereços IP
- Ex.: Gnutella

Altamente escaláveis mas difíceis de gerenciar

o. Aplicação P2P

Híbrida de cliente-servidor e P2P

Napster

- Transferência de arquivo P2P
- Busca centralizada de arquivos:
 - Conteúdo de registro dos pares no servidor central
 - · Consulta de pares no mesmo servidor central para localizar o conteúdo

Instant messaging

- Bate-papo entre dois usuários é P2P
- Detecção/localização centralizada de presença:
 - Usuário registra seu endereço IP com o servidor central quando fica online
 - Usuário contata o servidor central para encontrar endereços IP dos vizinhos

Comunicação de processos

Processo: programa executando num hospedeiro

- Dentro do mesmo hospedeiro: dois processos se comunicam usando comunicação interprocesso (definido pelo OS)
- Processos em diferentes hospedeiros se comunicam por meio de troca de mensagens
- Processo cliente: processo que inicia a comunicação
- Processo servidor: processo que espera para ser contatado

Nota: aplicações com arquiteturas P2P possuem processos cliente e processos servidor

Sockets

- Um processo envia/recebe mensagens para/de seu socket
- O socket é análogo a uma porta
 - O processo de envio empurra a mensagem para fora da porta
 - O processo de envio confia na infra-estrutura de transporte no outro lado da porta que leva a mensagem para o socket no processo de recepção.

Processos de endereçamento

- Para um processo receber mensagens, ele deve ter um identificador
- Um hospedeiro possui um único endereço IP de 32 bits
- P.: O endereço IP do hospedeiro onde o processo está executando é suficiente para identificar o processo?
- R.: Não, muitos processos podem estar em execução no mesmo hospedeiro.
- O identificador inclui o endereço IP e o número da porta associada ao processo no hospedeiro
- Exemplos de números de porta:
 - Servidor HTTP: 80
 - Servidor de Correio: 25

O protocolo de aplicação define

- Tipo das mensagens trocadas, mensagens de requisição e resposta
- Sintaxe dos tipos de mensagem: os campos nas mensagens e como são delineados
- Semântica dos campos, ou seja, significado da informação nos campos
- Regras para quando e como os processos enviam e respondem às mensagens

Protocolos de domínio público:

- Definidos nas RFCs
- Recomendados para interoperabilidade
- Ex.: HTTP, SMTP

Protocolos proprietários:

• Ex.: KaZaA

De qual serviço de transporte uma aplicação ecessita?

Perda de dados

- Algumas aplicações (ex.: áudio) podem tolerar alguma perda
- Outras aplicações (ex.: transferência de arquivos, telnet) exigem transferência de dados 100% confiável

Temporização

• Algumas aplicações (ex.: telefonia Internet, jogos interativos) exigem baixos atrasos para serem "efetivos

Banda passante

- Algumas aplicações (ex.: multimídia) exigem uma banda mínima para serem "efetivas"
- Outras aplicações ("aplicações elásticas") melhoram quando a banda disponível aumenta"

Requisitos de transporte de aplicação comuns

Aplicação	Perdas	Banda	Sensível ao atraso
file transfer	sem perdas	elástica	não
e-mail	sem perdas	elástica	não
Web documents	tolerante	elástica	não
real-time áudio/vídeo	tolerante	aúdio:5Kb-1 Mb	sim, 100's mseg
		vídeo:10Kb-5 Mb	
stored áudio/video	tolerante	igual à anterior	sim, segundos
jogos interativos	tolerante	kbps	sim, 100's mseg
e-business	sem perda	elástica	sim

Serviços dos protocolos de transporte da Internet

Serviço TCP:

- Orientado à conexão: conexão requerida entre processos cliente e servidor
- Transporte confiável entre os processor de envio e recepção
- Controle de fluxo: o transmissor não sobrecarrega o receptor
- Controle de congestionamento: protege a rede do excesso de tráfego
 - Não oferece: garantias de temporização e de banda mínima

Serviço UDP:

- Transferência de dados não confiável entre os processos transmissor e receptor
- Não oferece: estabelecimento de conexão, confiabilidade, controle de fluxo e de congestionamento, garantia de temporização e de banda mínima.

P.: Por que ambos? Por que existe o UDP?

Aplicação e protocolos de transporte da Internet

Aplicação	Protocolo de aplicação	Protocolo de transporte
e-mail	smtp [RFC 821]	TCP
acesso de terminais remotos	telnet [RFC 854]	TCP
Web	http [RFC 2068]	TCP
transferência de arquivos	ftp [RFC 959]	TCP
streaming multimídia	RTP ou proprietário (ex.: RealNetworks)	TCP ou UDP
servidor de arquivos remoto	NSF	TCP ou UDP
telefonia Internet	RTP ou proprietário (ex.: Vocaltec)	tipicamente UDP

Camada de aplicação

- 2.1 Princípios de aplicações de rede
- 2.2 Web e HTTP
- 2.3 FTP
- 2.4 Correio eletrônico
 - SMTP, POP3, IMAP
- 2.5 DNS

Web e HTTP

Primeiro alguns jargões

- Página Web consiste de objetos
- Objeto pode ser arquivo HTML, imagem JPEG, Java applet, arquivo de áudio,...
- A página Web consiste de arquivo-HTML base que inclui vários objetos referenciados
- Cada objeto é endereçado por uma URL
- Exemplo de URL:

Visão geral do HTTP

HTTP: hypertext transfer protocol

- Protocolo da camada de aplicação da Web
- Modelo cliente/servidor
 - Cliente: browser que solicita, recebe e apresenta objetos da Web
 - Servidor: envia objetos em resposta a pedidos
- HTTP 1.0: RFC 1945
- HTTP 1.1: RFC 2068

Visão geral do HTTP

Utiliza TCP:

- Cliente inicia conexão TCP (cria socket) para o servidor na porta 80
- Servidor aceita uma conexão TCP do cliente
- mensagens HTTP (mensagens do protocolo de camada de aplicação) são trocadas entre o browser (cliente HTTP) e o servidor Web (servidor HTTP)
- A conexão TCP é fechada

HTTP é "stateless"

- O servidor não mantém informação sobre os pedidos passados pelos clientes Protocolos que mantêm informações de "estado" são complexos!
- Histórico do passado (estado) deve ser mantido
- Se o servidor/cliente quebra, suas visões de "estado" podem ser inconsistentes, devendo ser reconciliadas

Conexões HTTP

HTTP não persistente

- No máximo, um objeto é enviado sobre uma conexão TCP
- O HTTP/1.0 utiliza HTTP não persistente

HTTP persistente

- Múltiplos objetos podem ser enviados sobre uma conexão
- TCP entre o cliente e o servidor
- O HTTP/1.1 utiliza conexões persistentes em seu modo padrão

HTTP não persistente

- 1a. Cliente HTTP inicia conexão TCP ao servidor HTTP (processo) em www.someSchool.edu. Porta 80 é a default para o servidor HTTP.
- Cliente HTTP envia HTTP request message (contendo a URL) para o socket da conexão TCP
- 1b. Servidor HTTP no hospedeiro www.someSchool.edu esperando pela conexão TCP na porta 80. "Aceita" conexão, notificando o cliente
- Servidor HTTP recebe mensagem de pedido, forma response message contendo o objeto solicitado (someDepartment/ home.index), envia mensagem para o socket

HTTP não persistente

5. Cliente HTTP recebe mensagem de resposta contendo o arquivo html, apresenta o conteúdo html. Analisando o arquivo html, encontra 10 objetos jpeg referenciados

 Servidor HTTP fecha conexão TCP.

6. Passos 1-5 são repetidos para cada um dos 10 objetos jpeg.

Modelagem do tempo de resposta

Definição de RRT: tempo para enviar um pequeno pacote que vai do cliente para o servidor e retorna.

Tempo de resposta:

- Um RTT para iniciar a conexão TCP
- Um RTT para requisição HTTP e primeiros bytes da resposta HTTP para retorno
- Tempo de transmissão de arquivo