Eksempler på eksamensoppgaver

Pernille Kjeilen Fauskanger

December 1, 2021

Oppgave 1

La A, B, C og D være hendelser definert i utfallsrommet S, der

- $(A \cup B \cup C) \cap D = \emptyset \text{ og } D \neq \emptyset$
- $C \subset (A \cup B)$ og $C \cap A \cap B = A \cap B$
- $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$ og $B \cap C \neq \emptyset$
- P(C|A) = P(C|B)
- a) Tegn hendelsene A, B, C og D inn i et venndiagram. Forklar hvorfor D og $E = A \cup B \cup C$ er disjunkte hendelser.
- **b)** Vis at $P(C) = P(A \cup B)P(C|A) P(A \cap B)P(C'|A)$.
- c) Vis at C er avhengig av A og B.

Bonus (Bonus = ikke gjennomgått på kurset)

d) La P(C|A) = P(C|B) = 0.5 og P(A) = 0.15 og P(B) = 0.30. Bruk dette til å regne ut $P(C \cup D)$.

Oppgave 2

La $X \sim \text{Bin}(30, 0.60)$ og $f(X) = X^2$.

- a) Regn ut sannsynlighetene P(X-1=30) og $P(29 \ge X)$.
- b) Beregn forventning og varians til X og f(X). Du kan bruke at $E[X^4] = 1.19 \cdot 10^5$.

Bonus

- c) Beregn sannsynligheten for at $X + \sqrt{f(X)}$ ligger mindre enn ett standardavvik unna dens forventning. (Hint: Lag en grovskisse av sannsynlighetsfunksjonen til $X + \sqrt{f(X)}$ og marker hendelsen langs x-aksen.)
- d) Forklar hvordan vi kunne gått frem for å beregne en tilnærmet sannsynligheten til $P(f(X) \le 300)$. Hvordan ville du endret p for å gjøre denne tilnærmingen mest mulig presis?

Oppgave 3

På en gjennomsnittlig dag og på et helt tilfeldig sykehus som vi kaller for Haukeland blir det innlagt 20 pasienter med COVID-19. Vi antar at antall pasienter innlagt i løpet av T døgn følger en poisson-fordeling med forventning 20T.

a) Hvor mange pasienter kan vi forvente blir innlagt fra klokken 00:00 til 12:00 på en tilfeldig dag? Hva med antall som blir innlagt i løpet av resten av den samme dagen? Hva er sannsynligheten for at det blir innlagt færre pasienter enn forventet i begge disse tidsrommene i løpet av hele døgnet?

Etter vi er ferdig med kjente fordelinger

b) Vis at summen av de to første ventetidene (tid til første pasient og tid mellom første og andre pasient) er gammafordelt.

Oppgave 4

En utvalgt person blant en populasjon der alle har hjerteinfarkt ser vi på konsentrasjonen til et spesifikt mineral i kroppen. La oss kalle mineralkonsentrasjonen hos en tilfeldig valgt person fra denne populasjonen for K. I følge en lege på et helt tilfeldig sykehus i Bergen, så følger K en gammafordeling med $\alpha = 1$ og $\beta = 0.4$. Sannsynlighetsfunksjonen til en gammafordelt variabel for vilkårlige α og β er gitt ved

$$f_K(k) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} k^{\alpha - 1} \exp(-k\beta^{-1}) \quad k > 0.$$
 (1)

Vi får oppgitt av the m'te momentet til K er gitt ved

$$E[K^m] = \beta^m \cdot \frac{\Gamma(\alpha + m)}{\Gamma(\alpha)}.$$
 (2)

- a) Tegn en grovskisse av fordelingen ved å bruke det du kan om gamma-fordelingen. (Hint: se på verdien til form-parameteren α)
- b) Hvis du har gjort oppgave a) riktig, så kan du se at fordelingen likner på en eksponentiell fordeling. Bruk verdiene til α , β sammen med sannsynlighetsfordelingen til K for å vise at dette faktisk er en eksponentiell fordeling med intensitet $\lambda = \frac{1}{\beta}$. Betyr dette at legen hadde feil?
- c) Regn ut forventning og varians til K. Pasienter med K < 0.05 blir diagnosert med sykdommen XD. Beregn sannsynligheten for at en tilfeldig valgt person blant populasjonen ikke blir diagnosert med XD.

Etter vi er ferdig med punktestimatorer

La oss anta at $\frac{1}{\beta}$ er en ukjent parameter som vi vil estimere fra data (α er forsatt 1). Vi samler inn n iid. observasjoner av K: $\{K_i\}_{i=1}^n$.

d) Finn MLE-estimatoren til $\frac{1}{\beta}$, og undersøk om MLE-estimatoren er forventnigsrett.

Oppgave 5

La X_i være verdien til en aksje på dag i. en helt tilfeldig person mener at for å undersøke om den forventede verdien til aksjen har økt i løpet av n + 1 = 21 dager kan vi se på de n = 20 dagvise differansene

$$D_i = X_{i+1} - X_i \quad i \in \{1, 2, \dots, 19, 20\}. \tag{3}$$

Vi antar at verdien til aksjen på dag i + 1 er avhengig av verdien til aksjen på dag i, men ikke avhengig av eventuelle tidligere dager. Verdien på aksjen på dag 1 er a. Merk: selvom aksjeverdiene for påfølgende dager er avhengige, så kan vi forsatt si at de dagvise differansene er normalfordelte og uavhengige.

a) Anta at $X_{i+1} \sim N(X_i + a + \mu_D, \sigma^2) \ \forall i$. Vis at variansen til D_i er mindre enn $2\sigma^2$ hvis X_{i+1} og X_i positivt korrelerte. Forklar hvorfor det er vanskelig å finne forventningen her.

b) Vi henter ut observasjoner som er iid. $\{d_1, d_2, \dots, d_{20}\}$. Du får vite at $\overline{d} = 3.75$ og $S_D = 27.67$. Konstruer et 95% kondifensintervall for μ_D . Undersøk om 0 inngår i konfidensintervallet.

Etter vi er ferdige med hypotesetesting

- c) Formuler to hypoteser som kan benyttes for å undersøke om forventet aksjeverdi har økt i løpet av disse n=21 dagene ved å se på μ_D .
- d) Gjennomfør en hypotesetest med signifikansnivå $\alpha = 0.05$ for å undersøke om vi har nok empiri for å forkaste H_0 formulert i c). Hva er konklusjonen til testen? Kan 0 være i konfidensintervallet konstruert i b) samtidig som vi forkaster H_0 her?.
- e) Finn den største verdien av S_D som resulterer i forkastning av H_0 . I figuren under kan du se kurven som viser aksjeverdien i løpet av disse 21 dagene. Er du enig med test-konklusjonen i d)?

f) Fra figuren kan vi regne ut at $\overline{x} = 171.67$ og $S_X = 34.25$. Vi formulerer hypotesene

$$H_0: \mu_X \le a \tag{4}$$

$$H_1: \mu_X > a \tag{5}$$

Hva er a i dette tilfellet? Gjennomfør en t-test og konkluder ved å bruke p-verdi om vi kan forkaste h_0 gitt valgt $\alpha = 0.05$ og $\{x_i\}_{i=1}^{n+1}$. Hvorfor kan vi ikke stole på resultatet fra denne testen?

Bonus - for de spesielt interesserte

g) En kan vise at en t-fordelt variabel med ν frihetsgrader er definert ved

$$T = Z \cdot \sqrt{\frac{\nu}{V}} \sim t_{\nu}. \tag{6}$$

Her er $Z \sim N(0,1)$ og $V \sim \chi^2_{\nu}.$ Bruk denne sammenhengen til å vise at

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$
 (7)

Her er $\{X_i\}_{i=1}^n$ iid. der $X_i \sim N(\mu, \sigma^2)$.