Application: CMI Bounds

DA Theorey and CMI Generalization Bounds

Ziqiao Wang

School of Computer Science and Technology Tongji University

October 30, 2024

- Preliminaries
- **2** *f*-Divergence
- 3 Application: Domain Learning Theory
- 4 Application: CMI Bounds

- Preliminaries
- 2 f-Divergence
- 3 Application: Domain Learning Theory
- 4 Application: CMI Bounds

0000

From Entropy to Mutual Information

- $\triangleright \text{ Entropy: } H(X) = \mathbb{E}_{P_X} \left[\log \frac{1}{P(X)} \right], H(X,Y) = \mathbb{E}_{P_{X,Y}} \left[\log \frac{1}{P(X,Y)} \right],$ $H(X|Y) = \mathbb{E}_{P_{X,Y}} \left[\log \frac{1}{P(X|Y)} \right]$
 - \triangleright For discrete X, H(X) > 0
 - $\vdash H(X,Y) = H(X|Y) + H(Y)$
 - Conditioning reduces entropy: H(X|Y) < H(X)
 - \triangleright For discrete $X, H(X) < \log |\mathcal{X}|$
 - Relative entropy or KL divergence: $D_{KL}(Q||P) = \mathbb{E}_Q \left| \log \frac{Q(X)}{P(X)} \right|$
 - $\triangleright D_{KL}(Q||P) \ge 0$ with equality holds iff Q = P.
 - \triangleright Usually $D_{KL}(Q||P) \neq D_{KL}(P||Q)$

References

From Entropy to Mutual Information

Mutual Information:

$$I(X;Y) = \mathbb{E}_{P_{X,Y}} \left[\log \frac{P(X,Y)}{P(X)P(Y)} \right] = \mathcal{D}_{\mathrm{KL}} \left(P_{X,Y} || P_X P_Y \right).$$

- I(X;Y) > 0 with equality holds iff $X \perp \!\!\!\perp Y$.
- I(X;Y) = H(X) H(X|Y) = H(Y) H(Y|X) =H(X) + H(Y) - H(X,Y).
- $\triangleright I(X;Y) = I(Y;X)$
- Chain-rule:
 - $\vdash H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$
 - $\triangleright I(X_1, X_2, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_{i-1}, \dots, X_1)$
 - $D_{KL}(Q_{X|Y}||P_{X|Y}) = D_{KL}(Q_X||P_X) + D_{KL}(Q_{Y|X}||P_{Y|X})$
- Data-processing inequality (DPI): If X - Y - Z forms a Markov chain (i.e. $P_{X,Z|Y} = P_{X|Y}P_{Z|Y}$), then

$$I(X;Y) \geq I(X;Z)$$

From Entropy to Mutual Information

Figure 1: Venn diagram. Credit: https://en.wikipedia.org/wiki/Mutual_information

- Preliminaries
- **2** *f*-Divergence
- **3** Application: Domain Learning Theory
- 4 Application: CMI Bounds

The family of f-Divergence

Definition 1 (f-divergence between two distributions)

Let P and Q be two distributions on Θ . Let $\phi: \mathbb{R}_+ \to \mathbb{R}$ be a convex function with $\phi(1) = 0$. If $P \ll Q^1$, then f-divergence is defined as $D_{\phi}(P||Q) \triangleq \mathbb{E}_Q\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where $\frac{dP}{dQ}$ is a Radon-Nikodym derivative.

¹We say that P is absolutely continuous with respect to Q, written $P \ll Q$, if

The family of f-Divergence

Definition 1 (f-divergence between two distributions)

Let P and Q be two distributions on Θ . Let $\phi: \mathbb{R}_+ \to \mathbb{R}$ be a convex function with $\phi(1) = 0$. If $P \ll Q^1$, then f-divergence is defined as $\mathbb{D}_{\phi}(P||Q) \triangleq \mathbb{E}_Q\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where $\frac{dP}{dQ}$ is a Radon-Nikodym derivative.

▶ Let $\phi(x) = x \log x$ (or $x \log x + c(x - 1)$ for any constant c):

$$D_{\phi}(P||Q) = \int \frac{dP}{dQ} \log\left(\frac{dP}{dQ}\right) dQ = \int \log\left(\frac{dP}{dQ}\right) dP$$
$$= \mathbb{E}_{P} \left[\log\left(\frac{dP}{dQ}\right)\right]$$
$$= D_{KL}(P||Q).$$

 Properties: Non-negativity; Data-processing inequality; Jointly Convexity

¹We say that P is absolutely continuous with respect to Q, written $P \ll Q$, if $Q(A) = 0 \Longrightarrow P(A) = 0$ for all measurable sets $A \subseteq \Theta$.

Divergence	Corresponding f(t)
χ^{lpha} -divergence, $lpha \geq 1$	$rac{1}{2} t-1 ^{lpha}$
Total variation distance ($lpha=1$)	$\frac{1}{2} t-1 $
α-divergence	$\begin{cases} \frac{t^{\alpha}-\alpha t-(1-\alpha)}{\alpha(\alpha-1)} & \text{if } \alpha\neq 0, \ \alpha\neq 1,\\ t\ln t-t+1, & \text{if } \alpha=1,\\ -\ln t+t-1, & \text{if } \alpha=0 \end{cases}$
KL-divergence ($lpha=1$)	$t \ln t$
reverse KL-divergence ($lpha=0$)	$-\ln t$
Jensen-Shannon divergence	$rac{1}{2}\left(t\ln t-(t+1)\ln\!\left(rac{t+1}{2} ight) ight)$
Jeffreys divergence (KL + reverse KL)	$(t-1)\ln(t)$
squared Hellinger distance ($lpha=rac{1}{2}$)	$\frac{1}{2}(\sqrt{t}-1)^2, 1-\sqrt{t}$
Pearson χ^2 -divergence (rescaling of $\alpha=2$)	$(t-1)^2,t^2-1,t^2-t$
Neyman χ^2 -divergence (reverse Pearson) (rescaling of $\alpha=-1$)	$rac{1}{t}-1, rac{1}{t}-t$

Figure 2: Common examples of *f*-divergences. Credit: https://en.wikipedia.org/wiki/F-divergence

Legendre Transformation of f-divergence

Definition 2 (Convex Conjugate)

For a function $f: \mathcal{X} \to \mathbb{R} \cup \{-\infty, +\infty\}$, its convex conjugate is

$$f^*(y) \triangleq \sup_{x \in \text{dom}(f)} \langle x, y \rangle - f(x).$$

$$D_{\phi}(P||Q) = \int \phi \left(\frac{dP}{dQ}\right) dQ = \int \sup_{g} g \frac{dP}{dQ} - \phi^{*}(g) dQ$$
$$\geq \sup_{g} \int g \frac{dP}{dQ} - \phi^{*}(g) dQ$$
$$= \sup_{g} \mathbb{E}_{P}[g] - \mathbb{E}_{Q}[\phi^{*}(g)]$$

Variational Representation of f-divergence

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right]. \tag{1}$$

References

Tighter Variational Formula

- ▶ Applying "Shift Transformation" to the measurable function q:
 - Original variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right]. \tag{2}$$

Reparameterization of $q \rightarrow q + \alpha$ (i.e. shifts):

$$D_{\phi}(P||Q) = \sup_{g} \sup_{\alpha} \mathbb{E}_{\theta \sim P} \left[g(\theta) + \alpha \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta) + \alpha) \right]$$
$$= \sup_{g} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \inf_{\alpha \in \mathbb{R}} \left\{ \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta) + \alpha) - \alpha \right] \right\}.$$
(3)

Tighter Variational Formula

- ▶ Applying "Shift Transformation" to the measurable function q:
 - Original variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right]. \tag{2}$$

Reparameterization of $q \rightarrow q + \alpha$ (i.e. shifts):

$$D_{\phi}(P||Q) = \sup_{g} \sup_{\alpha} \mathbb{E}_{\theta \sim P} \left[g(\theta) + \alpha \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta) + \alpha) \right]$$
$$= \sup_{g} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \inf_{\alpha \in \mathbb{R}} \left\{ \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta) + \alpha) - \alpha \right] \right\}.$$
(3)

Eq. (3) is point-wise tighter than Eq. (2)

Example: Donsker and Varadhans (DV) representation of KL divergence

Consider KL divergence, let $\phi(x) = x \log x - x + 1$, then $\phi^*(y) = e^y - 1$. Substituting ϕ^* into Eq. (2)

$$D_{KL}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_P[g(\theta)] - \mathbb{E}_Q\left[e^{g(\theta)} - 1\right]. \tag{4}$$

On the other hand, Eq. (3) will give us

$$D_{\mathrm{KL}}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{P}\left[g(\theta)\right] - \inf_{\alpha \in \mathbb{R}} \left\{ \mathbb{E}_{Q}\left[e^{g(\theta) + \alpha}\right] - 1 - \alpha \right\}$$

$$= \sup_{g \in \mathcal{G}} \mathbb{E}_{P}\left[g(\theta)\right] - \log \mathbb{E}_{Q}\left[e^{g(\theta)}\right], \tag{5}$$

where the optimal $\alpha^* = -\log \mathbb{E}_Q \left[e^{g(\theta)} \right]$.

- ▶ Eq. (5) recovers the DV representation of KL.
- As $\log(x) \le x 1$ for x > 0, as a lower bound of KL divergence, Eq. (5) is pointwise tighter than Eq. (4).

12/39

Further Improvement: Affine Transformation

 \triangleright Reparameterization of $g \rightarrow tg + \alpha$ (i.e. affine transformation):

$$D_{\phi}(P||Q) = \sup_{g} \sup_{t,\alpha} \mathbb{E}_{\theta \sim P} \left[tg(\theta) + \alpha \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(tg(\theta) + \alpha) \right]. \tag{6}$$

Figure 3: Visualization of Estimating f-divergences. Credit: Birrell et al. [2022]

Another Example: χ^2 -divergence

For χ^2 -divergence, let $\phi(x) = (x-1)^2$ for x > 0, then $\phi^*(y) = \frac{y^2}{4} + y$. Plugging ϕ^* into Eq. (2):

$$\chi^{2}(P||Q) = \sup_{g} \mathbb{E}_{P}\left[g(\theta)\right] - \mathbb{E}_{Q}\left[g(\theta)\right] - \frac{\mathbb{E}_{Q}\left[\left(g(\theta)\right)^{2}\right]}{4}.$$
 (7)

References

Another Example: χ^2 -divergence

For χ^2 -divergence, let $\phi(x) = (x-1)^2$ for x > 0, then $\phi^*(y) = \frac{y^2}{4} + y$. Plugging ϕ^* into Eq. (2):

$$\chi^{2}(P||Q) = \sup_{g} \mathbb{E}_{P}\left[g(\theta)\right] - \mathbb{E}_{Q}\left[g(\theta)\right] - \frac{\mathbb{E}_{Q}\left[\left(g(\theta)\right)^{2}\right]}{4}.$$
 (7)

Similarly, plugging ϕ^* into Eq. (3):

$$\chi^{2}(P||Q) = \sup_{g} \mathbb{E}_{P}\left[g(\theta)\right] - \mathbb{E}_{Q}\left[g(\theta)\right] - \frac{\operatorname{Var}_{Q}\left(g(\theta)\right)}{4},\tag{8}$$

where the optimal $\alpha^* = \mathbb{E}_Q[g(\theta)]$.

By $\operatorname{Var}_{Q}(g(\theta)) \leq \mathbb{E}_{Q}\left[\left(g(\theta)\right)^{2}\right]$, Eq. (8) is tighter than Eq. (7).

Application: CMI Bounds

Another Example: χ^2 -divergence

For χ^2 -divergence, let $\phi(x) = (x-1)^2$ for x > 0, then $\phi^*(y) = \frac{y^2}{4} + y$. Plugging ϕ^* into Eq. (2):

$$\chi^{2}(P||Q) = \sup_{g} \mathbb{E}_{P}\left[g(\theta)\right] - \mathbb{E}_{Q}\left[g(\theta)\right] - \frac{\mathbb{E}_{Q}\left[\left(g(\theta)\right)^{2}\right]}{4}.$$
 (7)

Similarly, plugging ϕ^* into Eq. (3):

$$\chi^{2}(P||Q) = \sup_{g} \mathbb{E}_{P}\left[g(\theta)\right] - \mathbb{E}_{Q}\left[g(\theta)\right] - \frac{\operatorname{Var}_{Q}\left(g(\theta)\right)}{4},\tag{8}$$

where the optimal $\alpha^* = \mathbb{E}_Q[g(\theta)]$.

By $\operatorname{Var}_{Q}(g(\theta)) \leq \mathbb{E}_{Q}\left[\left(g(\theta)\right)^{2}\right]$, Eq. (8) is tighter than Eq. (7). Using Eq. (6):

$$\chi^{2}(P||Q) = \sup_{g} \frac{\left(\mathbb{E}_{P}\left[g(\theta)\right] - \mathbb{E}_{Q}\left[g(\theta)\right]\right)^{2}}{\operatorname{Var}_{Q}\left(g(\theta)\right)},\tag{9}$$

where the optimal $t^* = \frac{2(\mathbb{E}_P[g(\theta)] - \mathbb{E}_Q[g(\theta)])}{\operatorname{Var}_Q(g(\theta))}$ and $\alpha^* = -t^*\mathbb{E}_Q[g(\theta)]$. Eq. (9) recovers Hammersley-Chapman-Robbins lower bound.

- Preliminaries
- **2** f-Divergence
- 3 Application: Domain Learning Theory
- 4 Application: CMI Bounds

Domain Adaptation

Preliminaries

Problem Setup

- \triangleright Given data from a source domain, i.e. $\{X_i, Y_i\} \stackrel{i.i.d.}{\sim} \mu$
- \triangleright Obtain a model for a target domain, i.e. $\{X,Y\} \sim \nu$
- Practical Goal: Efficiently transfer ML models between related populations at low cost.

Data space: \mathcal{X} × \mathcal{Y} ; Hypothesis space: \mathcal{H} \triangleq {h : \mathcal{X} → \mathcal{Y} };

References

Formal Notations

- Data space: $\mathcal{X} \times \mathcal{Y}$; Hypothesis space: $\mathcal{H} \triangleq \{h : \mathcal{X} \to \mathcal{Y}\}$;
- **Unsupervised Domain Adaptation (UDA):**
 - \triangleright Unknown distributions μ and ν
 - ▶ Labeled source-domain sample $S = \{X_i, Y_i\}_{i=1}^n \sim \mu^{\otimes n}$
 - \triangleright Unlabelled target-domain sample $\mathcal{T} = \{X_i\}_{i=1}^m \sim \nu_{\mathcal{X}}^{\otimes m}$
 - **Target**: find a hypothesis $h \in \mathcal{H}$ "works well" on ν .

References

Formal Notations

- Data space: $\mathcal{X} \times \mathcal{Y}$; Hypothesis space: $\mathcal{H} \triangleq \{h : \mathcal{X} \to \mathcal{Y}\}$;
- **Unsupervised Domain Adaptation (UDA):**
 - \triangleright Unknown distributions μ and ν
 - \triangleright Labeled source-domain sample $S = \{X_i, Y_i\}_{i=1}^n \sim \mu^{\otimes n}$
 - \triangleright Unlabelled target-domain sample $\mathcal{T} = \{X_i\}_{i=1}^m \sim \nu_{\mathcal{X}}^{\otimes m}$
 - ▶ **Target**: find a hypothesis $h \in \mathcal{H}$ "works well" on ν .
- \triangleright Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_0^+$.
- \triangleright Target error: $R_{\nu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \nu} [\ell(h(X),Y)],$ Source error: $R_{\mu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \mu} [\ell(h(X), Y)].$

Formal Notations

- Data space: $\mathcal{X} \times \mathcal{Y}$; Hypothesis space: $\mathcal{H} \triangleq \{h : \mathcal{X} \to \mathcal{Y}\}$;
- **Unsupervised Domain Adaptation (UDA):**
 - \triangleright Unknown distributions μ and ν
 - \triangleright Labeled source-domain sample $S = \{X_i, Y_i\}_{i=1}^n \sim \mu^{\otimes n}$
 - \triangleright Unlabelled target-domain sample $\mathcal{T} = \{X_i\}_{i=1}^m \sim \nu_{\mathcal{X}}^{\otimes m}$
 - ▶ **Target**: find a hypothesis $h \in \mathcal{H}$ "works well" on ν .
- \triangleright Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_0^+$.
- \triangleright Target error: $R_{\nu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \nu} [\ell(h(X),Y)],$ Source error: $R_{\mu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \mu} [\ell(h(X), Y)].$
- \triangleright We use $\ell(h, h')$ to denote $\ell(h(x), h'(x))$, i.e. the disagreement of h and h' on x.

\mathcal{H} -specified Discrepancy

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

References

\mathcal{H} -specified Discrepancy

Preliminaries

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

- ▶ Assumptions:
 - \triangleright Triangle property: $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ for any $y_1, y_2, y_3 \in \mathcal{Y}$.
 - \triangleright Bounded loss: e.g., $\ell \in [0,1]$

References

\mathcal{H} -specified Discrepancy

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

- ▶ Assumptions:
 - \triangleright Triangle property: $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ for any $y_1, y_2, y_3 \in \mathcal{Y}$.
 - \triangleright Bounded loss: e.g., $\ell \in [0,1]$

Theorem 1 ($\mathcal{H}\Delta\mathcal{H}$ -divergence Bound)

Then, for any $h \in \mathcal{H}$,

$$R_{\nu}(h) \leq R_{\mu}(h) + d_{\mathcal{H}\Delta\mathcal{H}}(\mu, \nu) + \lambda^*,$$

where $\lambda^* = \min_{h^* \in \mathcal{H}} R_{\nu}(h^*) + R_{\mu}(h^*)$.

\mathcal{H} -specified Discrepancy

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

- ▶ Assumptions:
 - \triangleright Triangle property: $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ for any $y_1, y_2, y_3 \in \mathcal{Y}$.
 - \triangleright Bounded loss: e.g., $\ell \in [0,1]$

Theorem 1 ($\mathcal{H}\Delta\mathcal{H}$ -divergence Bound)

Then, for any $h \in \mathcal{H}$,

$$R_{\nu}(h) \leq R_{\mu}(h) + d_{\mathcal{H}\Delta\mathcal{H}}(\mu, \nu) + \lambda^*,$$

where $\lambda^* = \min_{h^* \in \mathcal{H}} R_{\nu}(h^*) + R_{\mu}(h^*)$.

Can we extend $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence?

18/39

From $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence

ightharpoonup f-divergence: $D_{\phi}(P||Q) \triangleq \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where ϕ is convex and $\phi(1) = 0.$

References

From $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence

- ightharpoonup f-divergence: $D_{\phi}(P||Q) \triangleq \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where ϕ is convex and $\phi(1) = 0.$
- Its variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right].$$

References

From $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence

- ightharpoonup f-divergence: $D_{\phi}(P||Q) \triangleq \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where ϕ is convex and $\phi(1) = 0.$
- Its variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right].$$

Acuna et al. [2021] defines:

$$\widetilde{\mathbf{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) \triangleq \sup_{h' \in \mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\phi^*(\ell(h,h')) \right] |.$$

⇒ Additional absolute value function added.

20 / 39

References

Gap between Theory and Algorithm in Acuna et al. [2021]

$$\widetilde{\mathbf{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) \triangleq \sup_{h' \in \mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\phi^*(\ell(h,h')) \right] |.$$

Theory (Target Error Bound):

$$R_{\nu}(h) \leq R_{\mu}(h) + \widetilde{\mathcal{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) + \lambda^*,$$

⇒ Absolute value function is necessary for establishing this bound

References

Gap between Theory and Algorithm in Acuna et al. [2021]

$$\widetilde{\mathbf{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) \triangleq \sup_{h' \in \mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\phi^*(\ell(h,h')) \right] |.$$

Theory (Target Error Bound):

$$R_{\nu}(h) \leq R_{\mu}(h) + \widetilde{D}_{\phi}^{h,\mathcal{H}}(\mu||\nu) + \lambda^*,$$

- ⇒ Absolute value function is necessary for establishing this bound
- f-Domain Adversarial Learning (f-DAL) Algorithm:

$$\min_{h} R_{\hat{\mu}}(h) + \underbrace{\max_{h'} \mathbb{E}_{\hat{\mu}} \left[\ell(h, h') \right] - \mathbb{E}_{\hat{\nu}} \left[\phi^*(\ell(h, h')) \right]}_{d(\hat{\mu}, \hat{\nu}; h)}.$$

 $\Longrightarrow d(\hat{\mu}, \hat{\nu}; h)$ drops the absolute value function compared with $\widetilde{\mathbf{D}}_{\perp}^{h,\mathcal{H}}(\mu||\nu)$

Overestimation by Absolute Value Function

Figure 4: The y-axis is the estimated corresponding f-divergence and the x-axis is the number of iterations.

 \triangleright f-DAL algorithm fails if the absolute value function is added.

Our work: New f-Domain Discrepancy (f-DD)

Ziqiao Wang and Yongyi Mao. "On f-Divergence Principled Domain Adaptation: An Improved Framework." To appear at NeurIPS 2024.

 \triangleright Our f-DD:

$$D_{\phi}^{h,\mathcal{H}}(\nu||\mu) \triangleq \sup_{t \in \mathbb{R}, h'} \mathbb{E}_{\nu} \left[t\ell(h, h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h, h') + \alpha) - \alpha \right].$$

Application: CMI Bounds

References

Our work: New f-Domain Discrepancy (f-DD)

Ziqiao Wang and Yongyi Mao. "On f-Divergence Principled Domain Adaptation: An Improved Framework." To appear at NeurIPS 2024.

 \triangleright Our f-DD:

Preliminaries

$$D_{\phi}^{h,\mathcal{H}}(\nu||\mu) \triangleq \sup_{t \in \mathbb{R},h'} \mathbb{E}_{\nu} \left[t\ell(h,h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h,h') + \alpha) - \alpha \right].$$

Target Error Bound: For any $h \in \mathcal{H}$,

$$R_{\nu}(h) \le R_{\mu}(h) + \inf_{t \ge 0} \frac{D_{\phi}^{h,\mathcal{H}}(\nu||\mu) + K_{\mu}(t)}{t} + \lambda^*,$$
 (10)

where $K_{\mu}(t)$ is the upper bound for the "general cumulant generating" function (CGF)" for μ .

Our work: New f-Domain Discrepancy (f-DD)

Ziqiao Wang and Yongyi Mao. "On f-Divergence Principled Domain Adaptation: An Improved Framework." To appear at NeurIPS 2024.

▶ Our *f*-DD:

$$D_{\phi}^{h,\mathcal{H}}(\nu||\mu) \triangleq \sup_{t \in \mathbb{R}, h'} \mathbb{E}_{\nu} \left[t\ell(h, h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h, h') + \alpha) - \alpha \right].$$

▶ Target Error Bound: For any $h \in \mathcal{H}$,

$$R_{\nu}(h) \le R_{\mu}(h) + \inf_{t \ge 0} \frac{D_{\phi}^{h,\mathcal{H}}(\nu||\mu) + K_{\mu}(t)}{t} + \lambda^*,$$
 (10)

where $K_{\mu}(t)$ is the upper bound for the "general cumulant generating function (CGF)" for μ .

 \triangleright If ϕ is twice differentiable and ϕ'' is monotone, then

$$R_{\nu}(h) \le R_{\mu}(h) + \sqrt{\frac{2}{\phi''(1)}} \mathcal{D}_{\phi}^{h,\mathcal{H}}(\nu||\mu) + \lambda^*.$$
 (11)

e.g., $\phi''(1) = 1$ for KL recovers [Wang and Mao, 2023a, Theorem 4.2].

Application: CMI Bounds

References

Shaper Bound: Localization Technique

- Restricted Hypothesis Space (Rashomon set): $\mathcal{H}_r \triangleq \{h \in \mathcal{H} | R_\mu(h) \le r\}$
- \triangleright Localized f-DD: For a given $h \in \mathcal{H}_{r_1}$

$$D_{\phi}^{h,\mathcal{H}_r}(\nu||\mu) \triangleq \sup_{h' \in \mathcal{H}_r, t \geq 0} \mathbb{E}_{\nu} \left[t\ell(h,h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h,h') + \alpha) - \alpha \right].$$

Shaper Bound: Localization Technique

Restricted Hypothesis Space (Rashomon set): $\mathcal{H}_r \triangleq \{h \in \mathcal{H} | R_u(h) < r\}$

 \triangleright Localized f-DD: For a given $h \in \mathcal{H}_{r_1}$

$$\mathbf{D}_{\phi}^{h,\mathcal{H}_r}(\nu||\mu) \triangleq \sup_{h' \in \mathcal{H}_r, t \geq 0} \mathbb{E}_{\nu} \left[t\ell(h,h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h,h') + \alpha) - \alpha \right].$$

Target Error Bound:

For any h, h' and C_1 , $C_2 > 0$ satisfying $\inf_{\alpha} \mathbb{E}_{\mu} \left[\phi^* (C_1 \ell(h, h') + \alpha) - \alpha \right] \leq C_1 (1 + C_2) \mathbb{E}_{\mu} \left[\ell(h, h') \right], \text{ then:}$

$$R_{\nu}(h) \leq R_{\mu}(h) + \frac{1}{C_1} \mathcal{D}_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*,$$

where
$$\lambda_r^* = \min_{h^* \in \mathcal{H}_r} R_{\mu}(h^*) + R_{\nu}(h^*)$$
 and $R_{\mu}^r(h) = \sup_{h' \in \mathcal{H}_n} \mathbb{E}_{\mu} [\ell(h, h')].$

Target Error Bound:

$$R_{\nu}(h) \leq R_{\mu}(h) + \frac{1}{C_1} D_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*.$$

- $ightharpoonup R_n^r(h) \le r + r_1 \Longrightarrow$ Small r, r_1
- \triangleright If $r < \lambda^*$, then it's possible that $\lambda_r^* > \lambda^* \Longrightarrow \text{Large } r$

Localization Technique

Preliminaries

Target Error Bound:

$$R_{\nu}(h) \le R_{\mu}(h) + \frac{1}{C_1} \mathcal{D}_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*.$$

- $ightharpoonup R_n^r(h) \le r + r_1 \Longrightarrow$ Small r, r_1
- \triangleright If $r < \lambda^*$, then it's possible that $\lambda_r^* > \lambda^* \Longrightarrow \text{Large } r$
- Localized KL-DD: $\inf_{\alpha} \mathbb{E}_{\mu} \left[\phi^* (C_1 \ell(h, h') + \alpha) - \alpha \right] < C_1 (1 + C_2) \mathbb{E}_{\mu} \left[\ell(h, h') \right]$

Localization Technique

Target Error Bound:

$$R_{\nu}(h) \le R_{\mu}(h) + \frac{1}{C_1} \mathcal{D}_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*.$$

- $ightharpoonup R_n^r(h) \le r + r_1 \Longrightarrow$ Small r, r_1
- \triangleright If $r < \lambda^*$, then it's possible that $\lambda_r^* > \lambda^* \Longrightarrow \text{Large } r$
- Localized KL-DD:

$$\inf_{\alpha} \mathbb{E}_{\mu} \left[\phi^* (C_1 \ell(h, h') + \alpha) - \alpha \right] \le C_1 (1 + C_2) \mathbb{E}_{\mu} \left[\ell(h, h') \right]$$

$$\longleftarrow \begin{cases} C_1 > 0 \\ C_2 \in (0, 1) \\ \left(e^{C_1} - C_1 - 1 \right) \left[1 + (C_2^2 - 1) \min\{r_1 + r, 1\} \right] \le C_1 C_2 \end{cases}$$

25 / 39

References

Generalization Bound via Localized f-DD

Theorem (informal)

For any $h \in \mathcal{H}_{r_1}$, w.p. at least $1 - \delta$, we have

$$R_{\nu}(h) \leq R_{\hat{\mu}}(h) + \frac{D_{\text{KL}}^{h,\mathcal{H}_r}(\hat{\nu}||\hat{\mu})}{C_1} + C_2 R_{\mu}^r(h) + \mathcal{O}\left(\frac{\log(1/\delta)}{n} + \frac{\log(1/\delta)}{m}\right) + \mathcal{O}\left(\sqrt{\frac{(r_1 + r)\log(1/\delta)}{n}} + \sqrt{\frac{r\log(1/\delta)}{m}}\right) + \text{Complexity.} + \lambda_r^*.$$

Small $r, r_1 \Longrightarrow$ fast decaying rate (i.e. $\mathcal{O}\left(\frac{1}{r} + \frac{1}{r}\right)$).

Figure 5: Overview of f-DD.

▶ Three specific discrepancy measures:

- $\begin{array}{c} & \text{KL-DD, } \chi^2\text{-DD,} \\ & \text{the weighted Jeffereys-DD: } \gamma_1 D_{KL}(\hat{\mu}||\hat{\nu}) + \gamma_2 D_{KL}(\hat{\nu}||\hat{\mu}) \end{array}$
- Objective Function: Bounded $\ell \to \text{Unbounded } \hat{\ell}$ (Optimizing over t may not be necessary)

$$\min_{h} R_{\hat{\mu}}(h) + \max_{h'} \left\{ \mathbb{E}_{\hat{\mu}} \left[\hat{\ell}(h, h') \right] - \inf_{\alpha} \mathbb{E}_{\hat{\nu}} \left[\phi^*(\hat{\ell}(h, h') + \alpha) - \alpha \right] \right\}.$$

Table 1: Accuracy (%) on UDA Classification Tasks

Method	Office-31	Office-Home	Digits
Acuna et al. [2021]	89.5	68.5	96.3
Our weighted Jeffereys-DD	90.1	70.2	97.1

- Preliminaries
- 2 f-Divergence
- 3 Application: Domain Learning Theory
- 4 Application: CMI Bounds

References

Generalization and CMI Setting

- \triangleright Training dataset: $S = \{Z_i\}_{i=1}^n \in \mathcal{Z}$, drawn i.i.d. from μ
- \triangleright Hypothesis space: $\mathcal{W} \subseteq \mathbb{R}^d$
- \triangleright Learning algorithm: $\mathcal{A}: \mathcal{Z}^n \to \mathcal{W}$ by $P_{W|S}$
- \triangleright Loss: $\ell: \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$
- ▶ We're interested in
 - \triangleright Population risk: $L_{\mu}(w) \triangleq \mathbb{E}_{Z \sim \mu}[\ell(w, Z)]$
 - \triangleright Empirical risk: $L_S(w) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$
 - \triangleright Expected generalization error: $\mathcal{E} \triangleq \mathbb{E}_{W,S}[L_{\mu}(W) L_{S}(W)]$

Generalization and CMI Setting

- \triangleright Let \widetilde{Z} drawn i.i.d. from μ
- ightharpoonup Let $(U_1, U_2, \dots, U_n)^T \sim \text{Unif}(\{0, 1\}^n)$.
- \triangleright Learning algorithm $\mathcal{A}:\mathcal{Z}^n \to \mathcal{W}$

$$\triangleright \ \mathcal{E} = \frac{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[(-1)^{U_i} (\underbrace{\ell(W, \widetilde{Z}_i^-) - \ell(W, \widetilde{Z}_i^+)}_{\land I})]}$$

Generalization and CMI Setting

- \triangleright Let \widetilde{Z} drawn i.i.d. from μ
- ▷ Let $(U_1, U_2, ..., U_n)^T \sim \text{Unif}(\{0, 1\}^n)$.
- ightharpoonup Learning algorithm $\mathcal{A}:\mathcal{Z}^n o\mathcal{W}$

$$\triangleright \mathcal{E} = \frac{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[(-1)^{U_i} (\ell(W, \widetilde{Z}_i^-) - \ell(W, \widetilde{Z}_i^+))]}{\Delta L_i}$$

Lemma 1 (Wang and Mao [2023b])

For
$$\ell \in [0, 1]$$
, $|\mathcal{E}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2I(\Delta L_i; U_i)}$.

References

Variational Representation of f-information

Let
$$I_{\phi}(X;Y) \triangleq D_{\phi}(P_{X,Y}||P_{X}P_{Y})$$
 be the f -information.
Let $G_{i} = (-1)^{U_{i}} \Delta L_{i}$, $P = P_{\Delta L_{i},U_{i}}$ and $Q = P_{\Delta L_{i}} P_{U'_{i}}$.

$$\mathbb{E}_{P}\left[G_{i}\right] \leq \inf_{t \in \mathbb{R}} \frac{1}{t} \left(I_{\phi}(\Delta L_{i}; U_{i}) + \inf_{\alpha \in \mathbb{R}} \left\{ \mathbb{E}_{Q}\left[\phi^{*}(tG_{i} + \alpha)\right] - \alpha \right\} \right)$$

$$\leq \inf_{t \in \mathbb{R}} \frac{1}{t} \left(I_{\phi}(\Delta L_{i}; U_{i}) + \mathbb{E}_{Q}\left[\phi^{*}(tG_{i})\right] \right).$$

$$(12)$$

All the previous information-theoretic analysis focuses on upper bounding $\mathbb{E}_{O}\left[\phi^{*}(tG_{i})\right].$

Our Work: New f-information Bounds

Ziqiao Wang and Yongyi Mao. "Generalization Bounds via Conditional f-Information." To appear at NeurIPS 2024.

Recall variational representation:

$$I_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{P_{X,Y}} [g(X,Y)] - \mathbb{E}_{P_X P_{Y'}} [\phi^*(g(X,Y'))].$$

Lemma 2 (Informal)

Let $g = \phi^{*-1} \circ (tf)$ and let Y' be an independent copy of Y. If $\mathbb{E}_{X,Y'}[f(X,Y')] = 0$, then

$$\sup_{t} \mathbb{E}_{X,Y} \left[\phi^{*-1}(tf(X,Y)) \right] \le I_{\phi}(X;Y).$$

Clearly,

$$\sup_{t} \mathbb{E}_{\Delta L_{i}, U_{i}} \left[\phi^{*-1} \left(tG_{i} \right) \right] \leq I_{\phi}(\Delta L_{i}; U_{i}).$$

Example: Mutual Information-based Bounds

Let $\phi(x) = x \log x + x - 1$ with $\phi^*(y) = e^y - 1$ and $\phi^{*-1}(z) = \log(1+z)$. \triangleright Lemma 2 gives us $I(\Delta L_i; U_i) \ge \sup_t \mathbb{E} \left[\log \left(1 + t(-1)^{U_i} \Delta L_i \right) \right]$.

Preliminaries

References

Example: Mutual Information-based Bounds

Let
$$\phi(x) = x \log x + x - 1$$
 with $\phi^*(y) = e^y - 1$ and $\phi^{*-1}(z) = \log(1+z)$.

- ▶ Lemma 2 gives us $I(\Delta L_i; U_i) \ge \sup_t \mathbb{E} \left[\log \left(1 + t(-1)^{U_i} \Delta L_i \right) \right]$.
- Additional lemma: $f(x) \ge 0$ holds when $a \ge \frac{1}{2}$ and $|x| \le 1 - \frac{1}{2a}$

References

Example: Mutual Information-based Bounds

Let $\phi(x) = x \log x + x - 1$ with $\phi^*(y) = e^y - 1$ and $\phi^{*-1}(z) = \log(1+z)$.

- \triangleright Lemma 2 gives us $I(\Delta L_i; U_i) \ge \sup_t \mathbb{E} \left[\log \left(1 + t(-1)^{U_i} \Delta L_i \right) \right]$.
- Additional lemma: $f(x) \ge 0$ holds when $a \ge \frac{1}{2}$ and $|x| \le 1 - \frac{1}{2a}$
- Hence. $\sup_{t>-1} \mathbb{E}\left[\log\left(1+tG_i\right)\right] \ge \sup_{t\in\left[\frac{1}{2a}-1,1-\frac{1}{2a}\right]} \mathbb{E}\left[tG_i-at^2G_i^2\right]$. The supremum is attained when $t^*=\frac{\mathbb{E}[G_i]}{2a\mathbb{E}[G_i^2]}$, which is achievable.
- We have $I(\Delta L_i; U_i) \ge \sup_{t>-1} \mathbb{E}_{\Delta L_i, U_i} \left[\log \left(1 + t(-1)^{U_i} \Delta L_i \right) \right] \ge \frac{\mathbb{E}^2[G_i]}{4a \mathbb{E}[G^2]},$ which simplifies to

$$|\mathbb{E}[G_i]| \le \sqrt{2\left(|\mathbb{E}\left[G_i\right]| + \mathbb{E}\left[G_i^2\right]\right)I(\Delta L_i; U_i)}.$$
(14)

Theorem 2

Assume the loss difference $\ell(w, z_1) - \ell(w, z_2)$ is bounded in [-1, 1] for any $w \in \mathcal{W}$ and $z_1, z_2 \in \mathcal{Z}$, we have

$$|\mathcal{E}| \le \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 \left(\mathbb{E} \left[\Delta L_{i}^{2} \right] + |\mathbb{E} \left[G_{i} \right]| \right) I(\Delta L_{i}; U_{i})}.$$

Notably, using solely $I(\Delta L_i; U_i)$ (and other variants of CMI measures) to characterize generalization is loose.

Corollary 3

Under the conditions of Theorem 2, we have

$$|\mathcal{E}| \leq \frac{1}{n} \sum_{i=1}^{n} \left(2I(\Delta L_i; U_i) + 2\sqrt{2 \operatorname{Var}\left(L_i^+\right) I(\Delta L_i; U_i)} \right).$$

Application: CMI Bounds

Further Comments

- Similar bounds can be obtained for other f-information (f-divergence) such as χ^2 -divergence, squared Hellinger distance, Jensen-Shannon divergence, ...
- We also extend results to the unbounded loss function case by using the truncation trick.
- For more work on f-divergence, check Nguyen et al. [2010], Jiao et al. [2017], Birrell et al. [2022], Agrawal and Horel [2020, 2021], Polyanskiy and Wu [2022].

Application: CMI Bounds

- Jeremiah Birrell, Markos A Katsoulakis, and Yannis Pantazis. Optimizing variational representations of divergences and accelerating their statistical estimation. *IEEE Transactions on Information Theory*, 68(7):4553–4572, 2022.
- Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain adaptation. *Advances in neural information processing systems*, 19, 2006.
- Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory of learning from different domains. *Machine Learning*, 79(1-2):151–175, 2010.
- Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In *The 22nd Conference on Learning Theory*, 2009.
- David Acuna, Guojun Zhang, Marc T Law, and Sanja Fidler. f-domain adversarial learning: Theory and algorithms. In *International Conference on Machine Learning*, pages 66–75. PMLR, 2021.

Learning Representations, 2023a.

Preliminaries

- Ziqiao Wang and Yongyi Mao. Tighter information-theoretic generalization bounds from supersamples. In *International Conference on Machine Learning*. PMLR, 2023b.
- XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*, 56(11): 5847–5861, 2010.
- Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Dependence measures bounding the exploration bias for general measurements. In *2017 IEEE International Symposium on Information Theory (ISIT)*, pages 1475–1479. IEEE, 2017.
- Rohit Agrawal and Thibaut Horel. Optimal bounds between f-divergences and integral probability metrics. In *International Conference on Machine Learning*, pages 115–124. PMLR, 2020.

Yury Polyanskiy and Yihong Wu. *Information Theory: From Coding to Learning*. Cambridge university press, 2022.

Application: CMI Bounds

•

Thanks!