Week 7

The Winding Number

7.1 Generalized Cauchy Theorems

4/30:

- Questions.
 - PSet 4, QA.4: III.5.1 instead of II.5.1?
 - Yep, should be Chapter 3, not Chapter 2.
 - PSet 4, QB.4: "a holomorphic branch of the logarithm exists on U" or on f(U)?
 - Yep, should be f(U).
 - "Which one works, Steven?"
- Recall.
 - The winding number of a curve γ about a point $z_0 \in \mathbb{C}$ is

$$\operatorname{wn}(\gamma, z_0) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} \, \mathrm{d}z$$

- We can also compute the winding number geometrically (see Figure 6.3).
- Additional properties of the winding number.
 - The winding number is invariant under homotopies of γ .
 - Compute by counting how many times you pass a ray from z_0 going counterclockwise!
 - Example: "I'm pointing in this direction, then I rotate, and eventually I point in this direction again, then I rotate, and eventually I'm back where I started so it's winding number 2."
 - We can also think of jumping to a higher plane on the infinity spiral every time we pass the ray.
- TPS: Compute the winding number of γ about the points in Figure 7.1.

Figure 7.1: Winding number regions.

- We get

$$\operatorname{wn}(\gamma,a) = -1 \qquad \qquad \operatorname{wn}(\gamma,b) = 3 \qquad \qquad \operatorname{wn}(\gamma,c) = 2$$

$$\operatorname{wn}(\gamma,d) = 2$$
 $\operatorname{wn}(\gamma,e) = 2$ $\operatorname{wn}(\gamma,f) = 2$ $\operatorname{wn}(\gamma,g) = 3$

- Do we notice any patterns?
 - Connected regions of the plane appear to yield the same winding number!
 - We formalize this notion via the following lemma.
- Lemma: $\operatorname{wn}(\gamma, z_0)$ is constant on components of $\mathbb{C} \setminus \operatorname{Im}(\gamma)$. It is also 0 on the unbounded component.

Proof. We address the two claims sequentially.

Claim 1: Treating z_0 as an argument, $\operatorname{wn}(\gamma, z_0)$ is a function from $\mathbb{C} \setminus \operatorname{Im}(\gamma)$ to \mathbb{Z} defined by

$$z_0 \mapsto \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0}$$

This is a continuous function into a discrete space and therefore is constant.

Claim 2: Let z_0 get very big. Then we can make

$$\left| \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0} \right|$$

arbitrarily small. But an integer that can be made arbitrarily small is just zero.

- This is a complex analytic proof of a topological claim.
- Justifying that the codomain of the winding number function is the integers: We've done this heuristically using homotopy, but we could formalize it, too.
- We now move onto today's main topic: The proof of the (very) general Cauchy Integral Theorem.
- First, we need a definition.
- Simply connected (domain): A domain $U \subset \mathbb{C}$ such that $\operatorname{wn}(\gamma, z_0) = 0$ for all $\gamma \subset U$ and $z \notin U$.
 - There are many other definitions, too.
 - \blacksquare Topology: The fundamental group of U is zero.
 - \blacksquare Removing any arc (line segment across the domain) from U turns it into a disconnected set.
 - For all arcs δ_1, δ_2 with the same endpoints, δ_1 and δ_2 are homotopic.
 - The last definition above will be particularly useful for our purposes, as we'll see shortly.
 - But these are all formal definitions; what can we think about intuitively?
 - A good first thing to think about is a blob in the plane.
 - But the interior of a fractal domain would also count.
 - \blacksquare A square minus a slit at 1, 1/2, 1/3, ... is also simply connected (though not path connected).
- Jordan curve theorem: Suppose $\gamma: S^1 \to \mathbb{C}$ is a continuous injection. Then γ bounds a disk.
 - Consequence: A domain that is simply connected is homeomorphic to a disk.
 - This appears stupidly obvious, but it was only rigorously proved in the early 1910s.
 - The issue is that we don't really know what *continuous* means.
 - If γ is C^1 , this is easy.

- The two generalizations and their proofs.
 - The proof of generalization 1 is very simple, straightforward, and clever.
 - The proof of generalization 2 is much more general and uses almost everything we've done.
- We are now ready to state and prove a first generalization of the CIT.
- Cauchy Integral Theorem: Suppose that U is simply connected and $f \in \mathcal{O}(U)$. Then $\int_{\gamma} f \, dz = 0$ for any closed loop γ in U.

Proof. Let γ be an arbitrary closed loop in U. Because any two arcs with the same endpoints are homotopic, γ is homotopic to the constant path $\tilde{\gamma}:[0,1]\to\{\gamma(0)\}$. This constant path has the property that

$$\int_{\tilde{\gamma}} f \, \mathrm{d}z = \int_0^1 f(\tilde{\gamma}(t)) \tilde{\gamma}'(t) \, \mathrm{d}t = \int_0^1 f(\tilde{\gamma}(t)) \cdot 0 \, \mathrm{d}t = 0$$

Since integrals are the same for homotopic paths, it follows that

$$\int_{\gamma} f \, \mathrm{d}z = \int_{\tilde{\gamma}} f \, \mathrm{d}z = 0$$

as desired. \Box

• We now build up to an even more general version of the CIT.

Figure 7.2: Nulhomologous multicurve examples.

- Suppose $D \subset \mathbb{C}$ is a bounded domain, and ∂D is a union of disjoint simple closed curves (SCCs).
- Let $\partial \vec{D}$ be the union of the boundaries, oriented so that D is on the left.
 - This is similar to how we orient curves when we're applying Stokes' Theorem.
 - Here as well, the outer one goes counterclockwise and the inner one(s) goes clockwise.
- More generally, we define a the concept of a **multicurve**.
- Using this definition, we define the **integral** of f over a multicurve.
 - This definition allows us to compute the winding number of Γ about z_0 .
- Lastly, we define a special kind of multicurve called a **nulhomologous** multicurve.
 - In Figure 7.2c, $\Gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ is nulhomologous.
- Multicurve: A formal sum of SCCs γ_i multiplied by coefficients $c_i \in \mathbb{C}$. Denoted by Γ . Given by

$$\Gamma = \sum c_i \gamma_i$$

• Integral (of f over Γ): The path integral defined as follows. Denoted by $\int_{\Gamma} f \, dz$. Given by

$$\int_{\Gamma} f \, \mathrm{d}z := \sum_{i=0}^{n} c_i \int_{\gamma_i} f \, \mathrm{d}z$$

- Nulhomologous (Γ in U): A multicurve Γ in a domain U for which $\Gamma = \partial \vec{D}$ for D as in Figure 7.2. Also known as homologous (Γ in U to 0).
- TPS: Compute wn $(\partial \vec{D}, z_0)$ for all $z_0 \notin D$ for each of the domains D in Figure 7.2.
 - $-\operatorname{wn}(\partial \vec{D}, z_0) = 0$ because we always get either nothing or a +1 and -1 and some zeroes.
- Lemma: If Γ is nulhomologous in U, then for all $z \notin U$, wn $(\Gamma, z) = 0$.
 - The converse is not true!
 - Example: If $U = \mathbb{C}^*$ and γ_1, γ_2 are intersecting closed curves (e.g., the unit circle and the unit circle translated half a unit to the right), then $\gamma_1 + \gamma_2$ is still nulhomologous even though it doesn't bound a domain.
 - The condition "for all $z \notin U$, wn $(\Gamma, z) = 0$ " is our general definition of nulhomologous in U; what we said earlier was just a precursor definition.
- Example.

Figure 7.3: Nulhomologous multicurve in a punctured domain.

- Let

$$f(z) = \frac{\sin(1/z)}{z - 1}$$

- Then $f \in \mathcal{O}(\mathbb{C} \setminus \{0,1\})$.
- An example of a nulhomologous multicurve over which we could integrate f is as follows.
- We are now ready for the statement and proof of the most general version of the CIT and CIF we'll see in this course.
- Suppose U is any domain, $\Gamma \subset U$ is nulhomologous, and $f \in \mathcal{O}(U)$. Then:
 - 1. General CIT: We have that

$$\int_{\Gamma} f \, \mathrm{d}z = 0$$

2. General CIF: For all $z \in U$ and not in $Im(\Gamma)$,

$$\mathrm{wn}(\Gamma,z)\cdot f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{d}\zeta$$

- Discussion of the proof.
 - We'll sketch the proof today.
 - Think back to the proof for star-shaped domains.
 - We proved the CIT by saying, "if it's true for triangles, then we win."
 - Using triangles, we built a primitive and then invoked Goursat's Lemma.
 - We proved the CIF by first defining the helper function

$$g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} & \zeta \neq z \\ f'(z) & \zeta = z \end{cases}$$

■ Then we invoked the CIT to say

$$\int_{\partial D} g \, \mathrm{d}z = 0$$

■ The CIF then followed from this and the fact that

$$\int_{\partial D} g d\zeta = \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \underbrace{\int_{\partial D} \frac{1}{\zeta - z} d\zeta}_{2\pi i}$$

- So can't we just replace all the ∂D 's with Γ 's in the above lines and call it a day?
 - No, because there's no analogy for the CIT. In other words, there may not be a primitive.
 - Thus, we need to fix $\int_{\partial D} g \, dz = 0$.
- In sum, the idea of this proof is to prove the CIF and then simply get the CIT.
- We'll have time to prove the CIF today, but probably will not to get to the CIT.
- We are now ready to sketch the full proof in broad strokes.

Proof. Define $h: U \to \mathbb{C}$ by

$$h(z) := \int_{\Gamma} g(\zeta, z) d\zeta$$

We want to show that h(z)=0. We can't do anything as nice as showing that it's a continuous map into a discrete space, but there is still a clever idea. First off, we can see that $h(z)\to 0$ as $z\to\infty$ in U. Essentially, as before, the denominator $\zeta-z$ gets really big so the first term gets really small and the second term has that $\operatorname{wn}(\Gamma,z)$ term which goes to 0. What we now need to show is that h extends to an entire function so that we can make the denominator arbitrarily large. This is where we use the assumption that Γ is nulhomologous.

First, we will show that h is continuous. We know that g is continuous in (ζ, z) together. We have holomorphic in ζ for a fixed z.^[1]

Next, we need to show that h is holomorphic on U. We know that h is holomorphic as long as $z \neq \zeta$. On the other hand, what if $\zeta = z$? We will invoke Morera's theorem.^[2]

Last, we show that h can be analytically continued outside of U. We know that on U,

$$h(z) = \int \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \cdot 2\pi i \operatorname{wn}(\Gamma, z)$$

Outside of U, the second term disappears because Γ is nulhomologous. Define

$$h(z) := \int \frac{f(\zeta)}{\zeta - z} d\zeta$$

outside of U. Thus, we have two functions that agree on a patch, so we get analytic continuation.

From here, we have an entire function that converges to 0 at ∞ (hence is bounded), so is constant by Liouville's theorem with value that converges to zero (hence is zero).^[3]

¹There's a bit more detail in the notes, but not much.

²There's a bit about the triangle integral condition in the notes.

³There is a bit on the CIT in the notes.

7.2 The Residue Theorem

- 5/2: Reminder: PSet 4 due tomorrow.
 - Recall.
 - Cauchy integral theorem for star-shaped/simply connected domains: Given such a domain U and $f \in \mathcal{O}(U)$, f has a primitive on U. It follows that for all $\gamma \subset U$, $\int_{\gamma} f \, \mathrm{d}z = 0$.
 - A cycle $\Gamma = \sum c_i \gamma_i$ in a domain U is **nulhomologous** if for all $z \notin U$,

$$\operatorname{wn}(\Gamma, z) := \sum c_i \operatorname{wn}(\gamma_i, z) = 0$$

- CIT/CIF in general: Let U be a domain, $\Gamma \subset U$ nulhomologous in U, and $f \in \mathcal{O}(U)$.
 - 1. We have

$$\int_{\Gamma} f \, \mathrm{d}z = \sum_{i} c_{i} \int_{\gamma_{i}} f \, \mathrm{d}z = 0$$

2. For all $z \notin \operatorname{Im}(\Gamma)$,

$$\operatorname{wn}(\Gamma, z) \cdot f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

- This is the most general version of the most important theorem(s) in this class.
- Comparing and contrasting the old and the new Cauchy theorems.
 - In the first one, we put a restriction on our domain and no restriction on our curve. In the new one, we put a restriction on our curve and no restriction on our domain.
 - In the old one, we worked to construct a primitive for f on U. In the new one, f need not have a primitive on U.
- Further multicurve examples.

Figure 7.4: Using coefficients to make a multicurve nulhomologous.

- 1. Let $U = \mathbb{C} \setminus \{p_1, \dots, p_k\}$. Enclose all points p_i in one big loop, and then enclose each individual point in a smaller loop (see Figures 7.2c and 7.3).
 - Then the (unweighted) sum of all k+1 curves is nulhomologous.
- 2. Let $U = \mathbb{C} \setminus \{0, 1, \pi\}$. γ_3 , as drawn in Figure 7.4, is not nulhomologous.
 - This is because the winding number of γ_3 about π is 2, about 1 is -2, and about 0 is -1.
 - However, we can make this curve nulhomologous by introducing a counterclockwise-oriented curve about each point and taking

$$\Gamma = \gamma_3 + \gamma_0 + 2\gamma_1 - 2\gamma_{\pi}$$

• The points in the above examples should be thought of as singularities.

- Homologous (cycles in U): Two cycles $\Gamma_1, \Gamma_2 \subset U$ for which $\Gamma_1 \Gamma_2$ is nulhomologous.
 - Helpful analogy: Think of Γ_1, Γ_2 as elements of a vector space and this is us saying they're equivalent/homologous if $\Gamma_1 \Gamma_2 = 0$ (i.e., $\Gamma_1 = \Gamma_2$).
 - Example: γ_3 and $2\gamma_{\pi} 2\gamma_1 \gamma_0$ are homologous in $\mathbb{C} \setminus \{0, 1, \pi\}$.
- Corollary: If Γ_1 and Γ_2 are homologous, then for all $f \in \mathcal{O}(U)$,

$$\int_{\Gamma_1} f \, \mathrm{d}z = \int_{\Gamma_2} f \, \mathrm{d}z$$

Proof. We have that

$$\int_{\Gamma_1} f \, dz - \int_{\Gamma_2} f \, dz = \int_{\Gamma_1 - \Gamma_2} f \, dz$$

$$= 0 CIT$$

Thus, adding $\int_{\Gamma_2} f \, dz$ to both sides of the above equation, we obtain

$$\int_{\Gamma_1} f \, \mathrm{d}z = \int_{\Gamma_2} f \, \mathrm{d}z$$

as desired. \Box

- This is the most important thing we get from the new CIT/CIF.
 - It means that to compute integrals over complicated paths, we can just replace the contour with a homologous ones that is easier to compute!
- TPS: Integrate the following function over γ_3 from Figure 7.4.

$$f(z) = \frac{1}{z(z-1)(z-\pi)}$$

- By the corollary,

$$\int_{\gamma_3} f \, dz = 2 \int_{\gamma_\pi} f \, dz - 2 \int_{\gamma_1} f \, dz - \int_{\gamma_0} f \, dz$$

- One way to evaluate each of these integrals is with a partial fraction decomposition.
- Another way is by observing the following.
 - Take the loop around a pole, say π , to be very small.
 - Then on this loop, z is close to π , z-1 is close to $\pi-1$, and only $z-\pi$ is meaningfully changing.
 - Thus, as the radius of the loop approaches zero, the 1/z and 1/(z-1) terms approach $1/\pi$ and $1/(\pi-1)$, respectively. These "constants" can then be factored out, and the remaining integral of $1/(z-\pi)$ evaluated to $2\pi i$.
 - \blacksquare This suggests that

$$\int_{\gamma_{\pi}} f \, \mathrm{d}z = \frac{1}{\pi(\pi - 1)} \cdot 2\pi i$$

- We now give a more rigorous justification for the above heuristic.
 - Observe that $\int_{\gamma_{\pi}} f \, dz$ is equal to $2\pi i$ times the **residue** of f at π , which we may recall is just the a_{-1} coefficient in the Laurent expansion at π .
 - Let's compute this Laurent expansion!

■ We have that

$$f(z) = \frac{1}{z - \pi} \cdot \frac{1}{z(z - 1)}$$

where the rightmost term must be holomorphic at π by our previous inquiry.

■ Thus, let

$$g(z) := \frac{1}{z(z-1)}$$

■ The Taylor expansion of g about π is

$$g(z) = g(\pi) + g'(\pi)(z - \pi) + \frac{g''(z)}{2}(z - \pi)^2 + \cdots$$

■ Now recall how we motivated the residue:

$$\int \sum_{k=-n}^{\infty} a_k (z-\pi)^k dz = \int a_{-1} (z-\pi)^{-1} dz = 2\pi i \cdot a_{-1}$$

■ Thus, around π ,

$$f(z) = \frac{g(\pi)}{z - \pi} + g'(\pi) + \frac{g''(\pi)}{2}(z - \pi) + \cdots$$

■ This means that $g(\pi)$ is the a_{-1} coefficient! Thus,

$$\operatorname{res}_{\pi}(f) = a_{-1} = g(\pi) = \frac{1}{\pi(\pi - 1)}$$

- Computing the other two integrals similarly, we obtain in total that

$$\int_{\gamma_{\pi}} f \, \mathrm{d}z = \frac{2i}{\pi - 1} \qquad \qquad \int_{\gamma_{1}} f \, \mathrm{d}z = \frac{2\pi i}{1 - \pi} \qquad \qquad \int_{\gamma_{0}} f \, \mathrm{d}z = 2i$$

- Thus, in total,

$$\int_{\gamma_3} f \, \mathrm{d}z = \frac{2i(\pi+3)}{\pi-1}$$

- The point is not that we get a nice final answer. The point is that we can compute complicated integrals in a much simpler way, e.g., just by fiddling with power series.
- Residue (of f at p): If p is an isolated singularity and D is a small disk whose only singularity is p, then the residue is defined as follows. Denoted by $\operatorname{res}_{p} f$. Given by

$$\operatorname{res}_p f := \frac{1}{2\pi i} \int_{\partial D} f \, \mathrm{d}z$$

• Residue theorem: Suppose U is a domain, S (think singularities) is a discrete set in U, $f \in \mathcal{O}(U \setminus S)$, and Γ is nulhomologous in U. Then

$$\frac{1}{2\pi i} \int_{\Gamma} f \, dz = \sum_{s \in S} \operatorname{wn}(\Gamma, s) \cdot \operatorname{res}_{s}(f)$$

Proof. For all $s \in S$, let γ_s be a small loop about s oriented counterclockwise. Define

$$\Gamma' := \Gamma - \sum_{s \in S} \operatorname{wn}(\Gamma, s) \gamma_s$$

 Γ' is nulhomologous. Thus, by the CIT,

$$\int_{\Gamma'} f \, \mathrm{d}z = 0$$

Now for all $s \in S$,

$$\operatorname{wn}(\Gamma', s) = \operatorname{wn}(\Gamma, s) - \operatorname{wn}(\Gamma, s) \cdot \underbrace{\operatorname{wn}(\gamma_s, s)}_{1} = 0$$

Therefore, we have that

$$\begin{split} \int_{\Gamma} f \, \mathrm{d}z &= \int_{\Gamma'} f \, \mathrm{d}z + \int_{\sum_{s \in S} \mathrm{wn}(\Gamma, s) \gamma_s} f \, \mathrm{d}z \\ &= 0 + \sum_{s \in S} \mathrm{wn}(\Gamma, s) \int_{\gamma_s} f \, \mathrm{d}z \\ &= 2\pi i \sum \mathrm{wn}(\Gamma, s) \operatorname{res}_s f \end{split}$$

as desired.

- Comments on the residue theorem.
 - Example: $U = \mathbb{C}$, $S = \{0, 1, \pi\}$, and $\Gamma = \gamma_3$.
 - The residue theorem will be very important, hint hint.
 - The proof is just exactly what we did in the example!
 - Calderon's definition of math: "You do an example, you see something interesting, and then you make a theorem that says, 'This happens always."
- We now list some properties of the residue.
 - These properties are true in general, but we'll prove them in the specific case that the functions are meromorphic because this allows us to use Laurent expansions.
- Properties: Let $a \in \mathbb{C}$ and $f, g \in \mathcal{O}(U \setminus S)$.
 - 1. $\operatorname{res}_s(af + g) = a \operatorname{res}_s f + \operatorname{res}_s g$.

Proof. Using the linearity of the integral in the definition, we have

$$\operatorname{res}_{s}(af+g) = \frac{1}{2\pi i} \int_{\partial D} (af+g) \, dz$$
$$= a \cdot \frac{1}{2\pi i} \int_{\partial D} f \, dz + \frac{1}{2\pi i} \int_{\partial D} g \, dz$$
$$= a \operatorname{res}_{s} f + \operatorname{res}_{s} g$$

as desired.

2. If f has a simple pole at s, then

$$\operatorname{res}_s f = \lim_{z \to s} f(z)(z - s)$$

Proof. Taking the Laurent expansion, let

$$f(z) = \sum_{k=-1}^{\infty} a_k (z - s)^k$$

Then

$$\lim_{z \to s} f(z)(z - s) = \lim_{z \to s} \sum_{k=-1}^{\infty} a_k (z - s)^{k+1}$$

$$= a_{-1} \cdot 0^0 + \sum_{k=0}^{\infty} a_k \cdot 0^{k+1}$$

$$= a_{-1}$$

$$= \operatorname{res}_s f$$

as desired.

Labalme 9

3. If f has a **simple zero** at s and g is holomorphic at s, then

$$res_s(g \cdot f) = g(s) res_s f$$

Proof. Taking the Laurent expansions, let

$$f(z) = \sum_{k=-1}^{\infty} a_k (z-s)^k$$
 $g(z) = \sum_{k=0}^{\infty} \frac{g^{(k)}(s)}{k!} (z-s)^k$

Then taking the Cauchy product, we obtain

$$(f \cdot g)(z) = a_{-1}b_0(z-s)^{-1} + \cdots$$

Therefore,

$$res_s(g \cdot f) = b_0 a_{-1} = g(s) res_s f$$

as desired.

- Simple (pole): A pole of order 1.
- Simple (zero): A zero of order 1.
- Properties 2 and 3 imply that if f has a simple zero at s and g is holomorphic, then

$$\operatorname{res}_s(g/f) = \frac{g(s)}{f'(s)}$$

• Using residues to compute the real integral

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^n} \, \mathrm{d}x$$

which gets complicated as $n \in \mathbb{N}$ gets big.

Figure 7.5: Using residues to compute contour integrals.

- We will use contour integration over γ_R , as shown in Figure 7.5.
- First, analytically continue the integrand to

$$f(z) := \frac{1}{(z^2 + 1)^n}$$

- Observe that f is meromorphic on \mathbb{C} and, specifically, $f \in \mathcal{O}(\mathbb{C} \setminus \{\pm i\})$.
- Since integrals over homotopic paths are the same, the integral over the boundary of a small disk around i would be the same as the integral over γ_R . Thus,

$$\operatorname{res}_i f = \int_{\gamma_R} f \, \mathrm{d}z$$

- Additionally, we can split

$$\int_{\gamma_R} f \, \mathrm{d}z = \int_{-R}^R f(x) \, \mathrm{d}x + \int_{\gamma_R \setminus [-R,R]} f \, \mathrm{d}z$$

- Now as $R \to \infty$, the magnitude of the denominator of f will similarly diverge along $\gamma_R \setminus [-R, R]$. Consequently, the rightmost integral above goes to zero as $R \to \infty$, and we are left with

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^n} dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx = \lim_{R \to \infty} \operatorname{res}_i f = \operatorname{res}_i f$$

- Thus, all we need to solve this problem is to compute the Laurent expansion of f about i.
- After more manipulations (see the notes), the final answer is

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^n} \, \mathrm{d}x = \frac{\pi (2n-2)!}{2^{2n-2}[(n-1)!]^2}$$

- Application of complex analysis to number theory: The Basel problem.
 - This was an open problem for over 100 years.
 - It asked for the value of the infinite sum

$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2} =: \zeta(2)$$

- Euler — who was from Basel — proved (with some not-very-rigorous power series manipulations that were only rigorously justified later) that

$$\zeta(2) = \frac{\pi^2}{6}$$

- Calderon: "That's the good thing about being a pioneer: You don't have to do all the proofs."
- But what about $\zeta(3)$, $\zeta(4)$, $\zeta(5)$, etc.?
- We know how to compute $\zeta(2n)$.
- Apery's theorem (1978): $\zeta(3)$ is proven to be irrational.
 - The argument is supposedly quite complex, and Calderon has never studied it.
 - Is $\zeta(3)$ transcendental like $\zeta(2n)$? Still an open question!
- For $\zeta(5)$ and any other odd numbers, we're still out of luck.
- A computation of $\zeta(2)$ using residues.

Figure 7.6: Basel problem solution using residues.

- Let's investigate the helper function

$$f(z) = \frac{\pi}{z^2 \tan(\pi z)}$$

- Observe that f is meromorphic on \mathbb{C} . In particular...
 - \blacksquare f has a pole of order 3 at z=0;
 - f has a pole of order 1 at ever nonzero $n \in \mathbb{Z}$ (because tangent is periodic).
- Thus, $f \in \mathcal{O}(\mathbb{C} \setminus \mathbb{Z})$.
- Let's compute the residue of f about the nonzero poles.
 - In these cases, the denominator has a simple zero and the numerator is holomorphic, so we can apply "Property 4" to learn that

$$\operatorname{res}_{n} f = \frac{\pi|_{n}}{\operatorname{d/dz} \left[z^{2} \tan(\pi z)\right]|_{n}} = \underbrace{\frac{\pi}{2n \underbrace{\tan(\pi n)}} + \pi n^{2} \underbrace{\sec^{2}(\pi n)}}_{1} = \frac{\pi}{\pi n^{2}} = \frac{1}{n^{2}}$$

- Define γ_N to be the curve in Figure 7.6. Then since γ_N has a winding number of 1 around all of the poles it encloses, the residue theorem tells us that

$$\frac{1}{2\pi i} \int_{\gamma_N} f \, \mathrm{d}z = \sum_{n=-N}^N \mathrm{res}_n f$$

■ It follows from the above that

$$\frac{1}{2\pi i} \int_{\gamma_N} f \, dz = \sum_{n=-N}^{-1} \operatorname{res}_n f + \operatorname{res}_0 f + \sum_{n=1}^N \operatorname{res}_n f = \operatorname{res}_0 f + 2 \sum_{n=1}^N \frac{1}{n^2}$$

- We now compute the above integral.
 - We will do this by bounding it and showing that it converges to zero.
 - To begin, let's bound the reciprocal of $tan(\pi z)$, which is

$$\cot(\pi z) = i \cdot \frac{e^{\pi iz} + e^{-\pi iz}}{e^{\pi iz} - e^{-\pi iz}}$$

▶ When Re(z) = N + 1/2 (for some $N \in \mathbb{Z}$) and $y = Im(z) \in \mathbb{R}$, we have that

$$e^{\pi i z} = e^{\pi i (N+1/2+yi)} = e^{N\pi i} \cdot e^{\pi i/2} \cdot e^{-\pi y} = \pm 1 \cdot i \cdot e^{-\pi y} = \pm i e^{-\pi y}$$

and

$$e^{-\pi iz} = e^{-\pi i(N+1/2+yi)} = e^{-N\pi i} \cdot e^{-\pi i/2} \cdot e^{\pi y} = \pm 1 \cdot -i \cdot e^{\pi y} = \mp i e^{\pi y}$$

so hence,

$$|\cot(\pi z)| = \left| \frac{e^{\pi iz} + e^{-\pi iz}}{e^{\pi iz} - e^{-\pi iz}} \right| = \left| \frac{\pm ie^{-\pi y} + \mp ie^{\pi y}}{\pm ie^{-\pi y} - \mp ie^{\pi y}} \right| = \left| \frac{\pm e^{-\pi y} - \pm e^{\pi y}}{\pm e^{-\pi y} + \pm e^{\pi y}} \right| = \left| \frac{e^{-\pi y} - e^{\pi y}}{e^{-\pi y} + e^{\pi y}} \right| \le 1$$

▶ On the other hand, notice that as $\text{Im}(z) \to \infty$, $\cot(z) \to 1$. Thus, if we want to keep $\cot(z)$ near 1 (and hence bounded in general), we need only require that Im(z) = N + 1/2 is greater than some threshold. In fact, as we can see in the applet from the 3/21 lecture, if $\text{Im}(z) \ge 1/2$, then $|\cot(z) - 1|$ is already less than 1/2 and hence $|\cot(z)| \le 2$. [4] An analogous argument holds based on the fact that as $\text{Im}(z) \to -\infty$, $\cot(z) \to -1$.

⁴Note that for the sake of bounding the $\cot(\pi z)$, we need not make the top and bottom of γ_N diverge along with the right and left sides; they could stay at $\text{Im}(z)=\pm 1/2$ and we'd be totally fine on boundedness. However, we do have the top and bottom diverge so that the z^2 term in the denominator of f(z) becomes large at *all* points along γ_N as $N\to\infty$; this fact will be used shortly when we compute $\int_{\gamma_N} f \, \mathrm{d}z$.

- ightharpoonup Thus, $|\cot(z)| \leq 2$ for all $z \in \operatorname{Im}(\gamma_N)$ and $N \in \mathbb{N}$.
- Consequently, as $N \to \infty$, $f(z) \to 0$ for all $z \in \text{Im}(\gamma_N)$. Thus, the integral of f over γ_N goes to zero, too. In a statement,

$$\lim_{N \to \infty} \int_{\gamma_N} f \, \mathrm{d}z = 0$$

- Combining the above two results, we have that

$$\frac{1}{2\pi i} \lim_{N \to \infty} \int_{\gamma_N} f \, \mathrm{d}z = \lim_{N \to \infty} \left(\operatorname{res}_0 f + 2 \sum_{n=1}^N \frac{1}{n^2} \right)$$
$$\frac{1}{2\pi i} \cdot 0 = \operatorname{res}_0 f + 2 \sum_{n=1}^\infty \frac{1}{n^2}$$
$$\sum_{n=1}^\infty \frac{1}{n^2} = -\frac{1}{2} \operatorname{res}_0 f$$

- Evidently, we must now compute $res_0 f$.
 - The Laurent series for cot(z) about 0 is

$$\cot(z) = \frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} - \frac{2z^5}{945} - \cdots$$

 \blacksquare Thus, near zero, [5]

$$f(z) = \frac{\pi}{z^2} \cdot \left(\frac{1}{\pi z} - \frac{\pi z}{3} - \frac{\pi^3 z^3}{45} - \frac{2\pi^5 z^5}{945} - \cdots \right)$$
$$= \frac{1}{z^3} - \frac{\pi^2}{3z} - \frac{\pi^4}{45}z - \frac{2\pi^6}{945}z^4 - \cdots$$

■ Consequently,

$$res_0 f = a_{-1} = -\frac{\pi^2}{3}$$

- Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = -\frac{1}{2} \cdot -\frac{\pi^2}{3} = \frac{\pi^2}{6}$$

as desired.

• This same argument easily extends to the even natural number values of the Riemann zeta function.

⁵Notice that this Laurent series reflects the fact that f has a zero of order 3 at z = 0!