Brain Deep Sleep Slow Oscillation

Jack Dong, Zhentao Hou, Xu Liu, Jingwen Yu

SLEEP STAGES

Dataset - by dreem

Dataset - by dreem

- Size: 2.7G (261,634 x 1,261)
- URL: https://challengedata.ens.fr/participants/challenges/10/
- Features (1261 columns)
 - Time spent in different sleep stages
 - Current sleep stage
 - Amplitude/duration of previous slow oscillations
 - EEG signals (column 12-1261)
 - represents 10 seconds of recording starting 10 seconds before the end of a slow oscillation.
 - sampling frequency: 125Hz -> 1250 data points

Dataset - by dreem

- Label: if there is any slow oscillation in the following second
 - 0: no slow oscillation
 - 1: a slow oscillation of low amplitude
 - 2: a slow oscillation of high amplitude

Analytical Goals dreem

Predict whether or not a slow oscillation will be followed by another one in sham conditions.

Contributions to this field:

- Predict normal brain activity
- Know when to stimulate
- Compare the impact of individual stimulation

Related Works

Sleep stage prediction
Logistic regression
Random forest
Deep learning

- Slow oscillations vs heart rate

Our approach uses previous slow oscillation data directly.

Preprocessing Algorithms and Time Efficiency

- No missing data
- Imbalance: not severe (11 : 8 : 7)
- 1250 EEG data points min, max, mean, median
- Preprocessing runtime: 87.17 s Specs: r5.2xlarge, 5 instances

Model Outcome and Runtime Comparison

r5.2xlarge, 5 instances, 64 G memory, default configure

Model	Platform	Accuracy	Runtime
Decision Tree	Spark ML	0.4943	299 s
Random Forest	Spark ML 0.5036		222 s
Gradient Boosting	H2O	0.5121	148 s
XGBoost	H2O	0.5094	301 s
Deep Learning	H2O	0.5055	292 s

Runtime Comparison on the Best Model

Instance Type	Memory Size	Number of Instances	Executor Memory	Runtime
r5.2xlarge	64 G	5	default	147 s
r5.2xlarge	64 G	4	default	141 s
r5.2xlarge	64 G	3	default	151 s
m5.4xlarge	64 G	3	default	139 s

Performance of the Best Model

- Accuracy: **0.5121**

- Confusion Matrix:

Conclusion & Lesson Learned

- Winner: **Gradient Boosting Machine**Highest accuracy and most efficient
- Class0 (no slow oscillation) is relatively easier to predict
- Accuracy generally around 50% Missing important features? Better feature engineering?
- Many weird errors occur \(\epsilon\)

Q&A