

HEALTH CARE SYSTEM DESIGN

RTOS

Name: Arafa Arafa Abd El-Mawgod

Contents

List of Figures	2
List of Tables	3
Overview	4
Goals	4
Deliverables	5
Tasks	5
Tasks parameters	5
system tick rate	
Calculations	6
Hyperperiod	6
CPU load	6
Timeline and Schedulability	6
Simso output	7

List of Figures

Figure 1 Manual timeline schedule	. 6
Figure 2 Simso tasks properties	. 7
Figure 3 Simso system results	. 7

List of Tables

Table 1 Tasks parameters	5
Table 2 Tasks busy time	E

Overview

This is a simple design for a Healthcare system using RTOS (real-time operating system) with the following Requirements.

- 1. A touch LCD is an input that controls the system and gives commands. Every LCD command is represented in 4 bytes. LCD is connected to the microcontroller through UART with a speed of 9600 bps [Bit per second]. (Reading 4 bytes and processing the command takes 2 ms)
- 2. Blood pressure sensor with new data every 25ms. (Reading the sensor and processing its data takes 3 ms)
- 3. Heartbeat detector with new data every 100ms. (Reading the sensor and processing its data takes 1.5 ms)
- 4. Temperature sensor with new data every 10ms. (Reading the sensor and processing its data takes 2.5 ms)
- 5. Alert siren. (Activate or deactivate the siren takes 1 ms)

Goals

- 1. determine how many tasks are needed the system.
- 2. determine the specification of each task (Deadline periodicity priority)
- 3. decide the systick rate
- 4. calculate
 - hyperperiod
 - CPU load
- 5. Draw the timeline manually the expected schedulablility of the system
- 6. Model the system in Simso

Deliverables

Tasks

The system consists of five task

(LCD, Blood pressure, Heartbeat Reading, Temperature reading) and driven task by event

Tasks parameters

Task_ID	Priority	Periodicity	Deadline
T1_LCD	4	100	100
T2_BLOOD	2	25	25
T3_HEART	3	100	50
T4_TEMP	1	10	10
T5_ALERT	0	10	10

Table 1 Tasks parameters

Description of table

- 1. The task with Higher number has higher priority.
- 2. Give alert task the lowest priority because it is driven task by other tasks and don't make starvation in the system.

system tick rate

-To determine the systick rate we must calculate the **TotalExecutionTime**.

TotalExecutionTime =
$$(2+3+1.5+2.5+1) = 10$$
ms

Decide **TotalExecutionTime** is 10ms.

Calculations

Hyperperiod

CPU load

Task_ID	Execution time	Periodicity	Busy time=(E*(H/P))
T1_LCD	2	100	2*(100/100) = 2
T2_BLOOD	3	25	3*(100/25) = 12
T3_HEART	1.5	100	1.5 *(100/100) = 1.5
T4_TEMP	2.5	10	2.5*(100/10) = 25
T5_ALERT	1	10	1*(100/10) = 10
	Total busy time		50.5

Table 2 Tasks busy time

<u>CPU Load</u> = (Total busy time / Hyperperiod) = (50.5/100) *100 = 50.5%

Timeline and Schedulability

Figure 1 Manual timeline schedule

Simso output

Figure 2 Simso tasks properties

Figure 3 Simso system results