
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: Tue Jun 12 09:47:28 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10589960 Version No: 1.0

Input Set:

Output Set:

Started: 2007-06-11 20:02:13.746 **Finished:** 2007-06-11 20:02:14.644

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 898 ms

Total Warnings: 10
Total Errors: 0

No. of SeqIDs Defined: 20

Actual SeqID Count: 20

Err	or code	Error Description				
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (9)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (10)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (11)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (12)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (15)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (16)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (17)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (18)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (19)
W	213	Artificial or	Unknown	found	in <213>	in SEQ ID (20)

SEQUENCE LISTING

<110>	Endo, Keiji Ozaki, Katsuya											
<120>	Modified promoter											
<130>	295199USOPCT											
<140>	10589960											
<141>	2007-06-11											
<150>	10/589,960											
<151>	2006-08-18											
<150>	PCT/JP05/03757											
<151>	2006-03-04											
<150>	JP 2004-062853											
<151>	2004-03-05											
<160>	20											
<170>	PatentIn version 3.3											
<210>	1											
<211>	572											
<212>	DNA											
<213>	Bacillus sp. KSM-S237											
<400>	1											
gatttg	ccga tgcaacaggc ttatatttag aggaaatttc tttttaaatt gaatacggaa	60										
taaaato	cagg taaacaggtc ctgattttat ttttttgagt tttttagaga actgaagatt	120										
gaaataa	aaag tagaagacaa aggacataag aaaattgcat tagttttaat tatagaaaac	180										
gcctttt	ttat aattatttat acctagaacg aaaatactgt ttcgaaagcg gtttactata	240										
aaacctt	tata ttccggctct tttttaaaac agggggtaaa aattcactct agtattctaa	300										
tttcaad	catg ctataataaa tttgtaagac gcaatatgca tctctttttt tacgatatat	360										
gtaagc	ggtt aaccttgtgc tatatgccga tttaggaagg ggggtagatt gagtcaagta	420										
gtaataa	atat agataactta taagttgttg agaagcagga gagcatctgg gttactcaca	480										
agtttt	ttta aaactttaac gaaagcactt tcggtaatgc ttatgaattt agctatttga	540										
ttcaatt	tact ttaaaaatat ttaggaggta at	572										
<210>	2											

<210> 2
<211> 609
<212> DNA
<213> Bacillus sp. KSM-64

<400> 2 agtacttacc attttagagt caaaagatag aagccaagca ggatttgccg atgcaaccgg 60 cttatattta gagggaattt ctttttaaat tgaatacgga ataaaatcag gtaaacaggt 120 cctgatttta tttttttgaa tttttttgag aactaaagat tgaaatagaa gtagaagaca 180 240 acggacataa gaaaattgta ttagttttaa ttatagaaaa cgcttttcta taattattta tacctagaac gaaaatactg tttcgaaagc ggtttactat aaaaccttat attccggctc 300 tttttttaaa cagggggtga aaattcactc tagtattcta atttcaacat gctataataa 360 atttgtaaga cgcaatatac atctttttt tatgatattt gtaagcggtt aaccttgtgc 420 tatatgccga tttaggaagg gggtagattg agtcaagtag tcataattta gataacttat 480 540 aagttgttga gaagcaggag agaatctggg ttactcacaa gttttttaaa acattatcga aagcactttc ggttatgctt atgaatttag ctatttgatt caattacttt aataatttta 600 609 ggaggtaat

<210> 3

<211> 3149

<212> DNA

<213> Bacillus sp. KSM-S237

<400> 3

gatttgccga tgcaacaggc ttatatttag aggaaatttc tttttaaatt gaatacggaa taaaatcagg taaacaggtc ctgattttat tttttttgagt tttttagaga actgaagatt 120 gaaataaaag tagaagacaa aggacataag aaaattgcat tagttttaat tatagaaaac 180 gcctttttat aattatttat acctagaacg aaaatactgt ttcgaaagcg gtttactata 240 aaaccttata ttccggctct tttttaaaac agggggtaaa aattcactct agtattctaa 300 tttcaacatg ctataataaa tttgtaagac gcaatatgca tctcttttt tacgatatat 420 gtaagcggtt aaccttgtgc tatatgccga tttaggaagg ggggtagatt gagtcaagta gtaataatat agataactta taagttgttg agaagcagga gagcatctgg gttactcaca 480 agttttttta aaactttaac gaaagcactt tcggtaatgc ttatgaattt agctatttga 540 600 gatttcttcc attcttattt tagttttact tctatcttta tttccggcag ctcttgcagc 660 agaaggaaac actcgtgaag acaattttaa acatttatta ggtaatgaca atgttaaacg 720 cccttctgag gctggcgcat tacaattaca agaagtcgat ggacaaatga cattagtaga 780 840 tcaacatgga gaaaaaattc aattacgtgg aatgagtaca cacggattac agtggtttcc

tgagatcttg aa	ıtgataacg	catacaaagc	tctttctaac	gattgggatt	ccaatatgat	900
tcgtcttgct at	gtatgtag	gtgaaaatgg	gtacgctaca	aaccctgagt	taatcaaaca	960
aagagtgatt ga	ıtggaattg	agttagcgat	tgaaaatgac	atgtatgtta	ttgttgactg	1020
gcatgttcat gc	gccaggtg	atcctagaga	tcctgtttat	gcaggtgcta	aagatttctt	1080
tagagaaatt gc	agctttat	accctaataa	tccacacatt	atttatgagt	tagcgaatga	1140
gccgagtagt aa	ıtaataatg	gtggagcagg	gattccgaat	aacgaagaag	gttggaaagc	1200
ggtaaaagaa ta	ıtgctgatc	caattgtaga	aatgttacgt	aaaagcggta	atgcagatga	1260
caacattatc at	tgttggta	gtccaaactg	gagtcagcgt	ccggacttag	cagctgataa	1320
tccaattgat ga	itcaccata	caatgtatac	tgttcacttc	tacactggtt	cacatgctgc	1380
ttcaactgaa ag	gctatccgt	ctgaaactcc	taactctgaa	agaggaaacg	taatgagtaa	1440
cactcgttat gc	gttagaaa	acggagtagc	ggtatttgca	acagagtggg	gaacgagtca	1500
agctagtgga ga	ıcggtggtc	cttactttga	tgaagcagat	gtatggattg	aatttttaaa	1560
tgaaaacaac at	tagctggg	ctaactggtc	tttaacgaat	aaaaatgaag	tatctggtgc	1620
atttacacca tt	cgagttag	gtaagtctaa	cgcaaccaat	cttgacccag	gtccagatca	1680
tgtgtgggca cc	agaagaat	taagtctttc	tggagaatat	gtacgtgctc	gtattaaagg	1740
tgtgaactat ga	ıgccaatcg	accgtacaaa	atacacgaaa	gtactttggg	actttaatga	1800
tggaacgaag ca	aggatttg	gagtgaattc	ggattctcca	aataaagaac	ttattgcagt	1860
tgataatgaa aa	caacactt	tgaaagtttc	gggattagat	gtaagtaacg	atgtttcaga	1920
tggcaacttc tg	ggctaatg	ctcgtctttc	tgccaacggt	tggggaaaaa	gtgttgatat	1980
tttaggtgct ga	ıgaagctta	caatggatgt	tattgttgat	gaaccaacga	cggtagctat	2040
tgcggcgatt cc	acaaagta	gtaaaagtgg	atgggcaaat	ccagagcgtg	ctgttcgagt	2100
gaacgcggaa ga	ittttgtcc	agcaaacgga	cggtaagtat	aaagctggat	taacaattac	2160
aggagaagat gc	tcctaacc	taaaaaatat	cgcttttcat	gaagaagata	acaatatgaa	2220
caacatcatt ct	gttcgtgg	gaactgatgc	agctgacgtt	atttacttag	ataacattaa	2280
agtaattgga ac	agaagttg	aaattccagt	tgttcatgat	ccaaaaggag	aagctgttct	2340
teettetgtt tt	tgaagacg	gtacacgtca	aggttgggac	tgggctggag	agtctggtgt	2400
gaaaacagct tt	aacaattg	aagaagcaaa	cggttctaac	gcgttatcat	gggaatttgg	2460
atatccagaa gt	aaaaccta	gtgataactg	ggcaacagct	ccacgtttag	atttctggaa	2520

atctgacttg	gttcgcggtg	agaatgatta	tgtagctttt	gatttctatc	tagatccagt	2580
tegtgcaaca	gaaggcgcaa	tgaatatcaa	tttagtattc	cagccaccta	ctaacgggta	2640
ttgggtacaa	gcaccaaaaa	cgtatacgat	taactttgat	gaattagagg	aagcgaatca	2700
agtaaatggt	ttatatcact	atgaagtgaa	aattaacgta	agagatatta	caaacattca	2760
agatgacacg	ttactacgta	acatgatgat	catttttgca	gatgtagaaa	gtgactttgc	2820
agggagagtc	tttgtagata	atgttcgttt	tgagggggct	gctactactg	agccggttga	2880
		gcgaagagac				2940
		aagaagagaa				3000
		tcaaaaatga				3060
		tgatgtagat	cttttagata	accttttct	tgcataactg	3120
gacacagagt	tgttattaaa	gaaagtaag				3149

<210> 4

<211> 795

<212> PRT

<213> Bacillus sp. KSM-S237

<400> 4

Ala Glu Gly Asn Thr Arg Glu Asp Asn Phe Lys His Leu Leu Gly Asn 1 5 10 15

Asp Asn Val Lys Arg Pro Ser Glu Ala Gly Ala Leu Gln Leu Gln Glu 20 25 30

Val Asp Gly Gln Met Thr Leu Val Asp Gln His Gly Glu Lys Ile Gln 35 40 45

Leu Arg Gly Met Ser Thr His Gly Leu Gln Trp Phe Pro Glu Ile Leu 50 55 60

Asn Asp Asn Ala Tyr Lys Ala Leu Ser Asn Asp Trp Asp Ser Asn Met 65 70 75 80

Ile Arg Leu Ala Met Tyr Val Gly Glu Asn Gly Tyr Ala Thr Asn Pro\$85\$ 90 95

Glu Leu Ile Lys Gln Arg Val Ile Asp Gly Ile Glu Leu Ala Ile Glu 100 105 110

Asn	Asp	Met 115	Tyr	Val	Ile	Val	Asp 120	Trp	His	Val	His	Ala 125	Pro	Gly	Asp
Pro	Arg 130	Asp	Pro	Val	Tyr	Ala 135	Gly	Ala	Lys	Asp	Phe 140	Phe	Arg	Glu	Ile
Ala 145	Ala	Leu	Tyr	Pro	Asn 150	Asn	Pro	His	Ile	Ile 155	Tyr	Glu	Leu	Ala	Asn 160
Glu	Pro	Ser	Ser	Asn 165	Asn	Asn	Gly	Gly	Ala 170	Gly	Ile	Pro	Asn	Asn 175	Glu
Glu	Gly	Trp	Lys 180	Ala	Val	Lys	Glu	Tyr 185	Ala	Asp	Pro	Ile	Val 190	Glu	Met
Leu	Arg	Lys 195	Ser	Gly	Asn	Ala	Asp 200	Asp	Asn	Ile	Ile	Ile 205	Val	Gly	Ser
Pro	Asn 210	Trp	Ser	Gln	Arg	Pro 215	Asp	Leu	Ala	Ala	Asp 220	Asn	Pro	Ile	Asp
Asp 225	His	His	Thr	Met	Tyr 230	Thr	Val	His	Phe	Tyr 235	Thr	Gly	Ser	His	Ala 240
	Ser			245	_				250					255	
	Val		260				_	265					270		
	Ala	275					280					285			
	Phe 290				_	295					300				
305	Ser				310					315					320
AIA	Phe	TIIT	110	325	Giu	теп	Сту	пур	330	HOII	лıа	TIIT	USII	335	voh

Pro	Gly	Pro	Asp 340	His	Val	Trp	Ala	Pro 345	Glu	Glu	Leu	Ser	Leu 350	Ser	Gly
Glu	Tyr	Val 355	Arg	Ala	Arg	Ile	Lys 360	Gly	Val	Asn	Tyr	Glu 365	Pro	Ile	Asp
Arg	Thr 370	Lys	Tyr	Thr	Lys	Val 375	Leu	Trp	Asp	Phe	Asn 380	Asp	Gly	Thr	Lys
385	Gly				390					395					400
	Asp			405				_	410					415	
	Asp		420					425					430		
	Gly	435		_			440					445	_		
	450 Gln					455					460				
465	Asn			_	470					475					480
	Leu			485					490				_	495	
Phe	His	Glu	500 Glu	Asp	Asn	Asn	Met	505 Asn	Asn	Ile	Ile	Leu	510 Phe	Val	Gly
Thr		515	71-	Δen	Val	Ile	520 Tyr	Leu	Asp	Asn	Ile	525 Lys	Val	Ile	Gly
	Asp	Ата	АІА	изр											
	Asp 530 Glu					535 Val	Val	His	Asp	Pro	540 Lys	Gly	Glu		Val

Leu Pro Ser Val Phe Glu Asp Gly Thr Arg Gln Gly Trp Asp Trp Ala

565 570 575

Gly Glu Ser Gly Val Lys Thr Ala Leu Thr Ile Glu Glu Ala Asn Gly 580 590

Ser Asn Ala Leu Ser Trp Glu Phe Gly Tyr Pro Glu Val Lys Pro Ser 595 600 605

Asp Asn Trp Ala Thr Ala Pro Arg Leu Asp Phe Trp Lys Ser Asp Leu 610 615 620

Val Arg Gly Glu Asn Asp Tyr Val Ala Phe Asp Phe Tyr Leu Asp Pro 625 630 635 640

Val Arg Ala Thr Glu Gly Ala Met Asn Ile Asn Leu Val Phe Gln Pro \$645\$

Pro Thr Asn Gly Tyr Trp Val Gln Ala Pro Lys Thr Tyr Thr Ile Asn 660 665 670

Phe Asp Glu Leu Glu Glu Ala Asn Gln Val Asn Gly Leu Tyr His Tyr 675 680 685

Glu Val Lys Ile Asn Val Arg Asp Ile Thr Asn Ile Gln Asp Asp Thr 690 695 700

Leu Leu Arg Asn Met Met Ile Ile Phe Ala Asp Val Glu Ser Asp Phe 705 710 715 720

Ala Gly Arg Val Phe Val Asp Asn Val Arg Phe Glu Gly Ala Ala Thr
725 730 735

Thr Glu Pro Val Glu Pro Glu Pro Val Asp Pro Gly Glu Glu Thr Pro
740 745 750

Pro Val Asp Glu Lys Glu Ala Lys Lys Glu Gln Lys Glu Ala Glu Lys 755 760 765

Glu Glu Lys Glu Ala Val Lys Glu Glu Lys Lys Glu Ala Lys Glu Glu
770 780

Lys Lys Ala Val Lys Asn Glu Ala Lys Lys 785 790 795

<210> 5

<211> 3332

<212> DNA

<213> Bacillus sp. KSM-64

<400> 5

agtacttacc attttagagt caaaagatag aagccaagca ggatttgccg atgcaaccgg cttatattta gagggaattt ctttttaaat tgaatacgga ataaaatcag gtaaacaggt 120 cctgatttta tttttttgaa tttttttgag aactaaagat tgaaatagaa gtagaagaca 180 240 acggacataa gaaaattgta ttagttttaa ttatagaaaa cgcttttcta taattattta 300 tacctagaac gaaaatactg tttcgaaagc ggtttactat aaaaccttat attccggctc tttttttaaa cagggggtga aaattcactc tagtattcta atttcaacat gctataataa 360 atttgtaaga cgcaatatac atctttttt tatgatattt gtaagcggtt aaccttgtgc 420 480 tatatgccga tttaggaagg gggtagattg agtcaagtag tcataattta gataacttat aagttgttga gaagcaggag agaatctggg ttactcacaa gttttttaaa acattatcga 540 aagcactttc ggttatgctt atgaatttag ctatttgatt caattacttt aataatttta 600 ggaggtaata tgatgttaag aaagaaaaca aagcagttga tttcttccat tcttatttta 660 720 gttttacttc tatctttatt tccgacagct cttgcagcag aaggaaacac tcgtgaagac 780 aattttaaac atttattagg taatgacaat gttaaacgcc cttctgaggc tggcgcatta 840 caattacaag aagtcgatgg acaaatgaca ttagtagatc aacatggaga aaaaattcaa ttacgtggaa tgagtacaca cggattacaa tggtttcctg agatcttgaa tgataacgca 900 960 tacaaagctc ttgctaacga ttgggaatca aatatgattc gtctagctat gtatgtcggt gaaaatggct atgcttcaaa tccagagtta attaaaagca gagtcattaa aggaatagat 1020 1080 cttgctattg aaaatgacat gtatgtcatc gttgattggc atgtacatgc acctggtgat cctagagatc ccgtttacgc tggagcagaa gatttcttta gagatattgc agcattatat 1140 1200 cctaacaatc cacacattat ttatgagtta gcgaatgagc caagtagtaa caataatggt 1260 ggagctggga ttccaaataa tgaagaaggt tggaatgcgg taaaagaata cgctgatcca 1320 attgtagaaa tgttacgtga tagcgggaac gcagatgaca atattatcat tgtgggtagt ccaaactgga gtcagcgtcc tgacttagca gctgataatc caattgatga tcaccataca 1380 atgtatactg ttcacttcta cactggttca catgctgctt caactgaaag ctatccgcct 1440 1500 gaaactccta actctgaaag aggaaacgta atgagtaaca ctcgttatgc gttagaaaac

ggagtagcag	tatttgcaac	agagtgggga	actagccaag	caaatggaga	tggtggtcct	1560
tactttgatg	aagcagatgt	atggattgag	tttttaaatg	aaaacaacat	tagctgggct	1620
aactggtctt	taacgaataa	aaatgaagta	tctggtgcat	ttacaccatt	cgagttaggt	1680
aagtctaacg	caacaagtct	tgacccaggg	ccagaccaag	tatgggtacc	agaagagtta	1740
agtctttctg	gagaatatgt	acgtgctcgt	attaaaggtg	tgaactatga	gccaatcgac	1800
cgtacaaaat	acacgaaagt	actttgggac	tttaatgatg	gaacgaagca	aggatttgga	1860
gtgaatggag	attctccagt	tgaagatgta	gttattgaga	atgaagcggg	cgctttaaaa	1920
ctttcaggat	tagatgcaag	taatgatgtt	tctgaaggta	attactgggc	taatgctcgt	1980
ctttctgccg	acggttgggg	aaaaagtgtt	gatattttag	gtgctgaaaa	acttactatg	2040
gatgtgattg	ttgatgagcc	gaccacggta	tcaattgctg	caattccaca	agggccatca	2100
gccaattggg	ttaatccaaa	tcgtgcaatt	aaggttgagc	caactaattt	cgtaccgtta	2160
ggagataagt	ttaaagcgga	attaactata	acttcagctg	actctccatc	gttagaagct	2220
attgcgatgc	atgctgaaaa	taacaacatc	aacaacatca	ttctttttgt	aggaactgaa	2280
ggtgctgatg	ttatctattt	agataacatt	aaagtaattg	gaacagaagt	tgaaattcca	2340
gttgttcatg	atccaaaagg	agaagctgtt	cttccttctg	tttttgaaga	cggtacacgt	2400
caaggttggg	actgggctgg	agagtctggt	gtgaaaacag	ctttaacaat	tgaagaagca	2460
aacggttcta	acgcgttatc	atgggaattt	ggatacccag	aagtaaaacc	tagtgataac	2520
tgggcaacag	ctccacgttt	agatttctgg	aaatctgact	tggttcgcgg	tgaaaatgat	2580
tatgtaactt	ttgatttcta	tctagatcca	gttcgtgcaa	cagaaggcgc	aatgaatatc	2640
aatttagtat	tccagccacc	tactaacggg	tattgggtac	aagcaccaaa	aacgtatacg	2700
attaactttg	atgaattaga	ggaagcgaat	caagtaaatg	gtttatatca	ctatgaagtg	2760
aaaattaacg	taagagatat	tacaaacatt	caagatgaca	cgttactacg	taacatgatg	2820
atcatttttg	cagatgtaga	aagtgacttt	gcagggagag	tctttgtaga	taatgttcgt	2880
tttgaggggg	ctgctactac	tgagccggtt	gaaccagagc	cagttgatcc	tggcgaagag	2940
acgccgcctg	tcgatgagaa	ggaagcgaaa	aaagaacaaa	aagaagcaga	gaaagaagag	3000
aaagaagcag	taaaagaaga	aaagaaagaa	gctaaagaag	aaaagaaagc	aatcaaaaat	3060
gaggctacga	aaaaataatc	taataaacta	gttatagggt	tatctaaagg	tctgatgcag	3120
atcttttaga	taaccttttt	ttgcataact	ggacatagaa	tggttattaa	agaaagcaag	3180

gtgtttatac gatattaaaa aggtagcgat tttaaattga aacctttaat aatgtcttgt 3240
gatagaatga tgaagtaatt taagaggggg aaacgaagtg aaaacggaaa tttctagtag 3300
aagaaaaaca gaccaagaaa tactgcaagc tt 3332

<210> 6 <211> 793 <212> PRT <213> Baccillus sp. KSM-64

<400> 6

Ala Glu Gly Asn Thr Arg Glu Asp Asn Phe Lys His Leu Leu Gly Asn 1 5 10 15

Asp Asn Val Lys Arg Pro Ser Glu Ala Gly Ala Leu Gln Leu Gln Glu 20 25 30

Val Asp Gly Gln Met Thr Leu Val