Lecture #13 Spectral Editing

- Topics
 - Introduction
 - J-difference editing
 - Multiple quantum filtering
- Handouts and Reading assignments
 - de Graaf, Chapter 8.
 - van de Ven, 4.1, 4.2, 4.6, and 4.8

Introduction

- Even though, *in vivo* spectra are already simplified by concentration and relaxation time detection limits, there are nonetheless multiple overlapping peaks that can greatly complicate unambiguous peak assignments and quantification.
- In principle, spectral editing includes all techniques which can simplify a NMR spectrum, such as...
 - Water suppression
 - Spatial localization
 - TR/TE/TI variations
- We'll define spectral editing in the more restrictive sense of only including those techniques which utilize J coupling between spins to discriminate among metabolites.

In Vivo ¹H Spectrum

- We'll focus on the ¹H spectrum
 - ⇒ High sensitivity
 - ⇒ Small chemical shift range
 - ⇒ Same hardware as MRI

Solutions

• Fit everything

e.g. least squares fit using spectra of in vitro metabolite solutions as basis functions (see Provencher et al. MRM 30:672-9, 1993.)

• Increase B_0

• Collect full 2D NMR spectrum

Edit/simplify 1D NMR spectrum

Refinements

- Strong versus weak coupling
 - In general, strong coupling requires considering the full density matrix
 - Weak coupling is appropriate to many in vivo applications (at least to a first approximation) and can be analyzed using the POF.
- Performance criteria
 - Sensitivity
 - Background discrimination _
 - Robustness to motion-artifacts (single- vs multi-shot)
 - Relaxation time considerations
- Spatial encoding to be added later (next couple of lectures)

J-Difference Editing

• Acquisition 1

$$(90^{\circ}_{x})_{IS}$$

$$\tau = \frac{1}{2J}$$

$$\tau = \frac{1}{2J}$$
acquire

$$\hat{I}_z \longrightarrow \hat{I}_y \longrightarrow \hat{I}_y \cos \pi J(\frac{1}{J}) - 2\hat{I}_x \hat{S}_z \sin \pi J(\frac{1}{J}) = -\hat{I}_y$$

• Acquisition 2

selective 180
$$(90^{\circ}_{x})_{IS}$$

$$\tau = \frac{1}{2J}$$

$$\tau = \frac{1}{2J}$$
acquire

$$\hat{I}_z \longrightarrow \hat{I}_y \longrightarrow \hat{I}_y \cos \pi J (\frac{1}{2J} - \frac{1}{2J}) - 2\hat{I}_x \hat{S}_z \sin \pi J (\frac{1}{2J} - \frac{1}{2J}) = \hat{I}_y$$

• Algorithm: Edited signal = Acq2-Acq1

Example: Lactate-Lipid Discrimination

MRSI with J-editing for Lactate

MELAS patient (metabolic disorder with multiple strokes)

Adalsteinsson, et al, MRM 30:124-130, 1993.

J-editing for GABA

J-editing for GABA

• 3 T In Vivo Brain Spectra Editing Off

Parameters: TR/TE = 1500/68 ms, 18cc voxel, occipital lobe, 26 min acquisition, head coil

Note: quantitation complicated by some co-edited resonances

The Oversampled 2D-J Experiment

• J-difference editing is a special case of a full 2D-J acquisition

• Acquire data for multiple values of t_1 . 2D-FFT yield 2D-J spectrum.

Hurd, et al., *MRM* **40**:343-347, 1998

3 T "TE-averaged" Normal Gray Matter Spectrum

The Oversampled 2D-J Experiment

Summary: J-editing

- Positives
 - Simple, robust
 - High sensitivity
 - High specificity
- Negatives
 - Subtraction artifacts due to ...
 - ... motion
 - ... hardware instabilities
 - ... minor differences in spin dynamics between pulse sequences (e.g. slice profiles)

Generic Multiple-Quantum Filter

- 180s used to refocus chemical shift
- Selection of coherences via phase cycling or use of gradients

DQ Filter - POF

• Consider a three spin system where *I* and *S* are *J*-coupled and *R* is an uncoupled spin we wish to suppress (for now, assume *TM* is very short).

Only problem is that we haven't really filtered out anything!

Phase Cycling

• One solution: cycle the phases of the first three RF pulses Example of a 4-cycle experiment

Experiment
$$\hat{\sigma}$$
 after readout pulse acquisition $90_{x}^{\circ} - \tau - 180_{y}^{\circ} - \tau - 90_{x}^{\circ} - \cdots$ $(2\hat{I}_{x}\hat{S}_{z} + 2\hat{I}_{z}\hat{S}_{x}) - \hat{R}_{y}$ $\hat{I}_{y} + \hat{S}_{y} - \hat{R}_{y}$ $90_{y}^{\circ} - \tau - 180_{-x}^{\circ} - \tau - 90_{y}^{\circ} - \cdots$ $-(2\hat{I}_{x}\hat{S}_{z} + 2\hat{I}_{z}\hat{S}_{x}) - \hat{R}_{y}$ $-\hat{I}_{y} - \hat{S}_{y} - \hat{R}_{y}$ $90_{-x}^{\circ} - \tau - 180_{-y}^{\circ} - \tau - 90_{-x}^{\circ} - \cdots$ $(2\hat{I}_{x}\hat{S}_{z} + 2\hat{I}_{z}\hat{S}_{x}) - \hat{R}_{y}$ $\hat{I}_{y} + \hat{S}_{y} - \hat{R}_{y}$ $90_{-y}^{\circ} - \tau - 180_{x}^{\circ} - \tau - 90_{-y}^{\circ} - \cdots$ $-(2\hat{I}_{x}\hat{S}_{z} + 2\hat{I}_{z}\hat{S}_{x}) - \hat{R}_{y}$ $-\hat{I}_{y} - \hat{S}_{y} - \hat{R}_{y}$ filter = (1) - (2) + (3) - (4)

Problem: no longer single-shot editing

Gradients

Consider the effect of the application of a gradient pulse on $\hat{\sigma}$.

Assume the gradient is a z gradient:
$$G_z \xrightarrow{\hat{\sigma}_1} \hat{\sigma}_2$$
 area = $G_z \xrightarrow{\hat{\sigma}_2} \hat{\sigma}_2$

The gradient adds to B_0 such that \hat{H} becomes a function of position.

$$\hat{H}_G = -\gamma z \hat{I}_z \int_0^T G_z(t) dt \quad \Longrightarrow \quad \hat{\sigma}_1 \xrightarrow{\hat{I}_z(zGT)} \Rightarrow \hat{\sigma}_2$$
• Example: $\hat{\sigma}_1 = \hat{I}_y$ and gradient area such that π rads per unit z .

$$\hat{I}_y \xrightarrow{\hat{I}_z(\pi z)} \hat{I}_y \cos \pi z + \hat{I}_x \sin \pi z$$
 ...to get the total coherence, we would then need to integrate over z.

DQ Filtering with Gradients

 $\hat{\sigma}$ at various points in time (ignoring chemical shift terms) is ...

$$(1) - 2\hat{I}_x \hat{S}_y - 2\hat{I}_y \hat{S}_x \xrightarrow{\hat{I}_z(\pi z)} \xrightarrow{\hat{S}_z(\pi z)} (-2\hat{I}_x \hat{S}_y - 2\hat{I}_y \hat{S}_x) \cos 2\pi z + (-2\hat{I}_x \hat{S}_x + 2\hat{I}_y \hat{S}_y) \sin 2\pi z (2)$$

$$\xrightarrow{\hat{I}_{x}(\frac{\pi}{2})} \xrightarrow{\hat{S}_{x}(\frac{\pi}{2})} (2\hat{I}_{x}\hat{S}_{z} + 2\hat{I}_{z}\hat{S}_{x})\cos 2\pi z + (-2\hat{I}_{x}\hat{S}_{x} + 2\hat{I}_{z}\hat{S}_{z})\sin 2\pi z$$
 (3)

This term involves unobservable MQ coherences and can be ignored (we are going to apply no more 90s so it will never evolve into transverse magnetization).

$$(3) \xrightarrow{\hat{I}_z(-2\pi z)} \xrightarrow{\hat{S}_z(-2\pi z)} (2\hat{I}_x\hat{S}_z + 2\hat{I}_z\hat{S}_x)\cos^2 2\pi z + (\hat{I}_y + \hat{S}_y)\sin 2\pi z\cos 2\pi z$$

Integrating over z... $\frac{1}{2}(2\hat{I}_x\hat{S}_z + 2\hat{I}_z\hat{S}_x)$ (4)

$$\frac{1}{2}(\hat{I}_y + \hat{S}_y)$$
 ... a single-shot filter with 50% yield.

DQ Filtering with Gradients

• Consider the following two DQ filters...

DQ1:
$$(2\hat{I}_{x}\hat{S}_{z} + 2\hat{I}_{z}\hat{S}_{x})\cos 2\pi z \xrightarrow{\hat{I}_{z}(-2\pi z) + \hat{S}_{z}(-2\pi z)} (2\hat{I}_{x}\hat{S}_{z} + 2\hat{I}_{z}\hat{S}_{x})\cos^{2} 2\pi z + (\hat{I}_{y} + \hat{S}_{y})\sin 2\pi z \cos 2\pi z$$

Integrating over z...
$$\frac{1}{2}(2\hat{I}_x\hat{S}_z + 2\hat{I}_z\hat{S}_x) \longrightarrow \frac{1}{2}(\hat{I}_y + \hat{S}_y)$$
 (5)

DQ2:

$$(2\hat{I}_x\hat{S}_z + 2\hat{I}_z\hat{S}_x)\cos 2\pi z \xrightarrow{\hat{I}_z(2\pi z) + \hat{S}_z(2\pi z)} (2\hat{I}_x\hat{S}_z + 2\hat{I}_z\hat{S}_x)\cos^2 2\pi z - (\hat{I}_y + \hat{S}_y)\sin 2\pi z\cos 2\pi z$$

$$\text{Integrating over z...} \quad \frac{1}{2}(2\hat{I}_x\hat{S}_z + 2\hat{I}_z\hat{S}_x) \longrightarrow \frac{1}{2}(\hat{I}_y + \hat{S}_y)$$

Example: Glutamate DQF

Lactate Imaging using a DQF

Live mouse

Heterogeneous lactate distribution within tumor

Mouse died during study

Aren't lipids also J-coupled?

Shouldn't subcutaneous lipid signals be much larger than that due to lactate?

_ Bone Marrow

Normal Tissue

Tumor

lactate

lipid

Summary

- Wide variety of spectral editing techniques available
- Optimum choice depends on application
- Some factors to consider:
 - Required quantitative accuracy
 - · Absolute versus relative quantitation
 - · Sensitivity
 - Robustness
 - · B₀ inhomogeneity
 - · B₁ inhomogeneity
 - · Patient motion

Next Lecture: In vivo MRS-detectable metabolites