```
In [1]:
```

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import sqlite3
import csv
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from wordcloud import WordCloud
import re
import os
from sklearn.model_selection import GridSearchCV
from sklearn.model selection import cross_val_score
import numpy as np
from sqlalchemy import create engine # database connection
import datetime as dt
from nltk.corpus import stopwords
from nltk.tokenize import word tokenize
from nltk.stem.snowball import SnowballStemmer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import SGDClassifier
from sklearn import metrics
from sklearn.metrics import f1 score,precision score,recall score
from sklearn import svm
from sklearn.linear model import LogisticRegression
from skmultilearn.adapt import mlknn
from skmultilearn.problem transform import ClassifierChain
from skmultilearn.problem_transform import BinaryRelevance
from skmultilearn.problem_transform import LabelPowerset
from sklearn.naive_bayes import GaussianNB
from datetime import datetime
import pickle
from sklearn.externals import joblib
```

Stack Overflow: Tag Prediction

1. Business Problem

1.1 Description

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming knowledge, and build their careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developers come to Stack Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range of topics in computer programming. The website serves as a platform for users to ask and answer questions, and, through membership and active participation, to vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of April 2014 Stack Overflow has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type of tags assigned to questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and HTML.

Problem Statemtent

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

1.2 Real World / Business Objectives and Constraints

- 1. Predict as many tags as possible with high precision and recall.
- 2. Incorrect tags could impact customer experience on StackOverflow.
- 3. No strict latency constraints.

2. Machine Learning problem

2.1 Data

2.1.1 Data Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data

All of the data is in 2 files: Train and Test.

```
Train.csv contains 4 columns: Id, Title, Body, Tags.

Test.csv contains the same columns but without the Tags, which you are to predict.

Size of Train.csv - 6.75GB

Size of Test.csv - 2GB

Number of rows in Train.csv = 6034195
```

The questions are randomized and contains a mix of verbose text sites as well as sites related to math and programming. The number of questions from each site may vary, and no filtering has been performed on the questions (such as closed questions).

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

```
Id - Unique identifier for each question

Title - The question's title

Body - The body of the question

Tags - The tags associated with the question in a space-seperated format (all lowercase, sh ould not contain tabs '\t' or ampersands '&')
```

2.1.2 Example Data point

```
Title: Implementing Boundary Value Analysis of Software Testing in a C++ program?
Body :
    #include<</pre>
```

```
#Include
iostream>\n
#include<
stdlib.h>\n\n
using namespace std;\n\n
int main()\n
{\n
    int n,a[n],x,c,u[n],m[n],e[n][4];\n
```

```
cout<<"Enter the number of variables";\n cin>>n;\n\n
         cout<<"Enter the Lower, and Upper Limits of the variables"; \n
         for (int y=1; y< n+1; y++) \n
         {\n
           cin>>m[y];\n
           cin>>u[y];\n
         for (x=1; x< n+1; x++) n
           a[x] = (m[x] + u[x])/2; \n
         } \n
         c = (n*4) - 4; \n
         for(int a1=1; a1<n+1; a1++)n
         { \n \n}
           e[a1][0] = m[a1]; \n
            e[a1][1] = m[a1]+1; \n
           e[a1][2] = u[a1]-1; \n
           e[a1][3] = u[a1]; \n
         } \n
         for (int i=1; i< n+1; i++) n
            for(int l=1; l<=i; l++)\n
            {\n
               if(1!=1) n
                    cout<<a[1]<<"\\t";\n
                } \n
            } \n
            for (int j=0; j<4; j++) \n
            {\n
                cout<<e[i][j];\n
                for (int k=0; k< n-(i+1); k++) \n
                    cout<<a[k]<<"\\t";\n
                } \n
                cout<<"\\n";\n
            } \n
         } \n\n
         system("PAUSE");\n
         return 0; \n
} \ n
```

\n\n

The answer should come in the form of a table like $\n\$

1	50	50\n
2	50	50\n
99	50	50\n
100	50	50\n
50	1	50\n
50	2	50\n
50	99	50\n
50	100	50\n
50	50	1\n
50	50	2\n
50	50	99\n
50	50	100\n

```
\n\n
if the no of inputs is 3 and their ranges are \n
       1,100\n
        1,100\n
        1,100\n
        (could be varied too)
\n\n
The output is not coming, can anyone correct the code or tell me what\'s wrong?
\n'
Tags : 'c++ c'
```

3. Exploratory Data Analysis

3.1 Data Loading and Cleaning

3.1.1 Using Pandas with SQLite to Load the data

```
In [2]:
import zipfile
archive = zipfile.ZipFile('Train.zip', 'r')
csvfile = archive.open('Train.csv')
```

```
In [3]:
```

```
#Creating db file from csv
#Learn SQL: https://www.w3schools.com/sql/default.asp
if not os.path.isfile('train.db'):
   start = datetime.now()
   disk_engine = create_engine('sqlite:///train.db')
   start = dt.datetime.now()
   chunksize = 180000
   j = 0
   index start = 1
   for df in pd.read csv(csvfile, names=['Id', 'Title', 'Body', 'Tags'], chunksize=chunksize, iter
ator=True, encoding='utf-8', ):
       df.index += index start
       j+=1
       print('{} rows'.format(j*chunksize))
       df.to_sql('data', disk_engine, if_exists='append')
       index start = df.index[-1] + 1
   print("Time taken to run this cell :", datetime.now() - start)
```

3.1.2 Counting the number of rows

```
In [4]:
```

```
if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    num_rows = pd.read_sql_query("""SELECT count(*) FROM data""", con)
    #Always remember to close the database
    print("Number of rows in the database :","\n",num rows['count(*)'].values[0])
    con.close()
    print("Time taken to count the number of rows :", datetime.now() - start)
else:
    print ("Please download the train.db file from drive or run the above cell to genarate train.db
Number of rows in the database :
6034196
```

0 00 01 007070

3.1.3 Checking for duplicates

In [5]:

```
#Learn SQl: https://www.w3schools.com/sql/default.asp
if os.path.isfile('train.db'):
   start = datetime.now()
    con = sqlite3.connect('train.db')
   df_no_dup = pd.read_sql_query('SELECT Title, Body, Tags, COUNT(*) as cnt_dup FROM data GROUP
BY Title, Body, Tags', con)
   con.close()
   print("Time taken to run this cell :", datetime.now() - start)
else:
   print("Please download the train.db file from drive or run the first to genarate train.db file
```

Time taken to run this cell: 0:02:23.193506

In [6]:

```
df no dup.head()
# we can observe that there are duplicates
```

Out[6]:

	Title	Body	Tags	cnt_dup
0	Implementing Boundary Value Analysis of S	<pre><pre><code>#include<iostream>\n#include&</code></pre></pre>	c++ c	1
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1
2	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding columns	1
3	java.lang.NoClassDefFoundError: javax/serv	I followed the guide in		

In [7]:

```
print("number of duplicate questions :", num_rows['count(*)'].values[0]- df_no_dup.shape[0], "(",(1
-((df_no_dup.shape[0])/(num_rows['count(*)'].values[0])))*100,"%)")
```

number of duplicate questions : 1827881 (30.292038906260256 %)

In [8]:

```
# number of times each question appeared in our database
df_no_dup.cnt_dup.value_counts()
```

Out[8]:

```
2656284
1
   1272336
     277575
          90
4
          25
           5
Name: cnt dup, dtype: int64
```

In [9]:

```
Title \
0
        Implementing Boundary Value Analysis of S...
            Dynamic Datagrid Binding in Silverlight?
2
            Dynamic Datagrid Binding in Silverlight?
       java.lang.NoClassDefFoundError: javax/serv...
3
       java.sql.SQLException:[Microsoft][ODBC Dri...
                                                Body
0 <code>#include&lt;iostream&gt;\n#include&...
  I should do binding for datagrid dynamicall...
2 I should do binding for datagrid dynamicall...
3 I followed the guide in <a href="http://sta...</pre>
4 I use the following code\n\n<code>...
                                 Tags cnt dup
0
                                 C++ C
                                             1
          c# silverlight data-binding
2 c# silverlight data-binding columns
                                             1
3
                                              1
                             jsp jstl
4
                             java jdbc
In [10]:
start = datetime.now()
aa count=[]
hh=[]
for j in range(len(df no dup)):
   tex=df no dup['Tags'][j]
    #print(tex)
    if tex is not None:
       #print("heyram")
        #start=datetime.now()
       hh.append(tex)
        text=len(tex.split(" ") )
        #print(text)
        aa_count.append(text)
print(len(aa count))
aaa=pd.DataFrame(aa_count,columns=['tag_count'])
hhh=pd.DataFrame(hh,columns=['Tags'])
df_no_dup=pd.concat([hhh,aaa],axis=1)
# adding a new feature number of tags per question
print("Time taken to run this cell :", datetime.now() - start)
df no dup.head()
np.where(pd.isnull(df no dup))
4206308
Time taken to run this cell: 0:02:22.340723
Out[10]:
(array([], dtype=int64), array([], dtype=int64))
In [11]:
df no dup=df no dup.dropna()
In [12]:
start = datetime.now()
df no dup["tag count"] = df no dup["Tags"].apply(lambda text: len(text.split(" ")))
# adding a new feature number of tags per question
print("Time taken to run this cell :", datetime.now() - start)
df no dup.head()
Time taken to run this cell: 0:00:03.483702
Out[12]:
```

Tage tag count

	Tays	tag_count
0	C++ C	tag_count
1	c# silverlight data-binding	3
2	c# silverlight data-binding columns	4
3	jsp jstl	2
4	java jdbc	2

In [13]:

```
\# distribution of number of tags per question
df no dup.tag count.value counts()
Out[13]:
3
   1206157
    1111706
4
     814996
      568291
     505158
Name: tag_count, dtype: int64
In [14]:
#Creating a new database with no duplicates
if not os.path.isfile('train no dup.db'):
    disk_dup = create_engine("sqlite:///train_no_dup.db")
    no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
    no_dup.to_sql('no_dup_train',disk_dup)
In [15]:
```

#This method seems more appropriate to work with this much data. #creating the connection with database file. if os.path.isfile('train_no_dup.db'):

```
start = datetime.now()
   con = sqlite3.connect('train_no dup.db')
   tag_data = pd.read_sql_query("""SELECT Tags FROM no_dup train""", con)
    #Always remember to close the database
   con.close()
    # Let's now drop unwanted column.
    tag_data.drop(tag_data.index[0], inplace=True)
    #Printing first 5 columns from our data frame
   tag data.head()
   print("Time taken to run this cell :", datetime.now() - start)
   print("Please download the train.db file from drive or run the above cells to genarate train.d
b file")
```

Time taken to run this cell: 0:00:53.947521

3.2 Analysis of Tags

3.2.1 Total number of unique tags

```
In [16]:
```

```
tag_data=tag_data.dropna()
```

```
In [17]:
```

```
# Taking only 0.5 million data points
#tag_data=tag_data[0:10000]
```

```
In [18]:
print(tag data.head())
print(len(tag data))
          c# silverlight data-binding
2 c# silverlight data-binding columns
                               jsp jstl
                              java jdbo
         facebook api facebook-php-sdk
4206307
In [19]:
# Importing & Initializing the "CountVectorizer" object, which
#is scikit-learn's bag of words tool.
#by default 'split()' will tokenize each tag using space.
vectorizer = CountVectorizer(tokenizer = lambda x: x.split())
# fit transform() does two functions: First, it fits the model
# and learns the vocabulary; second, it transforms our training data
# into feature vectors. The input to fit transform should be a list of strings.
tag dtm = vectorizer.fit transform(tag data['Tags'])
In [20]:
print("Number of data points :", tag dtm.shape[0])
print("Number of unique tags :", tag_dtm.shape[1])
Number of data points : 4206307
Number of unique tags: 42048
In [21]:
#'get_feature_name()' gives us the vocabulary.
tags = vectorizer.get_feature_names()
#Lets look at the tags we have.
print("Some of the tags we have :", tags[:10])
Some of the tags we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash-profile', '.class-file', '.cs-file', '.doc', '.drv', '.ds-store']
3.2.3 Number of times a tag appeared
In [22]:
# https://stackoverflow.com/questions/15115765/how-to-access-sparse-matrix-elements
#Lets now store the document term matrix in a dictionary.
freqs = tag dtm.sum(axis=0).A1
result = dict(zip(tags, freqs))
#print(result)
In [23]:
#Saving this dictionary to csv files.
if not os.path.isfile('tag counts dict dtm.csv'):
    with open ('tag counts dict dtm.csv', 'w') as csv file:
        writer = csv.writer(csv file)
        for key, value in result.items():
            writer.writerow([key, value])
tag_df = pd.read_csv("tag_counts_dict_dtm.csv", names=['Tags', 'Counts'])
tag df.head()
Out[23]:
```

Tags

Counts

0	.a Tags	counts counts
1	.арр	37
2	.asp.net-mvc	1
3	.aspxauth	21
4	.bash-profile	138

In [24]:

```
tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
tag_counts = tag_df_sorted['Counts'].values
```

In [25]:

```
plt.plot(tag_counts)
plt.title("Distribution of number of times tag appeared questions")
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
```


In [26]:

```
plt.plot(tag_counts[0:10000])
plt.title('first 10k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])
```

first 10k tags: Distribution of number of times tag appeared questions


```
400 [331505 44829 22429 17728 13364 11162 10029 9148
                                                          8054 7151
  6466 5865 5370 4983
                            4526 4281 4144 3929
                                                        3750
                                                              3593
  3453
         3299
                3123
                      2986
                             2891
                                    2738
                                           2647
                                                 2527
                                                        2431
                                                               2331
  2259
         2186
                2097
                      2020
                             1959
                                    1900
                                                 1770
                                                        1723
                                          1828
                                                               1673
                1 [ 2 2
                      1 170
                             1 / / 0
                                    1100
                                           1000
                                                        1 2 0 0
```

1245	1222	1197	1181	1158	1139	1121	1101	1076	1056
1038	1023	1006	983	966	952	938	926	911	891
882	869	856	841	830	816	804	789	779	770
752	743	733	725	712	702	688	678	671	658
650	643	634	627	616	607	598	589	583	577
568	559	552	545	540	533	526	518	512	506
500	495	490	485	480	477	469	465	457	450
447	442	437	432	426	422	418	413	408	403
398	393	388	385	381	378	374	370	367	365
361	357	354	350	347	344	342	339	336	332
330	326	323	319	315	312	309	307	304	301
299	296	293	291	289	286	284	281	278	276
275	272	270	268	265	262	260	258	256	254
252	250	249	247		243	241	239	238	236
234	233	232	230	228	226	224	222	220	219
217	215	214	212	210	209		205	204	203
201	200	199	198	196	194	193	192	191	189
188	186	185	183	182	181	180	179	178	177
175	174	172	171	170	169	168	167	166	165
164	162	161	160	159	158	157	156	156	155
154	153	152	151		149	149	148	147	146
145	144	143	142	142	141	140	139	138	137
137	136	135	134		133			130	130
129	128	128	127		126	125	124	124	123
123	122	122	121	120	120	119	118	118	117
117	116	116	115	115	114	113	113	112	111
111	110	109	109	108	108	107	106	106	106
105	105	104	104	103	103	102	102	101	101
100	100	99	99	98	98	97	97	96	96
95	95	94	94	93	93	93	92	92	91
91	90	90	89	89	88	88	87	87	86
86	86	85	85	84	84	83	83	83	82
82	82	81	81	80	80	80	79	79	78
78	78	78	77	77	76	76	76	75	75
75	74	74	74	73	73	73	73	72	72]

In [27]:

TPQT

15/4

14/9

⊥≾७๖

TJUU

1∠66

```
plt.plot(tag_counts[0:1000])
plt.title('first 1k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])
```

first 1k tags: Distribution of number of times tag appeared questions


```
200 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537
 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703
 13364
        13157
               12407
                      11658
                             11228
                                     11162
                                            10863 10600 10350
                                                                10224
 10029
          9884
                 9719
                        9411
                               9252
                                      9148
                                             9040
                                                    8617
                                                            8361
                                                                   8163
                                      7151
   8054
          7867
                 7702
                        7564
                               7274
                                             7052
                                                    6847
                                                            6656
                                                                   6553
   6466
          6291
                 6183
                        6093
                               5971
                                      5865
                                             5760
                                                    5577
                                                            5490
                                                                   5411
   5370
          5283
                 5207
                        5107
                               5066
                                      4983
                                             4891
                                                    4785
                                                            4658
                                                                   4549
   4526
          4487
                 4429
                        4335
                               4310
                                      4281
                                             4239
                                                    4228
                                                            4195
                                                                   4159
   4144
          4088
                 4050
                        4002
                               3957
                                      3929
                                             3874
                                                    3849
                                                            3818
                                                                   3797
   3750
          3703
                 3685
                        3658
                               3615
                                      3593
                                             3564
                                                    3521
                                                            3505
                                                                   3483
                                                    3232
          3427
                 3396
                        3363
                               3326
                                      3299
                                             3272
                                                            3196
   3453
                                                                   3168
```

```
3123
       3094
              3073
                      3050
                              3012
                                     2986
                                             2983
                                                    2953
                                                            2934
                                                                   2903
2891
       2844
              2819
                      2784
                              2754
                                     2738
                                                    2708
                                             2726
                                                            2681
                                                                    2669
2647
       2621
              2604
                      2594
                              2556
                                     2527
                                             2510
                                                    2482
                                                            2460
                                                                    2444
2431
       2409
              2395
                      2380
                              2363
                                     2331
                                             2312
                                                    2297
                                                            2290
                                                                    2281
2259
       2246
              2222
                      2211
                              2198
                                     2186
                                             2162
                                                    2142
                                                            2132
                                                                   2107
2097
       2078
              2057
                      2045
                              2036
                                     2020
                                             2011
                                                    1994
                                                            1971
                                                                   1965
1959
       1952
              1940
                      1932
                              1912
                                     1900
                                             1879
                                                    1865
                                                            1855
                                                                   1841
1828
       1821
              1813
                      1801
                              1782
                                     1770
                                             1760
                                                    1747
                                                            1741
                                                                   1734
1723
       1707
              1697
                     1688
                             1683
                                     1673
                                            1665
                                                    1656
                                                            1646
                                                                   16391
```

In [28]:

```
plt.plot(tag_counts[0:500])
plt.title('first 500 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:500:5]), tag_counts[0:500:5])
```

first 500 tags: Distribution of number of times tag appeared questions


```
100 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537
 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703
 13364 13157
               12407 11658 11228 11162 10863 10600 10350 10224
  10029
                9719
                               9252
          9884
                       9411
                                      9148
                                            9040
                                                   8617
                                                           8361
                                                                  8163
   8054
                               7274
                                      7151
          7867
                 7702
                        7564
                                             7052
                                                    6847
                                                           6656
   6466
          6291
                 6183
                       6093
                               5971
                                      5865
                                             5760
                                                    5577
                                                           5490
                                                                  5411
   5370
                               5066
                                                    4785
          5283
                5207
                       5107
                                      4983
                                            4891
                                                           4658
                                                                  4549
                4429
                               4310
   4526
          4487
                       4335
                                      4281
                                             4239
                                                   4228
                                                           4195
                                                                  4159
   4144
          4088
                4050
                       4002
                               3957
                                      3929
                                             3874
                                                    3849
                                                           3818
                                                                  3797
   3750
          3703
                3685
                       3658
                               3615
                                      3593
                                             3564
                                                    3521
                                                           3505
                                                                  34831
```

In [29]:

```
plt.plot(tag_counts[0:100], c='b')
plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label="quantiles with 0.05 i
ntervals")
# quantiles with 0.25 difference
plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "quantiles with 0.25 in
tervals")

for x,y in zip(list(range(0,100,25)), tag_counts[0:100:25]):
    plt.annotate(s="({{}}, {{}})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))

plt.title('first 100 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.ylabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.legend()
plt.show()
print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```

first 100 tags: Distribution of number of times tag appeared questions

```
350000 quantiles with 0.05 intervals quantiles with 0.25 intervals
```

20 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703]

In [30]:

```
# Store tags greater than 10K in one list
lst_tags_gt_10k = tag_df[tag_df.Counts>10000].Tags
#Print the length of the list
print ('{} Tags are used more than 10000 times'.format(len(lst_tags_gt_10k)))
# Store tags greater than 100K in one list
lst_tags_gt_100k = tag_df[tag_df.Counts>100000].Tags
#Print the length of the list.
print ('{} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```

153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- 4. Since some tags occur much more frequenctly than others, Micro-averaged F1-score is the appropriate metric for this probelm.

3.2.4 Tags Per Question

In [31]:

```
#Storing the count of tag in each question in list 'tag_count'
tag_quest_count = tag_dtm.sum(axis=1).tolist()
#Converting each value in the 'tag_quest_count' to integer.
tag_quest_count=[int(j) for i in tag_quest_count for j in i]
print ('We have total {} datapoints.'.format(len(tag_quest_count)))

We have total 4206307 datapoints
```

We have total 4206307 datapoints. [3, 4, 2, 2, 3]

In [32]:

```
print( "Maximum number of tags per question: %d"%max(tag_quest_count))
print( "Minimum number of tags per question: %d"%min(tag_quest_count))
print( "Avg. number of tags per question: %f"% ((sum(tag_quest_count)*1.0)/len(tag_quest_count)))
```

Maximum number of tags per question: 5 Minimum number of tags per question: 1 Avg. number of tags per question: 2.899443

In [33]:

```
sns.countplot(tag_quest_count, palette='gist_rainbow')
plt.title("Number of tags in the questions ")
plt.xlabel("Number of Tags")
plt.vlabel("Number of guestions")
```

plt.show()

Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

3.2.5 The top 20 tags

In [35]:

```
i=np.arange(30)
tag_df_sorted.head(30).plot(kind='bar')
plt.title('Frequency of top 20 tags')
plt.xticks(i, tag_df_sorted['Tags'])
plt.xlabel('Tags')
plt.ylabel('Counts')
plt.show()
```


Observations:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

3.3 Cleaning and preprocessing of Questions

3.3.1 Preprocessing

- 1. Sample 0.5M data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

In [2]:

```
import nltk
nltk.download('stopwords')

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.

Out[2]:
True

In [37]:

def striphtml(data):
    cleanr = re.compile('<.*?>')
    cleantext = re.sub(cleanr, ' ', str(data))
    return cleantext

stop_words = set(stopwords.words('english'))
stemmer = SnowballStemmer("english")
```

In [38]:

```
#http://www.sqlitetutorial.net/sqlite-python/create-tables/
def create connection(db_file):
    """ create a database connection to the SQLite database
        specified by db file
    :param db file: database file
    :return: Connection object or None
    trv:
       conn = sqlite3.connect(db file)
       return conn
    except Error as e:
       print(e)
    return None
def create table(conn, create table sql):
    """ create a table from the create table sql statement
    :param conn: Connection object
    :param create_table_sql: a CREATE TABLE statement
    :return:
    try:
       c = conn.cursor()
       c.execute(create_table_sql)
    except Error as e:
       print(e)
def checkTableExists(dbcon):
   cursr = dbcon.cursor()
    str = "select name from sqlite master where type='table'"
    table names = cursr.execute(str)
    print("Tables in the databse:")
   tables =table names.fetchall()
   print(tables[0][0])
   return (len (tables))
def create database table(database, query):
   conn = create connection(database)
    if conn is not None:
    create table(conn, query)
```

```
checkTableExists(conn)
else:
    print("Error! cannot create the database connection.")
    conn.close()

sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text, words_pre integer, words_post integer, is_code integer);"""
create_database_table("Processed.db", sql_create_table)

Tables in the databse:
QuestionsProcessed
```

we create a new data base to store the sampled and preprocessed questions

```
In [39]:

nltk.download('punkt')

[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.

Out[39]:
True

In [40]:

print("\n")
```

4. Machine Learning Models

4.1 Converting tags for multilabel problems

X	у1	y2	у3	y4
x1	0	1	1	0
x1	1	0	0	0
x1	0	1	0	0

4.5 Modeling with less data points (0.5M data points) and more weight to title and 500 tags only.

```
In [41]:

sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code
text, tags text, words_pre integer, words_post integer, is_code integer);"""
create_database_table("Titlemoreweight.db", sql_create_table)

Tables in the databse:
QuestionsProcessed

In [42]:

# http://www.sqlitetutorial.net/sqlite-delete/
# https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
read_db = 'train_no_dup.db'
write_db = 'Titlemoreweight.db'
train_datasize = 400000
if os.path.isfile(read_db):
```

```
conn r = create connection(read db)
   if conn r is not None:
       reader =conn r.cursor()
       # for selecting first 0.5M rows
       reader.execute("SELECT Title, Body, Tags From no dup train LIMIT 500001;")
        # for selecting random points
       #reader.execute("SELECT Title, Body, Tags From no dup train ORDER BY RANDOM() LIMIT
500001;")
if os.path.isfile(write db):
   conn_w = create_connection(write_db)
   if conn w is not None:
       tables = checkTableExists(conn w)
       writer =conn_w.cursor()
       if tables != 0:
           writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
           print("Cleared All the rows")
```

Tables in the databse: QuestionsProcessed Cleared All the rows

4.5.1 Preprocessing of questions

- 1. Separate Code from Body
- 2. Remove Spcial characters from Question title and description (not in code)
- 3. Give more weightage to title: Add title three times to the question
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

In [43]:

```
#http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
start = datetime.now()
preprocessed data list=[]
reader.fetchone()
questions with code=0
len pre=0
len post=0
questions_proccesed = 0
for row in reader:
    is code = 0
    title, question, tags = row[0], row[1], str(row[2])
    if '<code>' in question:
        questions with code+=1
        is_code = 1
    x = len(question) + len(title)
    len pre+=x
    code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
    question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
    question=striphtml(question.encode('utf-8'))
    title=title.encode('utf-8')
    # adding title three time to the data to increase its weight
    # add tags string to the training data
    question=str(title)+" "+str(title)+" "+str(title)+" "+question
      if questions proccesed<=train datasize:</pre>
         question=str(title)+" "+str(title)+" "+str(title)+" "+question+" "+str(tags)
      else:
          question=str(title)+" "+str(title)+" "+str(title)+" "+question
```

```
question=re.sub(r'[^A-Za-z0-9#+.\-]+',' ',question)
    words=word_tokenize(str(question.lower()))
    #Removing all single letter and and stopwords from question exceptt for the letter 'c'
    question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or
j=='c'))
    len post+=len(question)
    tup = (question, code, tags, x, len(question), is code)
    questions proccesed += 1
    writer.execute("insert into
QuestionsProcessed(question,code,tags,words pre,words post,is code) values (?,?,?,?,?,?,",tup)
    if (questions proccesed%100000==0):
        print("number of questions completed=",questions proccesed)
no dup avg len pre=(len pre*1.0)/questions proccesed
no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
print( "Avg. length of questions(Title+Body) before processing: %d"%no dup avg len pre)
print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
print ("Percent of questions containing code: %d"%((questions with code*100.0)/questions processed)
print("Time taken to run this cell :", datetime.now() - start)
number of questions completed= 100000
number of questions completed= 200000
number of questions completed= 300000
number of questions completed= 400000
number of questions completed= 500000
Avg. length of questions (Title+Body) before processing: 1239
Avg. length of questions (Title+Body) after processing: 424
Percent of questions containing code: 57
Time taken to run this cell: 0:21:37.730850
In [44]:
# never forget to close the conections or else we will end up with database locks
conn r.commit()
conn w.commit()
conn r.close()
conn w.close()
```

Sample quesitons after preprocessing of data

In [45]:

```
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        reader =conn_r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
        conn_r.commit()
        conn_r.close()
```

Questions after preprocessed

('dynam datagrid bind silverlight dynam datagrid bind silverlight dynam datagrid bind silverlight bind datagrid dynam code wrote code debug code block seem bind correct grid come column form come grid column although necessari bind nthank repli advance..',)

('java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid follow guid link instal js

glibraryvalid taglib declar instal jstl 1.1 tomcat webapp tri project work also tri version 1.2 js tl still messag caus solv',)

('java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index use follow code display caus solv',)

('better way updat feed fb php sdk better way updat feed fb php sdk better way updat feed fb php s dk novic facebook api read mani tutori still confused.i find post feed api method like correct sec ond way use curl someth like way better',)

('btnadd click event open two window record ad btnadd click event open two window record ad btnadd click event open two window record ad open window search.aspx use code hav add button search.aspx

click event open two window record ad open window search.aspx use code hav add button search.aspx nwhen insert record btnadd click event open anoth window nafter insert record close window',)

('sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php check everyth think make sure input field safe type sql inject good news safe bad news one tag mess form submiss place even touch life figur exact html use templat file forgiv okay entir php script get execut see data post none forum field post problem use someth titl field none data get post current use print post see submit noth work flawless statement though also mention script work flawless local machin use host come across problem state list input test mess',)

('countabl subaddit lebesgu measur countabl subaddit lebesgu measur countabl subaddit lebesgu meas ur let lbrace rbrace sequenc set sigma -algebra mathcal want show left bigcup right leq sum left r ight countabl addit measur defin set sigma algebra mathcal think use monoton properti somewher pro of start appreci littl help nthank ad han answer make follow addit construct given han answer clea

r bigcup cap emptyset neq left bigcup right left bigcup right sum left right also construct subset monoton left right leq left right final would sum leq sum result follow',)

('hql equival sql queri hql equival sql queri hql equival sql queri hql queri replac name class properti name error occur hql error',)

('undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error import framework send email applic background import framework i.e skpsmtpmessag somebodi suggest get error collect2 ld return exit status import framework corre ct sorc taken framework follow mfmailcomposeviewcontrol question lock field updat answer drag drop folder project click copi nthat',)

4

Saving Preprocessed data to a Database

In [46]:

```
#Taking 0.5 Million entries to a dataframe.
write_db = 'Titlemoreweight.db'
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""",
conn_r)
conn_r.commit()
conn_r.close()
```

In [47]:

preprocessed_data.head()

Out[47]:

	question	tags
0	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding
1	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding columns
2	java.lang.noclassdeffounderror javax servlet j	jsp jstl
3	java.sql.sqlexcept microsoft odbc driver manag	java jdbc
4	better way updat feed fb php sdk better way up	facebook api facebook-php-sdk

In [48]:

```
print("number of data points in sample :", preprocessed_data.shape[0])
print("number of dimensions :", preprocessed_data.shape[1])
```

```
number of data points in sample : 500000
number of dimensions : 2
```

Converting string Tags to multilable output variables

In [49]:

```
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

Selecting 500 Tags

In [50]:

```
def tags_to_choose(n):
    t = multilabel_y.sum(axis=0).tolist()[0]
    sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
    multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
    return multilabel_yn

def questions_explained_fn(n):
    multilabel_yn = tags_to_choose(n)
    x= multilabel_yn.sum(axis=1)
    return (np.count_nonzero(x==0))
```

In [51]:

```
questions_explained = []
total_tags=multilabel_y.shape[1]
total_qs=preprocessed_data.shape[0]
for i in range(500, total_tags, 100):
    questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

In [52]:

```
fig, ax = plt.subplots()
ax.plot(questions_explained)
xlabel = list(500+np.array(range(-50,450,50))*50)
ax.set_xticklabels(xlabel)
plt.xlabel("Number of tags")
plt.ylabel("Number Questions coverd partially")
plt.grid()
plt.show()
# you can choose any number of tags based on your computing power, minimum is 500(it covers 90% of the tags)
print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
```



```
with \, 5500 tags we are covering \, 99.157 % of questions
with 500 tags we are covering 90.956 % of questions
In [53]:
# we will be taking 500 tags
multilabel yx = tags to choose(500)
print ("number of questions that are not covered:", questions explained fn (500), "out of ", total q
number of questions that are not covered: 45221 out of 500000
In [54]:
from sklearn.externals import joblib
joblib.dump(preprocessed_data, 'preprocessed_data.pkl')
Out[54]:
['preprocessed data.pkl']
In [55]:
x train=preprocessed data.head(train datasize)
x test=preprocessed data.tail(preprocessed data.shape[0] - 400000)
y train = multilabel yx[0:train datasize,:]
y test = multilabel yx[train datasize:preprocessed data.shape[0],:]
print("Number of data points in train data :", y train.shape)
print("Number of data points in test data :", y_test.shape)
Number of data points in train data: (400000, 500)
Number of data points in test data : (100000, 500)
4.5.2 Featurizing data with Tfldf vectorizer
In [57]:
print("a")
а
In [58]:
start = datetime.now()
vectorizer = TfidfVectorizer(min df=0.00009, max features=200000, smooth idf=True, norm="12", \
                             tokenizer = lambda x: x.split(), sublinear_tf=False,
                             ngram range=(1,4))
x_train_multilabel = vectorizer.fit_transform(x_train['question'])
x_test_multilabel = vectorizer.transform(x_test['question'])
print("Time taken to run this cell :", datetime.now() - start)
Time taken to run this cell: 0:07:18.075098
In [59]:
print("Dimensions of train data X:",x train multilabel.shape, "Y :",y train.shape)
print("Dimensions of test data X:",x test multilabel.shape,"Y:",y test.shape)
Dimensions of train data X: (400000, 95585) Y: (400000, 500)
Dimensions of test data X: (100000, 95585) Y: (100000, 500)
```

4.5.3 OneVsRest Classifier with SGDClassifier using TFIDF

In [60]:

```
start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier(loss='log',
                                                                                 alpha=0.00001,
                                                                                 penalty='l1'), n jobs=-1)
classifier.fit(x train multilabel, y train)
predictions = classifier.predict (x test multilabel)
print("Accuracy :", metrics.accuracy score(y test, predictions))
print("Hamming loss ", metrics.hamming loss(y_test, predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall score(y test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall score(y test, predictions, average='macro')
f1 = f1 score(y test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification report(y test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy : 0.23625
Hamming loss 0.00278104
Micro-average quality numbers
Precision: 0.7216, Recall: 0.3256, F1-measure: 0.4488
Macro-average quality numbers
Precision: 0.5490, Recall: 0.2571, F1-measure: 0.3342
                      precision recall f1-score support
                                                            0.76
0.38
                                           0.64
0.26
                 0
                            0.94
                                                                                5519

      0.94
      0.64
      0.76

      0.68
      0.26
      0.38

      0.81
      0.38
      0.52

      0.81
      0.43
      0.56

      0.81
      0.41
      0.54

      0.82
      0.34
      0.48

      0.87
      0.49
      0.63

      0.88
      0.54
      0.67

      0.61
      0.13
      0.21

      0.81
      0.53
      0.64

      0.59
      0.17
      0.26

      0.70
      0.33
      0.45

      0.65
      0.25
      0.36

      0.71
      0.23
      0.35

      0.90
      0.53
      0.67

      0.68
      0.18
      0.29

      0.64
      0.23
      0.34

      0.89
      0.60
      0.72

      0.63
      0.23
      0.34

      0.72
      0.40
      0.51

      0.77
      0.40
      0.53

      0.27
      0.08
      0.12

      0.50
      0.22
      0.31

      0.91
      0.49
      0.64

      0.56
      0.29
      0.38

      0.68
      0.30

                 1
                            0.68
                                                                               8190
                                                                                6529
                 2
                 3
                                                                                  3231
                                                                                6430
                 4
                 6
                                                                                5086
                                                                                4533
                 7
                                                                                3000
2765
                 8
                 9
                                                                                 3051
               10
                                                                                 3009
               11
               12
                                                                                2630
                                                                                1426
               13
               14
                                                                                  2548
                                                                                2371
               1.5
               16
                                                                                  873
               17
                                                                                2151
                                                                                2204
               1.8
               19
                                                                                  8.31
                                                                                1860
               20
                                                                                2023
               21
               2.2
                                                                                1513
               23
                                                                                1207
                                                                                 506
               24
               25
                                                                                   425
                            0.65
                                             0.40
                                                                                   793
                                                                0.50
               26

    0.65
    0.40
    0.50

    0.60
    0.33
    0.42

    0.75
    0.36
    0.48

    0.41
    0.09
    0.14

    0.76
    0.17
    0.28

    0.30
    0.11
    0.16

    0.57
    0.22
    0.32

    0.57
    0.18
    0.27

               2.7
                                                                                1291
                                                                                1208
               28
                                                                                 406
               2.9
                30
                                                                                   504
                                                                                   732
               31
                                                                                 441
               32
                                                                               1645
               33
```

34	0.72	0.25	0.37	1058
35	0.83	0.55	0.66	946
36				
	0.66	0.20	0.30	644
37	0.98	0.67	0.79	136
38	0.63	0.35	0.45	570
39	0.85	0.28	0.43	766
40	0.62	0.28	0.38	1132
41	0.46	0.19	0.27	174
42	0.80	0.53	0.64	210
43	0.80	0.41	0.54	433
44	0.66	0.49	0.57	626
45	0.74	0.31	0.44	852
46	0.75	0.43	0.54	534
47	0.32	0.13	0.18	350
48	0.74	0.51	0.60	496
49	0.80	0.61	0.69	785
50	0.16	0.03	0.06	475
51	0.28	0.08	0.13	305
52				
	0.47	0.04	0.07	251
53	0.68	0.40	0.50	914
54	0.46	0.16	0.23	728
55	0.29	0.02	0.03	258
56	0.47	0.19	0.27	821
57	0.50	0.09	0.15	541
58	0.78	0.28	0.41	748
59	0.94	0.62	0.75	724
60	0.33	0.06	0.11	660
61	0.85	0.19	0.31	235
62	0.91	0.71	0.80	718
63	0.83	0.63	0.71	468
64	0.54	0.32	0.40	191
65	0.36	0.13	0.19	429
66	0.27	0.05	0.08	415
67	0.76	0.47	0.58	274
68	0.82	0.52	0.63	510
69	0.67	0.45	0.54	466
70	0.27	0.06	0.10	305
71	0.46	0.14	0.22	247
72	0.78	0.48	0.59	401
73	0.98	0.73	0.84	86
74	0.73	0.37	0.49	120
75	0.89	0.67	0.77	129
76	0.50	0.00	0.01	473
77	0.35	0.25	0.29	143
78	0.80	0.45	0.57	347
79	0.73	0.23	0.35	479
80	0.54	0.31	0.40	279
81	0.78	0.17	0.28	461
82		0.01		
	0.19		0.03	298
83	0.77	0.45	0.57	396
84	0.55	0.34	0.42	184
85	0.67	0.20	0.31	573
86	0.47	0.05	0.08	325
87	0.49	0.27	0.35	273
88	0.42	0.21	0.28	135
89	0.30	0.07	0.12	232
90	0.57	0.31	0.40	409
91	0.64	0.25	0.36	420
92	0.75	0.53	0.62	408
93	0.69	0.47	0.56	241
94	0.33	0.04	0.08	211
95	0.33	0.07	0.12	277
96	0.28	0.04	0.07	410
97	0.89	0.32	0.47	501
98	0.78	0.59	0.67	136
99	0.55	0.33	0.41	239
100	0.58	0.14	0.22	324
101	0.93	0.61	0.73	277
102	0.92	0.70	0.79	613
				157
103	0.51	0.17	0.25	
104	0.23	0.06	0.10	295
105	0.85	0.34	0.49	334
106	0.81	0.14	0.24	335
107	0.76	0.48	0.59	389
108	0.56	0.24	0.33	251
109	0.54	0.41	0.46	317
110	0.68	0.41	0.14	187
110	0.00	0.00	V - 14	1 () /

	· · · ·	· • · ·	· ·	± ~ ·
111	0.48	0.07	0.12	140
112	0.61	0.28	0.38	154
113	0.63	0.18	0.28	332
114	0.46	0.27	0.34	323
115	0.48	0.21	0.29	344
116	0.76	0.49	0.60	370
117	0.57	0.22	0.32	313
118	0.78	0.68	0.72	874
119	0.47	0.19	0.27	293
120	0.00	0.00	0.00	200
121	0.76	0.48	0.59	463
122	0.38	0.09	0.15	119
123	0.75	0.01	0.02	256
124	0.91	0.69	0.79	195
125	0.41	0.11	0.17	138
126	0.81	0.49	0.61	376
127	0.15	0.03	0.05	122
128	0.15	0.03	0.05	252
129	0.41	0.10	0.16	144
130	0.41	0.08	0.13	150
131	0.17	0.01	0.13	210
132	0.66	0.25	0.37	361
133	0.94	0.54	0.68	453
134	0.89	0.73	0.80	124
135	0.27	0.03	0.06	91
136	0.68	0.27	0.38	128
137	0.58	0.34	0.43	218
138	0.79	0.16	0.26	243
139	0.38	0.19	0.25	149
140	0.76	0.44	0.55	318
141	0.29	0.11	0.16	159
142	0.66	0.35	0.46	274
143	0.87	0.72	0.79	362
144	0.58	0.15	0.24	118
145	0.67	0.37	0.48	164
145	0.59			461
		0.28	0.38	
147	0.66	0.39	0.49	159
148	0.34	0.14	0.20	166
149	0.99	0.45	0.62	346
150	0.65	0.09	0.15	350
151	0.90	0.64	0.74	55
152	0.79	0.46	0.58	387
153	0.48	0.09	0.16	150
154	0.60	0.12	0.20	281
155	0.27	0.06	0.10	202
156	0.76	0.62	0.68	130
157	0.27	0.07	0.12	245
158	0.88	0.58	0.70	177
159	0.47	0.26	0.34	130
160	0.48	0.12	0.20	336
161	0.91	0.57	0.70	220
162	0.19	0.03	0.06	229
	0.89			316
163 164	0.75	0.40 0.35	0.55 0.47	
				283
165	0.64	0.32	0.43	197
166	0.48	0.25	0.33	101
167	0.47	0.19	0.27	231
168	0.61	0.22	0.32	370
169	0.41	0.17	0.24	258
170	0.30	0.06	0.10	101
171	0.37	0.21	0.27	89
172	0.52	0.37	0.43	193
173	0.41	0.21	0.27	309
174	0.52	0.13	0.21	172
175	0.93	0.72	0.81	95
176	0.94	0.59	0.73	346
177	0.94	0.43	0.59	322
178	0.64	0.46	0.53	232
179	0.35	0.06	0.11	125
180	0.55	0.27	0.36	145
181	0.40	0.10	0.16	77
182	0.40	0.03	0.10	182
183	0.20	0.03	0.03	257
184	0.08	0.01	0.02	216
185	0.35	0.06	0.11	242
186	0.41	0.16	0.23	165
187	0.76	0.56	0.64	263

±0,	0.,0	U. U	U • U 1	200
188	0.34	0.11	0.17	174
189	0.71	0.29	0.42	136
190	0.88	0.49	0.63	202
191	0.42	0.15	0.22	134
192	0.73	0.40	0.52	230
193	0.43	0.18	0.25	90
194	0.58	0.48	0.53	185
195	0.18	0.04	0.06	156
196	0.38	0.07	0.12	160
197	0.61	0.06	0.12	266
198	0.43	0.06	0.11	284
199	0.43	0.06	0.11	145
200	0.94	0.68	0.79	212
201	0.68	0.22	0.33	317
202	0.79	0.54	0.64	427
203	0.31	0.09	0.14	232
204	0.50	0.22	0.31	217
205	0.48	0.42	0.45	527
206	0.13	0.02	0.03	124
207	0.50	0.09	0.15	103
208	0.89	0.48	0.63	287
209	0.28	0.07	0.11	193
210	0.71	0.31	0.44	220
211	0.78	0.18	0.29	140
212	0.17	0.02	0.03	161
213	0.55	0.25	0.34	72
214	0.61	0.45	0.52	396
215	0.86	0.32	0.47	134
216	0.50	0.06	0.10	400
217	0.56	0.25	0.35	75
218	0.96	0.75	0.85	219
219	0.75	0.36	0.48	210
220	0.90	0.59	0.71	298
221	0.97	0.60	0.74	266
222	0.78	0.41	0.54	290
223				
	0.08	0.01	0.01	128
224	0.78	0.38	0.51	159
225	0.58	0.30	0.39	164
226	0.62	0.35	0.45	144
227	0.58	0.32	0.41	276
228	0.17	0.02	0.03	235
229	0.33	0.02	0.04	216
230	0.35	0.17	0.23	228
231	0.71	0.47	0.57	64
232	0.44	0.07	0.12	103
233	0.69	0.29	0.41	216
234	0.75	0.08	0.14	116
235	0.55	0.36	0.44	77
236	0.96	0.64	0.77	67
237	0.52	0.06	0.10	218
238	0.35	0.09	0.14	139
239	0.17	0.01	0.02	94
240	0.55	0.27	0.37	77
241	0.52	0.09	0.15	167
242	0.83	0.29	0.43	86
243	0.45	0.16	0.23	58
244	0.57	0.17	0.26	269
245	0.18	0.06	0.09	112
246	0.95	0.73	0.83	255
247	0.44	0.19	0.27	58
248	0.25	0.02	0.04	81
249	0.00	0.00	0.00	131
250	0.43	0.22	0.29	93
251	0.66	0.29	0.40	154
252	0.33	0.04	0.07	129
253	0.63	0.33	0.43	83
254	0.36	0.09	0.14	191
255	0.16	0.03	0.05	219
256	0.25	0.03	0.05	130
257	0.46	0.29	0.36	93
258	0.69	0.43	0.53	217
259	0.33	0.11	0.16	141
260	0.95	0.13	0.23	143
261	0.56	0.12	0.20	219
262	0.54	0.27	0.36	107
263	0.40	0.23	0.29	236
264	n 29	0 · 23	0.23	119
				•

ムシュ	V • 4 J	∨• ± /	∨ • ∠ ⊥	11/
265	0.31	0.11	0.16	72
266	0.00	0.00	0.00	70
267	0.32	0.14	0.19	107
268	0.66	0.41	0.51	169
269	0.30	0.10	0.15	129
270	0.74	0.53	0.62	159
271	0.81	0.30	0.44	190
272	0.62	0.22	0.33	248
273	0.91	0.70	0.79	264
274	0.90	0.66	0.76	105
275	0.57	0.08	0.14	104
276	0.14	0.02	0.03	115
277	0.83	0.59	0.69	170
278	0.65	0.23	0.34	145
279	0.92	0.57	0.71	230
280	0.57	0.42	0.49	80
281	0.68	0.55	0.61	217
282	0.75	0.47	0.58	175
283	0.34	0.05	0.09	269
284	0.65	0.27	0.38	74
285	0.86	0.49	0.62	206
286	0.90	0.60	0.72	227
287	0.85	0.31	0.45	130
288	0.39	0.07	0.12	129
289	0.50	0.03	0.05	80
290	0.14	0.06	0.08	99
291	0.78	0.32	0.45	208
291	0.78	0.32	0.43	208 67
293	0.82	0.42	0.56	109
294	0.40	0.24	0.30	140
295	0.24	0.08	0.12	241
296	0.24	0.10	0.14	72
297	0.22	0.04	0.06	107
298	0.80	0.39	0.53	61
299	0.93	0.36	0.52	77
300	0.19	0.06	0.10	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.56	0.35	0.43	176
304	0.96	0.70	0.81	230
305	0.97	0.59	0.73	156
306	0.51	0.36	0.42	146
307	0.29	0.08	0.13	98
308	0.00	0.00	0.00	78
309	0.71	0.05	0.10	94
310	0.76	0.35	0.48	162
311	0.81	0.53	0.64	116
312	0.48	0.26	0.34	57
313	0.80	0.06	0.11	65
314	0.51	0.36	0.42	138
315	0.53	0.21	0.30	195
316	0.46	0.21	0.33	69
	0.34	0.10	0.15	134
317				
318	0.49	0.33	0.40	148
319	0.85	0.44	0.58	161
320	0.22	0.14	0.17	104
321	0.85	0.53	0.65	156
322	0.60	0.31	0.41	134
323	0.57	0.38	0.45	232
324	0.44	0.18	0.26	92
325	0.47	0.28	0.35	197
326	0.12	0.02	0.04	126
327	0.50	0.04	0.08	115
328	0.98	0.64	0.78	198
329	0.63	0.31	0.42	125
330	0.83	0.19	0.30	81
331	0.50	0.09	0.15	94
332				
	1.00	0.02	0.04	56 260
333	0.13	0.03	0.04	260
334	0.18	0.03	0.06	60
335	0.32	0.09	0.14	110
336	0.63	0.41	0.50	71
337	0.13	0.03	0.05	66
338	0.44	0.31	0.36	150
339	0.00	0.00	0.00	54
340	0.85	0.54	0.66	195
3/11	N 80	U 3U	U 33	70

○≒±	U • U Đ	U • Z U	0.00	13
342	0.38	0.16	0.22	38
343	0.67	0.37	0.48	43
344	0.53	0.24	0.33	68
345	0.67	0.38	0.49	73
346	0.27	0.03	0.05	116
347	0.88	0.34	0.49	111
348	0.29	0.10	0.14	63
349	0.82	0.59	0.69	104
350	0.64	0.48	0.55	44
351	0.73	0.20	0.31	40
352	0.98	0.40	0.57	136
353	0.42	0.20	0.27	54
354	0.36	0.04	0.07	134
355	0.51	0.28	0.36	120
356	0.55	0.25	0.34	228
357	0.66	0.28	0.39	269
358	0.69	0.36	0.48	80
359	0.86	0.43	0.57	140
360	0.40	0.15	0.22	125
361	0.89	0.63	0.74	169
362	0.11	0.04	0.05	56
363	0.94	0.66	0.77	154
364	0.33	0.05	0.09	58
365	0.26	0.13	0.17	
				71
366	1.00	0.65	0.79	54
367	0.29	0.03	0.06	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.20	0.03	0.06	61
371	0.55	0.08	0.15	71
372	0.65	0.46	0.54	52
373	0.78	0.36	0.49	150
374	0.34	0.13	0.19	93
375	0.19	0.04	0.07	67
376	0.00	0.00	0.00	76
377	0.74	0.16	0.26	106
378	0.27	0.03	0.06	86
379	0.33	0.07	0.12	14
380	1.00	0.40	0.57	122
381	0.19	0.03	0.05	104
382	0.32	0.09	0.14	66
383	0.46	0.27	0.34	110
384	0.00	0.00	0.00	155
385	0.40	0.08	0.13	50
386	0.24	0.11	0.15	64
387	0.43	0.06	0.11	93
388	0.61	0.27	0.38	102
389	0.07	0.01	0.02	108
390	0.96	0.66	0.78	178
391	0.62	0.17	0.27	115
392	0.77	0.40	0.53	42
393	0.00	0.00	0.00	134
394	0.50	0.02	0.03	112
395	0.42	0.12	0.19	176
396	0.50	0.08	0.14	125
397	0.70	0.23	0.35	224
398	0.88	0.56	0.68	63
399	0.00	0.00	0.00	59
400	0.48	0.35	0.40	63
401	0.50	0.18	0.27	98
402	0.57	0.16	0.25	162
403	0.41	0.14	0.21	83
404	0.73	0.84	0.78	19
405	0.29	0.07	0.11	92
406	0.86	0.15	0.25	41
407	0.62	0.30	0.41	43
408	0.80	0.32	0.46	160
409	0.17	0.10	0.13	50
410	0.00	0.00	0.00	19
411	0.39	0.10	0.16	175
412	0.29	0.06	0.09	72
413	0.56	0.05	0.10	95
414	0.16	0.03	0.05	97
415	0.30	0.15	0.20	48
416	0.44	0.28	0.34	83
417	0.50	0.07	0.13	40
110	0.30	0.07	0.13	Ω1

410	U.J/	U.U0	U.13	Э⊥
419	0.52	0.28	0.36	90
420	0.29	0.22	0.25	37
421	0.00	0.00	0.00	66
422	0.61	0.34	0.44	73
423	0.48	0.25	0.33	56
424	0.93	0.82	0.87	33
425	0.00	0.00	0.00	76
426	0.25	0.05	0.08	81
427	0.99	0.68	0.81	150
428	0.95	0.66	0.78	29
429	0.99	0.65	0.78	389
430	0.64	0.36	0.46	167
431				123
	0.48	0.08	0.14	
432	0.45	0.33	0.38	39
433	0.29	0.16	0.20	82
434	1.00	0.65	0.79	66
435	0.63	0.45	0.53	93
436	0.52	0.25	0.34	87
437	0.26	0.06	0.10	86
438	0.73	0.47	0.57	104
439	0.62	0.13	0.21	100
440	0.25	0.01	0.01	141
441	0.42	0.25	0.31	110
442	0.40	0.13	0.20	123
443	0.50	0.13	0.20	71
444	0.44	0.06	0.11	109
445	0.42	0.21	0.28	48
446	0.43	0.25	0.32	76
447	0.26			
		0.13	0.18	38
448	0.69	0.54	0.61	81
449	0.57	0.16	0.25	132
450	0.46	0.26	0.33	81
451	0.88	0.29	0.44	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.94	0.41	0.57	70
455	0.48	0.07	0.12	155
456	0.43	0.14	0.21	43
457	0.52	0.21	0.30	72
458	0.29	0.08	0.13	62
459	0.64	0.13	0.22	69
460	0.07			119
		0.01	0.01	
461	0.77	0.13	0.22	79
462	0.69	0.23	0.35	47
463	0.26	0.05	0.08	104
464	0.65	0.34	0.45	106
465	0.54	0.11	0.18	64
466	0.57	0.28	0.38	173
467	0.79	0.35	0.48	107
468	0.82	0.11	0.20	126
469	0.00	0.00	0.00	114
470	0.94	0.79	0.86	140
471	0.91	0.27	0.41	79
472	0.39	0.28	0.33	143
473	0.68	0.30	0.41	158
474	0.38	0.07	0.11	138
475	0.00	0.00	0.00	59
476	0.57	0.32	0.41	88
477	0.86	0.57	0.68	176
478	0.94	0.71	0.81	24
479	0.09	0.01	0.02	92
480	0.82	0.50	0.62	100
481	0.49	0.17	0.26	103
482	0.52	0.23	0.32	74
483	0.83	0.57	0.68	105
484	0.29	0.02	0.04	83
485	0.25	0.02	0.04	82
486	0.23			71
		0.11	0.17	
487	0.43	0.18	0.26	120
488	0.20	0.01	0.02	105
489	0.72	0.30	0.42	87
490	1.00	0.81	0.90	32
491	0.00	0.00	0.00	69
492	0.00	0.00	0.00	49
493	0.00	0.00	0.00	117
494	0.50	0.16	0.25	61

```
495
              0.99 0.52 0.68
                                          344
       496
               0.37
                        0.19
                                 0.25
                                           52
                       0.19
                                          137
       497
               0.62
                                0.29
                       0.04
              0.29
                                0.07
                                           98
       498
              0.72
                                0.27
                                           79
       499
                       0.16
              0.67
                       0.33
                                      173812
avg / total
                                0.43
Time taken to run this cell: 0:05:30.994191
In [61]:
joblib.dump(classifier, 'lr with more title weight.pkl')
Out[61]:
['Ir with more title weight.pkl']
```

ASSIGNMENT

- 1. bag of words upto 4 grams and compute the micro f1 score with Logistic regression(OvR)
- 2. Perform hyperparam tuning on alpha (or lambda) for Logistic regression to improve the performance using GridSearch
- 3. OneVsRestClassifier with Linear-SVM (SGDClassifier with loss-hinge)

Featurizing Using Bag of Words

```
In [2]:
alpha=[10**-3,10**-2,10**-1]
In [63]:
```

```
In [64]:
```

```
x_train_multilabel = vectorizer.fit_transform(x_train['question'])
x_test_multilabel = vectorizer.transform(x_test['question'])
print("Time taken to run this cell :", datetime.now() - start)
```

Time taken to run this cell : 0:07:24.935906

```
In [65]:
```

```
print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)

Dimensions of train data X: (400000, 95585) Y: (400000, 500)
Dimensions of test data X: (100000, 95585) Y: (100000, 500)
```

Dump and load train and test data into joblib

```
In [66]:
```

```
joblib.dump(x_train_multilabel, 'x_train_BOW.pkl')
joblib.dump(x_test_multilabel, 'x_test_BOW.pkl')
joblib.dump(y_train, 'y_train.pkl')
joblib.dump(y_test, 'y_test.pkl')
```

```
Out[66]:
```

```
['y_test.pkl']
```

```
In [3]:

x_train_multilabel = joblib.load('x_train_BOW.pkl')
y_train = joblib.load('y_train.pkl')

In [15]:

x_test_multilabel = joblib.load('x_test_BOW.pkl')
y_test = joblib.load('y_test.pkl')
```

OneVsRestClassifier with Logistic regression

(alpha tuning using Gridsearch)

OneVsRestClassifier with SGDClassifier(penalty=I2, loss=log)==> {Logistic regression}

```
In [9]:
start = datetime.now()
import warnings
warnings.filterwarnings('ignore')
# hp1={'estimator C':alpha}
cv scores = []
for i in alpha:
   print(i)
   hp1={'estimator alpha':[i],
         'estimator loss':['log'],
        'estimator penalty':['12']}
    print(hp1)
    classifier = OneVsRestClassifier(SGDClassifier())
   model11 =GridSearchCV(classifier,hp1,
                         cv=3, scoring='f1 micro',n jobs=-1)
   print("Gridsearchcv")
   best model1=model11.fit(x_train_multilabel, y_train)
    print('fit model')
    Train_model_score=best_model1.score(x_train_multilabel,
                                      y_train)
#print("best model1")
    cv_scores.append(Train_model_score.mean())
fscore = [x for x in cv scores]
# determining best alpha
optimal_alpha21 = alpha[fscore.index(max(fscore))]
print('\ n The optimal value of alpha with penalty=12 and loss= log is %d.' % optimal alpha21)
# Plots
fig4 = plt.figure( facecolor='c', edgecolor='k')
plt.plot(alpha, fscore,color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)
for xy in zip(alpha, np.round(fscore,3)):
   plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
plt.xlabel('Hyper parameter Alpha')
plt.ylabel('F1 Score value ')
plt.show()
print("Time taken to run this cell :", datetime.now() - start)
0.001
{'estimator__alpha': [0.001], 'estimator__loss': ['log'], 'estimator__penalty': ['12']}
Gridsearchcv
fit model
0.01
```

```
{'estimator alpha': [0.01], 'estimator loss': ['log'], 'estimator penalty': ['12']}
Gridsearchcv
fit model
0.1
{'estimator_alpha': [0.1], 'estimator_loss': ['log'], 'estimator_penalty': ['12']}
Gridsearchcv
fit model
 The optimal value of alpha with penalty=11 and loss= log is 0.
        (0.001, 0.515)
   0.50
   0.45
   0.40
             0.01, 0.381)
   0.35
   0.30
   0.25
                                                   0.219)
       0.00
               0.02
                                       0.08
                                               0.10
                     Hyper parameter Alpha
Time taken to run this cell: 1:59:14.455889
In [10]:
print(optimal alpha21)
0.001
In [11]:
start = datetime.now()
best_model1 = OneVsRestClassifier(SGDClassifier(loss='log', alpha=optimal_alpha21,
                                                   penalty='12'), n_jobs=-1)
best model1.fit(x train multilabel, y train)
Out[11]:
OneVsRestClassifier(estimator=SGDClassifier(alpha=0.001, average=False, class weight=None,
epsilon=0.1,
       eta0=0.0, fit_intercept=True, l1_ratio=0.15,
       learning_rate='optimal', loss='log', max_iter=None, n_iter=None,
n_jobs=1, penalty='12', power_t=0.5, random_state=None,
       shuffle=True, tol=None, verbose=0, warm start=False),
           n jobs=-1)
In [12]:
joblib.dump(best model1, 'best model1 LR.pkl')
Out[12]:
['best model1 LR.pkl']
In [13]:
best model1=joblib.load('best model1 LR.pkl')
In [16]:
predictions = best model1.predict (x test multilabel)
print("Accuracy :", metrics.accuracy_score(y_test, predictions))
print("Hamming loss ", metrics.hamming loss(y test, predictions))
```

```
precision = precision_score(y_test, predictions, average='micro')
recall = recall_score(y_test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-averasge quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall score(y test, predictions, average='macro')
f1 = f1 score(y test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification_report(y_test, predictions)) #printing classification report for all
500 labels
print("Time taken to run this cell :", datetime.now() - start)
Accuracy: 0.2117
Hamming loss 0.00296836
Micro-averasge quality numbers
Precision: 0.6491, Recall: 0.3179, F1-measure: 0.4268
Macro-average quality numbers
Precision: 0.4948, Recall: 0.2353, F1-measure: 0.3058
           precision recall f1-score support
         0
               0.95
                       0.64
                                0.76
                                         5519
        1
               0.68
                       0.27
                                0.39
                                         8190
                                         6529
               0.80
         2
                        0.37
                                0.51
         3
               0.82
                        0.42
                                 0.55
                                          3231
         4
               0.80
                        0.43
                                 0.56
                                          6430
                                 0.49
                                          2.879
         5
               0.80
                        0.35
         6
              0.88
                        0.47
                                0.62
                                         5086
         7
              0.87
                        0.56
                                0.68
                                         4533
                                          3000
              0.60
                                0.23
         8
                       0.14
         9
               0.81
                        0.57
                                 0.67
                                          2765
                       0.21
                                          3051
        10
               0.59
                                 0.31
              0.71
                       0.33
        11
                                0.45
                                          3009
                       0.27
                                0.38
        12
              0.63
                                         2630
                                         1426
              0.73
        1.3
                       0.27
                                0.39
        14
               0.90
                        0.49
                                 0.63
                                          2548
                                         2371
        15
               0.63
                        0.13
                                 0.22
                                 0.36
               0.63
                        0.25
                                          873
        16
        17
              0.85
                       0.62
                                0.72
                                         2151
                                         2204
        18
               0.63
                        0.26
                                0.37
               0.72
                        0.41
                                0.53
        19
                                          831
        20
               0.78
                        0.40
                                 0.53
                                          1860
               0.28
                       0.14
                                 0.18
                                          2023
        21
        22
              0.44
                       0.31
                                0.37
                                         1513
        23
              0.91
                       0.47
                                0.62
                                         1207
                                          506
              0.49
                       0.36
                                0.41
        24
        25
               0.60
                        0.29
                                 0.40
                                           425
        26
                0.59
                        0.42
                                 0.49
                                           793
               0.57
                                         1291
        27
                        0.38
                                 0.46
               0.70
        2.8
                       0.32
                                0.44
                                         1208
        29
               0.36
                       0.09
                                0.14
                                          406
               0.58
        3.0
                        0.14
                                           504
                                 0.23
               0.28
0.57
        31
                        0.15
                                 0.20
                                           732
                                          441
                       0.27
        32
                                 0.37
               0.51
        33
                       0.30
                                0.37
                                         1645
              0.71
                       0.23
                                0.35
        34
                                         1058
                                          946
        35
               0.83
                       0.58
                                0.68
        36
               0.60
                        0.22
                                 0.32
                                           644
        37
                0.98
                        0.63
                                 0.77
                                           136
        38
               0.60
                                 0.51
                                          570
                        0.45
        39
               0.85
                        0.22
                                 0.34
                                           766
        40
               0.60
                        0.31
                                0.40
                                         1132
```

174

210

433

62.6

852

534

350

496 785

0.30

0.53

0.52

0.55

0.42

0.53

0.25

0.59

0.71

0.46

0.69

0.76

0.65

0.65

0.71

0.27

0.72

0.79

0.22

0.43

0.39

0.47

0.31

0.43

0.23

0.50

0.64

41

42

43

44

45

46

47

48

49

50	0.20	0.13	0.16	475
51	0.28	0.15	0.19	305
52	0.34	0.06	0.11	251
53	0.67	0.38	0.49	914
54	0.43	0.22	0.29	728
55	0.00	0.00	0.00	258
56	0.38	0.27	0.32	821
57	0.39	0.12	0.19	541
58	0.80	0.24	0.37	748
59	0.95	0.57	0.71	724
60	0.27	0.07	0.11	660
61	0.85	0.19	0.31	235
62	0.88	0.69	0.78	718
63	0.83	0.55	0.66	468
64	0.49	0.44	0.47	191
65	0.25	0.18	0.21	429
66	0.26	0.14	0.19	415
67	0.68	0.46	0.55	274
68	0.84	0.47	0.61	510
69	0.65	0.42	0.51	466
70	0.26	0.13	0.18	305
71	0.37	0.17	0.23	247
72	0.75	0.41	0.53	401
73	0.90	0.65	0.76	86
74	0.71	0.34	0.46	120
75	0.90	0.62	0.73	129
76	0.46	0.02	0.73	473
	0.46			
77		0.35	0.35	143
78	0.75	0.38	0.51	347
79	0.69	0.21	0.32	479
80	0.49	0.39	0.44	279
81	0.75	0.11	0.19	461
82	0.20	0.08	0.12	298
83	0.71	0.41	0.52	396
84	0.46	0.37	0.41	184
85	0.45	0.27	0.34	573
86	0.24	0.09	0.13	325
87	0.46	0.24	0.32	273
88	0.32	0.25	0.28	135
89	0.25	0.16	0.20	232
90	0.49	0.40	0.44	409
91	0.62	0.34	0.44	420
92	0.75	0.46	0.57	408
93	0.51	0.48	0.49	241
94	0.31	0.10	0.16	211
95	0.27	0.18	0.22	277
96	0.29	0.07	0.11	410
97	0.88	0.16	0.27	501
98	0.79	0.57	0.66	136
99	0.49	0.29	0.37	239
100	0.47	0.18	0.26	324
101	0.90	0.50	0.64	277
102	0.90	0.64	0.75	613
103	0.44	0.20	0.27	157
104	0.21	0.15	0.17	295
105	0.67	0.36	0.47	334
106	0.78	0.05	0.10	335
107	0.75	0.49	0.59	389
108	0.53	0.34	0.41	251
109	0.48	0.40	0.43	317
110	0.47	0.09	0.14	187
111	0.35	0.06	0.14	140
112	0.43	0.25	0.32	154
113	0.58	0.14	0.22	332
114	0.42	0.29	0.35	323
115	0.41	0.19	0.26	344
116	0.72	0.45	0.55	370
117	0.54	0.19	0.29	313
118	0.80	0.46	0.58	874
119	0.34	0.24	0.28	293
120	0.13	0.04	0.05	200
121	0.75	0.42	0.54	463
122	0.36	0.24	0.29	119
123	0.25	0.00	0.01	256
124	0.91	0.62	0.74	195
125	0.39	0.20	0.26	138
126	0.79	0.51	0.62	376

127	0.17	0.06	0.09	122
128	0.20	0.08	0.11	252
129	0.39	0.10	0.16	144
130	0.33	0.07	0.12	150
131	0.16	0.03	0.06	210
132	0.58	0.22	0.32	361
133	0.94	0.39	0.55	453
134	0.89	0.66	0.76	124
135	0.25	0.01	0.02	91
136	0.53	0.30	0.39	128
137	0.46	0.33	0.39	218
138	0.38	0.08	0.13	243
139	0.33	0.24	0.28	149
140	0.68	0.32	0.44	318
141	0.18	0.15	0.17	159
142	0.65	0.39	0.49	274
143	0.85	0.61	0.71	362
144	0.48	0.20	0.29	118
145	0.58	0.37	0.45	164
146	0.57	0.29	0.38	461
147	0.66	0.45	0.53	159
148	0.35	0.16	0.22	166
149	0.97	0.31	0.47	346
150	0.61	0.07	0.12	350
151	0.88	0.42	0.57	55
152	0.72	0.46	0.56	387
153	0.72	0.06	0.10	150
154	0.52	0.06	0.11	281
155	0.32	0.16	0.21	202
156	0.29	0.16	0.63	130
157	0.73			
		0.11	0.15	245
158	0.89	0.47	0.62	177
159	0.43	0.28	0.34	130
160	0.49	0.25	0.33	336
161	0.85	0.50	0.63	220
162	0.18	0.10	0.13	229
163	0.90	0.28	0.43	316
164	0.71	0.28	0.41	283
165	0.54	0.28	0.37	197
166	0.31	0.20	0.24	101
167	0.39	0.24	0.30	231
168	0.44	0.21	0.28	370
169	0.42	0.28	0.33	258
170	0.23	0.09	0.13	101
171	0.46	0.25	0.32	89
172	0.39	0.34	0.36	193
173	0.41	0.28	0.34	309
174	0.50	0.12	0.19	172
175	0.90	0.75	0.82	95
176	0.93	0.43	0.59	346
177	0.95	0.24	0.39	322
178	0.57	0.43	0.49	232
179	0.54	0.06	0.10	125
180	0.43	0.21	0.28	145
181	0.47	0.19	0.28	77
182	0.13	0.07	0.09	182
183	0.55	0.35	0.43	257
184	0.13	0.06	0.08	216
185	0.29	0.14	0.19	242
186	0.28	0.19	0.23	165
187	0.77	0.46	0.58	263
188	0.31	0.16	0.21	174
189	0.78	0.33	0.46	136
190	0.94	0.36	0.52	202
191	0.40	0.15	0.22	134
192	0.63	0.31	0.41	230
193	0.31	0.18	0.23	90
194	0.59	0.52	0.56	185
195	0.08	0.04	0.05	156
196	0.23	0.07	0.11	160
197	0.10	0.02	0.03	266
198	0.38	0.10	0.16	284
199	0.15	0.03	0.06	145
200	0.93	0.52	0.67	212
201	0.49	0.23	0.31	317
202	0.73	0.43	0.54	427
203	0.25	0.14	0.18	232

204	0.40	0.25	0.31	217
205	0.48	0.38	0.42	527
206	0.10	0.04	0.06	124
207	0.34	0.16	0.21	103
208	0.81	0.10	0.48	287
200	0.01			193
		0.11	0.15	
210	0.69	0.25	0.37	220
211	0.64	0.06	0.12	140
212	0.08	0.05	0.06	161
213	0.55	0.29	0.38	72
214	0.60	0.43	0.50	396
215	0.77	0.17	0.28	134
216	0.36	0.07	0.12	400
217	0.44	0.25	0.32	75
218	0.97	0.50	0.66	219
219	0.79	0.28	0.41	210
220	0.93	0.37	0.53	298
221	0.96	0.41	0.58	266
222	0.70	0.29	0.41	290
223	0.22	0.05	0.09	128
224	0.75	0.36	0.49	159
225	0.36	0.22	0.27	164
226	0.56	0.34	0.42	144
227	0.54	0.41	0.46	276
228	0.07	0.02	0.03	235
229	0.23	0.03	0.05	216
230	0.36	0.25	0.30	228
231	0.67	0.45	0.54	64
232	0.15	0.07	0.09	103
233	0.72	0.20	0.31	216
234	0.60	0.13	0.21	116
235	0.57	0.13	0.49	77
236	0.91			67
237	0.56	0.60	0.72	218
		0.05	0.08	
238	0.15	0.09	0.12	139
239	0.19	0.03	0.05	94
240	0.39	0.16	0.22	77
241	0.47	0.10	0.17	167
242	0.77	0.23	0.36	86
243	0.48	0.19	0.27	58
244	0.45	0.22	0.29	269
245	0.17	0.06	0.09	112
246	0.96	0.54	0.69	255
247	0.39	0.21	0.27	58
248	0.36	0.06	0.11	81
249	0.03	0.01	0.01	131
250	0.30	0.23	0.26	93
251	0.57	0.28	0.38	154
252	0.20	0.05	0.09	129
253	0.55	0.35	0.43	83
254	0.22	0.10	0.14	191
255	0.14	0.07	0.09	219
256	0.07	0.02	0.03	130
257	0.41	0.31	0.35	93
258	0.63	0.35	0.45	217
259	0.24	0.11	0.15	141
260	0.89	0.12	0.21	143
261	0.53	0.11	0.18	219
262	0.42	0.32	0.36	107
263	0.32	0.32	0.32	236
264	0.21	0.19	0.20	119
265	0.32	0.24	0.27	72
266	0.18	0.09	0.12	70
267	0.26	0.13	0.17	107
268	0.61	0.33	0.43	169
269	0.22	0.15	0.18	129
270	0.70	0.50	0.58	159
271	0.48	0.17	0.25	190
272	0.57	0.21	0.31	248
273	0.93	0.43	0.59	264
274	0.88	0.50	0.64	105
275	0.09	0.03	0.04	104
276	0.09	0.02	0.03	115
277	0.86	0.51	0.64	170
278	0.63	0.19	0.29	145
279	0.88	0.30	0.45	230
280	0.54	0.33	0.41	80
200	J.J.		V • 11	0.0

0.01	0.66	0.45	0.56	015
281 282	0.68 0.74	0.47 0.38	0.56 0.50	217 175
283	0.37	0.11	0.17	269
284 285	0.61 0.86	0.30 0.36	0.40 0.51	74 206
286	0.92	0.43	0.58	227
287 288	0.77 0.28	0.25 0.06	0.38 0.10	130 129
289	0.17	0.06	0.09	80
290 291	0.15 0.83	0.12 0.21	0.14	99 208
292	0.37	0.10	0.16	67
293 294	0.78 0.32	0.33 0.33	0.46 0.33	109 140
295	0.17	0.14	0.15	241
296 297	0.23 0.28	0.19 0.12	0.21 0.17	72 107
298	0.67	0.43	0.52	61
299 300	0.86 0.18	0.39 0.09	0.54 0.12	77 111
301 302	0.00 0.33	0.00	0.00 0.03	126 73
303	0.53	0.01	0.03	176
304 305	0.96 0.94	0.46	0.62 0.57	230 156
306	0.43	0.40	0.37	146
307 308	0.28 0.08	0.11	0.16 0.05	98 78
309	0.33	0.04	0.03	94
310 311	0.56 0.67	0.31 0.37	0.40	162 116
312	0.47	0.25	0.32	57
313 314	0.67 0.46	0.03	0.06 0.37	65 138
315	0.48	0.24	0.32	195
316 317	0.41 0.19	0.33	0.37 0.11	69 134
318	0.41	0.30	0.35	148
319 320	0.70 0.18	0.29 0.22	0.41 0.20	161 104
321	0.81	0.43	0.56	156
322 323	0.56 0.49	0.31 0.41	0.40 0.45	134 232
324	0.37	0.18	0.25	92
325 326	0.34 0.09	0.26 0.02	0.30 0.04	197 126
327 328	0.29 0.97	0.04	0.08	115 198
329	0.53	0.31 0.32	0.47	125
330 331	0.57 0.22	0.10 0.06	0.17 0.10	81 94
332	0.33	0.02	0.03	56
333 334	0.12 0.67	0.09 0.07	0.10 0.12	260 60
335	0.28	0.17	0.21	110
336 337	0.65 0.11	0.42 0.06	0.51 0.08	71 66
338	0.46	0.33	0.38	150
339 340	0.00 0.89	0.00 0.33	0.00 0.49	54 195
341	0.75	0.19	0.30	79 30
342 343	0.33 0.57	0.32	0.32 0.39	38 43
344	0.50	0.21	0.29	68 73
345 346	0.60 0.07	0.38	0.47	73 116
347 348	0.93 0.23	0.23	0.36 0.12	111 63
349	0.89	0.39	0.55	104
350 351	0.54 0.50	0.30 0.15	0.38 0.23	4 4 4 0
352	1.00	0.18	0.31	136
353 354	0.48 0.27	0.28	0.35 0.08	54 134
355	0.48	0.26	0.34	120
356 357	0.42 0.53	0.23 0.22	0.30 0.31	228 269

358	0.69	0.30	0.42	80
359	0.65	0.25	0.36	140
		0.18		125
360	0.37		0.24	
361	0.88	0.33	0.48	169
362	0.12	0.05	0.07	56
363	0.95	0.47	0.63	154
364	0.33	0.05	0.09	58
365	0.22	0.20	0.21	71
366	1.00	0.37	0.54	54
367	0.19	0.05	0.08	116
	0.25			54
368		0.02	0.03	
369	0.12	0.04	0.06	71
370	0.10	0.03	0.05	61
371	0.40	0.06	0.10	71
372	0.61	0.33	0.42	52
373	0.60	0.17	0.27	150
374	0.39	0.23	0.29	93
375	0.33	0.06	0.10	67
376	0.00	0.00	0.00	76
377	0.66	0.18	0.28	106
378	0.17	0.01	0.02	86
379	0.20	0.07	0.11	14
380	0.94	0.14	0.24	122
381	0.11	0.05	0.07	104
382	0.19	0.08	0.11	66
383	0.49	0.26	0.34	110
384	0.20	0.01	0.02	155
385	0.22	0.04	0.07	50
386	0.22	0.17	0.19	64
387	0.19	0.03	0.06	93
388	0.54	0.20	0.29	102
389	0.10	0.02	0.03	108
390	0.95	0.32	0.48	178
391	0.58	0.16	0.25	115
392	0.50	0.21	0.30	42
393	0.00	0.00	0.00	134
394	0.06	0.01	0.02	112
395	0.45	0.21	0.29	176
396	0.19	0.02	0.04	125
397	0.69	0.21	0.32	224
398	0.85	0.27	0.41	63
399	0.00	0.00	0.00	59
400	0.42	0.29	0.34	63
401	0.23	0.16	0.19	98
402	0.35	0.07	0.12	162
403	0.33	0.20	0.25	83
404	0.76	0.68	0.72	19
405	0.19	0.12	0.15	92
406	0.60	0.22	0.32	41
407	0.74	0.33	0.45	43
408	0.66	0.18	0.28	160
409	0.28	0.22	0.25	50
410	0.00	0.00	0.00	19
411	0.28	0.15	0.20	175
412	0.29	0.06	0.09	72
413	0.40	0.04	0.08	95
414	0.17	0.10	0.13	97
415	0.20	0.10	0.14	48
416	0.43	0.29	0.35	83
417	0.11	0.03	0.04	40
418	0.25	0.10	0.14	91
419	0.42	0.28	0.34	90
420	0.18	0.11	0.14	37
421	0.10	0.05	0.06	66
422	0.54	0.37	0.44	73
423	0.41	0.20	0.27	56
423	0.41	0.58	0.27	33
425	0.05	0.01	0.02	76
426	0.19	0.06	0.09	81
427	1.00	0.32	0.48	150
428	1.00	0.52	0.68	29
429	1.00	0.07	0.13	389
430	0.62	0.20	0.31	167
431	0.32	0.06	0.10	123
432	0.37	0.26	0.30	39
433	0.42	0.29	0.35	82
434	1.00	0.42	0.60	66

425	0.60	0 20	0 47	0.2
435	0.60	0.39	0.47	93
436	0.55	0.20	0.29	87
437	0.24	0.05	0.08	86
438	0.81	0.34	0.48	104
439	0.55	0.11	0.18	100
440	0.36	0.04	0.06	141
441	0.36	0.32	0.34	110
442	0.26	0.17	0.21	123
443	0.00	0.00	0.00	71
444	0.21	0.03	0.05	109
445	0.22	0.12	0.16	48
446	0.33	0.20	0.25	76
447	0.17	0.13	0.15	38
448	0.69	0.49	0.58	81
449	0.51	0.20	0.29	132
450	0.49	0.28	0.36	81
451	0.80	0.16	0.26	76
452	0.00	0.00	0.00	44
453	0.12	0.02	0.04	44
454	0.73	0.31	0.44	70
455	0.22	0.10	0.14	155
456	0.33	0.21	0.26	43
457	0.40	0.22	0.29	72
458	0.17	0.06	0.09	62
459	0.50	0.12	0.19	69
460	0.05	0.03	0.03	119
461	0.72	0.23	0.35	79
462	0.31	0.11	0.16	47
463	0.21	0.07	0.10	104
464	0.59	0.36	0.45	106
465	0.62	0.12	0.21	64
466	0.58	0.24	0.34	173
467	0.66	0.24	0.34	
				107
468	0.48	0.08	0.14	126
469	0.00	0.00	0.00	114
470	0.95	0.51	0.67	140
471	0.62	0.06	0.11	79
472	0.30	0.22	0.26	143
473	0.50	0.18	0.27	158
474	0.27	0.05	0.09	138
475	0.07	0.03	0.04	59
476	0.62	0.28	0.39	88
477	0.85	0.42	0.56	176
478	0.93	0.54	0.68	24
479	0.18	0.04	0.07	92
480	0.83	0.30	0.44	100
481	0.41	0.19	0.26	103
482	0.30	0.27	0.28	74
483	0.82	0.30	0.44	105
484	0.03	0.01	0.02	83
485	0.10	0.02	0.04	82
486	0.35	0.15	0.22	71
487	0.36	0.20	0.26	120
	0.20			105
488		0.02	0.03	
489	0.62	0.23	0.34	87
490	0.95	0.59	0.73	32
491	0.00	0.00	0.00	69
492	0.25	0.02	0.04	49
493	0.06	0.01	0.01	117
494	0.43	0.05	0.09	61
495	1.00	0.08	0.15	344
496	0.31	0.15	0.21	52
497	0.57	0.12	0.19	137
498	0.42	0.05	0.09	98
499	0.71	0.06	0.12	79
avg / total	0.64	0.32	0.41	173812
-				

Time taken to run this cell: 0:15:15.119457

OneVsRestClassifier with Logistic regression(penalty=I1)

```
start = datetime.now()
import warnings
warnings.filterwarnings('ignore')
# hp1={'estimator__C':alpha}
cv scores = []
for i in alpha:
    print(i)
    hp1={'estimator__alpha':[i],
         'estimator_loss':['log'],
         'estimator__penalty':['11']}
    print(hp1)
    classifier = OneVsRestClassifier(SGDClassifier())
    model11 =GridSearchCV(classifier,hp1,
                          cv=3, scoring='f1 micro',n_jobs=-1)
    print("Gridsearchcv")
    best model1=model11.fit(x_train_multilabel, y_train)
    print('fit model')
    Train_model_score=best_model1.score(x_train_multilabel,
                                        y_train)
#print("best model1")
    cv_scores.append(Train_model_score.mean())
fscore = [x for x in cv scores]
# determining best alpha
optimal alpha22 = alpha[fscore.index(max(fscore))]
print('\n The optimal value of alpha with penalty=11 and loss= log is %d.' % optimal_alpha22)
# Plots
fig4 = plt.figure( facecolor='c', edgecolor='k')
plt.plot(alpha, fscore,color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)
for xy in zip(alpha, np.round(fscore,3)):
    plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
plt.xlabel('Hyper parameter Alpha')
plt.ylabel('F1_Score value ')
plt.show()
print("Time taken to run this cell :", datetime.now() - start)
0.001
{'estimator__alpha': [0.001], 'estimator__loss': ['log'], 'estimator__penalty': ['l1']}
Gridsearchcv
fit model
0.01
{'estimator alpha': [0.01], 'estimator loss': ['log'], 'estimator penalty': ['l1']}
Gridsearchcv
fit model
0.1
{'estimator alpha': [0.1], 'estimator loss': ['log'], 'estimator penalty': ['l1']}
Gridsearchcv
fit model
 The optimal value of alpha with penalty=11 and loss= log is 0.
```

0.50 **10**.001, 0.481) 0.45 0.40 0.35 (0.01, 0.327) 0.30 0.25 0.20 0.15 , 0.112) 0.10 0.00 0.02 0.08 Hyper parameter Alpha

```
Time taken to run this cell: 2:56:17.727412
In [18]:
start = datetime.now()
best model2 = OneVsRestClassifier(SGDClassifier(loss='log', alpha=optimal_alpha22,
                                                penalty='l1'), n jobs=-1)
best_model2.fit(x_train_multilabel, y_train)
Out[18]:
OneVsRestClassifier(estimator=SGDClassifier(alpha=0.001, average=False, class weight=None,
epsilon=0.1,
      eta0=0.0, fit intercept=True, l1 ratio=0.15,
       learning_rate='optimal', loss='log', max_iter=None, n_iter=None,
       n_jobs=1, penalty='11', power_t=0.5, random_state=None,
       shuffle=True, tol=None, verbose=0, warm start=False),
          n jobs=-1)
In [19]:
joblib.dump(best model2, 'best model2 LR.pkl')
Out[19]:
['best model2 LR.pkl']
In [20]:
best model2=joblib.load('best model2 LR.pkl')
```

Logistic regression with I1 penalty

2

0.75

0 76

0.33

 \cap \wedge \cap

0.46

0 52

```
In [21]:
start = datetime.now()
#classifier = OneVsRestClassifier(LogisticRegression(penalty='11'), n jobs=-1)
#classifier.fit(x train multilabel, y train)
predictions = best model2.predict(x test multilabel)
print("Accuracy :", metrics.accuracy_score(y_test, predictions))
print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
precision = precision score(y test, predictions, average='micro')
recall = recall score(y test, predictions, average='micro')
f1 = f1 score(y test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall score(y test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification report(y test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy: 0.1879
Hamming loss 0.00319694
Micro-average quality numbers
Precision: 0.5718, Recall: 0.3201, F1-measure: 0.4104
Macro-average quality numbers
Precision: 0.4113, Recall: 0.2385, F1-measure: 0.2830
                         recall f1-score support
            precision
          0
                 0.68
                           0.68
                                    0.68
                                               5519
                                              8190
                                    0.29
                 0.57
                          0.20
          1
                                               6529
```

2221

J	0.70	0.40	U . JZ	JZJI
4	0.70	0.42	0.53	6430
5	0.62	0.39	0.48	2879
6	0.72	0.55	0.62	5086
7	0.83	0.60	0.69	4533
8	0.48	0.14	0.22	3000
9	0.75	0.48	0.59	2765
10	0.57	0.14	0.23	3051
11	0.66	0.37	0.48	3009
12	0.61	0.22	0.32	2630
13	0.54	0.14	0.22	1426
14	0.81	0.61	0.70	2548
15	0.64	0.12	0.20	2371
16	0.49	0.28	0.35	873
17	0.74	0.68	0.71	2151
18	0.63	0.22	0.33	2204
19	0.62	0.42	0.50	831
20	0.70	0.51	0.59	1860
21 22	0.24	0.11 0.25	0.15 0.28	2023
23	0.34			1513
23	0.90	0.45 0.33	0.60 0.39	1207 506
25	0.47	0.33	0.39	425
26	0.46	0.32	0.43	793
27	0.54	0.41	0.39	1291
28	0.62	0.31	0.42	1208
29	0.26	0.09	0.14	406
30	0.50	0.26	0.35	504
31	0.26	0.14	0.18	732
32	0.47	0.35	0.40	441
33	0.35	0.11	0.17	1645
34	0.51	0.34	0.41	1058
35	0.72	0.59	0.65	946
36	0.48	0.29	0.36	644
37	0.61	0.77	0.68	136
38	0.56	0.43	0.49	570
39	0.76	0.36	0.48	766
40	0.53	0.27	0.35	1132
41	0.33	0.22	0.27	174
42	0.47	0.51	0.49	210
43	0.62	0.51	0.56	433
44	0.57	0.47	0.52	626
45	0.39	0.28	0.33	852
46	0.66	0.38	0.48	534
47	0.20	0.24	0.22	350
48	0.52	0.60	0.55	496
49	0.79	0.59	0.67	785
50	0.16	0.15	0.16	475
51	0.24	0.12	0.16	305
52	0.16	0.09	0.11	251
53	0.59	0.39	0.47	914
54	0.43	0.18	0.25	728
55	0.00	0.00	0.00	258
56	0.37	0.14	0.20	821
57	0.38	0.14	0.20	541
58	0.54	0.33	0.41	748
59	0.87	0.67	0.76	724
60	0.23	0.09	0.13	660
61	0.63	0.29	0.39 0.77	235
62 63	0.89	0.68 0.49		718
64	0.84		0.62 0.47	468
65	0.49 0.19	0.46 0.16	0.47	191 429
66	0.17	0.10	0.12	415
67	0.66	0.51	0.58	274
68	0.84	0.50	0.63	510
69	0.63	0.44	0.52	466
70	0.20	0.18	0.19	305
71	0.38	0.17	0.23	247
72	0.71	0.41	0.52	401
73	0.93	0.78	0.85	86
74	0.69	0.31	0.43	120
75	0.77	0.79	0.78	129
76	0.04	0.01	0.02	473
77	0.30	0.31	0.31	143
78	0.77	0.41	0.54	347
79	0.55	0.23	0.33	479
0 0	U 3E	U 33	U 33	270

0 U	0.33	U.32	0.33	219
81	0.80	0.11	0.20	461
82	0.13	0.04	0.07	298
83	0.70	0.40	0.51	396
84 85	0.37 0.30	0.33 0.18	0.35 0.23	184 573
86	0.30	0.10	0.23	325
87	0.51	0.23	0.32	273
88	0.27	0.21	0.24	135
89	0.19	0.15	0.17	232
90	0.48	0.35	0.40	409
91	0.51	0.36	0.42	420
92	0.63	0.60	0.62	408
93	0.58	0.47	0.52	241
94	0.23	0.09	0.12	211
95 96	0.14	0.19 0.13	0.16 0.13	277 410
97	0.14	0.15	0.25	501
98	0.69	0.63	0.66	136
99	0.49	0.25	0.33	239
100	0.34	0.09	0.14	324
101	0.54	0.50	0.52	277
102	0.82	0.75	0.78	613
103	0.45	0.18	0.26	157
104	0.17	0.09	0.12	295
105 106	0.60 0.07	0.40	0.48	334 335
107	0.07	0.01	0.59	389
108	0.18	0.25	0.21	251
109	0.42	0.29	0.34	317
110	0.52	0.06	0.11	187
111	0.24	0.15	0.18	140
112	0.12	0.03	0.04	154
113	0.40	0.39	0.40	332
114	0.40	0.20	0.27	323
115 116	0.35 0.59	0.09	0.14 0.53	344 370
117	0.59	0.40	0.26	313
118	0.79	0.53	0.63	874
119	0.36	0.16	0.22	293
120	0.01	0.01	0.01	200
121	0.75	0.42	0.54	463
122	0.27	0.32	0.29	119
123	0.00	0.00	0.00	256
124	0.87	0.73	0.79	195
125 126	0.34	0.17 0.50	0.22 0.55	138 376
127	0.20	0.07	0.11	122
128	0.17	0.06	0.09	252
129	0.50	0.02	0.04	144
130	0.09	0.02	0.03	150
131	0.10	0.01	0.02	210
132	0.43	0.08	0.14	361
133 134	0.89	0.55	0.68	453
134	0.83	0.70	0.76 0.00	124 91
136	0.18	0.30	0.23	128
137	0.44	0.29	0.35	218
138	0.09	0.00	0.01	243
139	0.32	0.21	0.25	149
140	0.68	0.29	0.41	318
141	0.10	0.14	0.12	159
142	0.69	0.30	0.42	274
143 144	0.78 0.50	0.79 0.24	0.79 0.32	362 118
145	0.61	0.39	0.48	164
146	0.57	0.25	0.35	461
147	0.61	0.42	0.50	159
148	0.35	0.13	0.19	166
149	0.92	0.56	0.70	346
150	0.42	0.01	0.03	350
151	0.79	0.62	0.69	55 207
152 153	0.75 0.00	0.44	0.56 0.00	387 150
153	0.40	0.00	0.00	281
155	0.25	0.12	0.17	202
156	0.62	0.65	0.64	130
1 - 7	^ ^^	A 11	0 10	0 4 F

15/	U.3U	U.11	U.16	∠45
158	0.83	0.48	0.61	177
	0.42			
159		0.24	0.31	130
160	0.46	0.17	0.25	336
161	0.81	0.60	0.69	220
162	0.10	0.03	0.05	229
163	0.85	0.46	0.59	316
164	0.38	0.23	0.29	283
165	0.56	0.28	0.37	197
166	0.12	0.08	0.10	101
167	0.34	0.22	0.27	231
168	0.31	0.12	0.17	370
			0.27	
169	0.27	0.28		258
170	0.12	0.05	0.07	101
171	0.37	0.21	0.27	89
172	0.28	0.45	0.35	193
173	0.38	0.31	0.34	309
174	0.46	0.15	0.23	172
175	0.87	0.73	0.79	95
176	0.72	0.71	0.71	346
177	0.92	0.34	0.50	322
178	0.52	0.43	0.47	232
179	0.57	0.03	0.06	125
180	0.42	0.19	0.26	145
181	0.10	0.22	0.13	77
182	0.15	0.04	0.07	182
183	0.53	0.35	0.42	257
184	0.13	0.04	0.06	216
185	0.26	0.08	0.12	242
186	0.29	0.17	0.21	165
187	0.72	0.53	0.61	263
188	0.28	0.11	0.16	174
189	0.63	0.09	0.15	136
190	0.94	0.51	0.66	202
191	0.31	0.23	0.26	134
192	0.79	0.36	0.49	230
193	0.21	0.16	0.18	90
194	0.55	0.51	0.53	185
195	0.09	0.04	0.06	156
196	0.00	0.00	0.00	160
197	0.00	0.00	0.00	266
198	0.44	0.07	0.12	284
199	0.14	0.07	0.09	145
200	0.91	0.59	0.72	212
201	0.25	0.04	0.07	317
	0.57			
202		0.65	0.61	427
203	0.16	0.17	0.16	232
204	0.26	0.17	0.20	217
205	0.45	0.35	0.39	527
206	0.07	0.02	0.03	124
207	0.00	0.00	0.00	103
208	0.77	0.59	0.67	287
209	0.15	0.09	0.11	193
210	0.46	0.21	0.29	220
211	0.00	0.00	0.00	140
212	0.08	0.18	0.11	161
213	0.50	0.18	0.27	72
214	0.60	0.50	0.54	396
215	0.87	0.25	0.39	134
216	0.00	0.00	0.00	400
217	0.43	0.33	0.38	75
218	0.90	0.80	0.85	219
219	0.70	0.38	0.49	210
220	0.90	0.32	0.47	298
221	0.96	0.52	0.67	266
222	0.82	0.29	0.43	290
223	0.19	0.04	0.06	128
224	0.77	0.32	0.45	159
225	0.43	0.29	0.34	164
226	0.51	0.36	0.42	144
227	0.44	0.40	0.42	276
228	0.02	0.00	0.01	235
229	0.12	0.00	0.01	216
230		0 00	0.25	220
	0.32	0.20		228
231				
231 232	0.66	0.45	0.54	64
232	0.66 0.08	0.45 0.04	0.54 0.05	64 103
	0.66	0.45	0.54	64

234	U.UU	U.UU	U.UU	116
235	0.46	0.35	0.40	77
236	0.94	0.67	0.78	67
237	0.00	0.00	0.00	218
238	0.09	0.04	0.05	139
239	0.24	0.04	0.07	94
240	0.45	0.32	0.38	77
241	0.33	0.01	0.01	167
242	0.07	0.19	0.10	86
243	0.12	0.14	0.13	58
244	0.25	0.13	0.18	269
245	0.11	0.04	0.05	112
246	0.96	0.61	0.74	255
247	0.25	0.24	0.25	58
248	0.09			81
		0.05	0.06	131
249	0.00	0.00	0.00	
250	0.12	0.14	0.13	93
251	0.30	0.32	0.31	154
252	0.07	0.02	0.03	129
253	0.41	0.35	0.38	83
254	0.23	0.09	0.13	191
255	0.12	0.01	0.02	219
256	0.07	0.01	0.01	130
257	0.37	0.31	0.34	93
258	0.44	0.65	0.53	217
259	0.18	0.06	0.09	141
260	0.10	0.10	0.19	143
261	0.94		0.19	219
		0.08		
262	0.38	0.34	0.36	107
263	0.30	0.35	0.32	236
264	0.22	0.23	0.22	119
265	0.15	0.14	0.14	72
266	0.20	0.07	0.11	70
267	0.13	0.21	0.16	107
268	0.67	0.34	0.45	169
269	0.22	0.16	0.18	129
270	0.49	0.65	0.56	159
271	0.42	0.13	0.19	190
272	0.45	0.10	0.16	248
273	0.89	0.74	0.81	264
274	0.86	0.56	0.68	105
275	0.13	0.05	0.07	104
276	0.03	0.04	0.04	115
277	0.85	0.50	0.63	170
278	0.43	0.16	0.23	145
279	0.43	0.40	0.48	230
280	0.57			
		0.42	0.49	80
281	0.60	0.71	0.65	217
282	0.77	0.49	0.60	175
283	0.00	0.00	0.00	269
284	0.53	0.22	0.31	74
285	0.67	0.66	0.66	206
286	0.84	0.52	0.64	227
287	0.83	0.27	0.41	130
288	0.28	0.12	0.17	129
289	0.20	0.01	0.02	80
290	0.15	0.09	0.11	99
291	0.76	0.23	0.35	208
292	0.26	0.12	0.16	67
293	0.50	0.26	0.34	109
294	0.24	0.24	0.24	140
295	0.16	0.13	0.14	241
296	0.17	0.12	0.14	72
				107
297	0.29	0.11	0.16 0.31	
298	0.71	0.20		61 77
299	0.53	0.35	0.42	77 111
300	0.16	0.05	0.08	111
301	0.00	0.00	0.00	126
302	0.06	0.01	0.02	73
303	0.50	0.43	0.46	176
304	0.82	0.66	0.73	230
305	0.84	0.73	0.78	156
306	0.41	0.34	0.37	146
307	0.16	0.05	0.08	98
308	0.25	0.01	0.02	78
309	0.40	0.02	0.04	94
310	0.67	0.25	0.37	162
~	^ - ^	^ ~-		

311	0.59	0.65	0.62	116
312	0.47	0.26	0.34	57
313	0.00	0.00	0.00	65
314	0.49	0.35	0.41	138
315	0.36	0.26	0.30	195
316	0.25	0.42	0.32	69
317	0.00	0.00	0.00	134
318	0.33	0.26	0.29	148
319	0.70	0.20	0.32	161
320	0.13	0.14	0.14	104
321	0.73	0.47	0.58	156
322	0.45	0.23	0.31	134
323	0.57	0.30	0.39	232
324	0.06	0.17	0.09	92
325	0.25	0.09	0.13	197
326	0.00	0.00	0.00	126
327	0.33	0.01	0.02	115
328	0.99	0.45	0.62	198
329	0.49	0.26	0.34	125
330	0.60	0.04	0.07	81
331	0.12	0.02	0.04	94
332 333 334	0.00 0.03 0.00	0.02 0.00 0.00 0.00	0.04 0.00 0.01 0.00	56 260 60
335	0.21	0.14	0.17	110
336	0.49	0.46	0.48	71
337	0.12	0.06	0.08	66
338	0.44	0.33	0.37	150
339	0.00	0.00	0.00	54
340	0.86	0.48	0.62	195
341	0.00	0.00	0.00	79
342	0.25	0.34	0.29	38
343	0.37	0.23	0.29	43
344	0.33	0.01	0.03	68
345	0.54	0.44	0.48	73
346	0.00	0.00	0.00	116
347	0.71	0.48	0.57	111
348	0.12	0.05	0.07	63
349	0.89	0.49	0.63	104
350	0.71	0.34	0.46	44
351	0.00	0.00	0.00	40
352	0.93	0.40	0.56	136
353	0.40	0.39	0.40	54
354	0.14	0.07	0.10	134
355	0.28	0.11	0.16	120
356	0.28	0.16	0.20	228
357	0.57	0.09	0.15	269
358	0.66	0.34	0.45	80
359	0.75	0.15	0.25	140
360	0.10	0.19	0.13	125
361	0.88	0.43	0.57	169
362	0.10	0.05	0.07	56
363	0.86	0.59	0.70	154
364	0.00	0.00	0.00	58
365	0.12	0.11	0.12	71
366	0.97	0.54	0.69	54
367	0.14	0.07	0.09	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.03	0.07	0.04	61
371	0.00	0.00	0.00	71
372	0.72	0.44	0.55	52
373	0.67	0.36	0.47	150
374	0.38	0.19	0.26	93
375	0.25	0.01	0.03	67
376	0.00	0.00	0.00	76
377	0.91	0.09	0.17	106
378	0.50	0.01	0.02	86
379	0.14	0.07	0.10	14
380	1.00	0.25	0.39	122
381	0.03	0.01	0.01	104
382	0.24	0.18	0.21	66
383	0.44	0.24	0.31	110
384	0.00	0.00	0.00	155
385	0.08	0.02	0.03	50
386	0.22	0.19	0.20	64
387	0.00	0.00	0.00	93

388	0.53	0.21	0.30	102
389	0.33	0.01	0.02	108
390	0.83	0.70	0.76	178
391	0.53	0.14	0.22	115
392	0.92	0.29	0.44	42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.25	0.03	0.06	176
396	0.00	0.00	0.00	125
397	0.44	0.24	0.31	224
398	0.64	0.48	0.55	63
399	0.00	0.00	0.00	59
400	0.33	0.25	0.29	63
401	0.10	0.02	0.03	98
402	0.36	0.06	0.10	162
403	0.29	0.14	0.19	83
404	0.63	0.89	0.74	19
405	0.13	0.08	0.10	92
406	0.33	0.15	0.20	41
407	0.56	0.23	0.33	43
408	0.80	0.05	0.09	160
409	0.22	0.16	0.18	50
410	0.00	0.00	0.00	19
411	0.32	0.14	0.20	175
412	0.08	0.01	0.02	72
413	0.50	0.02	0.04	95
414				97
	0.08	0.06	0.07	
415	0.18	0.25	0.21	48
416	0.38	0.25	0.30	83
417	0.00	0.00	0.00	40
418	0.19	0.07	0.10	91
419	0.38	0.26	0.31	90
420	0.27	0.24	0.26	37
421				
	0.04	0.03	0.03	66
422	0.57	0.27	0.37	73
423	0.34	0.20	0.25	56
424	0.65	0.85	0.74	33
425	0.00	0.00	0.00	76
426	0.00	0.00	0.00	81
427	0.99	0.50	0.66	150
428	0.95	0.66	0.78	29
429	0.00	0.00	0.00	389
430	0.65	0.22	0.32	167
431	0.00	0.00	0.00	123
432	0.38	0.23	0.29	39
433	0.35	0.22	0.27	82
434	0.18	0.47	0.26	66
435	0.51	0.29	0.37	93
436	0.14	0.01	0.02	87
437	0.25	0.03	0.06	86
438	0.66	0.37	0.47	104
439	0.02	0.01	0.01	100
440	0.33	0.01	0.01	141
441	0.29	0.23	0.26	110
442	0.22	0.09	0.13	123
443	0.00	0.00	0.00	71
444	0.36	0.05	0.08	109
445	0.23	0.12	0.16	48
446	0.36	0.18	0.24	76
447	0.04	0.03	0.03	38
448	0.66	0.43	0.52	81
449	0.47	0.06	0.11	132
450	0.39	0.30	0.34	81
451	0.89	0.11	0.19	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.88	0.30	0.45	70
455	0.11	0.01	0.01	155
456	0.22	0.16	0.19	43
457	0.31	0.15	0.21	72
458	0.23	0.11	0.15	62
459	1.00	0.09	0.16	69
460	0.25	0.03	0.06	119
461	0.68	0.16	0.27	79
462	0.17	0.02	0.04	47
463	0.11	0.01	0.02	104
464	0.37	0.33	0.35	106

	465	0.00	0.00	0.00	64
	466	0.55	0.20	0.29	173
	467	0.66	0.48	0.55	107
	468	0.50	0.01	0.02	126
	469	0.00	0.00	0.00	114
	470	0.94	0.72	0.81	140
	471	0.00	0.00	0.00	79
	472	0.32	0.27	0.29	143
	473	0.56	0.23	0.32	158
	474	1.00	0.01	0.01	138
	475	0.04	0.05	0.05	59
	476	0.58	0.39	0.46	88
	477	0.81	0.45	0.58	176
	478	0.92	0.50	0.65	24
	479	0.00	0.00	0.00	92
	480	0.78	0.28	0.41	100
	481	0.44	0.04	0.07	103
	482	0.22	0.22	0.22	74
	483	0.76	0.45	0.56	105
	484	0.05	0.01	0.02	83
	485	0.11	0.01	0.02	82
	486	0.33	0.03	0.05	71
	487	0.39	0.21	0.27	120
	488	0.00	0.00	0.00	105
	489	0.60	0.17	0.27	87
	490	1.00	0.75	0.86	32
	491	0.00	0.00	0.00	69
	492	0.00	0.00	0.00	49
	493	0.00	0.00	0.00	117
	494	0.80	0.07	0.12	61
	495	0.98	0.62	0.76	344
	496	0.16	0.10	0.12	52
	497	0.71	0.04	0.07	137
	498	0.00	0.00	0.00	98
	499	0.35	0.23	0.28	79
g /	total	0.55	0.32	0.39	173812

Time taken to run this cell: 0:00:19.236854

OneVsRestClassifier with Linear-SVM (SGDClassifier with loss-hinge)

In [22]:

ava

```
start = datetime.now()
import warnings
warnings.filterwarnings('ignore')
# hp1={'estimator C':alpha}
cv scores = []
for i in alpha:
    print(i)
   hp1={'estimator__alpha':[i],
        'estimator__loss':['hinge'],
        'estimator__penalty':['l1']}
   print(hp1)
    classifier = OneVsRestClassifier(SGDClassifier())
   model11 =GridSearchCV(classifier,hp1,
                         cv=3, scoring='f1_micro',n_jobs=-1)
   print("Gridsearchcv")
   best_model1=model11.fit(x_train_multilabel, y_train)
    print('fit model')
   Train_model_score=best_model1.score(x_train_multilabel,
                                        y train)
#print("best model1")
   cv scores.append(Train model score.mean())
fscore = [x for x in cv scores]
# determining best alpha
optimal_alpha23 = alpha[fscore.index(max(fscore))]
print('\ n The optimal value of alpha with penalty=11 and loss= log is %d.' % optimal alpha23)
```

```
# Plots
fig4 = plt.figure( facecolor='c', edgecolor='k')
plt.plot(alpha, fscore,color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)

for xy in zip(alpha, np.round(fscore,3)):
    plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')

plt.xlabel('Hyper parameter Alpha')
plt.ylabel('F1_Score value ')
plt.show()

print("Time taken to run this cell :", datetime.now() - start)

0.001
{'estimator_alpha': [0.001], 'estimator_loss': ['hinge'], 'estimator_penalty': ['ll']}
Gridsearchcy
```

```
{'estimator_alpha': [0.001], 'estimator_loss': ['hinge'], 'estimator_penalty': ['ll']
Gridsearchcv
fit model
0.01
{'estimator_alpha': [0.01], 'estimator_loss': ['hinge'], 'estimator_penalty': ['ll']}
Gridsearchcv
fit model
0.1
{'estimator_alpha': [0.1], 'estimator_loss': ['hinge'], 'estimator_penalty': ['ll']}
Gridsearchcv
fit model
```

The optimal value of alpha with penalty=11 and loss= log is 0.

Time taken to run this cell : 2:18:49.138029

OneVsRestClassifier with SGDClassifier for optimal alpha with hinge loss

```
In [24]:
joblib.dump(classifier2, 'classifier2.pkl')
Out[24]:
['classifier2.pkl']
In [25]:
classifier2=joblib.load('classifier2.pkl')
```

```
In [26]:
```

39

40

0.70

0.56

0.31

0.08

0.43

0.14

766

1132

```
predictions = classifier2.predict (x test multilabel)
print("Accuracy :", metrics.accuracy_score(y_test, predictions))
print("Hamming loss ", metrics.hamming_loss(y_test, predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall_score(y_test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-averasge quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification report (y test, predictions)) #printing classification report for all
print("Time taken to run this cell :", datetime.now() - start)
Accuracy : 0.17585
Hamming loss 0.00330166
Micro-averasge quality numbers
Precision: 0.5428, Recall: 0.3186, F1-measure: 0.4015
Macro-average quality numbers
Precision: 0.3193, Recall: 0.2399, F1-measure: 0.2547
                       recall f1-score support
           precision
         0
               0.67
                        0.68
                                 0.68
                                          5519
               0.45
                                 0.29
                                          8190
         1
                        0.21
         2
               0.70
                         0.38
                                  0.49
                                           6529
         3
               0.65
                         0.43
                                  0.52
                                           3231
                       0.33
         4
               0.83
                                 0.47
                                          6430
                       0.41
0.57
               0.58
                                 0.48
                                          2879
         6
              0.78
                                0.65
                                          5086
         7
               0.82
                         0.59
                                  0.68
                                           4533
         8
                0.44
                         0.16
                                  0.24
                                           3000
                                  0.59
                                           2765
         9
               0.60
                         0.59
               0.20
                        0.01
                                 0.02
                                           3051
        1.0
        11
               0.65
                       0.37
                                 0.47
                                           3009
                                          2630
               0.54
                       0.29
                                 0.37
        12
        13
               0.27
                         0.20
                                  0.23
                                           1426
               0.77
                                          2548
        14
                         0.64
                                  0.70
                       0.84
0.14
0.32
0.69
               0.59
                                          2371
        1.5
                                 0.22
        16
              0.38
                                 0.35
                                           873
        17
              0.73
                                0.71
                                          2151
                                          2204
               0.49
        18
                         0.27
                                  0.35
        19
                0.55
                         0.43
                                  0.48
                                            831
               0.74
        2.0
                         0.47
                                  0.57
                                           1860
        21
               0.27
                        0.01
                                 0.02
                                          2023
        22
               0.34
                        0.02
                                 0.03
                                          1513
                                          1207
               0.73
                                 0.67
        2.3
                        0.62
                                           506
               0.00
0.52
        24
                         0.00
                                  0.00
        25
                         0.33
                                  0.41
                                            425
               0.52
                                           793
                       0.36
        26
                                 0.42
               0.52
                        0.37
                                 0.43
                                          1291
        2.7
        2.8
               0.49
                       0.40
                                 0.44
                                          1208
               0.14
        29
                         0.18
                                  0.16
                                            406
        30
                0.69
                         0.25
                                  0.37
                                            504
                                           732
               0.00
                                  0.00
        31
                         0.00
        32
               0.37
                        0.39
                                 0.38
                                           441
        33
               0.02
                        0.00
                                 0.00
                                          1645
                                          1058
        34
               0.58
                        0.32
                                 0.41
               0.66
0.52
                                           946
        35
                         0.57
                                  0.61
                       0.29
        36
                                  0.37
                                            644
               0.59
                       0.82
                                           136
        37
                                 0.68
                       0.41
               0.48
        38
                                 0.44
                                           570
```

4.1	0.00	0.05	0 07	174
41	0.29	0.25	0.27	174
42	0.58	0.63	0.60	210
43	0.61	0.53	0.57	433
44	0.47	0.53	0.50	626
45	0.45	0.28	0.35	852
46	0.61	0.39	0.48	534
47	0.00	0.00	0.00	350
48	0.56	0.62	0.59	496
49	0.71			785
		0.69	0.70	
50	0.05	0.00	0.00	475
51	0.00	0.00	0.00	305
52	0.06	0.01	0.01	251
53	0.44	0.54	0.48	914
54	0.00	0.00	0.00	728
55	0.03	0.00	0.01	258
56	0.00	0.00	0.00	821
57	0.36	0.06	0.11	541
58	0.68	0.24	0.35	748
59	0.80	0.74	0.77	724
60	0.22	0.09	0.13	660
	0.62		0.38	
61		0.28		235
62	0.84	0.83	0.83	718
63	0.63	0.68	0.65	468
64	0.47	0.44	0.45	191
65	0.12	0.19	0.14	429
66	0.00	0.00	0.00	415
67	0.63	0.65	0.64	274
68	0.74	0.63	0.68	510
69	0.51	0.49	0.50	466
70	0.00	0.00	0.00	305
71	0.14	0.26	0.18	247
72	0.62	0.52	0.56	401
73	0.88	0.78	0.83	86
74	0.26	0.41	0.32	120
75	0.84	0.75	0.79	129
76		0.00	0.00	
	0.00			473
77	0.23	0.43	0.30	143
78	0.73	0.51	0.60	347
79	0.57	0.36	0.44	479
80	0.23	0.41	0.30	279
81	0.62	0.13	0.22	461
82	0.03	0.04	0.03	298
83	0.63	0.50	0.56	396
84	0.36	0.33	0.34	184
85	0.30	0.11	0.16	573
86	0.37	0.04	0.07	325
87	0.53	0.21	0.30	273
88	0.30	0.35	0.32	135
89	0.00	0.00	0.00	232
90	0.30	0.42	0.35	409
91	0.60	0.29	0.39	420
92	0.64	0.58	0.61	408
93	0.42	0.59	0.49	241
94	0.00	0.00	0.00	211
95	0.00	0.00	0.00	277
96	0.00	0.00	0.00	410
97	0.84	0.15	0.25	501
98	0.56	0.68	0.62	136
99	0.44	0.24	0.31	239
100	0.08	0.15	0.11	324
101	0.67	0.61	0.64	277
102	0.85	0.69	0.76	613
103	0.25	0.20	0.22	157
104	0.00	0.00	0.00	295
105	0.72	0.37	0.49	334
106	0.00	0.00	0.00	335
107	0.54	0.60	0.57	389
108	0.33	0.21	0.26	251
109	0.39	0.42	0.40	317
110	0.00	0.00	0.00	187
111	0.17	0.15	0.16	140
112	0.09	0.05	0.10	154
113	0.49	0.31	0.38	332
	0.49	0.00		
114			0.00	323
115	0.19	0.16	0.17	344
116	0.58 0.42	0.61 0.15	0.59	370 313
117				

110	0.60	0 73	0.71	874	
118 119	0.69 0.41	0.73 0.16	0.71 0.23	293	
120 121	0.00 0.60	0.00 0.49	0.00 0.54	200 463	
122	0.00	0.00	0.00	119	
123 124	0.00	0.00	0.00	256 105	
125	0.80 0.30	0.82 0.05	0.81 0.09	195 138	
126	0.56	0.57	0.56	376	
127 128	0.00 0.02	0.00	0.00 0.01	122 252	
129	0.00	0.00	0.00	144	
130 131	0.42	0.18	0.25 0.00	150 210	
132	0.62	0.02	0.04	361	
133 134	0.80 0.68	0.64 0.76	0.71 0.71	453 124	
135	0.00	0.00	0.00	91	
136 137	0.51 0.36	0.14	0.22 0.36	128 218	
138	0.60	0.10	0.17	243	
139 140	0.00 0.61	0.00 0.31	0.00 0.41	149 318	
141	0.07	0.18	0.10	159	
142 143	0.58 0.76	0.30 0.66	0.39 0.70	274 362	
144	0.32	0.31	0.32	118	
145 146	0.41	0.49	0.45	164 461	
147	0.57	0.60	0.59	159	
148 149	0.18 0.94	0.05 0.51	0.08 0.66	166 346	
150	0.34	0.05	0.08	350	
151 152	0.81 0.59	0.64 0.53	0.71 0.56	55 387	
153	0.58	0.05	0.09	150	
154 155	0.36 0.11	0.11	0.17 0.09	281 202	
156	0.50	0.72	0.59	130	
157 158	0.00 0.64	0.00 0.49	0.00 0.55	245 177	
159	0.40	0.29	0.34	130	
160 161	0.25 0.60	0.25 0.69	0.25 0.64	336 220	
162	0.00	0.00	0.00	229	
163 164	0.79 0.69	0.46 0.27	0.58 0.39	316 283	
165	0.30	0.47	0.37	197	
166 167	0.38	0.05 0.00	0.09	101 231	
168	0.26	0.23	0.24	370	
169 170	0.30 0.05	0.26 0.01	0.28 0.02	258 101	
171	0.31	0.18	0.23	89	
172 173	0.21 0.36	0.30 0.38	0.24 0.37	193 309	
174	0.18	0.19	0.18	172	
175 176	0.66 0.68	0.75 0.60	0.70 0.64	95 346	
177	0.86	0.39	0.54	322	
178 179	0.51 0.00	0.54	0.53	232 125	
180	0.37	0.34	0.36	145	
181 182	0.19 0.00	0.21	0.20	77 182	
183	0.39	0.49	0.43	257	
184 185	0.07	0.08	0.08	216 242	
186	0.00	0.00	0.00	165	
187 188	0.60 0.17	0.58 0.20	0.59 0.18	263 174	
189	0.00	0.00	0.00	136	
190 191	0.80 0.00	0.57 0.00	0.66 0.00	202 134	
192	0.68	0.43	0.53	230	
193 194	0.30 0.37	0.23 0.54	0.26 0.44	90 185	

195	0.00	0.00	0.00	156
196	0.00	0.00	0.00	160
197	0.00	0.00	0.00	266
198	0.00	0.00	0.00	284
199	0.07	0.03	0.04	145
200	0.82	0.76	0.79	212
201	0.00	0.00	0.00	317
202	0.55	0.55	0.55	427
203	0.09	0.02	0.03	232
204	0.00	0.00	0.00	217
205	0.43	0.42	0.42	527
206	0.00	0.00	0.00	124
207	0.24	0.15	0.18	103
208	0.51	0.43	0.47	287
209	0.00	0.00	0.00	193
210	0.48	0.19	0.27	220
211	0.67	0.21	0.32	140
212	0.00 0.37	0.00	0.00	161
213 214	0.56	0.14 0.43	0.20	72 396
214	0.67	0.43	0.48	134
216	0.06	0.29	0.41	400
217	0.32	0.36	0.34	75
218	0.87	0.74	0.80	219
219	0.79	0.30	0.44	210
220	0.91	0.36	0.51	298
221	0.46	0.69	0.55	266
222	0.44	0.34	0.38	290
223	0.12	0.12	0.12	128
224	0.46	0.48	0.47	159
225	0.53	0.29	0.38	164
226	0.34	0.44	0.38	144
227	0.45	0.25	0.32	276
228	0.00	0.00	0.00	235
229	0.00	0.00	0.00	216
230	0.00	0.00	0.00	228
231	0.69	0.64	0.67	64
232 233	0.07	0.12	0.09	103
233	0.46 0.33	0.34	0.39	216 116
235	0.36	0.02	0.48	77
236	0.86	0.73	0.79	67
237	0.00	0.00	0.00	218
238	0.07	0.03	0.04	139
239	0.00	0.00	0.00	94
240	0.47	0.25	0.32	77
241	0.42	0.05	0.09	167
242	0.40	0.43	0.42	86
243	0.05	0.02	0.03	58
244	0.00	0.00	0.00	269
245	0.13	0.12	0.12	112
246	0.73	0.79	0.76	255
247	0.27	0.21	0.24	58
248 249	0.00	0.00	0.00	81 131
250	0.00	0.31	0.17	93
251	0.00	0.00	0.00	154
252	0.00	0.00	0.00	129
253	0.31	0.36	0.33	83
254	0.21	0.12	0.15	191
255	0.00	0.00	0.00	219
256	0.00	0.00	0.00	130
257	0.32	0.25	0.28	93
258	0.58	0.50	0.53	217
259	0.00	0.00	0.00	141
260	0.74	0.20	0.31	143
261	0.53	0.14	0.22	219
262	0.41	0.22	0.29	107
263	0.27	0.33	0.29	236
264 265	0.11	0.19 0.00	0.14	119 72
265	0.00	0.00	0.00	70
267	0.23	0.06	0.13	107
268	0.44	0.44	0.44	169
269	0.00	0.00	0.00	129
270	0.53	0.62	0.57	159
271	0.20	0.16	0.18	190

070	0.00	0.00	0.00	0.40
272	0.00	0.00	0.00	248
273	0.84	0.74	0.78	264
274	0.58	0.63	0.61	105
275	0.14	0.06	0.08	104
276	0.00	0.00	0.00	115
277	0.88	0.12	0.22	170
278	0.41	0.31	0.35	145
279	0.83	0.30	0.45	230
280	0.39	0.46	0.42	80
281	0.54	0.64	0.58	217
282	0.63	0.70	0.66	175
283	0.00	0.00	0.00	269
284	0.45	0.43	0.44	74
285	0.60	0.47	0.53	206
286	0.83	0.71	0.77	227
287	0.77	0.26	0.39	130
288	0.16	0.12	0.14	129
289	0.00	0.00	0.00	80
290	0.00	0.00	0.00	99
291	0.51	0.20	0.28	208
292	0.10	0.03	0.05	67
293	1.00	0.01	0.02	109
294	0.00	0.00	0.00	140
295	0.12	0.20	0.15	241
296	0.10	0.12	0.11	72
297	0.20	0.14	0.16	107
298	0.61	0.18	0.28	61
299	0.81	0.17	0.28	77
300	0.00	0.00	0.00	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.31	0.42	0.36	176
304	0.87	0.71	0.78	230
305	0.93	0.58	0.72	156
	0.34	0.35	0.72	146
306				
307	0.00	0.00	0.00	98
308	0.00	0.00	0.00	78
309	0.48	0.21	0.29	94
310	0.21	0.41	0.28	162
311	0.71	0.51	0.59	116
312	0.34	0.46	0.39	57
313	0.00	0.00	0.00	65
314	0.34	0.34	0.34	138
315	0.30	0.32	0.31	195
316	0.28	0.48	0.35	69
317	0.00	0.00	0.00	134
318	0.23	0.41	0.29	148
319	0.78	0.38	0.51	161
320	0.00	0.00	0.00	104
321	0.57	0.69	0.62	156
322	0.49	0.32	0.39	134
323	0.47	0.28	0.35	232
324	0.00	0.00	0.00	92
325	0.00	0.00	0.00	197
326	0.00	0.00	0.00	126
327	0.00	0.00	0.00	115
328	0.96	0.34	0.50	198
329	0.27	0.38	0.31	125
330	0.67	0.15	0.24	81
331	0.00	0.00	0.00	94
332	0.00	0.00	0.00	56
333	0.00	0.00	0.00	260
334	0.00	0.00	0.00	60
335	0.13	0.19	0.16	110
336	0.32	0.56	0.41	71
337	0.00	0.00	0.00	66
338	0.35	0.25	0.29	150
339	0.00	0.00	0.00	54
340	0.60	0.46	0.52	195
341	1.00	0.03	0.05	79
342	0.38	0.08	0.13	38
343	0.47	0.21	0.29	43
344	0.00	0.00	0.00	68
345	0.37	0.47	0.41	73
346	0.08	0.05	0.06	116
347	0.72	0.23	0.35	111
348	0.00	0.00	0.00	6.3

U 1 U	J.J.		J.J.	~~
349	0.62	0.65	0.64	104
350	0.50	0.43	0.46	44
351	0.00	0.00	0.00	40
352	0.29	0.38	0.33	136
353	0.35	0.31	0.33	54
354	0.00	0.00	0.00	134
355	0.82	0.12	0.20	120
356	0.29	0.14	0.19	228
357	0.62	0.06	0.10	269
358	0.33	0.54	0.41	80
359	0.31	0.33	0.32	140
360	0.00	0.00	0.00	125
361	0.87	0.39	0.54	169
362	0.08	0.05	0.06	56
363	0.82	0.64	0.72	154
364	0.00	0.00	0.00	58
365	0.07	0.23	0.11	71
366	0.97	0.54	0.69	54
367	0.00	0.00	0.00	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.00	0.00	0.00	61
371	0.45	0.07	0.12	71
372	0.41	0.50	0.45	52
373	0.27	0.18	0.22	150
374	0.24	0.32	0.27	93
375	0.00	0.00	0.00	67
376	0.00	0.00	0.00	76
377	0.16	0.07	0.09	106
378	0.00	0.00	0.00	86
379	0.00	0.00	0.00	14
380	1.00	0.03	0.06	122
381	0.00	0.00	0.00	104
382	0.16	0.12	0.14	66
383	0.21	0.26	0.24	110
384	0.00	0.00	0.00	155
385	0.00	0.00	0.00	50
386	0.21	0.16	0.18	64
387	0.00	0.00	0.00	93
388	0.33	0.38	0.35	102
389	0.00	0.00	0.00	108
390	0.85	0.70	0.77	178
391	0.54	0.24	0.34	115
392	0.46	0.43	0.44	42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.00	0.00	0.00	176
396	0.00	0.00	0.00	125
397	0.52	0.48	0.50	224
398	0.59	0.37	0.45	63
399	0.00	0.00	0.00	59
400	0.32	0.46	0.38	63
401	0.00	0.00	0.00	98
402	0.00	0.00	0.00	162
403	0.04	0.22	0.06	83
404	0.65	0.79	0.71	19
405	0.00	0.00	0.00	92
406	0.15	0.27	0.19	41
407	0.36	0.28	0.32	43
408	0.04	0.03	0.03	160
409	0.00	0.00	0.00	50
410	0.00	0.00	0.00	19
411	0.25	0.12	0.16	175
412	0.00	0.00	0.00	72
413	0.20	0.11	0.14	95
414	0.00	0.00	0.00	97
415	0.00	0.00	0.00	48
416	0.27	0.36	0.31	83
417	0.00	0.00	0.00	40
418	0.00	0.00	0.00	91
419	0.27	0.22	0.25	90
420	0.29	0.46	0.35	37
421	0.00	0.00	0.00	66
422	0.44	0.36	0.39	73
423	0.37	0.25	0.30	56
424	0.88	0.88	0.88	33
425	0.00	0.00	0.00	76

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462	0.00 0.96 0.58 0.00 0.47 0.00 0.29 0.28 0.95 0.47 0.00 0.18 0.35 0.00 0.00 0.29 0.00 0.53 0.14 0.30 0.42 0.00 0.47 0.60 0.00 0.47 0.60 0.00 0.47 0.00 0.47 0.00 0.00 0.29 0.00	0.00 0.73 0.76 0.00 0.18 0.00 0.31 0.34 0.55 0.44 0.00 0.07 0.61 0.00 0.35 0.00 0.11 0.02 0.29 0.21 0.00 0.51 0.00 0.38 0.33 0.00 0.51 0.00 0.38 0.33 0.00 0.36 0.00 0.36 0.00	0.00 0.83 0.66 0.00 0.26 0.00 0.30 0.31 0.69 0.46 0.00 0.10 0.45 0.00 0.10 0.45 0.00 0.10 0.45 0.00 0.10 0.45 0.00 0.10 0.45 0.00 0.10 0.45 0.00 0.10 0.45 0.00 0.10 0.45 0.00 0.10	81 150 29 389 167 123 39 82 66 93 87 86 104 100 141 110 123 71 109 48 76 38 81 132 81 76 44 44 70 155 43 72 62 69 119 79 47
463 464	0.00	0.00	0.00	104 106
465 466	0.00	0.00	0.00	64 173
467 468	0.67 0.00	0.21	0.31	107 126
469 470	0.00 0.88	0.00 0.59	0.00 0.71	114 140
471 472	0.00 0.35	0.00 0.43	0.00 0.39	79 143
473	0.69	0.11	0.20	158
474 475	0.00	0.00	0.00	138 59
476 477	0.43 0.65	0.62 0.63	0.51 0.64	88 176
478	0.85	0.71	0.77	24
479 480	0.08 0.25	0.10 0.20	0.09 0.22	92 100
481 482	0.00	0.00	0.00	103 74
483 484	0.70 0.00	0.54	0.61 0.00	105 83
485	0.00	0.00	0.00	82
486 487	0.24	0.10 0.53	0.14 0.36	71 120
488 489	0.00 0.62	0.00 0.37	0.00 0.46	105 87
490 491	1.00	0.81	0.90	32 69
492	0.00	0.00	0.00	49
493 494	0.00	0.00 0.07	0.00 0.11	117 61
495 496	0.00	0.00	0.00	344 52
497 498	0.00 0.29	0.00 0.05	0.00	137 98
499	0.29	0.00	0.09	96 79
avg / total	0.47	0.32	0.36	173812

Observation

In [10]:

```
from prettytable import PrettyTable
x = PrettyTable()
x.field_names = ["Sr.No", "MODEL", "FEATURIZATION", "PENALTY", "ALPHA", 'LOSS', 'MICRO_F1_SCORE']
```

In [11]:

```
x.add_row(["1", 'OneVsRest+SGD Classifier', "Tf-idf","l1",0.0001,"log",0.4488])
x.add_row(["2", 'OneVsRest+SGD(log)=LR', "Bag-of-words","l2",0.001,"log",0.4268])
x.add_row(["3", 'OneVsRest+SGD(log)=LR', "Bag-of-words","l1",0.001,"log",0.4104])
x.add_row(["4", 'OneVsRest+SGD Classifier', "Bag-of-words","l1",0.001,"Hinge",0.4028])
```

In [12]:

```
print(x)
```

+	Sr.No	MODEL	FEATURIZATION	PENALTY	ALPHA	LOSS	
į	1	OneVsRest+SGD Classifier	Tf-idf	. 11	0.0001	log	0.4488
-	2	OneVsRest+SGD(log)=LR	Bag-of-words		0.001	log	0.4268
-	3	OneVsRest+SGD(log)=LR	Bag-of-words		0.001	log	0.4104
1	4	OneVsRest+SGD Classifier	Bag-of-words	<u>†</u>	0.001	Hinge	0.4028

- The objective's result is shown as above.
- Model {bag of words upto 4 grams and computed the micro f1 score with Logistic regression(OvR)} performs 42.68% on tag prediction which is not higher than the result obtained with model{ TF-IDF with alpha=00.0001,n_grams=(1,3)}
- The performance of model with various alpha value is shown in graph.