CMPS 6610 Problem Set 01

Lei Yang

August 31, 2023

1 Asymptotic notation

- 1a. True, since $2^{n+1} = 2 \times 2^n$. Pick $c \ge 2$ and n = 0. We get $2 \times 2^n = 2^{n+1}$ for all n > 0. Hence, $2^{n+1} \in O(2^n)$.
- 1b. False, $\lim_{n\to\infty} \frac{2^{2^n}}{2^n}$ approaches infinity. Thus, we cannot find a constant c that satisfies the requirement for sufficiently large n.
- 1c. False, $\lim_{n\to\infty} \frac{n^{1.01}}{\log n^2}$ approaches infinity. Thus, we cannot find a constant c that satisfies the requirement for sufficiently large n.
- 1d. True, as $n^{1.01}$ grows faster than $\log^2 n$. Pick $c \ge 1$ and n = 1. We get $n^{1.01} \ge \log^2 n$ for all $n \ge 1$. Hence, $n^{1.01} \in \Omega(\log^2 n)$.
- 1e. False, $\lim_{n\to\infty} \frac{\sqrt{n}}{\log^3 n}$ approaches infinity. Thus, we cannot find a constant c that satisfies the requirement for sufficiently large n.
- 1f. True, as \sqrt{n} grows faster than $\log^3 n$. Pick $c \ge 1$ and n = 1. We get $\sqrt{n} \ge \log^3 n$ for all $n \ge 1$. Hence, $\sqrt{n} \in \Omega(\log^3 n)$.
- 1g. Let's assume that there exists some function f(n) that belongs to both o(g(n)) and $\omega(g(n))$.
 - (a) For o(g(n)): For every positive constant c_1 , there exists n_{01} such that $f(n) \leq c_1 \times g(n)$ for all $n \geq n_{01}$.
 - (b) For $\omega(g(n))$: For every positive constant c_2 , there exists n_{02} such that $f(n) \geq c_2 \times g(n)$ for all $n \geq n_{02}$.

Let c_1 and c_2 be any two positive constants. Now, let $n_{\text{max}} = \max(n_{01}, n_{02})$. For $n \ge n_{\text{max}}$, both conditions must hold:

- (a) $f(n)/g(n) \le c_1$
- (b) $f(n)/g(n) \ge c_2$

This leads to a contradiction. Therefore, our initial assumption is false, and $o(g(n)) \cap \omega(g(n)) = \emptyset$.

2 SPARC to Python

1. The function foo calculates the n-th Fibonacci number using recursion. For inputs 0 and 1, it returns the value itself. Otherwise, it calculates the sum of the (x-1)-th and (x-2)-th Fibonacci numbers by recursively calling itself.

3 Parallelism and recursion

- 1. Work: Since we explore each element of the array at least once, the work done is O(n), where n is the length of the array. Span: The algorithm is implemented in an iterative, sequential way, so its span is O(1).
- 2. Work: O(n) Span: At each level of recursion, the algorithm splits the problem into two independent subproblems. Thus, the depth of the recursion tree is $\log n$, and the span is $O(\log n)$.
- 3. Work: The algorithm explores each element of the array at least once, making the work O(n), where n is the length of the array. Span: At each level of recursion, the algorithm splits the problem into two independent subproblems. Thus, the depth of the recursion tree is $\log n$, and the span is $O(\log n)$.