Idéaux primitifs dans les algèbres enveloppantes

J. DIXMIER

Université Pierre et Marie Curie, Paris, France
Communicated by A. W. Goldie
Received August 16, 1976

1. Introduction

- 1.1. Dans tout cet article, k désigne un corps algébriquement clos de caractéristique 0 non dénombrable (sauf en 1.7), et $\mathfrak g$ désigne une algèbre de Lie de dimension finie sur k. On note $U(\mathfrak g)$ l'algèbre enveloppante de $\mathfrak g$, $Z(\mathfrak g)$ le centre de $U(\mathfrak g)$, $G(\mathfrak g)=G$ le groupe adjoint algébrique de $\mathfrak g$, Prim $U(\mathfrak g)$ l'ensemble des idéaux primitifs de $U(\mathfrak g)$ muni de la topologie de Jacobson.
- 1.2. Soient \mathfrak{k} un idéal de g, I un idéal premier de $U(\mathfrak{g})$. Alors $I \cap U(\mathfrak{k})$ est un idéal premier de $U(\mathfrak{k})$ ([9, 3.3.4]. On note $V(I,\mathfrak{k})$ la partie fermée irréductible de Prim $U(\mathfrak{k})$ correspondant à $I \cap U(\mathfrak{k})$, c'est-à-dire l'ensemble des idéaux primitifs de $U(\mathfrak{k})$ contenant $I \cap U(\mathfrak{k})$. Le groupe G opère naturellement dans \mathfrak{k} , donc dans Prim $U(\mathfrak{k})$, et $V(I,\mathfrak{k})$ est G-invariant.

Supposons f résoluble et I primitif. Alors $V(I, \mathfrak{f})$ est l'adhérence d'une Gorbite [8, théorème] qu'on note $\omega(I, \mathfrak{f})$ (cette G-orbite est unique, car chaque Gorbite dans Prim $U(\mathfrak{f})$ est localement fermée d'après [1, 16.3]).

1.3. On a énoncé dans [5, 1.5] une conjecture, qui est l'analogue pour les algèbres enveloppantes d'un théorème de Mackey pour les représentations induites des groupes (cf. [5, 5.4, 5.5; 3, p. 988], pour des vérifications partielles). On va établir le résultat suivant, assez proche de la conjecture générale:

THÉORÈME A. Soient \mathfrak{k} un idéal résoluble de \mathfrak{g} , I un idéal primitif de $U(\mathfrak{g})$, $R \in \omega(I, \mathfrak{k})$, $\mathfrak{h} = \mathfrak{st}(R, \mathfrak{g})$. Il existe un idéal primitif Q de $U(\mathfrak{h})$ tel que $Q \cap U(\mathfrak{k}) = R$ et ind $(Q, \mathfrak{g}) = I$.

Rappelons les notations utilisées: st (R, g) est l'ensemble des $y \in g$ tels que $[y, R] \subset R$; et ind (Q, g) est le plus grand idéal bilatère de U(g) contenu dans U(g)Q (cette notion est liée à celle de représentation induite (cf. [9, 5.1.7, 5.3.1]).

1.4. Soient V une variété algébrique affine irréductible sur k, et V_1 , V_2 ,... des parties de V de réunion V. Comme k est non dénombrable, on sait

qu'il existe un entier r tel que V_r soit dense dans V. Nous allons généraliser ce fait aux algèbres enveloppantes:

Théorème B. Soient I un idéal premier de $U(\mathfrak{g})$, \mathscr{P} l'ensemble des idéaux primitifs de $U(\mathfrak{g})$ contenant I. Soient \mathscr{P}_1 , \mathscr{P}_2 ,... des parties de \mathscr{P} telles que $\mathscr{P}=\mathscr{P}_1\cup\mathscr{P}_2\cup\cdots$. Il existe un entier r tel que $\bigcap_{P\in\mathscr{P}_1}P=I$.

- 1.5. Soit I un idéal premier de $U(\mathfrak{g})$. Considérons les propriétés suivantes:
 - (a) I est primitif;
- (b) l'intersection des idéaux premiers de $U(\mathfrak{g})$ contenant strictement I est distincte de I;
 - (c) le centre de l'anneau des fractions de $U(\mathfrak{g})/I$ est réduit à k.

On sait que (b) \Rightarrow (c) [9, pp. 141-142]. Pour g résoluble, les trois propriétés sont équivalentes [9, pp. 141-142], et l'on conjecture qu'il en est de même en général. Nous ne savons toujours pas prouver cette conjecture. Mais considérons la propriété suivante:

(b') il existe une suite d'idéaux bilatères I_1 , I_2 ,... de $U(\mathfrak{g})$ contenant strictement I, telle que tout idéal bilatère de $U(\mathfrak{g})$ contenant strictement I contienne l'un des I_r .

Il est facile de prouver directement que (b) => (b'). En fait, on va établir le résultat suivant:

Théorème C. Soit I un idéal premier de U(g). Les conditions (a), (b'), (c) sont équivalentes.

1.6. Les démonstrations des théorèmes A, B, C sont très liées. Au Chap. 2, nous établirons l'implication (c) \Rightarrow (b') du théorème C (rappelons que (a) \Rightarrow (c) est déjà connu). Notons A_n (resp. B_n) l'assertion que le théorème A (resp. B) est vrai quand dim $\mathfrak{g} \leqslant n$. Les assertions A_0 , B_0 sont triviales. On prouvera (grâce notamment aux implications (a) \Rightarrow (c) \Rightarrow (b')), que:

$$B_{n-1} \Rightarrow A_n \qquad \text{(Sect. 4),}$$

$$B_{n-1} \qquad \text{et} \qquad A_n \Rightarrow B_n \qquad \text{(Sect. 6).}$$

Les théorèmes A et B seront ainsi établis. Montrons dès maintenant comment on en déduit (b') \Rightarrow (a) dans le théorème C. Soient I_1 , I_2 ,... avec la propriété (b'). Soit $\mathscr P$ l'ensemble des idéaux primitifs de $U(\mathfrak g)$ contenant I. Soit $\mathscr P_r$ l'ensemble des $P \in \mathscr P$ tels que $P \supset I_r$. Si $I \notin \mathscr P$, on a $\mathscr P = \mathscr P_1 \cup \mathscr P_2 \cup \cdots$. D'après le théorème B, il existe r tel que $I = \bigcap_{P \in \mathscr P_r} P \supset I_r$, ce qui est absurde. Donc $I \in \mathscr P$.

1.7. Supposons provisoirement k dénombrable (mais toujours algébriquement clos de caractéristique 0). Alors le théorème B devient inexact: il suffit de prendre g de dimension 1 (de sorte que $U(\mathfrak{g})$ s'identifie à k [X]), I=0, et pour \mathscr{P}_n les parties de \mathscr{P} réduites à un élément (\mathscr{P} est dénombrable dans ce cas). Le même exemple prouve que l'implication (b') \Rightarrow (a) du théorème C devient aussi inexacte. Par contre, les démonstrations de (a) \Rightarrow (c) \Rightarrow (b') restent valables.

Il est probable que le théorème A reste valable.

- 1.8. Soient I un idéal premier de $U(\mathfrak{g})$, et E l'espace des idéaux primitifs de $U(\mathfrak{g})/I$, muni de la topologie de Jacobson. Le théorème B signifie, comme on le voit facilement, que E est un espace de Baire. Rappelons que l'espace des idéaux primitifs d'une C^* -algèbre, donc en particulier l'espace dual d'un groupe localement compact, sont aussi des espaces de Baire.
- 1.9. Soient E un espace hilbertien, G un groupe de Lie réel connexe, g la complexification de son algèbre de Lie, π une représentation unitaire continue topologiquement irréductible de G dans E, π_{∞} la représentation correspondante de $U(\mathfrak{g})$ dans l'ensemble des vecteurs indéfiniment différentiables pour π . On sait que Ker π_{∞} est un idéal primitif de $U(\mathfrak{g})$ lorsque G est semi-simple [12, p. 227] ou résoluble [10]. On déduira du Théorème C que cela reste vrai pour G quelconque (7.2). On prouvera même un résultat plus général relatif au cas où E est un espace de Banach.
 - 2. Démonstration de (a) \Rightarrow (c) \Rightarrow (b) dans le théorème C
- 2.1. Soit I un idéal premier de $U(\mathfrak{g})$ qui vérifie la condition (c) de 1.5. Soient $A = U(\mathfrak{g})/I$, et $a, b \in A$. Si axb = bxa pour tout $x \in A$, a et b sont linéairement dépendants sur k. Cela résulte de [14, théorème 1]. (Je dois cette référence à P. M. Cohn. A. Joseph m'a fait remarquer que cela résulte aussi du théorème de Faith-Utumi. Enfin, A. W. Goldie m'a communiqué une démonstration directe.)
- 2.2. Lemme. Soit I un idéal premier de $U(\mathfrak{g})$ qui vérifie la condition (c) de 1.5. Soient $A = U(\mathfrak{g})/I$, V un \mathfrak{g} -module semi-simple de dimension finie, H un sous-espace vectoriel de dimension finie de $\operatorname{Hom}_{\mathfrak{g}}(V,A)$, \mathscr{J} un ensemble d'idéaux bilatères de A d'intersection 0. Pour tout $J \in \mathscr{J}$, soit $\theta_J l$ 'application canonique de $\operatorname{Hom}_{\mathfrak{g}}(V,A)$ dans $\operatorname{Hom}_{\mathfrak{g}}(V,A/J)$. Il existe $J \in \mathscr{J}$ tel que $\theta_J \mid H$ soit injective.

(On considère A comme un g-module grâce à la représentation adjointe.) Soit $n = \dim H$. Le lemme est trivial pour $n \le 1$. Supposons n > 1 et le lemme démontré pour dim H < n.

(a) Dans cette partie de la démonstration, on suppose V simple.

Soit $(\varphi_1, ..., \varphi_n)$ une base de H. Raisonnant par l'absurde, supposons que, pour tout $J \in \mathcal{J}$, il existe $(\lambda_{1J}, ..., \lambda_{nJ}) \in k^n - \{0\}$ tel que

$$(\lambda_{1J}\varphi_1 + \cdots + \lambda_{nJ}\varphi_n)(V) \subset J.$$

Pour i = 1,..., n, soit \mathcal{J}_i l'ensemble des $J \in \mathcal{J}$ tels que $\lambda_{iJ} \neq 0$. On a $\mathcal{J} = \mathcal{J}_1 \cup \cdots \cup \mathcal{J}_n$, donc les $\bigcap_{J \in \mathcal{J}_i} J$ ont pour intersection 0. Par suite, l'un des $\bigcap_{J \in \mathcal{J}_i} J$ est nul. On supposera par exemple $\bigcap_{J \in \mathcal{J}_i} J = 0$.

Pour i = 1, 2,..., n - 1, soit ψ_i le k-homomorphisme de $V \otimes_k V$ dans A défini par

$$\psi_i(v\otimes v')=arphi_i(v)\,arphi_n(v')-arphi_n(v)\,arphi_i(v')$$

pour $v, v' \in V$. On vérifie sans peine que ψ_i est un g-homomorphisme. Pour $v, v' \in V$ et $J \in \mathcal{J}$, on a

$$(\lambda_{1J}\psi_1 + \cdots + \lambda_{n-1,J}\psi_{n-1})(v \otimes v')$$

$$= (\lambda_{1J}\varphi_1 + \cdots + \lambda_{nJ}\varphi_n)(v) \varphi_n(v') - \varphi_n(v)(\lambda_{1J}\varphi_1 + \cdots + \lambda_{nJ}\varphi_n)(v') \in I$$

donc

$$(\lambda_{1J}\psi_1 + \cdots + \lambda_{n-1,J}\psi_{n-1})(V \otimes V') \subset J.$$

Let g-module $V\otimes V'$ est semi-simple de dimension finie. Pour tout $J\in\mathcal{J}_1$, on a $\lambda_{1J}\neq 0$, donc les images de ψ_1 ,..., ψ_{n-1} dans $\mathrm{Hom}_{\mathbb{Q}}(V\otimes V,A/J)$ sont linéairement dépendantes sur k. D'après l'hypothèse de récurrence, ψ_1 ,..., ψ_{n-1} sont linéairement dépendants sur k. Soit $(\lambda_1$,..., $\lambda_{n-1})\in k^{n-1}-\{0\}$ tel que $\lambda_1\psi_1-\cdots+\lambda_{n-1}\psi_{n-1}=0$. Quels que soient $v,v'\in V$, on a

$$(\lambda_1 \varphi_1(v) + \cdots + \lambda_{n-1} \varphi_{n-1}(v)) \varphi_n(v') = \varphi_n(v)(\lambda_1 \varphi_1(v') + \cdots + \lambda_{n-1} \varphi_{n-1}(v')). \quad (1)$$

Soient $x \in \mathfrak{g}$, y son image canonique dans A. Remplaçant v par $x \cdot v$ dans (1), il vient

$$y(\lambda_1\varphi_1(v) + \cdots + \lambda_{n-1}\varphi_{n-1}(v)) \varphi_n(v') - (\lambda_1\varphi_1(v) + \cdots + \lambda_{n-1}\varphi_{n-1}(v)) y\varphi_n(v')$$

$$= y\varphi_n(v)(\lambda_1\varphi_1(v') + \cdots + \lambda_{n-1}\varphi_{n-1}(v')) - \varphi_n(v) y(\lambda_1\varphi_1(v') + \cdots + \lambda_{n-1}\varphi_{n-1}(v'))$$

d'où, compte tenu de (1),

$$(\lambda_1\varphi_1(v)+\cdots+\lambda_{n-1}\varphi_{n-1}(v))\,y\varphi_n(v')=\varphi_n(v)\,y(\lambda_1\varphi_1(v')+\cdots+\lambda_{n-1}\varphi_{n-1}(v')).$$
 (2)

De proche en proche, on voit que (2) reste valable pour tout $y \in A$.

Faisons v' = v. D'après la condition (c) et 2.1, il existe $(\lambda_v, \mu_v) \in k^2 - \{0\}$ tel que

$$\lambda_v(\lambda_1\varphi_1(v) + \cdots + \lambda_{n-1}\varphi_{n-1}(v)) + \mu_v\varphi_n(v) = 0.$$

Si $\mu_v = 0$, on a $\lambda_v \neq 0$. Dans tous les cas, $(\lambda_v \lambda_1, ..., \lambda_v \lambda_{n-1}, \mu_v) \in k^n - \{0\}$. Fixant $v \in V - \{0\}$, on voit que

$$\operatorname{Ker}(\lambda_{v}\lambda_{1}\varphi_{1}+\cdots+\lambda_{v}\lambda_{n-1}\varphi_{n-1}+\mu_{v}\varphi_{n})\neq 0$$

donc $\lambda_v \lambda_1 \varphi_1 + \cdots + \lambda_v \lambda_{n-1} \varphi_{n-1} + \mu_v \varphi_n = 0$ puisque V est simple. Cela contredit l'hypothèse que $(\varphi_1, ..., \varphi_n)$ est une base de H.

(b) Le lemme est donc établi pour V simple et dim $H \leqslant n$.

Supposons V semi-simple et dim H=n. Soit $V=V_1\oplus\cdots\oplus V_p$ où $V_1,...,V_p$ sont des g-modules simples. On a

$$\operatorname{Hom}_{\mathfrak{g}}(V, A) = \operatorname{Hom}_{\mathfrak{g}}(V_1, A) \times \cdots \times \operatorname{Hom}_{\mathfrak{g}}(V_p, A).$$

Soit H_r la projection de H sur $\operatorname{Hom}_{\mathfrak{g}}(V_r,A)$. Soit \mathcal{F}_r l'ensemble des $J \in \mathcal{F}$ tels que l'application canonique $H_r \to \operatorname{Hom}_{\mathfrak{g}}(V_r,A/J)$ soit non injective. D'après la partie (a) de la démonstration, on a $\bigcap_{J \in \mathcal{F}_r} J \neq 0$. Par suite, $\bigcap_{r=1}^p (\bigcap_{J \in \mathcal{F}_r} J) \neq 0$, de sorte que $\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_p \neq \mathcal{F}$. Soit $J \in \mathcal{F}$ tel que $J \notin \mathcal{F}_1, \ldots, J \notin \mathcal{F}_p$. Alors l'application canonique $H_r \to \operatorname{Hom}_{\mathfrak{g}}(V_r,A/J)$ est injective pour $r=1,\ldots,p$. Si $h \in H-\{0\}$, il existe $r \in \{1,\ldots,p\}$ tel que $h \mid V_r \neq 0$. Alors l'image de $h \mid V_r$ dans $\operatorname{Hom}_{\mathfrak{g}}(V_r,A/J)$ est non nulle. A fortiori, $\theta_J(h) \neq 0$. Donc l'application $\theta_J \mid H$ est injective.

2.3. Lemme. Soit I un idéal premier de $U(\mathfrak{g})$ qui vérifie la condition (c) de 1.5. Soit $A = U(\mathfrak{g})/I$. Il existe des idéaux bilatères non nuls I_1 , I_2 ,... de A tels que tout idéal bilatère non nul de A contienne l'un des I_r (autrement dit, l'implication (c) \Rightarrow (b') est vraie).

Soit B la somme des sous-g-modules simples (nécessairement de dimension finie) de A. On a $B=B_1\oplus B_2\oplus ...$, où chaque B_i est un g-module isotypique, somme directe de g-modules simples B_{i1} , B_{i2} ,....

Soit L un idéal bilatère non nul de A. Il est somme de sous-g-modules de dimension finie, donc il contient un sous-g-module simple. Par suite, il existe i et n tels que $L \cap (B_{i1} + \cdots + B_{in}) \neq 0$.

Soit $\mathcal{F}_{i,n}$ l'ensemble des idéaux bilatères M de A tels que $M\cap (B_{i1}+\cdots+B_{in})\neq 0$. Il suffit de prouver que $\bigcap_{M\in\mathcal{F}_{in}}M\neq 0$. Supposons $\bigcap_{M\in\mathcal{F}_{in}}M=0$. Soit $V=B_{i1}$. Soit H l'ensemble des g-homomorphismes de V dans $B_{i1}+\cdots+B_{in}$. C'est un sous-espace vectoriel de dimension finie de $\mathrm{Hom}_{\mathfrak{g}}(V,A)$. Appliquons le lemme 2.2 avec $\mathscr{J}=\mathscr{F}_{in}$. D'après ce lemme (dont nous utilisons les notations), il existe $M_0\in\mathcal{F}_{in}$ tel que $\theta_{M_0}\mid H$ soit injective. Par définition de \mathscr{F}_{in} , on a $M_0\cap (B_{i1}+\cdots+B_{in})\neq 0$, donc il existe $h\in\mathrm{Hom}_{\mathfrak{g}}(V,A)$ tel que $h\neq 0$ et $h(V)\subseteq M_0$. Alors $\theta_{M_0}(h)=0$, ce qui est absurde.

3. Quelques lemmes

3.1. Lemme. Soient $\mathfrak k$ un idéal de $\mathfrak g$, π une représentation de $\mathfrak g$ dans un espace A_π . On suppose que $\pi \mid \mathfrak k$ possède une sous-représentation simple σ dans un espace A_σ , tel que A_σ engendre le $\mathfrak g$ -module A_π . Soit $\mathfrak h = \mathfrak{st}(\sigma,\mathfrak g)$. Il existe une représentation ρ de $\mathfrak h$ telle que $\rho \mid \mathfrak k$ soit un multiple de σ , et telle que $\operatorname{ind}(\rho,\mathfrak g)$ soit équivalente à π .

(Rappelons (cf. [5]) que $\mathfrak{st}(\sigma, \mathfrak{g})$ est l'ensemble des $y \in \mathfrak{g}$ tels qu'il existe $s \in \operatorname{End}_k A_\sigma$ vérifiant $\sigma([y, x]) = [s, \sigma(x)]$ pour tout $x \in \mathfrak{k}$. On a $\mathfrak{k} \subset \mathfrak{st}(\sigma, \mathfrak{g}) \subset \mathfrak{st}(\operatorname{Ker} \sigma)$.)

La démonstration est presque la même que celle de [5, 5.3.]. Soit $B \supset A_{\sigma}$ la somme des sous-f-modules de A_{π} isomorphes au f-module A_{σ} . Comme dans [5, 5.3], on voit que $\pi(\mathfrak{h})(B) \subset B$. Ainsi, il existe une représentation ρ de \mathfrak{h} dans B telle que ρ soit une sous-représentation de $\pi \mid \mathfrak{h}$. Il est clair que $\rho \mid \mathfrak{f}$ est un multiple de σ . Soient $\pi' = \operatorname{ind}(\rho, \mathfrak{g})$ et $A_{\pi'}$ l'espace de π' .

D'après [9, 5.1.3], il existe un g-homomorphisme φ de $A_{\pi'}$ dans A_{π} qui se réduit à l'identité sur B. Comme A_{σ} engendre le g-module A_{π} , φ est surjectif. Soit $T = \text{Ker } \varphi$, qui est un sous-g-module de $A_{\pi'}$. Si $T \neq 0$, on a $T \cap B \neq 0$ [9, 5.3.5]. Cela est absurde puisque $\varphi \mid B = \text{id}_B$. Donce T = 0 et φ est un isomorphisme. Ainsi, π est équivalente à $\text{ind}(\rho, \mathfrak{g})$.

3.2. LEMME. Soient \mathfrak{h} une sous-algèbre de \mathfrak{g} , I un idéal premier de $U(\mathfrak{g})$, J un idéal bilatère de $U(\mathfrak{h})$ tel que $I = \operatorname{ind}(J, \mathfrak{g})$, et $J_1, ..., J_n$ les idéaux premiers minimaux de $U(\mathfrak{h})$ contenant J. Alors il existe $m \in \{1, 2, ..., n\}$ tel que $I = \operatorname{ind}(J_m, \mathfrak{g})$.

Soit B un \mathfrak{h} -module d'annulateur J. Soit $A = \operatorname{ind}(B, \mathfrak{g})$. L'annulateur de A est I. Il existe des entiers $i_1, ..., i_r$ tels que $J_{i_r}J_{i_{r-1}} \cdots J_{i_1} \subset J$. Posons

$$B_0 = B, B_1 = J_{i_1}B_0, B_2 = J_{i_2}B_1, ..., B_{r-1} = J_{i_{r-1}}B_{r-2}, B_r = J_{i_r}B_{r-1}.$$

Alors B_0 ,..., B_r sont des sous- \mathfrak{h} -modules de B tels que

$$B = B_0 \supset B_1 \supset \cdots \supset B_{r-1} \supset B_r = 0$$
,

et J_{i_s} annule B_{s-1}/B_s . Soit $A_s = \operatorname{ind}(B_s$, g). On a

$$A = A_0 \supset A_1 \supset \cdots \supset A_{r-1} \supset A_r = 0,$$

et $A_{s-1}/A_s=\operatorname{ind}(B_{s-1}/B_s,\mathfrak{g})$. Soit I_s l'annulateur de A_{s-1}/A_s . On a $I_s\supset I$ pour tout s, et $I_rI_{r-1}\cdots I_1\subset I$, donc il existe un $t\in\{1,...,r\}$ tel que $I_t=I$. Soit K l'annulateur de B_{t-1}/B_t . On a $K\supset J_{i_t}\supset J$, donc

$$I = I_t = \operatorname{ind}(K, \mathfrak{g}) \supset \operatorname{ind}(J_{i_t}, \mathfrak{g}) \supset \operatorname{ind}(J, \mathfrak{g}) = I,$$

d'où $I = \operatorname{ind}(J_{i_t}, \mathfrak{g}).$

3.3. LEMME. Soient h une sous-algèbre de g, (J_{λ}) une famille d'idéaux bilatères de U(h), $J = \bigcap_{\lambda} J_{\lambda}$, $I_{\lambda} = \operatorname{ind}(J_{\lambda}, g)$, $I = \operatorname{ind}(J, g)$. Alors $I = \bigcap_{\lambda} I_{\lambda}$.

Il existe une base (x_{μ}) du $U(\mathfrak{h})$ -module à droite $U(\mathfrak{g})$. On a $U(\mathfrak{g})$ $J_{\lambda} = \sum_{\mu} x_{\mu} J_{\lambda}$, et de même $U(\mathfrak{g})$ $J = \sum_{\mu} x_{\mu} J$. Donc $U(\mathfrak{g})$ $J = \bigcap_{\lambda} U(\mathfrak{g})$ J_{λ} . Il est clair que $I \subset I_{\lambda}$ pour tout λ , donc $I \subset \bigcap_{\lambda} I_{\lambda}$. D'autre part, $\bigcap_{\lambda} I_{\lambda}$ est contenue dans $\bigcap_{\lambda} U(\mathfrak{g})$ J_{λ} , donc dans $U(\mathfrak{g})J$, donc dans I (cf. aussi [2, 3.8]).

3.4. LEMME. Soient f, I, R comme dans le théorème A, $\mathfrak{p} \supset f$ une sous-algèbre de \mathfrak{q} , P un idéal bilatère de $U(\mathfrak{p})$ tel que $P \supset R$ et ind $(P, \mathfrak{q}) = I$. Alors $P \cap U(f) = R$.

Grâce à 3.2, on se ramène au cas où P est premier. Posons $P \cap U(\mathfrak{f}) = S$. Alors S est un idéal premier de $U(\mathfrak{f})$ [9, 3.3.4] contenant R. Soit $S' = \bigcap_{g \in G} g(S)$. Comme $S \supset R$, on a $S' \supset I \cap U(\mathfrak{f})$. D'autre part, $U(\mathfrak{g})$ S' est un idéal bilatère de $U(\mathfrak{g})$ contenu dans $U(\mathfrak{g})P$ donc dans I. Par suite, $S' = (U(\mathfrak{g}) S') \cap U(\mathfrak{f}) \subseteq I \cap U(\mathfrak{f})$. On a donc prouvé que $S' = I \cap U(\mathfrak{f})$.

Soit T l'intersection des idéaux primitifs de $U(\mathfrak{f})$ appartenant à $V(I,\mathfrak{f})$ — $\omega(I,\mathfrak{f})$. Alors T est un idéal bilatère G-invariant de $U(\mathfrak{f})$ qui contient strictement $I \cap U(\mathfrak{f})$. Si R_1 est un idéal primitif de $U(\mathfrak{f})$ contenant strictement R, les algèbres $U(\mathfrak{f})/R_1$ et $U(\mathfrak{f})/R$ sont non isomorphes (par exemple, la longueur maximale des chaines d'idéaux premiers, qui est finie d'après [9, 3.5.12], est différente pour ces deux algèbres); donc $R_1 \notin \omega(I,\mathfrak{f})$ et par suite $R_1 \supset T$.

Supposons $S \neq R$. D'après ce qui précède, tout idéal primitif de $U(\mathfrak{k})$ contenant S contient T. Comme S est premier, on a $S \supset T$, donc $I \cap U(\mathfrak{k}) = S' \supset T$, ce qui est absurde.

3.5. Lemme. Soient \mathfrak{t} un idéal de \mathfrak{g} , I un idéal premier de $U(\mathfrak{g})$, $K = I \cap U(\mathfrak{t})$, $M = U(\mathfrak{g})/I$, $N = U(\mathfrak{t})/K$, T une partie oréenne de N. Alors T est une partie oréenne de M.

La démonstration de [8, lemme 3(i) et (ii)], est applicable telle quelle. (Remarquer que p. 20, l.2 du bas, il suffit de savoir que $t_1'' \in T$; le fait que $t_2'' \in T$ n'est pas utilisé.)

- 3.6. Soient I un idéal de g, I un idéal premier de $U(\mathfrak{g}), K = I \cap U(\mathfrak{t}),$ $M = U(\mathfrak{g})/I, N = U(\mathfrak{t})/K, \epsilon$ la représentation adjointe de f dans N. Soit $f \in N \{0\}$ un vecteur propre pour $\epsilon(\mathfrak{t})$. Alors f est non diviseur de zéro dans N [4, 1.2]. On vérifie sans peine que $\{1, f, f^2, \ldots\}$ est une partie oréenne de N. D'après 3.5, c'est une partie oréenne de M. On peut donc former la k-algèbre $M_{\{1,f,f^2,\ldots\}}$, qu'on notera M_f . Alors N_f s'identifie à une sous-algèbre de M_f .
- 3.7. Lemme. Soient \mathfrak{f} , I, K, M, N, ϵ comme en 3.6, et supposons \mathfrak{f} résoluble. Il existe $f \in N \{0\}$, vecteur propre pour $\epsilon(\mathfrak{f})$, et une famille $(x_{\lambda})_{\lambda \in A}$ d'éléments de M, tels que $(x_{\lambda})_{\lambda \in A}$ soit une base du N_f -module à droite M_f .

On raisonne comme dans [5, 4.5, 5.4, 6.2]. Soit $(x_1, ..., x_r)$ une base d'un supplémentaire de f dans g. Pour tout $\lambda = (\lambda_1, ..., \lambda_r) \in \mathbf{N}^r$, notons x_λ la classe de $x_1^{\lambda_1} \cdots x_r^{\lambda_r}$ modulo I. On munit \mathbf{N}^r d'une structure d'ordre comme dans [5, 4.3]; alors \mathbf{N}^r est isomorphe à \mathbf{N} comme ensemble ordonné. On pose

$$M_{\lambda} = \sum_{\lambda' \leqslant \lambda} x_{\lambda'} N, \qquad M_{\lambda}^- = \sum_{\lambda' \leqslant \lambda} x_{\lambda'} N.$$

Soit \mathfrak{a}_{λ} l'annulateur du N-module à droite $M_{\lambda}/M_{\lambda}^-$. D'après [5, 4.4 et 4.5(iv)], l'intersection \mathfrak{a} des \mathfrak{a}_{λ} non nuls est non nulle. Comme \mathfrak{f} est résoluble, il existe $f \in \mathfrak{a} - \{0\}$, vecteur propre pour $\mathfrak{e}(\mathfrak{f})$ [9, 4.4.1]. Soit Λ l'ensemble des $\lambda \in \mathbb{N}^r$ tels que $\mathfrak{a}_{\lambda} = 0$. Soient $L_{\lambda} = \sum_{\lambda' \leq \lambda} x_{\lambda'} N_f$, $L_{\lambda}^- = \sum_{\lambda' < \lambda} x_{\lambda'} N_f$. Si $\lambda \notin \Lambda$, on a $f \in \mathfrak{a}_{\lambda}$, donc $x_{\lambda} f \in M_{\lambda}^-$, $x_{\lambda} \in \sum_{\lambda' < \lambda} x_{\lambda'} N_f^{-1} \subset L_{\lambda}^-$, d'où $L_{\lambda} = L_{\lambda}^-$. Supposons $\lambda \in \Lambda$. Soient $n \in \mathbb{N}$, $m \in \mathbb{N}$ tels que $x_{\lambda} n f^{-m} \in L_{\lambda}^-$. Alors il existe $m' \in \mathbb{N}$ tel que $x_{\lambda} n f^{m'} \in M_{\lambda}^-$, d'où $n f^{m'} = 0$ et n = 0. Ainsi, $L_{\lambda}/L_{\lambda}^-$ est isomorphe au N_f -module à droite N_f , avec pour base l'image canonique de x_{λ} dans $L_{\lambda}/L_{\lambda}^-$. De proche en proche, on voit que $(x_{\lambda})_{\lambda \in \Lambda}$ est une base du N_f -module à droite M_f .

4. Démonstration de $B_{n-1} \Rightarrow A_n$

Dans ce chapitre, on suppose B_{n-1} vrai, et dim $\mathfrak{g} = n$.

4.1. Lemme. Soient \mathfrak{t} un idéal résoluble de \mathfrak{g} , I un idéal primitif de $U(\mathfrak{g})$, $K = I \cap U(\mathfrak{t})$, $M = U(\mathfrak{g})/I$, $N = U(\mathfrak{t})/K$, $R \in \omega$ (I,\mathfrak{t}) (on considère R comme un idéal de N) et \mathfrak{w} un idéal à gauche maximal de N tel que R soit le plus grand idéal bilatère de N contenu dans \mathfrak{w} . Alors le plus grand idéal bilatère de M contenu dans $M\mathfrak{w}$ est 0, et $M\mathfrak{w} \cap N = \mathfrak{w}$.

C'est évident si $\mathfrak{k} = \mathfrak{g}$. On supposera donc dim $\mathfrak{k} < n$.

Soient I_1 , I_2 ,... des idéaux bilatères de U(g) contenant strictement I, tels que tout idéal bilatère de U(g) contenant strictement I contienne l'un des $I_r(1.5 \text{ et } 2.3)$. Pour tout r = 1, 2,..., choisissons $m_r \in (I_r/I) - \{0\}$. Introduisons f et $(x_\lambda)_{\lambda \in A}$ avec les propriétés de 3.7, et écrivons

$$m_r = \sum_{\lambda \in A} x_{\lambda} f^{-\nu(\lambda, r)} \alpha(\lambda, r) \qquad (\nu(\lambda, r) \in \mathbf{N}, \alpha(\lambda, r) \in N).$$

Pour chaque r, il existe $\lambda_r \in \Lambda$ tel que $\alpha(\lambda, r) \neq 0$; posons

$$\nu(\lambda_r, r) = \nu_r, \qquad \alpha(\lambda_r, r) = \alpha_r \in N - \{0\}.$$

La partie fermée $V(I,\mathfrak{k}) - \omega(I,\mathfrak{k})$ de Prim $U(\mathfrak{k})$ correspond à un idéal semipremier S de $U(\mathfrak{k})$, tel que $S \supset K$ et $S \neq K$; nous identifions S à un idéal non nul de N. D'après B_{n-1} , il existe un idéal primitif T de N tel que $S \not\subset T$ (donc $T \in \omega(I,\mathfrak{k})$), $f \notin T$, et $\alpha_r \notin T$ pour tout r.

Soit t un idéal à gauche maximal de N tel que T soit le plus grand idéal bilatère de N contenu dans t. Soit W le N-module à gauche N/t, dont l'annulateur est T. Soit ξ l'image canonique de 1 dans W. Pour chaque r=1,2,..., on a $\alpha_r(W)\neq 0$. Comme $W=N\xi$, il existe $\beta_r\in N$ tel que $\alpha_r\beta_r\xi\neq 0$. D'après [5, 4.2], l'endomorphisme de l'espace vectoriel W défini par f est bijectif. Pour tout $v\in \mathbf{N}$, on a donc $f^v\alpha_r\beta_r\xi\neq 0$, c'est-à-dire $f^v\alpha_r\beta_r\notin \mathbb{R}$. Supposons $I_r/I\subset M$ t. Alors

$$m_r \beta_r \in I_r / I \subseteq M \mathfrak{t} \subseteq \bigoplus_{\lambda \in A} x_\lambda N_f \mathfrak{t}$$

donc $f^{-\nu_r}\alpha_r\beta_r\in N_f$ t. Par suite, il existe $\nu\in \mathbf{N}$ tel que $f^{\nu}\alpha_r\beta_r\in N\mathbf{t}=\mathbf{t}$. Cela contredit le résultat obtenu plus haut. Donc $I_r/I\not\subset M\mathbf{t}$, et cela pour tout r. Compte tenu du choix de I_1 , I_2 ,... on voit que le plus grand idéal bilatère de M contenu dans $M\mathbf{t}$ est 0.

Puisque $T \in \omega(I, \mathfrak{f})$, il existe un élément de G transformant T en R. Alors \mathfrak{f} est transformé par G d'un idéal à gauche maximal \mathfrak{w} de N tel que R soit le plus grand idéal bilatère de N contenu dans \mathfrak{w} . D'après l'alinéa précédent, le plus grand idéal bilatère de M contenu dans $M\mathfrak{w}$ est 0. En particulier, $M\mathfrak{w} \neq M$, donc $M\mathfrak{w} \cap N \neq N$, donc $M\mathfrak{w} \cap N = \mathfrak{w}$ puisque \mathfrak{w} est maximal.

4.2. Soient \mathfrak{f} , I, R, \mathfrak{h} comme dans l'énoncé du théorème A. Il s'agit de construire Q. Si $\mathfrak{h} = \mathfrak{g}$, on a $\mathfrak{w}(I,\mathfrak{f}) = \{R\}$, donc $I \cap U(\mathfrak{f}) = R$, et l'on peut prendre Q = I. On supposera donc dim $\mathfrak{h} < n$.

Introduisons les notations de 4.1. Soient \mathfrak{w}_1 l'image réciproque de \mathfrak{w} dans $U(\mathfrak{k})$, et $\mathfrak{m}_1 = I + U(\mathfrak{g}) \mathfrak{w}_1$. Alors : (1) \mathfrak{w}_1 est un idéal à gauche maximal de $U(\mathfrak{k})$; (2) le plus grand idéal bilatère de $U(\mathfrak{k})$ contenu dans \mathfrak{w}_1 est R; (3) $\mathfrak{m}_1 \cap U(\mathfrak{k}) = \mathfrak{w}_1$; (4) le plus grand idéal bilatère de $U(\mathfrak{g})$ contenu dans \mathfrak{m}_1 est I.

Soit π la représentation naturelle de $U(\mathfrak{g})$ dans $U(\mathfrak{g})/\mathfrak{m}_1$. On a Ker $\pi=I$. Puisque $U(\mathfrak{k})/\mathfrak{m}_1 \cap U(\mathfrak{k}) = U(\mathfrak{k})/\mathfrak{m}_1$, $\pi \mid \mathfrak{k}$ possède une sous-représentation simple σ de noyau R. Soit $\mathfrak{h}' = \mathfrak{sl}(\sigma,\mathfrak{g})$. L'image de 1 dans $U(\mathfrak{k})/\mathfrak{m}_1$ engendre le $U(\mathfrak{g})$ -module $U(\mathfrak{g})/\mathfrak{m}_1$. D'après 3.1, il existe un idéal bilatère J' de $U(\mathfrak{h}')$ tel que $J' \cap U(\mathfrak{k}) = R$ et $\operatorname{ind}(J',\mathfrak{g}) = I$. Soit $J_1 = \operatorname{ind}(J',\mathfrak{h})$. On a $\operatorname{ind}(J_1,\mathfrak{g}) = \operatorname{ind}(\operatorname{ind}(J',\mathfrak{h}),\mathfrak{g}) = \operatorname{ind}(J',\mathfrak{g}) = I$. Comme $[\mathfrak{h},R] \subset R$, $U(\mathfrak{h})$ R est un idéal bilatère de $U(\mathfrak{h})$ contenu dans $U(\mathfrak{h})$ J', donc dans J_1 . Par suite, $J_1 \supset R$. D'après 3.2, il existe un idéal premier J de $U(\mathfrak{h})$ tel que $\operatorname{ind}(J,\mathfrak{g}) = \operatorname{ind}(J_1,\mathfrak{g}) = I$ et $J \supset J_1 \supset R$.

Soit $\mathcal Z$ l'ensemble des idéaux primitifs de $U(\mathfrak h)$ contenant J. Soient I_1 , I_2 , ... des idéaux bilatères de $U(\mathfrak g)$ contenant strictement I, tels que tout idéal bilatère de $U(\mathfrak g)$ contenant strictement I contienne l'un des $I_r(1.5$ et 2.3). Pour tout r=1, 2,..., soit $\mathcal Z_r$ l'ensemble des $Q\in \mathcal Z$ tels que $\operatorname{ind}(Q,\mathfrak g)\supset I_r$. Soit $\mathcal Z_0$ l'ensemble des $Q\in \mathcal Z$ tels que $\operatorname{ind}(Q,\mathfrak g)=I$. On a $\mathcal Z=\mathcal Z_0\cup\mathcal Z_1\cup\mathcal Z_2\cup\cdots$. D'après B_{n-1} , il existe r tel que $\bigcap_{Q\in \mathcal Z_r}Q=J$. Si $r\geqslant 1$, on en déduit (3.3) que $I=\bigcap_{Q\in \mathcal Z_r}\operatorname{ind}(Q,\mathfrak g)\supset I_r$, ce qui est absurde. Donc r=0. Soit $Q\in \mathcal Z_0$. On a $\operatorname{ind}(Q,\mathfrak g)=I$, et $Q\supset J\supset R$ donc $Q\cap U(\mathfrak f)=R$ d'après 3.4.

4.3. Remarque. Soient \mathfrak{f} , I, R, comme dans l'énoncé du théorème A. Soient de plus σ une représentation simple de $U(\mathfrak{f})$ de noyau R, et $\mathfrak{h}' = \mathfrak{st}(\sigma, \mathfrak{g})$. Alors le raisonnement qui précède, avec des changements minimes, prouve qu'il existe un idéal primitif Q' de $U(\mathfrak{h}')$ tel que $Q' \cap U(\mathfrak{f}) = R$ et $\operatorname{ind}(Q', \mathfrak{g}) = I$.

5. Quelques lemmes

5.1. Lemme. On suppose $\mathfrak g$ réductive. Soient I un idéal premier de $U(\mathfrak g), L = I \cap Z(\mathfrak g), B = Z(\mathfrak g)/L$, k_1 le corps des fractions de B, k' une clôture algébrique de k_1 . Il existe un idéal primitif I' de $U(\mathfrak g \otimes k')$ tel que $I' \cap U(\mathfrak g) = I$.

(Ce lemme est plus ou moins prouvé dans [7], par application des idées de Gabriel-Nouazé. Sauf notation contraire, les produits tensoriels sont pris sur k.)

Soit $A = U(\mathfrak{g})/I$. Si $a \in A$ et $b \in B - \{0\}$ sont tels que ab = 0, on a aAb = 0, donc a = 0 puisque I est premier. Ainsi, les éléments de $B - \{0\}$ sont non diviseurs de zéro dans A, et $B - \{0\}$ est une partie oréenne de A. On peut former les algèbres localisées $A_{B-\{0\}} = A_1$ et $B_{B-\{0\}} = k_1$. Alors k_1 est un sous-corps de A_1 , et A_1 peut être considéré comme une k_1 -algèbre. On sait, et il est facile de voir [9, 4.1.5] que A_1 s'identifie canoniquement à $A \otimes_B k_1$. D'autre part, puisque 0 est un idéal premier de A_1 [9, 3.6.15].

La k_1 -algèbre $A_1 = A \otimes_B k_1$ est quotient de la k_1 -algèbre $U(\mathfrak{g}) \otimes k_1 = U(\mathfrak{g} \otimes k_1)$ par un certain idéal H_1 . Cet idéal est premier. Comme \mathfrak{g} est réductive, le centre de A est B (même raisonnement que dans [9, 4.2.5]), donc le centre de $A_1 = U(\mathfrak{g} \otimes k_1)/H_1$ est k_1 . D'autre part, on a $H_1 \cap U(\mathfrak{g}) = I$.

Soit $H' = H_1 \otimes_k k'$. On a

$$U(\mathfrak{g}) \subseteq U(\mathfrak{g} \otimes k_1) \subseteq U(\mathfrak{g} \otimes k')$$

et $U(\mathfrak{g} \otimes k')/H' = (U(\mathfrak{g} \otimes k_1)/H_1) \otimes_{k_1} k' = A_1 \otimes_{k_1} k'$. Donc le centre de $U(\mathfrak{g} \otimes k')/H'$ est k'.

D'après [9, 3.4.2], il existe un idéal premier $I' \supset H'$ de $U(\mathfrak{g} \otimes k')$ tel que $I' \cap U(\mathfrak{g} \otimes k_1) = H_1$, donc $I' \cap U(\mathfrak{g}) = I$. Comme le centre de $U(\mathfrak{g} \otimes k')/H'$ est k', le centre de $U(\mathfrak{g} \otimes k')/I'$ est encore k' (même raisonnement que dans [9, 4.2.5]). Par suite, I' est primitif: cela est prouvé dans [7] quand \mathfrak{g} est semisimple et que le degré de transcendance de k' sur \mathbb{Q} est au plus égal à la puissance du continu; le cas où \mathfrak{g} est semi-simple et k' quelconque s'en déduit comme dans [2, 2.21]; le cas où \mathfrak{g} est réductive est alors immédiat.

5.2. LEMME. On suppose g réductive. Le théorème B est vrai pour g.

Soient I, \mathcal{P} , (\mathcal{P}_n) comme dans le théorème B. Soient L, B, k_1 , k', I' comme dans le lemme 5.1.

Soient \mathfrak{h} une sous-algèbre de Cartan de \mathfrak{g} , R le système de racines de $(\mathfrak{g}, \mathfrak{h})$. On choisit une base de R, d'où un ensemble de racines positives et une décomposition triangulaire $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{n}_+ \oplus \mathfrak{n}_-$ de \mathfrak{g} . Pour tout $\lambda \in \mathfrak{h}^*$, soient $M(\lambda)$ le module de Verma correspondant, $\sigma(\lambda)$ la forme de Shapovalov sur $M(\lambda)$, $L(\lambda)$ le quotient de $M(\lambda)$ par le noyau de $\sigma(\lambda)$, c'est-à-dire l'unique quotient simple de $M(\lambda)$ (cf. par exemple [13, pp. 5-7], $\rho(\lambda)$ la représentation de $U(\mathfrak{g})$ dans $M(\lambda)$. (Ces notions, classiques pour \mathfrak{g} semi-simple, s'étendent facilement au cas réductif.)

Soient $g' = g \otimes k'$, $h' = h \otimes k'$, de sorte que R s'identifie au système de racines de (g', h'). Pour tout $\lambda' \in h'^*$, définissons $M(\lambda')$, $\sigma(\lambda')$, $L(\lambda')$, $\rho(\lambda')$ par analogie avec ce qui précède.

Fixons $\lambda' \in \mathfrak{h}'^*$ tel que I' soit l'annulateur de $L(\lambda')$ [11, théorème 1]. Choisissons une base de Chevalley dans \mathfrak{g} , d'où une base de Birkhoff-Witt dans $U(\mathfrak{n}_-)$, d'où une base β de $M(\lambda')$.

En considérant une base de \mathfrak{h} , on voit que $\lambda'(\mathfrak{h})$ est contenu dans une extension de degré fini k_2 de k_1 . Soit F la fermeture intégrale de B dans k_2 . En considérant à nouveau une base de \mathfrak{h} , on voit maintenant que $\lambda'(\mathfrak{h})$ est contenu dans une algèbre C de la forme F_b , où b est un élément non nul de B. L'algèbre C est une k-algèbre intègre de type fini. Soit \hat{C} l'ensemble des homomorphismes de C dans k, qui est une variété irréductible sur k.

Pour tout $u \in U(\mathfrak{g})$, la matrice de $\rho(\lambda')(u)$ par rapport à β est formée d'éléments de C. Il existe donc un $U(\mathfrak{g} \otimes C)$ -module M tel que $M(\lambda')$ s'identifie au $U(\mathfrak{g}')$ -module $M \otimes_C k'$. D'autre part, d'après la définition de $\sigma(\lambda')$, les valeurs de $\sigma(\lambda')$ sur $\beta \times \beta$ appartiennent à C, donc $\sigma(\lambda')$ se déduit par extension des scalaires d'une forme σ sur $M \times M$ à valeurs dans C.

Pour tout $\varphi \in \hat{C}$, $\varphi \circ \lambda' \mid \mathfrak{h}$ est un élément de \mathfrak{h}^* que nous noterons λ_{φ} . Considérons k comme un C-module grace à φ . Alors $M \otimes_{\mathcal{C}} k$ s'identifie canoniquement à $M(\lambda_{\varphi})$, et $\sigma(\lambda_{\varphi})$ se déduit de σ par "extension" des scalaires.

Soit $u \in U(\mathfrak{g})$. On a

$$u \in I \Rightarrow u \in I' \Rightarrow u \cdot L(\lambda') = 0 \Rightarrow \sigma(\lambda')(u \cdot M(\lambda'), M(\lambda')) = 0$$
$$\Rightarrow \sigma(u \cdot M, M) = 0.$$

Pour tout $\varphi \in \hat{C}$, soit I_{φ} l'annulateur de $L(\lambda_{\varphi})$. On a

$$u \in I \Rightarrow \sigma_{\varphi}(u \cdot M(\lambda_{\varphi}), M(\lambda_{\varphi})) = 0$$

d'après ce qui précède

$$\Leftrightarrow u \cdot L(\lambda_x) = 0 \Leftrightarrow u \in I_x$$
;

donc $I_{\varphi} \in \mathscr{P}$. Soit \hat{C}_n l'ensemble des $\varphi \in \hat{C}$ tels que $I_{\varphi} \in \mathscr{P}_n$. On a $\hat{C} = \hat{C}_1 \cup \hat{C}_2 \cup \cdots$. Comme k est non dénombrable, il existe un entier r possédant la propriété suivante: si $c \in C$ et si $\varphi(c) = 0$ pour tout $\varphi \in \hat{C}_r$, on a c = 0 (cf. par exemple [2, 3.11]). Montrons que $\bigcap_{P \in \mathscr{P}} P = I$. Soient $u \in \bigcap_{P \in \mathscr{P}} P$, et $m, m' \in M$.

Pour tout $\varphi \in \hat{C}_r$, on a $u \in I_{\varphi}$, donc $\varphi(\sigma(u \cdot m, m')) = \sigma_{\varphi}(u \cdot (m \otimes 1), m' \otimes 1) = 0$; donc $\sigma(u \cdot m, m') = 0$. Ainsi, $\sigma(u \cdot M, M) = 0$ d'où $u \in I$.

- 5.3. Lemme. Soient \mathfrak{t} un idéal commutatif de \mathfrak{g} , I un idéal premier de $U(\mathfrak{g})$, $K = I \cap U(\mathfrak{t})$, $M = U(\mathfrak{g})/I$, $N = U(\mathfrak{t})/K$, Ω l'ensemble des adhérences des G-orbites contenues dans $V(I,\mathfrak{t})$, Ω' une partie de Ω telle que $\bigcup_{\omega \in \Omega'} \omega$ ne soit pas maigre dans $V(I,\mathfrak{t})$. Pour tout $\omega \in \Omega$, soit Q_{ω} l'idéal premier correspondant de N.
 - (i) Pour tout $\omega \in \Omega$, $P_{\omega} = MQ_{\omega}$ est l'idéal bilatère de M engendré par Q_{ω} .
 - (ii) Soit P_{ω}' la racine de P_{ω} . On a $\bigcap_{\omega \in \Omega'} P_{\omega'} = 0$.
- (iii) Il existe une partie Ω'' de Ω' et un entier q possédant les propriétés suivantes: (a) $\bigcup_{\omega \in \Omega''} \omega$ n'est pas maigre dans $V(I, \mathfrak{k})$; (b) pour tout $\omega \in \Omega''$, le nombre des idéaux premiers minimaux de M contenant P_{ω} est q.

(Rappelons qu'une partie de $V(I, \mathfrak{f})$ est maigre si elle est contenue dans la réunion d'une suite de parties fermées distinctes de $V(I, \mathfrak{f})$.)

- (a) L'ensemble P_{ω} est un idéal à gauche de M, stable pour l'action adjointe de g dans M (car Q_{ω} est G-invariant), d'où (i).
- (b) Il existe un entier $n(\omega)$ tel que $P'^{n(\omega)}_{\omega} \subset P_{\omega}$. Soit Ω'_n l'ensemble des $\omega \in \Omega'$ tels que $n(\omega) = n$. Alors $\Omega' = \Omega'_1 \cup \Omega'_2 \cup \cdots$. Il existe un n tel que $\bigcup_{\omega \in \Omega'_n} \omega$ ne soit pas maigre dans $V(I, \mathfrak{f})$. Remplaçant Ω' par Ω'_n , on peut supposer désormais que $n(\omega) = n$ pour tout $\omega \in \Omega'$.
- (c) Soient f et $(x_{\lambda})_{\lambda \in \Lambda}$ comme en 3.7. En diminuant Ω' , on peut supposer que $f \notin Q_{\omega}$ pour tout $\omega \in \Omega'$. Si $x \in \bigcap_{\omega \in \Omega'} (Q_{\omega})_f$, il existe $p \in \mathbb{N}$ tel que $xf^p \in N$, d'où

$$xf^{p} \in \bigcap_{\omega \in \Omega'} ((Q_{\omega})_{f} \cap N) = \bigcap_{\omega \in \Omega'} Q_{\omega} = 0,$$

d'où x=0; ainsi, $\bigcap_{\omega\in\Omega'}(Q_{\omega})_f=0$. Or

$$(P_{\omega})_f = M_f(Q_{\omega})_f = \bigoplus_{\lambda \in \Lambda} x_{\lambda} N_f(Q_{\omega})_f = \bigoplus_{\lambda \in \Lambda} x_{\lambda}(Q_{\omega})_f$$

d'où $\bigcap_{\omega \in \Omega'} (P_{\omega})_f = 0$. Alors

$$\left(\bigcap_{\omega\in\Omega'}{P'}_{\omega}\right)^{n}\subset\bigcap_{\omega\in\Omega'}{(P'}_{\omega})^{n}\subset\bigcap_{\omega\in\Omega'}{P}_{\omega}\subset\bigcap_{\omega\in\Omega'}{(P}_{\omega})_{f}=0$$

et par suite $\bigcap_{\omega \in \Omega'} P'_{\omega} = 0$ puisque I est premier.

(d) L'assertion (iii) se démontre comme le (b) ci-dessus.

6. Démonstration de $B_{n-1} \Rightarrow B_n$

- **6.1.** Dans ce chapitre, on suppose B_{n-1} vrai, donc A_n vrai, et dim $\mathfrak{g} = n$. Soient $I, \mathscr{P}, (\mathscr{P}_i)$ comme dans le théorème B.
- 6.2. Soient n le plus grand idéal nilpotent de g, c le centre de n. Dans 6.2, on suppose que n est une algèbre de Heisenberg, que c est central dans g, que $I \cap c = 0$ et $I \cap U(c) \neq 0$. Etablissons le théorème B dans ce cas.

On a dim $\mathfrak{c}=1$. Soit $z\in\mathfrak{c}-\{0\}$. L'idéal $I\cap U(\mathfrak{c})$ de $U(\mathfrak{c})$ est premier non nul, et ne contient pas \mathfrak{c} . Donc, en multipliant z par un scalaire, on peut supposer que $z-1\in I$. L'idéal (z-1) $U(\mathfrak{n})$ est maximal dans $U(\mathfrak{n})$, donc $I\cap U(\mathfrak{n})=(z-1)$ $U(\mathfrak{n})$. Posons $A=U(\mathfrak{n})/(z-1)$ $U(\mathfrak{n})$; c'est une algèbre de Weyl.

Soit $f \in \mathfrak{n}^*$ tel que f(z) = 1. Soit \mathfrak{g}' l'ensemble des $x \in \mathfrak{g}$ tels que $f([x,\mathfrak{n}]) = 0$ (c'est-à-dire $[x, \operatorname{Ker} f] \subset \operatorname{Ker} f$). Alors \mathfrak{g}' est une sous-algèbre de $\mathfrak{g}, \mathfrak{g}' \cap \mathfrak{n} = \mathfrak{c}$, et $\mathfrak{g}' + \mathfrak{n} = \mathfrak{g}$ [6, lemme 1]. Soit \mathfrak{s} l'ensemble des dérivations de \mathfrak{n} qui laissent stable $\operatorname{Ker} f$ et s'annulent sur \mathfrak{c} (donc définissent des dérivations de A). D'après [9, 4.6.9] il existe un homomorphisme φ de \mathfrak{s} dans A tel que, pour tout $s \in \mathfrak{s}$, la dérivation de A définie par s soit égale à $\operatorname{ad}_A \varphi(s)$. D'autre part, la représentation adjointe de \mathfrak{g} définit un homomorphisme de \mathfrak{g}' dans \mathfrak{s} . Il existe donc un homorphisme θ de \mathfrak{g}' dans A tel que, pour tout $v \in \mathfrak{g}'$, $\theta(x)$ et l'image \bar{x} de x dans $U(\mathfrak{g})/I$ définissent la même dérivation de A.

Alors $x \mapsto \bar{x} - \theta(x)$ est un homomorphisme η de g' dans $U(\mathfrak{g})/I$. L'algèbre $U(\mathfrak{g})/I$ est engendré par A et $\eta(\mathfrak{g}')$, et A commute à $\eta(\mathfrak{g}')$. Donc, si W désigne la sous-algèbre de $U(\mathfrak{g})/I$ engendrée par $\eta(\mathfrak{g}')$, l'algèbre $U(\mathfrak{g})/I$ s'identifie à l'algèbre $W \otimes A$ [9, 4.6.7].

Si dim n = 1, on a n = c, donc le radical de g est nilpotent et par suite égal à n, donc g est réductive et le théorème B résulte de 5.2.

Supposons dim $\mathfrak{n}>1$. Alors dim $\mathfrak{g}'<$ dim \mathfrak{g} donc B_{n-1} s'applique à \mathfrak{g}' . Or W est un quotient de $U(\mathfrak{g}')$, et l'algèbre W est première puisque $W\otimes A$ est première. Soit \mathscr{Q} l'ensemble des idéaux primitifs de W. Si $Q\in\mathscr{Q}, Q\otimes A$ est un idéal primitif de $W\otimes A=U(\mathfrak{g})/I$, donc son image réciproque $\lambda(Q)$ dans $U(\mathfrak{g})$ appartient à \mathscr{P} . Soit \mathscr{Q}_j l'ensemble des $Q\in\mathscr{Q}$ tels que $\lambda(Q)\in\mathscr{P}_j$. Alors $\mathscr{Q}=\mathscr{Q}_1\cup\mathscr{Q}_2\cup\cdots$. D'après B_{n-1} , il existe r tel que $\bigcap_{Q\in\mathscr{Q}_r}Q=0$. Alors $\bigcap_{Q\in\mathscr{Q}_r}\lambda(Q)=I$ et a fortiori $\bigcap_{P\in\mathscr{P}_r}P=I$.

6.3. Distinguons dans la suite trois cas. S'il existe dans g un idéal commutatif \mathfrak{f} de dimension ≥ 2 (premier cas), nous fixerons alors un tel \mathfrak{f} . Si tout idéal commutatif de g est de dimension ≤ 1 , le plus grand idéal nilpotent n de g est nul ou est une algèbre de Heisenberg [9, 4.6.2]; si n est une algèbre de Heisenberg (deuxième cas), nous noterons \mathfrak{f} le centre de n, qui est de dimension 1. Si $\mathfrak{n} = 0$ (troisième cas), g est semi-simple et le théorème B résulte de 5.2.

Limitons-nous désormais aux deux premiers cas, et posons $V = V(I, \mathfrak{k})$. On identifie V à une partie fermée irréductible de \mathfrak{k}^* . On raisonne par récurrence sur dim V.

6.4. Supposons dim V=0, donc V réduit à un point $f \in \mathfrak{k}^*$. Dans le premier cas de 6.3, on a $\mathfrak{k}'=I \cap \mathfrak{k} \neq 0$. L'hypothèse B_{n-1} s'applique à g/\mathfrak{k}' et I/\mathfrak{k}' U(g), d'où le théorème B pour g et I. Plaçons-nous dans le deuxième cas de 6.3. Si $[g,\mathfrak{k}] \neq 0$, le seul point G-invariant de \mathfrak{k}^* est 0, donc f=0. On a encore $I \cap \mathfrak{k} \neq 0$ et l'on termine comme ci-dessus. Supposons $[g,\mathfrak{k}]=0$. Puisque $V \neq \mathfrak{k}^*$, on a $I \cap U(\mathfrak{k}) \neq 0$. Si $I \cap \mathfrak{k} \neq 0$, on termine encore comme ci-dessus. Si $I \cap \mathfrak{k} = 0$, le théorème B est vrai pour g et I d'après 6.2.

Supposons désormais $d = \dim V > 0$, et le théorème B démontré quand dim V < d.

6.5. Dans 6.5, on suppose que V est l'adhérence d'une G-orbite ω . Soient $f \in \omega$, $\mathfrak{h} = \mathfrak{st}(f,\mathfrak{g})$. Comme d > 0, on a $\mathfrak{h} \neq \mathfrak{g}$.

Soient \mathscr{D}' l'ensemble des $P \in \mathscr{P}$ tels que $V(P, \mathfrak{f}) = V$, et $\mathscr{P}'' = \mathscr{P} - \mathscr{P}'$. Soit L l'idéal de $U(\mathfrak{f})$ correspondant à la sous-variété fermée $V - \omega$. Alors L contient strictement $I \cap U(\mathfrak{f})$. Pour tout $P \in \mathscr{P}''$, on a $P \supset L$; donc $\bigcap_{P \in \mathscr{P}''} P$ contient strictement I. Or

$$I = \bigcap_{P \in \mathscr{P}} P = \left(\bigcap_{P \in \mathscr{P}'} P\right) \cap \left(\bigcap_{P \in \mathscr{P}'} P\right).$$

Comme I est premier, on en déduit que $I = \bigcap_{P \in \mathscr{P}'} P$.

Si $P \in \mathscr{P}'$, il existe un idéal primitif Q_P de $U(\mathfrak{h})$ contenant Ker f (il s'agit du noyau de f dans $U(\mathfrak{k})$), et tel que $\operatorname{ind}(Q_P, \mathfrak{g}) = P$ (d'après A_n). Soit $J = \bigcap_{P \in \mathscr{P}'} Q_P$. Alors, d'après 3.3,

$$\operatorname{ind}(J,\mathfrak{g}) = \bigcap_{P \in \mathscr{P}'} \operatorname{ind}(Q_P,\mathfrak{g}) = \bigcap_{P \in \mathscr{P}'} P = I.$$

D'après 3.2, il existe un idéal premier J' de $U(\mathfrak{h})$ contenant J tel que ind $(J',\mathfrak{g})=I$. Pour tout $P\in \mathscr{P}'$, on a $Q_P\cap U(\mathfrak{k})=\mathrm{Ker}\,f$. Donc $J\cap U(\mathfrak{k})=\mathrm{Ker}\,f$, et par suite $J'\cap U(\mathfrak{k})=\mathrm{Ker}\,f$.

6.6. Dans 6.6, on suppose que V n'est pas l'adhérence d'une G-orbite. On applique le lemme 5.3, avec les mêmes notations et $\Omega' = \Omega$ (V est non maigre car k est non dénombrable). Pour $\omega \in \Omega''$, soient $P_{\omega 1}, ..., P_{\omega q}$ les images réciproques dans $U(\mathfrak{g})$ des idéaux premiers minimaux de M contenant P_{ω} . Soit $\mathscr{P}_{\omega i}$ l'ensemble des idéaux primitifs de $U(\mathfrak{g})$ contenant $P_{\omega i}$. Soit $\mathscr{P}_{\omega i} \cap \mathscr{P}_{j}$.

On a $\mathscr{P}_{\omega i}=\mathscr{P}_{\omega i1}\cup\mathscr{P}_{\omega i2}\cup\cdots$. Comme V n'est pas l'adhérence d'une G-orbite, on a dim $\omega<\dim V$ pour tout $\omega\in\Omega$. D'après l'hypothèse de récurrence, il existe un entier $r(\omega,i)$ tel que $\bigcap_{P\in\mathscr{S}_{\omega ir}(\omega,i)}P=P_{\omega i}$. Soit $\Omega_{s_1\cdots s_q}$ l'ensemble des $\omega\in\Omega''$ tels que $r(\omega,1)=s_1,\ldots,r(\omega,q)=s_q$. On a $\Omega''=\bigcup_{s_1\cdots s_q}\Omega_{s_1\cdots s_q}$. Il existe (s_1,\ldots,s_q) tel que $\Omega_{s_1\cdots s_q}$ soit non maigre dans V. Si $\omega\in\Omega_{s_1\cdots s_q}$, on a

$$\bigcap_{P\in\mathscr{I}_{\omega1_{s_1}}}P\cap\cdots\cap\bigcap_{P\in\mathscr{I}_{\omega \nmid s_q}}P=P_{\omega1}\cap\cdots\cap P_{\omega q}$$

donc, d'après 5.3(ii) appliqué avec $\varOmega' = \varOmega_{s_1 \cdots s_n}$,

$$\bigcap_{\omega \in \Omega_{s_1} \dots s_q} \left(\bigcap_{P \in \mathscr{S}_{\mathbf{W}1s_1}} P \cap \dots \cap \bigcap_{P \in \mathscr{S}_{\mathbf{W}qs_q}} P \right) = I.$$

Comme I est premier, on a par exemple

$$\bigcap_{\omega \in \Omega_{s_1 \cdots s_o}} \bigcap_{P \in \mathscr{P}_{\omega 1 s_s}} P = I$$

et a fortiori $\bigcap_{P \in \mathscr{P}_{g_1}} P = I$.

7. Application aux représentations des groupes de Lie

7.1. Soient G un groups de Lie réel connexe, g la complexification de son algèbre de Lie. Le groupe G opère dans g par la représentation adjointe, donc dans U(g), et tout idéal bilatère de U(g) est stable pour G. Soit I un idéal premier de U(g). Considérons la condition suivante:

Si $a, b \in U(\mathfrak{g})$ sont tels que g(a) $b \equiv g(b)a$ mod. I pour tout $g \in G$, alors a et b sont proportionnels modulo I.

Si cette condition est vérifiée, tout élément central dans Fract $(U(\mathfrak{g})/I)$ est scalaire, donc I est primitif d'après le théorème C.

7.2. Théorème. Soient E un espace de Banach complexe, G un groupe de Lie réel connexe, g la complexification de son algèbre de Lie, π une représentation continue de G dans E. On suppose que l'ensemble des combinaisons linéaires des $\pi(g)$, où g parcourt G, est fortement dense dans l'ensemble des endomorphismes continus de E (c'est le cas si E est hilbertien et π unitaire topologiquement irréductible). Soient $E_\infty \subset E$ l'espace des vecteurs indéfiniment dérivables pour π , π_∞ la représentation de U(g) dans E_∞ associée à π . Alors Ker π_∞ est un idéal primitif de U(g).

Soient $a, b \in U(\mathfrak{g})$ tels que g(a) $b \equiv g(b)a$ mod. Ker π_{∞} pour tout $g \in G$. D'après 7.1, il suffit de prouver que $\pi_{\infty}(a)$ et $\pi_{\infty}(b)$ sont proportionnels. Supposons le contraire. Il existe $\xi_0 \in E$ tel que $\pi_{\infty}(a)$ ξ_0 et $\pi_{\infty}(b)$ ξ_0 soient non proportionnels. Soit A l'algèbre des combinaisons linéaires formelles finies d'éléments de G à

coefficients complexes. La représentation π se prolonge en une représentation de A dans E, qu'on notera encore π . L'espace E_{∞} est stable pour $\pi(A)$.

Pour tout $g \in G$, on a

$$\pi_{\infty}(a) \ \pi(g) \ \pi_{\infty}(b) = \pi(g) \ \pi_{\infty}(g^{-1}(a)b) = \pi(g) \ \pi_{\infty}(g^{-1}(b)a) = \pi_{\infty}(b) \ \pi(g) \ \pi_{\infty}(a)$$

donc, pour tout $h \in A$,

$$\pi_{\infty}(a) \pi(h) \pi_{\infty}(b) = \pi_{\infty}(b) \pi(h) \pi_{\infty}(a). \tag{3}$$

Soit $\eta \in E_{\infty}$. D'après l'hypothèse du théorème, il existe h_1 , h_2 ,... $\in A$ tels que

$$\pi(h_n) \pi_{\infty}(a) \xi_0 \to \eta, \qquad \pi(h_n) \pi_{\infty}(b) \xi_0 \to 0.$$

Soit E' l'ensemble des vecteurs de Gårding dans le dual E^* de E pour la représentation contragrédiente de π . Il existe une représentation ρ de l'algèbre opposée à $U(\mathfrak{g})$ dans E' telle que $\langle \pi_{\alpha}(u) \xi, \xi' \rangle = \langle \xi, \rho(u) \xi' \rangle$ pour $u \in U(\mathfrak{g})$, $\xi \in E_{\infty}$, $\xi' \in E'$ [15, p. 256]. Soit $\zeta \in E'$. On a

$$\langle \pi_{\infty}(b) \pi(h_n) \pi_{\infty}(a) \xi_0, \zeta \rangle = \langle \pi(h_n) \pi_{\infty}(a) \xi_0, \rho(b) \zeta \rangle \rightarrow \langle \eta, \rho(b) \zeta \rangle$$

et de même

$$\langle \pi_{\infty}(a) \pi(h_n) \pi_{\infty}(b) \xi_0, \zeta \rangle \rightarrow 0.$$

Compte tenu de (3), on voit que $\langle \eta, \rho(b)\zeta \rangle = 0$, donc $\langle \pi_{\infty}(b) \eta, \zeta \rangle = 0$.

Comme E' est faiblement dense dans E^* , on en conclut que $\pi_{\infty}(b) \eta = 0$, d'où $\pi_{\infty}(b) = 0$, ce qui est absurde.

BIBLIOGRAPHIE

- W. Borho, P. Gabriel, et R. Rentschler, "Primideale in Einhüllenden auflösbarer Lie-Algebren," Lecture Notes in Mathematics, n

 357, Springer-Verlag, Berlin/ New York, 1973.
- W. BORHO ET J. C. JANTZEN, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Inventiones Math. 39 (1977), 1-53.
- N. Conze et M. Vergne, Idéaux primitifs des algèbres enveloppantes des algèbres de Lie résolubles, C. R. Acad. Sci. Paris 272 (1971), 985-988.
- J. DIXMIER, Représentations irréductibles des algèbres de Lie résolubles, J. Math. Pures Appl. 45 (1966), 1-66.
- J. DIXMIER, Sur les représentations induites des algèbres de Lie, J. Math. Pures Appl. 50 (1971), 1-24.
- J. DIXMIER, Polarisations dans les algèbres de Lie, Ann. Sci. École Norm. Sup. 4 (1971), 321-336.
- J. DIXMIER, Idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semisimple complexe, C. R. Acad. Sci. Paris 272 (1971), 1628-1630.
- J. DIXMIER, Sur les idéaux génériques dans les algèbres enveloppantes, Bull. Sci. Math. 96 (1972), 17-26.
- 9. J. DIXMIER, "Algèbres enveloppantes," Gauthier-Villars, Paris, 1974.

- J. DIXMIER, Sur le noyau infinitésimal d'une représentation unitaire d'un groupe résoluble, C. R. Acad. Sci. Paris 262 (1966), 483-486.
- 11. M. Duflo, Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple, Ann. Math. 105 (1977), 107-120.
- 12. HARISH-CHANDRA, Représentations of a semisimple Lie group on a Banach space, I, Trans. Amer. Math. Soc. 75 (1953), 185-243.
- 13. J. C. Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete Kontravariante Formen, Bonner Mathematische Schriften, 1973.
- W. S. MARTINDALE, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
- G. Warner, "Harmonic Analysis on Semi-Simple Lie Groups," Vol. I, Springer-Verlag, Berlin/Heidelberg/New York, 1972.