Neural Coding 2021

Eigenangles: evaluating the statistical similarity of neural network simulations via eigenvector angles

27.07.2021 | Robin Gutzen, Sonja Grün, Michael Denker

How to compare spiking network activity?

Characterization of the activity via

neuron-wise measures

(firing rate, inter-spike intervals, regularity,)

and statistical evaluation via

two sample tests

(Kolmogorov-Smirnov, Mann-Whitney U, effect size, ...)

form the basis for calibration and validation of models.

How to compare pairwise measures?

The interdependence of values in **pairwise measures** (e.g. Pearson correlation coefficient)

are ignored by standard two sample tests.

Instead, we compare the correlation structure via angels between eigenvectors

Random vectors in high dimensions

$$\phi = \arccos(\mathbf{v_1} \cdot \mathbf{v_2})$$

If an angle can be considered 'small' depends on the dimension

$$f(\phi) \propto \sin^{N-2}(\phi)$$
 $\phi \in [0, \pi]$

Cai et al. (2013)

Eigenvectors of random matrices behave like random vectors (dim >10)

A random correlation matrix can be created in the form

$$\mathbf{Y}_N = \mathbf{X}\mathbf{X}^T$$

where \mathbf{X} is a matrix with normalized random row vectors.

Homes (1991)

Distribution of angles between random (eigen-)vectors in \mathbb{R}^N

$$f(\phi) \propto \sin^{N-2}(\phi)$$
 $\phi \in [0, \pi]$

Define angle smallness as

$$\Delta = 1 - \frac{\phi}{\pi/2}$$

$$\tilde{f}(\Delta) \propto \cos^{N-2}(\Delta \cdot \pi/2)$$
 $\Delta \in [-1, 1]$

$$\Delta \in [-1, 1]$$

Eigenvalues indicate 'importance' of eigenvectors

$$h_{\alpha}(\lambda) = \frac{\alpha}{2\pi\lambda} \sqrt{(\lambda_{+} - \lambda) \cdot (\lambda - \lambda_{-})}$$
$$\lambda_{\pm} = \left(1 \pm \sqrt{\frac{1}{\alpha}}\right)^{2}$$

for random matrices of form

 $\mathbf{Y}_N = \mathbf{X}\mathbf{X}^T$ with \mathbf{X} in shape $(\alpha N) \times N$ with identically independent random entries, with 0 mean, $\sigma^2 < \infty$ and $N \to \infty$.

Random eigenvalue distribution

$$\lambda_{\pm} = \left(1 \pm \sqrt{\frac{1}{\alpha}}\right)^2$$

$$h_{\alpha}(\lambda) = \frac{\alpha}{2\pi\lambda} \sqrt{(\lambda_{+} - \lambda) \cdot (\lambda - \lambda_{-})}$$

Define weights as

$$w_i \propto \sqrt{(\lambda_{A,i}^2 + \lambda_{B,i}^2)/2} \qquad \sum w_i = N$$

 $\tilde{h}_{\alpha}(w) \sim h_{\alpha}(\lambda)$

Distribution of angles between random (eigen-)vectors in \mathbb{R}^N

$$f(\phi) \propto \sin^{N-2}(\phi)$$

$$\phi \in [0,\pi]$$

Define angle smallness as

$$\Delta = 1 - \frac{\phi}{\pi/2}$$

$$\hat{f}(\Delta) \propto \cos^{N-2}(\Delta \cdot \pi/2) \qquad \Delta \in [-1,1]$$

$$\Delta \in [-1,1]$$

Random eigenvalue distribution

$$\lambda_{\pm} = \left(1 \pm \sqrt{\frac{1}{\alpha}}\right)^2$$

$$h_{\alpha}(\lambda) = \frac{\alpha}{2\pi\lambda} \sqrt{(\lambda_{+} - \lambda) \cdot (\lambda - \lambda_{-})}$$
 $\tilde{h}_{\alpha}(w) \sim h_{\alpha}(\lambda)$

Define weights as

$$w_i \propto \sqrt{(\lambda_{A,i}^2 + \lambda_{B,i}^2)/2} \quad \sum w_i = N$$

$$\tilde{h}_{\alpha}(w) \sim h_{\alpha}(\lambda)$$

Weighted angle smallness

$$g_{N,\alpha}(w\Delta) = \int_{\lambda_{-}}^{\lambda_{+}} \tilde{f}_{N}(\frac{\Delta}{\lambda}) \cdot h_{\alpha}(\lambda) \cdot \frac{d\lambda}{\lambda}$$

Weighted angle smallness

$$g_{N,\alpha}(w\Delta) = \int_{\lambda_{-}}^{\lambda_{+}} \tilde{f}_{N}(\frac{\Delta}{\lambda}) \cdot h_{\alpha}(\lambda) \cdot \frac{d\lambda}{\lambda}$$

Similarity score

$$\eta = \frac{1}{N} \sum_{i}^{N} w_i \cdot \Delta_i$$

$$p(\eta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{\eta^2}{2\sigma^2})$$

$$\sigma^2 = \frac{1}{N} \int x^2 \cdot g_{N,\alpha}(x) \ dx$$

Null Hypothesis

Given two independent matrices A and B of type $\mathbf{Y}_N = \mathbf{X}\mathbf{X}^T$, where \mathbf{X} is a $(\alpha N) \times N$ random matrix whose entries are independent identically distributed random variables with mean 0, variance $\sigma^2 < \infty$ and $N \to \infty$.

$$P = \int_{n}^{\infty} p(x)dx$$

Evaluating the Eigenangle test (i)

Evaluating the Eigenangle test (ii)

clustered correlation 10^{3} pairwise correlation 10² 101-100 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.40 correlation coefficient

Eigenangle: p-value = 0.360 -> dissimilar

KS-distance: p-value = 0.766 -> similar

Evaluating the Eigenangle test (ii)

Eigenangle: p-value ~ 10e-15 -> similar

KS-distance: p-value ~ 0.0 -> dissimilar

Extension to asymmetric connectivity matrices

PRL 97, 188104 (2006)

PHYSICAL REVIEW LETTERS

week ending 3 NOVEMBER 2006

Eigenvalue Spectra of Random Matrices for Neural Networks

Kanaka Rajan and L. F. Abbott

- fN exc.; (1-f)N inh.
- exc. weights with μ_E ; $\sigma_E^2 = \frac{1}{N}$
- inh. weights with μ_I ; $\sigma_I^2 = \frac{1}{\alpha N}$
- balanced state: $f\mu_E + (1-f)\mu_I = 0$

Eigenspectra of connectivity matrices

Eigenspectra of connectivity matrices

The angles between eigenvectors of matrices can detect & quantify the similarity of the correlation structures in neural network activity.

Outlook

- exploring the influence of network architectures to eigenangles
- testing to lift the limitation of neuron identities by ordering
- application to use cases (model calibration, ephys experiments)
- integration of the eigenangle test into the NetworkUnit package (v0.2)

Thank you for your interest!

Neural Coding 2021

Eigenangles: evaluating the statistical similarity of neural network simulations via eigenvector angles

27.07.2021 | Robin Gutzen, Sonja Grün, Michael Denker

