§ 5.2 拉格朗日(Lagrange)插值

§ 5.2.1 Lagrange插值多项式

采用解线性方程组的方法确定系数每次都要重新求解,使用不方便。

设
$$p_{n+1}(x) = \prod_{i=0}^{n} (x - x_i),$$
 有 $p'_{n+1}(x_j) = \prod_{i=0, i \neq j}^{n} (x_j - x_i)$

记n次多项式:

$$l_{j}(x) = \frac{(x - x_{0})(x - x_{1})...(x - x_{j-1})(x - x_{j+1})...(x - x_{n})}{(x_{j} - x_{0})(x_{j} - x_{1})...(x_{j} - x_{j-1})(x_{j} - x_{j+1})...(x_{j} - x_{n})}$$

$$l_j(x) = \frac{p_{n+1}(x)}{(x-x_j)p'_{n+1}(x_j)}, \quad j = 0,1,2,...,n$$

显然有:
$$l_j(x_k) = \delta_{j,k} = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

满足插值条件 $y(x_i) = f(x_i)$ 的形如

$$y(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$
的Lagrange插值多项式为:

$$y(x) = \sum_{j=0}^{n} f(x_j) l_j(x)$$
 $l_j(x)$ 称为插值基函数

被插值函数可表示为:

$$f(x) = \sum_{j=0}^{n} f(x_j) l_j(x) + E(x)$$
 E(x)为余项

定理5.2 设f(x)在[a,b]上存在n阶连续导数,在(a,b)上存在n+1阶导数,y(x)是满足插值条件的Lagrange插值多项式,对任意a<x<b,插值余项E(x)为:

$$E(x) = \frac{f^{n+1}(\xi)}{(n+1)!} p_{n+1}(x)$$

设
$$E(x) = f(x) - y(x) = k(x)p_{n+1}(x)$$

构造函数 $F(z) = f(z) - y(z) - k(x)p_{n+1}(z)$
当 $z = x_0, x_1, ..., x_n$ 及 $z = x$ 时有 $F(z) = 0$,即 $F(z)$ 在 $[a,b]$ 上存在 $n + 2$ 个零点。递推利用 $Rolle$ 定理,可知 $F^{n+1}(z)$ 在 $[a,b]$ 上至少存在一个零点。

$$0 = F^{(n+1)}(\xi) = f^{(n+1)}(\xi) - k(x)(n+1)!$$

$$k(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

$$E(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} p_{n+1}(x)$$

$$\diamondsuit \overline{M}_{n+1} = \max_{a \le x \le b} |f^{(n+1)}(x)|$$

结论:

(1)当f(x)为次数不超过n的多项式时,有

$$y(x) = \sum_{j=0}^{n} f(x_j) l_j(x) \equiv f(x)$$

(2)由f(x) =1可得

$$\sum_{j=0}^{n} l_j(x) \equiv 1$$

(1)当n=1时

图 5.3 过(x₀,f(x₀))的直线

图 5.4 过(x1,f(x1))的直线

2)当n=2时,

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

满足:
$$l_j(x_k) = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}$$

图 5.5 基函数 lo(x)

基函数 l2(x)

例5.1 已知3个节点的观察数据,求拉格朗日插 值多项式。

X	-1	0	1
f(x)	1.0	-2.0	1.0

$$y(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0)$$

$$+ \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1)$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

$$= 3x^2 - 2$$

例5.2 设f(x)=ln(x),且已知4个节点值,试估计ln(0.6)的值。

X	0.4	0.5	0.7	0.8
ln(x)	-0.91629	-0.693147	-0.356675	-0.223144

$$l_0(0.6) = -1/6$$
, $l_1(0.6) = 2/3$,

$$l_2(0.6) = 2/3$$
, $l_3(0.6) = 0.8$

$$\ln(0.6) = \sum_{i=0}^{3} f(x_i) l_i(0.6) = -0.509975$$

真值
$$\ln(0.6) = -0.510826$$

例5.3 设 x_i 是互异的插值节点j=(0,1,2,...,n),求证:

$$(1)\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k} \qquad (2)\sum_{j=0}^{n} (x_{j} - x)^{k} l_{j}(x) \equiv 0$$

(1)设 $f(x) = x^k$,拉格朗日插值多项式为:

$$y(x) = \sum_{j=0}^{n} x_j^k l_j(x) \quad E(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} p_{n+1}(x)$$

$$\therefore f^{(n+1)}(x) \equiv 0$$

$$\therefore E(x) = 0, \quad \sum_{j=0}^{n} x_j^k l_j(x) \equiv x^k$$

$$(2)(x_{j} - x)^{k} = \sum_{i=0}^{k} (-1)^{k-1} \binom{k}{i} x_{j}^{i} x^{k-i}$$

$$\sum_{j=0}^{n} (x_{j} - x)^{k} l_{j}(x) = \sum_{j=0}^{n} \left[\sum_{i=0}^{k} (-1)^{k-1} \binom{k}{i} x_{j}^{i} x^{k-i} \right] l_{j}(x)$$

$$= \sum_{i=0}^{k} (-1)^{k-1} \binom{k}{i} x^{k-i} \sum_{j=0}^{n} x_{j}^{i} l_{j}(x) = \sum_{i=0}^{k} (-1)^{k-1} \binom{k}{i} x^{k-i} x^{i}$$

$$= (x - x)^{k} \equiv 0$$

拉格朗日插值公式:

$$y(x) = \sum_{j=0}^{n} \frac{p_{n+1}(x)}{(x - x_j) p'_{n+1}(x_j)} f(x_j)$$

$$y(x) = \sum_{j=0}^{n} \left[\prod_{\substack{k=0\\k\neq j}}^{n} \frac{x - x_k}{x_j - x_k} \right] f(x_j)$$

§ 5.2.2 高次插值多项式的问题

插值多项式的阶数是否越高越好?

Runge对函数
$$f(x) = \frac{1}{1+x^2} (-5 \le x \le 5)$$
取等距差值节点

$$x_k = -5 + kh$$
 $(h = \frac{10}{n}, k = 0, 1, ..., n)$

作Lagrange插值多项式:

$$L_n(x) = \sum_{k=0}^{n} \left(\prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i} \right) \cdot \frac{1}{1 + x_k^2}$$

在接近区间端点时, L₁₀(x)与f(x)偏离很大!

$$L_{10}(\pm 4.8)=1.80438$$

插值多项式不收敛现象称为Runge现象解决方法之一:分段插值。

§ 5.3 分段插值法

§ 5.3.1 分段线性Lagrange插值

相邻节点分段线性插值:

$$L_h^{(k)}(x) = y_k \frac{x - x_{k+1}}{x_k - x_{k+1}} + y_{k+1} \frac{x - x_k}{x_{k+1} - x_k}$$

$$R_{l}(x) = f(x) - L_{h}(x) = f(x) - L_{h}^{(k)}(x)$$
$$= f''(\xi) / 2 \cdot (x - x_{k})(x - x_{k+1})$$

$$M_2 = \max_{a \le x \le b} |f''(x)|, \quad h = \max_{0 \le k \le n-1} (x_{k+1} - x_k)$$

不失一般性,以 $x_k=0,h=1$ 为例:

$$(x-x_k)(x-x_{k+1}) = x^2 - x < 0$$

$$(x-\frac{1}{2})^2 \ge 0 \implies x^2 - x \ge -\frac{1}{4} \implies |x^2 - x| \le \frac{1}{4}$$

$$\max_{a \le x \le b} |R_1(x)| \le \frac{M_2}{2} \max_{a \le x \le b} |(x - x_k)(x - x_{k+1})| \le \frac{M_2}{8} h^2$$

§ 5.3.2 分段二次Lagrange插值

$$u \in [x_k, x_{k+1}]$$

当
$$|u-x_k|$$
与 $u-x_{k+1}$ |时,取 x_{k-1} ,否则取 x_{k+2}

$$L_h^{(k)}(u) = \sum_{j=k}^{k+2} y_j \left(\prod_{\substack{r=k \ r \neq j}}^{k+2} \frac{u - x_r}{x_j - x_r} \right)$$

例5.4 给出y=f(x)的数据如下:

I	0	1	2	3	4	5
$\mathbf{x}_{\mathbf{i}}$	0.30	0.40	0.55	0.65	0.80	1.05
y_i	0. 30163	0. 41075	0. 57815	0. 69675	0. 87335	1. 18885

用分段二次插值多项式计算f(x)在x=0.36, 0.42, 0.75, 0.98处的近似值。

(1) x=0.36, 0.42时选择前三个点:

$$L_h(u) = \sum_{j=0}^{2} y_j \left(\prod_{\substack{r=0 \ r \neq j}}^{2} \frac{u - x_r}{x_j - x_r} \right)$$

$$f(0.36) = 0.3669$$
, $f(0.42) = 0.4328$

x=0.75, 0.98时选择后三个点:

$$L_{h}(u) = \sum_{j=3}^{5} y_{j} \left(\prod_{\substack{r=3 \ r \neq j}}^{5} \frac{u - x_{r}}{x_{j} - x_{r}} \right)$$

$$f(0.75) = 0.8134, \quad f(0.98) = 1.0978$$

§ 5.4 牛顿插值法

设已知函数f(x)在n+1个节点 $x_0, x_1, ...x_n$ 的函数值, 牛顿插值**基函数**为:

$$\begin{cases} \varphi_0(x) = 1 \\ \varphi_j(x) = (x - x_0)(x - x_1)...(x - x_{j-1}) = \prod_{i=0}^{j-1} (x - x_i) \end{cases}$$

$$p_n(x) = \sum_{j=0}^n a_j \varphi_j(x) = a_0 + \sum_{j=1}^n a_j \prod_{k=0}^{j-1} (x - x_k)$$

$$a_0 = f_0, \quad a_1 = \frac{f_1 - f_0}{x_1 - x_0}, \quad a_2 = \left(\frac{f_2 - f_0}{x_2 - x_0} - \frac{f_1 - f_0}{x_1 - x_0}\right) / (x_2 - x_1)$$

§ 5.4.1 均差

定义5.1设f(x)在互异的节点 $x_0, x_1, ...x_n$ 的函数值为 $f_0, f_1, ...f_n$,则f(x)关于 x_k, x_i 的一阶均差(差商)定义为:

$$f[x_i, x_k] = \frac{f_k - f_i}{x_k - x_i} (k \neq i)$$

二阶均差:

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_k] - f[x_i, x_j]}{x_k - x_j}$$

k阶均差:

$$f[x_0, x_1, ..., x_{k-1}, x_k] = \frac{f[x_0, x_1, ..., x_{k-2}, x_k] - f[x_0, x_1, ..., x_{k-1}]}{x_k - x_{k-1}}$$

数学归纳法可证明:

$$f[x_0, x_1, ..., x_k] = \sum_{j=0}^k f(x_j) \prod_{\substack{i=0\\i\neq j}}^k \frac{1}{x_j - x_i}$$

对称性:

$$f[x_0,...,x_i,...,x_j,...,x_k] = f[x_0,...,x_j,...,x_i,...,x_k]$$

递推计算公式:

$$f[x_0, x_1, ..., x_k] = \frac{f[x_1, ..., x_k] - f[x_0, ..., x_{k-1}]}{x_k - x_0}$$

表 5-1 均差表

x_k	$f(x_k)$	$f[x_k,x_{k+1}]$	$f[x_k,x_{k+1},x_{k+2}]$	$f[x_k,x_{k+1},x_{k+2},x_{k+3}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}, x_{k+4}]$
<i>x</i> ₀	f_0	4		1 - 1	
x_1	f_1	$f[x_0,x_1]$	$f[x_0,x_1,x_2]$	Region A Long is	
		$f[x_1,x_2]$		$f[x_0, x_1, x_2, x_3]$	
x_2	f_2		$f[x_1,x_2,x_3]$		$f[x_0, x_1, x_2, x_3, x_4]$
		$f[x_2,x_3]$		$f[x_1,x_2,x_3,x_4]$	1 - 4 - 1 - 2 - 2 - 5
x_3	f_3		$f[x_2,x_3,x_4]$		
		$f[x_3,x_4]$			
x_4	f_4				

§ 5.4.2 牛顿插值公式及其余项

由一阶均差定义可得:

$$f(x) = f(x_0) + f[x, x_0](x - x_0)$$

由k+1阶均差可得:

$$f[x, x_0, ..., x_k] = \frac{f[x, x_0, ..., x_{k-1}] - f[x_0, x_1, ..., x_k]}{x - x_k}$$

$$f[x, x_0, ..., x_{k-1}] = f[x_0, x_1, ..., x_k] + f[x, x_0, ..., x_k](x - x_k)$$

递推可得:

$$f(x) = f(x_0) + \{f[x_0, x_1] + f[x, x_0, x_1](x - x_1)\}(x - x_0)$$

$$= f(x_0) + f[x_0, x_1](x - x_0) + f[x, x_0, x_1](x - x_1)(x - x_0)$$

$$= f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2] \prod_{j=0}^{n} (x - x_j) + \dots$$

$$+ f[x_0, x_1, \dots, x_n] \prod_{j=0}^{n-1} (x - x_j) + f[x, x_0, \dots, x_n] \prod_{j=0}^{n} (x - x_j)$$

$$f(x) = f(x_0) + \sum_{k=1}^{n} f[x_0, x_1, ..., x_k] \prod_{j=0}^{k-1} (x - x_j)$$

+
$$f[x, x_0, ..., x_n] \prod_{j=0}^{n} (x - x_j) = N_n(x) + R_n(x)$$

插值多项式:

$$N_n(x) = f(x_0) + \sum_{k=1}^n f[x_0, x_1, ..., x_k] \prod_{j=0}^{k-1} (x - x_j)$$

插值余项:

$$R_n(x) = f[x, x_0, ..., x_n] \prod_{j=0}^n (x - x_j)$$

由于:

$$R_n(x_i) = f[x_i, x_0, ..., x_n] \prod_{j=0}^n (x_i - x_j) = 0$$

 $i = 0, 1, ..., n$ 时有: $N_n(x_i) = f(x_i)$

由于插值多项式的唯一性, 因此:

$$N_n(x) = L_n(x) \qquad R_n(x) = E(x)$$

$$R_n(x) = E(x)$$

若f(x)在[a,b]存在n+1阶导数,则余项:

$$R_n(x) = f[x, x_0, ..., x_n] p_{n+1}(x) = E(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} p_{n+1}(x)$$

均差与导数关系:

$$f[x, x_0, ..., x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!} \quad \xi \in (a, b)$$

考虑到x的任意性,有:

$$f[x_0,...,x_k] = \frac{f^{(k)}(\xi)}{k!} \quad \xi \in (a,b)$$

当k阶均差接过于常数时,近似误差估计:

$$R_k(x) = f(x) - N_k(x) \approx f[x_0, x_1, ..., x_{k+1}] \prod_{j=0}^{k} (x - x_j)$$

例5.5 给出y=f(x)的数据如下:

Xi	1	2	4	6	7
$f(x_i)$	4	1	0	1	1

i	Xi	$f(x_i)$	$f[x_o, x_i]$	$f[x_0, x_1, x_i]$	$f[x_0, x_1, x_2, xi]$	•••
0	1	4				
1	2	1	-3			
2	4	0	-4/3	5/6		
3	6	1	-3/5	3/5	-7/60	
4	7	1	-1/2	1/2	-1/9	1/180

$$f[x_0, x_1, ..., x_{k-1}, x_k] = \frac{f[x_0, x_1, ..., x_{k-2}, x_k] - f[x_0, x_1, ..., x_{k-1}]}{x_k - x_{k-1}}$$

$$N_n(x) = f(x_0) + \sum_{k=1}^n f[x_0, x_1, ..., x_k] \prod_{j=0}^{k-1} (x - x_j)$$

插值多项式:

$$N_4(x) = 4 - 3(x - 1) + \frac{5}{6}(x - 1)(x - 2) - \frac{7}{60}(x - 1)(x - 2)(x - 4) + \frac{1}{180}(x - 1)(x - 2)(x - 4)(x - 6)$$

插值余项:

$$f(x) - N_4(x) = \frac{f^{(5)}(\xi)}{5!} (x-1)(x-2)(x-4)(x-6)(x-7)$$

$$\xi \in (\min(x,1), \max(x,7))$$