Um Convite à Matemática com técnicas de demonstração e notas históricas

Daniel Cordeiro de Morais Filho

Sumário

Prefacio			ХÌ
1	As 1	notações matemáticas	1
	1.1	Para que servem as notações matemáticas?	2
	1.2	Algumas notações mais utilizadas	4
	1.3	Alguns fatos sobre as notações	6
		1.3.1 O alfabeto grego	6
		1.3.2 Fatos importantes sobre o uso de certas notações	7
		1.3.3 *Como representar o infinito	9
		1.3.4 A diferença entre expressões indeterminadas e expressões	
		impossíveis	10
		1.3.5 *Curiosidades sobre o número π	13
	1.4	*Uma viagem pelas notações do passado	15
		1.4.1 Curiosidade: como surgiu o símbolo de igualdade	16
		1.4.2 Outros episódios da história das notações	17
	1.5	Problemas envolvendo raciocínio lógico - I	19
2	Con	no se expressa um fato matemático: um pouco de Lógica	21
	2.1	Sentenças, sentenças abertas e quantificadores	21
		2.1.1 Os quantificadores universal e existencial	25
		2.1.2 A linguagem de conjuntos e a Lógica	27
		2.1.3 *Curiosidade: os paradoxos lógicos	33
	2.2	Conectivos e proposições compostas (O Cálculo Proposicional)	36
	2.3	Problemas envolvendo raciocínio lógico - II	41
3	Mai	is um pouco de Lógica Matemática	43
	3.1	Tabelas-verdade	43

	3.2	3.2.1 **Sentenças condicionais e implicativas na Lógica Formal	44		
	3.3	Argumentos	49		
4	Son	tenças condicionais e implicativas. Condições necessárias e sufi-			
	cien	•	53		
	4.1	Sentenças condicionais	53		
	4.2	Sentenças implicativas	57		
	4.3	Sentenças condicionais, implicativas e a linguagem de conjuntos .	58		
	4.4	*Curiosidade: a verdade das premissas	61		
	4.5	Duas notações que se costumam confundir	62		
	4.6	Condição necessária e condição suficiente	64		
5	Se vale a ida, vale a volta? A recíproca de uma sentença 6				
	5.1	A recíproca de uma sentença	69		
	5.2	Sentenças equivalentes	71		
		5.2.1 A importância da equivalência de sentenças	73		
	5.3	Um exemplo de como usar a recíproca de uma sentença	74		
	5.4	**A bicondicional	78		
6	Des	vendando os teoremas - Parte I	79		
	6.1	O que é um teorema? (Hipótese e tese)	79		
		6.1.1 *Curiosidade: famosos e apaixonados por Matemática	87		
7	Des	vendando os teoremas - Parte II	89		
	7.1	Mais tipos de teorema	89		
	7.2	A generalização de um teorema	92		
	7.3	A família dos teoremas	95		
		7.3.1 Teoremas de existência e unicidade	98		
8	Des	·	101		
	8.1	O que é uma definição matemática?			
		8.1.1 Definições equivalentes	111		
9	Mod	· · · · · · · · · · · · · · · · · · ·	115		
	9.1	Noções primitivas e axiomas			
	9.2	O modelo axiomático			
		9.2.1 Mais algumas palavras sobre modelos axiomáticos			
		9.2.2 Axiomatização da adição de números reais			
		9.2.3 *Curiosidade: o modelo axiomático em outras áreas			
	0.3	Convenções matemáticas	120		

10	•	35		
	10.1 Conjecturas e contraexemplos			
	10.1.1 Demonstrações usando contraexemplo			
	10.1.2 *Curiosidade: a perfeição do conjunto vazio 14			
	10.2 Problemas envolvendo raciocínio lógico - III	42		
11	Desvendando as demonstrações 14	45		
	11.1 O que é uma demonstração? (O raciocínio dedutivo) 14			
	11.2 Exemplo motivador da estrutura lógica de uma demonstração 14	46		
	11.3 Definição de demonstração	49		
12	*Estratégias para demonstrar um resultado matemático 1:	55		
	12.1 A redação de uma demonstração	57		
	12.2 O que fazer para demonstrar um teorema?	57		
	12.3 Pausa para uma observação pertinente	59		
13	Técnicas de demonstração	61		
	13.1 Introdução	61		
	13.2 As técnicas mais simples de demonstração	62		
	13.3 Demonstrações utilizando a forma de representar um número 1	64		
14	Quando é necessário saber negar (aprendendo a negar na Matemática) 171			
	14.1 Negação de sentenças envolvendo quantificadores			
	14.2 A negação de uma sentença condicional			
	14.3 Resumo da negação de sentenças			
	14.4 Método para negar sentenças com mais de um quantificador 1	77		
15	Um pouco mais de Lógica. As demonstrações por casos 1	81		
	15.1 *Tautologias			
	15.1.1 *Curiosidade: um papo tautológico	82		
	15.2 Absurdos, contradições	82		
	15.3 **Tabelas-resumo das Leis do Cálculo Proposicional 1	82		
	15.4 Demonstração de teoremas com hipóteses e teses especiais 1	84		
	15.4.1 Teoremas cuja hipótese é uma sentença disjuntiva.			
	As demonstrações por casos ou por exaustão	84		
	15.4.2 Teoremas cuja tese é uma sentença conjuntiva	85		
	15.4.3 Teoremas cuja tese é uma sentença disjuntiva	86		
16	O absurdo tem seu valor! As demonstrações por redução a um ab-			
		87		
	16.2 Redução a um absurdo	88		

	16.3 Demonstração direta <i>versus</i> demonstração por contradição	
	16.4 Quando usar a demonstração direta e quando usar a indireta?	194
17	Mais duas técnicas de demonstração	203
	17.1 Não perca a tese de vista. A técnica "de trás para frente"	203
	17.2 Uma outra técnica para demonstrar $H \Rightarrow (T_1 \text{ ou } T_2) \dots \dots$	
18	Absurdo, resultados de existência, de unicidade	207
	18.1 Demonstrações construtivas. O absurdo e os resultados de existênci	
	18.2 Demonstração por absurdo para demonstrar resultados de unicidade	
	18.3 Redução ao absurdo e as demonstrações gratuitas	210
19	Demonstrações usando a contrapositiva	213
	19.1 A contrapositiva de uma sentença	
	19.2 Redução a um absurdo <i>versus</i> demonstração usando a contrapositiv	a215
20	Demonstrações em um modelo axiomático: um pouco de abstração	
	20.1 Trabalhando com demonstrações em um modelo axiomático	219
21	Demonstrações com o auxílio de figuras	229
22	Demonstrações por Indução. O método indutivo e o método dedutiv	0235
	22.2 Princípio de Indução: o infinito dominado!	
	22.3 *Raciocínio indutivo, generalizações	243
23	Sofismas, o cuidado com os autoenganos e com os enganadores!	247
	23.1 *Sofismas	247
	23.2 Seção desafio final: descubra se é demonstração!	252
24	Resumo e tabela-resumo das técnicas de demonstração	255
	24.1 Resumo das técnicas de demonstração	
	24.2 Tabela-resumo das técnicas de demonstração	257
25	*Textos complementares de leitura	259
	25.1 Conjecturas e problemas em aberto mais socialmente famosos	
	25.1.1 O problema das quatro cores	
	25.1.2 Até os gênios se enganam	
	25.1.3 A sensação do século passado: o Último Teorema de Ferma	
	25.1.4 Curiosidade: coisas da Matemática	
	25.2 Alguns problemas em aberto de fácil entendimento	
	25.2.1 A Conjectura de Goldbach	
	25.2.2. Os primos gêmeos	-266

Ínc	Índice Remissivo					
Referências						
26 Respostas e sugestões p		oostas e sugestões para os exercícios	27 3			
	25.4	Algumas cômicas demonstrações	271			
		25.3.2 Curiosidade: uma palestra silenciosa				
		25.3.1 Dinheiro para quem resolver problemas matemáticos				
	25.3	Outros problemas em aberto	270			
		25.2.6 Números de Fermat	269			
		25.2.5 Números amigos	269			
		25.2.4 Os números de Mersenne	267			
		25.2.3 Números perfeitos	266			