Devoir à la maison n° 17

À rendre le 11 avril

Chemins auto-évitants NOE.

On appelle chemin auto-évitant NOE de longueur $n \ge 1$ tout n-uplet $w \in \{N, O, E\}^n$ tel que

$$\forall k \in \{1, \dots, n-1\}, (w_k, w_{k+1}) \notin \{(E, O); (O, E)\}$$
.

L'objectif de ce problème est de dénombrer les chemins auto-évitants NOE de longueur donnée, de deux manières différentes.

On pose $a_0 = 1$ et, pour tout entier n strictement positif, on appelle a_n le nombre de chemins auto-évitants NOE de longueur n distincts.

- 1) Déterminer a_1 et a_2 .
- 2) Montrer que, pour tout $n \ge 3$, on a $a_n = 2a_{n-1} + a_{n-2}$. On pourra distinguer trois catégories de chemins : ceux qui terminent par N, ceux qui terminent par NO et les autres.
- 3) En déduire une expression simple de a_n pour tout $n \in \mathbb{N}$.

Nous allons maintenant retrouver ce résultat par une méthode analytique, typique des méthodes de dénombrement analytique. Dans la suite de ce problème, on n'utilisera donc pas le résultat précédent.

On considère la fonction

$$f: x \mapsto \frac{1+x}{1-2x-x^2}.$$

- 4) Décomposer en éléments simples la fraction rationnelle $\frac{1+X}{1-2X-X^2}$.
- 5) Déterminer l'ensemble de définition de f et montrer que f admet un développement limité à tout ordre au voisinage de 0.

Dans toute la suite du problème, on notera (b_n) la suite vérifiant, pour tout $n \in \mathbb{N}$,

$$f(x) = \sum_{k=0}^{n} b_k x^k + o(x^n).$$

- 6) Montrer, sans la calculer, que la suite (b_n) vérifie la même relation de récurrence que la suite (a_n) et déterminer b_0 et b_1 .
- 7) Soit $\rho \in \mathbb{R}^*$ et $n \in \mathbb{N}$. Donner le développement limité de $x \mapsto \frac{1}{x+\rho}$ au voisinage de 0 et à l'ordre n.
- 8) En déduire la valeur de b_n pour tout $n \in \mathbb{N}$.
- 9) Retrouver grâce à cela l'expression de a_n trouvée à la question 3).
- 10) Préciser un équivalent de a_n quand n tend vers l'infini.

— FIN —