

Chapter 8: Relational Database Design

Database System Concepts, 6th Ed.

Edited by Radhika Sukapuram

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Testing for Dependency Preservation

- To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into $R_1, R_2, ..., R_n$ we apply the following test (with attribute closure done with respect to F)
 - result = α repeat

 for each R_i in the decomposition $t = (result \cap R_i)^+ \cap R_i$ $result = result \cup t$ until (result does not change)
 - If result contains all attributes in β, then the functional dependency
 α → β is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup ... \cup F_n)^+$

Example

- \square R = (A,B,C,D,G)
- Γ F = {A->B, B->C, A->D, D->G}
- □ Case: R1(A,B), R2(B,C,D), R3(D,G), Whether A->G?

Testing for BCNF

- \square To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
 - 1. compute α^+ (the attribute closure of α), and
 - 2. verify that it includes all attributes of R, that is, it is a superkey of R.

- □ **Simplified test**: To check if a relation schema *R* is in BCNF,
 - it suffices to check only the dependencies in the given set *F* for violation of BCNF, rather than checking all dependencies in *F*⁺.
 - If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F+ will cause a violation of BCNF either.

Testing for BCNF

- However, simplified test using only F is incorrect when testing a relation in a <u>decomposition</u> of R
 - □ Consider R = (A, B, C, D, E), with $F = \{A \rightarrow B, BC \rightarrow D\}$
 - ▶ Decompose R into $R_1 = (A,B)$ and $R_2 = (A,C,D,E)$
 - Neither of the dependencies in *F* contain only attributes from (*A*,*C*,*D*,*E*) so we might be mislead into thinking *R*₂ satisfies BCNF.
 - ▶ In fact, dependency $AC \rightarrow D$ in F^+ shows R_2 is not in BCNF.
 - So we need to check with all dependencies in F⁺ to check if a decomposition is in BCNF.

Easier: Testing Decomposition for BCNF

- \square To check if a relation R_i in a decomposition of R is in BCNF,
 - Either
 - ▶ Find F⁺
 - Find restriction of F to R_i (that is, all FDs in F⁺ that contain only attributes from R_i)
 - test R_i for BCNF with respect to the restriction of F to R_i
 - or use the original set of dependencies *F* that holds on *R*, but with the following test:
 - for every set of attributes $\alpha \subseteq R_i$, check that α^+ (the attribute closure of α under F)
 - » either includes no attribute of $R_{\bar{l}}$ α ,
 - » or includes all attributes of R_i .
 - If the condition is violated by some α in R_i , the dependency $\alpha \rightarrow (\alpha^+ \alpha) \cap R_i$ can be shown to hold on R_i , and R_i violates BCNF.

BCNF Decomposition Algorithm

```
result := {R};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency that

holds on R_i such that \alpha \to R_i is not in F^+,

and \alpha \cap \beta = \emptyset;

result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Note: each R_i is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

- R = (A, B, C) $F = \{B \rightarrow C, A \rightarrow B\}$ $Key = \{A\}$
- R is not in BCNF ($B \rightarrow C$ but B is not a superkey)
- $F+=\{B\rightarrow C, A\rightarrow B \ A\rightarrow C\}$
- $B \rightarrow C$ is an FD such that $B \rightarrow ABC$ is not in F+ and $B \cap C = \emptyset$
- So remove ABC, add AC and BC
- Decomposition
 - $R_1 = (B, C)$
 - $R_2 = (A,B)$

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
 - □ course_id→ title, dept_name, credits
 - □ building, room_number→capacity
 - □ course_id, sec_id, semester, year→building, room_number, time_slot_id
- A candidate key {course_id, sec_id, semester, year}.
- BCNF Decomposition:
 - □ course_id→ title, dept_name, credits holds
 - but course_id is not a superkey. class is not in BCNF
 - We replace class by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- course is in BCNF
 - How do we know this?
- □ building, room_number→capacity holds on class-1
 - □ but {building, room_number} is not a superkey for class-1.
 - We replace *class-1* by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

 $\begin{array}{c}
\square \quad R = (J, K, L) \\
F = \{JK \to L \\
L \to K\}
\end{array}$

Two candidate keys = JK and JL

- R is not in BCNF
- Any decomposition of R will fail to preserve

$$JK \rightarrow L$$

This implies that testing for $JK \rightarrow L$ requires a join

Third Normal Form: Motivation

- There are some situations where
 - BCNF is not dependency preserving, and
 - efficient checking for FD violation on updates is important
- Solution: define a weaker normal form, called Third Normal Form (3NF)
 - Allows some redundancy (with resultant problems; we will see examples later)
 - But functional dependencies can be checked on individual relations without computing a join.
 - There is always a lossless-join, dependency-preserving decomposition into 3NF.

Third Normal Form

A relation schema R is in third normal form (3NF) if for all:

$$\alpha \rightarrow \beta$$
 in F^+

at least one of the following holds:

- $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \square α is a superkey for R
- □ Each attribute *A* in β α is contained in a candidate key for *R*.

(**NOTE**: each attribute may be in a different candidate key)

- If a relation is in BCNF it is in 3NF
 - since in BCNF one of the first two conditions above must hold.
- The third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later).
- A relation in 3NF may have redundancies due to FDs

3NF Example

- □ Relation *dept_advisor*.
 - □ dept_advisor (s_ID, i_ID, dept_name) $F = \{s_ID, dept_name \rightarrow i_ID, i_ID \rightarrow dept_name\}$
 - Two candidate keys: s_ID, dept_name, and i_ID, s_ID
 - \square R is in 3NF
 - s_ID, dept_name → i_ID
 - s_ID, dept_name is a superkey
 - i_ID → dept_name
 - dept_name is contained in a candidate key

Redundancy in 3NF

- There is some redundancy in this schema
- Example of problems due to redundancy in 3NF

$$R = (J, K, L)$$
$$F = \{JK \to L, L \to K\}$$

J	L	K
j_1	<i>I</i> ₁	<i>k</i> ₁
j_2	<i>I</i> ₁	<i>k</i> ₁
j_3	<i>I</i> ₁	k_1
null	I_2	k_2

- \square repetition of information (e.g., the relationship l_1 , k_1)
 - (i_ID, dept_name)
- need to use null values (e.g., to represent the tuple l_2 , k_2 where there is no corresponding value for J)
 - Or do not represent this tuple at all

Testing for 3NF

- Optimization: Need to check only FDs in F, need not check all FDs in F⁺.
- Use attribute closure to check (for each dependency $\alpha \to \beta$) whether α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
 - this test is rather more expensive, since it involves finding candidate keys
 - testing for 3NF has been shown to be NP-hard
 - Interestingly, decomposition into third normal form (described shortly) can be done in polynomial time

3NF Decomposition Algorithm

```
Let F_c be a canonical cover for F;
   i := 0;
   for each functional dependency \alpha \to \beta in F_c do
     if none of the schemas R_i, 1 \le i \le i contains \alpha \beta
           then begin
                   i := i + 1:
                   R_i := \alpha \beta
              end
   if none of the schemas R_j, 1 \le j \le i contains a candidate key for R
     then begin
              i := i + 1;
              R_i:= any candidate key for R;
           end
   /* Optionally, remove redundant relations */
    repeat
   if any schema R_i is contained in another schema R_k
        then I^* delete R_i */
           R_j = R_i;
           i≟i-1:
   return (R_1, R_2, ..., R_i)
```


3NF Decomposition Algorithm (Cont.)

- Above algorithm ensures:
 - □ each relation schema *R_i* is in 3NF
 - decomposition is dependency preserving and lossless-join

3NF Decomposition: An Example

- Relation schema:
 - cust_banker_branch = (<u>customer_id, employee_id</u>, branch_name, type)
- ☐ The functional dependencies for this relation schema are:
 - customer_id, employee_id → branch_name, type
 - employee_id → branch_name
 - customer_id, branch_name → employee_id
- We first compute a canonical cover
 - branch_name is extraneous in the r.h.s. of the 1st dependency
 - 1. compute α^+ using only the dependencies in $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\},$
 - 2. check that α^+ contains A; if it does, A is extraneous in β
 - No other attribute is extraneous, so we get $F_C =$

```
customer_id, employee_id → type
employee_id → branch_name
customer_id, branch_name → employee_id
```


3NF Decomposition Example (Cont.)

☐ The **for** loop generates following 3NF schema:

```
(customer_id, employee_id, type)
  (employee_id, branch_name)
  (customer_id, branch_name, employee_id)
```

- Observe that (customer_id, employee_id, type) contains a candidate key of the original schema, so no further relation schema needs be added
- At end of for loop, detect and delete schemas, such as (<u>employee_id</u>, branch_name), which are subsets of other schemas
 - result will not depend on the order in which FDs are considered
- The resultant 3NF schema is:

```
(customer_id, employee_id, type)
(customer_id, branch_name, employee_id)
```


Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF:
 - such that the decomposition is lossless
 - the dependencies may not be preserved