Then (a_n) is a cauchy sequence. To see this first we observe that

$$|a_{n+1} - a_n| \le \rho^{n-1} |a_2 - a_1| \quad \forall \ n \in \mathbb{N}, n \ge 2.$$

Hence, for n > m,

18

$$|a_{n} - a_{m}| \leq |a_{n} - a_{n-1}| + \dots + |a_{m+1} - a_{m}|$$

$$\leq (\rho^{n-2} + \dots + \rho^{m-1})|a_{2} - a_{1}|$$

$$\leq \rho^{m-1}(1 + \rho + \dots + \rho^{n-m-3})|a_{2} - a_{1}|$$

$$\leq \frac{\rho^{m-1}}{1 - \rho}|a_{2} - a_{1}|.$$

Since $\rho^{m-1} \to 0$ as $m \to \infty$, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_n - a_m| < \varepsilon$ for all $n, m \ge N$.

Exercise 1.23 Given $a, b \in \mathbb{R}$ and $0 < \lambda < 1$, let (a_n) be a sequence of real numbers defined by $a_1 = a, a_2 = b$ and

$$a_{n+1} = (1+\lambda)a_n - \lambda a_{n-1} \quad \forall n \in \mathbb{N}, n > 2.$$

Show that (a_n) is a Cauchy sequence and its limit is $(b + \lambda a)/(1 - \lambda)$.

Exercise 1.24 Suppose f is a function defined on an interval J. If there exists $0 < \rho < 1$ such that

$$|f(x) - f(y)| \le \rho |x - y| \quad \forall \ x, y \in J,$$

then for any $a \in J$, the sequence (a_n) defined by

$$a_1 = f(a), \quad a_{n+1} := f(a_n) \quad \forall \ n \in \mathbb{N},$$

is a Cauchy sequence. Show also that the limit of the sequence (a_n) is independent of the choice of a.

1.2 Series of Real Numbers

Definition 1.13 A series of real numbers is an expression of the form

$$a_1+a_2+a_3+\ldots,$$

or more compactly as $\sum_{n=1}^{\infty} a_n$, where (a_n) is a sequence of real numbers.

The number a_n is called the *n*-th term of the series and the sequence $s_n := \sum_{i=1}^n a_i$ is called the *n*-th partial sum of the series $\sum_{n=1}^{\infty} a_n$.

1.2.1 Convergence and divergence of series

Definition 1.14 A series $\sum_{n=1}^{\infty} a_n$ is said to *converge* (to $s \in \mathbb{R}$) if the sequence $\{s_n\}$ of partial sums of the series converge (to $s \in \mathbb{R}$).

If $\sum_{n=1}^{\infty} a_n$ converges to s, then we write $\sum_{n=1}^{\infty} a_n = s$.

A series which does not converge is called a *divergent series*.

A necessary condition

Theorem 1.12 If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$ as $n \to \infty$. Converse does not hold.

Proof. Clearly, if s_n is the *n*-th partial sum of the convergent series $\sum_{n=1}^{\infty} a_n$, then

$$a_n = s_n - s_{n-1} \to 0$$
 as $n \to \infty$.

To see that the converse does not hold it is enough to observe that the series $\sum_{n=1}^{\infty} a_n$ with $a_n = \frac{1}{n}$ for all $n \in \mathbb{N}$ diverges whereas $a_n \to 0$.

The proof of the following corollary is immediate from the above theorem.

Corollary 1.13 Suppose (a_n) is a sequence of positive terms such that $a_{n+1} > a_n$ for all $n \in \mathbb{N}$. Then the series $\sum_{n=1}^{\infty} a_n$ diverges.

The above theorem and corollary shows, for example, that the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges.

EXAMPLE 1.21 We have seen that the sequence (s_n) with $s_n = \sum_{k=1}^n \frac{1}{k!}$ converges. Thus, the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges. Also, we have seen that the sequence (σ_n) with $\sigma_n = \sum_{k=1}^n \frac{1}{k}$ diverges. Hence, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

EXAMPLE 1.22 Consider the geometric series $\sum_{n=1}^{\infty} aq^{n-1}$, where $a, q \in \mathbb{R}$. Note that $s_n = a + aq + \ldots + aq^{n-1}$ for $n \in \mathbb{N}$. Clearly, if a = 0, then $s_n = 0$ for all $n \in \mathbb{N}$. Hence, assume that $a \neq 0$. Then we have

$$s_n = \begin{cases} na & \text{if } q = 1, \\ \frac{a(1-q^n)}{1-q} & \text{if } q \neq 1. \end{cases}$$

Thus, if q = 1, then (s_n) is not bounded; hence not convergent. If q = -1, then we have

$$s_n = \left\{ \begin{array}{ll} a & \text{if } n \text{ odd,} \\ 0 & \text{if } n \text{ even.} \end{array} \right.$$

Thus, (s_n) diverges for q = -1 as well. Now, assume that $|q| \neq 1$. In this case, we have

$$\left| s_n - \frac{a}{1-q} \right| = \frac{|a|}{|1-q|} |q|^n.$$

This shows that, if |q| < 1, then (s_n) converges to $\frac{a}{1-q}$, and if |q| > 1, then (s_n) is not bounded, hence diverges.

Theorem 1.14 Suppose (a_n) and (b_n) are sequences such that for some $k \in \mathbb{N}$, $a_n = b_n$ for all $n \ge k$. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Proof. Suppose s_n and σ_n be the *n*-th partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ respectively. Let $\alpha = \sum_{i=1}^{k} a_i$ and $\beta = \sum_{i=1}^{k} b_i$. Then we have

$$s_n - \alpha = \sum_{i=k+1}^n a_i = \sum_{i=k+1}^n b_i = \sigma_n - \beta \quad \forall \ n \ge k.$$

From this it follows that the sequence (s_n) converges if and only if (σ_n) converges.

From the above theorem it follows if $\sum_{n=1}^{\infty} b_n$ is obtained from $\sum_{n=1}^{\infty} a_n$ by omitting or adding a finite number of terms, then

$$\sum_{n=1}^{\infty} a_n \quad \text{converges} \iff \sum_{n=1}^{\infty} b_n \quad \text{converges}.$$

In particular,

$$\sum_{n=1}^{\infty} a_n \quad \text{converges} \iff \sum_{n=1}^{\infty} a_{n+k} \quad \text{converges}$$

for any $k \in \mathbb{N}$.

The proof of the following theorem is left as an exercise.

Theorem 1.15 Suppose $\sum_{n=1}^{\infty} a_n$ converges to s and $\sum_{n=1}^{\infty} b_n$ converges to σ . Then for every $\alpha, \beta \in \mathbb{R}$, $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n)$ converges to $\alpha s + \beta \sigma$.

1.2.2 Some tests for convergence

Theorem 1.16 (Comparison test) Suppose (a_n) and (b_n) are sequences of non-negative terms, and $a_n \leq b_n$ for all $n \in \mathbb{N}$. Then,

- (i) $\sum_{n=1}^{\infty} b_n$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_n$ converges,
- (ii) $\sum_{n=1}^{\infty} a_n \text{ diverges} \Longrightarrow \sum_{n=1}^{\infty} b_n \text{ diverges}.$

Proof. Suppose s_n and σ_n be the *n*-th partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ respectively. By the assumption, we get $0 \le s_n \le \sigma_n$ for all $n \in \mathbb{N}$, and both (s_n) and (σ_n) are monotonically increasing.

(i) Since (σ_n) converges, it is bounded. Let M > 0 be such that $\sigma_n \leq M$ for all $n \in \mathbb{N}$. Then we have $s_n \leq M$ for all $n \in \mathbb{N}$. Since (s_n) are monotonically increasing, it follows that (s_n) converges.

(ii) Proof of this part follows from (i) (How?).

Corollary 1.17 Suppose (a_n) and (b_n) are sequences of positive terms.

- (a) Suppose $\ell := \lim_{n \to \infty} \frac{a_n}{b_n}$ exists. Then we have the following:
 - (i) If $\ell > 0$, then $\sum_{n=1}^{\infty} b_n$ converges $\iff \sum_{n=1}^{\infty} a_n$ converges.
 - (ii) If $\ell = 0$, then $\sum_{n=1}^{\infty} b_n$ converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges.
- (b) Suppose $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$. Then $\sum_{n=1}^{\infty} a_n$ converges $\Rightarrow \sum_{n=1}^{\infty} b_n$ converges.
 - *Proof.* (a) Suppose $\lim_{n\to\infty} \frac{a_n}{b_n} = \ell$.
- (i) Let $\ell > 0$. Then for any $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that $\ell \varepsilon < \frac{a_n}{b_n} < \ell + \varepsilon$ for all $n \geq N$. Equivalently, $(\ell \varepsilon)b_n < a_n < (\ell + \varepsilon)b_n$ for all $n \geq N$. Had we taken $\varepsilon = \ell/2$, we would get $\frac{\ell}{2}b_n < a_n < \frac{3\ell}{2}b_n$ for all $n \geq N$. Hence, the result follows by comparison test.
- (ii) Suppose $\ell=0$. Then for $\varepsilon>0$, there exists $n\in\mathbb{N}$ such that $-\varepsilon<\frac{a_n}{b_n}<\varepsilon$ for all $n\geq N$. In particular, $a_n<\varepsilon b_n$ for all $n\geq N$. Hence, we get the result by using comparison test.
- (b) By assumption, there exists $N \in \mathbb{N}$ such that $\frac{a_n}{b_n} \ge 1$ for all $n \ge N$. Hence the result follows by comparison test.
- **EXAMPLE 1.23** We have already seen that the sequence (s_n) with $s_n = \sum_{k=1}^n \frac{1}{k!}$ converges. Here is another proof for the same fact: Note that $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$ for all $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges, it follows from the above theorem that $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges.

EXAMPLE 1.24 Since $\frac{1}{\sqrt{n}} \ge \frac{1}{n}$ for all $n \in \mathbb{N}$, and since the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, it follows from the above theorem that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ also diverges.

Theorem 1.18 (De'Alembert's ratio test) Suppose (a_n) is a sequence of positive terms such that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \ell$ exists. Then we have the following:

- (i) If $\ell < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- (ii) If $\ell > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. (i) Suppose $\ell < q < 1$. Then there exists $N \in \mathbb{N}$ such that

$$\frac{a_{n+1}}{a_n} < q \quad \forall \ n \ge N.$$

In particular,

$$a_{n+1} < q a_n < q^2 a_{n-1} < \ldots < q^n a_1, \forall n \ge N.$$

Since $\sum_{n=1}^{\infty} q^n$ converges, by comparison test, $\sum_{n=1}^{\infty} a_n$ also converges.

22

(ii) Let $1 . Then there exists <math>N \in \mathbb{N}$ such that

$$\frac{a_{n+1}}{a_n} > p > 1 \, n \ge N.$$

From this it follows that (a_n) does not converge to 0. Hence $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 1.19 (Cauchy's root test) Suppose (a_n) is a sequence of positive terms such that $\lim_{n\to\infty} a_n^{1/n} = \ell$ exists. Then we have the following:

- (i) If $\ell < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- (ii) If $\ell > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. (i) Suppose $\ell < q < 1$. Then there exists $N \in \mathbb{N}$ such that

$$a_n^{1/n} < q \quad \forall \ n \ge N.$$

Hence, $a_n < q^n$ for all $n \ge N$. Since the $\sum_{n=1}^{\infty} q^n$ converges, by comparison test, $\sum_{n=1}^{\infty} a_n$ also converges.

(ii) Let $1 . Then there exists <math>N \in \mathbb{N}$ such that

$$a_n^{1/n} > p > 1 \quad \forall \ n \ge N.$$

Hence, $a_n \ge 1$ for all $n \ge N$. Thus, (a_n) does not converge to 0. Hence, $\sum_{n=1}^{\infty} a_n$ also diverges.

Remark 1.9 We remark that both d'Alembert's test and Cauchy test are silent for the case $\ell = 1$. But, for such case, we may be able to infer the convergence or divergence by some other means.

EXAMPLE 1.25 For every $x \in \mathbb{R}$, the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ converges:

Here, $a_n = \frac{x^n}{n!}$. Hence

$$\frac{a_{n+1}}{a_n} = \frac{x}{n+1} \quad \forall \ n \in \mathbb{N}.$$

Hence, it follows that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0$, so that by d'Alemberts test, the series converges.

EXAMPLE 1.26 The series $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ converges: Here

$$a_n^{1/n} = \frac{n}{2n+1} \to \frac{1}{2} < 1.$$

Hence, by Cauchy's test, the series converges.

EXAMPLE 1.27 Consider the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. In this series, we see that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1 = \lim_{n\to\infty} a_n^{1/n}$. However, the *n*-th partial sum s_n is given by

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}.$$

Hence $\{s_n\}$ converges to 1.

EXAMPLE 1.28 Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$. In this case, we see that

$$\frac{1}{(n+1)^2} \leq \frac{1}{n(n+1)} \quad \forall \, n \in \mathbb{N}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges, by comparison test, the given series also converges. \square

EXAMPLE 1.29 Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, by comparison test, we see that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for $p \geq 2$ and diverges for $p \leq 1$. \square

EXAMPLE 1.30 Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ for p > 1. To discuss this example, consider the function $f(x) := 1/x^p$, $x \ge 1$. Then, using teh fact that indefinite integral of x^q for $q \ne -1$ is $x^{q+1}/(q+1)$, we see that for each $k \in \mathbb{N}$,

$$k-1 \le x \le k \Longrightarrow \frac{1}{k^p} \le \frac{1}{x^p} \Longrightarrow \frac{1}{k^p} \le \int_{k-1}^k \frac{dx}{x^p}.$$

Hence,

$$\sum_{k=2}^{n} \frac{1}{k^p} \le \sum_{k=2}^{n} \int_{k-1}^{k} \frac{dx}{x^p} = \int_{1}^{n} \frac{dx}{x^p} = \frac{n^{1-p} - 1}{1 - p} \le \frac{1}{p - 1}.$$

Thus,

$$s_n := \sum_{k=1}^n \frac{1}{k^p} \le \frac{1}{p-1} + 1.$$

Hence, (s_n) is monotonically increasing and bounded above. Therefore, (s_n) converges.

A more general result on convergence of series in terms of integrals will be proved in Chapter 3.

1.2.3 Alternating series

Definition 1.15 A series of the form $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ where (u_n) is a sequence of positive terms is called an **alternating series**.

Theorem 1.20 (Leibniz's theorem) Suppose (u_n) is a sequence of positive terms such that $u_n \ge u_{n+1}$ for all $n \in \mathbb{N}$, and $u_n \to 0$ as $n \to \infty$. Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ converges.

Proof. Let s_n be the *n*-th partial sum of the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$. We observe that

$$s_{2n+1} = s_{2n} + u_{2n+1} \quad \forall \ n \in \mathbb{N}.$$

Since $u_n \to 0$ as $n \to \infty$, it is enough to show that (s_{2n}) converges (Why?). Note that

$$s_{2n} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n-1} - u_{2n}),$$

 $s_{2n} = u_1 - (u_2 - u_3) - \dots + (u_{2n-2} - u_{2n-1}) - u_{2n}$

for all $n \in \mathbb{N}$. Since $u_i - u_{i+1} \ge 0$ for each $i \in \mathbb{N}$, (s_{2n}) is monotonically increasing and bounded above. Therefore (s_{2n}) converges. In fact, if $s_{2n} \to s$, then we have $s_{2n+1} = s_{2n} + u_{2n+1} \to s$, and hence $s_n \to s$ as $n \to \infty$.

By the above theorem the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. Likewise, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n}$ also converge¹

Suppose (u_n) is as in Leibniz's theorem (Theorem 1.20), and let $s \in \mathbb{R}$ be such that $s_n \to s$, where s_n is the n^{th} partial sum of $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$.

How fast (s_n) converges to s?

In the proof of Theorem 1.20, we have shown that $\{s_{2n}\}$ is a monotonically increasing sequence. Similarly, it can be shown that $\{s_{2n-1}\}$ is a monotonically decreasing sequence.

Since (s_{2n-1}) is monotonically decreasing and (s_{2n}) is monotonically increasing, we have

$$s_{2n-1} = s_{2n} + u_{2n} \le s + u_{2n}, \qquad s \le s_{2n+1} = s_{2n} + u_{2n+1}.$$

Thus,

$$s_{2n-1} - s \le u_{2n}, \quad s - s_{2n} \le u_{2n+1}.$$

Consequently,

$$|s - s_n| \le u_{n+1} \quad \forall \ n \in \mathbb{N}.$$

1.2.4 Absolute convergence

Definition 1.16 A series $\sum_{n=1}^{\infty} a_n$ is said to **converge absolutely**, if $\sum_{n=1}^{\infty} |a_n|$ converges.

Theorem 1.21 Every absolutely convergent series converges.

¹The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$ appear in the work of a Kerala mathematician *Madhava* did around 1425 which wa presented later in the year around 1550 by another Kerala mathematician *Nilakantha*. The discovery of the above series is normally attributed to Leibniz and James Gregory after nearly 300 years of its discovery.

Proof. Suppose $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series. Let s_n and σ_n be the *n*-th partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ respectively. Then, for n > m, we have

$$|s_n - s_m| = \Big| \sum_{j=m+1}^n a_n \Big| \le \sum_{j=m+1}^n |a_n| = |\sigma_n - \sigma_m|.$$

Since, $\{\sigma_n\}$ converges, it is a Cauchy sequence. Hence, form the above relation it follows that $\{s_n\}$ is also a Cauchy sequence. Therefore, by the *Cauchy criterion*, it converges.

Another proof without using Cauchy criterion. Suppose $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series. Let s_n and σ_n be the *n*-th partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ respectively. Then it follows that

$$s_n + \sigma_n = 2p_n,$$

where p_n is the sum of all positive terms from $\{a_1,\ldots,a_n\}$. Since $\{\sigma_n\}$ converges, it is bounded, and since $p_n \leq \sigma_n$ for all $n \in \mathbb{N}$, the sequence $\{p_n\}$ is also bounded. Moreover, $\{p_n\}$ is monotonically increasing. Hence $\{p_n\}$ converge as well. Thus, both $\{\sigma_n\}$, $\{p_n\}$ converge. Now, since $s_n = 2p_n - \sigma_n$ for all $n \in \mathbb{N}$, the sequence $\{s_n\}$ also converges.

Definition 1.17 A series $\sum_{n=1}^{\infty} a_n$ is said to **converge conditionally** if $\sum_{n=1}^{\infty} a_n$ converges, but not absolutely.

EXAMPLE 1.31 We observe the following:

- (i) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.
- (ii) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.
- (iii) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$ is absolutely convergent.

EXAMPLE 1.32 For any $\alpha \in \mathbb{R}$, the series $\sum_{n=1}^{\infty} \frac{\sin(n\alpha)}{n^2}$ is absolutely convergent: Note that

$$\left| \frac{\sin(n\alpha)}{n^2} \right| \le \frac{1}{n^2} \quad \forall \ n \in \mathbb{N}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by comparison test, $\sum_{n=1}^{\infty} \left| \frac{\sin(n\alpha)}{n^2} \right|$ also converges.

EXAMPLE 1.33 The series $\sum_{n=3}^{\infty} \frac{(-1)^n \log n}{n \log(\log n)}$ is conditionally convergent. To see

this, let $u_n = \frac{\log n}{n \log(\log n)}$. Since $n \ge \log n \ge \log(\log n)$ we have

$$\frac{1}{n} \le \frac{\log n}{n \log(\log n)} \le \frac{1}{\log(\log n)} \tag{*}$$

so that $u_n \to 0$. It can be easily seen that $u_{n+1} \le u_n$. Hence, by Leibnitz theorem, the given series converges. Inequality (*) also shows that the series $\sum_{n=3}^{\infty} u_n$ does not converge.

Here are two more results whose proofs are based on some advanced topics in analysis

Theorem 1.22 Suppose $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series and (b_n) is a sequence obtained by rearranging the terms of (a_n) . Then $\sum_{n=1}^{\infty} b_n$ is also absolutely convergent, and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$.

Theorem 1.23 Suppose $\sum_{n=1}^{\infty} a_n$ is a conditionally convergent series. The for every $\alpha \in \mathbb{R}$, there exists a sequence (b_n) whose terms are obtained by rearranging the terms of (a_n) such that $\sum_{n=1}^{\infty} b_n = \alpha$.

To illustrate the last theorem consider the conditionally convergent series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Consider the following rearrangement of this series:

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k} + \dots$$

Thus, if $a_n = \frac{(-1)^{n+1}}{n}$ for all $n \in \mathbb{N}$, the rearranged series is $\sum_{n=1}^{\infty} b_n$, where

$$b_{3k-2} = \frac{1}{2k-1}, \qquad b_{3k-1} = \frac{1}{4k-2}, \qquad b_{3k} = \frac{1}{4k}$$

for $k = 1, 2, \ldots$ Let s_n and σ_n be the *n*-th partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ respectively. Then we see that

$$\sigma_{3k} = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k}$$

$$= \left(1 - \frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{6} - \frac{1}{8}\right) + \dots + \left(\frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k}\right)$$

$$= \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{6} - \frac{1}{8}\right) + \dots + \left(\frac{1}{4k-2} - \frac{1}{4k}\right)$$

$$= \frac{1}{2} \left[\left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2k-1} - \frac{1}{2k}\right)\right]$$

$$= \frac{1}{2} s_{2k}.$$

Also, we have

$$\sigma_{3k+1} = \sigma_{3k} + \frac{1}{2k+1}, \qquad \sigma_{3k+2} = \sigma_{3k} + \frac{1}{2k+1} - \frac{1}{4k+2}.$$

We know that $\{s_n\}$ converge. Let $\lim_{n\to\infty} s_n = s$. Since, $a_n \to 0$ as $n \to \infty$, it then follows that

$$\lim_{k \to \infty} \sigma_{3k} = \frac{s}{2}, \qquad \lim_{k \to \infty} \sigma_{3k+1} = \frac{s}{2}, \qquad \lim_{k \to \infty} \sigma_{3k+2} = \frac{s}{2}.$$

Hence, we can infer that $\sigma_n \to s/2$ as $n \to \infty$.