Задачи за Вежбање (електростатика)

- 1 На сликата е прикажана наелектризирана бесконечна долга спроводна цилиндрична метална обвивка која има внатрешен радиус a=0,8cm и надворешен радиус b=1cm. Познат е потенцијалот во точката A, V_A =25V на радиус R_0 =0,5cm во однос на референтната точка на растојание R=1m. Да се определи:
- а) должинската густина на електрицитет Q со која е наелектризиран цилиндричниот спроводник;
- б) работата на силите на електрично поле за пренесување на електричен полнеж ΔQ =1pC од точка B до точка C според формулата $A_{BC} = \Delta Q \int_{B}^{C} \vec{E} \cdot d\vec{l}$ со избор на најсоодветна патека за решавање на интегралот. Точките B и C се наоѓаат на радиуси R_1 =2cm, R_2 =5cm соодветно.

- 2 Даден е плочест кондензатор со површина на електродите S и растојание меѓу нив d. Дел од просторот меѓу електродите е исполнет со диелектрична плоча која има релативна диелектрична константа ε_r =4 која допира до S/3 од површината на електродите, а останатиот простор е воздух. Разделната површина меѓу диелектрикот и воздухот е нормална на електродите (како на сликата). Познато е дека во електричното поле во диелектрикот е акумулирана енергија W_{ε} . ε_0 =8,854·10⁻¹² F/m≈10⁻⁹/(36 π) F/m
- a) Да се изведат изразите за интензитетите на векторите на јачина на електричното поле и електрично поместување во кондензаторот. Да се определи електричниот полнеж со кој е наелектризиран кондензаторот. Да се определи површинската густина на електричен полнеж во точката A на горниот дел од позитивната електрода.
- δ) Без да се промени електричниот полнеж на кондензаторот извлечен е диелектрикот и кондензаторот станува исполнет само со воздух. Во новата состојба да се определи површинската густина на електрицитет во точката A. Да се определи интензитетот на електричното поле во кондензаторот

- а потоа резултатот да се спореди со вредноста во претходната состојба и истиот да се прокоментира.
- З Даден е плочест кондензатор со површината на електродите S и растојание меѓу нив d. Просторот меѓу електродите е исполенет со диелектрична плоча која има релативна диелектрична константа ε_{r} која допира до S/3 од површината на електродите, а останатиот простор е воздух. Разделната површина меѓу диелектрикот и воздухот е нормална на електродите (како на сликата). Познато е дека во точката M која се наоѓа на растојание a од позитивната електрода векторот на електрично поместување изнесува D_{M} .
- *a*) Да се определи векторот на јачина на електростатското поле и векторот на електрично поместување во сите точки од кондензаторот.
- δ) Да се определи количеството електрицитет со кое е оптоварен кондензаторот, површинската густина на електрицитет во точките A и B, напонот и капацитивноста на кондензаторот.

4 Даден е плочест кондензатор со површината на електродите S и растојание меѓу нив d. Дел од просторот меѓу електродите е исполенет со диелектрична плоча со дебелина 2d/3 која има релативна диелектрична константа $\varepsilon_{\rm r}$, а останатиот простор е воздух. Познато е дека во диелектрикот со $\varepsilon_{\rm r}$ во точката M која се наоѓа на растојание d/3 од позитивната електрода векторот на електрично поместување изнесува D_M .

б) Да се определи оптоварувањето, напонот и капацитивноста на кондензаторот.

5 Даден е систем составен од сфера со радиус а наелектризитана со количество електрицитет +Q1 и концентрично поставена сферна лушпа со радиуси b и с која е наелектризирана со количество електрицитет +Q2. Просторот меѓу сферата и лушпата е исполнет со диелектрик различен од воздух, а останатиот простор надвор е воздух.

а) Да се изведат изразите за векторот на јачина на електричното поле и за векторот на електрична индуција во просторот внатре и надвор од системот.

б) Ако е познато дека односот на електростатските енергии во внатрешноста и надворешноста на системот е Wvn/Wnad=1/3 да се определи изразот за релативната диелектрична константа $\varepsilon_{\rm r}$ на диелектрикот во просторот меѓу сферата и лушпата.

- - на електродите е S а растојанието меѓу нив е d. При постојано приклучена батерија во просторот меѓу електродите на кондензаторот се поставува неутрална спроводна плоча со дебелина d/4 така што плочата стои паралелно на растојание d/4 од позитивната електрода. Да се определи количеството електрицитет, густината на енергија, и енергијата на електростатското поле во кондензаторот пред и после вметнување на неутралната спроводна плоча.

 $\epsilon_0 = 8,854 \cdot 10^{-12} \text{ F/m} \approx 10^{-9} / (36\pi) \text{ F/m}$

7 Просторот меѓу електродите на плочест кондензатор исполнет е по половина со два диелектрика со диелектрични константи ε_1 и ε_2 како што е прикажано на сликата. Површината на електродите е S а нивното меѓусебно растојание е d. Густината на електростатската енергија во точката A во првиот диелектрик која се наоѓа на растојание d/2 од позитивната електрода изнесува ω_A . Да се определи површинската густина на електрицитет на горната половина од позитивната електрода. Да се определи енергијата на електричното поле во диелектрикот со диелектрична константа ε_2 .

8 Се посматра систем составен од две метални цевки со радиуси R_1 =2.5 cm и R_2 =1 cm кои се рамномерно наелектризирани со подолжни густини на електричен полнеж Q'_1 =2 nC/m и Q'_2 =4 nC/m. Во точката A, на растојание a=20 cm од оската на десната цевка по правецот што ги поврзува оските на цевките, јачината на електричното поле изнесува E_A =0. Во точката B, која се наоѓа на растојание a/4 нормално на точката A во истата рамнина, се наоѓа точкест електричен полнеж +Q=5 nC. Да се определи работата на надворешни сили за поместување на точкестиот полнеж од точката B во точката A.

9 Два точкасти полнежи се поставени во точките A и B на растојание 2a=20 cm. Над средината меѓу полнежите, на растојание а се наоѓа точката C. Векторот на јачина на електростатското поле во оваа точка е EC=450√2 V/m (прикажан на сликата). Под точката A, на растојание b=5 cm се наоѓа точката D. Да се определи оптоварувањето на двата полнежи. Да се определи електричниот потенцијал во точката D.

10 На сликата а) е прикажан плочест кондензатор со површина на електродите S и растојание меѓу нив d. Просторот меѓу плочите попречно по половина е исполнет со диелектрици со диелектрични константи ε_1 и ε_2 . Позната е површинската густина на електрицитет σ_A во точката A, на горниот дел од левата електрода. Да се определи количеството електрицитет со кое е наелектризиран кондензаторот и неговиот напон.

На сликата б) е прикажан плочест кондензатор со истите димензии на плочите и растојание меѓу нив кој е исполнет со диелектрикот со диелектрична констнта ε_1 . Познато е дека напонот на вториот кондензатор е еднаков на напонот на првиот кондензатор. Да се определи количеството електрицитет со кое е наелектризиран вториот кондензатор и енергијата на електричното поле акумулирана во кондензаторот.

- 11 Даден е систем од спроводна сфера со радиус a=1ст и концентрична спроводна сферна лушпа со радиуси b=3ст и c=4ст. Сферата е наелектризирана со побршинска густина на електрицитет $\sigma_1=3/(4\pi)$ nC/m², додека сферната лушпа е наелектризирана со количество електрицитет $Q_2=0.7$ pC. Околниот простор е воздух.
- а) Да се изведе изразот за векторот на јачина на електричното поле во сите точки од просторот.
- б) Да се пресмета потенцијалот во точката A на радиус R_A =2cm во однос на референтна точка во бесконечност.
- в) Колку изнесува векторот на јачина на електрично поле на сите спроводни површини (a^- и a^+ , b^- и b^+ , c^- и c^+)? Да се нацрта график на интензитетот на електричното поле во фнкција од растојанието.

12 Метална топка со радиус a поставена во воздух наелектризирана е со непознато количество електрицитет $+Q_1=$? Познато е дека максималната вредност на векторот на јачина на електричното поле во воздухот изнесува E_{max} . Да се определи непознатото количеството електрицитет со кое е наелектризирана топката и потенцијалот на површината на топката (слика a). Потоа околу топката концентрично се поставува метална сферна лушпа со радиуси b и c наелектризирана со површинска густина на електрицитет $+\sigma_2$. Во електростатска рамнотежа да се определи крајното количеството електрицитет на топката и сферната лушпа во вака формираниот концентричен систем (слика δ). Да се определи потенцијалот на површината на топката и на сферната лушпа.

- 13 Даден е плочест кондензатор со површина на електродите $S=1cm^2$ и растојание меѓу нив d=1cm. Дел од просторот меѓу електродите е исполнет со диелектрична плоча која има релативна диелектрична константа $\varepsilon_r=3$ со дебелина 2d/3, а останатиот простор е воздух. Познато е дека во точката В интензитетот на векторот на јачина на електричното поле изнесува $E_B=300 \text{V/m}$.
- а) Со граничните услови кои важат на разделната површина диелектрик/воздух и со Гаусов закон да се определат изразите за интензитетите на векторите на јачина на електричното поле и електрично поместување во кондензаторот. Да се определи електричниот полнеж со кој е наелектризиран кондензаторот. Да се определат напонот и капацитивноста на кондензаторот.
- б) Без да се промени електричниот полнеж на кондензаторот извлечен е диелектрикот и кондензаторот станува исполнет само со воздух. Во новата состојба да се определат напонот и капацитивноста на кондензаторот, а потоа резултатите да се споредат со вредностите во претходната состојба.

14 Просторот по половина е исполнет со два диелектрика со релативни диелектрични константи ϵ_{r1} =1 и ϵ_{r2} =3. Разделната површина меѓу диелектриците е бесконечна рамнина нормална на рамнината на цртежот. Во двете средини електричното поле има карактеристики на хомогено поле. Во првиот диелектрик во точката А интензитетот на векторот на јачина на електричното поле изнесува E_A =500V/m и зафаќа агол α =30° во однос на нормалата на граничната површина на која лежат точките А и В (растојанијата на точките А и В до граничната површина се

соодветно a=10cm и b=30cm). Да се определи векторот на јачина на електричното поле во точката В (интензит и агол во однос на нормалата на граничната површина). Да се одреди напонот меѓу точките А и С кои се на растојание l=40 $\sqrt{2}$ cm.

