Homework 9

```
import numpy as np
from scipy.optimize import curve_fit
import pandas as pd
from matplotlib import pyplot as plt
from filterpy.kalman import KalmanFilter
PI = np.pi
```

Group Members: Adrienne Christensen, DT Litster, Melanie Neller, Nathan Schill, Dallin Seyfried

In this homework project, you will create a model of the value of single family homes built in 1985 or later in an area of your choice (outside of Utah valley). You will use Kalman filtering to update your forecast with data.

Problem 1

Choose a real estate market outside of Utah County. Create a model that depends on time to predict the value of single family homes built 1985 or later. You may include other input to your model like home size, lot size, etc, but you also need to include time as an input. Explain your model in detail.

Fit model to data

Aggregate housing data by month

```
In [39]: filepath = "nyc-property-sales-cleaned.csv"

    df = pd.read_csv(filepath, parse_dates=["SALE DATE"])
    df["YEAR BUILT"] = pd.to_datetime(df["YEAR BUILT"], format="%Y")

    df = df.drop(["NEIGHBORHOOD", "ADDRESS"], axis=1)

In [40]: df["price_per_land_sq_ft"] = df["SALE PRICE"] / df["LAND SQUARE FEET"]

df["price_per_gross_sq_ft"] = df["SALE PRICE"] / df["GROSS SQUARE FEET"]

In [41]: grouped = df.groupby(pd.Grouper(key="SALE DATE", freq="ME"))
    means = grouped.mean()
```

```
land, gross = means["price_per_land_sq_ft"], means["price_per_gross_sq_ft"]
datasets = {"land": land, "gross": gross}
means
```

Out[41]:		LAND SQUARE FEET	GROSS SQUARE FEET	YEAR BUILT	SALE PRICE	price_per_land_sq_ft	price_per_gross_sq_ft
	SALE DATE						
	2018-01- 31	2811.871951	1695.426829	1998-02-12 05:07:19.024390272	685214.091463	326.876688	374.715699
	2018-02- 28	2797.036232	1732.550725	2000-10-26 10:15:39.130434816	650597.760870	306.656582	373.854224
	2018-03- 31	2926.098039	1759.764706	2000-02-18 03:08:14.117647104	602562.869281	257.935402	338.368969
	2018-04- 30	2687.484472	1697.204969	1997-12-25 02:14:09.689441024	594740.906832	296.220016	342.973897
	2018-05- 31	2718.956790	1675.512346	1997-10-13 23:42:13.333333376	585146.814815	286.650988	339.981770
	•••						
	2023-07- 31	2606.571429	1841.647619	1999-03-08 05:29:08.571428608	881733.647619	440.204853	451.299919
	2023-08- 31	3038.734375	1734.539062	1997-11-04 19:18:45.000000000	800452.906250	345.625814	453.075644
	2023-09- 30	2950.067961	1885.718447	1995-12-21 17:14:33.786407808	887932.310680	417.067883	446.056076
	2023-10- 31	2762.672897	1748.037383	1998-03-30 15:28:35.887850496	743881.121495	364.375058	437.744791
	2023-11- 30	3113.829268	1900.073171	1999-03-04 11:07:19.024390272	842111.804878	327.204201	451.496086

71 rows × 6 columns

```
In [42]: def plot(name):
    data = datasets[name]

    tls = np.arange(len(data))

    fig, ax = plt.subplots(1, 1)

    ax.plot(tls, data, color="C0", label="true")
```

Gross

Below, monthly_ratios contains the average monthly percent change in the price per square foot (gross) over the ~6 years of data

```
In [43]: name = "gross"

data = datasets[name]
  tls = np.arange(len(data))

params, pcov = curve_fit(model, tls, data)

fig, ax = plot(name)
  years = 3
  tls = np.arange(len(data) + years * 12)
  ax.plot(tls, model(tls, *params), label="model", color="C1", ls=":")

ax.legend()
  fig.tight_layout()
  plt.show()
```


0.99994033, 0.99622244, 0.99457716, 0.99559717, 0.99917971,

1.00444832, 1.00993749]))

Land

```
In [45]: name = "land"

data = datasets[name]
  tls = np.arange(len(data))

params, pcov = curve_fit(model, tls, data)

fig, ax = plot(name)
  years = 3
  tls = np.arange(len(data) + years * 12)
  ax.plot(tls, model(tls, *params), label="model", color="C1", ls=":")

ax.legend()
  fig.tight_layout()
  plt.show()
```


0.99283269, 0.9770066 , 0.9680219 , 0.96883073, 0.98025495,

Explanation

0.99974694, 1.02134888]))

Our model computes the price per square foot of land area per month and then averages it over the duration of time of the data, so about the last 6 years. This gives an average of the percent change of the price per square foot per month based on the last 6 years of data in our dataset. This allows us to predict the price of a single family home depending on the time and the square footage. We decided to use price per gross square foot (of the house) rather than the price per land square foot.

Problem 2

Obtain freely available, but noisy data regarding the value of single family homes in the market you chose. Talk to me please if you need ideas on how to obtain that.

We downloaded and cleaned a dataset from Kaggle.com that had been compiled from data available from the city of New York. We removed sales less than \$100,000 removed all columns other than sale price, sale date, year built, neighborhood square footage. We also removed duplicate transactions, where we assume any two transactions on the same day selling the same home is a duplicate transaction.

After computing our model, we chose two houses from our dataset at random and downloaded data from Zillow. This data allowed us to make predictions for specific homes over time, using the model built from the average.

Problem 3

Now use Kalman filtering to model the value of homes in your market as time progresses.

```
In [47]: def kalman filter(
                  home,
                 H = np.array([[1.]]),
                 P = np.array([[1.]]),
                 R = np.array([[1.]]),
                  Q=0,
                 tf=70
             ):
             # Initialize Kalman Filter to be Scalar Valued
             f = KalmanFilter(dim x=1, dim z=1)
             # Initialize starting price
             f.x = np.array([home[0]])
             # Define Observation Matrix
             f.H = H
             # Define the Analysis/Forecast Covariance
             f.P = P
             # Define the Measurement Covariance
             f.R = R
             # Define the Process Noise
             f.Q = Q
             kalman prices = np.zeros(tf)
             kalman prices[0] = f.x[0]
             for t in range(1,tf):
                  # Get data if available
                  data = None
                 if t < len(home):</pre>
                      data = home[t]
                  # Calculate the next model transition
                 F = model(t+1, *params) / model(t, *params)
                  # Predict the next state
                 f.predict(F=F)
                 # Update the next state
                  f.update(data)
```

```
kalman_prices[t] = f.x[0]

return kalman_prices

In [48]: def model_forecast(model, home, tf, params):
    model_predictions = np.zeros_like(tls)
    model_predictions[0] = home[0]

# Run the model forward for predictions
for t in range(1,tf):
    model_predictions[t] = model(t + 1, *params) / model(t, *params) * model_predictions[t-1]
    return model predictions
```

Problem 4

Update kalman prices

Use visuals and brief explanations to demonstrate how your Kalman filtering answer compares to your model without Kalman filtering.

```
In [49]: homel = np.load("homel.npy")
home2 = np.load("home2.npy")

In [50]: # Plot the results
tf = len(tls)
kalman_prices = kalman_filter(homel, tf=tf)
model_predictions = model_forecast(model, homel, tf, params)
plt.plot(tls, kalman_prices, label="kalman_filter", color="C1", ls=":")
plt.plot(tls, model_predictions, label="model prediction")
plt.scatter(tls, homel[:tf], label="Actual Price", color="g", marker='.')
plt.legend()
plt.title("Kalman Filter Prediction")
plt.xlabel("month")
plt.ylabel(r" \$ / ft$^2$ (gross)")
plt.show()
```

Kalman Filter Prediction


```
In [51]: # Plot the results
    tf = len(tls)
    kalman_prices = kalman_filter(home2, tf=tf)
    model_predictions = model_forecast(model, home2, tf, params)
    plt.plot(tls, kalman_prices, label="kalman_filter", color="C1", ls=":")
    plt.plot(tls, model_predictions, label="model prediction")
    plt.scatter(tls, home2[:tf], label="Actual Price", color="g", marker='.')
    plt.legend()
    plt.title("Kalman Filter Prediction")
    plt.xlabel("month")
    plt.ylabel(r" \$ / ft$^2$ (gross)")
    plt.show()
```


The two graphs above show the results of the Kalman filter process used on two specific homes whose pricing data was taken from Zillow. In the first home, the data deviates quite drastically from our model. The Kalman filter responds pretty well by averaging the model and data outcome.

For the second graph, we can see that the data on the second home and the model are very intermingled until the last few observed months. The Kalman filter responds by mostly following the model, but adjusting for where the data points lie relative to the model prediction.

Overall, the Kalman filter performs better than our model.