CS 7545: Machine Learning Theory

Fall 2019

Lecture 11: Online Convex Optimization

Lecturer: Jacob Abernethy Scribes: Liexiao Ding and Dan Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

11.1 Generic Framework for Online Convex Optimization

Generalized Experts Setting The process is shown as the following:

Algorithm 1: Generalized Experts

Given $K \subset \mathbb{R}^+$ bounded on convex and closed

The learner follows protocol:

for $t = 1, \ldots, T do$

Learner select $x_t \in K$

Nature reveals loss function $f_t: K \to \mathbb{R}^+$

end

Learning wants to minimize:

Regret_t:= $\sum_{t} f_t(x_t) = \min_{x \in K} \sum_{t=1}^{T} f_t(x)$

Example 1 Prediction with extra advice

$$f_t(w) = l(\sum_i \tilde{w}_i x_i^t, y^t)$$

where w is normalized weight and $K = \Delta_n$

Example 2 Online Portfolio Selection

Let $K = \Delta_n, w^t \in \Delta_n$ be the distribution of n stocks, r^t is a vector of price fluctuations

$$r^{t}(i) = \frac{Price_{t}(stock_{i})}{Price_{t-1}(stock_{i})}$$

The negative log wealth of best portfolio

$$\min_{w \in \Delta_n} \sum_{t=1}^{T} f_t(w) = -\log \left(\max_{w i n \Delta_n} \prod_{t=1}^{T} (w^t r^t) \right)$$

Example 3 Online Regression

Let K be a 2-Norm Ball Θ we have

$$f_t(\theta) = (\theta^\top \vec{x}_t - y_t)^2$$

where $(x_t, y_t) \in \mathbb{R}^{d+1}$ is some data point

11.2 Property of Online Convex Optimization

Online convex optimization combine ideas from

- Optimization
- Statistical Learning

Claim Online convex optimization is harder than vanilla optimization

Goal Find $\arg \min_{x \in K} \Phi(x)$

Approach Take any online convex optimization algorithm A. Initialize $x_1 \in K$, follow this protocol

Algorithm 2: Protocol

$$\begin{array}{l} \mathbf{for}\ t = 1, \dots, T\ \mathbf{do} \\ \mid \ x_t \leftarrow A(f_1, \dots, f_{t-1}) \\ \mid \ \mathrm{Let}\ f_t(\cdot) = \Phi(\cdot)\ \mathrm{or}\ \langle \nabla \Phi(x_t), \cdot \rangle \\ \mathbf{end} \end{array}$$

Output
$$\frac{1}{T} \sum_{t=1}^{T} x_t = \bar{x}_T$$

Claim
$$\Phi(\bar{x}_t) - \min_{x \in K} \Phi(x^*) \le \frac{Regret_T(A)}{T}$$

Proof

$$\begin{split} \Phi(\bar{x}_t) \leq & \frac{1}{T} \sum_{t=1}^{T} \Phi(x_t) \\ = & \frac{1}{T} \sum_{t=1}^{T} f(x_t) \\ = & \frac{1}{T} \min_{x \in K} \sum_{t=1}^{T} f_t(x) + \frac{Regret_T(A)}{T} \\ = & \min_{x \in K} \frac{1}{T} \sum_{t=1}^{T} \Phi(x) + \frac{Regret_T(A)}{T} \\ = & \min_{x \in K} \Phi(x) + \frac{Regret_T(A)}{T} \end{split}$$

11.3 Algorithms with Online Convex Optimization

11.3.1 Online Gradient Descent

Algorithm 3: Online Gradient Descent

```
Initialize x_1 \in K

for t = 1, ..., T do

\mid x_{t+1} = \Pi_k(x_t - y_t \nabla f_t(x_t)), where \Pi_k(y) = \arg\min_{x \in K} \|y - x\|_2

end
```

Theorem 11.1 Assume f_t is G-Lipschitz, diam(K) = D, set

$$y_t = \frac{D}{G\sqrt{t}}$$

we have

$$Regret_T(OGD) \leq \frac{3}{2}GD\sqrt{T}$$

11.3.2 Online batch conversion

Let X be data space and Y be label space, D represent distance over $X \cdot Y$, $\Theta \in \mathbb{R}^d$ be bounded parameter space. Set loss function

$$l:\Theta\times X\times Y\to\mathbb{R}$$

convex and lipschitz in Θ . Given a sample of data, we have $(x_1, y_1), \dots, (x_n, y_n) \sim D$

11.3.3 Algorithm to use Online Convex Optimization for Generalization

Algorithm 4: Algorithm

for
$$t = 1, ..., T$$
 do
$$| \theta_t \leftarrow OCO(f_1, ..., f_{t-1}) |$$

$$| F_t(\cdot) = l(\cdot, (x_t, y_t))$$
end
Output: $\bar{\theta}_n = \frac{1}{n} \sum_{t=1}^T \theta_t$

Theorem 11.2 Let risk $R(\theta) := E_{x,y \sim D}[l(\theta,(x,y))]$, where (x,y) is new data, then

$$E[R(\bar{\theta}_T)] - \min_{\theta \in \Theta} R(\theta) \le E\left[\frac{Regret_n(OCO)}{n}\right]$$