一、 chap1 课件中的套裁问题

Lindo 代码

min 0x1+ 0.1x2 +0.2x3 +0.3x4 +0.8x5

st

x1+ 2x2 + x4=100

2x3+2x4 + x5 = 100

3x1+ x2 + 2x3 + 3x5 = 100

End

运行结果:

Global optimal solution found.

Objective value: 16.00000
Infeasibilities: 0.000000
Total solver iterations: 4
Elapsed runtime seconds: 2.61

Model Class: LP

Total variables: 5
Nonlinear variables: 0
Integer variables: 0

Total constraints: 4
Nonlinear constraints: 0

Total nonzeros: 14
Nonlinear nonzeros: 0

Value	Reduced Cost
10.00000	0.000000
0.000000	0.000000
50.00000	0.000000
0.000000	0.7400000
30. 00000	0.000000
Slack or Surplus	Dual Price
16.00000	-1.000000
0.000000	-0. 6000000E-0
0.000000	-0. 1200000
	10.00000 0.000000 50.00000 0.000000 30.00000 Slack or Surplus 16.00000 0.000000

0.000000

4

0.2000000E-01

灵敏度分析 (range)

Ranges in which the basis is unchanged:

Objective Coefficient Ranges:

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X2	0. 1000000	INFINITY	0.000000
Х3	0. 2000000	INFINITY	0.000000
X4	0.3000000	0.000000	INFINITY
X5	0.8000000	INFINITY	0.7400000
X1	0.000000	0.000000	INFINITY

Righthand Side Ranges:

	Current	Allowable	Allowable
Row	RHS	Increase	Decrease
2	100.0000	150.0000	16.66667
3	100.0000	33. 33333	100.0000
4	100.0000	50.00000	75.00000

二、chap3 课件中的运输问题

```
!transportation problem;
MODEL:
sets:
row/1,2,3/:a;
arrange/1..4/:b;
```

matrix(row,arrange):c,x;

endsets

data:

a=14,27,19;

b=22,13,12,13;

c=6,7,5,3,

8,4,2,7,

5,9,10,6;

enddata

[OBJ]min=@sum(matrix(i,j):c(i,j)*x(i,j));

@for(row(i):@sum(arrange(j):x(i,j))=a(i););!产地约束;

@for(arrange(j):@sum(row(i):x(i,j))=b(j););!销地约束;

END

Global optimal solution found.

Objective value: 232.0000
Infeasibilities: 0.000000
Total solver iterations: 6
Elapsed runtime seconds: 0.12

Model Class: LP

Total variables: 12
Nonlinear variables: 0
Integer variables: 0

Total constraints: 8
Nonlinear constraints: 0

Total nonzeros: 36
Nonlinear nonzeros: 0

Variable	Value	Reduced Cost
A(1)	14. 00000	0.000000
A(2)	27.00000	0.000000
A(3)	19.00000	0.000000
B(1)	22.00000	0.000000
B(2)	13.00000	0.000000
B(3)	12.00000	0.000000
B(4)	13.00000	0.000000
C(1, 1)	6.000000	0.000000
C(1, 2)	7.000000	0.000000
C(1, 3)	5. 000000	0.000000
C(1, 4)	3.000000	0.000000
C(2, 1)	8.000000	0.000000
C(2, 2)	4. 000000	0.000000
C(2, 3)	2.000000	0.000000
C(2, 4)	7.000000	0.000000
C(3, 1)	5. 000000	0.000000
C(3, 2)	9.000000	0.000000
C(3, 3)	10.00000	0.000000
C(3, 4)	6.000000	0.000000
X(1, 1)	1.000000	0.000000
X(1, 2)	0.000000	5. 000000
X(1, 3)	0.000000	5. 000000
X(1, 4)	13.00000	0.000000
X(2, 1)	2.000000	0.000000
X(2, 2)	13.00000	0.000000
X(2, 3)	12.00000	0.000000
X(2, 4)	0.000000	2. 000000
X(3, 1)	19.00000	0.000000
X(3, 2)	0.000000	8. 000000
X(3, 3)	0.000000	11.00000
X(3, 4)	0. 000000	4. 000000

Row	Slack or Surplus	Dual Price
OBJ	232.0000	-1.000000
2	0.000000	-1.000000
3	0.000000	-3.000000
4	0.000000	0.000000
5	0.000000	-5. 000000
6	0.000000	-1.000000
7	0.000000	1.000000
8	0.000000	-2.000000