

MATLAB and Its Application in Engineering

Assoc. Prof. Kirin Shi

Shanghai Jiao Tong University

Linear Programming

- 1. Given a range of foods to choose from, what is the diet of lowest cost that meets an individual's nutritional requirements?
- 2. What is the most profitable schedule an airline can devise given a particular fleet of planes, a certain level of staffing, and expected demands on the various routes?
- 3. Where should a company locate its factories and warehouses so that the costs of transporting raw materials and finished products are minimized?
- 4. How should the equipment in an oil refinery be operated, so as to maximize rate of production while meeting given standards of quality?

Simple problems of this type can be formulated as <u>optimization problems</u>, in which the goal is to select values that <u>maximize or minimize a given objective function</u>, subject to <u>certain constraints</u>.

2.1、光场成像原理

- \rightarrow 光场描述光线空间分布特性 $L(x,y,z,\theta,\varphi)$
 - 位置坐标(x,y,z)
 - 传播角度 (θ, φ)

- \triangleright 均匀介质→四维光场函数L(x,y,u,v)

(b) 两平面参数化

> 光场成像与传统成像

(a)方向-点参数化

2.1、光场成像原理

- ightharpoonup 光场描述光线空间分布特性 $L(x,y,z,\theta,\varphi)$
 - 位置坐标(x,y,z)
 - 传播角度(θ, φ)

- \triangleright 均匀介质→四维光场函数L(x,y,u,v)
- > 光场成像与传统成像

2.1、光场成像原理

- ightharpoonup 光场描述光线空间分布特性 $L(x,y,z,\theta,\varphi)$
 - 位置坐标(*x*, *y*, *z*)
 - 传播角度 (θ, φ)

- ▶ 均匀介质→四维光场函数L(x,y,u,v)
- > 光场成像与传统成像

Plenoptic camera calibration

Background:

■ Assembly error and mechanical error in light field camera

Purpose of calibration:

☐ Get all parameters in raytracing process (15 parameters)

MLA: 3D rotate(
$$\alpha$$
, β , γ)
3D shift (so_{ffset} , to_{ffset} , fo_{ffset})
thickness T_{thick}

Objective distance S_o Calibration board rotation(β_o, γ_o)
Main lens rotation(β_{ml}, γ_{ml})
Image distance S_i Objective distance liquid and air $S_{\rm hr}$ and $S_{\rm lr}$

Plenoptic camera calibration

□ Optimization to get parameters which achieves minimum difference of raytracing result and captured calibration board image

Plenoptic camera calibration

- □ Calibration parameters:
 - 3D rotate(α , β , γ) and z direction shift (f_{offset})
- Original parameters
 - Ideal parameters : $(\alpha, \beta, \gamma, f_{offset}) = (0.308, 0, 0, 0)$
- Synthetic captured calibration board image parameters
 - Real parameters: (0.318, 0.001, 0.01, 0.02)

- Algorithm: Quasi-Newton method
- Codes: optimization: matlab

Raytracing: CUDA

Different factor: CUDA

□ Calibration result :

 $(\alpha, \beta, \gamma, foff_{set}) = (0.318312, 0.000983, 0.011669, 0.018553)$

$$\sum ((CO_{rtx_i} - CO_{cax_i})^2 + (CO_{rty_i} - CO_{cay_i})^2) = 0.4215pixel^2$$

Computational time: 916.9 s

Linear Programming

- Mathematical Model
- Graphic Solution
- The Simplex Method

An Example: Snape's Dairy

Snape runs a business that produces and sells dairy products from the milk of three cows. The cows produce 22 gallons of milk each week, which are turned into ice cream and butter.

The butter-making process requires 2 gallons of milk to produce one kilogram of butter. The butter-making process requires 3 gallons of milk to make one gallon of ice cream.

Snape owns a huge refrigerator that can store practically unlimited amounts of butter, but his freezer can hold at most 6 gallons of ice cream.

Snape can spend at most 6 hours per week on manufacturing butter and ice cream. One hour of work is needed to produce either 4 gallons of ice cream or one kilogram of butter.

Snape's products have a great reputation, and he always sells everything he produces. He sets the prices to ensure a profit of \$5 per gallon of ice cream and \$4 per kilogram of butter.

He would like to figure out how much ice cream and butter he should produce to maximize his profit.

An Example: Snape's Dairy

Identify the two variables: number of gallons of ice cream *x* and the number of kilograms of butter y

Objective (profit) function: z = 5x + 4y dollars.

$$\begin{array}{lll}
\max_{x,y} & z = 5x + 4y \\
\text{subject to} & x & \leq 6, \\
.25x + y & \leq 6, \\
3x + 2y & \leq 22, \\
x, y & \geq 0.
\end{array}$$

An Example: Snape's Dairy

Application: Resource Allocation

Soft drink company "Coca-Pepsa" (哈哈娃) owns four production lines (A, B, C, D), which can produce many kinds of drinks. A recent technology upgrade releases extra work-hours of 12, 8, 16 and 12 for line A, B, C and D respectively. The company plans to use these work-hours to produce new products "DoubleCool" (多加宝) and "LuckyKing"(老王吉). Profit and time cost of these produces are

		Profit (Yuan)			
	Α	В	С	D	(Yuan)
DoubleCool	2.5	1	2	0	20
LuckyKing	2	2	0	4	30

Question: Make a production plan to maximise the profit

Assume the production of "DoubleCool" is x1, and "LuckyKing" is x2

Profit equation
$$z = 20x_1 + 30x_2$$

Constrains

$$\begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

Application: Production plan

Metallurgic plant "铁生馆" plans to produce lead(铅) no less than 30 tons, cooper no less than 35 tons and iron 45 tons. There are four types of minerals available:

Mineral	lead (%)	cooper (%)	iron (%)	cost (yuan/ton)
Α	2	4	4	10
В	3	2	2	15
С	1	3	3	30
D	0.5	1	5	25

Question: Decide the purchase plan for the minerals to minimise the cost

Assume to purchase x1, x2, x3 and x4 tons of minerals A, B, C and D

$$z = 10x_1 + 15x_2 + 30x_3 + 25x_4$$

constrains

$$\begin{cases} 0.02x_1 + 0.03x_2 + 0.01x_3 + 0.005x_4 \ge 30\\ 0.04x_1 + 0.02x_2 + 0.03x_3 + 0.01x_4 \ge 35\\ 0.04x_1 + 0.02x_2 + 0.03x_3 + 0.05x_4 = 45 \end{cases}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Subject to

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m \\ x_1, x_2, \dots, x_n \geq 0 \end{cases}$$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \qquad b = (b_1, b_2, \dots, b_m)^T$$

$$c = (c_1, c_2, \dots, c_n)$$

Max Z = cx

s.t. Ax≤b

Question: Make a production plan to maximise the profit

Assume the production of "DoubleCool" is x1, and "LuckyKing" is x2

Profit equation
$$z = 20x_1 + 30x_2$$

Constrains

$$\begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

Feasible Solutions: The set of points satisfying all of the constraints

Optimal Solution: Feasible Solutions that maximise/minimise

the objective function

- 1: ascertain feasible region
- 2: draw contour lineof objective function
- 3: find optimal solutionin the feasible solution

 $z = 20x_1 + 30x_2$

Feasible Solutions: The set of points satisfying all of the constraints

Optimal Solution: Feasible Solutions that maximise/minimise

the objective function

Feasible Solutions: The set of points satisfying all of the constraints

Optimal Solution: Feasible Solutions that maximise/minimise

the objective function

Feasible Solutions: The set of points satisfying all of the constraints

Optimal Solution: Feasible Solutions that maximise/minimise the objective function

No Feasible Solutions

$$z = 2x_1 + 3x_2$$

$$\begin{cases} 2x_1 + 2x_2 \le 12 \\ x_1 + 2x_1 \ge 14 \\ x_1, x_2 \ge 0 \end{cases}$$

$$2x_1 + 2x_2 \le 12$$

The Simplex Method-basic concept

- 1. Finds a vertex (最高点) of the feasible region to use as a starting point
- 2. Check whether it is optimal solution or not, if not
- 3. Moves from this vertex to an adjacent vertex for which the value of the objective function is higher; if not only one adjacent vertex make the objective function be higher, chose the vertex with the greatest growth rate

4. Return back step 2, and iterate.

$$z = 20x_1 + 30x_2$$

The Simplex Method-basic concept

Original problem
$$\text{Max: } z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \\ \text{s.t.} \\ \begin{cases} a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n \leq b_2 \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n \leq b_m \\ x_1, x_2, \ldots, x_n \geq 0 \end{cases}$$
 Include supplementary variables

Include supplementary variables

s.t.
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m \\ x_1, x_2, \dots, x_n, x_{n+1} \dots, x_{n+m} \ge 0 \end{cases}$$

The Simplex Method-basic concept

$$Max Z = cx$$

Include supplementary variables X_s

$$Max Z = cx$$

s.t. (A I)
$$\binom{X}{X_S} = b$$
 $\binom{X}{X_S} \ge 0$

Let X = 0, find the first feasible solution from $X_s = b$

Substitute the 1^{st} feasible solution to objection to receive the initial guess of Z

Resource Allocation for "DoubleCool" (多加宝), "LuckyKing"(老王吉).

$$Max z = 20x_1 + 30x_2$$

Include supplementary variables

Constraints

$$\begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases} \qquad \begin{cases} 2.5x_1 + 2x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_4 = 8 \\ 4x_1 + x_5 = 16 \\ 4x_2 + x_6 = 12 \\ x_1, x_2, \dots, x_6 \ge 0 \end{cases}$$

$$\begin{cases} 2.5x_1 + 2x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_4 = 8 \\ 4x_1 + x_5 = 16 \\ 4x_2 + x_6 = 12 \\ x_1, x_2, \dots, x_6 \ge 0 \end{cases}$$

$$c = (20\ 30) \qquad A = \begin{bmatrix} 2.5 & 2 & 1\ 0 & 0 & 0 & 0 \\ 1 & 2 & 0\ 1 & 0 & 0 \\ 4 & 0 & 0\ 0 & 1 & 0 \\ 0 & 4 & 0\ 0 & 0 & 1 \end{bmatrix} \qquad b = \begin{pmatrix} 8 \\ 16 \\ 12 \end{pmatrix}$$

$$b = \binom{8}{16}$$

$$12$$

Resource Allocation for "DoubleCool" (多加宝), "LuckyKing"(老王吉).

Supplementary variables: x_3, x_4, x_5, x_6

Basic variables: x_1, x_2

Assume all basic variables to 0 to find the 1st feasible solutions

$$X_1 = (0, 0, 12, 8, 16, 12)$$

 $Z_1 = 0$

Inspect $Max z = 20x_1 + 30x_2$

Let x_2 be positive, Z will have the greatest growth rate

Substitute $x_1 = 0$ into constraint equations

$$\begin{cases} x_3 = 12 - 2x_2 \ge 0 \\ x_4 = 8 - 2x_2 \ge 0 \\ x_5 = 16 \ge 0 \end{cases} \qquad \begin{cases} x_2 \le 6 \\ x_2 \le 4 \end{cases}$$

$$\begin{cases} x_3 = 12 - 2x_2 \ge 0 \\ x_4 = 8 - 2x_2 \ge 0 \end{cases} \qquad \begin{cases} x_2 \le 6 \\ x_2 \le 4 \end{cases}$$

To satisfy all constrains

New supplementary variables: x_3, x_4, x_5, x_2

New basic variables: x_1, x_6

2nd method, treat the variables on the right side of the equation as numerator, Compare with the positive coefficient of x_2 .

$$\begin{cases} 2.5x_1 + 2x_2 + x_3 = 12 & 12/2 \\ x_1 + 2x_2 + x_4 = 8 & 8/2 \\ 4x_1 + x_5 = 16 & -4x_2 + x_6 = 12 \end{cases}$$

the smallest ratio corresponding to the 4th equition Hence, choose x_6 as new basic variables

New supplementary variables: x_3, x_4, x_5, x_2

New basic variables: x_1, x_6

Use elimination method to adjust the coefficients of x_2

$$(A I) \begin{pmatrix} X \\ X_S \end{pmatrix} = b$$

$$\begin{cases} 2.5x_1 + 2x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_4 = 8 \\ 4x_1 + x_5 = 16 \\ 4x_2 + x_6 = 12 \\ z - 20x_1 - 30x_2 = 0 \end{cases}$$

$$\begin{cases} 2.5x_1 + 2x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_4 = 8 \\ 4x_1 + x_5 = 16 \\ 4x_2 + x_6 = 12 \\ z - 20x_1 - 30x_2 = 0 \end{cases} \qquad \begin{cases} 2.5x_1 + x_3 - 0.5x_6 = 6 \\ x_1 + x_4 - 0.5x_6 = 2 \\ 4x_1 + x_5 = 16 \\ x_2 + 0.25x_6 = 3 \\ z - 20x_1 + 7.5x_6 = 90 \end{cases}$$

Let basic variables to 0

$$x_1 = 0, x_6 = 0$$

New feasible solutions

$$x = (0, 3, 6, 2, 16, 0)$$

Using matrix manipulation in Matlab to achieve elimination

$$\begin{cases}
2.5x_1 + 2x_2 + x_3 = 12 \\
x_1 + 2x_2 + x_4 = 8 \\
4x_1 + x_5 = 16 \\
4x_2 + x_6 = 12
\end{cases}$$

$$\Rightarrow a_1 = [2.5, 2, 1, 0, 0, 0, 12] \\
\Rightarrow a_2 = [1, 2, 0, 1, 0, 0, 8] \\
\Rightarrow a_3 = [4, 0, 0, 0, 1, 0, 16] \\
\Rightarrow a_4 = [0, 4, 0, 0, 0, 1, 12] \\
\Rightarrow a_5 = [-20, -30, 0, 0, 0, 0, 0]$$

$$a_1 = a_4 * (-2) + a_1$$
 $a_1 = [2.5, 0, 1, 0, 0, -0.5, 6]$
 $a_2 = a_4 * (-2) + a_2$ $a_2 = [1, 0, 0, 1, 0, -0.5, 2]$
 $a_4 = a_4 * (1/4)$ $a_4 = [0, 1, 0, 0, 0, 0.25, 3]$
 $a_5 = a_4 * (30) + a_5$ $a_5 = [-20, 0, 0, 0, 0, 7.5, 90]$

Inspect
$$z - 20x_1 + 7.5x_6 = 90$$

Let x_1 be positive, Z will continue to increase

$$\begin{cases} 2.5x_1 + x_3 - 0.5x_6 = 6 \\ x_1 + x_4 - 0.5x_6 = 2 \end{cases}$$

$$4x_1 + x_5 = 16$$

$$4x_2 + 0.25x_6 = 3$$

$$z - 20x_1 + 7.5x_6 = 90$$

$$6/2.5$$

$$2/1$$

$$16/4$$

the smallest ratio corresponding to the 2nd equition

Hence, choose x_4 as new basic variables

New supplementary variables: x_3, x_1, x_5, x_2

New basic variables: x_4, x_6

Use elimination method to adjust the coefficients of x_1

$$(A I) \begin{pmatrix} X \\ X_S \end{pmatrix} = b$$

$$\begin{cases} 2.5x_1 + x_3 - 0.5x_6 = 6\\ x_1 + x_4 - 0.5x_6 = 2\\ 4x_1 + x_5 = 16\\ 4x_2 + 0.25x_6 = 3\\ z - 20x_1 + 7.5x_6 = 90 \end{cases}$$

$$\begin{cases} 2.5x_1 + x_3 - 0.5x_6 = 6 \\ x_1 + x_4 - 0.5x_6 = 2 \\ 4x_1 + x_5 = 16 \\ 4x_2 + 0.25x_6 = 3 \\ z - 20x_1 + 7.5x_6 = 90 \end{cases} \qquad \begin{cases} x_3 - 2.5x_4 + 0.75x_6 = 1 \\ x_1 + x_4 - 0.5x_6 = 2 \\ -4x_4 + x_5 + 2x_6 = 8 \\ x_2 + 0.25x_6 = 3 \\ z + 20x_4 - 2.5x_6 = 130 \end{cases}$$

Let basic variables to 0 $x_4 = 0, x_6 = 0$

New feasible solutions
$$x = (2, 3, 1, 0, 8,$$

Inspect
$$z + 20x_4 - 2.5x_6 = 130$$

Let x_6 be positive, Z will continue to increase

$$\begin{cases} x_3 - 2.5x_4 + 0.75x_6 = 1 & 1/0.75 \\ x_1 + x_4 - 0.5x_6 = 2 & 8/2 \\ -4x_4 + x_5 + 2x_6 = 8 & 3/0.25 \\ x_2 + 0.25x_6 = 3 & 3/0.25 \end{cases}$$

the smallest ratio corresponding to the 1st equition

Hence, choose x_3 as new basic variables

New supplementary variables: x_6, x_1, x_5, x_2

New basic variables: x_4, x_3

Use elimination method to adjust the coefficients of x_6

$$(A I) \begin{pmatrix} X \\ X_S \end{pmatrix} = b$$

$$\begin{cases} x_3 - 2.5x_4 + 0.75x_6 = 1 \\ x_1 + x_4 - 0.5x_6 = 2 \\ -4x_4 + x_5 + 2x_6 = 8 \end{cases}$$

$$x_2 + 0.25x_6 = 3$$

$$z + 20x_4 - 2.5x_6 = 130$$

$$\begin{cases} x_3 - 2.5x_4 + 0.75x_6 = 1 \\ x_1 + x_4 - 0.5x_6 = 2 \\ -4x_4 + x_5 + 2x_6 = 8 \end{cases} \begin{cases} 1.333x_3 - 3.333x_4 + x_6 = 1.3333 \\ x_1 + 0.6667x_3 + 0.6667x_4 = 2.6667 \\ -2.6667x_3 + 2.6667x_4 + x_5 = 5.6667 \\ x_2 - 0.3333x_3 + 0.8333x_4 = 2.6667 \\ x_2 + 20x_4 - 2.5x_6 = 130 \end{cases} \begin{cases} 1.333x_3 - 3.333x_4 + x_6 = 1.3333 \\ x_1 + 0.6667x_3 + 0.6667x_4 + x_5 = 5.6667 \\ x_2 - 0.3333x_3 + 0.8333x_4 = 2.6667 \\ x_2 + 3.3333x_3 + 11.6667x_4 = 133.3333 \end{cases}$$

Let basic variables to 0 $x_3 = 0, x_4 = 0$

New feasible solutions

$$x = (2.6667, 2.6667, 0, 0, 5.6667, 1.3333)$$

$$\begin{cases} 2.5x_1 + 2x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_4 = 8 \\ 4x_1 + x_5 = 16 \\ 4x_2 + x_6 = 12 \\ z - 20x_1 - 30x_2 = 0 \end{cases}$$
 New supplementary variables: x_1, x_6

1st iteration

New supplementary variables: x_3, x_4, x_5, x_2

base	b	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	θ
x_3	12	2.5	2	1	0	0	0	12/2.5=4.8
X_4	8	1	2	0	1	0	0	8/2=4
x ₅	16	4	0	0	0	1	0	
x_{6}	12	0	[4]	0	0	0	1	12/4=3
Z	0	-20	-30	0	0	0	0	$\min \theta = 3$

2nd iteration

$$\begin{cases} 2.5x_1 + x_3 - 0.5x_6 = 6\\ x_1 + x_4 - 0.5x_6 = 2\\ 4x_1 + x_5 = 16\\ x_2 + 0.25x_6 = 3\\ z - 20x_1 + 7.5x_6 = 90 \end{cases}$$

New supplementary variables: x_3, x_1, x_5, x_2

New basic variables: x_4, x_6

base	b	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	θ
X ₃	6	2.5	0	1	0	0	-0.5	6/2.5=2.4
X ₄	2	[1]	0	0	1	0	-0.5	2/1=2
X ₅	16	4	0	0	0	1	0	16/4=4
X_2	3	0	1	0	0	0	0.25	
Z	90	-20	0	0	0	0	7.5	$\min \theta = 2$

3rd iteration

$$\begin{cases} x_3 - 2.5x_4 + 0.75x_6 = 1 \\ x_1 + x_4 - 0.5x_6 = 2 \\ -4x_4 + x_5 + 2x_6 = 8 \end{cases}$$
 New supplementary variable
$$x_2 + 0.25x_6 = 3$$
$$z + 20x_4 - 2.5x_6 = 130$$
 New basic variables: x_4, x_3

New supplementary variables: x_6, x_1, x_5, x_2

base	b	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	θ
X ₃	1	0	0	1	-2.5	0	[0.75]	1/0.75=4/3
x ₁	2	1	0	0	1	0	-0.5	
X ₅	8	0	0	0	-4	1	2	8/2=4
\mathbf{x}_2	3	0	1	0	0	0	0.25	3/0.25=12
Z	130	0	0	0	2	0	-2.5	$\min \theta = 4/3$

$$1.333x_3 - 3.333x_4 + x_6 = 1.3333$$

$$x_1 + 0.6667x_3 + 0.6667x_4 = 2.6667$$

$$-2.6667x_3 + 2.6667x_4 + x_5 = 5.6667$$

$$x_2 - 0.3333x_3 + 0.8333x_4 = 2.6667$$

$$z + 3.3333x_3 + 11.6667x_4 = 133.3333$$

base	e b	X ₁	X ₂	X ₃	X ₄	x ₅	x ₆	θ
x ₆	1.3333	0	0	1.3333	-3.3333	0	1	C
x ₁	2.6667	1	0	0.6667	0.6667	0	0	
X ₅	5.6667	0	0	-2.6667	2.6667	1	0	
\mathbf{x}_2	2.6667	0	1	-0.3333	0.8333	0	0	
Z	133.3333	0	0	3.3333	11.6667	0	0	

$$\max Z = -3x_1 + x_3$$

$$x_1 + x_2 + x_3 \le 4$$

$$-2x_1 + x_2 - x_3 \le 1$$

$$3x_2 + x_3 = 9$$

$$x_1, x_2, x_3 \ge 0$$

Supplementary variables x_4, x_5, x_6

$$\max Z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 + x_5 = 1 \\ 3x_2 + x_3 + x_6 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Other non-standard forms of mathematical model

-big M method

$$\max Z = -3x_1 + x_3$$

$$\begin{array}{c}
x_1 + x_2 + x_3 \leq 4 \\
-2x_1 + x_2 - x_3 \geq 1 \\
3x_2 + x_3 = 9 \\
x_1, x_2, x_3 \geq 0
\end{array}$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_4 = 4\\ -2x_1 + x_2 - x_3 - x_5 = 1\\ 3x_2 + x_3 = 9\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$\max Z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$

$$s.t. \begin{cases}
x_1 + x_2 + x_3 + x_4 = 4 \\
-2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\
3x_2 + x_3 + x_7 = 9 \\
x_1, x_2, x_3 \ge 0
\end{cases}$$

$$\mathsf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_4 = 4\\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1\\ 3x_2 + x_3 + x_7 = 9\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Supplementary variables: x_4 , x_6 , x_7

Basic variables

 x_1, x_2, x_3, x_5

$x_1, x_2, x_3 \geq 0$			ma	xZ =	$=-3x_1$	$+x_3$	$+0x_{4}$	+0x	$c_5 - Mx_6 - Mx_7$
base	b	X ₁	X ₂	х ₃	X ₄	X ₅	x ₆	X ₇	θ
X ₄	4	1	1	1	1	0	0	0	
x ₆	1	-2	1	-1	0	-1	1	0	
X ₇	9	0	3	1	0	0	0	1	
Z	0	3	0	-1	0	0	M	М	

$$x_{1} + x_{2} + x_{3} + x_{4} = 4$$

$$-2x_{1} + x_{2} - x_{3} - x_{5} + x_{6} = 1$$

$$3x_{2} + x_{3} + x_{7} = 9$$

$$z + 3x_{1} - x_{3} + 0x_{4} + 0x_{5} + Mx_{6} + Mx_{7} = 0$$

New supplementary variables: x_4, x_2, x_7

New basic variables:

$$x_1, x_6, x_3, x_5$$

base	b	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	x ₇	θ
X_4	4	1	1	1	1	0	0	0	4/1
x ₆	1	-2	1	-1	0	-1	1	0	1/1
X ₇	9	0	3	1	0	0	0	1	9/3
Z	-10M	3+2M	-4M)-1	0	M	0	0	

1st iteration

New supplementary variables: x_4, x_2, x_1

New basic variables: x_7, x_6, x_3, x_5

base	b	X ₁	X ₂	X ₃	X ₄	x ₅	x ₆	x ₇	θ
X_4	3	3	0	2	1	1	-1	0	3/3
x_2	1	-2	1	-1	0	-1	1	0	
x ₇	6	[6]	0	4	0	3	-3	1	9/6
Z	-6M	3-6M	0	-4M-1	0	-3M	4M	0	

2nd iteration

New supplementary variables: x_4, x_2, x_3

New basic variables: x_7, x_6, x_1, x_5

base	b	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	θ
X_4	0	0	0	0	1	-0.5	0.5	-0.5	
x_2	3	0	1	1/3	0	0	1	1/3	9
X ₁	1 [1	0	[2/3]	0	0.5	-0.5	1/6	3/2
Z	-3	0	0	(-3)	0	-1.5	M+3/2	M-1/2	

3rd iteration

Maximum Z=3/2

Optimal solution
$$x_1 = 0, x_2 = \frac{2}{5}, x_3 = \frac{3}{2}, x_4 = x_5 = x_6 = x_7 = 0$$

base	b	X ₁	X ₂	x ₃	X ₄	X ₅	x ₆	x ₇	θ
X ₄	0	0	0	0	1	-0.5	0.5	-0.5	
x_2	5/2	-1/2	1	0	0	-1/4	1/4	1/3	9
X ₃	3/2	3/2	0	[1]	0	3/4	-3/4	1/4	3/2
Z	3/2	9/2	0	0	0	3/4	M-3/4	M+1/4	

The Tabulate Simplex Method to solve infinite solutions

$$\max Z = 20x_1 + 40x_2 \begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \end{cases}$$
 New supplementary variables:
$$4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$
 New basic variables: x_1, x_6

base	b	X ₁	X ₂	Х ₃	X ₄	X ₅	x ₆	θ
X_3	12	2.5	2	1	0	0	0	12/2.5=4.8
X_4	8	1	2	0	1	0	0	8/2=4
X ₅	16	4	0	0	0	1	0	
x ₆	12	0	[4]	0	0	0	1	12/4=3
Z	0	-20	-40	0	0	0	0	$\min \theta = 3$

The Tableau Simplex Method to solve infinite solutions

$$\max Z = 20x_1 + 40x_2 \begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$
 New supplementary variables: x_2, x_3, x_1, x_5 New basic variables: x_4, x_6

base	b	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	θ
X_3	6	2.5	0	1	0	0	-0.5	6/2.5=2.4
X_4	2	[1]	0	0	1	0	-0.5	2/1=2
X ₅	16	4	0	0	0	1	0	16/4=4
X_2	3	0	1	0	0	0	0.25	
Z	120	-20	0	0	0	0	10	$\min \theta = 2$

The Tableau Simplex Method to solve infinite solutions

 $\max Z = 160$

Optimal solution $x_1 = 0, x_2 = 3, x_3 = 1, x_4 = 0, x_5 = 8, x_6 = 0$

base	b	X ₁	X ₂	x ₃	X ₄	X ₅	x ₆	θ
x_3	1	0	0	1	-2.5	0	[0.75]	1/0.75=4/3
X ₁	2	1	0	0	1	0	-0.5	
X ₅	8	0	0	0	-4	1	2	8/2=4
\mathbf{x}_2	3	0	1	0	0	0	0.25	3/0.25=12
Z	160	0	0	0	20	0	0	$\min \theta = 4/3$

The Tableau Simplex Method to solve infinite solutions

 $\max Z = 160$

base	e b	X ₁	X ₂	X ₃	X ₄	x ₅	x ₆	θ
x ₆	1.3333	0	0	1.3333	-3.3333	0	1	
X ₁	2.6667	1	0	0	0.6667	0	0	
X ₅	5.6667	0	0	-2.6667	2.6667	1	0	
x_2	2.6667	0	1	-0.3333	0.8333	0	0	
Z	160	0	0	0	20	0	0	

$$\max Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

$$\begin{cases} a_{1}1x_{1} + a_{1}2x_{2} + ... + a_{1}nx_{n} \leq b_{1} \\ a_{2}1x_{1} + a_{2}2x_{2} + ... + a_{2}nx_{n} \leq b_{2} \\ ... \\ a_{m1}x_{1} + a_{m2}x_{2} + ... + a_{mn}x_{n} \leq b_{m} \\ x_{1} \geq 0, x_{2} \geq 0, ..., x_{n} \geq 0 \end{cases}$$

$$\max Z = cX$$

$$s.t.AX \le b$$

$$X > 0$$

$$\max Z = cX$$

$$s.t.AX \le b$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{bmatrix}$$

Transform into standard form

$$\max Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m \\ x_1 \ge 0, x_2 \ge 0, \dots, x_{n+m} \ge 0 \end{cases}$$

Supplementary variable

$$X_{s} = \begin{bmatrix} X_{n+1} \\ X_{n+2} \\ \cdot \\ \cdot \\ X_{n+m} \end{bmatrix}$$

Simplify constraint equation into

$$(A \quad I)\begin{pmatrix} X \\ X_s \end{pmatrix} = b \quad \begin{pmatrix} X \\ X_s \end{pmatrix} \ge 0$$

Let basic variable X equal to 0 to find the basic feasible solution $\binom{0}{k}$

Judging whether initial basic feasible solution is the optimal solution If not, update supplementary variables, and use elimination method to get new coefficient matrix $(Bx_B) = b$

Let new basic variable x equal to 0 to find new feasible solution

$$x_B = B^{-1}b$$

Calculating objective function $Z = c_B x_B = c_B B^{-1} b$

Standard format

$$\min Z = c_1 x_1 + \dots + c_n x_n$$

$$c = \begin{pmatrix} c_1 & c_2 & \dots & c_n \end{pmatrix}^T$$

$$a_{11}x_{1} + ... + a_{1n}x_{n} \leq b_{1}$$

$$a_{21}x_{1} + ... + a_{2n}x_{n} \leq b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + ... + a_{mn}x_{n} \leq b_{m}$$

$$a_{11}^{eq}x_{1} + ... + a_{1n}^{eq}x_{n} = b_{1}^{eq}$$

$$a_{21}^{eq}x_{1} + ... + a_{2n}^{eq}x_{n} = b_{2}^{eq}$$

$$\vdots$$

$$\vdots$$

$$a_{h1}^{eq}x_{1} + ... + a_{hn}^{eq}x_{n} = b_{h}^{eq}$$

$$t_{11} \geq x_{1} \geq ux_{1} \quad t_{11} \geq x_{2} \geq ux_{2}...t_{11} \geq ux_{11}$$

Standard format

$$\min Z = c_1 x_1 + \dots + c_n x_n$$

$$lb = (lx_1 \quad lx_2 \quad . \quad . \quad lx_n)$$

$$ub = \begin{pmatrix} ux_1 & ux_2 & \dots & ux_n \end{pmatrix}$$

 $\min c^T X$

$$s.t.\begin{cases} AX \leq b \\ A_{eq}X = b_{eq} \\ lb \leq X \leq ub \end{cases}$$

$$a_{11}x_{1} + ... + a_{1n}x_{n} \leq b_{1}$$

$$a_{21}x_{1} + ... + a_{2n}x_{n} \leq b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + ... + a_{mn}x_{n} \leq b_{m}$$

$$a_{11}^{eq}x_{1} + ... + a_{1n}^{eq}x_{n} = b_{1}^{eq}$$

$$a_{21}^{eq}x_{1} + ... + a_{2n}^{eq}x_{n} = b_{2}^{eq}$$

$$\vdots$$

$$\vdots$$

$$a_{n1}^{eq}x_{1} + ... + a_{n1}^{eq}x_{n} = b_{n}^{eq}$$

$$\vdots$$

$$\vdots$$

$$a_{n1}^{eq}x_{1} + ... + a_{n1}^{eq}x_{n} = b_{n}^{eq}$$

 $|lx_1 \ge x_1 \ge ux_1$ $|lx_2 \ge x_2 \ge ux_2...lx_n \ge x_n \ge ux_n$

$$x = linprog(c, A, b)$$

 $\min c^T x$

s.t. $Ax \leq b$

Example

Solving problems with only inequality constraints

$$\max Z = 2x_1 + 3x_2$$

$$2x_1 + 2x_2 \le 12$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$4x_2 \le 12$$

$$x = linprog(c, A, b, Aeq, beq)$$

$$\min c^{T}x$$

Solving problems containing equality constraints

s.t.
$$\begin{cases} Ax \le b \\ A_{eq} = b_{eq} \end{cases}$$

x = linprog(c, A, b, Aeq, beq, lb, ub)

Solve linear programming problem in standard form

 $\min c^T x$

s.t.
$$\begin{cases} Ax \leq b \\ A_{eq} = b_{eq} \\ \text{lb} \leq x \leq ub \end{cases}$$

$$x = linprog(c, A, b, [], [], lb, ub)$$

$$\min c^{T} x$$

Solving problems without equality constraints

s.t.
$$\begin{cases} Ax \le b \\ lb \le x \le ub \end{cases}$$

$$x = linprog(c, [], [], Aeq, beq, lb, ub)$$

$$\min c^{T}x$$

Solving problems without inequality constraints

s.t.
$$\begin{cases} Ax = b \\ \text{lb} \le x \le ub \end{cases}$$

$$[x, fval, exitflag] = linprog(c, A, b, Aeq, beq, lb, ub)$$

- 1 linprog converged to a solution X.
- 0 Maximum number of iterations reached.
- -2 No feasible point found.
- -3 Problem is unbounded.
- -4 NaN value encountered during execution of algorithm.
- -5 Both primal and dual problems are infeasible.
- -7 Magnitude of search direction became too small; no further progress can be made. The problem is ill-posed or badly conditioned.

Example: A Company produces two types of glass windows, factory A manufactures aluminum window frame, and factory B manufactures wooden window frame, whereas factory C produces glass and provides final assembly for these two types of windows.

Factory A has 4 work-hours available, factory B has 12 work-hours available and factory C has 18 work-hours available. Make a production plan for the two products to maximize the profit.

	Factory A	Factory B	Factory C	Profit
Aluminum window	1		3	3
Wooden window		2	2	5

	Factory A	Factory B	Factory C	Profit
Aluminum window x1	1		3	3
Wooden window x2		2	2	5

$$\max Z = 3x_1 + 5x_2 \qquad s.t. \begin{cases} x_1 \le 4 \\ 2x_2 \le 12 \\ 3x_1 + 2x_2 \le 18 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max Z = 3x_1 + 5x_2$$

$$x_{1} \le 4$$

$$2x_{2} \le 12$$

$$3x_{1} + 2x_{2} \le 18$$

$$x_{1}, x_{2} \ge 0$$

$$>> c=[-3,-5];$$

$$>> A=[1,0;0,2;3,2];$$

$$>> Ib=[0;0];$$

$\min -Z = -3x_1 + -5x_2$

$$s.t. \begin{cases} x_1 + 0 \times x_2 \le 4 \\ 0 \times x_1 + 2x_2 \le 12 \\ 3x_1 + 2x_2 \le 18 \\ x_1, x_2 \ge 0 \end{cases}$$

Optimization terminated

$$x = 2.0000$$

$$fval = -36.0000$$

$$exitflag = 1$$

Application: Resource Allocation

Soft drink company "Coca-Pepsa" (哈哈娃) owns four production lines (A, B, C, D), which can produce many kinds of drinks. A recent technology upgrade releases extra work-hours of 12, 8, 16 and 12 for line A, B, C and D respectively. The company plans to use these work-hours to produce new products "DoubleCool" (多加宝) and "LuckyKing"(老王吉). Profit and time cost of these produces are

	Time cost (hr)				Profit (Yuan)
	Α	В	С	D	(Yuan)
DoubleCool	2.5	1	2	0	20
LuckyKing	2	2	0	4	30

Application: Resource Allocation

Question: Make a production plan to maximise the profit

Assume the production of "DoubleCool" is x1, and "LuckyKing" is x2

Profit equation
$$z = 20x_1 + 30x_2$$

Constrains

$$\begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

Application: Resource Allocation

$$Max z = 20x_1 + 30x_2$$

$$Min - z = -20x_1 - 30x_2$$

$$\begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\begin{cases} 2.5x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 + 0 \times x_2 \le 16 \\ 0 \times x_1 + 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

$$>> c=[-20,-30];$$

$$>> A=[2.5,2;1,2;4,0;0,4];$$

Optimization terminated

$$x = 2.6667$$
 2.6667

$$fval = -133.3333$$

$$exitflag = 1$$

Metallurgic plant "铁生馆" plans to produce lead(铅) no less than 30 tons, cooper no less than 35 tons and iron 45 tons. There are four types of minerals available:

Mineral	lead (%)	cooper (%)	iron (%)	cost (yuan/ton)
Α	2	4	4	10
В	3	2	2	15
С	1	3	3	30
D	0.5	1	5	25

Question: Decide the purchase plan for the minerals to minimise the cost

Assume to purchase x1, x2, x3 and x4 tons of minerals A, B, C and D

Total cost
$$z = 10x_1 + 15x_2 + 30x_3 + 25x_4$$
 constrains
$$\begin{cases} 0.02x_1 + 0.03x_2 + 0.01x_3 + 0.005x_4 \ge 30\\ 0.04x_1 + 0.02x_2 + 0.03x_3 + 0.01x_4 \ge 35\\ 0.04x_1 + 0.02x_2 + 0.03x_3 + 0.05x_4 = 45 \end{cases}$$

$$\begin{cases} x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Standard form

$$\min c^{T} x$$

$$s. t. \begin{cases} Ax \leq b \\ A_{eq} x = b_{eq} \\ lb \leq x \leq ub \end{cases}$$

$$c = \begin{pmatrix} 10 \\ 15 \\ 30 \\ 25 \end{pmatrix} \qquad A = \begin{pmatrix} -0.02 & -0.03 & -0.01 & -0.005 \\ -0.04 & -0.02 & -0.03 & -0.01 \end{pmatrix}$$
$$A_{eq} = \begin{pmatrix} 0.04 & 0.02 & 0.03 & 0.05 \end{pmatrix}$$

$$b = \begin{pmatrix} -30 \\ -35 \end{pmatrix} \qquad b_{eq} = 45 \qquad lb = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

```
>> c=[10;15;30;25];
>> b=[-30;-35];
>> A=[-0.02,-0.03,-0.01,-0.005;-0.04,-0.02,-0.03,-0.01];
>> Aeq=[0.04,0.02,0.03,0.05];
>> beq=45;
>> lb=[0;0;0;0];
>> [x,fval,exitflag]=linprog(c,A,b,Aeq,beq,lb,[])
Optimization terminated.
X =
 937.5000
 375.0000
  0.0000
  0.0000
fval =
                                          exitflag =
        15000
```