Exercices: 07 - Polarisation

— Solutions —

A. Polarisation rectiligne

1. Loi de Malus

Réponses : $I = I_0 \cos^2 \theta$, $\frac{\Delta I}{I} \simeq 6\%$, $\frac{\Delta I}{I} \simeq 89\%$, très sensible au voisinage de l'extinction $(\frac{\pi}{2})$.

2. Polarimètre de Laurent

Réponses : faire un schéma dans le plan perpendiculaire à la direction de propagation et représenter les différents directions et les champs électriques concernés par le problème, $I_1 = I_0 \cos^2 \varphi$, $I_2 = I_0 \cos^2 (\varphi + 2\epsilon)$; $\varphi = \pi/2 - \epsilon$; $\epsilon = 13^{\circ}$; $\Delta \varphi \approx 0, 1^{\circ}$ très sensible.

3. Filtre de Lyot

Réponses : L'onde incidente se met sous la forme $\vec{E} = E_0 \exp j(\omega t - kz)$ \vec{u} soit $\vec{E} = \underline{E}$ $\vec{u} = \frac{\underline{E}}{\sqrt{2}}$ $(\vec{e}_x + \vec{e}_y)$ par définition de \vec{u} . Après la lame (L), on a un champ $\vec{E}' = \frac{\underline{E}}{\sqrt{2}} (\vec{e}_x + \vec{e}_y \exp - j\varphi)$. Après le polariseur (P), on obtient le champ projeté sur \vec{u} : $\vec{E}'' = \frac{1}{\sqrt{2}} (E'_x + E'_y)$ $\vec{u} = \frac{1}{2} \underline{E} (1 + \exp - j\varphi)$ \vec{u} . On calcule alors les éclairements avant (\mathcal{E}) et après (\mathcal{E}'') le système complet en utilisant les notations réelles : $\mathcal{E} = \langle E^2 \rangle = \langle E_0^2 \cos^2(\omega t - kz) \rangle = \frac{E_0^2}{2}$ et $\mathcal{E}'' = \langle E''^2 \rangle = \frac{1}{4} E_0^2 \langle \cos^2(\omega t - kz) + \cos^2(\omega t - kz - \varphi) + 2 \cos(\omega t - kz) \cos(\omega t - kz - \varphi) \rangle$. On développe le dernier cosinus et on calcule les moyennes, d'où $\mathcal{E}'' = \langle E''^2 \rangle = \frac{1}{4} E_0^2 (\frac{1}{2} + \frac{1}{2} + 0 + \cos\varphi)$ soit $\mathcal{E}'' = \frac{1}{4} E_0^2 [1 + \cos\varphi]$ donc $T = \frac{\mathcal{E}''}{\mathcal{E}} = \frac{1 + \cos\varphi}{2} = \cos^2\frac{\varphi}{2}$. Remarque : en restant en complexes, on peut calculer la moyenne temporelle avec la formule $\langle X^2 \rangle = \frac{1}{2} \Re(\underline{X} \underline{X}^*)$ et on trouve le même résultat final. Puisque chaque cellule a une épaisseur différente, la périodicité de T change pour chaque cellule et l'ensemble de celles-ci présente une transmittance $T_{\text{total}} = T_e T_{2e} T_{2e} \dots T_{2^{N-1}e}$, c'est-à-dire $T_{\text{total}} = \cos^2\frac{\varphi}{2} \cos^2\varphi \cos^2\varphi \cos^22\varphi \dots \cos^22^{N-2}\varphi$. On peut interpréter le filtrage en représentant les transmittances de chaque cellule (ici les 3 premières) de façon superposée à la figure 1

FIGURE 1 – Transmittance dans le cadre du filtre de Lyot

On voit que le produit de ces fonctions vaut 1 en $\varphi = 0$ [2π] et est négligeable sinon. Ainsi, un tel dispositif sélectionne uniquement ces valeurs de φ , soit dans le visible uniquement la longueur d'onde $\lambda_0 = \lambda_c$, d'où le nom de filtre. Un spectroscope à réseau ne fonctionne que pour une source de type fente-rectiligne (fine pour avoir une meilleure résolution). Pour une photo monochromatique du Soleil, il faudrait en balayer des bandes fines, ce qui est long à faire et ne permet pas d'étudier les tâches d'évolution rapide à sa surface.

4. Pourvoir rotatoire

Réponses : I_2 max, soit la substance fait tourner dans un sens de 80°, soit de 100° dans l'autre sens, dans le premier cas $[\alpha^0] = 4 \times 10^{-3}$ ° · g⁻¹ · m², dans le second $[\alpha^0] = -5 \times 10^{-3}$ ° · g⁻¹ · m².

5. Mesure de pouvoir rotatoire

Réponses : $\varphi = 58^\circ$, a = 0, $b = 193192^\circ \cdot \text{nm}$; $\frac{b}{\lambda_k} = (2k+1)90^\circ$ avec $k \in \mathbb{N}$, 2 cannelures sombres, $\lambda_1 = 716 \, \text{nm}$, $\lambda_2 = 429 \, \text{nm}$; $\lambda_k' = \frac{b}{\varphi + (2k+1)90^\circ} < \lambda_k$, vers le rouge.

B. Polarisation circulaire

6. Polarisation circulaire et modèle de pouvoir rotatoire

Réponses : $W_x(\frac{\omega^2}{c_0^2}-k^2)=-i\gamma\omega W_y$ et $W_y(\frac{\omega^2}{c_0^2}-k^2)=i\gamma\omega W_x$, $(\frac{\omega^2}{c_0^2}-k^2)=\pm\gamma\omega$, $k_+=\frac{\omega}{c_0}\sqrt{1+\frac{\gamma c_0^2}{\omega}}$ et $k_-=\frac{\omega}{c_0}\sqrt{1-\frac{\gamma c_0^2}{\omega}}$, pour k_+ on a $W_y=-iW_x$ elliptique gauche, pour k_- on a $W_y=iW_x$ elliptique droite, $\vec{W}=\vec{W}_++\vec{W}_-$, $\vec{W}=(W_{+x}\vec{e}_x-iW_{+x}\vec{e}_y)\exp{i(\omega t-k_+z)}+(W_{-x}\vec{e}_x+iW_{-x}\vec{e}_y)\exp{i(\omega t-k_-z)}$ avec $\vec{W}(z=0)=W_0\vec{e}_x\exp{i\omega t}$ d'où $W_+=W_-=\frac{W_0}{2}$, $\vec{W}(e,t)=\frac{W_0}{2}\exp{i(\omega t-k_+e)}[\vec{e}_x(1+\exp{i\theta})-i\vec{e}_y(1-\exp{i\theta})]$, superposition de deux ondes une polarisation circulaire gauche $\vec{e}_x-i\vec{e}_y$ et une polarisation circulaire droite $\exp{i\theta}(\vec{e}_x+i\vec{e}_y)$ déphasée de θ par rapport à la première, en factorisant par $\exp{i\frac{\theta}{2}}$, on montre que l'on a une polarisation rectiligne puisque $\vec{W}(e,t)=\frac{W_0}{2}\exp{i(\omega t-k_+e+\frac{\theta}{2})}[\vec{e}_x(\exp{-i\frac{\theta}{2}}+\exp{i\frac{\theta}{2}})-i\vec{e}_y(\exp{-i\frac{\theta}{2}}-\exp{i\frac{\theta}{2}})]$ d'où $\vec{W}(e,t)=W_0\exp{i(\omega t-k_+e+\frac{\theta}{2})}[\cos{\frac{\theta}{2}}\vec{e}_x-\sin{\frac{\theta}{2}}\vec{e}_y]$, la polarisation est rectiligne tournée d'un angle $-\frac{\theta}{2}$ par rapport à la polarisation rectiligne d'entrée.

7. Polarisations rectiligne et circulaire

Réponses : $\vec{E} = E_0 \left[\cos(\omega t - kz)\vec{e}_x + \sin(\omega t - kz)\vec{e}_y\right],$ $\vec{E} = \frac{E_0}{2} \left[\cos(\omega t - kz)\vec{e}_x + \sin(\omega t - kz)\vec{e}_y\right] + \frac{E_0}{2} \left[\cos(\omega t - kz)\vec{e}_x - \sin(\omega t - kz)\vec{e}_y\right],$ $\vec{E}_i = E_0 \exp i(\omega t - kz)(\vec{e}_x + i\vec{e}_y)$ CD et $\vec{E}_r = -E_0 \exp i(\omega t + kz)(\vec{e}_x + i\vec{e}_y)$ CG d'où $\vec{E}_{tot} = 2E_0 \exp i\omega t \sin kz \left[-i\vec{e}_x + \vec{e}_y\right]$ ondes stationnaires.