

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2010; month=11; day=9; hr=10; min=3; sec=7; ms=738;]

=====

Application No: 10540539 Version No: 2.0

Input Set:

Output Set:

Started: 2010-11-09 07:49:39.400
Finished: 2010-11-09 07:49:40.892
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 492 ms
Total Warnings: 7
Total Errors: 0
No. of SeqIDs Defined: 15
Actual SeqID Count: 15

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)

SEQUENCE LISTING

<110> ZHOU, Rouli
SHAO, Genze
LIU, Xinrong
ZHANG, Qingyun
RUI, Jingan
ZHANG, Ye
JIN, Yueying
LIN, Ming
ZHANG, Sha

<120> Human Cancer-Relating Genes, the Products Encoded Thereby and Application Thereof

<130> 062331-2002

<140> 10540539
<141> 2006-10-04

<150> PCT/CN2003/001109
<151> 2003-12-24

<150> CN 03109786.3
<151> 2003-04-21

<150> CN 02158110.X
<151> 2002-12-24

<160> 15

<170> PatentIn version 3.4

<210> 1
<211> 954
<212> DNA
<213> Homo sapiens

<400> 1

atgacgtcac ggactcgggt cacatggccg agtccgcccc gccccctccc cgtccccgcc	60
gctgcagccg tcgccttcgg agcgaagggt accgaccggg cagaagctcg gagctctcg	120
ggatatcgagg aggcaaggccc gcggggcgcac gggcgagcgg gccggggagcc ggagcggcgg	180
aggagccggc agcagcggcg cggcgggctc caggcgaggc ggtcgacgct cctgaaaact	240
tgcgcgcgcg ctgcgcac tgcgcggga gcgtgaaga tggtcgcgcc ctggacgcgg	300
ttctactcca acagctgctg ctgtgtgc catgtccgca ccggcaccat cctgctcgcc	360
gtctggtatac tgatcatcaa tgctgtggta ctgttgattt tattgagtgc cctggctgat	420
ccggatcaatc ataacttttc aagttctgaa ctgggaggtg actttgagtt catggatgtat	480
gccaacatgt gcattgccat tgcgatttct cttctcatga tcctgatatg tgctatggct	540

acttacggag cgtacaaggca acgcgcagcc tggatcatcc cattcttctg ttaccagatc	600
tttgactttg ccctgaacat gttggttgca atcactgtgc ttatattatcc aaactccatt	660
caggaataaca tacggcaact gcctcctaattttccctaca gagatgatgt catgtcagtg	720
aatcctacct gtttggtcct tattattctt ctgtttatttgcattatctt gacttttaag	780
ggttacttga tttagctgtgt ttggaaactgc taccgataaca tcaatggtag gaactcctct	840
gatgtccctgg tttatgttac cagcaatgac actacggtgc tgctacccccc gtatgatgat	900
gccactgtga atggtgctgc caaggagcca ccgccccacccctt acgtgtctgc ctaa	954

```
<210> 2
<211> 1440
<212> DNA
<213> Homo sapiens
```

<400> 2
ggccgactagg ggactggcg agggtgcacg ctgatggatt tactcaccgg gtgcttggag 60

ctccagcagc tggctggagc ccgcgatgac gtcacggact cgggtcacat ggccgagtcc 120

gccccgcccc ctccccgtcc ccgcccgtgc agccgtcgcc ttccggagcga agggtaccga 180

ccccggcagaa gctcggagct ctccgggtat cgaggaggca ggccccgggg cgcacgggca 240

agcgggcccc gagccggagc ggcggaggag ccggcagcag cggcgcggcg ggctccaggc 300

gaggcggtcg acgctcctga aaacttgcgc ggcgcgtcgc gccactgcgc ccggagcgt 360

gaagatggtc gcgccttggc cgccgttcta ctccaacagc tgctgcttgt gctgccatgt 420

ccgcaccggc accatcctgc tcggcgtctg gtatctgatc atcaatgctg tggtaactgtt 480

gattttattt agtgccttgg ctgatccgga tcagtataac ttttcaagtt ctgaactggg 540

aggtgacttt gagttcatgg atgatgccaa catgtgcatt gccattgcga tttctttct 600

catgatcctg atatgtgcta tggctactta cggagcgtac aagcaacgcg cagcctggat 660

catcccattc ttctgttacc agatcttga ctttgcctg aacatgttgg ttgcaatcac 720

tgtgcttatt tatccaaact ccattcagga atacatacgg caactgcctc ctaattttcc 780

ctacagagat gatgtcatgt cagtgaatcc tacctgtttg gtccttatta ttcttctgtt 840

tattagcatt atcttgactt ttaagggtta cttgattagc tgtgtttggc actgctaccg 900

atacatcaat ggttaggaact cctctgatgt cctggtttat gttaccagca atgacactac 960

ggtgctgcta ccccgatgt atgatgccac tgtgaatggc gctgccaagg agccaccggcc 1020

accttacqgtq tctqcctaag cttcaagtq qgcqqaqctq aqqqcaqcaq cttqactttq 1080

cagacatctg agcaatagtt ctgttatttc acttttgcca tgagcctctc tgagcttgg 1140
tgttgctgaa atgctacttt ttaaaaattta gatgttagat tgaaaaactgt agtttcaac 1200
atatgctttg ctggaacact gtgatagatt aactgtagaa ttcttcgt acgattgggg 1260
atataatggg cttcactaac cttccctagg cattgaaact tcccccaaat ctgatggacc 1320
tagaagtctg ctttgtacc tgctggccc caaagttggg cattttctc tctgttcct 1380
ctctttgaa aatgtaaaat aaaaccaaaa atagaccaaa aaaaaaaaaa aaaaaaaaaa 1440

<210> 3
<211> 2169
<212> DNA
<213> Homo sapiens

<400> 3
ggcgactagg ggactggcg agggtgcacg ctgatggatt tactcaccgg gtgcttggag 60
ctccagcagc tggctggagc ccgcgatgac gtcacggact cgggtcacat ggccgagtcc 120
gccccggccc ctccccgtcc cccggctgc agccgtcgcc ttccggagcga agggtaccga 180
cccgccagaa gctcggagct ctcgggtat cgaggaggca ggcggcgccc cgcacggcg 240
agcggggccgg gagccggagc ggcggaggag ccggcagcag cggcgccggc ggctccaggc 300
gaggcggctcg acgctcctga aaacttgcgc ggcgcgtcgcc gccactgcgc ccggagcgat 360
gaagatggtc gcgccttggc cgcggttcta ctccaaacagc tgctgcttgt gctgccatgt 420
ccgcacccggc accatcctgc tggcgctcg gatctgtatc atcaatgctg tggtactgtt 480
gattttattt agtgccttgg ctgatccggc tcagtataac tttcaagtt ctgaactggg 540
aggtaacttt gagttcatgg atgatgccaa catgtgcatt gccattgcga tttctttct 600
catgatcctg atatgtcta tggctactta cggagcgat aagcaacgcg cagcctggat 660
catcccattt ttctgttacc agatcttga cttgccttgc aacatgttgg ttgcaatcac 720
tgtgcttattt tatccaaact ccattcagga atacatacgg caactgcctc ctaattttcc 780
ctacagagat gatgtcatgt cagtgaatcc tacctgtttg gtccttatta ttcttctgtt 840
tattagcatt atcttgactt ttaagggtta cttgatttgc tgtgtttggc actgctaccg 900
atacatcaat ggttagaact cctctgtatc cctggtttat gttaccagca atgacactac 960
ggtgctgcta ccccccgtatg atgatgccac tgtgaatggt gtcgttgcagg agccacccgc 1020
accttacgtg tctgcctaag cttcaagtg ggcggagctg agggcagcag cttgactttg 1080
cagacatctg agcaatagtt ctgttatttc acttttgcca tgagcctctc tgagcttgg 1140

tgttgctgaa atgctacttt ttaaaaattta gatgttagat tgaaaaactgt agttttcaac	1200
atatgccttg ctggAACACT gtgatAGATT aactgtAGAA ttcttcCTGT acgattGGGG	1260
atataatGGG cttcaCTAAC cttccCTAGG cattgAAact tcccccaAT ctgatggacc	1320
tagaagtctg ctTTTgtacc tgctggGCC caaagttggg cattttctc tctgttCCCT	1380
ctctttgaa aatgtAAAAT aaaACCAAAA atagacaACT ttttcttCAG ccattCCAGC	1440
atagagaACA aaACCTTATG gaaACAGGAA tgtcaATTgt gtaatCATTG ttctaATTAG	1500
gtAAATAGAA gTCCTTATgt atgtgttaca agaatttccc ccacaACATC ctTTATgACT	1560
gaagttcaat gacagTTTGT gTTGGTGGT aaaggatttt ctccatggcc tgaattaAGA	1620
ccattAGAAA gcaccaggCC gtgggAGCAG tgaccatCTG ctgactgttC ttgtggatCT	1680
tgtgtccagg gacatgggGT gacatgcCTC gtatgtgtta gagggTggaa tggatgtgtt	1740
tggcgctgca tgggatctgg tgccCTCTT ctcctggatt cacatccccA cccaggGCC	1800
gCTTTACTA agtgttCTGC CCTAGATTGG ttcaaggAGG tcATCCAAct gactttatCG	1860
agtggAAATTG ggatATAATTt gatataCTtC tgcctaACAA catggAAAAG ggTTTCTTT	1920
tccctgcaag ctacatCCTA ctgcttGAA ctTCCAAGTA tgtctAGTCA cctttAAAA	1980
tgtAAACATT ttcaGAAAAAA tgaggattGC ctTcCTTGTa tgcgCTTTT accttgactA	2040
cctgaATTGC aaggGAATTt tATATATTCA tatgttACAA agtcaGCAAC tctcctgttG	2100
gttCATTATT gaatgtgctG taaATTAGt tgTTTgcaat taaaacaAGG tttGCCACa	2160
aaaaaaaaaa	2169

<210> 4
 <211> 317
 <212> PRT
 <213> Homo sapiens

<400> 4

Met	Thr	Ser	Arg	Thr	Arg	Val	Thr	Trp	Pro	Ser	Pro	Pro	Arg	Pro	Leu
1						5			10					15	

Pro	Val	Pro	Ala	Ala	Ala	Ala	Val	Ala	Phe	Gly	Ala	Lys	Gly	Thr	Asp
							20		25				30		

Pro	Ala	Glu	Ala	Arg	Ser	Ser	Arg	Gly	Ile	Glu	Glu	Ala	Gly	Pro	Arg
							35		40				45		

Ala His Gly Arg Ala Gly Arg Glu Pro Glu Arg Arg Arg Ser Arg Gln
50 55 60

Gln Arg Arg Gly Gly Leu Gln Ala Arg Arg Ser Thr Leu Leu Lys Thr
65 70 75 80

Cys Ala Arg Ala Arg Ala Thr Ala Pro Gly Ala Met Lys Met Val Ala
85 90 95

Pro Trp Thr Arg Phe Tyr Ser Asn Ser Cys Cys Leu Cys Cys His Val
100 105 110

Arg Thr Gly Thr Ile Leu Leu Gly Val Trp Tyr Leu Ile Ile Asn Ala
115 120 125

Val Val Leu Leu Ile Leu Leu Ser Ala Leu Ala Asp Pro Asp Gln Tyr
130 135 140

Asn Phe Ser Ser Ser Glu Leu Gly Gly Asp Phe Glu Phe Met Asp Asp
145 150 155 160

Ala Asn Met Cys Ile Ala Ile Ala Ile Ser Leu Leu Met Ile Leu Ile
165 170 175

Cys Ala Met Ala Thr Tyr Gly Ala Tyr Lys Gln Arg Ala Ala Trp Ile
180 185 190

Ile Pro Phe Phe Cys Tyr Gln Ile Phe Asp Phe Ala Leu Asn Met Leu
195 200 205

Val Ala Ile Thr Val Leu Ile Tyr Pro Asn Ser Ile Gln Glu Tyr Ile
210 215 220

Arg Gln Leu Pro Pro Asn Phe Pro Tyr Arg Asp Asp Val Met Ser Val
225 230 235 240

Asn Pro Thr Cys Leu Val Leu Ile Ile Leu Leu Phe Ile Ser Ile Ile
245 250 255

Leu Thr Phe Lys Gly Tyr Leu Ile Ser Cys Val Trp Asn Cys Tyr Arg
260 265 270

Tyr Ile Asn Gly Arg Asn Ser Ser Asp Val Leu Val Tyr Val Thr Ser

275

280

285

Asn Asp Thr Thr Val Leu Leu Pro Pro Tyr Asp Asp Ala Thr Val Asn
290 295 300

Gly Ala Ala Lys Glu Pro Pro Pro Tyr Val Ser Ala
305 310 315

<210> 5
<211> 226
<212> PRT
<213> Homo sapiens

<400> 5

Met Lys Met Val Ala Pro Trp Thr Arg Phe Tyr Ser Asn Ser Cys Cys
1 5 10 15

Leu Cys Cys His Val Arg Thr Gly Thr Ile Leu Leu Gly Val Trp Tyr
20 25 30

Leu Ile Ile Asn Ala Val Val Leu Leu Ile Leu Leu Ser Ala Leu Ala
35 40 45

Asp Pro Asp Gln Tyr Asn Phe Ser Ser Ser Glu Leu Gly Gly Asp Phe
50 55 60

Glu Phe Met Asp Asp Ala Asn Met Cys Ile Ala Ile Ala Ile Ser Leu
65 70 75 80

Leu Met Ile Leu Ile Cys Ala Met Ala Thr Tyr Gly Ala Tyr Lys Gln
85 90 95

Arg Ala Ala Trp Ile Ile Pro Phe Phe Cys Tyr Gln Ile Phe Asp Phe
100 105 110

Ala Leu Asn Met Leu Val Ala Ile Thr Val Leu Ile Tyr Pro Asn Ser
115 120 125

Ile Gln Glu Tyr Ile Arg Gln Leu Pro Pro Asn Phe Pro Tyr Arg Asp
130 135 140

Asp Val Met Ser Val Asn Pro Thr Cys Leu Val Leu Ile Ile Leu Leu
145 150 155 160

Phe Ile Ser Ile Ile Leu Thr Phe Lys Gly Tyr Leu Ile Ser Cys Val

165

170

175

Trp Asn Cys Tyr Arg Tyr Ile Asn Gly Arg Asn Ser Ser Asp Val Leu

180

185

190

Val Tyr Val Thr Ser Asn Asp Thr Thr Val Leu Leu Pro Pro Tyr Asp

195

200

205

Asp Ala Thr Val Asn Gly Ala Ala Lys Glu Pro Pro Pro Pro Tyr Val

210

215

220

Ser Ala

225

<210> 6

<211> 2264

<212> DNA

<213> Homo sapiens

<400> 6

gaatctcgac ctttgaatgg agttacacga acggccagat gaaagaagga aggcccggac 60

ctccactcag ggccgactag gggactggcg gagggtgcac gctgatggat ttactcaccg 120

ggtgcttggaa gtcacagcag ctgcttggag ctccagcagc tggctggagc ccgcgtatgac 180

gtcacggact cgggtcacat ggccgagtcc gccccccccctcccccgtcc ccgcgcgtgc 240

agccgtcgcc ttccggagcga agggtaaccga cccggcagaa gctcggagct ctcggggat 300

cggaggaggca ggcccgccgg cgacacggcg agcggggccgg gagccggagc ggccggaggag 360

ccggcagcag cggcgccggcg ggctccaggc gaggcggtcg acgctcctga aaacttgcgc 420

gcgcgcgtcgcc gccaactgcgc ccggagcgat gaagatggtc gcgccttggaa cgcgggttcta 480

ctccaacagc tgctgcttgt gctgccatgt ccgcaccggc accatcctgc tcggcgctcg 540

gtatctgatc atcaatgctg tggtaactgtt gatttattt gatgtccctgg ctgatccgga 600

tcaagtataac tttcaagtt ctgaactggg aggtgacttt gagttcatgg atgatgcca 660

catgtgcatt gccattgcga tttcttttcatgatcctg atatgtgcta tggctactta 720

cggagcgtac aagcaacgcg cagcctggat catccattc ttctgttacc agatcttga 780

ctttgccttg aacatgttgg ttgcaatcac tgtgcttatt tatccaaact ccattcagga 840

atacataacgg caactgcctc ctaatttcc ctacagagat gatgtcatgt cagtgaatcc 900

tacctgtttg gtccttatta ttcttctgtt tattagcatt atcttgactt ttaagggtta	960
cttgattagc tgtgtttgga actgctaccg atacatcaat ggttaggaact cctctgatgt	1020
cctggtttat gttaccagca atgacactac ggtgctgcta ccccccgtatg atgatgccac	1080
tgtgaatggt gctgccaagg agccaccgccc accttacgtg tctgcctaag cttcaagtg	1140
ggcggagctg agggcagcag ctgactttg cagacatctg agcaatagtt ctgttatttc	1200
acttttgcca tgagctctc tgagcttgtt tggtgctgaa atgctacttt taaaattta	1260
gatgttagat tgaaaactgt agtttcaac atatgcttg ctggaacact gtgatagatt	1320
aactgtagaa ttcttcgtt acgattgggg atataatggg cttcaactac cttccctagg	1380
cattgaaact tcccccaaat ctgatggacc tagaagtctg ctttgtacc tgctgggccc	1440
caaagttggg cattttctc tctgttccct ctctttgaa aatgtaaaat aaaaccaaaa	1500
atagacaact ttttcttcag ccattccagc atagagaaca aaacctttagt gaaacaggaa	1560
tgtcaattgt gtaatcatttgc ttctaattttt gtaaatagaa gtccttatgt atgtgttaca	1620
agaatttccc ccacaacatc ctttatgact gaagttcaat gacagtttgt gtttgggttgt	1680
aaaggatttt ctccatggcc tgaattaaga ccattagaaa gcaccaggcc gtgggagcag	1740
tgaccatctg ctgactgttc ttgtggatct tgggtccagg gacatgggtt gacatgcctc	1800
gtatgtgtt gagggtggaa tggatgtgtt tggcgctgca tggatctgg tgcccttctt	1860
ctcctggatt cacatcccc cccagggccc gctttacta agtgttctgc cctagattgg	1920
tcaaggagg tcataccact gactttatcg agtggaaattt ggatataattt gatataacttc	1980
tgcctaacaa catggaaaag ggtttcttt tccctgcaag ctacatccta ctgctttgaa	2040
cttccaagta tgtctagtca cttttaaaaa tgtaaacatt ttcagaaaaa tgaggattgc	2100
cttccttgc tgcgcctttt accttgcacta cctgaattgc aaggatttt tatataattca	2160
tatgttacaa agtcagcaac tctcctgttg gttcattttt gaatgtgctg taaattaagt	2220
tgtttgcaat taaaacaagg tttgcccaca aaaaaaaaaa aaaa	2264

<210> 7
 <211> 370
 <212> PRT
 <213> Homo sapiens

<400> 7

Met	Glu	Leu	His	Glu	Arg	Pro	Asp	Glu	Arg	Arg	Lys	Ala	Arg	Thr	Ser
1				5				10				15			

Thr Gln Gly Arg Leu Gly Asp Trp Arg Arg Val His Ala Asp Gly Phe
20 25 30

Thr His Arg Val Leu Gly Ala Pro Ala Ala Ala Trp Ser Ser Ser Ser
35 40 45

Trp Leu Glu Pro Ala Met Thr Ser Arg Thr Arg Val Thr Trp Pro Ser
50 55 60

Pro Pro Arg Pro Leu Pro Val Pro Ala Ala Ala Ala Val Ala Phe Gly
65 70 75 80

Ala Lys Gly Thr Asp Pro Ala Glu Ala Arg Ser Ser Arg Gly Ile Glu
85 90 95

Glu Ala Gly Pro Arg Ala His Gly Arg Ala Gly Arg Glu Pro Glu Arg
100 105 110

Arg Arg Ser Arg Gln Gln Arg Arg Gly Gly Leu Gln Ala Arg Arg Ser
115 120 125

Thr Leu Leu Lys Thr Cys Ala Arg Ala Arg Ala Thr Ala Pro Gly Ala
130 135 140

Met Lys Met Val Ala Pro Trp Thr Arg Phe Tyr Ser Asn Ser Cys Cys
145 150 155 160

Leu Cys Cys His Val Arg Thr Gly Thr Ile Leu Leu Gly Val Trp Tyr
165 170 175

Leu Ile Ile Asn Ala Val Val Leu Leu Ile Leu Leu Ser Ala Leu Ala
180 185 190

Asp Pro Asp Gln Tyr Asn Phe Ser Ser Ser Glu Leu Gly Gly Asp Phe
195 200 205

Glu Phe Met Asp Asp Ala Asn Met Cys Ile Ala Ile Ala Ile Ser Leu
210 215 220

Leu Met Ile Leu Ile Cys Ala Met Ala Thr Tyr Gly Ala Tyr Lys Gln
225 230 235 240

Arg Ala Ala Trp Ile Ile Pro Phe Phe Cys Tyr Gln Ile Phe Asp Phe
245 250 255

Ala Leu Asn Met Leu Val Ala Ile Thr Val Leu Ile Tyr Pro Asn Ser
260 265 270

Ile Gln Glu Tyr Ile Arg Gln Leu Pro Pro Asn Phe Pro Tyr Arg Asp
275 280 285

Asp Val Met Ser Val Asn Pro Thr Cys Leu Val Leu Ile Ile Leu Leu
290 295 300

Phe Ile Ser Ile Ile Leu Thr Phe Lys Gly Tyr Leu Ile Ser Cys Val
305 310 315 320

Trp Asn Cys Tyr Arg Tyr Ile Asn Gly Arg Asn Ser Ser Asp Val Leu
325 330 335

Val Tyr Val Thr Ser Asn Asp Thr Thr Val Leu Leu Pro Pro Tyr Asp
340 345 350

Asp Ala Thr Val Asn Gly Ala Ala Lys Glu Pro Pro Pro Pro Tyr Val
355 360 365

Ser Ala
370

<210> 8
<211> 1341
<212> DNA
<213> Homo sapiens

<400> 8
gctccaggtg gaagagtgtg cagctgcaag attaataga gtaaaaacag ctcccataca 60
gtgggcgggg acccaaaggg gtttgcac tcccggtgg aatgcctgg gtttatcc 120
caatcattgt ccctccccct gtgctctcag atgatacatg atttgactat ttctttacct 180
cttgctttta gcttaattgg tgtttagtg agccctttt actacctgat tggtcaggtg 240
tgagctgagt tacaagcccc atgttta