Лабораторная работа 5.1.3 Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра)

Гаврилин Илья Добровольская Ксения Б01-110

22 ноября 2023 г.

Цель работы: Получить BAX эффекта на экране ЭО, измерить расстояния между характерными точками в вольтах; снять BAX в статическом режиме; по результатам измерений рассчитать размер электронной оболочки атома, оценить глубину потенциальной ямы и потенциал ионизации газа, заполняющего лампу.

Теория

Эффект Рамзауэра

Эффективное сечение реакции — это величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния (упругого или неупругого) в определенное конечное состояние. Сечение σ это отношение числа таких переходов N в единицу времени к плотности потока nv рассеиваемых частиц, падающих на мишень, т.е. к числу частиц, падающих в единицу времени на единичную площадку, перпендикулярно к их скорости.

$$\sigma = \frac{N}{nv} \tag{1}$$

Эффект Рамзауэра нельзя объяснить с позиции классической теории. С квантовой же точки зрения картина рассеяния выглядит следующим образом: внутри атома потенциальная энергия падающего электрона отлична от нуля, скорость электрона меняется, становясь равной v' в соответствии с законом сохранения энергии

$$E = \frac{mv^2}{2} = \frac{mv'^2}{2} + U$$

а значит, изменяется и длина его волны де-Бройля. Таким образом, по отношению к электронной волне атом ведет себя как преломляющая среда с относительным показателем преломления

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}} \tag{2}$$

Решение задачи о рассеянии электрона на сферическом потенциале достаточно громоздко. Поэтому рассматривают более простое одномерное приближение: электрон рассеивается на потенциальной яме конечной глубины. После решения соответ-

ствующего уравнения Шрёдингера получается выражение для коэффициента прохождения:

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2l)}$$
(3)

где $k_1^2 = \frac{2mE}{\hbar^2}, k_2^2 = \frac{2m(E+U_0)}{\hbar^2}.$

Как легко видно, это периодическое выражение с максимумами при

$$k_2 l = \pi n = \sqrt{\frac{2m(E + U_0)}{\hbar^2}} l$$
 (4)

Это же условие можно получить, рассматривая интерференцию двух волн — прошедшей через атом и отраженной от границ атомного потенциала. Тогда получаются следующие выражения для эффективного размера атома l:

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}}\tag{5}$$

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}} \tag{6}$$

 Γ де E_1, E_2 — энергии, соответствующие максимуму и минимуму прохождения электронов соответственно. Исключая U_0 можно найти

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}\tag{7}$$

А исключая l можно найти эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{8}$$

Так же можно вывести теоретически формулу, связывающую зависимость вероятности рассеяния электрона от его энергии:

$$w(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0} \tag{9}$$

С помощью неё, имея BAX тиратрона, можно построить график w(V).

Схема установки

Лампа-тиратрон ТГ301/1.3Б, заполненная инертным газом, расположена непосредственно на корпусе блока источников питания (БИП). Напряжение к электродам лампы подаются от источников питания, находящиеся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель БИП.

Рис. 1: Блок-схема экспериментальной установки

Ход работы

Динамический режим

Снимем с помощью осциллографа ВАХ при двух различных напряжениях, а затем измерим U_{\max} , U_{\min} в зависимости от U_{\max} . Все данные занесем в таблицу.

U, B	U_max, B	U_min, B
2.60	2.0	6.0
2.83	2.0	7.0

Таблица 1: Показания в динамическом режиме

Используя полученные данные и формулы (7) - (8) рассчитаем l и U_0 .

U, B	2.6	2.83
$l, \mathrm{\AA}$	3.43	3.07
U_0 , эВ	1.2	2

Таблица 2: Результаты вычисления l, U_0

Сравним полученные результаты с табличными значениями.

	$l,\mathrm{\AA}$	U_0 , эВ
эксперимент	3.25 ± 0.21	1.6 ± 0.1
теория	3.8	2.5

Таблица 3: Сравнение результатов, полученных в динамическом режиме

Перейдем к статическому режиму.

Статический режим

Проведем измерение при двух значениях напряжения накала $(U_{\text{нак}})$, результаты занесем в таблицу. По полученным данным построим графики, по ним определим максимальное и минимальное напряжение.

$U_{\mathrm{hak}} = 2.6$	60 B	$U_{\scriptscriptstyle \mathrm{Hak}} = 2.8$	83 B
I, отн. ед.	U, B	I, отн. ед.	U, B
0.1	0.0	0.1	0.0
0.3	0.5	0.5	0.5
42.0	1.0	54.6	1.0
166.5	1.6	175.0	1.5
174.1	1.7	184.5	1.8
157.1	2.0	182.2	1.9
164.8	1.9	183.9	1.6
170.6	1.9	187.1	1.7
175.2	1.8	186.8	1.7
99.9	2.6	170.5	2.1
70.7	3.0	137.7	2.6
51.2	3.6	115.2	3.1
40.9	4.1	98.3	3.6
35.1	4.6	85.1	4.2
31.7	5.1	79.8	4.5
29.3	5.6	73.4	5.1
24.6	6.2	69.8	5.6
27.3	6.7	67.7	6.1
27.4	7.1	67.8	6.5
27.6	7.5	67.7	7.1
29.2	8.1	67.8	6.7
31.0	8.6	70.4	7.5
33.2	9.1	74.7	8.1
36.8	9.6	79.9	8.6
45.7	10.1	87.7	9.1
47.0	10.6	95.9	9.6
55.5	11.2	119.2	10.1
61.0	11.6	127.0	11.2
		148.6	11.2

Таблица 4: Результаты замеров в статическом режиме

На построенных графиках определим координаты максимума и минимума, используя их рассчитаем $l,\,U_0.$

U, B	$l, m \AA$	U_0 , эВ
2.60	3.1 ± 0.2	2.1 ± 0.3
2.83	3.1 ± 0.2	2.1 ± 0.3
среднее	3.1 ± 0.2	2.1 ± 0.3
табличное	3.8	2.5

Таблица 5: Результаты в статическом режиме

Рис. 2: Результаты при $U_{\mbox{\tiny Hak}} = 2.60 \ \mbox{B}$

Рис. 3: Результаты при $U_{\mbox{\scriptsize Hak}}=2.83~{
m B}$

Используя формулу (9) можем построить зависимость вероятности рассеяния от напряжения, приведем качественный график.

Рис. 4: Качественная зависимость w(U)

Выводы

В данной лабораторной работе была получена ВАХ эффекта Рамзауэра на экране осциллографа в динамическом режиме.

Для динамического режима были рассчитаны размер электронной оболочки атома $l=(3.25\pm0.21)~{\rm \AA},$ глубина потенциальной ямы $U_0=1.6\pm0.1~{\rm эB}.$

Была снята ВАХ в статическом режиме. По результатам измерений рассчитан размер электронной оболочки атома $l=(3.1\pm0.2)$ Å, а также глубина потенциальной ямы $U_0=2.1\pm0.3$ эВ.

Табличные значения для данных величин составляют: l = 3.8 Å, $U_0 = 2.5 \text{ эВ}$. Экспериментальные данные немного отличны от табличных.

Также в ходе работы были оценены значения энергий, при которых должны появляться максимумы в коэффициенте прохождения электоронов для n=2, n=3, что соответственно составляют следующие величины (из формулы (4)): $E_2=13.5$ эВ, $E_3=32.9$ эВ.

Более того, была получена качественная зависимость вероятности рассеяния электрона от напряжения на тиратроне.