COS360 - Otimização

Trabalho Prático
Universidade Federal do Rio de Janeiro
Prof: Luidi Simonetti

Júlia Togashi e Felipe Schreiber

$$f(x_1, x_2) = ln(2x_1^2 - x_1^4 + \frac{x_1^6}{6} + x_1x_2 + x_2^2)$$

Podemos abaixo observar uma representação gráfica da função. Podemos perceber que **ela possui uma descontinuidade no ponto (0,0)**, que é igual a ln(0).

Temos ainda o vetor gradiente e a matriz hessiana $x_1 = x$; $x_2 = y$.

$$\operatorname{grad} \log \left(\frac{x^6}{6} - x^4 + 2 x^2 + x y + y^2 \right) = \left(\frac{x^5 - 4 x^3 + 4 x + y}{\frac{x^6}{6} - x^4 + 2 x^2 + x y + y^2}, \frac{x + 2 y}{\frac{x^6}{6} - x^4 + 2 x^2 + x y + y^2} \right)$$

Podemos resolver $\nabla f(x) = 0$:

Temos que $x+2y=0 \Rightarrow y=-\frac{x}{2}$. Substituindo na equação de cima, temos uma equação de uma variável igual a $4x-4x^3+x^5-\frac{x}{2}=0$

Temos como solução x=0; x=-1.13705...; x=1.13705...; x=-1.64532...; x=1.64532...; x=1.64532...; sendo que x=0 é um ponto de descontinuidade da função e não há mínimo global na função.

Fazendo uma análise ponto a ponto, podemos classificar os pontos estacionários:

$$\log \left(2x^2 - x^4 + \frac{x^6}{6} + xy + y^2\right) \approx -0.334799$$
at $(x, y) \approx (-1.64533, 0.822664)$ (minimum)

$$\log \left(2x^2 - x^4 + \frac{x^6}{6} + xy + y^2\right) \approx -0.0500473$$
at $(x, y) \approx (-1.13705, 0.568527)$ (saddle point)

$$\log \left(2x^2 - x^4 + \frac{x^6}{6} + xy + y^2\right) \approx -0.0500473$$
 at $(x, y) \approx (1.13705, -0.568527)$ (saddle point)

$$\log \left(2x^2 - x^4 + \frac{x^6}{6} + xy + y^2\right) \approx -0.334799$$
at $(x, y) \approx (1.64533, -0.822664)$ (minimum)

Resultados obtidos:

• Método Gradiente

o Busca por seção áurea:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)	100	(0.000630966, -0.000320727)	-14.1769
(2,-2)	25	(1.64533, -0.822668)	-0.334799
(-2,2)	25	(-1.64533, 0.822668)	-0.334799
(-0.5, 0.25)	100	(0.0385452, 0.0175189)	-5.53368
(0.01, 0.01)	100	(0.000521002, -0.00141761)	-13.22

• Busca por Armijo:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)	100	(-1.36088e-31, -5.64146e-32)	-141.194
(2,-2)	31	(1.64533, -0.822668)	-0.334799
(-2,2)	31	(-1.64533, 0.822668)	-0.334799
(-0.5, 0.25)	100	(-2.03592e-31, -8.42955e-32)	-140.388
(0.01, 0.01)	100	(9.4384e-35, 4.23046e-35)	-155.717

• Método Newton

Busca por seção áurea:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)	100	(0.999863, 1.00151)	1.15402
(2,-2)	100	(-2.00028, 2.00157)	0.982636
(-2,2)	100	(2.00028, -2.00157)	0.982636
(-0.5, 0.25)	100	(-0.500138, 0.250069)	-0.973439
(0.01, 0.01)	100	(0.100039, 0.100037)	-3.22062

• Busca por Armijo:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)		1, 1	1.15268
(2,-2)		2, -2	0.980829
(-2,2)		-2, 2	0.980829
(-0.5, 0.25)		-0.5, 0.25	-0.973909
(0.01, 0.01)		0.01, 0.01	-7.82407

OBS: Como a direção de Newton pode não ser de descida não podemos garantir a convergência global.

Suponha que $\nabla 2f(x)$ é definida positiva $\forall x \in Rn$. Então o Método de Newton converge globalmente calculando o tamanho do passo tk usando a busca exata ou de Armijo.

Contudo, conferimos a matriz hessiana para esses dados pontos, e em nenhum deles a matriz é positiva definida, logo a convergência não era garantida.

Fizemos também o teste usando o método puro, t=1, mas para nenhum dos pontos houve um resultado coerente.

• Método Quase Newton (DFP)

o Busca por seção áurea:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)	100	0.000850584, -0.00140841	-13.0123
(2,-2)	100	1.64533, -0.822665	-0.334799
(-2,2)	100	-1.64533, 0.822665	-0.334799
(-0.5, 0.25)	100	-0.0071389, 0.00491315	-9.30476
(0.01, 0.01)	100	0.000400375, 0.000111753	-14.7888

o Busca por Armijo:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)	100	-1.24277e+17, -1.86416e+17	234.376
(2,-2)	100	-0.00539712, -0.270129	-2.59714
(-2,2)	100	0.00539712, 0.270129	-2.59714
(-0.5, 0.25)	100	-2.42066e+12, 0.24782	169.299
(0.01, 0.01)	100	-0.0146972, 0.0306281	-6.99124

Método Quase Newton (BFGS)

o Busca por seção áurea:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)	100	0.000867732, -0.00140789	-12.9973
(2,-2)	100	1.64533, -0.822665	-0.334799
(-2,2)	100	-1.64533, 0.822665	-0.334799
(-0.5, 0.25)	100	-0.0071353, 0.00490714	-9.30588
(0.01, 0.01)	100	-3.03836e-05, 0.000123131	-18.138

o Busca por Armijo:

X^0	Iter.	Opt. Point	Opt. Value
(1,1)	100	2.12432e+17, 3.18648e+17	237.593
(2,-2)	100	2.45791e-05, -0.0295012	-7.04748
(-2,2)	100	-2.45791e-05, 0.0295012	-7.04748
(-0.5, 0.25)	100	-4.66061e+13, 0.203101	187.045
(0.01, 0.01)	100	-0.01096, 0.029346	-7.15649