HAUSAUFGABENBLATT 2 MATHEMATISCHE METHODEN

Dr. Michael Czerner

Abgabetermin 01.11.2021

Aufgabe 1: Vektorrechnung

Hinweis: Die Schreibweise $\vec{a} = (1, 0, 1)^T$ bedeutet "transponiert", also $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

- a) Gegeben seien die beiden Vektoren $\vec{a} = (3, 4, 5)^T$ und $\vec{b} = (4, 5, 6)^T$.
 - (i) Berechnen Sie das Skalarprodukt $\vec{a} \cdot \vec{b}$.
 - (ii) Normieren Sie die Vektoren.
 - (iii) Wie groß ist der Abstand D, der über die Vektoren \vec{a} und \vec{b} definierten Punkte?
 - (iv) Berechnen Sie das Kreuzprodukt $\vec{a} \times \vec{b}$.
- b) Gegeben seien die Vektoren $\vec{a}=(1,0,2)^T, \, \vec{b}=(0,1,2)^T$ und $\vec{c}=(1,1,1)^T.$
 - (i) Zeigen Sie: Die Vektoren \vec{a} , \vec{b} und \vec{c} bilden eine Basis.
 - (ii) Stellen Sie den Vektor $\vec{d}=(1,0,0)^T$ in der Basis $\vec{a},\,\vec{b}$ und \vec{c} dar.
 - (iii) Stellen Sie den Vektor $\vec{k}=(1,0,2)^T$ in der Basis $\vec{a},\,\vec{b}$ und \vec{c} dar.

Aufgabe 2: Skalar- und Kreuzprodukt

Gegeben seien die Vektoren

$$\vec{a} = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \vec{c} = \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}$$

- a) Berechnen die Skalarprodukte $\vec{a} \cdot \vec{b}$, $\vec{a} \cdot \vec{c}$, $\vec{b} \cdot \vec{c}$ und die Kreuzprodukte $\vec{a} \times \vec{b}$, $\vec{a} \times \vec{c}$, $\vec{b} \times \vec{c}$.
- b) Prüfen Sie beispielhaft an den beiden Vektoren \vec{a} und \vec{b} , ob die Dreiecksungleichung $|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$ und die Schwarzsche Ungleichung $|\vec{a} \cdot \vec{b}| \leq |\vec{a}| \cdot |\vec{b}|$ erfüllt sind.
- c) Berechnen Sie den Winkel zwischen \vec{a} und \vec{b} sowohl über das Skalar- als auch über das Vektorprodukt.

Aufgabe 3: Orthogonalisierung, Normierung und Basis

- a) Gegeben ist das Skalarprodukt $\langle x \mid y \rangle = x_1y_1 + x_2y_2 + x_3y_3$. Finden Sie alle Vektoren, die orthogonal zu den beiden Vektoren $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ und $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$
- b) Multiplizieren Sie die beiden Vektoren aus a) mit einer reellen Zahl Ihrer Wahl so, dass die resultierenden Vektoren die Norm 1 haben.
- c) Gegeben sind die Vektoren $\vec{a} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. Finden Sie einen Vektor \vec{c} , sodass die Vektoren \vec{a} , \vec{b} , \vec{c} eine Basis bilden.

Aufgabe 4: Vektorräume

Betrachten Sie die Menge aller reellen Polynome vom Grad 3, d.h.

$$V = \{ f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 | a_0, \dots, a_3 \in \mathbb{R} \}$$

- a) Handelt es bei V um einen Vektorraum? Prüfen Sie die Vektorraumaxiome!
- b) Sind die folgenden Polynome linear un-/abhängig?

(a)
$$f_1(x) = x^2 - 2x;$$
 $f_2(x) = 7x^2 - x^3;$ $f_3(x) = 8x^2 + 11$
(b) $f_1(x) = -18x^2 + 15;$ $f_2(x) = 3x^3 + 6x^2 - 5;$ $f_3(x) = -x^3$

(b)
$$f_1(x) = -18x^2 + 15$$
; $f_2(x) = 3x^3 + 6x^2 - 5$; $f_3(x) = -x^3$

Aufgabe 5: Alternative Skalarprodukte

Wir betrachten den Raum der reellen 2D Vektoren mit den beiden Vektoren \vec{x} = (x_1, x_2) und $\vec{y} = (y_1, y_2)$. Welche der folgenden Vorschriften ist ein Skalarprodukt, erfüllt also die im Skript genannten Axiome? Überprüfen Sie dies!

Achtung: Nicht nur das Standard-Skalarprodukt $\vec{x} \circ \vec{y} = \vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2$ ist ein Skalarprodukt!

a)
$$\vec{x} \circ \vec{y} = x_1 y_1 + x_2 y_2$$

b)
$$\vec{x} \circ \vec{y} = x_1 y_1 + x_2 y_2 + 3$$

c)
$$\vec{x} \circ \vec{y} = x_1 x_2 + x_1 y_1 + y_1 y_2 + 2x_2 y_2$$

d)
$$\vec{x} \circ \vec{y} = x_1 y_1 + a x_1 y_2 + a x_2 y_1 + b x_2 y_2$$
 (Wie müssen a und b gewählt werden, damit diese Vorschrift ein Skalarprodukt ist?)