Projekt, wykonanie i badanie kodera, dekodera i układu korygującego kodu Hamminga

Cel ćwiczenia

Poznanie własności kodów liniowych, zasady formułowania kodu Hamminga oraz praktyczne zastosowanie poznanej wiedzy poprzez zaprojektowanie, wykonanie, badanie i symulację komputerowa kodera, dekodera i układu korygującego kod Hamminga.

Zagadnienia do przygotowania

- 1. Algorytm generacji kodu Hamminga.
- 2. Własności i obszary zastosowań kodu Hamminga.
- 3. Projektowanie kodera, dekodera i układu do korekcji dla układu Hamminga na bramkach logicznych.

Literatura

Sobczak W.: Statystyczna teoria przesyłania informacji. WKŁ, Warszawa 1980 Seidler J.: Systemy przesyłania informacji cyfrowych. WKŁ, Warszawa 1978

Wiadomości wstępne

Jest to kod z grupy kodów liniowych. Umożliwia on korekcję pojedynczego błędu elementarnego. Należy zauważyć, że do korekcji błędu elementarnego, w przypadku ciągów binarnych, wystarczy ustalenie miejsca jego położenia w ciągu. Jeżeli na ustalonej pozycji, jako pozycji błędnej, występuje jedynka to korekcja błędu będzie polegała na zamianie jej na zero i przeciwnie.

Struktura ciągów kodu Hamminga jest taka, że w przypadku wystąpienia pojedynczego błędu elementarnego, jest możliwe wyznaczenie numeru pozycji w ciągu, na której on występuje. Jednym z podstawowych założeń, jakie się czyni w kodzie Hamminga jest podział wszystkich pozycji w ciągu na tzw. zespoły kontrolne. Do każdego z zespołów wchodzi kilka pozycji, nie koniecznie kolejnych. Dowolnie wybrana pozycja może wchodzić do jednego, dwóch, a nawet więcej zespołów kontrolnych.

Ciągi kodowe kodu Hamminga są tak zbudowane, że suma cyfr należących do wybranego zespołu kontrolnego jest zawsze parzysta. Parzystość ta obowiązuje w każdym zespole kontrolnym. Wobec powyższej własności, w procesie dekodowania sprawdza się parzystość sumy cyfr w poszczególnych zespołach kontrolnych. Jeżeli suma cyfr na pozycjach "i" – tego zespołu kontrolnego jest parzysta oznacza to, że błąd elementarny nie znajduje się w obrębie tego zespołu. Jeżeli jednak nie jest parzysta oznacza to, że błąd znajduje się w obrębie tego zespołu.

Ważne jest ustalenie liczby zespołów kontrolnych N_k . Aby lokalizacja błędu elementarnego była możliwa, liczba zespołów kontrolnych N_k , równa długości ciągu kontrolnego, musi być dostatecznie duża. W przypadku N_k zespołów kontrolnych, można zbudować 2^{N_k} różnych binarnych ciągów kontrolnych. Liczba 2^{N_k} nie może być mniejsza od liczby pozycji ciągu kodowego, tj. od długości ciągu kodowego N, powiększonej dodatkowo o 1. Wynika z tego następująca równość:

$$2^{N_k} > N + 1$$

gdzie:

N_k – liczba zespołów kontrolnych

N – długość ciagu kodowego

Na długość ciągu kodowego składają się N_I – bity informacyjne i N_k – bity kontrolne. Zatem można zapisać równość:

$$N = N_I + N_k$$

Można zatem stwierdzić, że jeżeli cały ciąg kodowy jest odtwarzany bezbłędnie, to suma modulo 2 cyfr w zespołach kontrolnych musi być równa zero. Wynika z tego, że na pozycji kontrolnej umieszczamy zero, jeżeli liczba jedynek jest parzysta w danym zespole kontrolnym, jeżeli natomiast jest nieparzysta to umieszczamy jedynkę. Z tego wynika, że pozycji kontrolnych musi być tyle, ile jest ciągów kontrolnych N_k .

Ostatnim etapem w tworzeniu kodu Hamminga jest typowanie pozycji kontrolnych. W tej czynności musimy się kierować twierdzeniem, że pozycja kontrolna nie może należeć do kilku zespołów kontrolnych – musi należeć tylko do jednego zespołu kontrolnego.

Zaprezentowaną powyżej teorię zilustruję przykładem, w którym wyodrębnię poszczególne kroki kodowania informacji przy pomocy kodu Hamminga. Posłużę się informacja 4 – bitową.

- informacja wejściowa: $1101 \Rightarrow N_I = 4$
- wyznaczenie ilości zespołów kontrolnych:

$$2^{N_k} \ge N + 1$$

$$2^{N_k} \ge 4 + N_k + 1$$

$$2^{N_k} \ge 5 + N_k \implies N_k = 3$$

 $N = N_I + N_k = 4 + 3 = 7 \\ nr \ pozycji \ blędu & ciąg \ kontrolny \\ 0 & 000 \\ 1 & 001 \\ 2 & 010 \\ 3 & 011 \\ 4 & 100 \\ 5 & 101 \\ 6 & 110 \\ \\ \\$

• wyznaczenie zespołów kontrolnych:

Ogólnie można powiedzieć, że "l" – ta pozycja ciągu kodowego należy do "k" – tego zespołu kontrolnego, jeżeli liczba "l" zapisana w systemie dwójkowym, ma jedynkę na "k" – tej pozycji.

111

I zespół kontrolny: 4, 5, 6, 7;

(jedynka na pierwszej pozycji licząc od lewej w ciągu kontrolnym)

II zespół kontrolny: 2, 3, 6, 7;

(jedynka na drugiej pozycji licząc od lewej w ciągu kontrolnym)

III zespół kontrolny: 1, 3, 5, 7;

(jedynka na trzeciej pozycji licząc od lewej w ciągu kontrolnym)

• wyznaczenie pozycji kontrolnych:

Pozycja kontrolna nie może należeć do kilku zespołów kontrolnych – musi należeć tylko do jednego zespołu kontrolnego.

Pozycje kontrolne są następujące: 1, 2, 4;

• uzupełnienie pozycji kodowych – otrzymanie kodu Hamminga dla określonej na początku informacji:

Liczba dziesiętna reprezentująca nr bitu	1	<u>2</u>	3	4	5	6	7
Wartość	III zk	II zk	\mathbf{x}_1	I zk	\mathbf{x}_2	X3	X4
Wyjście	<u>y</u> ₁	<u>y</u> 2	y ₃	<u>y</u> 4	y 5	y 6	y ₇

$$y_1 = x_1 \oplus x_2 \oplus x_4$$
$$y_2 = x_1 \oplus x_3 \oplus x_4$$
$$y_4 = x_2 \oplus x_3 \oplus x_4$$

Bity podkreślone oznaczają bity kontrolne. Zostały one wpisane zgodnie z zasadą: na pozycji kontrolnej umieszczamy zero, jeżeli suma modulo 2 cyfr w zespole kontrolnym jest równa zero, jeżeli natomiast jest ona równa jeden to umieszczamy jedynkę na pozycji kontrolnej. Ciąg kodowy uzyskany na zasadzie kodu Hamminga, dla informacji 1101 ma postać:

1010101

Wykrywanie błędu przy pomocy kodu Hamminga polega na tym, że sprawdzamy kolejne zespoły kontrolne w ciągu odebranym:

- jeżeli tylko w jednym zespole kontrolnym liczba jedynek będzie nieparzysta, to wiemy już, że w tym zespole kontrolnym jest przekłamanie, więc musiało ono nastąpić jedynie na pozycji, która jako jedyna znajduje się w tym zespole kontrolnym, wtedy na tej pozycji zmieniamy wartość z 0 na 1 albo przeciwnie;
- jeżeli w kilku zespołach kontrolnych liczba jedynek nie jest parzysta, oznacza to, że należy szukać przekłamania w elementach wspólnych tych zespołów kontrolnych, korekcji tego błędu dokonujemy w znany nam sposób;

Projektowanie i badanie układów

- zapoznać się ze specyfikacją i sposobem programowania cyfrowego zasilacza AMREL LPS 304 i zaprogramować podaną przez prowadzącego wartość napięcia;
- zaprojektować i przebadać układ kodera Hamminga wg następującego algorytmu:
 - o wyznaczyć liczbę zespołów kontrolnych dla 4 bitowej informacji wejściowej;
 - o wyznaczyć zespoły kontrolne dla 4 bitowej informacji wejściowej;
 - o wyznaczyć bity kontrolne dla 4 bitowej informacji wejściowej;
 - o wyznaczyć równania opisujące wyjścia kodera Hamminga dla 4 bitowej informacji wejściowej;
 - o narysować schemat logiczny układ kodera na bramkach różnego typu zgodnie z równaniami opisującymi wyjścia kodera Hamminga;
 - o zapisać tabele prawdy dla 4 bitowego układu Hamminga:

Bi	inarn form	y cia acyji	ig nv	Binarny ciąg Kodowy Hamminga										
X _{1MSB}	X ₂	$\begin{bmatrix} x_3 \end{bmatrix}$	X _{4LSB}	YIMSB Y2 Y3 Y4 Y5 Y6 Y7LSB										
AIMSB	A2	Α3	A4LSB	YIMSB		ys	y4	ys	yo	y /LSB				

o zrealizować układ kodera Hamminga na modelu dydaktycznym i przetestować zaprojektowany układ. Uzyskane wyniki zanotować w tabeli:

В	inarn	y cia	ıg	Binarny ciąg										
in	form	acyjı	1y	Kodowy Hamminga										
X _{1MSB}	\mathbf{x}_2	X3	X_{4LSB}	y _{1MSB}	\mathbf{y}_2	y_3	y_4	y_5	y ₆	y _{7LSB}				

- zaprojektować układ korygujący Hamminga wg następującego algorytmu
 - wyznaczyć sumy kontrolne na podstawie wcześniej wyznaczonych zespołów kontrolnych;
 - sporządzić schemat logiczny układu korygującego na bramkach logicznych różnego typu;
 - o zrealizować układ korygujący na modelu dydaktycznym i przetestować zaprojektowany układ dla jednego bitu przekłamanego i dwóch bitów

przekłamanych – numer bitu przekłamania podaje prowadzący. Uzyskane wyniki zanotować w tabeli:

Binarny ciąg informacyjny				Skorygowany binarny ciąg Kodowy Hamminga z przekłamaniem na bicie							Skorygowany binarny ciąg Kodowy Hamminga z przekłamaniem na bicie						
X _{1MSB}	X ₂	X3	X_{4LSB}	y _{1MSB}					y ₆		y _{1MSB}	y_2			y ₅		
_																	

Uwaga

- układ kodera należy zasilać napięciem stałym 5V, gdyż jest realizowany w oparciu o układy logiczne wykonane w technologii TTL;
- sprawozdanie powinno zawierać:
 - układ przycisków panelu sterowania zasilacza oraz układ gniazd wyjściowych zasilacza AMREL LPS 304 wraz z objaśnieniami ich przeznaczenia oraz sposobem jego programowania;
 - algorytm generacji kodu Hamminga dla określonego prze prowadzącego ciągu informacyjnego;
 - schemat logiczny układu kodera Hamminga na bramkach logicznych dla 4 – bitowej informacji wejściowej;
 - tabele prawdy realizowanych układów;
 - dokumentację potwierdzającą wykonanie kodera, dekodera i układu korygującego kodu Hamminga na modelu dydaktycznym;
 - wyniki symulacji komputerowej projektowanych układów w programie MMlogic z przekłamaniem na jednym i na dwóch bitach;
 - wnioski dotyczące zastosowania kodu Hamminga oraz jego możliwości korekcyjnych.