

NEW ZEALAND SCHOLARSHIP CALCULUS: 2004

FORMULAE AND TABLES BOOKLET

Check that this booklet has pages 2–4 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS FORMULAE AND TABLES BOOKLET AT THE END OF THE EXAMINATION.

NEW ZEALAND SCHOLARSHIP CALCULUS - USEFUL FORMULAE

ALGEBRA

Quadratics

If
$$ax^2 + bx + c = 0$$

then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Logarithms

$$y = \log_b x \Leftrightarrow x = b^y$$

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b(x^n) = n\log_b x$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Complex Numbers

$$z = x + iy$$

$$= r \operatorname{cis} \theta$$

$$= r(\cos \theta + i \sin \theta)$$

$$\overline{z} = x - iy$$

$$= r \operatorname{cis}(-\theta)$$

$$= r(\cos \theta - i \sin \theta)$$

$$r = |z| = \sqrt{z\overline{z}} = \sqrt{(x^2 + y^2)}$$

$$\theta = \arg z$$

where
$$\cos \theta = \frac{x}{r}$$

and
$$\sin \theta = \frac{y}{r}$$

De Moivre's Theorem: If *n* is any integer then $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta)$

COORDINATE GEOMETRY

Straight Line

Equation
$$y - y_1 = m(x - x_1)$$

Circle

$$(x-a)^2 + (y-b)^2 = r^2$$

has a centre (a,b) and radius r

Parabola

$$y^2 = 4ax \text{ or } (at^2, 2at)$$

Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ or } (a\cos\theta, b\sin\theta)$$

Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ or } (a \sec \theta, b \tan \theta)$$

asymptotes
$$y = \pm \frac{b}{a}x$$

CALCULUS

Differentiation

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
$\ln x$	$\frac{1}{x}$
e ^{ax}	ae^{ax}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
sec x	$\sec x \tan x$
cosec x	$-\csc x \cot x$
$\cot x$	$-\csc^2 x$

Integration

f(x)	$\int f(x) \mathrm{d}x$
x^n	$\frac{x^{n+1}}{n+1} + c$
$\frac{1}{x}$	$\ln x + c$
$\frac{f'(x)}{f(x)}$	$\left \ln \left f(x) \right + c \right $

Product rule

$$(f \cdot g)' = f \cdot g' + g \cdot f'$$
 or if $y = uv$ then $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

Quotient rule

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$
 or if $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Composite Function or Chain Rule

$$(f(g))' = f'(g) \cdot g'$$

or if $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Volume of Revolution

y = f(x) between x = a and x = brotated about the x-axis Volume = $\int_{a}^{b} \pi y^{2} dx$

NUMERICAL METHODS

Trapezium Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h \Big[y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1}) \Big]$$

where
$$h = \frac{b-a}{n}$$
 and $y_r = f(x_r)$

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} h \Big[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \Big]$$
where $h = \frac{b-a}{n}$, $y_r = f(x_r)$ and n is even.

TRIGONOMETRY

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

General Solutions

If
$$\sin \theta = \sin \alpha$$
 then $\theta = n\pi + (-1)^n \alpha$
If $\cos \theta = \cos \alpha$ then $\theta = 2n\pi \pm \alpha$
If $\tan \theta = \tan \alpha$ then $\theta = n\pi + \alpha$

where n is any integer

Compound Angles

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Double Angles

$$\sin 2A = 2\sin A\cos A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$

Products

$$2\sin A\cos B = \sin (A+B) + \sin (A-B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2\sin A\sin B = \cos (A - B) - \cos (A + B)$$

Sums

$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

MEASUREMENT

Triangle

$$area = \frac{1}{2}ab\sin C$$

Trapezium

$$area = \frac{1}{2}(a+b)h$$

Sector

$$area = \frac{1}{2}r^2\theta$$

arc length = $r\theta$

Cylinder

 $volume = \pi r^2 h$

curved surface area = $2\pi rh$

Cone

$$volume = \frac{1}{3}\pi r^2 h$$

curved surface area = $\pi r l$ where l = slant height

Sphere

$$volume = \frac{4}{3}\pi r^3$$

surface area = $4\pi r^2$