Complexity Analysis of the Backward Coverability Algorithm for VASS

Pierre Ganty
IMDEA Software Institute
Madrid, Spain

Laura Bozzelli
UPM
Madrid, Spain

► RP '11, Genova ◀

Safety checking for systems with infinitely many states

Coverability checking

Vector Addition Systems with States

Low supply of decidable cases, e.g. coverability checking for VASS

Coverability checking for VASS is useful for verification:

- Multithreaded Software Libraries (Ball, Chaki, Rajamani in TACAS '01)
- Asynchronous programs
 (Majumdar, Jhala, Sen, Viswanathan in POPL '{07,09}, CAV '06, TCS '09)
- Parameterized Concurrent Programs

(Kroening, Kaiser, Wahl in CAV '10)

VASS coverability checker have been implemented:

Delzanno, Raskin, Van Begin, G

(MIST, 2000-2007)

• Bingham, Hu

(2005)

• Kaiser, Kroening, Wahl

(BOOM, 2009–present)

Complexity of problem vs solution

A d-VASS consists of a pair (Q, Δ)

- Q are the control states
- ullet $\Delta\subseteq Q imes \mathbb{Z}^d imes Q$ is the finite set of transitions

Semantics as an infinite transition system $(Q \times \mathbb{N}^d, \rightarrow)$

Let $q \stackrel{\vec{u}}{\to} q'$ be a transition where $\vec{u} = \langle u_1, \dots, u_d \rangle$ then $\langle q, v_1, \dots, v_d \rangle \to \langle q', v_1 + u_1, \dots, v_d + u_d \rangle$

ullet \to^* denotes the reachability relation

VASS coverability

Define the ordering ≤ on VASS states as follows:

$$\langle q, v_1, \dots, v_d \rangle \leq \langle q', v_1', \dots, v_d' \rangle$$
 iff
$$q = q' \text{ and } v_i \leq v_i' \text{ for every } i \in \{1, \dots, d\}$$

Given a VASS and two VASS-states: s_i and s_f Checking that s_f is coverable from s_i asks if there exists a VASS-state s such that:

$$s_i
ightarrow^* s$$
 and $s_f riangleleft s$

Seminal papers about the coverability problem:

- Lower bound on the coverability problem, Lipton 1976, cited 219 times
- Upper bound on the coverability problem, Rackoff 1978, cited 143 times The coverability problem is EXPSPACE-complete

Solving VASS coverability: predecessors computation

Let a 2-VASS and call the 2 counters $\{x,y\}$ and ${m s}_f=\langle q,4,1\rangle$

Let
$$t: q_1 \xrightarrow{\langle +1,0 \rangle} q$$

$$pre[t](\{\langle q,i,j \rangle \mid i \geq 4, j \geq 1\}) = \{\langle q_1,k,\ell \rangle \mid k \geq 3, \ell \geq 1\}$$

Solving VASS coverability

Saturating the predecessor computation

$$pre[t](X)$$
 predecessor of X in 1 step using t
$$pre(X) = \bigcup_t pre[t](X)$$
 predecessor in 1 step
$$pre^*(X)$$
 predecessors in 0 or more steps

$$pre^*(U) = \lim_{n \to \infty} X_n$$
 where
$$\begin{cases} X_1 = U \\ X_{i+1} = U \cup pre(X_i) \end{cases}$$

$$X_1 = U$$

$$X_2 = U \cup pre(U)$$

$$X_3 = U \cup pre(U) \cup pre(pre(U))$$

$$\vdots$$

 s_f is coverable from s_i iff $s_i \in pre^*(\{s \mid s_f \leq s\})$

$pr(s \in U \land s \leq s' \text{ implies } s' \in U)$ ctiveness

Convergence: If U is \leq -closed then X_1, X_2, \ldots is such that

- $ightharpoonup X_i$ is \leq -closed for every i
- \blacktriangleright stabilizes after finitely many steps: $X_{\dagger} = X_{\dagger+1}$ for some \dagger

Effectiveness: Let $U \leq$ -closed, $\min(U)$ finitely represents U.

- ▶ Predicates $U_1 \subseteq U_2$ and $s_i \in U$ for $U, U_1, U_2 \subseteq$ -closed are decidable given $\min(U), \min(U_1), \min(U_2)$.
- $ightharpoonup \min(pre(U))$ is finite and computable given $\min(U)$

For $U = \{s \mid s_f \leq s\}$ we have $\min(U) = \{s_f\}$ then

$$Z_1 = \{ oldsymbol{s}_f \}$$
 $Z_{i+1} = \min(\{ oldsymbol{s}_f \} \cup minpre(Z_i))$

 $m{s}_f$ is coverable from $m{s}_i$ iff $egin{cases} m{s}_i \in pre^*(\{s_f \mid m{s}_f riangleq s\}) \\ m{s} riangleq m{s}_i riangle s \end{cases}$ for some $m{s} \in Z_\dagger$

Upper Bound

Complexity of the predecessor algorithm: upper bounds

Given d-VASS $G = (Q, \Delta)$ and G-state s_f

Let

$$Z_1 = \{s_f\}$$

$$Z_{i+1} = \min(\{s_f\} \cup minpre(Z_i))$$

From the EXPSPACE membership proof we derive:

• upper bound on \dagger • upper bound on \dagger

- upper bound on †
- upper bound on $|Z_i|$ for every i• upper bound b such that $Z_i \subseteq Q \times [0,b]^a$ for ever $O(i+1) \cdot b_c$
- hence, upper bound on the execution time

$$\left(|Q|\cdot b_c\right)^{2^{O(d\cdot \log d)}}$$

Define $b_c \in \mathbb{N}_0$ be the least value such that $\Delta \subseteq Q \times [-b_c, +b_c]^d \times Q$ and $s_f \in Q \times [0, b_c]^d$

Rackoff's proof

A d-VASS $G = \langle Q, \Delta \rangle$ and a G-state ${m s}_f$

Define $\pi_{m{s}}$ as a shortest sequence which covers $m{s}_f$ from $m{s}$

Given G and s_f , Rackoff bounds $\max_s |\pi_s|$

The bound is obtained by induction on the number of counters:

$$f(0) \le f(1) \le \dots \le f(d) = \max_{s} |\pi_{s}|$$

$$s_{f} = \left\langle q_{f}, v'_{1}, \dots, v'_{i}, v'_{i+1}, \dots, v'_{d} \right\rangle$$

Let $(q \xrightarrow{\vec{u}} q') \in \Delta$ where $\vec{u} = \langle u_1, \dots, u_i, u_i, u_{i+1}, \dots, u_d \rangle$ then $\langle q, v_1, \dots, v_i, v_{i+1}, \dots, v_d \rangle$

$$\langle q', v_1 + u_1, \dots, v_i + u_i, v_{i+1} + u_{i+1}, \dots, v_d + v_d \rangle$$

We will now characterize f(i) using f(i-1)

Characterizing f(i) using f(i-1)

Recall $b_c \in \mathbb{N}_0$ is the least value such that $\Delta \subseteq Q \times [-b_c, +b_c]^d \times Q$ and $s_f \in Q \times [0, b_c]^d$

- If $v \geq 6 \cdot b_c$ then after firing any sequence π of transitions such that $|\pi| \leq 5$, then $v \geq b_c$
- If $v \geq (f(i-1)+1) \cdot b_c$ then any sequence π of transitions such that $|\pi| \leq f(i-1)$ yields $v \geq b_c$
- \bullet If some counter ever goes above $(f(i-1)+1)\cdot b_c$ then we are in the i-1 case

The induction hypothesis appears

Characterizing f(i) using f(i-1) (cont'd)

- ► $f(i) \le |Q| \cdot ((f(i-1)+1) \cdot b_c)^i + f(i-1)$
- lacksquare Hence we can show that: $f(d) \leq \left(|Q| \cdot b_c\right)^{2^{O(d \cdot \log d)}}$

Back to the predecessor algorithm

Given $d\text{-}\mathrm{VASS}\ G = (Q, \Delta)$ and $G\text{-}\mathrm{state}\ \boldsymbol{s}_f$ Let

$$Z_1 = \{s_f\}$$

$$Z_{i+1} = \min(\{s_f\} \cup minpre(Z_i))$$

Recall:

 π_s is a shortest run to cover s_f from s and $f(d) \ge \max_s |\pi_s|$

Suppose $\dagger > f(d)$. From there we conclude $\dagger > \max_{s} |\pi_{s}|$

 $Z_i = ext{the states covering } s_f ext{ in at most } i ext{ steps}$

x covers s_f in no less than \dagger steps, hence $|\pi_{\boldsymbol{x}}| > \max_{\boldsymbol{s}} |\pi_{\boldsymbol{s}}|$

Therefore
$$\dagger \leq f(d)$$
 and $\dagger = \left(|Q| \cdot b_c\right)^{2^{O(d \cdot \log d)}}$

Lower Bound

Complexity of the predecessor algorithm: lower bounds

Lipton's EXPSPACE-hardness result for reachability in VASS ... defines a family $\{(G_i, \langle q_i, 0, \ldots, 0 \rangle)\}_{i \in \mathbb{N}_0}$ of VASS+ G_i -state for which the sequence Z_1, Z_2, \ldots given by

$$Z_1 = \{\langle q_i, 0, \dots, 0 \rangle\}$$

$$Z_{j+1} = \min(\{\langle q_i, 0, \dots, 0 \rangle\} \cup minpre(Z_j))$$

is such that:

- $\bullet \dagger_i \geq 2^{2^i}$
- $\bullet |Z_{\dagger_i}| \geq 2^{2^i}$
- ullet the highest number in Z_{\dagger_i} is at least $2^{2^{\Omega(i)}}$

Each d-VASS $G_i = \langle Q_i, \Delta_i \rangle$ is such that:

Proof ideas

We want 2^{r}

• a "large" value for †

• "many" (incomparable) elements in Z_{\dagger} .

First wea, a $x_i + \overline{x_i}$ constant for every i yields 2^n incomparable

Towards double exponential

Let $c=2^{2^i}$, then $\{(x_1,\overline{x_1},y_1,\overline{y_1})\mid x_1+\overline{x_1}=c,\ y_1+\overline{y_1}=c\}$ has $c\cdot c=2^{2^{i+1}}$ incomparable states

Recall that $\Delta_i \subseteq Q_i \times [-1,1]^d \times Q_i$, so direct increment / decrement / test of 2^{2^i} is not allowed.

Moreover, setting initial value to 2^{2^i} is not allowed.

Towards double exponential (cont'd)

We have $2^{2^i} \cdot 2^{2i} = 2^{2^{i+1}}$ calls to inc, so $\overline{x_{i+1}} = \overline{y_{i+1}} = 2^{2^{i+1}}$

Back to the predecessor algorithm

We define a family $\{(G_i, \langle q_i, 0, \dots, 0 \rangle)\}_{i \in \mathbb{N}_0}$ of $VASS+G_i$ -state for which the sequence Z_1, Z_2, \ldots given by

$$Z_1 = \{\langle q_i, 0, \dots, 0 \rangle\}$$

$$Z_{j+1} = \min(\{\langle q_i, 0, \dots, 0 \rangle\} \cup minpre(Z_j))$$

is such that:

- $\bullet \ \dagger_i \ge 2^{2^i}$ $\bullet \ |Z_{\dagger_i}| \ge 2^{2^i}$

ullet the highest number in Z_{\dagger_i} is at least $2^{2^{\Omega(i)}}$

Conclusions

- The predecessor computation has been showed to be optimal w.r.t. the complexity of the coverability problem
 - ► Easily derived from the complexity proof

Thank You!

 Rather surprising contrast with the forward algorithm (Karp and Miller) that is non-recursive primitive