Congratulations! You passed!

Grade Latest Submission received 100% Grade 100%

To pass 80% or higher

Go to next item

Occrrect What is a sequence to vector if an RNN has 30 cells numbered 0 to 29 1/1 point The total Y(hat) for all cells The Y(hat) for the last cell The average Y(hat) for all 30 cells Correct What does a Lambda layer in a neural network do? Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct What does the axis parameter of t.f.expand_dims do? Defines the dimension index to remove when you expand the tensor Defines the dimension index to remove when you expand the tensor Correct A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Hubbrl loss Hubbrl loss Correct LITMs have multiple outputs, RNNs have a cell state that runs across all cells LITMs have a single output, RNNs have a sell state that runs across all cells LITMs have a single output, RNNs have a sell state that runs across all cells	1.	If X is the standard notation for the input to an RNN, what are the standard notations for the outputs? Y H Y(hat) and H	1/1 point
The total Y(hat) for all cells The Y(hat) for the second cell The Y(hat) for the last cell The average Y(hat) for all 30 cells Correct 3. What does a Lambda layer in a neural network do? Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of tf.expand_dims do? Defines the axis parameter of tf.expand the dimensions Defines the dimension index to remove when you expand the tensor Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Huber loss Hubble loss Correct 1/1 point 1/2 point 1/3 point In addition to the Houtput, RNNs have a cell state that runs across all cells LSTMs have a single outputs, RNNs have a single one LSTMs have a single outputs, RNNs have a single one LSTMs have a single output, RNNs have a cell state that runs across all cells			
The total Y(hat) for all cells The Y(hat) for the second cell The Y(hat) for the last cell The average Y(hat) for all 30 cells Correct 3. What does a Lambda layer in a neural network do? Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of tf.expand_dims do? Defines the axis parameter of tf.expand the dimensions Defines the dimension index to remove when you expand the tensor Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Huber loss Hubble loss Correct 1/1 point 1/2 point 1/3 point In addition to the Houtput, RNNs have a cell state that runs across all cells LSTMs have a single outputs, RNNs have a single one LSTMs have a single outputs, RNNs have a single one LSTMs have a single output, RNNs have a cell state that runs across all cells	2	What is a sequence to vector if an PNN has 30 cells numbered 0 to 29	1/1 naint
Or The Y(hat) for the second cell The Y(hat) for the last cell The average Y(hat) for all 30 cells Correct 3. What does a Lambda layer in a neural network do? Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of ff.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyat loss Hyat loss What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single output, RNNs have a single one LSTMs have a single output, RNNs have a sell state that runs across all cells In addition to the H output, RNNs have a cell state that runs across all cells	۷.		1/1 point
 ● The Y(hat) for the last cell ○ The average Y(hat) for all 30 cells ② Correct 3. What does a Lambda layer in a neural network do? ○ Changes the shape of the input or output data ○ Pauses training without a callback ④ Allows you to execute arbitrary code while training ○ There are no Lambda layers in a neural network ② Correct 4. What does the axis parameter of tf.expand_dims do? □ Defines the axis around which to expand the dimensions ○ Defines the dimension index to remove when you expand the tensor ○ Defines if the tensor is X or Y ④ Defines the dimension index at which you will expand the shape of the tensor ② Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? 1/1 point Hawking loss Huber loss Hyat loss Hubble loss ○ Correct 6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single output, RNNs have a single one LSTMs have a single output, RNNs have a cell state that runs across all cells 			
Orrect 3. What does a Lambda layer in a neural network do? ○ Changes the shape of the input or output data ○ Pauses training without a callback ② Allows you to execute arbitrary code while training ○ There are no Lambda layers in a neural network ○ Correct 4. What does the axis parameter of tf.expand_dims do? ○ Defines the axis around which to expand the dimensions ○ Defines the dimension index to remove when you expand the tensor ○ Defines if the tensor is X or Y ② Defines the dimension index at which you will expand the shape of the tensor ○ Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? ○ Hawking loss ③ Huber loss ○ Hybatt loss ○ Hubble loss ○ Correct 6. What's the primary difference between a simple RNN and an LSTM ○ In addition to the H output, RNNs have a cell state that runs across all cells ○ LSTMs have a single output, RNNs have a single one ○ LSTMs have a single output, LSTMs have a cell state that runs across all cells ● In addition to the H output, LSTMs have a cell state that runs across all cells			
 ✓ Correct 3. What does a Lambda layer in a neural network do? 1/1 point Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of tf.expand_dlims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyatt loss Hyatt loss Hybtle loss Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single output, RNNs have a single one LSTMs have a single output, LSTMs have a cell state that runs across all cells 			
3. What does a Lambda layer in a neural network do? Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of tf.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyatt loss What's the primary difference between a simple RNN and an LSTM In addition to the Houtput, RNNs have a cell state that runs across all cells LSTMs have a single output, RNNs have a single one LSTMs have a single output, LSTMs have a cell state that runs across all cells			
 Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of tf.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? 1/1 point Hawking loss Hubbr loss Hyatt loss Hubble loss Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single outputs, RNNs have a single one LSTMs have a single output, LSTMs have a cell state that runs across all cells 			
 Changes the shape of the input or output data Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of tf.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Hubbre loss Hyatt loss Hubble loss Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single outputs, RNNs have a single one LSTMs have a single output, LSTMs have a cell state that runs across all cells 			
Pauses training without a callback Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct 4. What does the axis parameter of tf.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyatt loss Hyatt loss What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single outputs, RNNs have a wiltiple In addition to the H output, LSTMs have a cell state that runs across all cells	3.	What does a Lambda layer in a neural network do?	1 / 1 point
 Allows you to execute arbitrary code while training There are no Lambda layers in a neural network Correct What does the axis parameter of tf.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines the dimension index at which you will expand the shape of the tensor Correct A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Hubble loss Hyatt loss Hubble loss Correct 6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single output, RNNs have a single one LSTMs have a single output, LSTMs have a cell state that runs across all cells 		Changes the shape of the input or output data	
There are no Lambda layers in a neural network		Pauses training without a callback	
 Correct 4. What does the axis parameter of tf.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyatt loss Hubble loss Correct 6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single outputs, RNNs have a single one LSTMs have a single output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells LSTMs have a single output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells LSTMs have a single output, LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have a cell state that runs across all cells LSTMs have		Allows you to execute arbitrary code while training	
4. What does the axis parameter of tf.expand_dims do? Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct 1/1 point Hawking loss Huber loss Hyatt loss Hubble loss Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single output, RNNs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells		There are no Lambda layers in a neural network	
 Defines the axis around which to expand the dimensions Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor ✓ Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? 1/1 point Hawking loss Huber loss Hyatt loss Hubble loss ✓ Correct 6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have a single outputs, RNNs have a single one LSTMs have a single output, RNNs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells 		⊘ Correct	
 Defines the dimension index to remove when you expand the tensor Defines if the tensor is X or Y Defines the dimension index at which you will expand the shape of the tensor Correct A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyatt loss Hubble loss Correct 6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells 	4.	What does the axis parameter of tf.expand_dims do?	1 / 1 point
 Defines if the tensor is X or Y ● Defines the dimension index at which you will expand the shape of the tensor ○ Correct 1/1 point Hawking loss ● Huber loss Hyatt loss Hubble loss ○ Correct 6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells 		O Defines the axis around which to expand the dimensions	
 ● Defines the dimension index at which you will expand the shape of the tensor ○ Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? 1/1 point Hawking loss Huber loss Hyatt loss Hubble loss Correct 6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have an cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells 		O Defines the dimension index to remove when you expand the tensor	
 Correct 5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyatt loss Hubble loss Correct Correct In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a cell state that runs across all cells In addition to the H output, RNNs have a cell state that runs across all cells In addition to the H output, RNNs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells In addition to the H output, LSTMs have a cell state that runs across all cells 		O Defines if the tensor is X or Y	
5. A new loss function was introduced in this module, named after a famous statistician. What is it called? Hawking loss Huber loss Hyatt loss Hubble loss Correct Orrect In addition to the Houtput, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have a cell state that runs across all cells In addition to the Houtput, RNNs have a cell state that runs across all cells LSTMs have a single output, RNNs have multiple In addition to the Houtput, LSTMs have a cell state that runs across all cells		Defines the dimension index at which you will expand the shape of the tensor	
 Hawking loss Huber loss Hyatt loss Hubble loss ✓ Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells 		⊘ Correct	
 Hawking loss Huber loss Hyatt loss Hubble loss ✓ Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells 			
 Hawking loss Huber loss Hyatt loss Hubble loss ✓ Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells 	5	A new loss function was introduced in this module, named after a famous statistician. What is it called?	1/1 naint
 ● Huber loss ○ Hyatt loss ○ Hubble loss ② Correct 6. What's the primary difference between a simple RNN and an LSTM 1/1 point ○ In addition to the H output, RNNs have a cell state that runs across all cells ○ LSTMs have multiple outputs, RNNs have a single one ○ LSTMs have a single output, RNNs have multiple ● In addition to the H output, LSTMs have a cell state that runs across all cells 	٥.		1/1point
 Hyatt loss Hubble loss ✓ Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells 			
 Hubble loss ✓ Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells 			
 Correct What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells 			
6. What's the primary difference between a simple RNN and an LSTM In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells			
 In addition to the H output, RNNs have a cell state that runs across all cells LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple In addition to the H output, LSTMs have a cell state that runs across all cells 	6		# / # m = link
 LSTMs have multiple outputs, RNNs have a single one LSTMs have a single output, RNNs have multiple ■ In addition to the H output, LSTMs have a cell state that runs across all cells 	0.		1/1 point
 ■ In addition to the H output, LSTMs have a cell state that runs across all cells 			
In addition to the H output, LSTMs have a cell state that runs across all cells			
		Correct	

7.	If you want to clear out all temporary variables that tensorflow might have from previous sessions, what code do you run?	1 / 1 point
	tf.cache.backend.clear_session()	
	<pre>tf.cache.clear_session()</pre>	
	tf.keras.clear_session	
	tf.keras.backend.clear_session()	
	⊘ Correct	
8.	What happens if you define a neural network with these two layers?	1/1 point
	tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),	
	tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),	
	tf.keras.layers.Dense(1),	
	Your model will fail because you need return_sequences=True after the first LSTM layer	
	O Your model will fail because you need return_sequences=True after each LSTM layer	
	O Your model will compile and run correctly	
	O Your model will fail because you have the same number of cells in each LSTM	
	⊘ Correct	