AHX AFRIM SISTEMENT OF THE PROPERTY OF THE PRO 43×1 ×4125027 0215

LEE HOJUN DE E

주요프로젝트

관제 데이터 활용, 이상징후 판단 및 동적 임계치 모델링 관제 시스템 GENIO+ AI적용 및 고도화 프로젝트 KT 로그인 관제 시스템 구축 프로젝트 KT 로그 아키텍처 V-TF

강의 이력

Al (Machine Learning) 사내 멘토링 (KT IT부문 인프라본부, 2021) 인턴 AI 과제 코칭 및 멘토링(KT, 2021) 상명대 Al Jam 코칭 및 멘토링 (2022) 상명대 AI-X 선도인재양성 과정 특임교수 (2022~)

https://www.sli.do/

Enter code: #3649668

신입 개발자를 위한 PCM

Programmer Competency Matrix

도메인 이해 우리가 먼저 알아두어야 할 것은 무엇일까요?

- 분야 관련 Issue
- 관련 지식

Domain Knowledge 생활 인구 도메인

ㅇ '특정 지점을 기준으로 일정시간 동안에 유입, 유출, 이동한 총 인구'

ㅇ 유동인구는 일정기간, 특정지점을 통행하는 보행자

o 주민 등록 인구 = 유동인구 = 생활인구 ??

Domain Knowledge 생활 인구 관련 지식

서울에서 생활하는 서울 외 지역 인구 수는?

평일 기준 낮시간에 늘어나는 서울 생활 인구 수는?

주민등록 인구는 송파 > 강서 > 강남 순 생활인구는 강남 > 송파 > 서초 순

낮시간대 강남구, 중구, 종로구는 증가 관악구, 중랑구,은평구 등은 감소

Outline

프로젝트 개요

서울시생활정보기반 생활 인구 예측

• 목표

서울시 제공 공공데이터를 활용, 특정지역의 생활 인구를 분석하고 머신러닝과 딥러닝을 활용하여 예측 한다.

Outline 문제정의

우리가 풀어야 할 문제는 무엇일까요?

서울의 생활 인구 데이터를 분석하여, 특정 지역의 생활 인구를 파악하고

해당 지역의 생활인구를 예측한다

Dataset 데이터셋 소개

• 서울 생활 인구 데이터

(2017~22년 서울시 데이터)

출처 : 서울시 공공데이터 포털

https://data.seoul.go.kr/dataVisual/seoul/seoulLivingPopulation.do

Pre-Check

사전 체크

활용 라이브러리

유의 사항

Library

라이브러리 지식 체크

- Pandas: 데이터 핸들링과 분석에 유용한 라이브러리
- Numpy : 다차원 배열 및 수학적 기능을 지원하는 라이브러리
- Seaborn : 통계 데이터 시각화 라이브러리
- Matplotlib : 일반적인 파이썬 시각화 라이브러리
- Scipy: 수학, 과학, 등의 분야에서 많이 사용하는 계산 라이브러리
 - Keras: 딥러닝에 쓰이는 라이브러리

Important 유의사항

본 프로젝트에서는 시계열 데이터를 분석 하고 예측 해보는 연습을 합니다.

Practice

미니프로젝트 시작

미니 프로젝트 시작합니다!

Jupyter notebook을 실행해주세요

모델링을 위한 전과정 프로젝트 수행, 이제 시작합니다!

Practice

미니프로젝트 완료

미니프로젝트 완료! 데이터 분석 및 인사이트 도출

미니프로젝트를 통해 배우는 데이터 분석

자기주도형 실습으로 진행된 프로젝트, 어떤걸 느끼셨나요?

Summary

미니프로젝트 완료

'생활인구' 이해

서울시 생활 인구 정보

도메인 이해 데이터 분석

도메인 지식에 기반한 데이터 전처리

데이터 활용 및 추가 데이터 탐색

제공 데이터 분석

제공 데이터 시각화

시계열 데이터 분석 방법

데이터 전처리 딥러닝을 활용한 예측

"어느 모델의 성능이 가장 좋게 나오나요?

Kaggle Competition

문제를 해결했다는 성취감

딥러닝에 대한 자신감

협업을 통한 성장

프로젝트를 통한 성취감과 딥러닝의 자신감을 얻은 오늘!

多なるがちむ 21円を12年11年!

AI프로젝트 따라하기

Thank you! 21LICI.