

Fated

1- Business Intelligence

- Inteligência de Negócios
- Um conjunto de conceitos, métodos e recursos tecnológicos que habilitam a obtenção e distribuição de informações geradas a partir de dados operacionais, históricos e externos, visando proporcionar subsídios para a tomada de decisões gerenciais e estratégicas

Business Intelligence - Prof. Antonio Guardado

3

1- BI - Características

- Extrai e integra dados de múltiplas fontes;
- Fazer uso da experiência (dados históricos);
- Analisa dados contextualizados;
- Trabalha com hipóteses;
- Procura relações de causa e efeito;
- Transformar os registros obtidos em informação útil para o conhecimento empresarial;
- Conceitos de BI são aplicáveis a todo tipo de empresa, independente de seu porte, faturamento ou segmento.

Business Intelligence - Prof. Antonio Guardado

4

1.1-Sistemas de Apoio à Decisão

- Dificuldades para obter informação
- Quantidade de dados a serem analisados cresce com a expansão do negócio e com o passar dos anos
- Dados conflitantes vindos de fontes diferentes podem gerar informações desencontradas
- Impossível para um ser humano manter e analisar todos os dados
- Informação não é mais mantida por gerentes devido à mobilidade no mercado de trabalho

Business Intelligence - Prof. Antonio Guardado

7

1.1 - Sistemas de Apoio à Decisão

- Usam dados históricos mantidos em um banco de dados convencional
- Dados históricos são analisados usando técnicas de mineração de dados para obter informações usadas na tomada de decisões
- Estatísticas de venda, produção, clientes, etc.
 podem ser levantadas e consideradas para tomar decisões estratégicas de negócio

usiness Intelligence - Prof. Antonio Guardado

R

Fatec 1.1 - Sistemas de Apoio à Decisão

- · Benefícios dos Sistemas de Apoio à Decisão
 - Determinar o mercado-alvo de um produto
 - Definir o preço de um produto, criar promoções e condições especiais de compra
 - · Verificar a eficácia de campanhas de marketing
 - Otimizar a quantidade de produtos no estoque
 - Responder rapidamente a mudanças no mercado e determinar novas tendências
- ... ou seja, ganhar <mark>eficiência</mark> e <mark>lucratividade</mark>

Business Intelligence - Prof. Antonio Guardado

9

1.1 - Sistemas de Apoio à Decisão

- Fatec
- Problema: dados históricos não são mantidos nos BDs da empresa
- Volume de dados seria muito grande
- Desempenho seria insatisfatório
- Solução: criar um BD exclusivamente para manter os dados históricos
 - Especializado para realizar poucas consultas sobre um grande volume de dados
- Surge o Data Warehouse (DW)

Business Intelligence - Prof. Antonio Guardado

10

Fatec 2 - Data Warehouse • Histórico • Criado pela IBM na década de 60 com o nome Information Warehouse • Relançado diversas vezes sem grande sucesso • O nome Data Warehouse foi dado por William H. Inmon, considerado o pai desta tecnologia • Tornou-se viável com o surgimento de novas tecnologias para armazenar e processar uma grande quantidade de dados

2 - Data Warehouse O que é? Sistema que armazena dados históricos usados no processo de tomada de decisão Integra os dados corporativos de uma empresa em um único repositório Para que serve? Para criar uma visão única e centralizada dos dados que estavam dispersos em diversos BDs Permite que usuários finais executem consultas, gerem relatórios e façam análises

2 - Data Warehouse BDs usados nas aplicações de negócio são chamados BDs operacionais DW é um BD informacional alimentado com dados dos BDs operacionais da empresa Disponibiliza dados atuais e a dados históricos Dados podem ser sumarizados (condensados) para que sejam analisados Contém também metadados, que são dados sobre os dados armazenados no DW

Então o Data Warehouse é apenas um BD que contém também dados históricos? Para que seja considerado um Data Warehouse, um banco de dados deve: Coletar dados de várias fontes Dados coletados devem ser transformados para que haja uma visão única dos dados Dados devem ser usados por aplicativos para obter informações que dêem apoio à decisão

2 - Data Wa	rehouse	Fate
	BD Operacional	Data Warehouse
Usuários	Funcionários	Alta administração
Utilização	Tarefas cotidianas	Decisões estratégicas
Padrão de uso	Previsível	Difícil de prever
Princípio de funcionamento	Com base em transações	Com base em análise de dados
Valores dos dados	Valores atuais e voláteis	Valores históricos e imutáveis
Detalhamento	Alto	Sumarizado
Organização dos dados	Orientado a aplicações	Orientado a assunto
		15

3 - Arquitetura do Data Warehouse Principais tarefas efetuadas pelo DW Obter dados dos BDs operacionais e externos Armazenar os dados Fornecer informações para tomada de decisão Administrar o sistema e os dados Principais componentes do DW Mecanismos para acessar e transformar dados Mecanismo para armazenamento de dados Ferramentas para análise de dados Ferramentas de gerência

3.1 - Estrutura Interna Em geral são usados BDs relacionais para armazenar os dados do DW Capazes de manter e processar grandes volumes de dados Otimizados para lidar com dados imutáveis As ferramentas de análise empregam: Técnicas de mineração de dados Inteligência artificial: redes neurais, fuzzy, etc. A Internet: Web mining, agentes móveis, etc.

3.5 - Tipos de Data Warehouse DW baseado em Servidor Mainframe ou servidor de rede local (LAN) DW Virtual Reúne dados operacionais e dados históricos mantidos em BDs – não há um DW central DW Distribuído DW global reúne dados de vários DWs locais DW baseado na Web Dados provenientes da World Wide Web

4 -Modelagem Multidimensional • Associados a cada dimensão existem fatos: • Vendas • Compras • Sinistro • Fatos • São valores quantitativos referentes ao desempenho de um grupo de dimensões • Exemplo • Fato "Vendas" (Loja, Produto e Tempo) • Quantidade, lucro, valor, etc.

Propriedade	OLTP	OLAP	
Tempo de Resposta	Milisegundos para segundos	Segundos para horas	
Operações	DML	Leitura	
Natureza dos dados	30 - 60 dias	Snapshots no tempo	
Organização dos Dados	Aplicação	Assunto, tempo	
Tamanho	Pequeno para grande	Grande para Muito Grande	
Fontes de Dados	Operacional, Interna	Operacional, Interna, Externa	
Atividades	Processos	Análise	

Armazenamento	MOLAP	HOLAP	ROLAP
Dados de base	Cubo	Tabela Relacional	Tabela Relacional
Agregações	Cubo	Cubo	Tabela Relacional
Perspectiva do Cliente	MOLAP	HOLAP	ROLAP
Desempenho de consulta	Imediato	Mais rápido	Rápido
Consumo em disco	Alto	Médio	Baixo
Manutenção do cubo	Alto	Médio	Baixo

