VECTEURS ET DROITES

1. VECTEURS ET REPÈRE CARTÉSIEN

DÉFINITION (VECTEURS COLINÉAIRES)

On dit que deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** s'il existe un réel k tel que $\vec{v} = k\vec{u}$

Vecteurs colinéaires

REMARQUES

- Par convention, on considère que le vecteur nul est colinéaire est tout vecteur du plan
- Deux vecteurs colinéaires ont la même «direction»; ils ont le même sens si k > 0 et sont de sens contraire si k < 0.

DÉFINITION

On dit que le vecteur non nul \vec{u} est un **vecteur directeur** de la droite d si et seulement si il existe deux points A et B de d tels que $\vec{u} = \overrightarrow{AB}$.

Vecteur directeur

PROPRIÉTÉ

Trois points distincts A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

PROPRIÉTÉ

Deux droites sont parallèles si et seulement si elles ont des vecteurs directeurs colinéaires.

THÉORÈME ET DÉFINITIONS

Soient O un point et \vec{i} et \vec{j} deux vecteurs **non colinéaires** du plan.

Le triplet $(O; \vec{i}, \vec{j})$ s'appelle un **repère cartésien** du plan.

• Pour tout point M du plan, il existe deux réels x et y tels que :

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$$

• Pour tout vecteur \vec{u} du plan, il existe deux réels x et y tels que :

$$\vec{u} = x\vec{i} + y\vec{j}$$

Le couple (x;y) s'appelle le couple de **coordonnées** du point M (ou du vecteur \vec{u}) dans le repère $O(\vec{t},\vec{j})$

Coordonnées dans un repère cartésien

REMARQUE

Dans ce chapitre, les repères utilisés ne seront pas nécessairement orthonormés.

L'étude spécifique des repères orthonormés sera détaillée dans le chapitre «produit scalaire»

PROPRIÉTÉS

On se place dans un repère $(O; \vec{i}, \vec{j})$.

Soient deux points $A(x_A; y_A)$ et $B(x_B; y_B)$, alors :

- Le vecteur \overrightarrow{AB} a pour coordonnées $(x_B x_A; y_B y_A)$
- Le milieu M de [AB] a pour coordonnées $M\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$

THÉORÈME

Soient \vec{u} et \vec{v} deux vecteurs de coordonnées respectives (x; y) et (x'; y') dans un repère $(0; \vec{i}, \vec{j})$. Les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si leurs coordonnées sont proportionnelles, c'est à dire si et seulement si :

$$xy' - x'y = 0$$

2. ÉQUATIONS DE DROITES

Dans cette partie, on se place dans un repère $\left(O; \vec{i}, \vec{j}\right)$ (non nécessairement orthonormé).

THÉORÈME

Soit d une droite passant par un point A et de vecteur directeur \vec{u} .

Un point M appartient à la droite d si et seulement si les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.

EXEMPLE

Soient le point A(0;1) et le vecteur $\vec{u}(1;-1)$. Le point M(x;y) appartient à la droite passant par A et de vecteur directeur \vec{u} si et seulement si \overrightarrow{AM} et \vec{u} sont colinéaires. Or les coordonnées de \overrightarrow{AM} sont (x;y-1) donc :

$$M \in d \Leftrightarrow x \times (-1) - (y-1) \times 1 = 0 \Leftrightarrow -x - y + 1 = 0$$

Cette dernière égalité s'appelle une équation cartésienne de la droite d.

THÉORÈME

Toute droite du plan possède une équation cartésienne du type :

$$ax + by + c = 0$$

où a, b et c sont trois réels.

Réciproquement, l'ensemble des points M(x; y) tels que ax + by + c = 0 où a, b et c sont trois réels avec $a \neq 0$ ou $b \neq 0$ est une droite.

REMARQUES

- Une droite possède une infinité d'équation cartésienne (il suffit de multiplier une équation par un facteur non nul pour obtenir une équation équivalente).
- Si $b \neq 0$ l'équation peut s'écrire :

$$ax + by + c = 0 \Leftrightarrow by = -ax - c \Leftrightarrow y = -\frac{a}{b}x - \frac{c}{b}$$

qui est de la forme y = mx + p (en posant $m = -\frac{a}{b}$ et $p = -\frac{c}{b}$).

Cette forme est appelée équation réduite de la droite.

Ce cas correspond à une droite qui n'est pas parallèle. à l'axe des ordonnées.

• Si b = 0 et $a \neq 0$ l'équation peut s'écrire :

$$ax + c = 0 \Leftrightarrow ax = -c \Leftrightarrow x = -\frac{c}{a}$$

qui est du type x = k (en posant $k = -\frac{c}{a}$)

Ce cas correspond à une droite qui est parallèle. à l'axe des ordonnées.

PROPRIÉTÉ

Soit *d* une droite d'équation ax + by + c = 0.

Le vecteur \vec{u} de coordonnées (-b; a) est un vecteur directeur de la droite d.

DÉMONSTRATION

Voir exercice: « Equation cartésienne - Vecteur directeur » &.