ECS150 SQ15 May 14, 2015

Lecture Notes 8

Virtual Memory

• Virtual Address Space – Logical (or Virtual) view of process memory space

- Demand Paging Pages are loaded on demand
 - Lazy Swapper Swap only what is needed
 - Pager Moves pages, not entire process
 - Memory Resident The information is currently in memory
 - Page-Fault Trap Exception when required page is not memory resident
 - Pure Demand Paging Only bring pages in when they are needed
 - Locality of Reference References typically exist within a local are
 - Performance
 - Effective Access Time $(1-p) \times ma + p \times page$ fault time
 - Page Fault Rate The rate in which page faults occur per instruction
- Copy-on-Write Pages are duplicated on first write
 - Zero-fill-on-demand Pages are initially zeroed out
 - Virtual Memory fork Child uses suspended parents memory space
- Page Replacement
 - Over Allocating Putting too many processes in memory
 - Replacement
 - Victim Frame The frame that will be swapped out
 - Modify bit (Dirty bit) Keep track if page has been modified or not
 - Frame-Allocation Algorithm How to allocate frames
 - Page-Replacement Algorithm Decide what pages to replace
 - Belady's anomaly Page fault rate increases with number of frames
 - FIFO Page Replacement First in is first to be replaced
 - LRU Page Replacement Page that hasn't been used for longest time is replaced
 - LRU Approximation Page Replacement
 - Reference Bit Bit is set when it is referenced
 - Additional Reference Bits Algorithm Use of bits that shift each period
 - Second-Chance Algorithm Give a second chance if reference bit is set
 - Enhanced Second-Chance Algorithm Recent, Modified
 - Counting-Based Page Replacement Count the number of accesses
 - Least Frequently Used Replace least frequently used page
 - Most Frequently Used Replace the most frequently used page
 - Page Buffering Algorithms Check to see if in the free-frame pool
 - Applications and Page Replacements Some applications like databases perform terribly under virtual memory and need their own control

ECS150 SQ15 May 14, 2015

- Allocation of Frames
 - Minimum Number of Frames How many frames at a minimum should a process have?
 - Equal Allocation Divide all frames equally among processes
 - Proportional Allocation Allocate based upon size of process
 - Global vs. Local Replacement Replace from all frames or just the ones the process owns
- Thrashing High paging activity where paging exceeds execution
 - Local Replacement Algorithm (Priority Replacement Algorithm) Only allow process to replace its own frames, don't take from other processes
 - Locality Model Processes typically execute in a small area of the program
 - Working-Set Model Amount needed to execute within a locality
 - Working-Set Window The range of pages recently used
 - Page Fault Frequency The frequency in which page faults are occurring
- Memory-Mapped Files
 - File Mapping Maps a file into memory space
 - Named Shared-Memory Object Map a location of memory shared between processes that is named in the system
 - Memory-Mapped I/O I/O devices are mapped into the memory space
- Allocating Kernel Memory
 - Power-of-2 Allocator All allocations are of power size two
 - Buddy System Each segment is divided in half, one is further subdivided
 - Coalescing Two buddies can be combined to form larger space
 - Slab Allocation One or more contiguous pages in memory make up a slab, a cache is used to allocate within the slab
- Other Considerations
 - Pre-paging Pages are brought in before they are demanded
 - Page Size What should the page size be? (Often fixed by the hardware)
 - TLB Reach Amount of memory accessible from TLB
 - Inverted Page Tables
 - Program Structure
 - I/O Interlock