Fall 2020 ECE20017

Algorithm Analysis and Design

September 2020

Joseph S. Shin (formerly Sung Yong Shin)

Algorithm Analysis

How to compare algorithms?

Given algorithms that solve a problem, how do we compare these algorithms?

The growth rate of the time or space requirements to solve a (arbitrarily) **large** instance of the problem.

Asymptotic Growth rate

The size of the problem

problem size (or input size): the amount of data given as the input Examples:

sorting: the length of the list containing the data

graph coloring : |V| + |E| for G = (V, E)

matrix multiplication: the number of elements in the

matrices

Running time

of primitive operations (steps) executed

How to compare algorithms?

Given an algorithms to solve a problem, how do we compare algorithms?

The rate of growth of the time or space requirements to solve a large instance of the problem.

Asymtotic Growth rate

The size of the problem

Input size: the amount of data given as the input Example

sorting: the length of the list containing the data: n graph coloring: |V| + |E| for G = (V, E) matrix multiplication: the number of elements in the

matrices

Running time

of primitive operations (steps) executed

Time Complexity

The number of time steps for an algorithm to solve a problem Expressed as a function of problem size.

Space Complexity

The amount of memory space for an algorithm to solve a problem Expressed as a function of problem size.

Worst case complexity

The worst possible complexity over all inputs of a given problem size.

Average case complexity

The average complexity over all inputs of a given problem size

(Tight) Lower bound L(n)

The minimum time complexity over all possible algorithms

(Tight) Upper bound U(n)

The minimum time complexity over all known algorithms

Optimal algorithm

An algorithm whose time complexity is the same as the lower bound of the problem, L(n)

Measuring efficiency of algorithms

time complexity: T(n)

space complexity: S(n)

"Big-Oh" notation: e.g., T(n) = O(f(n))

T(n) is $O(f(n)) \Leftrightarrow$ There exist positive constants c and n_0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$


```
Let T(n) = n^2/2 + 3n + 10
Then T(n) = O(n^2)! Why?
T(n) \le c \cdot n^2 for all n \ge 1 and c = 27/2!!!
```

Is T(n) also $O(n^3)$?

Is T(n) also O(n)?

Example: Bubble Sort

Given a set of n real numbers, sort them in the ascending order.

```
for i:=1 to n-1 do
                                                       1. n
2. n (n + 1) / 2 - 1 ←
                                         # of passes
2.
      for j:=n down to i+1 do
        if A[j-1] > A[j] then
                                                     —3. (n - 1) n / 2 ←
                                     # of basic OP
                                                                                   i = n - 1 : 2
                                                        4. (n - 1) n / 2
5. (n - 1) n / 2
           { swap A[j-1] and A[j]}
                                                                                             : 0
4.
            temp := A[j-1];
                                         worst case
                                                         6. (n - 1) n / 2
5.
            A[j-1] := A[j];
                                                                                   | i = 1 : n - 1
6.
            A[i] := temp;
                                                         7. (n - 1) n / 2
                                                                                    i = 2 : n - 2
       end {if}
                                                         8. (n + 1) n / 2 - 2
                                                                                    i = n - 1 : 1
8.
      end{for}
                                                         9. n - 1
                                                                                    i = n
9.
   end{for}
                                                         n(n + 1) - 3 + 5(n - 1) n/2 + 2n - 1
                                                       = 7/2 n^2 + n / 2 - 4
```

 $O(n^2)$

Algorithm Design

The Maximum Subsequence Sum Problem

Given a sequence of n numbers, $X=(x_1, x_2, ..., x_n)$, find a subsequence $X^* \subseteq X$ such that

- (i) the numbers in X^* is contiguous in X
- (ii) the sum of the numbers in X^* is the maximum over all contiguous subsequences of X

$$X = (31, -41, 59, 26, -53, 58, 97, -93, -23, 84)$$
 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}
 187 7
 $X^* = X[3..7]$

Observation

$$X = (x_1, x_2, x_3, ..., x_n)$$

What if $x_i > 0$ for all $1 \le i \le n$?

What if $x_i < 0$ for all $1 \le i \le n$?

Brute Force Algorithm

How many subsequences?

X[L..U]

L	U		
	1		
1	2	n	
'	:	11	
	n		
	2		
2	3	n-1	
۷	:	11 1	
	n		
	3		
3	4	n-2	
:	:	11 2	
:	n		
÷	:	:	
n	n	1	
		n(n+1)	
		2	

For each subsequence, we need at most n-1 additions

why?

 $\cdot \cdot O(n)$

Then, the total number of operations is at most

$$(n(n+1)/2)X(n-1)$$

 $\therefore O(n^3)$

Procedure Max-sub

```
begin
      MaxSoFar \leftarrow 0
      for L \leftarrow 1 to n do
                for U ← L to n do
                           Sum \leftarrow 0
                          for i \leftarrow L to U do
                                                                    Do we need this?
                                Sum \leftarrow Sum + x[i]
                           end-do
                           MaxSoFar ← max { MaxSoFar, Sum}
                end-do
      end-do
end
```

 $O(n^3)$

O(n²) Algorithm

```
Sum of X[L..U] = Sum[L, U] 1 \le L \le n, L \le U \le n
     Sum(L,U) = \begin{cases} X[U] & \text{if } L = U \\ Sum(L,U-1) + X[U] & \text{otherwise} \end{cases}
Procedure Max-sub
    begin
             MaxSoFar \leftarrow 0
             for L \leftarrow 1 to n do
                         Sum ← 0
                          for U \leftarrow L to n do
                                       Sum \leftarrow Sum + X[U]
                                       MaxSoFar ← max { MaxSoFar, Sum}
                          end-do
             end-do
    end
O(n^2)
```

A Yet Another O(n²) Algorithm

```
Procedure Max-sub
                                     begin
             Sum(L,U)
                                            CumX[0] \leftarrow 0
                                            for i \leftarrow 1 to n do
                                                                                    Preprocessing
                                                   CumX[i] \leftarrow CumX[i-1]+X[i]
                                            end-do
       L-1 L
                                            MaxSoFar \leftarrow 0
                                            for L \leftarrow 1 to n do
                                                   for U \leftarrow L to n do
CumX[L-1]
                                                       Sum \leftarrow CumX[U]-CumX[L-1]
                                                       MaxSoFar ← max { MaxSoFar, Sum}
                                                   end-do
         CumX(U)
                                            end-do
                                     end
```

"Divide and Conquer" Algorithm

$$\begin{aligned} MaxX = max \{ & MaxA, MaxB, MaxAB \} \\ & X_A^* & X_B^* & X_{AB}^* \end{aligned}$$

$$T(n) = 2T(n/2) + M(n)$$

$$Compute MaxA: T(n/2)$$

$$Compute MaxB: T(n/2)$$

$$Divide and Merge: M(n)$$

Need to compute MaxAB

T(n)=2T(n/2)+M(n)

$$n=2^k$$

How many levels?
$$log_2n$$
 Why?
$$n/2^k = 1 \quad \because k = log_2n$$

What is T(1)?

In this case, no further division since L=U!

:
$$Max(X[L..U]) = \begin{cases} X[L] & \text{if } X[L] > 0 \ (X^* = X[L..L]) \\ 0 & \text{if } X[L] \le 0 \ (X^* = \phi) \end{cases}$$

What is M(n) if n > 1?

It depends on how to compute MaxAB!

How to Compute MaxAB

$$MaxAB = MaxCA + MaxCB$$

where

$$MaxCA = max \{ Sum(1, M), Sum(2, M), ..., Sum(M-1, M), Sum(M, M) \}$$

 $MaxCB = max \{ Sum(M+1, M+1), Sum(M+1, M+2), ..., Sum(M+1, n-1), Sum(M+1, n) \}$

Note

$$Sum[i, M] = \begin{cases} X[M] & \text{if } i = M \\ Sum(i+1,M) + X[i] & \text{otherwise} \end{cases}$$

 $\cdot \cdot O(M)$ time to compute MaxCA

Similarly, MaxCB can also be computed O(M) time

$$\cdot\cdot M(n) = O(M) + O(M) = O(n)$$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

$$T(n) = O(n \log n)$$


```
function Max-Sub(L, U)
     begin
             if L=U then return(Max\{0, X[L]\})
              M \leftarrow |(L+U)/2|
             MaxA = Max-Sub(L, M)
              MaxB = Max-Sub(M+1,U)
             Sum \leftarrow 0; MaxCA \leftarrow 0
             For i \leftarrow M downto 1 do
                            Sum \leftarrow Sum + X[i]
                            MaxCA \leftarrow max\{ MaxCA, Sum \}
              end-do
              Sum \leftarrow 0; MaxCB \leftarrow 0
             For i \leftarrow M+1 to n do
                            Sum \leftarrow Sum + X[i]
                            MaxCB \leftarrow max\{ MaxCB, Sum \}
              end-do
              MaxAB \leftarrow MaxCA + MaxCB
             return( max{ MaxA, MaxB, MaxAB } )
     end
```

O(n) Algorithm

Given MaxSoFar and MaxTail for X[1..k-1], how to update them for X[1..k]?

```
Initially,
Maxtail = {0, X[1]}
Maxsofar = Maxtail

In general,
MaxTail = max{0, MaxTail + X[k]}
MaxSoFar = max{MaxSoFar, MaxTail}
```

```
Procedure Max-sub begin  \begin{aligned} & \text{MaxmSoFar} \leftarrow 0; \quad \text{MaxTail} \leftarrow 0 \\ & \text{for } k \leftarrow 1 \text{ to n} \\ & \quad & \text{MaxTail} \leftarrow \text{max} \{ \text{ 0, MaxTail} + X[k] \} \\ & \quad & \text{MaxSoFar} \leftarrow \text{max} \{ \text{ MaxSoFar, MaxTail } \} \\ & \text{end-do} \end{aligned}
```

Example

$$\text{MaxTail} \leftarrow \max\{\ 0, \, \text{MaxTail} + X[k]\ \}$$

$$\text{MaxSoFar} \leftarrow \max\{\ \text{MaxSoFar}, \, \text{MaxTail}\ \}$$

$$\begin{matrix} 3 & & 7 \\ & \downarrow & \\ & & \downarrow \\ X[1:10] = (31, \, -41, \, 59, \, 26, \, -53, \, 58, \, 97, \, -93, \, -23, \, 84)$$

k	MaxTail	MaxSoFar
1	31 (X[11]	31 (X[11])
2	0 (Ø)	31 (X[11])
3	59 (X[33])	59 (X[33])
4	85 (X[34])	85 (X[34])
5	32 (X[35])	85 (X[34])
6	90 (X[36])	90 (X[36])
7	187 (X[37])	187 (X[37])
8	94 (X[38])	187 (X[37])
9	71 (X[39])	187 (X[37])
10	155 (X[310])	187 (X[37])

Summary

ALGO	RITHM	1	2	3	4
Run time in		1.3 <i>n</i> ³	10 n ²	47 <i>n</i> log ₂ <i>n</i>	48 <i>n</i>
Time to solve a problem of size	10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷	1.3 secs	10 msecs	.4 msecs	.05 msecs
Max size problem solved in one	sec min hr day				
If <i>n</i> multipl time multip If time mul 10, <i>n</i> multi	tiplies by				

Extreme Comparison

Algorithm 1 at 533MHz is 0.58 n^3 nanoseconds. Algorithm 4 interpreted at 2.03MHz is 19.5 n milliseconds, or 19,500,000 n nanoseconds.

	1999 ALPHA 21164A,	1980 TRS-80,		
n	C,	BASIC,		
	CUBIC ALGORITHM	LINEAR ALGORITHM		
10	0.6 microsecs	200 millisecs		
100	0.6 millisecs	2.0 secs		
1000	0.6 secs	20 secs		
10,000	10 mins	3.2 mins		
100,000	7 days	32 mins		
1,000,000	19 yrs	5.4 hrs		
		•		

Extreme Comparison

