PROJECT REPORT

Emerging Methods for Early Detection of Forest Fires

submitted by

PNT2022TMID37567

Lakshmi kanthan B - 312019205011

Benazir Nilofer A - 312019205001

Ganika T B - 31201920500

Mani Barathi S - 312019205014

TABLE OF CONTENTS

1 INTRODUCTION

- 1.1 PROJECT OVERVIEW
- 1.2 PURPOSE

2 LITERATURE SURVEY

- 2.1 EXISTING PROBLEM
- ` 2.2 REFERENCES
 - 2.3 PROBLEM STATEMENT DEFINITION

3 IDEATION AND PROPOSED SOLUTION

- 3.1 EMPATHY MAP CANVAS
- 3.2 IDEATION & BRAINSTORMING
- 3.3 PROPOSED SOLUTION
- 3.4 PROBLEM SOLUTION FIT

4 REQUIREMENT ANALYSIS

- **4.1 FUNCTIONAL REQUIREMENTS**
- **4.2 NON FUNCTIONAL REQUIREMENTS**

5 PROJECT DESIGN

- 5.1 DATA FLOW DIAGRAM
- 5.2 SOLUTION & TECHNICAL ARCHITECTURE
- **5.3 USER STORIES**

6 PROJECT PLANNING AND SCHEDULING

- **6.1 SPRINT PLANNING AND ESTIMATION**
- **6.2 SPRINT DELIVERY SCHEDULE**

7 CODING & SOLUTIONING

8 TESTING

8.1 TEST CASES

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

8.2.2 TEST CASE ANALYSIS

9 RESULTS

9.1 PERFORMANCE METRICS

10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

DISADVANTAGES

11 CONCLUSION

12 FUTURE SCOPE

APPENDIX

SOURCE CODE

GITHUB

PROJECT DEMO

INTRODUCTION

1.1 PROJECT OVERVIEW

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas.

Forest fire detection is the ability of computer systems to recognise

Fire from various region of forest, such as fire, smoke, and so on. This

project aims to let users take advantage of machine learning to reduce manual
tasks in Detecting the forest fire.

1.2 PURPOSE

The main aim of our project is detection and monitoring the forest fire

To minimize the effect of fire breakout by controlling in its early stage also to protect

Domestic by informing about the breakout to the respective forest department as early
as possible. We have implemented the IOT technology to achieve our objective.

LITERATURE SURVEY

2.1 EXISTING PROBLEM

Some of the relevant literary works in this field are briefed below:

The one fourth area of Karnataka is covered by forest, the forest and bio-diversity

of the India are at the considerable chance and beneath enormous pressure. General

causes of forest fire are extreme hot and aired weather, lightning and human

carelessness. In order to protect these huge stretches of forest land, there need

to be taken early caution measures to control of spreading fire

2.2 REFERENCES

1. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing

- P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, N. Grammalidis
- Environmental Science
- Sensors
- 2020

An overview of the optical remote sensing technologies used in early fire warning systems is presented and an extensive survey on both flame and smoke detection algorithms employed by each technology is provided.

2. Forest Fire Detection System using LoRa Technology

- N. Gaitan, Paula Hojbota
- Environmental Science
- 2020

This paper proposes a system capable of quickly detecting forest fires on long wide distance using LoRa (Long Range) technology based on LoRaWAN (Long Range Wide Area Network) protocol which is capable to connect low power devices distributed on large geographical areas.

3. Low Cost LoRa based Network for Forest Fire Detection

- <u>Roberto Vega-Rodríguez</u>, <u>Sandra Sendra</u>, <u>Jaime Lloret</u>, <u>Pablo Romero-Díaz</u>, <u>José Luis García-</u> Navas
- Computer Science, Environmental Science
 2019 Sixth International Conference on Internet of Things: Systems, Management and Security
 (IOTSMS)
- 2019

A low cost Long Range (LoRa) based network able to evaluate level of fire risk and the presence of a forest fire and the evaluation algorithm is based on the 3030-30 rule.

4. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems

- F. Abid
- Environmental Science, Computer Science
- Fire Technology
- 2020

A comprehensive survey of the machine learning algorithms based forest fires prediction and detection systems is presented, highlighting the main issues and outcomes within each study.

2.3 PROBLEM STATEMENT DEFINITION

Some people know about the current issues are the most important ones because it is mostly a lot in the news but sometimes other big issues that change our lives are not mentioned in the news because they are issues that can hurt us in the long run or not really important for the modern public. One issue I can tell you about is the forest fires. Sometimes people don 't notice or now about the forest fires until it is talk in the news and it 's mostly because it has done a great damage.

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To find emerging methods for early detection of forest fires using artificial intelligence.
2.	Idea / Solution description	In case of forest fire detection the burning substances are primarily identified as sceptical flame regions using a division strategy to expel the non-fire structures and results are verified by a deep learning model.
3.	Novelty / Uniqueness	Accurate and reliable recognition of sceptical flame regions by means of using YOLO v3 algorithm.
4.	Social Impact / Customer Satisfaction	1.By using this method we can save environmental damage and lives of living beings. 2. It is fast and accurate method to detect the fire easily and give an alert to the forest fire department simultaneously when the fire is detected.
5.	Business Model (Revenue Model)	The software platform to provide the fully autonomous processing of data received from the camera of UAV to obtain live feed in web App.
6.	Scalability of the Solution	It is mainly developed for detecting the forest fire across the world and useful in surveillance the different sections of the forest.

3.4 PROBLEM SOLUTION FIT

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FUNCTIONAL REQUIREMENTS:

-Following are the functional requirements of the proposed solution

Sn. No	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)				
1.	User Registration	Registration through G-mail.				
2.	User Confirmation	Confirmation through OTP. Confirmation through mail.				
3.	User Login	Can login through credentials.				
4.	User Feed	The live update of the forestcover is sent to user if there is any detection of fire				
5.	The workers profile created to give the forest management live track of the forest.					
6.	The user receives thequick response through alert sound or Messages, if any fire is detected.					
7.	User Application	Along with the forest management team the citizens residing nearby forest can also download the application for alerts.				

NON-FUNCTIONAL REQUIREMENTS:

-Following are the non-functional requirements of the proposed solution.

Sn. No.	Non-Functional Requirement	Description
1.	Usability	Monitoring possible danger areas and early fire detection can greatly reduce the response time and potential damage.
2.	Security	The environment is more secure.
3.	Reliability	The installment of model is safe.
4.	Performance	Model will achieve high accuracy.
5.	Availability	Build model is available all the time.
6.	Scalability	The instant alerts received by the forest team is ensured.

CHAPTER 5 PROJECT DESIGN

Data Flow Diagram

5.2 SOLUTION & TECHNICAL ARCHITECTURE

5.3 USER STORIES

User Type	User Type Functional User Story / Task Requirement Story (Epic) Number		Acceptance criteria	Priority	Release	
Forest Management Team	Setting up a camera	USN-1	As a user, the forest management team has to survey the forest by adding camera to the fire prone areas.	The live video captured can be monitored	High	Sprint-1
		USN-2	As a user, the forest management team can get video feed which is used for processing	The camera sends video or image to the forest centre	High	Sprint-2
		USN-3	Along with forest team, the NGO can also get access of the video to take some early measurement of forest fires.	They can also get the view of the live monitoring of forest	Low	Sprint-1
Technical Team	Image Classification	USN-4	By using CNN Model, the images captured by the camera is classified accordingly by testing & training the model	The model should be able to identify the difference between fire and a normal smoke	Medium	Sprint-2
	Using Open CV	USN-5	The recorded video is under monitoring continuously to determine the detection of early video	Therefore, by using CNN we can determine the input layer, classify the hidden layers and send warnings through output layer	High	Sprint-2
Alert Team	Dashboard	USN-6	Thus, after successful detection of fire by processing images. This, API sends the alert by buzzing the alarm and sends messages through chatbot	Thus, the immediate response which is required for earlier determination through sending quick responses	High	Sprint-2
Fire Management	Twilio API		They play the most important role to cool the	They take the following measures to	High	Sprint-2

			fire and manage the excess spread of fire further	stop fire from spreading		
User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Media & Nearby Residing People	News, Radio, Alerts,	USN-7	Protecting wildlife, human from the disaster caused	Thus, helping unit should be sent to protect lives	Medium	Sprint-2

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Import the Required, Collecting the Dataset	USN-1	To analyse the fire prone areas and to set the surveillance camera to collect and observe the region continuously for early detection.	2	High	Lakshmi Kanthan B Benazir Nilofer A
Sprint-2	Training & Testing of model	USN-2	The collected data are categorized on the basis of parameters set to identify. To train the model, CNN is used to test repeatedly by storing the datasets in server.	1	High	Ganika T B Manibarathi S
Sprint-3	Model Building, Reviewing the model	USN-3	The main task is to check that the model is efficient to work in real time. Therefore, smallest of error decoded needed to be corrected to avoid future lags	1	Medium	Manibarathi S Lakshmi Kanthan B
Sprint-4	Implementing the model	USN-4	The model after testing all it's functionalities is been implemented at forest management offices to get quick responses from the model.	2	High	Benazir Nilofer A Ganika T B
Sprint-4	Connecting it with API	USN-5	The model should connect with API named Twilio, which receives & sends the management with messages.	2	High	Lakshmi Kanthan B Benazir Nilofer A Ganika T B Manibarathi S

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	15	06 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	10	14 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	5	\ 20 Nov 2022

CODING & SOLUTIONING

```
import cv2
import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from twilio.rest import Client
from playsound import playsound
from decouple import config
message sent = False
model = load model("./model.h5")
video = cv2.VideoCapture("fire.mp4")
name = ["No fire", "Fire Detected"]
def send message():
    account_sid = config("ACCOUNT_SID")
    auth token = config("AUTH TOKEN")
    client = Client(account sid, auth token)
    message = client.messages.create(
        body="Forest Fire detected , Stay safe!!!",
       from =config("FROM"),
        to=config("TO")
    print(message.sid)
    print("Fire Detected")
    print("SMS Sent!")
playsound("./beep.mp3")
```

```
while True:
   success, frame = video.read()
   cv2.imwrite("image.jpg", frame)
   img = image.load_img("image.jpg", target_size=(128, 128))
   x = image.img_to_array(img)
   x = np.expand_dims(x, axis=0)
   pred = model.predict(x)
   p = int(pred[0][0])
   if p == 1:
      if not message_sent:
         send_message()
          message_sent = True
      print("Fire Detected , stay safe!!!")
      print("No Fire Detected")
   cv2.imshow("Image", frame)
   if cv2.waitKey(1) & 0xFF == ord('x'):
video.release()
cv2.destroyAllWindows()
```

CHAPTER 8 TESTING

8.1 TEST CASES

Test case ID	Feature Type	Component	Test Scenario	Steps To Execute	Test Data	Expected Result	Actual Result	Status	BUG ID	Executed By
OP_RT_001	Functional	Page	Check if user can upload their file	The sensor senses the fire	Sample 1.png	The input image should be uploaded to the application successfully	Working as expected	PASS		LAKSHMIKANTHAN B MANIBARATHI S
OP_RT_002	Functional	Page	Check if user cannot upload unsupported files	1) The sensor senses the fire 2)checks with the pre- uploads images	installer.exe	The application should not allow user to select a non image file	User is able to upload any file	FAIL	BUG_HP_002	BENAZIR NILOFER A GANIKA T B
OP_RT_003	Functional	Page	Checks whether the page redirects to the result page to the given output	The sensor senses the fire 2)checks with the pre- uploaded images 3)checks if there is fire detection	Sample 1.png	The page should redirect to the results page	Working as expected	PASS		
MB_RT_001	Functional	Backend	Checks if all the routes are working properly	1) The sensor senses the fire 2)checks with the pre- uploaded images 3)checks if there is fire detection	Sample 1.png	All the routes should properly work	Working as expected	PASS		GANIKA T B MANIBARATHI S BENAZIR NILOFER A GANIKA T B
N_DC_001	Functional	Model	Checks whether the model can handle various image sizes	1) Open the page in a specific device 2) Upload the input image 3) Repeat the above steps with different input	Sample 1.png Sample 1 XS.png Sample 1 XL.png	The model should rescale the image and predict the results	Working as expected	PASS		LAKSHMIKANTHAN B BBENAZIR NILOFER A
N_DC_002	Functional	Model	Check if the model predicts the digit	Open the page Select the input images	Sample 1.png	The model should predict the number	Working as expected	PASS		LAKSHMIKANTHAN B BBENAZIR NILOFER A
N_DC_003	Functional	Model	Check if the model can handle complex input image	Open the page Select the input images Check the results	Complex Sample.png	The model should predict the number in the compex image	The model fails to identify the digit since the model is not built to handle such data	FAIL	BUG_M_001	GANIKA T B MANIBARATHI S
RL_DC_001	Functional	Result Page	Verify the elements	Open the page Select the input image Check if all the UI elements are displayed properly	Sample 1.png	The Result page must be displayed properly	Working as expected	PASS		LAKSHMIKANTHAN B MANIBARATHI S
RL_DC_002	Functional	Result Page	Check if that image is displayed properly	Open the page Select the input image Check if the input image are displayed	Sample 1.png	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL	BUG_RP_001	BENAZIR NILOFER A GANIKA T B
RL_DC_003	Functional	Result Page	Checks whether the displayed prediction is accurate	Open the page Select the input image Check if all the other predictions are displayed	Sample 1.png	The other predictions should be displayed properly	Working as expected	PASS		LAKSHMIKANTHAN B GANIKA T B

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	1	1	0	3
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	3	1	0	1	5
Not Reproduced	0	0	0	1	1
Skipped	1	0	1	0	2
Won't Fix	1	0	0	0	1
Total	6	3	4	3	14

8.2.2 TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	2	8
Security	3	0	2	2
Performance	2	0	1	1
Exception Reporting	3	0	0	3

RESULTS

9.1 PERFORMANCE METRICS

ADVANTAGES & DISADVANTAGES

ADVANTAGES

The proposed system detects the forest fire at a faster rate compared to existing system. It has enhanced data collection feature. The major aspect is that it reduces false alarm and also has accuracy due to various sensors present. It minimizes the human effort as it works automatically. This is very affordable due to which can be easily accessed. The main objective of our project is to receive an alert message through an app to the respective user.

DISADVANTAGES

The electrical interference diminishes the effectiveness of radio receiver.

The main drawback is that it has less coverage range areas.

CONCLUSION

This type of system is the first of its kind to ensure no further damage is then to forests when there is fire breakout and immediately a message is sent to the user through the App. Immediate response or early warning to a fire breakout is mostly the only ways to avoid losses and environmental, cultural heritage damages to a great extent. Therefore the most important goals in fire surveillance are quick and reliable detection of fire. It is so much easier to suppress fire while it is in its early stages. Information about progress of fire is highly valuable for managing fire during all its stages. Based on this information the firefighting staff can be guided on target to block fire before it reaches cultural heritage sites and to suppress it quickly by utilizing required firefighting equipment and vehicles. With further research and innovation, this project can be implemented in various forest areas so that we can save our forests and maintain great environment.

FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

Additional pump can be added so that it automatically sends water when there is a fire breakout. Also industrial sensors can be used for better ranging and accuracy.

→ This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

```
Import the neccessary libraries

import keras
port tensorflow

from tensorflow.keras.preprocessing.image import ImageDataGenerator

✓ 1m 18.2s

import tensorflow
from tensorflow
Python
```

```
train_datagen = ImageDataGenerator(rescale=1./255,
                                        shear_range=0.2,
    •
                                        rotation_range=180,
                                        zoom_range=0.2,
                                        horizontal_flip=True)
   test_datagen = ImageDataGenerator(rescale=1./255)
 ✓ 0.1s
                                                                                                                       Python
   x_train = train_datagen.flow_from_directory(r'./Dataset/train_set/',
                                                 target_size=(128, 128),
                                                 batch_size=32,
class_mode='binary')
 ✓ 0.6s
                                                                                                                       Python
Found 436 images belonging to 2 classes.
   x_test = train_datagen.flow_from_directory(r'./Dataset/test_set/',
                                                 target_size=(128, 128),
                                                 batch_size=32,
class_mode='binary')
 ✓ 0.1s
                                                                                                                       Python
Found 121 images belonging to 2 classes.
   from tensorflow.keras.models import Sequential
    ♥om tensorflow.keras.layers import Dense, Convolution2D, MaxPooling2D, Flatten
 ✓ 0.1s
                                                                                                                       Python
```

```
model.fit(x_train, steps_per_epoch=14, epochs=10, validation_data=x_test, validation_steps=4) $\frac{1}{2}$
Epoch 1/10
14/14 [===
                                  =====] - 64s 4s/step - loss: 3.5440 - accuracy: 0.5665 - val_loss: 0.4052 - val_accuracy: 0.8430
Epoch 2/10
14/14 [===
                                    ===] - 23s 2s/step - loss: 0.5222 - accuracy: 0.7431 - val_loss: 0.2283 - val_accuracy: 0.9669
Epoch 3/10
14/14 [===
                                    ==] - 23s 2s/step - loss: 0.3097 - accuracy: 0.8647 - val_loss: 0.1622 - val_accuracy: 0.9504
Epoch 4/10
14/14 [===
                                    ===] - 22s 2s/step - loss: 0.2392 - accuracy: 0.8945 - val_loss: 0.1137 - val_accuracy: 0.9669
Epoch 5/10
                                    ===] - 23s 2s/step - loss: 0.2125 - accuracy: 0.8968 - val_loss: 0.1337 - val_accuracy: 0.9504
14/14 [===
Epoch 6/10
14/14 [===
                                     ==] - 23s 2s/step - loss: 0.1922 - accuracy: 0.9243 - val_loss: 0.0887 - val_accuracy: 0.9669
Epoch 7/10
14/14 [===
                                    ==] - 23s 2s/step - loss: 0.1773 - accuracy: 0.9266 - val_loss: 0.1454 - val_accuracy: 0.9339
Epoch 8/10
                                    ===] - 21s 2s/step - loss: 0.1678 - accuracy: 0.9427 - val_loss: 0.0835 - val_accuracy: 0.9752
14/14 [===
Epoch 9/10
14/14 [===
                                    ==] - 24s 2s/step - loss: 0.1733 - accuracy: 0.9243 - val_loss: 0.1079 - val_accuracy: 0.9669
Epoch 10/10
14/14 [===
                             :======] - 25s 2s/step - loss: 0.1647 - accuracy: 0.9335 - val_loss: 0.0716 - val_accuracy: 0.9752
<keras.callbacks.History at 0x1920c974be0>
Save the model
    model.save("model.h5")
```

```
Prediction

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing import image
import numpy as np
import cv2

Python

model = load_model("model.h5") 
Python

Reviewing the model

img = image.load_img("forest-fire.jpg")

from image.load_img(forest-fire.jpg")

f
```

Fire.py (Main file)

```
import cv2
import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from twilio.rest import Client
from playsound import playsound
from decouple import config
message_sent = False
model = load_model("./model.h5")
video = cv2.VideoCapture("fire.mp4")
name = ["No fire", "Fire Detected"]
def send_message():
    account_sid = config("ACCOUNT_SID")
    auth token = config("AUTH TOKEN")
   client = Client(account_sid, auth_token)
    message = client.messages.create(
        body="Forest Fire detected , Stay safe!!!",
        from_=config("FROM"),
        to=config("TO")
    )
    print(message.sid)
   print("Fire Detected")
    print("SMS Sent!")
playsound("./beep.mp3")
```

```
while True:
   success, frame = video.read()
   cv2.imwrite("image.jpg", frame)
   img = image.load_img("image.jpg", target_size=(128, 128))
   x = image.img_to_array(img)
   x = np.expand_dims(x, axis=0)
   pred = model.predict(x)
   p = int(pred[0][0])
   cv2.putText(frame, str(name[p]), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)
   if p == 1:
       if not message_sent:
           send_message()
            message_sent = True
       print("Fire Detected , stay safe!!!")
       print("No Fire Detected")
   cv2.imshow("Image", frame)
   if cv2.waitKey(1) & 0xFF == ord('x'):
       break
video.release()
cv2.destroyAllWindows()
```

GITHUB

https://github.com/IBM-EPBL/IBM-Project-994-1658333608

PROJECT DEMO

https://bit.ly/ForestfiredetectionProject-demovideo