

Laboratoire de Chimie Théorique

One dimensional model for Relativistic Quantum Chemistry

Timothée Audinet

November 14, 2024

Thesis work with Julien Toulouse

Table of Contents

- 1. Introduction: Why going into relativistic?
- 2. Relativistic Quantum Chemistry
- 3. The 1D Model
- 4. QED Effects
- 5. Basis set convergence
- 6. Conclusion

1. Introduction: Why going into relativistic?

- 2. Relativistic Quantum Chemistry
- 3. The 1D Model
- 4. QED Effects
- 5. Basis set convergence
- 6. Conclusion

Timothée Audinet November 14, 2024

Introduction

4/32

Why are we interested in relativistic quantum chemistry?

Why are we interested in relativistic quantum chemistry?

• Important for fast-moving particles: average electron velocity in hydrogen-like ground-state $v = (\alpha Z)c$, with $\alpha \approx 1/137$

Why are we interested in relativistic quantum chemistry?

- Important for fast-moving particles: average electron velocity in hydrogen-like ground-state $v = (\alpha Z)c$, with $\alpha \approx 1/137$
- Explains some physical properties of heavy elements
- yellow color of gold
 P. Pyykkö, ACIE, (2004)

P. Romaniello and P. L. de Boeij, JCP, (2005)

lead-acid battery electro-chemical potential

R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Ejgierd, PRL, (2011)

liquid state of mercury at room temperature

K. Steenbergen, E. Pahl and P. Schwerdtfeger, JPCL., (2017)

Why are we interested in relativistic quantum chemistry?

- Important for fast-moving particles: average electron velocity in hydrogen-like ground-state $v = (\alpha Z)c$, with $\alpha \approx 1/137$
- Explains some physical properties of heavy elements
- yellow color of gold
 Pyykkö, ACIE, (2004)
 P Romaniello and P L, de Boeii, JCP (2005)

P. Romaniello and P. L. de Boeij, JCP, (2005)

lead-acid battery electro-chemical potential
R. Ahuja, A. Blomqvist, P. Larsson, P. Pyykkö and P. Zaleski-Eigierd, PRL, (2011)

liquid state of mercury at room temperature

K. Steenbergen, E. Pahl and P. Schwerdtfeger, JPCL., (2017)

• Includes the electron spin and spin-orbit coupling

Yellow color of gold¹

- Fast-moving electrons in s and P orbitals
- Mass increases due to relativity
- Contraction of those orbitals
- Stronger screening of the nucleus
- Destabilize *d* and *f* orbitals
- Change the gap energy between 5d and 6s, from UV to yellow

Figure 1: Orbitals diagram of Gold and Silver, with and without relativistic effects

¹P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

1. Introduction: Why going into relativistic?

2. Relativistic Quantum Chemistry

3. The 1D Model

4. QED Effects

5. Basis set convergence

6. Conclusion

Timothée Audinet November 14, 2024

Free particle energy

Non relativistic:

$$E = \frac{p^2}{2m} \Rightarrow E \in [0, +\infty),$$

• Relativistic:

$$E^2 = m^2c^4 + c^2p^2 \Rightarrow E \in (-\infty, -mc^2] \cup [mc^2, +\infty),$$

Free particle energy

Non relativistic:

$$E = \frac{p^2}{2m} \Rightarrow E \in [0, +\infty),$$

Relativistic:

$$E^{2} = m^{2}c^{4} + c^{2}p^{2} \Rightarrow E \in (-\infty, -mc^{2}] \cup [mc^{2}, +\infty),$$

Link between both

• Taylor expansion of the square root for the positive part

$$E = \underbrace{mc^{2}}_{\text{Rest mass}} + \underbrace{\frac{p^{2}}{2m}}_{\text{Kinetic energy}} - \underbrace{\frac{p^{4}}{8m^{3}c^{2}}}_{\text{1st order}} + \dots$$

From classical to quantum - Klein-Gordon equation

$$\begin{array}{rcl} E^2 & = & p^2c^2 + m^2c^4 \\ -\hbar^2\partial_t^2 & = & -\hbar^2c^2\nabla^2 + m^2c^4 \end{array}$$

- Negative energy solutions give negative probability...
- Does not include spin

From classical to quantum - Klein-Gordon equation

$$E^{2} = p^{2}c^{2} + m^{2}c^{4}$$
$$-\hbar^{2}\partial_{t}^{2} = -\hbar^{2}c^{2}\nabla^{2} + m^{2}c^{4}$$

- Negative energy solutions give negative probability...
- Does not include spin

From classical to quantum - Dirac equation

$$\begin{array}{rcl} E & = & \pm c\sqrt{p^2+m^2c^2} \\ \mathrm{i}\hbar\partial_t & = & c\sqrt{p^2+m^2c^2} \end{array}$$

• Expand the term under the square root as a perfect square:

$$p^{2} + m^{2}c^{2} = (\vec{\alpha} \cdot \vec{p} + \beta mc)^{2}$$
$$i\hbar \partial_{t} = c \vec{\alpha} \cdot \vec{p} + \beta mc^{2}$$

Dirac operator

$$D_0(x) = c \left(\vec{\boldsymbol{a}} \cdot \vec{p} \right) + \boldsymbol{\beta} \ mc^2, \tag{1}$$

$$\bullet \ \vec{\pmb{a}} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix} \text{ where } \vec{\sigma} = \{\sigma_x, \ \sigma_y, \ \sigma_z\} \text{ are the Pauli matrices }$$

$$\bullet \ \boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac operator

$$\mathbf{D}_0(x) = c \left(\vec{\boldsymbol{\alpha}} \cdot \vec{p} \right) + \boldsymbol{\beta} \ mc^2, \tag{1}$$

•
$$\vec{a} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}$$
 where $\vec{\sigma} = \{\sigma_x, \sigma_y, \sigma_z\}$ are the Pauli matrices

$$\bullet \ \boldsymbol{\beta} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix}$$

Dirac eigenvalue equation

$$(\mathbf{D}_0(x) + V(x))\boldsymbol{\psi}(x) = \mathscr{E}\boldsymbol{\psi}(x) \tag{2}$$

•
$$\boldsymbol{\psi} = \begin{pmatrix} \psi^{L} \\ \psi^{S} \end{pmatrix}$$
 where $\psi^{L/S} = \begin{pmatrix} \psi^{L/S}_{\alpha} \\ \psi^{L/S}_{\beta} \end{pmatrix}$

• $\mathscr E$ is the energy of the state $\pmb \psi$

Hydrogenic spectrum

Non-relativistic spectrum

$$\mathcal{H}(x) = -\frac{\Delta}{2m} + V(x) \tag{3}$$

Spectrum:

- If $\mathcal{E} > 0$: continuum
- If $\mathcal{E} < 0$: bound states

Relativistic spectrum

$$D(x) = c \left(\vec{\boldsymbol{\alpha}} \cdot \vec{p} \right) + \boldsymbol{\beta} \ mc^2 + V(x)$$
 (4)

Spectrum:

- If $\mathscr{E} \in (-\infty, -mc^2] \cup [mc^2, +\infty)$: continuum
- If $\mathscr{E} \in (-mc^2, mc^2)$: bound states
 - ⇒ Negative continuum spectrum

How to deal with the negative continuum

11/32

• No-pair approximation

QED description

Figure 2: Lamb shift in hydrogen spectra²

^{2&}lt;sub>M.</sub> Salman, Ph.D. thesis (2022)

Relativistic calculations

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry

³P. Schwerdtfeger et al., PRL, (2017)

Relativistic calculations

- Different levels of relativistic corrections
- Zeroth level: Non-relativistic chemistry
- First level: Solving Dirac's equation or adding scalar-relativistic and spin-orbit correction to Schrödinger's equation (ZORA, DKHn, X2C)

³P. Schwerdtfeger et al., PRL, (2017)

Relativistic calculations

- Different levels of relativistic corrections
- **Zeroth level:** Non-relativistic chemistry
- First level: Solving Dirac's equation or adding scalar-relativistic and spin-orbit correction to Schrödinger's equation (ZORA, DKHn, X2C)
- Second level: Quantum electrodynamics (QED) effects (e.g. IP and EA of gold, Lamb shift in hydrogen)

	IP	Error	EA	Error
DC-HF	7.6892	-1.5363	0.6690	-1.6396
DC-CCSD	9.1164	-0.1092	2.1070	-0.2017
DC-CCSD(T)	9.2938	0.0683	2.3457	0.0371
DC-CCSDTQP	9.2701	0.0446	2.3278	0.0192
+Breit	9.2546	0.0290	2.3188	0.0102
+QED	9.2288	0.0032	2.3072	-0.0014
Experiment [31,32]	9.2256		2.3086	

Figure 3: IP and EA of gold with different levels of approximation³

³P Schwerdtfeger et al., PRL, (2017)

Motivations for the model

- We need accurate QED calculations for high precision spectroscopy
- Also studying core properties need to go into QED details
- So far, state of the art QED for many-electrons systems is based on no-pair approximation
- Next challenge in QC: can we go beyond the NPA?

Goal

Use a model system to understand the issue of developping new methods based on QED.

To do list:

- ☐ Study the 1D hydrogen and compute the QED effects.
- ☐ Develop these quantities in a finite basis set.
- ☐ Use our insight to solve the 3D problem.

- 1. Introduction: Why going into relativistic?
- 2. Relativistic Quantum Chemistry

3. The 1D Model

- 4. QED Effects
- 5. Basis set convergence
- 6. Conclusion

Timothée Audinet November 14, 2024

Free Dirac operator

$$\mathcal{D}_{0,x} = c \; \boldsymbol{\alpha}_x \; p_x + \boldsymbol{\beta} \; mc^2,$$

• From this 1D operator we can make an unitary transformation

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- Define a new operator $\mathscr{D}'_{0,x} = \mathbf{U} \mathscr{D}_{0,x} \mathbf{U}^{-1} = \begin{pmatrix} \mathbf{D}_0 & \mathbf{0}_2 \\ \mathbf{0}_2 & \mathbf{D}_0 \end{pmatrix}$
- Where

$$\mathbf{D}_0 = c \, \boldsymbol{\sigma}_x \, p_x + \boldsymbol{\sigma}_z \, mc^2$$

is a 2×2 operator!

⁴T. Audinet, J. Toulouse, J. Chem. Phys. 158, 244108 (2023)

From 3D to 1D

Free 1D Dirac operator

$$\mathbf{D}_{0}(x) = -\mathrm{i}c\sigma_{x}\frac{\mathrm{d}}{\mathrm{d}x} + \sigma_{z}mc^{2} \tag{5}$$

Lapidus, AJP (1983): T. Audinet, J. Toulouse, JCP (2023)

Dirac eigenvalue equations

$$\mathbf{D}_0(x)\psi_p^0(x) = \varepsilon_p \psi_p^0(x) \tag{6}$$

• Continuum: $\varepsilon_k = \pm \sqrt{m^2c^4 + k^2c^2}$

$$(\mathbf{D}_0(x) - Z\delta(x))\psi_p^Z(x) = \varepsilon_p \psi_p^Z(x) \tag{7}$$

- Bound State: $\varepsilon_b < mc^2$
- Continuum: $\varepsilon_k = \pm \sqrt{m^2c^4 + k^2c^2}$

 \mathbf{E}

1D Schrödinger equation

$$\hat{H} = -\frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}x^2} - Z\delta(x) \tag{8}$$

- follows from the generalization of \hat{H} to arbitrary dimensions⁵
- recovers the energy, cusp and radial part of the 3D ground state of hydrogen⁶
- easily solvable model

1D Dirac equation

$$\hat{H} = -ic\sigma_x \frac{\mathrm{d}}{\mathrm{d}x} + \sigma_z \, mc^2 - Z\delta(x) \tag{9}$$

- gives analytical QED results
- recovers the non-relativistic hydrogen 1D properties

⁵D. R. Herschbach, J. Chem. Phys., 84 (1986)

⁶D. Traore, E. Giner, J. Toulouse, J. Chem. Phys., 156 (2022)

- 1. Introduction: Why going into relativistic?
- 2. Relativistic Quantum Chemistry
- 3. The 1D Model

4. QED Effects

- 5. Basis set convergence
- 6. Conclusion

Timothée Audinet November 14, 2024

Vacuum Polarization

- Spontaneous creation of electron positron pairs due to the external potential
- Creates a charge density that will interact through the two-electron interaction

Vacuum Polarization Density

$$n^{\mathrm{vp}}(x) = \sum_{\varepsilon_n < 0} \psi_p^{Z\dagger}(x) \psi_p^{Z}(x) - \sum_{\varepsilon_n < 0} \psi_p^{0\dagger}(x) \psi_p^{0}(x)$$

- In 3D this quantity diverges, needs to be renormalized
- We want to have a better understanding of this quantity and its influence on the energy spectrum

 mc^2

 $-mc^2$

Vacuum Polarization Density

$$n^{\mathrm{vp}}(x) = \sum_{\varepsilon_p < 0} \psi_p^{\mathrm{Z}\dagger}(x) \psi_p^{\mathrm{Z}}(x) - \sum_{\varepsilon_p < 0} \psi_p^{0\dagger}(x) \psi_p^{0}(x) = \mathcal{N}_0^{\mathrm{vp}} \delta(x) + n_{\mathrm{reg}}^{\mathrm{vp}}(x)$$

$$\tag{10}$$

Audinet, Morellini, Levitt, Toulouse, in preparation

Lamb shift

Correction to the 1s orbital energy of the hydrogen spectrum due to the interaction between the electrons and the vacuum polarization density

$$\mathcal{E}_{\text{Lamb}}^{\text{D}} = \int n_{1s}(x)n^{\text{vp}}(x)dx$$

$$\mathcal{E}_{\text{Lamb}}^{\text{X}} = -\int \text{Tr}[\mathbf{n}_{1s}(x)\mathbf{n}^{\text{vp}}(x)]dx$$

- 1. Introduction: Why going into relativistic?
- 2. Relativistic Quantum Chemistry
- 3. The 1D Model
- 4. QED Effects

5. Basis set convergence

6. Conclusion

Timothée Audinet November 14, 2024

Plane waves basis

$$\forall x \in \mathbb{R}, k \in \frac{2\mathbb{Z}\pi}{L}, |k| \le \Lambda, \quad \chi_k(x) = \frac{1}{\sqrt{L}} e^{ikx}$$
(11)

Regularization with Fourier Transform

$$n_{\text{reg}}^{\text{vp}}(x) = \mathcal{F}^{-1} \Big[\mathcal{F}[n^{\text{vp}}](k)\theta(k_{\text{max}} - k) - \mathcal{F}[n^{\text{vp}}](k_{\text{max}}) \Big]$$
(12)

Regularization with Fourier Transform

$$n_{\text{reg}}^{\text{vp}}(x) = \mathcal{F}^{-1} \Big[\mathcal{F}[n^{\text{vp}}](k)\theta(k_{\text{max}} - k) - \mathcal{F}[n^{\text{vp}}](k_{\text{max}}) \Big]$$
(13)

Computing the Lamb shift

• Non-regularized: $\mathcal{E}_{Lamb} = \int n_{1s}(x) n^{vp}(x) dx$

• Regularized: $\mathscr{E}_{\text{Lamb}}^{\text{reg}} = \int n_{1s}(x) n_{\text{reg}}^{\text{vp}}(x) dx + \mathscr{N}_{0}^{\text{vp}} n_{1s}(0)$

Value at x = 0

$$n_{1s}(x=0) = |\psi_{1s}^{L}(0)|^2 + |\psi_{1s}^{S}(0)|^2$$
(14)

Value at x = 0

$$n_{1s}^{\text{improved}}(x=0) = |\psi_{1s}^{L}(0)|^2 + \max_{x \in \mathbb{R}}(|\psi_{1s}^{S}(x)|^2)$$
(15)

Computing the Lamb shift

• Non-regularized: $\mathcal{E}_{Lamb} = \int_{\mathbb{R}} n_{1s}(x) n^{vp}(x) dx$

• Regularized: $\mathcal{E}_{\text{Lamb}}^{\text{reg}} = \int n_{1s}(x) n_{\text{reg}}^{\text{vp}}(x) dx + \mathcal{N}_0^{\text{vp}} n_{1s}^{\text{improved}}(0)$

- 1. Introduction: Why going into relativistic?
- 2. Relativistic Quantum Chemistry
- 3. The 1D Model
- 4. QED Effects
- 5. Basis set convergence

6. Conclusion

Timothée Audinet November 14, 2024

Conclusion

Goal

Use a model system to understand the issue of developping new methods based on QED.

To do list:

- ✓ Study the 1D hydrogen and compute the QED effects.
- ✓ Develop these quantities in a finite basis set.
- ☐ Use our insight to solve the 3D problem.

- We developped an effective QED theory including electron-positron pairs.
- Some singularities appears in a finite basis.
- This 1D model help us to understand this problem.