

Projet d'initiation à la recherche M1 WeDSci/I2L

2024-2025

Principe

- Objectif général : initiation à la recherche
- Encadré par des enseignant-chercheurs :
 - o Eric Ramat, Omar Rifki et Sara Tari
- Volume horaire :
 - o au fil de l'eau jusqu'à fin mai
- 13 sujets disponibles pour 38 étudiants
 - Groupe de 2 étudiants du même parcours
 - Certains sujets peuvent être traités par un groupe en WeDSci et un groupe en I2L

Principe

- Travail:
 - Lecture, étude et synthèse d'articles de recherche
 - Conception d'algorithmes et développement de code
 - Expériences et résultats détaillés des performances des différents algorithmes
 - Rédaction d'un rapport sous forme d'un article de recherche
- Communication la plus fréquente possible :
 - Réunions de travail avec les encadrants
 - Utilisation de Element/Matrix
- Séances obligatoires de travail à distance (via Workadventure)
- Rythmée par 4 mini-soutenances devant le jury (3 enseignant-chercheurs)
 - S1: mi décembre (17 et 20/12) et début février (3/2)
 - S2: fin avril (22/4)
 - Soutenance finale fin mai/début juin (26/5 ou 2/6)

Notation

- Semestre 1 :
 - 5 points pour chacune des 2 soutenances intermédiaires
 - o 10 points pour le travail
 - o Moyenne sur 20
- Semestre 2
 - o 5 points pour la soutenance intermédiaire
 - o 10 points pour la soutenance finale
 - o 10 points pour l'article / rapport
 - o 10 points pour le travail
 - Moyenne sur 20

IA + Optim Sujet n°1 : Game design

- Référent : E. Ramat
- Papier référence :
 - https://hal.science/hal-01223116
 - Organicity in abstract strategy games
 - Defining the Abstract
- Réalisations :
 - Étude des qualités du jeu d'échec ou go (profondeur, stratégie, positions, ...)
 - Mesurer les qualités sur des parties réalisées ou générées par des IA (MCTS)
 - Proposer la meilleure configuration d'un nouveau jeu (Komivoki) à partir de mesures
- Difficultés/prérequis
 - o Connaissances sur le jeu d'échec ou go

Optim

Sujet n°2 : Placement de bâtiments

- Référent : S. Tari
- Papier référence :
 - o https://ada.liacs.leidenuniv.nl/papers/HooStu15b.pdf
- Réalisations :
 - o Représenter les données de manière valide
 - Mise en place de recherches locales
 - Recherche d'opérateurs de voisinages (modification légère de la solution de manière valide)
 - Expérimenter et comparer les méthodes
- Difficultés/prérequis
 - Optimisation combinatoire
 - C++ ou python

Sujet n°3: IA pour Gameboy

- Référent : S. Tari
- Papier référence :
 - http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
 - Wikipédia : https://en.wikipedia.org/wiki/Q-learning
- Réalisations :
 - Interaction avec des jeux Game Boy (https://github.com/Baekalfen/PyBoy)
 - Création de différentes intelligences artificielles
 - Q-Learning et ses variantes
 - Deep Q-Learning (traitement de l'image)
 - Expérimenter et comparer les méthodes
- Difficultés/prérequis
 - o Design d'une IA efficace
 - Langage Python

Apprentissage Sujet n°4 : MiniGrid

- Référent : E. Ramat
- Papier référence :
 - o https://arxiv.org/pdf/1811.06889.pdf
 - Wikipédia : https://en.wikipedia.org/wiki/Q-learning
- Réalisations :
 - https://github.com/Farama-Foundation/MiniGrid
 - Création de différentes intelligences artificielles
 - Q-Learning et ses variantes
 - Deep Q-Learning (traitement de l'image)
 - Expérimenter et comparer les méthodes
- Difficultés/prérequis
 - Design d'une IA efficace / multiplicité des environnements
 - Langage Python

IA ou Optim Sujet n°5:

Sujet n°5: Dorfromantik

- Référent : E. Ramat
- Papier référence :
 - o Optim: https://www.cs.ubc.ca/~hoos/SLS-Internal/ch2.pdf
 - IA: MCTS
 (https://dke.maastrichtuniversity.nl/m.winands/documents/pMCTS.pdf)
- Réalisations :
 - Etude des méthodes possibles de résolution
 - Plusieurs approches :
 - Un jeu de tuiles prédéfini : recherche du meilleur agencement qui rapporte le plus de points
 - Problème d'optimisation combinatoire
 - Un jeu de tuiles aléatoire : IA
 - Développer différents méthodes et comparer leurs performances
- Difficultés/prérequis :
 - o Optimisation combinatoire ou IA dans l'aléatoire
 - Langage Python : https://github.com/amosborne/dorfperfekt

Sujet n°6 : IA adaptatif pour jeu abstrait

- Référent : E. Ramat
- Papier référence :
 - https://www.cs.toronto.edu/~ashton/pubs/maia-kdd202
 o.pdf
- Réalisations :
 - Étudier les différentes stratégies de mesure de qualité d'un coup aux échecs
 - o Transposer le concept au jeu de Yinsh
 - o Proposer différents stratégies et comparer les
- Difficultés/prérequis :
 - o Connaissances des jeux abstraits (go, échecs, ...)
 - Langage C++

Apprentissage Sujet n°7: Sokoban

- Référent : S. Tari et E. Ramat
- Papier référence :
 - https://papers.nips.cc/paper/7152-imagination-augmented-agen ts-for-deep-reinforcement-learning
 - Wikipédia : https://en.wikipedia.org/wiki/Q-learning (Deep Q-learning)
- Réalisations :
 - https://github.com/mpSchrader/gym-sokoban
 - o Création de différentes intelligences artificielles
 - Q-learning / MCTS (tiny_rgb_array mode)
 - Deep Q-Learning / MCTS (traitement de l'image)
 - Expérimenter et comparer les méthodes
- Difficultés/prérequis
 - Gestion de la planification des tâches
 - Langage Python

Optim

Sujet n°8: No Three in Line

- Référent : S. Tari
- Papier référence :
 - Présentation du problème : <u>https://homepages.gac.edu/~jsiehler/NoThree/noThree.html</u>
 - https://ada.liacs.leidenuniv.nl/papers/HooStu15b.pdf
- Réalisations :
 - Représentation des données
 - Mise en place de recherches locales
 - Etude et proposition de relations de voisinages
 - Expérimenter et comparer les méthodes
- Difficultés/prérequis
 - Optimisation combinatoire
 - C++ ou python

Sujet n°9 : Aide à la décision

- Mildiou

- Référent : E. Ramat
- Papier référence : https://sophieeunajang.wordpress.com/wp-content/uploads/ 2020/10/lstm.pdf
- Objectif : construire une prévision de l'apparition du mildiou
- Techniques d'apprentissage : réseaux de neurones de type LSTM initialisés à partir d'un modèle stochastique et de générateurs de météos
- Outils : simulateur en C++ et librairies Python (Keras et SciKit Learn)

Optim Sujet n°10 : Recherche de graphes contre-exemple

- Référent : O. Rifki
- Papier référence :
 - https://arxiv.org/pdf/2104.14516
 - https://arxiv.org/pdf/2311.03583
- Objectif:
 - Les graphes sont la base des réseaux sociaux
 - Chercher des graphes contre-exemples pour certaines propriétés
 - Utilisation de algorithmes de recherche locale.
- Difficultés/prérequis:
 - Optimisation combinatoire
 - Python / C++

Sujet n°11 : Problème de Schur par apprentissage automatique

- Référent : O. Rifki
- Papier référence :
 - https://inria.hal.science/hal-01406479/document
- Objectif: Trouver des bornes sur les nombres de Schur faibles suivant des algorithmes d'apprentissage simples.
- Difficultés/prérequis :
 - Compréhension du problème
 - Librairie Python pour apprentissage automatique

Optim Sujet n°12 : Contraintes du prob. Voyageur du commerce

- Référent : O. Rifki
- Papier référence :
 - https://en.wikipedia.org/wiki/Travelling_salesman _problem
- Objectif : Apprendre les arcs à bannir du graphe du problème suivant un réseau de neurone simple afin de satisfaire les contraintes (des fenêtres de temps).
- Difficultés/prérequis:
 - Optimisation combinatoire
 - Python / C++ / Julia

Sujet n°13 : Prédiction des cours des actions de bourse

- Référent : O. Rifki
- Papier référence :
 - https://www.nature.com/articles/s41599-024-02807-x
- Objectif : Prédiction des cours de bourse en utilisant des réseaux de neurones profonds.
- Difficultés/prérequis :
 - Compréhension du problème
 - Librairie Python pour apprentissage automatique

