Confidentiality

Overview

What do we mean by confidentiality?

The protected asset shall not be disclosed to unauthorized entities

Question: Are the following statements confidentiality requirements?

1. Having a password file and trying to protect it from not being disclosed

2. A film production company tries to prevent piracy (i.e. prevent users from obtaining the movies without paying)

Overview

What do we mean by confidentiality?

The protected asset shall not be disclosed to unauthorized entities

Question: Are the following statements confidentiality requirements?

- Having a password file and trying to protect it from not being disclosed
 Answer: yes, we say that the file must remain confidential
- 2. A film production company tries to prevent piracy (i.e. prevent users from obtaining the movies without paying)

Overview

What do we mean by confidentiality?

The protected asset shall not be disclosed to unauthorized entities

Question: Are the following statements confidentiality requirements?

- Having a password file and trying to protect it from not being disclosed
 Answer: yes, we say that the file must remain confidential
- 2. A film production company tries to prevent piracy (i.e. prevent users from obtaining the movies without paying)

Answer: no (in fact, this is a possession/control requirement)

Problem representation

- Alice and Bob are two honest principals
- Alice sends data to Bob over an unprotected channel
- Eve, the adversary, can listen to the communication since the channel is unprotected
- Problem when data is required to remain confidential

confidential data Alice Bob *confidential data* Eve (eavesdropper)

Example of eavesdropping?

Encryption classification

Encryption classification

Confidentiality through symmetric encryption

Notations:

- c -> ciphertext
- {m}_k -> message m encrypted with the secret key k

Idea:

- Alice and Bob share the same key k (symmetric = same key for encryption and decryption)
- Eve can still intercept traffic, but this time will see a random looking string (indistinguishable from random)

Encryption classification

Primitive: block ciphers

Work principle

- Encrypt/decrypt one block at a time
- Block have fixed size (e.g. 16 bytes)

Block ciphers

- AES (Advanced Enc. Standard)
 - Current standard (to be used)
 - Key size: 128/192/256 bits
 - o Block size: 16 bytes
- DES (Data Enc. Standard)
 - Old, deprecated standard (not to use)
 - o Key size: 56 bits
 - Block size: 8 bytes
- Many others

Encryption mode

Having a message larger than the block size, how to extend the algorithm?

Example: ECB

- Split the message into blocks
- Apply the encryption algorithm to each PT block with the key k
- Concatenate resulting CT blocks
- Note:
 PT#i = PT#j => CT#i = CT#j

ECB

courtesy B. Preneel

Encryption mode (cont.)

Cipher block chaining (CBC) w/ random IV - guarantees all CT blocks are different

Padding

What if the message is not multiple of the block size?

Symmetric encryption with WinRAR

Demo

Symmetric encryption in .NET

```
******************* FNCRVPTTON *********************/
/******* SETUP
// Create AES object for encryption
SymmetricAlgorithm aesEncryptAlg = AesManaged.Create();
// Select key size (in bits)
// Note: possible values for AES are 128/192/256
aesEncryptAlg.KeySize = 192;
// Select mode
aesEncryptAlg.Mode = CipherMode.CBC;
// Select padding
aesEncryptAlg.Padding = PaddingMode.PKCS7;
// Generate/set encyrption key
// In this case it is generated randomly, so the value must be saved
aesEncryptAlg.GenerateKey();
savedSymmetricKey = (byte[])aesEncryptAlg.Key.Clone();
// Generate fresh IV, or set value
// In this case it is generated randomly, so the value must be saved
aesEncryptAlg.GenerateIV();
savedIv = (byte[])aesEncryptAlg.IV.Clone();
```

```
/********************** PROCESSING ****************/
// Create streams
MemoryStream memoryStreamEnc = new MemoryStream();
CryptoStream cryptoStreamEnc = new CryptoStream(memoryStreamEnc,
                            aesEncryptAlg.CreateEncryptor(),
                            CryptoStreamMode.Write);
// Encrypt by writing to the stream
// Note: mandatory to close the stream when finished
cryptoStreamEnc.Write(plaintext bytes, 0, plaintext bytes.Length);
cryptoStreamEnc.Close();
// Read the ciphertext and close stream
byte[] ciphertext bytes = memoryStreamEnc.ToArray();
memoryStreamEnc.Close();
// Return the ciphertext
return ciphertext bytes;
```

Symmetric encryption in .NET (cont.)

```
/****** SETUP
                                  *****************
// Alloc array for the plaintext
byte[] plaintext bytes = new byte[ciphertext bytes.Length];
// Create AES object for decryption
SymmetricAlgorithm aesDecryptAlg = AesManaged.Create();
// Select key size (in bits)
// Note: must be the same algorithm, i.e., choose the same key size
aesDecryptAlg.KeySize = 192;
// Select mode
// Note: must be the same mode used for encryption
aesDecryptAlg.Mode = CipherMode.CBC;
// Select padding
// Note: must be the same padding used for encryption
aesDecryptAlg.Padding = PaddingMode.PKCS7;
// Set decryption key
// Note: must be the same key used for encryption
aesDecryptAlg.Key = savedSymmetricKey;
// Set TV
// Note: must be the same IV used for encryption
aesDecryptAlg.IV = savedIv;
```

Guide

Project

New -> Windows Forms Application (.NET Framework)

Visual elements

- Button, Label, TextBox from toolbox
- After adding a visual element double click to generate event method (e.g. ButtonEnc_Click (object sender, EventArgs e)

What to try: change the key size, use different modes, padding, etc.

- Can you find ECB duplicate ciphertext blocks?
- Can you find speed differences when using different key sizes for AES?