Jointly Distributed Random Variables

Conditional Distributions: Discrete Case [Ross S6.4]

Recall that for P[F] > 0:

$$P[E|F] = \frac{P[EF]}{P[F]}$$

 $p_{X|Y}(x|y) = P[X = x \mid Y = y]$

Say $p_Y(y) > 0$. The **conditional pmf** for X given Y is

$$PX|Y(x|y) = P[X = x \mid Y = y]$$

$$= \frac{P[X = x, Y = y]}{P[Y = y]}$$

$$= \frac{p_{XY}(x,y)}{p_{Y}(y)}$$
The **conditional cdf** for X given Y is

 $F_{X|Y}(x|y) = P[X \le x \mid Y = y]$

$$=\frac{P[X \leq x, Y = y]}{P[Y = y]}$$

$$=\sum_{a \leq x} \frac{P[X = a, Y = y]}{P[Y = y]}$$

$$=\sum_{a \leq x} p_{X|Y}(a|y)$$
If X and Y are independent:
$$p_{X|Y}(x|y) = \frac{p_{XY}(x,y)}{p_{Y}(y)}$$

$$=\frac{p_{X}(x)p_{Y}(y)}{p_{Y}(y)}$$

Example 27.1: Let
$$X \sim \mathsf{Poisson}(\lambda_1)$$
 and $Y \sim \mathsf{Poisson}(\lambda_2)$ be independent. Find the conditional pmf for X given $X + Y = n$. *Solution:*

Solution:

Example 27.2: Let X_1, X_2, \ldots, X_n be iid and $\sim \mathsf{Bernoulli}(p)$.

Say these result in k ones. Show that each of the $\binom{n}{k}$ possible orderings of k

Y = y is

and then

ones are then equally likely.

$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$ We also define:

Continuous Case [Ross S6.5]

 $P[X \in A|Y = y] = \int_A f_{X|Y}(x|y)dx$

 $\int_{-\infty}^{\infty} P[X \in A|Y=y] f_Y(y) dy = \int_{-\infty}^{\infty} \left[\int_A f_{X|Y}(x|y) dx \right] f_Y(y) dy$

 $F_{X|Y}(a|y) = P[X \le a|Y = y] = \int_{-\infty}^{a} f_{X|Y}(x|y)dx$

 $= \int_{-\infty}^{\infty} \int_{A} f_{X|Y}(x|y) f_{Y}(y) dy dx$

(27.2)

If X and Y are continuous, for $f_Y(y) > 0$, the **conditional pdf** of X given

$$= \int_{A} \int_{-\infty}^{\infty} f_{XY}(x, y) dy dx$$
$$= P[X \in A]$$

With $A=(-\infty,a]$, we get the **conditional cdf**

 $f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$ $= \frac{f_X(x)f_Y(y)}{f_Y(y)}$

If X and Y are independent and $f_Y(y) > 0$:

Example 27.3: The joint pdf of
$$X$$
 and Y is
$$f_{XY}(x,y) = \begin{cases} \frac{e^{-x/y}e^{-y}}{y} & 0 < x < \infty, \ 0 < y < \infty \\ 0 & \text{else} \end{cases}$$
 Find $P[X > 1|Y = 1]$.

Solution: