

Mathematical Modeling with MATLAB

- MATLAB for Mathematical Modeling
- Mathematical Modeling Examples
 - Parametric modeling
 - Black box modeling
 - First principles modeling
- Summary

We use math to describe our world

 Mathematical modeling is the use of a mathematical language to describe a system or process.

 $q_{l} = \frac{2W_{to}n\sqrt{L^{2}-x^{2}}}{L^{2}\pi}$

Lift on aircraft wing

- Uses of Mathematical Modeling
 - Forecast system behavior
 Predict and gain insight into system behavior for various "what-if" scenarios
 - Optimize system behavior
 Identify parameters that optimize system performance
 - Design control systems
 Develop model to represent plant during control system design

Technical Computing Workflow

- MATLAB for Mathematical Modeling
- Mathematical Modeling Examples
 - Parametric modeling
 - Black box modeling
 - First principles modeling
- Summary

Focusing on Three Types of Modeling

Parametric Modeling

 Uses a known model that maps the independent variables to the dependent variable with a set of constant unknowns

Black-box Modeling

 Uses an automatically created model that "learns" to map the independent variables to the dependent variable

First Principles Modeling

 Uses a model derived directly from the laws of physics without making assumptions such as empirical or fitted parameters

- MATLAB for Mathematical Modeling
- Mathematical Modeling Examples
 - Parametric modeling
 - Black box modeling
 - First principles modeling
- Summary

Parametric Modeling

- Used when a relationship between predictors and response is known
- Build the model by estimating constant unknown parameters
- Common methods
 - Linear regression (fitlm)
 - Curve and surface fitting (fit)

Demo: Fuel Economy Analysis

Parametric modeling in MATLAB

Objective:

 Study the relationships between fuel economy, horsepower, and type of vehicle

Inputs

 Historical fuel economy data for cars manufactured between 2000 and 2012 from Excel

Approach:

- Interactively visualize and explore trends
- Fit a curve to the data
- Document results

Statistics and Machine Learning Toolbox

Parallel Computing Toolbox

Products Used

MATLAB

$$MPG = b_1 + b_2/RatedHP$$

- MATLAB for Mathematical Modeling
- Mathematical Modeling Examples
 - Parametric modeling
 - Black box modeling
 - First principles modeling
- Summary

Black-Box Modeling

- Used when relationship between predictors and response is unknown
- Primary interest is in fitting the data rather than the structure of the model
- Model structures
 - Neural networks (network)
 - Support vector machines (fitrsvm)
 - Gaussian processes (fitrgp)
 - Decision trees (fitrtree)

Demo: Fuel Economy Analysis

Black-box modeling in MATLAB

Objective:

 Study the relationships between fuel economy, horsepower, and type of vehicle

Inputs

 Historical fuel economy data for cars manufactured between 2000 and 2012 from Excel

Approach:

- Interactively visualize and explore trends
- Train a regression model
- Document results

MATLAB Statistics and Mach

Products Used

- Statistics and Machine Learning Toolbox
- Parallel Computing Toolbox

- MATLAB for Mathematical Modeling
- Mathematical Modeling Examples
 - Parametric modeling
 - Black box modeling
 - First principles modeling
- Summary

First Principles Modeling

- Used when relationship between predictors and response can be defined with analytical equations
- Build the model directly from first principles
- Solve differential equations
 - Symbolic solution (dsolve)
 - Numerical integration (ode45, ode23s)
 - Constrained minimization (fmincon)

Lagrangian
Equations of Motion
etc.

Demo: Optimizing Gantry Crane Motion

First principles modeling in MATLAB

 Objective: Determine acceleration profile that minimizes payload swing

Inputs:

Free body diagram and first principles

Approach:

- Derive equations of motion
- Determine ideal acceleration profile
 - ODE solver
 - Constrained minimization
- Find all possible solutions

Products Used

- MATLAB
- Symbolic Math Toolbox
- Optimization Toolbox
- Parallel Computing Toolbox

- MATLAB for Mathematical Modeling
- Mathematical Modeling Examples
 - Parametric modeling
 - Black box modeling
 - First principles modeling

Summary

Why MATLAB for Mathematical Modeling

- Explore and integrate different modeling approaches in different domains
 - Numeric: approximate solution in vector form
 - Symbolic: exact solution in form of analytical expression

Mathematical Models for...

- Engineering
- Controls
- Science
- Finance
- Optimization

Learn More: Suggested Recorded Webinars

Machine Learning Made Easy

Introducing the MATLAB Live Editor

Machine Learning with MATLAB

Fitting with MATLAB: Statistics, Optimization, and Curve Fitting

