Table VII Cryptocurrency Factor Models

This table reports results on the cryptocurrency factor adjustments of the 10 successful long-short strategies. CMKT is the cryptocurrency excess market return, CSMB is the cryptocurrency size factor, and CMOM is the cryptocurrency momentum factor. t-Statistics are reported in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels. m.a.e. and $\overline{R^2}$ are the mean absolute pricing error and the average R^2 of the five portfolios, respectively.

		Cons	t	CMKT	t	CSMB	t	CMOM	t	R^2	m.a.e.	$\overline{R^2}$
MCAP	(1)	-0.215***	(-8.63)	0.987***	(47.04)	0.987***	(47.04)			0.869	0.209	0.949
MCAP	(2)	-0.232***	(-9.85)	0.976***	(49.20)	0.077***	(40.07)	0.976	(49.20)	0.883	0.201	0.951
MCAP PRC	(3) (1)	-0.230*** -0.113***	(-9.72) (-3.09)	0.977*** 0.968***	(49.07) (31.36)	0.977*** 0.968***	$(49.07) \\ (31.36)$	-0.094***	(-0.61)	0.883 0.745	$0.199 \\ 0.187$	$0.952 \\ 0.937$
PRC	(2)	-0.128***	(-3.41)	0.960***	(30.35)	0.506	(31.30)	0.960	(30.35)	0.732	0.200	0.938
PRC	(3)	-0.112***	(-3.04)	0.969***	(31.19)	0.969***	(31.19)	-0.948***	(-3.92)	0.744	0.188	0.939
MAXDPRC	(1)	-0.114***	(-3.12)	0.968***	(31.39)	0.968***	(31.39)			0.745	0.188	0.938
MAXDPRC	(2)	-0.129***	(-3.44)	0.960***	(30.36)			0.960	(30.36)	0.733	0.200	0.939
MAXDPRC	(3)	-0.113***	(-3.07)	0.968***	(31.21)	0.968***	(31.21)	-0.951***	(-3.94)	0.744	0.189	0.940
AGE	(1)	-0.093***	(-3.81)	0.975***	(47.34)	0.975***	(47.34)	0.070	(40.12)	0.869	0.161	0.961
$_{ m AGE}$	(2) (3)	-0.088*** -0.083***	(-3.71) (-3.50)	0.979*** 0.982***	(49.13) (49.35)	0.982***	(49.35)	0.979 $-0.304***$	(49.13) (-1.96)	$0.878 \\ 0.879$	$0.182 \\ 0.175$	$0.963 \\ 0.964$
r 1,0	(1)	0.054**	(2.15)	1.034***	(48.94)	1.034***	(48.94)	-0.504	(-1.50)	0.877	0.174	0.954
r 1,0	(2)	0.024	(1.03)	1.015***	(51.20)		(1.015	(51.20)	0.892	0.187	0.957
r 1,0	(3)	0.037	(1.64)	1.023***	(53.53)	1.023***	(53.53)	-0.800***	(-5.38)	0.900	0.178	0.958
r 2,0	(1)	0.050**	(2.23)	1.017***	(53.90)	1.017***	(53.90)		I was a common or common	0.896	0.158	0.962
r 2,0	(2)	0.018	(0.86)	0.997***	(56.16)		722	0.997	(56.16)	0.908	0.174	0.966
r 2,0	(3)	0.033* 0.055**	(1.69)	1.005*** 1.033***	(60.55)	1.005***	(60.55)	-0.924***	(-7.16)	0.920	0.164	0.967
r 3,0 r 3,0	(1) (2)	0.028	(2.48) (1.30)	1.033	(55.10) (55.04)	1.033***	(55.10)	1.016	(55.04)	$0.900 \\ 0.903$	$0.162 \\ 0.176$	$0.964 \\ 0.966$
r 3,0	(3)	0.044**	(2.12)	1.025***	(58.97)	1.025***	(58.97)	-0.921***	(-6.81)	0.915	0.163	0.966
r 4,0	(1)	0.030	(1.41)	1.028***	(57.93)	1.028***	(57.93)		(,	0.909	0.151	0.969
r 4,0	(2)	0.004	(0.16)	1.012***	(54.74)			1.012	(54.74)	0.901	0.167	0.970
r 4,0	(3)	0.021	(1.06)	1.022***	(60.03)	1.022***	(60.03)	-1.053***	(-7.95)	0.917	0.154	0.970
r 4,1	(1)	-0.005	(-0.29)	1.009***	(70.72)	1.009***	(70.72)		(00.00)	0.937	0.146	0.967
r 4,1	(2)	-0.020	(-1.07)	1.001*** 1.010***	(63.99)	1.010***	(70.57)	1.001 -0.922***	(63.99)	0.924	0.163	0.967
r 4,1 r 8,0	(3) (1)	-0.004 0.001	(-0.24) (0.05)	1.010	(70.57) (53.92)	1.010	(70.57) (53.92)	-0.922	(-8.29)	$0.937 \\ 0.898$	$0.146 \\ 0.157$	$0.967 \\ 0.963$
r 8,0	(2)	-0.023	(-1.06)	0.992***	(55.02)	1.007	(00.02)	0.992	(55.02)	0.905	0.165	0.965
r 8,0	(3)	-0.009	(-0.42)	1.000***	(57.53)	1.000***	(57.53)	-0.729***	(-5.36)	0.912	0.157	0.966
r 16,0	(1)	-0.013	(-0.87)	1.004***	(80.68)	1.004***	(80.68)			0.953	0.131	0.960
r 16,0	(2)	-0.028*	(-1.75)	0.996***	(76.60)			0.996	(76.60)	0.948	0.138	0.960
r 16,0	(3)	-0.015	(-1.00)	1.003***	(80.89)	1.003***	(80.89)	-0.587***	(-6.03)	0.953	0.130	0.961
r 50,0 r 50,0	(1) (2)	-0.066*** -0.097***	(-2.69) (-3.65)	0.982*** 0.966***	(51.58) (46.58)	0.982***	(51.58)	0.966	(46.58)	$0.902 \\ 0.882$	$0.129 \\ 0.149$	$0.968 \\ 0.968$
r 50,0	(3)	-0.066***	(-2.68)	0.982***	(51.46)	0.982***	(51.46)	-1.117***	(-7.59)	0.882	0.129	0.968
r 100,0	(1)	-0.112**	(-2.32)	0.956***	(28.03)	0.956***	(28.03)	1.11	()	0.767	0.152	0.923
r 100,0	(2)	-0.131***	(-2.69)	0.948***	(27.33)			0.948	(27.33)	0.758	0.157	0.922
r 100,0	(3)	-0.103**	(-2.14)	0.962***	(28.26)	0.962***	(28.26)	-0.890***	(-3.65)	0.771	0.157	0.924
VOL	(1)	-0.117***	(-3.11)	0.969***	(30.51)	0.969***	(30.51)		(a	0.734	0.194	0.936
VOL	(2)	-0.132*** -0.116***	(-3.42)	0.960*** 0.969***	(29.56)	0.969***	(20.24)	0.960	(29.56)	0.722	0.206	0.937
VOL PRCVOL	(3) (1)	-0.070***	(-3.06) (-3.37)	0.965***	(30.34) (55.25)	0.965***	(30.34) (55.25)	-0.945***	(-3.80)	$0.734 \\ 0.900$	$0.195 \\ 0.128$	$0.937 \\ 0.940$
PRCVOL	(2)	-0.065***	(-3.32)	0.969***	(58.39)	0.500	(55.25)	0.969	(58.39)	0.910	0.150	0.942
PRCVOL	(3)	-0.060***	(-3.07)	0.972***	(58.79)	0.972***	(58.79)	-0.301***	(-2.34)	0.912	0.141	0.943
VOLSCALED	(1)	-0.112***	(-5.82)	0.992***	(61.42)	0.992***	(61.42)			0.918	0.161	0.966
VOLSCALED	(2)	-0.125***	(-6.67)	0.984***	(62.12)			0.984	(62.12)	0.922	0.162	0.968
VOLSCALED	(3)	-0.120***	(-6.42)	0.986***	(62.58)	0.986***	(62.58)	-0.297***	(-2.42)	0.923	0.156	0.968
BETA BETA	(1)	-0.082*** -0.098***	(-3.11)	0.982*** 0.973***	(48.31) (47.41)	0.982***	(48.31)	0.973	(47.41)	$0.891 \\ 0.887$	$0.160 \\ 0.167$	$0.956 \\ 0.956$
BETA	$(2) \\ (3)$	-0.082***	(-3.72) (-3.14)	0.982***	(48.34)	0.982***	(48.34)	-0.534***	(-3.40)	0.892	0.160	0.956
BETA2	(1)	-0.082***	(-3.11)	0.982***	(48.31)	0.982***	(48.31)	-0.004	(-3.40)	0.891	0.160	0.956
BETA2	(2)	-0.098***	(-3.72)	0.973***	(47.41)		N - 70 5 - 6	0.973	(47.41)	0.887	0.167	0.956
BETA2	(3)	-0.082***	(-3.14)	0.982***	(48.34)	0.982***	(48.34)	-0.534***	(-3.40)	0.892	0.160	0.956
IDIOVOL	(1)	0.010	(0.47)	0.986***	(61.33)	0.986***	(61.33)			0.929	0.128	0.948
IDIOVOL	(2)	-0.010	(-0.45)	0.976***	(58.22)	0.000***	(61.00)	0.976	(58.22)	0.922	0.145	0.949
IDIOVOL RETVOL	(3)	0.010 0.068***	$(0.47) \\ (2.79)$	0.986*** 1.006***	(61.22) (49.01)	0.986*** 1.006***	(61.22)	-0.673***	(-5.40)	$0.929 \\ 0.877$	$0.128 \\ 0.177$	$0.949 \\ 0.948$
RETVOL	(1) (2)	0.039*	(1.67)	0.988***	(50.49)	1.000	(49.01)	0.988	(50.49)	0.888	0.194	0.951
RETVOL	(3)	0.051**	(2.27)	0.994***	(52.59)	0.994***	(52.59)	-0.756***	(-5.13)	0.896	0.186	0.951
MAXRET	(1)	0.076***	(2.86)	1.019***	(45.66)	1.019***	(45.66)			0.862	0.183	0.957
MAXRET	(2)	0.052**	(2.20)	1.003***	(50.83)			1.003	(50.83)	0.893	0.189	0.962
MAXRET	(3)	0.055**	(2.34)	1.005***	(50.87)	1.005***	(50.87)	-0.215***	(-1.40)	0.893	0.186	0.962
DELAY	(1)	0.019	(0.92)	0.995***	(62.22)	0.995***	(62.22)	0.000	(00.00)	0.931	0.132	0.943
DELAY DELAY	(2)	0.005	(0.24)	0.988*** 0.996***	(60.82)	0.996***	(62.59)	0.988	(60.82)	0.928	0.145	0.943
STDPRCVOL	(3) (1)	0.020 -0.067***	$(0.96) \\ (-4.85)$	0.997***	(62.58) (85.09)	0.996***	$(62.58) \ (85.09)$	-0.513***	(-4.17)	$0.932 \\ 0.956$	$0.134 \\ 0.118$	$0.944 \\ 0.970$
STDPRCVOL	(2)	-0.076***	(-5.46)	0.991***	(84.09)	0.00	(55.55)	0.991	(84.09)	0.955	0.124	0.971
STDPRCVOL	(3)	-0.071***	(-5.15)	0.994***	(85.34)	0.994***	(85.34)	-0.300***	(-3.31)	0.957	0.117	0.973
DAMIHUD	(1)	0.045***	(3.02)	0.977***	(77.00)	0.977***	(77.00)			0.946	0.125	0.952
DAMIHUD	(2)	0.040**	(2.55)	0.974***	(73.54)			0.974	(73.54)	0.941	0.142	0.953
DAMIHUD	(3)	0.050***	(3.36)	0.980***	(78.00)	0.980***	(78.00)	-0.623***	(-6.37)	0.948	0.125	0.955