## **Advanced Neural Networks**

Applications-Focused Introduction for Beginners CMSC 173 - Machine Learning

Noel Jeffrey Pinton October 16, 2025

Department of Computer Science University of the Philippines - Cebu

## **Outline**

Introduction: Why Advanced Neural Networks?

Convolutional Neural Networks (CNNs)

Generative Models: Creating New Content

GANs: Generative Adversarial Networks

VAEs: Variational Autoencoders

Transformers: The Revolution in Al

Diffusion Models: The Newest Revolution

Ethics & Responsible Al

Key Concept: Attention Mechanism

Using These Models: Practical Guide

Summary & Looking Forward

2

Introduction: Why Advanced Neural

**Networks?** 

## What are Advanced Neural Networks?

#### Basic Neural Networks

- Fully connected layers
- Good for tabular data
- Limited to simple patterns
- We learned these already!

#### **Advanced Architectures**

- CNNs: For images and spatial data
- Transformers: For text and sequences
- GANs: Generate new data
- VAEs: Learn compressed representations
- Diffusion: Create high-quality images

## Why Learn These?

#### They power the AI you use every day:

- ChatGPT (Transformer)
- DALL-E 2 (Diffusion)
- Face unlock on phones (CNN)
- Google Translate (Transformer)
- Al art generators (GAN/Diffusion)

#### This Module's Focus

**Understanding applications** rather than complex math!

# **Real-World Applications Overview**



#### **Course Philosophy**

**Learn by seeing what's possible!** We'll focus on understanding what these networks can do and how to use them, not deriving complex mathematics.

Convolutional Neural Networks

(CNNs)

# **CNNs: What Are They?**

# Understanding CNNs: The "Smart Glasses" for Computers [] Filter (Detector) "Looking for edges" Input Image (Like a tiny photo) What Filter Found "Edge map" 0.00 O ON DI SOPPLE TERNS: Thirk of CWs like heatro many "smort glasses" that look at on image O Nov Ideas (No Complex Nath): - Chin Lock at SMALF RICES of a image at a time (like using a magaifying glass) - They lears to recognize RATIEMS (edges, sheets, tectures) - Simple patterns - Complex patterns - FALL objects - Simple: edges - carrier - Healt - OARI () [] May CRBs are Special: ~ They loars MRMI to look for (smlike old methods where humons had to tell them) ~ They understeed images the way humans de (sites by step) ~ They work great for photos, videos, medical scans, anything sisual!

#### Simple Explanation

CNNs are neural networks designed for images. They work by:

- Looking at small patches of the image
- Finding patterns (edges, shapes, textures)
- Building up to complex objects
- Making decisions based on what they see

# Why Not Regular NNs?

- Images have too many pixels

### **Key Insight**

CNNs learn to recognize patterns automatically - no manual feature engineering!

# **How CNNs Process Images**

#### CNN Architecture: From Simple to Complex (Layer by Layer)



#### **Processing Pipeline**

Input Image  $\rightarrow$  Find Edges  $\rightarrow$  Find Shapes  $\rightarrow$  Find Objects  $\rightarrow$  Decision

#### Analogy

Like how humans see: First we see lines and edges, then shapes, then we recognize "this is a cat!"

# **CNNs vs Traditional Computer Vision**



## **Traditional Methods**

- Manual feature design
- Hard to adapt to new tasks
- Limited accuracy
- Lots of expert knowledge needed

#### **CNNs**

- Automatic feature learning
- · Easily adapt to new problems
- State-of-the-art accuracy
- Just need training data

# **CNN Applications: Medical Imaging**

#### **Cancer Detection**

## Real Application:

- Detect tumors in X-rays and MRIs
- Classify skin lesions (benign/malignant)
- Analyze mammograms for breast cancer
- Help radiologists work faster

## **Impact**

- Earlier disease detection
- Fewer missed diagnoses
- Reduced radiologist workload
- · Available in rural areas

#### Retinal Disease Diagnosis

Example: Google's Diabetic Retinopathy Detection

- Analyzes eye scans
- Detects diabetes complications
- Matches expert doctor accuracy
- Used in India, Thailand

## **Success Story**

FDA-approved Al systems now assist doctors in real hospitals!

# **CNN Applications: Self-Driving Cars**

#### **Lane Detection**

#### What CNNs Do:

- Identify road lane markings
- Track lane boundaries in real-time
- Work in various lighting conditions
- Handle curves and intersections

#### **Object Detection**

- Detect pedestrians, cars, cyclists
- Recognize traffic signs and lights
- Estimate distance to objects
- Predict object movement

## **Companies Using This**

- Tesla: Full Self-Driving (FSD)
- Waymo: Autonomous taxis
- Cruise: Robotaxis in SF
- Mobileye: Driver assistance

## Real Deployment

Over 1 million vehicles use CNN-based vision systems today!

9

# **CNN Applications: Face Recognition**

## Phone Unlock (Face ID)

#### How It Works:

- CNN extracts facial features
- Creates unique "face print"
- Compares to stored template
- Works in different lighting
- Adapts to appearance changes

## **Daily Use Cases**

- iPhone/Android face unlock
- Photo organization (Google Photos)
- Security access control
- Airport immigration

## **Social Media Applications**

- Facebook: Auto-tag friends in photos
- Snapchat: Face filters and effects
- Instagram: Beauty filters
- TikTok: Face tracking for AR

## **Privacy Note**

Face recognition raises important privacy concerns - always consider ethics!

# **CNN Applications: Security & Surveillance**

## **Smart Security Cameras**

#### Capabilities:

- Detect people vs animals
- Recognize package delivery
- Identify suspicious behavior
- Track movement patterns
- Send targeted alerts

#### **Consumer Products**

- Ring Doorbell cameras
- Nest security systems
- Arlo smart cameras
- Reduce false alarms by 90%

## **Retail Applications**

#### **Amazon Go Stores:**

- Track what customers pick up
- Automatic checkout (no cashiers)
- Prevent shoplifting
- Analyze shopping behavior

#### **Industry Impact**

Checkout-free stores save 75% of labor costs while improving customer experience!

# **CNN Applications: Satellite Imagery Analysis**

## **Environmental Monitoring**

## **Applications:**

- Track deforestation in Amazon
- Monitor crop health
- Detect illegal fishing
- Assess disaster damage
- Map urban growth

## **Real Projects**

- Planet Labs: Daily Earth imaging
- Global Fishing Watch: Ocean monitoring
- NASA: Climate change tracking

#### **Humanitarian Uses**

- Count refugees in camps
- Assess natural disaster impact
- Map poverty indicators
- Monitor conflict zones
- Guide relief efforts

#### Scale

CNNs can analyze millions of satellite images - impossible for humans alone!

# Generative Models: Creating New Content

## What Are Generative Models?



# **Discriminative Models**

## What they do:

- Classify/label existing data
- "Is this a cat or dog?"
- CNNs for image classification

#### **Generative Models**

#### What they do:

- Create new data
- "Generate a new cat image"
- GANs, VAEs, Diffusion models

# **Generative Model Applications Overview**

#### Generative Models: Creating the Future! []













### Three Main Types We'll Cover

1. GANs (Generative Adversarial Networks): Two networks compete to create realistic images

# **GANs: Generative Adversarial Networks**

#### **GANs: The Basic Idea**



## Simple Explanation

Two neural networks compete:

• Generator: Creates fake images (like an art forger)

# **GAN Application: Al Art Generation**

#### Artbreeder

#### What it does:

- Generate unique portraits
- Mix different faces together
- Adjust age, gender, ethnicity
- Create landscapes, album covers
- Used by 10+ million users

#### How Artists Use It

- Book cover illustrations
- Character design for games
- Concept art for films
- Social media content

#### ThisPersonDoesNotExist.com

- Generates random faces
- 100% synthetic people
- Photorealistic quality
- New face every refresh
- Built with StyleGAN

## Try It Yourself!

Visit the website - every face you see was created by AI, not a photo!

# **GAN Application: Deepfake Detection**

#### The Problem

#### Malicious Uses:

- Fake celebrity videos
- Misinformation campaigns
- Identity fraud
- Non-consensual content

#### The Solution

#### GANs fight GANs:

- Train detectors on fake data
- Identify artifacts and inconsistencies
- Real-time video verification
- Protect public figures

## **Real Deployments**

- Facebook/Meta: Deepfake detection system
- Microsoft: Video Authenticator tool
- Intel: FakeCatcher (96% accuracy)
- Adobe: Content Authenticity Initiative

## **Arms Race**

Detection technology must constantly evolve as GANs improve!

# **GAN Application: Synthetic Medical Data**

## Why Generate Medical Data?

## Privacy & Scarcity Issues:

- Real patient data is private (HIPAA)
- Rare diseases lack training samples
- Hard to share data between hospitals
- Need diverse examples for AI training

#### What GANs Generate

- Synthetic X-rays
- Artificial MRI scans
- Fake patient records
- Privacy-preserving datasets

## **Real Research Applications**

- Mayo Clinic: Generate rare tumor samples
- Stanford: Synthetic chest X-rays
- MIT: Privacy-safe medical records
- Train better AI without compromising privacy

#### **Impac**

Enables medical AI research while protecting patient privacy!

## **GAN Application: Game Character Creation**

## **Modern Game Development**

#### How GANs Help:

- Generate unique NPC faces
- Create diverse character variations
- Design textures and materials
- Procedural content generation
- Speed up asset creation

#### Real Game Studios

- EA Sports: Generate realistic player faces
- Ubisoft: NPC diversity in Assassin's Creed
- Reduce manual art time by 70%

# **Player Customization**

- Infinite character appearance options
- Realistic face generation
- Upload photo for custom avatar
- Al-assisted character design

#### **Industry Adoption**

Major game engines (Unity, Unreal) now integrate GAN-based tools!

# **GAN Application: Fashion Design**

## **AI Fashion Designers**

#### What They Generate:

- New clothing designs
- Pattern and texture variations
- Color scheme combinations
- Style transfer between eras
- Personalized recommendations

## **Fashion Companies Using AI**

- Stitch Fix: Personalized designs
- Tommy Hilfiger: IBM collaboration
- Zalando: Generated fashion models

## Virtual Try-On

- Generate how clothes look on you
- Try outfits without physically wearing
- Reduce online shopping returns
- Personalized styling suggestions

## **Business Impact**

Al-designed collections sell out 30% faster than traditional designs!

**VAEs: Variational Autoencoders** 

## **VAEs: What Are They?**



#### Simple Explanation

VAEs compress data into a small code, then decompress it:

# **VAE Application: Anomaly Detection**

# **Manufacturing Quality Control**

#### How It Works:

- Train VAE on normal products
- VAE learns what "normal" looks like
- · Defects reconstruct poorly
- High reconstruction error = defect!

## **Real Applications**

- Detect scratches on surfaces
- Find cracks in materials
- Identify missing components
- Automated quality inspection

## Other Anomaly Detection Uses

- Cybersecurity: Detect network intrusions
- Finance: Identify fraudulent transactions
- Healthcare: Flag unusual patient vitals
- IoT: Detect sensor failures

#### **Advantage**

# **VAE Application: Image Compression**

## Why VAEs for Compression?

## Advantages over JPEG:

- Better quality at low bitrates
- Learned compression (adapts to content)
- Can compress to tiny sizes
- Semantic preservation

#### How It Works

- Encoder compresses to latent code
- Store only the small code
- Decoder reconstructs when needed
- 10-100x smaller than JPEG

#### Real-World Uses

- Store medical imaging archives
- Stream video at lower bandwidth
- Compress satellite imagery
- Mobile app image caching

## Research Example

Google's neural image compression beats JPEG by 50% in quality metrics!

# **VAE Application: Drug Molecule Generation**

## **Pharmaceutical Discovery**

## Traditional Approach:

- Test millions of molecules
- Takes 10+ years per drug
- · Costs billions of dollars
- High failure rate

# **VAE Approach**

- · Learn from existing drugs
- Generate similar molecules
- Optimize for target properties
- · Find candidates much faster

#### Real Pharmaceutical Al

- Insilico Medicine: Generated novel molecules
- Atomwise: Al drug discovery platform
- BenevolentAI: COVID-19 drug repurposing
- Reduce discovery time by 75%

## Major Milestone

First Al-discovered drug entered human trials in 2020!



## **Transformers: What Are They?**



#### Simple Explanation

Transformers process sequences by paying attention to relevant parts:

# **Transformer Applications Overview**

#### Transformers in Daily Life: You Use These Every Day! $\square$













# Why Transformers Changed Everything

Before 2017: RNNs struggled with long sequences. After 2017: Transformers enabled GPT, BERT, and the current Al revolution!

# **Transformer Application: ChatGPT**

#### What ChatGPT Can Do

#### Capabilities:

- Answer questions
- Write code and debug
- Compose essays and emails
- Explain complex topics
- Translate languages
- Creative writing

## **Real Usage Statistics**

- 100+ million weekly users
- Fastest-growing consumer app
- Used in 185+ countries

#### How Students Use It

- Homework help and tutoring
- Research assistance
- Programming debugging
- Study guide creation
- Language learning
- Career advice

#### **Built With Transformers**

GPT-4 uses a massive transformer with 175+ billion parameters!

# **Transformer Application: Google Translate**

## Old vs New Approach

#### Before Transformers (2016):

- Phrase-based translation
- Limited context understanding
- Often awkward output

## After Transformers (2017+):

- Sentence-level context
- Natural, fluent translations
- 60% reduction in errors

## **Features Powered by Transformers**

- 133 languages supported
- Real-time conversation mode
- Camera translation (point and translate)
- Offline translation
- Context-aware results

## **Daily Impact**

500+ million people use Google Translate every day!

# **Transformer Application: GitHub Copilot**

## Al Pair Programmer

## What Copilot Does:

- Suggests code as you type
- Writes entire functions
- Explains existing code
- Converts comments to code
- Generates tests
- Fixes bugs

### Real Developer Impact

- 46% of code written by AI
- 55% faster task completion
- Used by 1.2 million developers

#### How It Works

- Built on GPT (Codex model)
- Trained on billions of lines of code
- Understands context from your files
- Suggests in real-time
- Supports 12+ programming languages

#### For Students

Great learning tool - see how experts solve problems!

# **Transformer Application: Email Auto-Complete**

## **Gmail Smart Compose**

#### Features:

- Suggests next words/sentences
- Learns your writing style
- Adapts to context
- Multi-language support
- Works on mobile too

#### **Time Savings**

- Average user saves 1 billion characters/week
- Reduces writing time by 11%
- 4+ billion emails use it daily

#### Other Email AI Features

- Smart Reply: Suggest full responses
- Subject suggestions: Auto-generate subjects
- Tone adjustment: Make emails more formal
- Grammar correction: Fix mistakes

#### All Powered by Transformers

These "small" conveniences use the same tech as ChatGPT!

# **Transformer Application: Document Summarization**

### **Automatic Summarization**

### What It Does:

- Read long documents
- Extract key points
- Generate concise summary
- Preserve important details
- Save reading time

#### **Real Products**

- Microsoft Word: Auto-summarize
- Slack: Thread summaries
- Notion AI: Note summarization
- Chrome extensions: Web page summaries

# **Use Cases**

- Research paper summaries
- News article digests
- Legal document review
- Meeting notes condensation
- Customer feedback analysis

# **Productivity Boost**

Lawyers using AI summarization save 60% of document review time!

# **Vision Transformers: Images Meet Transformers**



### Vision Transformers (ViT)

# Applying transformers to images:

· Proak image into natches (like words)

# Diffusion Models: The Newest Revolution

# **Diffusion Models: How They Work**













← REVERSE PROCESS: Gradually Remove Noise (Generation)





## Diffusion vs GANs vs VAEs



### **GANs**

Pros: Fast generation

#### **VAEs**

Pros: Stable, good latent space

### Diffusion

Pros: Best quality, stable

# **Diffusion Applications Overview**

#### Diffusion Models: Creating the Impossible!













# Why Diffusion Models Won

They power DALL-E 2, Midjourney, Stable Diffusion - the best AI image generators today!

### What DALL-E 2 Can Do

### **Text-to-Image Generation:**

- Type a description, get an image
- Photorealistic or artistic styles
- Combine multiple concepts
- Edit existing images
- Outpainting (extend images)

### **Example Prompts**

- "A cat astronaut on Mars"
- "Oil painting of a sunset over Manila"
- "Teddy bear shopping for groceries"

### Real-World Uses

- Marketing content creation
- Concept art for entertainment
- Educational illustrations
- Social media graphics
- Product mockups

# By OpenAl

Same company behind ChatGPT - 1.5+ million users create images daily!

# **Diffusion Application: Midjourney**

# What Makes Midjourney Special

### **Artistic Focus:**

- Exceptionally beautiful outputs
- Strong artistic style
- Great for fantasy/sci-fi art
- Discord-based interface
- Community of 16+ million users

### **Popular Use Cases**

- Book cover designs
- Album artwork
- Game concept art
- NFT art generation

# **Industry Impact**

- Artists use it for inspiration
- Magazine covers created with AI
- Award-winning art competitions
- · Commercial illustration work

### Controversy

Al art won Colorado State Fair - sparked debate about Al creativity!

# **Diffusion Application: Stable Diffusion**

# Why Stable Diffusion is Different

# Open Source:

- Free to use and modify
- Run on your own computer
- Customize and fine-tune
- No usage restrictions
- Active developer community

#### **Technical Details**

- Can run on consumer GPUs
- Faster than DALL-E 2
- Extensible with plugins
- Multiple versions and variants

# Popular Applications Built With It

- DreamStudio (official interface)
- Automatic1111 (popular UI)
- ComfyUI (node-based editor)
- Mobile apps (Draw Things)
- Photoshop plugins

# **Democratizing AI**

Anyone with a decent computer can now generate professional-quality images!

# **Diffusion Application: Adobe Firefly**

## **Professional Image Editing**

### Firefly Features:

- Text-to-image generation
- Generative fill (edit parts of images)
- Text effects (3D text styles)
- Generative recolor
- Integrated in Photoshop

# **Key Advantages**

- Trained on Adobe Stock (licensed data)
- Commercially safe to use
- Professional quality outputs
- Seamless Creative Cloud integration

## Real Designer Workflows

- Remove unwanted objects
- Extend backgrounds
- · Generate variations quickly
- Create mockups from descriptions
- Speed up creative process 10x

# **Industry Standard**

Adobe's Al tools are becoming essential for professional designers!

# Text-to-Video Al

## **Emerging Applications:**

- Generate short video clips
- Animate static images
- Create transitions
- Style transfer for video
- Al-assisted editing

#### Current Platforms

- Runway Gen-2: Text-to-video
- Pika Labs: Video generation
- Stable Video Diffusion: Open source

### **Use Cases**

- Social media content
- Marketing videos
- Animated presentations
- Film pre-visualization
- Game cinematics

# **Future is Coming**

Video generation is improving rapidly - expect major breakthroughs soon!

# **Text-to-Image Process Explained**



# How It All Works Together

Ethics & Responsible AI

### **Ethical Considerations**

#### to Ethics: The Responsible Use of Al Generation



### Important Questions to Consider

As these technologies become powerful, we must think carefully about their impact!

# **Key Ethical Issues**

### Misinformation & Deepfakes

#### Concerns:

- Fake news and propaganda
- · Identity fraud
- Non-consensual content
- · Erosion of trust in media

#### Solutions:

- Detection technology
- Digital watermarking
- Media literacy education
- Legal frameworks

### Bias & Fairness

#### Problems:

- Biased training data
- Perpetuating stereotypes
- Unfair representation
- Discrimination in outputs

# Mitigation:

- Diverse training datasets
- Bias testing and auditing
- Responsible AI guidelines
- Inclusive development teams

## **More Ethical Considerations**

## Copyright & Intellectual Property

#### Questions:

- Who owns AI-generated content?
- Is training on copyrighted data fair use?
- Should artists be compensated?
- How to attribute AI creations?

### **Current Debates:**

- Ongoing lawsuits (artists vs AI companies)
- New legislation being proposed
- Industry opt-out mechanisms

# Job Displacement

#### Concerns:

- Will Al replace creative jobs?
- Impact on artists, writers, designers
- Economic inequality
- Need for reskilling

# Opportunities:

- · Al as a tool, not replacement
- New creative possibilities
- Democratization of creation
- Focus on uniquely human skills

## Your Responsibility

As future AI practitioners, think critically about the impact of your work!

Key Concept: Attention Mechanism

# **Understanding Attention**



# What is Attention?

A mechanism that lets neural networks focus on relevant parts:

• In text: Focus on important words in a sentence

# **Attention Example: Language Translation**

### **Problem Without Attention**

Translating: "The cat sat on the mat"

Old approach:

- Process word by word left to right
- Forget earlier context
- Struggle with long sentences
- Poor word alignment

#### With Attention

For each output word, the model:

- Looks at ALL input words
- Focuses on relevant ones
- "sat" pays attention to "cat" and "mat"
- Handles long-distance dependencies
- Better translation quality

### Why It's Revolutionary

Attention enabled Transformers to outperform all previous architectures!

Using These Models: Practical Guide

# **Getting Started: Available Tools**

### Free/Accessible Tools

# Try these today:

- ChatGPT: Free tier available
- Bing Image Creator: Free DALL-E access
- Google Colab: Run Stable Diffusion free
- Hugging Face: Try many models online
- Runway: Free trial for video

# **Learning Resources**

- Fast.ai courses (free)
- Hugging Face tutorials
- Papers with Code
- YouTube: Two Minute Papers

# For Developers

# Build your own:

- PyTorch or TensorFlow
- Hugging Face Transformers library
- Stable Diffusion on GitHub
- Pre-trained models available
- Fine-tune on your data

### Start Small

Use existing models before building from scratch - learn by doing!

# **Tips for Using AI Image Generators**

# Writing Good Prompts

## Be specific:

- Describe style (photorealistic, cartoon, oil painting)
- Specify details (colors, lighting, mood)
- Mention composition (close-up, wide shot)
- Add quality keywords (4K, detailed, masterpiece)

# **Example Good Prompt**

"A majestic golden retriever sitting in a flower meadow at sunset, photorealistic, warm lighting, shallow depth of field, 4K quality"

# Iteration is Key

- Generate multiple variations
- Refine your prompt
- Use negative prompts (what to avoid)
- Adjust parameters (steps, guidance)
- Learn from community prompts

# **Pro Tip**

Check out prompt libraries (Lexica.art, PromptHero) to learn from others!

# **Common Challenges & Solutions**

# Challenge: Poor Results

# If outputs look bad:

- Improve your prompt specificity
- Try different seed values
- Adjust generation parameters
- Use a different model/variant
- Increase generation steps

# Challenge: Wrong Anatomy/Details

#### Known limitations:

- Hands and fingers often wrong
- Text in images unclear
- Physics may be incorrect
- Use inpainting to fix specific parts

# Challenge: Slow Generation

### Speed up:

- Use lower resolution first
- Reduce number of steps
- Try faster samplers
- Use GPU acceleration
- Consider paid services for speed

# Challenge: Reproducibility

#### Get consistent results:

- Save your seed numbers
- Keep prompt exactly the same
- Note all parameters used
- Use img2img for variations

Summary & Looking Forward

# **Key Takeaways**

### What We Learned

Five major architectures changing the world:

- 1. CNNs: Revolutionized computer vision (medical imaging, self-driving cars, face recognition)
- 2. GANs: Generate realistic images (Al art, deepfakes, synthetic data)
- 3. VAEs: Compress and generate (anomaly detection, drug discovery)
- 4. Transformers: Dominated NLP (ChatGPT, translation, code generation)
- 5. Diffusion: Best image generation (DALL-E 2, Midjourney, Stable Diffusion)

# Main Message

These aren't just research projects - they're tools you can use TODAY in real applications!

# **Applications Summary**

# **CNNs Applications**

- Medical tumor detection
- Self-driving lane detection
- Phone face unlock
- Security cameras
- Satellite imagery analysis

# **GAN Applications**

- Artbreeder Al art
- Deepfake detection
- Synthetic medical data
- Game character creation
- Fashion design

### **Transformer Applications**

- ChatGPT conversations
- Google Translate
- GitHub Copilot
- Email auto-complete
- Document summarization

# **Diffusion Applications**

- DALL-E 2 image generation
- Midjourney art creation
- Stable Diffusion (open source)
- Adobe Firefly editing
- Video generation (emerging)

### The Future is Here

#### Trends to Watch

### Next 1-2 years:

- Multimodal AI: Text, image, audio, video together
- Better video generation: Movie-quality Al videos
- 3D generation: Create 3D models from text
- Real-time generation: Instant results
- Personalization: Al that learns your style

### **Career Opportunities**

#### Skills in demand:

- AI/ML engineering
- Prompt engineering
- Al safety and ethics
- Creative AI applications
- Al product management

#### Get Involved

The best way to learn is to experiment - start building today!

# **How to Continue Learning**

#### Hands-On Practice

- Try Stable Diffusion on Colab
- Build projects with Hugging Face
- Fine-tune models on your data
- Participate in Kaggle competitions
- Contribute to open source projects

### **Online Courses**

- Fast.ai: Practical Deep Learning
- Stanford CS230: Deep Learning
- Coursera: Deep Learning Specialization
- Hugging Face NLP Course (free)

# Stay Updated

- Follow Papers with Code
- Read AI newsletters (The Batch, etc.)
- Watch Two Minute Papers (YouTube)
- Join Al Discord communities
- Attend local meetups

# **Next Steps in This Course**

**Workshop:** Hands-on coding with ResNet, GPT-2, Stable Diffusion - let's use these models!

# Thank you for your attention!

# **Contact Information**

Instructor: Noel Jeffrey Pinton

Course: CMSC 173 - Machine Learning

Institution: University of the Philippines - Cebu

**Department:** Computer Science

#### Remember

Advanced neural networks are tools that empower creativity and solve real problems. Use them responsibly

and ethically!