Case Study 2

Sonia Mazzi

13/11/2018

Data Science with

Please, go to

https://github.com/sonjam111/NICE

and download the file

mbta.xlsx

Tidy data

"Happy families are all alike; every unhappy family is unhappy in its own way." Leo Tolstoy

- ► Hadley Wickham in "Tidy Data" defines the three qualities of tidy data which standardise the process of dealing with any data set:
 - 1. Each variable forms a column.
 - 2. Each observation forms a row.
 - 3. Each type of observational unit forms a table.
- ► These three qualities are what the end product of the data tidying process must possess.
- Messy data is data which is not tidy.
- Applying the tidy data criteria standardises the structure of a data set, making exploration and analysis of data easier and less error-prone.

CASE STUDY Massachusetts Bay Transport Authority (MBTA) data from an excel file

Data on transportation in Boston, USA: monthly averages of weekday number of passengers (in thousands) by mode of transportation.

A snapshot of part of the data (not all columns are included), in excel format, is below.

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	M
1	ME	STA Avg Wee	kday Uı	nlinked	Passen	ger Trip	s (thous	ands)					
2		mode	2007-01	2007-02	2007-03	2007-04	2007-05	2007-06	2007-07	2007-08	2007-09	2007-10	2007-1
3	1	All Modes by Qtr	NA	NA	1187.653	NA	NA	1245.959	NA	NA	1256.571	NA	NA
4	2	Boat	4	3.6	40	4.3	4.9	5.8	6.521	6.572	5.469	5.145	3.
5	3	Bus	335.819	338.675	339.867	352.162	354.367	350.543	357.519	355.479	372.598	368.847	330.
6	4	Commuter Rail	142.2	138.5	137.7	139.5	139	143	142.391	142.364	143.051	146.542	145.
7	5	Heavy Rail	435.294	448.271	458.583	472.201	474.579	477.032	471.735	461.605	499.566	457.741	488.
8		Light Rail	227.231	240.262	241.444	255.557	248.262	246.108	243.286	234.907	265.748	241.434	250.
9	7	Pct Chg / Yr	0.02	-0.04	0.114	-0.002	0.049	0.096	-0.037	0.004	-0.007	-0.064	-0.
10	8	Private Bus	4.772	4.417	4.574	4.542	4.768	4.722	3.936	3.946	4.329	4.315	4.
11	9	RIDE	4.9	5	5.5	5.4	5.4	5.6	5.253	5.308	5.609	5.806	5.
12	11	Trackless Trolley	12.757	12.913	13.057	13.444	13.479	13.323	13.311	13.142	14.393	14.622	13.
13	10	TOTAL	1166.974	1191.639	1204.725	1247.105	1244.755	1246.129	1243.952	1223.323	1310.764	1244.453	1241.
14													
15													
16													
17													
18													
10													

- 4 variables: transportation mode, year, month, and monthly weekday average number of trips.
- ► The first row in the excel sheet is a title, so we skip this row when reading the data in.
- ► The NA character is "NA", not blank space which is the default value.

Do this first

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

```
mbta = pd.read_excel("mbta.xlsx", skiprows = [0], na_values = "NA")
```

```
#show the first 6 rows
print(mbta.head(6))
```

```
Unnamed: 0
                          mode 2007-01
                                                2011-08
                                                         2011-09 2011-10
                                                    NaN 1290.549
## 0
                All Modes by Qtr
                                    NaN
                                                                     NaN
                                  4.000
                                                           5.003 4.484
## 1
                           Boat.
                                                6.733
                                             353.793
## 2
                            Bus 335.819
                                                         388.271 398.456
## 3
                Commuter Rail 142.200
                                         ... 130.616 136.901 128.720
                     Heavy Rail 435.294
## 4
                                                508 145
                                                         550 137 554 932
## 5
                     Light Rail 227.231
                                         ... 220.164
                                                         244.949 237.768
##
## [6 rows x 60 columns]
```

#show the last 5 rows print(mbta.tail())

```
##
       Unnamed: 0
                                                   2011-09
                                                             2011-10
                                 mode
## 6
                        Pct Chg / Yr
                                                    0.043
                                                               0.032
                                          . . .
## 7
                8
                          Private Bus
                                                    2.843
                                                               2.967
## 8
                9
                                 R.T.D.F.
                                                    8.318
                                                               8.598
## 9
                                                    12.332
                                                              12.297
               10
                   Trackless Trollev
                                         . . .
## 10
               11
                                TOTAL
                                                  1348.754 1348.222
##
   [5 rows x 60 columns]
```

#display all the column names print(mbta.columns)

dtype='object')

##

##

##

```
## Index(['Unnamed: 0', 'mode', '2007-01', '2007-02', '2007-03', '2007-04',

## '2007-05', '2007-06', '2007-07', '2007-08', '2007-09', '2007-10',

## '2007-11', '2007-12', '2008-01', '2008-02', '2008-03', '2008-04',

## '2008-05', '2008-06', '2008-07', '2008-08', '2008-09', '2008-10',

## '2008-11', '2008-12', '2009-01', '2009-02', '2009-03', '2009-04',

## '2009-05', '2009-06', '2009-07', '2009-08', '2009-09', '2009-10',

## '2010-05', '2010-06', '2010-07', '2010-08', '2010-09', '2010-10',

## '2010-05', '2010-06', '2010-07', '2010-08', '2010-09', '2010-10',
```

'2010-11', '2010-12', '2011-01', '2011-02', '2011-03', '2011-04',

'2011-05', '2011-06', '2011-07', '2011-08', '2011-09', '2011-10'].

- ▶ 1st column enumerates rows. Rows are identified by mode of transportation. 1st column is unnecessary.
- ▶ 1st row is a quarterly aggregation. Not needed.
- ▶ The last row (11th) has totals. Not needed.
- The last row (11th) has totals. Not needed.

 7th row has % change in the year. Not needed.

```
#drop 1st, 7th and 11th rows and the first column
mbta.drop(index = [0,6,10], columns = 'Unnamed: 0', inplace = True)
```

```
print(mbta)
##
                   mode
                         2007-01
                                  2007-02
                                                    2011-08
                                                             2011-09
                                                                      2011-10
## 1
                   Boat
                           4,000
                                    3,600
                                            . . .
                                                      6.733
                                                               5.003
## 2
                    Bus
                         335.819
                                  338.675
                                                    353.793
                                                             388,271
                                            . . .
## 3
          Commuter Rail 142.200
                                  138.500
                                            . . .
                                                    130.616
                                                             136.901
## 4
                                                    508.145
                                                             550.137
```

4.484 398,456 128.720 Heavy Rail 435.294 448.271 554.932 . . . ## 5 Light Rail 227.231 240.262 220.164 244.949 237.768 . . . ## 7 Private Bus 4.772 4.417 2.655 2.843 2.967 . . . ## 8 RIDE 4.900 5.000 8.071 8.318 8.598 . . . ## 9 Trackless Trolley 12.757 12.913 . . . 11.091 12.332 12.297 ##

[8 rows x 59 columns]

- ► Variables are mode of transportation, year, month and monthly average number of passengers.
- ► All column names, except for the first one, mode, are values of year and month combined.
- ► To correct this we use the melt() function

```
# melt all column name values, except the first one (the index),
#into the "year_month" column with the corresponding values
# in the column "NrPassengers"
#
mbta2 = mbta.melt('mode', var_name = "year_month", value_name = "NrPassengers")
print(mbta2.head(10))
```

##		mode	year_month	NrPassengers
##	0	Boat	2007-01	4.000
##	1	Bus	2007-01	335.819
##	2	Commuter Rail	2007-01	142.200
##	3	Heavy Rail	2007-01	435.294
##	4	Light Rail	2007-01	227.231
##	5	Private Bus	2007-01	4.772
##	6	RIDE	2007-01	4.900
##	7	Trackless Trolley	2007-01	12.757
##	8	Boat	2007-02	3.600
##	9	Bus	2007-02	338.675

- year_month has values of 2 variables. Keep the year in one column and month in another column.
- ► We separate them using str.split().

```
# new data frame with split value columns
new = mbta2['year_month'].str.split('-', n = 1, expand = True)
mbta3 = mbta2
```

```
# making separate columns from new data frame
mbta3['year'] = new[0]
mbta3['month'] = new[1]
```

NrPassengers year month

```
#drop year_month
mbta3.drop(columns = ['year_month'], inplace = True)
print(mbta3.head())
```

```
## 0 Boat 4.000 2007 01

## 1 Bus 335.819 2007 01

## 2 Commuter Rail 142.200 2007 01

## 3 Heavy Rail 435.294 2007 01

## 4 Light Rail 227.231 2007 01
```

mode

##

print(mbta3.dtypes)

```
## mode object
## NrPassengers float64
## year int64
## month int64
## dtype: object
```

► The data is tidy and ready to be explored.

Visualisation using plotnine

- plotnine is a Grammar-of-Graphics-inspired package written by Hassan Kibirige.
- ▶ It brings the advantages of R's ggplot2 to Python: less coding and more meaningful syntax.

"A grammar of graphics is a tool that enables us to concisely describe the components of a graphic. Such a grammar allows us to move beyond named graphics (e.g., the "scatterplot") and gain insight into the deep structure that underlies statistical graphics." H.Wickham in 'A Layered Grammar of Graphics'.

Using plotnine to visualise data

- ► The function ggplot(), in the package plotnine, is used to visualise data.
- ► The basic use is

```
(\mathsf{ggplot}(\mathsf{myData},\,\mathsf{aes} = (\mathsf{myMapping})) + \mathsf{myGeometryLayer})
```

- myData: data frame with variables to use in plot.
- myMapping: mapping from the data to the aesthetics (visual dimension) in the graph. For example, the mapping can be x = Varx, y = Vary for a scatter plot of Vary vs. Varx.
- myGeometryLayer: specify what you want, points, lines, boxes, etc. e.g.: geom_point() for a scatter plot, geom_line() for a line plot, etc.
- One can add many layers to the basic ggplot object created with the ggplot() function.

In order to access the functions in plotnine first we execute

from plotnine import *

▶ In plotnine a plot is an object which can be re-called and modified.

#print(fig)#if you want to view the figure

- ► Most trips were made by heavy rail, bus, light rail and commuter rail, in descending order.
- Number of passengers are on a different scale for boat, private bus and trackless trolley. Plot them separately

```
aux = mbta3[
    mbta3['mode'].isin(['Boat', 'Private Bus', 'RIDE', 'Trackless Trolley'])
    ]

#
fig = (
ggplot(aux, aes(x = 'mode' , y = 'NrPassengers', color = 'mode'))
    + geom_boxplot()
    + ylab("Average weekday number of passesgers (1000s)")
    + theme(axis_text_x=element_text(rotation=0,ha='center',size=9,weight='bold'))
    + theme(title = element_text(size=10, weight='bold'))
    + theme(legend_text = element_text(size = 7.8))
    + theme(legend_key_size=5)
    + theme(subplots_adjust={'right': 0.8})
```

#print(fig)

► There is a very large observation for Boat. Let us find out when it was observed.

```
#pb contains NrPassengers by boat only
pb = mbta3.loc[mbta3['mode'] =='Boat', 'NrPassengers']
x = mbta3[
    (mbta3['mode'] == 'Boat') & (mbta3['NrPassengers'] == max(pb))
    ]
print(x)
```

```
## mode NrPassengers year month
## 16 Boat 40.0 2007 3
```

The unusual observation occurred in March 2007.

Look at the distribution of the other values of number of passengers who traveled by boat

```
pb1 = pb[pb < max(pb)]
print(pb1.describe())

## count    57.000000
## mean    4.455123
## std    1.134642
## min    2.985000
## 25%    3.488000
## 25%    3.488000
## 75%    5.189000
## 75%    5.189000
## max    6.733000</pre>
```

▶ No big event happened in Boston in March 2007.

Name: NrPassengers, dtype: float64

- ► We conclude that it's quite likely the person who entered the data added an extra zero.
- ▶ Change this value to 4. Check with data originators and report.

25% 3.494000 ## 50% 4.268000 ## 75% 5.178000 ## max 6.733000

Name: NrPassengers, dtype: float64


```
aux = mbta3[
    mbta3['mode'].isin(['Boat', 'Private Bus', 'RIDE', 'Trackless Trolley'])
    ]

#
fig = (
ggplot(aux, aes(x = 'mode' , y = 'NrPassengers', color = 'mode'))
+ geom_boxplot()
+ ylab("Average weekday number of passesgers (1000s)")
+ theme(axis_text_x=element_text(rotation=0,ha='center',size=9,weight='bold'))
+ theme(title = element_text(size=10, weight='bold'))
+ theme(legend_text = element_text(size = 7.8))
+ theme(legend_key_size=5)
+ theme(subplots_adjust={'right': 0.8})
```

#print(fig)

There are some unusually low values for the number of passengers travelling by trackless trolley.

```
#this is all the data for trackless trolley only
trtr = mbta3[ mbta3['mode'] == 'Trackless Trolley' ]
aux = trtr.sort_values('NrPassengers')
print(aux.head(n=10))
```

```
##
                     NrPassengers
                 mode
                                 year
                                      month
## 383 Trackless Trolley
                           5.777
                                 2010
                                        12
## 351 Trackless Trolley
                         6.316 2010
                                         8
## 375 Trackless Trolley
                      6.415 2010 11
## 359 Trackless Trolley
                      6.436 2010
## 343 Trackless Trolley 6.584 2010
## 367 Trackless Trolley
                      6.819 2010
                                        10
## 207 Trackless Trolley
                      9.645 2009
## 439 Trackless Trolley 11.060 2011
## 447 Trackless Trolley
                          11.091 2011
                                         8
## 391 Trackless Trollev
                          11.104 2011
```

- ► The unusually low observations for trackless trolley occurred in the second semester of 2010.
- Don't change or delete, but be aware.

- ▶ We will plot the data on numbers of passengers against time.
- Create a new variable, date, of "datetime" type.

```
#create a column named day with 1s
mbta3 = mbta3.assign(day = 1)
mbta3['date'] = pd.to_datetime(mbta3[['year', 'month', 'day']])
print(mbta3.head())
```

```
##
            mode
                 NrPassengers
                            year
                                 month day
                                              date
## 0
            Boat
                      4.000 2007
                                         1 2007-01-01
## 1
            Bus
                     335.819 2007
                                    1 1 2007-01-01
## 2 Commuter Rail
                    142.200 2007
                                    1 1 2007-01-01
## 3
       Heavy Rail 435.294 2007
                                    1 1 2007-01-01
## 4
       Light Rail 227.231 2007
                                         1 2007-01-01
```

print(mbta3.dtypes)

```
## mode object
## NrPassengers float64
## year int64
## month int64
## day int64
## date datetime64[ns]
## dtype: object
```

```
fig = (
   ggplot(mbta3, aes(x = 'date', y = 'NrPassengers', color = 'mode')) +
   geom_line(size=0.7) +
   geom_point(size=1)+
   ylab("Average Number of Passengers (thousands)") +
   theme(axis_text_x=element_text(rotation=0,ha='center',size=8,weight='bold'))
   theme(title = element_text(size=10, weight='bold')) +
   theme(legend_text = element_text(size = 7.8)) +
   theme(legend_key_size=5) +
   theme(subplots_adjust={'right': 0.8})
   )
   *print(fig)
```


▶ Different scales for the data corresponding to the number of passengers travelling by boat, car, trackless trolley and private bus.

```
#aux has already been defined but here it goes again
aux = mbta3[ mbta3['mode'].isin(['Boat', 'Private Bus', 'RIDE',
         'Trackless Trolley']) ]
fig = (
 ggplot(aux, aes(x = 'date', y = 'NrPassengers', color = 'mode')) +
 geom line(size=0.7) +
 geom_point(size=1)+
 ylab("Number of Passengers (thousands)") +
 theme(axis_text_x=element_text(rotation=0,ha='center',size=8,weight='bold'))
 theme(title = element_text(size=10, weight='bold')) +
 theme(legend_text = element_text(size = 7.8)) +
 theme(legend key size=5) +
 theme(subplots_adjust={'right': 0.8})
#print(fig)
```


- Strong seasonal component in number of passengers travelling by boat.
- The use of RIDE seems to be steadily increasing during time.
- ► The use of private bus and trackless trolley had a sharp decrease since 2009 and something unusual made the use of

trackless trolley dramatically decrease in the second half of

2010.

theme(legend_key_size=5) +

#print(fig)

theme(subplots_adjust={'right': 0.8})

- ► The number of passengers travelling by light and commuter rail has decreased since 2009.
- ► There seems to be an upwards trend on number of passengers travelling by heavy rail and perhaps by bus as well.

Please, give us your comments in

http://www.smartsurvey.co.uk/s/BS0FU/

B S ZERO F U