# UNCLASSIFIED

AD 296 491

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA



UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63-2-4

# MASSACHUSETTS INSTITUTE OF TECHNOLOGY

# 16491

# LINCOLN LABORATORY

71 **G** - 1

DISTORTIONS AND STRESSES OF PARABOLOIDAL SURFACE STRUCTURES

Part II -- The Membrane Behavior

296 491

James W. Mar Frederic Y. M. Wan

4 January 1963

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the joint support of the U.S. Army, Navy and Air Force under Air Force Contract AF 19(628)-500.

LEXINGTON

MASSACHUSETTS

# AFESD - TDR - 63- 17

# DISTORTIONS AND STRESSES OF PARABOLOIDAL SURFACE STRUCTURES

Part II -- The Membrane Behavior

Ву

James W. Mar Frederic Y M. Wan

4 January 1963



## Table of Contents

| VI | The Membrane Behavior : Polar Parameters |                                                                     |                                                                   |     |  |  |  |
|----|------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-----|--|--|--|
|    | 6.1                                      | The Go                                                              | verning Equations                                                 | 2   |  |  |  |
|    | 6.2                                      | 6.2 The Boundary Conditions                                         |                                                                   |     |  |  |  |
|    | 6.3                                      | 3 The Load Due to Gravity                                           |                                                                   |     |  |  |  |
|    | 6.4                                      | The Axi-Symmetric Membrane Behavior : Gravity Loads                 |                                                                   |     |  |  |  |
|    |                                          | 6.4.1                                                               | Both Edges Restrained in the Tangential Directions                | 16  |  |  |  |
|    |                                          | 6.4.2                                                               | One Edge Free and One Edge Restrained in the Tangential Direction | 26  |  |  |  |
|    |                                          | 6.4.3                                                               | Shell Closed at the Apex                                          | 58  |  |  |  |
|    | 6.5                                      | The Axi-Symmetric Membrane Behavior : Uniform Pressure Distribution |                                                                   |     |  |  |  |
|    |                                          | 6.5.1                                                               | Both Edges Restrained in the Tangential Directions                | 70  |  |  |  |
|    |                                          | 6.5.2                                                               | One Edge Free and One Edge Restrained in the Tangential Direction | 78  |  |  |  |
|    |                                          | 6.5.3                                                               | Shell Closed at the Avex                                          | 103 |  |  |  |
|    | 6.6                                      | The As                                                              | ymmetric Membrane Behavior : Gravity Loads                        | 111 |  |  |  |
|    |                                          | 6.6.1                                                               | Both Edges Restrained in the Tangential Directions                | 135 |  |  |  |
|    |                                          | 6.6.2                                                               | One Edge Free and One Edge Restrained in the Tangential Direction | 144 |  |  |  |
|    |                                          | 6.6.3                                                               | Shell Closed at the Apex                                          | 152 |  |  |  |
|    |                                          |                                                                     |                                                                   | 159 |  |  |  |
|    | References                               |                                                                     |                                                                   |     |  |  |  |

VI THE MEMBRANE BEHAVIOR: POLAR PARAMETERS

 $\Delta$ The paraboloidal shell will, under the proper circumstances, prefer to carry the applied loads by the development of the force resultants  $N_{\alpha\beta}$  rather than by the development of the transverse shear resultants  $Q_{\alpha}$  and the bending moment resultants,  $M_{\alpha\beta}$ . Such behavior is commonly called membrane behavior although the term -Momentless behavior is the more connotative. The membrane or momentless behavior will be the dominant mode of behavior when either the bending moments induced by the loads are negligibly small or whenever the flexural (bending) rigidity of the shell is sufficiently small so that the shell will deform without inducing appreciable bending moments. In this chapter, various solutions of the membrane equations as written in terms of the polar parameters will be presented. The so-called membrane equations are easily obtained by omitting the  $M_{\alpha\beta}$  ,  $Q_{\alpha}$  ,and  $\hat{\kappa}_{\alpha\beta}$  terms from the equations which have been derived in the previous sections.

### 6.1 THE GOVERNING EQUATIONS

The equations which govern the membrane behavior of a paraboloidal shell will be summarized in this section.

The strain-displacement relations (see equations 3.4.19, 3.4.20, 3.4.21):

$$\epsilon_{\rm r}^{\circ} = \frac{1}{2f\sqrt{1+(\gamma)^2}} \frac{\partial u_{\rm r}^{\circ}}{\partial \gamma} - \frac{W}{2f[1+(\gamma)^2]^{3/2}}, \qquad 6.1.1$$

$$\epsilon_{\theta}^{\circ} = \frac{1}{2f\Upsilon} \frac{\partial u_{\theta}^{\circ}}{\partial \theta} + \frac{u_{r}^{\circ}}{2f\Upsilon\sqrt{1+(\Upsilon)^{2}}} - \frac{W}{2f\sqrt{1+(\Upsilon)^{2}}}, \qquad 6.1.2$$

$$2 \epsilon_{r\theta}^{\circ} = \frac{1}{2f\sqrt{1+(r)^2}} \frac{\partial u_{\theta}^{\circ}}{\partial r} - \frac{u_{\theta}^{\circ}}{2f\sqrt{1+(r)^2}} + \frac{1}{2f\sqrt{3}} \frac{\partial u_{r}^{\circ}}{\partial \theta} . \qquad 6.1.3$$

The equations of equilibrium (see equations 4.4.1.14, 4.4.1.15, 4.4.1.16):

$$\gamma \frac{\partial N_r}{\partial \gamma} + \sqrt{1+(\gamma)^2} \frac{\partial N_r \theta}{\partial \theta} + N_r - N_{\theta} + 2f \gamma \sqrt{1+(\gamma)^2} p_r = 0,$$

6.1.4

$$\frac{\partial N_{r\theta}}{\partial Y} + \sqrt{1 + (Y)^2} \frac{\partial N_{\theta}}{\partial \theta} + 2N_{r\theta} + 2fY \sqrt{1 + (Y)^2} P_{\theta} = 0,$$

6.1.5

$$\frac{1}{1+(\gamma)^2} N_r + N_0 + 2f \sqrt{1+(\gamma)^2} P_n = 0.$$
 6.1.6

The stress-strain relations (see equations 5.2.7, 5.2.8, 5.2.9)

$$N_{\Gamma} = \frac{Eh}{1 - \nu^2} \left( \epsilon_{\Gamma}^o + \nu \epsilon_{\theta}^o \right) , \qquad 6.1.7$$

$$N_{r\theta} = \frac{Eh}{1-\nu^2} \left(1-\nu\right) \epsilon_{r\theta}^{o} , \qquad 6.1.8$$

$$N_{\theta} = \frac{Eh}{1-\nu^2} \left( \epsilon_{\theta}^{\circ} + \nu \epsilon_{r}^{\circ} \right). \tag{6.1.9}$$

There are nine equations for the nine unknown quantities:

$$\epsilon_{r}^{\circ}, \epsilon_{re}^{\circ}, \epsilon_{e}^{\circ}, u_{r}^{\circ}, u_{e}^{\circ}, w, N_{r}, N_{re}, N_{e}$$

### 6.2 THE BOUNDARY CONDITIONS

We will be concerned in the main with a paraboloidal shell which is bounded by one or two boundaries located at  $\delta = \delta_1$  and  $\delta = \delta_2$ , i.e., the boundaries are circles of latitude. These possibilities are shown in figure 6.2.1.



Figure 6.2.1

Note that the case where the shell is closed at the apex is not excluded here as  $\delta_1$  can well be zero.

The system of differential equations for determining the displacements is a second order system (cf. 6.1.1, 6.1.2 and 6.1.3). However, the stress resultants entering into the right hand sides of these differential equations are themselves solutions of a second order system (cf. 6.1.4, 6.1.5 and 6.1.6). Hence the displacements in the membrane theory satisfy a fourth order system of equations. Correspondingly, two independent boundary conditions must be given at each of the edges of the shell. It is clear from the equations themselves that half of these conditions must be given in terms of the displacements while the remaining conditions can be given either in terms of the displacements or the stress resultants.

It should be observed that the number of boundary conditions which can be

satisfied in the membrane theory is only half of that satisfied in the general theory. This phenomenon stems from the basic assumption in membrane theory that the shell has no bending stiffness in which case the unknowns  $M_{\alpha\beta}$ ,  $Q_{\alpha}$ , and  $k_{\alpha\beta}$  need not be considered.

In the case of a shell with both edges restrained against tangential motion, the boundary conditions are all given in terms of the displacements. They are

$$u_{h}^{o}(x_{1}, \theta) = 0,$$
 6.2.1

$$u_r^o(x_2, \theta) = 0,$$
 6.2.2

$$u_{\theta}^{\circ}(\delta_{1}, \theta) = 0,$$
 6.2.3

$$u_0^{\circ}(X_2, \Theta) = 0.$$
 6.2.4

On the other hand, the boundary conditions for a shell with one edge free,  $\delta_1$ , and the other edge,  $\delta_2$ , restrained against tangential motion are

$$N_{n}(Y_{1}, \theta) = 0, \qquad 6.2.5$$

$$N_{re}(y_1, \theta) = 0,$$
 6.2.6

$$u_n^o(y_2, \theta) = 0,$$
 6.2.7

$$u_{\bullet}^{\circ}(I_{2},\Theta)=0.$$
 6.2.8

If the shell is closed at the apex, the usual procedure is to require that the stress resultants be finite there.

It will be shown in a subsequent section that, under the conditions enumerated in equations 6.2.1 to 6.2.8, the shell exhibits no inextensional deformations (i.e. deformations without straining the middle surface of the shell). The corresponding membrane analysis will be simplified considerably.

### 6.3 THE LOADS DUE TO GRAVITY

A type of loading which is of great interest is that which is caused by the dead weight of the shell, i.e., the so-called gravity loading. In this section we will express the loading intensities  $p_r$ ,  $p_e$ ,  $p_n$  in terms of the gravity loading. Consider the case where the shell has rotated from its face-up position (see figure 6.3.1) though an angle  $\psi$ .



Figure 6.3.1

The  $\tilde{\gamma}^n$  axes are fixed in space such that the gravity axis is in the negative  $\tilde{\gamma}^3$  direction. Without loss of generality, we assume the shell to have rotated about its own  $\gamma^1$  axis which coincides with the  $\tilde{\gamma}^1$  axis. Let the load intensity vector due to the force of gravity be denoted by  $\bar{\rho}$ . Then

$$\bar{\rho} = -\rho_0 h^{\frac{\omega}{i}}_3$$

6.3.1

where  $\rho_0$  is the weight density of the material in the shell (units of pounds per unit volume), h is the thickness, and  $\frac{2}{i}$  is the unit vector in the  $\frac{2}{3}$  direction. With respect to the coordinates  $y^n$  which are fixed in the shell, we have the simple relationship

$$\frac{2}{i_3} = -i_2 \sin \psi + i_3 \cos \psi \qquad 6.3.2$$

where  $\overline{i}_2$  and  $\overline{i}_3$  are the unit vectors associated with  $y^2$  and  $y^3$ . Thus

$$\bar{p} = \rho_0 h \sin \psi \bar{i}_2 - \rho_0 h \cos \psi \bar{i}_3$$
. 6.3.3

In the shell coordinates (see equation 4.4.1.19) the load intensity vector is expressed in terms of the coordinates on the middle surface of the shell.

$$\bar{P} = Pr \frac{\bar{a}_1}{\sqrt{a_{11}}} + Pe \frac{\bar{a}_2}{\sqrt{a_{22}}} + p_n \bar{n}$$
 6.3.4

where

$$P_{r} = \bar{P} \cdot \frac{\bar{a}_{1}}{\sqrt{a_{11}}} = \frac{\rho_{o}^{h}}{\sqrt{1+(\bar{Y})^{2}}} \quad [\sin \theta \sin \psi - \bar{Y}\cos \psi],$$
6.3.5

$$P_{\theta} = \bar{\rho} \cdot \frac{\bar{\alpha}_2}{\sqrt{\alpha_{22}}} = \rho_0 h \cos \theta \sin \psi, \qquad 6.3.6$$

$$p_n = \bar{\rho} \cdot \bar{n} = [-1 \sin \theta \sin \psi - \cos \psi] \frac{\rho_0 h}{\sqrt{1 + (1)^2}}$$
 6.3.7

In obtaining equations 6.3.5, 6.3.6, and 6.3.7, we have made use of the relations connecting the base vectors  $\overline{a}_i$ ,  $\overline{a}_2$ ,  $\overline{n}$ , and  $\overline{i}_2$ ,  $\overline{i}_3$ , (see equations 2.1.8, 2.1.9, 2.1.14a).

### 6.4 THE AXI-SYMMETRIC MEMBRANE BEHAVIOR: GRAVITY LOADS

If the structural configuration of the shell is axi-symmetric and if the loading is also axi-symmetric as in the case of the loading due to gravity, then the membrane equations become further simplified.

The axi-symmetric problem is characterized by

$$\frac{\delta}{\delta \theta} = 0, \qquad 6.4.1$$

$$u_0^0 = 0,$$
 6.4.2

$$P_0 = 0$$
 6.4.3

and the remaining partial derivative becomes an ordinary derivative,  $\frac{d}{dy}$ . For the validity of this statement and the uniqueness of the solution

sought, readers are referred to section 6.6.

Under these restrictions the strain-displacement relations become (see equations 6.1.1, 6.1.2, 6.1.3):

$$\epsilon_r^0 = \frac{1}{2f\sqrt{1+(\gamma)^2}} \frac{du_r^0}{d\xi} - \frac{w}{2f[1+(\gamma)^2]^3/2},$$
 6.4.4

$$\epsilon_{\theta}^{\circ} = \frac{u_{r}^{\circ}}{2f \gamma \sqrt{1+(\gamma)^{2}}} - \frac{w}{2f \sqrt{1+(\gamma)^{2}}}$$
 6.4.5

The equations of equilibrium also become simplified (see equations 6.1.4, 6.1.5, 6.1.6):

$$\sqrt[8]{\frac{dN_r}{dx}} + N_r - N_\theta + 2f \sqrt[8]{1 + (x)^2} \quad P_r = 0,$$
6.4.6

$$\frac{1}{1+(\gamma)^2} N_r + N_\theta + 2f\sqrt{1+(\gamma)^2} P_n = 0.$$
 6.4.7

The pertinent stress-strain relations (see 6.1.7, 6.1.8, 6.1.9)

are the following:

$$N_r = \frac{Eh}{1-\nu^2} \left( \epsilon_r^0 + \nu \epsilon_\theta^0 \right), \qquad 6.4.8$$

$$N_{\theta} = \frac{Eh}{1-\nu^2} \left( \epsilon_{\theta}^0 + \nu \ \epsilon_{r}^0 \right).$$
 6.4.9

The loading which is of interest is caused by the dead weight of the shell. From section 6.3 we have

$$p_r = -\frac{\rho_0 h \Upsilon}{\sqrt{1 + (\gamma)^2}}$$
, 6.4.10

$$p_{A} = 0$$
, 6.4.11

$$p_n = \frac{-\rho_0 h}{\sqrt{1 + (r)^2}}$$
 6.11.12

With the introduction of the loading terms (equations 6.4.10, 6.4.12) the two equilibrium equations can be combined into a single ordinary differential equation:

$$\frac{dN_{\Gamma}}{dY} + N_{\Gamma} \left[ \frac{1}{Y} + \frac{1}{Y \left[ 1 + (Y)^{2} \right]} \right] = 2fh \rho_{0} \left( Y + \frac{1}{Y} \right)$$
 6.4.13

The formal solution of the differential equation (6.4.13) can be expressed as

$$N_{r} = \frac{2f\rho_{0}h}{3} \frac{\sqrt{1+(\gamma)^{2}}}{(\gamma)^{2}} \left\{ \left[ 1+(\gamma)^{2} \right]^{3/2} + C_{1} \right\}$$
 6.4.14

where  $C_{\eta}$  is a constant to be determined by the boundary conditions.

Note that the differential equation (6.4.13) possesses a regular singularity at the apex, Y=0. Thus the solution, as it is presented in equation 6.4.14, is valid only for Y>0, i.e., for all  $Y\geq 8$  where 8>0 can be arbitrarily small. The case where the shell is closed at the apex will be discussed later. However, we may avoid the difficulties associated with the singularity by constructing the paraboloidal shell with a hole at the apex.

The force resultant No is obtained by substituting

equation 6.4.14 into the equilibrium equation (6.4.7):

$$N_{\theta}(x) = 2f_{\rho_0}h \left\{ 1 - \frac{1}{3(x)^2 \sqrt{1+(x)^2}} \left[ (1+(x)^2)^{3/2} + C_1 \right] \right\}.$$
 6.4.15

We will require the displacements  $\mathbf{u}_{\mathbf{r}}^{\mathbf{0}}$ ,  $\mathbf{u}_{\mathbf{\theta}}^{\mathbf{0}}$ , and  $\mathbf{w}$  not only because the deformations are of primary interest but also because all the boundary conditions may be prescribed in terms of them. By solving equations 6.4.8 and 6.4.9 for  $\boldsymbol{\epsilon}_{\mathbf{r}}^{\mathbf{0}}$  and  $\boldsymbol{\epsilon}_{\mathbf{\theta}}^{\mathbf{0}}$ , and then introducing equations 6.4.14 and 6.4.15, the strains can be determined:

$$\epsilon_{r}^{0} = \frac{2f\rho_{0}}{3E} \left\{ \frac{1+\nu}{(x)^{2}} + 2(1-\nu) + (x)^{2} + c_{1} \left[ \frac{(1+\nu)}{(x)^{2}\sqrt{1+(x)^{2}}} + \frac{1}{\sqrt{1+(x)^{2}}} \right] \right\}, \quad 6.14.16$$

$$\epsilon_{\theta}^{\circ} = \frac{2f\rho_{\circ}}{3E} \left\{ 2(1-\nu) - \frac{1+\nu}{(\gamma)^{2}} - \nu(\gamma)^{2} - C_{1} \left[ \frac{(1+\nu)}{(\gamma)^{2}} + \frac{1}{\sqrt{1+(\gamma)^{2}}} \right] \right\}$$
 6.4.17

The strain-displacement relations (6.4.6) can be re-

arranged to read

$$w = \frac{u_r^0}{r} - 2f \sqrt{1 + (r)^2} \in \theta$$
 6.4.18

and substituted into the other strain-displacement relation (6.4.4) to yield the differential equation for  $u_r^{\bullet}$ .

Ş

$$\frac{du_{r}^{0}}{dx} - \frac{u_{r}^{0}}{x[1+(x)^{2}]} = 2f\sqrt{1+(x)^{2}} \left(\epsilon_{r}^{0} - \frac{\epsilon_{0}^{0}}{1+(x)^{2}}\right). \qquad 6.4.19$$

If the shell is not closed at the apex, the solution to the differential equation (6.4.19) is

$$u_{r}^{0}(x) = \frac{4f^{2}\rho_{0}}{3E\sqrt{1+(x)^{2}}} \left\{ (1+\nu) \chi \ln \chi - \frac{1+\nu}{\gamma} + \left(\frac{3-\nu}{2}\right) (\chi)^{3} + \frac{1}{4}(\chi)^{5} + C_{1}\left[-(1+\nu) \chi \ln \left(\frac{1+\sqrt{1+(x)^{2}}}{\chi}\right) - \frac{(1+\nu)\sqrt{1+(\chi)^{2}}}{\chi} + \chi\sqrt{1+(\chi)^{2}}\right] + C_{2}\chi \right\}.$$

$$6.4.20$$

The introduction of 6.4.20 into 6.4.18 yields

$$w(\vec{x}) = \frac{4f^{2}\rho_{0}}{3E\sqrt{1+(\vec{x})^{2}}} \left\{ (1+\nu)\left(\ln\vec{x} - \frac{1}{(\vec{x})^{2}}\right) + \left(\frac{3-\nu}{2}\right)(\vec{y})^{2} + \frac{1}{4}(\vec{y})^{4} + \left(1+(\vec{x})^{2}\right) \right\}$$

$$\left[ 2(\nu-1) + \frac{1+\nu}{(\vec{y})^{2}} + \nu(\vec{y})^{2} + C_{1}\left[-(1+\nu)\ln\left(\frac{1+\sqrt{1+(\vec{x})^{2}}}{\vec{y}}\right) + \sqrt{1+(\vec{y})^{2}}(1+\nu)\right] + C_{2} \right\}.$$

$$6.4.21$$

Several different combinations of boundary conditions will be considered and explicit evaluations as well as numerical calculations will be made. These will be designated as Case 6.4.1.

Case 6.4.2 and Case 6.4.3. The numerical results will be presented in terms of the non-dimensionalized quantities

$$N_r^* = \frac{N_c}{2f\rho_c h}$$
 6.4.22

$$N_{\theta}^{\star} = \frac{N_{\theta}}{2f\rho_{0}h}$$
 6.4.23

$$u_r^* = \frac{u_r E}{4f^2 \rho_0}$$
 6.4.24

$$w^* = \frac{wE}{4f^2\rho_0}$$
6.4.25

The choice of parameters for non-dimensionalization is obvious from equations (6.4.14), (6.4.15), (6.4.20) and (6.4.21).

### 6.4.1 BOTH EDGES RESTRAINED IN THE TANGENTIAL DIRECTIONS

The boundary conditions for a shell with both edges restrained in the tangential directions are specified by

$$u_{r}^{o}(\gamma_{i})=0,$$
 6.4.1.1

$$u_r^0 (r_2) = 0$$
 6.4.1.2

where  $Y_1$  and  $Y_2$  are the boundaries of the shell (see figure 6.2.1) and are chosen such that

$$r_1 < r_2$$
 6.4.1.3

The solution for  $\mathbf{C}_1$  and  $\mathbf{C}_2$  can be put into the form

$$C_1 = \frac{B(Y_1) Y_2 - B(Y_2) Y_1}{A(Y_1) Y_2 - A(Y_2) Y_1}$$
6.4.1.4

$$c_2 = \frac{B(r_2) A(r_1) - B(r_1) A(r_2)}{A(r_1) r_2 - A(r_2) r_1}$$
6.4.1.5

where

$$A(r_{i}) = r_{i} \sqrt{1 + (r_{i})^{2}} - (1 + \nu) \left[ r_{i} \ln \left( \frac{1 + \sqrt{1 + (r_{i})^{2}}}{r_{i}} \right) + \frac{\sqrt{1 + (r_{i})^{2}}}{r_{i}} \right],$$
6.4.1.6

$$B(\gamma_i) = A_1 \left( \frac{1}{\gamma_i} - \gamma_i \ln \gamma_i \right) - A_2 (\gamma_i)^3 - A_3 (\gamma_i)^5$$
.

6.4.1.7

The possibility that the determinant  $\Delta$ ,

$$\Delta = A(Y_1) Y_2 - A(Y_2) Y_1 \qquad 6.4.1.8$$

in equations (6.4.1.4) and (6.4.1.5) vanishes for some  $\delta_1$  and  $\delta_2$  should be investigated. Physically this is implausible as it would mean some sort of ins ability. Therefore, one suspects that as a function of  $\delta_2$ , the transcendental equation

$$\Delta = 0 \qquad 6.4.1.9$$

for any (fixed) positive  $\delta_1$  has no positive roots which are larger than  $\delta_1$ . It can indeed be verified that  $\Delta$  is monotonic and non-zero for all positive  $\delta_2 > \delta_1$ .

There are six separate configurations which have been analyzed. The results are shown in Figures 6.4.1.1 through 6.4.1.6 which contain curves of  $N_r^*$ ,  $N_\Theta^*$  and  $w^*$  as well as tables of values. It can

be seen from an examination of the table of values that  $\mathcal{U}_r^{\bigstar}$ , the non-dimensional meridional displacement, is an order of magnitude smaller than  $\mathsf{W}^{\bigstar}$  and it is for this reason that  $\mathcal{U}_r^{\bigstar}$  has not been plotted. The boundary conditions that both edges are restrained in the tangential direction means that the shell must deform in the manner shown in Figure 6.4.1.

3-71-1678



Figure 6.4.1

The restrained type of boundary conditions for membranes lead to distortions which at first glance seem peculiar. However, the boundary condition itself, i.e., the restraint of  $\mathcal{U}_r^*$ , is somewhat unnatural because it would be very difficult to achieve in a practical situation. Schematically, a set of roller supports as shown in Figure

6.4.1 will prevent displacements along a tangent while freely permitting displacements along the normal to the surface of the shell.

A table which summarizes the cases studied in 6.4.1.1 follows:

Table 6.4.1.1

| Case No. | Restrained at $\delta_1$ | Restrained at $\delta_2$ |
|----------|--------------------------|--------------------------|
| 6.4.1.1  | 0.0446                   | 0.6250                   |
| 6.4.1.2  | 0.0104                   | 0.6250                   |
| 6.4.1.3  | 0.0104                   | 0.3854                   |
| 6.4.1.4  | 0.3854                   | 0.6250                   |
| 6.4.1.5  | ०.०५५6                   | 0.8035                   |
| 6.4.1.6  | 0.0446                   | 1.0267                   |









0.5

4.0

0.3

0.2

<u>.</u>

0

-0.2

-0.3

4.0

-0.5

-0.6

10.1

>

0.7

0.8

0.6

0.5

4.0

0.3

0.5

<u>.</u>





### 6.4.2 ONE EDGE FREE AND ONE EDGE RESTRAINED IN THE TANGENTIAL DIRECTION

The boundary conditions for a shell with one edge free and the other edge restrained in the tangential directions are specified by

$$N_{\Gamma}(r_1) = 0,$$
 6.4.2.1

$$u_r^0 (r_2) = 0$$
 6.4.2.2

where  $I_1$  is the coordinate of the free edge and  $I_2$  is the edge which is restrained. The free edge boundary condition, equation 6.4.2.1, determines the constant  $C_1$  (see equation 6.4.14):

$$C_1 = -[1+(r_1)^2]^{3/2}$$
. 6.4.2.3

The restraint condition, equation 6.4.2.2, enables us to determine the remaining constant (see equation 6.4.20):

$$C_{2} = \left\{ (1+\nu) \left[ \frac{\sqrt{1+(y_{2})^{2}}}{(y_{2})^{2}} + \ln \left( \frac{1+\sqrt{1+(y_{2})^{2}}}{y_{2}} \right) \right] - \sqrt{1+(y_{2})^{2}} \right\} C_{1} - (1+\nu) \ln y_{2} + \frac{(1+\nu)}{(y_{2})^{2}} - \frac{(3-\nu)}{2} (y_{2})^{2} - \frac{1}{4} (y_{2})^{4}.$$
6.4.2.4

A total of twenty-nine separate cases have been solved. These represent various combinations of shells with the inner circular boundary unsupported and the outer circular boundary restrained against tangential motion. Additionally, there are cases in which the shell is supported at the inner boundary and is left free at the outer boundary.

The value of  $N_a^*$  at the free boundary is seen always to

be

$$N_0^* = 1$$
 6.4.2.5

by examining the equilibrium condition, equation 6.4.7, and the loading term, equation 6.4.12.

Again, it should be noted that the restrained type of boundary condition will sometimes yield nonsensical results. Thus, case 6.4.2.14, in which the shell is supported at an inner radius of only 8 = .0104, shows non-dimensionalized displacements of over 2000. Obviously, the answer, while mathematically correct, is physically unrealizable. The case has been included as a mathematically interesting example of the effect of a load concentration.

A table which summarizes the cases studied in this section follows:

Table 6.4.2.1

| Case No. | Free at 8,     | Restrained at 8 |
|----------|----------------|-----------------|
| 6.4.2.1  | .0104          | .1041           |
| 6.4.2.2  | .0104          | .0520           |
| 6.4.2.3  | .0104          | .2083           |
| 6.4.2.4  | .0104          | . 3854          |
| 6.4.2.5  | .0104          | .4687           |
| 6.4.2.6  | .0446          | .4464           |
| 6.4.2.7  | .0104          | <b>.625</b> 0   |
| 6.4.2.8  | .0223          | <b>.625</b> 0   |
| 6.4.2.9  | .0446          | <b>.625</b> 0   |
| 6.4.2.10 | .0892          | <b>.625</b> 0   |
| 6.4.2.11 | .1785          | <b>.625</b> 0   |
| 6.4.2.12 | .1339          | <b>.625</b> 0   |
| 6.4.2.13 | .4017          | <b>.625</b> 0   |
| 6.4.2.14 | <b>.625</b> 0  | .0104           |
| 6.4.2.15 | <b>.62</b> 50  | .0520           |
| 6.4.2.16 | <b>.625</b> 0  | .2083           |
| 6.4.2.17 | <b>.625</b> 0  | . 3854          |
| 6.4.2.18 | .6250          | .4687           |
| 6.4.2.19 | .0104          | <b>.999</b> 0   |
| 6.4.2.20 | .1785          | .8035           |
| 6.4.2.21 | .11017         | .8035           |
| 6.4.2.22 | .1785          | 1.0267          |
| 6.4.2.23 | .4017          | 1.0267          |
| 6.4.2.24 | .8020          | .2083           |
| 6.4.2.25 | .8020          | . 3854          |
| 6.4.2.26 | .8020          | .4687           |
| 6.4.2.27 | •9 <b>99</b> 0 | .3854           |
| 6.4.2.28 | 1.0000         | .4687           |
| 6.4.2.29 | .0104          | .8020           |









Case 6, 4. 2. 4 Ani-Symmetric Gravity Free  $\gamma_1$  = 0.0104

Restrained  $\gamma_2$  = 0.3854

10.0104

0.0104

0.0520

0.0520

0.0530

0.0354

0.170

0.170

0.170

0.187

0.2187

0.2187

0.2004

0.3002

0.3002

0.3002

0.3002

0.3002

0.3002

0.3002

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3003

0.3













-, 466 -. 416 - 449 -. 439 - 498 . 498 -. 497 -. 495 - 493 -, 489 -. 485 . 480 -. 458 -. 428 C ase 6. 4. 2. 8 Axi-Symmetric Gravity Free  $\gamma_1$  = 0.0223 Restrained  $\gamma_2$  = 0.625 - 00686 -. 00827 .00490 -. 0204 - 0340 -. 0243 -. 0174 -. 0143 -. 0254 -. 0294 -. 0323 -. 0325 - 0294 \* 0 Z 1,000 1,244 1,544 1,519 1,511 1,511 1,511 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 1,513 .000 .459 .487 .500 .510 .519 .529 .539 .539 .534 .534 .544 .611 0. 0223 0. 0761 0. 1191 0. 1622 0. 2052 0. 2483 0. 2913 0.3344 0.3774 0.4205 0.4635 0.5066 0.5496 0.5927 B-13656-47 9.0 N8 = 21 Poh W\* EW 4420 0.5 Nr = 24 Poh 9. 0.3 0.7 ö 6. F -0.2 -0.3 -0.5 -0.6 9.0 0.5 4.0 0.3 -0.4 4.0 6.0 0.7 0.2 0 0.8

. 488 . 480 - 498 -, 497 - 494 -. 459 - 445 - 428 - 409 Case 6. 4. 2. 9 Axi-Symmetric Gravity Free x<sub>1</sub> · 0. 0446 Restrained x<sub>2</sub> · 0. 625 -. 00392 .0028 - 0220 -. 0302 -. 0306 -. 0165 -. 0322 -. 0250 -. 0149 . 273 . 478 . 503 . 523 . 542 . 563 . 587 0.0446 0.066 0. 1091 0. 1736 0. 2380 0.3025 0.4960 0,4315











Case 6. 4. 2. I. 2 Axi – Symmetric Gravity Free Y<sub>1</sub> = 0.1339

Restrain ed Y<sub>2</sub> = 0.6249

1. Nr Nr Ng\* Ur" W\*\*

1. 1339

1. 1339

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348

1. 1348













Ġį.

-6.8 -. 679 -6, 76 -6. 72 -6.33 -6.24 -6.16 Case 6, 4, 2, 16 Axi-Symmetric Gravity Free  $\gamma_4=0,6250$  Restrained  $\gamma_2=0,2083$ -1,352 -2.25 -2.50 -2.74 -2.96 . 98 . 594 -i. 68 -i. 97 .000 4.86 1.59 1.25 1.18 1.05 1.05 3.55 2.74 1.85 -. 0735 -4.50 -4.04 -2.72 ÷.8 -1,36 - 983 -. 703 . 490 -, 322 - 186 0.4270 0.4607 0.5520 0.5937 0.2604 0.3020 0.3437 0,3854 0,5104 0, 2083 0.2187 0.625 в-13656-71 Ng = (Ng) 0.5 Nr = Nr Ur = Euro 4. W\* EW 41200 0.3 0.5 9. 0.4 2.0 -4.0 -2.0 -4.0 0 -3.0 -50 -6.0 -7.0 6.0 5.0 3.0 1.0 -8.0



































#





## 6.4.3 SHELL CLOSED AT THE APEX

The case in which the shell is closed at the apex is best handled by considering the equilibrium of a portion of the shell bounded by the apex and a circle of latitude ( \* =constant). This is illustrated



| Case 6. 4. 3. 1 Axi | i-Symmetric Gravity      |
|---------------------|--------------------------|
| Closed at Ap        | ex                       |
| Restrained          | γ <sub>2</sub> = 0. 2678 |

| γ       | N,*    | N <sub>B</sub> * | u,*              | w*      |
|---------|--------|------------------|------------------|---------|
| 0       | . 500  | . 500            | 0                |         |
| 0. 0446 | . 500  | . 500            | -0, 0010         | -0. 374 |
| 0.0669  | . 501  | . 500            | -0, <b>00</b> 15 | -0, 374 |
| 0. 0892 | . 502  | . 500            | -0. 0019         | -0, 373 |
| 0. 1116 | . 504  | . 501            | -0, 0022         | -0, 372 |
| 0, 1339 | . 506  | . 502            | -0. 002          | -0, 371 |
| 0. 1562 | . 509  | . 502            | -0. 0025         | -0, 370 |
| 0. 1785 | . 511  | . 503            | -0. 0024         | -0, 369 |
| 0. 2008 | . 515  | . 504            | -0, 0021         | -0. 368 |
| 0. 2232 | . 518  | . 505            | -0, 0016         | -0. 366 |
| 0, 2455 | 0, 522 | . 507            | -0. 0009         | -0. 364 |
| 0, 2678 | . 526  | . 508            | 0.000            | -0. 363 |

Figure 6.4.3.1

The force equilibrium equation of the portion of the shell shown in figure 6.4.3.1 is written as

$$N_{r} \sin \beta \int_{0}^{2\pi} 2f r d\theta = \int_{0}^{2\pi} \int_{0}^{r} 2f \rho_{0} h \sqrt{1 + (r')^{2}} dr' \cdot 2f r' d\theta.$$
6.4.3.1

This results in

$$N_{\Gamma}(r) = \frac{2f\rho_0h}{3} \frac{\sqrt{1+(r)^2}}{(r)^2} \left\{ \left[ 1+(r)^2 \right]^{3/2} - 1 \right\}.$$

6.4.3.2

At the apex, r=0, equation 6.4.3.2 yields an indeterminate value for  $N_r$  (o) since both the numerator and denominator become zero. The application of L'Hospital's Rule to equation 6.4.3.2 yields

$$N_r(0) = f \rho_0 h$$
. 6.4.3.3

If equation 6.4.3.2 is compared to equation 6.4.14 then it is clear that

$$C_1 = -1.$$
 6.4.3.4

If the upper boundary  $(\Gamma_2)$  of the shell is restrained in the tangential direction such that

$$u_r^o(r_2) = 0,$$
 6.4.3.5

then as in case 6.4.2

$$c_{2} = \left\{ (1+\nu) \left[ \frac{\sqrt{1+(\gamma_{2})^{2}}}{(\gamma_{2})^{2}} + \ln \left( \frac{1+\sqrt{1+(\zeta_{2})^{2}}}{\gamma_{2}} \right) \right] - \sqrt{1+(\zeta_{2})^{2}} \right\} c_{1}$$

$$- (1+\nu) \ln \zeta_{2} + \frac{(1+\nu)}{(\gamma_{2})^{2}} - \frac{(3-\nu)}{2} (\gamma_{2})^{2} - \frac{1}{4} (\zeta_{2})^{4}.$$

6.4.3.6

Note that  $u_r^0(r)$  will also be finite at  $\gamma=0$  by L'Hospital's rule.

Six cases have been solved for the shell which is closed at the apex. The value of w\* at the apex ( $\chi=0$ ) cannot be calculated directly from the solution and hence has not been included. However, it is very easy to extrapolate values of w\* near the apex to obtain the value at the apex.

The following table lists the outer boundary of the cases which have been considered.

Table 6.4.3.1

| Case    | Restrained at  | 82 |
|---------|----------------|----|
| 6.4.3.1 | .2678          |    |
| 6.4.3.2 | .3854          |    |
| 6.4.3.3 | •5 <i>3</i> 57 |    |
| 6.4.3.4 | <b>.625</b> 0  |    |
| 6.4.3.5 | .8035          |    |
| 6.4.3.6 | 1.0267         |    |















## 6.5 THE AXI-SYMMETRIC MEMBRANE BEHAVIOR: UNIFORM PRESSURE DISTRIBUTION

If the paraboloidal shell is subjected only to a uniformly distributed pressure  $q_0$ , then the equilibrium equations assume the form (see equations 6.4.6, 6.4.7)

$$Y \frac{dN_r}{dY} + N_r - N_\theta = 0, \qquad 6.5.1$$

$$\frac{N_{\Gamma}}{1+(\Upsilon)^2} + N_{\theta} = -2f \sqrt{1+(\Upsilon)^2} q_0$$
 6.5.2

where it should be noted that  $p_n$  has been set equal to  $q_0$  . The differential equation for  $N_r$  becomes (see equation 6.4.13)

$$\frac{dN_r}{dy} + N_r \left[ \frac{1}{y} + \frac{1}{y \left[ 1 + (y^2) \right]} \right] = -\frac{2f\sqrt{1 + (y)^2}}{y} q_0. \qquad 6.5.3$$

The solution to this ordinary differential equation is

$$N_r = q_0 f \left\{ -\sqrt{1 + (\gamma)^2} + \frac{\sqrt{1 + (\gamma)^2}}{(\gamma)^2} C_1 \right\}$$
 6.5.4

The hoop force resultant is obtained by substituting

equation 6.5.4 into equation 6.5.2. There results

$$N_{\theta} = -q_{0}f \left\{ \frac{1+2(x)^{2}}{\sqrt{1+(x)^{2}}} + \frac{C_{1}}{(x)^{2}\sqrt{1+(x)^{2}}} \right\}.$$
6.5.5

The expressions for the strains are

$$\epsilon_{\rm r}^{\circ} = \frac{q_0 f}{Eh} \frac{1}{\sqrt{1+(z)^2}} \left\{ -1 + \nu - (2 - \nu) (\gamma)^2 - \frac{1 + \nu + \nu (z)^2}{(z)^2} C_1 \right\}.$$
6.5.6

The differential equation for the meridianal displacements

becomes (see equation 6.4.19)

$$\frac{du_{r}^{o}}{d\vec{x}} - \frac{u_{r}^{o}}{\vec{x}[1+(\vec{x})^{2}]} = \frac{2f^{2}q_{o}}{Eh} \frac{1}{[1+(\vec{x})^{2}]} \left\{ (2\nu-1)(\vec{x})^{4} + 2\nu(\vec{x})^{2} + \left[ (\vec{x})^{2} + 2(1+\nu) + \frac{2(1+\nu)}{(\vec{x})^{2}} \right] C_{1} \right\}.$$
6.5.7

The solution for  $u_r^0$  is

$$u_{\Gamma}^{0}(\delta) = \frac{2f^{2}q_{0}}{Eh} \left\{ \frac{(2\nu-1)}{3} (\delta)^{3} + \frac{(2\nu+2)\delta}{3} + C_{1} \left[ \Upsilon - \frac{(1+\nu)}{\Gamma} - \frac{(1+\nu)\gamma}{\sqrt{1+(\delta)^{2}}} \right] + \frac{C_{2}\Upsilon}{\sqrt{1+(\delta)^{2}}} \right\},$$

$$(6.5.8)$$

In order to obtain the normal displacement we again make

use of equation 6.4.18. There results

$$W = \frac{2f^{2}q_{0}}{Eh} \left\{ \left( \frac{5-\nu}{3} \right) \left( 1+\delta^{2} \right) + C_{1} \left( 1+\nu \right) \left[ 1 - \frac{1}{(1)^{2}} - \frac{1}{\sqrt{1+(1)^{2}}} \right] \right\}$$

$$\ln \left( \frac{1+\sqrt{1+(1)^{2}}}{\delta} \right) + \frac{C_{2}}{\sqrt{1+(1)^{2}}} \right\}.$$
6.5.9

For this case wherein the load is a uniform pressure, the

non-dimensional force-resultants are defined as

$$N_r = \frac{N_r}{2fq_o} , \qquad 6.5.10$$

$$N_{\theta}^{\star} = \frac{N_{\theta}}{2fq_{0}}$$
 6.5.11

and the non-dimensional displacements are defined as

$$u_r = \frac{Ehu_r^0}{4f^2q_0}$$
, 6.5.12

$$W = \frac{EhW}{4f^2q_0}$$
 6.5.13

## 6.5.1 Case 1 BOTH EDGES RESTRAINED IN THE TANGENTIAL DIRECTIONS

The constants for the case of a shell which is restrained at both edges (see section 6.4.1) are as follows:

$$C_1 = \frac{D(X_1) B(X_2) - D(X_2) B(X_1)}{A(X_1) B(X_2) - A(X_2) B(X_1)},$$
6.5.1.1

$$C_2 = \frac{A(t_1) D(Y_2) - A(Y_2) D(Y_1)}{A(t_1) B(Y_2) - A(Y_2) B(Y_1)}$$
6.5.1.2

where

$$A(\delta_{i}) = \delta_{i} - \frac{(1+\nu)}{\gamma_{i}} - \frac{\gamma_{i}(1+\nu)}{\sqrt{1+(\gamma_{i})^{2}}} \ln \left(\frac{1+\sqrt{1+(\gamma_{i})^{2}}}{\gamma_{i}}\right), \qquad 6.5.1.3$$

$$B(Y_i) = \frac{Y_i}{\sqrt{1+(Y_i)^2}}, \qquad 6.5.1.4$$

$$D(Y_i) = -\frac{(2\nu - 1)}{3} (Y_i)^3 - \frac{(2\nu + 2)}{3} Y_i$$
 6.5.1.5

and  $Y_1$  ,  $Y_2$  are the boundaries which are restrained. Again the determinant  $\Delta$  ,

$$\Delta = A(\xi_1) B(\xi_2) - A(\xi_2) B(\xi_1)$$
does not vanish for all positive  $\xi_1$ ,  $\xi_2$  ( $\xi_2 > \xi_1$ ).

6.5.1.6

Six different sizes of shells have been analyzed in this section. It is interesting to note that the largest displacement occurs at the outer boundary. Again, the explanation lies in the restricted type of boundary condition which accompanies membrane behavior (see Section 6.4.1 and Figure 6.4.1). The outer portion of the shell, in order to preserve  $U_{\mathbf{r}}=0$  at the boundary, must open up somewhat like a flower in order to accommodate the strains developed by the loads. It is this "opening-up" which induces the larger  $\mathbf{W}^{\star}$  displacement.

The six cases are summarized in the following table:

Table 6.5.1.1

| Case    | Restrained at 8, | Restrained at % |
|---------|------------------|-----------------|
| 6.5.1.1 | .0446            | <b>.625</b> 0   |
| 6.5.1.2 | .0104            | . 3854          |
| 6.5.1.3 | . 3854           | .6249           |
| 6.5.1.4 | .0104            | . 3854          |
| 6.5.1.5 | .0446            | .80 <b>3</b> 5  |
| 6.5.1.6 | .0446            | 1.0267          |

CASE 6.5.1.1 UNIFORM PRESSURE
RESTRAINED  $\gamma_{\rm s}^*$ .0446
RESTRAINED  $\gamma_{\rm s}^*$ .625

| ٧      | * L    | *60   | *"    | **   |
|--------|--------|-------|-------|------|
| 0.0446 | - ,536 | 466   | 000   | 305. |
| 0.1306 | 508    | -,508 | 00506 | .320 |
| 0.2166 | 513    | 533   | 00810 | .350 |
| 0.3025 | 523    | 565   | 85600 | .395 |
| 0.3885 | 537    | 909   | 0093  | .454 |
| 0.4745 | 554    | 655   | 0073  | .526 |
| 0.5605 | 573    | 710   | 00366 | .610 |
| 0.6249 | 590    | -,755 | 000.  | .682 |
|        |        |       |       |      |



CASE 6.5.1.2 UNIFORM PRESSURE
RESTRAINED 72 = .3854

| 546484 .000501504001005025060017650551400236508523002755125350028751255600287512566002165295640012752956400127 | ** | .330   | .332   | .338   | .348   | .361   | .378   | 765.   | .420   | .447   | .476   |
|----------------------------------------------------------------------------------------------------------------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| - 501 - 501 - 502 - 503 - 508 - 508 - 508 - 508 - 508 - 508 - 552 - 552 - 552 - 552 - 552                      | *  | 000    | 00100  | 00176  | 00236  | 00275  | 00287  | 00269  | 00216  | 00127  | 000    |
| <del></del>                                                                                                    | *8 | 484    | 504    | 506    | 514    | 523    | 535    | 549    | 566    | 584    | 605    |
|                                                                                                                | *N | 516    | 501    | 502    | 505    | 508    | 512    | 517    | 522    | 529    | 536    |
| 0.0104<br>0.0520<br>0.0520<br>0.0537<br>0.1354<br>0.1750<br>0.2187<br>0.2604<br>0.3020<br>0.3437               | ٧  | 0.0104 | 0.0520 | 0.0937 | 0.1354 | 0.1770 | 0.2187 | 0.2604 | 0.3020 | 0.3437 | 0.3854 |



CASE 6.5.1.3 UNIFORM PRESSURE RESTRAINED 7:=.3854 RESTRAINED 7:=.6249

| **          | 437    | 470    | 905    | .544   | .586   | .631    | 999.   |          |
|-------------|--------|--------|--------|--------|--------|---------|--------|----------|
| *>          | 000.   | 00136  | 00206  | 00217  | 00177  | 806000  | 000    |          |
| * 0         | 578    | 606    | 634    | 662    | 692    | 722     | 746    |          |
| * ~         | 567    | 569    | 574    | 580    | - ,587 | - 596 - | 603    | $\dashv$ |
| <b>&gt;</b> | 0.3854 | 0.4270 | 0.4687 | 0.5404 |        |         | 0.6249 | <br>1    |













## 6.5.2 ONE EDGE FREE AND ONE EDGE RESTRAINED IN THE TANGENTIAL DIRECTION

We will specify the free edge to be  $7_1$ , and  $7_2$  to be the restrained edge (see section 6.4.2). Then the constants are as follows:

$$C_1 = (x_1)^2$$
, 6.5.2.1

$$C_{2} = \frac{\sqrt{1 + (\chi_{2})^{2}}}{\chi_{2}} \left\{ \left[ \frac{(1 + \nu)\chi_{2}}{\sqrt{1 + (\chi_{2})^{2}}} \ln \left( \frac{1 + \sqrt{1 + (\chi_{2})^{2}}}{\chi_{2}} \right) + \frac{(1 + \nu)}{\chi_{2}} - \chi_{2} \right] C_{1} - \left[ \frac{(2\nu - 1)}{3} (\chi_{2})^{3} + \frac{2(1 + \nu)}{3} \chi_{2} \right] \right\}.$$

$$6.5.2.2$$

Twenty-three different size shells have been analyzed in this section. A small hole, while affecting the distribution of  $N_r^*$  and  $N_\theta^*$ , does not significantly affect the displacement  $W^*$  (compare cases 6.4.1.1 and 6.5.2.5). The discussion of  $W^*$  in the previous section also applies for the cases in this section where the free boundary is the inner radius. For the cases where the shell is supported at the inner radius and is free at the outer boundary (see e.g., case 6.5.2.12), the  $W^*$  displacements are larger at the support. Again, this is somewhat contrary to one's intuition. The explanation is similar to that advanced in the previous sections; the larger strains generated at the supported boundary can be accommodated with the restriction of  $u_r = 0$  only by large values

of the normal displacement. Note also (see case 6.4.2.12) that the tangential displacement becomes appreciable if the free boundary is the outer radius of the shell.

A list summarizing the cases which have been studied is contained in Table 6.5.2.1.

Table 6.5.2.1

| Case     | Free at 8,     | Restrained at $\chi_2$ |
|----------|----------------|------------------------|
| 6.5.2.1  | .0223          | <b>.6</b> 249          |
| 6.5.2.2  | .0892          | <b>.625</b> 0          |
| 6.5.2.3  | .1339          | <b>.</b> 6250          |
| 6.5.2.4  | .1785          | <b>.</b> 6 <b>2</b> 50 |
| 6.5.2.5  | .0446          | .6250                  |
| 6.5.2.6  | .0104          | .3854                  |
| 6.5.2.7  | <b>.625</b> 0  | .3854                  |
| 6.5.2.8  | .1785          | .8035                  |
| 6.5.2.9  | .4017          | .8035                  |
| 6.5.2.10 | .1785          | 1.0267                 |
| 6.5.2.11 | .4017          | 1.0267                 |
| 6.5.2.12 | .8020          | .2083                  |
| 6.5.2.13 | .8020          | . 3854                 |
| 6.5.2.14 | .8020          | .4687                  |
| 6.5.2.15 | ·9 <b>99</b> 0 | .3854                  |
| 6.5.2.16 | 1.0000         | .4687                  |
| 6.5.2.17 | .0104          | .1041                  |
| 6.5.2.18 | <b>.625</b> 0  | .2083                  |
| 6.5.2.19 | .0104          | .2083                  |
| 6.5.2.20 | .0104          | .4687                  |
| 6.5.2.21 | .0104          | .8020                  |
| 6.5.2.22 | .0104          | • <b>999</b> 0         |
| 6.5.2.23 | .6250          | .0520                  |
|          |                |                        |

305 322 354 .402 .465 545 .633 .683

- .010

541 .573

-.507

.2232 .3124 4017

-.521

1.011

- .008

- .527

-,490

.1339

-.0027 -.0071 - .0098

- .724

-.577

5803 6249

999

-.556

.4910

- .615

-.537

000

.756

-.586

304 \* CASE 6.5.2.1 UNIFORM PRESSURE -.0156 - .009 FREE y<sub>1</sub> = .0223 RESTRAINED y<sub>2</sub> = .6249 \*\_ - .626 -1.00 \*<sub>0</sub> \* \_ Z -.000 -.375 .0223 .0446

>



CASE 6.5.2.2 UNIFORM PRESSURE FREE y =.0892 RESTRAINED y =.625

| ** | .318   | .323  | .35(  | .391   | 444   | 509   | .585  | .650  | 969.  |
|----|--------|-------|-------|--------|-------|-------|-------|-------|-------|
| U, | 0616   | 0514  | €.033 | -,0255 | 0204  | 0147  | 0087  | 0036  | 000   |
| *N | - 1.00 | 837   | 633   | 606    | 620   | ~.653 | 869   | 736   | 764   |
| *L | 000    | 171   | 399   | 464    | - 498 | 524   | -,548 | 565   | 578   |
| ٨  | 2680.  | 8601. | 1923  | .2747  | .3571 | .4345 | .5219 | .5837 | .6249 |



CASE 6.5.2.3 UNIFORM PRESSURE FREE  $\gamma$  = .1339 RESTRAINED  $\gamma$  = .625





CASE 6.5.2.4 UNIFORM PRESSURE FREE  $\gamma$ =.1785 RESTRAINED  $\gamma$ =.625

| ٨       | * "X  | * <sup>8</sup> N | *0    | **    |
|---------|-------|------------------|-------|-------|
| 1785    | 000'- | -1.016           | 211'- | .375  |
| 1.197.1 | 9160  | 93!              | 901   | .384  |
| .2715   | 294   | 762              | 074   | . 425 |
| .3459   | 388   | 712              | 0536  | . 475 |
| .4203   | 444   | 707              | 037   | . 533 |
| .4947   | 485   | 726              | 023   | · 601 |
| 1695.   | 519   | 759              | 7600  | .677  |
| .6249   | 541   | 061              | 000   | .740  |



Case 6. 5. 2. 5 Uniform Pressure
Free 7<sub>1</sub> = 0. nd46

Restrain of 7<sub>2</sub> = 0. 625

0. 0446

0. 0446

0. 0466

0. 0561

0. 573

0. 573

0. 580

0. 584

0. 480

0. 554

0. 480

0. 554

0. 480

0. 554

0. 480

0. 554

0. 480

0. 584

0. 6249

0. 587

0. 777

0. 628

0. 686



CASE 6.5.2.6 UNIFORM PRESSURE FREE 7 = .0104 RESTRAINED 7 = .3854

| ^      | *. 2 | * 8 N | * 0   | **    |
|--------|------|-------|-------|-------|
| 4010.  | 000  | -1.00 | 00698 | 330   |
| .0208  | 375  | 625   | 00380 | .330  |
| .0624  | 487  | 715   | 00234 | .334  |
| 104.   | 498  | 513   | 00259 | 34    |
| . 1458 | 503  | 816   | 00292 | .351  |
| .1874  | 507  | 528   | 00311 | 365   |
| 1622.  | 512  | 540   | 00306 | .383  |
| .2708  | 517  | 554   | 00272 | .403  |
| .3124  | 523  | 175   | 00205 | . 427 |
| .3541  | 530  | 065   | 00102 | 454   |
| .3854  | 535  | 605   | 000   | .477  |





























•





















.





|                                                                                            | *   | <b>SE</b> 010 | 93.312   | 91, 574 | 89, 063  | 85.998   | 82.586      | 30, 306  |
|--------------------------------------------------------------------------------------------|-----|---------------|----------|---------|----------|----------|-------------|----------|
| Pressure<br>625                                                                            | *ວັ | .000          | 12.887   | 22, 751 | 31. 584  | 39, 491  | 46, 477     | 49, 634  |
| Case 6, 5, 2, 23 Uniform Pressure<br>Free 7, -0, 0520<br>Restrained 7 <sub>2</sub> -0, 625 | *®  | -72.404       | - 8. 422 | - 3.336 | - 1. 975 | · I. 456 | -1.234      | - 1, 179 |
| Case 6. 5. 2<br>Free<br>Restr                                                              | **  | 71, 596       | 7.59     | 2, 459  | 1.031    | .429     | <u>6</u> 0. | 900.     |
|                                                                                            | ٨.  | 0.0520        | 0, 1562  | 0, 2604 | 0,3645   | 0.4687   | 0, 5729     | 0.625    |



## 6.5.3 SHELL CLOSED AT THE APEX

If the shell is closed at the apex, i.e., the shell "begins" at l=0, then in order for the force resultants to remain finite at l=0 (see equation 6.5.4), we must have

$$C_1 = 0.$$
 6.5.3.1

Then, if the edge,  $\ell_2$ , is restrained against tangential displacement, the constant  $C_2$  is given by the expression

$$C_2 = -\frac{\sqrt{1+(\gamma_2)^2}}{3} \left[ (2 \nu - 1) (\gamma_2)^2 + 2 (\nu + 1) \right]. \qquad 6.5.3.2$$

Six different sizes of shells have been analyzed. It is interesting to note that the presence of a moderate size hole at the apex of a shell has very little influence on the normal displacements even though the distributions of the force resultants are appreciably different (compare, e.g., cases 6.5.1.1, 6.5.2.5, 6.5.3.1).

A list of the cases which have been analyzed is contained in Table 6.5.3.1

Table 6.5.3.1

| Case    | Restrained at  | 82 |
|---------|----------------|----|
| 6.5.3.1 | .6250          |    |
| 6.5.3.2 | .3854          |    |
| 6.5.3.3 | •5 <b>3</b> 57 |    |
| 6.5.3.4 | .2678          |    |
| 6.5.3.5 | .8035          |    |
| 6.5.3.6 | 1.0267         |    |

CASE 6.5.3.1 UNIFORM PRESSURE CLOSED AT APEX.
RESTRAINED 7 = .625

B-13656-7

0.6

0.7

0.5

9.

03

0.2

ö

0

1.0-

-0.5

-0.3

4.0-

-0.5

-0.6

-0.7

-0.8



.320

-.0058

.351

-.00**85** -.0098

305

-.002

\*

\*ა

.454

-.0095

.610

-.0037

000

395

ASE 6.5.3.2 UNIFORM PRESSURE CLOSED AT APEX.
RESTRAINED y = .3854

B-13656-6

.332 .338 .348 .361 .361 .378 .397 .420

-.000213

0

8

\*≥

\*5

\*0

\*Ľ

| - () (2                                   |          |   |        |        |        |        |        |        |          |        |        |        |           |       |     |       |
|-------------------------------------------|----------|---|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|-----------|-------|-----|-------|
| CASE                                      | ٨        | 0 | 0.0104 | 0.0520 | 0.0937 | 0.1354 | 0.1770 | 0.2187 | 0.2604   | 0.3020 | 0.3437 | 0.3854 |           |       |     |       |
|                                           |          |   |        |        |        |        |        |        |          |        |        |        |           |       |     |       |
|                                           |          |   |        |        |        |        |        |        |          |        |        |        |           |       |     |       |
|                                           |          |   | 0.6    |        |        |        |        |        |          |        |        |        |           |       |     |       |
|                                           |          | _ | 0.5    |        |        |        |        |        | *2       | 0412   |        | į      | ν* = 2fqo |       |     |       |
| w*= Ehw<br>4f <sup>2</sup> q <sub>0</sub> |          | - | 0.4    |        |        |        |        |        | *2       | 1      | l .    | مما    | *0<br>/   |       |     |       |
| \                                         | ,        |   | 0.3    |        |        |        |        |        |          |        |        |        |           |       |     |       |
|                                           |          |   | 0.2    |        |        |        |        |        |          |        |        |        |           |       |     |       |
|                                           |          | Ī | 0.1    |        |        |        |        |        |          |        |        |        |           |       |     |       |
| , ), ,                                    | 1        |   | 0      | ı      | ļ      |        | ı      | 1      | ]        |        |        | ı      | 1         | 1     | ı   |       |
| 0 0 0<br>4 % 5                            | <u>.</u> |   | L      | -0.4   | - C    | ;      | - 0.3  | 4      | <b>†</b> | 0.5    | 0      | Ф<br>О | -07       | 1 0.8 | 6.0 | - 4.0 |

-.00288

- .512

-.00238

-.00179

- .514 - .514 - .523 - .535 - .549 - .566

- .502 - .504

-.00104

-.502

- 501

-.00269

-.00246 -.00427

- .522

000

-.605

CASE 6.5.3.3 UNIFORM PRESSURE CLOSED AT APEX RESTRAINED  $\gamma_2$  =0.5357

|          |         | b      |         | <b>k</b> |
|----------|---------|--------|---------|----------|
|          | -0.500  | -0.500 | 0       |          |
| 0.0669   | -0.501  | -0.503 | -0.002  | -0.318   |
| 0.1116   | -0.503  | -0.509 | -0.003  | -0.326   |
| 0.1562   | -0.506  | -0.518 | -0.005  | -0.338   |
| 0.2008   | -0.509  | -0.529 | -0.0060 | -0.354   |
| 0.2455 - | -0.514  | -0.544 | -0.0066 | -0.374   |
| 0.2901   | - 0.520 | -0.561 | -0.0068 | -0.398   |
| 0.3348   | - 0.527 | -0.580 | -0.0066 | -0.425   |
| 0.3794   | -0.534  | -0.602 | -0.0059 | -0.456   |
| 0.4241   | -0.543  | -0.625 | - 0.004 | -0.491   |
| 0.4687   | -0.552  | -0.651 | -0.003  | -0.529   |
| 0.513    | -0.562  | -0.679 | -0.001  | -0.571   |



CASE 6.5.3.4 UNIFORM PRESSURE CLOSED AT APEX RESTRAINED 7 = .2678

| χ      | * " Z | * <sup>8</sup> N | *0     | **   |
|--------|-------|------------------|--------|------|
| 0      | 500   | 009'-            | 0      | 1    |
| .0446  | 500   | 5M               | 0004   | .341 |
| 6990   | 501   | 503              | 9000'- | .344 |
| .0892  | 504   | 505              | 0008   | .347 |
| . 1116 | 503   | 509              | 0009   | .352 |
| . 1339 | 504   | 513              | 00101  | .357 |
| .1562  | 506   | 518              | 00103  | .364 |
| .1785  | 507   | 523              | 00098  | .371 |
| .2008  | 509   | 529              | 0008   | 379  |
| .2232  | 512   | 536              | 00066  | .389 |
| .2455  | 514   | 544              | 00037  | 399  |
| .2678  | 517   | 552              | 000    | 410  |
|        |       |                  |        |      |











## The Control of the Co

## 6.6 THE ASYMMETRIC MEMBRANE BEHAVIOR: GRAVITY LOADS

We now turn to the more difficult task of calculating the behavior of the paraboloidal shell of revolution under its own dead weight in the more general case when the axis of the paraboloid does not coincide with the axis of gravity (see figure 6.4.1). This means we must deal with the full set of membrane equations, 6.1.1 through 6.1.9, in which the loads are prescribed by equations 6.3.5, 6.3.6, and 6.3.7.

As a result of the closed character of the shell in the circumferential direction, the surface loading as well as the edge loading must be periodic functions of the angle  $\theta$  with a period of  $2\pi$  (see equations 6.3.5, 6.3.6, and 6.3.7). Therefore we have as eigenfunctions the set of trigonometric functions  $\cos n\theta$  and  $\sin n\theta$  for n=0, 1, 2, ---. It is well known, in the elementary theory of Fourier Series, that this set of eigenfunctions is complete. As  $N_r$ ,  $N_\theta$ , and  $N_{r\theta}$  are sufficiently smooth, the usual expansion theorem applies.  $^{20}$ ,  $^{21}$  Thus we can write

$$N_r(\xi_{\theta}) = a_0(\xi) + \sum_{n=1}^{\infty} \left[ a_n(\xi) \sin n\theta + d_n(\xi) \cos n\theta \right], 6.6.1$$

$$N_{\theta}(x,\theta) = b_0(x) + \sum_{n=1}^{\infty} [b_n(x) \sin n\theta + e_n(x) \cos n\theta],$$
 6.6.2

$$N_{r\theta}(x,\theta) = f_0(x) + \sum_{n=1}^{\infty} \left[ f_n(x) \sin n\theta + c_n(x) \cos n\theta \right].$$
 6.6.3

Substitution of these expressions into equations 6.1.4 through 6.1.6 and with the loads given by equations 6.3.5, 6.3.6, 6.3.7 yields the following equations (primes indicate differentiation with respect to ?):

$$xa_0' + a_0 - b_0 = 2f\rho_0 h \cos \psi \{x^2\},$$
 6.6.4

$$\frac{a_0}{1+(1)^2} + b_0 = 2f\rho_0 h \cos \psi , \qquad 6.6.5$$

$$8f_0' + 2f_0 = 0,$$
 6.6.6

$$a_1' + a_1 - c_1 \sqrt{1 + (8)^2} - b_1 = 2 + \rho_0 h \sin \psi \{ 8 \},$$
 6.6.7

$$\delta d_1' + d_1 + \sqrt{1 + (\delta)^2} \quad f_1 - e_1 = 0,$$
 6.6.8

$$\delta f_1' + f_1 - e_1 \sqrt{1 + (\gamma)^2} = 0,$$
 6.6.9

$$\delta C_1' + 2C_1 + b_1 \sqrt{1+(\gamma)^2} = -2f_{00}h \sin \psi \left\{ \delta \sqrt{1+(\delta)^2} \right\}, 6.6.10$$

$$\frac{a_1}{1+(1)^2} + b_1 = 2f\rho_0 h \sin \psi \{ \}, \qquad 6.6.11$$

$$\frac{d_1}{1+(1)^2} + e_1 = 0, 6.6.12$$

$$a_n' + a_n - n c_n \sqrt{1 + (a)^2} - b_n = 0,$$
 6.6.13

$$id_n' + d_n + n \sqrt{1 + (i)^2} f_n - e_n = 0$$

$$\delta f_n' + 2f_n - ne_n \sqrt{1 + (\gamma)^2} = 0$$

$$\chi_{C_n}' + 2C_n + nb_n \sqrt{1+(\chi)^2} = 0$$

$$\frac{a_n}{1+(\delta)^2}+b_n=0,$$

6.6.17

and

$$\frac{d_{n}}{1+(\gamma)^{2}}+d_{n}=0.$$

6.6.18

where n=2,3,4,---

With the usual boundary conditions imposed upon the stress resultants, we show next that equations 6.6.1, 6.6.2, and 6.6.3 must reduce to

$$N_r(Y, \theta) = a_0(Y) + a_1(Y) \sin \theta$$

6.6.19

$$N_{\bullet}(Y, \theta) = b_{o}(Y) + b_{1}(Y) \sin \theta,$$
 6.6.20

$$N_{re}(i, \theta) = C_1(i) \cos \theta.$$
 6.6.21

For a shell with a free edge at  $V=\delta_1$  , the homogeneous differential equation 6.6.6 for  $f_0$  implies

$$[(\gamma)^2 f_0]' = 0$$
 6.6.22

or

$$f_0(Y) = \frac{A}{(Y)^2}$$
 6.6.23

Therefore, it follows that

$$f_0(r) \equiv 0.$$
 6.6.25

Next, equations 6.6.8, 6.6.9, and 6.6.12 can be uncoupled to yield the following relations:

$$f_1(y) = \frac{-1}{\sqrt{1+(y)^2}} \left\{ \delta d_1' + \left(1 + \frac{1}{1+(y)^2}\right) d_1 \right\},$$
 6.6.26

$$e_1(x) = \frac{-d_1}{1+(x)^2}$$
, 6.6.27

$$d_1'' + \left(\frac{5}{5} - \frac{27}{1 + (7)^2}\right) d_1' + \left(\frac{3}{(7)^2 \left[1 + (7)^2\right]^2}\right) d_1 = 0.$$
 6.6.28

Let the most general solution of the homogeneous equation 6.6.28 be

$$d_1(Y) = g_1h_1(Y) + g_2h_2(Y)$$
 6.6.29

where  $g_1$  and  $g_2$  are non-zero real constants and  $h_1(Y)$  and  $h_2(Y)$  are linearly independent solutions of equation 6.6.28.

From equation 6.6.26

$$f_{1}(x) = \frac{-1}{\sqrt{1+(x')^{2}}} \left\{ g_{1}[xh'_{1}(x) + (1+\frac{1}{1+(x')^{2}})h_{1}(x)] + g_{2}[xh'_{2}(x) + (1+\frac{1}{1+(x')^{2}})h_{2}(x)] \right\}.$$
6.6.30

From the boundary conditions, equations 6.2.5 and 6.2.6, we require

$$g_1 h_1 (x_1) + g_2 h_2 (x_1) = 0$$
 6.6.31

and

$$g_{1}\left[x_{1}h_{1}'(x_{1}) + \left(1 + \frac{1}{1 + (\delta_{1})^{2}}\right)h_{1}(x_{1})\right] + g_{2}\left[x_{1}h_{2}'(x_{1}) + \left(1 + \frac{1}{1 + (\delta_{1})^{2}}\right)h_{2}(\delta_{1})\right] = 0.$$
6.6.32

These latter two equations which are simultaneous homogeneous equations for the constants  $\mathbf{g}_1$  and  $\mathbf{g}_2$  possess non-trivial solutions only if the determinant of the coefficients of  $\mathbf{g}_1$  and  $\mathbf{g}_2$  vanishes.

If the determinant of the coefficients of  $g_1$  and  $g_2$  does

vanish, we have 
$$h_1(x_1) \left[ x_1 h_2'(x_1) + \left(1 + \frac{1}{1 + (x_1)^2} \right) h_2(x_1) \right]$$

$$-h_2(x_1) \left[ x_1 h_1'(x_1) + \left(1 + \frac{1}{1 + (x_1)^2} \right) h_1(x_1) \right] = 0$$
6.6.33

or

$$h_1(x_1) h_2(x_1) - h_2(x_1) h_1(x_1) = 0.$$
 6.6.34

The left hand side of 6.6.34 is the Wronskian of the functions  $h_1$  (%) and  $h_2$  (%). The vanishing of the Wronskian at  $Y = Y_1$  implies the linear dependence of  $h_1$  (%) and  $h_2$  (%) for all positive % and we have reached a contradiction. 18

Thus we can only have

$$g_1 = g_2 = 0$$
 6.6.35

or

$$d_1(Y) \equiv 0.$$
 6.6.36

Consequently (cf. equation 6.6.26 and 6.6.27)

$$f_1(x) \equiv 0, \qquad 6.6.37$$

$$e_1(x) \equiv 0.$$
 6.6.38

By repetitions of the above argument, we can also show

that

$$f_{n}(Y) \equiv 0, \qquad 6.6.39$$

$$f_{n}(Y) \equiv 0, \qquad 6.6.140$$
and
$$e_{n}(Y) \equiv 0 \qquad 6.6.141$$

$$for all n and
$$a_{n}(Y) \equiv 0, \qquad 6.6.142$$

$$b_{n}(Y) \equiv 0, \qquad 6.6.143$$
and
$$c_{n}(Y) \equiv 0 \qquad 6.6.141$$$$

for  $n \ge 2$ .

In short we have the very desirable results that

$$N_r(x, \theta) = a_0(x) + a_1(x) \sin \theta,$$
 6.6.45

$$N_{\theta}(x,\theta) = b_{0}(x) + b_{1}(x) \sin \theta, \qquad 6.6.46$$

and  $N_{r\theta} = C_1(t) \cos \theta$ . 6.6.47

If the shell is closed at the apex, the usual condition imposed upon the stress resultants is that they be finite. 10,11 The

application of this condition to equation 6.6.23 results in

$$f_0(x) \equiv 0.$$
 6.6.48

Next we observe that equation 6.6.28 has a regular singularity at J=0. Therefore, in the neighborhood of the apex, the most general solution of 6.6.28 takes the form

$$d_{1}(i) = C_{1} \sum_{n=0}^{\infty} S_{n} i^{n+m_{1}} + C_{2} \left\{ \ln (i) \sum_{n=0}^{\infty} S_{n} i^{n+m_{1}} + \sum_{n=0}^{\infty} t_{n} i^{n+m_{2}} \right\}$$

$$6.6.49$$

where  $C_1$  and  $C_2$  are constants of integration to be determined by the known side constraints,  $s_n$  and  $t_n$  are constants fixed by the relevant recurrence relations,  $m_1$  and  $m_2$  ( $m_1 \ge m_2$ ) are roots of the indicial equation

$$m^2 + 4m + 3 = 0,$$
 6.6.50

or 
$$m_1 = -1$$
, 6.6.51

and 
$$m_2 = -3$$
. 6.6.52

To ensure finiteness at the apex, we must have

$$C_1 = C_2 = 0$$
 6.6.53

that

and

and

$$d_{n}(Y) \equiv 0, \qquad 6.6.39$$

$$f_{n}(Y) \equiv 0, \qquad 6.6.10$$
and
$$e_{n}(Y) \equiv 0 \qquad 6.6.11$$
for all n and
$$a_{n}(Y) \equiv 0, \qquad 6.6.12$$

$$b_{n}(Y) \equiv 0, \qquad 6.6.13$$

 $c_n(x) \equiv 0$ 

for  $n \ge 2$ .

In short we have the very desirable results that

6.6.44

$$N_{\Gamma}(Y,\theta) = a_{O}(Y) + a_{1}(Y) \sin \theta, \qquad 6.6.45$$

$$N_{\theta}(Y,\theta) = b_{O}(Y) + b_{1}(Y) \sin \theta, \qquad 6.6.46$$
and
$$N_{\Gamma\theta} = c_{1}(Y) \cos \theta. \qquad 6.6.47$$

If the shell is closed at the apex, the usual condition imposed upon the stress resultants is that they be finite. 10,11 The

and consequently

$$d_1(\delta) = 0, \qquad 6.6.54$$

$$e_1(1) = 0,$$
 6.6.55

and 
$$f_1(x) \equiv 0$$
. 6.6.56

Repetitions of the above argument will lead to the conclusion that  $a_n(t)$ ,  $b_n(t)$ ,  $c_n(t)$ ,  $d_n(t)$ ,  $e_n(t)$ , and  $f_n(t)$  must also vanish identically for  $n \ge 2$ . We have again arrived at the very desirable results that

$$N_r(x, \theta) = a_0(x) + a_1(x) \sin \theta,$$
 6.6.57

$$N_{\theta}(x,\theta) = b_{\theta}(x) + b_{1}(x) \sin \theta,$$
 6.6.58

and

$$N_{r\theta}(x,\theta) = c_1(x) \cos \theta. \qquad 6.6.59$$

Thus the problem of the membrane stress resultants is reduced to the ascertainment of solutions to the system of differential

equations (6.6.4), (6.6.5), (6.6.7), (6.6.10) and (6.6.11). Equations 6.6.4 and 6.6.5 completely determine  $a_0(Y)$  and  $b_0(Y)$  up to a constant of integration. It should be observed that these are the portions of the  $N_r$  and  $N_0$  induced by the axi-symmetric component of the load. This axi-symmetric portion has the same dependence on Y except for a factor  $\cos \Psi$  as was found earlier for the completely axi-symmetric behavior (cf. equations 6.4.14 and 6.4.15).

Thus

$$a_0(y) = \frac{2f\rho_0 h \cos \psi}{3} \frac{\sqrt{1+(Y)^2}}{(Y)^2} \left\{ \left[ 1+(Y)^2 \right]^{3/2} + C_1 \right\}$$
 6.6.60

and

$$b_0(1) = 2f\rho_0h \cos \psi \left\{ 1 - \frac{1}{3(1)^2 \sqrt{1+(1)^2}} \left[ \left[ 1 + (1)^2 \right]^{3/2} + C_1 \right] \right\} 6.6.61$$

where  $C_1$  is a constant of integration to be determined by the side condition of the shell.

The remaining three equations, 6.6.7, 6.6.10, 6.6.11, can be reduced to the following three uncoupled equations

$$a_1'' + \left(\frac{5}{8} - \frac{27}{1 + (8)^2}\right) a_1' + \frac{3}{(7)^2 [1 + (8)^2]^2} a_1 = -4f_{\rho_0}h \sin \psi \left\{\frac{1 + (8)^2}{8}\right\},$$

$$6.6.62$$

$$b_1(x) = \frac{-a_1(x)}{1+(x)^2} + 2f_{\rho_0}h \sin \psi \left\{ x \right\},$$
6.6.63

$$c_{1}(x) = \frac{1}{\sqrt{1+(x)^{2}}} \left\{ x a_{1}'(x) + \left(1 + \frac{1}{1+(x)^{2}}\right) a_{1}(x) \right\}$$
6.6.64

and we need only to solve the differential equation 6.6.62 to complete the analysis of membrane stresses.

Observe that (6.6.62) can be rewritten as

$$\frac{\sqrt{1+(\gamma)^2}}{(\gamma)^2} \frac{d}{d\gamma} \left\{ \frac{1}{\gamma} \frac{d}{d\gamma} \left( \frac{(\gamma)^3 a_1}{\sqrt{1+(\gamma)^2}} \right) \right\} = -4f\rho_0 h \sin \psi \left\{ \frac{1+(\gamma)^2}{\gamma} \right\}$$

or

$$\frac{d}{d_{\delta}} \left\{ \frac{1}{\delta} \frac{d}{d_{\gamma}} \left( \frac{(\delta)^{3} a_{1}}{\sqrt{1 + (\delta)^{2}}} \right) \right\} = -4f_{\rho_{0}h} \sin \psi \left\{ \delta \sqrt{1 + (\delta)^{2}} \right\}.$$
6.6.65

Thus
$$\frac{d}{dy} \left( \frac{(y)^3 a_1}{\sqrt{1+(y)^2}} \right) = -4 f \rho_0 h \sin \psi \left\{ \frac{(1+(y)^2)^{3/2}}{3} + C_3 \right\} \left\{ y \right\} .$$
6.6.66

$$\frac{(i)^3 a_1}{\sqrt{1+(i)^2}} = -4f \rho_0 h \sin \psi \left\{ c_4 + \frac{c_3(i)^2}{2} + \frac{(1+(i)^2)^{5/2}}{15} \right\},$$
6.6.67

and 
$$a_1(\vec{x}) = -4f\rho_0h \sin \phi \left\{ \frac{C_4\sqrt{1+(\vec{x})^2}}{(\vec{x})^3} + \frac{C_3\sqrt{1+(\vec{x})^2}}{2\vec{x}} + \frac{(1+(\vec{x})^2)^3}{15(\vec{x})^3} \right\}_{6.6.68}$$

where  $C_3$  and  $C_h$  are commutants of integration.

 $b_1(1)$  and  $c_1(1)$  can then be computed with the help of equations (6.6.63) and (6.6.64) to be

$$b_1(t) = 2f_{p_0}h \sin \psi \left\{ \delta + \frac{2}{(1)^3\sqrt{1+(1)^2}} \left[ C_4 + \frac{C_3(t)^2}{2} + \frac{(1+(t)^2)^{5/2}}{15} \right] \right\},$$
6.6.69

$$C_1(1) = 4f\rho_0 h \sin \psi \left\{ \frac{\sqrt{1+(1)^2}}{15(1)^3} \left( 1 - 4(1)^2 \right) - \frac{C_3}{21} + \frac{C_4}{(1)^3} \right\}.$$
6.6.70

Finally, from (6.6.19), (6.6.20), and (6.6.21), we have

$$N_{\Gamma}(\delta,\theta) = \frac{2f\rho_0 h \cos \psi}{3} \frac{\sqrt{1+(\xi)^2}}{(\xi)^2} \left\{ \left(1+(\xi)^2\right)^{3/2} + C_1 \right\} -4f\rho_0 h \sin \psi \left\{ \frac{C_3\sqrt{1+(\xi)^2}}{2\chi} + \frac{C_4\sqrt{1+(\xi)^2}}{(\xi)^3} + \frac{\left(1+(\chi)^2\right)^3}{15(\xi)^3} \right\} \sin \theta,$$
6.6.71

$$N_{\theta}(\delta,\theta) = 2f\rho_{0}h \cos \psi \left\{ 1 - \frac{1}{3(\delta)^{2}\sqrt{1+|\gamma|^{2}}} \left[ (1+(\delta)^{2})^{3/2} + C_{1} \right] \right\}$$

$$+ 2f\rho_{0}h \sin \psi \left\{ \delta + \frac{2}{(\delta)^{3}\sqrt{1+|\gamma|^{2}}} \left[ C_{4} + \frac{C_{3}(\delta)^{2}}{2} + \frac{(1+(\delta)^{2})^{5/2}}{15} \right] \right\} \sin \theta,$$

$$6.6.72$$

and

$$N_{\Gamma\theta}(x,\theta) = 4f_{\rho_0}h \sin \psi \left\{ \frac{(1+(x)^2)^{3/2}}{15(x)^3} \left(1-4(x)^2\right) - \frac{C_3}{2x} + \frac{C_4}{(x)^3} \right\} \cos \theta.$$
6.6.73

To determine the displacements, the stress-strain relations (cf. equations 6.1.7, 6.1.8, 6.1.9) and the strain-displacement relations (cf. equations 6.1.1, 6.1.2, 6.1.3) are combined to yield the following set of partial differential equations for the displacements  $u_r^0$ ,  $u_\theta^0$  and w:

$$\frac{\partial u_r^0}{\partial r} - \frac{w}{1 + (\delta)^2} = \frac{2f\sqrt{1 + (\delta)^2}}{Eh} \left[ N_r - \nu N_\theta \right] = 2f\sqrt{1 + (\delta)^2} \quad \epsilon_r^0,$$

$$\sqrt{1+(1)^2} \frac{\partial u_{\theta}^{\circ}}{\partial \theta} + u_{r}^{\circ} - \delta w = \frac{2f \sqrt{1+(1)^2}}{Eh} \left[ N_{\theta} - \nu N_{r} \right] = 2f \sqrt{1+(1)^2} \in_{\theta}^{\circ},$$
6.6.75

$$y \frac{\partial u_{\theta}^{\circ}}{\partial x} - u_{\theta}^{\circ} + \sqrt{1 + (\delta)^{2}} \frac{\partial u_{r}^{\circ}}{\partial \theta} = \frac{2fy\sqrt{1 + (\delta)^{2}}}{Eh} \left[ 2(1 + \nu)N_{r\theta} \right]$$

$$= 2fy\sqrt{1 + (\delta)^{2}} \left[ 2\epsilon_{r\theta}^{\circ} \right].$$
6.6.76

If the shell is closed at the apex or has a free edge, the form of the solutions for the stress-resultants (cf. equations 6.6.71, 6.6.72, 6.6.73) and boundary conditions on  $U_r^o$  and  $U_\theta^o$  (cf. equations 6.2.7 and 6.2.8) suggest that the solutions for the displacements should take on the forms,

$$u_r^o(x,\theta) = m_o(x) + m_s(x) \sin \theta,$$
 6.6.77

$$u_{\theta}^{o}(\delta,\theta) = n_{1}(\delta) \cos \theta,$$
 6.6.78

$$W(x, \theta) = p_0(x) + p_1(x) \sin \theta$$
. 6.6.79

The proof goes through as that for the stress resultants. (cf. pp 33-37)

The higher harmonic terms which were omitted from equations (6.6.77), (6.6.78) and (6.6.79) correspond to displacements without straining the middle surface of the shell and are often referred to as the inextensional deformations. Thus we may conclude that shells with the given displacement conditions exhibit no inextensional deformations (cf. page 7).

Equations (6.6.77) through (6.6.79) hold also for the case where the shell is fixed tangentially at both edges. Here the inextensional

deformations must be of the form

$$u_{rn}(\vec{s},\theta) = m_{n}(\vec{s}) \left\{ \begin{array}{l} (\sin n\theta) \\ (\cos n\theta) \end{array} \right\}$$

$$= \left\{ \begin{array}{l} c_{1}f_{1}(\vec{s},n) + c_{2}f_{2}(\vec{s},n) + c_{3}f_{3}(\vec{s},n) + c_{4}f_{4}(\vec{s},n) \right\} \left\{ \begin{array}{l} (\cos n\theta) \\ (\vec{s},\theta) \end{array} \right\}$$

$$= \left\{ \begin{array}{l} (\cos n\theta) \\ (\vec{s},\theta) \end{array} \right\}$$

$$= \left\{ \begin{array}{l} (c_{1}g_{1}(\vec{s},n) + c_{2}g_{2}(\vec{s},n) + c_{3}g_{3}(\vec{s},n) + c_{4}g_{4}(\vec{s},n) \right\} \left\{ \begin{array}{l} (\cos n\theta) \\ (\sin n\theta) \end{array} \right\}$$

The constants of integration  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$  are to be determined by the displacement boundary conditions (6.2.1) through (6.2.4). Thus, we have

$$C_{1}f_{1}(x_{1},n)+C_{2}f_{2}(x_{1},n)+C_{3}f_{3}(x_{1},n)+C_{4}f_{4}(x_{1},n)=0,$$

$$C_{1}f_{1}(x_{2},n)+C_{2}f_{2}(x_{2},n)+C_{3}f_{3}(x_{2},n)+C_{4}f_{4}(x_{2},n)=0,$$

$$C_{1}g_{1}(x_{1},n)+C_{2}g_{2}(x_{1},n)+C_{3}g_{3}(x_{1},n)+C_{4}g_{4}(x_{1},n)=0,$$

$$C_{1}g_{1}(x_{2},n)+C_{2}g_{2}(x_{2},n)+C_{3}g_{3}(x_{2},n)+C_{4}g_{4}(x_{2},n)=0.$$

Since  $M_n(Y)$  and  $N_n(Y)$  are linearly independent, the set of linear algebraic equations for  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$  admits no non-trivial solutions.

Substitution of the expressions (6.6.77) through (6.6.79) into the system of partial differential equations 6.6.74, 6.6.75 and 6.6.76 yields the following set of five ordinary differential equations for the five unknown functions  $m_0$ ,  $m_1$ ,  $n_1$ ,  $n_2$ , and  $n_3$  (primes indicate

differentiation with respect to 7):

$$m_0' - \frac{p_0}{1 + (1)^2} = 2f \sqrt{1 + (1)^2} \in r^*,$$
 6.6.80

$$m_0 - yp_0 = 2f \sqrt[3]{1 + (\sqrt[3]{2})^2} \in {}_{\Theta}^{*},$$
 6.6.81

$$m_1' - \frac{P_1}{1 + (1)^2} = 2f \sqrt{1 + (1)^2} \quad \epsilon_r^{(1)},$$
 6.6.82

$$-\sqrt{1+(\gamma)^2} \quad n_1 + m_1 - \gamma p_1 = 2f \gamma \sqrt{1+(\gamma)^2} \quad \epsilon_{\theta}^{(1)}, \qquad 6.6.83$$

$$\forall n_1' - n_1 + \sqrt{1 + (\gamma)^2} \quad m_1 = 4f \gamma \sqrt{1 + (\gamma)^2} \in_{r\theta}^{(1)}$$
6.6.84

where for convenience we have separated the middle surface strains into components, defined as follows:

$$\epsilon_{\Gamma}^{0}(\xi,\theta) = \epsilon_{\Gamma}^{*}(\xi) + \epsilon_{\Gamma}^{(1)}(\xi) \sin \theta$$
, 6.6.85

$$\epsilon_{\theta}^{\circ}(\mathbf{z},\theta) = \epsilon_{\theta}^{\dagger}(\mathbf{z}) + \epsilon_{\theta}^{(1)}(\mathbf{z}) \sin \theta$$
,

6.6.86

$$\epsilon_{r\theta}^{\circ}(\mathbf{r},\theta) = \epsilon_{r\theta}^{(1)} \cos \theta.$$
6.6.87

It was noted, in a previous paragraph in this section, that the solutions for the force-resultants  $N_r$  and  $N_\theta$  contained an axi-symmetric portion identical in form (except for a multiplicative factor of  $\cos \psi$ ) to the solutions determined in section 6.4. Thus the results of section 6.4, can be used to determine the solutions for  $m_\theta(r)$  and  $p_0(r)$ , the axi-symmetric portions of the solutions for the displacements  $u_r^0$  and w. There results (compare equations 6.4.20, 6.4.18 with equations 6.6.81 and 6.6.82):

$$m_{0}(y) = \frac{4f^{2}\rho_{0}\cos\psi}{3E\sqrt{1+(1)^{2}}} \left\{ (1+\nu)\left(Y \ln x - \frac{1}{y}\right) + \left(\frac{3-\nu}{2}\right)(y)^{3} + \frac{1}{4}(y)^{5} + C_{1}\left[ -(1+\nu)Y \ln\left(\frac{1+\sqrt{1+(Y)^{2}}}{y}\right) + \sqrt{1+(y)^{2}}\left(Y - \frac{1+\nu}{y}\right) \right] + C_{2}Y \right\},$$

$$6.6.88$$

$$p_{0}(\delta) = \frac{4f^{2}\rho_{0}\cos\psi}{3E\sqrt{1+(1)^{2}}} \left\{ (1+\nu)\left(\ln\delta - \frac{1}{(\delta)^{2}}\right) + \left(\frac{3-\nu}{2}\right)(\delta)^{2} + \frac{1}{4}(\delta)^{5} + \left(1+(\delta)^{2}\right)\left[2(\nu-1) + \frac{1+\nu}{(\delta)^{2}} + \nu(\delta)^{2}\right] + c_{1}\left[-(1+\nu)\ln\left(\frac{1+\sqrt{1+(\delta)^{2}}}{\gamma}\right) + \sqrt{1+(\delta)^{2}}(1+\nu)\right] + c_{2}\right\}$$

$$= \frac{4f^{2}\rho_{0}\cos\psi}{3E\sqrt{1+(1)^{2}}} \left\{ (1+\nu)\left(\ln\delta - \frac{1}{(\delta)^{2}}\right) + \left(\frac{3-\nu}{2}\right)(\delta)^{2} + \frac{1}{4}(\delta)^{5} + \left(\frac{1+\nu}{2}\right)^{2}\right\}$$

$$= \frac{4f^{2}\rho_{0}\cos\psi}{3E\sqrt{1+(1)^{2}}} \left\{ (1+\nu)\left(\ln\delta - \frac{1}{(\delta)^{2}}\right) + \left(\frac{3-\nu}{2}\right)(\delta)^{2} + \frac{1}{4}(\delta)^{5} + \left(\frac{1+\nu}{2}\right)(\delta)^{2} + \frac{1}{4}(\delta)^{5} + \left(\frac{1+\nu}{2}\right)(\delta)^{2} + \frac{1}{4}(\delta)^{2} + \frac{$$

where  $C_1$  is the constant of integration arisen from the integration of force equilibrium equation and  $C_2$  is an additional constant from the integration of equation 6.6.80.

The three remaining equations, 6.6.82, 6.6.83, 6.6.84, which determine the asymmetric component of the displacements can be rearranged to yield

$$\left(\frac{\mathsf{n}_{1}'}{\mathsf{y}}\right)' = \frac{2\mathsf{f}}{\mathsf{y}} \left\{ \left[ \sqrt{1+(\mathsf{y})^{2}} \, 2 \, \epsilon_{\mathsf{r}\,\theta}^{(1)} \right]' + \frac{\epsilon_{\mathsf{\theta}}^{(1)} - \epsilon_{\mathsf{r}}^{(1)}}{\mathsf{y}} - \mathsf{y} \, \epsilon_{\mathsf{r}}^{(1)} \right\},$$

$$6.6.90$$

$$m_1 = Af X \in_{r\theta}^{(1)} - \frac{Y}{\sqrt{1+(Y)^2}} \quad n_1' + \frac{n_1}{\sqrt{1+(Y)^2}},$$
6.6.91

$$p_1 = -2f \left(1+(1)^2\right)^{3/2} \mathcal{E}_{\Gamma}^{(1)} + \left(1+(1)^2\right) m_1'.$$
6.6.92

We can obtain the solution for  $n_i$  by a simple, though

tedious, double quadrature

$$n_{1}(x) = 2f \left\{ \int_{0}^{x} \left[ x \int_{0}^{x} \left( \frac{\left[\sqrt{1 + (x)^{2}} 2 \varepsilon_{r \theta}^{(1)}\right]'}{x} + \frac{\varepsilon_{\theta}^{(1)} - \varepsilon_{r}^{(1)}}{(x)^{2}} - \varepsilon_{r}^{(1)} \right) \partial x \right] dx$$

$$+ \frac{c_{5}(x)^{2}}{2} + c_{6} \right\}$$

$$6.6.93$$

or 
$$n_1(x) = \frac{4f\rho_0 \sin \Psi}{E} \left\{ C_6 + \frac{C_5(x)^2}{2} + C_4f_2(x) + C_3f_1(x) + f_3(x) \right\}$$

6.6.94

where

$$f_{1}(x) = \frac{\left(1+(t)^{2}\right)^{3/2}}{6} - \left(1+\nu\right) \left[\sqrt{1+(t)^{2}} + \ell_{n}\left(\sqrt{1+(t)^{2}} - 1\right) - \ell_{n}(x)\right],$$

$$6.6.95$$

$$f_{2}(x) = \frac{\left(1-\nu\right)}{4} \left(x\right)^{2} \ell_{n} \left[\frac{\sqrt{1+(t)^{2}} - 1}{x}\right] + \frac{\left(1-\nu\right)}{4} \left[1+\sqrt{1+(t)^{2}}\right] - \frac{\left(1+\nu\right)}{2} \frac{\left[1+(t)^{2}\right]^{3/2}}{(t)^{2}},$$

6.6.96

$$f_3(x) = \frac{(x)^6}{360} - \frac{(40 + 29 \nu)}{240} (x)^4 - \frac{(1 + \nu)}{30(x)^2} - \frac{(1 - \nu)(x)^2}{120} + I_n(x) \left[ \frac{(1 - \nu)}{60} (x)^2 - \frac{(1 + \nu)}{30} \right],$$

$$6.6.97$$

 $c_{5}$  and  $c_{6}$  are constants of integration.

By equations 6.6.91 and 6.6.83, we have also

$$m_{1}(\delta) = \frac{\theta f^{2} \rho \sin \psi}{E} \left\{ C_{3} f_{4}(\delta) + C_{4} f_{5}(\delta) - \frac{C_{5}(\delta)^{2}}{2\sqrt{1+(\delta)^{2}}} + \frac{C_{6}}{\sqrt{1+(\delta)^{2}}} + f_{6}(\delta) \right\}$$
6.6.98

and

$$p_{1}(t) = \frac{8t^{2}\rho \sin \psi}{E} \left\{ C_{3}f_{7}(\delta) + C_{4}f_{8}(\delta) + C_{5}f_{9}(\delta) + C_{6}f_{10}(t) + f_{11}(\delta) \right\}$$
6.6.99

where

$$f_4(x) = \frac{f_1(x)}{\sqrt{1+(x)}^2} - \frac{(x)^2}{2} ,$$
6.6.100

$$f_{5}(x) = \frac{f_{2}(\delta)}{\sqrt{1+(x)^{2}}} + \frac{(1+\nu)}{(x)^{2}} \left(\frac{(x)^{2}}{2} + 1\right) - \frac{(1-\nu)(x)^{2}}{2\sqrt{1+(x)^{2}}} \left[ I_{1}\left(\frac{\sqrt{1+(\delta)^{2}} - 1}{x}\right) \right]$$
6.6.101

$$f_{\zeta}(\xi) = \frac{f_{3}(\delta)}{\sqrt{1+(\xi)^{2}}} - \frac{\xi}{\sqrt{1+(\xi)^{2}}} \left[ \frac{(1-\nu)}{30} \xi \ln(\xi) + \frac{(1+\nu)}{15(\xi)^{3}} - \frac{(1+\nu)}{3\delta} - \frac{(40+29\nu)}{60} \right] + \frac{(1)^{5}}{60} + \frac{2(1+\nu)\left[1-4(\xi)^{2}\right]\left[1+(\xi)^{2}\right]^{3/2}}{15(\xi)^{2}}$$

$$= \frac{(1)^{5}}{60} + \frac{2(1+\nu)\left[1-4(\xi)^{2}\right]\left[1+(\xi)^{2}\right]^{3/2}}{15(\xi)^{2}}$$

$$= \frac{6.6.102}{60}$$

$$f_7(x) = \frac{1}{x} \left[ f_4(x) - \sqrt{1 + (x)^2} f_1(x) - \frac{(1+\nu)}{2} - \frac{\nu(x)^2}{2} \right],$$
6.6.103

$$f_8(8) = \frac{1}{8} \left[ f_5(8) - \sqrt{1 + (8)^2} f_2(8) - \frac{1}{(8)^2} (1 + \nu) - \nu \right],$$
6.6.104

$$f_9(x) = \frac{-\frac{1}{2}(\delta)}{\sqrt{1+(x)^2}} \left[2+(x)^2\right],$$
6.6.105

$$f_{10}(3) = \frac{-3}{\sqrt{1+(3)^2}}$$
,
6.6.106

$$f_{11}(x) = \frac{1}{\delta} \left[ f_{\delta}(x) - \sqrt{1 + (x)^2} + \frac{1}{3} (x) - \frac{\sqrt{1 + (x)^2}}{(x)^2} \left\{ \frac{(x)^4}{2} + \frac{[1 + (x)^2]^2}{15} + \frac{\nu[1 + (x)^2]^3}{15} \right\} \right].$$
6.6.107

Several different combinations of boundary conditions are considered and numerical calculations have been made. It is evident that a complete description of the deformed shell for each orientation (i.e., each value of  $\psi$ ) would require an inordinate number of curves and tables. In lieu of presenting such a mass of numerical data only the anti-symmetric part of the solution has been presented ( $\psi = \frac{\pi}{2}$ ). The behavior of the shell for other values of  $\psi$  can be obtained by appropriate combinations of the results for  $\psi = 0$  and  $\psi = \frac{\pi}{2}$ . The solutions for the force resultants and displacements can be cast into the forms (see equations 6.6.19, 6.6.20, 6.6.21, 6.6.77, 6.6.78, 6.6.79,

6.6.69, 6.6.70, 6.6.71, 6.6.72, 6.6.73, 6.6.94, 6.6.98, and 6.6.99),

$$N_r^* = \frac{N_r}{2f_{lh}} = a_c^* \cos \Psi + a_1^* \sin \theta \sin \Psi \qquad 6.6.108$$

$$N_{\theta}^{*} = \frac{N_{\theta}}{2f\rho_{0}h} = b_{0}^{*} \cos \Psi + b_{1}^{*} \sin \theta \sin \Psi$$
 6.6.109

$$N_{r\theta}^* = c_1^* \cos \theta \sin \Psi$$
 6.6.110

$$u_n^* = \frac{Eu_n^0}{4f_{\rho_0}^2} = m_0^* \cos \Psi + m_1^* \sin \Theta \sin \Psi$$
 6.6.111

$$u_{\theta}^{*} = \frac{E u_{\theta}^{\circ}}{4f^{2}\rho_{0}} = n_{1}^{*} \cos \theta \sin \Psi \qquad 6.6.112$$

$$W^* = \frac{EW}{4f^2\rho_0} = \rho_c^* \cos \Psi + \rho_1^* \sin \theta \sin \Psi \qquad 6.6.113$$
The  $a_0^*$ ,  $b_c^*$ ,  $m_0^*$ ,  $\rho_0^*$  are the non-dimensionalized

symmetric parts of the solution.

$$a_o^* = \frac{a_o}{2f\rho_o h \cos \psi}$$
 6.6.114

$$b_o^* = \frac{b_o}{2f\rho_o h \cos \Psi}$$
 6.6.115

$$m_0^* = \frac{Em_0}{4f^2\rho_0\cos\psi}$$
 6.6.116

$$\rho_o^* = \frac{E \rho_o}{4f^2 \rho_o \cos \Psi}$$
 6.6.117

1

These have already been plotted in the previous sections of this chapters for the case of  $\psi$  = 0. The other starred quantities are the asymmetric part of the solution and are defined as follows:

$$a_1^* = \frac{E a_1}{2f \rho_0 h \sin \Psi}$$
 6.6.118

$$b_{1}^{*} = \frac{E b_{1}}{2 f \rho_{c} h \sin \Psi}$$

$$c_{1}^{*} = \frac{E c_{1}}{2 f \rho_{c} h \cos \Psi}$$

$$m_{1}^{*} = \frac{E m_{1}}{4 f^{2} \rho_{c} \sin \Psi}$$

$$6.6.121$$

$$n_{1}^{*} = \frac{E n_{1}}{4 f^{2} \rho_{c} \sin \Psi}$$

$$6.6.122$$

$$p_{1}^{*} = \frac{E p_{1}}{4 f^{2} \rho_{c} \sin \Psi}$$

$$6.6.123$$

The results which are presented in the following sections are the above six functions for the case of  $\psi = \frac{\pi}{2}$ . Thus, the results represent the completely anti-symmetric behavior  $N_r^*, N_\theta^*, N_{r\theta}^*, u_r^*, u_\theta^*$ , and  $w^*$ . Additionally, it is seen that  $a_1^*, b_1^*, m_1^*$  and  $p_1^*$  represent the stress resultants and displacements along the bottom vertical radius  $(\theta = \frac{\pi}{2})$  whereas  $c_1^*$  and  $c_1^*$  represent  $c_1^*$  and  $c_2^*$  along the horizontal radius  $c_1^*$  and  $c_2^*$  and  $c_3^*$  are present  $c_1^*$  and  $c_2^*$  along the horizontal radius  $c_2^*$  and  $c_3^*$  are present  $c_4^*$  and  $c_3^*$  along the horizontal radius  $c_3^*$  and  $c_4^*$  are present  $c_4^*$  and  $c_5^*$  and  $c_6^*$  along the horizontal radius  $c_5^*$  and  $c_6^*$  are obtained by multiplying the given values by  $c_5^*$  or  $c_6^*$  and  $c_6^*$  whichever is appropriate.

## 6.6.1 BOTH EDGES RESTRAINED IN THE TANGENTIAL DIRECTIONS

The condition of vanishing tangential displacements at the edges requires that

$$C_3f_1(s_1)+C_4f_2(s_1)+c_5\frac{(s_1)^2}{2}+c_6=-f_3(s_1)$$
,
6.6.1.1

$$c_3f_1(Y_2) + c_4f_4(Y_2) + \frac{c_5(Y_2)^2}{2} + c_4 = -f_3(Y_2)$$
6.6.1.2

$$c_3 f_4(Y_1) + c_4 f_5(Y_1) - \frac{c_5(Y_2)^2}{2\sqrt{1+(Y_1)^2}} + \frac{c_6}{\sqrt{1+(Y_1)^2}} = -f_6(Y_1)$$
 6.6.1.3

$$c_3 f_4(\zeta_2) + c_4 f_5(\zeta_2) - \frac{c_5(\zeta_2)^2}{2\sqrt{1+(\zeta_2)^2}} + \frac{c_6}{\sqrt{1+(\zeta_2)^2}} = -f_6(\zeta_2)$$
6.6.1.4

All  $f_i$  (%) have been defined previously. The system of equations (6.6.1.1) through (6.6.1.4) can be solved simultaneously for  $C_3$ ,  $C_4$   $C_5$  and  $C_6$ .

Six different cases have been analyzed and the results are presented in curve form as well as in tabular form. It should be observed that tangential displacements, as represented by  $\mathsf{M}_1^*$  and  $\mathsf{n}_1^*$ , become of the same order of magnitude as the normal displacement (represented by  $\varphi_1^*$ ) over a portion of the shell. This is in contrast to the symmetric behavior in which the tangential displacement is generally an order of magnitude smaller than the normal displacement (see section 6.4). Also, the largest value of  $\varphi_1^*$  (which is  $\mathsf{W}^*$  at  $\theta = \frac{\pi}{2}$  and  $\mathsf{W}^* = \frac{\pi}{2}$ ) is larger than  $\mathsf{W}^*$  for the symmetric case (compare case 6.6.1.2 with 6.4.1.2 and case 6.6.1.4 with 6.4.1.4). This is a bit surprising until it is remembered that the value of  $\mathsf{W}^*$  at the boundaries is determined primarily by the need to accommodate the membrane boundary conditions (see discussions in

The state of the s

sections 6.4.1, 6.4.2, and 6.4.3).

The list of configurations which have been analyzed are presented in Table 6.6.1.

Table 6.6.1

| Case    | Restrained at $\delta_1$ | Restrained at  |
|---------|--------------------------|----------------|
| 6.6.1.1 | .0417                    | .6250          |
| 6.6.1.2 | .0104                    | .6250          |
| 6.6.1.3 | .0104                    | . 3854         |
| 6.6.1.4 | . 3854                   | .6250          |
| 6.6.1.5 | .0416                    | • <b>799</b> 0 |
| 6.6.1.6 | .0416                    | 1.0243         |

| AVITY                                                                                       | χ   00<br>• 10<br>• 10<br>• 10<br>• 10<br>• 10<br>• 10<br>• 10<br>• | 1.390  | 0.515  | 0.253  | 0.107  | 0.0042  | -0.0803 | -0.155 | -0.224 | -0.291  | -0.356  | -0.422  |   | **<br>Buis    | 1.<br>186 | 909 .0 | 0.224  | -0.0086 | -0.184  | -0.331 | -0.458 | -0.571 | -0.672 | 0.760  | -0.838 |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------|--------|--------|--------|---------|---------|--------|--------|---------|---------|---------|---|---------------|-----------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|
| YMMETRIC GR<br>$\gamma_1 = 0.0417$<br>$\gamma_2 = 0.625$                                    | X is                                                                | -1.359 | -0.462 | -0.170 | 0.0036 | 0.135   | 0.245   | 0.344  | 0.436  | 0.522   | 0.605   | , 0.685 | , | 60 80<br>0 80 | -0.000    | 0.127  | 0.184  | 0.212   | 0. 221  | 0.216  | 0.198  | 0.168  | 0.125  | 0.0697 | 0.00   |
| CASE 6. 6. 1. 1 ASYMMETRIC GRAVITY Restrained $\gamma_1=0.0417$ Restrained $\gamma_2=0.625$ | χ   ς<br>Θ                                                          | 1.403  | 0.567  | 0.337  | 0. 223 | 0.150   | 0.0972  | 0.0541 | 0.0164 | -0.0181 | -0.0514 | -0.0843 | , | sin B         | -0.000    | 0.125  | 0.178  | 0. 201  | 0. 205  | 0.194  | 0.172  | 0.140  | 0.100  | 0.0535 | 0.00   |
| CASE                                                                                        | <b>&gt;</b>                                                         | 0.0416 | 0.0999 | 0.1583 | 0.2166 | 0. 2749 | 0.3333  | 0.3916 | 0.4499 | 0.5083  | 0.5666  | 0.6249  |   | <b>ب</b>      | 0.0416    | 0.0999 | 0.1583 | 0.2166  | 0. 2749 | 0.3333 | 0.3916 | 0.4499 | 0.5083 | 0.5666 | 0.6249 |









|          |             |     |     |          |            | 3-71-1634  | CASE        | CASE 6.6.1.4 ASYMMETRIC GRAVITY Restrained $\gamma_1 = 0.3854$ | WMETRIC GRA            | VIIY       |
|----------|-------------|-----|-----|----------|------------|------------|-------------|----------------------------------------------------------------|------------------------|------------|
| 9        | 1           |     |     |          |            | * 0        |             | Restrained $\gamma_2 = 0.625$                                  | r <sub>2</sub> = 0.625 |            |
| •        |             |     |     |          |            | eis<br>Vis | <b>&gt;</b> | Žμ                                                             | X vin Quis             | χ   8<br>8 |
| ð        | 1           |     |     | /        | \          | \          | 0,3854      | 0.403                                                          | 0.0339                 | 0.241      |
|          |             |     |     | /        | \          |            | 0.4093      | 0.373                                                          | 0.0891                 | 0.186      |
| •        | i           |     |     |          | X          |            | 0. 4333     | 0.345                                                          | 0.142                  | o. 134     |
| -        | ,           |     |     | /        | /<br>\     | •          | 0.4572      | 0.319                                                          | 0.192                  | 0.0868     |
| 25       | 1           |     |     |          |            | <u> </u>   | 0.4812      | 0. 294                                                         | 0.241                  | 0.0415     |
|          |             |     |     | X        |            | u sin 8    | 0.5052      | 0. 270                                                         | 0.289                  | -0.0014    |
| _        |             |     |     | <b>\</b> | \ <u>\</u> | μn θ 603   | 0.5291      | 0.248                                                          | 0.335                  | -0.0426    |
| •        |             |     |     |          | 1          | 1          | 0.5531      | 0. 226                                                         | 0.379                  | -0.0823    |
| 0        |             | !   |     |          |            |            | 0.5770      | 0. 205                                                         | 0.422                  | -0.120     |
|          |             |     |     | /        | /          |            | 0.6010      | 0. 185                                                         | 0.465                  | -0.158     |
| _        | L           |     |     |          |            | •          | 0.6249      | 0.165                                                          | 0.506                  | -0.194     |
| -0.2     | . 1         |     |     |          | /          | Nr. P      |             | *5*                                                            | * œ                    | *          |
|          |             |     |     |          | /          |            | ~           | si 0                                                           | 805<br>B               | e ii       |
| •        |             |     |     |          |            |            | 0.3854      | -0.000                                                         | -0.000                 | 0.0934     |
| ;        |             |     |     |          | /          |            | 0.4093      | 0.0102                                                         | 0.0140                 | 0.0129     |
| Š        | L           |     |     |          |            | _          | 0.4333      | 0.0178                                                         | 0.0246                 | -0.0626    |
|          |             |     |     |          |            | _          | 0.4572      | 0.0228                                                         | 0.0320                 | -0.133     |
|          | 1           |     |     |          |            | **         | 0.4812      | 0.0255                                                         | 0.0363                 | -0.20]     |
|          |             |     |     |          |            | 8in 8      | 0.5052      | 0.0259                                                         | 0.0376                 | -0.265     |
| 9.0      | ŀ           |     |     |          |            |            | 0.5291      | 0.0244                                                         | 0.0360                 | -0.325     |
|          |             |     |     |          |            |            | 0.5531      | 0.0209                                                         | 0.0314                 | -0.383     |
| _        | 1           |     |     |          |            |            | 0.5770      | 0.0156                                                         | 0.0238                 | -0.437     |
| <b>C</b> |             | _   | _   | _        | _          | _          | 0.6010      | 0.0086                                                         | 0.0134                 | -0.489     |
|          | <u>-</u> ;0 | 0.2 | 0.3 | 9.0      | 0.5        | 9.0        | 0.6249      | -0.000                                                         | 0.000                  | -0.538     |
|          |             |     | *   | 7        |            |            |             |                                                                |                        |            |

AT.



## 6.6.2 ONE EDGE FREE AND ONE EDGE RESTRAINED IN THE TANGENTIAL DIRECTION

We shall specify the free edge to be  $\chi_1$  and the restrained edge to be  $\chi_2$  . The constants of integration are

$$C_{5} = -\frac{\left[1 + (\chi_{1})^{2}\right]^{\frac{3}{2}}}{3}$$

$$C_{4} = \frac{c_{3}(\chi_{1})^{2}}{2} - \frac{\left[1 - 4(\chi_{1})^{2}\right]\left[1 + (\chi_{1})^{2}\right]^{\frac{3}{2}}}{15}$$

$$C_{5} = \frac{1}{(\chi_{2})^{2}} \left[-f_{3}(\chi_{2}) + \sqrt{1 + (\chi_{2})^{2}} f_{4}(\chi_{2}) + c_{4} \left\{f_{2}(\chi_{2}) - \sqrt{1 + (\chi_{2})^{2}} f_{5}(\chi_{2})\right\} + c_{5} \left\{f_{1}(\chi_{2}) - \sqrt{1 + (\chi_{2})^{2}} f_{4}(\chi_{2})\right\}\right]$$

$$C_{6} = -\left\{f_{3}(\chi_{2}) + \frac{c_{5}(\chi_{2})^{2}}{2} + c_{4} f_{2}(\chi_{2}) + c_{5} f_{1}(\chi_{2})\right\}$$

$$6.6.2.4$$

The seven configurations which have been analyzed in this section are summarized in Table 6.6.2.1. The same discussion made in section 6.6.1 applies and no additional comments are required.

Table 6.6.2.1

| Case    | Free at 0, | Restrained at $\chi_2$ |
|---------|------------|------------------------|
| 6.6.2.1 | .0104      | <b>.</b> 3854          |
| 6.6.2.2 | .0104      | .6250                  |
| 6.6.2.3 | .0416      | .62 <del>5</del> 0     |
| 6.6.2.4 | .6250      | . 3854                 |
| 6.6.2.5 | .0104      | .9982                  |
| 6.6.2.6 | .1770      | 1.0243                 |
| 6.6.2.7 | .4010      | 1.0243                 |



 CASE 6.6.2.2 ASYMMETRIC GRAVITY

 Free
  $\gamma_1 = 0.0104$  

 Restrained
  $\gamma_2 = 0.625$  

 N
  $\frac{1}{\sin \theta}$   $\frac{1}{\cos \theta}$  

 0.0104
 -0.0082 0.0170 0.0065 

 0.0173
 0.0890 -0.031 0.065 

 0.0174
 -0.0064 0.242 -0.107 

 0.1947
 -0.0645 0.242 -0.114 

 0.3791
 -0.0645 0.342 -0.105 

 0.3797
 -0.0645 0.346 -0.147 

 0.3791
 -0.103 0.469 -0.147 

 0.3791
 -0.104 0.346 -0.147 

 0.5262
 -0.169 0.549 -0.145 

 0.5239
 0.146 0.346 -0.346 

 0.5249
 -0.195 0.765 -0.256 

 0.5249
 -0.195 0.765 -0.256 

 0.5249
 -0.195 0.765 -0.256 

 0.5249
 -0.195 0.765 -0.256 

 0.1034</th

A1.



| GRAVITY                         |                              | *Z 8        |        |         |          |         | -0.207  |         |        |        | -0.405 |        |        | sin 8       | 7      |        |        |        |        |        |        |        |        | -0.912 |        |
|---------------------------------|------------------------------|-------------|--------|---------|----------|---------|---------|---------|--------|--------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YMMETRIC                        | $y_1 = 0.0416$ $y_2 = 0.625$ | X Sin 8     | 0.0416 | 0.117   | 0.192    | 0.266   | 0.339   | 0.411   | 0.483  | 0.554  | 0.624  | 0.694  | 0.764  | *9 8        | 0.424  | 0.419  | 0.405  | 0.385  | 0.358  | 0.322  | 0. 278 | 0.225  | 0.161  | 0.0870 | -0.000 |
| CASE 6.6.2.3 ASYMMETRIC GRAVITY | Free<br>Restrained           | *   6       | -0.000 | -0.0171 | -0.0348  | -0.0518 | -0.0689 | -0.0867 | -0.105 | -0.125 | -0.146 | -0.169 | -0.194 | şi li       | 0.454  | 0.415  | 0.397  | 0.371  | 0.336  | 0. 295 | 0.247  | 0.193  | 0.133  | 0.0689 | 000    |
| CASE                            |                              | <b>&gt;</b> | 0.0416 | 0.0999  | • 0.1583 | 0.2166  | 0. 2749 | 0, 3333 | 0.3916 | 0.4499 | 0.5083 | 0.5666 | 0.6249 | <b>&gt;</b> | 0.0416 | 0.0999 | 0.1583 | 0.2166 | 0.2749 | 0.3333 | 0.3916 | 0.4499 | 0.5083 | 0.5666 | 0.6249 |



 CASE 6.6.2.4 ASYMMETRIC GRAVITY

 Free
  $\gamma_1 = 0.625$  

 Restrained
  $\gamma_2 = 0.3854$ 
 $\gamma_1 = 0.625$   $N_{\rm P}^{\rm e}$ 
 $\gamma_1 = 0.625$   $N_{\rm P}^{\rm e}$  

 0.6250
 -0.0029 0.625 -0.0004 

 0.6010
 -0.0013 0.625 -0.0004 

 0.5070
 -0.0029 0.625 -0.0004 

 0.5371
 -0.0021 0.625 0.121 

 0.5271
 -0.0027 0.540 0.121 

 0.5271
 0.540 0.121 0.643 

 0.4812
 -0.077 0.540 0.443 

 0.4812
 -0.077 0.540 0.443 

 0.4812
 -0.077 0.540 0.443 

 0.4812
 -0.077 0.540 0.443 

 0.4812
 -0.072 0.540 0.542 

 0.4833
 -0.124 0.540 0.542 

 0.4833
 -0.134 0.435 -1.946 

 0.5250
 -0.136 0.136







| AVITY                                                                                | .Φ Φ<br>Ž  8 | 0.000  | -0.118  | -0.217  | -0.305  | -0.388  | -0.468 | -0.547 | -0.626 | -0.707 | -0.789 | -0.874 | » is         | -0.756 | -0.942 | -1.109 | -1.28  | -1.392 | -1.509 | -1.608 | -1.690 | -1.754 | -1.38  | -1.823 |
|--------------------------------------------------------------------------------------|--------------|--------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| MAMETRIC GR $r_1 = 0.4010$ $r_2 = 1.0243$                                            | χ<br>*@ c.   | 0.401  | 0.470   | 0.547   | 0.628   | 0.708   | 0.789  | 0.868  | 0.947  | 1.0254 | 1.102  | 1.178  | *0 8<br>80 8 | 0.937  | 0.926  | 0.897  | 0.853  | 0.791  | 0.712  | 0.614  | 0.496  | 0.355  | 0.1%   | 0.00   |
| CASE 6. 6. 2.7 ASYMMETRIC GRAVITY Free $\gamma_1=0.4010$ Retroined $\gamma_2=1.0243$ | ž   .;       | -0.000 | -0.0087 | -0.0284 | -0.0539 | -0.0831 | -0.115 | -0.150 | -0.187 | -0.22  | -0.20  | -0.316 | ,2-   ië     | 0.880  | 0.825  | 0.761  | 0.688  | 0.607  | 0.520  | 0.426  | 0.327  | 0.223  | 0.114  | 0.000  |
| CASE                                                                                 | <b>&gt;</b>  | 0.4010 | 0.4633  | 0.5256  | 0.5880  | 0.6503  | 0.7126 | 0.7749 | 0.8373 | 0.8996 | 0.9619 | 1.0243 | ۰            | 0.4010 | 0.4633 | 0.5256 | 0.5880 | 0.6503 | 0.7126 | 0.7749 | 0.8373 | 0.8996 | 0.9619 | 1.0243 |



## 

## 6.6.3 THE SHELL IS CLOSED AT THE APEX

The condition of finite stress resultants at the apex requires that

$$C_3 = \frac{-1}{3} \tag{6.6.3.1}$$

and

$$C_4 = \frac{-1}{15} \tag{6.6.3.2}$$

 ${\bf C}_5$  and  ${\bf C}_6$  can again be obtained from equations (6.6.2.3) and (6.6.2.4).

The six configurations which have been analyzed in this section are summarized in Table 6.6.3.1, and the discussion of section 6.6.1 is applicable. No additional comments appear to be needed.

Table 6.6.3.1

| Case    | Restrained at $\chi_2$ |
|---------|------------------------|
| 6.6.3.1 | .2673                  |
| 6.6.3.2 | .3854                  |
| 6.6.3.3 | <b>.</b> 5 <b>3</b> 81 |
| 6.6.3.4 | .6250                  |
| 6.6.3.5 | <b>.803</b> 8          |
| 6.6.3.6 | 1.0243                 |

-0.07 -0.0271 -0.0464 -0.0657 -0.0852 -0.104 -0.124 -0.144 -0.184 CASE 6.6.3.1 ASYMMETRIC GRAVITY Closed at Apex  $\gamma_1=0.0$  $r_2 = 0.2673$ 0.0450 0.0450 0.0772 0.108 0.141 0.173 0.205 0.205 0.237 0.332 0.0714 0.0689 0.0652 0.0630 0.0536 0.0457 0.0365 0.0368 0.0136 Restrained 0.0 -0.0089 -0.0154 -0.0219 -0.0285 -0.031 -0.0418 -0.0487 -0.0526 -0.0627 0.0713 0.0667 0.0647 0.0527 0.0446 0.0353 0.0248 0.0353 \*⊃r | °ë 0.00 0.0361 0.0618 0.0874 0.1131 0.1388 0.1645 0.1902 0.1902 0.2416 0.0 0.0361 0.0618 0.0674 0.1131 0.138 0.1645 0.1902 0.1902 0.2416 3-71-1644 8 sin  $\theta$ N LOS G S, is θ is θ χ nis θ nis

\* 0 soo

3

٠.

1

0.2

3

-02

| RIC GRAVITY                     | $\gamma_1 = 0.0$ $\gamma_2 = 0.3854$                | λ. Ν. | 0.0     | 0598 -0.0359 |        |        |        |        |        |        |        | 4310.269 | 0.477 -0.300 | υθ w*<br>cos θ sin θ | -0.0 |        |        | 139 -0.187 |        |        |         |        |        | 0.0301 -0.500 |        |
|---------------------------------|-----------------------------------------------------|-------------------------------------------|---------|--------------|--------|--------|--------|--------|--------|--------|--------|----------|--------------|----------------------|------|--------|--------|------------|--------|--------|---------|--------|--------|---------------|--------|
| CASE 6.6.3.2 ASYMMETRIC GRAVITY | Closed at Apex $\gamma_1 =$ Restrained $\gamma_2 =$ | χ   is<br>θ ris                           | 0.0 0.0 |              |        |        |        |        |        |        |        |          | -0.105 0.    | v enis               |      |        |        |            |        |        |         |        |        | 0.0272 0.     |        |
| CASE                            |                                                     | <b>~</b>                                  | 0.0     | 0.0479       | 0.0854 | 0.1229 | 0.1604 | 0.1979 | 0.2354 | 0.2729 | 0.3104 | 0.3479   | 0.3854       | <b>~</b>             | 0.0  | 0.0479 | 0.0854 | 0.1229     | 0.1604 | 0.1979 | 0. 2354 | 0.2729 | 0.3104 | 0.3479        | 0 3854 |



CASE 6. 6. 3. 3 ASYMMETRIC GRAVITY

Closed of Apex  $\gamma_1 = 0.0$ Restrained  $\gamma_2 = 0.5381$   $\gamma$ sin  $\theta$ 1.0

0.0

0.0631

0.0

0.0631

0.067

0.144

0.199

0.2215

0.0429

0.2416

0.2743

0.0671

0.276

0.2743

0.0677

0.2743

0.0675

0.341

0.276

0.2743

0.0677

0.341

0.276

0.276

0.276

0.3778

0.465

0.276

0.278

0.278

0.278

0.278

0.278

0.278

0.278

0.278

0.278

0.278

0.279

0.279

0.279

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270

0.270





CASE 6.6.3.5 ASYMMETRIC GRAVITY Closed at Apax  $\gamma_1 = 0.0$ Restrained  $\gamma_2 = 0.8038$   $\gamma$   $\frac{N_1^*}{\sin \theta}$   $\frac{N_1^*}{\sin \theta}$   $\frac{N_1^*}{\sin \theta}$   $\frac{N_1^*}{\sin \theta}$  0.0 0.0 0.087 0.0225 0.112 0.248 0.0450 0.2045 0.248 0.0457 0.0450 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.059 0.071 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059

Ac.





## REFERENCES

- 1. Green, A.E., and W. Zerna, Theoretical Elasticity, Oxford University Press, London, 1960.
- 2. Novoshilov, V.V., The Theory of Thin Shells, (Translated by P. G. Lowe), P. Noordhoff Ltd., Groningen, 1959.
- 3. Flugge, W., Stresses in Shells, Springer-Verlag, Berlin, 1960.
- 4. Timoshenko, S., Theory of Plates and Shells, McGraw-Hill Book Co., New York, 1940.
- 5. Mar. J.W., "Class Notes for a Course in Shell Theory", M.I.T., 1960.
- 6. Wang, C.T., Applied Elasticity, McGraw-Hill Book Co., New York, 1953.
- 7. Reissner, E., "A New Derivation of the Equations for the Deformation of Elastic Shells", American Journal of Mathematics, Vol. LXIII, No. 1, January, 1941.
- 8. Knowles, J.K. and E. Reissner, "A Derivation of the Equations of Shell Theory for General Orthogonal Coordinates", <u>Journal of Mathematics and Physics</u>, Vol. XXXV, No. 1, January, 1957.
- 9. Reissner, E., "Note on the Membrane Theory of Shells of Revolution", Journal of Mathematics and Physics, Vol. XXVI, No. 4, January, 1948.
- Truesdell, C., "The Membrane Theory of Shells of Revolution",

  Transactions of the American Mathematical Society, Vol. 58, 1945,

  pp. 96-166.
- 11. Truesdell, C., "On the Reliability of the Membrane Theory of Shells of Revolution", American Mathematical Society Bulletin, Vol. 54, 1948, pp. 994-1008.
- 12. Hildebrand, F.B., "On Asymptotic Integration in Shell Theory",

  Proceedings of Symposia in Applied Mathematics, Vol. III, McGrawHill Book Co., New York, 1950.
- 13. Wittrick, W.H., "Edge Stresses in Thin Shells of Revolution", Aeronautics Research Laboratories, Report S.M. 253, Melbourne, 1957.
- 14. Flugge, W., "Bending Theory for Shells of Revolution Subjected to Non-Symmetric Edge Loads", Division of Engineering Mechanics, Stanford University Technical Report 113, 1957.

- 15. McConnell, A.J., Applications of Tensor Analysis, Dover Publications, Inc., 1957.
- 16. Sokolnikoff, I.S., <u>Tensor Analysis</u>, John Wiley and Sons, Inc., New York, 1951.
- 17. Struik, D.J., Differential Geometry, Addison-Wesley Press, Inc., Reading, Massachusetts, 1950.
- 18. Ince, E.L., Ordinary Differential Equations, Dover Publications, Inc., New York, 1956.
- 19. Jeffreys, H. and B.S. Jeffreys, <u>Methods of Mathematical Physics</u>, Third Edition, Cambridge University Press, London, 1956.
- 20. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience Publishers, Inc., New York, 1953.
- 21. Carslaw, H.S., Fourier Series and Integrals, Third Edition, Macmillan and Co., Ltd., London, 1930.