Inferential Statistics

Examples are taken from edx course on Statistics 2.3x

z-test and t-test

Introduction to Data Science

M. Sakthi Balan

Associate Professor LNM Institute of Information Technology Jaipur

Contents

- **1** Introduction
- 2 Sampling & Std. Error
- Testing Hypothesis
- z-test and t-test

Important terms

Population: A collection of same units that we are interested in **Parameter:** A number we are interested in about the population

Sample: A subset of population

Estimate: A guess for parameter calculated from the sample

4/34

Important terms

Introduction

Population: A collection of same units that we are interested in **Parameter:** A number we are interested in about the population

Sample: A subset of population

Estimate: A guess for parameter calculated from the sample

Estimate will be good if the sample is good

Sample should avoid Bias

4/34

ntroduction to Data Science

Testing Hypothesis

Does the sample size matter? – large sample size versus small sample size

US Election 1936

- Roosevelt versus Landon
- Literary Digest predicted Landon (Republican) win and predicted Democratic will get only 43%
- Literary Digest used a sample size of 10 million (2.4 million responded)
- Gallup used a good scientific method and predicted that Literary Digest will predict 44%!! They used a sample size of just 3000!!
- Gallup also predicted that Roosevelt will win with 56% votes
- Gallup used a sample size of 50000 only!!
- Roosevelt won the election with 61% votes

- Selection Bias Literary Digest used phone book!
- Non-response Bias only 2.4 million responded out of 10 million!
- Sample should not be a sample of convenience
- Should draw uniformly at random with or without replacement from the population

Simple Random Sample – Random sample with all units in population equally likely in the sample before selection Random Sample – all units need not be equally likely

- Selection Bias Literary Digest used phone book!
- Non-response Bias only 2.4 million responded out of 10 million!
- Sample should not be a sample of convenience
- Should draw uniformly at random with or without replacement from the population

Simple Random Sample – Random sample with all units in population equally likely in the sample before selection Random Sample – all units need not be equally likely

Problem

Introduction

The population consists of only four people: A, B, C and D. A is chosen in the sample and other three are chosen only if we get heads when we toss a fair coin. Is this a good sample?

Problem

In a large population, average age = 37 and standard deviation = 15. A sample size of 200 is taken from the population. Average age will be what?

Expected age = 37 and standard error = $15/\sqrt{200}$ = 1.06

Problem

In a large population, average age = 37 and standard deviation = 15. A sample size of 200 is taken from the population. Average age will be what?

Expected age = 37 and standard error = $15/\sqrt{200}$ = 1.06

Problem

For a random sample size of 100, average age = 38 and standard deviation = 14. What will be the average age of the population?

Estimated age = 38 and standard error = $14/\sqrt{100}$ = 1.4

Bootstrap

A considerable large sample size is like a population, so SD of the sample is an approximation to the SD of the population.

Problem

For a random sample size of 100, average age = 38 and standard deviation = 14. What will be the average age of the population?

Estimated age = 38 and standard error = $14/\sqrt{100}$ = 1.4

Bootstrap

A considerable large sample size is like a population, so SD of the sample is an approximation to the SD of the population.

Problem

For a random sample size of 100, average age = 38 and standard deviation = 14. What will be the average age of the population?

Estimated age = 38 and standard error = $14/\sqrt{100}$ = 1.4

Bootstrap

A considerable large sample size is like a population, so SD of the sample is an approximation to the SD of the population.

Problem

Introduction

In a simple random sample of 605 households in a city the average income is \$63000 with SD as \$40000. Find an approximate 95% confidence interval for the average income of huseholds in the city.

```
63000 \pm 2 * \frac{40000}{\sqrt{625}} = 63000 \pm 2 * 1600
```

⇒ 59800 to 66200 (Confidence Interval)

Given distribution is not normal but how did we use approximation for a normal distribution?

z-test and t-test

Problem

In a simple random sample of 605 households in a city the average income is \$63000 with SD as \$40000. Find an approximate 95% confidence interval for the average income of huseholds in the city.

```
\begin{array}{l} 63000 \pm 2* \frac{40000}{\sqrt{625}} \\ = 63000 \pm 2* 1600 \end{array}
```

⇒ 59800 to 66200 (Confidence Interval)

Given distribution is not normal but how did we use approximation for a normal distribution?

z-test and t-test

Problem

In a simple random sample of 605 households in a city the average income is \$63000 with SD as \$40000. Find an approximate 95% confidence interval for the average income of huseholds in the city.

```
63000 \pm 2 * \frac{40000}{\sqrt{625}}
= 63000 + 2 * 1600
```

⇒ 59800 to 66200 (Confidence Interval)

Given distribution is not normal but how did we use approximation for a normal distribution?

A sample distribution:

- sample mean \$61,650
- sample SD \$39,500

from edx course on Statistics

Original distribution that we may not have:

population of incomes

- population mean \$60,000
- population SD \$40,000

from edx course on Statistics

After many trials:

means of 20,000 samples of size 400 each

from edx course on Statistics

Testing Hypothesis

- Suppose you toss a coin 15 times and observe that you get 10 times head. Is it a fair coin or not?
- Coin is fair: H_0 called as Null hypothesis
- Coin is **not fair** and it is **biased towards heads**: H_A called as **Alternate hypothesis**
- Assume that H_0 is true and calculate the chance of getting H_A , i.e., the above observation of 10 times head out of 15 called as **P-value**.

Method

If P-value < 5% (small) then coose H_A We call the above situation as **Statistically Significant** Otherwise ($P-value \ge 5\%$) no change in our assumption that H_0 is true

Testing Hypothesis

- Suppose you toss a coin 15 times and observe that you get 10 times head. Is it a fair coin or not?
- Coin is fair: H_0 called as Null hypothesis
- Coin is not fair and it is biased towards heads: H_A called as
 Alternate hypothesis
- Assume that H_0 is true and calculate the chance of getting H_A , i.e., the above observation of 10 times head out of 15 called as **P-value**.

Method

If P-value < 5% (small) then coose H_A We call the above situation as **Statistically Significant** Otherwise ($P-value \ge 5\%$) no change in our assumption that H_0 is true

Testing Hypothesis

- Suppose you toss a coin 15 times and observe that you get 10 times head. Is it a fair coin or not?
- Coin is fair: H_0 called as Null hypothesis
- Coin is not fair and it is biased towards heads: H_A called as Alternate hypothesis
- Assume that H₀ is true and calculate the chance of getting H_A,
 i.e., the above observation of 10 times head out of 15 called as P-value.

Method

If P-value < 5% (small) then coose H_A We call the above situation as **Statistically Significant** Otherwise ($P-value \ge 5\%$) no change in our assumption that H_0 is true

Testing Hypothesis

- Suppose you toss a coin 15 times and observe that you get 10 times head. Is it a fair coin or not?
- Coin is fair: H₀ called as Null hypothesis
- Coin is not fair and it is biased towards heads: H_A called as Alternate hypothesis
- Assume that H_0 is true and calculate the chance of getting H_A , i.e., the above observation of 10 times head out of 15 called as **P-value**.

Method

If P-value < 5% (small) then coose H_A We call the above situation as **Statistically Significant** Otherwise $(P-value \geq 5\%)$ no change in our assumption that H_0 is true

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

Is theory good or bad?

Solution

- $H_0: p = 0.25$ and $H_A: p < 0.25$
- P-value: binomial with p = 0.25 and $k \le 88 \implies P = 9.08\%$
- P > 5% hence the theory looks fine!

This is called as exact binomial test

Testing Hypothesis – Example 1

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

Is theory good or bad?

Solution

- $H_0: p = 0.25$ and $H_A: p < 0.25$
- P-value: binomial with p = 0.25 and $k \le 88 \implies P = 9.08\%$
- P > 5% hence the theory looks fine!

This is called as exact binomial tes

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

Is theory good or bad?

Solution

- $H_0: p = 0.25$ and $H_A: p < 0.25$
- P-value: binomial with p = 0.25 and $k \le 88 \implies P = 9.08\%$
- P > 5% hence the theory looks fine!

This is called as exact binomial test

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

- The binomial distribution is approximately a normal distribution according to central limit theorem
- Calculate μ and σ
- $\mu = 400 * 0.25 = 100$
- $\sigma = \sqrt{400 * 0.25 * 0.75} = 8.66$
- Calculate z value

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

- The binomial distribution is approximately a normal distribution according to central limit theorem
- Calculate μ and σ
- $\mu = 400 * 0.25 = 100$
- $\sigma = \sqrt{400 * 0.25 * 0.75} = 8.66$
- Calculate z value

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

- The binomial distribution is approximately a normal distribution according to central limit theorem
- Calculate μ and σ
- $\mu = 400 * 0.25 = 100$
- $\sigma = \sqrt{400 * 0.25 * 0.75} = 8.66$
- Calculate z value

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

- The binomial distribution is approximately a normal distribution according to central limit theorem
- Calculate μ and σ
- $\mu = 400 * 0.25 = 100$
- $\sigma = \sqrt{400 * 0.25 * 0.75} = 8.66$
- Calculate z value

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

- $z = \frac{88.5 100}{8.66} = -1.328$
- Get the area under the normal curve
- P = 9.21% (approx) > 5% \implies theory looks good!
- This is called as one-sample z test

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

- $z = \frac{88.5 100}{8.66} = -1.328$
- Get the area under the normal curve
- P = 9.21% (approx) > 5% \implies theory looks good!
- This is called as one-sample z test

Problem

- Genetic theory says that each plant has 25% chance of being red-flowering
- Data: 400 plants and 88 of them are red-flowering

- $z = \frac{88.5-100}{8.66} = -1.328$
- Get the area under the normal curve
- P = 9.21% (approx) > 5% \implies theory looks good!
- This is called as one-sample z test

Testing Hypothesis – Example 2

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

- Selection of 100 men is like a trial conducted 100 times with selecting black as 1 and selecting whites as 0
- This distribution is approximately a normal distribution with μ as mean and σ as SD. Calculate them!
- $\mu = 100 * 0.26 = 26$
- $\sigma = \sqrt{100 * 0.26 * 0.74} = 4.39$
- Calculate the z-value

Testing Hypothesis – Example 2

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

- Selection of 100 men is like a trial conducted 100 times with selecting black as 1 and selecting whites as 0
- This distribution is approximately a normal distribution with μ as mean and σ as SD. Calculate them!
- $\mu = 100 * 0.26 = 26$
- $\sigma = \sqrt{100 * 0.26 * 0.74} = 4.39$
- Calculate the z-value

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

Solution

- Selection of 100 men is like a trial conducted 100 times with selecting black as 1 and selecting whites as 0
- This distribution is approximately a normal distribution with μ as mean and σ as SD. Calculate them!
- $\mu = 100 * 0.26 = 26$
- $\sigma = \sqrt{100 * 0.26 * 0.74} = 4.39$
- Calculate the z-value

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

Solution

- Selection of 100 men is like a trial conducted 100 times with selecting black as 1 and selecting whites as 0
- This distribution is approximately a normal distribution with μ as mean and σ as SD. Calculate them!
- $\mu = 100 * 0.26 = 26$
- $\sigma = \sqrt{100 * 0.26 * 0.74} = 4.39$
- Calculate the z-value

Testing Hypothesis – Example 2

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

Solution

- Calculate the z-value
- $z = \frac{8.5 26}{4.39} = -3.99$ (approx)

Testing Hypothesis – Example 2

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

Solution

- Calculate the z-value
- $z = \frac{8.5 26}{4.39} = -3.99$ (approx)

Testing Hypothesis – Example 2

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

Solution

- Calculate the z-value
- $z = \frac{8.5 26}{4.39} = -3.99$ (approx)

Testing Hypothesis – Example 2

Problem

- There are 16000 jurors and 26% of them are blacks
- Data: 100 men on jury and 8 of them are blacks

Question: Is this fair?

Solution

- Calculate the z-value
- $z = \frac{8.5 26}{4.39} = -3.99$ (approx)

Problem

- Coin is tossed 20 times H_0 : p = 0.5 and H_A : p = 0.8
- If the number of head is more than 14 then select H_A , otherwise select H_0

Possible Scenario

Reality/Observation	p = 0.5	p = 0.8
p = 0.5	Correct	Type I error
		Probability: 5.8%
p = 0.8	Type II error	Correct
		Probability: 91.3%

- Coin is tossed 20 times H_0 : p = 0.5 and H_A : p = 0.8
- If the number of head is more than 14 then select H_A , otherwise select H_0

- Calculate probability for Type I error
- Its binomial with n = 20, p = 0.5 and $k \ge 14!$ probability = 5.8% called as **Significance level**.
- Calculate probability for Type II error
- Its binomial with n = 20, p = 0.8 and $k \ge 14!$ probability = 91.3% called as **Power**.

- Coin is tossed 20 times H_0 : p = 0.5 and H_A : p = 0.8
- If the number of head is more than 14 then select H_A , otherwise select H_0

- Calculate probability for Type I error
- Its binomial with n = 20, p = 0.5 and $k \ge 14!$ probability = 5.8% called as Significance level.
- Calculate probability for Type II error
- Its binomial with n = 20, p = 0.8 and $k \ge 14!$ probability = 91.3% called as **Power**.

- Coin is tossed 20 times H_0 : p = 0.5 and H_A : p = 0.8
- If the number of head is more than 14 then select H_A , otherwise select H_0

- Calculate probability for Type I error
- Its binomial with n = 20, p = 0.5 and $k \ge 14!$ probability = 5.8% called as **Significance level**.
- Calculate probability for Type II error
- Its binomial with n = 20, p = 0.8 and $k \ge 14!$ probability = 91.3% called as **Power**.

- Coin is tossed 20 times H_0 : p = 0.5 and H_A : p = 0.8
- If the number of head is more than 14 then select H_A , otherwise select H_0

- Calculate probability for Type I error
- Its binomial with n = 20, p = 0.5 and $k \ge 14!$ probability = 5.8% called as **Significance level**.
- Calculate probability for Type II error
- Its binomial with n = 20, p = 0.8 and $k \ge 14!$ probability = 91.3% called as **Power**.

- Coin is tossed 20 times H_0 : p = 0.5 and H_A : p = 0.8
- If the number of head is more than 14 then select H_A , otherwise select H_0

- Calculate probability for Type I error
- Its binomial with n = 20, p = 0.5 and $k \ge 14!$ probability = 5.8% called as **Significance level**.
- Calculate probability for Type II error
- Its binomial with n = 20, p = 0.8 and $k \ge 14!$ probability = 91.3% called as **Power**.

Testing Hypothesis

- Significance Level: Error probability. Should be small
- Power: Probability that the test correctly predicts that the guess is false. This should be large.
- Significance level is actually the tolerance level that we want.

Neyman-Pearson Lemma

Design the test in such a way that we maximize the power given the significance level

Testing Hypothesis

Significance level – what is the connection with the previous slides on testing hypothesis?

- Toss the coin many times and observe the number of heads
- $H_0: p = 0.5$ and $H_A: p > 0/5$
- Test: If number of heads is large then take H_A otherwise take H_0
- **Method:** If *P-value* is < 5% then H_A otherwise it is H_0
- If P-value is < 5% then z > 1.645
- Actually this 5% is our significant level! this is what percentage we may conclude that the coin is not fair but it is actually fair – this is our tolerance level
- 5% is our significance level and observed percentage is our observed significance level

Testing Hypothesis

- Observation: Coin tossed 400 times and observed 225 heads
- H_0 : coin is fair: p = 0.5
- Under H_0 expect 200 heads with standard error of 10 (??)
- How did you get SE as 10? Its binomial distribution! So $\sqrt{400*0.5*0.5}$
- First alternative: Coin is biased towards -p > 0.5
- **Second alternative:** Coin is not fair $-p \neq 0.5$
- Third alternative: Coin is biased towards tails p < 0.5

Find the P-value of all the above cases.

Testing Hypothesis

- Observation: Coin tossed 400 times and observed 225 heads
- H_0 : coin is fair: p = 0.5
- Under H₀ expect 200 heads with standard error of 10 (??)
- How did you get SE as 10? Its binomial distribution! So $\sqrt{400*0.5*0.5}$
- First alternative: Coin is biased towards -p > 0.5
- Second alternative: Coin is not fair $-p \neq 0.5$
- Third alternative: Coin is biased towards tails p < 0.5

Find the *P*-value of all the above cases.

Testing Hypothesis – first alternative

- The chance of getting 225 heads or more assuming the coin is fair
- $z = \frac{225-200}{10} = 2.5$, P = 0.71% (approx)
- P < 5% so choose the first alternative
- Called as one-tailed test

Testing Hypothesis – second alternative

- The chance of getting the number of heads as 25 more or less the expected value of 200 assuming that the coin is fair
- $z = \pm 2.5$, P = 2 * 0.71% = 1.42% (approx)
- P < 5% so choose the second alternative
- Called as two-tailed test

Testing Hypothesis – third alternative

- The chance of getting the number of heads is 225 heads or fewer assuming that coin is fair.
- $z = \frac{226-200}{10} = 2.6$, P = 99.4% (approx)
- P > 5% so choose H₀
- This is another one-tailed test

- Average height of Indian men = 175cm
- Data: Simple random sample of 100 students taken from the universities in India with ten of thousands of students
 - Average height of sample = 174cm
 - Standard deviation = 5cm
- Question: Is the average height of students shorter than Indian men?
- What's our population of interest here? students in the universitues in India
- What is the unknown parameter here? population mean

- Average height of Indian men = 175cm
- Data: Simple random sample of 100 students taken from the universities in India with ten of thousands of students
 - Average height of sample = 174cm
 - Standard deviation = 5cm
- Question: Is the average height of students shorter than Indian men?
- What's our population of interest here? students in the universitues in India
- What is the unknown parameter here? population mean

- Average height of Indian men = 175cm
- Data: Simple random sample of 100 students taken from the universities in India with ten of thousands of students
 - Average height of sample = 174cm
 - Standard deviation = 5cm
- Question: Is the average height of students shorter than Indian men?
- What's our population of interest here? students in the universitues in India
- What is the unknown parameter here? population mean

- Average height of Indian men = 175cm
- Data: Simple random sample of 100 students taken from the universities in India with ten of thousands of students
 - Average height of sample = 174cm
 - Standard deviation = 5cm
- $H_0: \mu = 175$ cm and $H_A: \mu < 175$ cm
- Calculate the P-value: Assuming H₀ what is the probability that the sample mean would be less than 175?
- If H_0 is true then the expected sample mean would be 175 with standard error given by $\sigma/\sqrt{100}$ where σ is approximately 5cm
- Hence $SE = 5/\sqrt{100} \implies SE = 0.5$

- Average height of Indian men = 175cm
- Data: Simple random sample of 100 students taken from the universities in India with ten of thousands of students
 - Average height of sample = 174cm
 - Standard deviation = 5cm
- Now $z = (174 175)/0.5 \implies z = -2 \implies P = 2.5\%$ (approx)
- \bullet P < 5% so reject the null hypothesis *implies* average height of students is less than the average height of Indian men

- Population of weights: approximately normal. Mean (μ) and SD (σ) unknown (unknown parameters)
- **Data:** 31.8, 30.9, 34.2, 32.1, 28.8 (in gm)
- Sample mean = 31.56 gm
- Belief is that the population mean = 30 gm

- $H_0: \mu = 30 \text{ and } H_A: \mu > 30$
- Calculate the P-value: If the Null were true what is the probability of sample eman to be greater than 31.56?

- Population of weights: approximately normal. Mean (μ) and SD (σ) unknown (unknown parameters)
- **Data:** 31.8, 30.9, 34.2, 32.1, 28.8 (in gm)
- Sample mean = 31.56 gm
- Belief is that the population mean = 30 gm

- If the null were true expected value of the sample mean would be 30 and SE of sample mean = $\sigma/\sqrt{5}$
- How to find σ ?
- Calculate it from the data that you know! (divide by n-1)

- Population of weights: approximately normal. Mean (μ) and SD (σ) unknown (unknown parameters)
- **Data:** 31.8, 30.9, 34.2, 32.1, 28.8 (in gm)
- Sample mean = 31.56 gm
- Belief is that the population mean = 30 gm

- If the null were true expected value of the sample mean would be 30 and SE of sample mean = $\sigma/\sqrt{5}$
- How to find σ ?
- Calculate it from the data that you know! (divide by n-1)

- Population of weights: approximately normal. Mean (μ) and SD (σ) unknown (unknown parameters)
- **Data:** 31.8, 30.9, 34.2, 32.1, 28.8 (in gm)
- Sample mean = 31.56 gm
- Belief is that the population mean = 30 gm

- $\sigma/\sqrt{5} \implies 1.96/\sqrt{5} = 0.87$
- Now calculate a score called *t*-score: $(31.56 30)/0.87 = 1.79 \implies P = 7.2\%$
- P > 5% so keep the null hypothesis

