# Integración de carga y análisis estructural

DISEÑO ESTRUCTURAL ASISTIDO POR COMPUTADORA

## Integración de cargas muertas

- 1) Propio peso: Peso intrínseco de la estructura, forma parte del sistema estructural, siempre estará presente en la estructura. En el programa ETABS aparece como DEAD. Automáticamente el programa integra el caso dentro del programa en función al predimensionamiento de secciones y la densidad del concreto.
- 2) Sobrecarga: Toda la carga sobrepuesta en la estructura que puede sufrir cambios tales como pisos, cielo falso, muros de relleno, instalaciones, etc.

| Tipo de carga  | Símbolo en la combinación | Referencia |
|----------------|---------------------------|------------|
| Cargas muertas | М                         | Capítulo 2 |

#### Sobrecarga en losa

#### Sobrecarga entrepiso

| Contrapiso    | 85.00 Kg/m^2  | 50 mm*1.7  | Concreto pómez, por milímetro                                             |
|---------------|---------------|------------|---------------------------------------------------------------------------|
| Piso=         | 77.00 Kg/m^2  |            | Azulejo de cerámica o quarry tile (19 mm) sobre lecho de mortero de 13 mm |
| Cielo falso   | 20.00 Kg/m^2  | 25.4mm*0.8 | Tablero de yeso (por mm de espesor)                                       |
| Instalaciones | 25.00 Kg/m^2  |            |                                                                           |
|               | 207.00 Kg/m^2 |            |                                                                           |

| T | e | C | h | 0 |
|---|---|---|---|---|
|   |   |   |   |   |

| Pañuelos      | 119.00 Kg/m^2 | 70 mm*1.7  |
|---------------|---------------|------------|
| Cielo falso   | 20.00 Kg/m^2  | 25.4mm*0.8 |
| Instalaciones | 25.00 Kg/m^2  |            |
|               | 164.00 Kg/m^2 |            |

#### Sobrecarga lineal

Muro completo

h=

163.00 Kg/m^2 20.00 Kg/m^2 183.00 Kg/m^2 2.50 m 457.50 kg/m

163.00 Kg/m<sup>2</sup> Bloque clase "C" 14x19x39 cm, pin #3@80 cm 20.00 Kg/m<sup>2</sup> Acabado 1 cm, Υa=2000 kg/m<sup>3</sup>, t\*Υa (2 caras)

| Espesor d                  | e soga (en mm)        | 102 | 152 |
|----------------------------|-----------------------|-----|-----|
| Densidad de la             | unidad (1,649 kgf/m³) |     |     |
| Sin graut                  |                       | 105 | 129 |
| Espaciamiento<br>del graut | 1,219 mm              |     | 148 |
|                            | 1,016 mm              |     | 158 |
|                            | 813 mm                |     | 163 |
|                            | 610 mm                |     | 177 |
|                            | 406 mm                |     | 201 |
| Graut completo             |                       |     | 273 |

| Muro +venta | na            |                                              |
|-------------|---------------|----------------------------------------------|
|             | 163.00 Kg/m^2 | Bloque clase "C" 14x19x39 cm, pin #3@80 cm   |
|             | 20.00 Kg/m^2  | Acabado 1 cm, Ya=2000 kg/m^3, t*Ya (2 caras) |
|             | 183.00 Kg/m^2 |                                              |
| hsillar=    | 1.00 m        |                                              |
|             | 183.00 kg/m   |                                              |
|             | ·             |                                              |
|             | 38.00 Kg/m^2  | Ventana+vidrio+marco                         |
| hventana=   | 1.50 m        | Ventanas, vidrio y marco 38                  |
|             | 57.00 kg/m    |                                              |
| Wm+v=       | 240.00 kg/m   |                                              |
|             |               |                                              |

Los casos de carga muerta: propio peso o sobrecarga, deben asignarse dentro del programa como "Load Patters"





## Integración de carga viva

Cargas que dependen del uso de la edificación

| Tipo de carga         | Símbolo en la combinación | Referencia |
|-----------------------|---------------------------|------------|
| Cargas muertas        | М                         | Capítulo 2 |
| Cargas vivas          | V                         | Capítulo 3 |
| Cargas vivas de techo | Vt                        | Capítulo 3 |



| Viva de techo   | 200.00 Kg/m^2 | Vt Losas I,II,III, IV, V y VI |
|-----------------|---------------|-------------------------------|
| Tefra volcanico | 85.00 Kg/m^2  | Ar Losas I,II,III, IV, V y VI |
| Carga de Iluvia | 140.00 Kg/m^2 | Pl Losas I,II,III, IV, V y VI |

Los casos de carga viva y viva techo, deben asignarse dentro del programa como "Load Patters"



## Asignación de cargas a los elementos dentro del programa

Podemos asignar cargas del siguiente tipo:

- 1. Puntuales a nodos y elementos frame
- 2. Carga lineales a elementos frame
- 3. Cargas superficiales a los elementos de área (Shell, membrana)

#### Cargas puntuales a nodos



Magnitud y dirección de carga, signo positivo a favor de los ejes de referencia, signo negativo en contra de los ejes de referencia

Asignación de dimensión de columnas para el diseño de zapatas



Add: Sumar a la carga ya

asignada

Replace: Reemplaza la carga

asignada.

Delete: eliminar la carga

asignada







## Integración de carga sísmica, espectro de respuesta

Cargas dependen del riesgo sísmico que presenta el lugar.

| Tipo de carga            | Símbolo en la combinación | Referencia    |
|--------------------------|---------------------------|---------------|
| Cargas muertas           | М                         | Capítulo 2    |
| Cargas vivas             | V                         | Capítulo 3    |
| Cargas vivas de techo    | $V_t$                     | Capítulo 3    |
| Carga sísmica horizontal | Shd                       | Capítulo 4    |
| Carga sísmica vertical   | $S_{vd}$                  | Sección 4.5.9 |

$$S_{vd} = 0.20 * S_{cd}$$
 (4.5.9-1)



100

Quetzaltenango

#### Aceleraciones espectrales

| Scr= | 1.46 |
|------|------|
| S1r= | 1.39 |
| TL=  | 3.9  |
| lo=  | 4.1  |

#### Ajustes por clase de sitio

| Fa= | 1 |
|-----|---|
| Fv= | 1 |

#### Ajuste por intensidades sismicas especiales

| Na= | 1 |
|-----|---|
| Nv= | 1 |

$$Scs = Scr * Fa * Na \tag{4.5.3-1}$$

| Scs= | 1.46 |
|------|------|
| S1s= | 1.39 |

$$S1s = S1r * Fv * Nv$$
 (4.5.3-2)

#### Periodos de vibración de transición

$$T_S = S_{1s} / S_{cs} (4.5.4-1)$$

(4.5.4-2)

$$T_0 = 0.2 T_S$$

#### **Factor Kd**

| forther de Orandalda d IN                                       | Clase de obra <sup>[a]</sup>    |                                 |                   |                                |  |  |  |
|-----------------------------------------------------------------|---------------------------------|---------------------------------|-------------------|--------------------------------|--|--|--|
| Índice de Sismicidad [b]                                        | Esencial                        | Importante                      | Ordinaria         | Utilitaria                     |  |  |  |
| I <sub>o</sub> = 4                                              | E                               | D                               | D                 | С                              |  |  |  |
| I <sub>o</sub> = 3                                              | D                               | С                               | С                 | В                              |  |  |  |
| I <sub>o</sub> = 2                                              | C                               | В                               | В                 | Α                              |  |  |  |
| Probabilidad de<br>exceder el sismo de<br>diseño <sup>[c]</sup> | 5% en<br>50 años <sup>[d]</sup> | 5% en<br>50 años <sup>[d]</sup> | 10% en<br>50 años | Sismo<br>mínimo <sup>[e]</sup> |  |  |  |

Sismo de diseño

#### 10% en 50 años / Sismo ordinario

| Kd= | 0.66 |
|-----|------|
|-----|------|

| Nivel de sismo                                                | Factor Ka |
|---------------------------------------------------------------|-----------|
| Sismo ordinario — 10% probabilidad de ser excedido en 50 años | 0.66      |

#### Calibración de aceleraciones espectrales

| Scd=  | 0.9636  |
|-------|---------|
| S1d=  | 0.9174  |
| AMSd= | 0.38544 |
| Svd=  | 0.19272 |

$$S_{cd} = K_d * S_{CS}$$
 (4.5.5-1)

$$S_{1d} = K_d * S_{1S} (4.5.5-2)$$

$$AMS_d = 0.40 * S_{cd} (4.5.8-1)$$

$$S_{vd} = 0.20 * S_{cd} (4.5.9-1)$$

### Construcción del espectro



$$S_a(T) = S_{cd} \left[ 0.4 + 0.6 \frac{T}{T_0} \right]$$
 cuando  $T < T_0$  (4.5.6-1)  
 $S_a(T) = S_{cd}$  cuando  $T_0 \le T \le T_S$  (4.5.6-2)  
 $S_a(T) = \frac{S_{1d}}{T} \le S_{cd}$  cuando  $T_S < T < T_L$  (4.5.6-3)

(4.5.6-4)

 $S_a(T) = \frac{S_{1d}}{(T^2)} * T_L$  cuando  $T \ge T_L$ 

## Método estático equivalente Periodos naturales de vibración

Se tienen tres métodos para poder estimar el periodo natural de vibración a partir de la normativa NSE 3-2018:

■2.1.6 Formula empírica para el periodo fundamental de vibración:

$$T_a = K_T(h_n)^x$$
 (2.1.6-1)

- (1)  $K_T = 0.049$ , x = 0.75 para sistemas estructurales E2, E3, E4 o E5;
- (2) K<sub>T</sub> = 0.047, x = 0.90 solamente para sistemas estructurales E1, de concreto reforzado que sean abiertos o con fachadas de vidrio o paneles livianos y pocas particiones rígidas:
- (3) **K**<sub>T</sub> = 0.047, x = 0.85 para sistemas E1 de concreto reforzado con fachadas rígidas o que no cumplan con el párrafo anterior;
- (4) **K**<sub>T</sub> = 0.072, x = 0.80 solamente para sistemas estructurales E1 de acero que sean abiertos o con fachadas de vidrio o paneles livianos y pocas particiones rígidas;
- (5) K<sub>T</sub> = 0.072, x = 0.75 para sistemas E3 o E4 de acero rigidizados.

Hn= 9 metros

(3) **K**<sub>T</sub> = 0.047, x = 0.85 para sistemas E1 de concreto reforzado con fachadas rígidas o que no cumplan con el párrafo anterior;

$$T_a = K_T(h_n)^x (2.1.6-1)$$

$$Ta = 0.047 * (9)^{0.85} = 0.304 seg$$

■2.1.7 Formula opcional: solo para sistemas E2,E3 y E4.

$$T_a = \frac{c_q}{\sqrt{c_w}} h_n^{0.85} \tag{2.1.7-1}$$

Donde:

•  $C_q = 0.00058m$ 

$$C_W = \frac{100}{A_B} \sum_{i=1}^{x} \frac{A}{\left[1 + 0.83 \left(\frac{h_i}{D_i}\right)^2\right]}$$
 (2.1.7-2)

(b) El período T<sub>a</sub> así calculado debe quedar comprendido entre los valores de T<sub>a</sub> obtenidos del primer caso y tercer caso de la Ecuación 2.1.6-1.

#### Donde:

- h<sub>n</sub> altura de la estructura sobre la base sísmica.
- x número de muros estructurales en la dirección de análisis.
- Ai área del alma del muro "i" en metros cuadrados.
- Di longitud del alma del muro "i".
- A<sub>B</sub> área de la planta de la estructura en metros cuadrados.

■2.1.8. Formula analítica del periodo fundamental de vibración

Un método aplicable es el de Rayleigh

$$T_F = 2\pi \sqrt{\frac{\sum_{i=1}^n (W_i u_1^2)}{g \sum_{i=1}^n (F_i u_1)}}$$
 (2.1.8-1)

#### Donde:

- W<sub>i</sub> peso sísmico efectivo del nivel "i"
- **u**<sub>i</sub> desplazamiento horizontal del centro de masa del nivel "i". Estos desplazamientos laterales se pueden calcular ignorando los efectos de giro de la planta
- Fi fuerza estática equivalente para el nivel "i"
- g aceleración debida a la gravedad (9.81 m/s²)

#### 2.1.9 — Selección del período T a utilizar

- (a) Los períodos **T** que se utilizarán con el método estático equivalente en la Ecuación 2.1.3-1 en cada dirección de análisis podrán ser:
  - Directamente los períodos empíricos T<sub>a</sub> calculados con la Sección 2.1.6;
  - Para sistemas estructurales E2, E3 o E4 con muros de concreto reforzado o mampostería reforzada podrá recurrirse al período Ta obtenido con la sección 2.1.7;
  - Los períodos analíticos **T**<sub>F</sub> calculados con la Sección 2.1.8 limitados conforme a la Ecuación 2.1.9-1:

$$T = T_F \le 1.4T_a \tag{2.1.9-1}$$

## Método estático equivalente Coeficiente sísmico Cs

El coeficiente sísmico (Cs) en cada dirección de análisis se establecerá de la manera siguiente:

$$C_s = \frac{S_a(T)}{R * \beta_d} \tag{2.1.3-1}$$

$$\beta_d = \frac{4}{1 - \ln(\varepsilon)} \tag{2.1.4-4}$$

 ε es el amortiguamiento efectivo de la estructura, el cual debe ser tomado como 0.05. Para estructuras con sistemas de aislamiento en la base o amortiguadores, el amortiguamiento efectivo se designará según indicaciones del fabricante. **B**d=1, ya que se supondrá un amortiguamiento efectivo del 5%

|    | SISTEMA ESTRUCTURAL Sección 1.6 <sup>[a]</sup> | Norma            | R   | R Ωr | Cd  | Nivel de<br>protección |    | en metros<br>SL - sin límite<br>NP - no permitido |    | notas |
|----|------------------------------------------------|------------------|-----|------|-----|------------------------|----|---------------------------------------------------|----|-------|
|    | Section 1.0 -                                  |                  |     |      |     |                        |    | _                                                 |    |       |
|    | OVERTIME DE MADOOS                             |                  |     |      |     | В                      | С  | D                                                 | E  |       |
| E1 | SISTEMA DE MARCOS<br>RESISTENTES A MOMENTO     | 1.6.2            |     |      |     |                        |    |                                                   |    |       |
|    | Marcos dúctiles DA                             |                  |     |      |     |                        |    |                                                   |    |       |
|    | De concreto reforzado                          | NSE 7.1          | 8   | 3    | 5.5 | SL                     | SL | SL                                                | SL | [b]   |
|    | De acero estructural                           | NSE 7.5          | 8   | 3    | 5.5 | SL                     | SL | SL                                                | SL |       |
|    | Compuestos acero-concreto                      | NSE 7.1 /<br>7.5 | 8   | 3    | 5.5 | SL                     | SL | SL                                                | SL | [g]   |
|    | Ductilidad intermedia DI                       |                  |     |      |     |                        |    |                                                   |    |       |
|    | De concreto reforzado                          | NSE 7.1          | 5   | 3    | 4.5 | 33                     | 20 | 12                                                | NP | [b]   |
|    | De acero estructural                           | NSE 7.5          | 4.5 | 3    | 4   | 55                     | 33 | 20                                                | NP |       |
|    | Compuestos acero-concreto                      | NSE 7.1 /<br>7.5 | 4.5 | 3    | 4.5 | 33                     | 20 | 12                                                | NP | [g]   |
|    | Sistemas aislados                              | NSE 7.7          | 5   | 3    | 4.5 | 75                     | 75 | 75                                                | 75 | [n]   |
|    | Ductilidad Baja DB                             |                  |     |      |     |                        |    |                                                   |    |       |
|    | De concreto reforzado                          | NSE 7.1          | 3   | 3    | 2.5 | 20                     | NP | NP                                                | NP | [b]   |
|    | De acero estructural                           | NSE 7.5          | 3.5 | 3    | 3   | 33                     | 12 | NP                                                | NP |       |
|    | Compuestos acero-concreto                      | NSE 7.1 /<br>7.5 | 3   | 3    | 2.5 | 33                     | NP | NP                                                | NP | [g]   |



$$\beta d = 1$$

$$Cs = \frac{0.9636}{8*1} = 0.12$$

- **k** = 1, para T ≤ 0.5 segundos;
- **k** = 0.75 + 0.5 T<sub>s</sub>, para 0.5 < T ≤ 2.5 segundos;
- **k** = 2, para T > 2.5 segundos;



| Cs= | 0.120 |
|-----|-------|
| K=  | 1.000 |

#### En el programa se define el sismo estático equivalente de la siguiente forma:





## Centro de masa y rigidez

El centro de masa es el punto en que se concentra la masa (o peso) de la estructura, de forma que si el sistema se apoya en ese punto se encuentra en equilibrio, también puede ser llamado centro de gravedad.

Centro de rigidez es el punto a través del cual la resultante de las fuerzas laterales actúa sin producir rotación del piso alrededor de un eje vertical.







100 % de cargas muertas y el 25% de cargas vivas Excentricidad inherente: Diferencia de coordenadas del centro de masa y rigidez

$$e_{ix} = Cmx - Crx$$

$$e_{iy} = Cmy - Cry$$

Excentricidad accidental: Movimiento impuesto del centro de masa (ocasionado por la incertidumbre de la localización exacta del centro de masa), de acuerdo a las normativas sismoresistentes es comúnmente un 5%, 10% o 15%

$$e_{ax} = 5\% * Lx$$

$$e_{av} = 5\% * Ly$$

Excentricidad total:

$$e_{tx} = e_{ix} \pm e_{ax}$$

$$e_{ty} = e_{iy} \pm e_{ay}$$



## Cortante basal y cortante por piso





- z. Sistilo direccioni y (1 Dir)
- 3. Sismo dirección x con excentricidad positiva (X Dir + Eccentricity)
- 4. Sismo dirección y con excentricidad positiva (Y Dir + Eccentricity)
- 5. Sismo dirección x con excentricidad negativa (X Dir Eccentricity)
- 6. Sismo dirección y con excentricidad negativa (Y Dir Eccentricity)

|                |           |              | · · · · · · · · · · · · · · · · · · · |           |           |   |
|----------------|-----------|--------------|---------------------------------------|-----------|-----------|---|
| Sismo estatico | LinStatic | Step By Step | 1                                     | -109.8562 | 0         | 0 |
| Sismo estatico | LinStatic | Step By Step | 2                                     | 0         | -109.8562 | 0 |
| Sismo estatico | LinStatic | Step By Step | 3                                     | -109.8562 | 0         | 0 |
| Sismo estatico | LinStatic | Step By Step | 4                                     | 0         | -109.8562 | 0 |
| Sismo estatico | LinStatic | Step By Step | 5                                     | -109.8562 | 0         | 0 |
| Sismo estatico | LinStatic | Step By Step | 6                                     | 0         | -109.8562 | 0 |



#### Cortante por piso

|        |                |           |              |             |          | •         |            |            |             |              |              |
|--------|----------------|-----------|--------------|-------------|----------|-----------|------------|------------|-------------|--------------|--------------|
| Story  | Output Case    | Case Type | Step Type    | Step Number | Location | P<br>tonf | VX<br>tonf | VY<br>tonf | T<br>tonf-m | MX<br>tonf-m | MY<br>tonf-m |
| Story3 | Sismo estatico | LinStatic | Step By Step | 1           | Тор      | 0         | -27.4041   | 0          | 137.0204    | 0            | 0            |
| Story3 | Sismo estatico | LinStatic | Step By Step | 1           | Bottom   | 0         | -27.4041   | 0          | 137.0204    | 0            | -82.2122     |
| Story2 | Sismo estatico | LinStatic | Step By Step | 1           | Тор      | 0         | -51.137    | 0          | 255.3917    | 0            | -82.2122     |
| Story2 | Sismo estatico | LinStatic | Step By Step | 1           | Bottom   | 0         | -51.137    | 0          | 255.3917    | 0            | -235.6233    |
| Story1 | Sismo estatico | LinStatic | Step By Step | 1           | Тор      | 0         | -63.0035   | 0          | 314.5773    | 0            | -235.6233    |
| Story1 | Sismo estatico | LinStatic | Step By Step | 1           | Bottom   | 0         | -63.0035   | 0          | 314.5773    | 0            | -424.6338    |





#### ANALISIS ESTRUCTURAL: Ejes locales

El eje global es el sistema de coordenadas donde esta ubicado el edificio en el espacio.

Para los elementos frames y de área presentan una configuración vectorial interna, que da origen al direccionamiento de deformaciones, fuerzas y esfuerzos, en términos de la posición, rotación y forma de la pieza. A esto se le conoce como eje local.



#### El programa ETABS maneja los ejes globales de la siguiente forma:

- 1. Rojo eje "X"
- 2. Verde eje "Y"
- 3. Azul eje "Z"



Los ejes locales de los frames o elementos de área, se manejan mediante colores y numeración:

- 1. Eje rojo (1)
- 2. Eje verde (2)
- 3. Eje azul (3)





## Diagrama de fuerza en frame axial (eje 1)





Fill diagram

Fill diagram + Show Values

## Diagramas de corte en frame (eje 2 y 3)





# Diagramas de momentos en frame (eje 2 y 3)





## Diagramas de momentos en losas (Shell)



Seleccione Moment (dependiendo del eje local seleccione 1-1 o 2-2) El eje representa al dirección del momento y no la rotación sobre el eje



Caso de carga para que el que desea visualizar la fuerza axial



#### Desplazamiento de los nodos





Seleccione el caso de carga

