

IRFB4227PbF

Features

- Advanced Process Technology
- Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications
- Low E_{PULSE} Rating to Reduce Power
 Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications
- Low Q_G for Fast Response
- High Repetitive Peak Current Capability for Reliable Operation
- Short Fall & Rise Times for Fast Switching
- •175°C Operating Junction Temperature for Improved Ruggedness
- Repetitive Avalanche Capability for Robustness and Reliability
- Class-D Audio Amplifier 300W-500W (Half-bridge)

Key Parameters					
V _{DS} max	200	V			
V _{DS (Avalanche)} typ.	240	V			
R _{DS(ON)} typ. @ 10V	19.7	mΩ			
I _{RP} max @ T _C = 100°C	130	Α			
T _J max	175	°C			

Description

This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low E_{PULSE} rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{GS}	Gate-to-Source Voltage	±30	V	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	65	А	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	46		
I _{DM}	Pulsed Drain Current ①	260		
I _{RP} @ T _C = 100°C	Repetitive Peak Current ⑤	130		
P _D @T _C = 25°C	Power Dissipation	330	W	
P _D @T _C = 100°C	Power Dissipation	190		
	Linear Derating Factor	2.2	W/°C	
T _J	Operating Junction and	-40 to + 175	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature for 10 seconds	300		
	Mounting Torque, 6-32 or M3 Screw	10lb·in (1.1N·m)	N	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case 4		0.45	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		62	

Notes ① through ⑥ are on page 8

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	200			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		170		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		19.7	24	mΩ	V _{GS} = 10V, I _D = 46A ③
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Coefficient		-13		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 200V, V_{GS} = 0V$
				1.0	mA	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
g _{fs}	Forward Transconductance	49			S	$V_{DS} = 25V, I_{D} = 46A$
Q_g	Total Gate Charge		70	98	nC	$V_{DD} = 100V, I_D = 46A, V_{GS} = 10V$
Q_{gd}	Gate-to-Drain Charge		23			
t _{d(on)}	Turn-On Delay Time		33		ns	V _{DD} = 100V
t _r	Rise Time		20			I _D = 46A
t _{d(off)}	Turn-Off Delay Time		21			$R_G = 2.5\Omega$
t _f	Fall Time		31			V _{GS} = 10V ③
t _{st}	Shoot Through Blocking Time	100			ns	$V_{DD} = 160V, V_{GS} = 15V, R_G = 4.7\Omega$
			570			$L = 220$ nH, $C = 0.4\mu$ F, $V_{GS} = 15V$
E _{PULSE}	Energy per Pulse		570		μJ	$V_{DS} = 160V, R_{G} = 4.7\Omega, T_{J} = 25^{\circ}C$
			910			$L = 220$ nH, $C = 0.4$ µF, $V_{GS} = 15$ V
			910			$V_{DS} = 160V, R_{G} = 4.7\Omega, T_{J} = 100^{\circ}C$
C _{iss}	Input Capacitance		4600			$V_{GS} = 0V$
C _{oss}	Output Capacitance		460		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		91			f = 1.0MHz,
C _{oss} eff.	Effective Output Capacitance		360			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V$
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		140	mJ
E _{AR}	Repetitive Avalanche Energy ①		33	mJ
V _{DS(Avalanche)}	Repetitive Avalanche Voltage ①	240		V
I _{AS}	Avalanche Current ②		39	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S @ T _C = 25°C	Continuous Source Current			65		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			260		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 46A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		100	150	ns	$T_J = 25^{\circ}C, I_F = 46A, V_{DD} = 50V$	
Q _{rr}	Reverse Recovery Charge		430	640	nC	di/dt = 100A/µs ③	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical E_{PULSE} vs. Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical E_{PULSE} vs. Drain Current

IRFB4227PbF

Fig 7. Typical E_{PULSE} vs.Temperature

Fig 11. Maximum Drain Current vs. Case Temperature

Fig 8. Typical Source-Drain Diode Forward Voltage

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 12. Maximum Safe Operating Area www.irf.com

IOR Rectifier

Fig 13. On-Resistance Vs. Gate Voltage

Fig 15. Threshold Voltage vs. Temperature

IRFB4227PbF

Fig 14. Maximum Avalanche Energy Vs. Temperature

Fig 16. Typical Repetitive peak Current vs. Case temperature

Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case

V_{(BR)DSS}

Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 19a. Unclamped Inductive Test Circuit

Fig 19b. Unclamped Inductive Waveforms

Fig 20a. Switching Time Test Circuit

Fig 20b. Switching Time Waveforms

Fig 21a. Gate Charge Test Circuit

Fig 21b. Gate Charge Waveform

Fig 21a. t_{st} and $E_{\text{PULSE}} \, \text{Test Circuit}$

Fig 21b. t_{st} Test Waveforms

Fig 21c. E_{PULSE} Test Waveforms

www.irf.com 7

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES	6
1	DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994,
2	DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
3	LEAD DIMENSION AND FINISH UNCONTROLLED IN L1,
4	DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH
	SHALL NOT EXCEED .005" (0.127) PER SIDE, THESE DIMENSIONS ARE
\wedge	MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY,
/5\	DIMENSION 61 & c1 APPLY TO BASE METAL ONLY,
-6	CONTROLLING DIMENSION - INCHES

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING
AND SINGULATION IRREGULARITIES ARE ALLOWED.

SYMBOL	MILLIMETERS		IN	1	
	MIN.	MAX,	MIN.	MAX.	NOTES
Α	3,56	4,82	,140	.190	
A1	0.51	1.40	.020	.055	
A2	2.04	2.92	.080	.115	
b	0.38	1,01	.015	.040	
ь1	0,38	0,96	.015	.038	5
b2	1,15	1.77	.045	.070	
b3	1,15	1.73	,045	.068	
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14,22	16,51	.560	,650	4
D1	8.38	9.02	.330	.355	
D2	12.19	12.88	.480	.507	7
Ε	9,66	10.66	,380	.420	4,7
E1	8.38	8.89	.330	.350	7
e	2.54 BSC		.100 BSC .200 BSC		1
e1	5.08		.20	BSC	
H1	5.85	6.55	.230	.270	7,8
L	12,70	14,73	,500	.580	
L1	-	6,35	-	.250	3
øΡ	3.54	4.08	,139	.161	
Q	2.54	3.42	.100	.135	
ø	90'-93'		Q/I	-03*	1

LEAD ASSIGNMENTS HEXFET

- 1,- GATE 2,- DRAIN 3,- SOURCE
- IGBTs, CoPACK
- 1.- GATE 2.- COLLECTOR 3.- EMITTER
- DIODES

 1.- ANODE/OPEN
 2.- CATHODE
 3.- ANODE

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE 'C'

Note: 'P' in assembly line position indicates 'Lead - Free'

TO-220AB packages are not recommended for Surface Mount Application. **Notes:**

- ① Repetitive rating; pulse width limited by max. junction temperature. ② Starting $T_J = 25^{\circ}C$, L = 0.18mH, $R_G = 25\Omega$, $I_{AS} = 39A$.
- ③ Pulse width \leq 400µs; duty cycle \leq 2%.
- 4 R_{θ} is measured at T_J of approximately 90°C.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.