COL215 DIGITAL LOGIC AND SYSTEM DESIGN

Testing of Digital Systems
15 November 2017

ATPG

Automatic test pattern generation

Given a circuit and fault models, determine the test patterns

- Boolean differences
- D-algorithm

Applying Boolean Differences

Consider stuck-at fault at e

f = Z (a,b,c,e) = a.b + a'.c + e
dZ/de = Z (a,b,c,e)|_{e=0}
$$\oplus$$
 Z (a,b,c,e)|_{e=1}
= (a.b + a'.c + 0) \oplus (a.b + a'.c + 1)
= (a.b + a'.c)' = (a' + b') . (a + c')
= a.b' + a'.c' + b'.c'

Test vector for e/0 satisfies – $dZ/de \cdot e = (a.b' + a'.c' + b'.c') \cdot e$ = $(a.b' + a'.c' + b'.c') \cdot (b.c) = 0$

Test vector for e/1 satisfies – dZ/de . e' = (a.b' + a'.c' + b'.c') . e' = (a.b' + a'.c' + b'.c') . (b'+c') = a.b' + a'.c' + b'.c'

Testing of sequential circuits

- How do you know the present state?
- Can you test just by applying inputs and observing outputs?

Testing of sequential circuits

- Useful to have a reset input for the state register to take the FSM to a known initial state
- Test transitions from initial state to other states
- Test other state transitions and outputs

Testability

Defined in terms of

- controllability: ease /difficulty of setting a particular logic signal to a 0 or a 1
 - primary inputs are always controllable
 - other signals may be controlled through primary inputs
- observability: ease /difficulty of observing the value of a logic signal
 - primary outputs are always observable
 - other signals may be observed through primary outputs

Design for Testability (DFT)

Making a design more testable

- Adhoc DFT
 - "good" design practices or guidelines
- Structured DFT
 - involves adding extra logic and signals dedicated for test according to some procedure

Adhoc DFT

- Avoid asynchronous logic feedbacks.
 - Feedback can result in oscillation.
 - ATPG are designed to work on acyclic combinational logic.
- Make FFs initializable, i.e., provide clear and reset.
- Avoid gates with a large fan-in.
 - Large fan-in makes the inputs difficult to observe and the output difficult to control.
- Provide test control for difficult to control signals.
 - For example, signals produced by a long counter require many clock cycles to control.
 - This increases the length of the test sequence.

Structured DFT

- Add extra logic and signals dedicated for test according to some procedure
- Scan based DFT is the most common approach
- Tools exist to carry out this modification of the designs

Design for testability - scan

Design for testability - scan

Scan variations

- Full scan | partial scan
- Single scan chain | multiple scan chains
 - more test time vs more input/output pins

Built-in Self Test (BIST)

- Test patterns are generated internally
- No need to deal with large volumes of test data.
- It can be used to perform at-speed test.
- BIST entails three tasks:
 - TPG
 - Test application
 - Response verification
- Our focus on Logic BIST not Memory BIST

BIST

Pseudo random sequence generator (PRSG)

Input compressor circuit/ Signature analyser

- Single input and multiple input compressors
- BILBO: Built-in logic block observer
 - combines scan, TPG, SA

What have we learnt?

- Logic design (combinational circuits)
 - truth tables, expressions, circuits, minimization
- Logic design (sequential circuits)
 - state transition tables, diagrams, state minimization
- Combinational & sequential modules
 - mux/demux, coders/decoders, FFs, registers, counters
- From logic to arithmetic
 - representations, conversions, operations and operators

What have we learnt?

- Technology
 - transistor to FPGA and things in between
- Design
 - VHDL: data flow, procedural, structural
 - from algorithmic description to circuits
 - control-data partition
- Testing
 - testing tools, design for testability

