Lucrarea nr. 6

Caracterizarea materialelor fero si ferimagnetice la semnal mic

1. Scopul lucrarii

Lucrarea pune în evidență comportarea în frecvență a miezurilor magnetice din materiale feromagnetice și ferimagnetice, folosite în inductoare și supuse unui regim de "semnal mic".

2. Tabelele și graficele cerute la fiecare punct împreună cu relațiile de calcul folosite

Tabel 6-1

f(kHz)		0,05	0,08	0,1	0,2	0,5	1	5	10	15	20
HL _m	L _m (mH)	610.71	534.01	500.54	407.30	302.07	237.06	134.57	95.267	72.716	57.651
	$R_m(\Omega)$	51.269	64.423	73.353	117.78	245.36	445.42	2151	4435	6496	8326
L_{md}	L _{md} (mH)	170.14	167.14	165.03	155.16	136.17	119.18	93.68	82.219	72.785	64.351
	$R_{md}(\Omega)$	4.845	7.097	8.681	17.251	44.880	88.147	661.76	1943	3590	5420
_	Lm ₀ (mH)	1.928	1.927	1.927	1.927	1.927	1.926	1.925	1.923	1.919	1.913
Lm ₀	Rm ₀ (Ω)	1.652	1.652	1.652	1.651	1.656	1.674	2.232	3.939	6.698	10.390
	μ'	316,79	277,13	259,77	211,37	156,72	123,08	69,910	49,54	37,892	30,136
	μ"	81,958	64,837	59,249	47,955	40,275	36,689	35,549	36,691	35,898	34,609
G 1 1	Qm	3,865	4,274	4,384	4,407	3,89	3,354	1,966	1,35	1,055	0,87
Calcule	μ' _{ef}	88,2697	86,758	85,658	80,501	70,631	61,847	48,664	42,755	37,928	33,638
	μ'' _{ef}	5,274	5,624	5,808	6,445	7,143	7,149	10,911	0,016	0,0171	0,0206
	$Q_{m_{ ext{ef}}}$	16,7359	15,425	14,747	12,489	9,887	8,65	4,46	2,5868	2,206	1,626

Pentru calcule am folosit formulele:

$$\begin{split} \omega = 2\pi f, & \mu' = L_m/L_{m0}, & \mu'' = (R_m - R_{m0})/\omega L_{m0}, & Q_m = \mu'/\ \mu'', \\ & \mu'_{ef} = L_{md}/L_{m0}, & \mu''_{ef} = (R_{md} - R_{m0})/\omega L_{m0}, & Q_m = \mu'_{ef}/\ \mu''_{ef}. \end{split}$$

Se observa ca valorile reale pentru cele doua bobine devin foarte apropiate pe masura ce frecventa incepe sa creasca.

Se observa ca valoarea reala a permitivitatii celor 2 bobine devine constanta pe masura ce frecventa creste.

Se observa ca dependența factorului de calitate al miezului magnetic pentru cele două bobine este relativ asemănătoare. Pentru frecvențe uzuale pentru aceste materiale (50 Hz, 100 Hz), Q_m tinde să crească și Q_{mef} scade, iar la frecvențe mari (10 kHz, 20 kHz), ambele tind să scadă, atingând valori foarte apropiate.

<u>Tabel 6-3</u>

F (kHz)		50	80	100	200	500	800	1000	1500	2000
ina 1	L _{m1} (mH)	0.2206	0.220	0,219	0.221	0.225	0.232	0.238	0.253	0.272
Bobina L _{m1}	$R_{m1}(\Omega)$	1.208	1.671	4.488	67.578	35.781	74.899	132.715	412.524	858.92
ia L ₀₁	L ₀₁ (mH)	0.002	0.002	0.002	0.001	0.002	0.002	0.0019	0.0019	0.0019
Bobina	R ₀₁ (Ω)	18.958	14.678	0.154	0.195	0.280	0.337	0.376	0.466	0.557
	k	1	1	1	1	1	1	1	1	1
Calcule	μ'	110,3	110	109,5	221	112,5	116	125,263	133,158	143,158
	μ"	28,264	12,945	3,450	5,3648	5,653	7,420	11,091	23,022	35,96
	Q	3,902	8,497	31,848	4,119	19,9	15,632	11,294	5,783	3,98

Pentru valorile la frecventele 50 si 80KHz am folosit modulul pentru valoarea permitivitatii magnetice imaginare.

Pentru a completa partea de calcule a tabelului am folosit urmatoarele formule:

- -partea reala a permeabilitatii magnetice relative : $\mu' = \frac{L}{k*L_0}$
- -partea imaginara a permeabilitatii magnetice relative: $\mu'' = \frac{R R_0}{2pi * f * L_0}$
- -factorul de calitatate: $Q_m = \frac{\mu'}{\mu''}$ / $Q_m ef = \frac{\mu'_{ef}}{\mu_{ef}}$

Se observa faptul ca valoarea partii reale a permitivitatii creste liniar cu cresterea frecventei.

Se observa ca de la valoarea de 500Khz valoarea imaginara incepe sa creasca liniar.

Se observa ca factorul de calitate creste abrupt la frecventa de 100KHz, apoi scade.

f (kHz)		50	80	10 0	20 0	50 0	800	1000	1500	2000
Bobina Lo2	L ₀₂ (mH)	0.076	0.074	0.073	0.069	0.067	0.068	0.070	0.076	0.087
	R_{02} (Ω)	1.732	3.209	4.149	7.465	12.718	17.627	21.280	33.610	56.207
a L ₀₃	L ₀₃ (mH)	0.255	0.251	0.249	0.244	0.254	0.285	0.325	0.626	-1.868
Bobina L ₀₃	R ₀₃ (Ω)	3.648	6.578	8.275	14.411	30.353	56.891	89.710	536.788	8102
a L ₀₄	L ₀₄ (mH)	1.543	1.552	1.563	1.666	3.171	-4.738	-1.453	-0.428	-0.217
Bobina L ₀₄	$R_{04}(\Omega$	2.725	4.852	6.242	15.368	367.021	3069	518.410	133.051	76.211
	k	1	1	1	1	1	1	1	1	1

μ'03	2.106	2.049	1.994	1.930	2.386	3.227	4.21	15.971	144.145
μ'' ₀₃	0.080	0.090	0.089	0.080	0.083	0.114	0.155	0.702	7.359
Q_{m03}	0.524	0.28	0.221	0.120	0.056	0.035	0.027	0.015	0.0097
μ'04	20.302	20.972	21.410	24.144	47.328	-69.676	-20.757	-5.631	-2.494
μ'' ₀₄	0.041	0.044	0.045	0.091	1.683	8.92	1.130	0.138	0.018
Q _{m04}	488.15	474.8	469.19	264.89	28.11	-7.80	-18.363	-40.563	-136.314

$$\begin{split} \mu'_{03} &= L_{03}/kL_{02} & \mu''_{03} &= (R_{03} - R_{02})/\omega L_{02} & Q_{m03} &= \mu'_{03}/\ \mu''_{03} \\ \mu'_{04} &= L_{04}/kL_{02} & \mu''_{04} &= (R_{04} - R_{02})/\omega L_{02} & Q_{m04} &= \mu'_{04}/\ \mu''_{04} \end{split}$$

<u>Tabel 6-4</u>

Înfășurarea	I _s [mA]	0	50	100	150	200	300	400
L _{m2}	L _{m2} [μΗ]	170	146	128	120	102	82190	68669
	H [A/m]	0	2340583	4681166	7021749	9362332	140435	1872466
Calcule	$\mu'_{ m rev}$	0.321111	0.275778	0.241778	0.226667	0.192667	0.155248	0.129708

$$H = \frac{N_s I_s}{l_e} \qquad L_{o2} = \mu_o \frac{N_p^2 A_e}{l_e} \qquad \mu'_{rev} = \frac{L_{m2}}{L_{o2}}$$

Se observa ca valorile μ'_{rev} scad pe masura ce H creste.

3. Calculul parametrilar domeni de substitute pertur miesul de dip ecla 18×11 cu dimensainite: $2\pi_{\Lambda} = 32 \text{ mm}$, $2\pi_{\delta} = 58 \text{ mm}$, $2\pi_{\delta} = 15,4 \text{ mm}$, $2\pi_{\delta} = 18 \text{ mm}$.

 $A_{N} = \overline{\pi}(\pi_{V}^{2} - \pi_{S}^{2}) = \overline{\pi}(81 - 59, 29) = 68, 189 \text{ min}^{2} = 5$

=> (An = 68, 169 m m2)

 $A_3 = \overline{\pi}(\pi_2^2 - \pi_1^2) = \overline{\pi}(841 - 256) = > [A_3 = 1886, 9 \text{ min}]$

 $\frac{l_2}{A_2} = \frac{\Lambda}{\pi \cdot h} \cdot l_m \frac{\pi s}{\pi l_2} = \frac{l_2}{A_2} = \frac{\Lambda}{\overline{u} \cdot l_3} \cdot l_m \frac{4s^2}{2g} =$

 $= \frac{1}{40,82} \cdot \ln 0,265 = -0,0132 = 12 = -0,032 \cdot A_{2}$ -1,32

 $\frac{A_{2}}{A_{2}^{2}} = \frac{\Lambda}{2\pi^{2}A^{2}} \cdot \frac{\pi_{3} - \pi_{2}}{\pi_{3} \cdot \pi_{2}} \Rightarrow \frac{-0,032 A_{2}}{A_{2}^{2}} = \frac{\Lambda}{2 \cdot 9,18 \cdot 169}.$

 $\frac{9,7-29}{7,7\cdot29} = \frac{0,032}{42} = \frac{21,3}{3832,68\cdot223,3} = \frac{9}{3832}$

=> 21,3 A2 = 23813, 998 => [A2 = 1118, 028 mm²]

$$\lambda_{2} = 35,446 \text{ m/m}$$

$$\lambda_{2} = \sqrt{\frac{x_{2}^{2} + \pi u^{2}}{2}} - \pi_{3} = \sqrt{\frac{59,29 + 81}{2}} - 7,7 = 0,645 \text{ m/m}$$

$$\lambda_{3} = \sqrt{\frac{x_{2}^{2} + \pi u^{2}}{2}} - \pi_{3} = \sqrt{\frac{59,29 + 81}{2}} - 7,7 = 0,645 \text{ m/m}$$

$$\lambda_{4} = \frac{\pi}{2} \left(\pi_{4}^{2} - \pi_{2}^{2} + 2\pi_{3} \Re \right) = \frac{\pi}{2} \left(81 - 59, 29 + 200, 2 \right) = \frac{\pi}{2} \cdot 221, 91 = 0, \quad \Lambda_{4} = 348, 398 \text{ m/m}$$

$$\lambda_{5} = \frac{\pi}{2} \left(\pi_{2}^{2} - \pi_{1} + 2\pi_{2} \Re \right) = \frac{\pi}{2} \left(841 - 256 + 2.28.13 \right) = \frac{\pi}{2} \cdot 1039 = 0, \quad \Lambda_{5} = 2102, 25 \text{ m/m}$$

$$\lambda_{1} = \pi_{2} - \sqrt{\frac{32 + \pi_{1}^{2}}{2}} = 29 - \sqrt{\frac{1097}{2}} = 29 - \sqrt{\frac{548,5}{2}} = 29 - \sqrt{\frac{548,5}{2}} = 29 - 23, 42 = 0, \quad \Lambda_{1} = \frac{\pi}{2}, 58 \text{ m/m}$$

$$\lambda_{7} = \frac{\pi}{4} \left(201 + \Re \right) = \frac{\pi}{4} \left(2.5,58 + 13 \right) = \frac{\pi}{4} \cdot 24, 16 = 0$$

$$\lambda_{1} = \frac{\pi}{4} \left(28 + \Re \right) = \frac{\pi}{4} \left(1,35 + 13 \right) = 11,864 \text{ m/m} = 0$$

$$\lambda_{1} = \frac{\pi}{4} \left(28 + \Re \right) = \frac{\pi}{4} \left(1,35 + 13 \right) = 11,864 \text{ m/m} = 0$$

$$\lambda_{1} = \frac{\pi}{4} \left(28 + \Re \right) = \frac{\pi}{4} \left(1,35 + 13 \right) = 11,864 \text{ m/m} = 0$$

$$\lambda_{1} = \frac{\pi}{4} \left(28 + \Re \right) = \frac{\pi}{4} \left(1,35 + 13 \right) = 11,864 \text{ m/m} = 0$$

In Crororea presentata de observa efectul intrefierului, acesta reduciónd magnotizatia i resultánd volori acesta reduciónd magnotizatia i resultánd volori malt mai scóssute pentru pentru possul sobinar a voloria pu' a se asemenea, pentru acesta sobinar a voloria pu' a pentru foctorul de aditate sunt mai reduse.

In cosul bobinei en miez, atat pu' cot a pu' error adota en frecienta.

Volonie megative pentru pu' ûn coay bobinelor Los x' Lou apar desorea s-a deposit frecuenta de resemonta, iar magnetisease.

se observà ca atunci cand m' scode foorte mult, m' croste ri a scode.

Comportarea celer 3 diperci de Cabrine (cu miez, fara miez distrefier) s-a onolizat un sorient cu miez distrefier) s-a onolizat un sorient caracteristicile poumedsi litatii complexe relative magnetice si a foctorului de colitate in funcție de freventă.

5. Intrebari di probleme.

1.
$$\frac{dg \, dm}{\mu'} = \frac{\lambda}{2\pi} \left(\alpha \cdot \vec{b}e + e \cdot f + \chi \right)$$
 $\frac{dg \, dm}{\mu'} = \frac{\lambda}{2\pi} \left(\alpha \cdot \vec{b}e + e \cdot f + \chi \right)$
 $\frac{dg \, dm}{\mu'} = \frac{\lambda}{2\pi} \left(\alpha \cdot \vec{b}e + e \cdot f + \chi \right)$
 $\frac{dg \, dm}{dme} = \frac{\lambda}{dme} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial me} = \frac{\lambda}{dme} \left(e \cdot f + \chi \right)$
 $\frac{\partial dg \, dme}{\partial m$

2. Hentificare Godina au miez mag. l'intrefier

$$\delta < < 1e$$
 $\Rightarrow \mu'_{e} = \frac{C_{1}}{A_{s} + \frac{C_{1}}{\mu'}}$ (ph. 6 cm d'interfier)

6. Penteur o bobina en industrata L = 100 mH q' nezistenta socie de pierdori n = 0,85 z sa a colentize factorul de colitate oi tongenta unghislui de pierdori la freventele de 100 Hz q' 250 KHz.

$$L = 100 \mu H, \quad x = 0.86 \text{ }$$

$$Q = \frac{102 L}{7} = \frac{2\sqrt{1} \cdot 2 \cdot L}{7}$$

$$Q_1 = \frac{2\sqrt{1} \cdot 100 \cdot 100 \cdot 10^{16}}{0.85} = 0.074$$

$$Q_2 = \frac{2\sqrt{1} \cdot 250 \cdot 16^{16}}{0.85} = 184.7$$

$$Q_3 = \frac{1}{Q_1} = \frac{1}{Q_1} = 13.531$$

$$Q_3 = \frac{1}{Q_2} = \frac{1}{Q_2} = \frac{1}{184.7} = 0.0054.$$

* re dosorvà cà foctome de colitate croste odotà cu fecuentà.

7. Pentru o bobina en volanca momimola de L=125 MH, frecuenta proprie de rezonanta fr=135 KHz d, redictenta sovie de pierderi R=27 IZ, se ce celculaze copacitatea parazita a bobinei d si factorul de exitate al acosteia la frecuenta de lucru de 23 KHz.

L=125 mH , fR=135 KHz , R= 2452. L=23 KHz.

$$f_{R} = \frac{1}{2\pi \sqrt{1.cp}} = f_{R} \cdot 2\pi \cdot \sqrt{1.cp} = 1 = >$$

$$=> 4\pi^{2} \cdot f_{R}^{2} \cdot 1.cp = 1 => e_{P} = \frac{1}{4\pi^{2} \cdot f_{R}^{2} \cdot 1} =>$$

=>
$$e_p = \frac{1}{4\pi^2 \cdot 135^2 \cdot 10^6 \cdot 125 \cdot 10^3} = 1,388 \cdot 10^{-12} F \Rightarrow$$

 $A = \frac{wL}{R} = \frac{2\alpha f.L}{R} = \frac{2\alpha \cdot 23 \cdot 18^{3} \cdot 125 \cdot 16^{3}}{27} = 669,04$