SWP Assignment 1

Alexander Frewein (01430019) Klaus Fabian Frühwirt (01131523) Stephany Amizic (01331786)

Institute of Software Technology alexander.frewein@student.tugraz.at fabian.fruehwirth@student.tugraz.at stephany.amizic@student.tugraz.at

Beispiel 1

a.)

$$\begin{split} L &= \{\underline{a}(\underline{a}\underline{a}|\underline{b})^*\underline{c}\} \\ S &\to \underline{a}A \\ S &\to \underline{a}B \\ S &\to \underline{a}C \\ A &\to \underline{a}E \\ A &\to \underline{c}D \\ B &\to \underline{b}B \\ B &\to \underline{c}D \\ C &\to \underline{c}D \\ D &\to \epsilon \end{split}$$

 $E \to \underline{a}A$

b.)

$$\begin{split} L &= \{\underline{a}^{(2n)}\underline{b}\ \underline{c}^*\ (\underline{b}\underline{b}|\underline{d})\ |n>0\} \\ S &\to \underline{a}A \\ A &\to \underline{a}A \\ A &\to \underline{b}C \\ A &\to \underline{b}B \\ A &\to \underline{b}D \\ B &\to \underline{b}E \\ B &\to \epsilon \\ C &\to \underline{c}C \\ C &\to \underline{c}B \\ C &\to \underline{c}D \\ D &\to \underline{d}D \\ D &\to \epsilon \\ E &\to \underline{b}B \end{split}$$

Beispiel 2

a.)

Dies ist eine **allgemeine** Grammatik da | α | \leq | β | **nicht** gilt und somit keine Restriktion $\alpha \to \beta$ gilt

b.)

Dies ist eine **reguläre** Grammatik da | α | \leq | β |, $\alpha \in V_N$ β hat form aA oder a, mit a $\in V_T \bigcup \{\epsilon\}$, A $\in V_N$

c.)

Dies ist eine **kontextfreie** Grammatik da $|\alpha| \leq |\beta|, \alpha \in V_N$

d.)

Dies ist keine **gültige** Grammatik da $R \to Q\underline{y}$ nicht laut Definition $\alpha \beta \in (V_N \cup V_T)$ diese Form nicht in der Grammatik definiert ist.

e.)

Dies ist eine **allgemeine** Grammatik da $|\alpha| \le |\beta|$ **nicht** gilt und somit keine Restriktion $\alpha \to \beta$ gilt

f.)

Dies ist keine **gültige** Grammatik da $\underline{num} \rightarrow \underline{var}$ nicht in den Grammatik definiert ist

Beispiel 3

First und Follow Mengen:

	FIRST	FOLLOW
S	<u>a b c d e</u>	\$
A	<u>a</u> <u>b</u> <u>c</u>	<u>d</u> <u>e</u>
В	<u>d</u> <u>e</u>	<u>c</u> <u>d</u> <u>e</u>
С	<u>b</u>	<u>c</u> <u>d</u> <u>e</u>
D	<u>c</u>	<u>d</u> <u>e</u>
E	<u>d</u> <u>e</u>	<u>c</u> <u>d</u> <u>e</u>

LL(1) Tabelle

	<u>a</u> <u>b</u>		<u>c</u>	<u>d</u>	<u>e</u>	\$	
S	$S \to AB$	$S \to AB$	$S \to AB$	$S \to AB$	$S \to AB$	$S \to AB$	
A	$A \to \underline{a}A$	$A \to CD$	$A \to CD$				
В				$\mathrm{B} \to \mathrm{E}$	$\mathrm{B} \to \mathrm{E}$		
С		$C \to \underline{b} B$	$C \to \epsilon$	$C \to \epsilon$	$C \to \epsilon$		
D			$D \to \underline{c}C$	$D \to \epsilon$	$D \to \epsilon$		
E				$E \to \underline{d}$	$E \to \underline{e}$		

Beispiel 4

Gegeben ist die folgende LL(1) Tabelle, welche eine grobe Abstraktion der Variablendeklaration in Scala beschreibt. Die unterstrichenen Zeichenketten in den Spalten der ersten Zeile stellen jeweils ein Terminalsymbol dar.

	var	$\underline{\mathrm{val}}$	one	two	String	$\underline{\mathrm{Int}}$	0	1	" —	\equiv	\$
S	AB										
A	CN <u>:</u>	CN <u>:</u>									
В					String="V"	Int=U					
$\overline{\mathbf{C}}$	var	val									
N			one	two							
U							<u>0</u> V	<u>1</u> V			
V							<u>0</u> V	<u>1</u> V	ε		ε

Überprüfen Sie mittels der gegebenen LL(1) Tabelle ob folgende Ausdrücke gültige Sätze der definierten Grammatik sind:a) var one : String $\equiv 1$

b) val two : int = 10

Die Lösung für die Unterpunkte a und b soll im folgenden Format erarbeitet und abgegeben werden:

Stack	Input	Produktion/Kommentar
\$S	val one: Int="11"\$	

a.)

Stack	Input	Produktion/Kommentar
\$S	var one : String = $1 $ \$	S := AB
\$BA	var one : String = 1 \$	$A := CN_{\underline{:}}$
\$B <u>:</u> NC	var one : String = $1 $ \$	$C := \underline{\text{var}}$
\$B <u>:</u> N var	$\frac{\text{var}}{\text{one}} : \text{String} = 1$ \$	
\$B <u>:</u> N	one : String= 1\$	$N := \underline{one}$
\$B :one	one: String= 1\$	
\$B	String = 1\$	$B:=\underline{String}\underline{=}"V"$
\$"V" =String	String=1\$	
\$"V"	1\$	Keine Regel

4 SWP Assigmnment 1

Diese Satz ist nicht Valid!

b.)

Stack	Input	Produktion/Kommentar
\$S	val two : int = 10\$	S:=AB
\$BA	val two: int= 10\$	$A := CN_{\underline{:}}$
\$B <u>:</u> NC	val two: int= 10\$	$C := \frac{\text{val}}{}$
\$B <u>:</u> N val	$\frac{\text{val two} : \text{int} = 10\$}{}$	
\$B <u>:</u> N	two: int = 10\$	$N:=\underline{two}$
\$B:two	two: int = 10\$	
\$B	int = 10\$	$B := \underline{int} = U$
\$U=int	int= 10\$	
\$U	10\$	U:= <u>1</u> V
\$V1	10\$	
\$V	0\$	$V := \underline{0}V$
\$V0	0\$	
\$V	\$	$V:=\epsilon$
\$	\$	Valid

Diese Satz ist Valid!

Beispiel 5

Die gegebene Gramatik ist keine LL(1) Gramatik weil:

- X ist Mehrdeutig (Linksfaktorisierung)
- Y ist indirekt Links recrusiv (über Z)

\ddot{A} quivalente LL(1) Grammatik:

$$S \rightarrow XY$$

$$V \rightarrow \underline{x}$$

$$V \rightarrow \underline{-}$$

$$W \rightarrow \underline{0}W$$

$$W \rightarrow \underline{1}W$$

$$W \rightarrow \underline{\epsilon}$$

$$X \rightarrow \underline{x}X_{2}$$

$$X_{2} \rightarrow V$$

$$X_{2} \rightarrow W$$

$$Y \rightarrow \underline{+}Y_{2}$$

$$Y_{2} \rightarrow \underline{y}W\underline{-}Y_{2}$$

$$Y_{2} \rightarrow \underline{\epsilon}$$

LL(1) Tabelle

	X	=	0	<u>1</u>	<u>+</u>	<u>y</u>	\$
S	$S \to XY$						
V	$V \to X$	$V \rightarrow \underline{-}$					
\overline{W}			$W \to \underline{0}W$	$W \to \underline{1}W$	$W \to \epsilon$	$W \to \epsilon$	$W \to \epsilon$
X	$X \to \underline{x}X_2$						
X_2	$X_2 \to V$	$X_2 \to V$	$X_2 \to W$	$X2 \to W$	$X_2 \to W$		
Y					$Y \to \underline{+}Y_2$		
Y_2						$Y_2 \to \underline{y}W \underline{-} Y_2$	$Y_2 \to \epsilon$

Beispiel 6