Lycée BILLES

Bilingual Lycee of Excellence in Sciences

Lycée Bilingue d'Excellence pour les Sciences

TS1/ Arithmétique

Exercice 1

Soit n un entier naturel.

- 1) Vérifier que $n^3-n = (n+2)(n^2-2n+3)-6$.
- 2) En déduire les valeurs de n pour lesquelles $\frac{n^3 n}{n + 2}$ est un entier.

Exercice 2

- 1) Démontrer que a | b si et seulement si pour tout k de \mathbb{Z} : a | (b-ka).
- 2) Déterminer les entiers relatifs a, tels que (a-5)|(a+7).
- 3) Déterminer les entiers relatifs b, tels que (b+2)(4b-6).

Exercice 3

Résoudre dans IN² les équations :

1) $x^2 - y^2 = 1$; 2) $x^2 - y^2 = 13$; 3) $x^2 - y^2 = p$, où p est un nombre premier.

Exercice 4

Déterminer le reste de la division euclidienne de : a. 35^{27} par 7; b. 69^{35} par 11; c. 77^{20} par 13.

Exercice 5

- 1) Vérifier que $1000 \equiv 1 \ [37]$ et en déduire que pour tout entier naturel n, on a $10^{3n} \equiv 1 \ [37]$.
- 2) En déduire le reste de la division euclidienne de 1 001 037 par 37.

Exercice 6

- 1) Vérifier que $1000 \equiv -1$ [13]
- 2) En déduire selon la parité de n les restes de la division de 10³ⁿ par 13.
- 3) Démontrer que pour tout entier naturel n, $10^{3n+3} + 10^{3n}$ est divisible par 13.

Exercice 7

- 1) Vérifier que 999 est divisible par 27.
- 2) En déduire que, pour tout entier naturel n, $10^{3n} \equiv 1$ [27].
- 3) A = $10^{100} + 100^{10}$. Quel est le reste de la division euclidienne de A par 27 ?

Exercice 8

- 1) Montrer que $3^5 \equiv 1$ [11].
- 2)a)En déduire que, pour tous entiers naturels k et r, $3^{5k+r} \equiv 3^r [11]$.
- b) Soit n un entier naturel. Quel est le reste de la division euclidienne de 3ⁿ par 11 ?
- 3) Déterminer les valeurs de n pour lesquelles $3^n + 7$ soit divisible par 11.

Exercice 9

Déterminer les entiers n tels que $N = n^2 - 3n + 6$ soit divisible par 5.

Exercice 10

Pour quelles valeurs de n entier naturel :

- 1) $5^{2n} + 5^n + 1$ est un multiple de 3?
- 2) $2^{2n} + 2^n + 1$ est divisible par 7?

Exercice 11

- 1) Démontrer que le carré de tout entier naturel est de la forme 5n-1 ou 5n ou 5n+1.
- 2) Démontre que le cube de tout entier naturel est de la forme 7n-1 ou 7n ou 7n +1.

Exercice 12

Démontrer que, pour tout entier naturel n, on a : $7^{3n} \equiv 1$ [19].

2) Démontrer que, quels que soient les entiers naturels n et k, on a $7^{3n+k} \equiv 7^k$ [19].

Quels sont les restes possibles dans la division euclidienne de 7^n par 19 ?

3) Démontrer que si a, b, c sont trois entiers naturels consécutifs, alors $7^a + 7^b + 7^c$ est un multiple de 19.

Exercice 13

- 1) Vérifier que 7 divise les nombres $:2^6-1$; 3^6-1 ; $4^6-1:5^6-1$.
- 2) Soit n un entier naturel et A_n défini par : $A_n = 2^n + 3^n + 4^n + 5^n$.

Montrer que A_{n+6} — A_n est divisible par 7.

3) Soit n un entier naturel, q et r son quotient et son reste, dans la division euclidienne par 6.

Montrer que A_n et A_r ont même reste dans la division euclidienne par 7.

- 4) Déterminer les valeurs de n pour lesquelles A_n est divisible par 7.
- 5) Soit $B_n = 100^n + 101^n + 102^n + 103^n$.
- a) Montrer que $A_n \equiv B_n$ [7].
- b) En déduire les valeurs de n pour les quelles B_n est divisible par 7.

Exercice 14:

Calculer le PGCD de :

- a) 171 et 99; b) 924 et 336;
- c) 480 et 57; d) 227 et 3325.

Exercice 15

Deux entiers a et b ont pour PGCD $\,\delta$. Quel est le PGCD des entiers :

- 1) x = 7a + 3b et y = 2a + b;
- 2) x = 13a + 5b et y = 5a + 2b.

Exercice 16

Soit n un entier naturel non nul.

- 1) Démontre que les entiers n et n +1 sont premiers entre eux.
- 2) En déduire que la fraction $\frac{n}{2n+1}$ est irréductible.

Exercice 17

Soit n un entier naturel non nul.

On pose a = 2n-1 et b = 9n + 4).

Lycée BILLES

-

Bilingual Lycee of Excellence in Sciences

Lycée Bilingue d'Excellence pour les Sciences

- 1) Démontrer que le PGCD de a et b est un diviseur de 17.
- 2) En utilisant le théorème de Gauss, déterminer les entiers n pour lesquels le PGCD de a et b est 17.

Exercice 18

Soit n un entier naturel non nul.

Montrer que les nombres suivants sont premiers entre

- a) n et n+1; b) 3n+1 et 9n+4; c) 3n+2 et 2n+1;
- d) 2n+1 et n(n+1); e) 2n+5 et n^2+5n+6 .

Exercice 19

Utiliser l'algorithme d'Euclide pour déterminer une solution particulière de chacune des équations suivantes :

- a) 24x + 17y = 1; b) 59x + 68y = 1;
- c) 137x 191y = 1; d) 1274x 275y = 1

Exercice 20

Résoudre dans \mathbb{Z}^2 les équations :

a) 11x = 16y; b) 65x + 25y = 0; c) 9x + 21y = 0.

Exercice 21

- 1)a)Appliquer l'algorithme d'Euclide aux nombres 37 et 23.
- b) En déduire une solution particulière dans \mathbb{Z}^2 de l'équation : 37x + 23y = 1.
- 2) Résoudre dans \mathbb{Z}^2 l'équation 37x + 23y = 1.

Exercice 22

- 1)a)Déterminer une solution particulière dans IN^2 de l'équation 41x 27y = 1;
- b) En déduire une solution particulière, dans IN^2 de l'équation 41x 27y = 5
- 2) Résoudre dans IN^2 l'équation 41x 27y = 5.

Exercice 23

On désigne par S l'ensemble des solutions, dans \mathbb{Z} , de l'équation : 138x –55y = 5 (E).

- 1)a)Montrer que si (x ;y) est un élément de S, alors x est divisible par 5.
- b) En déduire une solution (x_o,y_o) de (E).
- 2) Résoudre (E).
- 3) k est un entier naturel, on considère les nombres : a = 55k + 10 et b = 138k + 25.
- a) Montrer que, pour tout entier naturel k, (a ;b) appartient à S.
- b) En déduire les valeurs possibles de PGCD(a;b).
- c) Déterminer pour quelles valeurs de k :

PGCD(a;b) = 5.

Exercice 24

Résoudre dans \mathbb{Z} :

a) $14x \equiv 3 \ [4]$; b) $6x \equiv 3 \ [4]$; c) $3x \equiv 1 \ [5]$.

Exercice 25

- 1) Déterminer le plus petit entier naturel dont les restes sont 5 ; 13 ; 17 lorsqu'on le divise respectivement par : 15 ; 23 ; 27.
- 2) Déterminer le plus petit entier naturel dont les restes sont 8 ; 12 ; 18 lorsqu'on le divise respectivement par : 14 ; 18 ; 24.

Exercice 26

Une entreprise fabrique des savons de forme cubique et dispose de caisses de dimensions $48\text{cm} \times 84\text{cm} \times 60\text{cm}$. Quelle est la plus grande dimension à donner à un savon afin de pouvoir remplir exactement une caisse ?

Exercice 27

On considère la suite (u_n) d'entiers naturels définis par u_o = 14 et u_{n+1} =5 u_n -6 ; n \in IN

- 1) Calculer u_1 , u_2 , u_3 , et u_4 . Quelle conjecture peut-on faire émettre concernant les derniers chiffres de u_n ?
- 2)a)Montrer que \forall n \in IN, $u_{n+2} \equiv u_n$ [4].
- b) En déduire pour tout $k \in IN$ $u_{2k} \equiv 2$ [4] et $u_{2k+1} \equiv 0$ [4].
- 3)a)Montrer par récurrence que \forall $n \in IN 2u_n = 5^{n+2} + 3$.
- b) En déduire que \forall n \in IN, $2u_n \equiv 28$ [100].
- 4) Déterminer les deux derniers chiffres de l'écriture décimale de u_n suivant les valeurs de n.
- 5) Montrer que le PGCD de deux termes consécutifs de la suite (u_n) est constant. Préciser sa valeur.

Exercice 22

- 1) Trouver une solution particulière dans \mathbb{Z}^2 de l'équation $(E_1): 15x + 8y = 1$.
- 2) Résoudre dans \mathbb{Z}^2 l'équation (E₂): 15x + 8y = 1000;
- 3) De combien de façons peut-on obtenir exactement 1000 points en lançant des fléchettes sur la cible ci-dessous ? (le nombre de fléchettes n'est pas limité et on suppose qu'elles atteignent toutes les cibles.)

15 points pour une fléchette qui atteint le disque central et 8 points pour une fléchette qui atteint la couronne.

Exercice 28

Déterminer l'écriture en base cinq de :

a) 126; b) 221; c) 1000.

Exercice 29

Ecrire dans le système à base seize, à base deux, et à base cinq le nombre 1238.

Exercice 30

Un nombre s'écrit $\overline{11011}$ en base deux, l'écrire en base dix, en base cinq et en base seize.

Exercice 31

Un nombre s'écrit $\overline{3BD}$ en base seize, l'écrire en base dix, en base deux et en base cinq.