计算方法数值实验 1-实验报告

221900180 田永铭 2024 年 5 月 15 日

一、实验题目

利用 matlab 实现复化梯形公式、复化 Simpson 公式、Romberg 加速算法,并将算法应用到求解三个数值积分上。需要输出数值结果、等分区间数、下三角输出 (Romberg 算法),误差取为 1e-7。数值积分如下: $1.I1 = \int_{0.1}^4 \frac{\sin x}{x} dx$ $2.I2 = \int_{-2}^4 e^{-x^2} dx$ $3.I3 = \int_0^1 \frac{\ln(1+x)}{x} dx$

二、实验原理及相关说明

- 实验原理: 复化梯形公式和复化 Simpson 公式都是通过等分节点插值型求积公式推导出来的求积公式,而 Romberg 算法利用二分区间前后的截断误差的关系,推导出了一种建立 T 数表的更快的求积方法,有良好的性质。
- 相关说明 1——实验环境和作业独立性: 本人此次实验全部采用 matlab 实现,全程独立实现无参考。
- 相关说明 2——关于方法的说明: 主要根据书上公式来一一实现,特别要注意第三个积分要单独处理 0 处的数值。梯形和 simpson 公式的分点我按照 2 的幂次来取,误差通过误差公式来求二阶或者四阶导函数的最大值来估计,从而区间数依从取 1, 2, 4, 8... 直到满足精度要求 (实际可能要取得点更少,我取这么多一定能够保证)。Romberg的误差直接使用公式即可。
- 相关说明 3——关于结果的说明: 关于结果的说明: 结果均保证了误差在 1e-7 以内且三种方法高度统一。与 matlab 直接调用 integral 积分函数得出的结果在精度范围内完全一致。

三、核心代码以及注释说明

3.1复化梯形公式

```
a = 0.1; b = 4; acc = 1e-7; % 积分1
syms x; f = Q(x)\sin(x)/x; % 定义函数
% 计算函数导数的值并找到最大值方便后面误差判断
df = diff(f,x,2); df = matlabFunction(df);
xx = linspace(a,b,1000); yy = zeros(size(xx));
for i = 1: length(xx)
       yy(i) = double(df(xx(i)));
end
\max_{\text{value}} = \max_{\text{vy}}(yy);
%调用复合梯形公式, 结果打包成 display 返回
[y,n,points] = trapezoid(f, a, b, acc, max_value);
display = [y, n, points];
function [y,n,points] = trapezoid(f, a, b, acc, max_value)
n = 1; %区间数字
                       points = n + 1; %区间点数
y = (b-a)/2*(f(a)+f(b));% 梯形公式求初值
err = b-a;%初始误差
while err >= acc
       n = n * 2; \% = \%
       h = (b-a)/n;
        Sigma = 0;
        for k = 1:(n-1)
               Sigma = Sigma + f(a + k*h);
        end
        y = (h/2)*(f(a)+f(b)+2*Sigma);
        err = abs((b-a)/12*h*h*max_value) ; %复化梯形公式
end
        points = n + 1; %更新点数
        return
end
```

3.2复化 Simpson 公式

```
% 略去和复化梯形公式完全类似的部分,注意用四阶导最大值表示误差
% 以下为核心公式部分:
while err >= acc
       n = n * 2;
       h = (b-a)/n;
       Sigma = 0;
       for k = 1:(n-1)
              Sigma = Sigma + f(a + k*h);
       end
       Sigma2 = 0;
       for k = 0:(n-1)
              Sigma2 = Sigma2 + f(a + (k+1/2)*h);
       end
       y = (h/6)*(f(a)+f(b)+2*Sigma+4*Sigma2);
       err = abs((b-a)/180*h*h*h*h/2/2/2/2*max_value);
       end
```

对这两个公式的说明: 我采用的是两种公式的初始的积分余项来估算误差,另一种方式是利用二分前后截断误差的关系来近似误差,这两种方式都行。不过,这都是能保证了精度要求,当然也可能不需要这么多区间就已经能达到精度要求。所以区间可能略大,但是不影响结果。

3.3Romberg 加速算法

```
end T(1,k+1) = (1/2)*(T(1,k)+(b-a)/pow2(k-1) * Sigma ); \mathbf{for} \ j = 1:k T(j+1,k-j+1) = (power(4,j)*T(j,k-j+1+1)-T(j,k-j+1)) / (power(4,j)-1); end %误差公式为 T(k,0) 和T(k-1,0) 的差值的绝对值 err= \mathbf{abs}(T(k+1,1)-T(k,1)); y = T(k+1,1); end return end
```

对 Romberg 算法的说明: 由于 matlab 中的矩阵下标从 1 开始定义而不是从 0 开始,所以下标略有区别。按照求 T 数表的公式来求解 T 的值,按照误差公式判断结束即可。

四、实验结果

4.1复化梯形公式

	复化梯形							
	完整数值	小数点后7位有效数字	(区间个数,端点个数)					
积分1	1.65825867158451	1.6582587	4096; 4097					
积分2	1.76830830173320	1.7683083	16384; 16385					
积分3	0.82246704781058	0.8224670	1024; 1025					

4.2复化 Simpson 公式

复化辛普森									
完整数值	小数点后7位有效数字	(区间个数,	端点个数)						
1.65825867462071	1.6582587	32;	33						
1.76830830247522	1.7683083	256;	257						
0.82246704051767	0.8224670	16;	17						

4.3Romberg 加速算法

龙伯格加速					
完整数值	小数点后7位有效数字				
1.65825867784024	1.6582587				
1.76830830259266	1.7683083				
0.82246703358951	0.8224670				

图 1: 计算结果

1.577810408	1.632981604	1.651752979	1.656621959	1.657848874	1.658156188		
1.651372002	1.658010104	1.658244952	1.658257846	1.658258626	0		
1.658452645	1.658260609	1.658258705	1.658258678	0	0		
1.658257561	1.658258675	1.658258678	0	0	0		
1.658258679	1.658258678	0	0	0	0		
1.658258678	0	0	0	0	0		
以上是积分1							
0.054947254	1.131111951	1.736652831	1.765192121	1.767469877	1.768094922	1.768254721	1.76829489
1.489833516	1.938499791	1.774705217	1.76822913	1.76830327	1.768307988	1.768308283	
1.968410876	1.763785579	1.76779739	1.768308212	1.768308303	1.768308303	0	
1.760537559	1.76786107	1.768316321	1.768308304	1.768308303	0	0	
1.76788979	1.768318106	1.768308273	1.768308303	0	0	0	
1.768318525	1.768308263	1.768308303	0	0	0	0	
1.76830826	1.768308303	0	0	0	0	0	
1.768308303	0	0	0	0	0	0	
以上是积分2							
0.84657359	0.828751903	0.824058099	0.822866129	0.822566892			
0.822811341	0.822493497	0.822468806	0.822467146	0			
0.822472308	0.82246716	0.822467036	0	0			
0.822467078	0.822467034	0	0	0			
0.822467034	0	0	0	0			
以上是积分3							
注意:	由于我代码的书写方式,	导致我的Romberg不是了	、三角,迭代过程顺序见图片	,最终结果都是在第一	5)		

图 2: T 数表结果 (分别顺序对应三个积分)

图 3: T 数表结构

对结果的说明: 三种结果都保证了达到小数点后 7 位有效数字,且计算结果完全统一。相比之下,三种方法中复化梯形方法所需的等分节点最多,复化 Simpson 方法较少,而 Romberg 方法是一种收敛速度极快的算法。T 数表的结构这里没用下三角,形成的是另外一种三角,但是实质是一样的。结果完全符合预期。

五、总结

- 1. 通过这次实验,我对复化梯形公式、复化 Simpson 公式、Romberg 加速算法的理解 更深了一步,理解了算法的原理、收敛速度、注意点和操作细节等等。
- 2. 我主动选择了使用 matlab 这个之前未使用过的工具,了解了它的基础使用方法,并 利用它完成了数值实验。正如老师所说,这是一款数学上的很好的工具。
- 3. 通过这次实验,我理论联系实际,将书本知识应用到程序上,激发了对计算方法这门课程的极大的兴趣。同时也明白了,数值实验是有误差的,是"差不多"的,但是做实验必须是仔细和精确到每一个细节的,例如第三个积分的0处值的处理等等。