南开大学数学科学学院

数理统计-2024-2025学年度期中测试

注意事项:

1. 回忆人: xzqbear

2. 考试时间: 100 分钟

3. 试题相关答案在微信公众平台有解答.

一、填空题(共4道题,每空3分)

1. 设 $X_1, X_2, \cdots, X_n \overset{\text{i.i.d}}{\backsim} N(\mu, \sigma^2)$,则样本方差 S_n^2 所服从的分布为______. 方差为______.

2. 自由度 (1,n) 的 F 分布的分位数 $F_{\alpha}(1,n)$ 与 t 分位数间的关系为: $F_{\alpha}(1,n)=$ ______.

3. 设 X_1, X_2, \cdots, X_n 为来自 CDF 为 F 的 IID 样本,则最大次序统计量的抽样分布为______. 样本经验分布 $F_n(x) =$ ______. 其中心极限定理的形式为 ______.

4. 设 X_1, X_2, \dots, X_n 为来自 $N(\mu_0, \sigma^2)$ 的 IID 样本, 其中 μ_0 已知, 则充分统计量为 ______.

二、解答题

5. (15分)

已知 $X_1, X_2, \cdots, X_n \stackrel{\text{i.i.d}}{\backsim} E(\lambda)$,设 $X_{(0)} = 0$, $Z_i = X_{(i)} - X_{(i-1)}, i = 1, 2, \cdots, n$.

- (1) 证明: Z_1, Z_2, \dots, Z_n 相互独立.
- (2) 求 $2\lambda(n-i+1)Z_i$ 的分布.

(3) 证明:
$$S^2 = 2\lambda \sum_{i=1}^n [X_{(i)} - X_{(1)}] \backsim \chi^2(2(n-1))$$
.

6. (8分)

设 X_1,X_2,\cdots,X_n $\stackrel{\text{i.i.d}}{\backsim}$ F(x),次序统计量记为 $X_{(1)},X_{(2)},\cdots,X_{(n)}$,求 $\mathbb{E}[F(X_{(i)})]$ 以及 $\mathrm{Var}[F(X_i)]$

7. (13分)

设 $Y_1, \dots, Y_n \stackrel{\text{i.i.d}}{\backsim} E(\lambda)$ 且 $Z_1, \dots, Z_n \stackrel{\text{i.i.d}}{\backsim} E(\mu)$:

- (1) 试求 μ 的矩估计和 MLE.
- (2) 若仅观测到 $X_i = \min\{Y_i, Z_i\}$ 和 $\Delta_i = \mathbb{1}_{(X_i = Y_i)}$,试求 λ, μ 的 MLE.
- 8. (8分)

已知 $X_1, X_2, \cdots, X_n \stackrel{\text{i.i.d}}{\backsim} N(0,1)$,设 $U = \sum_{i=1}^n X_i^2$,且 $V_i = \frac{X_i^2}{U}$,求证: U 和 (V_1, \cdots, V_n) 相互独立.

9. (10分)

设 $X_1,\cdots,X_n \stackrel{\text{i.i.d}}{\backsim} N(0,\sigma^2)$:

(1) 证明: $\sum_{i=1}^{n} X_i^2 \, \text{为 } \sigma^2 \, \text{的有效估计}.$

- (2) 求 σ 的 UMVUE.
- 10. (17分)

设 $X_1,\cdots,X_n \stackrel{\text{i.i.d}}{\backsim} (\mu,\sigma^2)$,且 $\mathbb{E} X^4 < \infty$,证明:

- (1) 样本均值是 μ 的相合渐近正态估计.
- (2) 样本方差 S_n^2 是 σ^2 的无偏估计,相合估计和相合渐近正态估计.

注: 本题未打错,不是 $N(\mu, \sigma^2)$ 而是 (μ, σ^2)

11. (8分)

设某产品的寿命 X 服从指数分布 $E(\lambda)$,抽取 n 个产品并得到样本 X_1,X_2,\cdots,X_n ,试求其平均寿命 $\frac{1}{\lambda}$ 的置信水平为 $1-\alpha$ 的置信区间.