Zbieżność procesu interpolacji - Raport

Mateusz Karandys

18 listopada 2023

1. Wprowadzenie

Rozważmy następujący problem. Mamy dane:

- 1. $x_i \in \mathbb{R}$ dla $i = 0, 1, \dots, n$ zwane węzłami interpolacji
- 2. $y_i = f(x_i)$ gdzie f jest funkcją interpolowaną (przybliżaną)

Chcemy znaleźć funkcję p, zwaną funkcją interpolującą, spełniającą zależność

$$p(x_i) = y_i \quad \text{dla} \quad i = 0, 1, \dots, n \tag{1}$$

1.1. Zastosowana metoda

Zajmiemy się przypadkiem, w którym funkcja p jest wielomianem. Skorzystamy z następującego faktu.

Fakt. Dla n+1 parami różnych węzłów x_0, \ldots, x_n istnieje dokładnie jeden wielomian stopnia co najwyżej n spełniający zależność (1).

Wykorzystamy postać Lagrange'a tego wielomianu.

1.2. Wielomian interpolacyjny Lagrange'a

Wielomian p zapiszemy jako

$$p(x) = \sum_{i=0}^{n} y_i l_i(x) \quad \text{gdzie} \quad l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

Można łatwo sprawdzić, że tak określony wielomian spełnia warunek (1).

1.3. Wybór węzłów

Załóżmy, że będziemy przybliżać funkcję f na przedziale [a,b]. Licząc błąd tego przybliżenia możemy skorzystać z oszacowania:

$$|f(x) - p(x)| \le \frac{M_{n+1}}{(n+1)!} |(x - x_0)(x - x_1) \dots (x - x_n)|,$$
(2)

gdzie $f \in C^{n+1}([a,b])$, p jest wielomianem interpolacyjnym funkcji f opartym na parami różnych węzłach $x_0, \ldots, x_n \in [a,b]$, a $M_{n+1} = \max_{x \in [a,b]} |f^{(n+1)}(x)|$.

W procesie badania zbieżności interpolacji wykorzystamy węzły Czebyszewa, czyli pierwiastki wielomianu $T_{n+1}(x)$, gdzie $T_i(x)$ jest określony rekurencyjnie:

$$\begin{cases}
T_0(x) = 1 \\
T_1(x) = x \\
T_i(x) = 2xT_{i-1}(x) - T_{i-2}(x) & \text{dla} \quad i = 2, 3, \dots
\end{cases}$$

dla $x \in [-1, 1]$.

Pierwiastki $T_{n+1}(x)$ z powyższego przedziału przeskalujemy liniowo na przedział [a,b]. Przy takim układzie węzłów wyrażenie $\max_{x \in [a,b]} |(x-x_0)(x-x_1)\dots(x-x_n)|$ przyjmuje najmniejszą wartość i daje następujące oszacowanie błędu interpolacji:

$$|f(x) - p(x)| \le \frac{M_{n+1}}{2^n(n+1)!} \tag{3}$$

2. Implementacja

Implementację przeprowadziliśmy w środowisku MATLAB. Zaimplementowaliśmy funkcję wyznaczającą wartości wielomianu w postaci Lagrange'a, zbadaliśmy zbieżność procesu interpolacji do wybranych funkcji matematycznych oraz porównaliśmy naszą funkcję z wbudowaną funkcją interp1 z parametrem method = 'spline'.

2.1. Budowa skryptu

Na główną część skryptu składają się funkcje użytkowe:

- 1. $wielomianInterpolacyjny(wezly_x, wezly_y, x)$ wyznacza wartości wielomianu interpolacyjnego (w punktach x) dla węzłów o zadanych współrzędnych,
- 2. wezlyCzebyszewa(n, a, b) wyznacza miejsca zerowe wielomianu Czebyszewa stopnia n przeskalowane na przedział [a, b],

funkcje wizualizacyjne:

- 1. wizualizacjaZbieznosci(f, a, b, n) tworzy animację porównującą na przedziale [a,b] wykres funkcji f z wielomianami interpolującymi wyznaczonymi na zadanych liczbach węzłów Czebyszewa,
- 2. porownajFunkcje(f, x, n, a, b) tworzy zestawienie porównujące wyniki przybliżania funkcji f na przedziale [a,b] wbudowaną funkcją interp1 z funkcją wielomianInterpolacyjny opartymi na n węzłach,

oraz skrypt testujacy i aplikacja do potwierdzenia poprawności implementacji

- $1.\ potwierdzenie Poprawnosci$
- 2. app uruchamia okienko, w którym użytkownik może zwizualizować wielomian interpolacyjny wyliczony przez naszą funkcję oparty o podane węzły

2.2. Obsługa skryptu

Wybrane przykłady znajdują się w skrypcie main.m. Aby uruchomić wizualizację należy odkomentować linijki danego przykładu (animacje potrzebują czasu na wykonanie dlatego najlepiej uruchamiać jeden przykład na raz). Na ekranie pojawi się okienko z animacją danego przykładu, a w konsoli pojawi się zestawienie porównujące wynik zaimplementowanej funkcji z funkcją wbudowaną.

Animacja własnych przykładów. Można wprowadzić własne przykłady. W tym celu należy zdefiniować funkcję interpolowaną f (lub użyć wbudowanej funkcji matematycznej), określić przedział [a,b] interpolacji oraz wybrać liczbę węzłów n (może być ona wektorem, wtedy na wykresie będą wyświetlane przybliżenia dla kolejnych liczb węzłów) a następnie wywołać funkcję wizualizacjaZbieznosci(f,a,b,n). Dodatkowo jako piąty argument można podać napis fTekst, który wyświetli się w tytule wykresu.

Zestawienie porównujące. Aby porównać wynik aproksymacji funkcji f wielomianem w postaci Lagrange'a z wbudowaną funkcją należy wywołać funkcję porownajFunkcje(f,x,n,a,b), której argumentami są: f - funkcja interpolowana, x - wektor argumentów dla których tworzone będzie zestawienie, n - wektor kolejnych liczb węzłów, a,b - początek i koniec przedziału, na którym wyznaczone zostaną węzły. W szczególności argumenty x mogą znajdować się poza przedziałem [a,b].

Wizualizacja wielomianu interpolacyjnego. Aplikacja app.mlapp pozwala sprawdzić, jak wygląda wielomian interpolacyjny na zadanych węzłach. Użytkownik wpisuje w odpowiednio oznaczone okienka współrzędne węzłów, na których oparty będzie wielomian. Następnie po wciśnięciu przycisku Zastosuj w obszerze wykresu wyświetli się wykres odpowiedniej funkcji. Aby dostosować widok, można zaznaczyć, czy węzły mają być wyświetlane oraz, używając sliderów, można dostosować zakresy osi.

3. Przykłady

Poniżej znajduje się kilka ciekawych wyników i przykładów badania procesu interpolacji wybrancyh funkcji matematycznych.

Wykres 1: Na przedziałe [-5,5] wystarczy 15 węzłów, aby dobrze przybliżyć e^x wielomianem.

Wykres 2: Funkcja |x| jest nieróżniczkowalna w punkcie x=0 wobec czego nie możemy skorzystać z przedstawionego oszacowania błędu. Jak widać, błąd przybliżenia jest duży nawet dla dużej liczby węzłów.

Wykres 3: Funkcję $\frac{1}{x^2+1}$ da się dobrze przybliżyć wielomianem. Na dłuższym przedziale [-5,5] nie wystarczy jednak 20 węzłów, aby dobrze to zrobić.

Wykres 4: Interpolując funkcje okresowe na ustalonym przedziale potrzeba więcej węzłów, aby przybliżyć funkcję o mniejszym okresie. 6

Wykres 5: Przedstawiona funkcja bardzo oscyluje w pobliżu punktu x=0 (w którym jest też nieokreślona), dlatego przybliżenie jest bardzo niedokładne.

Interpolacja wielomianowa funkcji sqrt(x) na przedziale [0, 2]

Interpolacja wielomianowa funkcji sqrt(x) na przedziale [0, 2]

Wykres 6: Wydaje się, że przybliżenie jest dokładne, ale błąd jest całkiem spory. Największe różnice powstają blisko punktu x=0, gdzie funkcja \sqrt{x} jest nieróżniczkowalna, a jej wykres robi się bardzo "stromy".

Licz ba węz łów	$ f(x) - impl(x) _1$	$ f(x) - wbud(x) _1$	$ f(x) - impl(x) _2$	$ f(x) - wbud(x) _2$	$ f(x) - impl(x) _{\infty}$	$ f(x) - wbud(x) _{\infty}$
2	15138	15138	715.52	715.52	107	107
3	10829	10829	444.42	444.42	54.257	54.257
4	5729.7	5729.7	227.33	227.33	23.44	23.44
5	2506.4	2506.4	96.711	109.84	8.9081	10.301
6	940.52	1131.2	35.541	54.241	3.0075	4.6364
7	309.05	470.07	11.504	25.318	0.90999	2.1285
8	90.259	184.62	3.3229	11.482	0.24878	1.1171
9	23.709	75.297	0.86568	5.285	0.061912	0.58849
10	5.6554	37.103	0.2052	2.5741	0.01412	0.31207
11	1.235	21.011	0.044594	1.3692	0.0029691	0.16881
12	0.24862	13.088	0.008942	0.80627	0.00057869	0.093757
13	0.046409	8.7318	0.0016639	0.52103	0.00010504	0.053546
14	0.0080724	6.1295	0.00028871	0.36151	1.7835e-05	0.038957
15	0.0013148	4.4754	4.6919e-05	0.2636	2.8433e-06	0.030401
16	0.00020126	3.3676	7.1693e-06	0.19895	4.2708e-07	0.023248
17	2.9051e-05	2.5949	1.0335e-06	0.15395	6.0632e-08	0.017552
18	3.9682e-06	2.0392	1.4101e-07	0.12142	8.1585e-09	0.013199
19	5.1448e-07	1.6289	1.8257e-08	0.097247	1.0433e-09	0.01085
20	6.3441e-08	1.3188	2.2491e-09	0.078898	1.27 le-10	0.0087949

Zestawienie 1: Porównanie procesu zbieżności funkcji wbudowanej interp1 z zaimplementowaną dla funkcji e^x na [-5,5].

Liczba węzłów	$ f(x) - \text{impl}(x) _1$	$ f(x) - wbud(x) _1$	$ f(x) - \operatorname{impl}(x) _2$	$ f(x) - \operatorname{wbud}(x) _2$	$ f(x) - \operatorname{impl}(x) _{\infty}$	$ f(x) - wbud(x) _{\infty}$
100	0.60798	0.61461	0.10402	0.11556	0.045123	0.048732
200	0.15269	0.1537	0.036348	0.040456	0.020238	0.022018
300	0.067017	0.067229	0.019399	0.02165	0.012026	0.013179

Zestawienie 2: Dla funkcji |x| na [-5,5]. Funkcja ta jest nieróżniczkowalna w x=0, interpolacja nie jest zbieżna.

Liczba węzłów	$ f(x) - \operatorname{impl}(x) _1$	$ f(x) - \operatorname{wbud}(x) _1$	$ f(x) - \operatorname{impl}(x) _2$	$ f(x) - \operatorname{wbud}(x) _2$	$ f(x) - \operatorname{impl}(x) _{\infty}$	$ f(x) - \operatorname{wbud}(x) _{\infty}$
2	169.42	169.42	6.3193	6.3193	0.33333	0.33333
3	33.079	33.079	1.2326	1.2326	0.071429	0.071429
4	29.265	29.265	1.0551	1.0551	0.058823	0.058823
5	5.4631	1.3056	0.20498	0.056693	0.012195	0.0043219
6	5.0366	4.2716	0.18084	0.16228	0.010101	0.011183
7	0.93022	0.8832	0.035234	0.032071	0.0020921	0.0016525
8	0.8652	0.66081	0.031042	0.03345	0.001733	0.003107
9	0.15919	0.27608	0.0060556	0.012271	0.00035894	0.000831
10	0.14853	0.17557	0.0053274	0.010302	0.00029734	0.0011431
11	0.027275	0.11314	0.0010399	0.0055129	6.1584e-05	0.00043237
12	0.025492	0.06138	0.00091418	0.0039257	5.1014e-05	0.00048498
13	0.0046775	0.049224	0.00017853	0.002566	1.0566e-05	0.00023196
14	0.0043746	0.031194	0.00015686	0.0018329	8.7524e-06	0.00023508
15	0.00080218	0.02326	3.0643e-05	0.0013181	1.8129e-06	0.00013196
16	0.00075073	0.0175	2.6916e-05	0.0009809	1.5016e-06	0.00012677
17	0.00013757	0.012692	5.259e-06	0.0007439	3.1104e-07	7.9565e-05
18	0.00012879	0.010203	4.6183e-06	0.00057565	2.5763e-07	7.4348e-05
19	2.3605e-05	0.0079073	9.025e-07	0.00045277	5.3366e-08	5.0516e-05
20	2.2104e-05	0.0062353	7.9241e-07	0.00036139	4.4201e-08	4.6557e-05

Zestawienie 3: Dla funkcji $\frac{1}{x^2+1}$ na [-1,1].

Liczba węzłów	$ f(x) - \operatorname{impl}(x) _1$	$ f(x) - \operatorname{wbud}(x) _1$	$ f(x) - \operatorname{impl}(x) _2$	$ f(x) - \operatorname{wbud}(x) _2$	$ f(x) - \operatorname{impl}(x) _{\infty}$	$ f(x) - \operatorname{wbud}(x) _{\infty}$
10	593.55	329.86	22.234	13.023	1.2505	0.81682
20	0.24247	17.243	0.0095251	0.85158	0.00063577	0.077124
30	2.544 1e-07	2.2086	1.017e-08	0.10936	7.3625e-10	0.011174
40	3.104e-13	0.58526	1.3103e-14	0.028935	2.1094e-15	0.0027231
50	3.9673e-13	0.21784	1.6699e-14	0.010853	2.4425e-15	0.0011412
60	4.0821e-13	0.10005	1.7005e-14	0.004982	2.4425e - 15	0.00051342
70	4.0957e-13	0.052628	1.7757e-14	0.0026088	2.8866e-15	0.00027214
80	4.173e-13	0.030174	1.7956e-14	0.001499	2.6645 e - 15	0.00015879
90	4.6075e-13	0.018495	2.056e-14	0.00092303	2.5535e-15	9.5618e-05
100	5.0621e-13	0.012	2.1728e-14	0.00059962	2.9976e-15	6.3673e-05
110	5.7133e-13	0.0081385	2.5273e-14	0.00040654	3.2196e - 15	4.2784e-05
120	5.9522e-13	0.0057111	2.6448e-14	0.00028544	3.5527e-15	3.0086e-05
130	6.233e-13	0.0041296	2.6908e-14	0.00020633	3.4417e-15	2.1865e-05
140	5.8253e-13	0.0030552	2.5371e-14	0.00015286	3.7748e - 15	1.5997e-05
150	5.6585e-13	0.0023092	2.5037e - 14	0.00011567	3.8858e - 15	1.2306e-05

Zestawienie 4: Dla funkcji sin(x) na $[-4\pi, 4\pi]$.

Liczba węzłów	$ f(x) - \text{impl}(x) _1$	$ f(x) - wbud(x) _1$	$ f(x) - \operatorname{impl}(x) _2$	$ f(x) - \operatorname{wbud}(x) _2$	$ f(x) - \text{impl}(x) _{\infty}$	$ f(x) - wbud(x) _{\infty}$
10	801.92	794.7	31.381	31.049	2.3824	2.1063
20	756.53	751.81	29.145	28.915	2.096	2.0233
30	780.09	774.08	30.908	30.881	2.2138	2.3319
40	766.19	730.94	31.225	28.929	2.5689	1.9929
50	778.88	744.44	31.186	30.576	2.0677	2.0007
60	733.09	719.49	29.367	29.004	2.0367	1.9996
70	707.71	655.48	28.701	27.546	2.0896	1.9785
80	683.74	615.39	27.665	25.958	2.2144	1.943
90	585.04	554.35	26.387	23.992	1.9934	1.8787
100	574.1	465.07	24.605	20.679	2.1172	1.768
110	471.52	389.13	22.118	17.411	2.0016	1.461
120	423.38	242.13	16.818	11.343	1.2666	0.92693
130	45.623	164.16	1.6725	7.9364	0.093924	0.74326
140	0.58452	119.33	0.021585	5.8612	0.0011516	0.59224
150	0.0017614	82.703	6.5945e-05	4.0751	3.5563e-06	0.4282

Zestawienie 5: Dla funkcji sin(10x) na $[-4\pi, 4\pi]$. Dla funkcji o krótszym okresie (porównanie do zestawienia 4) potrzeba więcej węzłów, aby dokładnie ja przybliżyć.

Liczba węzłów	$ f(x) - \text{impl}(x) _1$	$ f(x) - wbud(x) _1$	$ f(x) - \operatorname{impl}(x) _2$	$ f(x) - \operatorname{wbud}(x) _2$	$ f(x) - \operatorname{impl}(x) _{\infty}$	$ f(x) - \operatorname{wbud}(x) _{\infty}$
10	262.57	264.31	14.447	14.695	1.199	1.2162
20	237.7	154.58	10.947	10.195	1.1592	1.1697
30	178.18	150.13	10.115	9.9505	1.3571	1.338
40	151.93	109.48	10.669	10.609	1.8532	1.872
50	238.73	141.26	12.918	11.258	1.6572	1.5173
60	146.66	90.63	9.1787	8.945	1.4166	1.4021
70	119.22	111.36	10.569	10.646	1.7792	1.752
80	97.729	95.672	10.769	10.282	2.4072	2.2227
90	105.05	72.904	9.2518	8.8886	1.7843	1.7048
100	107.41	89.524	9.5161	9.4045	1.8488	1.8108

Zestawienie 6: Dla funkcji $sin(\frac{1}{x})$ na [-1,1]. Po pierwsze funkcja ta jest nieokreślona w punkcie x=0, więc nie da się jej tam przybliżyć, po drugie oscyluje nieskończenie wiele razy w pobliżu tego punktu, więc tak czy inaczej nie dałoby się jej dokładnie przybliżyć.

Liczba węzłów	$ f(x) - \text{impl}(x) _1$	$ f(x) - wbud(x) _1$	$ f(x) - \operatorname{impl}(x) _2$	$ f(x) - \operatorname{wbud}(x) _2$	$ f(x) - \operatorname{impl}(x) _{\infty}$	$ f(x) - \operatorname{wbud}(x) _{\infty}$
150	0.0016963	0.0017012	0.0014913	0.0015825	0.0014907	0.0015801
200	0.0012094	0.001218	0.0011182	0.0011854	0.001118	0.0011851
250	0.00094132	0.00095603	0.00089449	0.00094809	0.00089443	0.00094807

Zestawienie 7: Dla funkcji \sqrt{x} na [0,0.2]. Mimo iż interpolujemy funkcję na krótkim przedziale i dużą liczbą węzłów, to przybliżenie nie jest najdokładniejsze. Dzieje się tak, ponieważ \sqrt{x} jest nieróżniczkowalna w x=0.

x	$\frac{1}{x^2+1}$ Błąd funkcji wbudowanej		Błąd funkcji zaimplementowanej
0	1	2.5359e-08	2.6912e-13
1	0.5	8.717e-07	3.4472e-14
2	0.2	6.9805 e - 08	7.1332e-15
3	0.1	2.4466e-07	5.2874 e-15
4	0.058824	7.8306 e-09	2.9837e-16
5	0.038462	5.7468e-10	1.1727e-15
6	0.027027	2.2716e-12	4.4201 e-15
7	0.02	8.2219 e-05	440.44
8	0.015385	0.0010872	$1.7028\mathrm{e}{+09}$
9	0.012195	0.0047648	$9.1714\mathrm{e}{+13}$
10	0.009901	0.01332	$5.3277\mathrm{e}{+17}$
11	0.0081967	0.029183	$7.5052\mathrm{e}{+20}$
12	0.0068966	0.054903	$3.9039\mathrm{e}{+23}$

Zestawienie 8: Bardzo ciekawa obserwacja. Dla 50 węzłów na [0,6]. Zauważmy, że w przedziale, w którym znajdują się węzły funkcja zaimplementowana radzi sobie znacznie lepiej od wbudowanej. Jednak poza tym przedziałem (tutaj dla argumentów $x=7,8,\ldots,12$) błąd funkcji zaimplementowanej jest ogromny, zaś funkcja wbudowana radzi sobie nienajlepiej, ale w porównaniu do naszej funkcji wypada bardzo dobrze.

4. Wnioski

Na podstawie przeprowadzonych eksperymentów i przytoczonych przykładów możemy wysnuć kilka obserwacji.

- 1. Interpolacja wielomianowa źle działa w pobliżu punktów nieróżniczkowalności funkcji f.
- 2. Wysoka oscylacja funkcji na pewnym przedziale nie sprzyja interpolacji.
- 3. Interpolacja wielomianowa dobrze sprawdza się na przedziale, na którym znajdują się węzły, poza tym przedziałem bardzo źle. Warto wówczas rozważyć inną metodą interpolacji.

5. Źródła

Notatki z wykładu "Metody numeryczne" dr I. Wróbel, MiNI 2023 semestr zimowy Analiza Numeryczna, D. Kincaid, W. Cheney $https://pl.wikipedia.org/wiki/Interpolacja_wielomianowa$