Ejercicios resueltos del trabajo práctico nro 1

1 - Cambiar de base a binario

4352d Para pasar de decimal a base 2 divido por la base.

Luego escribo invertidos el resultado y los restos de derecha a izquierda.

Puedo luego comprobar con la tabla de los pesos

4096 + 256 = 4352. Es correcto!.

Resultado = 1000100000000

12812d El procedimiento es el mismo.

8192	4096 2048	1024	512	256	128	64	32	16	8	4	2	1
1	1 0	0	1	0	0	0	0	0	1	1	0	0

Resultado = 11001000001100

1EF8h

1EF8 En este caso puedo pasar directo a binario ya que cada digito hexadecimal se puede representar con cuatro binarios según la tabla de correspondencia

Hexa	Binario											
	0	0	0	0	0							
	1	0	0	0	1							
	2	0	0	1	0							
	3	0	0	1	1							
	4	0	1	0	0							
	5	0	1	0	1							

6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
A (10)	1	0	1	0
B (11)	1	0	1	1
C (12)	1	1	0	0
D (13)	1	1	0	1
E (14)	1	1	1	0
F (15)	1	1	1	1
Entonces queda				
1	0	0	0	1
E	1	1	1	0
F	1	1	1	1
8	1	0	0	0

Resultado = 00011110111111000

2 - Cambiar de base a Decimal

Se arman los polinomios según la base

F9A01h

Para pasar hexadecimal a decimal tengo que utilizar la base 16

$$F \times 16^4 + 9 \times 16^3 + A \times 16^2 + 0 \times 16^1 + 1 \times 16^0$$

 $15 \times 65536 + 9 \times 4096 + 10 \times 256 + 0 + 1$
 $1983040 + 36864 + 2560 + 1 = 1022465$

Resultado = 1022465d

Puedo armar la tabla de potencias de 16 y coeficientes para tener mayor claridad

16 ⁴	16 ³	16 ²	16 ¹	16 ⁰
65536	4096	256	16	1
15	9	10	0	1

100101111011b Pasar de binario a decimal.

Se resuelve igual, armando el polinomio pero con potencias de dos y sumando. Es mas sencillo armar la tabla y sumar los coeficientes con 1

	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
tabla	2048	1024	512	256	128	64	32	16	8	4	2	1
nro	1	0	0	1	0	1	1	1	1	0	1	1
sumo	2048			256		64	32	16	8		2	1

Resultado = 2427d

123456₈

Pasar de octal a decimal. El mismo procedimiento con potencias de 8

$$1 \times 8^{5} + 2 \times 8^{4} + 3 \times 8^{3} + 4 \times 8^{2} + 5 \times 8^{1} + 6 \times 8^{0}$$

 $32768 + 2 \times 4096 + 3 \times 512 + 4 \times 64 + 5 \times 8 + 6 \times 1$
 $32768 + 8192 + 1536 + 256 + 40 + 6$

Resultado = 42798d

3 - Cambiar de base a Hexadecimal

891012d

Decimal a Hexa, divido por 16 y escribo de derecha a izq el resultado y los restos.

Resultado = D9884

10101110110111b

Para pasar binario a hexa directamente agrupo de a cuatro según la tabla

Resultado = 2BB7

878171₈ Octal a hexa, utilizo como intermediario el binario

El Ejercicio esta mal propuesto porque en octal el 8 no existe como unico digito. va de 0 a 7

Pero convirtamos el 171 octal a hexa para ver como se hace

Resultado de 171octal a Hexa = 79h

9

(cuando no es obvio aclaren hexa con h)

4 - Cambiar de base a Octal

32101d

Decimal a octal, divido por 8

Resultado = 765450

(aclaren que es octal con o)

011011101110b

Para pasar a octal agrupo de a tres

Resultado = 3356o

CAFÉ

Utilizo como intermediario el binario. Desagrupo de a 4 y agrupo de a 3 (perdonen al excel por autoacentuar la E, no sabe que es un nro)

Ojo. En estas operaciones comiencen siempre de los bits menos significativos de la derecha hacia la izquierda y para clarificar el agrupamiento rellenen con 0.

Resultado = 145376o

5 - Convertir a binario

213,9081721d

Separo parte entera y parte decimal

213 11010101

0,9081721 x2 1,8163442 Para pasar la parte decimal:

0,8163442	x2 =	1,6326884	Multiplico por dos. Me quedo con la parte entera
0,6326884	x2 =	1,2653768	(el 0 o el 1) y continuo abajo con los decimales
0,2653768	x2 =	0,5307536	hasta obtener 0 o hasta conseguir
0,5307536	x2 =	1,0615072	la precisión que se requiera o solicite.
0,0615072	x2 =	0,1230144	El resultado es el conjunto de 1s y 0s
0,1230144	x2 =	0,2460288	de la primer columna.
0,2460288	x2 =	0,4920576	
0,4920576	x2 =	0,9841152	
0,9841152	x2 =	1,9682304	
0,9682304	x2 =	1,9364608	Sigue hasta ser 0 o hasta lo que se requiera
Hasta aca es		11101000011	

Entonces juntando parte entera y decimal obtengo

Resultado:

11010101,11101000011

0,001232d	E	El segundo eje	rcicio se resuelve con el mismo procedimiento.
0,001232	x2 =	0,002464	
0,002464	x2 =	0,004928	
0,004928	x2 =	0,009856	
0,009856	x2 =	0,019712	
0,019712	x2 =	0,039424	
0,039424	x2 =	0,078848	
0,078848	x2 =	0,157696	
0,157696	x2 =	0,315392	
0,315392	x2 =	0,630784	
0,630784	x2 =	1,261568	
0,261568	x2 =	0,523136	
0,523136	x2 =	1,046272	Sigue hasta ser 0 o hasta lo que se requiera

Resultado:

0,00000000101

99,9919	E	El tercer ejerci	cio se resuelve con el mismo procedimiento.
99		1100011	
0,9919	x2 =	1,9838	
0,9838	x2 =	1,9676	
0,9676	x2 =	1,9352	
0,9352	x2 =	1,8704	
0,8704	x2 =	1,7408	
0,7408	x2 =	1,4816	
0,4816	x2 =	0,9632	
0,9632	x2 =	1,9264	
0,9264	x2 =	1,8528	
0,8528	x2 =	1,7056	
0,7056	x2 =	1,4112	
0,4112	x2 =	0,8224	Sigue hasta ser 0 o hasta lo que se requiera

Resultado:

1100011,111111011110

6 - Escribir el número decimal en punto flotante IEEE 754 Single Precision

492121128

Paso a Binario

Como el nro tiene mas de 24 bits no tiene sentido convertir la parte fraccionaria a binario

para simple precision ya que necesito signo, exponente y 23 bits de mantisa.

Corro la coma para llegar al formato 1, 11010......

x 2 ^{2 8}

En este caso unas 28 veces.

El número es positivo, el primer bit va a ser 0

El Exponente será 127 + 28, o lo que es lo mismo y más facil de sumar 128 +27

La mantisa son los 23 nros que quedan despues del 1,

1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1

En simple precisión la mantisa no es lo suficientemente precisa en este caso.

El resultado es:

6b, modifico el ejercicio para mostrar el mecanismo. El nro es menor a uno y negativo.

-0,10546875

Paso a binario

Signo - 1 El nro negativo lleva el 1 en el 1er bit

Exponente Corri 4 veces la coma para llegar a 1,101100000 x 2 - 4

127 + (-4) = 128 + (-5)

5 0 0 0 0 0 1 0 1

Compl a 1 1 1 1 1 0 1 0 Invierto y sumo 1 porque el 5 es negativo.

Compl a 2 1 1 1 1 1 0 1 1

128 1 0 0 0 0 0 0 0

(-5) 1 1 1 1 1 0 1 1 Descarto el

1 0 1 1 1 0 1 1 carry. primer 1

Exponente 0 1 1 1 1 0 1 1

El resultado es:

7 - Convertir a binario con signo

-2231		Lle	evo	а	16	bit	s, c	con	8 ו	no	me	alca	anza	a en	es	te (caso
Complemen sumo 1 Resultado	2231 to	0 1 1	1	0 1 1	0 1 1	1 0 0	0 1 1	0 1 1	0 1 1	1 0 0	0 1 1	1 0 0	1 0 0	0 1 1	1 0 0	1 0 0	1 0 1 1
-899 Complemen sumo 1 Resultado	899 to	0 1	0 1	0 1	0 1	0 1	0 1	1 0		1 0	0 1 1	0 1	0 1	0 1	0 1	1 0	1 0 1 1
-1234 Complemen Sumo 1 Resultado	1234 to	0 1	0 1	0 1	0 1	0 1	1 0	0 1	0 1	1 0	1 0	0 1	1 0	0 1	0 1	1 0	0 1 1 0

8 - Convenio del Complemento a 2

Escribir en binario la cifra 9901d, complemento y sumo 1

9901d	0	0	1	0	0	1	1	0	1	0	1	0	1	1	0	1
Complemento	1	1	0	1	1	0	0	1	0	1	0	1	0	0	1	0
Sumo 1																1
Resultado	1	1	0	1	1	0	0	1	0	1	0	1	0	0	1	1

FF91h a decimal

FF91	1	1	1	1	1	1	1	1	1	0	0	1	0	0	0	1	(6	5	4	2	5
Complemento	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	0						
Sumo 1																1						
Resultado										1	1	0	1	1	1	1						

9871 octal a decimal, no puede ser, ya que no es octal.

9 - Realizar las siguientes operaciones en binario

98d-44d

```
98
                  0 1 1 0 0 0 1 0
            44
                  0 0 1 0 1 1 0 0
Complemento
                  1 1 0 1 0 0 1 1
Sumo 1
-44
                  1 1 0 1 0 1 0 0
98+(-44)
                  0 1 1 0 0 0 1 0
                  1 1 0 1 0 1 0 0
                1 0 0 1 1 0 1 1 0
                                      Descarto el 1er 1
Resultado
                  5 4
-104d + 201d
           201
                  1 1 0 0 1 0 0 1
           104
                  0 1 1 0 1 0 0 0
Complemento
                  1 0 0 1 0 1 1 1
Sumo 1
-104
                  1 0 0 1 1 0 0 0
```

Resultado 9 7

201

783d - 191d no llego con 8 bits, lo hago con 16 bits. 783 191 0 0 0 0 0 0 0 0 1 0 1 Complemento 1 1 1 1 1 1 1 0 0 0 0 0 Sumo 1 -191 0 0 0 1 1 1 1 1 1 1 0 +783 0 0 0 0 0 0 1 1 0 0 0 1

1 1 0 0 1 0 0 1 4 0 1 1 0 0 0 0 1

Resultado 5 9 2

10 - Convertir a binario punto fijo 8 enteros y 4 decimales.

+00000100101000

4352d 100010000000,0000

12812d 11001000001100,0000

-120,3892d

120 1111000

0,3892 x2 = 0,7784

0,7784	x2 =	1,5568
0,5568	x2 =	1,1136
0,1136	x2 =	0,2272
0,2272	x2 =	0,4544

Resultado:

1111000,0110

11 - Obtener el valor de las siguientes cifras binarias.

011101,101101

32	16	8	4	2	1	,	1/2	1/4	1/8	1/16	1/32	1/64	
0	1	1	1	0	1		1	0	1	1	0	1	
16 + 8 + 4 + 1	= 29						0,5 +	0,125	+ 0,062	25 + 0,0	15625	= 0,70312	25

Resultado = 29,703125 Puede verificarse haciendo la operación inversa.

10010111,1011

128	64	32	16	8	4	2	1	,	1/2	1/4	1/8	1/16
1	0	0	1	0	1	1	1		1	0	1	1

Resultado = 151,6875

0001111,00001011

8 + 4 + 2 + 1 = 15

0,03125 + 0,0078125 + 0,00390625 = 04296875

Resultado = 15,04296875

12 - Indicar el error que se comete al redondear con truncamiento

13 - Indicar el error que se comete al redondear con truncamiento y redondeo

1234,543

1234 = 10011010010

Trunco Trunco y

					Redondeo
0,543	x2 =	1,086			
0,086	x2 =	0,172			
0,172	x2 =	0,344			
0,344	x2 =	0,688			
0,688	x2 =	1,376	,1000		,1001
en decimal					
0,543				0,5	0,5625
error				0,043	0,0195

Es menor el error con truncamiento y redondeo.

-921,122212

			Trunco	Trunco y Redondeo
0,122212	x2 =	0,244424		
0,244424	x2 =	0,488848		
0,488848	x2 =	0,977696		
0,977696	x2 =	1,955392		
0,955392	x2 =	1,910784	,0001	,001
en decimal				
0,122212			0,0625	0,125
error			0,059712	0,002788

Nuevamente es menor el error con truncamiento y redondeo.

98,75

			Trunco	Trunco y Redondeo
0,75	x2 =	1,5		
0,5	x2 =	1		
0	x2 =	0	,1100	,1100

No hay error

14 - Convertir a IEEE 754 Single Precision

9283232,112

Corro la coma 23 veces. Como la mantisa tiene max 23 nros no necesito pasar los decimales a binario

1,00011011.... x 2²³

Signo + 0

Exponente 127 + 23 = 128 + 22

Mantisa 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0

El resultado es:

-0,000001232

Paso a binario y corro la coma 7 veces.

1,0011010000 x 2 ⁻⁷

Signo - 1

Exponente 127 + (-7) = 128 + (-8) = 120

0 1 1 1 1 0 0 0

El resultado es:

1000 Paso a binario y corro la coma 9 veces.

1.111101000 X 1 2

Signo 0

Exponente 1 0 0 0 1 0 0 0

El resultado es:

20 - Pasar a Hexadecimal las 3 cifras binarias del ejercicio 19

1) 2 B C E F 9 C B

- 2) 5 5 D 2 9 2 D
- 3) 2 0 4 2 2 5 0 8

21 - Convertir a ASCII

- 1) 5 F 6 E 6 9 3 D
 - n i =
- 2) 4 8 6 F 6 C 6 1 H o I a
- 3) 4 F 6 B 6 5 7 9 O k e y

21b - Convertir a HEXA usando el codigo ASCII

- 1) S . O . S . 5 3 2 E 4 F 2 E 5 3 2 E
- 2) Nada, yosoyadan! 4E6164612C796F736F794164616E21
- 3) (a + b) * 5 = 5 a + 5 b 2 8 6 1 2 B 6 2 2 9 2 A 3 5 3 D 3 5 6 1 2 B 3 5 6 2