Общие сведения.

Будем рассматривать двумерную евклидову плоскость \mathbb{R}^2 и семейство замкнутых кривых $\gamma(t)$, заданных гладкими погружениями x(s,t): $S^1 \times [0,T) \to \mathbb{R}^2$. По определению affine curvature flow гладкая вложенная кривая γ_0 , задаваемая радиус вектором $x_0(\cdot)$, удовлетворяет affine curvature flow, если

$$\begin{cases} x_0(s) = x(s,0) \\ \text{для } x(\cdot,t) : \frac{\partial x}{\partial t}(s,t) = k(s,t)^{1/3} \cdot N(s,t) \end{cases}$$
 (1)

где $N(\cdot,t)$ — поле единичных внутренних нормалей к кривой $\gamma(t)$, а k(s,t) - кривизна этой кривой, взятая в соответствующей точке с учетом знака.

Свойства решений (1).

- 1. Если $\gamma_0 = \gamma(0)$ выпуклая кривая, то эволюционируя под действием потока кривизны она будет оставаться выпуклой вложенной кривой и за конечное время C^{∞} -гладко сожмется в "эллиптическую" точку. То есть кривые $\gamma(t)$ C^{∞} -гладко сходятся к некоторой фиксированной точке так, что если мы нужным образом будем масштабировать $\gamma(t)$, то полученные после масштабирования кривые будут сходиться к эллипсу.
- 2. Решения (1) инварианты относительно аффинных преобразований плоскости.
- 3. Принцип вложенности: если одна кривая лежит в области, ограничиваемой другой кривой, то под действием потока такое расположение сохранится. А именно, пусть $\gamma^1(t)$ и $\gamma^2(t)$ решения (1), задающие эволюцию под действием affine curvature flow начальных кривых $\gamma_0^1 = \gamma^1(0)$ и $\gamma_0^2 = \gamma^2(0)$. Тогда, если $\gamma_0^1 \cap \gamma_0^2 = \emptyset$, то $\gamma_1(t) \cap \gamma_2(t) = \emptyset$ для любого $t \in [0,T)$.

Идея практического применения affine curvature flow.

Papers Papers Papers Papers

Черно-белое изображение представляет собой функцию $u_0: \mathbb{R}^2 \to \mathbb{R}$, задающую оттенки серого цвета точек (пикселей) изображения. Используя u_0 , изображение может быть разложено в семейство Γ_0 линий уровня $u_0=const$. Заметим, что Γ_0 состоит из непересекающихся линий. Для Γ_0 применяется affine curvature flow (1), в результате которого получаем эволюцию $\Gamma(t)$ (affine morphological scale space) семейства Γ_0 . Для любого t, по $\Gamma(t)$ можно восстановить черно-белое изображение. Полученное таким образом изображение является сглаженным исходным изображением u_0 в силу того, что поток кривизны сожмет в точки несущественные детали изображения (шум), а оставшиеся линии сгладит.

Так как гладкие кривые в памяти компьютера могут храниться в виде многоугольников (дискретизации кривых), то для реализации представленной выше схемы необходимо научиться моделировать affine curvature flow для многоугольников. В статье такая схема под названием affine σ -erosion многоугольников была предложена.

Идея алгоритма.

Пусть $\gamma \subset E^2$ замкнутая положительно ориентированная выпуклая вложенная кривая на плоскости, x(s) - ее радиус-вектор, s - натуральный параметр на γ и $\sigma > 0$ некоторое (небольшое) число. Affine σ -erosion кривой γ называется кривая γ_{σ} , представляющая собой геометрическое место точек середин всевозможных хорд $x(s-\delta(\sigma))x(s+\delta(\sigma))$. Для γ_{σ} справедлив следующий результат.

Лемма А. Пусть γ кусочно C^2 -гладкая выпуклая вложенная кривая на плоскости, x(s) - ее радиус-вектор, s - натуральный параметр на γ , $\sigma > 0$. Если γ_{σ} является affine σ -erosion кривой γ , причем $x_{\sigma}(s)$ - радиус-вектор γ_{σ} , то

$$x_{\sigma}(s) = x(s) + \omega \sigma^{\frac{2}{3}} k(s)^{\frac{1}{3}} N(s) + \bar{o}\left(\sigma^{\frac{2}{3}}\right), \ \sigma \rightarrow 0 \ ,$$

где $2\omega = 3/2^{2/3} = const.$

Лемма A показывает, что affine σ -erosion является, в некотором смысле, хорошим приближением affine curvature flow (1).

Для того, чтобы моделировать σ -erosion многоугольника необходимо моделировать erosion angle.

Лемма В. Affine σ -erosion angle $W=\{xe_1+ye_2:x>0,y>0\}$ является одна ветвь гиперболы, задаваемой $\{xy=\frac{\sigma}{2[e_1,e_2]}:x>0,y>0\}$ в аффинном базисе $\{0,e_1,e_2\}$ (тут $[e_1,e_2]$ - неориентированная площадь параллелограмма, натянутого на базисные векторы e_1 и e_2).

Описание алгоритма.

Пусть $\mathcal{P}^0 \coloneqq P_0 P_1 \dots P_{n-1}$ - выпуклый многоугольник, пронумерованный против часовой стрелки.

1. Рассмотрим пары $(i,k)_{i=0,k=0}^{n-1,n-1}$ номеров вершин \mathcal{P}^0 , отсортированные в лексикографическом порядке.

Для каждой пары (i,k) от (0,0) до (n-1,n-1):

(*1*) Найдем точку $I \coloneqq P_{i-1}P_i \cap P_kP_{k+1}$ (рис. 1).

(*2*) Найдем площадь $\sigma_{i,k}$ многоугольника $\mathit{IP}_i \dots \mathit{P}_k$:

$$\sigma_{i,k} \coloneqq Area(IP_i \dots P_k).$$

$$(*3*)$$
 Если $\frac{1}{2}[\overrightarrow{IP_k},\overrightarrow{IP_i}] \le \sigma + \sigma_{i,k} \le \frac{1}{2}[\overrightarrow{IP_{k+1}},\overrightarrow{IP_{i-1}}],$

то для
$$\lambda \coloneqq \sqrt{\frac{\sigma + \sigma_{i,k}}{2[\overrightarrow{IP_{k+1}},\overrightarrow{IP_{i-1}}]}}$$

- найдем значения $t_1\coloneqq \begin{cases} \log \frac{\overline{|IP_k|}}{2\overline{\lambda}|IP_{k+1}|}, & Area(IP_{i-1}P_k)>\sigma+\sigma_{i,k}, \\ \log(2\lambda), & \text{иначе} \end{cases}$

$$t_2 \coloneqq egin{cases} -\log rac{|\overrightarrow{IP_i}|}{2\overline{\lambda}|IP_{i-1}|}, & Area(IP_iP_{k+1}) > \sigma + \sigma_{i,k}, \\ -\log(2\lambda), & \text{иначе} \end{cases}$$

- построим гиперболу $H_{i,k}$ в параметрическом виде

$$M(t) = I + \lambda \left(e^t \overrightarrow{IP_{k+1}} + e^{-t} \overrightarrow{IP_{i-1}} \right), t_1 \le t \le t_2.$$
 (*)

(*4*) Конкатенация полученных кусков гипербол

$$\mathcal{H}^0\coloneqq \underset{(i,k)}{\sqcup} H_{i,k}$$

является affine σ -erosion \mathcal{P}^0 .

2. Итерируем шаг 1. Для этого построим новый многоугольник \mathcal{P}^1 как дескритизацию кривой \mathcal{H}^0 , полученной на предыдущем шаге. Оказывается, это можно сделать аффинно-инвариантным образом. Несложно показать, что хорда M(t)M(t+x) отсекает от гиперболы, задаваемой (*), заданную площадь ε тогда и только тогда, когда $2\varepsilon = (\sigma + \sigma_{i,k})(\sinh x - x)$. Заметим, что полученное уравнение зависит только от значения x, на которое мы сдвигаемся вдоль гиперболы по параметру, и не зависит от начального значения t.

Зафиксируем $\varepsilon \ll \sigma$. Используя указанный выше факт мы можем дискретизировать гиперболу $H_{i,k}$ точками

$$P_{i,k}^s := M\left(\left(1 - \frac{s}{m}t_1\right) + \frac{s}{m}t_2\right) \in H_{i,k}, \ s \in \{0, \dots, m-1\},$$

где количество m находится как целочисленное округление решения $2\varepsilon = (\sigma + \sigma_{i,k})(\sinh \frac{t_2-t_1}{r} - \frac{t_2-t_1}{r}),$ понимаемого как уравнение относительно x.

Тем самым ε задает так называемую пространственную дискретизацию решения, в то время как σ моделирует временную дискретизацию. При этом, по построению, каждая хорда $P_{i,k}^s P_{i,k}^{s+1}$ вместе с соответствующей гиперболой ограничивает область площади ε .

Определим новый многоугольник \mathcal{P}^1 как $\mathcal{P}^1 \coloneqq \bigcup_{(i,k)}^{m-1} \bigcup_{s=0}^{m-1} P_{i,k}^s$. После этого можно повторить шаг 1 для \mathcal{P}^1 . И так далее.

В статье доказывается корректность работы такого алгоритма и его сходимость. Последовательность полученных после применения алгоритма кривых \mathcal{H}^l affine σ -erosion многоугольников \mathcal{P}^l (l=0,1,2,...) является моделью эволюции исходного многоугольника \mathcal{P}^0 под действием affine curvature flow (1).

Выводы.

Входные параметры: $\varepsilon = 0.01$, количество итераций = 5, координаты начального многоугольника, $\sigma = \{0.1, 0.5, 1, 1.5\}.$

При различных σ получаем следующие результаты:

Из полученных результатов видно, что чем больше σ , тем быстрее affine curvature flow сходится к "эллиптической" точке.