Version 0.9943 (Beta)

Onlinevorkurs Mathematik (Betaversion)

www.ve-und-mint.de

Weiter

Zurück

Einführung Dreieck Einheitskreis Aufgaben

Onlinekurs Mathematik - Geometrie - Trigonometrie

Aufgaben

Aufgabe 5.3.9

Welcher Winkel gehört zu dem Punkt P_{α} (-0.643, -0.766) ? Hinweis

Verwenden Sie dazu den Taschenrechner, aber vertrauen Sie ihm nicht blind!

Lösung

Aus den Koordinaten des Punktes P_{α} erhalten wir:

$$\sin{(\alpha)} = -0.766$$
 und $\cos{(\alpha)} = -0.643$.

Tippen Sie in den Taschenrechner:

invers(sin(-0,766)) bzw. sin^{-1} (-0,766), so erhalten Sie ungefähr -50° , und invers(cos(-0,643)) bzw. sin^{-1} (-0,643), so erhalten Sie ungefähr 130° .

Außerdem wissen Sie, dass der Punkt im 3. Quadranten ist, also ein Winkel im Bereich zwischen 180° und 270° herauskommen muss.

Anhand des Bildes kann man erkennen, dass der negative Sinuswert zwar zum Winkel -50° , aber auch zu $\alpha=~\left(180^\circ\,+\,50^\circ\right)=230^\circ$ gehört.

Ebenso kann der negative Kosinuswert zu 130° , aber auch zu $\alpha=-130^\circ=\left(360^\circ-130^\circ\right)=230^\circ$ gehören.

Der richtige Winkel ist also $\alpha = 230^{\circ}$ (rosa).

Aufgabe 5.3.10

1. Für ein bei C rechtwinkliges Dreieck seien b=2.53 cm und c=3.88 cm gegeben. Geben Sie $\sin{(\alpha)}$, $\sin{(\beta)}$ und a an!

Lösung $a = \sqrt{c^2 - b^2} = \sqrt{\left(3.88 \text{ cm}\right)^2 - \left(2.53 \text{ cm}\right)^2} = \sqrt{15.0544 \text{ cm}^2 - 6.4009 \text{ cm}^2} = \sqrt{8.6535} \text{ cm}.$ $\sin{(\alpha)} = \frac{a}{c} = \frac{\sqrt{8.6535} \text{ cm}}{3.88 \text{ cm}} = \frac{\sqrt{86535}}{388} \quad \text{und} \quad \sin{(\beta)} = \frac{b}{c} = \frac{2.53 \text{ cm}}{3.88 \text{ cm}} = \frac{253}{388}$ Numerisch ergibt sich $a \approx 2.9417 \text{ cm}$, $\sin{(\alpha)} \approx 0.7587 \text{ und} \sin{(\beta)} \approx 0.65201$.

