

2021–2022 SPRING SEMESTER

CS224 – LAB 04

MIPS Single-Cycle Datapath and Controller

NAME: ABDULLAH RIAZ

ID: 22001296

COURSE:CS224

SECTION: 01

DATE: 03/04/2021

Part1

a)

Location	Machine Instruction(hex)	Assembly Language Eqv.				
00	0x20020005	addi \$v0 \$zero 0x0005				
04	0x2003000c	addi \$v1 \$zero 0x000C				
08	0x2067fff7	addi \$a3 \$v1 0xFFF7				
0c	0x00e22025	or \$a0 \$a3 \$v0				
10	0x00642824	and \$a1 \$v1 \$a0				
14	0x00a42820	and \$a1 \$a1 \$a0				
18	0x10a7000a	beq \$a1 \$a3 0x000A				
1c	0x0064202a	slt \$a0 \$v1 \$a0				
20	0x10800001	beq \$a0 \$zero 0x0001				
24	0x20050000	addi \$a1 \$zero 0x0000				
28	0x00e2202a	slt \$a0 \$a3 \$v0				
2c	0x00853820	add \$a3 \$a0 \$a1				
30	0x00e23822	sub \$a3 \$a3 \$v0				
34	0xac670044	sw \$a3 0x0044 \$v1				
38	0x8c020050	lw \$v0 0x0050 \$zero				
3c	0x08000011	j 0x0000011				
40	0x20020001	addi \$v0 \$zero 0x0001				
44	0xac020054	sw \$v0 0x0054 \$zero				
48	0x08000012	j 0x0000012				

- e) i) it corresponds to rd2 of the register file(R(rd) in Verilog)
- ii) The early instructions are not r-type instructions therefore writedata is undefined in them
- iii) lw is the only instruction that utilizes readdata and it is used only once in the instructions hence it is undefined most of the time
- iv) It corresponds to Aluresult which is written to WD3 of the register file
- v) Only sw instruction

```
f)
module alu(input logic [31:0] a, b,
       input logic [2:0] alucont,
       output logic [31:0] result,
       output logic zero);
  always comb
     case(alucont)
       3'b010: result = a + b;
       3'b011: result = a << b;
       3'b110: result = a - b;
       3'b000: result = a \& b;
       3'b001: result = a \mid b;
       3'b111: result = (a < b) ? 1 : 0;
       default: result = \{32\{1'bx\}\};
     endcase
  assign\ zero = (result == 0) ? 1'b1 : 1'b0;
endmodule
```

Part 2

a)

sracc:

$$\begin{split} & IM[PC] \\ & RF[rd] \leftarrow RF[rd] + (RF[rs] >> RF[rt]) \\ & PC \leftarrow PC + 4 \end{split}$$

jm:

$$\begin{aligned} & IM[PC] \\ & PC \leftarrow DM[RF[rs]] + SignExt(immed)] \end{aligned}$$

b)

Instruction	Opcode	RegWrite	RegDst	ALUSrc	Branch	MemWrite	MemToReg	ALUOp	Jump	JumpAdd	ALURDSrc
R-type	000000	1	1	0	0	0	0	10	0	0	0
lw	100011	1	0	1	0	0	1	00	0	0	0
SW	101011	0	X	1	0	1	X	00	0	0	0
beq	000100	0	Х	0	1	0	X	01	0	0	0
addi	001000	1	0	1	0	0	0	00	0	0	0
j	000010	0	X	X	X	0	X	XX	1	0	0
sracc	000001	1	1	0	0	0	0	10	0	0	1
jm	100111	0	X	1	X	0	0	00	1	1	0

ALUOp	Funct	ALUControl
00	X	010 (add)
01	X	110 (subtract)
1X	100000 (add)	010 (add)
1X	100010 (sub)	110 (subtract)
1X	100100 (and)	000 (and)
1X	100101 (or)	001 (or)
1X	101010 (slt)	111 (set less than)
1X	000010 (srl)	100