מבוא למערכות לומדות תרגיל 6

ransha - 203781000 רן שחם

6 ביולי 2017

1 בעיית המסלולים הקצרים ביותר

1.1

. יהי עם משקולות ב־G הם עם מקולות $w:E o\mathbb{R}$ וקדקוד מקור עכל המעגלים ב־G=(U,E) יהי

או אם אפשר ללכת מ־a ל־a (כלומר הצלע a o a קיימת האו באופן שקול, אפשר ללכת בגרף ההפוך מ־a o a (כלומר הצלע a o a קיימת או באופן שקול, אפשר ללכת בגרף ההפוך מ־a o a (כלומר הצלע a o a לכל a o a לכל a o a לכל הזו. בנוסף, נגדיר a o a לכל a o a לכל והוא שווה למינוס משקל

מדיניות π על המרחב הנ"ל היא סדרת קדקודים (v_0,v_1,v_2,\dots) כך שהסוכן מתחיל בקדקוד v_0 ועובר בין קדקודים. נשים לב שמתקיים π על המרחב הנ"ל היא סדרת קדקודים (v_0,v_1,v_2,\dots) כך שהסוכן π לכל π ר π לכל π ר π לכל π ר π לכל π ר π לכל π הן דטרמיניסטיות.

 $V_{\pi}\left(s
ight)
eq -\infty$ מקיים (uים מקיים מחיים ביu (ואחריו ההילוך תמיד נשאר ביu) מקיים u ברור שאם u הוא הילוך בגרף המסתיים ביu (ואחריו ההילוך תמיד נשאר ביu) בי מתקיים v בי מתקיים v בי מתקיים v בי v בי מתקיים v בי v בי

בכיוון השני, נניח ש־ $-\infty$ ברור שההילוך האינסופי המוגדר לעיל (סדרת הקדקודים ער v_i , v_i) ברור שההילוך האינסופי המוגדר לעיל (סדרת הקדקודים v_i) ברור שההילוך האינסופי המוגדר ב' v_i ברוח שהוא ברוח שהוא ρ (v_i,v_{i+1}) ברוח שהיים ב' v_i בחרת הקדקודים מתאימה להילוך בגרף ההפוך כנדרש. נראה שסדרה זו חייבת להסתיים ב' v_i (ולהישאר שם), כלומר שקיים v_i ברוח שובע בי v_i בשלילה שלא, אז קיימים אינסוף v_i ברוח שובע מכאן ומעקרון שובע היונים, שקיים v_i ברוח שובע בהילוך ברוח שובע ברוח שובע בי v_i ברוח שובע בהילוך ברוח ברוח שובע ברוח שובע ברוח ברוח שובע ברוח ברוח שובע ברוח שלילי לסכום, ומכך שיש אינסוף כאלה נקבל ש־ v_i בסתירה. לכן קיימת נקודה שהחל ממנה ברילוך נשאר ב- v_i

נתבונן בתת־הסדרה $v_N=u$ כאמור, היא מתאימה להילוך בגרף ההפוך, כלומר מתאימה להילוך בגרף ההפוך, כלומר מתאימה לחלול בתת־הסדרה $v_N=u$ כל ער ש־ $v_N=u$ ולכל $v_N=u$ ולכל $v_N=u$ בתת־הסדרה ערכן מתקיים $v_N=u$ בחלול מ־ $v_N=u$ שזהו סכום המסלול הנ"ל מ־ $v_N=u$ ביותר מ" $v_N=u$ שזהו סכום המסלול הנ"ל מ"ע (v_{i+1},v_i) מתאימה למינוס ערכו של המסלול הקצר ביותר מ"ע ל" $v_N=u$ שר משקל המסלול.

 $b\in U$ לכל $au\left(s,a\right)\left(\{b\}\right)=egin{cases} 1,&b=a\\0,& ext{otherwise} \end{cases}$ כך: $au\left(s,a\right)$ כך: $au\left(s,a\right)$ לכל $au\left(s,a\right)$ לכל $au\left(s,a\right)$ לכל $au\left(s,a\right)$ לכל $au\left(s,a\right)$ בי כל הערכים האפשריים לau הם אי־חיוביים והם היחידים שנסכמים

1.2

2 מבוך

האלגוריתם התכנס לערכים הבאים:

$$V \approx \begin{bmatrix} -5.186 & -4.013 & -5.186 \\ 0 & -2.353 & -6.013 \\ -2.353 & -4.013 & -5.186 \end{bmatrix}$$

נשים לב שערכה של כל משבצת הוא נמוך יותר ככל שהמשבצת רחוקה מהמצב s_f וכל 2 משבצות שנמצאות במרחק שווה מתכנסות לערד זהה.

מהרצת האלגוריתם עם מספר איטרציות שונה קיבלנו את התמונות הבאות:

מספר הצעדים הנדרש על מנת להגיע מכל משבצת ל־ s_f במבוך הוא 4, לכן לאחר 4 איטרציות האלגוריתם יכול לחשב את הערך "האמיתי" של כל משבצת.

3 סבלנות

אלו ערכי γ שהתקבלו מהרצת האלגוריתם עבור ערכי אלו אלו ערכי

$$V_{\gamma=0.5} \approx \begin{bmatrix} 6.99 & 3.49 & 1.749 & 0.99 & 1.99 \end{bmatrix}$$

 $V_{\gamma=0.75} \approx \begin{bmatrix} 8.99 & 6.749 & 5.062 & 3.79 & 3.99 \end{bmatrix}$
 $V_{\gamma=0.85} \approx \begin{bmatrix} 11.66 & 9.916 & 8.429 & 7.164 & 6.66 \end{bmatrix}$

כאשר ישנם 5 מצבים (השניים הקיצוניים לא באמת קיימים כי לא מגיעים אליהם, אלא חוזרים למצב ההתחלתי) והמצב ההתחלתי הוא הימני ביותר. ההתנהגות האופטילית עבור $\gamma=0.5$ היא ללכת ימינה שכן פעולה זו תביא את הערך $V\left[s_0\right]=1.99$ לעומת הליכה שמאלה, שתביא את הערך $\gamma=0.5$ אם כך, הסוכן יעדיף לצעוד ימינה מ־ $\gamma=0.5$. גם מהמצב השכן ל־ $\gamma=0.5$ (משמאלו) הסוכן יעדיף לצעוד ימינה כי שם ה־ $\gamma=0.5$ יותר. מהמצב הבא אחריו הסוכן כבר יעדיף ללכת שמאלה (אם כי הוא לא יגיע לשם, בהנחה שהוא מתחיל ב־ $\gamma=0.5$).

 s_0 עבור s_0 ההתנהגות היא זהה מ s_0 (כי s_0 (כי 3.99), אם כי הפער בין הערכים קטן יותר. לעומת זאת, מהשכן השמאלי של $\gamma=0.75$, אם כי הפער בין ילך ימינה מיד אם יתחיל ב- s_0 , אבל אם יגיע איכשהו הסוכן כבר יעדיף ללכת שמאלה, וכך גם עבור כל מצב אחר. כלומר הסוכן עדיין ילך ימינה מיד אם יתחיל ב- s_0 , אבל אם יגיע איכשהו לכל מצב אחר הוא יעדיף ללכת שמאלה.

עבור $\gamma=0.85$ הסוכן כבר יעדיף ללכת שמאלה (מכל מצב), כלומר הוא למד שהגמול המירבי מתקבל מהליכה שמאלה. מצורף הגרף עבור הסעיף האחרון:

