NOI2023 模拟赛 Solution

September 30, 2023

1 暴力操作

一定会将最小的 $\lceil \frac{n}{2} \rceil$ 个变小,将 c_i 修补为 $c_{i-1} \le c_i, c_{ij} \le c_i c_j$ 的形式,再二分答案即可解决。 复杂度 $O(n \log n + m \log m)$ 。

2 异或连通

注意到 1 条边只会在 $\log K$ 段区间里存在, 类似使用线段树分治即可, 复杂度 $O(n \log V \log n)$ 。

3 诡异键盘

考虑 DP,我们需要求出打印出 i 向后到 j 需要多少次操作(即我们选择一个 S_p ,将 S_p 打出,然后删到只剩 S[i...j] 这段)。我们建立 trie 树,枚举 [i,j],暴力在子树中找一个 S_i ,这样只需要求出删掉 $|S_i|-(j-i+1)$ 个字符的最小次数。这样 DP 复杂度为 $O(\sum |S_i|+|S|^2)$ (一个 trie 树节点的答案只需求一次)。容易发现只需要预处理删掉 [1,K) 个字符的最小次数,这是一个类似"同余"最短路,可以在 $O(K^2)$ 的时间解决。由于本质不同的长度为 \sqrt{n} ,所以复杂度其实是 $O(\sqrt{nT}K)$.

4 民主选举

考虑设 $f_{x,s}$ 表示子树 x, 每个点最多有 s 票, 有多少票要投到子树上面。

那么对于一个点x,设其子树大小(不包含自己)为s,那么x最多有s票,我们二分,求出其他点能否满足每个点最多s-1票的条件。

考虑求一个全局的 s 使得 $f_{1,s} = 0$ (即每个点都不会超),那么 size > s 和 size < s 的点的答案均确定了,只需考虑 size = s 的点。

此时用 s-1 求出一个答案,容易发现由于 $size_x=s$, $f_{x,s-1}\leq 1$,若 $f_{x,s-1}=0$ 那么 $f_{1,s-1}$ 不会改变,因此 x 点不能获胜,否则若 $f_{1,s-1}$ 和根到 x 链上所有点均为 1, $f_{1,s-1}$ 会改成 0,故 x 可以获胜。