WS 23/24 Numerics Notes

Igor Dimitrov

2023 - 10 - 30

Table of contents

Preface		3
1	Floating Point Numbers	4
	1.1 ANSI/IEEE 64 Bit	4

Preface

Notes for the lecture "WS 23/24 Numerics 0" at Uni Heidelberg.

1 Floating Point Numbers

1.1 ANSI/IEEE 64 Bit

Let \tilde{a} be a 64 bit IEEE floating point number. \tilde{a} is represented as

Where S is the sign bit, 11 E's are the exponent bits and 52 M's are mantissa bits. Interpretation (Case analysis on value of E):

- 1. S | 0 ... 0 | M:

 - $\begin{array}{l} 1.\ \ M=0\Rightarrow \tilde{a}=(-1)^S0\\ 2.\ \ M\neq 0\Rightarrow \tilde{a}=(-1)^S\times 2^{-1022}\times 0.M \ ({\bf subnormal\ range}) \end{array}$
- 2. $1 \le E \le 2046 \Rightarrow \tilde{a} = (-1)^S \times 2^{E-1023} \times 1.M$ (normal range)
- 3. S | 1 ... 1 | M:
 - 1. $M=0\Rightarrow \tilde{a}=(-1)^S$ inf
 - 2. $M \neq 0 \Rightarrow \tilde{a} = \text{\tt NaN(Not\ a\ Number)}$ (exceptions)

See Figure 1.1 for a visual summary.

Figure 1.1: floating-point