Prop: Additionally, if two lifts agree at 1 point, they agree everywhere (e.g. unique).
Oct 30: Classification of Covering Sp:
Note: Beutiful Prop from last time: P*: T((X,Xo)) T(X,xo)
Thus $P*TC_1(\widetilde{X},\widetilde{X}_0) \subseteq \mathcal{T}_1(X,X_0)$ is a Subgroup.
The question is; Does every subgroup correspond to a covering space?
Let's answer the simpler question can 0 be realized?
> locally path connected (so we can divide into
> Semilocally poto-connected: JZ, (U) = DX(X) for
some open neighborhood UOS any point XEX.
Let's answer the simpler question can 0 be realized? We assume spaces are > locally path connected (So we can divide into path components) Simply > Semilorally path-connected: J(U) = D(X) for some open neighborhood U.O.F. eng point X.E.X. — simply connected If p: X > X is a c.s., then YXEX JU>X W/ p'(U) = 11 U. If
$\delta \in \mathcal{T}_{i}(\mathcal{U})$, then $\delta \in \mathcal{T}_{i}(p^{-1}(\mathcal{U}))$ is trivial, an $p_{*}\delta = \delta$ is trivial.
(It is a slight weakening of locally simply connected,

/ bupallo = [w] Majolosib ds No D si q (= [8] N] = (N) d /m Construction, and thus p is continuous, Rg odwoy p si NC-[2]N: [2]n/d.X no odd sit tet rized b ?; { ED U } = [= $\{[m\cdot u\cdot u\cdot g]=[m\cdot g]\}=[\Omega n]$ Mes ini since U is PC and ini since U(s) Isince ini since {(1)} + builtons Nothing at 8(1)} = [8]N (X 9 °X SJOSUUGCH2 X° PO X) X Sport is offer, this also holds Sousis for a topolar \$0=(U),50, wi | X=U) = 11 +21:X 752 ypologoT. · p:X ->X: [] H) (1) is well destined, surjective (PC) Note: 8 is taken up to homotopy of paths.

Prop: 3 : X X X X X Simply connected, Jedniff X is PC, 10c PC, 5LSC. X is called the universal cover of X.

8x @ griting & Let X = {[8] | [8] & a path 5thrting @ x.5

Lastly, WFS X is simply connected. [8] EX Let & be 8[cost]. the 8t is a path in X listing Thus & X is PC. DTS
P*T($(X,X_0)=0$, since p_* is injective. If X is in the image, it lists to a loop X in X . but $X \mapsto X_t$ is a homotopy $X \mapsto X_t$ is a homotopy $X \mapsto X_t$ is a homotopy $X \mapsto X_t$
Why Care?: This shows
$ \begin{cases} \text{Cov Sp of X} \\ \text{p:}(X_{x}) \\ \text{X} \\ \text{P} \end{cases} $ $ \begin{cases} \text{Subgroups } H \leq \pi_{1}(X_{1}, x_{0}) \\ \text{P} \end{cases} $ $ \begin{cases} \text{P} \\ \text{P} \\ \text{P} \end{cases} $ $ \begin{cases} \text{N} \\ \text{N} \\ \text{N} \end{cases} $ $ \begin{cases} \text{N} \\ \text{N} \end{cases} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & &$

(Note: Sometines called a regular cover). XCIX: XCX: FEX of buildow X3 X X PM (X3XA J! 24) My X1 EX p: X -> X is called normal isty (X) X5. 4 S) 9: dwo) spun dhoib o wiet hay 1 J is called and deck transform. X TX Now, we want to study the gp structure. More over subgroups () Quotient covers of Xn. $(0x)^{n} \longleftrightarrow (0x(x))^{1} \hookrightarrow (0x$ Nov I: Deck Transformations: We know I which 1 5(0x1X) 2c= ,6H6} ←> =/{X ← x:d}

Proprilet X be PC, LPC, 5225C. Then

Prop: Let $(X, X_0) \rightarrow (X, X_0)$ be path connected
Prop: Let $(X, X_0) \rightarrow (X, x_0)$ be path connected cov sp of X LPC, PC, and let $H = \pi_1(X, x_0)$ w/ $H = \pi_1(X, x_0)$. Then
a) ρ is normal \rightleftharpoons H is a normal subgroup b) $G(X) \cong N(H)/H$, where $N(H)$ is the normalizer subgroup of H ,
Recall: N(H) = Egeb gHg = H}
(or: If is a normal cover then G(X) P* TC,(X).
In particular $G(X_u) \cong \pi_1(X, x_0)$
Pf: Change of basepoint: $TC_1(X_1X_0) \xrightarrow{Bh} TC_1(X_1X_1)$ where Bh connects X_0 to X_1 in X is a lift of a loop in X at X_0 . Thus $h \in N(H)$ iff
$\mathcal{T}_{\mathcal{L}}(X,X_0) \xrightarrow{\mathcal{D}_h} \mathcal{T}_{\mathcal{L}}(X,X_1)$
P*
$\mathcal{I}_{\mathcal{L}_{1}}(X,X_{0})$
Im $(p_*) = Im(p_*)$. By the lifting criterion $\Rightarrow \exists f_h \in G(X)$ taking X_0 to $X_1 \Rightarrow (a) \boxtimes A$
Thus, $\mathcal{C}: \mathbb{N}(H) \to \mathcal{G}(X): \bigcirc \bigcirc$
Q is a hom, and $Ker(Y) = \{ \forall \text{ lifting to loops} \}$ $\Rightarrow = H.$

given by rotation ZZ E/ZZ = (X)X We have 9 7 9 p 72/72*72 = (-000)121*d/(00)121=(X)-5) (= This is a normal cover snotplened a to reminishing translation by a certain of flys space is a A Deck transformation 15 (RPM) = ZZ /ZZ 25ilgmi Since 32,(S") = ("2), this deck Transformation D 21 uS K-HX US