Answer these questions in the spaces provided.

1. This question asks you to predict the properties of elements from their positions in the Periodic Table. The symbols for ten elements are shown. Answer the questions about these elements.

Li											Ne
										Cl	
			V				Zn	Ge		Br	
										I	
	Sr										
Cs											

a)	Write the sy	vmbol of the elem	ent with the highest	electronegativity	
α_{j}	Will the the sy	ymbor or the cicin	che while the highest	Ciccuoneganvit	y •

- b) Write the formula for a covalent molecular compound that could be formed by combining two of the elements
- c) Write the symbol for the element with the lowest first ionisation energy.

d)	Write the formula for the carbonate of Cs	

e) Write the symbol for the element that exists as a covalent molecular solid at room temperature

(5 marks)

2. Place the following substances in the appropriate column based on the most significant type of intermolecular force present. (4 marks)

C₂H₅OH, CH₃Cl, H₂O, CH₂F₂, BH₃, NI₃, CS₂, HF

Dipole-dipole interactions	Dispersion forces
	Dipole-dipole interactions

ons, and sketch the shape.	
	Shape
Structural formula	опире
	(6 marks)
pairs of substances, state whice is responsible for the difference	h has the higher melting
pairs of substances, state whice ce is responsible for the difference	h has the higher melting
	h has the higher melting
ce is responsible for the difference	h has the higher melting ence.
ce is responsible for the difference	h has the higher melting ence.
ce is responsible for the difference	h has the higher melting ence.
ce is responsible for the difference	h has the higher melting ence.
ce is responsible for the difference	h has the higher melting ence.
ce is responsible for the difference	h has the higher melting ence.
ce is responsible for the difference	h has the higher melting ence.
ce is responsible for the difference	h has the higher melting ence.
	Structural formula

(6 marks)

6. Fill in the boxes in the table below with a species, chosen from the list provided, that matches the description in the box. Only one answer per box is required.

CH₂O CH₂Cl₂ NO₂- HF Na^{+} SO_3 H_2O NH_3 CH_4 Cl_2

A bent, polar species	A non-polar species	A species that can form hydrogen bonds between its molecules
A tetrahedral, polar species	A species that contains only non-polar bonds	A pyramidal species

(6 marks)

7. The following table gives some data about three elements in the fourth row of the Periodic Table.

Element	Melting point	First	Electrical
	°C	ionisation	conductivity
		energy	MSm ⁻¹
		MJ mol ⁻¹	
Potassium	63	0.43	14
Germanium	937	0.77	10-6
Bromine	-7	1.15	10-16

Account for the way in which the values relate to the structure of the elements at the atomic level.

(6 marks)