Cálculo diferencial em \mathbb{R}^n : Extremos Condicionados

M. Elfrida Ralha (eralha@math.uminho.pt)

M.Isabel Caiado (icaiado@math.uminho.pt)

abril 2018

[MIEInf] Análise-2017-18

1 / 29

Extremos Condicionados

Generalidades

Teorema de Weierstrass

Método de Redução da dimensão Sobre os extremos da fronteira

Método de Multiplicadores de Lagrange

Determinar os extremantes da função

$$f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$$

quando as variáveis independentes estão sujeitas a restrições.

Falamos, neste caso, de

Extremos condicionados

Enunciaremos 2 Métodos de abordagem ao Problema:

- ► Redução de dimensão
- Multiplicadores de Lagrange

[MIEInf] Análise-2017-18

3 / 29

Teorema (de Weierstrass)

Se f é um campo escalar de n variáveis, definido e contínuo num conjunto $D_f \subset \mathbb{R}^n$ que é fechado e limitado, então f tem um maximizante global e um minimizante global em D_f .

 ${f Obs}$: Os extremantes globais podem ocorrer nos pontos críticos de f, mas também podem pertencer à fronteira de D_f .

Localizar, nos casos mais simples, os extremantes globais de uma função f, nas condições do teorema, consiste em:

- 1. Identificar os pontos críticos de f e calcular o valor de f em cada um desses pontos.
- 2. Encontrar os extremantes de f, que estão na fronteira de D_f (isto é, que são condicionados).
- 3. Comparar os valores encontrados nos passos anteriores. Concluir que o maior valor encontrado é o máximo absoluto de f em D_f , enquanto que o menor destes valores é o seu mínimo absoluto.

$$\Sigma = \{ \mathbf{x} \in B : g(\mathbf{x}) = k \}.$$

▶ [Extremante condicionado] Um ponto $\mathbf{a} \in (U \cap \Sigma)$ diz-se um extremante de f condicionado pela condição $g(\mathbf{x}) = k$ quando é um extremante de $f \Big|_{\Sigma}$, isto é, da restrição de f ao conjunto Σ .

Obs: Usámos, nestes exemplos, um procedimento de "redução da dimensão".

¹Caso se tenha
$$g(\mathbf{x}) = k$$
 também se poderia definir $G(\mathbf{x}) = g(\mathbf{x}) - k$ e considerar $G(\mathbf{x}) = 0$.

[MIEInf] Análise-2017-18

5 / 29

Exemplos

1. Quais os extremos absolutos da função f em D, sabendo que

$$f(x,y) = x^2 - 2xy + 2y$$
 e $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 3 \text{ e } 0 \le y \le 2\}$?

$$z = x^2 - 2xy + 2y$$

$$x$$
0 1 2 3

- 1. Quais os pontos críticos?
- 2. Quais os extremantes de f na fronteira de D, isto é, nas retas definidas por x=0, $x=3,\ y=0$ e y=2?

3. Resumindo:

r cesarrina e :								
(a,b)	(1,1)	(0,2)	(0,0)	(3,0)	(3,2)	(2,2)		
f(a,b)	1	4	0	9	1	0		

[MIEInf] Análise-2017-18

Exemplos

 ${f 2.}$ Quais os extremos absolutos da função g em D, sabendo que

$$g(x,y) = \operatorname{sen}(xy) e$$

$$D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le \pi \quad \text{e} \quad 0 \le y \le 1\}?$$

- 1. Quais os pontos críticos?
- 2. Quais os extremantes de f na fronteira de $\stackrel{>}{>}$ D, isto é, nas retas definidas por x=0, $x=\pi,\ y=0$ e y=1?

3. Resumindo

(a,b)	(0,0)	(0,y)	(x,0)	$(x,y):xy=\frac{\pi}{2}$
f(a,b)	0	<u>0</u>	<u>0</u>	1

[MIEInf] Análise-2017-18

7 / 29

Exercício

Encontre um retângulo de área máxima que pode ser inscrito em uma elipse, \mathcal{E} , definida por $\frac{x^2}{9}+\frac{y^2}{16}=1$.

▶ A função $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$, definida por $g(x,y) = \frac{x^2}{9} + \frac{y^2}{16}$ é tal que a sua curva de nível 1 é \mathcal{E} , impõe a "restrição"ao problema (de otimização), isto é condiciona a função área...

A função área pode definir-se como A(x,y) = 4xy, sendo que (x,y) designa um vértice de um retângulo, no primeiro quadrante.

Obs: Recorde-se que 2 curvas são tangentes em um ponto quando os respetivos vetores gradiente forem paralelos!

Multiplicadores de Lagrange

O problema da determinação de extremos de uma função $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ significa resolver um sistema de \underline{n} equações, definido por (com $i=1,\cdots,n$):

$$\nabla f(x_i) = \vec{0}.$$

O método, denominado, de os Multiplicadores de Lagrange usa-se para encontrar os extremos de f, sob \underline{m} restrições; a saber (com $j=1,\cdots,m$):

$$g_j(\mathbf{x}) = 0$$
, onde $g_j : \mathbb{R}^n \longrightarrow \mathbb{R}$.

Seja $F:\mathbb{R}^{n+m}\longrightarrow\mathbb{R}$ uma função tal que

$$F(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{j} \lambda_{j} g_{j}(\mathbf{x}),$$

cujos extremos são os extremos de f condicionados por g_j . Encontrar os extremos de F, usando gradientes, consiste em resolver um sistema (de n+m equações e n+m incógnitas)

9 / 29

[Método dos multiplicadores de Lagrange:: algoritmo]

Para determinar os extremantes da função $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ sujeitos a m restrições $g_j(\mathbf{x})=0$, supondo que esses valores extremantes existem (e que, nesses pontos $\nabla g_j\neq\vec{0}$)

1. Identificar $\mathbf{x} \in \mathbb{R}^n$ (e $\lambda_j \in \mathbb{R}$) resolvendo o sistema de n+m equações

$$\begin{cases} \nabla f(\mathbf{x}) = \lambda_j \, \nabla g_j(\mathbf{x}) \\ g_j(\mathbf{x}) = 0 \end{cases}$$

2. Calcular o valor de f em todos \mathbf{x} encontrados no passo anterior. O maior desses valores é o máximo de f e o menor é o mínimo de f sujeita a $g_j(\mathbf{x}) = 0$.