Maths - MP2I

Eliott Paquet

20 juillet 2025

Introduction

Ce document réunit l'ensemble de mes cours de Mathématiques de MP2I, ainsi que les TDs (travaux dirigés) les accompagnant. J'ai adapté certaines formulations me paraissant floues ou ne me plaisant pas mais le contenu pur des cours est strictement équivalent. Le document est organisé selon la hiérarchie suivante : chapitre, I), 1), a).

Les éléments des tables des matières initiale et présentes au début de chaque chapitre sont cliquables (amenant directement à la partie cliquée). C'est également le cas des références à des éléments antérieurs de la forme, par exemple, « Démonstration 5.22 ».

Dernier TD corrigé: aucun.

Table des matières

Ι	Cours	2
1	trigonométrie (Rappels et compléments)	3
	1.1 Cercle trigonométrique	3
	1.1.1 Relation de congruence modulo 2π sur \mathbb{R}	3
	1.2 Cosinus et sinus	4
	1.2.1 Formules et valeur remarquables	4
	1.3 La fonction tangente	6
2	Inégalité et fonction (rappel et compléments)	7
	2.1 Inégalité	7
	2.1.1 Relation d'ordre sur \mathbb{R}	7
	2.2 Valeur absolue d'un réel	12
	2.3 Partie entière d'un réel	13
	2.4 Généralité sur les fonctions	14
	2.5 Fonction et relation d'ordre	17

Première partie

Cours

Chapitre 1

trigonométrie (Rappels et compléments)

Sommaire

1.1	Cercle trigonométrique	
1.1.1	Relation de congruence modulo 2π sur \mathbb{R}	
1.2	Cosinus et sinus	
1.2.1	Formules et valeur remarquables	
1.3	La fonction tangente	

Dans ce chapitre, on rappelle ce qui a été vu en trigonométrie au lycée et on complète avec les formules d'addition et de duplication ainsi que l'étude de la fonction tangente.

1.1 Cercle trigonométrique

On se place dans le plan muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

Définition 1.1 (Cercle trigonométrique)

On appelle cercle trigonométrique le cercle de centre O et de rayon 1

Propriétés 1.2 (enroulement de la droite des réels sur le cercle trigonométrique) Soit M un point du plan.

Le point M appartient au cercle trigonométrique si, et seulement si, il existe un réel t tel que les coordonnées de M dans le repère orthonormé (O, \vec{i}, \vec{j}) sont $(\cos t; \sin t)$

1.1.1 Relation de congruence modulo 2π sur \mathbb{R}

Définition 1.3

Deux réels a et b sont dits congrus modulo 2π s'il existe un entier relatif k tel que $a-b=2k\pi$ Notation : $a\equiv b$ [2π]

Définition/Propriétés 1.4

On dit que la relation \equiv est une relation d'équivalence sur $\mathbb R$ car elle vérifie les propriétés suivantes :

- (1) Pour tout réel x, on a : $x \equiv x [2\pi]$. (réfléxivité)
- (2) Pour tout couple de réels (x, y) tel que $x \equiv y [2\pi]$, on a $y \equiv x [2\pi]$ (symétrie)
- (3) Pour tout triplet de réels (x, y, z) tel que $x \equiv y [2\pi]$ et $y \equiv z [2\pi]$, on a : $x \equiv z [2\pi]$ (transitivité)

1.2 Cosinus et sinus

1.2.1 Formules et valeur remarquables

Formule 1.5 (Formule de base)

Pour tout réel t, on a :

(1)
$$\cos(\pi - t) = -\cos t \ et \sin(\pi - t) = \sin t$$

(2)
$$\cos (\pi + t) = -\cos t \ et \sin (\pi + t) = -\sin t$$

(3)
$$\cos\left(\frac{\pi}{2} - t\right) = \sin t \ et \sin\left(\frac{\pi}{2} - t\right) = \cos t$$

(4)
$$\cos\left(\frac{\pi}{2} + t\right) = -\sin t \ et \sin\left(\frac{\pi}{2} + t\right) = \cos t$$

t	$0 \mid \frac{\pi}{6}$		$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos t$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin t$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Remarque 1.6

Soient a et b des réels :

•
$$\cos a = \cos b \iff \begin{cases} a \equiv b \ [2\pi] \\ \text{ou} \iff \end{cases} \begin{cases} \exists k \in \mathbb{Z}, \ a = b + 2k\pi \\ \text{ou} \end{cases}$$
• $\sin a = \sin b \iff \begin{cases} a \equiv b \ [2\pi] \\ \text{ou} \iff \end{cases} \begin{cases} \exists k \in \mathbb{Z}, \ a = b + 2k\pi \\ \exists k' \in \mathbb{Z}, \ a = -b + 2k'\pi \end{cases}$
• $\sin a = \sin b \iff \begin{cases} a \equiv b \ [2\pi] \\ \text{ou} \iff \end{cases} \begin{cases} \exists k \in \mathbb{Z}, \ a = b + 2k\pi \\ \text{ou} \end{cases}$
• $\sin a = \sin b \iff \begin{cases} a \equiv b \ [2\pi] \\ \text{ou} \iff \end{cases} \begin{cases} \exists k \in \mathbb{Z}, \ a = -b + 2k'\pi \\ \exists k' \in \mathbb{Z}, \ a = b + 2k'\pi \end{cases}$

Formule 1.7 (Formule d'addition)

Pour tout couple de réels (a,b) on a :

(1)
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

(2)
$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

(3)
$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

(4)
$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

Formule 1.8 (Formule de simpson)

Pour tout couple de réels (a,b) on a :

(1)
$$\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b) \iff \frac{1}{2}(\sin(a+b) + \sin(a-b)) = \sin(a)\cos(b)$$

(2)
$$\cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b) \iff \frac{1}{2}(\cos(a+b) + \cos(a-b)) = \cos(a)\cos(b)$$

Application 1.9

Calcul:

$$\int_0^{\pi} \sin(x) \cos(3x) \, dx = \int_0^{\pi} \frac{1}{2} \left(\sin(4x) + \sin(2x) \right) dx = 0$$

Formule 1.10 (Formule de duplication)

Pour tout réel a, on a :

(1)
$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - \sin^2(a)$$

$$(2) \sin(2a) = 2\cos(a)\sin(a)$$

Propriétés 1.11 (Sinus et Cosinus)

- La fonction cos est définie sur \mathbb{R} , paire et périodique de période 2π . Elle est dérivable sur \mathbb{R} et sa dérivée vérifie $\cos' = -\sin$
- La fonction sin est définie sur \mathbb{R} , impaire et périodique de période 2π . Elle est dérivable sur \mathbb{R} et sa dérivée vérifie sin' = cos

Propriétés 1.12 (Inégalité remarquable)

Pour tout réel t, on a : $|\sin(t)| \le |t|$

La fonction tangente 1.3

Définition $\frac{1.13}{\cos}$ La fonction $\frac{\sin}{\cos}$ est appelée la fonction tangente et notée tan

Propriétés 1.14

La fonction tan est définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$, impaire et périodique de période π . Elle est dérivable sur $\mathbb{RR} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$ et sa dérivée vérifie $\tan' = 1 + \tan = \frac{1}{\tan^2}$

Formule 1.15

Pour tout réel t, on a :

- $(1) \ tan(\pi t) = -\tan(t)$
- (2) $tan(\pi + t) = tan(t)$

<i>(</i> 9)	t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
(3)	$\tan t$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	NULL

Formule 1.16 (addition et duplication)

Pour tout couple de réels (a,b) n'appartenant pas à l'ensemble $\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$, on a :

(1) Si
$$a+b$$
 n'appartient pas à l'ensemble $\left\{\frac{\pi}{2}+k\pi \mid k \in \mathbb{Z}\right\}$ alors $\tan(a+b)=\frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}$

(2) Si
$$a-b$$
 n'appartient pas à l'ensemble $\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$ alors $\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$

(3) Si 2a n'appartient pas à l'ensemble
$$\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$$
 alors $\tan(2a) = \frac{2\tan(a)}{1-\tan^2(a)}$

Exercice/Exemple 1.17

Soit t réel n'appartenant pas à $\left\{\frac{\pi}{4} + k\frac{\pi}{2} \mid k \in \mathbb{Z}\right\}$:

$$\sin(t) = 2\sin\left(\frac{t}{2}\right)\cos\left(\frac{t}{2}\right)$$

$$= \frac{2\sin\left(\frac{t}{2}\right)}{\cos\left(\frac{t}{2}\right)}\cos^2\left(\frac{t}{2}\right)$$

$$= \frac{1}{1+\tan^2\left(\frac{t}{2}\right)} \times 2\tan\left(\frac{t}{2}\right)$$

$$= \frac{2\tan\left(\frac{t}{2}\right)}{1+\tan^2\left(\frac{t}{2}\right)}$$

Chapitre 2

Inégalité et fonction (rappel et compléments)

Sommaire

2.1	Inégalité
2.1.1	Relation d'ordre sur \mathbb{R}
2.2	Valeur absolue d'un réel $\dots \dots \dots$
2.3	Partie entière d'un réel
2.4	Généralité sur les fonctions
2.5	Fonction et relation d'ordre

Dans ce chapitre, sont rassemblés des rappels ou compléments sur les inégalités ainsi que des fondamentaux sur les fonctions de variable réelle à valeurs réelles (sans preuve ni évocation de continuité).

2.1 Inégalité

2.1.1 Relation d'ordre sur \mathbb{R}

Définition 2.1

On dit que la relation \leq est une relation d'équivalence sur $\mathbb R$ car elle vérifie les propriétés suivantes :

(1) Pour tout réel x, on a : $x \le x$.

(réfléxivité)

(2) Pour tout couple de réels (x, y) tel que $x \le y$ et $y \le x$, on a y = x

(antisymétrie)

(3) Pour tout triplet de réels (x, y, z) tel que $x \le y$ et $y \le z$, on a : $x \le z$

(transitivité)

Propriétés 2.2 (Compatibilité avec les opérations)

Soit x, y, z, t et a des réels.

- (1) Si $x \le y$ et $z \le t$ alors $x + z \le y + t$
- (2) Si $x \le y$ et $0 \le a$ alors $ax \le ay$
- (3) Si $x \le y$ et $a \le 0$ alors $ay \le ax$
- (4) Si $0 \le x \le y$ et $0 \le z \le t$ alors $0 \le xz \le yt$

Notation 2.3 (Intervalles de \mathbb{R})

Les partie I de \mathbb{R} pouvant s'écrire sous l'une des formes suivantes sont dites intervalles de \mathbb{R} :

- \bullet $I = \emptyset$
- $I = \{x \in \mathbb{R} \mid a \le x \le b\} = [a; b] \text{ avec } (a, b) \in \mathbb{R}^2 \text{ et } a \le b$
- $I = \{x \in \mathbb{R} \mid a \le x < b\} = [a ; b[\text{avec } (a,b) \in \mathbb{R} \times (\mathbb{R} \cup \{+\infty\}) \text{ et } a < b\}]$
- $I = \{x \in \mathbb{R} \mid a < x \le b\} = a \mid a : b$ avec $(a, b) \in (\mathbb{R} \cup \{-\infty\}) \times \mathbb{R}$ et $a < b \mid a < b \mid a$
- $\bullet \ I = \{x \in \mathbb{R} \mid a < x \leq b\} \underset{\text{notation}}{=} \]a \ ; \ b \ [\ \text{avec} \ (a,b) \in (\mathbb{R} \cup \{-\infty\}) \times (\mathbb{R} \cup \{+\infty\}) \ \text{et} \ a < b \}$

Propriétés 2.4

(1) Passage à l'inverse dans une inégalité

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \leqslant y \iff \frac{1}{y} \leqslant \frac{1}{x}$$

$$\forall x \in \mathbb{R}_{-}^{*}, \ \forall y \in \mathbb{R}_{-}^{*}, \ x \leq y \iff \frac{1}{y} \leq \frac{1}{x}$$

(2) Passage au carré dans une inégalité

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \le y \iff x^2 \le y^2$$

$$\forall x \in \mathbb{R}_{-}^{*}, \ \forall y \in \mathbb{R}_{-}^{*}, \ x \leq y \iff y^{2} \leq x^{2}$$

(3) Passage à la racine carrée dans une inégalité

$$\forall x \in \mathbb{R}_+, \ \forall y \in \mathbb{R}_+, \ x \leq y \iff \sqrt{x} \leq \sqrt{y}$$

(4) Passage à l'exponentielle ou au logarithme népérien dans une inégalité

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x \leq y \iff e^x \leq e^y$$

$$\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ x \leq y \iff \ln x \leq \ln y$$

8

${\bf Exercice/Exemple~2.5}$

Montrer $\forall x \in [0; 1], \ x(1-x) \leqslant \frac{1}{4}$.

Correction 2.6 (2 Méthode)

Soit $x \in [0; 1]$

(1) Raisonnement par équivalence

$$x(1-x) \le \frac{1}{4} \iff 0 \le \frac{1}{4} - x(1-x)$$

$$\iff 0 \le x^2 - x + \frac{1}{4}$$

$$\iff 0 \le \left(x - \frac{1}{2}\right)^2$$

Ceci étant vrai $\forall x \in [0; 1]$, car $\Delta = 0$ et $x_0 = \frac{1}{2}$, on conclut $\forall x \in [0; 1]$, $x(1-x) \leq \frac{1}{4}$.

(2) étude de la fonction $f: [0;1] \longrightarrow$ $x \longmapsto \frac{1}{4} - x(1-x)$

Exercice/Exemple 2₁7 Montrer $\forall x \in \mathbb{R}_{+}^{*}, x + \frac{1}{x} \ge 2$.

Correction 2.8 Soit $x \in \mathbb{R}_+^*$

$$x + \frac{1}{x} \ge 2 \iff \frac{x^2 + 1}{x} \ge 2$$
$$\iff x^2 - 2x + 1 \ge 0$$
$$\iff (x - 1)^2 \ge 0$$

Ceci étant vrai $\forall x \in \mathbb{R}_+^*$, on conclut $\forall x \in \mathbb{R}_+^*$, $x + \frac{1}{x} \ge 2$.

Exercice/Exemple 2.9 Encadrer $\frac{2x^2-x+1}{x^2+\sqrt{x+2}+3}$ pour $x \in [-1; 1]$.

Correction 2.10

Soit $x \in [-1; 1]$

(1) numérateur :

$$-1 \le x \le 1 \iff 0 \le x^2 \le 1$$

 $\iff 0 \le 2x^2 \le 2$
 $\iff 0 \le 2x^2 - x + 1 \le 4$

(2) denominateur:

$$-1 \leqslant x \leqslant 1 \iff 0 \leqslant x^2 \leqslant 1$$

$$\iff 4 \leqslant x^2 + \sqrt{x+2} + 3 \leqslant 4 + \sqrt{3}$$

$$\iff \frac{1}{4+\sqrt{3}} \leqslant \frac{1}{x^2 + \sqrt{x+2} + 3} \leqslant \frac{1}{4}$$

Ainsi par produit des deux inégalités on as $0 \le \frac{2x^2 - x + 1}{x^2 + \sqrt{x + 2} + 3} \le 1$ pour $x \in [-1; 1]$.

Exercice/Exemple 2.11 Encadrer $\frac{x-y^2+3}{x^2+v^2-y}$ pour $\forall (x,y) \in [1\ ; 2]^2$.

Correction 2.12

Soit $x \in [-1; 1]$

(1) numérateur :

$$1 - 4 + 3 \le x - y^2 + 3 \le 2 - 1 + 4 \iff 0 \le x - y^2 + 3 \le 5$$

(2) denominateur:

$$0 \le y - 1 \le 1 \iff 0 \le y^2 - y \le y$$

$$\iff 0 \le y^2 - y \le 2$$

$$\iff 1 \le x^2 + y^2 - y \le 6$$

$$\iff \frac{1}{6} \le \frac{1}{x^2 + y^2 - y} \le 1$$

Ainsi par produit des deux inégalités on as $0 \le \frac{x - y^2 + 3}{x^2 + y^2 - y} \le 5$ pour $\forall (x, y) \in [1; 2]^2$.

Définition 2.13 (Parties majorées, majorants, maximum)

Une partie A de \mathbb{R} est dite majorée s'il existe un réel M tel que, pour tout réel x de A, on a : $x \leq M$. Un tel réel M est alors dit :

10

- majorant de A dans le cas général.
- maximum de A dans le cas particulier où M appartient à A.

Définition 2.14 (Parties minorées, minorants, minimum)

Une partie A de $\mathbb R$ est dite minorée s'il existe un réel m tel que, pour tout réel x de A, on a : $m \le x$. Un tel réel m est alors dit :

- minorant de A dans le cas général.
- minimum de A dans le cas particulier où m appartient à A.

Exercice/Exemple 2.15 Que dire de $B = \left\{ \frac{n}{n^2 + 1} \mid n \in \mathbb{N} \right\}$?

Correction 2.16

- B est minorée car $\forall n \in \mathbb{N}, \ 0 \le \frac{n}{n^2 + 1}$ par ailleurs $0 \in B$ donc 0 est un minimum.
- B est majorée par $\frac{1}{2}$. En effent en notant $U_n = \frac{n}{n^2 + 1}$, On voit que (U_n) est strictement décroissante

Exercice/Exemple Que dire de
$$C = \left\{ \frac{e^{-x}}{x} \middle| x \in \mathbb{R}_{+}^{*} \right\}$$
?

Correction 2.18

- C est minorée car $\forall x \in \mathbb{R}_+^*$, $0 \le \frac{e^x}{x}$ donc 0 est un minorant mais pas un minimum
- Supposons que C est majorée alors $\exists M \in \mathbb{R}, \forall c \in C, c \leq M$ ainsi $\forall x \in \mathbb{R}_+^*, \frac{e^x}{x} \leq M$ donc par passage à la limite en $+\infty$ on trouve $+\infty \leq M$ ce qui est absurde donc C n'est pas majorée.

Définition 2.19 (Parties bornées)

Une partie A de \mathbb{R} est dite bornée si elle est majorée et minorée autrement dit s'il existe deux réels m et M tel que, pour tout réel x de A, on a : $m \le x \le M$.

Valeur absolue d'un réel 2.2

Définition 2.20

Pour tout x réel, la valeur absolue de x, notée |x|, est définie par : |x| = $\begin{cases} -x & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$

Propriétés 2.21

- (1) Pour tout x réel, on a : $0 \le |x|$ et $x \le |x|$
- (2) Pour tout couple(x, y) de réels, on a : |xy| = |x||y|
- (3) Pour tout couple (x, y) de réels tel que y est non nul, on a : $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$

Définition/Propriétés 2.22 (Deux inéquations élémentaires)

Pour tout réel x et tout réel positif α , on a :

- (1) $|x| \le \alpha \iff -\alpha \le x \le \alpha \iff x \in [-\alpha : \alpha]$
- (2) $|x| \ge \alpha \iff x \le -\alpha \text{ ou } \alpha \le x \iff x \in]+\infty; -\alpha] \cup [\alpha; +\infty[$

Définition/Propriétés 2.23 (Interprétation sur la droite des réels)

Soit a un réel et b un réel positif.

L'ensemble des réels x vérifiant $|x-a| \le b$ (resp. $|x-a| \ge b$) est l'ensemble des points de la droite des réels situés à une distance du point a inférieure ou égale (resp. supérieure ou égale) à b.

Propriétés 2.24 (Inégalité triangulaire)

Pour tout couple (x, y) de réels, on a :

$$|x + y| \le |x| + |y|$$

Démonstration 2.25 (inégalité triangulaire)

Soit $(x, y) \in \mathbb{R}^2$

$$|x+y| \le |x| + |y| \iff |x+y|^2 \le (|x|+|y|)^2$$

$$\iff x^2 + 2xy + y^2 \le x^2 + y^2 + 2|x||y|$$

$$\iff xy \le |xy|$$

12

Ce qui est vrai donc l'inégalité est bien démontrer

Exercice/Exemple 2.26 Encadrer $\frac{x \cos(x) + 1}{\sin(x) + 3}$ pour $x \in [-\pi ; 2\pi]$

Correction 2.27

Soit $x \in [-\pi; 2\pi]$

- numérateur : $|x \cos(x) + 1| \le |x| |\cos(x)| + 1 \le 2\pi + 1 = 2\pi + 1$
- dénominateur : $2 \le |\sin(x) + 3| \le 4$

Ainsi par produit des deux inégalités on as $:0 \le \frac{|x\cos(x)+1|}{|\sin(x)+3|} \le \frac{2\pi+1}{2}$

donc $-\frac{2\pi + 1}{2} \le \frac{x \cos(x) + 1}{\sin(x) + 3} \le \frac{2\pi + 1}{2}$ pour $x \in [-\pi; 2\pi]$.

Propriétés 2.28

Soit un couple (x, y) de réels.

$$||x| - |y|| \le |x - y|$$

Démonstration 2.29

Soit $(x, y) \in \mathbb{R}^2$ x = (x - y) + y donc $|x| \leq |x - y| + |y|$ d'où $|x| - |y| \leq |x - y|$ De même, y = (x - y) + x donc $|y| \leq |x - y| + |x|$ d'où $-|x - y| \leq |x| - |y|$

ainsi on a $-|x - y| \le |x| - |y| \le |x - y|$ donc $||x| - |y|| \le |x - y|$.

Partie entière d'un réel 2.3

Propriétés 2.30

Pour tout réel x, il existe un unique entier n tel que :

$$n \leq x < n+1$$

Définition 2.31

On appelle partie entière de x, notée |x|, l'unique entier n vérifiant la propriété précédente.

Exemple 2.32

$$[3.14] = 3, [-2.7] = -3 \text{ et } [5] = 5.$$

2.4 Généralité sur les fonctions

Définition 2.33 (Fonction)

Une fonction de variable réelle à valeurs réelles notée f est un objet mathématique qui, à tout élément x d'une partie non vide de \mathbb{R} , associe un et un seul nombre réel noté f(x).

Notation Fonctionnelle:

$$f: A \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x)$$

Définition 2.34

Soit f une fonction de variable réelle à valeurs réelles.

- (1) L'ensemble des réels x pour lesquels f(x) existe est appelé ensemble/domaine de définition de f et souvent noté $D_f = \{x \in \mathbb{R} \mid f(x) \text{ existe}\}$
- (2) Soit $x \in D_f$ La valeur réelle f(x) est appelée image de x par f.
- (3) soit $y \in \mathbb{R}$ S'il existe x dans D_f tel que f(x) = y alors x est dit antécédent de y par f

Définition/Propriétés 2.35 (égalité entre fonction)

Deux fonctions f et g de variable réelle à valeurs réelles sont dites égales si les deux conditions suivantes sont réunies :

- les fonctions f et g ont le même ensemble de définition D;
- pour tout x de D, f(x) = g(x).

dans ce cas, on note f = g.

Exercice/Exemple 2.36

est-ce que les fonctions f et g définies par :

$$f: x \longmapsto \frac{1}{\sqrt{1+x}+1} \text{ et } g: x \longmapsto \frac{\sqrt{1+x}-1}{x}$$

Sont égales?

Correction 2.37

Tout d'abord $\forall x \in D_f \cap D_g$, f(x) = g(x) car :

$$g(x) = \frac{\sqrt{1+x} - 1}{x}$$

$$= \frac{\left(\sqrt{1+x} - 1\right)\left(\sqrt{1+x} + 1\right)}{x\left(\sqrt{1+x} + 1\right)}$$

$$= \frac{1+x-1}{x\left(\sqrt{1+x} + 1\right)}$$

$$= \frac{x}{x\left(\sqrt{1+x} + 1\right)}$$

$$= \frac{1}{\sqrt{1+x} + 1} = f(x)$$

 $\text{Donc } f=g \text{ sur } D_f \cap D_g \text{ mais } D_f =]-1 \; ; +\infty] \text{ or } D_g = [-1 \; ; +\infty[\; \backslash \; \{0\} \text{ donc } D_f \neq D_g \text{ donc } f \neq g.$

Définition 2.38 (représentation graphique d'une fonction)

Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , l'ensemble de points C_f défini par

$$C_f = \left\{ M(x \; ; \; f(x)) \; \middle| \; x \in D_f \right\}$$

est appelé représentation graphique de f (ou courbe représentative de f).

Définition 2.39 (Parité, imparité et périodicité d'une fonction)

- Une fonction f est dite paire si, pour tout x de son domaine de définition, on a : f(-x) = f(x).
- Une fonction f est dite impaire si, pour tout x de son domaine de définition, on a : f(-x) = -f(x).
- Une fonction f est dite périodique de période T si, pour tout x de son domaine de définition, on a : f(x+T) = f(x).

Exercice 2.40

Montrer que toute fonction de \mathbb{R} peut s'écrire de manière unique comme la somme d'une fonction paire et d'une fonction impaire.

Correction 2.41 (Analyse-synthèse)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction quelqu'on que

- Analyse : Supposons qu'il existe $\begin{cases} p: \mathbb{R} \longmapsto \mathbb{R} \text{ paire} \\ i: \mathbb{R} \longmapsto \mathbb{R} \text{ impaire} \end{cases}$ telles que f = p + iAinsi $\forall x \in \mathbb{R}$ $\begin{cases} f(x) = p(x) + i(x) & (1) \\ f(-x) = p(-x) + i(-x) = p(x) - i(x)(2) \end{cases}$ $-\frac{1}{2} \left((1) + (2) \right) \text{ donne } p: x \longmapsto \frac{f(x) + f(-x)}{2}$ $-\frac{1}{2} \left((1) - (2) \right) \text{ donne } i: x \longmapsto \frac{f(x) - f(-x)}{2}$

$$--- p(-x) = p(x) \text{ et } i(-x) = -i(x)$$

Ainsi f s'écrit de manière unique comme la somme d'une fonction paire et impaire

Définition 2.42 (opération et composition)

Soit f et g deux fonctions de variable réelle à valeurs réelles de domaines de définition D_f et D_g .

- La somme de f et g est la fonction, notée f+g, définie par $f+g: x \longmapsto f(x)+g(x)$. Son domaine de définition D_{f+g} vérifie : $D_{f+g}=D_f\cap D_g$.
- La multiplication de f par le réel α est la fonction, notée αf , définie par $\alpha f : x \mapsto \alpha f(x)$. Son domaine de définition $D_{\alpha f}$ vérifie : $D_{\alpha f} = D_f$ si $\alpha \neq 0$.
- Le produit de f et g est la fonction, notée fg, définie par $fg: x \longmapsto f(x)g(x)$. Son domaine de définition D_{fg} vérifie : $D_{fg} = D_f \cap D_g$.
- Le quotient de f par g est la fonction , notée fracfg, définie par $fracfg: x \longmapsto \frac{f(x)}{g(x)}$. Son domaine de définition D_{fracfg} vérifie : $D_{fracfg} = D_f \cap \{x \in D_g | g(x) \neq 0\}$.

16

• La composée de g et f est la fonction, notée $g \circ f$, définie par $g \circ f : x \longmapsto g(f(x))$. Son domaine de définition $D_{g \circ f}$ vérifie : $D_{g \circ f} = \{x \in D_f | f(x) \in D_g\}$.

${\bf Exercice/Exemple~2.43}$

Domaine de définition de : $f: D_f \longrightarrow \mathbb{R}$ $x \longmapsto \sqrt{x - \frac{1}{x}}$

Correction 2.44 Soit $x \in D_f$ alors $x - \frac{1}{x} \ge 0 \iff x \ne 0$ et $\frac{x^2 - 1}{x} = \frac{(x - 1)(x + 1)}{x} \ge 0$

X	-∞		-1		0		1		+∞
(x - 1)(x + 1)		+	0	_		_	0	+	
х		_		_	0	+		+	
f		_	0	+		_	0	+	

ainsi on voit bien que $D_f = [-1 \; ; \, 0[\; \cup \; [1 \; ; \, +\infty[$

2.5 Fonction et relation d'ordre

Définition 2.45 (Monotonie)

Soit f une fonction de variable réelle à valeurs réelles et D une partie de son domaine de définition D_f .

- (1) f est dite **croissante** sur D si, pour tout $(x, y) \in D^2$ tel que $x \le y$, on a $f(x) \le f(y)$.
- (2) f est dite **décroissante** sur D si, pour tout $(x, y) \in D^2$ tel que $x \leq y$, on a $f(x) \geq f(y)$.
- (3) f est dite **strictement croissante** sur D si, pour tout $(x, y) \in D^2$ tel que x < y, on a f(x) < f(y).
- (4) f est dite **strictement décroissante** sur D si, pour tout $(x, y) \in D^2$ tel que x < y, on a f(x) > f(y).

Remarque : f est dite monotone (resp. strictement monotone) sur D si elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur D.