Definition 1

Vi betecknar med $(C^1[a, b], || ||_{\infty})$ Det normerade rum som består av mängden av alla kontinuerligt deriverbara funktioner på [a, b] och normen $|| ||_{\infty}$, definierad genom

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

Vi betecknar vidare med $(C[a,b],||\ ||_{\infty})$ det normerade vektorrum som består av mängden av alla kontinuerliga funktioner på [a,b] och normen $||\ ||_{\infty}$. Om en följd $\{f_n\}_{n=1}^{\infty}$ av funktioner i $(C^1[a,b],||\ ||_{\infty})$ eller $(C[a,b],||\ ||_{\infty})$ konvergerar mot en funktion f i $(C[a,b],||\ ||_{\infty})$, dvs om

$$\lim_{n \to \infty} \sup_{x \in [a,b]} |f_n(x) - f(x)| = 0$$

, skriver vi detta som

$$\lim_{n \to \infty}^{C} f_n = f$$

En funktion $D:(C^1[a,b],||\ ||_{C^1})\mapsto (C[a,b],||\ ||_{\infty})$ kallar vi för en operator. Vi kallar en operator D för en derivataliknande operator om följande villkor uppfylls:

- 1. $D(\alpha f + \beta g) = \alpha D(f) + \beta D(g)$
- 2. $D(f \cdot g) = D(f)g + fD(g)$
- 3. $D(f \circ g) = (D(f) \circ g)D(g)$
- 4. Om $\lim_{n\to\infty} f_n = f \& \lim_{n\to\infty}^C D(f_n) = g$ så gäller att g = D(f)
- 5. D avbildar inte alla funktioner till nollfunktionen

Lemma 1

Den klassiska derivatan $\frac{d}{dx}$ är en derivataliknande operator.

Bevis

Vi visar endast att $\frac{d}{dx}$ uppfyller punkt 4 ovan eftersom det är välkänt att övriga villkor uppfylls. Antag alltså att $\lim_{n\to\infty}^C f_n = f$ och $\lim_{n\to\infty}^C f_n' = g$. Då konvergerar f_n mot f punktvis och f_n' mot g likformigt i den vanliga bemärkelsen. Då får vi att

$$\int_a^x g(t)dt = \int_a^x \lim_{n \to \infty} f_n'(t)dt = \lim_{n \to \infty} \int_a^x f_n'(t)dt = \lim_{n \to \infty} f_n(x) - f_n(a) = f(x) - f(a)$$

 \Leftrightarrow

$$f(x) = f(a) + \int_{a}^{x} g(t)dt$$

Eftersom högerledet i den sista likheten är en primitiv funktion till g så måste f vara en primitiv funktion till g, dvs f' = g. Beviset är därmed färdigt. \Diamond

Lemma 2

Om D är en derivataliknande operator, så är D(p) = p' för alla polynom $p \in C^1(a, b)$

Bevis

Låt f vara den konstanta funktionen f(x) = 1. Då har vi att

$$D(f) = D(1) = D(1 \cdot 1) = D(1) \cdot 1 + D(1) \cdot 1 = 2D(1) = 2D(f)$$

 \Leftrightarrow

$$D(f) = 0 = f'$$

Om istället f är en konstant funktion f(x) = C så har vi att

$$D(C) = D(C \cdot 1) = CD(1) = 0 = f'$$

Om istället f(x) = ax + b för konstanter a och b, så har vi

$$D(f) = D(ax + b) = D(ax) + D(b) = aD(x)$$

Vidare gäller för funktionen h(x) = x att

$$D(h) = D(h \circ h) = (D(h) \circ h)D(h) = D(h)D(h)$$

 \Leftrightarrow

$$D(h)^2 - D(h) = 0$$

 \Leftrightarrow

$$D(h) = 0$$
 eller $D(h) = 1$

Om D(h)=0 så skulle i så fall $D(g)=D(h\circ g)=(D(h)\circ g)\cdot D(g)=0\cdot D(g)=0$ för alla $g\in C^1[a,b]$ vilket strider mot villkor 5 i definitionen av derivataliknande operator. Således är D(h)=1=h', varur direkt följer att D(f)=a=f'. Vi visar nu med induktion på högsta graden n i en term i polynomet $p=\sum_{i=0}^n \alpha_i x^i$ att $D(p)=\sum_{i=0}^n i\alpha_i x^{i-1}=p'$. Basfallen n=0 och n=1 är avklarade i och med ovanstående. Antag nu att påståendet är sant för alla $n\leq k$ och betrakta ett polynom $p=\sum_{i=0}^{k+1} \alpha_i x^i$ med högsta grad k+1. Då har vi, i enlighet med induktionsantagandet, att

$$D(p) = D\left(\sum_{i=0}^{k+1} \alpha_i x^i\right) = D\left(\alpha_{k+1} x^{k+1} + \sum_{i=0}^k \alpha_i x^i\right)$$

=

$$D(\alpha_{k+1}x^{k+1}) + D\left(\sum_{i=0}^{k} \alpha_i x^i\right)$$

= (på grund av induktionsantagandet)

$$\alpha_{k+1}D(x\cdot x^k) + \sum_{i=0}^k i\alpha_i x^{i-1}$$

= (produktregeln)

$$\alpha_{k+1}(D(x)x^k + xD(x^k)) + \sum_{i=0}^{k} i\alpha_i x^{i-1}$$

= (på grund av induktionsantagandet)

$$\alpha_{k+1}(x^k + xkx^{k-1}) + \sum_{i=0}^k i\alpha_i x^{i-1}$$

=

$$\alpha_{k+1}(k+1)x^k + \sum_{i=0}^k i\alpha_i x^{i-1} = \sum_{i=0}^{k+1} i\alpha_i x^i = p'$$

Beviset är nu färdigt. \Diamond

Sats

Det finns en och endast en derivataliknande operator och det är den klassiska derivatan.

Bevis

Vi har sett i lemma 1 att $\frac{d}{dx}$ är en derivataliknande operator så det finns minst en sådan. Låt nu D vara en godtycklig derivataliknande operator. Vi har sett i lemma 2 att $D = \frac{d}{dx}$ för alla polynom i $C^1[a,b]$. Låt nu $f \in C^1[a,b]$ vara en godtyckligt vald funktion. Då är f' kontinuerlig på [a,b] och enligt Weierstrass approximationssats finns en följd $\{p_n\}_{n=1}^{\infty}$ av polynom sådana att $\lim_{n\to\infty}^{C} p_n = f'$. Definiera nu polynom P_n genom

$$P_n(x) = f(a) + \int_a^x p_n(t)dt$$

Det följer av integralkalkylens fundamentalsats att $P'_n = p_n$. Låt $\varepsilon > 0$ vara givet. Eftersom $\lim_{n \to \infty}^C p_n = f'$ finns ett N sådant att för alla $n \ge N$ gäller att $||p_n - f'||_{\infty} < \frac{\epsilon}{b-a}$. För sådana n har vi också att

$$||P_n - f||_{\infty} = \sup_{x \in [a,b]} \left| f(a) + \int_a^x p_n(t)dt - f(x) \right| = \sup_{x \in [a,b]} \left| \int_a^x (p_n(t) - f'(t))dt \right|$$

 \leq

$$\sup_{x \in [a,b]} \int_{a}^{x} |p_n(t) - f'(t)| dt$$

<

$$\sup_{x \in [a,b]} \int_{a}^{x} \frac{\varepsilon}{b-a} dt$$

$$= \sup_{x \in [a,b]} \frac{(x-a)\varepsilon}{b-a} = \frac{(b-a)\varepsilon}{b-a} = \varepsilon$$

Således har vi hittat en följd av polynom $\{P_n\}_{n=1}^{\infty}$ sådana att

- 1. $\lim_{n\to\infty} P_n = f$
- $2. \lim_{n \to \infty}^{C} P'_n = f'$

Notera nu att $f' = \lim_{n \to \infty} P'_n = \lim_{n \to \infty} D(P_n)$. Eftersom D är en derivataliknande operator, gäller speciellt villkor 4 i definitionen därav, det vill säga, D(f) = f'. Således finns en och endast en derivataliknande operator och det är den klassiska derivatan, vilket skulle bevisas \Diamond