TEA010 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FA, 6 dez 2023

()

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Transformada de Laplace: sabendo que

$$\mathcal{L}\left\{e^{at}f(t)\right\} = \overline{f}(s-a),$$

$$(s+a)^2 = s^2 + 2as + a^2,$$

$$(s+a)^3 = s^3 + 3a^2s + 3as^2 + a^3,$$

calcule

$$\mathcal{L}^{-1}\left\{\frac{2s^2 + 4as + 2a^2 + b^2}{s^3 + 3as^2 + 3a^2s + a^3 + b^2(s+a)}\right\}.$$

É muito útil fazer uma decomposição do tipo

$$\frac{2A^2+B^2}{A(A^2+B^2)} = \frac{A^2}{A(A^2+B^2)} + \frac{A^2+B^2}{A(A^2+B^2)}.$$

SOLUÇÃO DA QUESTÃO:

$$\overline{f}(s) = \frac{2(s^2 + 4as + 2a^2) + b^2}{s^3 + 3as^2 + 3a^2s + a^3 + b^2(s + a)}$$

$$= \frac{2(s + a)^2 + b^2}{(s + a)^3 + b^2(s + a)}$$

$$= \frac{2(s + a)^2 + b^2}{(s + a)[(s + a)^2 + b^2]}$$

$$= \frac{(s + a)^2}{(s + a)[(s + a)^2 + b^2]} + \frac{(s + a)^2 + b^2}{(s + a)[(s + a)^2 + b^2]}$$

$$= \frac{(s + a)}{(s + a)^2 + b^2} + \frac{1}{s + a}$$

$$= \mathcal{L}\left\{e^{-at}\cos(bt)\right\} + \mathcal{L}\left\{e^{-at}\right\} \implies$$

$$\mathcal{L}^{-1}\left\{\frac{2s^2 + 4as + 2a^2 + b^2}{s^3 + 3as^2 + 3a^2s + a^3 + b^2(s + a)}\right\} = e^{-at}\cos(bt) + e^{-at} \blacksquare$$

SOLUÇÃO DA QUESTÃO:

$$\int_0^\infty e^t \delta(t-b) e^{-st} dt = \int_0^\infty e^{(-s+1)t} \delta(t-b) dt$$
$$= e^{(-s+1)b} \blacksquare$$

3 [25] Se f(x) e g(x) são funções **reais**, quadrado-integráveis, de uma variável real x no intervalo [0, 1], **verifique** se

$$\langle f, g \rangle \equiv \int_0^1 f(x)g(x)x \, \mathrm{d}x$$

é um produto interno legítimo.

SOLUÇÃO DA QUESTÃO:

Neste caso, temos

$$\langle , \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$$

 $(x, y) \mapsto \langle x, y \rangle$

com

$$\langle x, y \rangle = \langle y, x \rangle,$$

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle,$$

$$\langle x, \alpha y \rangle = \alpha \langle x, y \rangle,$$

$$\langle x, x \rangle > 0, \ x \neq 0,$$

$$\langle x, x \rangle = 0, \ x = 0.$$

Agora,

$$\langle f, g \rangle = \int_0^1 f(x)g(x)x \, dx$$

$$= \int_0^1 g(x)f(x)x \, dx = \langle g, f \rangle; \checkmark$$

$$\langle f, g + h \rangle = \int_0^1 f(x)[g(x) + h(x)]x \, dx$$

$$= \int_0^1 f(x)g(x)x \, dx + \int_0^1 f(x)h(x)x \, dx = \langle f, g \rangle + \langle f, h \rangle; \checkmark$$

$$\langle f, \alpha g \rangle = \int_0^1 f(x)[\alpha g(x)]x \, dx$$

$$= \alpha \int_0^1 f(x)g(x)x \, dx = \alpha \langle f, g \rangle; \checkmark$$

Agora devemos ter o cuidado de definir o que f = 0 e $f \neq 0$ signficam em termos do vetor f: dizemos que f = 0 se $f(x) \neq 0$ no máximo em um conjunto **enumerável** de pontos em [0,1]; caso contrário, $f \neq 0$. Então,

$$f(x) \neq 0 \text{ em } [0,1] \Rightarrow$$

$$\langle f, f \rangle = \int_0^1 f(x)f(x)x \, dx = \int_0^1 f^2(x)x \, dx > 0; \checkmark$$

$$f(x) = 0 \text{ em } [0,1] \Rightarrow$$

$$\langle f, f \rangle = \int_0^1 f(x)f(x)x \, dx = \int_0^1 f^2(x)x \, dx = 0; \checkmark$$

e portanto $\langle f, g \rangle$ é um produto interno legítimo

$$\begin{split} \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} &= 0, & 0 \le x \le a, \ 0 \le y \le b; \\ \frac{\partial \phi(0, y)}{\partial x} &= 0, & 0 \le y \le b, \\ \frac{\partial \phi(a, y)}{\partial x} &= 0, & 0 \le y \le b, \\ \phi(x, 0) &= 0, & 0 \le x \le a, \\ \phi(x, b) &= \phi_0 \cos\left(\frac{\pi x}{a}\right), & 0 \le x \le a. \end{split}$$

SOLUÇÃO DA QUESTÃO:

Faça $\phi(x, y) = X(x)Y(y)$; então,

$$\begin{split} Y \frac{\mathrm{d}^2 X}{\mathrm{d} x^2} + X \frac{\mathrm{d}^2 Y}{\mathrm{d} y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d} x^2} + \frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d} y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d} x^2} &= -\frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d} y^2} &= \lambda. \end{split}$$

Claramente as condições de contorno homogênas que já estão "prontas" são

$$\frac{\partial \phi(0, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$
$$\frac{\partial \phi(a, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

e correspondem a x = 0 e x = a. Mas

$$\begin{split} \frac{\partial \phi(0,y)}{\partial x} &= \frac{\mathrm{d}X(0)}{\mathrm{d}x} Y(y), \\ \frac{\partial \phi(a,y)}{\partial x} &= \frac{\mathrm{d}X(a)}{\mathrm{d}x} Y(y); \end{split}$$

portanto, devemos resolver o problema de Sturm-Liouville

$$\frac{\mathrm{d}X}{\mathrm{d}x} - \lambda X = 0, \qquad \frac{\mathrm{d}X(0)}{\mathrm{d}x} = 0, \ \frac{\mathrm{d}X(a)}{\mathrm{d}x} = 0.$$

Se $\lambda = +k^2 > 0$ com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} - k^2 X = 0,$$

$$r^2 - k^2 = 0,$$

$$r = \pm k,$$

$$X(x) = A \cosh(kx) + B \sinh(kx),$$

$$\frac{dX}{dx} = A \sinh(kx) + B \cosh(kx),$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow B \cosh(0) = 0 \Rightarrow B = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A \sinh(ka) = 0 \Rightarrow A = 0,$$

e $\lambda > 0$ não pode ser autovalor.

Se $\lambda = 0$,

$$\frac{d^2X}{dx^2} = 0,$$

$$X(x) = Ax + B,$$

$$\frac{dX}{dx} = A,$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow A = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A = 0,$$

e B pode ser qualquer. Consequentemente, $\lambda = 0$ \acute{e} um autovalor da autofunção $X_0(x) = B$, e sem perda de generalidade podemos usar o caso $X_0(x) = 1$.

Se $\lambda = -k^2 < 0$ com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} + k^2 X = 0,$$

$$r^2 + k^2 = 0,$$

$$r = \pm ki,$$

$$X(x) = A\cos(kx) + B\sin(kx),$$

$$\frac{dX}{dx} = k[-A\sin(kx) + B\cos(kx)],$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow kB = 0 \Rightarrow B = 0,$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow -kA\sin(ka) = 0 \Rightarrow \sin(ka) = 0,$$

$$ka = n\pi,$$

$$k_n = \frac{n\pi}{a},$$

$$X_n(x) = \cos\left(\frac{n\pi x}{a}\right),$$

com A = 1 (sem perda de generalidade).

Procuremos as soluções $Y_n(y)$ associadas. Para n > 0,

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = \lambda_{n}Y,$$

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = -\frac{n^{2}\pi^{2}}{a^{2}}Y,$$

$$\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} - \frac{n^{2}\pi^{2}}{a^{2}}Y = 0,$$

$$Y_{n}(y) = A_{n}\cosh\left(\frac{n\pi y}{a}\right) + B_{n}\sinh\left(\frac{n\pi - y}{a}\right), \ n \ge 1.$$

Para n = 0, $\lambda = 0$ e

$$\frac{\mathrm{d}^2 Y_0}{\mathrm{d}y^2} = 0,$$

$$Y_0(y) = A_0 + B_0 y.$$

A solução geral é da forma

$$\phi(x,y) = A_0 + B_0 y + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[A_n \cosh\left(\frac{n\pi y}{a}\right) + B_n \sinh\left(\frac{n\pi y}{a}\right)\right].$$

com

$$\phi(x,0) = 0, \qquad 0 \le x \le a,$$

$$\phi(x,b) = \phi_0 \cos\left(\frac{\pi x}{a}\right), \qquad 0 \le x \le a.$$

Então,

$$\phi(x,0) = 0 = A_0 + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) [A_n] \iff A_n = 0, \forall n;$$

$$\phi(x,b) = \phi_0 \cos\left(\frac{\pi x}{a}\right) = B_0 b + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right)\right];$$

$$\phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) = B_0 b \cos\left(\frac{m\pi x}{a}\right) + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right);$$

$$\int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx = B_0 b \int_0^a \cos\left(\frac{m\pi x}{a}\right) dx + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx.$$

Analisemos os valores de m separadamente. Para m = 0,

$$0 = \int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) dx = B_0 b \int_0^a dx = B_0 b a; \implies B_0 = 0.$$

Para m = 1,

$$\int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx = \sum_{n=1}^\infty B_n \sinh\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx$$

$$= B_1 \sinh\left(\frac{\pi b}{a}\right) \int_0^a \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi x}{a}\right) dx;$$

$$\phi_0 = B_1 \sinh\left(\frac{\pi b}{a}\right),$$

$$\frac{\phi_0}{\sinh\left(\frac{\pi b}{a}\right)} = B_1.$$

Para m > 1,

$$\int_0^a \phi_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx = \sum_{n=1}^\infty B_n \sinh\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx$$

$$0 = B_m \sinh\left(\frac{m\pi b}{a}\right) \int_0^a \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx \implies$$

$$0 = B_m.$$

A solução portanto será

$$\phi(x,y) = \frac{\phi_0}{\mathrm{senh}\left(\frac{\pi b}{a}\right)} \cos\left(\frac{\pi x}{a}\right) \mathrm{senh}\left(\frac{\pi y}{a}\right) \blacksquare$$