SEMAINE DU 17/12 AU 21/12

1 Cours

Suites numériques

Généralités Définition d'une suite. Modes de définition : explicite ou par récurrence. Vocabulaire : suites constantes, stationnaires, majorées, minorées bornées, croissantes, décroissantes, monotones. Suites classiques : arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires homogènes d'ordre 2.

Limite d'une suite Définition. Unicité. Vocabulaire : convergence et divergence. Toute suite convergente est bornée. Toute suite de limite strictement positive est strictement positive à partir d'un certain rang.

Théorèmes d'existence de limites Opérations sur les limites. Théorèmes d'encadrement, de minoration et de majoration. Théorème de convergence monotone. Suites adjacentes : définition et convergence.

Comparaison asymptotique Comparaison des suites de référence : logarithme, puissance, exponentielle, factorielle. Formule de Stirling. Deux suites équivalentes sont de même signe à partir d'un certain rang. Comportement asymptotique de suites définies implicitement.

2 Méthodes à maîtriser

- ▶ On ne parle de la limite d'une suite qu'après avoir justifié son existence.
 - Certains théorèmes donnent l'existence et la valeur de la limite : opérations, encadrement, minoration, majoration.
 - D'autres ne donnent que l'**existence** de la limite : théorème de convergence monotone ou théorème sur les suites adjacentes qui en est une conséquence quasi directe.
- ▶ On ne passe pas à la limite «par morceaux» : quand on «passe à la limite» une expression dépendant d'un entier n, **tous** les n tendent vers l'infini **en même temps**.
- ▶ La limite d'une suite ne peut pas dépendre de l'indice de la suite!
- ▶ Déterminer le sens de variation d'une suite :
 - signe de $u_{n+1} u_n$ (adapté aux sommes);
 - position de $\frac{u_{n+1}}{u_n}$ par rapport à 1 (adapté aux produits) si les u_n sont **tous strictement positifs** (mais on peut évidemment adapter si on a compris comment fonctionne ce critère).
- ▶ Déterminer le terme général d'une suite vérifiant une relation de récurrence linéaire homogène d'ordre 2 via l'équation caractéristique.
- ▶ Montrer qu'une suite monotone converge ou diverge (raisonnement par l'absurde éventuel pour le cas de divergence).
- ▶ Montrer que deux suites sont adjacentes.
- ▶ Obtenir successivement les termes d'un développement asymptotique d'une suite définie implicitement.

3 Questions de cours

► Banque CCP exo 1.

1. On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang et $u_n \sim v_n$.

Démontrer que u_n et v_n sont de même signe à partir d'un certain rang.

- 2. Déterminer le signe, au voisinage de l'infini, de $u_n = sh\left(\frac{1}{n}\right) tan\left(\frac{1}{n}\right)$.
- ► Suites adjacentes. Donner la définition de l'adjacence de deux suites réelles. Montrer que deux suites adjacentes convergent vers la même limite.

▶ Constante γ d'Euler. En admettant que $\ln(1+x) \leqslant x$ pour tout $x \in]-1, +\infty[$, montrer qu'il existe $\gamma \in [0, 1]$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{=} \ln(n) + \gamma + o(1)$$

- ▶ **Limite d'une somme.** Soient (u_n) et (v_n) deux suites réelles convergeant respectivement vers ℓ_1 et ℓ_2 . Montrer que $(u_n + v_n)$ converge vers $\ell_1 + \ell_2$.
- ▶ Suites vérifiant une relation de récurrence linéaire homogène d'ordre deux à coefficients constants. Déterminer le terme général d'une telle suite au choix de l'examinateur.

Bonnes fêtes et bonnes vacances.