Отчёт по лабораторной работе №2

Дисциплина: архитектура компьютера

Сибомана Ламек

Содержание

1	Цел	ь работы	4
2	Зада	ание	5
3	Вып	олнение лабораторной работы	6
	3.1	Настройка GitHub	6
	3.2	Базовая настройка Git	7
	3.3	Создание SSH-ключа	8
	3.4	Создание рабочего пространства и репозитория курса на основе	
		шаблона	11
	3.5	Создание репозитория курса на основе шаблона	12
	3.6	Настройка каталога курса	16
	3.7	Выполнение заданий для самостоятельной работы	18
4	Выв	ОДЫ	22

Список иллюстраций

3.1	Учетная запись на caute https://github.com/
3.2	Аккаунт GitHub
3.3	Предварительная конфигурация git
3.4	Настройка кодировки
3.5	Создание имени для начальной ветки
3.6	Параметр autocrlf
3.7	Параметр safecrlf
3.8	Генерация SSH-ключа
3.9	Установка утилиты xclip
3.10	Копирование содержимого файла
3.11	Окно SSH and GPG keys
3.12	Добавление ключа
3.13	Создание рабочего пространства
3.14	Страница шаблона для репозитория
3.15	Окно создания репозитория
3.16	Созданный репозиторий
3.17	Перемещение между директориями
	Клонирование репозитория
3.19	Окно с ссылкой для копирования репозитория
3.20	Перемещение между директориями
	Удаление файлов
3.22	Создание каталогов
3.23	Добавление и сохранение изменений на сервере
3.24	Выгрузка изменений на сервер
3.25	Страница репозитория
3.26	Создание файла
3.27	Проверка местонахождения файлов
3.28	Копирование файла
3.29	Перемещение между директориями
3.30	Копирование файла
3.31	Добавление файла на сервер
3.32	Kaтaлor lab01/report
3.33	Kаталог lab02/report
3.34	Каталог lab03/report

1 Цель работы

Целью данной работы является изучить идеологию и применение средств контроля версий, а также приобрести практические навыки по работе с системой git.

2 Задание

- 1. Техническое обеспечение
 - 1. Настройка GitHub.
 - 2. Базовая настройка Git.
 - 3. Создание SSH-ключа.
 - 4. Создание рабочего пространства и репозитория курса на основе шаблона.
 - 5. Создание репозитория курса на основе шаблона.
 - 6. Настройка каталога курса.
- 2. Выполнение заданий для самостоятельной работы.

3 Выполнение лабораторной работы

3.1 Настройка GitHub

Для начала создадим учётную запись на сайте https://github.com/ и заполните основные данные (рис. 3.1)

Рис. 3.1: Учётная запись на сайте https://github.com/

Аккаунт создан (рис. 3.2).

Рис. 3.2: Аккаунт GitHub

3.2 Базовая настройка Git

Открываю виртуальную машину, затем открываю терминал и делаю предварительную конфигурацию git. Ввожу команду git config – global user.name "", указывая свое имя и команду git config – global user.email "work@mail", указывая в ней электронную почту владельца, то есть мою (рис. 3.3).

```
lsibomana@dk2n21 ~ $ git config --global user.name "<lameck-s>"
lsibomana@dk2n21 ~ $ git config --global user.email "<lamecksibomana29@gmail.c
```

Рис. 3.3: Предварительная конфигурация git

Настраиваю utf-8 в выводе сообщений git для корректного отображения символов (рис. 3.4).

```
lsibomana@dk3n51 ~ $ git config --global user.name "сибома
на ламек"
lsibomana@dk3n51 ~ $ git config --global user.mail"lamecks
ibomana29@gmail.com"
lsibomana@dk3n51 ~ $
```

Рис. 3.4: Настройка кодировки

Задаю имя «master» для начальной ветки (рис. 3.5).

lsibomana@dk3n51 ~ \$ git config --global core.quotepath false

Рис. 3.5: Создание имени для начальной ветки

Задаю параметр autocrlf со значением input, так как я работаю в системе Linux, чтобы конвертировать CRLF в LF только при коммитах (рис. 3.6). CR и LF – это символы, которые можно использовать для обозначения разрыва строки в текстовых файлах.

Рис. 3.6: Параметр autocrlf

Задаю параметр safecrlf со значением warn, так Git будет проверять преобразование на обратимость (рис. 3.7). При значении warn Git только выведет предупреждение, но будет принимать необратимые конвертации.

lsibomana@dk2n21 ~ \$ git config --global core.autocrlf input

Рис. 3.7: Параметр safecrlf

3.3 Создание SSH-ключа

Для последующей идентификации пользователя на сервере репозиториев необходимо сгенерировать пару ключей (приватный и открытый). Для этого ввожу команду ssh-keygen -C "Имя Фамилия, work@email", указывая имя владельца и электронную почту владельца (рис. 3.8). Ключ автоматически сохранится в каталоге ~/.ssh/.

lsibomana@dk2n21 ~ \$ git config --global core.safecrlf warn

Рис. 3.8: Генерация SSH-ключа

Xclip – утилита, позволяющая скопировать любой текст через терминал. Оказывается, в дистрибутиве Linux Kali ее сначала надо установить. Устанавливаю

xclip с помощью команды apt-get install с ключом -у отимени суперпользователя, введя в начале команды sudo (рис. 3.9).

```
lsibomana@dk4n60 ~ $ cat ~/.ssh/id_ed25519.pub | xclip -sel clip
lsibomana@dk4n60 ~ $ ■
```

Рис. 3.9: Установка утилиты xclip

Копирую открытый ключ из директории, в которой он был сохранен, с помощью утилиты xclip (рис. 3.10).

Рис. 3.10: Копирование содержимого файла

Открываю браузер, захожу на сайт GitHub. Открываю свой профиль и выбираю страницу «SSH and GPG keys». Нажимаю кнопку «New SSH key» (рис. 3.11).

Рис. 3.11: Окно SSH and GPG keys

Вставляю скопированный ключ в поле «Key». В поле Title указываю имя для ключа. Нажимаю «Add SSH-key», чтобы завершить добавление ключа (рис. 3.12).

Рис. 3.12: Добавление ключа

3.4 Создание рабочего пространства и репозитория курса на основе шаблона

Закрываю браузер, открываю терминал. Создаю директорию, рабочее пространство, с помощью утилиты mkdir, блягодаря ключу -р создаю все директории после домашней ~/work/study/2022-2023/"Архитектура компьютера" рекурсивно. Далее проверяю с помощью ls, действительно ли были созданы необходимые мне каталоги (рис. 3.13).

Рис. 3.13: Создание рабочего пространства

3.5 Создание репозитория курса на основе шаблона

В браузере перехожу на страницу репозитория с шаблоном курса по адресу https://github.com/yamadharma/course-directory-student-template. Далее выбираю «Use this template», чтобы использовать этот шаблон для своего репозитория (рис. 3.14).

Рис. 3.14: Страница шаблона для репозитория

В открывшемся окне задаю имя репозитория (Repository name): study_2022–2023_arh-pc и создаю репозиторий, нажимаю на кнопку «Create repository from template» (рис. 3.15).

Рис. 3.15: Окно создания репозитория

Репозиторий создан (рис. 3.16).

Рис. 3.16: Созданный репозиторий

Через терминал перехожу в созданный каталог курса с помощью утилиты cd (рис. 3.17).

Рис. 3.17: Перемещение между директориями

Клонирую созданный репозиторий с помощью команды git clone –recursive git@github.com:/study_2022–2023_arh-pc.git arch-pc (рис. 3.18).

Рис. 3.18: Клонирование репозитория

Копирую ссылку для клонирования на странице созданного репозитория, сначала перейдя в окно «code», далее выбрав в окне вкладку «SSH» (рис. 3.19).

Рис. 3.19: Окно с ссылкой для копирования репозитория

3.6 Настройка каталога курса

Перехожу в каталог arch-рс с помощью утилиты cd (рис. 3.20).

```
lsibomana@dk8n57 ~ $ cd work/study/2024-2025/"Архитектура компьютера"
lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера $cd arch-pc
```

Рис. 3.20: Перемещение между директориями

Удаляю лишние файлы с помощью утилиты rm (рис. 3.21).

```
Lsibomana@dk4n60 ~/work/study/2023-2024/Архитектура компьютера/arch-pc $rm package.js
```

Рис. 3.21: Удаление файлов

Создаю необходимые каталоги (рис. 3.22).

```
lsibomana@dk3n51 ~ $ mkdir -p ~/work/study/2023-2024/"Архитектура компьютера"
lsibomana@dk3n51 ~ $ cd ~/work/study/2023-2024/"Архитектура компьютера"
```

Рис. 3.22: Создание каталогов

Отправляю созданные каталоги с локального репозитория на сервер: добавляю все созданные каталоги с помощью git add, комментирую и сохраняю изменения на сервере как добавление курса с помощью git commit (рис. 3.23).

```
Isibomana@dk4nb0 -/work/study/2023-2024/Apxитектура компьютера $git clone --recursive git@github.com: ameck-git/study_2024-2025_arch-pc.git arch-pc
Клонирование в warch-pc»...

The authenticity of host 'github.com (140.82.121.4)' can't be established.
ED25519 key fingerprint is SHA256:+Diy3wvvV6TuJJbpZisF/zLDA0zPMSvHdkr4UvCOqU.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'github.com' (ED25519) to the list of known hosts.
remote: Enumerating objects: 33, done.
remote: Counting objects: 100% (33/33), done.
remote: Compressing objects: 100% (32/32), done.
remote: Total 33 (delta 1), reused 18 (delta 0), pack-reused 0 (from 0)
Ronyeehee osekros: 100% (33/33), 18.81 Kub | 18.81 Mus/c, rotoso.
Ronpegenehue изменений: 100% (1/1), rotoso.
Ronpegenehue wardenehue: remote: Counting objects: rotokus vetemplate/presentation»
Ronpedyns «template/report» (https://github.com/yamadharma/academic-presentation»
Ronpedyns «template/peport» (https://github.com/yamadharma/academic-laboratory-report-template.git) apeructpuposah no nytu «template/presentation»
Ronpedyns «template/report» (https://github.com/yamadharma/academic-laboratory-report-template.git) apeructpuposah no nytu «template/report»
Knohuposahue в «/afs/.dk.sci.pfu.edu.ru/home/l/s/lsibomana/work/study/2023-2024/Apxите ктура компьютера/arch-pc/template/presentation»...
remote: Counting objects: 100% (77/77), done.
remote: Total 111 (delta 42), reused 100 (delta 31), pack-reused 0 (from 0)
Ronyuehue объектов: 100% (11/111), 102.17 киб | 1.29 Mus/c, готово.
Ronhuposahue в «/afs/.dk.sci.pfu.edu.ru/home/l/s/lsibomana/work/study/2023-2024/Apxите ктура компьютера/arch-pc/template/report»...
Ronhuposahue в «/afs/.dk.sci.pfu.edu.ru/home/l/s/lsibomana/work/study/2023-2024/Apxите ктура компьютера/arch-pc/template/presentation.
Ronhuposahue в «/afs/.dk.
```

Рис. 3.23: Добавление и сохранение изменений на сервере

Отправляю все на сервер с помощью push (рис. 3.24).

```
lsibomana@dk4n60 ~/work/study/2023-2024/Apxитектура компьютера/arch-pc $git push
Перечисление объектов: 5, готово.
При сжатии изменений используется до 6 потоков
Сжатие объектов: 100% (2/2), готово.
Запись объектов: 100% (3/3), 284 байта | 284.00 КиБ/с, готово.
Тotal 3 (delta 1), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:lameck-git/study_2024-2025_arch-pc.git
112f6c4..2998dfe master -> master
```

Рис. 3.24: Выгрузка изменений на сервер

Проверяю правильность выполнения работы сначала на самом сайте GitHub (рис. 3.25).

```
lsibomana@dk4n60 ~/work/study/2023-2024/Архитектура компьютера/arch-pc $ls
CHANGELOG.md COURSE Makefile README.git-flow.md template
config LICENSE README.en.md README.md
```

Рис. 3.25: Страница репозитория

3.7 Выполнение заданий для самостоятельной работы

1. Перехожу в директорию labs/lab03/report с помощью утилиты cd. Создаю в каталоге файл для отчета по третьей лабораторной работе с помощью утилиты touch (рис. 3.26).

```
lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc $cd labs
lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs $
cd lab03
lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/lab03 $ cd report
lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/la
```

Рис. 3.26: Создание файла

Оформить отчет я смогу в текстовом процессоре LibreOffice Writer, найдя его в меню приложений (рис. ??).

После открытия текстового процессора открываю в нем созданный файл и могу начать в нем работу над отчетом. 2. Перехожу из подкаталога lab03/report в подкаталог lab01/report с помощью утилиты cd (рис. ??).

```
lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/lab03/report $ make pandoc "report.md" --filter pandoc-crossref --pdf-engine=xelatex --pdf-engine-opt=--shell-escape --citeproc --number-sections -o "report.pdf" [WARNING] [makePDF] LaTEX Warning: Empty bibliography on input line 295. lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/lab03/report $ ls bib image Makefile pandoc report.docx report.md report.pdf
```

Проверяю местонахождение файлов с отчетами по первой и второй лабораторным работам. Они должны быть в подкаталоге домашней директории «За-

грузки», для проверки использую команду ls (рис. 3.27).

```
lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/la b03/report $ make clean rm report.docx report.pdf *~ rm: невозможно удалить '*~': Нет такого файла или каталога make: [Makefile:35: clean] Ошибка 1 (игнорирование) lsibomana@dk8n57 ~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/la b03/report $ ls bib image Makefile pandoc report.md
```

Рис. 3.27: Проверка местонахождения файлов

Копирую первую лабораторную с помощью утилиты ср и проверяю правильность выполнения команды ср с помощью ls (рис. 3.28).

```
sibomana@dk4n60 ~/work/study/2023-2024/Архитектура компьютера/arch-pc $git commit -a | 'feat(main):make course structure' master 2998dfe] feat(main):make course structure 2 files changed, 1 insertion(+), 14 deletions(-) delete mode 100644 package.json
```

Рис. 3.28: Копирование файла

Перехожу из подкаталога lab01/report в подкаталог lab02/report с помощью утилиты cd (рис. 3.29).

Рис. 3.29: Перемещение между директориями

Копирую вторую лабораторную с помощью утилиты ср и проверяю правильность выполнения команды ср с помощью ls (рис. 3.30).

```
b01/report $ git add .
lsibomana@dk8n57 ~/work/study/2024-2025/Apxитектура компьютера/arch-pc/labs/la
b01/report $ git commit -am 'feat(main) addae report'
Текущая ветка: master
Эта ветка соответствует «origin/master».
нечего коммитить, нет изменений в рабочем каталоге
```

Рис. 3.30: Копирование файла

3. Добавляю с помощью команды git add в коммит созданные файлы: л02 Дворкина отчет (рис. 3.31). и

Рис. 3.31: Добавление файла на сервер

Вижу, что отчеты по лабораторным работам находятся в соответствующих каталогах репозитория: отчет по первой - в lab01/report (рис. 3.32), по второй – в lab02/report (рис. 3.33), по третьей в - lab03/report (рис. 3.34).

Рис. 3.32: Каталог lab01/report

Рис. 3.33: Каталог lab02/report

Рис. 3.34: Каталог lab03/report

4 Выводы

При выполнении данной лабораторной работы я изучила идеологию и применение средств контроля версий, а также приобрела практические навыки по работе с системой git.