

Modern Method of Decision Making

Work has been done by: Ryabykin Aleksey, Osokin Mikhail

Adaptive Learning Rates for Online Gradient Descent

Task Description

Consider:

• a closed and convex decision space K with diameter:

$$Diam(K) = \max_{x,y \in K} ||x - y||_2 \le D.$$

• a loss class $\mathcal F$ of convex and differentiable $f:K o\mathbb R$

The goal of this home assignment is to study, in the context of the Online Convex Optimization problem, the performance of the Adaptive Online Gradient Descent algorithm defined as follows:

Initialize:

$$x_1 \in K$$

for $t \ge 1$ do

- \rightarrow Play x_t ;
- \rightarrow Receive loss f_t ;
- \rightarrow Incur loss $f_t(x_t)$;
- → Update:

$$x_{t+1} = \pi_K(x_t - \gamma_t \nabla_t), \quad \nabla_t = \nabla f_t(x_t)$$

where:

$$\gamma_t = \frac{D}{\sqrt{\sum_{s=1}^t ||\nabla_s||_2^2}}$$

end for

Note

In the sequel, we denote:

$$R_T = \sum_{t=1}^{T} f_t(x_t) - \inf_{x \in K} \sum_{t=1}^{T} f_t(x)$$

Solution

1. Show that, for any value of the learning rates γ_t , we have:

$$R_T \le \frac{D^2}{2\gamma_T} + \frac{1}{2} \sum_{t=1}^T \gamma_t ||\nabla_t||_2^2.$$

Proof:

Lemma

Fix $x_1 \in K$ as well as positive numbers $(\gamma_t)_{t \geq 1}$. For any sequence $(g_t)_{t \geq 1}$ of vectors in \mathbb{R}^d , define

$$x_{t+1} = \pi_k(x_t - \gamma_t g_t), \quad t \ge 1.$$

Then, $\forall T \geq 1, \ \forall x \in K$:

$$\sum_{t=1}^{T} \langle g_t, x_t - x \rangle \le \frac{1}{2} \sum_{t=1}^{T} \left\{ \left(\frac{1}{\gamma_t} - \frac{1}{\gamma_{t-1}} \right) ||x_t - x||_2^2 + \gamma_t ||g_t||_2^2 \right\}$$

 $\forall x \in K$, $\forall t \ge 1$, we deduce by convexity of f_t and definition of ∇_t , that:

$$f_t(x_t) - f_t(x) \le \langle \nabla_t, x_t - x \rangle.$$

As a result,

$$\sum_{t=1}^{T} f_t(x_t) - \inf_{x \in K} \sum_{t=1}^{T} f_t(x) = \sup_{x \in K} \sum_{t=1}^{T} (f_t(x_t) - f_t(x)) \le \sup_{x \in K} \sum_{t=1}^{T} \langle \nabla_t, x_t - x \rangle.$$

According to the lemma above, and the definition of D, we deduce that:

$$\begin{split} \sum_{t=1}^{T} f_{t}(x_{t}) - \inf_{x \in K} \sum_{t=1}^{T} f_{t}(x) &\leq \sup_{x \in K} \frac{1}{2} \sum_{t=1}^{T} \left\{ \left(\frac{1}{\gamma_{t}} - \frac{1}{\gamma_{t-1}} \right) \underbrace{\|x_{t} - x\|_{2}^{2}}_{\leq D^{2}} + \gamma_{t} \|\nabla_{t}\|_{2}^{2} \right\} &\leq \\ &\leq \frac{D^{2}}{2} \sum_{t=1}^{T} \left(\frac{1}{\gamma_{t}} - \frac{1}{\gamma_{t-1}} \right) + \frac{1}{2} \sum_{t=1}^{T} \gamma_{t} \|\nabla_{t}\|_{2}^{2} \\ &= \frac{D^{2}}{2\gamma_{T}} + \frac{1}{2} \sum_{t=1}^{T} \gamma_{t} \|\nabla_{t}\|_{2}^{2} \end{split}$$

2. Show that if $\phi:(0,+\infty)\to\mathbb{R}$ is a non-increasing function and $(u_t)_{t\geq 1}$ are positive numbers, then $\forall T\geq 1$:

$$\sum_{s=1}^{T} u_{s}$$

$$\sum_{t=1}^{T} u_{t} \phi \left(\sum_{s=1}^{T} u_{s} \right) \leq \int_{0}^{T} \phi(\omega) d\omega$$

Proof: Let $a,b\in\mathbb{R}^+$. Let us prove that $b\cdot\phi(a+b)\leq\int\limits_a^{a+b}\phi(\omega)d\omega$. The integral on the right side is equal to the area under ϕ on the segment [a,a+b]. ϕ is a non-increasing function, which means that $\phi(a+b)$ is the minimal value of ϕ on the entire segment. If ϕ was equal to $\phi(a+b)$ on the whole segment, then the area would be $b\cdot\phi(a+b)$. Since the value of ϕ can only go higher from $\phi(a+b)$ on the segment, the area under ϕ there is bounded from below by $b\cdot\phi(a+b)$, which concludes the proof. Now, if we set a to 0 and b to u_1 , we get $u_1\phi(u_1)\leq\int\limits_0^{u_1}\phi(\omega)d\omega$, which is the induction base.

Also, if
$$\sum_{t=1}^{T-1} u_t \phi(\sum_{s=1}^t u_s) \leq \int\limits_0^{t-1} \phi(\omega) d\omega$$
, then

$$\sum_{t=1}^{T-1} u_t \phi\left(\sum_{s=1}^t u_s\right) + u_T \cdot \phi\left(\sum_{s=1}^T u_s\right) \leq \int_0^{T-1} u_s \phi(\omega) d\omega + \int_{\substack{T-1 \\ \sum s=1}}^T u_s \phi(\omega) d\omega$$

and

$$\sum_{s=1}^{T} u_t \phi \left(\sum_{s=1}^{t} u_s \right) \leq \int_{0}^{\sum\limits_{s=1}^{T} u_s} \phi(\omega) d\omega, \quad \text{ since } u_1 \cdot \phi \left(\sum_{s=1}^{t} u_s \right) \leq \int_{\sum\limits_{s=1}^{T-1} u_s}^{T} \phi(\omega) d\omega$$

which is the induction step.

3. Suppose $\gamma_t = \frac{D}{\sqrt{\sum_{t}^{t} ||\nabla_s||_2^2}}$. Combining 1. and 2. (for a well chosen value of u_t and ϕ) show that:

$$R_T \leq \frac{3D}{2} \sqrt{\sum_{t=1}^T ||\nabla_t||_2^2}$$

Proof: Let's substitute γ_t to the result of first step.

$$R_T \leq \frac{D}{2} \sqrt{\sum_{t=1}^{T} ||\nabla_t||_2^2} + \frac{D}{2} \sum_{t=1}^{T} \frac{||\nabla_t||_2^2}{\sqrt{\sum_{s=1}^{t} ||\nabla_s||_2^2}}.$$

$$\text{Let } \phi(n) = \frac{1}{\sqrt{n}}, \ u_t = ||\nabla_t||_2^2, \text{ then } \sum_{t=1}^T \frac{u_t}{\sqrt{\sum\limits_{s=1}^T u_s}} \leq \int\limits_0^T \frac{1}{\sqrt{n}} dn = 2\sqrt{\sum\limits_{s=1}^T u_s} = 2\sqrt{\sum\limits_{t=1}^T ||\nabla_t||_2^2}. \text{ This means}$$

that:

$$\begin{split} R_T \leq \frac{D}{2} \sqrt{\sum_{t=1}^{T} ||\nabla_t||_2^2} + \frac{D}{2} \sum_{t=1}^{T} \frac{||\nabla_t||_2^2}{\sqrt{\sum_{s=1}^{t} ||\nabla_s||_2^2}} \leq \frac{D}{2} \sqrt{\sum_{t=1}^{T} ||\nabla_t||_2^2} + \frac{D}{2} \cdot 2 \sqrt{\sum_{t=1}^{T} ||\nabla_t||_2^2} = \\ &= \frac{3D}{2} \sqrt{\sum_{t=1}^{T} ||\nabla_t||_2^2}. \end{split}$$

4. Explain why this is always a better performance guarantee than the one we provided for the OGD algorithm studied in Lecture 4:

Theorem

Suppose that

- (Bounded diameter): $Diam(K) \le D < +\infty$;
- (Bounded subgradients):

$$\forall x \in K, \ \forall f \in \mathcal{F}, \ \forall \nabla \in \partial f(x) : \ ||\nabla||_2 \le G < +\infty.$$

Then $\forall x_1 \in K$, the OGD algorithm with step size $\gamma_t = \frac{D}{G\sqrt{t}}$, $\forall t \ge 1$, satisfies:

$$R_T \leq \frac{3}{2}GD\sqrt{T}$$
.

The inequality above can be written in the following way:

$$R_{T_{Lec4}} \le \frac{3}{2}GD\sqrt{T} = \frac{3D}{2}\sqrt{TG^2} = \frac{3D}{2}\sqrt{\sum_{t=1}^{T}G^2}$$

Since $\forall \nabla \in \partial f(x) ||\nabla||_2 \leq G$ we can obtain, that:

$$R_T \leq \frac{3D}{2} \sqrt{\sum_{t=1}^T ||\nabla_t||_2^2} \leq \frac{3D}{2} \sqrt{\sum_{t=1}^T G^2} \leq R_{T_{Lec4}}.$$

5. Recall that a function $f:K\to\mathbb{R}$ is called β -smooth if it is differentiable and such that $||\nabla f(x)-\nabla f(y)||_2\leq \beta||x-y||_2$, $\forall x,y\in K$..

Show that if $f: K \to \mathbb{R}$ is β -smooth and achieves a minimum at $x^* \in K$, then $\forall x \in K$:

$$||\nabla f(x)||_2^2 \le 2\beta(f(x) - f(x^*)).$$

Proof: Since smoothness and the optimality of x^* ($f: K \to \mathbb{R}$ is β -smooth and achieves minimum at $x^* \in K$), we have:

$$f(x^*) \le f\left(x - \frac{1}{\beta}\nabla f(x)\right) \le f(x) - \frac{1}{\beta}||\nabla f(x)||_2^2 + \frac{1}{2\beta}||\nabla f(x)||_2^2 \le$$

$$|f(x) - \frac{1}{2\beta} ||\nabla f(x)||_2^2 \Rightarrow f(x^*) \le f(x) - \frac{1}{2\beta} ||\nabla f(x)||_2^2$$

Multiplying both sides by 2β we obtain:

$$||\nabla f(x)||_2^2 \leq 2\beta \cdot (f(x) - f(x^*)).$$

6. Suppose now that the losses that the losses $f \in \mathcal{F}$ are also β -smooth and positive. Combine 3. and 5. to show that:

$$R_T \le \sqrt{\frac{9D^2\beta}{2} \sum_{t=1}^T f_t(x_t)}$$

Proof:

$$\frac{3D}{2} \sqrt{\sum_{t=1}^{T} ||\nabla_{t}||_{2}^{2}} \leq \frac{3D}{2} \sqrt{2\beta \sum_{t=1}^{T} (f_{t}(x_{t}) - f_{t}(x^{*}))} \leq$$

Since the loss is positive:

$$\leq \frac{3D}{2} \sqrt{2\beta \sum_{t=1}^{T} f_t(x_t)} = \sqrt{\frac{9D^2 \beta}{2} \sum_{t=1}^{T} f_t(x_t)}.$$

7. Conclude from 6. that if the losses are β -smooth and positive, then:

$$R_T \le \frac{9D^2\beta}{2} + 2\sqrt{\frac{9D^2\beta}{2} \inf_{x \in K} \sum_{t=1}^{T} f_t(x_t)}$$

Proof: As we denote:

$$R_T = \sum_{t=1}^{T} f_t(x_t) - \inf_{x \in K} \sum_{t=1}^{T} f_t(x)$$

2022 -5- v1.0

We can substitute it in the result of 6.:

$$R_T \le \sqrt{\frac{9D^2\beta}{2} \sum_{t=1}^T f_t(x_t)} =$$

$$9D^2\beta \left(- \sum_{t=1}^T f_t(x_t) \right)$$

$$= \sqrt{\frac{9D^2\beta}{2} \left(R_T + \inf_{x \in K} \sum_{t=1}^T f_t(x) \right)} \Longrightarrow$$

$$\Rightarrow R_T^2 - \frac{9D^2\beta}{2} \cdot R_T - \frac{9D^2\beta}{2} \cdot \inf_{x \in K} \sum_{t=1}^T f_t(x) \le 0$$

$$\mathcal{D} = \left(\frac{81D^4\beta^2}{4}\right) + 4\frac{9D^2\beta}{2} \cdot \inf_{x \in K} \sum_{t=1}^T f_t(x)$$

Hence

$$R_T^+ = \frac{\frac{9D^2\beta}{2} + \sqrt{\left(\frac{81D^4\beta^2}{4}\right) + 4\frac{9D^2\beta}{2} \cdot \inf_{x \in K} \sum_{t=1}^T f_t(x)}}{2}$$

So

$$R_T \leq \frac{9D^2\beta}{4} + \frac{9D^2\beta}{4} + 2\sqrt{\frac{9D^2\beta}{2} \inf_{x \in K} \sum_{t=1}^{T} f_t(x)} = \frac{9D^2\beta}{2} + 2\sqrt{\frac{9D^2\beta}{2} \inf_{x \in K} \sum_{t=1}^{T} f_t(x)}$$