Activité 1.3 - Principe de fonctionnement d'un alcootest

Compétences	Items	D	\mathbf{C}	В	A
REA	Mettre en œuvre les étapes d'une démarche				
VAL	Confronter un modèle à des résultats expérimentaux				

Objectifs de la séance :

- > Comprendre le principe d'un alcootest
- > Revoir les réaction d'oxydoréduction

Document 1 - Principe de l'alcootest

L'alcootest est constitué d'un tube en verre dans lequel on fait circuler l'air préalablement expiré dans un ballon en plastique de 1 litre.

L'air expiré traverse une zone constituée de grains jaune-orangé de dichromate de potassium.

Si l'haleine contient de l'alcool, le solide jaune-orangé devient vert.

Un repère situé à peu près au premier tiers de la zone de détection indique la limite à ne pas dépasser.

d'alcool

Consommation d'alcool importante

Document 2 - Dichromate de potassium

Le dichromate de potassium $K_2Cr_2O_7$ est un solide ionique constitué de cations potassium K^+ incolores et d'anions dichromate responsables de la couleur jaune-orangé.

Le dichromate est un oxydant et les ions K⁺ n'interviennent pas : ils sont spectateurs.

L'anion dichromate est très toxique, cancérigène et nuit à l'environnement.

JE RONGE

Document 3 - Réaction d'oxydo-réduction dans un alcootest

L'alcootest exploite une réaction chimique d'oxydoréduction.

L'éthanol CH_3CH_2OH contenu dans l'air expiré par une personne alcoolisée constitue le réducteur destiné à être oxydé en acide éthanoïque CH_3COOH par l'ion dichromate contenu dans le tube.

Couple Ox/Red	${ m Cr_2O_7^{2-}/Cr^{3+}}$	$\mathrm{C_2H_4O_2/C_2H_6O}$
Couleurs	orange/vert	incolore/incolore
Demi-équation	$ \text{Cr}_2\text{O}_7^{2-} 14\text{H}^+ + 6\text{e}^\circ = 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O} $	$egin{array}{l} { m C_2H_4O_2+4H^++4e^{''}} \ = { m C_2H_6O+H_2O} \end{array}$

Document 4 - Démarche pour établir l'équation d'une réaction redox

Pour établir l'équation d'une réaction d'oxydoréduction il faut

- identifier les deux réactifs Ox_1 et Red_2 .
- Écrire, l'une sous l'autre, les deux demi-équations en mettant les réactifs à gauche.
- Ajuster les coefficients des deux demi-équations pour obtenir le même nombre d'électrons.
- « Additionner » les deux demi-équations.
- Supprimer les spectateurs éventuels.
- Vérifier que les charges et les éléments sont conservés.

Ox_2	•		-				v					$+ Red_2$ \cdots		
						• • • • • • •								
		• • • • • •												
	2 -	Inter	préter	les cha	ngemen	ts de co	ouleurs o	observé	s lorsqu	e l'alco	otest es	t positif	:	