ARBRES

Définitions et propriétés

Définition 19

- Un arbre est un graphe connexe sans cycles.
- Un graphe sans cycle qui n'est pas connexe est appelé une forêt (chaque composante connexe est un arbre).

Un arbre est donc un graphe simple. T = (X,T) est un arbre si et seulement s'il existe une chaîne et une seule entre deux sommets quelconques.

- Un arbre incluant tous les sommets du graphe G est appelé arbre maximum ou arbre couvrant.
- Une forêt maximale de G est une forêt de G maximale pour l'inclusion (l'ajout d'une seule arête supplémentaire du graphe à cette forêt crée un cycle)..
- Un graphe G est une arborescence s'il existe un sommet R appelé racine de G tel que, pour tout sommet S de G, il existe un chemin et un seul de R vers S.
- La notion d'arborescence couvrante se définit comme celle d'arbre couvrant, mais elle est plus délicate car il faut trouver une racine (qui n'existe pas toujours).

THEOREME

Les affirmations suivantes sont équivalentes pour tout graphe G à n sommets.

- G est un arbre,
- G est sans cycle et connexe,
- 3. G est sans cycle et comporte n-1 arêtes,
- G est connexe et comporte n − 1 arêtes,
- 5. chaque paire *u*, *v* de sommets distincts est reliée par une seule chaîne simple (et le graphe est sans boucle).

Codage de Prüfer

Le codage de Prüfer (1918) est une manière très compacte de décrire un arbre. Il a été proposé par le mathématicien allemand Ernst Paul Heinz Prüfer (1896-1934).

Codage

```
Soit l'arbre T=(V,E) et supposons V=\{1,2,\ldots,n\}.
L'algorithme ci-dessous fournira le code de T, c'est-à-dire une suite S de n-2 termes employant (éventuellement plusieurs fois) des nombres choisis parmi 1,\ldots,n.
```

Pas général de l'algorithme de codage

(à répéter tant qu'il reste plus de deux sommets dans l'arbre T)

- 1. identifier la feuille v de l'arbre ayant le numéro minimum;
- ajouter à la suite S le seul sommet s adjacent à v dans l'arbre T;
- 3. enlever de l'arbre T le sommet v et l'arête incidente à v.

Exemple de codage

$$S = \{\}$$

$$S = \{2\}$$

$$S = \{2,3\}$$

$$\begin{array}{c}
3\\
6\\
S = \{2,3,3,3\}
\end{array}$$

Décodage

Donnée : suite S de n-2 nombres, chacun provenant de $\{1,\ldots,n\}$. Posons $I=\{1,\ldots,n\}$.

Pas général de l'algorithme de décodage

(à répéter tant qu'il reste des éléments dans S et plus de deux éléments dans I)

- 1. identifier le plus petit élément i de I n'apparaissant pas dans la suite S;
- relier par une arête de T le sommet i avec le sommet s correspondant au premier élément de la suite S;
- 3. enlever i de I et s de S.

Les deux éléments qui restent dans I à la fin de l'algorithme constituent les extrémités de la dernière arête à ajouter à T.

Exemple de décodage

(2) (3)

(6)

(6)

 $S = \{2,3,3,3\}$ $I = \{1,2,3,4,5,6\}$

2 3

 $S = \{3,3,3\}$ $I = \{2,3,4,5,6\}$ (1)

 $S = \{3,3\}$ $I = \{3,4,5,6\}$

$$S = \{3\}$$

 $I = \{3, 5, 6\}$

$$S = \{\}$$

$$I = \{3, 6\}$$

DEFINITION

Un **arbre couvrant** (aussi appelé arbre maximal) est un graphe partiel qui est aussi un arbre.

Arbre couvrant de poids minimum

Soit le graphe G = (V, E) avec un poids associé à chacune de ses arêtes. On veut trouver, dans G, un arbre maximal A = (V, F) de poids total minimum.

Algorithme de Kruskal (1956) Utiliser qu'on veut trouver un arbre couvrant tous les sommets du graphe *Données :*

```
- Graphe G = (V, E) (|V| = n, |E| = m)
- Pour chaque arête e de E, son poids c(e).
```

Résultat : Arbre ou forêt maximale A = (V, F) de poids minimum.

Trier et renuméroter les arêtes de G dans l'ordre croissant de leur poids :

$$c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m).$$

Poser $F:= \oslash$, k:=0Tant que k < m et |F| < n-1 faire Début si e_{k+1} ne forme pas de cycle avec F alors $F:=F \cup \{e_{k+1}\}$ k:=k+1Fin

Exemple

Les arêtes de poids 3 n'ont pas pu être placées, car elles auraient formé un cycle. L'algorithme s'est arrêté dès que cinq arêtes ont été placées. Toute arête supplémentaire aurait créé un cycle.

S'il y a plusieurs arêtes de même poids, il peut y avoir plusieurs arbres couvrants de poids minimum : tout dépend de l'ordre dans lequel ces arêtes ont été triées.

Trouvez tous les arbres couvrants de poids minimum du graphe ci-après (les chiffres sur les arêtes représentent leur poids).

EXO

Trouvez tous les arbres couvrants de poids minimum du graphe ci-après (les chiffres sur les arêtes représentent leur poids).

