Define $f_n: [O_1] \rightarrow \mathbb{R}$ by $f_n(x) = X^n$. Show that the sequence $(f_n(x))$ converges for each xe [0,1) but that the sequence does not converge uniformly. · pointwise: fn(0) = 0 \ \ n, fu(1) = 1 \ \ n if xe (0,1) then for any E>O pick V s.t $X^n < \varepsilon$ for $n \ge N$ then $f_n(x) -> 0$ · Assume that it does converge uniformly. then for any E>O J EJ NEN 5. t $d(f_n(x),f(x)) < \varepsilon$, $\forall n \ge N, x \in [C_1,T]$ assuming that ECI then E'W <1 pick $X \in (E^{t}, I)$ then $f_n(X) -> 0$ but XN>E