B2B34ELPA Přednáška 4

4.1 Přechod PN v rovnováze

Vznik termodynamické rovnováhy, difúzní potenciál, pásový diagram, oblast prostorového náboje, průběh napětí a intenzity elektrického pole

4.2 Přechod PN propustná polarizace

Injekce minoritních nositelů náboje, proud přechodem, Shockleyho rovnice, difúzní kapacita

4.3 Přechod PN závěrná polarizace

Rozšíření oblasti prostorového náboje, bariérová kapacita, průraz přechodu PN (lavinový, tunelový)

4.4 Přechod kov-polovodič (MS)

Ohmický a usměrňující (Schottkyho) kontakt, vlastnosti

4.1 Přechod PN

- rozhraní v polovodiči mezi dvěma oblastmi různé vodivosti
- základní stavební prvek elektronických součástek
- vytváří potenciálovou bariéru a zabudované vnitřní elektrické pole
- usměrňuje tok elektrického proudu
- Ize využít pro injekci elektronů resp. děr
- Ize využít jako řízený kapacitor, detektor záření, apod.

4.1 Přechod PN - pásový diagram

po spojení

v termodynamická rovnováze (U=0, I=0), musí být Fermiho hladina konstantní – dochází k vyrovnání hladin E_{Fp} a E_{Fn} a vzniku zabudovaného potenciálu

Elektronické prvky - B2B34ELPA - př.4

4.1 Přechod PN strmý, asymetrický

předpokládáme, že ke změně vodivosti dochází skokově, dotace p a n jsou odlišné

4.1 Přechod PN difúze volných nositelů náboje

Na přechodu dochází vlivem gradientu koncentrace k difúzi elektronů a děr. Difundující volní nositelé po sobě zanechávají kladně nabité donory, resp. záporně nabité akceptory, vzniká prostorový náboj.

4.1 Přechod PN vznik oblasti prostorového náboje

6

4.1 Přechod PN elektrické pole a driftový proud

4.1 Přechod PN elektrické pole a zabudovaný potenciál

4.1 Přechod PN rovnováha mezi difúzním a driftovým proudem

4.1 Přechod PN Difúzní napětí

termodynamická rovnováha: difúze = drift celková proudová hustota elektronů (děr) musí být nulová

$$J_n = en\mu_n E + eD_n \frac{dn}{dx} = 0$$

současně platí
$$E = -\frac{d\varphi}{dx}$$
 a $D_n = \frac{\mu_n kT}{e}$

a
$$D_n = \frac{\mu_n KI}{e}$$

po úpravě
$$d\varphi = \frac{kT}{\rho} \frac{d\eta}{\eta}$$

Uvážíme-li okrajové podmínky dostaneme pro zabudovaný potenciál (difúzní napětí) vztah

teplotní napětí: kT/e ≈ 26mV @ T = 300K

$$U_D = \frac{kT}{e} \cdot \ln\left(\frac{n_N}{n_P}\right) = \frac{kT}{e} \cdot \ln\left(\frac{p_P}{p_N}\right) = \frac{kT}{e} \cdot \ln\left(\frac{N_D \cdot N_A}{n_i^2}\right)$$

$$U_D \text{ roste s \'urovn\'i dotace}$$

$$U_D \text{ roste s klesaj\'ic\'i intrinzickou koncentrac\'i (větší šířkou zakázaného pásu)}$$

4.1 Difúzní napětí odvození z pásového diagramu

4.1 Oblast Prostorového Náboje (OPN)

Nábojová dvojvrstva (OPN) musí být celkově elektricky neutrální $\rightarrow Q_N + Q_P = 0$

OPN tvoří náboj nekompenzovaných ionizovaných akceptorů (záporný, na straně P) a ionizovaných donorů (kladný, na straně N)

$$Q_P + Q_N = 0$$

$$eAx_pN_A = eAx_nN_D$$

Poměr mezi dotací a šířkou OPN

$$\frac{x_n}{x_p} = \frac{N_A}{N_D}$$

Důsledek:

nízká úroveň dotace → široká OPN vysoká úroveň dotace → úzká OPN různá dotace N a P → různě široká OPN

na straně N a P

4.1 OPN Průběh intenzity elektrického pole

(bez napětí)

Z Gaussovy věty

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_s}$$

předpokládá se úplné vyčerpání náboje z OPN

$$\rho(x) = -e N_A , -x_p < x < 0$$

$$\rho(x) = e N_D , 0 < x < x_D$$

$$E(x) = -\frac{e N_a}{\varepsilon_s} (x + \chi_p) , -\chi_p \le x \le 0$$

$$E(x) = -\frac{e N_d}{\varepsilon_s} (x_n - x) , \quad 0 \le x \le x_n$$

koncentrace vázaného náboje

El. pole dosahuje maximální intenzity E_{max} uprostřed přechodu

$$E_{\text{max}} = -e N_A x_p / \varepsilon_s = -e N_D x_n / \varepsilon_s$$

4.1 Průběh potenciálu a šířka OPN (bez napětí)

Rozložení potenciálu uvnitř OPN se získá integrací intenzity elektrického pole

$$\phi(x) = -\int E(x) dx$$

po integraci průběhu intenzity elektrického pole na levé a pravé straně přechodu

$$\phi(x) = \frac{e N_A}{2 \varepsilon_s} (x + x_P)^2 \qquad , \quad -x_P \le x \le 0$$

$$\phi(x) = \frac{e N_D}{\varepsilon_s} (x_N \cdot x - \frac{x^2}{2}) + \frac{e N_A}{2 \varepsilon_s} x_P^2 , \quad 0 \le x \le x_N$$

získáme

$$U_D = |\phi(x_N)| = \frac{e}{2 \varepsilon_s} (N_D x_N^2 + N_A x_P^2)$$

po dosazení vzájemného poměru šířek x_P a x_N

$$N_A x_P = N_D x_N$$

získáme vztah mezi difúzním potenciálem a šířkou OPN

$$W_{OPN} = \chi_N + \chi_P = \sqrt{\frac{2 \varepsilon_s U_D}{e} \left(\frac{N_A + N_D}{N_A N_D} \right)}$$

4.2 Propustně polarizovaný přechod PN

Bez napětí U = 0

Přiložením napětím U_F v propustném směru se sníží potenciálová bariéra, tj. zvýší se injekce minoritních nositelů.

Po snížení potenciálové bariéry U_D přiložením vnějšího propustného napětí U_F **množství injekovaných minoritních nositelů exponenciálně narůstá.**

4.2 Injekce minoritních nosičů náboje shockleyho rovnice

průběh koncentrace minoritních nositelů při injekci (přednáška 1 – rovnice kontinuity)

$$\Delta n(x'') = n_{P0} \left[\exp\left(\frac{eU}{kT}\right) - 1 \right] \exp\left(-\frac{x''}{L_N}\right)$$

$$\Delta p(x') = p_{N0} \left[\exp\left(\frac{eU}{kT}\right) - 1 \right] \exp\left(-\frac{x'}{L_P}\right)$$

uvažujeme pouze difúzní proud elektronů a děr (při nízké injekci $\Delta n_P << p_p$ lze náboj injektovaných elektronů zanedbat)

$$j_n = eD_n \frac{d\Delta n}{dx''} = -eD_n \frac{\Delta n(x'')}{L_n}$$

$$j = j_n(-x_p) + j_p(x_N) = j_n(0) + j_p(0) = j_0 \left[\exp\left(\frac{eU}{kT}\right) - 1 \right]$$

saturační proudová hustota

$$j_0 = e \left(\frac{D_n n_{P0}}{L_n} + \frac{D_p p_{N0}}{L_p} \right)$$

4.2 Ideální VA charakteristika přechodu PN

4.2 Difúzní kapacita důsledek injekce minoritních nositelů

Difúzní kapacita vzniká v důsledku akumulace náboje injekovaných minoritních nositelů

Celkový náboj minoritních nositelů akumulovaný v PN přechodu

$$\boldsymbol{Q} = \boldsymbol{Q}_{\boldsymbol{P}} + \boldsymbol{Q}_{\boldsymbol{N}} = \boldsymbol{\tau}_{\boldsymbol{p}} \boldsymbol{I}_{\boldsymbol{p}} + \boldsymbol{\tau}_{\boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{n}} = \boldsymbol{\tau}_{\boldsymbol{T}} \boldsymbol{I}_{\boldsymbol{n}}$$

z Schockleyho rovnice

Difúzní kapacitu C_d vypočteme z definice diferenciální kapacity a dosazením $\frac{dI}{dU} = \frac{1}{U_T} I_0 \exp\left(\frac{U}{U_T}\right) = \frac{I}{U_T}$

$$\boldsymbol{C_d} = \frac{d\boldsymbol{Q}}{d\boldsymbol{U}} = \left(\frac{\tau_T}{\boldsymbol{U_T}}\right)\boldsymbol{I}$$

- difúzní kapacita přechodu lineárně narůstá s proudem
- klesá-li střední doba průletu (tj. doba života) klesá i difúzní kapacita (náboj akumulovaný v diodě)
- difúzní kapacita omezuje rychlost spínání přechodu PN při vysokých frekvencích

tzv. střední doba průletu

4.3 Závěrně polarizovaný přechod PN

S přiloženým napětím U_R v závěrném směru se bariéra přechodu zvyšuje, OPN se rozšiřuje, množství minoritních nositelů n_p , p_n na hranici OPN exponenciálně klesá.

Na hranici OPN dochází k extrakci minoritních nositelů náboje a přechodem prochází nepatrný (driftový) proud minoritních nositelů náboje.

4.3 Závěrná polarizace extrakce minoritních nositelů

prochází pouze závěrný proud způsobený extrakcí minoritních nositelů přechodem

$$j_0 = -e \left(\frac{D_n n_{P0}}{L_n} + \frac{D_p p_{N0}}{L_p} \right)$$
 pro strmý přechod P+N

$$j_0 \sim T^{3/2} e^{-\frac{E_g}{kT}}$$

závěrný proud roste exponencielně s teplotou !!!

4.3 Závěrná polarizace – rozšíření OPN

Při polarizaci v závěrném směru se oblast prostorového náboje rozšiřuje, zvyšuje se náboj akumulovaný v OPN, intenzita elektrického pole na přechodu narůstá.

závěrné napětí se přičítá k difúznímu napětí

$$W_{OPN} = \sqrt{\frac{2 \varepsilon_s (U_R + U_D)}{e} \left(\frac{N_A + N_D}{N_A N_D}\right)}$$

pro strmý přechod P+N $(N_D << N_A)$

$$W_{OPN} = \sqrt{\frac{2 \varepsilon_s (U_R + U_D)}{eN_D}}$$

$$E = \sqrt{\frac{2 e N_D (U_R + U_D)}{\varepsilon_s}}$$

4.3 Bariérová kapacita OPN

OPN je tvořena nábojovou dvojvrstvou prostorového náboje Q ($Q_P = Q_N$) tvořeného nevykompenzovanými ionizovanými akceptory a donory. Hodnota tohoto náboje je úměrná přiloženému napětí.

V OPN je tedy akumulován náboj a vykazuje proto tzv. bariérovou kapacitu, jejíž hodnotu získáme diferenciací náboje OPN dle přiloženého závěrného napětí

diferenciální kapacita
$$C_j = \frac{dQ_{OPN}}{dU} = AeN_D \frac{dw_{OPN}}{dU} = A\sqrt{\frac{eN_D\varepsilon_S}{2(U_R + U_D)}}$$

4.3 Bariérová kapacita OPN

Z jiného pohledu: OPN je oblast bez volného náboje (má tedy charakter dielektrika s permitivitou odpovídající permitivitě deného polovodiče, hrany OPN tedy tvoří "desky" kapacitoru, jehož kapacita je

$$C_J = \varepsilon_S \frac{A}{W_{OPN}}$$

Pro strmý P+N přechod

$$C_J = A \left(\frac{\varepsilon_s e N_D}{2(U_D + U_R)} \right)^{1/2}$$

Závěr: závěrně polarizovatelný přechod lze využít jako laditelný kapacitor.

4.3 Průraz přechodu PN

při zvyšování závěrného napětí U_R dochází k rozšiřování OPN

$$w_{OPN} \sim \sqrt{U_R}$$
 pro strmý přechod
$$w_{OPN} \sim \sqrt[3]{U_R}$$
 pro pozvolný (lineární) přechod

- zvyšuje se náboj zabudovaný v OPN, a tím i intenzita elektrického pole
- při překročení kritické intenzity elektrického pole E_{crit} dochází k prudkému nárůstu proudu – průrazu
- napětí, při kterém dochází k průrazu nazýváme průrazným napětím U_{BR}
- mechanismus průrazu a průrazné napětí je dáno vlastnostmi polovodiče, konstrukcí přechodu (dotace, typ), teplotou apod.

Základní mechanismy průrazu

- lavinový průraz (lavinová generace nositelů náboje v OPN)
- tunelový / Zenerův průraz (tunelování nositelů náboje přes tenkou bariéru přechodu)
- tepelný průraz (generace nositelů způsobená ohřevem součástky)
- povrchový průraz (způsobený nehomogenitou elektrického pole zakončení přechodu povrchový náboj, apod.)

4.3 Lavinový průraz

při intenzitách elektrického pole E > 10^5 V/cm (Si) dochází k saturaci driftové rychlosti elektronů – elektrony mají dostatečnou energii, aby excitovali atomy mříže – dochází k nárazové ionizace - energie předaná elektronem při srážce s atomem je větší než jeho ionizační energie (ΔE_q) \rightarrow dochází ke generaci páru elektron-díra

mírou tohoto procesu je tzv. ionizační koeficient α udávající počet elektron-děrových párů generovaných na jednotkové vzdálenosti (1 cm) nositelem náboje, který se pohybuje ve směru pole uvnitř OPN

$$\alpha_i \propto exp\left(-\frac{E_i}{e\lambda E}\right)$$

E_i ionizační energie
 λ střední volná dráha
 E intenzita elektrického pole

V případě diody či MOSFETu, kde ve struktuře nedochází k zesílení ionizačního proudu

(BJT, tyristor), dojde k průrazu když

$$\int_0^{w_{OPN}} \alpha \, dx = 1$$

- lavinový průraz je nejvýznamnější mechanismus průrazu, který určuje maximální hodnotu průrazného napětí přechodu
- nastává pro $U_R > 6\Delta E_G/e$ (Si ~ 6.7 V , 4H-SiC ~ 19.2 V)
- průrazné napětí lavinového průrazu roste s klesající dotací přechodu (nižší gradient intenzity elektrického pole) a rostoucí teplotou (zkracuje se střední volná dráha nositelů náboje, čímž klesá pravděpodobnost lavinové ionizace)

4.3 Mechanismus lavinové ionizace

Extrakce minoritních nositelů, které při průchodu OPN mohou získat kinetickou energii umožňující generaci páru elektron-díra. Generace páru elektron díra nárazovou ionizací.

Následné lavinové opakování téhož jevu – násobení počtu nositelů náboje.

4.3 Lavinový průraz

nárazová ionizace - energie předaná elektronem při srážce s atomem je větší než jeho ionizační energie $(E_q) \rightarrow$ generuje se pár elektron-díra

Průrazné napětí přechodu P+N versus koncentrace

4.3 Tunelový (Zenerův) průraz

- nastává u silně dotovaných přechodů, kde je šířka OPN < 10 nm a začínají se tak uplatňovat kvantově-mechanické jevy (tunelový jev)
- nastává pro $U_R < 4\Delta E_G/e$ (Si ~ 4.4 V , 4H-SiC ~ 12.8 V)
- průrazné napětí tunelového průrazu klesá s rostoucí dotací přechodu (zužuje se energetická bariéra) a rostoucí teplotou (zvyšuje se energie elektronů)

A. Pásový diagram při nulovém napětí

 $\boldsymbol{E}_{oldsymbol{V}}$

B. Pásový diagram při propustném napětí – dochází k tunelování elektronů z vodivostního pásu do volných stavů ve valenčním pásu

4.3 Tunelový (Zenerův) průraz

C Pásový diagram při závěrném napětí – dochází k tunelování elektronů z valenčního pásu do volných stavů ve vodivostním pási

 E_F p Elektronické prvky - B2B34ELPA - př.4

Pravděpodobnost tunelování je závislá na výšce a šířce bariéry a energii částice (teplotě).

4.4 Přechod kov-polovodič Přechod MS (Metal-Semiconductor)

- rozhraní mezi polovodičem a kovem
- kontakt může být vodivý či usměrňující (Schottkyho) závisí na poměru výstupních prací
- základní stavební prvek elektronických součástek (kontakty, Schottkyho diody)
- na Schottkyho kontaktu se se tvoří potenciálová bariéra a zabudované vnitřní elektrické pole
- proud je tvořen pouze majoritními nositeli náboje (M-Si(N) elektrony, M-Si(P) díry)
- lze využít jako řízený kapacitor, detektor záření, apod.

4.4 Přechod kov-polovodič vznik potenciálové bariéry

- po "spojení" musí nastat termodynamická rovnováha, tj. dojde k vyrovnání Fermiho hladin
- v závislosti na typu užitého polovodiče a rozdílu výstupních prací dojde buď k vytvoření usměrňujícího (Schottkyho) nebo ohmického kontaktu

4.4 Schottkyho kontakt M-S(N) $\Phi_M > \Phi_S$

Po spojení dochází k difúzi elektronů z polovodiče do kovu. Na přechodu se tvoří oblast prostorového náboje (OPN) zabraňující trvalému přechodu elektronů z polovodiče do kovu \rightarrow vzniká kontaktní potenciál $\Phi_{\rm K}$ (difúzní napětí $U_{\rm D}$)

Kontaktní potenciál

$$\Phi_{K} = eU_{D} = \Phi_{M} - \Phi_{S}$$

lze měnit přiloženým napětím a ovládat tak tok proudu přechodu MS

Bariéra přechodu

$$\Phi_B = \Phi_M - \chi$$

zabraňuje toku elektronů z kovu do polovodiče, určuje tak velikost závěrného proudu přechodu MS

4.4 Schottkyho kontakt termodynamická rovnováha

- vzniká oblast prostorového náboje
- rozložení intenzity a potenciálu je obdobné jako u nesymetrického strmého přechodu P+N

$$W_{OPN} = \sqrt{\frac{2 \varepsilon_s (U_R + U_D)}{eN_D}}$$

$$E = \sqrt{\frac{2 e N_D (U_R + U_D)}{\varepsilon_s}}$$

4.4 Schottkyho kontakt propustný směr

Proud přechodem je dán tepelnou emisí majoritních nositelů (elektronů) přes energetickou bariéru Φ_{κ} -U (směr $S \rightarrow M$) a Φ_{B} (směr $M \rightarrow S$)

4.4 Schottkyho kontakt závěrný směr

potenciálová bariéra Φ_B zbraňuje toku elektronů z kovu do polovodiče, zbytkový proud je úměrný pravděpodobnosti emise přes tuto bariéru

4.4 Přechod kov-polovodič shrnutí

koncentrace minoritních nositelů je zanedbatelná

o transportních vlastnostech rozhodují jen majoritní nosiče (unipolární struktura)

předpoklad velmi dobrých dynamických vlastností (reagují velmi rychle (úměrně tzv. relaxační době $\tau_{\rm rel}$ < 1 ps) na změnu rozložení elektrického pole – není třeba čekat až minoritní nositelé zrekombinují jako u přechodu PN)

- stejně jako u PN přechodu exponenciální závislost I na U
- velmi dobré dynamické vlastnosti
- nižší propustné úbytky než u PN přechodu
- vyšší hodnota závěrného proudu vzhledem k tomu, že Φ_B je vždy nižší než šířka zakázaného pásu polovodiče, bariéra Φ_B se navíc snižuje vlivem přiloženého elektrického pole, při vysokých intenzitách pole je bariéra tenká a dochází i k tunelování nositelů náboje
- nízké hodnoty průrazného napětí

4.4 Přechod PN a MS - srovnání

emise majoritních nosičů přes energetickou bariéru

Propustný směr

Závěrný směr

 $I_0 \gg I_0 \Rightarrow U_F \gg U_F \wedge U_{BR} \gg U_{BR}$

4.4 Vytváření ohmických kontaktů

Pro vytváření ohmických kontaktů se užívá silně dotovaných (degenerovaných) vrstev. Schottkyho bariéra, která se případně vytvoří, je dostatečně tenká k tomu, aby procházel tunelový proud. Kontakt MS pak vždy vede v obou směrech nezávisle na poměru výstupních prací.

