Data Mining

FIMUS – Missing Data Imputation

Pranav Patel - 104417311

Feng Zhu - 104217106

Yuwie Liu - 104307195

Sample dataset

Record	Age	Education	Salary	Position
R1	27	MS	85	L
R2	45	ı	145	P
R3	42	PhD	145	P
R4	25	MS	85	L
R5	50	PhD	146	P
R6	38	PhD	140	P
R7	-	MS	86	L

Step-1

 $B_{ij} = 1$ if r_{ij} is missing.

0 if r_{ij} is available.

Missing Data Matrix B

Record	Age	Education	Salary	Position
R1	0	0	0	0
R2	0	1	0	0
R3	0	0	0	0
R4	0	0	0	0
R5	0	0	0	0
R6	0	0	0	0
R7	1	0	0	0

Step-2

Find generalize Dataset D_G

Convert numerical attribute column to the categorical attribute.

Here, Age and Salary are numerical attributes.

For Age,

Minimum value = 25

Maximum value = 50

Domain size = sqrt(max-min) = sqrt(50-25) = 5

So, bins are (25-29), (30-34), (35-39), (40-44), (45-49) and (50-54).

For Salary,

Minimum value = 85

Maximum value = 146

Domain size = sqrt(max-min) = sqrt(146-85) = 8

So, bins are (85-92), (93-100), (101-108), (109-116), (117-124), (125-132), (133-140) and (140-148).

Generalize Dataset D_G

Record	Age	Education	Salary	Position
R1	25-29	MS	85-92	L
R2	45-49	-	141-148	P
R3	40-44	PhD	141-148	P
R4	25-29	MS	85-92	L
R5	50-54	PhD	141-148	P
R6	35-39	PhD	133-140	P
R7	-	MS	85-92	L

Step-3 Co-appearance Matrix

	25-29	35-39	40-44	45-49	50-54	MS	PhD	85-92	133-140	141-148	L	P
25-29	-	-	-	-	-	2	0	2	0	0	2	0
35-39	-	-	-	-	-	0	1	0	1	0	0	1
40-44	-	-	-	-	-	0	1	0	0	1	0	1
45-49	-	-	-	-	-	0	0	0	0	1	0	1
50-54	-	-	-	-	-	0	1	0	0	1	0	1
MS	2	0	0	0	0	-	-	3	0	0	3	0
PhD	0	1	1	0	1	-	-	0	1	2	0	3
85-92	2	0	0	0	0	3	0	-	-	-	3	0
133-140	0	1	0	0	0	0	1	-	1	-	0	1
141-148	0	0	1	1	1	0	2	-	-	-	0	3
L	2	0	0	0	0	3	0	3	0	0	ı	-
P	0	1	1	1	1	0	3	0	1	3	-	-

Frequency table

Category	Count
25-29	2
35-39	1
40-44	1
45-49	1
50-54	1
MS	3
PhD	3
85-92	3
133-140	1
141-148	3
L	3
P	4

Similarity Matrix

$$S(x,y) = 1$$
 if $x = y$
= $1/(1 + (log(N/f(x)) * log(N/f(y)))$ else

For S^{Age}

$$S_{(25-29, 25-29)} = 1$$

$$S_{(35-39,35-39)} = 1$$

$$S_{(40-44, 40-44)} = 1$$

$$S_{(45-49, 45-49)} = 1$$

$$S_{(50-54, 50-54)} = 1$$

$$S_{(25-29, 35-39)} = 1/(1 + (\log(7/2) * \log(7/1)) = 0.685 = S_{(35-39, 25-29)}$$

$$S_{(25-29,40-44)} = 1/(1 + (\log(7/2) * \log(7/1)) = 0.685 = S_{(40-44,25-29)}$$

$$S_{(25-29,45-49)} = 1/(1 + (log(7/2) * log(7/1)) = 0.685 = S_{(45-49,25-29)}$$

$$S_{(25-29,50-54)} = 1/(1 + (log(7/2) * log(7/1)) = 0.685 = S_{(50-54,25-29)}$$

$$S_{(35-39,40-44)} = 1/(1 + (\log(7/1) * \log(7/1)) = 0.583 = S_{(40-44,35-39)}$$

$$S_{(35-39,45-49)} = 1/(1 + (\log(7/1) * \log(7/1)) = 0.583 = S_{(45-49,35-39)}$$

$$S_{(35-39,50-54)} = 1/(1 + (log(7/1) * log(7/1)) = 0.583 = S_{(50-54,35-39)}$$

$$S_{(40-44,44-49)} = 1/(1 + (\log(7/1) * \log(7/1)) = 0.583 = S_{(44-49,40-44)}$$

$$S_{(40-44,50-54)} = 1/(1 + (\log(7/1) * \log(7/1)) = 0.583 = S_{(50-54,40-44)}$$

$$S_{(45-49,50-54)} = 1/(1 + (\log(7/1) * \log(7/1)) = 0.583 = S_{(50-54,45-49)}$$

	25-29	35-39	40-44	45-49	50-54
25-29	1	0.685	0.685	0.685	0.685
35-39	0.685	1	0.583	0.583	0.583
40-44	0.685	0.583	1	0.583	0.583
45-49	0.685	0.583	0.583	1	0.583
50-54	0.685	0.583	0.583	0.583	1

Normalize Similarity Matrix for Age

	25-29	35-39	40-44	45-49	50-54
25-29	1	0.685	0.685	0.685	0.685
35-39	0.685	1	0.583	0.583	0.583
40-44	0.685	0.583	1	0.583	0.583
45-49	0.685	0.583	0.583	1	0.583
50-54	0.685	0.583	0.583	0.583	1

Same procedure for similarity analysis for Education, Salary and Position Normalize Similarity Matrix for Education S^{Edu}

	MS	PhD
MS	0.532	0.468
PhD	0.468	0.532

Normalize Similarity Matrix for Salary S^{Salary}

	85-92	133-140	141-148
85-92	0.378	0.289	0.333
133-140	0.302	0.396	0.302
141-148	0.333	0.289	0.378

Normalize Similarity Matrix for Position S^{Position}

	MS	PhD
MS	0.521	0.479
PhD	0.479	0.521

Co-relation Matrix

Pearson Contingency Co-efficient =
$$\sqrt{\frac{T}{N+T}}$$

Where T = Chi- square

For,
$$K_{age, age} = -$$

$$K_{edu, edu} = -$$

$$K_{sal, sal} = -$$

$$K_{\ pos,\ pos} =$$
 -

For K age, edu

	MS	PhD	Total
25-29	2	0	2
35-39	0	1	1
40-44	0	1	1
45-49	0	0	0
50-54	0	1	1
Total	2	3	5

$$T = 1.8 + 1.2 + 0.4 + 0.267 + 0 + 0 + 0.4 + 0.267 = 5.001$$

$$K_{age,\,edu} = 0.645$$

For $K_{age, sal}$

	85-92	133-140	141-148	Total
25-29	2	0	0	2
35-39	0	1	0	1
40-44	0	0	1	1
45-49	0	0	1	1
50-54	0	0	1	1
Total	2	1	3	6

$$T = 2.64 + 0.33 + 1 + 0.33 + 4.88 + 0.5 + 0.33 + 0.17 + 0.5 + 0.03 + 0.00 +$$

= 12.68

0.5

 $K_{\text{age, sal}} = 0.802$

For K age, pos

	L	P	Total
25-29	2	0	2
35-39	0	1	1
40-44	0	1	1
45-49	0	1	1
50-54	0	1	1
Total	2	4	6

$$T = 2.64 + 1.33 + 0.33 + 0.49 + 0.33 + 0.49 + 0.33 + 0.49 + 0.33 + 0.49 = 7.25$$

 $K_{age,\,pos}\,{=}\,0.713$

For $K_{edu, sal}$

	85-92	133-140	141-148	Total
MS	3	0	0	3
PhD	0	1	2	3
Total	3	1	2	6

$$T = 1.5 + 0.5 + 0.33 + 1.5 + 0.5 + 8.45 = 12.78$$

 $K_{edu,\,sal}\!=\!0.803$

For $K_{edu, pos}$

	L	P	Total
MS	3	0	3
PhD	0	3	3
Total	3	3	6

$$T = 1.5 + 1.5 + 1.5 + 1.5 = 6$$

 $K_{edu,\,pos} = 0.707$

For $K_{sal, pos}$

	L	P	Total
85-92	3	0	3
133-140	0	1	1
141-148	0	3	3
Total	3	4	7

$$T = 2.26 + 1.71 + 0.43 + 0.324 + 1.29 + 0.97 = 6.987$$

 $K_{sal, pos} = 0.733$

Co-relation Matrix K

	Age	Education	Salary	Position
Age	-	0.645	0.802	0.713
Education	0.645	-	0.803	0.707
Salary	0.802	0.803	-	0.733
Position	0.713	0.707	0.733	-

Step-4

Missing data imputation

	Age	Education	Salary	Position
R2	45-49	?	141-148	P
R7	?	MS	85-92	L

```
Input
                                              : Record r_i, Attribute index j, Attribute list A, Co-appearance matrix C, Set of Similarity matrices S, Correlation
                                               matrix K, threshold \lambda, and data set D_G
Output
                                            : Imputed value r_{ij}
Step 1:
                    foreach category x \in A_i do
                                         V_x^T = 0; /*V_x^T is the total voting in favour of x*/
                                         /* Loop over all attributes in A excluding the jth attribute*/
                                         foreach attribute A_p \in A \backslash A_j do V_x^N = 0, V_x^S = 0, and l = r_{ip}; /*notations are introduced in Section 3.1*/
                                                              end
                                                              if \lambda < 1 then
                                                                                  foreach category a \in A_p do
                                                                                                H = \frac{C_{xa}}{f_a};

V_x^S = V_x^S + H \times S_{la}^p; /*see Section 3.1*/
                                                              V_x^p = \{V_x^N \times \lambda + V_x^S \times (1-\lambda)\} \times k_{jp} / *k_{jp} \in K \text{ is the correlation between the } j \text{th and } p \text{th attribute */} \\ V_x^T = V_x^T + V_x^p; 
                     end
end
Step 2:
                    Set r_{ij} \leftarrow Value(max(V_x^T; \forall x \in A_j)); /*finds the attribute value x for which V_x^T is the Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^*/Max^
end
Step 3:
                    Return imputed value r_{ij};
end
```

Calculation:

For R2

Possible candidates are: MS and PhD

For x = MS

Ap = Age

$$V_{MS}^{N} = \frac{c \text{ (MS,45-49)}}{f \text{ (45-49)}} = 0$$

Now for each categories of Age

1.
$$a = 25-29$$

$$H = \frac{c \text{ (MS,25-29)}}{f \text{ (25-29)}} = 1$$

$$V_{MS}^{S} = 0 + 1 * S^{\text{age}}_{45-49, 25-29} = 0.2$$

2.
$$a = 35-39$$

$$H = \frac{C \text{ (MS,35-39)}}{f \text{ (35-39)}} = 0$$

$$V_{MS}{}^S = 0.2 + 0 * S^{age}{}_{35\text{-}39,\;45\text{-}49} = 0.2$$

3.
$$a = 40-44$$

$$H = \frac{C \text{ (MS,40-44)}}{f \text{ (40-44)}} = 0$$

$$V_{MS}^{S} = 0.2 + 0 * S^{age}_{40-44, 40-44} = 0.2$$

4.
$$a = 45-49$$

$$H = \frac{C \text{ (MS,44-49)}}{f \text{ (44-49)}} = 0$$

$$V_{MS}^{S} = 0.2 + 0 * S^{age}_{40-44, 45-49} = 0.2$$

5.
$$a = 50-54$$

$$H = \frac{C \text{ (MS,50-54)}}{f \text{ (141-148)}} = 0/$$

$$V_{MS}{}^{S} = 0.2 + 0 * S^{age}_{40-44, 50-54} = 0.2$$

$$\begin{split} V_{MS}{}^{age} &= \{ \ V_{MS}{}^{N} \ \lambda + V_{MS}{}^{S} (\ 1 \text{--} \ \lambda) \ \} \ K_{edu,age} \\ &= 0.01032 \end{split}$$

Now for Ap=salary

$$V_{\rm MS}^{\rm N} = \frac{C({\rm MS} - 141 - 148)}{f(45 - 49)} = 0/3 = 0$$

Now for each category of salary

$$a = 85-92$$

$$H = \frac{C \text{ (MS,85-92)}}{f \text{ (85-92)}} = 3/3 = 1$$

$$V_{MS}^{s} = 1 * S \text{ salary} (141 - 148)(85 - 92)^{=0.333}$$

$$a = 133-140$$

$$H = \frac{C \text{ (MS,133-140)}}{f \text{ (133-140)}} = 0$$

$$V_{MS}^{s} = 0.333$$

$$\begin{split} V_{\text{MS}}^{\text{ salary}} &= \{\ V_{\text{MS}}{}^{\text{N}}\ \lambda + V_{\text{MS}}{}^{\text{S}}(\ 1\text{-}\ \lambda)\ \}\ K_{\text{edu,salary}} \\ &= (0*0.2{+}0.333(11{-}0.2))\}\ 0.803 \\ &= 0.2139 \end{split}$$

For Ap = Position

$$V_{\rm MS}^{\rm N} = \frac{C({\rm MS} - {\rm P})}{f(P)} = 0/4 = 0$$

Now for each categories of position

A=L
$$H = \frac{c \text{ (MS-L)}}{f(L)} = 3/3 = 1$$

$$V_x^S = 1 * S^{pos}_{(L-P)} = 0.521$$
 A=P
$$H = \frac{c \text{ (MS-P)}}{f(P)} = 0$$

$$V_x^S = 0.521 + 0 = 0.521$$

$$\begin{aligned} &V_x^{pos} \! = \! \left\{ \begin{array}{l} V_x^N \, \lambda + V_x^S \! \left(\, 1 \text{--} \, \lambda \right) \, \right\} \, K_{edu,pos} \\ = \! \left(0 \text{+-} 0.02 \text{+-} 0.521 (1 \text{--} 0.2) \right) \text{+-} \, 0.707 \\ = \! 0.2946 \end{aligned}$$

So, total
$$V_{MS}^{T} = V_{MS}^{Age} + V_{MS}^{Salary} + V_{MS}^{Pos}$$

=0.0103+0.2139+0.2946=
=0.5188

Now same way we will find V_{PhD}^{T}

for Ap = age

X=PhD

$$V_{PhD}^{N} = \frac{C(PhD-45-49)}{f(45-49)} = 0/1=0$$

Now for each categories for age

A = 25-29

$$H = \frac{c \text{ (PhD-25-29)}}{f \text{ (25-29)}} = 0$$

$$V_x^{\ S} = 0$$

$$A = 35-39$$

$$H = \frac{C \text{ (PhD-35-39)}}{f \text{ (35-39)}} = 1/1 = 1$$

$$V_x^S = 0 + H^* S^{Age}_{35-39,45-41} = 1*0.17 = 0.17$$

A = 40 - 44

$$H = \frac{C \text{ (PhD-40-44)}}{f \text{ (40-44)}} = 1/1 = 1$$

$$V_x^S = 0.17 + (1*0.17) = 0.34$$

A = 44 - 49

$$H = \frac{C \text{ (PhD-44-49)}}{f \text{ (44-49)}} = 0$$

$$V_x^S = 0.34$$

A=50-54

$$H = \frac{C \text{ (PhD-50-54)}}{f \text{ (50-54)}} = 1$$

$$V_x^S = 0.34 + 1(0.17) = 0.51$$

$$\begin{split} V_{\text{PhD}}{}^{\text{age}} &= \{\ V_{\text{PhD}}{}^{\text{N}}\ \lambda + V_{\text{PhD}}{}^{\text{S}}(\ 1\text{-}\ \lambda)\ \}\ K_{\text{edu,age}} \\ &= &(0*0.2\text{+}0.51(1\text{-}0.2)) \}*0.645 \\ &= &0.26316 \end{split}$$

For Ap=Salary

$$V_{PhD}^{N} = \frac{C(PhD-141-148)}{f(141-148)} = 2/3 = 0.67$$

For each categories of salary

$$A = 85-92$$

$$H = \frac{C \text{ (PhD-85-92)}}{f \text{ (85-92)}} = 0$$

$$V_{PhD}{}^S = 0$$

$$A = 133-140$$

$$H = \frac{C \text{ (PhD-133-140)}}{f \text{ (133-140)}} = 1/1 = 1$$

$$\begin{split} V_{PhD}{}^S &= 0{+}1*\ S^{Sal}{}_{(141{-}148,133{-}140)} = 0{+}1(0.289) = 0.289 \\ A &= 141{-}148 \\ H &= 0.67 \\ V_{PhD}{}^S &= 0.289{+}(0.67{*}0.378) = 0.5422 \\ V_{PhD}{}^{Salary} &= (0{*}0.21{+}(0.5422{*}(1{-}0.2)){*}0.803 \\ &= 0.3483 \end{split}$$

For
$$Ap = Pos$$

$$V_{PhD}^{N} = \frac{C(PhD-P)}{f(P)} = 3/4 = 0.75$$

For each categories of salary

$$A = L$$

$$H = \frac{C \text{ (PhD-L)}}{f \text{ (L)}} = 0$$

$$V_{PhD}{}^S = 0 \\$$

$$A = P$$

$$H = \frac{C (PhD-P)}{f (P)} = 0$$

$$V_{PhD}{}^S = 0.75\,$$

$$V_{PhD}^{S} = 0 + (0.75*0.521) = 0.3908$$

$$V_{PhD}^{pos} = (0* 0.2) + (0.3908*(1-0.2)0.707$$
 = 0.2210

So, total
$$V_{PhD}^{T} = V_{PhD}^{Age} + V_{PhD}^{Salary} + V_{PhD}^{Pos}$$

=0.2631+0.3483+0.2210
=0.8325

Here $V_{PhD}^T > V_{MS}^T$

So, winner is PhD

R2	45-49	PhD	141-148	P

By following same procedure, we can imput missing data for other element

For, R7, missing value imputed is 25-29. This is derived by same process as done for R2."25-29" is categorical label. So we have to find numerical value between 25 and 29. For this, we have to repeat steps 3-4.

Step-4

Repeat step-3

	MS	PDD	85-92	133-140	141-148	L	P
25	1	0	1	0	0	1	0
26	-	-	-	-	-	-	-
27	1	0	1	0	0	1	0
28	-	1	ı	-	-	ı	-
29	-	ı	ı	•	•	ı	-

Co-appearance matrix for only 25 & 27

	25	27	MS	PHD	85-92	133-140	141-148	L	P
25	-	-	1	0	1	0	0	1	0
27	-	-	1	0	1	0	0	1	0
MS	1	1	-	-	2	0	0	2	0
PHD	0	0	-	-	0	0	0	0	0
85-92	1	1	2	0	-	-	-	2	0
133-140	0	0	0	0	-	-	-	0	0
141-148	0	0	0	0	-	-	-	0	0
L	1	1	2	0	2	0	0	2	0
P	0	0	0	0	0	0	0	0	0

Frequency

25-1 133-140-0

27-1 141-148-0

MS-2 L-2

PhD-0 P-0

85-92-2

Similarity Analysis

 $\mathbf{S}^{\mathrm{Age}}$

	25	27
25	1	0.917
27	0.917	1

Normalize S^{Age}

	25	27
25	0.522	0.478
27	0.478	0.522

For Education

S^{Edu}	MS	PHD
MS	1	0
PHD	0	1

For Salary

S ^{Sal}	85-92	133-140	141-148
85-92	1	0	0
133-140	0	1	0
141-148	0	0	1

For Position

SPos	L	P
L	1	0
P	0	1

Corelation Matrix : K

	Age	Edu	Sal	Pos
Age	1	0	0	0
Edu	0	1	0	0
Sal	0	0	1	0
Pos	0	0	0	1

Total vote for 25

$$V_{25}^{N} = \frac{C (25-MS)}{f (MS)} = 1/2 = 0.5$$

Now for each category for age

A=MS

$$H = \frac{C (25 - MS)}{f (MS)} = 0.5$$

$$V_X{}^S = 0.5 * S^{Edu}{}_{(MS\text{-}MS)} = 0.5$$

A=PhD

$$H = \frac{C (25-PhD)}{f (PhD)} = 0$$

Repeat these steps and find total vote $V_{X}{}^{T}$ for $V_{25}{}^{S}$ and $V_{27}{}^{S}$

Final Imputed Missing data is 25 by results.

Step-6

Impute Missing Data into table data

Rec	Age	Edu	Sal	Pos
R1	27	MS	85	L
R2	45	PHD	145	P
R3	42	PHD	145	P
R4	25	MS	85	L
R5	50	PHD	146	P
R6	38	PHD	140	P
R7	25	MS	86	L

$$NRMS = \frac{ll \ Xestimate - \ Xoriginal \ ll \ F}{ll \ Xoriginal \ ll \ F}$$

Where
$$IIAII = \sum_{i=1}^{m} \sum_{j=1}^{n} IIaijII2$$

Because all the imputed missing data are similar to original dataset.

$$NRMS = 0$$

And AE Table

$$AE=1/n \sum_{i=1}^{n} I(x=xi)$$

Where I(.) stands for function that returns 1 if the estimated value x and real value xi are same, but otherwise 0.

AE Table

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

AE = 1.00