§ SAS: homework 9:

—. Univariable analysis of age and BMI

(一) Age:

1. Result:

- (1) 以 histogram 大致觀察 age 這個變項的分佈,大致符合常態分佈
- (2) 以 Q-Q plot 大致觀察 age 這個變項分佈,樣本點大致落於斜線附近,僅在 age 較小部分稍微偏離。

學號: b07401048 醫學五

姓名:賴柏瑞

(3) 以 goodness-of-fit test 檢定該變項是否符合常態分佈。檢定結果拒絕虛無假說,表示該變項不符合常態分佈。然而根據課程所述,該檢定過於嚴格,容易受到樣本數影響。

2. Figure:

Goodness-of-Fit Tests for Normal Distribution				
Test	9	ue		
Kolmogorov-Smirnov	D	0.08494189	Pr > D	<0.010
Cramer-von Mises	W-Sq	0.73862550	Pr > W-Sq	<0.005
Anderson-Darling	A-Sq	4.95680165	Pr > A-Sq	<0.005

(二) BMI:

1. Result:

- (1) BMI 為自訂變項,利用原始資料中的 height 與 weight 計算而得。公式為 weight (kg) 。 height (m)²
- (2) 以 histogram 大致觀察 BMI 這個變項的分佈,大致符合常態分佈
- (3) 以 Q-Q plot 大致觀察 BMI 這個變項分佈,樣本點大致落於斜線附近,僅在極端值部分稍微偏離。
- (4) 以 goodness-of-fit test 檢定該變項是否符合常態分佈。檢定結果拒絕虛無 假說,表示該變項不符合常態分佈。然而根據課程所述,該檢定過於嚴 格,容易受到樣本數影響。

2. Figure:

Goodness-of-Fit Tests for Normal Distribution				
Test	9	Statistic	p Value	
Kolmogorov-Smirnov	D	0.05780185	Pr > D	<0.010
Cramer-von Mises	W-Sq	0.47136440	Pr > W-Sq	<0.005
Anderson-Darling	A-Sq	3.61136016	Pr > A-Sq	<0.005

(三) Code:

```
/*homework 9*/
dm "odsresult" clear;
dm "log"clear;
    /* import data of sasdataset*/
   libname data "\\Mac\Home\Desktop\";
/* q1 */
title "q1";
    /* univariable analysis (age, bmi)*/
    data ad;
        set data.ad_dataset_new;
        bmi = wt40 / (ht / 100) ** 2;
    run;
    proc univariate data = ad ;
       var age bmi;
       histogram age bmi / normal;
        qqplot age bmi / normal ( mu = est sigma = est);
/* excluding unsuitable data */
    proc print data = ad;
       where bmi > 60;
       var ht wt40 bmi age;
    run;
    data ad;
        set data.ad_dataset_new;
        bmi = wt40 / (ht / 100) ** 2;
       if bmi < 60;
    run;
    proc univariate data = ad ;
       var age bmi;
        histogram age bmi / normal;
        qqplot age bmi / normal ( mu = est sigma = est);
    run;
```

$\stackrel{\sim}{\sim}$. E (education status) \rightarrow DZ (AD), stratified by APOE e4 status

(一) Stratum specific ORs

1. Result:

- (1) Non-APOE e4 carrier stratum specific OR: 7.0911 (95% CI: 4.5459 11.0613)
- (2) APOE e4 carrier stratum specific OR: 5.2275 (95% CI: 2.5410 10.7542)

2. Figure:

Statistics for Table 1 of edugp by caco
Controlling for apo4car=0

Odds Ratio and Relative Risks				
Statistic Value 95% Confidence Limit				
Odds Ratio	7.0911	4.5459 11.0613		
Relative Risk (Column 1)	1.9148	1.6124	2.2738	
Relative Risk (Column 2)	0.2700	0.1978	0.3686	

Statistics for Table 2 of edugp by caco Controlling for apo4car=1

Odds Ratio and Relative Risks				
Statistic Value 95% Confidence Li			dence Limits	
Odds Ratio	5.2275	2.5410	10.7542	
Relative Risk (Column 1)	2.8667	1.7463	4.7058	
Relative Risk (Column 2)	0.5484	0.4169	0.7214	

3. Descriptions

- (1) 將 educational status 分為小於 12 年與大於等於 12 年分為兩組,並定義 小於 12 年為 exposure,大於等於 12 年為 non-exposure。
- (2) 以是否帶有 APOE e4 (potential confounder) 將所有樣本分層,觀察兩層中 educational status (exposure) 與發生 AD (disease) 之間的關係。
- (3) 在有 APOE e4 的層中的 odd ratio 為 5.2275 (95% CI: 2.5410-10.7542)。 在抽樣與暴露相互獨立的前提下,可由 OR 推論 RR。故在有 APOE e4 層中, education 小於 12 年的組發生 AD 的風險為 education 大於 12 年的5.2275 倍,且達統計上顯著。
- (4) 在沒有APOE e4 的層中的 odd ratio 為 7.0911 (95% CI: 4.5459-11.0613)。 在抽樣與暴露相互獨立的前提下,可由 OR 推論 RR。故在沒有 APOE e4 層中, education 小於 12 年的組發生 AD 的風險為 education 大於 12 年 的 7.0911 倍,且達統計上顯著。

(二) Breslow-Day homogeneity test

1. Result:

(1) P-value 為 0.4803,無法拒絕虛無假說,兩層 OR 沒有顯著差異。

2. Figure:

Breslow-Day Test for Homogeneity of Odds Ratios		
Chi-Square 0.4981		
DF	1	
Pr > ChiSq	0.4803	

3. Descriptions

- (1) 若要以 Mantel-Haenszel 計算 pooling 的 OR, 需達成兩層 OR 沒有顯著差 異的前提。("The effect being estimated is constant across the strata")
- (2) 故以 Breslow-Day test 檢定兩層的同質性。Breslow-Day test 的虛無假說為兩層 OR 相等。
- (3) 檢定結果 p-value 為 0.4803,未達統計上顯著,無法拒絕虛無假設,表示兩層 OR 沒有顯著差異。

(三) Mantel-Haenszel OR

1. Result:

(1) Common OR: 6.5029 (95% CI: 4.4535 – 9.4955) •

2. Figure:

Common Odds Ratio and Relative Risks				
Statistic	Method	Value	95% Confidence Limits	
Odds Ratio	Mantel-Haenszel	6.5029	4.4535	9.4955
	Logit	6.5201	4.4656	9.5200
Relative Risk (Column 1)	Mantel-Haenszel	2.0438	1.7341	2.4089
	Logit	1.9995	1.6999	2.3520
Relative Risk (Column 2)	Mantel-Haenszel	0.3649	0.2957	0.4504
	Logit	0.4024	0.3276	0.4943

3. Descriptions:

- (1) 前題已經以 Breslow-Day test 檢定兩層具有同質性,故本題以 Mantel-Haenszel test 計算 pooling 的 OR。
- (2) Mantel-Haenszel 檢定結果 common odds ratio 為 6.5029 (95% CI: 4.4535 9.4955)。信賴區間不包含 1,達統計上顯著。
- (3) 未分層前 crude OR 為 5.8989,分層後 unbiased OR 為 6.5029。1 < crude OR < unbiased OR,可見 bias toward null。
- (4) 此外, $\left|\frac{6.5029-5.8989}{5.8989}\right|=10.23\%>10\%$ 。根據 10% rule,APOE e4 為一個 confounder。

(四) Code:

```
/* q2 educational status (E) --> AD (DZ), stratified by APOE status */
    title "q2";
    /* grouping educational status , <12 and >=12*/
    proc univariate data = ad;
        var eduyr;
       histogram eduyr / normal;
    run:
    data ad2;
       set ad;
        if eduyr = . then edugp = .;
        else if eduyr < 12 then edugp = 1;</pre>
        else edugp = 0;
    run;
    proc print data = ad2;
       var eduyr edugp;
    run;
    /* crude OR */
    proc freq data = ad2;
       tables edugp * caco / or;
    run;
    /* stratum specific OR */
    proc freq data = ad2;
       tables apo4car * edugp * caco / cmh or ;
    run;
```

\leq . E (education status) \rightarrow DZ (AD), logistic regression

(一) Unadjusted logistic regression :

1. Result:

(1) OR: 5.899 (95% CI: 4.164 – 8.354)

2. Figure:

Odds Ratio Estimates				
Effect	95% Wald Point Estimate Confidence Limits			
edugp 1 vs 0	5.899	4.164	8.357	

3. Descriptions:

- (1) 本題以 logistic regression 計算結果基本上與上題未分層的 crude OR 是一樣的。
- (2) Education 小於 12 年的人發生 AD 的機會機會是 education 大於 12 年的人的 5.899 倍。

(二) Adjusted logistic regression:

1. Result:

(1) OR: 6.113 (95% CI: 3.571 – 10.465)

2. Figure:

Odds Ratio Estimates				
Effect	Point Estimate	95% Wald Confidence Limits		
edugp 1 vs 0	6.113	3.571	10.465	
age	1.214	1.164	1.266	
sex 1 vs 0	0.925	0.535	1.599	
bmi	0.922	0.849	1.002	
apo4car 1 vs 0	5.439	3.084	9.590	

3. Descriptions:

- (1) 本題為控制 age, sex, BMI 與 APOE e4 status(四個 potential confounder) 之後進行 logistic regression。
- (2) Education 小於 12 年的人發生 AD 的機會機會是 education 大於 12 年的人的 6.113 倍。
- (3) 1 (H0) < 5.899 (unadjusted OR) < 6.113 (adjusted OR),可見 bias toward H0。

(三) Code:

```
/* logistic regression educational status (E) ---> AD(DZ) */
title "q3";
   /* unadjusted */
   proc logistic data = ad2;
      class edugp (ref = "0") /param = ref;
      model caco (event = "1") = edugp;
run;

proc logistic data = ad2;
   class edugp (ref = "0") sex (ref = "0") apo4car (ref = "0") / param = ref;
   model caco ( event = "1") = edugp age sex bmi apo4car ;
run;

proc logistic data = ad2;
   model caco(event = "1") = eduyr;
run;
```

- 四. In a stratified analysis of data arising in a case-control study, which of the following types of strata contribute information to the Mantel-Haenszel odds ratio:
 - (a) strata in which all cases and all controls are exposed
 - (b) strata in which all cases and all controls are unexposed
 - (c) strata in which all cases are exposed and all controls are unexposed
 - (d) strata in which there are only controls and no cases