- Керівництво зі стратегії досліджень та інновацій для смарт-спеціалізації: 10. Неофіційна адаптована скорочена версія. Розроблена Українським Інститутом міжнародної політики. URL: https://www.minregion.gov.ua/wp-content/uploads/2019/04/Kerivnitstvo-Smart- Spetsializatsiyi-DG-JRC-skrocheniy-ukr.-pereklad-1-1.pdf
- Smart Specialisation Platform. URL: https://s3platform.jrc.ec.europa.eu/s3-platform-11. registered-regions
- 12. Модернізація економіки промислових регіонів України умовах децентралізації управління: монография / О.І. Амоша, Ю.М. Харазішвілі, В.І. Ляшенко та ін. / НАН України, Ін-т економіки пром-сті. Київ, 2018. 300 с.
- Формування «розумної спеціалізації» в економіці України : колективна монографія / [Єгоров І.Ю., Бажал Ю.М. та ін.] ; за ред.: чл.-кор. НАНУ І.Ю. Єгорова ; НАН України, ДУ «Ін-т. екон. та прогнозув. НАН України». Електрон. дані. К., 2020. 278 с. : табл., рис. URL: http://ief.org.ua/docs/mg/331.pdf
- Шевченко А. В. Стратегічні пріоритети впровадження смарт-спеціалізації у промисловості України. Бізнесінформ №10, 2019, с- 130-135. URL: https://www.business- inform.net/export_pdf/business-inform-2019-10_0-pages-130_135.pdf
- Україна, Єврокомісія та ООН співпрацюватимуть для досягнення Цілей розвитку інновацій URL: сталого 3a допомогою та технологій. https://www.kmu.gov.ua/news/ukrayina-yevrokomisiya-ta-oon-spivpracyuvatimut-dlyadosyagnennya-cilej-stalogo-rozvitku-za-dopomogoyu-innovacij-ta-tehnologij

УДК 330.4:336.1

Пахольчук Вадим

ад'юнкт кафедри фінансового забезпечення військ Військовий інститут Київського національного університету імені Тараса Шевченка м. Київ, Україна

Науковий керівник: Алім Сизов

кандидат економічних наук начальник кафедри фінансового забезпечення військ

Військовий інститут

Київського національного університету імені Тараса Шевченка м. Київ. Україна

Vadvm Pakholchuk

adjunct of Financial Support of Troops Department Military Institute of Taras Shevchenko National University of Kyiv Kyiv, Ukraine

Scientific supervisor: Alim Syzov

PhD (Economics)

Head of Financial Support of Troops Department Military Institute of Taras Shevchenko National University of Kyiv Kyiv, Ukraine

ВИКОРИСТАННЯ АЛГОРИТМІВ МАШИННОГО НАВЧАННЯ ПРИ ЗДІЙНЕННІ ВИДАТКІВ НА ОБОРОНУ MACHINE LEARNING ALGORITHMS APPLICATION IN **DEFENSE EXPENDITURES**

Фінансовий механізм Збройних Сил є важливою складовою у структурі фінансової системи держави. Він набуває особливого значення оскільки характеризується специфічними економічними зв'язками. Фінансове забезпечення — це складний процес, результативність якого залежить від достовірності інформації та від використовуваної методології. Сьогодні пріоритетом у розбудові Збройних Сил є застосування інноваційних підходів до прогнозування показників ефективності виконання програм та врахування загальних показників макроекономічного розвитку економіки держави. Тому моделі, які використовуються у прогнозуванні стають дедалі комплекснішими та складнішими.

На сьогодні, існуючі проблеми, вже давно вийшли за рамки вирішення в межах економетрики та статистики. Базуючись на тривіальних підходах, які використовуються останні десятиліття ми зараз отримали змогу будувати складні обчислювальні системи, які можуть реагувати на більшу кількість змін у економічному середовищі.

Сучасні підходи машинного навчання дозволяють розшири кількість змінних, які мають для нас значення, можуть бути враховані не лінійні залежності у даних, що дозволяє краще навчити модель для підвищення ефективності на тестових даних, а також дозволяють знизити імовірність «переневчання».

Завдання машинного навчання полягає у використанні даних для тренування моделі, а також у подальшому використання натренованої моделі для прогнозування певних показників. Тобто фундаментальне завдання машинного навчання полягає у знаходженні матриці коефіцієнтів, які б задовольняли умову функції, яка описує дані та мінімізували фунціонал похибки, який буде основою для побудови моделі.

Найбільш розповсюдженими завданнями, які вирішуються за допомогою алгоритмів машинного навчання ϵ регресія, класифікація та кластеризація. А типовою класифікацією методів, які використовуються визначається навчання з учителем (коли дані розмічені), навчання без учителя та навчання з підкріпленням.

Задачі регресії та класифікації вирішуються саме за рахунок навчання з учителем, адже на тренувальних даних ми маємо матрицю вхідних даних та вектор результатів.

Кластеризація, пошук аномалій у даних, зменшення розмірності даних вирішується за рахунок навчання без учителя.

Технологічний процес розробки та впровадження алгоритмів машинного навчання можна розподілити на такі етапи:

- 1. Детермінація завдання, яке ми збираємося вирішувати. Аналітики повинні розуміти з яким саме видом моделі їм потрібно буде працювати та який результат вони хочуть отримати.
- 2. Підготовка даних це найважливіший етап, адже від якості даних буде залежати якість моделі.
- 3. Критерії оцінки для оптимізації моделі потрібно визначити функціонал похибки та методологію оцінки результативності.
- 4. Моделювання вибір оптимальної моделі для вирішення завдання та її тренування.
- 5. Тестування валідація готової моделі на тестовій вибірці та оцінка функціоналу похибки, порівняння тестової та тренувальної вибірки по результативності.

Даний алгоритм ϵ узагальненням типового процесу розробки готової моделі. Він ϵ актуальним навіть для складних моделей глибокого навчання, які грунтуються на нейромережах. Незважаючи на їх складність, в їх основах здебільшого використовують стандартні градієнтні методи для оптимізації, а також бустінг для направленої побудови моделі, де кожен наступний крок враховує результати попереднього.

Зважаючи на складну структуру оборонних фінансів алгоритми машинного навчання можуть застосовуватися у задачах класифікації ризикових операції у процесі здійснення внутрішнього контролю та аудиту, для виявлення аномалій у звітності та даних господарських операцій, для планування та прогнозування під час здійснення розрахунків фінансового забезпечення. Методологія машинного навчання має обиратися залежно від завдання, яке має вирішуватися. У більшості сучасних методів використовуються ансамблі різних методів, крос валідація та узагальнення показників результатів навчання. В умовах

обмеженості ресурсів використання інноваційних підходів у завданнях фінансування військ ϵ обгрунтованою необхідністю.

Машинне навчання зараза це актуальна основа для використання великих наборів даних та оптимізації прогнозування. Таким чином, моделі машинного навчання добре підходять для вирішення багатьох завдань у фінансах - як практичних, так і теоретичний. У даних тезах було наведено лише узагальнення моделей машинного навчання та можливі шляхи їх застосування. Було наведено лише певні способи їх застосування для фінансів, а інші будуть розглянуті у подальших дослідженнях. Ми можемо лише припускати, що це значиться для майбутнього існуючої фінансової системи, адже все більше алгоритмів машинного навчання будуть застосовувати для аналізу заходів фінансування військ та оборонних видатків.

Перелік використаних джерел:

- 1. L. Breiman: Statistical modeling: the two cultures. Statistical Science, Vol. 16(3), pp. 199-231, 2001.
 - 2. Dixon. (2020). Machine Learning in Finance. Springer International Publishing.
- 3. Dixon, Matthew Francis and Halperin, Igor, The Four Horsemen of Machine Learning in Finance (September 15, 2019). Available at SSRN: https://ssrn.com/abstract=3453564 or http://dx.doi.org/10.2139/ssrn.3453564
- 4. J. Y. Campbell, A. W. Lo and A. C. MacKinley: The econonmetrics of financial markets. Princeton University Press, 1997.
- 5. Klaas, Jannes. Machine learning for finance: principles and practice for financial insiders. Packt Publishing Ltd, 2019.
- 6. B. D. Ripley: Pattern recognition and neural networks. Cambridge University Press, 1996.