Analisi e Controllo di Processi Complessi

Appello di Analisi e Controllo di Processi Complessi

(Data: 23/06/22)

Docente: C. Carnevale

Istruzioni

- Non verranno valutate risposte in assenza di adeguata giustificazione.
- Non possono essere usati libri, appunti, siti web, codice e schemi preparati precedentemente alla prova.
- Giustificare ogni risposta data attraverso o i passaggi matematici o i comandi (o le porzioni di codice) matlab utilizzati per la risoluzione.
- Leggere attentamente le domande e rispondere con precisione ai solo quesiti richiesti.
- Consegnare i file in formato pdf, jpeg o png, utilizzando i nomi riportati nell'esame.

Esercizio 1

Dato il seguente sistema, avente stato misuraibile:

$$\begin{cases} \dot{x}_1 = -2x_1 + 8x_2 + 2u \\ \dot{x}_2 = -10x_2 + 2u \\ y = x_1 \end{cases}$$

- (a) Scrivere uno script MATLAB che permetta di:
 - 1. testare tutte e sole le ipotesi per la progettazione di un controllo in retroazione dello stato in questa situazione.
 - 2. calcolare il guadagno di un controllo ottimo LQ con cifra di merito stato-variabile di controllo, con matrici delle forme quadratiche pari alle matrici identità.
 - 3. calcolare il guadagno di un controllore in retroazione dello stato tale che il sistema raggiunga l'equilibrio in un tempo t=10s.
 - 4. calcolare il controllo ottimo LQ con cifra di merito stato-variabile di controllo, avente peso delle componenti dello stato pari a 10 volte quello della variabile di controllo.

CONSEGNARE:

- NOME FILE: ES2_a
- TIPO FILE: .m
- CONTENUTO: lo script MATLAB richiesto con i commenti necessari per giustificare le scelte (Utilizzare il simbolo % per inserire i commenti). Inserire come commento i valori calcolati dallo script per la progettazione dei diversi controllori.
- (b) Indicare, senza simulare il sistea e motivando la risposta, quale è il controllo che garantisce la risposta più veloce.
- (c) Simulare il sistema per ueq=3, con il controllo LQ progettato, partendo da condizione iniziale x0 per il sistema e nulla per l'osservatore.

CONSEGNARE:

- - NOME FILE: ES1_c1
 - TIPO FILE: pdf/jpeg/png
 - CONTENUTO: schema simulink utilizzato per la simulazione
- - NOME FILE: ES1_c2
 - TIPO FILE: pdf/jpeg/png
 - CONTENUTO: grafico della variabile di controllo

Esercizio 2

Dato il seguente sistema affetto da incertezza

$$\dot{x} = r * (x - 2) + (x - 2)^2 \tag{0.1}$$

dove: $r \in [-1 \div +1]$

(a) Scrivere uno script MATLAB che permetta di tracciare il diagramma di biforcazione (ascissa: r, ordinate: punti di equilibrio equilibrio) per r=-1:0.1:1 :

CONSEGNARE:

- $\bullet\,$ NOME FILE: ES2_a
- $\bullet\,$ TIPO FILE: .png
- CONTENUTO: grafico del diagramma richiesto
- (b) Classificare la biforcazione del sistema, sfruttando (anche) i risultati dello script.

CONSEGNARE:

- NOME FILE: ES2_b
- TIPO FILE: pdf/jpeg/png
- CONTENUTO: risposta alla domanda, con spiegazione