

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/13
Paper 1 Pure Mather	matics 1 (P1)	Octob	oer/November 2019
			1 hour 45 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

(i)	Expand $(1 + y)^6$ in ascending powers of y as far as the term in y^2 .	[1
		••••••
	In the expansion of $(1 + (px - 2x^2))^6$ the coefficient of x^2 is 48. Find the value of the constant p .	e positiv [3
		••••••

expression	for $g^{-1}(x)$ and	1 state the do	main of g	•			
••••••		••••••	••••••	•••••	••••••	•••••••	•••••••••
•••••		•••••	•••••	•••••	•••••	•••••	
••••••	,	•••••	•••••	•••••	•••••	•••••	•••••••
		•••••	•••••	•••••	•••••	•••••	
•••••		•••••	•••••	•••••	•••••	•••••	•••••••
		•••••	•••••	•••••	•••••	•••••	
••••••		••••••	••••••	••••••	•••••	••••••	••••••••
•••••		•••••	•••••	•••••	•••••	•••••	
••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	•••••	•••••••••
					•••••		
•••••		•••••	•••••	•••••		•••••	
•••••		•••••	•••••	•••••	•••••	•••••	••••••
	•••••	•••••		•••••	•••••		

The equation of a curve is $y = x^3 + x^2 - 8x + 7$. The curve has no stationary points in the $a < x < b$. Find the least possible value of a and the greatest possible value of a .				
	•••••			
	••••••			
	••••••			
	••••••			
	•••••			
	•••••			
	••••••			
	••••••			
	•••••			
	•••••			

4

The diagram shows a semicircle ACB with centre O and radius r. Arc OC is part of a circle with centre A.

(i)	Express angle CAO in radians in terms of π .	[1]
(ii)	Find the area of the shaded region in terms of r , π and $\sqrt{3}$, simplifying your answer.	[4]

5

The dimensions of a cuboid are x cm, 2x cm and 4x cm, as shown in the diagram.

		2	2	
(•\	C1 41 4 41 C	C /1 41	- 1 · · · · · · · · · · · · · · · · ·	connected by the relation
(1)	Now that the surface	area A cm ² and the vo	onime v cm° are	connected by the relation
\ + /	Show that the surface	area bein and the vo	orunic v cim arc	connected by the relation

$S=7V^{\frac{2}{3}}.$	[3]

When the volume of the cuboid is 1000 cm ³ the surface area is increasing rate of increase of the volume at this instant.	g at 2 cm ² s ⁻¹ . Find the

••••••
•••••
•••••
•••••
 •••••
•••••
•••••
•••••
•••••
•••••

For each of two particular values of k , the line is a tangent to the curvangents meet on the x -axis.	[3]
	•••••

x	$=\cos^2\theta$.
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	

(ii)	Hence solve the equation $3\cos^4\theta + 4\sin^2\theta - 3 = 0$ for $0^\circ \le \theta \le 180^\circ$.	[5]
		•
		••••••
		••••••
		••••••
		••••••
		••••••
		••••••
		••••••

Find the set of values of x for which f is decreasing.	

••••••
••••••
•••••
•••••

(1)	Show that k satisfies the equation $7k^2 - 48k + 36 = 0$.	
		•••••
		•••••
		•••••
		•••••
(**)		
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond
(ii)	Find, showing all necessary working, the exact values of the common ratio c each of the possible values of k .	orrespond

One of these ratios gives a progression whi	ch is convergent. Find the sum to infinity. [2

10 Relative to an origin O, the position vectors of the points A, B and X are given by

$$\overrightarrow{OA} = \begin{pmatrix} -8 \\ -4 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 10 \\ 2 \\ 11 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OX} = \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}.$$

Find \overrightarrow{AX} and show that AXB is a straight line.	[

© UCLES 2019

The position vector of a point C is given by $\overrightarrow{OC} = \begin{pmatrix} 1 \\ -8 \\ 3 \end{pmatrix}$.

••••••	••••••		•••••	••••••	•••••	•••••••	••••
					•••••		 ••••
							 ••••
•••••	•••••						 ••••
•••••							
•••••••	••••••		•••••	••••••	•••••	•••••	••••
•••••	•••••		••••••	••••••	•••••	•••••	 ••••
•••••	•••••				•••••	•••••	 ••••
••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
Find the a	rea of triar	ngle <i>ABC</i> .					 ••••
Find the a	rea of triar	ngle ABC .					
Find the a	rea of triar	ngle <i>ABC</i> .					
Find the a	rea of triar	ngle <i>ABC</i> .					
Find the a	rea of triar	ngle ABC.					
Find the a	rea of triar	ngle ABC.					
							 ••••
							••••
							 ••••
							 ••••

11

The diagram shows part of the curve $y = (x - 1)^{-2} + 2$, and the lines x = 1 and x = 3. The point A on the curve has coordinates (2, 3). The normal to the curve at A crosses the line x = 1 at B.

(i)	Show that the normal AB has equation $y = \frac{1}{2}x + 2$.	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

Find, showing all necessary working, the volis rotated through 360° about the <i>x</i> -axis.	[8]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.