日本国特許庁 JAPAN PATENT OFFICE

27.10.2004

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 4月30日

REC'D 16 DEC 2004

WIPO

出 願 番 号 Application Number:

特願2004-135791

[ST. 10/C]:

[JP2004-135791]

出 願 人
Applicant(s):

葛西 宏

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月 3日

1) 11]


```
【書類名】
              特許願
              J19282B1
【整理番号】
【提出日】
              平成16年 4月30日
【あて先】
              特許庁長官 殿
【国際特許分類】
              GO1N 30/00
              A61B 5/00
【発明者】
              福岡県北九州市八幡西区光貞台2-25-5
  【住所又は居所】
  【氏名】
              葛西 宏
【特許出願人】
  【識別番号】
              502093232
  【氏名又は名称】
              葛西 宏
【代理人】
  【識別番号】
              100064908
  【弁理士】
  【氏名又は名称】
              志賀 正武
【選任した代理人】
  【識別番号】
              100108578
  【弁理士】
  【氏名又は名称】
              高橋 詔男
【選任した代理人】
  【識別番号】
              100089037
  【弁理士】
   【氏名又は名称】
              渡邊 隆
【選任した代理人】
  【識別番号】
              100101465
  【弁理士】
  【氏名又は名称】
              青山 正和
【選任した代理人】
  【識別番号】
              100094400
  【弁理士】
  【氏名又は名称】
              鈴木 三義
【選任した代理人】
  【識別番号】
              100107836
  【弁理士】
  【氏名又は名称】
              西 和哉
【選任した代理人】
  【識別番号】
              100108453
  【弁理士】
  【氏名又は名称】
              村山 靖彦
【先の出願に基づく優先権主張】
  【出願番号】
              特願2003-366220
  【出願日】
              平成15年10月27日
【手数料の表示】
  【予納台帳番号】
              008707
  【納付金額】
              16,000円
【提出物件の目録】
  【物件名】
              特許請求の範囲 1
```

【物件名】

【物件名】

明細書 1

図面 1

【物件名】

要約書 1

【請求項1】

試料中に含まれる、DNA又はRNA中のグアニンが損傷を受けた結果生じる酸化的損傷グアニンヌクレオシドを精製する工程と、前記試料中に含まれる、前記酸化的損傷グアニンヌクレオシドの濃度補正物質をUV検出器で測定する工程と、前記酸化的損傷グアニンヌクレオシドを検出器で測定する工程とを有し、前記酸化的損傷グアニンヌクレオシドと前記酸化的損傷グアニンヌクレオシドの濃度補正物質とを一時に分析することを特徴とする分析方法。

【請求項2】

前記酸化的損傷グアニンヌクレオシドが8-ヒドロキシデオキシグアノシン(8-OH-dG)であり、前記酸化的損傷グアニンヌクレオシドの濃度補正物質が7-メチルグアニン(7-MG)又はクレアチニン(Cre)である請求項1記載の分析方法。

【請求項3】

前記試料が尿であることを特徴とする請求項1又は2記載の分析方法。

【請求項4】

前記尿を紙片に滴下して乾燥させたものを再抽出することにより分析することを特徴とする請求項3記載の分析方法。

【請求項5】

請求項2から4のいずれか1項記載の分析方法に用いられる分析装置であって、

- 1) 試料中に含まれる8-OH-dGを特異的に吸着する陰イオン交換カラム(HPLC-
- 1) と、
 2) 8-ヒドロキシグアノシン(リボヌクレオシド)(8-OH-rGuo)の溶出位置を 感知し、7-MG又はCreを正確に測定するための光路の短いセルを具備したUV検出
- 器と、 3) 陰イオン交換カラム(HPLC-1)から得られた8-〇H-dGを含有する画分を更 に精製する逆相カラム(HPLC-2)と、
- 4) 逆相カラム(HPLC-2) から得られた精製8-OH-dGを測定する検出器とを備えたことを特徴とする分析装置。

【請求項6】

請求項 5 記載の分析装置に付随して用いられる機構であって、予め試料中に加えておいたマーカー(8-O H-r G u o)のピークシグナルをU V 検出器より受け、一定時間後の8-O H-d G 溶出時にバルブを開くシグナルを出力し、分取を開始し、更に一定時間後に分取終了シグナルを出力し、次いで、得られた 8-O H-d G 分画を第二の精製カラムへ注入するためのシグナルを出力し、カラムから溶出する被検出物質(8-O H-d G)を精製・回収する処理を行わせるための機構(制御プログラムを含む)。

【書類名】明細書

【発明の名称】酸化的損傷グアニンヌクレオシドとこれの濃度補正物質の同時分析方法及びこの分析方法に用いる分析装置

【技術分野】

[0001]

本発明は、酸化的損傷グアニンヌクレオシドと、この酸化的損傷グアニンヌクレオシドの濃度補正物質との同時分析方法、特に8-ヒドロキシデオキシグアノシン(以下、適宜「8-OH-dG」という。)と、7-メチルグアニン(以下、適宜「7-MG」という。)又はクレアチニン(以下適宜「Cre」という)との同時分析方法、及びこれを実施するための分析装置に関する。

【背景技術】

[0002]

近年、生体内での活性酸素の作用について多くの研究がなされている。通常、活性酸素は生体内に異物が侵入した際、防御システムとして働いている。しかしながら、食品添加物(発ガン性物質)、大気汚染、喫煙、ストレス等によって過剰に活性酸素が発生すると、それらはDNAの損傷を引き起こし、酸化的DNA損傷産物の一種である8-OH-dGを生成する。この8-OH-dGは突然変異を誘発し、発癌過程で重要な役割を演じていると考えられている。また、活性酸素は、発癌だけでなく様々な疾患や老化の原因として注目されている。

そのため、生体内における活性酸素量を知ることにより、個人個人の発癌リスク評価や、活性酸素関連の様々な疾患の予測・診断、老化度、あるいは一般健康の評価を行うことができる。

しかしながら、生体内における活性酸素は不安定であり、それらを直接検出するのは困難である。そのため、活性酸素の指標として活性酸素によって生成される 8-OH-dG を測定することが提案されている。 8-OH-dG の分析方法としては、(1) 8-OH-dG に対する抗体を結合させたアフィニティーカラムで精製した分画をHPLC-ECDで分析する方法、(2) 2本の逆相カラムの間にカーボンカラムを接続してカラムスイッチング法により、最終的に 8-OH-dG をHPLC-ECDにより検出する方法(非特許文献 1)、(3)サンプリングインジェクター(一定分画を分取し、攪拌後、一定量をカラムに注入する装置)を介してマルチファンクションカラム(逆相カラム、陽イオン交換カラムの機能を併せ持つゲル濾過カラム)と、逆相カラムを接続しECDにより検出する方法(非特許文献 2)等が報告されている。

【非特許文献 1】 Bogdanov, M., B., et. al., Free Rad. Biol. Med. 27, 647-666(1999)

【非特許文献 2】 Kasai, H., et. al., Jpn. J. Cancer Res. 92, 9-15 (2001)

【発明の開示】

【発明が解決しようとする課題】

[0003]

生体中の8-0H-dGの値は、多くの場合、時間により変化する。そこで、8-0H-dGを正確に定量する場合、24時間分の試料を用意するか、8-0H-dGに対する濃度補正物質を用いて8-0H-dGの濃度補正をすることが必要になる。

上述の方法においては、濃度補正物質を用いて濃度補正をすることにより 8-OH-dG を定量する場合、試料を最低 2 本の容器にとり、 1 本を 8-OH-dG 自体の分析に用い、もう 1 本を濃度補正物質(例えば、クレアチニン(Cre))の分析に用い、両物質の測定値から算出される値(例えば、(8-OH-dG/Cre))を酸化的 DNA 損傷の指標としていた。そのため、試料の採取・保存・分析・データの解析において煩雑な手続きが必要であった。

[0004]

本発明は、かかる状況に鑑みてなされたものであり、酸化的損傷グアニンヌクレオシドと、この酸化的損傷グアニンヌクレオシドの濃度補正物質とを効率よく分析することがで

きる方法、及びこの方法を実施するための分析装置を提供することを課題とする。 【課題を解決するための手段】

[0005]

このような事情に鑑みて、本発明者は鋭意検討の結果、8-0H-dGの濃度補正物質である7-メチルグアニン、クレアチニンを8-0H-dGと同時に分析する方法、及びこれに用いる装置により、上記課題を解決することができることを見出し、本発明を完成した

7-MGは、代謝率(metabolic rate, MR)と関係するRNA分解物であり、RNAの分解産物であるプソイドウリジンと一定の比率で尿中に排せつされることが知られており(Topp, H., et. al., Anal. Biochem., 161, 49–56 (1987))、また、クレアチニンの濃度と7-MGの濃度には強い相関があることも分かっている。したがって、7-MGによって8-OH-dGの値を補正した(8-OH-dG/7-MG)値は、クレアチニンによって8-OH-dGの値を補正した(8-OH-dG/Cre)値と同等の信頼度を持つ酸化的DNA損傷の指標となる。

[0006]

同様に、他のRNA分解物であるプソイドウリジン、N2, N2ージメチルグアノシン、N6ースレオニノカルボニルアデノシン等によっても補正は可能であろう。

[0007]

即ち、本発明の第1の発明は、試料中に含まれる、DNA又はRNA中のグアニンが損傷を受けた結果生じる酸化的損傷グアニンヌクレオシドを精製する工程と、前記試料中に含まれる、前記酸化的損傷グアニンヌクレオシドの濃度補正物質をUV検出器で測定する工程と、前記酸化的損傷グアニンヌクレオシドを検出器で測定する工程とを有し、前記酸化的損傷グアニンヌクレオシドの濃度補正物質とを一時に分析することを特徴とする分析方法である。

このような構成をとることにより、前記酸化的損傷グアニンヌクレオシドと、前記酸化的損傷グアニンヌクレオシドの濃度補正物質とを、同時に分析できるので、試料の採取・保存・分析・データの解析において労力・時間をほぼ半減させることが可能となる。

また、本発明は、多量の溶離液や洗浄液を必要とせず、有毒の廃液の発生も少ないので、環境面でも優れている。

本発明においては、試料中に含まれる酸化的損傷グアニンヌクレオシドを陰イオン交換 クロマトグラフィーによって精製する第1の精製工程を設けることが好ましい。

[0008]

本発明の第2の発明は、前記酸化的損傷グアニンヌクレオシドが8-ビドロキシデオキシグアノシン(8-OH-dG)であり、前記前記酸化的損傷グアニンヌクレオシドの濃度補正物質が7-メチルグアニン(7-MG)又はクレアチニン(Cre)である第1の発明に記載の分析方法である。

本発明においては、予め、試料に8-ヒドロキシグアノシン(リボヌクレオシド)(8-OH-rGuo)を8-OH-dGの内部標準マーカーとして加えて、8-OH-dGの精製を行うことが好ましい。このようにすることにより、8-OH-dGを正確に分取でき、その結果、8-OH-dGを高精度で、且つ再現性よく測定できる。

また、予め、試料に8-ヒドロキシグアノシン(リボヌクレオシド)(8-OH-rGuo)を加えて、該試料を陰イオン交換クロマトグラフィーによって精製する第1の精製工程で得られた8-OH-dGを含有する画分を逆相クロマトグラフィーによって更に精製する第2の精製工程とを有することが好ましい。このようにすることにより、8-OH-dGをより高精度で、且つ再現性よく測定できる。

また、前記精製 8-ビドロキシデオキシグアノシン(8-OH-dG)の測定は、陰イオン交換クロマトグラフィーにおいて、(1)リボヌクレオシド 8-OH-rGuoのピーク認識、(2)一定時間後の 8-OH-dG分取開始、(3)一定時間後の 8-OH-dG分取終了、(4)適宜、 8-OH-dG分画のミキシング、の順序で行い、ついで、逆相カラムへ注入して行うことが好ましい。

[0009]

本発明の第3の発明は、前記試料が尿であることを特徴とする第1の発明又は第2の発明に記載の分析方法である。

[0010]

本発明の第4の発明は、前記尿を紙片に滴下して乾燥させたものを再抽出することにより分析することを特徴とする第3の発明に記載の分析方法である。

このような構成をとることにより、どこにいても試料を採取することができ、郵送等により分析機関に大量の試料を効率よく集めることが可能になる。

[0011]

本発明の第5の発明は、第2の発明から第4の発明のいずれか1つに記載の分析方法に用いられる分析装置であって、1)試料中に含まれる8-OH-dGを特異的に吸着する陰イオン交換カラム(HPLC-1)と、2)8-EF ロキシグアノシン(リボヌクレオシド)(8-OH-rGuo)の溶出位置を感知し、7-MG 又はCre を測定する UV 検出器と、3)陰イオン交換カラム(HPLC-1)から得られたB-OH-dG を含有する画分を更に精製する逆相カラム(BFLC-1)と、4)逆相カラム(BFLC-1)から得られた精製 B-OH-dG を測定する検出器とを備えたことを特徴とする分析装置である。

本発明の分析装置は、大掛かりな機構を必要とせず、安価で経済性にも優れている。

[0012]

本発明の第6の発明は、第5の発明の分析装置に付随して用いられる機構であって、予め試料中に加えておいたマーカー(8-OH-rGuo)のピークシグナルをUV検出器より受け、一定時間後の8-OH-dG浴出時にバルブを開くシグナルを出力し、分取を開始し、更に一定時間後に分取終了シグナルを出力し、次いで、得られた8-OH-dG分画を第二の精製カラムへ注入するためのシグナルを出力し、カラムから溶出する被検出物質(8-OH-dG)を精製・回収する処理を行わせるための機構(制御プログラムを含む)である。

【発明の効果】

[0013]

本発明の分析方法を用いれば、DNA又はRNAの損傷の過程で生成される酸化的損傷 グアニンヌクレオシドを分析する方法において、DNA又はRNA中のグアニンが損傷を 受けた結果生じる酸化的損傷グアニンヌクレオシドと、この酸化的損傷グアニンヌクレオ シドの濃度補正物質とを、同時に分析することができる。そのため、試料の採取・保存・ 分析・データの解析において労力・時間をほぼ半減させることができ、より効率的な酸化 的損傷グアニンヌクレオシドの分析が可能となる。

また、本発明の分析方法は、高精度で再現性が良く、分析時間も短く、連続運転を行うことにより、大量処理が可能である。

本発明の分析装置は、上記の効果を奏する分析方法を提供することができ、また、安価で経済性に優れている。

【発明を実施するための最良の形態】

[0014]

(酸化的損傷ヌクレオシド)

8-OH-dGをはじめ酸化的損傷ヌクレオシドとは、生体内の活性酸素(酸素ラジカル)等によってDNAやRNAが損傷を受けた結果生じるものであり、活性酸素の指標として用いられる。8-OH-dG以外の酸化的損傷ヌクレオシドとしては、2-Eドロキシデオキシアデノシン(2-OH-dA)、5-Eドロキシデオキシシチジン(5-OH-dC)、5-ホルミルデオキシウリジン(<math>5-CHO-dU)、8-OH-rGuo等が挙げられる。これら酸化的損傷ヌクレオシドは、不要物として尿により生体外へ排出される。また、これらのうち8-OH-dG、8-OH-rGuo等の酸化的損傷グアニンヌクレオシドは負の電荷を帯びているため、後段で説明する陰イオン交換カラムにより容易に精製、回収することができる。これらの中でも活性酸素の指標として、特に8-OH-dGを用いることが好ましい。なお、本明細書における酸化的損傷グアニンヌクレオシドとは、DNA又は

[0015]

(試料)

本発明の酸化的損傷グアニンヌクレオシド(8-OH-d Gを含む)と、この酸化的損傷 グアニンヌクレオシドの濃度補正物質とを、一時に分析する分析方法に使用される試料と しては、尿、血清、髄液、唾液、細胞培養後の培地等、全ての生体試料を挙げることがで きる。これらの中でも、尿は採取し易く、また尿中で酸化的損傷グアニンヌクレオシドは 安定であるため、特に尿が好ましい。

[0016]

本発明の分析方法、及びこれを実施するための分析装置について説明する。本発明の分析方法は、酸化的損傷グアニンヌクレオシド(例えば、8-OH-dG)を精製する工程と、この酸化的損傷グアニンヌクレオシドの濃度補正物質(例えば、7-MG又はCre)を測定する工程と、この酸化的損傷グアニンヌクレオシドを測定する工程から構成される。また、本発明の分析装置は、上記の精製及び測定を行うための部材からなる。

以下、酸化的損傷グアニンヌクレオシドとして、8-OH-dGを、この酸化的損傷グアニンヌクレオシドの濃度補正物質として、7-MG及びCreを例にとって説明する。

[0017]

(分析装置)

本発明の実施形態に係る 8-OH-dGと、 7-MG又は Cre とを分析するための装置は、 1) 8-OH-dG を特異的に吸着する陰イオン交換カラム(HPLC-1)と、 2) 8-OH-dG の溶出位置の指標となる 8-OH-rGuo を感知し、 7-MG 又は Cre を測定する UV 検出器と、 3) 陰イオン交換カラム(HPLC-1) から得られた 8-OH-dG を含有する画分を更に精製する逆相カラム(HPLC-2)と、 4) 逆相カラム(HPLC-2)から得られた精製 8-OH-dG を測定する検出器を具備する。

[0018]

本発明の分析装置の一例の模式図を図1に示す。図中符号11は陰イオン交換カラム(HPLC-1)であり、UV検出器14、カラムスイッチングバルブ16を介して、逆相カラム(HPLC-2)12と接続している。また、陰イオン交換カラム(HPLC-1)11の上流には、試料を注入するオートサンプラー17が接続されたカラムスイッチングバルブ15が接続している。

また、カラムに吸着した分子を溶出するための溶離液(陰イオン交換カラム(HPLC-1)11に用いられる溶離液をA液、逆相カラム(HPLC-2)12に用いられる溶離液をB液とする)、上記カラムスイッチングバルブ15に接続されたガードカラム(陰イオン交換カラム(HPLC-1)11と同一の陰イオン交換樹脂を充填)を洗浄するための洗浄液(C液)を各カラムに送り込むためのポンプ21、22、23が設けられ、ポンプ21はオートサンプラー17、ポンプ22はカラムスイッチングバルブ16、ポンプ23はカラムスイッチングバルプ15に各々接続されている。

なお、この例において、オートサンプラー17の代わりに、8-OH-rGuoのピーク感知により、カラムスイッチングバルブ16を自動的に作動させる機能を持つサンプリングインジェクター(「231XL」、ギルソン製)等を用いることができる。

[0019]

なお、この方法を実施するために、231 XLに新たなプログラムを搭載して測定を行った。このプログラムは、 (1) リボヌクレオシド8-OH-r G u o のピーク認識、 (2) 一定時間後の8-OH-d G分取開始、 (3) 一定時間後の8-OH-d G分取解分、 (4) HPLC-2への注入を行うものである(図3を参照)。より詳しくは、以下のフローにより機能を実現している。

- (1) 231 XLにより試料をHPLC-1に注入する。
- (2) 設定時間 (T1) だけシステムを待機させる。
- (3) 231 XLがUV検出器シグナルのモニターを開始する。

- (4) 設定UVレベルを超える (ピーク感知) まで、システムを待機させる。
- (5) ピーク感知後、設定時間 (T2) だけシステムを待機させた後、バルブへ接点信号を 出力し、ループ内に分取を開始する。
- (6) 設定時間 (T3) 後、バルブへ接点信号を出力し、分取を終了させると同時にループ内の分画をHPLC-2に注入する。

後段でも説明するが、サンプリングインジェクター(「231XL」、ギルソン製)によれば、8-OH-rGuoとの相対的位置により自動的に8-OH-dGの分取範囲(時間)が決定されるため、予め、8-OH-dGの分取範囲(時間)を設定しておく必要がない

[0020]

上記陰イオン交換カラム(HPLC-1) 11は、試料中に含まれる 8-OH-dGを特異的に吸着するので回収率が非常に高く、且つほとんどの夾雑物を取り除くことができるため、不純物の少ない画分を得ることができる。また、上述したように、陰イオン交換カラム(HPLC-1) 11によれば、負の電荷を帯びている 8-OH-rGu o 等の酸化的損傷グアニンヌクレオシドにおいても、容易に精製、回収することができる。陰イオン交換カラム(HPLC-1) 11としては、陰イオン交換樹脂を充填剤としたものであれば、特に制限はない。具体的な充填剤としては、スチレンジビニルベンゼン系ポリマーに4級アンモニウム基が結合したもの、ポリヒドロキシメタクリレート系ポリマーに4級アンモニウム基が結合したもの等が挙げられる。また、市販品の充填剤としては、アミネックスHPX-72S(BioRad製)、Shodex DioRoll (昭和電工(株)製)、<math>MCIGCL CAOSF(三菱化成(株)製、NミルトンRCX-10)等を挙げることができる。

また、陰イオン交換樹脂の粒子径としては、現在 7μ mのものにより良好な結果が得られているが、更に小粒子径($3 \sim 5 \mu$ m)の陰イオン交換樹脂をカラムに用いることにより、より分離能が高くなり、その結果、カラム長を短くできて、分析時間を短縮することが可能となる。

[0021]

上記陰イオン交換樹脂を充填するカラムの内径は、特に制限はないが、約1mm~1.5mm程度であることが好ましい。また、カラムの内径が2.0~4.6mmの場合は、図2に示すように、カラムスイッチングバルブ16に接続したサンプリングインジェクター27(「233XL」、ギルソン製等)を用いて8-OH-dGを含有する画分を自動的に逆相カラム(HPLC-2)12に注入することが好ましい。なお、この方法を実施するために、233XLに新たなプログラムを搭載して測定を行った。このプログラムは、(1)リボヌクレオシド8-OH-rGuoのピーク認識、(2)一定時間後の8-OH-dG分取開始、(3)一定時間後の8-OH-dG分取終了、(4)8-OH-dG分面のミキシング、(5)HPLC-2への注入を行うものであるが、より詳しくは以下のフローにより機能を実現している。

- (1) 233 XLにより試料をHPLC-1に注入する。
- (2) 設定時間 (T1)だけシステムを待機させる。
- (3) 233 XLがUV検出器シグナルのモニターを開始する。
- (4) 設定UVレベルを超える (ピーク感知) まで、システムを待機させる。
- (5) ピーク感知後、設定時間 (T2) だけシステムを待機させた後、233 XLバイアルチューブ内に分取を開始する。
- (6) 設定時間 (T3) 後、分取を終了させる。
- (7) 得られた分画を吸引、吐出により撹拌する。
- (8) 分画の一部をHPLC-2に注入する。

上記陰イオン交換樹脂を充填するカラムの長さは、特に制限はないが、陰イオン交換樹脂の粒子径、交換容量等によって、カラムを短くすることが可能であり、分析時間を短縮することができる。

[0022]

上記UV検出器14は、陰イオン交換カラム(HPLC-1)11から溶出される画分

をモニターし、試料中に含まれる8-〇H-rGuoの溶出位置を感知する。このように、 8-OH-rGuoの溶出位置をUV検出器14でモニターすることによって、正確な8-OH-dGの溶出時間が把握でき、それに合わせてカラムスイッチングバルブ16を作動 させることにより、確実に8-OH-dGを含有する画分を分取することができる。

これと同時に、UV検出器14は、検出器のUV波長を調整することにより、試料中の 7-MG又はCreを測定することができる。

[0023]

上記逆相カラム(HPLC-2)12は、陰イオン交換カラム(HPLC-1)11から 得られた8-OH-dGを含有する画分を更に精製するものであり、逆相カラムの性質を有 するものであれば、特に制限はない。市販品としては、YMC-Pack ODS-AM (S-5μm) (YMC社)、Shiseido Capcell Pac C18 MG (S-5 μ m)((株)資生堂製)等が挙げ られる。

[0024]

上記検出器13は、逆相カラム(HPLC-2)から得られた精製8-〇H-dGを測定 するものであり、逆相カラム(HPLC-2)12の下流に設けられている。上記検出器 13としては、電気化学検出器(ECD)、液体クロマトグラフィー質量分析装置(LC MS)等を用いることができる。また、上記電気化学検出器(ECD)に関しては、2種 類の設定電圧を選ぶことにより、8-OH-dGのピークは固有の比率で表れるため(図4)、そのピークが8-0H-dGであることを確認できる。

[0025]

また、本発明の実施形態に係る8-OH-dGと7-MG又はCreを同時に分析するた めの分析装置は、連続運転を行うことにより大量の試料を処理することが可能である。そ の場合、ガードカラム35の洗い洗浄液(C液)は、0.5M硫酸アンモニウム:アセト ニトリル=7:3程度の組成であることが好ましい。

[0026]

以上説明したように、本発明の実施形態に係る8-〇H-dGと7-MG又はCreを同 時に分析するための分析装置によれば、陰イオン交換カラム(HPLC-1)11が試料 中に含まれる8-OH-dGを特異的に吸着し、試料中に含まれる夾雑物の大半を一度に取 り除くことができる。

また、UV検出器14によって、8-OH-rGuoの溶出位置に基づき、確実に精製8 -OH-dGを分取でき、回収率、再現性に優れているといえる。このUV検出器14は、 検出器のUV波長を調整することにより、同時に8-OH-dGの濃度補正物質である7-MG又はCreを測定することができる。このため、本実施形態の分析装置は、8-OHdGと、7-MG又はCreとを同時に分析することが可能となる。

また、連続運転を行うことにより大量の試料を処理することができる。また、上述した 分析装置は比較的安価なため経済性にも優れている。

[0027]

(分析方法)

以下、図1に示す分析装置を用いて8-OH-dGと、7-MG又はCreとの分析方法 について説明する。(分取範囲(時間)の決定) 8-0 H-d G と 8-0 H-r G u o と尿と の混合物を図1示す分析装置に注入し、予め、8-OH-dGの分取範囲を決定しておく。 分取範囲を予め決定しておくことにより、8-OH-dGの正確な溶出時間が把握でき、そ れに合わせてカラムスイッチングバルブ16を作動させるように設定することで、確実に 8-OH-d Gを含有する画分を分取することができる。なお、上述したように、図1にお いて、オートサンプラー17の代わりに、サンプリングインジェクター(231XL)を用 いた場合は、ピーク感知により8-OH-rGuoとの相対的位置により自動的に8-OHd G の分取範囲(時間)が決定されるため、分取範囲(時間)の設定をしておく必要がな b,

[0028]

(精製方法)

本発明の実施形態に係る8-OH-d Gの精製方法は、試料を陰イオン交換クロマトグラフィーによって精製する第1の精製工程を有することを特徴とする。また、上述したように、8-OH-d Gのみならず、8-OH-r Guo等の負の電荷を有する酸化的損傷グアニンヌクレオシドにおいても、陰イオン交換クロマトグラフィーによって容易に精製、回収することができる。

第1の精製工程における溶出条件としては、カラム温度は60~65℃、内径1mmのカラムの場合、流速が17~25μ 1 / minとすることが好ましい。

[0029]

また、本発明の8-OH-dGの精製方法は、予め、試料に8-OH-rGu o を8-OH-dG の内部標準マーカーとして加えて、精製を行うことが好ましい。8-OH-rGu o を試料中に予め添加しておくと、8-OH-rGu o が溶出された後、一定時間後に8-OH-dG が溶出されるため、8-OH-rGu o の溶出位置をUV 検出器 14 でモニターすることによって、正確な8-OH-dG の溶出位置(時間)が把握でき、確実に8-OH-dG を含有する画分を分取することができる。

[0030]

また、本発明の8-OH-dGの精製方法は、予め、試料に8-OH-rGuoを8-OH-dGの内部標準マーカーとして加えて、陰イオン交換クロマトグラフィーによる第1の精製工程を行い、第1の精製工程で得られた8-OH-dGを含有する画分を更に精製すること(第2の精製工程)が好ましい。

上記第2の精製工程としては、逆相クロマトグラフィーにより精製することが好ましい。逆相クロマトグラフィーに用いられる溶出液(B液)、温度条件等は、使用する逆相カラム(HPLC-2)12によって異なるため、それらは適宜決定される。例えば、逆相カラムとして、YMC-Pack ODS-AM ($S-5~\mu$ m) (YMC社) を用いてヒト尿を分析する場合は、カラム温度が約40 C、流速が0.9 ml/min程度とすることが好ましい。

[0031]

(測定方法)

本発明の実施形態に係る8-OH-dGの測定方法は、上述した精製方法によって得られた精製8-OH-dGの量を測定する測定工程を有し、上述した電気化学検出器(ECD)、液体クロマトグラフィー質量分析装置(LCMS)等を用いて精製8-OH-dG量を測定できる。なお、上記測定方法は、8-OH-dGのみならず、8-OH-rGuo等の精製酸化的損傷グアニンヌクレオシドの測定にも適用できる。

また、連続運転を行う場合、図1に示すようなオートサンプラー17を具備した装置においても、図2に示すようなサンプリングインジェクター27を具備した装置においても、定期的に8-0H-dGの溶出位置をチェックすることが好ましい。

[0032]

本発明の実施形態に係る7-MG又はCreの測定は、注入した試料中の7-MG又はCreをUV検出器14によって測定する。

試料がマウスやラットの尿である場合は、7-MG測定のためのUV検出器の波長は254nmとしてよい。試料がヒトの尿である場合は、夾雑物と7-MGを区別するため、UV検出器の波長は254nmよりも長波長として、好ましくは、 $300\sim310nm$ とする。Cre測定のためには、波長を235-260nm、好ましくは245nmとし、光路の短い(例えば0.2mm)セルを用いる。

[0033]

本発明の実施形態に係る分析方法においては、試料として尿を用いる場合、次の様な利点がある。

即ち、尿をろ紙片などに滴下し、尿を乾燥させる。ついで、この乾燥したろ紙片から尿 を再抽出し、尿を分析する。

このようにすれば、尿はいずれの場所においても採取でき、乾燥したろ紙片を分析機関 に郵送などの方法で送ることにより、大量の試料を効率よく分析することができる。

[0034]

以上説明したように、本発明の実施形態に係る分析方法によれば、UV検出器 140UV を調整することにより、試料中の7-MG 又はCre を測定することができ、これにより、8-OH-dG と、この濃度補正物質である7-MG 又はCre とを同時に分析することができる。

本発明の分析方法では、8-OH-dGを回収率良く得られる。更に、第1の精製工程における陰イオン交換カラム(HPLC-1)の流速が微量であるため、溶離液(A液、B液)、洗浄液(C液)の消費が極めて少なく、精製後の廃液量も少量で済むため、環境保全の面からも好ましい。本発明の8-OH-dGの精製方法によれば、確実に精製8-OH-dGを分取でき、8-OH-dGのピーク付近において夾雑物がほとんどない画分を得ることができる。また、連続運転を行っても、8-OH-rGuoピーク感知により、サンプル毎の分取範囲のズレに対応して、確実に8-OH-dGを含有する画分を分取することができる。また、本発明の測定方法は、上記精製方法によって得られた精製8-OH-dG又は8-OH-rGuo等の精製酸化的損傷グアニンヌクレオシドを測定するので、非常に精度が高く、再現性を有する。また、連続運転を行うことにより大量処理が可能である。

[0035]

なお、本発明の分析方法では、7-MGを定量的に測定することができる。7-MGは、タバコ煙中の発癌物質によりDNA中に生じるとされ、本分析方法は発癌リスク評価の方法としても応用できる可能性がある。本発明の分析方法においては、7-MGを濃度補正に用いる場合、正確には喫煙による7-MGの増加分を差し引くことが好ましい。

[0036]

なお、本発明の技術範囲は、上記実施形態に限定されるものではなく、本発明の趣旨を 逸脱しない範囲において種々の変更を加えることが可能である。例えば、溶離液(A液、 B液)、洗浄液(C液)の組成等は、使用するカラム(充填剤)により適宜変更可能であ る。

本発明の酸化的損傷グアニンヌクレオシドの測定方法は、例えば、個人個人の発癌リスクの評価、活性酸素関連の様々な疾患(糖尿病等)の予測・診断、老化度、あるいは一般的健康の評価に用いることができる。

上記測定方法により得られた結果の評価方法として、例えば 8-OH-dG の場合、 8-OH-dG 保準溶液を随時、尿試料の他に分析装置に注入し、そのピーク面積との比較により算出された試料中の 8-OH-dG 農度を、UV 検出器によって同時に測定された 7-MG 又は Cre の濃度で割った値として算出する。

【実施例】

[0037]

以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。

(尿試料の調製)

ヒトの尿を1m1ずつ2本のエッペンドルフチューブに取り、-20で凍結した。凍結した尿を解凍して均一な液とした後、その $100\mu1$ を取り、微酸性溶液(組成;0.6mM硫酸を96m1、アセトニトリル4m1)で2倍に希釈し、8-OH-dG及び8-OH-rGuoを各 $12\mug$ 加えた。更に2M酢酸ナトリウム(pH4.5)を $6.7\mu1$ 加え、pHe7以下にした。これをよく攪拌し、5000回転、50間遠心分離を行い、その上清を尿試料とした。なお、遠心した尿を直接 $231\times$ Lにセットし、希釈、ミクシング、注入を自動化することも可能である。

[0038]

(8-OH-dGの精製・分画と7-MG又はCreの測定)

この尿試料 20μ l を陰イオン交換カラム(MCI GEL CA08F、粒径 7μ m 、 sulfate型)内径 1. 5mm、ガードカラムの長さ 4cm、本カラムの長さ 12cm)によって精製した。カラムの温度は 65 度とし、流速は 50μ l /分とし、溶出液は 0.3mMの硫酸(2%アセトニトリルを含む)を用いた。

この分離により、UV検出器(「UV/VIS-155」、ギルソン製)(吸光波長3

[0039]

図3に示すように、7-MGとCreのピークが検出され、本実施例により、7-MGとCreが測定できることが分かった。また、8-OH-dGは、8-OH-rGuoの溶出から一定の時間差を置いて溶出された。そのため、8-OH-rGuoの溶出をモニターすることにより、正確な8-OH-dGの溶出位置を把握でき、確実に8-OH-dGを有する画分を得ることが可能であることが分かった。

[0040]

(8-0H-dGの精製と測定)

上記の、陰イオン交換クロマトグラフィーにより得た8-OH-dGを含有する画分を自動的に逆相クロマトグラフィーに注入した。なお、逆相カラムとして、Shiseido Capcel 1 Pak C18 MG (S-5 μ m) (250×4.6 mm)を用い、10 mMリン酸緩衝液(pH6.7;これは0.1 Mリン酸緩衝液(pH6.7)を希釈して調製したものであり、pHは多少異なる)、5%MeOH溶離液(B液)を用い、カラム温度は40℃、流速1 ml/minとした。その分離パターンを図4に示す。なお、この分離パターンは、電気化学検出器(「ESA Coulochem II」、ESA社)(電圧:ガードセル350 mV;チャンネル1、170 mV;チャンネル2、300 mV)を用いて検出した。

[0041]

図 4 に示すように、8-OH-dGのピークが検出され、本実施例により、8-OH-dGが測定できることが分かった。

上記図3により得られた7-MG又はCreのピークの面積と、図4より得られた8-OH-dGのピークの面積から、(8-OH-dG/7-MG) 又は(8-OH-dG/Cre) の値を算出し、これをもって、酸化的DNA損傷の指標とすることができる。

【産業上の利用可能性】

[0042]

本発明の分析方法は、尿等の生体物質の分析業界において用いることができる。本発明の分析装置は、分析機器の業界において用いることができる。

【図面の簡単な説明】

[0043]

【図1】8-OH-dGE7-MG又はCreとを一時に分析するための装置の一例を示す模式図である。

【図2】8-OH-dGE7-MG又はCreとを一時に分析するための装置のもう一つの例を示す模式図である。

【図3】マーカーである8-OH-rGuoのピークに基づく8-OH-dGの分取と7-MG又はCreの測定の例を示す図である(HPLC-1)。

【図4】本発明の実施に係る8-OH-dGの測定の例を示す図である(HPLC-2)。

【符号の説明】

[0044]

11.・陰イオン交換カラム(HPLC-1)、12・・逆相カラム(HPLC-2)、13・・電気化学検出器、14・・UV検出器、15・・スイッチングバルブ、16・・スイッチングバルブ、17・・オートサンプラー、27・・サンプリングインジェクター

【書類名】図面 【図1】

【図2】

4/E

【要約】

【課題】 酸化的損傷グアニンヌクレオシドと、この酸化的損傷グアニンヌクレオシドの 濃度補正物質とを効率よく分析することができる方法、及びこの方法を実施するための分 析装置を提供する。

【解決手段】 試料中に含まれる、DNA又はRNA中のグアニンが損傷を受けた結果生じる酸化的損傷グアニンヌクレオシドを精製する工程と、前記試料中に含まれる、前記酸化的損傷グアニンヌクレオシドの濃度補正物質をUV検出器で測定する工程と、前記酸化的損傷グアニンヌクレオシドを検出器で測定する工程とを有し、前記酸化的損傷グアニンヌクレオシドと前記酸化的損傷グアニンヌクレオシドの濃度補正物質とを一時に分析することを特徴とする分析方法。

【選択図】 なし

認定 · 付加情報

特許出願の番号 特願2004-135791

受付番号 50400745953

書類名 特許願

担当官 小松 清 1905

作成日 平成16年 7月23日

<認定情報・付加情報>

【特許出願人】

【識別番号】 502093232

【住所又は居所】 福岡県北九州市八幡西区光貞台2-25-5

【氏名又は名称】 葛西 宏

【代理人】 申請人

【識別番号】 100064908

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 志賀 正武

【選任した代理人】

【識別番号】 100108578

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 高橋 詔男

【選任した代理人】

【識別番号】 100089037

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 渡邊 隆

【選任した代理人】

【識別番号】 100101465

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 青山 正和

【選任した代理人】

【識別番号】 100094400

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 鈴木 三義

【選任した代理人】

【識別番号】 100107836

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 西 和哉

【選任した代理人】

【識別番号】 100108453

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 村山 靖彦

特願2004-135791

出願人履歴情報

識別番号

[502093232]

1. 変更年月日

2002年 3月14日

[変更理由]

新規登録

发更建田」 住 所

福岡県北九州市八幡西区光貞台2-25-5

氏 名 葛西 宏