pt 100 150 200 250 300 350

ENERGY REGRESSION WITH DEEP LEARNING IN PA.O. ICLE COLLIDER PHYSICS

Simon Schnake 17. Juni 2019

Universität Hamburg

Flow of Content TODO: Ablaufplan

Calorimetry

pt ___

00 ------ 150

200

250

300

- leading processes in shower dev 100 ment
 - bremsstrahlung
 - pair production
- measure the energy of the particle shower (destructive)
- resolution of a calorimeter

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \otimes b \otimes \frac{c}{E}$$

Simulation Setup

- · Simulation with Geant4
- \cdot e^- from 0. to 10 GeV
- · 300,000 events
- 8x8x17 (1088) scint cells
- measure charged tracks in each scintillator cell

- 200

layer	scint	absorber
layer 0	9mm	40 mm steel
layer 1 - 8	3.7mm	50.5 mm brass
layer 9 - 14	3.7mm	56.5 mm brass
layer 15	3.7 mm	75 mm steel
layer 16	9mm	
	' '	

Resulting Data

Deep Learning

pt 100 150 200 250 300 350 output

100 ss input X to the network

- Calculate output Ŷ and difference to true value Y (loss function)
 - nimize loss function:
 - Calculate gradient of the loss
 - Use gradient to update weights W,b

Backpropagation

$$a^{[0]} := X$$
 $a^{[l]} := \sigma^{[l]}(W^{[l]}a^{[l-1]} + b^{[l]})$
 $\hat{Y}(X) := a^{[L]}$

Example Loss:

$$\mathcal{L}(\hat{Y}, Y) = (\hat{Y} - Y)^2$$

Deep Learning Model

Layer	Туре	Activation	Output Shape	# Parameter
0 pt	inpu 100 150	200	(8, 8, 250, 1)	300 350
1	Conv3D(32, (3,3,3))	ReLU	(8, 8, 17, 32)	896
2	Conv3D(10, (3,3,3))	ReLU	(6, 6, 15, 10)	8650
3	Conv3D(5, (5, 5, 5))	ReLU	(2, 2, 11, 5)	6255
4	Flatten()		220	
5	Dense(128)	ReLU	128	28288
6-7	Dense(128)	ReLU	128	16512
8 150	Dense(10)	ReLU	10	1290
10	Dense(1)	Linear	1	11

- Loss = mean squared error
- Uptimizer = RMSprop
- Data Augmentation with symmetry transformation (flipping, rotating and shifting)

First Results

First Results

First Results

Adversarial Training

G. Louppe, "Learning to Pivot with Adversarial Networks", 1611.01046

Procedure:

- · Pretrained Classifier
- 200 in Adversarial with $\mathcal{L}_r(heta_f, heta_r)$
- Train Classifier with $E_{\lambda}(\theta_f,\theta_r)=\mathcal{L}_f(\theta_f)-\lambda\mathcal{L}_r(\theta_f,\theta_r)$
- repeat last two steps until convergence

 \Rightarrow no stable results

25 U

Maximum Likelihood Loss

By using the mean squared error as a loss function we imply that our values are gaussian distributed with constand σ

Maximum Likelihood Loss

$$\max \log \text{likelihood} = -\min \sum \ln \left(\frac{\text{Norm}(y_{\text{true}}|y_{\text{pred}}, \sigma)}{\int_a^b \text{Norm}(y_{\text{true}}|y_{\text{pred}}, \sigma)} \right)$$

$$= \min \sum \frac{(y_{\text{true}} - y_{\text{pred}})^2}{\sigma^2} + \ln \left(\frac{\pi \sigma^2}{2} \left(\text{erf}(\frac{y_{\text{pred}} - a}{\sqrt{2}\sigma}) - \text{erf}(\frac{y_{\text{pred}} - b}{\sqrt{2}\sigma}) \right)^2 \right)$$
mean squared weighted error

boundary correction term

boundary correction term

Maximum Likelihood Loss

errain network with loss from last slide and $\sigma = 0.31 \sqrt{y_{\text{true}}}$

- · Compensation for shift and boundary kink
- \cdot Network performs \approx 10% better than the linear fit

Jet Physics TODO: what is a jet

Daten vorstellen

Binned Loss

Training Setup

$$\mathcal{L}_{J} = \text{binned} \underbrace{\frac{\left(y_{\text{true}} - y_{\text{pred}}\right)^{2}}{\sigma^{2}}}_{\text{mean squared weighted error}} + \ln\left(\frac{\pi\sigma^{2}}{2}\left(\text{erf}(\frac{y_{\text{pred}} - a}{\sqrt{2}\sigma}) - \text{erf}(\frac{y_{\text{pred}} - b}{\sqrt{2}\sigma})\right)^{2}\right)$$

Predict σ

Summary and Outlook

pt 100 150 200 250 300 350

Summary:

- Simulation of a calorimeter
- Adversarial Training
- Develop a customized loss function

Outlook:

- Simulation of pions and other particles
- $_{2\hat{00}}$ mpare different architectures and hyperparameter tuning
- Energy calibration for jets

Summary and Outlook

- Simulation of a calorimeter
 100 esentation of two problems
 Adversarial Training
 Develop a customized loss function

Outlook:

- · Simulation of pions and other ozrticles
- mpare different architectures and typerparameter tuning Energy calibration for jets
- · Energy calibration for jets