Solution 2: Model Parallelism

Computational Graph (Neural Networks) → Stages

Computational Graph

Devices (e.g., GPUs)

Device 1 Device 2 Device 3 Device 4

Computational Graph (Neural Networks) → Stages

Execution & Data Movement

Note: The time spent on data transfer is typically **small**, since we only communicates stage outputs at stage boundaries between two stages.

Timeline: Visualization of Inter-Operator Parallelism

- Gray area () indicates devices being idle (a.k.a. Pipeline bubbles).
- Only 1 device activated at a time.
- Pipeline bubble percentage = bubble_area / total_area
 = (D 1) / D, assuming D devices.

Training: Forward & Backward Dependency

Device Placement

Idea: Slice the branches of a neural network into multiple stages so they can be calculated concurrently.

Device Placement: Limitations

Only works for specific NNs with branches:

Device Utilization is still low:

Note: device placement needs to be combined with the other pipeline schedules discussed later to further improve device utilization.

Synchronous Pipeline Parallel Schedule

Idea: Modify pipeline schedule to improve efficiency, but keep the computation and convergence semantics exactly the same as if training with a single device.

GPipe

Idea: Partition the input batch into multiple "*micro-batches*". Pipeline the micro-batches. Accumulate the gradients of the micro-batches:

$$\nabla L_{\theta}(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla L_{\theta}(x_i)$$

Example: Slice each input batch into 6 micro-batches:

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." NeurIPS 2019.

GPipe: Experimental Results

Table: Normalized training throughput using GPipe with different number of devices (stages) and different number of micro-batches M on TPUs.

	#TPUs = 2	#TPUs = 4	#TPUs = 8
#Micro-batches = 1	1	1.07	1.3
#Micro-batches = 4	1.7	3.2	4.8
#Micro-batches = 32	1.8	3.4	6.3

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." NeurIPS 2019.

GPipe Schedule:

Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." PPoPP 2021.

1F1B Memory Usage

Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." PPoPP 2021.

Interleaved 1F1B

Idea: Slice the neural network into more fine-grained stages and assign multiple stages to reduce pipeline bubble.

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021.

Interleaved 1F1B

Pro:

Higher pipeline efficiency with fewer pipeline bubbles.

Con:

More communication overhead between stages.

Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce pipeline bubbles.

Li, Shigang, and Torsten Hoefler. "Chimera: efficiently training large-scale neural networks with bidirectional pipelines." SC 21.