

(Evaluation and Choosing Model - Evaluating Model)

ex) housing price prediction

> Model fits the training data well but will fail to generalize to now examples not in the training set.

ः नगर जानमञ्जू प्रभागामु example र प्रकारा थेट अस् म्हणांभुणा, अस् test मा प्रकारा क्षेत्र छन

* Split training set into two subsets

	Size	price	(2(1) y(1)) _ M+min :	
	2104	400	- (2(2))	= number of
170%	1606	330 +	aining set	training examples
	2400	369	$(2^{(M+noin)}, y^{(M+noin)})$	
	:		10	
30%	14211	199		
	1380	243	$\int \left(a\left(0\right) \left(a\left(0\right) \right) \right)$	
	1494	245	(2test, dtest) 7 M test = 1	number of
				test examples
			(2 (Mtest) (Mtest) (2 test, 4 test)	

* Training / Test procedure for linear regression (with squarmed error cost)

Ofth parameters by minimizing cost function J(W,b)

$$J(\vec{w},b) = \min_{\vec{w},b} \left[\frac{1}{2m_{+n}} \sum_{i=1}^{m_{+n}} (f_{i,b}(\vec{z}^{(0)}) - y^{(0)})^{2} + \frac{\lambda}{2m_{+n}} \sum_{i=1}^{n} W_{i}^{2} \right]$$

2) Compute test error

$$J_{\text{test}}(\vec{w},b) = \frac{1}{2m_{\text{test}}} \left[\sum_{i=1}^{m_{\text{test}}} (f_{i,b}(\vec{z}_{\text{test}}^{(T)}) - y_{\text{test}}^{(T)})^{2} \right]$$

3 Compute train error

$$J_{toin}(\vec{x},b) = \frac{1}{2m + toin} \left[\sum_{i=1}^{m + toin} (f_{i},b) \left(\frac{2(r)}{2 + toin} \right) - \frac{y(r)}{f + toin} \right]$$

Model predicts great on training set,
His not good at generalizing
to new example that were not
in the training set