Кафедра молекулярных процессов и экстремальных состояний вещества

Математические основы методов анализа результатов физического эксперимента

1. Введение. Цифровые технологии и общие принципы анализа сигналов и изображений в естественных науках.

Коротеева Екатерина Юрьевна, ст.преп.

Цель любого физического эксперимента – получение новой **информации** (сведений, знаний) об изучаемом объекте, процессе или явлении.

Существует источник информации, способный изменять во времени или пространстве свое состояние.

Информация – нематериальная категория, но ее можно *обрабатывать* (преобразовывать), *хранить* и *перемещать* (передавать).

Информация не существует без обмена ей.

В процессе приема-передачи информация может изменяться:

- помехи и шум (случайные изменения)
- обработка (детерминированные изменения)

Информация не существует без обмена ей.

Связь – процесс перемещения информации. Это *направленный* процесс: от источника к приемнику.

Сообщение – сведение о состоянии источника информации, выраженное в определенной форме и предназначенное для передачи. Тоже *нематериальная* сущность.

Сигнал — материальное воплощение сообщения для использования при передаче, переработке и хранении информации (Советская энциклопедия)

Сигнал (физический) — изменение физической величины, несущее информацию, кодированную определённым способом.

Одно и то же сообщение может быть реализовано в виде различных сигналов.

W. Frith, The Signal, 1858

Пример.

Информация: температура воздуха в помещении

Сигнал является материальным носителем информации (об изменении какого-либо физического явления):

- погода → температура
- звуковая волна → давление
- звуковая волна → магнитное поле
- интенсивность света → градации серого
- ...

Сигналы, зарегистрированные на материальном носителе, называются *данными*.

Обработка сигналов:

Анализ

Понимание передаваемой сигналом информации

Синтез

Создание сигнала, несущего заданную информацию о явлении

Два основных принципа передачи информации:

1) Вещественно-предметный (медленный)

почта, книги, USB накопители, эндокринная и иммунная системы, обоняние, наличные деньги,

. . .

Два основных принципа передачи информации:

2) Энергетический (быстрый)

Два основных принципа передачи информации:

2) Энергетический (быстрый)

сигнальные костры, тамтамы, электросвязь (проводная, волокнооптическая, радиосвязь), акустика,

. . .

древнегреческий водяной телеграф

Два основных принципа передачи информации:

2) Энергетический (быстрый)

сигнальные костры, тамтамы, электросвязь (проводная, волокнооптическая, радиосвязь), акустика,

. . .

2) Энергетический (быстрый)

Э/м волны

- поперечные
- излучаются ускоренно движущимися заряженными частицами
- максимальная скорость в вакууме
- скорость в воздухе (н.у.) ~
 3х10⁸ м/с

Звуковые волны

- продольные
- распространяются как упругие волны механических колебаний
- не распространяются в вакууме
- скорость в воздухе (н.у.) ~
 340 м/с

1D

сигналы с датчиков, тональные сигналы, речь, аудио сигналы, дистанционное зондирование, биомедицинские сигналы

Pinheiro et al. The Open Biomed Eng J, 2010, 4, 201-216

Left: Shouting signal. Right: Talking signal.

2D

текст, ч/б изображения термография

цветные изображения многозональная (спектрозональная съемка) гиперспектральная съёмка

s(x,y)

■ 2D

текст, ч/б изображения термография

s(x,y)

цветные изображения многозональная съемка) гиперспектральная съёмка **s**(x,y)

■ 2D

текст, ч/б изображения термография

s(x,y)

цветные изображения многозональная (спектрозональная съемка) гиперспектральная съёмка **s**(x,y)

2D

текст, ч/б изображения термография

s(x,y)

цветные изображения

многозональная (спектрозональная съемка) гиперспектральная съёмка

 $\vec{s}(x,y)$

https://commons.wikimedia.org/

E. Christophe, C. Mailhes and P. Duhamel *IEEE Transactions on Image Processing*, 2008, vol. 17

Moderate Resolution Imaging Spectroradiometer (MODIS)

шлейф пепла над вулканом (п-ов Камчатка) 0.4-14 мкм

■ 3D

видео $\dot{s}(x,y,t)$

объемные изображения $\dot{s}(x,y,z)$

https://www.akaer.com.br/

D. Marti et al. Solid Earth, 10, 177-192, 2019

MD

динамические объемные изображения стерео изображения

Стереокарта для бытового стереоскопа 1860 г

wiggle-stereoscopy https://en.wikipedia.org

MD

динамические объемные изображения стерео изображения

la.mathworks.com

построение карты смещений (disparity maps) по двум изображениям в MATLAB

MD Kinect imaging

IR Emitter Color Sensor
IR Depth Sensor
Tilt Motor

C

Microphone Array

(A) RGB-channel, (B) depth contour image, (C) estimated skeletal joints, (D) mapping of the skeletal joints onto the RGB image.

R. Hapach et al. Front. Psychol.2015

Источники сигналов

Источниками (2D+) сигналов могут быть:

- электромагнитные силы
- звуковые волны
- пучки электронов
- компьютеры (искусственно синтезируемые сигналы)

Регистрируется излучение от объектов:

- поглощенное
- отраженное

собственное

Карта плоскости Галактики в гамма-лучах по данным обсерватории Cos-B (1978 г) http://heasarc.gsfc.nasa.gov

Петля Лебедя A.A. Abdo et al 2007 ApJ 658 L33

G. E. Medical Systems

ПЭТ изображение головного мозга. Volkow et al., 2011, Figure 2

Nuclear Inst. and Methods in Physics Research, A 878 (2018) 159–168

Источники:

- рентгеновские трубки
- синхротронное излучение

Гонсалес, Вудс. 2012

ангиограмма аорты

кристаллография, микроскопия, рентеноструктурный анализ

https://www.adriandaviesimaging.com/

R.S.P. King et al. Forensic Science International 289 (2018)

UV

флуоресцентная микроскопия

(A) White light phase-contrast microscopy image of a neuron sample after fixing; (B) 29 nm EUV ptychography of the sample, demonstrating extra detail and higher resolution. (Courtesy: CC BY 4.0/Science Advances 10.1126/sciadv.aaz302)

Large Synoptic Survey Telescope LSST (2014-2023) камера 3200 Мпк размером 1.65 м x 3 м

мяч для гольфа с высоты 20 км

снимки г. Вашингтон со спутника LANDSAT

• ближний ИК

https://www.epfl.ch/labs/ivrl/research/near-infrared/

средний ИК (~3-15 мкм)

• дальний ИК

Xu Z. et al. In: Lai JH. et al. (eds) PRCV 2018. Vol. 11259

галактика Андромеды Herschel Space Observatory

МРТ изображения (ЯМР)

MPT сердца https://en.wikipedia.org/

Гонсалес, Вудс. 2012

увеличение размеров приемника/источника сигнала

Источники сигналов

Источниками (2D+) сигналов могут быть:

- электромагнитные силы
- звуковые волны
- пучки электронов
- компьютеры (искусственно синтезируемые сигналы)

Звуковые источники сигналов

Поперечное сечение модели данных сейсморазведки. Стрелкой указан пласт углеводородов (место залегания нефти и/или газа)

эхолот

Звуковые источники сигналов

https://www.flir.com/discover

Источники сигналов

Источниками (2D+) сигналов могут быть:

- электромагнитные силы
- звуковые волны
- пучки электронов
- компьютеры (искусственно синтезируемые сигналы)

Электронная микроскопия

Электронный микроскоп — прибор, позволяющий получать изображение объектов с максимальным увеличением до 10⁶ раз, благодаря использованию вместо светового потока пучка электронов с энергиями 200 эВ — 400 кэВ и более

Электронная микроскопия

пучок электронов

отраженный во внешнюю полусферу ответный сигнал

пучок электронов

Pollen grain under SEM and TEM

Scanning Electron Microscope (SEM) vs Transmission Electron Microscope (TEM)

www.majordifferences.com

Источники сигналов

Источниками (2D+) сигналов могут быть:

- электромагнитные силы
- звуковые волны
- пучки электронов
- компьютеры (искусственно синтезируемые сигналы)

Искусственно синтезируемые сигналы

Гонсалес, Вудс. 2012

