

Equity in Resident Crowdsourcing: Measuring Under-reporting without Ground Truth Data

Zhi Liu¹ Nikhil Garg²

1. Operations Research & Information Engineering, Cornell University 2. Cornell Tech supported by the Urban Tech Hub @ Cornell Tech and the New York City Department of Parks & Recreation

BACKGROUND

- ☐ Resident crowdsourcing systems
- ☐ 311 systems, in North America
- help cities learn about conditions: potholes, bedbugs, powerlines...
 ...and in our problem, trees!

- ☐ Historic equity concerns in reporting
- ☐ technological disparities, awareness
- ☐ Hard to measure under-reporting
 - observed reports governed by both incidents & reporting behavior
 - ☐ want to estimate under-reporting
 - no ground-truth about incidents

PREVIOUS WORKS

- 1. Assume same incident rate
- likely **not true**, due to varying conditions across the city
- 2. Construct proxies for reporting rate
- e.g. # reports/# trees
- accuracy of results highly depend on accuracy of proxy, which we cannot test

MAIN RESULTS

- 1. Technique which leverages **duplicate reports** to estimate reporting rate without ground-truth data, with theoretical guarantee
- 2. Application to more than 100,000 311 reports in NYC, uncovering substantial spatial and socio-economic disparities in reporting

A new & general estimation technique

Model: conditional on incident happens, reports come in according to a **Poisson process** with potentially non-homogeneous rates, but incident birth and death times are unobserved

→ difficulty: birth and death unobserved

Theorem(informal): an observation period with start & end times:

- both contained in the period between incident birth and death;
- both **stopping times**, independent of Poisson rate;

then estimating the reporting rate in this observation period with the **duplicate reports** ⇔ estimating the overall reporting rate

Implementation on NYC Parks data

Identifying observation period from data:

- → start time: time of first report
- → end time: min{inspection, fixed interval (100 days) from start}

Bayesian Zero-inflated Poisson regression model for estimation

→ covariates: incident category, inspection outcome, tree info, location, demographics of reporter

IMPLICATIONS

Fig: Census tract spatial coefficients in NYC

Even after correcting for incident category:

- usubstantial spatial disparities across census tracts
- □ socio-economic disparities across different groups

Tab: Implied reporting delay from estimated rates

Incident	Manhattan	Queens
Hazard, High risk, Poor tree	2.5 days	4.7 days
Root/Sewer/Sidewalk, Fair tree	112 days	209 days

Difference in contextualized reporting delay

- → direct effort to push 311 system for more utilization
- → provide foundation for downstream operations

ONGOING WORK

Deployable algorithm for inspection scheduling

- → efficiency: inspect urgent incidents quickly
- → equity: balance the birth-to-inspection time