Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 12 du mercredi 31 mars 2021

Exercice 1.

Soit $x \in]0, +\infty[$. Calculer

$$\int_0^{\pi/2} \ln(x^2 \cos^2(t) + \sin^2(t)) dt =: g(x).$$
 (1)

Justifier toutes les étapes.

Indication. Calculer g' et en déduire g, en observant que g(1) = 0.

Solution:

D'après le théorème de dérivation des fonctions dépendant d'un paramètre (cf. cours), g est continûment dérivable sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^* \setminus \{1\}$.

$$g'(x) = \int_0^{\frac{\pi}{2}} \frac{2x \cos^2(t)}{x^2 \cos^2(t) + \sin^2(t)} dt$$
 (2)

(avec $z := \tan(t)$)

$$= \int_0^{+\infty} \frac{2x}{x^2 + z^2} \frac{1}{1 + z^2} \, \mathrm{d}z \tag{3}$$

$$= \int_0^{+\infty} \frac{2x}{1 - x^2} \left(\frac{1}{z^2 + x^2} - \frac{1}{z^2 + 1} \right) dz \tag{4}$$

$$= \frac{2x}{1 - x^2} \lim_{Z \to +\infty} \left(\frac{1}{x} \arctan\left(\frac{Z}{x}\right) - \arctan(Z) \right)$$
 (5)

$$=\frac{\pi}{1+r}\,. (6)$$

Les intégrales généralisées sont absolument convergentes (en fait les intégrandes sont strictement positifs sur $[0,+\infty[$). En cas de doute sur la manipulation des intégrales généralisées sur $[0,+\infty[$, intégrer d'abord sur [0,Z] puis étudier $\lim_{Z\to+\infty}$.

La continuité de g' en 1 assure que $g'(1) = \pi/2$. On obtient

$$g(x) = g(x) - g(1) = \int_{1}^{x} \frac{\pi}{1+t} dt = \pi \ln\left(\frac{1+x}{2}\right).$$
 (7)

Exercice 2.

Définissons $f: \mathbb{R} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^x \sin\left(x\sqrt{1+t^2}\right) dt.$$
 (8)

Montrer que f admet un minimum local en 0.

Solution:

Soit $x \in \mathbb{R}$. La formule de dérivation d'intégrale paramétrique (cf. cours) donne

$$f'(x) = \sin(x\sqrt{1+x^2}) + \int_0^x \sqrt{1+t^2}\cos(x\sqrt{1+t^2}) dt;$$
 (9)

en particulier, f'(0) = 0.

Étudions maintenant f'':

$$f''(x) = \cos\left(x\sqrt{1+x^2}\right) \times \left(\sqrt{1+x^2} + \frac{x^2}{\sqrt{1+x^2}}\right) + \sqrt{1+x^2}\cos\left(x\sqrt{1+x^2}\right) - \int_0^x (1+t^2)\sin\left(x\sqrt{1+t^2}\right) dt ; \quad (10)$$

en particulier, f''(0) = 2. Ainsi, f admet bien un minimum local en 0.

Exercice 3.

Définissons, pour tout $x \in \mathbb{R}_{+}^{*}$,

$$\Gamma(x) := \int_0^{+\infty} t^{x-1} e^{-t} dt.$$
 (11)

1) Montrer que Γ est définie sur \mathbb{R}_+^* ; que $\Gamma \in C^{\infty}(\mathbb{R}_+^*)$; et que, $\forall x \in \mathbb{R}_+^*, \forall k \in \mathbb{N}$,

$$\Gamma^{(k)}(x) = \int_0^{+\infty} \ln^k(t) t^{x-1} e^{-t} dt.$$
 (12)

- 2) Soit $x \in \mathbb{R}_+^*$.
 - a) Montrer que $\forall x \in \mathbb{R}_+^*$, $\Gamma(x+1) = x\Gamma(x)$.
 - b) En déduire que $\forall n \in \mathbb{N}$, $\Gamma(n+1) = n!$; i.e. Γ permet de généraliser la notion de factorielle à des arguments non entiers.

Solution:

Remarque. Le cours a été détaillé pour une intégrale généralisée dépendant de paramètres, pour un intervalle d'intégration non compact du type [a,b[avec $-\infty < a < b \leqslant +\infty$. Cependant la théorie s'adapte à tout intervalle non compact ; l'adaptation au cas]a,b] avec $-\infty \leqslant a < b < +\infty$ est directe.

Dans le présent exercice, la question porte sur une intégrale généralisée définie sur l'intervalle non compact $]0, +\infty[$. Il y a donc deux difficultés : en 0 et « en $+\infty$ », mais la théorie du cours reste valable. En cas de doutes, écrire l'intégrale généralisée (avec un paramètre) comme une somme d'une intégrale généralisée sur]0,1] et d'une intégrale généralisée sur $[1,+\infty[$, puis étudier chacune de ces deux intégrales (avec un paramètre) séparément.

1) Soit $x \in \mathbb{R}_+^*$; notons $\gamma_x := t \mapsto t^{x-1} \mathrm{e}^{-t}$. Observons que γ_x est continue sur $]0,+\infty[$, $0 < \gamma_x(t) \leqslant t^{x-1}$ sur]0,1] et $0 < \gamma_x(t) \leqslant C/t^2$ sur $[1,+\infty[$ pour une certaine constante C>0 dépendante de x. Comme $\int_0^1 t^{x-1} \, \mathrm{d}t$ converge et que $\int_1^{+\infty} t^{-2} \, \mathrm{d}t$ converge, nous en déduisons que $\int_0^{+\infty} \gamma_x$ converge. Γ est donc bien définie pour $x \in \mathbb{R}_+^*$.

Soient $0 < a < b < +\infty$. Nous allons maintenant montrer que $\Gamma \in C^{\infty}(]a,b[)$. Notons $\gamma(t,x) = t^{x-1}e^{-t} = e^{(x-1)\ln t}e^{-t}$ et observons que $\gamma \in C^{\infty}(\mathbb{R}_+^* \times \mathbb{R}_+^*, \mathbb{R}_+^*)$ et, pour $k \in \mathbb{N}$,

$$\frac{\partial^k \gamma}{\partial x^k}(t, x) = \ln(t)^k t^{x-1} e^{-t}. \tag{13}$$

Soient $x \in]a, b[$ et $t \in \mathbb{R}_+^*$. Si $t \leq 1, t^x \leq t^a$; si $t \geq 1, t^x \leq t^b$. Ainsi, pour tout $x \in]a, b[$ et tout $t \in \mathbb{R}_+^*$,

$$\left|\frac{\partial^k \gamma}{\partial x^k}(t,x)\right| \leqslant \left|\ln(t)\right|^k \mathrm{e}^{-t} t^{-1} \max\{t^a,t^b\} \coloneqq g_k(t). \tag{14}$$

Nous avons donc une fonction majorante de $\left|\frac{\partial^k \gamma}{\partial x^k}\right|$ indépendante de la variable $x \in]a,b[$; montrons que $\int_0^{+\infty} g_k$ converge.

Puisque

$$\lim_{t \to 0^+} t^{1 - (a/2)} g_k(t) = \lim_{t \to 0^+} t^{1 - (a/2)} |\ln(t)|^k e^{-t} t^{a - 1} = 0$$
(15)

avec $1-(a/2)<1,\ \int_0^1g_k$ converge. Puisque $\lim_{t\to+\infty}t^2g_k(t)=0,\ \int_1^{+\infty}g_k$ converge. Finalement, $\int_0^{+\infty}g_k$ converge. Par conséquent, $\Gamma\in\mathcal{C}^k(]a,b[)$: appliquer les résultats du cours et effectuer une récurrence sur $k\in\mathbb{N}$. Ce résultat étant valable pour tout $a\in\mathbb{R}_+^*,\ b\in\]a,+\infty[$ et $k\in\mathbb{N}$, nous en déduisons $\Gamma\in\mathcal{C}^\infty(\mathbb{R}_+^*)$. De plus,

$$\Gamma^{(k)}(x) = \int_0^{+\infty} \ln(t)^k t^{x-1} e^{-t} dt.$$
 (16)

- 2) Soit $x \in \mathbb{R}_{+}^{*}$.
 - a) Intégrons par parties :

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = 0 + \int_0^{+\infty} x t^{x-1} e^{-t} dt = x \Gamma(x).$$
 (17)

Notons que cette manœuvre est licite parce que $\int_0^{+\infty} x t^{x-1} \mathrm{e}^{-t} \, \mathrm{d}t$ existe. En cas de doutes, intégrer d'abord sur $[t_1,1]$ (en effectuant l'intégration par parties) puis étudier $\lim_{t_1\to 0^+}$; ensuite faire de même sur $[1,t_2]$ puis étudier $\lim_{t_2\to +\infty}$.

b) Nous constatons que $\Gamma(1)=1.$ On en déduit par récurrence que pour tout $n\in\mathbb{N},$ $\Gamma(n+1)=n!.$

Exercice 4.

Calculer

$$I = \int_0^{+\infty} \frac{\sin(t)}{t} \, \mathrm{d}t \tag{18}$$

par la méthode suivante. Pour $x\geqslant 0$, notons $g(x)=\int_0^{+\infty}e^{-xt}\frac{\sin(t)}{t}\,\mathrm{d}t$. Calculer g'(x) pour x>0, puis en déduire I = g(0). Justifier soigneusement la continuité de g en 0 et la différentiabilité de $g \operatorname{sur} \left[0, +\infty\right[.$

Solution:

Pour un quelconque $x\geqslant 0$, notons $h_x:t\mapsto \mathrm{e}^{-tx}\frac{\sin(t)}{t}$. La fonction $h_x\in \mathrm{C}^0(\mathbb{R}_+^*)$ est prolongeable par continuité en 0 en lui y donnant la valeur 1. Nous travaillerons avec ce prolongement. Si $x\in\mathbb{R}_+^*$, $\lim_{t\to+\infty}t^2|h_x(t)|=0$; par conséquent l'intégrale est absolument convergente et g est absolument convergente et gainsi définie sur \mathbb{R}_+^* . Puisque $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ existe (cf. cours), g est même définie sur \mathbb{R}_+ .

$$h: \begin{pmatrix} [0, +\infty[^2 \to \mathbb{R} \\ 0 \text{ si } t = 0 \\ e^{-tx} \frac{\sin(t)}{t} \text{ sinon} \end{pmatrix}$$
 (19)

est continue. De plus $\frac{\partial h}{\partial x}$ existe et est continue sur $[0, +\infty[\times]0, +\infty[; \frac{\partial h}{\partial x}(t,x) = -\mathrm{e}^{-tx}\sin(t)$ sur $]0, +\infty[\times]0, +\infty[$, et $\frac{\partial h}{\partial x}$ est prolongeable par continuité sur $[0, +\infty[^2]$. Soit $x \in [0, +\infty[$; vérifions que $\int_0^{+\infty} h(t,x) \, \mathrm{d}t$ converge uniformément. Une double intégration

par parties donne, pour tout $(t_1, t_2) \in]0, +\infty[^2 \text{ tel que } t_1 < t_2,$

$$\int_{t_1}^{t_2} e^{-tx} \frac{\sin(t)}{t} dt = e^{-tx} \left[\frac{\cos(t)}{t} \right]_{t=t_1}^{t=t_2} - \int_{t_1}^{t_2} \cos(t) \left(x \frac{e^{-tx}}{t} + \frac{e^{-tx}}{t^2} \right) dt$$

$$= -\frac{1}{t} \left[e^{-tx} \cos(t) + x e^{-tx} \sin(t) \right]_{t=t_1}^{t=t_2} - \int_{t_1}^{t_2} x^2 e^{-tx} \frac{\sin(t)}{t} dt$$

$$- \int_{t}^{t_2} (x \sin(t) + \cos(t)) \frac{e^{-tx}}{t^2} dt.$$
(21)

Donc

$$\int_{t_1}^{t_2} e^{-tx} \frac{\sin(t)}{t} dt = -\left[(\cos(t) + x \sin(t)) \frac{e^{-tx}}{(1+x^2)t} \right]_{t=t_1}^{t=t_2} - \int_{t_1}^{t_2} (x \sin(t) + \cos(t)) \frac{e^{-tx}}{(1+x^2)t^2} dt, \quad (22)$$

et, pour tout T > 0,

$$\int_{T}^{+\infty} e^{-tx} \frac{\sin(t)}{t} dt = (x \sin(T) + \cos(T)) \frac{e^{-Tx}}{(1+x^2)T} - \int_{T}^{+\infty} (x \sin(t) + \cos(t)) \frac{e^{-tx}}{(1+x^2)t^2} dt. \quad (23)$$

L'intégrale du membre de droite de (23) est absolument convergente car, d'après l'inégalité de Cauchy-Schwarz,

$$|x\sin(t) + \cos(t)| \frac{e^{-tx}}{(1+x^2)t^2} \le (x^2+1)^{1/2} (\sin^2(t) + \cos^2(t))^{1/2} \frac{e^{-tx}}{(1+x^2)t^2} \le \frac{1}{t^2}$$
 (24)

et $\int_T^{+\infty} t^{-2} \, \mathrm{d}t$ est convergente. En fait, cet argument prouve même que

$$\lim_{T \to +\infty} \int_{T}^{+\infty} (x \mathrm{e}^{-tx} \sin(t) + \mathrm{e}^{-tx} \cos(t)) \frac{1}{(1+x^2)t^2} \, \mathrm{d}t = 0 \tag{25}$$

uniformément en $x \in [0, +\infty[$. Par ailleurs,

$$\left| x e^{-Tx} \sin(T) + e^{-Tx} \cos(T) \right| \frac{1}{(1+x^2)T} \leqslant \frac{1}{T} \xrightarrow{T \to +\infty} 0 \tag{26}$$

uniformément en $x\in [0,+\infty[$. Ceci prouve que $\int_0^{+\infty}h(t,x)\,\mathrm{d}t$ converge uniformément pour $x\in [0,+\infty[$.

Montrons maintenant que, pour tout $a \in]0, +\infty[$, $\int_0^{+\infty} \frac{\partial h}{\partial t}(t, x) dt$ converge uniformément pour $x \in]a, +\infty[$. En effet, $\forall t \in [0, +\infty[$, $|-e^{-tx}\sin(t)| \le e^{-at}$ et $\int_0^{\infty} e^{-at} dt$ converge.

Grâce aux théorèmes du cours, il en résulte que $g \in C^0([0, +\infty[) \cap C^1(]0, +\infty[)$. De plus, $\forall x \in]0, +\infty[$,

$$g'(x) = -\int_0^{+\infty} e^{-tx} \sin(t) dt = \left[-\frac{e^{-tx}}{x^2 + 1} (x \sin(t) + \cos(t)) \right]_{t=0}^{\infty} = -\frac{1}{x^2 + 1}.$$
 (27)

Ainsi $g(x) = -\arctan(x) + c$; puisque g est continue en 0, c = g(0). On peut donc écrire

$$g(0) = \lim_{x \to +\infty} g(x) + \arctan(x) = \frac{\pi}{2} + \lim_{x \to +\infty} g(x) = \frac{\pi}{2}$$
 (28)

car, pour tout x > 0,

$$|g(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow{x \to +\infty} 0$$
 (29)