1 P_1 Finite elements on triangles - tetrahedrons

Let $V = H_0^0(\Omega)$. We consider the Poisson problem $u \in H_0^1(\Omega)$

$$-\Delta u = f \text{ in } \Omega$$

and its weak formulation

1.1 Lecture 2: Accuracy of Finite Element Discretization

Outline for today:

1. A priori error estimates in H^1

$$\|\nabla(u-u_h)\|_{L^2(h)}.$$

C dependes of the solution. One is usually interest in the error

$$||u - u_h||_X = ?$$

for a certain norm $\|\cdot\|_X$.

A priori error estimates: Information about the error in terms of mesh size asymptotics, e.g, for P_1 or Q_1 elements

$$\|\nabla (u - u_h)\|_{L^2(h)} \le ch|u|_{H^2(\Omega)}$$

$$\|u - u_h\|_{L^2(\Omega)} \le ch^2|u|_{H^2(\Omega)}.$$

A posteriori error estimates: Information about the error in terms of u_h , e.g,

$$\|\nabla(u-u_h)\|_{L^2(\Omega)}^2\leq \sum.$$

1.2 Galerkin Orthogonality

• Continuous problem with $A: V \times V \to \mathbb{R}$ bilinear:

$$u \in V : A(u, \phi) = (f, \phi) \quad \forall \phi \in V.$$

Most simple example:

$$A(u,\phi) = (\nabla u, \nabla \phi) = \int_{\Omega} \nabla u \nabla \phi dx.$$

• Discrete problem:

$$u_h \in V_N : A(u_h, \phi) = (f, \phi) \quad \forall \phi \in V_h.$$

• Discretization error

V a subspace. Then:

$$e_h = .$$

Theorem 1 (Cea's lemma). Suppose that the bilinear form $A: V \times V \to \mathbb{R}$ satisfies the conditions of Lax–Milgram's theorem (continuous and V-coercive with $\alpha_1, \alpha_2 > 0$). Further, let $V_h \subseteq$

 $||u-u_h||_V \leq \frac{\alpha_1}{\alpha_2} \inf_{v_h \in V}.$

1.3 Continuity and coercivity

Continuity: There exists $\alpha_1 \ge 0$ such that

$$A(u,\phi) \leq \alpha_1$$
.

Proof. Let $v_h \in V_h$ be arbitrary,

$$\alpha_2 \|u - u_h\|_V^2 \le A (u - u_h, u - u_h)$$
 (coercivity)

- $V = H_0^1(\Omega)$.
- associated norm

$$||u||_V = ||\nabla u||_{\Omega} = \left(\int_{\Omega} |\nabla u(x)|^2 dx\right)^{1/2}.$$

• $\alpha_1 = \alpha_2 = 1$

$$\|\nabla (u - u_h)\|_{\Omega} = \inf_{v_h \in V_h} \|\nabla (u - v_h)\|_{\Omega}.$$

1.4 Interpolation error

• Let $I_h \colon V \to V_h$ be an arbitrary interpolation. Then

$$||u - u_h||_V \le \frac{\alpha_1}{\alpha_2} \inf_{v_h \in V_h} ||u - v_h||_V$$

 $\le \frac{\alpha_1}{\alpha_2} ||u - I_h u||_V.$

• We only need do get and idea about the interpolation error

$$||u-I_hu||_V$$
.

• Most simple is the nodal interpolation of continuous functions

$$I_h u(N) = u(N)$$

for nodes N of the mesh.

• But: Are $H^1(\Omega)$ functions continuous?

$$d = 1$$
 (yes) $d \ge 2$ (no).

1.5 More regular Sobolev functions

• Higher order Sobolev spaces of order $k \ge 1$:

$$H^k(\Omega) = .$$

1.6 H^2 functions are continuous

• For d = 1

$$H^1(\Omega) \subseteq C(\Omega)$$
.

• For d = 2 and d = 3

$$H^2(\Omega) \subseteq C(\Omega)$$
.

• If $\partial\Omega$ is Lipschitz

1.7 Nodal interpolation of H^2 -functions

Hence, if $u \in H^2(\Omega)$, then it holds for the Poisson pb

$$\|\nabla(u-I_h)\|.$$

1.8 Structure to address the interpolation error

1. Location:

$$\|\nabla(u - I_h u)\|_{\Omega}^2 = \sum_{T \in T_h} \|\nabla(u - I_h u)\|_T^2.$$

2. Transformation to the reference cell:

$$\|\nabla (u - I_h)\|.$$

1.9 Step 2: Transformation to the reference cell

How to transform an expression as $(w = u - I_h u)$

$$\|\nabla (u - I_h u)\|_T^2 = \int_T |\nabla w(x)|^2 dx$$

onto the reference triangle \hat{T} by an affine linear transformation

$$\phi_T(\hat{x}) = x_0 + B_T \hat{x}.$$

Partial derivative

$$\frac{\partial w\left(x\right)}{\partial x_{i}} = \sum_{j=1}^{d}$$

Gradient oin *T*:

$$|\nabla w(x)|^2 \le ||B_T^{-t}||_F^2 |\hat{\nabla} \hat{w}(\hat{x})|^2$$

with Frobenius norm $||B_T^{-t}||$.

1.10 Step 3: Interpolation error on the reference cell

Theorem 2 (Bramble-Hilbert lemma). Let $T \subset \mathbb{R}^d$ a Lipschitz domain, F a normed space, $\phi \colon H^m(T) \to F$.

1.11 Step 4: Backward transformation

$$|\hat{u}|_{H^2(\hat{T})} = |\det B_T|^{-1/2} ||B_T^t||.$$

1.12 Geometrical parameters

Let $h_T=$ an outer radius, ho_T an inner radius and $\kappa_T=rac{h_T}{
ho_T}$ the aspect ratio.

- A family of meshes \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 , . . . is called **shape regular** if $\max_i \max_{T \in \mathcal{T}_i} \kappa_T \leq \kappa$.
- A family of meshes \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 , ... is called **quasi uniform** if $\frac{max}{min} \leq \kappa$.

1.13 Spectral norm of transformation

For the spectral norm of the affin linear transformation ϕ_T

1.14 Step 5: Assembling together

$$\|\nabla (u - I_h u)\|_{\Omega}^2 \le c \sum_{T \in \mathcal{T}_h} \|B_T^{-1}\|_F^2 \|B_T\|.$$

Error estimates in the L^2 norm

1.15 L^2 error estimates

Are you interested in a "weaker" norm

$$||u - u_h||_{L^2(\Omega)}$$

instead of

$$\|u - I_h u\|_{L^2(\Omega)} \le c_{\kappa} h^2 |u| H^2(\Omega)$$

?

1.16 Duality argument

Aim: Derive error bound on

$$||u-u_h||_W$$

in a weaker norm, i.e. let W be an Hilbert space with continuous embedding $V \subseteq W$, i.e.

$$||u||_{W}$$
.

• Due to the continuous embedding $V \subseteq W$ it holds

$$W' \subseteq V'$$
.

• Hence, $g \in S \subset V'$ is a possible rhs in the dual problem:

$$z_g \in V$$
: $A(\phi, z_g) = \langle g, \phi \rangle \quad \forall \phi \in V$.

• Primal problem:

$$u \in V$$
: $A(u, \phi) = \langle f, \phi \rangle$.

1.17 Aubin-Nitsche trick

We arribe at:

Theorem 3. Let $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$, be a convex domain or a domain with C^2 -boundary, $\{T_h\}$.

1.18 Higher order finite elements

• FEM or order $r \ge 1$:

$$P_r\left(\mathcal{T}_h\right) = \left\{\varphi \colon \Omega_h \to \mathbb{R} \colon \varphi\big|_T \in P_r \forall T \in \mathcal{T}_h\right\}.$$

1.19 Error estimate for higher order finite elements

Theorem 4. We consider the Poisson problem, discretized with P_r finite elements $(r \ge 1)$ on a family of shape regular meshes. If the solution u has regularity H^{r+1} , then

$$\|\nabla (u - I_h u)\|_{\Omega} \le c_{\kappa} h^r |u| H^{r+1}$$
.

1.20 Pro's and cons of higher order finite elements

Pro's:

- A better approximation property is expected due to better asymptotic behavior.
- Less degrees of freedom for a given accuracy.
- More local couplings in the stiffness matrix (can be advantageous for CPU reasons).

Contra:

- More regularity of the solution is necessary. Otherwise: reduction of accuracy/order of convergence.
- Stiffness matrix become more dense due to many couplings inside each elements.
- Robust linear solvers are usually more difficult.

1.21 Accuracy of Q_r elements

$$\varphi(x,y) = \sum_{i,j=0}^{r} \alpha_{ij} x^{i} y^{j}.$$

• The nodal interpolation \hat{l} in the reference quadrilateral \hexahedral is exacts for polynomials of degree $\leq r$.

1.22 Summary of Lecture 2

• FE for continuous, coercive bilinear forms are quasi-optimal with respect to discretization error:

Abcedario.