ICS 171, Summer 2000: Lecture 6 Solutions

(1) Use truth tables to show the following sentences are valid:

$$\bullet \ P \Rightarrow Q \Leftrightarrow \neg P \lor Q$$

•
$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

•
$$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$$

(a)

\overline{P}	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \lor Q$	$P \Rightarrow Q \Leftrightarrow \neg P \lor Q$
F	F	Τ	Τ	Τ	Τ
F	Τ	Τ	Τ	Τ	T
Τ	F	F	F	F	${ m T}$
Τ	Τ	Τ	F	Τ	${ m T}$

(b)

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$	$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$
F	F	F	Τ	Т	Т	Τ	T
F	Τ	\mathbf{F}	${ m T}$	T	F	${ m T}$	${ m T}$
Τ	F	F	${ m T}$	F	Τ	${ m T}$	${ m T}$
 Τ	Τ	Τ	F	F	F	F	T

(c)

\overline{P}	Q	$(P \lor Q)$	$\neg (P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$	$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$
F	\mathbf{F}	F	${ m T}$	Τ	Τ	${ m T}$	T
F	Τ	Τ	\mathbf{F}	Τ	F	\mathbf{F}	T
Τ	\mathbf{F}	Τ	\mathbf{F}	F	Τ	\mathbf{F}	T
Τ	Τ	${ m T}$	F	F	F	F	T

(2) Read Question 6.2 in the course text (Russell & Norvig, page 180). Be familiar with these equivalence relations.

(3) Question 6.3 in the course text (Russell & Norvig, page 180).

- (a) valid
- (b) satisfiable
- (c) satisfiable
- (d) valid
- (e) valid

- (f) valid(g) valid(h) satisfiable
- (4) Question 6.7 in the course text (Russell & Norvig, page 181)
- (a) 4
- (b) 12
- (c) 2
- (5) Consider the knowledge base:

If it is hot and humid, then it is raining. If it is humid, then it is hot. It is humid.

- (a) Describe a set of propositional letters which can be used to represent the knowledge base. Let H represent it is hot. Let M represent it is humid and let R represent it is raining.
- (b) Translate the KB into propositional logic using your propositional letters from part a.
- 1. $(H \wedge M) \Rightarrow R$
- $2. M \Rightarrow H$
- 3. *M*
- (c) Is it raining? Answer this question by using logical inference rules with the KB.

Use Modus Ponens to combine 3 and 2

4. *H*

And introduction to combine 3 and 4

5. $H \wedge M$

Modus Ponens to combine 5 and 1

6. R

Therefore it is raining.

(6) Modus Tollens is an inference rule which states

$$\frac{P \Rightarrow Q, \quad \neg Q}{\neg P}$$

Prove that Modus Tollens is sound. Use either a truth table or sound logical inference rules.

Using a truth table:

				KB	α
P	Q	$P \Rightarrow Q$	$\neg Q$	$(P \Rightarrow Q) \land \neg Q$	$\neg P$
F	F	Τ	Τ	Τ	Τ
F	Τ	${ m T}$	F	\mathbf{F}	Τ
Τ	F	F	Τ	\mathbf{F}	F
Τ	Τ	Τ	F	\mathbf{F}	\mathbf{F}

Since α ($\neg P$) is true everywhere the KB is true, then Modus Tollens is sound.

Using logical inference rules:

Convert to CNF form

- 1. $\neg P \lor Q$
- $2. \neg Q$

Combine 1 and 2 using unit resolution

- $3. \neg P$
- (7) Consider the knowledge base:

If it is raining out then Ann puts the top up on her convertible. Ann did not put the top up on her convertible.

(a) Describe a set of propositional letters which can be used to represent the knowledge base.

Let R represent it is raining out. Let T represent Ann puts the top up on her convertible.

- (b) Translate the KB into propositional logic using your propositional letters from part a.
- 1. $R \Rightarrow T$
- $2. \neg T$
- (c) Is it raining? Answer this question by using logical inference rules with the KB.

Combine 1 and 2 using Modus Tollens (see question 6)

 $3. \neg R$

Therefore it is not raining out.