Mémo – Incertitudes de type B en chimie *

Matériel		Source(s) d'incertitude(s) prise(s) en compte	Expression de l'incertitude type	Exemple
Balance	000009	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$u(m) = \frac{p}{\sqrt{12}}$	Balance de précision en photo : $p = 0,00001g$. $u(m) = \frac{0,00001}{\sqrt{12}} = 2,89.10^{-6}g$ $u(m) \approx 3.10^{-6}g$ (Avoir note 1)
Éprouvette graduée	\$0.2 ml 10 2000 d 1ml ns 200 200 200	 Précision p : plus petite graduation. Tolérance t indiquée par le fabricant. Lecture simple². 	$u(V) = \sqrt{\left(\frac{p}{\sqrt{12}}\right)^2 + \left(\frac{t}{\sqrt{3}}\right)^2}$	$p = 2mL \text{ et } t = 1mL$ $u(V) = \sqrt{\left(\frac{2}{\sqrt{12}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2} = 0.816mL \approx 0.8mL$
Pipette jaugée	a	☼ Tolérance t indiquée par le fabricant.	$u(V) = \frac{t}{\sqrt{3}}$	$t = 0.03 mL$ $u(V) = \frac{0.03}{\sqrt{3}} = 0.0173 mL$ $u(V) \approx 0.02 mL$
Pipette graduée, zéro en bas		 Précision p : plus petite graduation. Tolérance t indiquée par le fabricant. Lecture simple. 	$u(V) = \sqrt{\left(\frac{p}{\sqrt{12}}\right)^2 + \left(\frac{t}{\sqrt{3}}\right)^2}$	$p = 0,1 mL \text{ et } t = 0,03 mL$ $u(V) = \sqrt{\left(\frac{0,1}{\sqrt{12}}\right)^2 + \left(\frac{0,03}{\sqrt{3}}\right)^2} = 0,0337 mL$ $u(V) \approx 0,03 mL$
Pipette graduée, zéro en haut		 Précision p : plus petite graduation. Tolérance t indiquée par le fabricant. Double lecture ³. 	$u(V) = \sqrt{\left(\frac{p}{\sqrt{6}}\right)^2 + \left(\frac{t}{\sqrt{3}}\right)^2}$	$p = 0.1 mL \text{ et } t = 0.05 mL$ $u(V) = \sqrt{\left(\frac{0.1}{\sqrt{6}}\right)^2 + \left(\frac{0.05}{\sqrt{3}}\right)^2} = 0.05 mL$
Burette graduée	25 1 a a a a a a a a a a a a a a a a a a a	 Précision p : plus petite graduation. Tolérance t indiquée par le fabricant. Double lecture. 	$u(V) = \sqrt{\left(\frac{p}{\sqrt{6}}\right)^2 + \left(\frac{t}{\sqrt{3}}\right)^2}$	$p = 0.05mL \text{ et } t = 0.03mL$ $u(V) = \sqrt{\left(\frac{0.05}{\sqrt{6}}\right)^2 + \left(\frac{0.03}{\sqrt{3}}\right)^2} = 0.0268mL$ $u(V) = 0.03mL$
Fiole jaugée	100 ml	₻ Tolérance t indiquée par le fabricant.	$u(V) = \frac{t}{\sqrt{3}}$	$ \begin{aligned} t &= 0, 1mL \\ u(V) &= \frac{0,1}{\sqrt{3}} = 0,0577mL \\ u(V) &\simeq 0,06mL \end{aligned} $

^{*}Auteur : Christophe Bellesort, Professeur de Sciences-Physiques au Lycée Dumont D'Urville Caen \mise en page avec le logiciel LATEX : Cédric Vanden Driessche

^{1.} Arrondi à un chiffre significatif : si l'incertitude type doit être combinée, on effectue les calculs sans arrondir. L'arrondi se fait sur le résultat final.

^{2.} Le volume est déterminé par le niveau du ménisque, en une lecture.

^{3.} Incertitude sur le zéro initial et incertitude sur la lecture du volume.