计算机系统结构实验报告

Lab01

FPGA 基础实验: LED Flow Water Light

姓 名: 徐薪

学 号: 519021910726

日 期: 2021年6月09日

摘 要

本实验实现了 FPGA 基础实验中的 LED 流水灯器件。该器件在每个周期的时钟上升沿时计数器加 1,当计数器达到最大值时,LED 灯左移一位点亮;该器件还支持接收 reset 信号对 LED 灯进行初始化与复位。本实验通过软件仿真与上板验证的形式进行实验结果的验证。

目录

1.		实验概述	2
	1. 1	实验内容	2
	1. 2	实验目的	2
2.		原理分析	2
	2. 1	基础 LED Flow Water Light 的原理	2
	2. 2	工程 LED Flow Water Light 的原理	3
	2. 3	上板验证的原理	3
3.		功能实现	3
	3. 1	flowing_light Module	3
	3. 2	flowing_light_tb Module	4
4.		仿真测试	4
5.		实验总结	5
	5. 1	实验评价	5
	5. 2	实验心得	5

1. 实验概述

1.1 实验内容

本实验实现了FPGA基础实验中的LED流水灯器件。该器件在每个周期的时钟上升沿时计数器加1,当计数器达到最大值时,LED灯左移一位点亮;该器件还支持接收 reset 信号对LED灯进行初始化与复位。本实验通过软件仿真与上板验证的形式进行实验结果的验证。

1.2 实验目的

- (1) 熟悉 Xilinx 逻辑设计工具 Vivado 的基本操作:
- (2) 掌握使用 VerilogHDL 进行简单的逻辑设计;
- (3) 使用功能仿真;
- (4) 使用 1/0 Planing 添加管脚约束;
- (5) 生成 Bitstream 文件;
- (6) 上板验证。

2. 原理分析

2.1 基础 LED Flow Water Light 的原理

本次实验需要实现 LED Flow Water Light。顾名思义,就是让 LED 灯像流水一样点亮。我们用移位操作来表示点亮的 LED 灯的传递。同时,我们用软件方法来进行延迟,从而控制每个 LED 被点亮的时间。另外,需要注意的是,在最后一位 LED 灯被点亮后,下一次被点亮的 LED 灯又变回了第一个,从而实现了 LED 流水灯的循环。最后,我们

还需要设置一个 reset 信号, 以便对 LED 灯进行重置。

2.2 工程 LED Flow Water Light 的原理

实验原理与基础 LED Water Light 的实验原理相似,这里不再赘述。但是由于我们的实验板板载了 200MHz 的时钟振荡器,属于高频时钟,所以做下载验证是需要用到差分时钟,从而原 flowing_light 代码模块需做时钟方面的修改。

2.3 上板验证的原理

因为 Flow Navigator 可以自动完成综合、实现、生成 FPGA 配置文件,所以上板验证的实验原理与工程 LED Flow Water Light 的实验原理相同,这里不再赘述。

3. 功能实现

3.1 flowing light Module

```
module flowing_light(
    input clock,
    input reset,
    output [7:0] led
);

reg [23:0] cnt_reg;
reg [7:0] light_reg;
/*
    IBUFGDS IBUFGDS_inst (
        .0(CLK_i),
        .I(clock_p),
        .IB(clock_n)
);
    */
```

```
always @ (posedge clock)
        begin
            if (!reset)
                cnt_reg <= 0;
            else
                cnt_reg <= cnt_reg + 1;</pre>
        end
    always @ (posedge clock)
        begin
            if (!reset)
                light_reg <= 8'h01;
            else if (cnt_reg == 24'hffffff)
                begin
                     if (light reg == 8'h80)
                         light_reg <= 8'h01;
                         light_reg <= light_reg << 1;
                end
        end
    assign led = light_reg;
endmodule
```

3.2 flowing_light_tb Module

```
module flowing_light_tb(
    );
    reg clock;
    reg reset ;
    wire [7:0] led;
                                                  initial begin
    flowing_light u0 (
                                                      clock = 1'b0;
        .clock(clock),
                                                      reset = 1'b0;
        .reset (reset),
                                                      \#(PERIOD*2) reset = 1'b1;
        .led(led));
                                                      #(PERIOD*4) reset = 1'b0;
    parameter PERIOD= 10;
                                                      //#580; reset = 1'b1;
                                                  end
    always #(PERIOD*2) clock = !clock;
                                              endmodule
```

4. 仿真测试

我们使用 Verilog 编写激励文件,采用软件仿真的形式对于 LED 流水灯进行测试,测试结果如图 1 所示:

图 1. Flowing Water Light 仿真结果

从图1可以看出,我们完成了LED流水灯的功能实现,并且仿真结果正确。

5. 实验总结

5.1 实验评价

通过图 1 的结果验证以及后续的工程实现、上板验证, LED 流水灯都能正确工作, 因此本次实验是成功的, LED Flowing Water Light 成功实现。

5.2 实验心得

这个实验总体来讲是简单的,只要按照实验操作指导书一步一步来,就能得到正确的实验结果。

在这一次实验中,我最大的收获就是逐渐认识和了解了 verilog 语言。对着指导书逐行敲代码,让我明白了 module 的定义是什么样的,对 wire 和 reg 的使用也有了初步的了解。尤其是明白了 assign 语句的用法,这对于一个模块的输出是很重要的。最后,我还了解了

LED Flow Water Light

阻塞式赋值与非阻塞式赋值的区别(也就是=与<=的区别), 时序电路和逻辑电路的区别。第一个实验就让我接触到了之后实验经常会犯错的内容, 实在是让我受益匪浅。