Question 2

a Average instruction execution time for type A instruction:
fetch instruction time + execute time = 100 + 10 = 110 cycles

Average instruction execution time for type B instruction:

Fetch instruction time + jetch operand time + execute time = 100+100+100 = 300 cycles

- \rightarrow Average instruction execution time: $\frac{110 \times 80 + 300 \times 20}{100} = 148$ cycles
- (b) Cycle time = $\frac{1}{J} = \frac{1}{10^6} = 1000 \text{ ns} = 1 \text{ µs}$ (microsec)
 - → Average instruction execution time: 148 × 1 = 148 µs
- @ Average instruction execution time in second: 148 x 10-6 s
 - → Instruction execution rate = $\frac{1}{148 \times 10^{-6}}$ = 6756 (round down from 6756.756) Cips)
- (d) Cycle time = $\frac{1}{J} = \frac{1}{20 \times 10^6} = 50 \text{ ns}$
 - -) Average instruction execution time: 148 x 50 = 7400 ns = 7.4 x 10 5
 - → Instruction execution rate: $\frac{1}{7.4 \times 10^{-6}}$: 136135 (ips)
- © Program completion time = $M \times t_4 = 5,000,000 \times 7.4 \times 10^{-6}$ = 37(s)

Question 3

$$\Rightarrow$$
 $f = \frac{1}{T} = \frac{1}{16 \times 10^{-9}} = 62.5 \text{ MHz}$

Every instruction take 3 cycles to complete

Since now there is new instruction issued every cycles.

Since this is number of cycles persec