Discrete Mathematics #Final

2021/12/13

Final Project - Maximum k-core

- A k-core of a graph G is a maximal subgraph of G in which all vertices have degree at least k.
- Find the maximum k-core in the simple graph G.
- Existing source codes are forbidden.
 - Packages for graph or network are also forbidden (Ex. NetworkX)
- No plagiarism.

Format

• Input (Graph):	
O 1	
0 2	
12	
1 4	
15	
2 3	
2 4	
2 5	
4 5	

• Output (Maximum k-core): 3-core

• Input (Graph):

• **Create 2-core graph**: Remove the vertex with degree 1.

• All vertices in 2-core graph have degree at least 2.

• **Create 3-core graph**: Remove the vertex with degree 2.

- All vertices in 3-core graph have degree at least 3.
- The maximum k-core is 3-core.

• Find the maximum k-core for the following graph.

• Create 2-core graph: Remove the vertex with degree 1.

• **Create 2-core graph**: Remove the vertex with degree 1.

• All vertices in 2-core graph have degree at least 2.

• **Create 3-core graph**: Remove the vertex with degree 2.

- All vertices in 3-core graph have degree at least 3.
- The maximum k-core is 3-core

• Find the maximum k-core for the following graph.

• **Create 2-core graph**: Remove the vertex with degree 1.

• Create 3-core graph: Remove the vertex with degree 2.

• **Create 3-core graph**: Remove the vertex with degree 2.

- All vertices in 3-core graph have degree at least 3.
- The maximum k-core is 3-core

Pseudo Code

```
k = 1
while(G is not empty) {
    while(there exists vertices with degree < k in G) {
        assign a core number of k-1 to all vertices with degree < k;
        remove all vertices with degree < k from G;
    }
    k = k+1;
}</pre>
```

- How to optimize the search of existing vertices?
 - DFS/BFS from the lowest node degree?
 - Any other method?

Test Data

- Number of test cases: 10
- Time limit: 4000ms
- Memory limit: 1000000KiB
- 4% for each test case, all 10 test cases = 40%

Grading Policy

- 1. Correctness (40%)
- 2. Speed (20%)
 - Top 25%: 20%
 - Top 50%: 15%
 - Top 75%: 10%
 - The rest: 5%
- 3. Report (40%)
 - English / Chinese
 - Novelty Using what kind of method to save more time?
 - Comprehensiveness of experiments Any comparisons with different searching methods?
 - Theoretical results Is there any way to describe or prove the complexity of your algorithm?

Important Dates

- 1/13 (Thu) 23:59 Formosa OJ closed
- 1/16 (Sun) 23:59 Report & Code Submission deadline

If you have any question...

- We encourage everyone to ask any question in TA hours.
 - 10:00-12:00 every Friday online
 - https://meet.google.com/yuf-bghs-vqk

- If the question is personal or the time slot is not available to you, please send an email to TAs.
 - Ex: TAs miss to approve your Formosa OJ request.

Q & A

Thank you