FC Layer Mapping - Detailed Explanation

1. Gated Attention Mechanism (Controlled Influence of Each Encoder)

Instead of directly concatenating **E_lab** (Lab Report Embedding) and **E_conv** (Conversation Embedding), introduce a **gating mechanism**:

Step 1: Compute Attention Scores for Each Encoder

- Define learnable gating weights for Lab vs. Conversation:
- α _lab = σ (W_lab · E_lab + b_lab) α _conv = σ (W_conv · E_conv + b_conv)
 - \circ σ is a **sigmoid function** (keeps values between 0 and 1).
 - o W_lab, W_conv are learnable weights.
 - \circ α lab, α conv represent how much each encoder contributes.

Step 2: Weighted Fusion of Embeddings

```
E_fused = \alpha_lab \cdot E_lab + \alpha_conv \cdot E_conv
```

- Impact:
 - If the lab report is more reliable, the model learns to assign a higher weight to E lab
 - If conversation symptoms provide **critical missing details**, the model adjusts accordingly.
 - If conflicting information exists (lab suggests Malaria, but symptoms don't fully match), the model reduces attention on conversation embeddings to avoid misclassification.

2. Feature Attribution (Understanding Which Encoder Contributed More to a Prediction)

Once the model has made a prediction, you can analyze **how much each encoder influenced the final decision**.

Method 1: Gradient-Based Attribution

Compute gradients of the output probability pjp_jpj (for a disease j) w.r.t. each embedding:

∂pj / ∂Elab, ∂pj / ∂Econv

Interpretation:

- If $\partial pj / \partial Elab$ is high, the neuron learned mostly from lab reports.
- If $\partial pj / \partial Econv$ is high, the neuron relied more on conversation symptoms.

Method 2: Attention Weights Analysis (If Using Attention Mechanism)

- How it Works:
 - If you use **self-attention** or **cross-attention** in your model, you can extract the **attention scores** for each encoder.
 - The **higher the attention score for Lab vs. Conversation**, the more influence that encoder had.
- How to Implement:

Extract the attention weight matrix after fusion:

 α_{a} lab, α_{c} conv = softmax(W_att · [E_lab, E_conv])

- Higher α _lab \rightarrow More reliance on lab reports.
- Higher α _conv \rightarrow More reliance on symptoms.
- •

• Impact:

- Gives a direct interpretable score of encoder contribution for each prediction.
- More reliable than gradient-based methods like Saliency Maps, which can be noisy.

Method 3: Cosine Similarity Between Neuron Weights and Encoders

- How it Works:
 - Measures how aligned each neuron's learned weights are with Lab vs.
 Conversation embeddings.
- How to Implement:
 - Compute cosine similarity between ICD neuron weights and each encoder embedding:

Similarity calculations:

- Similarity lab = (W j · E lab) / (||W j|| ||E lab||)
- Similarity_conv = (W_j · E_conv) / (||W_j|| ||E_conv||)

• Higher similarity → The ICD neuron relies more on that encoder.

•	lm	рa	ct:
		Pu	•

- Helps quantify which encoder's features contribute most to the disease prediction.
- **Easy to implement**, works even without attention layers.

3. Weight-Based Analysis (Neuron Activation Per Encoder)

- Analyze how strongly each neuron activates in response to E_lab vs. E_conv.
- Compute cosine similarity between final neuron weights and each encoder embedding:

Here is the properly formatted version in plain text:

```
Similarity_lab = (Wj Elab) / (||Wj|| ||Elab||)
Similarity_conv = (Wj Econv) / (||Wj|| ||Econv||)
```

- Interpretation:
 - If Similarity_lab > Similarity_conv, neuron relies more on lab reports.
 - If Similarity_conv > Similarity_lab, neuron relies more on symptoms.

You can tune the training loss to increase weight on lab reports when needed.

- 4. Preventing Vague Predictions (Thresholding & Confidence Calibration)
 - Use Probability Thresholding: Ensure that diseases are predicted only if confidence is above a threshold (e.g., 0.7).
 - Calibration: Train the model to output uncertainty scores to detect low-confidence cases.

Impact:

 If conversation symptoms contradict the lab report, the model should decrease prediction confidence and raise a flag for doctor review instead of making a vague prediction.

How the Conventional Method Works (Directly Sending Codes to Loss Function for Multilabel Classification)

This approach **directly maps ICD codes to the final layer neurons** and optimizes prediction using **multilabel classification**.

1. Model Structure

- Encoders
 - Lab Report Encoder (E_lab, 768-dim)
 - Conversation Encoder (E_conv, 1024-dim)
 - Fused Embedding: EfusedE_{\text{fused}} (concatenated or dimensionally reduced to 1536-dim or 1792-dim)
- Fully Connected (FC) Layer
 - Number of neurons = Number of ICD codes (e.g., 2000 neurons for 2000 diseases)
 - Each neuron corresponds to one disease.
 - Output = Logits for each ICD code

2. Forward Pass (How the Model Predicts)

Computing Logits

- **z_j** = W_j · E_fused + b_j
 - W_j → Weights for disease j
 - E_fused → Input embedding
 - b_j → Bias term
 - o **z_j** → Logit (raw prediction score)

Applying Activation Function (Sigmoid for Multilabel Classification)

• $\mathbf{p_j} = 1 / (1 + e^{-z_j})$

Each neuron independently predicts a probability for its corresponding disease.

3. Backpropagation (How the Model Learns)

Loss Function: Binary Cross-Entropy (BCE)

$$L = -\sum (from j=1 \text{ to } C) [y_j log(p_j) + (1 - y_j) log(1 - p_j)]$$

- ullet C o Total number of ICD codes
- y_j = 1 if the disease is present, otherwise 0

- Weight Updates:
 If the model predicts Malaria but the patient actually has Typhoid, it reduces
 W_malaria and increases W_typhoid.
- With each training iteration, the predictions are refined.

4. Why Does This Work for Fast Deployment?

- Simple to implement (Standard classification model with sigmoid + BCE loss).
- Trains quickly as it doesn't require attention mechanisms.
- Best for deployment
- Control over Conversation and Lab Reports Embedding
- Could alter their influence on the model easily
- Multi-disease support (predicts multiple ICD codes independently).