Radix sort čím se liší první průchod cyklem od ostatních?

V prvním cyklu prochází pole podle indexu, v ostatních podle ukazatelů.

Abstraktní Datový Typ.

Je definován množinou hodnot, jichž mohou nabývat prvky tohoto typu a množinou operací, definovaných nad tímto typem.

Binární strom.

Binární strom je buď prázdný, nebo sestává z jednoho uzlu zvaného kořen a dvou podstromů – levého a pravého. (Oba podstromy mají vlastnosti stromu).

Max. 30 slovy popsat řešení vložení prvku v jednosměrném lineárním seznamu před aktivní.

Vložím nový prvek metodou PostInsert za aktivní prvek, vezmeme hodnotu aktivního prvku a zapíšeme je do nového prvku, hodnotu aktivního prvku přepíšeme novými daty a posuneme aktivitu.

Dijskra na max. 10 slov - funkce + použití.

V poli může být více položek se stejným klíčem.

Používá se na binární vyhledávání.

Co děla stabilním ListMerge sort?

Stabilita se musí zajistit tím, že se použije oboustranně ukončená fronta (DEQUE) do níž se uloží začátky seznamů.

Popsat kde se používá Brentova varianta.

Je to varianta metody TRP s dvěmi rozptylovacími funkcemi. Je vhodná za podmínky, kdy je počet případů úspěšného vyhledávaní je častější než neúspěšného vyhledávaní s následným vkládáním.

Binární vyhledávací strom se zpětnými ukazateli:

Tento strom má význam pouze tehdy, chceme-li při průchodu InOrder vyhnout rekurzi nebo použití zásobníku. Platí pravidla:

- 1) Zpětný ukazatel kořene ukazuje na nil (všechny uzly vedlejší diagonály ukazují na nil...).
- 2) Zpětný ukazatel levého syna ukazuje na svého otce.
- 3) Zpětný ukazatel pravého syna dědí ukazatele od otce (ukazuje tam kam otec).

Popsat Sharovu metodu

Řeší případ, kdy skutečná velikost tabulky je jiná, než je hodnota vhodná pro Uniformní nebo Fibonacciho vyhledávání.

- 1. Krok: Rozdělení na největším indexu.
- 2. Krok: Zjišťuje se, zda je hledaný klíč nalevo či napravo od dělící hodnoty.

Definice pro výskově/váhově vyvážený strom.

- BS je váhovo vyvážený, keď pre všetky jeho uzly platí, že počet uzlov Lavého podstromu a Praveho podstormu sa rovnaju alebo lišia o 1.
- BS je výškovo vyvážený, keď pre je všetky jeho uzly platí, že výška Lavého podstromu a Pravého podstromu sa rovná alebo sa líši o 1.

časová složitost Omikron a Theta

Definice Výrazu

Předpis na získání hodnoty daného typu a je současně nositelem této hodnoty.

MacLarenov algoritm.

Uspořádá pole seřazené bez přesunu na místě samém - IN SITU.

První prvek seznamu se vymění s prvkem pole na indexu 1. Tím se nejmenší položka dostane na své místo. Na prvek, který byl z prvního indexu pole odsunut jinam však některý prvek ukazoval. Je třeba ho najít a změnit jeho ukazatel tak, aby místo na první index ukazoval na místo, kam byl první odsunut.

Tím je první prvek ošetřen. Dalším "prvním" se stane index o jednu větším a cyklus pokračuje tak dlouho, až se vymění předposlední (Max - 1) prvek, kdy končí.

Algoritmus pro vyčíslení výrazů v postfixové notaci s použitím zásobníku ve slovním vyjádření:

- 1) Zpracovávej řetězec zleva doprava;
- 2) Je-li zpracovávaným prvkem operand, vlož ho do zásobníku;
- 3) Je-li zpracovávaným prvkem operátor, vyjmi ze zásobníků tolik operandů, kolikanární je operátor, proveď danou operaci a výsledek uloží na vrchol zásobníku;
- 4) Je-li zpracovávaným prvek omezovač "=", je výsledek na vrcholu zásobníku
 - **-Vedlejší jev** je pojem, kterým se označuje změna hodnoty globální proměnné uvnitř těla procedury. Častým případem je vstupní parametr předávaný odkazem.

-Binární vyhledávání.

Provádí se nad seřazenou množinou klíčů s náhodným přístupem (v poli). Metoda připomíná metodu půlení intervalu pro hledání jediného kořene funkce v daném intervalu. Hlavni vlastností binárního vyhledávání je jeho složitost, která je v nejhorším případě logaritmická log₂(n).

- -Řazení je uspořádání položek podle relace lineárního uspořádání na klíčí.
- -Stabilita je vlastnost řadicího algoritmu, která vyjadřuje, že mechanizmus algoritmu zachovává relativní pořadí klíčů se stejnou hodnotou.

-Explicitní a implicitní zřetězení.

Při explicitním zřetězení obsahuje prvek adresu následníka.

Při implicitním zřetězení je adresa následníka funkcí adresy předchůdce.