Problems

- 1. Non-relativistic particle in homogeneous magnetic field: Consider the motion of a non-relativistic point particle in a static homogeneous magnetic field, ignoring radiation. Assume \vec{B} is in the z direction, $\vec{B}(\vec{r},t) = B_0 \hat{z}$.
 - (a) (20 pts) Starting from the Lorenz force, derive the trajectory $\vec{r}_0(t)$ of the particle and identify the non-relativistic cyclotron frequency. What is the change of kinetic energy of the particle with time?
- 2. Fields in a hollow cylinder: Using cylindrical coordinates (ρ, φ, z) , consider electric and magnetic fields

$$\vec{E} = \hat{\rho} \frac{c_1}{\rho}, \qquad \vec{B} = \hat{\varphi} \frac{c_2}{\rho},$$

with constant c_1 and c_2 inside the volume bounded by $a \le \rho \le b$, i.e. inside an infinitely long cylinder with a hole.

- (a) (10 pts) Determine the Poynting vector \vec{S} inside the volume.
- (b) (10 pts) Determine the total flux of energy in the fields through a cross-sectional surface with $a \le \rho \le b$.
- (c) (10 pts) Determine the energy per unit length $d\mathcal{E}/dz$ and the momentum per unit length $d\vec{p}/dz$ in the fields (for $a \leq \rho \leq b$).
- 3. Force due to a plane wave: An incident monochromatic plane wave described by a vector potential $\vec{A} = \vec{A}_0 \cos(\omega t \vec{k}\vec{r})$ is completely absorbed by a sphere of radius R.
 - (a) (10 pts) Find the electric and magnetic fields. (Take into account that for a plane wave $\vec{k}\vec{A}=0$.)
 - (b) (20 pts) Determine the Maxwell's stress tensor.
 - (c) (20 pts) Find the force \vec{F} exerted by the wave on the sphere averaged over the period $T = 2\pi/\omega$ using the result of part (b).