Root systems

$$V: E^* \longrightarrow E$$
; $\chi' = \frac{2V(\alpha)}{(\alpha, \alpha)} \in E$
 $(\cdot, \cdot) \circ n E^*$
 $\chi' = \frac{2V(\alpha)}{(\alpha, \alpha)} \in E$
 $\chi' = \frac{2V(\alpha)}{(\alpha, \alpha)} \in E$

$$S_{\alpha}: E \rightarrow E$$
 $\phi \mapsto \phi - \chi(\phi) \cdot \alpha'$
 $S_{\alpha}: E^{*} \rightarrow E^{*}$
 $\gamma \mapsto \gamma - \chi(\alpha') \cdot \alpha$

(2)
$$\alpha, c \alpha \in \mathbb{R} \implies c = \pm 1$$

(3)
$$\alpha, \beta \in \mathbb{R} \implies \frac{2(\alpha, \beta)}{(\alpha, \alpha)} = \beta(\alpha^{\vee}) \in \mathbb{Z}$$

$$A, \times A,$$

32

«,+ α2, 3x, +2x2, etc.

Positive Negative roots

For $\alpha \in E^* \setminus \{0\}$, $H_{\alpha} = Ker(\alpha) \subset E$ (hyperplane)

E° \ UHa - disconnected space

I called a Chamber

Note: for any connected component ECE° and KER, wither XXX >0 tre ?

or a(x) <0 yxee

Choose a connected component
$$C^{\circ} \subset E^{\circ}$$
, fundamental chamber $R_{+} = \{x \in R \mid x(x) > 0 \ \forall x \in C^{\circ}\}$

$$R_{-} = \{x \in R \mid x(x) < 0 \ \forall x \in C^{\circ}\}$$

 $R = R_{\perp} \sqcup R_{\perp}$; $R_{\perp} = -R_{\perp}$.

Simple roots

XER is called a wall of a chamber CCE°

if
$$\alpha(x) > 0 \ \forall x \in \mathbb{Z}$$

and $\overline{\mathbb{C}} \cap H_{\alpha}$ is of co-dimension 1.
$$(\dim = \dim \overline{\mathbb{C}} - 1).$$

Simple roots = walls of
$$C^{\circ}$$
.

 $\{\alpha_i\}_{i \in I} \subset R_{+}$

Lemmer if
$$i \neq j \in I_j \subset \mathbb{R}_{>0}$$
,
then $\alpha_i - C\alpha_j \notin \mathbb{R}$.

prof di e a; are not proportional.

If
$$\alpha = \alpha_i - c\alpha_j \in \mathbb{R}$$
, then $\alpha(x)$ with $\alpha \geq 0$ on α

Cor
$$\forall i \neq j \in I$$
, let $a_{ij} = \frac{2(\alpha_{i}, \alpha_{j})}{(\alpha_{i}, \alpha_{j})}$.
Then $\alpha_{ij} \in \mathbb{Z}_{\epsilon_{0}}$

Page 4

$$\begin{array}{ccc}
& \alpha_{i}, \alpha_{j} \in \mathbb{R} \implies S_{\alpha_{i}}(\alpha_{j}) = \alpha_{j} - \frac{2(\alpha_{i}, \alpha_{j})}{(\alpha_{i}, \alpha_{i})} \alpha_{i}
\end{array}$$

$$\begin{array}{ccc}
& \alpha_{i} - \alpha_{ij} \alpha_{i}
\end{array}$$

terms \rightarrow $\alpha_{ij} \leq 0$ $\alpha_{ij} \in \mathbb{Z}$ by (3)

Prop {x;} i e 7 is a bosis of E*.

Pf (linear independence). By contradiction

Assume $\sum_{t=1}^{p} C_t \alpha_{i_t} = 0$ is a linear rel^m

where each $C_t \in \mathbb{R}_{>0}$ $(C_1 = 1)$

there $-\alpha_{i} = \sum_{t=2}^{p} C_{t} \alpha_{i_{t}}$ contradiction $-on \ e^{\circ}$

So if there is a liner relamong $\{d_i\}_{i \in I}$, it must be of the form $\beta = \sum_{i=1}^{p} c_i \alpha_{i} = \sum_{k=0}^{q} d_k \alpha_{ik}$

Page 5

where Cj, dk & Rso, {dij} disjoint from {dix }?

$$(\beta, \beta) = \sum_{j,k} C_j d_k (\alpha_{ij}, \alpha_{ik}) \leq 0$$

but (', ') is positive definite.

So { Xi} ie] is lin. in Lep.

(spanning)

Since R spans E*, it is enough to show that $\forall x \in R$, $\{x\} \cup \{x_i\}_{i \in I}$ is linearly dependent.

If $\{x\} \cup \{x\}_{i \in I}$ is linearly independent then we can find $x, g \in C^{\circ}$ s.t. $\alpha(x) > 0$, $\alpha(y) < 0$.

(find
$$x$$
 s.l.
 $\alpha_i(x) = 1$ $\forall i$ $\alpha_i(y) = 1$
 $\alpha(x) = 1$ $\alpha(y) = -1$

IJ

Certan mutrix of R

$$A = (\alpha_{ij})_{i,j \in I} \quad \text{where}$$

$$\alpha_{ij} = \frac{2(\alpha_{i}, \alpha_{i})}{(\alpha_{i}, \alpha_{i})} = \alpha_{j}(\alpha_{i}^{v}) \in \mathbb{Z}_{\geq 0}$$
if $i \neq j$

Rank 2 classification:
$$(up to switching i \leftrightarrow j)$$
.

we have the following options for (a_{ij}, a_{ji})
 $(0,0)$
 $(-1,-1)$
 $(-2,-1)$

'double edge'

 $(-3,1)$

'double edge'

 $(-3,1)$

+< sign ,

 $|d_{j}|^{2} = 3|d_{i}|^{2}$

the resulting graph is called the Pynkin diagram for R.

(-3,-1)

not positive-definite
$$A\left(\frac{1}{2}\right) = 0$$

Connected

List of all Dynkin diagrams which arise from root systems:

$$-2 \neq 3 - 4$$

$$\boxed{E_4}$$

1 ≠ 2

Rank = |I| = dim E*

to prove classification,

get matrix of bad diagram,

find vector that kills it.