Andy Gregoire

Mike McCall

CIS 575

Assignment 5

Code submitted separately.

Methods and Results

We timed sorting arrays 500 times incrementing array size by 10 from 10 to 500. Each sort at a certain array size was executed on random values. The time only accounts for the actual sorting, not the population of arrays. For example, the tenth row of the table below denotes that it took 1230 milliseconds to sort 500 arrays of size 100 with newly generated random values for each array. This randomization helps keep results close to average runtimes.

Array Length	Run time (ms)
10	0
20	20
30	50
40	80
50	210
60	250
70	540
80	680
90	720
100	1230
110	1840
120	2020
130	2110
140	2330
150	3670
160	5000
170	5800
180	6020
190	6280
200	6360
210	6920
220	10370
230	12720
240	14900

250	16760
260	17700
270	17980
280	18730
290	18870
300	19000
310	20380
320	27130
330	30990
340	35860
350	41190
360	44490
370	48900
380	51430
390	52870
400	53620
410	54880
420	55920
430	56170
440	56500
450	56660
460	60610
470	61550
480	81140
490	91590
500	94990

Analysis

We did our regression analysis using Excel, so we were limited to whole number polynomial regression. We did best fit lines of order 2 and 3. The cubic polynomial had a slightly better fit, based on the R^2 value given. This correlates with expected results, because the theoretical k is log(1.5, 3) = 2.7.

Floors <-> Ceilings

If we swap floors with ceilings and ceilings with floors, the array will not sort completely. Consider the array $A = \{5, 2, 6, 3\}$.

The first recursive call will sort the first two elements. The second recursive call will sort the last two elements. The third will do the first two again. The lack of overlap leaves the sorting incomplete. The array ends up as $A = \{2, 5, 3, 6\}$.