Laboratorio I: Pendolo semplice Analisi della dipendenza del periodo dalla massa, ampiezza e lunghezza

Dipartimento di Fisica E.Fermi - Università di Pisa

Di Ubaldo Gabriele

1 Introduzione

1.1 Teoria

Obiettivo: Studiare il periodo del pendolo semplice e determinare se esso sia legato proporzionalmente al raggio di oscillazzione, alla massa oscillante e alla ampiezza. Il periodo del pendolo per piccole oscillazioni è dato dalla formula:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

Ottenuta sviluppando al primo ordine $\sin \theta = \theta$. Il periodo quadro dovrebbe dipendere linearmente dalla lunghezza e non dipendere in alcun modo da massa o dall'ampiezza iniziale.

1.2 Apparato sperimentale

- Pendolo semplice fissato alla parete con meccanismo per variare il perno
- \bullet Cronometro di risoluzione 0.01s
- $\bullet\,$ Bilancia di precisione di risoluzione 0.001g
- $\bullet\,$ Metro a nastro di risoluzione 1mm
- Calibro ventesimale di risoluzione 0.05mm
- Tre pesetti di masse: $m_1 = 85.967g; m_2 = 53.107g; m_3 = 31.175g$
- $\bullet\,$ Anello per appendere i solidi di massa $m_A=0.459g$ e diametro $d_A=10mm$

2 Esperimento

 1 Per eliminare possibili errori sistematici (parallassi) abbiamo mantenuto costante la distanza del pendolo dalla parete d=54mme abbiamo fatto oscillare il pendolo in un piano parallelo alla parete e perpendicolare al suolo. Il valore di θ è stato determinato prendendo un cateto

¹Tutte le misure prese sono da intendersi con il corrispondente errore dato dalla risoluzione dello strumento

arbitrariamente piccolo (il più grande è c=50mm), così da poter approssimare $\sin\theta\simeq\theta$, e utilizzando $\arcsin(\frac{c}{l})$. L'approssimazione è valida in quanto per l'angolo da noi scelto si ha $\sin 0.096=0.0958\ldots$ La propagazione dell'errore per le ampiezze è stata fatta tramite derivate parziali:

$$\Delta\theta = c/l^2 \frac{1}{1 + (c/l)^2} \Delta l + 1/l \frac{1}{1 + (c/l)^2} \Delta c$$
 (2)

2.1 Dipendenza dalla massa m

Durante l'esperimento manteniamo costanti la lunghezza $l=l_p+l_A+l_m=503\pm 1mm$ e l'angolo $\theta=0,096\pm0,002rad$ del pendolo attraverso dei segni sulla carta millimetrata posta dietro il pendolo. Sono state effettuate 5 misurazioni di 10 oscillazioni ognuna(T=10t) per 3 masse. Al variare della massa campione, è stato necessario modificare il punto di applicazione del pendolo, così come la lunghezza del filo, per mantenere costanti l'angolo e la lunghezza I risultati ottenuti sono descritti dalla seguente tabella:

Tabella 1: Massa-periodo

m(g)			T(s)			$T_m(s)$
85.967	14.15	14.25	14.29	14.17	14.24	14.22 ± 0.05
53.107	14.18	14.32	14.13	14.22	14.28	14.23 ± 0.07
31.175	14.31	14.20	14.27	14.19	14.16	14.23 ± 0.06

Abbiamo fatto un fit con Gnuplot (algoritmo di Marquardt-Levenberg) con i seguenti risultati:

$$\chi^2 = 0.0024 \quad \chi^2 = 0.0024 \quad a = -0.0002 \pm 35.36\% \\ b = 14.24 \pm 9.032\%$$
 (3)

Questi risultati confermano l'indipendenza del periodo dalla massa come predetto dal modello fisico.

2.2 Dipendenza dall'ampiezza θ

0.872

14.23

14.16

Abbiamo mantenuto costanti la lunghezza $l = 503 \pm 1mm$ e la massa $m = m_1 + m_A = 86, 426 \pm 2g$ Sono state effettuate 5 misurazioni di 10 oscillazioni ognuna(T = 10t) per 5 angoli diversi. I risultati ottenuti sono descritti dalla seguente tabella:

 $\theta(rad)$ T(s) $T_m(s)$ 0.174 14.25 14.28 14.35 14.17 14.14 14.24 ± 0.08 0.34914.19 14.34 14.1614.2614.28 14.25 ± 0.06 0.52314.3314.20 14.31 14.25 14.25 ± 0.06 14.1814.2214.260.69814.25 14.3414.28 14.27 ± 0.04

14.19

14.31

 14.23 ± 0.05

14.24

Tabella 2: Ampiezza-periodo

I risultati del fit sono:

$$\chi 2 = 0.42 \quad \chi 2_r = 0.14 \quad a = -0.004 \pm 1112\% \quad b = 14.25 \pm 0.2\%$$
 (4)

Dal χ^2 possiamo confermare che come predetto dal nostro modello fisico, il periodo è indipendente dall'ampiezza. L'altissimo errore sul coefficiente angolare a potrebbe sembrare negativo ma ha senso che sia così poichè a deve essere prossimo a 0 e quindi è normale che l'errore relativo sia altissimo.

2.3 Dipendenza dalla lunghezza l

Manteniamo costanti la massa $m=m_1+m_A=86,426\pm 2g$ e l'ampiezza $\theta=0,096\pm 0,002rad$. Sono state effettuate 5 misurazioni di 10 oscillazioni ognuna(T=10t) per 5 angoli diversi. I risultati ottenuti sono descritti dalla seguente tabella:

Tabella 3: Lunghezza-periodo

l(mm)			T(s)			$T_m(s)$
519	14.48	14.62	14.54	14.34	14.38	14.47 ± 0.1
582	15.35	15.42	15.21	15.24	15.45	15.33 ± 0.1
662	16.40	16.22	16.36	16.27	16.44	16.34 ± 0.08
734	17.21	17.25	17.15	17.09	17.28	17.20 ± 0.07
786	17.81	17.71	17.69	17.85	17.88	17.79 ± 0.07

Abbiamo fatto un fit lineare tra la lunghezza e il periodo quadro ottenendo i seguenti risultati:

$$\chi^2 = 0.005 \quad \chi_r^2 = 0.0017 \quad a = 0.004 \pm 0.3\% \quad b = 0.014 \pm 39\%$$
 (5)

Il valore del χ^2 conferma la validità del modello fisico. L'intercettà è compatibile con 0 come indica $T^2=\frac{4\pi^2}{g}l$ e dal coefficiente angolare possiamo stimare g.

$$g = 9.84 \pm 0.02 m/s^2 \tag{6}$$

Valore molto vicino a quello di Pisa ma non compatibile, probabilmente per ua sottostima dell'errore.

3 Conclusione

In base ai risultati ottenuti dagli esperimenti, si può assumere la dipendenza del periodo del pendolo solo da l (quadratica), escludendo,quindi, m e θ .