几何:

2. 已知
$$\overrightarrow{OA} = i + j$$
, $\overrightarrow{OB} = j + 2k$,则 $\overrightarrow{OA} \times \overrightarrow{OB} = \underline{\hspace{1cm}}$

4. 过点
$$(-2,3,-1)$$
,且以 $n = \{1,-2,-3\}$ 为法向量的平面方程是_____.

5. 点
$$(2,-1,1)$$
 到平面 $x+3y-z+1=0$ 的距离为______.

6. 过点
$$M_0(1,-1,4)$$
 且与平面 $\Pi: 2x-3y+z-5=0$ 垂直的直线方程为_____.

7. 两直线
$$L_1: \frac{x-3}{1} = \frac{y+1}{2} = \frac{z-3}{1}$$
 与 $L_2: \frac{x+2}{2} = \frac{y+1}{1} = \frac{z}{-1}$ 的夹角为_____.

8. 直线
$$\frac{x-1}{1} = \frac{y+2}{4} = \frac{z}{-1}$$
 与平面 $x-2y+2z+1=0$ 的夹角为______.

- 9. 由 xoy 坐标面上的曲线 $5x^2 + 3y^2 = 8$ 绕 y 轴旋转一周所成的旋转曲面的方程为______.
- 10. 将 xoz 坐标面上的抛物线 $z^2 = 5x$ 绕 x 轴旋转一周所生成的旋转曲面的方程为______.

11. 曲面
$$y = x^2 + z^2$$
 是 yoz 平面上的曲线 ________ 绕 _____ 轴旋转的旋转曲面。

12. 二次曲面
$$\frac{x^2}{4} - \frac{y^2}{16} + \frac{z^2}{9} = 1$$
被 XOY 坐标平面截得的曲线方程为______.

13. 二次曲面
$$\frac{x^2}{4} - \frac{y^2}{16} + \frac{z^2}{9} = 1$$
 被平面 $y = 3$ 截得的曲线方程为______.

14. 平面
$$2x-3y+z-5=0$$
 与平面 $x-2y+2z+1=0$ 的夹角为______

15. 已知三角形 ABC 的顶点分别是 A(1,-2,3), B(-3,4,5), C(2,4,6), 求三角形 ABC 的面积.

16. 求过点
$$A(2,0,-3)$$
 且与直线 $l:\begin{cases} x-2y+4z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程.

17.设平面过点(5,-7,4),且在x,y,z轴上的截距相等,求此平面的方程.

18. 证明: 直线
$$l: \frac{x}{1} = \frac{y+1}{2} = \frac{z-3}{-2}$$
 与平面 $\pi: x + 2y - 2z - 1 = 0$ 垂直,并求 l 与 π 的 交点.

19. 求点
$$P = (-1,1,4)$$
 到直线 $L: \frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{2}$ 的距离.

多元函数微分学

1. 极限
$$\lim_{\substack{x \to 1 \ y \to 0}} \frac{\arctan(x+y)}{\sqrt[3]{x^3+y}} = \underline{\hspace{1cm}}$$

2. 函数
$$y = \sqrt{y - x} + \frac{\ln x}{\sqrt{1 - x^2 - y^2}}$$
 的定义域为______.

3. 设函数
$$f(x,y) = x^2 + y^2 + xy \ln\left(\frac{y}{x}\right)$$
, 则 $f(kx,ky) = \underline{\hspace{1cm}}$.

5.
$$\forall z = x^3 y^2 - x^2 - e^y$$
, $\bigcup dz = \underline{\hspace{1cm}}$.

6. 函数
$$u = x^2 + y^2 + z^2$$
在点 $M(1.2, -2)$ 处的梯度 $gradu|_{M} =$ ______.

7. 曲线
$$x = t^2 - 1$$
, $y = t + 1$, $z = t^3$ 在点 $(0, 2, 1)$ 处的切向量为______.

8. 曲面
$$xy + xz + zy = 1$$
 在点 $(1, -2, -3)$ 处的切平面的法向量为______.

9. 函数
$$z = xy^2$$
 在点(1, 2)沿 $\bar{a} = \{1,1\}$ 方向的方向导数是______.

10. 设
$$f(x, y, z) = \ln(xy + z)$$
,则 d $f(1,2,0) =$ ______.

11. 设函数
$$z = z(x,y)$$
 由方程 $\sin x + 2y - z = e^z$ 所确定,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$.

12. 函数
$$z = x^2 - xy + y^2 - 2x + y$$
 的极小值点为______.

13. 设
$$z = xf(x, y), f(x, y)$$
 具有二阶连续偏导数, $\frac{\partial f}{\partial y}\Big|_{(0,1)} = 2$,则 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{(0,1)}$

14. 设函数 f(x,y) 在点 (a,b) 处的偏导数存在,则 $\lim_{x\to 0} \frac{f(a+x,b)-f(a-x,b)}{x} = _-$

17. 设函数
$$z = \frac{y}{x}$$
, 求 $dz\Big|_{(1,2)}$, 并求 $x = 2$, $y = 1$, $\Delta x = 0.1$, $\Delta y = -0.2$ 时的全微分.

18.
$$z = f(xy, x^2y^2), f$$
二阶偏导连续,求 $\frac{\partial^2 \mathbf{z}}{\partial x \partial y}$,

- 19. 求函数 $f(x, y, z) = xy^3z$ 在点 A(5, 1, 2) 处沿着从 A 到点 B(9, 4, 14) 方向的方向导数.
- 20. 求函数 $u = xy^2z^3$ 在点 (1, 1, 1) 处方向导数的最大值与最小值.
- 21. 求旋转抛物面 $z = 2x^2 + 2y^2$ 在点 $(-1, \frac{1}{2}, \frac{5}{2})$ 处的切平面和法线方程.
- 22. 求圆锥曲面 $x^2 + y^2 = 2z^2$ 在点 (1,-1,1) 处的切平面和法线方程.
- 23. 求曲线 $\begin{cases} x y z = 1 \\ x^3 y^2 z^3 = 1 \end{cases}$ 在点 P(1,1,-1) 处的切线及法平面方程.
- 24. 求 $f(x, y) = x^3 + y^3 3xy$ 的极值.
- 25. 修建一座容积为 V, 形状为长方体的厂房,已知屋顶每单位面积的造价是墙壁每单位面积造价的两倍,地面造价不计,问如何设计,可使其造价最低?

重积分

- 1. 估计下列积分值,设 $I = \iint_D (2x^2 + y^2 + 2)d\sigma$ $D = \{(x, y) | x^2 + y^2 \le 3\}$,则______.
- 2. $I = \iint_D (xy^2 + \sin x \sin y) d\sigma = ____$,其中 D 是由 $y = x^2$, y = 1 围成的平面区域。
- 3. 设 f(x,y) 是连续函数,则二次积分 $\int_0^1 dx \int_0^x f(x,y) dy$ 改变积分次序后为_____.
- 4. 二次积分 $\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx$ 改变次序后为_____.
- 5. 将积分 $\int_0^2 dx \int_0^x f(\sqrt{x^2 + y^2}) dy$ 化为在极坐标系中先对 r 积分的累次积分 .
- 6. $I_1 = \iint_D (x+y)d\sigma$, $I_2 = \iint_D (x+y)^2 d\sigma$, $I_3 = \iint_D (x+y)^3 d\sigma$,

D由
$$x = 0, y = 0, x + y = 1$$
围成,则_____.

- 7. 计算二重积分 $\iint_D |x| dxdy$, 其中 $D: x^2 + y^2 \le a^2, y \ge 0$.
- 8. 计算二次积分 $\int_{-2}^{2} dx \int_{0}^{\sqrt{4-x^2}} \sqrt{x^2+y^2} dy$

- 9. 计算二重积分 $\iint\limits_D (x+2y)d\sigma$,其中 D 是由 $y=2x^2$, $y=x^2+1$ 围成的闭区域.
- 10. 计算 $\int_0^1 dy \int_y^1 e^{x^2} dx$.
- 11. 设 Ω 是由 $z = \sqrt{x^2 + y^2}$ 及 z=1 所围的有界闭区域,计算 $\iint_{\Omega} (x^2 + y^2 + z) \ dv$.
- 12. 计算 $\iint_{\Omega} z^2 dv$, 其中 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 及平面z = 1, z = 2围成的立体.
- 13. 计算三重积分 $\iint_{\Omega} x dx dy dz$,其中 Ω 是由坐标面 x = 0, y = 0 , z = 0 及平面 x + y + z = 1 所围成的四面体.
- 14. 计算 $\iint_{\Omega} \sqrt{x^2 + y^2} dv$, 其中 Ω 由 $z = x^2 + y^2$ 及 $z = \sqrt{x^2 + y^2}$ 围成
- 15. 计算三重积分 $\iint_{\Omega} (x^2 + y^2 + z^2) dv$, 其中 Ω 是由球面 $x^2 + y^2 + z^2 = 1$ 所围成的闭区域.
- 16. 求由曲面 $z = x^2 + y^2$ 及 z = 4 所围成立体的体积及表面积。
- 17. 均匀物体(密度 μ 为常数)占有的闭区域由 $z=\sqrt{x^2+y^2}$ 及z=1所围成,求物体的质心和转动惯量 I_z .

曲线积分与曲面积分

- 1. 若 L 为 $x^2 + y^2 = R^2$,则 $\oint_L (x^2 + y^2)^n ds = _____.$
- 3. $\oint_L xy^2 dy x^2 y dx =$ ______. 其中 L 是圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > 0)$ 的正向.
- 4. $\forall I = \int_{L} y^{2} ds$, $L \supset y = 2x, 0 \le x \le 1$, $\bigcup I = \underline{\hspace{1cm}}$.
- 5.计算 $\int_{\Gamma} \frac{z^2}{x^2 + y^2} ds$, 其中 Γ 为螺线: $x = a \cos t$, $y = a \sin t$, z = at ($0 \le t \le 2\pi$).
- 6. 计算 $\oint_{C} (x+y)ds$, L 是以O(0,0), A(1,0), B(0,1) 为顶点的三角形边界.

- 7. 计算 $\int_{L} (x+\sqrt{y}) ds$, 其中 L 是抛物线 $y=x^2$ 上点 (0,0) 与 (1,1) 之间的一段弧.
- 8. 计算曲线积分 $\int_{L} 2xydx + x^2dy$,其中 L 为抛物线 $y = x^2$ 上从点 O(0,0) 到点 B(1,1) 的一段弧.
- 9. 计算曲线积分 $\int_{\Gamma} x dx + y dy + z dz$, 其中 Γ 为从点 A(1,1,1) 到点 B(2,3,4) 的直线段.
- 10. 计算 $\int_L (x^2 2xy) dx + (y^2 2xy) dy$, 其中 L 是抛物线 $y = x^2$ 上从点 (-1,1) 到点 (1,1) 的一段弧.
- 11. 试确定正的常数 λ ,使曲线积分 $\int_L xy^\lambda dx + x^\lambda y dy$ 与路径无关,并计算 $I = \int_{(1,1)}^{(0,2)} xy^\lambda dx + x^\lambda y dy$ 的值.
- 12. 计算曲线积分 $\int_L (x+2y)dx + (x-2y)dy$,其中 L 是抛物线 $y=x^2$ 及直线 y=x 所围成的区域的正向边界曲线.
- 13. 验证在整个 xoy 面内, $(2x + y^3)dx + (3xy^2 + 4)dy$ 是某个函数 u(x,y) 的全微分, 并求出 u(x,y).
- 14. $\iint_{\Sigma} (x^2 + y^2) dS$, 其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被平面z = 1所截下的部分曲面.
- 15. $\iint_{\Sigma} (z + 2x + \frac{4}{3}y) dS$, 其中 Σ 为平面 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ 在第一卦限中的部分.
- 16. 计算曲面积分 $\bigoplus_{\Sigma} (x-y)dxdy + (y-z)xdydz$,其中 Σ 为柱面 $x^2 + y^2 = 1$ 及平面z = 0,z = 3所围成的空间闭区域 Ω 的整个边界曲面的外侧.
- 17. 计算 $\iint_{\Sigma} x(y^2 + z^2) dy dz + x^2 z dx dy$, 其中 \sum 为球面 $x^2 + y^2 + z^2 = a^2$ 的外侧.
- 18. 计算曲面积分 $\iint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$,其中 Σ 为球面 $x^2 + y^2 + z^2 = R^2$ 的外侧.
- 19. 己知 $\vec{A} = (x^3 x)\hat{i} + (y^3 y)\hat{j} + (z xy)\hat{k}$, 求散度 $div\vec{A}$.

无穷级数

1. $\lim_{n\to\infty} u_n = 0$ 是级数 $\sum_{n=1}^{\infty} u_n$ 收敛的______(充分、必要或充要)条件.

- 2. 级数 $\sum_{n=1}^{\infty} \frac{n}{2n-1}$ 的敛散性是______
- 3. 级数 $\sum_{n=1}^{\infty} \frac{2^n + 4^n}{3^n}$ 的敛散性是______.
- 5. 判断级数 $\frac{1}{2} + \frac{2}{5} + \frac{3}{8} + \frac{4}{11} + \cdots$ 的敛散性.
- 6. 判定级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + n}}$ 的收敛性.
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n}$ 的敛散性.
- 8. 判别级数 $\frac{1}{10} + \frac{1 \cdot 2}{10^2} + \frac{1 \cdot 2 \cdot 3}{10^3} + \dots + \frac{n!}{10^n} + \dots$ 的敛散性.
- 9. 判别级数 $\sum_{n=1}^{\infty} (1-\frac{1}{n})^{n^2}$ 的敛散性.
- 10. 判别级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 的敛散性,若收敛,则说明是绝对收敛还是条件收敛.
- 11. 判定级数 $\sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n}$ 是否收敛,若收敛,指出是绝对收敛还是条件收敛.
- 12. 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ 的收敛半径及收敛域.
- 13. 求幂级数 $\sum_{n=1}^{\infty} 10^{2n} (2x-3)^{2n-1}$ 的收敛域.
- 14. 求幂级数 $\sum_{n=1}^{\infty} \frac{(x+1)^n}{2^n \cdot n}$ 的收敛域.
- 15. 求幂函数 $\sum_{n=1}^{\infty} nx^{n-1}$ 的收敛区间及和函数.
- 16. 求级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 在 (一1, 1) 内的和函数.
- 17. 将函数 $f(x) = \frac{1}{x^2 + 4x + 3}$ 展开成 x 的幂级数.

- 18. 求函数 $f(x) = xe^{x}$ 在 x = 1处的幂级数展开式.
- 19. 将函数 $f(x) = \frac{1}{x^2 4x + 3}$ 展开为(x+1)的幂级数.
- 20. 设函数 f(t) 是以 2π 为周期的周期函数,它在 $[-\pi,\pi)$ 内的表达式为

$$f(t) = \begin{cases} 0 & -\pi \le t < 0 \\ 1 & 0 \le t < \pi \end{cases}$$
, 将 $f(t)$ 展开为傅里叶级数,并讨论其收敛性.

- 21. 将函数 f(x) = x, $(0 \le x \le \pi)$ 展开成正弦级数.和余弦级数.
- 22. f(x) 是以周期为 2π 的周期函数,它在 $[-\pi,\pi]$ 的表达式为

$$f(x) = \begin{cases} x & -\pi \le x \le 0 \\ 0 & 0 \le x \le \pi \end{cases}, \quad f(x)$$
 的傅立叶级数的和函数为 $S(x)$,

则
$$S(\pi) = ($$
), $S(1) = ($)