Lab: Logistic Regression, LDA, QDA, and KNN

Jonathan Bryan April 19, 2018

4.6.1 The Stock Market Data

```
library(ISLR)
names(Smarket)
## [1] "Year"
                   "Lag1"
                                "Lag2"
                                             "Lag3"
                                                         "Lag4"
                                                                      "Lag5"
## [7] "Volume"
                    "Today"
                                "Direction"
dim(Smarket)
## [1] 1250
summary(Smarket)
##
                                             Lag2
         Year
                        Lag1
                           :-4.922000
                                               :-4.922000
##
   Min.
           :2001
                   Min.
                                        Min.
    1st Qu.:2002
                   1st Qu.:-0.639500
                                        1st Qu.:-0.639500
##
##
    Median:2003
                   Median : 0.039000
                                        Median: 0.039000
##
    Mean
           :2003
                   Mean
                           : 0.003834
                                        Mean
                                               : 0.003919
##
    3rd Qu.:2004
                   3rd Qu.: 0.596750
                                        3rd Qu.: 0.596750
##
    Max.
           :2005
                   Max.
                           : 5.733000
                                        Max.
                                               : 5.733000
##
         Lag3
                              Lag4
                                                  Lag5
##
           :-4.922000
                        Min.
                                :-4.922000
                                             Min.
                                                     :-4.92200
                        1st Qu.:-0.640000
                                             1st Qu.:-0.64000
##
    1st Qu.:-0.640000
                        Median : 0.038500
    Median: 0.038500
                                             Median: 0.03850
##
    Mean
           : 0.001716
                                : 0.001636
                                             Mean
                                                     : 0.00561
                        Mean
    3rd Qu.: 0.596750
                         3rd Qu.: 0.596750
                                             3rd Qu.: 0.59700
                                                     : 5.73300
##
    Max.
           : 5.733000
                        Max.
                                : 5.733000
                                             {\tt Max.}
                          Today
        Volume
                                          Direction
##
           :0.3561
                             :-4.922000
                                          Down:602
##
   Min.
                     Min.
                     1st Qu.:-0.639500
   1st Qu.:1.2574
                                          Up :648
                     Median: 0.038500
##
   Median :1.4229
    Mean
           :1.4783
                     Mean
                             : 0.003138
##
    3rd Qu.:1.6417
                     3rd Qu.: 0.596750
##
    Max.
           :3.1525
                     Max.
                             : 5.733000
Correlation matrix
round(cor(Smarket[,-9]),3)
##
                         Lag2
                                 Lag3
                                        Lag4
                                               Lag5 Volume
                                                             Today
           Year
                  Lag1
## Year
                        0.031
                               0.033 0.036
                                             0.030
          0.030
                1.000 -0.026 -0.011 -0.003 -0.006 0.041 -0.026
## Lag1
## Lag2
          0.031 -0.026 1.000 -0.026 -0.011 -0.004 -0.043 -0.010
          0.033 -0.011 -0.026 1.000 -0.024 -0.019 -0.042 -0.002
## Lag3
          0.036 -0.003 -0.011 -0.024 1.000 -0.027 -0.048 -0.007
## Lag4
## Lag5
          0.030 -0.006 -0.004 -0.019 -0.027
                                             1.000 -0.022 -0.035
## Volume 0.539 0.041 -0.043 -0.042 -0.048 -0.022 1.000 0.015
## Today 0.030 -0.026 -0.010 -0.002 -0.007 -0.035 0.015 1.000
```

Plot Volume and Year

```
plot(x=Smarket$Year, y=Smarket$Volume,
    main = "Stock Market Volume over Time",
    xlab = "Year",
    ylab = "Share Volume")
```

Stock Market Volume over Time

Logistic Regression

```
glm.fit = glm(Direction ~ . -Year -Today, data = Smarket, family = binomial)
summary(glm.fit)
```

```
##
## glm(formula = Direction ~ . - Year - Today, family = binomial,
##
       data = Smarket)
##
## Deviance Residuals:
     Min
               1Q Median
                                      Max
##
                               3Q
## -1.446 -1.203
                    1.065
                                    1.326
                            1.145
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -0.126000
                           0.240736 -0.523
                                               0.601
## Lag1
               -0.073074
                           0.050167 -1.457
                                               0.145
## Lag2
               -0.042301
                           0.050086
                                     -0.845
                                               0.398
## Lag3
               0.011085
                           0.049939
                                     0.222
                                               0.824
                0.009359
                                     0.187
                                               0.851
## Lag4
                           0.049974
```

```
## Lag5
                0.010313
                           0.049511
                                      0.208
                                                0.835
## Volume
                0.135441
                           0.158360 0.855
                                               0.392
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1731.2 on 1249 degrees of freedom
## Residual deviance: 1727.6 on 1243 degrees of freedom
## AIC: 1741.6
##
## Number of Fisher Scoring iterations: 3
Accessing Coefficients
coef(glm.fit)
  (Intercept)
                        Lag1
                                     Lag2
                                                   Lag3
                                                                Lag4
## -0.126000257 -0.073073746 -0.042301344 0.011085108 0.009358938
##
                      Volume
           Lag5
## 0.010313068 0.135440659
summary(glm.fit)$coef
##
                   Estimate Std. Error
                                          z value Pr(>|z|)
## (Intercept) -0.126000257 0.24073574 -0.5233966 0.6006983
## Lag1
               -0.073073746 0.05016739 -1.4565986 0.1452272
               -0.042301344 0.05008605 -0.8445733 0.3983491
## Lag2
## Lag3
               0.011085108 0.04993854 0.2219750 0.8243333
## Lag4
                0.009358938 0.04997413 0.1872757 0.8514445
                0.010313068 0.04951146 0.2082966 0.8349974
## Lag5
                0.135440659 0.15835970 0.8552723 0.3924004
## Volume
summary(glm.fit)$coef[,4] #p-values
## (Intercept)
                      Lag1
                                  Lag2
                                              Lag3
                                                           Lag4
                                                                       Lag5
##
     0.6006983
                 0.1452272
                             0.3983491
                                         0.8243333
                                                      0.8514445
                                                                  0.8349974
        Volume
##
     0.3924004
##
Logistic Regression Prediction
glm.probs=predict(glm.fit, type = "response") #Use training data for predictions
round(glm.probs[1:10],3)
                                     6
                                           7
##
                               5
                                                             10
## 0.507 0.481 0.481 0.515 0.511 0.507 0.493 0.509 0.518 0.489
contrasts(Smarket$Direction)
##
        Uр
## Down 0
## Up
         1
Converting Probabilities into Direction
glm.pred = rep("Down", 1250)
glm.pred[glm.probs > .5] = "Up"
```

Confusion Matrix

```
table(glm.pred, Smarket$Direction)
##
## glm.pred Down Up
##
       Down 145 141
##
       Uр
             457 507
(145 + 507)/1250
## [1] 0.5216
mean(glm.pred == Smarket$Direction) #Accuracy
## [1] 0.5216
Cross Validation
train = Smarket$Year < 2005</pre>
Smarket.2005 = Smarket[!train,]
dim(Smarket.2005)
## [1] 252
Direction.2005 = Smarket$Direction[!train]
#Train new model
glm.fit = glm(Direction ~ . -Year -Today, family = binomial, data = Smarket, subset = train)
glm.probs = predict(glm.fit, newdata = Smarket.2005, type = "response")
#New predictions
glm.pred = rep("Down", nrow(Smarket.2005))
glm.pred[glm.probs > 0.5] = "Up"
table(glm.pred, Direction.2005)
           Direction.2005
##
## glm.pred Down Up
##
       Down
             77 97
              34 44
mean(glm.pred == Direction.2005) #Test set accuracy
## [1] 0.4801587
Refit the Logistical Regression with only Lag1 and Lag2
glm.fit = glm(Direction ~ Lag1 + Lag2, family = binomial, data = Smarket, subset = train)
glm.probs = predict(glm.fit, newdata = Smarket.2005, type = "response")
glm.pred = rep("Down" , nrow(Smarket.2005))
glm.pred[glm.probs > 0.5] = "Up"
table(glm.pred, Direction.2005)
           Direction.2005
##
## glm.pred Down Up
              35 35
##
       Down
##
       Uр
              76 106
mean(glm.pred == Direction.2005) #Test set accuracy
## [1] 0.5595238
```

Prediction for Specific Values

4.6.3 Linear Discriminant Analysis

```
library(MASS)
lda.fit = lda(Direction ~ Lag1 + Lag2, data= Smarket, subset = train)
lda.fit
## lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
## Prior probabilities of groups:
      Down
## 0.491984 0.508016
##
## Group means:
##
              Lag1
## Down 0.04279022 0.03389409
## Up -0.03954635 -0.03132544
##
## Coefficients of linear discriminants:
## Lag1 -0.6420190
## Lag2 -0.5135293
plot(lda.fit, main = "LDA Estimation")
```


LDA Prediction

```
lda.pred = predict(lda.fit, newdata = Smarket.2005)
names(lda.pred)
## [1] "class"
                   "posterior" "x"
lda.class = lda.pred$class
table(lda.class, Direction.2005)
##
            Direction.2005
## lda.class Down
                   Uр
##
        Down
                   35
##
               76 106
        Uр
mean(lda.class == Direction.2005) #Accuracy
## [1] 0.5595238
Changing LDA Thresholds
library(data.table)
## Warning: package 'data.table' was built under R version 3.4.4
library(dplyr)
##
## Attaching package: 'dplyr'
```

The following objects are masked from 'package:data.table':

```
##
##
       between, first, last
## The following object is masked from 'package:MASS':
##
##
       select
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
#Notice that the postive posterior probability corresponds to the null or "Down" days
sum(lda.pred$posterior[,1] >=0.5)
## [1] 70
sum(lda.pred$posterior[,1] < 0.5)</pre>
## [1] 182
df = data.frame(PostProb = round(lda.pred$posterior[1:20,1],3), Class = lda.class[1:20])
df_t = transpose(df)
colnames(df_t) = rownames(df)
rownames(df_t) = colnames(df)
knitr::kable(df_t[,1:10])
```

	999	1000	1001	1002	1003	1004	1005	1006	1007	1008
PostProb										
Class	Up	Up	Up	Up	Up	Up	Up	Up	Up	Up

knitr::kable(df_t[,11:20])

-	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018
PostProb	0.491	0.512	0.49	0.471	0.474	0.48	0.494	0.503	0.498	0.489
Class	Up	Down	Up	Up	Up	Up	Up	Down	Up	Up

Highest Predicted Probability is Low

```
sum(lda.pred$posterior[,1] > .90)
```

[1] 0

max(lda.pred\$posterior)

[1] 0.5422133

4.6.4 Quadratic Discriminant Analysis

```
qda.fit = qda(Direction ~ Lag1 + Lag2, data= Smarket, subset = train)
qda.fit
```

```
## Call:
## qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
## Prior probabilities of groups:
      Down
                  Uр
## 0.491984 0.508016
## Group means:
##
              Lag1
                           Lag2
## Down 0.04279022 0.03389409
       -0.03954635 -0.03132544
QDA Prediction
qda.class = predict(qda.fit, newdata=Smarket.2005, type = "response")$class
table(qda.class, Direction.2005)
           Direction.2005
## qda.class Down Up
              30 20
##
       Down
##
        Uр
              81 121
mean(qda.class == Direction.2005)
## [1] 0.5992063
4.6.5 K-Nearest Neighbors
#Set up KNN data
library(class)
train.X = Smarket[train,c("Lag1","Lag2")]
test.X = Smarket.2005[,c("Lag1","Lag2")]
train.Direction = Smarket[train,]$Direction
#KNN model where K=1 (very flexible)
set.seed(1)
knn.pred=knn(train.X,test.X,train.Direction,k=1)
table(knn.pred, Direction.2005)
##
          Direction.2005
## knn.pred Down Up
      Down 43 58
##
              68 83
mean(knn.pred == Direction.2005) #Accuracy
## [1] 0.5
#KNN model where K=3 (less flexible)
knn.pred=knn(train.X,test.X,train.Direction,k=3)
table(knn.pred, Direction.2005)
##
           Direction.2005
## knn.pred Down Up
      Down
              48 54
##
```

63 87

##

Uр

```
mean(knn.pred == Direction.2005) #Accuracy
## [1] 0.5357143
4.6.6 An Application to Caravan Insurance Data
dim(Caravan)
## [1] 5822
summary(Caravan$Purchase)
    No Yes
## 5474 348
348/nrow(Caravan)
## [1] 0.05977327
set.seed(1)
#KNN is sensitive to scale so we standardize the data
standardized.X = scale((Caravan[,-86]))
test = 1:1000
train.X = standardized.X[-test,]
test.X = standardized.X[test,]
train.Y = Caravan$Purchase[-test]
test.Y = Caravan$Purchase[test]
#Fit the new model
knn.pred = knn(train.X, test.X, train.Y, k=1)
mean(test.Y != knn.pred) #Error rate
## [1] 0.118
mean(test.Y != "No") #Empirical rate for purchased insurance
## [1] 0.059
table(knn.pred, test.Y)
##
           test.Y
## knn.pred No Yes
##
        No 873 50
       Yes 68
##
9/(68+9) #Sensitivity
## [1] 0.1168831
#Decreasing KNN flexibility gives us higher sensitivity
knn.pred = knn(train.X,test.X,train.Y,k=3)
table(knn.pred,test.Y)
##
           test.Y
## knn.pred No Yes
##
       No 920 54
##
       Yes 21 5
```

```
table(knn.pred,test.Y)[2,2]/(table(knn.pred,test.Y)[2,1]+table(knn.pred,test.Y)[2,2])
## [1] 0.1923077
knn.pred = knn(train.X,test.X,train.Y,k=5)
table(knn.pred,test.Y)
##
           test.Y
## knn.pred No Yes
##
       No 930 55
##
       Yes 11 4
table(knn.pred,test.Y)[2,2]/(table(knn.pred,test.Y)[2,1]+table(knn.pred,test.Y)[2,2])
## [1] 0.2666667
#Logistic regression comparison (0.5 cutoff)
glm.fit = glm(Purchase ~ ., family = binomial, data = Caravan[-test,])
glm.probs = predict(glm.fit, type = "response", newdata = Caravan[test,])
glm.pred = rep("No",1000)
glm.pred[glm.probs > 0.5] = "Yes"
table(glm.pred, test.Y)
##
          test.Y
## glm.pred No Yes
       No 934 59
##
        Yes 7
##
table(glm.pred, test.Y)[2,2] / (table(glm.pred, test.Y)[2,1] + table(glm.pred, test.Y)[2,2])
## [1] 0
#Logistic regression comparison (0.25) cutoff)
glm.pred[glm.probs > 0.25] = "Yes"
table(glm.pred, test.Y)
##
           test.Y
## glm.pred No Yes
##
       No 919 48
        Yes 22 11
table(glm.pred, test.Y)[2,2] / (table(glm.pred, test.Y)[2,1] + table(glm.pred, test.Y)[2,2])
## [1] 0.3333333
```