Лабораторная работа № 1

Моделирование сетей передачи данных

Доберштейн Алина Сергеевна

Содержание

1	Цел	ь рабо	ты	4
2	Зад	ание		5
3	Teo	ретиче	еское введение	6
4	Выі	іолнені	ие лабораторной работы	7
	4.1	Настро	ойка стенда виртуальной машины Mininet	7
		4.1.1	Настройка образа VirtualBox	7
		4.1.2	Подключение к виртуальной машине	8
		4.1.3	Настройка доступа к Интернет	8
		4.1.4	Обновление версии Minninet	9
		4.1.5	Настройка параметров XTerm	11
		4.1.6	Настройка соединения X11 для суперпользователя	12
	4.2	Основ	ы работы в Mininet	12
		4.2.1	Работа с Mininet с помощью командной строки	12
		4.2.2	Построение и эмуляция сети в Mininet с использованием графического	
			интерфейса	14
5	Выв	воды		18
Cı	шсон	к литер	атуры	19

Список иллюстраций

4.1	Импорт файла .ovf	7
4.2	Подключение по ssh	8
4.3	IP-адреса машины	8
4.4	Активация второго интерфейса	9
4.5	01-netcfg.yaml	9
4.6	Обновление версии mininet	10
4.7	Обновление версии мининет	11
4.8	XTerm	12
4.9	Редактирование xauth list	12
4.10	Запуск минимальной топологии	13
4.11	Команды net, links, h1 if config	13
4.12	Связь между хостами	14
4.13	Топология в MiniEdit	14
4.14	Назначение ІР-адресов	15
4.15	Связь между хостами	15
4.16	Автоматическое назначение IP-адресов	16
4.17	Связь между хостами	16
4.18	Сохранение проекта	17

1 Цель работы

Основной целью работы является развёртывание в системе виртуализации (например,в VirtualBox) mininet, знакомство с основными командами для работы с Mininet через командную строку и через графический интерфейс.

2 Задание

- 1. Настройка стенда виртуальной машины Mininet
- 2. Основы работы с Mininet

3 Теоретическое введение

Mininet (http://mininet.org/) — это виртуальная среда, которая позволяет разрабатывать и тестировать сетевые инструменты и протоколы. В сетях Mininet работают реальные сетевые приложения Unix/Linux, а также реальное ядро Linux и сетевой стек.

4 Выполнение лабораторной работы

4.1 Настройка стенда виртуальной машины Mininet

4.1.1 Настройка образа VirtualBox

Скачайла актуальный релиз ovf-образа виртуальной машины из репозитория. Переместила скачанный образ в каталог для работы и затем распаковала его. Запустила систему виртуализации и импортировала файл .ovf. (рис. 4.1).

Рис. 4.1: Импорт файла .ovf.

Перейшла в настройки системы виртуализации и уточнила параметры настройки виртуальной машины. Запустила виртуальную машину Mininet.

4.1.2 Подключение к виртуальной машине

Залогинилась в виртуальной машине, посмотрела адрес с помощью команды ifconfig. Подключилась из терминала хостовой машины по ssh и настроила соединение по ключу, чтобы подсоединяться далее без ввода пароля.(рис. 4.2).

Рис. 4.2: Подключение по ssh

4.1.3 Настройка доступа к Интернет

Посмотрела ІР-адреса машины.(рис. 4.3).

```
mininet@mininet-vm:-$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,HULTICAST> mtu 1500
    inet 192.168.48.5 netmask 255.255.255.0 broadcast 192.168.48.255
    ether 08:00:27:eb:bd:44 txqueuelen 1000 (Ethernet)
    RX packets 181 bytes 29224 (29.2 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 173 bytes 31298 (31.2 KB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 368 bytes 28200 (28.2 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 368 bytes 28200 (28.2 KB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

mininet@mininet-vm:-$
```

Рис. 4.3: ІР-адреса машины

Активировала второй интерфейс командой sudo dhclient eth1.(рис. 4.4).

Рис. 4.4: Активация второго интерфейса

Установила mc, добавила для mininet указание на использование двух адаптеров при запуске. (рис. 4.5).

```
/etc/netplan/01-netcfg.yanl [-M--] 16 L:[ 1+ 9 10/ 10] *(219 / 219b) <EOF>
# This file describes the network interfaces available on your system
# For more information, see netplan(5).
network:
version: 2
renderer: networkd
ethernets:
eth0:
dhcp4: yes
eth1:
dhcp4: yes
```

Рис. 4.5: 01-netcfg.yaml

4.1.4 Обновление версии Minninet

В терминале сначала переименовали предыдущую установку mininet, затем необходимо было скачать новую версию с гитхаба. (рис. 4.6).

```
mininet@mininet-um:"$ nu "/mininet "/mininet.orig
mininet@mininet-um:"$ git clone https://github.com/mininet/mininet.git
Cloning into 'mininet'...
fatal: unable to access 'https://github.com/mininet/mininet.git/: Failed to connect to github.com/
mininet@mininet-um:"$ git clone https://github.com/mininet/mininet.git
Cloning into 'mininet'...
fatal: unable to access 'https://github.com/mininet/mininet.git/: Failed to connect to github.com/
fatal: unable to access 'https://github.com/mininet/mininet.git/: Failed to connect to github.com/
fatal: unable to access 'https://github.com/mininet/mininet.git
fatal: destination path 'mininet' already exists and is not an empty directory.
mininet@mininet-um:"$ git clone https://github.com/mininet/mininet.git
Cloning into 'mininet'...
fatal: unable to access 'https://github.com/mininet/mininet.git/: Failed to connect to github.com/
mininet@mininet-um:"$ git clone https://github.com/mininet/mininet.git
Cloning into 'mininet'...
fatal: unable to access 'https://github.com/mininet/mininet.git/: Could not resolve host: github.com/
mininet@mininet-um:"$ git clone https://github.com/mininet/mininet.git
Cloning into 'mininet'...
fatal: unable to access 'https://github.com/mininet/mininet.git/: Could not resolve host: github.com/
mininet@mininet-um:"$ git clone https://github.com/mininet/mininet.git/: Could not resolve host: github.com/mininet/mininet.git/: Could not resolve host: github.com/mininet/mininet.git/: Could not resolve host: github.com/mininet/mininet.git/: Could not resolve host: github.com/mininet/mininet/mininet.git/: Could not resolve host: github.com/mininet/mininet/mininet/mininet/mininet/mininet/mininet/mininet/mininet/mininet/mininet/mininet/mi
```

Рис. 4.6: Обновление версии mininet

Спустя множество попыток и всевозможных пингов я выяснила, что у меня есть доступ ко всему Интернету, кроме github. (рис. 4.7). Поэтому я переименовала обратно старую установку. К счастью, это никак не повлияло на функционал, так как я уже успешно выполнила все 6 лабораторных работ этого курса. Далее я поняла, что wifi сеть общежитий и университета просто не пускает на github даже с vpn. Поэтому, когда в следующей лабораторной мне нужно было установить ПО с гитхаба, мне успешно это удалось, так как я случайно подключилась к Моscow-Free wifi сети, которая до этого не работала.

Рис. 4.7: Обновление версии мининет

4.1.5 Настройка параметров XTerm

Для увеличения размера шрифта и применения векторных шрифтов внесла изменения в файл /etc/X11/app-defaults/XTerm.(рис. 4.8).

Рис. 4.8: XTerm

4.1.6 Настройка соединения X11 для суперпользователя

Скопировала значение куки пользователя mininet в файл для пользователя root. (рис. 4.9).

Рис. 4.9: Редактирование xauth list

4.2 Основы работы в Mininet

4.2.1 Работа с Mininet с помощью командной строки

Для запуска минимальной топологии ввела sudo mn. (рис. 4.10).

```
mininet@mininet-vm:"$ sudo mn

**** Creating network

**** Adding controller

**** Adding hosts:

h1 h2

**** Adding switches:

s1

**** Adding links:

(h1, s1) (h2, s1)

**** Configuring hosts

h1 h2

**** Starting controller

c0

**** Starting 1 switches

s1 ...

**** Starting CLI:

mininet>
```

Рис. 4.10: Запуск минимальной топологии

Отобразили доступные узлы, посмотрели доступные линки и интерфейсы хоста h1. (рис. 4.11).

```
mininet> nodes
available nodes are:
c0 h1 h2 s1
mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0
c0
mininet> h1 ifconfig
h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
ether 12:78:9e:db:43:9f txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 4.11: Команды net, links, h1 ifconfig

И интерфейсы хоста h2. Затем проверила связь между хостами командой ping. (рис. 4.12).

```
nininet> h2 ifconfig
h2-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255
ether 3a:36:67:9a:17:93 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

nininet> h1 ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.191 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.058 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.066 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.067 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.067 ms
```

Рис. 4.12: Связь между хостами

Остановила симуляцию.

4.2.2 Построение и эмуляция сети в Mininet с использованием графического интерфейса

В терминале запустила MiniEdit с помощью команды sudo ~/mininet/mininet/examples/miniedit.py. Добавила два хоста и коммутатор, соединила узлы. (рис. 4.13).

Рис. 4.13: Топология в MiniEdit

Настроила IP-адреса на хостах h1 и h2. (рис. 4.14).

VLAN Interfaces	External Interfac	es Private Directories
me: h2		
ress: 10.2.0.2/B		
oute:		
CPU:	hos	st —
ores:		
and:		
and:		
Cancel		
	ress: 10.2.0.2/B oute: CPU: ores: and:	ome: h2 ress: 10.0.0.2/B oute: CPU: hos ores: and: and:

Рис. 4.14: Назначение ІР-адресов

Проверила связь между хостами. (рис. 4.15).

```
"Host:h1"

ether 82:2c:6d:cf:31:6c txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 905 bytes 253572 (253.5 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 905 bytes 253572 (253.5 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@mininet-vm:/home/mininet# ping -c 3 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.229 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.066 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.068 ms

--- 10.0.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2021ms
rtt min/avn/max/mdev = 0.066/0.121/0.229/0.076 ms
```

Рис. 4.15: Связь между хостами

Настроила автоматическое назначение ІР-адресов. (рис. 4.16).

Prefere	
IP Base: 1\$0.0.0/8 Default Terminal: xterm \(- \) Start CLI: \(\) Default Switch: Open vSwitch Kernel Mode \(- \) Open vSwitch OpenFlow 1.0: \(\) OpenFlow 1.1: \(\) OpenFlow 1.2: \(\) OpenFlow 1.3: \(\)	-sFlow Profile for Open vSwitch Target: Sampling: 400 Header: 128 Polling: 30 -NetFlow Profile for Open vSwitch Target: Active Timeout: 600 Add ID to Interface:
dpctl port:	Cancel

Рис. 4.16: Автоматическое назначение ІР-адресов

Проверила адреса на хостах. (рис. 4.17).

```
"Host:h1"

root@mininet-vm:/home/mininet# ifconfig
h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 15.0.0.1 netmask 255.0.0.0 broadcast 15.255.255.255
    ether 4a:7e:74:12:30:2c txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 951 bytes 263540 (263.5 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 951 bytes 263540 (263.5 KB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@mininet-vm:/home/mininet#
```

Рис. 4.17: Связь между хостами

Создала каталог для работы с проектами mininet, после сохранения проекта поменяла права доступа к файлам в каталоге проекта. (рис. 4.18).

```
nininet@mininet-um:"$ mkdir "/work
nininet@mininet-um:"$ cd work
nininet@mininet-um:"$ cd ..
nininet@mininet-um:"$ ls
nininet@mininet-um:"$ cd work
nininet@mininet-um:"/work$ ls
labl.mn
nininet@mininet-um:"/work$ cd ..
nininet@mininet-um:"% sudo chown -R mininet:mininet "/work
nininet@mininet-um:"$
```

Рис. 4.18: Сохранение проекта

5 Выводы

В ходе выполнения лабораторной работы я развернула в системе виртуализации VirtualBox mininet, познакомилась с основными командами для работы с Mininet через командную строку и через графический интерфейс.

Список литературы