SVM Homework

Questions?

Exercises

- 1. You are given a training dataset, as shown in Fig 1. Note that the training data comes from sensors which can be error-prone, so you should avoid trusting any specific point too much. For this problem, assume that we are training an SVM with a quadratic kernel.
 - (a) Where would the decision boundary be for very large values of C (i.e., $C \rightarrow \infty$)? Draw on figure and justify your answer.
 - (b) For $C \approx 0$, indicate in the figure where you would expect the decision boundary to be? Justify your answer.
 - (c) Which of the two cases above would you expect to work better in the classification task? Why?

Figure 1: Training Data

2. Recall the formulation of Hard (Linear) SVM:

$$\min_{w} \frac{1}{2} w^T w$$

s.t
$$\forall i, y_i w^T x_i \ge 1$$

(a) Complete the formulation of soft SVM:

$$\min_{w,\xi_i} \frac{1}{2} w^T w + C \sum_{i} \xi_i$$

s.t_____

- (b) Complete: If C = _____, soft SVM will behave exactly as hard SVM.
- (c) In order to reduce over-fitting, one should <u>decrease</u>/<u>increase</u> the value of C. (circle the correct answer). Briefly justify your answer?
- (d) We are given the dataset in Figure 1 below, where the positive examples are represented as black circles and negative points as white squares. (The same data is also provided in Table 1 for your convenience).
 Recall that the equation of the separating hyperplane is γ = w^Tx θ.

Figure 1: Linear SVM

	Attributes		
	<i>X</i> 1	<i>X</i> 2	У
1	0	0	(-)
2	0	-4	(-)
3	-1	-1	(-)
4	-2	-2	(-)
5	3	0	(+)
6	0	3	(+)
7	1	1	(+)
8	3	-1	(+)

Table 1: The data set *S*.

(i) **Draw** the hard SVM decision boundary for the dataset in Figure 1. **Write down** the parameter for the learned linear decision function.

$$W = (w_1, w_2) = \underline{\qquad} . \theta =$$

(ii) **Circle** the support vectors in Figure 1.