Automaton Theories of Human Sentence Comprehension - Ch. 7: Information-Theoretical Complexity Metrics

2020. 03. 18 Won Ik Cho

Previous approaches

Experience might guide a parsing mechanism

- Reinforcement learning / Informed search
 - Associated with an experience-based estimate of distance from completion
 - Relatively concrete
 - Could be put in correspondence with observed difficulty measures
- But how about other direction?
 - e.g., Starting with an **abstract characterization of difficulty** itself and Building a **mechanical model** consistent with the characterization?

Information theory

Information theory in sense of Shannon (1948)

- Shannon, C. E., 1948, A Mathematical Theory of Communication
 - Mathematical formulation on information, channel, transmission, receiving, noise, encoding and decoding
 - Information theoretical interpretation of 'entropy'

- About self-information (wiki!)
 - An event with probability 100% is perfectly unsurprising and yields no information
 - The less probable an event is, the more surprising it is and the more information it yields
 - If two independent events are measured separately, the total amount of information is the sum of the self-informations of the individual events

Information theory in sense of Shannon (1948)

- How we adopt this here?
 - Surprisal (Hale 2001; Levy 2008)
 - Entropy reduction (Hale 2003, 2006; Yun et al., 2015)
- Here, historical backgrounds are managed

Relationship with probabilistic grammar (PG)

- Information theory = Logarithmic probability theory?
 - Not just a jest!
 - Important to have a sense of how probability can apply to generative grammar
- Basic idea
 - Extend formal grammars so that the 'objects' they derive are metaphorically 'weighted'
 - Weight is typically a number
 - If these weights satisfy the axioms of probability theory?

Relationship with probabilistic grammar (PG)

- Basic idea (cont'd)
 - What if the weights of derived strings add up to 1.0?
- Suppes (1970)
 - Weighted formal languages could be viewed as hypotheses about the distribution of utterances in a real human language
 - ... connects generative grammar to the quantitative linguistic tradition
- How to define a probabilistic grammar?
 - Simplest one: To augment each rewriting rule with a probability
 - >> ratios that have been directly off the TreeBank (PTB)
 - e.g., for NP -> DT NN,
 - » denominator: # NP appeared
 - » numerator: # NP comes with daughters as DT and NN

```
NP VP
1 / 1
                      NP
                                    DT NN
160730 / 162198
                      NP
                                  NP VP
1468 / 162198
                              \rightarrow IN NP
1 / 1
                      VP
3345 / 5091
                              \rightarrow VBD PP
                      VP
                             \rightarrow VBN PP
888 / 5091
                                  _{
m VBD}
858 / 5091
                      \operatorname{DT}
1 / 1
                              \rightarrow the
1 / 2
                              \rightarrow horse
1 / 2
                      NN
                               \rightarrow barn
                      VBD
1 / 2
                              \rightarrow fell
1 / 2
                      VBD
                              \rightarrow raced
                      VBN
1 / 1
                                    raced
1 / 1
                      IN
                                    past
```

FIGURE 34 A probabilistic grammar

Relationship with probabilistic grammar (PG)

- Probability of any given derivation on a probabilistic grammar
 - ... is simply the product of the probabilities of all the rules that were applied in that derivation
 - If sentence ambiguous
 - >> Grammar assigns more than one derivation
 - >> Total probability of the sentence is the sum of prob.s of all the derivations
- But...
 - Preceding discussion casts PG as things that assigns prob.s to derivations
 - For a given sentence, defined:
 - Whether or not there exist any derivations for that sentence
 - If there are, what prob. goes with each of those derivations
 - How about extending this to the case of initial sentence fragments?

Relationship with probabilistic grammar (PG)

- Initial sentence fragments
 - Of interest:
 - Which derivations are compatible with a sequence of words that begin
 - Not necessarily
 - What ends a well-formed sentence
 - The weights assigned by PG encode a set of grammar-based expectations about anticipated words
 - e.g., the situation by enumerating derivations that are consistent with the initial substring "the horse raced past the barn" (already been heard)
 - Longer derivations involve more rules
 - » More multipl.s by numbers <1</p>
 - But still, overwhelming expectation at word `barn' for the sentence to be over
 - Grammatically right < lowest!</p>

FIGURE 35 Conditional probabilities of analyses spanning the first six words

Conditional distribution

Surprisal and entropy reduction

- Both involve summaries of conditional distributions
- Deal with the ways that distribution changes from word to word as initial substring is lengthened
- Intuition:
 - If this distribution changes drastically, then more information-processing work is required
 - Ought to be reflected in observable measures of sentence-processing effort
 - Surprisal / entropy : all the metric terms!
 - For x an event,
 - » Surprisal: $\log_2(\frac{1}{P(x)})$
 - » Entropy: $H(x) = -\sum_i P(x_i) \log_2 P(x_i)$ = expectation of the surprisal

Conditional distribution

Surprisal

- Logarithm of the reciprocal of a probability
 - $\log_2(\frac{1}{P(x)})$
- Counted in bits
- Sometimes called as a 'self-information' of an event
 - Information value of observing 'this' outcome rather than any of the others that were possible in some predefined universe of events
 - In sentence processing, relevant event = observation of a particular successor word
- Question of drastic vs. non-drastic change
 - Can be explained using the auxiliary concept of prefix probability
 - Prefix = initial substring
 - Nothing to do with morphology but rather comes from formal language theory (derived objects > 'words')

Conditional distribution

Entropy reduction

- Under surprisal, processing effort is predicted to the amount of prefix probability that gets 'lost' at the transition from word to word
 - Does not matter how this is distributed
 - We only need the total amount!
- Entropy asks whether or not the conditional distribution has gotten more or less organized since the last word
 - $H(x) = -\sum_{i} P(x_i) \log_2 P(x_i)$
 - Expectation of surprisal
 - $-x_i$: syntactic derivations
 - Hearer is conceptualized as trying to guess the value X = x of r.v. representing the intended derivation of the words that are observed
 - This transit uncertainty level >> 'average' surprisal

Surprisal and entropy reduction

Empirical support

- Hale (2001)
 - Garden path sentences and different types of relative clauses
 - Later...
 - Broad coverage of sentences
 - Eye-tracking data and neural signals (from magnetic resonance imaging)
 - Two general reasons for the productivity of the research
 - Combinability of information-theoretical complexity metrics with essentially any model of language
 - » Frank (2013) RNN
 - » Park and Brew (2006) and Levy (2013) Surprisal values from finite-state Markov models
 - » Hale (2006) and Yun et al. (2015) Formalization of minimalism
 - » Sometimes, the data and complexity metric are not enough to decide btw alternative linguistic proposals!
 - The fact that frequency effects are among the most robust in all of psycholinguistics
 - » Surprisal and entropy based on conditional distributions thus can capture some syntactic effects given that the probabililistic model is grammar-based

Surprisal and entropy reduction

Difference

- Entropy reduction
 - Motivated by the failure of surprisal
 - In combination with context-free phrase structure grammars
 - Hale (2003):
 - Account as a more empirically-adequate replacement for surprisal
 - Builds on the different potential for recursive modification across subject- and objectextracted relative clauses
 - But whether the **full range of phenomena can be subsumed in one theory** still remains open!

EndOfPresentation

Thank you!