Aula 05 – L1/1 e L2/1

Engenharia da Computação — 3º série

Laços de Repetição (L1/1 - L2/1)

2024

Prof. Calvetti

1/43

Aula 05 – L1/1 e L2/1

<u>Horário</u>

Terça-feira: 2 x 2 aulas/semana

- L1/1 (07h40min-09h20min): Prof. Calvetti;
- L1/2 (09h30min-11h10min): *Prof. Calvetti*;
- L2/1 (07h40min-09h20min): Prof. Igor Silveira;
- L2/2 (11h20min-13h00min): *Prof. Calvetti*.

Os Laços de Repetição

Laços de Repetição

Os Lações de Repetição

- Servem para mudar o fluxo de execução de um algoritmo de modo a repetir um mesmo trecho de código um número limitado de vezes;
- Para que a execução do laço pare, é necessária uma condição de parada, que é expressa por uma expressão booleana (lógica);
- Se a estrutura laço de repetição, também conhecida por loop, não existisse, seria necessário escrever várias vezes o mesmo trecho de código, como a seguir;

Laços de Repetição

Os Lações de Repetição

 Considere a situação em que se deseja escrever na tela os números de 1 a 10. Sem o uso de laços de repetição, o código ficaria assim:

```
1 public class SemLoop
      public static void main(String args[])
         System.out.println("1");
         System.out.println("2");
         System.out.println("3");
         System.out.println("4");
         System.out.println("5");
         System.out.println("6");
10
11
         System.out.println("7");
         System.out.println("8");
12
         System.out.println("9");
13
14
         System.out.println("10");
15
16
```

Tópico

O laço while()

Laços de Repetição

O laço while()

- Ou loop while (enquanto), primeiro testa condição lógica; se ela for verdadeira, executa o código que está dentro do laço e testa a condição lógica de novo; se for verdadeira, executa de novo; e assim sucessivamente até que a condição lógica se torne falsa;
- É utilizado, preferencialmente, quando o número de execuções do laço for desconhecido;
- Exemplo: leia os inteiros digitados pelo usuário até que seja digitado o número -1 (um negativo):

```
int x=0;
while(x != -1)
{
    x=Integer.parseInt(JOptionPane.showInputDialog("Digite um número"));
}
```

Laços de Repetição

O laço while()

Considere a situação em que se deseja escrever na tela os números de 1 a 10. Com o uso do laço while(), o código ficaria assim:

```
public class LoopWhile

{
    public static void main(String args[])

{
    int i=1;
    while(i <= 10)

    {
        System.out.println(i);
        i++;

    }

}

}
</pre>
```

O laço do-while()

Laços de Repetição

O laço do-while()

- Ou *loop do-while* (faça-enquanto), primeiro executa o código que está dentro do laço e depois testa condição lógica; se for verdadeira, executa novamente e testa de novo; se for verdadeira, executa de novo; e assim sucessivamente até que a condição se torne falsa;
- Usado quando se quer que o código que está no laço seja executado pelo menos uma vez, por exemplo, para validar uma entrada de dados e ler valores enquanto o usuário não digite um número maior ou igual a 0, para evitar uma raiz quadrada de número negativo:

Prof. Calvetti 10/43

Laços de Repetição

O laço do-while()

 Considere a situação em que se deseja escrever na tela os números de 1 a 10. Com o uso do laço do-while(), o código ficaria assim:

```
1 public class LoopDoWhile
2 {
3     public static void main(String args[])
4     {
5         int i=1;
6         do
7         {
8              System.out.println(i);
9         i++;
10         } while(i <= 10);
11     }
12 }</pre>
```

Prof. Calvetti 11/43

Tópico

• O laço *for()*

Prof. Calvetti

12/43

Laços de Repetição

O laço for()

- Ou loop for (para), é dividido em 3 partes: for(A; B; C), onde:
 - A) Declaração da variável contadora;
 - B) Condição lógica de parada;
 - C) Manipulação da variável contadora.
- De modo análogo ao *while*, primeiro testa a condição de parada (B) e, se for verdadeira, executa o código interno ao laço; quando chega no final, manipula a variável contadora declarada e atribuída em (A) com a regra definida em (C), então testa a condição novamente; se for verdadeira, volta a executar e manipular; caso contrário, sai do laço;
- Usado quando se conhece o número de vezes que será executado o laço.

Laços de Repetição

O laço for()

 Considere a situação em que se deseja escrever na tela os números de 1 a 10. Com o uso do laço for(), o código ficaria assim:

Prof. Calvetti 14/43

Laços de Repetição

Exercícios

1. Escrever, em Java, utilizando *while()*, um programa capaz de imprimir em tela os números de 100 até 1, sendo apresentado apenas um deles por linha.

Laços de Repetição

Exercícios

2. Escrever, em Java, utilizando *do-while()*, um programa capaz de imprimir em tela os números de 100 até 1, sendo apresentado apenas um deles por linha.

Autor: Prof Robson Calvetti - Todos os direitos reservados

Laços de Repetição

Exercícios

Escrever, em Java, utilizando for(), um programa capaz de imprimir em tela os números de 100 até 1, sendo apresentado apenas um deles por linha.

Exercícios

4. Escrever, em Java, utilizando laços, um programa capaz de imprimir em tela, em uma coluna, os números de 1 até 20 e, ao lado deles, em outra coluna, ao mesmo tempo, os números de 20 até 1, um de cada contagem, progressiva e regressiva, por linha.

more Dong Polycon Calnotti Todos os divoitos vocamados (

Laços de Repetição

Exercícios

5. Escrever, em Java, utilizando laços, um programa capaz de imprimir em tela, os números de 1 até 20 e, ao chegar em 20, comece a imprimir os números de 20 até 1, um por linha.

Laços de Repetição

Exercícios

5. Escrever, em Java, utilizando laços, um programa capaz de imprimir em tela, os números de 1 até 20 e, ao chegar em 20, comece a imprimir os números de 20 até 1, um por linha.

Prof. Calvetti

20/43

Laços de Repetição

Exercícios

- Extras, propostos pelo professor em aula, utilizando os conceitos abordados neste material...

Prof. Calvetti

21/43

Laços de Repetição

Bibliografia Básica

- MILETTO, Evandro M.; BERTAGNOLLI, Silvia de Castro.
 Desenvolvimento de software II: introdução ao desenvolvimento web com HTML, CSS, javascript e PHP (Tekne). Porto Alegre: Bookman, 2014. E-book. Referência Minha Biblioteca: https://integrada.minhabiblioteca.com.br/#/books/9788582601969
- WINDER, Russel; GRAHAM, Roberts. Desenvolvendo Software em Java, 3ª edição. Rio de Janeiro: LTC, 2009. E-book. Referência Minha Biblioteca: https://integrada.minhabiblioteca.com.br/#/books/978-85-216-1994-9
- DEITEL, Paul; DEITEL, Harvey. Java: how to program early objects. Hoboken, N. J: Pearson, c2018. 1234 p.
 ISBN 9780134743356.

Continua...

Prof. Calvetti 22/43

Laços de Repetição

Bibliografia Básica (continuação)

- HORSTMANN, Cay S; CORNELL, Gary. Core Java. SCHAFRANSKI, Carlos (Trad.), FURMANKIEWICZ, Edson (Trad.). 8. ed. São Paulo: Pearson, 2010. v. 1. 383 p. ISBN 9788576053576.
- LIANG, Y. Daniel. Introduction to Java: programming and data structures comprehensive version. 11. ed. New York: Pearson, c2015. 1210 p. ISBN 9780134670942.
- TURINI, Rodrigo. Desbravando Java e orientação a objetos: um guia para o iniciante da linguagem. São Paulo: Casa do Código, [2017].
 222 p. (Caelum).

Prof. Calvetti 23/43

Laços de Repetição

Bibliografia Complementar

- HORSTMANN, Cay. Conceitos de Computação com Java. Porto Alegre: Bookman, 2009. E-book. Referência Minha Biblioteca: https://integrada.minhabiblioteca.com.br/#/books/9788577804078
- MACHADO, Rodrigo P.; FRANCO, Márcia H. I.; BERTAGNOLLI, Silvia de Castro. Desenvolvimento de software III: programação de sistemas web orientada a objetos em java (Tekne). Porto Alegre: Bookman, 2016. E-book. Referência Minha Biblioteca: https://integrada.minhabiblioteca.com.br/#/books/9788582603710
- BARRY, Paul. Use a cabeça! Python. Rio de Janeiro: Alta Books, 2012.
 458 p.
 ISBN 9788576087434.

Continua...

Prof. Calvetti 24/43

Laços de Repetição

Bibliografia Complementar (continuação)

- LECHETA, Ricardo R. Web Services RESTful: aprenda a criar Web Services RESTfulem Java na nuvem do Google. São Paulo: Novatec, c2015. 431 p. ISBN 9788575224540.
- SILVA, Maurício Samy. JQuery: a biblioteca do programador. 3. ed. rev. e ampl. São Paulo: Novatec, 2014. 544 p. ISBN 9788575223871.
- SUMMERFIELD, Mark. Programação em Python 3: uma introdução completa à linguagem Phython. Rio de Janeiro: Alta Books, 2012. 506 p.
 ISBN 9788576083849.

Continua...

Prof. Calvetti 25/

Laços de Repetição

Bibliografia Complementar (continuação)

- YING, Bai. Practical database programming with Java. New Jersey: John Wiley & Sons, c2011. 918 p.
- ZAKAS, Nicholas C. The principles of object-oriented JavaScript. San Francisco, CA: No Starch Press, c2014. 97 p. ISBN 9781593275402.

Prof. Calvetti 26/43

Aula 05 – L1/1 e L2/1

FIM

Prof. Calvetti 27/43

Aula 05 – L1/1 e L2/1

Engenharia da Computação – 3º série

<u>Laços de Repetição</u> (L1/2 - L2/2)

2024

Prof. Calvetti

28/43

Aula 05 – L1/1 e L2/1

Horário

Terça-feira: 2 x 2 aulas/semana

- L1/1 (07h40min-09h20min): Prof. Calvetti;
- L1/2 (09h30min-11h10min): *Prof. Calvetti*;
- L2/1 (07h40min-09h20min): *Prof. Igor Silveira*;
- L2/2 (11h20min-13h00min): Prof. Calvetti.

Laços de Repetição

Exercícios

- Imprimir em tela os 20 primeiros números pares, a partir de 0, inclusive;
- 2. Entrar com vários números positivos e imprimir a média dos números digitados;
- 3. Ler vários números e informar quantos números entre 100 e 200 foram digitados. Quando o valor 0 (zero) for lido o algoritmo deverá cessar sua execução;
- 4. Entrar com nomes enquanto forem diferentes de FIM e imprimir cada nome digitado;

Prof. Calvetti 30/43

Laços de Repetição

Exercícios

- 5. Ler vários números até entrar o número -999. Para cada número, imprimir sua raiz quadrada e seu inverso;
- 6. Imprimir na tela todos os números múltiplos de 5, no intervalo de 1 a 500;
- 7. Imprimir na tela o produto de todos os números de 120 a 300;
- 8. Imprimir na tela todos os números de 1 a 100 e a soma deles;
- 9. Ler vários números até entrar o número -999. Para cada número, imprimir seus divisores;

Prof. Calvetti 31/43

Laços de Repetição

Exercícios

10. Uma empresa de fornecimento de energia elétrica faz a leitura mensal dos medidores de consumo. Para cada consumidor são digitados os seguintes dados: código do consumidor, quantidade de kWh consumidos durante o mês, tipo do consumidor. Os tipos podem ser 1 - residencial, preço por kWh = R\$ 0,3; 2 - comercial, preço por kWh = 0,5; 3 industrial, preço por kWh = 0,7. Os dados devem ser lidos até que seja encontrado um consumidor com código 0 (zero). Calcular e imprimir o custo total para cada consumidor, o total de consumo para os três tipos de consumidor, a média de consumo dos tipos 1 e 2.

Prof. Calvetti 32/43

Laços de Repetição

Exercícios

- 11. Entrar com a idade de várias pessoas e imprimir: total de pessoas com menos de 21 anos e total de pessoas com mais de 50 anos. Parar quando for digitada uma idade fora da faixa 0-120 anos;
- 12. Entrar com um número e verificar se ele é um número primo;
- 13. Escrever um algoritmo que receba vários números inteiros positivos e imprima a quantidade de números primos dentre os números que foram digitados. Parar quando for digitado um número não positivo;
- 14. Entrar com vários números e imprimir o maior. O algoritmo para quando se digita -9999;

Prof. Calvetti 33/

Laços de Repetição

Exercícios

- 15. Faça um algoritmo que peça para o usuário digitar um número e mostre na tela a sequência de Fibonacci de 1 até este número;
- 16. Faça um algoritmo para imprimir na tela uma tabela de conversão de polegadas para centímetros. Deseja-se que a tabela conste de valores desde 1 até 20 polegadas. Lembre-se que 1 polegada equivale a 2,54 cm;
- 17. Faça um algoritmo para imprimir na tela uma tabela de conversão de graus Celsius para graus Fahrenheit. Deseja-se que o mesmo solicite ao usuário o limite inferior, o superior e o incremento. Lembre-se que C = 5.(F-32)/9;

Laços de Repetição

Exercícios

- 18. Crie um algoritmo que calcule o fatorial de um número. Exemplo: 0! = 1; 1! = 1; 2! = 1*2 = 2; 3! = 1*2*3 = 6; 4! = 1*2*3*4 = 24; 5! = 1*2*3*4*5 = 120; ...
- 19. Criar um algoritmo que leia um número que será o limite superior de um intervalo e o incremento. Imprimir todos os números do intervalo de 0 até esse número, de incremento em incremento. Ex.: limite 20, incremento 5; vai imprimir 0, 5, 10, 15, 20;
- 20. Entrar com o nome, idade e sexo de 20 pessoas. Imprimir o nome sempre que a pessoa for do sexo masculino e tiver mais de 21 anos;

Prof. Calvetti 35/43

Exercícios

- 21. Criar um algoritmo que leia um número que será o limite superior de um intervalo e imprimir todos os números ímpares menores do que esse número. Exemplo: limite 15, imprime 1, 3,5, 7, 9, 11, 13;
- 22. Criar um algoritmo que leia um número que servirá para controlar os números pares que serão impressos a partir de 2 Exemplo: quantos 4, imprime 2, 4, 6, 8;

Laços de Repetição

Exercícios

23. Escrever um algoritmo que lê repetidamente o valor do preço de uma mercadoria e a quantidade de itens comprados dessa mercadoria. Quando a quantidade lida for igual a zero, o algoritmo deve mostrar o total a ser pago. O algoritmo não deve computar valores negativos de preço ou de quantidade; neste caso, o algoritmo deve pedir que o usuário digite novamente o valor do preço ou da quantidade digitados indevidamente (sugestão: usar outro loop faça-enquanto para cada caso).

OBS.: Considerar a quantidade de mercadorias compradas é desconhecida;

Prof. Calvetti 37/43

Laços de Repetição

Exercícios

24. Escrever um algoritmo de urna eletrônica, para uma eleição com 4 candidatos. O usuário vota, digitando o número do candidato (1,2, 3 ou 4). O número de eleitores é desconhecido. Quando for digitado o valor -1, o algoritmo encerra a eleição, escrevendo o percentual de votos de cada candidato e o total de eleitores que participaram da eleição;

39/43

ECM251 - Linguagens de Programação I

Laços de Repetição

Exercícios

- 25. Escrever um algoritmo que lê 2 números reais. A seguir, é apresentado, para o usuário, o menu a seguir:
 - "Operações Disponíveis:
 - 1. Adição;
 - 2. Subtração;
 - 3. Multiplicação;
 - 4. Divisão;
 - 9. Sair do Programa.

Digite o número de ordem da opção desejada: "

continua...

Laços de Repetição

Exercícios

...continuação:

Se a opção for 1, o algoritmo deve somar os dois valores lidos; se for 2, o algoritmo deve fazer o primeiro valor menos o segundo; se for 3, o algoritmo deve multiplicar os valores lidos; se for 4, o algoritmo deve dividir o primeiro pelo segundo valor lido, desde que este não seja zero (o algoritmo deve ter tratamento especial para este caso).

O algoritmo deve escrever o resultado da operação escolhida. Se o usuário digitar 9, o algoritmo deve ser encerrado. Enquanto o valor da opção 9 não for digitado, o menu deve ser apresentado novamente.

Prof. Calvetti 40/43

Laços de Repetição

Atividade

• Individualmente, resolver os exercícios propostos e apresentar à sala, explicando-a, na próxima aula L1/2 e L2/2, a solução daquele solicitado pelo professor.

Prof. Calvetti 41/43

Laços de Repetição

Bibliografia (apoio)

- LOPES, ANITA. GARCIA, GUTO. Introdução à Programação: 500 algoritmos resolvidos. Rio de Janeiro: Elsevier, 2002.
- DEITEL, P. DEITEL, H. Java: como programar. 8 Ed. São Paulo: Prentice-Hall (Pearson), 2010.

Aula 05 – L1/2 e L2/2

FIM