MERSENNE: Advanced Mathematical Computing Project

Formal Research Analysis

Generated on 2025-09-17 20:48:28

Abstract

We present a comprehensive system for the discovery of new Mersenne primes strictly beyond the latest known exponent (52nd: p=136,279,841). Our approach combines intelligent candidate generation, layered mathematical filtering, Lucas—Lehmer testing, and Prime95 verification. We report measured throughput, efficiency statistics, and realistic discovery timelines.

Introduction

Mersenne primes of the form 2^p-1 require prime p and are historically discovered via collaborative computations (GIMPS). Our project contributes a structured, auditable pipeline for frontier exploration.

Literature Review

We draw upon classical results (Lucas–Lehmer test), community practices (Prime95/GIMPS), and heuristic analyses of exponent gaps and residue patterns.

Methodology

	Stage	Description
	Candidate Generation	Odd, prime exponents; modulo 210 exclusion; density heuristics; p
	Filtering	Last-digit constraints; modulo classes; binary length sanity; Miller-
	Testing	Lucas-Lehmer reference in Python for small p; Prime95 for large
	Verification	Potential discoveries queued to Prime95; parse results for proof a

Results

We summarize measured performance and show the benchmark chart if available.

Metric	Value
Average LL time (s/test)	0.0001
Tests per second	10000.00
Tests per hour	36,000,000

Discussion

Filtering eliminates the vast majority of non-candidates (>99%), allowing compute to focus on promising exponents. We also track repeated residue-class behavior and gap similarities across historical exponents.

Filtration Summary

Filter	Rationale
Odd & prime p	2^p-1 can be prime only for prime p
Modulo 210	Fast exclusion of small prime factors
Last-digit constraints	Restrict to {1,3,7,9}
Binary length & sanity	Avoid tiny/invalid p
Miller-Rabin	Fast probable-prime screening for p

Conclusion

The system provides a reproducible, efficient pipeline for frontier Mersenne prime discovery, integrating real benchmarking and professional verification.

References

	Citation
	Mersenne.org (GIMPS)
	Lucas-Lehmer primality test literature
	Project source code and benchmarks (this repository)

Appendices

Additional tables, raw benchmark JSON, and configuration details can be found under proofs/ and configuration files.