AD-A 101 191

4DA 101 191

TECHNICAL

AD	
AD	

TECHNICAL REPORT ARBRL-TR-02314

INTERIOR BALLISTIC EVALUATION OF HIGH-FLAME
TEMPERATURE PROPELLANTS IN 20mm AMMUNITION
AND ASSESSMENT AS AN EROSION TEST DEVICE

Timothy L. Brosseau Irvin C. Stobie J. Richard Ward

April 1981

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM							
1. REPORT NUMBER	2. GOVT ACCESSION NO.							
TECHNICAL REPORT ARBRL-TR-02314								
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED						
INTERIOR BALLISTIC EVALUATION OF HI								
TEMPERATURE PROPELLANTS IN 20mm AMM	BRL Technical Report							
ASSESSMENT AS AN EROSION TEST DEVICE	6. PERFORMING ORG. REPORT NUMBER							
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(a)						
Timothy L. Brosseau								
Irvin C. Stobie								
J. Richard Ward								
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 - 70.	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
Ballistic Research Laboratory ATTN: DRDAR-BLI								
Aberdeen Proving Ground, MD 21005		1L161102AH43						
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE						
US Army Armament Research and Devel	opment Command	APRIL 1981						
Ballistic Research Laboratory ATTN: DRDAR-BL		13. NUMBER OF PAGES						
Aberdeen Proving Ground MD 21005 14. MONITORING AGENCY NAME & ADDRESS(If differen		30						
14. MONITORING AGENCY NAME & ADDRESS(11 ditteren	t from Controffing Office)	IS. SECURITY CLASS. (of this report)						
		Unclassified						
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE						
16. DISTRIBUTION STATEMENT (of this Report)								
Approved for public release, distri	bution unlimited							
17. DISTRIBUTION STATEMENT (of the ebetrect entered	in Block 20. If different from	m Report)						
IB. SUPPLEMENTARY NOTES								
IB. SUPPLEMENTARY NOTES								
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)							
Gun barrel wear M9 propel:								
Platings and coatings WC870 prop								
M55A2TP-T rounds 20mm M61 g M9 propellant	gun							
Erosion test apparatus								
20. ABSTRACT (Continue on reverse state if necessary and	i identify by block number)	(idk)						
Gun barrel wear tests have unco		for a small scale device to						
test barrel treatments like "thick"								
traditionally served this role, but	results with hig	h-firing rates used to						
produce measurable wear are ambiguous. An ideal erosion test device would be a small caliber gun with standard projectiles, cartridge cases and propellants								
which would produce wear comparable	to wear in large	e-caliber ours						
	· · · · · · · · · · · · · · · · ·							

(Continued on reverse side)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued)

Interior ballistic tests were done with M2 or M9 propellant in place of the standard ball powder in the M55A2TP-T round to determine charge masses which would not exceed the peak chamber pressure of the reference M55A2TP-T round. The wear produced with the high-flame temperature propellants was estimated with the Frankle-Kruse empirical formula. The results showed an M9 propellant could be loaded to the same charge mass as the reference WC870 ball powder with a lower peak chamber pressure but 100 m/s higher velocity. The wear estimated for such a round is $5\mu/\text{shot}$, comparable to wear-limited Army guns, but less than the desired 25 μ/shot (1 mil/shot) for an erosion test device. Hence the 20mm gun with M9 propellant could be useful for evaluating chromium-plating for existing guns, but it has too little wear for conveniently assessing future platings and coatings.

UNCLASSIFIED

TABLE OF CONTENTS

			·																		Page
	LIST OF FIGURE	s			•	•		•	 •	•			•	•	•			•	•	•	5
I.	INTRODUCTION		. ,	•		•	•	•	 •	•	•	•		•	•	•	•	•	•	•	7
II.	EXPERIMENTAL			•	•	•	•	•	 •	•	•	•	•	•	•	•		•	•	•	7
III.	RESULTS AND DI	SCUSS	ION	•	•	•	•			•	•	•		•	•		•	•	•	•	8
IV.	CONCLUSIONS .			•		•	•	•		•		•		•	•	•	•	•	•	•	17
	APPENDIX			•	•	•	•	•	 •	•		ŀ		•		•	•	•	•	•	19
	REFERENCES .			•		•	•		 •				•		•	•	•	•	•	•	25
	DISTRIBUTION L	IST .																			27

.

٠

LIST OF FIGURES

			P	age
1.	Peak pressure \underline{vs} charge mass for M2 and M9 propellant	•	•	11
2.	Muzzle velocity \underline{vs} charge mass for M2 and M9 propellant	•	•	13
3.	Estimated wear vs charge mass for M9 propellant in 20mm gun	•	•	15
4.	Estimated wear vs flame temperature for 39.6 g propellant charge in 20mm gun		•	18
A1.	Ident. 290-61 Pressure <u>vs</u> Time	•		21
A2.	Ident. 290-61 Temperature vs Time	•	•	22
43.	Ident. 290-64 Temperature and Pressure vs Time			23
44.	Ident. 290-65 Temperature and Pressure vs Time			24

	-	•
		,

I. INTRODUCTION

Recent attempts to assess the wear reduction by electroplating the bore surface of large-caliber guns have proved inconclusive. 1,2 The results clearly show "thick" chromium plate (0.12 to 0.25 mm) retards wear in the commencement of rifling region. Muzzle wear and chromium-plate spalling downbore render uncertain whether the accuracy life of the cannon has been increased significantly. In the instances where the chromium remained intact, it appeared wear life could be more than doubled.

These results reinforce the need for screening tests to evaluate platings. Wear tests with rapid-fire, small-caliber guns (traditional method) may not duplicate the wear in single-shot, high-velocity guns. In this type test, wear strongly depends on burst rate and burst length. Therefore, stoppages render the results meaningless for comparison purposes.

An ideal screening device would be a small-caliber gun with single-shot wear comparable to larger guns. Such a device should also use readily available barrels, cartridge cases, projectiles, and propellants. This report concerns interior ballistic tests with a 20mm M6l barrel firing M55A2 TP-T rounds with M2 or M9 propellant replacing the standard WC870 propellant along with estimates of wear.

II. EXPERIMENTAL

Firings were done in a 20mm M61 Mann barrel fitted with a "mini-hat" gauge in the chamber and another at the commencement of rifling. Muzzle velocity was measured with three Lumiline screens placed at known distances down range. The time for the projectile to reach each screen was measured with two redundant counters. Velocity was computed from the distance between screens and the time to traverse this distance. Velocity so computed was taken as velocity at the midpoint between screens; muzzle velocity was computed by linear extrapolation back to zero distance. The distance from the muzzle to each screen is listed below:

Screen	Distance to muzzle, m
1	2.3146
2	9.4504
3	14.494

¹ J.A. Lannon and A.C. Vallado, "Effect of Chrome-Plating on Wear Characteristics and Ballistic Performance in the 155mm Artillery System," Proceedings of the 1980 JANNAF Propulsion meeting, CPIA Publication 315, March 1980.

²C. Musick and H. Jones, "Wear Tests of 105mm M68 Cannon With 10 Mil Chromium Plate," MTD Report in preparation.

For the rounds fired with bore surface thermocouples, the "minihat" gauge was retained in the mid-chamber position, but the gauge located at the commencement of rifling was replaced with a bore surface thermocouple. The thermocouples were chromel-constantan type gauges furnished by Medtherm Corporation, with one microsecond response. The junction of the thermocouple was recessed less than 0.03 mm from the land surface to protect the junction from mechanical damage. A series of 5.56 mm firings concluded that recessing the thermocouple 0.03 mm did not change the maximum measured temperature.

The high-flame temperature propellants tested during this experiment are listed in Table 1. Table 2 lists the nominal compositions with flame temperature and impetus at 0.2 g/cm 3 density of loading computed with the BLAKE thermochemical code. 3

III. RESULTS AND DISCUSSION

The initial step in this assessment of the potential usefulness of 20mm M61 gun as a tool to assess plating efficiency is to determine how much M2 or M9 propellant can be loaded in place of the standard ball powder without exceeding the peak chamber pressure of the M55A2 round. Once this charge weight is known, empirical formulas are available to estimate the wear. Wear will also be estimated from peak bore surface temperatures.

Table 3 summarizes the data gathered during the charge assessment. Velocities, V_1 and V_2 , are the velocities midpoint between screens 1 and 2 and 2 and 3, respectively, while V_0 is the muzzle velocity.

Figure 1 plots peak pressure vs charge mass for the three propellants evaluated along with the standard $\overline{\text{M5}}$ 5A2 TP-T round. Data for the M2 and M9 propellants are linearly extrapolated to 39.6g to estimate peak pressure with this charge mass. Figure 1 shows only the coarse grade M9 remains below the M55A2 round's maximum pressure with the same propellant mass. Figure 1 also shows an additional four grams could be used without exceeding the standard peak pressure. Whether an additional four grams could be loaded and fired safely was not determined.

³E. Freedman, "BLAKE, A Ballistic Thermodynamic Code Based on TIGER," Proceedings of the International Symposium on Gun Propellants," Picatinny Arsenal, October 1973.

⁴J.M. Frankle and L.R. Kruse, "A Method for Estimating the Service Life of a Gun or Howitzer," BRL Report No. 1852, June 1967. (AD #A021389)

⁵C.S. Smith and J.S. O'Brasky, "A Procedure for Gun Barrel Erosion Life Estimation," Proceedings of the Tri-Service Symposium on Gun Tube Wear and Erosion, March 1977.

TABLE 1. PHYSICAL PROPERTIES OF PROPELLANTS TESTED IN 20mm BARREL

Propellant	No. Perforations	Lot No.	web, mm (in)	surface area/mass $\frac{m^2}{kg} (in^2/1bm)$
M9 "fine"	seven	PE-480-14	0.61 (0.0241)	1.35 (949)
M9 "coarse"	seven	PE-480-12	0.83 (0.0326)	1.02 (716)
M2	single	HPC 34386-45	0.37 (0.0145)	4.50 (3162)
WC870	ball	um.	0.76 (0.03)	4.91 (3450)

TABLE 2. PROPELLANT COMPOSITIONS AND THERMOCHEMICAL PROPERTIES

		Percent by We	
Ingredient	M2	M9	WC870
Nitrocellulose (13,15% nitration)	-	-	81.1
Nitrocellulose (13.25% nitration)	75.12	57.55	-
Nitroglycerine	18.92	39.86	10.0
Dibutylphthalate	-	-	5.2
Ethylcentralite	0.58	0.75	-
Barium Nitrate	1.36	-	-
Potassium Nitrate	0.73	1.49	0.6
Diphenylamine	-	. =	0.9
Tin Dioxide	-	-	0.8
Carbon	0.3	-	0.4
Residual Solvents	2.3	0.35	1.0
Flame Temperature, K	3,375	3,844	2,800
Impetus, J/g	1,097	1,170	977

TABLE 3. MUZZLE VELOCITY AND PEAK CHAMBER PRESSURE FOR M2 AND M9 PROPELLANTS

Pressure, MPa	427	*	*	427	221	483	* *	758	207	296	317	476
VO, m/s	1,030.5	1.035.7	1,047.6	1,034.2	678.8	866.9	873.3	1,013.5	778.2	954.0	950.4	1,104.3
V_2 , m/s	1,025.0	1,033.9	1,044.0	1,025.0	676.4	8.098	871.4	1,004.6	776.3	944.9	947.3	1,094.4
V1, m/s	1,027.8	1,034.8	1,046.4	1,029.6	677.6	863.8	872.3	1,009.2	777.2	949.5	948.8	1,100.3
Charge Mass, g (gr)	39.6 (611)	39.6 (611)	39.6 (611)	39.6 (611)	13.0 (200)	19.4 (300)	19.4 (300)	25.9 (400)	22.7 (350)	31.1 (480)	25.9 (400)	32.4 (500)
Propellant	WC 870*	WC 870*	WC 870*	WC 870*	M2	M2	M2	M2	M9 "coarse"	M9 "coarse"	M9 "fine"	M9 "fine"
Round	H	2	8	4	S	9	7	8	6	10	11	12

* M55A2TP-T projectile ** Not taken

Figure 1. Peak pressure \underline{vs} charge mass for M2 and M9 propellant

Figure 2 illustrates a similar comparison for muzzle velocity for the three propellants tested along with the value for the M55A2TP-T reference round. An extra 100 m/s could be achieved with the coarse-grade M9 propellant using the standard charge mass. Additional 200 m/s could be achieved at the maximum peak pressure presuming the extra four grams of propellant could be loaded.

One estimate of wear with M9 propellant was made with the Frankle-Kruse formula. 4 Their method was based on work in the UK during World War II in which an empirical formula was devised to compute the maximum bore temperature rise at the origin of rifling from basic interior ballistic parameters as shown below:

$$\theta = \frac{T_0 - 300}{1.7 + 0.38 \sqrt{d} \left(\frac{d^2}{c}\right)^{0.86}} \tag{1}$$

where θ = maximum temperature rise at origin of rifling, K,

d = bore diameter, in.,

 T_0 = adiabatic flame temperature, K, and c = charge mass, 1b.

The UK workers found the best correlation between gun wear, w, and maximum temperature rise was

$$\ln\left(\frac{w}{\sqrt{d}}\right) \sim \theta, \ \theta > 600K$$
 (2)

Frankle and Kruse applied equation (2) with a least-squares fit to the US Army guns and howitzers listed in Table 4 and found the following equation for diametrical wear/round:

$$\frac{w}{\sqrt{d}} = 1.68 \times 10^{-5} e^{0.00785\theta} . \tag{3}$$

Figure 3 illustrates the wear estimated with equation (3) for M9 propellant in a 20mm gun. Figure 3 shows that 39.6g of M9 propellant will wear 5 μ /shot. By comparing this with the wear in Table 4, one sees the M9 loaded 20mm gun will have wear comparable to artillery guns, but well below tank guns.

A further effort to estimate how the wear in the 20mm barrel with M9 compares with wear in Army guns was made by measuring peak bore surface temperatures. Calspan Corporation has demonstrated that peak bore surface temperatures can be computed reliably from measurements of the

Figure 2. Muzzle velocity \underline{vs} charge mass for M2 and M9 propellant

TABLE 4. WEAR, SERVICE LIFE, AND INTERIOR BALLISTIC DATA FOR US ARMY GUNS AND HOWITZERS*

Service Life, Rounds	2000	700	3000	4700	1300	3000	350	3800	2000	700	20,000	100	200	250	15,000	700	400	0009	700	2000
1																				
Wear Per Round, µ																				
Adiabatic Flame Temp. of Propellant,K	3372	3294	3373	2583	2583	2583	2974	2583	2583	2974	2433	3040	2583	2974	2433	2583	2583	2433	2583	2583
Type of Propellant	M2	MS	M2	M6	M6	. M6	M17	M6	M6	M17	M1	M30	M6	M17	M1	M6	. Мб	M1	M6	M6
Wt. of Propellant Charge, kg	0.128	.250	040.	.902	1.535	1.734	2.421	3.309	3.688	4.014	1.283	5.483	10.603	13.350.	5.982	13.999	25.202	12.723	14.851	36.174
Gun or Howitzer	37mm Gun, M1A2	37mm Gun, M3	37mm Gun, M4	75mm Gun, M3	75mm Gun, M35	76mm Gun, Ml	76mm Gun, M48	90mm Gun, Ml	90mm Gun, M3	90mm Gun, M41	105mm How, M2A1	105mm How, M68	120mm Gun, M1	120mm Gun, M58	155mm How, MIA1	155mm Gun, M2	175mm Gun, M113	8 in How, M2	8 in Gun, Ml	240mm How, Ml

* Table I in reference 4 converted to metric units.

Figure 3. Estimated wear \underline{vs} charge mass for M9 propellant in 20mm gun

total heat input.⁶ In earlier experiments, Calspan Corp. investigators measured heat input and computed bore surface temperatures in an M185 cannon firing various 155 mm propelling charges.⁷ Comparing measured peak surface temperatures for the 20mm barrel with those computed by Calspan is another way to estimate the potential of the 20mm barrel to mimic wear in large-caliber guns.

Table 5 lists the peak bore surface temperatures computed from measured heat inputs. The wear/round is available from Proving Ground tests 8 with the exception of the XM208 charge without liner.

TABLE 5. WEAR AND PEAK BORE TEMPERATURE RISES FOR 155mm CHARGES

Charge Type	Peak Bore Temp. Rise, K	Wear, μ/round
M4A2	756	0.01
M119	917	0.9
XM1203E2	961	. 1.4
XM119E4	969	1.1
XM201E2	1,056	2.6
XM119	1,067	2.8
XM208 (no liner)	1.261	*

^{*}Not available.

⁶F.A. Vassallo and W.R. Brown, "Shock Tube Gun Melting Erosion Study," BRL Contract Report No. CR-00406, August 1979. (AD #A076219)

⁷F.A. Vassallo, "An Evaluation of Heat Transfer and Erosion in the 155 mm M185 Cannon," Calspan Technical Report No. VL-5337-D-1, July 1976.

⁸J.R. Ward and T.L. Brosseau, "Effects of Wear-Reducing Additives on Heat Transfer into the M185 Cannon," BRL Memorandum Report No. 2730, February 1977. (AD #A037374)

The Appendix illustrates recorded bore surface temperature and chamber pressure vs time for two standard rounds (61 and 64) and one round with 31.1 g of M9 propellant (round 65). Peak bore temperature increases were 761K and 782K for the two standard rounds while the M9 propellant produced a 963K temperature rise. If one uses Table 5 as a correlation between wear and peak surface temperature, one concludes the standard round should produce wear comparable to the M4A2 charge. Niiler and Birkmire measured single-shot wear of 0.02 µ/round for the M55A2 projectile which lends some credence to use of Table 5 to estimate wear from peak surface temperatures. Using Table 5 and the 963K temperature rise for M9 propellant, one predicts the M9 propellant will produce wear comparable to the XM203E2 charge. Thus, the wear-peak surface temperature correlation also suggests M9 propellant in the 20mm barrel mimics wear of current howitzers.

A final point to consider is what needs to be done to get 25 μ /shot in the 20mm barrel. Figure 3 illustrates wear \underline{vs} charge mass for M9 propellant which suggests the charge mass must \overline{be} 60-70g to get such wear. This would require a much larger chamber to accomodate the extra propellant. Figure 4 shows what wear might be expected if the charge mass is fixed at 39.6g, but the flame temperature is allowed to increase. Figure 4 was constructed with various values of T_0 in equation (1) with a fixed charge mass and diameter to estimate θ , and use of equation (3) to estimate wear/round. Figure 4 implies flame temperatures in excess of 4,500K would be needed.

IV. CONCLUSIONS

- 1. M9 propellant can be substituted in the M55A2TP-T round for the standard WC870 ball powder to produce 100 m/s higher velocity without exceeding the peak chamber pressure of the standard M55A2TP-T round.
- 2. The wear estimated in the 20 mm barrel firing M9 propellant is comparable to that of existing howitzers and tank guns firing rounds with additives.
- 3. Wear of 25-50 μ /shot is desired in an erosion test device for evaluating future coatings or liners. In the 20mm barrel, this can be done by doubling the charge mass of M9 propellant or by using a propellant with a flame temperature in excess of 4,500K.

⁹R. Birkmire and A. Niiler, "Applications of the Radioisotope Wear Measurement Technique," BRL Technical Report 02075, June 1978. (AD #A058307)

Figure 4. Estimated wear <u>vs</u> flame temperature for 39.6g propellant charge in 20mm gun

APPENDIX

PLOTS OF TEMPERATURE $\underline{\text{VS}}$ TIME AND PRESSURE $\underline{\text{VS}}$ TIME

				•
			•	
	ě			
				•
		•		

Figure Al. Ident. 290-61 Pressure vs Time

Figure A2. Ident. 290-61 Temperature vs Time

Figure A3. Ident. 290-64 Temperature and Pressure \underline{vs} Time

Figure A4. Ident. 290-65 Temperature and Pressure vs Time

REFERENCES

- 1. J.A. Lannon and A.C. Vallado, "Effect of Chrome-Plating on the Wear Characteristics and Ballistic Performance in the 155mm Artillery System," Proceedings of the 1980 JANNAF Propulsion Meeting, CPIA Publication 315, March 1980.
- 2. C. Musick and H. Jones, "Wear Tests of 105mm M68 Cannon With 10 Mil Chromium Plate," MTD Report in preparation.
- 3. E. Freedman, "BLAKE, A ballistic Thermodynamic Code Based on TIGER," Proceedings of the International Symposium on Gun Propellants, Picatinny Arsenal, October 1973.
- 4. J.M. Frankle and L.R. Kruse, "A Method for Estimating the Service Life of a Gun or Howitzer," BRL Report No. 1852, June 1967. (AD #A021389)
- 5. C.S. Smith and J.S. O'Brasky, "A Procedure for Gun Barrel Erosion Life Estimation," Proceedings of the Tri-Service Symposium on Gun Tube Wear and Eorsion, March 1977.
- 6. F.A. Vassallo and W.R. Brown, "Shock Tube Gun Melting Erosion Study," BRL Contract Report No. CR-00406, August 1979. (AD #A076219)
- 7. F.A. Vassallo, "An Evaluation of Heat Transfer and Erosion in the 155mm M185 Cannon," Calspan Technical Report No. VL-5337-D-1, July 1976.
- 8. J.R. Ward and T.L. Brosseau, "Effects of Wear-Reducing Additives on Heat Transfer into the M185 Cannon," BRL Memorandum Report No. 2730, February 1977. (AD #A037374)
- 9. R. Birkmire and A. Niiler, "Applications of the Radioisotope Wear Measurement Technique," BRL Technical Report 02075, June 1978.

 (AD #A058307)

		·	
			,
			1

No. of	f	No. o	f
Copies	Organization	Copie	s Organization
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	6	Commander US Army Armament Research & Development Command ATTN: DRDAR-LC, J. Frasier H. Fair J. Lannon
1	Director of Defense Research and Engineering ATTN: R. Thorkildsen The Pentagon Arlington, VA 20301	6	A. Bracuti A. Moss R. Walker Dover, NJ 07801 Commander
1	Director Defense Advanced Research Projects Agency Director, Materials Division 1400 Wilson Boulevard Arlington, VA 22209	Ü	US Army Armament Research & Development Command ATTN: DRDAR-LC, J. Picard D. Costa E. Barrieres R. Corn K. Rubin
3	HQDA (DAMA-ARZ; DAMA-CSM; DAMA-WSW) Washington, DC 20301	4	J. Houle Dover, NJ 07801 Commander
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333		US Army Armament Research & Development Command ATTN: DRDAR-LC, E. Wurzel K. Russell D. Downs R.L. Trask Dover, NJ 07801
2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS Dover, NJ 07801	1	Commander US Army Armament Research & Development Command ATTN: DRDAR-QA, J. Rutkowski Dover, NJ 07801
5	Commander US Army Armament Research and Development Command ATTN: FC & SCWSL, D. Gyorog H. Kahn B. Brodman S. Cytron T. Hung Dover, NJ 07801	1	Commander US Army Armament Materiel Readiness Command ATTN; DRSAR-LEP-L, Tech Lib Rock Island, IL 61299

No. of		No. of	•
Copies	Organization	Copies	
1 1 7	Commander US Army ARRADCOM Benet Weapons Laboratory ATTN: I. Ahmad T. Davidson J. Zweig G. Friar		Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
5 (Watervliet, NY 12189 Commander US Army ARRADCOM	1	Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35809
	Benet Weapons Laboratory ATTN: J. Busuttil W. Austin R. Montgomery R. Billington J. Santini	1	Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35809
1	Watervliet, NY 12189 Commander US Army Aviation Research and Development Command	1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-UL Warren, MI 48090
	ATTN: DRSAV-E P. O. Box 209 St. Louis, MO 63166	1	President US Army Armor & Engineer Bd Fort Knox, KY 40121
	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Project Manager, M60 Tanks US Army Tank & Automotive Cmd 28150 Dequindre Road Warren, MI 48090
	Commander US Army Research and Technology Laboratories ATTN: R. A. Langsworthy Fort Eustis, VA 23604		Project Manager Cannon Artillery Weapons Systems ATTN: DRCPM-CAWS US Army Armament Research & Development Command
	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703	2	Dover, NJ 07801 Project Manager - M110E2 ATTN: J. Turkeltaub S. Smith Rock Island, IL 61299

No. of Copies		No. of Copies	
1	Project Manager - XMl Tank US Army Tank Automotive Development Command 28150 Dequindre Road Warren, MI 48090		Commander US Army Armor Center ATTN: ATZK-XM1 Fort Knox, KY 40121
1	Project Manager - XM1 Tank Main Armament Dev Div Dover, NJ 07801		Commander US Army Field Artillery School ATTN: J. Porter Fort Sill, OK 73503
1	Project Manager - ARGADS Dover, NJ 07801		Commander Naval Surface Weapons Center ATTN: M. Shamblen
1	Commander US Army DARCOM Materiel Readiness Support Activity Lexington, KY 40511		J. O'Brasky C. Smith L. Russell T. W. Smith Dahlgren, VA 22448
2	Director US Army Materials and Mechanics Research Center ATTN: J. W. Johnson K. Shepard Watertown, MA 02172		Commander Naval Ordnance Station ATTN: L. Dickinson S. Mitchell Indian Head, MD 20640
3	Director US Army Research Office ATTN: P. Parrish E. Saibel D. Squire P. O. Box 12211 Research Triangle Park NC 27709	2	Commander Naval Ordnance Station, Louisville ATTN: F. Blume Louisville, KY 40202 AFATL (D. Uhrig, O. Heiney) Eglin AFB, FL 32542
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	1	National Bureau of Standards Materials Division ATTN: A. W. Ruff Washington, DC 20234 National Science Foundation
1	Commander US Army Air Defense Center ATTN: ATSA-SM-L Fort Bliss, TX 79916	1	Materials Division Washington, DC 20550

No. of Copies		No.		
1	Battelle Columbus Laboratory ATTN: G. Wolken Columbus, OH 43201	1	1 SRI International Materials Research Center 333 Ravenswood Avenue Menlo Park, CA 94025	
1	Lawrence Livermore Laboratory ATTN: J. Kury Livermore, CA 94550	1	l University of Illinois Dept of Aeronautics and Aerospace Engineering	
2	Calspan Corporation ATTN: G. Sterbutzel F. Vassallo		ATTN: Ĥ. Krier Urbana, ÎL 61803	
	P. O. Box 400 Buffalo, NY 14221	<u>A</u>	Aberdeen Proving Ground Dir, USAMTD	
1	Director Chemical Propulsion Info Agcy Johns Hopkins University ATTN: T. Christian Johns Hopkins Road Laurel, MD 20810		ATTN: H. Graves, Bldg. 400 L. Barnhardt, Bldg. 400 K. Jones, Bldg. 400 R. Moody, Bldg. 525 Cdr, USATECOM ATTN: DRSTE-FA DRSTE-AR	0
1	Princeton University Forrestal Campus Library ATTN: Tech Lib B. Royce P. O. Box 710 Princeton, NJ 08540		DRSTE-AD DRSTE-TO-F Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen D. Barnhardt, RAM Div G. Alexander, RAM Div	
1	Purdue University School of Mechanical Eng ATTN: J. R. Osborn W. Lafayette, IN 47909		Air Warfare Div Ground Warfare Div RAM Division Dir, USACSL, Bldg. E3516, EA ATTN: DRDAR-CLB-PA	

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number
2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)
3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)
4. Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)
6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.
Name:
Telephone Number:
Organization Address:

Director US Army Ballistic Research Aberdeen Proving Ground, M			NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300	BUSINESS RE	•	
	POSTAGE WILL BE PAID BY DE	PARTMENT OF THE ARMY	
US AT	rector Army Ballistic Resear TN: DRDAR-TSB erdeen Proving Ground,	·	
	FOLD HERE		

•

.

•			

