Geometria Computacional Triangulações

Claudio Esperança Paulo Roma Cavalcanti

Problema

- Dado um conjunto P de pontos do Rⁿ, decompor o seu fecho convexo conv(P) num complexo simplicial cuja união seja conv(P) e cujo conjunto de vértices contenha P.
- Não existe uma solução única para esse problema.
- No plano, toda triangulação de conv(P) possui exatamente (2n v 2) triângulos e (3n v 3) arestas, onde v é o número de pontos de P na fronteira de conv(P), n a cardinalidade de P e a o número de arestas.
 - Use a fórmula de Euler para esfera:

$$V - A + F = 2.$$

Exemplo: Lago Superior

Dedução

• O número de faces *F* é igual ao número de triângulos *T* + 1, pois tem-se de considerar a face externa ilimitada no plano.

$$n-a+(T+1)=2$$

• Cada triângulo possui 3 arestas. Como cada aresta aparece em 2 triângulos, arestas são contadas duas vezes.

$$3T + v = 2a \Rightarrow a = \frac{3T + v}{2}$$

$$n + T + 1 = \frac{3T + v}{2} + 2$$

$$2n + 2T + 2 = 3T + v + 4$$

$$T = 2n - v - 2 \quad \text{e} \quad a = 3n - v - 3$$

Algoritmo Força Bruta

- Obtenha conv(P) e triangule-o por diagonais. Cada ponto que não esteja na fronteira de conv(P) é inserido em conv(P) e o triângulo que o contém é subdividido.
 - Algoritmo $O(n \log n)$ para achar conv(P).
 - Inclusão de cada ponto é O(n).
 - Algoritmo completo é $O(n^2)$.

Problema Resolvido?

- Embora todas as triangulações de *conv*(*P*) tenham o mesmo número de triângulos, a forma dos triângulos é muito importante em aplicações numéricas.
- Triangulação de Delaunay tem a importante propriedade de, entre todas as triangulações de conv(P), maximizar o menor de todos os ângulos internos dos triângulos.
 - Isso só é verdade no *R*².

Como Triangular?

- Uma triangulação fornece uma <u>estrutura</u> <u>combinatória</u> a um conjunto de pontos.
- Na realidade, um algoritmo de triangulação fornece **regras** para conectar pontos "próximos".
- A triangulação de Delaunay conecta os pontos baseado em um único critério: círculos vazios.
 - Conceitualmente simples e fácil de implementar.
 - O critério de proximidade vem do Diagrama de Voronoi.

Diagrama de Voronoi

- É uma partição do R^n em polígonos convexos associados a um conjunto de sítios (**tesselação** de Dirichlet).
- O conceito foi discutido em 1850 por Dirichlet e em 1908 num artigo do matemático russo Georges Voronoi.
- É a <u>segunda</u> estrutura mais importante em Geometria Computacional perdendo apenas para o fecho convexo.
- Possui todas as informações necessárias sobre a proximidade de um conjunto de pontos.
- É a estrutura dual da triangulação de Delaunay.

Definições

- Seja $P = \{p_1, p_2, ..., p_n\}$ um conjunto de pontos do plano euclidiano, chamados de sítios. Particione o plano atribuindo a cada ponto do plano o sítio mais próximo.
 - Todos os pontos associados a p_i formam um polígono de Voronoi $V(p_i)$:

$$V(p_i) = \left\{ x : \left| p_i - x \right| \le \left| p_j - x \right| \forall j \ne i \right\}$$

 O conjunto de todos os pontos associados a mais de um sítio forma o diagrama de Voronoi Vor(P).

Dois Sítios

- Sejam p_1 e p_2 dois sítios e $B(p_1, p_2) = B_{12}$ a mediatriz do segmento p_1p_2 .
 - Cada ponto $x \in B_{12}$ é equidistante de p_1 e p_2 (congruência lado-ângulo-lado).

Três Sítios

- A menos do triângulo (p_1, p_1, p_3) , o diagrama contém as mediatrizes B_{12}, B_{23}, B_{31} .
- As mediatrizes dos lados de um triângulo se encontram no **circuncentro** do círculo <u>único</u> que passa pelos três vértices (Euclides).

Semi-planos

• A generalização para mais de três pontos corresponde ao local geométrico da interseção dos semi-planos fechados $H(p_i, p_j)$, dos pontos mais próximos de p_i do que de p_i .

$$V(p_i) = \bigcap_{i \neq j} H(p_i, p_j)$$

Voronoi de 7 pontos

- 7 pontos definem o mesmo número de polígonos de Voronoi.
- Um dos polígonos é limitado porque o sítio correspondente está completamente cercado por outros sítios.
- Cada ponto do R² possui pelo menos um vizinho mais próximo. Logo, ele pertence a pelo menos um polígono de Voronoi.
 - Assim, o diagrama de Voronoi cobre completamente o plano.

Teoremas

- Os polígonos de Voronoi correspondentes a um par de pontos x_i e x_j possuem uma aresta comum, se e somente se existem pontos (aqueles da aresta comum) que são eqüidistantes dos pontos x_i e x_j que estão mais próximos deles do que de qualquer outro ponto de P.
- Um polígono de Voronoi é **ilimitado** se somente se o ponto correspondente x_i pertencer à fronteira de conv(P).

Círculos Vazios

- Todo vértice v de Vor(P) é comum a pelo menos três polígonos de Voronoi e é centro de um círculo C (v) definido pelos pontos de P correspondentes aos polígonos que se encontram em v. Além disso, C (v) não contém nenhum outro ponto de P.
- Os pontos de P estão em **posição geral** se nenhum sub-conjunto de P contém $\underline{4}$ pontos co-circulares.

 p_2

 p_1

 B_{31}

Algoritmo para Voronoi

- Pode-se determinar os conjuntos $T_1, T_2, ..., T_t$ de P que determinam **círculos vazios** para construir Vor(P).
 - Cada T_k é formado por três ou mais pontos co-circulares de P.
 - Se os pontos de P estão em posição geral, todo T_k contém exatamente 3 sítios de P.
 - As arestas de Vor(P) são os segmentos mediatrizes correspondentes a pontos consecutivos dos T_k .
 - Uma vez conhecidos todos os T_k , Vor(P) pode ser determinado em tempo linear.

Ligação entre Voronoi e Delaunay

- No diagrama de Voronoi cada sítio está associado a um polígono (face) de Vor(P).
- O grafo dual tem por vértices os sítios de Vor(P), e por arestas os pares de sítios cujos polígonos são vizinhos.
- O grafo dual é Chamado de triangulação de Delaunay Del(P).
 - Dois sítios x_i e x_j determinam uma aresta de Del(P) se e somente se existe um círculo C contendo x_i e x_j tal que \underline{todos} os outros sítios sejam exteriores a C.

Triangulação de Delaunay

- Em 1934, o matemático russo Boris Delaunay provou que quando o grafo dual é desenhado com <u>linhas retas</u> ele produz uma triangulação dos sítios do diagrama de Voronoi (supostos estarem em posição geral).
- Não é óbvio que as arestas de *Del(P)* não se cruzam, já que uma aresta entre dois sítios não cruza, necessariamente, a aresta de Voronoi correspondente.

Propriedades de Delaunay

- D_1 . Del(P) é o dual com arestas retilíneas de Vor(P).
- D₂. *Del(P)* é uma triangulação se nenhum grupo de 4 pontos forem co-circulares. Cada face é um triângulo (teorema de Delaunay).
- D_3 . Cada triângulo de Del(P) corresponde a um vértice de Vor(P).
- D_4 . Cada aresta de Del(P) corresponde a uma aresta de Vor(P).
- D_5 . Cada vértice de Del(P) corresponde a um polígono (face) de Vor(P).
- D_6 . A fronteira de Del(P) é o fecho convexo dos sítios.
- D_7 . O interior de cada triângulo (face) de Del(P) não contém sítios.

Propriedades de Voronoi

- V_1 . Todo polígono $V(p_i)$ de Voronoi é convexo.
- V_2 . $V(p_i)$ é ilimitado se e só se p_i está no fecho convexo.
- V_3 . Se v for um vértice de Voronoi na junção de $V(p_1)$, $V(p_2)$, $V(p_3)$ então v é o centro do círculo C(v) que passa por p_1 , p_2 , p_3 .
- V_4 . C(v) é o círculo circunscrito ao triângulo correspondente a v.
- V_5 . C(v) é vazio (não contém outros sítios).
- V_6 . Se p_i for o vizinho mais próximo de p_j , então $p_i p_j$ é uma aresta de Del(P).
- V_7 . Se existir um círculo vazio passando por p_i e p_j , então $p_i p_i$ é uma aresta de Del(P).

Prova de V₇

- Se ab é uma aresta de Delaunay, então V(a) e V(b) compartilham uma aresta e de V(a). Seja um círculo C(x) com centro x no interior de e, de raio igual a distância até a ou b.
 - C(x) é vazio. Caso contrário, um sítio c estaria sobre ou dentro de C(x) e x estaria em V(c) também. Isto é absurdo porque x está em V(a) e V(b) apenas.

Prova de V₇

- Suponha agora que exista um círculo C(x) vazio passando por a e b, e com centro x. Já que x é eqüidistante de a e b, x está em V(a) e V(b).
 - Há uma certa liberdade para mover x ao longo da mediatriz de ab, mantendo o círculo vazio e passando por a e b. Logo, x está em uma aresta de Voronoi compartilhada por V(a) e V(b).
 - $x \in V(a) \cap V(b) \Rightarrow ab \in Del(P)$.

Feixe de Círculos Vazios de um Segmento

Teorema de Delaunay

- Seja $P = \{x_1, x_2, ..., x_n\}$ um conjunto de pontos do plano e seja $\{T_k\}$ a família de subconjuntos ordenados de P que determinam círculos vazios.
 - a) O diagrama de Delaunay obtido ligando os pontos consecutivos de cada T_k é uma realização de um grafo planar.
 - b) As arestas correspondentes a cada T_k delimitam uma região convexa $R_{k'}$.
 - c) Essas regiões possuem interiores disjuntos e sua união é o fecho convexo de *P*.
 - d) As regiões R_k são exatamente as faces limitadas do diagrama planar determinado por Del(P).
 - e) Se os pontos de P estão em posição geral, então os R_k determinam uma triangulação de conv(P), chamada **Triangulação de Delaunay**.

Lema 0

$$a + d = 2\pi$$

$$b = \frac{a}{2}, c = \frac{d}{2}$$

$$b + c = \pi$$

Lema 1

• Sejam pq e rs dois segmentos do plano que se interceptam em o. Então para que um círculo passe por p e q com r e s exteriores, é necessário e suficiente que os ângulos do quadrilátero prqs sejam tais que $p + q > \pi$ ou $r + s < \pi$.

Prova do Lema 1

• Sejam *r'* e *s'* as interseções de *rs* com o círculo.

$$p + q + r + s = p + q + r' + s' = 2\pi$$

- Soma dos ângulos internos de um polígono é (n-2) π
- $r + s < r' + s' = \pi$ (pr'qs' está inscrito).
- Do mesmo modo, se $r + s < \pi$ então existem r' e s' sobre rs tal que $r' + s' = \pi$

Lema 2

- Se *pqr* é um triângulo de uma triangulação de Delaunay, de *conv*(*P*), então o ângulo *prq* é <u>máximo</u> dentre todos os ângulos da forma *psq*, onde s pertence a *P* e está no mesmo semi-plano de *r* em relação a *pq*.
 - Se ∠*psq* > ∠*prq* então s está no interior do círculo definido por *p*, *q* e *r*. Logo, *pqr* não pode ser um triângulo de Delaunay.

- Vamos mostrar primeiro que as arestas de Del(P) só se intersectam em sítios para em seguida mostrar que a união dos R_k é igual a conv(P).
- Suponha que pq e rs são duas arestas de Del(P) que se intersectam em o e V(p) e V(q) os polígonos de Voronoi correspondentes a p e q.
- *V*(*p*) e *V*(*q*) possuem uma aresta comum e por isso há um círculo passando por *p* e *q* com *r* e *s* exteriores a ele.
 - Pelo lema, no quadrilátero prqs, temos $r + s < \pi$. Por conseguinte, <u>não há</u> círculo passando por r e s que <u>exclua</u> p e q.
 - Logo, V(r) e V(s) <u>não possuem</u> uma aresta comum, ou seja, $rs \notin Del(P)$.

- As arestas de cada T_k são lados de um polígono inscrito em um círculo. Logo, determinam um polígono convexo.
- O círculo associado a T_k não contém nenhum outro sítio, por definição.
- Vimos que as arestas de *Del(P)* só se intersectam em sítios.
 - Logo, se os R_k forem triângulos os seus interiores são disjuntos.
 - Se algum R_k for um polígono com mais de 3 lados, a única outra possibilidade seria se houvesse uma aresta de Delaunay pq definida por vértices não consecutivos de T_k .
 - Isso não ocorre porque no quadrilátero pqrs, $p + q = \pi$. Assim, não pode haver um círculo passando por $p \in q$ com $r \in s$ exteriores. Logo $pq \notin Del(P)$.

- Segmentos $x_i x_j$ da fronteira de conv(P) fazem parte de Del(P).
 - Basta tomar como centro qualquer ponto da mediatriz suficientemente distante, já que não há sítios fora de conv(P).
- Qualquer aresta de Del(P) delimita uma ou duas regiões (apenas uma, no caso de estar na fronteira de conv(P)).
- R_k são regiões convexas contidas em conv(P). Logo, a união dos R_k está contida em conv(P).
- Seja x um ponto arbitrário de conv(P). Se x estiver sobre alguma aresta ou vértice de Del(P), então x pertence a algum R_k .
 - Senão, considere uma reta L qualquer com origem em x e que não passe por nenhum outro sítio.

- Seja a a primeira aresta intersectada por L, e R_k a região adjacente a a no mesmo semi-plano de x.
 - Pelo Lema 2, esta região existe, já que deve haver pelo menos um outro sítio no mesmo semi-plano de x, pois x está em conv(P).
- Se $x \notin R_k$, então certamente L intersectaria uma outra aresta de R_k e a não teria sido a primeira interseção. Logo, $x \in R_k$.
- Assim, as regiões R_k realmente cobrem conv(P) e portanto sua união é igual a conv(P).

Cotas

- O diagrama de Voronoi de um conjunto P com n sítios tem no máximo 2n-5 vértices e 3n-6 arestas.
 - O maior número de arestas ocorre quando todas as faces de *Del(P)* são triangulares e *conv(P)* também é um triângulo (substitua *v* por 3).
 - Diagrama de Voronoi e triangulação de Delaunay são redutíveis um ao outro em tempo linear.
 - Embora o diagrama de Delaunay não produza sempre uma triangulação, caso os pontos não estejam em posição geral, cada região convexa R_k com m vértices pode ser triangulada por m-3 diagonais.

Cota Inferior

- O diagrama de Voronoi fornece uma triangulação de conv(P) em tempo linear.
- O problema de ordenação pode ser reduzido ao problema de triangulação.
 - Dados $\{x_1, x_2, ..., x_n\}$ crie $P = \{(0,0), p_1, p_2, ..., p_n\}$ onde $p_i = (x_i, 1)$.
 - Logo, Voronoi e Delaunay $\in \Omega(n \log n)$.

Qualidade dos Triângulos

- Seja T uma triangulação de um conjunto de pontos S, e seja a seqüência angular ($\alpha_1, \alpha_2, ..., \alpha_{3t}$) a lista dos ângulos dos triângulos ordenada em ordem crescente (t é o número de triângulos).
 - *t* é constante para cada *S*.
 - T > T' se a sequência angular de T for maior lexicograficamente do que a de T'.
 - A triangulação de Delaunay T = Del(P) é **maximal** em relação à forma angular: $T \ge T'$ para qualquer outra triangulação T' de P (Edelsbrunner 1987).
 - Maximiza o menor ângulo.

Algoritmos para Triangulação de Delaunay

- O lema 2 pode ser usado para construir uma triangulação de Delaunay em $O(n^2)$.
- Um algoritmo complexo para encontrar o diagrama de Voronoi em O(*n* log *n*) foi detalhado por Shamos e Hoey (1975).
 - Usa dividir para conquistar.
 - Este artigo introduziu o diagrama de Voronoi à comunidade de computação.
 - O algoritmo é muito dificil de implementar, mas pode ser feito utilizando-se uma estrutura de dados adequada, como a Quadedge de Guibas e Stolfi (1985).
- Algoritmo incremental costuma ser muito usado por ser mais fácil de implementar, mas também é $O(n^2)$.
 - Se for randomizado o tempo médio é $O(n \log n)$.

Algoritmo 1

- Encontre uma aresta de Delaunay em conv(P) como na varredura de Graham.
- Ache o triângulo adjacente pelo lema 2 e coloque-o em uma fila *F* e numa estrutura tipo *WE* (winged edge).
- Enquanto $F \neq \emptyset$, faça:
 - Remova um triângulo *T* de *F*.
 - Para cada aresta livre de *T*
 - Determine a face adjacente T' pelo lema 2
 - -Insira T' em F
 - Insira T' em WE marcando as suas arestas livres

Algoritmo 2

- Lawson criou em 1972 um algoritmo bastante elegante baseado em flip de arestas.
- O algoritmo começa com uma triangulação arbitrária e procura por arestas que não sejam localmente Delaunay.
 - Para verificar se uma aresta *e* é localmente Delaunay, olha-se apenas para os dois triângulos incidentes em *e*.
 - Há apenas duas maneiras de triangular o fecho convexo de 4 pontos.

Lema 3

- Seja *e* uma aresta de uma triangulação de *P*. Então *e* é localmente Delaunay ou *e* pode ser flipado e a nova aresta é localmente Delaunay.
 - Sejam v e w os vértices opostos a e.
 - Se w está dentro de C, o quadrilátero é estritamente convexo e e pode ser flipado.
 - O círculo tangente a v passando por w não inclui os vértices de e. Logo, vw é localmente Delaunay.

Lema 4

- Seja *T* uma triangulação cujas arestas são localmente Delaunay. Então toda aresta de *T* é globalmente Delaunay.
 - Suponha todas as arestas localmente Delaunay, mas alguma aresta não Delaunay. Logo, algum triângulo t não é Delaunay. Seja v o vértice dentro de C(t).
 - Considere o segmento que liga o ponto médio de e_1 a v e a seqüência de aresta e_i intersectadas.
 - e_1 é localmente Delaunay. Logo, w_1 está fora de C(t).
 - Cada $C(t_i)$ inclui v, mas $w_m = v$ é um vértice de t_m . Isso é um absurdo, pois v deveria estar dentro de $C(t_m)$.

Não Há Ciclos Infinitos

- Dada uma triangulação com n vértices, o algoritmo de flip termina após $O(n^2)$ flips de arestas produzindo uma triangulação cujas arestas são globalmente Delaunay.
 - Note-se que quadriláteros côncavos não podem ser flipados. No *R*² isto não é problema porque se o quarto vértice estiver dentro do círculo o quadrilátero será convexo.

Algoritmo 3

- Watson e Boyer criaram em 1981 os primeiros algoritmos incrementais.
 - Adiciona-se um ponto por vez na triangulação.
 - Inicialmente existe um único simplexo grande o suficiente para conter todos os pontos de *P*.
 - Quando um novo ponto é inserido, são eliminados todos os simplexos que não estão mais vazios, criando-se uma cavidade poliedral.
 - A cavidade é então triangulada ligando-se o novo ponto a todos os vértices na fronteira da cavidade.
 - Para evitarem-se inconsistências estruturais, a cavidade deve ser estrelada.
 - $n_i(p-x_i) > 0.0$, onde n_i é a normal da i-ésima face da cavidade, p é o novo ponto e x_i é um ponto qualquer na i-ésima face.
 - No caso do teste falhar elimina-se uma face e um simplexo, criando-se uma cavidade maior.

Simplexo Envolvente

Polígono estrelado

Polígono NÃO estrelado

Triangulação de Delaunay Restrita

- Muitas vezes é necessário triangular um grafo planar retilíneo (*GPR*).
 - Basicamente, arestas só se intersectam em vértices, que fazem parte do grafo.
- A triangulação de Delaunay é <u>cega</u> para as arestas de um *GPR*, que podem aparecer na triangulação final ou não.
- Triangulação de Delaunay restrita (*TDR*) é similar a triangulação de Delaunay, mas todos os segmentos do *GPR* devem aparecer na triangulação final.

Exemplo

Restrições

- Uma aresta ou triângulo é dito restrito se:
 - Seu interior não intersecta um segmento de entrada.
 - Seu círculo não contém nenhum vértice visível do interior da aresta ou triângulo.
 - Assume-se que segmentos de entrada do *GPR* bloqueiam a visibilidade.
 - *TDR* contém todos os segmentos de entrada e arestas restritas.

Algoritmo para TDR

- Construa uma triangulação qualquer dos vértices do *GPR*.
- Verifique que segmentos não estão presentes e insira-os eliminando primeiro todas as arestas intersectadas.
 - Triangule os dois sub-polígonos obtidos (por diagonais).
- Use flips para obter a *TDR*. Segmentos de entrada <u>não devem</u> ser flipados nunca.

Inserção de Pontos

- Se uma triangulação <u>estritamente</u> Delaunay for necessária, pode-se forçar o aparecimento de segmentos ausentes pela inserção recursiva de novos vértices nos pontos médios destes segmentos.
 - Como vizinhos mais próximos definem arestas de Delaunay, eventualmente um segmento ausente será recuperado como a <u>união</u> de segmentos da triangulação.

Triangulação de Delaunay 3D

- Os conceitos vistos até aqui continuam válidos, porém com algumas ressalvas:
 - Simplexos são tetraedros.
 - Um poliedro arbitrário pode <u>não ser triangulável</u> sem a inserção de pontos.
 - O teste da esfera vazia permite o aparecimento de tetraedros <u>degenerados</u> (*slivers*).
 - Não maximiza o ângulo (diédrico) mínimo.
 - Flips podem ser usados, já que há apenas duas maneiras de triangular o fecho convexo de 5 pontos: com dois ou três tetraedros.
 - A convexidade deve ser explicitamente testada antes de um flip.
 - No caso de uma triangulação restrita, não só as arestas mas também as faces devem ser recuperadas.

Exemplo de Sliver

- Este hexaedro pode ser triangulado de duas maneiras:
 - A triangulação de Delaunay à esquerda produz um sliver.
 - A triangulação da direita não é Delaunay, mas produz dois tetraedros com boa forma.

Flips 3D

- Flips 2x3 e 3x2.
 - Os dois tetraedros da esquerda podem ser transformados nos três tetraedros da direita e viceversa.
- Convexidade deve ser testada.
 - Segmento ab deve passar pelo interior do triângulo cde.

Edge Flip:

Unflippable:

Unflippable:

Flips 3D

- Flip 4x4.
 - Vértices *c*, *d*, *e*, e *f* são co-planares.
- A transformação é análoga ao flip de aresta 2D mostrado no final.

Recuperação de Arestas e Faces

- A recuperação de arestas pode ser feita pela técnica de inserir pontos recursivamente no ponto médio de uma aresta ausente até que ela apareça como união de arestas da triangulação.
- A recuperação de faces normalmente é feita intersectando-se a face ausente contra a triangulação e re-triangulando os tetraedros afetados.
- Flips podem ser usados, mas nem sempre recuperam uma face completamente.

Voronoi 3D

• Os conceitos vistos são todos válidos. Porém agora tem-se poliedros (convexos) de Voronoi.

Aplicações

- Vizinhos mais próximos.
 - Qual o vizinho mais próximo de um dado ponto dentre aqueles de um conjunto P?
 - Ache <u>todos</u> os vizinhos mais próximos de cada ponto de um conjunto *P* dado.
- A relação de vizinho mais próximo é dada por: b é o vizinho mais próximo de a (a→ b)
 ⇔ |a b| ≤ min_{c≠a} |a c|, c ∈ P.
 - Note que essa relação não é simétrica: $a \rightarrow b$ não significa que $b \rightarrow a$

Solução

- Consultas de vizinho mais próximo.
 - Construa o diagrama de Voronoi em $O(n \log n)$.
 - Para um ponto $q \in \mathbb{R}^2$ a ser testado, ache os polígonos de Voronoi que o contêm em O(log n).
 - Os sítios desses polígonos são os vizinhos mais próximos.
 - Se $q \in P$ basta percorrer todas as arestas de Del(P) incidentes em q e retornar aquela de comprimento mínimo.

Grafo dos Vizinhos mais Próximos

- Seja o *GVP*, aquele que associa um nó a cada ponto de *P* e um arco entre dois pontos se um ponto for o vizinho mais próximo do outro.
 - É um grafo não dirigido.
 - Mas porque a relação não é simétrica, pode ser definido como um grafo dirigido.
 - $GVP \subseteq Del(P)$.
 - Algoritmo força bruta é $O(n^2)$, mas o item anterior permite procurar apenas O(n) arestas de Del(P) e portanto pode ser feito em $O(n \log n)$.

Árvore Geradora Mínima

- A *AGM* de um conjunto de pontos é a árvore de comprimento mínimo que gera todos os pontos.
 - Consideramos aqui a norma Euclidiana.
 - Intuitivamente essa árvore pode ser construída incrementalmente pela adição das arestas mais curtas, ainda não usadas, e que não gerem ciclos.
 - Esse é o algoritmo de Kruskal (1956).
 - $AGM \subseteq Del(P)$.
 - A *AGM* no plano pode ter no máximo $\binom{n}{2}$ arestas. Logo, a complexidade da ordenação é $O(n^2 \log n)$, se for usado o grafo completo.
 - Construa Del(P) em $O(n \log n)$ e ordene apenas O(n) arestas em $O(n \log n)$. Assim, a complexidade total no plano é $O(n \log n)$.

Problema do Caixeiro Viajante

- Achar o caminho mínimo fechado que passa por todos os pontos (cidades) que o caixeiro viajante deve visitar.
 - O problema é NP-completo (Garey & Johnson 1979), o que significa que não há solução polinomial conhecida.
 - Heurística: ache a AGM dos pontos e siga-a para frente e para trás, de modo que o caminho percorrido seja o dobro do comprimento da AGM.

