Problem 1

(a)

IPTG(mM)	<n> (mRNA/cell)</n>	low (mRNA/cell)	high (mRNA/cell)	nmol/gDW	low (nmol/gDW)	high (nmol/gDW)
0	19	18	20	0.105204873	0.099667774	0.110741971
5.00E-04	21	17	26	0.11627907	0.094130676	0.143964563
0.005	41	37	44	0.227021041	0.204872647	0.243632337
0.012	67	65	69	0.370985604	0.359911406	0.382059801
0.053	86	84	88	0.476190476	0.465116279	0.487264673
0.216	93	91	95	0.514950166	0.503875969	0.526024363
1	93	92	94	0.514950166	0.509413068	0.520487265

(b)

$$G_1 + R_x \stackrel{R_+}{\underset{k}} (G_1:R_x)_{\mathcal{C}} \qquad \text{binding}$$

$$(G_1:R_x)_{\mathcal{C}} \stackrel{R_+}{\underset{k}} (G_1:R_x)_{\mathcal{O}} \qquad \text{initiation}$$

$$(G_1:R_x)_{\mathcal{O}} \stackrel{R_+}{\underset{k}} R_x + G_1 \qquad \text{open complex complex complex}$$

$$(G_1:R_x)_{\mathcal{O}} \stackrel{K_+}{\underset{k}} m + R_x + G_1 \qquad \text{elongation}$$

$$T_x = K_{\mathcal{G}}^{\times} (G_1:R_x)_{\mathcal{O}} \qquad \text{hate limiting step}$$

$$\frac{d}{dt} (G_1:R_x)_{\mathcal{C}} = k_+ G_1 R_x - k_- (G_1:R_x)_{\mathcal{C}} - k_+ (G_1:R_x)_{\mathcal{C}}$$

$$\frac{d}{dt} (G_1:R_x)_{\mathcal{O}} = k_+ G_1 R_x - k_- (G_1:R_x)_{\mathcal{O}} - k_+ (G_1:R_x)_{\mathcal{O}}$$

$$\frac{d}{dt} (G_1:R_x)_{\mathcal{O}} = k_+ (G_1:R_x)_{\mathcal{C}} + k_+ (G_1:R_x)_{\mathcal{O}} - k_+ (G_1:R_x)_{\mathcal{O}}$$

$$R_{X,T} = R_X + (G_1:R_x)_{\mathcal{C}} + (G_1:R_x)_{\mathcal{C}} + (G_1:R_x)_{\mathcal{O}}$$

$$R_{X,T} = R_X + (G_1:R_x)_{\mathcal{C}} + (G_1:R_x)_{\mathcal{C}} + (G_1:R_x)_{\mathcal{O}}$$

$$Total = Free + Closed + Open \\ RNAP RNAP complex complex
$$R_{X,AP} = R_X + (G_1:R_x)_{\mathcal{C}} + (G_1:R_x)_{\mathcal{C}} = 0$$

$$dt$$

$$R_+ G_1R_x - k_- (G_1:R_x)_{\mathcal{C}} - k_+ (G_1:R_x)_{\mathcal{C}} = 0$$

$$(G_1:R_x)_{\mathcal{C}} = (K_+ K_x)_{\mathcal{C}} + K_x$$

$$(G_1:R_x)_{\mathcal{C}} = (K_+ K_x)_{\mathcal{C}} + K_x$$

$$R_X = R_X + (G_1:R_x)_{\mathcal{C}} - R_x$$

$$R_X = R_X + G_1R_x - R_$$$$

Symilarly
$$k_{\perp} (G:R_{x})_{c} - k_{\perp} (G:R_{x})_{o} - k_{\perp}^{\times} (G:R_{x})_{o} = 0$$

$$(G:R_{x})_{o} = \begin{pmatrix} k_{\perp} \\ k_{\perp} + k_{\perp}^{\times} \end{pmatrix} \begin{pmatrix} k_{\perp} \\ k_{\perp} + k_{\perp}^{\times} \end{pmatrix} \begin{pmatrix} k_{\perp} \\ k_{\perp} + k_{\perp} \end{pmatrix} G R_{x}$$

$$T_{x}^{-1} \qquad K_{x}^{-1}$$

$$(G:R_{x})_{o} = \begin{pmatrix} K_{\perp} \\ K_{\perp} + K_{\perp}^{\times} \end{pmatrix} G R_{x}$$

$$R_{x,T} = R_{x} + (G:R_{x})_{c} + (G:R_{x})_{o}$$

$$R_{x,T} = R_{x} + K_{x}^{-1} G R_{x} + K_{x}^{-1} T_{x}^{-1} G R_{x}$$

$$R_{x,T} = R_{x} \begin{pmatrix} 1 + G_{\perp} + G_{\perp} \\ K_{x} \end{pmatrix} K_{x} T_{x}$$

$$R_{x,T} = R_{x} \begin{pmatrix} K_{x} T_{x} + T_{x} G + G_{\perp} \\ K_{x} T_{x} \end{pmatrix}$$

$$R_{x,T} = R_{x} \begin{pmatrix} K_{x} T_{x} + T_{x} G + G_{\perp} \\ K_{x} T_{x} \end{pmatrix}$$

$$R_{x,T} = R_{x} \begin{pmatrix} K_{x} T_{x} + T_{x} G + G_{\perp} \\ K_{x} T_{x} \end{pmatrix}$$

So the final greate of transcription ox can be written as $v_x = k_{\varepsilon}^{\times}(G:R_x)_0$ TX = KEX TX-1 KX-1 GO KX TX RX,T Kx Tx + (Tx+1) G $r_{x} = k_{E}^{\times} R_{x,T} \left(\frac{G}{T_{x} K_{x} + (T_{x} + 1) G} \right)$ Now writing the mesterial balance on MRNA $\dot{n} = \frac{du}{dt} = \gamma_x \bar{u} - (\mu + \theta_m) m$ At pseudo steady state => 8x u = (p+0m) m* ox ū M+Om $\frac{k_{\varepsilon}^{\times} R_{x,T}}{\mu + \theta_{m}} \left(\frac{G}{T_{x} K_{x} + (T_{x} + 1) G} \right)$ ū (I, K) Kx $\left(\frac{R_{E} \times R_{x,T}}{\mu + \theta_{m}}\right) \left(\frac{G}{T_{x} K_{x} + (T_{x}+1) G}\right)$ frain Kx =

CHEME – 7770 Abhishek Murti PRELIM am3248

(c)

Parameter	Value	Units	Source
Mass of dry cell	1.00E-12	gram	Bionumbers: 101789
Fraction of dry cell	0.27	unitless	Bionumbers: 110086
RNAP copy number	4600	copies/cell	Bionumbers: 108601
Transcription			
elongation rate	50	nt/s	Bionumbers: 111871
Characteristic			https://github.com/varnerlab/JuGRN-
initiation time	42	S	Generator/blob/master/src/distribution/Default.json
Transcription			https://github.com/varnerlab/JuGRN-
saturation constant	0.24	nmol/gDW	Generator/blob/master/src/distribution/Default.json
Dissociation			
constant	4.96E-02	mM	Bionumbers: 101976
Guess parameters			
n	0.9	unitless	
W1	0.01	unitless	
W2	0.05	unitless	

The guess parameters determine the fit of the plot significantly.

(d)

Problem 2

(a)

Dimensional form
$$\frac{dX}{dt} = \frac{\alpha_X + \beta_X S}{1 + S + (Z/Z_X)^{N_{ZX}}} - X$$

$$\frac{dZ}{dt} = \frac{\alpha_Z}{1 + (X/X_Z)^{N_{XZ}}} - S_Z Z$$

$$\frac{dZ}{dt} = \frac{\alpha_Z}{1 + (X/X_Z)^{N_{XZ}}}$$

(b)

Non dimensional
$$X = \overline{X} \cdot \overline{\delta}_{X}$$
 $Z = \overline{Z} \cdot \overline{\delta}_{X}$ $\overline{\delta}_{X}$ $\overline{\delta}$

CHEME – 7770 Abhishek Murti PRELIM am3248

The solid black lines are **qualitatively** reproducible.

By analysing the phase portrait we can clearly observe that for a certain range of parameters, there exist three solutions out of which two are stable and one is unstable.

o

10

20

Time

40

30

(e)

Point below the Hopf Bifurcation chosen as S= 80; Parameters chosen from Figure S1 (a)

As we increase the signal from the Hopf bifurcation point (S=80) to S=100, it induces asynchronous oscillations. The oscillations are incoherent which is in line with the observation made by the authors. This happens because the stable point turns from a spiral sink to spiral source which is unstable.

Point above the saddle node chosen as S = 5000; Parameters chosen from Figure S1 (a)

As we increase the signal from the saddle node bifurcation point (S=5000) to S=100, it induces synchronous oscillations. The oscillations are coherent which is in line with the observation made by the authors. In the figure above the oscillations dissipate after a few seconds. This means that the simulation might not be able to capture the oscillations after t=15s even though there might be some oscillations at a lower amplitude.

CHEME – 7770 Abhishek Murti PRELIM am3248

We do achieve coherent oscillations at S = 100, using the mean parameters in Table S1 and three different initial conditions. Note that the initial conditions have only been changed for Z. Changing the initial conditions for X and Y results in incoherent oscillations.