Bagging et Forêts Aléatoires

Nicolas Verzelen, Joseph Salmon (Pierre Pudlo)

INRA / Université de Montpellier

Plan

Bagging

Forêts aléatoires

Importance des variables

Agrégation d'algorithmes de prédiction

Méthodes d'agrégation

- lackbox Construction d'un grand nombre de prédicteurs \widehat{f}_b , $b=1\dots B$
- Agrégation ou combinaison de ces algorithmes : $\hat{f} = \sum_{b=1}^{B} w_b \hat{f}_b$ ou $\operatorname{sign} \left(\sum_{b=1}^{B} w_b \hat{f}_b \right)$.

Exemples:

Bagging Breiman (1996): pour des algorithmes instables, de variance forte (provient de Bootstrap aggregating)

Boosting Freund et Schapire (1997) : pour des algorithmes fortement biaisés, mais de faible variance

Bagging

Rappel : $\eta^*(x) = \mathbb{E}[Y|X=x]$ (fonction de régression)

Principe du bagging : agréger un ensemble d'algorithmes $\widehat{\eta}_1, \dots, \widehat{\eta}_B$ sous la forme $\widehat{\eta}(x) = \frac{1}{B} \sum_{b=1}^B \widehat{\eta}_b$

$$\overline{\mathbb{E}\left[\left(\widehat{\eta}(x) - \eta^*(x)\right)^2\right]} \le \left(\mathbb{E}\left[\widehat{\eta}(x)\right] - \eta^*(x)\right)^2 + \operatorname{Var}\left(\widehat{\eta}(x)\right)$$

Cas
$$\widehat{\eta}_1, \dots, \widehat{\eta}_B$$
 i.i.d. :
$$\begin{cases} & \mathbb{E}\left[\widehat{\eta}(x)\right] = \mathbb{E}\left[\widehat{\eta}_b(x)\right] \\ & \operatorname{Var}\left(\widehat{\eta}(x)\right) = \operatorname{Var}\left(\widehat{\eta}_b(x)\right)/B \end{cases}$$

 \triangle les $\widehat{\eta}_B$ sont non i.i.d. car construits sur le même échantillon!

Sans indépendance : avec $\rho_x = \operatorname{corr}(\widehat{\eta}_b(x), \widehat{\eta}_{b'}(x))$

$$\operatorname{Var}\left(\widehat{\eta}(x)\right) = \rho_x \operatorname{Var}\left(\widehat{\eta}_b(x)\right) + \frac{1 - \rho_x}{B} \operatorname{Var}\left(\widehat{\eta}_b(x)\right) \overset{B \to +\infty}{\to} \rho_x \operatorname{Var}\left(\widehat{\eta}_b(x)\right)$$

<u>Idée</u> : construire des prédicteurs avec échantillons bootstrap

Algorithme du bagging

Considérons :

- lacktriangle un type de prédicteur η_{D^n} associé à un échantillon D^n
- ▶ un nombre B (grand) d'échantillons bootstrap de D^n : $D_{m_n}^{*1} \dots D_{m_n}^{*B}$, de taille $m_n \leq n$, indépendants les uns des autres conditionnellement à D^n .

Pour
$$b = 1 \dots B$$
, $\widehat{\eta}_b = \eta_{D_{m_n}^{*b}}$

Principe du bagging : agréger les algorithmes $\widehat{\eta}_1,\ldots,\widehat{\eta}_B$:

- $ightharpoonup \widehat{\eta} = rac{1}{B} \sum_{b=1}^{B} \widehat{\eta}_b$; moyenne/ régression
- $ightharpoonup \widehat{\eta} = \mathrm{sign}(\sum_{b=1}^B \widehat{\eta}_b)$; vote à la majorité / classification binaire

Plan

Bagging

Forêts aléatoires

Importance des variables

Forêts aléatoires Breiman (2001)

Forêts aléatoires: Bagging d'arbres maximaux construits sur des échantillons bootstrap de taille $m_n = n$, par une variante de la méthode CART consistant, pour chaque nœud, à

- ightharpoonup tirer au hasard un sous-échantillon de taille p' < p de variables explicatives,
- ightharpoonup partition fils à gauche / fils à droite : sur la base de la "meilleure" de ces p' variables explicatives

Algorithme : Forêts aléatoires

input:

x : l'entrée dont on veut prédire la sortie

 \mathbb{D}^n : l'échantillon observé

 p^\prime : le nombre de variables explicatives sélectionnées à chaque nœud

B : le nombre d'itérations

pour
$$b = 1, \dots, B$$
 faire

Tirer un échantillon bootstrap D_n^{*b} de D^n

Construire un arbre maximal $\widehat{\eta}_b$ sur l'échantillon bootstrap D_n^{*b}

par la variante de CART suivante :

pour chaque nœud $de\ 1$ à N_b faire

Tirer un sous-échantillon de p' variables explicatives Partitionner le nœud à partir de ces p' variables

output:
$$\frac{1}{B} \sum_{b=1}^{B} \widehat{\eta}_b(x)$$
 ou $\operatorname{sign} \left(\sum_{b=1}^{B} \widehat{\eta}_b(x) \right)$

Ajustement des paramètres : erreur Out Of Bag

Si p' diminue, la variance diminue (la corrélation diminue) et le biais augmente (moins bonne qualité d'ajustement)

Compromis biais/variance \Rightarrow choix optimal de p' lié aussi au nombre d'observations dans les nœuds terminaux

 \hookrightarrow Ajustement par validation croisée hold-out ou K fold ou par l'estimation Out Of Bag du risque

Erreur Out Of Bag:

$$\blacktriangleright \ \frac{\sum_{i=1}^n I_i^b(\widehat{\eta_b}(x_i) - y_i)^2}{\sum_{i=1}^n I_i^b} \ \left(\text{r\'egression} \right)$$

$$\blacktriangleright \ \, \tfrac{1}{n} \sum_{i=1}^n \mathbb{1}_{\operatorname{sign}\left(\sum_{b=1}^B I_i^b \widehat{\eta}_b(x_i)\right) \neq y_i} \ \, \text{(classification binaire)}$$

où
$$I_i^b = \begin{cases} 1, & \text{si l'observation } i \not\in D_n^{*b} \\ 0, & \text{sinon} \end{cases}$$

Avantages / inconvénients

Avantages

- meilleure prédiction
- ► Implémentation facile
- ► Adaptée à la parallélisation

Inconvénients

perte de l'interprétation (effet "boîte noire")

 \hookrightarrow mesures d'importance des variables, même si on perd l'interprétation avec des seuils sur ces variables.

Plan

Bagging

Forêts aléatoires

Importance des variables

Importance des variables

Méthode rudimentaire : regarder la fréquence des variables explicatives sélectionnées pour découper les arbres de la forêt

Méthode recommandée par Breiman01 pour chaque variable explicative $X^{\left(j\right)}$ et pour tout b :

▶ Calculer l'erreur Out Of Bag de l'arbre $\widehat{\eta}_b$ sur l'échantillon Out Of Bag correspondant :

$$OOB_b = \frac{\sum_{i=1}^n I_i^b(\widehat{\eta}_b(x_i) - y_i)^2}{\sum_{i=1}^n I_i^b} \text{ ou } \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\mathrm{sign}\left(\sum_{b=1}^B I_i^b \widehat{\eta}_b(x_i)\right) \neq y_i}$$

▶ Créer un échantillon Out Of Bag permuté (en permutant aléatoirement les valeurs de la variable explicative $X^{(j)}$ dans l'échantillon Out Of Bag) et calculer l'erreur Out Of Bag OOB_b^j de l'arbre $\widehat{\eta}_b$ sur cet échantillon Out Of Bag permuté

L'importance de la variable $X^{\left(j\right)}$ est finalement mesurée par

$$\frac{1}{B}\sum_{b=1}^{B}(OOB_b^j - OOB_b).$$

Résumé

- Les arbres de décision sont des modèles simples et interprétables.
- Cependant, ils fournissent souvent de mauvais résultats comparés à d'autres méthodes.
- ► Le bagging est une bonne méthodes pour améliorer la prédiction des arbres de décision, et agrège de nombreux arbres pour les combiner pour obtenir une décision finale
- Les forêts aléatoires (et le boosting) font parmi de l'état de l'art actuel des méthodes d'apprentissage supervisé. Limite : difficile à interpréter

Bibliographie

- BREIMAN, L. "Bagging Predictors". In : Mach. Learn. 24.2 (1996), p. 123-140.
- ."Random Forests". In: Mach. Learn. 45.1 (2001), p. 5-32.
- FREUND, Y. et R. E. SCHAPIRE. "A decision-theoretic generalization of on-line learning and an application to boosting". In: *Journal of computer and system sciences* 55.1 (1997), p. 119-139.