	Notas	
	1	
Nome: RA:	2	
3ª Prova - MA 211 - Turma 02 de dezembro de 2010.	3	
É proibido usar calculadora e desgrampear as folhas da prova. Respostas sem justificativas ou que não incluam os cálculos necessários não serão con- sideradas. BOA PROVA!	4	

- 1. Seja $\mathbf{F}(x,y)=(e^{-y}-2x,-xe^{-y}-\sin y)$ um campo vetorial. Calcule a integral de linha de \mathbf{F} sobre a curva C dada pela parametrização $\sigma(t)=(t,tg\,t),\,0\leqslant t\leqslant \pi/4.$
- 2. Seja

$$\mathbf{F}(x,y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} + 3y)$$

um capo vetorial em ${\bf R}^2$. Calcule a integral de linha do campo ${\bf F}$ ao longo das curvas C_1 e C_2 , orientadas no sentido anti-horário, onde:

- a) C_1 é a circunferência de equação $x^2 + y^2 = 4$.
- b) C_2 é a fronteira do retângulo $R = \{(x,y) \in \mathbf{R}^2 / -\pi \leqslant x \leqslant \pi, -3 \leqslant y \leqslant 3\}$.
- 3. Calcule $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde

$$\mathbf{F}(\mathbf{x}, \mathbf{y}, z) = (\mathbf{y} + z, -z, \mathbf{y})$$

e C é a curva obtida como interseção do cilindro $x^2 + y^2 = 2y$ com o plano y = z.

4. Sejam $\mathbf{F}(x,y,z)=(x,y,z)$ um campo vetorial em \mathbf{R}^3 e W uma pirâmide de vértices O,A,B,C, onde O=(0,0,0),A=(0,1,0),B=(0,0,1) e C=(c,1,0),~(c>0). Calcule o valor de c sabendo que

$$\iint_{S_W} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S_{ABC}} \mathbf{F} \cdot \mathbf{n} \, dS = 1,$$

onde S_W é a superfície da pirâmide W, S_{ABC} é a face de vértices A, B, C, e \mathbf{n} é o campo de vetores normais apontando para fora da pirâmide.