2025-08-20 project requirements.md

Student Performance Analysis Project

Project Overview

Real-World Problem

Universities need early, data-driven signals about students who may underperform. Using real student records, you will:

- · Clean and transform data
- Explore drivers of performance
- Segment students (unsupervised learning)
- Predict risk (supervised learning)
- Turn insights into concrete recommendations

Dataset Information

Source & License

- Repository: UCI ML Repository "Student Performance"
- Size: 649 rows, 30+ features
- Subjects: Mathematics and Portuguese
- Features: Demographics, study time, absences, grades (G1/G2/G3)
- License: CC BY 4.0
- **URL**: https://archive.ics.uci.edu/dataset/320/student+performance

Download Options

Option A: Python (Recommended)

```
pip install ucimlrepo
from ucimlrepo import fetch ucirepo
ds = fetch ucirepo(id=320)
X = ds.data.features
y = ds.data.targets
```

Option B: Manual Download

- Download zip from UCI website
- Contains: student-mat.csv and student-por.csv
- Both files have identical schema

@ Required Tasks & Deliverables

A) Data Preparation

project requirements.md 2025-08-20

Document every decision

- Load dataset (student-mat.csv, student-por.csv, or merged view)
- Validate schema & data types
- Check for duplicates
- Assess and handle missing values and outliers (justify methods)
- Write Data Quality Report

B) Data Transformation

- **Encoding**: One-hot encode categoricals (school, sex, address, Mjob)
- Scaling: Standardize numeric features for ML and K-Means
- Feature Engineering:
 - Attendance proxy from absences
 - Average of G1–G3
 - Binary target: pass = G3≥10 or 3-tier risk
- Data Leakage: Create two variants:
 - (i) With G1/G2 when predicting G3
 - o (ii) Without G1/G2 when predicting G3
 - o Compare results and discuss trade-offs

C) Exploratory Data Analysis (EDA)

- Descriptive statistics table for key features
- Correlation analysis (identify strongest relations with G3)
- Group comparisons (studytime, failures, schoolsup vs outcomes)
- **3–5 testable hypotheses** stated and addressed

D) Visualization Requirements

Minimum required figures (labeled and readable):

- Histograms of 3+ numeric variables
- Boxplot/violin of G3 across studytime or schoolsup
- Scatter plot (e.g., absences vs G3) with interpretation
- Correlation heatmap of numeric features

E) Unsupervised Learning (K-Means)

- Feature set for behavior segmentation:
 - o studytime, absences, goout, freetime, famsup, schoolsup
- Select optimal k using elbow method and silhouette analysis
- Profile clusters (size, centroids, typical behaviors)
- Compare average G3 (or pass rate) across clusters
- Interpret implications

F) Supervised Learning

- Define target: binary pass/fail or 3-class risk
- Train at least 3 algorithms:

project_requirements.md 2025-08-20

- Logistic Regression
- Decision Tree/Random Forest
- Support Vector Machine (SVM)
- Use hold-out and 5-fold cross-validation
- Perform basic hyperparameter tuning
- Report full metrics:
 - o Accuracy, Precision, Recall, F1
 - ROC-AUC (for binary classification)
- Interpret models (feature importances/coefficients)

G) Model Evaluation & Comparison

- Summarize performance across models
- Compare data-leakage variants (with/without G1/G2)
- **Z** Discuss overfitting/underfitting and generalization

H) Storytelling & Recommendations

- **Z** 5–8 actionable insights tied to specific actions
 - Example: "High absences + ≥ 2 failures = $X \times$ failure odds → propose attendance intervention + early tutoring"
- Z Ethical considerations:
 - Privacy protection
 - o Fairness and bias mitigation
 - Sensitive attributes handling

Submission Requirements

1. Jupyter Notebooks

Sequential analysis with clear headings, comments, and results:

- 01_data_preparation.ipynb Cleaning & Transformation
- 02_eda_visualization.ipynb EDA & Visualization
- 03_unsupervised_learning.ipynb K-Means Clustering
- 04_supervised_learning.ipynb Classification Models
- 05_model_evaluation.ipynb Evaluation & Recommendations

2. Technical Report (10–15 pages)

Required sections:

- Abstract
- Problem Statement & Value Proposition
- Dataset (source, schema, limitations)
- Methodology
- Results & Analysis
- Ethics & Considerations

project requirements.md 2025-08-20

- Recommendations
- Limitations & Future Work

3. Slide Deck (10–12 slides)

- Key charts and visualizations
- Main findings and decisions
- Actionable recommendations

4. Reproducibility

- requirements.txt (dependencies)
- README.md (setup and run instructions)
- Clean, documented code

Technical Excellence

- Proper data handling and preprocessing
- Appropriate ML techniques and evaluation
- Valid statistical analysis and hypothesis testing
- Clear visualizations with interpretations

Business Impact

- Actionable insights for university stakeholders
- Z Evidence-based recommendations
- Ethical considerations addressed
- Clear communication of findings

Academic Rigor

- Methodological transparency
- Proper documentation and reproducibility
- Critical analysis of limitations
- Professional presentation quality