

planetmath.org

Math for the people, by the people.

$C_0^{\infty}(U)$ is not empty

Canonical name Cinfty0UIsNotEmpty
Date of creation 2013-03-22 13:43:57
Last modified on 2013-03-22 13:43:57

Owner matte (1858) Last modified by matte (1858)

Numerical id 17

Author matte (1858) Entry type Theorem Classification msc 26B05 **Theorem.** If U is a non-empty open set in \mathbb{R}^n , then the set of smooth functions with compact support $C_0^{\infty}(U)$ is non-trivial (that is, it contains functions other than the zero function).

Remark. This theorem may seem to be obvious at first sight. A way to notice that it is not so obvious, is to formulate it for analytic functions with compact support: in that case, the result does not hold; in fact, there are no nonconstant analytic functions with compact support at all. One important consequence of this theorem is the existence of partitions of unity.

Proof of the theorem: Let us first prove this for n=1: If a < b be real numbers, then there exists a smooth non-negative function $f: \mathbb{R} \to \mathbb{R}$, whose http://planetmath.org/SupportOfFunctionsupport is the compact set [a,b].

To see this, let $\phi \colon \mathbb{R} \to \mathbb{R}$ be the function defined on http://planetmath.org/InfinitelyDiffe page, and let

$$f(x) = \phi(x - a)\phi(b - x).$$

Since ϕ is smooth, it follows that f is smooth. Also, from the definition of ϕ , we see that $\phi(x-a)=0$ precisely when $x \leq a$, and $\phi(b-x)=0$ precisely when $x \geq b$. Thus the support of f is indeed [a,b].

Since U is non-empty and open there exists an $x \in U$ and $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$. Let f be smooth function such that supp $f = [-\varepsilon/2, \varepsilon/2]$, and let

$$h(z) = f(||x - z||^2).$$

Since $\|\cdot\|^2$ (Euclidean norm) is smooth, the claim follows. \square