Fall Real Analysis Willie Xie Fall 2021

CONTENTS

Contents

1	Day	1: The Real Number System	3
	1.1	Number Systems	3
	1.2	Real Number System	3
	1.3	Least Upper Bound Property	4
2	Day	2: Fields	5
	2.1	Greatest Upper Bound Property	5
	2.2	Fields	5
	2.3	Ordered Fields	7
3	Day	3	9
	3.1	nth Root	9
	3.2	Decimals and Extended Reals	9
	3 3	Complex Numbers	g

The Real Number System 1

1.1 Number Systems

Natural : $\mathbb{N} = \{1, 2, 3, ...\}$ Integer: $\mathbb{Z} = \{-2, -1, 0, 1, 2, ...\}$ Rational : $\mathbb{Q} = \frac{p}{q}$ where $p,q \in \mathbb{N}$

*** Q is countable, but fails to have the least upper bound property ***

Example 1.1.1

Let $\alpha \in \mathbb{R}$ where $\alpha^2 = 2$. Then α cannot be rational.

<u>Proof</u>

Let $\alpha = \frac{p}{q}$ where p and q cannot both be even. Let set $A = \{x \in \mathbb{Q} \text{ for } x^2 < 2\}$ where $A \neq \emptyset$ and 2 is an upper bound for A. A has no least upper bound in Q, but A has a least upper bound in R.

1.2Real Number System

 \mathbb{R} is the unique ordered field with the least upper bound property. \mathbb{R} exists and unique.

Definition 1.2.1

Let S be a set. An order on S is a relation < satisfying two axioms:

• Trichotomy: For all $x,y \in S$, only one holds true:

$$-x < y$$
$$-x = y$$
$$-x > y$$

• Transitivity: If x < y and y < z, then x < z.

Definition 1.2.2

An ordered set is a set with an order.

Definition 1.2.3

Let S be an ordered set. Let $E \subset S$.

An upper bound of E is a $\beta \in S$ if $x \leq \beta$ for all $x \in E$.

If such a β exists, then E is bounded from above.

Definition 1.2.4

Let S be an ordered set. Let $E \subset S$ be bounded from above.

Then, there exists a least upper bound α if:

- α is an upper bound for E
- If $\gamma < \alpha$, then γ is not an upper bound for E.

Then $\alpha = \sup(E)$.

*** Greatest Lower Bound: inf(E) ***

Example 1.2.5

Let $S = (1, 2) \cup [3, 4) \cup (5, 6)$ with the order < from \mathbb{R} . For subsets E of S:

- E = (1,2) is bounded above and $\sup(E) = 3$
- E = (5,6) is not bounded above so $\sup(E) = DNE$
- E = [3,4) is bounded below $\inf(E) = 3$ and $\sup(E) = DNE$

Observations on the Least Upper Bound

If sup E exists, it may or may not exists at E.

If α exists, then α is unique. If $\gamma \neq \alpha$, then $\gamma < \alpha$ or $\gamma > \alpha$.

Least Upper Bound Property 1.3

Theorem 1.3.1

An ordered set of S has a least upper bound property if:

For every nonempty subset $E \subset S$ that is bounded from above: $\sup(E)$ exists in S.

Example 1.3.2

 \mathbb{Q} doesn't have a least upper bound property. For example, $z = \sqrt{2}$.

Let
$$z = y - \frac{y^2 - 2}{y + 2} = \frac{2y + 2}{y + 2}$$
, then take $z^2 - 2 = \frac{2(y^2 - 2)}{(y + 2)^2}$.
Let set $A = \{y > 0 \in \mathbb{Q} \text{ where } y^2 < 2\}$ and set $B = \{y > 0 \in \mathbb{Q} \text{ where } y^2 > 2\}$

- If $y^2 2 < 0$, then y is not an upper bound for E.
- If $y^2 2 > 0$, y is an upper bound for E, but not the sup(E).

Thus, E has no least upper bound in \mathbb{Q} .

However in \mathbb{R} , $\sqrt{2}$ is in E.

2 Day 2: Fields

2.1 Greatest Upper Bound Property

Theorem 2.1.1: Least Upper Bound implies Greatest Upper Bound

Let S be a ordered set with the least upper bound property.

Let non-empty $B \subset S$ be bounded below.

Let L be the set of all lower bounds of B.

Then $\alpha = \sup(L)$ exists in S and $\alpha \in B$.

Proof

L is non-empty since B is bounded from below.

Thus, by the least upper bound property of S, $\alpha = \sup(L)$ exists in S. We claim that $\alpha = \inf(B)$.

If $\gamma < \alpha$, then γ is not an upper bound for L so $y \notin B$.

Thus, for every $x \in B$, $\alpha \le x$.

If $\gamma \geq \alpha$, then γ is an upper bound of L so $\gamma \in B$. Thus, $\inf(B) = \alpha$.

2.2 Fields

Addition Axioms

- If $x,y \in F$, then $x+y \in F$
- x+y = y+x for all $x,y \in F$
- (x+y)+z = x+(y+z) for all $x,y,z \in F$
- There exists $0 \in F$ such that 0+x = x for all $x \in F$
- For every $x \in F$, there is $-x \in F$ where x+(-x)=0

Multiplicative xioms

- If $x,y \in F$, then $xy \in F$
- yx = xy for all $x,y \in F$
- (xy)z = x(yx) for all $x,y,z \in F$
- There exists $1 \neq 0 \in F$ such that 1x = x for all $x \in F$
- If $x \neq 0 \in F$, there is $\frac{1}{x} \in F$ where $x(\frac{1}{x}) = 1$

Distributive Law

x(y+z) = xy + xz hold for all $x,y,z \in F$.

Definition 2.2.1

(a) If x+y = x+z, then y = z

Proof

$$y = 0+y = (-x)+x+y = (-x)+x+z = 0+z = z$$

2.2

Fields

From (a), let
$$z = 0$$
.

(c) If x+y = 0, then y = -x $\frac{\text{Proof}}{\text{From (a), let } z = -x}.$

(d)
$$-(-x) = x$$

Proof

From (c), let
$$x = -x$$
 and $y = x$.

(e) If $x \neq 0$ and xy = xz, then y = z

Proof

$$y = 1y = \frac{1}{x}xy = \frac{1}{x}xz = 1z = z$$

(f) If $x \neq 0$ and xy = x, then y = 1

Proof

From (e), let
$$z = 1$$
.

(g) If $x \neq 0$ and xy = 1, then $y = \frac{1}{x}$

Proof

From (e), let
$$z = \frac{1}{x}$$
.

(h) If $x \neq 0$, then $\frac{1}{1/x} = x$

Proof

From (g), let
$$x = \frac{1}{x}$$
 and $y = x$.

(i) 0x = 0

<u>Proof</u>

Since
$$0x + 0x = (0+0)x = 0x$$
, then $0x = 0$.

(j) If $x,y \neq 0$, then $xy \neq 0$

Proof

Suppose
$$xy = 0$$
, then $\frac{1}{y}\frac{1}{x}xy = \frac{1}{y}1y = \frac{1}{y}y = 1$.
 $xy = 0 = 1$ is a contradiction.

(k) (-x)y = -(xy) = x(-y)

Proof

$$xy + (-x)y = (x+(-x))y = 0y = 0.$$

Then by part (c),
$$(-x)y = -(xy)$$
.

Similarly,
$$xy + x(-y) = x(y+(-y)) = x0 = 0$$
.

Then by part (c),
$$x(-y) = -(xy)$$
.

(l)
$$(-x)(-y) = xy$$

Proof

By part (k), then
$$(-x)(-y) = -[x(-y)] = -[-(xy)]$$
.

By part (d),
$$-[-(xy)] = xy$$
.

2.3 Ordered Fields

An ordered field F is a field F which is also an ordered set for all $x,y,z \in F$.

- If y < z, then y+x < z+x
- If x,y > 0, then xy > 0

Definition 2.3.1: $\mathbb Q$ and $\mathbb R$ are ordered fields

 \mathbb{Q} , \mathbb{R} are ordered fields, but \mathbb{C} is not an ordered field.

Definition 2.3.2

Let F be an ordered field. For all $x,y,z \in F$.

- If x > 0, -x < 0 and vice versa
- If x > 0 and y < z, then xy < xz
- If x < 0 and y < z, then xy > xz
- If $x \neq 0, x^2 > 0$
- If 0 < x < y, then 0 < 1/y < 1/x

Theorem 2.3.3: R is a ordered field with <

There exists a unique ordered field \mathbb{R} with the least upper bound property. Also, $\mathbb{Q} \subset \mathbb{R}$.

Theorem 2.3.4

For all $x,y \in \mathbb{R}$:

• Archimedean Property: If x > 0, there is $n \in \mathbb{Z}$ such that nx > y.

Proof

Fix x > 0. Suppose there is a y such that the property fails.

Let
$$A = \{ nx: n = 1, 2, 3, ... \}.$$

Then, A is nonempty and bounded from above by y.

Then by the least upper bound property by \mathbb{R} , $\alpha = \sup(A)$ exists in \mathbb{R} .

Since x > 0, then -x < 0 so $\alpha - x < \alpha - 0 = \alpha$.

So $\alpha - x$ is not an upper bound of A.

So there is a $mx \in A$ such that $mx > \alpha - x$

But then $\alpha < (m+1)x$ where $(m+1)x \in A$ which contradicts α is an upper bound for A.

• \mathbb{Q} is dense in \mathbb{R} : If x < y, there is a $p \in \mathbb{Q}$ such that x .

Proof

Since x < y, then y-x > 0. Then by the Archimedean Property, there exists a $n \in Z$ such that n(y-x) > 1. Thus, ny > nx+1 > nx

By the well-ordering principle, there is a smallest $m \in \mathbb{Z}_+$ such that m > nx.

Then, $m > nx \ge m-1$ so $nx+1 \ge m > nx$.

Since $ny > nx+1 \ge m > ny$, then y > m/n > x.

3 Temp

3.1 nth Root

If 0 < t < 1, then $t^n \le t$.

If t > 1, $t^n \ge t$.

If $0 < s < t, s^n < t^n$.

Theorem 3.1.1

Fix n. For every x > 0, there exists a unique $y \in \mathbb{R}$ such that $y^n = x$.

Proof

Uniqueness: y is unique since if $y_1 < y_2$, then $y_1^n < y_2^n$.

Existence:

Let set $A = \{ t > 0 : t^n < x \}$

 $A \neq \emptyset$ since let $t_1 = \frac{x}{x+1} < 1$ and < x.

Thus, $0 < t_1^n \le t_1 < x \text{ so } t_1 \in A$.

A is bounded above since $t \ge x+1$.

Then t > 1 so $t^n \ge t \ge x+1 > x$ so $t \notin A$.

Thus, x+1 is an upper bound of A.

By the least upper bound property, then $y = \sup(A)$.

For $y^n = x$, show $y^n < x$ and $y^n > x$ cannot hold true.

***(Not an upper bound of A and y is not a least upper bound of A)

For $0 < \alpha < \beta$:

$$\beta^{n}$$
 - α^{n} < $(\beta - \alpha)n\beta^{n-1}$ ¡Insert Proof;

Suppose $y^n < x$. Pick 0 < h < 1 which contradicts the previous statement.

From inequality, let $\beta = y+h$ and $\alpha = y$. [Insert Proof].

Thus, $(y+h)^n < x$, thus $(y+h) \in A$ and thus, not an upper bound of A.

Suppose $y^n > x$. Pick $k = \frac{y^n - x}{ny^{n-1}} < y$. ¡Insert Proof;

Consider $t \geq y-k$, then:

$$y^{n} - t^{n} < y^{n} - (y-k)^{n} < kny^{n-1} = y^{n} - x$$

So $t \notin A$.

Thus, y-k is not an upper bound of A contradicting y is the least upper bound of A. Since $y^n < x$ and $y^n > x$, then $y^n = x$.

3.2 Decimals and Extended Reals

3.3 Complex Numbers

Definition 3.3.1

A complex number is an ordered pair (a,b) where $a,b \in \mathbb{R}$. For $x,y \in \mathbb{C}$

- (a,b) + (c,d) = (a + c, b + d)
- (a,b) * (c,d) = (ac bd, ad + bc)

Thus, the axioms form a field where (0,0) = 0 and (1,0) = 1 and (0,1) = i.

Definition 3.3.2

Let i = (0,1).

<u>Proof</u>

 $i^2 = -1$. Insert Proof

Definition 3.3.3

$$(a,b) = a + bi$$

Definition 3.3.4

Let conjugate: $\bar{z} = a$ - bi

- $\bullet \ (z + w) = \bar{z} + \bar{w}$
- Product
- Real
- $z\bar{z} \ge 0$

Definition 3.3.5

The
$$||z|| = \sqrt{z\bar{z}}$$
.

Insert propert for real numbers conjugate and absolute value.

Theorem 3.36

- If $x \neq 0$ abd ||x|| > 0, then conjugate
- product conjugate
- Real part < Actual for abs
- $||z + w|| \le ||z|| + ||w||$

REFERENCES REFERENCES

References