

No active trail

Select CR

Stop CR

RESEARCH

PRODUCTS

INSIDE DELPHION

Log Out Work Files Saved Searches

My Account

Search: Quick/Number Boolean Advanced Derwent

Derwent Record

Email it

View: [Expand Details](#) Go to: [Delphion Integrated View](#)Tools: Add to Work File: [Create new Work File](#)

Derwent Title: Preparation of epothilone derivatives - comprises substituting epothilone A, B, C or D at two carbon(s)

Original Title: DE19821954A1: Verfahren zur Herstellung eines Epothilon-Derivats

Assignee: GES BIOTECHNOLOGISCHE FORSCHUNG MBH Standard company
Other publications from GES BIOTECHNOLOGISCHE FORSCHUNG MBH (GBFB)...

Inventor: None

Accession/Update: 1999-000737 / 200005

IPC Code: C07D 493/04 ;

Derwent Classes: B02;

Manual Codes: B06-H(Fused ring, general [general])

Derwent Abstract: (DE19821954A) Preparation of epothilone derivatives comprises: (a) substituting epothilone A, B, C or D at carbons 2 and 3 with -CH₂CHOH- or -CH=CH-, where an OH group or protected OH group is provided at positions 3 and 7; (b) oxidising position 16 into a keto group; (c1) exchanging the oxygen in the keto group using C₆H₅-P=CH₂ into a =CH₂- group, and optionally (d1) reacting the =CH₂- with a catalyst and R-CH=CH₂ to give =CH₂-R-, where R = an aliphatic residue, phenyl residue or a heterocyclic residue, especially a pharmaceutical residue, or (c2) exchanging carbon 16 and 17 for a -CH=CH₂ group, and optionally (d2) reacting this group using a metathesis to give -CH=CH-R-.

Dwg.0/0

Family:	PDF Patent	Pub. Date	Derwent Update	Pages	Language	IPC Code
	<input checked="" type="checkbox"/> DE19821954A1	* 1998-11-19	199901	2	German	C07D 493/04

Local appls.: DE1998001021954 Filed:1998-05-15 (98DE-1021954)

INPADOC
Legal Status: [Show legal status actions](#)

First Claim: 1. Verfahren zur Herstellung eines Epothilon-Derivats, dadurch gekennzeichnet, daß man

- o (a) von Epothilon A, B, C oder D ausgeht,
 - o – wobei das C2- und das C3-Kohlenstoffatom durch die Gruppierung -CH₂CHOH- oder -CH=CH- miteinander verbunden sein können und
 - o – wobei man bei der Ausgangsverbindung in 3- und 7-Stellung eine OH-Gruppe oder eine geschützte OH-Gruppe vorsieht,
- o (b) in 16-Stellung zu einer Keto-Gruppierung oxidiert,
- o (c1) das Sauerstoffatom der Keto-Gruppierung mit Hilfe von C₆H₅-P=CH₂ gegen eine =CH₂-Gruppe austauscht und gegebenenfalls
- o (d1) diese =CH₂-Gruppe mit Hilfe einer Verbindung der Formel R-CH=CH₂ katalytisch in eine =CH₂-R-Gruppe überführt, wobei R einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest,

insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest darstellt; oder

- (c2) für die unmittelbar miteinander verbundenen Kohlenstoffatome C16 und C17 an an sich bekannter Weise die Gruppierung -CH=CH₂ vorsieht und gegebenenfalls
- (d2) diese Gruppierung mit Hilfe einer Metathese in die Gruppierung -CH=CH-R überführt, wobei R die vorstehend angegebenen Bedeutungen besitzt.

Priority Number:

Application Number	Filed	Original Title
DE1997001020250	1997-05-15	

Chemical Indexing Codes: [Show chemical indexing codes](#)

Unlinked Registry Numbers:
0670S 1887S 1997S

Related Accessions:

Accession Number	Type	Derwent Update	Derwent Title
C1999-000267	C		
1 item found			

Title Terms: PREPARATION DERIVATIVE COMPRISE SUBSTITUTE TWO CARBON

[Pricing](#) [Current charges](#)

Derwent Searches: [Boolean](#) | [Accession/Number](#) | [Advanced](#)

Data copyright Thomson Derwent 2003

Copyright © 1997-2006 The Thomson

[Subscriptions](#) | [Web Seminars](#) | [Privacy](#) | [Terms & Conditions](#) | [Site Map](#) | [Contact Us](#) |

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) **DE 198 21 954 A 1**

(51) Int. Cl. 6:
C 07 D 493/04

DE 198 21 954 A 1

(21) Aktenzeichen: 198 21 954.7
(22) Anmeldetag: 15. 5. 98
(43) Offenlegungstag: 19. 11. 98

(66) Innere Priorität:
197 20 250. 0 15. 05. 97

(72) Erfinder:
Erfinder wird später genannt werden

(71) Anmelder:
Gesellschaft für Biotechnologische Forschung mbH
(GBF), 38124 Braunschweig, DE

(74) Vertreter:
Patentanwälte Dr. Boeters, Bauer, Dr. Forstmeyer,
81541 München

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Verfahren zur Herstellung eines Epothilon-Derivats
(55) Die Erfindung betrifft ein Verfahren zur Herstellung eines Epothilon-Derivats, wobei man von Epothilon A, B, C oder D ausgeht und den heterozyklischen Rest am C₁₇-Kohlenstoffatom in einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest austauscht, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest.

DE 198 21 954 A 1

DE 198 21 954 A 1

1

Beschreibung

Epothilone A, B, C und D sind bekannt; vgl. beispielsweise PCT/EP 96/05 080. Diese Epothilone tragen am C₁₇-Kohlenstoffatom einen heterozyklischen Rest. Es ist nun erwünscht, diesen Rest durch einen anderen Rest zu ersetzen, der insbesondere für pharmazeutische Wirkstoffe üblich oder vorteilhaft ist.

Zur Lösung dieser Aufgabe wird erfahrungsgemäß ein Verfahren zur Herstellung eines Epothilon-Derivats vorgesehen, das dadurch gekennzeichnet ist, daß man

- (a) von einem Epothilon A, B, C oder D ausgeht,
 - wobei das C2- und das C3-Kohlenstoffatom durch die Gruppierung -CH₂CHOH- oder -CH=CH- miteinander verbunden sein können und
 - wobei man bei der Ausgangsverbindung in 3- und 7-Stellung eine OH-Gruppe oder eine geschützte OH-Gruppe vorsieht,
- (b) in 16-Stellung zu einer Keto-Gruppierung oxidiert,
- (c1) das Sauerstoffatom der Keto-Gruppierung mit Hilfe von C₆H₅-P=CH₂ gegen eine =CH₂-Gruppe austauscht und gegebenenfalls
- (d1) diese =CH₂-Gruppe mit Hilfe einer Verbindung der Formel R-CH=CH₂ katalytisch in eine =CH-R-Gruppe überführt, wobei R einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest darstellt; oder
- (c2) für die miteinander verbundenen Kohlenstoffatome C16 und C17 die Gruppierung -CH=CH₂ vorsieht und gegebenenfalls
- (d2) diese Gruppierung mit Hilfe einer Metathese in die Gruppierung -CH=CH-R überführt, wobei R die vorstehend angegebenen Bedeutungen besitzt.

Bei Stufe (b) kann man mit Ozon oxidieren.

Bei Stufe (c2) kann man mit NaBH₄ und danach mit Tosylchlorid/Base arbeiten oder man kann eine Bamford-Stevens-Reaktion gemäß Shapiro durchführen; vgl. Organic Reactions (1976) 23, 405.

Bei Stufe (d) kann man mit einem Metathese-Katalysator arbeiten, insbesondere einem derartigen Rhodium-, Ruthenium-, Wolfram- oder Molybdän-Katalysator, beispielsweise mit

- [RhCHPh]Cl₂, (PCy₃)₂ gemäß Grubbs et al. in JACS, 118 (1996) 100–110; oder
- RuCl₂ (=CHPh)(PCy₃)₂; oder
- RuCl₂ (=CHCH=CH₂)(PCy₃)₂; oder
- W(OAr)₂(=CHtBu)(OEt₂)Cl mit Ar¹ = 2,6-di-phenyl-C₆H₃ gemäß Basset et al. in Angew. Chem., Int. Ed., 32 (1993) 112; oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)(OC₄H₉)₂, d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis-(t-but-oxid); oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)[OC(CH₃)(CF₃)₂]₂, d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis(hexafluoro-t butoxid); oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)(OSO₂CF₃)₂(C₄H₁₀O₂), d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis-(trifluormethansulfonat)-dimethoxyethan-Addukt.

Für die genannten Molybdän-Katalysatoren sei verwiesen auf US 4 681 956 und 4 727 215.

2

Patentansprüche

1. Verfahren zur Herstellung eines Epothilon-Derivats, dadurch gekennzeichnet, daß man
 - (a) von Epothilon A, B, C oder D ausgeht,
 - wobei das C2- und das C3-Kohlenstoffatom durch die Gruppierung -CH₂CHOH- oder -CH=CH- miteinander verbunden sein können und
 - wobei man bei der Ausgangsverbindung in 3- und 7-Stellung eine OH-Gruppe oder eine geschützte OH-Gruppe vorsieht,
 - (b) in 16-Stellung zu einer Keto-Gruppierung oxidiert,
 - (c1) das Sauerstoffatom der Keto-Gruppierung mit Hilfe von C₆H₅-P=CH₂ gegen eine =CH₂-Gruppe austauscht und gegebenenfalls
 - (d1) diese =CH₂-Gruppe mit Hilfe einer Verbindung der Formel R-CH=CH₂ katalytisch in eine =CH-R-Gruppe überführt, wobei R einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest darstellt; oder
 - (c2) für die unmittelbar miteinander verbundenen Kohlenstoffatome C16 und C17 an an sich bekannter Weise die Gruppierung -CH=CH₂ vorsieht und gegebenenfalls
 - (d2) diese Gruppierung mit Hilfe einer Metathese in die Gruppierung -CH=CH-R überführt, wobei R die vorstehend angegebenen Bedeutungen besitzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man bei Stufe (b) mit Ozon oxidiert.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man bei Stufe (c2) mit NaBH₄ und danach mit Tosylchlorid/Base arbeitet oder eine Bamford-Stevens-Reaktion durchführt.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man bei Stufe (d) mit einem Metathese-Katalysator arbeitet, insbesondere einem derartigen Rhodium-, Ruthenium-, Wolfram- oder Molybdän-Katalysator.