Aula 3 - Instabilidade e Efeitos de Segunda Ordem

Objetivos da aula

- Entender os fenômenos de instabilidade (flambagem) e quando considerar efeitos de 2^a ordem (P-Δ/P-δ) em pilares.
- Aplicar critérios práticos: esbeltez, comprimento equivalente, amplificação de esforços e análise de 2ª ordem.
- Discutir boas práticas de projeto/detalhamento para mitigar instabilidade e sensibilidade a imperfeições.

Figure 1: Esquema de pilar e caminho de cargas (local)

Conteúdo da aula (texto base) 1) Instabilidade: conceitos fundamentais

- Sob compressão, membros esbeltos podem perder estabilidade lateral antes da resistência à compressão do material.
- O parâmetro "gatilho" é a esbeltez λ .
- Principais causas:
 - Imperfeições geométricas ou de aplicação de carga
 - Excentricidades
 - Rigidez insuficiente de nós/apoios
 - Manqueira/torção

2) Carga crítica elástica (referência de Euler)

· Para uma barra ideal reta, elástica e com extremos conhecidos,

a carga crítica elástica é:

$$P_{
m cr} = rac{\pi^2 E I}{l_e^2}$$
 $\lambda = rac{l_e}{i}, \quad i = \sqrt{rac{I}{A}}$

- Quanto maior λ , menor P_{cr} e maior a sensibilidade a imperfeições.
- · Em concreto armado, a ruptura geralmente ocorre por flexocompressão antes de atingir o $P_{\rm cr}$ ideal.

3) Comprimento equivalente e condição do pórtico

- O comprimento equivalente l_e depende de:
 - Condição de engastamento/apoio
 - Travamento de deslocamentos/rotações no nó
- Pórticos contraventados (não-sway): l_e menor
- Pórticos sem contraventamento (sway): l_e maior e maiores exigências de 2ª ordem
- Em projeto, define-se o fator de comprimento k_l :

 - $l_e = k_l \cdot l$ k_l é estimado por modelos/norma a partir da rigidez relativa de barras e nós

4) Efeitos de 2ª ordem: $P-\Delta$ e $P-\delta$

- $P-\Delta$ (global):
 - Amplificação de momentos devido a deslocamentos laterais globais do nó
 - Principal em pórticos sway
- $P \delta$ (local):
 - Curvaturas locais do elemento aumentam o momento fletor sob forca axial
- Critério prático:
 - Quando λ excede limites normativos
 - Ou quando o índice de instabilidade global ultrapassa limiar
 - Deve-se considerar 2ª ordem por análise ou amplificação

5) Métodos de consideração - amplificação ou análise de 2ª ordem

- Amplificação normativa:
 - Multiplicar momentos de 1ª ordem por um fator γ_z que capta a instabilidade global e rigidez do pórtico Exemplo: $M_d=\gamma_z M_{d,1}$

Figure 2: Ensaio de compressão em concreto - referência ao comportamento sob compressão (pilares)

- Consultar expressão da norma vigente
- Análise de 2ª ordem (geométrica não linear):
 - Iterativa $(P-\Delta/P-\delta)$ com rigidezes atualizadas
 - Necessária quando:
 - * Elevada esbeltez
 - * Pórticos sway relevantes
 - * Grandes deslocamentos
 - * Irregularidades

6) Boas práticas de mitigação

- Aumentar rigidez:
 - Seção dos pilares
 - Travamentos (contraventamentos/parede de rigidez)
 - Melhorar engastes e nós
- Reduzir imperfeições/excentricidades:
 - Alinhamento
 - Tolerâncias
 - Detalhamento de nós e ligações pilar-viga/fundação
 - Considerar e_{\min} e efeitos de retração/fluência
- Confinamento e detalhamento:
 - Estribos adequados para prevenir instabilidade local das barras
 - Cobrimentos compatíveis

7) Exemplo numérico - amplificação simplificada

- Pilar: 30×50 cm
- Momento de inércia *I* em torno do eixo mais crítico (estimado)
- $l = 4.0 \, \text{m}$
- Pórtico sem contraventamento (sway): $l_e \approx l$
- Esforços de 1ª ordem:

 - $\dot{N}_d = 1200\,\mathrm{kN}$ $M_{d,1} = 60\,\mathrm{kN}\cdot\mathrm{m}$
- Índice global indica necessidade de 2ª ordem
- Norma fornece $\gamma_z = 1.25$
- Cálculo:
 - $M_d=1.25\times 60=75~\mathrm{kN\cdot m}$
- Dimensionar a seção/armadura para (N_d, M_d)
- Verificar deslocamentos/estados limites

Atividade prática

- Para um pilar 25×40 cm com l = 3.6 m:
 - 1. Estime l_e para pórtico não-sway e sway; calcule λ e discuta o enquadramento.
 - 2. Supondo N_d e $M_{d,1}$ fornecidos, adote γ_z normativo e

- obtenha ${\cal M}_d$; discuta impacto da presença/ausência de contraventamento.
- 3. Liste medidas de projeto para reduzir a sensibilidade de $2^{\underline{a}}$ ordem.

Links suplementares da Aula 3

- Buckling (Wikipedia): https://en.wikipedia.org/wiki/Buckling
- Column (Wikipedia): https://en.wikipedia.org/wiki/Column
- Second-order effects (engenharia estrutural leitura complementar): https://en.wikipedia.org/wiki/Second_moment_of_area