Deep Learning with Python: MINST Example

Deep Learning for MNIST Data

- The MNIST database (Modified National Institute of Standards and Technology database) of handwritten digits consists of a training set of 60,000 examples, and a test set of 10,000 examples.
- It is a subset of a larger set available from NIST. Additionally, the black and white images from NIST were size-normalized and centered to fit into a 28x28 pixel bounding box and anti-aliased, which introduced grayscale levels.

- Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total.
- Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255, inclusive.

How does a computer read an image?

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Pixel data of an image

- For the 28×28 pixel images we've been using, this means our network has 784 (= 28×28) input neurons.
- Each images is then encoded in a m=785-1=784 feature vector, representing the intensity of the pixel. Each element of the vector contains an integer encoding the intensity of a pixel. In other words the original image is decomposed in a 28×28 pixel grid, which is reshaped to be represented as a $28\times28=784$ column vector.
- We will train the network's weights and biases so that the network's output would we hope! correctly identify the input image: '0', '1', '2', ..., '8', or '9'.

- The training data set has 785 columns. The first column, called "label", is the digit that was drawn by the user. The rest of the columns contain the pixel-values of the associated image.
- Each pixel column in the training set has a name like pixelx, where x is an integer between 0 and 783, inclusive. To locate this pixel on the image, suppose that we have decomposed x as x = i * 28 + j, where i and j are integers between 0 and 27, inclusive. Then pixelx is located on row i and column j of a 28 x 28 matrix, (indexing by zero).
- For example, pixel31 indicates the pixel that is in the fourth column from the left, and the second row from the top, as in the asciidiagram below.

What's Softmax Function?

$$f_i(x) = rac{\exp(x_i)}{\sum_j \exp(x_j)}$$

Example: Softmax layer as the output layer

2.33 P (Class 1) =
$$\frac{\exp(2.33)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)}$$
 = 0.83827314

-1.46 P (Class 2) =
$$\frac{\exp(-1.46)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)}$$
 = 0.01894129

D

0.56 P (Class 3) =
$$\frac{\exp(0.56)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)}$$
 = 0.14278557

- Softmax function is used to convert the numerical output to values in the range [0, 1]
- The output of softmax function can be seen as probability distribution given the output sums up to 1
- Softmax function is used in multiclass classification methods such as neural networks, multinomial logistic regression, multiclass LDA, Naive Bayes classifier.
- Softmax function is used to output action probabilities in case of reinforcement learning
- Softmax function is used as an activation function in the last / final layer of neural network algorithm.

Cross Entropy Loss

This is the most common setting for classification problems. Cross-entropy loss increases as the predicted probability diverges from the actual label.

Mathematical formulation :-

$$CrossEntropyLoss = -(y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i))$$

Cross entropy loss

For multiclass classification, we calculate a separate loss for each class label per observation and sum the result.

Accuracy

■ For example, if y_true is [1, 2, 3, 4] and y_pred is [0, 2, 3, 4] then the accuracy is 3/4 or .75. If the weights were specified as [1, 1, 0, 0] then the accuracy would be 1/2 or .5.

- one epoch = one forward pass and one backward pass of all the training examples
- batch size = the number of training examples in one forward/backward pass. The higher the batch size, the more memory space you'll need.
- number of iterations = number of passes, each pass using [batch size] number of examples. To be clear, one pass = one forward pass + one backward pass (we do not count the forward pass and backward pass as two different passes).
- Example: if you have 1000 training examples, and your batch size is 500, then it will take 2 iterations to complete 1 epoch.

verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.

By setting verbose 0, 1 or 2 you just say how do you want to 'see' the training progress for each epoch.

verbose=0 will show you nothing (silent)

verbose=1 will show you an animated progress bar like this:

verbose=2 will just mention the number of epoch like this:

Epoch 1/10

Avoiding Overfitting

- With thousands of weights to tune, overfitting is a problem
 Early stopping (when performance starts dropping)
- Regularization terms added to cost function during training
- Dropout -ignore say 50% of all neurons randomly at each training step
- Works surprisingly well! Forces your model to spread out its learning

```
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
```

One hot encoding (or dummy variables)

++	
0 russia	
1 germany	
2 australia	
3 korea	
4 germany	
++	

++							
	id	country=russia	country=germany	country=australia	country=korea		
	++-	+	+	+	+		
	0	1	0	0	0		
	1	0	1	0	0		
	2	0	0	1	0		
	3	0	0	0	1		
	4	0	1	0	0		
							

Figure 1.2: Examples of handwritten digits from postal envelopes.

Feature detectors

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

what is this unit doing?

What does this unit detect?

What does this unit detect?

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

What features might you expect a good NN to learn, when trained with data like this?

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

But what about position invariance ??? our example unit detectors were tied to specific parts of the image

successive layers can learn higher-level features ...

successive layers can learn higher-level features ...

So: multiple layers make sense

So: multiple layers make sense

Your brain works that way

So: multiple layers make sense

Many-layer neural network architectures should be capable of learning the true underlying features and 'feature logic', and therefore generalise very well ...

