Deep Learning MSDS 631

Images and Convolutional Neural Networks

Michael Ruddy

Questions?

- From last lecture?
- From the lab assignment?

Overview

- Why imaging? Why not FF NNs?
- What/Why is a Convolution?
- CNN-specific hyperparameters
- Basic CNN history/set-up

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful
- Imaging is important!

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful
- Imaging is important!
 - Classification (facial/object recognition, avoid poisonous plants, etc.)
 - Medical Imaging (detecting disease, predicting outcomes of radiation, segmentation of medical images)
 - Autonomous Driving (driver assistance, fully autonomous vehicles)
 - Deepfakes and deepfake detection

- Humans are really good at looking at things
 - The human eye/brain is an incredibly complicated piece of machinery
- Efforts to recreate vision based on human models of vision have largely been unsuccessful
- Imaging is important!
 - Classification (facial/object recognition, avoid poisonous plants, etc.)
 - Medical Imaging (detecting disease, predicting outcomes of radiation, segmentation of medical images)
 - Autonomous Driving (driver assistance, fully autonomous vehicles)
 - Deepfakes and deepfake detection
- A lot of these are time-consuming things that human can do really well

- Images are deceptively hard

- Images are deceptively hard

- Images are deceptively hard

This is ??????

```
\begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ .5 & .75 & 1 & \dots & .25 \\ \vdots & \vdots & \vdots & & \vdots \\ .333 & 0 & 1 & \dots & 0 \end{bmatrix}
```

- Images are deceptively hard
- Images are big

32x32 image 1024 features

512x512 image 262,144 features

- Images are deceptively hard
- Images are big

32x32 image 1024 features

Fully Connected Layer

- 1024 -> 1024
- $1024^2 = 1,048,576$ parameters
- 262,144 -> 262,144
- 68,719,476,736 parameters

512x512 image 262,144 features

- Images are deceptively hard
- Images are big
- Geometry matters!
 - Pixels near each other interact in different ways to create features than pixels far away

- Images are deceptively hard
- Images are big
- Geometry matters!
 - Pixels near each other interact in different ways to create features than pixels far away
 - This is free data that we lose if we simply consider an image as a data vector

- Fancy linear operation useful for spatial data

- Fancy linear operation useful for spatial data

1	.5	1	0			
0	.5 $.25$ $.25$ 0	.5	1	4	$\lceil 1$	$0 \rceil$
1	.25	0	1	不	$\mid 0 \mid$	2
.5	0	1	1		_	_

- Fancy linear operation useful for spatial data

- Fancy linear operation useful for spatial data

Grayscale Image

Filter

Filter $\begin{bmatrix}
1 & .5 & 1 & 0 \\
0 & .25 & .5 & 1 \\
1 & .25 & 0 & 1 \\
5 & 0 & 1 & 1
\end{bmatrix}$ \star $\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}$ $=
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}$

- Fancy linear operation useful for spatial data
- Element-wise product

$$(1 \times 1) + (.5 \times 0) + (0 \times 0) + (.25 \times 2)$$

= 1.5

Grayscale Image

- Fancy linear operation useful for spatial data
- Element-wise product

$$(.5 \times 1) + (1 \times 0) + (.25 \times 0) + (.5 \times 2) = 1.5$$

- Fancy linear operation useful for spatial data
- Element-wise product

$$(1 \times 1) + (0 \times 0) + (.5 \times 0) + (1 \times 2) = 3$$

- Fancy linear operation useful for spatial data
- Element-wise product

- Fancy linear operation useful for spatial data
- Element-wise product

```
Grayscale Image

Filter

Filter

\begin{bmatrix}
1 & .5 & 1 & 0 \\
0 & .25 & .5 & 1 \\
1 & .25 & 0 & 1 \\
5 & 0 & 1 & 1
\end{bmatrix}

\star

\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}

=
\begin{bmatrix}
1.5 & 1.5 & 3 \\
0.5 & ? & ? \\
? & ? & ?
\end{bmatrix}
```

- Fancy linear operation useful for spatial data
- Element-wise product

Grayscale Image

Filter

$$\begin{bmatrix}
1 & .5 & 1 & 0 \\
0 & .25 & .5 & 1 \\
1 & .25 & 0 & 1
\end{bmatrix}$$

Filter

 $\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}$

Filter

 $\begin{bmatrix}
1.5 \\
0.5 \\
0
\end{bmatrix}$

- Fancy linear operation useful for spatial data
- Element-wise product

- Only four parameters!
 - If input is dimension 16 and output is dimension 9, how many for FC?

- Only four parameters!
- Translational Equivariance
 - If I shift my image, I shift the output!

- Only four parameters!
- Translational Equivariance
- Weight Sharing (detect same feature translated to different parts of the image)

Intuition: <u>Edge</u> <u>Detection</u>

- Only four parameters!
- Translational Equivariance
- Weight Sharing (detect same feature translated to different parts of the image)

- In a Conv. layer we apply many filter to get many features

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"

Layer 3

Layer 2

Layer 1 Convolutional Deep Belief Networks for Scalable Unsupervised Laerning of Hierarchical Representations, Lee H., Grosse R., Ranganath R., Ng A.

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"

RGB Image

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!

- Number of Filters

- Number of Filters
- Stride of the filter
 - "How far it jumps when sliding"

- Number of Filters
- Stride of the filter
 - "How far it jumps when sliding"

- Number of Filters
- Stride of the filter
 - "How far it jumps when sliding"

- Number of Filters
- Stride of the filter
 - "How far it jumps when sliding"

- Number of Filters
- Stride of the filter
 - "How far it jumps when sliding"

- Number of Filters
- Stride of the filter
 - "How far it jumps when sliding"

- Number of Filters
- Stride of the filter
 - "How far it jumps when sliding"

- Number of Filters
- Stride of the filter
 - What is the dimension of the output for Stride 1 vs. Stride 2?

$\lceil 1 \rceil$.5	1	0			
0	.25	.5	1	*	$\lceil 1 \rceil$	$0 \rceil$
1	.25	0	1	*	0	2
	0				_	_

- Number of Filters
- Stride of the filter
- Size of filter

1	.5	1	0		Га	_	₁ 7
١	25	5	1	*	1	Э	1
	.20	.0	1	*	0	1	$2 \mid$
1	.25	0	1	•		_ _	
$\lfloor .5$	0	1	1		ГΤ	1	0]
L • •	U	T	ㅗ _				

- Number of Filters
- Stride of the filter
- Size of filter
 - What is output dimension here if stride = 1?

ı	1	.5	1	0				. –
	0	25	_	1	*	1	5	1
	U	.25	. 5	T	*	۱ ۵	1	$_{2}$
l	1	.25	0	1	7			
l	E	0	1	1		<u>L</u> 1	1	$0 \rfloor$
ı	\mathbf{G}	0	T	T				

- Number of Filters
- Stride of the filter
- Size of filter
- Problem: size of output keep shrinking!
 - Only a few convolutional layers before the resulting 2D dimensions are very small

- Number of Filters
- Stride of the filter
- Size of filter
- Problem: size of output keep shrinking!
 - Only a few convolutional layers before the resulting 2D dimensions are very small
- Solution: Zero padding

- Number of Filters
- Stride of the filter
- Size of filter
- Padding

- Number of Filters
- Stride of the filter
- Size of filter
- Padding

Padding by one

- Common choices for a Conv-Layer:
 - Stride = 1
 - Odd Filter Size (3x3, 5x5, etc.)
 - "Same" padding

- Common choices for a Conv-Layer:
 - Stride = 1
 - Odd Filter Size (3x3, 5x5, etc.)
 - "Same" padding

- LeNet-5 by Yann LeCun

- LeNet-5 by Yann LeCun

down-sampling

- AlexNet wins ImageNet Competition in 2012

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

- AlexNet wins ImageNet Competition in 2012
- By 2015 we have CNNs with >100 layers, better than human-level performance

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling

- 2x2 filter size

- Stride 2

⁻ 1	.5	1	0	
0	.25	.5	1	$\lceil 1 \rceil$
1	.25	0	1	
$\lfloor .5$	0	1	1_	

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling

- 2x2 filter size

- Stride 2

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling
- Average Pooling

2x2 filter size

- Done along spatial dimension, preserves channels

- LeNet-5 by Yann LeCun

Summary

- Convolution Layers
 - Suited for Spatial Data
 - Less Parameters than FC Layers, Weight sharing
- Common Hyperparameters
 - Number of Filters, Filter Size, Stride, Padding
- Common Sequence
 - Conv -> Activation -> Conv -> Activation -> Downsampling
 - Repeat until unrolled into final FC layers