2. Fondamenti del linguaggio digitale: sistemi di numerazione

Sicurezza dell'Informazione

L'informazione nei computer

Viviamo in un mondo analogico, ma anche digitale. Tutti i video, immagini, audio e, più informazioni, vengono trasmesse ed elaborate in

Fotocamera analogica

Acquisizione: la luce proveniente dalla scena attraverso l'obiettivo e colpisce la pellicola fotografica, che è ricoperta da una sostanza chimica sensibile alla luce: in genere sali d'argento (alogeni d'argento) sospesi in una gelatina.

Fotocamera analogica

Reazione Chimica: Ogni punto della pellicola riceve una quantità diversa di luce (più o meno intensa a seconda della scena).

I cristalli di alogenuro d'argento reagiscono in proporzione alla luce ricevuta:

- Dove arriva molta luce, la sostanza si altera di più.
- Dove arriva poca luce, rimane quasi inalterata.

Si crea così un'immagine latente (cioè invisibile), che rappresenta in modo continuo l'intensità luminosa.

Fotocamera analogica

Sviluppo chimico: La pellicola viene poi sviluppata in camera oscura. I reagenti chimici fissano le parti colpite dalla luce e rimuovono quelle non esposte.

Ne risulta un negativo: le zone più illuminate diventano scure e viceversa.

Digitalizzazione

Creation of a Digital Image

Alta risoluzione == Più informazione

Problema: come salviamo numeri?

Non possono essere astratti, ma **devono essere salvati fisicamente**.

- una carica elettrica (nelle memorie/SSD)
- una polarità magnetica (negli hard disk)
- una riflessione di luce (nei CD e DVD)

Tuttavia, possiamo avere solo due stati: 1 e 0

Esempio: carica elettrica o assenza di carica elettrica

Il problema dei due simboli: 1 e 0

Dobbiamo rappresentare i numeri con solo due simboli: **Sistema di codifica Binaria** o **Sistema binario**

Perché si chiama sistema binario?

Perché si chiama decimale il sistema decimale?

Simboli numerici moderni

Sistema Decimale

Sistema Decimale

Sistema Decimale

Sistema Binario

Sistema Binario

Sistema Binario

Vogliamo convertire il numero 61₁₀ in binario

Qual è la potenza di 2 più vicina a 61 che sia anche minore o uguale a 61?

Vogliamo convertire il numero 61₁₀ in binario

Questa cifra ha un contributo di 32. Restano da identificare le cifre che hanno un contributo di 61 - 32 = 29

Vogliamo convertire il numero 61₁₀ in binario

Di nuovo: qual è la potenza di 2 più vicina a 29 che sia anche minore o uguale a 29?

Vogliamo convertire il numero 61₁₀ in binario

Questa cifra ha un contributo di 16. Restano da identificare le cifre che hanno un contributo di 61 - 32 - 16 = 13

Da binario a decimale (formale)

Da binario a decimale (formale)

61	1
30	0
15	1
7	1
3	1
1	1
0	

1 1 1 1 0 1		4				
' ' ' ' \	1	1	1	1	0	1

Sistema di numerazione binario nell'informatica

In informatica, le cifre binarie sono chiamate bit (Binary digITs)

Un bit descrive l'informazione minima (vero/falso)

Un gruppo di 8 bit si chiama byte

Un valore di byte può variare da O_{10} (0000000₂) a 255₁₀ (11111111₂).

Per esprimere numeri più grandi consideriamo sequenze di bit o byte più grandi

Sistema di numerazione binario nell'informatica

Leggere sequenze di bit non è banale. Se proprio dobbiamo leggere sequenze di bit andrebbero raggruppate. 10 non è un esponente di 2, quindi il sistema decimale risulterebbe scomodo.

Per questo motivo usiamo il **sistema esadecimale**.

Sistema Esadecimale

)		ı	U
0 ₁₆	=	0 ₁₀	=	0	0	0	0
1 ₁₆	=	1 ₁₀	=	0	0	0	1
2 ₁₆	=	2 ₁₀	=	0	0	1	0
3 ₁₆	=	3 ₁₀	=	0	0	1	1
4 ₁₆	=	4 ₁₀	=	0	1	0	0
5 ₁₆	=	5 ₁₀	=	0	1	0	1
6 ₁₆	=	6 ₁₀	=	0	1	1	0
7 ₁₆	=	7 ₁₀	=	0	1	1	1

				3	2	1	0
8 ₁₆	=	8 ₁₀	=	1	0	0	0
9 ₁₆	=	9 ₁₀	=	1	0	0	1
A ₁₆	=	10 ₁₀	=	1	0	1	0
B ₁₆	=	11 ₁₀	=	1	0	1	1
C ₁₆	=	12 ₁₀	=	1	1	0	0
D ₁₆	=	13 ₁₀	=	1	1	0	1
E ₁₆	=	14 ₁₀	=	1	1	1	0
F ₁₆	=	15 ₁₀	=	1	1	1	1

Da Esadecimale a Decimale

Da Esadecimale a Decimale

Da Decimale a Esadecimale

Da Binario a Esadecimale

Gruppi di 2 cifre esadecimali compongono un byte

E i caratteri? ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ť
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

E le immagini?

Operatori fra bit (logici): AND Λ

Comunemente chiamata **congiunzione**. Una congiunzione è vera, **se entrambe le premesse sono vere**. Se 1 rappresenta vero e 0 rappresenta falso.

Bit #1	Bit #2	Risultato
0	0	0
0	1	0
1	0	0
1	1	1

Operatori fra bit (logici): OR V

Comunemente chiamata **disgiunzione inclusiva**. Una disgiunzione inclusiva è vera, **se almeno una premessa è vera**. Se 1 rappresenta vero e 0 rappresenta falso.

Bit #1	Bit #2	Risultato
0	0	0
0	1	1
1	0	1
1	1	1

Comunemente chiamata disgiunzione esclusiva. Una disgiunzione esclusiva è vera, se esattamente una delle due premesse è vera. Se 1 rappresenta vero e 0 rappresenta falso.

Bit #1	Bit #2	Risultato
0	0	0
0	1	1
1	0	1
1	1	0

L'operatore XOR è invertibile

AND:

$$? \land 0 = 0$$

OR:

$$? \lor 1 = 1$$

XOR:

$$? \oplus 0 = 0$$