1. Y= X'Bte

E[3e] =0 E[e213] = exp(Y'3)

| Will estimate Busing GMM.
For B, E[gi(B)]=0 where

9:(B)==(Y-XB)

The sample moment is an(B) = - ≥ in zi(Yi-Xi'B)

The chiterian is

J(B)=nq(B)'Wgn(B) for some Weight matrix W70.

Then $\hat{\beta} = argmin J(B)$.

Let W= II where

I = E[g;(B)g;(B)']

Let ? = argmin I

E[z2exp(vz)]

E [Z2 E Ce2/2]]

E [z²e²]

$$E[3E] = E[3E[E[3]] = 0$$
Then:
$$E[3(Y-\theta)H-ui-S+)] = 0$$

Where
$$Ui = Yii$$
, first time period Yi
 $8t = Y_{12} - Y_{11}$, average ΔY over time
for control group (i=1)
 $\theta = (Y_{22} - Y_{21}) - (Y_{12} - Y_{11})$

 $D(x) = m'(x) = \frac{d}{dx} m(x)$

$$Y = \beta_0 + \hat{\beta}_1 \chi$$

= SK i pi x1-1

a. Consider a polynomial series regression of order k:

Y= $\hat{\beta}_0$ + $\hat{\beta}_1$ $\hat{\chi}_1$ + $\hat{\beta}_2$ $\hat{\chi}_2$ + ... + $\hat{\beta}_k$ $\hat{\chi}_k$ + e $\hat{\beta}_1$ = $(\frac{1}{2}\hat{Z}_1\hat{Z}$

Where $\exists i = (X_i, X_i^2, ..., X_i^k)$ Then $\hat{D}(x) = \hat{\beta}_1 + 2\hat{\beta}_2 x + 3\hat{\beta}_3 x^2 + ... + k\hat{\beta}_r x^{r-1}$

b. By asymptotic theory, assume $\hat{D}(X)$ is differentiable with B. $n(\hat{D}(X) - D(X)) \rightarrow N(O_1 \hat{V}_0)$ where

vo= dlab D(x)' v alab D(x) and

V is the asymptotic covariance matrix. Then our $SF = \int_{\Gamma}^{\Gamma} \hat{V}_{D}$

c. Our 95% cl is:

D(x) = 1.96 · SE

Other CIs can be constructed by

using a 2-score other than 1.96.

5.
$$\log (Y^*) = x' \beta + e$$
 $e(x) \sim N(0, \sigma^2)$
 $e(x) \sim N(0, \sigma^2)$

= Pr(e < log(10,000) - X'B'|X)= $Pr\left(\frac{e}{\sigma^2} < \frac{log(10F) - X'B}{\sigma^2} |X\right)$

= 1 (100 (101000)- X,B)

5.

So
$$\sigma^2$$
 is not uniquely identified. From the response probability we only know
$$\frac{\log \lfloor \log_1 \log 0 \rangle - \chi^1 \beta}{\log^2}$$

$$b - P_1(\chi) = \frac{\chi' \beta_1 / \sigma^2}{2}$$

b.
$$P_{j}(x) = \frac{x'\beta_{j}/\sigma^{2}}{\sum_{a=1}^{5} x'\beta_{k}/\sigma^{2}}$$

$$= \frac{\sum_{a=1}^{5} x'\beta_{k}/\sigma^{2}}{\sum_{i=1}^{5} x'\beta_{k}/\sigma^{2}}$$

$$= \frac{\sum_{i=1}^{5} \sum_{j=1}^{5} 1\xi Y_{i} = j\xi \log \left(\frac{X'\beta_{i}/\sigma^{2}}{\sum_{k=1}^{5} X'\beta_{k}/\sigma^{2}}\right)}{\sum_{k=1}^{5} X'\beta_{k}/\sigma^{2}}$$