HW12 Jamie Ash

Question 1. Define a relation on \mathbb{N} by $\mathbb{W} = \{(m, n) \in \mathbb{N} : 2m < n < 3m + 6\}$

(a) Which of the following pairs are in W and which are not? Justify your answers

$$\{(2,6),(5,21),(7,31),(3,5),(4,16)\}$$

Answer: The pairs (2, 6), and (4, 16) are in \mathbb{W} . The pairs (5, 21), (7, 31), and (3, 5) are not in \mathbb{W} .

For (2, 6)...

$$2m < n < 3m + 6$$

 $2(2) < 6 < 3(2) + 6$
 $4 < 6 < 12$
 $TRUE$

For (4, 16)...

$$2m < n < 3m + 6$$
$$2(4) < 16 < 3(4) + 6$$
$$8 < 16 < 18$$
$$TRUE$$

For (5, 21)...

$$2m < n < 3m + 6$$
$$2(5) < 21 < 3(5) + 6$$
$$10 < 21 < 21$$
$$FALSE$$

For (7, 31)...

$$2m < n < 3m + 6$$

$$2(7) < 31 < 3(7) + 6$$

$$14 < 31 < 27$$

$$FALSE$$

For (3, 5)...

$$2m < n < 3m + 6$$

 $2(3) < 5 < 3(3) + 6$
 $6 < 5 < 15$
 $FALSE$

(b) Give two more ordered pairs of natural numbers that are in W and two that are not. Be sure to justify your answers.

Answer: The pairs (2, 5) and (1, 3) are in \mathbb{W} . The pairs (1, 10) and (2, 3) are not in \mathbb{W} .

For
$$(2, 5)...$$

$$2m < n < 3m + 6$$

 $2(2) < 5 < 3(2) + 6$
 $4 < 5 < 12$
 $TRUE$

For
$$(1, 3)$$
...
$$2m < n < 3m + 6$$

$$2(1) < 3 < 3(1) + 6$$

$$2 < 3 < 9$$

$$TRUE$$
 For $(1, 10)$...
$$2m < n < 3m + 6$$

$$2(1) < 10 < 3(1) + 6$$

$$2 < 10 < 9$$

$$FALSE$$

For
$$(2, 3)...$$

$$2m < n < 3m + 6$$

 $2(2) < 3 < 3(2) + 6$
 $4 < 3 < 12$
 $FALSE$

(c) Explain why W is not an equivalence relation.

Answer: \mathbb{W} is not an equivalent relation because $\mathbb{W} = \{(m,n) \in \mathbb{N} : 2m < n < 3m+6\}$ is not reflexive. That is $m\mathbb{W}n$ does not imply $n\mathbb{W}m$. A relation must be reflexive, symmetric and transitive to be an equivalence relationship. Here's an example of an ordered pair in \mathbb{W} that is not reflexive.

For
$$(1, 3)...$$

$$2m < n < 3m + 6$$

 $2(1) < 3 < 3(1) + 6$
 $2 < 3 < 9$
 $TRUE$

For
$$(3, 1)$$
...

$$2m < n < 3m + 6$$

 $2(3) < 1 < 3(3) + 6$
 $6 < 1 < 15$
 $FALSE$

Question 2. Write up a careful solution:

(a) Let \mathbb{R} be the empty set relation on the integers. That is, $R = \emptyset$ and for all $a, b \in \mathbb{Z}$ we have $(a, b) \in R$. Prove or disprove: R is an equivalence relation.

Answer: \mathbb{R} is not an equivalent relation because it is not symmetric. A relation is equivalent if it is symmetric, transitive, and reflexive. The relation \mathbb{R} happens to be transitive and symmetric because transitive and symmetric use conditional statements in their definition. That is, a relation is symmetric if, $\forall x, y \in \mathbb{Z}$, $x\mathbb{R}y \implies y\mathbb{R}x$. Similarly, a relation is transitive if $\forall x, y, z \in \mathbb{Z}$, $x\mathbb{R}y \cup x\mathbb{R}y \implies y\mathbb{R}x$. For the relation of the empty set, there exists no $x\mathbb{R}y$ so the statements $x\mathbb{R}y \cup x\mathbb{R}y \implies y\mathbb{R}x$ and $x\mathbb{R}y \implies y\mathbb{R}x$ are always true.

For the relation \mathbb{R} to be reflexive it must satisfy $\forall x \in \mathbb{Z}$, $x\mathbb{R}x$. Because there does exists $x \in \mathbb{Z}$, but there does not exist $x \in \mathbb{R}$, then $x\mathbb{R}x$ does not hold. Therefore R is not a reflexive relation, and consequently not an equivalence relation.

Question 3. Suppose that \mathbb{R} is an equivalence relation on a set S, and let $a, b \in \mathbb{S}$. Let [a] represent the equivalence class of a, the set of elements of S that are equivalent to a. In set notation.

$$[a] = \{x \in S : x \sim a\}$$

Prove the following:

(a) If $a \sim b$ then [a] = [b].

Proof: I'm changing the \sim to \mathbb{R} .

Suppose aRb...

Because R is an equivalence relationship on S, and $a, b \in S$, then there exists some equivalence class [a] and [b].

By definition the equivalence class [b] is $\{x \in S : xRb\}$ and [a] is $\{x \in S : xRa\}$. Because [a] = [b] then $\{x \in S : xRb\} = \{x \in S : xRa\}$. But $a \in S$ so then aRb and $b \in S$ so bRa.

We will show $[a] \subset [b]$ and $[b] \subset [a]$. To show $[a] \subset [b]$ suppose $c \in [a]$. As $c \in [a] = \{x \in S : xRa\}$ we find cRa. We've shown cRa and aRb so by the transitive property of R we have cRb. This implies $c \in \{x \in S : xRb\} = [b]$. So $c \in [a] \implies c \in [b]$, so $[a] \subset [b]$.

We do nearly the same to show $[b] \subset [a]$.

So $[b] \subset [a]$ and $[a] \subset [b]$, therefore [a] = [b].

(b) If $a \nsim b$ then $[a] \neq [b]$.

Proof: We proceed by the contrapositive case. That is, if [a] = [b] then $a \sim b$.

Suppose [a] = [b]...

Show [a] = [b] implies symmetric

Show [a] = [b] implies reflexive

Show [a] = [b] implies transative.

Therefor $a \sim b$