"Machine Learning and Computational Statistics"

6th Homework

Exercise 1:

Consider a two-class 1-dim. classification problem of two equiprobable classes ω_1 and ω_2 that are modeled by the normal distributions N(0,1) and N(0,10), respectively. Determine the decision regions R_1 and R_2 corresponding to the two classes.

Exercise 2:

(a) Consider a three-class 1-dim. problem where the classes ω_1 , ω_2 $\kappa\alpha\iota$ ω_3 are modeled by the following uniform distributions

$$p(x|\omega_1) = \begin{cases} 1/4, & x \in (0,2) \cup (5,7) \\ 0, & \text{otherwise} \end{cases}$$
 $p(x|\omega_2) = \begin{cases} 1/10, & x \in (0,10) \\ 0, & \text{otherwise} \end{cases}$

και
$$p(x|\omega_3) = \begin{cases} 1, & x \in (3,4) \\ 0, & \text{otherwise} \end{cases}$$

- (I) Assume that all classes are equiprobable.
- (i) Depict graphically in the same figure $P(\omega_i)p(x|\omega_i)$ (as functions of x) and identify the respective decision regions, as they are specified by the Bayes classifier.
- (ii) Compute the error classification probability of the Bayes classifier.
- (iii) Classify the point x' = 3.5 to one of the three classes using the Bayes classifier.
- (II) Assume that the classes are **not** equiprobable.
- (i) Determine a set of values for the a priori probabilities of the three classes that guarantee that x'=3.5 is assigned to class ω_2 . Justify briefly your choice.
- (ii) Is there any combination of the a priori probabilities that guarantees that x'=3.5 will be assigned to ω_1 ? Explain.

Hints:

- $(\underline{H1})$ Focus only in the interval [0,10] since all pdfs are zero out of this interval.
- (H2) The error classification probability for the Bayes classifier is

$$P_e = \sum_{i=1}^{M} \int_{R_i} \left(\sum_{k=1, k \neq i}^{M} p(x/\omega_k) P(\omega_k) \right) dx$$

Exercise 3 (python code + text):

Consider a two-class, two-dimensional classification problem for which you can find attached two sets: one for training and one for testing (file HW6.mat). Each of these sets consists of pairs of the form (y_i,x_i) , where y_i is the class label for vector x_i . Let N_{train} and N_{test} denote the number of training and test sets, respectively. The data are given via the following arrays/matrices:

- \rightarrow train_x (a N_{train} x2 matrix that contains in its rows the training vectors x_i)
- \succ train_y (a N_{train} —dim. column vector containing the class labels (1 or 2) of the corresponding training vectors x_i included in train_x).
- \triangleright test_x (a $N_{\text{test}} \times 2$ matrix that contains in its rows the test vectors x_i)
- \succ test_y (a N_{test} -dim. column vector containing the class labels (1 or 2) of the corresponding test vectors x_i included in test_x).

Assume that the two classes, ω_1 and ω_2 are modeled by normal distributions.

Adopt the **Bayes classifier**.

- i. Use the training set to **estimate** $P(\omega_1)$, $P(\omega_2)$, $p(x|\omega_1)$, $p(x|\omega_2)$ (Since $p(x|\omega_j)$ is modeled a normal distribution, it is completely identified by μ_j and Σ_j . Use the **ML estimates** for them as given in the lecture slides).
- ii. Classify the points x_i of the test set, using the Bayes classifier (for each point apply the Bayes classification rule and keep the class labels, to an a N_{test} —dim. column vector, called $Btest_y$ containing the estimated class labels (1 or 2) of the corresponding test vectors x_i included in $test_x$.).
- iii. Estimate the error classification probability ((1) **compare** *test_y* and *Btest_y* , (2) **count** the positions where both of them have the same class label and (3) **divide** with the total number of test vectors).
 - Recall that $x = [x_1, x_2]^T$
- (b) Depict graphically the training set, using different colors for points from different classes.
- (c) Report the classification results and comment very briefly on them.

Hint: After downloading the attached MATLAB file, use the following python code to retrieve the above mentioned matrices and vectors:

```
import scipy.io as sio

Dataset = sio.loadmat('HW6.mat')

train_x = Dataset['train_x']

train_y = Dataset['train_y']

test_x = Dataset['test_x']

test_y = Dataset['test_y']
```