

DC grid converter fundamentals

Martin Jäger Hamburg, 11.02.2020

Open DC grid overview

Typical MPPT charge controller layout

DC/DC buck converter basics

$$D = \frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} = \frac{V_{\text{out}}}{V_{\text{in}}}$$

Bi-directional DC/DC converter

Buck converter

Boost converter

Synchronous converter

Grid controller power stage

Grid control basics: Water analogy

Used tools at Libre Solar

PCB design

- Open Source
- Schematics editor incl. SPICE simulation support
- Board layout with Gerber export and Eagle import functions

Firmware development

- RTOS with focus on IoT
- Linux Foundation member
- Great community support