大连工业大学 2018~2019 学年第二学期

《高等数学 2》试卷(统考模拟)共 3页 第 1 页

·········												
	题号		_	11	四	<i>I</i>	<u> </u>	1	1/	+	阅卷	复核
	赵与				<u> </u>	Д.	/\	<u></u>	八	儿	总分	总分
	得分											

分

填空(每空3分,共15分)

- 1、设 $y = e^x(c_1 \cos x + c_2 \sin x)$ 为某二阶常系数齐次线性微分方程的通解,则该方程为 _______.
- 2、方程 $y'' 3y' + 2y = e^x \cos 2x$ 的特解形式为_______. (不必具体求出)
- 4、函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A (1, 0, 1) 处沿点 A 指向点 B (3, -2, 2) 方向的方向导数为______.
- 5、空间曲线 x = 3t, $y = 3t^2$, $z = 2t^3$ 从点 O (0, 0, 0) 到点 A (3, 3, 2) 的弧长为______.

得 分

二、 选择题(每题3分,共15分)

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 , 则在点(0, 0)处(

- A、连续且偏导数存 B、连续但偏导数不存在 C、不连续但偏导数存在 D、不连续且偏导数不存在
- 函数z = f(x, y)在点 (x_0, y_0) 的全微分存在是f(x, y)在该点连续的()条件.
- A、充分非必要 B、必要非充分 C、充分必要
- D、既非充分,也非必要
- 3、已知曲面 Σ 的方程为 $x^2 + y^2 + z^2 = 5$,则 \oiint $(x^2 + y^2 + z^2)dS = ($)
 - A, 0 B, 50π C, 100π D, 150π
- 4、若连续函数 f(x)满足关系式 $f(x) = \int_0^{2x} f\left(\frac{t}{2}\right) dt + \ln 2$,则 f(x) = 0
 - A, $e^{x} \ln 2$ B, $e^{2x} \ln 2$ C, $e^{x} + \ln 2$ D, $e^{2x} + \ln 2$
- 5、线性非齐次微分方程的任两个非零解之差(
- A、 不是其对应齐次微分方程的解 B、 是非齐次微分方程的解
- C、 是其对应齐次微分方程的解 D、 是非齐次微分方程的通解

分

三、计算题(每题5分,共20分)

1、求
$$\iint_{D} \sin \sqrt{x^2 + y^2} \, dx dy$$
, 其中 $D = \{(x, y) | \pi^2 \le x^2 + y^2 \le 4\pi^2 \}$ 2、求微分方程 $x^2 \frac{dy}{dx} = xy - y^2$ 的通解.

2、求微分方程
$$x^2 \frac{dy}{dx} = xy - y^2$$
 的通解

大连工业大学 2018~2019 学年 第二学期

《高等数学2》试卷(统考模拟) 共3页第2页

求由方程 $x^2 + y^2 + z^2 = 2z$ 所确定的函数z = f(x, y)的全微分.

草

4、设f(x,y)具有一阶连续偏导数,且满足 $f(x,x^2)=x^3$, $f_x(x,x^2)=x^2-x^4$,求 $f_y(x,x^2)$

算

得 分

四、计算题(每题5分,共20分)

1、求 $\iint_{\Omega} \sqrt{x^2 + y^2} dV$,其中 Ω 是由抛物面 $z = 4 - x^2 - y^2$ 及 z = 0 所围成的空间闭区域.

草

2、求由四个平面 x=0, y=0, x=1及 y=1所围成的柱体被平面 z=0 与 z=6-2x-3y 截得的立体的体积.

3、计算 $\int_L xy^2 dx + (x^2y + 2x - 1) dy$, 其中 L 为上半圆周 $x^2 + y^2 = 4$ 从 A(2,0) 到 B(-2,0) 的一段圆弧.

算

4、计算 $\iint_{\Sigma} (x+z^2) dy dz + (y+x^3) dz dx + (z+y^3) dx dy$, 其中 Ω 为上半球面 $z = \sqrt{1-x^2-y^2}$ 的上侧.

…装 订 线

大连工业大学 2018~2019 学年 第一学期

《高等数学 2》试卷(统考模拟)共 3页第 3页

得 分 五、(6分) 设函数 y = y(x)满足微分方程 $y''-3y'+2y = 2e^x$, 其图形在点 (0, 1) 处的

」切线与曲线 $y = e^{-x}$ 在该点处的切线重和,求函数 y = y(x).

得 分 **六、(6分)** 计算曲线积分 $I = \int_L \frac{x-y}{x^2+y^2} dx + \frac{x+y}{x^2+y^2} dy$, 其中 L 是从点 A(-a,0) 经

上半椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (y \ge 0)$ 到点 B(a,0) 的弧段.

得 分 七、(6分) 连接 A(0,1), B(1,0) 的一条凸曲线,P(x,y) 为曲线上任意一点,已知曲线

与弦AP所围图形面积为 x^3 ,求此曲线方程.

得 分 八、(6分) 在第一卦限内做椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的切平面,使该切平面与三坐标面

围成的四面体体积最小, 求这切平面的切点, 并求最小体积.

$$-, (15 \%) 1, \quad y'' - 2y' + 2y = 0 \qquad 2, \quad y^* = (A\cos 2x + B\sin 2x)e^x \quad 3, \quad \int_0^2 dy \int_{y/2}^y f(x, y) dx + \int_2^4 dy \int_{y/2}^2 f(x, y) dx$$

$$4, \quad \frac{1}{2} \quad 5, \quad \frac{5}{3}$$

二、(15) C A C B C

三、1、解:
$$\iint_{D} \sin \sqrt{x^2 + y^2} \, dx dy = \int_{0}^{2\pi} d\theta \int_{\pi}^{2\pi} \sin r \cdot r dr = 2\pi \cdot (-3\pi) = -6\pi \qquad (5 \, \text{分})$$

2、解: 方程可化为
$$\frac{dy}{dx} = \frac{y}{x} - \left(\frac{y}{x}\right)^2$$
, 令 $\frac{y}{x} = u$, 代入上式得: $-\frac{du}{u^2} = \frac{dx}{x} \Rightarrow \frac{1}{u} = \ln|x| + c \Rightarrow y = \frac{x}{\ln|x| + c}$ (5分)

3、

解:
$$\Rightarrow F(x, y, z) = x^2 + y^2 + z^2 - 2z$$
, 则 $F_x = 2x$, $F_y = 2y$, $F_z = 2z - 2$,

于是有
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{x}{1-z}$$
, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{y}{1-z}$, 因此 $dz = \frac{xdx + ydy}{1-z}$ (5分)

4、解: 由题意,
$$f_x + 2xf_y = 3x^2 \Rightarrow x^2 - x^4 + 2xf_y = 3x^2$$
, ... $f_y(x, x^2) = x + \frac{x^3}{2}$ (5分)

四、1、解:
$$\iiint_{\Omega} \sqrt{x^2 + y^2} dV = \int_0^{2\pi} d\theta \int_0^2 r^3 dr \int_0^{4-r^2} dz = 2\pi \int_0^2 r^3 (4 - r^2) dr = \frac{32}{3}\pi$$
 (5 分)

2.
$$\text{M}: V = \iint_{\Omega} (6 - 2x - 3y) dx dy = \int_{0}^{1} dx \int_{0}^{1} (6 - 2x - 3y) dy = \int_{0}^{1} (\frac{9}{2} - 2x) dx = \frac{7}{2}$$
 (5 $\text{ }\%$)

3、解: 添加辅助线 $BA: y=0, x:-2 \rightarrow 2$,则由格林公式有

$$\iint_{L+BA} xy^2 dx + \left(x^2y + 2x - 1\right) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \iint_{D} \left(2xy + 2 - 2xy\right) dx dy = 4\pi$$

$$\int_{BA} xy^2 dx + (x^2y + 2x - 1) dy = \int_{-2}^{2} 0 dx = 0 \qquad \int_{L} xy^2 dx + (x^2y + 2x - 1) dy = 4\pi - 0 = 4\pi \qquad (5 \%)$$

4、解: 添加辅助平面 Σ_1 : z=0 被球面所截部分下侧,则 $\Sigma_1+\Sigma$ 为封闭曲面的外侧

利用高斯公式,
$$\iint_{\Sigma_1+\Sigma} (x+z^2) dy dz + (y+x^3) dz dx + (z+y^3) dx dy = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV = 3 \iiint_{\Omega} dV = 2\pi$$

$$\iint_{\Sigma_{1}} (x+z^{2}) dy dz + (y+x^{3}) dz dx + (z+y^{3}) dx dy = \iint_{\Sigma_{1}} y^{3} dx dy = -\iint_{D} y^{3} dx dy = 0, \quad \iiint_{\Sigma} (x+z^{2}) dy dz + (y+x^{3}) dz dx + (z+y^{3}) dx dy = 2\pi$$
 (5 %)

五、解: (1)
$$r^2 - 3r + 2 = 0$$
, $r = 1,2$, $Y = c_1 e^x + c_2 e^{2x}$ (3分) (2) $y^* = axe^x$, $y^{*'} = a(x+1)e^x$, $y^{*''} = a(x+2)e^x$, 带入得 $a = -1$

通解
$$y = c_1 e^x + c_2 e^{2x} - x e^x$$
 ...6 分 (3) 由题意 $y(0) = 1$, $y'(0) = -1$, $c_1 = 2$, $c_2 = -1$, $y = 2e^x - e^{2x} - x e^x$ (6 分)

六、解:
$$\frac{\partial Q}{\partial x} = \frac{y^2 - 2xy - x^2}{(x^2 + y^2)^2} = \frac{\partial P}{\partial y}, \quad x^2 + y^2 \neq 0, \quad \text{所以曲线积分 } y > 0$$
的上半平面与路径无关, (3分)

$$\therefore I = \int_{\pi}^{0} \frac{a^{2}(-\cos t \sin t + \sin^{2} t + \cos^{2} t + \cos t \sin t)}{a^{2}} dt = \int_{\pi}^{0} dt = -\pi . \tag{6 \%}$$

七、解: 设曲线方程
$$y = y(x)$$
, 由题意 $\int_0^x y(t)dt = \frac{1}{2}(1+y)x + x^3$, $y(1) = 0$, 两边求导, $y = \frac{1}{2}(y+1) + \frac{1}{2}xy' + 3x^2$,

整理得
$$y' - \frac{1}{x}y = -\frac{1+6x^2}{x}$$
, (3分),解得 $y = x(c + \frac{1}{x} - 6x)$,将(1.0)代入, $c = 5$, $y = 1 + 5x - 6x^2$ (6分)

八、解: 设切点为 (x_0, y_0, z_0) , 切平面方程为 $\frac{x_0}{a^2}x + \frac{y_0}{b^2}y + \frac{z_0}{c^2}z = 1$,与x, y, z轴得交点为 $(\frac{x_0}{a^2}, 0, 0), (0, \frac{y_0}{b^2}, 0), (0, 0, \frac{z_0}{c^2}), V = \frac{1}{6}\frac{a^2b^2c^2}{x_0y_0z_0}$,

体积最小,只须 $x_0 y_0 z_0$ 最大即可。设拉格朗日函数为 $L = xyz + \lambda (\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2})$ (3分)

$$\begin{cases} L_x = yz + \frac{2\lambda}{a^2}x = 0 \\ L_y = xz + \frac{2\lambda}{b^2}y = 0 \Rightarrow \begin{cases} x = \frac{\sqrt{3}}{3}a \\ y = \frac{\sqrt{3}}{3}b \end{cases} \\ L_z = xy + \frac{2\lambda}{c^2}z = 0 \end{cases}$$

实际问题,最小体积存在,且驻点唯一,所以切点为($(\frac{\sqrt{3}}{3}a,\frac{\sqrt{3}}{3}b,\frac{\sqrt{3}}{3}c)$,最小体积为 $V=\frac{\sqrt{3}}{2}abc$ (6分)

九、

证明: $\mathbf{R} \mathbf{y} = \mathbf{k} \mathbf{x}$,

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{3xy}{x^2 + y^2}$$

$$= \lim_{\substack{x \to 0 \\ y = kx}} \frac{3x \cdot kx}{x^2 + k^2 x^2}$$

$$= \frac{3k}{1 + k^2},$$
其值随此的不同而变化。按据限不

其值随ҟ的不同而变化,故极限不存在.

(6分)