# GATE (ALL BRANCHES)



**Engineering Mathematics** 

Differential Equation + Partial differential



Physics Walls

Lecture No. 02





## Variable seprable method

Problems based on Variable Separable method

Homogeneous Differential Equation

Reducible to Homogeneous

Problems based on Homogeneous and non Homogeneous D.E



CasE02: Reduced to Variable Seprable from:  $\frac{dy}{dx} = X(x)Y(y) = \frac{X(x)}{Y(y)} = \frac{X(x$  $\frac{\partial y}{\partial z} = X(z) + Y(y) \Omega X(z) - Y(y)$ 

Vising reduced to variable seprable from

dy = f(ax+by+e)



dy = f(ax+bx+c) where a, b, c Are constants a-1+b dy + 0= dt ax+by+c=t both indes Differentiate It b dy = dt - a  $=\frac{1}{b}\left|\frac{dt}{dx}-a\right|=f(t)$  $\frac{dy}{dx} = \frac{1}{b} \left[ \frac{dt}{dx} - a \right]$ =) Now separate the variable. and get the solution of Defferential Equation





The general solution of the differential equation  $\frac{dy}{dx} = \cos(x + y)$ , with c as a #Q.

(a) 
$$y + \sin(x + y) = x + c$$

(b) 
$$\tan\left(\frac{x+y}{2}\right) = y+c$$

(c) 
$$\cos\left(\frac{x+y}{2}\right) = x+c$$

(d) 
$$\tan\left(\frac{x+y}{2}\right) = x+c$$

=) dt -1= cost =) dt = 1+cost Now variable Seprate It



$$\int \frac{dt}{1+tot} = \int dx$$

$$\Rightarrow \int \frac{dt}{1+2\cos^2 t} = \int dx$$

$$\Rightarrow \int \int SEc^2 t dt = \int dx$$

$$\Rightarrow \int \int tan t dt = x+c$$

$$= tan t = x+c$$

both ades Integrate It

Solution of D.E  

$$tan(X+4) = X+C$$





- #Q. Which one of the following is the general solution of the first order differential equation  $\frac{dy}{dx} = (x + y 1)^2$  where x, y are real?
- (a)  $y = 1 + x + tan^{-1}(x + c)$ , where c is a constant
- (b)  $y = 1 + x + \tan(x + c)$ , where c is a constant
- (c)  $y = 1 x + tan^{-1}(x + c)$ , where c is a constant
- (d)  $y = 1 x + \tan(x + c)$ , where c is a constant

Pw

Non seprate The variables





#Q. Which one of the following curves correctly represents the equation  $\frac{df}{dx} + 2f = 3$ 

$$f(0) = 0$$







$$Y = f(x) = \frac{3}{2} (1 - e^{2x})$$

$$A + x = 0$$

$$= \frac{3}{2} (1 - e^{0})$$

$$= 0$$



$$= \int \frac{df}{2-2f}$$

 $I = \frac{df}{3-2f}$ 

 $= -\frac{dt}{2(t)} = -\frac{1}{2} \ln |t|$   $= -\frac{1}{2} \ln |3-2f|$ 

- 1 m/3-2f)= x+c  $= -\frac{1}{2}m(3-2f)=x+c$ 

 $= -\frac{1}{2} m(3-2x0) = 0 + C$ 

- C=-1lu3

 $\frac{df}{dz} + 2f = 3$  f(0) = 0

Voug væriable Søprable method

$$\int \frac{df}{3-2f} = \int dx$$

$$-\frac{1}{2} m(3-2f) = x + C$$



$$= -\frac{1}{2}M(3-2f) = x - \frac{1}{2}M3$$

$$= \frac{1}{2}M(3-2f) = x$$

$$= \frac{1}{2}M\left(\frac{3}{3-2f}\right) = x$$

$$= \frac{1}{2}M\left(\frac{3}{3-2f}\right) = e^{2x}$$

$$3 = 3e^{2x} - 2fe^{2x}$$

$$3 - 3e^{2x} = -afe^{2x}$$

$$3e^{2x} - 3 = f$$

$$f = \frac{3}{2} - \frac{3}{2}e^{2x}$$
 $f = \frac{3}{2}\left(1 - e^{2x}\right)$ 





Let f(t) be a Non-negative function defined on interval [0, 1] #Q.

$$\int_0^x \sqrt{1 - \left[f'(t)\right]^2} dt = \int_0^x f(t) dt$$
$$f(0) = 0 \qquad 0 \le x \le 1$$

odt
$$\int_{0}^{2} \sqrt{1-[f'(t)]^{2}} dt = \int_{0}^{2} f(t)dt$$
Remove The Integral
$$Apply Neutton-Leibnitz Rule$$

(a) 
$$f(1/2)<1/2, f(1/3)<1/3$$

(b) 
$$f(1/2)<1/2, f(1/3)>1/3$$

(c) 
$$f(1/2) > 1/2, f(1/3) < 1/3$$

(d) 
$$f(1/2)>1/2, f(1/3)>1/2$$

$$\sqrt{1-\{f'(x)\}^2} \cdot \frac{d(x)}{dx}(x) - \sqrt{1-\{f'(0)\}^2} \frac{d(0)}{dx}(0)$$

$$= f(x) \frac{d(x)}{dx}$$



$$\Rightarrow \sqrt{1-[f'(z)]^2 \cdot 1} = f(z) \quad \text{put } y = f(z)$$

$$\Rightarrow \sqrt{1-[\frac{dy}{dz}]^2} = y \quad y' = \frac{dy}{dz} = f'(z)$$
both sides Squase It
$$\Rightarrow 1-(\frac{dy}{dz})^2 = y^2 \quad \text{Using Vasceprable}$$

$$\Rightarrow (\frac{dy}{dz})^2 = 1-y^2 \quad \text{Shelhod}$$

$$\Rightarrow (\frac{dy}{dz})^2 = 1-y^2 \quad \text{This form is } D \in y = +x+e$$
This form is  $D \in y = +x+e$ 



$$y = SM(x+c) \qquad f(0) = 0$$

$$\Rightarrow f(x) = SM(x+c) \qquad x = 0 f(0) = 0$$

$$\Rightarrow 0 = SM(0+c) \qquad SM(x+c)$$

$$\Rightarrow (c = 0) \qquad f(x) < x$$

$$f(x) = SM(x) \qquad f(x) < x$$

$$f(x) = SM(x) \qquad f(x) < x$$

$$f(x) = SM(x) \qquad f(x) < x$$



Homogenous Refferential Equi:

flta, ty)=thf(xy) # Homogenous Function:  $f(x,y) = \chi^2 + \chi^2 + \chi y$  This Function is

Rule for Homogenous function Homogenous or Not  $f(\kappa x, \kappa y) = \kappa^n f(x,y)$  [Scaling] (11)'  $f(x,y) = \chi^2 + y^2$ 

Check the condition

f(Kx, ky) = Kx2+Ky+ kxky

f(Kx, ky) = k^[x2+y7+xy]

 $f(xx, ky) = K^2f(x,y)$ 

function is Konogenous.

f(Kz, Ky) = K33+ K2y2

=> k2[kx3+y2]

f(kx,ky) + kxf(x,y)
This function is Not Homogenous



1) If  $\frac{f(x)}{g(x)}$  where f(x), g(x) is Homogenous function f(x) is also Homogenous function f(x). g(x) is also Homogonous function

Type 03  $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$  or f(x,y)g(x,y)Equil Where f(x,y) or g(x,y) both are Homogenous function



Put y = Kx or x = Ky  $dx = K + y \cdot dk$ both index Reff. w.  $x \cdot t$  to x dy = K + x dk dx = K + x dk dx = K + x dk dx = f(x,y) Ref y = KxPut The value of dy

K+xdK = f(k)Now variable Seprate It and get The valution of  $\varnothing \cdot E$ 





(X, Y)

A curve passing through the point  $(1, \pi/6)$ . Let the slope of the curve at each point #Q.

(x, y) be  $\frac{y}{x} + sec(\frac{y}{x})$ . Then the equation of the curve x > 0

(a) 
$$\sin\left(\frac{y}{x}\right) = \ln(x) + \frac{1}{2}$$

(b) 
$$\cos(^{y}/_{x}) = \log x + \frac{1}{2} + (x, y) = f(xx, ky)$$

(c) 
$$\sin\left(\frac{2y}{x}\right) = \log x + 2$$

(d) 
$$\cos\left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$$

(b) 
$$\cos(\frac{y}{x}) = \log x + \frac{1}{2}$$
  $f(x,y) = f(xx, ky)$   
(d)  $\cos(\frac{2y}{x}) = \log x + \frac{1}{2}$   $= \frac{ky}{x} + \sec(\frac{ky}{x})$   
At  $y = h$   $= \frac{4}{x} + \sec(\frac{y}{x})$ 



Put 
$$y = kx$$
  
 $K = \frac{4}{x}$   
 $= K + S = K$   
 $\Rightarrow \int cokdK = \int dx$   
 $\Rightarrow \int sm K = mx + C$   
 $\Rightarrow \int sm \left(\frac{4}{x}\right) = mx + C$ 

(a)

(なりなり)

$$\Rightarrow Sm\left(\frac{x}{x}\right) = mx+c$$
at  $\left(\frac{1}{6}\right) x = 1 \quad y = \frac{\pi}{6}$ 

$$\Rightarrow Sm\left(\frac{\pi}{6}\right) = m_1 + c$$





#Q. 
$$\log\left(\frac{\mathrm{d}y}{\mathrm{d}X}\right) = ax + by$$

Now Seprate The Variables

$$= \int \frac{dy}{e^{b}y} = \int e^{ax} dx$$

$$=) \begin{cases} e^{-by} dy = \begin{cases} e^{ax} dx \\ e^{-by} - e^{ax} = e \end{cases}$$





#Q. 
$$\sqrt{1+x^2+y^2+x^2y^2+xy\frac{dy}{dX}}=0$$

Do yourself





#Q. 
$$xy\frac{dy}{dx} = \sqrt{1+x^2}\sqrt{1+y^2}$$





#Q. 
$$x \frac{dy}{dx} = y(\log y - \log x + 1)$$

Put 
$$y = vx$$

$$V+z \frac{dv}{dx} = \frac{vx}{x} \left( m \left( \frac{vx}{x} \right) + 1 \right)$$

$$x+z \frac{dv}{dx} = ln v \cdot v + v$$

$$\ln v = t$$
 
$$\int \frac{dt}{t} = \int \frac{dx}{x}$$

$$mmV = m(cx)$$
 $mv = cx$ 
 $v = ecx$ 



#Q. 
$$(x+y+1)\frac{dy}{dx}=1$$

$$\frac{dy}{dx} = \frac{1}{(x+y+1)}$$

$$= \frac{dt}{dx} - 1 = \frac{1}{t}$$

$$\frac{dt}{dx} = \frac{1}{t} + 1 = \frac{1+t}{t}$$

$$= \int \frac{t}{t} dx = \int dx$$

$$|x+y+1| = 1$$

$$|x+y+1| = t$$





#Q. Consider the following differential equation

$$x(y dx+x dy) cos(\frac{y}{x}) = y(x dy - y dx) sin(\frac{y}{x})$$

dy = form.

y = v > c Put and

Now get The sol Which of the following is the solution of the above equation (C is an arbitrary

constant)

(a) 
$$\frac{x}{y}\cos\frac{y}{x} = C$$

(b) 
$$\frac{x}{y}\sin\frac{y}{x} = C$$

(c) 
$$xy \cos \frac{y}{x} = C$$

(d) 
$$xy \sin \frac{y}{x} = C$$

