

Machine 2025

Présenté par la délégation d'ITR

Florence Bilodeau

Sébastien Cabana

Émeric Desmarais

Yohan Lefebvre

Plan de la présentation

- Notre solution
- Fonctionnement des systèmes
- Critiques
- Attentes
- Conclusion

Notre solution

Vaisseau mère

Robots

- Vaisseau mère
 - Hybride
- Robots stations
 - Spécialistes
 - Transfert de données
- Robot cônes
 - Communication

Conception Mécanique

Déplacement aquatique

- Coque
- Turbine

Déplacement terrestre

- Motorisation de la coque et roulement à bille de transfert
- Robots stations

Échange de passagers

- · Stations atteignables par leur robot assigné
- Contact assuré par bras mécanisé

Collecte des cônes

- Robot spécialisé
- Bras antidérapant

Intentions de conception

- Solution légère
- Optimisation de l'espace intérieur de la coque
- Assurer un contact fiable et rapide avec les stations

Robot cônes

Schéma de distribution de puissance

Fonctionnement général des programmes

- Raspberry Pi 3 Modèle B
- Programmation en C
- Gestion des passagers
- Gestion du contrôle des robots

- Raspberry Pi Zero 2 W
- Programmation en C
- Retransmission de commandes
 Bluetooth par UART

- Arduino Nano
- Programmation en C++
- Déplacement des robots

Améliorations et critiques des choix conceptuels

Améliorations

- > Intégration d'un PCB
- > Ajustement de la coque
- Système d'exploitation Linux embarqué
- Choix des MCU et MPU

Points forts

- Légèreté et simplicité
- Espace optimisé
- > Adaptabilité des robots
- Efficacité
- Réutilisabilité et modularité du code

Stratégie et attentes

- Essai sur l'eau (40 points)
- Passagers (750 points)
- Cônes zone central (50 points minimum)

 Utilisation du bateau pour faire pivoter les cônes

Total: 840 points

Conclusion

- Optimisation du transport des passagers
- Optimisation et gestion d'espace sur la solution flottante
- Adaptabilité de la solution tout terrain

MERCI

Annexe I : Schémas électriques des robots stations

Annexe II: Schémas électriques du robot cônes

Annexe III: Schémas électriques du bateau

Annexe IV: Schéma de flux de données du bateau

Annexe V : Schéma de flux de données du robot cônes

Annexe VI: Schéma de flux de données des robots stations

