ZALG 13. cvičení

Celočíselné datové typy v c++

Туре	Typical Bit Width	Typical Range
char	1byte	-127 to 127 or 0 to 255
unsigned char	1byte	0 to 255
signed char	1byte	-127 to 127
int	4bytes	-2147483648 to 2147483647
unsigned int	4bytes	0 to 4294967295
signed int	4bytes	-2147483648 to 2147483647
short int	2bytes	-32768 to 32767
unsigned short int	2bytes	0 to 65,535
signed short int	2bytes	-32768 to 32767
long int	8bytes	-9223372036854775808 to 9223372036854775807
signed long int	8bytes	same as long int
unsigned long int	8bytes	0 to 18446744073709551615
long long int	8bytes	-(2^63) to (2^63)-1
unsigned long long int	8bytes	0 to 18,446,744,073,709,551,615

Počítání s velkými čísly

- Chceme počítat s číslem, na který nám nestačí rozsah (číslo je větší jak 64 bitů)
- Potřebujeme vlastní datovou strukturu

Konstruktory

```
BigInt() {
    digits = std::vector<int>(N, value: 0);
    sign = POSITIVE;
    size = 0;
explicit BigInt(const std::string & number) : BigInt() {
    size_t length = number.length();
    int sub = 0;
   if(number[0] == '-') {
        length--;
        sign = NEGATIVE;
        sub = 1;
    size = length;
    unsigned int index = N - length;
    for(char digit : number.substr( pos: sub)) {
        digits[index] = digit - '0';
        index++;
```

Výpis

```
void print() {
    if (sign == NEGATIVE) {
        std::cout << "-";
    for(unsigned int i = N - size; i < N; i++) {</pre>
        std::cout << digits[i];</pre>
    std::cout << std::endl;
```

Sčítání velkých čísel

$$725 + 456 = (700 + 400) + (20 + 50) + (5 + 6) = (7 + 4) \cdot 100 + (2 + 5) \cdot 10 + (5 + 6)$$

		11	7	11
		11	7 + 1 = 8	1
725 + 456 =	1	1	8	1

Odčítání velkých čísel

$$725 - 456 = (700 - 400) + (20 - 50) + (5 - 6) = (7 - 4) \cdot 100 + (2 - 5) \cdot 10 + (5 - 6)$$

	3	-3	-1	
	3	-3 - 1	-1 + 10	
	3 - 1	-4 + 10	9	
725 – 456 =	2	6	9	

Násobení velkých čísel

$$725 \times 456 = \\ = (700 \times 456) + (20 \times 456) + (5 \times 456) = \\ = (700 \times 400) + (700 \times 50) + (700 \times 6) + (20 \times 400) + (20 \times 50) + (20 \times 6) + (5 \times 400) + (5 \times 50) + (5 \times 6) = \\ = [(700 \times 400) + (20 \times 400) + (5 \times 400)] + [(700 \times 50) + (20 \times 50) + (5 \times 50)] + [(700 \times 6) + (20 \times 6) + (5 \times 400)] = \\ = [(700 \times 6) + (20 \times 6) + (5 \times 6)] + [(700 \times 50) + (20 \times 50) + (5 \times 50)] + [(700 \times 400) + (20 \times 400) + (5 \times 400)] = \\ = (700 \times 6) + (20 \times 6) + (5 \times 6)] + [(700 \times 50) + (20 \times 50) + (5 \times 50)] + [(700 \times 400) + (20 \times 400) + (5 \times 400)] = \\ = (700 \times 6) + (20 \times 6) + (5 \times 6)] + [(700 \times 50) + (20 \times 50) + (5 \times 50)] + [(700 \times 400) + (20 \times 400) + (5 \times 400)] = \\ = (700 \times 6) + (20 \times 6) + (5 \times 6)] + [(700 \times 50) + (20 \times 50) + (5 \times 50)] + [(700 \times 400) + (20 \times 400) + (5 \times 400)] = \\ = (700 \times 6) + (20 \times 6$$

1)
$$[(7 \times 6) \times 100 + (2 \times 6) \times 10 + (5 \times 6)]$$

		42	12	30
		42	12 + 3 = 15	0
		42 + 1 = 43	5	0
	4	3	5	0

Násobení velkých čísel

$$[(700 \times 6) + (20 \times 6) + (5 \times 6)] + [(700 \times 50) + (20 \times 50) + (5 \times 50)] + [(700 \times 400) + (20 \times 400) + (5 \times 400)]$$

2)
$$[(7 \times 6) \times 100 + (2 \times 6) \times 10 + (5 \times 6)] + [(7 \times 5) \times 100 + (2 \times 5) \times 10 + (5 \times 5)] \times 10$$

	4 + 35	3 + 10	5 + 25	0
	39	13	30	0
	39	13 + 3 = 16	0	0
	39 + 1 = 40	6	0	0
4	0	6	0	0

Násobení velkých čísel

7.2.5 Násobení celých čísel

Zde nám postačí umět vynásobit nezáporná celá čísla. V soustavě se základem z hledáme součin dvou čísel $u=u_1u_2\dots u_n$ a $v=v_1v_2\dots v_m$. Výsledek bude

$$u \times v = w = w_1 w_2 \dots w_{m+n}$$
.

Všimněte si, že nyní nepředpokládáme stejný počet cifer v obou činitelích.

Vyjdeme opět od tradičního násobení na papíře. Při tomto všeobecně známém postupu jsme napočítávali parciální součiny a celkový výsledek jsme získali jako jejich součet. Při strojovém výpočtu bude výhodnější ihned přičítat jednotlivé číslice parciálních součinů k celkovému výsledku.

Algoritmus bude opět využívat pomocnou proměnnou p pro přenos; i a j slouží jako parametry cyklů.

- 1. Inicializace: Položíme $w_{m+1} := 0, \ldots, w_{m+n} := 0, j := m$.
- 2. Test nuly: Je-li $v_j = 0$, nastavíme $w_j := 0$ a jdeme na bod 6. (Tento krok lze vynechat.)
- 3. Inicializace i: i:=n, p:=0.
- 4. Násobení a sčítání: Položíme $t := u_i \times v_i + w_{i+j} + p$. Dále položíme $w_{i+j} := t \mod z$, p := [t/z]. Symbol [x] zde znamená celou část čísla x. (Přenos bude vždy v rozmezí $0 \le p < z$, tedy jednociferný.)
- 5. Konec cyklu podle i: Zmenšíme i o jedničku; je-li i > 0, vrátíme se na bod 4, jinak položíme $w_j := p$.
- 6. $Konec\ cyklu\ podle\ j$: Zmenšíme j o jedničku; je-li nyní j>0, vrátíme se na bod 2, jinak konec.

Násobení velkých čísel – Karatsubův algoritmus

- Mějme čísla x, y, kde
 - $x = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + a_1 \cdot 10 + a_0$
 - $y = b_n \cdot 10^n + b_{n-1} \cdot 10^{n-1} + b_1 \cdot 10 + b_0$
- Chceme $z = x \cdot y$
- Čísla x a y můžeme zapsat jako:
 - $\bullet \ x = a \cdot 10^{\frac{n}{2}} + b$
 - $\bullet \ y = c \cdot 10^{\frac{n}{2}} + d$

 $Př. : 123 \ 456 = 123 \cdot 10^3 + 456$

Karatsubův algoritmus

•
$$z = x \cdot y = \left(a \cdot 10^{\frac{n}{2}} + b\right) \times \left(c \cdot 10^{\frac{n}{2}} + d\right) =$$

• $= a \cdot 10^{\frac{n}{2}} \cdot c \cdot 10^{\frac{n}{2}} + a \cdot 10^{\frac{n}{2}} \cdot d + b \cdot c \cdot 10^{\frac{n}{2}} + b \cdot d =$
• $= ac \cdot 10^n + (ad + bc) \cdot 10^{\frac{n}{2}} + bd$

- Dvojí násobení ad + bc se vypočíst pomocí pouze jednoho násobku a násobků ac a bd (které musíme spočítat tak či tak):
 - ad + bc = (a + b)(c + d) ac bd

Karatsubův algoritmus

•
$$x \cdot y = ac \cdot 10^n + ((a+b)(c+d) - ac - bd) \cdot 10^{\frac{n}{2}} + bd$$

- Součin 2 čísel o n číslicích dokážeme spočítat přes 3 součiny čísel o $\frac{n}{2}$ číslicích (+ 2 součty a 2 rozdíly čísel o $\frac{n}{2}$ číslicích a 3 součty čísel o "n" číslicích)
- Z Master Theorem dostaneme pro rekurentní vztah složitost:
 - $T(n) = 3 \cdot T(\frac{n}{2}) + O(n)$ (součet čísel je O(n) operace)
 - $a = 3, b = 2, c = 1 \to a > b^c \to typ \ C \to T(n) = O(n^{\log_b a}) = O(n^{\log_2 3})$

Dělení čísel

- Knuth's algorithm D
- https://ridiculousfish.com/blog/posts/labor-of-division-episodeiv.html

Jiný způsob: Školácké dělení velkých čísel

Reprezentace desetinného čísla celým číslem

Desetinné číslo 725,6432 můžeme reprezentovat pomocí celého čísla, pokud si budeme pamatovat počet desetinných číslic

```
const size_t K = 200;
const size_t M = 100;

class BigDec {
    BigInt number;
    int dec_digits;
```

Reprezentace desetinného čísla celým číslem

Číslo 725,6432 uložené v poli délky 10, kde prvních 5 indexů reprezentuje celou část, a zbylých 5 indexů desetinnou část

Použití Taylorovy věty

- Pro naši datovou strukturu chceme umět i funkce log, exp, sin, cos, ...
- Pokud máme implementovány operace +, -, x a / můžeme k tomu použít Taylorovy (Maclaurinovy) řady

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \& \quad O = (-\infty, +\infty)$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad \& \quad O = (-1,1)$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad \& \quad O = (-\infty, +\infty)$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \quad \& \quad O = (-\infty, +\infty)$$

Problém: Pomalá konvergence

Věta 1.2.1. (Taylorova) Nechť existuje okolí H_a bodu a takové, že funkce f v něm má konečnou (n+1)-ní derivaci a nechť $x \in H_a$. Pak zbytek v Taylorově vzorci $f(x) = T_n(x) + R_n(x)$ má tvar

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Číslo ξ závisí na x a n a leží uvnitř intervalu s krajními body x,a.

- Počítám-li Taylorem $\sin(1000)$ může chyba R_n být po 100 krocích až:
 - $R_n \ge \left| \frac{\sin(\xi)}{101!} (100 0)^{101} \right| \to R_n \ge \frac{1000^{101}}{101!} \approx 1.07151e + 142$
 - Současně už například 20. člen řady je: $\frac{1000^{61}}{61!} \approx 3e+73$ (takové čísla například ani nemusíme být schopní spočítat naší datovou strukturou, pokud budou mimo náš rozsah)

Konvergence v okolí středu (a = 0)

- Taylorovy řady konvergují velmi rychle v okolí jejich středu
- Příklad:

$$e^{0,5} = \sum_{n=0}^{\infty} \frac{0.5^n}{n!}$$

Chyba po k krocích je:

$$R_n \ge \left| \frac{e^{\xi}}{n+1!} (0.5-0)^{n+1} \right| \ge 2 \frac{1}{2^{n+1}(n+1)!}$$

• Tedy například chyba po 50 krocích musí být menší než 5.7260504e-82

exp

- e je všeobecně známá konstanta její hodnotu si můžeme například uložit do globální proměnné
- Máme-li číslo $e^{4,75}=e^{0,75}\cdot e\cdot e\cdot e\cdot e$
- Tedy přes Taylorovu řadu spočteme pouze číslo $e^{0,75}$ a pak ho 4x vynásobíme konstantou e

sin a cos

- Sinus a cosinus jsou funkce s periodou 2π . Od čísla x tedy můžeme jednoduše odčítat resp. přičítat hodnotu 2π , dokud nedostaneme číslo y z intervalu $(-\pi, \pi)$
- Dále víme, že sinus je posunutý cosinus, platí vztah: $\sin(x) = \cos(x \frac{\pi}{2})$
- Číslo y z intervalu (- π , π) dokážeme ještě převézt na číslo z z intervalu (- $\frac{\pi}{2}$, $\frac{\pi}{2}$) opačné funkce
- Hodnotu π se vyplatí mít předpočítanou jako konstantu
- Př. : $\sin(102) = \sin(102 16 \cdot 2\pi) \approx \sin(1,469) = \cos\left(1,469 \frac{\pi}{2}\right) = \cos(-0.1017)$

Logaritmus

- Taylorova řada logaritmu konverguje obecně velmi pomalu, neobsahuje totiž ve jmenovateli faktoriál.
- Dá se ovšem využít vhodně faktu ln(xy) = ln(x) + ln(y)

• Př:
$$\ln(100) = \ln\left(\frac{100}{2} \cdot 2\right) =$$

$$= \ln\left(\frac{100}{4} \cdot 4\right) = \ln\left(\frac{100}{2^7} \cdot 2^7\right) = \ln(0.78125 \cdot 2^7) = \ln(0.78125) + \ln(2^7) = \ln(0.78125) + 7\ln(2)$$

• Tedy číslo x dělíme resp. násobíme 2 do té doby, dokud nedostaneme číslo y z intervalu $(0,\overline{6};1,\overline{3})$, hodnotu ln(2) se opět vyplatí mít předpočítanou jako konstantu $\frac{\mathrm{d}^n}{\mathrm{d}x^n}\ln x = \frac{(n-1)!(-1)^{n-1}}{x^n}$

• Protože
$$R_n \ge \left| \frac{n! \cdot x^{n+1}}{(n+1)!(1+x)^{n+1}} \right| = \left| \frac{x^{n+1}}{(n+1)(1+x)^{n+1}} \right|$$
 Substituce y = 1 + x

Další funkce

- Spoustu dalších funkcí dokážeme odvodit z těchto 4
- $tan x = \frac{sinx}{cosx}$
- $\cot x = \frac{\cos x}{\sin x}$
- $\log_x y = \frac{\ln y}{\ln x}$
- $x^y = e^{y \cdot \ln x}$, pokud x > 0