# Systèmes de numération

Marie-Ange Remiche Cours donné par Martine De Vleeschouwer

Université de Namur

#### Nos ordinateurs...

Au niveau matériel, toute information est codée sous la forme d'une combinaison de signaux binaires : 0 ou 1. On dit que nous travaillons dans la base 2.

Tout nombre, entier ou réel, doit être codé uniquement avec ses signaux mis à disposition.

## Etre capable

- de transformer n'importe quel réel exprimé dans une base particulière dans une autre base,
- de réaliser quelques opérations élémentaires sur des nombres entiers positifs exprimés en base 2,
- de transformer tout nombre réel en sa représentation en virgule flottante ou virgule fixe.

# Ce que nous allons voir dans ce chapitre

#### Table des matières

- Nous allons représenter des entiers positifs dans n'importe quelle base
- ② Apprendre à les convertir d'une base à l'autre
- Proposer différentes alternatives pour représenter les entiers négatifs.
- Aborder le calcul binaire : addition, soustraction, multiplication, division euclidienne, calcul de pgcd.
- Représenter des réels
- Obtenir la notation virgule fixe d'un réel quelconque,
- la notation en virgule flottante.

# 1. Représentation des entiers

## Exemple

Nous avons l'habitude de compter en base 10 avec les symboles

0 1 2 3 4 5 6 7 8 9

Nous pourrions compter en base 12 avec les symboles

0 1 2 3 4 5 6 7 8 9 *A B* 

#### Définition

Un système de numération d'un nombre naturel est constitué

- d'une base  $B \in \mathbb{N} : B > 1$ ,
- d'un ensemble de B symboles, appelés également chiffres. Chacun représente un entier compris entre 0 et B-1.

#### Théorème

Soit  $x \in \mathbb{N}$  et un système de numération de base B. Alors il existe des entiers  $n, a_0, a_1, \ldots, a_n$  compris entre 0 et B-1 tels que

$$x = a_n B^n + a_{n-1} B^{n-1} + \dots + a_1 B^1 + a_0 B^0.$$

De plus, ces entiers  $n, a_0, a_1, \ldots, a_n$  sont uniques si on prend la convention que  $a_n$  n'est pas nul.

# 2. Conversion d'une base B à une base B'

## Etape 1

On divise x par B', puis le quotient obtenu par B' jusqu'à obtenir 0 comme quotient.

#### De la base 10 à la base 2, étape 1

Le nombre de la colonne de gauche 1324 est divisé par 2, son quotient et son reste sont indiqués.

| Nombre | Quotient | Reste |
|--------|----------|-------|
| 1324   | 662      | 0     |
| 662    | 331      | 0     |
| 331    | 165      | 1     |
| 165    | 82       | 1     |
| 82     | 41       | 0     |
| 41     | 20       | 1     |
| 20     | 10       | 0     |
| 10     | 5        | 0     |
| 5      | 2        | 1     |
| 2      | 1        | 0     |
| 1      | 0        | 1     |

Chaque reste est converti, en l'écrivant dans la base B'. On utilise pour cela une table de conversion.

## De la base 10 à la base 2, étape 2

| Nombre | Quotient | Reste |
|--------|----------|-------|
| 1324   | 662      | 0     |
| 662    | 331      | 0     |
| 331    | 165      | 1     |
| 165    | 82       | 1     |
| 82     | 41       | 0     |
| 41     | 20       | 1     |
| 20     | 10       | 0     |
| 10     | 5        | 0     |
| 5      | 2        | 1     |
| 2      | 1        | 0     |
| 1      | 0        | 1     |

Chaque reste obtenu (colonne de droite) est exprimé dans la base 2, ce qui est direct ici puisque 2 < 10.

Les restes sont présentés de gauche à droite en démarrant par le dernier reste obtenu.

## De la base 10 à la base 2, étape 3

| Nombre | Quotient | Reste |
|--------|----------|-------|
| 1324   | 662      | 0     |
| 662    | 331      | 0     |
| 331    | 165      | 1     |
| 165    | 82       | 1     |
| 82     | 41       | 0     |
| 41     | 20       | 1     |
| 20     | 10       | 0     |
| 10     | 5        | 0     |
| 5      | 2        | 1     |
| 2      | 1        | 0     |
| 1      | 0        | 1     |

On obtient alors

$$1324_{10} = 10100101100_2$$

où la notation  $a_b$  exprime le nombre a dans la base b.

## Exemple

1324 en base 10 à convertir en base 13.

Nous obtenons le tableau des divisions successives

| Nombre | Quotient | Reste |
|--------|----------|-------|
| 1324   | 101      | 11    |
| 101    | 7        | 10    |
| 7      | 0        | 7     |

Ainsi, nous obtenons

$$1324_{10} = 7AB_{13}$$
,

en utilisant la table de conversion suivante

## Exemple

Soit 123002<sub>4</sub>, écrivons le en base 7, soit 13<sub>4</sub>.

Considérons dès lors, la table de multiplication de 134, nous avons

| Itération | Produit |
|-----------|---------|
| 0         | 04      |
| 1         | 134     |
| 2         | 324     |
| 3         | 1114    |

En effet, réalisons le calcul en base 10. Nous avons, par exemple,

$$3 \cdot 7 = 21$$

soit  $21 = 1 \cdot 4^2 + 1 \cdot 4^1 + 1 \cdot 4^0$  ce qui donne bien  $111_4$ .

Divisons à présent  $123002_4$  par  $13_4$ ,

#### Remarque

Nous avons bien que  $30_4-13_4$  donne  $11_4$  car

| +   | 1  | 2  | 3  | 10 | 11 |
|-----|----|----|----|----|----|
| 134 | 20 | 21 | 22 | 23 | 30 |

L'étape 1 de la conversion donne ainsi

| Nombre | Quotient | Reste |
|--------|----------|-------|
| 123002 | 3313     | 1     |
| 3313   | 203      | 2     |
| 203    | 11       | 0     |
| 11     | 0        | 11    |

On utilise alors la table de conversion pour écrire les restes obtenus dans la nouvelle base.

La table de conversion est la suivante

| Base 4 | Base 7 |
|--------|--------|
| 0      | 0      |
| 1      | 1      |
| 2      | 2      |
| 3      | 3      |
| 10     | 4      |
| 11     | 5      |
| 12     | 6      |

Nous avons donc

$$123002_4 = 5021_7$$
.



# Exemple

Ecrivons  $1150_{13}$  en base 4. Les symboles manipulés en base 13 sont

0 1 2 3 4 5 6 7 8 9 *A B C* 

4 en base 13 s'écrit donc via le même symbole.

La table de multiplication de 4 exprimée en base 13 donne

| Itérations | Produits   |
|------------|------------|
| 0          | 0          |
| 1          | 4          |
| 2          | 8          |
| 3          | С          |
| 4          | 13         |
| 5          | 17         |
| 6          | 1 <i>B</i> |
| 7          | 22         |
| 8          | 26         |
| 9          | 2 <i>A</i> |
| Α          | 31         |
| В          | 35         |
| С          | 39         |

Ainsi divisant 1150 par 4 donne

On obtient finalement

| Nombre     | Quotient   | Reste |
|------------|------------|-------|
| 1150       | 379        | 3     |
| 379        | B8         | 3     |
| B8         | 2 <i>B</i> | 3     |
| 2 <i>B</i> | 9          | 1     |
| 9          | 2          | 1     |
| 2          | 0          | 2     |

soit le nombre 2113334.

Lorsque B' (la base vers laquelle on opère la conversion) est une puissance entière de la base de départ B, soit

$$B'=B^k$$
,

pour  $k \in \mathbb{N}$ , on a une règle de conversion plus simple. L'étape 1 devient découper le nombre n à convertir, en tranches de k chiffres, à partir de la droite.

#### Exemple

Soit la base 2 ou binaire et la base 16 ou hexadécimale.

Soit le nombre  $n = 1111001010001_2$ . Comme  $16 = 2^4$ , on découpe le nombre en tranches de 4 chiffres, on obtient

$$n = 1$$
 1110 0101 0001

Convertir le nombre obtenu dans chaque tranche par son correspondant dans la nouvelle base.

## Exemple (suite)

$$n = 1$$
 1110 0101 0001

soit en notation hexadécimale

$$n = 1$$
 14 5 1  $= 1E51_{16}$ .

# Exemple

Soit  $32123_4$  converti en base 16 on obtient 39B puisque

| B = 4   10  | 11 | 12 | 13 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 |
|-------------|----|----|----|----|----|----|----|----|----|----|----|
| B' = 16   4 | 5  | 6  | 7  | 8  | 9  | Α  | В  | С  | D  | Ε  | F  |

# Exemple

Soit  $AA2B1C_{16}$ . En base 4, nous avons

 A
 A
 2
 B
 1
 C

 22
 22
 02
 23
 01
 30

soit 222202230130<sub>4</sub>.

# 3. Représentation des nombres négatifs Utilisation du bit de signe

#### Définition

Il s'agit simplement ici de réserver un bit dans la représentation du nombre pour indiquer si il est positif ou négatif.

## Exemple

Soit un système où cinq bits sont utilisés pour représenter un entier, le premier bit (à gauche) marqué de 1 indique que le nombre est positif, 0 que le nombre est négatif. Ainsi

| Représentation binaire | décimale |
|------------------------|----------|
| 10010                  | 2        |
| 10101                  | 5        |
| 01111                  | -15      |
| 11111                  | 15       |

#### La méthode du complément à 1

#### Définition

Le principe est ici d'inverser tous les bits, soit de prendre le complément à 1 pour chaque bit.

#### Exemple

Soit un système où quatre bits sont utilisés pour représenter un entier. On pourra avec cette méthode représenter huit chiffres seulement. Ainsi, avec la méthode du complément à 1

| décimale<br>positive | Représentation<br>binaire<br>positive | négative |
|----------------------|---------------------------------------|----------|
| 0                    | 0000                                  | 1111     |
| 1                    | 0001                                  | 1110     |
| 2                    | 0010                                  | 1101     |
| 3                    | 0011                                  | 1100     |
| 4                    | 0100                                  | 1011     |
| 5                    | 0101                                  | 1010     |
| 6                    | 0110                                  | 1001     |
| 7                    | 0111                                  | 1000     |

## Remarque

Cette méthode a été rapidement abandonnée. Considérons les sommes suivantes

 $\mathsf{d\acute{e}cimal}: \qquad \qquad (-1)+1=0$ 

binaire: 1110 + 0001 = 1111

 $\mathsf{d\acute{e}\mathsf{cimal}}: \qquad \qquad 1-(1)=0$ 

binaire: 1110 - 1110 = 0000

ce qui donne deux représentations binaires pour le nombre 0.

#### Définition

Le principe est de

- prendre le complément à 1,
- ajouter 1.

#### Exemple

Soit un système où quatre bits sont utilisés pour représenter un entier. A nouveau, seul 8 chiffres peuvent être représentés. Nous avons

| Représentation binaire |                                                      |
|------------------------|------------------------------------------------------|
|                        | son opposé                                           |
| 0000                   | 0000                                                 |
| 0001                   | 1111                                                 |
| 0010                   | 1110                                                 |
| 0011                   | 1101                                                 |
| 0100                   | 1100                                                 |
| 0101                   | 1011                                                 |
| 0110                   | 1010                                                 |
| 0111                   | 1001                                                 |
|                        | 0000<br>0001<br>0010<br>0011<br>0100<br>0101<br>0110 |

# 4. Le calcul binaire

L'addition

#### Calculs

#### Nous avons

$$0 + 0 = 00$$
 $1 + 0 = 01$ 
 $0 + 1 = 01$ 
 $1 + 1 = 10$ 



#### La multiplication

#### Méthode

La multiplication par une puissance de 2 est simple. Il suffit de décaler vers la gauche la représentation du nombre d'autant de bit que la puissance de 2.

$$\begin{aligned} 5_{10} \times 32_{10} &= 101_2 \times 100000_2 \\ &= 10100000_2 \end{aligned}$$

## Méthode (suite)

Lorsqu'il ne s'agit pas d'un nombre puissance de 2, il convient alors de décomposer le produit.

$$\begin{split} 5_{10} \times 9_{10} &= (4_{10} + 1_{10}) \times 9_{10} \\ &= 4_{10} \times 9_{10} + 1_{10} \times 9_{10} \\ &= 100_2 \times 1001_2 + 1_2 \times 1001_2 \\ &= 100100_2 + 1001_2 \\ &= 101101_2 \end{split}$$

#### Méthode

Pour une division d'un entier positif avec un nombre quelconque toujours positif, on peut procéder comme pour une division classique, en notant que

$$1 \div 1 = 1$$

$$0 \div 1 = 0$$

#### Exemple

Lorsqu'on réalise la division  $47_{10} \div 13_{10}$ , on obtient en base 2

soit  $47_{10} \div 13_{10}$  est égal à  $11_2 = (3 \text{ fois } 13)$  plus  $1000_2 (= 8, \text{ comme reste})$ .

#### Propriété

Soit a et b deux nombres binaires.

On observe que

$$a\underbrace{000\ldots 0}_{k}=a\cdot 10^{k},$$

avec a impair.

2 Soit a et b impairs, alors

$$\operatorname{pgcd}(a \cdot 10^p, b \cdot 10^q) = \operatorname{pgcd}(a, b) \cdot 10^r,$$

où  $r = \inf(p, q)$ .

On observe

$$pgcd(a, b) = pgcd(a - b, b).$$

#### Méthode

 On supprime les zéros communs qui terminent a et b, nous avons alors

$$\operatorname{pgcd}(a,b) = H \cdot 10^r,$$

où r est le nombre de zéros communs.

- 2 On supprime les zéros qui terminent l'un des deux nombres.
- Se les nombres restant se terminent tous deux par 1. Deux cas se présentent
  - $(a = b) \Rightarrow \operatorname{pgcd}(a, b) = a$ ,
  - $a \neq b$ , on passe à l'étape suivante.
- On reprend l'étape 1 avec pgcd(max(a, b) min(a, b), min(a, b)).

```
\operatorname{pgcd}(110011001000, 1010100100) = \operatorname{pgcd}(1100110010, 10101001) \cdot 10^2.
Ensuite.
       pgcd(1100110010, 10101001)
                     = \operatorname{pgcd}(110011001, 10101001)
                                                                par l'étape 2.
                     = pgcd(11110000, 10101001)
                                                                par l'étape 4.
                     = \operatorname{pgcd}(1111, 10101001)
                                                                par l'étape 2.
                     = pgcd(10011010, 1111)
                                                                par l'étape 4.
                     = pgcd(1001101, 1111)
                                                                par l'étape 2.
                     = pgcd(1111110, 1111)
                                                                par l'étape 4.
                     = pgcd(11111, 1111)
                                                                par l'étape 2.
                     = pgcd(10000, 1111)
                                                                par l'étape 4.
                     = pgcd(1111, 1)
                                                                par l'étape 2.
                     = 1
```

avec un exemple de sous-titre

#### Théorème

Soit x un nombre réel strictement positif. Alors il existe une suite d'entiers  $A_n, A_{n-1}, \ldots, A_1, A_0, a_1, a_2, \ldots$  compris entre 0 et B-1 tels que la différence

$$x - (A_n B^n + A_{n-1} B^{n-1} + \ldots + A_0 + a_1 B^{-1} + \ldots + a_k B^{-k})$$

est positive et tend vers 0 lorsque *k* tend vers l'infini.

#### Exemple

Le réel 1/3 est représenté par 0,333... en base 10 et par 0,1 en base 3.

#### Théorème

Lorsque x est de la forme

$$\frac{a_p}{B^p}$$
,

avec  $a_p$  et p entiers, alors il existe deux écritures en base B pour x. Celles-ci sont

- **1** pour la première : pour tout k > p :  $a_k = 0$ .
- 2 Pour la seconde :  $a'_p = a_p 1$  et k > p :  $a_k = B 1$ .

# Exemple

Soit x=2/100 (ou encore  $2/10^2$ ), alors

$$x = 0,0200000...$$

$$= 0,0199999...$$

#### Définition

Soit x un nombre réel non nul. Sa représentation en virgule fixe est

$$\{[x_nx_{n-1}\ldots x_1x_0,x_{-1}x_{-2}\ldots x_{-m}],b,s\},\$$

οù

- $b \in \mathbb{N}, b \ge 2$ , est appelée la *base*,
- $s \in \{0, 1\}$  est appelé le *signe*,
- $x_i \in \mathbb{N}, 0 \le x_i < b, i = -m, \dots, n$  sont les *symboles*,
- m désigne le nombre de chiffres après la virgule,
- n+1 est le nombre de chiffres avant la virgule.

## Exemple

Soit en notation décimale le réel 227, 375. Sa notation en virgule fixe est

car par exemple,

$$0.375 = 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4^2}.$$

## Propriété

Si la notation en virgule fixe est

$$\{[x_nx_{n-1}\ldots x_1x_0,x_{-1}x_{-2}\ldots x_{-m}],b,s\},\$$

alors le nombre x manipulé est en base 10

$$x = (-1)^s \left( \sum_{k=-m}^n x_k b^k \right).$$

#### Définition

Etant donné un nombre réel non nul x, sa représentation en virgule flottante est

$$\{[a_1a_2...a_t], e, b, s\},\$$

οù

- $b \in \mathbb{N}, b \ge 2$  est appelé la *base*,
- $e \in \mathbb{Z}, L \le e \le U$  est appelé l'*exposant*,
- $s \in \{0, 1\}$  est le *signe*.
- t est le nombre de chiffres significatifs,
- $a_i \in \mathbb{N}, 0 < a_1 < b, 0 \le a_i < b, i = 2, ..., t$

#### Définition

La quantité

$$m = m(x) = \sum_{i=1}^{t} a_i b^{t-i}$$

est appelée mantisse.

## Propriété

Cette notation correspond alors au nombre réel en base 10

$$x = (-1)^s b^e \sum_{i=1}^t a_i b^{-i} = (-1)^s m b^{e-t}$$

#### Obtenir la notation en virgule flottante

#### Etape 1

transformer le nombre dans la base désirée

## Exemple - étape 1

Soit le nombre 127.421, travaillons en base 10, avec t=9. Dès lors la notation en virgule flottante est

$$\{[127421000], 3, 10, 0\}$$

En effet, en notation scientifique (soit  $0, \ldots \cdot 10^e$ ), on a

$$127.421 = 0.12742110^3$$

Transformons ce nombre en base 3 avec t = 9.



## Exemple - étape 1 (suite)

Le nombre 127.421 en base 3 s'écrit pour sa partie entière comme 11201 et sa partie décimale

$$0,421 = 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{9} + 2 \cdot \frac{1}{27} + 1 \cdot \frac{1}{3^4} + \dots$$

soit

$$127,421_{10} = 11201,1021..._3$$

tobtenir une notation scientifique du type  $0, \ldots B^e$ 

## Exemple - étape 2

$$11201, 1021 = 0, 112011021 \cdot 10^{12}$$

le tout exprimé en base 3!



sachant que t est le nombre de chiffres présent après la virgule,

- il faut tronquer ce nombre si *t* est plus petit que ce nombre
- il faut ajouter des 0 sinon

## Exemple - étape 3

Nous nous sommes limités à considérer un total de 9 symboles dans notre exemple.

Dès lors, e est déterminé en notant qu'il s'agit de l'exposant de la base dans la notation scientifique

#### Exemple - étape 4

Nous obtenons

 $\{[112011021], 5, 3, 0\}$ 

#### Nous avons...

- 1 représenté des entiers positifs dans n'importe quelle base
- Appris à les convertir d'une base à l'autre
- Proposé différentes alternatives pour représenter les entiers négatifs.
- Abordé le calcul binaire : addition, soustraction, multiplication, division euclidienne, calcul de pgcd.
- Représenté des réels
- Obtenu la notation virgule fixe d'un réel quelconque,
- la notation en virgule flottante.

#### Etre capable...

- de transformer n'importe quel réel exprimé dans une base particulière dans une autre base,
- de réaliser quelques opérations élémentaires sur des nombres entiers positifs exprimés en base 2,
- de transformer tout nombre réel en sa représentation en virgule flottante ou virgule fixe.