

FUNCIÓNES POLINOMIALES: FUNCIÓN CUADRÁTICA

A toda función de la forma:

$$y = f(x) = ax^2 + bx + c$$

con a , b , $c \in R$ y $a \neq 0$ se la llama función cuadrática.

En la expresión anterior: ax^2 es el término cuadrático;

bx es el término lineal;

c es el término independiente.

La gráfica de esta función se llama PARÁBOLA

FIGURA 2.3.7 Gráfica de la parábola más simple

Estudio de la gráfica de la Función Cuadrática

Método de Estudio para realizar la gráfica

Paso1) Análisis del coeficiente del término cuadrático (a)

El valor absoluto de "a" modifica la abertura de las parábolas:

Cuanto menor es |a|, la parábola es más abierta

Cuanto mayor es |a|, la parábola es más cerrada

El signo de "a" indica hacia donde se dirigen las ramas:

Si a es positivo, las ramas van hacia arriba

Si a es negativo, las ramas van hacia abajo

Paso2) Análisis del término independiente c:

c es la ORDENADA AL ORIGEN Nos indica el lugar donde la parábola intersecta al eje "y" o eje de ordenadas

Se obtiene haciendo x=0

Si c es positivo, la parábola se desplaza verticalmente c unidades hacia ARRIBA $y = x^2$

Si c es negativa, la parábola se desplaza verticalmente c unidades hacia ABAJO Paso3) Intersección con el eje de abscisas: son los puntos donde la gráfica corta el eje X

Se obtiene haciendo y=0

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Paso4: Determinación del vértice de la parábola: si las raíces son reales y distintas, podemos obtener la abscisa del vértice de la parábola haciendo:

$$x_{v} = \frac{x_{1} + x_{2}}{2} \qquad \text{O bien} \qquad x_{v} = \frac{-b}{2a}$$

y la ordenada de dicho vértice, reemplazando (x_v) en la ecuación de la función cuadrática.

$$y_v = f(x_v)$$

ACTIVIDAD

- ✓ Realiza el estudio completo de la siguientes funciones y bosqueja su gráfica.
- ✓ Determina su dominio y rango

a)
$$y = x^2 - 2x - 3$$

b)
$$y = (x - 2)(x + 6)$$

c)
$$y = x(x + 5)$$

d)
$$y = -x^2 + 6x - 5$$

4. Representar gráficamente las siguientes funciones.

$$a)f(x) = x^2 - 2x + 1$$

 $c)f(x) = x^2 - 2x$
 $b) f(x) = 3x^2$
 $d) f(x) = 4x^2 + 4x + 4$

- 4.1. Estudiar monotonía (intervalos de crecimiento y de decrecimiento).
- 4.2. Teniendo en cuenta la función b):

4.2.1. Graficar
$$f(x) + 2$$
; $f(x-1)$; $-f(x)$; $|f(x)|$

- 4.2.2. Cómo son estos gráficos respecto de $f(x) = 3x^2$
- Completar la siguiente tabla. Realizar todos los cálculos auxiliares.

Función	Vértice	Eje de Simetría	Máximo o mínimo
$y = (x+2)^2 - 3$			
$y = x^2 + 2$			
$y = -(x-1)^2 - 1$			
$y = \frac{1}{2}x^2 - 4$			
$y = x^2 - 2x$			

No esperes el luto del mañana, para reconocer la

importancia de quienes están hoy en tu vida...