

Cameras and Projection

CS 355: Interactive Graphics and Image Processing

Orthographic Projection

Orthographic projection involves no perspective

Orthographic Projection

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Orthographic projection involves no perspective

Many graphics systems assume a simple pinhole camera model

Pinhole Cameras

Geometric Model

Geometric Model

Camera Coordinates

Projection

Projection

$$\frac{x}{f} = \frac{X}{Z} \qquad \qquad \frac{y}{f} = \frac{Y}{Z}$$

$$(x,y) = \left(\frac{fX}{Z}, \frac{fY}{Z}\right)$$

Note: this is the projected coordinate in real-world units. To get actual pixel location, have to scale by pixel density and apply offset to image origin (more on this later...)

Projection

Homogenous Coordinates

 Homogeneous coordinates are used to represent all 3D points along the ray that falls on the same 2D projection

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} \alpha & x \\ \alpha & y \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} X/Z \\ Y/Z \\ 1 \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z \\ Z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ f \\ 1 \end{bmatrix} = \begin{bmatrix} fX/Z \\ fY/Z \\ f \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z \\ Z/f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Alternative Form

One way (some implementation advantages):

$$\begin{bmatrix} x \\ y \\ f \\ 1 \end{bmatrix} = \begin{bmatrix} fX/Z \\ fY/Z \\ f \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z \\ Z/f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Another way (some conceptual advantages):

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} fX/Z \\ fY/Z \\ 1 \end{bmatrix} \sim \begin{bmatrix} X \\ Y \\ Z/f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Coming up...

- World to camera transformations
- Specifying camera pose