

- · Drift (growing / changing bias)
- · Latercy (being delayed)
- · Frequency response
- · Rate saturation
- · Hysteresis (done last lecture)

Drift

Drift is the rate of an increasing bias:

b = bias: typically unknown (but could be estimated!)
estimated!
· can be constant
· can be time varying
Crample: Suppose a clock is initially exact,
but it loves 3 sec month.
= P After 1 month, its bou bû 3 sec.
After 2 months, it bias bis beec.
= Drift = rate of change of bias
= See/month
Example (Pate bias assing partion
Ja ++):

Hin i td

Summary of drift

Drift is a time-dependent biss. When we integrate the sensor offst:

· constant buy b = D Linearly

growing error

(bt)

· Constant drift => Quadratically

growingener

(b+2)

Ways to conter drift · Estimate b and subtract it at! (but estimate b of b will not be exact, in general!)

What wuser bias?

- · Inexact calibration of sensing device
- . Non-repetable initial setpoint
 - · electrical: temperature
 - · mechanical: friction, hysteress

POLL 1

Latercy

Latency is lateness / delay of information. Affected by:

- · Sample rate (e.g., 20 prec sample rate)
- · Speed to access memory leg 50msec)

nte Control systems (e.g., aivorafte, unisiles) are very sensitive to latency

Frequency response (of a system at t den an impulse was applied at time t.

· y(s) = g(s) n(s) reter trky the laplace transform in (+)

L'haplace transform maps (x) to requercy domain: L{y}(s)= (a) Ht) est dt $S = \mathcal{Z} + j \mathcal{W}$ and frequency change of ult)

sologificially present of a senter

sologifically present the consider

useful bandwidth

(doesn't distort magnitude,
but only amplifies it unitamly

for all wello, wold)

Rate saturation

Rate saturation means that He rate of change of the sensor of pot is bounded

