Cálculo 2

FUNÇÕES DE VÁRIAS VARIÁVEIS

1. Introdução à funções de várias variáveis (FVV).

2. Limites e derivadas de FVV.

Funções de duas Variáveis

Seja D um subconjunto (região) do espaço R^2 (plano). Chama-se função f de D toda relação que associa, a cada par $(x,y) \in D$, um único número real, representado por f(x,y). O conjunto D é o domínio da função.

Assim,

D é o domínio da função em R^2 ,

f é a função

f(x,y) é o valor da função calculado em (x,y).

Ex₁: se
$$f(x, y) = x^2 + 2y$$
, então $f(2, 3) =$

Ex₂:
$$f(x, y) = (3x + y^3)^{1/2}$$
, então $f(1, 2) = (3x + y^3)^{1/2}$

EXEMPLOS

$$V = \pi r^2 h$$
 Volume de um cilindro

Definições: Função Real de Variável Vetorial

Def: fé uma função real se todos os valores que assume são números reais, isto é, se $C \in \mathbb{R}$.

fé uma função de variável vetorial se o seu domínio é um subconjunto de números reais no espaço ndimensional com n > 1, isto é, se $D \in \mathbb{R}^n$.

$$y = f(x_1, x_2)$$

imagem argumentos

Exemplos

$$y = f(x_1, x_2, ..., x_n)$$

$$\uparrow \qquad \uparrow$$
imagem argumentos

$$\bullet f(x_1, x_2) = 2x_1^4 + x_2^2 - x_1 + 1$$

$$\bullet f(x,y) = \ln \left(\frac{y}{x+1} \right)$$

$$\bullet f(b,c,d) = sen^2(b+\pi) + \frac{c}{d}$$

$$\bullet f(a,b,c) = \sqrt{ab - 15c}$$

Função Composta

Mais de uma Variável

$$f(k) = senk$$
 e $h(x,y) = 2x^2 + 3y^2$

$$f(h(x,y)) = sen(2x^2 + 3y^2)$$

Função de duas Variáveis

$$Z = f(x, y)$$

Identificar Domínio e Imagem das Funções

Domínio das funções de duas variáveis

O domínio dessas funções segue as mesmas regras do domínio de funções de uma variável, ou seja, o domínio é a região $D \in \mathbb{R}^2$, tal que os valores calculados da função, para todo $(x,y) \in D$ resultem em valores **finitos** e **reais** para f(x,y).

Ex.1- Achar o domínio da função $f(x,y) = (y - x)^{1/2}$.

A condição de existência dessa função é y - $x \ge 0$ (real), portanto o seu domínio é $D = \{(x, y) \in R^2 / y - x \ge 0\}$.

Identificar Domínio e Imagem das Funções

Ex.2 – Ache o domínio da função $f(x, y) = x^2 / (2x - y)$,

A função é finita quando $2x - y \neq 0$.

Assim, domínio $D \in (x, y)$ é o conjunto de pontos, tais que, $D = \{(x, y) \in R^2 / y \neq 2x \}$.

Ex.3 - Ache o domínio da função
$$f(x, y) = \frac{x^2}{\sqrt{3x - y}}$$

A função é finita quando 3x - y > 0. O domínio é o conjunto de pontos, tais que $D = \{(x, y) \in \mathbb{R}^2 / 3x - y > 0\}$.

Domínios: Funções Reais de Variável Vetorial

Função	Domínio
$x^2 + y^2$	
$1/\sqrt{x^2+y^2}$	
$\sqrt{10x-5y}$	
$\sqrt{25-x^2-y^2}$	

Contradomínios: Funções Reais de Variável Vetorial

Função	Contradomínio
x^2	
$\sqrt{x+3^2}$	
$\sqrt{x^2-16}$	
$\frac{1}{x}$	
(1/x)-2	
$-\sqrt{-x}$	
e^x	
4sen(x)	

Domínios: Funções Reais de Variável Vetorial

Função	
x^2	
$\sqrt{x+3^2}$	
$\sqrt{x^2-16}$	
$\frac{1}{x}$	
1/(x-2)	
$\sqrt{x-3}/x-2$	
$ \begin{array}{c c} & x & 3/x - 2 \\ \hline & x - 2/\sqrt{x - 3} \end{array} $	
$\ln(\pi \cdot x + 1)$	
$\ln(3x+1) - 3\sqrt{x^2 + 1}$]

Identificar Domínio e Imagem das Funções

Função	Conj. Domínio	Conj. Imagem
$z = \sqrt{y - x^2}$	$y > x^2$	[0, ∞)
$z = \frac{1}{x \cdot y}$	$x.y \neq 0$	$(-\infty,0) U(0,\infty)$
$z = \operatorname{sen}(x.y)$	Plano xy	[-1, 1]
$z = x^2 + y^2$	Plano xy	[0, ∞)

Função de Três ou mais Variáveis

- 1) Regra ou lei matemática que associa três ou mais variáveis independentes a uma variável dependente.
- 2) Uma função de três ou mais variáveis não pode ser representada geometricamente.
- 3) x, y, z: variáveis e saída, w variável de chegada.
- 4) Superfícies de nível \rightarrow f(x, y, z) = constante

Identificar Domínio e Imagem das Funções

Função	Conj. Domínio	Conj. Imagem
$w = \sqrt{x^2 + y^2 + z^2}$	Espaço inteiro	[0, ∞)
$w = \frac{1}{x^2 + y^2 + z^2}$	(x, y, z) = 0	[0, ∞)
$w = x \cdot y \ln z$	Semi-espaço, z > 0	$(-\infty, \infty)$
$w = x^2 + y^2 + z^2$	Espaço inteiro	[0, ∞)

Exemplos

1) Domínio da função $f(x,y) = \frac{x^2 + 5y + senxy}{\sqrt{-3xy^2 + 27xy}}$

$$Dm = \{(x, y) \in \Re/-3xy^2 + 27xy > 0\}$$

2) Imagem da função $h(x, y, z) = \sqrt{2yx^2z - 3yz^3}$

a)
$$h(2,1,1) = \sqrt{2.1.2^2.1 - 3.1.1^3} = \sqrt{5}$$

b)
$$h(x^3, y^2, z^2) = \sqrt{2.y^2.x^6.z^2 - 3.y^2.z^6}$$

Representação Geométrica de uma f(x,y)

Uma f(x, y) é representada por planos ou superfícies no espaço

Representação Geométrica de uma f(x, y)

Já vimos que para as funções de uma variável, o gráfico é no plano x, y e y = f(x).

Para funções de 2 variáveis o gráfico é em R^3 e z = f(x, y). Uma função de 2 variáveis sempre gera uma superfície no

espaço R³.

Exemplos de funções de 2 variáveis

Ex₁: A função é z = f(x, y) = 5

A superfície é um plano infinito, paralelo a x, y e passando por z = 5.

Ex₂: A função é z = f(x, y) = 6 - 2 x + 3y.

Esta função pode ser escrita na forma 2x - 3y + z = 6 que é a equação de um plano. Para achar os pontos onde este plano intercepta os eixos, é só

fazer:

a)
$$x = 0$$
 e $y = 0 \rightarrow z = 6$

b)
$$x = 0 e z = 0 \rightarrow y = 2$$

c)
$$y = 0 e z = 0 \rightarrow x = 3$$

Exemplos de funções de 2 variáveis

Ex₃: A função é

$$z = f(x, y) = x^2 + y^2$$

Ex₄: A função é

$$z = f(x, y) = 1 - x^2 - y^2$$

1) $f:A\subset\mathbb{R}^3\to\mathbb{R}$ f(x,y,z) =altura em relação ao plano xy $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$

 $P_i:\mathbb{R}^n\to\mathbb{R}$ $(x_1,\ldots,x_n) o x_i$ i-ésima projeção por exemplo, n=3 e i=2, $(x, y, z) \rightarrow y$

3) Encontre o domínio da função dada por $f(x,y) = \frac{y}{\sqrt{x-y^2}}$ encontre também os pontos (x, y) para os quais f(x, y) = 1.

A expressão só faz sentido nos pontos (x, y) tais que $x - y^2 > 0$ ou seja $x > y^2$.

Ainda: $f(x, y) = 1 \Leftrightarrow y = (x - y^2)^{1/2} \Rightarrow y^2 = x - y^2 \Leftrightarrow x = 2y^2$.

A seguir representamos o domínio de f e os pontos onde f(x, y) = 1.

 $f:A\subset\mathbb{R}^n\to\mathbb{R}$. Chama-se *gráfico de f* ao subconjunto do \mathbb{R}^{n+1} definido por $G_f=\{(P,f(P))\mid P\in A\}$.

Observação: Como o gráfico é um subconjunto do \mathbb{R}^{n+1} e no papel podemos representar até o \mathbb{R}^3 então podemos desenhar o gráfico de funções de no máximo duas variáveis, isto é,n=2.

(2)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $f(P) = 2$
 $G_f = \{(x, y, 2) / x, y \in \mathbb{R}\}$

(3)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to y$
 $G_f = \{(x,y,y) / x, y \in \mathbb{R}\}$

(4)
$$f: A \subset \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to x^2 + y^2$
 $A = \{(x,y) \in \mathbb{R}^2 \ / \ x \ge 0, \ y \ge 0\}$
 $G_f = \{(x,y,x^2 + y^2) \ / \ x \ge 0, \ y \ge 0\}$

(5)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $f(P) = \text{distância de } P \text{ ao}$
ponto $(0,0)$, ou seja,
 $f(x,y) = \sqrt{x^2 + y^2}$

(6)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to x^2$
 $G_f = \{(x,y,x^2) \mid x,y \in \mathbb{R}\}$

 $f(x, y) = x^2 - y^2$, com x e y variando de – 4 a 4.

 $f(x, y) = x^2 + y^2$, com x e y variando de – 4 a 4.

f(x, y) = x.y, com x e y variando de – 4 a 4.

 $f(x, y) = (9 - x^2 - y^2)^{0,5}$, com x e y variando de – 4 a 4.

f(x, y) = x + 2y - 1, com x e y variando de – 4 a 4.

f(x, y) = sem(x + y - 3), com x e y variando de - 4 a 4.

 $f(x, y) = 100 - x^2 - y^2$, com x e y variando de – 4 a 4.

 $f(x, y) = x^4/(x^4 + y^4)$, com x e y variando de – 4 a 4.

