

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{18} - u^{17} + \dots - u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{18} - u^{17} + 11u^{16} - 10u^{15} + 48u^{14} - 39u^{13} + 105u^{12} - 74u^{11} + 121u^{10} - 71u^9 + 75u^8 - 38u^7 + 30u^6 - 18u^5 + 8u^4 - 4u^3 + u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} - 2u^{3} + u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ u^{9} + 5u^{7} + 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{14} + 7u^{12} + 16u^{10} + 11u^{8} - 2u^{6} + 1 \\ -u^{14} - 8u^{12} - 23u^{10} - 28u^{8} - 14u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{14} + 7u^{12} + 16u^{10} + 11u^{8} - 2u^{6} + 1 \\ -u^{14} - 8u^{12} - 23u^{10} - 28u^{8} - 14u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{16} + 4u^{15} 40u^{14} + 36u^{13} 156u^{12} + 124u^{11} 296u^{10} + 204u^9 280u^8 + 172u^7 132u^6 + 92u^5 44u^4 + 40u^3 8u^2 + 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6	$u^{18} + u^{17} + \dots + u + 1$
c_3, c_8	$u^{18} - u^{17} + \dots - u + 1$
c_4	$u^{18} + u^{17} + \dots + u + 5$
c ₇	$u^{18} - 5u^{17} + \dots - 13u + 3$
<i>c</i> 9	$u^{18} + 9u^{17} + \dots + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$y^{18} + 21y^{17} + \dots + y + 1$
c_3, c_8	$y^{18} + 9y^{17} + \dots + y + 1$
c_4	$y^{18} - 7y^{17} + \dots - 91y + 25$
c_7	$y^{18} - 3y^{17} + \dots + 5y + 9$
<i>c</i> ₉	$y^{18} + y^{17} + \dots + 9y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.480218 + 0.701439I	-2.17182 + 6.64525I	-0.64041 - 7.71274I
u = 0.480218 - 0.701439I	-2.17182 - 6.64525I	-0.64041 + 7.71274I
u = 0.260166 + 0.780385I	-3.58935 - 0.58479I	-4.18494 - 0.42463I
u = 0.260166 - 0.780385I	-3.58935 + 0.58479I	-4.18494 + 0.42463I
u = -0.417636 + 0.610136I	0.09541 - 2.06052I	3.02279 + 4.27827I
u = -0.417636 - 0.610136I	0.09541 + 2.06052I	3.02279 - 4.27827I
u = 0.554520 + 0.161487I	-0.60821 - 3.09151I	3.11493 + 2.77317I
u = 0.554520 - 0.161487I	-0.60821 + 3.09151I	3.11493 - 2.77317I
u = -0.434512 + 0.328358I	0.917728 - 0.973282I	6.11395 + 4.55184I
u = -0.434512 - 0.328358I	0.917728 + 0.973282I	6.11395 - 4.55184I
u = -0.04262 + 1.48330I	-4.94755 - 2.36433I	0.96106 + 3.34702I
u = -0.04262 - 1.48330I	-4.94755 + 2.36433I	0.96106 - 3.34702I
u = -0.11549 + 1.58311I	-7.37756 - 3.98828I	0.01934 + 2.30410I
u = -0.11549 - 1.58311I	-7.37756 + 3.98828I	0.01934 - 2.30410I
u = 0.13939 + 1.60559I	-10.00660 + 8.95499I	-3.02415 - 5.84784I
u = 0.13939 - 1.60559I	-10.00660 - 8.95499I	-3.02415 + 5.84784I
u = 0.07596 + 1.61798I	-11.79050 + 0.69909I	-5.38255 + 0.31146I
u = 0.07596 - 1.61798I	-11.79050 - 0.69909I	-5.38255 - 0.31146I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6	$u^{18} + u^{17} + \dots + u + 1$
c_3, c_8	$u^{18} - u^{17} + \dots - u + 1$
c_4	$u^{18} + u^{17} + \dots + u + 5$
	$u^{18} - 5u^{17} + \dots - 13u + 3$
<i>c</i> ₉	$u^{18} + 9u^{17} + \dots + u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$y^{18} + 21y^{17} + \dots + y + 1$
c_3, c_8	$y^{18} + 9y^{17} + \dots + y + 1$
c_4	$y^{18} - 7y^{17} + \dots - 91y + 25$
<i>c</i> ₇	$y^{18} - 3y^{17} + \dots + 5y + 9$
<i>c</i> ₉	$y^{18} + y^{17} + \dots + 9y + 1$