OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS, 2011

B.E. DEGREE (ELECTRICAL)

CONTROL ENGINEERING EE4002

Dr. Luke Seed Dr. Michael Creed Dr. Gordon Lightbody

Time allowed: 3 hours

Answer *four* questions All questions carry equal marks

The use of departmental approved non-programmable calculators is permitted

1.

(a) Explain why it is necessary to employ anti-aliasing filters, before sampling. Give some indication how sampling rate and the anti-aliasing filter bandwidth would be selected.

[5 Marks]

(b) Derive Tustins's transformation.

A closed-loop speed control scheme for a DC motor is shown below.

Fig. 1.1: Closed-loop Motor Speed Control

The following PI controller is proposed:

$$m(t) = K_p \left(e(t) + \frac{1}{T_I} \int_0^t e(\tau) d\tau \right)$$

The controller was tuned to obtain a closed-loop damping factor ζ =0.83. The controller parameters are, K_p =0.19 and T_l =0.2 seconds.

It was decided to implement this PI control-law on a micro-controller, with sample time T=0.2 seconds and assuming a zero-order hold. Tustin's approximation was used to convert the continuous algorithm designed above to a discrete-time PI control algorithm.

Sketch the root locus diagram for the system under digital PI speed control.

Show that the closed-loop performance of the digital speed controller is unsatisfactory.

[20 Marks]

(a) Derive the following design equation for the controller D(z),

$$D(z) = \frac{1}{G(z)} \frac{P(z)}{1 - P(z)},$$

where G(z)=C(z)/U(z) is the discrete-time transfer function model of the open-loop process and P(z) is the desired closed loop transfer function. What are the key drawbacks of this design method?

[5 Marks]

(b) A certain process is under digital closed-loop control, with the controller D(z) designed using Kalman's method. The following closed-loop time responses have been obtained for the process output c(k) and the controller output m(k) for the step in the setpoint r(k),

$$r(k) = \begin{cases} 0 & for \quad k < 0 \\ 0.7 & for \quad k \ge 0 \end{cases}$$

Fig.2.1: Closed-loop Responses for System Under Kalman's Control

Determine the transfer function of the controller D(z) that was used to generate these responses.

[8 Marks]

(c) Consider the following general first-order system with time delay, T_d within a closed-loop digital control scheme. The sampling time is T and a zero-order hold is assumed. The time delay T_d is approximately N samples in length.

Fig. 2.2: Digital Closed-loop Control of a First-order Plant With Delay

Derive the following Dahlin's controller for the general first order process, from a basic prescription of the shape of the desired closed-loop step response. Show clearly how the parameters of this controller are determined.

$$D(z) = K_d \frac{1 + \gamma z^{-1}}{1 + \alpha z^{-1} + \beta z^{-N-1}}.$$

Show that the controller provides integral action.

[12 Marks]

3.

(a) Derive in full, the following least-squares algorithm, for the identification of the parameters $\hat{\underline{\theta}}(k)$, of a discrete-time transfer function, from a matrix $\Phi(k)$, of input and output data, and a vector $\underline{y}(k)$, of the sampled process output, up to the current k^{th} sample instant.

$$\underline{\hat{\boldsymbol{\theta}}}(k) = \left(\boldsymbol{\Phi}(k)^T \boldsymbol{\Phi}(k)\right)^{-1} \boldsymbol{\Phi}(k)^T y(k).$$

If a square matrix P(k) is now defined as $P(k) = (\Phi(k)^T \Phi(k))^{-1}$, use Householders Matrix Inversion Lemma,

$$(A+BCD)^{-1}=A^{-1}-A^{-1}B(C^{-1}+DA^{-1}B)^{-1}DA^{-1},$$

to derive the following update equation for P(k+1) from process data up to the $(k+1)^{th}$ sample,

$$P(k+1) = P(k) - \frac{P(k)\underline{\psi}(k+1)\underline{\psi}^{T}(k+1)P(k)}{1 + \underline{\psi}^{T}(k+1)P(k)\underline{\psi}(k+1)} \cdot$$

Here the vector $\underline{\psi}(k+1)$ contains process input and output data sampled up to the $(k+1)^{th}$ sample.

[13 Marks]

(b) The following model structure has been proposed for a certain process that is controlled using an adaptive pole-placement controller:

$$y(k+1) = a_1 y(k) + a_2 y(k-1) + b_1 u(k) + b_2 u(k-1)$$

Here y(k) is the plant output, u(k) the plant input.

At the kth sampling instant, the estimate of the parameter vector of the process is available from the recursive least squares algorithm, as:

$$\underline{\hat{\theta}}(k) = \begin{bmatrix} \hat{a}_1(k) & \hat{a}_2(k) & \hat{b}_1(k) & \hat{b}_2(k) \end{bmatrix}^T = \begin{bmatrix} 1.6 & -0.64 & 0.0 & 0.2 \end{bmatrix}^T$$

It is required to place the two dominant poles of the closed-loop process each at z=0.6. It is also desired that the resultant closed-loop system will achieve perfect steady-state tracking of step-like setpoint signals.

Calculate the controller polynomials at the k^{th} sampling instant to achieve the desired closed-loop performance.

[12 Marks]

4. (a) Consider the following state-space equations,

$$\frac{d}{dt}\underline{x}(t) = A\underline{x}(t) + B\underline{u}(t)$$

(i) Develop fully the following solution for the state trajectory $\underline{x}(t)$, for $t \ge 0$, where $\underline{x}(0)$ is the initial state vector at t=0, and $\Phi(t)$ is the transition matrix.

$$\underline{x}(t) = \Phi(t)\underline{x}(0) + \int_{0}^{t} \Phi(t-\tau)B\underline{u}(\tau)d\tau$$

(ii) Prove the following,

$$\mathcal{L}^{-1}\left\{ (sI - A)^{-1} \right\} = e^{At}$$

(iii) If the sample-time is T, and it is assumed that a zero-order hold is applied to the input signal $\underline{u}(t)$, show that this process can be represented by the following discrete-time, state-space equations:

$$\underline{x}(k+1) = e^{AT} \underline{x}(k) + A^{-1} \left(e^{AT} - I \right) B\underline{u}(k)$$
[13 Marks]

(b) A certain system can be represented by the block diagram,

Fig. 4.1: System Block Diagram

- (i) Develop a state-space model of this process using the states $\phi(t)$ and $\theta(t)$
- (ii) Use this state space model to determine the transfer function, $G(s) = \frac{Y(s)}{U(s)}$.
- (iii) Determine whether the states are observable for your state space representation.

[12 Marks]

5.

(a) Consider the following N^{th} order open-loop process, with one input u(t) and a single output y(t),

$$\frac{d}{dt}\underline{x}(t) = A\underline{x}(t) + Bu(t)$$
$$y(t) = C\underline{x}(t)$$

This process is under the following state space control-law,

$$u(t) = N_{u}r(t) - K\left(\underline{x}(t) - N_{x}r(t)\right),$$

where r(t) is the reference. Develop the following design equation, to achieve perfect steady-state tracking of step-like reference signals.

$$\begin{bmatrix} N_x \\ N_u \end{bmatrix} = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} \underline{0} \\ 1 \end{bmatrix}$$

[5 Marks]

(b) Consider the following ball-on-beam apparatus consisting of a rigid beam, free to rotate in one plane about its central pivot. A servo-motor is used to rotate the beam. There are two parallel guide rails, on which a steel ball sits.

Fig.5.1: Ball-on-Beam Apparatus

Only two sensors are available. The first is a simple rotary potentiometer that is used to provide a measure of the beam angle $\theta(t)$. The second sensor provides a measurement of the ball position x(t), using the wire guide rails as a linear potentiometer.

The servo-motor dynamics are so fast that the rotation of the beam can be described by the following first-order differential equation:

$$\frac{d\theta(t)}{dt} = Kv(t).$$

The gains of the linear and rotary potentiometers are K_x and K_{θ} respectively

If the moment of inertia, about the axis of rotation, of the ball of mass m and radius r, is $J=^2/_5 mr^2$, basic rotational mechanics yields the following expression for the linear acceleration:

$$\frac{d^2x}{dt^2} = 7\theta(t).$$

The gain $K=2V \text{rad}^{-1} \text{s}$ and the potentiometer gains are $K_x = 5V/\text{m}$ and $K_\theta = 5V/\text{radian}$.

Design a state-space ball position controller. It is specified that the peak overshoot in closed-loop ball position should be 10%, with a settling time of $Ts_{2\%} = 4$ seconds, in response to a step change in the desired ball position.

[20 Marks]

6.

(a) A certain process can be modelled by the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{K(1 + s\tau_2)}{s(1 + s\tau_1)}$$

Develop fully a simulation diagram for the Observer-Canonical representation of this process.

[5 Marks]

(b) Consider the following Nth order open-loop process, with single input u(t), single output y(t), and state-vector x(t),

$$\frac{d}{dt}\underline{x}(t) = A\underline{x}(t) + Bu(t)$$
$$y(t) = C\underline{x}(t)$$

This process is controlled using a state-space regulator, with gain matrix K. The state vector is not measured directly, but is estimated as $\hat{\underline{x}}(t)$ using a full-state Luenberger observer with estimator gain matrix G.

Develop fully the following characteristic equation for the closed-loop system,

$$|sI - A + BK||sI - A + GC| = 0.$$

Use this characteristic equation to explain the "Separation Principle", and how it is applied in state-space control design.

[10 Marks]

(c) Consider the following simplified model of the attitude dynamics of a satellite:

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \omega \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \omega \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$v_{\theta}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \omega \end{bmatrix}$$

The following state-space regulator has been designed to place both the closed-loop poles at s = -p:

$$u(t) = -k_1 \theta(t) - k_2 \omega(t)$$

A full-state Luenberger Observer is used to estimate the states, from the input u(t) and the sensor output $v_{\theta}(t)$. The poles of the observer are both placed at s = -5p.

Determine the classical control representation of this state-space controller.

[10 Marks]