

Woefully lacking in sub-mm CSFH understanding

Lens selection requires large area surveys

Lutz 2014

Negrello et al. 2011

First sub-mm lenses were found in *Herschel* survey

Why Herschel?

Area

Survey depth

Cosmic noon

Sub-mm selected lenses benefit from ...

- ... increased angular resolution
- ... increased flux-density sensitivity
- ... foreground-independent lens selection
- 1) direct tracer of foreground sub-structure
- 2) probes cosmological parameters

... increased angular resolution

... increased angular resolution

... cosmological parameters

Redshift-complete by the end of the year (±1 yr)

LifeProTip: Use Redshift Search Graphs

Bakx et al. in prep.

Redshift searches give us lensing magnifications

Redshift searches give us HyperLIRG selections

Ivison et al. 2019

Bakx et al. in prep.

Redshift searches give us (ALMA) follow-up possibilities

FaintLens sample: Selecting lenses at any flux!

FaintLens: Selecting lenses at any flux!

FaintLens: Selecting lenses at any flux!

FaintLens: Selecting lenses at any flux!

A-rated ALMA:

86 potential lenses 20 - 80 mJy

So, very soon...

Public spec-z catalogues for ~300 SMGs by early 2021

14.0 log(Luminosity [L_o] 13.8 13.4 \bowtie 13.2 2 3 5 Redshift

ALMA will check our new lensing selection function!

