

A Generalized Language Model in Tensor Space

Tianjin University

Lipeng Zhang, Peng Zhang, Xindian Ma, Shuqin Gu, Zhan Su, Dawei Song

AAAI 2019

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Motivation

Represent the documents as the two order tensors:

Cai, D.; He, X.; and Han, J. 2006. Tensor space model for document analysis. The 29th SIGIR conference on Research and development in information retrieval, 625–626

Motivation

Figure 1. A document is represented as a character level 3-order tensor

Figure 2. A corpus of documents is represented as a

Represent the text as a 3-order tensor

Liu, N.; Zhang, B.; Yan, J.; and Chen, Z. 2005. Text representation: from vector to tensor. In IEEE International Conference on Data Mining, 725–728

We need a high-order tensor

 To construct a high-order tensor based language model

(Not limited to two/three consecutive words in 2/3-order tensor)

High tensor can consider all the combinatorial relations among words through the interaction among all the dimensions of word vectors.

We need a high-order tensor

 To derive an effective solution and demonstrate such a solution is a general approach for language modeling

(A high-order tensor contains exponential magnitude of parameters)

The Changing is that a high-order tensor contains exponential magnitude of parameters

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Background

Tensor and Tensor Representation

A tensor: a mutidimensional array

The order: the number of indexing entries

Tensor product: a fundamental operator

 $d_2 \in [m_2]$

3) 3-order δ tensor:

4) <u>n-order tensor T:</u>

Tensor and Tensor Networks

 Tensor Network is formally represented an undirected and weight graph

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

TSLM basic representation

How to represent a single word

$$w_i = \sum_{d_i}^m \alpha_{id_i} e_{d_i}$$

How to represent a original sentence

Rank One
$$s = w_1 \otimes \cdots \otimes w_n$$

$$A_{d_1, \cdots, d_n} = \prod_{i=1}^n \alpha_{i, d_i}$$

$$s = \sum_{d_1, \cdots, d_n = 1} \mathcal{A}_{d_1, \cdots, d_n} e_{d_1} \otimes \cdots \otimes e_{d_n}$$

TSLM basic representation

• Assume that each sentence s_i appears with a probability p_i .

We can denoted the corpus as:

$$c = \sum p_i s_i = \sum_{d_1 \dots d_n = 1}^m \mathcal{T}_{d_1 \dots d_n} \ e_{d_1} \otimes \dots \otimes e_{d_n}$$

The sentence probability:

$$p(s) = \langle s, c \rangle = \sum_{d_1 \dots d_n = 1}^m \mathcal{T}_{d_1 \dots d_n} \mathcal{A}_{d_1 \dots d_n}$$

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

A Generation of N-Gram Language Mode

- N-gram Language Model
 - N-gram language model: estimate the probability distribution of sentences
 - Compute a sentence's joint probability
 - Compute the current word's conditional probability

How to Prove TSLM as a Generalization of N-Gram

- Three hypotheses
 - The dimension of vector space m = |V|
 - The represent of a word is an one-hot vector
 - The corpus:

$$c = \sum p_i s_i$$

Compute the joint probability

- N-gram language model
 - A sentence's joint probability

$$p(s) = p(w_1^n)$$

$$p(w_1^n) = p(w_1) \prod_{i=2}^n p(w_i|w_1^{i-1})$$

Compute the joint probability

• The sentence s will be represented as:

$$s = \sum_{d_1 \cdots d_n = 1}^{|V|} \mathcal{A}_{d_1 \cdots d_n} w_{d_1} \otimes \cdots \otimes w_{d_n}$$

Where

$$\bullet \mathcal{A}_{d_1 \cdots d_n} = \begin{cases} 1, d_k = V. index(w_k) \\ 0, & otherwise \end{cases}$$

Compute the joint probability

• The corpus is $c = \sum p_i s_i$

$$c = \sum_{d_1 \cdots d_n = 1}^{|V|} \mathcal{T}_{d_1 \cdots d_n} w_{d_1} \otimes \cdots \otimes w_{d_n}$$

Therefore, the probability of sentence

$$p_i = \langle s_i, c \rangle = \sum_{d_1 \cdots d_n}^{|V|} \mathcal{T}_{d_1 \cdots d_n} \mathcal{A}_{d_1 \cdots d_n}$$

An example

- The vocabulary $:V = \{A, B, C\}$
- The probability of each combination is one element in the right tensor
- If the sequence is $s_i = (B, C, A)$.
- The combination :

$$p(s_i) = \mathcal{T}_{231}$$

An example

$$A = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$p(BCA) = \langle \mathcal{T}, \mathcal{A} \rangle = \mathcal{T}_{231}$$

$s_i = B \otimes C \otimes A$	4
-------------------------------	---

T_{311}	\mathcal{T}_{312}	\mathcal{T}_{313}
\mathcal{T}_{321}	\mathcal{T}_{322}	\mathcal{T}_{323}
T_{331}	T ₃₃₂	\mathcal{T}_{333}

12	\mathcal{T}_{313}		0	0	0
22	T_{323}		0	0	0
32	T_{333}		0	0	0
52	° 333				

T_{211}	T_{212}	T_{213}
\mathcal{T}_{221}	\mathcal{T}_{222}	T_{223}
T_{231}	\mathcal{T}_{232}	\mathcal{T}_{233}

0	0	0
0	0	0
1	0	0

T_{111}	\mathcal{T}_{112}	T_{113}
T_{121}	T_{122}	\mathcal{T}_{123}
T_{131}	T_{132}	T_{133}

0	0	0
0	0	0
0	0	0

A

 \mathcal{J}

Compute the conditional probability

- N-Gram Language Model
 - The conditional probability can be calculated as:

$$p(w_i|w_1^{i-1}) = \frac{p(w_1^i)}{p(w_1^{i-1})} \approx \frac{count(w_1^i)}{count(w_1^{i-1})}$$

• In TSLM

$$\frac{p(w_1^i)}{p(w_1^{i-1})} = \frac{\langle w_1^i, c \rangle}{\langle w_1^{i-1}, c \rangle}$$

Compute the conditional probability

- We define $p(w_1^i) = p(w_1, \dots, w_i)$, in TSLM,
- $p(w_1^i) = \langle w_1^i, c \rangle =$ $\langle w_1 \otimes \cdots \otimes \mathbf{1}, \sum_{d_1 \cdots d_n = 1}^{|V|} \mathcal{T}_{d_1 \cdots d_n} w_{d_1} \otimes \cdots \otimes w_{d_n} \rangle$
- $\bullet = \sum_{d_{i+1} \cdots d_n=1}^{|V|} \mathcal{T}_{d_1 \cdots d_n}$, $d_k = V$. $index(w_k)$
- We can compute the $p(w_1^{i-1}) = \langle w_1^{i-1}, c \rangle$, using the same approach

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Recursive Language Modeling

- Two hypotheses
 - The dimensions of word vectors is $m \ll |V|$
 - The parameters are the same after each recursive SVD decomposition
 - The corpus : $c = \sum p_i |s_i\rangle$
- The formula of the recursive decomposition about tensor $\mathcal T$ is :

$$\mathcal{T} = \sum_{i=1}^{r} \lambda_i S_{(n),i} \otimes u_i$$
$$S_{(n),k} = \sum_{i=1}^{r} w_{k,i} S_{(n-1),i} \otimes u_i$$

Tensor recursive decomposition

Recursive Language Modeling

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Experimental Result

Model	7	PTB				WikiText-2		
	Hidden size	Layers	Valid	Test	Hidden size	Layers	Valid	Test
KN-5(Mikolov and Zweig 2012)	-	-	(m)	141.2	-	-	-	-
RNN(Mikolov and Zweig 2012)	300	1	-	124.7	-		ā	5
LSTM(Zaremba, Sutskever, and Vinyals 2014)	200	2	120.7	114.5	111 -	_	2	2
LSTM(Grave, Joulin, and Usunier 2016)	1024	1	84	82.3	1024	1	2	99.3
LSTM(Merity et al. 2017)	650	2	84.4	80.6	650	2	108.7	100.9
RNN†	256	1	130.3	124.1	512	1	126.0	120.4
LSTM†	256	1	118.6	110.3	512	1	105.6	101.4
TSLM	256	1	117.2	108.1	512	1	104.9	100.4
RNN+MoS†(Yang et al. 2018)	256	1	88.7	84.3	512	1	85.6	81.8
TSLM+MoS	256	1	86.4	83.6	512	1	83.9	81.0

Table 2: Best perplexity of models on the PTB and WikiText-2 dataset. Models tagged with † indicate that they are reimplemented by ourselves.

Experience

Figure 4: Perplexity (PPL) with different max length of sentences in corpus.

Figure 5: Perplexity (PPL) with different hidden sizes.

Future Work

- Achieve text generation by using TSLM
- Further interpreted in the neural network by tensor network
- Further explore the potential of tensor network for language model