A First Look

Dean Hendrix

- ▶ Recursion is a means of specifying the solution to a problem in terms of solutions to smaller instances of the same problem.
- ➤ The smallest instance of the problem must have a solution that is known or trivial to compute; that is, one that does not involve recursion.
- We were first taught to solve problems iteratively (i.e., with loops), but a recursive solution is often just as natural and sometimes moreso.
- Iteration and recursion are equally powerful, though. Any solvable problem can be solved with either technique.
- ▶ We will develop the basic idea of recursion through computing a simple mathematical function on positive integers factorial.

The factorial of a positive integer n, denoted n!, is the product of all the positive integers less than or equal to n.

$$n! = \prod_{i=1}^{n} i$$

• Example: $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

We can compute the factorial function with iteration like so:

```
public int factorial(int n) {
    int fact = n;
    for (int i = n - 1; i > 0; i--) {
        fact = fact * i;
    }
    return fact;
}
```

A trace of factorial(5):

fact	i
5	4
20	3
60	2
120	1
120	0

Let's look again at the expansion of $5! = \prod_{i=1}^{n} i$

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

Observation: We can express the factorial of any integer in terms of the factorial of smaller integers.

$$5! = 5 \times \underline{4 \times 3 \times 2 \times 1} = 5 \times 4!$$

And this holds true at every level:

 $5! = 5 \times 4!$ $5! = 5 \times 4 \times 3!$ $5! = 5 \times 4 \times 3 \times 2!$ $5! = 5 \times 4 \times 3 \times 2 \times 1!$ $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

- ▶ Recursion is a means of specifying the solution to a problem in terms of solutions to smaller instances of the same problem.
- ➤ The smallest instance of the problem must have a solution that is known or trivial to compute; that is, one that does not involve recursion.

Since we now see the recursive structure of the factorial function, we can express its definition recursively.

$$n! = \begin{cases} 1 & \text{if } n = 1\\ n \times (n-1)! & \text{if } n > 1 \end{cases}$$

Note that this definition has two parts:

- 1. A solution to the smallest instance of the problem.
 - This is called the base case.
- 2. A rule for reducing all other instances to the base case.
 - This is called the recursive step or the reduction step.

We can compute the factorial function with recursion like so:

```
public int factorial(int n) {
         if (n == 1)
              return 1;
         return n * factorial(n - 1);
A trace of factorial(5):
factorial(5)
   5 * factorial(4)
       4 * factorial(3)
          3 * factorial(2)
              2 * factorial(1)
              2 * 1
   5 * 24
120
```

The iterative version:

```
public int factorial(int n) {
    int fact = n;
    for (int i = n - 1; i > 0; i--) {
        fact = fact * i;
    }
    return fact;
}
```

The recursive version:

```
public int factorial(int n) {
    if (n == 1)
        return 1;
    return n * factorial(n - 1);
}
```

Let's revisit a familiar problem and develop both an iterative solution and a recursive one.

```
/**
  * Returns true if target is in a[start]..a[a.length-1],
  * false otherwise.
  */
public boolean search(int[] a, int target, int start)
```

Example calls:

a	target	start	return value
{2,4,6,8,10}	4	0	true
{2,4,6,8,10}	4	2	false

An iterative solution:

```
public boolean search(int[] a, int target, int start) {
    for (int i = start; i < a.length; i++) {
        if (a[i] == target) {
            return true;
        }
    }
    return false;
}</pre>
```

```
for (int i = start; i < a.length; i++) {</pre>
       if (a[i] == target) {
          return true;
   return false;
A trace of search(\{2,4,6,8,10\}, 4, 2):
                 i < a.length a[i] == target
                 2 true (2 < 5) false (6 \neq 4)
                 3 true (3 < 5) false (8 \neq 4)
                 4 true (4 < 5) false (10 \neq 4)
                 5 false (5 = 5)
                 return false
```

public boolean search(int[] a, int target, int start) {

- ▶ Recursion is a means of specifying the solution to a problem in terms of solutions to smaller instances of the same problem.
- ► The *smallest* instance of the problem must have a solution that is known or trivial to compute; that is, one that does not involve recursion.
- The smallest instance of this problem?
 - ▶ An "empty" search area. That is, start is after the last index.
- ▶ The "general" instance of this problem?
 - ► A search area with at least one element.
 - ▶ If a[start] is what we're looking for we can return true.
 - Otherwise, we need to return the result of searching starting with the next index.

A recursive solution:

```
public boolean search(int[] a, int target, int start) {
    if (start == a.length) {
        return false;
    }
    if (a[start] == target) {
        return true;
    }
    return search(a, target, start + 1);
}
```

```
public boolean search(int[] a, int target, int start) {
   if (start == a.length) {
      return false;
   }
   if (a[start] == target) {
      return true;
   }
   return search(a, target, start + 1);
}
```

A trace of search($\{2,4,6,8,10\}$, 4, 2):

a[starta.leng	th-1]	target	start	start == a.length	a[start] == target
	8,10}	4	2	false $(2 \neq 5)$	false $(6 \neq 4)$
{	8,10}	4	3	false $(3 \neq 5)$	false $(8 \neq 4)$
	$\{10\}$	4	4	false $(4 \neq 5)$	$false\;(10\neq4)$
	{}	4	5	true $(5=5)$	
return false					