自动控制理论 B

Matlab 仿真实验报告

实 验	名 称	:	相半面分析
姓	名	:	Fweil
学	号	:	? ? ? ? ?
班	级	:	? ? ? ? ?
撰写	日期	:	? ? ? ? ?

哈尔滨工业大学(深圳)

一、 线性系统的相平面图

此部分内容需要自己设置参数、搭建仿真图、时间响应曲线、相平面图。对于奇点为节点和鞍点的情形,要画出特殊等倾线对应的相轨迹。

1. 中心点

线性二阶系统极点选择 $s_1 = j\frac{\sqrt{10}}{2}$, $s_2 = -j\frac{\sqrt{10}}{2}$:

2. 稳定焦点

线性二阶系统极点选择 $s_1 = -2 + j\sqrt{5}$, $s_2 = -2 - j\sqrt{5}$:

3. 不稳定焦点

线性二阶系统极点选择 $s_1 = 2 + j\sqrt{5}$, $s_2 = 2 - j\sqrt{5}$:

4. 稳定节点

线性二阶系统极点 $s_1=-1$, $s_2=-2$, 特殊等倾线为相平面中的蓝色直线: $\dot{c}=-c$, $\dot{c}=-2c$

5. 不稳定节点

线性二阶系统极点 $s_1=1$, $s_2=2$, 特殊等倾线为相平面中的蓝色直线: $\dot{c}=c$, $\dot{c}=2c$

6. 鞍点

线性二阶系统极点 $s_1=2$, $s_2=-2$, 特殊等倾线为相平面中的蓝色直线: $\dot{c}=2c$, $\dot{c}=-2c$

二、 非线性环节的 Lookup tables 表示方法

此部分内容需要截图 Lookup table 的参数设置界面、画出输入为正弦信号时的输出响应(在同一个图里画出输入输出曲线)。

1. 饱和特性

2. 死区特性

3. 滞环特性

4. 理想继电特性

5. 死区继电特性

6. 单滞环继申特性

7. 一般继电特性

三、 带有饱和特性的系统零输入相平面

四、 带有饱和特性的单位阶跃输入相平面

五、 带有饱和特性的系统一次函数输入相平面

六、 含有滞环的继电非线性特性零输入时误差的相轨迹

