CSE 152A: Computer Vision

Manmohan Chandraker

Lecture 7: Matching

Overall goals for the course

- Introduce fundamental concepts in computer vision
- Enable one or all of several such outcomes
 - Pursue higher studies in computer vision
 - Join industry to do cutting-edge work in computer vision
 - Gain appreciation of modern computer vision technologies
- Engage in discussions and interaction
- This is a great time to study computer vision!

Course Details

Course details

- Class webpage:
 - https://cseweb.ucsd.edu/~mkchandraker/classes/CSE152A/Winter2024/
- Instructor email:
 - mkchandraker@ucsd.edu
- Grading
 - 35% final exam
 - 40% homework assignments
 - 20% mid-term
 - 5% self-study exercise
 - Ungraded quizzes
- Aim is to learn together, discuss and have fun!

Course details

- TAs
 - Nicholas Chua: nchua@ucsd.edu
 - Tarun Kalluri: <u>sskallur@ucsd.edu</u>
 - Sreyas Ravichandran: srravichandran@ucsd.edu
- Tutors
 - Kun Wang, Kevin Chan, Zixian Wang: <u>kuw010</u>, tsc003, <a href="mailto:ziw081)@ucsd.edu
- Discussion section: M 3-3:50pm
- TA office hours and tutor hours to be posted on webpage
- Piazza for questions and discussions:
 - https://piazza.com/ucsd/winter2024/cse152a

Recap

Photometric: Modeling appearance

CSE 152A, WI24: Manmohan Chandraker

Geometric: Modeling projection

Feature detection

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in *some direction* causes a *big change*

"flat" region: no change in all directions

"edge": large change perpendicular to the edge direction

"corner": large change in all directions

[Darya Frolova, Denis Simakov, Weizmann Institute]

Edges in Natural Images

Source: Photografr.com

Edge Detection with Image Gradients

Gradient represents direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

• The gradient encodes edge strength and edge direction as

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \qquad \theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Can efficiently compute gradient using convolutions

$$K_{x} = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \qquad K_{y} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

• Sobel operator is often used in practice

$$extbf{\emph{K}}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} \hspace{1cm} extbf{\emph{K}}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$$

Spatial filtering is convolution

Original image

Convolutional filter 1

1	0	1
0	1	0
1	0	1

Convolving the image Result 1 1 0 0 0 0 Inner product $I(x,y) * h = \sum_{i=1}^{a} \sum_{j=1}^{b} I(x-i,y-j) \cdot h(i,j)$

Spatial filtering is convolution

Original image

4	1	1	1	0	0
	0	1	1	1	0
	0	0	1	1	1
- 1	0	0	1	1	0
	0	1	1	0	0

Convolutional filter 1

1	0	1
0	1	0
1	0	1

Result Convolving the image Inner product $I(x,y) * h = \sum_{i=1}^{a} \sum_{j=1}^{b} I(x-i,y-j) \cdot h(i,j)$

Spatial filtering is convolution

Original image

Convolutional filter 1

1	0	1
0	1	0
1	0	1

Result Convolving the image 3 4 4 3 **1** ×1 **1**_{x0} 1 0 3 **1**_{x0} 0 0 **0**_{x0} 0

$$I(x,y) * h = \sum_{i=-a}^{a} \sum_{j=-b}^{b} I(x-i,y-j) \cdot h(i,j)$$

Inner product

Harris Corner Detector

First, consider the second moment matrix for a simpler case:

Sum over a small window W around hypothetical corner

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means dominant gradient directions align with x or y axis.

In the general case, since C is symmetric, it can be shown:

$$C = Q^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} Q$$
Rotation

Eigenvalues

If either λ close to 0, then **not** a corner, so seek locations where both large.

Simple Corner Detector Implementation

- Run a small window over an image and compute spatial gradient matrix *C* at every pixel
- Compute the minor eigenvalue of C at every pixel to obtain the corner response "image" R
- Apply nonmaximal suppression to the "image" R
 - Divide into grid, choose maximum within each grid cell
 - Resulting image R' has only one corner candidate per grid cell
 - Prevents corners from being too close to each other
- Threshold resulting image R' using a global threshold T
 - Corners at pixels (x, y) corresponding to R'(x, y) > T

Simple Corner Detector: Outputs

Threshold=5,000

CSE 152A, WI24: Manmohan Chandraker

Matching

Feature Descriptors

We know how to detect good points Next question: How to match them?

Feature Descriptors

We know how to detect good points Next question: How to match them?

Lots of possibilities (this is a popular research area)

- Simple option: match square windows around the point
- State of the art: SIFT (http://www.cs.ubc.ca/~lowe/keypoints/)

Interest point:

- Localized position
- Informative about image content
- Repeatable under variations

Interest point:

- Localized position
- Informative about image content
- Repeatable under variations

Descriptor:

 <u>Function</u> applied on each W₁ and W₂, to enable <u>comparing</u> them

 $W_1(x, y)$: $k \times k$ pixel patch in image 1

 $W_2(x, y)$: $k \times k$ pixel patch in image 2

CSE 152A, WI24: Manmohan Chandraker

SSD (Sum of Squared Differences)

$$\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2$$

CSE 152A, WI24: Manmohan Chandraker

SSD (Sum of Squared Differences)

$$\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2$$

NCC (Normalized Cross Correlation)

$$\sum_{x,y} \frac{(W_1(x,y) - \overline{W_1})(W_2(x,y) - \overline{W_2})}{\sigma_{W_1}\sigma_{W_2}}$$

$$\overline{W_i}=rac{1}{n}\sum_{x,y}W_i$$
 , $\sigma_{W_i}=\sqrt{rac{1}{n}\sum_{x,y}(W_i-\overline{W_i})^2}$ (Mean) (Standard deviation)

What advantages might NCC have over SSD?

Feature matching

Given a feature in I_1 , how to find the best match in I_2 ?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I_2 , find the one with min distance

How to define the distance function between features f_1 , f_2 ?

- Simple approach is SSD(f₁, f₂)
 - sum of square differences between entries of the two descriptors

feature distance

How to define the distance function between features f₁, f₂?

- Simple approach is SSD(f₁, f₂)
 - sum of square differences between entries of the two descriptors

How to define the distance function between features f_1 , f_2 ?

- Simple approach is SSD(f₁, f₂)
 - sum of square differences between entries of the two descriptors
 - can give good scores to ambiguous (bad) matches

How to define the distance function between features f_1 , f_2 ?

- Better approach: ratio distance = SSD(f₁, f₂) / SSD(f₁, f₂')
 - f₂ is best SSD match to f₁ in l₂
 - f₂' is 2nd best SSD match to f₁ in I₂
 - gives small values for unambiguous matches

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

True or false positives

Positive match if SSD < distance threshold

The distance threshold affects performance

- True positives = number of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
- False positives = number of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

True or false positives

Positive match if SSD < distance threshold

The distance threshold affects performance

- True positives = number of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
 - Increase threshold (uncertain matches are also allowed)
- False positives = number of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?
 - Decrease threshold (matches discarded unless they are very certain)

Desirable property: invariance

Find features that are invariant to transformations across two images

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...

Feature Descriptors
CSE 152A, WI24: Manmohan Chandraker

SIFT: Popular for Feature Matching

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 30 degrees out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Learning correspondence

Idea:

- Siamese network to decide patch similarity
- Use intermediate activations as features.

[Zagoruyko and Komodakis, CVPR 2015]

Correspondence is a vital 3D cue

Depth from correspondence

Two measurements: X_L , X_R

Two unknowns: X₀, Z₀

Constants:

Baseline: d

Focal length: f

Depth from correspondence

Two measurements: X_L, X_R

Two unknowns: X_0 , Z_0

Constants:

Baseline: d

Focal length: f

$$X_0 = \frac{d X_L}{(X_L - X_R)}$$

$$Z_0 = \frac{d f}{(X_L - X_R)}$$

Disparity: $(X_L - X_R)$

Using similar triangles:

$$\frac{X_L}{f} = \frac{X_0}{Z_0} \qquad \frac{X_R}{f} = \frac{X_0 - d}{Z_0}$$

Depth is inversely proportional to disparity

(Adapted from Hager)

Mars Exploratory Rovers: Spirit and Opportunity, 2004

Stereo camera

