Tutorial 1 ME-30602, 2016-17 Spring Semester

Problem 1: A cylindrical part of diameter d is loaded by axial force P causing stress of $\sigma = 4P/\pi d^2$. Load is known with an uncertainty of \pm 10%, the diameter is known with an uncertainty (tolerance) of \pm 5% and the strength (stress causing failure) is known with an uncertainty of \pm 15%. Determine the minimum design facture to prevent the failure of the part.

Problem 2: A solid circular rod of diameter d is subject to a bending moment M = 100 N-m. The resulting stress induced is $\sigma = 32M / \pi d^3$. Using a material strength of 175 MPa and a design factor of 3, determine the minimum diameter of the rod. Using Table A–17 (of Shigely's book) select a preferred diameter and determine the resulting factor of safety.

<u>Problem 3:</u> Select suitable material along with brief justification for the following parts or objects. State the material properties of the selected materials. Also state the possible failure mechanism of the parts.

- (a) Metal cutting saws
- (b) Rolling contact bearings in your bicycle
- (c) Lathe bed
- (d) Crankshaft of an IC engine
- (e) Pushrod for valve gear train of an IC engine
- (f) Cam for valve gear train of an IC engine
- (g) Spring for valve gear train of an IC engine
- (h) Rim of locomotive wheels
- (i) Door hinge

Design of Machine Elements TUTORIAL-1

It is conducted past of ideameter d is loaded by cascial force P causing stress of $\frac{4P}{TTd^2}$ dood is known with an uncertainty of $\pm 10\%$, the dearnoles is known with an uncertainty of $\pm 5\%$ and the strength is known with an uncertainty of $\pm 5\%$ and the strength is known with an uncertainty of $\pm 15\%$. Altermine the minimum idesign factor to prevent the failure of the part.

nd = minimum Bouaking strungth (BS)

Maximum vallowable Load (W)

$$\sigma = \frac{4P}{nd^2}$$

$$\frac{\partial}{\partial x} = \frac{dP}{P} + 2 \frac{dd}{dt}$$

when uncertainty in breaking strungth

=)
$$n_d = 0.85$$
 => $w = 0.85$ n_d

when uncertainity in Maximum allowable load

$$n_d = BS$$
 $1-2$

· Design factor when both uncertainities are considered

$$n_{d} = \frac{1.2}{0.85}$$
 \Rightarrow $m_{d} = 1.4118$

Is a solid circular rood of diameter d is subject to a bending moment M=100 Nn The resulting stress induced is $\sigma = 32 \, \text{M}$. Using a material strength of 175 MPa and a design factor of 3, determine the minimum diameter of the rod there table A-17 select a perferred diameter and the resulting factor of safety

$$\frac{32M}{71d3} = \frac{175 \times 10^6}{3} \Rightarrow \frac{32 \times 100}{71 d^3} = \frac{175 \times 10^4}{3}$$

Using the table, we get professed diameter of 28 mm.

Factor of safety = only 32M

$$= 175 \times 10^{6} \times 11 \times (28 \times 10^{-3})^{3}$$

$$32 \times 100$$

[Fos = 3.771]

- Liket a suitable material along with bourf justification for the following parits.
- 1 Metal cutting Saul. (Carlide salvasine, Diamond, CBN)
 HSS good wear resistance, hardness, unside strength.
- 1 Relling contact bearings in your bicycle (Gusteel)
 Wear resistant, Corrosion outsident
- E Nethe Bed (<u>Cast stron</u>)

 High vibration dampening capacity, High strength, cheap.
- (trankingt of an ic engine (37 C15 Alloy steel)

 Creep and correction susistant
- E Pushwood for value gear train of an ic engine (Medium Carbon isteel)
 wear receistant, corrosion resistant, high fatigue life.
- Dan for valve good train of an Kengine Plain Carbon Steel Row friction, Wear resistance
- 3 spring for valve gear train of an 10 engine (Oil tempered Abrome Stilicon Steel)
 High Fatigue strength
- Firm of locametive wheele (Aluminium/Magnesium)
 High Load carrying capacity, Coversion resistant
- 1 Door hinge <u>steel</u>, <u>stainless steel</u>, <u>Brass</u> corraion ruistant, high compression strength, long working cycle.