Fenwick Tree and Segment Tree

Scenario

应用: 维护数组中的连续范围的[a, b]的属性P(a, b)

条件: 存在操作符 +, 对任意c: a <= c <= b, P(a, b) = P(a, c) + P(a, b)

典型问题:

- Range sum: 属性是range sum, 操作符是加法

- Range addition: 属性是包含[a, b]的所有range, +是并操作

- Weighted RAM: 属性是[a, b]返回内的权重和, 操作符是加法

Overview

Fenwick Tree (Binary Index Tree):

cursum = current sum, 当前和

- update element, retrieve prefix sum (cumsum)

- log(N)时间写
- log(N)时间读
- 空间开销O(N) (如果不需要存储原始数据,为N)
- 动态增加capacity只需要resize数组 如果不需要移动data, 这个性质很好

ZKW Segment Tree

- 三种使用模式:

(1) update element, retrieve range sum (2) update range sum, retrive element (3) update element, retrieve range whose sum >= given value

- log(N)时间修改单个元素
- log(N)时间检索range sum
- 空间开销O(N) (树的最后一层存储了原始数据)
- 动态增加capacity需要在resize数组以后移动数据,amortized cost为O(1)

比较:

- Fenwick Tree是多叉树,自顶向下search比较难
- Fenwick Tree主要针对prefix sum,如果要作range sum必须有合法有效的减法operator
- Fenwick Tree解释起来没有Segment Tree容易
- ZKW Segment Tree 占的空间大一点点(需要是2的整数次,resize的逻辑复杂一点点)

几个例子:

- Range sum query mutable (Leetcode 307)
- Range sum query 2D mutable (Leetcode 308)
- Range addition (Leetcode 370, 原题其实不需要,但如果followup数据mutable怎么办,则需要)
- Weighted RAM (Two sigma面经)

Fenwick Tree

设计思想:通过把cumsum的值分散保存在idx在树中的路径上,并用位运算映射树结构,使检索更新cumsum快速简单

例子:下图圆圈中蓝字为下标idx,黑字为值tree[idx]。红线指向后继next,黑线指向parent.

结点关系映射:

第k层的index有k位1.

黑线 - 从子结点到父结点index的映射: parent(n) = n & (n-1),即最后一位置0.

红线 - 从结点到它后继结点的映射: **next(n) = n + (n & -n)**. 左移最后一位1,或把最后一段0111...11结构变为 1000...00

例子:

idx	0	1	2	3	4	5	6	7	8	9	10	11	12
(binary)	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100
<pre>parent[idx]</pre>	-	0	0	2	0	4	4	6	0	8	8	10	8
(binary)	-	0	0	10	0	100	100	110	0	1000	1000	1010	1000
next[idx]	-	2	4	4	8	6	8	8	-	10	12	12	_
(binary)	-	10	100	100	1000	1q0	1000	1000	-	1010	1100	1100	-

对后继映射的进一步解释:

后继结点定义为下一个兄弟结点,或如果当前结点n是父亲的最右结点,后继是n第一个非最右结点祖先的后继结点。对第一种情况,注意到(n&-n)取了n最右一位就可以得到结论。对第二种情况,注意到所有最右结点都以x0 11...1100..00结尾,它的祖先结点中最低的不是最右结点的key是x0 10...0,而它的右结点值是x1 00...1100..00,正好还是n + (n & -n)。

数据映射

tree[idx] = cumsum[idx] - cumsum[parent[idx]]

例如上图对应下表:

idx	0	1	2	3	4	5	6	7	8	9	10	11	12
<pre>input[idx]</pre>	2	1	1	3	2	3	4	5	6	7	8	9	
cumsum[idx]	0	2	3	4	7	9	12	16	21	27	34	42	51
tree[idx]	0	2	3	1	7	2	5	4	9	6	13	8	30

初始化: tree[idx]初始化为长为数组长度+1的全零数组。

检索:检索cumsum只需把node n+1路径上所有结点加起来,求range sum就是两个cumsum之差。

更新input[n]: 假设增加d, 影响的元素是结点n+1以及它到根结点路径上所有结点的后续兄弟结点。这些元素都需要加d 例如更新input[4],则需更新结点5(对应input[4]), 6, 8.

最后注意Fenwick tree不直接存储data,因此如果问题需要access data方便起见最好另存一份。

```
class NumArray {
public:
    NumArray(vector<int> &nums) : data(nums), tree(nums.size()+1,0) {
    for (int i = 0; i < data.size(); ++i) 相当于对每个element 进行update操作
             for (int key = i+1; key < tree.size(); key += (key&-key)) tree[key] += data[i];</pre>
                                                                  n = n + n & (-n)
    void update(int i, int val) {
         int diff = val - data[i];
         for (int key = i+1; key < tree.size(); key += (key&-key)) tree[key] += diff; data[i] = val; key = i + 1, 因为第一个影响的下一个node的下标是i+1
    int sumRange(int i, int j) {
         return cumSum(j) - cumSum(i-1);
                                         值得注意的是这里的cursum[i] 是不含input[i]的prefix sum
private:
    int cumSum(int i) {
        if (i < 0) return 0;
         int sum = 0;
         for (int key = i + 1; key > 0; key &= (key-1)) sum += tree[key];
         return sum;
    }
    vector<int> tree;
    vector<int> data;
};
```

ZKW Segment Tree

线段树是一棵二叉树。每个结点对应一个区间[l,r),结点的两个子结点把这个区间的值分为均匀的两段。每个结点还存储这个区间里的sum。根结点对应[0,n)。

这里我们使用数组存储一棵二叉完全树。为index方便,我们把n扩展到2的整数次幂 $M=2^k$. 上面的例子对应的Segment Tree如下图。

其中的红字表示结点的index。

结点关系映射:注意到index的父结点是子结点的前缀。因此

- parent(n) = n>>1;
- left child(n) = n*2;
- right_child(n) = n*2+1;

数据映射:

define BASE = next_power_of_two(size of input)

 $tree[n] = tree[left_child[n)] + tree[right_child(n)] for n < BASE$

tree[n] = input[n-BASE) for $n \ge BASE$

初始化:

这样构造树时,则把输入复制从tree[M]开始的空间。然后从tree[M-1]开始,用tree[n] = tree[n*2] + tree[n*2+1]构造。

检索:

当我们需要检索区间(j, k)时(即区间[j+1, k-1]),相关结点都在j, k的最小公共子树里,然后寻找到j的path上所有左结点的右兄弟之和,和到k的path上所有右结点的左兄弟之和。我们只需要迭代指向j, k的父亲,直到两者指向同一结点。

更新: 当更新A[k]时,只要相应更新根结点到结点[k,k]路径上所有结点的value.这通过迭代访问parent(n)即可做到。

边界条件: 开区间访问需要检索A[-1]和A[end+1], 因此我们增加两个元素, 同时把index向右平移1.

```
inline unsigned int next power of two(unsigned int v) {
   --v;
   v = (v >> 1);
   V = (V >> 2);
   v = (v >> 4);
   v = (v >> 8);
   v = (v >> 16);
   return v+1;
class NumArray {
public:
   NumArray(vector<int> &nums) : M(next_power_of_two(nums.size()+2)) {
       tree.resize(M<<1, 0);</pre>
       copy(nums.begin(), nums.end(), tree.begin()+M+1); M + 1, M+2, ... 2*M -1 存放原数组
       for (int k = M-1; k>0; k--) tree[k] = tree[k<<1] + tree[k<<1|1];
   }
   void update(int i, int val) {
       i++; //number is 1 based i 可取0, 根据题目条件
       int diff = val - tree[M+i];
       for (int key = M+i; key > 0; key >>= 1) tree[key] += diff;
   }
   int sumRange(int i, int j) {
       int sum = 0; 判断是否兄弟?
for (i += M, j += M+2; i != j^1; i >>= 1, j >>= 1) {
  有右兄弟 if (!(i&1)) sum += tree[i^1]; why not use tree[i + 1]
 有左兄弟 if (j&1) sum += tree[j^1];
       return sum;
   }
private:
   vector<int> tree; //tree stored in array, size is M*2
   int M; //smallest power of 2 greater or equal than nums.size()+2
};
```

扩展到高维度

例子: range sum query 2D

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

Note:

The matrix is only modifiable by the update function.

You may assume the number of calls to update and sumRegion function is distributed evenly.

You may assume that row1 \leq row2 and col1 \leq col2.

```
Example: Given matrix = [
    [3, 0, 1, 4, 2],
    [5, 6, 3, 2, 1],
    [1, 2, 0, 1, 5],
    [4, 1, 0, 1, 7],
    [1, 0, 3, 0, 5]
    ]
sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
```

Solution: Segment tree

把1D的Segment Tree(或Fenwick Tree)扩展到2D。办法是类似1D segment tree划分结点。

数据结构:上左图中红色区域表示数组,蓝色区域表示tree的数据,记录某个2D region的sum,黄色块和红蓝线表示结点间的父子关系。不难看出这个2D矩阵的每行、每列都是一个1D Segment tree

初始化: 首先把数据copy到矩阵右下角,然后先按行初始化data块左边的tree数组,然后按列更新前一半行的tree 数组。如上右图。

更新:

如上左图。但更新结点时因为data是2D的。因此结点(i, j)的更新要传播要所有i的祖先和j的祖先的笛卡尔积上。 导致的变化在于每个结点需要更新log(m)*log(n)个结点,

检索:

如上右图,首先对每行做range sum。然后对每列做range sum

```
inline unsigned int next_power_of_two(unsigned int v) {
    --V;
    v = (v >> 1);
    V = (V >> 2);
    V = (V >> 4);
    V = (V >> 8);
    V = (V >> 16);
    return v+1;
}
class NumMatrix {
public:
    NumMatrix(vector<vector<int>> &matrix)
    : BASEO(next_power_of_two(matrix.size()+2)), BASE1(next_power_of_two(matrix.size()+2)),
      tree(BASE0 * 2, vector<int>(BASE1 * 2, 0)) {
        for (int i = 0; i < matrix.size(); ++i) {</pre>
            copy(matrix[i].begin(), matrix[i].end(), tree[BASE0+i+1].begin()+BASE1+1);
            for (int j = BASE1 -1; j>0; --j)
                tree[BASE0+i+1][j] = tree[BASE0+i+1][j << 1] + tree[BASE0+i+1][j << 1|1];
        }
        for (int i = BASE0-1; i > 0; --i)
            for (int j = BASE1+matrix[0].size(); j >0; --j)
                tree[i][j] = tree[i<<1][j] + tree[i<<1|1][j];
    }
    void update(int row, int col, int val) {
        ++row, ++col; //1 based index
        int diff = val - tree[BASE0+row][BASE1+col];
        for (int k = BASE0+row; k > 0; k >>=1)
            for (int j = BASE1+col; j >=0; j>>=1) tree[k][j] += diff;
    }
    int sumRegion(int row1, int col1, int row2, int col2) {
        int sum = 0;
        for (int i1 = row1+BASE0, i2 = row2+BASE0+2; i1^i2^1; i1>>=1, i2>>=1) {
            if (!(i1\&1)) sum += sumRow(i1^1, col1, col2);
            if (i2\&1) sum += sumRow(i2^1, col1, col2);
        }
    }
    inline int sumRow(int i, int col1, int col2) {
        vector& t = tree[i];
        int sum = 0;
        for (int j1 = col1+BASE1, j2 = col2+BASE1+2; j1^j2^1; j1>>=1, j2>>=1) {
            if (!(j1&1)) sum += t[j1^1];
            if (j2\&1) sum += t[j2^1];
        return sum;
    }
    const int BASE0, BASE1; //number of leaf nodes in each dimension
    vector<vector<int>> tree;
};
```

写Range, 读Element

例子: Range addition

Assume you have an array of length n initialized with all 0's and are given k update operations. Each operation is represented as a triplet: [startIndex, endIndex, inc] which increments each element of subarray A[startIndex ... endIndex] (startIndex and endIndex inclusive) with inc. Return the modified array after all k operations were executed.

```
Example:
Given:
length = 5,
updates = [
      [1, 3, 2],
      [2, 4, 3],
      [0, 2, -2]
]
Output: [-2, 0, 3, 5, 3]
```

Solution: Segment tree

把segment tree的读写操作互换,modify range时更新相关非叶结点,retrieve元素的值时访问对应叶子结点到根结点路径上的node之和。

```
inline unsigned int next_power_of_two(unsigned int v) {
   --v;
   v = (v >> 1);
   v = (v >> 2);
   v = (v >> 4);
   v = (v >> 8);
   V = (V >> 16);
   return v+1;
}
vector<int> getModifiedArray(int length, vector<vector<int>>& updates) {
   int M = next_power_of_two(length+2);
   vector<int> tree(M*2, 0);
   for (vector<int>& v : updates) {
       int val = v[2];
       for (int i = v[0]+M, j = v[1]+M+2; i ^ j ^ 1; i >>= 1, j >>=1) {
           if (!(i&1)) tree[i^1] += val;
           if (j&1) tree[j^1] += val;
       }
   }
   vector<int> result(length, 0);
   for (int i = 1; i <= length; ++i) {
       int sum = 0;
       for (int j = M+i; j > 0; j >>= 1) sum += tree[j];
       result[i-1] = sum;
   return result;
}
```

动态分配空间

例子: Weighted RAM(Two Sigma面经题) 让设计一个数据结构,要求可以存储Object-Weight Pair,实现如下几个接口: 1) Update; 2) Insert; 3) Remove; 4) GetRandom. 第四个方法是实现的重点。这个GetRandom的方法是随机地返回一个Object,要求概率满足:此object的weight / 所有weight的和。 楼主想的是HashMap的Key存Object,Value存weight,这样可以轻松实现Update,Insert和remove的功能。至于GetRandom这个方法,楼主是用了一个辅助的Array,用来表明每个Object对应的区间,然后用随机数获得某个index,最后看看这个index在哪个区间,然后就返回该对象。但是缺点是:每每更新,插入或者remove掉某个object的时候,这个辅助的array都要重新计算,有没有更好的方法来解决此题? 貌似面试官一直在提normalization 和Denormalization。不能理解面试官要的是什么.

Source: http://www.1point3acres.com/bbs/thread-198541-1-1.html

Solution:

用一个segment tree的结构来存weights。一个queue用来存放树里available的位置。两个unordered_map用来存segment tree的叶子结点和object之间的双向mapping。

随机采样:

产生一个[1, sum of weights]范围内的数。搜索cumsum(weight)数组的lower_bound。这可以通过对segment tree作二分搜索得到。

数据添加、删除、更新

维护queue和unordered_map的操作比较直观。

对segment tree的修改体现在删除时把原来非0的叶子结点置0. 添加时需要检查是否当前capacity已满,如果已满则需要先resize数组。然后update queue指定的叶子位置就好。

```
class weighted_RAM {
public:
   weighted_RAM() : M(128), tree(M*2, 0) {
       for (int k = 1; k < M; ++k) loc.push(k); //free spot from 1 to M-1
                                      1, 2, ... 127?
   }
   void add(const string &str, int w) {
       if (loc.empty()) resize();
       int i = loc.front();
       loc.pop();
       update_leaf(i, w); W = Weight
       idx_to_obj[i] = str;
       obj_to_idx[str] = i;
   }
   void update(const string &str, int w) {
                                               change weight
       int i = obj_to_idx[str];
       update_leaf(i, w-tree[M+i]);
   }
                           diff
   void remove(const string &str) {
       int i = obj_to_idx[str];
       loc.push(i); index i 可用
       update_leaf(i, -tree[M+i]); 清零
       idx_to_obj.erase(i);
```

```
obj_to_idx.erase(str);
   }
   string get_random() {
       default random engine eng;
       int key = (eng())%tree[1]+1; [1, sum]
       int i = sum_search(key+1); 为什么key + 1?
       return idx_to_obj[i];
   }
private:
                         复杂度? 2 * M, 从amortize的角度来看, 仍是constant的
   void resize() {
       tree.resize(M*4, 0);
       for (int base = M; base; base >>= 1) //move current nodes to new locations
           rotate(tree.begin()+base, tree.begin()+base*2, tree.begin()+base*3);
       tree[1]=tree[2]; //new root
       for (int k = M; k < M*2; ++k) loc.push(k); 更新可用index, 原来已用index无需变
       M<<=1; double M 的值
   }
   int sum_search(int w) {
       int i = 1;
       do {
           i <<= 1;
           if (w > tree[i]) w -= tree[i++];
       } while (i < M); i > M 意味着到达叶节点
       return i-M;
   }
   void update_leaf(int i, int diff) {
                                                                  与普通的segment tree 相同
       for (int key = M+i; key > 0; key >>= 1) tree[key] += diff;
   }
private:
   int M; //smallest power of 2 greater or equal than nums.size()+2
   vector<int> tree; //tree stored in array, size is M*2
   queue<int> loc; //free spots
   unordered_map<int, string> idx_to_obj;
   unordered_map<string, int> obj_to_idx;
};
```

