Discrete Morse Theory and Rips' Lemma for Trees

Fabian Roll (TUM)

DGD Days 2021 15.-17.09.21

Project: C04 - Persistence and Stability of Geometric Complexes

Advisor: Prof. Dr. Ulrich Bauer

Background

Definition. X metric space. The Vietoris-Rips complex at scale r is the simplicial complex

$$VR_r(X) = \{S \subseteq X \text{ finite } | S \neq \emptyset, \text{ diam } S \leq r\}.$$

$$r = 3, 6, 9$$

Background

Persistent Homology

Background

Persistent Homology

Software: U. Bauer "Ripser: efficient computation of Vietoris-Rips persistence barcodes"

Geometry and Combinatorics of Input influences Computation Time

5000 ordered points	time for $H_0 \& H_1$	
random in \mathbb{R}^3	1m 17s	
random on \mathcal{S}^2	5m 39s	
graph (covid data)	12s	

Geometry and Combinatorics of Input influences Computation Time

5000 ordered points	time for $H_0 \& H_1$	
random in \mathbb{R}^3	1m 17s	
random on \mathcal{S}^2	5m 39s	
graph (covid data)	12s	
graph (covid data, reversed order)	6m 19s	
graph (covid data, random order)	2m 52s	

Definition. A length space is δ -hyperbolic if all triangles are δ -slim.

Definition. A metric space is δ -hyperbolic if for all four points

Definition. A metric space is δ -hyperbolic if for all four points

we have $\delta \ge \ell - \ell$.

Definition. A metric space is δ -hyperbolic if for all four points

we have $\delta \geq \ell - \ell$.

Example. finite metric space, trees are 0-hyperbolic, hyperbolic plane, ...

Definition. A metric space is δ -hyperbolic if for all four points

we have $\delta \geq \ell - \ell$.

Example. finite metric space, trees are 0-hyperbolic, hyperbolic plane, ...

Lemma (Rips). X length space and δ -hyberbolic. Then, $VR_r(X)$ is contractible for $r \ge 4\delta$.

Discrete Morse Theory

Discrete Morse Theory

Discrete Morse Theory

Persistence computation: choose total order on K

Persistence computation: choose total order on K

Definition. (σ, τ) apparent pair if and only if

- $ightharpoonup \sigma$ maximal facet of au and
- ightharpoonup au minimal cofacet of σ

in the chosen total order.

Persistence computation: choose total order on K

Definition. (σ, τ) apparent pair if and only if

- $ightharpoonup \sigma$ maximal facet of au and
- ightharpoonup au minimal cofacet of σ

in the chosen total order.

Persistence computation: choose total order on K

Definition. (σ, τ) apparent pair if and only if

- $ightharpoonup \sigma$ maximal facet of au and
- ightharpoonup au minimal cofacet of σ

in the chosen total order.

Lemma. The apparent pairs form a discrete gradient.

Persistence computation: choose total order on K

Definition. (σ, τ) apparent pair if and only if

- $ightharpoonup \sigma$ maximal facet of au and
- ightharpoonup au minimal cofacet of σ

in the chosen total order.

Lemma. The apparent pairs form a discrete gradient. \rightarrow Ripser

- X vertex set of a directed rooted tree
- ightharpoonup sort simplices of $VR_{\infty}(X)$ by diameter, then lexicographically

- X vertex set of a directed rooted tree
- ightharpoonup sort simplices of $VR_{\infty}(X)$ by diameter, then lexicographically

Theorem. If vertices are ordered in the direction of the tree and $r \ge r_c =$ (connectivity threshold), then

$$VR_r(X) \searrow \{0\}$$

by the apparent pairs gradient

- X vertex set of a directed rooted tree
- ightharpoonup sort simplices of $VR_{\infty}(X)$ by diameter, then lexicographically

Theorem. If vertices are ordered in the direction of the tree and $r \ge r_c =$ (connectivity threshold), then

$$VR_r(X) \searrow \{0\}$$

by the apparent pairs gradient

Remark.
$$r \ge r_c = 4\delta + r_c$$
 with $\delta = 0$

- X vertex set of a directed rooted tree
- ightharpoonup sort simplices of $VR_{\infty}(X)$ by diameter, then lexicographically

Theorem. If vertices are ordered in the direction of the tree and $r \ge r_c =$ (connectivity threshold), then

$$VR_r(X) \searrow \{0\}$$

by the apparent pairs gradient

Remark. $r \geq r_c = 4\delta + r_c$ with $\delta = 0 \rightarrow$ similar to Rips' lemma

For general X sort points:

For general X sort points:

5000 ordered points	time for $H_0 \& H_1$	non-apparent
random tree	7s	0
graph (covid data)	12s	4544
graph (covid data, reversed order)	6m 19s	19344
graph (covid data, random order)	2m 52s	13957

Future Work

- ightharpoonup find analogous statements for general δ -hyperbolic spaces with sharp bounds
- use results/heuristics to find approximation algorithms for Vietoris-Rips persistent homology