```
In [13]:
         import numpy as np
         import pandas as pd
          import matplotlib.pyplot as plt
         %matplotlib inline
         train = pd.read csv("train.csv")
 In [3]: #Load the two datasets as pandas DataFrames
         #train = pd.read csv("train.csv")
         test = pd.read_csv("test.csv")
In [22]: train.shape
Out[22]: (891, 12)
In [23]: train.dtypes
Out[23]: PassengerId
                           int64
         Survived
                           int64
         Pclass
                           int64
         Name
                          object
         Sex
                          object
                         float64
         Age
                           int64
         SibSp
         Parch
                           int64
         Ticket
                          object
                         float64
         Fare
         Cabin
                          object
         Embarked
                          object
         dtype: object
In [24]: pd.isnull(train).sum()
Out[24]: PassengerId
                           0
         Survived
                           0
         Pclass
                           0
         Name
                           0
         Sex
                           0
         Age
                         177
         SibSp
                           0
         Parch
                           0
         Ticket
                           0
         Fare
                           0
         Cabin
                         687
         Embarked
                           2
         dtype: int64
```

Out[14]:

	Age	Survived
count	714.000000	891.000000
mean	29.699118	0.383838
std	14.526497	0.486592
min	0.420000	0.000000
25%	20.125000	0.000000
50%	28.000000	0.000000
75%	38.000000	1.000000
max	80.000000	1.000000

```
In [30]: train[numeric_cols].min()
```

Out[30]: Age 0.42 Survived 0.00 dtype: float64

In [31]: train[numeric_cols].mean()

Out[31]: Age 29.699118 Survived 0.383838

dtype: float64

In [15]: # plot the distribution as histograms train[numeric_cols].hist()

In [3]: train.describe()

_			'	-
7	1.11	- 1		
w	u		רו	т.

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [6]: train.hist()
```

```
Out[6]: array([[<matplotlib.axes. subplots.AxesSubplot object at 0x000002909BFB9608>,
                <matplotlib.axes. subplots.AxesSubplot object at 0x000002909C27B8C8>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000002909C2B5748>],
               (<matplotlib.axes. subplots.AxesSubplot object at 0x000002909C2EE888>,
                <matplotlib.axes. subplots.AxesSubplot object at 0x000002909C325988>,
                <matplotlib.axes. subplots.AxesSubplot object at 0x000002909C35CA48>],
               (<matplotlib.axes. subplots.AxesSubplot object at 0x000002909C394B88>,
                <matplotlib.axes. subplots.AxesSubplot object at 0x000002909C3CDC88>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x000002909C3D9848>]],
              dtype=object)
```



```
#Use correlation coefficients for Age
In [16]:
         np.corrcoef(train['Age'], train['Survived'])[0, 1]
Out[16]: nan
         #Try scattorplot for Age
In [17]:
```

```
train['Age'].describe()
```

```
Out[17]: count
                   714.000000
                     29.699118
          mean
          std
                    14.526497
          min
                     0.420000
          25%
                    20.125000
          50%
                     28.000000
          75%
                    38.000000
          max
                    80,000000
          Name: Age, dtype: float64
```

```
In [27]: #plot out Age vs Survived
    plt.title("Age to Survived")
    plt.plot(train['Age'], train['Survived'], 'm.')
    plt.xlabel("Age")
    plt.ylabel("Survived")
    plt.show()
```



```
In [19]: embarked = ['Embarked', 'Survived']
          train[embarked].describe()
Out[19]:
                   Survived
           count 891.000000
                   0.383838
           mean
                   0.486592
             std
                   0.000000
            min
            25%
                   0.000000
            50%
                   0.000000
            75%
                   1.000000
            max
                   1.000000
          s_embarked = train[(train['Embarked'] == "S")]
In [20]:
          s_embarked['Embarked']
Out[20]: 0
                  S
                  S
                  S
                  S
          4
                  S
          883
                 S
                 S
          884
                 S
          886
                  S
          887
          888
          Name: Embarked, Length: 644, dtype: object
          q_embarked = train[(train['Embarked'] == "Q")]
In [21]:
          q_embarked['Embarked']
Out[21]: 5
                  Q
          16
                  Q
          22
                  Q
          28
                  Q
          32
                  Q
          790
                 Q
          825
                 Q
          828
                 Q
          885
                 Q
          890
          Name: Embarked, Length: 77, dtype: object
```

```
In [22]: c_embarked = train[(train['Embarked'] == "C")]
          c_embarked['Embarked']
Out[22]: 1
                C
                 C
         19
                 C
                 C
         26
         30
                 C
         866
                C
                C
         874
         875
         879
                 C
         889
                 C
         Name: Embarked, Length: 168, dtype: object
```

In [23]: c_embarked.describe()

Out[23]:

Fare	Parch	SibSp	Age	Pclass	Survived	Passengerld	
168.000000	168.000000	168.000000	130.000000	168.000000	168.000000	168.000000	count
59.954144	0.363095	0.386905	30.814769	1.886905	0.553571	445.357143	mean
83.912994	0.660481	0.557213	15.434860	0.944100	0.498608	259.454201	std
4.012500	0.000000	0.000000	0.420000	1.000000	0.000000	2.000000	min
13.697950	0.000000	0.000000	21.250000	1.000000	0.000000	235.500000	25%
29.700000	0.000000	0.000000	29.000000	1.000000	1.000000	455.000000	50%
78.500025	1.000000	1.000000	40.000000	3.000000	1.000000	651.000000	75%
512.329200	3.000000	2.000000	71.000000	3.000000	1.000000	890.000000	max

```
In [24]: | train['Embarked'] = pd.to numeric(train['Embarked'])
         #Use correlation coefficients for Embarked
         np.corrcoef(s embarked['Embarked'], train['Survived'])[0, 1]
         During handling or the above exception, another exception occurs
         ValueError
                                                    Traceback (most recent call last)
         <ipython-input-24-e559b898ae8b> in <module>
         ----> 1 train['Embarked'] = pd.to numeric(train['Embarked'])
               2 #Use correlation coefficients for Embarked
               3 np.corrcoef(s embarked['Embarked'], train['Survived'])[0, 1]
         ~\Anaconda3\lib\site-packages\pandas\core\tools\numeric.py in to numeric(arg,
         errors, downcast)
             149
                              coerce numeric = errors not in ("ignore", "raise")
             150
                             values = lib.maybe convert numeric(
         --> 151
                                  values, set(), coerce numeric=coerce numeric
             152
                              )
             153
         pandas\ libs\lib.pyx in pandas. libs.lib.maybe convert numeric()
         ValueError: Unable to parse string "S" at position 0
In [39]: | #Try scatterplot for Embark
         plt.title("Embarked")
         plt.plot(train['Embarked'], train['Survived'], 'm.')
         plt.xlabel("Embarked")
         plt.ylabel("Survived")
         plt.show()
In [41]: | np.corrcoef(train['Fare'], train['Survived'])[0, 1]
Out[41]: 0.2573065223849624
```

```
In [42]: plt.title("Fare")
  plt.plot(train['Fare'], train['Survived'], 'b.')
  plt.xlabel("Fare")
  plt.ylabel("Survived")
  plt.show()
Fare
```



```
In [11]: np.corrcoef(train['Name'], train['Survived'])[0, 1]
```

```
In [43]: plt.title("Name")
   plt.plot(train['Name'], train['Survived'], 'b.')
   plt.xlabel("Name")
   plt.ylabel("Survived")
   plt.show()
```



```
In [44]: plt.title("Parch")
    plt.plot(train['Parch'], train['Survived'], 'b.')
    plt.xlabel("Parch")
    plt.ylabel("Survived")
    plt.show()
```



```
In [13]: np.corrcoef(train['PassengerId'], train['Survived'])[0, 1]
```

Out[13]: -0.0050066607670664846

```
In [45]: plt.title("PassengerId")
  plt.plot(train['PassengerId'], train['Survived'], 'b.')
  plt.xlabel("PassengerId")
  plt.ylabel("Survived")
  plt.show()
```



```
In [76]: #Lack of relevance
    train.drop(['PassengerId'], axis=1, inplace=True)
```

```
In [14]: | np.corrcoef(train['Pclass'], train['Survived'])[0, 1]
Out[14]: -0.33848103596101575
In [46]:
          plt.title("Pclass")
          plt.plot(train['Pclass'], train['Survived'], 'b.')
          plt.xlabel("Pclass")
          plt.ylabel("Survived")
          plt.show()
                                      Pclass
             1.0
             0.8
           0.6
S 0.4
             0.6
             0.2
             0.0
                 1.00
                       1.25
                            1.50
                                  1.75
                                       2.00
                                             2.25
                                                  2.50
                                                             3.00
                                                        2.75
                                       Pclass
          np.corrcoef(train['Sex'], train['Survived'])[0, 1]
In [11]:
Out[11]: -0.5433513806577552
In [47]:
          plt.title("Sex")
          plt.plot(train['Sex'], train['Survived'], 'b.')
          plt.xlabel("Sex")
          plt.ylabel("Survived")
          plt.show()
                                       Sex
             1.0
             0.8
           0.6
S 0.4
             0.6
             0.2
             0.0
                 male
                                                             female
                                        Sex
```

```
In [16]: | np.corrcoef(train['SibSp'], train['Survived'])[0, 1]
Out[16]: -0.03532249888573569
In [48]:
          plt.title("SibSp")
          plt.plot(train['SibSp'], train['Survived'], 'b.')
          plt.xlabel("SibSp")
          plt.ylabel("Survived")
          plt.show()
                                     SibSp
             1.0
             0.8
           0.6
0.4
             0.6
             0.2
             0.0
                                      SibSp
In [23]:
          np.corrcoef(train['Ticket'], train['Survived'])[0, 1]
                                             . . .
In [49]:
          plt.title("Ticket")
          plt.plot(train['Ticket'], train['Survived'], 'b.')
          plt.xlabel("Ticket")
          plt.ylabel("Survived")
          plt.show()
                                     Ticket
             1.0
             0.8
             0.6
           O.6
O.4
             0.2
             0.0
            STOR
                                      Ticket
```

```
In [25]:
          #Are there missing values in each column?
          print(train.isnull().sum())
          print(train.describe())
          acype, inco-
                  PassengerId
                                   Survived
                                                  Pclass
                                                                   Age
                                                                              SibSp
                   891.000000
                                891.000000
                                              891.000000
                                                           714.000000
                                                                        891.000000
          count
          mean
                   446.000000
                                   0.383838
                                                2.308642
                                                            29.699118
                                                                           0.523008
          std
                   257.353842
                                   0.486592
                                                0.836071
                                                            14.526497
                                                                           1.102743
          min
                     1.000000
                                   0.000000
                                                1.000000
                                                             0.420000
                                                                           0.000000
          25%
                   223.500000
                                   0.000000
                                                2.000000
                                                            20.125000
                                                                           0.000000
          50%
                   446.000000
                                   0.000000
                                                3.000000
                                                            28.000000
                                                                           0.000000
          75%
                   668.500000
                                   1.000000
                                                3.000000
                                                            38.000000
                                                                           1.000000
                   891.000000
                                   1.000000
                                                3.000000
                                                            80.000000
                                                                           8.000000
          max
                        Parch
                                      Fare
                  891.000000
                               891.000000
          count
          mean
                    0.381594
                                32.204208
          std
                    0.806057
                                49.693429
                    0.000000
                                 0.000000
          min
          25%
                    0.000000
                                 7.910400
          50%
                    0.000000
                                14.454200
          75%
                    0.000000
                                31.000000
          max
                    6.000000
                               512.329200
          #There are 891 rows, yet Cabin has omitted 687.
In [26]:
          #Such a large omnission is reason enough to discard this feature
          train.drop(['Cabin'], axis=1, inplace=True)
          train.head()
                                              панть
                                           Cumings,
                                           Mrs. John
                                             Bradley
                       2
                                                    female 38.0
                                                                              PC 17599 71.2833
                                           (Florence
                                              Briggs
                                               Th...
                                           Heikkinen,
                                                                              STON/O2.
           2
                       3
                                1
                                        3
                                               Miss.
                                                    female 26.0
                                                                     0
                                                                                         7.9250
                                                                               3101282
                                              Laina
                                            Futrelle,
                                               Mrs.
                                            Jacques
           3
                                1
                                                    female 35.0
                                                                     1
                                                                           0
                                                                                 113803 53.1000
                                              Heath
                                            (Lily May
                                               Peel)
                                           Allen, Mr.
                       5
                                0
                                        3
                                             William
                                                      male 35.0
                                                                     0
                                                                           0
                                                                                373450
                                                                                         8.0500
```

Henry

```
In [27]: #I will input the mean value for 'Age' in all NaN rows
         train['Age'] = train['Age'].replace(to_replace = np.nan, value = 29.6)
          print(train['Age'])
         train['Age'].isnull().sum()
                22.0
         0
         1
                38.0
         2
                26.0
         3
                35.0
         4
                35.0
                 . . .
         886
                27.0
         887
                19.0
                29.6
         888
         889
                26.0
                32.0
         890
         Name: Age, Length: 891, dtype: float64
Out[27]: 0
In [75]: |#I will input the mean value for 'Embarked' in all NaN rows
         train['Embarked'].fillna("S", inplace = True)
          print(train['Embarked'])
         train['Embarked'].isnull().sum()
         KeyError
                                                    Traceback (most recent call last)
         ~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, ke
         y, method, tolerance)
            2896
          -> 2897
                                  return self._engine.get_loc(key)
                              except KeyError:
            2898
         pandas\ libs\index.pyx in pandas. libs.index.IndexEngine.get loc()
         pandas\ libs\index.pyx in pandas. libs.index.IndexEngine.get loc()
         pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHas
         hTable.get item()
         pandas\ libs\hashtable class helper.pxi in pandas. libs.hashtable.PyObjectHas
         hTable.get item()
         KeyError: 'Embarked'
In [87]: #Let's check for rare titles
         train['Title'] = train.object.contains(pat = "Dr.")
         train['Title']
```

```
In [29]: #Data Prep

#Let's convert Sex into 0's and 1's
sex_binary = train['Sex'].map({'male': 1, 'female': 0})
train['Sex'] = sex_binary
train['Sex']
```

```
In [30]: #Divide Embarked into 3 dummy columns
embarked_dummy = pd.get_dummies(train['Embarked'])
embarked_dummy
```

Out[30]:

	С	Q	S
0	0	0	1
1	1	0	0
2	0	0	1
3	0	0	1
4	0	0	1
886	0	0	1
887	0	0	1
888	0	0	1
889	1	0	0
890	0	1	0

891 rows × 3 columns

```
In [31]: #Make a dummy Frame with appropriate Column names
    embarked_dummy = embarked_dummy.rename(columns={'S': "Embark_S"})
    embarked_dummy = embarked_dummy.rename(columns={'Q': "Embark_Q"})
    embarked_dummy = embarked_dummy.rename(columns={'C': "Embark_C"})
    embarked_dummy
```

Out[31]:

Embark_C	Embark_Q	Embark_S
0	0	1
1	0	0
0	0	1
0	0	1
0	0	1
0	0	1
0	0	1
0	0	1
1	0	0
0	1	0
	0 1 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

891 rows × 3 columns

```
In [32]: # Replace Embarked with Embark_S, Embark_C, and Embark_Q dummy variable
    train['Embark_C'] = embarked_dummy['Embark_C']
    train['Embark_Q'] = embarked_dummy['Embark_Q']
    train['Embark_S'] = embarked_dummy['Embark_S']
    train.drop(['Embarked'], axis=1, inplace=True)
    # Lack of relavance, so dropped
    train.drop(['Ticket'], axis=1, inplace=True)
    train.drop(['Name'], axis=1, inplace=True)
    train.head()
```

Out[32]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embark_C	Embark_Q	Emba
0	1	0	3	1	22.0	1	0	7.2500	0	0	
1	2	1	1	0	38.0	1	0	71.2833	1	0	
2	3	1	3	0	26.0	0	0	7.9250	0	0	
3	4	1	1	0	35.0	1	0	53.1000	0	0	
4	5	0	3	1	35.0	0	0	8.0500	0	0	
4											

```
In [33]: train.dtypes
Out[33]: PassengerId
                           int64
          Survived
                           int64
          Pclass
                           int64
          Sex
                           int64
          Age
                         float64
                           int64
          SibSp
          Parch
                           int64
          Fare
                         float64
          Embark_C
                           uint8
          Embark Q
                           uint8
          Embark S
                           uint8
          dtype: object
In [35]: | np.corrcoef(train['Embark_C'], train['Survived'])[0, 1]
Out[35]: 0.1682404312182333
In [36]: | np.corrcoef(train['Embark_Q'], train['Survived'])[0, 1]
Out[36]: 0.0036503826839721777
In [37]: | np.corrcoef(train['Embark_S'], train['Survived'])[0, 1]
Out[37]: -0.14968272327068632
In [104]: #Let's standardize the Data
          #Providing scale to the model
          from sklearn.preprocessing import StandardScaler
          scaler = StandardScaler()
          print(scaler.fit(train))
          StandardScaler(copy=True, with mean=True, with std=True)
In [79]:
          #Create training set and validation set
          #Allowing a verification of efficacy
          from sklearn.model_selection import train_test_split
          train train, train test = train test split(train, test size = 0.2)
          print(train train.shape, train test.shape)
          (712, 10) (179, 10)
```

See which model fits best!

```
In [39]: #linear regression
          # Construct matrix X using np.hstack(), np.ones()
          m, n = train train.shape
          X = np.hstack([np.ones([m, 1]), train_train[['Fare',
                                                           'Parch',
                                                           'Pclass',
                                                           'Sex',
                                                           'SibSp',
                                                           'Embark_C',
                                                           'Embark_Q',
                                                           'Embark_S']].values])
          print(X)
                                           0.
                                                    0.
                                                             1.
                                                                   ]
          [[ 1.
                      7.925
                               0.
                                                                   ]
           [ 1.
                                           0.
                                                             1.
                     52.
                               0.
                                                    0.
           [ 1.
                     12.475
                               1.
                                            0.
                                                    0.
                                                             1.
                                                                   ]
           . . .
                     6.4958
                                                                   ]
           [ 1.
                              0.
                                           0.
                                                    0.
                                                             1.
           [ 1.
                     15.2458
                               1.
                                           1.
                                                    0.
                                                             0.
                                                                   ]
                                                                   ]]
           [ 1.
                     38.5
                               0.
                                           0.
                                                    0.
                                                             1.
```

```
In [40]: # Construct vector y
          y = train_train[['Survived']].values
          print(y)
          [[0]]
           [1]
           [1]
            [1]
            [0]
            [0]
            [0]
            [0]
            [0]
            [0]
            [1]
            [1]
            [1]
            [1]
            [0]
            [0]
            [0]
            [1]
            [0]
            [0]
            [0]
            [1]
            [0]
            [1]
            [0]
            [1]
            [0]
            [0]
            [0]
            [1]
            [0]
            [1]
            [0]
            [1]
            [0]
            [1]
            [0]
            [0]
            [0]
            [0]
            [0]
            [1]
            [1]
            [0]
            [1]
            [0]
            [0]
            [1]
            [1]
            [0]
            [0]
```

[1] [0] [1] [1] [0] [1] [0] [0] [0]

[0] [0] [0]

[0] [0]

[0] [1]

[0] [0]

[1] [0]

[0] [1]

[0] [1]

[1]

[1] [1]

[1]

[0] [0]

[1]

[0] [0]

[0]

[0]

[0] [0]

[0]

[1]

[1]

[0] [0]

[1]

[1] [1]

[0]

[0]

[0] [0]

[0] [0]

[0]

[1] [0]

[0]

[1]

[1] [0]

[0] [1] [0] [1] [0]

[0]

[0] [0]

[1]

[0] [0]

[0] [0]

[0]

[0] [0]

[0]

[0]

[1] [1]

[1] [1]

[0]

[0] [0]

[1] [0]

[0]

[0] [0]

[0]

[1]

[0]

[1] [1]

[0]

[0] [1]

[1]

[0]

[0] [1]

[0]

[0]

[0]

[0] [1]

[1] [0]

[0] [1]

[0] [1]

[0]

[0]

[0] [1]

[0] [1]

[0] [0] [0] [1] [0] [0] [0] [1] [0] [1] [0] [1] [0] [0] [0] [1] [0] [0] [1] [0] [0]

[0] [0] [0] [1]

[1] [0] [0] [1] [0]

[1] [1] [0]

[1] [0]

[0] [1]

[1]

[1] [1]

[0] [1]

[0]

[0] [1]

[1] [1]

[0]

[0] [1]

[0]

[1]

[0] [0]

[1]

[0] [1] [1] [0] [0] [1] [0] [0] [1] [0] [0] [0] [0] [0] [0] [0] [1] [0] [1] [1] [0] [1] [1]

[0] [1]

[0] [1] [0] [1]

[1] [0] [1]

[0]

[0]

[1] [1]

[1]

[0] [0]

[0]

[1] [0]

[1] [1]

[1]

[0]

[0]

[1]

[1] [0]

[0]

[0]

[0] [0]

[1]

[1] [0] [1] [1] [0] [0] [1] [0] [1] [1] [0] [1] [1] [1] [0] [0] [1] [0] [1] [1] [1] [0] [0] [0] [1]

[0] [1] [0] [0] [0] [1] [0] [0]

[1] [1] [0] [0] [0] [0] [1] [0]

[1] [1] [1] [0] [1]

[1] [0] [0] [1] [1] [0]

[1]

[0] [1] [0] [0] [1]

[0]

[0] [0]

[1]

[1]

[0] [0]

[1] [0]

[0]

[0] [0]

[1]

[0]

[1] [1]

[1]

[1] [0]

[0]

[0] [0]

[0]

[0]

[0] [1]

[1]

[0]

[0] [1]

[0]

[1]

[1]

[1] [0]

[0] [1]

[0]

[0]

[0] [0]

[0]

[0]

[1]

[0]

[0] [0]

[1]

[1]

[1] [1]

[1]

[0] [0]

[0]

[1]

[1]

[1] [0]

[0]

[0]

[1]

[1]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0] [1]

[0]

[0]

[0] [0]

[1]

[1]

[0]

[0] [0]

[1]

[0]

[0] [0]

[0]

[0]

[0]

[0]

[1] [0]

[0]

[0]

[0]

[0] [0]

[1]

[0]

[0]

[1] [0]

[0]

[0]

[0] [1]

[1]

[0] [1]

[0] [1] [0] [0] [0] [0] [0] [1] [0] [1] [0] [0] [0] [1] [0] [1] [0] [1] [1] [0] [1] [0] [0] [0] [1] [0] [1] [0] [0] [1] [0] [0] [0] [0] [1] [0] [0] [0] [0] [1]

[0] [0] [0] [0] [1] [1] [1] [0] [1] [1] [1] [1] [0] [0] [0] [0]

[0]

[0]

[0]

[1]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[1]

[0]

[1]

[1]

[0]

[0]

[1] [1]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0] [1]

[0]

[0]

[1]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[1]

[0]

[0]

[1] [1]

[0]

[1]

[1] [0]

[1]

[0]

[1]

[1]

[1]

[0]

[1]

[0]

[1]

[1]

[1]

[0]

[0]

[0]

[0]

[1]

[0]

[1]

[0]

[0]

[1]

[0]

[0]

[1]

[0]

[0]

[0]

[0]

[0]

[0] [0]

[1]

[1]

[0]

[0]

[0]

[1]

[0]

[1]

[1]

[1]

[1]

[0]

[0]

[1]

[1]

[0]

[0]

[0]

[1]

[0] [0]

[0]

[1]

[0]

[0]

[0]

[1]

[0]

[0]

[0] [0]

[0]

[0] [1] [0] [0]

[1] [0]

[0]

[0]

[0] [1]

[1]

[0] [0]

[0]

[0] [0]

[0]

[0]

[0] [0]

[0]

[0] [0]

[1] [0]

[0]

[0]

[0] [1]

[0]

[0] [0]

[0]

[0]

[1]

[0] [0]

[1]

[1]

[0]

[0] [1]

[1]

[0]

[0]

[0] [0]

[0]

[1]

[1] [0]

[1]

[0]

[1] [0]

[1] [0]

```
[1]
[0]
[0]
[0]
[0]
[0]
[1]
[0]
[0]
[1]
[0]
[1]
[0]
[0]
[0]
[1]
[1]
[1]
[1]
[0]
[0]
[0]
[1]
[0]
[0]
[1]
[1]
[0]
[0]
[0]
[1]
```

[0]]

```
In [42]: # 2. define a function that returns the error of a given instance.
         def get squared error(train train, name, theta):
              # Extract x and y from data
             x = train train.loc[name, ['Fare',
                                          'Parch',
                                         'Pclass',
                                          'Sex',
                                         'SibSp',
                                         'Embark_C',
                                          'Embark_Q',
                                          'Embark S']].values
             y = train_train.loc[name, ['Survived']].values
              # calculate prediction
              prediction = theta[0] + theta[1]*x[0] + theta[2]*x[1]
              # calculate the squared error
              squared_error = (prediction - y)**2
              return squared error
```

```
In [43]: # 3. calculate all errors
all_errors = [get_squared_error(train_train,name,theta) for name in train_train.:
# 4. calculate the average.
mse = np.mean(all_errors)
print("MSE:", mse)
print("Root mean squared error (RMSE):", np.sqrt(mse))
```

MSE: 15.74129679330938

Root mean squared error (RMSE): 3.9675303141008738

In [44]: | train_train

Out[44]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embark_C	Embark_Q	Em
816	817	0	3	0	23.0	0	0	7.9250	0	0	
383	384	1	1	0	35.0	1	0	52.0000	0	0	
751	752	1	3	1	6.0	0	1	12.4750	0	0	
727	728	1	3	0	29.6	0	0	7.7375	0	1	
606	607	0	3	1	30.0	0	0	7.8958	0	0	
638	639	0	3	0	41.0	0	5	39.6875	0	0	
355	356	0	3	1	28.0	0	0	9.5000	0	0	
371	372	0	3	1	18.0	1	0	6.4958	0	0	
709	710	1	3	1	29.6	1	1	15.2458	1	0	
462	463	0	1	1	47.0	0	0	38.5000	0	0	

712 rows × 11 columns

Out[46]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
In [109]: # Show the parameter values
    print(titanic_lr.intercept_)
    print(titanic_lr.coef_)
```

1.0542066060100563

[4.79911097e-04 -4.72048814e-04 -1.42876701e-01 -5.04718397e-01 -3.78204496e-02 3.79008722e-02 -6.84655801e-03 -3.10543142e-02]

In [113]: train.head()

Out[113]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embark_C	Embark_Q	Embark_S
0	0	3	1	22.0	1	0	7.2500	0	0	1
1	1	1	0	38.0	1	0	71.2833	1	0	0
2	1	3	0	26.0	0	0	7.9250	0	0	1
3	1	1	0	35.0	1	0	53.1000	0	0	1
4	0	3	1	35.0	0	0	8.0500	0	0	1

[0.37949375 0.39507143 0.28610441]

In [116]: #confusion matrix from sklearn.metrics import confusion_matrix test_predictions = titanic_lr.predict(train_test[input_cols]) print(test_predictions) matrix = confusion_matrix(train_test['Survived'], test_predictions) print(matrix)

```
 \begin{bmatrix} -2.02451182 & 5.4416135 & -3.5320743 & -3.76026952 & -2.89613999 & -7.78345348 \end{bmatrix} 
 -2.78613119 -1.71479126 -2.95634543 -1.79296181 -0.63269251 -2.6016729
-2.18951321 -4.94033604 0.81284084 -3.92009071
                                                 0.12471816 -5.93780572
 -2.01895929 -1.34255836 -2.90592978 -2.86650524 -6.69084639 -2.91082657
 0.81407621 -6.51211945 -3.36859883 -2.36146686 -1.79264552 -3.61747696
 -4.10693921 -1.82096671 -1.13940868 2.74539687
                                                 1.42606947 -3.03665578
 -1.76146415 -2.96874181 2.24162263 -3.51191355 -2.34682611 -2.87471836
 -4.06296289 -2.6907708
                         -3.02190037 2.64628687 -3.06849042 0.94524695 -4.57271117 -2.91129862
-3.18837481 -3.79939984 -2.46799727 -1.81333182 -1.79390933 -0.13927177
 -2.47418034 -4.11186793 -6.79787286 -4.5322112
                                                 0.40716512
                                                             1.42690634
 -1.7667815 -1.92325515 -2.9501509
                                     0.09780058
                                                 0.79219257
                                                             1.22203478
 -1.61692013 -2.9765242
                        -3.61705764 -3.32592648
                                                 0.22413321 -2.43818011
 -1.6857426 -5.0919975
                         0.94797716 -4.92192608 -4.79759904 -1.42919533
 -2.74998294 1.95959111 -4.63664473 5.13009055 -1.37564006 -3.11132601
 -5.08007346 -1.53153455 -2.86887405
                                     0.18874665 -2.861773
                                                             1.86723732
 -2.13113995 -2.52321127 -3.08118195 -2.88735244 -3.17493589 -2.24954209
 -2.59243634 -0.49746579 -2.51130459 -1.16120209 -6.79787286 -1.33503239
 -8.75495571 -3.40468226 -3.88143688 -2.79753004 -1.4976027
                                                            -5.88218275
```

```
In [112]: # precision - recall
          from sklearn.metrics import precision score, recall score
          precision = precision score(train test['Survived'], test predictions) #correctly
          recall = recall score(train test['Survived'], test predictions) #predictions are
          print(precision, recall)
                                                     Traceback (most recent call last)
          ValueError
          <ipython-input-112-096b93c4b5c7> in <module>
                1 # precision - recall
                2 from sklearn.metrics import precision score, recall score
          ---> 3 precision = precision score(train test['Survived'], test predictions)
          #correctly identified?
                4 recall = recall score(train test['Survived'], test predictions) #pred
          ictions are correct?
                5 print(precision, recall)
          ~\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in precision
          score(y true, y pred, labels, pos label, average, sample weight)
             1567
                                                                    average=average,
             1568
                                                                    warn for=('precisio
          n',),
          -> 1569
                                                                    sample weight=sample
          weight)
             1570
                      return p
             1571
          ~\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in precision
          recall_fscore_support(y_true, y_pred, beta, labels, pos_label, average, warn_
          for, sample weight)
             1413
                          raise ValueError("beta should be >0 in the F-beta score")
             1414
                      labels = _check_set_wise_labels(y_true, y_pred, average, labels,
          -> 1415
                                                       pos label)
             1416
             1417
                      # Calculate tp sum, pred sum, true sum ###
          ~\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in check set
          _wise_labels(y_true, y_pred, average, labels, pos_label)
             1237
                                            str(average_options))
             1238
          -> 1239
                      y_type, y_true, y_pred = _check_targets(y_true, y_pred)
                      present_labels = unique_labels(y_true, y_pred)
             1240
             1241
                      if average == 'binary':
          ~\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in _check_tar
          gets(y_true, y_pred)
               79
                      if len(y type) > 1:
                          raise ValueError("Classification metrics can't handle a mix o
               80
          f {0} "
          ---> 81
                                            "and {1} targets".format(type true, type pre
          d))
               82
               83
                      # We can't have more than one value on y type => The set is no mo
          re needed
          ValueError: Classification metrics can't handle a mix of binary and continuou
```

s targets

```
In [108]: #polynomial regression
          \# Apply the normal equation to find the degree 2 polynomial fit of X and y
          ones = np.ones([m, 1]) # The first column of X
          X10 = X ** 10 # The eleventh column of X
          X_matrix = np.hstack([np.ones([m, 1]), train_train[['Fare',
                                                               'Parch',
                                                               'Pclass',
                                                               'Sex',
                                                               'SibSp',
                                                               'Embark C',
                                                               'Embark_Q',
                                                               'Embark_S']].values])
          # concatenate the columns horizontally
          theta = np.linalg.inv(X matrix.T.dot(X matrix)).dot(X matrix.T).dot(y)
          print(theta)
          ValueError
                                                    Traceback (most recent call last)
          <ipython-input-108-8a52c0b29cea> in <module>
               14 # concatenate the columns horizontally
          ---> 16 theta = np.linalg.inv(X matrix.T.dot(X matrix)).dot(X matrix.T).dot(y)
               17 print(theta)
          ValueError: shapes (9,712) and (891,) not aligned: 712 (dim 1) != 891 (dim 0)
          # Use sklearn
In [52]:
          from sklearn.preprocessing import PolynomialFeatures
          poly_features = PolynomialFeatures(degree=2, include_bias=False)
          poly features.fit(X)
          X poly = poly features.transform(X)
          model titanic = LinearRegression()
          model titanic.fit(X poly, y)
          print(model_titanic.coef_, model_titanic.intercept_)
          [ 4.07018166e+09 -1.24539511e-02 -2.49472572e-02 -4.01437249e-02
            -1.20363042e+00 9.82847007e-02 -2.58041955e-02 1.54040024e-01
            -1.28235829e-01 3.48740481e-12 -1.24539510e-02 -2.49472572e-02
            -4.01437248e-02 -1.20363042e+00 9.82847007e-02 -2.58041955e-02
             1.54040024e-01 -1.28235829e-01 9.99643949e-06 9.41468127e-04
            -2.60439345e-03 1.16514015e-02 1.25450298e-03 1.60398879e-02
            -4.52629266e-02 1.67690876e-02 9.19911644e-02 -4.53100503e-02
            -3.33085984e-01 -5.65801459e-01 -1.97441701e-01 -2.91937684e-01
             4.64432128e-01 -7.70750456e-02 8.44498608e-01 -4.26394202e-02
             1.08315011e-01 4.03249995e-01 -5.51708730e-01 -1.20363042e+00
             4.91380159e-01 -7.54644708e-01 -1.48175663e+00 1.03277092e+00
             1.12715079e-01 6.21433817e-02 7.15467241e-02 -3.54054051e-02
            -2.58041955e-02 0.00000000e+00 0.0000000e+00 1.54040024e-01
             0.00000000e+00 -1.28235829e-01]] [-4.07018165e+09]
```

```
In [53]:
          # Calculate the MSE
          from sklearn.metrics import mean_squared_error
          predictions = model titanic.predict(X poly)
          mse = mean squared error(y, predictions)
          print("MSE:", mse)
          print("Root mean squared error (RMSE):", np.sqrt(mse))
          MSE: 0.7415904797787476
          Root mean squared error (RMSE): 0.8611564781029912
In [63]: # 2. cross validation
          from sklearn.model selection import cross val score
          input cols = train.columns[1:]
          print(cross_val_score(model_titanic, train_test[input_cols], train_train['Survive
                                  cv=3)
                                            . . .
In [65]:
          train_test[input_cols].describe
          #train test.head()
Out[65]: <bound method NDFrame.describe of
                                                    Survived Pclass Sex
                                                                                   SibSp
                                                                                          Parc
                                                                             Age
                 Fare Embark C
                                  Embark Q \
          h
          148
                       0
                               2
                                     1
                                        36.5
                                                   0
                                                          2
                                                              26.0000
                                                                                0
                                                                                          0
                               3
                                                   2
          448
                       1
                                     0
                                         5.0
                                                          1
                                                              19.2583
                                                                                1
                                                                                          0
                       1
                               2
                                        28.0
                                                   0
                                                                                          0
          443
                                     0
                                                          0
                                                              13.0000
                                                                                0
          95
                       0
                                        29.6
                                                   0
                                                                                0
                               3
                                     1
                                                          0
                                                               8.0500
                                                                                          0
          681
                       1
                               1
                                     1
                                        27.0
                                                   0
                                                          0
                                                              76.7292
                                                                                1
                                                                                          0
                                                                              . . .
          586
                                                              15.0000
                       0
                               2
                                     1
                                        47.0
                                                   0
                                                          0
                                                                                0
                                                                                          0
          360
                       0
                               3
                                     1
                                        40.0
                                                  1
                                                          4
                                                              27.9000
                                                                                0
                                                                                          0
                       1
                               2
                                                   2
                                                          1
                                                                                0
                                                                                          0
          618
                                     0
                                         4.0
                                                              39.0000
          319
                       1
                               1
                                     0
                                        40.0
                                                   1
                                                          1
                                                             134.5000
                                                                                1
                                                                                          0
          99
                       0
                               2
                                        34.0
                                                   1
                                                          0
                                                                                0
                                                                                          0
                                     1
                                                               26.0000
               Embark S
          148
                       1
          448
                       0
          443
                       1
          95
                       1
          681
                       0
          . .
          586
                       1
          360
                       1
          618
                       1
          319
                       0
          99
                       1
          [179 rows x 10 columns]>
```

```
In [153]:
          #confusion matrix
          from sklearn.metrics import confusion_matrix
          test predictions = titanic lr.predict(train test[input cols])
          print(test predictions)
          matrix = confusion matrix(train test['Survived'], test predictions)
          print(matrix)
          [-1.11026118 -0.23289124 -2.07439876 -3.00230868 -2.83148225 -4.8817978
           -7.21811593 -0.87652872 -2.83745776 -5.90721262 -1.99538976 -2.51231546
           -1.17767407 -4.14898492 -2.87429727 -2.43366461 -2.80886396 -2.05122685
            0.9870776
                        0.1637875 -3.78291843 -1.36901109 -0.95915247 0.03298658
           -8.14065079 -5.1640593 -3.0276898 -1.5347021
                                                             0.33108966 -1.90347403
            0.44397571    0.50600417    -3.23762723    -3.62060386    -6.34907714    -2.65522851
           -4.17884806 -0.44363479 -1.79713555 -4.36939809 -3.79853289 -4.64359829
           -1.17767407 -4.08264924 -1.89925433 -4.36560127 -2.91590858 -2.78034865
           -4.0082467 -5.21733327 -4.24895492 -1.04816902 -4.81282762 -5.94051886
           -5.21851007 -3.16892849 -2.07116344 -2.32799347 -1.71958514 -3.45683725
           -5.14372211 -2.34500061 -2.99516199 -1.75434359 -2.60987622 -3.16846712
           -3.31896881 -1.08521713 1.16531818 -3.3782791 -3.48106635 -2.03888378
           -1.94066328 -3.06646415 -3.50593393 -3.0276898 -3.00273175 -1.50107693
           -2.98998774 -1.8747219 -1.07088351 0.25017962 -3.16846712 -3.00785537
           -2.85803769 -7.51598185 -3.01527692 -0.65569422 -1.87574571 -4.59267331
           -4.0914558 -1.49757035 -1.76547058 -3.73483349 -3.43472559 -2.91504156
           -2.59977303 -4.02150319 -3.5550204 -3.35232923 -1.62410738 -3.0276898
           -7.92584779 0.09828293 -1.58651496 -3.0276898 -4.32608115 -1.32388444
           -2.51133226 -4.16357263 -1.76547058 -4.27363024 -2.37047148 -2.98037274
In [12]:
          # precision - recall
          from sklearn.metrics import precision score, recall score
          precision = precision_score(train_test['Survived'], test_predictions) #correctly
          recall = recall score(train test['Survived'], test predictions) #predictions are
          print(precision, recall)
          NameError
                                                     Traceback (most recent call last)
          <ipython-input-12-096b93c4b5c7> in <module>
                1 # precision - recall
                2 from sklearn.metrics import precision score, recall score
          ---> 3 precision = precision score(train test['Survived'], test predictions) #
          correctly identified?
                4 recall = recall score(train test['Survived'], test predictions) #predic
          tions are correct?
                5 print(precision, recall)
```

NameError: name 'train_test' is not defined

In [78]: train

Out[78]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embark_C	Embark_Q	Embark_S
0	0	3	1	22.0	1	0	7.2500	0	0	1
1	1	1	0	38.0	1	0	71.2833	1	0	0
2	1	3	0	26.0	0	0	7.9250	0	0	1
3	1	1	0	35.0	1	0	53.1000	0	0	1
4	0	3	1	35.0	0	0	8.0500	0	0	1
886	0	2	1	27.0	0	0	13.0000	0	0	1
887	1	1	0	19.0	0	0	30.0000	0	0	1
888	0	3	0	29.6	1	2	23.4500	0	0	1
889	1	1	1	26.0	0	0	30.0000	1	0	0
890	0	3	1	32.0	0	0	7.7500	0	1	0

891 rows × 10 columns

```
In [95]: #logistic regression

# Build the Logistic regression model
from sklearn.linear_model import LogisticRegression
Titanic_LogR = LogisticRegression(solver='liblinear')
Titanic_LogR.fit(train_train.iloc[:, 1:9], train_train['Survived'])
```

```
In [96]: # 1. Find the prediction accuracy on test set
    from sklearn.metrics import accuracy_score
    prediction = Titanic_LogR.predict(train_test.iloc[:, 1:9])
    accuracy = accuracy_score(train_test['Survived'], prediction)
    print(accuracy)
```

0.7932960893854749

```
In [97]: # 2. cross validation
    from sklearn.model_selection import cross_val_score
    input_cols = train.columns[1:9]
    print(cross_val_score(Titanic_LogR, train_test[input_cols], train_test['Survived cv=3))
```

[0.76666667 0.78333333 0.76271186]

```
In [100]: # 3. confusion matrix
    from sklearn.metrics import confusion_matrix
    test_predictions = Titanic_LogR.predict(train_test[input_cols])
    print(test_predictions)
    matrix = confusion_matrix(train_test['Survived'], test_predictions)
    plt.matshow(matrix)
    plt.title("Matrix")
    print(matrix)
```



```
In [101]: # precision - recall
from sklearn.metrics import precision_score, recall_score
precision = precision_score(train_test['Survived'], test_predictions) #correctly
recall = recall_score(train_test['Survived'], test_predictions) #predictions are
print(precision, recall)
```

0.7428571428571429 0.7323943661971831

```
In [102]: from sklearn.metrics import roc_curve
    probs = model_train.predict_proba(train.iloc[:, 1:9])
    fpr, tpr, thresholds = roc_curve(train['Survived'], probs[:, 1])

    plt.plot(fpr, tpr)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positve Rate')

# worse case: tpr increases along with fpr
    plt.plot([0, 1], [0, 1], 'b--')
```

Out[102]: [<matplotlib.lines.Line2D at 0x20d8f1c2c48>]

The Logistic model is quite good!

```
In [ ]:
```

```
In [105]: #k-nearest neighbors method
          X = train[['Fare',
                           'Parch',
                           'Pclass',
                           'Sex',
                           'SibSp',
                           'Embark_C',
                           'Embark O'.
                           'Embark_S']].values
          y = train['Survived'].values
          from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.20)
          X train = scaler.transform(train train)
          X_test = scaler.transform(train_test)
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import accuracy_score
          #Create 1 nearest neighbor model
          classifier_1=KNeighborsClassifier(n_neighbors=1)
          classifier 1.fit(X train, y train)
          y_pred=classifier_1.predict(X_test)
          accuracy=accuracy_score(y_test, y_pred)
          print("1-nearest neighbor accuracy")
          print(accuracy)
          #Create 15 nearest neighbor model
          classifier 15=KNeighborsClassifier(n neighbors=15)
          classifier 15.fit(X train, y train)
          y pred=classifier 15.predict(X test)
          accuracy=accuracy_score(y_test, y_pred)
          print("15-nearest neighbor accuracy")
          print(accuracy)
          #Create 50 nearest neighbor model
          classifier 50=KNeighborsClassifier(n neighbors=50)
          classifier_50.fit(X_train, y_train)
          y pred=classifier 50.predict(X test)
          accuracy=accuracy_score(y_test, y_pred)
          print("50-nearest neighbor accuracy")
          print(accuracy)
          1-nearest neighbor accuracy
```

```
1-nearest neighbor accuracy 0.45251396648044695 15-nearest neighbor accuracy 0.6033519553072626 50-nearest neighbor accuracy 0.6312849162011173
```

```
In [106]: #confusion matrix
    from sklearn.metrics import confusion_matrix

    matrix = confusion_matrix(y_test, y_pred)
    print(matrix)

[[111     0]
     [66     2]]

In [107]: #precision and recall
    from sklearn.metrics import precision_score, recall_score
    precision = precision_score(y_test, y_pred) #correctly identified?
    recall = recall_score(y_test, y_pred) #predictions are correct?
    print(precision, recall)

1.0    0.029411764705882353
```

I believe the Logistic model holds promise on the training data provided and if I had to I would

send kaggle Titanic_LogR!

In regard to which variables played a part in better survival, being female, child and embark Q all seem to be factors that increased survivability!

So, Sex, Parch and Embark_Q were significant variables!