

# Synchronisation eines LTE-Empfängers mit mehreren Empfangsantennen

Vortrag zur Bachelorarbeit Kristian Maier

Betreuer: Sebastian Koslowski

Communications Engineering Lab Prof. Dr.rer.nat. Friedrich K. Jondral





- Motivation
- LTE Standard Physical Layer
  - Framestruktur
  - MIMO
  - Primary Synchronisation Signal (PSS)
- Implementierung in GNU Radio
  - Übersicht Flowgraph
  - Zeitsynchronisationsverfahren
- Messergebnisse
- Zusammenfassung



#### **Motivation**



- Long Term Evolution (LTE)
  - Neuester Mobilfunkstandard (4G)
  - Hohe Leistungsfähigkeit



- Erweiterung für mehrere Empfangsantennen
  - Zuverlässigere Übertragung
  - Höhere Datenrate
  - Gleichbleibende Bandbreite
- Erweiterter Synchronisationsalgorithmus
  - Mehrkanal fähig
  - Ziel: Geringerer Rechenaufwand



#### **Grundlagen LTE**



- OFDM(A) im Downlink
  - lacktriangle Unterträgerabstand  $\Delta f = 15~\mathrm{kHz}$
  - Cyclic Prefix 7%
- Variabler Signalaufbau
  - Verschiedene Systembandbreiten
    - 1.4, 3, 5, 10, 15, 20 MHz
  - Antennenkonfiguration (z.B. 1x1, 2x1, 2x2, 4x2, 4x4)
  - Frequency Division Duplexing (FDD) vs. Time Division Duplexing (TDD)
- viele zu schätzende Parameter
  - Bandbreite
  - Symboltakt, Rahmen
  - Kanalkoeffizienten
  - Cell-ID = 0...503



|                |           |        |         |        |          | 22.2 |        |         |         |         |         | (system f |         |         |         |         | 2       |         |         |         |         |         |
|----------------|-----------|--------|---------|--------|----------|------|--------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                |           | Subfra |         |        | oframe 1 |      | Subfra |         | Subfr   |         |         | ame 4     |         | ame 5   | Subfra  |         |         | ame 7   |         | ame 8   |         | rame 9  |
|                |           | Slot 0 | Slot 1  | Slot 0 |          | _    | Slot 0 | Slot 1  | Slot 0  | Slot 1  | Slot 0  | Slot 1    | Slot 0  | Slot 1  | Slot 0  | Slot 1  | Slot 0  | Slot 1  | Slot 0  | Slot 1  | Slot 0  | Slot 1  |
| PRB 29 ons     | E .       | Sym 6  | 0 Sym 6 | 0 Sym  | 6 0 Sym  | 6 0  | Sym 6  | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6   | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 | 0 Sym 6 |
|                | g         |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                |           |        | •       |        |          |      |        | •       |         | •       |         |           | •       | •       |         | •       |         | •       |         | •       |         |         |
|                | 348       |        | •       |        |          |      |        |         |         |         |         |           |         |         |         |         |         | •       |         |         |         |         |
|                |           |        | •   •   | •      |          |      |        |         |         | • •     |         |           |         |         |         | •   •   |         |         |         | -       |         |         |
| PRB 28 29 29 S | garri     |        | • •     |        |          |      |        | •       |         | •       |         | •         |         | •       |         | •       |         |         |         | •       |         | •       |
| 20             | gg .      |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 336       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 335       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| DDB            | ē         |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| PRB<br>27      | Subcarri  |        |         |        |          |      |        |         |         |         |         | •         |         | •       |         |         |         |         |         | •       |         |         |
|                |           |        |         |        |          |      |        | •       |         | •       |         |           |         |         |         | •       |         |         |         |         |         |         |
|                | 324       |        |         |        |          |      |        |         |         | •       |         | •         |         |         |         |         |         |         |         |         |         |         |
|                | _ =       |        | •       |        |          |      |        |         |         | •       |         | •         |         | •       |         | •       |         | •       |         | •       |         | •       |
| PRB<br>26      | Subcarrie |        |         |        |          |      |        | •       |         |         |         |           |         |         |         | •       |         |         |         |         |         |         |
| 26             | gg P      |        |         | •      |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         | •       |         |         |
|                | 312       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 311       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | .jg       |        |         |        |          |      |        | •       |         |         |         |           |         |         |         | •       |         |         |         |         |         |         |
| PRB<br>25      | Subcarri  |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | ਲੋ        |        |         |        |          |      |        | •       |         | • •     |         | • •       |         |         |         | •   •   |         |         |         | • •     |         |         |
|                | 300       |        | ••      |        |          |      |        | •       |         | •       |         |           |         |         |         | •       |         |         |         |         |         |         |
|                | 299       |        | -       |        |          |      |        |         |         |         |         |           |         |         |         | •       |         |         |         | •       |         | •       |
| PRB<br>24      | i ii      |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         | •       |         | •       |
| 24             | Subcarri  |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 288       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 287       |        |         |        |          |      |        |         |         |         |         | •         |         |         |         |         |         |         |         |         |         |         |
|                | , ăi      |        |         |        |          |      |        |         |         | •       |         |           |         |         |         | •       |         |         |         |         |         |         |
| PRB<br>23      | Subcarri  |        |         |        |          |      |        |         |         |         |         | •         |         |         |         |         |         | •       |         |         |         |         |
| 23 8           | Sut       |        | -       |        |          |      |        | •       |         |         |         | •         |         | •       |         | •       |         |         |         | •       |         | •       |
|                | 276       |        |         |        |          |      |        |         |         |         |         |           |         |         |         | •       |         |         |         |         |         |         |
|                | 275       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
| PRB 22 ons     | La La     |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | npca      |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | _         |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 264       |        |         |        |          |      |        |         |         | •       |         | •         |         |         |         |         |         | -       |         |         |         |         |
| PRB 21         |           |        | •       |        |          |      |        | •       |         | •       |         | •         |         | • •     |         | •       |         | •       |         | •       |         |         |
|                | Sami      |        |         |        |          |      |        |         |         |         |         |           |         |         |         | •       |         | •       |         |         |         | •       |
|                | Sub       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 252       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |
|                | 251       |        |         |        |          |      |        |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |

## **Grundlagen - MIMO**



- Transmit Diversity
  - Basisstation mit 2 oder 4 Antennen
  - Alamouti-Code
  - Linearer Empfänger
- Receive Diversity
  - Mehrere Empfangsantennen
  - Höhere Empfangsleistung
  - Maximum Ratio Combining
- Unabhängiges Fading
- zuverlässigere Übertragung

|             |       | Ante                  | nne                   |
|-------------|-------|-----------------------|-----------------------|
|             |       | 1                     | 2                     |
| Unterträger | $f_1$ | <i>s</i> <sub>1</sub> | <i>S</i> <sub>2</sub> |
|             | J2    | $-s_2$                | $s_1$                 |



# **Primary Synchronisation Signal**



Zadoff-Chu Sequenz im Frequenzbereich

Länge 62 
$$P_u(n) = \begin{cases} e^{-j\frac{\pi u n(n+1)}{N_{\rm ZC}}} & n = 0..30 \\ e^{-j\frac{\pi u(n+1)(n+2)}{N_{\rm ZC}}} & n = 31..61 \end{cases}$$

- 3 verschiedene Sequenzen (u = 25, 29, 34)
  - Abhängig von Cell-ID
- Halbframetakt (5 ms)









- Motivation
- LTE Standard Physical Layer
  - Framestruktur
  - MIMO
  - Primary Synchronisation Signal (PSS)
- Implementierung in GNU Radio
  - Übersicht Flowgraph
  - Zeitsynchronisationsverfahren
- Messergebnisse
- Zusammenfassung







## **Synchronisation mit PSS**



- Bisher im Frequenzbereich
  - FFT notwendig
  - Symbolsynchronisation mit CP
- Jetzt: Multiratensignalverarbeitung im Zeitbereich
- 1. Schritt
  - Antialiasing-Filterung
  - Dezimation
  - Grobe Suche





## **Antialiasing Filter**



- FIR-Filter (linearer Phasenverlauf)
  - Geringes Aliasing



| Parameter         | Wert      |
|-------------------|-----------|
| Grenzfrequenz     | 472.5 kHz |
| Stopfrequenz      | 960 kHz   |
| Stopband Dämpfung | 40 dB     |

Dezimation auf 0.96 MS/s



## Korrelation bei geringerer Rate



$$K(n) = \sum_{k=0}^{N_r - 1} \left| \sum_{m=0}^{N_{\text{FFT}, 1} - 1} r_k(m+n) \cdot p^*(m) \right|$$

$$n_{P,l} = \underset{n}{\operatorname{arg\,max}} K(n)$$





# **Synchronisation mit PSS**



- 2. Schritt
  - Feine Korrelation bei voller Rate
  - Grobe Position

$$n_P' = n_{P,l} \cdot d - g$$

g: Gruppenlaufzeit Filter, d: Dezimationsfaktor

Suchfenster

$$n_P' \pm d$$

Tracking



Geringerer Rechenaufwand



- Motivation
- LTE Standard Physical Layer
  - Framestruktur
  - MIMO
  - Primary Synchronisation Signal (PSS)
- Implementierung in GNU Radio
  - Übersicht Flowgraph
  - Zeitsynchronisationsverfahren
- Messergebnisse
- Zusammenfassung



# Messergebnisse

- Ort: Funklabor
- 2 Empfangsantennen
  - Zeit- und Frequenzsynchron





Telekom: 1815 MHz



E-Plus: 1870.5 MHz





# Messergebnisse



#### Dekodierungsraten MIB

|                 | Telekom 1815 MHz | E-Plus 1870.5 MHz |
|-----------------|------------------|-------------------|
| Nur Antenne 1   | 100 %            | 67.8 %            |
| Nur Antenne 2   | 100 %            | 72.8 %            |
| Antenne 1 und 2 | 100 %            | 96.1 %            |

#### Ergebnisse

|                 | Telekom 1815 MHz | E-Plus 1870.5 MHz |  |  |  |
|-----------------|------------------|-------------------|--|--|--|
| Cell – ID       | 215              | 486               |  |  |  |
| Sendeantennen   | 2                | 2                 |  |  |  |
| Bandbreite      | 20 MHz           | 10 MHz            |  |  |  |
| PHICH Duration  | Normal           | Normal            |  |  |  |
| PHICH Resources | 1                | 1/6               |  |  |  |



#### Zusammenfassung



- Erweiterung des Empfangs für mehrere Empfangsantennen
  - Gemeinsame Synchronisation
  - OFDM-Operationen
  - Kanalschätzung
- Verbessertes Synchronisationsverfahren
  - Multiratensignalverarbeitung
  - Geringerer Rechenaufwand
- Verifikation mit simulierten und gemessenen Daten
- Ausblick
  - Ratenumschaltung mit USRP





# Danke für Ihre Aufmerksamkeit

Communications Engineering Lab Prof. Dr.rer.nat. Friedrich K. Jondral

