2012 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

- 一、单项选择题 $(1\sim40$ 小题,每小题2分,共80分。下列每小题给出的四个选项中,只有一项符 合题目要求)
- 1. 求整数 n (n≥0) 阶乘的算法如下,其时间复杂度是

4. 若平衡二叉树的高度为 6, 且所有非叶结点的平衡因子均为 1,则该平衡二叉树的结点总数 为 ____。

A. 10

A. 只有 e

B. 20

C. 32

- **D**. 33
- 5. 对有n个结点、e条边且使用邻接表存储的有向图进行广度优先遍历,其算法时间复杂度是 B. O(e)C. O(n+e)D. O(ne)

- 6. 若用邻接矩阵存储有向图,矩阵中主对角线以下的元素均为零,则关于该图拓扑序列的结论

- A. 存在, 且唯一 B. 存在, 且不唯一 C. 存在, 可能不唯一 D. 无法确定是否存在
- 7. 如右图所示的有向带权图, 若采用迪杰斯特拉 (Dijkstra)算法求从源点 a 到其他各顶点的最短路径, 则得到的第一条最短路径的目标顶点是 b, 第二条最短 路径的目标顶点是 c, 后续得到的其余各最短路径的目 标顶点依次是____。

A. d, e, f

- B. e, d, f
- C. f, d, e
- D. f, e, d

- 8. 下列关于最小生成树的叙述中,正确的是
 - I. 最小生成树的代价唯一
 - II. 所有权值最小的边一定会出现在所有的最小生成树中
 - III. 使用普里姆(Prim)算法从不同顶点开始得到的最小生成树一定相同
 - IV. 使用普里姆算法和克鲁斯卡尔(Kruskal)算法得到的最小生成树总不相同

- B. 仅 II
- C. 仅 I、III
- D. 仅 II、IV
- 9. 已知一棵 3 阶 B-树,如下图所示。删除关键字 78 得到一棵新 B-树,其最右叶结点中的关键字 是。

A. 60

B. 60 62

C. 62.65

D. 65

10.	1. 在内部排序过程中,对尚未确定最终位直的	所有兀索进行一遍处埋	称为一趟排 序。 卜列排序方法
	中,每一趟排序结束都至少能够确定一个元	素最终位置的方法是	o
	I. 简单选择排序 II. 希尔排序	III. 快速排序	
	IV. 堆排序	V. 二路归并排序	
	A. 仅 I、III、IV B. 仅 I、III、V	C. 仅II、III、IV	D. 仅 III、IV、V
11.	. 对一待排序序列分别进行折半插入排序和直	接插入排序,两者之间	可能的不同之处是。
	A. 排序的总趟数	B. 元素的移动次数	
	C. 使用辅助空间的数量	D. 元素之间的比较况	欠数
12.	假定基准程序 A 在某计算机上的运行时间为	月100 秒,其中 90 秒为(CPU 时间,其余为 I/O 时间。
	若 CPU 速度提高 50%, I/O 速度不变,则运行	厅基准程序 A 所耗费的时	寸间是。
	A. 55s B. 60s	C. 65s	D. 70s
13.	. 假定编译器规定 int 和 short 型长度分别为 32	2位和16位,执行下列	C 语言语句:
	unsigned short x=65530;		
	unsigned int y=x;		
	得到 y 的机器数为。		
	A. 0000 7FFAH B. 0000 FFFAH	C. FFFF 7FFAH	D. FFFF FFFAH
14.	float 类型(即 IEEE 754 单精度浮点数格式)	能表示的最大正整数是	£o
	A. $2^{126} - 2^{103}$ B. $2^{127} - 2^{104}$	C. $2^{121}-2^{103}$	D. $2^{128} - 2^{104}$
15.	. 某计算机存储器按字节编址, 采用小端方式	存放数据。假定编译器	规定 int 型和 short 型长度分别
	为32位和16位,并且数据按边界对齐存储	。某C语言程序段如下	:
	struct {		
	int a;		
	char b;		
	short c;		
	} record;		
	record.a=273;		
	若 record 变量的首地址为 0xC008,则地址 0	xC008 中内容及 record.c	: 的地址分别为 。
	A. 0x00, 0xC00D B. 0x00, 0xC00E		
16.	。 下列关于闪存(Flash Memory)的叙述中,		
	A. 信息可读可写, 并且读、写速度一样快		
	B. 存储元由 MOS 管组成,是一种半导体不		
	C. 掉电后信息不丢失, 是一种非易失性存		
	D. 采用随机访问方式,可替代计算机外部	存储器	
17.	. 假设某计算机按字编址, Cache 有 4 个行, C	Cache 和主存之间交换的	块大小为 1 个字。若 Cache 的
	内容初始为空,采用2路组相联映射方式和	LRU 替换策略。访问的	主存地址依次为 0,4,8,2,0,6.
	8, 6, 4, 8 时, 命中 Cache 的次数是。		
	A. 1 B. 2	C. 3	D. 4
18.	. 某计算机的控制器采用微程序控制方式,微	指令中的操作控制字段	采用字段直接编码法,共有33
	个微命令,构成5个互斥类,分别包含7、3、1	2、5 和 6 个微命令,则	操作控制字段至少有。
	A. 5 位 B. 6 位		
19.	. 某同步总线的时钟频率为 100MHz, 宽度为 3	32 位, 地址/数据线复用	月, 每传输一个地址或数据占
	用一个时钟周期。若该总线支持突发(猝发		
	数据所需要的时间至少是。		
		C. 50ns	D. 80ns
20.	. 下列关于 USB 总线特性的描述中,错误的是		
	A. 可实现外设的即插即用和热拔插		车接多台外设
	4 N 4 N 4 N 4 D 4 1 4 D 4 1 1 1 1 1 1 1 1 1 1 1 1 1		

C. 是一种通信总线, 连接不同外设 D. 同时可传输 2 位数据, 数据传输率高 21. 下列选项中,在 I/O 总线的数据线上传输的信息包括。 I. I/O 接口中的命令字 II. I/O 接口中的状态字 III. 中断类型号 B. 仅 I、III C. 仅 II、III D. I、II、III A. 仅 I、II 22. 响应外部中断的过程中,中断隐指令完成的操作,除保护断点外,还包括。 I. 关中断 II. 保存通用寄存器的内容 III. 形成中断服务程序入口地址并送 PC B. 仅 I、III C. 仅 II、III D. I、II、III A. 仅 I、II 23. 下列选项中,不可能在用户态发生的事件是____。 C. 进程切换 D. 缺页 A. 系统调用 B. 外部中断 24. 中断处理和子程序调用都需要压栈以保护现场,中断处理一定会保存而子程序调用不需要保存其 内容的是。 B. 程序状态字寄存器 C. 通用数据寄存器 D. 通用地址寄存器 A. 程序计数器 25. 下列关于虚拟存储器的叙述中,正确的是____。 A. 虚拟存储只能基于连续分配技术 C. 虚拟存储容量只受外存容量的限制 D. 虚拟存储容量只受内存容量的限制 26. 操作系统的 I/O 子系统通常由四个层次组成,每一层明确定义了与邻近层次的接口。其合理的层 次组织排列顺序是 A. 用户级 I/O 软件、设备无关软件、设备驱动程序、中断处理程序 B. 用户级 I/O 软件、设备无关软件、中断处理程序、设备驱动程序 C. 用户级 I/O 软件、设备驱动程序、设备无关软件、中断处理程序 D. 用户级 I/O 软件、中断处理程序、设备无关软件、设备驱动程序 27. 假设 5 个进程 P_0 、 P_1 、 P_2 、 P_3 、 P_4 共享三类资源 R_1 、 R_2 、 R_3 ,这些资源总数分别为 18、6、22。T0 时刻的资源分配情况如下表所示, 此时存在的一个安全序列是 资源最大需求 己分配资源 进程 R_1 \mathbf{R}_2 R_3 R_1 \mathbb{R}_2 R_3 3 2 3 5 5 10 \mathbf{P}_0 5 3 6 4 () 3 \mathbf{P}_1 0 5 4 0 \mathbf{P}_2 4 11 () 4 4 5 \mathbf{P}_3 2 3 1 4 4 4 \mathbf{P}_4 A. P_0 , P_2 , P_4 , P_1 , P_3 B. P_1 , P_0 , P_3 , P_4 , P_2 C. P_2 , P_1 , P_0 , P_3 , P_4 D. P_3 , P_4 , P_2 , P_1 , P_0 28. 若一个用户进程通过 read 系统调用读取一个磁盘文件中的数据,则下列关于此过程的叙述中,正 I. 若该文件的数据不在内存中,则该进程进入睡眠等待状态。 II. 请求 read 系统调用会导致 CPU 从用户态切换到核心态 III. read 系统调用的参数应包含文件的名称 B. 仅 I、III C. 仅 II、III D. I、II 和 III A. 仅 I、II 29. 一个多道批处理系统中仅有 P_1 和 P_2 两个作业, P_2 比 P_1 晚 5ms 到达,它们的计算和 I/O 操作顺序 如下: 若不考虑调度和切换时间,则完成两个作业需要的时间最少是。 B. 260ms C. 340ms D. 360ms A. 240ms 30. 若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机调度的叙述中,错误的是 A. 在进程结束时能进行处理机调度

B. 创建新进程后能进行处理机调度

C. 在进程处于临界区时不能进行处理机调度

	D. 在系统调用完成并返回用户态时能	进行处理机	调度		
31.	下列关于进程和线程的叙述中,正确!	的是。			
	A. 不管系统是否支待线程, 进程都是	上资源分配的	基本单位		
	B. 线程是资源分配的基本单位,进程	是调度的基	本单位		
	C. 系统级线程和用户级线程的切换都	需要内核的	支持		
	D. 同一进程中的各个线程拥有各自不	同的地址空	间		
32.	下列选项中,不能改善磁盘设备 I/O h	生能的是			
	A. 重排 I/O 请求次序	В.	在一个磁盘上记		
	A. 重排 I/O 请求次序 C. 预读和滞后写	D.	. 优化文件物理均	央的分布	
	在 TCP/IP 体系结构中,直接为 ICMP				
	A. PPP B. IP			D. TCP	
34.	在物理层接口特性中, 用于描述完成				
	A. 机械特性 B. 功能特性				性
35.	以太网的 MAC 协议提供的是		,_,	2 (11	.—
	A. 无连接不可靠服务 B. 无连接可靠		有连接不可靠用	服务 D. 有连接	可靠服务
	两台主机之间的数据链路层采用后退				
	播时延为 270ms, 数据帧长度范围是				-
	为使信道利用率达到最高, 帧序号的				
	A. 5 B. 4			D. 2	
37.	下列关于 IP 路由器功能的描述中,正				
	I. 运行路由协议,设置路由表	<u></u>	<u> </u>		
	II. 监测到拥塞时,合理丢弃 IP 分组				
	III. 对收到的 IP 分组头进行差错校验	, 确保传输	的 IP 分组不丢失	.	
	IV. 根据收到的 IP 分组的目的 IP 地址				
	A. 仅 III、IV B. 仅 I、II、				II. IV
38.	ARP 协议的功能是。			2,1,11,1	
	A. 根据 IP 地址查询 MAC 地址	B.	根据 MAC 地址	上香油 IP 地址	
	C. 根据域名查询 IP 地址				
	某主机的 IP 地址为 180.80.77.55, 子				子网发送广播分
	组,则目的地址可以是	110:174 =	от		1 1 1 1 JULY C / JE / JE
	A. 180.80.76.0 B. 180.80.76.2	255 C.	180.80.77.255	D. 180.80.7	79.255
40.	若用户 1 与用户 2 之间发送和接收电				
	用的应用层协议可以是。	7 1 1111111111		/ Q	
		m 2.144	m do th		
		用户1的 『件服务器	用户2的 .邮件服务器	用户2	
	1-1-	·]——2		3-	
	A. SMTP、SMTP、SMTP	В.	POP3、SMTP、	POP3	
	C. POP3、SMTP、SMTP	D.	SMTP、SMTP、	POP 3	

- 二、综合应用题 (第 41~47 小题, 共 70 分)
- 41. (10 分)设有 6 个有序表 A、B、C、D、E、F, 分别含有 10、35、40、50、60 和 200 个数据元素, 各表中元素按升序排列。要求通过 5 次两两合并, 将 6 个表最终合并成 1 个升序表, 并在最坏情况下比较的总次数达到最小。请回答下列问题。
 - (1)给出完整的合并过程,并求出最坏情况下比较的总次数。
 - (2) 根据你的合并过程,描述 $N(N \ge 2)$ 个不等长升序表的合并策略,并说明理由。

42. (13 分) 假定采用带头结点的单链表保存单词, 当两个单词有相同的后缀时,则可共享相同的后缀存储空间, 例如,"loadi ng"和"bei ng" 的存储映像如下图所示。

设 strl 和 str2 分别指向两个单词所在单链表的头结点, 链表结点结构为 data next next ,请设计一个时间上尽可能高效的算法, 找出由 strl 和 str2 所指向两个链表共同后缀的起始位置 (如图中字符 i 所在结点的位置 p)。要求:

- (1) 给出算法的基本设计思想。
- (2) 根据设计思想,采用 C 或 C++或 Java 语言描述算法,关键之处给出注释。
- (3) 说明你所设计算法的时间复杂度。

- 43. (11 分) 假定某计算机的 CPU 主频为 80MHz, CPI 为 4, 平均每条指令访存 1.5 次, 主存与 Cache 之间交换的块大小为 16B, Cache 的命中率为 99%, 存储器总线宽度为 32 位。请回答下列问题。
 - (1) 该计算机的 MIPS 数是多少? 平均每秒 Cache 缺失的次数是多少? 在不考虑 DMA 传送的情况下,主存带宽至少达到多少才能满足 CPU 的访存要求?
 - (2) 假定在 Cache 缺失的情况下访问主存时,存在 0.0005%的缺页率,则 CPU 平均每秒产生多少次缺页异常? 若页面大小为 4KB, 每次缺页都需要访问磁盘,访问磁盘时 DMA 传送采用周期挪用方式,磁盘 I/O 接口的数据缓冲寄存器为 32 位,则磁盘 I/O 接口平均每秒发出的 DMA 请求次数至少是多少?
 - (3) CPU 和 DMA 控制器同时要求使用存储器总线时,哪个优先级更高?为什么?
 - (4) 为了提高性能,主存采用四体低位交叉存储模式,工作时每 1/4 个存储周期启动一个体。若每个体的存储周期为 50ns,则该主存能提供的最大带宽是多少?

44. (12 分) 某 16 位计算机中,带符号整数用补码表示,数据 Cache 和指令 Cache 分离。题 44 表给 出了指令系统中部分指令格式, 其中 Rs 和 Rd 表示寄存器, mem 表示存储单元地址,(x)表示寄存器 x 或存储单元 x 的内容。

指令系统中部分指令格式

名称	指令的汇编格式	指令功能
加法指令	Add Rs,Rd	$(Rs)+(Rd)\rightarrow Rd$
算术/逻辑左移	SHL Rd	2*(Rd)→Rd
算术右移	SHR Rd	(Rd)/2→Rd
取数指令	LOAD Rd, mem	(mem)→Rd
存数指令	STORE Rs, mem	(Rs)→mem

该计算机采用 5 段流水方式执行指令, 各流水段分别是取指 (IF)、译码/读寄存器 (ID)、执行/计算有效地址 (EX)、访问存储器 (M) 和结果写回寄存器 (WB),流水线采用"按序发射,按序完成"方式,没有采用转发技术处理数据相关,并且同一个寄存器的读和写操作不能在同一个时钟周期内进行。请回答下列问题:

- (1) 若 int 型变量 x 的值为-513,存放在寄存器 R1 中, 则执行指令 "SHR R1" 后, R1 的内容是多少? (用十六进制表示)
- (2) 若某个时间段中, 有连续的 4 条指令进入流水线, 在其执行过程中没有发生任何阻塞,则执行这 4 条指令所需的时钟周期数为多少?
- (3) 若高级语言程序中某赋值语句为 x=a+b, x、a 和 b 均为 int 型变量,它们的存储单元地址分别表示为[x]、[a]和[b]。该语句对应的指令序列及其在指令流水线中的执行过程如下图所示。

\mathbf{I}_1	LOAD	R1, [a]
\mathbf{I}_2	LOAD	R2, [b]
I_3	ADD	R1, R2
I_4	STORE	R2, [x]

		时间单元												
指令	1	2	3	4	5	6	7	8	9	10	11	12	13	14
I_1	IF	ID	EX	M	WB									
I_2		IF	ID	EX	M	WB								
I_3			IF				ID	EX	M	WB				
I_4							IF				ID	EX	M	WB

则这 4 条指令执行过程中, I₃ 的 ID 段和 I₄的 IF 段被阻塞的原因各是什么?

(4) 若高级语言程序中某赋值语句为 x = x*2 + a, x 和 a 均为 unsigned int 类型变量,它们的存储单元地址分别表示为[x]、[a],则执行这条语句至少需要多少个时钟周期?要求模仿题 44 图画出这条语句对应的指令序列及其在流水线中的执行过程示意图。

45. (7分) 某请求分页系统的局部页面置换策略如下:系统从 0 时刻开始扫描,每隔 5 个时间单位扫描一轮驻留集(扫描时间忽略不计),本轮没有被访问过的页框将被系统回收,并放入到空闲页框链尾,其中内容在下一次分配之前不被清空。当发生缺页时,如果该页曾被使用过且还在空闲页链表中,那么重新放回进程的驻留集中;否则,从空闲页框链表头部取出一个页框。

假设不考虑其他进程的影响和系统开销。初始时进程驻留集为空。目前系统空闲页框链表中页框号依次为 32、15、21、41。进程 P 依次访问的<虚拟页号,访问时刻>是<1,1>,<3,2>,<0,4>,<0,6>,<1,11>,<0,13>,<2,14>。请回答下列问题。

- (1) 访问<0,4>时,对应的页框号是什么?说明理由。
- (2) 访问<1,11>时,对应的页框号是什么?说明理由。
- (3) 访问<2,14>时,对应的页框号是什么?说明理由。
- (4) 该策略是否适合于时间局部性好的程序?说明理由。

- 46. $(8 \, \mathcal{H})$ 某文件系统空间的最大容量为 4TB $(1TB = 2^{40}B)$,以磁盘块为基本分配单位。磁盘块大小为 1KB。文件控制块(FCB)包含一个 512B 的索引表区。请回答下列问题。
 - (1)假设索引表区仅采用直接索引结构,索引表区存放文件占用的磁盘块号,索引表项中块号最少占多少字节?可支持的单个文件最大长度是多少字节?
 - (2) 假设索引表区采用如下结构:第 0~7 字节采用<起始块号,块数>格式表示文件创建时预分配的连续存储空间,其中起始块号占 6B,块数占 2B;剩余 504 字节采用直接索引结构,一个索引项占 6B,那么可支持的单个文件最大长度是多少字节?为了使单个文件的长度达到最大,请指出起始块号和块数分别所占字节数的合理值并说明理由。

47. (9 分) 主机 H 通过快速以太网连接 Internet, IP 地址为 192.168.0.8, 服务器 S 的 IP 地址为 211.68.71.80。H 与 S 使用 TCP 通信时,在 H 上捕获的其中 5 个 IP 分组如题 47-a 表所示。

郜	47	7-a	表
ルハ		-a	1X

编号		IP 分组的前	40 字节内容	(十六进制)	
1	45 00 00 30	01 9 b 40 00	80 06 1 d e8	c0 a8 00 08	d3 44 47 50
1	0 b d 9 13 88	84 6b 41 c5	00 00 00 00	70 02 43 80	5 d b 0 00 00
2	43 00 00 30	00 00 40 00	31 06 6e 83	d3 44 47 50	c0 a8 00 08
	13 88 0 b d 9	e0 59 9f ef	84 6 b 41 c 6	70 12 16 d 0	37 e1 00 00
3	45 00 00 28	01 9 c 40 00	80 06 1 d ef	c0 a8 00 08	d3 44 47 50
ა 	0 b d 9 13 88	84 6b 41 c6	e0 59 9f f0	50 f0 43 80	2 b 32 00 00
4	45 00 00 38	01 9 d 40 00	80 06 1 d de	c0 a8 00 08	d3 44 47 50
4	0 b d 9 13 88	84 6b 41 c6	e0 59 9f f0	50 18 43 80	e6 55 00 00
5	45 00 00 28	68 11 40 00	31 06 06 7a	d3 44 47 50	c0 a8 00 08
	13 88 0 b d 9	e0 59 9f f0	84 6 b 41 d 6	50 10 16 d 0	57 d 2 00 00

回答下列问题。

- (1) 题 47-a 表中的 IP 分组中,哪几个是由 H 发送的?哪几个完成了 TCP 连接建立过程?哪几个在通过快速以太网传输时进行了填充?
 - (2) 根据题 47-a 表中的 IP 分组,分析 S 已经收到的应用层数据字节数是多少?
- (3) 若题 47-a 表中的某个 IP 分组在 S 发出时的前 40 字节如题 47-b 表所示,则该 IP 分组到 达 H 时经过了多少个路由器?

题 47-b 表

本白 C 的公组	45 00 00 28	68 11 40 00	40 06 ec ad	d3 44 47 50	ca 76 01 06
来自S的分组	13 88 a1 08	e0 59 9f f0	84 6 b 41 d 6	50 10 16 d 0	b 7 d 6 00 00

注: IP 分组头和 TCP 段头结构分别如题 47-a 图和题 47-b 图所示。

题 47-b 图