January 2017 Preliminary Exam

Committee Members: No record

Solutions: Abigail Ciasullo, Usman Hafeez, Adam O'Neal, & Emma Pickard

Advanced Calculus, Mandatory Problems

- 1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and f' is continuous. Show that the restriction of f to any closed interval [a, b] is Lipschitz continuous.
- 2. Suppose that (X, d) is a metric space, fix a point a, and let f(x) = d(a, x). Show that the function $f: X \to \mathbb{R}$ is uniformly continuous.

Advanced Calculus, Optional Problems

- 3. Let $f:(a,b)\to\mathbb{R}$ be differentiable. Suppose that f'(c)=0 for some $c\in(a,b)$. Show that if f has a local minimum at x=c and f''(c) exists, then $f''(c)\geq 0$.
- 4. Suppose that $f \in C[0,1]$ and

$$\int_{a}^{b} x^{n} f(x) dx = 0 \quad \text{for all integer } n \ge 0.$$

Show that f is the zero function.

Real Analysis, Mandatory Problems

1. For $f \in L^1(\mathbb{R})$, the Fourier transform of f is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\xi} dx.$$

- (a) Show that \hat{f} is continuous in \mathbb{R} .
- (b) Show that $\hat{f} \to 0$ as $|\xi| \to \infty$. For this part, you may assume that the set of all linear combinations of characteristic functions over bounded open intervals is dense in $L^1(\mathbb{R})$.
- 2. Let f be an integrable function in \mathbb{R}^d . Show that

$$\lim_{\alpha \to \infty} \alpha m \left\{ x \in \mathbb{R}^d : |f(x)| > \alpha \right\} = 0.$$

Real Analysis, Optional Problems

- 3. (a) State Egorov's Theorem.
 - (b) Use Egorov's Theorem to prove the Bounded Convergence Theorem: if f_k is a sequence of measurable functions on a measurable set E with $m(E) < \infty$, such that $f_k \to f$ a.e. in E and $|f_k| \le M$ a.e. in E for some finite constant M, then

$$\int_{E} |f_k - f| \, dx \to \quad \text{as } k \to \infty.$$

4. For a measurable function f on a measurable set $E \subset \mathbb{R}$, define

$$||f||_{L^{\infty}(E)} = \inf \{ \alpha : m \{ x \in E : |f(x)| > \alpha \} = 0 \}.$$

Show that if $||f||_{L^{\infty}(E)} < \infty$ and $0 < m(E) < \infty$, then

$$\lim_{p \to \infty} \left(\frac{1}{m(E)} \int_{E} |f|^{p} dx \right)^{\frac{1}{p}} = ||f||_{L^{\infty}(E)}.$$

Solutions

Advanced Calculus, Mandatory Problems

1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and f' is continuous. Show that the restriction of f to any closed interval [a, b] is Lipschitz continuous.

Proof. For a function to be Lipschitz continuous, we must have that $|f(x) - f(y)| \le M |x - y|$ for some constant M. Since f is continuous and differentiable, in particular on [a, b], the Mean Value Theorem implies that for any $x, y \in [a, b]$, there exists some $c \in [a, b]$ such that

$$f'(c) = \frac{f(x) - f(y)}{x - y}.$$

Applying the absolute value to each side, we obtain that |f(x) - f(y)| = |f'(c)| |x - y|. Now, since f' is continuous, in particular on [a, b], we know that f' must attain some maximum, call it M, on [a, b]. Thus we have

$$|f(x) - f(y)| = |f'(c)| |x - y| \le M |x - y|.$$

Therefore, f is Lipschitz continuous on any closed interval [a, b].

2. Suppose that (X, d) is a metric space, fix a point a, and let f(x) = d(a, x). Show that the function $f: X \to \mathbb{R}$ is uniformly continuous.

Proof. A function f is uniformly continuous if for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in X$, $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$. Since X is a metric space, we know by the triangle inequality and symmetry that $d(a, x) \leq d(a, y) + d(x, y)$. This implies that $d(a, x) - d(a, y) \leq d(x, y)$.

Choose $x, y \in X$ so that $d(x, y) < \delta$ and set $\varepsilon = \delta$. Then we have

$$|f(x) - f(y)| = |d(a, x) - d(a, y)| \le d(x, y) < \delta = \varepsilon.$$

Thus, f is uniformly continuous.

3. Let $f:(a,b)\to\mathbb{R}$ be differentiable. Suppose that f'(c)=0 for some $c\in(a,b)$. Show that if f has a local minimum at x=c and f''(c) exists, then $f''(c)\geq 0$.

Proof. Since f has a local minimum at x = c, we know that c is a critical point of f. Furthermore, since we know that f'' exists, we may apply the second derivative test which states that for any critical point x_0 , if $f''(x_0) > 0$, then f has a local minimum at x_0 and if $f''(x_0) < 0$ then f has a local maximum at x_0 . The test is inconclusive if $f''(x_0) = 0$.

Now, since c is a critical point of f, if f''(c) < 0, the second derivative test would imply that f has a local maximum at x = c, which we know is false. Note that if f''(c) = 0, the test is inconclusive and so doesn't directly contradict that f has a local minimum at c. Thus, it must be that $f(c) \ge 0$.

4. Suppose that $f \in C[0,1]$ and

$$\int_{a}^{b} x^{n} f(x) dx = 0 \quad \text{for all integer } n \ge 0.$$

Show that f is the zero function.

Proof.