Course Slides Title

Course Name

Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

20 Ekim 2020

Taslak

- Section 1
 - Subsection 1.1
- Examples
 - Itemize
 - Blocks
 - Columns
 - Equations
 - Hyperlinks
 - Coding
 - Tables
 - Figures
- Additional Information

Section 1

Section 1 Subtitle

Some text.

Subsection 1.1

Some text.

LÜTFEN DİNLEYİCİ NOTLARINA BAKINIZ...

Teşekkürler!

Sorularınız?

Kaynaklar

Gujarati, D.N. (2009). Basic Econometrics. Tata McGraw-Hill Education. Güriş, S. (2005). Ekonometri: Temel Kavramlar. Der Yayınevi.

Stock, J.H. and M.W. Watson (2015). Introduction to Econometrics.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.

- For your rehearsal, notes should be added without the frame environment.
- Add the notes just after the slide which you want to talk about.
- The best way to use notes is using the "itemize" option in the notes and writing them as items.
- Use the "Tiny", "tiny", "scriptsize", and "srcsize" commands (from small to large) for large notes to decrease the font size. Use it just before the first item in the list.

Kaynaklar

- Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
- Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Kaynaklar

- Lorem ipsum dolor sit amet, consecteturer adiptiscing elit. Ut purus elit, vestibulum ut, placerat ac, adiptiscing vitae, clies. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consecteturer id, vulputate a, magna. Donce vehicula sugue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placeral. Integer aspine est, iaculis, in pretium quis, viverra ac, nunc. Praesent egest em vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagitis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
- Nam dui ligula, fringilla a, cuismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitac, ultricies et, tellus.
 Donce aliquet, tortor sed accumsan bibendum, erat ligula aliquet magan, vitac ornare codio metus a mi. Morbi ac orci et nish hendrerit mollis. Suspendisse ut massa.
 Cras nec ante. Pellentesque a nulla. Cum sociis natoque penaribus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Itemize environments.

- itemize:
 - Item 1-1
 - Item 1-2
- enumerate.
 - A
 - B

On a Sunday Afternoon one could ...

Itemize one by one.

• walk the dog...

On a Sunday Afternoon one could ...

Itemize one by one.

- walk the dog...
- read a book

On a Sunday Afternoon one could ...

Itemize one by one.

- walk the dog...
- read a book

and many other things

Itemize one by one.

first

Itemize one by one.

- first
- second

Itemize one by one with alert.

Micro

Itemize one by one with alert.

- Micro
- Econometrics

Block Title

This is a block with a specific title.

Alert Block Title

This is an alert block with a specific title.

Here is a block reference: "block-name" in slide 12.

Definition (Definition Block Title)

This is a definition block with a specific title in the brackets.

Example Block Title

This is an example block with a specific title.

Theorem

This is a theorem block without a specific name.

Theorem (Pythagoras)

Theorem block with a specific name.

As a consequence of "block-name" 2, we observe;

$$a^2 + b^2 = c^2$$

Corollary

$$x + y = y + x$$

Kanıt.

$$\omega + \phi = \epsilon$$

Tanım

$$x + y = y + x$$

Özet

$$x + y = y + x$$

Varsayım

$$x + y = y + x$$

Guess what is coming? It is a block with a layer.

Guess what is coming? It is a block with a layer.

Block Title

Only visible from second layer onwards.

Columns 1

Contents of the first column.

Contents split into two lines.

Columns 2

Contents of first column split into two lines

Şekil 1: Figure Column

Equations

The k-dimensional VECM(p-1) in transitory form is employed as the main model.

$$\Delta \mathbf{y_t} = \mathbf{c} + \Pi \mathbf{y_{t-1}} + \Gamma_1 \Delta \mathbf{y_{t-1}} + \dots + \Gamma_{p-1} \Delta \mathbf{y_{t-p+1}} + \varepsilon_t$$
 (1a)

$$\Gamma_i = -(A_{i+1} + \dots + A_p)$$
 for $i = 1, \dots, p-1$ (1b)

$$\Pi = -(I_k - A_1 - \dots - A_p) \tag{1c}$$

where $\mathbf{y_t} = (y_{1t}, \dots, y_{kt})'$ is a $k \times 1$ vector of series; $\mathbf{c} = (c_1, \dots, c_k)'$ is a $k \times 1$ vector of constants; $\varepsilon_t = (\varepsilon_{1t}, \dots, \varepsilon_{kt})'$ is a $k \times 1$ vector of errors with $\varepsilon_t^{iid}(0, \Sigma_{\varepsilon})$; Γ_i 's are $k \times k$ matrices containing the short-run parameters; Π is a $k \times k$ matrix containing the long-run parameters; A_i 's are $k \times k$ coefficient matrices for $i = (1, \dots, p)$; and I_k is a $k \times k$ identity matrix.

Hyperlinks

- This is a hyperlink for a slide Slayt 18.
- This is a hyperlink for a figure Sekil 2.
- This is a hyperlink for a table Tablo 2.
- This is a hyperlink for an equation Dn. 1a.
- Button → Go to Button → Skip Button ← Return Button
- Hyperlink with HTML label: [HTML]
- Hyperlink with PDF label: [PDF]
- Hyperlink with DOI label: [DOI]
- Hyperlink without label: www.google.com
- Hyperlink with doi label: doi:1.2.3.4.5

See the "Additional Information" button at the end.

Citations

- This is a single citation Stock and Watson (2015) and another single Wooldridge (2016).
- This is a multiple Güriş (2005) and Gujarati (2009).
- This is a citation at the end (Wooldridge, 2016).
- This is a citation with page number Wooldridge (2016, p. 26).
- This is citation at the end (Gujarati, 2009; Stock and Watson, 2015; Wooldridge, 2016).

Code

```
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
```

Tables 1

Method	х	y
Mine	1.23	4.56
Yours	2.34	5.68

Tables 2

Tablo 1: A Complicated Table

Table 1111 Compileated Table							
	(1)	(2)	(3)				
	Demand	Demand	Demand				
			(Domestic)				
Constant	0.87**	0.71**	0.91***				
	(0.41)	(0.27)	(0.00)				
Price	-0.87***	-0.71***	-0.60***				
	(0.21)	(0.17)	(0.00)				
Income		8.11***	9.34***				
		(2.20)	(0.00)				
Observations	5435	5435	2319				
R^2	0.90	0.92	0.91				
*** p<0.01. **	p<0.05. * p<	< 0.1					

Tablo 2: Table with Notes

Tables

	Variable:							
Lag	Shiller	CB	WPU1331	LAES	PAAB	PACS		
AIC	Stationary	Unit Root	Unit Root	Stationary	Unit Root	Stationary		
BIC	Unit Root	Unit Root	Unit Root	Stationary	Unit Root	Stationary		
NPS	Unit Root	Unit Root	Unit Root	Unit Root	Unit Root	Stationary		

Notes: Some notes.

Compare this figure to the previous one.

Tablo 3: Multiple Table 1

	Test Statistic by Lag Length:					Critical Values:			
H0:	p = 1	p = 2	p = 3	p = 4	p = 5	p = 6	10%	5%	1%
r = 0	117.45	133.28	123.54	112.27	153.27	157.85	97.18	102.14	111.01
$r \leq 1$	74.88	79.81	84.66	74.58	80.48	92.16	71.86	76.07	84.45
$r \leq 2$	48.91	51.96	52.79	45.30	41.55	45.59	49.65	53.12	60.16
$r \leq 3$	27.04	28.33	29.79	26.08	23.72	23.39	32.00	34.91	41.07
$r \leq 4$	13.64	11.88	14.05	13.22	12.23	12.12	17.85	19.96	24.60
$r \leq 5$	4.30	4.07	3.71	4.37	5.72	4.34	7.52	9.24	12.97

Notes: p indicates the lag length used in the Johansen trace cointegration tests and VECM(p).

Tablo 4: Multiple Table 2

			-			
	Shiller	СВ	WPU1331	LAES	PAAB	PACS
Shiller		0.92	9.03**	4.46	2.87	2.37
CB	10.55***		2.08	7.39**	8.03**	12.43***
WPU1331	8.14**	1.95		6.14**	5.16*	5.88*
LAES	4.17	0.56	0.28		5.78*	0.11
PAAB	0.11	3.05	2.64	5.67*		0.67
PACS	3.14	3.68	4.55	8.08**	0.16	

Tablo 5: Large Table

	Base Model Spatial Regression:						
	CO^{c,\circ,q_1}	$\mathrm{NH_3}^{\dagger,b,\bullet,q_1}$	$NO_x^{\dagger,b,\circ,q}$	$\mathrm{PM}_{10}{}^{\dagger,c,\bullet,q}{}^{_1}$	$\mathrm{PM}_{2.5}^{\dagger,c,ullet,q_1}$	$\mathrm{SO_2}^{\dagger,b,ullet,q_2}$	$VOC^{b, \bullet, q}$
Evangelical Protestants (%)	0.001	0.007***	0.003***	0.001*	0.002**	0.003	0.001
Black Protestants (%)	0.013***	0.000	0.019***	-0.005	0.007*	0.042***	0.013***
Mainline Protestants (%)	0.001	0.014***	0.005***	0.010***	0.008***	-0.001	0.004***
Catholics (%)	-0.001	0.004***	0.001	0.000	0.000	0.007**	0.000
Orthodox Christians (%)	0.119***	-0.060	0.094**	0.041	0.083**	0.255**	0.118***
Mormons (%)	0.003	0.007*	0.002	0.000	0.003	0.011	0.005
Muslims (%)	0.027***	-0.041***	0.016	-0.017^{*}	0.001	0.008	0.052***
Jews (%)	0.025**	0.008	0.004	0.039***	0.026**	-0.035	0.023
Hindus (%)	-0.009	-0.062	0.006	-0.013	-0.018	-0.065	-0.010
Buddhists (%)	-0.012	0.012	-0.054	-0.046*	-0.036	-0.069	-0.007
Log Income	0.324***	9.263***	5.629*	7.465***	8.450***	19.060**	0.586***
Log Income Squared		-0.476***	-0.240	-0.371***	-0.415***	-0.882**	
Log Gas Price	-2.949*	0.311	-5.061***	4.456***	-0.378	-7.277*	-1.820
Log Gas Tax/Fee	-0.482***	0.004	-0.453**	-0.671***	-0.544***	-0.338	-0.385°
Log Renewable Energy Consumption	-0.032	0.050	0.102*	-0.012	0.015	0.396***	-0.021
Some College or More (%)	0.000			-0.001	-0.002		
Bachelor's Degree or More (%)		-0.010***	-0.013***			-0.022***	-0.011***
Log Population Density	-0.483***	-0.743***	-0.393***	-0.595***	-0.630***	-0.251***	-0.513***
Log Mean Daily Precipitation	0.280***	-0.113	-0.135	-0.027	0.257***	0.078	0.215***
Log Mean Daily Max. Heat Index	-2.750**	6.650***	7.341***	0.806	-0.254	1.507	-1.489
Spatial Dependence Param: ρ*		0.724***		0.794***	0.669***	0.441***	0.684***
Spatial Dependence Param: №	0.620***		0.518***				
Observations	3109	3109	3109	3109	3109	3109	3109
Residual Std. Error	0.478	0.628	0.564	0.378	0.460	1.580	0.518
AIC	4566,470	6381.236	5516.029	3337.259	4380,102	11787,779	5133,694
Log Likelihood	-2244,235	-3149.618	-2717.015	-1627,630	-2149.051	-5852.889	-2527.84
LR Test Statistic for ρ*		1347.130***		2122.741***	1106.853***	121.787***	1126.268**
LR Test Statistic for A°	819.262***		451,437***				
Global Moran's I of Residuals	-0.023	-0.016	-0.010	-0.046	-0.030	-0.008	-0.021

Şekil 2: Caption of Single Figure

Not: Additional notes.

Figures

Figures

Additional Information

Kanıt.

Some proof.

Check the "Go Back to Presentation" button at the end.

◆ Go Back to Presentation