

Jumeaux numériques

Atelier 2 Forum des mathématiques 2025

JUMEAU NUMÉRIQUE

Une réplique virtuelle d'un système physique
Introduit pour la première fois par la NASA, lors de la mission Apollo 13
Il a pour but :

- d'aider à la prise de décision
- d'optimiser les processus
- de simuler des événements

Structure et flux de données d'un jumeau numérique

Types de Jumeaux Numériques

Complexité et fonctionnalités croissantes

Jumeau Ombre

(Shadow Twin)

Caractéristiques

- Représentation basique
 - Données statiques
 - Sans interaction

Cas d'usage

- Documentation
- Visualisation simple
 - Inventaires

Niveau: Débutant

Jumeau Complet

(Complete Twin)

Caractéristiques

- Représentation détaillée
- Données dynamiques
- Interaction limitée

Cas d'usage

- Monitoring
- Analyse de performances
- Maintenance prédictive

Niveau: Intermédiaire

Jumeau Digital

(Digital Twin)

Caractéristiques

- Modèle complet
- Temps réel
- Bidirectionnel

Cas d'usage

- Simulation avancée
- Optimisation autonome
 - Prise de décision

Niveau: Avancé

Unidirectionnelle (lecture seule)

Semi-bidirectionnelle (feedback limité)

Bidirectionnelle (synchronisation totale)

Aide à la Décision avec un Jumeau Numérique

Variables multiples Précision accrue

Cadre mathématique des jumeaux numériques

Les jumeaux numériques utilisent divers principes mathématiques au cours de leur fonctionnement :

Normalisation (phase d'acquisition) Modélisation stochastique (phase d'interprétation) Apprentissage automatique (phase de renforcement)

Modélisation

- Outil d'analyse des phénomènes réels dans diverses disciplines scientifiques (chimie, physique, informatique, météorologie, sciences de la vie)
- Permet de prévoir des résultats en appliquant une ou plusieurs théories mathématiques
- Fonctionne à un niveau d'approximation défini
- Établit un pont entre les concepts théoriques et les applications pratiques
- Facilite la compréhension de systèmes
 complexes grâce à leur représentation simplifiée

Applications:

- Filtre de kalman
- Propagation des incertitude
 - Méthode de monte carlo
- Optimisation et recherche opérationnelle
- Modèles prédictifs et séries temporelles

ARCHITECTURE NEURONALE POUR LA MODÉLISATION PRÉDICTIVE

- NEURONE ARTIFICIEL: UNITÉ DE CALCUL ÉLÉMENTAIRE
- COUCHES: ENTRÉE, CACHÉES, SORTIE
- POIDS SYNAPTIQUES: PARAMÈTRES AJUSTABLES

FONCTIONS D'ACTIVATION

Définition: les fonctions d'activation introduisent des non-linéarités dans le réseau, permettant l'apprentissage de relations complexes.

Fonction ReLU:
$$f(x) = max(0, x)$$

Permet de résoudre le problème de vanishing gradient Calcul simple et efficace

Fonction Sigmoid:
$$f(x) = 1/(1 + e^{-(-x)})$$

Représentation mathématique du neurone: $y = f(\Sigma w_i \times x_i + b)$

Optimisation des réseaux de neurones par rétropropagation

Définition: La rétropropagation est un algorithme permettant d'ajuster les poids d'un réseau de neurones en propageant l'erreur de la sortie vers l'entrée.

Fonction de coût: L =
$$(1/2) \times \Sigma(y - \hat{y})^2$$

Mesure l'écart entre prédictions et valeurs réelles

Règle de mise à jour des poids: w_new = w_old - η × $\partial L/\partial w$ η est le taux d'apprentissage

∂L/∂w est le gradient de l'erreur par rapport au poids Chaîne de dérivation pour calculer le gradient à chaque couche

Calcul différentiel appliqué à l'apprentissage supervisé

Dérivées des fonctions d'activation courantes:

Sigmoid:
$$f'(x) = f(x) \times (1 - f(x))$$
.

Implémentation d'un réseau de neurones pour la météorologie

4 neurones d'entrée, 8+4 neurones cachés, 1 neurone de sortie

NORMALISATION ET TRANSFORMATION DES D'ENTREE

Définition: Le prétraitement consiste à transformer les données brutes pour les rendre adaptées au traitement par un réseau de neurones.

Méthode de normalisation min-max: x_norm = (x - x_min) / (x_max - x_min)

Ramène toutes les valeurs entre 0 et 1

Améliore la convergence de l'apprentissage

Division des données: ensemble d'entraînement vs ensemble de test

Binarisation des sorties pour problèmes de classification

INTÉGRATION DES RÉSEAUX DE NEURONES DANS L'ARCHITECTURE DU JUMEAU NUMÉRIQUE

Rôle des réseaux de neurones dans la prédiction Complémentarité avec les modèles physiques Mise à jour continue du modèle avec les nouvelles données

MERCI DE VOTRE ATTENTION