ECON 712B - Problem Set 2

Alex von Hafften*

11/19/2020

- 1. In class, we only considered the growth model with inelastic labor supply. This problem relaxes that restriction. Consider the benchmark neoclassical growth model, with production function: $Y_t = F(K_t, A_t N_t)$ where Y_t is output, K_t is capital, A_t is technology, and N_t is labor, and F has constant returns to scale and satisfies the usual assumptions. Technology grows exogenously at rate g: $A_{t+1} = (1+g)A_t$. Capital depreciates at rate δ so (imposing the aggregate feasibility condition) we can write the law of motion for the capital stock as: $K_{t+1} = (1-\delta)K_t + Y_t C_t$. The representative household has time additive preferences given by: $\sum_{t=0}^{\infty} \beta^t u(C_t, 1-N_t)$. The population size is fixed, but the labor input $N_t \in [0,1]$ is now endogenous. This problem will consider the existence of a balanced growth path, which is defined as an equilibrium allocation where consumption, capital, wages W_t , and output all grow at the same constant rate, while interest rates r_t and labor N_t are constant.
- (a) From conditions characterizing the equilibrium, find a system of equations that the endogenous variables C_0 , N_0 , W_0 , v_0 must solve in a balanced growth path. (Initial capital K_0 is given.)

In a competitive equilibrium, households optimize, firms optimize, and markets clear.¹

The household problem is

$$\max_{\{(C_t, N_t, K_t, I_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(C_t, 1 - N_t)$$
s.t.
$$\sum_{t=0}^{\infty} p_t(C_t + I_t) = \sum_{t=0}^{\infty} p_t(r_t K_t + W_t N_t) + \pi_t$$

$$K_{t+1} = (1 - \delta)K_t + I_t$$

The firm problem is

$$\max_{\{K_t^d, N_t^d\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} p_t(F(K_t^d, A_t N_t^d) - r_t K_t^d - W_t N_t^d)$$

Normalize consumption, capital, investment, and wages by technology: $c_t = \frac{C_t}{A_t}$, $k_t = \frac{K_t}{A_t}$, $i_t = \frac{I_t}{A_t}$, and $w_t = \frac{W_t}{A_t}$.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

¹Note on notation: In the original problem set, it specifies w_t as wages that grow over time. Here, I define W_t as the real wage rate on labor N_t and w_t as the real wage rate on effective labor $A_t N_t$. In addition, I define r_t as the real rental rate on capital.

The firm problem becomes:

$$\max_{\{k_t^d, N_t^d\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} p_t(F(A_t k_t^d, A_t N_t^d) - r_t A_t k_t^d - A_t w_t N_t^d)$$

FOC $[k_t^d]$:²

$$p_t F_1(A_t k_t^d, A_t N_t^d) A_t = p_t A_t r_t \implies F_1(A_t k_t^d, A_t N_t^d) = r_t$$

FOC $[N_t^d]$:

$$p_t F_2(A_t k_t^d, A_t N_t^d) A_t = p_t A_t w_t \implies F_2(A_t k_t^d, A_t N_t^d) = w_t$$

Since F has CRS $\implies F(K,N) = KF_1(K,N) + NF_2(K,N)$ by Euler's Theorem. Thus, for all t,

$$\pi_{t} = p_{t}(F(A_{t}k_{t}^{d}, A_{t}N_{t}^{d}) - r_{t}A_{t}k_{t}^{d} - A_{t}w_{t}N_{t}^{d})$$

$$= p_{t}(A_{t}k_{t}^{d}F_{1}(A_{t}k_{t}^{d}, A_{t}N_{t}^{d}) + A_{t}N_{t}^{d}F_{2}(A_{t}k_{t}^{d}, A_{t}N_{t}^{d}) - r_{t}A_{t}k_{t}^{d} - A_{t}w_{t}N_{t}^{d})$$

$$= p_{t}(A_{t}k_{t}^{d}r_{t} + A_{t}N_{t}^{d}w_{t} - r_{t}A_{t}k_{t}^{d} - A_{t}w_{t}N_{t}^{d})$$

$$= 0$$

The household problem becomes:

$$\max_{\{(c_t, N_t, i_t, k_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(A_t c_t, 1 - N_t)$$
s.t.
$$\sum_{t=0}^{\infty} p_t (A_t c_t + A_t i_t) = \sum_{t=0}^{\infty} p_t (r_t A_t k_t + w_t A_t N_t) + (0)$$

$$A_{t+1} k_{t+1} = (1 - \delta) A_t k_t + A_t i_t$$

$$\implies \max_{\{(c_t, N_t, i_t, k_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(A_t c_t, 1 - N_t)$$
s.t.
$$\sum_{t=0}^{\infty} p_t (c_t + i_t - r_t k_t - w_t N_t) = 0$$

$$i_t = (1 + g) k_{t+1} - (1 - \delta) k_t$$

$$\implies \max_{\{(c_t, N_t, i_t, k_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(A_t c_t, 1 - N_t)$$
s.t.
$$\sum_{t=0}^{\infty} p_t (c_t + (1 + g) k_{t+1} - (1 - \delta) k_t - r_t k_t - w_t N_t) = 0$$

²Note on notation: F_1 is the derivative with respect to the first argument of F and F_2 is the derivative with respect to the second argument of F.

Define Legrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(A_t c_t, 1 - N_t) + \lambda \left[\sum_{t=0}^{\infty} p_t (c_t + (1+g)k_{t+1} - (1-\delta)k_t - r_t k_t - w_t N_t) \right]$$

FOC $[c_t]$:³

$$0 = \beta^t u_1(A_t c_t, 1 - N_t) A_t + \lambda p_t \implies -\lambda = \frac{\beta^t u_1(A_t c_t, 1 - N_t) A_t}{p_t}$$

FOC $[c_{t+1}]$:

$$0 = \beta^{t+1} u_1(A_{t+1}c_{t+1}, 1 - N_{t+1})A_{t+1} + \lambda p_{t+1} \implies -\lambda = \frac{\beta^{t+1} u_1(A_{t+1}c_{t+1}, 1 - N_{t+1})A_{t+1}}{p_{t+1}}$$

FOC $[c_t]$ and FOC $[c_{t+1}]$ imply:

$$\frac{\beta^t u_1(A_t c_t, 1 - N_t) A_t}{p_t} = \frac{\beta^{t+1} u_1(A_{t+1} c_{t+1}, 1 - N_{t+1}) A_{t+1}}{p_{t+1}} \implies u_1(A_t c_t, 1 - N_t) = \frac{\beta(1+g)}{q_{t+1}} u_1(A_{t+1} c_{t+1}, 1 - N_{t+1})$$

where $q_{t+1} = \frac{p_{t+1}}{p_t}$.

FOC $[N_t]$

$$0 = \beta^t u_2(A_t c_t, 1 - N_t)(-1) - \lambda p_t w_t N_t$$

FOC $[N_{t+1}]$

$$0 = \beta^{t+1} u_2(A_{t+1}c_{t+1}, 1 - N_{t+1})(-1) - \lambda p_{t+1}w_{t+1}N_{t+1}$$

These conditions imply

$$w_t u_1(C_t, 1 - N_t) = -u_2(C_t, 1 - N_t)$$

No arbitrage condition:

$$p_t = (r_{t+1} + 1 - \delta)p_{t+1}$$

The law of motion of capital implies:

$$\frac{K_{t+1}}{A_t} \frac{A_{t+1}}{A_{t+1}} = (1 - \delta) \frac{K_t}{A_t} + \frac{F(K_t, A_t N_t)}{A_t} - \frac{C_t}{A_t} \implies k_{t+1} (1 + g) = (1 - \delta) k_t + \frac{F(K_t, A_t N_t)}{A_t} - c_t$$

Ryan's write-up:

Check for upper and lower case variables:

³Note on notation: u_1 is the derivative with respect to the first argument of u and u_2 is the derivative with respect to the second argument of u.

$$V(k_t) = \max_{k+1, N_t} \{ u((1-\delta))K_t + F(K_t, A_t N_t) - K_{t+1}, 1 - N_t) + \beta V(k_{t+1}) \}$$

$$F(K_t, A_t, N_t) - K_t r_t - w A_t N_t$$

- 1. $F_1(k, N) = r$ 2. $F_N(k, N) = \frac{W}{A_t}$
- 3. $u_1(C, 1-N) = \beta u_1((1+g)C_0, 1-N)(\frac{1-\delta}{v} + (1+g))$
- 4. $u_1(C_0, 1-N)(W) = u_2(C_0, 1-N)$
- 5. $k_0(1+q) = (1-\delta)k_0 + F(k, N_t) c_t$
- (b) Show that if preferences are of the form: $u(C, 1 N) = \begin{cases} \frac{C^{1-\gamma}}{1-\gamma} h(1-N), \gamma > 0, \gamma \neq 1 \\ \log C + h(1-N), \gamma = 1 \end{cases}$ function h, then there will be a balanced growth path
- (c) Can we characterize the qualitative dynamics using a phase diagram in the same way that we did in the case of inelastic labor supply? For example, suppose $u(C, 1-N) = \log C + h(1-N)$, that we are on a balanced growth path and then there is an increase in the rate of depreciation δ . Can you say what happens both upon impact of the shock and in the long run?
- (d) Now suppose that h is a constant function, so that labor is inelastically supplied, and suppose $\gamma > 1$. Show that we can summarize the equilibrium as a system of equations governing the evolution of consumption and capital per unit of effective labor: $c_t = C_t/A_t$ and $k_t = K_t/A_t$. Find the balanced growth path levels of c_t and k_t .
- (e) Now suppose the economy is on the balanced growth path, and then there is a fall in the rate of technological change g. By analyzing the qualitative dynamics of the economy, discuss what happens to c_t and k_t at the time of the change and in the long run.
- (f) For a marginal change in g, find an expression showing how the fraction of output saved on the balanced growth path changes. Does saving increase or decrease? Consider first a general production function, and then specialize to Cobb-Douglas production: $F(K, N) = K^{\alpha} N^{1-\alpha}$.

- 2. At any date t, a consumer has x_t units of a non-storable good. He can consume $c_t \in [0, x_t]$ of this stock, and plant the remaining $x_t c_t$ units. He wants to maximize: $E \sum_{t=1}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma}$ where $0 < \gamma < 1$ and $0 < \beta < 1$. Goods planted at date t yield $A_t(x_t c_t)$ as of the beginning of period t+1, where A_t is a sequence of i.i.d. random variables that take the values of $0 < A_h < 1/\beta$ with probability π and $A_l \in (0, A_h)$ with probability $1-\pi$.
- (a) Formulate the consumer's utility maximization problem in the space of shock contingent consumption sequences. Exactly what is this space? Exactly what does the expectations operator $E(\cdot)$ mean here? Be explicit.

$$E_0 \left[\sum_{t=0}^{\infty} \frac{\beta^t}{1-\gamma} (A_{t-1} S_{t-1} - S_t)^{1-\gamma} \right]$$

(b) State the Bellman equation for this problem. It is easiest to have the consumer choose savings $s_t = x_t - c_t$. Argue that the relevant state variable for the problem is the cum-return wealth $A_{t-1}s_{t-1}$. Prove that the optimal value function is continuous, increasing, and concave in this state. How can you handle the unboundedness of the utility function?

$$V(A_{t-1}, S_{t-1}) = \max_{s_t} \frac{(A_{t-1}s_{t-1} - s_t)^{1-\gamma}}{1-\gamma} + \beta [\pi V(A_h s_t) + (1-\pi)V(A_l s_t)]$$

- (c) Solve the Bellman equation and obtain the corresponding optimal policy function. (Hint: guess that the optimal function consists of saving a constant fraction of wealth.)
- (d) How do you know that the consumption sequence generated by this policy function is the unique solution of the original sequence problem?

- 3. This problem considers the computation of the optimal growth model. An infinitely lived representative household owns a stock of capital which it rents to firms. The household's capital stock K depreciates at rate δ . Households do not value leisure and are endowed with one unit of time each period with which they can supply labor N to firms. They have standard time additive expected utility preferences with discount factor β and period utility u(c). Firms produce output according to the production function zF(K,N) where z is the level of technology.
- (a) First, write a computer program that solves the planners problem to determine the optimal allocation in the model. Set $\beta = 0.95$, $\delta = 0.1$, z = 1, $u(c) = c^{1-\gamma}/(1-\gamma)$ with $\gamma = 2$, and $F(K, N) = K^{0.35}N^{0.65}$. Plot the optimal policy function for K and the phase diagram with the $\Delta K = 0$ and $\Delta c = 0$ lines along with the saddle path (which is the decision rule c(K)).
- (b) Re-do your calculations with $\gamma = 1.01$. What happens to the steady state? What happens to the saddle path? Interpret your answer.
- (c) Now with $\gamma=2$ assume that there is an unexpected permanent increase of 20% in total factor productivity, so now z=1.2. What happens to the steady state levels of consumption and capital? Assuming the economy is initially in the steady state with z=1, what happens to consumption and capital after the increase in z?