Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Mod	ule			Fin Plate
MainM	odule			Shear Connection
Connectivity			Column flange-Beam web	
Shear(v .			30.0
,		Supporting So	ection	
		ng Section		PBP 300X222.9
		erial *		E 250 (Fe 410 W)B
т Ү	Ultimate stre	ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		250
α	Mass	222.92	Iz(cm4)	526988000.0
ZZ D	Area(cm2) - A	28400.0	Iy(cm4)	175746300.0
1	D(mm)	337.9	rz(cm)	136.2
R ₁	B(mm)	325.7	ry(cm)	78.7
В В	t(mm)	30.3	Zz(cm3)	3119190.0
Y	T(mm)	30.4	Zy(cm3)	1079190.0
•	FlangeSlope	90	Zpz(cm3)	3653090.0
	R1(mm)	1.52	Zpy(cm3)	1079190.0
	R2(mm)	0.0		
		Supported Se	ection	
	Supported Section		LB 300	
- Y		erial *	E 250 (Fe 410 W)B	
T		ngth, fu (MPa)	410	
		th , fy (MPa)		250
$\frac{(B-t)}{t}$	Mass	37.7	Iz(cm4)	73300000.0
ZZ D	Area(cm2) - A	4810.0	Iy(cm4)	3760000.0
	D(mm)	300.0	rz(cm)	124.0
R ₁	B(mm)	150.0	ry(cm)	28.0
В	t(mm)	6.7	Zz(cm3)	489000.0
¥	T(mm)	9.4	Zy(cm3)	50200.0
	FlangeSlope	98	Zpz(cm3)	535000.0
	R1(mm)	15.0	Zpy(cm3)	50200.0
	R2(mm)	7.5		
	() de	Bolt Deta		
Diameter	` /		<u> </u>	2.0, 16.0, 20.0, 24.0, 30.0, 36.0]
Grad			[3.6, 4.6]	, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Туре				Bearing Bolt
Bolt hol	o trmo		1	Standard

Slip factor (μ_f)

Type of edges

0.3

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		12.0	
Grade *		6.8	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{600.0 * 1 * 84.3}{\sqrt{3} \ * 1.25}$ $= 23.36$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 6.7 * 410}{1.25}$ $= 34.28$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (23.36, 34.28)$ = 23.36	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{30.0^{2} + 30.0^{2}}}{23.36}$ $= 2$	2	
No of Columns		1	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 6.7, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	130	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.7, \ 300 \ mm)$ = 300	130	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	25	Pass
Capacity (kN)	27.52	34.28	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 300.0 = 180.0$	180	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 300.0 - 2 * (9.4 + 15.0 + 10)	180	Pass
	=251.2		
	$2 * e_{min} + (n \ c - 1) * p_{min})$		
Min. Plate Length (mm)	= 2 * 22.1 + (1 - 1) * 30.0	60.0	Pass
	= 54.2		
Min.Plate Thickness (mm)	$t_w = 6.7$	8.0	Pass
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
		$\sqrt{3}*\gamma_{mo}$	
Shear yielding Capacity		$=\frac{180*8.0*250}{\sqrt{3}*1.1}$	
(V_dy) (kN)			
		=188.95 $0.75*A_{vv}*f_{v}$	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (180 - (2 * 13.0)) * 8.0 * 410	
(V_dn) (kN)		= 378.84	
Block Shear Capacity in		206.4	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	30.0	= Min(188.95, 378.84, 206.4)	Pass
(kN)		=188.95	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{ma}}$	
Tension Yielding Capacity		THE	
(kN)		$= \frac{180 * 8.0 * 250}{1.1}$	
		= 327.27	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		γ_{m1}	
Tension Rupture Capacity		$= \frac{0.9 * (180 - 2 * 13.0) * 8.0 * 41}{1.25}$	0
(kN)		= 394.39	
Block Shear Capacity in		223.84	
Tension (T db) (kN)		220.04	
\ /\ /		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	30.0	= Min(327.27, 394.39, 223.84)	Pass
		= 223.84	
Moment Capacity (kN-m)	1.05	14.73	Pass
Interaction Ratio	≤1	$\frac{1.05}{1.00} + \frac{30.0}{1.00} = 0.21$	Pass
		$\frac{1}{14.73} + \frac{223.84}{223.84} = 0.21$	1 000

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = max(30.4, 8.0) \\ = 30.4 \\ IS800: 2007 \ cl.10.5.2.3 \ Table 21, \\ t_{w_{min}} = 6$	6	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(30.4, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	6	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{1050000.0 * 84.0}{790272.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{1050000.0 * 0.0}{790272.0}$ $V_{wv} = \frac{V}{l_{w}} = \frac{30000.0}{336}$ $A_{wh} = \frac{A}{l_{w}} = \frac{30000.0}{336}$ $R_{w} = \sqrt{(111.61 + 89.29)^{2} + (0.0 + 89.29)^{2}}$ $= 219.84$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.2 * 410}{\sqrt{3} * 1.25}$ $= 795.36$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View