NTRO TO DATA LESSON 3: INTRO TO DATABASES

WHAT IS MACHINE LEARNING? TYPES OF MACHINE LEARNING PROBLEMS DESIGNING A REGRESSION USING MATRICES USING NUMPY, SCIPY, AND PANDAS

QUESTIONS?

I. INTRO TO DATABASES
II. RELATIONAL DATABASES / SQL

LAB
III. SQL LAB
IV. INTERACTING WITH SQL FROM PANDAS

I. INTRO TO DATABASES

Databases are a **structured** data source optimized for efficient **retrieval and storage**.

Databases are a **structured** data source optimized for efficient **retrieval and persistent storage**.

structured: we have to pre-define organization strategy

retrieval: the ability to read data out

storage: the ability to write data and save it

DATABASES 7

DATABASES 10

Relational databases are traditionally organized in the following manner:

A database has tables which represent individual entities or objects

Tables have predefined schema – rules that tell it what the data will look like

Each table should have a **primary key** column – a unique identifier for that row

Each table should have a **primary key** column – a unique identifier for that row

Additionally each table can have a **foreign key** column – an id that links this to another table.

We could have had a table structure as follows:

Why is this different?

We could have had a table structure as follows:

Why is this different?

We would repeat the user information in each row.

This is called denormalization.

tweets id text created at username full_name username text created_at

Normalized Data: Many tables to reduce redundant or repeated data in a table

Denormalized Data: Wide data with fields often repeated but removes the need to join together multiple tables

Normalized Data: Many tables to reduce redundant or repeated data in a table

Denormalized Data: Wide data with fields often repeated but removes the need to join together multiple tables

This is a trade off of speed vs storage.

tweets id text created_at username full_name username text created_at

Q: How do we commonly evaluate databases?

read-speed vs write-speed space considerations (and many, many other criteria) Q: Why are normalized tables (possibly) slower to read?

A: We'll have to get data from multiple tables to answer some questions

Q: Why are denormalized tables (possibly) slower to write?

A: We'll have to write more information on each write

tweets id text created_at username full_name username text created_at

SQL is a query language to load, retrieve, and update data in relational databases

Most commonly known SQL-like Databases include:

Oracle

MySQL

PostgreSQL

SELECT: Allows you to retrieve information from a table

Syntax:

SELECT col1, col2

FROM table WHERE [some condition]

Example:

SELECT poll_title, poll_date FROM polls WHERE romney_pct > obama_pct

GROUP BY: Allows you to aggregate information.

Syntax:

SELECT col1, AVG(col2)
FROM table GROUP BY col1

Example:

SELECT poll_date, AVG(obama_pct)
FROM polls GROUP BY poll_date

GROUP BY: Allows you to aggregate information.

```
Syntax:
SELECT col1, AVG(col2)
FROM table GROUP BY col1
```

Example:
SELECT poll_date, AVG(obama_pct)
FROM polls GROUP BY poll_date

GROUP BY: Allows you to aggregate information.

Syntax:
SELECT col1, AVG(col2)
FROM table GROUP BY col1

There are usually a few common built-in operations: SUM, AVG, MIN, MAX, COUNT

JOIN: Allows you to combine multiple tables

Syntax:

SELECT t1.c1, t1.c2, t2.c2 FROM t1 JOIN t2 ON t1.c1 = t2.c2 JOIN: Allows you to combine multiple tables

```
Syntax: SELECT t1.c1, t1.c2, t2.c2
```

FROM t1 JOIN t2 ON t1.c1 = t2.c2

```
id name id name

1 Pirate 1 Rutabaga
2 Monkey 2 Pirate
3 Ninja 3 Darth Vader
4 Spaghetti 4 Ninja
```

Let's join these tables by the name field in a few different ways and see if we can get a conceptual match to those nifty Venn diagrams.

Inner join produces only the set of records that match in both Table A and Table B.

INSERT: Allows you to **add** data to tables

Syntax:

INSERT INTO table1 (col1, col2)

VALUES (...)

INSERT INTO classroom (first_name, last_name)
VALUES ('John', 'Doe')

NoSQL databases are a new trend in databases

The name **NoSQL** refers to the lack of a relational structure between stored objects.

Most importantly they attempt to minimize the need for **JOIN** operations, or solve other data needs

Memcached	::	Livejournal
-----------	----	-------------

Apache HBase :: Google BigTable

Cassandra :: Amazon Dynamo

MongoDB :: 10Gen

Hadoop :: Google MapReduce

INTRO TO DATA SCIENCE

LAB