LR(1) e LALR

Nome: Hérson Reis Rezende dos Santos

Considere o autômato LR(1) acima, com 15 estados, criado a partir da gramática G10.

Grammar G₁₀

$$\begin{array}{c} \textbf{1. P} \rightarrow \textbf{E} \\ \textbf{2. E} \rightarrow \textbf{E} + \textbf{T} \\ \textbf{3. E} \rightarrow \textbf{T} \\ \textbf{4. T} \rightarrow \text{id} \textbf{(E)} \\ \textbf{5. T} \rightarrow \text{id} \\ \end{array}$$

a) Qual a principal diferença entre um autômato LR(0) e um autômato LR(1)? (50)

Resposta: A principal diferença entre um autômato LR(0) e um autômato LR(1) está na quantidade de símbolos de lookahead que são considerados durante o processo de análise. Enquanto o LR(0) não considera nenhum símbolo de lookahead, o LR(1) considera um símbolo, o que significa que, as decisões de redução baseiam-se não apenas no estado atual do analisador de pilha, mas também no próximo símbolo de entrada.

b) Desenhe a **tabela de análise** para G10 a partir do autômato LR(1). (100)

Resposta:

10: P'
$$\rightarrow$$
 .E [\$]
11: E \rightarrow .E + T [\$, +]
12: E \rightarrow .T [\$, +]
13: T \rightarrow .id (E)[\$, +,)]
14: T \rightarrow .id [\$, +,)]

Considere "sX" como shift de X, "rY" como redução de Y e "accept" como análise bem sucedida.

Estado	id	+	()	\$	E	Т
0	s4		s3			1	2
1	s4	s5	s3		accept	1	2
2		r3		r3	r3		
3	s4	s5	s3	s6		7	2
4		r5		r5	r5		
5	s4		s3				8
6	s4		s3				9
7		r4		r4	r4		
8		r1		r1	r1		
9		r2		r2	r2		

 c) Indique os estados do autômato LR(1) de G10 que podem ser combinados ("merged") segundo o método LALR. Qual o número de estados após o "merge"? (100)

Resposta:

I0: P'
$$\rightarrow$$
 .E
I1: E \rightarrow .E + T
I2: E \rightarrow .T
I3: T \rightarrow .id (E)
I4: T \rightarrow .id

Sendo assim, os conjuntos de núcleos LR(0) são {I0}, {I1, I2}, {I3}, e {I4}.

E após a operação de merge para formar um autômato LALR(1), temos:

```
Estado 0,1 = \{10, 11\} (Conjunto de Lookahead: [\$, +])
Estado 2 = \{12\} (Conjunto de Lookahead: [\$, +])
Estado 3,4 = \{13, 14\} (Conjunto de Lookahead: [\$, +, )])
```

Portanto, após a operação de "merge" para formar um autômato LALR(1), temos três estados no total.

d) Rode o Bison com a opção -v para G10 e examine o arquivo com extensão ".output".
 Qual o número de estados criados pelo Bison? (100)

Resposta: Conforme anexo abaixo, pode-se notar que foram determinados dez (10) estados.

