We claim:

1. A process for preparing a compound of Formula (I):

$$R^{1}$$
 O CO_2H (I)

from a benzazepine-phenol of Formula (II):

$$P^{2}$$
 $CO_{2}R^{3}$
(II),

wherein the benzazepine-phenol of Formula (II) is prepared by a process comprising converting a compound of Formula (III):

10 to a compound of Formula (IV):

$$R^{PO}$$
 CHO
$$R^{3}O_{2}C$$
 $CO_{2}R^{3}$
(IV);

wherein:

R^P is H or a suitable phenol protecting group;

R³ and R⁴ are the same or different and are each independently H or a carboxylic acid ester protecting group;

 R^2 is R^7 , C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, A- C_0 - C_4 alkyl-, A- C_2 - C_4 alkenyl-, A- C_3 - C_4 oxoalkenyl-, A- C_3 - C_4 oxoalkynyl-, A- C_0 - C_4 aminoalkyl-, A- C_3 - C_4 aminoalkenyl-, A- C_3 - C_4 aminoalkynyl-, optionally substituted by any accessible combination of one or more of R^{10} or R^7 ;

20 A is H, C₃-C₆ cycloalkyl, Het or Ar;

 R^7 is -COR⁸, -COCR²/2R⁹, -C(S)R⁸, -S(O)_mOR', -S(O)_mNR'R", -PO(OR'), -PO(OR')₂, -NO₂, or tetrazolyl;

each R^8 independently is -OR', -NR'R", -NR'SO₂R', -NR'OR', or -OCR'₂CO(O)R'; R^9 is -OR', -CN, -S(O)_rR', -S(O)_mNR'₂, -C(O)R', C(O)NR'₂, or -CO₂R';

R¹⁰ is H, halo, -OR¹¹, -CN, -NR'R¹¹, -NO₂, -CF₃, CF₃S(O)₁-, -CO₂R', -CONR'₂,

A-C₀-C₆ alkyl-, A-C₁-C₆ oxoalkyl-, A-C₂-C₆ alkenyl-, A-C₂-C₆ alkyloxy-, A-C₀-C₆ alkylamino- or A-C₀-C₆ alkyl-S(O)_r-;

 R^{11} is R', -C(O)R', -C(O)NR'₂, -C(O)OR', -S(O)_mR', or -S(O)_mNR'₂; R^{1} is

$$R^b$$
 N
 R^f
 R^b
 N
 R^b
 N
 N
 N
 N
 N

$$R^{b}$$
 N
 R^{e}
 R^{e}
 R^{e}

5

10

15

$$R'$$
 N
 N
 N
 $CR'_{2})_{v}$
 W
 Q^{1}
 Q^{2}
 Q^{3}
 Q^{3}
 Q^{4}
 Q^{3}
 Q^{3}
 Q^{4}
 Q^{3}
 Q^{4}
 Q^{3}
 Q^{4}
 Q^{3}
 Q^{4}
 Q^{3}
 Q^{4}
 Q^{3}
 Q^{4}

$$()_{s} NR^{9} NR^{9}$$

W is -(CHR^g)_a-U- (CHR^g)_b-;

- 45 -

;

U is absent or CO, CR_2^g , $C(=CR_2^g)$, $S(O)_k$, O, NR^g , CR^gOR^g , $CR^g(OR^k)CR_2^g$, $CR_2^gCR_2^g(OR^k)$, $C(O)CR_2^g$, $CR_2^gC(O)$, $CONR^i$, NR^iCO , OC(O), C(O)O, C(S)O, OC(S), $C(S)NR^g$, $NR^gC(S)$, $S(O)_2NR^g$, $NR^gS(O)_2N=N$, NR^gNR^g , $NR^gCR_2^g$, $CR_2^gNR^g$, CR_2^gO OCR_2^g , C=C or $CR_2^g=CR_2^g$;

5 G is NR^e, S or O;

 R^g is H, C_1 - C_6 alkyl, Het- C_0 - C_6 alkyl, C_3 - C_7 cycloalkyl- C_0 - C_6 alkyl or Ar- C_0 - C_6 alkyl; R^k is R^g , -C(O) R^g , or -C(O) R^g ;

 R^{i} is H, C_1 - C_6 alkyl, Het- C_0 - C_6 alkyl, C_3 - C_7 cycloalkyl- C_0 - C_6 alkyl, Ar- C_0 - C_6 alkyl, or C_1 - C_6 alkyl substituted by one to three groups chosen from halogen, CN, NR^g_2 , OR^g , SR^g ,

10 CO_2R^g , and $CON(R^g)_2$;

Rg is H, C1-C6 alkyl or Ar-C0-C6 alkyl;

 R^{e} is H, C_1 - C_6 alkyl, Ar- C_0 - C_6 alkyl, Het- C_0 - C_6 alkyl, C_3 - C_7 cycloalkyl- C_0 - C_6 alkyl, or $(CH_2)_kCO_2R^8$;

R^b and R^c are independently selected from H, C₁-C₆ alkyl, Ar-C₀-C₆ alkyl,

Het-C₀-C₆ alkyl, or C₃-C₆ cycloalkyl-C₀-C₆ alkyl, halogen, CF₃, OR^f, S(O)_kR^f, COR^f, NO₂,

N(R^f)₂, CO(NR^f)₂, CH₂N(R^f)₂, or R^b and R^c are joined together to form a five or six membered aromatic or non-aromatic carbocyclic or heterocyclic ring, optionally substituted by up to three substituents chosen from halogen, CF₃, C₁-C₄ alkyl, OR^f, S(O)_kR^f, COR^f, CO₂R^f, OH,

NO₂, N(R^f)₂, CO(NR^f)₂, and CH₂N(R^f)₂; or methylenedioxy;

Q¹, Q², Q³ and Q⁴ are independently N or C-R^y, provided that no more than one of Q¹, Q^2 , Q^3 and Q^4 is N;

R' is H, C_1 - C_6 alkyl, Ar- C_0 - C_6 alkyl or C_3 - C_6 cycloalkyl- C_0 - C_6 alkyl;

R" is R', -C(O)R' or -C(O)OR';

R" is H, C₁-C₆ alkyl, Ar-C₀-C₆ alkyl, Het-C₀-C₆ alkyl, or

25 C₃-C₆ cycloalkyl-C₀-C₆ alkyl, halogen, CF₃, OR^f, S(O)_kR^f, COR^f, NO₂, N(R^f)₂, CO(NR^f)₂, CH₂N(R^f)₂;

 R^y is H, halo, $-OR^g$, $-SR^g$, -CN, $-NR^gR^k$, $-NO_2$, $-CF_3$, $CF_3S(O)_r$ -, $-CO_2R^g$, $-COR^g$ or $-CONR^g_2$, or C_1 - C_6 alkyl optionally substituted by halo, $-OR^g$, $-SR^g$, -CN, $-NR^gR^u$, $-NO_2$, $-CF_3$, $R'S(O)_r$ -, $-CO_2R^g$, $-COR^g$ or $-CONR^g_2$;

30 a is 0, 1 or 2;

b is 0, 1 or 2;

k is 0, 1 or 2;

m is 1 or 2;

r is 0, 1 or 2;

35 s is 0, 1 or 2;

u is 0 or 1; and v is 0 or 1.

2. A process according to claim 1, comprising preparing a compound of Formula (I-S):

5

10

from a benzazepine-phenol of Formula (II-S):

HO
$$R^2$$
 CO_2R^3
(II-S),

wherein the benzazepine-phenol of Formula (II-S) is prepared by a process comprising converting a compound of Formula (III):

$$R^{PO}$$
 CHO CO_2R^4 (III)

to a compound of Formula (IV-S):

- 3. A process according to claim 1, further comprising a process for preparing the compound of Formula (II) comprising the steps of:
 - 1) treating a compound having Formula (a)

wherein R^P is H or a suitable phenol protecting group and X is halogen, -OSO₂F, or -OSO₂CF₃,

with a compound having the formula:

$$=$$
 CO_2R^4

to form a compound of Formula (b)

5

2) converting the compound of Formula (b) to a compound of Formula (c);

$$R^{PO}$$
 Z
 $R^{5'}$
 CO_2R^4
 CO_2R^4

wherein R⁵ and R^{5'} are C₁-C₄ alkyl or R⁵ and R^{5'}, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring and Z and Z' are independently selected from O, NH or NCH₃;

3) converting the compound of Formula (c) to a compound of Formula (d):

15 4) converting the compound of Formula (d) to a compound of Formula (e)

5) converting the compound of Formula (e) to a compound of Formula (f)

$$R^{PO}$$
 N
 CO_2R^3
(f); and

- 6) converting the compound of Formula (I) to a compound of Formula (II).
- 4. A process according to claim 1, further comprising a process for preparing the compound of Formula (II) comprising the steps of:
 - 1) converting 3-hydroxybenzaldehyde to a compound of Formula (aa)

2) treating the compound of Formula (aa) with itaconic acid to form a 10 compound of Formula (bb):

3) converting the compound of Formula (bb) to a compound of Formula (cc)

where R⁵ and R⁵ are C₁-C₄ alkyl or R⁵ and R⁵, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring;

4) converting the compound of Formula (cc) to a compound of Formula (dd)

HO
$$O$$
 R^5 CO_2R^4 (dd);

5) converting the compound of Formula (dd) to a compound of Formula (ee)

- 6) converting the compound of Formula (ee) to a compound of Formula (II).
- 5. A process according to claim 2, further comprising a process for preparing the compound of Formula (II-S) comprising the steps of:
 - 1) converting the compound having the formula:

5

wherein R⁵ and R^{5'} are C₁-C₄ alkyl or R⁵ and R^{5'}, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring and Z and Z' are independently selected from O, NH or NCH₃, to a compound having the formula:

2) converting the compound formed in step 1) into a compound having the formula:

3) converting the compound formed in step 2) into the compound having the formula:

5 4) converting the compound formed in step 3) into the compound of Formula (II-S).

6. A process according to claim 2, further comprising a process for preparing the compound of Formula (II-S) comprising the steps of:

1) converting the compound having the formula:

10

wherein R⁵ and R^{5'} are C₁-C₄ alkyl or R⁵ and R^{5'}, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring, into a compound having the formula:

2) converting the compound formed in step 1) into a compound having the formula:

- 3) converting the compound formed in step 2) into the compound of Formula (II-S).
- 7. A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

1) converting 2-amino-6-methylpyridine into a compound having the formula:

- wherein R^P is a suitable amino protecting group;
 - 2) converting the compound formed in step 1) to a compound having the formula:

- 3) converting the compound formed in step 2) to a compound having the
- 15 formula:

wherein R⁶ is H or an alkyl carboxylic acid ester protecting group;

4) converting the compound formed in step 3) to a compound having the formula:

5) treating the compound formed in step 4) with a compound having the formula:

5 to form a compound having the formula:

- 6) converting the compound formed in step 5) to the compound of Formula I.
- 8. A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

1) converting 2-amino-6-methylpyridine into a compound having the Formula:

converting the compound formed in step 1) to a compound having the formula:

3) converting the compound formed in step 2) to a compound having the formula:

5 4) converting the compound formed in step 3) to a compound having the formula:

5) treating the compound formed in step 4) with a compound having the formula:

to form a compound having the formula:

10

- 6) converting the compound formed in step 5) to the compound of Formula (I).
- 9. A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

10

15

1) converting a compound having the formula:

5 wherein X is halogen or -OSO₂CF₃, to a compound having the formula:

2) converting the compound formed in step 1) into a compound having the formula:

wherein X' is halogen, -OSO₂CH₃, -OSO₂CF₃, -OSO₂(phenyl), or -OSO₂(p-tolyl);

3) treating the compound formed in step 2) with a compound having the formula:

to form a compound having the formula:

- 4) converting the compound formed in step 3) into the compound of Formula (I).
- 10. A process according to claim 1, further comprising a process for preparing the compound of Formula (I) having the formula:

comprising the steps of:

10

15

1) converting 2-chloropyrdine, N-oxide to a compound having the formula:

5 2) converting the compound formed in step 1) into a compound having the formula:

3) treating the compound formed in step 2) with a compound having the formula:

to form a compound having the formula:

- 4) converting the compound formed in step 3) into the compound of Formula (I).
- 11. A process according to any one of claims 1-7 or 9, wherein R³ is H, C₁-C₆ alkyl or phenyl-C₁-C₄ alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl.
 - 12. A process according to any one of claims 1-7 or 9, wherein \mathbb{R}^3 is H or \mathbb{C}_1 - \mathbb{C}_4 alkyl.

- 13. A process according to any one of claims 1-7 or 9, wherein R³ is C₁-C₄ alkyl.
- 14. A process according to any one of claims 1-7 or 9, wherein R³ is methyl.
- 5 15. A process according to any one of claims 1-6, wherein R⁴ is H, C₁-C₆ alkyl or phenyl-C₁-C₄ alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl.
- 10 16. A process according to any one of claims 1-6, wherein R⁴ is H or C₁-C₄ alkyl.
 - 17. A process according to any one of claims 1-6, wherein R⁴ is H.
 - 18. A compound having the formula:

15

wherein:

R^P is H or a suitable phenol protecting group;

R⁴ is H or a carboxylic acid ester protecting group;

R⁵ and R⁵ are C₁-C₄ alkyl or R⁵ and R⁵, taken together with the atoms to which they
are attached form a saturated 5- or 6-membered heterocyclic ring and Z and Z' are
independently selected from O, NH or NCH₃;

or a pharmaceutically acceptable salt or solvate thereof.

- 19. A compound according to claim 18, wherein R⁴ is H, C₁-C₆ alkyl or phenyl 25 C₁-C₄ alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl.
 - 20. A compound according to claim 18, wherein \mathbb{R}^4 is H or \mathbb{C}_1 - \mathbb{C}_4 alkyl.

30

- 21. A compound according to claim 18, wherein R⁴ is H.
- 22. A compound having the formula:

5 wherein::

10

25

30

RP is H or a suitable phenol protecting group;

R³ is H or a carboxylic acid ester protecting group;

 R^5 and $R^{5'}$ are C_1 - C_4 alkyl or R^5 and $R^{5'}$, taken together with the atoms to which they are attached form a saturated 5- or 6-membered heterocyclic ring and Z and Z' are independently selected from O, NH or NCH₃;

or a pharmaceutically acceptable salt or solvate thereof.

- A compound according to claim 22, wherein R³ is H, C₁-C₆ alkyl or phenyl-C₁-C₄ alkyl-, wherein the phenyl moiety is unsubstituted or substituted by one or more substituents selected from ortho and para substituents selected from chloro, bromo, nitro, methoxy and methyl.
 - 24. A compound according to claim 22, wherein R³ is H or C₁-C₄ alkyl.
- 20 25. A compound according to claim 22, wherein R³ is C₁-C₄ alkyl.
 - 26. A compound according to claim 22, wherein R³ is methyl.
 - 27. A compound according to any one of claims 18-26, wherein R^P is H.
 - 28. A compound according to any one of claims 18-27, wherein Z and Z' are both O.
 - 29. A compound according to any one of claims 18-28, wherein R^5 and $R^{5'}$ are C_1 - C_4 alkyl.
 - 30. A compound according to any one of claims 18-29, wherein R⁵ and R⁵ are methyl.

31. A compound:

8-[2-[6-(methylamino)pyridin-2-yl]-1-ethoxy]-3-oxo-2-(2,2,2-trifluoroethyl)-1,2,4,5-tetrahydro-2-benzazepine-4-acetic acid,

S-(-)-8-[2-[6-(methylamino)pyridin-2-yl]-1-ethoxy]-3-oxo-2-(2,2,2-trifluoroethyl)-5 1,2,4,5-tetrahydro-2-benzazepine-4-acetic acid,

2,3,4,5-tetrahydro-3-oxo-8-[3-(2-pyridinylamino)propoxy]-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetic acid, or

(S)-2,3,4,5-tetrahydro-3-oxo-8-[3-(2-pyridinylamino)propoxy]-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetic acid.

10

15

20

32. A compound:

methyl 2, 3, 4, 5-tetrahydro-8-hydroxy-3-oxo-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetate,

(S)-methyl 2, 3, 4, 5-tetrahydro-8-hydroxy-3-oxo-2-(2,2,2-trifluoroethyl)-1H-2-benzazepine-4-acetate,

2-[(2-formyl-4-hydroxyphenyl)methylidene]succinic acid, 2-carboxyl-4-[(2-formyldimethylacetal-4-hydroxyphenyl)] butyric acid, bis(dicyclohexylamine) salt, (S)-2-carboxyl-4-[(2-formyldimethylacetal-4-hydroxyphenyl)] butyric acid,

bis(dicyclohexylamine) salt,

dimethyl 2-[(2-formyl-4-hydroxyphenyl)methyl]butanedioate, or dimethyl (2S)-2-[(2-formyl-4-hydroxyphenyl)methyl]butanedioate.