Постоянно переменный ток (решение)

Для произвольного момента времени запишем законы Кирхгофа и найдем распределение токов:

$$\begin{cases} I_g = I_r + I_b \\ \mathcal{E}_2 = I_b R + I_g R \\ (\mathcal{E}_1 - \mathcal{E}_2) = -I_r - I_g \end{cases}$$

$$\begin{cases} I_r = \frac{\mathcal{E}_2 - 2\mathcal{E}_1}{3R} \\ I_g = \frac{2\mathcal{E}_2 - \mathcal{E}_1}{3R} \\ I_b = \frac{\mathcal{E}_2 + \mathcal{E}_1}{3R} \end{cases}$$

Выразим зависимости напряжений на батарейках от времени:

$$\mathscr{E}_1 = \frac{2\mathscr{E}_0}{\tau_0}t;$$

$$\mathscr{E}_2 = \mathscr{E}_0 - \frac{\mathscr{E}_0}{\tau_0} t.$$

Пришло время вспомнить, чего от нас хотят в задаче.))

- 1. Напряжение на синем резисторе в момент $t = \tau_0/2$ будет равно $\mathcal{E}_0/2$.
- 2. Максимальный ток, протекающий через красный резистор $I_{rmax}=~4\mathscr{E}_0/3R.$
- 3. Найдем заряд, протекший через зеленый резистор. Для этого построим график $I_g(t)$ и найдем площадь заштрихованной фигуры.

Площадь выделенной фигуры численно равна заряду, протекшему через зеленый резистор: $q_g = \mathcal{E}_0 \tau_0/3R$.

4. В произвольный момент времени в цепи выделяется мощность

$$P = \frac{1}{9R} \left[(2\mathcal{E}_1 - \mathcal{E}_2)^2 + (\mathcal{E}_1 + \mathcal{E}_2)^2 + (2\mathcal{E}_2 - \mathcal{E}_1)^2 \right];$$

$$P = \frac{42\mathcal{E}_0^2 t^2 - 24\mathcal{E}_0^2 \tau_0 t + 6\mathcal{E}_0^2 \tau_0^2}{9R}.$$

Минимальная мощность $P_{min} = 2\mathcal{E}_0^2/7R$ будет в момент $t = 2\tau_0/7$.