

Analysis and approximation of the nematic Helmholtz-Korteweg equation

Patrick E. Farrell¹, Tim van Beeck², Umberto Zerbinati¹

¹University of Oxford; ²University of Göttingen

Applied Mathematics Seminar, Pavia, Dec. 10th, 2024

Introduction

- Goal: describe time-harmonic (acoustic) wave propagation in a nematic liquid crystal
- Korteweg-fluid: $\underline{\underline{\sigma}} = p\underline{\underline{l}} u_1 \rho (\nabla \rho \otimes \nabla \rho)$

Nematic Helmholtz-Korteweg equation¹

Given $f \in L^2(\Omega)$, find $u : \Omega \to \mathbb{C}$ s.t.

$$\alpha \Delta^2 u + \beta \nabla \cdot \nabla (\mathbf{n}^T (\mathcal{H} u) \mathbf{n}) - \Delta u - k^2 u = f$$
 in Ω ,
 $\mathcal{B} u = (0,0)$ on $\partial \Omega$.

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, bounded Lipschitz domain;
- α, β : constitution parameters;
- \mathcal{H} : Hessian;
- n: orientation of the nematic field (||n|| = 1);
- $k = \omega/c$: (classic) wave-number;
- *B*: encodes the boundary conditions;

P.E. Farrell, U. Zerbinati, Time-harmonic waves in Korteweg and nematic-Korteweg fluids. arXiv, 2024.

Boundary conditions²

- → 4th-order PDE, so we need two boundary conditions
 - 1. *sound soft:*

$$\mathcal{B}u := (u, \Delta u + \frac{eta}{lpha} m{n}^{\mathsf{T}} (\mathcal{H}u) m{n})$$

2. *sound hard:*

$$\mathcal{B}u := (\partial_{m{
u}}u, \partial_{m{
u}}\Delta u + rac{eta}{lpha}\partial_{m{
u}}(m{n}^{m{ au}}(\mathcal{H}u)m{n}))$$

3. impedance:

$$\mathcal{B}u := (\partial_{\boldsymbol{\nu}}u - i\theta u, \partial_{\boldsymbol{\nu}}\Delta u - i\theta(\frac{\beta}{\alpha}\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n} - \frac{\beta}{\alpha}\partial_{\boldsymbol{\nu}}(\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n})))$$

→ our analysis covers all cases!

P.E. Farrell, U. Zerbinati, Time-harmonic waves in Korteweg and nematic-Korteweg fluids. arXiv, 2024.

Abstract framework

Indefiniteness of Helmholtz-like problems

Let X be a separable Hilbert space. For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

where $e(\cdot, \cdot)$ is s.t. the eigenvalue problem: find $u \in X$, $\lambda \in \mathbb{C}$ s.t.

$$e(u, v) = \lambda(u, v)_{L^2(\Omega)}$$

is well-posed and the associated solution operator is compact & self-adjoint.

Indefiniteness of Helmholtz-like problems

Let X be a separable Hilbert space. For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u, v) := e(u, v) - k^{2}(u, v)_{L^{2}(\Omega)} = (f, v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

where $e(\cdot, \cdot)$ is s.t. the eigenvalue problem: find $u \in X$, $\lambda \in \mathbb{C}$ s.t.

$$e(u, v) = \lambda(u, v)_{L^2(\Omega)}$$

is well-posed and the associated solution operator is compact & self-adjoint.

 \rightarrow the eigenfcts. $\{e^{(i)}\}_{i\in\mathbb{N}}$ form an orthonormal basis of X

Indefiniteness of Helmholtz-like problems

Let *X* be a separable Hilbert space. For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

where $e(\cdot, \cdot)$ is s.t. the eigenvalue problem: find $u \in X$, $\lambda \in \mathbb{C}$ s.t.

$$e(u, v) = \lambda(u, v)_{L^2(\Omega)}$$

is well-posed and the associated solution operator is compact & self-adjoint.

- \rightarrow the eigenfects. $\{e^{(i)}\}_{i\in\mathbb{N}}$ form an orthonormal basis of X
- → suppose $\exists i_*$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$, then (P) is indefinite:

$$a(e^{(i_*)}, e^{(i_*)}) = \lambda^{(i_*)} - k^2 < 0 < \lambda^{(i_*+1)} - k^2 = a(e^{(i_*+1)}, e^{(i_*+1)})$$

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X)$ be the associated operator: $(Au, v)_X = a(u, v) \ \forall u, v \in X$.

 \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X)$ be the associated operator: $(Au, v)_X = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X)$ be the associated operator: $(Au, v)_X = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A* injective

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X)$ be the associated operator: $(Au, v)_X = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A* injective
 - $\Leftrightarrow \exists \alpha > 0 \text{ s.t. } ||Au||_X \ge \alpha ||u||_X \text{ for all } u \in X \& A^* \text{ injective}$

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X)$ be the associated operator: $(Au, v)_X = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A* injective
 - $\Leftrightarrow \exists \alpha > 0 \text{ s.t. } ||Au||_X \ge \alpha ||u||_X \text{ for all } u \in X \& A^* \text{ injective}$

$$\Leftrightarrow \underbrace{\inf_{u \in X} \sup_{v \in X} \frac{|(Au, v)_X|}{\|u\|_X \|v\|_X}}_{\text{}} \geq \alpha > 0 \& A^* \text{ injective}$$

inf-sup condition

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X)$ be the associated operator: $(Au, v)_X = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A^* injective
 - $\Leftrightarrow \exists \alpha > 0 \text{ s.t. } ||Au||_X \ge \alpha ||u||_X \text{ for all } u \in X \& A^* \text{ injective}$
 - $\Leftrightarrow \underbrace{\inf_{u \in X} \sup_{v \in X} \frac{|(Au, v)_X|}{\|u\|_X \|v\|_X}}_{\text{inf-sup condition}} \ge \alpha > 0 \& A^* \text{ injective}$

Theorem (Lax-Milgram)

A is coercive, i.e. $\exists \alpha > 0$ s.t. $\Re\{(Au, u)_X\} \ge ||u||_X^2 \Rightarrow A$ is a bounded isomorphism

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

³e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity³)

We call $A \in L(X)$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. AT is coercive, i.e.

$$\Re\{(ATu,u)_X\} \ge \alpha \|u\|_X^2$$

³ e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity³)

We call $A \in L(X)$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. AT is coercive, i.e.

$$\Re\{(ATu,u)_X\} \ge \alpha \|u\|_X^2$$

→ T-coercivity equivalent to well-posedness (necessary & sufficient)

³e.g. P. Ciarlet Jr., *T-coercivity: Application to the discretization of Helmholtz-like problems*. CAMWA, 2012.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity³)

We call $A \in L(X)$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. AT is coercive, i.e.

$$\Re\{(ATu,u)_X\} \ge \alpha \|u\|_X^2$$

- → T-coercivity equivalent to well-posedness (necessary & sufficient)
- \rightarrow recover coercivity with T = Id

³ e.g. P. Ciarlet Jr., *T-coercivity: Application to the discretization of Helmholtz-like problems.* CAMWA, 2012.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity³)

We call $A \in L(X)$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. AT is coercive, i.e.

$$\Re\{(ATu,u)_X\} \ge \alpha \|u\|_X^2$$

- → T-coercivity equivalent to well-posedness (necessary & sufficient)
- \rightarrow recover coercivity with T = Id
- → not directly inherited to the discrete level

e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u, v) := e(u, v) - k^{2}(u, v)_{L^{2}(\Omega)} = (f, v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
(P)

 \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
(P)

- \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$
- \rightarrow construct $T \in L(X)$ bijective, s.t.

$$Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } i \leq i_*; \\ +e^{(i)} & \text{if } i > i_*. \end{cases}$$

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
(P)

- \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$
- \rightarrow construct $T \in L(X)$ bijective, s.t.

$$Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } i \leq i_*; \\ +e^{(i)} & \text{if } i > i_*. \end{cases}$$

 \rightarrow can show coercivity of $a(\cdot, T\cdot)$ since

$$a(e^{(i)}, Te^{(i)}) = \begin{cases} k^2 - \lambda^{(i)} & \text{if } i \leq i_* \\ \lambda^{(i)} - k^2 & \text{if } i > i_* \end{cases} > 0.$$

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

- \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$
- \rightarrow construct $T \in L(X)$ bijective, s.t.

$$Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } i \leq i_*; \\ +e^{(i)} & \text{if } i > i_*. \end{cases}$$

 \rightarrow can show coercivity of $a(\cdot, T\cdot)$ since

$$a(e^{(i)}, Te^{(i)}) = \begin{cases} k^2 - \lambda^{(i)} & \text{if } i \leq i_* \\ \lambda^{(i)} - k^2 & \text{if } i > i_* \end{cases} > 0.$$

→ what about boundary terms?

Definition (Compact operator)

We call an operator $K \in L(X)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Definition (Compact operator)

We call an operator $K \in L(X)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Definition (Weak T-coercivity)

 $A \in L(X)$ is called *weakly T-coercive* if there $\exists T \in L(X)$ bijective, $K \in L(X)$ compact s.t. AT + K is coercive.

Definition (Compact operator)

We call an operator $K \in L(X)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Definition (Weak T-coercivity)

 $A \in L(X)$ is called *weakly T-coercive* if there $\exists \ T \in L(X)$ bijective, $K \in L(X)$ compact s.t. AT + K is coercive.

 \rightarrow i.e. AT = bij. + comp., so AT is Fredholm with index zero!

Definition (Compact operator)

We call an operator $K \in L(X)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Definition (Weak T-coercivity)

 $A \in L(X)$ is called *weakly T-coercive* if there $\exists \ T \in L(X)$ bijective, $K \in L(X)$ compact s.t. AT + K is coercive.

- \rightarrow i.e. AT = bij. + comp., so AT is Fredholm with index zero!
- \rightarrow if A is weakly T-coercive and injective, then A is bijective

The discrete level

→ (weak) T-coercivity not inherited to the discrete level!

Definition (Uniform T_h -coercivity)

Let $\{X_h\}_h \subset X$ be a seq. of discrete spaces. We call A uniformly T_h -coercive on $\{X_h\}_h$ if there exists a family of bijective operators $\{T_h\}_h$, $T_h \in L(X_h)$ and α_* independent of h s.t.

$$\Re\{(AT_hu_h,u_h)_{X_h}\}\geq \alpha_*\|u_h\|_X^2,$$

The discrete level

→ (weak) T-coercivity not inherited to the discrete level!

Definition (Uniform T_h -coercivity)

Let $\{X_h\}_h \subset X$ be a seq. of discrete spaces. We call A uniformly T_h -coercive on $\{X_h\}_h$ if there exists a family of bijective operators $\{T_h\}_h$, $T_h \in L(X_h)$ and α_* independent of h s.t.

$$\Re\{(AT_hu_h,u_h)_{X_h}\}\geq \alpha_*\|u_h\|_X^2,$$

Theorem

Let $A \in L(X)$ be injective and A = B + K, where $B \in L(X)$ is bijective and $K \in L(X)$ compact. If B is uniformly T_h -coercive on $\{X_h\}_h \subset X$, then there exists $h_0 > 0$ s.t. A is uniformly T_h -coercive on $\{X_h\}_h$ for $h \leq h_0$.

Continuous problem

Weak formulation

We want to find $u \in X$ s.t.

$$a(u,v) = (f,v)_{L^2(\Omega)} \qquad \forall v \in X,$$
 (CP)

where

$$a(u,v) := \alpha(\Delta u, \Delta v)_{L^{2}(\Omega)} + \beta(\mathbf{n}^{T}(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^{2}(\Omega)} + (\nabla u, \nabla v)_{L^{2}(\Omega)} - k^{2}(u,v)_{L^{2}(\Omega)} + (Ku,v)_{H^{2}(\Omega)}$$

- \rightarrow $K \in L(X)$ encodes the boundary conditions
- \rightarrow choice of X depends on BCs: sound soft: $X = H^2(\Omega) \cap H^1_0(\Omega)$, sound hard & impedance: $X = H^2(\Omega)$

Weak formulation

We want to find $u \in X$ s.t.

$$a(u,v) = (f,v)_{L^2(\Omega)} \quad \forall v \in X,$$
 (CP)

where

$$a(u,v) := \underbrace{\alpha(\Delta u, \Delta v)_{L^{2}(\Omega)} + \beta(\mathbf{n}^{T}(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^{2}(\Omega)} + (\nabla u, \nabla v)_{L^{2}(\Omega)}}_{=:e(u,v)} - k^{2}(u,v)_{L^{2}(\Omega)}$$

$$+ (Ku, v)_{H^{2}(\Omega)}$$

- \rightarrow $K \in L(X)$ encodes the boundary conditions
- ⇒ choice of X depends on BCs: sound soft: $X = H^2(\Omega) \cap H_0^1(\Omega)$, sound hard & impedance: $X = H^2(\Omega)$

Boundary conditions

- sound soft: K := 0
- sound hard:

$$(\mathsf{K}\mathsf{u},\mathsf{v})_{\mathsf{H}^2(\Omega)} := -\alpha(\Delta\mathsf{u},\nabla\mathsf{v}\cdot\boldsymbol{\nu})_{\mathsf{L}^2(\partial\Omega)} + \beta(\boldsymbol{n}^\mathsf{T}(\mathcal{H}\mathsf{u})\boldsymbol{n},\nabla\mathsf{v}\cdot\boldsymbol{\nu})_{\mathsf{L}^2(\partial\Omega)}$$

• impedance:

$$(Ku, v)_{H^{2}(\Omega)} := -\alpha(\Delta u, \nabla v \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} + \alpha i\theta(\Delta u, v)_{L^{2}(\partial\Omega)}$$

+ $\beta i\theta(\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n}, v)_{L^{2}(\partial\Omega)} - \beta(\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n}, \nabla v \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}$
- $i\theta(u, v)_{L^{2}(\partial\Omega)}$

Roadmap

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

→ self-adjointness, well-posedness, compact solution operator

Roadmap

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(u, v)_{L^2(\Omega)}$ is T-coercive;

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(u, v)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X)$ is compact;

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(u, v)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X)$ is compact;
- 4. Show that $A \in L(X)$, $(Au, v)_{H^2(\Omega)} := a(u, v)$, is injective.

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(u, v)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X)$ is compact;

only sound hard

4. Show that $A \in L(X)$, $(Au, v)_{H^2(\Omega)} := a(u, v)$, is injective.

impedance BC

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(u, v)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X)$ is compact;

only sound hard

4. Show that $A \in L(X)$, $(Au, v)_{H^2(\Omega)} := a(u, v)$, is injective.

k impedance BC

 \Rightarrow A is weakly T-coercive and injective, so (CP) is well-posed.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

→ self-adjointness of $\beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)}$ by part. Int.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,

$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

- → self-adjointness of $\beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)}$ by part. Int.
- ⇒ coercivity of $e(\cdot, \cdot)$ on $H_0^2(\Omega)$ with C. S. and Poincaré ineq.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

- → self-adjointness of $\beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)}$ by part. Int.
- ⇒ coercivity of $e(\cdot, \cdot)$ on $H_0^2(\Omega)$ with C. S. and Poincaré ineq.
- \rightarrow compactness follows from the compact emb. $H_0^2(\Omega) \hookrightarrow L^2(\Omega)$

→ ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X

- → ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X
- \rightarrow set $i_* := \min\{i \in \mathbb{N} : \lambda^{(i)} < k^2\}$ and define

$$W := \operatorname{span}_{0 \le i \le i_*} \{ e^{(i)} \}, \qquad T := \operatorname{Id}_X - 2P_W$$

- ⇒ ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X
- \rightarrow set $i_* := \min\{i \in \mathbb{N} : \lambda^{(i)} < k^2\}$ and define

$$W := \operatorname{span}_{0 \le i \le i_*} \{ e^{(i)} \}, \qquad T := \operatorname{Id}_X - 2P_W$$

→ T bijective & acts on eigenfcts. as $Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } \lambda^{(i)} < k^2; \\ +e^{(i)} & \text{if } \lambda^{(i)} > k^2. \end{cases}$

- → ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X
- \rightarrow set $i_* := \min\{i \in \mathbb{N} : \lambda^{(i)} < k^2\}$ and define

$$W := \operatorname{span}_{0 \le i \le i_*} \{ e^{(i)} \}, \qquad T := \operatorname{Id}_X - 2P_W$$

- → *T* bijective & acts on eigenfects. as $Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } \lambda^{(i)} < k^2; \\ +e^{(i)} & \text{if } \lambda^{(i)} > k^2. \end{cases}$
- → We have that

$$e(u, Tu) - k^{2}(u, Tu)_{L^{2}}$$

$$= \sum_{i \leq i_{*}} C_{\lambda}(k^{2} - \lambda^{(i)})(u^{(i)})^{2} + \sum_{i \geq i_{*}} C_{\lambda}(\lambda^{(i)} - k^{2})(u^{(i)})^{2} \geq \gamma ||u||_{X}^{2}$$

Estimate each boundary term, e.g. for sound hard BCs ($\beta = 0$)

$$||Ku||_{H^{2}(\Omega)} = \sup_{v \in X \setminus \{0\}} \frac{|(Ku, v)_{H^{2}(\Omega)}|}{||v||_{H^{2}(\Omega)}}$$

$$\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha||\gamma_{0}\Delta u||_{L^{2}(\partial\Omega)}||\gamma_{0}\nabla v \cdot \nu||_{L^{2}(\partial\Omega)}|}{||v||_{H^{2}(\Omega)}}$$

$$\leq C|\alpha|||\gamma_{0}\Delta u||_{L^{2}(\partial\Omega)}$$

Estimate each boundary term, e.g. for sound hard BCs ($\beta = 0$)

$$||Ku||_{H^{2}(\Omega)} = \sup_{v \in X \setminus \{0\}} \frac{|(Ku, v)_{H^{2}(\Omega)}|}{||v||_{H^{2}(\Omega)}}$$

$$\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| ||\gamma_{0} \Delta u||_{L^{2}(\partial \Omega)} ||\gamma_{0} \nabla v \cdot \nu||_{L^{2}(\partial \Omega)}|}{||v||_{H^{2}(\Omega)}}$$

$$\leq C|\alpha| ||\gamma_{0} \Delta u||_{L^{2}(\partial \Omega)}$$

→ last step uses continuity of normal trace operator

Estimate each boundary term, e.g. for sound hard BCs ($\beta = 0$)

$$\begin{aligned} \|Ku\|_{H^{2}(\Omega)} &= \sup_{v \in X \setminus \{0\}} \frac{|(Ku, v)_{H^{2}(\Omega)}|}{\|v\|_{H^{2}(\Omega)}} \\ &\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \|\gamma_{0} \nabla v \cdot \boldsymbol{\nu}\|_{L^{2}(\partial \Omega)}|}{\|v\|_{H^{2}(\Omega)}} \\ &\leq C|\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \end{aligned}$$

- → last step uses continuity of normal trace operator
- \rightarrow Thus: $\forall (u_n)_{n\in\mathbb{N}}\subset H^2$ s.t. $u_n\stackrel{H^2}{\rightharpoonup} u\Rightarrow Ku_n\to Ku$, so K is compact

Estimate each boundary term, e.g. for *sound hard* BCs ($\beta = 0$)

$$\begin{aligned} \|Ku\|_{H^{2}(\Omega)} &= \sup_{v \in X \setminus \{0\}} \frac{|(Ku, v)_{H^{2}(\Omega)}|}{\|v\|_{H^{2}(\Omega)}} \\ &\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \|\gamma_{0} \nabla v \cdot \boldsymbol{\nu}\|_{L^{2}(\partial \Omega)}|}{\|v\|_{H^{2}(\Omega)}} \\ &\leq C|\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \end{aligned}$$

- → last step uses continuity of normal trace operator
- \rightarrow Thus: $\forall (u_n)_{n\in\mathbb{N}}\subset H^2$ s.t. $u_n\stackrel{H^2}{\rightharpoonup} u\Rightarrow Ku_n\to Ku$, so K is compact
- \rightarrow use similar arguments for $\beta > 0$ & the *impedance* case

Continuous Analysis: injectivity

- \rightarrow need to assume that $k^2 \notin \{\lambda^{(i)}\}_{i \in \mathbb{N}}$
- \rightarrow for impedance case: take $v \in \ker a(\cdot, \cdot)$, then

$$0 = |-\Im a(v,v)| \ge \left|\frac{\alpha\zeta}{2}\|\Delta v\|_{L^2(\partial\Omega)}^2 + \frac{\theta}{2\zeta}\|v\|_{L^2(\partial\Omega)}^2\right|$$

 $\rightarrow \gamma_0 v = 0$ and $\gamma_0 \Delta v = 0$ on $\partial \Omega$, use unique continuation principle to conclude that v = 0 in Ω

Discrete problem

Discretization

Let $\{\mathcal{T}_h\}_h$ be a family of shape regular, quasi-uniform, simplicial triangulations. We choose an H^2 -conforming finite element space, $\rho > 4$:

$$X_h := \{ v \in H^2(\Omega) : v|_T \in \mathcal{P}^p(T) \mid \forall T \in \mathcal{T}_h \}$$

- \rightarrow imposing essential BCs for \mathcal{C}^1 -conf. FEM challenging⁴;
- → use Nitsche's method to impose BCs (for *sound soft* & *sound hard*, not necessary for *impedance*)

Argyris-element,

$$p \ge 5$$

 $^{^4}$ R.C. Kirby, L. Mitchell, Code generation for generally mapped finite elements. ACM TOMS, 2019.

Discrete problem

Find
$$u_h \in X_h$$
 s.t. $a_h(u_h, v_h) = (f, v_h)_{L^2(\Omega)}$ for all $v_h \in X_h$, where
$$a_h(u_h, v_h) := a(u_h, v_h) + \epsilon (\mathcal{N}_h(u_h, v_h))$$

- \rightarrow $\epsilon = 0$ for impedance BCs, $\epsilon = 1$ for sound soft BCs
- → discrete analysis follows similar steps as the continuous case:
 - 1. analyse the discrete EVP (with potential Nitsche terms);
 - 2. construct T_h and show uniform T_h -coercivity;
- \rightarrow for *impedance* BCs ($\epsilon = 0$), we can neglect the compact term
- → sound hard BCs can be analyzed with similar arguments

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

natural boundary terms

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

natural boundary

symmetry terms

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \nu, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \nu, v_{h})_{L^{2}(\partial\Omega)}$$

$$+\beta(\nabla(\mathbf{n}^{T}(\mathcal{H}u_{h})\mathbf{n}) \cdot \nu, v_{h})_{L^{2}(\partial\Omega)}$$

$$+\alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \nu)_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \nu)_{L^{2}(\partial\Omega)}$$

$$+\beta(u_{h}, \nabla(\mathbf{n}^{T}(\mathcal{H}v_{h})\mathbf{n}) \cdot \nu)_{L^{2}(\partial\Omega)}$$

$$+\beta(u_{h}, \nabla(\mathbf{n}^{T}(\mathcal{H}v_{h})\mathbf{n}) \cdot \nu)_{L^{2}(\partial\Omega)}$$

$$+\alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

$$+\beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} \\
+ \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} \\
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} \\
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} \\
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} \\
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\
+ \left(\frac{\alpha\eta_{1}}{h^{3}} - \frac{\alpha}{\zeta_{1}} + \frac{\eta_{2}}{h} - \frac{1}{\zeta_{2}} + \frac{\beta\eta_{3}}{h^{3}} - \frac{\beta}{\zeta_{3}}\right) \|u\|_{L^{2}(\partial\Omega)}^{2}$$

$$+ \left(\frac{\alpha\eta_{1}}{h^{3}} - \frac{\alpha}{\zeta_{1}} + \frac{\eta_{2}}{h} - \frac{1}{\zeta_{2}} + \frac{\beta\eta_{3}}{h^{3}} - \frac{\beta}{\zeta_{3}}\right) \|u\|_{L^{2}(\partial\Omega)}^{2}$$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$
$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$

$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

$$\rightarrow$$
 $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$

$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

$$\rightarrow$$
 $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$

$$\rightarrow$$
 Discrete norm: $||u_h||_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon ||u||_{L^2(\partial\Omega)}^2$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$

$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

- \rightarrow $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$
- \rightarrow Discrete norm: $||u_h||_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon ||u||_{L^2(\partial\Omega)}^2$

Lemma

For η_i , i = 1, 2, 3, large enough, the bilinear form $e_h(\cdot, \cdot)$ is uniformly coercive on \tilde{X}_h w.r.t. $\|\cdot\|_{\epsilon}$.

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$

$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

- \rightarrow $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$
- \rightarrow Discrete norm: $||u_h||_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon ||u||_{L^2(\partial\Omega)}^2$

Lemma

For η_i , i = 1, 2, 3, large enough, the bilinear form $e_h(\cdot, \cdot)$ is uniformly coercive on \tilde{X}_h w.r.t. $\|\cdot\|_{\epsilon}$.

Proof.

Use the estimate for $\mathcal{N}_h(\cdot,\cdot)$ from the previous slide & choose ζ_i small enough, η_i large enough, i=1,2,3.

Discrete T_h-coercivity

$$\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$$

Discrete T_h -coercivity

- $\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$
- → as in the continuous case, we have that

$$e_h(u_h, T_h u_h) - k^2(u_h, T_h u_h)$$

$$= \sum_{0 \le i \le i_*} C_{\lambda_h}(k^2 - \lambda_h^{(i)})(u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h}(\lambda_h^{(i)} - k^2)(u_h^{(i)})^2 \ge \gamma \|u_h\|_{\epsilon}^2,$$

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

Discrete T_h -coercivity

- $\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$
- → as in the continuous case, we have that

$$e_h(u_h, T_h u_h) - k^2(u_h, T_h u_h)$$

$$= \sum_{0 \le i \le i_*} C_{\lambda_h} (k^2 - \lambda_h^{(i)}) (u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h} (\lambda_h^{(i)} - k^2) (u_h^{(i)})^2 \ge \gamma \|u_h\|_{\epsilon}^2,$$

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

 \rightarrow (there $\exists h_0$ s.t. $\forall h \leq h_0$) $a_h(\cdot, \cdot)$ is uniformly T_h -coercive

Discrete T_h -coercivity

- $\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$
- → as in the continuous case, we have that

$$e_h(u_h, T_h u_h) - k^2(u_h, T_h u_h)$$

$$= \sum_{0 \le i \le i_*} C_{\lambda_h} (k^2 - \lambda_h^{(i)}) (u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h} (\lambda_h^{(i)} - k^2) (u_h^{(i)})^2 \ge \gamma \|u_h\|_{\epsilon}^2,$$

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

- \rightarrow (there $\exists h_0$ s.t. $\forall h \leq h_0$) $a_h(\cdot, \cdot)$ is uniformly T_h -coercive
- \rightarrow the discrete problem has a unique solution for h small enough

Best approximation

 \rightarrow $a_h(\cdot,\cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$\|u_h\|_{h,\epsilon}^2 := \|u_h\|_{\epsilon}^2 + \epsilon \left(h^3 \|\nabla(\Delta u_h)\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla(\boldsymbol{n}^T \mathcal{H} u_h \boldsymbol{n})\|_{L^2(\Omega)}^2 + h \|\nabla u_h\|_{L^2(\partial\Omega)}\right)$$

Best approximation

 \rightarrow $a_h(\cdot,\cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$\|u_h\|_{h,\epsilon}^2 := \|u_h\|_{\epsilon}^2 + \epsilon \left(h^3 \|\nabla(\Delta u_h)\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla(\boldsymbol{n}^T \mathcal{H} u_h \boldsymbol{n})\|_{L^2(\Omega)}^2 + h \|\nabla u_h\|_{L^2(\partial\Omega)}\right)$$

 \rightarrow a_h is consistent, i.e. $a_h(u-u_n,v_h)=0$ for all $v_h\in X_h$

Best approximation

 \rightarrow $a_h(\cdot,\cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$\|u_h\|_{h,\epsilon}^2 := \|u_h\|_{\epsilon}^2 + \epsilon \left(h^3 \|\nabla(\Delta u_h)\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla(\boldsymbol{n}^T \mathcal{H} u_h \boldsymbol{n})\|_{L^2(\Omega)}^2 + h \|\nabla u_h\|_{L^2(\partial\Omega)}\right)$$

- \rightarrow a_h is consistent, i.e. $a_h(u-u_n,v_h)=0$ for all $v_h\in X_h$
- → with classical arguments, we can show that

$$||u-u_h||_{h,\epsilon}\leq C\inf_{v_h\in X_h}||u-v_h||_{h,\epsilon}.$$

Numerical examples

Manufactured Solution

⇒ plane wave solution $u(\mathbf{x}) = e^{i\mathbf{d}\cdot\mathbf{x}}$, choose $\mathbf{d} \in \mathbb{C}^d$ s.t. u solves the nematic Helmholtz-Korteweg eqs.

Manufactured Solution

- → plane wave solution $u(\mathbf{x}) = e^{i\mathbf{d}\cdot\mathbf{x}}$, choose $\mathbf{d} \in \mathbb{C}^d$ s.t. u solves the nematic Helmholtz-Korteweg eqs.
- \rightarrow for $u \in H^5(\Omega)$, we can construct $I_h: u \to X_h$ s.t.

$$||u - I_h u||_{H^2(\Omega)} \le h^3 ||u||_{H^5(\Omega)}$$

Manufactured Solution

- → plane wave solution $u(\mathbf{x}) = e^{i\mathbf{d}\cdot\mathbf{x}}$, choose $\mathbf{d} \in \mathbb{C}^d$ s.t. u solves the nematic Helmholtz-Korteweg eqs.
- \rightarrow for $u \in H^5(\Omega)$, we can construct $I_h: u \to X_h$ s.t.

$$||u - I_h u||_{H^2(\Omega)} \le h^3 ||u||_{H^5(\Omega)}$$

 \rightarrow dashed: k = 20, solid: k = 30

Gaussian pulse

 \rightarrow rhs: symmetric Gaussian pulse in (0,0), impedance BCs, k=40, $\alpha=10^{-2}$

$$\beta = 0$$

Gaussian pulse

 \rightarrow rhs: symmetric Gaussian pulse in (0,0), impedance BCs, k=40, $\alpha=10^{-2}$

Mullen-Lüthi-Stephen experiment⁵

⁴ M.E. Mullen, B. Lüthi, M.J. Stephen, Sound velocity in a nematic liquid crystal. Physics review letters, 1972.

Conclusion

