

STUDENT PLAGIARISM: COURSE WORK – POLICY AND PROCEDURE MTRX 2700 COMPLIANCE STATEMENT INDIVIDUAL / COLLABORATIVE WORK

I/We certify that:

- 1. I/We have read and understood the *University of Sydney Student Plagiarism:* Coursework Policy and Procedure;
- I/We understand that failure to comply with the University of Sydney Student Plagiarism: Coursework Policy and Procedure can lead to the University commencing proceedings against me/us for potential student misconduct under Chapter 8 of the University of Sydney By-Law 1999 (as amended);
- 3. The Work undertaken in this course is substantially my/our own, and to the extent that any part of this Work is not my/our own I/we have indicated that it is not my/our own by Acknowledging the Source of that part or those parts of the Work.

Name	Signature	SID	Date
Melissa Mitrevski		440207636	05/06/2015
Meg Flannery		440291196	05/06/2015
Lydia Drabsch		311217591	05/06/2015

CONTENTS

1	Sim	nulation of Orbits with Classical Elements 1
	1.1	Introduction
	1.2	Methodology
	1.3	Results/Discussion
		1.3.1 Van Allen Probes
		1.3.2 Orbital Properties
2	Sim	nulating Perturbations 2
	2.1	Introduction
	2.2	Methodology
	2.3	Results/Discussion
3	Ork	pital Determination 3
	3.1	Introduction
	3.2	Methodology
	3.3	Results/Discussion
4	Cor	nclusions 3
5	Apj	pendix 5
${f L}$	IST	OF FIGURES
\mathbf{L}	IST	OF TABLES
	1.1	Orbital Properties - maybe put in classical parameters

Introduction

Write an intro here

1. SIMULATION OF ORBITS WITH CLASSICAL ELEMENTS

1.1 Introduction

- keplers three laws
- perifocal frame
- The true anomaly θ is the angle taken at the focus of the perifocal frame to the satellite from the perigee. The eccentric anomaly E is the angle taken at the centre of perifocal frame to the satellite from the perigee.
- -The mean anomaly M_t is the mean number of orbits per day.
- LEO,MEO
- -TLE's

1.2 Methodology

From Kepler's second law, the mean anomaly at time t is calculated using the mean motion n from an epoch time described by $M_0(t_0)$.

$$M_t = M_0 + n(t - t_0) (1)$$

To solve for the eccentric anomaly, newtons method was used

$$E_{i+1} = E_i - \frac{f(E_i)}{f'(E_i)} \tag{2}$$

$$E_{i+1} = E_i - \frac{E - e\sin(E_i) - M_t}{1 - e\cos(E_i)}$$
(3)

1.3 Results/Discussion

1.3.1 Van Allen Probes

The satellite RBSP-A, also known as the Van Allen Probes, is in a highly eccentric orbit. RBSP-A has a perigee in LEO at an altitude of 596 km and an apogee in MEO at an altitude of 30421 km assuming a spherical Earth.

1.3.2 Orbital Properties

Table 1.1: Orbital Properties - maybe put in classical parameters

Orbital Properties	Van Allen Probe	Other sat
Period		
Altitude at Perigee		
Altitude at Apogee		

2. SIMULATING PERTURBATIONS

- 2.1 Introduction
- 2.2 Methodology
- ${\bf 2.3} \qquad {\bf Results/Discussion}$

3. Orbital Determination

- 3.1 Introduction
- 3.2 Methodology
- 3.3 Results/Discussion
- 4. Conclusions

REFERENCES

5. APPENDIX