05 Exercises

Exercise 1

Let $f : \mathbb{R} \to \mathbb{R}$ be an odd function.

- i) Show that
 - xf(x) is an even function
 - $x^2 f(x)$ is an odd function
- ii) Show that
 - The function $g_1: \mathbb{R} \to \mathbb{R}$ given by $g_1(x) = f(x^2)$ is an even function
 - The function $g_2:\mathbb{R} \to \mathbb{R}$ given by $g_2(x)=f(x^3)$ is an odd function
- iii) Let $h: \mathbb{R} \to \mathbb{R}$ be defined as $h(x) = x^i f(x^j)$, where i and j are positive integers. When is h(x) an odd function?

Answer

f(x) is an odd function, which means:

$$f(x) = -f(-x)$$
$$f(-x) = -f(x)$$

i) Let $f_1:\mathbb{R}\to\mathbb{R}$ be defined as $f_1(x)=xf(x)$.

$$f_1(-x) = -xf(-x)$$
$$= xf(x)$$
$$= f_1(x)$$

Which means $f_1(x)$ is an even function.

Let $f_2:\mathbb{R}\to\mathbb{R}$ be defined as $f_2(x)=x^2f(x).$

$$\begin{split} f_2(-x) &= (-x)^2 f(-x) \\ &= x^2 f(-x) \\ &= -x^2 f(x) \\ &= -f_2(x) \end{split}$$

Which means $f_2(x)$ is an odd function.

ii) We have

$$g_1(-x) = f((-x)^2)$$
$$= f(x^2)$$
$$= g_1(x)$$

Which means $g_1(x)$ is an even function.

$$\begin{split} g_2(-x) &= f\big((-x)^3\big) \\ &= f\big(-x^3\big) \\ &= -f\big(x^3\big) \\ &= -g_2(x) \end{split}$$

Which means $g_2(x)$ is an odd function.

iii) Doing some transformation

$$h(x) = x^{i} f(x^{j})$$

$$h(-x) = (-x)^{i} f((-x)^{j})$$

$$= (-1)^{i} x^{i} f((-x)^{j})$$

$$= (-1)^{i} x^{i} f((-1)^{j} x^{j})$$

$$= (-1)^{i} (-1)^{j} x^{i} f(x^{j})$$

$$= (-1)^{i+j} x^{i} f(x^{j})$$

$$= (-1)^{i+j} h(x)$$

Because

• $(-1)^{i+j} = -1$ when i+j is odd, and

•
$$(-1)^{i+j} = 1$$
 when $i + j$ is even

Then

• h(x) = -h(x) or h(x) is an odd function, when i + j is odd, and

• h(x) = h(x) or h(x) is an even function, when i + j is even

Exercise 2

Let

•
$$S(n,2) = \sum_{k=1}^{n} k^2$$
 and
• $S(n,3) = \sum_{k=1}^{n} k^3$

•
$$S(n,3) = \sum_{k=1}^{n-1} k^3$$

i) Let
$$T(n, 2, x) = \sum_{k=1}^{n} k^2 x^k$$
.

Use formula

$$T(n, j+1, x) = x \frac{d}{dx} (T(n, j, x)) \quad \forall j \ge 0$$

for j = 1, i.e.,

$$T(n,2,x) = x\frac{d}{dx}(T(n,1,x))$$

And formula

$$T(n,1,x) = \frac{x - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^2}$$

for T(n, 1, x), to show that

$$T(n,2,x) = \frac{x + x^2 - (n+1)^2 x^{n+1} + \left(2n^2 + 2n - 1\right) x^{n+2} - n^2 x^{n+3}}{(1-x)^3}$$

ii) Note that S(n,2) = T(n,2,1). Use l'Hopital's rule to evaluate T(n,2,1), and conclude that $S(n,2) = \frac{n(n+1)(2n+1)}{6}$

iii) Compute $T(n,3,x) = \sum_{k=1}^{n} k^3 x^k$ using formula

$$T(n, j+1, x) = x \frac{d}{dx} (T(n, j, x)) \quad \forall j \ge 0$$

for j = 2, i.e,

$$T(n,3,x) = x\frac{d}{dx}(T(n,2,x))$$

iv) Note that S(n,3)=T(n,3,1). Use l'Hopital's rule to evaluate T(n,3,1) and conclude that $S(n,3)=\left(\frac{n(n+1)}{2}\right)^2$.

Answer

i)
$$T(n,2,x) = x \frac{d}{dx} \frac{x - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^2}$$

Using the quotient rule

$$\left[\frac{u(x)}{v(x)}\right]\frac{d}{dx} = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

With

$$u(x) = x - (n+1)x^{n+1} + nx^{n+2}$$

$$u'(x) = 1 - (n+1)^2x^n + n(n+2)x^{n+1}$$

$$v(x) = (1-x)^2$$

$$v'(x) = -2(1-x)$$

$$u'(x)v(x) = (1 - (n+1)^2x^n + n(n+2)x^{n+1}) (1-x)^2$$

$$= (1-x)^2(1 - (n+1)^2x^n + n(n+2)x^{n+1})$$

$$u(x)v'(x) = (x - (n+1)x^{n+1} + nx^{n+2}) - 2(1-x)$$

$$= -2(1-x)(x - (n+1)x^{n+1} + nx^{n+2})$$

$$u'(x)v(x) - u(x)v'(x) = (1-x)^2(1 - (n+1)^2x^n + n(n+2)x^{n+1})$$

$$+2(1-x)(x - (n+1)x^{n+1} + nx^{n+2})$$

$$= (1-x)[(1-x)(1 - (n+1)^2x^n + n(n+2)x^{n+1})$$

$$+2(x - (n+1)x^{n+1} + nx^{n+2})]$$

$$= (1-x)(1+x - (n+1)^2x^n + (2n^2+2n-1)x^{n+1} - n^2x^{n+2})$$

$$\frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} = \frac{(1-x)(1+x - (n+1)^2x^n + (2n^2+2n-1)x^{n+1} - n^2x^{n+2})}{(1-x)^4}$$

$$= \frac{1+x - (n+1)^2x^n + (2n^2+2n-1)x^{n+1} - n^2x^{n+2}}{(1-x)^3}$$

Which means

$$\begin{split} x\frac{d}{dx}(T(n,1,x)) &= x\frac{1+x-(n+1)^2x^n+(2n^2+2n-1)x^{n+1}-n^2x^{n+2}}{(1-x)^3} \\ &= \frac{x+x^2-(n+1)^2x^{n+1}+(2n^2+2n-1)x^{n+2}-n^2x^{n+3}}{(1-x)^3} \quad \Box \end{split}$$

ii)
$$T(n,2,x) = \frac{x+x^2-(n+1)^2x^{n+1}+(2n^2+2n-1)x^{n+2}-n^2x^{n+3}}{(1-x)^3}$$

$$T(n,2,1) = \frac{1+1-(n+1)^2+(2n^2+2n-1)-n^2}{0}$$

$$= \frac{2-(n^2+2n+1)+(2n^2+2n-1)-n^2}{0}$$

$$= \frac{0}{0}$$

Which is indeterminate. Apply l'Hopital's rule:

Using the quotient rule

$$\left\lceil \frac{u(x)}{v(x)} \right\rceil \frac{d}{dx} = \frac{u'(x)v(x) - u(x)v'(x)}{\lceil v(x) \rceil^2}$$

With

$$\begin{split} u(x) &= x + x^2 - (n+1)^2 x^{n+1} + \left(2n^2 + 2n - 1\right) x^{n+2} - n^2 x^{n+3} \\ u'(x) &= 1 + 2x - (n+1)^3 x^n + \left(2n^2 + 2n - 1\right) (n+2) x^{n+1} - (n+3) n^2 x^{n+2} \\ v(x) &= (1-x)^3 \\ v'(x) &= -3(1-x)^2 \\ [v(x)]^2 &= (1-x)^6 \end{split}$$

$$\begin{split} u'(x)v(x) &= \left(1 + 2x - (n+1)^3x^n + \left(2n^2 + 2n - 1\right)(n+2)x^{n+1} - (n+3)n^2x^{n+2}\right)(1-x)^3 \\ &= (1-x)\left(1 + 2x - (n+1)^3x^n + (n+2)\left(2n^2 + 2n - 1\right)x^{n+1} - (n+3)n^2x^{n+2}\right)(1-x)^2 \\ u(x)v'(x) &= \left(x + x^2 - (n+1)^2x^{n+1} + \left(2n^2 + 2n - 1\right)x^{n+2} - n^2x^{n+3}\right) \times -3(1-x)^2 \\ &= \left(-3x - 3x^2 + 3(n+1)^2x^{n+1} - 3(2n^2 + 2n - 1)x^{n+2} + 3n^2x^{n+3}\right)(1-x)^2 \end{split}$$

Let $g(x)=(1+2x-(n+1)^3x^n+(n+2)\big(2n^2+2n-1\big)x^{n+1}-(n+3)n^2x^{n+2}\big)$, which means $u'(x)v(x)=(1-x)g(x)\,(1-x)^2$. Here is the calculation of (1-x)g(x) putting onto a grid:

	1	x	x^2	x^n	x^{n+1}	x^{n+2}	x^{n+3}
g(x)	1	2		$-(n+1)^3$	$(n+2)(2n^2+2n-1)$	$-(n+3)n^2$	
					(2n-1)		
xg(x)		1	2		$-(n+1)^3$	$(n+2)(2n^2 +$	$-(n+3)n^2$
						(2n-1)	
(1-x)g(x)	1	1	-2	$-(n+1)^3$			$n^3 + 3n^2$

Because

$$(n+2)(2n^2+2n-1) - [-(n+1)^3] = (2n^3+4n^2+2n^2+4n-n-2) + (n^3+3n^2+3n+1)$$
$$= (2n^3+6n^2+3n-2) + (n^3+3n^2+3n+1)$$
$$= 3n^3+9n^2+6n-1$$

and

$$-(n+3)n^2 - (n+2)(2n^2 + 2n - 1) = -(n^3 + 3n^2)$$
$$-(2n^3 + 6n^2 + 3n - 2)$$
$$= -3n^3 - 9n^2 - 3n + 2$$

We have

$$\begin{split} (1-x)\,g(x) &= 1 + x - 2x^2 - (n+1)^3 x^n + \left(3n^3 + 9n^2 + 6n - 1\right) x^{n+1} \\ &\quad + \left(-3n^3 - 9n^2 - 3n + 2\right) x^{n+2} + \left(n^3 + 3n^2\right) x^{n+3} \\ u'(x)v(x) &= (1-x)\,g(x)\,(1-x)^2 \\ &= \left[1 + x - 2x^2 - (n+1)^3 x^n + \left(3n^3 + 9n^2 + 6n - 1\right) x^{n+1} \right. \\ &\quad + \left. \left(-3n^3 - 9n^2 - 3n + 2\right) x^{n+2} + \left(n^3 + 3n^2\right) x^{n+3}\right](1-x)^2 \end{split}$$

Let

$$\begin{split} h_1(x) &= \left[1 + x - 2x^2 - (n+1)^3 x^n + \left(3n^3 + 9n^2 + 6n - 1\right) x^{n+1} \right. \\ &\quad + \left(-3n^3 - 9n^2 - 3n + 2\right) x^{n+2} + \left(n^3 + 3n^2\right) x^{n+3} \big] \\ u'(x)v(x) &= h_1(x) \left(1 - x\right)^2 \\ h_2(x) &= -3x - 3x^2 + 3(n+1)^2 x^{n+1} \\ &\quad - 3(2n^2 + 2n - 1) x^{n+2} + 3n^2 x^{n+3} \\ u(x)v'(x) &= h_2(x) \left(1 - x\right)^2 \\ u'(x)v(x) - u(x)v'(x) &= \left(h_1(x) - h_2(x)\right) \left(1 - x\right)^2 \end{split}$$

The calculation can be put into a grid like this:

	1	x	x^2	x^n	x^{n+1}	x^{n+2}	x^{n+3}
$h_1(x)$	1	1	-2	$-(n+1)^3$	$3n^3 + 9n^2 + 6n - 1$	$-3n^3 - 9n^2 -$	$n^3 + 3n^2$
					6n - 1	3n+2	
$h_2(x)$		-3	-3		$3(n+1)^2$	$-3(2n^2+2n-$	$3n^2$
						1)	
$h_1(x) - h_2(x)$	1	4	1	$-(n+1)^3$			n^3

Because

$$(3n^3 + 9n^2 + 6n - 1) - 3(n+1)^2 = (3n^3 + 9n^2 + 6n - 1) - (3n^2 + 6n + 3)$$

$$= 3n^3 + 6n^2 - 4$$

$$(-3n^3 - 9n^2 - 3n + 2) - (-3)(2n^2 + 2n - 1) = (-3n^3 - 9n^2 - 3n + 2) + (6n^2 + 6n - 3)$$

$$= -3n^3 - 3n^2 + 3n - 1$$

Then

$$u'(x)v(x) - u(x)v'(x) = \left[1 + 4x + x^2 - (n+1)^3x^n + (3n^3 + 6n^2 - 4)x^{n+1} + (-3n^3 - 3n^2 + 3n - 1)x^{n+2} + n^3x^{n+3}\right](1-x)^2$$

$$\left[1 + 4x + x^2 - (n+1)^3x^n + (3n^3 + 6n^2 - 4)x^{n+1} + (-3n^3 - 3n^2 + 3n - 1)x^{n+2} + n^3x^{n+3}\right]$$

$$\left[v(x)\right]^2 = \frac{(-3n^3 - 3n^2 + 3n - 1)x^{n+2} + n^3x^{n+3}}{(1-x)^4}$$

$$T(n,3,x) = x - \frac{(-3n^3 - 3n^2 + 3n - 1)x^{n+2} + n^3x^{n+3}}{(1-x)^4}$$

$$\left[x + 4x^2 + x^3 - (n+1)^3x^{n+1} + (3n^3 + 6n^2 - 4)x^{n+2} + (-3n^3 - 3n^2 + 3n - 1)x^{n+3} + n^3x^{n+4}\right]$$

$$= \frac{(-3n^3 - 3n^2 + 3n - 1)x^{n+3} + n^3x^{n+4}}{(1-x)^4}$$

The second way to solve this

_

$$F(x) = \frac{P(x)}{(1-x)^m}$$

$$= \frac{u(x)}{v(x)}$$

$$F'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

$$= \frac{P'(x)(1-x)^m - P(x)(-m)(1-x)^{m-1}}{(1-x)^{2m}}$$

$$= \frac{P'(x) + \frac{mP(x)}{1-x}}{(1-x)^m}$$

$$= \frac{(1-x)P'(x) + mP(x)}{(1-x)^{m+1}}$$

Let

$$\begin{split} P(x) &= x + x^2 - (n+1)^2 x^{n+1} + \left(2n^2 + 2n - 1\right) x^{n+2} - n^2 x^{n+3} \\ P'(x) &= 1 + 2x - (n+1)^3 x^n + (n+2)(2n^2 + 2n - 1) x^{n+1} - (n+3)n^2 x^{n+2} \end{split}$$

Using a grid to calculate (1-x) P'(x)

	1	x	x^2	x^n	x^{n+1}	x^{n+2}	x^{n+3}
P(x)		1	1		$-(n+1)^2$	$2n^2 + 2n - 1$	$-n^2$
P'(x)	1	2		$-(n+1)^3$	$(n+2)(2n^2+2n-1)2$	-(n +	
					(2n-1)2	$3)(2n^2 + 2n -$	
						1)	
xP'(x)		1	2		$-(n+1)^3$		-(n +
						2n-1)2	$(3)(2n^2 + 2n -$
							1)
(1-x)P'(x)	1	1	-2	$-(n+1)^3$			$(n+3)(2n^2+2n-1)$
							(2n-1)

iv)
$$[x + 4x^2 + x^3 - (n+1)^3 x^{n+1} + (3n^3 + 6n^2 - 4)x^{n+2} + (-3n^3 - 3n^2 + 3n - 1)x^{n+3} + n^3 x^{n+4}]$$

$$T(n,3,x) = \frac{(-3n^3 - 3n^2 + 3n - 1)x^{n+3} + n^3 x^{n+4}]}{(1-x)^4}$$

$$T(n,3,1) = \frac{[1 + 4 + 1 - (n+1)^3 + (3n^3 + 6n^2 - 4) + (-3n^3 - 3n^2 + 3n - 1) + n^3]}{0}$$

$$= \frac{[6 - (1 + 3n + 3n^2 + n^3) + (-4 + 6n^2 + 3n^3) + (-1 + 3n - 3n^2 - 3n^3) + n^3]}{0}$$

Simplifying the numerator using a grid we have:

1	n	n^2	n^3
6			
-1	-3	-3	-1
-4		6	3
-1	3	-3	-3

				1
Total	0	0	0	0

Which means the numerator is 0 and $T(n, 3, 1) = \frac{0}{0}$.

To apply l'Hopital's rule, let f(x) be the numerator and g(x) be the denominator and

$$\begin{split} f(x) &= \left[x + 4x^2 + x^3 - (n+1)^3 x^{n+1} + \left(3n^3 + 6n^2 - 4 \right) x^{n+2} + \right. \\ & \left. \left(-3n^3 - 3n^2 + 3n - 1 \right) x^{n+3} + n^3 x^{n+4} \right] \\ &= \left[x + 4x^2 + x^3 - (n+1)^3 x^{n+1} + l(n) x^{n+2} + m(n) x^{n+3} + n^3 x^{n+4} \right] \\ &= f_1(x) + f_{21(x)} + f_{22(x)} + f_{23(x)} + f_{24(x)} \\ g(x) &= (1-x)^4 \\ \text{where} \\ f_1(x) &= x + 4x^2 + x^3 \\ f_{21}(x) &= -(n+1)^3 x^{n+1} \\ f_{22}(x) &= \left(3n^3 + 6n^2 - 4 \right) x^{n+2} \\ f_{23}(x) &= \left(-3n^3 - 3n^2 + 3n - 1 \right) x^{n+3} \\ f_{24}(x) &= n^3 x^{n+4} \end{split}$$

Derivatives of g(x) and $f_1(x)$ and other functions:

$$\begin{split} f_1(x) &= x + 4x^2 + x^3 \\ f_1'(x) &= 1 + 8x + 3x^2 \\ f_1^{(2)}(x) &= 8 + 6x \\ f_1^{(3)}(x) &= 6 \\ f_1^{(4)}(x) &= 0 \\ f_{21}(x) &= -(n+1)^3 x^{n+1} \\ f_{21}'(x) &= -(n+1)^4 x^n \\ f_{21}^{(2)}(x) &= -n(n+1)^4 x^{n-1} \\ f_{21}^{(3)}(x) &= -(n-1)n(n+1)^4 x^{n-2} \\ f_{21}^{(4)}(x) &= -(n-2)(n-1)n(n+1)^4 x^{n-3} \end{split}$$

$$\begin{split} f_{22}(x) &= (3n^3 + 6n^2 - 4)x^{n+2} \\ f_{22}'(x) &= (n+2)(3n^3 + 6n^2 - 4)x^{n+1} \\ f_{22}^{(2)}(x) &= (n+1)(n+2)(3n^3 + 6n^2 - 4)x^n \\ f_{22}^{(3)}(x) &= n(n+1)(n+2)(3n^3 + 6n^2 - 4)x^{n-1} \\ f_{22}^{(4)}(x) &= (n-1)n(n+1)(n+2)(3n^3 + 6n^2 - 4)x^{n-2} \\ f_{23}(x) &= (-3n^3 - 3n^2 + 3n - 1)x^{n+3} \\ f_{23}'(x) &= (n+3)(-3n^3 - 3n^2 + 3n - 1)x^{n+2} \\ f_{23}^{(2)}(x) &= (n+2)(n+3)(-3n^3 - 3n^2 + 3n - 1)x^{n+1} \\ f_{23}^{(3)}(x) &= (n+1)(n+2)(n+3)(-3n^3 - 3n^2 + 3n - 1)x^n \\ f_{23}^{(4)}(x) &= n(n+1)(n+2)(n+3)(-3n^3 - 3n^2 + 3n - 1)x^{n-1} \\ f_{24}(x) &= n^3x^{n+4} \\ f_{24}'(x) &= (n+4)n^3x^{n+3} \\ f_{24}^{(2)}(x) &= (n+3)(n+4)n^3x^{n+2} \\ f_{24}^{(3)}(x) &= (n+2)(n+3)(n+4)n^3x^{n+1} \\ f_{24}^{(4)}(x) &= (n+1)(n+2)(n+3)(n+4)n^3x^n \\ g(x) &= (1-x)^4 \\ g'(x) &= -4(1-x)^3 \\ g^{(2)}(x) &= 12(1-x)^2 \\ g^{(3)}(x) &= -24(1-x) \end{split}$$

 $q^{(4)}(x) = 24$

$$\begin{split} f_{21}^{(4)}(x) + f_{22}^{(4)}(x) &= -(n-2)(n-1)n(n+1)^4 x^{n-3} \\ &\quad + (n-1)n(n+1)(n+2)(3n^3+6n^2-4)x^{n-2} \\ f_{21}^{(4)}(1) + f_{22}^{(4)}(1) &= -(n-2)(n-1)n(n+1)^4 \\ &\quad + (n-1)n(n+1)(n+2)(3n^3+6n^2-4) \\ &= (n-1)n(n+1)[-(n-2)(n+1)^3] \\ &\quad + (n-1)n(n+1)[(n+2)(3n^3+6n^2-4)] \\ &= (n-1)n(n+1)[-(n-2)(n+1)^3+(n+2)(3n^3+6n^2-4)] \\ &= (n-1)n(n+1)[(-n+2)(n^3+3n^2+3n+1) \\ &\quad + (n+2)(3n^3+6n^2-4)] \\ &= (n-1)n(n+1)[((-n^4+2n^3)+(-3n^3+6n^2)+(-3n^2+6n)+(-n+2)) \\ &\quad + ((3n^4+6n^3)+(6n^3+12n^2)+(-4n-8))] \\ &= (n-1)n(n+1)[(-1+3)n^4+(2-3+6+6)n^3 \\ &\quad + (6-3+12)n^2+(6-1-4)n+(2-8)] \\ &= (n-1)n(n+1)[2n^4+11n^3+15n^2+n-6] \end{split}$$

$$\begin{split} f_{23}^{(4)}(x) + f_{24}^{(4)}(x) &= n(n+1)(n+2)(n+3)\big(-3n^3 - 3n^2 + 3n - 1\big)x^{n-1} \\ &\quad + (n+1)(n+2)(n+3)(n+4)n^3x(n) \\ f_{23}^{(4)}(1) + f_{24}^{(4)}(1) &= n(n+1)(n+2)(n+3)\big(-3n^3 - 3n^2 + 3n - 1\big) \\ &\quad + (n+1)(n+2)(n+3)(n+4)n^3 \\ &= n(n+1)(n+2)(n+3)\big[-3n^3 - 3n^2 + 3n - 1\big] \\ &\quad + n(n+1)(n+2)(n+3)\big[(n+4)n^2\big] \\ &= n(n+1)(n+2)(n+3)\big[(-3n^3 - 3n^2 + 3n - 1) + (n+4)n^2\big] \\ &= n(n+1)(n+2)(n+3)\big[(-3n^3 - 3n^2 + 3n - 1) + (n^3 + 4n^2)\big] \\ &= n(n+1)(n+2)(n+3)\big[(-3+1)n^3 + (-3+4)n^2 + 3n - 1\big] \\ &= n(n+1)(n+2)(n+3)\big[-2n^3 + n^2 + 3n - 1\big] \end{split}$$

Because $f_1^{(4)}(x) = 0$

$$\begin{split} f^{(4)}(1) &= f_{21}^{(4)}(1) + f_{22}^{(4)}(1) + f_{23}^{(4)}(1) + f_{24}^{(4)}(1) \\ &= (n-1)n(n+1)\big[2n^4 + 11n^3 + 15n^2 + n - 6\big] \\ &\quad + n(n+1)(n+2)(n+3)\big[2n^3 + n^2 + 3n - 1\big] \\ &= n(n+1)\big[(n-1)\big(2n^4 + 11n^3 + 15n^2 + n - 6\big)\big] \\ &\quad + n(n+1)\big[(n+2)(n+3)\big(-2n^3 + n^2 + 3n - 1\big)\big] \\ &= n(n+1)\big[(n-1)\big(2n^4 + 11n^3 + 15n^2 + n - 6\big) + \\ &\quad + (n+2)(n+3)\big(-2n^3 + n^2 + 3n - 1\big)\big] \end{split}$$

Let

$$\begin{split} h_1(n) &= (n-1)(2n^4+11n^3+15n^2+n-6) \\ &= (2n^5-2n^4) + (11n^4-11n^3) + (15n^3-15n^2) + (n^2-n) + (-6n+6) \\ &= 2n^5 + (-2+11)n^4 + (-11+15)n^3 + (-15+1)n^2 + (-1-6)n + 6 \\ &= 2n^5 + 9n^4 + 4n^3 - 14n^2 - 7n + 6 \\ h_2(n) &= (n+2)(n+3)(-2n^3+n^2+3n-1) \\ &= (n^2+5n+6)(-2n^3+n^2+3n-1) \\ &= (n^2+5n+6)(-2n^3+n^2+3n-1) \\ &= (-2n^5-10n^4-12n^3) + (n^4+5n^3+6n^2) \\ &+ (3n^3+15n^2+18n) + (-n^2-5n-6) \\ &= -2n^5 + (-10+1)n^4 + (-12+5+3)n^3 + (6+15-1)n^2 + (18-5)n-6 \\ &= -2n^5 - 9n^4 - 4n^3 + 20n^2 + 13n-6 \\ h_1(n) + h_2(n) &= (2n^5+9n^4+4n^3-14n^2-7n+6) \\ &+ (-2n^5-9n^4-4n^3+22n^2+13n-6) \\ &= 6n^2+6n \\ &= 6n(n+1) \end{split}$$

Which means

$$\begin{split} f^4(1) &= n(n+1) \, 6n(n+1) \\ &= 6(n(n+1))^2 \\ \frac{f^4(1)}{g^4(1)} &= \frac{6(n(n+1))^2}{24} \\ &= \frac{n(n+1)^2}{4} \\ &= \left(\frac{n(n+1)}{2}\right)^2 \\ S(n,3) &= T(n,3,1) \\ &= \lim_{x \to 1} \frac{f(1)}{g(1)} \\ &= \frac{f^4(1)}{g^4(1)} \\ &= \left(\frac{n(n+1)}{2}\right)^2 \quad \Box \end{split}$$

Exercise 3

Compute $S(n,4) = \sum_{k=1}^{n} k^4$ using the recursion formula

$$S(n,i) = \frac{1}{i+1} \Biggl((n+i)^{i+1} - 1 - \sum_{j=0}^{i-1} \binom{i+1}{j} S(n,j) \Biggr) \forall i \geq 1$$

The term $\binom{i+1}{j}$ is the binomial coefficient defined as follows:

$$\binom{i+1}{j} = \frac{(i+1)!}{j!(i+1-j)!}$$

Answer

$$\begin{split} S(n,i) &= \frac{1}{i+1} \bigg((n+1)^{i+1} - 1 - \sum_{j=0}^{i-1} {i+1 \choose j} S(n,j) \bigg) \forall i \geq 1 \\ S(n,4) &= \frac{1}{5} \bigg((n+1)^5 - 1 - \sum_{j=0}^3 {5 \choose j} S(n,j) \bigg) \\ &= \frac{1}{5} \bigg((n+1)^5 - 1 - \bigg[{5 \choose 0} S(n,0) + {5 \choose 1} S(n,1) + {5 \choose 2} S(n,2) + {5 \choose 3} S(n,3) \bigg] \bigg) \\ &= \frac{1}{5} \bigg((n+1)^5 - 1 - \bigg[{5 \choose 0} n + {5 \choose 1} \frac{n(n+1)}{2} + {5 \choose 2} \frac{n(n+1)(2n+1)}{6} + {5 \choose 3} \bigg(\frac{n(n+1)}{2} \bigg)^2 \bigg] \bigg) \\ &= \frac{1}{5} \bigg((n+1)^5 - 1 - \bigg[n+5 \frac{n(n+1)}{2} + 10 \frac{n(n+1)(2n+1)}{6} + 10 \bigg(\frac{n(n+1)}{2} \bigg)^2 \bigg] \bigg) \\ &= \frac{1}{5} \bigg((n+1)^5 - \bigg[(n+1) + \frac{5n(n+1)}{2} + \frac{10n(n+1)(2n+1)}{6} + (10 \frac{n(n+1)}{2} \bigg)^2 \bigg] \bigg) \\ &= \frac{n+1}{5} \bigg((n+1)^4 - \bigg[1 + \frac{5n}{2} + \frac{10n(2n+1)}{6} + \frac{10n^2(n+1)}{4} \bigg] \bigg) \\ &= \frac{n+1}{5} \bigg((n+1)^4 - \bigg[1 + \frac{5n}{2} + \frac{5n(2n+1)}{3} + \frac{5n^2(n+1)}{2} \bigg] \bigg) \\ &= \frac{n+1}{30} (6(n+1)^4 - [6+15n+10n(2n+1)+15n^2(n+1)]) \\ &= \frac{n+1}{30} (6(n^4+4n^3+6n^2+4n+1) \\ &- [6+15n+(20n^2+10n)+15n^3+15n^2]) \\ &= \frac{n+1}{30} ([6n^4+24n^3+36n^2+24n+6] \\ &- [15n^3+35n^2+25n+6]) \\ &= \frac{n+1}{30} (6n^4+9n^3+n^2-n) \\ &= \frac{n(n+1)(6n^3+9n^2+n-1)}{30} \quad \Box \end{split}$$

Exercise 4

It's easy to see that the sequence $(x_n)_{n\geq 1}$ given by $x_n=\sum_{k=1}^n k^2$ satisfies the recursion

$$x_{n+1} = x_n + (n+1)^2, \forall n \ge 1$$

with $x_1 = 1$

i) By substituting n + 1 for n in the above formula, obtain that

$$x_{n+2} = x_{n+1} + (n+2)^2$$

Subtract x_{n+1} from x_{n+2} to find that

$$x_{n+2} = 2x_{n+1} - x_n + 2n + 3 \quad \forall n \ge 1$$

with $x_1 = 1$ and $x_2 = 5$.

ii) Similarly, substitute n + 1 for n in the above finding and obtain that

$$x_{n+3} = 2x_{n+2} - x_{n+1} + 2(n+1) + 3$$

Subtract x_{n+2} from x_{n+3} to find that

$$x_{n+3} = 3x_{n+2} - 3x_{n+1} + x_n + 2 \quad \forall n \ge 1$$

with $x_1 = 1$, $x_2 = 5$, and $x_3 = 14$.

iii) Use a similar method to prove that the sequence $\left(x_{n}\right)_{n\geq0}$ satisfies the linear recursion

$$x_{n+4} - 4x_{n+3} + 6x_{n+2} - 4x_{n+1} + x_n = 0$$

The characteristic polynomial associated to the above recursion function is:

$$P(z) = z^4 - 4z^3 + 6z^2 - 4z + 1 = (z - 1)^4$$

Use the fact that $x_1 = 1$, $x_2 = 5$, $x_3 = 14$, and $x_4 = 30$ to show that

$$x_n = \frac{n(n+1)(2n+1)}{6}, \quad \forall n \ge 1$$

and conclude that

$$S(n,2) = \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \quad \forall n \ge 1$$

Answer

$$x_{n+1} = x_n + (n+1)^2$$

$$x_{n+2} = x_{n+1} + (n+2)^2$$

$$x_{n+2} - x_{n+1} = [x_{n+1} + (n+2)^2] - [x_n + (n+1)^2]$$

$$x_{n+2} - x_{n+1} = x_{n+1} - x_n + (n+2)^2 - (n+1)^2$$

$$x_{n+2} - x_{n+1} = x_{n+1} - x_n + (n^2 + 4n + 4) - (n^2 + 2n + 1)$$

$$x_{n+2} - x_{n+1} = x_{n+1} - x_n + 2n + 3$$

$$x_{n+2} = 2x_{n+1} - x_n + 2n + 3$$
ii)
$$x_{n+2} = 2x_{n+1} - x_n + 2n + 3$$

$$x_{n+3} = 2x_{n+2} - x_{n+1} + 2(n+1) + 3$$

$$x_{n+3} - x_{n+2} = [2x_{n+2} - x_{n+1} + 2(n+1) + 3] - [2x_{n+1} - x_n + 2n + 3]$$

$$= 2x_{n+2} + (-1 - 2)x_{n+1} + x_n + (2 - 2)n + (2 + 3 - 3)$$

$$= 2x_{n+2} - 3x_{n+1} + x_n + 2$$

$$x_{n+3} = 3x_{n+2} - 3x_{n+1} + x_n + 2$$

iii)
$$\begin{aligned} x_{n+3} &= 3x_{n+2} - 3x_{n+1} + x_n + 2 \\ x_{n+4} &= 3x_{n+3} - 3x_{n+2} + x_{n+1} + 2 \\ x_{n+4} - x_{n+3} &= \left[3x_{n+3} - 3x_{n+2} + x_{n+1} + 2\right] - \left[3x_{n+2} - 3x_{n+1} + x_n + 2\right] \\ &= 3x_{n+3} + (-3-3)x_{n+2} + (1+3)x_{n+1} - x_n + (2-2) \\ &= 3x_{n+3} - 6x_{n+2} + 4x_{n+1} - x_n \\ x_{n+4} &= 4x_{n+3} - 6x_{n+2} + 4x_{n+1} - x_n \\ x_{n+4} - 4x_{n+3} + 6x_{n+2} - 4x_{n+1} + x_n &= 0 \end{aligned}$$

The characteristic polynomial is:

$$P(z) = z^4 - 4z^3 + 6z^2 - 4z + 1 = (z - 1)^4$$

Which means the only root of P(z) is $\lambda = 1$. The general form of x_n :

$$x_n = C_1 + C_2 n + C_3 n^2 + C_4 n^3$$

As

$$x_1 = 1$$
 $x_2 = 5$
 $x_3 = 14$
 $x_4 = 30$

We have this linear system:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 14 \\ 30 \end{pmatrix}$$

Solving the system yields

$$C_1 = 0$$
 $C_2 = \frac{1}{6}$
 $C_3 = \frac{1}{2}$
 $C_4 = \frac{1}{3}$

Which means

$$\begin{aligned} x_n &= C_1 + C_2 n + C_3 n^2 + C_4 n^3 \\ &= 0 + \frac{n}{6} + \frac{n^2}{2} + \frac{n^3}{3} \\ &= \frac{n(n+1)(2n+1)}{6} \quad \Box \end{aligned}$$

Exercise 5

Find the general form of the sequence $x(n)_{n\geq 0}$ satisfying the linear recursion

$$x_{n+3} = 2x_{n+1} + x_n, \quad \forall n \ge 0$$

With $x_0=1,\,x_1=-1$ and $x_2=1$

Answer

$$x_{n+3} = 2x_{n+1} + x_n x_{n+3} - 2x_{n+1} - x_n = 0$$

The characteristic polynomial is:

$$\begin{split} P(z) &= z^3 - 2z - 1 \\ &= (z+1)\big(z^2 - z - 1\big) \\ &= (z+1)\left[z - \frac{1+\sqrt{5}}{2}\right]\left[z - \frac{1-\sqrt{5}}{2}\right] \end{split}$$

Which means the roots of P(z) are:

$$\lambda_1 = 1$$

$$\lambda_2 = \frac{1+\sqrt{5}}{2}$$

$$\lambda_3 = \frac{1-\sqrt{5}}{2}$$

The general form of x_n is:

$$x_n = C_1 \lambda_1^n + C_2 \lambda_2^n + C_3 \lambda_3^n$$

With $x_0 = 1$, $x_1 = -1$ and $x_2 = 1$:

$$\begin{split} 1 &= C_1 + C_2 + C_3 \\ -1 &= C_1 + \frac{1 + \sqrt{5}}{2}C_2 + \frac{1 - \sqrt{5}}{2}C_3 \\ 1 &= C_1 + \frac{\left(1 + \sqrt{5}\right)^2}{4}C_2 + \frac{\left(1 - \sqrt{5}\right)^2}{4}C_3 \\ &= C_1 + \frac{3 + \sqrt{5}}{2}C_2 + \frac{3 - \sqrt{5}}{2}C_3 \end{split}$$

Solving the linear equation system yields:

$$C_1 = -1$$

$$C_2 = \frac{1+\sqrt{5}}{\sqrt{5}}$$

$$C_3 = \frac{-1+\sqrt{5}}{\sqrt{5}}$$

Which means the general form of x_n is:

$$x_n = -1 + \left[\frac{1+\sqrt{5}}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \right] + \left[\frac{-1+\sqrt{5}}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \right] \quad \Box$$

Exercise 6

The sequence $\left(x_{n}\right)_{n\geq0}$ satisfies the recursion

$$x_{n+1} = 3x_n + 2, \quad \forall n \ge 0$$

with $x_0 = 1$.

i) Show that the sequence $\left(x_{n}\right)_{n\geq0}$ satisfies the linear recursion

$$x_{n+2} = 4x_{n+1} - 3x_n, \quad \forall n \ge 0$$

with $x_0 = 1$ and $x_1 = 5$.

ii) Find the general formula for $x_n, n \geq 0$.

<u>Answer</u>

i) Replacing n+2 into x_{n+1} , we have

$$\begin{aligned} x_{n+1} &= 3x_n + 2 \\ x_{n+2} &= 3x_{n+1} + 2 \\ \\ x_{n+2} - x_{n+1} &= 3x_{n+1} - 3x_n \\ x_{n+2} &= 4x_{n+1} - 3x_n \end{aligned}$$

ii) From the above transformation, we have:

$$x_{n+2} - 4x_{n+1} + 3x_n = 0$$

The characteristic polynomial is:

$$P(z) = z^2 - 4z + 3 = (z - 3)(z - 1)$$

Which means the roots of P(z) are:

$$\lambda_1 = 3$$
$$\lambda_2 = 1$$

The general form of x_n is:

$$x_n = C_1 \lambda_1^n + C_2 \lambda_2^n$$

With $x_0 = 1$ and $x_1 = 5$, we have this system of equations:

$$1 = C_1 + C_2$$
$$5 = 3C_1 + C_2$$

Solving it yields:

$$C_1 = 2$$

$$C_2 = -1$$

Then the general form of x_n is:

$$x_n = 2 \times 3^n - 1$$

Exercise 7

The sequence $(x_n)_{n\geq 0}$ satisfies the recursion

$$x_{n+1} = 3x_n + n + 2, \quad \forall n \ge 0$$

with $x_0 = 1$.

i) Show that the sequence $\left(x_{n}\right)_{n\geq0}$ satisfies the linear recursion

$$x_{n+3} = 5x_{n+2} - 7x_{n+1} + 3x_n, \quad \forall n \ge 0$$

With $x_0 = 1$, $x_1 = 5$, and $x_2 = 18$.

ii) Find the general formula for x_n , $n \ge 0$.

<u>Answer</u>

$$\begin{split} \mathbf{x}_{n+1} &= 3x_n + n + 2 \\ x_{n+2} &= 3x_{n+1} + (n+1) + 2 \\ x_{n+2} - x_{n+1} &= \left[3x_{n+1} + (n+1) + 2\right] - \left[3x_n + n + 2\right] \\ &= 3x_{n+1} - 3x_n + (1-1)n + (1+2-2) \\ &= 3x_{n+1} - 3x_n + 1 \\ x_{n+2} &= 4x_{n+1} - 3x_n + 1 \\ x_{n+3} &= 4x_{n+2} - 3x_{n+1} + 1 \\ x_{n+3} - x_{n+2} &= \left[4x_{n+2} - 3x_{n+1} + 1\right] - \left[4x_{n+1} - 3x_n + 1\right] \\ &= 4x_{n+2} + (-3-4)x_{n+1} + 3x_n + (1-1) \\ &= 4x_{n+2} - 7x_{n+1} + 3x_n \\ x_{n+3} &= 5x_{n+2} - 7x_{n+1} + 3x_n \end{split}$$

ii) From the above transformation, we have:

$$x_{n+3} - 5x_{n+2} + 7x_{n+1} - 3x_n = 0$$

The characteristic polynomial is:

$$P(z) = z^3 - 5z^2 + 7z - 3 = (z - 3)(z - 1)^2$$

Which means the roots of P(z) are:

$$\lambda_1 = 3$$
$$\lambda_2 = 1$$

The general form of x_n is:

$$x_n = C_1 \lambda_1^n + C_2 + C_3 n$$

With $x_0 = 1$, $x_1 = 5$, and $x_2 = 18$, we have this system of equations:

$$1 = C_1 + C_2$$
$$5 = 3C_1 + C_2 + C_3$$
$$18 = 9C_1 + C_2 + 2C_3$$

Solving it yields:

$$C_1 = \frac{9}{4}$$

$$C_2 = -\frac{5}{4}$$

$$C_3 = -\frac{1}{2}$$

Then the general form of x_n is:

$$x_n = \frac{9}{4} \times 3^n - \frac{5}{4} - \frac{n}{2}$$

Exercise 8

Let $P(z) = \sum_{i=0}^k a_i z^i$ be the characteristic polynomial corresponding to the linear recursion

$$\sum_{i=0}^{k} a_i x_{n+i} = 0, \quad \forall n \ge 0$$

Assume that λ is a root of multiplicity of 2 of P(z). Show that the sequence $\left(y_n\right)_{n\geq 0}$ is given by

$$y_n = Cn\lambda^n, \quad n \ge 0$$

Where C is an arbitrary constant, satisfies the recursion above.

Hint: Show that

$$\sum_{i=1}^k a_i y_{n+i} = C n \lambda^n P(\lambda) + C \lambda^{n+1} P'(\lambda), \quad \forall n \ge 0$$

and recall that λ is a root of multiplicity 2 of the polynomial P(z) if and only if $P(\lambda) = 0$ and $P'(\lambda) = 0$.

<u>Answer</u>

Because λ is a root of multiplicity 2 of P(z)

$$P(z) = (z - \lambda)^2 Q(z)$$

Where Q(z) is some polynomial with $Q(\lambda) \neq 0$. It's easily see that:

$$P(\lambda) = (\lambda - \lambda)^2 Q(z) = 0$$

Using product rule:

$$\begin{split} P'(z) &= \frac{d}{dz} \big[(z-\lambda)^2 Q(z) \big] \\ &= 2(z-\lambda)Q(z) + (z-\lambda)^2 Q'(z) \\ &= (z-\lambda) \big[2Q(z) + (z-\lambda)Q'(z) \big] \\ P'(\lambda) &= (\lambda-\lambda) \big[2Q(\lambda) + (\lambda-\lambda)Q'(z) \big] \\ &= 0 \big[2Q(\lambda) + 0(\lambda-\lambda)Q'(z) \big] \\ &= 0 \end{split}$$

We then have

$$\begin{split} P(z) &= \sum_{i=0}^k a_i z^i \\ P(\lambda) &= \sum_{i=0}^k a_i \lambda^i = 0 \\ P'(z) &= \left(\sum_{i=0}^k a_i z^i\right)' = \sum_{i=1}^k i a_i z^{i-1} \\ P'(\lambda) &= \sum_{i=1}^k i a_i \lambda^{i-1} = 0 \end{split}$$

Because $y_n = C n \lambda^n$ then $y_{n+i} = C(n+i) \lambda^{n+1}$ and

$$\begin{split} \sum_{i=0}^k a_i y_{n+i} &= \sum_{i=0}^k a_i C(n+i) \lambda^{n+i} \\ &= Cn \sum_{i=0}^k a_i \lambda^{n+i} + C \sum_{i=0}^k i a_i \lambda^{n+i} \\ &= Cn \lambda^n \sum_{i=0}^k a_i \lambda^i + C \lambda^{n+1} \sum_{i=0}^k i a_i \lambda^{i-1} \\ &= Cn \lambda^n P(\lambda) + C \lambda^{n+1} P'(\lambda) \\ &= Cn \lambda^n \times 0 + C \lambda^{n+1} \times 0 \\ &= 0 \end{split}$$

Or $(y_n)_{n\geq 0}$ satisfies the linear recursion.

Exercise 9

Let n > 0. Show that

$$O(x^n) + O(x^n) = O(x^n), \quad \text{as } x \to 0$$

$$o(x^n) + o(x^n) = o(x^n), \quad \text{as } x \to 0$$

For example, to prove the first equation, let $f(x) = O(x^n)$, and $g(x) = O(x^n)$ as $x \to 0$, and show that $f(x) + g(x) = O(x^n)$ as $x \to 0$, i.e., that

$$\limsup_{x \to 0} \left| \frac{f(x) + g(x)}{x^n} \right| < \infty$$

<u>Answer</u>

Let

$$\begin{array}{l} \bullet \ O(x^n) = f(x) \text{ as } x \to 0 \text{ iif } \limsup_{x \to 0} \left| \frac{f(x)}{x^n} \right| < \infty \\ \bullet \ O(x^n) = g(x) \text{ as } x \to 0 \text{ iif } \limsup_{x \to 0} \left| \frac{g(x)}{x^n} \right| < \infty \end{array}$$

We have

$$\left|\frac{f(x)+g(x)}{x^n}\right| \leq \left|\frac{f(x)}{x^n}\right| + \left|\frac{g(x)}{x^n}\right|$$

$$\limsup_{x \to 0} \left|\frac{f(x)+g(x)}{x^n}\right| \leq \limsup_{x \to 0} \left|\frac{f(x)}{x^n}\right| + \limsup_{x \to 0} \left|\frac{g(x)}{x^n}\right| < \infty$$

$$\limsup_{x \to 0} \left|\frac{f(x)+g(x)}{x^n}\right| < \infty$$

Because

$$\limsup_{x\to 0} \left| \frac{f(x)+g(x)}{x^n} \right| < \infty \Leftrightarrow f(x)+g(x) = O(x^n)$$

$$f(x) = O(x^n)$$

$$g(x) = O(x^n)$$

Therefore, $O(x^n) + O(x^n) = O(x^n)$.

—

Let

$$\begin{array}{l} \bullet \ o(x^n) = h(x) \text{ as } x \to 0 \text{ iif } \limsup_{x \to 0} \left| \frac{h(x)}{x^n} \right| = 0 \\ \bullet \ o(x^n) = i(x) \text{ as } x \to 0 \text{ iif } \limsup_{x \to 0} \left| \frac{i(x)}{x^n} \right| = 0 \end{array}$$

We have

$$\left| \frac{h(x) + i(x)}{x^n} \right| \le \left| \frac{h(x)}{x^n} \right| + \left| \frac{i(x)}{x^n} \right|$$

$$\lim_{x \to 0} \left| \frac{h(x) + i(x)}{x^n} \right| \le 0$$

Because

$$\left|\frac{h(x)+i(x)}{x^n}\right| \geq 0$$

Therefore,

$$\lim_{x\to 0}\left|\frac{h(x)+i(x)}{x^n}\right|=0 \Leftrightarrow o(x^n)=h(x)+i(x)$$