

厦门大学《数学分析三》期末试卷

试卷类型: 经济学院国际化班 (A卷) 考试日期: 2024.12.31

一、(每小题 6分, 共 30分) 计算下列各题:

1.
$$\mathcal{U}I(x) = \int_{\sin x}^{\cos x} e^{t^2 + xt} dt$$
, $\mathcal{R}I'(0)$;

2. 计算
$$\int_0^{\frac{\pi}{6}} dy \int_y^{\frac{\pi}{6}} \frac{\cos x}{x} dx$$
;

3. 计算三重积分
$$\iiint_V (x^2+y^2+z^2) dx dy dz$$
, 其中 $V: x^2+y^2+z^2 \le a^2$;

4. 计算
$$\oint_L (x^2 + y^2) ds$$
, 其中 L 是星形线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$;

5. 计算曲面积分
$$\iint_S (x^2 + y^2 + z^2) dS$$
, 其中 S 为球面 $x^2 + y^2 + z^2 = a^2$.

二、(本题 10 分) 设
$$I(x) = \int_{\pi}^{2\pi} xy e^{y-\sin y} \sin(x^2 y) dy$$
, 求 $\int_{0}^{1} I(x) dx$.

三、(本题 10 分) 利用交換积分次序,证明:
$$\int_0^1 \mathrm{d}x \int_0^{1-x} \mathrm{d}y \int_0^{x+y} f(z) \mathrm{d}z = \frac{1}{2} \int_0^1 (1-z^2) f(z) \mathrm{d}z$$
.

四、(本题 10 分) 计算三重积分 $\iint_V (x+y+z) dx dy dz$,其中V 是由上半球面 $z = \sqrt{4-x^2-y^2}$ 与旋转抛物面 $x^2+y^2=3z$ 围成的立体.

五、(本题 10 分) 计算曲线积分 $I = \int_L (2xy + \sin x) dx + (x^2 - ye^y) dy$,其中 $L \neq y = x^2 - 2x$ 上由点 O(0,0)

到 A(4,8) 的曲线弧段.

六、(本题 10 分) 计算
$$\iint_S x^3 dydz + y^3 dzdx + 3zdxdy$$
, 其中 S 为锥面 $z = \sqrt{x^2 + y^2}$ $(0 \le z \le 1)$ 的下侧.

七、(本题 12 分) 证明含参变量反常积分 $\int_0^{+\infty} \mathrm{e}^{-t^2} \cos(xt) \mathrm{d}t$, $\int_0^{+\infty} t \mathrm{e}^{-t^2} \sin(xt) \mathrm{d}t$ 关于 $x \in (-\infty, +\infty)$ 一致收敛,并求 $I(x) = \int_0^{+\infty} \mathrm{e}^{-t^2} \cos(xt) \mathrm{d}t$.

八、(本题 8 分) 设 f(x) 在 $(-\infty, +\infty)$ 内连续且 $f(x) \neq 0$, L 是圆周 $(x-a)^2 + (y-a)^2 = a^2$ 的逆时针方向

证明: $\oint_L x f^2(y) dy - \frac{y}{f^2(x)} dx \ge 2\pi a^2.$