

Networks and Protocols 1

Basic Concepts

Agenda

- Basic networking concepts
- Fundamentals of data transmission, a review of basic concepts
- MAC layer
- Network layer
- Networks for IoT

Computer network

- A set of computers interconnected some way with the purpose of communicate with each other
 - Has SW and HW components
- Issues to solve
 - Scalability
 - Addressing
 - Interconnection
 - Routing
 - Reliability
 - Security
 - Privacy

connections

- Easiest and most intuitive way to interconnect computers
- The number of links increases exponentially with the number of devices
 - o n devices implies n(n-1)/2 links
 - **Problem:** large amount of cables and I/O ports on each device
 - Solution: diffusion/commuted LAN and WAN

Types of Networks: Local Area Networks

Local Area Networks (LAN)

- Private
- Limited coverage
 - Interconnects devices in a home, office or building
- Each device has a unique identifier in the network: its address
 - Messages are labeled with the source and destination addresses

Types of LAN

- Broadcast LAN
 - Computers interconnected by a shared transmission medium
 - When a computer wants to send information, it diffused it through the media to all the rest of connected devices
 - If two or more devices transmit simultaneously a collision happens and the resulting information is invalid
- Switched LAN
 - Computers interconnected through a switch
 - The information is sent only to the destination device
 - Free of collisions

Types of networks: Local Area Networks

LAN topologies

- Broadcast LAN
 - Common cable (bus)
 - Example: Ethernet 10Base2

- Example: Ethernet 10Base-T
- Wireless LAN (WLAN)
 - The Access Point (AP) acts as a wireless hub
 - Example: Wi-Fi

- Switch (start)
 - Example: Fast Ethernet 100BASE-TX

Types of networks: Wide Area Networks

Wide Area Network (WAN)

- Cover a larger geographical area (city, country or even global)
- Usually of public access, managed by telecoms

Types of WAN

- WAN point to point
 - Connect two devices by a transmission medium (air, cable, optic fiber)
 - Examples: conventional modem or ADSL between the home computer and the Internet Service Provider (ISP)

Types of networks: Wide Area Networks

- Types of WAN (continuation)
 - Circuit Switched WAN
 - A dedicated connection is established (circuit) between the two devices
 - The switches do not process the information
 - They only establish the required circuits for the connection
 - Example: Public Switched Telephone Network (PSTN)

Types of networks: Wide Area Networks

- Types of WAN (continuation)
 - Packet Switched WAN
 - The information is divided in blocks (packets or segments)
 - The switches process the packets performing two basic functions:
 - Packet routing: decide which is the best route from source to destination
 - Packet forwarding: select the next node to sent a packet based on the routing information

- A internet is formed by connecting several networks
- Nodes are connected locally forming LANs, these are interconnected by WANs
- Specific nodes are used to organize the traffic (routers/gateways)

UNIVERSIDAD COMPLUTENSE MADRID

The OSI Model

- OSI (Open Systems Interconnection), developed by the International Organization for Standardization (ISO)
 - Covers all the aspects involved in communications (late 70's)
 - Its goal is to enable the communication of two devices regardless of the subjacent technologies
- It is a model for the development of protocols
 - Each layer is meant to include specific purpose protocols

	ПО		
	llic		on
IJĸ	ш	CI U	UII

Specific Application

Presentation

Information representation, encriptation

Session

Authentication, reconnections after disconnection

Transport

End-to-end connections and reliability

Networking

Global addressing and routing

Data Link

Link addressing

Physical

Medium access and bit transmision

OSI Model

TCP/IP 5 layer Model (generic)

TCP/IP on Ethernet

TCP/IP on Public phone

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

TCP-UDP

IP

MAC

Physical

Application

TCP-UDP

IP

Ethernet

10BASE-T, 100BASE-TX, ... Application

TCP-UDP

IP

PPP

dial-up modem or ADSL

TCP/IP architecture

- Layers 5, 4 and 3 are end-to-end (internet)
- Layers 2 and 1 are step-by-step, between host and router or between routers (link)

Main network devices

- **Hubs:** Work at the physical layer (level 1)
 - Retransmit bit by bit what they receive through one port to the rest of its ports
 - They can connect devices or network segments of the same type and speed
- Switches: are devices that work at the data link layer (level 2)
 - Send a frame to the corresponding output according to the destination MAC address
 - Can store the complete frame and check for errors
 - Can interconnect devices and networks of the same type, even if they work at different speeds (e.g. 100Base-TX and 1000Base-T)
- Routers: are devices that work at the network layer (level 3)
 - Can interconnect networks of different types
 - They perform two basic operations:
 - Format conversions
 - Routing

TCP/IP protocols architecture

Encapsulation

- At each level the protocol adds a header to the message (payload) that contains information specific for that protocol
- The transport header includes information of the source and destination processes, error control (e.g. checksums) or flow control
- The network layer adds information about the source and destination devices, error control and fragmentation
- The MAC layer includes the L2 addresses of the two devices communicating at that step

Reception

- Each layer processes its corresponding header and sends the payload to the next layer protocol
- Errors are checked at each level
- Routers can assemble a new packet for the next step, the datagram (3) is barely modified

NP1: networking infrastructure

What is covered in NP1

New Protocols adapted to IoT

Agenda

- Basic networking concepts
- Fundamentals of data transmission, a review of basic concepts
- MAC layer
- Network layer
- Networks for IoT

Digital communication: data and signals

• **Data**: transmitted information, sequence of bits

o e.g.: 10110001

Signals: electromagnetic codification used to send information

through a medium

Digital: base band

Analog: digital signal modulates an analog carrier signal

Signal and data elements

- Data elements: binary digit bit -
- Signal elements:
 - Symbol: waveform used to represent the bits
 - It has a certain time duration
 - With V = 2^R different symbols we can represent R bits per symbol
 - R < 1: more than one symbol is used to represent one bit (redundancy)
- Transmission rate
 - Bauds: transmission rate in symbols/s
 - bps: transmission rate in bits/s (bps = R x bauds)

Digital transmission (base band)

Analog transmission (wide band)

Sinusoid signal components:

- $s(t) = A \sin(2 \pi f t + \Phi)$, where:
- ullet A o amplitude
- \bullet f \rightarrow frequency
- \bullet Φ \rightarrow phase
- T=1/f \rightarrow period

Analog transmission: modulation

Basic schemes

- ASK (Amplitude Shift Key)
- FSK (Frequency Shift Key)
- PSK (Phase Shift Key)

Advanced schemes:

- QPSK
- 8-QAM
- ...

Frequency Division Multiplexing (FDM)

Time Division Multiplexing (TDM)

Temporal split of the channel

- Time is splitted in slots
- Each slot is assigned to a soul

Two alternatives

Synchronous: static slot

Statistical: dynamic slot as

Channel properties

Attenuation:

$$\circ \quad A_{dB} = 10 \cdot \log(P_R/P_T)$$

Low pass: fi == 0

Band pass: fi != 0

Modulation required

Canal paso-baja

Amplitud

Electromagnetic wave propagation

- Line of sight: direct transmission between sender and receiver, without obstacles
 - Signals are attenuated with the distance

- Obstacles: signals are attenuated by the obstacles
 - The absorption increases with material conductivity

Electromagnetic wave propagation

Free Space Loss en dB:

$$L_{fs} = 32.45 + 20 \log D + 20 \log f$$

D: Distance between the sender and receiver in Km

f: frequency in MHz

E.g.
$$f = 868MHz$$

D = 0.01 km,
$$L_{fc}$$
 = 32.45 + 20 log(0.01) + 20 log(868) = 51 dB

D = 0.05 km,
$$L_{fs}$$
 = 32.45 + 20 log(0.05) + 20 log(868) = 65 dB

D = 0.10 km,
$$L_{fs}$$
 = 32.45 + 20 log(0.10) + 20 log(868) = 71 dB

D = 0.50 km,
$$L_{fc}$$
 = 32.45 + 20 log(0.50) + 20 log(868) = 85 dB

D = 1.00 km,
$$L_{fs}$$
 = 32.45 + 20 log(1.00) + 20 log(868) = 91 dB

Electromagnetic wave propagation

Obstacles can also reflect waves

Or diffract the transmitted signal

Fresnel Zones

Points of space in which a reflection produces a shift in phase proportional to $\lambda/2$ with respect to the direct wave:

$$D = d1 + d2$$

$$\overline{AP} + \overline{PB} - D = n\frac{\lambda}{2}$$

$$\sqrt{r_n^2+d1^2}+\sqrt{r_n^2+d1^2}-D=nrac{\lambda}{2}$$

$$\sqrt{1+x^2} pprox 1 + rac{x^2}{2}$$

$$d1(1+rac{r_n^2}{2d1^2})+d2(1+rac{r_n^2}{2d2^2})-D=nrac{\lambda}{2}$$

$$r_n^2(rac{1}{d1}+rac{1}{d2})=n\lambda$$

$$r_n = \sqrt{n\lambdarac{d1d2}{d1+d2}}$$

In the mid point:

$$d1=d2=D/2 \ r_n=\sqrt{n\lambda D/4}=\sqrt{rac{nc}{4}rac{D}{f}}$$

$$r_n = 8.657 \sqrt{n rac{D}{f}}$$
 Direction

Obstacles should be avoided in the first Fresnel zone

Fresnel Zones

The radius of the fresnel zones increase with the distance

 Antennas can be lifted up to avoid reflexions with the ground and other obstacles

Earth curvature

The expression $r = 8.657 \times \text{sqrt}(D / f)$ does not take the earth curvature into account

$$\theta = D/R$$
 $H = R - R \cos(\theta/2)$
 $\cos(\theta/2) \approx 1 - (\theta/2)^2/2 = 1 - \theta^2/8 = 1 - D^2/(8R^2)$
 $H = D^2/(8R)$

$$H = 1000 \cdot D^2/(8 \cdot R)$$

H height in km

R earth radius (6371 km)

D Distance between sender and receiver in km

Earth Curvature

https://www.zytrax.com/tech/wireless/calc.htm#fresnel

D (km)	H (m)	
0.1	negligible	
0.5	negligible	
1	negligible	
2	negligible	
5	0.49	

D (km)	H (m)	
10	1.96	
15	4.41	
20	7.84	
25	12.26	
30	17.65	

Fresnel zone: rule of thumb 60/40

A good compromise is to have at least 60% of the first fresnel zone free of obstacles

f = 868MHz

D (km)	r (m)	H (m)	0.6 r (m)	0.6r + H (m)
0.1	2.94	0.0002	1.76	1.76
0.5	6.57	0.0049	3.94	3.95
1	9.29	0.0196	5.57	5.59
2	13.14	0.0785	7.88	7.96
5	20.78	0.4905	12.47	12.96
10	29.38	1.9620	17.63	19.59

COMPLUTENSE Received Signal Strength Indication (RSSI)

- Received power, expressed in dBm
- Is an indication of how well the emitted signal is received
 - Usually a negative value, the closer to zero the better

Link Margin

RSSI - Received Signal Strength Indication

Effective Isotropic Radiated Power (EIPR)

- Effective radiated power with respect to a hypothetical isotropic antenna
 - The gain of the emitter antenna is expressed in dBi

Effective Radiated Power (ERP)

- Effective radiated power with respect to an half wave dipole antenna ($\lambda/2$)
 - The gain of the emitter antenna is expressed in dBd

ERIP (dBm) = ERP (dBm) + 2.15

Agenda

- Basic networking concepts
- Fundamentals of data transmission, a review of basic concepts
- MAC layer
- Network layer
- Networks for IoT

MAC layer

Responsibilities:

- Framing
- Identification (seq. numbers and MAC addressing)
- Error detection
- Medium access and collision detection

Ethernet networks

Ethernet MAC protocol

- Ethernet uses CSMA/CD as MAC protocol, which is based on CSMA
 - CSMA = Carrier Sense Multiple Access
 - CSMA/CD = Carrier Sense Multiple Access / Collision Detection
 - Both are distributed protocols and collisions are possible
 - CSMA/CD is more efficient as it can detect collisions and effectively react to them

- When a computer has a frame ready to be sent, it first listens the channel, and sends only if it is free
- Each frame must be acknowledged (ACK) by the receiver to confirm a correct reception without collisions
- In case of collisions:
 - If the computers involved retransmit immediately after the time-out for an ACK reception, a collision will happen again
 - To avoid it the computers must wait a random backoff time to start a new transmission

CSMA/CD

- The emitter listen the channel while the frame is being send
- If the listened signal differs from the send signal, a collision is detected
- The transmission must last long enough for a transmission started at the farthest point be perceived before the end of the frame transmission

Agenda

- Basic networking concepts
- Fundamentals of data transmission, a review of basic concepts
- MAC layer
- Network layer
- Networks for IoT

Network layer: IP protocol

Internet Network Protocol

- Provides a basic datagram delivery service
 - TCP/IP networks are build on top of this service
- It is a connectionless oriented protocol (not reliable)
 - It does not detect nor recover lost or erroneous datagrams
 - Datagrams are not guaranteed to arrive in order
 - Duplicate datagrams are not detected/removed

Basic responsibilities of the IP protocol

- Global addressing
 - Unique address in the Internet
- Datagram Fragmentation and reassembly
 - Datagram is divided into fragments of the appropriate size for the underlying network
- Forwarding of datagrams
 - Forwarding is done based on the routing information stored in routing tables
 - The information in routing tables can be:
 - Static: manually filled by system administrator
 - Dynamic: filled by some routing protocol that uses the IP services, like RIP, OSPF, BGP, etc.

IPv4: datagram format

HEADER

0	4	8 1	6 19	9	31
Version	IHL	Service type	Total Length		
Id			Flags	Fragment offset	
Time To Live		Protocol	Checksum		
Source IP address					
Destination IP address					
Options					
Data					

IPv4: Fragmentation

- IPv4 addresses are 4 bytes (32 bits)
 - Dot Notation: each byte in decimal notation, with dot separator between bytes
 - Example: 128.2.7.9 = 10000000 . 00000010 . 00000111 . 00001001
- Types of addresses
 - Unicast: a single host
 - Multicast: a group of hosts
 - Broadcast: All hosts in my local network

Routing: Introduction to

- Routing: in a packet switched network the routing algorithm must find a path from source to destination traversing the intermediate switches or routers
- In caso of more than one valid path, the "best" one must be selected
- A metric must be selected to choose which path is the "best"
 - Number of hops: takes into account the number of intermediate routers that must be traversed to reach the destination
 - **Geographical distance**: takes into account the distance (in km) of the path
 - Average latency: usually equivalent to geographical distance, as latency is usually proportional to the length of the lines
 - Band width: takes into account the band width of each of the networks that must be traversed
 - Amount of traffic: takes into account the average usage of the lines in the path, trying to avoid saturation/congestion

Routing: Introduction to

Local Routing:

- No information of the network topology
- E.g. flooding

Static Routing:

- The network administrator manually decides the routing tables based on his knowledge of the network topology
- The network cannot adapt automatically to changes in the topology Dynamic Routing:
 - The routing tables are build automatically, based on periodic information interchange between the routers in the network
 - No need for manual configuration
 - They adapt automatically to changes in the network
- Two common approaches
 - Distance vector algorithms: e.g. RIP
 - Link state algorithms: e.g. OSPF

IPv4 forwarding

Routing tables in IPv4

Example: assume the following network

Red 200.16.2.0/24

• The routing table for host A could be the following:

```
# route -n
       Kernel IP routing table
       Destination
                      Gateway
                                    Genmask
                                                      Flags
                                                                  Iface
       200.16.1.0
                      0.0.0.0
                                     255.255.255.0
                                                      U
                                                               eth0
       200.16.2.0
                      200.16.1.20
                                     255.255.255.0
                                                               eth0
                                                      UG
       200.16.3.1
                      200.16.1.20
                                     255.255.255.255
                                                      UGH
                                                               eth0
4--->
       0.0.0.0
                      200.16.1.10
                                     0.0.0.0
                                                               eth0
                                                      UG
```

IPv4 is obsolete

- IPv4 uses 32 bits addresses
 - Máximum of 4.294.967.296 different addresses
 - Class addressing does not allow to use them all (~250 million)
- Problem with class addressing
 - A lot of class B addresses are required, we have run out of them
 - Several consecutive class C addresses have been used as a superclass network address to solve this problem
 - Routing tables growth too large
- CIDR (Classless Interdomain Routing) alleviates the problem
 - The routing tables store also the network mask
 - Helps to reduce the number of entries required in the routing tables
 - · We can assign blocks of addresses better suited to the required size
- NAT (Network Address Translation) is used to save public IP addresses
 - A router hides a local network from the rest of the Internet.
 - The routers appears as a single machine with only one public IP address to the rest of the Internet
 - CG-NAT (Carrier Grade NAT) used by ISP as a double NAT
 - Your router has no more a public IP, you cannot serve from home!
 WE RUNNED OUT OF IPv4 ADDRESSES!!!

Agenda

- Basic networking concepts
- Fundamentals of data transmission, a review of basic concepts
- MAC layer
- Network layer
- Networks for IoT

Wireless networks for IoT

- Simple protocols, with low bandwidth and low power consumption
 - Efficient bandwidth exploitation is key
 - Simple nodes, low computational capabilities, battery powered
- Disparity of ranges
 - Personal Area Networks (PAN)
 - Wide area Networks (WAN)
- Large number of nodes, with low bandwidth
 - Gateway, interface with the exterior
 - Limited Bandwidth
 - Several topologies possible

Specific IoT stacks

- IETF (Internet Engineering Task Force) has developed alternative protocols (designed specifically) for IoT on top of IPv6
- The IPSO (Internet Protocol for Smart Objects) Alliance has published alternative standards and protocols for each layer of the TCP/IP stack

Global perspective

Short Range Communicating Devices

Bluetooth 4.8

35% SOM

- ✓ Well established standards
- ✓ Good for:
 - Mobile devices
 - In-home
 - Short range
- Not good:
 - Battery life
 - Long range

Long Range w/ Battery Internet of Objects

55% **SOM**

- Emerging PHY solutions
- ✓ Good for:
 - Long range
 - Long battery
 - Low cost
 - Positioning
- Not good:
 - High data-rate

Long Range w/Power Traditional M2M

10% SOM

- ✓ Well established standards
- ✓ Good for:
 - Long range
 - High data-rate
 - Coverage
- Not good:
 - Battery life
 - Cost