

***** Introduction and Motivation

I am Matt Curtis, known as PhysCorp on GitHub. I developed gcodepainter, a tool designed to convert PNG images into GCODE for plotting machines.

Overview of gcodepainter

gcodepainter transforms PNG images into GCODE, suitable for plotting machines. It's useful for those interested in 3D printing and plotting.

Environment and Dependencies

- Managed via Conda
- Python Version: 3.8
- Key Libraries: opency-python, numpy, flask, rich
- **Installation:** See README in the repository.

X Project Usage

- Basic Operation: Simple commands, Flask-based GUI.
- **Pronterface Integration:** For Windows only.
- Configurable Settings: Detailed in README.

Methods and Implementation

Practical Application Focus

Designed for ease of use in GCODE generation and image processing.

Technical Structure

- WebUI Class: Manages website using Flask.
- AutoClass: Image processing with opency.
- Third-Party Libraries: Flask, opency, numpy.
- File I/O Operations: GCODE saving and error handling.

The Flask web interface visualizes image processing steps and allows users to upload images, view outputs, and download/print GCODE.

Project Achievements

Fulfillment of Requirements (outlined verbally & in report)

- Practical Application
- Development of Functions
- Third-party Library Usage
- File I/O with Error Handling
- Visualization of Outcomes

** Additional Features

- Pronterface Support: For Windows.
- Community Engagement: Open-source on GitHub.

Results and Impact

- User Interface: Command-line tool and web interface.
- Process Visualization
- GCODE Interaction
- Community Engagement

Conclusion

gcodepainter serves as a functional and educational tool, encouraging community involvement in 3D printing, plotting, and image processing.