Bonus content: Hierarchical clustering

Why hierarchical clustering?

- Avoid choosing # clusters beforehand
- Dendrograms help visualize different clustering granularities

- No need to rerun algorithm

- Most algorithms allow user to choose any distance metric
 - k-means restricted us to Fuclidean distance

Why hierarchical clustering?

Can often find more complex shapes than k-means or Gaussian mixture models

k-means: spherical clusters

Gaussian mixtures: ellipsoids

Why hierarchical clustering?

Can often find more complex shapes than k-means or Gaussian mixture models

What about these?

Two main types of algorithms

Divisive, a.k.a top-down: Start with all data in one big cluster and recursively split.

Example: recursive k-means

Agglomerative a.k.a. bottom-up: Start with each data point as its own cluster. Merge clusters until all points are in one big cluster.

- Example: single linkage

Divisive clustering

Divisive in pictures – level 1

Divisive in pictures – level 2

Divisive: Recursive k-means

Wikipedia

Divisive: Recursive k-means

Divisive: Recursive k-means

Divisive choices to be made

- Which algorithm to recurse
- How many clusters per split
- When to split vs. stop
 - Max cluster size:
 number of points in cluster falls below threshold
 - Max cluster radius:
 distance to furthest point falls below threshold
 - Specified # clusters:split until pre-specified # clusters is reached

Agglomerative clustering

1. Initialize each point to be its own cluster

1. Initialize each point to be its own cluster

2. Define distance between clusters to be:

3. Merge the two closest clusters

Clusters of clusters

Just like our picture for divisive clustering...

The dendrogram for agglomerative clustering

The dendrogram

- x axis shows data points (carefully ordered)
- y-axis shows distance between pair of clusters

The dendrogram

- x axis shows data points (carefully ordered)
- y-axis shows distance between pair of clusters

The dendrogram

Path shows all clusters to which a point belongs and the order in which clusters merge

Extracting a partition

Choose a distance D* at which to cut dendogram

Extracting a partition

Every branch that crosses D* becomes a separate cluster

Extracting a partition

Every branch that crosses D* becomes a separate cluster

Agglomerative clustering details

Agglomerative choices to be made

- Distance metric: $d(x_i, x_j)$
- Linkage function: e.g., $\min_{\substack{\mathbf{x}_i \text{ in } C_1, \\ \mathbf{x}_j \text{ in } C_2}} d(\mathbf{x}_i, \mathbf{x}_j)$
- Where and how to cut dendrogram

More on cutting dendrogram

- For visualization, smaller # clusters is preferable
- For tasks like outlier detection, cut based on:
 - Distance threshold
 - Inconsistency coefficient
 - Compare height of merge to average merge heights below
 - If top merge is substantially higher, then it is joining two subsets that are relatively far apart compared to the members of each subset internally
 - Still have to choose a threshold to cut at, but now in terms of "inconsistency" rather than distance
- No cutting method is "incorrect", some are just more useful than others

Computational considerations

- Computing all pairs of distances is expensive
 - Brute force algorithm is $O(N^2log(N))$

datapoints

- Smart implementations use triangle inequality to rule out candidate pairs
- Best known algorithm is O(N²)

Statistical issues

Chaining: Distant points clustered together if there is a chain of pairwise close points between

Other linkage functions can be more robust, but restrict the shapes of clusters that can be found

- Complete linkage: max pairwise distance between clusters
- Ward criterion:
 min within-cluster variance at each merge

Hidden Markov models (HMMs): Another notion of "clustering"

So far, looked at clustering unordered data

Data index (i.e., when observation was recorded) does not influence clustering

What if we have time series data?

Would be hard to distinguish red, blue, and green clusters if we ignored order of data

Example: Honey bee dances

Repeated patterns of dance transitions

Similar ideas appear in many applications

Hidden Markov model (HMM)

As in mixture model...

Every observation x_t is associated with cluster assignment variable z_t

Each cluster has a distribution over observed values

Hidden Markov model (HMM)

Difference from mixture model:

Probability of $(z_t = k)$ depends on previous cluster assignment z_{t-1}

Inference in HMMs

- Learn MLE of HMM parameters using EM algorithm = Baum Welch
- Infer MLE of state sequence given fixed model parameters using dynamic programming = Viterbi algorithm
- Infer soft assignments of state sequence using dynamic programming
 - = forward-backward algorithm

What we didn't cover

Other clustering + retrieval topics

Retrieval:

- Other distance metrics
- Distance metric learning

Clustering:

- Nonparametric clustering
- Spectral clustering

Related ideas:

- Density estimation
- Anomaly detection

What's ahead in this specialization

This course is a part of the Machine Learning Specialization

5. Recommender Systems & Dimensionality Reduction

Case study: Recommending Products

Models

- Collaborative filtering
- Matrix factorization
- PCA

Algorithms

- Coordinate descent
- Eigen decomposition
- SVD

Concepts

 Matrix completion, eigenvalues, cold-start problem, diversity, scaling up

6. Capstone: Build and deploy an intelligent application with deep learning

Thank you...