Introducción a E-Ciencia

- Antecedentes
- •E-ciencia
- Consorcios
- •NGI
- •Grid Colombia
- Proyectos

Computadores paralelos

- Si nos fijamos bien, hoy en día prácticamente todos los computadores/nodos tienen hardware paralelo:
 - Múltiples unidades funcionales (Cache L1, Cache L2, branch, prefetch, decode, floating-point, GPU, Integers)
 - Varias unidades de ejecución CPUs/Cores
 - Múltiples Threads en Hardware

APLICACIONES

- degree of warming, scenarios for our future climate.
 understand and predict ocean properties and variations
- weather and flood events

- systems, structures which span a large range of different quantum field theories like QCD, ITER
- Material Science, Chemistry, Nanoscience
 - understanding complex materials, complex chemistry, nanoscience
 - the determination of electronic and transport properties

Life Science

system biology, chromatin dynamics, large scale protein dynamics, protein association and aggregation, supramolecular systems, medicine

Engineering

complex helicopter simulation, biomedical flows gas turbines and internal combustion engines forest fires, green aircraft,

virtual power plant www.prace-ri.eu

El desarrollo de la e-Ciencia, en general, tendrá un impacto científico con la explotación eficiente de centros o recursos de excelencia y la existencia de nuevas formas de compartir conocimiento; un impacto tecnológico, ya que permitirá abrir nuevos mercados y nuevas formas de colaboración y desarrollo de proyectos; y un impacto social, pues proveerá de acceso para vencer la brecha tecnológica.

Introducción a OSG Grid Computing APLICACIONES - TENDENCIAS ACTUALES

Introducción a E-Ciencia Consorcios y NGI:

- •EELA Gisela
- •IGALC
- •OSG
- •EGEE
- •Grid 5000
- •lbergrid
- •Grid Colombia

Introducción a OSG Grid Computing Introducción a E-Ciencia •Grid Colombia GRID Colombia Frentes de Regionales Trabajo Centro Infraestructura NorOccidente Comunicaciones **Organizaciones** Oriente Virtuales Internacional GC-Edu Norte Aplicaciones Occidente GC-Bio Capacitación GC-??? Eje Cafetero Organizacional

Introducción a E-Ciencia

Proyectos

E-HUMANIDADES

•CLARIN: http://www.clarin.eu/external/

•Biblioteca Virtual del CSIC: http://digital.csic.es/

E-CIENCIAS

•The Large Hadron Collider (LHC): http://lhc.web.cern.ch/lhc/

•.....

Introducción a OSG Grid Computing

Historia de la computación en Grid

Dr. lan Foster - Padre del Grid – Checklist (1998)

- Recursos coordinados que no están sujetos a control centralizado y que superan las fronteras organizacionales(VO)
- Uso de protocolos e interfaces estándares, abiertos y de propósito general
- Ofrece características no triviales de servicio

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

Introducción a OSG Grid Computing

Historia de la computación en Grid

- Dr. Ian Foster Padre del Grid
- Dr. Carl Kesselman
- Steve Tuecke
 - Globus Toolkit

Características de la computación en Grid

- Escalabilidad
- Distribución Geográfica
- Heterogeneidad de hardware y software
- Compartir recursos
- Múltiples administraciones
- Coordinación de recursos
- Acceso transparente a los usuarios
- Acceso fiable y permanente
- Acceso consistente, uso de estándares (middleware)

Introducción a OSG Grid Computing

Recursos de la computación en Grid

- Poder de cómputo
- Almacenamiento
- Comunicaciones
- Software y Licencias de Software
- Equipamientos y recursos especiales
- Trabajos y Aplicaciones
- Planificación, reserva y liberación de recursos

Principios de la computación en Grid

Software necesario:

- Componentes de administración
- Software de nodos
- Software de envío de peticiones
- Administración distribuida (jerárquica u otra)
- Planificadores
- Software de comunicaciones
- Software de monitoreo

Introducción a OSG Grid Computing

Tipos de Grid Computing

Clasificación en función del tipo de recursos

- Grid computacionales
- Grid de datos
- Grid de almacenamiento
- Grid de equipamiento

Tipos de Grid Computing

Clasificación en función a la distribución geográfica de sus recursos

- Distribuidos a través de Internet
- Delimitados por Organizaciones Virtuales
- Implementados de forma local (Campus Grid)

Introducción a OSG Grid Computing

Tipos de Grid Computing

Grids para distintas necesidades

- Grid nacional (NGI)
- Grid con una meta específica
- Grid privada

Tipos de Grid Computing

Grids para distintas necesidades

- Grid de buena voluntad
- Grid punto-a-punto (Peer-to-Peer)
- Grid tipo-nube

Introducción a la Computación Distribuida y Condor

Condor

Entre las **funcionalidades** más importantes de Condor, se puede mencionar:

- Grid computing: Condor incorpora funcionalidades basadas en computación grid. Condor incluye el software necesario para recibir tareas de otros clusters, supercomputadores y sistemas distribuidos utilizando el toolkit Globus y Condor-G.
- Condor puede entregar tareas mediante recursos administrados por otros sistemas de planificación tales como PBS utilizando Condor-G.
- Condor tiene varios universos:
 - Vanilla, Standard, Grid, Java, Parallel y VM

http://www.cs.wisc.edu/condor/

Introducción a la Computación Distribuida y Condor

Condor

Condor tiene varios universos:

Standard: Aplicaciones desarrolladas para Condor

Vanilla: Todo tipo de aplicaciones

Java: Aplicaciones en java

Grid: Integracion con recursos gridParallel: Aplicaciones MPI y similares

VM: Para virtualización

http://www.cs.wisc.edu/condor/

Introducción a OSG Grid Computing

Clúster	Grid
Equipos homogéneos	Equipos heterogéneos
Sistema operativo único	Múltiples sistemas operativos
Administración y manejo centralizado (un solo equipo, maestro)	Administración y manejo descentralizado, (diferentes equipos)
Administración única (un solo programa)	Administración múltiple (Varios programas, que se comunican entre sí)
Los equipos están cercanos (mismo sitio)	Los equipos están dispersos (diferentes sitios)
Objetivo: mejorar el rendimiento del sistema dedicando más recursos	Objetivo: mejorar el rendimiento del sistema compartiendo recursos subutilizados

Grids en el mundo

AP GRID , D4Science, DEISA, EELA-2, EGEE, EGI_DS, EUAsiaGrid, EU-IndiaGrid, GridPP, LCG, NextGRID, NorduGrid, Open Grid Forum, OGF-Europe, **Open Science Grid OSG**, PRAGMA, WINDS

Organizaciones Virtuales (VO)

- Una Organización Virtual (VO) se refiere principalmente a un grupo de personas (miembros de la VO), los recursos y servicios.
- Políticas locales del sitio y las políticas de la VO del usuario.
- VO son responsables de la afiliación individual.

Componentes Según el tamaño del Sitio

Introducción a OSG Grid Computing

Sitios conforman la GRID

Sitios GRID de OSG en América

Introducción a OSG Grid Computing

Características de Éxito para ejecutar una aplicación en GRID

- Aplicaciones Linux de 32 o 64 bits
- Aplicaciones con o sin hilos que no involucren paso de mensajes
- Aplicaciones con tiempo de ejecución entre 1 y 24 horas
- Aplicaciones manejan muertes inesperadas y reinicios
- Aplicaciones construidas con software que no requiere licenciamiento
- Problemas científicos que se puedan describir como flujos de trabajo (WorkFlow) en tareas pequeñas del mismo tipo
- Procesos científicos que requieran ejecutar un gran número de trabajos pequeños en lugar de pocos trabajos de gran tamaño

Aplicaciones que no aprovechan bien la GRID

- Las que requieren paso de mensajes y una latencia baja de red
- Las que tienen un tiempo de ejecución muy alto y no se le pueden crear puntos de revisión
- Las que no toleran fallos remotos
- Las que requieren software complejo y ambientes específicos difíciles de implementar
- Aquellas que requieren privilegios de Administracion
- Las que requieren interacción a través de una interfaz de Usuario

Seguridad en el Grid

Conceptos

- Es fundamental.
- El Certificado es su identidad en Grid
- Seguridad basada en criptografía de clave pública

Introducción a OSG Grid Computing

Conceptos

2 niveles de cifrado:

- Delegación de credenciales
- Grid proxy: protege su certificado, corta vida
- Para trabajar en una Grid debe tener un certificado válido de una CA válida

Certificados de Usuario

Entidad Certificadora para Colombia: https://ra.uniandes.edu.co

Solicitud

- 1. Pedir el certificado
- 2. Enviar correo
 - 1. Pin y serial
 - 2. Fotocopia CC
- Universidad de los Andes

3. Certificación laboral institucional

Certificados de Usuarios

- Agente los aprueba en coordinación con GridColombia
- Navegador donde esta el Certificado
- Hay que unirse a GCEDU VO
 - https://gc-voms.javeriana.edu.co:8443/voms/gcedu/

Grid Colombia

Objetivo general: Diseñar, implementar y validar un prototipo de Grid de Cómputo Nacional que permita desarrollar una iniciativa de e-ciencia mediante la agremiación de recursos de cómputo intensivo existentes en las instituciones participantes a través de las Redes Académicas de Alta Tecnología regionales RUANA, Ruta Caribe, RUAV, Unired y RUMBO y nacional RENATA.

Nodos Regionales

Organización Geográfica por Nodos

Cada Universidad o Institución nueva se agrega a un grupo de trabajo regional liderado por 1 institución de la región

- Región Norte
- Región Noroccidental
- Región Sur Occidental
- Región Oriental
- Región Central
- Región Eje Cafetero

Grid Colombia

Membrecía: pueden ser actores de Grid Colombia los grupos y centros de investigación, no sólo los que centran en las áreas de la computación de alto desempeño sino también los que requieren usar este tipo de tecnología.

Frentes de trabajo:

- Infraestructura
- Comunicaciones
- Organizacional
- Capacitación
- Aplicaciones

Introducción a OSG Grid Computing

Grid Colombia

- Desarrollar las primeras aplicaciones que permitan, simular, evaluar y validar la utilidad de la tecnología grid para la solución de problemas científicos y tecnológicos de interés para el país.
- Establecer relaciones institucionales formales propicias para la colaboración en el establecimiento del grid nacional, generando las bases y recomendaciones para la operación del mismo en el marco de la organización académica Grid Colombia.

Trabajo Actual y Futuro

- Integración Nuevos Miembros
 - Científicos, Biólogos, Fiscos, Químicos
 - Instituciones
 - Laboratorios de Investigación.
- Gridificación de Aplicaciones
- Fortalecimiento de VO en Bio Informática.
- Adopción de plataforma gLite
- Fortalecimiento de Infraestructura

y MAS!!!

