GeV neutrinos from solar flares and LIGO-Virgo events

Gwen de Wasseige

Reviewers: Lutz and Carlos

GeV neutrinos from astrophysical transients

- · Monitoring the rate
- Searching for an increase during an astrophysical transient

Interaction:

NuEBar -> EPlus + Gamma + Neutron

Primary

Type : NuEBar

Energy: 6.61e-01GeV

Cascade

Type : EPlus

Energy: 5.00e-01GeV

Questions:

From Martin W.:

"Why haven't you used the Solar Wimp event selection?"

->According to my simulation of proton-nucleus interactions in solar flares, we expect solar flare neutrinos up to max. 5 GeV, emitted with a soft spectrum. We therefore wanted an event selection optimized for 0.5 - 5 GeV neutrinos, which is not the case of the solar wimp event selection.

Questions:

From Michael L.:

"Does your definition of 'solar direction' influence the effective area?"

-> This question makes me find a bug in the code calculating the effective area. Updated effective areas (bigger than previously) are on the next slide.

In view of answering Michael's question, I restricted the effective areas to ±10 degrees around the horizon, where all the solar flares happened.

Sensitivity - Solar flare

Summary of the unblinding proposal

Unblinding proposal

- <u>5 solar flares</u>: *Li&Ma test*
 - March 7th 2012
 - Feb 25th 2014
 - Sep 1st 2014

- Sep 6th 2017
- Sep 10th 2017

- 7 GW events: Li&Ma test
 - Sep 14th, 2015
 - Oct 12th, 2015
 - Dec 26th, 2015
 - Jan 4th, 2017
 - June 8th, 2017

- Aug 14th, 2017
- Aug 17th, 2017

+ KS for all BBHs stacked

Thanks!

GeV neutrinos from astrophysical transients

GeV neutrinos from astrophysical transients

- · Monitoring the rate
- Searching for an increase during an astrophysical transient

Interaction:

NuEBar -> EPlus + Gamma + Newtron

Primary

Type : NuEBar

Energy: 6.61e-01GeV

Cascade

Type : EPlus

Energy: 5.00e-01GeV

Overview

- Description of the event selection
- Rate at final level and effective areas
- Statistical analysis for solar flares
- Statistical analyses for GW events
- Summary of the unblinding proposal

Event selection

GeV neutrinos from astrophysical transients

Three series of cuts:

- 1. Removing HE events (> 5 GeV)
- 2. Minimizing pure noise events
- 3. Increasing the purity

Interaction:

NuEBar -> EPlus + Gamma + Neutron

Primary

Type : NuEBar

Energy: 6.61e-01GeV

Cascade

Type : EPlus

Energy: 5.00e-01GeV

	Variable	Dessing conditions		
		Passing conditions		
	• Passing filters	DeepCore excluding any other filter aside		
		from LowUp and FSS		
	Number of HLC in IceCube w/o DeepCore (x)	$x \le 6 \text{ AND } y \le 7$		
	Number of HLC in DeepCore (y)	OR x = 0 1. Removing		
	Number of SRT hits	< 10 HE events		
	Trumbur of bier miss			
	N . D	NoiseEngine(100, 2, 0.20, 0.90) = True		
	NoiseEngine combination I			
	NoiseEngine(100, 0, 0.20, 0.90) = Tru			
2. Minimizing pure		AND NoiseEngine(1000, 0, 0.00, 0.10) = False		
noise events No		NoiseEngine $(300, 2, 0.20, 0.40)$ = True		
NoiseEngine combination II		NoiseEngine $(300, 2, 0.10, 0.90) = True$		
		AND NoiseEngine(800, 0, 0.00, 0.10) = False		
		NoiseEngine(500, 2, 0.20, 0.30) = True		
	Charge ratio	> 0.26		
	Depth of the first HLC in DeepCore (z)	-2453m < z < -2158 m		
	Distance and delay between	< 70 m		
	•	4 MO		
	1st and 2nd HLC in DeepCore	Column Colu		
	Total charge	< 60 photoelectrons		
	Number of HLC in DeepCore	< 10 che puricy		

o, Filler selection

1. Removing HE events

2. Minimizing pure noise events

Use NoiseEngine to remove pure noise events

NoiseEngine

4 different variables to select direct/indirect hits:

- a time window W (ns)
- a minimal speed X (m/ns)
- a maximal speed Y (m/ns)
- a threshold Z (#of pairs)

We work with the True/False output (not the hit cleaning)

Minimizing pure noise events

Minimizing pure noise events

3. Increasing the purity

Cut variables used to constrain the 'topology' of the events:

- Charge ratio in 600ns
- Depth of the 1st HLC
- Distance/duration between 1st and 2nd HLC
- Total charge
- Number of HLC in DeepCore

the purit Increasing

Rate at final level

Rates at final Level

Data

Sets		Rate	
Data	2011	0.025 ± 0.003 Hz	
	2012	0.021 ± 0.003 Hz	
	2013	0.020 ± 0.003 Hz	
	2014	0.022 ± 0.003 Hz	
	2015	0.021 ± 0.003 Hz	
	2017	0.019 ± 0.003 Hz	

simulations

Vuvuzela		0.018 Hz
Corsika		< 0.005 Hz
Genie	v_e	0.0003 Hz
	$ u_{\mu}$	0.0008 Hz

Rates at final Level

passing fraction fraction signal events

Sets	Particle type	Energy	Direction	Passing fraction
	ν _e	1.50-1/	Solar	41 %
		1- 5 GeV	All sky	41 %
		500 May 1 Cay	Solar	42 %
		500 MeV - 1 GeV	All sky	43 %
Cianal	νμ	1.500	Solar	39 %
Signal		1- 5 GeV	All sky	39 %
		500 May 1 Cay	Solar	38 %
		500 MeV - 1 GeV	All sky	40 %
	$ u_{\tau} $	1- 5 GeV	Solar	40 %
			All sky	40 %

Passing fraction

Effective area

Statistical analysis for Solar Flares

$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ $\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$ 11°→2 γ hadron acceleration (up to several GeV) $p,\alpha...=$ Solar Energetic Particles

Solar flare v

$$\pi^{\circ} \rightarrow 2 \gamma$$

$$\pi^{\circ} \rightarrow 2 \gamma$$

$$\pi^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}$$

few MeV up to a few GeV

Rate following a Poisson dist.

Sensitivity - using Li & Ma

Li&Ma calculates the significance of a counting exp. when both counting and bkg rates are signal and bkg rates are described by a Poisson process

- t_{on} has been optimized for each flare
- $t_{off} = 8 hours$

• $N_{off} = 550$ events

• S < 1 for off-time data

$$S = \sqrt{-2 \ln \lambda} = \sqrt{2} \left\{ N_{\text{on}} \ln \left[\frac{1 + \alpha}{\alpha} \left(\frac{N_{\text{on}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] + N_{\text{off}} \ln \left[(1 + \alpha) \left(\frac{N_{\text{off}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] \right\}^{1/2}$$

Definition of ton

Definition of ton

Definition of ton

Definition of ton

Sensitivity - Solar flare

Statistical analysis for GWEVENES

GW events detected by LIGO and Virgo

6 BBH mergers
Sep 14th, 2015
Oct 12th, 2015
Dec 26th, 2015
Jan 4th, 2017
June 8th, 2017
Aug 14th, 2017

1 BNS merger Aug 17th, 2017

Fermi detection 2s after the merger time

Constraint in [-500s,+500s]

Sensitivity - using Li & Ma

Similar to the Solar Flare analysis:

- Same event selection
- Same statistical analysis
 - $t_{on} = 3s$
 - \bullet t_{off} = 8 hours
 - N_{off} = 550 events
 - S < 1 for off-time data

Sensitivity - Stacking of BBH events

In addition to Li&Ma: Stacking of the 6 BBHs

- Study of the Δt distribution between next-to-neighbor events in [-500s, +500s]
- For off-time data: Δt follow an Erlang distribution
- For on-time data: Measure the deviation from Erlang using Kolmogorov Smirnov test
- Sensitivity: 76 neutrinos cm⁻² s⁻¹

Summary of the unblinding proposal

Unblinding proposal

- <u>5 solar flares</u>: *Li&Ma test*
 - March 7th 2012
 - Feb 25th 2014
 - Sep 1st 2014

- Sep 6th 2017
- Sep 10th 2017

- 7 GW events: Li&Ma test
 - Sep 14th, 2015
 - Oct 12th, 2015
 - Dec 26th, 2015
 - Jan 4th, 2017
 - June 8th, 2017

- Aug 14th, 2017
- Aug 17th, 2017

+ KS for all BBHs stacked

Lutz and Carlos comments

Answered in the wikipage:

<u>https://wiki.icecube.wisc.edu/index.php/</u> Solar_flare_neutrino_search#Sample_properties_at_Final_Level

More comments? Feel free to send me an email with questions!

 More tests, plots, explanations on the wikipage (e.g. asymmetry, energy distribution, systematics, light curves,...)

Back-up slides

Filler selection

Minimizing pure noise events

```
u_e 	ext{ signal - Vuvuzela}
```

```
if NoiseEngine(100, 2, 0.20, 0.90) == True:
    return True
    elif NoiseEngine(100, 0, 0.20, 0.90) == True :
        if NoiseEngine(1000, 0, 0.00, 0.10) == False :
            return True
else : return False
```


Effective area

Sensitivity - using Li & Ma

Li&Ma calculates the significance of a counting exp. when both counting and bkg rates are signal and bkg rates are described by a Poisson process

- $t_{on} = 3s$
- $t_{off} = 8 \text{ hours}$

N_{off} = 550 events

• S < 1 for off-time data

$$S = \sqrt{-2 \ln \lambda} = \sqrt{2} \left\{ N_{\text{on}} \ln \left[\frac{1 + \alpha}{\alpha} \left(\frac{N_{\text{on}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] + N_{\text{off}} \ln \left[(1 + \alpha) \left(\frac{N_{\text{off}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] \right\}^{1/2}$$