decrypt mod p: $x_p = c^d$ in Z_p combine to get $x = c^d$ in Z_N decrypt mod q: $x_q = c^d$ in Z_q

A common implementation of RSA decryption: $x = c^d$ in Z_N

Suppose error occurs when computing
$$x_q$$
, but no error in x_p

Then: output is x' where $x' = c^d$ in Z_p but $x' \neq c^d$ in Z_q

$$\Rightarrow (x')^e = c \text{ in } Z_p \quad \text{but } (x')^e \neq c \text{ in } Z_q \quad \Rightarrow \quad \gcd((x')^e - c, N) = p$$