Ma2201/CS2022 Quiz 0101

Discrete Mathematics

A Term, MMXVII

Print Name: ______Sign: _____

1. (4 points) Label each of the following sets as finite, countably infinite or uncountable.

 $\mathcal{P}(\{x \in \mathbb{Q} \mid -1 \le x \le 1\}).$

 \clubsuit The rationals between -1 and 1 are infinite, and a subset of \mathbb{Q} , so countably infinite. Hence their power set is uncountable. \clubsuit

 $\mathbb{Z} \cup (\mathbb{Z} \times \mathbb{Q}).$

 \clubsuit Countably infinite: The sets $\mathbb Z$ and $(\mathbb Z \times \mathbb Q)$ are both countably infinite, so their union in as well. \clubsuit

 $\underline{\hspace{1cm}} (\mathbb{R} \cap \mathbb{Z}) \times (\mathbb{R} \cap \mathbb{Q}).$

• Countably Infinite: $(\mathbb{R} \cap \mathbb{Z}) = \mathbb{Z}$ and $(\mathbb{R} \cap \mathbb{Q}) = \mathbb{Q}$ which are both countable, and the product of two countably infinite sets is countably infinite.

 \clubsuit Uncountable: The interval is only 10^{-3} wide, but multiplying by 1000 is one-to-one and onto, and we proved that the real numbers in an interval of width 1 is uncountable.

2. (4 **points**) Let p and q be statements. Label each of the following as TRUE if it must be true. Otherwise FALSE.

 $p \Rightarrow (q \lor \neg q).$

♣ TRUE: Since $q \lor \neg q$ is always true, consequence is true, so implication is true. $(p \Rightarrow q) = \neg (q \Rightarrow p)$. E

 \clubsuit FALSE: If p and q are both true, then both $p \Rightarrow q$ and $q \Rightarrow p$ are true, so equating the first with the negation of the second is not always true so FALSE. \clubsuit

 $(p \Rightarrow q) = \neg (p \land \neg q).$

\$\rightharpoonup\$ TRUE: The implication is by definition $q \lor \neg p$. The right hand side, by Demorgan's law is $\neg(p \land \neg q) = \neg p \lor q$.

 $(p \lor q) \Rightarrow p.$

- \clubsuit FALSE: Consider if p is false and q is true. \clubsuit
- 3. (2 points) Define a function $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ such that the set $C_f = \{n \in \mathbb{N} \mid n \notin f(n)\}$ is the set of even numbers.
- We can define any function we please provided that each even numbers are sent to a set not containing themselves, and the opposite for the odd numbers. So, for example define $f(n) = \emptyset$ for n even and $f(n) = \{0, 1, 2, 3, \dots, n\}$ for n odd.

[Note: C_f is used to show f cannot be onto, and indeed, none of the functions $f(n) = C_f$, since f(n) is always a finite set, and the even numbers is an infinite set.]