ESCOLA POLITÉCNICA DE PERNAMBUCO

ALUNO: JOÃO VICTOR DOS SANTOS PEREIRA

DISCIPLINA: SISTEMAS OPERACIONAIS

AVALIAÇÃO 07

Cada processo tem seu conjunto de informações que lhe pertencem. E esses dados se localizam numa área da memória onde apenas o próprio processo ou o núcleo são capazes de acessar. Essas são as principais informações que garantem a sua execução apropriada, sendo o código binário, bibliotecas, entre outros. O espaço de memória é organizado em várias seções que são mantidas pelo núcleo (TEXT, HEAP, BSS, DATA, STACK). Onde cada uma dessas seções, servem para ter um conteúdo específico e para isso, são feitas permissões para o acesso à cada uma delas.

2º)

- **Endereços lógicos:** Endereços gerado pelo processador enquanto um programa está em execução, definidos a partir do espaço de endereçamento do processador.
- **Endereços físicos:** Endereços dos bytes de memória física do computador, definidos a partir da quantidade de memória disponível.

Para fins de simplificação dos procedimentos de alocação de memória são implementados os endereços lógicos, em que os processos enxergam a memória como se fosse única para tal processo. E pela alocação dinâmica, é obtido o endereço físico para cada endereço lógico. Endereços lógicos também servem para manter a segurança entre os processos e o núcleo.

3º) Trata-se de uma interrupção feita pelo hardware, ocasionado pelo o acesso à uma página mapeada na memória virtual, que não foi carregada na memória física, pelo programa. O tratamento é realizado através da interrupção do processo em si, ou realizando uma alocação da memória física.

4º) INCORRETAS: A, D e F

- LETRA A: É ao contrário, Os endereços **lógicos** gerados pelo processador são convertidos em endereços **físicos** através do MMU.
- LETRA D: Possui variáveis definidas do início ao fim do processo e com valor inicial definido no código-fonte.
- LETRA F: A área da memória STACK aloca **dados ou ponteiros** quando uma função é chamada e desalocada quando a função termina.

5º)

- Tabelas de páginas com 3 níveis;
- Tempo de acesso à memória RAM é 100ns;
- TLB cache de 64 entradas;
- 98% de taxa de acerto
- Custo de acerto é 10ns
- Penalidade é 50ns

O tempo pode ser estimado através da média ponderada entre o tempo de acesso e o tempo de acesso com erro.

O tempo é calculado pela soma entre o custo de acerto no TLB, custo de erro no TLB, custo da consulta às três tabelas e o tempo de acesso à RAM.

Logo, Tm = 0.98*10ns + 0.02*50ns + 0.02*3*100ns + 100ns = **116,8ns**

6º)

4 quadros físicos disponíveis. Entrada é 0172327103

Página Virtual	Página da Memória	Paga fault	Substituição
0	-	X	-
1	0	X	-
7	1,0	X	-
2	7,1,0	X	-
3	2,7,1,0	X	0
2	3,2,7,1	-	-
7	3,2,7,1	-	-
1	3,2,7,1	-	-
0	3,2,7,1	X	1
3	0,3,2,7	-	-

Na política FIFO, gerou 6 page fault.

Página Virtual	Página da Memória	Paga fault	Substituição
0	-	X	-
1	0	X	-
7	1,0	X	-
2	7,1,0	X	-
3	2,7,1,0	X	0
2	3,2,7,1	-	-
7	2,3,7,1	-	-
1	7,2,3,1	-	-
0	1,7,2,3	X	3
3	0,1,7,2	X	2

Na política LRU, gerou 7 page fault.

7º)

- Tem de acesso à RAM é 5 ns;
- Tempo de acesso ao disco é de 5 ms;
- Page fault a cada 10^6 acessos;

Considerando que a memória RAM sempre tem espaço livre para novas páginas.

O tempo é calculado a partir da <u>soma</u> do tempo de acesso sem page fault à RAM com o tempo de acesso ao disco, <u>dividido</u> pelo page fault.

Concluindo: T ~= 5ns (aproximadamente 5ns)

8º)

- a) A pág. 3 está sendo mapeada no frame 10, que é o 11º frame da memória principal. Ou seja, o endereço físico é: (11 * 2^11) 1 = 22527
- b) A pág. 2 está sendo mapeada no frame 100, que é o 101º frame da memória principal. Ou seja, o endereço físico é: (100 * 2^11) = 204800
- c) A pág. 3 está sendo mapeada no frame 10, que é o 11º frame da memória principal. Ou seja, o endereço físico é: (10 * 2^11) + 10 = 20490
- d) As páginas são: 0, 1, 2, 3 e 6.

9º) LETRA B, Instalar uma memória principal.

Supondo que a firma de consultoria deve analisar a composição do sistema, que deve ser um servidor de memória virtual, que possua conexão com diversas estações clientes.

Se o servidor possuir taxas de utilização da UCP e do disco, durante a paginação, de 10% e 96,7%, provavelmente, a instalação de mais memória principal será mais indicado para possibilitar o aumento da taxa de uso da UCP.

10º)

10 leituras

L1

Q0	0	00000000
Q1	1	00000000
Q2	0	00000000
Q3	1	00000000

L2

Q0	0	00000000
Q1	0	10000000
Q2	1	00000000
Q3	1	10000000

L3

Q0	1	00000000
Q1	1	01000000
Q2	1	10000000
Q3	0	11000000

L4

Q0	1	10000000
Q1	1	10100000
Q2	0	11000000
Q3	0	01100000

L5

Q0	1	11000000
Q1	0	11010000
Q2	0	01100000
Q3	1	00110000

L6

Q0	1	11100000
Q1	0	01101000
Q2	1	00110000
Q3	1	10011000

L7

Q0	1	11110000
Q1	0	00110100
Q2	1	10011000
Q3	0	11001100

L8

Q0	0	11111000
Q1	1	00011010
Q2	1	11001100
Q3	1	01100110

L9

Q0	0	01111100
Q1	1	10001101
Q2	1	11100110
Q3	0	10110011

L10

	Q0	0	00111110
	Q1	1	11000110
Ī	Q2	1	11110011
Ī	Q3	1	01011001

Valor final

Q0	00011111
Q1	11100011
Q2	11111001
Q3	10101100

O quadro Q0 será substituído, pois é o mais antigo.

11º)

Para t = 50 -> Em p0 -> 220 - 142 = 78 (substitui)

A página p0 será substituída.

A página p3 será substituída.