HW 4 - ASTR501

Created with Wolfram Mathematica 11.1 on February 17, 2016

Daniel George - dgeorge5@illinois.edu

QI

The distance traveled through the atmosphere of height h at latitude θ is given by

 $ln[166]:= d = h/Sin[\theta]$

Therefore the visual extinction (proportional to distance) is

 $ln[167] = h / Sin[\theta] * constant$

Q2

a)

```
In[168]:= s\lambda = \lambda \rightarrow FormulaData[{"PhotonWavelength", "Energy"}, {"E" -> 10.2 eV}][[2]]
Out[168]:= \lambda \rightarrow 1.21553 \times 10^{-7} \text{ m}
```

b)

```
out[169]:= sB = NSolve[{B12/B21 == g2/g1, A/B21 == 2 h v^3/ c^2} /. {g2 \rightarrow 6, g1 \rightarrow 2, A \rightarrow 6.2 \times 10^8 per second} /. Solve[h v == 10.2 eV, v], {B12, B21}][[1]] out[169]= {B21 \rightarrow 2.80274 \times 10<sup>12</sup> s/kg, B12 \rightarrow 8.40823 \times 10<sup>12</sup> s/kg}
```

d)

Cross-section from textbook:

$$\ln[196] = S\sigma = \sigma -> B12 \ h \ v0 \ / \ (4 \ \pi) \ \phi \ [v] \ //. \ \left\{ v0 \ -> \ c \ / \ \lambda, \ s\lambda \right\} \ /. \ sB \ // \ UnitConvert$$
 Out[196] = $\sigma \rightarrow \left(1.09347 \times 10^{-6} \ \text{m}^2/\text{s} \right) \ \phi \ [v]$

e)

Substituting value of B12 in cross-section above:

In[172]:= B12
$$h \vee 0 / (4\pi) \phi[v] / .$$

Solve $\left[\left\{ B12 / B21 = g2 / g1, A / B21 = 2 h \vee 0^3 / c^2 \right\}, \left\{ B12, B21 \right\} \right] [[1]] / . \vee 0 \rightarrow c / \lambda$

Out[172]:=
$$\frac{A g2 \lambda^2 \left(\frac{1}{8\pi} h \right) \phi[v]}{g1 h}$$

Function

In[173]:=
$$\mathbf{f}[\nu_{}] = \mathbf{Exp}[-(\nu - \nu 0)^2/(2\sigma^2)] /. \sigma \rightarrow \nu 0 \quad 5 \text{ km/s} / c /. \nu 0 \rightarrow c / \lambda /. s \lambda // UnitConvert$$

Out[173]= $e^{(\nu_{} + -2.46635 \times 10^{15} \text{ per second})^2 (-2.95503 \times 10^{-22} \text{ s}^2)}$

Normalization

In[174]:= Integrate[Exp[-ax^2], {x, -
$$\infty$$
, ∞ }, Assumptions \rightarrow a > 0]

Out[174]:= $\frac{\sqrt{\pi}}{\sqrt{a}}$

Therefore normalization constant = $1/\sqrt{\pi/a}$, where -a is the coefficient of v^2

In[175]:= const =
$$1/\sqrt{\pi/(2.955 * 10^{-22})}$$

Out[175]= 9.69848×10^{-12}

Value at line center

In[181]:=
$$\phi \theta$$
 = const f[c/λ /.s λ] /Hz

Out[181]= 9.69848 × 10⁻¹²/Hz

g)

Collision strength (f)

In[177]:= Sf12 = Solve [A == 8
$$\pi$$
^2 e ^2 v^2 / (m_e c ^3) g1/g2 f12 /.
 {g2 \rightarrow 6, g1 \rightarrow 2, A \rightarrow 6.2 \times 10^8 per second} /. v \rightarrow c / λ /. s λ , f12] [[1, 1]] Out[177]:= f12 \rightarrow 3.70292 \times 10^9 m/F

Finding density of atoms (N1) given τ = 1

In[195]:= Solve [1 == π e ^2 / (m_e c ^2) λ ^2 N1 ϕ 0 f12 /. sf12 /. s λ , N1] [[1, 1]] // UnitConvert

Out[195]:= N1 \rightarrow 1.91328 \times 10^{39} per meter³ per second

h)

$$ln[200]$$
:= 1/(n σ) /. {n -> 1/cm³, s σ } /. $\phi[\nu] \rightarrow \phi \theta$ // UnitConvert

Out[200]= 9.42955 × 10¹⁰ m