IMF and Benchmark Forecasts

2

3 1 Extracting error quantiles

- 4 Consider a forecast that stems from a source s for a specific target k in a country j, for target year t and with
- $_{5}$ forecast horizon h:

$$\hat{y}_{s,k,j,t,h}$$

- 6 For example, this could be a forecast stemming from the International Monetary Fund World Economic Outlook
- (s = IMF) for real GDP growth (k = gdpg) in Canada (j = Canada) for the year 2022 (t = 2022). h then indexes
- 8 the forecast horizon, where we code:

$$h = \left\{ \begin{array}{ll} 0, & \text{for forecasts made in October of the same year} \\ 0.5, & \text{for forecasts made in April of the same year} \\ 1, & \text{for forecasts made in October of the previous year} \\ 1.5, & \text{for forecasts made in April of the previous year} \end{array} \right.$$

- After the target year has completed, we obtain the realized value for the quantity of interest. For these, the WEO updates publishes biannual updates for two years, yielding 4 versions of the realized value. In accordance with
- previous literature (cite Timmermann 2008), we use the version that is published in October of the following year
- and thereby don't index the true value by its publishing date (rephrase). We thus write the true value as

$$\hat{y}_{k,j,t}$$

Given the forecast and the realized value for the quantity of interest, we can calculate the respective forecast error

14 as

$$e_{s,k,j,t,h}^d = y_{k,j,t} - \hat{y}_{s,k,j,t,h}$$

15 for the "directional" error method and as

$$e_{s,k,j,t,h}^a = |y_{k,j,t} - \hat{y}_{s,k,j,t,h}|$$

16 for the "absolute" error method.

The objective is to extract quantiles from sets of errors $\mathcal{E}_{s,k,j,t,h}$ constructed of certain years, depending on the estimation method m, to be able to quantify the uncertainty inherent in the forecasts via central prediction intervals of level $\alpha = \{0.5, 0.8\}$. For the estimation method, we consider a "rolling window" method, an "expanding window" method, and a "leave-one-out" method. For the rolling window method (m = rw), the errors of the last nine years enter into the estimation. For the expanding window method (m = ew), all previous years are considered, leaving a nine year window up front for the first estimation. For the leave-one-out method, all years except the current target year enter the estimation set. The latter is of course equivalent to the expanding window method in a real time setting and is considered in the scope of this analysis as a mere check rephrase. As an example, the error set for the "directional" error method and the rolling window approach is

$$\mathcal{E}_{s,k,j,t,h}^{d,rw} = \left\{ e_{s,k,j,t^*,h}^d | t - 9 \le t^* < t \right\}$$

- 26 Insert reasoning to use the past 9 errors.
- To now obtain the lower l and upper u values for a central prediction interval of level α , we take quantiles of these sets and add them to the current prediction:
- 29 For the directional method:

30

32

$$l_{t,h,v,l,j}^{\alpha,d} = \hat{y}_{t,h,l,j} + q^{0.5 - \alpha/2} \left(\mathcal{E}_{t,h,v,l,j}^{d,m} \right)$$

$$u_{t,h,v,l,j}^{\alpha,d} = \hat{y}_{t,h,l,j} + q^{0.5 + \alpha/2} \left(\mathcal{E}_{t,h,v,l,j}^{d,m} \right)$$

And for the absolute method:

$$l_{t,h,v,l,j}^{\alpha,a} = \hat{y}_{t,h,l,j} - q^{\alpha} \left(\mathcal{E}_{t,h,v,l,j}^{m,a} \right)$$

$$u_{t,h,v,l,j}^{\alpha,a} = \hat{y}_{t,h,l,j} + q^{\alpha} \left(\mathcal{E}_{t,h,v,l,j}^{m,a} \right)$$

- ³³ Two different philosophies.
- The absolute method will always yield symmetric central prediction intervals around the forecast value, while the
- directional method will in general yield asymmetric intervals. They thus result in different central intervals, unless
- the errors in \mathcal{E} are perfectly symmetric around zero¹. In fact, the directional method can yield central prediction
- intervals that do not even contain the forecast value, in cases where the $(0.5 \alpha/2)$ -quantile is positive or the
- $(0.5 + \alpha/2)$ -quantile is negative.

¹Not totally correct, actually. For this to hold exactly, the error set would need to be augmented with one zero value.

³⁹ 2 Scores, by error method, Horizon and forecast source

⁴⁰ 2.1 Inflation

- 42 Some notes:
- Inflation: directional vs. absolute errors:
- difference small for IMF method, absolute slightly better, likely due to longer central intervals
- AR and BVAR profit more from directional correction (upward bias)
- for expanding window method, difference in coverage is smaller (-> structural breaks)
- Inflation overall scores: IMF forecasts outperform others
- lower scores for point forecasts
- lower WIS
- lower bias (compute directly?)
- GDP Growth: more similar results for different sources
- lower scores at shorter horizons, more similar at larger horizons
- IMF forecasts better only for absolute error method

54 2.2 GDP

56 3 Expanding Window - Scores, by error method, Horizon and forecast

source

58 3.1 Inflation

60 3.2 GDP

62 4 Coverage, by target, methods and source

	IMF	ar	bvar	
horizon = 0				
expanding window_interval_score	0.142	0.088	0.078	
expanding window_sample_crps	0.105	0.068	0.059	
leave-one-out_interval_score	0.136	0.084	0.076	
leave-one-out_sample_crps	0.107	0.049	0.046	
rolling window_interval_score	0.141	0.087	0.078	
rolling window_sample_crps	0.105	0.068	0.060	
horizon = 0.5				
expanding window_interval_score	0.228	0.275	0.274	
expanding window_sample_crps	0.164	0.190	0.210	
leave-one-out_interval_score	0.228	0.268	0.263	
leave-one-out_sample_crps	0.161	0.192	0.206	
rolling window_interval_score	0.226	0.269	0.267	
rolling window_sample_crps	0.166	0.183	0.204	
horizon = 1				
expanding window_interval_score	0.420	0.757	0.595	
expanding window_sample_crps	0.300	0.530	0.448	
leave-one-out_interval_score	0.412	0.768	0.591	
leave-one-out_sample_crps	0.272	0.440	0.388	
rolling window_interval_score	0.420	0.765	0.600	
rolling window_sample_crps	0.301	0.542	0.456	
horizon = 1.5				
expanding window_interval_score	0.465	1.037	0.819	
expanding window_sample_crps	0.323	0.603	0.613	
leave-one-out_interval_score	0.456	1.013	0.765	

$leave-one-out_sample_crps$	0.312	0.567	0.566
rolling window_interval_score	0.463	1.039	0.799
rolling window_sample_crps	0.319	0.604	0.582

4.1 Inflation

66 4.2 GDP

	IMF	ar	bvar	
horizon = 0				
expanding window_interval_score	0.365	0.110	0.099	
expanding window_sample_crps	0.254	0.083	0.076	
$leave-one-out_interval_score$	0.356	0.112	0.099	
$leave-one-out_sample_crps$	0.269	0.077	0.068	
rolling window_interval_score	0.368	0.112	0.100	
rolling window_sample_crps	0.267	0.086	0.079	
horizon = 0.5				
expanding window_interval_score	0.446	0.506	0.455	
expanding window_sample_crps	0.324	0.369	0.329	
leave-one-out_interval_score	0.435	0.512	0.451	
leave-one-out_sample_crps	0.331	0.348	0.314	
rolling window_interval_score	0.448	0.519	0.464	
rolling window_sample_crps	0.331	0.379	0.338	
horizon = 1				
expanding window_interval_score	0.922	1.198	1.070	
expanding window_sample_crps	0.709	0.882	0.828	
leave-one-out_interval_score	0.902	1.187	1.051	
leave-one-out_sample_crps	0.627	0.732	0.703	
rolling window_interval_score	0.922	1.208	1.082	
rolling window_sample_crps	0.720	0.906	0.854	
horizon = 1.5				
expanding window_interval_score	1.163	1.424	1.271	
expanding window_sample_crps	0.894	0.998	0.985	
leave-one-out_interval_score	1.135	1.400	1.227	

$leave-one-out_sample_crps$	0.765	0.855	0.838
rolling window_interval_score	1.170	1.431	1.270
rolling window_sample_crps	0.900	1.028	1.008

