Modelo de simulación MCP3008

Edwar Javier Patiño Núñez Monitor Electrónica Digital

Escuela de Ingeniería Electrónica - Extensión Tunja

Agenda

1 Introducción

3 | Banco de pruebas

2 | Modelo de simulación

4 | Actividad sugerida

Introducción

- Resolución de 10 bits
- 8 canales de entrada
- Interfaz serial SPI (modos 0,0 y 1,1)
- Operación de suministro único: 2,7 V 5,5 V
- 75 ksps máx. frecuencia de muestreo en VDD = 2.7V
- 200 ksps máx. frecuencia de muestreo en VDD = 5V

Modelo de simulación

Símbolo	Descripción	_
СНО	Entrada análoga	←
CH1	Entrada análoga	←
CH2	Entrada análoga	←
СН3	Entrada análoga	←
CH4	Entrada análoga	←
CH5	Entrada análoga	←
СН6	Entrada análoga	←
CH7	Entrada análoga	←
$D_{_{GND}}$	Tierra digital	
CS /SHDN	Selección de chip	←
$D_{_{IN}}$	Entrada de datos serie	—
D_{out}	Salida de datos serie	←
CLK	Reloj serial	←
$A_{_{GND}}$	Tierra análoga	
$V_{_{REF}}$	Entrada de voltaje de referencia	←
V _{DD}	Fuente de alimentación de + 2.7 V a 5.5 V	- -
NC	Sin conexión	

$$resolución * 2^m > 1$$

$$resolución = \frac{V_{REF}}{1023}$$

$$resolución = \frac{5}{1023} = 4.8mV$$

$$m > \log_2\left(\frac{1}{4.8m}\right)$$

$$V_{ref} = 5 \cdot 2^8 = 1280$$

Modelo de simulación

$$t_{conv} = 17 * \frac{1}{f_{clk}} + 270ns$$

$$t_{conv} = 17 * \frac{1}{3.6x10^6} + 270ns = 4.9us$$

$$\frac{1}{t_{conv}} = 200.3Ksps$$

Banco de pruebas

github.com/edwar-vhd/MCP3008

Actividad sugerida

Replicar las dos simulaciones que están en el repositorio, cambiando los estímulos del banco de pruebas para el modelo de simulación por un controlador real. El controlador debe ser un diseño propio con base en los conocimientos que ya se han adquirido durante las clases.

Gracias

Edwar Javier Patiño Núñez

Monitor Electrónica Digital

Escuela de Ingeniería Electrónica - Extensión Tunja

