

From SAD to ASR on the Fearless Steps Data

Bibash Thapaliya, Dheeraj Rajashekar Poolavaram, Saad Bin Abdul Mannan

Department of Communications Engineering – Paderborn University Prof. Dr.-Ing. Reinhold Haeb-Umbach Nov 05, 2021

Table of contents

- ① Introduction
- ② Speech Activity Detection
- Speaker Diarization
- Speaker Identity Detection
- ⑤ Automatic Speech Recognition
- 6 Conclusion

Introduction

Overview

- The work has been divided into the following sub-tasks:
 - 1. Speech Activity Detection (SAD)
 - 2. Speaker Identity Detection (SID)
 - 3. Speaker Diarization (SD)
 - 4. Automatic Speech Recognition (ASR)

Speech Activity Detection

SAD System

- Task of detecting speech from non speech
- An LSTM-based ResNet Architecture
- Achieves a 3.32% DCF as compared to the Baseline of 1.12%

Speaker Identity Detection

SID System

- Task of identifying a speaker from attributes of voices
- Trained using a Deep ResNet vector model

Introduction

- Who spoke when?
- In this work, we present (un)supervised way of SD system

x-vectors

- · Extracted from affine layer
- Variable length utterance to fixed dimensional embedding
- Discriminating feature vectors

Clustering Algorithms

Feature clustering algorithms

- Density based algorithms
 - 1. DBSCAN
 - 2. Mean Shift

Measurements

Similarity Measurements

- Euclidean Distance
- Manhattan Distance
- Cosine Similarity
- Jaccard Similarity

Results: DBSCAN and Mean Shift

-1.0 -0.5 0.0

1e7

-1.5

-1.6

-5

-1

Reasoning

Why x-vector approach didn't work?

- Cluster centers of different classes not distinguishable
- Quality of x-vectors from pre-trained SID model
- Imbalanced dataset

Speaker Identity Detection

Evaluation

- · Log-Mel filterbanks instead of Mel filterbanks
- Achieves a 91.65% as compared to the Baseline of 90.78%

Model	Accuracy	Weighted	Top-5
		F1-Score	Accuracy
Deep ResNet Vector (earlier)	67.71	67.01	88.70
Deep ResNet Vector (now)	76.89	75.53	91.65
Baseline	-	-	90.78

Annotations

- Temporal speech activities and the corresponding speaker labels
- $\bullet \ \mathsf{DER} = \tfrac{\mathsf{false \ alarm} \ + \ \mathsf{missed \ detection} \ + \ \mathsf{confusion}}{\mathsf{total \ duration}}$

Reference Annotations

- FS-02 ground-truth speech intervals and corresponding speaker identities
- 5.579 hours of speech content

Hypothesis Annotations-I

- Groundtruth FS-02 Dev stream audio
- Speaker predictions from pre-trained Deep ResNet Vector

Hypothesis Annotations-I

Metrics	Results (%)
False Alarm	0
Missed Detection	0
Confusion	19.39
Correct	80.60
DER	19.39

Hypothesis Annotations-II

- FS-02 Dev stream audio through pre-trained SAD system
- Speaker predictions from pre-trained Deep ResNet Vector

Hypothesis Annotations-II

Metrics	Results (%)
False Alarm	23.76
Missed Detection	0.22
Confusion	32.80
Correct	66.97
DER	56.79

• Around 50% intervals as compared to ground-truth FS-02

Hypothesis Annotations-III

• SAD speech intervals segmented

Hypothesis Annotations-III

Metrics	Results (%)
False Alarm	23.70
Missed Detection	0.22
Confusion	49.32
Correct	50.44
DER	73.26

SID performance

Longer segments, better predictions

Introduction

- Automatic Speech Recognition (ASR) is a technology where speech signal is converted into text
- In this work, we use an end-to-end ASR system using the Transformer architecture

Main stages involved in ASR

- Feature extraction
- Encoding
- Decoding

Architecture

- The Transformer architecture consists of an encoder-decoder network
- Uses Attention mechanism to find features relevant to the context

Speaker Adaptation

Incorporates speaker information in the model

- one-hot speaker embedding
- x-vector speaker embedding

Evaluation

- Word Error Rate (WER): To determine the performance of the system
- Adam optimizer with a CTC loss function

Dataset	Number of Original Data	Number of Speakers	Number of Data used for one-hot Speaker Embedding	Number of Data used for x-vector Embedding
Train se	35,474	256	33,345	30,978
Dev set	9,203	201	9,029	8,462

Model Implementation (with one-hot vectors)	WER (%)
Base Model	32.9
Addition to Encoder	33
Addition to Embedding	32.9
Concatenation to acoustic features	44

Model Implementation (with x-vectors)	WER (%)	
Base Model	38.2	
Addition	39.6	
to Encoder	39.0	
Concatenation	39.4	
to Encoder	39.4	
Stacking on Top and Bottom of	37.7	
acoustic features frame	31.1	
Addition	38.3	
to acoustic features	30.3	

Conclusion

- Work split into sub-tasks SAD, SID, SD and ASR.
- Fearless Steps Database from NASA's Apollo-11 space mission.
- The achieved results along with the architecture:
 - 1. SAD ResNet-LSTM, DCF of 3.32%
 - 2. SID Deep ResNet Vector, Top-5 Accuracy of 91.65%
 - 3. SD SAD+SID, DER of 56.78%
 - 4. ASR Transformer Model, WER of 32.9%
- who spoke when and what was the content of the speech utterance.

Future Scope

- Speaker Change Detection
- More datasets for a more robust system

Thank you for listening!

