Mathematica Labs | iLearnMath.net | Denis Shubleka

Subject: Calculus

Topic: Implicit Differentiation

■ Goal: Use Mathematica to implicitly differentiate equations.

Task 1

Suppose we are given an equation such as $x^3+y^3=6\,\mathrm{xy}$ (Folium of Descartes), and want to find or verify $\frac{\mathrm{d} y}{\mathrm{d} x}$. We first move all terms to the left side: $x^3+y^3-6\,\mathrm{xy}=0$, and then differentiate after by writing y[x] instead of y, to indicate that y depends on x.

lefthand =
$$D[x^3 + (y[x])^3 - 6x * y[x], x]$$

Next, we solve for the unknown derivative:

Now, suppose we are working with parametric curves, where both x and y depend on a third variable t (also known as the parameter). If we wanted to find $\frac{dx}{dt}$ and $\frac{dy}{dt}$, begin with:

lefthandside =
$$D[(x[t])^3 + (y[t])^3 - 6x[t] * y[t], t]$$

, and then solve for $\frac{dx}{dt}$:

Solve[lefthandside == 0, x'[t]]

, and finally, $\frac{dx}{dt}$:

Solve[lefthandside == 0, y'[t]]

Related Exercises/Notes: