

基础绘图 - [关系情况] - 相关性散点图-两组比较

网址: https://www.xiantao.love

更新时间: 2023.10.07

目录

基本概念 3
应用场景3
分析过程4
结果解读8
数据格式 9
参数说明
相关性分析11
分组比较
点 14
<mark>拟合线1</mark> 5
拟合线
标题文本18
图注(Legend)19
风格
图片 22
结果说明 23
主要结果 23
方法学
如何引用 25
常见问题

基本概念

- ▶ 散点图:通过点的形式来展示数据的分布情况
- ▶ 相关性散点图:分析 1 个变量和另外 1 个变量之间的相关性
- ▶ 相关性散点图-两组比较:根据分组信息,将点分成两组单个维度的比较, 用箱式图展示
- ▶ 两组比较统计方法:
 - T test, 亦称 student t 检验(Student's t test),主要用于两组之间的比较, 两组需要满足正态性和方差齐性的要求。
 - Welch's test, 又称不等方差检验,即当两组仅满足正态而不满足方差齐性的要求时,可以选择用该方法进行两组的比较。
 - Wilcoxon rank sum test,也叫 Mann-Whitney U test (曼-惠特尼 U 检验),或者 Wilcoxon-Mann-Whitney test。秩和检验是一个非参数的假设检验方法,一般用于两组不满足正态性的情况。

应用场景

- ▶ 相关性散点图常用来进行数据的对比
- 两组比较图能够比较两组数据之间的差异

分析过程

上传数据 数据处理(清洗) 相关性分析 可视化

- ▶ 数据格式: (具体数据格式要求可以看后面过程的"数据格式"部分)
 - 至少提供 2 列数据; 至少需要 6 行, 最多 5000 行; 每组数据最少需要 3 行数据, 第 1、2 列必须为数值类型, 对应用于相关性分析的变量 1、 变量 2, 按照第 1 列的中位值大小分成两组进行比较
 - 如果需要自定义分组信息,则必须提供3列数据,数据第1列作为分组信息,必须为字符类型,只支持2分类(2组),数据第2、3列必须为数值类型,对应用于相关性分析的变量1、变量2,通过分组信息的内容进行比较

À	А	В	С
1	type	var1	var2
2	group1	0.1020305	-0.663584
3	group2	0.46421611	-0.20844003
4	group2	0.50614989	-1.74054472
5	group1	-1.52132525	-1.44109924
6	group1	-0.40090029	0.09681601
7	group1	-0.32205095	-2.08802513
8	group2	2.17045728	0.37926024
9	group2	0.52650206	2.13031809
10	group2	1.42700632	1.45112923
11	group1	-0.21581337	0.37145807
12	group1	-0.61734349	-1.97720369
13	group1	-0.00021546	-1.16543814
14	group2	3.33051527	2.22366236
15	group1	-1.76803376	-0.5976789
16	group1	-1.3416139	-0.54591428

- ▶ 数据处理:对每一列数值类型的数据及其他列数据进行相应处理
 - 分类类型数据只能是纯字符类型的数据,不能包含数值,缺失值与无法

识别的值

- 数值类型数据只能是纯数值类型数据,不能包含 0,负数、非数值与不 规则的值
- 分组中的每一个变量不能都是一个值
- 分组只支持2分类

▶ 分析:

- 相关性分析 统计描述
 - ◆ 对变量进行常见统计描述指标统计分析

相关性分	分析 - 统 记	描述								
各个组对加	应常见「统	计描述指标								
组别	数目	最小值	最大值	中位数(Median)	四分位距(IQR)	下四分位	上四分位	均值(Mean)	标准差(SD)	标准误(SE)
var1	100	-2.764	3.3305	0.050908	1.4037	-0.60632	0.79734	0.08983	1.1229	0.11229
var2	100	-2.088	2.6627	-0.012691	1.3199	-0.65649	0.66339	0.012546	0.96118	0.096118

- 相关性分析 异常值分析
 - ◆ 检查数据中是否有离群值和异常值

- 相关性分析 正态性检验
 - ◆ 对变量进行正态性检验(Shapiro-Wilk normality test)

组别	自由度(df)	统计量	p值
var1	99	0.99393	0.937
var2	99	0.99182	0.8079

■ 相关性分析

◆ 包含不同方法(Pearson、Spearman)计算的分组变量相关性系数值与 统计学 p 值等,补充了变量相关性表格

相关性分析 同时提供Pearson和Spearman统计方法,可以根据需要选择标注在图中的方法 自由度(df) 相关系数 置信区间(95%CI) 98 3,2515 0.12318 - 0.4791 0.0016 0.31205 Pearson var1 var2 98 1.12e+05 0.32769 0.0009 Spearman var1 var2 相关系数为正,说明两个变量之间存在正相关关系;相关系数为负,说明两个变量之间存在负相关关系;

相关系数绝对值代表相关程度,0-0.3代表弱或者不相关; 0.3-0.5代表弱相关; 0.5-0.8代表中等程度相关; 0.8-1代表强相关相关是否有统计学意义还需要结合p值来查看

■ 统计描述

◆ 对分组结果进行常见统计描述指标统计分析

统计描述										
各个组常见	「统计描述	述指标]								
组别	数目	最小值	最大值	中位数(Median)	四分位距(IQR)	下四分位	上四分位	均值(Mean)	标准差(SD)	标准误(SE
group1	55	-2.088	1.7273	-0.47407	1.2151	-0.81529	0.39981	-0.2216	0.90871	0.12253
group2	45	-2.0818	2.6627	0.31082	0.99344	-0.16898	0.82446	0.29873	0.9555	0.14244

■ 统计描述

◆ 检查分组数据中是否有离群值和异常值

■ 正态性分析

◆ 检查分组数据是否满足正态性检验

: Shapiro-Wilk normality test			
组别	自由度(df)	统计量	p值
group1	54	0.97306	0.2516
group2	44	0.97735	0.5165

■ 方差齐性检验

◆ 检查被比较的两组数那

■ 独立样本 T 检验

◆ 两组数据比较的检验结果(不同的统计方法会有不一样的统计检验的表格。)

用条件: 两组独立	z数据,满足正态性检	验和方差齐性检验				
组别	组别」	自由度(df)	统计量t	差值(J-I)	置信区间(95%CI)	p值
group1	group2	98	2.7834	0.52033	0.14935 - 0.8913	0.0065

▶ 可视化:数据清洗后,进行相关性分析,再用 ggplot2 包进行可视化

结果解读

- ▶ 横坐标表示第 1 列变量
- ▶ 纵坐标表示第 2 列变量
- ▶ 散点图中的线为拟合线,拟合线周围的阴影部分为置信区间
- ▶ 箱式图是根据分组信息,绘制的两组比较结果,图中的灰色点为离群点
- ▶ 图中左上角为标注:
 - "Spearman"表示变量间进行相关性分析的方法
 - "R"表示变量间的相关性系数
 - "P"表示变量间的统计学 p 值
 - "**"表示两组数据之间的差异结果的显著性

数据格式

相关性散点图-两组比较

À	Α	В	C
1	type	var1	var2
2	group1	0.1020305	-0.663584
3	group2	0.46421611	-0.20844003
4	group2	0.50614989	-1.74054472
5	group1	-1.52132525	-1.44109924
6	group1	-0.40090029	0.09681601
7	group1	-0.32205095	-2.08802513
8	group2	2.17045728	0.37926024
9	group2	0.52650206	2.13031809
10	group2	1.42700632	1.45112923
11	group1	-0.21581337	0.37145807
12	group1	-0.61734349	-1.97720369
13	group1	-0.00021546	-1.16543814
14	group2	3.33051527	2.22366236
15	group1	-1.76803376	-0.5976789
16	group1	-1.3416139	-0.54591428

数据要求:

- ➤ 至少提供 2 列数据,至少 6 行,当提供 2 列时,第 1-2 列均需要是数值类型数据,分析第 1 列和第 2 列(变量 1 和变量 2)的相关性;分组差异分析,按第一列的中位值大小分组;提供 3 列时,第 1 列需要是字符型的分组信息,每个分组至少有 3 行数据(只支持 2 分类),第 2-3 列需要是数值类型数据,分析第 2-3 列(对应变量 1 和变量 2)的相关性和分组的差异。
- ▶ 上传数据至少需要 2 列,最少 6 行数据,最多支持 5000 行,若验证数据时返回报错,需要在上传数据内进行相应的调整,然后再上传数据。
 - 分类类型数据只能是纯字符类型的数据,不能包含数值,缺失值与无法

识别的值

- 数值类型数据只能是纯数值类型数据,不能包含 0、负数、非数值与不 规则的值
- ▶ 数据每一列列名不能重复,不能有空值,不能有不识别的字符
- ▶ 每组数据不能完全为一个值
- ▶ 第一列分类变量中的分组数量只支持2分类(即2个组)

参数说明

(说明: 标注了颜色的为常用参数。)

相关性分析

- ▶ 统计方法: 可以选择变量 1 与变量 2 间进行相关性分析的方法
 - Spearman: 非参数检验方法,默认使用该方法,数据可以不需要满足正态性
 - Pearson:参数检验方法,数据需要满足双正态
- ▶ 标注位置:可以修改图中相关性分析方法(Spearman)、相关性系数(R),统计学 p 值(P)的位置,默认在图形的左上角,还可以选择左下、右上、右下、无(不进行标注),如下:左侧为右下,右侧为无

▶ 标注颜色: 当图形中有标注的时候, 可以修改标注的颜色

分组比较

- 统计方法: 统计方法默认为 auto(自动选择),当上传数据验证成功并点击确认后,会自动替换成适合于上传数据的统计方法,之后可以自行选择和修改别的统计方法。统计方法的选择依据可以参考"基本概念"中统计方法的说明
- ➤ 分组比较: 统计学差异标注的分组,默认为 group1 vs group2(标注分组)。 当上传数据验证成功并点击确认后,会自动替换成对应上传数据的分组。之 后可以自行选择想要保留和去掉的比较。(如果分组不满足>3 个观测以及 标准差>0 的情况,则可能不会出现在此处。)允许都去掉,即不标注分组 比较的内容
- ➤ 显著性显示的类型: 可选择星号或者 p 值以及其他,影响分组比较中显著性标注,默认为星号。可以根据需要进行修改。

▶ 显著性大小:可以修改显著性的大小。

点

▶ 填充色:可以修改图中各点的填充颜色,受配色方案全局性修改。

▶ 描边色: 可以修改图中各点的描边颜色, 受配色方案全局性修改。

样式:可以修改图中各点的样式(形状),默认为圆形,可选择圆形、正方形、菱形、三角形、倒三角,默认为圆形。多选,多选后不同的分组/分类中的点的类型也会有相应变化,循环取该参数值。如下:

▶ 大小:可以修改图中各点的大小比例,默认为1

▶ 不透明度:可以修改拟合线线条的不透明度,1 表示完全不透明

拟合线

- ▶ 展示: 可以选择是否进行展示拟合线的操作, 默认展示。
- ▶ 拟合方法:可以修改图中拟合部分的拟合方法(类型),默认为直线,还可以选择曲线的形式,如下:

- ▶ 拟合线颜色: 可以修改图中拟合线的颜色。
- ▶ 拟合线样式:可以修改图中拟合线的样式,默认为实线,可选择实线或虚线。
- > 线条粗细:可以选择修改图中拟合线的线条粗细。
- ▶ 置信区间展示:可以选择是否展示拟合线的置信区间(阴影部分),默认为展示,还可以选择不展示,如下:

▶ 不透明度:波形的透明度。0为完全透明,1为完全不透明。

箱

▶ 填充色: 可以修改图中箱子的填充颜色, 受配色方案全局性修改。

▶ 描边色: 可以修改图中箱子的描边颜色, 受配色方案全局性修改。

▶ 描边粗细:箱子描边的粗细,默认为 0.75p。

▶ 展示离群点:可选是否展示。

▶ 箱子宽度:箱子的宽度。

▶ 不透明度: 箱子的透明度。0 为完全透明, 1 为完全不透明。

标题文本

大标题:大标题文本。

➤ x 轴标题: x 轴标题文本。

▶ y轴标题: y轴标题文本。

▶ 补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的 大括号括住,比如{{2}};如果需要下标,可以用两个英文输入法下的中括号 括住,比如[[2]]

图注 (Legend)

▶ 是否展示: 是否展示图注

▶ 图注标题: 可以添加图注标题, 如:

➤ 图例标签:可以修改图注中分组标签的名字,如果有多个名字要修改,则需要把这些名字以逗号的形式合并成一个,例如: A, B

▶ 文字大小:图注标题文字的大小,默认为 6pt。

> 图注位置:可选择默认、右、上、下。

风格

▶ 边框:可以选择是否进行添加图形边框的操作

▶ 网格:可以选择是否进行添加图形内网格的操作

》 文字大小: 控制整体文字大小, 默认为 6pt

图片

▶ 宽度: 图片横向长度,单位为 cm

▶ 高度:图片纵向长度,单位为 cm

> 字体:可以选择图片中文字的字体

结果说明

主要结果

主要结果格式为图片格式,提供 PDF、TIFF 、PPTX 格式下载

方法学

软件: R (4.2.1)版本

R 包:ggplot2 包(用于可视化)、ggtext 包、stats 包和 car 包(用于统计计算) 处理过程:

(1) 根据数据格式特征情况选择合适的统计方法进行统计(stats 包以及 car 包)(如果不满足统计要求将不会进行统计分析),进而分析数据变量之间相关性和两组之间的,用 gglot2 可视化结果

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 方法里面的 Spearman 和 Pearson 方法,应该选择哪一个?

答: 两种方法均可以选择。Pearson 要求数据满足正态性,Spearman 因为是非参数的方法,可以不需要满足。可以先选择非参数的 Spearman 相关进行尝试。

2. 相关系数多少为好?

答: 这个没有很统一的标准,可以参考以下:

- 相关系数强弱:
 - ◆ 绝对值在 0.8 以上: 强相关
 - ◆ 绝对值在 0.5-0.8: 中等程度相关
 - ◆ 绝对值在 0.3-0.5: 相关程度一般
 - ◆ 绝对值在 0.3 以下: 弱或者不相关
 - ◆ 正数表示正相关,负数表示负相关
- 3. 每组的数据不一样多可以分析吗?

答: 只要数据满足最低要求, 就可以上传数据进行分析

4. 能否超过 2 个组?

答:该模块就是两个组之间的比较,如果有多个组,建议使用不带分组比较的【相关性散点图-分组】模块

5. 数据中存在离群值和异常值的情况,怎么处理?

答:若【补充结果-异常值分析】表格中给出有离群值或异常值的情况,可以根据自己的研究情况进行取舍,如果是由一些试验误差等其他因素导致的,可以及时删除以保证数据的准确性

