BASIC PRINCIPLES OF STEERING

Agenda

- 1. Vehicle Cornering
- 2. Steering Assistance Torque
- 3. Motor Torque Characteristics
- 4. Basic Steering Functions
- 5. Lateral Vehicle Dynamics

Source:

Steering Handbook, Editors: Manfred Harrer, Peter Pfeffer Springer International Publishing Switzerland 2017 D. Schramm et al., Vehicle Dynamics, DOI: 10.1007/978-3-540-36045-2_10, Springer-Verlag Berlin Heidelberg 2014

VEHICLE CORNERING

Vehicle Cornering

Slow Cornering – vehicle turning without any lateral force

- ► all tires have to be oriented tangentially to concentric arcs (centre plane of the wheel)
- ▶ the instantaneous center of the car M will be located on the rear axle

 $\delta_{i,A}$ - the steering wheel angles inside

 $\delta_{o,A}$ - the steering wheel angles outside

Vehicle Cornering Slip angle

▶ the angle between the direction of the wheel circumference and the direction of the movement of the wheel

 $\alpha_{F,i}$ - front slip angle inside

 $\alpha_{F,o}$ - front slip angle outside

 $\alpha_{R,i}$ - rear slip angle inside

 $\alpha_{R,o}$ - rear slip angle outside

M. Harrer and P. Pfeffer (eds.), Steering Handbook

Vehicle Cornering – vehicle turning with lateral acceleration

- ▶ lateral forces occurs at front and rear wheels
- ▶ the center on which the car is cornering results from the intersection of the perpendicular line to the actual path of the moving wheels
- the actual instantaneous center of the car M' moves towards the front axle

M. Harrer and P. Pfeffer (eds.), Steering Handbook

Vehicle Cornering

Lateral force of the tire (F_Y)

► lateral forces of the tire are produced by the lateral deformation of the rubber

$$F_Y = C_{\alpha}\alpha$$

 C_{α} - cornering stiffness

 α - slip angle

D. Schramm, M. Hiller, R. Bardini Vehicle Dynamics Modeling and Simulation

Vehicle Cornering

Characteristics of the steering geometry

EG — steering axis (kingpin axis)

j – distance of the steering axes on the road

 b_F – front track

 r_0 – scrub radius

Vehicle Cornering Steering torque (M_S)

▶ total steering torque around of the steering axle of the front wheels

$$M_S = F_Y(r_\tau + r_P)$$

 $\mathcal{T}_{\mathcal{T}}$ - mechanical trail (distance between the centre of contact patch and the point where the steering axis intersect the ground)

 au_P - pneumatic trail (offset between the centre of contact patch and the effective acting point of lateral force)

M. Harrer and P. Pfeffer (eds.), Steering Handbook

STERING ASSISTANCE TORQUE

Steering Assistance Torque Requirements on steering wheel torque

▶ range of measured steering wheel torques for various sports cars (figure)

► Input

steering wheel torque curve in relation to the lateral acceleration of the vehicle

► Output

► calculation of the vehicle torque for stationary cornering

M. Harrer and P. Pfeffer (eds.), Steering Handbook

Steering Assistance Torque Steering assitance ratio

$$A_{S} = \frac{M_{S}}{i_{S}M_{H}}$$

$$M_{H} = C_{T}(\delta_{H} - \delta_{H}^{*})$$

$$M_{S} = C_{R}(\delta^{*} - \delta)$$

▶ no elasticity between pinion and steering arm

$$\delta_H^* = \delta^* i_S$$

$$i_{S} = \frac{\delta_{H}^{*}}{\delta^{*}} = \frac{\delta_{H} - \frac{M_{H}}{C_{T}}}{\delta + \frac{M_{S}}{C_{R}}}$$

M. Harrer and P. Pfeffer (eds.), Steering Handbook

 $i_{\rm S}$ - steering ratio

 δ_H - steering wheel angle

 δ_H^* - pinion angle δ - steering angle

 δ^* - steering arm angle

 M_H - steering wheel torque

 C_T - torsion bar stiffness

 C_R - axle support stiffness (elasticity of the tie road and the axle mounting)

Steering Assistance Torque Steering wheel angle and steering angle

$$\delta_{H} = \delta i_{S} + M_{S} i_{S} \left(\frac{1}{C_{R}} + \frac{1}{C_{T} i_{S}^{2} A_{S}} \right)$$

$$\delta_{H} = \delta i_{S} + \frac{F_{Y} r i_{S}}{C_{S}}$$

▶ for steering without distortion of the torsion bar or for infinite total steering stiffness

$$\delta_H = \delta i_S$$

► effective cornering stiffness - steering stiffness output on cornering stiffness

$$\frac{1}{C_{\alpha,eff}} = \frac{1}{C_{\alpha}} + \frac{r}{C_{S}}$$

 C_S - total steering stiffness $C_{lpha,eff}$ - effective cornering stiffness $r=r_{ au}+r_P$ - total trail

Steering Assistance Torque Steering wheel torque (M_H)

optimum steering reinforcement increase linearly to the lateral acceleration

$$A_S = C_A(D_A + K_A a_Y)$$

► steering wheel torque

$$M_H = \frac{M_S}{i_S A_S} = \frac{F_Y(r_\tau + r_P)}{i_S A_S} = \frac{m_F r}{i_S A_S} a_Y$$

$$M_H = \frac{C_A}{A_S} a_Y = \frac{1}{D_A + K_A a_Y} a_Y$$

- constant total trail
- constant steering ratio

$$C_A = \frac{m_F r}{i_S}$$

$$F_Y = m_F a_Y \;$$
 - lateral force at the front axle

$$m_F$$
 - mas of the vehicle at the front axle

$$a_Y$$
 - lateral acceleration

Steering Assistance Torque Steering wheel torque (M_H)

▶ the steering wheel torque rises degressively

$$M_H = \frac{1}{\frac{D_A}{a_Y} + K_A}$$

- ▶ for vehicles without power steering $A_S = 1$
 - constant lateral acceleration gradient of the steering wheel torque

$$M_H = C_A a_Y$$

Steering Assistance Torque Steering assistance torque (M_A)

► steering assistance torque is the difference between the steering torque at the wheels and the torque applied by the driver

$$M_A = M_S - M_H i_S$$

$$\begin{aligned} M_A &= M_H i_S A_S - M_H i_S \\ &= M_H \left(m_F r (D_A + K_A a_Y) - i_S \right) \\ &= \frac{a_Y (m_F r D_A + m_F r K_A a_Y - i_S)}{D_A + K_A a_Y} \\ &= \frac{M_H (m_F r D_A + i_S K_A M_H - i_S)}{1 - K_A M_H} \end{aligned}$$

 parameterization of the steering assistance torque based on gradient factor D_A and degressivity factor K_A in relation to the steering wheel torque or lateral acceleration

Steering Assistance Torque Steering torque regarding front wheels

MOTOR TORQUE CHARACTERISTICS

Motor Torque Characteristics Steering rack force on EPS

- ► EPSc; EPSp
 - power assist unit is placed on the steering column
 - power assist torque is transmitted to the steering column
 - steering wheel torque and power assist torque is transferred to rack force by a steering gear
- ► EPSdp; EPSapa; EPSrc
 - power assist unit is placed on the rack
 - power assist torque is transmitted to the rack by a second pinion, belt, ball screw
- ► Steering gear ratio
 - ▶ the ratio between rack path and steering wheel angle
 - ▶ displacement of the rack during one turn of the pinion

Motor Torque Characteristics Steering rack force on EPS

▶ steering rack force on EPSc and EPSp

$$F_r v_r = \left(M_H + \frac{\omega_P}{\omega_H} M_P \right) \omega_H$$

$$F_r = \frac{2\pi}{i_G} (M_H + i_P M_P)$$

$$\omega_P = i_P \omega_H$$

▶ steering rack force on EPSdp, EPSapa, EPScr

$$F_r \cdot v_r = M_H \cdot \omega_H + M_{dP} \cdot \omega_{dP}$$

$$F_r = \frac{2\pi}{i_G} M_H + i_{dP} M_{dP}$$

$$\omega_{dP} = i_{dP} v_r$$

$$\omega_H = \frac{2\pi}{i_G} v_r$$

 i_G - steering gear ratio [m/rev]

 i_P - motor pinion ratio [-]

 i_{dP} - rack pinion ratio [rad/m]

 ω_H - steering wheel velocity [rad/s]

 ω_P - motor velocity (column pinion) [rad/s]

 ω_{dP} - motor velocity (rack pinion) [rad/s]

 F_r - rack force [N]

 \mathcal{V}_{r} - rack velocity [m/s]

Motor Torque Characteristics Steering assistance / motor torque

► EPSdp, EPSapa, EPScr

$$M_S \omega_S = M_H \omega_H + M_{dP} \omega_{dP}$$

$$M_S \omega_S = \left(M_H + \frac{\omega_{dP}}{\omega_H} M_{dP} \right) \omega_H$$

$$M_S = \left(M_H + \frac{\omega_{dP}}{\omega_H} M_{dP} \right) i_S$$

$$M_A = M_S - M_H i_S$$

$$= \frac{\omega_{dP}}{\omega_H} i_S M_{dP}$$

► EPSc, EPSp

$$M_S = \left(M_H + \frac{\omega_P}{\omega_H} M_P\right) i_S$$

$$M_A = \frac{\omega_P}{\omega_H} i_S M_P$$

Motor Torque Characteristics Motor torque characteristics

► Motor torque on EPSc and EPSp

$$M_P = \frac{1}{i_P i_S} M_A$$

► Motor torque on EPSdp, EPSapa, EPScr

$$M_{dP} = \frac{2\pi}{i_{dP}i_Gi_S} M_A$$

Motor Torque Characteristics Steering rack force on EPS

► steering wheel torque and power assistance torque distribution on forces acting on the rack

$$F_r = \frac{2\pi}{i_G} (M_H + i_P M_P)$$

BASIC STEERING FUNCTIONS

Friction compensation

- ▶ power steering system generates a system friction which is higher than other steering systems
- ▶ the feedback of the steering system is affected by higher friction
- ▶ useful information about the current driving situation and road condition is accordingly reduced by friction
- ▶ a high friction coefficient in the steering system will support the suppression of interferences
- ▶ any disturbances in the steering wheel (wheel imbalances, fluctuations of the braking forces) can be reduced by higher friction;
- ▶ in steady cornering steering friction will generate a higher torque when the steering angle increase and a lower torque when the steering angle decrease
- ► reduce the effect of the friction in the steering with regard the torque requested by the power assistance

Friction compensation

steady rack displacement with no load and motor off

$$b_{H}\omega_{H} = M_{H} - K_{TB}(\delta_{H} - i_{H}x_{r})$$

$$b_{dP}\omega_{dP} = -K_{dP}(\delta_{dP} - i_{dP}x_{r})$$

$$b_{r}v_{r} = i_{H}K_{TB}(\delta_{H} - i_{H}x_{r}) + i_{dP}K_{dP}(\delta_{dP} - i_{dP}x_{r})$$

$$b_{r}v_{r} = i_{H}(M_{H} - b_{H}\omega_{H}) - \frac{i_{dP}^{2}}{i_{H}}b_{dP}\omega_{H}$$

$$M_{H} = \left(b_{H} + \frac{1}{i_{H}^{2}}b_{r} + \frac{i_{dP}^{2}}{i_{H}^{2}}b_{dp}\right)\omega_{H}$$

$$\omega_{dp} = rac{i_{dP}}{i_H} \omega_H$$
 $\delta_{dP} = rac{i_{dP}}{i_H} \delta_H$
 $i_H = rac{2\pi}{i_G}$
 $v_r = rac{\omega_H}{i_H}$

Inertia compensation

- ► EPS systems have high inertia, the steering movements initiated by the driver have to act against the torque generated by inertia
- ▶ a function for inertia compensation has to reduce the inertia effect on the steering torque characteristics; additional torque must be requested from the EPS motor

$$m_{r} \frac{dv_{r}}{dt} = i_{H}K_{TB}(\delta_{H} - i_{H}x_{r}) + i_{dP}K_{dP}(\delta_{dP} - i_{dP}x_{r}) \qquad \frac{dv_{r}}{dt} = \frac{1}{i_{dP}} \frac{d\omega_{dP}}{dt}$$

$$J_{H} \frac{d\omega_{H}}{dt} = M_{H} - K_{TB}(\delta_{H} - i_{H}x_{r}) \qquad \frac{d\omega_{H}}{dt} = \frac{i_{dP}}{i_{H}} \frac{d\omega_{dP}}{dt}$$

$$\frac{m_{r}}{i_{dP}} \frac{d\omega_{dP}}{dt} = i_{H} \left(M_{H} - J_{H} \frac{i_{dP}}{i_{H}} \frac{d\omega_{dP}}{dt} \right) + i_{dP} \left(M_{dP} - J_{dP} \frac{d\omega_{dP}}{dt} \right)$$

$$M_{dP} = \left(\frac{1}{i_{dP}^{2}} m_{r} + J_{dP} \right) \frac{d\omega_{m}}{dt} \qquad J_{dP} \frac{d\omega_{dP}}{dt} = M_{dP} - (\delta_{dP} - i_{dP}x_{r})$$

Active damping

- ► a friction- and inertia-compensated steering system responds very sensitively to disturbances in the force balance
- ▶ bumpy road could lead to high acceleration of the steering system which is perceived by the driver as a kickback
- ▶ small change on applied steering wheel torque lead to powerful system movements
- ▶ a damping function must be introduced to compensate for these undesirable characteristics
- ▶ this function has to request an torque from EPS motor that is oriented against the steering direction, proportional to the current steering speed and parameterised as a function of the vehicle speed

Active return

- ► EPS basic steering functions: power assistance, friction compensation, inertia compensation and active damping displays a steering response that is comparable to that of an hydraulic power steering
- ▶ the active return function is design to improve the runback response of the front axle
- ► EPS motor adds torque to guide the free wheel and driver controlled wheel into the straight ahead position
- ▶ it is a function of steering wheel angle, applied steering torque and vehicle speed

LATERAL VEHICLE DYNAMICS

Lateral Vehicle Dynamics Linear single track model

- ▶ the linear single track allows to approximate the lateral vehicle dynamics
- ▶ following simplification where assumed:
 - all the forces act on a plane flat road; the left an right tyre of each axle is exposed at the same load
 - the equations of the system are linearized; the tyre force is assumed proportional to the slip angle; the trigonometric functions are linearized
 - constant longitudinal velocity
- ▶ the model is suitable for lateral accelerations up to 4m/s² on dry roads

$$a_y \le 0.4g \approx 4 \, m/s^2$$

▶ the vehicle is described by a moving coordinate system located at the vehicle center of gravity $(O_v x_v y_v z_v)$ and an inertial coordinate system $(O_{XYZ} XYZ)$

Lateral Vehicle Dynamics Linear single track model

Lateral Vehicle Dynamics Vehicle velocity

▶ the vehicle velocity

$$\boldsymbol{v} = \begin{bmatrix} v \cos \beta \\ v \sin \beta \\ 0 \end{bmatrix}$$

► the front/rear axle vehicle velocity

$$v_F = v + \omega \times r_F$$

$$v_R = v + \omega \times r_R$$

$$oldsymbol{\omega} = \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix}$$

$$m{r}_F = egin{bmatrix} l_F \ 0 \ 0 \end{bmatrix}$$

$$m{r}_R = egin{bmatrix} -l_R \ 0 \ 0 \end{bmatrix}$$

Lateral Vehicle Dynamics Vehicle velocity

- ▶ the longitudinal component of the speed is equal for every point of the vehicle
- ► the lateral component of the speed changes by the rotating part of the yaw velocity multiplied by the distance to the front/rear axle

$$\boldsymbol{v}_F = \begin{bmatrix} v \cos \beta \\ v \sin \beta + \dot{\psi} l_F \\ 0 \end{bmatrix} = \begin{bmatrix} v_F \cos(\delta - \alpha_F) \\ v_F \sin(\delta - \alpha_F) \\ 0 \end{bmatrix}$$

$$\boldsymbol{v}_{R} = \begin{bmatrix} v \cos \beta \\ v \sin \beta - \dot{\psi} l_{R} \\ 0 \end{bmatrix} = \begin{bmatrix} v_{R} \cos(-\alpha_{R}) \\ v_{R} \sin(-\alpha_{R}) \\ 0 \end{bmatrix}$$

Lateral Vehicle Dynamics Front / rear slip angles representations

► from the front/rear vehicle velocity:

$$\tan(-\alpha_R) = \frac{v \sin \beta - \dot{\psi} l_R}{v \cos \beta}$$

$$\tan(\delta - \alpha_F) = \frac{v \sin \beta + \dot{\psi} l_F}{v \cos \beta}$$

▶ for small angles, front and rear slip angles have following representation:

$$\alpha_F = \delta - \beta - \frac{\dot{\psi}l_F}{v}$$

$$\alpha_R = -\beta + \frac{\dot{\psi}l_R}{v}$$

$$\sin \beta = \beta$$
; $\cos \beta = 1$

Lateral Vehicle Dynamics Vehicle acceleration

▶ the vehicle acceleration

$$a = \frac{dv}{dt} + \boldsymbol{\omega} \times \boldsymbol{v}$$

with the assumption of a constant longitudinal velocity

$$\boldsymbol{a} = \begin{bmatrix} -v\dot{\beta}\sin\beta \\ v\dot{\beta}\cos\beta \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix} \times \begin{bmatrix} v\cos\beta \\ v\sin\beta \\ 0 \end{bmatrix} = \begin{bmatrix} -v(\dot{\beta} + \dot{\psi})\sin\beta \\ v(\dot{\beta} + \dot{\psi})\cos\beta \\ 0 \end{bmatrix}$$

- ightharpoonup acceleration is perpendicular on velocity: $a \cdot v = 0$
- ▶ acceleration magnitude

$$a_n = v(\dot{\beta} + \dot{\psi})$$

Lateral Vehicle Dynamics Vehicle acceleration

 \blacktriangleright the acceleration projection on Oy_v axis

$$a_{v} = a_{n} \cos \beta$$

 \blacktriangleright with the assumption of small slip angle, $\cos \beta = 1$

$$a_{y} = v(\dot{\beta} + \dot{\psi})$$

▶ the vehicle center of gravity describe a path given by a function of yaw angle, slip angle and radius of curvature

$$v = R(\dot{\psi} + \dot{\beta})$$

▶ the acceleration projection on Oy_v axis is described by velocity and radius of curvature of the path of the centre of gravity

$$a_{y} = \frac{v^{2}}{R}$$

Lateral Vehicle Dynamics Dynamic equations

▶ the principle of linear momentum in the lateral direction

$$ma_{y} = C_{\alpha F}\alpha_{F}\cos\delta + C_{\alpha R}\alpha_{R}$$

 \blacktriangleright the principle of angular momentum around the car axis Oy_v

$$I_z \ddot{\psi} = C_{\alpha F} \alpha_F \cos \delta l_F - C_{\alpha R} \alpha_R l_R$$

▶ for small steering angle, $\cos \delta = 1$

$$mv(\dot{\beta} + \dot{\psi}) = C_{\alpha F} \left(\delta - \beta - \frac{\dot{\psi}l_F}{v} \right) + C_{\alpha R} \left(-\beta + \frac{\dot{\psi}l_R}{v} \right)$$
$$I_z \ddot{\psi} = C_{\alpha F} \left(\delta - \beta - \frac{\dot{\psi}l_F}{v} \right) l_F - C_{\alpha R} \left(-\beta + \frac{\dot{\psi}l_R}{v} \right) l_R$$

Lateral Vehicle Dynamics Dynamic equations in state space representation

$$\dot{x} = Ax + Bu$$

- ▶ input vector
 - steering angle
- ▶ output vector
 - yaw velocity
 - ► slip angle
- ► system matrix
- ▶ control matrix

$$u = [\delta]$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \dot{\psi} \\ \beta \end{bmatrix}$$

$$A = \begin{bmatrix} -\frac{1}{v}a_{11} & -a_{12} \\ -1 - \frac{1}{v^2}a_{21} & -\frac{1}{v}a_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{C_{\alpha,F}l_F}{\psi} \\ \frac{C_{\alpha,F}}{mv} \end{bmatrix}$$

$$a_{11} = \frac{C_{\alpha,F} l_F^2 + C_{\alpha,R} l_R^2}{\psi}$$

$$a_{12} = \frac{C_{\alpha,F}l_F - C_{\alpha,R}l_R}{\psi}$$

$$a_{21} = \frac{C_{\alpha,F}l_F - C_{\alpha,R}l_R}{m}$$

$$a_{22} = \frac{C_{\alpha,F} + C_{\alpha,R}}{m}$$

Lateral Vehicle Dynamics Vehicle stability during straight line driving

▶ assume steering angle equal to zero

$$\delta = 0$$

▶ the linear state space system becomes

$$\dot{x} = Ax$$

▶ the linear system is stable when the polynomial for the characteristic equation of the matrix system has positive coefficients

$$\det(\lambda I - A) = \lambda^2 + a_1 \lambda + a_2$$
$$a_1 = \frac{1}{v}(a_{11} + a_{22})$$

$$a_{2} = -a_{12} + \frac{1}{v^{2}} (a_{11}a_{22} - a_{12}a_{21})$$

$$= \frac{C_{\alpha,F}C_{\alpha,R}l^{2}}{m\psi v^{2}} \left(1 + \frac{C_{\alpha,R}l_{R} - C_{\alpha,F}l_{F}}{C_{\alpha,F}C_{\alpha,R}l^{2}} mv^{2}\right)$$

Lateral Vehicle Dynamics Vehicle stability during straight line driving

- ▶ $a_1 > 0$ for any velocity
- ▶ $a_2 > 0$ for any velocity if $C_{\alpha,R} l_R > C_{\alpha,F} l_F$
- ▶ the vehicle becomes unstable if $C_{\alpha,R}l_R < C_{\alpha,F}l_F$ and

$$v^2 > \frac{l^2}{m} \frac{C_{\alpha,F} C_{\alpha,R}}{C_{\alpha,F} l_F - C_{\alpha,R} l_R}$$

▶ for stationary steering, the steering angle, the yaw rate and slip angle are constant

$$\delta, \dot{\psi}, \beta$$
 - constant

► the linear/angular momentum principle

$$m\frac{v^2}{R} = C_{\alpha F}\alpha_F + C_{\alpha R}\alpha_R$$

$$C_{\alpha F}\alpha_F l_F = C_{\alpha R}\alpha_R l_R$$

▶ the driving behaviour for a specific vehicle could be established based on the difference between front and rear slip angle obtained from the linear/angular momentum principle

$$\alpha_F - \alpha_R = \frac{mv^2}{Rl} \left(\frac{l_R}{C_{\alpha F}} - \frac{l_F}{C_{\alpha R}} \right)$$

► the driving behaviour for a specific vehicle and for a specific steering motion is characterized be the self-steering gradient

$$EG = \frac{m}{l} \left(\frac{l_R C_{\alpha R} - l_F C_{\alpha F}}{C_{\alpha F} C_{\alpha R}} \right)$$

▶ the difference between front and rea slip angle is described by the self-steering gradient, vehicle velocity and the circle radius the vehicle is driving on

$$\alpha_F - \alpha_R = EG \frac{v^2}{R}$$

- \blacktriangleright which is the steering angle for a vehicle with a velocity v to follow a circle with radius R?
- ► the steering angle is obtained from front and rear slip angle (geometrical and velocity representation)

$$\delta = \frac{\dot{\psi}l}{v} + \alpha_F - \alpha_R$$

recalling the yaw rate $\dot{\psi} = \frac{v}{R}$, lateral acceleration $a_y = \frac{v^2}{R}$ and self-steering gradient EG

$$\delta = \frac{l}{R} + EGa_{y}$$

▶ the ratio between wheel base and the radius of the vehicle path is called Ackerman steering angle

$$\delta_D = \frac{l}{R}$$

► the steering angle is the Ackerman steering angle and dynamic component depending on vehicle velocity

$$\delta = \delta_D + EG \frac{v^2}{R}$$

▶ the steering angle increase or decrease depending on velocity and the sign of the self steering gradient

Lateral Vehicle Dynamics Steering driving behaviour

ightharpoonup neutral steering EG = 0; steering angle is equal with the Ackerman angle

$$\delta = \delta_D$$

ightharpoonup understeering EG > 0; steering angle is greater than the Ackerman angle

$$\delta > \delta_D$$

ightharpoonup oversteering EG < 0; steering angle is smaller then the Ackerman angle

$$\delta < \delta_D$$

Lateral Vehicle Dynamics Yaw amplification factor

 \blacktriangleright for constant steering angle, yaw rate takes on different values depending on steering gradient EG

$$\dot{\psi} = \frac{v}{l + EGv^2} \delta_{st} \qquad \qquad \delta = \delta_{st} - \text{constant}$$

▶ yaw amplification factor for a given velocity

$$\frac{\dot{\psi}}{\delta} = \frac{v}{l + EGv^2}$$

▶ the yaw amplification factor is small for understeering vehicles EG > 0 and large for oversteering vehicles EG < 0

Lateral Vehicle Dynamics Critical velocity

▶ If the self steering gradient $EG = -\frac{l}{v^2}$ the vehicle becomes instable, small steering inputs lead to infinite yaw rotation

 \blacktriangleright critical velocity v_{cr} is the velocity at witch the yaw amplification factor strives towards an infinite values; it is defined for EG < 0

$$v_{cr} = \sqrt{-\frac{l}{EG}}$$
 $v_{cr} = \sqrt{\frac{l^2}{m} \frac{C_{\alpha F} C_{\alpha R}}{l_F C_{\alpha F} - l_R C_{\alpha R}}}$

Lateral Vehicle Dynamics Characteristics velocity

 \blacktriangleright characteristic velocity v_{ch} is velocity at witch the yaw amplification factor reaches its maximum

$$\frac{d}{dv}\left(\frac{\dot{\psi}}{\delta}\right) = \frac{l - EGv^2}{(l + EGv^2)^2} = 0$$

$$v_{ch}^2 = \frac{l}{EG}$$

$$v_{ch} = \sqrt{\frac{l^2}{m} \frac{C_{\alpha F} C_{\alpha R}}{l_R C_{\alpha R} - l_F C_{\alpha F}}}$$

▶ typical values for the characteristic velocity are between 65 and 100km/h

Lateral Vehicle Dynamics Steering driving behaviour depending on steering gradient

