2607.
$$a_n = \frac{n^p + a_1 n^{p-1} + \dots + a_p}{n^q + b_1 n^{q-1} + \dots + b_q}$$
, $receive n^q + b_1 n^{q-1} + \dots + b_q > 0$.
2608. $a_n = \frac{1}{n^p} \sin \frac{\pi}{n}$.
2609. $a_n = (\sqrt{n+1} - \sqrt{n})^p \ln \frac{n-1}{n+1}$ $(n > 1)$.
2610. $a_n = \ln^p \left(\sec \frac{\pi}{n}\right)$.
2611. $a_n = \log_{b^n} \left(1 + \frac{\sqrt[n]{a}}{n}\right)$ $(a > 0, b > 0)$.
2612. $a_n = \left[e - \left(1 + \frac{1}{n}\right)^n\right]^p$.
2613. $a_n = \frac{1}{n^{1+k/\ln n}}$. 2614. $a_n = \frac{1}{n^{1+1/n}}$.

2614.1. Доказать признак Жамя: знакоположитель ный ряд $\sum_{n=1}^{\infty} a_n (a_n \geqslant 0)$ сходится, если $\left(1 - \sqrt[n]{a_n}\right) \frac{n}{\ln n} \geqslant p > 1$ при $n > n_0$,

и расходится, если

$$\left(1-\sqrt[n]{a_n}\right)\frac{n}{\ln n} \leqslant 1 \text{ при } n > n_0.$$

2615. Доказать, что ряд $\sum_{n=1}^{\infty} a_n (a_n > 0)$ сходится,

если существует $\alpha > 0$ такое, что $\frac{\ln \frac{1}{a_n}}{\ln n} \geqslant 1 + \alpha$ при

 $n \geqslant n_0$, и расходится, если $\frac{\ln \frac{1}{a_n}}{\ln n} \leqslant 1$ при $n \geqslant n_0$ (ло-гарифмический признак).

Исследовать сходимость рядов с общим членом: 2616. $a_n = n^{\ln x}$ (x > 0).

2617.
$$a_n = \frac{1}{(\ln \ln n)^{\ln n}}$$
 $(n > 1)$.

2618.
$$a_n = \frac{1}{(\ln n)^{\ln \ln n}}$$
 $(n > 1)$.