

Figure 1

= SOLID SUPPORT

R = TERMINAL PROTECTING GROUP
FOR EXAMPLE:
DIMETHOXYTRITYL (DMT)

(1) = CLEAVABLE LINKER
(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR
INVERTED DEOXYABASIC SUCCINATE)

(2) = CLEAVABLE LINKER
(FOR EXAMPLE: NUCLEOTIDE SUCCINATE OR
INVERTED DEOXYABASIC SUCCINATE)

INVERTED DEOXYABASIC SUCCINATE LINKAGE

GLYCERYL SUCCINATE LINKAGE

2/25

Figure 2

Figure 4

POSITIONS (NN) CAN COMPRIZE ANY NUCLEOTIDE, SUCH AS DEOXYNUCLEOTIDES (e.g. THYMIDINE) OR UNIVERSAL BASES

(eg. THYMIDINE) OR UNIVERSAL BASES
B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP
THAT IS OPTIONALLY PRESENT

J = GLYCERYL MOIETY THAT IS OPTIONAL Y PRESENT

L = GLYCERYL MOIETY THAT IS OPTIONAL PRESENT
S = PHOSPHOROTHIOATE OR PHOSPHORODITHIOATE THAT IS OPTIONAL PRESENT

Figure 5

lower case = 2'-O-Methyl or 2'-deoxy-2'-fluoro

italic lower case = 2'-deoxy-2'-fluoro

underline = 2'-O-methyl***ITALIC UPPER CASE*** = DEOXY

B = ABASIC, INVERTED ABASIC, INVERTED NUCLEOTIDE OR OTHER TERMINAL CAP THAT IS OPTIONALLY PRESENT

S = PHOSPHOROTHIOATE OR PHOSPHORODITHIOATE OPTIONALY PRESENT

L = GLYCERYL MOIETY, OR B, OPTIONALY PRESENT

6/25

Figure 6

7/25

Figure 7

8/25

Figure 8

9/25

Figure 9: Target site Selection using siRNA

Figure 10

R = O, S, N, alkyl, substituted alkyl, O-alkyl, S-alkyl, alkaryl, or aralkyl
 B = Independently any nucleotide base, either naturally occurring or chemically modified, or optionally H (abasic).

11/25

Figure 11: Modification Strategy

12/25

Figure 12: Phosphorylated siNA constructs

Asymmetric duplex
siNA

Phosphates can be modified
as described herein

(n) = number of base
pairs (e.g. 3-18 bp)

Figure 13: 5'-phosphate modifications

Sulfonic acid equivalent or
Vanadyl equivalent with any
combination of other
modifications herein

14/25

Figure 14A: Duplex forming oligonucleotide constructs that utilize Palindrome or repeat sequences

Figure 14B: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence

Figure 14C: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence, self assembly

Figure 14D: Example of a duplex forming oligonucleotide sequence that utilizes a palindrome or repeat sequence, self assembly and inhibition of Target Sequence Expression

Figure 15: Duplex forming oligonucleotide constructs that utilize artificial palindrome or repeat sequences

Figure 16: Examples of double stranded multifunctional siNA constructs with distinct complementary regions

Figure 17: Examples of hairpin multifunctional siNA constructs with distinct complementary regions

Figure 18: Examples of double stranded multifunctional siNA constructs with distinct complementary regions and a self complementary/palindrome region

22/25

Figure 19: Examples of hairpin multifunctional siNA constructs with distinct complementary regions and a self complementary/palindrome region

Figure 20: Example of multifunctional siNA targeting two Separate Target nucleic acid sequences

Figure 21: Example of multifunctional siNA targeting two regions within the same target nucleic acid sequence

25/25

Figure 22