Dynamika punktu materialnego w 1D Sprawozdanie

Paweł Lipiór

19 marca 2020

1 Wstęp

W trakcie trwania zajęć naszym zadaniem było zastosowanie w praktycznych obliczeniach poznanych metod numerycznych. W tym celu przystąpiliśmy do wykonania przydzielonych zadań obejmujących:

- Rozwiązywanie równań nieliniowych metodą bisekcji i Newtona-Raphsona. Sprawdzenie zbieżności tych metod.
- Rozwiązywanie równania ruchu Newtona za pomocą jawnego schematu Eulera.
- Rozwiązywanie równania ruchu Newtona z zaimplementowanym oporem za pomocą jawnego schematu Eulera.
- Iteracja we wzorze trapezów.
- Rozwiązanie poprzednich równań przy pomocy wzoru trapezów.

Poruszanym problemem było ciało o masie m=1kg poruszające się w potencjale V(x):

$$V(x) = -exp(-x^2) - 1.2 \cdot exp(-(x-2)^2)$$

Warunki początkowe: $v(t=0) = 0[\frac{m}{s}]$ E(x(t=0)) = -0.6[J]

$$v(t = 0) = 0[m/s]$$

 $E(x(t = 0)) = -0.6[J]$

Wykres funkcji V(x) na przedziale $x \in [-2,4]$ wygląda jak na rysunku 1

Rysunek 1: Funkcja potencjału V(x)

2 Zadanie 1

W zadaniu 1 naszym zadaniem było wyznaczenie punktów zwrotnych ciała i obszaru dostępnego dla ruchu tego ciała. W tym celu skonstruowano funkcję F(x):

$$F(x) = V(x) - E$$

2.1 Zadanie 1.1

Postawiony problem postanowiono rozwiązać metodą bisekcji. Dla pierwszego rozwiązania funkcji f(x) wybrano punkty krańcowe:

$$a=1, b=3$$
 Zaś za dozwolony błąd $err\geqslant |a-b|$ uznano 1
e -6

Poniżej przedstawiono wyniki w formie tabeli 2.1 i wykresów 2 oraz 3:

Tabela 1: Tabela prezentująca wyniki obliczeń numerycznych.

X	F(x)	Numer iteracji
1.000000	-0.209335	a
3.000000	0.158421	b
2.000000	-0.618316	1
2.500000	-0.336491	2
2.750000	-0.084259	3
2.875000	0.041691	4
2.812500	-0.020492	5
2.843750	0.010848	6
2.828125	-0.004766	7
2.835938	0.003056	8
2.832031	-0.000852	9
2.833984	0.001103	10
2.833008	0.000126	11
2.832520	-0.000363	12
2.832764	-0.000118	13
2.832886	0.000004	14
2.832825	-0.000057	15
2.832855	-0.000027	16
2.832870	-0.000012	17
2.832878	-0.000004	18
2.832882	-0.000000	19
2.832884	0.000002	20
2.832883	0.000001	21

Rysunek 2: Wyniki bisekcji funkcji ${\cal F}(x)$

Rysunek 3: Wyniki zbieżności bisekcji funkcji ${\cal F}(x)$

Dla drugiego rozwiązania funkcji f(x) wybrano punkty krańcowe:

$$a = -2, b = 0$$

Zaś za dozwolony błąd $err\geqslant |a-b|$ uznano 1e-6

Poniżej przedstawiono wyniki w formie tabeli 2.1i wykresów 4 oraz 5:

Tabela 2: Tabela prezentująca wyniki obliczeń numerycznych.

X	F(x)	Numer iteracji
-2.000000	0.581684	a
0.000000	-0.421979	b
-1.000000	0.231972	1
-0.500000	-0.181117	2
-0.750000	0.029594	3
-0.625000	-0.077855	4
-0.687500	-0.024220	5
-0.718750	0.002716	6
-0.703125	-0.010751	7
-0.710938	-0.004017	8
-0.714844	-0.000650	9
-0.716797	0.001033	10
-0.715820	0.000192	11
-0.715332	-0.000229	12
-0.715576	-0.000019	13
-0.715698	0.000086	14
-0.715637	0.000034	15
-0.715607	0.000007	16
-0.715591	-0.000006	17
-0.715599	0.000001	18
-0.715595	-0.000002	19
-0.715597	-0.000001	20
-0.715598	0.000000	21

Rysunek 4: Wyniki bisekcji funkcji ${\cal F}(x)$

Rysunek 5: Wyniki zbieżności bisekcji funkcji ${\cal F}(x)$

Zauważamy, iz aby uzyskać rozwiązanie na zadanym poziomie błędu potrzebujemy aż 21 iteracji.

2.2 Zadanie 1.2

Postawiony problem postanowiono rozwiązać metodą Newtona-Raphsona. Dla pierwszego rozwiązania funkcji f(x) wybrano punkt początkowy:

$$x_0 = 3$$
 Zaś za dozwolony błąd $err \geqslant |a-b|$ uznano 1
e -6

Poniżej przedstawiono wyniki w formie tabeli 2.2 i wykresów 6 oraz 7:

Tabela 3: Tabela prezentująca wyniki obliczeń numerycznych.

X	F(x)	Numer iteracji
3.000000	0.158421	0
2.820714	-0.012212	1
2.832850	-0.000032	2
2.832882	0.000000	3
2.832882	-0.000000	4

Rysunek 6: Wyniki działania metody Newtona-Raphsona na funkcji F(x)

Rysunek 7: Wyniki zbieżności działania metody Newtona-Raphsona na funkcji ${\cal F}(x)$

Dla drugiego rozwiązania funkcji f(x) wybrano punkt początkowy:

$$x_0 = 1$$
 Zaś za dozwolony błąd $err \geqslant |a-b|$ uznano 1 $e-6$

Poniżej przedstawiono wyniki w formie tabeli 2.2 i wykresów 9 oraz 9:

Tabela 4: Tabela prezentująca wyniki obliczeń numerycznych.

X	F(x)	Numer iteracji
1.000000	-0.209335	0
-0.422625	-0.239821	1
-0.754161	0.033163	2
-0.715481	-0.000101	3
-0.715598	0.000000	4

Rysunek 8: Wyniki działania metody Newtona-Raphsona na funkcji ${\cal F}(x)$

Rysunek 9: Wyniki zbieżności działania metody Newtona-Raphsona na funkcji ${\cal F}(x)$

Wnioski

Na podstawie uzyskanych wyników możemy stwierdzić iż metody bisekcji funkcji są skuteczne, lecz wymagają dużej ilości kroków iteracyjnych. Z kolei metoda Newtona-Raphsona wydaje się dużo wydajniejsza, lecz wymaga punktu początkowego bliskiego zeru funkcji. Najlepsze wyniki dałoby z pewnością połączenie tych dwóch metod.

3 Zadanie 2

 ${\bf W}$ zadaniu 2 naszym zadaniem było rozwiązanie równań ruchu Newtona za pomocą jawnego schematu Eulera.

3.1 Zadanie 2.1

Ustawiono warunki:

$$t \in [0, 30]$$
$$dt = 0.01$$
$$dx = 0.01$$
$$v_0 = 0$$
$$x_0 = 2.832882$$

i dokonano obliczeń. Wyniki przedstawiono na poniższych wykresach:

Rysunek 10: Wykres x(t)

Rysunek 11: Wykres v(t)

Rysunek 12: Wykres ${\cal E}_k(t)$

Rysunek 13: Wykres V(x(t))

Rysunek 14: Wykres $E_k(t) + V(t)$

3.2 Zadanie 2.2

Ustawiono warunki:

$$t \in [0, 100]$$
$$dt = 0.01$$
$$dx = 0.01$$
$$v_0 = 0$$
$$x_0 = 2.832882$$

i dokonano obliczeń. Wyniki przedstawiono na poniższym wykresie fazowym:

Rysunek 15: Wykres fazowy (x(t), v(t))

3.3 Zadanie 2.3

Ustawiono warunki:

$$t \in [0, 100]$$

$$dt = 0.001$$

$$dx = 0.01$$

$$v_0 = 0$$

$$x_0 = 2.832882$$

Rysunek 16: Wykres fazowy (x(t), v(t))

4 Zadanie 3

W zadaniu 3 naszym zadaniem było uwzględnienie w poprzednich rozważaniach oporów ruchu. Dokonano obliczeń dla trzech różnych współczynników tłumienia α .

4.1 Zadanie 3.1

Ustawiono warunki:

$$t \in [0, 100]$$

$$dt = 0.001$$

$$dx = 0.01$$

$$v_0 = 0$$

$$x_0 = 2.832882$$

$$\alpha = 0.5$$

Rysunek 17: Wykres fazowy (x(t), v(t))

4.2 Zadanie 3.2

Ustawiono warunki:

$$t \in [0, 100]$$

$$dt = 0.001$$

$$dx = 0.01$$

$$v_0 = 0$$

$$x_0 = 2.832882$$

$$\alpha = 5$$

Rysunek 18: Wykres fazowy (x(t), v(t))

4.3 Zadanie 3.3

Ustawiono warunki:

$$t \in [0, 100]$$

$$dt = 0.001$$

$$dx = 0.01$$

$$v_0 = 0$$

$$x_0 = 2.832882$$

$$\alpha = 201$$

Rysunek 19: Wykres fazowy (x(t), v(t))

Wnioski

W tym zadaniu zauważono iż jawny schemat Eulera nie zawsze jest stabilny. Dla współczynnika tłumienia $\alpha>200$ rachunek eksploduje.