BALLOONING MODE ANALYSIS OF HIGH-BEQUILIBRIA

RAHUL GAUR¹, DYLAN LANGONE¹, WILLIAM DORLAND¹, IAN ABEL¹, PIERRE-ALEXANDRE GOURDAIN² rgaur@umd.edu dlangone@umd.edu bdorland@umd.edu iabel@umd.edu gourdain@pas.rochester.edu

UNIVERSITY of ROCHESTER

1.Dept. of Physics, University of Maryland, College Park, 2. Dept. of Physics and Astronomy, University of Rochester

INTRODUCTION AND APPROACH

- For a typical fusion device $Q \sim \mathcal{O}(\beta^2 B^4)$. Given a value of B it implies that high beta operation is favorable.
- The ballooning(or high wave-number) mode is useful for determining an upper limit of β that a tokamak plasma can achieve.
- Conventional methods assume that the least stable modes lie at the outboard mid-plane i.e. $\theta_0 = 0$.
- Our aim is to use $s-\alpha$ model for concentric flux surfaces and compare its results to gyrokinetic simulations of an equilibrium with finite θ_0

The two equivalent forms of the Ideal ballooning equation are

$$\underbrace{B} \cdot \underbrace{\nabla} \left(\frac{\left| \underline{\nabla} S \right|^2}{B^2} \underbrace{B} \cdot \underline{\nabla} F \right) + 2 \frac{dp}{d\psi} \underbrace{\left(\underline{B} \times \underline{\nabla} S \right) \cdot \underline{K}}_{B^2} F, \quad \underbrace{K} = \frac{\underline{\nabla} (p + B^2/2)}{B^2}, \quad \underbrace{B} \cdot \underline{\nabla} S = 0 \tag{2}$$

$$\frac{1}{\mathcal{J}}\frac{\partial}{\partial y}\left[\frac{1}{\mathcal{J}R^{2}B_{\chi}^{2}}\left\{1+\left(\frac{R^{2}B_{\chi}^{2}}{B}\int_{y_{0}}^{y}\nu'dy\right)^{2}\right\}\frac{\partial F}{\partial y}\right]+F\left[\frac{2\mathcal{J}p'}{B^{2}}\frac{\partial}{\partial\psi}(p+\frac{B^{2}}{2})-\frac{Ip'}{B^{4}}\left(\int_{y_{0}}^{y}\nu'dy\right)\frac{\partial B^{2}}{\partial y}\right]=0 \quad (2)$$

We apply Mercier-Luc formulation to these equations to obtain their lowest order form in ρ around a flux surface. For a $\mathcal{O}(\beta) \gg 1$, large aspect ratio $\mathcal{O}(\epsilon^{-1}) \gg 1$ equilibrium, the orderings of various the figures of merit are as follows

$$\beta_{\varphi} = \mathcal{O}\left(\frac{p}{B_{\varphi}^{2}}\right) \sim \epsilon, \quad \beta_{p} = \mathcal{O}\left(\frac{p}{B_{p}^{2}}\right) \sim \frac{1}{\epsilon}, \qquad \frac{B_{p}}{B_{\varphi}} \sim \mathcal{O}(\epsilon), \qquad q \sim \mathcal{O}(1), \qquad \frac{\rho \psi_{1}}{\psi_{0}} \sim \mathcal{O}(\epsilon)$$

Applying these orderings to equation (1), we get the $s-\alpha$ equation

$$\frac{d}{d\theta} \left\{ 1 + \left(s(\theta - \theta_0) - \alpha \left(\sin(\theta) - \sin(\theta_0) \right) \right)^2 \right\} \frac{dF}{d\theta} + \alpha \left\{ \cos(\theta) + \sin(\theta) \left(s(\theta - \theta_0) - \alpha \left(\sin(\theta) - \sin(\theta_0) \right) \right) \right\} F = 0$$
(3)

- We integrate the $s-\alpha$ equation for a concentric circle test profile and use Newcomb's criterion to determine the regions of marginal stability.
- Then we take a Grad-Shafranov stable high β equilibrium profile and plot $s-\alpha$ diagram and also use GS2 to perform Greene-Chance analyses to determine marginal stability

RESULTS

Figure 1. a) and b)Qualitative variation of the stretching($|\nabla S|^2$), total shear(I and curvature(K) terms) terms, c) $s-\alpha$ diagrams for various values of θ_0

Figure 1. d) High beta equilibrium profile and e) $s-\alpha$ diagrams for different surfaces ρ_c near the LCFS and the stability boundary from GS2 f) $s-\alpha$ diagrams for various values of θ_0 for the surface $\rho_c=0.95$

SUMMARY

- We have investigated the effect of finite θ_0 on the boundary of marginal stability to ballooning modes for a test profile and an actual high β equilibrium profile.
- Although the test profile shows significant changes to the $s-\alpha$ envelope, the actual profile doesn't change as much for the tested range of \widehat{s} .
- Future work would involve checking the effect of large θ_0 and \hat{s} values and a broader range of flux surfaces(ρ_c).

REFERENCES

- [1] Chance et al. Plasma
 Physics and Controlled Nuclear Fusion
 Research, 1, 1978.
- [2] Mercier C and Luc N. Technical Report No EUR-5127e, 1974.
- [3] Greene and Chance.

 Nuclear Fusion,

21(4):453, 1981.

- [4] Connor, Hastie, and Taylor. *Phys. Rev. Lett.*, 40:396–399, Feb 1978.
- [5] Miller et. al. Physics of Plasmas, 5(4):973–978, 1998.