Capítulo 2 Lógica Proposicional

Lógica para Programação LEIC - Tagus Park 2º Semestre, Ano Lectivo 2007/08

©Inês Lynce

©Luísa Coheur

Programa

- Apresentação
- Conceitos Básicos
- Lógica Proposicional ou Cálculo Proposicional
- Lógica de 1^a ordem ou Lógica de Predicados
- Programação em Lógica
- Prolog

Programa

- Apresentação
- Conceitos Básicos
- Lógica Proposicional ou Cálculo Proposicional
- Lógica de 1^a ordem ou Lógica de Predicados
- Programação em Lógica
- Prolog

Bibliografia

- Martins J.P., Lógica para Programação, Capítulo 2.
- Ben-Ari M., Mathematical Logic for Computer Science, Springer-Verlag, 2003, capítulos 2 e 4 (parte)
- Huth M. e Ryan M., Logic in Computer Science, Cambridge University Press, 2004, capítulos 1 e 6 (parte)

Lógica Proposicional

- A Lógica Proposicional usa símbolos de proposição para representar proposições.
- Um símbolo de proposição representa uma proposição como um todo, ao interior da qual não podemos aceder.

Exemplo

• Joaquim é um homem – representado, por exemplo, por P.

Então, se é tão simples, porque é que damos lógica proposicional?

- Permite introduzir certos conceitos de uma forma muito simples...
- ... abrindo a porta a uma boa compreensão de lógicas mais complexas.

E ainda porque...

- Existem muitas aplicações reais para a lógica proposicional:
 - circuitos digitais;
 - verificação de hardware e software;
 - planeamento;
 - bioinformática;
 - instalação de pacotes/plug-ins para Linux/Eclipse;

E há ainda que destacar área de SAT...

- existem ferramentas muito optimizadas (os chamados SAT solvers) que conseguem resolver instâncias de problemas que podem ter milhões de variáveis e centenas de milhões de cláusulas
- todos os anos existe uma competição de SAT solvers onde são propostos novos problemas mais complexos ferramentas cada vez mais sofisticadas

Componentes de uma Lógica (relembrar)

- 1. Linguagem
- 2. Sistema dedutivo
- 3. Sistema semântico

1 - Linguagem

- Símbolos da linguagem
- Frases da linguagem

Símbolos da linguagem

- Símbolos da linguagem
 - 1. Símbolos de pontuação: ()
 - 2. Símbolos lógicos: $\neg \land \lor \rightarrow$
 - $2.1\,$ o símbolo \neg corresponde à operação de negação,
 - 2.2 o símbolo \wedge corresponde à operação de conjunção,
 - 2.3 o símbolo ∨ corresponde à operação de disjunção,
 - 2.4 o símbolo \rightarrow corresponde à operação de implicação.
 - 3. Símbolos de proposições: P_i , para i > 0.
 - 4. Notação: Vamos usar letras maiúsculas (P, Q, R, ...), para representar proposições, sempre que não existir perigo de confusão.

Frases da linguagem (fbfs)

- As (fbfs) (fórmulas bem formadas) correspondem ao conjunto definido através das seguintes regras de formação:
 - 1. Os símbolos de predicado são *fbfs* (denominadas fórmulas atómicas).
 - 2. Se α é uma fbf então $(\neg \alpha)$ é uma fbf.
 - 3. Se α e β são fbfs então $(\alpha \wedge \beta)$, $(\alpha \vee \beta)$ e $(\alpha \to \beta)$ são fbfs.
 - 4. Nada mais é uma fbf.

Frases da linguagem (fbfs) - notação

- Sempre que possível os parêntesis redundantes são omitidos:
 - ¬ tem prioridade sobre \wedge e \vee , e \wedge e \vee têm prioridade sobre \rightarrow .
 - \wedge e \vee são operações associativas à esquerda e \rightarrow é associativa à direita.
- Exemplo: $(P \land Q) \lor (R \rightarrow (P \rightarrow Q))$ pode ser simplificado para $P \land Q \lor (R \rightarrow P \rightarrow Q)$.

Exemplo

- Se P representa a proposição "está a chover";
- Se Q representa a proposição "está vento";
- Se R representa a proposição "eu fico em casa";
- P ∧ Q representa a proposição "está a chover e está vento";
- (P ∧ Q) → R representa a proposição "se está a chover e está vento, então eu fico em casa";
- ...

2 - Sistema dedutivo

 O sistema dedutivo especifica regras de inferência (regras de manipulação simbólica) que permitem introduzir novas fbfs a partir de fbfs já existentes.

2 - Sistema dedutivo - o que vamos estudar?

- Abordagem da dedução natural (contém apenas regras de inferência);
- Abordagem axiomática (baseada num conjunto de axiomas + pequeno conjunto de regras de inferência);
- Propriedades do sistema dedutivo;
- Princípio da resolução.

Abordagem da dedução natural - e como é que são essas regras de inferência?

- Tipicamente, existem duas regras de inferência por cada símbolo lógico (¬, ∧, ∨, →):
 - Regra de introdução: introdução do símbolo lógico numa nova fbf.
 - 2. Regra de eliminação: eliminação de um símbolo lógico de uma *fbf* já existente.

Abordagem da dedução natural - conceito de prova

 Sequência finita de linhas numeradas, cada uma das quais ou contém uma premissa ou uma fbf que é adicionada à prova utilizando as fbf que existem nas linhas anteriores e uma das regras de inferência.

Abordagem da dedução natural - objectivo de uma prova

• Dado um conjunto de premissas $\{\phi_1, \phi_2, \dots, \phi_n\}$ conseguir derivar a conclusão ψ , ou seja, $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$.

Abordagem da dedução natural - derivabilidade

• Se existir uma prova de ψ a partir de $\{\phi_1, \phi_2, \dots, \phi_n\}$, diz-se que ψ é derivável a partir de $\{\phi_1, \phi_2, \dots, \phi_n\}$.

Vamos lá então a essas regras de inferência!!!

Mas antes, um conceito muito importante, o de fórmula de inserção

• Seja α uma fbf. Uma fórmula de inserção de α é qualquer fbf obtida a partir de α através da substituição de todas as ocorrências de qualquer dos seus símbolos de proposição por uma fbf qualquer.

Regra da premissa

 Permite a introdução de qualquer fbf numa prova, marcando-a como premissa (Prem).

Regra da repetição

 Permite que numa prova se repita uma linha já existente na prova

$$\frac{\alpha}{\alpha}$$
 Rep

Introdução da conjunção

$$\frac{-\alpha - \beta}{-\alpha \wedge \beta} - I \wedge$$

$I \wedge : \text{ exemplo } (P, Q \vdash P \land Q)$

- 1 P
- 2 (
- $_3$ $P \wedge Q$

Prem

Prem

 $I \wedge, (1, 2)$

Eliminação da conjunção

$$\frac{\alpha \wedge \beta}{\alpha} \quad E_1 \wedge \\ \frac{\alpha \wedge \beta}{\beta} \quad E_2 \wedge$$

Na prática $E \land$ refere-se indistintamente a $E_1 \land$ e $E_2 \land$.

$E \wedge :$ exemplo $(P \wedge Q \vdash P \in P \wedge Q \vdash Q)$

- 1 *P* ∧ *Q*
- ₂ P

- $_1$ $P \wedge Q$
- 2 Q

Prem

 $E \wedge, 1$

Prem

 $E \wedge, 1$

Prova para $P \wedge Q, R \vdash Q \wedge R$

- $_1$ $P \wedge Q$
- ₂ R
- 3 G
- $_4$ $Q \wedge R$

Prem

Prem

 $E \wedge, 1$

 $I \wedge, (3, 2)$

Provas hipotéticas

- Uma prova hipotética é uma prova iniciada com a introdução de uma hipótese.
 - Uma prova hipotética cria um ambiente onde se assume que a hipótese é verdadeira.
 - Este ambiente vai ser representado por uma caixa.

Regra da re-iteração

 Regra apenas aplicável a provas hipotéticas e que nos permite repetir, dentro de uma prova hipotética, qualquer fbf que exista na prova que contém a prova hipotética.

$$\frac{\alpha}{\alpha}$$
 Reit

Introdução da implicação

$$\begin{array}{c|c}
\alpha \\
\vdots \\
\beta \\
\alpha \to \beta
\end{array}
 I \to$$

Exemplo $(P \vdash Q \rightarrow P)$

1 P	Prem
2 Q	Нір
3 P	Reit, 1
$_4$ $Q o P$	$I \rightarrow$, $(2,3)$

$$I \rightarrow : exemplo (P \vdash Q \rightarrow (P \land Q))$$

1 P	Prem
2 Q	Нір
3 P	Reit
$_4$ $P \wedge Q$	<i>I</i> ∧, (3, 2)
$_{5}$ $Q \rightarrow (P \land Q)$	$I \rightarrow , (2,4)$

Eliminação da implicação (modus ponens)

$$\frac{\alpha \qquad \alpha \to \beta}{\beta} \qquad E \to$$

$E \rightarrow : \text{ exemplo } (P \rightarrow (Q \rightarrow R) \vdash (P \rightarrow Q) \rightarrow (P \rightarrow R))$

$_{1} P\rightarrow \left(Q\rightarrow R\right)$	Prem
$_{2}$ $P ightarrow Q$	Нір
3 P	Нір
4 Q	$E \rightarrow , (3,2)$
$5 Q \rightarrow R$	$E \rightarrow , (3,1)$
6 R	$E \rightarrow (4,5)$
$_{7}$ $P \rightarrow R$	$I \rightarrow$, (3, 6)
8 $(P \rightarrow Q) \rightarrow (P \rightarrow R)$	$I \rightarrow$, $(2,7)$

Conceito de teorema

 Um teorema é uma fbf que pode ser inferida sem o uso de premissas.

Exemplo

- $(P \rightarrow P)$
- $(P \rightarrow R) \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow R))$

Exercício - esta é para vocês fazerem

- Utilizando o sistema de dedução natural, mostre que
 (P → (Q → P))
- e $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \land Q) \rightarrow R)$
- são teoremas.

Introdução da negação

$I \neg : \text{ exemplo } (P \rightarrow Q, \neg Q \vdash \neg P)$

$_1$ $P o Q$	Prem
$_2$ $\neg Q$	Prem
3 P	Нір
4 Q	$E \rightarrow$, (3, 1)
$_{5}$ $\neg Q$	Reit, 2
6 ¬ <i>P</i>	$I \neg, (3, (4, 5))$

Eliminação da negação

$$\frac{\neg \neg \alpha}{\alpha}$$
 $E \neg$

$E \neg$: exemplo $(\neg P \vdash P \rightarrow Q)$

1 ¬P	Prem
2 P	Нір
3 ¬Q	Hip
4 P	Reit, 2
5 ¬P	Reit, 1
6 ¬¬Q	$I \neg, (3, (4, 5))$
7 Q	<i>E</i> ¬,6
8 $P o Q$	$I \rightarrow, (2,7)$

Introdução da disjunção

$$\frac{\alpha}{\alpha \vee \beta}$$
 $I_1 \vee$

$$\frac{\beta}{\alpha \vee \beta}$$
 $I_2 \vee$

Eliminação da disjunção

$$\begin{array}{c|c}
\alpha \lor \beta & \beta \\
\vdots & \vdots \\
\phi & \phi
\end{array}$$

$$E\lor$$

$E \lor$: exemplo $(P \lor Q \vdash Q \lor P)$

$_{\scriptscriptstyle 1}$ $P\lor Q$		Prem
2 P	Hip Q	Нір
$_3$ $Q \lor P$	$I\lor,2$ $Q\lor P$	<i>I</i> ∨, 2′
$_4$ $Q \lor P$		$E\lor, (1, (2,3), (2',3'))$

Conceito de regra de inferência derivada

• Uma regra de inferência derivada é um padrão de raciocínio correspondente à aplicação de várias regras de inferência.

Exemplo

- modus tollens (exemplo para $I \neg: P \rightarrow Q, \neg Q \vdash \neg P$),
- introdução da dupla negação (P ⊢ ¬¬P),
- introdução da disjunção negada $(\neg P, \neg Q \vdash \neg (P \lor Q))$.

Regras de inferência derivadas: $I \neg \neg (P \vdash \neg \neg P)$

1 P	Prem
2 ¬P	Нір
3 P	Rep, 1
4 ¬P	Rep, 2
5 ¬¬P	$I \neg, (2, (3, 4))$

Numa prova que contém α podemos inferir $\neg \neg \alpha$.

Regras de inferência derivadas: $I \neg \lor (\neg P, \neg Q \vdash \neg (P \lor Q))$

 $\neg Q$ Prem

3	$P \lor Q$			Hip
4	Р	Hip	Q	Нір
5	P	Rep, 4	$\neg P$	Hip
6			$\neg Q$	Rep, 2
7			Q	Rep, 4'
8			$\neg \neg P$	$I \neg, (5', (6', 7'))$
9			Р	<i>E</i> ¬,8′
10	Р			$E\lor,(3,(4,5),(4',9'))$
11	$\neg P$			Rep, 1

$$I^{-12} \neg (P \lor Q)$$
 $I \neg, (3, (10, 11))$

Numa prova que contém $\neg \alpha$ e $\neg \beta$ podemos inferir $\neg (\alpha \lor \beta)$.

Regras de inferência derivadas: $I \neg \lor (\neg P, \neg Q \vdash \neg (P \lor Q))$

• Agora fazem vocês!

Como diminuir o número de linhas das provas?

- Utilizando teoremas!
- Utilizando regras de inferência derivadas!

Como diminuir o número de linhas das provas usando teoremas?

 Sempre que precisarmos de usar teoremas podemos omitir a sua prova, introduzindo apenas uma linha com a fbf correspondente e justificando-a como um teorema. Como diminuir o número de linhas das provas usando regras de inferência derivadas?

 Uma regra de inferência derivada corresponde a uma abstracção através da qual podemos agrupar a aplicação de várias regras num único passo.

Como construir provas? Sugestões...

- Para provar uma fbf da forma $\alpha \to \beta$ usar uma prova hipotética introduzindo α como hipótese e tentando derivar β .
- Para provar uma fbf da forma α ∧ β tentar provar separadamente α e β.
- Para provar uma fbf da forma $\alpha \vee \beta$ tentar provar uma das fbfs $(\alpha \text{ ou } \beta)$.

Como construir provas? Sugestões... (cont.)

- Para provar uma *fbf* da forma $\neg \alpha$:
 - Utilizar as *fbfs* existentes na prova para derivar directamente $\neg \alpha$.
 - Utilizar uma prova hipotética com a hipótese α para tentar chegar a uma contradição.
- Para provar uma fbf que corresponde a um símbolo de predicado:
 - Tentar aplicações de regras que introduzem esse predicado.
 - Tentar prova por absurdo:
 - usando uma prova hipotética iniciada com a negação do predicado,
 - e tentando derivar uma contradição dentro dessa prova hipotética.
 - Usar raciocínio por casos a partir de disjunções.

Conclusão...

- As fbfs numa prova são:
 - ou premissas,
 - ou teoremas,
 - ou correspondem à aplicação de regras de inferência.
- As regras de inferência são:
 - ou regras definidas associadas aos símbolos lógicos,
 - ou regras de inferência derivadas.

Novos símbolos lógicos

- Símbolos lógicos tradicionais: ¬, ∨, ∧, →
 - − Mas são suficientes os símbolos \neg e \rightarrow !
 - ▶ Exercício: definir \lor e \land usando \neg e \rightarrow .
- Outro símbolo lógico relevante: equivalência (↔)
 - Se α e β são *fbfs* então $\alpha \leftrightarrow \beta$ é *fbf*.
 - $-\alpha \leftrightarrow \beta \stackrel{\text{def}}{=} (\alpha \to \beta) \land (\beta \to \alpha)$

Introdução da equivalência

$$\frac{\alpha \to \beta \qquad \beta \to \alpha}{\alpha \leftrightarrow \beta} \qquad I \leftrightarrow$$

Eliminação da equivalência

$$\frac{\alpha \leftrightarrow \beta}{\alpha \to \beta} \quad E_1 \leftrightarrow$$

$$\frac{\alpha \leftrightarrow \beta}{\beta \to \alpha} \quad E_2 \leftrightarrow$$