

$$f(x,y) = x^2 + 2y^2$$

HIER LASSEN WIRY KONSTANTUND

FINDEN DIE

STEIGUNG VON F NACHX.

$$T(\frac{\alpha}{T}|s) = \frac{hs^{2}}{2\alpha} + \frac{AD}{\alpha} + cD + \frac{P(\alpha-s)D}{2\alpha}$$

$$\frac{\partial Y}{\partial \alpha} = \frac{-ks^{2}}{2\alpha^{2}} - \frac{AD}{\alpha^{2}} + \frac{P(\alpha-s)D}{\alpha} - \frac{P(\alpha-s)D}{2\alpha^{2}} = 0$$

$$\frac{\partial Y}{\partial s} = \frac{hs}{\alpha} - \frac{f(\alpha-s)D}{2\alpha} = 0$$

$$(2)$$

$$\frac{\partial Y}{\partial s} = \frac{hs}{\alpha} - \frac{f(\alpha-s)D}{2\alpha} = 0$$

$$(2)$$

$$\frac{\partial Y}{\partial s} = \frac{hs}{\alpha} - \frac{f(\alpha-s)D}{2\alpha} = 0$$

$$\frac{\partial X}{\partial s} = \frac{hs}{\alpha} - \frac{f(\alpha-s)D}{2\alpha} = 0$$

$$\frac{\partial X}{\partial s} = \frac{hs}{\alpha} - \frac{f(\alpha-s)D}{2\alpha} = 0$$

$$\frac{\partial X}{\partial s} = \frac{hs}{\alpha} - \frac{f(\alpha-s)D}{2\alpha} = 0$$

$$\frac{\partial X}{\partial s} = \frac{hs}{\alpha} - \frac{h$$

20241120. h. Weans duster.

Daten: File display U.H # R		KI	k2	K3	K4	K5	K6	W7
File display	A 2 .	300	٥٠٠	450	360	110	90	70
H.N	aufight	lo	٦٥	50	40	18	ಎ	10
# 6	ellla	10	6	u	8	2	7	3

