Assume that households have log preferences, the production technology satisfies  $Y_t = Z_t K_t^{\alpha}$  where  $\alpha = 0.36$ ; and capital depreciates at rate  $\delta = 0.025$ . We will assume technology shocks follow a 2 state Markov Process. The transition matrix is calibrated to NBER business cycle data where we take an expansion to be an instance of a positive technology shock and recession to be an instance of a negative technology shock. The transition matrix is given by

$$\begin{bmatrix} 0.977 & 0.023 \\ 0.074 & 0.926 \end{bmatrix}$$

Comments on computation time: The stochastic code on Julia converged after 434 iterations and took 4.95 seconds to run.

1. State the dynamic programming problem.

**Answer:** The dynamic programming problem can be stated as:

$$V(K, Z) = \max_{C, K'} \{ \log(C) + \beta \mathbb{E}[V(K', Z')|Z] \}$$
 s.t.  $C + K' = ZK^{\alpha} + (1 - \delta)K$ 

which can be rewritten as an dynamic optimization problem of one variable as

$$V(K,Z) = \max_{K'} \{ \log(ZK^{\alpha} + (1-\delta)K - K') + \beta \operatorname{\mathbb{E}}[V(K',Z')|Z] \}$$

2. Plot the value function K over each state Z. Is it increasing (i.e. is  $V(K_{i+1}, Z) \ge V(K_i, Z)$ ) for  $K_{i+1} > K_i$ ? Is it concave?

## **Answer:**



The value function appears to be strictly increasing and concave.

3. Is the decision rule increasing in K and Z (i.e. is  $K'(K_{i+1}, Z) \ge K'(K_i, Z)$  for  $K_{i+1} > K_i$  and is  $K'(K, Z^g) \ge K'(K, Z^b)$ )? Is savings increasing in K and Z (to see this, plot the change in the decision rule K'(K, Z) - K across K for each possible exogenous state Z)?

**Answer:** The decision rule is indeed increasing in K and Z (since the  $Z_g$  line is higher than the  $Z_b$  line for all values of K).

