Summary of "Efficient Estimation of Word Representations in Vector Space"

Main Goal

The paper introduces two simple but powerful models to learn word vectors (word embeddings) from text:

- CBOW (Continuous Bag of Words)
- Skip-Gram

These models became famous under the name Word2Vec.

What Did They Do?

- 1. Created two models (CBOW & Skip-Gram):
 - CBOW: Predicts a word using the context around it.
 - Skip-Gram: Predicts the context using the word itself.
- 2. Trained these models on very large datasets (up to 1 trillion words) using Google's DistBelief distributed system.
- 3. Compared performance with older models like neural networks (RNNs and Feedforward), and found their models:
 - Are faster
 - Use less resources
 - Still achieve very high accuracy

Key Results

- Speed: Much faster than older neural models
- Simplicity: Very simple architecture
- Scalability: Can be trained on huge datasets (1 trillion words)
- Accuracy: Performs very well on semantic/syntactic tasks

Applications They Tested

- Sentiment Analysis
- Paraphrase Detection
- Machine Translation
- Knowledge Base Expansion
- Semantic Evaluation (like SemEval 2012 Task 2)

Conclusion

High-quality word vectors can be learned using simple architecture, and they can become essential building blocks for many future NLP tasks.

Reference

For more details, you can read the original paper here: https://arxiv.org/pdf/1301.3781