Biomedical Databases 2018-19

- ✓ Slides available at https://iol.unibo.it/course/view.php?id=22990
- ✓ Textbook: "Introduction to Bioinformatics" by Arthur M. Lesk
- ✓ Final assignment will consist in problems similar to those assigned during class hours.

Biomedical Databases 2018-19 - main goals

- ✓ Knowing the basic infrastructure of bioinformatics, i.e. the sites of the major publicy available archival projects and their content.
- Becoming skilled at information retrieval.

✓ Knowing how to analyse and interpret the retrieved data.

Biomedical Databases 2018-19

Questionnaire on previous experience.

Nucleic Acids Research

The 2015 Nucleic Acids Research Database Issue and Molecular Biology Database Collection

```
Michael Y. Galperin<sup>1</sup>,*, Daniel J. Rigden<sup>2</sup> and Xosé M. Fernández-Suárez<sup>3</sup>

+ Author Affiliations

- *To whom correspondence should be addressed. Tel: +1 301 435 5910; Fax: +1 301 435 7793; Email: nardatabase@gmail.com

Received November 10, 2014.
Accepted November 11, 2014.
```

The NAR online Molecular Biology Database Collection now includes > 1790 databases sorted into 15 categories.

The first NAR Data base issue, published on July 1, 1993, consisted of 24 articles (24 databases).

Nucleic Acids Research

ABOUT THIS JOURNAL

CONTACT THIS JOURNAL

SUBSCRIPTIONS

CURRENT ISSUE

ARCHIVE

Oxford Journals > Life Sciences > Nucleic Acids Research > Database Summary Paper Categories

2015 NAR Database Summary Paper Category List

Nucleotide Sequence Databases

RNA sequence databases

Protein sequence databases

Structure Databases

Genomics Databases (non-vertebrate)

Metabolic and Signaling Pathways

Human and other Vertebrate Genomes

Human Genes and Diseases

Microarray Data and other Gene Expression Databases

Proteomics Resources

Other Molecular Biology Databases

Organelle databases

Plant databases

Immunological databases

Cell biology

- Compilation Paper
- Category List
- Alphabetical List
- Category/Paper List
- Search Summary Papers

Main page

Contents

Featured content

Current events

Random article

Donate to Wikipedia

Wikipedia store

Interaction

Help

About Wikipedia

Community portal

Recent changes

Contact page

Tools

What links here Related changes

List of biological databases

From Wikipedia, the free encyclopedia

Biological databases are stores of biological information.^[1] The journal *Nucleic Acids Research* regularly publishes special issues on biological databases and has a list of such databases. The 2018 issue has a list of about 180 such databases and updates to previously described databases.^[2]

Contents [hide]

- 1 Meta databases
- 2 Model organism databases
- 3 Nucleic acid databases
 - 3.1 DNA databases
 - 3.2 Gene expression databases (mostly microarray data)
 - 3.3 Phenotype databases
 - 3.4 RNA databases
- 4 Amino acid / protein databases
 - 4.1 Protein sequence databases
 - 4.2 Protein structure databases
 - 4.3 Protein model databases
 - 4.4 Protein-protein and other molecular interactions
 - 4.5 Protein expression databases
- 5 Signal transduction pathway databases
- 6 Metabolic pathway and protein function databases
- 7 Additional databases
 - 7.1 Exosomal databases

https://en.wikipedia.org/ wiki/List_of_biological_da tabases#Meta databases

The basic Information Flow

GenBank: 932'095'164 sequences

>BGAL_SULSO BETA-GALACTOSIDASE Sulfolobus solfatarious.
MYSFYRISFYFOWSQAGFQSENDTPOSEDFYTOWYKKYMIDPERGAGLYSG
DLUENOPGYWONYKTYMINAQRAGIKIARIAVENSKIFYNDPERGAGLYSG
EKQDYTEVE INENSILFSILDEYANDALMHYREIFYKDIKSRGLYFILDGYTS
WYLFLINLDDIRWIDGOFTOPSGKLSTRTYYEFYRFEAYLAMKFDOLYDE
YSTROEFPYNYGOLGYYGWYEGFFYDTLSFELBUBGYTHIIQAHARYDGI
KEVSKYPYGLIYANSSFQELTONDMEAVERANDGUMMFFDALIRGEITR
GNEKIYRDDLEGRLDNIGMYTYTRIVYWRTEKGYVSLGGYGGGCENSSYS
LAGLPYSDFGMEFFPEGLYDVLYKYMSHYBLYGYYTENGIADDADYGRPY
YLVSHYTQYSDAINSGADYGGYLBWSLACHYENASGFSGGTGLLKYDYNT
KELYWFPSALYYRZIATMGAITDEIEHLNSYPFYKPLEGI

UniProt/Tremble: 133'507'323 sequences

UniProt/SwissProt: 558'590 sequences

PDB: 146'093 structures

Update: October 2018

Biomedical Databases - Overview

Databases at NCBI (Bethesda, Maryland)

- GenBank

Nucleotide sequences

- PubMed

Literature

Databases at EMBL-EBI (Hinxton, UK)

- UniProt

Protein sequences

- Ensembl

Genomes

Database at Rutgers (Univ. New Jersey)

- PDB

Protein structures

Biomedical Databases – Classifications

- Content (DNA, protein, etc)
- ▼ Type of data (primary // secondary)
- ✓ Annotation (absent // present, manual // automatic)

Biomedical Databases - Classifications

Type of data

Primary data (experimental results)

- Genomes
- Protein Sequences
- Protein Structures Interactions
- Expression
- ...

Care about the experimental methods

Secondary data (derived information)

- Protein folds
- Protein families
- Genome comparisons
- ...

Care about the primary source and derivation

Biomedical Databases - Classifications

Annotation / Curation

Raw data

e.g. Protein Sequence only

Annotated data

e.g. Protein Sequence plus

function,
localization,
expression info,
links,

•••

e.g. Swiss Prot

Automatic

e.g. TrEMBL

Some general problems in biological databases

Quality check

- If errors do enter databases (either in data or annotations) they tend to propagate into other databases, local or secondary, and are difficult to estirpate.

✓ Lack of standardization

- lack of standard schema (every database has its own)
- lack of standard nomenclature (every database has its own names/accessions)

Database interoperability / interconnection

The quest for integration among different databases continue to be an area of active research

- ✓ Fusion of several databases into one (e.g. UniProt)
- ✓ Links making connection to other databases ("external links" or "cross-references" or "cross-linking")

Links are crucial for a database

Internal links allow navigation within the database itself.

External links make connections to other databases.

Database network

E.g., in Uniprot digit "crambin" and look at the external links; reach the related Pfam entry. Do the same in PDB and in NCBI Protein.

Definition of "database"

Database

From Wikipedia, the free encyclopedia

Main page

Contents

Featured content

Current events

Random article

Donate to Wikipedia

Wikipedia store

Interaction

Help

A database is an organized collection of data [1] It is the collection of schemes, tables, queries, reports, views and other objects. The data is typically organized to model aspects of reality in a way that supports processes requiring information, such as modelling the availability of rooms in hotels in a way that supports finding a hotel with vacancies.

A database management system (DBMS) is a computer software application that interacts with the user, other applications, and the database itself to capture and analyze data.

A database is a large structured set of persistent data, usually in computer-readable form.

"Organization" and "structure" allow to eventually extract meaning from the stored data.

CHAOS

ORDER

Order and Chaos, M.C. Escher, 1950

Some database terms

character and field

database file (or "table")

record

D	E	F	G	Н
First Name	Last Name	D.O.B.	Address	Social Security
John	Smith	6/12/82	321 Byberry Road	010-22-9432
John	Smith		268 Monroe Avenue	003-63-0037
John	Smith	12/4/57	8120 Venshire Drive	020-45-9326
Sally	Smith	3/4/86	207 Congress Drive	289-56-4321
Steve	Smith	4/23/79	1519 Ashbury Lane	170-54-2334
First N	ame, La	st Na	up of multipl me, Date of B Security Num	irth,

Key (unique identifier)

D	E	F	G	Н
First Name	Last Name	D.O.B.	Address	Social Security
John	Smith	6/12/82	321 Byberry Road	010-22-9432
John	Smith	5/9/40	268 Monroe Avenue	003-63-0037
John	Smith	12/4/57	8120 Venshire Drive	020-45-9326
Sally	Smith	3/4/86	207 Congress Drive	289-56-4321
Steve	Smith	4/23/79	1519 Ashbury Lane	170-54-2334
Social is the				

query

a request for data from a database

DBMS (Database Management System)

A DBMS is a software package that enables users:

- to access the data;
- to manipulate (create, edit, link, update) files as needed;
- to preserve the integrity of the data;
- to deal with security issues (who should have access).

database + DBMS ⇒ database system

DBMS models

A DBMS model (database model) describes the logic by which a database is structured and organized.

- Hierarchical model
- ✓ Network model
- **▼** Relational model
- **✓** Object-oriented model

Well-known DBMSs include e.g. MySQL, PostgreSQL, SQLite, Microsoft SQL Server, Oracle (Object-Relational), IBM DB2 (Object-Relational).

Hierarchical model

Network model

Relational model

Each table has a key field that uniquely identifies each row and can be used to connect one table of data to another.

Relational operations

A few rules allow to extract information from the database according to the content of a set of attributes. The user can then choose to view the content of many additional attributes.

Boolean Operators

• OR (|)

• NOT(!)

A and not B

B

A or B

Complex queries

Schema and instance

In a database, the schema describes the logical structure of the data (the "intensional" part of the database).

The instance is the set of the actual data (the "extensional" part of the database).

The schema allows the interpretation of the data of the instance.

Basic biological entry schema

- ID/accession, name and description
- Positional Features
 - Subfeatures
- Annotations (any information not related to a portion of the sequence)
 - Keywords
 - Ontology
 - Function
 - Localization
 - **-**
 - Comments (use carefully)
 - **-**
- Database cross-references (DBXrefs)
- References
- Sequence (not mandatory)

A schema can be written in different file formats

✓ Flat file – simple and available to all.

XML – eXtensible Markup Language.
 (Markups instruct the software displaying the text)

ASN.1 – Abstract Syntax Notation One (an International Standards Organization (ISO) format).
NCBI uses ASN.1 for data storage and retrieval.

Uniprot schema

http://www.uniprot.org/uniprot/P01542

Knowledge Discovery in Databases (KDD)

Figure 1. An Overview of the Steps That Compose the KDD Process.

Data are being collected and accumulated at a dramatic pace.

- A new generation of computational theories and tools is needed.
- These theories and tools constitute the emerging field of Knowledge Discovery in Databases.