H19T3A1

- a) Gib eine Funktion $f: \mathbb{R} \to \mathbb{R}$ an, die in keinem Punkt stetig ist. Zeige dabei explizit die Unstetigkeit in jedem Punkt.
- b) Gib eine Funktion $g:[0,1] \to \mathbb{R}$ an, die integrierbar ist, aber nicht stetig. Begründe dabei diese Eigenschaften. (Man kann sich auf das Riemann- oder auf das Lebesgue-Integral beziehen.)

Zu a):

Betrachte die Dirichlet-Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$.

Wir zeigen, dass f in keinem Punkt $a \in \mathbb{R}$ stetig ist.

- 1. Fall: $a \in \mathbb{Q}$: Für $\varepsilon = \frac{1}{2}$ existiert dann für beliebiges $\delta > 0$ ein $x \in \mathbb{R} \setminus \mathbb{Q}$ mit $|x a| < \delta$, da \mathbb{Q} dicht in \mathbb{R} ist und es gilt $|f(x) f(a)| = 1 > \varepsilon$. Also ist f in keinem Punkt $a \in \mathbb{Q}$ stetig.
- 2. Fall: $a \in \mathbb{R} \setminus \mathbb{Q}$: Analog zu Fall 1, nach Vertauschen der Rollen von \mathbb{Q} und $\mathbb{R} \setminus \mathbb{Q}$.

Alternative:

Sei $y \in \mathbb{R}$ beliebig gewählt. Dann ist $a_n := \lfloor 10^n y \rfloor \cdot \frac{1}{10^n}$ eine Folge in \mathbb{Q} und $b_n := a_n + \frac{\sqrt{2}}{10^n}$ ein Folge in $\mathbb{R} \setminus \mathbb{Q}$. Offensichtlich konvergieren beide Folgen gegen y, aber es gilt $\lim_{n \to \infty} f(a_n) = 0 \neq 1 = \lim_{n \to \infty} f(b_n)$. Damit ist f unstetig in jedem Punkt $y \in \mathbb{R}$.

Zu b):

Betrachte die Funktion $f:[0,1]\to\mathbb{R}, x\mapsto \begin{cases} 1, & x\geq \frac{1}{2}\\ 0, & x<\frac{1}{2} \end{cases}$.

Da f bei $x=\frac{1}{2}$ eine Sprungstelle besitzt, ist f auf [0,1] nicht stetig, aber als Treppenfunktion Riemann-integrierbar.

Variante:

Die Dirichlet-Funktion aus a) ist zwar nicht Riemann-integrierbar, aber Lebesgue-integrierbar.