ESTUDO DE CASO - IMPACTO DA RETIDADA DE BARRA

Importando bibliotecas

```
In [1]: import sys
    sys.path.insert(0, '../')
    import fconcrete as fc
    import pandas as pd
```

Leitura das amostras

```
In [2]: dados_menores_custos = pd.read_excel("Dados de custo das melhores dimensoes.xlsx")
```

Função que cria viga sem remover barras

```
In [3]: >>> def criar viga sem remover barras(base, altura, comprimento):
                   area laje = comprimento*comprimento
                   carga na laje = fc.to unit(5, "kN/m**2", "kN/cm**2")
                   carga na viga = -(carga na laje*area laje/comprimento)/4
                   carga distribuida na viga = fc.Load.UniformDistributedLoad(carga na viga, x begin=0, x end=comprim
        ento)
                   peso proprio = fc.Load.UniformDistributedLoad(-base*altura*25/1000000, x begin=0, x end=compriment
        0)
                   n1 = fc.Node.SimpleSupport(x=0)
                   n2 = fc.Node.SimpleSupport(x=comprimento)
                   beam = fc.ConcreteBeam(
                       loads = [carga distribuida na viga],
                       nodes = [n1, n2],
                       section = fc.Rectangle(base, altura),
                       bar steel max removal = 0,
                   return beam
```

Função que adiciona que recebe informação da linha e retorna os dados da viga sem remoção de barras

```
In [4]:
    def calculos_novos_custos(row):
        viga_sem_remover_barras = criar_viga_sem_remover_barras(row["base"], row["altura"], row["comprimento"])
        tabela_subtotal = viga_sem_remover_barras.subtotal_table
        columns = list(tabela_subtotal[0, :])
        tabela_com_materiais_e_preco = pd.DataFrame(viga_sem_remover_barras.subtotal_table, columns=columns).iloc
[1:, 0:2]
        tabela_com_materiais_e_preco["Price"] = tabela_com_materiais_e_preco["Price"].apply(float)
        tabela_com_materiais_e_preco = tabela_com_materiais_e_preco.pivot_table("Price", None, "Material")
        concreto, barras_longitudinais, barras_transversais = tabela_com_materiais_e_preco.values[0]
        custo_total = concreto + barras_longitudinais + barras_transversais
        return custo_total, concreto, barras_longitudinais, barras_transversais
```

Modificação da tabela original

In [7]: dados_menores_custos

Out[7]:

	base	altura	comprimento	custo	concreto	barras Iongitudinais	barras transversais	custo total sem retirada	concreto sem retirada	barras Iongitudinais sem retirada	barras trasnversais sem retirada
150	15	15	150	26.552389	11.92	6.60	8.02	26.59	11.92	6.65	8.02
200	15	15	200	35.238586	15.90	8.64	10.70	35.31	15.90	8.71	10.70
250	15	15	250	43.924782	19.87	10.68	13.37	44.00	19.87	10.76	13.37
300	15	19	300	61.904167	30.21	15.18	16.52	66.15	30.21	19.42	16.52
350	15	25	350	88.298648	46.37	19.19	22.74	91.90	46.37	22.79	22.74
400	15	29	400	119.126072	61.47	28.95	28.70	124.93	61.47	34.76	28.70
450	15	35	450	154.924409	83.47	36.89	34.57	167.12	83.47	49.08	34.57
500	15	41	500	201.408929	108.64	49.44	43.33	217.62	108.64	65.65	43.33
550	15	47	550	247.964731	136.99	57.89	53.08	262.47	136.99	72.40	53.08
600	15	53	600	300.256021	168.52	70.81	60.92	321.79	168.52	92.35	60.92
650	15	59	650	364.396778	203.24	88.76	72.40	390.18	203.24	114.54	72.40
700	15	65	700	436.807594	241.13	110.81	84.87	480.44	241.13	154.44	84.87
750	15	71	750	510.608829	282.20	133.72	94.69	559.15	282.20	182.26	94.69
800	15	79	800	599.797505	334.93	153.68	111.19	658.85	334.93	212.73	111.19
850	15	85	850	689.532881	382.89	180.11	126.54	754.52	382.89	245.09	126.54
900	15	91	900	785.570084	434.03	213.13	138.41	872.11	434.03	299.67	138.41
950	15	99	950	901.924097	498.42	245.30	158.20	994.81	498.42	338.19	158.20
1000	15	105	1000	1017.767634	556.45	284.89	176.43	1133.60	556.45	400.72	176.43

Foco apenas nas colunas relevantes

Out[8]:

	base	altura	comprimento	custo	barras longitudinais	custo total sem retirada	barras longitudinais sem retirada
150	15	15	150	26.552389	6.60	26.59	6.65
200	15	15	200	35.238586	8.64	35.31	8.71
250	15	15	250	43.924782	10.68	44.00	10.76
300	15	19	300	61.904167	15.18	66.15	19.42
350	15	25	350	88.298648	19.19	91.90	22.79
400	15	29	400	119.126072	28.95	124.93	34.76
450	15	35	450	154.924409	36.89	167.12	49.08
500	15	41	500	201.408929	49.44	217.62	65.65
550	15	47	550	247.964731	57.89	262.47	72.40
600	15	53	600	300.256021	70.81	321.79	92.35
650	15	59	650	364.396778	88.76	390.18	114.54
700	15	65	700	436.807594	110.81	480.44	154.44
750	15	71	750	510.608829	133.72	559.15	182.26
800	15	79	800	599.797505	153.68	658.85	212.73
850	15	85	850	689.532881	180.11	754.52	245.09
900	15	91	900	785.570084	213.13	872.11	299.67
950	15	99	950	901.924097	245.30	994.81	338.19
1000	15	105	1000	1017.767634	284.89	1133.60	400.72

Modificação para exibição da reducão em %

In [10]: dados_menores_custos_relacoes[["base", "altura", "comprimento", "Redução do valor total", "Redução do valor d
e barras longitudinais"]]

Out[10]: _____

	base	altura	comprimento	Redução do valor total	Redução do valor de barras longitudinais
150	15	15	150	-0.142%	-0.758%
200	15	15	200	-0.203%	-0.81%
250	15	15	250	-0.171%	-0.749%
300	15	19	300	-6.859%	-27.931%
350	15	25	350	-4.079%	-18.76%
400	15	29	400	-4.872%	-20.069%
450	15	35	450	-7.872%	-33.044%
500	15	41	500	-8.049%	-32.787%
550	15	47	550	-5.85%	-25.065%
600	15	53	600	-7.172%	-30.419%
650	15	59	650	-7.076%	-29.045%
700	15	65	700	-9.989%	-39.374%
750	15	71	750	-9.507%	-36.3%
800	15	79	800	-9.845%	-38.424%
850	15	85	850	-9.425%	-36.078%
900	15	91	900	-11.016%	-40.604%
950	15	99	950	-10.299%	-37.868%
1000	15	105	1000	-11.381%	-40.658%