Commutative Algebra Chapter 1 Problems

Zih-Yu Hsieh

June 23, 2025

1 D

Question 1.1: Exercise 1.13 (unsolved);

- 1. $\sqrt{I} = R \iff I = R$.
- 2. If ideal P is prime, then $\sqrt{P^n} = P$ for all $n \in \mathbb{N}$.

Pf:

- 1. \Longrightarrow : If $\sqrt{I} = R$, then since $R = \sqrt{I} = \varphi^{-1}(\operatorname{Nil}(R/I))$ (where φ is the projection onto R/I), then we have $\operatorname{Nil}(R/I) = R/I$. However, if ring $S \neq (0)$, then $\operatorname{Nil}(S) \subsetneq S$, so since $\operatorname{Nil}(R/I) = R/I$, we must have R/I = (0), showing that I = R. \Longleftrightarrow : If I = R, it follows that $\sqrt{I} = R$.
- 2. Given P is a prime ideal, then for any $n \in \mathbb{N}$, any $x \in \sqrt{P^n}$ satisfies $x^k \in P^n \subseteq P$, hence by induction one can prove that $x \in P$. So, $\sqrt{P^n} \subseteq P$. Also, for all $x \in P$, $x^n \in P^n$, hence $P \subseteq \sqrt{P^n}$, eventually proving that $\sqrt{P^n} = P$.

2 D

Question 2.1: Let x be a nilpotent element of a ring R. Show that 1 + x is a unit is R. Deduce that the sum of a nilpotent element and a unit is a unit.

Pf:

Given that $x \in R$ is nilpotent, then $x^k = 0$ for some $k \in \mathbb{N}$ (also, this implies that y = -x is also nilpotent with the same constant).

Then, 1 + x = 1 - (-x) = 1 - y, which consider the following equation:

$$1 = 1 - 0 = 1 - y^{k} = (1 - y) \left(\sum_{i=0}^{k-1} y^{i} \right)$$
 (2.1)

In other words, the above term is the inverse of 1 - y = 1 + x, which implies it is invertible.

Now, for any unit $u \in R$ and nilpotent $x \in R$, since $u + x = u(1 + u^{-1}x)$, where $u^{-1}x$ is nilpotent, then u + x is product of two units, hence is a unit.

3 (Not done)

Question 3.1: Let R be a ring. Let $f = a_0 + a_1 x + ... + a_n x^n \in R[x]$. Prove that:

- 1. f is a unit $\iff a_0$ is a unit in R and $a_1, ..., a_n$ are nilpotent.
- 2. f is nilpotent $\iff a_0, ..., a_n$ are nilpotent.
- 3. f is a zero-divisor \iff there exists $a \neq 0$ in R such that af = 0.
- 4. f is primitive if $(a_0, ..., a_n) = R$ (as an ideal). Prove that $f, g \in R[x]$, then fg is primitive $\iff f$ and g are primitive.

Pf:

1. \implies : Given $f = a_0 + a_1 x + ... + a_n x^n$ is a unit, there exists $g = b_0 + b_1 x + ... + b_m x^m$, where fg = 1. Which, the constant coefficient is given by $a_0 b_0 = 1$, so a_0, b_0 are both units.

Now, we'll use induction to prove that $a_n^{r+1}b_{m-r}$ is nilpotent, given $0 \le r \le m$: First consider the base case r=0, the coefficient for degree (n+m-r)=n+m is given by $a_nb_m=0$. Then, for r=1, the coefficient for n+m-r is given by $a_{n-1}b_m+a_nb_{m-1}=0$, multiply by a_n on both sides, we get:

$$a_{n-1}b_m a_n + a_n^2 b_{m-1} = 0 \Longrightarrow a_n^2 b_{m-1} = 0 \tag{3.1}$$

Now, suppose for given $0 \le r < m$, the equation is true, then for r+1, we get the coefficient of degree (n+m-(r+1)) be as follow:

$$\sum_{\max\{0,n-(r+1)\}\leq i\leq n}a_ib_{n+m-(r+1)-i}=0 \tag{3.2}$$

Which, multiply by a_n^{r+1} , since $n-(r+1) \leq i \leq n$, then $n \leq r+1+i \leq n+r+1$, hence the coefficient $b_{m-(r+1+i-n)}$ has $0 \leq r+1+i-n \leq r+1$, which for ever index i with this expression being at most r, by induction hypothesis, $a_n^{r+1}b_{m-(r+1+i-n)}=0$, hence every term (besides when the expression is r+1) gets annihilated. So, eventually we get:

$$r+1+i-n=r+1 \Longrightarrow i=n \Rightarrow a_n \cdot a_n^{r+1} b_{n+m-(r+1-n)} = 0 \Longrightarrow a_n^{r+2} b_{m-(r+1)} = 0 \qquad (3.3)$$

This completes the induction.

Hence, for r = m, we get $a_n^{m+1}b_0 = 0$, because b_0 is a unit, then a_n is in fact nilpotent, which $-a_nx^n$ is also nilpotent.

By Question 2.1, $f - a_n x^n$ is still a unit, and with degree n - 1. Then, the other non-constnat coefficients can be proven to be nilpotent by induction.

2. \Longrightarrow : If f is nilpotent, then $f^k = (a_0 + a_1x + ... + a_nx^n)^k = 0$ for some $k \in \mathbb{N}$. Which, the leading term is $a_n^k(x^n)^k = 0$, hence $a_n^k = 0$, or a_n is nilpotent. Since a_nx^n is also nilpotent, then $f - a_nx^n$ is nilpotent (with $\deg(f - a_nx^n) = n - 1$). So, since the base case $f = a_0$ is nilpotent implies a_0 is nilpotent, by induction we can show that each a_i is nilpotent.

 \Leftarrow : If each coefficient is nilpotent, it's obvious that each degree's component is nilpotent (based on the proof above), hence f is the sum of nilpotent elements, which is nilpotent.

3. date

4.

4 D

Question 4.1: Generalize the results in Question 3.1 to polynomial rings with several variables.

Pf:

All the setup can be done through induction. For base case n=1 it is verified in Question 3.1. Now, if all the statements are true for n-1 (where $n\in\mathbb{N}$), then since $R[x_1,...,x_n]=K[x_n]$, where $K=R[x_1,...,x_{n-1}]$. Then:

- 1. $f \in K[x_n]$ is a unit \iff constant coefficient $f_0 \in K = R[x_1,...,x_{n-1}]$ is unit, and the other coefficients $f_1,...,f_k \in K$ are nilpotent. Which, since the constant of $f \in R[x_1,...,x_n]$ is provided in f_0 , while other non-constant terms' coefficients scattered in $f_1,...,f_k$ (and also the non-constant coefficients in f_1 as a member of polynomial ring $R[x_1,...,x_{n-1}]$), by induction hypothesis, this happens iff the constant coefficient of f (also the constant coefficient of f_0) is unit, while the other terms are nilpotent.
- 2. $f \in K[x_n]$ is nilpotent \iff all coefficients $f_0, ..., f_k \in R[x_1, ..., x_{n-1}]$ is nilpotent. Again, by induction hypothesis, all the coefficients of $f_0, ..., f_k$ in R (also the coefficients of f) must be nilpotent.
- 3. $f \in K[x_n]$ is a zero divisor \iff all its coefficients $f_0,...,f_k \in R[x_1,...,x_{n-1}]$ all have some $a_0,...,a_k \in R$, such that for each index $i, a_if_i=0$; which, f multiplied by $a_0...a_k$ would make all coefficients $f_i \in R[x_1,...,x_{n-1}]$ go to 0, hence $a=a_0...a_k$ is the desired element with af=0.
- 4. $fg \in K[x_n]$ is primitive $\iff f$ and g are primitive in $K[x_n]$. Which, their coefficients in $R[x_1,...,x_{n-1}]$ must have gcd being 1. However, the gcd of all its coefficients in R also divides all their coefficients in $R[x_1,...,x_{n-1}]$, hence the gcd in R is limited to be 1.

5 D

Question 5.1: In the ring R[x], the Jacobson radical is equal to the nilradical.

Pf: Let N be the nilradical, and J be the Jacobson radical of R[x]. Since J is the intersection of all maximal ideals, N is the intersection of all prime ideals, while maximal ideals are prime, then $N \subseteq J$ (N could be the intersection of more ideals, since prime is not necessarily maximal).

Now, if $f \in J$, by definition 1-f is a unit. This happens \iff every non-constant coefficients of 1-f is nilpotent (they are given by $-a_1, ..., -a_n$, the negative non-constant coefficients of f), while the constant coefficient of f, say a_0 satisfies $1-a_0$ being a unit (since $1-a_0$ is the constant coefficient of 1-f). So, all the non-constant coefficients of f are nilpotent.

Then, since 1 - yf is also a unit for all $y \in R[x]$, consider y = 1 + x: The polynomial (1 + x)f is given as follow:

$$(1+x)f = a_0 + \sum_{i=1}^{n} (a_{i-1} + a_i)x^i + a_n x^{n+1}$$
 (5.1)

Then, 1 - (1+x)f has $-(a_0 + a_1)$ as the degree 1 coefficient. Since, 1 - (1+x)f is a unit, this enforces $-(a_0 + a_1)$ to be nilpotent; and since a_1 is nilpotent, a_0 must also be nilpotent (since Nil(R) is an ideal, which forms a group under addition).

So, because every coefficients are nilpotent, f is nilpotent, hence $f \in N$, showing the other inclusion $J \subseteq N$.

6 (Not done)

Question 6.1: Let R be a ring, and consider R[[x]] (formal power series ring). Show that:

- 1. f is a unit in $R[[x]] \iff a_0$ is a unit in R.
- 2. If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is the converse true?
- 3. f belongs to the Jacobson radical of $R[[x]] \iff a_0$ belongs to the Jacobson radical of R.
- 4. The contraction of a maximal ideal M of R[[x]] is a maximal ideal of R, and M i generated by M^c and x.
- 5. Every prime ideal of R is the contraction of a prime ideal of R[[x]].

Pf:

1. \Longrightarrow : If f is a unit in R[[x]], there exists $g \in R[[x]]$, with fg = 1. Then, the constant coefficient 1 is given by the multiplication of constant coefficients of f and g, showing that a_0 (constant coefficient of f) is a unit.

 \Leftarrow : If a_0 is a unit in R, our goal is to find $g = \sum_{n=0}^{\infty} b_n x^n$, where fg = 1.

First, it's clear that $b_0 = a_0^{-1}$. Now, for b_1 , since we want the degree 1 coefficient of fg to be 0, and the degree 1 coefficient is given b $a_0b_1 + a_1b_0$, then set $b_1 = -a_0^{-1}a_1b_0$, we get the desired result

Inductively, when $b_0, ..., b_{n-1}$ all have fixed expression using the collections of a_n , since degree n coefficient of fg is given by $\sum_{i=0}^n a_i b_{n-i}$, then if we want the expression to be 0, we can set b_n as follow:

$$a_0b_n + \sum_{i=1}^n a_ib_{n-i} = 0, \quad b_n = -a_0^{-1}\sum_{i=1}^n a_ib_{n-i}$$
 (6.1)

So, there exists an expression of g, where fg = 1, showing that f is a unit.

2.

7 (Not done)

Question 7.1: A ring R is such that every ideal not contained in the nilradical contains a nonzero idempotent (an element e with $e^2 = e \neq 0$). Prove that the nilradical and the Jacobson radical of R are equal.

Pf:

Let N,J represent the niradical and Jacobson radical respectively. It is clear that $N\subseteq J$ by definition.

To prove that $J \subseteq N$ by contradiction, suppose the contrary that $J \nsubseteq N$, by assumption there exists $e \in J$ with $e^2 = e$. Now, consider the ideal (e):

8 (Not done)

Question 8.1: Let R be a ring in which every element satisfies $x^n = x$ for some $n \in \mathbb{N}$. Show that every prime ideal in R is maximal.

Pf:

Can try to prove that R is a PID. Given an ideal $I \neq (0)$, choose

9 D

Question 9.1: Let $R \neq 0$ be a ring. Show that the set of prime ideals of R has minimal elements with respect to inclusion.

Pf:

We'll prove by Zorn's Lemma, where let A be the set of all prime ideals, and the Partial Order given by $P_1 \succeq P_2$ iff $P_1 \subseteq P_2$.

Let $C \subseteq A$ be a chain, and let $P_C = \bigcap_{P \in C} P$. It is clear that P_C is an ideal, and if $P_C \in A$, then P_C is an upper bound of C. So, it suffices to show that $P_C \in A$ (or P_C is a prime ideal).

Suppose $x,y\in R$ satisfies $xy\in P_C$, then since for any prime ideal $P\in C,\ xy\in P$, then either $x\in P$ or $y\in P$. If all $P\in C$ contains x (or y), then we're done. Now, if some contains x and some contains y, consider the subchain $C_x:=\{P\in C\mid x\in P\}$:

- If C_x is comaximal in C (in a set theoretic), then for every $P \in C$, there exists $P_x \in C_x$, where $P_x \succeq P$, so $P_x \subseteq P$, hence $x \in P$, showing that $x \in P_C$.
- Else if C_x is not comaximal in C, then there exists $P \in C$, where all $P_x \in C_x$ has $P \not\succeq P_x$ (which $P \notin C_x$). Hence, $y \in P$, showing that all $P_x \in C_x$ has $P \subseteq P_x$, or $y \in P_x$. So, given $P \in C$, regardless of its containment in C_x , we have $y \in P$, showing that $y \in P_C$.

The above statements show that P_C is prime, hence $P_C \in A$, every chain has an upper bound. Then, by Zorn's Lemma, this POset has a maximal element, which is the minimal elements with respect to inclusion.

10 D

Question 10.1: Let $I \subseteq R$ be an ideal. Show that $I = \sqrt{I} \iff I$ is an intersection of prime ideals.

 \implies : If $\sqrt{I} = I$, since the projection map $\varphi : R \twoheadrightarrow R/I$ satisfies the following:

$$I = \sqrt{I} = \varphi^{-1}(\operatorname{Nil}(R/I)) = \bigcap_{\overline{P} \subset R/I \text{ prime}} \varphi^{-1}(\overline{P}) = \bigcap_{I \subseteq P \subset R \text{ prime}} P$$
 (10.1)

Which is an intersection of prime ideals.

 $\Longleftrightarrow \text{Suppose } \left\{P_i\right\}_{i\in\mathcal{A}} \text{ is a collection of prime ideals, and define } I:=\bigcap_{i\in\mathcal{A}}P_i. \text{ Then, for all } x\in\sqrt{I}, \text{ since there exists } n\in\mathbb{N}, \text{ with } x^n\in I, \text{ because } x^n\in P_i \text{ for all index } i\in\mathcal{A}, \text{ then } x\in P_i, \text{ hence } x\in I, \text{ showing that } \sqrt{I}\subseteq I. \text{ Since the other inclusion is trivially true, } \sqrt{I}=I.$

11 D

Question 11.1: Let R be a ring, Nil(R) be its nilradical. Show that the following are equivalent:

- 1. R has exactly one prime ideal.
- 2. Every element of R is either a unit or nilpotent.
- 3. R/Nil(R) is a field.

 $1 \Longrightarrow 2$: Suppose R has precisely one prime ideal, then since Nil(R) is the intersection of all prime ideals, Nil(R) = P (the prime ideal). This also enforces Nil(R) to be maximal (since every commutative ring has a maximal ideal, and all maximal ideal is prime).

Now, suppose $u \in R \setminus \text{Nil}(R)$ (i.e. not nilpotent), then since $\text{Nil}(R) \subsetneq \text{Nil}(R) + (u)$, then Nil(R) + (u) = R, showing that 1 = ku + x for some $k \in R$ and $x \in \text{Nil}(R)$. Notice that -x is nilpotent, which 1 - x is a unit, hence 1 - x = ku, showing that ku is a unit, which u is a unit.

Hence, every element of R is either a unit or nilpotent.

 $2\Longrightarrow 3$: Suppose every element is either a unit or nilpotent, then for all $\overline{u}\in R/\mathrm{Nil}(R)$ (with $\overline{u}:=u\,\mathrm{mod}\,\mathrm{Nil}(R)$) that is nonzero, since u is a unit, then inherantly, \overline{u} is also a unit in $R/\mathrm{Nil}(R)$, showing that it is a field.

 $3 \Longrightarrow 1$: Suppose R/Nil(R) is a field, then Nil(R) is maximal. Now, suppose P is a prime ideal, then because $\text{Nil}(R) \subseteq P \subsetneq R$, then this enforces Nil(R) = P. Hence, there is only one prime ideal, namely Nil(R).