Corrigé: groupe critique d'un graphe (ENS 2009)

Partie I. Matrice d'incidence et matrice Laplacienne d'un graphe

Question 1.1. Avec les notations de l'énoncé, le coefficient d'indice (i,j) de $L_G^t L_G$ est égal à : $\tilde{e}_{i,j} = \sum_{k=1}^m \ell_{i,k} \ell_{j,k}$.

- Si i = j alors $\tilde{e}_{i,j} = \sum_{k=1}^{m} \ell_{i,k}^2 = \sum_{\{i,j\} \in \mathbb{E}} 1 = d_i$, le nombre d'arêtes incidentes à i;
- si $i \neq j$ et si i n'est pas adjacent à j alors quel que soit $k \in \llbracket 1, m \rrbracket$, $\ell_{i,k} = 0$ ou $\ell_{j,k} = 0$ et $\tilde{e}_{i,j} = 0$;
- si $i \neq j$ et si i et j sont adjacents, il existe une unique valeur de k telle que la k-ème arête soit $\{i, j\}$. Dans ce cas $\tilde{e}_{i,j} = \ell_{i,k}\ell_{j,k}$ avec $\ell_{i,k} = -\ell_{j,k}$ donc $\tilde{e}_{i,j} = -1$.

Dans tous les cas nous avons montré que $\tilde{e}_{i,j} = e_{i,j}$ donc $L_G^t L_G = \Delta_G$.

Question 1.2. $\Delta_G v = \lambda v \iff L_G^t L_G v = \lambda v \text{ donc } \lambda ||v||^2 = {}^t v(\lambda v) = {}^t v L_G^t L_G v = {}^t ({}^t L_G v) ({}^t L_G v) = ||^t L_G v||^2.$

Nous avons $||v||^2 = \sum_{i=1}^n v_i^2$ et $||^t L_G v||^2 = \sum_{k=1}^m \left(\sum_{i=1}^n \ell_{i,k} v_i\right)^2$. Si $\{i,j\}$ est la k-ème arête de E alors $\ell_{i,k} = \pm 1$, $\ell_{j,k} = -\ell_{i,k}$ et $\ell_{\alpha,k} = 0$

pour
$$\alpha \notin \{i,j\}$$
 donc $||^t L_G v||^2 = \sum_{k=1}^m (v_i - v_j)^2$. Ainsi, $\lambda = \sum_{\{i,j\} \in \mathbb{E}} (v_i - v_j)^2 / \sum_i v_i^2$.

La matrice Δ_G est symétrique réelle et nous venons de prouver que ses valeurs propres sont positives ; il s'agit donc d'une matrice symétrique positive.

Question 1.3. $\ker(\Delta_G)$ est le sous-espace propre associé à la valeur propre $\lambda = 0$ donc d'après la question précédente,

$$v \in \ker(\Delta_{\mathcal{G}}) \iff \sum_{\{i,j\} \in \mathcal{E}} (v_i - v_j)^2 = 0 \iff v_1 = v_2 = \dots = v_n.$$

En effet, si i et j désignent deux sommets distincts il existe une suite d'arêtes $\{i_k, i_{k+1}\}$ telle que $i_0 = i$ et $i_q = j$ et alors

$$\sum_{k=0}^{q-1}(v_{i_k}-v_{i_{k+1}})^2=0 \text{ donc } v_{i_0}=\cdots=v_{i_q}\text{, ce qui prouve que } v_i=v_j.$$

 $\ker(\Delta_G)$ est bien la droite vectorielle engendrée par le vecteur e, et d'après le théorème du rang nous avons $\operatorname{rg}(\Delta_G) = n - 1$. Plus généralement, si C_1, \ldots, C_p désignent les composantes connexes de G alors

$$v \in \ker(\Delta_{\mathrm{G}}) \iff \forall \alpha \in [\![1,p]\!], \quad \forall (i,j) \in \mathrm{C}^2_\alpha, \quad v_i = v_j.$$

 $\ker(\Delta_G)$ est cette fois de dimension p et $\operatorname{rg}(\Delta_G) = n - p$.

Question 1.4. Nous avons :

où les zones blanches correspondent aux coefficients respectifs des matrices L_G , tL_G et de leur produit, à savoir Δ_G . On a donc $L_{G,k}{}^tL_{G,k} = \Delta_{G,k}$. De cette égalité il résulte comme à la question 2 que si v est un vecteur propre de $\Delta_{G,k}$ associé à la valeur propre λ alors $\lambda ||v||^2 = ||{}^tL_Gv||^2$. Cette égalité se traduit cette fois par :

$$\lambda \sum_{i=1}^{n} v_i^2 = \sum_{k \notin \{i,j\} \in \mathcal{E}} (v_i - v_j)^2 + \sum_{\{i,k\} \in \mathcal{E}} v_i^2 + v_k^2.$$

La valeur propre $\lambda = 0$ donne une équation du noyau ; cette fois $v \in \ker \Delta_{G,k}$ si et seulement si : $v_k = 0$, $v_i = 0$ si $\{i,k\} \in E$ et $(i,j) \in C^2_\alpha \Rightarrow v_i = v_j$. Autrement dit, la dimension du noyau est égale à p-1 si p désigne le nombre de composantes connexes de G. Ainsi, $\operatorname{rg}(\Delta_{G,k}) = n+1-p$ et en particulier, si G est connexe la matrice $\Delta_{G,k}$ est de rang n.

Question 1.5. Si on part de la matrice $\Delta_{G,k}$ et qu'on effectue les opérations élémentaires $L_i \leftarrow L_i + e_{i,k}L_k$ pour $i \neq k$ on ne modifie pas son rang et on obtient une matrice dont les lignes sont les coefficients des vecteurs $\{\Delta_1, \dots, \Delta_n\} \setminus \{\Delta_k\} \cup \{x_k\}$. Le rang de cette famille est donc égal au rang de la matrice $\Delta_{G,k}$; elle est de rang n si et seulement si G est connexe.

Question 1.6. D'après les formules de Cramer nous avons $v_i = \frac{d_i}{d}$ avec $d = \det A$ et $d_i = \det(a_1, \dots, a_{i-1}, a, a_{i+1}, \dots, a_n)$ où a_i désigne la i-ème colonne de A. Puisque A et a sont à coefficients entiers nous avons $d \in \mathbb{Z}$ et $d_i \in \mathbb{Z}$. Posons $\delta = |d|$, $d = \varepsilon \delta$, et effectuons la division euclidienne de εd_i par δ : $\varepsilon d_i = \delta v_i'' + v_i'$ avec $0 \le v_i' < \delta$. Alors $v_i = \frac{v_i'}{\delta} + v_i''$.

Le groupe critique d'un graphe Partie II.

Question 2.1. L'ensemble des combinaisons linéaires à coefficients entiers des g_i forme un groupe (évident) et tout sous-groupe qui contient les g_i doit le contenir donc il s'agit bien de $\langle g_1, g_2, ..., g_k \rangle$.

Question 2.2. Par définition de la matrice Δ_G nous avons $\sum_i \Delta_i = 0$ donc toute combinaison à coefficients entiers de $\{\Delta_1, \ldots, \Delta_n\}$ peut aussi s'écrire comme combinaison de $\{\Delta_1, \ldots, \Delta_n\} \setminus \{\Delta_i\}$.

Question 2.3. La relation est réflexive puisque $0 \in H$; elle est symétrique puisque $x - y \in H \iff -(x - y) \in H$; elle est transitive puisque $(x - y \in H \text{ et } y - z \in H) \Longrightarrow (x - y) + (y - z) \in H$.

Question 2.4. Il importe avant tout de prouver que l'addition ainsi définie ne dépend pas du choix des représentants des classes. Considérons donc quatre éléments tels que $\overline{x} = \overline{x'}$ et $\overline{y} = \overline{y'}$. On a $x - x' \in H$ et $y - y' \in H$ donc x - x' + y - y' = X $(x+y)-(x'+y') \in H$, ce qui prouve que $\overline{x+y}=\overline{x'+y'}$.

Il reste alors à constater que :

- $-\overline{0}$ est un élément neutre de K/H;
- l'addition est associative puisque $\overline{x} + (\overline{y} + \overline{z}) = \overline{x} + \overline{y + z} = \overline{x + (y + z)} = \overline{(x + y) + z} = \overline{x + y} + \overline{z} = (\overline{x} + \overline{y}) + \overline{z}$;
- l'addition est commutative puisque $\overline{x} + \overline{y} = \overline{x + y} = \overline{y + x} = \overline{y} + \overline{x}$;
- tout élément possède un inverse puisque $\overline{x} + \overline{-x} = \overline{0}$.

Question 2.5. Considérons un élément $a \in \mathbb{Z}^n$. D'après la question 1.5 la famille $\{\Delta_1, \ldots, \Delta_n\} \setminus \{\Delta_k\} \cup \{x_k\}$ est une famille libre de \mathbb{R}^n donc il existe un unique vecteur v tel que $a = \sum_{i \neq k} v_i \Delta_i + v_k x_k$. Cette équation représente un système de Cramer a = Av dont les coefficients sont à coefficients entiers ; d'après la question 1.6 le vecteur v s'écrit sous la forme : $v_i = \frac{v_i'}{\delta} + v_i''$ où les variables sont entières et vérifient $0 \le v_i' < \delta$.

Posons $a' = \frac{1}{\delta} \Big(\sum_{i \neq k} v_i' \Delta_i + v_k' x_k \Big)$. D'après la question 2.2, $a - a' \in \Delta(G, k)$ donc $\overline{a} = \overline{a'}$. Or a' ne peut prendre que δ^n valeurs

distinctes donc le nombre de classes d'équivalences est fini : C(G, k) est un groupe de cardinal fini.

Question 2.6. Considerons l'application $\overline{\phi}: K/H \to K'/\phi(H)$ « définie » par $\overline{\phi}(\overline{x}) = \overline{\phi(x)}$, et commençons par montrer que cette définition a bien un sens en considérant x et x' tels que $\overline{x} = \overline{x'}$. On a x' = x + (x' - x) donc $\phi(x') = \phi(x) + \phi(x' - x)$. Mais $\phi(x'-x) \in \phi(H)$ donc $\overline{\phi(x')} = \overline{\phi(x)}$. Ceci montre que $\overline{\phi}(\overline{x})$ ne dépend pas du représentant de la classe \overline{x} et donne bien un sens à la définition ci-dessus.

Il reste à prouver que $\overline{\phi}$ est un isomorphisme de groupe :

- $-\overline{\varphi}(\overline{x}+\overline{y}) = \overline{\varphi}(\overline{x+y}) = \overline{\varphi(x+y)} = \overline{\varphi(x)+\varphi(y)} = \overline{\varphi(x)} + \overline{\varphi(y)} = \overline{\varphi(x)} + \overline{\varphi(y)};$
- $-\overline{\varphi}(\overline{x}) = \overline{\varphi}(\overline{y}) \iff \varphi(x) \varphi(y) \in \varphi(H) \iff \varphi(x y) \in \varphi(H) \iff x y \in H \text{ (car } \varphi \text{ est bijectif)} \iff \overline{x} = \overline{y}.$

Question 2.7. Les égalités $\phi(x_i) = y_i$ définissent un unique morphisme de groupe de \mathbb{Z}^n dans lui-même :

$$\forall v = (v_1, \dots, v_n) \in \mathbb{Z}^n, \quad \phi(v) = \sum_{i \neq k} v_i(x_i - x_k) - v_k x_\ell = \sum_{i \notin \{k,\ell\}} v_i x_i - \left(\sum_{i \neq k} v_i\right) x_k + (v_\ell - v_k) x_\ell.$$

Il s'agit d'un isomorphisme de groupe car quel que soit $w = (w_1, ..., w_n) \in \mathbb{Z}^n$ on a :

$$\phi(v) = w \iff \begin{cases} v_i = w_i & \text{pour } i \notin \{k, \ell\} \\ v_\ell = -\sum_{i \neq \ell} w_i \\ v_k = -\sum_i w_i \end{cases}$$

Nous allons maintenant montrer que $\phi(\Delta(G,k)) = \Delta(G,\ell)$ ce qui, à l'aide de la question 2.6, nous permettra d'en conclure que $C(G,k) \sim C(G,\ell)$.

Nous avons $\phi(\Delta(G, k)) = \langle \phi(\Delta_1), \dots, \phi(\Delta_n), \phi(x_k) \rangle$. Calculons chacun des termes de cette famille génératrice.

- Si
$$i \neq k$$
, $\phi(\Delta_i) = d_i \phi(x_i) + \sum_{j \neq i} e_{i,j} \phi(x_j) = d_i (x_i - x_k) + \sum_{j \notin \{i,k\}} e_{i,j} (x_j - x_k) - e_{i,k} x_\ell = d_i x_i + \sum_{j \notin \{i,k\}} e_{i,j} x_j + e_{i,k} (x_k - x_\ell)$ car $d_i = -\sum_{j \neq i} e_{i,j}$. On a donc $\phi(\Delta_i) = \Delta_i - e_{i,k} x_\ell = \Delta_i'$.

- Si
$$i = k$$
, $\phi(\Delta_k) = d_k \phi(x_k) + \sum_{j \neq k} e_{k,j} \phi(x_j) = -d_k x_\ell + \sum_{j \neq k} e_{k,j} (x_j - x_k) = d_k (x_k - x_\ell) + \sum_{j \neq k} e_{k,j} x_j \operatorname{car} d_k = -\sum_{j \neq k} e_{k,j}$. On a donc $\phi(\Delta_k) = \Delta_k - d_k x_\ell = \Delta_k'$.

Ainsi,
$$\phi(\Delta(G,k)) = \langle \Delta'_1, \dots, \Delta'_n, -x_\ell \rangle = \langle \Delta_1 - e_{1,k}x_\ell, \dots, \Delta_n - e_{n,k}x_\ell, x_\ell \rangle = \langle \Delta_1, \dots, \Delta_n, x_\ell \rangle = \Delta(G,\ell).$$

Partie III. Tas de sable sur un graphe et configurations récurrentes

Question 3.1. Si $u \to v$ il existe i tel que $u - v = \Delta_i \in \Delta(G, n)$ donc $\overline{u} = \overline{v}$ (dans le groupe C(G, n)). Par récurrence ceci s'étend au cas où $u \stackrel{*}{\to} v$.

Ouestion 3.2.

- (a) Considérons un éboulement u → v du sommet i. Celui-ci a nécessairement un voisin plus proche du puit, donc μ(u) < μ(v) si on munit les potentiels de la relation d'ordre lexicographique.
 Par ailleurs, lors d'une suite d'éboulements u⁰ → u¹ → ··· → u^p le nombre N de grains reste constant donc la suite les potentiels μ(uⁱ) est strictement croissante et majorée par le vecteur (N, 0,..., 0). Il ne peut donc exister de suite d'éboulements infinie, ce qui prouve l'existence d'au moins une configuration stable v telle que u * v.
- (b) Considérons deux avalanches conduisant à des états stables v et $w: u = v^0 \to v^1 \to \cdots \to v^p = v$ et $u = w^0 \to w^1 \to \cdots \to w^q = w$, et supposons $p \le q$. Montrons par récurrence sur p que w = v.
 - Si p = 0 alors u = v est un état stable et donc w = u.
 - Si p > 0, soit i tel que $v^1 = v^0 \Delta_i$. On passe de v^0 à v^1 en éboulant le sommet i donc $u_i \ge d_i$ (il y a au moins d_i grains sur le sommet i dans la configuration initiale u). Par ailleurs, puisque w est stable le sommet i ne peut plus être éboulé et $w_i < d_i$. Lors de l'avalanche conduisant à w le sommet i s'est donc éboulé au moins une fois ; notons k le premier entier pour lequel $w^{k+1} = w^k \Delta_i$. Dans chacune des configurations précédentes le sommet i possède au moins d_i grains donc l'avalanche $v^1 = w^0 \Delta_i \rightarrow w^1 \Delta_i \rightarrow \cdots \rightarrow w^k \Delta_i \rightarrow w^{k+2} \rightarrow \cdots \rightarrow w^q = w$ est licite. Les deux avalanches $v^1 \stackrel{*}{\rightarrow} v$ et $v^1 \stackrel{*}{\rightarrow} w$ sont de longueurs respectives p-1 et q-1 donc par hypothèse de récurrence w=v.

Question 3.3.

- (a) On a clairement $u + v \stackrel{*}{\to} u' + v$ et $u' + v \stackrel{*}{\to} u' + v'$ donc $u + v \stackrel{*}{\to} u' + v'$.
- (b) Notons d le diamètre de G et N un entier strictement supérieur au maximum des degrés des sommets de G. Posons alors $k = N^d$. On est assuré qu'au moins un des sommets de kv autre que le puit contient au moins N^d grains. Éboulons ce sommet N^{d-1} fois ; chacun de ses voisins contient au moins N^{d-1} grains. Éboulons-les chacun N^{d-2} fois et réitérons ce procédé. Puisque tous les sommets sont à une distance inférieure ou égale à d du sommet initial à la fin de ce processus on a atteint un état w dans lequel chaque sommet possède au moins un grain.
- (c) Supposons qu'il existe une configuration positive u' telle que u' + δ → u, et posons v = u' + δ u. Alors u + v → u et puisque u est stable, δ u est positive donc v aussi. Ainsi u est récurrente.
 Réciproquement supposons u récurrente et considérons v positive telle que u + v → u. D'après la question précédente il existe k et w tel que kv → w et w_i > 0 pour i < n. Si N est un entier supérieur au degré maximal des sommets de G on a Nw ≥ δ et donc u + kNv → u + Nw = u' + δ avec u' positive. Mais par ailleurs u + kNv → u et par unicité de l'état stable u' + δ → u.

Question 3.4. Sachant que
$$\sum_{i} \Delta_{i} = 0$$
 on a aussi $u - v \in \langle \Delta_{1}, ..., \Delta_{n-1} \rangle$. Posons $u - v = \sum_{i \in I} a_{i} \Delta_{i} - \sum_{i \in J} a_{i} \Delta_{i}$ avec $a_{i} > 0$. Posons $w = u + \sum_{i \in J} a_{i} \Delta_{i} = v + \sum_{i \in J} a_{i} \Delta_{i}$. Alors $w \stackrel{*}{\Rightarrow} u$ et $w \stackrel{*}{\Rightarrow} v$.

Question 3.5. $\delta \oplus \delta$ est stable donc $\delta - \delta \oplus \delta$ est positive. Puisque δ est aussi positive, on en déduit que $\varepsilon = \delta + \delta - \delta \oplus \delta$ est positive.

 $\delta + \varepsilon = (\delta + \delta) + (\delta - \delta \oplus \delta)$. Les deux configurations $\delta + \delta$ et $\delta - \delta \oplus \delta$ sont positives et $\delta + \delta \xrightarrow{*} \delta \oplus \delta$ donc $\varepsilon + \delta \xrightarrow{*} \delta \oplus \delta + (\delta - \delta \oplus \delta) = \delta$.

Question 3.6. Si $u + \varepsilon \stackrel{*}{\to} u$ alors par définition u est récurrente (ε est positive d'après la question précédente).

Réciproquement supposons u récurrente : d'après la question 3.3c il existe une configuration positive u' telle que $u' + \delta \xrightarrow{*} u$. Puisque ε est positive, $u' + \delta + \varepsilon \xrightarrow{*} u + \varepsilon$.

Par ailleurs, d'après la question 3.5, $u' + \delta + \varepsilon \xrightarrow{*} u' + \delta \xrightarrow{*} u$. Par unicité de la configuration stable obtenue par avalanche (question 3.2b), $u + \varepsilon \xrightarrow{*} u$.

Question 3.7. Par définition $\delta + \delta \stackrel{*}{\to} \delta \oplus \delta$ donc $\varepsilon = 2\delta - \delta \oplus \delta \in \langle \Delta_1, \Delta_2, ..., \Delta_n \rangle$ et ε est positive.

D'après la question 3.3b, il existe un entier k et une configuration w telle que $k\varepsilon \xrightarrow{*} w$ avec $w_i > 0$ pour tout $i \in [\![1,n-1]\!]$. Notons enfin que puisque $\varepsilon \in \langle \Delta_1, \Delta_2, \dots, \Delta_n \rangle$ c'est aussi le cas de $k\varepsilon$ et donc de w.

Considérons alors une configuration quelconque u et $k \in \mathbb{N}$ tel que pour tout i < n on ait $u_i + kw_i \ge d_i$. On peut alors écrire $u + kw = u' + \delta$ avec u' positive. Posons $v = u \oplus kw$. On a $u + kw \xrightarrow{*} v$ et $w \in \langle \Delta_1, \Delta_2, \dots, \Delta_n \rangle$ donc $u - v \in \langle \Delta_1, \Delta_2, \dots, \Delta_n \rangle$. Par ailleurs, $(u + kw) + \varepsilon = u' + (\delta + \varepsilon) \xrightarrow{*} u' + \delta = u + kw \xrightarrow{*} v$. Mais on a aussi $(u + kw) + \varepsilon \xrightarrow{*} v + \varepsilon$ donc d'après la question

3.2b on a $v + \varepsilon \xrightarrow{*} v$, ce qui prouve que v est récurrente.

Supposons maintenant qu'il existe une autre configuration récurrente v' telle que $u-v'\in \langle \Delta_1,\Delta_2,\ldots,\Delta_n\rangle$. Alors $v'-v\in \langle \Delta_1,\Delta_2,\ldots,\Delta_n\rangle$ et d'après la question 3.4 il existe une configuration w telle que $w\overset{*}{\Rightarrow}v$ et $w\overset{*}{\Rightarrow}v'$. En choisissant k assez grand on a $w+k\varepsilon\overset{*}{\rightarrow}v+k\varepsilon$ et $w+k\varepsilon\overset{*}{\rightarrow}v'+k\varepsilon$. D'après la question 3.6 ceci implique $w+k\varepsilon\overset{*}{\rightarrow}v$ et $w+k\varepsilon\overset{*}{\rightarrow}v'$. Par unicité de la configuration stable qu'on peut atteindre par avalanche on en déduit v=v'.

Question 3.8. Montrons tout d'abord que \oplus est une loi interne à R(G). Si u et v sont deux configurations stables récurrentes, nous savons déjà que $u \oplus v$ est par définition une configuration stable. Par ailleurs $u + \varepsilon \stackrel{*}{\to} u$ donc $u + v + \varepsilon \stackrel{*}{\to} u \oplus v$. Mais on a aussi $u + v + \varepsilon \stackrel{*}{\to} u \oplus v + \varepsilon$ donc par unicité de la configuration stable qu'on peut atteindre par avalanche nous en déduisons $u \oplus v + \varepsilon \stackrel{*}{\to} u \oplus v$ ce qui prouve que $u \oplus v$ est récurrente.

La loi \oplus est clairement commutative et associative. Notons θ l'unique configuration récurrente telle que $0-\theta \in \langle \Delta_1, \ldots, \Delta_n \rangle$, autrement dit $\theta \in \langle \Delta_1, \Delta_2, \ldots, \Delta_n \rangle$.

Soit alors $u \in R(G)$. Nous avons $(u + \theta) - (u \oplus \theta) \in \langle \Delta_1, \Delta_2, ..., \Delta_n \rangle$ et $(u + \theta) - u \in \langle \Delta_1, \Delta_2, ..., \Delta_n \rangle$ donc d'après l'unicité établie à la question précédente, $u \oplus \theta = u$; θ est bien neutre pour la loi \oplus .

Considérons enfin l'unique configuration récurrente u' telle que $-u-u' \in \langle \Delta_1, \Delta_2, ..., \Delta_n \rangle$. Alors $(u+u')-\theta \in \langle \Delta_1, \Delta_2, ..., \Delta_n \rangle$ et $(u+u')-u \oplus u' \in \langle \Delta_1, \Delta_2, ..., \Delta_n \rangle$ donc $u \oplus u' = \theta$, ce qui prouve que tout élément possède un inverse.

R(G) est donc un groupe commutatif.

Considérons enfin l'application $\phi: \mathbb{Z}^n \to R(G)$ définie par $\phi(u) = v$, où v est l'unique configuration récurrente telle que $u - v \in \langle \Delta_1, \Delta_2, \dots, \Delta_n \rangle$. ϕ est un morphisme de groupe surjectif de $(\mathbb{Z}^n, +)$ vers $(R(G), \oplus)$ dont le noyau est $\Delta(G, n)$ donc R(G) est isomorphe à $\mathbb{Z}^n/\Delta(G, n) = C(G)$.