Theoretical part

Problem 1 (6 Points)

Decide whether the following statements are true or false.

1) Any differentiable at a point function has a finite limit at this point.

2) Let $A,\,B,\,C$ be non-empty sets such that $C\subset A$ and $C\subset B$. Then $(A\setminus B)\cap C=\emptyset$.

3) The function $f:[0,2]\to\mathbb{R},\, f(x)=(x-1)^4$ is injective, but not surjective.

4) Any function which is differentiable on a closed interval is continuous on this interval.

5) If the series $\sum_{n=1}^{\infty} a_n$ converges, then the series $\sum_{n=1}^{\infty} |a_n|$ is also converging.

6) If the function is bounded on a closed interval then it is integrable over this interval.

Problem 2 (8 Points)

- a) Formulate the definition of the limit of a function. (2 Points)
- b) Formulate the Theorem on existence of a limit of a function. (2 Points)
- c) Give an example of a divergent sequence which has at least one convergent subsequence. (2 Points)

Problem 3 (6 Points)

a) Formulate the definition of a derivative of a function. (2 Points)

b) Formulate Lagrange's Mean value theorem. (3 Points)

Problem 4 (5 Points)
Formulate the Comparison convergence test for infinite series. (3 Points)

Bonus question: Prove it. (5 Bonus Points)

Problem 5 (4 Points)

- a) Formulate Taylor's Theorem for an infinitely differentiable function $f:[a,b]\to\mathbb{R}.$ (3 Points)
- b) Write down <u>one</u> of the common Taylor series (e.g., for $f(x) = e^x$, $\sin x$, $\cos x$, $\frac{1}{1-x}$, etc.) (2 Points)

Problem 6 (6 Points)
Formulate the Substitution Rule for definite integrals.

(3 Points)

Practical part

Problem 1 (6 Points)

Consider the sequence $\{a_n\}_{n\in\mathbb{N}}$ with $a_n = \frac{1}{2}\left(a_{n-1} + \frac{c}{a_{n-1}}\right)$ for all $n\in\mathbb{N}$, where c>0 and $a_0=M>0$.

- a) Prove that $a_n \ge \sqrt{c} \ \forall n \in \mathbb{N}$. (2 Points) **Hint:** use the fact that $t + \frac{1}{t} \ge 2 \ \forall t \ge 0$.
- b) Using a), prove that $\{a_n\}_{n\in\mathbb{N}}$ monotonically decreases. (2 Points)
- c) Determine whether the sequence $\{a_n\}_{n\in\mathbb{N}}$ is bounded or unbounded.

 (1 Point)
- d) Prove that $\{a_n\}_{n\in\mathbb{N}}$ has a finite limit. (1 Point)
- e) Prove that $\lim_{n\to\infty} a_n = \sqrt{c}$. (2 Points)

Problem 2 (8 Points) Consider the function $f: [-1,3] \to \mathbb{R}, f(x) = x^3 - 3x^2 + 1$.

a) Find intervals of monotonicity of f. (2 Points)

b) Find all local and global extrema of f. (2 Points)

c) Find the equation of the tangential line at the points x = 0 and x = 1. (2 Points)

Problem 3 (6 Points) Find $\frac{dy}{dx}$ if

a)
$$y = \frac{e^{2x}}{e^{x^2}}$$
. (2 Points)

- b) $y = f(\sin^2 x) + f(\cos^2 x)$, where f is a differentiable function. (3 Points)
- c) Bonus question: Find $\frac{dy}{dx}$ if $y^5 + y^3 + y x = 1$ and calculate the value of $\frac{dy}{dx}$ when x = 0. (4 Bonus Points)

Problem 4 (5 Points) Find the following limits:

a)
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
. (2 Points)

b)
$$\lim_{x \to 0} \frac{\sin x - x \cos x}{\sin^3 x}.$$
 (2 Points)

Problem 5 (4 Points) Find the following integrals:

a)
$$\int_{0}^{1} \left(\frac{1}{\sqrt{x}} - \pi \sin(\pi x) \right) dx.$$
 (3 Points)

b)
$$\int x \ln^2 x \, dx$$
. (3 Points)