Analog Engineer's Circuit: Data Converters

ZHCA887-January 2019

适用于音频 DAC 的电流到电压转换器电路

Paul Frost

设计目标

DAC I _{OUT} 振幅	DAC I _{out} 共模电流	V _{out} 振幅
7.8mA _{P-P}	−6.2mA	2.1V _{RMS}

设计 说明

许多高性能音频数模转换器 (DAC) 具有电流输出,必须转换为电压输出才能与音频放大器配合使用。例如,在高端汽车音频 应用中,确保 DAC 信噪比 (SNR) 和总谐波失真加噪声 (THD+N) 性能不受电流-电压 (I-V) 输出级的影响至关重要。

设计说明

- 1. 电路的第一级通过向 DAC 的 OUTP 和 OUTN 节点提供虚拟接地电位将电流输出转换为电压输出。然后,从 DAC 流出的电流在反馈环路中的电阻器 R1 两端生成电压。请注意,电流输出音频 DAC 具有共模电流,可产生偏移以确保 DAC 始终提供电流。该共模电流还导致第一级的输出始终为负值。电路放大器的电源不需要是对称的。
- 2. 该电路的第二级是差分放大器,用于将第一级的差分电压转换为单端输出电压。

设计步骤

- 1. 根据应用需求来选择 DAC。考虑所需的 SNR、THD+N 和支持的 I2S 接口采样率。虽然大多数音频 DAC 支持 16kHz 至 192kHz 的采样率,但并非所有音频 DAC 都支持 384kHz 或 768kHz 等采样率。较高的采样率会导致噪声整形,从而使带外噪声进一步远离可闻范围,但并非所有音频源都能提供它们。另请注意,并非所有电流输出音频 DAC 都具有相同的振幅和共模电流。
- 2. 根据噪声和 THD 性能选择放大器。理想情况下,这些放大器不应该影响 DAC 的 SNR 性能。建议使用 JFET 或双极输入放大器,因为它具有低电压噪声。由于电路的电阻值较低,因此较高的电流噪声不是问 题。
- 3. 可以使用以下公式计算电路的增益。使用 R1 = 820 Ω 、R2 = 511 Ω 、R3 = 240 Ω ,输出电流约为 6V_{P-P} 或 2.1V_{PMS}。对于该电路,通过使第一级具有大增益并且第二级实际衰减信号来实现出色的噪声性能。

$$V_{OUT}(I_{IN}) = I_{IN} \times R1 \times \left(\frac{R3}{R2}\right)$$

4. 可以使用以下公式计算第一级的截止频率 (fc):

$$f_{C-FIRSTSTAGE} = \frac{1}{2 \times \pi \times R1 \times C1}$$

可以使用以下公式计算第二级的 fc:

$$f_{C-SECONDSTAGE} = \frac{1}{2 \times \pi \times R3 \times C2}$$

使用 C1 = 4.7nF 和 C2 = 10nF,第一级的 f_c 约为 44.2kHz,第二级的 f_c 约为 66.3kHz。

- 5. 用于滤波器的电容器应为 COG/NP0 型陶瓷电容器。COG/NP0 型电容器具有较低的电容电压系数,这意味着组件的电容值受器件两端电压偏置的影响较小。由于电容器是滤波器性能的关键,因此应避免在信号路径中使用其他类型的陶瓷电容器。
- 6. 建议针对电路中的电阻元件使用薄膜电阻器。所有电阻都具有取决于电阻和温度的电压噪声,这很好理解,如下面的第一个公式所示。但电阻还具有电流噪声,该噪声取决于电阻器两端的电压、频率和常数 C(取决于电阻器的构成材料),如下面的第二个公式所示:

 $S_T = 4kRT$

其中

- k 是玻尔兹曼常数
- R 是电阻
- T 是温度

 $S_E = (C \times U^2)/f$

其中

- C是源自电阻器材料的常数
- U 是电阻器两端的差分电压
- f 是频率

直流传输特性

仿真显示,7.8m A_{P-P} 差分输入电流导致大约 $6V_{P-P}$ 的输出或 $2.1V_{RMS}$ 。

滤波器特性

由两个放大器级生成的滤波器具有大约 32.1kHz 的 -3-dB 转角频率。这将衰减输出的带外噪声,同时不影响可闻范围(20Hz 至 22kHz)。

噪声仿真

以下仿真显示了在第一级中实现电路的大部分增益的好处。两条曲线由具有不同电阻器值但产生相同总增益的同一电路生成。绿线在第一级具有更高的增益,但总噪声更低。

www.ti.com.cn

设计参考资料

请参阅《模拟工程师电路说明书》,了解有关 TI 综合电路库的信息。

请参阅《高保真音频电路设计应用报告》。

下载该电路的配套仿真文件。

如需 TI 工程师的直接支持,请使用 E2E 社区

E2E 社区

设计中采用的器件

器件	主要 特性	链接	其他可能的器件
PCM1794A-Q1	24 位、192kHz 采样、高级分段、音频立体声数模转换器	http://www.ti.com.cn/product/cn/PCM1794A-Q1	德州仪器 (TI) 的音频 DAC
OPA1612	超低噪声、超低失真、高性能、双极输入音频运算放大器	http://www.ti.com.cn/product/cn/OPA1612	德州仪器 (TI) 的音频放大器

其他链接:

在我们的精密 DAC 学习中心了解有关如何使用精密 DAC 的更多信息。

了解 TI 的音频 DAC 产品系列并找到更多技术内容。

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn/上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司