Outline Introduction Searching the Space of Trick Candidates Taking Reward into Account Conclusion

Imitation & Reinforcement Learning in Virtually Embodied Agents Using Program Evolution

Nil Geisweiller

Novamente LLC

Xiamen University
AGI Summer School 2009

- Introduction
- Searching the Space of Trick Candidates
 - Overview
 - Accelerating Search
- Taking Reward into Account
- 4 Conclusion

Outline

- Introduction
- Searching the Space of Trick Candidates
 - Overview
 - Accelerating Search
- Taking Reward into Account
- Conclusion

Introduction

Imitation & Reinforcement Learning

A way to communicate procedural knowledge without programming or sophisticated NLP

Imitation Reinforcement Loop in Embodiment

• How to find rapidely a trick that fits?

Imitation Reinforcement Loop in Embodiment

- How to find rapidely a trick that fits?
- When to take reward into account to converge faster?

Outline

- Introduction
- Searching the Space of Trick Candidates
 - Overview
 - Accelerating Search
- Taking Reward into Account
- 4 Conclusion

Outline

- Introduction
- Searching the Space of Trick Candidates
 - Overview
 - Accelerating Search
- Taking Reward into Account
- Conclusion

Searching the Space of Trick Candidates: Recall

 Operational Agent Controller (OPC) provides the episodic memory of the learning session to HillClimbing (or MOSES)

Searching the Space of Trick Candidates: Recall

- Operational Agent Controller (OPC) provides the episodic memory of the learning session to HillClimbing (or MOSES)
- Which searches the program space to find one that fits (mimics avatar's behavior)

The pet replaies mentally the scene, but substitues the avatar to imitate by itself

Fitness Function

Measure how the program candidate's behavior fits the avatar's (compare their sequence of actions)

Operators involved to build program candidates

- sequential_and
- action_boolean_if
- action_action_if
- action_while
- boolean_while
- action_not
- logical_not
- random_object
- nearest_object

- Potential perceptions, near(obj_1 obj_2), is_moving(obj_3),
 etc.
- Potential actions, grab(obj_1), goto_obj(avatar_2),
 etc.

Operators involved to build program candidates

- sequential_and
- action_boolean_if
- action_action_if
- action_while
- boolean_while
- action_not
- logical_not
- random_object
- nearest_object

- Potential perceptions, near(obj_1 obj_2), is_moving(obj_3),
 etc.
- Potential actions, grab(obj_1), goto_obj(avatar_2),
 etc.

Example of Tricks in Combo

Fetch a random object

kicks 3 times, from the left leg if stick is near ball and from the right leg otherwise

Once on cue until the owner says "stop dancing"

HillClimbing Search Algo

The problem with hill climbing is that it gets stuck on "local-maxima"

HillClimbing + restart on the best non yet restarted candidate

Outline

- Introduction
- Searching the Space of Trick Candidates
 - Overview
 - Accelerating Search
- Taking Reward into Account
- 4 Conclusion

Reduction in normal form to avoid over representation

- Reduction in normal form to avoid over representation
- Filtering Perceptions, entropy threshold

- Reduction in normal form to avoid over representation
- Filtering Perceptions, entropy threshold
- Building-blocks of action sequences

- Reduction in normal form to avoid over representation
- Filtering Perceptions, entropy threshold
- Building-blocks of action sequences
- Setting carefully Occam's razor function

Filtering Perception, Entropy Threshold

$$c < -\sum_{i=1,2} p_i \times log_2(p_i)$$

Example, entropy of near (chair1 chair2) is null

Building-blocks of action sequences

Example with fetch:

```
and_seg(goto_obj(random_object)
           grab (nearest object)
           goto_obj(owner)
           drop)
and_seq(goto_obj(nearest_object)
           grab (nearest_object)
           goto obj(owner)
           drop)
and_seq(goto_obj(ball)
           grab (ball)
           goto_obj(owner)
           drop)
```

It may be faster to start from the sequence itself rather than an empty program.

Setting carefully Occam's razor function

 Problem, when the sequence is too long it easily generates over-complicated candidates

Setting carefully Occam's razor function

- Problem, when the sequence is too long it easily generates over-complicated candidates
- Solution, strong bias toward simple candidates first even if they fit less.

Setting carefully Occam's razor function

- Problem, when the sequence is too long it easily generates over-complicated candidates
- Solution, strong bias toward simple candidates first even if they fit less.
- Automatically tuning sizePenalty_{a,b} based on the past learning experiences

$$sizePenalty_{a,b}(p) = exp(-a \times log(b \times |A| + exp(1)) \times |p|)$$

Some benchmarks

Reduct	ActSeq	Entropy	Occam	Setting
On	Off	0.1	0.03	conf ₁
Off	Off	0.1	0.03	conf ₃
On	Off	0	0.03	conf ₄
On	Off	0.1	0.3	conf ₇
On	On	0.1	0.03	conf ₉
On	On	0.1	0.025	conf ₁₀

Table: Settings for each learning experiment

Setting	Evai	l ime
conf ₁	2783	21s47
conf ₃	15069	2mn15s
conf ₄	∞	∞
conf ₇	>200K	>1h
conf ₉	107	146ms
conf ₁₀	101	164ms

Table: triple_kick

Setting	Eval	Time
conf ₁	653	5s18
conf ₃	1073	8s42
conf ₄	28287	4mn7s
conf ₇	3121	23s42
conf ₉	89	410ms
conf ₁₀	33	161ms

Table: fetch_ball

Setting	Eval	Time
conf ₁	113	4s
conf ₃	150	6s20ms
conf ₄	>60K	>1h
conf ₇	113	4s
conf ₉	138	4s191ms
conf ₁₀	219K	56mn3s

Table: double_dance > 2

Example of Tricks in Combo

fetch_ball

triple_kick

double dance

Outline

- Introduction
- Searching the Space of Trick Candidates
 - Overview
 - Accelerating Search
- Taking Reward into Account
- 4 Conclusion

Taking Reward into Account to Converge Faster (Not implemented yet)

Taking Reward into Account to Converge Faster (Not implemented yet)

Main idea

Use the pet's trial as new exemplar weighted by owner's reward

- new episodes taken into account
- candidate to be compared to be similar to a good trials or dissimilar to a bad trials.

Outline

- Introduction
- Searching the Space of Trick Candidates
 - Overview
 - Accelerating Search
- Taking Reward into Account
- Conclusion

Pretty fast on simple tricks but...

What remains to be done:

 Improve Mental image of the scene to be more accurate (action consequence, collisions)

Pretty fast on simple tricks but...

- Improve Mental image of the scene to be more accurate (action consequence, collisions)
- Take into account that pet is not human (co-evolution)

Pretty fast on simple tricks but...

- Improve Mental image of the scene to be more accurate (action consequence, collisions)
- Take into account that pet is not human (co-evolution)
- Implement owner reward feedback for faster convergence

Pretty fast on simple tricks but...

- Improve Mental image of the scene to be more accurate (action consequence, collisions)
- Take into account that pet is not human (co-evolution)
- Implement owner reward feedback for faster convergence
- Improving Filters by using Attention Allocation

Pretty fast on simple tricks but...

- Improve Mental image of the scene to be more accurate (action consequence, collisions)
- Take into account that pet is not human (co-evolution)
- Implement owner reward feedback for faster convergence
- Improving Filters by using Attention Allocation
- Extend SizePenalty Bias to all parameters of the search algo (distribution priors, etc), Transfer Learning

