Übungsblatt 4

Aufgabe 10 (2.5+2.5). (Volumen von Rotationskörpern)

(i) Sei $f \colon [a,b] \to \mathbb{R}_{>0}$ eine stetige Funktion. Betrachten wir im \mathbb{R}^3 in der (x,z)-Ebene den Funktionsgraphen von x=f(z) und drehen diesen um die z-Achse. Dabei entsteht eine Rotationsfläche, vgl. Abbildung.

Diese schliesst zwischen den Ebenen z=a und z=b eine Menge $\Omega\subset\mathbb{R}^3$ ein. Geben Sie Ω in der Form $\{(x,y,z)\in\mathbb{R}^3\mid\ldots\}$ an und zeigen Sie, dass

$$\operatorname{vol}\Omega = \int_{a}^{b} \pi f(z)^{2} dz$$

ist.

Aufgabe 11. Sei $Q \subset \mathbb{R}^n$ ein Quader, $f: Q \to \mathbb{R}$ beschränkt und integrierbar und $g: Q \to \mathbb{R}$ stetig. Zeigen Sie, dass dann auch $fg: Q \to \mathbb{R}$ integrierbar ist.

Hinweis: Schätzen Sie $S^k(fg) - S_k(fg)$ ab unter Verwendung, dass g automatisch gleichmäßig stetig sein muss, da Q kompakt ist.

Aufgabe 12 (2.5+2.5).

- (i) $\Omega \subset \mathbb{R}^3$ ist das Innere, was durch die Menge $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$ beschränkt wird. Skizzieren Sie Ω und berechnen Sie das Volumen von Ω .
- (ii) Berechnen Sie $\int_{\Omega} z$ dvol für $\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1, z \ge 0\}.$