Propriétés de \mathbb{R} Corrigé

DARVOUX Théo

Septembre 2023

Exercices.

Exercice 2.1	 	 																1

Exercice 2.1 $[\Diamond \Diamond \Diamond]$

Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

On a:

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

$$\iff \frac{a^3 - a^2b + b^3 - ab^2}{ab} \ge 0$$

$$\iff \frac{a^2(a-b) + b^2(b-a)}{ab} \ge 0$$

$$\iff \frac{(a-b)(a^2 - b^2)}{ab} \ge 0$$

$$\iff \frac{(a-b)^2(a+b)}{ab} \ge 0$$

Or $(a-b)^2 \ge 0$, $(a+b) \ge 0$ et $ab \ge 0$.

Ainsi, cette inégalité est vraie pour tout $(a, b) \in \mathbb{R}_+^*$.

Exercice 2.2 $[\Diamond \Diamond \Diamond]$

1. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

$$\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$$

$$\iff a+b \le a + 2\sqrt{ab} + b$$

$$\iff 2\sqrt{ab} > 0$$

Ainsi, $\forall (a, b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \le \sqrt{a} + \sqrt{b}$.

2. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 |\sqrt{a} - \sqrt{b}| \leq \sqrt{|a-b|}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

Considérons $a \ge b$, alors |a - b| = a - b.

$$|\sqrt{a} - \sqrt{b}| \le \sqrt{a - b}$$

$$\iff a - 2\sqrt{ab} + b \le a - b$$

$$\iff 2b \le 2\sqrt{ab}$$

$$\iff b^2 < ab$$

Or a > b donc $ab > b^2$

Le raisonnement est symétrique lorsque $b \ge a$. Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 |\sqrt{a} - \sqrt{b}| \le \sqrt{|a-b|}$.