

MC78MXX/LM78MXX

3-Terminal 0.5A Positive Voltage Regulator

Features

- Output Current up to 0.5A
- Output Voltages of 5, 6, 8, 12, 15, 18, 24V
- · Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area (SOA)Protection

Description

The MC78MXX/LM78MXX series of three-terminal positive regulators are available in the TO-220/D-PAK package with several fixed output voltages making it useful in a wide range of applications.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V) (for V _O = 24V)	V _I V _I	35 40	V V
Thermal Resistance Junction-Case (Note1) TO-220 (Tc = +25°C)	R _θ JC	2.5	°C/W
Thermal Resistance Junction-Air (Note1, 2) TO-220 (Ta = +25°C) D-PAK (Ta = +25°C)	ReJA	66 92	°C/W
Operating Junction Temperature Range	TOPR	0 ~ +150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note:

- Thermal resistance test board Size: 76.2mm * 114.3mm * 1.6mm(1S0P) JEDEC standard: JESD51-3, JESD51-7
- 2. Assume no ambient airflow

Electrical Characteristics (MC78M05/LM78M05)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=10V, unless otherwise specified, CI = $0.33\mu F$, CO= $0.1\mu F$)

Parameter	Symbol	Con	Conditions		Тур.	Max.	Unit
		T _J = +25°C		4.8	5	5.2	
Output Voltage	Vo	IO = 5mA to 35 V _I = 7V to 20V	IO = 5mA to 350mA V _I = 7V to 20V		5	5.25	V
Line Regulation (Note3)	ΔVο	IO = 200mA	V _I = 7V to 25V	-	-	100	mV
Line Regulation (Notes)	ΔνΟ	TJ =+25°C	V _I = 8V to 25V	-	-	50	IIIV
Load Regulation (Note3)	ΔVο	IO = 5mA to 0.5	6A, TJ =+25°C	-	•	100	mV
Load (regulation (Notes)	ΔνΟ	I _O = 5mA to 20	0mA, T _J =+25 °C	-	-	50	IIIV
Quiescent Current	IQ	TJ =+25°C		-	4.0	6.0	mA
		I _O = 5mA to 350mA I _O = 200mA V _I = 8V to 25V		-	-	0.5	
Quiescent Current Change	ΔlQ			-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +125°C		-	-0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	kHz	-	40	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 8V to 18V, T _J =+25 °C		-	80	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ =+25°C, VI = 35V		-	300	-	mA
Peak Current	IPK	T _J =+25°C		-	700	-	mA

^{3.} Load and line regulation are specified at constant junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M06) (Continued)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI =11V, unless otherwise specified, CI=0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		5.75	6	6.25	
Output Voltage	Vo	IO = 5mA to 3 VI = 8V to 21		5.7	6	6.3	V
Line Regulation (Note1)	ΔVο	Io = 200mA	V _I = 8V to 25V	-	-	100	mV
Line Regulation (Note I)	ΔνΟ	$T_{J} = +25^{\circ}C$	V _I = 9V to 25V	-	-	50	IIIV
Load Regulation (Note1)	ΔVο	IO = 5mA to 0	0.5A, T _J = +25°C	-	-	120	mV
Load Regulation (Note 1)	ΔνΟ	$I_O = 5mA \text{ to } 2$	200mA, T _J = +25°C	-	-	60] ''''
Quiescent Current	IQ	TJ = +25°C		-	4.0	6.0	mA
		IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change	ΔlQ	I _O = 200mA V _I = 9V to 25V		-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	5°C	-	-0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10	00kHz	-	45	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 9V to 19V, T _J =+25 °C		-	80	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = 35V		-	300	-	mA
Peak Current	IPK	TJ =+25°C		-	700	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M08) (Continued)

(Refer to the test circuits, $0 \le T_J \le +125^{\circ}C$, $I_O=350mA$, $V_I=14V$, unless otherwise specified, $C_I=0.33\mu F$, $C_O=0.1\mu F$)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J =+25°C		7.7	8	8.3	
Output Voltage	Vo	IO = 5mA to 350 $V_I = 10.5V \text{ to } 23$		7.6	8	8.4	V
Line Regulation (Note1)	ΔVο	IO = 200mA	V _I = 10.5V to 25V	-	-	100	mV
Line Negulation (Note I)	ΔνΟ	TJ =+25°C	V _I = 11V to 25V	-	-	50	IIIV
Load Regulation (Note1)	ΔVο	IO = 5mA to 0.5	A, TJ =+25°C	-	-	160	mV
Load Regulation (Note 1)	ΔνΟ	IO = 5mA to 200	OmA, TJ =+25°C	-	-	80	- mv
Quiescent Current	IQ	T _J = +25°C		-	4.0	6.0	mA
		IO = 5mA to 350	OmA	-	-	0.5	
Quiescent Current Change	ΔlQ	I _O = 200mA V _I = 10.5V to 25V		-	-	0.8	mA
Output Voltage Drift	RR	IO = 5mA T _J = 0 to +125°C		-	-0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	kHz	-	52	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 11.5V to 21.5V, T _J =+25 °C		-	80	-	dB
Dropout Voltage	VD	T _J = +25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = 35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	700	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M12) (Continued)

(Refer to the test circuits, $0 \le T_J \le +125$ °C, IO=350mA, VI=19V, unless otherwise specified, CI =0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		11.5	12	12.5	
Output Voltage	Vo	IO = 5mA to 35 V _I = 14.5V to 2	-	11.4	12	12.6	V
Line Population (Note1)	ΔVο	IO = 200mA	V _I = 14.5V to 30V	-	-	100	mV
Line Regulation (Note1)	ΔνΟ	T _J = +25°C	V _I = 16V to 30V	-	-	50	IIIV
Load Population (Note1)	ΔVο	IO = 5mA to 0.5	5A, TJ = +25°C	-	-	240	m\/
Load Regulation (Note1)	ΔνΟ	I _O = 5mA to 20	0mA, T _J = +25°C	-	-	120	mV
Quiescent Current	IQ	TJ =+25°C		-	4.1	6.0	mA
	ΔIQ IC	I _O = 5mA to 350mA I _O = 200mA V _I = 14.5V to 30V		-	-	0.5	
Quiescent Current Change				-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +125°C		-	-0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	kHz	-	75	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 15V to 25V, T _J =+25 °C		-	80	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = 35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	700	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M15) (Continued)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=23V, unless otherwise specified, CI =0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit		
		$T_J = +25^{\circ}C$		T _J = +25°C		14.4	15	15.6	
Output Voltage	Vo	IO = 5mA to 3 V _I = 17.5V to		14.25	15	15.75	V		
Line Regulation (Note1)	ΔVο	IO = 200mA	V _I = 17.5V to 30V	-	•	100	mV		
Line Regulation (Note I)	ΔνΟ	T _J =+25°C	V _I = 20V to 30V	-	-	50	IIIV		
Load Population (Note1)	ΔVο	IO = 5mA to 0	0.5A, TJ =+25°C	-	-	300	mV		
Load Regulation (Note1)	ΔνΟ	$I_O = 5mA \text{ to } 2$	200mA, TJ =+25°C	-	-	150	IIIV		
Quiescent Current	IQ	TJ = +25°C		-	4.1	6.0	mA		
		I _O = 5mA to 350mA		-	-	0.5			
Quiescent Current Change	ΔlQ	I _O = 200mA V _I = 17.5V to	30V	-	-	0.8	mA		
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	25°C	-	-1	-	mV/°C		
Output Noise Voltage	VN	f = 10Hz to 1	00kHz	-	100	-	μV/Vo		
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 18.5V to 28.5V, T _J =+25 °C		-	70	-	dB		
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V		
Short Circuit Current	Isc	TJ = +25°C, VI = 35V		-	300	-	mA		
Peak Current	IPK	T _J = +25°C		-	700	-	mA		

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M18) (Continued)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=26V, unless otherwise specified, CI =0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		17.3	18	18.7	
Output Voltage	Vo	IO = 5mA to 350 VI = 20.5V to 33		17.1	18	18.9	V
Line Regulation (Note1)	ΔVο	Io = 200mA	V _I = 21V to 33V	-	-	100	mV
Line Regulation (Note1)	ΔνΟ	T _J = +25°C	V _I = 24V to 33V	-	-	50	IIIV
Load Population (Note1)	ΔVΟ	IO = 5mA to 0.5	A, TJ = +25°C	-	-	360	mV
Load Regulation (Note1)	ΔνΟ	I _O = 5mA to 200	OmA, T _J = +25°C	-	-	180	
Quiescent Current	lQ	TJ = +25°C		-	4.2	6.0	mA
		I _O = 5mA to 350mA I _O = 200mA V _I = 21V to 33V		-	-	0.5	
Quiescent Current Change	ΔlQ			-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mATJ = 0	to 125°C	-	-1.1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	kHz	-	100	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, IO= 300mA , VI = 22V to 32V TJ =+25 $^{\circ}\text{C}$		-	70	-	dB
Dropout Voltage	VD	TJ = +25°C, IO = 500mA		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = 35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	700	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M24) (Continued)

(Refer to the test circuits, $0 \le T_J \le +125$ °C, IO=350mA, VI=33V, unless otherwise specified, CI =0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J =+25°C	T _J =+25°C		24	25	
Output Voltage	Vo	IO = 5mA to VI = 27V to 3		22.8	24	25.2	V
Line Regulation (Note1)	41/0	Io = 200mA	V _I = 27V to 38V	-	-	100	mV
Line Regulation (Note1)	ΔVΟ	T _J =+25°C	V _I = 28V to 38V	-	-	50	IIIV
Load Regulation (Note1)	41/0	IO = 5mA to	0.5A, TJ =+25°C	-	-	480	mV
Load Regulation (Note1)	ΔVο	Io = 5mA to	200mA, T _J =+25°C	-	-	240	IIIV
Quiescent Current	IQ	T _J = +25°C		-	4.2	6.0	mA
		I _O = 5mA to 350mA		-	-	0.5	
Quiescent Current Change	ΔlQ	I _O = 200mA V _I = 27V to 38V		-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +125°C		-	-1.2	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 1	00kHz	-	170	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 28V to 38V, T _J =+25 °C		-	70	-	dB
Dropout Voltage	VD	T _J = +25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = 35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		•	700	-	mA

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Applications

Figure 1. Fixed Output Regulator

Figure 2. Constant Current Regulator

- 1. To specify an output voltage, substitute voltage value for "XX"
- 2. Although no output capacitor is needed for stability, it does improve transient response.
- 3. C_I is required if regulator is located an appreciable distance from power Supply filter

Figure 3. Circuit for Increasing Output Voltage

Figure 4. Adjustable Output Regulator (7 to 30V)

Figure 5. 0.5 to 10V Regulator

Mechanical Dimensions

Package

Dimensions in millimeters

TO-220

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

Ordering Information

Product Number	Package	Operating Temperature
LM78M05CT	TO-220	0 ~ +125°C
Product Number	Package	Operating Temperature
MC78M05CT		
MC78M06CT		
MC78M08CT		
MC78M12CT	TO-220	
MC78M15CT		
MC78M18CT		0 ~ +125°C
MC78M24CT		
MC78M05CDT		
MC78M06CDT	D-PAK	
MC78M08CDT	D-PAK	
MC78M12CDT		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com