List of Publications of Dr R Jeyapaul

Year: 2014-2019 Source: Scopus

S.							Page	Page
No.	Authors	Title	Year	Source title	Volume	Issue	start	end
1	Sakthi Nagaraj,							
	T., Jeyapaul, R.,	Evaluation of ergonomic working						
	Mathiyazhagan,	conditions among standing sewing		International Journal of				
	K.	machine operators in Sri Lanka	2019	Industrial Ergonomics	70		70	83
2	Sakthi Nagaraj,							
	T., Jeyapaul, R.,	Integration of human factors and						
	Vimal, K.E.K.,	ergonomics into lean implementation:						
	Mathiyazhagan,	ergonomic-value stream map approach in		Production Planning	Article			
	K.	the textile industry	2019	and Control	in press			
3	Sivakumar, K.,			Journal of				
	Jeyapaul, R.,	A DEMATEL approach for evaluating		Manufacturing				
	Vimal, K.E.K.,	barriers for sustainable end-of-life		Technology				
	Ravi, P.	practices	2018	Management	29	6	1065	1091
4		Preparation of aluminium calcium oxide						
		composite material using stir casting		Comptes Rendus de				
	Mahendran, S.,	method and testing of its mechanical		L'Academie Bulgare des				
	Jeyapaul, R.	properties	2018	Sciences	71	10	1388	1393
5	Mahendran, S.,			International Journal of				
	Senthilkumar,	Analysis of lean manufacturing in an		Enterprise Network				
	A., Jeyapaul, R.	automobile industry – A case study	2018	Management	9	2	129	142
6				Proceedings of the				
				Institution of				
				Mechanical Engineers,				
	Maniraj, M.,	An ant colony optimization-based		Part B: Journal of				
	Pakkirisamy, V.,	approach for a single-product flow-line		Engineering				
	Jeyapaul, R.	reconfigurable manufacturing systems	2017	Manufacture	231	7	1229	1236
7	Jenarthanan,	Modelling of machining force in end		Australian Journal of				
	M.P., Kumar,	milling of GFRP composites using MRA and	2016	Mechanical Engineering	14	2	104	114

	S.R., Jeyapaul,	ANN						
	R.							
8		Modelling of an artificial neural network						
		for electrical discharge machining of hot						
	Sivasankar, S.,	pressed zirconium diboride-silicon carbide						
	Jeyapaul, R.	composites	2016	Transactions of Famena	40	3	67	80
9	Selvarajan, L.,							
	Sathiya	Optimization of EDM process parameters		Measurement: Journal				
	Narayanan, C.,	in machining Si3N4-TiN conductive ceramic		of the International				
	Jeyapaul, R.,	composites to improve form and		Measurement				
	Manohar, M.	orientation tolerances	2016	Confederation	92		114	129
10	Jenarthanan,	Experimental investigation of						
	M.P., Ram	machinability characteristics in Al-TiB2		Multidiscipline				
	Prakash, A.,	metal matrix composite (MMC) based on		Modeling in Materials				
	Jeyapaul, R.	the Taguchi method with fuzzy logics	2016	and Structures	12	1	177	193
11	Selvarajan, L.,	Optimization of EDM Parameters on						
	Narayanan,	Machining Si 3N 4-TiN Composite for		Materials and				
	C.S., Jeyapaul,	Improving Circularity, Cylindricity, and		Manufacturing				
	R.	Perpendicularity	2016	Processes	31	4	405	412
12	Jenarthanan,							
	M.P.,	Comparative analysis of surface roughness						
	Subramanian,	prediction using DOE and ANN techniques						
	A.A., Jeyapaul,	during endmilling of glass fibre reinforced		Pigment and Resin				
	R.	polymer (GFRP) composites	2016	Technology	45	2	126	139
13	Jenarthanan,	Experimental investigation and analysis of						
	M.P., Prakash,	factors influencing delamination and						
	A.L., Jeyapaul,	surface roughness of hybrid GFRP		Pigment and Resin				
	R.	laminates using Taguchi technique	2016	Technology	45	6	463	475
14	Jenarthanan,							
	M.P., Prakash,	Experimental investigation and analysis of						
	A.L., Jeyapaul,	machinability behaviour of hybrid GFRP		Pigment and Resin				
	R.	composites during end milling	2016	Technology	45	3	206	214
	Sivasankar, S.,	Characterization of ZrB2-SiC composites		Transactions of the				
	Jeyapaul, R.	with an analytical study on material	2016	Canadian Society for	40	3	331	349

		removal rate and tool wear rate during		Mechanical Engineering		T		
		electrical discharge machining						
15	Jenarthanan,	3 5						
	M.P., Prakash,	Mathematical modeling of delamination						
	A.L., Jeyapaul,	factor on end milling of hybrid GFRP		Pigment and Resin				
	R.	composites through RSM	2016	Technology	45	5	371	379
16	Selvarajan, L.,			Ū.				
	Sathiya	Optimization of process parameters to		Materials and				
	Narayanan, C.,	improve form and orientation tolerances		Manufacturing				
	Jeyapaul, R.	in EDM of MoSi2-SiC composites	2015	Processes	30	8	954	960
17	Selvarajan, L.,	Optimization of EDM Hole Drilling						
	Narayanan,	Parameters in Machining of MoSi2-SiC						
	C.S., Jeyapaul,	Intermetallic/Composites for Improving		Journal of Advanced				
	R.	Geometrical Tolerances	2015	Manufacturing Systems	14	4	259	272
18	Jenarthanan,	Modeling and analysis of process						
	M.P., Prakash,	parameters on metal removal rate (MRR)		Multidiscipline				
	A.R., Jeyapaul,	in machining of aluminium titanium		Modeling in Materials				
	R.	diboride (Al-TiB2composite	2015	and Structures	11	3	372	385
19	Jenarthanan,	Analysis and optimisation of machinability						
	M.P., Jeyapaul,	behaviour of CFRP composites using fuzzy		Pigment and Resin				
	R.	logic	2015	Technology	44	1	48	55
20		Multi objective optimization in turning of						
	Singarvel, B.,	EN25 steel using taguchi based utility						
	Selvaraj, T.,	concept coupled with principal component						
	Jeyapaul, R.	analysis	2014	Procedia Engineering	97		158	165
21	Selvarajan, L.,							
	Sathiya	Optimization of machining characteristics						
	Narayanan, C.,	in EDM of Si3N4-TiN composites by		Applied Mechanics and	592-			
	Jeyapaul, R.	Taguchi grey relational analysis	2014	Materials	594		600	604
22	Selvarajan, L.,							
	Sathiya	Multi-objective optimization on electric						
	Narayanan, C.,	discharge machining using by grey		Applied Mechanics and	592-			
	Jeyapaul, R.	relational analysis	2014	Materials	594		550	554
23	Jenarthanan,	Machinability study of carbon fibre	2014	Pigment and Resin	43	1	35	44

	M.P., Jeyapaul,	reinforced polymer (CFRP) composites		Technology				
	R.	using design of experiment technique						
24	Manohar, M.,							
	Selvaraj, T.,	Application of experimental design and						
	Sivakumar, D.,	analysis of mathematical models for						
	Jeyapaul, R.,	turning inconel 718 using coated carbide		Experimental				
	Jomy, J.	tools	2014	Techniques	38	6	61	71