CS6135 VLSI Physical Design Automation

Homework 5: Placement Legalization

112062682 張宇越

1. How to compile and execute my program:

• Compile:

Enter HW5/src/ and make, it'll generate the executable file to HW5/bin/ \$ cd HW5/src/

\$ make

• Execute:

\$ cd HW5/bin/

\$./hw5 <testcase file> <output file>

E.g.

\$./hw5 ../testcase/public1.txt ../output/public1.out

2. The screenshot of the result of running the HW5_grading.sh:

```
[g112062682@ic21 ~/HW5 grading]$ ./HW5 grading.sh
    This script is used for PDA HW5 grading.
host name: ic21
compiler version: g++ (GCC) 7.3.0
grading on 112062682:
checking item
                          status
correct tar.gz
                          yes
correct file structure
                        yes
have README
                         yes
have Makefile
                        | yes
                        yes
correct make clean
correct make
                        yes
 testcase | total disp. | max disp. |
                                         runtime | status
  public1 |
               8350243
                                2944 I
                                             0.10
  public2 |
               35023268
                                5281 j
                                             0.40
                                                    success
                                            0.19
  public3 |
               47551034
                                4809
                                                    success
   public4 |
                4672689
                                 346
                                             0.82
                                                    success
   public5 |
                8039563
                                 151
                                             1.89
                                                    success
    Successfully write grades to HW5 grade.csv
```

3. The details of your implementation and different with the ISPD-08 paper:

(1) readInput():

依 testcase 分段讀取 maxDisplacement、cells、blockages、rows;同時把 Row 初始化成單一 subRow。

(2) sliceRows():

- 先對 blockages 依 X 排序,降低重疊判斷成本。
- 對每顆 blockage,若其 Y 區間與某 Row 有交集,呼叫 Row::slice() 把該 Row 的 subRows 横向切割;未重疊的部分保留原 subRow。
- slice()內部會依四種相對位置(完全左/完全右/完全覆蓋/中間切割)調整或插入新的 subRow。

(3) abacus():

- 先將所有 cell 按原始 X 座標排序。
- 對單一 cell:

1. 選 Row:

getRowIdx() 找 Y 位移最近的 Row 作為起始;再往上/下展開。

2. 選 subRow:

getSubRowIdx() 掃描可容納的 subRows,以"額外水平位移最小"為關鍵指標。

3. placeRowTrial():

- 若新 cell 放在 lastCluster 右邊且不接觸,就把它獨立 成一個新 cluster。
- cell 和 lastCluster 發生重疊:先把 cell 合入 lastCluster,取得更新後的 clusterX;若新位置仍壓到 左側的 cluster,就沿鏈結向左持續 collapse。

• Penalty Check:

若 addPenalty == true,自右向左走訪剛才合併的 cluster 鏈,將每顆 cell 先對齊 site 再估算位移。只要有任何 cell 超過 maxDisplacement,此 subRow 直接宣告失敗。

• 雙階段搜尋:

第一輪(addPenalty = true),先嘗試在**位移受限** 的情況下找到合法 subRow。若第一輪全部失敗,才放寬最大位移限制再搜一次(addPenalty = false),確保演算法最終一定能為 cell 安排位置。

4. placeRowFinal():

真正修改 subRow / Cluster 狀態並更新 freeWidth。

collapse 時以 while loop 反覆將左側 cluster 併入直到不再重疊。

• determinePosition():

沿 subRow 由左往右走訪 Cluster,將 Cluster 起點傳遞給群內 cell;並以 alignToSite() 對齊到 site 網格。

(4) writeOutput():

計算 cell 的總位移和最大位移及座標,輸出結果。

(5) Different:

由於原論文未將固定元件(即 blockage)納入考量,因此必須先把每條 row 切分成多個 subRow。對於每一條 row,先檢查是否被 blockage 占據;若有,就把該 row 切成多個 subRow。重複此流程,直到所有 row 皆完成檢查。

4. How did you handle the row if it is divided by the blockage:

- (1) 每一塊 blockage 的左右邊界(先各自做一次 site 對齊:左邊 floor, 右邊 ceil),得到一段 [blkL, blkR)。
- (2) 走訪目前 row 裡的每一段 subRow ([minX, maxX)),依照它跟 [blkL, blkR) 的相對位置,決定要**原封不動保留**或**直接整段砍掉或把原 subRow 切成兩段(左、右)並更新它們的 minX / maxX**,切完後,subRows 陣列就只剩「真正可放置的連續區段」。

5. What methods did you use to handle the max displacement constraint:

第一輪 (addPenalty = true)

 嚴格檢查位移;只要任何候選 subRow 使 cell 位移超過 maxDisplacement 就視為失敗。

第二輪 (addPenalty = false)

- 只有 第一輪完全找不到合法位置時才執行。
- 關閉位移限制以保證演算法總能放置所有 cell;同時仍採用「距離優先」的花費函式,盡可能保持位移最小化。

6. What tricks did you do to speed up your program or to enhance your solution quality?

我用來降低執行時間的訣竅,是直接挑選距離最近的 subRow,而不是把所有

subRow 都搜尋一遍。如此一來,總運行時間會更短。

7. What have you learned from this homework? What problem(s) have you encountered in this homework?

為了滿足 maxDisplacement,又要保證能放進所有 Cell,我實作了「嚴→鬆」的雙階段搜尋;這讓我第一次感受到演算法正確性與工程穩健性之間的折衷。一開始 collapse 時只更新最右 cluster,忘記同步調整左側鏈結,導致下一顆 cell 進來後陷入無限合併迴圈。