DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014 Solutions of Tutorial Sheet: LA - 2

1. Examine whether the following sets are subspaces of \mathbb{R}^n $(n \geq 3)$.

$$S_1 = \{ [x_1, \dots, x_n]^t \in \mathbb{R}^n : x_1 + x_2 = 4x_3 \}, \quad S_2 = \{ [x_1, \dots, x_n]^t \in \mathbb{R}^n : x_1 + x_2 \le 4x_3 \},$$

$$S_3 = \{ [x_1, \dots, x_n]^t \in \mathbb{R}^n : x_1 = 1 + x_2 \} \text{ and } S_4 = \{ [x_1, \dots, x_n]^t \in \mathbb{R}^n : x_1 x_2 = 0 \}.$$

Remark: If a set S is a subspace then show that the rules

Rule 1: $0 \in S$ (to claim that $S \neq \emptyset$);

Rule 2: $\alpha \mathbf{u} + \beta \mathbf{v} \in S$ for every $\mathbf{u}, \mathbf{v} \in S$ and $\alpha, \beta \in \mathbb{R}$.

are satisfied. If S is **not** a subspace then show that either $\mathbf{0} \notin S$ **or** show, by a counter-example, that **Rule 2** is not satisfied.

Solution: Clearly $\mathbf{0} \in S_1$ and hence $S_1 \neq \emptyset$. (This is an important step.) Let $\mathbf{u} = [x_1, \dots, x_n]^t$, $\mathbf{v} = [y_1, \dots, y_n]^t \in S_1$ and $a, b \in \mathbb{R}$. Then we have $x_1 + x_2 = 4x_3$ and $y_1 + y_2 = 4y_3$. Now

$$a\mathbf{u} + b\mathbf{v} = [ax_1 + by_1, ax_2 + by_2, ax_3 + by_3, \dots, ax_n + by_n]^t.$$

We have $(ax_1 + by_1) + (ax_2 + by_2) = a(x_1 + x_2) + b(y_1 + y_2) = 4(ax_3 + by_3)$. Hence $a\mathbf{u} + b\mathbf{v} \in S_1$ for any $\mathbf{u}, \mathbf{v} \in S_1$ and $a, b \in \mathbb{R}$, and therefore S_1 is a subspace of \mathbb{R}^n .

We have $\mathbf{u} = [1, 1, 1, \dots, 1]^t \in S_2$ but $-\mathbf{u} \notin S_2$ since -1 - 1 > -4. Hence S_2 is not a subspace of \mathbb{R}^n .

We see that $\mathbf{0} \notin S_3$. Hence S_3 is not a subspace of \mathbb{R}^n .

We see that $\mathbf{e}_1 = [1, 0, 0, \dots, 0]^t$, $\mathbf{e}_2 = [0, 1, 0, \dots, 0]^t \in S_4$. However, $1\mathbf{e}_1 + 1\mathbf{e}_2 = \mathbf{e}_1 + \mathbf{e}_2 \notin S_4$. Hence S_4 is not a subspace of \mathbb{R}^n .

2. Find all the subspaces of \mathbb{R}^2 .

Solution: Clearly, $\{\mathbf{0}\}$ is a subspace of \mathbb{R}^2 . Let $S \neq \{\mathbf{0}\}$ be another subspace of \mathbb{R}^2 . Then there exists $\mathbf{u} = [u_1, u_2]^t \in S$ such that $\mathbf{u} \neq \mathbf{0}$. Notice that $\{\alpha \mathbf{u} : \alpha \in \mathbb{R}\} = \operatorname{span}(\mathbf{u}) \subseteq S$. Now either $\operatorname{span}(\mathbf{u}) = S$ or $\operatorname{span}(\mathbf{u}) \subseteq S$. In the first case, S is the straight line in \mathbb{R}^2 passing through the origin and \mathbf{u} .

If $\operatorname{span}(\mathbf{u}) \subsetneq S$, then there exists $\mathbf{v} = [v_1, v_2]^t \in S \setminus \operatorname{span}(\mathbf{u})$, and therefore $\mathbf{v} \neq s\mathbf{u}$ for any $s \in \mathbb{R}$. Thus the set $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, that is, the rank of the matrix $A = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix}$ is 2. Therefore for any $\mathbf{b} = [b_1, b_2]^t \in \mathbb{R}^2$, we have $\operatorname{rank}(A) = \operatorname{rank}([A \mid \mathbf{b}])$, and hence the system $A\mathbf{x} = \mathbf{b}$ will have a solution $\mathbf{w} = [\alpha, \beta]^t$. Thus $A\mathbf{w} = \mathbf{b}$, which implies that $\mathbf{b} = \alpha\mathbf{u} + \beta\mathbf{v}$. Thus $\mathbb{R}^2 = \operatorname{span}(\mathbf{u}, \mathbf{v}) \subseteq S$, and hence $\mathbb{R}^2 = S$.

Thus the subspaces of \mathbb{R}^2 are $\{0\}$, \mathbb{R}^2 and the straight lines passing through the origin.

3. Show that $W = \{[x, y, z, w]^t \in \mathbb{R}^4 : w - z = y - x\}$ is a subspace of \mathbb{R}^4 , spanned by the vectors $[1, 0, 0, -1]^t$, $[0, 1, 0, 1]^t$ and $[0, 0, 1, 1]^t$. Also, determine dim W.

Solution: We have

$$\begin{split} W &= \{ [x,y,z,w]^t \in \mathbb{R}^4 : w-z = y-x \} \\ &= \{ [x,y,z,y-x+z]^t : x,y,z \in \mathbb{R} \} \\ &= \{ x [1,0,0,-1]^t + y [0,1,0,1]^t + z [0,0,1,1]^t : x,y,z \in \mathbb{R} \} \\ &= \mathrm{span}([1,0,0,-1]^t,[0,1,0,1]^t,[0,0,1,1]^t). \end{split}$$

Thus W is a subspace of \mathbb{R}^4 , spanned by $[1, 0, 0, -1]^t$, $[0, 1, 0, 1]^t$ and $[0, 0, 1, 1]^t$.

Now $a[1,0,0,-1]^t + b[0,1,0,1]^t + c[0,0,1,1]^t = [0,0,0,0]^t \Rightarrow a = b = c = 0.$

Thus the set $\{[1,0,0,-1]^t,[0,1,0,1]^t,[0,0,1,1]^t\}$ is linearly independent. Hence $\{[1,0,0,-1]^t,[0,1,0,1]^t,[0,0,1,1]^t\}$ is a basis for W and consequently dim W=3.

4. Find three vectors in \mathbb{R}^3 which are linearly dependent but any two of them are linearly independent.

Solution: The idea is to take three vectors corresponding to three distinct straight lines through origin where all of them lie on the same plane. For example, take $\mathbf{u} = [1, 0, 0]^t$, $\mathbf{v} = [0, 1, 0]^t$ and $\mathbf{w} = [1, 1, 0]^t$.

5. Let $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$, where $\mathbf{x}_1 = [1, 0, 0, 0]^t, \mathbf{x}_2 = [1, 1, 0, 0]^t, \mathbf{x}_3 = [1, 2, 0, 0]^t$ and $\mathbf{x}_4 = [1, 1, 1, 0]^t$. Determine all $\mathbf{x}_i \in S$ such that $\text{span}(S) = \text{span}(S \setminus \{\mathbf{x}_i\})$.

Solution: It is easy to observe that $\mathbf{x}_1 = 2\mathbf{x}_2 - \mathbf{x}_3$. Thus $\mathbf{x}_2 = \frac{1}{2}\mathbf{x}_1 + \frac{1}{2}\mathbf{x}_3$ and $\mathbf{x}_3 = 2\mathbf{x}_2 - \mathbf{x}_1$. Hence $\operatorname{span}(S) = \operatorname{span}(S \setminus \{\mathbf{x}_i\})$ for i = 1, 2, 3.

However, $\mathbf{x}_4 = a\mathbf{x}_1 + b\mathbf{x}_2 + c\mathbf{x}_3 \Rightarrow a + b + c = 1, b + 2c = 1, 0 = 1$, which is absurd. Hence $\operatorname{span}(S) \neq \operatorname{span}(S \setminus \{\mathbf{x}_4\})$.

- 6. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be linearly dependent vectors in \mathbb{R}^n and let $\mathbf{v}, \mathbf{w}, \mathbf{x}$ be linearly independent vectors in \mathbb{R}^n , where $n \geq 3$. Show that (i) \mathbf{u} is a linear combination of \mathbf{v} and \mathbf{w} , and (ii) \mathbf{x} is not a linear combination of \mathbf{u}, \mathbf{v} , and \mathbf{w} .
 - **Solution:** (i) Since $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent, there exist $a, b, c \in \mathbb{R}$, not all zero, such that $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$. Now if a = 0, then we have $b\mathbf{v} + c\mathbf{w} = \mathbf{0}$, where $(b, c) \neq (0, 0)$. Therefore $b\mathbf{v} + c\mathbf{w} + 0\mathbf{x} = \mathbf{0}$, where $(b, c) \neq (0, 0)$. This implies that $\mathbf{v}, \mathbf{w}, \mathbf{x}$ are linearly dependent, a contradiction. Thus $a \neq 0$, and therefore $\mathbf{u} = \left(-\frac{b}{a}\right)\mathbf{v} + \left(-\frac{c}{a}\right)\mathbf{w}$.
 - (ii) Let, if possible, $\mathbf{x} = \alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$. In **Part** (i), we have got that \mathbf{u} is a linear combination of \mathbf{v} and \mathbf{w} . Therefore $\mathbf{x} = \alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}$ gives that \mathbf{x} is a linear combination of \mathbf{v} and \mathbf{w} . This implies that the vectors $\mathbf{v}, \mathbf{w}, \mathbf{x}$ are linearly dependent, a contradiction. Hence \mathbf{x} is not a linear combination of \mathbf{u}, \mathbf{v} , and \mathbf{w} .
- 7. Let $M = \{[x, y, z]^t \in \mathbb{R}^3 : x + y + 4z = 0\}$ and $N = \{[x, y, z]^t \in \mathbb{R}^3 : x + y + z = 0\}$. Show that M and N are subspaces of \mathbb{R}^3 . Determine a basis for each of M, N, M + N and $M \cap N$. Also, interpret your result geometrically.

Solution: It is left to the students to show that M and N are subspaces of \mathbb{R}^3 .

For any $[x, y, z]^t \in M$, we have x = -y - 4z. Hence $[x, y, z]^t = [-y - 4z, y, z]^t = y[-1, 1, 0]^t + z[-4, 0, 1]^t$. Also, $\{[-1, 1, 0]^t, [-4, 0, 1]^t\}$ is linearly independent (**Check!**). Hence $\{[-1, 1, 0]^t, [-4, 0, 1]^t\}$ is a basis for M. Similarly, $\{[-1, 1, 0]^t, [-1, 0, 1]^t\}$ is a basis for N.

Since $[-1,0,1]^t \notin M$, we find that $\{[-1,0,1]^t, [-1,1,0]^t, [-4,0,1]^t\}$ is a linearly independent subset of M+N. Moreover, span($[-1,0,1]^t, [-1,1,0]^t, [-4,0,1]^t$) is a basis for M+N.

For any $[x, y, z]^t \in M \cap N$, we have x + y + 4z = 0, x + y + z = 0, that is, x + y = 0, z = 0. Hence $\{[-1, 1, 0]^t\}$ is a basis for $M \cap N$.

Geometric Interpretation: The subspaces M and N represent two planes in \mathbb{R}^3 (which are not parallel), each passing through the origin. The subspace $M \cap N$ is the straight line in \mathbb{R}^3 passing through the origin and $[-1,1,0]^t$.

The basis $\{[-1,0,1]^t, [-1,1,0]^t, [-4,0,1]^t\}$ is also a basis for \mathbb{R}^3 . Hence $M+N=\mathbb{R}^3$. Thus any point in \mathbb{R}^3 can be expressed as a sum of two points, one lying on the plane M and the other lying on the plane N.