# 概率论与数理统计

## 概率论与数理统计

概率统计是一门什么样的数学学科? 能用来研究解决哪些实际问题?

> 概率统计是研究解决<mark>随机问题</mark>的理 论基础和重要的数学工具.



### 随机问题:

### 保险问题:

某保险公司推出在校大学生意外伤害险,每位参保人投 保时要交付保费500元,出险时可获得3万元赔付;已知一 年中的出险率为0.15%,现有6000名新生欲参加保险.

问题:保险公司获利不少于20万元的概率是多大?















在校购买保险



### 随机问题:

体检报告单:



指标异常

问题: 如何确定各项指标的参考值范围?



### 随机问题:

### ■ 食堂窗口规划问题:

学校食堂每天中午都要为全校约10000名学生提供午餐。假设每个学生在窗口打饭的时间相互独立,都服从 $\lambda = 2$ 的指数分布。

**问题:** 至少需要开设多少个窗口才能保证所有学生以99%的 概率在30分钟内买完饭?





### 概率统计是研究解决随机问题的理论基础和重要的数学工具.

确定性现象: 在一定条件下必然发生的现象.

例如: 生老病死;花开花落;上抛的石子必然落下。

随机现象: 在个别试验中其结果呈现不确定性; 在大量试验

中其结果又具有统计规律性的现象.

例如: 抛硬币

每次抛掷硬币之前无法确定抛掷的结果;但大量重复抛掷,正反面朝上的次数几乎一样。

概率统计是研究随机现象中统计规律性的一门数学学科.



### 概率论与数理统计的区别与联系

概率论与数理统计是两个完全独立的数学学科,它们有着各自不同的研究对象:

概率论主要研究的是: 随机现象中事件发生的概率。

统计学主要研究的是:对实际问题中大量随机数据进行分析,整

理,从而对未知量进行统计推断和预测。

概率论是统计学的基础,统计学是概率论的应用。



#### 课程知识结构图 概率论与数理统计 基础 数理统计 概率论 应用 Ch1 Ch6 概率定义 随机变量 统计推断 抽样分布 -维情形 Ch2 Ch7 Ch8 参数估计 假设检验 Ch3 二维情形 Ch4 数字特征 期中考试:第11周周末,Ch1-Ch3 中心极限定理 Ch5



## 第一章随机事件与概率

第一节 随机试验 第二节 样本空间与随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性

教学计划: 3次课-9学时



## 第一章 随机事件与概率

第一节 随机试验 第二节 样本空间及随机事件

- 随机试验
  - 样本空间
  - ■随机事件
  - 随机事件的关系及其运算★



#### 一. 随机试验:

试验:为了研究随机现象,就要对客观事物进行观察,观察的过程称为试验。记为E。 Experiment

例:  $E_1$ : 掷一枚硬币,观察正面H、反面T出现的情况。

 $E_2$ : 将一枚硬币抛掷三次,观察正面H,反面T出现的情况。

 $E_3$ : 将一枚硬币抛掷三次,观察正面出现的次数

 $E_4$ : 抛一颗骰子,观察其出现的点数。

 $E_5$ : 记录120急救台一昼夜接到的呼叫次数。

 $E_6$ : 在一批灯泡中任意抽取一只,测试其寿命。



### 一. 随机试验:

### 随机试验:

具有以下三个特征的试验称为(随机)试验:

- (1) 试验可以在相同的条件下重复进行(可重复性)
- (2)每次试验的结果具有多种可能性,并且能事先明确试验的所有可能结果(结果的多样性)
- (3) 在每次试验之前不能确定哪一个结果可能会出现 (结果的不确定性)



随机试验: (2) 结果的多样性 (3) 结果的不确定性

 $\mathbf{M}$ :  $E_1$ : 掷一枚硬币,观察正面、反面出现的情况。

 $E_2$ : 将一枚硬币抛掷三次,观察正面H,反面T出现的情况。

 $E_3$ : 将一枚硬币抛掷三次,观察正面出现的次数

 $E_4$ : 抛一颗骰子,观察其出现的点数。

 $E_5$ : 记录120急救台一昼夜接到的呼叫次数。

 $E_6$ : 在一批灯泡中任意抽取一只,测试其寿命。



## 第一章 随机事件与概率

第一节 随机试验 第二节 样本空间及随机事件

- 随机试验
- **样**本空间
  - ■随机事件
  - 随机事件的关系及其运算



### 二. 样本空间

 $E_1$ : 掷一枚硬币观察H,T出现的情况。

 $E_2$ : 将硬币抛掷三次,观察H,T出现的情况。

样本空间: 试验E的所有可能结果组成的集合称为E的样本空间,记为S。

样本点: 样本空间的元素,即E的每一个结果称为样本点。

例1: 写出例  $E1 \sim E6$ 的样本空间S。

解: 
$$S_1 = \{H, T\}$$

$$S_{2} = \begin{cases} HHH, HHT, HTH, HTT, \\ THH, THT, TTH, TTT \end{cases}$$



 $E_3$ : 将硬币抛掷三次,观察H出现的次数。

 $S_1 = \{H, T\}$   $E_4$ : 掷一颗骰子,观察其出现的点数。

 $S_2 = \begin{cases} HHH, E_5: 记录急救台一昼夜接到的呼唤次数。 \\ THH, T E_6: 测试灯泡的寿命 \end{cases}$ 

$$S_3 = \{0,1,2,3\}$$

$$S_4 = \{1, 2, 3, 4, 5, 6\}$$

$$S_5 = \{0, 1, 2, 3, \dots 100, \dots\}$$
 可列无穷多个样本点

$$S_6 = \{t | T \ge t \ge 0\}$$
 不可列无穷多个样本点

- 注:  $\triangleright S_1$ --- $S_4$ 有有限个样本点, $S_5$ ,  $S_6$ 有无穷多个样本点。
  - ▶ 样本空间中的元素是由试验目的所确定的,不同的 试验目的,其样本空间是不一样的。

## 第一章 随机事件与概率

第一节 随机试验 第二节 样本空间及随机事件

- 随机试验
- 样本空间
- **随机事件** 
  - 随机事件的关系及其运算



### 三. 随机事件

**1. 随机事件:** 称试验 E 的样本空间S的子集为 E 的随机事件, 简称事件。记作A,B,C.....

2. 事件发生: 在一次试验中,当且仅当事件相应的子集中有一个 样本点出现时,则称该事件发生。

注: ▶事件是人为定义的。

▶ 事件是否发生要进行试验: 在一次试验中 若事件相应的 子集中有样本点出现,则称在这次试验

本点出现,则称事件没发生.



### 三. 随机事件

$$S_2 = \begin{cases} HHH, HHT, HTH, HTT, \\ THH, THT, TTH, TTT \end{cases}$$

- 1. **随机事件:** 称试验 E 的样本本空间S的子集为 E的随机事件, 简称事件。
- 2. 事件发生: 在一次试验中,当且仅当子集中有一个样本点出现时,则称该事件发生

例2: 在 $E_2$ 中,

事件 $A_1 = \{$  第一次出现的是 $H \} = \{HHH, HHT, HTH, HTT\}$ 在一次试验中,事件 $A_1$ 发生有4种可能的情况.

事件 $A_2$ ={三次出现同一面}={HHH,TTT} 在一次试验中,事件 $A_2$ 发生有2种可能的情况.



### 三. 随机事件

3. 基本事件: 由一个样本点组成的单点集称为基本事件。

**4. 必然事件:** 样本空间*S*包含所有的样本点,它是自身的子集, 在每次试验中必然发生, 称为必然事件。

**5. 不可能事件:** 空集 Ø 不包含任何样本点,在每次试验中都不会发生, 称为不可能事件。



例3. 用样本点描述以下事件:

(1) 10 件产品中有一件废品,从中任取两件产品,有一件废品。

**解**: 若将10件产品依次编号为1, 2, ....10, 并设第10号产品为 废品。



### 例3. 用样本点描述以下事件:

- **(1, 2)**
- **(2, 1)**

(2) 掷两颗骰子,点数之和小于5。

解:  $B = \{ 两颗骰子点数之和小于 5 \} = \{(i,j)|i+j<5 \}$  (i,j) 表示样本点,即两颗骰子掷出的点数

若将两颗骰子看作是不同的,分别叫做骰子A 和骰子B,

则本试验是可重复的排列问题。

样本点个数=36



$$B = \{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\}$$



## 第一章 随机事件与概率

第一节 随机试验 第二节 样本空间及随机事件

- 随机试验
- 样本空间
- ■随机事件
- 随机事件的关系及其运算★



### 四. 随机事件的关系及其运算

设试验 E 的样本空间为 S, 而 A, B,  $A_k$  ( $k = 1, 2, \cdots$ )是 S 的子集。

 $\longrightarrow$  事件A发生必导致事件B发生

注:  $\triangleright A \subset B$  的一个等价说法:

B不发生必然导致A也不发生。



### 2. 事件的和(并):

事件 $A \cup B = \{ x \mid x \in A \text{ 或 } x \in B \}$  称为事件A 与事件B 的和事件。

 $A \cup B$ 



事件 $A \cup B$  发生

 $\Leftrightarrow$  事件 A, B 至少有一个发生



事件  $A \cup B$  发生

 $\Leftrightarrow$  事件A, B 有且仅有一个发生

注:  $\rightarrow$  称  $\bigcup_{k=1}^{n} A_k$  为 n个事件  $A_1, \dots A_n$  的和事件

 $\rightarrow$  称  $\bigcup_{k=1}^{\infty} A_k$  为可列个事件  $A_1, A_2 \cdots$  的和事件



3. 事件的积(交): 事件 $A \cap B = \{x | x \in A \perp \exists x \in B\}$  称为事件A 与事件B 的积(交)事件。



事件  $A \cap B$  发生

 $\Leftrightarrow$  事件A与B 同时发生

注:  $\triangleright$  称  $\bigcap_{k=1}^{n} A_k$  为 n个事件  $A_1, A_2, \dots A_n$  的积事件

 $\rightarrow$  称  $\bigcap_{k=1}^{\infty} A_k$  为可列个事件  $A_1, A_2, \cdots$  的积事件



4. 事件的差: 事件 $A-B = \{x \mid x \in A \perp \exists x \notin B\}$  称为事件 $A = \{x \mid x \in A \perp \exists x \notin B\}$ 事件B的差事件。



A - B

事件A-B 发生

 $\Leftrightarrow$  事件A 发生而事件B不发生





5. **互不相容**: 若  $AB = \Phi$ , 则称事件A与事件B互不相容。

(互斥)事件:

 $\longrightarrow$  事件A与事件B不同时发生

讨论:

 $AB \neq \Phi$  **\*\*** 事件A与事件B同时发生



AB发生  $\iff$  事件A与事件B 同时发生  $\checkmark$ 



 $B = \overline{A}$  A 的对立事件记为:  $\overline{A} = S - A = B$ 

- 注:  $\triangle A\overline{A} = \Phi, A \cup \overline{A} = S, \overline{A} = S A, \overline{A} = A$ 
  - $\stackrel{-}{A}$  发生  $\longrightarrow$  A 不发生
  - ▲ 事件 A-B 发生
    - $\Leftrightarrow$  事件 A 发生而事件 B 不发生:  $A B = A\bar{B}$

### 对立与互斥的联系和区别:

- 2) A, B互斥  $\longrightarrow$  不能同时发生, 但可以都不发生
  - A, B对立  $\longrightarrow$  有且仅有一个发生, 即肯定有一个发生
- 3) 对立只适用于两个事件, 互斥适用于多个事件。









### 四. 随机事件的关系及其运算

### 随机事件的三种关系:

包含:  $A \subset B \longrightarrow A$ 发生必导致B发生

互斥:  $AB = \Phi \longrightarrow A \to B$ 不同时发生

对立:  $A \cup B = S, A \cap B = \Phi \longrightarrow A, B$ 中有且仅有一个发生

随机事件的三种运算:

和事件  $A \cup B$  发生  $\iff$  A, B 至少有一个发生  $AB \neq \Phi$ 

积事件 AB 发生  $\Leftrightarrow$  A 与 B 同时发生

差事件 A-B 发生  $\iff$  A 发生而 B 不发生

### 事件运算所满足的定律:

1. 交換律:  $A \cup B = B \cup A$ ,  $A \cap B = B \cap A$ 

2. 结合律:  $A \cup (B \cup C) = (A \cup B) \cup C$ 

$$A \cap (B \cap C) = (A \cap B) \cap C$$

3. 分配律:  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4. 对偶定律:  $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

德. 摩根律:







例4 随机试验E: 对某一目标接连进行两次射击,

记 
$$A_1 = \{$$
 第 1 次射击命中目标  $\}$   $A_2 = \{$  第 2 次射击命中目标  $\}$ 

试用事件的关系和运算表示下列各事件:

(1) 第i次射击未命中目标,i=1,2

解: 第1次射击未命中目标  $\overline{A_1}$  第2次射击未命中目标  $\overline{A_2}$ 

- (2)  $B_j = \{$ 两次射击恰好有j 次命中目标 $\} \ j = 0,1,2$   $B_0 = \overline{A_1} \overline{A_2}, \quad B_1 = A_1 \overline{A_2} \cup \overline{A_1} A_2, \quad B_2 = A_1 A_2$
- (3)  $C_k = \{$ 两次射击至少有k次命中目标 $\}$ , k = 1, 2  $C_1 = A_1 \cup A_2$ ,  $C_2 = A_1 A_2$

例5 在某城市中共发行三种报纸: A, B, C.

试用事件的关系和运算表示下列各事件:

- 1) 只订购报纸  $A = A \overline{B} \overline{C}$
- 2) 只订购报纸 A 与 B  $AB\overline{C}$



- 4) 正好订购两种报纸  $AB\overline{C} \cup A\overline{B}C \cup \overline{A}BC$
- 5) 至少订购一种报纸  $A \cup B \cup C$
- 6) 不订购任何一种报纸  $\overline{ABC} = \overline{A \cup B \cup C}$   $\overline{ABC}$  ×

解:设事件
$$A = \{$$
订购报纸 $A \}$   $\overline{A} = \{$ 不订购报纸 $A \}$ 

事件 $C = \{ 订购报纸<math>C \}$   $\overline{C} = \{ \overline{T} \in \mathcal{C} \}$ 





## 第一章 随机事件与概率

第一节 随机试验 第二节 样本空间及随机事件

- ✔ 随机试验
- ✔ 样本空间
- ✔ 随机事件
- ✔ 随机事件的关系及其运算★

要求

熟练运用事件的关系和运算表示给出的事件



## 第一章随机事件与概率

第一节 随机试验 第二节 样本空间与随机事件

第三节 频率与概率

第四节等可能概型(古典概型)

第五节 条件概率

第六节 独立性







希望知道它在一次试验中发生的可能性大小



事件A发生的概率——P(A)





频率



统计定义



公理化定义



概率的性质



## 第三节 频率与概率

- → 频率 概率的统计定义
  - 概率的公理化定义
  - 概率的性质



### 一. 频率 概率的统计定义

#### 1. 频率的定义:

在n次试验中,事件A发生的次数 $n_A$  称为事件A的频数,而比值 $\frac{n_A}{n}$ 称为事件A发生的频率。

记作: 
$$f_n(A) = \frac{n_A}{n}$$
 —— 在 $n$ 次试验中 $A$ 发生的频繁程度

直观结论:  $f_n(A)$  越大, P(A) 越大

问题: 能否用  $f_n(A)$  表示 P(A)





#### 2. 频率的性质:

(1) 
$$0 \le f_n(A) \le 1$$
 (非负性)  $f_n(A) = \frac{n_A}{n}$ 



(2) 
$$f_n(S) = 1$$
 (规范性)

(3) 若  $A_1, A_2, \cdots A_k$  是两两互斥的事件,则 (有限可加性)

$$f_n(A_1 \cup A_2 \cup \dots \cup A_k) = f_n(A_1) + f_n(A_2) + \dots + f_n(A_k)$$
有且仅有一个发生

### 3. 频率的稳定性:

在不变的条件下, 重复进行 n 次试验, 事件A 发生的频率  $f_n(A)$  将稳定地在某一常数 p 附近摆动, 并且 n 越大, 摆动幅度越小, 则称常数 p 为频率的稳定值。(Ch5-大数定律)



**例1:** 抛硬币 设 $A = \{$ 出现正面 $\}$ 

| 序 | n=5     |          | n = 50                     |          | n = 500    |          |
|---|---------|----------|----------------------------|----------|------------|----------|
| 号 | $n_{A}$ | $f_n(A)$ | $n_{\scriptscriptstyle A}$ | $f_n(A)$ | $n_A$      | $f_n(A)$ |
| 1 | 2       | 0.4      | 22                         | 0.44     | 251        | 0.502    |
| 2 | 3       | 0.6      | 25                         | 0.50     | 249        | 0.498    |
| 3 | 1       | 0.2      | 21                         | 0.42     | 256        | 0.512    |
| 4 | 5       | 1.0      | 25                         | 0.50     | <b>253</b> | 0.506    |
| 5 | 1       | 0.2      | 24                         | 0.48     | 251        | 0.502    |
| 6 | 2       | 0.4      | 21                         | 0.42     | 246        | 0.492    |
| 7 | 4       | 8.0      | 18                         | 0.36     | 244        | 0.488    |
| 8 | 2       | 0.4      | 24                         | 0.48     | 258        | 0.516    |
| 9 | 3       | 0.6      | 27                         | 0.54     | 262        | 0.524    |

0.18

0.036

#### 观察试验的结果:

 $f_n(A)$  的特点:

1) 具有波动性:

 $n \uparrow, f_n(A)$ 波动幅度  $\downarrow$ 



8.0

### M1: 抛硬币 设 $A = \{$ 出现正面 $\}$

| 试验者   | n     | $n_{\scriptscriptstyle A}$ | $f_n(A)$ |
|-------|-------|----------------------------|----------|
| 德. 摩根 | 2048  | 1061                       | 0.5181   |
| 蒲丰    | 4040  | 2048                       | 0.5069   |
| 皮尔逊   | 12000 | 6019                       | 0.5016   |
| 皮尔逊   | 24000 | 12012                      | 0.5005   |

#### 观察试验的结果:

 $f_n(A)$  的特点:

1) 具有波动性:

 $n \uparrow, f_n(A)$ 波动幅度  $\downarrow$ 

2) 具有稳定性:

$$f_n(A) \xrightarrow{n \to \infty} \mathbf{0.5}$$

P(A)= 频率的稳定值

概率的统计定义

## 注: 统计定义的问题:

- ▶统计过程太麻烦;
- ▶统计方法只适用于简单事件。



## 第三节 频率与概率

- ✓ 频率 概率的统计定义
- **一**概率的公理化定义
  - 概率的性质





柯尔莫哥洛夫, A. H.

1933年,前苏联数学家柯尔莫哥洛夫给出了概率的公理化定义.

即: 通过规定概率应具备的基本性质来定义概率.



### 二. 概率的公理化

都赋予一个实数 P

- (1) 非负性:  $0 \le f_n(A) \le 1$  (2) 规范性:  $f_n(S) = 1$
- 设E是随机试验 (3) 有限可加性:  $A_1, A_2, \cdots A_k$  两两互斥, 则  $f_n(A_1 \bigcup A_2 \bigcup \cdots A_k) = f_n(A_1) + f_n(A_2) + \cdots + f_n(A_k)$
- (1) 非负性: 对于每一事件A有:  $0 \le P(A) \le 1$
- (2) 规范性: P(S)=1
- (3) 可列可加性: 设  $A_1, A_2, \dots A_k \dots$  是两两互斥的事件, 则  $P(A_1 \cup A_2 \cup \cdots \cup A_k \cdots) = P(A_1) + P(A_2) + \cdots + P(A_k) + \cdots$ 有且仅有一个发生

则称 P(A) 为事件A发生的概率。

- 注: ➤ 该定义只规定了概率必须满足的最基本性质, 并没有解决 概率如何计算的问题。
  - > 该定义的意义在于它为普遍而严格的概率理论奠定了基础。



#### 可列可加性的完备性:

(3) 可列可加性: 设  $A_1, A_2, \dots A_k \dots$  是两两互斥的事件, 则  $P(A_1 \cup A_2 \cup \dots \cup A_k \dots) = P(A_1) + P(A_2) + \dots + P(A_k) + \dots$ 

E: 记录120急救台一昼夜接到的呼叫次数。

$$S = \{0, 1, 2, 3, \dots 100, \dots\}$$
$$= \{0\} \cup \{1\} \cup \{2\} \cup \{3\} \cup \dots \cup \{100\} \cup \dots$$

$$1 = P(S) = P(\{0\} \cup \{1\} \cup \{2\} \cup \{3\} \cup \dots \cup \{100\} \cup \dots)$$

$$= P\{0\} + P\{1\} + P\{2\} + P\{3\} + \dots + P\{100\} + \dots$$
可列可加性



第一节 随机试验 第二节 样本空间及随机事件

- ✔ 随机试验
- ✓ 样本空间
- ✔ 随机事件
- ✓ 随机事件的关系及其运算★



## 第三节 频率与概率

✓ 频率 概率的统计定义

✓ 概率的公理化定义

概率的性质



## 作业

| 习题一                                        |
|--------------------------------------------|
| 2 🗸                                        |
| 3(2)(3)                                    |
| 6,7,8,11等可能                                |
| 14,15,条件概率                                 |
| 17,18乘法定理<br>21,23,24,26全概率贝叶斯<br>28,29独立性 |
|                                            |

## 提交作业截止时间:周二晚9点

