SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-100863-111119

AUTENTIFIKÁCIA EMÓCIÍ OPERÁTORA NA ZÁKLADE VÝRAZU TVÁRE DIPLOMOVÁ PRÁCA

2025 Bc. Maroš Kocúr

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-100863-111119

AUTENTIFIKÁCIA EMÓCIÍ OPERÁTORA NA ZÁKLADE VÝRAZU TVÁRE

DIPLOMOVÁ PRÁCA

Študijný program: Robotika a kybernetika

Názov študijného odboru: kybernetika

Školiace pracovisko: Ústav robotiky a kybernetiky

Vedúci záverečnej práce: prof. Ing. Jarmila Pavlovičová, PhD.

Konzultant: Ing. Michal Tölgyessy

Bratislava 2025 Bc. Maroš Kocúr

SÚHRN

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Študijný program: Robotika a kybernetika

Autor: Bc. Maroš Kocúr

Diplomová práca: Autentifikácia emócií operátora na základe výrazu

tváre

Vedúci záverečnej práce: prof. Ing. Jarmila Pavlovičová, PhD.

Konzultant: Ing. Michal Tölgyessy

Miesto a rok predloženia práce: Bratislava 2025

Interakcia človeka s robotom v dynamickom prostredí si čoraz viac vyžaduje pochopenie emocionálneho stavu operátora s cieľ om optimalizovať komunikáciu a rozhodovacie procesy. Cieľ om tejto práce je navrhnúť a implementovať modul, ktorý poskytuje robotickému systému emocionálnu spätnú väzbu a umožňuje mu zisť ovať výrazy tváre operátora a odvodzovať jeho emocionálne stavy. S využitím kamery RGB s možnosť ou integrácie kamery RGB-D bude systém využívať biometrické modely tváre a techniky rozpoznávania tváre na identifikáciu emócií v reálnom čase. Medzi kľúčové úlohy patrí analýza súčasných metód detekcie emócií výrazu tváre, štúdium princípov tvorby biometrických modelov tváre a implementácia robustného systému na detekciu emócií. Systém bude overený prostredníctvom testovania na simulovaných aj reálnych súboroch údajov. Okrem toho bude vyvinutý balík ROS2, ktorý zabezpečí bezproblémovú integráciu v rámci robotických systémov. Výsledky budú kriticky posúdené prostredníctvom experimentov s cieľ om zabezpečiť presnosť a efektívnosť výkonu v reálnych aplikáciách.

Kľ účové slová: RGB kamera, neurónová sieť

ABSTRACT

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY

Study Programme: Robotics and cybernetics

Author: Bc. Maroš Kocúr

Master's thesis: Operator Emotion Authentication Based on Facial Ex-

pression

Supervisor: prof. Ing. Jarmila Pavlovičová, PhD.

Consultant: Ing. Michal Tölgyessy

Place and year of submission: Bratislava 2025

Human-robot interaction in dynamic environments increasingly requires an understanding of the operator's emotional state to optimize communication and decision-making processes. This work aims to design and implement a module that provides emotional feedback to a robotic system, enabling it to detect the operator's facial expressions and infer emotional states. Leveraging an RGB camera, with the option to integrate an RGB-D camera, the system will employ biometric facial models and facial recognition techniques to identify emotions in real-time. Key tasks include analyzing current facial expression emotion detection methods, studying the principles of facial biometric model creation, and implementing a robust system for emotion detection. The system will be validated through testing on both simulated and real datasets. Additionally, a ROS2 package will be developed to ensure seamless integration within robotic systems. The outcomes will be critically assessed through experiments to ensure accuracy and performance efficiency in real-world applications.

Keywords: RGB camera, neural network

Pod'akovanie

I would like to express a gratitude to my thesis supervisor.

Obsah

Ú٧	od		1
1	Úvo	d	2
	1.1	Motivácia	2
	1.2	Bezpečnosť	2
	1.3	Produktivita	2
	1.4	Ďalšie aspekty	3
	1.5	Ciele práce	3
2	Štru	ıktúra práce	4
3	Teo	retické základy	5
	3.1	Emócie a ich prejav	5
	3.2	Analýza obrazu	5
	3.3	Biometria	5
4	Exis	stujúce metody analýzy emócií	6
	4.1	Ručne značenie	6
	4.2	Automatická analýza emócií	6
5	Náv	rh riešenia	7
	5.1	Architektúra systému	7
	5.2	Výber dát	7
	5.3	Extrakcia príznakov	7
	5.4	Klasifikácia	7
	5.5	Vyber hyperparametrov	7
6	Imp	lementácia riešenia	8
	6.1	Výber nástrojov	8
	6.2	Implementácia jednotlivých komponentov	8
	6.3	Vizualizácia výsledkov	8
7	Exp	rerimenty a vyhodnotenie	9
	7.1	Dátová sada	9
	7.2	Metriky	9
	73	Výsledky	9

	7.4	Analýza výsledkov	9
8	Imp	lementácia v ROS2	10
	8.1	Konverzia modelu	10
	8.2	Integrácia do robotického systému	10
9	Záv	e r	11
	9.1	Zhodnotenie práce	11
	9.2	Obmedzenia práce	11
	9.3	Budúce smerovanie	11
10	Dop	lnujece poznamky	12
Zá	ver		13
Zo	znan	n použitej literatúry	14
Pr	ílohy		14
A	Štru	ktúra elektronického nosiča	15
В	Algo	oritmus	16
C	Výp	is sublime	17

Zoznam obrázkov a tabuliek

Zoznam algoritmov

B.1 Vypočítaj $y = x^n$	B.1	Vypočítaj $y = x^n$																																1	6
-------------------------	-----	---------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Zoznam výpisov

C.1	Ukážka sublime-project								 							1	7

Úvod

Ukazka upraveneho templatu FEIStyle.cls (https://github.com/Kyslik/FEIStyle) s pouzitim Times New Roman fontu. Nastavenie fontov som prebral z oficialneho IEEE templatu, vlozil som ho do FEIStyle.cls na riadky 228-230.

Tu bude krasny uvod s diakritikou atd.

A mozno aj viac riadkovy uvod.

1 Úvod

1.1 Motivácia

Chcem tu este hodit ake typy emocii sa daju rozpoznat a preco je to dolezite. **Prečo je** analýza emócií dôležitá v kontexte interakcie človeka s robotom?

Únava, najmä v kritických profesiách a každodenných činnostiach, predstavuje značné riziko pre jednotlivcov aj spoločnosť. Detekcia únavy je kľ účová, pretože môže zabrániť nehodám, zvýšiť produktivitu a celkovo prispieť k zlepšeniu kvality života. Pre ľ udí v náročných pracovných prostrediach, ako sú vodiči, operátori strojov alebo zdravotnícki pracovníci, môže únava spôsobiť významný pokles výkonnosti a zvýšenie rizika chýb, ktoré môžu mať fatálne dôsledky.

1.2 Bezpečnosť

Doprava: Zníženie počtu nehôd spôsobených únavou vodičov

Jedným z najdôležitejších dôvodov pre detekciu únavy je prevencia dopravných nehôd. Únava vodiča spôsobuje spomalenie reakčných časov, zníženú koncentráciu a vyššiu pravdepodobnosť mikrospánku. Podľa štatistík je únava zodpovedná za približne 20 % všetkých dopravných nehôd. Systémy detekcie únavy, ktoré analyzujú fyziologické alebo behaviorálne signály vodiča, môžu v reálnom čase varovať pred rizikom mikrospánku alebo strate koncentrácie a tak potenciálne zachrániť ľudské životy a znížiť škody na majetku.

Priemysel: Zníženie rizika úrazov v náročných pracovných prostrediach

V priemyselných odvetviach, kde sú pracovníci vystavení vysokému fyzickému a psychickému zať aženiu (napr. ť ažký priemysel, nočné smeny, manipulácia s nebezpečnými materiálmi), únava môže viesť k chybám, ktoré môžu mať vážne následky. Monitorovanie únavy pomocou technológií by mohlo byť účinným spôsobom, ako predchádzať pracovným úrazom, zvýšiť bezpečnosť na pracovisku a znížiť počet nehôd spôsobených ľ udskou chybou.

1.3 Produktivita

Zvýšenie efektivity a výkonnosti

Únava má priamy vplyv na zníženie koncentrácie, rýchlosti rozhodovania a celkového vý-konu. Zamestnanci, ktorí pracujú unavení, sú menej produktívni, robia viac chýb a potrebujú viac času na vykonanie úloh. Systémy na monitorovanie únavy môžu pomôcť identifikovať okamihy, keď je výkon pracovníkov znížený, a navrhnúť prestávky alebo zmeny v pracovnom režime. Tým sa môže optimalizovať pracovný čas a zvýšiť celková efektivita pracovného procesu.

Optimalizácia pracovného času

Moderné technológie umožňujú monitorovanie úrovne únavy v reálnom čase a poskytujú zamestnávateľ om a manažérom možnosť upraviť pracovné zaťaženie podľa aktuálnej úrovne únavy jednotlivých zamestnancov. Takáto optimalizácia môže znížiť riziko chýb, zvýšiť efektivitu a zároveň podporiť lepšiu pracovnú pohodu zamestnancov.

1.4 Ďalšie aspekty

Zdravie prevencia zdravotných problémov

Chronická únava môže viesť k rôznym zdravotným problémom, ako sú depresia, úzkosť, oslabenie imunitného systému a zvýšené riziko kardiovaskulárnych ochorení. Monitorovanie únavy a zavádzanie preventívnych opatrení, ako sú pravidelné prestávky alebo úprava pracovných podmienok, môžu pomôcť predchádzať týmto problémom a zlepšiť celkové zdravie jednotlivcov.

Dostatok odpočinku je nevyhnutný pre udržanie duševnej a fyzickej pohody. Chronická únava znižuje kvalitu života, ovplyvňuje medziľ udské vzť ahy a môže viesť k problémom v osobnom a profesionálnom živote. Systémy na detekciu únavy môžu pomôcť jednotlivcom lepšie si plánovať odpočinok a dosiahnuť rovnováhu medzi pracovným a osobným životom.

Sociálne dôsledky únavy

Únava ovplyvňuje nielen pracovný výkon, ale aj medziludské vzťahy. Unavení ľudia majú často problémy s komunikáciou, trpia podráždenosťou a môžu sa vyhýbať spoločenským interakciám. Chronická únava môže viesť k sociálnej izolácii, čo má negatívny vplyv na kvalitu života.

Ekonomické dôsledky únavy

Únava má významné ekonomické dôsledky. Nehody spôsobené únavou vedú k veľkým finančným stratám v dôsledku škôd na majetku, zdravotných výdavkov a zníženej produktivity. Únava na pracovisku znižuje výkon a zvyšuje počet chýb, čo môže viesť k zníženiu kvality produktov a služieb, a tým aj k strate zákazníkov.

1.5 Ciele práce

Cieľ om práce je vytvoriť systém, ktorý bude schopný rozpoznať emócie v reálnom čase.

2 Štruktúra práce

Práca je rozdelená do niekoľ kých kapitol. V prvej kapitole sa zameriame na analýzu emócií. V druhej kapitole sa zameriame na analýzu dát. V tretej kapitole sa zameriame na návrh riešenia. V štvrtej kapitole sa zameriame na implementáciu riešenia. V piatej kapitole sa zameriame na vyhodnotenie riešenia. V šiestej kapitole sa zameriame na záver.

3 Teoretické základy

3.1 Emócie a ich prejav

Definícia emócií, univerzálne emócie, kultúrne rozdiely v prejave emócií, výrazy tváre ako indikátor emócií.

3.2 Analýza obrazu

Základné pojmy z oblasti analýzy obrazu, detekcia tváre, extrakcia príznakov, klasifikácia.

3.3 Biometria

Princípy biometrických systémov, identifikácia vs. verifikácia.

4 Existujúce metody analýzy emócií

- 4.1 Ručne značenie
- 4.2 Automatická analýza emócií

5 Návrh riešenia

- 5.1 Architektúra systému
- 5.2 Výber dát
- 5.3 Extrakcia príznakov
- 5.4 Klasifikácia
- 5.5 Vyber hyperparametrov

6 Implementácia riešenia

6.1 Výber nástrojov

Programovací jazyk, knižnice (OpenCV, TensorFlow, PyTorch).

6.2 Implementácia jednotlivých komponentov

Podrobný popis implementácie.

6.3 Vizualizácia výsledkov

Vizualizácia výsledkov analýzy. Grafy, tabuľky.

7 Exprerimenty a vyhodnotenie

7.1 Dátová sada

Popis použitého dataset-u (veľkosť, rozdelenie tried, kvalita).

7.2 Metriky

Výber vhodných metrik (presnosť, úplnosť, F1-skóre, ROC krivka).

7.3 Výsledky

Vyhodnotenie výsledkov experimentov. Prehľ adné zhrnutie výsledkov, porovnanie s inými prácami.

7.4 Analýza výsledkov

Analýza výsledkov, príčiny chýb, možné zlepšenia.

8 Implementácia v ROS2

8.1 Konverzia modelu

Konverzia trénovaného modelu do formátu vhodného pre ROS2.

8.2 Integrácia do robotického systému

Popis integrácie do ROS2, komunikácia s ostatnými modulmi.

9 Záver

9.1 Zhodnotenie práce

Zhodnotenie dosiahnutých výsledkov.

9.2 Obmedzenia práce

Obmedzenia práce, možné zlepšenia.

9.3 Budúce smerovanie

Možné smerovanie d'alšej práce.

10 Doplnujece poznamky

Literatúra: Pravidelne citujte relevantnú literatúru. Obrázky a diagramy: Používajte obrázky a diagramy na ilustráciu komplexných konceptov. Kód: Ak je to možné, pridajte ukážky kódu. Tabuľky: Používajte tabuľky na porovnanie výsledkov. Táto štruktúra poskytuje komplexný rámec pre vašu prácu. Môžete ju prispôsobiť podľa svojich konkrétnych potrieb a zistení.

Záver

Conclusion is going to be where?

Here.

Prílohy

A	Štruktúra elektronického nosiča	15
В	Algoritmus	16
C	Výpis sublime	17

A Štruktúra elektronického nosiča

/CHANGELOG.md

· file describing changes made to FEIstyle

/example.tex

 \cdot main example .tex file for diploma thesis

/example_paper.tex

 \cdot example .tex file for seminar paper

/Makefile

· simply Makefile – build system

/fei.sublime-project

· is project file with build in Build System for Sublime Text 3

/img

· folder with images

/includes

· files with content

/bibliography.bib

· bibliography file

/attachmentA.tex

· this very file

B Algoritmus

```
Algoritmus B.1 Vypočítaj y = x^n
Require: n \ge 0 \lor x \ne 0
Ensure: y = x^n
   y \Leftarrow 1
   \quad \text{if } n < 0 \text{ then }
      X \Leftarrow 1/x
      N \Leftarrow -n
   else
      X \Leftarrow x
      N \Leftarrow n
   end if
   while N \neq 0 do
      if N is even then
         X \Leftarrow X \times X
         N \Leftarrow N/2
      else \{N \text{ is odd}\}
         y \Leftarrow y \times X
         N \Leftarrow N - 1
      end if
   end while
```

C Výpis sublime

../../ fei .sublime-project

Výpis C.1: Ukážka sublime-project