Lifeguard Autonomous-Robot

By- Arvinder Singh

2 late days used

Motivation:

- Drowning is the 3rd leading cause of unintentional injury death worldwide
- 2. An estimated 320,000 annual drowning deaths worldwide

Concept:

- 1. Autonomous Robot to rescue people from drowning
- Rotating(for 360° view) thermal imaging camera to detect people
- 3. Deep Learning model to distinguish between people swimming and drowning
- Navigates to the area of interest using model predictive control
- 5. Pulls the survivor back to the shore so that they can be treated

Power Analysis

Battery Specifications (lithium-polymer battery)

- Power 1 kW / 3 hp
- Battery Capacity- 1276 Wh
- Battery Weight 8.7 kg
- Rated voltage- 45.6 V
- Rated current- 25 A
- Max discharging current- 40 A

Performance

Servo

Camera

□ GPS

■ Jetson Nano

IMU

1. Stationary(only camera is rotating):

Power Consumed	Runtime
12.414 W	103 Hours

2. Moving:

Power Consumed	Runtime	Speed
71.62 W	16.5 Hours	4.3 Km/hr
506.62 W	2.5 Hours	8.5 Km/hr
1000 W	1 Hours	10.1 Km/hr

Energy Consumption

Device	Energy Consumed
Servo	1.044 Wh
Camera	5 Wh
GPS	50 mWh
NVIDIA Jetson Nano	6.1 Wh
Brushless DC motor	35-1000 Wh
IMU	0.22 Wh

Sensors

Thermal Camera

- Thermal cameras can see in absolute darkness and in challenging conditions where visible cameras and LIDAR can struggle
- Thermal camera scans areas with 37°C temperature and track the movement of areas of interest
- Fixes its target If the movement is similar to that of a person drowning

IMU

- Helps robot to dynamically control its linear velocity, angular velocity and acceleration
- Can be used to fill in gaps between GNSS updates and to safely navigate for short periods when GNSS and/or other sensors are compromised.

GPS

- Great to track robots position as there are no obstructions around
- Helps the robot to get back to the shore/treatment area accurately
- Useful while manually controlling the robot in case of a failure

Wireless sensor system

 In case of a failure, wireless sensor system can be used to manually control the robot

Navigation

Base Correction

- While the robot is stationary, there may be drift due to waves
- Robot uses IMU and GPS to correct its current position and also solves the "wake up problem" after its turned on

Goal generation node

- Starts navigating towards the area of interest using data from thermal imagery
- Uses Model Predictive Control to face dynamically changing environment and to avoid obstacles
- Keeps getting updates from camera regarding the distance of the goal
- Implements extended Kalman filter to fuse the GPS reading and Velocities with 9 axis IMU to improve the accuracy of its current position
- Robot starts its return journey to the shore or the treatment area, as it gets a feedback(Switch on the robot is pressed) by the survivor
- Uses, the location of shore/treatment area stored in the memory to calculate the shortest path from its current location
- In case of a failure, IMU data is used for dead reckoning
- Can also be navigated using remote control in case of a complete failure

System Dynamics

Software

- Runs on ROS and uses in-built packages like EKF, mpc_local_planner, etc.
- Employs Convolutional Neural Networks to analyze thermal imagery
- Operating System Linux4Tegra, based on Ubuntu 18.04

Hardware

- Primary computer-NVIDIA Jetson Nano 4GB; powerful computer to run multiple neural networks in parallel
- Propeller- 11" x 5.8" 2-blade composite propeller
- Trim / Tilt Angle- 0°, 7°, 14°, 21° / 70°
- Total weight of the system- 22Kg
- Dimensions- 1.2X0.7X0.7 m
- Safe weight limit 133Kg

Safety features

- Kill Switch to stop the motor in case of an emergency
- Positive Buoyancy of the battery makes it impossible to sink in the water
- Employs shaft seals to avoid leakages inside the robot

