Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA Ano letivo 2018/2019

TURMAS: PN1, PN2 e PNrep

EXERCÍCIOS PN-P5

- **5.1** Considere um condensador de placas paralelas de área A e espessura d, preenchido com dois tipos de dielétricos diferentes (ϵ_1 e ϵ_2) conforme mostra a figura. O primeiro dielétrico ocupa um volume correspondente a 1/3 do total e o segundo 2/3. O condensador está carregado, apresentando uma diferença de potencial V entre as suas placas.
- a) Determine a capacidade do condensador.
- b) Considere agora o condensador totalmente preenchido com ar, igualmente carregado com carga Q e diferença de potencial V entre as placas. Nestas condições, determine a variação da energia armazenada no

condensador quando aproxima as placas para metade da distância mantendo a fonte de potencial ligada. Como varia a carga nas placas do condensador?

- c) Como se alteraria a resposta à alínea anterior se desligasse o condensador da fonte e afastasse as placas para o dobro da distância?
- d) Explique as variações de energia encontradas nas alíneas b) e c)..
- **5.2.** Considere o circuito elétrico representado na figura. Determine a corrente elétrica que atravessa cada resistência.

5.3. Considere o circuito elétrico representado na figura. A resistência interna de cada fonte de tensão é 1 Ω .

Considere: $V_1=5 \text{ V}$, $V_2=2 \text{ V}$, $R_1=3 \Omega$, $R_2=2\Omega$ e $R_3=4\Omega$.

- a) Determine a corrente elétrica que atravessa cada resistência.
- b) Enuncie o(s) princípio(s) que utilizou para resolver a alínea a). Justifique fisicamente esse(s) princípio(s), recorrendo à natureza conservativa do campo elétrico e/ou à conservação da carga elétrica.

- **5.4.** Considere o circuito elétrico representado na figura, onde V_1 e V_2 representam fontes de tensão contínua. O interruptor S encontra-se fechado.
 - a) Determine as correntes elétricas nas malhas e as tensões aos terminais das resistências.
 - b) Considere, agora, que abre o interruptor S. A resistência R_1 é constituída por dois blocos cilíndricos de raio r e diferentes comprimentos I_1 e I_2 , formados por materiais

de diferentes resistividades, ρ_1 e ρ_2 = $2\rho_1$. Determine a relação entre l_1 e l_2 (em função dos demais parâmetros), de forma a que a diferença de potencial aos terminais da resistência R_1 seja dupla da diferença de potencial aos terminais da resistência R_2 .