CMSC204 Kartchner

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, NewYork, California} E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

1. Draw the StateGraph

1. Describe the graph pictured above, using the formal graph notation.

$$V(StateGraph) =$$
 $E(StateGraph) =$

- 2. a. Is there a path from Oregon to any other state in the graph? No
 - b. Is there a path from Hawaii to every other state in the graph? Yes
 - c. From which state(s) in the graph is there a path to Hawaii? Texas

1. a. Show the adjacency matrix that would describe the edges in the graph. Store the vertices in alphabetical order

States 0 0 0 Alaska 0 0 California Hawaii 0 New York 0 oregon 0 Texas 0 Vermont 0

3. b. Show the adjacency lists that would describe the edges in the graph

- 4 a. Which of the following lists the graph nodes in depth first order beginning with E?
 - A) E, G, F, C, D, B, A
 - B) G, A, E, C, B, F, D
 - C) E, G, A, D, F, C, B
 - D) E, C, F, B, A, D, G
- 4 b. Which of the following lists the graph nodes in breadth first order beginning at F?
 - A) F, C, D, A, B, E, G
 - B) F, D, C, A, B, C, G
 - C) F, C, D, B, G, A, E
 - D) a, b, and c are all breadth first traversals

5. Find the shortest distance from Atlanta to every other city

Atlanta to Washinton: 600

Atlanta to Houseon: 800

Atlanta to Dallas : 600+1300=1900

Atlanta to Denver: 600 + 1300 + 780 = 2680

Atlanta to Austin: 600 + 1300 + 200 = 2100

Atlanta to Chicago: 600 + 1300 + 900 = 2800

6. Find the minimal spanning tree using Prim's algorithm. Use 0 as the source vertex . Show the steps.

7. Find the minimal spanning tree using Kruskal's algorithm. Show the weights in order and the steps.

8. Find the minimal spanning tree using the algorithm you prefer. Use Minneapolis/St. Paul as the source vertex

9. List the nodes of the graph in a breadth first topological ordering. Show the steps using arrays predCount, topologicalOrder and a queue

10. List the nodes of the graph in a breadth first topological ordering.

Start
Discrete Math
Programming 1
Programming 2
Computer Organization
Algorithms
High-Level Languages
Operating Systems
Theory Computation
Senior Seminar
Compilers
End