solution

2020年5月27日

Easiest

本次考试签到题,改编(简化)自 AGC036F

考虑 $l_i = 0$ 为小学奥数题, 就不说明过程, 结论是 (满足 $r_i \leq r_{i+1}$)

$$\prod_{i} r_i - i + 1$$

于是考虑只有 $l_{n-1} \neq 0$ 的情况,发现容斥即可

推广一下,可以 $O(2^n n \log n)$ 容斥解决,即 15 pts 部分分

考虑题目里的条件,即不存在 i < j 使得 $l_i > 0, [l_i, r_i] \subset [0, l_j - 1]$

所以可以根据
$$\begin{cases} r_i & l_i = 0 \\ l_i - 1 & l_i \neq 0 \end{cases}$$
 排序

然后枚举一共选在 $[0,l_i)$ 的位置数,从前到后 DP, $f_{i,j}$ 表示前 i 个选在 $[0,l_p)$ 的位置数为 p,发现枚举是否在 $[0,l_{i+1})$ 中后就可以直接转移到第 i+1 行了,转移系数参考 $l_i=0$ 的情况,容斥系数为 $(-1)^k$

Medium

一个显然的思路: 先找到第 n+1 行的各个基因型概率, 然后处理询问

定义 p(u) 为 u 产生 Δ 的配子的概率,概率用三元组 P(u) = (AA, Aa, aa) 表示,定义 U_i/V_i 表示第 i 个确定aa 的人/需要询问的人,先考虑以下性质:

- 若 x, y 的 P 相同,则对于他们后代 z 的有为 $P(z) = (p^2(x), 1-p^2(x) (1-p(x))^2, (1-p(x))^2)$ 证明: 易证
- 若 x, y 的 P 相同,则他们后代 z, w 的后代 u 的 P 与 z, w 相同证明:容易发现 p(x) = p(y) = p(z) = p(w) = p(u)

若 m=1, 我们可以用上面两个性质算出 U_1 的每个祖先的 P

具体地,我们可以算出整体的概率,然后枚举祖先的基因型,用相同方法 算概率

对于每个 U_1 的祖先 u (包括 U_1), 及其配偶 v, 我们可以得到 P(u), P(v)

然后我们可以把第 n+1 层划分为 O(n) 段, 每段的 P 相同

对于询问可以枚举父母的 p 值,这可以直接用第 n+1 代的 P 计算,于是你获得了 3 分的好成绩

若 $m \neq 1$, 后半部分照旧

考虑 $0 \sim n+1$ 层中,若某一对不存在在 U 里的,那么他们 P 相同,可以认为是一个人

考虑到不存在 A_i , A_j 使得它们为祖先关系,那么他们及祖先组成一棵树,可以处理出他们的虚树,最多 2m-1 个点

可以枚举另外 m-1 个点性状,可以 $O(3^m poly(n))$, 至此你获得了 15 分

发现可以 DP, 于是复杂度变为 O(poly(m) poly(n)), 可以通过此题

Hardest