g⁸ ∈ d⁷ − d⁸).

Replacing d_2 by $d_3=(y_2,d_2)$, where $y_2\in q_1-q_4$, and repeating the process, we conclude that there exists a factor d of x such that d $\in q_1$ and d $\not\in q_i$ ($j=2,3,\ldots,r$). In other words, with a suitable permutation of $\{q_i\}_{j=1}^r$ we have

proved the

Lemma 2. Let x be a non zero non unit of an HCF ring R of

Veryll two with the femily { P }

Krull type with the family { P_{α} { $_{\alpha \in \ I}$ of valued primes defining $R_{\mathfrak{p}}$ { $P_{\mathfrak{p}}$,..., $P_{\mathfrak{p}}$ } be the set of all the valued primes containing x and let { $q_{\mathfrak{j}}$ } $^{\mathfrak{p}}_{\mathfrak{j}=1}$ be the set of all the distinct minimal subvalued primes of x, then corresponding to each $q_{\mathfrak{j}}$ there exists a $p_{\mathfrak{j}}$ | x such that $p_{\mathfrak{j}}$ \mathfrak{e} $q_{\mathfrak{j}}$ and to each $q_{\mathfrak{j}}$ there exists a $p_{\mathfrak{j}}$ | x such that $p_{\mathfrak{j}}$ \mathfrak{e} $q_{\mathfrak{j}}$ and $p_{\mathfrak{k}}$ \mathfrak{e} \mathfrak{f} \mathfrak{f}

 $p_j \not\in q_K \text{ for all } k \not\neq j \text{ (} K,j = 1,2,\ldots,r\text{).}$ Lemma 2 leads to the notion of an element(in an HCF

ring of Krull type at present) with a single minimal subvalued prime and to study the properties of such elements

Lemma 3. Let d be a non zero non unit element in an HCF ring of Krull type R. Let P_1 , P_2 ,..., P_r be the only valued primes (in the family $\{P_{\alpha}\}_{\alpha\in I}$) of R containing d and suppose that d has only one minimal subvalued prime q then (1) If $d = d_1 d_2$, then $(d_1, d_2) = 1$ only if either of d_l

is a unit (i = 1,2).

(2) If $x \notin q$ but the set of all the valued primes containing x is a subset of { P_1, P_2, \ldots, P_r } then $x^n \mid d$ for all positing

tive integers n.

q as the only minimal subvalued prime containing it, then d'belongs to P₁, P₂,... P_r and to no other valued prime in the defining family and there exists a positive integer n such