Segmentation

План лекции

- Classification recap
- Problem statement
- Main architecture
- Metrics
- Loss functions
- Extra

Классификация. Кросс-энтропия

Правдоподобие позволяет понять, насколько вероятно получить данные значения таргета y при данных X и весах w. Оно имеет вид

$$p(y \mid X, w) = \prod_i p(y_i \mid x_i, w)$$

и для распределения Бернулли его можно выписать следующим образом:

$$p(y\mid X,w) = \prod_i p_i^{y_i} (1-p_i)^{1-y_i}$$

где p_i – это вероятность, посчитанная из ответов модели. Оптимизировать произведение неудобно, хочется иметь дело с суммой, так что мы перейдём к логарифмическому правдоподобию и подставим формулу для вероятности, которую мы получили выше:

$$egin{aligned} \ell(w,X,y) &= \sum_i ig(y_i \log(p_i) + (1-y_i) \log(1-p_i)ig) = \ \ &= \sum_i ig(y_i \log(\sigma(\langle w, x_i
angle)) + (1-y_i) \log(1-\sigma(\langle w, x_i
angle))ig) \end{aligned}$$

Классификация. Кросс-энтропия

Классификация. Много классов

Классификация

Какие из слоев незнакомы?

Классификация

Что тут изображено?

Что тут изображено?

Дорога

Машины

Дома

Знаки

Где это на картинке?

Дорога

Машины

Дома

Знаки

Что нам на самом деле нужно?

<u>link</u>

Сегментация

Types of Image Segmentation

Потенциальная проблема?

Не хватает контекста, чтобы ответить на вопрос, что изображено в этом пикселе

Крайне неэффективно.

link

Другая идея:

Чем плох такой подход?

Другая идея:

Нужно, чтобы выход был размера входа. Если убрать страйды, мы уменьшим receptive field. Огромные по размеру свертки будут неэффективны.

Deep convolutional networks for scene parsing. 2009

Главная идея:

Понижая пространственную размерность, мы можем учить больше фичей Благодаря skip connection'ам при декодировании учитываются детали.

Главная идея:

Основная архитектура. Unet, 2015:

Основная архитектура. Unet, 2015:

Зачем нам понижать пространственную размерность? Наверняка будет работать лучше, если просто увеличивать число слоев/фичей, не теряя в

разрешении.

Upsampling

"Bed of nails" upsampling

Upsampling

Nearest neighbour upsampling

Transposed convolution

Type: transposed conv - Stride: 1 Padding: 0

Transposed convolution

Transposed convolution

Transposed convolution
Transposed convolution animations

Dilated convolutions, 2016

$$V(x, y, t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{S} K(i - x + \delta, j - y + \delta, s, t) \cdot U(x + (i - x) d, y + (j - y) d, s)$$

Dilated convolutions, 2016

Dilated conv layer

Fully convolutional nets

Какой должен быть размер картинки?

Max Unpooling

Max Unpooling

Use positions from pooling layer

1	2	
3	4	

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Сохраняем индексы каждого max-pooling слоя

При повышении разрешения делаем так:

- Копируем значения из выхода max-pooling слоя с учётом запомненный индексов
- Применяем обученные свёртки для сглаживания

Stacked hourglass

Объединим модули в цепочку (каскад)

HRNet, 2019

Figure 1. A simple example of a high-resolution network. There are four stages. The 1st stage consists of high-resolution convolutions. The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution, four-resolution) blocks. The detail is given in Section 3.

Figure 2. Multi-resolution block: (a) multi-resolution group convolution and (b) multi-resolution convolution. (c) A normal convolution (left) is equivalent to fully-connected multi-branch convolutions (right).

Recap

- Dilated convolutions
- Upsampling layers/upconvolution layers (aka transposed convolution/deconvolution)
- Skip connections (to retain fine-details)
- We can mix and match all of the above

Segmentation. Metrics?

Segmentation. Metrics?

Иногда еще считают попиксельную точность/ассuracy

Semantic Segmentation

Instance Segmentation

True positive

Example
Threshold: 0.5

False negative

IoU of (predicted mask, target mask) > threshold

False positive

Predicted mask has no corresponding ground truth label. We detected an object that didn't exist.

True positive

Ground truth mask has a corresponding predicted mask which has an IoU that exceeds the threshold value.

False negative

Ground truth mask has no corresponding predicted mask. We failed to identify this object.

- 0.8

- 0.6

- 0.4

- 0.2

Segmentation. Loss functions?

$$ext{Loss} = -\sum_{i=1}^{ ext{output size}} y_i \cdot \log \, \hat{y}_i$$

$$L_{dice} = 1 - \frac{1}{C} \sum_{c=0}^{C-1} \frac{2 \sum_{n=1}^{N} t_n^c y_n^c}{\sum_{n=1}^{N} (t_n^c + y_n^c)}$$

Segmentation. Loss functions?

Что делать, если классы сильно не сбалансированы?

Segmentation. Loss functions?

Что делать, если классы сильно не сбалансированы? Weighted Cross Entropy

$$l_n = -w_{y_n} \log \left(rac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})}
ight)$$

Что делать, если данных мало?

Original Image

Аугментации

Пример датасета. Cityscapes

Изображения с камеры автомобиля

- 30 классов объектов
- 5000 хорошо размеченных и 20000 грубо размеченных

изображений

https://www.cityscapes-datase t.com/

Разметка

https://github.com/haochenheheda/segment-anything-annotator

https://www.reddit.com/r/computervision/comments/179kyg3/are there any tools that use sam for segmentation/

https://humansintheloop.org/10-of-the-best-open-source-annotation-tools-for-computer-vision/

Recap conv

Linear layer

Conv layers

Type: conv - Stride: 1 Padding: 1

Receptive field

Receptive Field in Convolutional Networks

Num of params?

Num of params?

Где

3 * 3 - kernel_size

32 - in_channels

1 - bias

64 - out_channels

Conv layers

Salient detection

Salient detection

Salient detection

Цель состоит в том, чтобы обнаружить наиболее привлекающие внимание объекты в кадре и затем выделить для них силуэты с точностью до пикселя.

Salient detection. Architectures

Salient detection. Architectures

Fig. 2. Categorization of previous deep SOD models according to the adopted network architecture. (a) MLP-based methods. (b)-(f) FCN-based methods, mainly using (b) single-stream network, (c) multi-stream network, (d) side-out fusion network, (e) bottom-up/top-down network, and (f) branch network architectures. (g) Hybrid network-based methods. (h) Capsule-based methods. See §2.1 for more detailed descriptions.

Salient detection. Architectures BASNet

Salient detection. Architectures U^2Net

Salient detection. Architectures

OctConv

(a) Detailed design of the Octave Convolution. Green arrows correspond to information updates while red arrows facilitate information exchange between the two frequencies.

Salient detection. Metrics

$$Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + FN},$$

$$F_{\beta} = \frac{(1+\beta^2) \text{Precision} \times \text{Recall}}{\beta^2 \text{Precision} + \text{Recall}}.$$

$$\text{MAE} = \frac{1}{W \times H} \sum\nolimits_{i=1}^{W} \sum\nolimits_{j=1}^{H} |\boldsymbol{G}(i,j) - \boldsymbol{S}(i,j)|$$

$$F_{\beta}^{\omega} = \frac{(1+\beta^2)\operatorname{Precision}^{\omega} \times \operatorname{Recall}^{\omega}}{\beta^2 \operatorname{Precision}^{\omega} + \operatorname{Recall}^{\omega}}.$$

• S-measure [138] evaluates the structural similarity between the real-valued saliency map and the binary ground-truth. It considers object-aware (S_o) and region-aware (S_r) structure similarities:

$$S = \alpha \times S_o + (1 - \alpha) \times S_r, \tag{5}$$

where α is empirically set to 0.5.

 E-measure [139] considers global means of the image and local pixel matching simultaneously:

$$Q_{S} = \frac{1}{W \times H} \sum_{i=1}^{W} \sum_{j=1}^{H} \phi_{S}(i, j),$$
 (6)

where ϕ_S is the enhanced alignment matrix, reflecting the correlation between S and G after subtracting their global means, respectively.

