Вариант № 38865938

1. Задание 1 № 504835

Стоимость проездного билета на месяц составляет 720 рублей, а стоимость билета на одну поездку — 19 рублей. Аня купила проездной и сделала за месяц 46 поездок. На сколько рублей больше она бы потратила, если бы покупала билеты на одну поездку?

2. Задание 2 № 502121

На рисунке жирными точками показана цена олова на момент закрытия биржевых торгов во все рабочие дни с 14 по 28 июля 2008 года. По горизонтали указываются числа месяца, по вертикали — цена тонны олова в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа цена олова на момент закрытия торгов была наименьшей за данный период.

3. Задание 3 № 5191

Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

4. Задание 4 № 517228

В магазине три продавца. Каждый из них занят обслуживанием клиента с вероятностью 0,7 независимо от других продавцов. Найдите вероятность того, что в случайный момент времени все три продавца заняты.

5. Задание 5 № 101881

Решите уравнение
$$\sqrt{\frac{2}{11-x}} = 1$$
.

6. Задание 6 № 54595

В четырехугольник ABCD вписана окружность, $AB=12,\ BC=4$ и CD=46. Найдите четвертую сторону четырехугольника.

7. Задание 7 № 516292

На рисунке изображён график функции y=f'(x) — производной функции f(x). На оси абсцисс отмечены девять точек: $x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9$. Сколько из этих точек лежит на промежутках возрастания функции f(x)?

8. Задание 8 № 923

В правильной треугольной пирамиде $SABC\ P$ — середина ребра $AB,\ S$ — вершина. Известно, что BC=5, а SP=6. Найдите площадь боковой поверхности пирамиды.

9. Задание 9 № 68141

Найдите
$$\frac{g(3-x)}{g(3+x)}$$
, если $g(x) = \sqrt[1]{x(6-x)}$, при $|x| \neq 3$.

1/4

10. Задание 10 № 28463

В телевизоре ёмкость высоковольтного конденсатора $C = 5 \cdot 10^{-6} \, \Phi$. Параллельно с конденсатором подключен резистор с сопротивлением $R = 4 \cdot 10^6$ Ом. Во время работы телевизора напряжение на конденсаторе $U_0 = 12$ кВ. После выключения телевизора напряжение на конденсаторе убывает до значения $U(\kappa B)$ за время, определяемое выражением $t = \alpha R C \log_2 \frac{U_0}{U}$ (c), где $\alpha = 1, 4$ — постоянная. Определите (в киловольтах), наибольшее возможное напряжение на конденсаторе, если после выключения телевизора прошло 28 с. Ответ дайте в киловольтах.

11. Залание 11 № 530555

Автомобиль выехал с постоянной скоростью 72 км/ч из города А в город В, расстояние между которыми равно 360 км. Одновременно с ним из города С в город В, расстояние между которыми равно 270 км, с постоянной скоростью выехал мотоциклист. По дороге он сделал остановку на 30 минут. В результате автомобиль и мотоцикл прибыли в город В одновременно. Найдите скорость мотоциклиста Ответ дайте в км/ч.

12. Задание 12 № 560729

Найдите точку максимума функции $y = 8^{-6-10x-x^2}$.

13. Задание 13 № 511288

- a) Решите уравнение $\frac{2\cos^2 x + 2\sin x \cos 2x 1}{\sqrt{\cos x}} = 0.$
- 6) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2} \right]$.

14. Задание 14 № 514655

В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит прямоугольный треугольник ABC с прямым углом C, AC = 4, BC = 16, $AA_1 = 4\sqrt{2}$. Точка Q— середина ребра A_1B_1 , а точка Pделит ребро B_1C_1 в отношении 1:2, считая от вершины C_1 . Плоскость APQ пересекает ребро CC_1 в точке M.

- а) Докажите, что точка M является серединой ребра CC_1 .
- б) Найдите расстояние от точки A_1 до плоскости APQ

15. Задание 15 № 510493

Решите неравенство
$$\frac{81^x + 2 \cdot 25^{x \log_5 3} - 5}{(4x - 1)^2} \ge 0.$$

16. Задание 16 № 517535

Основания трапеции равны 4 и 9, а её диагонали равны 5 и 12.

- а) Докажите, что диагонали перпендикулярны.
- б) Найдите площадь трапеции.

17. Задание 17 № 514627

В июле 2016 года планируется взять кредит в банке в размере Sтыс, рублей, где S— натуральное число, на 3 года. Условия его возврата таковы

- каждый январь долг увеличивается на 15% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Июль 2016	Июль 2017	Июль 2018	Июль 2019
Долг (в тыс. рублей)	S	0,7S	0,48	0

Найдите наименьшее значение S, при котором каждая из выплат будет составлять целое число тысяч рублей.

18. Задание 18 № 512818

Найдите все значения а, при каждом из которых уравнение

$$a^{2} + 9|x - 3| + 3\sqrt{x^{2} - 6x + 13} = 4a + 2|x - 2a - 3|$$

имеет хотя бы один корень.

19. Задание 19 № 511111

Пусть q — наименьшее общее кратное, а d — наибольший общий делитель натуральных чисел x и y, удовлетворяющих равенству 3x = 8y - 29.

- a) Может ли $\frac{q}{d}$ быть равным 170? б) Может ли $\frac{q}{d}$ быть равным 2?
- в) Найдите наименьшее значение $\frac{q}{d}$