CSC369 Week 8 Notes

Hyungmo Gu

June 4, 2020

• File Systems

- Is the part of operating system dealing with files ^[2]
- Controls how data is stored and retrieved. [1]
 - * Without a file system, data placed in a storage medium is one large body of data with no way to tell where it stops and the next begins

Refernces:

- 1) Wikipedia: File Systems, link
- 2) Tanebaum AS, Boss H. 2015. Modern Operating Systems. 4th Edition. New Jersy: Pearson Education, Inc.
- File Concept
 - Files

- * Are logical units of information created by processes [1]
- * Is named collection of data with some attributes
 - 1. Name
 - 2. Owner
 - 3. Location
 - 4. Size
 - 5. Protection
 - 6. Creation Time
 - 7. Time of Last Access

Refernces:

1) Tanebaum AS, Boss H. 2015. Modern Operating Systems. 4th Edition. New Jersy: Pearson Education, Inc.

• Directories

- Are file system files for maintaining the structure of the file system [1]
- Serves multiple purposes
 - * $All \rightarrow Stores$ information about files (owner, permission, etc)
 - * $Users \rightarrow provides a structured way to organize files$
 - * $File\ System \to provides\ a\ convinent\ naming\ interface\ that\ allows\ the\ implementation$ to separate **logical file** organization from **physical file** placement on the disk
 - · **Logical files:** Is a channel that connects the program to the physical file (Stream) [2]
 - · Physical files: A collection of bits stored in the secondary storage [2]

Example:

```
FILE* output;
output = fopen("sample.txt", "w");
```

Here, output is the logical file and sample.txt is the physical file

Refernces:

- 1) Tanebaum AS, Boss H. 2015. Modern Operating Systems. 4th Edition. New Jersy: Pearson Education, Inc.
- 2) Kumar, S. (2010). File structures [PowerPoint Slides]. Slide Share link
- \bullet What is a Directory at the OS Level?
- Operations on Directories
- Example Directory Operations
- Symbolic vs Hard Links

- Inode

- * Is a database structure in a UNIX-style file system that describes a file system object such as a file or a directory $^{[1]}$
- * Contains disk block location of the object's data [1]
- * Is a numerical equivalent of a full address [2]

- Symbolic Link:

- * Is directory entry containing "true" path to the file
- * Is a shortcut that reference to a file instead of inode value [2]

- Hard Link:

- $\ast\,$ Is a direct reference to a file via its inode $^{[2]}$
- * Is second directory entry identical to first

References:

- 1) Wikipedia: inode, link
- 2) Andrew. (2018, January 16). *Hard links and Symbolic links* A comparison. Medium. link
- File Sharing
- Protection
 - File systems implement some kind of protection system
 - * Who can access a file
 - * How they can access it
 - Protection system dictates whether given action by a given subject on a given object should be allowed
 - * You can read and/or write your files, but others cannot
 - * You can read "etc/motd", but you cannot write it

• Types of Access

- Representing Protection
- ACLs and Capabilities
- File System Implementation
- Directory Implementation
- Disk Layout Strategies
- Contiguous Allocation
- Linked Allocation
- Indexed Allocation: Unix Inodes
 - Each inode contains 15 block pointers
 - * First 12 are direct block pointers
 - · Stops here if files are small
 - * Then single, double and triple indirect

Refernces:

- 1) Wikipedia: Inode Pointer Structure, link
- 2) Udacity (2015). *Inode Structure* [online]. Available at: link (Accessed May 28th, 2020)

- Unix Inodes and Path Search
 - Unix Inodes
 - * Is what we see on typing 'ls -li' command in terminal

inode number:)

- * Describes where on the disk the blocks for a file are placed
- * inode information is loaded to main memory [1]
 - · Only for the corresponding files that are open
 - · NOT all are loaded

Refernces:

- 1) Tanebaum AS, Boss H. 2015. Modern Operating Systems. 4th Edition. New Jersy: Pearson Education, Inc.
- File Buffer Cache
 - Reads information from disk only once and then stores retrieved file blocks in memory until no longer needed ${}^{\|}$
 - * Because reading from disk is slow
 - * Is common to read same part of disk multiple times

Example:

1. Reading email message, read the message for an edit, and read the message again when copying to folder

References:

1) Linux System Administrators Guide: Chapter 6. Memory Management, link