JEFF WINCHELL

Pittsburgh, PA 15217

jwinchel<at>andrew<dot>cmu<dot>edu

EDUCATION

Carnegie Mellon University, Pittsburgh, Pennsylvania

M.S. in Computational Biology

Expected June 2027

Drexel University, Philadelphia, Pennsylvania

B.S. in Computer Science
B.A. in Mathematics

June 2021 June 2021

RESEARCH EXPERIENCE

Carnegie Mellon University, School of Computer Science

Research Assistant, Unpaid (Sept 2025 - Present)

Advisors: Dr. Jian Ma, Dr. Spencer Krieger

 Beginning research on foundational models for spatial transcriptomics, focusing on post-hoc admixture correction using transformer-based methods

The New York Stem Cell Foundation Research Institute

Associate Data Scientist (Jan 2023 – July 2025)

Assistant Data Scientist (Apr 2022 – Dec 2022)

Data Science Intern (Nov 2021 – Apr 2022)

Supervisors: Dr. Bianca Migliori (Nov 2021 - Nov 2024), Dr. Stefan Semrau (Dec 2024 - July 2025)

- Developed single-cell instance segmentation framework generalizable across cell types and imaging modalities
- Built a scalable pipeline for fixed feature extraction on high-content imaging data for characterizing morphology of different cell types (iScience, 2024)
- Developed an efficient, generalizable image classification framework for image focus assessment in brightfield microscopy images (SLAS Discovery, 2023)
- Collaborated with Francis Collins' NIH lab on diabetes differentiation project, applying imaging + machine learning to study phenotypic signatures in pancreatic beta cell development
- Applied latent vector space analysis and unsupervised clustering to study sub-cellular protein localization
- Explored modern ML architectures (transformers, autoencoders) for representation learning in biological imaging
- Mentored undergraduate interns on extending internal image analysis tools

Drexel University, Department of Computer Science

Research Assistant, Unpaid (Sept 2020 – May 2021)

Advisor: Dr. Edward Kim

• Adapted sparse coding algorithms from existing course materials to support patch-based dictionary learning on RGB video input (e.g., Weizmann dataset), achieving ~95% reconstruction accuracy and ~50% sparsity

- Explored temporally smooth sparse representations to improve reconstruction fidelity and sparsity for natural video data (~17% and ~45% improvements, respectively, in internal benchmarks)
- Maintained and refactored project codebase post-graduation, including modular data loaders and documentation for reproducibility
- Engaged with literature on sparse coding, neural encoding, and unsupervised learning for biologically inspired vision models

PUBLICATIONS

Comolet, G.*, Bose, N.*, **Winchell, J.***, et al. A highly-efficient, scalable pipeline for fixed feature extraction from large-scale high-content imaging screens. iScience, 2024.

Winchell, J., et al. FocA: A deep learning tool for reliable, near-real-time imaging focus analysis in automated cell assay pipelines. SLAS Discovery, 2023.

Moyer, E., **Winchell, J.**, et al. Functional Protein Annotation Using a Deep Convolutional Generative Adversarial Network. ArXiv, 2021. (Preprint)

*indicates co-first authorship

PRESENTATIONS

Winchell, J. Ensuring Data Quality in High-Content Imaging. Future Labs Live, Philadelphia, PA, Oct 2024. (Talk)

Winchell, J. An Efficient, Scalable Pipeline for Fixed Feature Extraction. Biomolecular Imaging and Informatics Conf., Boston, MA, Sept 2024. (Poster)

Winchell, J. FocA: A deep learning tool for reliable, near-real-time imaging focus analysis in automated cell assay pipelines. Biomolecular Imaging and Informatics Conf., Boston, MA, Oct 2023. (Poster)

Winchell, J. Deep learning tools for high-quality data production and analysis in large high-content imaging screens. NYSCF Conf., New York, NY, Oct 2022. (Poster)

AWARDS, MEMBERSHIP

NSF Research Experiences for Undergraduates Grant Member, Society for Biomolecular Imaging and Informatics (SBI²) Summer 2017 2023 – Present

TECHNICAL SKILLS

Programming: Python (PyTorch, Tensorflow, scikit-learn, OpenCV, Matplotlib, pandas, AnnData) **Methods**: CNNs, GANs, transformers, autoencoders, representation learning