Краткий конспект лекций по курсу «Игры среднего поля» Лекция 8

Существование и единственность

Пусть A — компактное метрическое пространство и $\mathcal{P}(A)$ — пространство вероятностных мер на A с метрикой Канторовича—Рубинштейна. Пусть задано непрерывное отображение

$$F: A \times \mathcal{P}(A) \to \mathbb{R}.$$

Будем говорить, что мера $\mu \in \mathcal{P}(A)$ является решением задачи (P1), если

$$\operatorname{sp} \mu \subset \left\{ a \colon F(a, \mu) = \min_{b \in A} F(b, \mu) \right\}.$$

Так как множество $\left\{a\colon F(a,\mu)=\min_{b\in A}F(b,\mu)\right\}$ замкнуто, то равносильным определением решения μ является равенство

$$\mu\Big\{a\colon\,F(a,\mu)=\min_{b\in A}F(b,\mu)\Big\}=1,$$

которое в свою очередь равносильно условию

$$\int_A F(a,\mu) \, d\mu \le F(b,\mu) \quad \forall \, b \in A.$$

Доказательство существования решения μ задачи (P1) основано на теореме Какутани, которую мы приведем без доказательства.

Теорема 1. Пусть K — выпуклый компакт в локально выпуклом топологическом пространстве u $\Phi \colon K \to 2^K$. Если для каждого $x \in K$ множество $\Phi(x)$ непусто u выпукло u график Φ (m.e. множество таких (x,y), что $y \in \Phi(x)$) замкнут в $K \times K$, то найдется

$$x \in \Phi(x)$$
.

Теорема 2. Решение задачи (Р1) существует.

Доказательство. Известно, что пространство конечных мер на A с топологией слабой сходимости является локально выпуклым топологическим пространством, а множество $\mathcal{P}(A)$ в этом пространстве является выпуклым метризуемым компактом. Рассмотрим отображение Φ , которое всякой вероятностной мере σ сопоставляет множество $\Phi(\sigma)$ вероятностных мер μ , для которых выполняется условие

$$\mu\Big\{a\colon\thinspace F(a,\sigma)=\min_{b\in A}F(b,\sigma)\Big\}=1.$$

Для каждого σ множество $\Phi(\sigma)$ непусто, так как в нем есть дельта мера, сосредоточенная в точке минимума функции $a \to F(a,\sigma)$. Ясно, что множество $\Phi(\sigma)$ выпукло. Проверим замкнутость графика Φ . Пусть $\mu_n \to \mu$, $\sigma_n \to \sigma$ и $\mu_n \in \Phi(\sigma_n)$. Проверим, что $\mu \in \Phi(\sigma)$. Пусть $a \in \operatorname{sp} \mu$. Тогда существует такая последовательность a_n , что $a_n \in \operatorname{sp} \mu_n$ и $a_n \to a$. Положим

$$\varepsilon_n = \sup_{c \in A} |F(c, \sigma_n) - F(c, \sigma)|.$$

Из равномерной непрерывности F следует, что $\varepsilon_n \to 0$. Итак, для всякого $b \in A$ имеем

$$F(a,\sigma) = \lim_{n \to +\infty} F(a_n,\sigma) \le \lim_{n \to +\infty} (F(a_n,\sigma_n) + \varepsilon_n) \le \lim_{n \to +\infty} (F(b,\sigma_n) + \varepsilon_n) = F(b,\sigma).$$

Следовательно, $F(a, \sigma) = \min_{b \in A} F(b, \sigma)$.

Теорема 3. Предположим, что для различных мер μ и σ выполняется неравенство

$$\int (F(a,\mu) - F(a,\sigma)) d(\mu - \sigma) > 0.$$

Тогда решение задачи (Р1) единственно.

Доказательство. Пусть μ и σ — два решения. Тогда

$$\int_A F(a,\mu) \, d\mu \le F(b,\mu), \quad \int_A F(a,\sigma) \, d\sigma \le F(b,\sigma).$$

Проинтегрируем первое неравенство по σ , а второе по μ . Получаем

$$\int_A F(a,\mu) \, d\mu \le \int_A F(a,\mu) \, d\sigma, \quad \int_A F(a,\sigma) \, d\sigma \le \int_A F(a,\sigma) \, d\mu.$$

Складывая эти неравенства и группируя слагаемые приходим к неравенству

$$\int (F(a,\mu) - F(a,\sigma)) d(\mu - \sigma) \le 0,$$

которое возможно только в случае, когда $\mu = \sigma$.

Обобщения

Несложно проверить, что условия на F в задаче (P1) можно ослабить следующим образом: F равномерно непрерывно по μ и полунепрерывно снизу по a, то есть

$$\lim\inf_{b\to a} F(b,\mu) \ge F(a,\mu).$$

Действительно, полунепрерывность снизу гарантирует существование точки минимума, замкнутость множества точек, в которых достигается минимум, а доказательство существования повторяется практически без изменений.

Рассмотрим теперь более общую задачу (P2). Пусть X — компактное метрическое пространство и отображение

$$F: A \to \mathcal{P}(X \times A)$$

равномерно непрерывно по μ и полунепрерывно снизу по a. Предположим, что задано отображение $S\colon X\to 2^A$, удовлетворяющее следующим условиям: для каждого x множество S(x) непусто и компактно, график отображения S замкнут и, если $x_n\to x$, то для всякого $b\in S(x)$ и всякой меры σ существует такая последовательность $b_n\in S(x_n)$, что $F(b_n,\sigma)\to F(b,\sigma)$.

Пусть ν — вероятностная мера на X. Мера μ является решением задачи (P2), если проекция μ_X меры μ на X равна ν и

$$\operatorname{sp} \mu \subset \Big\{(x,a)\colon \ a \in S(x), \ F(x,\mu) = \min_{b \in S(x)} F(b,\mu)\Big\}.$$

Заметим, что множество

$$E(\mu) = \left\{ (x, a) \colon \ a \in S(x), \ F(x, \mu) = \min_{b \in S(x)} F(b, \mu) \right\}$$

замкнуто. Пусть $(x_n, a_n) \in E(\mu)$ и $(x_n, a_n) \to (x, a)$. Тогда $a \in S(x)$ и для всякого $b \in S(x)$ найдется такая последовательность $b_n \in S(x_n)$, что $F(b_n, \mu) \to F(b, \mu)$. Имеем

$$F(a,\mu) \le \lim \inf_{n \to \infty} F(a_n,\mu) \le \lim \inf_{n \to \infty} F(b_n,\mu) = F(b,\mu),$$

то есть $F(a,\mu) = \min_{b \in S(x)} F(b,\mu)$.

Таким образом, условия задачи (Р2) можно переформулировать:

$$\mu_X = \nu, \quad \mu(E(\mu)) = 1.$$

Теорема 4. Решение задачи (Р2) существует.

Доказательство. Проверяем условия теоремы Какутани для отображение Φ , которое сопоставляет вероятностной мере σ множество $\Phi(\sigma)$, состоящее из таких вероятностных мер μ , что $\mu_X = \nu$ и $\mu(E(\sigma)) = 1$. Покажем, что $\Phi(\sigma)$ непусто. Так как множество $E(\sigma)$ замкнуто и для каждого x сечение $E_x(\sigma) = \{a\colon (a,x)\in E(\sigma)\}$ непусто и компактно, то существует борелевское отображение $x\colon a_x\in E_x(\sigma)$. Мера $\mu=\delta_{a_x}(da)\nu(dx)$ принадлежит $\Phi(\sigma)$. Ясно, что множество $\Phi(\sigma)$ выпукло. Проверим замкнутость графика. Пусть $\mu_n\to\mu$, $\sigma_n\to\sigma$ и $\mu_n\in\Phi(\sigma_n)$. Проверим, что $\mu\in\Phi(\sigma)$. Для $(x,a)\in\mathrm{sp}\,\mu$ существует сходящаяся к (x,a)

последовательность точек $(x_n, a_n) \in \text{sp } \mu_n$. Так как $a_n \in S(x_n)$, то $a \in S(x)$. Кроме того, существует такая последовательность $b_n \in S(x_n)$, что $F(b_n, \sigma) \to F(b, \sigma)$. Положим

$$\varepsilon_n = \sup_{c \in A} |F(c, \sigma_n) - F(c, \sigma)|.$$

Из равномерной непрерывности F следует, что $\varepsilon_n \to 0$. Итак, для всякого $b \in S(x)$ имеем

$$F(a,\sigma) = \lim_{n \to +\infty} F(a_n,\sigma) \le \lim_{n \to +\infty} (F(a_n,\sigma_n) + \varepsilon_n) \le$$

$$\leq \lim_{n \to +\infty} (F(b_n, \sigma_n) + \varepsilon_n) = \leq \lim_{n \to +\infty} (F(b_n, \sigma) + 2\varepsilon_n) = F(b, \sigma).$$

Следовательно, $F(a, \sigma) = \min_{b \in S(x)} F(b, \sigma)$.

Приложения

Пусть

$$h, g: \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^d$$

гладкие по $x \in \mathbb{R}^d$ и удовлетворяют условиям

$$|h(x,\mu) - h(x,\sigma)| + |g(x,\mu) - g(x,\sigma)| \le Cd_{KR}(\mu,\sigma),$$

$$|h(x,\mu) - h(y,\mu)| + |g(x,\mu) - g(y,\mu)| \le C|x-y|,$$

$$|h(x,\mu)| + |g(x,\mu)| \le C.$$

Рассмотрим функцию

$$F(y,P) = \int_0^T \frac{1}{2} |\dot{y}(t)|^2 + h(y(t), P \circ e_t^{-1}) dt + g(y(T), P \circ e_T^{-1}),$$

где P — вероятностная мера на $\mathbb{R}^d \times C([0,T],\mathbb{R}^d)$.

Предложение 1. Предположим, что на абсолютно непрерывной функции y_x функционал $y \to F(y,P)$ достигает минимального значения на множестве всех абсолютно непрерывных функций y, удовлетворяющих условию y(0) = x. Тогда

$$|y_x(t)| \le |x| + M_1, \quad |y_x(t) - y_x(s)| \le M_2|t - s|.$$

Доказательство. Так как $F(y_x, P) \le F(x, P)$, то

$$\int_0^T |\dot{y}_x(t)|^2 \, dt \le 8CT + 4C.$$

Следовательно, верна оценка

$$|y_x(t)| \le |x| + \sqrt{T}\sqrt{8CT + 4C} = M_1.$$

Для функции y_x выполняется уравнение Эйлера-Лагранжа

$$\ddot{y}_x = h_y(y_x, P \circ e_t^{-1}).$$

Следовательно, $|\ddot{y}_x| \leq C_1$ и с учетом оценки интеграла от квадрата $|\dot{y}_x(t)|$ для некоторой константы C_2 получаем неравенства $|\dot{y}_x(t)| \leq C_3$ и

$$|y_x(t) - y_x(s)| \le M_2|t - s|.$$

Пусть ν — вероятностная мера на \mathbb{R}^d , носитель которой лежит в B(0,R). Положим

$$X = \overline{B}(0, R), \quad A = \{ y \in C([0, T], \mathbb{R}^d) \colon |y(t)| \le M_1 + 2R, \quad |y(t) - y(s)| \le M_2 |t - s| \}.$$

Для каждого $x \in X$ через S(x) обозначим множество функций y из A, удовлетворяющих условию y(0) = x.

Теорема 5. Существует вероятностная мера P на $X \times A$, удовлетворяющая условиям

$$P_X = \nu$$
, $P\{(x,y): y(0) = x$, $F(y,P) = \min_{z \in S(x)} F(z,P)\} = 1$.