Formal Methods for Computer Science I Computational thinking is a way of solving problems, designing systems, and understanding human behaviour that draws on concepts fundamental to computer science. (CS includes programming) Computer = programmable machine that receives input, stores and manipulates information and provides output in a useful format.

computation

into remoter into CS = systematic study of information and computation. Boolean Algebra => complete operator and vor consumption dissuration n not negation * 2 + 1 - 1 (atternative forms) neutral elements, zero elements, idempotence, commutativity, associativity, distributivity, negation De Morgans Laws NAND Nor exclusive or (XOR), implication, equivalence Tastology (always true), Contradiction (always false), Satisfiable

Predicate Logic
propositional logic: True, false, propositions
quantifier, universe, predicate
Y universal quantitier (for all) I existential quantitier (exists)
H distributive with 1, not with 1 I distributive with 1, not with 1
De Morgan's Axioms
$ \neg \exists : \neg (\exists \times : \cup (x) : F(x)) \Leftrightarrow \forall \times : \cup (x) : \neg F(x) \neg \forall : \neg (\forall \times : \cup (x) : F(x)) \Leftrightarrow \exists \times : \cup (x) : \neg F(x) $
Well Formulated Formulas (WFF)
bounded variables: specific value or quantified free variables: not bound, not specified
You can't Sust swap Y and I if they're mixed! If P doesn't contain x as a variable, P can be outsic
Min(x): U(x): T(x) smallest value of terms T(x)
Max(x): U(x): T(x) greatest value of terms $T(x)An_2(x): U(x): F(x) number/count of all objects for which F(x)$
The Control of the co

Logic reloaded	
Logic = the study of the principles of correct reaso	ning
Sets	
set = a group of objects {20,12,32}	
g empty set U universe	
E membership & non-membership	
A & B Subset	
ACB proper subset	
AUB union (xeA v xeB)	
A NB intersection (XEAAXER) A NB, A' Complements (XEAAXER)	
Proprieties like Boolean Algebra	
ACA reflexivity	
ACBABGA A=B anti-symmetry ACBABGC AGC transitivity	
A SBA BSC ASC transitivity	
AxB cartesian product (all combinations)	
W-ary relation, binary relation	

Relations	
W-ary relation $R \subseteq A_1 \times A_2 \times \times A_n$	
Binary relation $R \subseteq A_1 \times A_2$ (a,b) $\in R$ a, R,b	
domain (R) all a that satisfy R with a b range (R) all b that satisfy R with an a	error
- reflexive relation Vx:xEA:xRx	
every element x of A is in relation R with itself - symmetric relation $\forall x, y : x, y \in A : x Ry \Rightarrow y Rx$	
if there is a relation between x and y, then there is a relation between y and x	\$
+ transitive relation \x,y, \\ x,y, \\ eA: (xRy 1 yR\) ⇒xf	
Equivalence class [x]R = 2yl x Ryz for [n] = 212	ξ
Transitive closure: relation Rt that contains all possible transitive relations over all elements	
- irreflexive relation Yx: xeA: 7(xRx)	-
no element x of A is in relation R with itself	
- antisymmetric relation $\forall x, y : x, y \in A: (xRyAyRx) \Rightarrow x = 1$ if there is a relation between x and y and	7
one between y and x, then x equals y -asymmetric relation tx, y: x, y ∈ A: x Ry > 7 (y Rx)	
xRy and yRx cannot hold at the same time	
	. serge

-non-symmetric relation Xxx:xxeA: (xRx)1-1(xRx) a relation that is not symmetric
- total relation Xx,y:x,yeA: xRy V yRx R is defined on the entire A
- acyclic relation There are no elements with transitive closure to thems
Partial order: reflexive, transitive, antisymmetric Total order: partial order, total relation Strict partial order: reflexive, transitive
nodes, edges; root, leaf; parent, child; subtree, path left, right depth=level = distance from root height = distance to leaf
degree => number of children of a node ordered tree: leftmost, rightmost isomorphic trees (same structure) binary tree (all nodes have a left and/or right child)
Complete binary tree (all nodes have a left AuD a right child) Breadth-first Traversal (BFS) => Level-order
Precider (visit, left, right) Inorder (left, visit, right) Postorder (left, right, visit)

examples: hierarchical structure
binary search tree (& balance)
inathematical expressions (operators, operands)
Graphs
Graps are made of Vertices and Edges
G=(V,E) = { { { { { { { { L } { { { { { L } { { { {
Representation as Adiacencymatrix
- directed VS and rected graphs - degree of a node = number of connections
- Weighted graphs = edges have a value (weight)
- Complete VS not complete graph (all possible connections) (not all possible connections)
- Bipartite graph (vertices can be divided in two dissoint sets
That no U and V such that every edge connects a odd-length vertex in U to one in V)
- cycle (returns to starting point)
-loop (returns to itself, as in (A))
- evenian path (visits every edge exactly once)) cycle if
- hamiltonian path (visits every vertex exactly once) 5 return to start - spanning tree (tree without cycles)
-components
- critical node (grap gets separated/dinded)
-critical edge I if this is eliminated) -biconnected components/graph (removal of a vertex
(+ multiple ways from 1/4 to 1/2) doesn't break the graph
- Subgraph (connected nodes and all related, connecting edges)

-weakly reachable (exists undirected path) -strongly reachable (exists directed path)
 Diskstra algorithm Ployd-Warshall algorithm Traveling salesman problem
Complexity
Computation requires resources: memory, bandwidth, time,
Big-O Notation (worst-case) O(n) 12 Notation (best-case) D(n) 6 Notation (average-case) O(n)
$O(1)$ constant, $O(\log(n))$ logarithmic, $O(n)$ linear, $O(n^2)$ quadratic, $O(n^3)$ cobic, $O(n^K)$ polynomial, $O(K^n)$ expon
-ignore constants $O(c^*f) = O(f)$ -take the maximum term $O(f) + O(g) = \max(O(f), O(g))$ - multiplicate fully $O(f^*g) = O(f)^*O(g)$
solvable $P \subset MP$ verifiable in $O(n^K)$ $P \subset MP$ in $O(n^K)$
NP-complete problems: NP, and proven one cannot do better fex. Hamiltonian path, traveling salesman, Graph coloning, Subs
Halting problem: will this program terminate? Dondecida

Models and languages
A model is a simplification of the subject, and its purposition to the subject, and its purposition of the subject of the subj
Meta-Model = a model that makes statements about what can be expressed in valid models
=> you need to know the language!
- BNF (Backus-Naur-Form) > notation used to describe the syntax of languages used in computing
describe the syntax of languages used in computing - EBNF (Extended BNF)
syntactically correct sentences do not necessarily have a valid meaning!
Programming Languages A language is a set of sequences of symbols that we interpret to attribute meaning.
that we interpret to attribute meaning. programming language > communicating software designs
programming = modeling
statements, expressions, variables, literals, control constructs, Functions, comments,
-Imperative (datatalgorithms) -Object-Oriented (objects+messages)
+Functional (stateless time functions)
LI man (II the trolled)