LÝ THUYẾT TÍNH TOÁN

BÀI 5: NGÔN NGỮ KHÔNG CHÍNH QUY

Phạm Xuân Cường Khoa Công nghệ thông tin cuongpx@tlu.edu.vn

Nội dung bài giảng

1. Khái niệm

2. Bổ đề Bơm

3. Tổng kết chương 1

Khái niệm

Khái niệm

- Ngôn ngữ chính quy: Ngôn ngữ được đoán nhận bởi một
 DFA nào đó
 - → Ngôn ngữ không chính quy là gì?

Ví dụ: Xét các ngôn ngữ sau trên bộ chữ $\Sigma = \{0,1\}$ là **chính quy** hay **không chính quy**

 $B = \{0^n 1^n | n \ge 0\}$

 $C = \{w | w \text{ có số ký hiệu 0 bằng số ký hiệu 1} \}$

Khái niệm

- Ngôn ngữ chính quy: Ngôn ngữ được đoán nhận bởi một DFA nào đó
 - \rightarrow Ngôn ngữ không chính quy là gì?

Ví dụ: Xét các ngôn ngữ sau trên bộ chữ $\Sigma = \{0,1\}$

 $B = \{0^n 1^n | n \ge 0\} \rightarrow \text{Không chính quy}$

 $C = \{w | w \text{ có số ký hiệu } 0 \text{ bằng số ký hiệu } 1\} \rightarrow \text{Không chính quy}$

 $D = \{w | w \text{ có số lần xuất hiện xâu con 01 và 10 là bằng nhau}\} \rightarrow Chính quy$

ightarrow Làm sao để chứng minh một ngôn ngữ là không chính quy?

Chu trình

• Hãy tưởng tượng một FSM có thể tạo ra các chuỗi rất dài Ví dụ: Một DFA có |Q|=5 Làm sao để tạo ra một chuỗi dài \rightarrow Đi theo chu trình Nếu không theo chu trình thì chuỗi dài nhất được sinh ra là bao nhiêu?

- $\rightarrow |s| \leq 5$
- ullet Tất cả các chuỗi ≥ 5 đều phải đi theo một chu trình nào đó
 - Nếu ta có thể đi theo một chu trình n lần thì chuỗi được sinh ra đó sẽ nằm trong ngôn ngữ mà FSM đó đoán nhận
 - Nếu ta bỏ qua chu trình đó thì chuỗi được sinh ra vẫn sẽ nằm trong ngôn ngữ mà FSM đó đoán nhận

Xét một FSM sau:

 \rightarrow Tất cả các chuỗi s
 được sinh ra có dạng $\mathbf{s}=\mathbf{x}\mathbf{y}^i\mathbf{z}$ đều thuộc ngôn ngữ A mà máy FSM đoán nhận

Độ dài dẫn xuất

- Nếu A là ngôn ngữ chính quy và ${\bf s}$ là một xâu đủ dài thuộc A $(|{\bf s}| \geq {\bf p})$ thì ${\bf s}$ có thể được viết như sau: ${\bf s} = {\bf xyz}$
- p được gọi là độ dài dẫn xuất (pumping length)
- \bullet Tất cả các ngôn ngữ chính quy có một thuộc tính đặc biệt Nếu ngôn ngữ không có thuộc tính này \to Là ngôn ngữ không chính quy

Bổ đề Bơm

Bổ đề Bơm

Bổ đề Bơm (Pumping Lemma)

Nếu A là một ngôn ngữ chính quy, thì tồn tại một số **p** sao cho nếu s là một xâu bất kỳ thuộc A có độ dài ít nhất là p, thì s có thể được chia ra làm 3 phần s=xyz thỏa mãn các điều kiện sau:

- 1. $xy^iz \in A \ \forall \ i \geq 0$
- 2. |y| > 0
- 3. $|xy| \leq p$

Bổ đề Bơm

 Sử dụng bổ đề Bơm để chứng minh một ngôn ngữ A là không chính quy

Ý TƯỞNG: (Chứng minh bằng phản chứng)

- Giả sử A là chính quy
- Nó có một độ dài dẫn xuất p
- Tất cả các xâu trong A có độ dài lớn hơn p ($|s| \geq p$) có thế chia làm 3 đoạn s = xyz
- Chon 1 xâu như vây trong A
- Chia nó làm 3 đoạn xyz
- Chỉ ra rằng $xy^iz \notin A$ bằng cách
 - Xét tất cả các trường hợp mà s có thể chia thành 3 đoạn
 - Chỉ ra rằng không có trường hợp nào thỏa mãn 3 điều kiện của bổ đề Bơm
- ightarrow Mâu thuẫn, do đó kết luận A không phải là chính quy

Cho ngôn ngữ B = $\{0^n1^n|\ n\geq 0\}$ Hãy chứng minh ngôn ngữ B là không chính quy Chứng minh:

- ullet Giả sử B là chính quy o B có một độ dài dẫn xuất p
- Xâu chúng ta lựa chọn để chỉ ra phản chứng là: $s=0^p1^p$
- Xét các trường hợp có thể chia s thành 3 đoạn xyz
 - y nằm trong phần chuỗi 0
 - y nằm trong phần chuỗi 1
 - y nằm trong cả phần chuỗi 0 và chuỗi 1

• Xét TH 1: $00000111111 \rightarrow xy^2z = 0000|0000111111$ Xâu xy^2z có thuộc B hay không?

- Xét TH 1: $00000111111 \rightarrow xy^2z = 0000|0000111111$ Xâu xy^2z có thuộc B hay không? $\rightarrow xy^2z \not\in B$
- TH3: $00000111111 \rightarrow xy^2z = 0000011|00111111 \notin B$
- Ngoài ra theo điều kiện 3:
 - TH1: $|xy| = |0000| = 4 \le p = 5 \rightarrow True$
 - TH2: $|xy| = |000001111| = 9 \le p = 5 \rightarrow False$
 - TH3: $|xy| = |0000011| = 7 \le p = 5 \rightarrow False$

- Cho ngôn ngữ C = $\{w|\ w\ có\ số\ ký\ hiệu\ 0\ bằng số\ ký\ hiệu\ 1\}$ = $\{ww|\ w\in\{0,1\}^*\}$ Hãy chứng minh ngôn ngữ C là không chính quy
- Bài 1.29, 1.46 1.49 Sách giáo trình

Tổng kết chương 1

Tổng kết chương 1

- Ngôn ngữ chính quy được đoán nhận bởi ????
- DFA ⇔ NFA ????
- Biểu thức chính quy biểu diễn ????
- Thế nào là ngôn ngữ không chính quy ????

