Construction of Families of Permutation Trinomials over Finite Fields

Christian A. Rodriguez Alex D. Santos

Department of Computer Science University of Puerto Rico, Río Piedras

February 25, 2014

Table of Contents

- Introduction
- 2 Our Problem
- Results

Table of Contents

- Introduction
- 2 Our Problem
- 3 Results

Finite Fields

Definition

A **finite field** \mathbb{F}_q , $q = p^r$, p prime, is a field with $q = p^r$ elements.

Example

$$\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

Addition:

$$2+2$$
 over $\mathbb{F}_7=4$ but $4+4$ over $\mathbb{F}_7=8$ mod $7=1$

Multiplication:

$$2 \times 2$$
 over $\mathbb{F}_7 = 4$ but 4×4 over $\mathbb{F}_7 = 16 \mod 7 = 2$

Polynomials in Finite Fields

Definition

Let f(x) be a polynomial defined over a finite field \mathbb{F}_q . This is $f: \mathbb{F}_q \to \mathbb{F}_q$.

Example

Consider f(x) = x + 3 over \mathbb{F}_5 . The domian of f is $\{0, 1, 2, 3, 4\}$.

Value Sets

Definition

Let f(x) be a polynomial defined over a finite field \mathbb{F}_q . Then the **value set** of f is defined as $V(f) = \{f(a) \mid a \in \mathbb{F}_q\}$

Example

Consider
$$f(x) = x^2$$
 defined over \mathbb{F}_5 . Note: $f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 4, f(4) = 1$, so $V(f) = \{0, 1, 4\}.$

Permutation Polynomials

Definition

A polynomial f(x) defined over \mathbb{F}_q is a permutation polynomial if and only if $V(f) = \mathbb{F}_q$.

Permutation Polynomials

Definition

A polynomial f(x) defined over \mathbb{F}_q is a permutation polynomial if and only if $V(f) = \mathbb{F}_q$.

Example

Let f(x) = x + 3 over \mathbb{F}_5 . Note: $V(f) = \{3, 4, 0, 1, 2\}$ so f(x) is a permutation polynomial over \mathbb{F}_5

Permutation Polynomials

Definition

A polynomial f(x) defined over \mathbb{F}_q is a permutation polynomial if and only if $V(f) = \mathbb{F}_q$.

Example

Let f(x) = x + 3 over \mathbb{F}_5 . Note: $V(f) = \{3, 4, 0, 1, 2\}$ so f(x) is a permutation polynomial over \mathbb{F}_5

Example

Let $f(x) = x^2$ over \mathbb{F}_5 . We have that $V(f) = \{0, 1, 4\}$ so f(x) is not a permutation polynomial over \mathbb{F}_5 .

Primitive Roots

Definition

A **primitive root** $\alpha \in \mathbb{F}_q$ is a generator for the multiplicative group \mathbb{F}_q^{\times}

Primitive Roots

Definition

A **primitive root** $\alpha \in \mathbb{F}_q$ is a generator for the multiplicative group \mathbb{F}_q^{\times}

Example

Consider
$$\mathbb{F}_7$$
. Since $3^1 = 3, 3^2 = 2, 3^3 = 6, 3^4 = 4, 3^5 = 5, 3^6 = 1, 3$ is a primitive root of \mathbb{F}_7 .

Primitive Roots

Definition

A **primitive root** $\alpha \in \mathbb{F}_q$ is a generator for the multiplicative group \mathbb{F}_q^{\times}

Example

Consider
$$\mathbb{F}_7$$
. Since $3^1 = 3, 3^2 = 2, 3^3 = 6, 3^4 = 4, 3^5 = 5, 3^6 = 1, 3$ is a primitive root of \mathbb{F}_7 .

Example

Consider
$$\mathbb{F}_7$$
. Since $2^1 = 2, 2^2 = 4, 2^3 = 1, 2^4 = 2, 2^5 = 4, 2^6 = 1, 2$ is not a primitive root of \mathbb{F}_7 .

Table of Contents

- Introduction
- 2 Our Problem
- 3 Results

Our Polynomial

Let $d_1, d_2 \in \mathbb{Z}$ such that $d_1 \mid (q-1)$ y $d_2 \mid (q-1)$. We are interested in the polynomial:

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

with $a,b\in \mathbb{F}_q^{\times}$.

Denote the value set of this polynomial $V(f_{a,b})$.

Our Polynomial

Let $d_1, d_2 \in \mathbb{Z}$ such that $d_1 \mid (q-1)$ y $d_2 \mid (q-1)$. We are interested in the polynomial:

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

with $a, b \in \mathbb{F}_q^{\times}$.

Denote the value set of this polynomial $V(f_{a,b})$.

Problem

Our Problem

Study the value set of polynomials of the form

 $f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$ and determine conditions in a, b such that they are permutation polynomials.

Table of Contents

- Introduction
- 2 Our Problem
- Results

The class of equivalence [a, b]

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

Let $a = \alpha^i, b = \alpha^j, \alpha$ a primitive root in \mathbb{F}_q and \sim the relation defined as $(a,b) \sim (a',b')$

$$\iff$$
 $\mathbf{a}' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}, \mathbf{b}' = \alpha^{j+h(\frac{q-1}{d_1})}$

Example

Let q=13, $d_1=2$, $d_2=3$, then we have $\alpha=2$ and take $a=4=2^2$, $b=8=2^3$. Now $(a,b)\sim (a',b')$ if and only if $a'=\alpha^{2+2h}$, $b'=\alpha^{3+6h}$. For example $(a,b)\sim (3,5)$

The class of equivalence [a, b]

Example

Let
$$q = 13$$
, $d_1 = 2$, $d_2 = 3$, then we have $\alpha = 2$ and take $a = 4 = 2^2$, $b = 8 = 2^3$. Now $(a, b) \sim (a', b')$ if and only if $a' = \alpha^{2+2h}$, $b' = \alpha^{3+6h}$. For example $(a, b) \sim (3, 5)$

The class of equivalence [a, b]

Lemma

The relation \sim defined previously is an equivalence relation.

 $f_{a,b}$ with equivalence classes:

$$[f_{a,b}] = [f_{\alpha^i,\alpha^j}] = \{f_{a',b'} \mid (a,b) \sim (a',b')\}$$

Value set correspondence

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

Theorem

Suppose that $f_{a,b} \sim f_{a',b'}$ then $|V(f_{a,b})| = |V(f_{a',b'})|$.

Example

Let $q=13, d_1=2, d_2=3, a=4, b=8$. Since $(4,8)\sim (3,5)$ we have that $|V(f_{4,8})|=|V(f_{3,5})|$

Size of equivalence classes

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

Proposition

 $|[f_{a,b}]| = lcm(d_1, d_2)$ where lcm(x, y) is the least common multiple of x and y.

Example

Let q = 13, $d_1 = 2$, $d_2 = 3$, a = 4, b = 8. Note that lcm(2,3) = 6 These are the elements of (a, b):

$$(4,8), (3,5), (12,8), (9,5), (10,8), (1,5), (4,8)$$

Polynomials Results

Number of Permutation Polynomials (16, 1), (25, 36),

* Note that the number of polynomials in each cell is 6 = lcm(2, 3)

* The polynomials within each cell have value sets of the same size. The size of the value sets associated to different cells might or might not be equal.

Polynomial Results

Proposition

The number of polynomials of the form $f_{a,b}(X)$ with $|V(f_{a,b})| = n$ is a multiple of $lcm(d_1, d_2)$

Corollary

The number of permutation polynomials of the form $f_{a,b}(X)$ is a multiple of $lcm(d_1, d_2)$

Future Work

- Find necessary and sufficient conditions such that $V(f_{a,b}) = \mathbb{F}_q$
- Collect data on number of permutation polynomials of the form $f_{a,b}$ for different values of d_1 and d_2 and compare results with number of permutation polynomials.