

## Mini-batch gradient descent

#### Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on *m* examples.

#### Mini-batch gradient descent



Understanding mini-batch gradient descent

### Optimization Algorithms

#### Training with mini batch gradient descent





#### Choosing your mini-batch size



#### Choosing your mini-batch size



## Exponentially weighted averages

#### Temperature in London

```
\theta_{1} = 40^{\circ}F
\theta_{2} = 49^{\circ}F
\theta_{3} = 45^{\circ}F
\vdots
\theta_{180} = 60^{\circ}F
\theta_{181} = 56^{\circ}F
\vdots
```



#### Exponentially weighted averages





Understanding exponentially weighted averages

#### Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$



#### Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$v_{100} = 0.9v_{99} + 0.1\theta_{100}$$

$$v_{99} = 0.9v_{98} + 0.1\theta_{99}$$

$$v_{98} = 0.9v_{97} + 0.1\theta_{98}$$

...

### Implementing exponentially weighted averages

$$v_0 = 0$$
  
 $v_1 = \beta v_0 + (1 - \beta) \theta_1$   
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$   
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$ 

• • •



Bias correction in exponentially weighted average

#### Bias correction



$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$



## Gradient descent with momentum

#### Gradient descent example





#### Implementation details

#### On iteration *t*:

Compute dW, db on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta)dW$$
$$v_{db} = \beta v_{db} + (1 - \beta)db$$

$$W = W - \alpha v_{dW}, \ b = b - \alpha v_{db}$$

Hyperparameters:  $\alpha$ ,  $\beta$ 

$$\beta = 0.9$$



#### RMSprop

#### RMSprop





# Adam optimization algorithm

#### Adam optimization algorithm

yhat = np.array([.9, 0.2, 0.1, .4, .9])

#### Hyperparameters choice:



**Adam Coates** 



## Learning rate decay

#### Learning rate decay



#### Learning rate decay

#### Other learning rate decay methods



## The problem of local optima

#### Local optima in neural networks



#### Problem of plateaus



- Unlikely to get stuck in a bad local optima
- Plateaus can make learning slow