香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2 0 1 2 年 香港中 學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2012

數學 延伸部分單元一(微積分與統計)

MATHEMATICS Extended Part Module 1 (Calculus and Statistics)

評 卷 參 考

MARKING SCHEME

本評卷參考乃香港考試及評核局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for markers' reference. The Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Authority is counting on the co-operation of markers/teachers in this regard.

Solution	Marks	Remarks
1. (a) $(1+3x)^n = 1 + C_1^n(3x) + C_2^n(3x)^2 + \cdots$		
$=1+3nx+\frac{9n(n-1)}{2}x^2+\cdots$	1A	
(b) $e^{-2x}(1+3x)^n = \left[1+(-2x)+\frac{(-2x)^2}{2!}+\cdots\right]\left[1+3nx+\frac{9n(n-1)}{2}x^2+\cdots\right]$	1A	For $1+(-2x)+\frac{(-2x)^2}{2!}+\cdots$
		2!
$= (1 - 2x + 2x^{2} + \cdots) \left[1 + 3nx + \frac{9n(n-1)}{2}x^{2} + \cdots \right]$		
$1 \cdot \frac{9n(n-1)}{2} + (-2)(3n) + 2 \cdot 1 = 62$	1M	
$2 \qquad \qquad 2 \qquad \qquad$	1111	
$n=5$ or $\frac{-8}{3}$ (rejected)	1A	
	(4)	
2. Let $u = 4t + 1$.	1M	!
du = 4dt	111/1	
When $t = 0$, $u = 1$; when $t = 2$, $u = 9$. The change in the value of the flat		
$= \int_0^2 \frac{t}{\sqrt{At+1}} dt$	1M	
V 70 T 1	1141	
$=\int_{1}^{9} \frac{1}{\sqrt{u}} \cdot \frac{u-1}{4} \frac{du}{4}$		
v. v.		
$=\frac{1}{16}\int_{1}^{9}\left(\sqrt{u}-\frac{1}{\sqrt{u}}\right)du$		
$1 \left[2 \ \frac{3}{2} \ \frac{1}{2} \right]^9$		$\begin{bmatrix} 2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$
$=\frac{1}{16} \left[\frac{2}{3} u^{\frac{3}{2}} - 2u^{\frac{1}{2}} \right]_{1}^{9}$	1A	For $\frac{1}{16} \left \frac{2}{3} u^{\frac{3}{2}} - 2u^{\frac{1}{2}} \right $
_ 5	1A	
$=\frac{5}{6}$	IA	
Hence the percentage change $=\frac{\frac{5}{6}}{3} \times 100\%$		
$=27\frac{7}{9}\%$	1A	OR 27.7778%
9 10	(5)	
<u>kt</u>		
3. (a) $P = ae^{\frac{kt}{40}} - 5$ $\ln(P+5) = \frac{k}{40}t + \ln a$		
$\ln(P+5) = \frac{\kappa}{40}t + \ln a$	1A	
(b)		· ·
t 2 4 6 8 10 P 2.36 2.81 3.23 3.55 4.01		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M	
From the graph on the next page, $\ln a \approx 1.96$		
a ≈ 7	1111	Either one
$\frac{k}{40} \approx \frac{2.21 - 1.96}{10 - 0}$	•	
$k \approx 1$	1A	For both a and k

Solution	Marks	Remarks
2.25 2.20 2.15 2.10 2.05 2.00 1.95	1A →t	
	(5)	
4. (a) $y = \sqrt[3]{\frac{3x-1}{x-2}}$ $\ln y = \frac{1}{3}\ln(3x-1) - \frac{1}{3}\ln(x-2)$ $\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{3x-1} - \frac{1}{3(x-2)}$ (b) By (a), $\frac{dy}{dx} = \left[\frac{1}{3x-1} - \frac{1}{3(x-2)}\right] \sqrt[3]{\frac{3x-1}{x-2}}$	1A 1A	•
$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{1}{3x - 1} - \frac{1}{3(x - 2)} \right] \sqrt[3]{\frac{3x - 1}{x - 2}} + \left[\frac{1}{3x - 1} - \frac{1}{3(x - 2)} \right] \frac{d}{dx} \left(\sqrt[3]{\frac{3x - 1}{x - 2}} \right)$ $= \left[\frac{-3}{(3x - 1)^2} + \frac{1}{3(x - 2)^2} \right] \sqrt[3]{\frac{3x - 1}{x - 2}} + \left[\frac{1}{3x - 1} - \frac{1}{3(x - 2)} \right]^2 \sqrt[3]{\frac{3x - 1}{x - 2}} \text{by (a)}$ When $x = 3$, $\frac{d^2 y}{dx^2} = \left\{ \frac{-3}{(3 \cdot 3 - 1)^2} + \frac{1}{3(3 - 2)^2} + \left[\frac{1}{3 \cdot 3 - 1} - \frac{1}{3(3 - 2)} \right]^2 \right\} \sqrt[3]{\frac{3 \cdot 3 - 1}{3 - 2}}$	1M	For using (a)
Alternative Solution When $x = 3$, $y = 2$ and so $\frac{dy}{dx} = \frac{-5}{12}$. By (a), $\frac{1}{y} \cdot \frac{d^2y}{dx^2} - \frac{1}{y^2} \cdot \frac{dy}{dx} \cdot \frac{dy}{dx} = \frac{-3}{(3x-1)^2} + \frac{1}{3(x-2)^2}$	1A 1M	For both y and $\frac{dy}{dx}$ For chain rule
When $x = 3$, $\frac{1}{2} \cdot \frac{d^2 y}{dx^2} - \frac{1}{2^2} \cdot \frac{-5}{12} \cdot \frac{-5}{12} = \frac{-3}{(3 \cdot 3 - 1)^2} + \frac{1}{3(3 - 2)^2}$ i.e. $\frac{d^2 y}{dx^2} = \frac{95}{144}$	1M 1A (6)	OR 0.6597

i.e. $C = \frac{1}{2}$ Hence the equation of S is $y = \frac{1}{2}e^{2x} + \frac{1}{2}$. (b) At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$. Hence the equation of L is $y-1=1(x-0)$. i.e. $y = x+1$ 1A $y = \frac{1}{2}e^{2x} + \frac{1}{2}A(0,1)$ $y = x+1$ 1A 1A O			Solution	Marks	Remarks
Since $A(0,1)$ lies on S , we have $1 = \frac{1}{2}e^{2(0)} + C$. i.e. $C = \frac{1}{2}$ Hence the equation of S is $y = \frac{1}{2}e^{2x} + \frac{1}{2}$. (b) At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$. Hence the equation of L is $y - 1 = I(x - 0)$. i.e. $y = x + 1$ (c) The area of the region bounded by S , L and the line $x = 1$ $= \int_{0}^{1} \left[\left(\frac{1}{2}e^{2x} + \frac{1}{2} \right) - (x + 1) \right] dx$ $= \left[\frac{1}{4}e^{2x} - \frac{1}{2}x^{2} - \frac{1}{2}x^{2} \right]_{0}^{1}$ $= \frac{e^{2} - 5}{4}$ 1A IM IM for $A = \int_{0}^{1} (y_{1} - y_{1}) dx$ $= \left[\frac{1}{4}e^{2x} - \frac{1}{2}x^{2} - \frac{1}{2}x^{2} \right]_{0}^{1}$ $= \frac{e^{2} - 5}{4}$ 1A OR 0.5973 OR 0.5973 IM $= P(Z > 1.2)$ $= 0.1151$ (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $x = (0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}})$ $= (0.1085, 0.3915)$ 1A IM IM IM IM IM IM IM IM IN IN	5.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{2x}$		
Since $A(0,1)$ lies on S , we have $1 = \frac{1}{2}e^{2(0)} + C$. i.e. $C = \frac{1}{2}$ Hence the equation of S is $y = \frac{1}{2}e^{2x} + \frac{1}{2}$. (b) At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$. Hence the equation of L is $y - 1 = 1(x - 0)$. i.e. $y = x + 1$ (c) The area of the region bounded by S , L and the line $x = 1$ $= \int_{0}^{1} \left[\left(\frac{1}{2}e^{2x} + \frac{1}{2} \right) - (x + 1) \right] dx$ $= \left[\frac{1}{4}e^{3x} - \frac{1}{2}x^{2} - \frac{1}{2}x \right]_{0}^{1}$ $= \frac{e^{2} - 5}{4}$ IM IM IM IM IM IM IM IM OR 0.5973 OR 0.5973 OR 0.5973 IM OR 0.5973 IM OR 0.5973 IM OR 0.5973 IM IM OR 0.5973 IM IM OR 0.5973 IM IM OR 0.5973				1 A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
i.e. $C = \frac{1}{2}$ Hence the equation of S is $y = \frac{1}{2}e^{2x} + \frac{1}{2}$. (b) At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$. Hence the equation of L is $y-1=1(x-0)$. i.e. $y = x+1$ (c) The area of the region bounded by S , L and the line $x = 1$ $= \int_0^1 \left[\left(\frac{1}{2}e^{2x} + \frac{1}{2} \right) - (x+1) \right] dx$ $= \left[\frac{1}{4}e^{2x} - \frac{1}{2}x^2 - \frac{1}{2}x \right]_0^1$ $= \frac{e^2 - 5}{4}$ In IM for $A = \int_0^1 (y_1 - y_1) dx$ $= \left[\frac{1}{4}e^{2x} - \frac{1}{2}x^2 - \frac{1}{2}x \right]_0^1$ $= \frac{e^2 - 5}{4}$ In IM for $A = \int_0^1 (y_1 - y_1) dx$ $= \frac{1}{4}e^{2x} - \frac{1}{2}x^2 - \frac{1}{2}x \right]_0^1$ $= \frac{e^2 - 5}{4}$ In IM for $A = \int_0^1 (y_1 - y_1) dx$ $= \frac{1}{4}e^{2x} - \frac{1}{2}x^2 - \frac{1}{2}x \right]_0^1$ $= \frac{1}{4}e^{2x} - \frac{1}{2}x^2 - \frac{1}{2}x \right]_0^1$ $= \frac{1}{4}e^{2x} - \frac{1}{2}x - \frac{1}{2}x - \frac{1}{2}x \right]_0^1$ $= \frac{1}{4}e^{2x} - \frac{1}{2}x -$			2	1M	
Hence the equation of S is $y = \frac{1}{2}e^{2x} + \frac{1}{2}$. (b) At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$. Hence the equation of L is $y-1=1(x-0)$. i.e. $y = x+1$ (c) The area of the region bounded by S , L and the line $x = 1$ $= \int_{0}^{1} \left[\left(\frac{1}{2}e^{2x} + \frac{1}{2} \right) - (x+1) \right] dx$ $= \left[\frac{1}{4}e^{2x} - \frac{1}{2}x^{2} - \frac{1}{2}x \right]_{0}^{1}$ $= \frac{e^{2} - 5}{4}$ 1A OR 0.5973 (b) At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$. Image: Indeed, the wight of $A(0,1)$ in the sample mean $A(0,1)$ in the sample mean $A(0,1)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ in the sample proportion is $A(0,25-1.96 \times \sqrt{0.25 \times 0.75} \ 36)$ i			1		$\left \begin{array}{c} \\ \\ \end{array} \right x = 1$
(b) At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$. Hence the equation of L is $y-1=1(x-0)$. i.e. $y = x+1$ (c) The area of the region bounded by S , L and the line $x = 1$ $= \int_0^1 \left[\left(\frac{1}{2} e^{2x} + \frac{1}{2} \right) - (x+1) \right] dx$ $= \left[\frac{1}{4} e^{2x} - \frac{1}{2} x^2 - \frac{1}{2} x \right]_0^1$ $= \frac{e^2 - 5}{4}$ 1A OR 0.5973 (a) Let X be the weight of a student. The sample mean $\overline{X} \sim N\left(67, \frac{15^2}{36}\right)$. P($\overline{X} > 70$) = P($\overline{X} > \frac{70 - 67}{15}$ and $\overline{X} > \frac{1}{15}$ by the sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$ The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\frac{1}{36} = \frac{1}{36} = \frac$			2	1A	
Hence the equation of L is $y-1=1(x-0)$. i.e. $y=x+1$ (c) The area of the region bounded by S , L and the line $x=1$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}\right)-(x+1)\right] dx$ $=\left[\frac{1}{4}e^{2x}-\frac{1}{2}x^2-\frac{1}{2}x\right]_0^1$ $=\frac{e^2-5}{4}$ IM IM for $A=\int_0^1 (y_1-y_1)^2 dx$ $=\left[\frac{1}{4}e^{2x}-\frac{1}{2}x^2-\frac{1}{2}x\right]_0^1$ $=\frac{e^2-5}{4}$ IA OR 0.5973 (7) i.e. $y=x+1$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}\right)-(x+1)\right] dx$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}\right)-(x+1)\right] dx$ $=\int_0^x \left[\frac{1}{4}e^{2x}-\frac{1}{2}x^2-\frac{1}{2}x\right]_0^1$ $=\frac{e^2-5}{4}$ IA OR 0.5973 i.e. $y=x+1$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}\right)-(x+1)\right] dx$ $=\frac{e^2-5}{4}$ IA OR 0.5973 i.e. $y=x+1$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}\right)-(x+1)\right] dx$ $=\int_0^x \left[\frac{1}{4}e^{2x}-\frac{1}{2}x^2-\frac{1}{2}x\right]_0^1$ $=\frac{e^2-5}{4}$ IA OR 0.5973 i.e. $y=x+1$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}\right)-(x+1)\right] dx$ $=\int_0^x \left[\frac{1}{4}e^{2x}-\frac{1}{2}x^2-\frac{1}{2}x\right]_0^1$ $=\frac{e^2-5}{4}$ IA OR 0.5973 i.e. $y=x+1$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}\right)-(x+1)\right] dx$ $=\int_0^x \left[\left(\frac{1}{2}e^{2x}+\frac{1}{2}x\right)-\left(\frac{1}{2}e^{2x}+\frac{1}{2}x\right)-\left(\frac{1}{2}e^{2x}+\frac$					$\begin{bmatrix} 1 & 2x & 1 \end{bmatrix}$
i.e. $y = x + 1$ (c) The area of the region bounded by S , L and the line $x = 1$ $= \int_{0}^{1} \left[\left(\frac{1}{2} e^{2x} + \frac{1}{2} \right) - (x + 1) \right] dx$ $= \left[\frac{1}{4} e^{2x} - \frac{1}{2} x^{2} - \frac{1}{2} x \right]_{0}^{1}$ $= \frac{e^{2} - 5}{4}$ 1A OR 0.5973 6. (a) Let X be the weight of a student. The sample mean $\overline{X} \sim \mathbb{N} \left(67, \frac{15^{2}}{36} \right)$. $P(\overline{X} > 70) = P \left[Z > \frac{70 - 67}{15} \right]$ $= P(Z > 1.2)$ ≈ 0.1151 1A (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}} \right)$ $\approx (0.1085, 0.3915)$ 1B 1A (5)		(b)	At $A(0,1)$, $\frac{dy}{dx} = e^{2(0)} = 1$.		$y = \frac{-e}{2} + \frac{1}{2} A(0,1)$
(c) The area of the region bounded by S , L and the line $x = 1$ $= \int_{0}^{1} \left[\left(\frac{1}{2} e^{2x} + \frac{1}{2} \right) - (x+1) \right] dx$ $= \left[\frac{1}{4} e^{2x} - \frac{1}{2} x^{2} - \frac{1}{2} x \right]_{0}^{1}$ $= \frac{e^{2} - 5}{4}$ 1A OR 0.5973 (7) 6. (a) Let X be the weight of a student. The sample mean $\overline{X} \sim N\left(67, \frac{15^{2}}{36}\right)$. $P(\overline{X} > 70) = P\left(Z > \frac{70 - 67}{15} \right)$ $= P(Z > 1.2)$ ≈ 0.1151 1A (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}} \right)$ $\approx (0.1085, 0.3915)$ 1M (5) 7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$ $\lambda = -\ln 0.1653$					$y \neq x+1$
$= \int_{0}^{1} \left[\left(\frac{1}{2} e^{2x} + \frac{1}{2} \right) - (x+1) \right] dx$ $= \left[\frac{1}{4} e^{2x} - \frac{1}{2} x^{2} - \frac{1}{2} x \right]_{0}^{1}$ $= \frac{e^{2} - 5}{4}$ 1A OR 0.5973 6. (a) Let X be the weight of a student. The sample mean $\overline{X} \sim N \left(67, \frac{15^{2}}{36} \right)$. $P(\overline{X} > 70) = P \left(Z > \frac{70 - 67}{\frac{15}{6}} \right)$ $= P(Z > 1.2)$ ≈ 0.1151 1A (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}} \right)$ $\approx (0.1085, 0.3915)$ 1M 1A (5)		(c)			
$= \frac{e^2 - 5}{4}$ 1A OR 0.5973		(0)		1 M	1M for $A = \int_0^1 (y_1 - y_2) dx$
5. (a) Let X be the weight of a student. The sample mean $\overline{X} \sim N\left(67, \frac{15^2}{36}\right)$. $P(\overline{X} > 70) = P\left(Z > \frac{70 - 67}{15}\right)$ $= P(Z > 1.2)$ ≈ 0.1151 1A (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$ $\approx (0.1085, 0.3915)$ 1M (5) 7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$ $\lambda = -\ln 0.1653$			$= \left[\frac{1}{4}e^{2x} - \frac{1}{2}x^2 - \frac{1}{2}x\right]_0^1$		
5. (a) Let X be the weight of a student. The sample mean $\overline{X} \sim N\left(67, \frac{15^2}{36}\right)$. $P(\overline{X} > 70) = P\left(Z > \frac{70 - 67}{15}\right)$ $= P(Z > 1.2)$ ≈ 0.1151 1A (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$ $\approx (0.1085, 0.3915)$ 1M (5) 7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$ $\lambda = -\ln 0.1653$			$=\frac{e^2-5}{c}$	1 A	OR 0.5973
$P(\overline{X} > 70) = P\left(Z > \frac{70 - 67}{\frac{15}{6}}\right)$ $= P(Z > 1.2)$ ≈ 0.1151 (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$ $\approx (0.1085, 0.3915)$ 1M $\approx (0.1085, 0.3915)$ 1M (5) 7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$ $\lambda = -\ln 0.1653$			4	(7)	
$= P(Z > 1.2)$ ≈ 0.1151 1A (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$ $\approx (0.1085, 0.3915)$ 1M $\approx (0.1085, 0.3915)$ 1A (5)	б.	(a)	Let X be the weight of a student. The sample mean $\overline{X} \sim N\left(67, \frac{15^2}{36}\right)$.		
\$\approx 0.1151\$ (b) The sample proportion is $\frac{9}{36} = 0.25$. An approximate 95% confidence interval for the proportion \$\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}} \), 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}} \right) \text{IM} \$\approx (0.1085, 0.3915)\$ 1A (5)			(6)	1M	
An approximate 95% confidence interval for the proportion $\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$ $\approx (0.1085, 0.3915)$ 1M (5) 7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$ $\lambda = -\ln 0.1653$				1 A	
$\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$ $\approx (0.1085, 0.3915)$ $1M$ $1A$ (5) $7. (a) \frac{e^{-\lambda}}{0!} = 0.1653 \lambda = -\ln 0.1653$		(b)	The sample proportion is $\frac{9}{36} = 0.25$.	1 A	
$\approx (0.1085, 0.3915)$ 1A (5) 7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$ $\lambda = -\ln 0.1653$					
7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$			$\approx \left(0.25 - 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}, 0.25 + 1.96 \times \sqrt{\frac{0.25 \times 0.75}{36}}\right)$	1M	
7. (a) $\frac{e^{-\lambda}}{0!} = 0.1653$ $\lambda = -\ln 0.1653$			≈ (0.1085, 0.3915)	1 A	
$\lambda = -\ln 0.1653$				(5)	
$\lambda = -\ln 0.1653$	7.	(a)	$\frac{e^{-\lambda}}{\Omega} = 0.1653$		
**			$\lambda = -\ln 0.1653$	1A	
-1.8 -1.8 (1.9) -1.8 (1.9) 2				11.	
(b) P(no. of goals in a match < 3) = $\frac{e^{-1.8}}{0!} + \frac{e^{-1.8}(1.8)}{1!} + \frac{e^{-1.8}(1.8)^2}{2!}$		(b)	U: 1: Z:		
≈ 0.7306 1A			≈ 0.7306	1A	

Solution	Marks	Remarks
(c) The number of goals scored in two matches by the team $\sim Po(3.6)$.		
∴ P(no. of goals in two matches < 3)		
$e^{-3.6}$ $e^{-3.6}(3.6)$ $e^{-3.6}(3.6)^2$	126	
$= \frac{e^{-3.6}}{0!} + \frac{e^{-3.6}(3.6)}{1!} + \frac{e^{-3.6}(3.6)^2}{2!}$	1 M	
Alternative Solution		
P(no. of goals in two matches < 3)		
= P(0,0) + P(0,1) + P(1,0) + P(1,1) + P(0,2) + P(2,0)		
$= \left(\frac{e^{-1.8}}{0!}\right)^2 + 2\left(\frac{e^{-1.8}}{0!}\right)\left[\frac{e^{-1.8}(1.8)}{1!}\right] + \left[\frac{e^{-1.8}(1.8)}{1!}\right]^2 + 2\left(\frac{e^{-1.8}}{0!}\right)\left[\frac{e^{-1.8}(1.8)^2}{2!}\right]$	1M	
≈ 0.3027	1A	
	(5)	
(a) $P(X = 1) + P(X = 3) + \dots + P(X = 13) = 1$		
0.1 + a + 0.25 + 0.15 + b + 0.05 = 1	1M	
a+b=0.45(1)		·
E(X) = 5.5		
$1 \times 0.1 + 3a + 4 \times 0.25 + 6 \times 0.15 + 9b + 13 \times 0.05 = 5.5$	1M	
a+3b=0.95(2) Solving (1) and (2), we get $a=0.2$ and $b=0.25$.	1A	For both
Solving (1) and (2), we get a viz and v vizo:	111	1 01 0001
(b) (i) $P(F \cap G) = 0.25 + 0.15$		
= 0.4	1A	
(ii) $P(F) \times P(G) = (0.25 + 0.15 + 0.25 + 0.05)(0.1 + 0.2 + 0.25 + 0.15)$		
= 0.49	1A	
$\neq P(F \cap G)$		
Alternative Solution 1		
Alternative Solution 1 $P(F \cap G)$		
$P(F \mid G) = \frac{P(F \cap G)}{P(G)}$		
0.4		
$={0.1+0.2+0.25+0.15}$		
≈ 0.571428571	1A	
P(F) = 0.25 + 0.15 + 0.25 + 0.05		
= 0.7		
$\neq P(F \mid G)$		
Alternative Solution 2		
$P(G F) = \frac{P(F \cap G)}{P(F)}$		
P(F)		
$=\frac{0.4}{0.00000000000000000000000000000000$		
$0.25 + 0.15 + 0.25 + 0.05$ ≈ 0.571428571	1A	
≈ 0.571428571 $P(G) = 0.1 + 0.2 + 0.25 + 0.15$	IA	
= 0.7		
$\neq P(G F)$		
Hence, F and G are not independent.	1	
110-100, 1 and 0 are not independent.	*	
	(6)	

	Solution	Marks	Remarks
. (a) I	Let X be the score of a student who had revised.		
1	$P(X \ge 43) = P\left(Z \ge \frac{43 - 59}{10}\right)$		
1	$\Gamma(X \ge 43) = \Gamma\left(\Sigma \ge \frac{10}{10}\right)$		
	$= P(Z \ge -1.6)$		
	≈ 0.9452	1A €	
I	Let Y be the score of a student who had not revised.	\	
]	$P(Y \ge 43) = P\left(Z \ge \frac{43 - 35.2}{12}\right)$		Either one
	$= P(Z \ge 0.65)$		
	≈ 0.2578		
	≈ 0.2378 : P(pass the test) $\approx 0.73 \times 0.9452 + 0.27 \times 0.2578$	1M	
•	= 0.759602	1A	OR 0.7596
	- 0.737002	171	OK 0.7570
(b) F	P(a student had not revised for the test he passed the test)		
(-) -	$=\frac{0.27\times0.2578}{}$	43.6	
=	0.759602	1M	
8	≈ 0.091634829		
2	≈ 0.0916	1A	
	(4 students had not revised for the test among 10 passed students)		
8	$\approx C_6^{10}(0.091634829)^4(1-0.091634829)^6$	1M	
2	≈ 0.0083	1A	
		(7)	
		ļ	
0. (a) (i) $I = \int_{1}^{4} \frac{1}{\sqrt{t}} e^{\frac{-t}{2}} dt$ $= \frac{1}{2} \cdot \frac{4 - 1}{6} \left[\frac{1}{\sqrt{1}} e^{\frac{-1}{2}} + \frac{1}{\sqrt{4}} e^{\frac{-4}{2}} + 2 \left(\frac{1}{\sqrt{1.5}} e^{\frac{-1.5}{2}} + \frac{1}{\sqrt{2}} e^{\frac{-2}{2}} + \frac{1}{\sqrt{2.5}} e^{\frac{-2.5}{2}} \right)$		
	· · · · · · · · · · · · · · · · · · ·		
	$+\frac{1}{\sqrt{3}}e^{\frac{-3}{2}}+\frac{1}{\sqrt{3.5}}e^{\frac{-3.5}{2}}$	1M	
	≈ 0.692913377		
	≈ 0.6929	1A	
(ii) $\frac{\mathrm{d}}{\mathrm{d}t} \left(t^{-\frac{1}{2}} e^{-\frac{t}{2}} \right) = \frac{-1}{2} t^{-\frac{3}{2}} e^{-\frac{t}{2}} + t^{-\frac{1}{2}} \cdot \frac{-1}{2} e^{-\frac{t}{2}}$	1M+1A	
	$= \frac{-1}{2}e^{\frac{-t}{2}}\left(t^{\frac{-3}{2}} + t^{\frac{-1}{2}}\right)$		
	$\frac{d^{2}}{dt^{2}} \left(t^{\frac{-1}{2}} e^{\frac{-t}{2}} \right) = \frac{-1}{2} \left[e^{\frac{-t}{2}} \left(\frac{-3}{2} t^{\frac{-5}{2}} + \frac{-1}{2} t^{\frac{-3}{2}} \right) + \frac{-1}{2} e^{\frac{-t}{2}} \left(t^{\frac{-3}{2}} + t^{\frac{-1}{2}} \right) \right]$	1M+1A	
	$=\frac{1}{4}e^{\frac{-t}{2}}\left(3t^{\frac{-5}{2}}+2t^{\frac{-3}{2}}+t^{\frac{-1}{2}}\right)$		
	> 0 for $1 \le t \le 4$.		
	Hence the estimation in (i) is an over-estimate.	1	
		(7)	
		(7)	

Solution	Marks	Remarks
(b) Let $t = x^2$.	1M	
dt = 2xdx When $t = 1$, $x = 1$; when $t = 4$, $x = 2$.] } 1A	
$I = \int_1^4 \frac{1}{\sqrt{t}} e^{\frac{-t}{2}} dt$		
$= \int_{1}^{2} \frac{1}{x} e^{\frac{-x^{2}}{2}} 2x dx$		
$= \int_{1} \frac{}{x} e^{-2} 2x dx$		
$=2\int_{1}^{2}e^{-\frac{x^{2}}{2}}dx$		
$=2\int_{1}^{\infty}e^{-2x}dx$	1	
	(3)	
(c) $2\int_{1}^{2} e^{\frac{-x^2}{2}} dx < 0.692913377$		
(c) $2\int_1 e^{-2} dx < 0.692913377$	1M	100 miles (100 miles (
$2\sqrt{2\pi} \int_{1}^{2} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^{2}}{2}} dx < 0.692913377$		
$2\sqrt{2\pi} \int_{1}^{\infty} \frac{e^{-2}}{\sqrt{2\pi}} e^{-2} dx < 0.692913377$		
$2\sqrt{2\pi}(0.4772 - 0.3413) < 0.692913377$	1A	For 0.4772 and 0.3413
$\pi < 3.249593152$		
$\therefore \pi < 3.25$	1	
	(3)	
·		
1. (a) When $t = 35$, the intensity increased to a maximum and therefore $\frac{dR}{dt} = 0$.		
Qi .		
$\frac{a(30-35)+10}{(35-35)^2+b}=0$	1A	
a=2	1A	
	(2)	_
(b) $\frac{dR}{dt} = \frac{2(30-t)+10}{(t-35)^2+b}$		
Let $u = (t-35)^2 + b$.	1M	
du = 2(t - 35) dt	1141	
·		
$R = \int \frac{-2t + 70}{(t - 35)^2 + b} \mathrm{d}t$		
$= \int \frac{-2t + 70}{u} \frac{\mathrm{d}u}{2(t - 35)}$		
,		
$=-\ln u +C$		
$= -\ln[(t-35)^2 + b] + C$	1A	
$R\big _{t=T} = R\big _{t=0}$		
$-\ln[(T-35)^2+b]+C=-\ln[(0-35)^2+b]+C$	1M	
$(T-35)^2 = 35^2$	1A	
T = 70 or 0 (rejected)	IA	
	(4)	1

	Solution	Marks	Remarks
(c)	$R\big _{t=40} - R\big _{t=41} = \ln\frac{61}{50}$		·
	$-\ln[(40-35)^2+b]+C-\{-\ln[(41-35)^2+b]+C\}=\ln\frac{61}{50}$	1M	·
	$-\ln(25+b) + \ln(36+b) = \ln\frac{61}{50}$		
	$\ln \frac{36+b}{25+b} = \ln \frac{61}{50}$		
	<i>b</i> = 25	1A	
	$R = -\ln[(t-35)^2 + 25] + C$ $R _{t=35} = 6$		
	$-\ln[(35-35)^2+25]+C=6$	1M	
	$C = 6 + \ln 25$ i.e. $R = -\ln[(t - 35)^2 + 25] + 6 + \ln 25$	1A	
		(4)	
		(4)	
(d)	$\frac{dR}{dt} = \frac{2(30-t)+10}{(t-35)^2+25}$ $= \frac{70-2t}{t^2-70t+1250}$ $\frac{d^2R}{dt^2} = \frac{(t^2-70t+1250)(-2)-(70-2t)(2t-70)}{(t^2-70t+1250)^2}$ $= \frac{2t^2-140t+2400}{(t^2-70t+1250)^2}$ When the rate of change of the radiation intensity attains its greatest value, $\frac{d^2R}{dt^2} = 0$. $2t^2-140t+2400=0$ $t=30 \text{ [or 40 (rejected)]}$	1M+1A	
	$\begin{array}{c cccc} t & 0 \le t < 30 & t = 30 & 30 < t \le 35 \\ \hline \frac{d^2 R}{d^2 R} & +ve & 0 & -ve \end{array}$	1M	
	Hence, the rate of change of the radiation intensity would attain its greatest value		
	when $t = 30$.	1A	
		(4)	
			·

			Solution	Marks	Remarks
12.	(a)	(i)	The sample mean $=\frac{56+\cdots+50}{16}$		
			= 51.5625 A 90% confidence interval	1A	
			$\approx \left(51.5625 - 1.645 \times \frac{9}{\sqrt{16}}, 51.5625 + 1.645 \times \frac{9}{\sqrt{16}}\right)$	1M+1A	
			= (47.86125, 55.26375)	1A	OR (47.8613,55.2638)
		(ii)	Let n be the sample size.		
			$\therefore 2\left(1.645 \cdot \frac{9}{\sqrt{n}}\right) < 6$	1M	
			n > 24.354225 Hence, the least sample size is 25.	1A 1A	
			Hence, the least sample size is 23.		
				(7)	
	(b)	(i)	P(a tourist waits for more than 65 minutes)		
			$=P\left(Z>\frac{65-51.5}{9}\right)$	1M	
			$= P(Z > 1.5)$ ≈ 0.0668	1A	
			P(less than 2 coupons are sent to the first 10 tourists interviewed)		
			$\approx (1 - 0.0668)^{10} + C_1^{10} (1 - 0.0668)^9 (0.0668)$ ≈ 0.8594	1M 1A	
		(ii)	P(the 5th coupon is sent to the 20th tourist interviewed)		
			$\approx C_4^{19} (1 - 0.0668)^{15} (0.0668)^4 \cdot 0.0668$	1M	
			≈ 0.0018	1A	
				(6)	
				·	

		Solution	Marks	Remarks
3. (a	= 1	at least 2 drunk drivers are prosecuted) $1 - e^{-2.3} - e^{-2.3} (2.3)$	1A	
		0.669145815 0.6691	1A	
			(2)	
(b	« -	\leq 4 drunk drivers are prosecuted at least 2 drunk drivers are prosecuted) $e^{-2.3} \left(\frac{2.3^2}{2!} + \frac{2.3^3}{3!} + \frac{2.3^4}{4!} \right)$ 0.669145815 0.8748	1M+1M 1A	1M for Poisson 1M for conditional prob
(c)) (i)	P(the third night was the 1st night to have ≥ 2 drunk drivers prosecuted) $\approx (1-0.669145815)^2 (0.669145815)$ ≈ 0.0732	1M 1A	
	(ii)	P(≥2 drunk drivers prosecuted in each night and totally 10 prosecuted) $= C_2^3 \left(e^{-2.3} \frac{2.3^2}{2!} \right)^2 \left(e^{-2.3} \frac{2.3^6}{6!} \right) + 3! \left(e^{-2.3} \frac{2.3^2}{2!} \right) \left(e^{-2.3} \frac{2.3^3}{3!} \right) \left(e^{-2.3} \frac{2.3^5}{5!} \right)$ $+ C_2^3 \left(e^{-2.3} \frac{2.3^2}{2!} \right) \left(e^{-2.3} \frac{2.3^4}{4!} \right)^2 + C_2^3 \left(e^{-2.3} \frac{2.3^3}{3!} \right)^2 \left(e^{-2.3} \frac{2.3^4}{4!} \right)$ ≈ 0.0471	1A (5)	1M for any one case 1M for all cases