National University of Computer and Emerging Sciences Chiniot-Faisalabad Campus

Operating System (CS2006)

Sessional-II Exam

Date: November 5th 2024

Course Instructor(s)

Ms. Juhinah Batool, Ms. Rukshana Zafar, Ms. Ayesha Liaqat, Ms. Mahzaib Younas, Mr. Tahir

Faroog, Mr. M. Haseeb Arshad

Total Time (Hrs): 40 min
Total Marks: 35
Total Questions: 4

Roll No Section

Student Signature

Vetted by: ______ Signature: _____

Do not write below this line

Attempt all the questions.

CLO 2: Implement solutions employing concepts of Processes and Threads

Q1: Considering the following diagram of a process state: Answer the following question

[4 Marks]

a. Give three reasons that cause a process to move from the waiting/blocked state

[1.5 Marks]

Rubrics = $0.5 \times 3 = 1.5$

- 1. I/O completion
- 2. Termination of a child process
- 3. A signal/message from another process

National University of Computer and Emerging Sciences

Chiniot-Faisalabad Campus

b. Give at least five components of the process's PCB.

[2.5 Marks]

Rubrics = $0.5 \times 5 = 2.5$

- 1. Process state
- 2. PID (Process ID)
- 3. PC (Program counter)
- 4. Contents of the processor's registers
- 5. Memory limits
- 6. List of I/O devices allocated to the process

Q2: Differentiae the following at least 2 differences

[6 Marks]

a. Differentia between named and unnamed pipes in IPC.

Rubrics = $0.5 \times 4 = 2$

Unnamed/Ordinary Pipes	Named Pipes				
Unnamed Pipes can be created by using pipe	Named pipes can be created by using mkfifo				
system call	system call				
Ordinary pipes are therefore unidirectional	Named pipes can be one-way or duplex.				
Require parent-child relationship between	Doesn't Require Parent Child Relation,				
communicating processes	Communication between the two or more				
	processes				

b. Differentiate between Direct and indirect communication

c. Rubrics = $0.5 \times 4 = 2$

Direct	Indirect
Links are established automatically	Link established only if processes share a
	common mailbox
A link is associated with exactly one pair of	A link may be associated with many processes
communicating processes	
Between each pair there exists exactly one link	Each pair of processes may share several
	communication links
The link may be unidirectional, but is usually	Link may be unidirectional or bi-directional
bi-directional	

d. Differentiate between Data and task parallelism

Rubrics = $0.5 \times 4 = 2$

Data parallelism	Task Parallelism				
Same task are performed on different subsets	Different task are performed on the same or				
of same data.	different data.				
Synchronous computation is performed	Asynchronous computation is performed.				
Amount of parallelization is proportional to the	Amount of parallelization is proportional to the				
input size.	number of independent tasks is performed.				

National University of Computer and Emerging Sciences

Chiniot-Faisalabad Campus

CLO 3: Evaluate the commonly used mechanisms for scheduling of tasks and implement synchronization mechanisms like Semaphores, TSL, etc

Q3: Consider the following scenario and apply Preemptive priority scheduling and complete the given table. Lower numbers indicate higher priority.

[Marks = 16]

Rubrics = $0.5 \times 15 = 8$

Process	Arrival Time	Burst Time	Priority	Turnaround Time	Waiting Time	Response Time
P1	0	8	4	26-0=26	26-8=18	0-0=0
P2	3	4	1	<mark>7-3=4</mark>	<mark>4-4=0</mark>	3-3=0
P3	1	9	3	19-1=18	18-9 = 9	1-1=0
P4	5	5	2	12-5=7	7-5=2	7-5=2
P5	4	2	5	28-4=24	24-2=22	26-4=22

a) Draw the Gantt Chart

[5 Mark]

b) Compute Average Turnaround Time.

[1 Mark]

c) Compute Average Waiting Time. .

[1 Mark]

$$18+0+9+2+22 / 5 = 10.2$$

d) Compute Average Response Time.

[1 Mark]

$$0+0+0+2+22 / 5 = 4.8$$

Calculation for QNO 03:

National University of Computer and Emerging Sciences

Chiniot-Faisalabad Campus

Q4: Consider the set of 6 processes whose arrival time and burst time are given below If the CPU scheduling policy is Round Robin with time quantum = 2 [9 Marks]

Process Id	Arrival time	Burst time
P1	0	4
P2	1	5
P3	2	2
P4	3	1
P5	4	6
P6	6	3

b) Ready Queue [2 Marks]

0	1	2		3	4		6				
P1	P2	P3	P1	P4	P5	P2	P6	P5	P2	P6	P5
F1	<mark>P2</mark>	r ₃	r ₁	r4	PS	P2	Po	rs	P2	Po	ro

c) Calculate the throughput [1 Mark]

$$throughput = \frac{6}{21} = 0.2857$$

d) CPU Utilization Rate

[1 Mark]

CPU Utlization Rate =
$$\frac{21}{21} \times 100 = 100\%$$