After this video you can:

- discuss what is meant by a conservation law. ____ oncular momentum

- discuss energy and its various forms.

- calculate power supplied by a constant force.

- calculate work done in any constant force scenario. Energy - capacity to do work

	surroundings
averagy	Constem

Table 6.1 Some Common Forms of Energy	
Form of Energy	Brief Description
Translational kinetic	Energy of translational motion (Chapter 6)
Elastic	Energy stored in a "springy" object or material when it is deformed (Chapter 6)
Gravitational	Energy of gravitational interactions (Chapter 6)
Rotational kinetic	Energy of rotational motion (Chapter 8)
Vibrational,	Energy of the oscillatory motions of atoms and molecules in a substance caused by a mechanical wave passing through
acoustic, seismic	(Chapters 11 and 12)
Internal	Energies of motion and interaction of atoms and molecules in solids, liquids, and gases, related to our sensation of
	temperature (Chapters 13- 15)
	Energy of interaction of electric charges and currents; energy of electromagnetic fields, including electromagnetic waves
	such as light (Chapters 14, 17-12 22)
	The total energy of a particle of mass m when it is at rest, given by Einstein's famous equation $E=mc^2$
	(Chapters 26, 29, and 30)
Chemical	Energies of motion and interaction of electrons in atoms and molecules (Chapter 28)
Nuclear	Energies of motion and interaction of protons and neutrons in atomic nuclei (Chapters 29 and 30)

Work - energy transfer when a form acts on an object that moves - only the component of form in the direction of displacement

[calorie]

Work > 0 = energy

transfer of

transfer out

Power - rate that work is done [Joules] = [kgm²] = [kgm²] = [kgm²] = [sconds] Power > Watt Work = Power · St

After this you can

- calculate kinetic energy
- calculate total work done
- relate the total work to the change in kinetic energy

Work =
$$F_A \triangle x$$
 case Θ

Will between $F + \triangle x$
 $W_1 = F_1 \cos \Theta_1 \triangle x$
 $W_2 = F_2 \cos \Theta_2 \triangle x$
 $W_3 = F_3 \cos \Theta_3 \triangle x$
 $W_4 = F_4 \cos \Theta_4 \triangle x$
 $F_{A,x}$
 $W_1 + W_2 + W_3 + W_4 = W_{total} = (F_{1x} + F_{2x} + F_{3x} + F_{3/x}) \triangle x$

ald individual works = $W_{total} = F_{total}$ work of the cut force on the displacement direction.

 $V_{\xi}^{2} = V_{i}^{2} + 2a\Delta x$ Vf = Vi + Z FARTIX. AX $V_f^2 = V_i^2 + 2 W_{total}$ $V_z^f - V_z^2 = Z W_{total}$ $\frac{1}{2}mV_{t}^{2}-\frac{1}{2}mV_{i}^{2}=W_{total}$ change in something >> Kinetic Evergy - energy of motion VK = Kt - Ki = Tmrt - Twr! Work-Kindic energy theorem La also applies to not-constant forces

After this you can

- discuss the meaning of potential energy
- discuss the meaning of conservative forces
- differentiate between a conservative force and a non-conservative force

AK=0= Wtotal = WmE + Was what happened? potential energy is stored energy (depends on pointion) form of grainty stores energy in easily accessible wary & consume force · gravity (gravitational potential energy) · spring (elostic potential energy) · electric force (electric potential energy)

lifting the box

Non-conservative forces

ofriction > energy converded into internal energy

(> object hat up

o applied force > energy from an external source (chemical)

goes into internal energy

1 K = Wtobal = Wconsensation + Wnon consumedim

Wonseredin = - All change in potential energy

mechanical

[enryy] $\Delta K = -\Delta U + W_{nc}$

Strech = DK + DU = Wrc

Kf-Ki + Uf - Ui = Wre Kf + Uf = Ki + Ui + Wrc show much energy comes from/ agrees to Gurroundings final Whe > 0 < morasing energy of the system What if Whc = 0 Wre < 0 < decreasing
energy of
the system
to surrounding S'frictionless
, no external force DK = - DU Kf + Uf = Ki + Ui

After this you can

- calculate the potential energy of an object
- use conservation of energy to solve for an unknown variable

$$\frac{1}{2} = \frac{1}{2}$$

$$\frac$$

Elastic Potential Energy (Spring Potential Energy) U= Fourt - Dx Jokés Law & Spring Form == - K Dx = non-constant force / u// _ & -BU = Ws > DX // J F_S = - KDX $-\Delta U_{S} = \frac{1}{2} \Delta \times (-k\Delta \times)$ - DU_S = - L L DX2 DUS = JKDX distortion of spring displacement of spring the end of the constant spring relaxed fruil full <u>Ax</u> unstretched

K_f + U_f = K_i + U_i + W_{ne} o, for this example

 $V_i = 0 \Rightarrow K_i = 0$ $V_i = h \Rightarrow U_{ig} = w_{gh}$ $V_{f} = 7 \Rightarrow K_{f} = 7$ $V_{f} = 7 \Rightarrow V_{gf} = 0$

Kf + OJ = OJ + U,

Kf = U; ~ conservation of energy

Kf = mgh

has been converted

into kinetic energy

2 my

2 my

1 later on

Vf = J2gh