Chapter 1

I loeng

1.1 Meenutusi Algebra I-st

 $A\neq\emptyset$ $A^n=AxAx...A=\{(a_1,\cdots,a_n)|a_i\in A\}$ n - tuple $|A^0|=1(A^0=\{\emptyset\}\ \omega:A^n\to A$ n-kohaline algebraline tehe hulgal A

n-aarne:

- 1. n=1 unaarne tehe
- 2. n=2 binaarne tehe
- 3. n=0 nullarne tehe

1.2 Ω -algebra

Def. 1.1.1 Hulka Ω nimetakse tüübiks ehk signatuuriks kui ta on esitatud mittelikuvate alamhulkade $\Omega_1 yhend\Omega_2...$

Def 1.1.2 Olgu Ωtp . Mittetühja hulka A nimetatakse Ω -algebraks, kui iga a korral igale $\omega \in \Omega_n$ vastab n-aarne tehe hulgal A, mida thistatakse sama smboliga ω .

Kui tahetakse rhutada, mis tüüpi algebraga on tegemist, siis thistatakse Ω algebrad paarina $(A;\Omega)$

Nited:

1. Rühmoid - hulk he binaarse tehtega, st. $\Omega = \Omega_2 = \{*\}$

- 2. Poolrühm sama signatuur mis rühmoidil
- 3. Monoid ühikelemendiga poolrühm, vaatame seda tihti laiemal signatuuriga, $\Omega = \Omega_0 yhend\Omega_2$, $\Omega_0 = \{1\}$ ühikelemendi fikseerimine, $\Omega_2 = \{*\}$
- 4. Rühm saab kirjeldada eelnevate signatuuride kaudu, aga parem kirjeldada jrgnevalt: $\Omega = \Omega_0 y hend\Omega_1 y hend\Omega_2$, kus $\Omega_1 = \{^{-1}\}$
- 5. Ring algebralinie struktuur signatuuriga(signatuuris): $\Omega = \Omega_0 yhend\Omega_1 yhend\Omega_2$, kus $\Omega_2 = \{+, *\}, \Omega_1 = -(vastandelemendivtmine, \Omega_0 = 0, 1$
- 6. Vektorruum struktuur signatuuriga: $\Omega = \Omega_0 yhend\Omega_1 yhend\Omega_2$, kus $\Omega_2 = \{+\}, \Omega_1 = \{-(vastandelement, polevajalikkuiskalaarigakorrutaminesissetoo \{0\} samutiavaldatavskalaarigakorrutimasekaudu$

1.3 Morfismid

Def 1.2.1 Kujutust ϕ Ω -algebrast A Ω -algebrasse B nimetatakse homomorfismideks, kui iga $n, \omega \in \Omega_n$ ja suvaliste $a_1, ..., a_n \in A$ korral kehtib vrdus $\phi(\omega(a_1, ..., a_n)) = \omega(\phi(a_1), \cdots, \phi(a_n))$

 $Hom(A,B) - \{\phi | \phi onhomoformismA - stB - sse\}$

Olgu A, B sellised $\Omega = \{1\}, \{^{-1}\}, \{*\} \ \phi: A \rightarrow Bhomoformism\phi(1) = 1, \phi(1) = \phi(1*1) = \phi(1)*\phi(1) \implies \phi(1) = 1(kolmandaphjal)\phi(x^{-1}) = \phi(x)^{-1}, 1 = \phi(1) = \phi(x^{-1}x) = \phi(x^{-1})\phi(x)(kolmandaphjal)\phi(xy) = \phi(x)\phi(y)$ Taandub kolmanda omanduse kontrollimisele.

Lineaarkujutis on vektorruumide isomorfism.

Olgu meil Ω -algebrad A,B,C ning nende homoformismid $\phi: A \to B$, : $B \to C$, $(\phi) = (\phi(x)), x \in A$. Siis see kompositsioon on samuti homoformism (kui teda saab nii defineerida).

Testame: Veendume, et $(\phi)(\omega(a_1,\dots,a_n)) = \omega((\phi)(a_1,\dots,a_n))$. See on samavrne sellega, te $ksi(\phi(\omega(a_1,\dots,a_n))) = (w(\phi(a_1),\dots,\phi(a_n))...$

Endomorfism (End(A) = Hom(A,A)).

Lause 1.2.2 (End(A);*) on monoid.

Testus: Assotatiivsus on selge, tuleneb homoformismide omadustest. Ühikelement ? $id_A: A \to B, id_A(x) = x, x \in A$

Def 1.2.3 Bijektiivne homomorfismi nimetatakse isomorfismiks.

Lause 1.2.3 Isomorfism on ekvivalentsiseos kigi Ω -algebrade klassis, ehk ta on reflektsiivne, sümmeetriline ja transitiivne.

1.3. MORFISMID 3

Testus:

- 1. Refleksiivsus, st. A isom A, $id_A: A \to A$
- 2. Sümmeetria. Olgu $\phi:A\to B$ isomorfism. Vaja : $B\to A$ mis oleks isomorfism. Valime selleks ϕ^{-1} Vaja nidata, et iga $b_1,\cdots,b_n\in B$ korral $\phi^{-1}(\omega(b_1,\cdots,b_n))=\omega(\phi^{-1}(b_1),\cdots,\phi^{-1}(b_2))$ Rakendame mlemale poole ϕ . $\phi(\omega(b_1,\cdots,b_n))=\phi\omega(\phi^{-1}(b_1),\cdots,\phi^{-1}(b_2))...$
- 3. Transitiivsus ise!

Isomorfismi thtsus. Kui meid huvitab tehe ja tema omadused, siis need jvad samaks isomorfismi klassi tpsusega.