## AL APPENDIX A: POLAR COORDINATES

Theorem: Let  $\Upsilon(t) = (\Upsilon_i(t), \Upsilon_2(t)) : \mathbb{R} \longrightarrow \mathbb{R}^2$  be a (periodic) simple closed curve. Then there exist smooth functions  $\theta(t)$  and  $\pi(t)$  on  $\mathbb{R}$  such that

$$\gamma(t) = \pi(t) \cos(\theta(t)), \quad \gamma_2(t) = \pi(t) \sin(\theta(t)).$$

Sketch Proof: Let C be the trace of the curve and let I=[a,b] be an interval consisting of one period for V, i.e.,  $V_{[a,b]}$  is one-one with V([a,b])=C. Set c:=b-a.

(a) We first construct O(t).

For simplicity, first assume that (0,0) & C.

(i) Find intervals  $[a_i, b_i]$  as shown:  $\frac{a_1}{a_1} \frac{b_1}{b_2} \frac{a_3}{a_4} \frac{b_3}{b_4} \frac{b_5}{b_5} \frac{b_5}{a_5}$  (i.e., find  $a_i, b_i \in \mathbb{R}$  such that  $a_i < a < a_2 < a_3 \cdots$ ,  $b_i < b_2 < \cdots b_n < b < b_n$  and  $a_{i+1} < b_i < a_{i+2} < b_{i+1}$  such that for any i, with  $J_i = [a_i, b_i J_i, b_i]$  either  $\gamma_i(t) \neq 0 \quad \forall t \in J_i$ .



(We may additionally arrange that  $b_{n-1} < a_1 + c$  and  $b_n < a_2 + c$ .)

A2

(ii) For any i, if for all  $t \in J_i = [a_i, b_i]$  we have  $\gamma_i(t) \neq 0$ , then we set  $\theta_i(t) := \tan^{-1}\left(\frac{\gamma_2(t)}{\gamma_i(t)}\right)$   $\forall t \in J_i$  else we set  $\theta_i(t) := \cot^{-1}\left(\frac{\gamma_1(t)}{\gamma_2(t)}\right)$   $\forall t \in J_i$ .

(iii) On any overlap  $[a_{i+1}, b_i] = J_i \cap J_{i+1}$  we must

have  $\theta_{i+1}(t) - \theta_i(t)$  is a constant integer multiple of  $\pi$ .

Inductively starting from i=2 orwards, add a suitable multiple of  $\pi$  to each  $\theta_i$ , so that the modified functions  $\widetilde{\theta}_i(t)$  have the property that  $\widetilde{\theta}_{i+1} = \widetilde{\theta}_i$  on any overlap  $\widetilde{J}_i \cap \widetilde{J}_{i+1}$ . (Here  $\widetilde{\theta}_i := 0$ .)

(iv) For any  $t \in I = [a, b]$ , set  $\theta_I(t) := \check{\theta}_i(t)$  keeping in mind that t can belong to at most 2 intervals  $J_i$  and by construction, the values of  $\theta_i$  agree on overlaps. Clearly  $\theta_I(t)$  is a smooth function and extends to one over  $I = [a_i, b_n]$ .

(v) Set c:=b-a. For any  $k \in \mathbb{Z}$ , set  $I_k := [a+kc,b+kc]$ .

Define  $Q_k(t)$  as in (iv) with  $Q_k$  also defined over  $I_k := [a+kc,b_k+kc]$ .

On any overlap  $I_k \cap I_{k+1}$  these functions differ by an

integer multiple of T. By proceeding incluctively on Ikl we modify of is (by adding a suitable multiple of TC) to obtain a smooth function 9(t) on R.

Now suppose p=(0,0) ∈ C. We may assume that a, b are chosen such that  $\Upsilon(a) = p = \Upsilon(b)$ . Now we modify the steps (i) - (v) above to construct  $\theta(t)$  as follows:

(i) Find sequentially overlapping intervals [ai, bi] for 1 \( i \le n \) as before such that if J = [ai, bi] for 1 \( i \x n \) or if J = [a, a) or (a, b, ] or  $[a_n, b]$  or  $[b, b_n]$ .

Then either  $r_1 \neq 0$  everywhere on J or  $r_2 \neq 0$ 

everywhere on J.

(ii) For any 
$$t \in J$$
, we set  $\theta_{j}(t) := \tan^{-1}\left(\frac{\gamma_{2}(t)}{\gamma_{1}(t)}\right)$  or  $\theta_{j}(t) := \cot^{-1}\left(\frac{\gamma_{1}(t)}{\gamma_{2}(t)}\right)$  accordingly. Set  $\theta_{j}(a) := \tan^{-1}\left(\frac{\gamma_{2}'(a)}{\gamma_{1}'(a)}\right)$  if  $\gamma_{j}(a) \neq 0$ , else set  $\theta_{j}(a) := \pi/2$ . Note that if  $\gamma_{j}(a) \neq 0$ , then  $\frac{\gamma_{2}'(a)}{\gamma_{1}'(a)} = \frac{\lim_{t \to a} \gamma_{2}(t)/t - a}{\lim_{t \to a} \gamma_{1}(t)/t - a} = \lim_{t \to a} \frac{\gamma_{2}(t)}{\gamma_{1}(t)}$  and that  $\frac{\gamma_{1}(t)}{t - a}$  are smooth by (3) on page 57. Define  $\theta_{j}(b)$  likewise.  $\frac{\gamma_{1}(t)}{t - a}$  are smooth by (3) on page 57. Define  $\theta_{j}(b)$  likewise.

A4

(iii) The values  $\lim_{t\to a^-} \frac{\partial_1(t)}{\partial x_i}$ ,  $\theta_1(a)$  and  $\lim_{t\to a^+} \frac{\partial_1(t)}{\partial x_i}$  all differ from each other by an integer multiple of  $\pi$ . Hence by adding a suitable multiple of  $\pi$  to  $\theta_1(t)$  and  $\theta_1(a)$ , we obtain a continuous function  $\theta_1(t)$  on  $[a_1, b_1]$  which is moreover smooth at a as  $\frac{\gamma_1(t)}{t-a}$  is smooth for j=1,2. Now define  $\theta_1(t)$  for 1< i< n as before as in (iii). Finally, define  $\theta_n(t)$  similar to the way we have defined  $\theta_1(t)$ .

(iv) and (v): same as (iv) and (v) above.

Thus we have constructed a smooth function O(t) on R.

(b) Now I(t) is easy to define.

By construction of  $\theta(t)$ , for any  $t \in \mathbb{R}$ ,  $r_{i}(t) \sin \theta(t) = r_{i}(t) \cos \theta(t)$ . We define  $\mathfrak{I}(t) := \frac{r_{i}(t)}{\cos \theta(t)}$  or  $\frac{r_{i}(t)}{\sin \theta(t)}$ , whichever is defined. Since  $\theta(t)$ ,  $r_{i}(t)$  and  $r_{i}(t)$  are smooth, so is  $\mathfrak{I}(t)$ .

Q.E.D.