Projekt 5

A
18B0474P - Jiří Švamberg $16.\ {\it r\'ijna}\ 2020$

Obsah

1	Zadání	2
2	Zjednodušený model	3
	2.1 Návrh zjednodušeného modelu	
	2.2 Linearizace modelu	4
	2.3 Stavový popis	

1 Zadání

- 1. Navrhněte zjednodušený model soustavy kvadrotorová helikoptéra břemeno
- $2.\ \operatorname{Pro}$ zjednodušený model navrhněte regulátor
- 3. Implementujte regulátor do zjednodušeného modelu

2 Zjednodušený model

2.1 Návrh zjednodušeného modelu

Zjednodušený model budeme navrhovat ve 2D jako kyvadlo zavěšené na vozíku Pro potřeby návrhu tohoto modelu budeme uvažovat lano závěsu

jako dokonale nepružné, o stálé délce l a nulové hmotnosti $m_l=0$ kg. Úhel vychýlení závěsu od osy vozíku označíme jako φ . Jako těleso si představíme bezrozměrný hmotný bod o hmotnosti m. Pro jednoduché kyvadlo připevněné k nepohybujícímu se tělesu o kinetické energii $T=\frac{1}{2}mv^2$ a potenciální energii $V=-mgl\cos\varphi$ (obr. 1) platí pohybová rovnice:

$$\ddot{\varphi} + \frac{g}{l}\sin\varphi = 0$$

Po zavěšení jednoduchého kyvadla na vozík(obr. 2) budeme muset ještě do modelu přidat dynamiku vozíku o hmotnosti M. Na ten může působit síla ve směru osy x. Pro hmotný bod, zavěšený na laně budeme muset spočítat souřadnice [u, v], jelikož při pohybu vozíku se nepohybuje po jasné trajektorii (kružnice, přímka):

$$u = x + l\sin\varphi \rightarrow \dot{u} = \dot{x} + l\dot{\varphi}\cos\varphi$$
$$v = l\cos\varphi \rightarrow \dot{v} = -l\dot{\varphi}\sin\varphi$$

K odvození modelu využijeme Lagrangeovu metodu. Potenciální energii V budeme uvažovat stejnou, jako u jednoduchého kyvadla.

$$V = -mql\cos\varphi$$

Jako základ pro vzorec kinetické energie použijeme vzorec kinetické energie obyčejného matematického kyvadla $T = \frac{1}{2}mv^2$. Musíme ale uvažovat rychlost ve směru všech souřadnic (x, u, v).

$$T = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m\dot{u}^2 + \frac{1}{2}m\dot{v}^2$$

Po dosazení souřadnic pro hmotný bod zavěšený na laně dostaneme kinetickou energii ve tvaru:

$$T = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m\left(\dot{x} + l\dot{\varphi}\cos\varphi\right)^2 + \frac{1}{2}m\left(-l\dot{\varphi}\sin\varphi\right)^2$$

Zjistíme si Lagrangián L = T - V:

$$L = \frac{1}{2}M\dot{x} + \frac{1}{2}m\left(\dot{x} + l\dot{\varphi}\cos\varphi\right)^2 + \frac{1}{2}m\left(l\dot{\varphi}\sin\varphi\right)^2 + mgl\cos\varphi$$

Obrázek 1: Schéma jednoduchého kyvadla

Obrázek 2: Schéma soustavy vozík-kyvadlo

, který nyní budeme parciálně derivovat.

$$\begin{split} \frac{\partial L}{\partial \dot{x}} &= M\dot{x} + m\dot{x} + ml\dot{\varphi}\cos\varphi \\ \frac{\partial L}{\partial x} &= 0 \\ \frac{\partial L}{\partial \dot{\varphi}} &= m\dot{x}l\cos\varphi - ml^2\dot{\varphi} \\ \frac{\partial L}{\partial \varphi} &= -m\dot{x}l\dot{\varphi}\sin\varphi - l^2\dot{\varphi}^2\cos\varphi\sin\varphi + ml^2\dot{\varphi}^2\sin\varphi\cos\varphi - mgl\sin\varphi \end{split}$$

Vztahy pro hledané dvě rovnice vypadají následovně:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = f$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) - \frac{\partial L}{\partial \varphi} = 0$$

, kde f je síla působící na vozík. Nyní můžeme dopočítat dvě rovnice modelu vozík-kyvadlo.

$$(M+m)\ddot{x} + ml\ddot{\varphi}\cos\varphi - ml\dot{\varphi}^2\sin\varphi = f \tag{1}$$

$$\ddot{x}\cos\varphi + g\sin\varphi - l\ddot{\varphi} = 0 \tag{2}$$

2.2 Linearizace modelu

Aby bylo s modelem snazší pracovat, linearizujeme ho v okolí pracovního bodu, tzn. $\varphi=0$. Díky tomu můžeme uvažovat:

$$\sin \varphi = \varphi$$
$$\cos \varphi = 1$$

Po dosazení do rovnic 1 a 2 dostaneme nové jednodušší rovnice 3 a 4.

$$(M+m)\ddot{x} + ml\ddot{\varphi} - ml\dot{\varphi}^2\varphi = f \tag{3}$$

$$\ddot{x} + q\varphi - l\ddot{\varphi} = 0 \tag{4}$$

Dále můžeme vyjádřit nejvyšší derivace:

$$\begin{split} \ddot{x} &= \frac{-ml\ddot{\varphi} + ml\dot{\varphi}^2\varphi + f}{m+M} \\ \ddot{\varphi} &= \frac{\ddot{x} + g\varphi}{I} \end{split}$$

Vidíme, že rovnice na sobě závisí. Můžeme tedy do každé rovnice dosadit tu druhou.

$$\ddot{x} = \frac{-mg\varphi + ml\dot{\varphi}^2\varphi + f}{2m + M}$$
$$\ddot{\varphi} = \frac{ml\dot{\varphi}^2\varphi + f + mg\varphi + Mg\varphi}{l(2m + M)}$$