Fulton Chapter 3: Local Properties of Plane Curves

Intersection Numbers

Aritra Kundu Problem Set - 1 **Topic**: Algebraic Geometry

Email: aritra@cmi.ac.in

Problem 1 Property 6

If
$$F = \prod F_i^{r_i}$$
, and $G = \prod G_j^{s_j}$, then $I(P, F \cap G) = \sum_{i,j} r_i s_j I(P, F_i \cap G_j)$

Solution: It is enough to show that

$$I(P, F \cap GH) = I(P, F \cap G) + I(P, F \cap H)$$

if one of $I(P, F \cap G)$ or $I(P, F \cap H)$ is infinite then F has a common component with G or H. So, F has a common component with GH so, $I(P, F \cap GH) = \infty$

Assume that both of $I(P, F \cap G)$ or $I(P, F \cap H)$ is finite.

$$F, GH \in (F, G) \implies (F, GH) \subseteq (F, G) \qquad O = O_P(A^2)$$

so, the natural map ϕ from O/(F,GH) to O/(F,G) is onto $\psi:O/(F,H)\to O/(F,GH)$ s.t. $\psi(\overline{z}) = \overline{Gz}$. So clearly ψ is a k- linear map.

Now

$$\forall \ \overline{z} \in O/(F, H)\phi(\psi(\overline{z})) = \phi(\overline{Gz}) = 0$$

in O/(F,G) [As $Gz \in (G) \subseteq (F,G)$]. So, $\operatorname{im}(\psi) \subseteq \ker(\phi)$

Tf

$$\overline{z} \in O/(F, GH) \in ker(\phi) \implies z \in (F, G) \implies z = aF + bG$$

so, $\psi(\overline{b}) = \overline{bG} = \overline{z}$ so, $\operatorname{im}(\psi) = \ker(\phi)$. Let $\psi(\overline{z}) = 0$. So,

$$Gz \in (F, GH) \implies Gz = a_1F + a_2GH$$

Now $\exists D \in k[x, y]$ s.t.

$$Dz = c; Da_1 = b_1; Da_2 = b_2$$

where $c, b_1, b_2 \in k[x, y]$ and $D(P) \neq 0$. So,

$$Gc = b_1F + b_2GH \implies G(b_2H - c) = b_1F \implies F|(b_2H - c)$$

 $\implies b_2H - c = Fr \quad [As F, G has no common factor]$

So, $z = a_2H - (r/D)F$ as $D(P) \neq 0 \implies D$ is an unit in O. So, $z \in (F, H)$. So, ψ is one-one.

$$0 \longrightarrow O/(F,H) \xrightarrow{\psi} O/(F,GH) \xrightarrow{\phi} O/(F,G) \longrightarrow 0$$

this sequence is exact. So,

$$dim_k(O/(F,GH)) = dim_k(O/(F,G)) + dim_k(O/(F,H))$$

So,

$$(P, F \cap GH) = I(P, F \cap G) + I(P, F \cap H)$$