A Perspective on Multiple Regression

Graduate Statistics

February 19, 2016

Consider a typical multiple regression equation:

$$Y_i = \beta_0 + \beta_x X_i + \beta_z Z_i + \varepsilon_i \tag{1}$$

We interpret the coefficient β_1 as representing the *independent contributions of X to Y* or as *what X uniquely explains in Y independent of Z*. Here we attempt this interpretation precise.

Multiple regression in terms of residuals.

A slope in multiple regression represents the relationship between a) the portion of a predictor not explained by the other predictors and b) the portion of the outcome variable not explained by those same other predictors. The coefficient β_z in equation (1) can thus reproduced as follows:

First, we regress Z on X:

$$Z_i = \alpha_0 + \alpha_1 X_i + \varepsilon_{zx_i} \tag{2}$$

We also regress Y on X:

$$Y_i = \alpha_0 + \alpha_1 X_i + \varepsilon_{yx_i} \tag{3}$$

Now we can examine our residual error terms. ε_{zx} is the portion of Z that wasn't explained by X. That is, we estimated model (2) that was able to explain some of the variability in Z, but not all of it; ε_{zx} is what's left over. Analogously, ε_{yx} is the portion of Y that wasn't explained by X. Now let's model the relationship between these two sets of residuals¹:

$$\varepsilon_{yx} = \alpha_0 + \alpha_z \varepsilon_{zx_i} + \gamma_i \tag{4}$$

Here, In the context of our full model (1), we would say that β_z represents the relationship between the part of Z not explained by X and the part of Y not explained by X. In other words, β_z in model (1) is the same α_z in model (4). Let's look at a concrete example of this.

Horsepower, engine size, and fuel efficiency.

For the following example, we will use the mtcars dataset that comes with R. Here is the description from the help page:

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).

Here, we will be regressing miles per gallon (mpg) on horsepower (hp) and engine size (disp):

$$mpg_i = \beta_0 + \beta_d disp_i + \beta_h hp_i + \gamma_i$$
 (5)

 $^{^{1}\}gamma$ (pronounced "gamma") here is just another error term. A different letter is used to differentiate the residuals from the predictor.

Now we will verify that equation (4) holds. We'll extract the residuals from each of the intermediate models:

$$mpg_{i} = \alpha_{0} + \alpha_{1}hp_{i} + \varepsilon_{mh_{i}} \tag{6}$$

$$disp_{i} = \alpha_{0} + \alpha_{1}hp_{i} + \varepsilon_{dh_{i}} \tag{7}$$

```
mpg0Nhp <- lm(mpg ~ hp, data = mtcars)$residuals
disp0Nhp <- lm(disp ~ hp, data = mtcars)$residuals</pre>
```

We now confirm that β_d in equation (5) represents the relationship between the error terms in equations (6) and (7)²:

$$\varepsilon_{mh_i} = \beta_0 + \beta_d \varepsilon_{dh_i} + \gamma_i$$

```
equivalent <- lm(mpg0Nhp ~ disp0Nhp)
summary(equivalent)$coefficients
##
                    Estimate Std. Error
                                               t value
                                                           Pr(>|t|)
## (Intercept) 3.879825e-16 0.543420336 7.139640e-16 1.0000000000
               -3.034628e-02 0.007280396 -4.168218e+00 0.0002400329
## dispONhp
summary(fullModel)$coefficients
                  Estimate Std. Error
                                       t value
                                                     Pr(>|t|)
## (Intercept) 30.73590425 1.331566129 23.082522 3.262507e-20
               -0.03034628 0.007404856 -4.098159 3.062678e-04
## disp
               -0.02484008 0.013385499 -1.855746 7.367905e-02
## hp
```

As expected, the coefficients are the same. The test statistic values only differ because the standard errors of the estimates depend on the remaining degrees of freedom for the full model (the *t*-value for our equivalent model is a little higher than it should be because we're ignoring the fact that we used up an extra degree of freedom when we ran models (6) and (7).

Note: this document was created with knitr and LyX.

²Note that the intercept here will always be zero as residuals always have a mean of zero.