Worst Case Run-Time Analysis of day() Method

Version 1.0 - January 31, 2015

January 31, 2015

1 Introduction

This is a worst case run-time analysis of day() method in the Population class. In this analysis document, we will review the run-time analysis for day() using a line-by-line analysis, summation, simplified expression and conclude our analysis with a Big-Oh bound.

```
public void day() {
         for (int i = numGenomes - 1; i >= numGenomes / 2; i --) {
1
2
             myPopulation.remove(i);
3
         boolean crossover;
4
         for (int i = 0; i < numGenomes / 2; i++) {
5
             Genome newGenome = new Genome(myPopulation.get(rand.nextInt(numGenomes / 2)
6
             crossover = rand.nextBoolean();
7
             if (crossover) {
                 newGenome.crossover(myPopulation.get(rand.nextInt(numGenomes / 2)));
8
9
                 newGenome.mutate();
             } else {
10
                 newGenome.mutate();
11
             myPopulation.add(newGenome);
12
         Collections.sort(myPopulation);
         mostFit = myPopulation.get(0);
13
```

2 ANALYSIS

2.1 LINE-BY-LINE

We will now review the line-by-line analysis of day(). Before we begin, let's briefly review the other method operations called inside day() with their Big-Oh bounds.

- 1. get() Let c_1 stands for get(). This is an ArrayList get method. According to the ArrayList API, this operation runs on O(1).
- 2. add() Let c_2 stands for add(). This is an ArrayList add method. According to the ArrayList API, this operation runs on O(1).
- 3. nextInt() Let c_3 stands for nextInt(). This is a Random object method which runs on O(1).
- 4. nextBoolean() Let c_4 stands for nextBoolean(). This is another Random object method that runs on O(1).
- 5. new Genome() Let c_5 stands for new Genome(). This is a copy constructor from the genome class, it involves only constant operations and a for loop which loop for a fixed constant of 26 times. Therefore, this copy constructor is O(1). method which runs on O(1).
- 6. remove() Let c_6 stands for remove(). This is an ArrayList remove method. Since in day(), we will always be removing from the end of the list, this operation is then O(1).
- 7. crossover() Let k_1 stands for crossover(). This is a method from the genome class. Assuming that the genome length is in a reasonable range of a name, this operation runs on O(1). But since we are considering the worst-case, where a name can be unreasonably long, we will use n as the length of the Genome, where crossover() will operate on O(n).
- 8. mutate() Let k_2 stands for mutate(). This is a method from the genome class. Considering the worst case, this operation is also O(n).
- 9. sort() Let s_1 stands for sort(). This is a method from Collections and the cost of this operation is O(n log n).

After the review above we will use the representation, k_1 - crossover(), and k_2 - mutate(), all these methods will be O(n). c_1 - get(), c_2 - add(), c_3 - nextInt(), c_4 - nextBoolean(), c_5 - new Genome() and c_6 - remove(), all these methods will be O(1). s_1 - sort(), which will be O(n log n) in our analysis.

Below will be the line-by-line analysis:

- 1. We will consider the cost of the whole loop after. There is a declaration, an assignment, two arithmetic operations, one comparison and one assignment in this line, the cost of this line is 6.
- 2. There is a remove operation in this line, the cost of this line is c_6 .
- 3. There is a declaration in this line, the cost of this line is 1.
- 4. There is a declaration, an assignment, a comparison, an arithmetic and a decrement operation in this line, the cost of this line is 5.
- 5. There is a declaration, an assignment, a new Genome(), a get(), a nextInt() and an arithmetic operation in this line, the cost of this line is $c_5 + c_1 + c_3 + 3$.
- 6. There is a declaration, an assignment, and a nextBoolean() operation in this line, the cost of this line is $c_4 + 2$.
- 7. There is a comparison in this line, the cost of this line is 1.
- 8. There is a crossover(), a get(), nextInt() and an arithmetic operation in this line, the cost of this line is $k_1 + c_1 + c_3 + 1$.
- 9. There is a mutate() operation in this line, the cost of this line is k_2 .
- 10. There is a mutate() operation in this line, the cost of this line is k_2 .
- 11. There is an add() operation in this line, the cost of this line is c_2 .
- 12. There is a sort() operation in this line, the cost of this line is s_1 .
- 13. There is a declaration, an assignment and a get() operation in this line, the cost of this line is $c_1 + 2$.

2.2 FIRST LOOP ANALYSIS

We will now review the analysis of the first for loop in day(). Let f(n) be the cost of the for loop, where n is the size of the population.

$$f(n) = \sum_{i=1}^{n/2} (c_6 + 5)$$

$$= (c_6 + 5) \sum_{i=1}^{n/2} 1$$

$$= (c_6 + 5)(n/2 - 1 + 1)$$

$$= (c_6 + 5)(n/2)$$

Let l_1 be the total cost of the for loop, then $l_1 = (c_6 + 5)(n / 2)$. We know that c_6 is a constant, therefore the total cost of the first for loop is O(n).

2.3 SECOND LOOP ANALYSIS

We will now review the analysis of the second for loop in day(). Let g(n) be the cost of the for loop, where n is the size of the population.

$$g(n) = \sum_{i=1}^{n/2} (5 + c_5 + c_1 + c_3 + 3 + c_4 + 2 + 1 + k_1 + c_1 + c_3 + 1 + k_2 + k_2 + c_2)$$

$$= (5 + c_5 + c_1 + c_3 + 3 + c_4 + 2 + 1 + k_1 + c_1 + c_3 + 1 + k_2 + k_2 + c_2) \sum_{i=1}^{n/2} 1$$

$$= (12 + c_5 + c_1 + c_3 + c_4 + k_1 + c_1 + c_3 + k_2 + k_2 + c_2) \sum_{i=1}^{n/2} 1$$

Let $c_7 = c_5 + c_1 + c_3 + c_4 + c_1 + c_3 + c_2$. We know c_7 is O(1) since c_1 , c_2 , c_3 , c_4 , and c_5 are constants. Let $k_3 = k_1 + k_2 + k_2$, we know k_3 is O(n) since both k_1 and k_2 are O(n). Then now we have:

$$g(n) = (c_7 + k_3) \sum_{i=1}^{n/2} 1$$
$$= (c_7 + k_3)(n/2 + 1 - 1)$$
$$= (c_7 + k_3)(n/2)$$

Let l_2 be the total cost of the second for loop, then $l_2 = (c_7 + k_3)(n / 2)$. Since k_3 is O(n), the total cost of the second loop is O(n^2).

3 TOTAL COST

Let T be the total cost of the day() method. $T = l_1 + 1 + l_2 + s_1 + c_1 + 2$. Let $c = 1 + c_1 + 2$. $T = l_1 + l_2 + s_1 + c$. We know that l_1 is O(n), s_1 is O(n log n), c is O(1) and l_2 is O(n^2). Since $T = c + l_1 + s_1 + l_2$, T is therefore O(n^2).