

signals; and

a controller for controlling said delay adjuster according to said modulation-phase detected by said detector, wherein said detector comprises:

an optical filter for passing an optical signal having a reference wavelength;

a circuit for regenerating a reference clock according to said optical signal passed through said optical filter;

a tunable optical filter for passing an optical signal having an arbitrary wavelength;

a circuit for regenerating a clock according to said optical signal passed through said tunable optical filter; and

a phase comparator for comparing the phases of said reference clock and said clock.

✓ 4.

(AS ONCE AMENDED) An optical signal processing device comprising:

an optical demultiplexer having an input port and a plurality of output ports, said input port being adapted to accept WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths;

an optical multiplexer having an output port and a plurality of input ports;

a plurality of optical paths for respectively connecting said plurality of output ports and said plurality of input ports;

at least one delay adjuster provided on at least one of said plurality of optical paths;

a detector for detecting the modulation-phase of at least one of said plurality of optical signals; and

a controller for controlling said delay adjuster according to said modulation-phase detected by said detector, wherein said detector comprises:

a tunable optical filter for passing an optical signal having an arbitrary wavelength;

a circuit for regenerating first and second clocks according to a first optical signal having a first wavelength passed through said tunable optical filter and a second optical signal having a second wavelength passed through said tunable optical filter, respectively; and

a phase comparator for comparing the phases of said first and second clocks.

✓ 5.

(AS ONCE AMENDED) An optical signal processing device comprising:

an optical demultiplexer having an input port and a plurality of output ports, said input

✓

port being adapted to accept WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths;

an optical multiplexer having an output port and a plurality of input ports;

a plurality of optical paths for respectively connecting said plurality of output ports and said plurality of input ports;

said plurality of input ports;

at least one delay adjuster provided on at least one of said plurality of optical paths;

a detector for detecting the modulation-phase of at least one of said plurality of optical signals; and

a controller for controlling said delay adjuster according to said modulation-phase detected by said detector, wherein said detector comprises:

an optical filter for passing an optical signal having a reference wavelength;

a circuit for generating a reference clock according to said optical signal passed through said optical filter;

a tunable optical filter for passing an optical signal having an arbitrary wavelength;

a circuit for regenerating a clock according to said optical signal passed through said tunable optical filter; and

a phase comparator for comparing the phases of said reference clock and said clock.

A1

cmt. 4

(AS ONCE AMENDED) An optical signal processing device comprising:

an optical demultiplexer having an input port and a plurality of output ports, said input port being adapted to accept WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths;

an optical multiplexer having an output port and a plurality of input ports;

a plurality of optical paths for respectively connecting said plurality of output ports and said plurality of input ports;

said plurality of input ports;

at least one delay adjuster provided on at least one of said plurality of optical paths;

a detector for detecting the modulation-phase of at least one of said plurality of optical signals; and

a controller for controlling said delay adjuster according to said modulation-phase detected by said detector, wherein said detector comprises:

a pulse light source for generating reference pulse light;

an optical filter for passing an optical signal having an arbitrary wavelength; and
 a gain saturation device for accepting said optical signal passed through said
A1
 optical filter and said reference pulse light;
ctrl. said controller comprising a circuit for controlling said delay adjuster so that the
 average power of light output from said gain saturation device is reduced.

1 9. (AS ONCE AMENDED) An optical signal processing device comprising:
 an optical demultiplexer having an input port and a plurality of output ports, said input
 port being adapted to accept WDM signal light obtained by wavelength division multiplexing a
 plurality of optical signals having different wavelengths;
A2 an optical multiplexer having an output port and a plurality of input ports;
 a plurality of optical paths for respectively connecting said plurality of output ports and
 said plurality of input ports;
 at least one delay adjuster provided on at least one of said plurality of optical paths;
 a detector for detecting the modulation-phase of at least one of said plurality of optical
 signals; and
 a controller for controlling said delay adjuster according to said modulation-phase
 detected by said detector, wherein said detector comprises:

a first optical filter for passing an optical signal having a first wavelength;
 a second optical filter for passing an optical signal having a second wavelength;
 and

a gain saturation device for accepting said optical signal passed through said first
 optical filter and said optical signal passed through said second optical filter;
 said controller comprising a circuit for controlling said delay adjuster so that the
 average power of light output from said gain saturation device is reduced.

8 10. (AS ONCE AMENDED) An optical signal processing device comprising:
 an optical demultiplexer having an input port and a plurality of output ports, said input
 port being adapted to accept WDM signal light obtained by wavelength division multiplexing a
 plurality of optical signals having different wavelengths;
 an optical multiplexer having an output port and a plurality of input ports;
 a plurality of optical paths for respectively connecting said plurality of output ports and

said plurality of input ports;

at least one delay adjuster provided on at least one of said plurality of optical paths;

a detector for detecting the modulation-phase of at least one of said plurality of optical signals; and

a controller for controlling said delay adjuster according to said modulation-phase detected by said detector, wherein said detector comprises:

A2

a pulse light source for generating reference pulse light;

an optical filter for passing an optical signal having an arbitrary wavelength; and

cxt.

a saturable absorption device for accepting said optical signal passed through said optical filter and said reference pulse light;

said controller comprising a circuit for controlling said delay adjuster so that the average power of light output from said saturable absorption device is increased.

11 18. (AS ONCE AMENDED) An optical signal processing device comprising:

an optical demultiplexer having an input port and a plurality of output ports, said input port being adapted to accept WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths;

A3

an optical multiplexer having an output port and a plurality of input ports;

a plurality of optical paths for respectively connecting said plurality of output ports and said plurality of input ports;

at least one delay adjuster provided on at least one of said plurality of optical paths;

a detector for detecting the modulation-phase of at least one of said plurality of optical signals; and

a controller for controlling said delay adjuster according to said modulation-phase detected by said detector, wherein said detector comprises:

a first optical filter for passing an optical signal having a first wavelength;

a second optical filter for passing an optical signal having a second wavelength;

and

a saturable absorption device for accepting said optical signal passed through said first optical filter and said optical signal passed through said second optical filter;

said controller comprising a circuit for controlling said delay adjuster so that the average power of light output from said saturable absorption device is increased.