Natural Deduction in SL: Part II

LOGIC I Benjamin Brast-McKie October 19, 2023

Negation

Elimination Rule: $\neg \neg A \vdash A$. (Double Negation Elimination)

1. $A \lor \neg A$. (Law of Excluded Middle)

2. A, $\neg A \vdash B$. (Ex Falso Quodlibet)

Introduction Rule: $\neg (A \land \neg A)$. (*Law of Non-Contradiction*)

3. $A \vdash \neg \neg A$. (Double Negation Introduction)

Proof

Proof: A natural deduction PROOF (or DERIVATION) of a conclusion φ from a set of premises Γ in SD is any finite sequence of lines ending with φ on a live line where every line in the sequence is either:

- (1) A premise in Γ ;
- (2) A discharged assumption; or
- (3) Follows from previous lines by the rules for SD.

Provable: An SL sentence φ is PROVABLE (or DERIVABLE) from Γ in SD *iff* there is a natural deduction proof (derivation) of φ from Γ in SD, i.e., $\Gamma \vdash \varphi$.

Theorems: An SL sentence φ is a THEOREM of SD *iff* $\vdash \varphi$.

Equivalent: Sentences φ and ψ are PROVABLY EQUIVALENT (or INTERDERIVABLE) if and only if both $\varphi \vdash \psi$ and $\psi \vdash \varphi$, i.e., $\varphi \dashv \vdash \psi$.

Inconsistent: A set of sentences Γ is PROVABLY INCONSISTENT *iff* $\Gamma \vdash \bot$ where \bot is the arbitrarily contradiction we chose, i.e., $A \land \neg A$.

Soundness and Completeness

Assume: $\Gamma \vdash \varphi$ *iff* $\Gamma \vDash \varphi$.

Tautologies: Coextensive with the theorems.

Validity: The valid SL arguments are derivable in SD, and *vice versa*.

Task 1: Can we ever use SD to determine that an argument is invalid?

Uncertainty: If we haven't found a proof, that doesn't mean one doesn't exist.

Logical Analysis

Task 2: How can we tell if an argument is valid?

- Use a semantic argument: true premises and false conclusion.
- Construct a tree proof.

Pro: Both methods provide a countermodel if there is one.

Con: Neither method derives the conclusion from the premises if valid.

Task 3: How can we tell if a theorem is valid?

Tautology? If YES, prove $\vdash \varphi$. If NO, provide a countermodel.

Contradiction? If YES, prove $\vdash \neg \varphi$. If NO, provide a model.

Contingent? If YES, provide a models. If NO, prove $\vdash \varphi$ or $\vdash \neg \varphi$.

Equivalent? If YES, prove $\varphi \dashv \vdash \psi$. If NO, provide a countermodel.

Schemata

Observe: Compare rules of inference in SD to SL proofs in SD.

- Whereas the rules are general, SL proofs are particular.
- But nothing in our SL proofs depend on the particulars.

Task 3: How might we generalise our proofs beyond any instance?

Rule Schemata: Replace sentence letters in SL proofs with metavariables.

- Premises are replaced with the lines cited by that rule.
- New rules require new names if we are to use them.

Task 4: Can we also generalise proofs of theorems?

Axiom Schemata: Amount to lines that can be added without citing lines.

Goal: We want to derive intuitive rule schemata.

Derivable Schemata

Double Negation: $\neg \neg \varphi \dashv \vdash \varphi$.

Ex Falso Quodlibet: φ , $\neg \varphi \vdash \psi$.

Law of Excluded Middle: $\vdash \phi \lor \neg \phi$.

Law of Non-Contradiction: $\vdash \neg(\phi \land \neg \phi)$.

Hypothetical Syllogism: $\varphi \supset \psi$, $\psi \supset \chi \vdash \varphi \supset \chi$.

```
Modus Tollens: \varphi \supset \psi, \neg \psi \vdash \neg \varphi.
              Contraposition: \varphi \supset \psi \vdash \neg \psi \supset \neg \varphi.
                         Dilemma: \varphi \lor \psi, \varphi \supset \chi, \psi \supset \chi \vdash \chi.
Disjunctive Syllogism: \phi \lor \psi, \neg \phi \vdash \psi.
        \vee-Commutativity: \varphi \vee \psi \vdash \psi \vee \varphi.
        \wedge-Commutativity: \varphi \wedge \psi \vdash \psi \wedge \varphi.
        Biconditional MP: \varphi \equiv \psi, \neg \varphi \vdash \neg \psi.
       \equiv-Commutativity: \varphi \equiv \psi \vdash \psi \equiv \varphi.
             \land-De Morgan's: \neg(\varphi \land \psi) \dashv \vdash \neg \varphi \lor \neg \psi.
            \vee-De Morgan's: \neg(\varphi \vee \psi) \dashv \vdash \neg \varphi \wedge \neg \psi.
          \vee \wedge-Distribution: \varphi \vee (\psi \wedge \chi) \dashv \vdash (\varphi \vee \psi) \wedge (\varphi \vee \chi).
          \land \lor-Distribution: \varphi \land (\psi \lor \chi) \dashv \vdash (\varphi \land \psi) \lor (\varphi \land \chi).
             \vee \wedge-Absorption: \varphi \vee (\varphi \wedge \psi) \dashv \vdash \varphi.
             \land \lor-Absorption: \varphi \land (\varphi \lor \psi) \dashv \vdash \varphi.
             \land-Associativity: \varphi \land (\psi \land \chi) \dashv \vdash (\varphi \land \psi) \land \chi.
             \vee-Associativity: \varphi \vee (\psi \vee \chi) \dashv \vdash (\varphi \vee \psi) \vee \chi.
```

Axiom System for SL

Axiom System: Consider the axiom and rule schemata, writing '/' for deduction.

- $\varphi \supset (\psi \supset \varphi)$.
- $(\varphi \supset (\psi \supset \chi)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \chi)).$
- $(\neg \varphi \supset \neg \psi) \supset ((\neg \varphi \supset \psi) \supset \varphi)$.
- $\varphi \supset \psi$, φ / ψ .

PL-Proof: $\Gamma \vdash_{PL} \varphi$ *iff* there is a finite sequence of SL sentences where every sentence in the sequence is either: (1) a member of Γ ; (2) an axiom schemata; or (3) follows from previous sentences in the sequence by the single rule schemata given above.

Equivalence: Amazingly, it is possible to show that $\Gamma \vdash_{PL} \varphi$ *iff* $\Gamma \vdash_{SD} \varphi$.

Definitions: Given that the axioms and rule schemata only include \neg and \supset , we may take these to be the *only* primitive logical connectives, defining all other connectives in their terms.

- This makes for a very compact description of the same logic.
- This logic is much less natural to use, requiring that a lot of derived rules be added to system.
- We don't have this problem, though our system is more complex.