1. Consider the group $GL_3(\mathbb{R})$ (of 3×3 matrices whose entries are real numbers, under multiplication of matrices) and the set \mathbb{R}^3 (of triplets of real numbers). For $A \in GL_3(\mathbb{R})$ and $(a,b,c) \in \mathbb{R}^3$, define

$$A.(a,b,c) := A \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 . Here we are writing an element of \mathbb{R}^2 as a row as well as a column

- (a) Show that above is an action of $GL_3(\mathbb{R})$ on \mathbb{R}^3 .
- (b) What is the orbit of (1,2,3)? Is it true that the orbit of (1,2,3) is same as that of (-1,-2,-3)?
- (c) Apart from the identity element of $GL_3(\mathbb{R})$, find an element in the stabilizer of (1, 2, 3). How many elements are there in this stabilizer?
- (d) Take the 3×3 rotation matrix $R_{x,\theta}$. Find all $P := (a, b, c) \in \mathbb{R}$ such that the stabilizer of P contains $R_{x,\theta}$.

(a) For identity matrix
$$I_3 \in GL_3(\mathbb{R})$$
 and $(a, b, c) \in \mathbb{R}^3$.
$$I_3 \cdot (a, b, c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

• For $A = (a_{ij})$, $B = (b_{RR}) \in GL_2(IR)$, just check that matrix multiplication gives $A\left(B\begin{pmatrix} a \\ b \\ c \end{pmatrix}\right) = (AB)\begin{pmatrix} a \\ b \\ c \end{pmatrix}.$

(b) Orbit of (1,2,3) consists of all elements of the form $A\left(\frac{1}{3}\right)$, as A varies over $GL_3(\mathbb{R})$.

$$\frac{\text{Observe}}{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -1/3 \\ 1 & -1/2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}$$

$$\in \text{GL}_{2}(\mathbb{R})$$

Hence (1,0,0) is in the orbit of (1,2,3).

Now, take (a, b, c) \(\dagger(0,0,0)\).

Then we can find an invertible matrix of the form $\begin{pmatrix} a & * & * \\ b & * & * \\ c & * & * \end{pmatrix}$

and

$$\begin{pmatrix} 0 & * & * \\ b & * & * \\ c & * & * \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ b \\ c \end{pmatrix}$$

Thus (a, b, c) is in the orbit of (1,0,0).

 \Rightarrow (a,b,c), (1,0,0), (1,2,3) all are in the same orbit.

Further, (0,0,0) \$ solit of (1,0,0). - why?

 \Rightarrow orbit of (1,2,3) consist of all $(a,b,c) \neq (0,0,0)$ $\in \mathbb{R}^3$.

(c) $A \in GL_3(\mathbb{R})$ is in the stabilizer of (1,2,3) if (a_{ij})

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

One such case is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \mathcal{L} & \beta & Y \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Where d+23+31 = 3

Now choose $\gamma \neq 0$; and d, β such that $d+2\beta=3(1-\gamma) - 9 \text{ nfinitely many}$ such choices

$$d = -2$$
, $\beta = 1$, $\gamma = 1$, so that

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 6 & 1 & 6 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}}_{\in GL_3(\mathbb{R})} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

(d) We look at

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

This is equivalent to

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix}$$

i.e., rotation by 8 does not move the point (b, c).

Thus,

either
$$\theta = 0$$
 (i.e. $R_{x,\theta} = identity matrix)$

In which case $R_{x,\theta}$ is in the stabilizer of every $(a,b,c) \in \mathbb{R}^3$.

or (b,c) = (0,0) In which ease $R_{x,0}$ is in the stabilizer of (a,0,0), for every $a \in \mathbb{R}$.

(Indeed, notation about x-axis will stabilize all points on x-axis).

2. Consider the group S_4 , consisting of permutations of four elements 1, 2, 3, 4. Show that the permutation action of S_4 on $S := \{1, 2, 3, 4\}$ has only one orbit. Determine the stabilizer of $3 \in S$. Show that $\# \text{orbit}(3) \times \# \text{stab}(3) = \# S_4$. Here the symbol # signifies the number of elements.

$$(1 \ 2) \cdot 1 = 2$$

 $(1 \ 3) \cdot 1 = 3$
 $(1 \ 4) \cdot 1 = 4$
 $\Rightarrow 1, 2, 3, 4 \text{ all are in the same publit } \{1, 2, 3, 4\}.$
So, there is only one orbit.

Let $\sigma \in S_4$ be in the stabilizer of 3. Then σ is allowed to move frints 1, 2, 4, but not 3. Possibilities of such σ

so # orbit(3) = 4, # stab(3) = 6

and # subst(3) \times # stab(3) = # S₄ = 4! = 24 indeed holds.