

H3C S5500-HI常见MIB使用指导

拟制 郑上闽 杨利明 肖冰 张宗 2012-2-13 Date Prepared by 日期 袆 评审人 阮涵 Date Reviewed by 日期 批准 Date Approved by 日期

杭州华三通信技术有限公司

版权所有 侵权必究 All rights reserved

修订记录 Revision Record

日期	修订版本	修改	修改描述	作者
Date	Revision	章节	Change Description	Author
	Version	Sec No.		
2012-2-13	1.0		初稿完成	

目录

1		所有主机和子卡的OID	5
	1.1	S5500-HI共支持两款主机:	5
	1.2	S5500-HI支持的子卡:	6
2		设备SN(序列号)	6
	2.1	如果通过实体MIB获取设备的Slot号	6
	2.2	如何获取子卡所在的Slot号和子卡号	7
	2.3	支持设备整机和部分子卡的序列号获取。	8
3		光模块的电子标签信息	9
4		CPU内存利用率和单板序列号的获取	.10
	4.1	直接获取单机或堆叠Master的CPU和内存利用率	.10
	4.2	反向查找堆叠中所有设备的CPU和内存利用率	.10
		4.2.1 获取所有单板CPU和内存利用率的几个节点	.11
		4.2.2 直接通过实体MIB索引获取主板的CPU和内存利用率	.12
5		端口流量和速率,错包率,丢包率	.12
6		MAC表项	.16
7		ARP表项	.17
8		端口与VLAN的对应关系	.18
9		聚合组的端口信息	.22
10		设备上配置的VLAN及IP地址	.22
11		路由表项	.24
12		设备电源电压和电源功率	.27
13		设备风扇和温度	.28
14		设备系统,框,卡,子卡,端口信息	.29
15		设备模块信息	.34
16		上传/下载版本和配置文件	.35

17	设备启动文件信息
18	设备配置文件信息
19	设备flash容量信息40
20	端口UP/DOWN的告警信息包含端口名称41
21	设备支持的所有Trap告警42
22	通过MIB获取LLDP邻居信息46
23	获取设备上配置loopback地址57
24	获取堆叠设备的Master和Slave编号60
25	测试要用MIB节点61

注意所有的验证都在Release 5101版本上进行。

<H3C>_disp ver

H3C Comware Platform Software

Comware Software, Version 5.20, Release 5101

Comware Platform Software Version COMWAREV500R002B99D008SP02

H3C S5500-34C-HI Software Version V500R001B06D023

Copyright (c) 2004-2011 Hangzhou H3C Tech. Co., Ltd. All rights reserved.

Compiled Oct 26 2011 18:59:18, RELEASE SOFTWARE

H3C S5500-34C-HI uptime is 0 week, 5 days, 1 hour, 13 minutes

H3C S5500-34C-HI with 2 Processors

1024M bytes SDRAM

4096K bytes Nor Flash Memory

512M bytes Nand Flash Memory

Hardware Version is REV.B

CPLD Version is 002

Bootrom Version is 112

[SubSlot 0] 24GE+4SFP+2SFP PLUS Hardware Version is REV.B

1 所有主机和子卡的 OID

1.1 S5500-HI 共支持两款主机:

序号	OID	设备
1	1.3.6.1.4.1.25506.1.572	hh3c-S5500-34C-HI
2	1.3.6.1.4.1.25506.1.573	hh3c-S5500-58C-HI

1.2 S5500-HI 支持的子卡:

序号	OID	子卡
1	1.3.6.1.4.1.25506.3.1.9.4.269	1-Port 10G XFP Module
2	1.3.6.1.4.1.25506.3.1.9.4.270	2-Port 10G XFP Module
3	1.3.6.1.4.1.25506.3.1.9.4.271	2-Port 10G CX4 Module
4	1.3.6.1.4.1.25506.3.1.9.4.708	2-Port GE SFPModule
5	1.3.6.1.4.1.25506.3.1.9.4.725	2-Port 10GESFP+Module
6	1.3.6.1.4.1.25506.3.1.9.4.727	8-Port GE SFPModule
7	1.3.6.1.4.1.25506.3.1.9.4.728	8-Port 10/100/1000BASE-T Module

2 设备 SN (序列号)

在S5500-HI整机支持设备和部分子卡支持序列号获取。

2.1 如果通过实体 MIB 获取设备的 Slot 号

实体MIB中,整机设备对应的entPhysicalClass,OID: 1.3.6.1.2.1.47.1.1.1.1.5,类型是chassis(3)。因此遍历节点entPhysicalClass,每个返回值为3的实体节点代表一台设备。

上面图中索引3和6,分别代表两个Slot的索引。使用这个索引获取节点 entPhysicalParentRelPos(OID: 1.3.6.1.2.1.47.1.1.1.1.6)的值,读取的结果就是这个Slot在整个 堆叠中的Slot号。比如实体索引为3的实体是Slot2。

2.2 如何获取子卡所在的 Slot 号和子卡号

1. 遍历节点entPhysicalVendorType(OID: 1.3.6.1.2.1.47.1.1.1.1.3),读出来的值是OID。 根据读出来的OID,与前面给的S5500HI支持的子卡表对照,出现在子卡表中的实体为子卡。比如下图中实体索引为150和151的两个节点。

2. 使用这个实体索引获取读取节点entPhysicalContainedIn(OID: 1.3.6.1.2.1.47.1.1.1.1.4), 读取的结果为包含这个子卡的实体的实体索引。比如实体索引为150的子卡,读取的entPhysicalContainedIn为123。

Operation: Get **Request binding:** 1: 1.3.6.1.2.1.47.1.1.1.1.4.150 (null) null **Response binding:** 1: 1.3.6.1.2.1.47.1.1.1.4.150 (integer) 123 [123]

3. 根据上面获取的实体索引123, 读取节点entPhysicalClass(OID:

1.3.6.1.2.1.47.1.1.1.1.5)。这个节点读出来的值为实体分类。如果读取的实体分类不是5(含义为container),则重复前一步,读取实体索引123的entPhysicalContainedIn值,获取新的实体索引。再根据新的实体索引读取entPhysicalClass。直到第一次entPhysicalClass读取的类型为5的时候。实体索引为123的entPhysicalClass就是5,用实体索引123做下一步操作来获取子卡号。

Protocol version: SNMPv2c Operation: Get Request binding: 1: 1.3.6.1.2.1.47.1.1.1.5.123 (null) null Response binding: 1: 1.3.6.1.2.1.47.1.1.1.5.123 (integer) container(5)

4. 使用上面获取的实体索引123, 读取entPhysicalParentRelPos。取到的值就是这块子卡在设备中的子卡号1。

Operation: Get

Request binding:
1: 1.3.6.1.2.1.47.1.1.1.1.6.123 (null) null

Response binding:
1: 1.3.6.1.2.1.47.1.1.1.1.6.123 (integer) 1

5. 重复第二步和第三步,找到第一个entPhysicalClass返回值为3(含义为chassis)的实体。 Chassis代表主机。如下图,从实体索引123,经过3次查找,找到了第一个chassis 实体。该chassis实体的实体索引为3。

```
Operation: Get
Request binding:
1: 1.3.6.1.2.1.47.1.1.1.4.123 (null) null
Response binding:
1: 1.3.6.1.2.1.47.1.1.1.1.4.123 (integer) 71 [71]
Operation: Get
Request binding:
1: 1.3.6.1.2.1.47.1.1.1.1.5.71 (null) full
Response binding:
1: 1.3.6.1.2.1.47.1.1.1.1.5.71 (integer) module(9)
Operation: Get
Request binding:
1: 1.3.6.1.2.1.47.1.1.1.1.4.71 (null) null
Response binding:
1: 1.3.6.1.2.1.47.1.1.1.1.4.71 (integer) 17 [17]
Operation: Get
Request binding:
1: 1.3.6.1.2.1.47.1.1.1.1.5.17 (null) /ull
Response binding:
1: 1.3.6.1.2.1.47.1.1.1.1.5.17 (integer) container(5)
Operation: Get
Request binding:
1: 1.3.6.1.2.1.47.1.1.1.1.4.17 (null) null
Response binding:
[3] [3] [1: 1.3.6.1.2.1.47.1.1.1.1.4.17 (integer
Operation: Get
Request binding:
1: 1.3.6.1.2.1.47.1.1.1.1.5.3 (null) null
Response binding:
1: 1.3.6.1.2.1.47.1.1.1.5.3 (integer) chassis(3)
```

6. 根据上面读取到的实体索引3,通过节点entPhysicalParentRelPos获取到Slot号为2。因此实体索引为150的实体为Slot2上的子卡1。

```
Operation: Get

Request binding:

1: 1.3.6.1.2.1.47.1.1.1.1.6.3 (null) null

Response binding:

1: 1.3.6.1.2.1.47.1.1.1.1.6.3 (integer) 2
```

2.3 支持设备整机和部分子卡的序列号获取。

使用2.1节和2.2节得到的实体索引,读取设备和子卡的序列号。

(1) 节点: hh3cEntityExtManuSerialNum,这个节点是Manu SN。

OID: 1.3.6.1.4.1.25506.2.6.1.2.1.1.2

举例:

1.3.6.1.4.1.25506.2.6.1.2.1.1.2.3 (octet string) 210235A0H9H113000009

(2) 节点: entPhysicalSerialNum, 这个节点是Device SN。

OID: 1.3.6.1.2.1.47.1.1.1.11

举例:

1.3.6.1.2.1.47.1.1.1.1.1.3 (octet string) 210235A0H9H113000009

H3C设备电子标签信 这两个节点的内容可能不同,详细可参考 ^{息规范V2. 2. doc}

3 光模块的电子标签信息

目前只支持节点entPhysicalMfgName,OID: 1.3.6.1.2.1.47.1.1.1.12。经过认证过光模块的该节点值都是H3C。

所在MIB	节点名称	含义	对应电子标签域
entityMIB	entPhysicalMfgDate	模块调测日期	MANUFACTURING_DATE
entityMIB	entPhysicalMfgName	供应商名称	VENDOR_NAME
ENTITY-EXT-MIB	hh3cEntityExtManuSerial	序列号	MANU_SERIAL_NUMBER

制造信息只有H3C定制光模块才有,没有制造信息会显示不支持。

<H3C>disp transceiver manuinfo interface GigabitEthernet2/0/25

GigabitEthernet2/0/25 transceiver manufacture information:

Manu. Serial Number: 210231A321X111000037

Manufacturing Date : 2011-01-10

Vendor Name : H3C

 $\langle \text{H3C} \rangle \text{disp transceiver man interface g2}/0/27$

Error: The transceiver does not support this function.

SFP/SFP+模块原则上都应该使用定制模块。XFP不要求都用定制的。

4 CPU 内存利用率和单板序列号的获取

有四种方式可以用来获取设备的CPU和内存利用率,第一种方式只能获取单机或者堆叠的Master的CPU和内存利用率,第二,三种方式可以获取所有槽位单板的CPU和内存利用率。 第四种方式是直接给出CPU、内存实体MIB的索引。

4.1 直接获取单机或堆叠 Master 的 CPU 和内存利用率

CPU利用率的MIB节点: : hh3cLswSysCpuRatio, 1.3.6.1.4.1.25506.8.35.18.1.3 内存的MIB节点:

hh3cLswSysMemory, OID:1.3.6.1.4.1.25506.8.35.18.1.14,表示内存总量 hh3cLswSysMemoryUsed,OID:1.3.6.1.4.1.25506.8.35.18.1.15,表示内存使用量 hh3cLswSysMemoryRatio,OID:1.3.6.1.4.1.25506.8.35.18.1.16,表示内存利用率 用MIB Browser获取的结果图如下:

4.2 反向查找堆叠中所有设备的 CPU 和内存利用率

在5500-HI上只有主板有CPU和内存,插槽上的子卡不带CPU和内存。而且,CPU利用率和内存利用率都不会为0。因此只要遍历CPU利用率和内存利用率的节点,找到其中数值不为0的实体,就是主板。可以直接读取主板的CPU利用率和内存利用率。

CPU利用率的节点为hh3cEntityExtCpuUsage, OID: 1.3.6.1.4.1.25506.2.6.1.1.1.1.6。如下图,在两台堆叠环境中,节点索引为65和71的两个节点不是0。这两个节点分别代表两台设备的主板实体,读取的CPU利用率都是7%。

内存利用率的节点为hh3cEntityExtMemUsage, OID: 1.3.6.1.4.1.25506.2.6.1.1.1.1.8。如下图,同样的实体索引为65和71的两个节点内存利用率不为0。从这个结果可以读出内存利用率为分别为35%和14%。

通过2.2节相同的算法,可以获取主板所在的Slot号,从而反向查找出了堆叠中设备Slot号和CPU、内存利用率之间的对应关系。

4.2.1 获取所有单板 CPU 和内存利用率的几个节点

通过遍历H3C的私有表hh3cLswSlotTable,OID: 1.3.6.1.4.1.25506.8.35.18.4.3,可以比较方便的获取所有设备的CPU利用率和内存利用率。索引代表Slot号。

节点名	节点含义	OID
hh3cLswSlotCpuRatio	主板CPU利用率	1.3.6.1.4.1.25506.8.35.18.4.3.1.4
hh3cLswSlotMemory	主板可以使用的内存总量	1.3.6.1.4.1.25506.8.35.18.4.3.1.11
hh3cLswSlotMemoryUsed	主板已用内存数量	1.3.6.1.4.1.25506.8.35.18.4.3.1.12
hh3cLswSlotMemoryRatio	主板内存利用率	1.3.6.1.4.1.25506.8.35.18.4.3.1.13

4.2.2 直接通过实体 MIB 索引获取主板的 CPU 和内存利用率

在S5500-HI产品上,主板的实体索引是有规律的。可以按照这样的公式进行计算: entPhysicalIndex = (SlotNo-1)*6+65

比如在有Slot2和Slot5两台设备的堆叠中,两台设备的主板对应的entPhysicalIndex分别是68和89。

5 端口流量和速率, 错包率, 丢包率

端口流量统计有两张表: ifEntry, 1.3.6.1.2.1.2.2.1, 和ifXEntry, 1.3.6.1.2.1.31.1.1.1。

表ifEntry中的端口流量统计节点都是32位的,因此在统计端口流量时,很可能会溢出。 表ifXEntry中的端口流量统计节点部分是64位的(部分节点还是32位的),64位的节点不会 出现溢出的情况。表ifEntry和表ifXEntry中的节点不完全一样,即二者是相交的关系。因此 我们在查看端口流量统计时,如果能在表ifXEntry中找到,就以表ifXEntry的结果为准,如 果在表ifXEntry中找不到,再去查看表ifEntry。

表ifEntry中包含的节点如下:

ifIndex	端口索引	1.3.6.1.2.1.2.2.1.1
ifDescr	端口描述(如Aux0/0/1, null0, Vlan-interface2,	1.3.6.1.2.1.2.2.1.2
	GigabitEthernet2/0/1)	

ifType	端口类型	1.3.6.1.2.1.2.2.1.3
ifMtu	端口MTU (octets)	1.3.6.1.2.1.2.2.1.4
ifSpeed	端口速率(bits,万兆端口会溢出, 参考节点ifHighSpeed)	1.3.6.1.2.1.2.2.1.5
ifPhysAddress	端口物理地址	1.3.6.1.2.1.2.2.1.6
ifAdminStatus	端口的管理状态	1.3.6.1.2.1.2.2.1.7
ifOperStatus	端口的工作状态	1.3.6.1.2.1.2.2.1.8
ifLastChange	端口上次状态改变	1.3.6.1.2.1.2.2.1.9
ifInOctets	端口入方向字节数(32位)	1.3.6.1.2.1.2.2.1.10
ifInUcastPkts	端口入方向单播报文数(32位)	1.3.6.1.2.1.2.2.1.11
ifInNUcastPkts	端口入方向非单播报文数(32位)	1.3.6.1.2.1.2.2.1.12
ifInDiscards	端口入方向丢弃报文数(不支持)	Not supported
ifInErrors	端口入方向错误报文数(32位)	1.3.6.1.2.1.2.2.1.14
ifInUnknownProtos	端口入方向未知协议报文数(32位)	1.3.6.1.2.1.2.2.1.15
ifOutOctets	端口出方向字节数(32位)	1.3.6.1.2.1.2.2.1.16
ifOutUcastPkts	端口出方向单播报文数(32位)	1.3.6.1.2.1.2.2.1.17
ifOutNUcastPkts	端口出方向非单播报文数(32位)	1.3.6.1.2.1.2.2.1.18
ifOutDiscards	端口出方向丢弃报文数(不支持)	Not supported
ifOutErrors	端口出方向错误报文数(32位)	1.3.6.1.2.1.2.2.1.20
ifOutQLen	端口出方向报文队列长度(不支持)	Not supported

表ifXEntry中包含的节点如下:

ifName	端口名称(节点值同节点ifDescr)	1.3.6.1.2.1.31.1.1.1
ifInMulticastPkts	端口入方向组播报文数(32位)	1.3.6.1.2.1.31.1.1.1.2
ifInBroadcastPkts	端口入方向广播报文数(32位)	1.3.6.1.2.1.31.1.1.3
ifOutMulticastPkts	端口出方向组播报文数(32位)	1.3.6.1.2.1.31.1.1.1.4
ifOutBroadcastPkts	端口出方向广播报文数(32位)	1.3.6.1.2.1.31.1.1.5
ifHCInOctets	端口入方向字节数(64位)	1.3.6.1.2.1.31.1.1.6
ifHCInUcastPkts	端口入方向单播报文数(64位)	1.3.6.1.2.1.31.1.1.7
ifHCInMulticastPkts	端口入方向组播报文数(64位)	1.3.6.1.2.1.31.1.1.1.8
IIACINIVIUILICASIPKIS	编口八万 <u>P</u> 组猫放义数(b4 位)	1.3.0.1.2.1.31.1.1.1.0
ifHCInBroadcastPkts	端口入方向广播报文数(64位)	1.3.6.1.2.1.31.1.1.1.9
III IOIIIDIOaucasti kis	和中八月門/油水大致(04世)	1.0.0.1.2.1.01.1.1.1.3
ifHCOutOctets	端口出方向字节数(64位)	1.3.6.1.2.1.31.1.1.1.10
ifHCOutUcastPkts	端口出方向单播报文数(64位)	1.3.6.1.2.1.31.1.1.11

ifHCOutMulticastPkts	端口出方向组播报文数(64位)	1.3.6.1.2.1.31.1.1.1.12
ifHCOutBroadcastPkts	端口出方向广播报文数(64位)	1.3.6.1.2.1.31.1.1.1.13
ifLinkUpDownTrapEnable	端口UP/DOWN告警状态	1.3.6.1.2.1.31.1.1.1.14
ifHighSpeed	端口速率(1000000bits)	1.3.6.1.2.1.31.1.1.1.15
ifPromiscuousMode	端口混杂模式	1.3.6.1.2.1.31.1.1.1.16
ifConnectorPresent	端口连接状况	1.3.6.1.2.1.31.1.1.1.17
ifAlias		
	网管用的端口描述信息(就是在端	1.3.6.1.2.1.31.1.1.1.18
	口视图下,命令行配置的	
	description)	
ifCounterDiscontinuityTime		
	端口中断时间计数(不支持)	Not supported

端口流量可以直接从上面各个节点来获取。

端口速率,上面ifSpeed和ifHighSpeed表示端口的最大转发速率,不是实际实际流量速率,由于ifSpeed的单位是bits,并且是32位的,它只能表示GE或GE以下速率的端口,ifHighSpeed的单位是1000000bits,即Mbits,也是32位的,它可以表示所有端口的速率。

端口入方向的实际速率=8×[ifHCInOctets(t1时刻的值)—ifHCInOctets(t2时刻的值)]/(t1-t2)

端口出方向的实际速率=8×[ifHCOutOctets (t1时刻的值)—ifHCOutOctets (t2时刻的值)]/(t1-t2)

端口入方向错包率=[ifInErrors(t1时刻)-ifInErrors(t2时刻)]/[ifInErrors(t1时刻)-

ifInErrors(t2时刻)+ifHCInUcastPkts(t1时刻)-ifHCInUcastPkts(t2时刻)+
ifHCInMulticastPkts(t1时刻)-ifHCInMulticastPkts(t2时刻)+ifHCInBroadcastPkts(t1时刻)ifHCInBroadcastPkts(t2时刻)]

端口出方向错包率=[ifOutErrors(t1时刻)—ifOutErrors(t2时刻)]/[ifOutErrors(t1时刻)—ifOutErrors(t2时刻)+ifHCOutUcastPkts(t1时刻)—ifHCOutUcastPkts(t2时刻)+ifHCOutMulticastPkts(t1时刻)—ifHCOutMulticastPkts(t1时刻)+ifHCOutBroadcastPkts(t1时刻)—ifHCOutBroadcastPkts(t1时刻)]

注:在计算端口入或出方向错包率时,ifInErrors或ifOutErrors有溢出时,计算的值就不准确了;另外,分母还应该加上入或出方向的丢弃的报文数,由于我们不支持节点ifInDiscards和ifOutDiscards,故将入或出方向的丢弃的报文数当作0来看待,即不考虑它。

不支持丢包率统计。

6 MAC 表项

表dot1qTpFdbEntry, 1.3.6.1.2.1.17.7.1.2.2.1, 它包含MAC表对应的vlan信息, 该表包含以下三个节点。

dot1qTpFdbAddress	MAC地址(不能获取节点的值)	1.3.6.1.2.1.17.7.1.2.2.1.1
dot1qTpFdbPort	MAC地址对应的端口	1.3.6.1.2.1.17.7.1.2.2.1.2
dot1qTpFdbStatus	MAC表项的状态	1.3.6.1.2.1.17.7.1.2.2.1.3

从节点的索引来获取vlan信息,例如上图中的:

2: dot1qTpFdbPort. 1. 0. 15. 224. 0. 5. 4 (integer) 176

索引中包含的信息是vlan 1, mac就是"0.15.224.0.5.4", 对应000f-e000-0504。

176代表portifindex,查询下面节点可得到If index 126

65: hh3cLswPortIfindex.0.3.0.176 (integer) 126

再查询if表,得到端口名称

 $71: if Descr. 126 \ (octet\ string)\ Gigabit Ethernet 3/0/36\ [47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.33.2F.30.2F.33.36\ (hex)]$

<H3C>dis mac-add

MAC ADDR VLAN ID STATE PORT INDEX AGING TIME(s)

还有一个MAC表dot1dTpFdbEntry, 1.3.6.1.2.1.17.4.3.1, 但这个55HI不支持这个表。它没有MAC表项的对应的vlan信息,该表包含以下三个节点。

dot1dTpFdbAddress	MAC地址(不支持)	1.3.6.1.2.1.17.4.3.1.1
dot1dTpFdbPort	MAC地址对应的端口 (不支持)	1.3.6.1.2.1.17.4.3.1.2
dot1dTpFdbStatus	MAC表项的状态(不支持)	1.3.6.1.2.1.17.4.3.1.3

7 ARP 表项

有两个MIB表用来表示所有ARP表项。

注:静态ARP对应的MIB表索引都是0,动态ARP的索引是vlan虚接口对应的ifIndex。

(1) 表atEntry, 1.3.6.1.2.1.3.1.1, 它没有表项类型的字段, 即不知道ARP表项是动态的, 还是静态的ARP表项, 包含的节点如下。

atlfIndex	端口索引	1.3.6.1.2.1.3.1.1.1
atPhysAddress	物理地址	1.3.6.1.2.1.3.1.1.2
atNetAddress	IP地址	1.3.6.1.2.1.3.1.1.3

(2) 表ipNetToMediaEntry, 1.3.6.1.2.1.4.22.1,它有表项类型的节点 ipNetToMediaType,知道ARP表项是动态表项,还是静态表项,包含的节点如下。

ipNetToMedialfIndex	端口索引	1.3.6.1.2.1.4.22.1.1
ipNetToMediaPhysAddress	物理地址	1.3.6.1.2.1.4.22.1.2
ipNetToMediaNetAddress	IP地址	1.3.6.1.2.1.4.22.1.3
ipNetToMediaType	表项类型	1.3.6.1.2.1.4.22.1.4

8 端口与 VLAN 的对应关系

(1) 查看vlan内的所有端口,有两个MIB节点可以用来查询,一个是私有MIB节点 hh3cdot1qVlanPorts,一个是公有MIB节点dot1qVlanStaticEgressPorts,请以 私有MIB节点hh3cdot1qVlanPorts为准,私有MIB节点查询方式如下:分三步: 先查看vlan内端口的逻辑端口号; 然后根据逻辑端口号查看端口索引; 最后根据端口索引查看端口名称。

先查看vlan内端口的逻辑端口号,可通过节点hh3cdot1qVlanPorts,OID:

1.3.6.1.4.1.25506.8.35.2.1.1.1.3,用vlan作为索引来查某个vlan中包含有的端口。

以vlan 2内包含的端口为例来说,节点的详细信息如下。

2: hh3cdot1qVlanPorts.2 (octet string)

根据获取的值来分析,从左往右依次查找到非"00."的项,发现经过2个"00."后,有一个"40.",表明前面2个全零字节后有一个0100 0000的字节,根据这个我们可以知道前面2个全零的字节对应的逻辑端口号范围为1~2×8,即1~16,再算上非全零字节0100 0000,

这个字节需要从右往左来数,是第7个,则该端口对应的逻辑端口号为16+7=23。

继续分析后面的值,经过17个 "**." 项后,右一个 "20.",则该端口的逻辑端口号为 17×8+6=142。依次往后分析,直到最后一个字节,查看vlan内所有端口对应的逻辑端口号。

然后根据逻辑端口号查看端口索引,节点dot1dBasePortIfIndex,OID:1.3.6.1.2.1.17.1.4.1.2 来查看逻辑端口号和端口索引值之间的对应关系,逻辑端口号为23对应的端口索引为23,逻辑端口号为142对应的端口索引为92。

23: dot1dBasePortIfIndex.23 (integer) 23

34: dot1dBasePortIfIndex.142 (integer) 92

最后根据端口索引查看端口名称,节点ifDescr,OID:1.3.6.1.2.1.2.2.1.2,来查看端口索引23对应的端口为GigabitEthernet1/0/23,端口索引为142对应的端口为

GigabitEthernet3/0/2.

23: ifDescr.23 (octet string) GigabitEthernet1/0/23 [47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.31.2F.30.2F.32.33 (hex)]

37: ifDescr.92 (octet string) GigabitEthernet3/0/2 [47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.33.2F.30.2F.32 (hex)]

注:不用公有MIB节点dot1qVlanStaticEgressPorts不建议使用,IMC适配也是用私有MIB节点,参考网上问题,HSD85739,公有MIB节点dot1qVlanStaticEgressPorts和dot1qVlanStaticUntaggedPorts都修改了,小号端口对应端口列表的高位,大号端口对因端口列表的高位。

[H3C-GigabitEthernet1/0/2]dis vlan 2

VLAN ID: 2

VLAN Type: static

Route Interface: not configured

Description: VLAN 0002

Name: VLAN 0002

Tagged Ports: none

Untagged Ports:

GigabitEthernet1/0/23 GigabitEthernet3/0/2

将上面两个端口加入到vlan 2,公有MIB节点的值为

2: dot1qVlanStaticEgressPorts.2 (octet string)

没有办法再跟逻辑端口号,端口索引去对应了,正常情况是修改这个问题单时,同时把私有 MIB节点等等相关MIB节点一并修改。

而私有MIB节点的值为

hh3cdot1qVlanPorts. 2 (octet string) 2: hh3cdot1qVlanPorts. 2 (octet string)

(2) access端口,查看hh3cifVLANType,OID:1.3.6.1.4.1.25506.8.35.1.1.1.5,就可以知道端口的类型,即端口是access,trunk,还是hybrid口,再根据上面节点hh3cdot1qVlanPorts,OID: 1.3.6.1.4.1.25506.8.35.2.1.1.1.3的信息,剔除掉trunk和hybrid口,就知道access端口属于哪个vlan了。

***** SNMP QUERY STARTED *****

6: hh3cifVLANType.6 (integer) access(2)

(3) trunk端口,可以直接查看表hh3cifVLANTrunkStatusEntry,

OID:1.3.6.1.4.1.25506.8.35.5.1.3.1,包含的节点如下。

hh3cifVLANTrunkIndex	端口索引	1. 3. 6. 1. 4. 1. 25506. 8. 35. 5. 1
		. 3. 1. 1
hh3cifVLANTrunkGvrpRegistratio	GVRP的配置信息	1. 3. 6. 1. 4. 1. 25506. 8. 35. 5. 1
n		. 3. 1. 2
hh3cifVLANTrunkPassListLow	端口允许通过的vlan	1. 3. 6. 1. 4. 1. 25506. 8. 35. 5. 1
	,但不包含未创建的	. 3. 1. 3
	vlan, vlan范围(1到	
	2048)	
hh3cifVLANTrunkPassListHigh	端口允许通过的vlan	1. 3. 6. 1. 4. 1. 25506. 8. 35. 5. 1
	,但不包含未创建的	. 3. 1. 4
	vlan, vlan范围(2049	
	到4094)	
hh3cifVLANTrunkAllowListLow	端口允许通过的vlan	1. 3. 6. 1. 4. 1. 25506. 8. 35. 5. 1

^{1:} hh3cifVLANType.1 (integer) vLANTrunk(1)

^{2:} hh3cifVLANType.2 (integer) hybrid(3)

^{3:} hh3cifVLANType.3 (integer) access(2)

^{4:} hh3cifVLANType.4 (integer) access(2)

^{5:} hh3cifVLANType.5 (integer) access(2)

	,vlan范围(1到2048)	. 3. 1. 5
hh3cifVLANTrunkAllowListHigh		1. 3. 6. 1. 4. 1. 25506. 8. 35. 5. 1
	, vlan范围(2049到 4094)	. 3. 1. 0

举例说明: trunk端口Ten-GigabitEthernet1/0/1,允许vlan 1,2,4通过,但设备上只存在vlan 1,2,这时hh3cifVLANTrunkPassListLow的值是将2048位中的第1,2位置1,第1,2位属于第1个字节,则节点值为"03.00.00.....",hh3cifVLANTrunkPassListHigh的值是全零(没有trunk vlan 2049~4094),hh3cifVLANTrunkAllowListLow的值是将2048位中的第1,2,4位置1,第1,2,4位属于第1个字节,则节点值为"0B.00.00.....",hh3cifVLANTrunkAllowListHigh的值全零。

(4) hybrid端口,也可以直接查看表hh3cifHybridPortEntry,

OID:1.3.6.1.4.1.25506.8.35.1.3.1,包含以下节点。

hh3cifHybridPortIndex	端口索引	1. 3. 6. 1. 4. 1. 25506. 8. 35 . 1. 3. 1. 1
hh3cifHybridTaggedVlanListLow	端口允许带tag的 vlan通过,vlan范围1 ~2048	1. 3. 6. 1. 4. 1. 25506. 8. 35 . 1. 3. 1. 2
hh3cifHybridTaggedVlanListHigh	端口允许带tag的 vlan通过,vlan范围 2049~4094	1. 3. 6. 1. 4. 1. 25506. 8. 35 . 1. 3. 1. 3
hh3cifHybridUnTaggedVlanListLow	端口允许不带tag的 vlan通过,vlan范围1 ~2048	1. 3. 6. 1. 4. 1. 25506. 8. 35 . 1. 3. 1. 4
hh3cifHybridUnTaggedVlanListHig h	端口允许不带tag的 vlan通过,vlan范围 2049~4094	1. 3. 6. 1. 4. 1. 25506. 8. 35 . 1. 3. 1. 5

举例说明: hybrid端口Ten-GigabitEthernet1/0/2, 允许vlan 2, 4带tag通过, 允许vlan 1不带tag通过。hh3cifHybridTaggedVlanListLow的值为"0A. 00. 00....",

hh3cifHybridTaggedVlanListHigh的值为全零,hh3cifHybridUnTaggedVlanListLow的值为 "01.00.00.....",hh3cifHybridUnTaggedVlanListHigh的值为全零。

hybrid和access端口都是在vlan已经存在时,才能让端口属于这个vlan,而trunk口是可以任意配置的,所以trunk口所属vlan的mib节点有hh3cifVLANTrunkPassListLow和hwifVLANTrunkAllowListLow之分。

9 聚合组的端口信息

表hh3cAggLinkEntry, 1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1. 1, 查看聚合组信息,包含以下节点。

hh3cAggLinkNumber	聚合组号(不能获取节	1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1
	点的值)	. 1. 1
hh3cAggLinkName	聚合组的名字(不支持	1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1
)	. 1. 2
hh3cAggLinkMode	聚合方式	1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1
		. 1. 3
hh3cAggLinkPortList	聚合组内端口列表	1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1
		. 1. 4
hh3cAggLinkState	聚合状态	1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1
		. 1. 5
hh3cAggPortListSelectedPorts	聚合组内处于selected	1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1
	状态的端口	. 1. 6
hh3cAggPortListSamePartner		1. 3. 6. 1. 4. 1. 25506. 8. 25. 1. 1
Ports		. 1. 7

MIB节点hh3cAggLinkPortList和hh3cAggPortListSelectedPorts的端口列表跟修改后的公有MIIB节点dot1qVlanStaticEgressPorts和dot1qVlanStaticUntaggedPorts是一样的,所以也没有办法跟逻辑端口号和端口索引去对应了。

10 设备上配置的 VLAN 及 IP 地址

查看设备上配置的VLAN信息主要看以下两张表

(1) 表hh3cVlanInterfaceEntry, 1.3.6.1.4.1.25506.8.35.2.1.2.1。

hh3cVlanInterfaceID	Vlan接口ID(即vlan号)	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 2. 1
		. 1
hh3cdot1qVlanID	Vlan ID(即vlan号)	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 2. 1
		. 2
hh3cdot1qVlanIpAddress	Vlan接口的主IP地址	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 2. 1
		. 3
hh3cdot1qVlanIpAddressMask	Vlan接口主IP的掩码	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 2. 1
		. 4
hh3cVlanInterfaceAdminStatu	Vlan虚接口的管理状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 2. 1
S		. 5
hh3cVlanInterfaceFrameType	虚接口能处理的报文类型	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 2. 1
		. 6
hh3cInterfaceRowStatus	Vlan虚接口的工作状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 2. 1
		. 7
hh3cVlanInterfaceIpMethod	Vlan虚接口IP获取方式	Not supported

(2) 表hh3cVlanInterfaceAddrEntry, 1.3.6.1.4.1.25506.8.35.2.1.5.1。

hh3cVlanInterfaceIpIfIndex	Vlan虚接口索引	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 5.
		1. 1
hh3cVlanInterfaceIpAddr	Vlan虚接口的主IP和从IP地址	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 5.
		1.2
hh3cVlanInterfaceIpMask	Vlan虚接口的主IP和从IP掩码	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 5.
		1.3
hh3cVlanInterfaceIpType	Vlan虚接口IP地址类型	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 5.
		1.4
hh3cVlanInterfaceIpRowStat	Vlan虚接口的操作状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 2. 1. 5.
us		1.5

查看设备上配置的所有IP地址可以通过表ipAddrEntry, 1.3.6.1.2.1.4.20.1来查询。

ipAdEntAddr	接口IP地址	1.3.6.1.2.1.4.20.1.1
ipAdEntIfIndex	接口索引	1.3.6.1.2.1.4.20.1.2
ipAdEntNetMask	接口IP掩码	1.3.6.1.2.1.4.20.1.3
ipAdEntBcastAddr	广播地址	1.3.6.1.2.1.4.20.1.4
ipAdEntReasmMaxSize	能重组的最大数据报文	1.3.6.1.2.1.4.20.1.5

11 路由表项

路由表的总条目数的MIB节点ipCidrRouteNumber, OID: 1.3.6.1.2.1.4.24.3。

路由表的详细条目数参考MIB表ipCidrRouteEntry,OID:1.3.6.1.2.1.4.24.4.1,只等等价路由的查询,包含以下节点。

ipCidrRouteDest	路由的目的地址	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 1
ipCidrRouteMask	路由的掩码	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 2
ipCidrRouteTos	路由的Tos	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 3

ipCidrRouteNextHop	路由的下一跳	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 4
ipCidrRouteIfIndex	路由下一跳对应的 出接口索引	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 5
ipCidrRouteType	路由类型	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 6
ipCidrRouteProto	路由协议类型	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 7
ipCidrRouteAge	路由存在的时间	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 8
ipCidrRouteInfo	路由信息(始终为 null)	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 9
ipCidrRouteNextHopAS	路由下一跳的自治 系统号	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 10
ipCidrRouteMetric1	路由的metric值	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 11
ipCidrRouteMetric2	路由的metric值(始 终为-1)	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 12
ipCidrRouteMetric3	路由的metric值(始 终为-1)	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 13
ipCidrRouteMetric4	路由的metric值(始 终为-1)	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 14
ipCidrRouteMetric5	路由的metric值(始 终为-1)	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 15
ipCidrRouteStatus	路由的状态	1. 3. 6. 1. 2. 1. 4. 24. 4. 1. 16

还有一个表ipRouteEntry, 1.3.6.1.2.1.4.21.1也可以查询路由,但不支持等价路由,实际应用时以上面的MIB表ipCidrRouteEntry为准。

ipRouteDest	路由的目的地址或网段	1.3.6.1.2.1.4.21.1.1
ipRoutelfIndex	路由接口索引	1.3.6.1.2.1.4.21.1.2
ipRouteMetric1	路由首选Cost值	1.3.6.1.2.1.4.21.1.3
ipRouteMetric2	路由次选Cost值	1.3.6.1.2.1.4.21.1.4
ipRouteMetric3	路由次选Cost值	1.3.6.1.2.1.4.21.1.5
ipRouteMetric4	路由次选Cost值	1.3.6.1.2.1.4.21.1.6
ipRouteNextHop	路由下一跳	1.3.6.1.2.1.4.21.1.7
ipRouteType	路由类型	1.3.6.1.2.1.4.21.1.8
ipRouteProto	路由协议	1.3.6.1.2.1.4.21.1.9
ipRouteAge	路由存在的时间	1.3.6.1.2.1.4.21.1.10
ipRouteMask	路由掩码	1.3.6.1.2.1.4.21.1.11
ipRouteMetric5	路由次选Cost值	1.3.6.1.2.1.4.21.1.12
ipRouteInfo	路由信息	Not supported

12 设备电源电压和电源功率

电源模块表hh3cdevMPowerStatusEntry, OID: 1.3.6.1.4.1.25506.8.35.9.1.2.1,表示电源模块的个数和状态,包含以下节点。

hh3cDevMPowerNum	设备电源数目	1. 3. 6. 1. 4. 1. 25506. 8. 35. 9. 1. 2. 1. 1
hh3cDevMPowerStatus	设备电源状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 9. 1. 2. 1. 2

其中hh3cDevMPowerNum是这个表的索引。每台S5500HI可以插2块电源,电源索引号按照以下公式计算:

PowerNum = (电源所在slot号 - 1)*2+1

电源功率表hh3cEntityExtPowerEntry,OID:1.3.6.1.4.1.25506.2.6.1.3.1.1,包含以下节点。

hh3cEntityExtPowerPhysicall	电源模块的实体索	1.3.6.1.4.1.25506.2.6.1.3.1.1.1
ndex	引,与实体MIB的索	
	引一致。不可获取	
hh3cEntityExtNominalPower	不支持	1.3.6.1.4.1.25506.2.6.1.3.1.1.2

hh3cEntityExtCurrentPower	只能获取整机当前 输入功率,单板、 风扇等不支持,单 位为瓦	1.3.6.1.4.1.25506.2.6.1.3.1.1.3
hh3cEntityExtAveragePower	电源的平均功率(不支持)	1.3.6.1.4.1.25506.2.6.1.3.1.1.4
hh3cEntityExtPeakPower	各个模块的峰值功 率(不支持)	1.3.6.1.4.1.25506.2.6.1.3.1.1.5

可同时根据第2.1节的描述,根据节点entPhysicalClass(OID:1.3.6.1.2.1.47.1.1.1.1.5)查找代表整机的分类为chassis的节点。

用chassis的节点索引获取整机的输入功率。如下图,代表这台整机的输入功率为71瓦。

S5500HI不支持读取电压。

13 设备风扇和温度

设备风扇可以通过表hh3cdevMFanStatusEntry, OID:1.3.6.1.4.1.25506.8.35.9.1.1.1来查询。

hh3cDevMFanNum	设备风扇数目	1. 3. 6. 1. 4. 1. 25506. 8. 35. 9. 1 . 1. 1. 1
hh3cDevMFanStatus	设备风扇状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 9. 1 . 1. 1. 2

设备温度可以通过表hh3cEntityExtStateEntry,OID:1.3.6.1.4.1.25506.2.6.1.1.1.1来查询, 表中有2个温度相关的节点。可同时根据第4. 2. 3节的节点entPhysicalDescr,

OID:1.3.6.1.2.1.47.1.1.1.1.2, entPhysicalName, OID:1.3.6.1.2.1.47.1.1.1.7来确认该索引表示

什么模块。

hh3cEntityExtTemperature	模块当前的	1. 3. 6. 1. 4. 1. 25506. 2. 6. 1. 1. 1. 1. 12
	温度	
hh3cEntityExtTemperatureTh	模块温度	1. 3. 6. 1. 4. 1. 25506. 2. 6. 1. 1. 1. 1. 13
reshold	Warning上限	
hh3cEntityExtCriticalTempe	模块温度	1. 3. 6. 1. 4. 1. 25506. 2. 6. 1. 1. 1. 1. 17
ratureThreshold	Alarm上限	
hh3cEntityExtLowerTemperat	模块温度下	1. 3. 6. 1. 4. 1. 25506. 2. 6. 1. 1. 1. 1. 21
ureThreshold	限	1. 3. 0. 1. 4. 1. 25500. 2. 0. 1. 1. 1. 1. 21
	模块被	
hh3cEntityExtShutdownTempe	shutdown的	1. 3. 6. 1. 4. 1. 25506. 2. 6. 1. 1. 1. 1. 22
ratureThreshold	温度上限(不	1. 5. 0. 1. 4. 1. 25500. 2. 0. 1. 1. 1. 1. 22
	支持)	

查看所有单板温度的MIB节点。

索引*.*中第一个*为0,第二个*表示槽位号。

_	hh3cLswSlotMemory	***** SNMP QUERY !	
	hh3cLswSlotTemperature	单板的温度	. 3. 1. 14
			1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4

1: hh3cLswSlotTemperature.0.1 (integer) 34 2: hh3cLswSlotTemperature.0.3 (integer) 34 ***** SNMP QUERY FINISHED *****

14 设备系统, 框, 卡, 子卡, 端口信息

系统信息对应的两个MIB表

(1) 表system, 1.3.6.1.2.1.1, 包含以下节点。

sysDescr	系统描述,可以获取系统版本信息	1.3.6.1.2.1.1.1
sysObjectID	系统ID	1.3.6.1.2.1.1.2
sysUpTime	系统时间	1.3.6.1.2.1.1.3
sysContact	系统联系方式	1.3.6.1.2.1.1.4
sysName	系统名称	1.3.6.1.2.1.1.5
sysLocation	系统地点	1.3.6.1.2.1.1.6
sysServices	系统服务	1.3.6.1.2.1.1.7

sysORLastChange 系统OR的最新变化(不支持) Not supported

(2) 表hh3cLswSystemPara, OID:1.3.6.1.4.1.25506.8.35.18.1,包含以下节点。

hh3cLswSysIpAddr	系统IP地址 (Vlan ID最 下的接口上 配置的主IP)	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 1
hh3cLswSysIpMask	系统IP掩码	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 2
hh3cLswSysCpuRatio	主用主控板 的CPU利用率	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 3
hh3cLswSysVersion	系统版本	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 4
hh3cLswSysTime	系统时间	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 5
hh3cLswSysUNMCastDropEnabl	不支持	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 6
hh3cLswSysManagementVlan	不支持	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 7
hh3cLswSysVlanRange	不支持	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 8
hh3cLswSysManagementIpAddr	不支持	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 9
hh3cLswSysManagementIpMask	不支持	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 10
hh3cLswSysPhyMemory	不支持	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 13
hh3cLswSysMemory	主用主控板 的内存总量	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 14
hh3cLswSysMemoryUsed	主用主控板	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 15

	的内存使用 量	
hh3cLswSysMemoryRatio	主用主控板 的内存利用 率	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 1. 16

1: hh3cLswSyslpAddr.0 (ipaddress) 192.168.1.9

2: hh3cLswSyslpMask.0 (ipaddress) 255.255.255.0

3: hh3cLswSysCpuRatio.0 (integer) 11

4: hh3cLswSysVersion.0 (octet string) 5.20 [35.2E.32.30 (hex)] 5: hh3cLswSysTime.0 (octet string) 2000-4-26,12:56:42.3,+0:0 [07.D0.0

6: hh3cLswSysManagementVlan.0 (integer) 1 7: hh3cLswSysPhyMemory.0 (gauge) 0

8: hh3cLswSysMemory.0 (gauge) 877769040

9: hh3cLswSysMemoryUsed.0 (gauge) 138332108

10: hh3cLswSysMemoryRatio.0 (gauge) 15

11: hh3cLswSysTemperature.0 (integer) 37
***** SNMP QUERY FINISHED *****

机框信息的MIB表hh3cLswFrameEntry, OID:1.3.6.1.4.1.25506.8.35.18.4.2.1,包含以下节

hh3cLswFrameIndex	机框索引	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
119.1	11 1F 1H 1-	. 2. 1. 1
hh3cLswFrameType	机框描述 	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 2. 1. 2
hh3cLswFrameDesc	机框类型	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 2. 1. 3
hh3cLswSlotNumber	机框支持的最大槽位数	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 2. 1. 4
hh3cLswFrameAdminStatus	机框的管理状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 2. 1. 5

🐎 hh3cLswFrameAdminStatus

1: hh3cLswFrameIndex.0 (integer) 0 2: hh3cLswFrameType.0 (integer) 0

3: hh3cLswFrameDesc.0 (octet string) Normal [4E.6F.72.6D.61.6C (hex)]

4: hh3cLswSlotNumber.0 (integer) 9

5: hh3cLswFrameAdminStatus.0 (integer) normal(1)
***** SNMP QUERY FINISHED *****

点。

卡(或单板)信息的MIB表hh3cLswSlotEntry, OID:1.3.6.1.4.1.25506.8.35.18.4.3.1,包含以下节点。

hh3cLswSlotIndex	单板索引	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 1
hh3cLswSlotType	单板类型	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 2
hh3cLswSlotDesc	单板描述	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 3
hh3cLswSlotCpuRatio	单板CPU利用率	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 4
hh3cLswSlotPcbVersion	单板PCB版本	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 5
hh3cLswSlotSoftwareVersio	单板的版本信息	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
n		. 3. 1. 6
hh3cLswSubslotNumber	每个单板的子卡数量	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 7
hh3cLswSlotAdminStatus	单板的管理状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 8
hh3cLswSlotOperStatus	单板的工作状态	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 9
hh3cLswSlotPhyMemory	单板的物理内存总量	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
	不支持	. 3. 1. 10
hh3cLswSlotMemory	单板软件可以使用的	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
	内存总量	. 3. 1. 11
hh3cLswSlotMemoryUsed	单板已用内存数量	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 12
hh3cLswSlotMemoryRatio	单板内存利用率	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 13
hh3cLswSlotTemperature	单板的温度	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4
		. 3. 1. 14

子卡信息的MIB表hh3cLswSubslotEntry, OID:1.3.6.1.4.1.25506.8.35.18.4.4.1,包含以下节点。

hh3cLswSubslotIndex	子卡索引	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4. 4. 1. 1
hh3cLswSubslotType	子卡类行	1. 3. 6. 1. 4. 1. 25506. 8.
		35. 18. 4. 4. 1. 2
hh3cLswSubslotPortNum	每个子卡上的端口数	1. 3. 6. 1. 4. 1. 25506. 8.
		35. 18. 4. 4. 1. 3
hh3cLswSubslotAdminStatus	子卡的管理状态	1. 3. 6. 1. 4. 1. 25506. 8.
		35. 18. 4. 4. 1. 4
hh3cLswSubslotFirstIfInde	子卡上第一个端口的端口索引	1. 3. 6. 1. 4. 1. 25506. 8.
X		35. 18. 4. 4. 1. 5

端口对应的MIB表hh3cLswPortEntry,OID:1.3.6.1.4.1.25506.8.35.18.4.5.1,包含以下节点。

hh3cLswPortIndex	端口的逻辑端口号	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4. 5. 1
		. 1
hh3cLswPortType	端口类型(可看到光	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4. 5. 1
	模块的基本信息)	. 2
hh3cLswPortIfindex	端口索引	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4. 5. 1
		. 3
hh3cLswPortIsPlugged	端口是否插了光模块	1. 3. 6. 1. 4. 1. 25506. 8. 35. 18. 4. 5. 1
		. 4

10: hh3cLswPortIndex.0.1.0.3 (integer) 10
11: hh3cLswPortIndex.0.1.0.11 (integer) 11
12: hh3cLswPortIndex.0.1.0.12 (integer) 12
13: hh3cLswPortIndex.0.1.0.13 (integer) 13
14: hh3cLswPortIndex.0.1.0.14 (integer) 14
15: hh3cLswPortIndex.0.1.0.15 (integer) 15

15 设备模块信息

设备模块信息的MIB表entPhysicalEntry, 1.3.6.1.2.1.47.1.1.1.1, 包含以下节点。

entPhysicalIndex	模块索引 (不可获取)	1.3.6.1.2.1.47.1.1.1.1
entPhysicalDescr	模块描述信息	1.3.6.1.2.1.47.1.1.1.1.2
entPhysicalVendorType	模块的特殊硬件类型	1.3.6.1.2.1.47.1.1.1.3
entPhysicalContainedIn	模块的上级索引	1.3.6.1.2.1.47.1.1.1.4
entPhysicalClass	模块的一般硬件类型	1.3.6.1.2.1.47.1.1.1.5
entPhysicalParentRelPos	子模块在它其兄弟模块的相对位 置	1.3.6.1.2.1.47.1.1.1.6
entPhysicalName	模块名称	1.3.6.1.2.1.47.1.1.1.7
entPhysicalHardwareRev	模块的特殊硬件修订字符串	1.3.6.1.2.1.47.1.1.1.8
entPhysicalFirmwareRev	模块firmware修订字符串	1.3.6.1.2.1.47.1.1.1.9

entPhysicalSoftwareRev	模块软件修订字符串	1.3.6.1.2.1.47.1.1.1.10
entPhysicalSerialNum	模块序列号	1.3.6.1.2.1.47.1.1.1.11
entPhysicalMfgName	模块厂商	1.3.6.1.2.1.47.1.1.1.12
entPhysicalModelName	特殊模块名称	1.3.6.1.2.1.47.1.1.1.13
entPhysicalAlias	模块的别名	not supported
entPhysicalAssetID	模块的指定用户资产ID	not supported
entPhysicalIsFRU	模块的可替代性	1.3.6.1.2.1.47.1.1.1.16
entPhysicalMfgDate	模块的生产日期	1.3.6.1.2.1.47.1.1.1.17
entPhysicalUris	模块附加ID信息	not supported

16 上传/下载版本和配置文件

SNMP支持用FTP和TFTP方式上传/下载版本和配置文件,设备都是作为FTP和TFTP的客户端。

表hh3cFlhOpEntry,OID:1.3.6.1.4.1.25506.2.5.1.2.1.1,支持上传/下载版本和配置文件,

包含以下节点。

hh3cF1h0perIndex	文件操作索引	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
		1.1
hh3cF1h0perType	文件操作类型	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
		1.2
hh3cF1h0perProtocol	文件操作协议	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
		1.3
hh3cF1h0perServerAddress	文件操作服务器地	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
	址	1.4
hh3cF1h0perServerUser	文件操作服务的用	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
	户名	1.5
hh3cF1h0perPassword	文件操作服务的密	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
	码	1.6
hh3cF1h0perSourceFile	文件操作的源文件	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
		1.7
hh3cF1h0perDestinationFile	文件操作的目的文	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
	件	1.8
hh3cF1h0perStatus	文件操作状态	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
		1.9
hh3cF1hOperEndNotification	文件操作结束告警	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
	标识	1. 10
hh3cF1h0perProgress	文件操作进度	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
		1.11
hh3cF1h0perRowStatus	整个表的操作状态	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 2. 1.
		1. 12

下面是用FTP的方式下载启动文件的例子(如果用TFTP方式上传,则不需要指定用户名和密码),将设备上的文件slot1#flash:/s55hi_rel.bin下载到服务器192.168.1.9上,并且将文件名改为123.bin。

Name		Syntax	Value
hh3cFlhOperType.5		int32	flash2Net(3)
🔷 hh3cFlh0perProtocol.5		int32	ftp(1)
hh3cFlh0perServerAddress.5		ipaddr	192.168.1.9
hh3cFlhOperServerUser.5		octets	dftp [64.66.74.70 (hex)]
hh3cFlhOperPassword.5		octets	123 [31.32.33 (hex)]
hh3cFlh0perSourceFile.5		octets	slot1#flash:/s55hi_rel.bin [73.6C.6F.74
hh3cFlh0perDestinationFile.5		octets	123.bin [31.32.33.2E.62.69.6E (hex)]
hh3cFlhOperRowStatus.5		int32	createAndGo(4)
	Last successful poll	at 2012-2-21 16	:44:31

表hh3cCfgOperateEntry, 1.3.6.1.4.1.25506.2.4.1.2.4.1, 只用于上传/下载配置文件, 包含以下节点。

hh3cCfgOperateIndex	配置文件操作索引	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 1
hh3cCfgOperateType	配置文件操作类型	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 2
hh3cCfgOperateProtocol	配置文件操作协议	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 3
hh3cCfgOperateFileName	配置文件操作名称	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 4
hh3cCfgOperateServerAddress	配置文件服务器地址	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 5
hh3cCfgOperateUserName	配置文件服务用户名	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 6
hh3cCfgOperateUserPassword	配置文件服务密码	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2

		. 4. 1. 7
hh3cCfgOperateEndNotification Switch	配置文件操作接收告 警标识	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 8
hh3cCfgOperateRowStatus	整个表的操作状态	1. 3. 6. 1. 4. 1. 25506. 2. 4. 1. 2 . 4. 1. 9

hh3cCfgOperateType值为1时,表示将当前运行的配置保存到文件系统flash中;

值为2时,表示将文件系统flash中的配置文件加载到设备上运行;

值为3时,表示将当前运行的配置保存到服务器上;

值为4时,表示将服务器上的配置文件加载到设备上运行:

值为5时,表示将服务器上的配置文件保存到设备文件系统flash中;

值为6时,表示将设备文件系统flash中的配置文件保存到服务器上。

当hh3cCfgOperateType值为1或2时,hh3cCfgOperateFileName的值会被忽略。

下面是用TFTP方式下载设备启动的配置文件(如果用FTP方式下载,则还要指定用户 名和密码),从设备192.168.1.9上的文件系统flash中将启动配置文件下载到服务器192.168.1.1 上,需要将如下5个MIB节点捆绑起来设置。

17设备启动文件信息

获取设备上flash中所有启动文件数目的节点hh3cSysImageNum,

OID: 1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 4. 1.

获取设备主用和备用启动文件MIB节点表hh3cSysImageEntry,

OID: 1.3.6.1.4.1.25506.2.3.1.4.2.1,该表包含一下节点。

注:这个表能获取设备上flash中的所有启动文件,当然包含主用和备用启动文件。

hh3cSysImageIndex	启动文件索引 (不可获取)	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 4
		. 2. 1. 1
hh3cSysImageName	启动文件名称	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 4
		. 2. 1. 2
hh3cSysImageSize	启动文件大小	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 4
		. 2. 1. 3
hh3cSysImageLocation	启动文件位置	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 4
		. 2. 1. 4
hh3cSysImageType	启动文件类型(标识主用启动文	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 4
	件,备用启动文件)	. 2. 1. 5

18设备配置文件信息

获取设备上flash中所有配置文件数目的节点hh3cSysCFGFileNum,

OID: 1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 5. 1.

获取设备配置文件MIB节点表hh3cSysCFGFileEntry,

OID: 1.3.6.1.4.1.25506.2.3.1.5.2.1,该表包含以下节点。

hh3cSysCFGFileIndex	配置文件索引 (不可获取)	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 5

		. 2. 1. 1
hh3cSysCFGFi1eName	配置文件名称	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 5
		. 2. 1. 2
hh3cSysCFGFileSize	配置文件大小	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 5
		. 2. 1. 3
hh3cSysCFGFi1eLocati	配置文件位置	1. 3. 6. 1. 4. 1. 25506. 2. 3. 1. 5
on		. 2. 1. 4

1: hh3cSysCFGFileNum.0 (integer) 2
***** SNMP QUERY FINISHED *****

- 1: hh3cSysCFGFileName. 4259841 (octet string) startup.cfg [73.74.61.72.74.75.70.2E.6: 2: hh3cSysCFGFileName. 4259842 (octet string) iff.cfg [69.72.66.2E.63.66.67 (hex)] 3: hh3cSysCFGFileSize. 4259841 (integer) 4489 4: hh3cSysCFGFileSize. 4259842 (integer) 15309 5: hh3cSysCFGFileLocation. 4259841 (octet string) flash:/ [66.6C.61.73.68.3A.2F (hex)] 6: hh3cSysCFGFileLocation. 4259842 (octet string) flash:/ [66.6C.61.73.68.3A.2F (hex)]

19 设备 flash 容量信息

MIB表hh3cFlhPartitionEntry, OID:1.3.6.1.4.1.25506.2.5.1.1.4.1.1。

hh3cFlhPartIndex	存储介质索引 (不可获取)	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 1
hh3cFlhPartFirstChip	存储介质第一 个芯片号	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 2
hh3cF1hPartLastChip	存储介质最后 一个芯片号	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 3
hh3cF1hPartSpace	存储介质总空 间大小	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 4
hh3cF1hPartSpaceFree	存储介质剩余 空间大小	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 5
hh3cF1hPartFi1eNum	存储介质中文 件数目	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 6
hh3cF1hPartChecksumMethod	存储介质文件 的校验方式	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 7
hh3cF1hPartStatus	存储介质的读 写属性	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 8

hh3cF1hPartUpgradeMode	存储介质的升 级方式	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 9
hh3cF1hPartName	存储介质的名称	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 10
hh3cF1hPartRequireErase	存储介质是否 需要擦写	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 11
hh3cF1hPartFi1eNameLen	存储介质的文件长度	1. 3. 6. 1. 4. 1. 25506. 2. 5. 1. 1. 4. 1. 1. 12
hh3cFlashPartitions		QUERY STARTED ****** PartFirstChip, 4259841.1 (integer) 1

20 端口 UP/DOWN 的告警信息包含端口名称

默认情况下,端口UP/DOWN的告警中不包含端口名称,只有端口索引值,如下图。

可以通过下面的配置来让端口UP/DOWN的告警中包含端口名称,如下图。

snmp-agent trap if-mib link extended snmp 版本只能为v1

21 设备支持的所有 Trap 告警

设备发送的trap告警是没有等级之分的,主要告警,次要告警是由网管软件来定义的, 下面文档中列出了我们所有的告警节点。

共有告警:

Trap	MIB	Description
bgpBackwardTransition	BGP4-MIB	As per MIB
(1.3.6.1.2.1.15.7.2)		
bgpEstablished	BGP4-MIB	As per MIB
(1.3.6.1.2.1.15.7.1)		
pingProbeFailed	DISMAN-PING-MIB	As per MIB
(1.3.6.1.2.1.80.0.1)		
pingTestFailed	DISMAN-PING-MIB	As per MIB
(1.3.6.1.2.1.80.0.2)	5,0,1,1,1,5,1,1,5	
pingTestCompleted	DISMAN-PING-MIB	As per MIB
(1.3.6.1.2.1.80.0.3)	MELOLOG OTT MID	
mplsXCUp	MPLS-LSR-STD-MIB	Only support one lsp in one trap
(1.3.6.1.2.1.10.166.2.0.1)	MADI O LOD OTO MID	Only symmetric leading to the second
mplsXCDown	MPLS-LSR-STD-MIB	Only support one lsp in one trap
(1.3.6.1.2.1.10.166.2.0.2)	RMON-MIB	As nor MID
risingAlarm (1.3.6.1.2.1.16.0.1)		As per MIB
fallingAlarm	RMON-MIB	As per MIB
(1.3.6.1.2.1.16.0.2) coldStart (1.3.6.1.6.3.1.1.5.1)	SNMPv2-MIB	As per MIB
,	SNMPv2-MIB	As per MIB
warmStart (1.3.6.1.6.3.1.1.5.2)	SNMPv2-MIB	
linkDown (1.3.6.1.6.3.1.1.5.3) linkUp (1.3.6.1.6.3.1.1.5.4)	SNMPv2-MIB	As per MIB
authenticationFailure	SNMPv2-MIB	As per MIB As per MIB
(1.3.6.1.6.3.1.1.5.5)	SINIVIEVZ-IVIID	AS per IVIIB
vrrpTrapNewMaster	VRRP-MIB	As per MIB
(1.3.6.1.2.1.68.0.1)	VICICI -IVIID	As per wild
vrrpTrapAuthFailure	VRRP-MIB	As per MIB
(1.3.6.1.2.1.68.0.2)		7.6 po. 1.110
ipv6lfStateChange	IPV6-MIB	As per MIB
(1.3.6.1.2.1.55.2.0.1)		
IldpRemTablesChange	LLDP-MIB	As per MIB
(1.0.8802.1.1.2.0.0.1)		'
isisDatabaseOverload	ISIS-MIB	As per MIB

Trap	MIB	Description
(1.3.6.1.2.1.138.0.1)		
isisManualAddressDrops (1.3.6.1.2.1.138.0.2)	ISIS-MIB	As per MIB
isisCorruptedLSPDetected (1.3.6.1.2.1.138.0.3)	ISIS-MIB	As per MIB
isisAttemptToExceedMaxSequ ence (1.3.6.1.2.1.138.0.4)	ISIS-MIB	As per MIB
isisIDLenMismatch (1.3.6.1.2.1.138.0.5)	ISIS-MIB	As per MIB
isisMaxAreaAddressesMismat ch (1.3.6.1.2.1.138.0.6)	ISIS-MIB	As per MIB
isisOwnLSPPurge (1.3.6.1.2.1.138.0.7)	ISIS-MIB	As per MIB
isisSequenceNumberSkip (1.3.6.1.2.1.138.0.8)	ISIS-MIB	As per MIB
isisAuthenticationTypeFailure (1.3.6.1.2.1.138.0.9)	ISIS-MIB	As per MIB
isisAuthenticationFailure (1.3.6.1.2.1.138.0.10)	ISIS-MIB	As per MIB
isisVersionSkew (1.3.6.1.2.1.138.0.11)	ISIS-MIB	As per MIB
isisAreaMismatch (1.3.6.1.2.1.138.0.12)	ISIS-MIB	As per MIB
isisRejectedAdjacency (1.3.6.1.2.1.138.0.13)	ISIS-MIB	As per MIB
isisLSPTooLargeToPropagate (1.3.6.1.2.1.138.0.14)	ISIS-MIB	As per MIB
isisOrigLSPBuffSizeMismatch (1.3.6.1.2.1.138.0.15)	ISIS-MIB	As per MIB
isisProtocolsSupportedMismat ch (1.3.6.1.2.1.138.0.16)	ISIS-MIB	As per MIB
isisAdjacencyChange (1.3.6.1.2.1.138.0.17)	ISIS-MIB	As per MIB
isisLSPErrorDetected (1.3.6.1.2.1.138.0.18)	ISIS-MIB	As per MIB
dot1agCfmFaultAlarm (1.3.111.2.802.1.1.8.0.1)	IEEE8021-CFM-MIB	As per MIB
dot3OamThresholdEvent (1.3.6.1.2.1.158.0.1)	DOT3-OAM-MIB	As per MIB
dot3OamNonThresholdEvent (1.3.6.1.2.1.158.0.2)	DOT3-OAM-MIB	As per MIB

私有告警:

Trap	MIB	Description
hh3cRebootSendTrap	HH3C-COMMON-SYSTEM-MI	As per MIB
(1.3.6.1.4.1.25506.6.8.3)	В	
hh3cCfgManEventlog	HH3C-CONFIG-MAN-MIB	As per MIB
(1.3.6.1.4.1.25506.2.4.2.1)		
hh3cEntityExtCpuUsageThreshol	HH3C-ENTITY-EXT-MIB	As per MIB
dNotfication		
(1.3.6.1.4.1.25506.2.6.2.0.4)		
hh3cEntityExtCriticalTemperature	HH3C-ENTITY-EXT-MIB	If the device supports
ThresholdNotification		temperature monitor and entity
(1.3.6.1.4.1.25506.2.6.2.0.8)		extend MIB, this object will be
		supported.
hh3cEntityExtMemUsageThresh	HH3C-ENTITY-EXT-MIB	As per MIB
oldNotification		
(1.3.6.1.4.1.25506.2.6.2.0.5)		

Γ		I =
Trap	MIB	Description
hh3cEntityExtTemperatureThresh oldNotification (1.3.6.1.4.1.25506.2.6.2.0.1)	HH3C-ENTITY-EXT-MIB	If the device supports temperature monitor and entity extend MIB, this object will be supported.
hh3cEntityExtSFPPhony (1.3.6.1.4.1.25506.2.6.2.0.11)	HH3C-ENTITY-EXT-MIB	This module is NOT sold by H3C. H3C therefore shall NOT guarantee the normal function of the device or assume the maintenance responsibility thereof. The trap is generated periodically after a phony module has been found.
hh3cFlhOperNotification (1.3.6.1.4.1.25506.2.5.1.3.1)	HH3C-FLASH-MAN-MIB	As per MIB
hh3cSecureAddressLearned (1.3.6.1.4.1.25506.2.26.1.3.1)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cSecureLoginFailure (1.3.6.1.4.1.25506.2.26.1.3.3)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cSecureLogoff (1.3.6.1.4.1.25506.2.26.1.3.5)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cSecureLogon (1.3.6.1.4.1.25506.2.26.1.3.4)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cSecureRalmLoginFailure (1.3.6.1.4.1.25506.2.26.1.3.6)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cSecureRalmLogon (1.3.6.1.4.1.25506.2.26.1.3.7)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cSecureRalmLogoff (1.3.6.1.4.1.25506.2.26.1.3.8)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cSecureViolation (1.3.6.1.4.1.25506.2.26.1.3.2)	HH3C-PORT-SECURITY-MIB	As per MIB
hh3cRadiusAccServerDownTrap (1.3.6.1.4.1.25506.2.13.3.2)	HH3C-RADIUS-MIB	As per MIB
hh3cRadiusAuthServerDownTrap (1.3.6.1.4.1.25506.2.13.3.1)	HH3C-RADIUS-MIB	As per MIB
hh3cRadiusAuthErrTrap (1.3.6.1.4.1.25506.2.13.3.0.3)	HH3C-RADIUS-MIB	As per MIB
hh3cSysClockChangedNotificatio n (1.3.6.1.4.1.25506.2.3.2.1)	HH3C-SYS-MAN-MIB	As per MIB
hh3cSysReloadNotification (1.3.6.1.4.1.25506.2.3.2.2)	HH3C-SYS-MAN-MIB	As per MIB
hh3cAggPortInactiveNotification (1.3.6.1.4.1.25506.8.25.2.2)	HH3C-LAG-MIB	As per MIB
hh3cAggPortInactiveNotification2 (1.3.6.1.4.1.25506.8.25.2.3)	HH3C-LAG-MIB	As per MIB
hh3cAggPortActiveNotification (1.3.6.1.4.1.25506.8.25.2.4)	HH3C-LAG-MIB	As per MIB
hh3cSlaveSwitchOver (1.3.6.1.4.1.25506.8.35.17.10.1)	HH3C-LswMix-MIB	
hh3cBridgeLostRootPrimary (1.3.6.1.4.1.25506.8.35.14.0.3)	HH3C-LswMSTP-MIB	As per MIB
hh3cPortMstiBpduGuarded (1.3.6.1.4.1.25506.8.35.14.0.5)	HH3C-LswMSTP-MIB	As per MIB
hh3cPortMstiLoopGuarded (1.3.6.1.4.1.25506.8.35.14.0.6)	HH3C-LswMSTP-MIB	As per MIB
hh3cPortMstiRootGuarded (1.3.6.1.4.1.25506.8.35.14.0.4)	HH3C-LswMSTP-MIB	As per MIB
hh3cPortMstiStateDiscarding (1.3.6.1.4.1.25506.8.35.14.0.2)	HH3C-LswMSTP-MIB	As per MIB
hh3cPortMstiStateForwarding (1.3.6.1.4.1.25506.8.35.14.0.1)	HH3C-LswMSTP-MIB	As per MIB
hh3cfanfailure (1.3.6.1.4.1.25506.8.35.12.1.6)	HH3C-LswTRAP-MIB	As per MIB
(1.3.0.1.1.1.20000.0.00.12.1.0)		l .

	I	I
Trap	MIB	Description
hh3cBoardInserted (1.3.6.1.4.1.25506.8.35.12.1.9)	HH3C-LswTRAP-MIB	As per MIB
hh3cBoardNormal (1.3.6.1.4.1.25506.8.35.12.1.11)	HH3C-LswTRAP-MIB	As per MIB
hh3cBoardRemoved	HH3C-LswTRAP-MIB	As per MIB
(1.3.6.1.4.1.25506.8.35.12.1.8) hh3cFanNormal (1.3.6.1.4.1.25506.8.35.12.1.7)	HH3C-LswTRAP-MIB	As per MIB
hh3cLoadFailure (1.3.6.1.4.1.25506.8.35.12.1.19)	HH3C-LswTRAP-MIB	As per MIB
hh3cLoadFinished (1.3.6.1.4.1.25506.8.35.12.1.20)	HH3C-LswTRAP-MIB	As per MIB
hh3cPowerInserted (1.3.6.1.4.1.25506.8.35.12.1.23)	HH3C-LswTRAP-MIB	As per MIB
hh3cPowerNormal (1.3.6.1.4.1.25506.8.35.12.1.2)	HH3C-LswTRAP-MIB	As per MIB
hh3cPowerRemoved (1.3.6.1.4.1.25506.8.35.12.1.5)	HH3C-LswTRAP-MIB	As per MIB
hh3cRequestLoading (1.3.6.1.4.1.25506.8.35.12.1.18)	HH3C-LswTRAP-MIB	As per MIB
hh3cSubcardInsert (1.3.6.1.4.1.25506.8.35.12.1.13)	HH3C-LswTRAP-MIB	As per MIB
hh3cSubcardRemove (1.3.6.1.4.1.25506.8.35.12.1.12)	HH3C-LswTRAP-MIB	As per MIB
hh3cpowerfailure (1.3.6.1.4.1.25506.8.35.12.1.1)	HH3C-LswTRAP-MIB	As per MIB
hh3cprifallingAlarm (1.3.6.1.4.1.25506.8.4.0.2)	HH3C-RMON-EXT-MIB	As per MIB
hh3cpririsingAlarm (1.3.6.1.4.1.25506.8.4.0.1)	HH3C-RMON-EXT-MIB	As per MIB
hh3cRrppRingRecover (1.3.6.1.4.1.25506.2.45.3.1)	HH3C-RRPP-MIB	As per MIB
hh3cRrppRingFail (1.3.6.1.4.1.25506.2.45.3.2)	HH3C-RRPP-MIB	As per MIB
hh3cRrppMultiMaster (1.3.6.1.4.1.25506.2.45.3.3)	HH3C-RRPP-MIB	As per MIB
hh3cRrppMajorFault (1.3.6.1.4.1.25506.2.45.3.4)	HH3C-RRPP-MIB	As per MIB
hh3cSSHUserAuthFailure (1.3.6.1.4.1.25506.2.22.1.3.0.1)	HH3C-SSH-MIB	The trap is generated when a user fails to authentication.
hh3cSSHVersionNegotiationFailu re (1.3.6.1.4.1.25506.2.22.1.3.0.2)	HH3C-SSH-MIB	The trap is generated when a user fails to negotiate SSH protocol version.
hh3cSSHUserLogin (1.3.6.1.4.1.25506.2.22.1.3.0.3)	HH3C-SSH-MIB	The trap is generated when a user logs in successfully.
hh3cSSHUserLogoff (1.3.6.1.4.1.25506.2.22.1.3.0.4)	HH3C-SSH-MIB	The trap is generated when a user logs off.
hh3cMACInformationChangedTr apExt	HH3C-MAC-INFORMATION-M	As per MIB
(1.3.6.1.4.1.25506.2.87.1.4.0.1) hh3cStormRising	HH3C-STORM-CONSTRAIN	As per MIB
(1.3.6.1.4.1.25506.2.66.3.1) hh3cStormFalling	HH3C-STORM-CONSTRAIN	As per MIB
(1.3.6.1.4.1.25506.2.66.3.2) hh3cDHCPServerAddrExhaust	HH3C-DHCPS-MIB	As per MIB
(1.3.6.1.4.1.25506.2.101.3.0.1) hh3cDHCPServerAddrExhaustR	HH3C-DHCPS-MIB	As per MIB
ecover (1.3.6.1.4.1.25506.2.101.3.0.2)	THEO-DITION SHIP	vo her inin
hh3cDHCPServerAvglpUsageOv erflow	HH3C-DHCPS-MIB	As per MIB

Trap	MIB	Description
(1.3.6.1.4.1.25506.2.101.3.0.3)		
hh3cDHCPServerMaxIpUsageOv erflow (1.3.6.1.4.1.25506.2.101.3.0.4)	HH3C-DHCPS-MIB	As per MIB
hh3cDHCPServerAllocateOverflo w (1.3.6.1.4.1.25506.2.101.3.0.5)	HH3C-DHCPS-MIB	As per MIB
hh3cRadiusAuthServerUpTrap (1.3.6.1.4.1.25506.2.13.3.0.1)	HH3C-RADIUS-MIB	As per MIB
hh3cRadiusAccServerUpTrap (1.3.6.1.4.1.25506.2.13.3.0.2)	HH3C-RADIUS-MIB	As per MIB
hh3clpAddressChangeNotify (1.3.6.1.4.1.25506.2.67.2.2.0.1)	HH3C-IP-ADDRESS-MIB	As per MIB
hh3cARPRatelimitOverspeedTra p (1.3.6.1.4.1.25506.2.110.1.1.0.1)	HH3C-ARP-RATELIMIT-MIB	If the rate of ARP packets delivered to the CPU on a device exceeds the threshold, a trap message is generated and sent to the remote monitoring device.
hh3cNqaProbeTimeOverThreshold (1.3.6.1.4.1.25506.8.3.3.1)	HH3C-NQA-MIB	As per MIB
hh3cNqaJitterRTTOverThreshold (1.3.6.1.4.1.25506.8.3.3.2)	HH3C-NQA-MIB	As per MIB
hh3cNqaProbeFailure (1.3.6.1.4.1.25506.8.3.3.3)	HH3C-NQA-MIB	As per MIB
hh3cNqaJitterPacketLoss (1.3.6.1.4.1.25506.8.3.3.4)	HH3C-NQA-MIB	As per MIB
hh3cNqaJitterSDOverThreshold (1.3.6.1.4.1.25506.8.3.3.5)	HH3C-NQA-MIB	As per MIB
hh3cNqaJitterDSOverThreshold (1.3.6.1.4.1.25506.8.3.3.6)	HH3C-NQA-MIB	As per MIB
hh3cNqalCPIFOverThreshold (1.3.6.1.4.1.25506.8.3.3.7)	HH3C-NQA-MIB	As per MIB
hh3cNqaMOSOverThreshold (1.3.6.1.4.1.25506.8.3.3.8)	HH3C-NQA-MIB	As per MIB

22 通过 MIB 获取 LLDP 邻居信息

第一步,获取节点11dpRemoteSystemsData的信息

用NET SNMP来Walk MIB节点11dpRemoteSystemsData, OID: 1.0.8802.1.1.2.1.4

**** SNMP QUERY STARTED ****

- 1: lldpRemChassisIdSubtype.153864.99.1 (integer) macAddress(4)
- 2: lldpRemChassisId.153864.99.1 (octet string) 00.E0.FC.00.22.22 (hex)
- 3: 11dpRemPortIdSubtype. 153864.99.1 (integer) interfaceName(5)
- $4:\ \texttt{lldpRemPortId}.\ 153864.\ 99.\ 1\ \ (\texttt{octet}\ \ \texttt{string})\ \ \texttt{GigabitEthernet1}/0/13$

5: 11dpRemPortDesc. 153864. 99. 1 (octet string) GigabitEthernet1/0/13 Interface [47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 33. 20. 49. 6E. 74. 65. 72. 66. 61. 63. 65 (hex)]

6: 11dpRemSysName. 153864.99.1 (octet string) H3C [48.33.43 (hex)]

7: 11dpRemSysDesc. 153864.99.1 (octet string) H3C Comware Platform Software, Software Version 5.20 Release 5101P01<0D><0A>H3C S5120-28SC-HI<0D><0A>Copyright (c) 2004-2012 Hangzhou H3C Tech. Co., Ltd. All rights reserved.

 $[48.\ 33.\ 43.\ 20.\ 43.\ 6F.\ 6D.\ 77.\ 61.\ 72.\ 65.\ 20.\ 50.\ 6C.\ 61.\ 74.\ 66.\ 6F.\ 72.\ 6D.\ 20.\ 53.\ 6F.\ 66.\ 74.\ 77.\ 61.\ 72.\ 65.\ 60.\ 74.\ 77.\ 61.\ 72.\ 65.\ 72.\ 60.$

. 2C. 20, 53, 6F, 66, 74, 77, 61, 72, 65, 20, 56, 65, 72, 73, 69, 6F, 6E, 20, 35, 2E, 32, 30, 20, 52, 65, 6C, 65, 61

. 73. 65. 20. 35. 31. 30. 31. 50. 30. 31. 0D. 0A. 48. 33. 43. 20. 53. 35. 31. 32. 30. 2D. 32. 38. 53. 43. 2D. 48. 49

. 0D. 0A. 43. 6F. 70. 79. 72. 69. 67. 68. 74. 20. 28. 63. 29. 20. 32. 30. 30. 34. 2D. 32. 30. 31. 32. 20. 48. 61. 6E

. 67. 7A. 68. 6F. 75. 20. 48. 33. 43. 20. 54. 65. 63. 68. 2E. 20. 43. 6F. 2E. 2C. 20. 4C. 74. 64. 2E. 20. 41. 6C. 6C

. 20. 72. 69. 67. 68. 74. 73. 20. 72. 65. 73. 65. 72. 76. 65. 64. 2E (hex)]

8: lldpRemSysCapSupported.153864.99.1 (octet string) (

9: lldpRemSysCapEnabled.153864.99.1 (octet string) (

10: lldpRemManAddrIfSubtype. 153864. 99. 1. 1. 4. 10. 13. 1. 1 (integer) ifIndex (2)

11: lldpRemManAddrIfId. 153864. 99. 1. 1. 4. 10. 13. 1. 1 (integer) 43

12: 11dpRemManAddr0ID. 153864.99.1.1.4.10.13.1.1 (object identifier) (null-oid) null ***** SNMP QUERY FINISHED *****

节点11dpRemoteSystemsData下面包含如下节点:

第一个节点为11dpRemChassisIdSubtype,表示对端设备标识11dpRemChassisId的解码 类型,这里的值为4,表示用MAC地址来标识对端设备:

第二个节点为11dpRemChassisId,表示对端设备标识,这里的值为MAC地址 00.0F. E2.00.22.22;

第三个节点为11dpRemPortIdSubtype,表示对端设备端口11dpRemPortId的解码类型,这里值为5,表示用端口名称来标识对端的端口;

第四个节点为11dpRemPortId,表示对端设备端口,GigabitEthernet11/0/13;

第五个节点为11dpRemPortDesc,表示对端设备端口描述信息,GigabitEthernet11/0/13 Interface;

第六个节点为11dpRemSysName,表示对端设备的系统名称,H3C;

第七个节点为11dpRemSysDesc, 表示对端设备的系统描述,H3C Comware Platform Software, Software Version 5.20 Release 5101P01<0D><0A>H3C

S5120-28SC-HI<0D><0A>Copyright (c) 2004-2012 Hangzhou H3C Tech. Co., Ltd. All rights reserved.

第八个节点为11dpRemSysCapSupported,表示对端设备支持的能力集,用位图的方式来

表示:

第九个节点为11dpRemSysCapEnabled,表示对端设备使能的能力集,用位图的方式来表示;

第十个节点为11dpRemManAddrIfSubtype,表示对端设备管理IP地址的接口11dpRemManAddrIfId的标识方式,这里的值为2,表示用ifIndex来表示对端设备管理IP地址的接口:

第十一个节点为11dpRemManAddrIfId,表示对端设备管理IP地址的接口ID,为43; 第十二个节点为1dpRemManAddr0ID都是null,不用关注。

Walk完这个节点,就知道了对端的端口为GigabitEthernet11/0/13,对端设备MAC为00.0F.E2.00.22.22,对端设备系统名称为H3C,对端设备系统描述为H3C Comware Platform Software, Software Version 5.20 Release 5101P01<0D><0A>H3C S5120-28SC-HI<0D><0A>Copyright (c) 2004-2012 Hangzhou H3C Tech. Co., Ltd. All rights reserved.

第二步, 获取本端的端口信息

11dpRemoteSystemsData的前九个节点的索引都是153864.99.1,其中153864表示LLDP 发现对端设备的时间戳,99表示本端接口的逻辑端口号,1表示远端设备索引。

通过节点dot1dBasePortIfIndex, 0ID: 1.3.6.1.2.1.17.1.4.1.2,可以知道本端接口的逻辑端口号和端口ID之间的对应关系,逻辑端口号99对应的端口ID为29。

**** SNMP QUERY STARTED ****

- 1: dot1dBasePortIfIndex.71 (integer) 1
- 2: dot1dBasePortIfIndex.72 (integer) 2
- 3: dot1dBasePortIfIndex.73 (integer) 3
- 4: dot1dBasePortIfIndex.74 (integer) 4
- 5: dot1dBasePortIfIndex.75 (integer) 5
- 6: dot1dBasePortIfIndex.76 (integer) 6
- 7: dot1dBasePortIfIndex.77 (integer) 7
- 8: dot1dBasePortIfIndex.78 (integer) 8
- 9: dot1dBasePortIfIndex.79 (integer) 9
- 10: dot1dBasePortIfIndex.80 (integer) 10
- 11: dot1dBasePortIfIndex.81 (integer) 11
- 12: dot1dBasePortIfIndex.82 (integer) 12
- 13: dot1dBasePortIfIndex.83 (integer) 13
- 14: dot1dBasePortIfIndex.84 (integer) 14
- 15: dot1dBasePortIfIndex.85 (integer) 15


```
16: dot1dBasePortIfIndex.86 (integer) 16
17: dot1dBasePortIfIndex.87 (integer) 17
18: dot1dBasePortIfIndex.88 (integer) 18
19: dot1dBasePortIfIndex.89 (integer) 19
20: dot1dBasePortIfIndex.90 (integer) 20
21: dot1dBasePortIfIndex.91 (integer) 21
22: dot1dBasePortIfIndex.92 (integer) 22
23: dot1dBasePortIfIndex.93 (integer) 23
24: dot1dBasePortIfIndex.94 (integer) 24
25: dot1dBasePortIfIndex.95 (integer) 25
26: dot1dBasePortIfIndex.96 (integer) 26
27: dot1dBasePortIfIndex.97 (integer) 27
28: dot1dBasePortIfIndex.98 (integer) 28
29: dot1dBasePortIfIndex.99 (integer) 29
30: dot1dBasePortIfIndex.100 (integer) 30
31: dot1dBasePortIfIndex.101 (integer) 31
32: dot1dBasePortIfIndex.102 (integer) 32
33: dot1dBasePortIfIndex.103 (integer) 33
34: dot1dBasePortIfIndex.104 (integer) 34
35: dot1dBasePortIfIndex.105 (integer) 35
36: dot1dBasePortIfIndex.106 (integer) 36
37: dot1dBasePortIfIndex.107 (integer) 37
38: dot1dBasePortIfIndex.108 (integer) 38
39: dot1dBasePortIfIndex.109 (integer) 39
40: dot1dBasePortIfIndex.110 (integer) 40
41: dot1dBasePortIfIndex.111 (integer) 41
42: dot1dBasePortIfIndex.112 (integer) 42
43: dot1dBasePortIfIndex.113 (integer) 43
44: dot1dBasePortIfIndex.114 (integer) 44
45: dot1dBasePortIfIndex.115 (integer) 45
46: dot1dBasePortIfIndex.116 (integer) 46
47: dot1dBasePortIfIndex.117 (integer) 47
48: dot1dBasePortIfIndex.118 (integer) 48
49: dot1dBasePortIfIndex.119 (integer) 49
50: dot1dBasePortIfIndex.120 (integer) 50
51: dot1dBasePortIfIndex.121 (integer) 51
52: dot1dBasePortIfIndex.122 (integer) 52
53: dot1dBasePortIfIndex.123 (integer) 55
54: dot1dBasePortIfIndex.124 (integer) 56
```

通过节点ifDescr, 0ID: 1.3.6.1.2.1.2.2.1.2, 可以知道端口ID和端口名称之间的对应关系,端口ID为29的端口名称为GigabitEthernet2/0/29。

**** SNMP QUERY FINISHED ****


```
**** SNMP QUERY STARTED ****
1: ifDescr.1 (octet string) GigabitEthernet2/0/1
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31 (hex)]
2: ifDescr. 2 (octet string) GigabitEthernet2/0/2
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32 (hex)]
3: ifDescr. 3 (octet string) GigabitEthernet2/0/3
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33 (hex)]
4: ifDescr. 4 (octet string) GigabitEthernet2/0/4
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34 (hex)]
5: ifDescr. 5 (octet string) GigabitEthernet2/0/5
[47, 69, 67, 61, 62, 69, 74, 45, 74, 68, 65, 72, 6E, 65, 74, 32, 2F, 30, 2F, 35 (hex)]
6: ifDescr.6 (octet string) GigabitEthernet2/0/6
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 36 (hex)]
7: ifDescr.7 (octet string) GigabitEthernet2/0/7
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 37 (hex)]
8: ifDescr. 8 (octet string) GigabitEthernet2/0/8
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 38 (hex)]
9: ifDescr. 9 (octet string) GigabitEthernet2/0/9
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 39 (hex)]
10: ifDescr. 10 (octet string) GigabitEthernet2/0/10
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 30 (hex)]
11: ifDescr.11 (octet string) GigabitEthernet2/0/11
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 31 (hex)]
12: ifDescr. 12 (octet string) GigabitEthernet2/0/12
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 32 (hex)]
13: ifDescr.13 (octet string) GigabitEthernet2/0/13
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 33 (hex)]
14: ifDescr. 14 (octet string) GigabitEthernet2/0/14
[47, 69, 67, 61, 62, 69, 74, 45, 74, 68, 65, 72, 6E, 65, 74, 32, 2F, 30, 2F, 31, 34 (hex)]
15: ifDescr. 15 (octet string) GigabitEthernet2/0/15
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 35 (hex)]
16: ifDescr. 16 (octet string) GigabitEthernet2/0/16
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 36 (hex)]
17: ifDescr. 17 (octet string) GigabitEthernet2/0/17
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 37 (hex)]
18: ifDescr. 18 (octet string) GigabitEthernet2/0/18
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 38 (hex)]
19: ifDescr. 19 (octet string) GigabitEthernet2/0/19
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 39 (hex)]
20: ifDescr.20 (octet string) GigabitEthernet2/0/20
```

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 30 (hex)]

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 31 (hex)]

21: ifDescr.21 (octet string) GigabitEthernet2/0/21


```
22: ifDescr. 22 (octet string) GigabitEthernet2/0/22
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 32 (hex)]
23: ifDescr. 23 (octet string) GigabitEthernet2/0/23
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 33 (hex)]
24: ifDescr. 24 (octet string) GigabitEthernet2/0/24
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 34 (hex)]
25: ifDescr. 25 (octet string) GigabitEthernet2/0/25
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 35 (hex)]
26: ifDescr. 26 (octet string) GigabitEthernet2/0/26
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 36 (hex)]
27: ifDescr. 27 (octet string) GigabitEthernet2/0/27
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 37 (hex)]
28: ifDescr. 28 (octet string) GigabitEthernet2/0/28
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 38 (hex)]
29: ifDescr. 29 (octet string) GigabitEthernet2/0/29
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 39 (hex)]
30: ifDescr. 30 (octet string) GigabitEthernet2/0/30
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 30 (hex)]
31: ifDescr. 31 (octet string) GigabitEthernet2/0/31
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 31 (hex)]
32: ifDescr. 32 (octet string) GigabitEthernet2/0/32
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 32 (hex)]
33: ifDescr. 33 (octet string) GigabitEthernet2/0/33
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 33 (hex)]
34: ifDescr. 34 (octet string) GigabitEthernet2/0/34
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 34 (hex)]
35: ifDescr. 35 (octet string) GigabitEthernet2/0/35
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 35 (hex)]
36: ifDescr. 36 (octet string) GigabitEthernet2/0/36
[47, 69, 67, 61, 62, 69, 74, 45, 74, 68, 65, 72, 6E, 65, 74, 32, 2F, 30, 2F, 33, 36 (hex)]
37: ifDescr. 37 (octet string) GigabitEthernet2/0/37
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 37 (hex)]
38: ifDescr. 38 (octet string) GigabitEthernet2/0/38
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 38 (hex)]
39: ifDescr. 39 (octet string) GigabitEthernet2/0/39
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 39 (hex)]
40: ifDescr. 40 (octet string) GigabitEthernet2/0/40
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 30 (hex)]
41: ifDescr. 41 (octet string) GigabitEthernet2/0/41
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 31 (hex)]
42: ifDescr. 42 (octet string) GigabitEthernet2/0/42
```

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 32 (hex)]

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 33 (hex)]

43: ifDescr. 43 (octet string) GigabitEthernet2/0/43


```
44: ifDescr. 44 (octet string) GigabitEthernet2/0/44
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 34 (hex)]
45: ifDescr. 45 (octet string) GigabitEthernet2/0/45
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 35 (hex)]
46: ifDescr. 46 (octet string) GigabitEthernet2/0/46
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 36 (hex)]
47: ifDescr. 47 (octet string) GigabitEthernet2/0/47
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 37 (hex)]
48: ifDescr. 48 (octet string) GigabitEthernet2/0/48
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 38 (hex)]
49: ifDescr. 49 (octet string) GigabitEthernet2/0/49
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 39 (hex)]
50: ifDescr.50 (octet string) GigabitEthernet2/0/50
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 30 (hex)]
51: ifDescr.51 (octet string) GigabitEthernet2/0/51
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 31 (hex)]
52: ifDescr. 52 (octet string) GigabitEthernet2/0/52
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 32 (hex)]
53: ifDescr. 53 (octet string) M-GigabitEthernet0/0/0
[4D. 2D. 47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 30. 2F. 30. 2F. 30 (hex)]
54: ifDescr. 54 (octet string) NULLO [4E. 55. 4C. 4C. 30 (hex)]
55: ifDescr.55 (octet string) Ten-GigabitEthernet2/0/53
[54, 65, 6E, 2D, 47, 69, 67, 61, 62, 69, 74, 45, 74, 68, 65, 72, 6E, 65, 74, 32, 2F, 30, 2F, 35, 33 (hex)]
56: ifDescr. 56 (octet string) Ten-GigabitEthernet2/0/54
[54, 65, 6E, 2D, 47, 69, 67, 61, 62, 69, 74, 45, 74, 68, 65, 72, 6E, 65, 74, 32, 2F, 30, 2F, 35, 34 (hex)]
57: ifDescr. 57 (octet string) Vlan-interfacel
```

**** SNMP QUERY FINISHED ****

则本端端口为GigabitEthernet2/0/29。

第三步,获取对端设备的管理IP地址和管理地址接口

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31 (hex)]

11dpRemoteSystemsData的前十、十一,十二个节点的索引为 153864.99.1.1.4.10.13.1.1,其中153864表示LLDP发现对端设备的时间戳,99表示本端接口的逻辑端口号,紧接着的1表示远端设备索引,再后面的1表示管理地址的类型为ipv4地址,最后面的4.10.13.1.1表示长度为4个字节,对端设备的管理IP地址为10.13.1.1。

在对端设备10.13.1.1上,通过节点ifDescr, 0ID: 1.3.6.1.2.1.2.2.1.2, 可以知道接口ID和接口名称之间的对应关系,接口ID为43对应的接口名为Vlan-interface13。

**** SNMP QUERY STARTED ****

1: ifDescr.1 (octet string) GigabitEthernet1/0/1

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31 (hex)]

2: ifDescr. 2 (octet string) GigabitEthernet1/0/2

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32 (hex)]


```
3: ifDescr. 3 (octet string) GigabitEthernet1/0/3
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 33 (hex)]
4: ifDescr. 4 (octet string) GigabitEthernet1/0/4
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 34 (hex)]
5: ifDescr. 5 (octet string) GigabitEthernet1/0/5
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 35 (hex)]
6: ifDescr. 6 (octet string) GigabitEthernet1/0/6
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 36 (hex)]
7: ifDescr. 7 (octet string) GigabitEthernet1/0/7
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 37 (hex)]
8: ifDescr. 8 (octet string) GigabitEthernet1/0/8
[47, 69, 67, 61, 62, 69, 74, 45, 74, 68, 65, 72, 6E, 65, 74, 31, 2F, 30, 2F, 38 (hex)]
9: ifDescr.9 (octet string) GigabitEthernet1/0/9
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 39 (hex)]
10: ifDescr.10 (octet string) GigabitEthernet1/0/10
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 30 (hex)]
11: ifDescr.11 (octet string) GigabitEthernet1/0/11
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 31 (hex)]
12: ifDescr. 12 (octet string) GigabitEthernet1/0/12
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 32 (hex)]
13: ifDescr. 13 (octet string) GigabitEthernet1/0/13
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 33 (hex)]
14: ifDescr. 14 (octet string) GigabitEthernet1/0/14
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 34 (hex)]
15: ifDescr. 15 (octet string) GigabitEthernet1/0/15
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 35 (hex)]
16: ifDescr.16 (octet string) GigabitEthernet1/0/16
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 36 (hex)]
17: ifDescr. 17 (octet string) GigabitEthernet1/0/17
[47, 69, 67, 61, 62, 69, 74, 45, 74, 68, 65, 72, 6E, 65, 74, 31, 2F, 30, 2F, 31, 37 (hex)]
18: ifDescr. 18 (octet string) GigabitEthernet1/0/18
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 38 (hex)]
19: ifDescr. 19 (octet string) GigabitEthernet1/0/19
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 31. 39 (hex)]
20: ifDescr. 20 (octet string) GigabitEthernet1/0/20
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 30 (hex)]
21: ifDescr. 21 (octet string) GigabitEthernet1/0/21
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 31 (hex)]
22: ifDescr. 22 (octet string) GigabitEthernet1/0/22
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 32 (hex)]
23: ifDescr.23 (octet string) GigabitEthernet1/0/23
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 33 (hex)]
24: ifDescr. 24 (octet string) GigabitEthernet1/0/24
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 34 (hex)]
```



```
25: ifDescr. 25 (octet string) GigabitEthernet1/0/25
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 35 (hex)]
26: ifDescr. 26 (octet string) GigabitEthernet1/0/26
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 36 (hex)]
27: ifDescr. 27 (octet string) M-GigabitEthernet0/0/0
[4D. 2D. 47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 30. 2F. 30. 2F. 30 (hex)]
28: ifDescr. 28 (octet string) NULLO [4E. 55. 4C. 4C. 30 (hex)]
29: ifDescr.29 (octet string) Ten-GigabitEthernet1/0/27
[54. 65. 6E. 2D. 47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 37 (hex)]
30: ifDescr. 30 (octet string) Ten-GigabitEthernet1/0/28
[54. 65. 6E. 2D. 47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 31. 2F. 30. 2F. 32. 38 (hex)]
31: ifDescr. 31 (octet string) Vlan-interface1
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31 (hex)]
32: ifDescr. 32 (octet string) Vlan-interface2
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 32 (hex)]
33: ifDescr. 33 (octet string) Vlan-interface3
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 33 (hex)]
34: ifDescr. 34 (octet string) Vlan-interface4
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 34 (hex)]
35: ifDescr.35 (octet string) Vlan-interface5
[56, 6C, 61, 6E, 2D, 69, 6E, 74, 65, 72, 66, 61, 63, 65, 35 (hex)]
36: ifDescr. 36 (octet string) Vlan-interface6
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 36 (hex)]
37: ifDescr. 37 (octet string) Vlan-interface7
[56, 6C, 61, 6E, 2D, 69, 6E, 74, 65, 72, 66, 61, 63, 65, 37 (hex)]
38: ifDescr. 38 (octet string) Vlan-interface8
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 38 (hex)]
39: ifDescr. 39 (octet string) Vlan-interface9
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 39 (hex)]
40: ifDescr. 40 (octet string) Vlan-interface10
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 30 (hex)]
41: ifDescr. 41 (octet string) Vlan-interface11
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 31 (hex)]
42: ifDescr. 42 (octet string) Vlan-interface12
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 32 (hex)]
43: ifDescr. 43 (octet string) Vlan-interface13
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 33 (hex)]
44: ifDescr. 44 (octet string) Vlan-interface14
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 34 (hex)]
45: ifDescr. 45 (octet string) Vlan-interface15
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 35 (hex)]
46: ifDescr. 46 (octet string) Vlan-interface16
[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 36 (hex)]
```

47: ifDescr. 47 (octet string) Vlan-interface17

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 37 (hex)]

48: ifDescr. 48 (octet string) Vlan-interface18

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31. 38 (hex)]

49: ifDescr. 49 (octet string) Vlan-interface19

[56, 6C, 61, 6E, 2D, 69, 6E, 74, 65, 72, 66, 61, 63, 65, 31, 39 (hex)]

50: ifDescr.50 (octet string) Vlan-interface20

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 32. 30 (hex)]

51: ifDescr.51 (octet string) Vlan-interface21

[56, 6C, 61, 6E, 2D, 69, 6E, 74, 65, 72, 66, 61, 63, 65, 32, 31 (hex)]

52: ifDescr. 52 (octet string) Vlan-interface22

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 32. 32 (hex)]

53: ifDescr. 53 (octet string) Vlan-interface23

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 32. 33 (hex)]

54: ifDescr. 54 (octet string) Vlan-interface24

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 32. 34 (hex)]

55: ifDescr.55 (octet string) Vlan-interface25

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 32. 35 (hex)]

56: ifDescr. 56 (octet string) Vlan-interface26

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 32. 36 (hex)]

**** SNMP QUERY FINISHED ****

根据以上三步,我们就知道了本端端口为GigabitEthernet2/0/29;

对端端口的端口为GigabitEthernet11/0/13,对端设备MAC为00.0F.E2.00.22.22,对端设备系统名称为H3C,对端设备系统描述为H3C Comware Platform Software, Software Version 5.20 Release 5101P01<0D><0A>H3C S5120-28SC-HI<0D><0A>Copyright (c) 2004-2012 Hangzhou H3C Tech. Co., Ltd. All rights reserved.对端管理IP地址为 10.13.1.1,管理IP地址的接口ID为43,管理IP地址接口名称为Vlan-interface13。

第四步,在设备上通过命令行来验证:

<H3C>dis 11dp neighbor-information

LLDP neighbor-information of port 99[GigabitEthernet2/0/29]:

Neighbor index : 1

Update time : 0 days, 0 hours, 25 minutes, 38 seconds

Chassis type : MAC address

Chassis ID : 00e0-fc00-2222

Port ID type : Interface name

Port ID : GigabitEthernet1/0/13

Port description : GigabitEthernet1/0/13 Interface

System name : H3C

System description : H3C Comware Platform Software, Software Version 5.20 Rele

ase 5101P01

H3C S5120-28SC-HI

Copyright (c) 2004-2012 Hangzhou H3C Tech. Co., Ltd. All rights reserved.

System capabilities supported : Bridge, Router

System capabilities enabled : Bridge, Router

Management address type : ipv4

Management address : 10.13.1.1

Management address interface type : IfIndex

Management address interface ID : 43

Management address OID : 0

Port VLAN ID(PVID): 13

Port and protocol VLAN ID(PPVID) : 0

Port and protocol VLAN supported : Yes

Port and protocol VLAN enabled $\,$: No

VLAN name of VLAN 13: VLAN 0013

 ${\tt Auto-negotiation \ supported: Yes}$

Auto-negotiation enabled : Yes

OperMau : speed(1000)/duplex(Full)

Power port class : PD

PSE power supported : No

PSE power enabled : No

PSE pairs control ability: No

Power pairs : Signal

Port power classification : Class 0

Link aggregation supported: Yes

Link aggregation enabled : No

Aggregation port ID : 0

Maximum frame Size: 9216

注:LLDP的MIB节点会记录历史信息,当发现一个端口有多个相同邻居时,根据节点11dpRemoteSystemsData索引中的时间戳,以时间戳大的值为准。

23 获取设备上配置 loopback 地址

先walk节点ifDescr, OID: 1.3.6.1.2.1.2.2.1.2, 获取到loopack0对应的接口索引是58。

```
**** SNMP QUERY STARTED ****
```

1: ifDescr.1 (octet string) GigabitEthernet2/0/1

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31 (hex)]

2: ifDescr.2 (octet string) GigabitEthernet2/0/2

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32 (hex)]

3: if Descr. 3 (octet string) GigabitEthernet 2/0/3

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33 (hex)]

4: ifDescr. 4 (octet string) GigabitEthernet2/0/4

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34 (hex)]

5: ifDescr.5 (octet string) GigabitEthernet2/0/5

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35 (hex)]

6: ifDescr.6 (octet string) GigabitEthernet2/0/6

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 36 (hex)]

7: ifDescr.7 (octet string) GigabitEthernet2/0/7

[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 37 (hex)]

8: ifDescr.8 (octet string) GigabitEthernet2/0/8


```
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 38 (hex)]
9: ifDescr. 9 (octet string) GigabitEthernet2/0/9
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 39 (hex)]
10: ifDescr. 10 (octet string) GigabitEthernet2/0/10
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 30 (hex)]
11: ifDescr.11 (octet string) GigabitEthernet2/0/11
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 31 (hex)]
12: ifDescr. 12 (octet string) GigabitEthernet2/0/12
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 32 (hex)]
13: ifDescr. 13 (octet string) GigabitEthernet2/0/13
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 33 (hex)]
14: ifDescr. 14 (octet string) GigabitEthernet2/0/14
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 34 (hex)]
15: ifDescr. 15 (octet string) GigabitEthernet2/0/15
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 35 (hex)]
16: ifDescr.16 (octet string) GigabitEthernet2/0/16
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 36 (hex)]
17: ifDescr. 17 (octet string) GigabitEthernet2/0/17
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 37 (hex)]
18: ifDescr.18 (octet string) GigabitEthernet2/0/18
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 38 (hex)]
19: ifDescr. 19 (octet string) GigabitEthernet2/0/19
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 31. 39 (hex)]
20: ifDescr. 20 (octet string) GigabitEthernet2/0/20
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 30 (hex)]
21: ifDescr. 21 (octet string) GigabitEthernet2/0/21
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 31 (hex)]
22: ifDescr. 22 (octet string) GigabitEthernet2/0/22
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 32 (hex)]
23: ifDescr. 23 (octet string) GigabitEthernet2/0/23
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 33 (hex)]
24: ifDescr. 24 (octet string) GigabitEthernet2/0/24
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 34 (hex)]
25: ifDescr. 25 (octet string) GigabitEthernet2/0/25
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 35 (hex)]
26: ifDescr.26 (octet string) GigabitEthernet2/0/26
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 36 (hex)]
27: ifDescr. 27 (octet string) GigabitEthernet2/0/27
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 37 (hex)]
28: ifDescr. 28 (octet string) GigabitEthernet2/0/28
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 38 (hex)]
29: ifDescr. 29 (octet string) GigabitEthernet2/0/29
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 32. 39 (hex)]
```

30: ifDescr.30 (octet string) GigabitEthernet2/0/30


```
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 30 (hex)]
31: ifDescr. 31 (octet string) GigabitEthernet2/0/31
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 31 (hex)]
32: ifDescr. 32 (octet string) GigabitEthernet2/0/32
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 32 (hex)]
33: ifDescr. 33 (octet string) GigabitEthernet2/0/33
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 33 (hex)]
34: ifDescr. 34 (octet string) GigabitEthernet2/0/34
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 34 (hex)]
35: ifDescr. 35 (octet string) GigabitEthernet2/0/35
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 35 (hex)]
36: ifDescr. 36 (octet string) GigabitEthernet2/0/36
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 36 (hex)]
37: ifDescr. 37 (octet string) GigabitEthernet2/0/37
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 37 (hex)]
38: ifDescr.38 (octet string) GigabitEthernet2/0/38
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 38 (hex)]
39: ifDescr. 39 (octet string) GigabitEthernet2/0/39
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 33. 39 (hex)]
40: ifDescr. 40 (octet string) GigabitEthernet2/0/40
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 30 (hex)]
41: ifDescr. 41 (octet string) GigabitEthernet2/0/41
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 31 (hex)]
42: ifDescr. 42 (octet string) GigabitEthernet2/0/42
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 32 (hex)]
43: ifDescr. 43 (octet string) GigabitEthernet2/0/43
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 33 (hex)]
44: ifDescr. 44 (octet string) GigabitEthernet2/0/44
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 34 (hex)]
45: ifDescr. 45 (octet string) GigabitEthernet2/0/45
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 35 (hex)]
46: ifDescr. 46 (octet string) GigabitEthernet2/0/46
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 36 (hex)]
47: ifDescr.47 (octet string) GigabitEthernet2/0/47
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 37 (hex)]
48: ifDescr. 48 (octet string) GigabitEthernet2/0/48
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 38 (hex)]
49: ifDescr. 49 (octet string) GigabitEthernet2/0/49
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 34. 39 (hex)]
50: ifDescr. 50 (octet string) GigabitEthernet2/0/50
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 30 (hex)]
51: ifDescr. 51 (octet string) GigabitEthernet2/0/51
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 31 (hex)]
```

52: ifDescr. 52 (octet string) GigabitEthernet2/0/52


```
[47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 32 (hex)]
```

53: ifDescr. 53 (octet string) M-GigabitEthernet0/0/0

[4D. 2D. 47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 30. 2F. 30. 2F. 30 (hex)]

54: ifDescr. 54 (octet string) NULLO [4E. 55. 4C. 4C. 30 (hex)]

55: ifDescr. 55 (octet string) Ten-GigabitEthernet2/0/53

[54. 65. 6E. 2D. 47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 33 (hex)]

56: ifDescr. 56 (octet string) Ten-GigabitEthernet2/0/54

[54. 65. 6E. 2D. 47. 69. 67. 61. 62. 69. 74. 45. 74. 68. 65. 72. 6E. 65. 74. 32. 2F. 30. 2F. 35. 34 (hex)]

57: ifDescr. 57 (octet string) Vlan-interface1

[56. 6C. 61. 6E. 2D. 69. 6E. 74. 65. 72. 66. 61. 63. 65. 31 (hex)]

58: ifDescr. 58 (octet string) LoopBack0 [4C. 6F. 6F. 70. 42. 61. 63. 6B. 30 (hex)]

**** SNMP QUERY FINISHED ****

然后walk节点hh3cIpAddrSetMask, 0ID: 1.3.6.1.4.1.25506.2.67.1.1.1.1.4,节点的索引有7段数值,其中第一段数值表示接口索引,最后四段表示接口的ip地址。根据节点 ifDescr我们已经知道loopack0对应的接口索引是58,则对应节点hh3cIpAddrSetMask的索引58.1.4.10.102.1.1,节点的值为255.255.255.255.表示loopback0的ip地址为10.102.1.1, 掩码为255.255.255.255.255.

**** SNMP QUERY STARTED ****

1: hh3cIpAddrSetMask. 57. 1. 4. 11. 1. 1. (ipaddress) 255. 255. 255. 0

2: hh3cIpAddrSetMask. 58. 1. 4. 10. 102. 1. 1 (ipaddress) 255. 255. 255. 255

**** SNMP QUERY FINISHED ****

24 获取堆叠设备的 Master 和 Slave 编号

Walk节点hh3cLswSlotType, 0ID: 1.3.6.1.4.1.25506.8.35.18.4.3.1.2, 可以知道堆叠中有哪些ID存在, 节点的索引有两段数值, 第一段数值固定为0; 第二段数值表示堆叠ID, 根据下图, 知道堆叠中有ID 1和3。

***** SNMP QUERY STARTED *****

1: hh3cLswSlotType.0.1 (integer) type-Main(256)

2: hh3cLswSlotType.0.3 (integer) type-Main(256)

**** SNMP QUERY FINISHED ****

Walk节点hh3cLswMainCardBoardStatus, OID: 1.3.6.1.4.1.25506.8.35.17.5.1.1, 它有三个值,

1: master(1)

2: standby (2)

3: process(3)

根据下面的信息,我们知道ID 1对应的设备是master,其他都是slave。

***** SNMP QUERY STARTED *****


```
1: hh3cLswMainCardBoardStatus.0.1 (integer) master(1)
```

2: hh3cLswMainCardBoardStatus.0.2 (integer) standby(2)

3: hh3cLswMainCardBoardStatus.0.3 (integer) standby(2)

4: hh3cLswMainCardBoardStatus.0.4 (integer) standby(2)

5: hh3cLswMainCardBoardStatus.0.5 (integer) standby(2)

6: hh3cLswMainCardBoardStatus.0.6 (integer) standby(2)

7: hh3cLswMainCardBoardStatus.0.7 (integer) standby(2)

8: hh3cLswMainCardBoardStatus.0.8 (integer) standby(2)

9: hh3cLswMainCardBoardStatus.0.9 (integer) standby(2)

***** SNMP QUERY FINISHED *****

25 测试要用 MIB 节点

设备序列号,光模块厂商,光模块型号,光模块序列号,物理接口/槽位,这些MIB节点的索引不固定。

测试例所涉及MIB节点描述及读取方法所使用MIB节点对应OID网络设备设备名称和设备型号是同一个MIB节点Name: entPhysicalDescr名称1: entPhysicalDescr. 1 (octet string) H3COID:1.3.6.1.2.1.47.1.1.1[48.33.43 (hex)]1.2

设备型号 2: entPhysicalDescr. 2 (octet string) H3C Name: entPhysicalDescr S5500-34C-HI Software Version 5.20 0ID:1.3.6.1.2.1.47.1.1.

[48. 33. 43. 20. 53. 35. 35. 30. 30. 2D. 33. 34. 43. 2D. 48. 4 1. 2

9. 20. 53. 6F. 66. 74. 77. 61. 72. 65. 20. 56. 65. 72. 73. 69.

6F. 6E. 20. 35. 2E. 32. 30 (hex)]

3: entPhysicalDescr.3 (octet string) H3C

S5500-58C-HI Software Version 5.20

[48. 33. 43. 20. 53. 35. 35. 30. 30. 2D. 35. 38. 43. 2D. 48. 4

9. 20. 53. 6F. 66. 74. 77. 61. 72. 65. 20. 56. 65. 72. 73. 69.

6F. 6E. 20. 35. 2E. 32. 30 (hex)

----从2[~]10表示堆叠中每台设备的型号。

设备序列 每个设备都有序列号,直接walk MIB节点 Name:entPhysicalSerialNum 号 Description: The vendor-specific serial OID:1.3.6.1.2.1.47.1.1.1.

Description: The vendor-specific serial number string for the physical entity. The preferred value is the serial number string

actually printed on the component itself

OS版本 每个设备都会对应有一个版本号,直接walk MIB节点 Name:

Description: Software version of the board entPhysicalSoftwareRev

OID:

1.11

1. 3. 6. 1. 2. 1. 47. 1. 1. 1. 1. 10

管理IP地 系统中最小vlan配置的ip地址,直接walk MIB节点 Name: hh3cLswSysIpAddr

址 System IP address, which is the OID: 1.3.6.1.4.1.25506.8.3 Description:

primary IP address of the VLAN interface that has 5.18.1.1

smallest VLAN ID and is configured IP address.

直接walk MIB节点 所有IP地 Name:

址列表 Description: The IPv4 address to which this ipAdEntA

> entry's addressing information pertains. ddr OID:

> > 1. 3. 6. 1. 2. 1. 4. 20. 1. 1

物理接口 MIB节点entPhysicalDescr包含了所有的端口和设备名 Name:entPhysicalDescr

称的信息,直接walk OID:1.3.6.1.2.1.47.1.1.1.

1. 2

光模块厂 直接walk MIB节点 Name:entPhysicalMfgName

The name of the manufacturer of OID:1.3.6.1.2.1.47.1.1. Description:

> this physical component. 1. 12

光模块型 直接walk MIB节点 Name: entPhysicalVendorTyp

号 Description: An indication of the

> vendor-specific hardware type of the physical OID: 1, 3, 6, 1, 2, 1, 47, 1, 1, 1,

entity.

每个单板都有序列号,直接walk MIB节点 光模块序 Name:entPhysicalSerialNum 列号

The vendor-specific serial OID: 1. 3. 6. 1. 2. 1. 47. 1. 1. 1. Description:

number string for the physical entity. The 1.11

preferred value is the serial number string actually printed on the component itself

端口描述 直接walk MIB节点 Name: ifAlias

> This object is an 'alias' name OID:1.3.6.1.2.1.31.1.1. Description:

for the interface as specified by a network manager, and provides a non-volatile 'handle' for

the interface.

端口状态 直接walk MIB节点 Name: ifOperStatus

> Description: If ifAdminStatus is down(2) then OID:1.3.6.1.2.1.2.2.1.8

ifOperStatus should be down(2). If ifAdminStatus

changed to up(1) then

ifOperStatus should change to up(1) if the

interface is ready to transmit and receive network

traffic:

端口VLAN 私有MIB节点hh3cdot1qVlanPorts为准,私有MIB节点查 Name:hh3cdot1qVlanPorts

询方式如下: 分三步: 先查看vlan内端口的逻辑端口号; OID: 1.3.6.1.4.1.25506.8.3

然后根据逻辑端口号查看端口索引;最后根据端口索引 5.2.1.1.1.3

查看端口名称。

先查看vlan内端口的逻辑端口号,可通过节点hh3cdot1qVlanPorts,OID:

1.3.6.1.4.1.25506.8.35.2.1.1.1.3,用vlan作为索引来查某个vlan中包含有的端口。

Name:dot1dBasePortIfIndex OID:1.3.6.1.2.1.17.1.4.1. 2

Name:ifDescr

OID: 1. 3. 6. 1. 2. 1. 2. 2. 1. 2

1: hh3cdot1qVlanPorts.1 (octe 2: hh3cdot1qVlanPorts.2 (octe ****** SNMP QUERY FINISHE

以vlan 2内包含的端口为例来说,节点的详细信息如下。

根据获取的值来分析,从左往右依次查找到非 "00."的项,发现经过2个"00."后,有一个"40.",表明前面2个全零字节后有一个0100 0000的字节,根据 这个我们可以知道前面2个全零的字节对应的逻辑端口号范围为1~2×8,即1~16,再算上非全零字节0100 0000,这个字节需要从右往左来数,是第7个,则该端口对应的逻辑端口号为16+7=23。

继续分析后面的值,经过10个"00."项后,右一个"20.",则该端口的逻辑端口号为13×8+6=110。依次往后分析,直到最后一个字节,查看vlan内所有端口对应的逻辑端口号。

然后根据逻辑端口号查看端口索引,节点dot1dBasePortIfIndex,0ID:1.3.6.1.2.1.17.1.4.1.2 来查看逻辑端口号和端口索引值之间的对应关系,逻辑端口号为23对应的端口索引为23,逻辑端口号为110对应的端口索引为76。

- 21: dot1dBasePortIfIndex.21 (integer) 21
- 22: dot1dBasePortIfIndex.22 (integer) 22
- 23: dot1dBasePortIfIndex.23 (integer) 23
- 24: dot1dBasePortIfIndex.24 (integer) 24
- 25: dot1dBasePortIfIndex.25 (integer) 25

• • •

70: dot1dBasePortIfIndex.108 (integer) 74

71: dot1dBasePortIfIndex.109 (integer) 75

72: dot1dBasePortIfIndex.110 (integer) 76

73: dot1dBasePortIfIndex.111 (integer) 77

74: dot1dBasePortIfIndex.112 (integer) 78

最后根据端口索引查看端口名称, 节点ifDescr,

OID: 1. 3. 6. 1. 2. 1. 2. 2. 1. 2,来查看端口索引23对应的

端口为GigabitEthernet1/0/23,端口索引为76对应的

端口为GigabitEthernet2/0/40。

21: ifDescr.21 (octet string) GigabitEthernet1/0/21

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.31.2F.30.2F.32.31~(hex)]

22: ifDescr.22 (octet string) GigabitEthernet1/0/22

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.31.2F.30.2F.32.32 (hex)]

23: ifDescr.23 (octet string) GigabitEthernet1/0/23

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.31.2F.30.2F.32.33 (hex)]

24: ifDescr.24 (octet string) GigabitEthernet1/0/24

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.31.2F.30.2F.32.34~(hex)]

 $25: if Descr. 25\ (octet\ string)\ Gigabit Ethernet 1/0/25$

 $[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.31.2F.30.2F.32.35\ (hex)]$

• • •

74: ifDescr.74 (octet string) GigabitEthernet2/0/38

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.32.2F.30.2F.33.38 (hex)]

75: ifDescr.75 (octet string) GigabitEthernet2/0/39

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.32.2F.30.2F.33.39 (hex)]

 $76: if Descr. 76\ (octet\ string)\ Gigabit Ethernet 2/0/40$

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.32.2F.30.2F.34.30 (hex)]

77: ifDescr.77 (octet string) GigabitEthernet2/0/41

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.32.2F.30.2F.34.31~(hex)]

78: ifDescr.78 (octet string) GigabitEthernet2/0/42

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.32.2F.30.2F.34.32 (hex)]

端口MAC 直接walk MIB节点

举例:

1: dot1qTpFdbPort.1.28.175.247.113.246.215 (integer) 90

索引包含vlan和mac的信息,对应的vlan 1, mac就是 "28.175.247.113.246.215",对应lcaf-f771-f6d7。

节点的值90是逻辑端口号,通过节点dot1dBasePortIfIndex可以获取端口的索引为56

Name:dot1qTpFdbPort

OID: 1. 3. 6. 1. 2. 1. 17. 7. 1. 2.

2.1.2

Name: dot1dBasePortIfIndex OID: 1.3.6.1.2.1.17.1.4.1.

2

H3C S5500-HI 常见 MIB 使用指导

文档密级

52: dot1dBasePortIfIndex.90 (integer) 56

Name:ifDescr

OID: 1. 3. 6. 1. 2. 1. 2. 2. 1. 2

最后再查看ifDescr,索引56对应的端口为

56: ifDescr.56 (octet string) GigabitEthernet2/0/20

[47.69.67.61.62.69.74.45.74.68.65.72.6E.65.74.32.2F.30.2F.32.30 (hex)]

IP地址 直接walk MIB节点 Name: ipAdEntAddr

> Description: The IPv4 address to which this OID:1.3.6.1.2.1.4.20.1.1

entry's addressing information pertains.

子网掩码 直接walk MIB节点 Name:ipAdEntNetMask

> Description: The subnet mask associated with OID: 1. 3. 6. 1. 2. 1. 4. 20. 1. 3

the IPv4 address of this entry.

标准速率 直接walk MIB节点(单位是M) Name: ifHighSpeed

> Description: An estimate of the interface's OID:1.3.6.1.2.1.31.1.1.

current bandwidth in units of 1,000,000 bits per 15 second. If this object reports a value of `n' then the speed of the interface is somewhere in the

range of `n-500,000' to `n+499,999'. For

interfaces which do not vary in bandwidth or for those where no accurate estimation can be made, this object should contain the nominal bandwidth. For a sub-layer which has no concept of bandwidth,

this object should be zero.

实际速率 直接walk MIB节点(单位是字节) Name: ifHCInOctets

> OID:1.3.6.1.2.1.31.1.1.1. ifHCInOctets

Description: The total number of octets 6

received on the interface, including framing

characters. This object is a 64-bit version of Name:ifHCOutOctets

ifInOctets OID: 1, 3, 6, 1, 2, 1, 31, 1, 1, 1,

10

ifHCOutOctets

Description: The total number of octets transmitted out of the interface, including framing characters. This object is a 64-bit

version of ifOutOctets.

端口入方向的实际速率=8×[ifHCInOctets(t1时刻的

值) — ifHCInOctets(t2时刻的值)]/(t1-t2)

端口出方向的实际速率=8×[ifHCOutOctets(t1时刻

的值)—ifHCOutOctets (t2时刻的值)]/(t1-t2)

LACP捆绑 直接walk MIB节点 Name: hh3cAggLinkPortList

端口 Description: List of ports in this link OID: 1. 3. 6. 1. 4. 1. 25506. 8. 2

H3C S5500-HI 常见 MIB 使用指导

文档密级

| 对端设备
型号 | aggregation group
设备两端都要使能LLDP,直接walk MIB 节点 | 5. 1. 1. 1. 4
Name: lldpRemSysDesc
OID: 1. 0. 8802. 1. 1. 2. 1. 4. 1. | | |
|-------------|---|---|--|--|
| 对端设备
名称 | 设备两端都要使能LLDP,直接walk MIB 节点 | 1.10
Name:11dpRemSysName
OID:1.0.8802.1.1.2.1.4.1. | | |
| 对端设备 | 设备两端都要使能LLDP,直接walk MIB 节点 | 1.9 Name:lldpRemPortId | | |
| 端口 | | OID:1. 0. 8802. 1. 1. 2. 1. 4. 1. 1. 7 | | |
| 对端设备
MAC | 设备两端都要使能LLDP,直接walk MIB 节点 | Name:11dpRemChassisId
OID:1.0.8802.1.1.2.1.4.1. | | |
| 对端设备
IP | 设备两端都要使能LLDP,直接walk MIB 节点,索引包含对端设备管理ip地址 | Name:11dpRemManAddrIfId OID:1.0.8802.1.1.2.1.4.2. | | |
| | 举例:
1: lldpRemManAddrIfId.1232831.80.1.1.4.15.1.1.1 (integer) 30 | 1. 4 | | |
| | 索引的最后几位*. *. *. *就是对端设备ip: 15. 1. 1. 1 | | | |