Estatística Matemática

Estimação Pontual - Aula 2

Prof. Paulo Cerqueira Jr - cerqueirajr@ufpa.br Faculdade de Estatística - FAEST Programa de Pós-Graduação em Matemática e Estatística - PPGME Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr

Propriedades dos estimadores

Introdução

- Nas últimas subseções apresentamos métodos para obter estimadores pontuais.
- Investigaremos agora algumas propriedades que ajudam a decidir se um estimador é melhor que outro.
- Assim como a qualidade dos estimadores.

• Uma medida da aproximação de um estimador $t(X_1,\ldots,X_n)$ em relação o parâmetro alvo $\tau(\theta)$ é o que chamamos de EQM do estimador.

Definição 1 (EQM) Seja $T=t(X_1,\ldots,X_n)$ um estimador para $\tau(\theta)$. Então, $E\left[(T-\tau(\theta))^2\right]$ é dito ser o EQM de $T=t(X_1,\ldots,X_n)$.

⁽ⁱ⁾Observação:

O subscrito heta no símbolo da esperança $E_{ heta}$ indica a p.d.f. da família sendo considerada, a partir da qual a amostra é proveniente.

/

$$egin{aligned} E_{ heta}\left[(T- au(heta))^2
ight] &= E_{ heta}\left[(t(X_1,\ldots,X_n)- au(heta))^2
ight] \ &= \int \cdots \int (t(x_1,\ldots,x_n)- au(heta))^2 f(x_1| heta) \cdots f(x_n| heta) dx_1 \cdots dx_n \end{aligned}$$

onde $f(x|\theta)$ é a p.d.f. da qual a amostra aleatória foi selecionada.

- O nome "Erro Quadrático Médio" pode ser justificado considerando o fato de que a diferença $t-\tau(\theta)$, sendo t o valor de T usado para estimar $\tau(\theta)$, representa o erro na estimação de $\tau(\theta)$.
- Trabalhamos com $(T- au(heta))^2$ o que leva ao termo "Quadrático".
- O termo "Médio" está associado ao cálculo do valor esperado.
- Note que $E_{\theta}\left[(T-\tau(\theta))^2\right]$ é uma medida do distanciamento de T em relação a $\tau(\theta)$, assim como a variância de uma variável aleatória é a medida do distanciamento dos possíveis valores em relação a sua média.

8

- Se formos comparar estimadores em termos do EQM, naturalmente iremos preferir aquele com menor EQM.
- Podemos pensar em obter um estimador com o menor EQM, mas tal estimador raramente existe.
- Em geral, o EQM de um estimador depende de θ .
- Para dois estimadores $T_1=t_1(X_1,\ldots,X_n)$ e $T_2=t_2(X_1,\ldots,X_n)$ de $\tau(\theta)$, seus respectivos EQMs são funções de θ e podem se cruzar; ou seja, para algum θ temos:
 - T_1 com o menor EQM e para outros θ' , temos
 - T_2 com o menor EQM.

- Em geral, qualquer função crescente da distância absoluta |T- au(heta)| serviria para medir a qualidade de um estimador.
- O "Erro Absoluto Médio" $E_{\theta}[|T- au(\theta)|]$ é uma alternativa razoável, mas o EQM tem pelo menos duas vantagens sobre outras medidas de distância:
 - 1. É mais fácil de manipular analiticamente.
 - 2. Possui a seguinte interpretação.

$$E_{ heta}[(W- heta)^2] = ext{Var}_{ heta}W + (E_{ heta}(W)- heta)^2 = ext{Var}_{ heta}W + [ext{Vi\'es}_{ heta}(W)]^2$$

• O resultado acima é obtido a partir de:

$$\mathrm{Var}_{ heta}(x) = \mathbb{E}(x^2) - \mathbb{E}^2(x)$$

Note que: ${
m Var}_{ heta}(W- heta)={
m Var}_{ heta}(W)$ pois heta é constante

$$\operatorname{Var}_{ heta}(W) = \operatorname{Var}_{ heta}(W - heta) = \mathbb{E}_{ heta}[(W - heta)^2] - \mathbb{E}_{ heta}^2[W - heta]$$

Definição 2 (Viés, Vício ou tendenciosidade.) Um estimador $T=t(X_{i_1},\ldots,X_n)$ é dito não viciado para $T(\theta)$

se e somente se $E_{ heta}(T) = E_{ heta}[ar{t}(X_{j_1},\ldots,X_n)] = T(heta)$ para todo $heta \in \Theta$.

ullet O vício de um estimador pontual W de um parâmetro heta é dado pela diferença entre E(W) e heta, isto é

$$ext{Vicio}(W) = E_{ heta}(W) - \Theta$$

- Pode ser tanto positivo, negativo ou zero.
- ullet Se o vício for igual a zero, dizemos que o estimador W é não viciado para heta.

• Veja que:

$$EQM = E_{ heta}[(W- heta)^2] = V(W) + [E_{\Theta}(W)- heta]^2$$

- Incorpora dois componentes:
 - um medindo a variabilidade do estimador (precisão).
 - outro medindo seu vício.
- Um bom estimador terá valores pequenos para esses componentes.
- Para encontrar estimadores com boas propriedades de EQM, precisamos encontrar aqueles que controlam a variabilidade e o vício.
- Claramente, estimadores não viciados (vício = 0) serão preferidos.
- Para um estimador não viciado temos $E_{\theta}[(W-\theta)^2]=V(W),$ ou seja, o EQM é igual à variância do estimador.

Exemplo 1 Exemplo: Seja X_1,\ldots,X_n uma amostra aleatória da $N(\mu,\sigma^2)$. Sabemos que X e S^2 são estimadores não viciados, então $E(\overline{X})=\mu$ e $E(S^2)=\sigma^2$. Este resultado também é válido se não usarmos a suposição de normalidade dos dados.

EQMS:

• Considere $heta=(\mu,\sigma^2)$ com ou sem a suposição de normalidade,

$$E_{ heta}[(X-\mu)^2] = Var(ar{X}) = \sigma^2/n$$

$$E_{ heta}[(S^2 - \sigma^2)^2] = Var(S^2) = rac{2\sigma^4}{\sqrt{n-1}}$$

• Lembre que:

$$rac{n-1}{\sigma^2}S^2 \sim \chi^2_{n-1}$$

• Este resultado só é verdade se X_1,\ldots,X_n são i.i.d. $N(\mu,\sigma^2)$.

$$egin{split} Var(S^2) &= Var\left(rac{\sigma^2}{n-1}rac{n-1}{\sigma^2}S^2
ight) = rac{\sigma^4}{(n-1)^2}Var\left(rac{n-1}{\sigma^2}S^2
ight) = 2(n-1) \ &= rac{\sigma^4}{(n-1)^2} \cdot 2(n-1) = rac{2\sigma^4}{\sqrt{n-1}}. \end{split}$$

ullet A expressão do EQM para S^2 não permanece a mesma se retirarmos a suposição de normalidade.

(i) Nota:

Embora muitos estimadores não viciados são também razoáveis em termos de EQM, esteja avisado que controlar o vício não garante que o EQM seja controlado.

Exemplo 2 X_1,\ldots,X_n são i.i.d. $N(\mu,\sigma^2)$. Um estimador alternativo para σ^2 é o EMV dado por

$$\hat{\sigma}^2 = rac{1}{n} \sum_{r=1}^n (X_i - \overline{X})^2 = rac{n-1}{n} S^2$$

• Veja que

$$E(\hat{\sigma}^2) = E\left(rac{n-1}{n}S^2
ight) = rac{n-1}{n}E(S^2) = \left(rac{n-1}{n}
ight)\sigma^2.$$

• Portanto, $\hat{\sigma}^2$ é um estimador viciado para σ^2 .

• A variância dos estimador:

$$V(\hat{\sigma}^2) = V\left(rac{n-1}{n}S^2
ight) = \left(rac{n-1}{n}
ight)^2 V(S^2) = \left(rac{n-1}{n}
ight)^2 rac{2\sigma^4}{n-1} = rac{(n-1)\cdot 2\sigma^4}{n^2}$$

• Desta forma o EQM será: $E\left[(\hat{\sigma}^2-\sigma^2)^2
ight]=V(\hat{\sigma}^2)+[V$ í $cio(\hat{\sigma}^2)]^2.$

$$=rac{(n-1)\cdot 2\sigma^4}{n^2}+\left[rac{n-1}{n}\sigma^2-\sigma^2
ight]^2=rac{(n-1)\cdot 2\sigma^4}{n^2}+\sigma^4igg[-rac{1}{n}igg]^2=(2n-1)rac{\sigma^4}{n^2}.$$

Concluindo o exemplo...

$$\mathrm{EQM}(\hat{\sigma}^2) = E\left[(\hat{\sigma}^2 - \sigma^2)^2
ight] = rac{(2n-1)}{n^2}\sigma^4 < \left(rac{2}{n-1}
ight)\sigma^4 = E\left[(S^2 - \sigma^2)^2
ight] = \mathrm{EQM}(S^2)$$

- Ou seja, $\hat{\sigma}^2$ tem menor EQM que S^2 . Se ignorarmos o problema do vício e usarmos $\hat{\sigma}^2$, iremos obter um EQM menor.
- ullet O exemplo acima não implica que S^2 deva ser abandonado como estimador de σ^2 .
- O argumento acima indica que, em média, $\hat{\sigma}^2$ será mais próximo de σ^2 do que S^2 se o EQM for usado como critério de comparação.
- Entretanto, $\hat{\sigma}^2$ é viciado e irá, em média, subestimar σ^2 .
- Este fato é forte o bastante para nos deixar preocupados sobre o uso de $\hat{\sigma}^2$ como estimador de σ^2 .

Consistência

- As definições de EQM e Vício para um estimador consideram que o tamanho amostral n é fixo. A próxima propriedade a ser introduzida considera uma avaliação para a situação onde n cresce.
- Assuma que $T_n = t_n(X_1, \dots, X_n)$ representa um estimador de $\tau(\theta)$ baseado em uma amostra de tamanho n. Iremos considerar uma sequência de estimadores:

$$egin{aligned} T_1 &= t_1(X_1) \ &T_2 &= t_2(X_1, X_2) \ &T_3 &= t_3(X_1, X_2, X_3) \ &dots \ &T_n &= t_n(X_1, \dots, X_n) \end{aligned}$$

Um exemplo óbvio é

$$T_n=t_n(X_1,\ldots,X_n)=rac{1}{n}\sum_{i=1}^n X_i$$

• As funções t_n na sequência serão o mesmo tipo de função para cada n.

• Quando consideramos uma sequência de estimadores, parece razoável pensar que uma boa sequência de estimadores deverá ter valores que se aproximam da quantidade a ser estimada conforme o tamanho amostral aumenta.

Definição 3 (Consistência baseada no EQM.) Seja $T_1, T_2, \ldots, T_n, \ldots$ uma sequência de estimadores de $\tau(\theta)$, sendo $T_n = t_n(X_1, \ldots, X_n)$ baseado em uma amostra de tamanho n. Esta sequência de estimadores é dita "Consistente no EQM" para $\tau(\theta)$ se e somente se

$$\lim_{n o\infty} E_{ heta}[(T_n- au(heta))^2]=0 \quad ext{para todo} \quad heta\in\mathbb{R}$$

Observação: Consistência no EQM implica que ambos o vício e a variância de T_n se aproximam de zero visto que

$$E_{ heta}[(T_n- au(heta))^2]=Var_{ heta}[T_n]+[au(heta)-E_{ heta}(T_n)]^2$$

Exemplo 3 Considere uma amostra aleatória obtida de uma p.d.f. com média μ e variância σ^2 .

Seja

$$\overline{X}_n = rac{1}{n} \sum_{i=1}^n X_i \quad e \quad S_n^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

- ullet Considere as sequências $\overline{X}_1,\overline{X}_2,\overline{X}_3,\ldots$ e S_1^2,S_2^2,S_3^2,\ldots
- Lembre que: \overline{X}_n estima μ e S_n^2 estima σ^2 .
- Para \overline{X}_n :

$$egin{align} EQM(\overline{X}_n) &= E[(\overline{X}_n - \mu)^2] = Var(\overline{X}_n) = rac{\sigma^2}{n} \ &\lim_{n o \infty} E[(\overline{X}_n - \mu)^2] = \lim_{n o \infty} rac{\sigma^2}{n} = 0 \ & \end{aligned}$$

• Para S_n^2 :

$$EQM(S_n^2) = E[(S_n^2 - \sigma^2)^2] = Var(S_n^2) = rac{1}{n} \left[\mu_4 - rac{n-3}{n-1} \sigma^4
ight]$$

$$\lim_{n o\infty}\left[rac{\mu_4}{n}-rac{n-3}{n-1}\sigma^4
ight]=\lim_{n o\infty}rac{\mu_4}{n}-\lim_{n o\infty}rac{n-3}{n-1}\sigma^4=0-0=0$$

Conclusão: $\{\overline{X}_n\}$ e $\{S_n^2\}$ são sequências consistentes no EQM para seus respectivos parâmetros alvo.

• Note que se $T_n=\frac{1}{n}\sum_{i=1}^n (X_i-\overline{X}_n)^2$, então, $\{T_n\}$ também será uma sequência consistente no EQM para σ^2 .

Definição 4 (Consistência simples.) Seja $T_1, T_2, T_3, \ldots, T_n, \ldots$ uma sequência de estimadores de $t(\theta)$, sendo $T_n = t_n(x_1, \ldots, x_n)$. A sequência $\{T_n\}$ é dita consistente (forma mais simples ou fraca) para $t(\theta)$ se para todo $\epsilon > 0$ temos

$$\lim_{n o\infty}P[|T_n-t(heta)|<\epsilon]=1,$$

ou equivalentemente

$$\lim_{n o\infty}P[|T_n-t(heta)|\geq\epsilon]=0.$$

- Note que a definição acima coincide com aquela que especificamos para a convergência em probabilidade. Esta definição tem relação com a lei fraca dos grandes números.
- Se um estimador é consistente no EQM, ele também atende a consistência simples. A relação contrária não necessariamente será verdade.

• A prova considera a desigualdade de Chebychev estudada anteriormente.

$$P(|T_n - t(\theta)| \ge \epsilon) < E[(T_n - t(\theta))^2]/\epsilon^2$$
.

• Se T_n é consistente no EQM, conforme $n \to \infty$,

$$E[(T_n-t(\theta))^2] o 0 \Rightarrow P(|T_n-t(\theta)| \ge \epsilon) o 0.$$

- Conforme visto anteriormente, uma comparação de estimadores baseada no EQM pode não determinar um favorito.
- Na verdade n\u00e3o existe um estimador com o "melhor EQM".
- A razão disto é que a classe de todos os estimadores é muito grande.
- Por exemplo, o estimador $\hat{ heta}=17$ não pode ser batido em termos de EQM para estimar heta=17, mas este é um estimador ruim se $heta \neq 17$.
- Uma maneira de tornar mais acessível o problema de encontrar um "melhor estimador" é limitar a grande classe de estimadores.
- Uma forma de restringir a grande classe de estimadores será considerar apenas os estimadores não viciados.
- Se W_1 e W_2 são ambos estimadores não viciados do parâmetro θ , isto é, $E(W_1)=E(W_2)=\theta$, então seus EQMs serão iguais às suas variâncias.
- Portanto, iremos escolher o estimador com a menor variância. Este será o "melhor estimador não viciado".
- Embora estejamos lidando com estimadores não viciados, os resultados apresentados aqui são na verdade mais gerais.

Definição 5 Um estimador W^* é dito o "Melhor Estimador Não Viciado" para au(heta) se satisfaz:

$$E_{ heta}(W^*) = au(heta),$$

para todo heta e para qualquer outro estimador W com

$$E_{ heta}(W) = au(heta),$$

temos

$$Var_{ heta}(W^*) \leq Var_{ heta}(W)$$

para todo θ .

- W^* é também chamado de Estimador Não Viciado de Variância Uniformemente Mínima (ENVVUM) para au(heta).
- Encontrar o melhor estimador não viciado (se existir) não é uma tarefa fácil por várias razões, duas delas são ilustradas a seguir.

Exemplo 4 Seja X_1,\ldots,X_n i.i.d. Poisson (λ) e considere X e S^2 (a média e variância amostral). Lembre que na distribuição Poisson, tanto a média quanto a variância são iguais a λ .

- Então $E_{\lambda}(\overline{X})=\lambda$ e $E_{\lambda}(S^2)=\lambda$ para todo λ .
- ullet Logo: \overline{X} e S^2 são estimadores não viciados para λ .
- Para determinar qual destes é o melhor estimador, iremos comparar suas variâncias.
- ullet Sabemos que $Var_{\lambda}(\overline{X})=\lambda/n$. .
- ullet O cálculo de $Var_{\lambda}(S^2)$ é longo (iremos omitir aqui!).
- É possível mostrar que $Var_{\lambda}(\overline{X}) \leq Var_{\lambda}(S^2)$ para todo λ .
- Mesmo com o resultado acima estabelecendo que \overline{X} é melhor que S^2 , considere a seguinte classe de estimadores para λ :

$$W_{lpha}(\overline{X},S^2)=lpha\overline{X}+(1-lpha)S^2$$

- Mesmo que \bar{X} seja melhor que S^2 , seria ele \bar{X} melhor que todo $W_{\alpha}(\bar{X},S^2)$? Como podemos ter certeza de que não existe algum outro melhor estimador não viciado?
- Suponha que, para estimar o parâmetro $\tau(\theta)$ de uma distribuição $f(x|\theta)$, podemos especificar um limite inferior $\beta(\theta)$ para a variância de qualquer estimador não viciado para $\tau(\theta)$. Se podemos então encontrar um estimador não viciado W^* satisfazendo

$$Var_{ heta}(W^*)=eta(heta),$$

- teremos encontrado o melhor estimador não viciado.
- A abordagem acima considera o que chamamos de limite inferior de Cramér-Rao.

Teorema 1 (Desigualdade de Cramér-Rao.) Seja $X=(X_1,\ldots,X_n)$ uma amostra (variáveis não necessariamente independentes) com p.d.f. $f(x|\theta)$.

• Considere $W(X) = W(X_1, \ldots, X_n)$ como qualquer estimador satisfazendo

$$rac{d}{d heta} E_{ heta}[W(X)] = \int_{X} rac{\partial}{\partial heta} [W(x) f(x| heta)] \, dx$$

e $Var_{ heta}[W(X)]<\infty$. Então,

$$Var_{ heta}[W(X)] \geq rac{\left(rac{d}{d heta}E_{ heta}[W(X)]
ight)^2}{E_{ heta}\left(\left[rac{\partial}{\partial heta}\log f(x| heta)
ight]^2
ight)}$$

Corolário 1 (Desigualdade de Cramér-Rao (caso i.i.d.).) Se as suposições do Teorema 3.4.1 estão satisfeitas e além disso X_1, \ldots, X_n são i.i.d. com p.d.f. $f(X|\theta)$, então

$$Var_{ heta}[W(X)] \geq rac{\left(rac{d}{d heta}E_{ heta}[W(X)]
ight)^2}{nE_{ heta}\left[\left(rac{\partial}{\partial heta}\log f(X_i| heta)
ight)^2
ight]}$$

Observação 1: Embora o limite inferior de Cramér-Rao tenha sido apresentado para variáveis aleatórias contínuas, este resultado também é válido para o caso discreto. Se $f(x|\theta)$ é uma p.m.f., então devemos ser capazes de permutar a diferenciação e o somatório. Assumimos que mesmo $f(x|\theta)$ sendo uma p.m.f. não diferenciável em x, ela é diferenciável em θ (este é o caso das p.m.f.'s mais comuns).

Observação 2: A quantidade

$$E_{ heta} \left[\left(rac{\partial}{\partial heta} {\log f(X| heta)}
ight)^2
ight]$$

é chamada de Informação de Fisher amostral.

• Esta terminologia reflete o fato de que a Informação de Fisher fornece um limite para a variância do melhor estimador não viciado de θ . Conforme o valor da Informação de Fisher aumenta e obtemos mais informação sobre θ , teremos um limite menor para a variância do melhor estimador não viciado.

Notação:

Lema 1 Se $f(x|\theta)$ satisfaz

$$\left[rac{d}{d heta}E_{ heta}\left[rac{\partial}{\partial heta}{
m log}\,f(x| heta)
ight] = \int_{-\infty}^{\infty}\left(rac{\partial}{\partial heta}{
m log}\,f(x| heta)
ight)f(x| heta)dx$$

Isso será verdade para distribuições da família exponencial. Então

$$I_n(heta) = E_ heta \left[\left(rac{\partial}{\partial heta} {\log f(x| heta)}
ight)^2
ight] = -E_ heta \left(rac{\partial^2}{\partial heta^2} {\log f(x| heta)}
ight)$$

Observação 3: Uma alternativa para o cálculo da Informação de Fisher é considerar o caso "observado" ao invés do "esperado".

Informação de Fisher observada:

$$\hat{I}_n(\hat{ heta}) = -rac{\partial^2}{\partial heta^2} {
m log} \, L(heta;x)igg|_{ heta=\hat{ heta}}$$

• Veja que aqui não aplicamos o cálculo do valor esperado.

Observação 4: Uma das suposições para aplicarmos o Teorema é a exigência de sermos capazes de permutar a derivada e a integral em $d/d\theta E_{\theta}[W(X)]$.

• As p.d.f.'s da família exponencial atendem esse critério. Se o domínio de $f(x|\theta)$ depende de θ , o Teorema não será apropriado (ex.: $f(x|\theta)=1/\theta$ para $0< x< \theta$).

Exemplo 5 X_1, \ldots, X_n são i.i.d. Poisson(λ).

$$f(X_i|\lambda) = rac{e^{-\lambda}\lambda^{X_i}}{x_i!} \in L(\lambda;X) = \prod_{i=1}^n f(X_i|\lambda)$$

Temos

$$egin{aligned} I_n(\lambda) &= E\left[\left(rac{\partial}{\partial \lambda} \log \prod_{i=1}^n f(X_i|\lambda)
ight)^2
ight] = -nE_\lambda \left[rac{\partial^2}{\partial \lambda^2} \log f(X_i|\lambda)
ight] \ &= -nE_\lambda \left[rac{\partial^2}{\partial \lambda^2} \log \left(rac{e^{-\lambda}\lambda^{x_i}}{x_i!}
ight)
ight] = -nE_\lambda \left[rac{\partial^2}{\partial \lambda^2} (-\lambda + x_i \log \lambda - \log x_i!)
ight] \ &= -nE_\lambda \left[rac{\partial}{\partial \lambda} (-1 + rac{x_i}{\lambda})
ight] = -nE_\lambda \left[-rac{x_i}{\lambda^2}
ight] = nrac{1}{\lambda^2} E(X_i) = nrac{\lambda}{\lambda^2} = rac{n}{\lambda} \end{aligned}$$

ullet Portanto, qualquer estimador W, não viciado para λ , terá

$$Var_{\lambda}(W) \geq rac{1}{n/\lambda} = rac{\lambda}{n}$$

Como W é não viciado,

$$rac{d}{d\lambda}E_{\lambda}[W]=rac{d}{d\lambda}\lambda=1$$

- ullet Lembre que \overline{X} tem variância $rac{\lambda}{n}$, então sua variância atinge o limite inferior de Cramér-Rao.
- \overline{X} é o melhor estimador não viciado para λ .