

TRENARY - T81 TISC "Opcodes"

This document outlines optimized opcodes for TISC (Ternary Instruction Set Computer) across five major categories:

Mathematical Theorems
Cryptography & Security
AI & Machine Learning
Physics & Simulation
Parallel Processing & Optimization

Each opcode is optimized for **ternary computing (Base-81)**, leveraging its natural affinity for **recursive processing, modular arithmetic, logarithmic efficiency, and AI acceleration**.

A.Th	eorem Set Opcodes for TISC	5
B.Re	cursive Algorithm Opcodes for TISC	6
C.Co	mbinatorial & Mathematical Optimization Opcodes for TISC	6
D.Pa	rallel Processing & Al Opcodes for TISC	7
Theo	rem Set Opcodes for TISC	8
1.	Affinity for Ternary-Friendly Arithmetic	8
2.	Theorems for Cryptography & Security	8
3.	Al & Machine Learning (Ternary Neural Networks)	9
4.	Theorems for Physics & Simulation	9
5.	Number Theory & Computational Mathematics	9
Terna	ary Affinity Analysis	10
Recu	rsive Algorithm Opcodes for TISC	12
5.	FACT – Factorial Computation	12
6.	FIB - Fibonacci Sequence	12
7.	GCD - Euclidean Algorithm for Greatest Common Divisor	12
8.	ACK – Ackermann Function	13
9.	TOWER - Tower of Hanoi Solver	13
10	D.DFS - Depth-First Search (Recursive Graph Traversal)	13
11	.BACKTRACK - Recursive Backtracking Solver	13
12	2.MERGE – Merge Sort (Recursive Sorting Algorithm)	13
13	B.MATFAC - Recursive Matrix Factorization	14
14	LLCS – Longest Common Subsequence	14
Com	binatorial & Mathematical Optimization Opcodes for TISC	16
15	S.PERM – Permutation Computation	16
16	S.COMB - Combination Computation	16
17	7.BINOM - Binomial Coefficient Computation	17
18	B.KNAPSACK - 0/1 Knapsack Optimization	17

19.LAGRANGE – Lagrange Interpolation	17
20.SIMPLEX - Linear Programming Solver	18
21.HAMMING - Hamming Distance Computation	18
22.FASTMOD - Modular Inverse Computation	19
23.MATCH - Maximum Bipartite Matching	19
24.TRAVEL - Traveling Salesman Problem (TSP) Approximation	19
Parallel Processing & Al Opcodes for TISC	21
25.VECADD - Parallel Vector Addition	21
26.VECMUL - Parallel Vector Multiplication	21
27.DOT - Parallel Dot Product	21
28.MATMUL - Matrix Multiplication (Al Tensor Ops)	21
29.TRANSPOSE – Matrix Transposition	22
31.BP - Backpropagation for Al Neural Networks	22
32.ACTIVATION – Activation Function Computation	23
33.TNN - Ternary Neural Network Inference	23
34.QLEARN - Reinforcement Learning Q-Learning Update	23

A. Theorem Set Opcodes for TISC

A set of **key mathematical theorems** implemented as **TISC opcodes**.

Affinity for Ternary-Friendly Arithmetic

- Ternary Addition (Carry-Free) T81ADD
- Modulo 3 Properties MOD3
- Balanced Ternary Representation T81CONV
- Hamming Weight Computation HAMMING
- Lucas Theorem for Combinatorics LUCAS

Cryptography & Security

- Fermat's Little Theorem FERMAT (Fast prime checking)
- Miller-Rabin Primality Test MILLER (Cryptographic key generation)
- Elliptic Curve Cryptography ECC (Ternary curve operations)
- **Chinese Remainder Theorem CRT** (Efficient modular reduction)
- Lagrange Interpolation LAGRANGE (Polynomial reconstruction in encryption)

AI & Machine Learning (Ternary Neural Networks)

- **Backpropagation BP** (Gradient-based learning)
- Kolmogorov Complexity KOLMO (AI compression)
- **Shannon Entropy ENTROPY** (AI optimization)
- **Bayes' Theorem BAYES** (AI predictions)
- Matrix Factorization MATFAC (AI & PCA computations)
- Ternary Neural Network Execution TNN (Optimized inference)

Theorems for Physics & Simulation

- **Kepler's Laws KEPLER** (Orbital motion)
- Navier-Stokes Equations NAVIER (Fluid dynamics)
- Maxwell's Equations MAXWELL (Electromagnetism)
- Lorentz Transformations LORENTZ (Special relativity)
- Wave Equation WAVEQ (Quantum mechanics)
- Fourier Transform FFT (Signal processing)

Number Theory & Computational Mathematics

- Wilson's Theorem WILSON (Prime checking)
- Ramanujan's Identities RAMANUJAN (Mathematical series)
- Goldbach's Conjecture GOLDBACH (Prime sum)
- Lucas-Lehmer Test LUCASPRIME (Mersenne primes)
- **Modular Exponentiation MODEXP** (RSA encryption)

B.Recursive Algorithm Opcodes for TISC

Recursive algorithms leverage ternary depth tracking and efficient branching.

- **Factorial FACT** (Combinatorics, probability)
- **Fibonacci FIB** (AI sequence modeling)
- GCD GCD (Greatest common divisor)
- Ackermann Function ACK (Deep recursion benchmarking)
- **Tower of Hanoi TOWER** (AI state-based search)
- **Depth-First Search DFS** (Recursive graph traversal)
- Backtracking BACKTRACK (Sudoku, AI puzzle solving)
- Merge Sort MERGE (Efficient recursive sorting)
- **Matrix Factorization MATFAC** (Recursive AI computations)
- Longest Common Subsequence LCS (AI pattern recognition)

C.Combinatorial & Mathematical Optimization Opcodes for TISC

Used for AI search spaces, logistics, financial modeling, and cryptography.

- **Permutation Computation PERM** (AI scheduling)
- **Combination Computation COMB** (Probability modeling)
- **Binomial Coefficient BINOM** (Pascal's Triangle, decision trees)
- Knapsack Problem KNAPSACK (Logistics, resource allocation)
- Lagrange Interpolation LAGRANGE (Cryptography, AI)
- Linear Programming Solver SIMPLEX (Optimization)
- **Hamming Distance HAMMING** (Error correction, AI)
- **Modular Inverse FASTMOD** (Cryptographic operations)
- Maximum Bipartite Matching MATCH (AI resource pairing)
- Traveling Salesman Problem TRAVEL (Logistics, AI routing)

D.Parallel Processing & Al Opcodes for TISC

Parallel AI workloads require optimized numerical operations & efficient memory access.

- **Vector Addition VECADD** (AI, physics simulations)
- Vector Multiplication VECMUL (Machine learning)
- **Dot Product DOT** (Neural networks, physics)
- Matrix Multiplication MATMUL (Deep learning, scientific computing)
- Matrix Transposition TRANSPOSE (Cryptography, AI)
- Fast Fourier Transform FFT (Signal processing)
- **Backpropagation BP** (AI deep learning)
- Activation Functions ACTIVATION (Neural networks)
- Ternary Neural Network Inference TNN (AI optimization)
- Reinforcement Learning (Q-Learning) QLEARN (AI decision-making)

Final Thoughts: Why Ternary TISC?

Ternary Affinity – Many theorems naturally align with ternary logic (**Hamming Weight, Shannon Entropy, Fermat's Theorem**).

AI-Optimized – Direct support for **TNNs**, backpropagation, reinforcement learning, and matrix operations.

Parallelism – Opcodes allow SIMD vectorization, GPU acceleration, and distributed computing.

Logarithmic Efficiency – Base-81 arithmetic provides **compact storage**, **fewer carry operations**, and modular arithmetic advantages.

Future-Proof – These low-level optimizations bring TISC computing closer to real-world AI acceleration, cryptography, and scientific computing.

Theorem Set Opcodes for TISC

Here is a **more extensive list** of theorems that can be **implemented as opcodes**, categorized by computational efficiency and affinity to ternary logic.

1. Affinity for Ternary-Friendly Arithmetic

These theorems benefit from ternary logic because they naturally align with Base-81 computations or exploit balanced ternary properties.

Theorem	Formula	TISC Opcode	Use Case
Balanced Ternary Conversion	$N = \sum d_i * 3^i \text{ where}$ $d_i \in \{-1, 0, 1\}$	T81CONV	Efficient ternary arithmetic
Ternary Addition (Carry-Free)	a + b using {-1,0,1} representation	T81ADD	Faster addition in ternary
Modulo 3 Properties	N mod 3 = Σ (digits) mod 3	MOD3	Cryptography, ternary hash functions
Lucas Theorem (Combinatorics)	C(n, k) mod p	LUCAS	AI (pattern recognition), combinatorics
Hamming Weight (Ternary Weight Count)	<pre>w(x) = count(nonzero trits)</pre>	HAMMING	Error correction, ML optimization

2. Theorems for Cryptography & Security

These theorems **enable efficient ternary cryptographic operations**, leveraging base-81 properties.

Theorem	Formula	TISC Opcode	Use Case
Fermat's Little Theorem	$a^{(p-1)} \equiv 1 \pmod{p}$	FERMAT	Fast primality testing
Miller-Rabin Primality Test	Probabilistic prime verification	MILLER	RSA keygen, cryptography
Elliptic Curve Arithmetic	$y^2 = x^3 + ax + b$	ECC	Ternary elliptic curve cryptography
Chinese Remainder Theorem (CRT)	$x \equiv a \pmod{m1}, x \equiv b \pmod{m2}$	CRT	Cryptographic acceleration

Lagrange Interpolation	$P(x) = \sum (y_i *$	LAGRANG	Secure multi-party
Lagrange Interpolation	L_i(x))	E	computation

3. Al & Machine Learning (Ternary Neural Networks)

These theorems optimize AI workloads and tensor-based computation.

Theorem	Formula	TISC Opcode	Use Case
Backpropagation for Neural Networks	Gradient Descent: $w = w - \eta * \nabla L(w)$	BP	Ternary AI learning
Kolmogorov Complexity	K(x) = min(p	$: \mathrm{U}(\mathrm{p}) = \mathrm{x})`$
Shannon Entropy	$H(X) = -\Sigma p(x) \log p(x)$	ENTROPY	Data compression, AI
Bayes' Theorem	`P(A	B) = P(B	A) * P(A) / P(B)`
Matrix Factorization for AI	$A \approx U \Sigma V^{T}$	MATFAC	Neural networks, PCA

4. Theorems for Physics & Simulation

These theorems optimize ternary-based scientific computing.

Theorem	Formula	TISC Opcode	Use Case
Kepler's Laws (Orbital Motion)	T^2 \alpha r^3	KEPLER	Physics engines
Navier-Stokes Equations (Fluid Dynamics)	$\partial \mathbf{u}/\partial \mathbf{t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \mathbf{p} + \mathbf{v} \nabla^2 \mathbf{u}$	NAVIER	Fluid physics
Maxwell's Equations (Electromagnetism)	$\nabla \cdot \mathbf{E} = \rho / \epsilon_0$, $\nabla \times \mathbf{E} = -\partial \mathbf{B} / \partial \mathbf{t}$	MAXWELL	AI-based physics
Lorentz Transformations (Relativity)	$t' = \gamma(t - vx/c^2)$	LORENTZ	Quantum computing
Wave Equation (Quantum Mechanics)	$\partial^2 \psi / \partial t^2 = v^2 \nabla^2 \psi$	WAVEQ	Quantum AI

5. Number Theory & Computational Mathematics

These theorems **improve number-theoretic computations**, crucial for AI, cryptography, and simulations.

Theorem	Formula	TISC Opcode	Use Case
Wilson's Theorem (Prime Check)	$(p-1)! \equiv -1 \mod p$	WILSON	Cryptography
Catalan's Conjecture (Powers Difference)	$x^a - y^b = 1$	CATALAN	AI complexity
Ramanujan's Identities (Integer Sequences)	$\sum (1/n^s) = \zeta(s)$	RAMANUJAN	ML feature engineering
Goldbach's Conjecture (Prime Pairing)	2n = p + q	GOLDBACH	Number theory
Lucas-Lehmer Test (Mersenne Primes)	$S_n = S_{n-1}^2 - 2 \mod M_p$	LUCASPRIME	Cryptography

Ternary Affinity Analysis

Some theorems naturally align with ternary computing due to: $\[\]$ Balanced Ternary Structure – Theorems like Hamming Weight, Lucas Theorem, and Modulo 3 Arithmetic are optimized in ternary due to their use of $\{-1, 0, 1\}$.

✓ Logarithmic Efficiency – **Kolmogorov Complexity, Shannon Entropy, and Wave Equations** map well to ternary-based AI and physics simulations.

Modular Arithmetic in Cryptography – Chinese Remainder Theorem, Fermat's Little Theorem, and Elliptic Curves benefit from ternary representation for efficient cryptographic key generation.

Optimized Microcode Example: Miller-Rabin Primality Test (MILLER)

To implement **Miller-Rabin Primality Test** as a **TISC opcode**, we break it down into micro-operations:

```
assembly CopyEdit

LOAD Ra, 101t81 ; Candidate number

LOAD Rb, 2t81 ; Base for testing

MILLER Ra, Rb, Rc ; Perform primality test

STORE Rc, result

\overrightarrow{V} Rc = 1t81 \rightarrow Prime

\overrightarrow{V} Rc = 0t81 \rightarrow Not Prime
```

Micro-operations:

- 1. Compute d = n-1 and s such that $d = 2^s * m$
- 2. Perform **modular exponentiation** using MODEXP
- 3. Verify a^d mod n = 1 or a^(2^r * d) mod n = n-1
- 4. If any test fails, return "Composite" (Rc = 0t81)
- 5. If all tests pass, return "**Prime**" (Rc = 1t81)

Recursive Algorithm Opcodes for TISC

Recursive algorithms benefit from **ternary logic** due to **efficient branching, depth tracking, and state-based computation**. Below are optimized **TISC** (**Ternary Instruction Set Computer**) **opcodes** for handling **common recursive problems**.

5. FACT - Factorial Computation

Formula:

```
n!=n\times(n-1)!
```

Opcode: FACT

- Computes factorial using recursion.
- Used in combinatorics, AI search problems, probability calculations.

6. FIB - Fibonacci Sequence

Formula:

```
F(n)=F(n-1)+F(n-2)
```

Opcode: FIB

- Computes **Fibonacci numbers recursively**.
- Used in AI (sequence modeling), cryptography, optimization problems.

7. GCD – Euclidean Algorithm for Greatest Common Divisor Formula:

```
gcd(a,b)={b,gcd(b,amodb), if amodb=0otherwise
```

Opcode: GCD

- Computes **GCD recursively**.
- Used in cryptography, modular arithmetic, AI optimizations.

8. ACK - Ackermann Function

Formula (Deep Recursion):

$$A(m,n) = egin{cases} n+1, & ext{if } m=0 \ A(m-1,1), & ext{if } n=0 \ A(m-1,A(m,n-1)), & ext{otherwise} \end{cases}$$

Opcode: ACK

- Used for **AI recursive depth management**.
- Common in benchmarking computational limits.

9. TOWER - Tower of Hanoi Solver

Formula (Recursive Move Computation):

T(n)=2T(n-1)+1**Opcode**: TOWER

- Computes **minimum moves needed**.
- Used in **AI decision trees**, pathfinding, state-based search.

10.DFS - Depth-First Search (Recursive Graph Traversal)

Formula:

DFS(v)=Visit v,then recursively visit all unvisited neighbors

Opcode: DFS

• Used in graph traversal, AI pathfinding, decision trees.

11.BACKTRACK – Recursive Backtracking Solver

Formula:

Recursive backtracking explores all possibilities and backtracks when a condition fails. **Opcode**: BACKTRACK

• Used in sudoku, AI puzzle solving, constraint satisfaction problems.

12.MERGE – Merge Sort (Recursive Sorting Algorithm)

Formula:

$$\operatorname{MergeSort}(A) = egin{cases} A, & ext{if } |A| = 1 \ \operatorname{MergeSort}(L), \operatorname{MergeSort}(R)), & ext{otherwise} \end{cases}$$

Opcode: MERGE

• Used for **sorting large datasets** recursively.

13.MATFAC - Recursive Matrix Factorization

Formula:

 $A=U\Sigma VT$

Opcode: MATFAC

• Used in machine learning, AI matrix computations.

14. LCS – Longest Common Subsequence

Formula:

$$LCS(X,Y) = egin{cases} 0, & ext{if } m=0 ext{ or } n=0 \ 1+LCS(X_{m-1},Y_{n-1}), & ext{if } X_m=Y_n \ \max(LCS(X_{m-1},Y_n),LCS(X_m,Y_{n-1})), & ext{otherwise} \end{cases}$$

Opcode: LCS

• Used in **DNA sequence alignment**, **AI pattern recognition**.

Final Thoughts

Recursive Opcodes for TISC

Opcode	Algorithm	Use Case
FACT	Factorial	Combinatorics, probability
FIB	Fibonacci	AI sequence modeling
GCD	Euclidean Algorithm	Cryptography, number theory
ACK	Ackermann Function	Benchmarking, AI recursion
TOWER	Tower of Hanoi	AI decision trees
DFS	Depth-First Search	Pathfinding, AI graph traversal
BACKTRACK	Recursive Backtracking	AI puzzle solvers
MERGE	Merge Sort	Efficient sorting
MATFAC	Matrix Factorization	Machine learning, AI
LCS	Longest Common Subsequence	AI pattern recognition

Combinatorial & Mathematical Optimization Opcodes for TISC

Combinatorial and mathematical optimization problems are crucial in **AI**, machine learning, cryptography, scheduling, and scientific computing. These problems often involve constraint satisfaction, state-space exploration, and computational efficiency, making them ideal for ternary computing.

15.PERM - Permutation Computation

Formula:

$$P(n,k) = \frac{n!}{(n-k)!}$$

Opcode: PERM

- Computes the number of ways to arrange k objects from n.
- Used in AI (search spaces), scheduling, cryptography.

16.COMB – Combination Computation

Formula:

$$C(n,k)=rac{n!}{k!(n-k)!}$$

Opcode: COMB

- Computes the number of ways to choose k objects from n without ordering.
- Used in probability, AI feature selection, and combinatorial optimization.

17.BINOM - Binomial Coefficient Computation

Formula (Pascal's Identity):

$$egin{pmatrix} n \ k \end{pmatrix} = inom{n-1}{k} + inom{n-1}{k-1}$$

18.KNAPSACK – 0/1 Knapsack Optimization Formula:

$$\max \sum v_i x_i \quad ext{subject to} \quad \sum w_i x_i \leq W$$

Opcode: KNAPSACK

- Solves the **0/1 knapsack problem** for **optimal resource allocation**.
- Used in **AI**, logistics, financial planning.

19.LAGRANGE - Lagrange Interpolation

Formula:

$$P(x) = \sum y_i rac{x - x^j}{x_i - x^j}$$

Opcode: LAGRANGE

- Computes **Lagrange interpolation** for polynomial approximation.
- Used in cryptography, error correction codes (Shamir's Secret Sharing), AI regression models.

20.SIMPLEX – Linear Programming Solver

Formula (Linear Optimization):

 $\max c^T x, \quad ext{subject to } Ax \leq b$

Opcode: SIMPLEX

- Solves linear programming for optimization problems.
- Used in supply chain optimization, AI decision-making, financial modeling.

21.HAMMING – Hamming Distance Computation Formula:

$$d(x,y) = \sum (xi \neq yi)$$

Opcode: HAMMING

- Computes **Hamming distance** between binary/ternary strings.
- Used in error correction, AI pattern recognition, cryptography.

22.FASTMOD – Modular Inverse Computation Formula:

$$a^{-1} \equiv a^{p-2} \mod p$$

Opcode: FASTMOD

- Computes modular inverse using Fermat's Little Theorem.
- Used in cryptography, number theory, AI optimization.

23.MATCH – Maximum Bipartite Matching Formula (Graph Theory):

$$\max \sum x^{ij}, \quad x^{ij} \in \{0,1\}$$

24.TRAVEL – Traveling Salesman Problem (TSP) Approximation Opcode: TRAVEL

- Solves **TSP** using nearest neighbor heuristics.
- Used in **logistics**, **AI routing** algorithms, graph theory.

$$\min \sum d(x_i,x_{i+1})$$

Final Thoughts

Optimized Combinatorial & Mathematical Opcodes for TISC

Opcode	Algorithm	Use Case
PERM	Permutations	AI search spaces, scheduling
COMB	Combinations	Probability, AI feature selection
BINOM	Binomial Coefficient	AI decision trees
KNAPSACK	0/1 Knapsack	Resource allocation, logistics
LAGRANGE	Lagrange Interpolation	Cryptography, error correction
SIMPLEX	Linear Programming	Optimization, decision-making
HAMMING	Hamming Distance	Error correction, AI pattern recognition
FASTMOD	Modular Inverse	Cryptography, AI
MATCH	Bipartite Matching	AI pairing, scheduling
TRAVEL	Traveling Salesman	Logistics, AI routing

Parallel Processing & Al Opcodes for TISC

Parallel computing and AI require high-performance numerical operations, optimized memory access, and efficient data structures. Ternary computing (Base-81) offers advantages in SIMD vectorization, matrix operations, and neural network computations.

25.VECADD - Parallel Vector Addition

Formula:

C=A+B

Opcode: VECADD

- Performs **element-wise vector addition**.
- Used in AI, physics simulations, graphics processing.

26.VECMUL - Parallel Vector Multiplication

Formula:

 $C=A\times B$

Opcode: VECMUL

- Performs element-wise vector multiplication.
- Used in machine learning, AI acceleration, graphics rendering.

27.DOT - Parallel Dot Product

Formula:

C=∑Ai ×Bi **Opcode**: DOT

• Computes dot product for neural networks, physics engines, AI models.

28.MATMUL - Matrix Multiplication (AI Tensor Ops)

Formula:

Opcode: MATMUL

• Accelerates AI workloads, deep learning, scientific computing.

29.TRANSPOSE - Matrix Transposition

Formula:

(AT)ij = Aji

Opcode: TRANSPOSE

• Used for **AI**, **graphics**, **cryptography**, **and neural networks**.

$$(A^T)^{ij}=A^{ji}$$

30.FFT – Fast Fourier Transform

Formula:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N}$$

31.BP - Backpropagation for Al Neural Networks

Formula:

Opcode: BP

• Computes backpropagation gradients for AI training.

$$w=w-\etarac{\partial L}{\partial w}$$

32.ACTIVATION – Activation Function Computation Opcodes:

- RELU → Rectified Linear Unit
- SIGMOID \rightarrow Sigmoid function
- TANH → Hyperbolic tangent

33.TNN - Ternary Neural Network Inference

Opcode: TNN

• Computes ternary-weighted neural network inference.

34.QLEARN – Reinforcement Learning Q-Learning Update

Formula:

 $Q(s,a)=Q(s,a)+\alpha[r+\gamma maxQ(s',a')-Q(s,a)]$

Opcode: QLEARN

• Used in autonomous AI decision-making.

Final Thoughts

Optimized Parallel Processing & AI Opcodes for TISC

Opcode	Algorithm	Use Case
VECADD	Parallel Vector Addition	AI, physics, graphics
VECMUL	Parallel Vector Multiplication	AI, ML, simulations
DOT	Parallel Dot Product	AI, neural networks
MATMUL	Matrix Multiplication	AI, deep learning
TRANSPOSE	Matrix Transposition	Cryptography, AI
FFT	Fourier Transform	Signal processing, AI
BP	Backpropagation	AI training
ACTIVATION	Activation Functions	AI inference
TNN	Ternary Neural Networks	Deep learning
QLEARN	Reinforcement Learning	AI decision-making