Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 09.05.2014

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	9	10	10	11	40	
	erreichte Punkte						
Bitte							
tragen Sie	e Name, Vorname und	Matrik	ælnumr	mer auf	dem I	Deckblat	tt ein,
rechnen S	ie die Aufgaben auf se	parate	n Blätt	ern, ni e	c ht auf	dem A	.ngabeblatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den N	Vamen	sowie d	die Mat	rikelnu	mmer a	ın,
begründer	n Sie Ihre Antworten a	usführ	lich und	d			
kreuzen S antreten l	ie hier an, an welchem könnten: □ Fr., 16.0		_				ndlichen Prüfung r., 23.05.2014

- 1. In dieser Aufgabe wird das in Form eines Blockschaltbildes dargestellte, nichtlinea- 9 P. re System 3. Ordnung aus Abbildung 1 betrachtet. Bearbeiten Sie die folgenden Teilaufgaben.
 - a) Leiten Sie eine Zustandsraumdarstellung des Systems in der Form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$ 2 P.| aus dem Blockschaltbild her. Achten Sie dabei auf die Wahl geeigneter Zustandsgrößen. Bestimmen Sie außerdem die Ausgangsgleichung $y = h(\mathbf{x})$.

Hinweis: Sie können die Beschreibung im Zeitbereich direkt aus dem Blockschaltbild ableiten.

- b) Bestimmen Sie für u = 0 sämtliche Ruhelagen des Systems. 3 P.
- c) Linearisieren Sie das System um die eindeutig bestimmte Ruhelage, die sich $2.5\,\mathrm{P.}|$ für u=0 und $y=-\pi$ einstellt und bestimmen Sie die linearisierte Systemdarstellung in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$
$$y = \mathbf{c}^{\mathrm{T}} \Delta \mathbf{x}.$$

d) Ist das in Teilaufgabe c) erhaltene linearisierte System vollständig erreichbar? 1.5 P.| Begründen Sie Ihre Antwort.

Abbildung 1: Blockschaltbild des betrachteten Systems.

2. Bearbeiten Sie folgende voneinander unabhängige Teilaufgaben a) und b).

a) Abbildung 2 zeigt die Polstellen des mittels einer Zero-Order-Hold Diskretisierung erhaltenen Abtastsystems von

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \qquad \mathbf{x}(0) = \mathbf{x}_0. \tag{1}$$

- i. Gehen Sie davon aus, dass die Abtastzeit T_a so klein gewählt wurde, dass 3 Hamit sämtliche Zeitkonstanten des Systems ausreichend gut aufgelöst werden. Bestimmen Sie für eine allgemeine Abtastzeit T_a die Polstellen des dem Abtastsystem zu Grunde liegenden zeitkontinuierlichen Systems und leiten Sie daraus die reelle Jordansche Normalform von (1) ab.
- ii. Berechnen Sie die Pole des Abtastsystems, wenn die Abtastzeit auf die 1P. Hälfte reduziert wird und zeichnen Sie diese näherungsweise in das Diagramm in Abbildung 2 ein.

Abbildung 2: Polstellen des Abtastsystems.

b) Eine Möglichkeit der Überführung eines nichtlinearen autonomen Differenzialgleichungssystems der Form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ in eine zeitdiskrete Darstellung besteht in der Anwendung des impliziten Eulerverfahrens. Die Iterationsvorschrift für diese näherungsweise Diskretisierung mit der Abtastzeit $T_a > 0$ lautet

$$\mathbf{x}_{k+1} = \mathbf{x}_k + T_a \mathbf{f} \left(\mathbf{x}_{k+1} \right).$$

Für die folgenden Teilaufgaben sei f(x) = Ax.

Hinweis für die folgenden Unterpunkte: Ist $\mu \neq 0$ Eigenwert einer regulären Matrix \mathbf{M} , so ist μ^{-1} Eigenwert der inversen Matrix \mathbf{M}^{-1} .

- i. Berechnen Sie die Dynamikmatrix Φ des mit Hilfe des impliziten Euler- 1 P. verfahrens erhaltenen Abtastsystems.
- ii. Leiten Sie eine allgemeine Transformationsvorschrift für die Eigenwerte $\tilde{\lambda}$ 3 P.| des Abtastsystems, welche Lösung von det $(\Phi \tilde{\lambda} \mathbf{E}) = 0$ sind, in Abhängigkeit der Eigenwerte λ der zeitkontinuierlichen Dynamikmatrix \mathbf{A} her.
- iii. Beurteilen Sie die globale asymptotische Stabilität des Abtastsystems in $\ 2\,\mathrm{P.}|$ Abhängigkeit der Abtastzeit T_a für

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}.$$

3. Gegeben sind zwei unterschiedliche Anfangszustände eines autonomen zeitkontinuierlichen LTI Systems mit $\dim(\mathbf{x}) = 2$ und den sich ergebenden Ausgangssignalen

$$\mathbf{x}(0) = \begin{bmatrix} 1\\0 \end{bmatrix}, \qquad y(t) = e^{-2t} \left(\cos(t) + \sin(t)\right) \tag{2}$$

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad y(t) = e^{-2t} \left(\cos(t) + \sin(t) \right)$$

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad y(t) = e^{-2t} \left(-\cos(t) + \sin(t) \right)$$
(3)

- a) Berechnen Sie den Ausgangsvektor \mathbf{c}^{T} aus (2) und (3). 2 P.
- b) Berechnen Sie die Dynamikmatrix A des Systems. 8 P.|

Hinweis: Sie können die Aufgabe sowohl im Zeit- als auch im Frequenzbereich lösen.

- 4. Die Teilaufgaben a), b) und c) können unabhängig voneinander gelöst werden.
 - a) Gegeben ist ein LTI System der Dimension n=3 der Form

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \mathbf{x}$$

i. Berechnen Sie die Eigenwerte der Dynamikmatrix und treffen Sie anhand 1.5 P.| dieser eine Aussage über die Stabilität des Systems.

11 P.|

- ii. Überprüfen Sie das System mithilfe des PBH-Rangtests auf vollständige 1P.| Erreichbarkeit.
- iii. Ermitteln Sie einen Zustandsrückführungsvektor **k** für $u = \mathbf{k}^{\mathrm{T}}\mathbf{x}$. Dabei 3 P.| sollen die Eigenwerte des geschlossenen Kreises bei $\lambda_1 = -2, \lambda_2 = -4, \lambda_3 = -3$ zu liegen kommen.
- iv. Die Zustandsrückführung wird um eine Referenzgröße r(t) in der Form 3 P.| $u = \mathbf{k}^{T}\mathbf{x} + r(t)$ erweitert. Ermitteln sie r(t) so, dass eine Trajektorienfolge

$$\mathbf{x}(t) \rightarrow \mathbf{x}^{d}(t) = \begin{bmatrix} e^{-t}\sin(2t) \\ -e^{-t}\sin(2t) + 2e^{-t}\cos(2t) \\ e^{-t}\sin(2t) - 2e^{-t}\cos(2t) - 2e^{-t}\cos(2t) - 4e^{-t}\sin 2t \end{bmatrix}$$

realisiert wird.

- b) Betrachtet wird ein zeitkontinuierliches, autonomes LTI-System 2. Ordnung. 1 P. Kann es eine Dynamikmatrix **A** geben, so dass das System genau 2 Ruhelagen besitzt? Wenn JA, geben Sie ein mögliches Beispiel an, wenn NEIN begründen Sie Ihre Antwort ausführlich.
- c) Betrachtet wird ein lineares zeitinvariantes System der Form $$1.5\,\mathrm{P.}|$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u. \tag{4}$$

Kann eine Kombination \mathbf{A} , \mathbf{b} existieren, so dass das System mit $u = u_R \neq 0$ keine Ruhelage besitzt? Wenn JA, geben Sie eine Beispielkombination für $\dim(\mathbf{x}) = 2$ an, wenn NEIN begründen Sie Ihre Aussage ausführlich.