Commutative Algebra for Algebraic Geometry

Bailey Arm

$\mathrm{May}\ 31,\ 2025$

Contents

1	Alg	gebraic Geometry, Hartshorne	9
1		ieties	9
	1.1	Affine Varieties	11
	1.2	Projective Varieties	11
	1.3	Morphisms	11
	1.4	Rational Maps	11
	1.5	Nonsingular Varieties	11
	1.6	Nonsingular Curves	11
	1.7	Intersections in Projective Space	11
2	Sch	emes	11
	2.1	Sheaves	11
	2.2	Schemes	11
	2.3	First Properties of Schemes	11
	2.4	Separated and Proper Morphisms	11
	2.5	Sheaves of Modules	11
	2.6	Divisors	11
	2.7	Projective Morphisms	11
	2.8	Differentials	11
	2.9	Formal Schemes	11
3	Coh	nomology	11
Ü	3.1	Derived Functors	11
	3.2	Cohomology of Sheaves	11
	3.3	Cohomology of a Noetherian Affine Scheme	11
	3.4	Cech Cohomology	11
	3.5	The Cohomology of Projective Space	11
	3.6	Ext Groups and Sheaves	11
	3.7	The Serre Duality Theorem	11
	3.7	Higher Direct Images of Sheaves	11
	3.9	Flat Morphisms	11
		Smooth Morphisms	11
		•	11
		The Theorem on Formal Functions	
	3.12	The Semicontinuity Theorem	11
4	Cur		11
	4.1	Riemann-Roch Theorem	11
	4.2	Hurwitz's Theorem	11
	4.3	Embeddings in Projective Space	11
	4.4	Elliptic Curves	11

	4.5 4.6		anonical Embedding
5	Sur	faces	17
	5.1		etry on a Surface
	5.2		Surfaces
	5.3		dal Transformations
	5.4		ubic Surface in \mathbb{P}^n
	5.5		onal Transformations
	5.6		fication of Surfaces
II bu		ommu	tative Geometry with a View Toward Algebraic Geometry, Eisen-
		• •	
6			structions 14
	6.1		of Commutative Algebra
		6.1.1	Number Theory
		6.1.2	Algebraic Curves and Function Theory
		6.1.3	Invariant Theory
		6.1.4	The Basis Theorem
		6.1.5	Graded Rings
		6.1.6	Algebra and Rings - The Nullstellensatz
		6.1.7	Geometric Invariant Theory
		6.1.8	Projective Varieties
		6.1.9	Hilbert Functions and Polynomials
	0.0	6.1.10	Free Resolutions and the Syzygy THeorem
	6.2		sation
		6.2.1	Fractions
		6.2.2	Hom and Tensor
		6.2.3	The Construction of Primes
		6.2.4	Rings and Modules of Finite Length
	0.0	6.2.5	Products of Dom
	6.3		ated Primes and Primary Decomposition
		6.3.1	Associated Primes
		6.3.2	Prime Avoidance
		6.3.3	Primary Decomposition
		6.3.4	Primary Decomposition and Factorality
		6.3.5	Primary Decomposition in the Graded Case
		6.3.6	Extracting Information form Primary Decomposition
		6.3.7	Why Primary Decomposition is not Unique
		6.3.8	Geometric Interpretation of Primary Decomposition
		6.3.9	Symbolic Powers and Functions Vanishing to High Order
	6.4	_	al Dependence and the Nullstellensatz
		6.4.1	The Cayley-Hamilton Theorem and Nakayama's Lemma
		6.4.2	Normal Domains and the Normalisation Process
		6.4.3	Normalisation in the Analytic Case
		6.4.4	Primes in an Integral Extension
		6.4.5	The Nullstellensatz
	6.5		tions and the Artin-Rees Lemma
		6.5.1	Associated Graded Rings and Modules
		6.5.2	The Blowup Algebra
		6.5.3	The Krull Intersection Theorem
		6.5.4	The Tangent Cone

	6.6	Flat Families	14
		6.6.1 Elementary Examples	14
		6.6.2 Introduction to Tor	14
		6.6.3 Criteria for Flatness	14
		6.6.4 The Local Criterion for Flatness	14
		6.6.5 The Rees Algebra	14
	6.7	Completions and Hensel's Lemma	14
		6.7.1 Examples and Definitions	14
		6.7.2 The Utility of Completions	14
		6.7.3 Lifting Idempotents	14
		6.7.4 Cohen Structure Theory and Coefficient Fields	14
		6.7.5 Basic Properties of Completion	14
		6.7.6 Maps from Power Series Rings	14
7	Dim	nension Theory	L 4
	7.1	Introduction to Dimension Theory	14
	7.2	Fundamental Definitions of Dimension Theory	14
	7.3	The Principal Ideal Theorem and Systems of Parameters	14
	7.4		14
	7.5		14
	7.6		14
	7.7	Elimination Theory, Generic Freeness and the Dimension of Fibres	14
	7.8	Gröbner Bases	14
	7.9	Modules of Differentials	14
8	Hon	nological Methods	L 4
	8.1	Regular Sequences and the Koszul Complex	14
	8.2	Depth, Codimension and Cohen-Macaulay Rings	14
	8.3	Homological Theory of Regular Local Rings	14
	8.4	Free Resolutions and Fitting Invariants	14
	8.5	Duality, Canonical Modules and Gorenstein Rings	14
	т с		_
Η	1 C	Sommutative Ring Theory, Matsumura 1	L 5
9		0	L6
	9.1		16
	9.2		16
	9.3	Chain Conditions	16
10			L6
		1 0	16
			16
	10.3	Associated Primes and Primary Decomposition	16
11		·	L 6
			16
		•	16
	11.3	Integral Extensions	16
12			L6
			16
		$oldsymbol{arphi}$	16
	12.3	Krull Rings	16

	nension Theory
	Graded Rings, the Hilbert Function and the Samuel Function
	2 Systems of Parameters and Multiplicity
13.3	The Dimension of Extension Rings
4 D	1
	gular Sequences
	Regular Sequences and the Koszul Complex
	Cohen-Macualay Rings
14.3	Gorenstein Rings
i Res	gular Rings
	Regular Rings
	UFDs
	Complete Intersection Rings
10.0	Complete intersection range :
	tness Revisited
16.1	The Local Flatness Criterion
16.2	Platness and Fibres
16.3	Generic Freeness and Open Loci Results
	rivations
	Derivations and Differentials
17.2	Separability
17.3	Higher Derivations
2 <i>T_</i> S:	moothness
	<i>I-</i> Smoothness
	? The Structure Theorems for Complete Local Rings
10.0	3 Connections with Derivations
9 A p	plications of Complete Local Rings
19.1	Chains of Prime Ideals
19.2	The Formal Fibre
	3 Other Applications
V A	Algebraic Geometry I: Schemes, Gortz-Wedhorn
A	lgebraic Geometry II: Cohomology of Schemes, Gortz-Wedhorn
/I S	Sheaf Theory, Bredon
0 She	eaves and Presheaves
	Definitions
	2 Homomorphisms, Subsheaves and Quotient Sheaves
	B Direct and Inverse Images
	Cohomomorphisms
	6 Algebraic Constructions
	Supports
20.7	Classical Cohomology Theories

21	Sheaf Cohmology
	21.1 Differential Sheaves and Resolutions
	21.2 The Canonical Resolution and Sheaf Cohomology
	21.3 Injective Sheaves
	21.4 Acyclic Sheaves
	21.5 Flabby Sheaves
	21.6 Connected Sequences of Functors
	21.7 Axioms for Cohmomology and the Cup Product
	21.8 Maps of Spaces
	21.9 Φ-Soft and Φ-Fine Sheaves
	21.10 Subspaces
	21.11The Vietoris Maping Theorem and Homotopy Invariance
	21.12Relative Cohomology
	21.13Mayer-Vietoris Theorems
	21.14Continuity
	21.15The Künneth and Universal Coefficient Theorems
	21.16Dimension
	21.17Local Connectivity
	21.18Change pf Supports and Local Cohomology Groups
	21.19The Transfer Homomorphism and the Smith Sequences
	21.20Steenrod's Cyclic Reduced Powers
	21.21The Steenrod Operations
	2121 The Secondary Operations 111111111111111111111111111111111111
22	Comparison with Other Cohomology Theories
	22.1 Singular Cohomology
	22.2 Alexander-Spanier Cohomology
	22.3 de Rham Cohmomology
	22.4 Cech Cohomology
	22.4 Cecii Conomology
23	Applications of Spectral Sequences
	23.1 The Spectral Sequence of a Differential Sheaf
	23.2 The Fundamental Theorems of Sheaves
	23.3 Direct Image Relative to a Support Family
	23.4 The Leray Sheaf
	23.5 Extension of a Support Family by a Family on the Base Space
	23.6 The Leray Spectral Sequence of a Map
	23.7 Fiber Bundles
	23.8 Dimension
	23.9 The Spectral Sequences of Borel and Cartan
	23.10Characteristic Classes
	23.11The Spectral Sequence of a Filtered Differential Sheaf
	23.12The Fary Spectral Sequence
	23.13Sphere Bundles with Singularities
	23.14The Oliver Transfer and the Conner Conjecture
	20111110 Onvol Iranbiol and the Collifor Conjecture
24	Borel-Moore Homology
_	24.1 Cosheaves
	24.2 The Dual of a Differential Cosheaf
	24.3 Homology Theory
	24.4 Maps of Spaces
	24.5 Subspaces and Relative Homology
	24.6 The Viertoris Theorem, Homotopy and Covering Spaces
	24.7 The Homology Sheaf of a Map
	24.8 The Basic Spectral Sequence

	24.9 Poincaré Duality	20
	24.10The Cap Product	20
	24.11Intersection Theory	20
	24.12Uniqueness Theorems	20
	24.13Uniqueness Theorems for Maps and Relative Homology	20
	24.14The Künneth Formula	20
	24.15Change of Rings	20
	24.16Generalised Manifolds	20
	24.17Locally Homogenous Spaces	20
	24.18Homological Fibrations and <i>p</i> -adic Transformation Groups	20
	24.19The Transfer Homomorphism on Homology	20 20
	24.20Smith Theory in Homology	20
25	Cosheaves and Cech Homology	20
	25.1 Theory of Cosheaves	20
	25.2 Local Triviality	20
	25.3 Local Isomorphisms	20
	25.4 Chech Homology	20
	25.5 The Reflector	20
	25.6 Spectral Sequences	20
	25.7 Coresolutions	20
	25.8 Relative Cech Homology	20
	25.9 Locally Paracompact Spaces	20
	25.10Borel-Moore Homology	20
	25.11Modified Barel-Moore Homology	20
	25.12Singular Homology	20
	25.13Acyclic Coverings	20
	25.14Applications to Maps	20
\mathbf{V}	I Introduction to Algebraic K-Theory	21
26	Projective Modules and $K_0\Lambda$	21
27	Constructing Projective Modules	21
28	The Whitehead Group $K_1\Lambda$	21
29	The Exact Sequence Associated with an Ideal	21
30	Steinberg Groups and the Functor K_2	21
31	Extending the Extact Sequences	21
32	The Case of a Commutative Banch Algebra	21
33	The Product $K_1\Lambda\otimes K_1\Lambda\to K_2\Lambda$	21
34	Computations in the Steinberg Group	21
35	Computation of K_2Z	21
36	Matsumoto's Computation of K_2 of a Field	21
37	Proof of Matsumoto's Theorem	21

38 More about Dedekind Domains	21
39 The Transfer Homomorphism	21
40 Power Norm Residue Theorems	21
41 Number Fields	21
VIII Formal Knot Theory, Kauffman	22
42 Introduction	22
43 States, Trails and the Clock Theorem	22
44 State Polynomials and the Duality Conjecture	22
45 Knots and Links	22
46 Axiomatic Link Calculations	22
47 Curliness and the Alexander Polynomial	22
48 The Coat of Many Colours	22
49 Spanning Surfaces	22
50 The Genus of Alternative Links	22
51 Ribbon Knot and the Arf Invariant	22
IX An Introduction to Invariants and Moduli, Mukai	23
52 Invariants and Moduli	23
53 Rings and Polynomials	23
54 Algebraic Varieties	23
55 Algebraic Groups and Rings of Invariants	23
56 The Construction of Quotient Varieties	23
57 The Projective Quotients	23
58 The Numerical Criterion and Some Applications	23
59 Grassmannians and Vector Bundles	23
60 Curves and their Jacobians	23
61 Stable Vector Bundles on Curves	23
62 Moduli Functors	23

X Simplicial and Dendroidal Homotopy Theory	24
64 Operads	24
65 Simplicial Sets	24
66 Dendroidal Sets	24
67 Tensor Products of Dendroidal Sets	24
68 Kan Conditions for Simplicial Sets	24
69 Kan Conditions for Dendroidal Sets	24
70 Model Categories	24
71 Model Structures on the Category of Simplicial Sets	24
72 Three Model Structures on the Category of Dendroidal Sets	24
73 Reedy Categories and Diagrams of Spaces	24
74 Mapping Spaces and Bousfield Localisations	24
75 Dendroidal Spaces and ∞ -Operads	24
76 Left Fibrations and the Covariant Model Structure	24
77 Simplical Operads and ∞-Operads	24

Part I

Algebraic Geometry, Hartshorne

In this part, I will be going through the work of Hartshorne as he laid out in [Har13]. The book is sectioned into 5 distinct chapters - 'Varieties', 'Schemes', 'Cohomology', 'Curves' and 'Surfaces'. We study them in order as they flow nicely.

1 Varieties

Definition 1 Affine n-Space over k: Let k be a field and $n \in \mathbb{N}$. Then the affine n-space over k is defined

$$\mathbb{A}_{k}^{n} = \{(k_{1}, ..., k_{n}) \in k^{n}\}$$

It seems that this is a silly definition, but later on we will see that it is useful to have a distinction between the variety \mathbb{A}^n_k and the set of points in k^n . We later view \mathbb{A}^n_k as an affine variety - an object in some arbitrary space rather than the set of k-tuples.

Let $A = k[x_1, ..., x_n]$ be the polynomial ring over k in n variables. Then $f \in A$ is a map $f : k^n \to k$. We define the vanishing locus of this function in the following way:

Definition 2 Vanishing Locus of a Polynomial: Let $f \in A = k[x_1, ..., x_n]$, then the vanishing locus is

$$\mathbb{V}(f) := \{ p \in \mathbb{A}^n_k : f(p) = 0 \}$$

We can develop a more advanced analogue of this:

Definition 3 Vanishing Locus of a Set of Polynomials: Let $T = \{f_i\}_{i \in I} \subset A = k[x_1, ..., x_n]$, then the vanishing locus of T is

$$\mathbb{V}(T) := \{ p \in \mathbb{A}^n_k : f(p) = 0, \quad \forall f \in T \}$$

Some examples:

Figure 1: The vanishing locus of two separate polynomials plotted in \mathbb{R}^2

- 1.1 Affine Varieties
- 1.2 Projective Varieties
- 1.3 Morphisms
- 1.4 Rational Maps
- 1.5 Nonsingular Varieties
- 1.6 Nonsingular Curves
- 1.7 Intersections in Projective Space
- 2 Schemes
- 2.1 Sheaves
- 2.2 Schemes
- 2.3 First Properties of Schemes
- 2.4 Separated and Proper Morphisms
- 2.5 Sheaves of Modules
- 2.6 Divisors
- 2.7 Projective Morphisms
- 2.8 Differentials
- 2.9 Formal Schemes
- 3 Cohomology
- 3.1 Derived Functors
- 3.2 Cohomology of Sheaves
- 3.3 Cohomology of a Noetherian Affine Scheme
- 3.4 Cech Cohomology
- 3.5 The Cohomology of Projective Space
- 3.6 Ext Groups and Sheaves
- 3.7 The Serre Duality Theorem
- 3.8 Higher Direct Images of Sheaves
- 3.9 Flat Morphisms
- 3.10 Smooth Morphisms
- 3.11 The Theorem on Formal Functions
- 3.12 The Semicontinuity Theorem
- 4 Curves
- 4.1 Riemann-Roch Theorem
- 4.2 Hurwitz's Theorem
- 4.3 Embeddings in Projective Space
- 4.4 Elliptic Curves
- 4.5 The Canonical Embedding

- 5.5 Birational Transformations
- 5.6 Classification of Surfaces

ard

Part II		
Commutative Geometry with a View Towa		
Algebraic Geometry, Eisenbud		
6 Basic Constructions		
6.1 Roots of Commutative Algebra		
6.1.1 Number Theory		
6.1.2 Algebraic Curves and Function Theory		
6.1.3 Invariant Theory		
6.1.4 The Basis Theorem		
6.1.5 Graded Rings		
6.1.6 Algebra and Rings - The Nullstellensatz		
6.1.7 Geometric Invariant Theory		
6.1.8 Projective Varieties		
6.1.9 Hilbert Functions and Polynomials		
6.1.10 Free Resolutions and the Syzygy THeorem		
6.2 Localisation		
6.2.1 Fractions		
6.2.2 Hom and Tensor		
6.2.3 The Construction of Primes		
6.2.4 Rings and Modules of Finite Length		
6.2.5 Products of Dom		
6.3 Associated Primes and Primary Decomposition		
6.3.1 Associated Primes		
6.3.2 Prime Avoidance		
0.0.0 D		

- 6.3.3 **Primary Decomposition**
- 6.3.4Primary Decomposition and Factorality
- 6.3.5 Primary Decomposition in the Graded Case
- 6.3.6 **Extracting Information form Primary Decomposition**
- 6.3.7 Why Primary Decomposition is not Unique
- 6.3.8 Geometric Interpretation of Primary Decomposition
- 6.3.9 Symbolic Powers and Functions Vanishing to High Order
- 6.4 Integral Dependence and the Nullstellensatz
- 6.4.1The Cayley-Hamilton Theorem and Nakayama's Lemma
- 6.4.2Normal Domains and the Normalisation Process
- 6.4.3 Normalisation in the Analytic Case
- 6.4.4Primes in an Integral Extension 14
- The Nullstellensatz 6.4.5

Part III

Commutative Ring Theory, Matsumura

9 Commutative Rings and Modu	\mathbf{les}
------------------------------	----------------

- 9.1 Ideals
- 9.2 Modules
- 9.3 Chain Conditions
- 10 Prime Ideals
- 10.1 Localisation and Spec of a Ring
- 10.2 The Hilbert Nullstellensatz and First Steps in Dimension Theory
- 10.3 Associated Primes and Primary Decomposition
- 11 Properties of Extension Rings
- 11.1 Flatness
- 11.2 Completion and the Artin-Rees Lemma
- 11.3 Integral Extensions
- 12 Valuation Rings
- 12.1 General Valuations
- 12.2 DVRs amd Dedekind Rings
- 12.3 Krull Rings
- 13 Dimension Theory
- 13.1 Graded Rings, the Hilbert Function and the Samuel Function
- 13.2 Systems of Parameters and Multiplicity
- 13.3 The Dimension of Extension Rings
- 14 Regular Sequences
- 14.1 Regular Sequences and the Koszul Complex
- 14.2 Cohen-Macualay Rings
- 14.3 Gorenstein Rings
- 15 Regular Rings
- 15.1 Regular Rings
- 15.2 UFDs
- 15.3 Complete Intersection Rings
- 16 Flatness Revisited
- 16.1 The Local Flatness Criterion
- 16.2 Flatness and Fibres
- 16
- 16.3 Generic Freeness and Open Loci Results

Part IV
Algebraic Geometry I: Schemes,
Gortz-Wedhorn

Part V
Algebraic Geometry II: Cohomology of Schemes, Gortz-Wedhorn

Part VI

Sheaf Theory, Bredon

Singular Cohomology

de Rham Cohmomology

Alexander-Spanier Cohomology 20

22.1

22.2

22.3

20 Sheaves and Presheaves
20.1 Definitions
20.2 Homomorphisms, Subsheaves and Quotient Sheaves
20.3 Direct and Inverse Images
20.4 Cohomomorphisms
20.5 Algebraic Constructions
20.6 Supports
20.7 Classical Cohomology Theories
21 Sheaf Cohmology
21.1 Differential Sheaves and Resolutions
21.2 The Canonical Resolution and Sheaf Cohomology
21.3 Injective Sheaves
21.4 Acyclic Sheaves
21.5 Flabby Sheaves
21.6 Connected Sequences of Functors
21.7 Axioms for Cohmomology and the Cup Product
21.8 Maps of Spaces
21.9 Φ -Soft and Φ -Fine Sheaves
21.10 Subspaces
21.11 The Vietoris Maping Theorem and Homotopy Invariance
21.12 Relative Cohomology
21.13 Mayer-Vietoris Theorems
21.14 Continuity
21.15 The Künneth and Universal Coefficient Theorems
21.16 Dimension
21.17 Local Connectivity
21.18 Change pf Supports and Local Cohomology Groups
21.19 The Transfer Homomorphism and the Smith Sequences
21.20 Steenrod's Cyclic Reduced Powers
21.21 The Steenrod Operations
22 Comparison with Other Cohomology Theories

Part VII

Introduction to Algebraic K-Theory

- **26** Projective Modules and $K_0\Lambda$
- 27 Constructing Projective Modules
- 28 The Whitehead Group $K_1\Lambda$
- 29 The Exact Sequence Associated with an Ideal
- 30 Steinberg Groups and the Functor K_2
- 31 Extending the Extact Sequences
- 32 The Case of a Commutative Banch Algebra
- **33** The Product $K_1\Lambda \otimes K_1\Lambda \to K_2\Lambda$
- 34 Computations in the Steinberg Group
- 35 Computation of K_2Z
- 36 Matsumoto's Computation of K_2 of a Field
- 37 Proof of Matsumoto's Theorem
- 38 More about Dedekind Domains
- 39 The Transfer Homomorphism
- 40 Power Norm Residue Theorems
- 41 Number Fields

Part VIII

Formal Knot Theory, Kauffman

- 42 Introduction
- 43 States, Trails and the Clock Theorem
- 44 State Polynomials and the Duality Conjecture
- 45 Knots and Links
- 46 Axiomatic Link Calculations
- 47 Curliness and the Alexander Polynomial
- 48 The Coat of Many Colours
- 49 Spanning Surfaces
- 50 The Genus of Alternative Links
- 51 Ribbon Knot and the Arf Invariant

Part IX

An Introduction to Invariants and Moduli, Mukai

52	Invariants and Moduli
53	Rings and Polynomials
54	Algebraic Varieties
55	Algebraic Groups and Rings of Invariants
56	The Construction of Quotient Varieties
57	The Projective Quotients
58	The Numerical Criterion and Some Applications
59	Grassmannians and Vector Bundles
60	Curves and their Jacobians
61	Stable Vector Bundles on Curves
62	Moduli Functors

Intersection Numbers and the Verlinde Formula

Part X

Simplicial and Dendroidal Homotopy Theory

- 64 Operads
- 65 Simplicial Sets
- 66 Dendroidal Sets
- 67 Tensor Products of Dendroidal Sets
- 68 Kan Conditions for Simplicial Sets
- 69 Kan Conditions for Dendroidal Sets
- 70 Model Categories
- 71 Model Structures on the Category of Simplicial Sets
- 72 Three Model Structures on the Category of Dendroidal Sets
- 73 Reedy Categories and Diagrams of Spaces
- 74 Mapping Spaces and Bousfield Localisations
- 75 Dendroidal Spaces and ∞ -Operads
- 76 Left Fibrations and the Covariant Model Structure
- 77 Simplical Operads and ∞ -Operads

References

 $[{\rm Har}13]$ Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.