UE M5 - Séries et calcul intégral

TD: Séries numériques

Le but du TD n'est pas de recopier passivement la correction mais de participer activement à la résolution des exercices proposés!

- 1. Montrer que la série de terme général $\frac{1}{2^n}$ converge en utilisant le critère de Cauchy.
- 2. Montrer que la série $\sum_{n>1} \frac{1}{n}$ diverge en utilisant le critère de Cauchy.

EXERCICE 2

- Montrer que la série $\sum_{n\geq 2} \frac{1}{n(n-1)}$ converge et calculer sa somme. En déduire la convergence de la série $\sum_{n>1} \frac{1}{n^2}$.
- Etudier la convergence de la série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ où $\alpha \in \mathbb{R}$. Pour le cas $\alpha > 1$, considérer la série $\sum_{n \ge 1} a_n$ avec $a_n = \frac{1}{n^{\alpha - 1}} - \frac{1}{(n+1)^{\alpha - 1}}$ et donner un équivalent de a_n quand n tend vers l'infini.

EXERCICE 3

Etudier la nature des séries suivantes et calculer leurs sommes si elles convergent.

$$\sum_{n>1} \frac{1}{1+2+\dots+n} \quad \sum_{n>1} \frac{1}{n(n+1)(n+2)}$$

EXERCICE 4

Soient $(u_n)_{n\geq 0}$, $(v_n)_{n\geq 0}$, $(w_n)_{n\geq 0}$ trois suites réelles telles que :

$$\forall n \in \mathbb{N} \quad u_n \le v_n \le w_n$$

Montrer que si les séries de terme général u_n et w_n convergent, alors il en est de même pour la série de terme général v_n .

EXERCICE 5

Soit $(u_n)_{n\geq 1}$ une suite positive telle que la série de terme général u_n soit convergente. Montrer la convergence des séries de terme général :

$$\mathbf{a}) \ u_n^2$$

a)
$$u_n^2$$
 b) $\ln(1+u_n)$ **c)** $\frac{1}{n}\sqrt{u_n}$

$$\mathbf{c}) \ \frac{1}{n} \sqrt{u_n}$$

Indication: pour c), comparer d'abord \sqrt{xy} et $\frac{x+y}{2}$, où x,y sont des réels positifs.

EXERCICE 6

Soit $(u_n)_{n\geq 0}$ une suite de termes positifs. Montrer que la série de terme général u_n est convergente si et seulement si il en est de même pour la série de terme général $v_n = \frac{u_n}{1+u_n}$.

EXERCICE 7

Les séries suivantes sont elles convergentes? Justifier avec soin.

$$\sum_{n\geq 0} \frac{n}{3n-1} \sum_{n\geq 0} (\sqrt{n^2+n} - n) \sum_{n\geq 0} (e^{-\sqrt{n}}) \sum_{n\geq 1} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}}$$

$$\sum_{n\geq 3} \ln \left(\frac{ch(\frac{\pi}{n})}{\cos(\frac{\pi}{n})} \right) \quad \sum_{n\geq 1} a^{-n} \ln(n) \text{ où } a>0 \quad \sum_{n\geq 1} \frac{n^{\ln(n)}}{n!}$$

$$\sum_{n \ge 1} \frac{1}{2^n} \left(1 + \frac{1}{n} \right)^n \quad \sum_{n \ge 2} \frac{n \ln(n)}{(\ln(n))^n} \quad \sum_{n \ge 1} \left(1 - \frac{3}{2} \frac{\ln(n)}{n} \right)^n \quad \sum_{n \ge 2} \left(1 - \cos\left(\frac{\pi}{n}\right) \right) (\ln(n))^{2020}$$

$$\sum_{n\geq 1} \frac{\sin(n!)}{n^3} \quad \sum_{n\geq 1} (\sin(na))(\sin(\frac{1}{n^2})) \ (a\in \mathbb{R}) \quad \sum_{n\geq 2} \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\ln(n!)} \quad \sum_{n\geq 0} \frac{1}{n+2i}$$

$$\sum_{n\geq 1} \frac{\frac{n^2}{6} + 2n + 1}{4n + n^2} \quad \sum_{n\geq 0} \ln(1 + e^{-n}) \quad \sum_{n\geq 0} \frac{3^n - 13^n}{7^n} \quad \sum_{n\geq 2} \left(1 - \frac{n}{2} \ln\left(\frac{n+1}{n-1}\right)\right)$$

EXERCICE 8

Montrer que la série $\sum_{n\geq 1} \frac{n^2}{n!}$ converge et calculer sa somme $\sum_{n=1}^{+\infty} \frac{n^2}{n!}$. (On

rappelle que $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$).

EXERCICE 9

Vrai-Faux justifié: Que pensez vous des assertions suivantes?

Justifiez, en donnant une démonstration et en précisant avec soin les résultats du cours utilisés.

- 1. Assertion 1 : La série $\sum_{n\geq 1} \left(\left(\frac{n}{n+1} \right)^{\frac{1}{n}} 1 \right)$ diverge.
- 2. Assertion 2 : La série $\sum_{n\geq 1} \frac{(-1)^n}{n-\ln(n)}$ est semi-convergente.

EXERCICE 10

Etudier la convergence des séries de terme général suivant :

a)
$$\sqrt{n^4 + 2} - \sqrt{n^4 + 1}$$
 b) $\frac{2^n \cdot n!}{n^n}$ c) $\left(\frac{n}{n+1}\right)^{n(n+1)}$

$$\mathbf{d}) \ \frac{1}{(\ln n)^5} \ \mathbf{e}) \ (-1)^n \tan\left(\frac{1}{n}\right)$$

$$\mathbf{f}) \ \frac{(-1)^n n + \sin n + \cos n}{n\sqrt{n}} \ \mathbf{g}) \ \frac{(-1)^n \ln n}{n} \ \mathbf{j}) \ 1 - \cos\left(\frac{1}{n}\right)$$

Les séries des cas e), f), g) sont-elles absolument convergentes?

EXERCICE 11

Pour tout entier $n \ge 2$, on pose $u_n = \frac{1}{n \ln(n)}$ et $S_n = \sum_{k=2}^n u_k$.

1. Montrer, en justifiant avec précision que pour tout entier $n \geq 3$, on a l'inégalité :

$$S_n - \frac{1}{2\ln(2)} \le \int_2^n \frac{1}{x\ln(x)} dx \le S_n - \frac{1}{n\ln(n)}$$

2. Déduire que $\sum_{n\geq 2} u_n$ diverge. Donner un équivalent de S_n en $+\infty$.

3. Retrouver la divergence de $\sum_{n\geq 2} \frac{1}{n\ln(n)}$ en démontrant que la suite des sommes partielles associée $(S_n)_{n\geq 2}$ n'est pas une suite de Cauchy.

EXERCICE 12

Etudier la nature de la suite u définie par $u_n = \frac{e^n n!}{n^{n+\frac{1}{2}}}$. Pour cela, on pensera à étudier la nature de la série $\sum_{n\geq 1} \ln\left(\frac{u_{n+1}}{u_n}\right)$.

EXERCICE 13

Etudier la nature de la série $\sum_{n\geq 1} \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$.

EXERCICE 14

Montrer que la série $\sum_{n\geq 2} (-1)^n \ln\left(\frac{n+1}{n-1}\right)$ est semi-convergente et calculer sa somme.

EXERCICE 15

Extrait Examen Janvier 2018

- 1. Quelle est la nature de la série $\sum_{n\geq 0} (-1)^n \frac{1}{3n+1}$? Justifier!
- 2. Le but de cette question est de calculer la somme de cette série.
 - (a) Pour tout entier $k \in \mathbb{N}$, calculer l'intégrale $\int_{a}^{1} t^{3k} dt$.
 - (b) En déduire une expression sous forme d'intégrale du terme général $S_n = \sum_{k=0}^{\infty} (-1)^k \frac{1}{3k+1}$ de la suite des sommes partielles associée à la série.
 - (c) Montrer que : $\lim_{n \to +\infty} \int_0^1 \frac{t^{3n+3}}{1+t^3} dt = 0.$
 - (d) En écrivant une décomposition en éléments simples, calculer l'intégrale $I = \int_0^1 \frac{1}{1+x^3} dx.$
 - (e) En déduire la valeur de $\sum_{n=0}^{+\infty} (-1)^n \frac{1}{3n+1}$.