MATHF412-Méthodes variationnelles et équations aux dérivées partielles

Titulaire: Denis Bonheure

Valeurs propres du laplacien et le principe du maximum

Attention:Dans cette liste d'exercices nous considèrons $\Omega \subset \mathbb{R}^N$ comme un ouvert borné et lisse.

Exercice 1 Soit $\lambda_1(\Omega)$ la première valeur propre du laplacien dans $W_0^{1,2}(\Omega)$. Montrer que $\lambda_1(\Omega)$ est strictement décroissante par rapport à l'inclusion, c'est-à-dire

$$\Omega \subset \Omega'$$
 implique que $\lambda_1(\Omega) > \lambda_1(\Omega')$.

Exercice 2 Montrer que les fonctions propres du laplacien sont orthogonales dans $L^2(\Omega)$. Ensuite, considérons $V_k \subset W_0^{1,2}(\Omega)$ l'espace engendré par les fonctions propres $\{\varphi_1, \ldots, \varphi_k\}$ avec $k \in \mathbb{N} \cup \{0\}$. Montrer que

$$\int_{\Omega} |\nabla u|^2 dx \le \lambda_k \int_{\Omega} |u|^2 dx \quad \forall \ u \in V_k$$

et que

$$\int_{\Omega} |\nabla u|^2 dx \ge \lambda_{k+1} \int_{\Omega} |u|^2 dx \quad \forall \ u \in V_k^{\perp}.$$

Remarque: Si k = 0, alors la dernière inégalité n'est rien d'autre que l'inégalité de Poincaré.

Exercice 3 Soient $h \in L^2(\Omega)$, $\lambda \in \mathbb{R}$ et considérons le problème

$$\begin{cases}
-\Delta u + \lambda u = h, & \text{dans} \quad \Omega, \\
u = 0, & \text{sur} \quad \partial \Omega.
\end{cases}$$

Montrer que la fonctionnelle énergie associée est coercive si, et seulement si, $\lambda > -\lambda_1(\Omega)$. En déduire l'existence d'une solution faible.

Exercice 4 Soient $\Omega = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ et $u(x, y) = \cos(x)\cos(y)$. Montrer que u satifait $\Delta u + 2u = 0$ dans Ω et que u change de signe dans Ω . Y-a-t-il une contradiction avec le principe du maximum?

Exercice 5 Soit

$$u(x,y) = \frac{1 - (x^2 + y^2)}{(1 - x)^2 + y^2} \quad \forall (x,y) \in B(0;1) \subset \mathbb{R}^2.$$

Montrer que $\Delta u = 0$ dans Ω et que u = 0 sur $\partial \Omega \setminus \{(1,0)\}$. Le principe du maximum s'applique-t-il dans ce cas?

Exercice 6 Montrer que si $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfait $\Delta u = u^3$ dans Ω et u = 0 sur $\partial\Omega$, alors $u \equiv 0$.

Exercice 7 Montrer que si $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfait $\Delta u = u^3 - u$ dans Ω et u = 0 sur $\partial \Omega$, alors $-1 \le u(x) \le 1$ pour tout $x \in \Omega$. Est-il possible que $u(x_0) = \pm 1$ pour $x_0 \in \Omega$?

Exercice 8 Montrer que si Ω est connexe et que $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfait $\Delta u = u^2$ dans Ω , alors u ne peut pas atteindre de maximum dans Ω , à moins que $u \equiv 0$.

Exercice 9 Montrer que $u(x) = e^x - e^{-x}$ satisfait u'' - u = 0 dans \mathbb{R} et que u atteint le maximum en x = 0. Y-a-t-il una contradiction avec le principe du maximum?