

数据结构与算法

Data Structure and Algorithm

极夜酱

目录

1	计算复杂性理论			
	1.1	时间复杂度	1	
	1.2	均摊时间复杂度	7	
	1.3	递推方程	9	

Chapter 1 计算复杂性理论

1.1 时间复杂度

1.1.1 输入规模

算法的时间复杂度是针对指定基本运算,计算算法所做的运算次数。其中基本运算指的是比较、加法、乘法、置指针、交换等操作。

算法基本运算可以表示为跟输入规模相关的函数。常见的输入规模有数组的元素 个数、调度问题的任务个数、图的顶点数和边数等。对于相同输入规模的不同实 例,算法的基本运算次数有可能会不一样。

对于排序算法、输入规模为数组的元素个数、基本运算为元素之间的比较。

对于整数乘法,m 位整数与n 位整数相乘需要做 $m \times n$ 次乘法。

对于矩阵乘法, $i \times j$ 矩阵与 $j \times k$ 矩阵相乘需要做 $i \times j \times k$ 次乘法。

1.1.2 时间复杂度

最好情况时间复杂度是指算法在最理想情况下的时间复杂度。例如在查找算法中,目标元素刚好在数组的第一个位置,那么只需要一次就能找到,时间复杂度是常量阶 O(1)。

最坏情况时间复杂度 W(n) 是指算法在最坏情况下执行的时间复杂度。例如目标元素在数组最后一个位置或者不在数组中,那么需要遍历完整个数组才能得出结果,时间复杂度为 O(n)。

平均情况时间复杂度 A(n) 是指用算法在所有情况下执行的次数的加权平均值表示,也就是算法在求解这类问题所需要的平均时间。

假设 S 是规模 n 为实例集,实例的 $i \in S$ 概率是 p_i ,算法对实例 i 执行的基本运算次数是 t_i :

$$A(n) = \sum_{i \in S} p_i t_i$$

例如,利用顺序查找算法在一个长度为 n 的数组中查找元素 x。假设 x 在数组中的概率是 p (x 不在数组中的概率为 1-p),且每个位置概率相等:

$$A(n) = \sum_{i=1}^{n} i \frac{p}{n} + (1-p)n$$

$$= \frac{p(n+1)}{2} + (1-p)n$$

$$\stackrel{\text{def}}{=} p = \frac{1}{2},$$

$$= \frac{n+1}{4} + \frac{n}{2}$$

$$= \frac{3}{4}n$$

1.1.3 大 O 符号

设 f 和 g 是定义域为自然数集 \mathbb{N} 上的函数,若存在正数 c 和 n_0 ,使得一切 $n \geq n_0$ 满足

$$0 \le f(n) \le cg(n)$$

则称 f(n) 的渐进上界是 g(n), 即 f(n) 的阶不高于 g(n) 的阶,记作:

$$f(n) = O(g(n))$$

大 O 符号

$$f(n) = n^{2} + n$$
$$f(n) = O(n^{2})$$
$$f(n) = O(n^{3})$$

1.1.4 大 Ω 符号

设 f 和 g 是定义域为自然数集 \mathbb{N} 上的函数,若存在正数 c 和 n_0 ,使得一切 $n \geq n_0$ 满足

$$0 \le cg(n) \le f(n)$$

则称 f(n) 的渐进下界是 g(n), 即 f(n) 的阶不低于 g(n) 的阶, 记作:

$$f(n) = \Omega(g(n))$$

大 Ω 符号

$$f(n) = n^2 + n$$

$$f(n) = \Omega(n^2)$$

$$f(n) = \Omega(100n)$$

1.1.5 小 o 符号

设 f 和 g 是定义域为自然数集 \mathbb{N} 上的函数,若对于任意正数 c 都存在 n_0 ,使得一切 $n \geq n_0$ 满足

$$0 \le f(n) < cg(n)$$

则称 f(n) 的阶低于 g(n) 的阶,记作:

$$f(n) = o(g(n))$$

小 o 符号

$$f(n) = n^2 + n$$

$$f(n) = o(n^3)$$

1.1.6 小ω符号

设 f 和 g 是定义域为自然数集 \mathbb{N} 上的函数,若对于任意正数 c 都存在 n_0 ,使得一切 $n \ge n_0$ 满足

$$0 \le cg(n) < f(n)$$

则称 f(n) 的阶高于 g(n) 的阶,记作:

$$f(n) = \omega(g(n))$$

小 ω 符号

$$f(n) = n^2 + n$$

$$f(n) = \omega(n)$$

1.1.7 ⊖ 符号

若 f(n) = O(g(n)) 且 $f(n) = \Omega(g(n))$,则称 f(n)的阶与 g(n)的阶相等,记作:

$$f(n) = \Theta(g(n))$$

⊖ 符号

$$f(n) = n^2 + n$$

$$g(n) = 100n^2$$

$$f(n) = \Theta(g(n))$$

1.1.8 定理 (Theorem)

- 1. 如果 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ 存在,并且等于某个常数 c>0,那么 $f(n)=\Theta(g(n))$ 。
- 2. 如果 $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$,那么 f(n) = o(g(n))。
- 3. 如果 $\lim_{n\to\infty} \frac{f(n)}{g(n)} = +\infty$,那么 $f(n) = \omega(g(n))$ 。
- 4. 多项式函数的阶低于指数函数的阶,即 $n^d=o(r^n),\ r>1,\ d>0$ 。

- 5. 对数函数的阶低于幂函数的阶, 即 $ln(n) = o(n^d)$, d > 0。
- 6. 函数的阶之间的关系具有传递性:

• 如果
$$f = O(g), g = O(h), 那么 $f = O(h)$ 。$$

• 如果
$$f = \Omega(g), g = \Omega(h), 那么 $f = \Omega(h)$ 。$$

• 如果
$$f = \Theta(g)$$
, $g = \Theta(h)$, 那么 $f = \Theta(h)$.

证明

$$f(n) = \frac{1}{2}n^2 - 3n$$
, 证明 $f(n) = \Theta(n^2)$

$$\lim_{n \to \infty} \frac{f(n)}{n^2}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{2}n^2 - 3n}{n^2}$$

$$= \frac{1}{2}$$

证明

证明多项式函数的阶低于指数函数的阶。

$$\lim_{n \to \infty} \frac{n^d}{r^n}$$

$$= \lim_{n \to \infty} \frac{dn^{d-1}}{r^n ln(r)}$$

$$= \lim_{n \to \infty} \frac{d(d-1)n^{d-2}}{r^n ln(r)^2}$$

$$= \dots$$

$$= \lim_{n \to \infty} \frac{d!}{r^n ln(r)^d}$$

$$= 0$$

证明

证明对数函数的阶低于幂函数的阶。

$$\lim_{n \to \infty} \frac{\ln(n)}{n^d}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{n}}{dn^{d-1}}$$

$$= \lim_{n \to \infty} \frac{1}{dn^d}$$

$$= 0$$

排序

$$f(n) = (n^2 + n)/2$$
$$g(n) = 10n$$
$$h(n) = 1.5^n$$
$$t(n) = n^{\frac{1}{2}}$$

按照阶从高到低排序。

$$h(n) = \omega(f(n))$$

$$f(n) = \omega(g(n))$$

$$g(n) = \omega(t(n))$$

$$h(n) < f(n) < g(n) < t(n)$$

1.2 均摊时间复杂度

1.2.1 均摊时间复杂度 (Amortized Time Complexity)

均摊时间复杂度也称摊还分析或分摊分析,均摊复杂度是一个更加高级的概念,它是一种特殊的情况,应用的场景也更加特殊和有限。

```
void insert(int val) {
1
 2
        if(cnt == arr.length) {
            int sum = 0;
3
            for(int i = 0; i < arr.length; i++) {</pre>
4
                 sum += arr[i];
 5
6
            }
 7
            arr[0] = sum;
            cnt = 1;
8
        }
9
        arr[cnt++] = val;
10
11
   }
```

这段代码实现了一个往数组中插入数据的功能。当数组元素满时,就遍历数组求和,将元素和保存到数组的第 0 个位置,并清空数组,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。

最理想的情况下,数组中有空闲空间,最好情况时间复杂度为 O(1); 最坏的情况下,数组中没有空闲空间了,需要先做一次遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。

假设数组的长度是 n,根据数据插入的位置的不同,可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。这 n + 1 种情况发生的概率一样,都是 $\frac{1}{n+1}$ 。

根据加权平均的计算方法, 求得的平均时间复杂度:

$$1 \times \frac{1}{n+1} + 1 \times \frac{1}{n+1} + \dots + 1 \times \frac{1}{n+1} + n \times \frac{1}{n+1}$$

$$= \frac{2n}{n+1}$$

$$= O(1)$$

对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候就可以将这一组操作放在一块分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其它那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。

1.3 递推方程

1.3.1 递推 (Recurrence)

如果数列 $\{a_n\}$ 的第 n 项与它前一项的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推方程。

算术级数的递推关系:

$$a_0 = a$$
$$a_n = a_{n-1} + d$$

几何级数的递推关系:

$$a_0 = a$$
$$a_n = a_{n-1} \times r$$

1.3.2 斐波那契数列 (Fibonacci Sequence)

斐波那契数列 f_0 , f_1 , f_2 , ... 的递推公式为:

$$f(n) = \begin{cases} 1 & n = 1 \\ 1 & n = 2 \\ f(n-1) + f(n-2) & n >= 3 \end{cases}$$

斐波那契数列的通项公式为:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$$

斐波那契数列(递归)

1 | int fibonacci(int n) {

```
2    if(n == 1 || n == 2) {
3        return 1;
4    }
5    return fibonacci(n-2) + fibonacci(n-1);
6  }
```


图 1.1: 递归树

. 斐波那契数列(迭代)

```
int fibonacci(int n) {
   int f[n];
   f[0] = f[1] = 1;
   for(int i = 2; i < n; i++) {
       f[i] = f[i-2] + f[i-1];
   }
   return f[n-1];
}</pre>
```

1.3.3 汉诺塔 (Hanoi Tower)

给定三根柱子,其中 A 柱子从大到小套有 n 个圆盘,问题是如何借助 B 柱子,将圆盘从 A 搬到 C。

规则:

- 一次只能搬动一个圆盘。
- 不能将大圆盘放在小圆盘上面。

图 1.2: 汉诺塔

递归算法求解汉诺塔问题:

- 1. 将前 n-1 个圆盘从 A 柱借助于 C 柱搬到 B 柱。
- 2. 将最后一个圆盘直接从 A 柱搬到 C 柱。
- 3. 将 n-1 个圆盘从 B 柱借助于 A 柱搬到 C 柱。

汉诺塔

```
1 def hanoi(n, A, B, C):
2    if n == 1
3        move(1, A, C)
4    else
5        hanoi(n-1, A, C, B)
6        move(n, A, C)
7        hanoi(n-1, B, A, C)
```

当圆盘数为64时,假设每次移动花费1秒,总共大约需要5800亿年。

汉诺塔递归算法的递推公式:

$$T(n) = \begin{cases} 1 & n = 1 \\ 2T(n-1) + 1 & n > 1 \end{cases}$$

利用迭代法,不断用递推方程的右部替换左部,直到出现初值停止迭代。

$$T(n) = 2 * T(n - 1) + 1$$

$$= 2 * [2 * T(n - 2) + 1] + 1$$

$$= 2 * [2 * [2 * T(n - 3) + 1] + 1] + 1$$

$$= \dots$$

$$= 2^{k} * T(n - k) + 2^{k} - 1$$

$$\therefore n - k = 1$$

$$\therefore k = n - 1$$

$$T(n) = 2^{n-1} * T(1) + 2^{n-1} = 1$$

$$T(n) = 2^{n-1} * T(1) + 2^{n-1} - 1$$
$$= 2^{n-1} + 2^{n-1} - 1$$
$$= 2^{n} - 1$$
$$= O(2^{n})$$

吓得我抱起了

抱着抱着抱着我的小鲤鱼的我的我的我

1.3.4 插入排序

插入排序的递推公式: