Neural networks for classification

Inteligencia Artificial

3° INF

Supervised learning: classification

Machine learning by induction from labeled data

$$\mathcal{D} = \{(\mathbf{x}_n, c_n)\}_{n=1}^N$$

 $x \in \mathcal{X}$: vector of attributes, features, independent variables,

Bias term input variables. covariates...
$$\mathbf{x}_{n0} = 1$$
 $\mathbf{x}_n^T = (x_{n0} \ x_{n1} \ x_{n2} \ \dots x_{nD})$ [(D + 1)-dimensional vector]

 $c \in \mathcal{C}$: (class) label, dependent variable, outcome, target, ...

Classification: Labels c are discrete $(e, g, c \in \{C_1, ..., C_K\})$

Learning algorithm: \mathcal{L}

w: Model parameters

$$\mathcal{L} \colon \mathcal{D} = \{(\mathbf{x}_n, c_n)\}_{n=1}^N \to h(\cdot; \mathbf{w})$$

$$h(\cdot; \mathbf{w}): \mathbf{x} \in \mathcal{X} \rightarrow h(\mathbf{x}; \mathbf{w}) \in \{C_1, \dots, C_K\}$$

Binary classification

n	X_{n1}	X_{n2}	•••	X_{nD}	C_n
1	2.3	0		10.3	C_0
2	2.5	1	•••	13.1	C_1
3	2.6	0		-2.7	C_1
4	2.7	-1	•••	-5.4	C_0
5	2.9	0		2.1	C_1
6	3.1	0		-10.9	C_0

Binary classification

0-1 encoding of the labeled data

$$\mathcal{D} = \{(\mathbf{x}_n, c_n)\}_{n=1}^N \Rightarrow \mathcal{D} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N; \ t_n = \begin{cases} 0 & \text{if } c_n = C_0 \\ 1 & \text{if } c_n = C_1 \end{cases}$$

$$\mathcal{L} : \mathcal{D} = \{(\mathbf{x}_n, c_n)\}_{n=1}^N \rightarrow o(\cdot; \mathbf{w})$$

$$z(\cdot; \mathbf{w}) : \ \mathbf{x} \in \mathcal{X} \rightarrow z(\mathbf{x}; \mathbf{w}) \in \mathbb{R}$$

$$o(\mathbf{x}; \mathbf{w}) = \varphi^{(o)}(z(\mathbf{x}; \mathbf{w})) \in [0, 1]$$

■ The output $o(\mathbf{x}; \mathbf{w})$ is an estimate of the class C_1 posterior

Discriminative model $\hat{p}(C_1|\mathbf{x},\mathbf{w}) = \varphi^{(o)}(z(\mathbf{x};\mathbf{w}))$

Logistic regression:
$$\varphi^{(o)}(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Probit regression:
$$\varphi^{(o)}(z) = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{y^2}{2}} dy$$

Binary classification: 0-1 encoding

n	X_{n1}	X_{n2}	•••	X_{nD}	t_n
1	2.3	0		10.3	0
2	2.5	1		13.1	1
3	2.6	0		-2.7	1
4	2.7	-1		-5.4	0
5	2.9	0		2.1	1
6	3.1	0	•••	-10.9	0

From posteriors to decisions

■ To output the class label, we compare the posterior of C_1 with some threshold in the interval [0,1]

$$h(\mathbf{x}; \mathbf{w}) = \begin{cases} C_1 & \text{if } p(C_1 | \mathbf{x}, \mathbf{w}) \ge \text{threshold} \\ C_0 & \text{if } p(C_1 | \mathbf{x}, \mathbf{w}) < \text{threshold} \end{cases}$$

- If misclassification costs are equal:
 - Error if prediction is C_1 : $p(C_0|\mathbf{x},\mathbf{w})$
 - Error if prediction is C_0 : $p(C_1|\mathbf{x}, \mathbf{w})$

Optimal (minimal error) classification rule

Predict

$$C_1$$
 when $p(C_0|\mathbf{x}, \mathbf{w}) \le p(C_1|\mathbf{x}, \mathbf{w}) \Rightarrow p(C_1|\mathbf{x}, \mathbf{w}) \ge 1/2$

$$C_0$$
 otherwise $\Rightarrow p(C_1|\mathbf{x},\mathbf{w}) < 1/2$

Optimal threshold

Unequal classification costs

Cost of classifying an example of class C_0 as class C_1

- Cost if prediction is C_1 : $p(C_0|\mathbf{x},\mathbf{w})cost_{10} + p(C_1|\mathbf{x},\mathbf{w})cost_{11}$
- Cost if prediction is C_0 : $p(C_0|\mathbf{x},\mathbf{w})cost_{00} + p(C_1|\mathbf{x},\mathbf{w})cost_{01}$

 C_1 prediction cost = C_0 prediction cost

Cost of correctly classifying a class C_0 example (typically, 0)

Minimal cost classification rule:

Predict

Cost of classifying an example of class C_1 as class C_0

 C_1 when $p(C_1|\mathbf{x}, \mathbf{w}) \ge \text{threshold}^*$ C_0 when $p(C_1|\mathbf{x}, \mathbf{w}) < \text{threshold}^*$

Optimal threshold

E.g. If $cost_{10} - cost_{00} = 2(cost_{01} - cost_{11})$ threshold* = 2/3 (it is less likely to predict C_1)

threshold* =
$$\frac{cost_{10} - cost_{00}}{cost_{10} - cost_{00} + cost_{01} - cost_{11}}$$

Learning by maximum lihelihood

Samples assumed to be iid (independent identically distributed)

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg max}} \mathcal{L}(\mathbf{w})$$

Likelihood of the model, given $\mathcal{D} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$

$$\mathcal{L}(\mathbf{w}) = \hat{P}(\lbrace t_n \rbrace_{n=1}^N \big| \lbrace \mathbf{x}_n \rbrace_{n=1}^N, \mathbf{w}) = \prod_{n=1} \hat{p}(t_n | \mathbf{x}_n, \mathbf{w}) =$$

Factorizes because samples are assumed to be independent

$$= \prod_{n=1}^{N} (\hat{p}(C_0|\mathbf{x}_n,\mathbf{w}))^{1-t_n} (\hat{p}(C_1|\mathbf{x}_n,\mathbf{w}))^{t_n}$$

Log-likelihood function

Estimate of class posterior

Same distribution: samples are assumed to be identically dist.

$$\log \mathcal{L}(\mathbf{w}) = \sum_{n=1}^{N} \left((1 - t_n) \log \hat{p}(C_0 | \mathbf{x}_n, \mathbf{w}) + t_n \log \hat{p}(C_1 | \mathbf{x}_n, \mathbf{w}) \right)$$

Same maximizer as $\mathcal{L}(\mathbf{w})$ (log is monotone)

Minimization of the cross-entropy error

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg min}} CE(\mathbf{w})$$

Cross-entropy error

$$CE(\mathbf{w}) = -\log \mathcal{L}(\mathbf{w})$$

$$= -\sum_{n=1}^{N} \left((1 - t_n) \log \hat{p}(C_0 | \mathbf{x}_n, \mathbf{w}) + t_n \log \hat{p}(C_1 | \mathbf{x}_n, \mathbf{w}) \right)$$

$$= -\sum_{n=1}^{N} \left((1 - t_n) \log (1 - \hat{p}(C_1 | \mathbf{x}_n, \mathbf{w})) + t_n \log \hat{p}(C_1 | \mathbf{x}_n, \mathbf{w}) \right)$$

Discriminative model: $\hat{p}(C_1|\mathbf{x}, \mathbf{w}) = \varphi^{(o)}(z(\mathbf{x}_n; \mathbf{w}))$ $\hat{p}(C_1|\mathbf{x}, \mathbf{w})$ $CE(\mathbf{w}) = -\sum_{n=1}^{N} \left((1 - t_n) \log \left(1 - \varphi^{(o)}(z(\mathbf{x}_n; \mathbf{w})) + t_n \log \left(\varphi^{(o)}(z(\mathbf{x}_n; \mathbf{w})) \right) \right)$ $\hat{p}(C_0|\mathbf{x}, \mathbf{w})$

AND: A linearly separable problem

■ The AND classification problem

x_1	x_2	t
0	0	0
0	1	0
1	0	0
1	1	1

Single-layer perceptron

x_1	<i>x</i> ₂	$z = w_0 x_0 + w_1 x_1 + w_1 x_2$	$h(\mathbf{x}) = \theta(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0.5 & \text{if } z = 0 \\ 0 & \text{if } z < 0 \end{cases}$
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

Single layer perceptron

Can solve only linearly separable problems

Logistic regression

Class posteriors

$$p(C_1|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-z(\mathbf{x}; \mathbf{w})}}$$

$$p(C_0|\mathbf{x}, \mathbf{w}) = 1 - p(C_1|\mathbf{x}, \mathbf{w}) = \frac{e^{-z(\mathbf{x}; \mathbf{w})}}{1 + e^{-z(\mathbf{x}; \mathbf{w})}} = \frac{1}{1 + e^{z(\mathbf{x}; \mathbf{w})}}$$

Log-odds: $\mathbf{z}(\mathbf{x}; \mathbf{w}) = \log \frac{p(C_1 | \mathbf{x}, \mathbf{w})}{p(C_0 | \mathbf{x}, \mathbf{w})}$ $\mathbf{x}^T = (x_0 x_1 \dots x_D)$

$$\mathbf{w}^{\mathrm{T}} = (w_0, w_1, \dots, w_D)$$
$$\mathbf{x}^{\mathrm{T}} = (x_0 \ x_1 \dots x_D)$$

■ Linear model for log-odds: $z(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} = \sum_{d=0}^{D} w_d x_d$

Single-layer perceptron!

Single layer perceptron: logistic regression

Cross entropy error for logistic regression

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg min}} CE(\mathbf{w})$$

 $\frac{\partial \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n)}{\partial \mathbf{w}} = \mathbf{x}_n \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n) \left(1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n)\right)$

Cross-entropy error

$$CE(\mathbf{w}) = -\sum_{n=1}^{N} \left((1 - t_n) \log \left(1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n) \right) + t_n \log \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n) \right)$$

Gradient of the cross-entropy error

$$\frac{\partial}{\partial \mathbf{w}} CE(\mathbf{w}) = \sum_{n=1}^{N} \left((1 - t_n) \mathbf{x}_n \sigma(\mathbf{w}^T \mathbf{x}_n) - t_n \mathbf{x}_n \left(1 - \sigma(\mathbf{w}^T \mathbf{x}_n) \right) \right)$$

$$= \sum_{n=1}^{N} \left(\sigma(\mathbf{w}^T \mathbf{x}_n) - t_n \right) \mathbf{x}_n = \sum_{n=1}^{N} \delta_n \mathbf{x}_n$$
14

Single-layer perceptron: Batch learning

INPUT: Training instances: $\mathcal{D} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$

Learning parameter: $\eta > 0$

OUTPUT: $\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg min}} CE(\mathbf{w})$

1. Randomly initialize $\mathbf{w} \sim U[-0.5, 0.5]^{(D+1)}$

- $2. n_{epoch} = 0$
- 2. While convergence criteria are not met

Attributes should be scaled!

Similar to Rosenblatt!

$$\delta_n = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) - t_n$$
 prediction error

- 2.1 Increment epoch counter: $n_{epoch} = n_{epoch} + 1$
- 2.2 Calculate the network outputs: $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$; n = 1, ..., N
- 2.2 Calculate the gradient: $\frac{\partial}{\partial \mathbf{w}} CE(\mathbf{w}) = \sum_{n=1}^{N} \delta_n \mathbf{x}_n$
- 2.3 Update weights: $\mathbf{w} = \mathbf{w} \eta \sum_{n=1}^{N} \delta_n \mathbf{x}_n$

Single-layer perceptron: Online learning

INPUT: Training instances: $\mathcal{D} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$

Learning parameter: $\eta > 0$

OUTPUT:
$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg min}} CE(\mathbf{w})$$

- 1. Randomly initialize $\mathbf{w} \sim U[-0.5, 0.5]^{(D+1)}$
- $2. n_{epoch} = 0$
- 3. While convergence criteria are not met
 - 3.1 Increment epoch counter: $n_{epoch} = n_{epoch} + 1$
 - 3.2 For n = 1, ..., N

Calculate the network output: $\sigma(\mathbf{w}^T\mathbf{x}_n)$

Calculate prediction error: $\delta_n = \sigma(\mathbf{w}^T \mathbf{x}_n) - t_n$

Update weights: $\mathbf{w} = \mathbf{w} - \eta \delta_n \mathbf{x}_n$

XOR: A non-linearly separable problem

- The single-layer perceptron can only address problems that are linearly separable
- Therefore, the simple XOR problem, which is not linearly separable, cannot be solved using this learning machine.

<i>X</i> ₁	<i>X</i> ₂	t
0	0	1
0	1	0
1	0	0
1	1	1

XOR: Non-linear feature construction

■ Consider the XOR problem in a transformed feature space

<i>x</i> ₁	<i>X</i> ₂	<i>z</i> ₁	Z_2	t
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

XOR: A linear model in feature space

$$\begin{cases} z_1 = \theta(x_1 + x_2 - 0.5) \\ z_2 = \theta(x_1 + x_2 - 1.5) \end{cases}$$

$$h = \theta(z_1 - z_2 - 0.5)$$

<i>X</i> ₁	<i>X</i> ₂	<i>Z</i> ₁	Z_2	h
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Multi-layer perceptron

Sigmoid (logit) activation function

$$\sigma(z) = \frac{1}{1 + e^{-z}};$$

Also: transfer function

$$\sigma(-\infty) = 0; \quad \sigma(0) = \frac{1}{2}; \sigma(+\infty) = 1;$$

- Monotonically increasing: $z_2 > z_1 \Rightarrow \sigma(z_2) > \sigma(z_1)$
- Symmetry: $\sigma(-z) = 1 \sigma(z)$
- Derivative: $\sigma'(z) = \frac{d\sigma(z)}{dz} = \sigma(z)(1 \sigma(z))$

Heavyside step function

Other activation functions

In regression output layer

- Linear: $\varphi(z) = z^2$
- **Hyperbolic tangent**: $tanh(z) = \frac{e^{z} e^{-z}}{e^{z} + e^{-z}}$

normcdf $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{y^2}{2}} dy$

 $\lim softplus(z; 0, b) = ReLU(z)$

E.g.
$$a = 0.01$$

Multi-layer perceptron: Online learning

INPUT: Training instances: $\mathcal{D} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$ Learning parameter: $\eta > 0$

OUTPUT:
$$V^*, w$$

$$\mathbf{V}^*, \mathbf{w}^* = \underset{\mathbf{V}, \mathbf{w}}{\operatorname{arg min}} CE(\mathbf{V}, \mathbf{w}) \bigvee$$

Only one hidden layer. Sigmoid activations.

- 1. Randomly initialize $\mathbf{V}, \mathbf{w} \sim U[-0.5, 0.5]^{(D+1)}$
- $2. n_{epoch} = 0$
- 3. While convergence criteria are not met
 - 3.1 Increment epoch counter: $n_{epoch} = n_{epoch} + 1$
 - 3.2 For n = 1, ..., N

$$z_{nj} = \sigma(\mathbf{v}_{j}^{\mathrm{T}}\mathbf{x}_{n}), \quad j = 1, 2, ..., J;$$
 # forward propagation $o_{n} = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{z}_{n})$ # network output $\delta_{n} = o_{n} - t_{n};$ # prediction error # weight update $\Delta_{nj} = z_{nj}(1 - z_{nj})\delta_{n}, \quad j = 1, 2, ..., J;$ # error backpropagation $\mathbf{v}_{j} = \mathbf{v}_{j} - \eta \Delta_{nj} \mathbf{x}_{n}$ # weight update

Universal approximation property

THEOREM: "A feed-forward network with a single hidden layer containing a sufficiently large number of hidden neurons can uniformly approximate any continuous function on compact subsets of \mathbb{R}^D , under mild conditions on the activation function"

■ GOOD NEWS:

A neural network can be used to make optimal predictions!

■ NOT SO GOOD NEWS:

How does one find such a network?

Use CV

Having more than one layer can help (deep networks)

- How many neurons do we need?
- How easy is it to learn the network parameters (weights)?

K. Hornik, M. Stinchcombe and H. White, "Multi-layer Feedforward Networks are Universal Approximators," Neural Networks, Vol. 2, pp. 359-366 (1989).

Multilayer perceptron: classification

Output of hidden layer h

Learning the network weights

The network weights are determined by minimization of a cost function:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg\,min}} \left(\left[-\sum_{n \in C_0} \log(1 - o(\mathbf{x}_n; \mathbf{w})) - \sum_{n \in C_1} \log(o(\mathbf{x}_n; \mathbf{w})) \right] + \lambda_1 ||\mathbf{w}||_1 + \lambda_2 ||\mathbf{w}||_2^2 \text{ Cross-entropy error} \right)$$
Use CV to select
$$\lambda_1 > 0 \quad L_1 \text{ penalty} \quad \lambda_2 > 0 \quad L_2 \text{ penalty}$$

- Architecture: Number of hidden layers / Neurons in hidden layer
- Optimization method: Quasi-Newton, Gradient descent, stochastic gradient descent, use of momentum... Gradients needed!
- **Hyperparameters**: Magnitude of penalties, of momentum term, maximum # of iterations, ...

Multi-class classification (K classes)

1-of K encoding of the labeled data

$$\mathcal{D} = \{(\mathbf{x}_n, c_n)\}_{n=1}^N \Rightarrow \mathcal{D} = \{(\mathbf{x}_n, \mathbf{t}_n)\}_{n=1}^N; \quad \boldsymbol{t}_n^{\mathrm{T}} = (t_{n1} \ t_{n2} \dots t_{nK})$$

$$t_{nk} = \mathbb{I}[c_n = C_k] = \begin{cases} 0 & \text{if} \quad y_n \neq C_k \\ 1 & \text{if} \quad y_n = C_k \end{cases}; \quad k = 1, 2, ..., K$$

$$\mathcal{L} \colon \mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N \to o(\cdot; \mathbf{w})$$

Discriminative model

$$\hat{p}(C_k|\mathbf{x},\mathbf{w}) = \varphi_K^{(o)}(\mathbf{z}(\mathbf{x};\mathbf{w}))$$

$$\hat{p}(C_k|\mathbf{x},\mathbf{w}) = \varphi_K^{(o)}(\mathbf{z}(\mathbf{x};\mathbf{w})) \qquad \varphi_K^{(o)}(\mathbf{z}) \geq 0 \qquad k = 1, ..., K$$

$$(\boldsymbol{\varphi}^{(o)}(\mathbf{z}))^{\mathrm{T}} = (\varphi_1^{(o)}(\mathbf{z}) ... \varphi_K^{(o)}(\mathbf{z})) \qquad \varphi_1^{(o)}(\mathbf{z}) + \cdots + \varphi_K^{(o)}(\mathbf{z}) = 1$$

 $z(\cdot; \mathbf{w}): \mathbf{x} \in \mathcal{X} \to \mathbf{z}(\mathbf{x}; \mathbf{w}) \in \mathbb{R}^K$

$$\mathbf{o}(\mathbf{x};\mathbf{w}) = \boldsymbol{\varphi}^{(o)}(\mathbf{z}(\mathbf{x};\mathbf{w})) \in \Delta^K -$$

Probability simplex in K dimensions

$$\varphi_k^{(o)}(\mathbf{z}) \ge 0 \qquad k = 1, ..., K$$
 $\varphi_1^{(o)}(\mathbf{z}) + \dots + \varphi_K^{(o)}(\mathbf{z}) = 1$

MLP for multiclass classification

Softmax layer

Learning by maximum lihelihood

Samples assumed to be iid (independent identically distributed)

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg max}} \mathcal{L}(\mathbf{w})$$

Likelihood of the model, given $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{t}_n)\}_{n=1}^N$

$$\mathcal{L}(\mathbf{w}) = \hat{P}(\{\mathbf{t}_n\}_{n=1}^N | \{\mathbf{x}_n\}_{n=1}^N, \mathbf{w}) = \prod_{n=1}^n \hat{p}(t_n | \mathbf{x}_n, \mathbf{w}) =$$

Factorizes because samples are assumed to be independent

$$= \prod_{n=1}^{N} \prod_{k=1}^{K} (\hat{p}(C_k|\mathbf{x}_n, \mathbf{w}))^{t_{nk}}$$
 Factors equal because samples are assumed

samples are assumed to be identically dist.

Log-likelihood function

$$\log \mathcal{L}(\mathbf{w}) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \log \hat{p}(C_k | \mathbf{x}_n, \mathbf{w})$$

Minimization of the cross-entropy error

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg min}} CE(\mathbf{w})$$

Cross-entropy error

$$CE(\mathbf{w}) = -\log \mathcal{L}(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{N} t_{nk} \log \hat{p}(C_k | \mathbf{x}_n, \mathbf{w})$$

Discriminative model: $\hat{p}(C_1|\mathbf{x}, \mathbf{w}) = \varphi_k^{(o)}(z(\mathbf{x}_n, \mathbf{w}))$ the last layer of the MLP

Output of the kth neuron in

$$\widehat{CE}(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \log \varphi_k^{(o)} (z(\mathbf{x}_n, \mathbf{w}))$$

Neural networks summary

Advantages

- Excellent predictors.
- Adaptive (online learning)

Disadvantages

- Costly training.
- Finding appropriate architecture can be difficult
 - Number of hidden layers / nodes in each hidden layer
 - Activation function
- Determining the hyperparameters for the optimization
 - Type of optimization
 - In SGD: learning rate, size of mini-batches, momentum term, strength of regularization terms, ...
- Difficult interpretation.

References

- Multilayer perceptron with TensorFlow https://playground.tensorflow.org/
- Scikit learn documentation
 - Neural networks
 http://scikit-learn.org/stable/modules/neural_networks_supervised.html
- Simon O. Haykin "Neural Networks and Learning Machines, 3rd edition", Pearson (2009)
- Ian Goodfellow and Yoshua Bengio and Aaron Courville "Deep Learning", MIT Press (2016)
- 3Blue1Brown [https://www.3blue1brown.com/]:
 - Neural networks: https://www.3blue1brown.com/lessons/neural-networks
 - Gradient descent: https://www.3blue1brown.com/lessons/gradient-descent
 - Backpropagation: https://www.3blue1brown.com/lessons/backpropagation
 - Backpropagation calculus: https://www.3blue1brown.com/lessons/backpropagation-calculus