EA044 - Planejamento e Análise de Sistemas de Produção

20. Semestre de 2006 - 3a. Prova - Prof. Paulo Valente

RA: 03739 Nome: Guillemane M. Whate Colore Milae White

1/ Uma certa região metropolitana do estado é formada por seis cidades. O governo estadual planeja construir novas estações do corpo de bombeiros e precisa determinar em quais cidades construí-las, de tal forma que qualquer uma das cidades seja atendida por uma estação em no máximo quinze minutos. Os tempos de trajeto entre as cidades encontram-se descritos na tabela abaixo. Formule o problema de programação inteira cuja solução fornece o menor número e as localizações das novas estações do corpo de bombeiros.

De / Para	C1	C2	C3	C4	C5	C6
C1	0	1Ó	20	30	30	20
C2	10	B	25	35	20	10
C3	20	25	Q	15	30	20
C4	30	35	15	Q	15	25
C5	30	20	30	15	Q	14
C6	20	10	20	25	_14	9

A tabela apresentada a seguir é referente ao emprego do algoritmo branchand-bound ao problema de programação inteira

$$\begin{array}{lll} \text{maximizar} & z = 5x_1 + 4x_2 \\ \text{sujeito a} & x_1 + x_2 & \leq & 5, \\ & 10x_1 + 6x_2 & \leq & 45, \end{array}$$

onde x_1 e x_2 são variáveis inteiras não-negativas. O problema 1 (original) se ramifica nos problemas 2 e 3, o problema 3 nos problemas 4 e 5, e o problema 4 nos problemas 6 e 7. A tabela apresenta uma solução ótima para o problema acima? Justifique.

Problema	(x_1,x_2,z)	Restrição
1	(3.75, 1.25, 23.75)	_
2	(3, 2, 23)	$x_1 \leq 3$
3	(4, 0.83, 23.33)	$x_1 \geq 4$
4	(4.5, 0, 22.5)	$x_2 \le 0$
5	Infactivel	$x_2 \ge 1$
6	(4, 0, 20)	$x_1 \leq 4$
7	Infactivel	$x_1 \geq 5$

3. Resolva o problema da mochila a seguir através de programação dinâmica:

maximizar
$$z = 5x_1 + 4x_2 + 2x_3$$

sujeito a $4x_1 + 3x_2 + 2x_3 \le 8$,

onde x_1 , x_2 e x_3 são variáveis inteiras não-negativas.

4/Uma empresa deseja determinar a localização de um novo depósito. As coordenadas no plano (em km) de quatro consumidores e o número de remessas feitas anualmente para cada consumidor são indicadas na tabela abaixo. A empresa deseja localizar o depósito de forma a minimizar a distância total percorrida durante o ano do depósito aos quatro consumidores. Formule o problema de programação não-linear associado. Assuma que a distância entre dois pontos do plano quaisquer $x = (x_1, x_2)$ e $y = (y_1, y_2)$ é medida pela norma Euclideana $||x - y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$.

Consumidor	Coordenadas	No. de Remessas
. 1	(8, 16)	200
2	(16, 8)	150
3	(0, 18)	200
4	(18, 0)	300

austro 1: Guillerme Mileré almoide Seja Xi, i=12,34,5,6 as MINIMI BAR Sugato a 2- X1+X2+X3+X1+X5 +X6 40 2×3+1×3 3x 26 + 1x de 20x1 + 25 X2 10X2 + 8X3 10×1+2×2+2×4+20×5+10 adade do estudo +30×4+30×5+20× +15X3+15X5+25X6<5 AXSL 7EXQL + 30+5x G+4xy + 4x3x+8x8 X2 E 1915 RA 03731) 1, se lé cosso barbie 513×10+ 51>5×11+ 2,5 *y* 0.0 7) 2.0 50 5,0

MAXIMIER 3= 5x1+4x2+2x3 < 8

Resido: 2 X1 X2 X3 X4 LD -1 -5 -4 -2 0 0 0 + 3 -2 1 8

_	121	0	1	H
0	X	(*)	1-1	X
1/1/	×	1/2 / S	-1	7
1/2	× , , ,	12	\mathcal{O}	X
	×		1	
0	G	4	8	4

Tragramação Divá mica!

0	1	m
4/3	1/13	X
<i>(</i>	0	\ \ \
2/2	L'	η, ×
1/3	4/3	XX
- N/3	32/3	47

1/2

MAXIMI ZAR MAXIMIZAR & SX,+4X2-12X3 4X,+3X2+2X3 < 8 $2 = 5 \times 1 + 4 \times 2 + 2 \times 3$ $4 \times 1 + 2 \times 2 + 2 \times 3 \times 8$ $4 \times 2 + 2 \times 3 \times 8$

MEACTIVEL!

×1	00/2/111	14 4 00	100 t N X	001/WI
50 = UX		-0/3/2		July X
X	1/2 xx		0 1 0 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1	0 1 0 0 X 1 2 0 0 X 1 2 X 4 X 5 0 0 X
(1)	1 2/12	2 10 4 5 10 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10	JBKU N	N 20 V
2 = 21/2 = 195		, ,		
95				

$$\begin{array}{|c|c|c|c|c|c|}\hline(PG) & MX & Z = SX_{1} + 4X_{2} + 3X_{3} & <8 \\ & S_{1}C & 4X_{1} + 3X_{2} + 2X_{3} & <8 \\ & X_{2} & <2 \\ & X_{3} & <2 \\ & X_{1}X_{2} & <2 \\ & X_{1}X_{2} & <2 \\ & X_{2} & <2 \\ & X_{2} & <2 \\ & X_{1} & <0 \\ & X_{1} & <0 \\ & X_{2} & <2 \\ & X_{1} & <0 \\ & X_{1} & <0 \\ & X_{1} & <0 \\ & X_{2} & <2 \\ & X_{1} & <0 \\ & X_{2} & <2 \\ & X_{1} & <0 \\ & X_{1} & <0 \\ & X_{1} & <0 \\ & X_{2} & <2 \\ & X_{1} & <0 \\ & X_{2} & <0 \\ & X_{1} & <0 \\ & X_{2} & <0 \\ & X_{1} & <0 \\ & X_{2} & <0 \\ & X_{1} & <0 \\ & X_{2} & <0 \\ & X_{2} & <0 \\ & X_{3} & <0 \\ & X_{4} & <0 \\ & X_{1} & <0 \\ & X_{2} & <0 \\ & X_{3} & <0 \\ & X_{4} & <0 \\ & X_{4} & <0 \\ & X_{5} & <0 \\ & X_{5$$

X1=0 X2=2 + X3=1 + Zx=11 X2=1 - X3=2/5 + Zx=11/5 X2=6 - > X3=4 + 3=7=12

NAXINI ZAR (N) 5> 2×+× 10x1 +6x2 <45

grow to esta mai procuo de

