Homework 6

ALECK ZHAO

March 30, 2017

22.12 Prove: For every positive integer n, the Tower of Hanoi puzzle with n disks can be solved in $2^n - 1$

Proof. n=1: If there is only 1 disk, it can be moved to the correct position in $1=2^1-1$ moves, so the base case is satisfied. Suppose a puzzle with k disks is solved in 2^k-1 moves. Then for a puzzle with k+1 discs, we can equivalently move the first k disks to the middle position in 2^k-1 moves. Then we move the bottom disk to the correct position, and then move the k middle discs to the correct position in 2^k-1 moves. The total number of moves is $(2^k-1)+1+(2^k-1)=2^{k+1}-1$, so the formula holds for k+1, and the statement is proved by induction.

22.16 (e) Let $e_0 = 1, e_1 = 4$, and for n > 1, let $e_n = 4(e_{n-1} - e_{n-2})$. What are the first five terms of the sequence e_0, e_1, e_2, \cdots ? Prove $e_n = (n+1)2^n$.

Proof. we have

$$e_0 = 1$$

 $e_2 = 4$
 $e_2 = 4(4-1) = 12$
 $e_3 = 4(12-4) = 32$
 $e_4 = 4(32-12) = 80$

Now proceed by strong induction. For n = 0, we have $e_0 = 1 = (0+1)2^0$, so the base case is satisfied. Then suppose that the formula holds for all of 0 to k. That means $e_k = (k+1)2^k$ and $e_{k-1} = k2^{k-1}$. Then

$$\begin{aligned} e_{k+1} &= 4(e_k - e_{k-1}) = 4\left[(k+1)2^k - k2^{k-1}\right] \\ &= 4k2^k + 4 \cdot 2^k - 4k2^{k-1} = k2^{k+2} + 2^{k+2} - k2^{k+1} \\ &= 2^{k+1}(2k+2-k) = \left[(k+1) + 1\right]2^{k+1} \end{aligned}$$

so the formula holds for k+1 and the statement is proved by strong induction.

3. Let n be a positive integer. Use induction to prove that

$$\sum_{j=1}^{n} j^4 = \frac{6n^5 + 15n^4 + 10n^3 - n}{30}$$

Proof. n = 1: The base case is satisfied because

$$1^4 = 1 = \frac{6 + 15 + 10 - 1}{30}$$

Now suppose the formula holds for arbitrary k. Then we have

$$\sum_{j=1}^{k+1} j^4 = \sum_{j=1}^k j^4 + (k+1)^4 = \frac{6k^5 + 15k^4 + 10k^3 - k}{30} + (k+1)^4$$

$$= \frac{(6k^5 + 15k^4 + 10k^3 - k) + 30(k^4 + 4k^3 + 6k^2 + 4k + 1)}{30}$$

$$= \frac{6k^5 + 45k^4 + 130k^3 + 180k^2 + 119k + 30}{30}$$

$$= \frac{6(k+1)^5 + 15(k+1)^4 + 10(k+1)^3 - (k+1)}{30}$$

so the formula holds for k+1 and the statement is proved by induction.

4. Consider the following nonlinear recurrence relation defined for $n \in \mathbb{N}$:

$$a_0 = 1$$
, $a_n = na_0 + (n-1)a_1 + (n-2)a_2 + \dots + 2a_{n-2} + 1a_{n-1}$

(a) Calculate a_1, a_2, a_3, a_4

Solution.

$$a_1 = 1a_0 = 1$$

 $a_2 = 2a_0 + 1a_1 = 3$
 $a_3 = 3a_0 + 2a_1 + 1a_2 = 8$
 $a_4 = 4a_0 + 3a_1 + 2a_2 + 1a_3 = 21$

(b) Use induction to prove for all positive integers n that

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{3 + \sqrt{5}}{2} \right)^n - \left(\frac{3 - \sqrt{5}}{2} \right)^n \right]$$

Proof. n = 1: The base case is satisfied because

$$1 = a_1 = \frac{1}{\sqrt{5}} \left[\left(\frac{3 + \sqrt{5}}{2} \right)^1 - \left(\frac{3 - \sqrt{5}}{2} \right)^1 \right] = \frac{1}{\sqrt{5}} \cdot \frac{2\sqrt{5}}{2}$$

Now suppose the formula holds for arbitrary k. Note that

$$a_k = ka_0 + (k-1)a_1 + (k-2)a_2 + \dots + 2a_{k-2} + 1a_{k-1}$$

$$a_{k+1} = (k+1)a_0 + ka_1 + (k-1)a_2 + \dots + 3a_{k-2} + 2a_{k-1} + 1a_k$$

$$\implies a_{k+1} - a_k = a_0 + a_1 + a_2 + \dots + a_{k-2} + a_{k-1} + a_k$$

The RHS is given by

$$\sum_{i=0}^{k} \frac{1}{\sqrt{5}} \left[\left(\frac{3+\sqrt{5}}{2} \right)^i - \left(\frac{3-\sqrt{5}}{2} \right)^i \right] = \frac{1}{\sqrt{5}} \left[\sum_{i=0}^{k} \left(\frac{3+\sqrt{5}}{2} \right)^i - \sum_{i=0}^{k} \left(\frac{3-\sqrt{5}}{2} \right)^i \right]$$

These are the sums of two geometric series, and the closed form is

$$\begin{split} &\frac{1}{\sqrt{5}} \left[\frac{\left(\frac{3+\sqrt{5}}{2}\right)^{k+1} - 1}{\frac{3+\sqrt{5}}{2} - 1} - \frac{\left(\frac{3-\sqrt{5}}{2}\right)^{k+1} - 1}{\frac{3-\sqrt{5}}{2} - 1} \right] = \frac{1}{\sqrt{5}} \left[\frac{\left(\frac{3+\sqrt{5}}{2}\right)^{k+1} - 1}{\frac{1+\sqrt{5}}{2}} - \frac{\left(\frac{3-\sqrt{5}}{2}\right)^{k+1} - 1}{\frac{1-\sqrt{5}}{2}} \right] \\ &= \frac{1}{\sqrt{5} \left(\frac{1+\sqrt{5}}{2}\right) \left(\frac{1-\sqrt{5}}{2}\right)} \left(\left(\frac{1-\sqrt{5}}{2}\right) \left[\left(\frac{3+\sqrt{5}}{2}\right)^{k+1} - 1 \right] - \left(\frac{1+\sqrt{5}}{2}\right) \left[\left(\frac{3-\sqrt{5}}{2}\right)^{k+1} - 1 \right] \right) \\ &= -\frac{1}{\sqrt{5}} \left[\left(\frac{1-\sqrt{5}}{2}\right) \left(\frac{3+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1+\sqrt{5}}{2}\right) \left(\frac{3-\sqrt{5}}{2}\right)^{k+1} + \sqrt{5} \right] \\ &= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right) \left(\frac{3-\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right) \left(\frac{3+\sqrt{5}}{2}\right)^{k+1} - \sqrt{5} \right] \end{split}$$

Then a_{k+1} is obtained by adding a_k to the result above, which is

$$\begin{split} &\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right) \left(\frac{3-\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right) \left(\frac{3+\sqrt{5}}{2} \right)^{k+1} - \sqrt{5} \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{3+\sqrt{5}}{2} \right)^{k} - \left(\frac{3-\sqrt{5}}{2} \right)^{k} \right] \\ &= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \cdot \frac{3-\sqrt{5}}{2} - 1 \right) \left(\frac{3-\sqrt{5}}{2} \right)^{k} - \left(\frac{1-\sqrt{5}}{2} \cdot \frac{3+\sqrt{5}}{2} - 1 \right) \left(\frac{3+\sqrt{5}}{2} \right)^{k} - \sqrt{5} \right] \\ &= \frac{1}{\sqrt{5}} \left[\left(\frac{\sqrt{5}-5}{2} \right) \left(\frac{3-\sqrt{5}}{2} \right)^{k} - \left(\frac{-\sqrt{5}-5}{2} \right) \left(\frac{3+\sqrt{5}}{2} \right)^{k} - \sqrt{5} \right] \\ &= \frac{1}{\sqrt{5}} \left[\left(\frac{5+\sqrt{5}}{2} \right) \left(\frac{3+\sqrt{5}}{2} \right)^{k} - \left(\frac{5-\sqrt{5}}{2} \right) \left(\frac{3-\sqrt{5}}{2} \right)^{k} - \sqrt{5} \right] \\ &= \frac{1}{\sqrt{5}} \left[\left(\frac{3+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{3-\sqrt{5}}{2} \right)^{k+1} + \frac{3+\sqrt{5}}{2} - \frac{3-\sqrt{5}}{2} - \sqrt{5} \right] \\ &= \frac{1}{\sqrt{5}} \left[\left(\frac{3+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{3-\sqrt{5}}{2} \right)^{k+1} + \frac{3+\sqrt{5}}{2} - \frac{3-\sqrt{5}}{2} - \sqrt{5} \right] \\ &= \frac{1}{\sqrt{5}} \left[\left(\frac{3+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{3-\sqrt{5}}{2} \right)^{k+1} \right] \end{split}$$

Thus, the formula holds for k+1, so the statement is proved by induction.

- 24.1 For each of the following relations, please answer these questions:
 - (1) Is it a function? If not, explain why and stop.
 - (2) What are its domain and image?
 - (3) Is the function one-to-one? If not, explain why and stop.
 - (4) What is its inverse function?
 - (a) $\{(1,2),(3,4)\}$

Answer. This is a function. Its domain is $\{1,3\}$ and its range is $\{2,4\}$. The function is one-to-one. The inverse function is $\{(2,1),(4,3)\}$.

(b) $\{(x,y) \mid x,y \in \mathbb{Z}, y = 2x\}$

Answer. This is a function. Its domain is \mathbb{Z} and its image is $2\mathbb{Z}$. The function is one-to-one. The inverse function is $\{(x,y) \mid x,y \in \mathbb{Z}, x=2y\}$.

(c) $\{(x,y) \mid x,y \in \mathbb{Z}, x+y=0\}$

Answer. This is a function. Its domain is \mathbb{Z} and its image is \mathbb{Z} . The function is one-to-one. The inverse function is $\{(x,y) \mid x,y \in \mathbb{Z}, x+y=0\}$.

(d) $\{(x,y) \mid x,y \in \mathbb{Z}, xy = 0\}$

Answer. This is not a function. When x = 0, then (0, y) satisfies the relation for all $y \in \mathbb{Z}$, so x is mapped to more than a single value.

(e) $\{(x,y) \mid x,y \in \mathbb{Z}, y = x^2\}$

Answer. This is a function. Its domain is \mathbb{Z} and its image is $\mathbb{Z}_{\geq 0}$. The function is not one-to-one because (2,4) and (-2,4) are both in the relation, but $2 \neq -2$.

(f) Ø

Answer. This is a function. Its domain is \emptyset and its image is \emptyset . The function is one-to-one. The inverse function is \emptyset .

(g) $\{(x,y) \mid x,y \in \mathbb{Q}, x^2 + y^2 = 1\}$

Answer. This is not a function. The pairs (0.6, 0.8) and (0.6, -0.8) are both in the relation, so 0.6 is mapped to more than a single value.

(h) $\{(x,y) \mid x,y \in \mathbb{Z}, x \mid y\}$

Answer. This is not a function. The pairs (1,2) and (1,3) are both in the relation, so 1 is mapped to more than a single value.

(i) $\{(x,y) \mid x,y \in \mathbb{N}, x \mid y,y \mid x\}$

Answer. This is a function since the condition is equivalent to x = y. The domain is \mathbb{N} and the image is \mathbb{N} . The function is one-to-one. The inverse function is $\{(x,y) \mid x,y \in \mathbb{N}, x=y\}$.

(j) $\{(x,y) \mid x,y \in \mathbb{N}, \binom{x}{y} = 1\}$

Answer. This is not a function. Since $\binom{2}{0} = \binom{2}{2} = 1$, the pairs (2,0) and (2,2) are in the relation, so 2 is mapped to more than a single value.

24.23 (a) Let $f: \mathbb{Z} \to \mathbb{Z}$ by f(x) = |x|. If $X = \{-1, 0, 1, 2\}$, find f(X).

Answer. We have $f(X) = \{f(-1), f(0), f(1), f(2)\} = \{0, 1, 2\}$.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \sin x$. If $X = [0, \pi]$, find f(X).

Answer. The sin function takes on values from 0 to 1 inclusive over $[0,\pi]$, so f(X)=[0,1].

(c) Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = 2^x$. If X = [-1, 1], find f(X).

Answer. Since 2^x is an increasing function, its minimum value over X is $2^{-1} = 1/2$ and its maximum value is $2^1 = 2$, so $f(X) = \left[\frac{1}{2}, 2\right]$.

(d) Let $f: \mathbb{Z} \to \mathbb{Z}$ by f(x) = 3x - 1. What is $f(\{1\})$? Is it the same as f(1)?

Answer. We have $f(\{1\}) = \{f(1)\} = \{2\}$. It is not the same as f(1) = 2 because the former is a set, while the latter is a number.

(e) Let $f: A \to B$ be a function. What is f(A)?

Answer. Here, f(A) is the image of f as a function.

24.24 (a) Let $f: \mathbb{Z} \to \mathbb{Z}$ by f(x) = |x|. If $Y = \{1, 2, 3\}$ find $f^{-1}(Y)$.

Answer. Under absolute value, both 1 and -1 are mapped to 1, and similarly for 2 and 3. So $f^{-1}(Y) = \{-3, -2, -1, 1, 2, 3\}$.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. If Y = [1, 2], find $f^{-1}(Y)$.

Answer. Under f, the interval $[1, \sqrt{2}]$ maps to Y since f(1) = 1 and $f(\sqrt{2}) = 2$ and f is increasing over $[1, \sqrt{2}]$. The interval $[-\sqrt{2}, -1]$ also maps to Y since $f(-\sqrt{2}) = 2$ and f(-1) = 1 and f is decreasing over $[-\sqrt{2}, -1]$. Thus $f^{-1}(Y) = [-\sqrt{2}, -1] \cup [1, \sqrt{2}]$.

(c) Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = 1/(1+x^2)$. Find $f^{-1}\left(\left\{\frac{1}{2}\right\}\right)$.

Answer. We have

$$\frac{1}{2} = \frac{1}{1+1^2} = \frac{1}{1+(-1)^2}$$

so
$$f^{-1}\left(\left\{\frac{1}{2}\right\}\right) = \{-1, 1\}$$
.

(d) Let $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = 1/(1+x^2)$. Find $f^{-1}(\{-\frac{1}{2}\})$.

Answer. Since f is strictly positive over \mathbb{R} , there are no values of x such that f(x) = -1/2, so $f^{-1}\left(\left\{-\frac{1}{2}\right\}\right) = \emptyset$.

- 26.1 For each pair of functions f and g please do the following:
 - Determine which of $g \circ f$ and $f \circ g$ is defined.
 - If one or both are defined, find the resulting function(s).
 - If both are defined, determine whether $g \circ f = f \circ g$.
 - (e) $f = \{(1,2), (2,3), (3,4), (4,5), (5,1)\}$ and $g = \{(1,3), (2,4), (3,5), (4,1), (5,2)\}$

Solution. We have im $f = \operatorname{im} g = \operatorname{dom} f = \operatorname{dom} g = \{1, 2, 3, 4, 5\}$, so both $g \circ f$ and $f \circ g$ are defined. Then

$$g \circ f = \{(1,4), (2,5), (3,1), (4,2), (5,3)\}\$$

 $f \circ g = \{(1,4), (2,5), (3,1), (4,2), (5,3)\}\$

and thus $g \circ f = f \circ g$.

(g) f(x) = x + 3 and g(x) = x - 7 (both for all $x \in \mathbb{Z}$)

Solution. We have im $f = \operatorname{im} g = \operatorname{dom} f = \operatorname{dom} g = \mathbb{Z}$ so both $g \circ f$ and $f \circ g$ are defined. Then

$$(g \circ f)(x) = g(x+3) = x-4$$

 $(f \circ g)(x) = f(x-7) = x-4$

and thus $g \circ f = f \circ g$.

(i) $f(x) = \frac{1}{x}$ for $x \in \mathbb{Q}$ except x = 0 and g(x) = x + 1 for all $x \in \mathbb{Q}$

Solution. $g \circ f$ is defined because

$$\operatorname{im} f = \mathbb{Q} \setminus \{0\} \subseteq \mathbb{Q} = \operatorname{dom} g$$

However, $f \circ g$ is not defined because

$$\operatorname{im} g = \mathbb{Q} \not\subseteq \mathbb{Q} \setminus \{0\}$$

Then we have

$$(g \circ f)(x) = g\left(\frac{1}{x}\right) = \frac{1}{x} + 1$$