Lecture 01. Compilers Overview

Machine Lang(machine instructions; patterns of 0's and 1's) -> Assembly Lang -> Higher-level lang(C,C++,Java...) (easier to develop; 인간 친화적으로 발달해 음)

Higher-level lang을 computer에서 실행시키려면, **Language translation**이라는 추가적 과정

1. Language translation -> source code(C, C++, java, python)를 **semantically-equivalent**(의 미가 같은) **target code**(ex. Assembly, machine lang)으로 translate

2. Error detection -> translation process 동안, source program 내의 error를 detect & report Source code => language processors => target code

(Detect errors) => Error messages (+report) document translation live tenslation **≠** Compilation Interpretation What to translate An entire source program One statement of a source program Every time when the statement is When to translate Once before the program runs A target program confire Translation result Target code (equivalent to the statement) C, C++ Javascript Bullon Examples Compilation Interpretation Runtime need compilation during performance run-time Tintel us ARM ox Tintel (Window) (Lincox) Portability / flexibility there's error or not Debugging / development ex and for relanged, optimized ex. good for prototupe

< Hybrid Compilers > combine compilation and interpretation (Java, Python ex. pyc)

 $\label{eq:make_program} \mbox{Make intermediate program (ex. by tecode) => more computer-friendly but not machine level}$

-> reduce overhead and increase run-time performance and keep portability

<Common Language-processing systems>

Src prgm(test.c) ==(Preprocessor)==> Modified src prgm(optimized) ==(Compiler)==>
Target assembly prgm(test.s) ==(Assembler)==> reloctable machine code(test.o)
==(Linker)==> Absolute machine code (executable binary file; test.out)

<Requirement for good compilers>

 Correctness (mandatory) (MAJOR) 2. Performance improvement (optional) 3. Reasonable compilation time (optional)

Modern compilers preserve the outlines of the FORTRAN 1 compiler

Using Symbol table (used by all phrases of compilers)

Lexical analyzer (scanner) -> Syntax analyzer (parser) -> Semantic analyzer (Analysis part)

- -> Intermediate code generator -> Code optimizer -> Code generator (Synthesis part)
- **<Lexical analyzer (scanner)>** -> divide the stream of characters into meaningful sequences and produce set of tokens (A=B+C=>'A''=''B''+'''C')
- <Syntax analyzer (parser)> -> tree-like intermediate representation (syntax tree) that depicts the grammatical structure of the token stream

Lecture 02. Lexical Analysis (specification of tokens)

- Token: syntactic category (ex. Identifier, number, operator, ...)

(token name, token value) pair로 structrured (token value는 optional)

(Keyword: {IF, ELSE, FLOAT, CHAR 등}, Operators: {ADD, COMPARISON 등}, Identifiers: {ID), Constants: {NUMBER, INTEGER, REAL, LITERAL 등}, Punctuation symbols{LPAREN, COMMA 등}, Whitespace: {non-empty sequence of blanks, newlines, tabs 등 ex. 주석, 빈 칸})

- $\mbox{\bf Lexemes}\mbox{:}$ sequence of characters that matches the pattern for a token
- Ex. i -> ID, if -> IF, 3.14->NUMBER, (-> LPAREN, "Hello" -> LITERAL ...

- Lexical Analyzer does?: 1. Partitioning input strings into substring (lexemes) 2. Identifying the token of each lexeme

Input	A	-	В	+	С
Token name	ID	ASSIGN	ID	ADD	ID
Token value	A or pointer to symbol-table entry for A		В		c
Output	<id, a=""></id,>	<assign></assign>	<id, b=""></id,>	<add></add>	<id, c=""></id,>

- How to specify the patterns for tokens? -> Regular languages
- How to recognize the tokens from input streams? -> Finite Automata

Regular Languages(⊂ Context-free lang ⊂ Context-sensitive lang ⊂ Recursively enumerable lang) -> Simple but powerful

- alphabet Σ -> finite set of symbol (ex. Letter = $\Sigma^L = \{A, \dots, Z, a, \dots, z\}, \; \text{Digit} = \; \Sigma^D = \{0, \dots, 9\})$
- string s -> s over alphabet is a finite set of symbols drawn from the alphabet

 $(\mathsf{string:}\ \Sigma = \{0\} \rightarrow s = 0,00,000,or,\dots\ \Sigma = \{a,b\} \rightarrow s = a,b,aa,ab,ba,bb,aaa,or\dots)$

- language L -> any set of strings over some fixed alphabet $\,\Sigma\,$

(language: $\Sigma = \{a,b\} \rightarrow L_1 = \{a,ab,ba,aba\} L_2 = \{a,b,aa,ab,ba,bb,aaa,...\}$)(L1 finite, L2 inf) Operation s, |s| (length) , s_1s_2 (concatenation), ϵ (empty string), $s^i(s^{\underline{o}})$ expo;concat i-times) Operation L, $L_1 \cup L_2$ (Union), L_1L_2 (Concatenation), L^i (Concat of L i-times), L^* (kleene closure; 0 or more), L^* (Positive closure; one or more)

Regular expression $r \rightarrow regular language L(r)$

 $\epsilon \to L(\epsilon) = \{\epsilon\}$ $a \to L(a) = \{a\}, a \text{ in } \Sigma$, $r_1|r_2 \to L(r_1) \cup L(r_2)$ $r_1r_2 \to L(r_1r_2) = L(r_1)L(r_2)$ $r^* \to L(r^*) = \bigcup_{(i \ge 0)} L(r^i)$ ex. $a^+ = aa^*$ but $(\cdot^n)^n \Sigma = \{(\cdot)\}$ $\to \text{REZ} 불가능$

Rules for RE Precedence: (.*, .+) > concat > | ; Equiv: same exp -> same lang

|: Commutative, Associative Concat: Associative, Concat distribution over

 ϵ : identity for concat $(r_1\epsilon = \epsilon r_1 = r_1)$, guaranteed in * $(r^* = (r|\epsilon)^*)$ $a^{**} = a^*$

- 1. 이런 token들 만들어 merge Merged = Keyword | ID | Comp | Float | Whitespace | ...
- 2. input stream $a_1a_2a_3 \dots a_n$ 을 cursor 앞으로 옮겨가면서 L(Merged)에 속하는지 확인

 $\mathsf{Ex.} \ \ midx = 1, \ a_1 \in L(M) \ \ midx = 2, a_1a_2 \in L(M) \dots midx = 4, a_1a_2a_3a_4 \not\in L(M)$

- -> $a_1a_2a_3$ classify / a_4 partition 이 과정을 계속 반복
- * classification에서 두 token에 속하면? -> priority / error handling => by Finite Automata

Lecture 03. Lexical Analysis (Recognition of tokens)

Finite automata $M = \{Q, \Sigma, \delta, q_0, F\}$ | finite set of states $Q = \{q_0, q_1, ..., q_i\}$

Input alphabet Σ = finite set of input symbols | start state q_0

Set of accepting(final) states $F \subset Q$ | set of state transition functions δ

 $(\delta(q_{\scriptscriptstyle 0},a)=q_{\scriptscriptstyle 1}$; state transition from $q_{\scriptscriptstyle 0}$ to $q_{\scriptscriptstyle 1}$ on input symbol a)

DFA는 ϵ -move 허용 X, 각 state에 각 input symbol마다 이동 O (최대 한 개)

NFA는 ϵ -move 허용 O, 각 state에 각 input symbol마다 여러 개의 이동 가능

	DFA	NFA			
# of transitions per input per state	Zero or one	Zero or more O One or more For a given input, there must be at least one path ending in one of accepting states			
€-move	×				
# of path for a given input	Only one				
Accepting condition	For a given input, its path must end in one of accepting states				
Pros	Fast to execute but (only one path) complex	Sov kut Simple to represent (easy to make/understand)			
Cons Complex -> space problem (exponentially larger than NFA)		Slow -> performance problem (several paths)			

Thomson's construction으로 표현해보자

NFA to DFA -> subset construction algorithm

Lecture 04. Syntax Analyzer (Parser) (Context Free Grammars)

CFG : Terminals, Non-terminals, start symbol, productions로 구성

Terminals: basic symbols (cannot be replaced)

Non-terminals: syntactic variables (can be replaced by other non-term or term)

Start symbol: one non-terminal $\;\mid\;\;$ Productions: replacement rule

(대문자 alphabet -> non-terminal, 소문자 alphabet -> term)

(로마자 $\alpha,\beta\dots$ -> sequence of non-term, term, ϵ ex. $\alpha=aABBBcddef$)

(n) $^n~$ => BALANCED -> (BALANCED) | $\epsilon~$ good at recursive structure

Derivation (=>): sequence of replacement (=>*: derivate zero or more times)

Rule: Leftmost (=>_{\{lm\}}) :replace left-most non-term first / Rightmost (=>_{\{rm\}}) : rightmost~

Token validation set-1) sentinel form of CFG G, 2) sentence of CFG G, 3) lang of CFG G

Definition: A sentinel form of a CFG G Sequence of terminals

- α is a sentinel form of G, if $A \Rightarrow^* \alpha$, where A is the start symbol of G
- If $A\Rightarrow_{lm}^*\alpha$ or $A\Rightarrow_{rm}^*\alpha$, α is a (left or right) sentinel form of G

Definition: A sentence of a CFG G

• α is a sentence form of G,

if α is a sentinel form of a CFG G which consists of terminals only

Definition: A language of a CFG G

- L(G) is a language of a CFG G (context-free language)
- $L(G) = \{\alpha \mid \alpha \text{ is a sentence of } G\}$ set of sontene of can

If an input string (e.g., a token set) is in L(G), we can say that it is valid in G

Good CFG? -> non-ambiguous / no left recursion / for each nonterminal, only one choice of production starting from a specific input symbol

Ambiguity -> cfg를 통해 한 string을 여러 개의 parse tree로 구성할 수 있을 때 $E \to if\ E\ then\ E\ |\ if\ E\ then\ E\ else\ E\ |\ other$

 $E \rightarrow MATCHED \mid UNMATCHED$

 $MATCHED \rightarrow if MATCHED$ then MATCHED else MATCHED | other $UNMATCHED \rightarrow if E$ then E | if E then MATCHED else UNMATCHED

Left recursion - A =>+ Alpha 인 경우 Infinite loop 돌게 됨 (sometimes)

Rewrite using $\operatorname{right-recursion}$ S->Sa|b를 S->bA, A->aA| ϵ 처럼 쓰는 것

 $S \to S\alpha_1 |S\alpha_2| \dots |S\alpha_m|\beta_1|\beta_2| \dots |\beta_n|$ can be rewritten as:

Step 1: Make a new nonterminal A and add a production rule $\alpha_i A$ for all α_i and ϵ

• $A \rightarrow \alpha_1 A |\alpha_2 A| \dots |\alpha_m A| \epsilon$

Step 2: For a nonterminal S, add a production rule $eta_i A$ for all eta_i and discard other rules

 $\bullet \quad S \to \beta_1 A |\beta_2 A| \dots |\beta_n A, \quad A \to \alpha_1 A |\alpha_2 A| \dots |\alpha_m A| \epsilon$

만약, same input symbol로부터 2개 이상의 productions 존재한다?

 $E \to T + E[T, T \to F * T|F, F \to (E)] id$ -> Left Factoring으로 해결

$$E \rightarrow T + E|T$$
, $T \rightarrow F * T|F$, $F \rightarrow (E)|id$

Step 1: For each non-terminal \emph{A} , find the longest common prefix of productions α

• e.g., for E, $\alpha = T$

Step 2: Discard all productions which have the form of $A \to \alpha\beta$, and add $A \to \alpha A'$

• e.g.,
$$E \to TE'$$
 $E \to \alpha E' \to TE'$ $T \to \alpha T' \to FT'$

Step 3: For the new non-terminal A', add $A' \rightarrow \beta$ for all discarded productions in step 2

Step 4: Repeat step 1 ~ 3 until there is no more common prefix for all non-terminals

•
$$E \to TE'$$
, $E' \to +E|\epsilon$, $T \to FT'$, $T' \to *T|\epsilon$, $F \to (E)|id$

=> non-ambiguous, right recursive, left factoring 이 세 요소가 중요함!

G: DECL -> DECL type id; | DECL type id= id; | ϵ

Step 1: rewrite G by using right recursion

Step 2: rewrite G by using left factoring

Abstract Syntax Tree (AST)

- 1. single-successor nodes 2. Symbols for describing syntactic details
- 3. Non-terminals with an operator and arguments as their child nodes

4	AST construction	G: E -> E + E E * E (E) id	(id+id)*id			
	Production	Semantic action				
	E -> E1 + E2	E.node = new Node(' + ', E1.nod	1.node, E2.node)			
	E -> E1 * E2	E.node = new Node(' * ', E1.nod	w Node(' * ', E1.node, E2.node)			
	E -> (E1)	E.node = E1.node				
	E -> id	E.node = new Leaf(id, id.value)				

Example G:S -> while(C){B}, C->id comp id, B->type id; | id();

Production	Semantic action S.node = new Node('while', C. node, B. node) C.node = new Node('cond', new Node('comp', comp. value, new Leaf(id ₂ , id ₂ , value)))			
$S \rightarrow while(C)\{B\}$				
$C \rightarrow id_1 \ comp \ id_2$				
$B \rightarrow type \ id;$	B.node = new Node('block', new Node('declaration', new Leaf(type, type, value), new Leaf(id, id. value)))			
$B \rightarrow id();$	$B.node = new\ Node('block', new\ Node('call', new\ Leaf(id, id. value))$			

while (leftVar < rightVar){int a;}

 $S = >_{lm} while(C)\{B\} = >_{lm} while(id comp id)\{B\} = >_{lm} while(id comp id)\{type id;\}$

Top-down Parsing (Leftmost derivation; LL parsing; Left-to-right / Leftmost)

- #1 Recursive descent -> 순서대로 시도하다 문제 생기면 backtracking
- -> non-ambiguous CFG, no left recursive CFG => possible but not effective (backtracking)
- #2 LL(k) parsing 중 LL(1) -> non-ambiguous CFG, no left recursive CFG, **left factored CFG** (A 로 시작하는 2 개의 규칙이 있으면, backtracking 또는 LL(2) 필요)
- 1) construct LL(1) parsing table 2) given input string 에 대해 parsing

LL(1) parsing table construction

First set of non-terminal A: $First(A)=\{x|A=>^*x\alpha\}$ A 의 derivation 중 처음 나올 수 있는 term 의 집합 $if\ A=>^*\epsilon,\ \epsilon\in First(A)$

First set of x (terminal) : First(x)={x} First set of α : First(α) i) First(α) = First(x) if α =

 $x\beta$ ii) First(α) = First(A1) U First(A2) U ... U First(An) U First(α) if $\alpha = A_1A_2...A_nx\beta$ and $\epsilon \in A_1A_2...A_nx\beta$

 $\begin{array}{ll} First(A_i) for \ all \ i & iii) \ \epsilon \in First(\alpha), if \ \alpha = A_1 A_2 \dots A_n \ and \ \epsilon \in First(A_i) \ for \ all \ i \\ E \rightarrow TE', \qquad E' \rightarrow + E|\epsilon, \qquad T \rightarrow FT', \qquad T' \rightarrow *T|\epsilon, \qquad F \rightarrow (E)|id \end{array}$

 $First(F) = First(E) \cup First(D) = First(O) \cup First(D) = \{(id) \in First(D) \cup First(D) \cup First(D) \cup First(D) \}$

 $First(T') = First(\bullet T) \cup First(\epsilon) = First(*) \cup First(\epsilon) = \{*, \epsilon\}$

 $First(T) = First(FT') = First(F) = \{(,id)\}$

 $First(E') = First(\underbrace{+}E) \cup First(\underline{\epsilon}) = First(+) \cup First(\epsilon) = \{+, \epsilon\}$

 $First(E) = First(TE') = First(T) = \{(id)\}$

Follow set of a non-terminal A: $Follow(A) = \{x | S = >^* \alpha Ax\beta\}$ derivation 중 A 의 바로 옆에 나올 수 있는 term 의 집합 $\$ \in Follow(S)$

 $First(\beta) - \{\epsilon\} \subseteq Follow(A)$, if there is a production $B \to \alpha A\beta$ $Follow(B) \subseteq Follow(A)$, if there is a production $B \to \alpha A\beta$, where $\epsilon \in First(\beta)$ or, if there is a production $B \to \alpha A$

$$\begin{split} E \rightarrow TE', & E' \rightarrow + E | \epsilon, & T \rightarrow FT', & T' \rightarrow * T | \epsilon, & F \rightarrow (E) | id \\ & First(F) = \{(,id), & First(T') = \{*,\epsilon\}, & First(T) = \{(,id), \\ & First(E') = \{+,\epsilon\}, & First(E) = \{(,id), \\ & F \mid -1, E \mid | i \mid d \\ & F \mid -1, E \mid | i \mid d \\ \end{split}$$

- $Follow(E) = \{\$\} \cup First()) \cup Follow(E') = \{\$,\} \cup Follow(E) = \{\$,\}$
- Follow(E') = Follow(E) = {\$,}} Follow(E) ⊆ Follow(E) ⊆ Follow(E)
- $\bullet \quad Follow(T) = First(E') \{\epsilon\} \cup Follow(E) \cup Follow(T') = \{+,\$,\} \} \cup Follow(T) = \{+,\$,\} \}$
- $Follow(T') = Follow(T_i) = \{+, \$, \}$
- Follow(F) = First(T') {ε} ∪ Follow(T) = {*,+,\$,}}

 ∪ T→FT'

For each terminal $x \in First(\alpha)$, Fill the table entry [A, x] as α

For each terminal $x \in Fulso(\alpha)$, Fill the table entry [A, x] as α For each terminal $x \in Follow(A)$, Fill the table entry [A, x] as α , if $\epsilon \in First(\alpha)$

		The next input symbol					
		+	*	()	id	\$ (endmarker)
	E			TE'		TE'	
	E'	+E					
Leftmost non-terminal	T			FT'		FT'	
non-terminal	T'		* T				
	F			(<i>E</i>)		id	
				The next	input syn	nbol	
		+	*	()	id	\$ (endmarker
	E			TE'		TE'	
	E'	+E			ϵ		€
Leftmost non-terminal	T			FT'		FT'	
ion-terminai	T'	ϵ	* T		ϵ		ϵ
	F			(E)		id	

Bottom-up Parsing

LR parsing L: Left-to-Right scan of input R: rightmost derivation

1) Left factoring X 2) Left-recursive elimination X 3) unambiguous O bool BUParsingWithBacktracking(string a){

 $\mathit{SStr} = \{\beta | \beta \textrm{ is a substring of } \alpha \textrm{ and } \beta \textrm{ can be reduced by a non-terminal} \}$

(there is a production $X \to \beta_i$)

 $for \ each \ \beta_i \in SStr$

replace β_i by its corresponding non – terminal and store the result as α' if $(\alpha' == S)|(BUParsingWithBacktracking(\alpha') == true)$, return true;
nd OCLUTCIVE

return false;

if BUParsingWithBacktracking(inputString) == true, accept

 $S \to dAc|cAe|cAd, \ A \to a$

Check BUParsingWithBacktracking(cad)

- $SStr = \{a\}$ (there is a production $A \rightarrow a$)
- $\alpha' = cAd$ (replace a in cad by A)
- Check BUParsingWithBacktracking(cAd)
 - $SStr = \{cAd\}$ (there is a production $S \rightarrow cAd$)
 - α' = S (replace cAd in cAd by S)
 - Accept!!