

Phase leg Trench + Field Stop IGBT® Power Module

0/VBUS

Application

- Welding converters
- Switched Mode Power Supplies
- Uninterruptible Power Supplies
- Motor control

Features

- Trench + Field Stop IGBT® Technology
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 20 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - Avalanche energy rated
 - RBSOA and SCSOA rated
- Kelvin emitter for easy drive
- Very low stray inductance
 - Symmetrical design
 - M5 power connectors
- High level of integration

Benefits

- Stable temperature behavior
- Very rugged
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive T_C of V_{CEsat}
- Low profile
- RoHS Compliant

Absolute maximum ratings

VBUS

E1

_ E2

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		600	V
т	Continuous Collector Current	$T_C = 25^{\circ}C$	700 *	
I_{C}	Continuous Collector Current	$T_C = 80^{\circ}C$	600 *	Α
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	800	
V_{GE}	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25^{\circ}C$	2300	W
RBSOA	Reverse Bias Safe Operating Area	$T_j = 150$ °C	1200A @ 550V	

OUT

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

^{*} Specification of IGBT device but output current must be limited to 500A to not exceed a delta of temperature greater than 100°C for the connectors.

All ratings @ $T_j = 25^{\circ}C$ unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V, V_{CE} = 600V$				750	μA
V	Collector Emitter Saturation Voltage	$V_{GE} = 15V$	$T_j = 25^{\circ}C$		1.4	1.8	V
$V_{CE(sat)}$		$I_{\rm C} = 600$ A	$T_j = 150^{\circ}C$		1.5		v
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 2mA$		5.0	5.8	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V$, $V_{CE} = 0V$				800	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V$ $V_{CE} = 25V$			49		nF
C_{oes}	Output Capacitance				3.1		
C_{res}	Reverse Transfer Capacitance	f = 1MHz			1.5		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching	ng (25°C)		130		ns
T_{r}	Rise Time	$V_{GE} = \pm 15V$			55		
$T_{d(off)} \\$	Turn-off Delay Time	$V_{Bus} = 300V$ $I_{C} = 600A$			250		
T_{f}	Fall Time	$R_G = 1\Omega$			60		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (150°C) $V_{GE} = \pm 15V$ $V_{Bus} = 300V$ $I_{C} = 600A$ $R_{G} = 1\Omega$			145		ns
T_{r}	Rise Time				60		
$T_{d(off)}$	Turn-off Delay Time				320		
T_{f}	Fall Time				80		
Е	Turn on Energy	$V_{GE} = \pm 15V$	$T_j = 25^{\circ}C$		3		mI
Eon			$T_j = 150^{\circ}C$		5.5		mJ
E	Turn off Energy	$I_{\rm C} = 600 {\rm A}$	$T_j = 25^{\circ}C$		17		mI
$E_{ m off}$	Turn off Energy	$R_{G} = 1\Omega$ $T_{j} = 150^{\circ}C$		21		mJ	

Reverse diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			600			V
I_{RM}	Maximum Reverse Leakage Current	V _R =600V	$T_i = 25^{\circ}C$ $T_i = 150^{\circ}C$			350 550	μΑ
I_{F}	DC Forward Current		$Tc = 80^{\circ}C$		600		A
V_{F}	Diode Forward Voltage	$I_F = 600A$ $V_{GE} = 0V$	$T_i = 25^{\circ}C$		1.5	1.9	V
V _F			$T_i = 150$ °C		1.4		V
+	Reverse Recovery Time		$T_j = 25^{\circ}C$		120		ns
t _{rr}			$T_j = 150$ °C		210		
	Q_{rr} Reverse Recovery Charge $I_F = 600A$ $V_R = 300V$ $di/dt = 5000A/\mu s$	$T_j = 25^{\circ}C$		27			
Qrr			$T_j = 150$ °C		57		μC
E	Reverse Recovery Energy	·	$T_j = 25^{\circ}C$		6.9		mJ
$E_{\rm r}$		$T_j = 150$ °C			14.1		1113

Thermal and package characteristics

Symbol	Characteristic			Min	Typ	Max	Unit
R_{thJC}	Junction to Case Thermal Resistance		IGBT			0.065	°C/W
KthJC			Diode			0.11	C/ VV
V_{ISOL}	RMS Isolation Voltage, any terminal to case t = 1 min, I isol<1mA, 50/60Hz						V
T_{J}	Operating junction temperature range	perating junction temperature range				175	
T_{STG}	Storage Temperature Range			-40		125	°C
$T_{\rm C}$	Operating Case Temperature					100	
Torque	Mounting forgue	To heatsink	M6	3		5	N.m
		For terminals	M5	2		3.5	11.111
Wt	Package Weight					280	g

SP6 Package outline (dimensions in mm)

See application note APT0601 - Mounting Instructions for SP6 Power Modules on www.microsemi.com

Typical Performance Curve

Microsemi reserves the right to change, without notice, the specifications and information contained herein