

On the Brauer group of Enriques surfaces

Arnaud BEAUVILLE

1. Introduction

Let S be a complex Enriques surface, and $\pi : X \rightarrow S$ its 2-to-1 cover by a K3 surface. Poincaré duality provides an isomorphism $H^3(S, \mathbb{Z}) \cong H_1(S, \mathbb{Z}) = \mathbb{Z}/2$, so that there is a unique nontrivial element b_S in the Brauer group $Br(S)$. What is the pull-back of this element in $Br(X)$? Is it nonzero?

The answer to the first question is easy in terms of the canonical isomorphism $Br(X) \xrightarrow{\sim} \text{Hom}(T_X, \mathbb{Q}/\mathbb{Z})$ (see § 2): $\pi^* b_S$ corresponds to the linear form $\tau \mapsto (\beta \cdot \pi_* \tau)$, where β is any element of $H^2(S, \mathbb{Z}/2)$ which does not come from $H^2(S, \mathbb{Z})$. The second question turns out to be more subtle: the answer depends on the surface. We will characterize the surfaces S for which $\pi^* b_S = 0$ (Corollary 5.7), and show that they form a countable union of hypersurfaces in the moduli space of Enriques surfaces (Corollary 6.5).

Part of our results hold over any algebraically closed field, and also in a more general set-up (see Proposition 4.1 below); for the last part, however, we need in a crucial way Horikawa's description of the moduli space by transcendental methods.

The question considered here is mentioned in [H-S], Cor. 2.8. I am indebted to J.-L. Colliot-Thélène for explaining it to me, and for very useful discussions and comments. I am grateful to J. Lannes for providing the topological proof of Lemma 5.4.

2. The Brauer group of a surface

Let S be a smooth projective variety over a field; we define the Brauer group $Br(S)$ as the étale cohomology group $H_{\text{ét}}^2(S, \mathbb{G}_m)$. This definition coincides with that of Grothendieck [G] by a result of Gabber, which we will not need here.

In this section we assume that S is a complex surface; we recall the description of $Br(S)$ in that case – this is classical but not so easy to find in the literature. The Kummer exact sequence

$$0 \rightarrow \mathbb{Z}/n \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_m \rightarrow 0$$

gives rise to an exact sequence

$$0 \rightarrow \text{Pic}(S) \otimes \mathbb{Z}/n \longrightarrow H^2(S, \mathbb{Z}/n) \xrightarrow{p} Br(S)[n] \rightarrow 0 \quad (2.a)$$

(we denote by $M[n]$ the kernel of the multiplication by n in a \mathbb{Z} -module M).

On the other hand, the cohomology exact sequence associated to
 $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}/n \rightarrow 0$ gives:

$$0 \rightarrow H^2(S, \mathbb{Z}) \otimes \mathbb{Z}/n \longrightarrow H^2(S, \mathbb{Z}/n) \longrightarrow H^3(S, \mathbb{Z})[n] \rightarrow 0 \quad (2.b)$$

Comparing (2.a) and (2.b) we get an exact sequence

$$0 \rightarrow \text{Pic}(S) \otimes \mathbb{Z}/n \longrightarrow H^2(S, \mathbb{Z}) \otimes \mathbb{Z}/n \longrightarrow \text{Br}(S)[n] \longrightarrow H^3(S, \mathbb{Z})[n] \rightarrow 0 . \quad (2.c)$$

Let $H^2(S, \mathbb{Z})_{\text{tf}}$ be the quotient of $H^2(S, \mathbb{Z})$ by its torsion subgroup; the cup-product induces a perfect pairing on $H^2(S, \mathbb{Z})_{\text{tf}}$. We denote by $T_S \subset H^2(S, \mathbb{Z})_{\text{tf}}$ the *transcendental lattice*, that is, the orthogonal of the image of $\text{Pic}(S)$. We have an exact sequence

$$\text{Pic}(S) \xrightarrow{c_1} H^2(S, \mathbb{Z}) \xrightarrow{u} T_S^* \rightarrow 0$$

where u associates to $\alpha \in H^2(S, \mathbb{Z})$ the cup-product with α . Taking tensor product with \mathbb{Z}/n and comparing with (2.c), we get an exact sequence

$$0 \rightarrow \text{Hom}(T_S, \mathbb{Z}/n) \longrightarrow \text{Br}(S)[n] \longrightarrow H^3(S, \mathbb{Z})[n] \rightarrow 0 ; \quad (2.d)$$

or, passing to the direct limit over n ,

$$0 \rightarrow \text{Hom}(T_S, \mathbb{Q}/\mathbb{Z}) \longrightarrow \text{Br}(S) \longrightarrow \text{Tors } H^3(S, \mathbb{Z}) \rightarrow 0 . \quad (2.e)$$

3. Topology of Enriques surfaces

(3.1) Let S be an Enriques surface (over \mathbb{C}). We first recall some elementary facts on the topology of S . A general reference is [BHPV], ch. VIII.

The torsion subgroup of $H^2(S, \mathbb{Z})$ is isomorphic to $\mathbb{Z}/2$; its nonzero element is the canonical class K_S . Let k_S denote the image of K_S in $H^2(S, \mathbb{Z}/2)$. The universal coefficient theorem together with Poincaré duality gives an exact sequence

$$0 \rightarrow \mathbb{Z}/2 \xrightarrow{k_S} H^2(S, \mathbb{Z}/2) \xrightarrow{v_S} \text{Hom}(H^2(S, \mathbb{Z}), \mathbb{Z}/2) \rightarrow 0 \quad (3.a)$$

where v_S is deduced from the cup-product.

(3.2) The linear form $\alpha \mapsto (k_S \cdot \alpha)$ on $H^2(S, \mathbb{Z}/2)$ vanishes on the image of $H^2(S, \mathbb{Z})$, hence coincides with the map $H^2(S, \mathbb{Z}/2) \rightarrow H^3(S, \mathbb{Z}) = \mathbb{Z}/2$ from the exact

sequence (2.b). Note that k_S is the second Stiefel-Whitney class $w_2(S)$; in particular, we have $(k_S \cdot \alpha) = \alpha^2$ for all $\alpha \in H^2(S, \mathbb{Z}/2)$ (Wu formula, see [M-S]).

(3.3) The map $c_1 : \text{Pic}(S) \rightarrow H^2(S, \mathbb{Z})$ is an isomorphism, hence (2.e) provides an isomorphism $\text{Br}(S) \xrightarrow{\sim} \text{Tors } H^3(S, \mathbb{Z}) \cong \mathbb{Z}/2$. We will denote by b_S the nonzero element of $\text{Br}(S)$.

Let $\pi : X \rightarrow S$ be the 2-to-1 cover of S by a K3 surface. The aim of this note is to study the pull-back $\pi^* b_S$ in $\text{Br}(X)$.

Proposition 3.4. — *The class $\pi^* b_S$ is represented, through the isomorphism $\text{Br}(X) \xrightarrow{\sim} \text{Hom}(T_X, \mathbb{Q}/\mathbb{Z})$, by the linear form $\tau \mapsto (\beta \cdot \pi_* \bar{\tau})$, where $\bar{\tau}$ is the image of τ in $H^2(X, \mathbb{Z}/2)$ and β any element of $H^2(S, \mathbb{Z}/2)$ which does not come from $H^2(S, \mathbb{Z})$.*

Proof : Let β be an element of $H^2(S, \mathbb{Z}/2)$ which does not come from $H^2(S, \mathbb{Z})$, so that $p(\beta) = b_S$ (2.a). The pull-back $\pi^* b_S \in \text{Br}(X)$ is represented by $\pi^* \beta \in H^2(X, \mathbb{Z}/2) \cong H^2(X, \mathbb{Z}) \otimes \mathbb{Z}/2$; its image in $\text{Hom}(T_X, \mathbb{Z}/2)$ is the linear form $\tau \mapsto (\pi^* \beta \cdot \bar{\tau})$. Since $(\pi^* \beta \cdot \bar{\tau}) = (\beta \cdot \pi_* \bar{\tau})$, the Proposition follows. ■

Part (i) of the following Proposition shows that the class $\pi^* \beta \in H^2(X, \mathbb{Z}/2)$ which appears above is nonzero. This does *not* say that $\pi^* b_S$ is nonzero, as $\pi^* \beta$ could come from a class in $\text{Pic}(X)$ — see § 6.

Proposition 3.5. — (i) *The kernel of $\pi^* : H^2(S, \mathbb{Z}/2) \rightarrow H^2(X, \mathbb{Z}/2)$ is $\{0, k_S\}$.*

(ii) *The Gysin map $\pi_* : H^2(X, \mathbb{Z}) \rightarrow H^2(S, \mathbb{Z})$ is surjective.*

Proof : To prove (i) we use the Hochschild-Serre spectral sequence :

$$E_2^{p,q} = H^p(\mathbb{Z}/2, H^q(X, \mathbb{Z}/2)) \Rightarrow H^{p+q}(S, \mathbb{Z}/2).$$

We have $E_2^{1,1} = 0$, and $E_\infty^{2,0} = E_2^{2,0} = H^2(\mathbb{Z}/2, \mathbb{Z}/2) = \mathbb{Z}/2$. Thus the kernel of $\pi^* : H^2(S, \mathbb{Z}/2) \rightarrow H^2(X, \mathbb{Z}/2)$ is isomorphic to $\mathbb{Z}/2$. Since it contains k_S , it is equal to $\{0, k_S\}$.

Let us prove (ii). Because of the formula $\pi_* \pi^* \alpha = 2\alpha$, the cokernel of $\pi_* : H^2(X, \mathbb{Z}) \rightarrow H^2(S, \mathbb{Z})$ is a $(\mathbb{Z}/2)$ -vector space; therefore it suffices to prove that the transpose map

$${}^t \pi_* : \text{Hom}(H^2(S, \mathbb{Z}), \mathbb{Z}/2) \longrightarrow \text{Hom}(H^2(X, \mathbb{Z}), \mathbb{Z}/2)$$

is injective. This is implied by the commutative diagram

$$\begin{array}{ccc} H^2(S, \mathbb{Z}/2) & \xrightarrow{v_S} & \text{Hom}(H^2(S, \mathbb{Z}), \mathbb{Z}/2) \\ \downarrow \pi^* & & \downarrow {}^t \pi_* \\ H^2(X, \mathbb{Z}/2) & \xrightarrow[v_X]{\sim} & \text{Hom}(H^2(X, \mathbb{Z}), \mathbb{Z}/2) \end{array}$$

plus the fact that $\text{Ker } \pi^* = \text{Ker } v_S = \{0, k_S\}$ (by (i) and (3.a)). ■

4. Brauer groups and cyclic coverings

Proposition 4.1. – *Let $\pi : X \rightarrow S$ be an étale, cyclic covering of smooth projective varieties over an algebraically closed field k . Let σ be a generator of the Galois group G of π , and let $\text{Nm} : \text{Pic}(X) \rightarrow \text{Pic}(S)$ be the norm homomorphism. The kernel of $\pi^* : \text{Br}(S) \rightarrow \text{Br}(X)$ is canonically isomorphic to $\text{Ker } \text{Nm} / (1 - \sigma^*)(\text{Pic}(X))$.*

Proof: We consider the Hochschild-Serre spectral sequence

$$E_2^{p,q} = H^p(G, H^q(X, \mathbb{G}_m)) \Rightarrow H^{p+q}(S, \mathbb{G}_m).$$

Since $E_2^{2,0} = H^2(G, k^*) = 0$, the kernel of $\pi^* : \text{Br}(S) \rightarrow \text{Br}(X)$ is identified with $E_\infty^{1,1} = \text{Ker}(d_2 : E_2^{1,1} \rightarrow E_2^{3,0})$. We have $E_2^{3,0} = H^3(G, k^*)$; by periodicity of the cohomology of G , this group is canonically isomorphic to $H^1(G, k^*) = \text{Hom}(G, k^*)$, the character group of G , which we denote by \widehat{G} . So we view d_2 as a map from $H^1(G, \text{Pic}(X))$ to \widehat{G} .

Let \mathbf{S} be the endomorphism $L \mapsto \bigotimes_{g \in G} g^* L$ of $\text{Pic}(X)$; recall that $H^1(G, \text{Pic}(X))$ is isomorphic to $\text{Ker } \mathbf{S} / \text{Im}(1 - \sigma^*)$. We have $\pi^* \text{Nm}(L) = \mathbf{S}(L)$ for $L \in \text{Pic}(X)$, hence Nm maps $\text{Ker } \mathbf{S}$ into $\text{Ker } \pi^* \subset \text{Pic}(S)$. Now recall that $\text{Ker } \pi^*$ is canonically isomorphic to \widehat{G} : to $\chi \in \widehat{G}$ corresponds the subsheaf L_χ of $\pi_* \mathcal{O}_X$ where G acts through the character χ . Since $\text{Nm} \circ (1 - \sigma^*) = 0$, the norm induces a homomorphism $H^1(G, \text{Pic}(X)) \rightarrow \text{Ker } \pi^* \cong \widehat{G}$. The Proposition will follow from:

Lemma 4.2. – *The map $d_2 : H^1(G, \text{Pic}(X)) \rightarrow \widehat{G}$ coincides with the homomorphism induced by the norm.*

Proof of the lemma: We apply the formalism of [S], Proposition 1.1, where a very close situation is considered. This Proposition, together with property (1) which follows it, tells us that d_2 is given by cup-product with the extension class in $\text{Ext}_G^2(\text{Pic}(X), k^*)$ of the exact sequence of G -modules

$$1 \rightarrow k^* \longrightarrow R_X^* \rightarrow \text{Div}(X) \rightarrow \text{Pic}(X) \rightarrow 0,$$

where R_X is the field of rational functions on X . This means that d_2 is the composition

$$H^1(G, \text{Pic}(X)) \xrightarrow{\partial} H^2(G, R_X^*/k^*) \xrightarrow{\partial'} H^3(G, k^*)$$

where ∂ and ∂' are the coboundary maps associated to the short exact sequences

$$0 \rightarrow R_X^*/k^* \rightarrow \text{Div}(X) \rightarrow \text{Pic}(X) \rightarrow 0$$

and

$$0 \rightarrow k^* \rightarrow R_X^* \rightarrow R_X^*/k^* \rightarrow 0.$$

Let $\lambda \in H^1(G, \text{Pic}(X))$, represented by $L \in \text{Pic}(X)$ with $\bigotimes_{g \in G} g^*L \cong \mathcal{O}_X$. Let $D \in \text{Div}(X)$ such that $L = \mathcal{O}_X(D)$. Then $\sum_g g^*D$ is the divisor of a rational function $\psi \in R_X^*$, whose class in R_X^*/k^* is well-defined. This class is invariant under G , and defines the element $\partial(\lambda) \in H^2(G, R_X^*/k^*)$. Since $\text{div } \psi$ is invariant under G , there exists a character $\chi \in \widehat{G}$ such that $g^*\psi = \chi(g)\psi$ for each $g \in G$. Then $d_2^{1,1}(\lambda) = \chi$ viewed as an element of $H^3(G, k^*) = \widehat{G}$.

It remains to prove that $\mathcal{O}_S(\pi_*D) = L_\chi$. Since $\text{div } (\psi) = \pi^*\pi_*D$, multiplication by ψ induces a global isomorphism $u : \pi^*\mathcal{O}_S(\pi_*D) \xrightarrow{\sim} \mathcal{O}_X$. Let $\varphi \in R_X$ be a generator of $\mathcal{O}_X(D)$ on an open G -invariant subset U of X . Then $\text{Nm}(\varphi)$ is a generator of $\mathcal{O}_S(\pi_*D)$ on $\pi(U)$, and $\pi^*\text{Nm}(\varphi)$ is a generator of $\pi^*\mathcal{O}_S(\pi_*D)$ on U ; the function $h := \psi \pi^*\text{Nm}(\varphi)$ on U satisfies $g^*h = \chi(g)h$ for all $g \in G$. This proves that the homomorphism $u^\flat : \mathcal{O}_S(\pi_*D) \rightarrow \pi_*\mathcal{O}_X$ deduced from u maps $\mathcal{O}_S(\pi_*D)$ onto the subsheaf L_χ of $\pi_*\mathcal{O}_X$, hence our assertion. ■

We will need a complement of the Proposition in the complex case:

Corollary 4.3. – Assume $k = \mathbb{C}$, and $H^1(X, \mathcal{O}_X) = H^2(S, \mathcal{O}_S) = 0$. The following conditions are equivalent:

- (i) The map $\pi^* : \text{Br}(S) \rightarrow \text{Br}(X)$ is injective;
- (ii) Every class $\lambda = c_1(L) \in H^2(X, \mathbb{Z})$, with $L \in \text{Pic}(X)$ and $\pi_*\lambda = 0$, belongs to $(1 - \sigma^*)(H^2(X, \mathbb{Z}))$.

Observe that the hypotheses of the Corollary are satisfied when S is a complex Enriques surfaces and $\pi : X \rightarrow S$ its universal cover.

Proof : By Proposition 4.1 (i) is equivalent to $[L] = 0$ in $H^1(G, \text{Pic}(X))$ for every $L \in \text{Pic}(X)$ with $\text{Nm}(L) = \mathcal{O}_S$, while (ii) means $c_1(L) = 0$ in $H^1(G, H^2(X, \mathbb{Z}))$ for every such L . Therefore it suffices to prove that the map

$$H^1(c_1) : H^1(G, \text{Pic}(X)) \rightarrow H^1(G, H^2(X, \mathbb{Z}))$$

is injective.

Since $H^1(X, \mathcal{O}_X) = 0$ we have an exact sequence

$$0 \rightarrow \text{Pic}(X) \xrightarrow{c_1} H^2(X, \mathbb{Z}) \longrightarrow Q \rightarrow 0 \quad \text{with } Q \subset H^2(X, \mathcal{O}_X).$$

Since $H^2(S, \mathcal{O}_S) = 0$, there is no nonzero invariant vector in $H^2(X, \mathcal{O}_X)$, hence in Q . Then the associated long exact sequence implies that $H^1(c_1)$ is injective. ■

5. More topology

(5.1) As in § 3, we denote by S a complex Enriques surface and by $\pi : X \rightarrow S$ its universal cover. Thus X is a K3 surface, with a fixed-point free involution σ such

that $\pi \circ \sigma = \pi$. We will need some more precise results on the topology of the surfaces X and S . We refer again to [BHPV], ch. VIII.

Let E be the lattice $(-E_8) \oplus H$, where H is the rank 2 hyperbolic lattice. Let $H^2(S, \mathbb{Z})_{\text{tf}}$ be the quotient of $H^2(S, \mathbb{Z})$ by its torsion subgroup $\{0, K_S\}$. We have isomorphisms

$$H^2(S, \mathbb{Z})_{\text{tf}} \cong E \quad H^2(X, \mathbb{Z}) \cong E \oplus E \oplus H$$

such that $\pi^* : H^2(S, \mathbb{Z})_{\text{tf}} \rightarrow H^2(X, \mathbb{Z})$ is identified with the diagonal embedding $\delta : E \hookrightarrow E \oplus E$, and σ^* is identified with the involution

$$\rho : (\alpha, \alpha', \beta) \mapsto (\alpha', \alpha, -\beta) \quad \text{of } E \oplus E \oplus H .$$

(5.2) We consider now the cohomology with values in $\mathbb{Z}/2$. For a lattice M , we will write $M_2 := M/2M$. The scalar product of M induces a product $M_2 \otimes M_2 \rightarrow \mathbb{Z}/2$; if moreover M is *even*, there is a natural quadratic form $q : M_2 \rightarrow \mathbb{Z}/2$ associated with that product, defined by $q(m) = \frac{1}{2}\tilde{m}^2$, where $\tilde{m} \in M$ is any lift of $m \in M_2$. In particular, H_2 contains a unique element ε with $q(\varepsilon) = 1$: it is the class of $e + f$ where (e, f) is a hyperbolic basis of H .

Using the previous isomorphism we identify $H^2(X, \mathbb{Z}/2)$ with $E_2 \oplus E_2 \oplus H_2$.

Proposition 5.3. — *The image of $\pi^* : H^2(S, \mathbb{Z}/2) \rightarrow H^2(X, \mathbb{Z}/2)$ is $\delta(E_2) \oplus (\mathbb{Z}/2)\varepsilon$.*

Proof : This image is invariant under σ^* , hence is contained in $\delta(E_2) \oplus H_2$; by Proposition 3.6 (i) it is 11-dimensional, hence a hyperplane in $\delta(E_2) \oplus H_2$, containing $\delta(E_2)$ (which is spanned by the classes coming from $H^2(S, \mathbb{Z})$). So $\pi^*H^2(S, \mathbb{Z}/2)$ is spanned by $\delta(E_2)$ and a nonzero element of H_2 ; it suffices to prove that this element is ε . Since the elements of $H^2(S, \mathbb{Z}/2)$ which do not come from $H^2(S, \mathbb{Z})$ have square 1 (3.2), this is a consequence of the following lemma. ■

Lemma 5.4. — *For every $\alpha \in H^2(S, \mathbb{Z}/2)$, $q(\pi^*\alpha) = \alpha^2$.*

Proof : This proof has been shown to me by J. Lannes. The key ingredient is the *Pontryagin square*, a cohomological operation

$$\mathcal{P} : H^{2m}(M, \mathbb{Z}/2) \longrightarrow H^{4m}(M, \mathbb{Z}/4)$$

defined for any reasonable topological space M and satisfying a number of interesting properties (see [M-T], ch. 2, exerc. 1). We will state only those we need in the case of interest for us, namely $m = 2$ and M is a compact oriented 4-manifold. We identify $H^4(M, \mathbb{Z}/4)$ with $\mathbb{Z}/4$; then $\mathcal{P} : H^2(M, \mathbb{Z}) \rightarrow \mathbb{Z}/4$ satisfies:

- a) For $\alpha \in H^2(M, \mathbb{Z}/2)$, the class of $\mathcal{P}(\alpha)$ in $\mathbb{Z}/2$ is α^2 ;

b) If $\alpha \in H^2(M, \mathbb{Z}/2)$ comes from $\tilde{\alpha} \in H^2(M, \mathbb{Z})$, then $\mathcal{P}(\alpha) = \tilde{\alpha}^2 \pmod{4}$. In particular, if M is a K3 surface, we have $\mathcal{P}(\alpha) = 2q(\alpha)$ in $\mathbb{Z}/4$.

Coming back to our situation, let $\alpha \in H^2(S, \mathbb{Z}/2)$. We have in $\mathbb{Z}/4$:

$$\begin{aligned}\mathcal{P}(\pi^*\alpha) &= 2\mathcal{P}(\alpha) && \text{by functoriality} \\ &= 2\alpha^2 && \text{by a), and} \\ \mathcal{P}(\pi^*\alpha) &= 2q(\pi^*\alpha) && \text{by b).}\end{aligned}$$

Comparing the two last lines gives the lemma. ■

Corollary 5.5. – *The kernel of $\pi_* : H_2 \rightarrow \{0, k_S\}$ is $\{0, \varepsilon\}$.*

Proof : By Proposition 5.3 ε belongs to $\text{Im } \pi^*$, hence $\pi_* \varepsilon = 0$. It remains to check that π_* is nonzero on $H^1(\mathbb{Z}/2, H^2(X, \mathbb{Z})) \cong H_2$. We know that there is an element $\alpha \in H^2(X, \mathbb{Z})$ with $\pi_* \alpha = K_S$ (Prop. 3.6 (ii)); it belongs to $\text{Ker}(1 + \sigma^*)$, hence defines an element $\bar{\alpha}$ of $H^1(\mathbb{Z}/2, H^2(X, \mathbb{Z}))$ with $\pi_* \bar{\alpha} \neq 0$. ■

Corollary 5.6. – *Let $\lambda \in H^2(X, \mathbb{Z})$. The following conditions are equivalent:*

- (i) $\pi_* \lambda = 0$ and $\lambda \notin (1 - \sigma^*)(H^2(X, \mathbb{Z}))$;
- (ii) $\sigma^* \lambda = -\lambda$ and $\lambda^2 \equiv 2 \pmod{4}$.

Proof : Write $\lambda = (\alpha, \alpha', \beta) \in E \oplus E \oplus H$; let $\bar{\beta}$ be the class of β in H_2 . Both conditions imply $\sigma^* \lambda = -\lambda$, hence $\alpha' = -\alpha$. Since $(\alpha, -\alpha) = (1 - \sigma^*)(\alpha, 0)$ and $2\beta = (1 - \sigma^*)(\beta)$, the conditions of (i) are equivalent to $\pi_* \bar{\beta} = 0$ and $\bar{\beta} \neq 0$, that is, $\bar{\beta} = \varepsilon$ (Corollary 5.5). On the other hand we have $\lambda^2 = 2\alpha^2 + \beta^2 \equiv 2q(\bar{\beta}) \pmod{4}$, hence (ii) is also equivalent to $\bar{\beta} = \varepsilon$. ■

We can thus rephrase Corollary 4.3 in our situation:

Corollary 5.7. – *We have $\pi^* b_S = 0$ if and only if there exists a line bundle L on X with $\sigma^* L = L^{-1}$ and $c_1(L)^2 \equiv 2 \pmod{4}$.* ■

Remark 5.8. – My original proof of (5.3-5) was less direct and less general, but still perhaps of some interest. The key point is to show that on H_2 q takes the value 1 exactly on the nonzero element of $\text{Ker } \pi_*$, or equivalently that an element $\alpha \in H_2$ with $\pi_* \alpha = k_S$ satisfies $q(\alpha) = 0$. Using deformation theory (see (6.1) below), one can assume that α comes from a class in $\text{Pic}(X)$. To conclude I applied the following lemma:

Lemma 5.9. – *Let L be a line bundle on X with $\text{Nm}(L) = K_S$. Then $c_1(L)^2$ is divisible by 4.*

Proof : Consider the rank 2 vector bundle $E = \pi_*(L)$. The norm induces a non-degenerate quadratic form $N : \text{Sym}^2 E \rightarrow K_S$ ([EGA2], 6.5.5). In particular, N induces an isomorphism $E \xrightarrow{\sim} E^* \otimes K_S$, and defines a pairing

$$H^1(S, E) \otimes H^1(S, E) \rightarrow H^2(S, K_S) \cong \mathbb{C}$$

which is alternating and non-degenerate. Thus $h^1(E)$ is even; since $h^0(E) = h^2(E)$ by Serre duality, $\chi(E)$ is even, and so is $\chi(L) = \chi(E)$. By Riemann-Roch this implies that $\frac{1}{2}c_1(L)^2$ is even. ■

6. The vanishing of π^*b_S on the moduli space

(6.1) We briefly recall the theory of the period map for Enriques surfaces, due to Horikawa (see [BHPV], ch. VIII, or [N]). We keep the notations of (5.1). We denote by L the lattice $E \oplus E \oplus H$, and by L^- the (-1) -eigenspace of the involution $\rho : (\alpha, \alpha', \beta) \mapsto (\alpha', \alpha, -\beta)$, that is, the submodule of elements $(\alpha, -\alpha, \beta)$.

A *marking* of the Enriques surface S is an isometry $\varphi : H^2(X, \mathbb{Z}) \rightarrow L$ which conjugates σ^* to ρ . The line $H^{2,0} \subset H^2(X, \mathbb{C})$ is anti-invariant under σ^* , so its image by $\varphi_{\mathbb{C}} : H^2(X, \mathbb{C}) \rightarrow L_{\mathbb{C}}$ lies in $L_{\mathbb{C}}^-$. The corresponding point $[\omega]$ of $\mathbb{P}(L_{\mathbb{C}}^-)$ is the *period* $\varphi(S, \varphi)$. It belongs to the domain $\Omega \subset \mathbb{P}(L_{\mathbb{C}}^-)$ defined by the equations

$$(\omega \cdot \omega) = 0 \quad (\omega \cdot \bar{\omega}) > 0 \quad (\omega \cdot \lambda) \neq 0 \quad \text{for all } \lambda \in L^- \text{ with } \lambda^2 = -2.$$

This is an analytic manifold, which is the moduli space for marked Enriques surfaces. To each class $\lambda \in L^-$ we associate the hypersurface H_{λ} of Ω defined by $(\lambda \cdot \omega) = 0$.

Proposition 6.2. — *We have $\pi^*b_S = 0$ if and only if $\varphi(S, \varphi)$ belongs to one of the hypersurfaces H_{λ} for some vector $\lambda \in L^-$ with $\lambda^2 \equiv 2 \pmod{4}$.*

Proof: The period point $\varphi(S, \varphi)$ belongs to H_{λ} if and only if λ belongs to $c_1(\text{Pic}(X))$; by Corollary 5.7, this is equivalent to $\pi^*b_S = 0$. ■

To get a complete picture we want to know which of the H_{λ} are really needed:

Lemma 6.3. — *Let λ be a primitive element of L^- .*

- (i) *The hypersurface H_{λ} is non-empty if and only if $\lambda^2 < -2$.*
- (ii) *If μ is another primitive element of L^- with $H_{\mu} = H_{\lambda} \neq \emptyset$, then $\mu = \pm\lambda$.*

Proof : Let W be the subset of $L_{\mathbb{C}}^-$ defined by the conditions $\omega^2 = 0$, $\omega \cdot \bar{\omega} > 0$. If we write $\omega = \alpha + i\beta$ with $\alpha, \beta \in L_{\mathbb{R}}^-$, these conditions translate as $\alpha^2 = \beta^2 > 0$, $\alpha \cdot \beta = 0$. Thus $W \cap \lambda^{\perp} \neq \emptyset$ is equivalent to the existence of a positive 2-plane in $L_{\mathbb{R}}^-$ orthogonal to λ . Since L^- has signature $(2, 10)$, this is also equivalent to $\lambda^2 < 0$.

If $W \cap \lambda^{\perp}$ is non-empty, λ^{\perp} is the only hyperplane containing it, and $\mathbb{C}\lambda$ is the orthogonal of λ^{\perp} in L^- . Then λ and $-\lambda$ are the only primitive vectors of L^- contained in $\mathbb{C}\lambda$. In particular λ is determined up to sign by H_{λ} , which proves (ii).

Let us prove (i). We have seen that H_{λ} is empty for $\lambda^2 \geq 0$, and also for $\lambda^2 = -2$ by definition of Ω . Assume $\lambda^2 < -2$ and $H_{\lambda} = \emptyset$; then H_{λ} must be contained in one of the hyperplanes H_{μ} with $\mu^2 = -2$; by (ii) this implies $\lambda = \pm\mu$, a contradiction. ■

(6.4) Let Γ be the group of isometries of L^- . The group Γ acts properly discontinuously on Ω , and the quotient $\mathcal{M} = \Omega/\Gamma$ is a quasi-projective variety. The image in \mathcal{M} of the period $\varphi(S, \varphi)$ does not depend on the choice of φ ; let us denote it by $\varphi(S)$. The map $S \mapsto \varphi(S)$ induces a bijection between isomorphism classes of Enriques surfaces and \mathcal{M} ; the variety \mathcal{M} is a (coarse) moduli space for Enriques surfaces.

Corollary 6.5 .— *The surfaces S for which $\pi^*b_S = 0$ form an infinite, countable union of (non-empty) hypersurfaces in the moduli space \mathcal{M} .*

Proof : Let Λ be the set of primitive elements λ in L^- with $\lambda^2 < -2$ and $\lambda^2 \equiv 2 \pmod{4}$. For $\lambda \in \Lambda$, let \mathcal{H}_λ be the image of H_λ in \mathcal{M} ; the argument of [BHPV], ch. VIII, Cor. 20.7 shows that \mathcal{H}_λ is an algebraic hypersurface in \mathcal{M} . By Proposition 6.2 and Lemma 6.3 the surfaces S with $\pi^*(b_S) = 0$ form the subset $\bigcup_{\lambda \in \Lambda} \mathcal{H}_\lambda$. By Lemma 6.3 (ii) we have $\mathcal{H}_\lambda = \mathcal{H}_\mu$ if and only if $\mu = \pm g\lambda$ for some element g of Γ . This implies $\lambda^2 = \mu^2$; but λ^2 can be any number of the form $-2k$ with k odd > 1 (take for instance $\lambda = e - kf$, where (e, f) is a hyperbolic basis of H), so there are infinitely many distinct hypersurfaces among the \mathcal{H}_λ . ■

REFERENCES

- [BHPV] W. BARTH, K. HULEK, C. PETERS, A. VAN DE VEN: *Compact complex surfaces*. 2nd edition. *Ergebnisse der Mathematik und ihrer Grenzgebiete*, **4**. Springer-Verlag, Berlin (2004).
- [EGA2] A. GROTHENDIECK: *Éléments de géométrie algébrique II*. *Publ. Math. IHES* **8** (1961).
- [G] A. GROTHENDIECK: *Le groupe de Brauer I-II*. *Dix Exposés sur la Cohomologie des Schémas*, pp. 46–87; North-Holland, Amsterdam (1968).
- [H-S] D. HARARI, A. SKOROBOGATOV: *Non-abelian descent and the arithmetic of Enriques surfaces*. *Intern. Math. Res. Notices* **52** (2005), 3203–3228.
- [M-S] J. MILNOR, J. STASHEFF: *Characteristic classes*. *Annals of Math. Studies* **76**. Princeton University Press, Princeton (1974).
- [M-T] R. MOSHER, M. TANGORA: *Cohomology operations and applications in homotopy theory*. Harper & Row, New York-London (1968).
- [N] Y. NAMIKAWA: *Periods of Enriques surfaces*. *Math. Ann.* **270** (1985), no. 2, 201–222.

[S] A. SKOROBOGATOV: *On the elementary obstruction to the existence of rational points.* Math. Notes **81** (2007), no. 1, 97–107.

Arnaud BEAUVILLE
Laboratoire J.-A. Dieudonné
UMR 6621 du CNRS
UNIVERSITÉ DE NICE
Parc Valrose
F-06108 NICE Cedex 02