

Velocity of Ecological System Trajectory

A new method for dimension reduction and ecological regime shift detection

Jessica L. Burnett

N.B. Price, A.J. Tyre, C.R. Allen, D.G. Angeler, & D. Twidwell 2019.04.07

Ecosystems are Complex

(and complicated)

- high dimensional
- many (∞ ?) interactions
- non-linear
- non-ergodic (open)
- dynamic
- difficult to model mathematically

The Holy Grail of Ecology

forecasting change in time to prevent or mitigate undesirable consequences

"regime shifts"

Ecological Regime Shifts

what? a persistent change in the structure or functioning of a system

how? loss of negative feedback(s) maintaining the
system

goal? predict in time to prevent

Methods for Detecting Regime Shifts

>70 (!) methods proposed in literature

10 suitable for multivariable data

few explicitly handle noisy data

few handle irregular sampling

Regime Shifts Detection Methods

Rising Variance/Critical Slowing Down

Variance Index (max eigenvalue of covariance matrix)

Principal Coordinates Analysis

Fisher Information

Velocity, v

Toy System

$$egin{aligned} x \ normal(\mu=25,\sigma=5) \ ext{for t} \ > 50 \ \\ x \ normal(\mu=100,\sigma=5) \ ext{for t} \ \geq 50 \end{aligned}$$

Velocity, $\frac{\Delta s}{\Delta t}$

the linear speed of a system's trajectory (e.g., in phase space)

Step 1: Calculate Δs , 'distance travelled'

$$s =$$
system state

$$\Delta s_i = \sqrt{\sum_{j=1}^n (x_{i,j} - x_{i-1,j})^2}$$

Step 2: Calculate *s* , **cumulative** distance travelled

$$\Delta s_i = \sqrt{\sum_{j=1}^n (x_{i,j}-x_{i-1,j})^2}$$

$$s_k = \sum_{i=2}^k \Delta s_i$$

$$2 \le k \le n$$

Step 3: Calculate $oldsymbol{v}$, the linear speed of $oldsymbol{s}$

$$v=rac{\Delta s}{\Delta t}$$

changing means, constant variance

variable — x_1 ···· x_2

change in mean & variance (x₁, x₂)

Potential Limitations of $oldsymbol{v}$

$oldsymbol{v}$ increases with increasing effect size

Potential Limitations of $oldsymbol{v}$

$oldsymbol{v}$ increases with increasing effect size

Empirical System: Paleodiatom

Data published in Spanbauer *et al.* 2014. Prolonged Instability Prior to a Regime Shift. PLoS One

Empirical System: Paleodiatom

Empirical System: Paleodiatom

Smoothing Noisy Data Before Calculating $oldsymbol{v}$

Total Variation Regularized Numerical Differentiation

$oldsymbol{v}$ Identifies Potential Periodicities in Certain Regimes

Impacts of Changes in Data Quality on \boldsymbol{s} and \boldsymbol{v}

Impacts of Changes in Data Quality on \boldsymbol{s} and \boldsymbol{v}

Conclusions

Reduction of high dimensional data

Capable of handling noisy data

Is not sensitive to data quality issues common in ecology

Best when mean > variance

Identifies regime shifts known *a priori*

Next Steps

Numerical identification of change point in $oldsymbol{v}$

Compare to distance-based metrics (feedback?)

Compare to ordination techniques

Predictive capacity

Related Software

R packages (dev versions):

trashbirdecology/distanceTravelled (calculate s and v)

trashbirdecology/regimeDetectionMeasures (calculate multiple regime detection metrics)

trashbirdecology/bbsRDM (application to spatial data)

natbprice/tvdiff (regularized differentiation)