МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Южно-Уральский государственный университет (национальный исследовательский университет)» Высшая школа электроники и компьютерных наук Кафедра системного программирования

Разработка системы для поиска припева в тексте песни

КУРСОВАЯ РАБОТА по дисциплине «Программная инженерия» ${\rm HOYp}\Gamma{\rm Y} - 09.03.04.2023.308\text{-}059.{\rm KP}$

Нормоконтролер, профессор кафедры СП, д.ф-м.н., доцент	Научный руководитель: профессор кафедры СП, д.фм.н., доцент М.Л. Цымблер			
М.Л. Цымблер				
"" 2024 г.				
	Автор работы, студент группы КЭ-303 А.А. Летуновский			
	Работа защищена с оценкой:			
	"" " 2024 r			

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

> «Южно-Уральский государственный университет (национальный исследовательский университет)» Высшая школа электроники и компьютерных наук Кафедра системного программирования

УТ	ВЕРЖДА	АЮ
Зав	. кафедр	ой СП
		Л.Б. Соколинский
"	"	2024

ЗАДАНИЕ

на выполнение выпускной курсовой работы

студенту группы КЭ-303 Летуновскому Арсению Александровичу, обучающемуся по направлению 09.03.04 «Программная инженерия»

- **1. Тема работы** (утверждена приказом ректора от N_2) Разработка системы для поиска припева в тексте песни
- 2. Срок сдачи студентом законченной работы: 31.05.2024 г.
- 3. Исходные данные к работе
 - 3.1. Imani, S., Madrid, F., Ding, W. et al. Introducing time series snippets: a new primitive for summarizing long time series // Data Min Knowl Disc 34, 2020. –P. 1713–1743.
 - 3.2. Watanabe K., Goto M. A Chorus-Section Detection Method for Lyrics Text. // Proceedings of the 21th International Society for Music Information Retrieval Conference, ISMIR 2020, Montreal, Canada, October 11–16, 2020. –P 351–359
- 4. Перечень подлежащих разработке вопросов
 - 4.1. Выполнить анализ предметной области и провести обзор существующих решений.
 - 4.2. Выполнить разработку алгоритма поиска припева в тексте песни на основе поиска типичных подпоследовательностей временного ряда.
 - 4.3. Разработать приложение для использования алгоритма поиска припева в тексте пес-
 - 4.4. Разработать тестовые наборы и провести тестирование разработанного приложения.

	4.5.	Оценить	точность	получ	ненных	результато	в относительно	истинной	разметки
5.	Дата	а выдачи	задания:	"	"		2024 г.		

Научный руководитель

М.Л. Цымблер

Задание принял к исполнению

А.А. Летуновский

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ	5
1.1. Описание предметной области	5
1.2. Анализ аналогичных проектов	5
2. ПРОЕКТИРОВАНИЕ	8
2.1. Требования к системе	8
2.2. Варианты использования системы	8
2.3. Архитектура приложения	8
2.4. Графический интерфейс	8
3. РЕАЛИЗАЦИЯ	9
3.1. Программные средства реализации	9
3.2. Реализация алгоритма поиска припева песни	9
3.3. Реализация пользовательского интерфейса	9
4. ТЕСТИРОВАНИЕ	10
4.1. Функциональное тестирование	10
4.2. Оценка точности полученных результатов относительно	
истинной разметки	10
ЗАКЛЮЧЕНИЕ	11
ПІЛТЕВАТУВА	12

введение

Актуальность темы

Описание причин создания данного проекта.

Цель и задачи исследования

Описание цели курсовой работы. Описание задач, которые необходимо решить, для достижения поставленной цели.

Структура и объем работы

Из чего состоит работа.

Содержание работы

Подробное описание каждой из глав курсовой работы.

1. АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ

1.1. Описание предметной области

Обзор временных рядов, сниппетов временных рядов, а также алгоритмов поиска данных сниппетов во временном ряде.

1.2. Анализ аналогичных проектов

Наиболее близким аналогом является работа японских исследователей [9], в которой для выделения из текста песни куплетов и припевов используется модель, основанная на обученной нейронной сети. Данная нейронная сеть анализирует девять матриц самоподобия, составленных на основе текста песни.

После того как были созданы матрицы самоподобия, высчитываются векторы признаков с помощью сверточной нейронной сети. Данные векторы используются двунаправленными сетями с длительной кратковременной памятью для разметки текста песни.

Анализ текста используется не только для выделения припевов и куплетов, но также для распознавания жанра песни, как в работе австрийских исследователей [4]. В данной работе предложено создание набора десяти различных признаков на основе текста песни и последующий их анализ с помощью алгоритмов классификации, таких как: случайный лес, метод опорных векторов и нейронной сети с прямой связью.

Еще одним способом выделения куплетов и припевов является анализ звуковых дорожек песен. Данный способ является более исследованным, чем анализ текста.

Например, модель 'DeepChorus' [3], которая использует сочетание многомасштабной сверточной сети для получения предварительной разметки и сверточной нейронной сети с механизмом внутреннего внимания для обработки признаков в кривые вероятности, представляющие присутствие припева. Чтобы получить окончательные результаты, применяется адаптивный порог для бинаризации исходной кривой.

Другая модель 'LA-Chorus' [1] основана на увеличении скрытых функций и архитектуре ResNetFPN. Во-первых, предлагается метод неявного увеличения данных припева в скрытом пространстве на этапе обу-

чения. Во-вторых, применяется нейронная сеть (FPN) для генерации дополнительных признаков от низкой размерности к высокой размерности, достигая многомасштабной парадигмы обучения.

Модель 'ММСR' (Multi-Modal Chorus Recognition) [7] анализирует одновременно и текс песни, и аудиосигнал. Каждой строке текста (S_i) сопоставлена часть аудиосигнала (A_i) . Информация о A_i представляется в виде мел-кепстральные коэффициентов (MFCC). Информация о S_i получается с помощью предварительно обученной языковой модели и графовой нейронной сети (Graph Attention Networks). После получения конечной характеристики F_i , основанной на соответствующей информации о тексе и аудиосигнале, используется классификатор, чтобы предсказать, принадлежит ли (A_i, S_i) припеву.

В следующей работе [8] так же используется сверточная нейронная сеть. На вход данной нейронной сети поступает мел-спектрограмма песни. После обработки данных нейронной сетью необходимо так же как и в модели 'DeepChorus' [3] происходит бинаризация полученных результатов. Конечные данные показывают, к какому разделу песни относится каждый из отрывков.

Ещё один алгоритм выделения припева песни [2] основан на способе вероятностного латентного семантического анализа, зависящего от октавы. Данный способ так же как и предыдущий [8] использует для анализа спектрограмму песни и на ее основе составляет матрицы сходства для выделения из них фрагментов припевов.

Представить структуру песни можно и с помощью цветовой карты [10]. Чтобы построить её, для каждого аудиокадра вычисляются векторы трех признаков: интенсивность, верхняя и нижняя полоса в частотной области, которые сопоставляются с цветовым пространством RGB. Далее используются мел-кепстральные коэффициенты (МFCC) и алгоритм адоптивной кластеризации сегментации цветного изображения для выделения частей с одинаковым распределением цветов.

Все вышеописанные методы разделяли только припевы и куплеты, тогда как в работе исследователей из Технологического института Джорджии, США [6] представлена модель способная классифицировать фраг-

менты песен по семи разным категориям (вступление, куплет, припев, бридж, концовка, инструментальный проигрыш и тишина). Данная модель основана на использовании спектрально-временного трансформера под названием 'SpecTNT'.

Выделение одних частей звукового сигнала от других используется не только для разделения песни на припевы и куплеты, но и применяется в других сферах деятельности человека. Так, например, основанный на энтропии подход [5] помогает выделять звуки, издаваемые рыбами, среди всех остальных антропогенных шумов. Благодаря этому имеется возможность точно оценить популяцию исследуемых рыб.

2. ПРОЕКТИРОВАНИЕ

2.1. Требования к системе

Функциональные требования.

Функциональные требования определяют действия, которые должна выполнять программа.

Нефункциональные требования.

Нефункциональные действия определяют свойства программы (удобство использования, безопасность и т.д.).

2.2. Варианты использования системы

Описать, как пользователь может работать с приложением.

2.3. Архитектура приложения

Определить из каких модулей будет состоять приложение, а также описать функционал каждого из них.

2.4. Графический интерфейс

Описать, как будет выглядеть графический интерфейс приложения. Сделать макеты.

3. РЕАЛИЗАЦИЯ

3.1. Программные средства реализации

Описать какие технологии, языки программирования и библиотеки были использованы в процессе создания приложения.

3.2. Реализация алгоритма поиска припева песни

Описать работу каждого модуля, входные и выходные данные, вставить код.

3.3. Реализация пользовательского интерфейса

Описать реализацию интерфейса. Сделать обзор возможностей интерфейса.

4. ТЕСТИРОВАНИЕ

4.1. Функциональное тестирование

Проверка соответствия функциональным требованиям

4.2. Оценка точности полученных результатов относительно истинной разметки

Придумать и описать метрики для оценки полученных результа-тов

ЗАКЛЮЧЕНИЕ

Выводы о проделанной работе.

ЛИТЕРАТУРА

- 1. Du X. Latent feature augmentation for chorus detection. / X. Du, H. Liang, Y. Wan, Y. Lin, K. Chen, et al. // Proceedings of the 23rd International Society for Music Information Retrieval Conference, ISMIR 2022, Bengaluru, India, December 4-8, 2022 / Ed. by P. Rao, H.A. Murthy, A. Srinivasamurthy, et al. 2022. P. 240–247.
- 2. Gao S., Li H. Popular song summarization using chorus section detection from audio signal. // 17th IEEE International Workshop on Multimedia Signal Processing, MMSP 2015, Xiamen, China, October 19-21, 2015. IEEE, 2015. P. 1–6. URL: https://doi.org/10.1109/MMSP.2015.7340798.
- 3. He Q. DEEPCHORUS: A Hybrid Model of Multi-scale Convolution and Self-attention for Chorus Detection. / Q. He, X. Sun, Y. Yu, W. Li. // CoRR. 2022. Vol. abs/2202.06338.
- 4. Mayerl M. Verse versus Chorus: Structure-aware Feature Extraction for Lyrics-based Genre Recognition. / M. Mayerl, S. Brandl, G. Specht, M. Schedl, E. Zangerle. // Proceedings of the 23rd International Society for Music Information Retrieval Conference, ISMIR 2022, Bengaluru, India, December 4-8, 2022 / Ed. by P. Rao, H.A. Murthy, A. Srinivasamurthy, et al. 2022. P. 884–890. URL:

https://archives.ismir.net/ismir2022/paper/000106.pdf.

- 5. Siddagangaiah S. A Complexity-Entropy Based Approach for the Detection of Fish Choruses. / S. Siddagangaiah, C. Chen, W. Hu, N. Pieretti. // Entropy. 2019. Vol. 21. No. 10. P. 977. URL: https://doi.org/10.3390/e21100977.
- 6. Wang J., Hung Y., Smith J.B.L. To catch a chorus, verse, intro, or anything else: Analyzing a song with structural functions. // CoRR. 2022. Vol. abs/2205.14700. 2205.14700.
- 7. Wang J. Multi-Modal Chorus Recognition for Improving Song Search. / J. Wang, Z. Li, B. Gu, T. Zhang, Q. Liu, et al. // CoRR. 2021. Vol. abs/2106.16153. arXiv: 2106.16153.
- 8. Wang J. Supervised Chorus Detection for Popular Music Using Convolutional Neural Network and Multi-task Learning. / J. Wang,

- J.B.L. Smith, J. Chen, X. Song, Y. Wang. // CoRR. 2021. Vol. abs/2103.14253. arXiv: 2103.14253.
- 9. Watanabe K., Goto M. A Chorus-Section Detection Method for Lyrics Text. // Proceedings of the 21th International Society for Music Information Retrieval Conference, ISMIR 2020, Montreal, Canada, October 11-16, 2020 / Ed. by J. Cumming, J.H. Lee, B. McFee, et al. 2020. P. 351–359.
- 10. Yeh C. Popular music representation: chorus detection & emotion recognition. / C. Yeh, W. Tseng, C. Chen, Y. Lin, Y. Tsai, et al. // Multim. Tools Appl. 2014. Vol. 73. No. 3. P. 2103–2128. URL: https://doi.org/10.1007/s11042-013-1687-2.