CS 221: Artificial Intelligence

Lecture 6: Advanced Machine Learning

Sebastian Thrun and Peter Norvig
Slide credit: Mark Pollefeys, Dan Klein, Chris Manning

Outline

- Clustering
 - K-Means
 - EM
 - Spectral Clustering
- Dimensionality Reduction

The unsupervised learning problem

Many data points, no labels

Unsupervised Learning?

Google Street View

Many data points, no labels

- Choose a fixed number of clusters
- Choose cluster centers and point-cluster allocations to minimize error
- can't do this by exhaustive search, because there are too many possible allocations.

- Algorithm
 - fix cluster centers;
 allocate points to closest
 cluster
 - fix allocation; compute best cluster centers
- x could be any set of features for which we can compute a distance (careful about scaling)

Choose k data points to act as cluster centers

Until the cluster centers are unchanged

Allocate each data point to cluster whose center is nearest

Now ensure that every cluster has at least one data point; possible techniques for doing this include . supplying empty clusters with a point chosen at random from points far from their cluster center.

Replace the cluster centers with the mean of the elements in their clusters.

end

Algorithm 16.5: Clustering by K-Means

Results of K-Means Clustering:

K-means clustering using intensity alone and color alone

- Is an approximation to EM
 - Model (hypothesis space): Mixture of N Gaussians
 - Latent variables: Correspondence of data and Gaussians
- We notice:
 - Given the mixture model, it's easy to calculate the correspondence
 - Given the correspondence it's easy to estimate the mixture models

Expectation Maximzation: Idea

Data generated from mixture of Gaussians

 Latent variables: Correspondence between Data Items and Gaussians

Generalized K-Means (EM)

Gaussians

$$p(x) = \frac{1}{\sqrt{2\rho}s} \exp \left[\frac{1}{1 - \frac{(x - m)^2 \ddot{U}}{2s^2 \dot{D}}} \right]$$

$$p(x) = (2\rho)^{-\frac{N}{2}} |S|^{-1} \exp \left[\frac{1}{1 - \frac{1}{2}} (x - m)^T S^{-1} (x - m) \ddot{D} \right]$$

$$0.2$$

$$0.15$$

$$0.05$$

$$0$$

$$0.05$$

ML Fitting Gaussians

$$p(x) = \frac{1}{\sqrt{2\rho s}} \exp \left[-\frac{(x-m)^2 \ddot{U}}{2s^2} \mathring{y} \right]$$

$$p(x) = (2\rho)^{-\frac{N}{2}} |S|^{-1} \exp \left[-\frac{1}{2} (x-m)^T S^{-1} (x-m) \mathring{y} \right]$$

$$m = \frac{1}{M} \mathop{\mathring{a}}_{i}^{a} x_{i}$$

$$\mathring{a} = \frac{1}{M} \mathop{\mathring{a}}_{i}^{a} (x_{i} - m)(x_{i} - m)^{T}$$

Learning a Gaussian Mixture

(with known covariance)

$$E[z_{ij}] = \frac{p(x \mid x_i \mid j)}{e^{p(x \mid x_i \mid j)}} = \frac{p(x \mid x_i \mid j)}{e^{p(x \mid x_i \mid j)^2}} = \frac{e^{\frac{1}{2}(x_i \mid j)^2}}{e^{\frac{1}{2}(x_i \mid j)^2}}$$

M-Step

$$m_{j} - \frac{1}{n_{j}} \overset{M}{\underset{i=1}{\circ}} E[z_{ij}] x_{i}$$
 $n_{j} - \overset{M}{\underset{i=1}{\circ}} E[z_{ij}]$

$$S_{j} - \frac{1}{n_{j}} \overset{M}{\underset{i=1}{\circ}} E[z_{ij}] (x_{i} - m) (x_{i} - m)^{T}$$

Expectation Maximization

- Converges!
- Proof [Neal/Hinton, McLachlan/Krishnan]:
 - E/M step does not decrease data likelihood
 - Converges at local minimum or saddle point
- But subject to local minima

EM Clustering: Results

Practical EM

- Number of Clusters unknown
- Suffers (badly) from local minima
- Algorithm:
 - Start new cluster center if many points "unexplained"
 - Kill cluster center that doesn't contribute
 - (Use AIC/BIC criterion for all this, if you want to be formal)

Spectral Clustering

Spectral Clustering

The Two Spiral Problem

Spectral Clustering: Overview

^{*} Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

Eigenvectors and Blocks

Block matrices have block eigenvectors:

Near-block matrices have near-block eigenvectors: [Ng et al., NIPS 02]

.71	
.69	
.14	
0	

 $| _{1}= 2.02$ $| _{2}= 2.02$ $| _{3}= -0.02$ $| _{4}= -0.02$

^{*} Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

Spectral Space

Can put items into blocks by eigenvectors:

 e_1

Resulting clusters independent of row ordering:

1	.2	1	0
.2	1	0	1
1	0	1	2
0	1	2	1

^{*} Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

The Spectral Advantage

The key advantage of spectral clustering is the spectral space representation:

^{*} Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

Measuring Affinity

Intensity

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

Distance

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Texture

Scale affects affinity

Scale affects affinity

FIGURE 15.21: The number of clusters is reflected in the eigenvalues of the affinity matrix.

Dimensionality Reduction

The Space of Digits (in 2D)

Dimensionality Reduction with PCA

Linear: Principal Components

- Fit multivariate Gaussian
- Compute eigenvectors of Covariance
- Project onto eigenvectors with largest eigenvalues

Other examples of unsupervised learning

Mean face (after alignment)

Eigenfaces

Slide credit: Santiago Serrano

Non-Linear Techniques

- Isomap
- Local Linear Embedding

Scape (Drago Anguelov et al)

SCAPE: Shape Completion and Animation of People

