

MATLAB Tutorial 09

ENME 303 Computational Methods for Engineers

Parham Oveissi

When Does a Solution Exist?!

When Does a Solution Exist?!

- If b is not in $\mathcal{R}(A)$, then there is **no solution**.
- If N(A) ≠ {0}, then you can't have a unique solution (there are infinite solutions).
 - 1. $x_n \in \mathcal{N}(A)$, then $Ax_n = 0$
 - 2. Suppose there is a solution x_s s.t. $Ax_s = b$
 - 3. Then $A(x_s + x_n) = b$ is also a solution!
 - 4. Since there are infinite elements in $\mathcal{N}(A)$, there are infinite solutions!
- If $\mathcal{N}(A) = \{0\}$, then there exists a **unique solution**.

Existence and Uniqueness of a Solution

For m = n (Square Matrices)

	$b \in \mathcal{R}(A)$	$b \notin \mathcal{R}(A)$
$\mathcal{N}(A) = \{0\}$	$x = A^{-1}b$	Can't happen $\mathcal{R}(A) = \mathbb{R}^n$
$\mathcal{N}(A) \neq \{0\}$	Infinitely many solutions	No solution exists

Existence and Uniqueness of a Solution

For m < n (Tall Matrices)

$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$
$\mathbb{R}^{3\times 3}$	2	\mathbb{R}^2	↑ ℝ ³

	$b \in \mathcal{R}(A)$	$b \notin \mathcal{R}(A)$
$\mathcal{N}(A) = \{0\}$	$x = (A^T A)^{-1} A^T b$	No solution exists
$\mathcal{N}(A) \neq \{0\}$	Infinitely many solutions	No solution exists

Existence and Uniqueness of a Solution

For m > n (Wide Matrices)

	$b \in \mathcal{R}(A)$	$b \notin \mathcal{R}(A)$
$\mathcal{N}(A) = \{0\}$	Can't happen	Can't happen
$\mathcal{N}(A) \neq \{0\}$	Infinitely many solutions	No solution exists

Practice 01

Consider the following system of linear equations.

$$\begin{cases} 9x + 5y + 8z = 3 \\ 7x + 8y + 5z = 8 \\ 9x + 4y + 0z = 4 \end{cases}$$

- 1. Write this system of equations in the Ax = b form. Provide A and b.
- 2. Does a solution exist?
- 3. If a solutions exists, is it unique or not?
- 4. If the solution is unique find the unique solution and if not find a solution to the given system of equations.

Practice 02

Consider the following system of linear equations.

$$\begin{cases} 9x + 5y + 4z = 52 \\ 7x + 8y - 1z = 61 \\ 9x + 4y + 5z = 47 \end{cases}$$

- 1. Write this system of equations in the Ax = b form. Provide A and b.
- 2. Does a solution exist?
- 3. If a solutions exists, is it unique or not?
- 4. If the solution is unique find the unique solution and if not find a solution to the given system of equations.

Least Squares Solution

• Let Ax = y be a system equations where $A \in \mathbb{R}^{m \times n}$ and m > n (tall/skinny). A least squares solution of Ax = y is a solution \hat{x} in \mathbb{R}^m such that:

$$\underbrace{\min_{\hat{x}}} \|A\hat{x} - b\|_2^2$$

• One can find the least square solution by: (Proof)

$$x = (A^T A)^{-1} A^T b$$

• The term $(A^TA)^{-1}A^T$ is a left inverse (pseudo-inverse) of A.

Practice 03

Consider the following system of linear equations.

$$\begin{cases} -5w + 3x - 5y - 8z = 1\\ 10x + 6x + 11y + 2z = 24 \end{cases}$$

- 1. Write this system of equations in the Ax = b form. Provide A and b.
- 2. Does a solution exist?
- 3. If a solutions exists, is it unique or not?
- If the solution is unique find the unique solution and if not find a solution to the given system of equations.

Least/Minimum Norm Solution

- Let Ax = y be a system equations where $A \in \mathbb{R}^{m \times n}$ and m < n (wide/fat). A least/minimum solution of Ax = y is a solution x in \mathbb{R}^m which minimizes ||x|| among all the solutions (infinite number of solutions).
- One can find the least/minimum solution by: (Proof) $x = A^T (AA^T)^{-1}b$
- The term $A^T(AA^T)^{-1}$ is a right inverse (pseudoinverse) of A.

Thanks!