GRAFOS

Prof. André Backes | @progdescomplicada

Definição

- Como representar um conjunto de objetos e as suas relações?
 - Diversos tipos de aplicações necessitam disso
 - Um grafo é um modelo matemático que representa as relações entre objetos de um determinado conjunto.

Definição

- Grafos em computação
 - Forma de solucionar problemas computáveis
 - Buscam o desenvolvimento de algoritmos mais eficientes
 - Qual a melhor rota da minha casa até o restaurante?
 - Duas pessoas tem amigos em comum?

Definição

- Um grafo G(V,A) é definido por dois conjuntos
 - Conjunto V de vértices (não vazio)
 - Itens representados em um grafo;
 - Conjunto A de arestas
 - Utilizadas para conectar pares de vértices, usando um critério previamente estabelecido.

- · Vértice é cada um dos itens representados no grafo.
 - O seu significado depende da natureza do problema modelado
 - Pessoas, uma tarefa em um projeto, lugares em um mapa, etc.

- Aresta (ou arco) liga dois vértices
 - Diz qual a relação entre eles
 - Dois vértices são adjacentes se existir uma aresta ligando eles.
 - Pessoas (parentesco entre elas ou amizade), tarefas de um projeto (pré-requisito entre as tarefas), lugares de um mapa (estradas que existem ligando os lugares), etc.

- Praticamente qualquer objeto pode ser representado como um grafo.
 - Exemplo: sistema de distribuição de água

- Praticamente qualquer objeto pode ser representado como um grafo
 - Exemplo: rede social

- As arestas podem ou não ter direção
 - Existe um orientação quanto ao sentido da aresta
 - Em um grafo direcionado ou **digrafo**, se uma aresta liga os vértices **A** a **B**, isso significa que podemos ir de **A** para **B**, mas não o contrário

Grau

- Indica o número de arestas que conectam um vértice do grafo a outros vértices
 - número de vizinhos que aquele vértice possui no grafo (que chegam ou partem dele)
- No caso dos dígrafos, temos dois tipos de grau:
 - grau de entrada: número de arestas que chegam ao vértice;
 - grau de saída: número de arestas que partem do vértice.

GRAFO

Grau

$$G(A) = 1$$

$$G(B) = 3$$

$$G(C) = 2$$

$$G(D) = 2$$

DIGRAFO

Grau	Grau
Entrada	Saída

$$G(A) = 0$$
 $G(A) = 1$

$$G(B) = 1$$
 $G(B) = 2$

$$G(C) = 1$$
 $G(C) = 1$

$$G(D) = 2$$
 $G(D) = 0$

- Laço
 - Uma aresta é chamada de laço se seu vértice de partida é o mesmo que o de chagada
 - A aresta conecta o vértice a ele mesmo

- Caminho
 - Um caminho entre dois vértices é uma sequência de vértices onde cada vértice está conectado ao vértice seguinte por meio de uma aresta.

CAMINHO: 3-4-5-6

CAMINHO: 3-2-5-6

- Caminho
 - Comprimento do caminho: número de vértices que precisamos percorrer de um vértice até o outro

- Ciclo
 - Caminho onde o vértice inicial e o final são o mesmo vértice.
 - Note que um ciclo é um caminho fechado sem vértices repetidos

- Grafo trivial
 - Possui um único vértice e nenhuma aresta
- Grafo simples
 - Grafo não direcionado, sem laços e sem arestas paralelas (multigrafo)

TRIVIAL

- Grafo completo
 - Grafo simples onde cada vértice se conecta a todos os outros vértices do grafo.

- Grafo regular
 - Grafo onde todos os seus vértices possuem o mesmo grau (número de arestas ligadas a ele)
 - Todo grafo completo é também regular

- Subgrafo
 - Gs(Vs,As) é um subgrafo de G(V,A) se o conjunto de vértices Vs for um subconjunto de V, Vs ⊆ V, e se o conjunto de arestas As for um subconjunto de A, As ⊆ A.

- Grafo bipartido
 - Um grafo G(V,A) onde o seu conjunto de vértices pode ser divididos em dois subconjuntos X e Y sem intersecção.
 - As arestas conectam apenas os vértices que estão em subconjuntos diferentes

- Grafo conexo e desconexo
 - Grafo conexo: existe um caminho ligando quaisquer dois vértices.
 - Quando isso n\u00e3o acontece, temos um grafo desconexo

- Grafos isomorfos
 - Dois grafos, G1(V1,A1) e G2(V2,A2), são ditos isomorfos se existe uma função que faça o mapeamento de vértices e arestas de modo que os dois grafos se tornem coincidentes.
 - Em outras palavras, dois grafos são isomorfos se existe uma função f onde, para cada dois vértices a e b adjacentes no grafo G1, f(a) e f(b) também são adjacentes no grafo G2.

Grafos isomorfos

Grau

$$f(1) = A$$

$$f(2) = B$$

$$f(3) = C$$

$$f(4) = D$$

Grau

$$f(1) = X$$

$$f(2) = W$$

$$f(3) = Y$$

$$f(4) = Z$$

- Grafo ponderado
 - É um grafo que possui **pesos** (valor numérico) associados a cada uma de suas arestas.

- Grafo Euleriano
 - Grafo que possui um ciclo que visita todas as suas arestas apenas uma vez, iniciando e terminando no mesmo vértice.

- Grafo Semi-Euleriano
 - Grafo que possui um caminho aberto (não é um ciclo) que visita todas as suas arestas apenas uma vez.

- Grafo Hamiltoniano
 - Grafo que possui um caminho que visita todos os seus vértices apenas uma vez.
 - Pode ser um ciclo

- Como representar um grafo no computador?
 - Existem duas abordagens muito utilizadas:
 - Matriz de Adjacência
 - Lista de Adjacência
 - Qual a representação que deve ser utilizada?
 - Depende da aplicação!

- Matriz de adjacência
 - Utiliza uma matriz N x N para armazenar o grafo, onde N é o número de vértices
 - Alto custo computacional, O(N²)
 - Uma aresta é representada por uma marca na posição (i, j) da matriz
 - Aresta liga o vértice i ao j

Matriz de adjacência

	1	2	3	4
1	0	1	0	0
2	1	0	1	1
3	0	1	0	1
4	0	1	1	1

		2	
DIGRAFO	1		4
		3	

	1	2	3	4
1	0	1	0	0
2	0	0	1	1
3	0	0	0	1
4	0	0	0	1

- Lista de adjacência
 - Utiliza uma lista de vértices para descrever as relações entre os vértices.
 - Um grafo contendo N vértices utiliza um array de ponteiros de tamanho N para armazenar os vértices do grafo
 - Para cada vértice é criada uma lista de arestas, onde cada posição da lista armazena o índice do vértice a qual aquele vértice se conecta

Lista de adjacência

- Qual representação utilizar?
 - Lista de adjacência é mais indicada para um grafo que possui muitos vértices mas poucas arestas ligando esses vértices.
 - A medida que o número de arestas cresce e não havendo nenhuma outra informação associada a aresta (por exemplo, seu peso), o uso de uma matriz de adjacência se torna mais eficiente

TAD Grafo

- Vamos usar uma lista de adjacência
 - Lista de arestas: lista sequencial

```
//Arquivo Grafo.h
    typedef struct grafo Grafo;
    //Arquivo Grafo.c
    #include <stdio.h>
    #include <stdlib.h>
    #include "Grafo.h" //inclui os Protótipos
10
    //Definição do tipo Grafo
   struct grafo{
12
        int eh ponderado;
        13
        int grau max;
14
        int** arestas;
Array de listas
15
16
        float** pesos;
        int* grau;
18
                            Qtd de elementos em cada lista
19
    //Programa principal
20
    Grafo *gr;
```

TAD Grafo

Cada vértice funciona como uma lista estática

TAD Grafo

Criando um grafo

Criando um grafo

Cria matriz arestas

Cria matriz pesos

```
Grafo* cria Grafo(int nro vertices, int grau max,
                 int eh ponderado) {
Grafo *qr=(Grafo*) malloc(sizeof(struct grafo));
if(qr != NULL) {
  int i;
  gr->nro vertices = nro vertices;
  gr->grau max = grau max;
  gr->eh ponderado = (eh ponderado != 0)?1:0;
  gr->grau=(int*)calloc(nro vertices, sizeof(int));
 gr->arestas=(int**) malloc(nro vertices*sizeof(int*));
 for(i=0; i<nro vertices; i++)</pre>
    gr->arestas[i]=(int*)malloc(grau max*sizeof(int));
   if(gr->eh ponderado) {
      qr->pesos=(float**)malloc(nro vertices*
                                 sizeof(float*));
      for(i=0; i<nro vertices; i++)</pre>
        gr->pesos[i]=(float*)malloc(grau max*
                                     sizeof(float));
 return gr;
```


Liberando o grafo

```
"Liberando um grafo"
//Arquivo Grafo.h

void libera_Grafo(Grafo* gr);

//Programa principal
Grafo *gr;
gr = cria_Grafo(10, 7, 0);

.
.
.
libera_Grafo(gr);
```

Liberando o grafo

```
□void libera Grafo(Grafo* gr){
                                                       Libera matriz
         if(gr != NULL) {
                                                       arestas
             int i;
             for(i=0; i<gr->nro_vertices; i++)
                 free (gr->arestas[i]);
             free (gr->arestas);
             if(gr->eh ponderado) {
                 for (i=0; i<gr->nro vertices; i++)
                      free(gr->pesos[i]);
10
11
                 free(gr->pesos);
                                                            Libera
12
                                                            matriz
13
             free (qr->qrau);
                                                            pesos
14
             free (gr);
15
16
```

Inserindo uma aresta

```
"Inserindo uma aresta no grafo"
         //Arquivo Grafo.h
         int insereAresta(Grafo* gr, int orig, int dest,
                          int eh digrafo, float peso);
         //Programa principal
         Grafo *qr;
10
         gr = cria\_Grafo(10, 7, 0);
11
         insereAresta(gr, 0, 1, 0, 0);
12
         insereAresta(gr, 1, 3, 0, 0);
13
14
15
16
         libera Grafo(gr);
17
18
```

Inserindo uma aresta

```
int insereAresta (Grafo* gr, int orig, int dest,
                       int eh digrafo, float peso) {
         if(qr == NULL)
              return 0;
         if(orig < 0 || orig >= gr->nro_vertices)
   return 0;
         if(dest < 0 || dest >= gr->nro_vertices)
                                                               existe
 8
              return 0;
 9
10
         gr->arestas[orig][gr->grau[orig]] = dest;
                                                                   Insere no
         if(gr->eh_ponderado)
11
              gr->eh_ponderado)
gr->pesos[orig][gr->grau[orig]] = peso;
12
                                                                  final da
         gr->grau[orig]++;
13
                                                                  linha
14
                                                             Insere outra
         if(eh digrafo == 0)
15
              insereAresta (gr, dest, orig, 1, peso)
                                                             aresta se NÃO
16
17
         return 1;
                                                             for digrafo
18
```

insereAresta(gr,0,1,0,0);

Antes da inserção

3 5 0 2 3 9

Após a inserção

			U	1	2	3	4	5	6
0	1	0	1						
1	1	1	0						
2	0	2							
3	0	3							
4	0	4							
5	0	5							
6	0	6							
7	0	7							
8	0	8							
9	0	9							

insereAresta(gr,0,1,0,0);
insereAresta(gr,1,3,0,0);

Antes da inserção

			0	1	2	3	4	5	6
0	1	0	1						
1	1	1	0						
2	0	2							
3	0	3							
4	0	4							
5	0	5							
6	0	6							
7	0	7							
8	0	8							
9	0	9							

Após a inserção

			0	1	2	3	4	5	6
0	1	0	1						
1	2	1	0	3					
2	0	2							
3	1	3	1						
4	0	4							
5	0	5							
6	0	6							
7	0	7							
8	0	8							
9	0	9							

```
insereAresta(gr,0,1,0,0);
insereAresta(gr,1,3,0,0);
insereAresta(gr,3,2,0,0);
```

Antes da inserção

			0	1	2	3	4	5	6
0	1	0	1						
1	2	1	0	3					
2	0	2							
3	1	3	1						
4	0	4							

1	0	1				
2	1	0	3			
0	2					
1	3	1				
0	4					
0	5					
0	6					
0	7					
0	8					
0	9					

Após a inserção

	_		0	1	2	3	4	5	6
0	1	0	1						
1	2	1	0	3					
2	1	2	3						
3	2	3	1	2					
4	0	4							
5	0	5							
6	0	6							
7	0	7							
8	0	8							
9	0	9							

```
insereAresta(gr,0,1,0,0);
insereAresta(gr,1,3,0,0);
insereAresta(gr,3,2,0,0);
insereAresta(gr,6,1,0,0);
```

Antes da inserção

_ /		-	~
Apos	a	inser	cao

			0	1	2	3	4	5	6
0	1	0	1						
1	2	1	0	3					
2	1	2	3						
3	2	3	1	2					
4	0	4							
5	0	5							
6	0	6							
7	0	7							
8	0	8							
9	0	9							

			0	1	2	3	4	5	6
0	1	0	1						
1	3	1	0	3	6				
2	1	2	3						
3	2	3	1	2					
4	0	4							
5	0	5							
6	1	6	1						
7	0	7							
8	0	8							
9	0	9							

BUSCAS E MENOR CAMINHO

- Definição
 - Consiste em explorar o grafo de uma maneira bem específica.
 - Trata-se de um processo sistemático de como caminhar por seus vértices e arestas.

- De modo geral, as operações de busca dependem do vértice inicial
 - O ponto de partida é um aspecto bastante importante da própria busca.
 - Por exemplo, em uma busca pelo menor caminho, temos que saber qual é o ponto de partida desse caminho.

- Vários problemas em grafos podem ser resolvidos efetuando uma busca
- A busca pode precisar visitar todos ou apenas um subconjunto dos vértices.

- Existem vários tipos de busca que podemos realizar em um grafo.
 Os três principais:
 - Busca em profundidade
 - Busca em largura
 - Busca pelo menor caminho

Busca em largura

- Funcionamento
 - Partindo de um vértice inicial, a busca explora todos os vizinhos de um vértice. Em seguida, para cada vértice vizinho, ela repete esse processo, visitando os vértices ainda inexplorados
 - Em outras palavras, esse tipo de busca se inicia em um vértice e então visita todos os seus vizinhos antes de se aprofundar na busca. Esse processo continua até que
 - o alvo da busca seja encontrado
 - não existam mais vértices a serem visitados.

Busca em largura

- Esse algoritmo faz uso do conceito de fila
 - O grafo é percorrido de maneira sistemática, primeiro marcando como "visitados" todos os vizinhos de um vértice e em seguida começa a visitar os vizinhos de cada vértice na ordem em que eles foram marcados.
 - Para realizar essa tarefa, uma fila é utilizada para administrar a visitação dos vértices
 - o primeiro vértice marcado (ou marcado a mais tempo) é o primeiro a ser visitado.

Busca em largura | Grafo para teste

```
#include <stdio.h>
    #include <stdlib.h>
    #include "Grafo.h"
   ⊟int main(){
         int eh digrafo = 1;
         Grafo* gr = cria Grafo(5, 5, 0);
         insereAresta(gr, 0, 1, eh digrafo, 0);
         insereAresta(gr, 1, 3, eh_digrafo, 0);
         insereAresta(gr, 1, 2, eh digrafo, 0);
         insereAresta(gr, 2, 4, eh digrafo, 0);
10
11
         insereAresta(gr, 3, 0, eh digrafo, 0);
12
         insereAresta(gr, 3, 4, eh digrafo, 0);
13
         insereAresta(gr, 4, 1, eh digrafo, 0);
14
         int vis[5];
15
16
         buscaLargura Grafo(gr, 0, vis);
17
18
         libera Grafo(qr);
19
20
         system("pause");
21
         return 0:
22
```

Busca em largura | Implementação

```
⊟void buscaLargura Grafo (Grafo *gr, int ini, int *visita
                    int i, vert, NV, cont = 1, *fila, IF = 0, FF = 0;
                    visitado[i] = \overline{0};
                                                       NÃO visitados
                   "NV = gr->nro vertices;
                    fila = (int*) malloc(NV * sizeof(int));
Cria fila. Visita e
                    FF++;
insere "ini" na fila
                    fila[FF] = ini;
                   .visitado[ini] = cont;
                    while(IF != FF) {
Pega primeiro da fila -
                        vert = fila[IF];
                        cont++;
                        for (i=0; i < gr -> grau[vert]; i++) {
                            if(!visitado[gr->arestas[vert][i]]){
  Visita os vizinhos
                               FF = (FF + 1) % NV;
  ainda não visitados
                               fila[FF] = gr->arestas[vert][i];
                               visitado[gr->arestas[vert][i]] = cont;
  e coloca na fila
                    free (fila);
```


Busca em largura

- Complexidade
 - Considerando um grafo G(V,A), onde |V| é o número de vértices e |A| é o número de arestas, a complexidade no pior caso é
 - custo de inserção e remoção em fila é constante
 - custo de enfileirar e remover todos os vértices uma vez O(/V/)
 - custo de utilizar todas as arestas |A|
 - complexidade da busca no pior caso O(|V| + |A|)

Busca em largura

- Aplicações
 - achar todos os vértices conectados a apenas um componente;
 - achar o menor caminho entre dois vértices;
 - testar se um grafo é bipartido;
 - roteamento: encontrar um número mínimo de hops em uma rede.
 - os hops são os vértices intermediários no caminho correspondente à conexão;
 - encontrar número mínimo de intermediários entre 2 pessoas.

Busca em Profundidade

- Funcionamento
 - Partindo de um vértice inicial, a busca explora o máximo possível cada um dos vizinhos de um vértice antes de retroceder (backtracking)
 - Em outras palavras, esse tipo de busca se inicia em um vértice e se aprofunda nos vértices vizinhos deste até encontrar um dos dois casos:
 - o alvo da busca
 - um vértice sem vizinhos que possam ser visitados

Busca em Profundidade

- Backtracking
 - O grafo é percorrido de maneira sistemática até que a busca falhe, ou se encontre um vértice sem vizinhos
 - Nesse momento entra em funcionamento o mecanismo de backtracking: a busca retorna pelo mesmo caminho percorrido com o objetivo de encontrar um caminho alternativo.
 - Trata-se de um mecanismo usado em linguagens de programação como Prolog.

Busca em Profundidade | Grafo para teste

```
#include <stdio.h>
    #include <stdlib.h>
    #include "Grafo.h"
   ⊟int main(){
         int eh digrafo = 1;
         Grafo^* gr = cria Grafo(5, 5, 0);
         insereAresta(gr, 0, 1, eh digrafo, 0);
         insereAresta(gr, 1, 3, eh digrafo, 0);
         insereAresta(gr, 1, 2, eh digrafo, 0);
         insereAresta(gr, 2, 4, eh digrafo, 0);
10
         insereAresta(gr, 3, 0, eh digrafo, 0);
11
12
         insereAresta(gr, 3, 4, eh digrafo, 0);
         insereAresta(gr, 4, 1, eh digrafo, 0);
13
14
         int vis[5];
15
16
         buscaProfundidade Grafo(gr, 0, vis);
17
18
         libera Grafo(gr);
19
20
         system("pause");
21
         return 0;
22
```

Busca em Profundidade | Implementação

```
//Função auxiliar: realiza o cálculo
                 void buscaProfundidade (Grafo *gr, int ini,
                                          int *visitado, int cont) {
                     int i;
                    rvisitado[ini] = cont;
                     for(i=0; i<qr->qrau[ini]; i++){
                          if(!visitado[gr->arestas[ini][i]])
                              buscaProfundidade(gr,gr->arestas[ini][i],
Marca o vértice
                                                 visitado, cont+1);
como visitado.
Visita os
                 //Função principal: faz a interface com o usuário
vizinhos ainda
                 void buscaProfundidade Grafo (Grafo *gr, int ini,
não visitados
                                                int *visitado) {
                     int i, cont = 1;
                                                                  Marca vértices como
                     for(i=0; i<gr->nro_vertices; i++)
  visitado[i] = 0;
                                                                  NÃO visitados
                     buscaProfundidade (gr, ini, visitado, cont);
```


visitado

1 cont = 1
0 Ini
0 Mar
0 vi
0 bu

Inicia a busca com o vértice 0.

Marca o vértice 0 como visitado e executa a busca para o vértice adjacente (1)

visitado

1 | cont = 2

2

0

0

0

Marca o vértice 1 como visitado e executa a busca para o primeiro vértice adjacente (3)

visitado

1 cont = 3

Marca o vértice 3 como visitado e executa a busca para o primeiro vértice adjacente não visitado (4)

visitado

1 cont = 4

2

0

3

4

Marca o vértice 4 como visitado. Todos os vértice adjacentes já foram visitados. Volta para o vértice 3

visitado

1 cont = 3
2 adjac
3 Vo

Todos os vértice adjacentes ao vértice 3 já foram visitados. Volta para o vértice 1

Busca em profundidade | Passo a passo

visitado

cont = 2

Executa a busca para o segundo vértice adjacente (2)

Busca em profundidade | Passo a passo

visitado

cont = 3

2

3

3

Marca o vértice 2 como visitado.

A partir desse ponto o algoritmo apenas volta na recursão (todos os vértices já foram visitados) e finaliza a busca

Busca em Profundidade

- Complexidade
 - Considerando um grafo G(V,A), onde |V| é o número de vértices e |A| é o número de arestas, a complexidade no pior caso é
 - custo de ir para cada vértice é proporcional a |V|
 - custo de transitar em cada aresta é proporcional |A|
 - complexidade da busca no pior caso O(|V| + |A|)

Busca em Profundidade

- Aplicações
 - encontrar componentes conectados e fortemente conectados;
 - ordenação topológica de um grafo;
 - procurar a saída de um labirinto;
 - verificar se um grafo é completamente conexo
 - por exemplo, a rede de computadores esta funcionando direito ou não;
 - implementar a ferramenta de preenchimento
 - balde de pintura do Photoshop

- O menor caminho entre dois vértices é a aresta que os conecta.
- No entanto, é muito comum não existir uma aresta conectando dois vértices
 - Os vértices 0 e 4 não são adjacentes

- Caminho
 - Dois vértices que não são adjacentes podem ser conectados por uma sequência de arestas
 - (0,1),(1,2),(2,4)
- Menor caminho
 - Menor sequência de arestas que liga os dois vértices

- Menor caminho
 - Caminho mais curto ou caminho geodésico
 - Caminho que apresenta o menor comprimento dentre todos os possíveis caminhos que conectam esses vértices
 - O comprimento pode ser o número de arestas que conectam os dois vértices ou a soma dos pesos das arestas que compõem esse caminho (grafo ponderado)

- Uma das maneiras de achar o menor caminho é utilizando o algoritmo de Dijkstra
 - Talvez o mais conhecido algoritmo
 - Trabalha com grafos e digrafos, ponderados ou não.
 - No caso de um grafo ponderado, as arestas não podem ter pesos negativos.

- Funcionamento
 - Partindo de um vértice inicial, o algoritmo de Dijkstra calcula a menor distância deste vértice a todos os demais (desde que exista um caminho entre eles)

Busca pelo menor caminho | Grafo para teste

```
#include <stdio.h>
    #include <stdlib.h>
    #include "Grafo.h"
   ⊟int main(){
         int eh digrafo = 1;
         Grafo*gr = cria Grafo(5, 5, 0);
         insereAresta(gr, 0, 1, eh digrafo, 0);
         insereAresta(gr, 1, 3, eh digrafo, 0);
         insereAresta(gr, 1, 2, eh digrafo, 0);
         insereAresta(gr, 2, 4, eh digrafo, 0);
10
11
         insereAresta(gr, 3, 0, eh digrafo, 0);
         insereAresta(gr, 3, 4, eh_digrafo, 0);
12
         insereAresta(gr, 4, 1, eh digrafo, 0);
13
14
         int ant[5];
        float dist[5];
15
         menorCaminho Grafo(gr, 0, ant, dist);
16
17
18
         libera Grafo(gr);
19
20
         system("pause");
21
         return 0:
22
```

Busca pelo menor caminho | Implementação

```
int procuraMenorDistancia (float *dist, int *visitado,
                                int NV) {
 3
         int i, menor = -1, primeiro = 1;
         for(i=0; i < NV; i++) {
             if(dist[i] >= 0 && visitado[i] == 0) {
                 if(primeiro) {
                      menor = i;
                      primeiro = 0;
                  }else{
10
                      if(dist[menor] > dist[i])
                          menor = i;
11
12
13
                                                      Procura vértice com
14
                                                      menor distância e
15
         return menor;
16
                                                      que não tenha sido
                                                      visitado
```

Busca pelo menor caminho | Implementação

```
void menorCaminho Grafo (Grafo *gr, int ini,
                                         int *ant, float *dist) {
                     int i, cont, NV, ind, *visitado, u;
                     cont = NV = gr->nro vertices;
                   rvisitado = (int*) malloc(NV * sizeof(int));
                     for (i=0; i < NV; i++) {
Cria vetor auxiliar.
                         ant[i] = -1;
Inicializa distâncias
                         dist[i] = -1;
e anteriores
                         visitado[i] = 0;
                     dist[ini] = 0;
                     while (cont > 0) {
                         u = procuraMenorDistancia (dist, visitado, NV);
                         if(u == -1)
Procura vértice com
                             break;
menor distância e
                         visitado[u] = 1;
marca como visitado
                         cont--;
                         //CONTINUA...
                     free (visitado);
```

Busca pelo menor caminho | Implementação

```
□for(i=0; i<gr->grau[u]; i++) { Para cada vértice vizinho
                   ind = gr->arestas[u][i];
                   if(dist[ind] < 0){</pre>
                       dist[ind] = dist[u] + 1;
                        //ou peso da aresta
                        //dist[ind] = dist[u] + qr->pesos[u][i];
                        ant[ind] = u;
Atualizar
                    }else{
                        if(dist[ind] > dist[u] + 1) {
distâncias dos
                        //if(dist[ind] > dist[u] + gr->pesos[u][i].)
vizinhos
                            dist[ind] = dist[u] + 1;
                            //ou peso da aresta
                            //dist[ind] = dist[u] + gr->pesos[u][i];
                            ant[ind] = u;
```


Inicia o cálculo com o vértice 0. Atribui distância ZERO a ele (início). O restante dos vértice recebem distância -1

Recupera vértice com menor distância ainda não visitado e o marca como visitado: vértice 0. Verifica e atualiza (se necessário) dist e ant do vértice adjacente (1)

Recupera vértice com menor distância ainda não visitado e o marca como visitado: vértice 1. Verifica e atualiza (se necessário) dist e ant dos vértices adjacentes (2 e 3)

Recupera vértice com menor distância ainda não visitado e o marca como visitado: vértice 2. Verifica e atualiza (se necessário) dist e ant do vértice adjacente (4)

Recupera vértice com menor distância ainda não visitado e o marca como visitado: vértice 3. Verifica e atualiza (se necessário) dist e ant dos vértices adjacentes (0 e 4)

Recupera vértice com menor distância ainda não visitado e o marca como visitado: vértice 4. Verifica e atualiza (se necessário) dist e ant do vértice adjacente (1)

Todos os vértices já foram visitados. Cálculo do menor caminho chegou ao fim.

- Aplicações
 - para achar o grau de separação entre duas pessoas em uma rede social;
 - para achar um trajeto em um mapa rodoviário;
 - para programar robôs explorar áreas;
 - em algoritmos de roteamento.

ÁRVORE GERADORA MÍNIMA

- Uma árvore geradora (do inglês, spanning tree) é um subgrafo que contenha todos os vértices do grafo original e um conjunto de arestas que permita conectar todos esses vértices na forma de uma árvore.
- É a menor estrutura que conecta todos os vértices

- Dado um grafo G(V,A), a árvore geradora possui
 - todos os vértices V
 - um total de arestas igual a **|V|-1** (o número de vértices menos um)

- Se o grafo é ponderado (arestas com peso), podemos querer encontrar a árvore geradora mínima
 - Do inglês, *minimum spanning tree*
 - Procura o conjunto de arestas de menor custo

- Condição para existir uma árvore geradora mínima
 - Para quaisquer dois vértices distintos, sempre deve existir um caminho que os une
 - Como todos os vértices estão conectados, calcular a árvore geradora não depende do vértice inicial
- Portanto, o grafo deve ser
 - Não-direcionado
 - Conexo
 - Ponderado

- Aplicações
 - transporte aéreo: mapa de conexões de vôo
 - transporte terrestre: infra-estrutura das rodovias com o menor uso de material;
 - redes de computadores: conectar uma série de computadores com a menor quantidade de fibra ótica possível
 - redes elétricas e telefônicas: unir um conjunto de localidades com menor gasto
 - circuitos integrados
 - análise de clusters
 - armazenamento de informações

- O problema pode ser resolvido usando uma estratégia gulosa que constrói a árvore incrementalmente
- Existem dois algoritmos clássicos para obter soluções ótimas
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- A diferença entre eles está na regra usada para encontrar a aresta que fará parte da árvore

ALGORITMO DE PRIM

Algoritmo de Prim

- Funcionamento
 - Considera um vértice inicialmente na árvore
 - A cada iteração, o algoritmo procura a aresta de menor peso que conecte um vértice da árvore a outro que ainda não esteja na árvore.
 - Esse vértice é adicionado a árvore e o processo se repete.
 - Esse processo continua até que
 - Todos os vértices façam parte da árvore
 - Não se pode encontrar uma aresta que satisfaça essa condição (grafo desconexo)

Algoritmo de Prim | Grafo para teste

```
#include <stdio.h>
#include <stdlib.h>
#include "Grafo.h"
int main(){
    int eh digrafo = 0;
    Grafo* qr = cria Grafo(6, 6, 1);
    insereAresta(gr, 0, 1, eh digrafo, 6);
    insereAresta(gr, 0, 2, eh digrafo, 1);
    insereAresta(gr, 0, 3, eh digrafo, 5);
    insereAresta(qr, 1, 2, eh digrafo, 2);
    insereAresta(gr, 1, 4, eh digrafo, 5);
    insereAresta(gr, 2, 3, eh digrafo, 2);
    insereAresta(gr, 2, 4, eh digrafo, 6);
    insereAresta(gr, 2, 5, eh digrafo, 4);
    insereAresta(gr, 3, 5, eh digrafo, 4);
    insereAresta(gr, 4, 5, eh digrafo, 3);
    int i, pai[6];
    arvoreGeradoraMinimaPRIM Grafo(gr, 0, pai);
    libera Grafo(gr);
    return 0;
```


Algoritmo de Prim | Algoritmo

```
void algPRIM(Grafo *gr, int orig, int *pai) {
                      int i, j, dest, primeiro, NV = qr->nro vertices;
                     double menorPeso;
                     for(i=0; i < NV; i++)</pre>
Vértices não tem
                       pai[i] = -1;// sem pai
pai, menos orig
                     pai[oriq] = oriq;
                      while (1) {
                          primeiro = 1;
                          //percorre todos os vértices
                        - for(i=0; i < NV; i++) {</pre>
                              //achou vértices já visitado
                              if (pai[i] != -1) {
Procura menor
                              // percorre os vizinhos do vértice visitado
aresta ligando um
                                  for(j=0; j<qr->qrau[i]; j++){
vértice que está na
                                      //procurar menor peso: continua
árvore a outro fora
da árvore
                          if(primeiro == 1)
                              break;
                          pai[dest] = oriq;
```

Algoritmo de Prim | Algoritmo

```
//continuação
    //achou vértice vizinho não visitado
   \Boxif(pai[gr->arestas[i][j]] == -1){
         if(primeiro){//procura aresta de menor custo
             menorPeso = gr->pesos[i][j];
             oriq = i;
             dest = qr->arestas[i][j];
             primeiro = 0;
         }else{
10
             if (menorPeso > qr->pesos[i][j]) {
11
                 menorPeso = gr->pesos[i][j];
12
                 oriq = i;
13
                 dest = gr->arestas[i][j];
14
15
16
```


Inicia o cálculo com o vértice 0. Atribui seu próprio índice como pai. O restante dos vértices recebem pai igual a -1 (sem pai).

- 0
- -1
- -1
- -1

Procura nos vértices com pai por um vértice sem pai e com menor peso: vértice 2.

Atribui vértice 0 como pai do vértice 2.

Procura nos vértices com pai por um vértice sem pai e com menor peso: vértice 1. Atribui vértice 2 como pai do vértice 1.

Procura nos vértices com pai por um vértice sem pai e com menor peso: vértice 3.

Atribui vértice 2 como pai do vértice 3.

Algoritmo de Prim | Passo a passo

Procura nos vértices com pai por um vértice sem pai e com menor peso: vértice 5. Atribui vértice 2 como pai do

vértice 5.

Algoritmo de Prim | Passo a passo

Procura nos vértices com pai por um vértice sem pai e com menor peso : vértice 4.

Atribui vértice 5 como pai do vértice 4.

Fim do cálculo.

Algoritmo de Prim | Complexidade

- Considerando um grafo G(V,A), onde |V| é o número de vértices e |A| é o número de arestas, a complexidade no pior caso é O(|V|*|A|). Como |A| é proporcional a |V|², seu custo é O(|V|³)
- A eficiência depende da forma usada para procurar a aresta de menor peso. Usando uma fila de prioridade o custo pode ser reduzido para O(|A|log|V|)

ALGORITMO DE KRUSKAL

Algoritmo de Kruskal

 O algoritmo de Prim se inicia com um vértice e cresce uma única árvore a partir dele

 O algoritmo de Kruskal constrói uma floresta (várias árvores) ao longo do tempo, e que são unidas ao final do processo

Algoritmo de Kruskal

- Funcionamento
 - Considera cada vértice como uma árvore independente (floresta)
 - A cada iteração, o algoritmo procura a aresta de menor peso que conecta duas árvores diferentes
 - Os vértices das árvores selecionadas passam a fazer parte de uma mesma árvore
 - Esse processo continua até que
 - Todos os vértices façam parte da árvore
 - Não se pode encontrar uma aresta que satisfaça essa condição (grafo desconexo)

Algoritmo de Kruskal | Grafo para teste

```
#include <stdio.h>
#include <stdlib.h>
#include "Grafo.h"
jint main(){
    int eh digrafo = 0;
    Grafo* gr = cria Grafo(6, 6, 1);
    insereAresta(gr, 0, 1, eh digrafo, 6);
    insereAresta(gr, 0, 2, eh digrafo, 1);
    insereAresta(gr, 0, 3, eh digrafo, 5);
    insereAresta(gr, 1, 2, eh digrafo, 2);
    insereAresta(gr, 1, 4, eh digrafo, 5);
    insereAresta(gr, 2, 3, eh digrafo, 2);
    insereAresta(gr, 2, 4, eh digrafo, 6);
    insereAresta(gr, 2, 5, eh digrafo, 4);
    insereAresta(gr, 3, 5, eh digrafo, 4);
    insereAresta(gr, 4, 5, eh digrafo, 3);
    int i, pai[6];
    arvoreGeradoraMinimaKruskal Grafo(gr, 0, pai);
    libera Grafo(gr);
    return 0;
```


Algoritmo de Kruskal | Algoritmo

```
□void algKruskal (Grafo *gr, int orig, int *pai) {
                           int i, j, dest, primeiro, NV = gr->nro vertices;
                          double menorPeso;
                           int *arv = (int*) malloc(NV * sizeof(int));
                           for(i=0; i < NV; i++) {
Cada vértice é
                               arv[i] = i;
                               pai[i] = -1;// sem pai
uma árvore, sem
pai
                           pai[oriq] = oriq;
                           while(1){
                 11
                               primeiro = 1;
                             for(i=0; i < NV; i++){//percorre os vértices</pre>
Procura menor aresta
                                   for(j=0; j<qr->qrau[i]; j++) { //arestas
                                       //procura vértice menor peso: continua
ligando árvores<sup>4</sup><sub>5</sub>
diferentes
                 16
                 17
                               if(primeiro == 1) break;
                 18
                               if(pai[orig] == -1) pai[orig] = dest;
                 19
                               else pai[dest] = orig;
Une as duas áryores da
                             -for(i=0; i < NV; i++)
aresta selecionada
                                   if(arv[i] == arv[dest])
                                       arv[i] = arv[orig];
                 24
                           free (arv);
```

Algoritmo de Kruskal | Algoritmo

```
//continuação
    //procura aresta de menor custo
   □if(arv[i] != arv[gr->arestas[i][j]]){
         if(primeiro) {
             menorPeso = qr->pesos[i][j];
             oriq = i;
             dest = qr->arestas[i][j];
             primeiro = 0;
         }else{
10
             if (menorPeso > qr->pesos[i][j]) {
11
                 menorPeso = gr->pesos[i][j];
12
                 oriq = i;
13
                 dest = gr->arestas[i][j];
14
15
16
17
18
```


Inicia o cálculo com o vértice 0. Atribui seu próprio índice como pai. O restante dos vértice recebem pai igual a -1 (sem pai). Inicializa a árvore com o índice do vértice.

Procura a aresta com menor peso conectando vértices com árvores diferentes: vértices 0 e 2.

Atribui vértice 0 como pai do vértice 2.

Todos que possuem árvore igual ao vértice 2 passam a ter árvore igual ao vértice 0.

Procura a aresta com menor peso conectando vértices com árvores diferentes: vértices 1 e 2.

Atribui vértice 2 como pai do vértice 1.

Todos que possuem árvore igual ao vértice 2 passam a ter árvore igual ao vértice 1.

Procura a aresta com menor peso conectando vértices com árvores diferentes: vértices 2 e 3.

Atribui vértice 2 como pai do vértice 3.

Todos que possuem árvore igual ao vértice 3 passam a ter árvore igual ao vértice 2.

Procura a aresta com menor peso conectando vértices com árvores diferentes: vértices 4 e 5.

Atribui vértice 5 como pai do vértice 4.

Todos que possuem árvore igual ao vértice 5 passam a ter árvore igual ao vértice 4.

Procura a aresta com menor peso conectando vértices com árvores diferentes: vértices 2 e 5.

Atribui vértice 2 como pai do vértice 5.

Todos que possuem árvore igual ao vértice 5 passam a ter árvore igual ao vértice 2.

Fim do cálculo

Algoritmo de Kruskal | Complexidade

- Considerando um grafo G(V,A), onde |V| é o número de vértices e |A| é o número de arestas, a complexidade no pior caso é O(|V|*|A|). Como |A| é proporcional a |V|², seu custo é O(|V|³)
- A eficiência depende da forma usada para procurar a aresta de menor peso. Usando uma estrutura de dados união-busca (Union&Find) o custo pode ser reduzido para O(/A/log/V/)

Material Complementar | Vídeo Aulas

- Aula 56: Grafos Definição:
 - youtu.be/gJvSmrxekDo
- Aula 57: Grafos Propriedades:
 - youtu.be/qvSbkbUkZjo
- Aula 58: Grafos Tipos de Grafos (Parte 1):
 - youtu.be/5saF2Dg6sIc
- Aula 59: Grafos Tipos de Grafos (Parte 2):
 - youtu.be/LsLK04bWgy4
- Aula 60: Grafos Representação de Grafos (Parte 1):
 - youtu.be/k9DJn-COtKg
- Aula 61: Grafos Representação de Grafos (Parte 2):
 - youtu.be/-dAxrWDufa8

Material Complementar | Vídeo Aulas

- Aula 62: Grafos Busca em Grafos:
 - youtu.be/iN6PWvga5IQ
- Aula 63: Grafos Busca em Profundidade:
 - youtu.be/pJ3ilnhXWCQ
- Aula 64: Grafos Busca em Largura:
 - youtu.be/jWoP1fTTDzE
- Aula 65: Grafos Busca pelo Menor Caminho:
 - youtu.be/5y8dch2uHR4

Material Complementar | Vídeo Aulas

- Aula 112: Grafo Árvore Geradora Mínima:
 - https://www.youtube.com/watch?v=eHC2tjQPX3A
- Aula 113: Grafos Algoritmo de Prim:
 - https://www.youtube.com/watch?v=bBq_Cu5doy0
- Aula 114: Grafos Algoritmo de Kruskal:
 - https://www.youtube.com/watch?v=EzMHc5xW6Pc

Material Complementar | GitHub

https://github.com/arbackes

Popular repositories

