

Principles of Autonomy and Decision Making

(AI_PrincAutonomy_2808)

Week 5: Value- and Policy-Iteration

Team:

- · Prof. Dr. rer. nat. Lenz Belzner
- Chidvilas Karpenahalli Ramakrishna, M.Eng.
- Adithya Mohan, M.Eng.
- · Zahra Zeinaly, Ph.D.

MDPs: Recap

- MDP components:
 - States $s \in S$
 - Actions $a \in A$
 - Reward function R(s, a, s')
 - Discount factor γ
 - Transition function T(s, a, s') = P(s'|s, a)
- Quantities:
 - Optimal Policy
 - $\pi^*(s)$
 - Maps states to actions
 - Utility
 - Expected sum of discounted rewards
 - Optimal value of a state
 - $V^*(s)$
 - Expected future utility from a state and acting optimally thereafter
 - Optimal Q-value of a state-action pair
 - $Q^*(s,a)$
 - Expected future utility of a state by taking an action a and acting optimally thereafter

Bellman Equation: Recap

- Bellman equation:
 - Links the quantities and shows what is needed to take optimal actions
 - Take correct first action
 - Keep being optimal later
- Derivation:

$$V^*(s) = max_a Q^*(s, a)$$

•
$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

- Bellman equation:
 - $V^*(s) = max_a \sum_{s'} P(s'|a,s) [R(s,a,s') + \gamma V^*(s')]$
- How to solve the Bellman equation?
 - Value-iteration
 - Policy-iteration
 - Dynamic programming (both value- and policy-iteration are DP)
 - Reinforcement Learning

Fig 1. MDP search tree

Value-Iteration: Introduction

- Aim:
 - We wish to find optimal values $V^*(s)$ of each state using which an optimal policy $\pi^*(s)$ can be extracted.

•
$$V^*(s) = max_a \sum_{s'} P(s'|a,s) [R(s,a,s') + \gamma V^*(s')]$$

- Here, $V^*(s)$ is the value of being in a state and acting optimally
- How to obtain $V^*(s)$?
 - Value-iteration
- Value-iteration:
 - Update values for k iterations
 - We keep $V_0(s)=0$
 - We define $V_k(s)$ is the value of a state in k^{th} iteration

$$V_k(s) = \max_{a} \sum_{s'} P(s'|a,s) [R(s,a,s') + \gamma V_{k-1}(s')]$$

• Stop when $\max_{s} |V_k(s) - V_{k-1}(s)| < \varepsilon$ i.e. convergence

Fig 1. Value-iteration search tree

Value-Iteration: Policy Extraction

- Extracting optimal policy $\pi^*(s)$ from $V^*(s)$ of each state
 - $\bullet \pi^*(s) = \operatorname{argmax}_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$
 - $\pi^*(s) = argmax_a Q^*(s, a)$
- Demo:
 - Week 5 lecture code value_iteration.py
 - NOTE: See how policy converged much earlier than values

Value-Iteration: Problems

- Value-iteration is slow:
 - Why?
 - $V_k(s) = \max_a \sum_{s'} P(s'|a,s) [R(s,a,s') + \gamma V_{k-1}(s')]$
 - max_a is very slow
- The values of each state do not change significantly after certain iterations
- The policy often converges before the values
 - Wasted computation
- Solution:
 - Occassionally check if the policy has converged and stop computation if convergence is reached
 - Policy-iteration

Policy Methods

4

Motivation:

- The output of solving an MDP is a policy $\pi^*(s)$
- We do not use the value of states $V^*(s)$ or $Q^*(s,a)$ directly
- We extract $\pi^*(s)$ from $V^*(s)$ in value-iteration
- We have to wait till the values converge to extract an optimal policy in valueiteration
- What if we don't have to wait?
 - Policy-iteration

Policy methods:

- Given a policy $\pi(s)$, we wish to know how good it is i.e. what is the outcome if I follow the policy in each state
- We no longer have to deal with max_a as $\pi(s)$: $s \to a$ dictates what actions to take
- In policy methods, we don't act optimally we just act as policy tells
- The tress now becomes simple as shown in Fig 1.
- We fix a policy $\pi(s)$ and calculate $V^{\pi}(s)$
 - $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$
 - Here, $V^{\pi}(s)$ = expected total discounted rewards starting in s and following $\pi(s)$ (generally not optimal)

Fig 1. Policy-iteration search tree

Policy-Iteration

Steps:

- 1. Policy evaluation:
 - Fix a policy $\pi(s)$
 - Get utilities i.e. $V^{\pi}(s)$ for $\pi(s)$ until convergence (not $V^*(s)$)
- 2. Policy improvement:
 - Update policy $\pi(s)$ using one-step look-ahead with resulting converged utilities $V^{\pi}(s)$
- 3. Iteration:
 - Repeat steps 1 and 2 until policy converges
- Advantage:
 - We check $\pi(s)$ for convergence before continuing the iteration
 - This might result in faster convergence of $\pi(s)$
- NOTE:
 - $\pi(s)$ Deterministic policy
 - $\pi(a|s)$ Stochastic policy

Fig 1. Policy-iteration search tree

Policy-Iteration: Policy Evaluation

- Consider a fixed i^{th} policy $\pi^i(s)$
- Get utilities:
 - Update the value of each state using the fixed policy to choose actions

•
$$V_k^{\pi_i}(s) = \sum_{s'} T(s, \pi_i(s), s') [R(s, \pi_i, s') + \gamma V_{k-1}^{\pi_i}(s')]$$

- Continue for a fixed number of iterations m
- Upon completing m iterations, update the policy to get $\pi^{i+1}(s)$, check for convergence, if not, repeat
- NOTE: We do not have max_a in this equation which reduces computation

Fig 1. Policy-iteration search tree

Policy-Iteration: Policy Improvement

Update policy:

- $\bullet \ \pi_{i+1}(s) = \operatorname{argmax}_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_{i}}(s') \right]$
- We updated our old policy $\pi^i(s)$ to $\pi^{i+1}(s)$
- Upon updating the policy repeat step 1 (Policy evaluation) for another m iterations
- Follow this until policy converges i.e. $\pi_{i+n}(s) = \pi_{i+n-1}(s)$

Demo:

- Week 5 lecture code *policy iteration.py*
- NOTE: See how policy-iteration ran much faster than valueiteration

Fig 1. Policy-iteration search tree

Summary

- Value-iteration:
 - We update the utilities till convergence to get the optimal values $V^*(s)$
 - We use $V^*(s)$ to extract an optimal policy $\pi^*(s)$ at the end
 - Slower convergence as policy might converge before values
- Policy-iteration:
 - We update utilities for m number of iterations using a fixed policy $\pi_i(s)$
 - After reaching m iterations, I update my policy to $\pi_{i+1}(s)$
 - I repeat the above steps until policy converges
 - Faster convergence than value-iteration
- Motivation for Dynamic programming (DP):
 - DP is a powerful computational technique that solves problems by breaking them down into simpler subproblems, solving each of these subproblems just once, and storing their solutions
 - Both value-iteration and policy-iteration are dynamic programming techniques