Math 401 - Homework #2 2D Computer Graphics due on Gradescope Wednesday, 9/15

1. Question 1

- (a) Find the standard matrix of f by directly determining the images of the standard basis vectors \mathbf{e}_1 and \mathbf{e}_2 under f.
 - Solution:Let f_1 be a reflection function that through the y-axis
- (b) Find the standard matrix of f by first finding the standard matrices of the reflection and of the rotation, and then use matrix multiplication.
- 2. Find the point obtained when (7,9) is rotated counterclockwise about the origin by 50 degrees $(5\pi/18 \text{ radians})$. (Do the computation in MATLAB, but make it clear what computation you are doing.)
- 3. (Must do all computations by hand.)
 - (a) Do Exercise 2.5 from the text. (The matrix should be 3×3 , for homogeneous coordinates.)
 - (b) Do Exercise 2.6 from the text. (The matrix should be 3×3 , for homogeneous coordinates.)
- 4. Do Exercise 2.9 from the text.
- 5. Do Exercise 2.11 from the text.
- 6. Find the 3×3 matrix (for homogeneous coordinates) for the transformation which first rotates counterclockwise about the point (4,8) by $\pi/5$ radians, and then rotates counterclockwise about the point (7,1) by $4\pi/11$ radians.

7. (Must do all computations by hand.)

- (a) Let L denote a line in the plane that does **not** go through the origin. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ denote the transformation which reflects through the line L. Give a reason why f is not a linear transformation.
- (b) Reflection through a line which does not go through the origin can be represented as a 3×3 matrix (which operates on homogeneous coordinates). Give the matrix for reflection through the vertical line x = 5.
- (c) Give a formula for the image of the generic point (x, y) under reflection through the line x = 5.
- 8. (Must do all computations by hand.) Let L_{θ} denote the line in the plane through the origin that makes an angle of θ radians with the positive x-axis. In class, we saw that reflection through the line L_{θ} has standard matrix $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$. Now let θ and φ be two angles. Show that the composition of reflection through L_{φ} followed by reflection through L_{θ} is equal to a rotation about the origin, and find the angle of rotation. (Multiply the matrices and use trig identities to recognize the result as a rotation matrix.)

9. (Optional - don't have to turn in)

- (a) Let L_m denote the line through the origin with slope m. Find the 2×2 matrix for the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$ which reflects through the line L_m . Simplify your answer so that there are no trig or inverse trig functions. Then give the 3×3 matrix for this transformation (that operates on homogeneous coordinates).
- (b) Let $L_{(a,b),m}$ be the line through the point (a,b) with slope m. Find the 3×3 matrix (for homogeneous coordinates) for the transformation of reflection through the line $L_{(a,b),m}$.