	UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA	FÍSICA 2 C	NOTA:
AND SISNE WITH	ESCUELA DE CIENCIAS DEPARTAMENTO DE FÍSICA	1S2023	
	INGA. CLAUDIA CECILIA CONTRERAS FOLGAR DE ALFARO	AUX. ANG	EL QUIM

CARNÉ:	202200089	FECHA:	23/03/2023	
NOMBRE:	Franklin Orladno Noj Pérez			

Hoja de Trabajo #5

$$V_1 = \frac{Q_1}{C_1} \frac{200F_1}{60F} \frac{20}{6} \approx 3.33V$$

Diferendia de Votencial

2. ¿Cuál es la energía total almacenada en el grupo de capacitores mostrados en la figura si la diferencia de

C2 || C3

60 a -1

a. 48mJ	b.	27 mJ	c. 37 mJ	d. 19 mJ	e. 10mJ

$$C_{2,3} = C_{2} + C_{3} = 500F + 100F$$

Capacito equivalente

$$C_{2,3} | Seve | C_1$$

 $C_{2,2,3} = \left(\frac{1}{C_{2,3}} + \frac{1}{C_1}\right)$
 $C_{2,2,3} = \left(\frac{1}{C_2} + \frac{1}{C_2}\right) UF \rightarrow D | SUF$

3. Determine la carga almacenada en C_1 cuando $C_1 = 20\mu F$; $C_2 = 10\mu F$; $C_3 = 30\mu F$; $V_o = 18V$

a) 0.37mC	b) 0.24mC	c) 0.32mC	d) 0.40mC	e) 0.50mC

C21/c3 C23,= C2+C3=(10UF)+(30UP) C23=40UF)

 $C = (1 + C_{23}) =$

C1 C23

Vo

Deg= Ceq. Veq.

(leg=(4%UF)(18)=> 0.24×103C

Haya en a= 0.24 mC

5. Un capacitor de placas paralelas de $120 \mu F$ tiene placas de $120 cm^2$ y mica como dieléctrico K=6.2. El voltaje máximo que puede aplicarse al capacitor es 90V. Calcule: a) la resistencia dieléctrica de la mica. La carga inducida. R: $V_{max} = 1.64 \times 10^{10} V/m Q_{ind} = 9.058 \times 10^{-3} C$

dieléctrica de la mica. La carga inducida. R:
$$\langle E_{max} = 1.64 \times 10^{10} V/m Q_{ind} = 9.058 \times 10^{-10}$$
 $C = 120 \text{UF}$
Afer = $120 \text{cm}^2 \cdot (\text{Im})^2 \rightarrow \sqrt{0.012 \text{m}^2}$
 $(\text{Indumin} \rightarrow Micq)$
 $K = 6.2$

Voltage $Man = 90 \text{U}$
 $O = C_0 \text{U}$

$$E_{\text{max}} = 1.6394/25 \times 10^{10} \text{ V/m}$$

$$Q_{\text{modvarda}} = 9.058064 \times 10^{3}$$

6. Dos placas paralelas se cargan con la misma cantidad de carga pero opuesta en signo, $Q=8.9\times 10^{-7}C$; área de 0.01 metros cuadrados, el campo eléctrico en el material dieléctrico es 1.4×10^6 V/m. Calcule el valor de K y la carga inducida en el dieléctrico. R: \ K=7.18 $Q_{ind}=$

$$E_{\text{place}} = \frac{\Delta V}{dc} = \frac{Q}{dc} \quad D \quad E = \frac{Q}{dc} \quad dc = \frac{Q}{E} \quad dc = \frac{8.9 \times 10^{-7}}{1.4 \times 10^{6}}$$

$$20 \ k = \frac{C \cdot d}{E \cdot A} 0 \frac{\left(\frac{8.9 \times 10^{-7}}{1.4 \times 10^{-6}}\right)}{8.85 4 \times 10^{-2} (0.01)} 7.179804$$

7. Para el sistema de capacitores que se muestra en la figura adjunta, se sabe que el cuarto capacitor C_4 posee una carga $Q_4=50\mu C$; $C_1=5\mu F$, $C_2=C_3=C_4=10\mu F$.

La carga eléctrica q	ue posee c_1 , en μ o	, esta uaua por.		
\ 75	b) 90	c) 50	d) 30	e) NEC
1 21 /5	טכ נס ו	C/ 50		

La diferencia	de potencial entr	e los pulitos A y	D del sistem	ia, en 1, esta	1
a) 20	b) 2	4 c)	15	d) 4	e) NEC
(a) 20	0) 2	4			

La energía almacen	ada en el capacito	Γ C_3 , en μ_J , esta dad	а рот.	1
a) 6	b) 10	c) 31	d) 45	e) NEC

Se sabe que el cuarto capacitor está relleno con un dieléctrico con constante dieléctrica (permitividad relativa) $\kappa=5$. La carga inducida en el dieléctrico, en $\mu\mathcal{C}$, está dada por:

a) 24 b) 20	c) 48	d) 40	e) NEC	
0	c /e /e	- C. (1,17	CI= JUF
Reduce el Circulo		-10 Ceg= (00	Cz - WUF
A 11	C03=(1	+ 10UP) = 51	IE-C	G3 = 10:41 =
A	10 UF	(oup) = 0	11 - 123	CY = DOUF
C1 102,3 1+44				Cz3 = 5,UF
RTT				

A
$$C_{1,2,34}$$
 $C_{1,2,3,4} = (C_{1,2,3,4} = (C_{1,2,3,4} + C_{1})^{-1} = C_{1,2,3,4} = (C_{1,2,3,4} + C_{1,2,3,4} + C_{1,2,3,4} + C_{1,2,3,4} + C_{1,2,3,4} + C_{1,2,3,4} + C_{1,2,3,4} = (C_{1,2,3,4} + C_{1,2,3,4} +$

CI y CZBY =0 En Seve

differencia de l'antenais entre a, y 6

 $Q = C_9 V$ C11234 = 3.75MF V= Q = 75,4°C D = 20 Volto 5 Q11234 = 75x10°C V=x

Diferencia de Potencial entre ayb = 20 Voltos

Evergla Almacenada en C3 en [115]

Cz3 II Cy - Comperten Voltage

Cz,3 = SUF

V23=5U

Q=25UC

-D Gulo = Combo. V

U3=G.U2-10(10MF)(20)=> 31.25 ×1065

1 Cal Sere C3 = C13 = Comparen

V3= 2.5V V3= 25.4/C

V3=25U

103 = 31.3UJ

Capacifor 4-D Cy=10MF K=5 Q4=50AC

V4=5U

am= a(1-1)

and = 5040 (1-1) => 40×106

Ocazga modverda?

En el circuito que se muestra ϵ = 10.0 V, C₁= 5.00 μ F, C₂= 2.00 μ F, $C_3 = 3.00 \mu F$, $C_4 = 4.00 \mu F$, $C_5 = 1.00 \mu F$ a) Calcular la capacitancia equivalente del circuito (en μ F) Respuesta: 2.90 tolerancia = ± 0.05 Porellio b) La carga en el capacitor C₅ es de: (en μ C) Respuesta: 8.00 tolerancia = \pm 0.05 Surc c) ¿Qué cantidad de energía almacena (en µJ) el capacitor C1? Cy Sure Cs Cella 4,2 Cz1= Cz+C1 C4,5= (1+1)=4af G1= 24+54F= 7AF C3= 34F C3 Seric | C1,2 $C_{1/2,3} = \begin{pmatrix} + & + \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix}$ C1,2,3= 21 4F C112,3= (+ + +)= 21 uF C1,2,3 \ C4,5 C123,4,5=G,2,3+C4,5 CIRESMIS= (ZIMP)+(YMF)=2.94F

Emergia Almeacenada en Cz V1,7,3,46= V4,5= U,23 V1243 = 10V CIR3 Sore Con CIRY C3 1143= 21 NF O1,23 = O1,2 Q112,3 = 2121C Ci,z Sue Paralelo en Ciy Cz Mmo Voltge $Q_{1/2} = 24 uc$ CIR= FUF V12=3=U1=U2 V= 3V $l_1 = 3$ HD Broggra = U= ICU2 Ci= SUF U= f (SUF) (3) = 22.5 XDC Q= 15UC Capacitus I franc una energia

22.5UC

Un capacitor C₁ de placas planas paralelas y aire en las placas, se coloca en serie con un capacitor C₂, que tiene un área de 0.100 m², una distancia de separación de placas de 1.00 mm y contiene un dieléctrico de constante 5.40. Si se desea una capacitancia equivalente de los capacitores de 2.75 nF.

a) ¿Que tamaño de capacitor C₁ (en nF) deberá colocarse para mantener la rela

b) Si el voltaje en el capacitor C1 es 8750 V, y la distancia de separación de placas 2.50 mm, cuál sería su densidad de energía

C= KEA

C1= 8750 V, j Densidood de energier? 5/m3

d= 250mm

K=1 -D Ance

AU= Ed

 $\Delta V = Ed$ $E = \Delta V - D \frac{(8.750)}{2.5 \times 10^3} = 3,500,000$

dinordad = $\int_{2}^{2} \mathcal{E}_{1} \mathcal{E}_{2}^{2} = \int_{2}^{2} (3500000)^{2} (8.8547 \times 10^{12}) (1)$

densodad= 54.23 1975 3/m3