$$K_S^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

K_S MEAN LIFE

For earlier measurements, beginning with BOLDT 58B, see our 1986 edition, Physics Letters **170B** 130 (1986).

OUR FIT is described in the note on "CP violation in K_L decays" in the K_L^0 Particle Listings. The result labeled "OUR FIT Assuming CPT" ["OUR FIT Not assuming CPT"] includes all measurements except those with the comment "Not assuming CPT" ["Assuming CPT"]. Measurements with neither comment do not assume CPT and enter both fits.

0.8954 ±0.0004 OUR FIT Error includes scale factor of 1.1. Assuming <i>CPT</i>						
0.89564±0.00033 OUR FIT	Not a	assuming <i>CPT</i>				
0.89589 ± 0.00070		1,2 ABOUZAID	11	KTEV	Not assuming CPT	
0.89623 ± 0.00047		1,3 ABOUZAID	11	KTEV	Assuming CPT	
$0.89562\!\pm\!0.00029\!\pm\!0.00043$	20M	⁴ AMBROSINO	11	KLOE	Not assuming CPT	
$0.89598 \pm 0.00048 \pm 0.00051$	16M	LAI	0 2C	NA48		
0.8971 ± 0.0021		BERTANZA	97	NA31		
$0.8941 \pm 0.0014 \pm 0.0009$		SCHWINGEN.	95	E773	Assuming CPT	
0.8929 ± 0.0016		GIBBONS	93	E731	Assuming CPT	
• • • We do not use the foll	lowing	data for averages, fit	s, lim	its, etc.	• • •	
0.8965 ± 0.0007		⁵ ALAVI-HARAT	103	KTEV	Assuming CPT	
0.8958 ± 0.0013		⁶ ALAVI-HARAT	103	KTEV	Not assuming CPT	
0.8920 ± 0.0044	214k	GROSSMAN	87	SPEC		
0.905 ± 0.007		⁷ ARONSON	82 B	SPEC		
0.881 ± 0.009	26k	ARONSON		SPEC		
$0.8926 \pm 0.0032 \pm 0.0002$		⁸ CARITHERS	75	SPEC		
0.8937 ± 0.0048	6M	GEWENIGER	74 B	ASPK		
0.8958 ± 0.0045	50k	⁹ SKJEGGEST	72	HBC		
0.856 ± 0.008	19994	¹⁰ DONALD	68 B	HBC		
0.872 ± 0.009	20000	9,10 HILL	68	DBC		

¹ The two ABOUZAID 11 values use the same full KTeV dataset from 1996, 1997, and 1999. The first enters the "assuming *CPT*" fit and the second enters the "not assuming *CPT*" fit.

²ABOUZAID 11 fit has Δm , τ_s , ϕ_ϵ , $\text{Re}(\epsilon'/\epsilon)$, and $\text{Im}(\epsilon'/\epsilon)$ as free parameters. See $\text{Im}(\epsilon'/\epsilon)$ in the " K_I^0 CP violation" section for correlation information.

 $^{^3}$ ABOUZAID 11 fit has Δm and τ_{S} free but constrains ϕ_{ϵ} to the Superweak value, i.e. assumes CPT. This τ_{S} value is correlated with their $\Delta m = m_{K_L^0} - m_{K_S^0}$ measurement in the K_L^0 listings. The correlation coefficient $\rho(\tau_{S},\,\Delta m) = -0.670.$

⁴ Fit to the proper time distribution.

⁵ This ALAVI-HARATI 03 fit has Δm and τ_s free but constrains ϕ_{+-} to the Superweak value, i.e. assumes *CPT*. This τ_s value is correlated with their $\Delta m = m_{K_I^0} - m_{K_I^0}$

 $m_{K_S^0}$ measurement in the K_L^0 listings. The correlation coefficient $\rho(\tau_s, \Delta m) = -0.396$. Superseded by ABOUZAID 11.

K_S DECAY MODES

		Scale factor/
Mode	Fraction (Γ_i/Γ)	Confidence level

Hadronic modes

Γ_1	$\pi^0\pi^0$	$(30.69\pm0.05)~\%$
Γ_2	$\pi^+\pi^-$	$(69.20 \pm 0.05) \%$
Γ3	$\pi^+\pi^-\pi^0$	$(3.5 \ ^{+1.1}_{-0.9}) imes 10^{-7}$

Modes with photons or $\ell \overline{\ell}$ pairs

Γ_4	$\pi^+\pi^-\gamma$	[a,b]	$(1.79\pm0.05)\times10^{-3}$	
Γ_5	$\pi^{+}\pi^{-}e^{+}e^{-}$		$(4.79\pm0.15)\times10^{-5}$	
Γ_6	$\pi^{0} \gamma \gamma$	[<i>a</i>]	$(4.9 \pm 1.8) \times 10^{-8}$	
Γ_7	$\gamma\gamma$		$(2.63\pm0.17)\times10^{-6}$	S=3.0

Semileptonic modes

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

Γ_{10}	$3\pi^0$	CP	< 2.6	$\times 10^{-8}$	CL=90%
Γ_{11}	$\mu^+\mu^-$	S1	< 9	\times 10 ⁻⁹	CL=90%
Γ_{12}	e^+e^-	<i>S</i> 1	< 9	\times 10 ⁻⁹	CL=90%
Γ_{13}	$\pi^{0} e^{+} e^{-}$	<i>S</i> 1	[a] $(3.0 + 1.5)$	$\frac{5}{2}$) × 10 ⁻⁹	
Γ_{14}	$\pi^{0} \mu^{+} \mu^{-}$	<i>S</i> 1	$(2.9 \begin{array}{c} +1.5 \\ -1.2 \end{array}$	$(2) \times 10^{-9}$	

- [a] See the Particle Listings below for the energy limits used in this measurement.
- [b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.

⁶ This ALAVI-HARATI 03 fit has Δm , ϕ_{+-} , and τ_{K_S} free. See ϕ_{+-} in the " K_L CP violation" section for correlation information. Superseded by ABOUZAID 11.

 $^{^7}$ ARONSON 82 find that K_S^0 mean life may depend on the kaon energy.

⁸ CARITHERS 75 measures the Δm dependence of the total decay rate (inverse mean life) to be $\Gamma(K_S^0) = \left[(1.122 \pm 0.004) + 0.16(\Delta m - 0.5348)/\Delta m \right] 10^{10}/\text{s}$, or, in terms of mean life, CARITHERS 75 measures $\tau_s = (0.8913 \pm 0.0032) - 0.238 \left[\Delta m - 0.5348 \right] (10^{-10} \text{ s})$. We have adjusted the measurement to use our best values of $(\Delta m = 0.5293 \pm 0.0009) \ (10^{10} \ \hbar \ \text{s}^{-1})$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 $^{^9}$ HILL 68 has been changed by the authors from the published value (0.865 \pm 0.009) because of a correction in the shift due to η_{+-} . SKJEGGESTAD 72 and HILL 68 give detailed discussions of systematics encountered in this type of experiment.

¹⁰ Pre-1971 experiments are excluded from the average because of disagreement with later more precise experiments.

- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] Not a measurement. Calculated as $0.666 \cdot B(\pi^{\pm} e^{\mp} \nu_e)$.

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 5 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=$ 0.1 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

KO DECAY RATES

		3						
$\Gamma(\pi^{\pm}e^{\mp} u_{e})$					Г8			
$VALUE (10^6 \text{ s}^{-1})$	EVTS	DOCUMENT ID)	TECN	COMMENT			
• • • We do no	ot use the	following data fo	or avera	ges, fits,	limits, etc. • • •			
8.1 ± 1.6	75	$^{ m 1}$ AKHMETSH	IN 99	CMD2	Tagged K^0_{S} using $\phi \to K^0_{J} K^0_{S}$			
$7.50 \!\pm\! 0.08$		² PDG	98		3			
seen		BURGUN	72	HBC	$K^+ ho ightarrow K^0 ho \pi^+$			
9.3 ± 2.5		AUBERT	65	HLBC	$\Delta S = \Delta Q$, <i>CP</i> cons. not assumed			
$^{ m 1}$ AKHMETS	HIN 99 is f	rom a measured	branch	ing ratio	$B(K_S^0 \rightarrow \pi e \nu_e) = (7.2 \pm 1.4) \times$			
ratio. ² PDG 98 fro	10^{-4} and $ au_{K_S^0} = (0.8934 \pm 0.0008) \times 10^{-10}$ s. Not independent of measured branching ratio. 2 PDG 98 from K_L^0 measurements, assuming that $\Delta S = \Delta Q$ in K^0 decay so that $\Gamma(K_S^0 \to \pi^\pm e^\mp \nu_e) = \Gamma(K_L^0 \to \pi^\pm e^\mp \nu_e)$.							

$$\Gamma(\pi^{\pm}\mu^{\mp}
u_{\mu})$$

 $VALUE (10^6 \text{ s}^{-1})$ DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ PDG 5.25 ± 0.07

 1 PDG 98 from K_L^0 measurements, assuming that $\Delta S = \Delta Q$ in K^0 decay so that $\Gamma(K_S^0 \to \pi^\pm \, \mu^\mp \, \nu_\mu) = \Gamma(K_L^0 \to \, \pi^\pm \, \mu^\mp \, \nu_\mu).$

K_S^0 Branching ratios

— Hadronic modes -

$\Gamma(\pi^0\pi^0)/\Gamma_{total}$						Γ_1/Γ
VALUE	EVTS	DOCUMENT ID		TECN		
0.3069±0.0005 OUR F	IT					
• • • We do not use th	e following	data for averages,	fits,	limits, etc	C. • • •	
0.335 ± 0.014	1066	BROWN	63	HLBC		
$0.288\ \pm0.021$	198	CHRETIEN	63	HLBC		
0.30 ± 0.035		BROWN	61	HLBC		
$\Gamma(\sigma^{+}\sigma^{-})/\Gamma$						Г- /Г
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$	EV/TC	DOCUMENT ID		TECN	COMMENT	Γ_2/Γ
<u>VALUE</u> 0.6920±0.0005 OUR F	<u>EVTS</u> I T	DOCUMENT ID		<u>TECN</u> (COMMENT	
• • • We do not use th		data for averages	fite	limits et		
					_	
0.670 ± 0.010	3447	DOYLE	69	HBC 7	$\tau^- p \rightarrow \Lambda K^0$	
$\Gamma(\pi^+\pi^-)/\Gamma(\pi^0\pi^0)$						Γ_2/Γ_1
VALUE	<u>EVTS</u>	DOCUMENT I	'D	TECN	COMMENT	. 2/ . 1
2.255 ±0.005 OUR F	<u></u>	<u> </u>				
2.2549 ± 0.0054		¹ AMBROSIN	0 0	6c KLO	Ξ	
• • • We do not use th	e following	data for averages,	fits,	limits, etc	C. • • •	
$2.2555 \pm 0.0012 \pm 0.0054$	1	² AMBROSIN	0 0	6c KLO	≣	
$2.236 \pm 0.003 \pm 0.015$	766k	² ALOISIO		D2B KLO		
2.11 ± 0.09	1315	EVERHART	- 7	6 WIRE	$\pi^- p \rightarrow \Lambda$	κ^0
2.169 ± 0.094	16k	COWELL	7	4 OSPŁ	$\langle \pi^- p \rightarrow \Lambda$	κ^0
2.16 ± 0.08	4799	HILL	7		$K^+d \rightarrow K$	
2.22 ± 0.10	3068	³ ALITTI	7	2 HBC	$K^+ p \rightarrow \pi$	$+_{pK}^0$
2.22 ± 0.08	6380	MORSE	7		$K^+ n \rightarrow K$	
2.10 ± 0.11	701	⁴ NAGY	7	'2 HLB($C K^+ n \rightarrow K$	
2.22 ± 0.095	6150	⁵ BALTAY	7	1 HBC		
2.282 ± 0.043	7944	⁶ MOFFETT	7	0 OSPŁ	$\langle K^+ n \rightarrow K$	$(^{0}_{p}$
2.12 ± 0.17	267	⁴ BOZOKI	6	69 HLBO		_
2.285 ± 0.055	3016	⁶ GOBBI			$\langle K^+ n \rightarrow K$	
2.10 ± 0.06	3700	MORFIN	6	9 HLBO	$C K^+ n \rightarrow K$	$(^{0}p$
$^{ m 1}$ This result combine	s AMBROS	INO 06c KLOE 20	001-0)2 data wi	th ALOISIO 02	2B KLOE
2000 data. $K_{S}^{0} ightarrow$	$\pi^+\pi^-$ fully	/ inclusive.				

⁶ MOFFETT 70 is a final result which includes GOBBI 69.

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{ ext{total}}$ Γ_3/Γ $VALUE (units <math>10^{-7})$ EVTS DOCUMENT ID TECN COMMENT $S_{-0.9}^{+1.1}$ OUR AVERAGE

 $4.7^{+2.2+1.7}_{-1.7-1.5}$ 1 BATLEY 05 NA48 $^{2.5^{+1.3+0.5}_{-1.0-0.6}}$ 500k 2 ADLER 97B CPLR $^{4.8^{+2.2}_{-1.6}\pm1.1}$ 3 ZOU 96 E621

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $4.1^{+2.5}_{-1.9}^{+0.5}_{-0.6}$ 4 ADLER 96E CPLR Sup. by ADLER 97B $3.9^{+5.4}_{-1.8}^{+0.9}_{-0.7}$ 5 THOMSON 94 E621 Sup. by ZOU 96

- ¹BATLEY 05 is obtained by measuring the interference parameters in K_S , $K_L \rightarrow \pi^+\pi^-\pi^0$: Re(λ) = 0.038 \pm 0.008 \pm 0.006 and Im(λ) = -0.013 \pm 0.005 \pm 0.004; the correlation coeff. between Re(λ) and Im(λ) is 0.66 (statistical only).
- ² ADLER 97B find the *CP*-conserving parameters $\text{Re}(\lambda) = (28 \pm 7 \pm 3) \times 10^{-3}$, $\text{Im}(\lambda) = (-10 \pm 8 \pm 2) \times 10^{-3}$. They estimate $\text{B}(K_S^0 \to \pi^+\pi^-\pi^0)$ from $\text{Re}(\lambda)$ and the K_I^0 decay parameters. See also ANGELOPOULOS 98C.
- 3 ZOU 96 is from the the measured quantities $|\rho_{+-0}|=0.039^{+0.009}_{-0.006}\pm0.005$ and $\phi_{\rho}=(-9\pm18)^{\circ}$.
- ⁴ ADLER 96E is from the measured quantities $\text{Re}(\lambda) = 0.036 \pm 0.010^{+0.002}_{-0.003}$ and $\text{Im}(\lambda)$ consistent with zero. Note that the quantity λ is the same as ρ_{+-0} used in other footnotes.
- ⁵THOMSON 94 calculates this branching ratio from their measurements $|\rho_{+-0}| = 0.035^{+0.019}_{-0.011} \pm 0.004$ and $\phi_{\rho} = (-59 \pm 48)^{\circ}$ where $|\rho_{+-0}| e^{i\phi_{\rho}} = A(K_S^0 \to \pi^+ \pi^- \pi^0, I=2)/A(K_I^0 \to \pi^+ \pi^- \pi^0)$.

- Modes with photons or $\ell \overline{\ell}$ pairs ---

$\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$ Γ_4/Γ_2

VALUE (units 10 ⁻³)	EVIS	DOCUMENT ID		IECN	COMMENT	
2.59±0.08 OUR AVERA	GE					
$2.56\!\pm\!0.09$	1286	RAMBERG	93	E731	${\sf p}_{\gamma}~>$ 50 MeV $/c$	
$2.68\!\pm\!0.15$	1	TAUREG	76	SPEC	${\sf p}_{\gamma}^{'} >$ 50 MeV $/c$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

7.10 ± 0.22	3723	RAMBERG	93	E731	${\sf p}_{\gamma}~>$ 20 MeV $/c$
3.0 ± 0.6	29	² BOBISUT	74	HLBC	$p_{\gamma}^{'} >$ 40 MeV/ c
2.8 ± 0.6		³ BURGUN			$p_{\gamma}^{'} > 50~MeV/c$

¹ TAUREG 76 find direct emission contribution < 0.06, CL = 90%.

²BOBISUT 74 not included in average because p_{γ} cut differs. Estimates direct emission contribution to be 0.5 or less, CL = 95%.

 $^{^3}$ BURGUN 73 estimates that direct emission contribution is 0.3 \pm 0.6.

$\Gamma(\pi^+\pi^-e^+e^-)/\Gamma_{ ext{total}}$							
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT	ID	TECN	COMMENT		
4.79±0.15 OUR AVE	RAGE						
$4.83\!\pm\!0.11\!\pm\!0.14$	23k	$^{ m 1}$ BATLEY	11	NA48	2002 data		
4.69 ± 0.30	676	² LAI	03 C	NA48	1998+1999 data		
• • • We do not use t	the followi	ng data for avera	ges, fits,	limits,	etc. • • •		
$4.71\!\pm\!0.23\!\pm\!0.22$	620	^{2,3} LAI	03 C	NA48	1999 data		

 $4.5 \pm 0.7 \pm 0.4$ LAI 00B NA48 1998 data $^{1}\, \mathrm{BATLEY} \ 11 \ \mathrm{reports} \ [\Gamma(\mathcal{K}^{0}_{S} \ \rightarrow \ \pi^{+}\,\pi^{-}\,\mathrm{e}^{+}\,\mathrm{e}^{-})/\Gamma_{\mathrm{total}}] \ / \ [\mathrm{B}(\mathcal{K}^{0}_{L} \ \rightarrow \ \pi^{+}\,\pi^{-}\,\pi^{0})] \ / \ [\mathrm{B}(\mathcal{K}^{0}_{L} \ \rightarrow \ \pi^{0}\,\pi^{0})] \ / \ [\mathrm{B}(\mathcal{K}^{$ $[B(\pi^0 \to e^+e^-\gamma)] = (3.28 \pm 0.06 \pm 0.04) \times 10^{-2}$ which we multiply by our best values $B(K_L^0 \to \pi^+\pi^-\pi^0) = (12.54 \pm 0.05) \times 10^{-2}$, $B(\pi^0 \to e^+e^-\gamma) = (1.174 \pm 0.05) \times 10^{-2}$ $0.035) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. Also a limit on the absolute value of the interference between bremsstrahlung and E1 transition is given : < 4 \times 10 $^{-7}$ at 90%

C.L. ² Uses normalization BR($K_L \rightarrow \pi^+\pi^-\pi^0$)*BR($\pi^0 \rightarrow e^+e^-$) = (1.505 ± 0.047)×10⁻³

 Γ_6/Γ

 $\Gamma(\pi^0 \gamma \gamma)/\Gamma_{\text{total}}$

VALUE (units 10^{-8})CL%EVTSDOCUMENT IDTECNCOMMENT4.9±1.6±0.917 1 LAI04NA48 $m_{\gamma\gamma}^{2}/m_{K}^{2} > 0.2$

• • • We do not use the following data for averages, fits, limits, etc

03B NA48 $m_{\gamma\gamma}^2/m_K^2 > 0.2$ <33

 $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ Γ_7/Γ

VALUE (units 10^{-6})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
2.63 ±0.17 O	UR AVERAGE	Error includes scale	e facto	or of 3.0	
$2.26 \pm 0.12 \pm 0$	0.06 711	¹ AMBROSINO	08C	KLOE	$\phi \rightarrow K_S^0 K_I^0$
$2.713 \pm 0.063 \pm 0$	0.005 7.5k	² LAI	03	NA48	<i>3</i> L

• We do not use the following data for averages, fits, limits, etc. • • •

2.58	± 0.36	± 0.22	149	LAI	00	NA48
2.2	±1.1		16	³ BARR	95 B	NA31
2.4	± 0.9		35	⁴ BARR	95 B	NA31
< 13		90		BALATS	89	SPEC
2.4	± 1.2		19	BURKHARDT	87	NA31
<133		90		BARMIN	86 B	XEBC

 1 AMBROSINO 08C reports $(2.26\pm0.12\pm0.06)\times10^{-6}$ from a measurement of [$\Gamma(\kappa_S^0\to 0.00)\times10^{-6}$

Second error is $0.16(\text{syst}) \pm 0.15(\text{norm})$ combined in quadrature.

 $^{^{1}}$ Spectrum also measured and found consistent with the one generated by a constant matrix element.

 $[\]gamma \gamma)/\Gamma_{\rm total}] \times [{\rm B}({\cal K}_S^0 \to \pi^0 \pi^0)] \ {\rm assuming} \ {\rm B}({\cal K}_S^0 \to \pi^0 \pi^0) = (30.69 \pm 0.05) \times 10^{-2}.$ 2 LAI 03 reports $[\Gamma({\cal K}_S^0 \to \gamma \gamma)/\Gamma_{\rm total}] \ / \ [{\rm B}({\cal K}_S^0 \to \pi^0 \pi^0)] = (8.84 \pm 0.18 \pm 0.10) \times 10^{-6}.$ which we multiply by our best value B($K_S^0 \to \pi^0 \pi^0$) = (30.69 ± 0.05) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from

 $^{^3}$ BARR 95B result is calculated using B(K $_L \rightarrow~\gamma\gamma) = (5.86\pm0.17)\times10^{-4}$.

 $^{^4}$ BARR 95B quotes this as the combined BARR 95B + BURKHARDT 87 result after rescaling BURKHARDT 87 to use same branching ratios and lifetimes as BARR 95B.

Semileptonic modes

 $\Gamma(\pi^{\pm}e^{\mp}\nu_{e})/\Gamma_{\text{total}}$

 Γ_8/Γ

VALUE (units 10^{-4}) 7.04 \pm 0.08 OUR FIT

DOCUMENT ID

TECN COMMENT

7.04 ± 0.08 OUR AVERAGE

¹ BATLEY $7.046 \pm 0.18 \pm 0.16$ 624 ² ALOISIO $6.91 \pm 0.34 \pm 0.15$

07D NA48 $K^0(\overline{K}^0)(t) \rightarrow \pi e \nu$ 02 KLOE Tagged K^0_S using $\phi \rightarrow K^0_L K^0_S$

• • • We use the following data for averages but not for fits. • • •

 7.05 ± 0.09

13k ³ AMBROSINO 06E KLOE Not fitted

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

AKHMETSHIN 99 CMD2 Tagged K_S^0 using $\phi \to K_I^0 K_S^0$ 7.2 ± 1.4

 1 Reconstructed from $K^0(\overline{K}^0)(t) o \pi e
u$ distributions using PDG values of B($K^0_L o$ $\pi e \nu$) = 0.4053 \pm 0.0015, $\tau_I = (5.114 \pm 0.021) \times 10^{-8}$ s and $\tau_S = (0.8958 \pm 0.0005) \times 10^{-8}$

² Uses the PDG 00 value for B($\kappa_S^0 \rightarrow \pi^+\pi^-$).

³ Obtained by imposing Σ_i B($K_S^0 \to i$) = 1, where i runs over all the four branching ratios $\pi^+\pi^-$, $\pi^0\pi^0$, $\pi\,\mathrm{e}\,\nu$, and $\pi\,\mu\,\overline{\nu}$. Input value of B($K^0_S\to\pi^+\pi^-$) / B($K^0_S\to\pi^0\pi^0$) from AMBROSINO 06C is used. To derive $\Gamma(K_S^0 \to \pi^+ \mu \nu) / \Gamma(K_S^0 \to \pi^+ e \nu)$, lepton universality is assumed, radiative corrections from ANDRE 07 are used, and phase space integrals are taken from KTeV, ALEXOPOULOS 04A. This branching fraction enters our fit via their $\Gamma(\pi^{\pm}e^{\mp}\nu_{e})/\Gamma(\pi^{+}\pi^{-})$ branching ratio measurement.

 $\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})/\Gamma_{\text{total}}$

Γα/Γ

The PDG 06 value below has not been measured but is computed to be 0.666 times the $K_S \to \pi^{\pm} e^{\mp} \nu_e$ branching fraction. It is included in the fit that constrains the four branching ratios $\pi^+\pi^-$, $\pi^0\pi^0$, $\pi e\nu$, and $\pi\mu\nu$ to sum to 1. This treatment, used by AMBROSINO 06E, is preferable to our previous practice of constraining the $\pi^+\pi^$ and $\pi^0\pi^0$ modes to sum to 1. The 0.666 factor is obtained from AMBROSINO 06E and assumes lepton universality, radiative corrections from ANDRE 07, and phase space integrals from KTeV, ALEXOPOULOS 04A.

VALUE (units 10^{-4})

DOCUMENT ID COMMENT

 4.69 ± 0.06 OUR FIT $4.691 \pm 0.001 \pm 0.056$

1 PDG

06 calculated from $\pi^{\pm}e^{\mp}\nu_{\alpha}$

Created: 5/30/2017 17:22

 $\Gamma(\pi^{\pm} e^{\mp} \nu_e) / \Gamma(\pi^{+} \pi^{-})$

 Γ_8/Γ_2

VALUE (units 10^{-4})

13k

DOCUMENT ID TECN

10.18 ± 0.12 OUR FIT

 $10.19\pm0.11\pm0.07$

AMBROSINO 06E KLOE

¹ The PDG 06 value is computed to be $B_{PDG06}(\pi\mu\nu) = 0.666 B_{FIT}(\pi e \nu)$. The first error specifies the arbitrarily small error, 0.001×10^{-4} , on BpDG06 $(\pi\mu\nu)$ for fixed $B_{FIT}(\pi e \nu)$. The second error is that due to the uncertainty in $B_{FIT}(\pi e \nu)$.

- CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

 $\Gamma(3\pi^0)/\Gamma_{\text{total}}$ Violates *CP* conservation.

 Γ_{10}/Γ

$VALUE$ (units 10^{-7})	CL%	EVTS	DOCUMENT ID	TECN	COMMENT
< 0.26	90	590M	¹ BABUSCI 13C	KLOE	$\phi \rightarrow K_L^0 K_S^0$

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 1.2	90	37.8M	AMBROSINO	05 B	KLOE
< 7.4	90	4.9M	² LAI	05A	NA48
<140	90	7M	ACHASOV	99 D	SND
<190	90	17300	³ ANGELOPO	98 B	CPLR
<370	90		BARMIN	83	HLBC

 1 BABUSCI 13C uses 1.7 fb $^{-1}$ of data of $\phi \to \mathcal{K}^0_L \mathcal{K}^0_S$ decays with \mathcal{K}^0_L interaction in the calorimeter, collected from 2004 to 2005. No candidate events were found in the data with an expected background of 0.04 $^{+0.15}_{-0.03}$ events. Upper limit is obtained by normalizing to $\mathcal{K}^0_S \to 2\pi^0$ decays.

 2 LAI 05A value is obtained from their bound on $|\eta_{000}|$ (not assuming CPT) and B($K_L^0\to 3\pi^0)=0.211\pm0.003$, and PDG 04 values for K_L^0 and K_S^0 lifetimes. If CPT is assumed then B($K_S^0\to 3\pi^0)_{CPT}$ $<~2.3\times10^{-7}$ at 90% CL

³ ANGELOPOULOS 98B is from $Im(\eta_{000}) = -0.05 \pm 0.12 \pm 0.05$, assuming $Re(\eta_{000}) = Re(\epsilon) = 1.635 \times 10^{-3}$ and using the value $B(K_L^0 \to \pi^0 \pi^0 \pi^0) = 0.2112 \pm 0.0027$.

 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$

 Γ_{11}/Γ

Test for $\Delta S = 1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

<i>VALUE</i> (units 10^{-9})		CL%DOCUMENT ID		TECN
<9	90	1 AAIJ	13G	LHCB

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<3.2\times10^2$$
 90 GJESDAL 73 ASPK $<7\times10^3$ 90 HYAMS 69B OSPK

 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$

 Γ_{12}/Γ

Created: 5/30/2017 17:22

Test for $\Delta S = 1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

VALUE (units 10^{-7})	CL%	DOCUMENT ID	TECN	COMMENT
< 0.09	90	¹ AMBROSINO 09A	KLOE	$e^+e^- \rightarrow \phi \rightarrow K_c^0 K_L^0$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $^{^1}$ AAIJ 13G uses 1.0 fb $^{-1}$ of pp collisions at $\sqrt{s}=7$ TeV. They obtained B(K $_S^0\to\mu^+\mu^-)<11\times10^{-9}$ at 95% C.L.

 $^{^1}$ AMBROSINO 09A reports < 0.09 \times 10 $^{-7}$ from a measurement of [$\Gamma(K_S^0 \rightarrow \ e^+ \, e^-) / \Gamma_{total}$] / [B($K_S^0 \rightarrow \ \pi^+ \, \pi^-$)] assuming B($K_S^0 \rightarrow \ \pi^+ \, \pi^-$) = (69.20 \pm 0.05) \times 10 $^{-2}$.

 $\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$

Test for $\Delta S=1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

$VALUE$ (units 10^{-9})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
$3.0^{+1.5}_{-1.2}\pm0.2$	7	1 BATLEY	03	NA48	${\rm m}_{ee}$ $>$ 0.165 GeV

• We do not use the following data for averages, fits, limits, etc. • • •

< 140	90		LAI	01	NA48
< 1100	90	0	BARR	93 B	NA31
<45000	90		GIBBONS	88	E731

 $^{^{}m 1}$ BATLEY 03 extrapolate also to the full kinematical region using a constant form factor and a vector matrix element. The resulting branching ratio is $(5.8 + 2.9) \times 10^{-9}$.

$\Gamma \big(\pi^0 \, \mu^+ \, \mu^-\big)/\Gamma_{\rm total}$

 Γ_{14}/Γ

Test for $\Delta S = 1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

$VALUE$ (units 10^{-9})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.9^{igoplus 1.5}_{-1.2} \pm 0.2$	6	¹ BATLEY	04A	NA48	NA48/1 K_S^0 beam

 $^{^{1}\,\}mathrm{Background}$ estimate is $0.22^{+0.18}_{-0.11}$ events. Branching ratio assumes a vector matrix element and unit form factor

K_S^0 FORM FACTORS

For discussion, see note on $K_{\ell 3}$ form factors in the K^\pm section of the Particle Listings above. Because the semileptonic branching fraction is smaller in K_S^0 than K_L^0 by the ratio of the mean lives, the K_S^0 semileptonic form factor has so far been measured only in the K_{e3} mode using the linear expansion $f_+(t)=f_+(0)$ $(1+\lambda_+ t/m_{\pi^+}^2)$, which gives the vector form factor $f_{\perp}(t)$ relative to its value at t = 0.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN K_{e3}^0 DECAY)

VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN
3.39 ± 0.41	15k	AMBROSINO 06E	KLOE

A REVIEW GOES HERE – Check our WWW List of Reviews

CP-VIOLATION PARAMETERS IN K_S^0 DECAY

$$A_S = \left[\begin{array}{ccc} \Gamma(K_S^0 \to \pi^- e^+ \nu_e) - \Gamma(K_S^0 \to \pi^+ e^- \overline{\nu}_e) \end{array} \right] / \text{SUM}$$
 Such asymmetry violates CP . If CPT is assumed then $A_S = 2 \text{ Re}(\epsilon)$.

VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN
1.5±9.6±2.9	13k	AMBROSINO 06	E KLOE

----- PARAMETERS FOR $K_{\mathsf{S}}^0 ightarrow 3\pi$ DECAY ---

 $\operatorname{Im}(\eta_{+-0})^2 = \Gamma(K_S^0 \to \pi^+\pi^-\pi^0, \operatorname{\it CP}\text{-violating}) / \Gamma(K_L^0 \to \pi^+\pi^-\pi^0)$ CPT assumed valid (i.e. $\operatorname{Re}(\eta_{+-0}) \simeq 0$).

<u>CL%</u> <u>EVTS</u> DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ BARMIN 90 601 85 HLBC < 0.12 384 **METCALF ASPK**

 1 BARMIN 85 find Re $(\eta_{+-0})=(0.05\pm0.17)$ and Im $(\eta_{+-0})=(0.15\pm0.33)$. Includes events of BALDO-CEOLIN 75.

$Im(\eta_{+-0}) = Im(A(K_S^0 \to \pi^+\pi^-\pi^0, CP\text{-violating}) / A(K_L^0 \to \pi^+\pi^-\pi^0))$ VALUE VAL

 $-0.002\!\pm\!0.009^{+0.002}_{-0.001}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.002\pm0.018\pm0.003$ 137k ² ADLER 96D CPLR Sup. by ADLER 97B

³ ZOU $-0.015\pm0.017\pm0.025$ 272k 94 SPEC

 1 ADLER 97B also find Re($\eta_{+-0}) = -0.002 \pm 0.007 ^{+0.004}_{-0.001}.$ See also ANGELOPOU-

 2 The ADLER 96D fit also yields Re $(\eta_{+-0})=$ 0.006 \pm 0.013 \pm 0.001 with a correlation +0.66 between real and imaginary parts. Their results correspond to $|\eta_{+-0}| < 0.037$

 3 ZOU 94 use theoretical constraint $\mathrm{Re}(\eta_{+-0})=\mathrm{Re}(\epsilon)=0.0016$. Without this constraint they find $\mathrm{Im}(\eta_{+-0}) = 0.019 \pm 0.061$ and $\mathrm{Re}(\eta_{+-0}) = 0.019 \pm 0.027$.

 ${\rm Im}(\eta_{000})^2 = \Gamma(K_S^0 \to 3\pi^0) / \Gamma(K_L^0 \to 3\pi^0)$ CPT assumed valid (i.e. ${\rm Re}(\eta_{000}) \simeq 0$). This limit determines branching ratio $\Gamma(3\pi^0)/\Gamma_{\text{total}}$ above.

CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ BARMIN 632 90 < 0.1² GJESDAL 74B SPEC Indirect meas. < 0.28

¹ BARMIN 83 find $\text{Re}(\eta_{000}) = (-0.08 \pm 0.18)$ and $\text{Im}(\eta_{000}) = (-0.05 \pm 0.27)$. Assuming CPT invariance they obtain the limit quoted above.

 2 GJESDAL 74B uses $K2\pi$, $K_{\mu3}$, and K_{e3} decay results, unitarity, and *CPT*. Calculates $|(\eta_{000})|=0.26\pm0.20$. We convert to upper limit.

$$\begin{split} \text{Im}(\eta_{000}) &= \text{Im}(\textit{A}(\textit{K}^0_{\textit{S}} \rightarrow \pi^0\pi^0\pi^0) / \textit{A}(\textit{K}^0_{\textit{L}} \rightarrow \pi^0\pi^0\pi^0)) \\ \textit{K}^0_{\textit{S}} \rightarrow \pi^0\pi^0\pi^0 \text{ violates } \textit{CP} \text{ conservation, in contrast to } \textit{K}^0_{\textit{S}} \rightarrow \pi^+\pi^-\pi^0 \text{ which} \end{split}$$
has a CP-conserving part.

VALUE	_EVTS	DOCUMENT ID		TECN	COMMENT	
-0.001 ± 0.016 OUR AVE	RAGE					
$0.000 \pm 0.009 \pm 0.013$	4.9M	$\frac{1}{2}$ LAI	05A	NA48	Assumes CPT	
$-0.05\ \pm0.12\ \pm0.05$	17300	² ANGELOPO	98 B	CPLR	Assumes CPT	

- ¹LAI 05A assumes $Re(\eta_{000}) = Re(\epsilon) = 1.66 \times 10^{-3}$. The equivalent limit is $|\eta_{000}|_{CPT}$ <0.025 at 90% CL Without assuming CPT invariance, they obtain Re (η_{000}) =-0.002 \pm 0.011 \pm 0.015 and Im (η_{000}) =-0.003 \pm 0.013 \pm 0.017 with a statistical correlation coefficient of 0.77 and an overall correlation coefficient of 0.57 between imaginary and real part. The equivalent limit is $|\eta_{000}|<$ 0.045 at 90% CL
- 2 ANGELOPOULOS 98B assumes Re($\eta_{000})=$ Re($\epsilon)=1.635\times10^{-3}.$ Without assuming CPT invariance, they obtain Re($\eta_{000})=0.18\pm0.14\pm0.06$ and Im($\eta_{000})=0.15\pm0.14$

$|\eta_{000}| = |A(K_S^0 \rightarrow 3\pi^0)/A(K_L^0 \rightarrow 3\pi^0)|$ A non-zero value violates CP invariance.

VALUE	CL%	<u>EVTS</u>	DOCUMENT ID		TECN
<0.0088	90	590M	BABUSCI	13 C	KLOE

• • We do not use the following data for averages, fits, limits, etc.

< 0.018	90	37.8M	AMBROSINO	05 B	KLOE
< 0.045	90	4.9M	LAI	05A	NA48

DECAY-PLANE ASYMMETRY IN $\pi^+\pi^-e^+e^-$ DECAYS -

This is the CP-violating asymmetry

$$A = \frac{N_{\sin\phi\cos\phi > 0.0} - N_{\sin\phi\cos\phi < 0.0}}{N_{\sin\phi\cos\phi > 0.0} + N_{\sin\phi\cos\phi < 0.0}}$$

where ϕ is the angle between the e^+e^- and $\pi^+\pi^-$ planes in the $\mathcal{K}^0_{\mathbf{S}}$

CP asymmetry A in $K_S^0 \rightarrow \pi^+\pi^-e^+e^-$

VALUE (%)	DOCUMENT IL		TECN	COMMENT		
-0.4±0.8 OUR AVERAGE		_				
$-0.4 \!\pm\! 0.8$	$^{ m 1}$ BATLEY	11	NA48	2002 data		
$-1.1\!\pm\!4.1$	LAI	03 C	NA48	1998+1999 data		
 • • We do not use the following data for averages, fits, limits, etc. 						
$0.5 \pm 4.0 \pm 1.6$	LAI	03 C	NA48	1999 data		
1 The result is used to set the limit $A < 1.5\%$ at 90% C.L.						

K REFERENCES

AAIJ BABUSCI ABOUZAID AMBROSINO BATLEY AMBROSINO ANDRE BATLEY AMBROSINO AMBROSINO AMBROSINO AMBROSINO BATLEY LAI ALEXOPOU BATLEY LAI	13G 13C 11 11 11 09A 08C 07 07D 06C 06E 06 05B 05 05A 04A 04A	JHEP 1301 090 PL B723 54 PR D83 092001 EPJ C71 1604 PL B694 301 PL B672 203 JHEP 0805 051 ANP 322 2518 PL B653 145 EPJ C48 767 PL B636 173 JP G33 1 PL B619 61 PL B630 31 PL B610 165 PR D70 092007 PL B599 197 PL B578 276	R. Aaij et al. D. Babusci et al. E. Abouzaid et al. F. Ambrosino et al. J.R. Batley et al. F. Ambrosino et al. F. Ambrosino et al. T. Andre J.R. Batley et al. F. Ambrosino et al. F. Ambrosino et al. F. Ambrosino et al. J.R. Batley et al. A. Lai et al. J.R. Batley et al. A. Lai et al. S. Eidelpes et al. S. Eidelpes et al.	(LHCb Collab.) (KLOE-2 Collab.) (FNAL KTeV Collab.) (KLOE Collab.) (CERN NA48/1 Collab.) (KLOE Collab.) (KLOE Collab.) (EFI) (CERN NA48 Collab.) (KLOE Collab.) (NA48 Collab.) (CERN NA48 Collab.) (FNAL KTEV Collab.) (NA48 Collab.) (CERN NA48 Collab.)
PDG	04	PL B592 1	S. Eidelman <i>et al.</i>	(PDG Collab.)

HTTP://PDG.LBL.GOV

Page 11

ALAVI-HARATI Also BATLEY	03	PR D67 012005 PR D70 079904 (errat.) PL B576 43	J.R. Batley et al.	(FNAL KTeV Collab.) (FNAL KTeV Collab.) (CERN NA48 Collab.)
LAI LAI	03 03B	PL B551 7 PL B556 105	A. Lai <i>et al.</i> A. Lai <i>et al.</i>	(CERN NA48 Collab.)
LAI	03C	EPJ C30 33	A. Lai et al. A. Lai et al.	(CERN NA48 Collab.) (CERN NA48 Collab.)
ALOISIO	02	PL B535 37	A. Aloisio <i>et al.</i>	(KLOE Collab.)
ALOISIO	02B	PL B538 21	A. Aloisio <i>et al.</i>	(KLOE Collab.)
LAI LAI	02C 01	PL B537 28 PL B514 253	A. Lai <i>et al.</i> A. Lai <i>et al.</i>	(CERN NA48 Collab.) (CERN NA48 Collab.)
LAI	00	PL B493 29	A. Lai et al.	(CERN NA48 Collab.)
LAI	00B	PL B496 137	A. Lai et al.	(CERN NA48 Collab.)
PDG	00	EPJ C15 1	D.E. Groom et al.	(PDG Collab.)
ACHASOV AKHMETSHIN	99D 99	PL B459 674 PL B456 90	M.N. Achasov <i>et al.</i> R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
ANGELOPO	98B	PL B425 391	A. Angelopoulos <i>et al.</i>	(CPLEAR Collab.)
ANGELOPO	98C	EPJ C5 389	A. Angelopoulos et al.	(CPLEAR Collab.)
PDG	98 07D	EPJ C3 1	C. Caso <i>et al.</i>	(PDG Collab.)
ADLER ANGELOPO	97B 97	PL B407 193 PL B413 232	R. Adler <i>et al.</i> A. Angelopoulos <i>et al.</i>	(CPLEAR Collab.) (CPLEAR Collab.)
BERTANZA	97	ZPHY C73 629		N, EDIN, MANZ, ORSAY+)
ADLER	96D	PL B370 167	R. Adler et al.	(CPLEAR Collab.)
ADLER	96E	PL B374 313	R. Adler <i>et al.</i>	(CPLEAR Collab.)
ZOU BARR	96 95B	PL B369 362 PL B351 579	Y. Zou <i>et al.</i> G.D. Barr <i>et al.</i> (CE	(RUTG, MINN, MICH) RN, EDIN, MANZ, LALO+)
SCHWINGEN		PRL 74 4376	B. Schwingenheuer <i>et al.</i>	(EFI, CHIC+)
BLICK	94	PL B334 234	A.M. Blick et al.	(SERP, JINR)
THOMSON	94 94	PL B337 411	G.B. Thomson <i>et al.</i> Y. Zou <i>et al.</i>	(RUTG, MINN, MICH)
ZOU BARR	94 93B	PL B329 519 PL B304 381		(RUTG, MINN, MICH) RN, EDIN, MANZ, LALO+)
GIBBONS	93	PRL 70 1199	L.K. Gibbons <i>et al.</i>	(FNAL E731 Collab.)
Also		PR D55 6625	L.K. Gibbons et al.	(FNAL E731 Collab.)
RAMBERG BALATS	93 89	PRL 70 2525 SJNP 49 828	E. Ramberg <i>et al.</i> M.Y. Balats <i>et al.</i>	(FNAL E731 Collab.)
DALATS	09	Translated from YAF 49		(ITEP)
GIBBONS	88	PRL 61 2661	L.K. Gibbons et al.	(FNAL E731 Collab.)
BURKHARDT GROSSMAN	87 97	PL B199 139	H. Burkhardt et al.	(CERN, EDIN, MANZ+)
BARMIN	87 86	PRL 59 18 SJNP 44 622	N. Grossman <i>et al.</i> V.V. Barmin <i>et al.</i>	(MINN, MICH, RUTG) (ITEP)
		Translated from YAF 44	965.	
BARMIN PDG	86B 86B	NC 96A 159 PL 170B 130	V.V. Barmin et al.	(ITEP, PADO)
BARMIN	85	NC 85A 67	M. Aguilar-Benitez <i>et al.</i> V.V. Barmin <i>et al.</i>	(CERN, CIT+) (ITEP, PADO)
Also		SJNP 41 759	V.V. Barmin et al.	(ITEP)
BARMIN	83	Translated from YAF 41		(ITEP, PADO)
Also	03	PL 128B 129 SJNP 39 269	V.V. Barmin <i>et al.</i> V.V. Barmin <i>et al.</i>	(ITEP, PADO)
		Translated from YAF 39	428.	, , ,
ARONSON ARONSON	82 82B	PRL 48 1078 PRL 48 1306	S.H. Aronson <i>et al.</i> S.H. Aronson <i>et al.</i>	(BNL, CHIC, STAN+) (BNL, CHIC, PURD)
Also	02D	PL 116B 73	E. Fischbach <i>et al.</i>	(PURD, BNL, CHIC)
Also		PR D28 476	S.H. Aronson et al.	(BNL, CHIC, PURD)
Also	7.0	PR D28 495	S.H. Aronson et al.	(BNL, CHIC, PURD)
ARONSON EVERHART	76 76	NC 32A 236 PR D14 661	S.H. Aronson <i>et al.</i> G.C. Everhart <i>et al.</i>	(WISC, EFI, UCSD+) (PENN)
TAUREG	76	PL 65B 92	H. Taureg et al.	(HEIDH, CERN, DORT)
BALDO	75	NC 25A 688	M. Baldo-Ceolin et al.	` (PADO, WISC)
CARITHERS	75 74	PRL 34 1244	W.C.J. Carithers <i>et al.</i>	(COLU, NYU)
BOBISUT COWELL	74 74	LNC 11 646 PR D10 2083	F. Bobisut <i>et al.</i> P.L. Cowell <i>et al.</i>	(PADO) (STON, COLU)
GEWENIGER	74B	PL 48B 487	C. Geweniger <i>et al.</i>	(CERN, HEIDH)
GJESDAL	74B	PL 52B 119	S. Gjesdal <i>et al.</i>	(CERN, HEIDH)
BURGUN	73 73	PL 46B 481	G. Burgun <i>et al.</i>	(SACL, CERN)
GJESDAL HILL	73 73	PL 44B 217 PR D8 1290	S. Gjesdal <i>et al.</i> D.G. Hill <i>et al.</i>	(CERN, HEIDH) (BNL, CMU)
ALITTI	72	PL 39B 568	J. Alitti, E. Lesquoy, A. Mul	ler (SACL)
BURGUN	72 72	NP B50 194	G. Burgun <i>et al.</i> M. Motsalf <i>et al.</i>	(SACL, CERN, OSLO)
METCALF MORSE	72 72B	PL 40B 703 PRL 28 388	M. Metcalf <i>et al.</i> R. Morse <i>et al.</i>	(CERN, IPN, WIEN) (COLO, PRIN, UMD)
NAGY	72	NP B47 94	E. Nagy, F. Telbisz, G. Vesz	
Also		PL 30B 498	G. Bozoki et al.	(BUDA)

SKJEGGEST	72	NP B48 343	O. Skjeggestad et al.	(OSLO, CERN, SACL)
BALTAY	71	PRL 27 1678	C. Baltay <i>et al.</i>	(COLU)
Also		Thesis Nevis 187	W.A. Cooper	(COLU)
MOFFETT	70	BAPS 15 512	R. Moffett et al.	(ROCH)
BOZOKI	69	PL 30B 498	G. Bozoki <i>et al.</i>	(BUDA)
DOYLE	69	Thesis UCRL 18139	J.C. Doyle	` (LRL)
GOBBI	69	PRL 22 682	B. Gobbi <i>et al.</i>	(RÒCH)
HYAMS	69B	PL 29B 521	B.D. Hyams et al.	(CERN, MPIM)
MORFIN	69	PRL 23 660	J.G. Morfin, D. Sinclair	` (MICH)
DONALD	68B	PL 27B 58	R.A. Donald et al.	(LIVP, CERN, IPNP+)
HILL	68	PR 171 1418	D.G. Hill et al.	` (BNL, CMU)
AUBERT	65	PL 17 59	B. Aubert et al.	(EPÒL, ORSAY)
BROWN	63	PR 130 769	J.L. Brown et al.	` (LRL, MICH)
CHRETIEN	63	PR 131 2208	M. Chretien et al.	(BRAN, BROW, HARV+)
BROWN	61	NC 19 1155	J.L. Brown et al.	(MICH)
BOLDT	58B	PRL 1 150	E. Boldt, D.O. Caldwell, Y.	Pal (MIT)

- OTHER RELATED PAPERS -

LITTENBERG	93	ARNPS 43 729	L.S. Littenberg, G. Valencia	(BNL, FNAL)		
Rare and I	Radiativ	ve Kaon Decays		,		
BATTISTON	92	PRPL 214 293	R. Battiston <i>et al.</i>	(PGIA, CERN, TRSTT)		
Status and Perspectives of K Decay Physics						
TRILLING	65B	UCRL 16473	G.N. Trilling	(LRL)		
Updated from 1965 Argonne Conference, page 115.						
CRAWFORD	62	CERN Conf. 827	F.S. Crawford	(LRL)		
FITCH	61	NC 22 1160	V.L. Fitch, P.A. Piroue, R.B.	Perkins $(PRIN+)$		
GOOD	61	PR 124 1223	R.H. Good et al.	(LRL)		
BIRGE	60	Rochester Conf. 601	R.W. Birge et al.	(LRL, WISC)		
MULLER	60	PRL 4 418	F. Muller et al.	`(LRL, BNL)		
				,		