Freddie Bullard

fsb29@cam.ac.uk | linkedin.com/in/freddiebullard | website: fs-bullard.github.io

PERSONAL PROFILE

A current Part III Mathematics student at the University of Cambridge and Durham University physics graduate interested in applying machine learning and numerical methods to solve image-related problems across disciplines. Strong programmer with software engineering and research computing experience.

EDUCATION

University of Cambridge, Cambridge, UK

Oct. 2024 - Present

MASt Applied Mathematics and Theoretical Physics

Durham University, Durham, UK

Oct. 2021 - July 2024

BSc Physics

- Grade: First-class honours ranked 4th in cohort
- Relevant Topics: Linear Algebra, Calculus, Electromagnetism, Quantum Mechanics, Thermodynamics, Condensed Matter Physics, Stars and Galaxies, Classical Mechanics, ODEs, PDEs, Nuclear Physics, Statistical Physics, Complex Analysis, Computational Physics
- Awards: Durham Physics Award for Outstanding Achievement, Stars and Galaxies Module Prize, Computing Project Poster Prize

RESEARCH EXPERIENCE

Visiting Researcher, Remote

Sept 2024 - Present

MLID group, Helmholtz-Zentrum Dresden-Rossendorf

• Continuing work on the project remotely.

Research Intern, Dresden, Germany

July – Aug. 2024

MLID group, Helmholtz-Zentrum Dresden-Rossendorf

 Applying numerical and neural PDE solvers to extract information from 3dimensional microscopy.

Classical and Quantum Monte Carlo Optimisation 🔾 🛱

Oct. 2023 - Mar. 2024

Department of Physics, Durham University

- Conducted a comparative study of simulated and quantum annealing as heuristics, using the Travelling Salesman Problem as a test example
- Employed Monte Carlo techniques to implement simulated and quantum annealing in Python

Complex Structure Stress Analysis with Machine Learning

Autumn 2023

Department of Physics, Durham University

- Investigated the use of stress-induced birefringence in studying the stresses and strains in complex structures under load
- Implemented a CNN based on UNet to extract stress information from photoelasticity images
- Added a physical constraint layer to allow training over fewer epochs and improve generalisation on experimentally obtained data

Investigating the Dark Matter Content of Spiral Galaxy M82

Spring 2023

Department of Physics, Durham University

- Investigated the dark matter content of the spiral galaxy M82 through analysis
 of its rotation curve from HI and CO emission lines, and its luminosity as a
 function of distance from the galactic centre
- Applied image processing techniques, including dark and bias subtraction and flat-field corrections, to reduce uncertainty in our data

PROFESSIONAL EXPERIENCE

Software Development Engineer Intern	Summer 2023		
 worked in a team of 10, developing and maintaining the ad delivery and tracking services Enhanced and extended a RESTful API service to track events related to ad impressions, utilised Kotlin and Spring to implement new tracking functionalities 			
		Software Engineer Intern	Summer 2022
		Spectrum Logic, London	
Designed and implemented an image segmentation algorithm in Python to automate region-of-interest detection in low contrast, 16-bit greyscale images for their Western Blot CMOS 1:1 image scanner			
Personal Projects			
Noise Reduction Web App 🗘 Python (Flask, NumPy)	Summer 2022		
• Implemented Gaussian, Median and Bilateral filters from scratch in Python with NumPy			
• Improved code efficiency through vectorisation, concurrency and filter- separation			
• Developed a full-stack web application using Python with Flask, hosted on Google Cloud Platform			
Online Courses			
Finding Hidden Messages in DNA (Bioinformatics I) UC San Diego via Coursera	Summer 2023		
Neural Networks and Deep Learning DeepLearning.AI via Coursera	Summer 2023		
6.006 Introduction to Algorithms $MIT\ OCW$	Summer 2022		
6.0001 Introduction to Computer Science and Programming in Python $MIT\ OCW$	Summer 2022		
Technical Skills			
Languages: Python, Kotlin, HTML/CSS, LATEX, SQL Libraries and Frameworks: NumPy, SciPy, Matplotlib, Flask, FEniCSx Other: VS Code, IntelliJ, Git, Linux, MacOS, Windows, ImageJ			

REFERENCES

Available upon request