Week 1 - Summer 2021

Cheng Lu

06/01/2021

Last Meeting Summary

- ► Thorough experiment results
- Portfolio stats: volatility and turn over
- ► Expand literature review
- Expand experiment to lager dataset

Experiment Goal

Table 1: Sharpe ratio on DOW 30 from 1996 to 2017

Naive Shrinkag	ge			
Strategy	TBN	Identity		
shrink 0 pct shrink 50 pct	0.44408 0.34959	5 0.507769		
shrink 100 pct	-0.43066	58 0.573233		
Ledoit &Wolf				
linear shrinkage	NA NA	0.471745 0.449374		
non-intear	IVA	0.449374		
Minimum Spanning Tree				
MST stock	-0.056445	-		
MST TBN	0.667070	-		
Reinforcement Learning				
DQN	0.122987			
REINFORCE	-0.490042	0.503571		

Problem

- Available shrinkage packages only allow shrinking to few targets, like factor model. They doesn't allow shrinking to other target, like TBN.
- Ledoit provides estimator(see Appendix) for shrink intensity but it's not complete.
- It depends on the choice of shrinkage target and requires a case-by-case analysis.
- Our results(next page) doesn't show a reasonable performance. Values are too small.

Shrink to TBN

	alpha TBN ×10^5	alpha MST ×10^5	alpha identity
1996	0.213	-0.033	0.133
1997	0.364	-0.033	0.090
1998	0.581	-0.045	0.088
1999	0.363	-0.059	0.102
2000	0.978	-0.093	0.160
2001	0.446	-0.054	0.064
2002	0.272	-0.049	0.041
2003	0.086	-0.020	0.040
2004	0.060	-0.018	0.122
2005	0.044	-0.015	0.074
2006	0.041	-0.017	0.096
2007	0.043	-0.016	0.051
2008	1.306	-0.033	0.051
2009	0.305	-0.031	0.035
2010	0.054	-0.010	0.034
2011	0.144	-0.013	0.031
2012	0.045	-0.012	0.057
2013	0.031	-0.014	0.092
2014	0.026	-0.012	0.067
2015	0.036	-0.013	0.036
2016	0.034	-0.014	0.068

Table 2: Shrinkage intensity of different targets

1 2 3

¹First two columns' values are multiplied by 10⁵

²Third column are computed using sklearn as benchmark

³First two columns' values calculated by our program using Ledoit's estimator

Next

- ▶ Double check estimator ρ_T formula
- ▶ Double check codes
- Potential solution: use the diagonal item of TBN to simplify the problem
- continue with remaining tasks

Appendix

$$\gamma_T^* = \frac{1}{T} \frac{\pi_T - \rho_T}{\nu_T} + O\left(\frac{1}{T^2}\right)$$

$$\pi_T = \sum_{i=1}^N \sum_{j=1}^N A \operatorname{sy} \operatorname{Var}\left(\sqrt{T} s_{ij}^T\right)$$

$$\rho_T = \sum_{i=1}^N \sum_{j=1}^N \operatorname{AsyCov}\left(\sqrt{T} f_{ij}^T, \sqrt{T} s_{ij}^T\right)$$

$$\nu_T = \sum_{i=1}^N \sum_{j=1}^N \left(\phi_{ij}^T - \sigma_{ij}^T\right)^2$$

Appendix

$$\begin{split} \tilde{\gamma}_{T}^{*} &:= \frac{1}{T} \frac{\hat{\pi}_{T} - \hat{\rho}_{T}}{\hat{\nu}_{T}} \\ \hat{\pi}_{T} &:= \sum_{i=1}^{N} \sum_{j=1}^{N} \hat{\pi}_{ij}^{T} \quad \text{with} \quad \hat{\pi}_{ij}^{T} := \frac{1}{T} \sum_{t=1}^{T} \left[x_{ti}^{T} x_{tj}^{T} - s_{ij}^{T} \right]^{2} \\ \hat{\nu}_{T} &:= \sum_{i=1}^{N} \sum_{j=1}^{N} \left(f_{ij}^{T} - s_{ij}^{T} \right)^{2} \\ \hat{\rho}_{T} &:= \sum_{i=1}^{N} \sum_{j=1}^{N} \hat{\rho}_{ij}^{T} \quad \text{with} \quad \hat{\rho}_{ij}^{T} := \frac{1}{T} \sum_{t=1}^{T} \left[x_{ti}^{T} x_{tj}^{T} - s_{ij}^{T} \right] [f_{ij} - E[f_{ij}]] \end{split}$$

Ledoit doesn't provide estimator $\rho_{\mathcal{T}}$, because it depends on shrink target.