- 书面作业讲解
 - TJ第3章练习3、6、7、17、28、<mark>36</mark>、38、41、48、52
 - TJ第4章练习1、12、21、24、32
 - TJ第5章练习3、5、16、27、29
 - TJ第6章练习11、12、16、21
 - TJ第9章练习6、7、8、9

TJ第3章练习7

- 阿贝尔群应满足几个条件?
 - 运算封闭
 - 结合律、单位元、逆元
 - 证明单位元和逆元时, 左、右运算都要证明
 - 严格来说,还要先说明单位元和逆元也在集合中
 - 交換律

TJ第3章练习36

- 证明子群的几种方法
 - 子集&群
 - 命题3.9
 - 命题3.10

TJ第4章练习1(e)

• G中不可能存在阶为无穷的元素a,否则a的每个正次幂都不相等,则存在<a¹>、<a²>……无穷多个子群,矛盾。因此,G中每个元素都是有穷阶,而如果G有无穷多个元素,那么必然存在<a>、……无穷多个子群(因为每个都只包含有穷多个元素),矛盾。

TJ第4章练习12

- How about n generators?
 - 利用推论4.7

In number theory, Euler's totient function (or Euler's phi function), denoted as $\varphi(n)$ or $\varphi(n)$, is an arithmetic function that counts the positive integers less than or equal to n that are relatively prime to n. (These integers are sometimes referred to as totatives of n.) Thus, if n is a positive integer, then $\varphi(n)$ is the number of integers k in the range $1 \le k \le n$ for which the greatest common divisor $\gcd(n, k) = 1$. [1][2]

 $\varphi(n)$ is even for $n \geq 3$.

TJ第4章练习24

- pq以内与pq互质的数: (p-1)(q-1)
 - 解法1: $\varphi(mn) = \varphi(m) \varphi(n)$
 - 解法2: 去掉p的倍数、q的倍数、0pq-(p-1)-(q-1)-1=pq-p-q+1=(p-1)(q-1)

TJ第4章练习32

• 由定理4.6: y的阶是n/1=n。 而阶为n的元素一定是generator。

TJ第5章练习5

TJ第5章练习29

Recall that the center of a group G is

$$Z(G) = \{g \in G : gx = xg \text{ for all } x \in G\}.$$

Find the center of D_8 . What about the center of D_{10} ? What is the center of D_n ?

- Dn中的元素
 - rotation: r¹, r², ..., rⁿ=id
 - reflection: s, r^1 s, r^2 s, ..., r^{n-1} s

- rotation之间总是可交换的
- 如果center包括rotation rⁱ,则它和reflection rⁱs可交换表明:
 - r¹r¹s=r¹sr¹=r¹sr¹ss=r¹(sr¹s)s=r¹(srs)¹s=r¹r¹s → i+j=nj-i → 2i=n0 → i=0 (即id) 或n为偶数且i=n/2 (即rn/2)
- 如果center包括reflection ris,则它和reflection ris可交换表明:
 - rⁱsr^js=r^jsr^js → 2i=_n2j
 并不能和任意r^js可交换

TJ第6章练习16

• g的order为2: gg=e,即g是自己的逆元。除了order为2的元素以外,只有e是自己的逆元。剩余元素都不是自己的逆元:成对出现。而|G|=2n,所以order为2的元素必为奇数个。

• 任取一个order为2的元素,与e构成order为2的子群。

TJ第6章练习21

- 如果直接用Sylow第一定理,这题就失去意义了。
- 任取元素a(非单位元),由推论6.6: a的order为p^k(1≤k≤n)。
 取b=a的p^{k-1}次幂: b^p=e,因此b的order为p(不可能再小了,因为必须是p的幂)。
 由b可以生成一个p阶循环子群。

- 教材讨论
 - TJ第2章
 - CS第2章第2节

问题1: 数学归纳法和良序原理

- 什么是良序原理?
- · 你有哪些手段证明"对于任意自然数n,某命题都成立"?

• 你能用其中某种方法证明莱曼引理吗? 8a⁴+4b⁴+2c⁴=d⁴没有正整数解

问题1: 数学归纳法和良序原理

- 什么是良序原理?
- · 你有哪些手段证明"对于任意自然数n,某命题都成立"?
 - 数学归纳法
 - 良序原理(反证法: 不成立的那些自然数的集合没有最小元)
- 你能用其中某种方法证明莱曼引理吗? 8a⁴+4b⁴+2c⁴=d⁴没有正整数解

问题1: 数学归纳法和良序原理

- 什么是良序原理?
- 你有哪些手段证明"对于任意自然数n,某命题都成立"?
 - 数学归纳法
 - 良序原理(反证法: 不成立的那些自然数的集合没有最小元)
- 你能用其中某种方法证明莱曼引理吗? 8a⁴+4b⁴+2c⁴=d⁴没有正整数解

假设所有解中,(a,b,c,d)使abcd最小 发现d是偶数,将d=2d'代入: 4a⁴+2b⁴+c⁴=8d'⁴ 发现c是偶数,将c=2c'代入: 2a⁴+b⁴+8c'⁴=4d'⁴ 发现b是偶数,将b=2b'代入: a⁴+8b'⁴+4c'⁴=2d'⁴ 发现a是偶数,将a=2a'代入: 8a'⁴+4b'⁴+2c'⁴=d'⁴ 找到了新的解(a',b',c',d')且a'b'c'd'<abcd,矛盾

问题2: 逆元、最大公约数、质数

Given an element b in Z_n , what can you say in general about the possible number of elements a such that $a \cdot_n b = 1$ in Z_n ?

问题2: 逆元、最大公约数、质数

Given an element b in Z_n , what can you say in general about the possible number of elements a such that $a \cdot_n b = 1$ in Z_n ?

- 如果gcd(b,n)>1: 找不到a

- 如果gcd(b,n)=1: 有且只有一个a

Theorem 2.7 If an element of Z_n has a multiplicative inverse, then it has exactly one inverse.

Theorem 2.9 A number a has a multiplicative inverse in Z_n if and only if there are integers x and y such that ax + ny = 1.

Lemma 2.11 Given a and n, if there exist integers x and y such that ax + ny = 1 then gcd(a, n) = 1.

问题2: 逆元、最大公约数、质数(续)

Either find an equation of the form $a \cdot_n x = b$ in Z_n that has a unique solution even though a and n are not relatively prime, or prove that no such equation exists. In other words, you are either to prove the statement that if $a \cdot_n x = b$ has a unique solution in Z_n , then a and n are relatively prime or to find a counter example.

问题2: 逆元、最大公约数、质数(续)

Either find an equation of the form $a \cdot_n x = b$ in Z_n that has a unique solution even though a and n are not relatively prime, or prove that no such equation exists. In other words, you are either to prove the statement that if $a \cdot_n x = b$ has a unique solution in Z_n , then a and n are relatively prime or to find a counter example.

- 如果gcd(a,n)=g>1
 - 如果g|b
 - 否则
 - 很容易验证无解

问题3: 欧氏算法

• 辗转相除法和这个引理之间有什么关系?

Lemma 2.13 If j, k, q, and r are positive integers such that k = jq + r then gcd(j, k) = gcd(r, j)

- 辗转相除法的迭代计算到什么时候终止?
- 请使用辗转相除法计算gcd(210,126), 并求出一组r和s使得 210r+126s=gcd(210,126)

问题3: 欧氏算法

• 辗转相除法和这个引理之间有什么关系?

Lemma 2.13 If j, k, q, and r are positive integers such that k = jq + r then gcd(j, k) = gcd(r, j)

- 辗转相除法的迭代计算到什么时候终止?
- 请使用辗转相除法计算gcd(210,126), 并求出一组r和s使得 210r+126s=gcd(210,126)

```
\begin{array}{lll} 2415 = 945 \cdot 2 + 525 & 105 = 525 + (-1) \cdot 420 \\ 945 = 525 \cdot 1 + 420 & = 525 + (-1) \cdot [945 + (-1) \cdot 525] \\ 525 = 420 \cdot 1 + 105 & = 2 \cdot 525 + (-1) \cdot 945 \\ 420 = 105 \cdot 4 + 0. & = 2 \cdot [2415 + (-2) \cdot 945] + (-1) \cdot 945 \\ & = 2 \cdot 2415 + (-5) \cdot 945. \end{array}
```