

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 1° semestre de 2019

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

1 - Primeira questão (2,0 pontos)

Abaixo é apresentado o gráfico de uma distribuição que deve ser normalizada, ou seja, multiplicada por uma constante C de forma que a sua integral seja igual a 1. A função é nula fora do intervalo [1,4].

- a) Normalize a função obtendo uma distribuição de probabilidade (0,5 ponto);
- b) Calcule o valor médio da distribuição obtida

(0,5 ponto);

c) Calcule a variância da distribuição obtida

(0,5 ponto);

d) Calcule a moda da distribuição obtida

(0,5 ponto).

2 – Segunda questão (1,5 pontos)

Verifique se as expressões abaixo são funções de probabilidade. Caso alguma não seja devido à constante de normalização, apresente a função normalizada.

a)
$$f(x) = \frac{3}{7}(x^2 - x); x \in [1;3]$$
 (0,5 ponto);

b)
$$f(x) = \frac{1}{16}(x^3 - x); x \in [1;3]$$
 (0,5 ponto);

c)
$$f(x) = -\frac{1}{3} [sen(x)\cos(x)]; x \in [-\pi/3; 0]$$
 (0,5 ponto).

3 – Terceira questão (1,5 pontos)

Num tanque de produção de piscicultura, se recolheu alguns alevinos cujo o tamanho em milímetros está dado abaixo

T	21	23	22	19	22	24	20	21	19	22
1				l			l	l		

Usando estimadores não viciados, calcule a probabilidade que um alevino escolhido ao acaso do tanque esteja no intervalo [20,23] supondo ser possível usar a distribuição Normal.

4 – Quarta questão (1,5 ponto)

Ache o intervalo de confiança de uma amostra de doze parafusos quanto à resistência à tração. A média da amostra indicava 823 N/mm². De testes anteriores a variância usada foi de 3249 N²/mm⁴. Use 90% para o coeficiente de confiança γ .

5 – Quinta questão (1,0 ponto)

De uma produção de blocos de espuma de borracha foi extraída uma amostra cuja a média de volume era 6235 cm³. O desvio padrão estimado era de 3791 cm³ e a amostra estudada era de 20 peças. Esta produção foi modelada pela distribuição Normal. Calcule as seguintes probabilidades:

- a) De uma peça ter volume maior que 6500 cm;
- b) De uma peça ter volume entre 6300 cm e 6400 cm.

6 – Sexta questão (2,5 pontos)

Calcule as seguintes probabilidades:

- a) P(1,7<X<2,7) para a distribuição de probabilidade da primeira questão;
- b) P(1,7<X<2,7) para a distribuição Normal de média 2 e variância 6,17;
- c) P(1,7<X<2,7) para a distribuição Normal de média 1 e desvio padrão 6,17;
- d) P(1,7<X<2,7) para uma distribuição de Exponencial com α =0,617 ;
- e) P(1,7<X<2,7) para uma distribuição uniforme no intervalo [0, 4].

Atenção:

- I) Não haverá formulário na segunda avaliação presencial.
- II) As respostas da AD serão digitadas no editor de sua conveniência e após isto gerado um arquivo de formato pdf que será enviado como resposta de suas questões. Digitalizações de material escrito não serão aceitos e terão nota zero como resultado;
- II) Todos os cálculos deverão ser feitos com pelo menos quatro casas decimais e arrendondados para duas APENAS ao final, seja na AD2 ou na AP2.
- III) Tenha cuidado quanto a notação. Caso não a siga, você terá pontos descontados, seja na lista ou na prova.

Apêndice I: Exemplos de uso da tabela de distribuição Normal

Aqui vão alguns exemplos de cálculo de probabilidades segundo a distribuição Normal. Lembremos algumas observações elementares:

a) A tabela é calculada para uma distribuição denominada *Normal Padrão* ou *Normal Reduzida*, ou seja, uma distribuição Normal de média zero e variância 1 e a variável aleatória correspondente a esta distribuição é denominada Z definida por

$$Z = \frac{X - \mu}{\Omega}$$
;

- b) A tabela contém os valores de probabilidade para z maior que zero. Como a função de distribuição Normal é simétrica o valor de probabilidade para um valor z é igual a do valor -z. Como consequência da simetria, os valores apresentados vão até ½, que é metade da probabilidade total 1.
- c) O cálculo para o caso geral será feito pela fórmula

$$P(a \le X \le b) = P\left(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}\right) = P\left(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma}\right)$$

Exemplos

a)
$$P(0 \le X \le 2) para \ \mu = 0; \sigma^2 = 1$$

Este é um caso muito simples pois temos a = 0 e b = 1 o que nos dará

$$P(0 \le X \le 2) = P\left(\frac{0-0}{1} \le Z \le \frac{2-0}{1}\right) = P(0 \le Z \le 2)$$

que a consulta à tabela nos dá

$$P(0 \le X \le 2) = P\left(\frac{0-0}{1} \le Z \le \frac{2-0}{1}\right) = P(0 \le Z \le 2) = 0,4772$$
.

b) $P(0 \le X \le 2) para \mu = 1; \sigma^2 = 4$

$$P(0 \le X \le 2) = P\left(\frac{0-1}{2} \le Z \le \frac{2-1}{2}\right) = P\left(-\frac{1}{2} \le Z \le \frac{1}{2}\right)$$

Observe que o intervalo de cálculo é simétrico em relação ao ponto z = 0 que é a média da distribuição *Normal Reduzida*. Fazendo uso da propriedade de simetria da distribuição Normal temos que

$$P\left(-\frac{1}{2} \le Z \le \frac{1}{2}\right) = 2P\left(0 \le Z \le \frac{1}{2}\right)$$

ou

$$P\left(-\frac{1}{2} \le Z \le \frac{1}{2}\right) = 2P\left(Z \le \frac{1}{2}\right).$$

Assim, consultando mais uma vez a tabela achamos

$$P(0 \le X \le 2) = 2P\left(0 \le Z \le \frac{1}{2}\right) = 2 \times 0,1915 = 0,383$$

c) $P(0 \le X \le 2) para \mu = 2; \sigma^2 = 4$

Novamente vamos substituir os valores na fórmula de cálculo de probabilidades

$$P(0 \le X \le 2) = P\left(\frac{0-2}{2} \le Z \le \frac{2-2}{2}\right) = P(-1 \le Z \le 0)$$

ou

$$P(0 \le X \le 2) = P\left(\frac{0-2}{2} \le Z \le \frac{2-2}{2}\right) = P(-1 \le Z)$$
.

Temos o intervalo de cálculo de probabilidades na parte negativa dos valores de z. No entanto, sabemos que a função de distribuição Normal Reduzida é simétrica em relação ao zero, daí podemos escrever

$$P(0 \le X \le 2) = P(-1 \le Z \le 0) = P(0 \le Z \le 1) = 0.3413$$

d) $P(1 \le X \le 4) para \ \mu = 2; \sigma^2 = 4$

$$P(1 \le X \le 4) = P\left(\frac{1-2}{2} \le Z \le \frac{4-2}{2}\right) = P\left(-\frac{1}{2} \le Z \le 1\right)$$
.

Agora temos o intervalo de cálculo tanto para valores negativos quanto positivos. Novamente usaremos as propriedades de simetria da função de distribuição Normal para calcularmos este caso

$$P(1 \le X \le 4) = P\left(-\frac{1}{2} \le Z \le 1\right) = P\left(-\frac{1}{2} \le Z \le 0\right) + P(0 \le Z \le 1)$$

ou ainda

$$P(1 \le X \le 4) = P\left(Z \le \frac{1}{2}\right) + P(Z \le 1)$$

Consultando a tabela teremos

$$P(1 \le X \le 4) = 0.1915 + 0.3413 = 0.5328$$

e)
$$P(X > 4) para \mu = 2; \sigma^2 = 4$$

Neste caso usaremos a noção de complementaridade em probabilidade. Se queremos saber qual é a probabilidade P(X > b), este valor tem como complementar a probabilidade P(X < b) de forma que a soma de ambas nos dá o valor 1. No caso especial do nosso problema teremos

$$P(X>4)=1-P(X<4)$$
.

No entanto, lembremos que a tabela Normal Reduzida nos dá os valores da metade da distribuição, ou seja, o

valor máximo é ½. Além disto, estamos acima do valor da média e, portanto, o valor deverá ser necessariamente menor que ½. Desta forma escreveremos

$$P(X > 4) = P\left(Z \ge \frac{4-2}{2}\right) = P(Z \ge 1) = \frac{1}{2} - P(Z < 1) = \frac{1}{2} - 0.3413 = 0.1587$$

f)
$$P(X > 1) para \mu = 2; \sigma^2 = 4$$

Agora teremos neste cálculo a seguinte sequência

$$P(X>1)=P\left(Z\geq\frac{1-2}{2}\right)=P\left(Z\geq-\frac{1}{2}\right).$$

Observe que a probabilidade inclui não só os valores entre 0 e $-\frac{1}{2}$ como também todos os restantes valores maiores do que zero. Como já vimos, o valor da probabilidade levando em consideração todo o semieixo positivo é $\frac{1}{2}$ e, portanto, a probabilidade que queremos calcular será

$$P(X>1)=P\left(Z\geq -\frac{1}{2}\right)=\frac{1}{2}+P\left(Z<\frac{1}{2}\right)=\frac{1}{2}+0,1915=0,6915$$
.

Apêndice II: Alguns exercícios resolvidos

I) Um fabricante de pastilhas de freios modelou a duração de seu produto por um modelo Normal. Assim, a durabilidade média foi estimada em 30 000 km e o desvio padrão encontrado foi de 6 000 km. Se uma amostra de 20 pastilhas for sorteada, qual será o número esperado de partilhas com durabilidade inferior a 28 000 km? Qual seria a probabilidade com a mesma amostra se o desvio padrão fosse de 10000 km?

Para simplificar, trabalharemos numa escala de milhares de quilômetros, ou seja, μ = 30, σ = 6. Observe que estamos trabalhando neste exercício com desvio padrão e não com a variância. Teremos

$$\frac{\sigma}{\sqrt{n}} = \frac{6}{\sqrt{20}} \approx 1,3416$$

Assim, a probabilidade de encontrarmos pastilhas com durabilidade menor que 28 000 km será

$$P(X<28)=P(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}<\frac{28-30}{1,3416})=P(Z<-1,4907)\approx P(Z<-1,49)=P(Z>1,49)=0,5-0,4292=0,0708$$

Para o caso de desvio padrão 10 (equivalente a 10000) teríamos

$$\frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{20}} \approx 2,2361$$

logo

$$P(X<28)=P(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}<\frac{28-30}{2,2361})=P(Z<-0.8944)\approx P(Z\leftarrow0.89)=P(Z>0.89)=0.5-0.3133=0.1867$$
.

No entanto, poderíamos com estes dados fazer um outro questionamento

II) Um fabricante de pastilhas de freios modelou a duração de seu produto por um modelo Normal. A durabilidade média foi estimada em 30 000 km partindo de uma amostra de 20 pastilhas. Sabe-se de experimentos anteriores que o desvio padrão é de 6 000 km. Determine qual é o intervalo de confiança para a média com coeficiente de confiança de 75%.

Resolução:

Aqui continuaremos com a mudança de escalas, ou seja, trabalharemos como milhares de quilômetros. Partiremos da fórmula

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right],$$

e sabemos que

$$\frac{\sigma}{\sqrt{n}} = \frac{6}{\sqrt{20}} \approx 1,3416$$

e ainda

$$\frac{y}{2} = \frac{0.75}{2} = 0.375 \Rightarrow z_{y/2} = 1.15$$

e

$$z_{\gamma/2} \frac{\sigma}{\sqrt{n}} = 1,15 \times 1,3416 \approx 1,54$$
.

Assim teremos

$$IC(30;0.75) = [30-1.54;30+1.54] = [28.46;31.54]$$

ou seja, na escala de quilômetros

$$IC(30000;0,75)=[28460;31540]$$
.

Mas poderíamos ter perguntado

III) Qual a amplitude do intervalo para a média?

Neste caso é muito simples, a amplitude é o dobro da grandeza

$$z_{\gamma/2} \frac{\sigma}{\sqrt{n}}$$

portanto, no nosso caso seria $2 \times 1,54 = 3,08$ ou na escala de quilômetros 3 080 km.

Outra possibilidade é perguntarmos

IV) Qual deveria ser o tamanho da amostra para que tivéssemos como amplitude de intervalo para a média 1 000 km, usando a mesma média e desvio padrão acima.

Neste caso teríamos na escala de milhares de quilômetros

$$2\times z_{\gamma/2}\frac{\sigma}{\sqrt{n}}=1\Rightarrow \frac{2\times 1,15\times 6}{\sqrt{n}}=1$$
.

Podemos reescrever esta equação como

$$\sqrt{n} = 2 \times 1.15 \times 6 = 13.8 \Rightarrow n = 13.8^2 \approx 190.44$$

ou seja, arredondando para cima o número de amostras deveria ser pelo menos 191.

V) Numa instalação se testava a duração de uma correia numa máquina. Nesta situação se usava a distribuição Exponencial para fazer as análises estatísticas. Depois dos primeiros testes aferiu-se como média 2,5 meses. Calcule a probabilidade da correia durar menos de 2 meses.

Para resolver este problema é bom recordar que o cálculo da distribuição Exponencial é dada portanto

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx$$

e que a média e variância para esta distribuição são dadas por

$$\mu = \frac{1}{\alpha} e \sigma^2 = \frac{1}{\alpha^2}$$
.

Após o cálculo da integral, a probabilidade é dada por

$$P(a < X < b) = e^{-\alpha a} - e^{\alpha b}$$
.

O problema afirma que a média é de 2,5. Portanto $\mu=1/\alpha\Rightarrow 2,5=1/\alpha\Rightarrow \alpha=0,4$. Assim, como estamos contanto o tempo desde o início dos testes com a correia, teremos

$$P(0 < X < 2) = e^{-0.4 \times 0} - e^{-0.4 \times 2} = 1 - e^{-0.8} \approx 1 - 0.4493 \approx 0.5506$$
.

A probabilidade da correia apresentar falha em dois meses é de aproximadamente 55,1%, o que não é espantoso com a média sendo 2,5 meses.

VI) Na figura abaixo temos uma função distribuição de probabilidade no intervalo [-1; ½], sendo nula fora deste intervalo.

a) Prove que esta

função é uma distribuição de probabilidade;

Resolução:

Observando a figura vemos que ela é não negativa em todo o domínio. Teremos que demonstrar que a área da figura é igual a 1, o que é equivalente a dizer que a integral da função é igual a 1.

Observemos que temos área total da função distribuição de probabilidade como a soma da área de um trapézio e de um retângulo. No caso teríamos a área

$$\frac{2/5+4/5}{2} \times 1 + \frac{1}{2} \times \frac{4}{5} = \frac{3}{5} + \frac{2}{5} = 1$$
.

No entanto, este resultado não nos ajuda a resolver alguns dos demais itens.

Vejamos a função acima como a soma da integral de uma função linear e de uma função constante. A parte linear pode ser encontrada determinando a equação da reta determinada pelos pontos (-1, 2/5) e (0, 4/5). Substituindo na equação da reta dada por y=ax+b teremos

$$\frac{2}{5} = a \times (-1) + b; \frac{4}{5} = a \times 0 + b$$
,

que nos dá como solução a=2/5eb=4/5 e, portanto, $y=\frac{2}{5}x+\frac{4}{5}=\frac{2}{5}(x+2)$. Esta é a equação da reta a qual integraremos dentro do intervalo [-1, 0] enquanto a distribuição tem o valor constante 4/5 no intervalo [0, 1/2]. Calculemos esta integral.

$$\int_{\infty}^{\infty} f(x) dx = \int_{-1}^{0} \frac{2}{5} (x+2) dx + \int_{0}^{1/2} \frac{4}{5} dx = \frac{2}{5} \left[\int_{-1}^{0} x dx + 2 \int_{-1}^{0} dx \right] + \frac{4}{5} \int_{0}^{1/2} dx = \frac{2}{5} \left[\frac{x^{2}}{2} \Big|_{-1}^{0} + 2 x \Big|_{-1}^{0} \right] + \frac{4}{5} x \Big|_{0}^{1/2} ,$$

continuando teremos

$$\int_{\infty}^{\infty} f(x) dx = \frac{2}{5} \left[\left[\frac{0^2}{2} - \frac{(-1)^2}{2} \right] + 2 \times [0 - (-1)] \right] + \frac{4}{5} \left[\frac{1}{2} - 0 \right] = \frac{2}{5} \left(-\frac{1}{2} + 2 \right) + \frac{4}{5} \frac{1}{2} = \frac{2}{5} \frac{3}{2} + \frac{2}{5} = \frac{3}{5} + \frac{2}{5} = 1$$

Novamente temos que a função apresentada é uma distribuição de probabilidade. Assim, podemos dar segmento aos outros itens.

b) Calcule o valor médio da distribuição;

Resolução:

Usemos a definição de valor médio:

$$\mu = \int_{-1}^{\infty} x f(x) dx = \int_{-1}^{0} x \frac{2}{5} (x+2) dx + \int_{0}^{1/2} x \frac{4}{5} dx = \frac{2}{5} \left[\int_{-1}^{0} x^{2} dx + 2 \int_{-1}^{0} x dx \right] + \frac{4}{5} \int_{0}^{1/2} x dx = \frac{2}{5} \left[\frac{x^{3}}{3} \Big|_{-1}^{0} + 2 \frac{x^{2}}{2} \Big|_{0}^{0} \right] + \frac{4}{5} \frac{x^{2}}{2} \Big|_{0}^{1/2} ,$$

ou

$$\mu = \frac{2}{5} \left[\frac{x^3}{3} \Big|_{-1}^0 + 2 \frac{x^2}{2} \Big|_{-1}^0 \right] + \frac{4}{5} \frac{x^2}{2} \Big|_{0}^{1/2} = \frac{2}{5} \left[\frac{1}{3} - 1 \right] + \frac{4}{5} \frac{(1/2)^2}{2} = -\frac{4}{15} + \frac{1}{10} = -\frac{1}{6} \approx -0,1667 .$$

Observe que o valor da média está contida dentro do intervalo onde a função é definida, ou seja, dentro do intervalo [-1,1/2], como não podia ser diferente.

c) Calcule a variância da distribuição;

Resolução:

Como a definição de variância é dada por

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

calculemos a integral

$$\int_{-\infty}^{\infty} x^2 f(x) dx = \int_{-1}^{0} \frac{2}{5} x^2 (x+2) dx + \int_{0}^{1/2} x^2 \frac{4}{5} dx = \frac{2}{5} \left[\int_{-1}^{0} x^3 dx + 2 \int_{-1}^{0} x^2 dx \right] + \frac{4}{5} \int_{0}^{1/2} x^2 dx \quad ,$$

desenvolvendo obtemos

$$\int_{\infty}^{\infty} x^2 f(x) dx = \frac{2}{5} \left[\frac{x^4}{4} \Big|_{-1}^0 + 2 \frac{x^3}{3} \Big|_{-1}^0 \right] + \frac{4}{5} \frac{x^3}{3} \Big|_{0}^{1/2} = \frac{2}{5} \left[\frac{-1}{4} + \frac{2}{3} \right] + \frac{4}{5} \frac{(1/2)^3}{3} = \frac{1}{6} + \frac{1}{30} = \frac{1}{5} ,$$

então,

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 = \frac{1}{5} - \left(-\frac{1}{6} \right)^2 = \frac{31}{180} \approx 0,1722 .$$

Lembre-se que a variância sempre é positiva. O sinal de quadrado apresentado na representação da variância é uma forma de dar ênfase a este fato.

d) Calcule a moda desta distribuição.

Resolução:

Pela definição de moda, este valor se dá onde a distribuição toma o valor máximo. Observe a figura e você verá que o valor máximo é 4/5 mas este valor não é o máximo num único ponto mas em todo um intervalo. Logo, a distribuição é multimodal pois todos os valores no intervalo [0, ½] são os valores para os quais a distribuição tem valor máximo.

VII) Na Figura abaixo temos uma função que desejamos normalizar para termos uma distribuição de probabilidade no intervalo [1,5; 2,5], sendo a função nula fora deste intervalo. Para isto,

a) determine h;

Resolução:

Para termos uma

distribuição de probabilidade é necessário que a integral da função seja igual a 1 em todo domínio onde ela estiver especificada. Temos aqui um triângulo equilátero e sabemos que a área acima do eixo x é igual a integral. Como a área do triângulo é dada por

$$A_t = \frac{b \times h}{2}$$

onde b é a base do triângulo e h é sua altura. Pela figura b=1 então

$$1=\frac{1\times h}{2}\Rightarrow h=2$$
.

Observe que este resultado não nos ajudará nos próximos itens. Achemos as equações das retas que definem a distribuição. A equação de uma reta pode ser escrita como

$$y=a+bx$$
.

Vejamos primeiro a reta que passa pelos pontos (1,5; 0) e (2, h). Teremos neste caso

$$0=a+b\times\frac{3}{2} \ e \ h=a+b\times2$$

o que nos dá a=-3h e b=2h o que resulta na equação y=-3h+2hx=h(-3+2x).

Para a reta que passa pelos pontos (2, h) e (2,5; 0) teremos

$$h=a+b\times 2$$
 e $0=a+b\times \frac{5}{2}$

com solução a=5h e b=-2h que corresponde à reta y=h(5-2x).

Com a simetria da função, não há surpresa que o coeficiente angular de cada reta tenha a mesma inclinação mas com sinais trocados.

Observe ainda que não precisamos integrar em todo intervalo. Como a função é simétrica em relação ao valor x = 2, só é necessário calcular a metade do intervalo.

Integremos

$$\int_{\frac{3}{2}}^{2} h(-3+2x) dx = -3h \int_{\frac{3}{2}}^{2} dx + 2h \int_{\frac{3}{2}}^{2} dx = -3h \times x|_{\frac{3}{2}}^{2} + 2h \times \frac{x^{2}}{2}|_{\frac{3}{2}}^{2} = -3h(2-\frac{3}{2}) + 2h[2^{2} - (\frac{3}{2})^{2}] = -\frac{3}{2}h + \frac{7}{4}h = \frac{h}{4}.$$

Lembre-se que estamos integrando metade do intervalo, portanto o valor das integral deverá ser

1/2 para termos uma normalização. Assim,

$$\frac{h}{4} = 1/2 \Rightarrow h = 2 .$$

As equações das retas serão

$$y=2(-3+2x)$$
 e $y=2(5-2x)$.

b) Calcule a média;

Resolução:

Aqui não poderemos usar a simetria que vemos na distribuição obtida pois a média é dada por

$$\mu = \int_{-\infty}^{\infty} x f(x) dx ,$$

"quebrando" a simetria. No nosso caso teremos

$$\mu = \int_{3/2}^{2} x [2(-3+2x)] dx + \int_{2}^{5/2} x [2(5-2x)] dx = -6 \int_{3/2}^{2} x dx + 4 \int_{3/2}^{2} x^{2} dx + 10 \int_{2}^{5/2} x dx - 4 \int_{2}^{5/2} x^{2} dx$$

que nos dá

$$\mu = -6\frac{x^2}{2}|_{3/2}^2 + 4\frac{x^3}{3}|_{3/2}^2 + 10\frac{x^2}{2}|_2^{5/2} - 4\frac{x^3}{3}|_2^{5/2}$$

ou

$$\mu = -3 \left[2^2 - \left(\frac{3}{2} \right)^2 \right] + \frac{4}{3} \left[2^3 - \left(\frac{3}{2} \right)^3 \right] + 5 \left[\left(\frac{5}{2} \right)^2 - 2^2 \right] - \frac{4}{3} \left[\left(\frac{5}{2} \right)^3 - 2^3 \right] = -\frac{21}{4} + \frac{37}{6} + \frac{45}{4} - \frac{61}{6} = 2 \quad .$$

Este resultado não tem nada de surpreendente, afinal basta olhar para a figura para sabermos o valor de $\;\mu\;$.

c) Calcule a variância;

Resolução:

Usaremos a definição para variância, ou seja,

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 .$$

Calculemos a integral que no nosso caso se expressará como

$$\int_{3/2}^{2} x^{2} [2(-3+2x)] dx + \int_{2}^{5/2} x^{2} [2(5-2x)] dx = -6 \int_{3/2}^{2} x^{2} dx + 4 \int_{3/2}^{2} x^{3} dx + 10 \int_{2}^{5/2} x^{2} dx - 4 \int_{2}^{5/2} x^{3} dx$$

ou seja,

$$\mu = -6\frac{x^3}{3}|_{3/2}^2 + 4\frac{x^4}{4}|_{3/2}^2 + 10\frac{x^3}{3}|_{2}^{5/2} - 4\frac{x^4}{4}|_{2}^{5/2}$$

que resulta em

$$\mu = -2 \left[2^3 - \left(\frac{3}{2} \right)^3 \right] + \left[2^4 - \left(\frac{3}{2} \right)^4 \right] + \frac{10}{3} \left[\left(\frac{5}{3} \right)^3 - 2^3 \right] - \left[\left(\frac{5}{2} \right)^4 - 2^4 \right] = -\frac{37}{4} + \frac{175}{16} + \frac{305}{12} - \frac{369}{16} = \frac{97}{24} \approx 4,0416 \quad .$$

Teremos para a variância o valor

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 = \frac{97}{24} - 2^2 = \frac{1}{24} .$$

d) Calcule a Mediana;

Resolução:

A Mediana, Md, é definida como o valor que satisfaz a desigualdade

$$P(X \ge Md) \ge \frac{1}{2}$$
 ou $P(X \le Md) \ge \frac{1}{2}$.

Repare mais uma vez que nossa função é simétrica em relação a x = 2. Nesta situação a Mediana é idêntica à média.

e) Qual o valor da Moda? Porque?

Resolução:

A Moda é o valor no qual o valor da distribuição de probabilidade é máxima. Basta olharmos para a figura para sabermos que a moda vale 2 e é monomodal, pois existe somente um ponto para o qual a probabilidade é máxima.

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{C}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0000	0,0120	0,0557	0,0596	0,0636	0,0275	0,0313	0,0753
0,2	0,0338	0,0430	0,0470	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1448	0,1844	0,1879
, .	0,1551	0,1001	0,1020	0,1001	0,1700	0,1750	0,1772	0,1000	0,1011	0,1075
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
2.0	0.400=	0.400=	0.400=	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.