DCS5718 最优化理论与方法 作业

5月16日(星期五)23:59前提交

- 1. 设 $C \subseteq \mathbb{R}^n$ 为一个凸集。 证明: 对任意 k 个向量 $x_1, \dots, x_k \in C$,以及 $\theta_1, \dots, \theta_k \in \mathbb{R}$ 满足 $\theta_1 + \dots + \theta_k = 1$, $\theta_i \geq 0$,都有 $\theta_1 x_1 + \dots + \theta_k x_k \in C$ 。(注: 凸集的定义要求此 式在 k = 2 时成立,这里需要证明对任意 $k \geq 2$ 都成立)
- 2. 证明:集合 S 的凸包是所有包含 S 的凸集的交。
- 3. 设 $C \subseteq \mathbb{R}^n$ 为二次不等式的解集,即

$$C = \left\{ x \in \mathbb{R}^n \mid x^\top A x + b^\top x + c \leqslant 0 \right\},\,$$

其中 $A \in \mathbf{S}^n, b \in \mathbb{R}^n, c \in \mathbb{R}$ 。证明: 若 $A \succeq 0$ (即 A 是半正定矩阵),则 C 是凸集。

- 4. 确定以下函数的凹凸性:
 - (a) $f(x) = \sum_{i=1}^{n} x_i \ln x_i$, $x_i \in \mathbb{R}_{++}$, $i = 1, \dots, n$;
 - (b) $f(x_1, x_2) = x_1 x_2, (x_1, x_2) \in \mathbb{R}^2_{++};$
 - (c) $f(x_1, x_2) = x_1/x_2$, $(x_1, x_2) \in \mathbb{R}^2_{++}$;
- 5. 推导线性规划问题的对偶问题和KKT条件:

$$\min_{x} \quad c^{\top} x$$
s.t. $Gx \le h$

$$Ax = b$$

6. 推导以下问题的对偶问题:

$$\min_{x} \quad \frac{1}{2} ||x - x_0||_2^2 + \sum_{i=1}^{N} ||A_i x + b_i||_2,$$

其中 $A_i \in \mathbb{R}^{m_i \times n}$, $b_i \in \mathbb{R}^{m_i}$, 且 $x_0 \in \mathbb{R}^n$ 。(提示:引入新的变量 $y_i \in \mathbb{R}^{m_i}$ 以及等式约束 $y_i = A_i x + b_i$,将原无约束优化问题转化为约束优化问题后,再推导其对偶问题。)