Exercícios de Geometria Riemanniana

Índice

1	Exercícios do do Carmo	1
	1.1 Capítulo 0	1
	1.1 Capítulo 0	3
2	Exercícios de aulas.pdf	5
	2.1 Pullback and torsion	
	2.2 Minimizante ⇒ geodésica	6
	 2.2 Minimizante ⇒ geodésica	7
	2.4 Duas geodésicas	8
3	Lista 1	9
	3.1 Revisão	9
	3.2 Métricas Riemannianas	10
4	Lista 2	12
Li	ista 3	13

1 Exercícios do do Carmo

1.1 Capítulo 0

Exercise 2 Prove que o fibrado tangente de uma variedade diferenciável M é orientável (mesmo que M não seja).

Solution. Es porque la diferencial de los cambios de coordenadas está dada por la identidad y una matriz lineal. Sí, porque por definición las trivializaciones locales de TM preservan la primera coordenada y son isomorfismos lineales en la parte del espacio vectorial. Entonces queda que

$$d(\phi_U \circ \phi_V^{-1}) = \left(\begin{matrix} Id & 0 \\ \hline 0 & \xi \in \text{GL}(n) \end{matrix} \right)$$

pero no estoy seguro de por qué ξ preservaría orientación, i.e. que tenga determinante positivo... a menos de que...

Exercise 5 (Mergulho de $P^2(\mathbb{R})$ em \mathbb{R}^4) Seja $F: \mathbb{R}^3 \to \mathbb{R}^4$ dada por

$$F(x,y,z)=(x^2-y^2,xy,xz,yz), \qquad (x,y,z)=p\in\mathbb{R}^3.$$

Seja $S^2 \subset \mathbb{R}^3$ a esfera unitária com centro na origem $0 \in \mathbb{R}^3$. Oberve que a restrição $\phi := F|_{S^2}$ é tal que $\phi(\mathfrak{p}) = \phi(-\mathfrak{p})$, e considere a aplicação $\tilde{\phi} : \mathbb{R}P^2 \to \mathbb{R}^4$ dada por

$$\tilde{\phi}([p]) = \phi(p)$$
, $[p]$ =clase de equivalência de $p = \{p, -p\}$

Prove que

- (a) φ̃ é uma imersão.
- (b) $\tilde{\phi}$ é biunívoca; junto com (a) e a compacidade de $\mathbb{R}P^2$, isto implica que $\tilde{\phi}$ é um mergulho.

Solution.

(a) Considere a carta $\{z = 1\}$. A representação coordenada de $\tilde{\varphi}$ vira

$$(x,y) \longmapsto (x^2 - y^2, xy, x, y)$$

cuja derivada como mapa $\mathbb{R}^2 \to \mathbb{R}^4$ é

$$\begin{pmatrix} 2x & -2y \\ y & x \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

que é injetiva. Agora pegue a carta $\{x=1\}$. Então a representão coordenada de $\tilde{\phi}$ vira

$$(y,z) \longmapsto (1-y^2,y,z,yz)$$

e tem derivada

$$\begin{pmatrix} -2y & 0 \\ 1 & 0 \\ 0 & 1 \\ z & y \end{pmatrix}$$

que também é injetiva. Seguramente algo análogo acontece na carta $\{y = 1\}$.

(b) $\tilde{\phi}$ é injetiva. Pegue dois pontos $p_1:=[x_1:y_1:z_1]$ e $p_2:=[x_2:y_2:z_2]$ e suponha que $\tilde{\phi}(p_1)=\tilde{\phi}(p_2)$. I.e.,

$$x_1^2 - y_1^2 = x_2^2 - y_2^2$$
, $x_1y_1 = x_2y_2$, $x_1z_1 = x_2z_2$, $y_1z_1 = y_2z_2$

Suponha primeiro que $z_1 \neq 0$. Segue que

$$x_1 = \frac{z_2}{z_1} x_2, \qquad y_1 = \frac{z_2}{z_1} y_2$$

logo

$$x_2^2 - y_2^2 = x_1^2 - y_1^2 = \left(\frac{z_2}{z_1}\right)^2 (x_2^2 - y_2^2) \implies z_2 = z_1 \implies x_1 = x_2, \quad y_1 = y_2$$

Em fim, uma imersão injetiva com domínio compacto é um mergulho porque é fechada: pegue um fechado no domínio, vira compacto, imagem é compacta, que é fechado. Pronto. .

Exercício 8 $\varphi: M_1 \to M_2$ difeo local. Se M_2 é orientável, então M_1 é orientável.

Solução. Defina: uma base $\beta \subset T_pM$ é orientada se $\phi_*\beta$ é orientada em $T_{\phi(p)}M$. Tá bem definida porque ϕ é um difeomorfismo em p, i.e. ϕ_* é isomorfismo. Para mostrar que é contínua à la Lee, qualquer vizinhança de um ponto $p \in M_1$, a correspondente carta coordenada em $\phi(p)$, um marco coordenado nela e puxe (pushforward baix ϕ^{-1}) de volta para U. Difeomorfismo e muito bom: o pushforward the campos vetoriais está bem definido. \Box

1.2 Capítulo 1

Exercise 1 Prove que a aplicação antípoda $A: S^n \to S^n$ dada por A(p) = -p é uma isometria de S^n . Use este fato para introduzir uma métrica Riemanniana no espaço projetivo real $\mathbb{R}P^n$ tal que a projeção natural $\pi: S^n \to \mathbb{R}P^n$ seja uma isometria local.

Solution. Lembre que a métrica de S^n é a induzida pela métrica euclidiana, onde pensamos que $T_pS^n \hookrightarrow T_p\mathbb{R}^{n+1}$. É claro que A é uma isometría de \mathbb{R}^n , pois ela é a sua derivada (pois ela é linear), de forma que $\langle \nu, w \rangle_p = \langle -\nu, -w \rangle_{A(p)} = \langle \nu, w \rangle_{-p}$.

É um fato geral que se as transformações de coberta preservam a métrica, obtemos uma métrica no quociente de maneira natural, i.e. para dois vetores $v, w \in T_p \mathbb{R} P^n$ definimos $\langle v, w \rangle_{\mathbb{R}^{P^n}}^{\mathbb{R}^P} := \langle \tilde{v}, \tilde{w} \rangle_{\tilde{p} \in \pi^{-1}(p)}^{\mathbb{R}^P}$.

Para ver que a projeção natural é uma isometria local basta ver que a diferencial de A é um isomorfismo em cada ponto. Mas como ela é -A, isso é claro.

Exercício 7 Seja G um grupo de Lie compacto e conexo (dim(G) = n). O objetivo do exercício é provar que G possui uma métrica bi-invariante. Para isto, prove as seguintes etapas:

- (a) Seja ω uma n-forma diferencial em G invariante à esquerda, isto é, $L_x^*\omega = \omega$, para todo $x \in G$. Prove que ω é invariante à direita.
 - Sugestão: Para cada $a \in Ga$, $R_a^*\omega$ é invariante à esqueda. Decorre daí que $R_a^*\omega = f(a)\omega$. Verifique que f(ab) = f(a)f(b), isto é, $f: G \to \mathbb{R} \setminus \{0\}$ é um homomorfismo (contínuo) de G no grupo multiplicativo dos números reais. Como f(G) é um subgrupo compacto compacto e conexo, conclui-se que f(G) = 1. Logo $R_a^*\omega = \omega$.
- (b) Mostre que existe uma n-forma diferencial invariante à esquerda ω em G.
- (c) Seja $\langle \cdot, \cdot \rangle$ uma métrica invariante à esquerda em G. Seja ω uma n-forma diferencial positiva invariante à esqueda em G, é defina uma nova métrica Riemanniana $\langle \langle \cdot, \cdot \rangle \rangle$ em G por

$$\langle\langle u, v \rangle\rangle_{p} = \int_{G} \langle(dR_{x})_{y}u, (dR_{x})_{y}v \rangle_{yx} \omega,$$

$$x, y \in G, \qquad u, v \in T_{y}G$$

Prove que $\langle \langle \cdot, \cdot \rangle \rangle$ é bi-invariante.

Solução.

(a)

(b)

(c) Vou usar outra notação. Suponha que g é uma métrica invariante à esquerda em G. Definimos

$$\tilde{g} := \int_{x \in G} (R_x^* g) \omega$$

como operador $\mathfrak{X}(\mathsf{G}) \times \mathfrak{X}(\mathsf{G}) \longrightarrow \mathcal{F}(\mathsf{G})$.

Lance final Essa definição tá errada! Para que R_x^*g seja uma função que acompanhe ω em cada ponto, **também temos que puxar** ω . Ou seja, a definição correta ω .

$$\tilde{g} := \int_{x \in G} R_x^*(g\omega)$$

E ai entra que tem que considerar $R_x^*\omega$, que por definição é invariante à esquerda, mas tu já provou que também é invariante à direita então beleza: $R_x^*\omega = \omega$.

A partir daqui contas confusamente mexidas entre a primeira vez que escrevi e depois... mas a definição acima deve ser suficiente para provar em um par de linhas...

Agora vamos ver que \tilde{g} é invariante à esquerda, i.e. queremos ver que para todo $\alpha \in G$,

$$\tilde{g} \stackrel{\text{quero}}{=} L_{\alpha}^* \tilde{g} \stackrel{\text{def}}{=} L_{\alpha}^* \int_{G} (R_{x}^* g) \omega.$$

Vamos ver que o pullback L_{α}^* pode "entrar na integral" e trocar de lugar com R_x^* , daí o resultado segue porque g é L_{α} -invariante. As contas acabam sendo que

$$\begin{split} L_{\alpha}^* \int_G (R_x^* g) \omega &= \int_G L_{\alpha}^* R_x^* g \omega = \int_G (L_{\alpha} \circ R_x)^* g \omega = \int_G (R_x \circ L_{\alpha})^* g \omega \\ &= \int_G R_x^* L_{\alpha}^* g \omega = \int_G R_x^* g \omega = \tilde{g} \end{split}$$

Para ver que g também é invariante à direita fazemos:

$$\tilde{g} \stackrel{\text{quero}}{=} R_{\alpha}^* \tilde{g} \stackrel{\text{def}}{=} R_{\alpha}^* \int_G (R_x^*) g \omega = \int_G R_{\alpha}^* R_x^* g \omega = \int_G R_{\alpha x}^* g \omega = \int_G R_x^* g \omega = \tilde{g}$$

porque estamos integrando em todo G e G \curvearrowright G transitivamente. Catch! Como é o pullback? $F^*(f\omega) = F^*f \land F^*\omega$ então temos

$$R_a^*(R_x^*g\omega) = R_a^*(R_x^*g)R^*\omega$$

Então beleza só que: para que essa forma ai seja invariante à direita, não é suficiente que $R_{\alpha}^*(R_x^*g)$ seja invariante à direita: também o pullback de ω ! É ai que

entra o inciso (a): você provou que ω invariante à esquerda é invariante à direita, i.e. $R^*\omega = \omega$.

Para todo aquele que tem dúvida, aqui estão as contas da invarianza à esquerda super explicitas:

Fixe $y \in G$ e $u, v \in T_uG$. Temos que

$$\begin{split} (L_{\alpha}^*\tilde{g})(u,\nu) &= L_{\alpha}^* \left(\int_g (R_x^*g)\omega \right) (u,\nu) \\ &= \left(\int_G (R_x^*g)\omega \right) \left((L_{\alpha})_{*,\alpha^{-1}y}u, (L_{\alpha})_{*,\alpha^{-1}y}\nu \right) \\ &= \int_G (R_x^*g) \Big((L_{\alpha})_{*,\alpha^{-1}y}u, (L_{\alpha})_{*,\alpha^{-1}y}\nu \Big)\omega \\ &= \int_G g\Big((R_x)_{*,\alpha^{-1}yx^{-1}}(L_{\alpha})_{*,\alpha^{-1}y}u, (R_x)_{*,\alpha^{-1}yx^{-1}}(L_{\alpha})_{*,\alpha^{-1}y}\nu \Big)\omega \\ &= \int_G g\Big((R_x\circ L_{\alpha})_{*,\alpha^{-1}yx^{-1}}u, (R_x\circ L_{\alpha})_{*,\alpha^{-1}yx^{-1}}\nu \Big)\omega \\ &= \int_G g\Big((L_{\alpha}\circ R_x)_{*,\alpha^{-1}yx^{-1}}u, (L_{\alpha}\circ R_x)_{*,\alpha^{-1}yx^{-1}}\nu \Big)\omega \\ &= \int_G g\Big((L_{\alpha})_{*,\alpha^{-1}yx^{-1}}(R_x)_{*,yx^{-1}}u, (L_{\alpha})_{*,\alpha^{-1}yx^{-1}}(R_x)_{*,yx^{-1}}\nu \Big)\omega \\ &= \int_G \Big((L_{\alpha})^*g\Big) \Big((R_x)_{*,yx^{-1}}u, (R_x)_{*,yx^{-1}}\nu \Big)\omega \\ g \text{ invariante à esquerda} &= \int_G g\Big((R_x)_{*,yx^{-1}}u, (R_x)_{*,yx^{-1}}\nu \Big)\omega \\ &= \frac{\text{def}}{\equiv} \tilde{g}(u,\nu). \end{split}$$

onde $R_x \circ L_\alpha = L_\alpha \circ R_x$ por associatividade de produto no grupo.

2 Exercícios de aulas.pdf

2.1 Pullback and torsion

Exercício Para $f: M \to \tilde{M}$ defina

$$T_{\nabla^f}(X,Y) = \nabla_X^f f_* Y - \nabla_Y^f f_* X - f_*[X,Y]$$

que é uma seção do fibrado pullback. Avaliada em $p \in M$, obtemos um vetor em T \tilde{M} . Agora pegue dois campos \tilde{X} e \tilde{Y} que estendem $f_{*,p}X_p$ e $f_{*,p}Y_p$. Mostre que $(T_{\nabla^f}(X,Y))(p)$ é o mesmo vetor que o campo

$$(f^*T)(X,Y) := \nabla_{\tilde{\mathbf{Y}}}\tilde{\mathbf{Y}} - \nabla_{\tilde{\mathbf{Y}}}\tilde{\mathbf{X}} - [\tilde{\mathbf{X}},\tilde{\mathbf{Y}}]$$

avaliado em f(p).

Solution. Essa aqui é a conta do Florit. Pegue coordenadas ∂_i de M e $\tilde{\partial_i}$ de \tilde{M} . Primeiro lembre que

$$f_*\partial_i = \partial_i f^k \partial_k \circ f$$

onde abusando de notação $f=(f^1,\ldots,f^{\tilde{n}})$ são as funções coordenadas de f naquelas cartas.

A conta presentada em aula é:

$$\begin{split} \nabla^f_{\partial_i} f_* \partial_j &= \nabla^f_{\partial_i} \partial_j f^k \tilde{\partial_k} \circ f \\ &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla^f_{\partial_i} \tilde{\partial_k} \circ f \\ &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla_{f_* \partial_i} \tilde{\partial_k} \circ f \\ \text{all I know.} \, . \, &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla_{f_* \partial_i} \tilde{\partial_k} \\ &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla_{\partial_i f^l \tilde{\partial}_l f} \tilde{\partial_k} \\ &= \partial_i \partial_j f^k \tilde{\partial} \circ f + \partial_j f^k \partial_i f^l \nabla_{\tilde{\partial_l} \circ f} \tilde{\partial_k} \\ &= \partial_i \partial_j f^k \tilde{\partial} \circ f + \partial_j f^k \partial_i f^l \nabla_{\tilde{\partial_l} \circ f} \tilde{\partial_k} \\ \text{tensorial embaixo} &= \partial_i \partial_j f^k \tilde{\partial} \circ f + \partial_j f^k \partial_i f^l \left(\nabla_{\tilde{\partial_l} \circ f} \tilde{\partial_k} \right) \circ f \end{split}$$

O que faço com isso? Mmm...

$$\nabla^f_{\partial_i} f_* \partial_i = \partial_j \partial_i f^k \tilde{\partial} \circ f + \partial_i f^k \partial_j f^\ell \left(\nabla_{\tilde{\partial}_\ell} \tilde{\partial}_k \right) \circ f$$

Parece que

$$\nabla^f_{\partial_{\mathfrak{i}}}f_*\partial_{\mathfrak{j}} - \nabla^f_{\partial_{\mathfrak{j}}}f_*\partial_{\mathfrak{i}} = 0$$

porque as parciais comutam mas... é isso o que queremos?

2.2 Minimizante \implies geodésica

Exercício 8 (Curvas minimizantes)

(a) Seja γ uma curva suave por partes parametrizada por comprimento de arco (this is important, velocity is 1) conectando p a q. Mostre que se $d(p,q) = \ell(\gamma)$ então γ é uma geodésica.

Solution. Imagino que podemos só usar a primeira fórmula da variação:

$$S'(0) = -\int_a^b \langle V, \gamma'' \rangle dt.$$

(na página que segue anexo uma prova dela, mas isso é extra.)

È claro que se γ é minimizante, estamos num ponto crítico do funcional de distância S, é se cumple a primeira fórmula da variação.

Pergunta Para mim parece que daí segue que $\gamma''=0$, porque a métrica é não degenerada. Porém, [Lee19], thm. 6.4 afirma que devemos usar $V=\gamma''$ para concluir esse exercício. Isso não entendo por que.

2.3 First variation formula explained

Explanation of first variation formula. Não precisa ler :)

Consider a *variation* of γ , which is like a homotopy:

$$\Gamma: (a,b) \times (-\varepsilon,\varepsilon) \longrightarrow M$$

$$\Gamma(t,s) = \gamma(t) + sV(\gamma(t))$$

where $V \in \mathfrak{X}_{\gamma}$ is a vector field along γ called the *variation field*, and it has to vanish on the endpoints. Then there's the *length functional*

$$S(s) := \ell(\Gamma(t,s)) = \int_0^b |\nabla_{\frac{d}{dt}} \Gamma(t,s)| dt.$$

Because $\gamma = \Gamma(t,0)$ is minimizing, we know that S'(0) = 0. Then we compute that and hope that it will say $\gamma'' = 0$.

$$\begin{split} S'(0) &= \int_{a}^{b} \frac{d}{ds} \bigg|_{s=0} \left\langle \nabla_{t} \Gamma(t,s), \nabla_{t} \Gamma(t,s) \right\rangle^{1/2} dt \\ &= \int_{a}^{b} \frac{2}{2 |\Gamma(s,t)|^{-1}} \left\langle \nabla_{s} \nabla_{t} \Gamma(t,s), \nabla_{t} \Gamma(t,s) \right\rangle dt \\ &\stackrel{symmetry}{\underset{lemma}{=}} \int_{a}^{b} \left\langle \nabla_{t} \underbrace{\nabla_{s} \Gamma(t,s)}, \nabla_{t} \Gamma(t,s) \right\rangle dt \\ &= \int_{a}^{b} \frac{d}{dt} \bigg|_{t=0} \left\langle V, \nabla_{t} \Gamma(t,s) \right\rangle - \int_{a}^{b} \left\langle V, \underbrace{\nabla_{t} \nabla_{t} \Gamma(t,s)}_{s,t} \right\rangle dt \end{split}$$

and the first one vanished out fundamental theorem of calculus and the fact that V is zero on the endpoints.

So we get that if γ minimizes distance, this integral is zero for any variation of γ .

Remarks

- Symmetry lemma basically follows from commutativity of partial derivatives in \mathbb{R}^n . Florit used pullback connection (as in the previous exercise!) and [Lee19] used Christoffel symbols.
- The true version of the variation formula admits that Γ is only piecewise smooth. The formula becomes less nice and the proof a little more involved, I won't do it, but something nice comes out of that: the fact that you realise that geodesics can't have corners because:

so it would be nice to understand that precisely but OK.

2.4 Duas geodésicas

Mais um:

Exercício 8 (Curvas minimizantes)

(b) Suponha que γ , σ : $[0,2] \to M$ são geodésicas distintas e satisfazem: $\gamma(0) = \sigma(0) := p$, $\gamma(1) = \sigma(1) := q$, γ e σ realizam a distância entre p e q. Mostre que γ não realiza a distância entre p e $\gamma(1+s)$ para nenhum s>0.

Demostração. Argumentamos na monitoria que teriamos um problema de diferenciabilidade. Pela explicação dada em [Lee19] sobre a suavização de quinas, sabemos que as geodésicas devem ser suaves. Porém, que não poderia acontecer algo assim?

Exercício Show that for a bi-invariant metric on a Lie Group, it holds that $\exp_e = \exp^G$.

Solution. After delving into the abyss of definitions, I think it boils down to showing that $\nabla_{X_{\nu}}X_{\nu}=0$, where $\nu\in\mathfrak{g}$. So we have to use that the metric is bi-invariant. But it's not necessarily Levi-Civita connection...

3 Lista 1

3.1 Revisão

Exercício 1 Dada uma subvariedade $M \subseteq \tilde{M}$ uma subvariedade mergulhada e $X \in \mathfrak{X}(M)$. Mostre que existe um aberto $U \subset \tilde{M}$ contendo M e um campo $\tilde{X} \in \mathfrak{X}(U)$ tal que $\tilde{X}|_{M} = X$. Caso M seja subconjunto fechado de \tilde{M} , prove que U pode ser tomado igual a \tilde{M} . Se M não é subconjunto fechado de \tilde{M} , pode não existir extensão de X definida em todo \tilde{M} .

Solução. Acho que a prova canônica é tomar coordenadas de subvariedade de $M \subset \tilde{M}$, i.e. onde M está dada localmente como o lugar onde se anulam as últimas n-m funções coordenadas.

Pegamos uma vizinhança rectificante U de X em $p \in M$, i.e. $X = \partial_1$ em U. Daí pega para cada vetor normal a exponencial, que percorre pela geodésica um pouqinho. Isso da uma vizinhança em \tilde{M} ...

Exercício 2 Seja $f: M^n \to N^m$ um mapa suave. Os campos $X \in \mathfrak{X}(M)$ e $\tilde{X} \in \mathfrak{X}(N)$ são ditos f-relacionados se $df_p X_p = \tilde{X}_{f(p)}$, $\forall p \in M$. Mostre que se os campos $X, Y \in \mathfrak{X}(M)$ são, respetivamente, f-relacionados com $\tilde{X}, \tilde{Y} \in \mathfrak{X}(N)$ então [X, Y] é f-relacionado com $[\tilde{X}, \tilde{Y}]$.

Solução. Intento 2. $s_1 \in \Gamma(\tau_N)$ está f-relacionado com $s \in \Gamma(\tau_M)$ se $s = s_1 \oplus s^{\perp}$ para algum $s^{\perp} \in \nu$. Queremos ver que se $s \stackrel{f}{\sim} s_1$ e t $\stackrel{f}{\sim} t_1$, $[s,t] \stackrel{f}{\sim} [s_1,t_1]$, ou seja $[s,t] = [s_1,t_1] \oplus [s,t]^{\perp}$ onde $[s,t]^{\perp}$ é um vetor em ν cuja cara não é muito importante.

$$\left[s,t\right]=\left[s_1\oplus s^\perp,t_1\oplus t^\perp\right]=\left[s_1,t_1\right]+\underbrace{\left[s_1,t^\perp\right]}_{=0}+\underbrace{\left[s^\perp,t_1\right]}_{\in\nu}+\underbrace{\left[s^\perp,t^\perp\right]}_{\in\nu}$$

Falta un argumentín para ver que esos colchetes se anulan...

Intento 1 (incompleto). Pegue $p \in M$. Queremos ver que

$$(f_*[X,Y])_p \stackrel{\text{quero}}{=} [\tilde{X},\tilde{Y}]_{f(p)}.$$

Pegue $g \in \mathcal{F}(N)$.

$$\begin{split} [\tilde{X}, \tilde{Y}]_{f(p)} &\stackrel{\text{def}}{=} \tilde{X}_{f(p)}(\tilde{Y}g) - \tilde{Y}_{f(p)}(\tilde{X}g) \\ &\stackrel{\text{hip}}{=} f_{*,p}(X_p)(\tilde{Y}g) - f_{*,p}(Y_p)(\tilde{X}g) \\ &= X_p \Big((\tilde{Y}g) \circ f \Big) - Y_p \Big((\tilde{X}g) \circ f \Big) \\ &\stackrel{\text{hip}}{=} X_p \Big(\big(f_{*,p}(Y) \big) g \circ f \big) \Big) - Y_p \Big(\big(f_{*,p}(X_p) \big) g \circ f \Big) \end{split}$$

Exercício 3 Seja $\pi: M \to N$ uma submersão sobrejetiva. Dado $Y \in \mathfrak{X}(N)$, mostre que existe $X \in \mathfrak{X}(M)$ tal que $X \notin \pi$ -relacionado com Y.

Solução. O resultado segue de que $\tau_M \cong \pi^* \tau_N \oplus \nu$, tomando $X := Y \oplus 0$.

Exercício 4 (Fibrado pullback) Suponha que M^n , N^m são variedades suaves, $\pi: E \to M$ é um fibrado vetorial suave de posto k e f : $N \to M$ é um mapa suave. Considere o espaço

$$f^*E = \{(p, e) \in N \times E : f(p) = \pi(e)\},\$$

e $\tilde{\pi}: E \to N$ a projeção na primeira coordenada. Mostre que f*E tem uma estrutura de variedade suave de forma que a tripla $\tilde{\pi}: f^*E \to N$ é um fibrado vetorial suave de posto k.

Solução. Para mostrar que $\tilde{\pi}$ é um fibrado vetorial devemos dar trivializações locais. Pegue um ponto $p \in M$ e uma vizinhança trivializante de E perto de f(p), i.e. um aberto $U \ni f(p)$ e um difeomorfismo $h : \pi^{-1}(U) \xrightarrow{\cong} U \times \mathbb{R}^k$. Pegue também um aberto $V \ni p$ tal que $f(V) \subset U$. Defina

$$\begin{aligned} h_1: \tilde{\pi}^{-1}(V) &\longrightarrow V \times \mathbb{R}^k \\ (q, \nu) &\longmapsto (q, \pi_2 \circ h(f(q), \nu)) \end{aligned}$$

Como estamos usando a estrutura de fibrado vetorial de E, segue imediatamente a coleção de funções desse tipo formam um atlas trivializante de f*E.

3.2 Métricas Riemannianas

Exercício 6 Seja (N^n,g) uma variedade Riemanniana e $M^m \subset N$ uma subvariedade mergulhada. Mostre que para todo $p \in M$ existe uma vizinhança aberta $U \subset N$ de p e campos vetoriais E_1, \ldots, E_n em U tal que $E_1(q), \ldots, E_n(q)$ é uma base ortonormal de T_qN para todo $q \in U$ e $E_1(r), \ldots, E_m(r)$ são tangentes a M para todo $r \in U \cap M$.

Solução. (Intento 1.)Pegue $p \in M$ e uma vizinhança aberta de $U \subset N$ de p tal que $U \cap M$ é suficientemente pequeno como para ter um marco ortonormal $\{E_i\}_{i=1}^n$. Considere esses campos como campos tangentes a N. Usando o exercício 1 podemos estender esses campos a uma vizinhança de $U \subset N$. Aplicando Gram-Schmidt obtemos um marco ortonormal de $\mathfrak{X}(U)$.

(Intento 2, [MS74] thm. 3.3, p. 36.) Take orthonormal frames $\{E_i\}_{i=1}^m \subset \mathfrak{X}(U \cap M)$ and $\{E_i'\}_{i=1}^n \subset \mathfrak{X}(U)$. Notice that the matrix $(E_i \cdot E_j')$ has rank m at p. (I think that two orthonormal frames are related up to an orthogonal matrix.) Suppose that the first m columns are linearly independent at p. Then there is an open neighbourhood V of p where the first m columns of this matrix are linearly independent. Then a slightly confusing part arguing that $E_1, \ldots, E_m, E_{m+1}', \ldots, E_n'$ are linearly independent in V. Then apply Gram-Schmidt. And that's it.

Then Milnor shows that this is a vector bundle called the *orthogonal bundle*. The lance is that the orthonormal frame we have found gives the local trivialization. For a subbundle

 $\xi \subset \eta$ define the fiber of the orthogonal complement of ξ by $F_b(\xi^{\perp}) := F_b(\xi)^{\perp}$ with respect to the metric of η . Define local trivializations by

$$\begin{split} \overline{h} : \overline{\pi}^{-1}(U) &\longrightarrow U \times \mathbb{R}^{n-m} \\ \left(q, \sum x_i E_i \right) &\longmapsto (q, x_{m+1}, \dots, x_m) \end{split}$$

Definição 1 Sejam (M^m, g_M) e (N^n, g_N) variedades Riemannianas. Seja $F: M \to N$ uma submersão. Dizemos que F é uma *submersão Riemanniana* quando para todo $p \in M$, $DF: \ker(DF)^{\perp} \to T_{F(p)}N$ é uma isometría linear. Em outras palavras, sempre que $v, w \in T_pM$ são perpendiculares ao núcleo de DF, vale

$$q_{M}(v, w) = q_{N}(DF(v), DF(w)).$$

Exercício 7 Seja (M^n,g) uma variedade Riemanniana. Suponha que existe um grupo de Lie G agindo por isometrias em (M,g) de tal forma que M/G admite uma estrutura de variedade suave, onde a projeção $\pi: M \to M/G$ é uma submersão. Mostre que existe uma métrica Riemanniana \overline{g} em M/G tal que $\pi: (M,g) \to (M/G,\overline{g})$ é uma submersão Riemanniana.

Solução. (Seguindo notação e ideias de [MS74].) Fazemos assim para definir a métrica em G/M. Primeiro lembre que $\tau_{G/M} \cong \pi^*\tau_{M/G}$. Considere o fibrado ν normal a $\pi^*\tau_{M/G}$, que é um fibrado sobre M satisfazendo $\pi^*\tau_{G/M} \oplus \nu \cong \tau_M$. Então qualquer vetor tangente a M/G pode ser pensado como um vetor tangente a M se anulamos a parte normal dele, mostrando que podemos usar a mesma métrica em M para introduzir uma métrica em G/M.

Para resolver o exercício devemos analisar como age π_* em τ_M quando este es visto como soma direita $\pi^* \oplus \nu$: $\pi_*(\nu_1 \oplus \nu^\perp) = \nu_1$. Daí segue trivialmente que $\ker \pi := \kappa \subset \nu$. Conversamente se $\nu_1 \oplus \nu^\perp \in \kappa$, fazemos para $w \in \pi^*$

$$(v_1 \oplus v^{\perp}) \cdot w = v_1 \cdot w + v^{\perp} \cdot w = 0.$$

Então $\kappa = \nu$, então $\kappa^{\perp} \cong \pi^* \cong \tau_{M/G}$ isometricamente.

Intento 1 (errado). Defina a seguinte métrica em M/G:

$$g_{M/G} := g_M|_{\pi * \tau_{M/G}}$$

i.e. a restrição da métrica em M ao fibrado pullback de $\tau_{M/G} := T(G/M)$, que sabemos que é isomorfo (como fibrado) a $\tau_{M/G}$.

Para ver que $\pi: M \to M/G$ é uma submersão Riemanniana devemos mostrar que o complemento ortogonal de $\kappa_\pi := \ker(\pi)$ é isomorfo (como fibrado Riemanniano, i.e. isométrico como fibrado) a $\tau_{M/G}$.

Como M é Riemanniana, o fibrado pullback tem um complemento ortogonal $(\pi^*\tau_{M/G})^\perp:=\nu$. Basta mostrar que $\nu\cong\kappa$ isometricamente.

4 Lista 2

Exercício 1 Mostre que todo fibrado vetorial admite uma conexão.

Exercício 3 Exercício 2 do Capítulo 2 do livro do professor Manfredo:

Sejam X e Y campos de vetores numa variedade Riemanniana M. Sejam $p \in M$ e $\gamma: I \to M$ uma curva integral de X por p, i.e. $\gamma(t_0) = p$ e $\frac{d\gamma}{dt} = X(\gamma(t))$. Prove que a conexão Riemanniana de M é

$$(\nabla_{\mathbf{X}}\mathbf{Y})(\mathbf{p}) = \frac{\mathbf{d}}{\mathbf{dt}} \left(P_{\gamma,\mathbf{t}_0,\mathbf{t}}^{-1} (\mathbf{Y}(\gamma(\mathbf{t}))) \right) \Big|_{\mathbf{t}=\mathbf{t}_0}$$
 (1)

onde $P_{\gamma,t_0,t}:T_{\gamma(t_0)M\to T_{\gamma(t)}M}$ é o transporte paralelo ao longo de γ de t_0 a t.

Solução. Primeiro devemos escrever o lado direito da eq. (1) em termos do fibrado pullback ao longo de γ :

$$\left. \frac{\mathrm{d}}{\mathrm{d}t} \Big(P_{\gamma,t_0,t}^{-1} \big(Y(\gamma(t)) \big) \Big) \right|_{t=t_0} \leftrightsquigarrow \nabla_{\frac{\mathrm{d}}{\mathrm{d}\,t}}^{\gamma}$$

Lista 3

Exercício 4 Exemplo: esfera.

- (a) Determine as geodésicas da esfera \mathbb{S}^n com sua métrica canônica.
- (b) Determine o grupo de isometrias da esfera \mathbb{S}^n com sua métrica canônica.

Solution.

(a) **Ideia essencial.** Suponha que $\gamma: I \to \mathbb{S}^n \subset \mathbb{R}^{n+1}$ é uma geodésica. Podemos pensar que $\gamma': I \to T\mathbb{S}^n \subset T\mathbb{R}^{n+1} = \mathbb{R}^{n+1}$ e analogamente $\gamma'': I \to \mathbb{R}^{n+1}$. Espaço tangente à esfera é perpendicular ao vetor posição, i.e. $\gamma \perp \gamma'$. Também $\gamma'' \perp \gamma'$; isso é porque $\gamma'' = (\gamma'')^\top + (\gamma'')^\perp$, e como γ é geodésica sabemos que $(\gamma'')^\top = 0$. Por fim, $\gamma'' = \lambda \gamma$, então concluímos que γ está dada por senos e cosenos.

Para escrever isso formalmente precisamos de uma expressão experta para γ . Em [Lee19] Prop. 5.27 achamos inspiração: damos a volta ao problema e começamos propondo uma curva que vai acabar sendo geodésica. Pegue um ponto $\mathfrak{p} \in \mathbb{S}^n$ e um vetor unitário $\mathfrak{v} \in T_\mathfrak{p} \mathbb{S}^n$. Considere

$$\gamma(t) = \cos tp + \sin tv$$

Derivando como uma simples curva em \mathbb{R}^{n+1} , vemos que $\gamma'' = -\gamma$, o que significa que $(\gamma'')^{\top} = 0$, i.e. γ é uma geodésica de \mathbb{S}^n . Mais precisamente,

$$\gamma''(t) = \left(\nabla_{\frac{d}{dt}}^{i\circ\gamma}\gamma'\right)_t \in (i\circ\gamma)^*T\mathbb{R}^{n+1} \cong \gamma^*(T\mathbb{S}^n \oplus N)$$

não tem componente tangente, e portanto

$$0 = \nabla^{\gamma}_{\frac{d}{d+1}} \gamma' \in \gamma^* T \mathbb{S}^n.$$

Sendo essa uma geodésica partindo de um ponto arbitrário numa direção arbitrária, concluimos por unicidade das geodésicas e *rescaling lemma* que todas as geodésicas de \mathbb{S}^n são como γ .

Note que a geodésica γ é uma parametrização do círculo unitário no plano gerado pelos vetores p e ν , i.e. um círculo máximo. Em conclusão, as geodésicas são os círculos máximos de \mathbb{S}^n .

(b) Afirmo que $\text{Isom}\,\mathbb{S}^n=O(n+1)\stackrel{\text{def}}{=}\{A\in GL(n+1):AA^T=Id\}$. É claro que $O(n+1)\subset I\text{som}\,\mathbb{S}^n$, pois as transformações $A\in O(n+1)$ preservam o produto interno euclideano:

$$\begin{split} AA^T &= Id \iff \sum_k A_{ik} A_{jk} = \delta_{ij} \iff Ae_i \cdot Ae_j = \delta_{ij} \\ &\iff A\nu \cdot Aw = A\left(\nu^i e_i\right) \cdot A\left(w^j e_j\right) = \nu^i w^j e_i \cdot e_j = \nu \cdot w. \end{split}$$

Para ver que Isom $\mathbb{S}^n \subset \mathsf{O}(n+1)$ suponha que $A: \mathbb{S}^n \to \mathbb{S}^n$ é uma isometria. Vamos mostrar que A é a restrição de uma função $\tilde{A} \in \mathsf{O}(n+1)$. Defina

$$\tilde{A}: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n+1}$$
$$(r, \theta) \longmapsto rA(1, \theta)$$
$$0 \longmapsto 0$$

Se mostramos que \tilde{A} é uma isometria linear, é claro que ela é um elemento de O(n+1) pela conta anterior. De fato, basta mostrar que \tilde{A} é uma isometria, pois toda isometria de espaços de Banach que fixa a origem é linear ([?] Teo. 7.11).

Para ver que \tilde{A} é uma isometria de \mathbb{R}^{n+1} , **afirmo** que a distância de p a q está totalmente determinada pelas normas $\|p\|$ e $\|q\|$, e pela distancia esférica entre $\frac{p}{\|p\|}$ e $\frac{q}{\|q\|}$. Note que essa afirmação é na verdade um problema de geometria plana, pois todas essas quantidades podem ser descritas dentro do único plano que contém 0, p e q.

Figure 1: Intento de prova

Acabou que essa afirmação é simplesmente a lei dos cosenos, já que a distância esférica entre $\frac{p}{\|p\|}$ e $\frac{q}{\|q\|}$ é exatamente o angulo entre p e q (poque essa distância é um segmento de círculo máximo!):

lei dos cosenos:
$$d(p,q)^2 = \|p\|^2 + \|q\|^2 - 2\|p\|\|q\|\cos\angle(p,q)$$

Em fim, \tilde{A} é uma isometria porque $d_{\mathbb{R}^{n+1}}(p,q)=d_{\mathbb{R}^{n+1}}(\tilde{A}p,\tilde{A}q)$ pelo argumento anterior.

Exercício 12 Seja (G, g) um grupo de Lie munido de uma métrica bi-invatiante e ∇ sua conexão de Levi-Civita.

(a) Mostre que

$$\nabla_{\mathbf{u}} \mathbf{v} = \frac{1}{2} [\mathbf{u}, \mathbf{v}],$$

para cada $u, v \in \mathfrak{g} \subset \mathfrak{X}(G)$.

(b) Seja $\overline{\nabla}$ uma conexão agim simétrica em G. Mostre que $\overline{\nabla}=\nabla$ se e somente se $\overline{\nabla}_{\mathfrak{u}}\mathfrak{u}=0$ para todo $\mathfrak{u}\in\mathfrak{g}.$

Solution.

(a) Como ∇ é Levi-Civita, temos Koszul, i.e. $\forall u, v, w \in \mathfrak{g}$,

$$2 \langle \nabla_{\mathbf{u}} \mathbf{v}, \mathbf{w} \rangle = \mathbf{u} \langle \mathbf{v}, \mathbf{w} \rangle + \mathbf{v} \langle \mathbf{u}, \mathbf{w} \rangle - \mathbf{w} \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, [\mathbf{v}, \mathbf{w}] \rangle + \langle \mathbf{v}, [\mathbf{w}, \mathbf{u}] \rangle + \langle \mathbf{w}, [\mathbf{u}, \mathbf{v}] \rangle$$

Como $\langle\cdot,\cdot\rangle$ é invariante à esquerda, é constante quando avaliamos em elementos de $\mathfrak g$, e portanto os primeiros três termos se anulam. Então o exercício acaba quando mostramos que

$$\langle v, [w, u] \rangle = \langle u, [v, w] \rangle = -\langle u, [w, v] \rangle.$$

Seguindo [dC79], p. 45., a ideia é usar o fluxo $\phi: \mathbb{R} \times G \to G$ de w para expressar o colchete de Lie. Primeiro precisamos de

Afirmação O fluxo φ de um campo invariante à esquerda w comuta com a traslação à esquerda, i.e.,

$$\phi_t(e) \circ L_h = L_h \circ \phi_t(e) \qquad \forall t \in \mathbb{R} \forall h \in G.$$

Prova da afirmação. Derivamos de ambos lados. Por um lado,

$$\frac{d}{dt}\Big|_{t=0}\phi_t(e)\circ L_h = \frac{d}{dt}\Big|_{t=0}\phi_t(h) = \nu_h$$

Por outro lado,

$$\frac{d}{dt}\Big|_{t=0} L_h \circ \phi_t(e) = (L_h)_{*,\phi_t(e)} \frac{d}{dt}\Big|_{t=0} \phi_t(e) = (L_h)_{*,e} \nu_e = \nu_h.$$

Por unicidade das soluções de EDOs, acabou.

Então repare:

$$\varphi_{\mathsf{t}}(\mathsf{h}) = (\varphi_{\mathsf{t}} \circ \mathsf{L}_{\mathsf{h}})(e) = (\mathsf{L}_{\mathsf{h}} \circ \varphi_{\mathsf{t}})(e) = \mathsf{h}\varphi_{\mathsf{t}}(e) = \mathsf{R}_{\varphi_{\mathsf{t}}(e)}\mathsf{h},$$

ou seja, qualquer curva integral de w é simplesmente a curva integral que passa por e trasladada.

Agora lembre que o colchete de Lie pode ser expressado como

$$[w,v]_e = \frac{d}{dt}\Big|_{t=0} \Big(\phi_{-t}\Big)_{*,\phi_{\mathfrak{t}}(e)} \nu_{\phi_{\mathfrak{t}}(e)}.$$

(Onde fixamos o parámetro -t e deixamos livre o outro para ver ϕ_{-t} como um difeomorfismo de G.)

Juntando com a discussão anterior obtemos

$$[w,v]_{\varepsilon} = \frac{d}{dt}\Big|_{t=0} \Big(R_{\phi_{-t}(\varepsilon)}\Big)_{*,\phi_{t}(\varepsilon)} v_{\phi_{t}(\varepsilon)}.$$

Agora repare: como a métrica é bi-invariante,

$$\begin{split} \langle u, \nu \rangle &= \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \left(L_{\phi_{t}(e)} \right)_{*,e} u_{e\prime} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \left(L_{\phi_{t}(e)} \right)_{*,e} \nu_{e} \right\rangle \\ &= \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)\prime} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \end{split}$$

Agora derivemos como funções de t (dentro de T_eG , i.e. não precisamos derivada covariante), e avaliemos em t=0. (Note que quando avaliamos em t=0 o factor que não derivamos não muda—estamos trasladando à direita e à esquerda por $\varphi_0(e)$!) Obtemos:

$$\begin{split} 0 &= \frac{d}{dt} \Big|_{t=0} \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)}, \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \\ &= \left\langle \frac{d}{dt} \Big|_{t=0} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)}, \left[\left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right]_{t=0} \right\rangle \\ &+ \left\langle \left[\left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)} \right]_{t=0}, \frac{d}{dt} \Big|_{t=0} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \\ &= \left\langle \left[w, u \right]_{e}, \nu_{e} \right\rangle + \left\langle u_{e}, \left[w, \nu \right]_{e} \right\rangle. \end{split}$$

Pelo inciso (a), é claro que se $\overline{\nabla} = \nabla$, $\overline{\nabla}_{\mathfrak{u}}\mathfrak{u} = 0$. Para a implicação contrária, vejamos que

$$\overline{\nabla}_{\mathbf{u}} \mathbf{v} = \frac{1}{2} [\mathbf{u}, \mathbf{v}], \qquad \mathbf{u}, \mathbf{v} \in \mathfrak{g}$$

que é conveniente porque sabemos que isso é igual a $\nabla_{\mathfrak{u}} v$ pelo inciso (a). É só fazer:

$$0 = \overline{\nabla}_{u+v} u + v = \overline{\nabla}_{u} u + \overline{\nabla}_{v} v + \overline{\nabla}_{v} u + \overline{\nabla}_{v} v$$

Lembre que $\overline{\nabla}$ é simétrica, i.e. $\overline{\nabla}_{\mathfrak{u}} v - \overline{\nabla}_{v} \mathfrak{u} = [\mathfrak{u}, v]$. Somando com a equação anterior:

$$\overline{\nabla}_{\mathbf{u}} \mathbf{v} - \overline{\nabla}_{\mathbf{v}} \mathbf{u} + \overline{\nabla}_{\mathbf{u}} \mathbf{v} + \overline{\nabla}_{\mathbf{v}} \mathbf{u} = [\mathbf{u}, \mathbf{v}]$$

como queríamos. Para concluir é só ver que ∇ e $\overline{\nabla}$ também coincidem em campos vetoriais que não são invariantes à esquerda. Então pegue uma base $\{u_i\} \subset \mathfrak{g}$ e dois campos $X = X^i u_i, Y = Y^j u_i$ quaisquer. Então:

$$\overline{\nabla}_X Y = \overline{\nabla}_{X^i u_i} Y^j u_j = X^i u_i Y_j u_j + Y^j \overline{\nabla}_{u_i} u_j = X^i u_i Y_j u_j + Y^j \nabla_{u_i} u_j = \nabla_X Y.$$

Pergunta Tem algum argumento super simples para argumentar essa última parte sem pegar uma base de g?

Exercício 13 (Exercício 3, Cap. III, [dC79]) Sejam G um grupo de Lie, $\mathfrak g$ sua álgebra de Lie, $\mathfrak e$ $\mathfrak X \in \mathfrak g$. As trajetórias de $\mathfrak X$ determinam uma aplicação $\phi:(-\varepsilon,\varepsilon)\to \mathsf G$ com $\phi(0)=e,\phi'(t)=X(\phi(t)).$

- (a) Prove que $\varphi(t)$ está definida para todo $t \in \mathbb{R}$ e que $\varphi(t+s) = \varphi(t) \cdot \varphi(s)$, $(\varphi : \mathbb{R} \to G$ é então chamado um *subgrupo a 1-parâmetro de* G.
- (b) Prove que se G tem uma métrica bi-invariante $\langle \cdot, \cdot \rangle$ então as geodésicas de G que partem de e são os subgrupos a 1-parâmetro de G.

Solution.

(a) Lembre que no exercício anterior mostramos que

$$\varphi_t(h) = R_{\varphi_t(e)}(h) = h \cdot \varphi_t(e), \quad \forall t \in (-\epsilon, \epsilon), \ \forall h \in G.$$

Fixe um $t_0 \in (-\varepsilon, \varepsilon)$ e pegue $h = \varphi_{t_0}(e)^{-1}$. Obtemos que

$$\phi_t(\phi_{t_0}(e)^{-1}) = \phi_{t_0}(e)^{-1}\phi_t(e).$$

Ou seja, $\phi_{t_0}(e)^{-1}\phi_t(e)$ é uma curva integral de X que passa por e no tempo $t=t_0$. Como também $\phi_{t-t_0}(e)$ é uma curva integral de X que passa por e no tempo $t=t_0$, por unicidade de EDOs obtemos

$$\varphi_{t_0}(e)^{-1}\varphi_t(e) = \varphi_{t-t_0}(e)$$
 (2)

Avaliando o lado esquerdo em $t'=t-t_0$, do lado direito chegamos até $\phi_{t-2t_0}(e)$. Repetindo esse processo cobrimos todo $\mathbb R$.

Para confirmar a segunda propriedade avaliamos eq. (2) em t=0 para obter $\varphi_{t_0}(e)^{-1}=\varphi_{-t_0}(e)$. Para concluir pegue $t,s\in\mathbb{R}$ quaisquer e escreva:

$$\phi_{t+s}(e) = \phi_{t-(-s)}(e) = \phi_{-s}^{-1}\phi_{t}(e) = \phi_{s}(e)\phi_{t}(e).$$

(b) Pegue $X \in \mathfrak{g}$ e considere a curva integral que passa por e, φ . Pelo exercício anterior,

$$0 = \nabla_X X = \nabla_{\phi_{\textstyle{*}}\frac{d}{dt}} X = \nabla_{\frac{d}{dt}}^\phi X \circ \phi = \nabla_{\phi'} \phi'$$

Então as curvas integrais de X que passam por *e* são geodésicas. Como isso é para qualquer vetor em g, por unicidade das soluções a EDOs, acabou.

Exercício 14 Dada uma variedade Riemanniana (M^n, g) denotamos por d_g a distância induzida por g.

- (a) Sejam g, h duas métricas Riemannianas em M^n . Mostre que se $d_g = d_h$ então q = h.
- (b) Seja (M,g) uma variedade Riemanniana e $F:M\to M$ um difeomorfismo. Mostre que F é uma isometria se e somente se $d_g(F(\cdot),F(\cdot))=d_g(\cdot,\cdot)$.

Demostração.

(a) Prova por contrapositiva.

Afirmação Se $g \neq h$, existem um aberto $U \subset M$ e um marco $\{E_i\} \subset \mathfrak{X}(U)$ tais que

$$g(E_{i_0},E_{i_0}) \neq h(E_{i_0},E_{i_0}) \qquad \text{para algum } i_0 \in \{1,\dots,n\}.$$

Prova da afirmação. Se $g(E_i, E_i) = h(E_i, E_i)$ para todo marco em todo aberto de M, é claro que

$$g(X,Y) = g(X^{i}E_{i}, Y^{j}E_{i}) = X^{i}Y^{j}g(E_{i}, E_{i}) = h(X,Y)$$

para quaisquer $X, Y \in \mathfrak{X}(M)$.

Então pegue um marco $\{E_i\} \in \mathfrak{X}(U)$ tal que $g(E_{i_0}, E_{i_0}) \neq h(E_{i_0}, E_{i_0})$ em U. Sendo a diferença dessas quantidades uma função distinta da constante zero, podemos supô-la estritamente positiva dentro de U. Pegue $p \in U$ e uma vizinhança geodésica contendo p, que renomeamos U por simplicidade. Dentro de uma vizinhança geodésica, a distância de p aos outros pontos dentro de U está realizada por geodésicas, então podemos pegar $q \in U$ e γ geodésica ligando p e q.

Considere uma extensão de $\gamma' \in \mathfrak{X}_{\gamma}$ dentro de U, digamos $G = G^{i}E_{i}$. Então:

$$\begin{split} d_g(p,q) &= \int_a^b g(G^i E_i, G^i E_i) \circ \gamma dt = \int_a^b (G^i \circ \gamma)^2 g(E_i, E_i) \circ \gamma dt \\ &\neq \int_a^b (G^i \circ \gamma)^2 h(E_i, E_i) \circ \gamma dt = d_h(p,q). \end{split}$$

(b) Primeiro suponha que $F^*d_g = d_g$. Para mostrar que F é uma isometria usamos o inciso anterior: consideramos as métricas g e F^*g em M. Basta mostrar que $d_g = d_{F^*g}$. Por um tempo pensei que era para usar um câmbio de variáveis, mas acabei pensando assim: Pegue uma curva γ ligando p e q. Note que

$$\underbrace{\int_{\alpha}^{b} F^{*}g(\gamma'(t), \gamma'(t))dt}_{\ell(\text{curva de p a q})} = \underbrace{\int_{\alpha}^{b} g(F_{*,\gamma(t)}\gamma'(t), F_{*,\gamma(t)}\gamma'(t))dt}_{\ell(\text{curva de F(p) a F(q)})}$$

Ou seja, do lado esquerdo estamos medindo o comprimento (respeito à métrica F^*g) de uma curva ligando p a q, enquanto que do lado direito estamos medindo o comprimento (respeito à métrica g) da curva $F \circ \gamma$, que liga F(p) a F(q).

Pegando o ínfimo de ambas quantidades, concluímos que a distância d_{F^*g} coincide com a distância F^*d_g , que por hipótese é igual a d_g . A implicação contrária também fica clara: supondo que $F^*g = g$, levando em conta a igualdade das integrais acima e pegando o ínfimo, concluímos que $F^*d_g = d_g$.

Exercício 15 Suponha que (M^n, g) é uma variedade Riemanniana conexa.

- (a) (M, g) simétrica $\implies (M, g)$ homogênea.
- (b) (M, q) 2-homogênea $\implies (M, q)$ isotrópica.

Solution.

(a) **Ideia.** Pegamos dois pontos $q, q' \in M$. Para usar que M é simétrica buscamos o "ponto meio". Esse deve ser $p \in M$ que esteja no meio do caminho de uma curva minimizante γ ligando q e q'. Daí, pegamos $F \in Iso_p := \{$ isometrias de M que fixam $p\}$ com a propriedade de que $d_pF = -Id$. Daí devemos provar que F preserva γ e não fixa q. Daí, só existem dois pontos em γ que guardam a mesma distância com p: q e q'. Como $F(q) \neq q$ também guarda essa distância, concluímos que F(q) = q'.

Infelizmente fui incapaz de levar minha ideia até uma prova sem ajuda externa. Primeiramente me pareceu improvável a possibilidade de construir a geodésica minimizante (pode não existir para variedades não completas; mostrar que a propriedade de simetria implica a existência de curvas minimizantes parecia muito forte).

Conjectura Para quaisquer $q, q' \in M$ existe uma curva minimizante γ ligando q e q'.

Supondo que existe γ , podemos pegar $F \in Iso_p$ tal que $d_pF = -Id$ onde p é ponto meio sobre γ respeito q e q'.

Tentei mostrar que F preserva γ perto de p usando um marco geodésico, onde a geodésicas são curvas integrais de linhas, mas depois descobri que minha prova estava errada (pois dF só age como - Id em p):

Afirmação Perto de p, $F(\gamma(t)) \in \text{img } \gamma$.

Prova da afirmação. Pegue coordenadas geodésicas centradas em p, de modo que as curvas minimizantes como γ são imagens de retas em T_pM baixo a exponencial. Agora derivamos: $F \circ \gamma$:

$$\frac{d}{dt}\Big|_t F \circ \gamma = F_{*,\gamma(t)} \gamma'(t) = -\gamma'(t).$$

Portanto, a derivada da curva $F \circ \gamma$ coincide com a derivada de γ . Por unicidade de soluções de EDOs, concluímos que $F \circ \gamma(t) \in \text{img } \gamma$ dentro desta bola geodésica. \square

Depois desse ponto comecei a buscar ajuda em livros, internet e ChatGPT. Rapidamente reparei que minhas ideias eram boas, e consegui:

Prova da afirmação reforçada. Pegue coordenadas geodésicas centradas em p, de modo que as curvas minimizantes como γ são imagens de retas em T_pM baixo a exponencial. Agora derivamos: $F \circ \gamma$ em t = 0 (supondo que $\gamma(0) = p$):

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\mathsf{F}\circ\gamma=\mathsf{F}_{*,p}\gamma'(0)=-\gamma'(0).$$

Portanto, a derivada da curva $(F \circ \gamma)(t)$ coincide com a derivada de $\gamma(-t)$. Por unicidade de soluções de EDOs, concluímos que $F \circ \gamma(t) \in \operatorname{img} \gamma$ dentro desta bola geodésica.

Seguindo com esse raciocínio, $F\circ\gamma$ é uma curva definida em todo o domínio de γ , e portanto deve coincidir com $\gamma(-t)$ ao longo desse domínio. Ou seja, $F\circ\gamma$ é γ percorrida em sentido oposto. Isso significa, por definição de p como ponto meio, e desde que supomos que $\gamma(0)=p$, que, se $\gamma(t_0)=q$, necessariamente $q'=\gamma(-t_0)=(F\circ\gamma)(t_0)=F(q)$, como queríamos. (Note que meu desejo inicial de mostrar que $F(q)\neq q'$ não foi necessário.)

Então tudo fica resolvido se mostramos a conjetura. O motivo inicial para conjeturar isso foi notar que $\mathbb{R}^2\setminus\{0\}$, onde os pontos antípodas (entre outros) não podem ser ligados por curvas minimizantes, parece perder a propriedade de ser um espaço simétrico (que \mathbb{R}^2 tem). Com efeito, a intuição mostra que $\mathrm{Iso}(\mathbb{R}^2\setminus\{0\})=\mathrm{O}(2)$, de modo que o grupo de isotropia Iso_p é trivial para todo ponto.

A inspiração final chega de MathOverflow: parece que, com efeito, toda variedade simétrica é completa:

"Consider a local geodesic and use the symmetry to flip it, effectively doubling the length of the geodesic, ad infinitum"

A ideia nos lembra do exercício que fizemos com grupos de Lie. Pegamos uma geodésica definida perto de p. Pegamos q \neq p dentro da bola geodésica centrada em p. Agora considere F \in Iso $_q$ tal que F $_q$ == Id. Sabemos que γ está definida entre p e q, e, pela afirmação mostrada acima, compondo com F obtemos γ reparametrizada em sentido oposto. Isso permite chegar a um ponto sobre a curva original que fica à mesma distância de q que p, só que no sentido oposto. Repetindo esse processo, vemos que a geodésica pode ser estendida infinitamente.

De fato, isso parece mostrar a conjetura via teorema de Hopf-Rinow, por exemplo em [Lee19], Lemma 6.18 e Coro. 6.20. Tem uma prova sem usar esse teorema?

(b) Queremos ver que $\forall p \in M$ e $\forall v, w \in T^1_pM$ existe $F \in Iso_p(M)$ tal que $F_{*,p}v = w$. Para usar a propriedade de ser 2-homogênea, defina $p_1 := q_1 := p$, e $p_2 := exp_p(v)$, $q_2 := exp_p(w)$. (Isto é, supondo por enquanto que exp_p está definida em vetores de norma 1.) Então existe $F \in Iso(M)$ tal que $F(p_1) = F(q_1)$, i.e. $F \in Iso_p(M)$, e tal que $F(p_2) = F(q_2)$.

Para ver que $F_{*,p}v = w$, note que $(F \circ \gamma_{\nu})(1) = F(\gamma_{\nu}(1)) = F(p_2) = q_2$. Então $F \circ \gamma_{\nu}$ é uma curva ligando p e q. Pelo exercício 14(b) dessa lista, como F é uma isometria, sabemos que preserva a distância, de modo a $F \circ \gamma_{\nu}$ é minimizimante e portanto uma geodésica. Daí $F \circ \gamma_{\nu}$ é uma reparametrização de γ_{w} ; mas como F é isometria,

preserva a norma dos vetores velocidade e portanto as curvas coincidem. Isso significa que $w=\gamma_w'(0)=(\mathsf{F}\circ\gamma_\nu)'(0)=\mathsf{F}_{*,p}\gamma_\nu'(0)=\mathsf{F}_{*,p}\nu.$

Por último só note que se \exp_p não está definida em vetores de norma 1, podemos fazer a mesma construção em vetores que estejam dentro do domínio dela, obtendo uma função cuja diferencial envia um múltiplo pequeno de ν em um múltiplo de igual proporção respeito a w. A diferencial dessa função também envia ν em w, pois é uma isometria linear.

References

- [dC79] M.P. do Carmo. *Geometria Riemanniana*. Escola de geometria diferencial. Instituto de Matemática Pura e Aplicada, 1979.
- [Lee19] John M. Lee. *Introduction to Riemannian Manifolds*. Graduate Texts in Mathematics. Springer International Publishing, 2019.
- [MS74] John W. Milnor and James D. Stasheff. *Characteristic Classes. (AM-76)*. Princeton University Press, 1974.