QT/C++/Unix Signals + dlib + QRNG Device Interaction w.r.t CoCoA LIB based Grobner Bases & Z3 Theorem Prover for Rapid Testing of Advanced IoT + AI + Embedded Systems.

[Towards Developing -> Space + Medicine + Telecoms TEST BED Architecture]

Dr.Nirmal – Informatics R&D – USA/UK/Israel/BRICS Group – hmfg2014@gmail.com

[I] Main Idea + Inspiration + Introduction :

ADVANCED EMBEDDED SYSTEMS TESTING USING OUR PROPOSED ALGORITHM \pm TEST BED ARCHITECTURE. ONE OF ITS KIND AS AN INTERESTING R&D EFFORT.

WE ARE EXTENSIVELY TESTING OUR ALGORITHMS ON CUBESATS -> NEXT GENERATION APPLICATIONS BASED ON AI

SIMPLE ALGORITHM TO TEST EMBEDDED SYSTEMS USING QT + OTHER RELATED TOOLS

Testing in Progress.

Good Results are showing up.

Approximate Suggestion Only.

Please Check & Satisfy Yourselves.

Thanks - Dr.Nirmal.

Actual Implementation might vary - Please Read all the Literature Presented in our Short Technical Communication.

[Figure I – Algorithm I – Embedded Systems + Informatics Testing Framework]

[II] Important References:

- [a] https://cse.buffalo.edu/~bina/cse321/fall2017/Lectures/Nov1Signals.html
- [b] https://community.embarcadero.com/blogs/entry/testonly-development-with-the-z3-theorem-prover-38818
- [c] http://cocoa.dima.unige.it/
- [d] https://github.com/tejdnk-2019-ShortNotes
- [e] https://www.qt.io/
- [f] https://doc.qt.io/archives/qt-5.8-devicecreation/qtee-custom-embedded-linux-image.html
- [g] https://doc.qt.io/qt-5/unix-signals.html
- [h] https://github.com/sijk/qt-unix-signals
- [i] https://www.idquantique.com/random-number-generation/overview/ QRNG Devices.

[III] Acknowledgment/s:

Sincere Thanks to all WHO made this happen in my LIFE. Non-Profit R&D.

Inspiring Others is GOOD Always.

[THE END]