Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов

Направление подготовки 18.03.01 «Химическая технология», профиль «Химическая технология подготовки и переработки нефти и газа»

ОТЧЕТ ПО ИДЗ

Название работы			
Смешение товарных бензинов			
Вариант			
Вариант XX			
По дисциплине			
Системный анализ процессов химической технологии			

Студент

Группа	ФИО	Подпись	Дата
			12.04.2021

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Чузлов В.А.	к.т.н.		

Задание:

Рассчитать оптимальной рецептуры смешения потоков с заданным объемом некондиционного бензина для получения продукта товарного качества.

Исходные данные:

Исходные данные для выполнения индивидуального домашнего задания представлены в таблице 1.

Таблица 1 – Исходные данные

Вариант	Доля некондиции от общей массы, масс. %	Требуемая марка бензина
14	30	АИ-98

Решение:

- 1. Ознакомились с заданием, а также с исходными данными в соответствии с вариантом (Таблица 1).
- 2. Ознакомились с номенклатурой потоков, вовлекаемых в процесс компаундирования автомобильных бензинов (Таблица 2).

Таблица 2 – Номенклатура потоков

Наименование потока	Расшифровка					
1. Риформат Л-35-11/600	Продукт установки каталитического риформинга со стационарным слоем катализатора					
2. Риформат Л-35-11/1000	Продукт установки каталитического риформинга с движущимся слоем катализатора					
3. Алкилбензин	ензин Продукт установки алкилирования изобутана олефинами					
4. Изомеризат Изомалк-2	Поток изомеризата с установки изомеризации «Изомалк- 2» с рециклом по н-пентану и н-гексану					
5. Изопентан	Поток изопентановой фракции с ГФУ (газофракционирующая установка)					
6. ГО БКК	Поток гидроочищенного бензина каталитического крекинга					
7. Крекинг КТ-1	Поток бензина каталитического крекинга					
8. n-butane	Поток нормального бутана с ГФУ (газофракционирующая установка)					
9. Толуол концентрат	Толуольная фракция с комплекса производства ароматических углеводородов					
10. МТБЭ	Поток метил-третбутилового эфира					
11. АВТ-10 фр. Нк 62	Прямогонная бензиновая фракция НК-62°C с атмосферно-вакуумной трубчатой установки					

3. С использованием компьютерной моделирующей системы «Compounding» определили свойства каждого из потоков, а также определили свойства потока некондиционного бензина (Таблица 3).

								Параметр					
Наименование потока	ОЧИ	ОЧМ	ДНП поток а, кПа	Плотность потока, кг/м ³	Вязкость потока, с·Па	H- парафины, % масс.	Изо- парафины, % масс.	Нафтены, % масс.	Олефины, % масс.	Бензол, % масс.	Ароматика, % масс.	Сера, % масс.	Себестоимость, руб/т
Риформат Л- 35-11/600	96,22	93,08	45,4	687,1	36,49	5,5527	88,3849	0,1345	0	0,2	5,7545	0	2,65E+13
Риформат Л- 35-11/1000	93,86	86,96	54,96	722,85	40,89	4,4414	46,8016	6,2458	8,9175	0,9	32,7655	0,0006	8,52E+13
Алкилбензин	96,62	93,97	46,45	678,61	35,42	5,122	94,877	0	0	0	0	0	2,47E+12
Изомеризат Изомалк-2	89,99	84,51	58,9	680,54	35,65	2,5664	64,1991	9,0343	12,7939	0,3	11,3188	0,0005	3,94E+13
Изопентан	90,1	84,77	63,08	676,97	34,87	2,6863	65,5898	8,6238	12,2121	0,3	10,8041	0,0005	4,16E+13
ГО БКК	89,93	81,87	54,02	718,38	41,5	4,5084	37,1354	12,1928	24,4248	0,7	21,6082	0,0009	1,7E+13
Крекинг КТ-1	90,14	84,69	63,43	679,77	35,5	2,7694	64,087	8,6878	12,5415	0,3	11,8337	0,0007	4,28E+13
n-butane	93,6	90,1	355,42	559,83	15,71	99,9999	0	0	0	0	0	0	2,16E+12
Толуол концентрат	109,39	101,56	28,72	766,65	41,21	2,561	47,4385	0	0	0	50	0	6,24E+13
МТБЭ	125	110	40,31	717,5	25,85	0	0	0	0	0	0	0	5,3E+13
АВТ-10 фр. н. к. 62	59,3	54,86	34,24	716,27	41,69	25,101	28,53	41,456	0,026	0,3	5,043	0	1,55E+12

Таблица 3 – Свойства потоков

4. На основании полученных результатов составили сравнительные гистограммы по параметрам, требующимся в ГОСТ: по октановому числу (по моторному и исследовательскому методу), содержанию ароматических углеводородов, содержанию бензола, содержанию серы, содержанию олефинов, содержанию оксигенатов, а также давлению насыщенных паров автомобильных бензинов.

Рисунок 1 – ОЧИ потоков

Рисунок 2 – ОЧМ потоков

Рисунок 3 – ДНП потоков

Рисунок 4 – Содержание олефинов в потоке

Рисунок 5 – Содержание бензола в потоках

Рисунок 6 – Содержание ароматических углеводородов в потоках

Рисунок 7 – Содержание серы в потоках

- 5. Ознакомились с нормативным документом, регламентирующим производство автомобильных бензинов «ГОСТ 32513-2013 Топлива моторные. Бензин неэтилированный. Технические условия».
- 6. С использованием программы «Compounding» определили рецептуры товарных бензинов заданной марки АИ-95 с учетом исходного объема некондиционного бензина (Таблица 1), соответствующие требованиям, предъявляемым ГОСТ. В таблице 4 представлены полученные рецептуры потоков, а в таблице 5 представлены свойства потока после смешения всех потоков.

Таблица 4 – Рецептуры потоков

Поток	Доля от общей массы, масс. %
СЭТМ	9
АВТ-10 фр.нк.62	0,5
Алкилбензин	4
ГО БКК	7
Изомеризат Изомалк-2	5
Изопентан	5
Крекинг КТ-1	10,5
n-butane	7
Риформат Л-35-11-600	7
Риформат Л-35-11-1000	14
Толуол концентрат	1
некондиция.sfc	30

Таблица 5 – Свойства получившегося потока

Параметр	Значение
ОЧИ	98,36
ОЧМ	90,65
ДНП потока, кПа	92,63
Плотность потока, кг/м ³	712,38
Вязкость потока, с Па	38,1
Н-парафины, % масс.	13,8148
Изо-парафины, % масс.	31,3042
Нафтены, % масс.	3,938
Олефины, % масс.	5,6548
Бензол, % масс.	0,8
Ароматика, % масс.	31,4642
Сера, % масс.	0,0009
Себестоимость, руб/т	16567,67

Вывод:

В ходе проделанной работы были определены свойства всех потоков (Таблица 3). На основании полученных результатов составили сравнительные гистограммы по параметрам, я в ГОСТ. Согласно полученным зависимостям, можно сказать, что по ОЧИ (Рисунок 1): самое большое ОЧ у МТБЭ (ОЧ = 125), самое маленькое у АВТ-10 фр. н. к. 62 (ОЧ = 59,3), у остальных потоков ОЧ примерно находятся на одном уровне; по ОЧМ (Рисунок 2): самое большое у МТБЭ (ОЧ = 110), самое маленькое у АВТ-10 фр. н. к. 62 (ОЧ = 54,86); по давлению насыщенных паров автомобильных бензинов (Рисунок 3): самое большое количество олефинов в потоке ГО БКК (24,4248 % масс.), отсутствие олефинов наблюдается в потоках Риформат Л-35-11/600, Алкилбензин, n-butane, Толуол концентрат, МТБЭ; по содержанию олефинов (Рисунок 4): самое большое количество олефинов в потоке ГО БКК (24,4248 % масс.), отсутствие олефинов наблюдается в потоках Риформат Л-35-11/600, Алкилбензин, n-butane, Толуол концентрат, МТБЭ; по содержанию бензола (Рисунок 5): самое большое количество бензола в потоке Риформат Л-35-11/1000 (0,9 % масс.), отсутствие бензола наблюдается в потоках Алкилбензин, n-butane, Толуол концентрат, МТБЭ; по содержанию ароматических углеводородов (Рисунок 6): самое большое количество ароматики в потоке Толуол концентрат (50 % масс.), отсутствие ароматики наблюдается у потоков Алкилбензин, n-butane, МТБЭ; по содержанию серы (Рисунок 7): самое большое количество серы в потоке ГО БКК (0,0009 % масс.), отсутствие серы наблюдается в потоках Риформат Л-35-11/600, Алкилбензин, n-butane, Толуол концентрат, МТБЭ;

Также были определены рецептуры товарных бензинов заданной марки АИ-98 с учетом исходного объема некондиционного бензина (Таблица 4). У образовавшегося при

смешении потока были определены свойства (Таблица 5), согласно ГОСТ 32513-2013 Топлива моторные. Бензин неэтилированный. Технические условия были выполнены требования по ОЧ не менее по ИМ 98 (ОЧИ = 98,36), по ММ 88 (ОЧМ = 90,65), по содержанию ароматических углеводородов не более 35 % масс. (31,4642 % масс.), по содержанию бензола не более 1 % масс. (0,8 % масс.), по содержанию серы не более 10 мг/кг (0,0009 % масс.), по содержанию олефинов не более 18 % (5,6548 % масс.), по содержанию оксигенатов не более 15 % (9 % масс.), а также по давлению насыщенных паров автомобильных бензинов в зимний и межсезонный период $35 - 100 \, \text{кПа}$ (92,63 кПа).