Land Use Engineering Group

Scheduling in natural resources management

Monika Niederhuber - Jochen Breschan Andreas Gabriel - Marc Folini- Trivik Verma - Andreas Hill

Time table

10:15-12:00 -A- Scheduling in natural resources management

13:15-15:00 -B- Solve Scheduling problem [computer lab]

Learning goals

CONCEPTUALIZE AND REPRESENT

Learn to formulate optimization models that include...

... scheduling of decisions in time

... a growth model (here: matrix population model)

IMPLEMENT

Learn to organize big matrix notation optimization models by hand (EXCEL)

The optimizer's view of a problem

Biological natural resources...

... grow!

Badoux E (1983) Ertragstafeln für die Fichte in der Schweiz. WSL, Birmensdorf, 3. Auflage.

Planning tasks in forestry

Strategic planning

Make a forest manageable – create classes of forest types

Classification criteria

stage of development, species composition, coverage

Definition

Mean diameter of the 100 tallest trees per hectare

Create a steady-state [Normalwaldmodell]

This also applies to Plenter forests where the focus is on "tree size" classes.

What comes next?

SCHEDULING PROBLEM

A forest company owns a forest that is composed of stands which are characterized as (1) thicket, (2) pole wood, (3) timber and (4) mature timber. Unfortunately, the percentages of those classes do not fullfill the requirements of the «steady-state» (i.e., Normalwaldmodell). The company is interested in how to schedule harvest in the future (i.e., next 3 planning periods) to transfer the forest into a steady-state and concurrently maximize revenues.

		. •	
Kev	enue	estim	ates
116	CIIGC	Cotiiii	u tes

in Fr./ha

thicket

pole 7'500 timber 35'000

mature timber 45'000

Forest composition

in ha

thicket: 100

pole: 200

timber: 50

mature timber: 150

«Mer muess s'Problem gärn becho!»

We need a concept which will help us building the optimisation model

instructions available

no instructions available

Conceptual model for the scheduling problem

Graphical problem characterization

THEORY

Use constraints for modeling growth!

Conceptual model

Decision variables

Area [ha] harvested at period t in stage i

 $\mathbf{X}_{\mathsf{t,i}}$ [ha]

Define decision variables for single time periods to represent scheduling problems!

Objective function

Conceptual model

State variables – the missing ingredient

Area [ha] of stage *i* at beginning of period *t*

$$y_{t,i}$$
 [ha]

Introduce state variables which characterize the consequences of decisions

or...

$$y_{1,i} = b_i$$
 , for all i=1,..,4 stage

Implementation of this formula in Excel

24

THEORY

Conceptual model

Characterize change of forest subject to growth and harvest over time Dynamic model

THEORY

Represent forest as a **population** which is characterized by stages

EXAMPLE

Matrix population model of the killer whale

Represent dynamic - Matrix population model

- (1) Specify stages
- (2) Specify time period
- (3) Specify types of turn-over
- 4) Estimate turn-over rates

Quantify dynamic - Transition matrix

Applications

Method

Caswell (2001) "Matrix population models" [Book]

Forest resources management

Even-aged forests (Gleichaltrige Bestände):

Buongiorno and Gilless (2003) "Decision methods for forest resource management" [Book]

Kurz (2016) "Einsatz von Optimierungsmethoden in der Bewirtschaftung von Steinschlagschutzwäldern"

Uneven-aged forests (Plenterwald):

Buongiorno and Michie (1980) "A matrix model of uneven-aged forest management"

Sonnemann (2008) "Das ideale Plentergleichgewicht – Leitbild oder Luxus?

Wildlife (management)

Oritsland et al. (1983) "Polar bear hunt strategies evaluated by a Leslie matrix population model"

Brault and Caswell (1993) "Pod-Specific Demography of Killer Whales"

Thinkable Applications are everywhere...

Cited articles

Shiffman DS, Hammerschlag N (2016) Preferred conservation policies of shark researchers. Conservation Biology, 30: 805–815.

Simpfendorfer CA, Dulvy NK (2017) Bright spots of sustainable shark fishing. Current Biology, 27: 97-98

Graphical population model for even-aged forest

Stages: thicket, pole, timber, mature timber [in ha]

Time period: 10-20 years

Turn-over types: harvest, growth

Turn-over rates [in ha]: growth \rightarrow all area grows into next stage; harvest \rightarrow variable

Matrix population model for even-aged forest

$$calcolor{c}$$
 and $x_{t,i} \le y_{t,i}$

33

THEORY

Constraints C2.1: DYNAMIC MODEL I

t: decision variables t: state variables

$$+y_{t,2}$$

$$+y_{t,3} + y_{t,4}$$

$$\geq 0$$

For all
$$t=1,...,3$$
 pol

for all
$$t=1,...,3$$
 mature timber

or...

$$-x_{t,i} + y_{t,i} \ge 0$$
 for all $t=1,...,4$ and all $i=2,...,4$

Conceptual model

Constraints

: Steady-state condition

s.t.
$$-y_{3,1}$$
 $+y_{4,1}$ $= 0$ thicket $-y_{3,2}$ $+y_{4,2}$ $= 0$ pole $-y_{3,3}$ $+y_{4,3}$ $= 0$ timber $-y_{3,4}$ $+y_{4,4}$ $= 0$ mature timber or... $-y_{3,i} + y_{4,i} = 0$ for all $i=1,...,4$

37

Conceptual model

Mathematical optimization model

MAX
$$\sum_{t=1}^{m=3} \sum_{i=2}^{n=4} f_i x_{t,i} + \sum_{t=1}^{m+1} \sum_{i=1}^{n=4} 0 y_{t,i}$$

initial state

 $y_{1,i} = b_i$ for all i=1,...,n

dynamic model

$$+x_{t,2}+x_{t,3}+x_{t,4}$$

$$-y_{t+1,1}$$

$$y_{t+1}$$

$$= 0$$
 for all $t = 1,...,m$

$$-y_{t+1,2}$$
 = 0 for all t= 1,...,m

$$-x_{t,2}$$

$$-x_{t,2}$$
 $+y_{t,2}$

$$-y_{t+1,3} = 0$$
 for all t= 1,...,m

$$-x_{t,3}-x_{t,4}$$
 $+y_{t,3}+y_{t,4}$

 $+y_{t.1}$

$$-y_{t+1,4} = 0$$
 for all t= 1,...,m

$$-x_{t,i} + y_{t,i} \ge 0$$
 for all t=1,...,m

steady-state

$$-y_{3,i} + y_{4,i} = 0$$
 for all i=1,...,n

$$x_{t,i}, y_{t,i} \in \mathbb{R}_0^+$$

How can we manage the implementation of that model?

Divide and conquer!

Disassemble problem into smaller ones that you can manage. But keep order!

Create a tool that supports you doing disassembling

Plan the tool - how to start

43

Plan the tool - variables

Plan the tool - how to start

Get count of variables!

Decision variables

Plan the tool - constraints

Hierarchical order

Implementation

constraint type time period

stage

constraint time type period

stage

C1				
C2.1	period 1	stage 1		
		stage 2		
		stage 3		
		stage 4		
	period 2	•••		
		•••		
		•••		
		•••		
C2.2				
C3				

Plan the tool - final layout

Variables	Decision variables			State variables					
	t=1 x _{1.2}			t=1 y _{1.1}					
Objective function	f ₂							sign	rhs
C1	0	0	0	1 1 1	0	0	0	= = =	100 200 50 150
C2 Dynamic model									
C3 Steady-state									

47

THEORY IMPLEMENTATION EXAMPLE 48

Solution

Forest composition

Harvested area

A choice of possible improvements

Include

- losses because of calamities (e.g., storm events)
- add interest rate (future revenues less valuable)

Reformulate

- stages of development
- conditions of an ideal state (sustainability)

EXAMPLE

Literature

Caswell H (2001) Matrix population models. John Wiley & Sons.

Brault S, Caswell H (1993) "Pod-specific demography of killer whales (Orcinus orca)." *Ecology* 74(5): 1444-1454.

Buongiorno J, Gilless JK (2003) Decision methods for forest resource management. Academic Press.

Buongiorno J Michie BR (1980) "A matrix model of uneven-aged forest management." *Forest Science* 26(4): 609-625.

Øritsland NA, Schweinsburg R (1983) "Polar bear hunt strategies evaluated by a Leslie matrix population model." *Polar Research* 1(3): 241-248.

Sonnemann D (2008) "Das ideale Plentergleichgewicht-Leitbild oder Luxus?(Essay) | The ideal equilibrium state in a selection forest-vision or luxury?(essay)." *Schweiz. Z. Forstwes* 159(1): 1-7.