Training a feedforward neural net

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 The loss function
- 2 Back-propagation
- 3 Early stopping and dropout

Feedforward nets

The loss function

Classification problem with k labels.

- Parameters of entire net: W
- For any input x, net computes probabilities of labels:

$$Pr_W(label = j|x)$$

• Given data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$, loss function:

$$L(W) = -\sum_{i=1}^{n} \ln \Pr_{W}(y^{(i)}|x^{(i)})$$

(sometimes called cross-entropy).

Nature of the loss function

Variants of gradient descent

Initialize W and then repeatedly update.

- Gradient descent
 Each update involves the entire training set.
- 2 Stochastic gradient descent Each update involves a single data point.
- 3 Mini-batch stochastic gradient descent Each update involves a modest, fixed number of data points.

Derivative of the loss function

Update for a specific parameter: derivative of loss function wrt that parameter.

Chain rule

1 Suppose h(x) = g(f(x)), where $x \in \mathbb{R}$ and $f, g : \mathbb{R} \to \mathbb{R}$.

Then: h'(x) = g'(f(x)) f'(x)

2 Suppose z is a function of y, which is a function of x.

$$x$$
 y z

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

A single chain of nodes

A neural net with one node per hidden layer:

$$x = h_0$$
 h_1 h_2 h_3 \cdots h_ℓ

For a specific input x,

- $h_i = \sigma(w_i h_{i-1} + b_i)$
- The loss L can be gleaned from h_ℓ

To compute dL/dw_i we just need dL/dh_i :

$$\frac{dL}{dw_i} = \frac{dL}{dh_i} \frac{dh_i}{dw_i} = \frac{dL}{dh_i} \sigma'(w_i h_{i-1} + b_i) h_{i-1}$$

Backpropagation

- On a single forward pass, compute all the h_i .
- ullet On a single backward pass, compute $dL/dh_\ell,\ldots,dL/dh_1$

$$x = h_0 \quad h_1 \quad h_2 \quad h_3 \quad \cdots \quad h_\ell$$

From $h_{i+1} = \sigma(w_{i+1}h_i + b_{i+1})$, we have

$$\frac{dL}{dh_{i}} = \frac{dL}{dh_{i+1}} \frac{dh_{i+1}}{dh_{i}} = \frac{dL}{dh_{i+1}} \sigma'(w_{i+1}h_{i} + b_{i+1}) w_{i+1}$$

Improving generalization

• Early stopping

- Validation set to better track error rate
- Revert to earlier model when recent training hasn't improved error

2 Dropout

During training, delete each hidden unit with probability 1/2, independently.

