Методы оптимизации. Семинар б. Выпуклые функции.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

14 октября 2017 г.

Напоминание

- Производная по скаляру
- Производная по вектору
- Производная по матрице
- ▶ Производная сложной функции

Определения функций

Выпуклая функция

Функция $f: X \subset \mathbb{R}^n \to \mathbb{R}$ называется выпуклой (строго выпуклой), если X — выпуклое множество и для $\forall \mathbf{x}_1, \mathbf{x}_2 \in X$ и $\alpha \in [0,1]$ ($\alpha \in (0,1)$) выполнено: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq (<) \ \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$

Вогнутая функция

Функция f вогнутая (строго вогнутая), если -f выпуклая (строго выпуклая).

Сильно выпуклая функция

Функция $f:X\subset \mathbb{R}^n \to \mathbb{R}$ называется сильно выпуклой с константой m>0, если X — выпуклое множество и для $\forall \mathbf{x}_1,\mathbf{x}_2\in X$ и $\alpha\in[0,1]$ выполнено:

$$f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

Определения множеств

Надграфик (эпиграф)

Надграфиком функции f называется множество ері $f = \{(\mathbf{x}, y) : \mathbf{x} \in \mathbb{R}^n, \ y \in \mathbb{R}, \ y \geq f(\mathbf{x})\} \subset \mathbb{R}^{n+1}$

Множество подуровней (множество Лебега)

Множество подуровня функции f называется следующее множество $C_{\gamma}=\{\mathbf{x}|f(\mathbf{x})\leq\gamma\}.$

Квазивыпуклая функция

Функция f называется квазивыпуклой, если её область определения и множество подуровней для любых γ выпуклые множества.

Критерии выпуклости

Дифференциальный критерий первого порядка

Функция f выпукла \Leftrightarrow она определена на выпуклом множестве X и $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$ выполнено:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f^{\mathsf{T}}(\mathbf{x})(\mathbf{y} - \mathbf{x})$$

Дифференциальный критерий второго порядка

Непрерывная и дважды дифференцируемая функция f выпукла \Leftrightarrow она определена на выпуклом множестве X и $\forall \mathbf{x}, \mathbf{y} \in \mathbf{relint}(X) \subset \mathbb{R}^n$ выполнено: $\nabla^2 f(\mathbf{x}) \succ 0$.

Связь с надграфиком

Функция выпукла \Leftrightarrow её надграфик выпуклое множество.

Ограничение на прямую

Функция $f: X \to \mathbb{R}$ выпукла тогда и только тогда, когда X выпуклое множество и выпукла функция $g(t) = f(\mathbf{x} + t\mathbf{v})$ на множестве $\{t|\mathbf{x} + t\mathbf{v} \in X\}$ для всех $\mathbf{x} \in X$ и $\mathbf{v} \in \mathbb{R}^n$.

Критерии сильной выпуклости

Дифференциальный критерий первого порядка

Функция f сильно выпукла с константой $m \Leftrightarrow$ она определена на выпуклом множестве X и $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$ выполнена:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f^{\mathsf{T}}(\mathbf{x})(\mathbf{y} - \mathbf{x}) + \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

Дифференциальный критерий второго порядка

Непрерывная и дважды дифференцируемая функция f сильно выпукла с константой $m\Leftrightarrow$ она определена на выпуклом множестве X и $\forall \mathbf{x}\in \mathbf{relint}(X)\subset \mathbb{R}^n$ выполнено:

$$\nabla^2 f(\mathbf{x}) \succeq m\mathbf{I}$$
.

Примеры

- 1. Квадратичная функция: $f(x) = \frac{1}{2} \mathbf{x}^\mathsf{T} \mathbf{P} \mathbf{x} + \mathbf{q}^\mathsf{T} \mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbf{S}^n$
- 2. Нормы в \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log (e^{x_1} + \ldots + e^{x_n}), \ \mathbf{x} \in \mathbb{R}^n$ гладкое приближение максимума
- 4. Логарифм детерминанта: $f(\mathbf{X}) = -\log \det \mathbf{X}, \ \mathbf{X} \in \mathbf{S}_{++}^n$
- 5. Множество выпуклых функций выпуклый конус
- 6. Поэлементный максимум выпуклых функций: $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$, dom $f = \text{dom } f_1 \cap \text{dom } f_2$
- 7. Расширение на бесконечное множество функций: если для $\mathbf{y} \in \mathcal{A}$ функция $f(\mathbf{x}, \mathbf{y})$ выпуклая функция по \mathbf{x} , тогда $\sup_{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y})$ выпукла по \mathbf{x}
- 8. Максимальное собственное значение: $f(\mathbf{X}) = \lambda_{\mathsf{max}}(\mathbf{X})$

Неравенство Йенсена

Неравенство Йенсена

Для выпуклой функции f выполнено следующее неравенство:

$$f\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f(\mathbf{x}_{i}), \ (i \in \{1, 2, ..., n\} = \Omega)$$

где $\alpha_i \geq 0$ и $\sum_{i=1}^n \alpha_i = 1$.

или в бесконечномерном случае: $p(\mu) \geq 0$ и $\int\limits_{\Omega} p(\mu) = 1$

$$f\left(\int\limits_{\Omega}p(\mu)\mathsf{x}(\mu)d\mu\right)\leq\int\limits_{\Omega}f(\mathsf{x}(\mu))p(\mu)d\mu,\ (\mathsf{x}(\mu)\in X\ \forall\mu\in\Omega)$$

при условии, что интегралы существуют.

Примеры

- 1. Неравенство Гёльдера
- 2. Неравенство о среднем арифметическом и среднем геометрическом
- 3. $f(\mathbf{E}(x)) \leq \mathbf{E}(f(x))$
- 4. Выпуклость множества $\{\mathbf{x} | \prod_{i=1}^{n} x_i \geq 1\}$

Резюме

- Выпуклая функция
- Надграфик и множество подуровня функции
- Критерии выпуклости функции
- Неравенство Йенсена