习题课 2

2019年10月12日

符号说明: I 为单位矩阵 (不强调阶数), $I_n = \begin{bmatrix} e_1 & \cdots & e_n \end{bmatrix}$ 为 n 阶单位矩阵, $\mathbf{0}$ 为零向量.

练习 2.1 计算:

1.
$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix};$$

$$2. \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix};$$

$$3. \begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}^5.$$

$$4. \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & & \\ & 2 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix};$$

$$5. \begin{bmatrix} 8 & 6 & -6 \\ 4 & 6 & -4 \\ 8 & 8 & -6 \end{bmatrix}^{6}.$$

练习 2.2 证明: 实数集上的任意方阵 A 可以唯一地表为 A=B+C,其中 B 是对称矩阵,C 是反对称矩阵. ¹

练习 2.3 证明:不存在 n 阶实方阵 A, B,使得 $AB - BA = I_n$ 成立.

练习 2.4 证明:对 $m \times n$ 矩阵 A 和 $n \times m$ 矩阵 B, $I_m + AB$ 可逆当且仅当 $I_n + BA$ 可逆.

练习 2.5 证明 Sherman-Morrison-Woodbury 公式: 对 n 阶可逆矩阵 A 和 $n \times p$ 矩阵 $U, V, A + UV^T$ 可逆 当且仅当 $I + V^T A^{-1} U$ 可逆,且 $A + UV^T$ 可逆时,有 $(A + UV^T)^{-1} = A^{-1} - A^{-1} U (I + V^T A^{-1} U)^{-1} V^T A^{-1}$. 特别地,当 p = 1 时, $(A + uv^T)^{-1} = A^{-1} - \frac{1}{1 + v^T A^{-1} u} A^{-1} uv^T A^{-1}$.

练习 2.6 计算:
$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & c_1 \\ 0 & 1 & 0 & \cdots & 0 & c_2 \\ 0 & 0 & 1 & \cdots & 0 & c_3 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_{n-1} & a \end{bmatrix}^{-1}.$$

 $^{^{1}}C$ 是反对称阵的意思是 $C^{t} = -C$

练习 2.7 计算:

1.
$$\begin{bmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 2 & 3 & 4 & \cdots & n & 1 \end{bmatrix}^{-1};$$

$$2. \begin{bmatrix} a & a+h & a+2h & \cdots & a+(n-2)h & a+(n-1)h \\ a+(n-1)h & a & a+h & \cdots & a+(n-3)h & a+(n-2)h \\ a+(n-2)h & a+(n-1)h & a & \cdots & a+(n-4)h & a+(n-3)h \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a+h & a+2h & a+3h & \cdots & a+(n-1)h & a \end{bmatrix}^{-1}.$$

练习 2.8 证明:任意可逆矩阵都是初等矩阵的乘积.²

练习 2.9 证明对于对换矩阵 $P_{ij}(i < j)$ 以下性质成立:

- 1. $\forall i < k < j$ 我们有
 - $P_{ik}P_{ij} = P_{kj}P_{ik} = P_{ij}P_{kj}$;
 - $P_{ij}P_{ik} = P_{kj}P_{ij} = P_{ik}P_{kj}$;
 - $\bullet \quad (P_{ik}P_{ij})^3 = I.$
- 2. 若 i,j,k,l 互不相等,则
 - $P_{kl}P_{ij} = P_{ij}P_{kl}$;
 - $(P_{kl}P_{ij})^2 = I$.

练习 2.10 请找出一个矩阵 A 满足:存在矩阵 X 使得 XA = I,但不存在 Y 使得 AY = I.看看这种矩阵的行数与列数应该满足什么条件.

练习 2.11 令
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 为一个 2 阶实方阵,证明:

- (1) $A^2 (a+d)A + (ad-bc)I_2 = \mathbf{0}$ (这即是 2 阶方阵情形下的 Hamilton-Cayley 定理);
- (2) 若 $A^2 = I_2$ 且 $A \neq \pm I_2$,则 a + d = 0 且 ad bc = -1;
- (3) 若 $A^3 = I_2$ 且 $A \neq I_2$,则 a + d = -1 且 ad bc = 1;
- (4) $∄ A^N = I_2, N ∈ \mathbb{N}, n ≥ 1, 则 <math>(ad bc)^N = 1.$ 3

练习 2.12 A 为 n 阶实方阵,证明以下结论:

- 1. 若对于任意的 n 维实列向量 α , 都有 $(A\alpha) \cdot (A\alpha) = \alpha \cdot \alpha$, 则 A 必须是正交矩阵.
- 2. 若对于任意两个 n 维实列向量 α, β ,都有 $(A\alpha) \cdot \beta = \alpha \cdot (A\beta)$,则 A 必须是对称矩阵.

²课上证明过的定理

³(3)(4) 属于体验型题目,学了更高级的知识之后很容易证明,目前只能生算,如果你算个半个小时还毫无头绪的话,我建议放弃。