Credit Card Fraud Detection ¶

Using a dataset of of nearly 28,500 credit card transactions and multiple unsupervised anomaly detection algorithms, we are going to identify transactions with a high probability of being credit card fraud. In this project, we shall build and deploy the following two machine learning algorithms:

- 1. Local Outlier Factor (LOF)
- 2. Isolation Forest Algorithm

Furthermore, we shall use metrics suchs as precision, recall, and F1-scores.

In addition, we shall explore parameter histograms and correlation matrices.

```
In [1]: #importing necessary libraries
        import sys
        import numpy
        import pandas
        import matplotlib
        import seaborn
        import scipy
        print('Python: {}'.format(sys.version))
        print('Numpy: {}'.format(numpy. version ))
        print('Pandas: {}'.format(pandas. version ))
        print('Matplotlib: {}'.format(matplotlib. version ))
        print('Seaborn: {}'.format(seaborn. version ))
        print('Scipy: {}'.format(scipy. version ))
        Python: 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 64 bit (AMD64)]
        Numpy: 1.16.4
        Pandas: 0.23.4
        Matplotlib: 2.2.3
        Seaborn: 0.9.0
        Scipy: 1.2.1
```

```
In [2]: # import the necessary packages
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In [3]: # Load the dataset from the csv file using pandas
        data = pd.read csv('creditcard.csv')
In [4]: # Start exploring the dataset
        print(data.columns)
        print(data.shape)
        Index(['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10',
               'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20',
               'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount',
               'Class'],
              dtype='object')
        (284807, 31)
```

```
In [5]: # Print the shape of the data
data = data.sample(frac=0.1, random_state = 1) #since original dataset is too large
print(data.shape)
print(data.describe())

# V1 - V28 are the results of a PCA Dimensionality reduction to protect user identities and sensitive features
```

(28481, 31)V1 V2 V4 \ Time V3 28481.000000 count 28481.000000 28481.000000 28481.000000 28481.000000 94705.035216 -0.001143 -0.018290 0.000795 0.000350 mean std 47584.727034 1.994661 1.709050 1.522313 1.420003 min 0.000000 -40.470142 -63,344698 -31.813586 -5.266509 25% 53924.000000 -0.908809 -0.610322 -0.892884 -0.847370 50% 84551.000000 0.031139 0.051775 0.178943 -0.017692 75% 139392,000000 1.320048 0.792685 1.035197 0.737312 172784.000000 2.411499 17.418649 4.069865 16.715537 max V5 V6 V7 V8 V9 \ count 28481.000000 28481.000000 28481.000000 28481.000000 28481,000000 -0.015666 0.003634 -0.008523 -0.003040 0.014536 mean std 1.395552 1.334985 1.237249 1.204102 1.098006 -42.147898 -19.996349 -22.291962 -8.739670 min -33.785407 25% -0.703986 -0.765807 -0.562033 -0.208445 -0.632488 50% -0.068037 -0.269071 0.028378 0.024696 -0.037100 75% 0.603574 0.398839 0.559428 0.326057 0.621093 28.762671 22.529298 36.677268 19.587773 8.141560 max V21 V22 V23 V24 \ . . . 28481,000000 count 28481.000000 28481.000000 28481.000000 . . . 0.004740 0.006719 -0.000494 -0.002626 mean . . . std 0.744743 0.728209 0.645945 0.603968 min -16.640785 -10.933144 -30.269720 -2.752263 25% -0.224842 -0.535877 -0.163047 -0.360582 50% -0.029075 0.014337 -0.012678 0.038383 . . . 75% 0.533936 0.434851 0.189068 0.148065 . . . 22.588989 6.090514 15.626067 3.944520 max . . . V25 V26 V27 V28 Amount \ count 28481.000000 28481.000000 28481.000000 28481.000000 28481.000000 -0.000917 0.004762 -0.001689 -0.004154 89.957884 mean std 0.520679 0.488171 0.418304 0.321646 270.894630 -2.534330 0.000000 min -7.025783 -8.260909 -9.617915 25% -0.319611 -0.071712 5.980000 -0.328476 -0.053379 50% 0.015231 -0.049750 0.000914 0.010753 22.350000

0.090329

11.135740

0.076267

15.373170 19656.530000

78.930000

75%

max

0.351466

5.541598

0.253580

3.118588

Class count 28481.000000 0.001720 mean std 0.041443 min 0.000000 25% 0.000000 50% 0.000000 75% 0.000000 1.000000 max

[8 rows x 31 columns]

```
In [6]: # Plot histograms of each parameter
    data.hist(figsize = (20, 20))
    plt.show()
```



```
In [7]: # Determine number of fraud cases in dataset

Fraud = data[data['Class'] == 1]
   Valid = data[data['Class'] == 0]

outlier_fraction = len(Fraud)/float(len(Valid))
   print(outlier_fraction)

print('Fraud Cases: {}'.format(len(Fraud)))
   print('Valid Transactions: {}'.format(len(Valid)))
```

0.0017234102419808666

Fraud Cases: 49

Valid Transactions: 28432


```
In [9]: # Get all the columns from the dataFrame
    columns = data.columns.tolist()

# Filter the columns to remove data we do not want
    columns = [c for c in columns if c not in ["Class"]]

# Store the variable we'll be predicting on
    target = "Class"

X = data[columns]
Y = data[target]

# Print shapes
print(X.shape)
print(Y.shape)

(28481, 30)
(28481,)
```

The Algorithms

Local Outlier Factor (LOF)

The anomaly score of each sample is called Local Outlier Factor. It measures the local deviation of density of a given sample with respect to its neighbors. It is local in that the anomaly score depends on how isolated the object is with respect to the surrounding neighborhood.

Isolation Forest Algorithm

The IsolationForest 'isolates' observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample is equivalent to the path length from the root node to the terminating node.

This path length, averaged over a forest of such random trees, is a measure of normality and our decision function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

```
In [10]: from sklearn.metrics import classification_report, accuracy_score
         from sklearn.ensemble import IsolationForest
                                                                     #anomalv detection
         from sklearn.neighbors import LocalOutlierFactor #anomalv detection
         #localOutlierFactor is an unsupervised outlier detection method
         #It calculates the anomaly score of each sample and we call it the localOutlierFactor
         #It measures the local deviation of density of a given sample wrt it's neighbors
         #It is local and that anomaly score depends on how isolated the object is wrt the surrounding neighborhood
         #It is determined in the same way as Kneighbors method
         #Isolation Forest explicitly identifies anomalies instead of profiling normal data points
         #Isolation Forest, like any tree ensemble method, is built on the basis of decision trees
         #In these trees, partitions are created by first randomly selecting a feature and then
         #selecting a random split value between the minimum and maximum value of the selected feature
         #In principle, outliers are less frequent than regular observations and are different from them in terms of values
         #they lie further away from the regular observations in the feature space
         #define a random state
         state = 1
         #define the outlier detection methods
         #putting into a dictionary of classifiers
         classifiers = {
              "Isolation Forest": IsolationForest(
                                              \max \text{ samples} = \text{len}(X),
                                              contamination = outlier fraction,
                                              random state = state),
              "Local Outlier Factor": LocalOutlierFactor(
                                             n_neighbors = 20,
```

contamination = outlier_fraction)

```
In [14]: # Fit the model
         #plt.figure(figsize=(9, 7))
         n_outliers = len(Fraud)
         for i, (clf name, clf) in enumerate(classifiers.items()):
             # fit the data and tag outliers
             if clf name == "Local Outlier Factor":
                 y pred = clf.fit predict(X)
                 scores_pred = clf.negative_outlier_factor_
             else:
                 clf.fit(X)
                 scores pred = clf.decision function(X)
                 y pred = clf.predict(X)
             # Reshape the prediction values to 0 for valid, 1 for fraud.
             y pred[y pred == 1] = 0
             y pred[y pred == -1] = 1
             n errors = (y pred != Y).sum()
             # Run classification metrics
             print('{}: {}'.format(clf name, n errors))
             print(accuracy_score(Y, y_pred))
             print(classification report(Y, y pred))
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\iforest.py:247: FutureWarning: behaviour="old" is depreca ted and will be removed in version 0.22. Please use behaviour="new", which makes the decision_function change to match other anomaly detection algorithm API.

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\iforest.py:415: DeprecationWarning: threshold_ attribute is deprecated in 0.20 and will be removed in 0.22.

" be removed in 0.22.", DeprecationWarning)

Isolation Forest: 71

weighted avg

0.99750711000	316			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	28432
1	0.28	0.29	0.28	49
accuracy			1.00	28481
macro avg	0.64	0.64	0.64	28481
weighted avg	1.00	1.00	1.00	28481
Local Outlier 0.99659422070				
	precision	recall	f1-score	support
0	1.00	1.00	1.00	28432
1	0.02	0.02	0.02	49
accuracy			1.00	28481
macro avg	0.51	0.51	0.51	28481

1.00

1.00

28481

1.00