MA544: Qual Preparation

Carlos Salinas

August 5, 2016

Contents

1	MA	MA 544 Spring 2016 2			
	1.1	Homey	work	2	
		1.1.1	Homework 1	3	
		1.1.2	Homework 2	10	
		1.1.3	Homework 3	11	
		1.1.4	Homework 4	15	
		1.1.5	Homework 5	17	
		1.1.6	Homework 6	20	
		1.1.7	Homework 7	22	
		1.1.8	Homework 8	27	
		1.1.9	Homework 9	29	
		1.1.10	Homework 10	31	
		1.1.11	Homework 11	33	
		1.1.12	Homework 12	34	
2	Danielli 3				
	2.1	Daniel	lli: Practice Exams Spring 2016	36	
		2.1.1		36	
		2.1.2	Exam 1	41	
		2.1.3	Exam 2 Practice Problems	42	
		2.1.4	Exam 2 (2010)	44	
		2.1.5	Exam 2	46	
		2.1.6	Final Exam Practice Problems	47	
		2.1.7	Final Exam 2010	49	
		2.1.8	Final Exam	50	
	2.2	Daniel	lli: Summer 2011	51	
	2.3	Daniel	lli: Winter 2012	57	

1 MA 544 Spring 2016

This is material from the course MA 544 as it was taught in the spring of 2016.

1.1 Homework

These exercises were assigned from Wheeden and Zygmund's *Measure and Integral*, therefore, most of the theorems I reference will be from [4]. Other resources include [1] and [2]. For more elementary results, I cite [3]. Unless otherwise stated, whenever we quote a result, e.g., Theorem 1.1, it is understood to come from Wheeden and Zygmund's *Measure and Integral*.

```
Throughout these notes
            is the set of real numbers
   \mathbb{R}^+
            is the set of positive real numbers, that is, x \in \mathbb{R} with x \geq 0
    \mathbb{C}
            is the set of complex numbers
    \mathbb{Q}
            is the set of rational numbers
            is the set of the integers
   \mathbb{Z}^+
            is the set of positive integers, that is, x \in \mathbb{Z} with x \geq 0
    \mathbb{N}
            is the set of the natural numbers 1, 2, \ldots
            is the set difference of A and B, that is, the complement of A \cap B in A
 A \setminus B
 m^*(E)
            the outer measure of E
            the inner measure of E
 m_*(E)
  m(E)
            the Lebesgue measure of E
            the standard Euclidean norm on \mathbb{R}^n
  \|-\|
            means f is asymptotically equivalent to g, that is, \lim_{x\to\infty} g(x)/f(x) = 1
  f \simeq g
```

1.1.1 Homework 1

Problem 1 (Wheeden & Zygmund Ch. 2, Ex. 1). Let $f(x) = x \sin(1/x)$ for $0 < x \le 1$ and f(0) = 0. Show that f is bounded and continuous on [0,1], but that $V[f;0,1] = \infty$.

Solution. \blacktriangleright Let f equal $x \sin(1/x)$. We will show that f is bounded and continuous on [0,1], but that it is not of bounded variation on [0,1].

First we will show that f is bounded. Note that both |x| and $|\sin(1/x)|$ are bounded by 1 on the interval [0,1]. Since $|f| = |x| |\sin(1/x)|$, it follows that $|f| \le 1$ on [0,1]. Thus, f is bounded on [0,1].

Next we show that f is continuous. It is easy to show that f is continuous on the subinterval (0,1] since both |x| and $\sin(1/x)$ are continuous on that interval and we know that the product of continuous functions is continuous. To see that f is continuous at 0 we must show that $f(x^+) = f(0)$; that is, the limit of f as x approaches 0 from the right is f(0) which by definition is 0. To this end, it suffices to take a (monotonically decreasing) sequence $x_n \downarrow 0$ and show that the limit of the sequence $\{f(x_n)\}_{n=1}^{\infty}$ is 0. Let $\varepsilon > 0$ be given then, since x_n converges to 0 there exists an index N such that $|0-x_n| < \varepsilon$ whenever $n \geq N$. Since $|f(x_n)| \leq |x_n|$ on [0,1], the following inequality holds

$$|0 - f(x_n)| = |0 - x_n \sin(1/x_n)|$$

$$\leq |x_n|$$

$$< \varepsilon.$$

Thus, f is continuous at 0 and it converges to 0.

Despite the nice properties that f seemingly possesses, f is not b.v. on [0,1]. To show that f is not b.v. on [0,1] we must show that for any positive real number M there exists some partition $\Gamma = \{x_0 < x_1 < \cdots < x_n\}$ of [0,1] such that the sum associated to Γ

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| > M.$$

Let N be the smallest integer greater than M and let n be the smallest integer greater than or equal to N/2. Then the partition $\Gamma = \{x_0 = 1 < x_1 < \cdots < x_{n+1} = 1\}$ where $x_i = 2/((3 + (n-i))\pi)$ for $1 \le i \le N$. Then we have the inequality

$$S_{\Gamma} = \sum_{i=1}^{n+1} |f(x_i) - f(x_{i-1})|$$

$$= \sum_{i=2}^{n} |f(x_i) - f(x_{i-1})| + |f(x_{n+1}) - f(x_n)| + |f(x_0) - f(x_1)|$$

$$= N + |f(x_{n+1}) - f(x_n)| + |f(x_0) - f(x_1)|$$

$$> M.$$

Thus, f is not b.v. on [0,1].

Problem 2 (Wheeden & Zygmund Ch. 2, Ex. 2). Prove theorem (2.1).

Solution. \triangleright Recall the statement of Theorem 2.1:

- (a) If f is of bounded variation on [a, b], then f is bounded on [a, b].
- (b) Let f and g be of bounded variation on [a,b]. Then cf (for any real constant c), f+g, and fg are of bounded variation on [a,b]. Moreover, f/g is of bounded variation on [a,b] if there exists an $\varepsilon > 0$ such that $|g(x)| \ge \varepsilon$ for $x \in [a,b]$.

We shall prove these in alphabetical order:

For part (a) we shall proceed by contradiction. First, without loss of generality, we may assume that f(a) = 0 since the function the variation of g(x) = f(x) - f(a) is equal to the variation of f and g(a) = 0. Suppose that f is b.v. on [a,b] with variation V = V[f;a,b], but that f is unbounded on [a,b]; that is, given a positive real number M there exists a point x in [a,b] such that |f(x)| > M. In particular, there exists $x \in [a,b]$ such that |f(x)| > V. Hence, for any $x \in [a,b]$ by the triangle inequality we have

$$V < |f(x)|$$
= |f(x) - f(a) + f(a)|
$$\leq |f(x) - f(a)| + |f(a)|$$

$$< V.$$

This is a contradiction. Therefore, it must be the case that if f is b.v. on [a, b] then f is bounded on [a, b].

We break part (b) into three sections. Suppose f and g are b.v. on [a,b] with variation V and V', respectively. We will show that (i) cf; (ii) f+g; and (iii) fg are b.v. on [a,b]. Moreover, we show that (iv) f/g is b.v. on [a,b] if there exists $\varepsilon > 0$ such that $|g(x)| \ge \varepsilon$ for all $x \in [a,b]$.

For part (i) above let c be a real number. Given a partition $\Gamma = \{x_0 < x_1 < \dots < x_n\}$ of [a, b], we have

$$S_{\Gamma} = \sum_{i=1}^{n} |cf(x_i) - cf(x_{i-1})|$$

$$= \sum_{i=1}^{n} |c||f(x_i) - cf(x_{i-1})|$$

$$= |c| \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

$$\leq |c|V$$

since V is the supremum of the sums of the form $\sum_{i=1}^{m} |f(x_i) - f(x_{i-1})|$ over all partitions of [a, b]. Thus, $V[cf; a, b] \leq |c|V$ so cf is b.v. on [a, b].

For part (ii) given a partition $\Gamma = \{x_0 < x_1 < \cdots < x_n\}$ of the interval [a, b], by the triangle

inequality we have

$$S_{\Gamma} = \sum_{i=1}^{n} |(f(x_i) + g(x_i)) - (f(x_{i-1}) + g(x_{i-1}))|$$

$$= \sum_{i=1}^{n} |(f(x_i) - f(x_{i-1})) + (g(x_i) - g(x_{i-1}))|$$

$$\leq \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| + \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|$$

$$\leq V + V'.$$

Thus, f + g is b.v. on [a, b]

For part (iii) since f and g are b.v. on [a,b] by part (a) f and g are bounded on [a,b] by, say, M and N, respectively. Now, given a partition $\Gamma = \{x_0 < x_1 < \cdots < x_n\}$ of [a,b], by the triangle inequality we have

$$\begin{split} S_{\Gamma} &= \sum_{i=1}^{n} |f(x_{i})g(x_{i}) - f(x_{i-1})g(x_{i-1})| \\ &= \sum_{i=1}^{n} |f(x_{i})g(x_{i}) - f(x_{i-1})g(x_{i-1}) \\ &+ f(x_{i})g(x_{i-1}) - f(x_{i})g(x_{i-1})| \\ &= \sum_{i=1}^{n} |(f(x_{i})g(x_{i}) - f(x_{i})g(x_{i-1})) \\ &- (f(x_{i-1})g(x_{i-1}) - f(x_{i})g(x_{i-1}))| \\ &\leq \sum_{i=1}^{n} |f(x_{i})g(x_{i}) - f(x_{i})g(x_{i-1})| \\ &+ \sum_{i=1}^{n} |f(x_{i-1})g(x_{i-1}) - f(x_{i})g(x_{i-1})| \\ &= \sum_{i=1}^{n} |f(x_{i})||g(x_{i}) - g(x_{i-1})| + \sum_{i=1}^{n} |g(x_{i-1})||f(x_{i}) - f(x_{i-1})| \\ &= \sum_{i=1}^{n} M|g(x_{i}) - g(x_{i-1})| + \sum_{i=1}^{n} N|f(x_{i}) - f(x_{i-1})| \\ &\leq MV' + NV. \end{split}$$

Thus, fg is b.v. on [a, b].

Finally, for part (iv) suppose there exists $\varepsilon > 0$ such that $|g(x)| \ge \varepsilon$ for all $x \in [a, b]$. Then, given

a partition $\Gamma = \{x_0 < x_1 < \dots < x_n\}$ of [a, b], largely by the triangle inequality, we have

$$\begin{split} S_{\Gamma} &= \sum_{i=1}^{n} |f(x_{i})/g(x_{i}) - f(x_{i-1})/g(x_{i-1})| \\ &= \sum_{i=1}^{n} \left| \frac{f(x_{i})g(x_{i-1}) - f(x_{i-1})g(x_{i})}{g(x_{i})g(x_{i-1})} \right| \\ &\leq \frac{1}{\varepsilon^{2}} \sum_{i=1}^{n} |f(x_{i})g(x_{i-1}) - f(x_{i-1})g(x_{i})| \\ &= \frac{1}{\varepsilon^{2}} \sum_{i=1}^{n} |f(x_{i})g(x_{i-1}) - f(x_{i-1})g(x_{i-1}) \\ &\qquad - (f(x_{i-1})g(x_{i}) - f(x_{i-1})g(x_{i-1}))| \\ &\leq \frac{1}{\varepsilon^{2}} \sum_{i=1}^{n} |g(x_{i-1})||f(x_{i}) - f(x_{i-1})| + \frac{1}{\varepsilon^{2}} \sum_{i=1}^{n} |f(x_{i-1})||g(x_{i}) - g(x_{i-1})| \\ &= \frac{1}{\varepsilon^{2}} \sum_{i=1}^{n} M_{g}|f(x_{i}) - f(x_{i})| + \frac{1}{\varepsilon^{2}} \sum_{i=1}^{n} M_{f}|g(x_{i}) - g(x_{i})| \\ &= \frac{1}{\varepsilon^{2}} M_{g} \sum_{i=1}^{n} |f(x_{i}) - f(x_{i})| + \frac{1}{\varepsilon^{2}} M_{f} \sum_{i=1}^{n} |g(x_{i}) - g(x_{i})| \\ &\leq \frac{1}{\varepsilon^{2}} (NV + MV') \end{split}$$

where, as above, f is bounded by M and g is bounded by N. Thus, f/g is b.v. on [a, b].

This concludes the proof of Theorem 2.1.

Problem 3 (Wheeden & Zygmund Ch. 2, Ex. 3). If [a', b'] is a subinterval of [a, b] show that $P[a', b'] \leq P[a, b]$ and $N[a', b'] \leq N[a, b]$.

Solution. \blacktriangleright We will prove this by digging in to the definition of N and P. Recall that given a partition $\Gamma = \{x_0 < x_1 < \cdots < x_n\}$ of the interval [a, b], P and N are defined to be the supremum over the sum of the positive and, respectively, the sum negative terms of S_{Γ} ; that is, P and N are the supremum over every partition Γ of [a, b] of

$$P_{\Gamma} = \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})]^{+}$$
 and $N_{\Gamma} = \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})]^{-}$.

Let $f:[a,b] \to \mathbb{R}$ be a function of bounded variation on [a,b] and let [a',b'] be a subinterval of [a,b]. Without loss of generality, we may assume that [a',b'] is strictly contained in [a,b]; that is, $a' \neq a$ and $b' \neq b$. We aim to show that $P[a',b'] \leq P[a,b]$ and $N[a',b'] \leq N[a,b]$. Since the argument for N is similar to that of P, we will omit it here for the sake of brevity. Now, consider the closure of the complement of [a',b'] in [a,b], $\overline{[a,b]} \setminus \overline{[a',b']} = [a,a'] \cup [b',b]$. Since [a,a'], [a',b']

and [b', b] are close intervals we may take partitions

$$\Gamma_a = \{ x_0 < x_1 \dots < x_\ell \},\$$
 $\Gamma_{ab} = \{ x_\ell < x_{\ell+1} < \dots < x_m \}$

and

$$\Gamma_b = \{ x_m < x_{m+1} < \dots < x_n \}$$

of [a, a'], [a', b'] and [b', b], respectively and extend this to a partition

$$\Gamma = \{ x_0 < x_1 < \dots < x_{\ell} < x_{\ell+1} \dots < x_m < x_{m+1} \dots < x_n \}$$

of [a, b]. Then, by the definition of N we have the string of inequalities

$$P_{\Gamma} = \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})]^{+}$$

$$= \sum_{i=1}^{\ell} [f(x_i) - f(x_{i-1})]^{+}$$

$$+ \sum_{i=\ell+1}^{m} [f(x_i) - f(x_{i-1})]^{+}$$

$$+ \sum_{i=m+1}^{n} [f(x_i) - f(x_{i-1})]^{+}$$

$$= P_{\Gamma_{ab}} + P_{\Gamma_{a}} + P_{\Gamma_{b}}$$

$$\leq P[a, b].$$

Taking the supremum on the left, we have

$$P[a, a'] + P[a', b'] + P[b', a'] \le P[a, b].$$

Since P is strictly positive, it must be the case that $P[a', b'] \leq P[a, b]$.

Problem 4 (Wheeden & Zygmund Ch. 2, Ex. 11). Show that $\int_a^b f \, d\varphi$ exists if and only if given $\varepsilon > 0$ there exists $\delta > 0$ such that $|R_{\Gamma} - R_{\Gamma'}| < \varepsilon$ if $|\Gamma|, |\Gamma'| < \delta$.

Solution. ightharpoonup One direction is straightforward. Namely \iff : suppose that given $\varepsilon > 0$ there exists $\delta > 0$ such that $|R_{\Gamma} - R_{\Gamma'}| < \varepsilon$ whenever $|\Gamma|$ and $|\Gamma'|$ are less than δ . Let $\{\Gamma_n\}_{n=1}^{\infty}$ be a decreasing sequence of partitions (by which we mean $\Gamma_n \subseteq \Gamma_{n+1}$ of [a,b] such that $|\Gamma_n| \to 0$. Then, by convergence, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $|\Gamma_n| < \delta$. Then, for $n, m \geq N$, we have

$$|R_{\Gamma_n} - R_{\Gamma_m}| < \varepsilon.$$

Thus, by the Cauchy criterion for convergence, the sequence $\{R_{\Gamma_n}\}_{n=0}^{\infty}$ converges and its limit is by definition the Riemann–Stieltjes integral $\int_a^b f \, \mathrm{d}\varphi$.

On the other hand \Longrightarrow : suppose that $I=\int_a^b f\,\mathrm{d}\varphi$ exists. Then given $\varepsilon>0$ there exists $\delta>0$ such that $|I-R_\Gamma|<\varepsilon/2$ whenever $|\Gamma|<\delta$. Let Γ and Γ' be two partitions of [a,b] with norm $|\Gamma|, |\Gamma'|<\delta$. Then we have

$$|R_{\Gamma} - R_{\Gamma'}| = |R_{\Gamma} - I - (R_{\Gamma'} - I)|$$

$$\leq |R_{\Gamma} - I| + |R_{\Gamma'} - I|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Thus, I satisfies the Cauchy condition.

Problem 5 (Wheeden & Zygmund Ch. 2, Ex. 13). Prove theorem (2.16).

Solution. ▶ Recall the statement of Theorem 2.16:

(i) If $\int_a^b f \, d\varphi$ exists, then so do $\int_a^b cf \, d\varphi$ and $\int_a^b f \, d(c\varphi)$ for any constant c, and

$$\int_{a}^{b} cf \, d\varphi = \int_{a}^{b} f \, d(c\varphi) = c \int_{a}^{b} f \, d\varphi.$$

(ii) If $\int_a^b f_1 d\varphi$ and $\int_a^b f_2 d\varphi$ both exist, so does $\int_a^b (f_1 + f_2) d\varphi$, and

$$\int_a^b (f_1 + f_2) d\varphi = \int_a^b f_1 d\varphi + \int_a^b f_2 d\varphi.$$

(iii) If $\int_a^b f \, d\varphi_1$ and $\int_a^b f \, d\varphi_2$ both exist, so does $\int_a^b f \, d(\varphi_1 + \varphi_2)$, and

$$\int_{a}^{b} f d(\varphi_1 + \varphi_2) = \int_{a}^{b} f d\varphi_1 + \int_{a}^{b} f d\varphi_2.$$

We prove this in (Roman) numerical order.

For (i) suppose that $I = \int_a^b f \, \mathrm{d}\varphi$ exists. Then, given $\varepsilon > 0$, there exists $\delta > 0$ such that $|I - R_{\Gamma}| < \varepsilon/|c|$ whenever Γ is a partition of [a,b] with $|\Gamma| < \delta$. We claim that $\int_a^b cf \, \mathrm{d}\varphi = |c|I$. Let $\Gamma = \{x_0 < x_1 < \dots < x_n\}$ be a partition [a,b] with $|\Gamma| < \delta$. Then the Riemann–Stieltjes sums R'_{Γ} of the pair (cf,φ) associated to Γ give us the chain of inequalities

$$||c|I - R'_{\Gamma}| = \left| |c|I - \sum_{i=1}^{n} cf(\xi_{i})[\varphi(x_{i}) - \varphi(x_{i-1})] \right|$$

$$= |c| \left| \sum_{i=1}^{n} cf(\xi_{i})[\varphi(x_{i}) - \varphi(x_{i-1})] \right|$$

$$= |c||I - R_{\Gamma}|$$

$$< |c| \frac{\varepsilon}{|c|}$$

$$= \varepsilon.$$

Thus, $\int_a^b cf \,d\varphi$ is Riemann–Stieltjes integrable and its integral is equal to |c|I. A similar argument shows that $\int_a^b f \,d(c\varphi)$ is Riemann–Stieltjes integrable with integral |c|I.

For (ii) let $I_1 = \int_a^b f_1 d\varphi$ and $I_2 = \int_a^b f_2 d\varphi$. Then, we claim that $I = \int_a^b (f_1 + f_2) d\varphi$ exists and that $I = I_1 + I_2$. Since both I_1 and I_2 exist, given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|I_1 - R_{\Gamma}^1| < \frac{\varepsilon}{2}$$
 and $|I_2 - R_{\Gamma}^2| < \frac{\varepsilon}{2}$

whenever $|\Gamma| < \delta$. Let $\Gamma = \{x_0 < x_1 < \dots < x_n\}$ be a partition of [a, b] with $|\Gamma| < \delta$. Then the Riemann–Stieltjes sums R_{Γ} of the pair $(f_1 + f_2, \varphi)$ associated to Γ give is the following chain of inequalities

$$|(I_{1} + I_{2}) - R_{\Gamma}| = \left| (I_{1} + I_{2}) - \sum_{i=1}^{n} (f_{1}(\xi_{i}) + f_{2}(\xi_{i})) [\varphi(x_{i}) - \varphi(x_{i-1})] \right|$$

$$= \left| I_{1} - \sum_{i=1}^{n} f_{1}(\xi_{i}) [\varphi(x_{i}) - \varphi(x_{i-1})] \right|$$

$$+ I_{2} - \sum_{i=1}^{n} f_{2}(\xi_{i}) [\varphi(x_{i}) - \varphi(x_{i-1})] \right|$$

$$\leq \left| I_{1} - \sum_{i=1}^{n} f_{1}(\xi_{i}) [\varphi(x_{i}) - \varphi(x_{i-1})] \right|$$

$$+ \left| I_{2} - \sum_{i=1}^{n} f_{2}(\xi_{i}) [\varphi(x_{i}) - \varphi(x_{i-1})] \right|$$

$$= |I_{1} - R_{\Gamma}^{1}| + |I_{2} - R_{\Gamma}^{2}|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Thus, I exists and it is equal to the sum $I_1 + I_2$.

Part (iii) is similar to part (ii) in the above equation except that instead of splitting the sum at $f_1 + f_2$ part, we split it at $\varphi_1 + \varphi_2$ part.

1.1.2 Homework 2

Problem 1. Show that the boundary of any interval has outer measure zero.

Solution. \blacktriangleright Let $I = \prod_{i=1}^n I_i$ be a closed interval in \mathbb{R}^n and let J be the boundary of I. We must show that given $\varepsilon > 0$ there exists a countable collection of intervals $\{I_n\}_{n \in J}$ covering J such that

$$\sum_{n \in J} \operatorname{vol}(I_n) < \varepsilon.$$

First, note that we can write J as the union $\bigcup_{i=1}^{n} J_i$ where

$$J_i = [a_1, b_1] \times \cdots \times \{a_i\} \times \cdots \times [a_n, b_n] \cup [a_1, b_1] \times \cdots \times \{b_i\} \times \cdots \times [a_n, b_n].$$

Since the countable union of null sets has measure zero, it suffices to show that the set

$$[a_1, b_1] \times \cdots \times [a_{n-1}, b_{n-1}] \times \{a_n\}$$

has measure zero. Consider the collection $\{I_{\varepsilon}\}$ consisting of the single interval

$$I_{\varepsilon} = [a_1, b_1] \times \dots \times [a_{n-1}, b_{n-1}] \times \left[a_n - \frac{\varepsilon}{2 \prod_{i=1}^{n-1} (b_i - a_i)}, a_n + \frac{\varepsilon}{2 \prod_{i=1}^{n-1} (b_i - a_i)} \right].$$

It is clear that $I_{\varepsilon} \supseteq J$. Now, computing the volume of this interval, we have

$$\operatorname{vol}(I_{\varepsilon}) = \prod_{i=1}^{n-1} (b_i - a_i) \left[a_n + \frac{\varepsilon}{2 \prod_{i=1}^{n-1} (b_i - a_i)} - \left(a_n - \frac{\varepsilon}{2 \prod_{i=1}^{n-1} (b_i - a_i)} \right) \right]$$

$$= \left[\prod_{i=1}^{n-1} (b_i - a_i) \right] \frac{\varepsilon}{\prod_{i=1}^{n-1} (b_i - a_i)}$$

$$= \varepsilon.$$

Thus, J has measure zero.

Problem 2. Show that a set consisting of a single point has outer measure zero.

Solution. \blacktriangleright Let $\{a\}$ be the set consisting of a single point $a \in \mathbb{R}$. Then we must show that given $\varepsilon > 0$ there exists a countable collection of intervals $\{I_n\}$ such that

$$\sum_{n\in J} m(I_n) < \varepsilon.$$

Consider the collection $\{I_{\varepsilon}\}\$ consisting of the single interval

$$I_{\varepsilon} = \left[a - \frac{\varepsilon}{2}, a + \frac{\varepsilon}{2}\right].$$

It is clear that $\{a\} \subseteq I_{\varepsilon}$. Moreover,

$$\operatorname{vol}(I_{\varepsilon}) = a + \frac{\varepsilon}{2} - \left(a - \frac{1}{\varepsilon}\right)$$

= ε .

Thus, $\{a\}$ has measure zero.

1.1.3 Homework 3

Problem 1 (Wheeden & Zygmund Ch. 3, Ex. 5). Construct a subset of [0,1] in the same manner as the Cantor set, except that at the kth stage each interval removed has length $\delta 3^{-k}$, $0 < \delta < 1$. Show that the resulting set is perfect, has measure $1 - \delta$, and contains no interval.

Solution. \blacktriangleright We construct the prescribed subset as follows: take the open interval $(1/2 - \delta/6, 1/2 + \delta/6)$ and remove it from the closed interval [0,1] the result is a union of two disjoint closed intervals

$$E_{1,1} = \left[0, \frac{1}{2} - \frac{1}{6}\delta\right], \quad E_{1,2} = \left[\frac{1}{2} + \frac{1}{6}\delta, 1\right],$$

whose union we call E_1 ; this marks the first step in the construction of this Cantor-like set. Next, we remove the set

$$\left(\frac{1}{4} - \frac{5}{36}\delta, \frac{1}{4} + \frac{1}{36}\delta\right) \cup \left(\frac{3}{4} + \frac{\delta}{36}, \frac{3}{4} + \frac{5}{36}\delta\right)$$

from the set E_1 which yields E_2 the union of the four closed intervals

$$E_{2,1} = \left[0, \frac{1}{4} - \frac{5}{36}\delta\right], \qquad E_{2,2} = \left[\frac{1}{4} + \frac{1}{36}\delta, \frac{1}{2} - \frac{1}{6}\delta\right],$$

$$E_{2,3} = \left[\frac{1}{2} + \frac{1}{6}\delta, \frac{3}{4} + \frac{\delta}{36}\right], \quad E_{2,4} = \left[\frac{3}{4} + \frac{5}{36}\delta, 1\right].$$

In the *n*th step of the construction, we remove an open interval of length $3^{-n}\delta$ from the center of each interval $E_{n-1,i}$ yielding E_n which is the union of 2^n intervals $E_{n,i}$ of length $2^{-n} - \delta 2^{-n} \sum_{i=1}^n 2^{i-1} 3^{-i}$. Let E be the intersection $\bigcap_{i=1}^{\infty} E_i$. This concludes our construction.

Next we show that E is perfect, has measure $1 - \delta$ and contains no interval.

To see that E is perfect, we must show that E is closed and that and dense in itself. The set E is closed because it is the (arbitrary) intersection of closed intervals. To see that E is dense in itself, we must show that for every $\varepsilon > 0$, for every $x \in E$, the intersection $(B(x,\varepsilon) \cap E) \setminus \{x\}$ is nonempty. Let $\varepsilon > 0$ and $x \in E$ be given. Then, since $x \in E$, $x \in E_n$ for every n. Thus, x is in some closed interval $E_{n,i} \subseteq E_n$. Let N be the smallest integer such that the length of $E_{N,i} = [a,b]$ is less that ε . Then, $a,b \in E$ and $a,b \in B(x,\varepsilon)$ and x is cannot be equal to both a and b. Thus, $(E \cap B(x,\varepsilon)) \setminus \{x\} \neq \emptyset$. It follows that E is a perfect set.

To see that the measure of E is $1-\delta$ by Theorem 3.26 (ii) since $m(E_1)=1-\delta/3<\infty$ and

 $E_n \searrow E$ we have

$$m(E) = m\left(\bigcap_{i=1}^{\infty} E_i\right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} m(E_i)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{2^n} \left[\frac{1}{2^n} - \frac{\delta}{2^n} \sum_{i=1}^n \frac{2^{i-1}}{3^i}\right]$$

$$= \lim_{n \to \infty} \left[1 - \delta \sum_{i=1}^n \frac{2^{i-1}}{3^i}\right]$$

$$= \lim_{n \to \infty} \left[1 - \frac{\delta}{3} \sum_{i=1}^n \left(\frac{2}{3}\right)^{i-1}\right]$$

letting j = i - 1, we can rewrite the series above as the geometric series

$$= 1 - \frac{\delta}{3} \lim_{n \to \infty} \sum_{j=0}^{n} \left(\frac{2}{3}\right)^{j}$$
$$= 1 - \delta,$$

as desired.

Lastly, we must show that E contains no interval. Seeking a contradiction, suppose that Econtains an interval I = [a, b] of length b - a. Then, since $I \subseteq E$, $I \subseteq E_n$ for all n so, since I is connected, it must be contained in one of the $E_{n,i}$ for all n. Let N be the smallest integer such that $m(E_{N,i}) < b-a$ and $E_{N,i} = [c,d]$ contains I. Then, since $I \subseteq E_{N,i}$, both a and b are points in I, $|b-a| \leq |d-c| = m(E_{N,i})$. This is a contradiction. Thus, it must be the case that E contains no interval.

Problem 2 (Wheeden & Zygmund Ch. 3, Ex. 7). Prove (3.15).

Solution. ▶ Here is the statement of the lemma:

If $\{I_k\}_{k=1}^N$ is a finite collection of nonoverlapping intervals, then $\bigcup_{k=1}^N I_k$ is measurable and $m\left(\bigcup_{k=1}^N I_k\right) = \sum_{k=1}^N m(I_k)$.

By Theorem 3.12, the union $\bigcup_{n=1}^{N} I_n$ is measurable. Hence, it remains to show that $m\left(\bigcup_{n=1}^{N} I_n\right) =$

 $\sum_{n=1}^{N} m(I_n)$. We take the approach of extending the argument provided in Theorem 3.2. As in Theorem 3.2, we note that, since $\{I_n\}_{n=1}^{N}$ covers the union $\bigcup_{n=1}^{N} I_n$, then

$$m\left(\bigcup_{n=1}^{N} I_n\right) \le \sigma\left(\bigcup_{n=1}^{N} I_n\right) = \sum_{n=1}^{N} m(I_n).$$

On the other hand, note that I_n is the union $I_n^{\circ} \cup \partial I_n$ of its interior and its boundary. In the previous homework, we showed that the boundary of an interval has measure zero. Hence, we have

$$m(I_n^{\circ}) \leq m(I_n) \leq m(I_n^{\circ}) + m(\partial I_n) = m(I_n^{\circ})$$

so $m(I_n) = m(I_n^{\circ})$. Now, note that

$$m\left(\bigcup_{n=1}^{N} I_n^{\circ}\right) = \sum_{n=1}^{N} m(I_n^{\circ}) = \sum_{n=1}^{N} m(I_n).$$

Hence, we have

$$\sum_{n=1}^{N} m(I_n) = m \left(\bigcup_{n=1}^{N} I_n^{\circ} \right)$$

$$\leq m \left(\bigcup_{n=1}^{N} I_n \right)$$

$$\leq \sum_{n=1}^{N} m(I_n).$$

Thus, equality $m\left(\bigcup_{n=1}^{N} I_n\right) = \sum_{n=1}^{N} m(I_n)$ holds.

Problem 3 (Wheeden & Zygmund Ch. 3, Ex. 8). Show that the Borel algebra \mathcal{B} in \mathbb{R}^n is the smallest σ -algebra containing the closed sets in \mathbb{R}^n .

Solution. \blacktriangleright Since \mathcal{B} is the smallest σ -algebra containing all of the open sets of \mathbb{R}^n , it contains all of the closed sets of \mathbb{R}^n . Now, suppose that \mathcal{B}' is another σ -algebra containing the closed sets in \mathbb{R}^n . Then, $\mathcal{B}' \subseteq \mathcal{B}$ since \mathcal{B} contains all of the closed sets in \mathbb{R}^n . However, since \mathcal{B}' is a σ -algebra, it contains all of the open sets in \mathbb{R}^n , so $\mathcal{B}' \subseteq \mathcal{B}$ since \mathcal{B} is the smallest σ -algebra containing the open sets in \mathbb{R}^n . Thus, $\mathcal{B}' = \mathcal{B}$.

Problem 4 (Wheeden & Zygmund Ch. 3, Ex. 9). If $\{E_k\}_{k=1}^{\infty}$ is a sequence of sets with $\sum m^*(E_k) < \infty$, show that $\limsup E_k$ (and also $\liminf E_k$ has measure zero.

Solution. \blacktriangleright First, since $\{E_n\}_{n=1}^{\infty}$ is a sequence of sets with

$$\sum_{i=1}^{\infty} m^*(E_i) < \infty$$

for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq N$ implies

$$\sum_{i=n}^{\infty} m^*(E_i) < \varepsilon.$$

Let's put this aside for now.

Define $E = \limsup_{n \to \infty} E_n$ and $E'_n = \bigcup_{i=n}^{\infty} E_n$. It is easy to see that $\{E'_n\}_{n=1}^{\infty}$ is a decreasing sequence of sets whose intersection $\bigcap_{n=1}^{\infty} E_n$ is the limit supremum E. By the monotonicity of the outer measure, we have

$$m^*(E) \le m^*(E_n')$$

for all $n \in \mathbb{N}$. On the other hand,

$$m^*(E'_n) \le \sum_{i=n}^{\infty} m^*(E_i) < \varepsilon$$

for every ε . Letting ε go to 0 we have $m^*(E) = 0$.

Lastly, we note that $E' = \liminf_{n \to \infty} E_n$ is a subset of $\limsup_{n \to \infty} E_n$, so that $m^*(E') = 0$.

Problem 5 (Wheeden & Zygmund Ch. 3, Ex. 10). If E_1 and E_2 are measurable, show that $m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$.

Solution. \blacktriangleright We may, without loss of generality, assume that $m(E_1), m(E_2) < \infty$ for otherwise there is nothing to show as equality holds trivially.

Now, by Carathéodory's theorem we have the following characterization of measurability: a set E is measurable if and only if for every set A we have

$$m^*(A) = m^*(A \cap E) + m^*(A \setminus E).$$

Therefore, the following equalities hold

$$m(E_1) = m(E_1 \cap E_2) + m(E_1 \setminus E_2)$$

 $m(E_2) = m(E_1 \cap E_2) + m(E_2 \setminus E_1).$

Moreover, from elementary set theory we have

$$(E_1 \cup E_2) \setminus E_2 = E_1 \setminus (E_1 \cap E_2),$$

 $E_1 \subseteq E_1 \cup E_2$ and $E_1 \cap E_2 \subseteq E_1$ so

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$$

as desired.

1.1.4 Homework 4

Problem 1 (Wheeden & Zygmund Ch. 3, Ex. 12). If E_1 and E_2 are measurable sets in \mathbb{R}^1 , show $E_1 \times E_2$ is a measurable subset of \mathbb{R}^2 and $m(E_1 \times E_2) = m(E_1)m(E_2)$. (Interpret $0 \cdot \infty$ as 0.) [Hint: Use a characterization of measurability.]

Solution. ▶ The proof of this result is rather long and we shall omit it for now as I gain nothing from retracing my steps on this one.

Problem 2 (Wheeden & Zygmund Ch. 3, Ex. 13). Motivated by (3.7), define the *inner measure* of E by $m_*(E) = \sup m(F)$, where the supremum is taken over all closed subsets F of E. Show that

- (i) $m_*(E) < m^*(E)$, and
- (ii) if $m^*(E) < \infty$, then E is measurable if and only if $m_*(E) = m^*(E)$. [Use (3.22).]

Solution. \blacktriangleright First we show part (i). If $m^*(E) = \infty$, the inequality holds trivially. Suppose that $m^*(E) < \infty$. Then, since F is closed, it is measurable and $m(F) = m^*(F)$. Moreover, $F \subseteq E$ so by the monotonicity of the outer measure,

$$m(F) = m^*(F) < m^*(E).$$

Taking the supremum over all F on the left, we have

$$m_*(E) = \sup_{F \subseteq E} m(F) < m^*(E)$$

as we set out to show.

Next we show part (ii). Let $E \subseteq \mathbb{R}^n$ with $m^*(E) < \infty$. \Longrightarrow Suppose that E is measurable. Then, by Lemma 3.22, there exists a closed set $F \subseteq E$ such that $m^*(E \setminus F) < \varepsilon$. Since closed sets are measurable, by Corollary 3.31, we have

$$m^*(E \setminus F) = m(E) - m(F) < \varepsilon$$

so

$$m(E) < m(F) + \varepsilon$$
.

Letting ε go to 0, we have

$$m(E) \leq m(F)$$
;

and taking the supremum on the right

$$m(E) \leq m_*(E)$$
.

But, by part (i), $m_*(E) \leq m^*(E) = m(E)$. Thus, $m_*(E) = m^*(E)$ as was to be shown.

 \Leftarrow On the other hand, suppose that $m_*(E) = m^*(E)$. Then, given $\varepsilon > 0$ there exists an open set G containing E and a closed set F contained in E such that

$$m(G) - m^*(E) < \frac{\varepsilon}{2}$$

 $m_*(E) - m(F) < \frac{\varepsilon}{2}$

Then

$$\begin{split} m^*(E \smallsetminus F) &< m^*(G \smallsetminus F) \\ &= m^*(G) - m^*(G \cap F) \\ &= m^*(G) - m^*(F) \\ &< \frac{\varepsilon}{2} + m^*(E) - \left(m^*(E) - \frac{\varepsilon}{2}\right) \\ &= \varepsilon. \end{split}$$

Thus, by Lemma 3.22, E is measurable.

Problem 3 (Wheeden & Zygmund Ch. 3, Ex. 15). If E is measurable and A is any subset of E, show that $m(E) = m_*(A) + m^*(E \setminus A)$. (See Exercise 13 for the definition of $m_*(A)$.)

Solution. \blacktriangleright Suppose $A \subseteq E$. If A is measurable, by Problem 2, the outer and inner measure of A agree; symbolically, we have $m(A) = m^*(A) = m_*(A)$. Thus, we have

$$m^*(E \setminus A) = m^*(E) - m^*(A) = m^*(E) - m_*(A).$$

If A is not measurable and $m(E) < \infty$, then we must have $m^*(A), m^*(E \setminus A) < \infty$ by the monotonicity of the outer measure; since both A an $E \setminus A$ are subsets of E. Hence, we may, without any ambiguity, subtract the quantity $m^*(E \setminus A)$ from m(E) and we have

$$m(E) - m^*(E \setminus A) = m(E) - \inf\{ m(G) : E \setminus A \subseteq G \text{ and } G \text{ is open } \}$$
$$= m(E) - \inf\{ m(G) : E \setminus A \subseteq G \subseteq E \text{ and } G \text{ is open } \}$$

1.1.5 Homework 5

Problem 1 (Wheeden & Zygmund Ch. 3, Ex. 14). Show that the conclusion of part (ii) of Exercise 13 is false if $m^*(E) = \infty$.

Solution. ightharpoonup Part (ii) of Exercise 13 is part (ii) of Problem 2 from the last section (Homework 4). In that problem we showed that if the outer measure of E is finite, then E is measurable if and only if its outer and inner measure agree. Here we construct a counter example to this when the outer measure of E is ∞ ; that is, we show that there exists a set E with $m^*(E) = \infty$ such that $m^*(E) \neq m_*(E)$. So, which set shall it be? Since we are unoriginal, we will pull an example from Wheeden and Zygmund itself.

Let $V \subseteq [0,1]$ be Vitali's unmeasurable (Theorem 3.38) and consider the union $E = V \cup (2,\infty)$. It is clear that the inner and outer measure of E are both ∞ . However, E itself must be unmeasurable for otherwise $E \cap [0,1] = V$ is measurable.

Problem 2 (Wheeden & Zygmund Ch. 3, Ex. 16). Prove (3.34).

Solution. \blacktriangleright We must prove Equation 3.34; that is, if P is a parallellepiped

$$m(P) = vol(P)$$
.

We may, without loss of generality, assume that one of the vertices of P is $\mathbf{0}$. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ be a set of vectors such that

$$P = \left\{ x \in \mathbb{R}^n : x = \sum_{k=1}^n t_k \mathbf{e}_k, \ 0 \le t_k \le 1 \right\}.$$

By definition, the measure of P is

$$m(P) = \inf_{\mathcal{S}} \left[\sum_{I_n \in \mathcal{S}} \operatorname{vol}(I_n) \right]$$

where S is a cover of P by intervals. Take the set of

Remarks. Literally nobody cares about this problem. I don't remember how to do it, but it must have been painful if I can't figure it out now, even.

Problem 3 (Wheeden & Zygmund Ch. 3, Ex. 18). Prove that outer measure is *translation invariant*; that is, if $E_h = \{x + h : x \in E\}$ is the translate of E by h, $h \in \mathbb{R}^n$, show that $m^*(E_h) = m^*(E)$. If E is measurable, show that E_h is also measurable. [This fact was used in proving (3.37).]

Solution. ightharpoonup Let $E \subseteq \mathbb{R}^n$ and $h \in \mathbb{R}^n$ and define the set E_h to be the set $E_h = \{x + h : x \in E\}$. We will show that the outer measure of E is preserved under such translations. But first, let us point out that E_h is nothing more than the image of E under the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$

given by $x \mapsto x + h$. By Theorem 3.35, such a map preserves measurability of sets and for any measurable set $E' \subseteq \mathbb{R}^n$, $m(T(E')) = (\det T)m(E') = m(E')$ (since $\det T = 1$. Now, by Theorem 3.6, for every $\varepsilon > 0$, there exist an open set $G \supseteq E$ such that $m^*(G) \le m^*(E) + \varepsilon$. Consider the image of G under T, T(G) is an open set containing E_h so $m^*(G) \ge m^*(E)$ and

$$m^*(T(G)) = m^*(G) < m^*(E) + \varepsilon.$$

Letting $\varepsilon \to 0$, we achieve the inequality

$$m^*(E_h) \le m^*(E).$$

To get the other inequality, take the map $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ which takes $x \mapsto x - h$; this sends E_h to E and the same argument shows that

$$m^*(E) \le m^*(E).$$

Thus, we have $m^*(E) = m^*(E_h)$, as was to be shown.

Problem 4 (Wheeden & Zygmund Ch. 4, Ex. 1). Prove corollary (4.2) and theorem (4.8)

Solution. ▶ The corollary and theorem in question are:

If f is measurable, then $\{f > -\infty\}$, $\{f < +\infty\}$, $\{f = +\infty\}$, $\{a \le f \le b\}$, $\{f = a\}$, etc., are all measurable. Moreover f is measurable if and only if $\{a < f < +\infty\}$ is measurable for every finite a.

and

If f is measurable and λ is any real number, then $f + \lambda$ and λf are measurable.

Their proofs are quite simple. For the corollary: Suppose $f: E \to \mathbb{R}$ is a measurable function. By Theorem 4.1, f is measurable if and only if for every finite $\alpha \in \mathbb{R}$, the sets

$$\left\{ \begin{array}{l} x \in E : f(x) \geq \alpha \, \right\} \\ \left\{ \left. x \in E : f(x) < \alpha \, \right\} \\ \left\{ \left. x \in E : f(x) \leq \alpha \, \right\} \end{array} \right.$$

are measurable. Since measurable sets form a σ -algebra on \mathbb{R}^n , we know that the countable union and intersection of measurable sets is measurable. Thus,

$$\left\{ x \in E : f(x) > -\infty \right\} = \bigcup_{\alpha \in \mathbb{Z}} \left\{ x \in E : f(x) > \alpha \right\}$$
$$\left\{ x \in E : f(x) = \infty \right\} = \bigcap_{n=1}^{\infty} \left\{ x \in E : f(x) > n \right\}$$
$$\left\{ x \in E : f(x) < \infty \right\} = \bigcup_{\alpha \in \mathbb{Z}} \left\{ x \in E : f(x) < \alpha \right\}$$

are easily seen to be measurable.

Showing that $\{x \in E : f(x) = \alpha\}$ and $\{x \in E : \alpha < f(x) < \beta\}$ are measurable requires some clever (but not too clever) intersection/union of the sets we get from Theorem 4.1.

For the theorem: Suppose f is measurable and λ is a constant. By Theorem 4.1, for any finite $\alpha \in \mathbb{R}$ we have

$$\{x \in E : f(x) > \alpha - \lambda\}$$

so

$$\{x \in E : f(x) + \lambda > \alpha\}$$

is measurable. Thus, $f + \lambda$ is measurable. Similarly, for $\lambda \neq 0$, taking the set

$$\{x \in E : f(x) > \alpha/\lambda\} = \{x \in E : \lambda f(x) > \alpha\}$$

shows that λf is measurable; otherwise, if $\lambda = 0$, $\lambda f = 0$ is constant and hence is continuous which in turn implies that it is measurable.

Problem 5 (Wheeden & Zygmund Ch. 4, Ex. 2). Let f be a simple function, taking its distinct values on disjoint sets E_1, \ldots, E_N . Show that f is measurable if and only if E_1, \ldots, E_N are measurable.

Solution. $\blacktriangleright \implies$ Suppose that f is measurable. Then, by Corollary 4.2, the sets of the form $\{f = \alpha_n\} = E_n$ are measurable. So the sets E_n are measurable.

 \Leftarrow On the other hand, suppose that the sets E_n are measurable. Then, χ_{E_n} is measurable so by Theorem 4.8, f is measurable since it is the sum

$$f = \sum_{n=1}^{N} \alpha_{E_n}.$$

1.1.6 Homework 6

Problem 1 (Wheeden & Zygmund Ch. 4, Ex. 4). Let f be defined and measurable in \mathbb{R}^n . If T is a nonsingular linear transformation of \mathbb{R}^n , show that f(T(x)) is measurable. [If $E_1 = \{x : f(x) > a\}$ and $E_2 = \{x : f(T(x)) > a\}$, show $E_2 = T^{-1}(E_1)$.]

Solution. \blacktriangleright Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function and $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Then, we show that the composition $f \circ T$ is measurable. Fix a finite $\alpha \in \mathbb{R}$ and let

$$E_1 = \{ x : f(x) > \alpha \}$$

 $E_2 = \{ x : f(T(x)) > \alpha \}.$

Then, by Theorem 3.35, it suffices to show that $E_2 = T^{-1}(E_1)$ since T^{-1} is a nonsingular linear transformation so it sends measurable sets to measurable sets. But this equality is obvious: Suppose $x \in E_2$; then $f(T(x)) > \alpha$ so, because T is nonsingular and therefore bijective, clearly $x \in T^{-1}(E_1)$ so $E_2 \subseteq T^{-1}(E_1)$. One the other hand, if $x \in T^{-1}(E_1)$ then x is a point in E such that $f(T(x)) > \alpha$ so $x \in E_2$. Thus, $E_2 = T^{-1}(E_1)$ and consequently, $f \circ T$ is a measurable function.

Problem 2 (Wheeden & Zygmund Ch. 4, Ex. 7). Let f be use and less that ∞ on a compact set E. Show that f is bounded above on E. Show also that f assumes its maximum on E, i.e., that there exists $x_0 \in E$ such that $f(x_0) \ge f(x)$ for all $x \in E$.

Solution. First we show that f is bounded. Suppose that f is u.s.c. on E. Then, by Theorem 4.14 (i), sets of the form $\{x \in E : f(x) < \alpha\}$ are relatively open. Let $\mathcal{G} = \{G_{\alpha}\}_{\alpha \in \mathbb{Z}}$ where $G_a = \{x \in E : f(x) < \alpha\}$. Then \mathcal{G} forms an open cover of E and since E is compact there exists a finite subset $\{G_{\alpha_n}\}_{n=1}^N$ for some finite subset $\{\alpha_1, \ldots, \alpha_N\}$ of \mathbb{Z} . Let $\alpha = \max\{\alpha_1, \ldots, \alpha_N\}$. Then, $f(x) < \alpha$ for all $x \in E$ so f is bounded above by α .

Next, we show that f in fact assumes its maximum (locally) on E by using only topological properties of f. Since sets of the form $\{x \in E : f(x) \ge \alpha\}$ are relatively closed, by Theorem 4.14 (i), for fixed $x \in E$ the sets $F_x = \{y \in E : f(y) \ge f(x)\}$ are relatively closed. Consider the collection $\{F_x\}_{x \in E}$ of closed subsets of E. First, note that each of these sets is nonempty since $f(x) \ge f(x)$ so $x \in F_x$ for every $x \in E$. Now, let $\{x_n\}_{n=1}^N \subseteq E$ and consider the collection $\{F_{x_n}\}_{n=1}^N$. Then $\bigcap_{n=1}^N F_{x_n} \ne \emptyset$ since for x the point in $\{x_1, \ldots, x_N\}$ such that $f(x) = \min\{f(x_1), \ldots, f(x_N)\}$, $x \in F_{x_n}$ for all $1 \le n \le N$. Thus, by the finite intersection property, the intersection $F = \bigcap_{x \in E} F_x$ is nonempty. Let $y \in \bigcap_{x \in E} F_x$, then $f(y) \ge f(x)$ for all $x \in E$ so f achieves its maximum (locally) on E.

Problem 3 (Wheeden & Zygmund Ch. 4, Ex. 8).

- (a) Let f and g be two functions which are u.s.c. at x_0 . Show that f + g is u.s.c. at x_0 . Is f g u.s.c. at x_0 ? When is fg u.s.c. at x_0 ?
- (b) If $\{f_k\}$ is a sequence of functions are u.s.c. at x_0 , show that inf $f_k(x)$ is u.s.c. at x_0 .
- (c) If $\{f_k\}$ is a sequence of functions which are u.s.c. at x_0 and which converge uniformly near x_0 , show that $\lim f_k$ is u.s.c. at x_0 .

Solution. \blacktriangleright We prove these in alphabetical order (a) \rightarrow (b) \rightarrow (c).

For (a), suppose that f and g are u.s.c. at x_0 . Then given $M > f(x_0), g(x_0)$ there exists $\delta_1, \delta_2 > 0$ such that f(x), g(x) < M/2 for all $|x_1 - x_0| < \delta_1, |x_2 - x_0| < \delta_2$, respectively. Let δ be the minimum of $\{\delta_1, \delta_2\}$. Then for any x such that $|x - x_0| < \delta$, we have

$$|f(x) + g(x) - (f(x_0) + g(x_0))| = |(f(x) - f(x_0)) + (g(x) - g(x_0))|$$

$$\leq |(f(x) - f(x_0))| + |(g(x) - g(x_0))|$$

$$< \frac{M}{2} + \frac{M}{2}$$

$$= M.$$

Thus, f + g is u.s.c.

For that second little part of (a), the one that asks "Is f - g u.s.c. at x_0 ?" we provide a counter example. In fact, the following is enough of a counterexample: Take f = 0 (which is continuous everywhere) and g any function that is u.s.c., but not continuous, at x_0 then f - g = -g is l.s.c. at x_0 . Another counterexample is provided by the equations u_1 and u_2 from Ch. 4 of Wheeden and Zygmund: Fix an $x_0 \in \mathbb{R}$ and define

$$u_1(x) = \begin{cases} 0 & \text{if } x < x_0, \\ 1 & \text{if } x \ge x_0, \end{cases} \qquad u_2(x) = \begin{cases} 0 & \text{if } x \le x_0, \\ 1 & \text{if } x > x_0. \end{cases}$$

Then

$$u_1(x) - u_2(x) = \begin{cases} 0 & \text{if } x \le x_0, \\ 1 & \text{if } x > x_0. \end{cases}$$

is not u.s.c. at x_0 since being u.s.c. at x_0 implies that for $1/2 > f(x_0) = 0$ there exists $\delta > 0$ such that f(x) < 1/2 for all $x \in (x_0 - \delta, x_0 + \delta)$. But for any $x' > x_0$ in $(x_0 - \delta, x + \delta)$, u(x') = 1 > 1/2 which contradicts the assumption that u is u.s.c. at x_0 .

For (b), suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions that are u.s.c. at x_0 . Then

$$\limsup_{\substack{x \to x_0 \\ x \in E}} f_n(x) \le f_n(x_0)$$

for all $n \in \mathbb{N}$. We must show that

$$\limsup_{\substack{x \to x_0 \\ x \in E}} \left[\inf f_n(x)\right] \le \inf f_n(x_0).$$

1.1.7 Homework 7

Problem 1 (Wheeden & Zygmund Ch. 4, Ex. 9).

- (a) Show that the limit of a decreasing (increasing) sequence of functions u.s.c. (l.s.c.) at x_0 is u.s.c. (l.s.c.) at x_0 . In particular, the limit of a decreasing (increasing) sequence of functions continuous at x_0 is u.s.c. (l.s.c.) at x_0 .
- (b) Let f be u.s.c. and less than ∞ on [a, b]. Show that there exists continuous f_k on [a, b] such that $f_k \downarrow f$.

Solution. \blacktriangleright For part (a) we may as well assume that $f \geq 0$ for all x. Let $\{f_n\}$, $n \in \mathbb{N}$, be a sequence of decreasing functions with limit f which are u.s.c. at x_0 . Then, for every $n \in \mathbb{N}$, for every sequence $x \to x_0$,

$$\limsup_{x \to x_0} f_n(x) \le f_n(x_0).$$

Now, we claim that $f(x) \leq f_n(x)$ for every x and every $n \in \mathbb{N}$.

Proof of claim. Suppose $f(x) > f_{N_1}(x)$ for some $x, N_1 \in \mathbb{N}$. Then there exists a real number $\varepsilon > 0$ such that $0 < \varepsilon < |f(x) - f_n(x)|$ (we may, for example, take ε to be in \mathbb{Q} which is dense in \mathbb{R} . Then, since $f_n \downarrow f$, there exists an index $N_1 \in \mathbb{N}$ such that

$$|f(x) - f_n(x)| < \varepsilon.$$

However, since the sequence f_n decreases to f, for $n \ge \max\{N_1, N_2\}$, $f_n(x) \le f_{N_1}(x)$ so

$$|f(x) - f_n(x)| > |f(x) - f_{N_1}(x)| > \varepsilon.$$

This is a contradiction.

Having established this, for every sequence $x \to x_0$, we have

$$\limsup_{x \to x_0} f(x) \le \limsup_{x \to x_0} f_n(x) \le f_n(x_0).$$

Letting $n \to \infty$,

$$\limsup_{x \to x_0} f(x) \le \lim_{n \to \infty} f_n(x_0) = f(x_0).$$

For part (b) suppose $f:[a,b] \to \mathbb{R}$ is u.s.c. on [a,b] and $f(x) < \infty$ for all $x \in [a,b]$. For a fixed $x \in [a,b]$, f is u.s.c. at x if for every $\varepsilon > 0$, there exists a neighborhood $B(x,\delta)$ such that $f(y) < f(x) + \varepsilon$. Now, let $\varepsilon = 1/n$. Then, for each $x \in [a,b]$, there exists a neighborhood $B(x,\delta_x)$ such that $f(y) < f(x) + \varepsilon$ for $y \in B(x,\delta_x)$.

The following post on the Mathematics StackExchange contains a solution to part (b) of this problem.

First, we claim that $f(x) \neq \infty$ for any $x \in [a, b]$, it must be bounded.

Proof of claim. By Theorem 4.14 (a), sets of the form $\{x \in [a, b] : f(x) < a\}$ is relatively open for all finite a. Define

$$E_n = \{ x \in [a, b] : f(x) < n \}.$$

Then, the collection $\mathcal{E} = \{E_n\}$, $n \in \mathbb{N}$, is an open cover of [a, b]. Since [a, b] is compact, there exists a finite subcover $\{E_{n_1}, \ldots, E_{n_m}\}$ of \mathcal{E} . Letting $M = \max\{n_1, \ldots, n_m\}$, we have f < M for all $x \in [a, b]$. Thus, f is bounded on [a, b].

Now that we have established that f is bounded on [a,b] by, say, M then $\sup_{x\in[a,b]}f\leq M$. Define

$$f_n(x) = \sup_{y \in [a,b]} [f(y) - n|x - y|].$$

We claim that this family of functions $\{f_n\}$, $n \in \mathbb{N}$, is continuous and that $f_n \to f$. To see that f is continuous, we observe that this family of functions is in fact Lipschitz continuous

$$|f_n(x) - f_n(y)| = \left| \sup_{z \in [a,b]} \left[f(z) - n|x - z| \right] - \sup_{z \in [a,b]} \left[f(z) - n|y - z| \right] \right|$$

$$\leq \left| \sup_{z \in [a,b]} \left[f(z) - n|x - z| - f(z) - n|y - z| \right] \right|$$

$$= \left| \sup_{z \in [a,b]} \left[-n|x - z| - n|y - z| \right] \right|$$

$$= \left| \sup_{z \in [a,b]} \left[-n|x - y + (y - z)| - n|y - z| \right] \right|$$

$$\leq \left| \sup_{z \in [a,b]} \left[-n|x - y| - 2n|y - z| \right] \right|$$

$$= n|x - y|.$$

Thus, f_n is Lipschitz and in particular, it is continuous.

To see that $f_n \to f$ pointwise, let $\varepsilon > 0$ be given then we must show that there exists some index N such that $n \geq N$ implies

$$|f(x) - f_n(x)| < \varepsilon.$$

Expanding the equation above, we see that

$$|f(x) - f_n(x)| = \left| f(x) - \sup_{y \in [a,b]} [f(y) - n|x - y|]. \right|$$

Problem 2 (Wheeden & Zygmund Ch. 4, Ex. 11). Let f be defined on \mathbb{R}^n and let B(x) denote the open ball $\{y: |x-y| < r\}$ with center x and fixed radius r. Show that the function $g(x) = \sup\{f(y): y \in B(x)\}$ is l.s.c. and the function $h(x) = \inf\{f(y): y \in B(x)\}$ is u.s.c. on \mathbb{R}^n . Is the same true for the closed ball $\{y: |x-y| \le r\}$?

Solution. \triangleright Note that, by properties of the infimum/supremum for any set of real numbers $S \subset \mathbb{R}$,

$$\sup S = -\inf(-S)$$

where $-S = \{ -s : s \in S \}$. Thus,

$$g(x) = -\inf\{-f(y) : y \in B(x,r)\}\$$

= \sup\{f(y) : y \in B(x,r)\}.

Letting f' = -f, it suffices to show that $g'(x) = \inf\{f'(y) : y \in B(x,r)\}$ is u.s.c. since for any u.s.c. function f, -f is l.s.c. Therefore, we show that h is u.s.c.

To see that h is u.s.c., let $M > h(x_0)$. Then we must show that there exists a neighborhood $B(x_0, \delta)$ such that M > h(x) for every $x \in B(x_0, \delta)$. Since $h(x_0)$ is the infimum of f(x) over all $x \in B(x_0, r)$, given $\varepsilon > 0$ there exists $x \in B(x_0, r)$ such that $f(x) < h(x_0) + \varepsilon < M$. Define $\delta = (r - |x - y|)/2$. Then we claim that for any $x \in B(x_0, \delta)$,

$$g(x) < M$$
.

Proof of claim. Let $x \in B(x_0, \delta)$. Then $y \in B(x_0, \delta)$ since

$$\begin{aligned} |x - y| &= |x - x_0 - (y - x_0)| \\ &\leq |x - x_0| + |y - x_0| \\ &= (r - |y - x_0|)/2 + |y - x_0| \\ &= r/2 + |y - x_0|/2 \\ &< r. \end{aligned}$$

Thus,

$$g(x) \le f(y) < g(x_0) + \varepsilon < M.$$

It follows that g is u.s.c.

Problem 3 (Wheeden & Zygmund Ch. 4, Ex. 15). Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set E with $m(E) < \infty$. If $|f_k(x)| \le M_x < \infty$ for all k for each $x \in E$, show that given $\varepsilon > 0$, there is closed $F \subseteq E$ and finite M such that $m(E \setminus F) < \varepsilon$ and $|f_k(x)| \le M$ for all $x \in F$.

Solution. ightharpoonup Set $f = \sup_{n \in \mathbb{N}} |f_n|$; then, f is measurable since it is the supremum of measurable functions $|f_n|$. By Lusin's theorem f satisfies the \mathcal{C} -property, i.e., there exists a closed subset F' of E with $m(E \setminus F') < \varepsilon/2$ and a continuous function $\bar{f} \colon E \to \mathbb{R}$ such that $f|_{F'} = \bar{f}|_{F'}$. Now, let B be the closed ball centered at $\mathbf{0}$ such that $|E \setminus B| < \varepsilon/2$ (remember, this is all taking place in \mathbb{R}^n , so we can do this). Thus, $F' \cap B$ is compact since it is a closed subset of B the latter being a compact set. Let $F = F' \cap B$ then,

$$\begin{split} |E \smallsetminus F| &= |E \smallsetminus (F' \cap B)| \\ &= |(E \smallsetminus F') \cup (E \smallsetminus B)| \\ &\leq |E \smallsetminus F'| + |E \smallsetminus B| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{split}$$

so F has the desired measure. Lastly, by the mean value theorem, f achieves its maximum, call it M, on F since F is compact. It follows that $f_n|_F \leq M$ for all $n \in \mathbb{N}$.

Problem 4 (Wheeden & Zygmund Ch. 4, Ex. 18). If f is measurable on E, define $\omega_f(a) = m\{f > a\}$ for $-\infty < a < \infty$. If $f_k \uparrow f$, show that $\omega_{f_k} \uparrow \omega_f$. If $f_k \to f$, show that $\omega_{f_k} \to \omega_f$ at each point of continuity of ω_f . [For the second part, show that if $f_k \to f$, then $\limsup_{k \to \infty} \omega_{f_k}(a) \le \omega_f(a - \varepsilon)$ and $\liminf_{k \to \infty} \omega_{f_k}(a) \ge \omega_f(a + \varepsilon)$ for every $\varepsilon > 0$.]

Solution. For the first part of this problem we will show that the sequence of distribution functions $\{\omega_{f_n}\}$, $n \in \mathbb{N}$, is increasing and that its limit is ω_f . It is easy to verify that this sequence is in fact increasing: if $x \in \{f_{n-1} \ge M\}$ then $x \in \{f_n \ge M\}$ since $f_n \ge f_{n-1}$ for all $x \in E$. Thus, $\omega_{f_n} \ge \omega_{f_{n-1}}$. Now we need to show that the limit of this sequence is in fact ω_f : fix an $x \in E$ and let $\varepsilon > 0$ be given. Then there exists an index N' such that $n \ge N'$ implies $|f(x) - f_n(x)| < \varepsilon$. Now, we want to use this ε and index N' (with some possible alterations), for some fixed M, we want to show that the difference

$$|\omega_f(M) - \omega_{f_n}(M)| < \varepsilon.$$

First, by properties of the Lebesgue measure

$$m\{f > M\} - m\{f_n > M\} \le m(\{f > M\} \setminus \{f_n > M\}).$$

In turn, it is easy to see that the latter set is in fact

$$E_{M,n} = \{ x \in E : f(x) > M \text{ and } f_n(x) \le M \}$$

= \{ x \in E : f(x) > M \text{ and } f(x) - f_n(x) > 0 \}.

Then, $E_{M,n} \subseteq \{x \in E : f(x) - f_n(x) > M\} = E_{0,n}$ and the measure of the latter set converges to 0 since $f_n \to f$ and this implies that f_n converges to f in measure (a weaker form of pointwise convergence). Let N'' be the index such that $n \ge N'$ implies $m(E_{0,n}) < \varepsilon$. Then for $n \ge N$ with $N = \max\{N', N''\}$, the difference

$$|\omega_f(M) - \omega_{f_n}(M)| < \varepsilon.$$

Thus, we have shown that $\omega_{f_n} \uparrow \omega_f$.

Problem 5 (Wheeden & Zygmund Ch. 5, Ex. 1). If f is a simple measurable function (not necessarily positive) taking values a_j on E_j , j = 1, ..., N, show that $\int_E f = \sum_{j=1}^N a_j m(E_j)$. [Use (5.24)].

Solution. \blacktriangleright It is enough to consider simple positive measurable functions f since we can split f into the difference of two positive simple measurable functions, namely, $f = f^+ - f^-$. Now, since f is a simple function, $f = \sum_{n=1}^{N} a_n \chi_{E_n}$ for measurable subsets $E_n \subseteq E$. Now, by Theorem 5.24, we

have

$$\int_{E} f \, dx = \int_{E} \left[\sum_{n=1}^{N} a_{n} \chi_{E_{n}} \right] dx$$
$$= \sum_{n=1}^{N} \int_{E_{n}} a_{n} \, dx$$
$$= \sum_{n=1}^{N} a_{n} m(E_{n}),$$

as we set out to show.

Problem 6 (Wheeden & Zygmund Ch. 5, Ex. 3). Let $\{f_k\}$ be a sequence of nonnegative measurable functions defined on E. If $f_k \to f$ and $f_k \le f$ a.e. on E, show that $\int_E f_k \to \int_E f$.

Solution. \blacktriangleright The result follows from a simple application of Fatou's lemma. Consider the sequence of integrals $\{\int_E f_n\}$, $n \in \mathbb{N}$. By Fatou's lemma

$$\int_{E} \liminf_{n \to \infty} f_n \, \mathrm{d}x = \int_{E} f \, \mathrm{d}x$$

$$\leq \liminf_{n \to \infty} \int_{E} f_n \, \mathrm{d}x.$$

By Theorem 5.10, since $f_n \leq f$, we have

$$\limsup_{n \to \infty} \int_E f_n \, \mathrm{d}x \le \int_E f \, \mathrm{d}x.$$

Thus, we have

$$\limsup_{n \to \infty} \int_E f_n \, \mathrm{d}x \le \liminf_{n \to \infty} \int_E f_n \, \mathrm{d}x,$$

which implies that

$$\limsup_{n \to \infty} \int_E f_n \, \mathrm{d}x = \liminf_{n \to \infty} \int_E f_n \, \mathrm{d}x$$

so

$$\lim_{n \to \infty} \int_E f_n \, \mathrm{d}x = \int_E f \, \mathrm{d}x$$

as we set out to show.

1.1.8 Homework 8

Problem 1 (Wheeden & Zygmund Ch. 5, Ex. 2). Show that the conclusion of (5.32) are not true without the assumption that $\varphi \in L(E)$. [In part (ii), for example, take $f_k = \chi_{(k,\infty)}$.]

Solution. ▶

Problem 2 (Wheeden & Zygmund Ch. 5, Ex. 4). If $f \in L(0,1)$, show that $x^k f(x) \in L(0,1)$ for $k = 1, 2, \ldots$, and $\int_0^1 x^k f(x) dx \to 0$.

Solution. ▶

Problem 3 (Wheeden & Zygmund Ch. 5, Ex. 6). Let f(x,y), $0 \le x, y \le 1$, satisfy the following conditions: for each x, f(x,y) is an integrable function of y, and $\partial f(x,y)/\partial x$ is a bounded function of (x,y). Show that $\partial f(x,y)/\partial x$ is a measurable function of y for each x and

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^1 f(x, y) \, \mathrm{d}y = \int_0^1 \frac{\partial}{\partial x} f(x, y) \, \mathrm{d}y.$$

Solution. ▶

Problem 4 (Wheeden & Zygmund Ch. 5, Ex. 7). Give an example of an f that is not integrable, but whose improper Riemann integral exists and is finite.

Solution. ▶

Problem 5 (Wheeden & Zygmund Ch. 5, Ex. 21). If $\int_A f = 0$ for every measurable subset A of a measurable set E, show that f = 0 a.e. in E.

Solution. ▶

Problem 6 (Wheeden & Zygmund Ch. 6, Ex. 10). Let V_n be the volume of the unit ball in \mathbb{R}^n . Show by using Fubini's theorem that

$$V_n = 2V_{n-1} \int_0^1 (1 - t^2)^{(n-1)/2} dt.$$

(We also observe that by setting $w=t^2$, the integral is a multiple of a classical β -function and so can be expressed in terms of the Γ -function: $\Gamma(s)=\int_0^\infty e^{-t}t^{s-1}\,\mathrm{d}t,\, s>0.$)

Solution. ▶

Problem 7 (Wheeden & Zygmund Ch. 6, Ex. 11). Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} \, \mathrm{d}x = \pi^{n/2}.$$

(For n=1, write $\left(\int_{-\infty}^{\infty}e^{-x^2}\,\mathrm{d}x\right)^2=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^2-y^2}\,\mathrm{d}xdy$ and use polar. For n>1, use the formula $e^{-|x|^2}=e^{-x_1^2}\cdots e^{-x_n^2}$ and Fubini's theorem to reduce the case n=1.)

Solution. ▶

1.1.9 Homework 9

Problem 1 (Wheeden & Zygmund Ch. 6, Ex. 1).

- (a) Let E be a measurable subset of \mathbb{R}^2 such that for almost every $x \in \mathbb{R}$, $\{y : (x,y) \in E\}$ has \mathbb{R} -measure zero. Show that E has measure zero and that for almost every $y \in \mathbb{R}$, $\{x : (x,y) \in E\}$ has measure zero
- (b) Let f(x,y) be nonnegative and measurable in \mathbb{R}^2 . Suppose that for almost every $x \in \mathbb{R}$, f(x,y) is finite for almost every y. Show that for almost $y \in \mathbb{R}$, f(x,y) is finite for almost every x.

Solution. ▶

Problem 2 (Wheeden & Zygmund Ch. 6, Ex. 3). Let f be measurable and finite a.e. on [0,1]. If f(x) - f(y) is integrable over the square $0 \le x \le 1$, $0 \le y \le 1$, show that $f \in L[0,1]$.

Solution. ▶

Problem 3 (Wheeden & Zygmund Ch. 6, Ex. 4). Let f be measurable and periodic with period 1: f(t+1) = f(t). Suppose there is a finite c such that

$$\int_0^1 |f(a+t) - f(b+t)| \, \mathrm{d}t \le c$$

for all a and b. Show that $f \in L[0,1]$. (Set $a=x,\,b=-x$, integrate with respect to x, and make the change of variables $\xi=x+t,\,\eta=-x+t$.)

Solution. ▶

Problem 4 (Wheeden & Zygmund Ch. 6, Ex. 6). For $f \in L(\mathbb{R})$, define the Fourier transform \hat{f} of f by

$$\hat{f}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-ixt} dt$$

for $x \in \mathbb{R}$. (For complex-valued function $F = F_0 + iF_1$ whose real and imaginary parts F_0 and F_1 are integrable, we define $\int F = \int F_0 + i \int F_1$.) Show that if f and g belong to $L(\mathbb{R})$, then

$$\widehat{(f * g)}(x) = 2\pi \hat{f}(x)\hat{g}(x).$$

Solution. ▶

Problem 5 (Wheeden & Zygmund Ch. 6, Ex. 7). Let F be a closed subset of \mathbb{R} and let $\delta(x) = \delta(x, F)$ be the corresponding distance function. If $\lambda > 0$ and f is nonnegative and integrable over the complement of F, prove that the function

$$\int_{\mathbb{R}} \frac{\delta^{\lambda}(y) f(y)}{|x - y|^{1 + \lambda}} \, \mathrm{d}t$$

is integrable over F and so is finite a.e. in F. (In case $f = \chi_{(a,b)}$, this reduces to Theorem 6.17.)

Solution. ▶

Problem 6 (Wheeden & Zygmund Ch. 6, Ex. 9).

- (a) Show that $M_{\lambda}(x; F) = +\infty$ if $x \notin F$, $\lambda > 0$.
- (b) Let F = [c,d] be a closed subinterval of a bounded open interval $(a,b) \subseteq \mathbb{R}$, and let M_{α} be the corresponding Marcinkiewicz integral, $\lambda > 0$. Show that M_{λ} is finite for every $x \in (c,d)$ and that $M_{\lambda}(c) = M_{\lambda}(d) = \infty$. Show also that $\int M_{\lambda} \leq \lambda^{-1} |G|$, where G = (a,b) [c,d].

Solution. ▶

1.1.10 Homework 10

Problem 1 (Wheeden & Zygmund Ch. 7, Ex. 1). Let f be measurable in \mathbb{R}^n and different from zero in some set of positive measure. Show that there is a positive constant c such that $f^*(x) \geq c||x||^{-n}$ for $||x|| \geq 1$.

Solution. ▶

Problem 2 (Wheeden & Zygmund Ch. 7, Ex. 2). Let $\varphi(x), x \in \mathbb{R}^n$, be a bounded measurable function such that $\varphi(x) = 0$ for $||x|| \ge 1$ and $\int \varphi = 1$. For $\varepsilon > 0$, let $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(x/\varepsilon)$. (φ_{ε} is called an approximation to the identity.) If $f \in L(\mathbb{R}^n)$, show that

$$\lim_{\varepsilon \to 0} (f * \varphi_{\varepsilon})(x) = f(x)$$

in the Lebesgue set of f. (Note that $\int \varphi_{\varepsilon} = 1$, $\varepsilon > 0$, so that

$$(f * \varphi_{\varepsilon})(x) - f(x) = \int [f(x - y) - f(x)]\varphi_{\varepsilon}(y) dy.$$

Use Theorem 7.16.)

Solution. ▶

Problem 3 (Wheeden & Zygmund Ch. 7, Ex. 6). Show that if $\alpha > 0$, then x^{α} is absolutely continuous on every bounded subinterval of $[0, \infty)$.

Solution. ▶

Problem 4 (Wheeden & Zygmund Ch. 7, Ex. 8). Prove the following converse of Theorem 7.31: If f is of bounded variation on [a, b], and if the function V(x) = V[a, x] is absolutely continuous on [a, b], then f is absolutely continuous on [a, b].

Solution. ▶

Problem 5 (Wheeden & Zygmund Ch. 7, Ex. 9). If f is of bounded variation on [a, b], show that

$$\int_{a}^{b} |f'| \le V[a, b].$$

Show that if equality holds in this inequality, then f is absolutely continuous on [a, b]. (For the second part, use Theorems 2.2(ii) and 7.24 to show that V(x) is absolutely continuous and then use the result of Exercise 8).

Solution. ▶

Problem 6 (Wheeden & Zygmund Ch. 7, Ex. 12). Use Jensen's inequality to prove that if $a, b \ge 0$, p, q > 1, (1/p) + (1/q) = 1, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

More generally, show that

$$a_1 \cdots a_N = \sum_{j=1}^N \frac{a_j^{p_j}}{p_j},$$

where $a_j \ge 0$, $p_j > 1$, $\sum_{j=1}^{N} (1/p_j) = 1$. (Write $a_j = e^{x_j/p_j}$ and use the convexity of e^x .

Solution. ▶

Problem 7 (Wheeden & Zygmund Ch. 7, Ex. 13). Prove Theorem 7.36.

Solution. ▶ Recall the statement of Theorem 7.36

- (i) If φ_1 and φ_2 are convex in (a,b), then $\varphi_1 + \varphi_2$ is convex in (a,b).
- (ii) If φ is convex in (a,b) and c is a positive constant, then $c\varphi$ is convex in (a,b).
- (iii) If φ_k , k = 1, 2, ..., are convex in (a, b) and $\varphi_k \to \varphi$ in (a, b), then φ is convex in (a, b).

32

1.1.11 Homework 11

Problem 1 (Wheeden & Zygmund Ch. 7, Ex. 11). Prove the following result concerning changes of variable. Let g(t) be monotone increasing and absolutely continuous on $[\alpha, \beta]$ and let f be integrable on [a, b], $a = g(\alpha)$, $b = g(\beta)$. Then f(g(t))g'(t) is measurable and integrable on $[\alpha, \beta]$, and

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t) dt.$$

(Consider the case when f is the characteristic function of an interval, an open set, etc.)

Solution. ▶

Problem 2 (Wheeden & Zygmund Ch. 7, Ex. 15). Theorem 7.43 shows that a convex function is the indefinite integral of a monotone increasing function. Prove the converse: If $\varphi(x) = \int_a^x f(t) dt + \varphi(a)$ in (a,b) and f is monotone increasing, then φ is convex in (a,b). (Use Exercise 14.)

Solution. ▶

Problem 3 (Wheeden & Zygmund Ch. 5, Ex. 8). Prove (5.49).

Solution. ▶

Problem 4 (Wheeden & Zygmund Ch. 5, Ex. 11). For which p does $1/x \in L^p(0,1)$? $L^p(1,\infty)$? $L^p(0,\infty)$?

Solution. ▶

Problem 5 (Wheeden & Zygmund Ch. 5, Ex. 12). Give an example of a bounded continuous f on $(0,\infty)$ such that $\lim_{x\to\infty} f(x) = 0$ but $f \notin L^p(0,\infty)$ for any p > 0.

Solution. ▶

Problem 6 (Wheeden & Zygmund Ch. 5, Ex. 17). If $f \ge 0$ and $\omega(\alpha) \le c(1+\alpha)^p$ for all $\alpha > 0$, show that $f \in L^r$, 0 < r < p.

Solution. ▶

Problem 7 (Wheeden & Zygmund Ch. 8, Thm. 8.3). If $f, g \in L^p(E)$, p > 0, then $f + g \in L^p(E)$ and $cf \in L^p(E)$ for any constant c.

Solution. ▶

1.1.12 Homework 12

Problem 1 (Wheeden & Zygmund Ch. 8, Ex. 2). Prove the converse of Hölder's inequality for p=1 and ∞ . Show also that for $1 \leq p \leq \infty$, a real-valued measurable f belongs to $L^p(E)$ if $fg \in L^1(E)$ for every $g \in L^{p'}(E)$, 1/p+1/p'=1. The negation is also of interest: if $f \in L^p(E)$ then there exists $g \in L^{p'}(E)$ such that $fg \notin L^1(E)$. (To verify the negation, construct g of the form $\sum a_k g_k$ satisfying $\int_E fg_k \to \infty$.)

Solution. ▶

Problem 2 (Wheeden & Zygmund Ch. 8, Ex. 3). Prove Theorems 8.12 and 8.13. Show that Minkowski's inequality for series fails when p < 1.

Solution. ▶

Problem 3 (Wheeden & Zygmund Ch. 8, Ex. 4). Let f and g be real-valued and not identically 0 (i.e., neither function equals 0 a.e.), and let $1 . Prove that equality holds in the inequality <math>|\int fg| \le ||f||_p ||g||_{p'}$ if and only if fg has constant sign a.e. and $|f|^p$ is a multiple of $|g|^{p'}$ a.e.

If $||f + g||_p = ||f||_p + ||g||_p$ and $g \neq 0$ in Minkowski's inequality, show that f is a multiple of g.

Find analogues of these results for the spaces ℓ^p .

Solution. ▶

Problem 4 (Wheeden & Zygmund Ch. 8, Ex. 5). For $0 and <math>0 < |E| < \infty$, define

$$N_p[f] = \left(\frac{1}{E} \int_E |f|^p\right)^{1/p},$$

where $N_{\infty}[f]$ means $||f||_{\infty}$. Prove that if $p_1 < p_2$, then $N_{p_1}[f] \le N_{p_2}[f]$. Prove also that if $1 \le p \le \infty$, then $N_p[f+g] \le N_p[f] + N_p[g]$, $(1/|E|) \int_E |fg| \le N_p[f] N_{p'}[g]$, 1/p + 1/p' = 1, and $\lim_{p\to\infty} N_p[f] = ||f||_{\infty}$. Thus, N_p behaves like $||\cdot||_p$ but has the advantage of being monotone in p. Recall Exercise 28 of Chapter 5.

Solution. ▶

Problem 5 (Wheeden & Zygmund Ch. 8, Ex. 6).

(a) Let $1 \leq p_i$, $r \leq \infty$ and $\sum_{i=1}^k 1/p_i = 1/r$. Prove the following generalization of Hölder's inequality:

$$||f_1 \cdots f_k||_r \le ||f_1||_{p_1} \cdots ||f_k||_{p_k}.$$

(b) Let $1 \le p < r < q \le \infty$ and define $\theta \in (0,1)$ by $1/r = \theta/p + (1-\theta)/q$. Prove the interpolation estimate

$$||f||_r \le ||f||_p^{\theta} ||f||_q^{1-\theta}.$$

In particular, if $A = \max\{\|f\|_p, \|f\|_q\}$, then $\|f\|_r \le A$.

Solution. ▶

Problem 6 (Wheeden & Zygmund Ch. 8, Ex. 9). If f is real-valued and measurable on E, |E| > 0, define its essential infimum on E by

ess inf
$$f = \sup\{ \alpha : |\{ x \in E : f(x) < \alpha \}| = 0 \}.$$

If $f \ge 0$, show that $\operatorname{ess\,inf}_E f = (\operatorname{ess\,sup} 1/f)^{-1}$.

Solution. ▶

Problem 7 (Wheeden & Zygmund Ch. 8, Ex. 11). If $f_k \to f$ in L^p , $1 \le p < \infty$, $g_k \to g$ pointwise, and $||g_k||_{\infty} < M$ for all k, prove that $f_k g_k \to f g$ in L^p .

Solution. ▶

2 Danielli

2.1 Danielli: Practice Exams Spring 2016

2.1.1 Exam 1 Practice

Problem 1. Let $E \subseteq \mathbb{R}^n$ be a measurable set, $r \in \mathbb{R}$ and define the set $rE = \{rx : x \in E\}$. Prove that rE is measurable, and that $|rE| = |r|^n |E|$.

Solution. \blacktriangleright Define a map a linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ by T(x) = rx. Since a the image of a measurable set E under linear map is measurable and $m(T(E)) = |\det T| m(E) = |r|^n m(E)$, it suffices to show that T(E) = rE.

Let $y \in T(E)$ then y = rx for some $x \in E$. Thus, $y \in rE$. Let $y \in rE$. Then, y = rx = T(x) for some $x \in E$. Thus, $y \in T(E)$. It follows that $m(rE) = |r|^n m(E)$.

Problem 2. Let $\{E_n\}$, $n \in \mathbb{N}$ be a collection of measurable sets. Define the set

$$\liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right).$$

Show that

$$m\left(\liminf_{n\to\infty} E_n\right) \le \liminf_{n\to\infty} m(E_n).$$

Solution. \blacktriangleright Here's a quick and dirty way of proving this: let $\mathbf{1}_{E_n}$ be the characteristic function of E_n . Then, by Fatou's lemma,

$$\int \liminf_{n \to \infty} \mathbf{1}_{E_n}(x) \, \mathrm{d}x \le \liminf_{n \to \infty} \int \mathbf{1}_{E_n}(x) \, \mathrm{d}x. \tag{1}$$

By definition of the characteristic function, it is easy to see that the right hand-side of the Equation (1) is

$$\liminf_{k\to\infty} m(E_k).$$

But what about the left-hand side of (1)? We claim that

$$\liminf_{n\to\infty}\mathbf{1}_{E_n}=\mathbf{1}_E$$

where $E = \lim \inf_{n \to \infty} E_n$.

Proof of claim. Suppose $x \in E$. We must show that $\liminf_{n\to\infty} \mathbf{1}_{E_n}(x) = 1$. By definition

$$\liminf_{n\to\infty} \mathbf{1}_{E_n} = \lim_{n\to\infty} \left[\inf_{k\geq n} \mathbf{1}_{E_k} \right].$$

Now $x \in E$ if and only if $x \in \bigcap_{k=N}^{\infty} E_k$ for some $N \in \mathbb{N}$. Then for $k \geq N$

$$\inf_{k \ge n} \mathbf{1}_{E_k}(x) = 1$$

so $\liminf_{n\to\infty} \mathbf{1}_{E_n}(x) = 1$.

On the other hand, if $x \notin E$ then $x \notin \bigcap_{k=n}^{\infty} E_k$ for all $n \in \mathbb{N}$. Thus, for all $n \in \mathbb{N}$,

$$\inf_{k \ge n} \mathbf{1}_{E_k}(x) = 0$$

so $\liminf_{n\to\infty} \mathbf{1}_{E_k} = 0$.

Having established this equivalence, we have

$$m\left(\liminf_{n\to\infty} E_n\right) = \int \liminf_{n\to\infty} \mathbf{1}_{E_n}(x) \, \mathrm{d}x \le \liminf_{n\to\infty} \int \mathbf{1}_{E_n}(x) \, \mathrm{d}x = \liminf_{n\to\infty} m(E_n).$$

Problem 3. Consider the function

$$F(x) = \begin{cases} m(B(\mathbf{0}, x)) & x > 0, \\ 0 & x = 0. \end{cases}$$

Here $B(\mathbf{0},r) = \{ y \in \mathbb{R}^n : |y| < r \}$. Prove that F is monotonic increasing and continuous.

Solution. \blacktriangleright Let $T: \mathbb{R}^n \times [0,x) \to \mathbb{R}^n$ be the linear map given by T(x,r) = rx. By Problem 1, we know that $T(B(\mathbf{0},1),r) = B(\mathbf{0},r)$ and consequently, $m(B(\mathbf{0},1)) = |r|^n m(B(\mathbf{0},1))$. Interpreting $B(\mathbf{0},0) = \emptyset$, we have $F(x) = |r|^n m(B(\mathbf{0},1))$ and it is easy to see that F is both monotonically increasing and continuous since it is a polynomial in r.

Problem 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Let C be the set of all points at which f is continuous. Show that C is a set of type G_{δ} .

Solution. \blacktriangleright Let C be the subset of \mathbb{R} where f is continuous, i.e., the set

 $C = \{ x \in \mathbb{R} : \text{given } \varepsilon > 0 \text{ there exist } \delta > 0 \text{ such that } |f(x) - f(y)| < \varepsilon \text{ whenever } |x - y| < \delta \}.$

In light of the latter equality, for each $n \in \mathbb{N}$ define the following family of subsets of C,

$$G_n = \left\{ x \in \mathbb{R} : \text{there exists } \delta_n > 0 \text{ such that } |f(x) - f(y)| < \frac{1}{n} \text{ whenever } |x - y| < \delta_n \right\}.$$

We claim that (i) the G_n are open and (ii) $C = \bigcap_{n \in \mathbb{N}} G_n$.

The proof of (i) is easy: let $x \in G_n$ then there exists $\delta_n > 0$ such that

$$|f(x) - f(y)| < \frac{1}{n}.$$

Then $B(x, \delta_n) \subseteq G_n$ since $x' \in B(x, \delta_n)$ implies that $|x - x'| < \delta$ so

$$|f(x) - f(x')| < \frac{1}{n}$$
.

The proof of (ii) is also straight forward: let $x \in C$ then given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \varepsilon$$

whenever $|x-y| < \delta$. In particular, if $\varepsilon = 1/n$ then there exists δ_n such that $|x-y| < \delta_n$ implies

$$|f(x) - f(y)| < \frac{1}{n}$$

for ever $n \in \mathbb{N}$. Thus, $x \in \bigcap_{n \in \mathbb{N}} G_n$. On the other hand, if $x \in \bigcap_{n i \in \mathbb{N}} G_n$, then $x \in G_n$ for all $n \in \mathbb{N}$. Thus, given $\varepsilon > 0$, by the Archimedean property of the real numbers, there exists a positive integer N such that $1/N < \varepsilon$ and hence for $\delta = \delta_N > 0$ we have

$$|f(x) - f(y)| < \frac{1}{N}$$

whenever $|x - y| < \delta_N$. Thus, $x \in C$.

It follows that $C = \bigcap_{n \in \mathbb{N}} G_n$ and hence is a G_{δ} set.

Problem 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Is it true that if the sets $\{f = r\}$ are measurable for all $r \in \mathbb{R}$, then f is measurable?

Solution. \blacktriangleright The statement is false and, of course, the counterexample involves existence of non-measurable sets. Let $V \subseteq [0,1]$ be a Vitali set and consider the function $f : \mathbb{R} \to \mathbb{R}$ given by the rule

$$f(x) = \begin{cases} x & \text{if } x \in V, \\ -x & \text{if } x \in \mathbb{R} \setminus V. \end{cases}$$

Then, $\{f = r\}$ is measurable for all $r \in \mathbb{R}$ since the set either consists of a single point or is the empty set. However, $\{f \ge 0\} = V$ is not measurable.

Problem 6. Let $\{f_k\}$ be a sequence of measurable functions on \mathbb{R} . Prove that the set

$$\left\{ x: \lim_{k \to \infty} f_k(x) \text{ exists} \right\}$$

is measurable.

Solution. \blacktriangleright Suppose $\{f_n\}$, $n \in \mathbb{N}$, is a sequence of measurable functions and let

$$E = \Big\{ x : \lim_{n \to \infty} f_n(x) \text{ exists } \Big\}.$$

Then, by general properties of the limit supremum and the limit infimum, we know that $\lim_{n\to\infty} f_n(x)$ exists if and only if

$$\limsup_{n \to \infty} f_n(x) = \liminf_{n \to \infty} f_n(x).$$

Both of these functions are measurable so the set

$$E = \left\{ x : \limsup_{n \to \infty} f_n(x) = \liminf_{n \to \infty} f_n(x) \right\}.$$

is measurable.

Problem 7. A real valued function f on an interval [a,b] is said to be absolutely continuous if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every finite disjoint collection $\{(a_k,b_k)\}_{k=1}^N$ of open intervals in (a,b) satisfying $\sum_{k=1}^N b_k - a_k < \delta$, one has $\sum_{k=1}^N |f(b_k) - f(a_k)| < \varepsilon$. Show that an absolutely continuous function on [a,b] is of bounded variation on [a,b].

Solution. \blacktriangleright Let $\varepsilon = 1$ then, since $f : [a, b] \to \mathbb{R}$ is absolutely continuous, there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $y - x < \delta$ (assuming x < y). Partition the closed interval [a, b] into subintervals $\{[a_n, b_n] : 1 \le n \le N\}$ of length less than or equal to δ . Then

$$\operatorname{var}(f; [a_n, b_n]) \le 1.$$

Thus,

$$var(f; [a, b]) \leq N$$

for every partition Γ of [a, b].

Problem 8. Let f be a continuous function from [a,b] into \mathbb{R} . Let $\mathbf{1}_{\{c\}}$ be the characteristic function of a singleton $\{c\}$, that is, $\mathbf{1}_{\{c\}}(x) = 0$ if $x \neq c$ and $\mathbf{1}_{\{c\}}(c) = 1$. Show that

$$\int_{a}^{b} f d \mathbf{1}_{\{c\}} = \begin{cases} 0 & \text{if } c \in (a, b), \\ -f(a) & \text{if } c = a, \\ f(b) & \text{if } c = b. \end{cases}$$

Solution. \blacktriangleright There are three cases to consider (1) $c \in (a,b)$, (2) c=a and (3) c=b. Cases (2) and (3) can be handled easily: if c=a then the Rieman–Stieltjes integral of f with respect to $\mathbf{1}_{\{c\}}$ is the supremum over all sums

$$\sum_{n=1}^{N} f(\xi_n) \big[\mathbf{1}_{\{c\}}(x_n) - \mathbf{1}_{\{c\}}(x_{n-1}) \big]$$

where $x_0 = a$ and $x_N = b$ for all partitions $\Gamma = \{x_0, \dots, x_N\}$ of [a, b]. Thus, the sum

$$\sum_{n=1}^{N} f(\xi_n) \left[\mathbf{1}_{\{c\}}(x_n) - \mathbf{1}_{\{c\}}(x_{n-1}) \right] = \begin{cases} -f(\xi_0) & \text{if } c = a, \\ f(\xi_N) & \text{if } c = b. \end{cases}$$

Letting $\Delta(\Gamma) \to 0$, $\xi_0 \to a$ and $\xi_N \to b$ giving us

$$\int_{a}^{b} f \, \mathrm{d} \mathbf{1}_{\{c\}} = \begin{cases} -f(a) & \text{if } c = a, \\ f(b) & \text{if } c = b. \end{cases}$$

It remains to show that

$$\int_a^b f \, \mathrm{d} \, \mathbf{1}_{\{c\}} = 0$$

if $c \in (a, b)$. To that end, note that if Γ_c is a partition containing the point c, say, $x_m = c$ for some $1 \le m \le N$, the partial sums yield

$$\sum_{n=1}^{N} f(\xi_n) \left[\mathbf{1}_{\{c\}}(x_n) - \mathbf{1}_{\{c\}}(x_{n-1}) \right] = f(\xi_{m+1}) - f(\xi_m).$$

Letting $\Delta(\Gamma_c) \to 0$, since f is continuous, $f(\xi_{m+1}) \to f(\xi_m)$. Thus,

$$\int_a^b f \, \mathrm{d} \, \mathbf{1}_{\{c\}} = 0.$$

2.1.2 Exam 1

I lost this exam. These are the questions I could recall explicitly. For the first problem, we were asked to show that the Dichlet function $\mathbf{1}_{\mathbb{Q}}(x)$ is not Riemann integrable and prove something about \mathbb{Q} . For the second question, we were asked to show that the measure of countable union of disjoint measurable sets $\{E_n : n \in \mathbb{N}\}$, is equal to the sum of their individual measures (or something to that effect).

Problem 1.

Problem 2.

Problem 3.

- (i) Show that if $B_r = \{ x \in \mathbb{R}^n : |x| < r \}$, then there exists a constant C such that $|B_r| = Cr^n$. (*Hint*: Think of B_r as $\{ rx : x \in B_1 \}$.)
- (ii) Let $E \subseteq \mathbb{R}^n$ be a measurable set and let $\varphi_E \colon \mathbb{R}^n \to \mathbb{R}$ be defined $\varphi_E(x) = m(E \cap B_{|x|})$. Use part (i) to prove that φ_E is continuous.

Solution. For part (i), as in the practice problems, define the linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ by T(x) = rx. Note that this map is Lipschitz so the image of a measurable set E under T is measurable and $m(T(E)) = |\det T| m(E) = |r|^n m(E)$. It is not too difficult to see that

$$T(B_1) = B_r$$

as sets, so $m(B_r) = |r|^n m(B_1)$. Now, let $C = m(B_1)$.

For part (ii), note that for any $|x|, |y| \in \mathbb{R}$, by part (i), we have

$$|\varphi_E(x) - \varphi_E(y)| \le |C|x| - C|y|$$

= $C||x| - |y||$.

In particular, given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\left||x| - |y|\right| < \frac{\varepsilon}{C}.$$

Thus,

$$|\varphi_E(x) - \varphi_E(y)| \le C\left(\frac{\varepsilon}{C}\right)$$

= ε

and φ_E is continuous.

Problem 4. Assume that $f:[a,b]\to\mathbb{R}$ is of bounded variation on [a,b]. Prove that f is measurable.

Solution. \blacktriangleright Suppose that $f : [a, b] \to \mathbb{R}$ is b.v. on [a, b]. Then f, by Jordan's theorem, f = g - h where g and h are monotone increasing functions. Since monotone functions are a.e. continuous, g and h are measurable functions. Thus, f is measurable.

2.1.3 Exam 2 Practice Problems

Problem 1. Define for $x \in \mathbb{R}^n$,

$$f(x) = \begin{cases} |x|^{-(n+1)} & \text{if } x \neq \mathbf{0}, \\ 0 & \text{if } x = \mathbf{0}. \end{cases}$$

Prove that f is integrable outside any ball $B(\mathbf{0}, \varepsilon)$, and that there exists a constant C > 0 such that

$$\int_{\mathbb{R}^n \setminus B(\mathbf{0}, \varepsilon)} f(x) \, \mathrm{d}x \le \frac{C}{\varepsilon}.$$

Solution. ightharpoonup First, note that, given $\varepsilon > 0$, $f(x) \neq 0$ for any $x \in \mathbb{R}^n \setminus B_r(\mathbf{0})$. Now, define the map $\Phi \colon \mathbb{R}^n \setminus \{\mathbf{0}\} \to (0,\infty) \times S^{n-1}$ by the rule $\Phi(x) = (\|x\|, x/\|x\|)$. This map is smooth with a smooth inverse $\Phi^{-1}(r,y) = ry$ and Jacobian $\partial(x_1,\ldots,x_n)/\partial(r,x)(\Phi) = \mathbf{0}$

Problem 2. Let $\{f_k\}$ be a sequence of nonnegative measurable functions on \mathbb{R}^n , and assume that f_k converges pointwise almost everywhere to a function f. If

$$\int_{\mathbb{R}^n} f = \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k < \infty,$$

show that

$$\int_{E} f = \lim_{k \to \infty} \int_{E} f_{k}$$

for all measurable subsets E of \mathbb{R}^n . Moreover, show that this is not necessarily true if $\int_{\mathbb{R}^n} f = \lim_{k \to \infty} f_k = \infty$.

Solution. ▶

Problem 3. Assume that E is a measurable set of \mathbb{R}^n , with $|E| < \infty$. Prove that a nonnegative function f defined on E is integrable if and only if

$$\sum_{k=0}^{\infty} |\{x \in E : f(x) \ge k\}| < \infty.$$

Solution. ▶

Problem 4. Suppose that E is a measurable subset of \mathbb{R}^n , with $|E| < \infty$. If f and g are measurable functions on E, define

$$\rho(f,g) = \int_{E} \frac{|f-g|}{1+|f-g|}.$$

Prove that $\rho(f_k, f) \to 0$ as $k \to \infty$ if and only if f_k converges to f as $k \to \infty$.

Solution. ▶

Problem 5. Define the gamma function $\Gamma \colon \mathbb{R}^+ \to \mathbb{R}$ by

$$\Gamma(y) = \int_0^\infty e^{-u} u^{y-1} \, \mathrm{d}u,$$

and the beta function $\beta \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

- (a) Prove that the definition of the gamma function is well-posed, i.e., the function $u \mapsto e^{-u}u^{y-1}$ is in $L(\mathbb{R}^+)$ for all $y \in \mathbb{R}^+$.
- (b) Show that

$$\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Solution. ▶

Problem 6. Let $f \in L(\mathbb{R}^n)$ and for $\mathbf{h} \in \mathbb{R}^n$ define $f_{\mathbf{h}} \colon \mathbb{R}^n \to \mathbb{R}$ be $f_{\mathbf{h}}(x) = f(x - \mathbf{h})$. Prove that

$$\lim_{\mathbf{h}\to\mathbf{0}} \int_{\mathbb{R}^n} |f_{\mathbf{h}} - f| = 0.$$

Solution. ▶

Problem 7. (a) If $f_k, g_k, f, g \in L(\mathbb{R}^n)$, $f_k \to f$ and $g_k \to g$ a.e. in \mathbb{R}^n , $|f_k| \leq g_k$ and

$$\int_{\mathbb{R}^n} g_k \longrightarrow \int_{\mathbb{R}^n} g,$$

prove that

$$\int_{\mathbb{R}^n} f_k \longrightarrow \int_{\mathbb{R}^n} f.$$

(b) Using part (a) show that if $f_k, f \in L(\mathbb{R}^n)$ and $f_k \to f$ a.e. in \mathbb{R}^n , then

$$\int_{\mathbb{R}^n} |f_k - f| \longrightarrow 0 \quad \text{as } k \to \infty$$

if and only if

$$\int_{\mathbb{R}^n} |f_k| \longrightarrow \int_{\mathbb{R}^n} |f| \qquad \text{as } k \to \infty.$$

2.1.4 Exam 2 (2010)

Problem 1. Suppose $f \in L^1(\mathbb{R}^n)$. Show that for every $\varepsilon > 0$ there exists a ball B, centered at the origin, such that

$$\int_{\mathbb{R}^n \setminus B} |f| < \varepsilon.$$

Hint: Use the monotone convergence theorem.

Solution. ▶

Problem 2.

(a) Prove the following generalization of Chebyshev's inequality: Let $0 and <math>E \subseteq \mathbb{R}^n$ be measurable. assume that $|f|^p \in L^1(E)$. Then

$$|\{x \in E : f(x) > \alpha\}| \le \frac{1}{\alpha^p} \int_{\{f > \alpha\}} f^p,$$

for $\alpha > 0$.

(b) Let p, E, and f be as in part (a). In addition, assume that $\{f_k\}$ is a sequence such that $\int_E |f_k - f|^p \to 0$ as $k \to \infty$. Show that $f_k \to f$ in measure on E.

Recall that $f_k \to f$ in measure on E if and only if for every $\varepsilon > 0$

$$\lim_{k \to \infty} |\{x \in E : |f_k(x) - f(x)| > \varepsilon\}| = 0.$$

Solution. ▶

Problem 3. Let $f \in L^1(\mathbb{R})$, and define

$$F(\xi) = \int_{\mathbb{D}} f(x) \cos(2\pi x \xi) \, \mathrm{d}x.$$

Prove that F is continuous and bounded on \mathbb{R} .

Solution. ▶

Problem 4. Use repeated integration techniques to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} \, \mathrm{d}x = \pi^{n/2}.$$

Hint: Start from the case n=1 by using the polar coordinates in

$$\left[\int_{\mathbb{R}} e^{-x^2} dx \right]^2 = \left[\int_{\mathbb{R}} e^{-x^2} dx \right] \left[\int_{\mathbb{R}} e^{-x^2} dy \right]$$

Solution. ▶	4
Problem 5.	
Solution. ▶	▲

2.1.5 Exam 2

Problem 1. Assume that $f \in L(\mathbb{R}^n)$. Show that for every $\varepsilon > 0$ there exists a ball B, centered at the origin, such that

$$\int_{\mathbb{R}^n \setminus B} |f| < \varepsilon.$$

Solution. ▶

Problem 2. Let $f \in L(E)$, and let $\{E_j\}$ be a countable collection of pairwise disjoint measurable subsets of E, such that $E = \bigcup_{j=1}^{\infty} E_j$. Prove that

$$\int_{E} f = \sum_{j=1}^{\infty} \int_{E_j} f.$$

Solution. ▶

Problem 3. Let $\{f_k\}$ be a family in L(E) satisfying the following property: For any $\varepsilon > 0$ there exits $\delta > 0$ such that $|A| < \delta$ implies

$$\int_{A} |f_k| < \varepsilon$$

for all $k \in \mathbb{N}$. Assume $|E| < \infty$, and $f_k(x) \to f(x)$ as $k \to \infty$ for a.e. $x \in E$. Show that

$$\lim_{k \to \infty} \int_E f_k = \int_E f.$$

(*Hint:* Use Egorov's theorem.)

Solution. ▶

Problem 4. Let $I = [0,1], f \in L(I)$, and define $g(x) = \int_x^1 t^{-1} f(t) dt$ for $x \in I$. Prove that $g \in L(I)$ and

$$\int_{I} g = \int_{I} f.$$

2.1.6 Final Exam Practice Problems

Problem 1. Suppose $f \in L^1(\mathbb{R}^n)$ and that x is a point in the Lebesgue set of f. For r > 0, let

$$A(r) = \frac{1}{|r|^n} \int_{B(0,r)} |f(x-y) - f(x)| \, \mathrm{d}y.$$

Show that:

- (a) A(r) is a continuous function of r, and $A(r) \to 0$ as $r \to 0$;
- (b) there exists a constant M > 0 such that $A(r) \leq M$ for all r > 0.

Solution. \blacktriangleright (a) Without loss of generality, we may assume r < s. Then, we want to show that as $r \to s$, the quantity

$$|A(s) - A(r)| \longrightarrow 0.$$

Set F(y) = |f(x - y) - f(x)| and consider said quantity

$$\begin{split} |A(s) - A(r)| &= \left| \frac{1}{|s|^n} \int_{B_s} F(y) \, \mathrm{d}y - \frac{1}{|r|^n} \int_{B_r} F(y) \, \mathrm{d}y \right| \\ &= \left| \frac{1}{|s|^n} \int_{B_s \smallsetminus B_r} F(y) \, \mathrm{d}y + \frac{1}{|s|^n} \int_{B_r} F(y) \, \mathrm{d}y - \frac{1}{|r|^n} \int_{B_r} F(y) \, \mathrm{d}y \right| \\ &= \left| \frac{1}{|s|^n} \int_{B_s \smallsetminus B_r} F(y) \, \mathrm{d}y + \left(\frac{1}{|s|^n} - \frac{1}{|r|^n} \right) \int_{B_r} F(y) \, \mathrm{d}y \right| \\ &\leq \underbrace{\frac{1}{|s|^n} \int_{B_s \smallsetminus B_r} F(y) \, \mathrm{d}y}_{L} + \underbrace{\left(\frac{1}{|s|^n} - \frac{1}{|r|^n} \right) \int_{B_r} F(y) \, \mathrm{d}y}_{L}. \end{split}$$

Hence, we must show that the quantities $I_1, I_2 \to 0$ as $r \to s$.

To see that $A(r) \to 0$ as $r \to 0$, note that x is a point of the Lebesgue set of f and that

$$0 = \lim_{B_r \searrow x} \frac{1}{|B_1||r|^n} \int_{B_r} |f(y) - f(x)| \, \mathrm{d}y = \frac{1}{|B_1|} \lim_{B_r \searrow x} \frac{1}{|r|^n} \int_{B_r} |f(t) - f(x)| \, \mathrm{d}t = \lim_{r \to 0} A(r).$$

by making the change of variables t = x - y.

Problem 2. Let $E \subseteq \mathbb{R}^n$ be a measurable set, $1 \le n < \infty$. Assume $\{f_k\}$ is a sequence in $L^p(E)$ converging pointwise a.e. on E to a function $f \in L^p(E)$. Prove that

$$||f_k - f||_p \longrightarrow 0$$

if and only if

$$||f_k||_p \longrightarrow ||f||_p$$

as $k \to \infty$.

Solution. ▶

Problem 3. Let 1 .

- (a) Prove that $f * g \in C(\mathbb{R}^n)$.
- (b) Does this conclusion continue to be valid when p=1 and $p=\infty$?

Solution. ▶

Problem 4. Let $f \in L(\mathbb{R})$, and let $F(t) = \int_{\mathbb{R}} f(x) \cos(tx) dx$.

- (a) Prove that F(t) is continuous for $t \in \mathbb{R}$.
- (b) Prove the following Riemann-Lebesgue lemma:

$$\lim_{t \to \infty} F(t) = 0.$$

Solution. ▶

Problem 5. Let f be of bounded variation on $[a,b], -\infty < a < b < \infty$. If f=g+h, with g absolutely continuous and h singular. Show that

$$\int_a^b \varphi \, \mathrm{d}f = \int_a^b \varphi f' dx + \int_a^b \varphi \, \mathrm{d}h$$

for all functions φ continuous on [a, b].

2.1.7 Final Exam 2010

Problem 1. Suppose that $f \in L^1(\mathbb{R}^n)$, and that x is a point in the Lebesgue set of f. For r > 0, let

$$A(r) = \frac{1}{r^n} \int_{B_r} |f(x-y) - f(x)| \, dy,$$

where $B_r = B(\mathbf{0}, r)$.

Show that

- (a) A(r) is a continuous function of r, and $A(r) \to 0$ as $r \to 0$.
- (b) There exists a constant M > 0 such that $A(r) \leq M$ for all r > 0.

Solution. ▶ (a)

Problem 2. Let $E \subseteq \mathbb{R}^n$ be a measurable set, $1 \le p < \infty$. assume that $\{f_k\}$ is a sequence in $L^p(E)$ converging pointwise a.e. on E to a function $f \in L^p(E)$. Prove that

$$||f_k - f||_p \longrightarrow 0 \iff ||f_k||_p \longrightarrow ||f||_p$$

Hint: To prove one of the implications, you can use the following fact without proving it:

$$\left| \frac{a-b}{2} \right| \le \frac{|a|^p + |b|^p}{2}$$

for all $a, b \in \mathbb{R}$.

Solution. ▶

Problem 3. Let $0 , <math>E \subseteq \mathbb{R}^n$ be a measurable set. Show that each $f \in L^q(E)$ is the sum of a function $g \in L^p(E)$ and a function $h \in L^r(E)$.

Problem 4. Prove that $f: [a, b] \to \mathbb{R}$ is Lipschitz continuous if and only if f is absolutely continuous and there exists a constant M > 0 such that |f'| < M a.e. on [a, b].

Problem 5. Let $1 , <math>f \in L^p(\mathbb{R}^n)$, $g \in L^{p'}(\mathbb{R}^n)$.

- (a) Prove that $f * g \in C(\mathbb{R}^n)$.
- (b) Does this conclusion continue to be valid when p = 1 or $p = \infty$?.

2.1.8 Final Exam

Never went to get it.

Problem 1.

Problem 2.

Problem 3.

Problem 4.

2.2 Danielli: Summer 2011

Problem 1. Let $f \in L^1(\mathbb{R})$, and let $\hat{f}(x) = \int_{\mathbb{R}} f(t) \cos(xt) dt$.

- (a) Prove that $\hat{f}(x)$ is continuous for $x \in \mathbb{R}$.
- (b) Prove the following Riemman-Lebesgue lemma:

$$\lim_{x \to \infty} \hat{f}(x) = 0.$$

Hint: Start by proving the statement for $f = \mathbf{1}_{[a,b]}$.

Solution. \blacktriangleright For part (a): let $\varepsilon > 0$ be given. Then, since $\cos(xt)$ is continuous there exists $\delta' > 0$ such that $|x - y| < \delta$ implies

$$|\cos(xt) - \cos(yt)| < \frac{\varepsilon}{\|f\|_1}$$

Now, let $\delta = \delta'$. Then we have

$$|\hat{f}(x) - \hat{f}(y)| = \left| \int_{\mathbb{R}} f(t) \cos(xt) dt - \int_{\mathbb{R}} f(t) \cos(yt) dt \right|$$

$$\leq \int_{\mathbb{R}} |f(t)| |\cos(xt) - \cos(yt)| dt$$

$$< \frac{\varepsilon}{\|f\|_1} \int_{\mathbb{R}} |f(t)| dt$$

$$= \frac{\varepsilon}{\|f\|_1} \|f\|_1$$

$$= \varepsilon.$$

Since this can be done for any $x \in \mathbb{R}$, \hat{f} is continuous on \mathbb{R} .

For part (b): since simple functions are dense in $L^1(\mathbb{R})$, f there exists a sequence of simple functions $\{s_n\}$, $n \in \mathbb{N}$, such that $\int_{\mathbb{R}} s_n \to ||f||_1$. Therefore, it suffices to prove the result for characteristic functions. Let $f = \mathbf{1}_{[a,b]}$ and consider the limit

$$\lim_{x \to \infty} \hat{f}(x) = \lim_{x \to \infty} \int_{\mathbb{R}} f(t) \cos(xt) dt.$$

Since $f = \mathbf{1}_{[a,b]}$, we have

$$\lim_{x \to \infty} \int_{\mathbb{R}} f(t) \cos(xt) dt = \lim_{x \to \infty} \int_{a}^{b} \cos(xt) dt$$

$$= \lim_{x \to \infty} \left[\frac{1}{x} (\sin(xa) - \sin(xb)) \right]$$

$$= \lim_{x \to \infty} \left[\frac{\sin(xa)}{x} - \frac{\sin(xb)}{x} \right]$$

$$= \left[\lim_{x \to \infty} \frac{\sin(xa)}{x} \right] - \left[\lim_{x \to \infty} \frac{\sin(xb)}{x} \right]$$

$$= 1 - 1$$

$$= 0,$$

as we set out to show.

Problem 2.

(a) Suppose that $f_k, f \in L^2(E)$, with E a measurable set, and that

$$\int_{E} f_{k}g \longrightarrow \int_{E} fg \tag{\star}$$

as $k \to \infty$ for all $g \in L^2(E)$. If, in addition, $||f_k||_2 \to ||f||_2$ show that f_k converges to f in L^2 , i.e., that

$$\int_{E} |f - f_k|^2 \longrightarrow 0$$

as $k \to \infty$.

(b) Provide an example of a sequence f_k in L^2 and a function f in L^2 satisfying (\bigstar) , but such that f_k does *not* converge to f in L^2 .

Solution. ▶ For part (a): expand the limit

$$\lim_{n \to \infty} \int_{E} |f - f_{n}|^{2} dx = \lim_{n \to \infty} \left[\int_{E} (|f|^{2} - 2|ff_{n}| + |f|_{n}^{2}) dx \right]$$

$$= \lim_{n \to \infty} \left[||f_{n}||_{2} + ||f||_{2} - 2 \int_{E} f_{n} f dx \right]$$

$$= \lim_{n \to \infty} ||f_{n}||_{2} + \lim_{n \to \infty} ||f||_{2} - 2 \lim_{n \to \infty} \int_{E} f_{n} f dx.$$
(1)

Since

$$\int_{E} f_{n}g \, \mathrm{d}x \longrightarrow \int_{E} fg \, \mathrm{d}x$$

for every $g \in L^p(E)$,

$$\int_E f_n f \, \mathrm{d}x \longrightarrow \int_E f^2 \, \mathrm{d}x = \|f\|_2^2.$$

Moreover, $||f_n||_2 \to ||f||_2$ so the limit in (1) converges to

$$\lim_{n \to \infty} \|f_n\|_2 + \lim_{n \to \infty} \|f\|_2 - 2\lim_{n \to \infty} \int_E f_n f \, \mathrm{d}x = \|f\|_2 + \|f\|_2 - 2\|f\|_2 = 0$$

as $n \to \infty$

For part (b), consider the sequence $\{f_n\}$, $n \in \mathbb{N}$, where $f_n(x) = \log(n) \exp(-nx)$. Then, we

claim that $f_n \xrightarrow{L^2[0,1]} 0$, but that $f_n \to 0$ pointwise. To see the former, first note that

$$\lim_{n \to \infty} \left[\int_0^1 f_n(x) \, \mathrm{d}x \right] = \lim_{n \to \infty} \left[\int_0^1 \log(n) \exp(-nx) \, \mathrm{d}x \right]$$

$$= \lim_{n \to \infty} \left[\log(n) \exp(-nx) \Big|_0^1 \right]$$

$$= \lim_{n \to \infty} \left[\frac{1}{n} \log(n) - \frac{1}{n} \log(n) \exp(-n) \right]$$

$$= \lim_{n \to \infty} \left[\left(\frac{1 - \exp(-n)}{n} \right) \log(n) \right]$$

$$= 0.$$

However, f_n does not converge to 0 a.e. since, for x=0 there exist no $N \in \mathbb{N}$ such that

$$|\log(n)| < 1.$$

for all $n \geq N$.

Problem 3. A bounded function f is said to be of bounded variation on \mathbb{R} if it is of bounded variation on any finite subinterval [a,b], and moreover $A := \sup_{a,b} V[a,b;f] < \infty$. Here, V[a,b;f] denotes the total variation of f over the interval [a,b]. Show that:

(a)
$$\int_{\mathbb{R}} |f(x+h) - f(x)| dx \le A|h|$$
 for all $h \in \mathbb{R}$.

Hint: For h > 0, write

$$\int_{\mathbb{R}} |f(x+h) - f(x)| \, \mathrm{d}x = \sum_{n = -\infty}^{\infty} \int_{nh}^{(n+1)h} |f(x+h) - f(x)| \, \mathrm{d}x.$$

(b) $\left| \int_{\mathbb{R}} f(x) \varphi'(x) \, \mathrm{d}x \right| \leq A$, where φ is any function of class C^1 , of bounded variation, compactly supported, with $\sup_{x \in \mathbb{R}} |\varphi(x)| \leq 1$.

Solution. \blacktriangleright For part (a), it suffices to consider only positive h as, making the change of variables u = x + h yields

$$\int_{\mathbb{R}} |f(u) - f(u - h)| \, du = \int_{\mathbb{R}} |f(u + (-h)) - f(u)| \, du$$

where -h is positive (and letting h = 0, we have a trivial inequality). Now, taking the hint, write

$$\int_{\mathbb{R}} |f(x+h) - f(x)| \, \mathrm{d}x = \sum_{n=-\infty}^{\infty} \int_{nh}^{(n+1)h} |f(x+h) - f(x)| \, \mathrm{d}x.$$

Now, since |f((n+1)h) - f(nh)| is a sum in the total variation of f on the interval [nh, (n+1)h], |f(x+h) - f(x)| is bounded by V[nh, (n+2)h; f]. Thus, we have

$$\int_{\mathbb{R}} |f(x+h) - f(x)| \, \mathrm{d}x = \sum_{n = -\infty}^{\infty} \int_{nh}^{(n+1)h} |f(x+h) - f(x)| \, \mathrm{d}x$$

$$\leq \sum_{n = -\infty}^{\infty} \int_{nh}^{(n+1)h} V[nh, (n+2)h; f] \, \mathrm{d}x$$

$$= \sum_{n = -\infty}^{\infty} V[nh, (n+2)h; f] \int_{nh}^{(n+1)h} \, \mathrm{d}x$$

$$= \sum_{n = -\infty}^{\infty} V[nh, (n+2)h; f] |h|$$

$$= 2A|h|.$$

I suspect there is an error here as the most obvious bound we can get is 2A|h| and not the stricter A|h|.

For part (b), f is absolutely continuous since it is of bounded variation and φ is absolutely continuous since it is Lipschitz (φ is differentiable on a compact set, thus, by the mean value theorem $|\varphi(x) - \varphi(y)| \leq \varphi'(\xi)|x - y|$ for some $\xi \in \operatorname{Supp} \varphi$). Assuming $\operatorname{Supp} \varphi$ has nonempty interior, $\operatorname{Supp} \varphi$ contains a closed interval I = [a, b] (in fact, $\operatorname{Supp} \varphi$ is of the form $[a, b] \setminus \bigcup_{n \in A} I_n$, $A \subseteq \mathbb{N}$, where $I_n = (a_n, b_n)$ with $a_n, b_n \in \operatorname{Supp} \varphi$) and thus, by integration by parts, we have

$$\int_{a}^{b} f\varphi' \, dx = f(b)\varphi(b) - f(a)\varphi(a) - \int_{a}^{b} f'\varphi \, dx$$

$$\leq f(b) - f(a) - \int_{a}^{b} f' \, dx$$

$$= 2(f(b) - f(a))$$

$$\leq 2V[a, b; f]$$

Thus, summing over every

$$\sum_{n=0}^{\infty} \int_{a_n}^{b_n} f\varphi' \, \mathrm{d}x \le 2|A|.$$

Problem 4.

- (a) Prove the generalized Hölder's inequality: Assume $1 \leq p_j \leq \infty$, $j = 1, \ldots, n$, with $\sum_{j=1}^n 1/p_j = 1/r \leq 1$. If E is a measurable set and $f_j \in L^{p_j}(E)$ for $j = 1, \ldots, n$, then $\prod_{j=1}^n f_j \in L^r(E)$ and $\|f_1 \cdots f_n\|_r \leq \|f_1\|_{p_1} \cdots \|f_n\|_{p_n}$.
- (b) Use part (a) to show that that if $1 \le p, q, r \le \infty$, with 1/p + 1/q = 1/r + 1, $f \in L^p(\mathbb{R})$, and $g \in L^q(\mathbb{R})$, then

$$|(f * g)(x)|^r \le ||f||_p^{r-p} ||g||_q^{r-q} \int |f(y)|^p |g(x-y)|^q dy.$$

(Recall that $(f * g)(x) = \int f(y)g(x - y) dy$.)

(c) Prove Young's convolution theorem: Assume that p, q, r, f, and g are as in part (b). Then $f * g \in L^r(\mathbb{R})$ and

$$||f * g||_r \le ||f||_p ||g||_q$$

Solution. For (a) we shall proceed by induction on n the number of measurable functions $f_j \in L^{p_j}(E)$, $1 \le j \le n$. The case n = 2 holds by using Hölder's inequality on the exponents r/p + r/q = 1,

$$\left[\int_{E} |f_{1}f_{2}|^{r} \right]^{1/r} dx = \|f_{1}^{r} f_{2}^{r}\|_{1}$$

$$\leq \|f_{1}^{r}\|_{p/r} \|f_{2}^{r}\|_{q/r}$$

$$= \|f_{1}\|_{p} \|f_{2}\|_{q}.$$

Now, suppose this holds for n-1 measurable functions $f_j \in L^{p_j}(E)$, $1 \le j \le n-1$. Then for $f_j \in L^{p_j}(E)$ with $\sum_{j=1}^n 1/p_j = 1/r$, we have $r' = \sum_{j=1}^{n-1} 1/p_j = 1/r - 1/p_n$ so by the inductive step

$$||f_1 \cdots f_{n-1}||_{r'} \le ||f_1||_{p_1} \cdots ||f_{n-1}||_{p_{n-1}}$$

hence, $f_1 \cdots f_{n-1} \in L^{r'}(E)$. Thus,

$$||f_1 \cdots f_{n-1} f_n||_r \le ||f_1 \cdots f_{n-1}||_{r'} ||f_n||_{p_n}$$

$$\le ||f_1||_{p_1} \cdots ||f_{n-1}||_{p_{n-1}} ||f_n||_{p_n},$$

as we set out to show.

For part (b), applying the generalized Hölder's inequality we proved in part (a),

$$\begin{split} |f*g| &= \left| \int_{\mathbb{R}} f(y)g(x-y) \, \mathrm{d}y \right| \\ &\leq \int_{\mathbb{R}} |f(y)g(x-y)| \, \mathrm{d}y \\ &= \int_{\mathbb{R}} |f(y)|^{1+p/r-p/r} |g(x-y)|^{1+q/r-q/r} \, \mathrm{d}y \\ &= \int_{\mathbb{R}} |f(y)|^{p/r} |g(x)|^{q/r} |f(y)|^{1-p/r} |g(x-y)|^{1-q/r} \, \mathrm{d}y \\ &= \int_{\mathbb{R}} |f(y)|^{p/r} |g(x)|^{q/r} |f(y)|^{(r-p)/r} |g(x-y)|^{(r-q)/r} \, \mathrm{d}y \\ &= \int_{\mathbb{R}} \left(|f(y)|^p |g(x)|^q \right)^{1/r} |f(y)|^{(r-p)/r} |g(x-y)|^{(r-q)/r} \, \mathrm{d}y \\ &\leq \left\| \left(|f(y)|^p |g(x)|^q \right)^{1/r} \right\|_r \left\| |f(y)|^{(r-p)/r} \right\|_{pr/(r-p)} \left\| |g(x-y)|^{(r-q)/r} \right\|_{qr/(r-q)} \\ &= \|f\|_p^{(r-p)/r} \|g\|_q^{(r-q)/r} \left[\int_{\mathbb{R}} |f(y)|^p |g(x-y)|^q \, \mathrm{d}y \right]^{1/r} \, . \end{split}$$

Raising both sides to the power r, we have

$$|(f * g)(x)|^r \le ||f||_p^{r-p} ||g||_q^{r-q} \int |f(y)|^p |g(x-y)|^q dy,$$

as desired.

For part (c), using the estimate we worked out in part (b) together with Tonelli's theorem, we have

$$\begin{split} \|f * g\|_r^r &= \int_{\mathbb{R}} |f * g(x)|^r \, \mathrm{d}x \\ &\leq \int_{\mathbb{R}} \left[\|f\|_p^{r-p} \|g\|_q^{r-q} \int_{\mathbb{R}} |f(y)|^p |g(x-y)|^q \, \mathrm{d}y \right] \\ &= \|f\|_p^{r-p} \|g\|_q^{r-q} \iint_{\mathbb{R} \times \mathbb{R}} |f(y)|^p |g(x-y)|^q \, \mathrm{d}y \\ &= \|f\|_p^{r-p} \|g\|_q^{r-q} \int_{\mathbb{R}} |f(y)|^p \left[\int_{\mathbb{R}} |g(x-y)|^q \, \mathrm{d}y \right] \mathrm{d}x \\ &\leq \|f\|_p^{r-p} \|g\|_q^{r-q} \|f\|_p^p \|g_q\|^q \\ &= \|f\|_p^r \|g\|_q^r. \end{split}$$

Taking the rth root on each side, we achieve the desired estimate

$$||f * g||_r \le ||f||_p ||g||_q$$
.

2.3 Danielli: Winter 2012

Problem 1. Let f(x,y), $0 \le x,y \le 1$, satisfy the following conditions: for each x, f(x,y) is an integrable function of y, and $\partial f(x,y)/\partial x$ is a bounded function of (x,y). Prove that $\partial f(x,y)/\partial x$ is a measurable function of y for each x and

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^1 f(x,y) \, \mathrm{d}y = \int_0^1 \frac{\partial f(x,y)}{\partial x} \, \mathrm{d}y.$$

Solution. \blacktriangleright The end points can be dealt with separately. Fix a point $x_0 \in (0,1)$ and consider the sequence of measurable functions $\{f'_n\}$ where

$$f'_n(y) = \frac{f(x_0 + h_n, y) - f(x_0, y)}{h_n}$$

where $\{h_n\}$ is a sequence of numbers converging to 0. Since f is differentiable as a function of x, the sequence $\{f'_n(x_0, y)\}$ converges to $\partial f/\partial x(x_0, y)$. Now, since $|\partial f/\partial x(x, y)| \leq M$ for some $M \in \mathbb{R}^+$ for all $(x, y) \in [0, 1] \times [0, 1]$, by the bounded convergence theorem

$$\lim_{n \to \infty} \int_0^1 f'_n(y) \, \mathrm{d}y = \int_0^1 \lim_{n \to \infty} f'_n(y) \, \mathrm{d}y$$

$$= \int_0^1 \frac{\partial f(x_0, y)}{\partial x} \, \mathrm{d}y.$$
(1)

It remains to show that the left side of (1) is the derivative of the integral of $f(x_0, y)$ as a function of y. But this is exactly

$$\lim_{n \to \infty} \int_0^1 f'_n(y) \, dy = \lim_{n \to \infty} \int_0^1 \frac{f(x_0 + h_n, y) - f(x_0, y)}{h_n} dx$$
$$= \lim_{n \to \infty} \frac{\int_0^1 f(x_0 + h_n, y) - f(x_0, y)}{h_n} dx$$
$$= \frac{d}{dx} \int_0^1 f(x_0, y) \, dy.$$

It follows that for any $x \in [0, 1]$,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^1 f(x, y) \, \mathrm{d}y = \int_0^1 \frac{\partial f(x, y)}{\partial x} \, \mathrm{d}y$$

so $\partial f/\partial x(x,y)$ is a measurable function of y.

Problem 2. Let f be a function of bounded variation on [a, b], $-\infty < a < b < \infty$. If f = g + h, with g absolutely continuous and h singular, show that

$$\int_{a}^{b} \varphi \, \mathrm{d}f = \int_{a}^{b} \varphi f' \, \mathrm{d}x + \int_{a}^{b} \varphi \, \mathrm{d}h.$$

Hint: A function h is said to be singular if h' = 0.

Solution. ▶ Let

Problem 3. Let $E \subseteq \mathbb{R}$ be a measurable set, and let K be a measurable function on $E \times E$. Assume that there exists a positive constant C such that

$$\int_{E} K(x, y) \, \mathrm{d}x \le C \tag{*}$$

for a.e. $y \in E$, and

$$\int_{E} K(x,y) \, \mathrm{d}y \le C \tag{4}$$

for a.e. $x \in E$.

Let $1 , <math>f \in L^p(E)$, and define

$$T_f(x) = \int_E K(x, y) f(y) \, \mathrm{d}y.$$

(a) Prove that $T_f \in L^p(E)$ and

$$||T_f||_p \le C||f||_p. \tag{\spadesuit}$$

(b) Is (\spadesuit) still valid if p=1 or ∞ ? If so, are assumptions (\bigstar) and (\clubsuit) needed?

Problem 4. Let f be a nonnegative measurable function on [0,1] satisfying

$$m\{x \in [0,1]: f(x) > \alpha\} < \frac{1}{1+\alpha^2}$$
 (•)

for $\alpha > 0$.

- (a) Determine values of $p \in [1, \infty)$ for which $f \in L^p[0, 1]$.
- (b) If p_0 is the minimum value of p for which p may fail to be in L^p , give an example of a function which satisfies (\spadesuit) , but which is not in $L^{p_0}[0,1]$.

References

- [1] FOLLAND, G. Real analysis: modern techniques and their applications. Pure and applied mathematics. Wiley, 1984.
- [2] ROYDEN, H., AND FITZPATRICK, P. Real Analysis. Featured Titles for Real Analysis Series. Prentice Hall, 2010.
- [3] Rudin, W. Principles of Mathematical Analysis. International series in pure and applied mathematics. McGraw-Hill, 1976.
- [4] Wheeden, R., and Zygmund, A. Measure and Integral: An Introduction to Real Analysis. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1977.