Universidad Nacional de Río Negro - Profesorado de Física

Física 3B+4A 2018 Guía 06: Aplicaciones

Asorey

14 de Junio de 2018

49. Tibio, tibio...

Considere una pared de espesor $d=0.15\,\mathrm{m}$ hecha con un vidrio especial que tiene las siguientes propiedades: Conductividad térmica $k=0.78\,\mathrm{W\,m^{-1}\,K^{-1}}$; Densidad $\rho=2700\,\mathrm{kg\,m^{-3}}$; Calor específico $C_p=0.84\,\mathrm{kJ\,kg^{-1}\,K^{-1}}$. Las caras de esa pared se mantienen a $T_i=29.5^{\circ}\mathrm{C}$ y $T_i=18.0^{\circ}\mathrm{C}$ respectivamente. Determine el flujo de calor por metro cuadrado a través de la pared.

50. Patinando en el cerro

Durante el invierno, en la superficie de la laguna Frey se forma una capa de hielo ($k = 2 \, \mathrm{W \, m^{-1} \, K^{-1}}$) de $d = 0.25 \, \mathrm{m}$ de espesor. Sabiendo que: la temperatura media del aire sobre el hielo es de $T_{\mathrm{ext}} = 272 \, \mathrm{K}$; la temperatura media del agua bajo el hielo es de $T_{\mathrm{int}} = 277 \, \mathrm{K}$; La superficie de la laguna es de $S = 100 \, \mathrm{m^2} \, \mathrm{y}$ la profundidad media es de $h = 10 \, \mathrm{m}$; y es posible despreciar la radiación solar. Calcule:

- a) la cantidad total de calor almacenada en el agua líquida;
- b) la cantidad de calor por segundo que irradia la laguna al aire circundante;
- c) el tiempo necesario para que la temperatura del agua líquida descienda a 2 °C.
- d) el tiempo necesario para que la laguna se congele.
- e) el cambio de entropía del universo debido a este proceso.

51. Refrigeración

Una casa fabricada con paredes de mampostería ($k = 0.8 \,\mathrm{W\,m^{-1}\,K^{-1}}$, $d = 0.20 \,\mathrm{m}$) tiene una superficie total de paredes de $200 \,\mathrm{m^2}$. Suponemos que en esta casa todas las pérdidas importantes se dan a través de las mismas, considerando al techo, a los cimientos y a las aberturas como aislantes perfectos (k = 0). En verano, la temperatura exterior es $T_{\mathrm{amb}} = 308 \,\mathrm{K}$ y se pretende que la interior sea $T_i = 293 \,\mathrm{K}$. El arquitecto dispone de varios equipos de aire acondicionado de $2500 \,\mathrm{W}$.

- a) Calcule qué cantidad de calor por segundo ingresa a la casa.
- b) Determine el número de equipos de aire necesarios para lograr el objetivo.
- c) Calcule la temperatura de equilibrio una vez que los equipos estén instalados.

52. Aislantes

En Bariloche se quiere construir una casa cuyas paredes cubren un área total de 150 m² y están hechas de un material multicapa. El mismo consiste en (de afuera hacia adentro):

- a) Placa cementicia, k = 0.8; d = 0.008 m;
- b) Placa de madera, k = 0.5; d = 0.015 m;
- c) Aire, k = 0.02; d = 0.02 m;
- *d*) Lana de vidrio, k = 0.04; d = 0.07 m;
- *e*) Placa de yeso, k = 0.7; d = 0.013 m.

Suponemos que en esta casa todas las pérdidas importantes se dan a través de las paredes, considerando al techo, a los cimientos y a las aberturas como aislantes perfectos (k=0). En invierno, la temperatura exterior es $T_{\rm amb} = 270$ K, mientras que en verano es $T_{\rm amb,v} = 310$ K, y se desea que en invierno la temperatura interior sea $T_i = 293$ K.

- a) Determine la resistencia equivalente ρ de las paredes de la casa.
- b) Calcule la pérdida de calor que sufre la casa en invierno.
- c) Determine el número de estufas de $3000 \, \text{kcal/hora}$ que deberán instalarse para mantener la temperatura interior deseada durante el invierno (1 kcal hora⁻¹ = 1,16 W).
- d) Calcule la temperatura de equilibrio una vez que las estufas funcionan.
- *e*) Si en verano, al mediodía la temperatura en el interior es $T_i = 295 \, \text{K}$ y en el exterior es $T_{\rm amb} = 310 \, \text{K}$, calcule el tiempo necesario para que la temperatura interior alcance la temperatura exterior.

53. Uy, ¡que frío!

Una cámara frigorífica debe mantener una temperatura de $T_i = -25^{\circ}$ C con una temperatura exterior de $T_2 = 30^{\circ}$ C. La pared de la cámara se construye de la siguiente manera:

- Revoque de 2 cm de espesor $(k = 0.9 \text{ W m}^{-1} \text{ K}^{-1})$.
- Ladrillo macizo de 25 cm $(k = 0.7 \,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1})$.
- Telgopor de x cm ($k = 0.06 \,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1}$).
- Revoque de 2 cm de espesor $(k = 0.9 \text{ W m}^{-1} \text{ K}^{-1})$.

Si la pérdida de calor no debe superar las 12 W m⁻², se pide determinar:

- a) El coeficiente global de transmisión de calor que debe tener la pared.
- b) El espesor de Telgopor que debe colocarse.

54. Resistencias

Demuestre las expresiones obtenidas en clase para el caso de las resistencias térmicas en paralelo. Luego proponga un ejemplo práctico de uso de las mismas.

55. Aislaciones

Se debe calefaccionar una casa cuya superficie total expuesta es $A = 200 \, \mathrm{m}^2$, y se pretende limitar el consumo de gas a $G = 260 \, \mathrm{m}^3$ mensuales, manteniendo la casa a $T_i = 293 \, \mathrm{K}$, aún en julio cuando la temperatura exterior es $T_e = 263 \, \mathrm{K}$. La calefacción funcionará en forma continua las 24 horas.

Las paredes de la casa son de mampostería revocada ($k = 0.9 \,\mathrm{W\,m^{-1}\,K^{-1}}$) de 0,2 m de espesor, y se colocará una capa interna de lana de vidrio ($k = 0.08 \,\mathrm{W\,m^{-1}\,K^{-1}}$) de x m de espesor, revestida con placas de Durlok ($k = 0.3 \,\mathrm{W\,m^{-1}\,K^{-1}}$) de 0,01 m de espesor.

Determine:

- a) la potencia disipada máxima admisible para esta casa
- b) el coeficiente global de transmisión de calor que debe tener la pared.
- *c*) el espesor *x* de lana de vidrio que debe colocarse.

Recuerde: el poder calorífico del gas es 4×10^7 J; los segundos en un mes son: $24 \times 3600 \times 30$ s= 2592000 segundos por mes.