MUTACIJE SPREMINJAJO POMEN GENOV

Mutacija je sprememba zaporedja ali števila nukleotidov v DNA

- Sprememba DNA povzroča spremembo v delovanju določene bejakovine.
- V DNA so sicer prisotni geni, ki so odgovorni za popravljanje mutacij, a če se pojavi mutacija tudi v teh genih, popravljalni mehanizmi ne delujejo več.
- Mutacije delimo na:
- Somatske mutacije: nastajajo v somatskih celicah in niso dedne;
- Zarodne mutacije: nastajajo v spolnih celicah in so dedne.

Somatske in zarodne mutacije

Mutacije lahko povzročijo nastanek tumorja

• Če se pojavi mutacija v genih, ki kontrolirajo delitev celic, se bodo začele celice <u>nenadzorovano deliti</u>, kar pomeni nastanek tumorja.

- Geni, ki kontrolirajo delitev celic so:
- proto-onkogeni aktivirajo fiziološko delitev celic (rast, celjenje ran, zamenjava odmrlih celic)
- onkosupresorji stimulirajo apoptozo spremenjenih celic.

Vrste mutacij

- Razlikujemo tri tipologije mutacij:
 - točkaste mutacije sprememba samo enega nukleotida;
 - strukturne kromosomske mutacije sprememba strukture kromosoma;
 - številčne kromosomske mutacije ali genomske mutacije sprememba števila kromosomov.

Točkaste mutacije

- Poznamo dve vrsti točkastih mutacij:
 - zamenjava nukleotida
 - vrinjenje ali izbris nukleotida.

Točkaste mutacije - zamenjava nukleotida

Smiselna mutacija

- → zamenjava aminokisline (npr. anemija srpastih eritrocitov)
- → zamenjava aminokisline brez posledic (ker ni v katalitsko aktivnem centru)

Nesmiselna mutacija

→ nastanek STOP kodona: beljakovinska sinteza se predčasno konča: nastane nepopolna in nefunkcionalna beljakovina (npr. Duchenne mišična distrofija);

Tiha mutacija:

→ aminokislina ostane ista (zaradi degeneracije genskega koda).

Točkaste mutacije - zamenjava nukleotida

Posledica zamenjave ene aminokisline v β-verigi hemoglobina

Del normalne β-verige hemoglobina

Del β-verige hemoglobina v srpastih eritrocitih

Primarna zgradba (zaporedje aminokislin)

Hidrofilno območje **β**-veriga Vsaka molekula nosi kisik

Sekundarna in terciarna zgradba (zvita veriga aminokislin)

Kvartarna zgradba (štiri podenote)

Delovanje

Oblika eritrocita

Molekule se vežejo med seboj v vlakno; kapaciteta za prenos kisika je močno zmanjšana.

Normalna oblika

Srpasta oblika

Točkaste mutacije – vrinjenje ali izbris nukleotida

- Vrinjenje ali izbris nukleotida povzroči spremembo čitalnega okvira.
- Rezultat je popolnoma različna in nefunkcionalna beljakovina.

Strukturne kromosomske anomalije

Delecija (izbris dela kromosoma)

dela kromosoma)

Inverzija (sprememba vrstnega reda delov kromosoma)

Trazlokacija (izmenjava delov kromosoma med dvema kromosomoma)

Slika prikazuje štiri možne mehanizme strukturnih kromosomskih mutacij.

Številčne kromosomske mutacije

- Nepravilno število kromosomov je lahko posledica napake v *mejozi*.
- Ko ima organizem samo en kromosom določenega tipa, govorimo o monosomiji (2*n*-1).
- Kadar ima organizem tri kromosome določenega tipa, govorimo o trisomiji (2n+1).
- Najbolj verjeten razlog za te anomalije je pomanjkanje ločitve homolognih kromosomov med I.mejozo.
- Lahko pride tudi do pomanjkanja ločitve sester kromatid med II.mejozo.

Primeri številčnih kromosomskih mutacij pri človeku

- Za Downov sindrom je značilna trisomija 21 (=dodaten kromosom 21). Z naraščanjem starosti matere (nad 35 let) se močno povečuje verjetnost, da bo imel otrok Downov sindrom.
 - Značilnosti: okrogel obraz, s kožno gubo v notranjem kotičku očesa, sploščen nos, nepravilni zobje, nizka postava, okvare srca, duševna zaostalost.
- Turnerjev (X0) in Klinefelterjev (XXY, XXXY, XXYY) sindrom sta posledica nepravilnega števila spolnih kromosomov.
 - Turnerjev sindrom: ženska z nizko postavo, sterilna, brez menstruacije.
 - Klinefelterjev sindrom: sterilen moški z nenavadno majhnimi modi; pogosto ima povečane dojke, lahko je duševno prizadet.

Vzroki mutacij

Spontane mutacije

(brez zunanjega vzroka)

- Napake DNA polimeraze pri podvojevanju DNA.
- Prosti radikali (produkti normalnih metabolnih procesov).
- Spremembe v <u>strukturi nukleotidov</u> > <u>nepravilno parjenje</u> med podvojevanjem DNA.
- Sprememba pH v celici → keto-enolna in amino-iminska tavtomerija dušikovih baz.
- Vključevanje <u>transpozonov</u> (kratkih odsekov DNA) v različne točke genoma.

Inducirane mutacije

(mutagena sredstva)

- <u>Kemijske snovi</u>, npr. benzopireni v cigaretnem dimu.
- <u>Žarki</u> γ, <u>X</u>, <u>UV</u>.

Primer spontane točkaste mutacije: tavtomerija dušikovih baz

KETO-ENOLNA in AMINO-IMINSKA TAVTOMERIJA DUŠIKOVIH BAZ

ADENIN in CITOZIN lahko obstajata v dveh različnih oblikah: aminski in iminski.

GVANIN in TIMIN lahko obstajata v dveh različnih oblikah: ketonski in enolni.

Ravnotežju med oblikama pravimo TAVTOMERNO RAVNOTEŽJE, oblikama pa TAVTOMERA. Sprememba ravnotežja odvisi od vrednosti pH.

V celicah je pH približno 7. Pri tem pH prevladujeta aminska in ketonska oblika.

Primer spontane točkaste mutacije: keto-enolna tavtomerija gvanina

Transpozoni

• Transpozoni ali "skakajoči geni"so gibljivi genetski elementi, ki jih je leta 1944 odkrila Barbara McClintock.

• Transpozon je segment DNA, ki je sposoben transpozicije: lahko se premešča z enega na drugi konec istega kromosoma ali pa na drug

kromosom.

Po vključitvi transpozona je postal gen za vijolično barvo neaktiven.

• Transpozoni so povzročitelji spontanih mutacij:

Transpozon

- lahko zaustavijo prepisovanje genov,
- lahko povzročajo strukturne kromosomske mutacije.

Transpozoni

- Skakajoči gen se lahko vstavi v nek drug gen, nato pa se iz njega spet izreže.
- To je Barbara McClintock ugotovila pri opazovanju koruze:
- Koruza ima običajno vijolična zrna (dominantna lastnost), ali rumena zrna (recesivna lastnost).
- Barbara McClintock je pri nekaterih križancih opazila <u>pojav rumenih</u> <u>zrn z vijoličnimi lisami</u>.
- Prišla je do zaključka, da se je <u>med razvojem zrna v nekaterih celicah</u> pojavil <u>transpozon v alelu za vijolično barvo</u>, <u>kasneje</u> pa <u>se je izrezal</u>.

Prof. Danja Bregant - Znanstveni licej Simon Gregorčič - Gorica Šolsko leto 2016/17

Barbara McClintock

Nobelova nagrada 1983

Primer inducirane mutacije: nastanek timinskega dimera zaradi obsevanja z UV

Timinski dimeri ne morejo tvoriti vodikovih vezi s komplementarnimi bazami, zato se podvojevanje DNA ali prepisovanje mRNA prekine.

Kopičenje mutacij in incidenca raka

• Za nastanek raka se mora nakopičiti več mutacij v celici:

- incidenca raka narašča s starostjo;
- mutacije se morajo kopičiti preden izbruhne rak;
- pri rakih, ki jih povzročajo okoljski dejavniki, je časovni zamik od izpostavljenosti dejavnika do nastanka raka velik (pri kadilcu npr. 30 let);

Mutacije, ki privedejo do nastanka raka

- Razvoj raka je večstopenjski proces.
- Pri mnogih celicah so dokazali, da se rak razvije preko hiperplazije (proliferacije celic) in adenoma (polipa) v karcinom (maligni tumor).
 - Najprej pride do <u>mutacije</u> gena APC, kar privede do hiperplazije.
 - Potem pride do <u>aktivacije</u> RAS onkogena, kar privede do nastanka adenomov.
 - Po <u>izgubi</u> tumorsko supresorskega gena p53 preide adenom v karcinom.

Dedni raki

- Za **dedne rake** je značilno, da se pojavljajo pogosteje v določenih družinah in da se pojavljajo raje pri mlajših osebah.
- To pa zato, ker so te osebe že podedovale eno mutacijo in imajo več kot 85 % možnosti, da bo prišlo še do mutacije drugega alela.
- Pri osebi, ki ni podedovala okvarjenega gena, mora priti najprej do ene spontane mutacije, po tem pa še do spontane mutacije v drugem alelu, kar je relativno redko.

Rak zaradi kajenja

- V tobačnem dimu je prisotnih več kot 60 različnih pro-kancerogenov, ki se ob vstopu v telo razvijejo v kancerogene dejavnike.
- Po približno 15 pokajenih cigaretah pride do ene mutacije, ki se vgradi v genom.
- Ob zmerni izpostavljenosti kancerogenom, lahko celice te mutacije popravljajo.
- Če pa so prisotne prirojene/pridobljene <u>napake popravljanja</u> se lahko razvije <u>rak</u>.

Nastanek melanoma

- Celice imajo sposobnost popravljanja DNA z izrezovanjem timinskih dimerov.
- Zapis za ta mehanizem nosi 7 genov XP (kseroderma pigmentosum).
- Če so ti geni mutirani, lahko ob izpostavljenosti UV žarkom, pride do nastanka kožnega raka - melanoma.

Metoda A B C D E za odkrivanje melanoma

- Črke A B C D E so začetnice angleških pojmov, ki opredeljujejo nevarno pigmentno znamenje.
- A Asymmetry, kar pomeni, da so nevarna znamenja asimetrična.
- B Border, kot meja znamenja, kar pomeni, da je znamenje nepravilno omejeno, včasih celo omejeno odsekano ali ga en del manjka.
- C Color, kar pomeni, da je nevarno znamenje večbarvno. Treba je vedeti, da je ena izmed barv večbarvnega znamenja skoraj zanesljivo črna in ta črnina praviloma ni umeščena v sredino znamenja, ampak sega na rob ali celo zunaj roba.
- D Dimension ali premer. Praviloma so znamenja ali melanomi večji od pol centimetra v premeru. Če ga odkrijemo, ko je velik 6 - 7 mm, je to še absolutno pravočasno.
- E Evolution ali razvoj. Znamenje se v času spreminja v velikosti, obliki in barvi.

Metoda A B C D E za odkrivanje melanoma

Nastanek črevesnega raka in raka dojk

- Če je okvarjen sistem za popravljanje napak po replikaciji lahko pride do raka širokega črevesja.
- Če se okvarita gena BRCA1 in BRCA2, ki nosita zapis za popravljanje lomov verig DNA pri replikaciji, pride do raka dojk.