

TOP DOWN PARSING

- Parsing is the process of determining if a string of tokens can be generated by a grammar.
- There are mainly two parsing approaches
 - Top down parsing
 - Bottom up parsing
- In top down parsing, parse tree is constructed from top (root) to the bottom (leaves).
- In **bottom up parsing**, parse tree is constructed from bottom (leaves) to the top (root).

TOP DOWN PARSING

• Top down parsing can be viewed as an attempt to find a leftmost derivation for an input string (that is expanding the leftmost terminal at every step).

TOP DOWN PARSING

A typical procedure for a nonterminal in a top down parser

- It is the most general form of top down parsing.
- It may involve **backtracking**, that is making repeated scans of input, to obtain the correct expansion of the leftmost non-terminal.
- Unless the grammar is ambiguous or left-recursive, it finds a suitable parse tree.

Consider the grammar

$$S \rightarrow cAd$$

 $A \rightarrow ab|a$
and the input string $w = cad$.

- To construct a parse tree for this string top down, we initially create a tree consisting of a single node labelled **S**.
- An input pointer points to **c**, the first symbol of w.
- S has only one production, so we use it to expand S and

obtain the tree as

- The leftmost leaf, labeled **c**, matches the first symbol of input w, so we advance the input pointer to **a**, the second symbol of **w**, and consider the next leaf, labeled **A**.
- A is expanded using the first alternative $A \rightarrow ab$ to obtain the tree as

- We have a match for the second input symbol, **a**, so we advance the input pointer to **d**, the third input symbol, and compare d against the next leaf, labeled **b**.
- Since **b** does not match **d**, failure is reported and we must go back to **A** to see whether there is another alternative for **A** that has not been tried which might produce a match.

- In going back to **A**, we must reset the input pointer to position 2, the position it had when we first came to **A**, which means that the procedure for **A** must store the input pointer in a local variable.
- The second alternative for **A** produces the tree as

- The leaf a matches the second symbol of w and the leaf d matches the third symbol.
- Since we have produced a parse tree for **w**, we halt and announce successful completion of parsing.
- The string is parsed completely and the parser stops.

- A predictive parsing is a special form of recursivedescent parsing, in which the current input token unambiguously determines the production to be applied at each step.
- The goal of predictive parsing is to construct a top-down parser that never backtracks.

- To do so we must transform the grammar in two ways
 - Eliminate left recursion
 - Perform left factoring
- These rules eliminate most common causes for backtracking although they do not guarantee a completely backtrack-free parsing.

- It is possible to build a nonrecursive predictive parser by maintaining a stack explicitly, rather than implicitly via recursive calls.
- The key problem during predictive parsing is that of determining the production to be applied for a nonterminal.
- The nonrecursive parser in looks up the production to be applied in a parsing table.

- Requirements
 - Stack
 - Parsing table
 - Input buffer
 - Output stream

INPUT: A string **w** and a parsing table **M** for grammar **G**.

OUTPUT: If w is in L (G), a leftmost derivation of w; otherwise, an error indication.

METHOD: Initially, the parser is in a configuration in which it has \$S on the stack with S, the start symbol of G on top, and w\$ in the input buffer. The program that utilizes the predictive parsing table M to produce a parse for the input is shown below.

```
set ip to the first symbol of w$
repeat
  let X be the top of the stack;
  let a be the symbol pointed by ip;
  if X \in V_T or X = $ then
       if X = a then
            pop the stack;
            advance ip;
       else error
  else
       let X \longmapsto Y_1 Y_2 \cdots Y_k be M[X, a];
       if no such production then error;
       pop X from the stack;
       push Y_k, Y_{k-1}, \dots, Y_1 onto the stack;
       output X \longmapsto Y_1 Y_2 \cdots Y_k;
until X = $
```

Consider the input string as id+id*id and the grammar as

E
$$\rightarrow$$
T E'
E' \rightarrow +T E' | ϵ
T \rightarrow F T'
T' \rightarrow * F T' | ϵ
F \rightarrow (E) | id

$E \Rightarrow$	$TE' \Rightarrow$	$FT'E' \Rightarrow$	$id T'E' \Rightarrow$	$id E' \Rightarrow$	$id + TE' \Rightarrow \cdots$	
lm	lm	lm	lm	lm	lm	

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id\$	
	TE'\$	id + id * id\$	output $E \to TE'$
	FT'E'\$	id + id * id\$	output $T \to FT'$
	id T'E'\$	id + id * id\$	output $F \to id$
id	T'E'\$	+ id * id\$	match id
id	E'\$	+ id * id\$	output $T' \to \epsilon$
id	+ TE'\$	+ id * id\$	output $E' \rightarrow + TE'$
id +	TE'\$	id * id\$	match +
id +	FT'E'\$	id * id\$	output $T \to FT'$
id +	id T'E'\$	id * id\$	output $F \to id$
id + id	T'E'\$	* id\$	match id
id + id	* FT'E'\$	* id\$	output $T' \to *FT'$
id + id *	FT'E'\$	id\$	match *
id + id *	id T'E'\$	id\$	output $F \to id$
id + id * id	T'E'\$	\$	match id
id + id * id	E'\$	\$	output $T' \to \epsilon$
id + id * id	\$	\$	output $E' \to \epsilon$

Figure 4.21: Moves made by a predictive parser on input id + id * id

- © Construction of the parsing table is aided by two functions
 - FIRST
 - FOLLOW

FIRST

- If ' α ' is any string of grammar symbols, then FIRST(α) be the set of terminals that begin the string derived from α .
- \circ If α ⇒ ε then ε is added to FIRST(α).
- First is defined for both terminals and non terminals.

FIRST

- If X is a terminal, then FIRST(X) is $\{X\}$
- If $X \rightarrow \varepsilon$ then add ε to FIRST(X)
- If **X** is a non terminal and $X \rightarrow Y_1 Y_2 Y_3 ... Y_n$, then put 'a' in FIRST(**X**) if for some **i**, **a** is in FIRST(**Y**_i) and ε is in all of FIRST(**Y**₁),...FIRST(**Y**_{i-1}).

FIRST

- Find the FIRST() for the production
 - \circ S \rightarrow abc | def | ghi
 - FIRST(S) = $\{a, d, g\}$

- Find the FIRST() for the productions given below
 - \circ S \rightarrow ABC | ghi | jkl
 - \bullet A \rightarrow a | b | c
 - \bullet B \rightarrow b
 - $oldsymbol{o}$ D \rightarrow d

$$FIRST(D) = \{d\}$$

$$FIRST(B) = \{b\}$$

$$FIRST(A) = \{a, b, c\}$$

$$FIRST(S) = {FIRST(A), g, j} = {a, b, c, g, j}$$

- Find the FIRST() for the production
 - \circ S \rightarrow ABC
 - A → a | b | ε B → c | d | ε C → e | f | ε

FIRST(C) =
$$\{e, f, \epsilon\}$$

FIRST(B) =
$$\{c, d, \epsilon\}$$

FIRST(A) =
$$\{a, b, \epsilon\}$$

FIRST (A) contains ε . Replacing A with ε in S makes $S \rightarrow BC$. So FIRST (B) has to be taken. Similarly FIRST(C).

 $FIRST(S) = {FIRST(A)} = {a, b, c, d, e, f, ε}$

- Find the FIRST() for the productions
 - \bullet E \rightarrow TE'
 - \bullet E' \rightarrow +TE' ϵ
 - \circ T \rightarrow FT'
 - \circ T' \rightarrow *FT' ε
 - \circ F \rightarrow (E) | id

$$FIRST(F) = \{(, id)\}$$

$$FIRST(T') = \{*, \epsilon\}$$

$$FIRST(T) = FIRST(F) = \{(, id)\}$$

$$FIRST(E') = \{+, \epsilon\}$$

$$FIRST(E) = \{FIRST(T)\} = \{(, id)\}$$

FOLLOW

- FOLLOW is defined only for non-terminals of the grammar G.
- It can be defined as the set of terminals of grammar **G**, which can immediately follow the non-terminal in a production rule from start symbol.
- In other words, if **A** is a nonterminal, then FOLLOW(**A**) is the set of terminals '**a**' that can appear immediately to the right of **A** in some sentential form.

FOLLOW

- If S is the start symbol, then add \$ to FOLLOW(S).
- If there is a production rule $A \rightarrow \alpha B \beta$ then everything in FIRST(β) except for ε is placed in FOLLOW(B).
- If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B \beta$ where FIRST(β) contains ε then everything in FOLLOW(A) is in FOLLOW(B).
- ϵ is never part of FOLLOW.

FOLLOW

For finding follow of a non-terminal check for that non-terminal only on the RHS of the production. i.e., to find FOLLOW(A) search for non-terminal A on the right hand side of the production.

- Find the FOLLOW() for the production
 - \circ S \rightarrow ACD

$$FOLLOW(S) = \{\$\}$$

- Find the FOLLOW() for the production
 - $S \rightarrow aSbS \mid bSaS \mid \varepsilon$

$$FOLLOW(S) = \{b, a, \$\}$$

- Find the FOLLOW() for the productions

 S → AaAb | BbBa

 - \circ A \rightarrow ε
 - $\bullet B \rightarrow \varepsilon$

$$FOLLOW(S) = \{\$\}$$

$$FOLLOW(A) = \{a, b\}$$

$$FOLLOW(B) = \{a, b\}$$

- Find the FOLLOW() for the productions
 - \circ S \rightarrow ABC
 - \bullet A \rightarrow DEF
 - $\bullet B \rightarrow \varepsilon$
 - \circ C \rightarrow ε
 - \circ D $\rightarrow \varepsilon$
 - $\bullet E \rightarrow \varepsilon$
 - \circ $F \rightarrow \varepsilon$

 $FOLLOW(S) = \{\$\}$

FIRST(B) contains ε . ε cannot be there in FOLLOW so ε needs to be replaced in the production for B making it S \rightarrow AC

 $FOLLOW(A) = FIRST(B) = FIRST(C) = FOLLOW(S) = \{\$\}$

- Find the FOLLOW() for the production
 - \bullet E \rightarrow TE'
 - \bullet E' \rightarrow +TE' ϵ
 - \circ T \rightarrow FT'
 - \circ T' \rightarrow *FT' ε
 - \circ F \rightarrow (E) | id

$$FOLLOW(E) = \{\$, \}$$

$$FOLLOW(E') = FOLLOW(E) = \{\$, \}$$

FOLLOW(T) = FIRST(E')
=
$$\{+, FOLLOW(E)\}\ ('coz \ of \ \epsilon \ in \ FIRST(E')$$

= $\{+,), \$$)

- Find the FOLLOW() for the production
 - \bullet E \rightarrow TE'
 - $\bullet E' \rightarrow +TE' \mid \varepsilon$
 - \circ T \rightarrow FT'
 - \circ T' \rightarrow *FT' ε
 - \circ F \rightarrow (E) | id

$$FOLLOW(T') = FOLLOW(T) = \{+, \}$$

FOLLOW(F) = FIRST(T')
=
$$\{*, FOLLOW(E)\}\ ('coz of \ \epsilon in FIRST(T')$$

= $\{*, +,), \$$)

FIRST and for the following productions are

$$\bullet$$
 E \rightarrow TE'

$$\bullet$$
 E' \rightarrow +TE' ϵ

$$\circ$$
 T \rightarrow FT'

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

$$\circ$$
 F \rightarrow (E) | id

Non-terminal	FIRST	FOLLOW
Ε	(, id), \$
E'	+, €), \$
T	(, id	+,), \$
T'	*, €	+,), \$
F	(, id	+, *,), \$

Find the FIRST() and FOLLOW() for the productions

$$\circ$$
 S \rightarrow A

$$A \rightarrow BC \mid DBC$$

$$B \rightarrow bB' \mid ε$$

$$B' \rightarrow bB' \mid ε$$

$$C \rightarrow c \mid ε$$

$$D \rightarrow a \mid d$$

• B
$$\rightarrow$$
 bB' $\mid \epsilon$

• B'
$$\rightarrow$$
 bB' $\mid \epsilon \mid$

$$\circ$$
 C \rightarrow c ε

$$oldsymbol{o}$$
 D \rightarrow a d

Non-terminal	FIRST	FOLLOW
S	{a, b, d, ε}	{\$ }
A	{a, b, d, ε}	{\$ }
В	{b, ε}	{c, \$}
С	{c, ε}	{\$ }
D	{a, d}	{b, c, \$}

Algorithm for predictive parsing table

- INPUT: Grammar G
- OUTPUT: Parsing table *M*
- Method
 - 1. For each production $A \rightarrow \alpha$ of the grammar, do steps 2 and 3.
 - 2. For each terminal **a** in FIRST(A), add $A \rightarrow \alpha$ to **M[A, a]**.
 - 3. If ε is in FIRST(α), then for each terminal b in FOLLOW (**A**), add $A \rightarrow \alpha$ to **M**[**A**, **b**]. If ε is in FIRST (α) and \$ is in FOLLOW(**A**), add $A \rightarrow \alpha$ to M[A, \$].
 - 4. Mark each undefined entry for M as error.

NON- TERMINAL	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE$		
E'		E' → +TE'			$E' \rightarrow \epsilon$	E'→ ε
T	$T \rightarrow FT$			$T \rightarrow FT$		
T'		$T'\!\!\to\!\epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \to \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

- Start from the start symbol, E. In the FIRST(E) column add the production $E \rightarrow TE'$.
- Since FIRST(E') has ε , add $E \rightarrow \varepsilon$ in columns corresponding to FOLLOW(E).
- Similarly, fill the rest of the entries.

LL(1) GRAMMARS

- Predictive parsers, that is, recursive descent parsers needing no backtracking can be constructed for a class of grammars called LL(1).
- If the parsing table of a CFG does not have multiple entries then it is called LL(1).

LL(1) GRAMMARS

- In LL(1),
 - First L stands for scanning the input from left to right.
 - Second L stands for producing a leftmost derivation.
 - 1 stands for using one input symbol of lookahead at each step to make parsing action decisions.
- No left recursive or ambiguous grammar can be LL(1).
- A language is said to be LL(1) if it can be generated by a LL(1) grammar.

LL(1) GRAMMARS

• Check whether the dangling-else problem is LL(1) or not.

$$S \rightarrow i E t S S' \mid a$$

 $S' \rightarrow e S \mid \epsilon$
 $E \rightarrow b$

Non-terminal	FIRST	FOLLOW
S	i, a	e, \$
S'	e, €	e, \$
E	b	t

Non- terminal	i	t	а	е	b	\$
S	$S \rightarrow i E t S S'$		$S \rightarrow a$			
S'				$S' \rightarrow e S$ $S' \rightarrow \epsilon$		S' → ∈
Е					$E \rightarrow b$	

More than one productions are there in a single cell and so dangling-else is not LL(1).