Connecting points

On a line, there are L red points, M blue points, and N purple points. The graph G is obtained from the points. The points correspond to the vertices of G. If two vertices a and b are connected by an edge e, consider an interval I on the line to connect the points p and q corresponding to a and b, respectively. The weight w(e) of the edge e is given by the length of I.

The graph G should contain two subgraphs R and B satisfying the followings:

- (1) The graph R contains only the vertices corresponding to all the red and all the purple points.
- (2) The graph B contains only the vertices corresponding to all the blue and all the purple points.
- (3) Both of R and B are connected. That is, there is always a path between arbitrary two points in R or B.

Given the coordinates of the points, write a program to find the graph G containing two subgraph R and B satisfying the above conditions and to minimize the sum of weights of edges in the graph G.

For example, in Figure 1, the points with numbers 1, 2, and 3 represent the red, blue, and purple points, respectively. If the graph G is obtained to connect points like the dashed lines, then G contains two subgraphs satisfying the above conditions and the total weight of edges in G is 19 and it is a minimum.

Figure 1.

[입력]

The number of cases T is given the first line of the input file. Here, $T \le 40$. In the first line of each case, three integers L, M, N(L, N, M ≥ 0 , $0 \le L + M + N \le 100,000$) are given. Here L, M, N are the numbers of red, blue, and purple points, respectively. In each of the following L lines, an integer x is given to represent a coordinate of a red point. In each of the following M lines, an integer y is given to represent a coordinate of a blue point. In each of the following N lines, an integer z is given to represent a coordinate of a purple point. Here, $0 \le x$, y, $z \le 1,000,000,000$.

The input is given from the following three sets.

- Set 1: N = 0.
- Set 2: either L = 0 or M = 0.
- Set 3: No additional constraints.

[출력]

Among the graphs G to contain two subgraphs satisfying the above conditions, print the minimum of the total weight of the edges in G.

[I/O Example]

Input

2		
2 1 2		
2		
7		
6		
0		
10		
2 3 3		
11		
8		
1		
9		
4		
0		
15		
5		

Output

19		
27		