پروژه ی 1 علوم اعصاب- پیاده سازی 3 مدل نورون پگاه گیوه چیان 99222089

استاد راهنها: استاد خردپیشه

:ساختار کلی

LIF: Leaky Integrate-and-Fire

ALIF: Adaptive Leaky Integrate-and-Fire

AELIF: Adaptive Exponential Leaky Integrate-and-Fire

سه مدل LIF - ALIF — AELIF در سه کلاس به این نام ها پیاده سازی شده اند. در ابتدای این کلاس ها پارامتر ها گرفته و تعیین میشوند.

I تابع جریان ورود ی

زمان کل آزمایش t_total_ms

dt_ms واحد تغيير زمان

R مقاومت غشا

ثابت زمانی tau

Threshold

u_current پتانسیل نورون در هر لحظه

u_start پتانسیل آغازین نورون

u_rest يتانسيل استراحت نورون

u_reset

u_spike

u_arr آرایه ای از پتانسیل هر لحظه ی نورون در بازه ی زمانی آزمایش

fire_count تعداد اسپایک ها در بازه ی زمانی آزمایش

یارامترهای اضافی :ALIF

آرایه ای از w هر لحظه ی نورون در بازه ی زمانی آزمایش w_{arr}

tau k

spike triggered adaptation b

Subthreshold adaptation a

پارامترهای اضافی :AELIF

Firing threshold (enter action potential) theta_r_h

متد ها

هر 3 کلاس متد های مشترکی دارند.

Run()

در این متد مقادیر مورد نیاز برای رسم نمودار ها محاسبه میشود؛ من جمله u_arr پرمیشود. به این شکل که یک متغیر $t_acurrent_ms$ در نظر میگیریم که در هر دور به مقدار $t_acurrent_ms$ افزایش میابد و در هر یک ازین لحظات پتانسیل را محاسبه میکند و به u_arr اضافه میکند. این پروسه تا زمانی ادامه دارد تا $t_acurrent_ms$ به $t_acurrent_ms$ برسد. در این مدت هرگاه پتانسیل از $t_acurrent_ms$ برند، پتانسیل لحظه با $t_acurrent_ms$ جمع میشود قبل اضافه شدن به $t_acurrent_ms$ اسیالی و قرار میدهد و یکی به اسپایک زده اسپایک زده است.

در ALIF و ALIFیک سهم داریم که بسته به اینکه نورون اخیرا چند اسپایک زده تغییر میکند. در هرکدام ازین بازه های زمانی کوچک سمحاسبه و به w_arr اضافه میشود

I_plot()

رسم نمودار جریان بر اساس زمان

U_plot()

رسم نمودار پتانسیل بر اساس زمان

w_plot()

رسم نمودار سبر اساس زمان

f_plot()

رسم نمودار فرکانس بر اساس زمان

آزمایشات انجام شده روی نورون ها:

<u>LIF</u>

Frequency

Constant Current

Step-function Current

Sine Wave Current

Quadratic Current

Radical Current

ALIF

Frequency

Doc Current

Constant Current

Step-function Current

Radical Current

Sine Wave Current

AELIF

Frequency

Doc Current

Constant Current

Step-function Current

quadratic Current

Sine Wave Current

