

CIML SI24 Day 1: Prep Day

Accounts, Login, Environments, Running Jobs, Logging into Expanse User Portal

By Mary Thomas

Outline

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Expanse User Portal
- Hands-on Examples
- Secure Jupyter Notebooks
- Conclusions

Basic Information

- Expanse User Guide:
 - https://www.sdsc.edu/support/user_guides/expanse.html
- You need to have an Expanse account in order to access the system. There are a few ways to do this:
 - Submit a proposal through the <u>XSEDE Allocation Request System</u>
 - PI on an active allocation can add you to their allocation (if you are collaborators working on the same project).
 - Request a trial account, instructions @ https://portal.xsede.org/allocations/startup.
 - Training accounts expire, save your data.
- Online repo and information:
 - https://github.com/sdsc-hpc-training-org/expanse-101
 - https://hpc-training.sdsc.edu/expanse-101/

Outline

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Expanse User Portal
- Jupyter Notebooks
- Hands-on Examples
- Conclusions

Expanse

EXPANSE COMPUTING WITHOUT BOUNDARIES 5 PETAFLOP/S HPC and DATA RESOURCE

HPC RESOURCE

13 Scalable Compute Units728 Standard Compute Nodes52 GPU Nodes: 208 GPUs4 Large Memory Nodes

DATA CENTRIC ARCHITECTURE

12PB Perf. Storage: 140GB/s, 200k IOPS
Fast I/O Node-Local NVMe Storage
7PB Ceph Object Storage
High-Performance R&E Networking

LONG-TAIL SCIENCE

Multi-Messenger Astronomy
Genomics
Earth Science
Social Science

INNOVATIVE OPERATIONS

Composable Systems
High-Throughput Computing
Science Gateways
Interactive Computing
Containerized Computing
Cloud Bursting

For more details see the Expanse user guide @ https://www.sdsc.edu/support/user_guides/expanse.html and the "Introduction to Expanse" webinar @ https://www.sdsc.edu/event_items/202006_Introduction_to_Expanse.html

Expanse: part of NSF Funded ACESS

Extreme Science and Engineering Discovery Environment (XSEDE)

Map of XSEDE Access Ports: advanced computing resource made available to researchers

Outline

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

Logging into Expanse

- Expanse supports Single Sign-On through the ACCESS User Portal
- From the command line using an ACCESS password,
 - Coming soon the Expanse User Portal.
- CPU and GPU resources are allocated separately, the login nodes are the same.
- To log in to Expanse from the command line, use the hostname:
 - login.expanse.sdsc.edu
- Secure shell (SSH) command examples:

```
ssh <your_username>@login.expanse.sdsc.edu
ssh -l <your_username> login.expanse.sdsc.edu
```

 When you log in to login.expanse.sdsc.edu, you will be assigned one of the two login nodes login0[1-2]-expanse.sdsc.edu. Both systems are identical.

Using SSH Keys

- You can append your public key (e.g.from your laptop) to your
 ~/.ssh/authorized_keys file to enable access from authorized hosts
 without having to enter your password.
- RSA, ECDSA and ed25519 keys are accepted.
- Make sure you have a strong passphrase on the private key on your local machine.
- You can use ssh-agent or keychain to avoid repeatedly typing the private key password.
- Hosts which connect to SSH more frequently than ten times per minute may get blocked for a short period of time
- See the SDSC Security repo:
 - https://github.com/sdsc-hpc-training-org/hpc-security

System Access: Clients

- Linux/Mac
 - use terminal + installed ssh app
- Windows:
 - Win10 terminal app + installed ssh app
 - Older Windows OS's: ssh clients apps Putty, Cygwin
- Expanse login hostname:
 - login.expanse.sdsc.edu
 - 198.202.113.252

Source: https://hpc.rtu.lv/hpc/introduction-to-hpc/?lang=en

For more on SDSC security, see: https://github.com/sdsc-hpc-training-org/hpc-security

Example of a terminal connection:

```
Welcome to Bright release
                               9.0
                                                    Based on Rocky Linux 8
                                                              ID: #000002
                              WELCOME TO
             Use the following commands to adjust your environment:
'module avail' - show available modules
'module add <module>' - adds a module to your environment for this session
'module initadd <module>' - configure module to be loaded at every login
Last login: Mon Jun 17 15:34:22 2024 from 75.80.45.222
connect /private/tmp/com.apple.launchd.HbagVgBfXZ/org.xquartz:0: Connection refused
[train111@login01 ~]$ whoami
train111
[train111@login01 ~]$ date
Mon Jun 17 19:16:27 PDT 2024
[train111@login01 ~]$ hostname
login01
[train111@login01 ~]$
```


Using Login Nodes Properly

- The login nodes are meant for file editing, simple data analysis, & tasks that use minimal compute resources.
- All computationally demanding jobs should be submitted and run through the batch queuing system.
- Do not use the login nodes for:
 - computationally intensive processes,
 - hosts for running workflow management tools
 - primary data transfer nodes for large or numerous data transfers
 - servers providing other services accessible to the Internet.
 - running Jupyter notebooks
- Login nodes are not the same as the batch nodes.
 - Users should request an interactive sessions to compile large programs.

Outline

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

Expanse Environment Modules

- Expanse uses Lmod, a Lua based module system.
 - https://lmod.readthedocs.io/en/latest/010_user.html
- Users setup custom environments by loading available modules into the shell environment, including needed compilers and libraries and the batch scheduler.
- What modules let you do:
 - Dynamic modification of your shell environment
 - User can set, change, or delete environment variables
 - User chooses between different versions of the same software or different combinations of related codes.

Modules on Expanse

- Users will not see all available modules when they run command "module available" – need to load dependent/related modules.
- Use the command "module spider" option to see if a particular package exists and can be loaded, run command

```
module spider <package> module keywords <term>
```

 For additional details, and to identify module dependencies modules, use the command

```
module spider <application_name>
```

 The module paths are different for the CPU and GPU nodes. Users can enable the paths by loading the following modules:

```
module load cpu (for cpu nodes) module load gpu (for gpu nodes)
```

Avoid loading both modules

Module Command Examples

```
[train111@login01 ~]$ module reset
Resetting modules to system default. Reseting $MODULEPATH back to system default. All extra
directories will be removed from $MODULEPATH.
[train111@login01 ~]$ module list
Currently Loaded Modules:
             2) cpu/0.17.3b (c) 3) slurm/expanse/23.02.7 4) sdsc/1.0
                                                                           DefaultModules
  1) shared
  Where:
   c: built natively for AMD Rome
[train111@login01 ~]$ module avail
---- /cm/shared/apps/spack/0.17.3/cpu/b/share/spack/lmod/linux-rocky8-x86 64/Core --
                                         git-lfs/2.11.0/kmruniy
   anaconda3/2021.05/q4munrg
                                                                      pigz/2.6/bgymyil
                                                                      rclone/1.56.2/mldjorr
   aocc/3.2.0/io3s466
                                         git/2.31.1/ldetm5y
                                         g10/2.31.1/1detm5y
intel/19.1.3.304/6pv46so
                                                                      sratoolkit/2.10.9/rn4hu
   aria2/1.35.0/q32jtg2
mf
   entrezdirect/10.7.20190114/6pkkpx2
                                         matlab/2022b/lefe4oq
                                                                      subversion/1.14.0/qpzq6
ZS
 Where:
   L: Module is loaded
   c: built natively for AMD Rome
   e: not architecture specific
   g: built natively for Intel Skylake
   D: Default Module
Module defaults are chosen based on Find First Rules due to Name/Version/Version modules
found in the module tree.
See https://lmod.readthedocs.io/en/latest/060 locating.html for details.
```


Modules: Popular commands

Command	Description		
module list	List the modules that are currently loaded		
module avail	List the modules that are available in environment		
module spider	List of the modules and extensions currently available		
module display <module_name></module_name>	Show the environment variables used by <module name=""> and how they are affected</module>		
module unload <module name=""></module>	Remove <module name=""> from the environment</module>		
module load <module name=""></module>	Load <module name=""> into the environment</module>		
module swap <module one=""> <module two=""></module></module>	Replace <module one=""> with <module two=""> in the environment</module></module>		
module help	get a list of all the commands that module knows about do:		
Shorthand notation: ml foo ml -bar	"ml" == module load foo "ml -bar" == module unload bar		

SDSC Guidance: add module calls to your environment and batch scripts

Outline

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

Allocations

- Some users will have more that one login account.
- Many users will have access to multiple allocations (projects), for example:
 - an allocation for a research project, classroom or educational use
- Users should verify that the correct project is designated for all Expanse (batch) jobs.
- Awards are granted for a specific purposes and should not be used for other projects.
- In general, for Expanse commands, to charge your job to one
 of your projects, replace << project123 >> with one from
 your list and put this PBS directive in your job script:
 - #SBATCH -A << project123 >>

Allocation Information

module load sdsc expanse-client user expanse-client user -r expanse_gpu

[train111@login02 ~]\$ module load sdsc
[train111@login02 ~]\$ expanse-client user

Resource expanse

	NAME	STATE	PROJECT	TG PROJECT	USED	AVAILABLE	USED BY PROJECT
1	train111	allow	gue998	TG-CIE960001S	7	200000	78392

[train111@login02 ~]\$ expanse-client user -r expanse_gpu

Resource expanse_gpu

	NAME	STATE	PROJECT	TG PROJECT	USED	AVAILABLE	USED BY PROJECT
1	train111	allow	gue998	TG-CIE960001S	13	6000	649

[train111@login02 ~]\$ [

Outline

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

Supported Compilers on Expanse

CPU nodes

- GNU, Intel, AOCC (AMD) compilers
- multiple MPI implementations (OpenMPI, MVAPICH2, and IntelMPI).
- A majority of applications have been built using *gcc/10.2.0* which *features AMD Rome* specific optimization flags (-march=znver2).
- Intel, and AOCC compilers all have flags to support Advanced Vector Extensions 2 (AVX2).

GPU Compiling:

- Expanse GPU nodes have GNU, Intel, and PGI compilers.
- Note: Expanse login nodes are not the same as the GPU nodes →
 all GPU codes must be compiled by requesting an interactive
 session on the GPU nodes.

For updated information, see: https://www.sdsc.edu/support/user_guides/expanse.html#compiling

AMD AOCC Compilers: CPU Only

Language	Serial MPI		OpenMP	MPI + OpenMP	
Fortran	flang	mpif90	ifort -openmp	mpif90 -openmp	
С	clang	mpiclang	icc -openmp	mpicc -openmp	
C++	clang++	mpiclang	icpc -openmp	mpicxx -openm	

The AMD Optimizing C/C++ Compiler (AOCC) is only available on CPU nodes. AMD compilers can be loaded using the module load command:

\$ module load aocc

For more information on the AMD compilers:

\$ [flang | clang] -help

Intel Compilers: GPU and GPU

 Default/Suggested Compilers to used based on programming model and languages:

	Serial	MPI	OpenMP	MPI + OpenMP
Fortran	n ifort mpif90		ifort -openmp	mpif90 -openmp
С	icc	mpicc	icc -openmp	mpicc -openmp
C++	icpc	mpicxx	icpc -openmp	mpicxx -openmp

- In this tutorial, we include Optional: Hands-on Examples that cover many of the cases in the table:
 - (1) MPI
 - (2) OpenMP
 - (3) HYBRID

GNU Compilers: CPU and GPU

• The GNU compilers can be loaded by executing the following commands at the Linux prompt or placing in your startup files (~/.cshrc or ~/.bashrc)

```
[train111@login01 MPI]$ module purge
[train111@login01 MPI]$ module load slurm
[train111@login01 MPI]$ module load cpu
[train111@login01 MPI]$ module load gcc/10.2.0
[train111@login01 MPI]$ module load openmpi/4.0.4
[train111@login01 MPI]$ module list
Currently Loaded Modules:

1) slurm/expanse/20.02.3 2) cpu/1.0 3) gcc/10.2.0 4) openmpi/4.0.4
```

- For AVX support, compile with -mavx.
- Note that AVX support is only available in version 4.7 or later, so it is necessary to explicitly load the gnu/4.9.2 module until such time that it becomes the default.
- For more information on the GNU compilers: man [gfortran | gcc | g++]

Using the GNU Compilers

Table of recommended GNU compilers:

	Serial	MPI	OpenMP	MPI+OpenMP
Fortran	gfortran	mpif90	gfortran -fopenmp	mpif90 -fopenmp
С	gcc	mpicc	gcc -fopenmp	mpicc -fopenmp
C++	g++	mpicxx	g++ -fopenmp	mpicxx -fopenmp

Running Jobs on Expanse

- When you run in the batch mode, you submit jobs to be run on the compute nodes using the sbatch command as described below.
- Remember that computationally intensive jobs should be run only on the compute nodes and not the login nodes.
- Expanse places limits on the number of jobs queued and running on a per group (allocation) and partition basis.
- Please note that submitting a large number of jobs (especially very short ones) can impact the overall scheduler response for all users.

Methods for Running Jobs on Expanse

- Expanse uses the Simple Linux Utility for Resource Management (SLURM) batch environment.
 - Batch Jobs: Submit batch scripts to Slurm from the login nodes:
 - Partition (queue)
 - Time limit for the run (maximum of 48 hours)
 - Number of nodes, tasks per node; Memory requirements (if any)
 - Job name, output file location; Email info, configuration
- Interactive Jobs: Use the srun command to obtain nodes for 'live,' command line interactive access:

CPU	srunpartition=debugptyaccount=< <pre>proj-number>>nodes=1ntasks-per-node=4mem=8G -t 00:30:00wait=0export=ALL /bin/bash</pre>
GPU	srunpartition=gpu-debugptyaccount=use300ntasks-per- node=10nodes=1mem=96Ggpus=1 -t 00:30:00wait=0 export=ALL /bin/bash

Accessing Interactive Compute Nodes on Expanse

- Connect to HPC system (e.g. Expanse) via terminal using SSH → secure connections
- Use the srun command to obtain nodes for 'live,' command line interactive access:

CPU	srunpartition=debugptyaccount=account=< <pre>count=<<pre>count=<<<pre>project>>nodes=1ntasks-per-node=4mem=8G -t 00:30:00wait=0 export=ALL /bin/bash</pre></pre></pre>
GPU	srunpartition=gpu-debugptyaccount=< <pre>project>>ntasks-per-node=10nodes=1mem=96Ggpus=1 -t 00:30:00wait=0 export=ALL /bin/bash</pre>

(Tested 04/17/2024)

Slurm Partitions on Expanse

Partition limits subject to change based on Early User Period evaluation

Partition Name	QOS	Max Walltime	Max Nodes/Job	Max RunningJobs	Max Running + Queued Jobs	Charge Factor	Comments
compute	normal	48 hrs	32	64	128	1	Used for exclusive access to regular compute nodes
shared	shared- normal	48 hrs	1	4096	4096	1	Single-node jobs using fewer then 128 cores
gpu	gpu-normal	48 hrs	4	16	24	1	Used for exclusive access to the GPU nodes
gpu-shared	gpu-shared- normal	48 hrs	1	16	24	1	Single-node job using fewer then 4 GPUs
large-shared	large-shared- normal	48 hrs	1	1	4	1	Single-node jobs using large memory up to 2 TB (minimum memory required 256G)
debug	debug- normal	15 min	2	1	2	1	Priority access to compute nodes set aside for testing of jobs with short walltime and limited resources
gpu-debug	gpu-debug- normal	15 min	2	1	2	1	** Priority access to gpu nodes set aside for testing of jobs with short walltime and limited resources
preempt	preempt- normal	7 days	32		128	.8	Discounted jobs to run on free nodes that can be pre-empted by jobs submited to any other queue (NO REFUNDS)
preempt-gpu	preempt- gpu-normal	7 days	1			.8	Discounted jobs to run on unallocated nodes that can be pre-empted by jobs submitted to higher priority queues (NO REFUNDS)

Common Slurm Commands

Submit jobs using the sbatch command:

```
$ sbatch mycode-slurm.sb
```

Submitted batch job 8718049

Check job status using the squeue command:

```
$ squeue -u $USER

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

8718049 compute mycode user PD 0:00 1 (Priority)
```

Once the job is running:

```
$ squeue -u $USER

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

8718049 debug mycode user R 0:02 1 expanse-14-01
```

Cancel a running job:

```
$ scancel 8718049
```


General Steps: Compiling/Running Jobs

- Change to a working directory (for example the expanse101 directory):
 cd /home/\$USER/expanse101/MPI
- Verify that the correct modules are loaded:

```
module list
```

Currently Loaded Modulefiles:

- 1) slurm/expanse/20.02.3 2) cpu/1.0 3) gcc/10.2.0 4) openmpi/4.0.4
- Compile the MPI hello world code: mpif90 -o hello mpi hello mpi.f90
- Verify executable has been created (check that date):

```
ls -lt hello_mpi -rwxr-xr-x 1 user sdsc 721912 Mar 25 14:53 hello_mpi
```

 Submit job sbatch hello mpi slurm.sb

MPI Hello World

Change to the MPI examples directory:

```
[train111@login01 MPI]$ cat hello_mpi.f90

! Fortran example
    program hello
    include 'mpif.h'
    integer rank, size, ierror, tag, status(MPI_STATUS_SIZE)

call MPI_INIT(ierror)
    call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
    call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
    print*, 'node', rank, ': Hello world!'
    call MPI_FINALIZE(ierror)
    end
[train111@login01 MPI]$
```


MPI Hello World: Compile

Set the environment and then compile the code

[train111@login01 MPI]\$ cat README.txt [1] Compile:

Load module environment module purge module load slurm module load cpu module load gcc/10.2.0 module load openmpi/4.0.4

mpif90 -o hello_mpi hello_mpi.f90

[2a] Run using Slurm:

sbatch hellompi-slurm.sb

[2b] Run using Interactive CPU Node

srun --partition=debug --pty --account=use300 --nodes=1 --ntasks-per-node=128 --mem=248G -t 00:30:00 --wait=0 --export=ALL /bin/bash

[train111@login01 MPI]\$ module list

Currently Loaded Modules:

1) cpu/1.0 2) slurm/expanse/20.02.3

[train111@login01 MPI]\$ module purge
[train111@login01 MPI]\$ module load slurm
[train111@login01 MPI]\$ module load cpu
[train111@login01 MPI]\$ module load gcc/10.2.0
[train111@login01 MPI]\$ module load openmpi/4.0.4
[train111@login01 MPI]\$ module list

Currently Loaded Modules:

1) slurm/expanse/20.02.3 2) cpu/1.0 3) gcc/10.2.0 4) openmpi/4.0.4

[train111@login01 MPI]\$ mpif90 -o hello_mpi hello_mpi.f90
[train111@login01 MPI]\$

MPI Hello World: Batch Script

- To run the job, use the batch script submission command.
- Monitor the job until it is finished using the squeue command.

```
[train111@login01 MPI]$ cat hellompi-slurm-gnu.sb
#!/bin/bash
#SBATCH --job-name="hellompi-gnu"
#SBATCH --output="hellompi-gnu.%j.%N.out"
#SBATCH --partition=compute
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=128
#SBATCH --export=ALL
#SBATCH -t 00:10:00
#This job runs with 2 nodes,
128 cores per node for a total of 256 cores.
## Environment
module purge
module load slurm
module load cpu
module load gcc/10.2.0
module load openmpi/4.0.4
## Use srun to run the job
srun --mpi=pmi2 -n 256 --cpu-bind=rank ./hello mpi gnu
[train111@login01 MPI]$
```

```
[train111@login01 MPI]$ sbatch hellompi-slurm-gnu.sb; squeue -u train111
Submitted batch job 108910
      JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
      108910 compute hellompi train111 PD 0:00 2 (None)
[train111@login01 MPI]$ cat hellompi-gnu.108910.exp-12-54.out
node
          4: Hello world!
node
          5: Hello world!
          7: Hello world!
node
          0: Hello world!
node
          2: Hello world!
node
          3: Hello world!
node
          9: Hello world!
node
          10: Hello world!
node
[SNIP]
         247: Hello world!
node
         248: Hello world!
node
node
         249: Hello world!
node
         186: Hello world!
node
         220: Hello world!
         203: Hello world!
node
         135: Hello world!
node
```

Using An Interactive mode

Request

interactive

node for 30

minutes

[train111@login01 MPI]\$ module purge

[train111@login01 MPI]\$ module load slurm

[train111@login01 MPI]\$ module load cpu

[train111@login01 MPI]\$ module load gcc/10.2.0

[train111@login01 MPI]\$ module load openmpi/4.0.4

[train111@login01 MPI]\$ srun --pty --nodes=1 --ntasks-per-node=24 -p debug -t 00:30:00 --wait 0 /bin/bash

[train111@exp-9-55 MPI]\$ module list

[train111@exp-9-55 MPI]\$ mpirun -np 16 ./hello_mpi

1: Hello world! node 15: Hello world! node 7: Hello world! node 14: Hello world! node 11: Hello world! node 6: Hello world! node 4: Hello world! node 5: Hello world! node 12: Hello world! node 13: Hello world! node 0: Hello world! node node 8: Hello world! node 9: Hello world! node 10: Hello world! 2: Hello world! node

node

- Exit interactive session when your work is done or you will be charged CPU time.
- Beware of oversubscribing your job: asking for more cores than you have. Intel compiler allows this, but your performance will be degraded.

3: Hello world!

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

Launch Secure Notebooks Using galyleo

https://github.com/mkandes/galyleo/tree/master

Notebook Examples

https://github.com/sdsc-hpc-training-org/notebook-examples-expanse

- Collection of tested, working notebooks tested on Expanse and other SDSC HPC systems
- Includes range of materials from "hello world" to Spark ML notebooks.
- Note: collection changes often, based on testing and contributions

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

Expanse User Portal

https://portal.expanse.edu

Expanse Portal – Training Account Log-in

CIML SI24 Link: https://portal.expanse.edu/training

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

Hands-on Examples

- Collection of working codes can be found in several places:
- HPC Training Github repo:
 - https://github.com/sdsc
 -hpc-training-org/hpctrexamples
- On Expanse:

```
[train111@login02 ~]$ 11 /cm/shared/examples/sdsc
total 0
drwxrwxr-x 2 mahidhar use300 4 May 29 09:40 abaqus
drwxrwxr-x 2 mahidhar use300
                             6 May 10
                                       2023 abinit
drwxrwxr-x 2 mahidhar use300
                              5 Sep 12 2023 alphafold
drwxrwxr-x 7 mahidhar use300
                              5 Oct 5 2023 amber
drwxrwxr-x 2 mahidhar use300
                              1 Apr 29 2021 bintest
drwxr-xr-x 6 mkandes use300
                              4 Jun 12 14:32 ciml
drwxrwxr-x 4 mahidhar use300
                              2 Apr 14
                                       2022 classes
[snip]
drwxrwxr-x 2 mahidhar use300
                             3 Feb 24
                                        2022 hadoop
drwxrwxr-x 5 mahidhar use300 23 Aug 11
                                        2022 hpcg
drwxrwxr-x 3 mahidhar use300 7 Sep 10
                                        2021 hpl
[snip]
drwxrwxr-x 6 mahidhar use300 4 Dec 7
                                        2023 matlab
drwxrwxr-x 2 mahidhar use300 6 Nov 22
                                        2021 mpi
drwxrwxr-x 2 mahidhar use300
                              5 Oct 28
                                        2020 mpi-openmp-hybri
[snip]
drwxrwxr-x 2 mahidhar use300
                                        2022 nwchem
                              2 Feb 24
drwxrwxr-x 2 mahidhar use300
                                        2020 openacc
                              6 Oct 13
                              6 Oct 13
drwxrwxr-x 2 mahidhar use300
                                        2020 openmp
drwxrwxr-x 4 mahidhar use300
                              2 Jul 1
                                        2023 orca
drwxrwxr-x 3 mahidhar use300 3 Mar 12 13:35 paraview
drwxrwxr-x 3 mahidhar use300
                                        2023 pyscf
                             1 Jun 20
[snip]
drwxr-xr-x 2 mkandes use300 1 Oct 27
                                        2021 visit
                                        2021 wannier90
drwxrwxr-x 4 mahidhar use300
                              2 Nov 23
drwxrwxr-x 5 mahidhar use300 3 Dec 20
                                        2020 xpmem
```

- Expanse Overview & Innovative Features
- Getting Started/Logging on
- Environments & Modules
- Account Management
- Compiling and Running Jobs
- Jupyter Notebooks
- Expanse User Portal
- Hands-on Examples
- Conclusions

When Things Go Wrong, Check Your User Environment

- Do you have the right modules loaded?
- What software versions do you need?
- Is your code compiled and updated
 - Did you compile it last year? Have the libraries changed?
- Are you running your job from the right location?
 - \$HOME versus \$WORK?

Run jobs from the right location

- Lustre scratch filesystem:
 - /oasis/scratch/expanse/\$USER/temp_project
 - Preferred: Scalable large block I/O)
- Compute/GPU node local SSD storage:
 - /scratch/\$USER/\$SLURM_JOBID
 - Meta-data intensive jobs, high IOPs)
- Lustre projects filesystem:
 - /oasis/projects/nsf
- /home/\$USER:
 - Only for source files, libraries, binaries.
 - Do not use for I/O intensive jobs.

Thank You

Basic Information

- Expanse User Guide:
 - https://www.sdsc.edu/support/user_guides/expanse.html
- You need to have an Expanse account in order to access the system. There are a few ways to do this:
 - Submit a proposal through the <u>XSEDE Allocation Request System</u>
 - PI on an active allocation can add you to their allocation (if you are collaborators working on the same project).
 - Request a trial account, instructions @ https://portal.xsede.org/allocations/startup.
 - Training accounts expire, save your data.
- Online repo and information:
 - https://github.com/sdsc-hpc-training-org/expanse-101
 - https://hpc-training.sdsc.edu/expanse-101/

Resources

- Expanse User Guide
 - https://www.sdsc.edu/support/user_guides/expanse.html
- Expanse-101 Tutorial:
 - https://hpc-training.sdsc.edu/expanse-101/
- GitHub Repo: clone example code:
 - https://github.com/sdsc-hpc-training-org/hpctr-examples
- SDSC Training Resources
 - https://www.sdsc.edu/education and training/training
- ACCESS Training Resources
 - https://www.xsede.org/for-users/training

