

CS250 - Computer Organization and Architecture

nPower Processor in TL-Verilog -HDL Assignment

28.05.2021

Team members:

- 1) Himanshu Kumar 191CS122
- 2) Praneeth G 191CS235
- 3) Amal Majunu Vidya 191CS107
- 4) Aniket Srivastava 191CS208

Content

Content	1
64-bit Integer ALU Design Block Diagram	2 2
ALU Control Block Diagram	3
Instruction Fetch Hardware Block Diagram	5
Datapath add instruction addi instruction and instruction beq instruction load instruction or instruction store instruction sub instruction	6 7 8 9 10 11 12
nPower Processor Pipeline Block Diagram	14 14
THANK YOU!	15

64-bit Integer ALU Design

The 64-bit ALU performs can perform following operations to two 64-bit operands:

1. and : && 2. or : || 3. addition : + 4. subtraction : -

This 64-bit ALU requires the output from the ALU control unit as input which helps in identifying the operation to be done between the two operands.

ALU Control

As the name suggests it controls the ALU designed above.

It informs the operation to be done by the ALU for the corresponding instruction.

Following table shows the ALU operation for the corresponding instruction:

Instruction	Operation by ALU
add	addition
addi	addition
sub	subtraction
ld	addition
sd	addition
and	bitwise and
or	bitwise or

Instruction Fetch Hardware

As the name suggests it reads the instruction from the memory.

Based on the value of PC it reads/fetches the corresponding instruction in memory at PCth location in the memory.

It updates PC value to PC + 4 as default.

If the reset value is set to 1 then it resets the PC value such that it reads the 1st instruction.

Datapath

Now this code can execute a complete instruction.

Here the control signals are hard coded accordingly for a particular instruction to get executed.

Now the block diagrams for each instruction is as follows:

add instruction

addi instruction

and instruction

beq instruction

load instruction

or instruction

store instruction

sub instruction

nPower Processor Pipeline

The pipeline is obtained by integrating all the above created modules and including a main control unit instead of hard coding control signals.

Here at every cycle, according to the program counter, the instructions get executed in a pipeline manner.

THANK YOU!