Graph Theory

CO 442

Luke Postle

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CO 442 during Fall 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface				
1	1 Colorings			4
	1.1 Coloring and Brooks' Theorem			4
	1.2 An Informal Proof of Brooks' Theorem			6
	1.3 A Formal Proof of Brooks' Theorem			8

First let's look at a proof example.

Theorem

Every two longest paths in a connected graph G intersect.

Proof:

Suppose note. That is, there exist two longest paths P_1 and P_2 of G such that $V(P_1) \cap V(P_2) = \emptyset$. For each $i \in \{1, 2\}$, let $v_{i,1}$ and $v_{i,2}$ be the ends of P_i . Since G is connected, there exists a shortest path P from $V(P_1)$ to $V(P_2)$. Since P is shortest, we have that $|V(P_i) \cap V(P)| = 1$ for each $i \in \{1, 2\}$.

For each $i \in \{1, 2\}$, let u_i be the end of P in $V(P_i)$. For each $i, j \in \{1, 2\}$, let $Q_{i,j}$ be the subpath of P_i from u_i to $v_{i,j}$. We assume without loss of generality that for each $i \in \{1, 2\}$, we have that $|E(Q_{i,1})| \ge |E(Q_{i,2})|$ and hence

$$|E(Q_{i,1})| \ge |E(P_i)|/2.$$

Let $P' = v_{1,1}Q_{1,1}u_1Pu_2Q_{2,1}v_{2,1}$. Note that P' is a path in G and

$$|E(P')| = |E(Q_{1,1})| + |E(P)| + |E(Q_{2,1})| \ge |E(P)| + |E(P_1)| > |E(P_1)|.$$

Hence P' is a longer path than P_1 , contradicting that P_1 is a longest path.

Things to remember:

- 1. Correctness
- 2. Clarity/Precision
- 3. Ease of Reading

Colorings

1.1 Coloring and Brooks' Theorem

coloring

A **coloring** of a graph G is an assignment of colors to vertices of G such that no two adjacent vertices receive the same color.

k-coloring

Let G be a graph. We say $\phi: V(G) \to [k]$ is a k-coloring of G if $\phi(u) \neq \phi(v)$ for every $uv \in E(G)$.

Since every graph G has a |V(G)|-coloring, we are interested in the minimum numbers of colors needed to color G.

chromatic number

The **chromatic number** of a graph G, denoted $\chi(G)$, is the minimum number k such that G has a k-coloring.

Then why coloring?

- Coloring is a foundational problem in graph labeling, wherein we study functions on V(G) according to constraints imposed on the graph (e.g. non-adjacent vertices are labeled differently)
- Coloring is a foundational problem in graph decomposition, wherein we seek to decompose V(G) into certain kinds of subgraphs (e.g. independent sets)
- Applications to maps, scheduling, job processing, frequency assignment (e.g. cell networks)
- Applications to algorithms (e.g. distributed computing)

However, coloring is hard.

A graph being an **independent set** is by definition equivalent to being **1-colorable**.

A graph being **bipartite** is by definition equivalent to being **2-colorable**. (Indeed coloring is a generalization of partite)

Proposition 1.1

G is 2-colorable if and only if G does not contain an odd cycle.

Moreover, there exists a poly-time algorithm to decide if G is 2-colorable.

Theorem: Karp (1972)

For each $k \geq 3$, deciding if a graph G has a k-coloring is NP-complete.

Indeed, 3-coloring is NP-complete even for planar graphs. Any constant factor approximation is also NP-complete.

Then what about the bounds on chromatic number?

As mentioned $\chi(G) \leq |V(G)|$.

Greedy Upper bound: $\chi(G) \leq \Delta(G) + 1$, where $\Delta(G)$ denotes the maximum degree of vertices in G. Why? By a greedy algorithm:

- Order the vertices of G arbitrarily, $v_1, \ldots, v_{|V(G)|}$.
- Color the vertices in order avoiding the colors of previously colored neighbors.
- Since each vertex has at most $\Delta(G)$ neighbors, there is always at least one color for the current vertex.

Lower bound: $\chi(G) \geq \omega(G)$, where $\omega(G)$ denotes the clique number of H, that is the maximum size of a clique in G.

Can we do better than the greedy upper bound?

No! The bound is tight for complete graphs: $\omega(K_n) = \chi(K_n) = (n-1) + 1 = \Delta(K_n) + 1$.

Can we do better if the graph is not complete?

No! The graph could have a component that is complete.

Can we do better if the graph is connected and not complete?

No! The bound is tight for odd cycles: $\chi(C_{2k+1}) = 3 = 2 + 1 = \Delta(C_{2k+1}) + 1$.

Can we do better if the graph is connected and neither complete nor an odd cycle? Yes!

Theorem 1.2: Brooks 1941

If G is connected, then $\chi(G) \leq \Delta(G)$ if and only if G is neither complete nor an odd cycle.

1.2 An Informal Proof of Brooks' Theorem

How to prove Brook's Theorem?

Actually there are 8 to 10 distinct ways to prove Brooks' Theorem. See the nice survey *Brooks' Theorem and Beyond* by Cranston and Rabern from 2014 for more details. Here are some of those methods: Greedy Coloring, Kempe Chains, List Coloring, Alon-Tarsi Theorem, Kernel Perfection, Potential Method.

Today we give an informal proof sketch via the Greedy Coloring Method - arguably the most direct, brute-force of the approaches. (See Diestel for the Kempe Chain proof).

The idea is to try a method (greedy coloring) we know works for a similar problem ($\Delta+1$ -coloring), and ask under what conditions can we use this to get the desired outcome (a Δ -coloring).

In the other cases we cannot apply greedy, we instead do **reductions**: that is, we show how to inductively color or to show that the graph is one of the exceptional outcomes (clique or odd cycle).

Alternatively, we could have built up a suite/library of reductions that work, and then tried to find a method to deal a finishing blow (i.e. to handle the cases we could not reduce).

First Reduction G has a cutvertex v. Then v separates G into two smaller graphs G_1 and G_2 .

By minimality of G, G_i has a Δ -coloring ϕ_i , $i \in 1, 2$.

This only works if neither graph is $K_{\Delta+1}$ or odd cycle when $\Delta=2$.

Now permute the colors in ϕ_2 so that $\phi_1(v) = \phi_2(v)$. Then $\phi_1 \cup \phi_2$ yields a Δ -coloring of G, a contradiction.

Second Reduction G has a cutset $\{u, v\}$.

Try the same trick. Say $\{u, v\}$ separates G into two smaller graphs G_1 and G_2 . By induction or minimum counterexample, each of G_1 , G_2 has a Δ -coloring ϕ_i , $i \in 1, 2$.

If $uv \in E(G)$, then we can permute the colorings so that $\phi_1(u) = \phi_2(u)$ and $\phi_1(v) = \phi_2(v)$.

This fails if $uv \notin E(G)$. Because we may have u, v colored the same in one coloring and different in the order and no permuting will fix this! So we can add the edge uv to both G_1 and G_2 !

Have to show $\Delta(G_1 + uv)$, $\Delta(G_2 + uv) \leq \Delta(G)$. We also have to ensure that neither G_1 nor G_2 is complete (or odd cycle in $\Delta(G) = 2$ case).

Then we assume G is 3-connected. We now turn to the finishing blow (greedy). The greedy fails when a vertex has $\Delta(G)$ earlier neighbors in the ordering, each with a different color from $\{1, \ldots, \Delta(G)\}$.

Can we find an ordering where most of the vertices have at most $\Delta(G) - 1$ earlier neighbors? Yes for all but the last vertex in the ordering! We can fix a root, then take a depth-first search tree ordering from the root. Reverse it!

Now all vertices but the last will be fine in greedy.

If $\deg(v) \leq \Delta(G) - 1$, then we can ensure greedy does not fail at the last vertex v. Otherwise, we ensure that two of its neighbors x and y are colored the same (and hence there is a color left for v when it is v's turn). These two are two non-adjacent neighbors, which guaranteed to exist as G is not $K_{\Delta+1}$.

We can put x, y first in the ordering to guarantee x and y are colored the same. Then we can color them as we desire (since non-adjacent), say both with color 1.

Use the reverse of a depth-first search tree ordering of $G - \{x, y\}$ with root v, then we finish the ordering so every vertex in $V(G) \setminus \{x, y, v\}$ has at most $\Delta(G) - 1$ earlier neighbors. Since $G - \{x, y\}$ is connected as G is 3-connected, then this ordering exist.

1.3 A Formal Proof of Brooks' Theorem

Let us codify our ordering fact as a proposition.

Proposition 1.3: Ordering Proposition

If G is a connected graph on n vertices and $v \in V(G)$, then there exists an ordering $v_1, \ldots, v_n = v$ of V(G) such that $|N(v_i) \cap \{v_{i+1}, \ldots, v_n\}| \ge 1$ for all $i \in [n-1]$.

Proof:

Reverse a depth-first search tree ordering from root v. Or more formally:

We proceed by induction on |V(G)|. If |V(G)| = 1, then the ordering v is as desired. So we assume that $|V(G)| \ge 2$. Let G_1, \ldots, G_k be the components of G - v. As G is connected, there exists neighbors u_1, \ldots, u_k of v such that $u_i \in V(G_i)$ for each $i \in [k]$.

For each $i \in [k]$, there exists by induction applied to G_i and u_i , an ordering σ_i of $V(G_i)$ as prescribed by the proposition. Let σ be the ordering of V(G) obtained by concatenating the σ_i and finally v. Then σ is as desired.

Now we are ready to prove Brooks' Theorem:

Suppose not. Let G a counterexample with |V(G)| minimized. If $\Delta(G) \leq 2$, the result is standard. So we assume that $\Delta(G) \geq 3$.

Claim 1 There does not exist a cutvertex of G.

Proof:

Suppose not. That is, there exists a cutvertex v of G and two connected subgraphs G_1, G_2 of G such that $G_1 \cap G_2 = \{v\}, G_1 \cup G_2 = G$ and $|V(G_i)| < |V(G)|$ for each $i \in [2]$.

Index

C	K
chromatic number 4 coloring 4	k-coloring 4