Ceng 471 Cryptography

Symmetrical Cryptosystems DES

Asst. Prof. Dr. Serap ŞAHİN Izmir Institute of Technology

Reference Book: Introduction to Cryptography with Coding Theory 2nd Ed., W.Trappe, L. Washington

Reference Presentations:

Lecture slides of Assoc. Prof. Dr. Ahmet Koltuksuz for "Symmetric Cryptography". Lecture slides by Lawrie Brown for "Cryptography and Network Security", 5/e, by William Stallings, Chapter 3.

Introduction

Substitution

Symmetrical

Ceasar Cipher, 60 B.C.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Substitution

Monoalphabetical Substitution

-MCRKHAT LNBDEFĢI J ZPOYŞÖUŞÇİĞÜV

-ABCÇDE FGĞHI İ JKLMNOÖPRSŞTUÜVYZ

_Plaintext : TÜRKİYE

_Ciphertext : ŞİSGEÜA

Substitution

Polylphabetical Substitution: Vigenere Table

Symmetrical Symples | Partical |

Plaintext:TÜRKİYE

T=00

Ü=01

R=02

K=03

i=04

Y=05

E=06

Ciphertext:TV\$NMÇİ

```
ABCCDEFGĞHIİJKLMNOÖPRSŞŢ
A A B C Ç D E F G Ğ H I İ J K L M N O Ö P R S Ş (T)
BBCÇDEFGĞHIİJKLMNOÖPRŞŞTÜÜVYZA 01
C C Ç D E F G Ğ H I İ J K L M N O Ö P R S (Ş) T U Ü V Y Z A B 02
C C D E F G Ğ H I İ J K L M N O Ö P R S Ş T U Ü V Y Z A B C 03
D D E F G Ğ H I İ J K L M N Ö Ö P R S Ş T U Ü V Y Z A B Ç
E E F G Ğ H L İ J K L M N O Ö P R S Ş T U Ü V Y Z A B C Ç
FFGĞHI(İ) JKLMNOÖPRSŞTUÜVYZABCÇ DE06
G G Ğ H I İ J K L M N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F 07
ĞĞHIİJKLMNOÖPRSŞTUÜVYZABCÇDEFG08
H H I İ J K L M N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ 09
I I İ J K L M N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H 10
İ İ J K L M N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I 11
J J K L M N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I İ 12
KKLMNOÖPRSŞTUÜVYZABCÇDEFGĞHIİJ13
L L M N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I İ J K 14
M M N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I İ J K L 15
N N O Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I İ J K L M 16
O O Ö P R S Ş T U Ü V Y Z A B C C D E F G Ğ H I İ J K L M N 17
Ö Ö P R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I İ J K L M N O 18
PPRSŞTUÜVYZABCÇDEFGĞHIİJKLMNOÖ19
R R S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I İ J K L M N O Ö P 20
S S Ş T U Ü V Y Z A B C Ç D E F G Ğ H I I J K L M N O Ö P R 21
Ş Ş T U Ü V Y Z A B C Ç D E F G Ğ H I İ J K L M N O Ö P R S 22
T T U Ü V Y Z A B C Ç D E F G Ğ H I İ J K L M N O Ö P R S Ş 23
U U Ü V Y Z A B C Ç D E F G Ğ H I İ J K L M N O Ö P R S Ş T 24
ÜÜVYZABCÇDEFGĞHIİJKLMNOÖPRSŞTU25
V V Y Z A B C C D E F G Ğ H I İ J K L M N O Ö P R S Ş T U Ü 26
Y Y Z A B C C D E F G Ğ H I İ J K L M N O Ö P R S Ş T U Ü V 27
Z Z A B C C D E F G Ğ H I İ J K L M N O Ö P R S Ş T U Ü V Y 28
```

Substitution

One Time Pad, Vernam Cipher, 1926

Step #1: Digitize the Alphabet

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
```

Step #2: Encryption

Plaintext	:	\mathbf{H}	${f E}$	${f L}$	${f L}$	O
(1) Digitalization	:	8	5	12	12	15
(2) Random Numbers	:	12	48	28	32	80
Summation of 1 & 2	:	20	53	40	44	95
Modulus 26	:	20	1	14	18	17
Ciphertext	:	${f T}$	${f A}$	\mathbf{N}	\mathbf{R}	Q

Substitution

One Time Pad, Vernam Cipher, 1926

- The only mathematically proven unbreakable cipher. Proven by Shannon.
- With the conditions of :The length of the key should be equal to that of the length of the message.
- Each key should only be used once.
- Thus very popular with the intelligence agencies.

Transposition:
Permutation
Simple Permutation
Plaintext

Plaintext : KRİPTOGRAFİ

Index : 1 2 3 4 5 6

Permutation (key): 43 6 2 5 1

Encryption : KR İ P TO GRAF İ -

1 2 3 4 5 6 1 2 3 4 5 6

4 3 6 2 5 1 4 3 6 2 5 1

Ciphertext : P İ O R T K F A - R İ G

Symmetric Cryptography Modern Block Ciphers

- now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide secrecy services
- focus on DES (Data Encryption Standard)
 to illustrate block cipher design principles

DES History

- IBM developed Lucifer cipher
 - by team led by Horst Feistel in late 60's
 - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard for unclassified computer data
- IBM submitted their revised Lucifer which was eventually accepted as the DES

Data Encryption Standard (DES)

- Used in most EFT and EFTPOS from banking industry
 - It was reconfirmed as a standard for 5 years twice
 - Currently 3DES is recommended
- DES became a federal standard in November 76
 - adopted in 1977 by National Bureau of Standards NBS (now NIST – National Institutes of Standards and Technologies)
 - As Federal Information Processing Standard 46 FIPS PUB 46
 - ANSI X3.92-1981 (hardware + software)
 - ANSI X3.106-1983 (modes of operation)
 - Australia AS2805.5-1985
- encrypts 64-bit data using 56-bit key

DES Design Criteria

- The standard is public, the design criteria is classified
- One of the biggest controversies is the key size (56 bits)
 - W Diffie, M Hellman "Exhaustive Cryptanalysis of the NBS Data Encryption Standard" IEEE Computer 10(6), June 1977, pp74-84
 - M Hellman "DES will be totally insecure within ten years"
 IEEE Spectrum 16(7), Jul 1979, pp 31-41
- Another controversy: is there a back door?

Block vs Stream Ciphers

- Block ciphers process messages in blocks, each of which is then en/decrypted
- Like a substitution on very big characters
 - 64-bits or more
- Stream ciphers process messages a bit or byte at a time when en/decrypting
- Many current ciphers are block ciphers
 - better analyzed
 - broader range of applications

Block vs Stream Ciphers

Block Cipher Principles

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits,
- most symmetric block ciphers are based on a **Feistel Cipher Structure.**
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2⁶⁴ entries for a 64-bit block
 - In general, for an *n*-bit general substitution block cipher, the size of the key is $n \times 2^n$. For a 64-bit block, which is a desirable length to thwart statistical attacks, the key size is $64 \times 2^{64} = 2^{70} = 10^{21}$ bits.
- instead create from smaller building blocks
- using idea of a product cipher

Ideal Block Cipher

The encryption and decryption mappings can be defined by a tabulation

A 4-bit input produces one of 16 possible input states, which is mapped by the substitution cipher into a unique one of 16 possible output states, each of which is represented by 4 ciphertext bits.

It illustrates a tiny 4-bit substitution to show that each possible input can be arbitrarily mapped to any output - which is why its complexity grows so rapidly.

The encryption and decryption mappings can be defined by a tabulation, as shown in this Figure.

Claude Shannon and Substitution-Permutation Ciphers

- The concept of a product cipher, which is the execution of two or more simple ciphers in sequence in such a way that the final result or product is cryptographically stronger than any of the component ciphers.
- Claude Shannon introduced idea of substitution-permutation (S-P) networks in 1949 paper.
- This form basis of modern block ciphers.
- S-P nets are based on the two primitive cryptographic operations seen before:
 - substitution (S-box)
 - permutation (P-box)
 - Critically, it was the technique of layering groups of S-boxes separated by a larger P-box to form the S-P network, a complex form of a product cipher.
- provide *confusion* & *diffusion* of message & key

Confusion and Diffusion

- Cipher needs to completely obscure statistical properties of original message,
- A one-time pad does this.
- More practically Shannon suggested combining S & P elements to obtain:
 - diffusion The mechanism of diffusion seeks to make the statistical relationship between the plaintext and ciphertext as complex as possible in order to thwart attempts to deduce the key.
 - confusion makes relationship between ciphertext and key as complex as possible Key confusion Ciphertext
- At the simplest level, diffusion is achieved through numerous permutations and confusions is achieved through the XOR operation.

Confusion and Diffusion

Good confusion can only be achieved

Key confusion Ciphertext

- when each character of the ciphertext depends on several parts of the key, and
- this dependence appears to be random to the observer.

Ciphers that do not offer much confusion (such as Vigen`ere cipher) are vulnerable to frequency analysis.

Confusion and Diffusion

Plaintext

diffusior

Ciphertext

- Good diffusion spreads the influence of a single plaintext letter over many ciphertext letters.
 - In terms of the frequency statistics of letters, diagrams, etc. in the plaintext, diffusion randomly spreads them across several characters in the ciphertext.
 - This means that much more ciphertexts are needed to do a meaningful statistical attack on the cipher.

Feistel Cipher Structure

- Horst Feistel; working at IBM Thomas J Watson Research Labs devised the **feistel cipher** (early 70`s)
 - His main contributions was the invention of a suitable structure which adapted Shannon's S-P network in an easily inverted structure.
- partitions input block into two halves
 - process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves
- Essentially the same h/w or s/w is used for both encryption and decryption, with just a slight change in how the keys are used. One layer of S-boxes and the following P-box are used to form the round function.

Feistel Cipher Structure

Feistel Cipher Design Elements

- **block size**; increasing size improves security, but slows cipher
- **key size**; increasing size improves security, makes exhaustive key searching harder, but may slow cipher
- **number of rounds**; increasing number improves security, but slows cipher
- subkey generation algorithm; greater complexity can make analysis harder, but slows cipher
- round function; greater complexity can make analysis harder, but slows cipher
- fast software en/decryption; more recent concern for practical use
- ease of analysis; for easier validation & testing of strength

DES is a block cipher

• Encryption and decryption with DES

General structure of DES

Initial and final permutation steps in DES

Initial and final permutation tables

1st bit is permuted to
40th bit position.
58th bit is permuted to
1st bit position

40th bit is permuted to 1th bit position.

/ Initial Permutation	Final Permutation			
58 50 42 34 26 18 10 02	40 08 48 16 56 24 64 32			
60 52 44 36 28 20 12 04	39 07 47 15 55 23 63 31			
62 54 46 38 30 22 14 06	38 06 46 14 54 22 62 30			
64 56 48 40 32 24 16 08	37 05 45 13 53 21 61 29			
57 49 41 33 25 17 09 01	36 04 44 12 52 20 60 28			
59 51 43 35 27 19 11 03	35 03 43 11 51 19 59 27			
61 53 45 37 29 21 13 05	34 02 42 10 50 18 58 26			
63 55 47 39 31 23 15 07	33 01 41 09 49 17 57 25			

Example 1/a

Find the output of the initial permutation box when the input is given in hexadecimal as:

Example 1/b

Prove that the initial and final permutations are the inverse of each other by finding the output of the final permutation if the input is $0x0002\ 0000\ 0000\ 0001$

Solution

The input has only two 1s; the output must also have only two 1s. Using tables, we can find the output related to these two bits. Bit 15 in the input becomes bit 63 in the output. Bit 64 in the input becomes bit 25 in the output. So the output has only two 1s, bit 25 and bit 63. The result in hexadecimal is

Final Permutation							
40 08 48	8 16 56	24, 64	32				
39 07 4	7 15 55	23 63	31				
38 06 40	6 14 54	22 62	30				
37 05 43	5 13 53	21 61	29				
36 04 4	4 12 52	20 60	28				
35 03 43	3 11 51	19 59	27				
34 02 42	2 10 50	18 58	26				
33 01 4	1 09 49	17 57	25				

0x0000 0080 0000 0002

Note

The initial and final permutations are straight P-boxes that are inverses of each other.

They have no cryptography significance in DES.

Key Generation

Key generation

Block:DES-1977

DES Rounds

DES uses 16 rounds. Each round of DES is a Feistel cipher.
32 bits 32 bits

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output.

Expansion P-box

Since R_{I-1} is a 32-bit input and K_I is a 48-bit key, we first need to expand R_{I-1} to 48 bits.

Expansion permutation

EXPANSION PERMUTATION (32 -> 48)

XOR

Whitener (XOR)

After the expansion permutation, DES uses the XOR operation on the expanded right section and the round key.

Note that both the right section and the key are 48-bits in length. Also note that the round key is used only in this operation.

S-Boxes

The S-boxes do the real mixing (confusion).

DES uses 8 S-boxes, each with a 6-bit input and a 4-bit output.

S-boxes

S-Box Rule

13 **EXAMPLE S-BOX USAGE:** 15 *** s2 *** 'T TO THE 5th. S-BOX IS ==> 110011 12 11 1 13 ST BITS 13 IS 3rd, ROW $(15)_{10} = (1111)_2$ 13 11 13 12 11 **K BITS** *** s5 *** JRM 1001 12 WHICH MEANS 9th. COLUMN 2 12 2 10 3rd. ROW, 9th. COLUMN OF THE 5th. S-BOX IS ==> 15, AND SO 13 (15) = (1111)10 13 11 11 SO THE VALUE 1111 IS SUBSTITUED FOR 110011 11

Symmetrix

Block:DES-1977

DES Decryption

- Decrypt must unwind steps of data computation
- With feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 - **–**
 - 16th round with SK1 undoes 1st encrypt round
 - Then final FP undoes initial encryption IP
 - Thus recovering original data value

DES Decryption

DES cipher and reverse cipher for the first approach

Example 2

Key: AABB09182736CCDD

We choose a random plaintext block and a random key, and determine what the ciphertext block would be (all in hexadecimal):

Plaintext: 123456ABCD132536

CipherText: C0B7A8D05F3A829C

Table Trace of data for Example 2

Plaintext: 123456ABCD132536

After initial permutation:14A7D67818CA18AD

After splitting: $L_0=14A7D678$ $R_0=18CA18AD$

Round	Left	Right	Round Key	
Round 1	18CA18AD	5A78E394	194CD072DE8C	
Round 2	5A78E394	4A1210F6	4568581ABCCE	
Round 3	4A1210F6	B8089591	06EDA4ACF5B5	
Round 4	B8089591	236779C2	DA2D032B6EE3	

Example 2

Table Trace of data for Example 2(Continue)

Round 5	236779C2	A15A4B87	69A629FEC913
Round 6	A15A4B87	2E8F9C65	C1948E87475E
Round 7	2E8F9C65	A9FC20A3	708AD2DDB3C0
Round 8	A9FC20A3	308BEE97	34F822F0C66D
Round 9	308BEE97	10AF9D37	84BB4473DCCC
Round 10	10AF9D37	6CA6CB20	02765708B5BF
Round 11	6CA6CB20	FF3C485F	6D5560AF7CA5
Round 12	FF3C485F	22A5963B	C2C1E96A4BF3
Round 13	22A5963B	387CCDAA	99C31397C91F
Round 14	387CCDAA	BD2DD2AB	251B8BC717D0
Round 15	BD2DD2AB	CF26B472	3330C5D9A36D
Round 16	19BA9212	CF26B472	181C5D75C66D

After combination: 19BA9212CF26B472

Ciphertext: C0B7A8D05F3A829C

(after final permutation)

Example 3

Let us see how Bob, at the destination, can decipher the ciphertext received from Alice using the same key. Table shows some interesting points.

Ciphertext: C0B7A8D05F3A829C							
After initial permutation: 19BA9212CF26B472 After splitting: L_0 =19BA9212 R_0 =CF26B472							
Round	Left	Right	Round Key				
Round 1	CF26B472	BD2DD2AB	181C5D75C66D				
Round 2	BD2DD2AB	387CCDAA	3330C5D9A36D				
Round 15	5A78E394	18CA18AD	4568581ABCCE				
Round 16 14A7D678 18CA18AD 194CD072DE8C							
After combination: 14A7D67818CA18AD							
Plaintext:123456ABCD132536 (after final permutation)							

Animation Link: http://www.cs.bham.ac.uk/research/projects/lemsys/DES/DESPage.jsp

DES Example

Plaintext: 02468aceeca86420

Key: 0f1571c947d9e859

Ciphertext: da02ce3a89ecac3

The first row shows the 32-bit values of the left and right halves of data after the initial permutation.

The next 16 rows show the results after each round.

Also shown is the value of the 48-bit subkey generated for each round.

The final row shows the left and right-hand values after the inverse initial permutation. These two values combined form the ciphertext.

Round	K _i	L_i	R_i
Bb IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
\mathbf{IP}^{-1}		da02ce3a	89ecac3b

Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the plaintext or the key should produce a significant change in the ciphertext.

- Key desirable property of encryption algorithm
- Where a change of **one** input or key bit results in changing approx **half** output bits
- Making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

Avalanche in DES

Table shows the result when the fourth bit of the plaintext is changed. The plaintext is 12468aceeca86420. The second column shows the intermediate 64-bit values at the end of each round for the two plaintexts. The third column shows the number of bits that differ between the two intermediate values. The table shows that after just three rounds, 18 bits differ between the two blocks.

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32

057cde97d7683f2a

Completeness Effect

Completeness effect means that each bit of the ciphertext needs to depend on many bits on the plaintext.

An Exercise

Q. Explain why the cipher $e_k(m) = k \oplus m$ and $d_k(c) = k \oplus c$ defined by XOR of bit strings is not secure against a chosen plaintext attack.

Demonstrate your attack by finding the private key used to encrypt the 16-bit ciphertext c = 100101000101111 if you know that the corresponding plaintext is p=0010010000101100.

A.

С	1	0	0	1	0	1	0	0	0	1	0	1	0	1	1	1
k	1	0	1	1	0	0	0	0	0	1	1	0	1	0	1	1
р	0	0	1	0	0	1	0	0	0	0	1	0	1	1	0	0

DES Weaknesses

During the last few years critics have found some weaknesses in DES.

Weaknesses in Cipher Design

- 1. Weaknesses in S-boxes
- 2. Weaknesses in P-boxes
- 3. Weaknesses in Key

Table 6.18Weak keys

Keys before parities drop (64 bits)	Actual key (56 bits)
0101 0101 0101 0101	0000000 0000000
1F1F 1F1F 0E0E 0E0E	0000000 FFFFFFF
E0E0 E0E0 F1F1 F1F1	FFFFFF 000000
FEFE FEFE FEFE	FFFFFFF FFFFFFF

Strength of DES – Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (Electronic Frontier Foundation
 EFF, "DES cracker" machine, \$250,000) in a few days
 - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

Let us try the first weak key in the Table to encrypt a block two times. After two encryptions with the same key the original plaintext block is created. Note that we have used the encryption algorithm two times, not one encryption followed by another decryption.

Key: 0x0101010101010101

Plaintext: 0x1234567887654321 Ciphertext: 0x814FE938589154F7

Key: 0x0101010101010101

Plaintext: 0x814FE938589154F7 Ciphertext: 0x1234567887654321

Double encryption and decryption with a weak key

 Table 6.19
 Semi-weak keys

First key in the pair	Second key in the pair
01FE 01FE 01FE	FE01 FE01 FE01
1FE0 1FE0 0EF1 0EF1	E01F E01F F10E F10E
01E0 01E1 01F1 01F1	E001 E001 F101 F101
1FFE 1FFE OEFE OEFE	FE1F FE1F FE0E FE0E
011F 011F 010E 010E	1F01 1F01 0E01 0E01
EOFE EOFE F1FE F1FE	FEEO FEEO FEF1 FEF1

Round key 1	9153E54319BD	1	6EAC1ABCE642
Round key 2	6EAC1ABCE642	v	9153E54319BD
Round key 3	6EAC1ABCE642		9153E54319BD
Round key 4	6EAC1ABCE642		9153E54319BD
Round key 5	6EAC1ABCE642		9153E54319BD
Round key 6	6EAC1ABCE642		9153E54319BD
Round key 7	6EAC1ABCE642		9153E54319BD
Round key 8	6EAC1ABCE642	\downarrow	9153E54319BD
Round key 9	9153E54319BD	^	6EAC1ABCE642
Round key 10	9153E54319BD		6EAC1ABCE642
Round key 11	9153E54319BD		6EAC1ABCE642
Round key 12	9153E54319BD		6EAC1ABCE642
Round key 13	9153E54319BD		6EAC1ABCE642
Round key 14	9153E54319BD		6EAC1ABCE642
Round key 15	9153E54319BD	V	6EAC1ABCE642
Round key 16	6EAC1ABCE642	\bigvee	9153E54319BD

Security of DES

- Now have several analytic attacks on DES
- These utilise some deep structure of the cipher
 - by gathering information about encryptions
 - can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest
- Generally these are statistical attacks
 - differential cryptanalysis
 - linear cryptanalysis
 - related key attacks

Brute-Force Attack

We have discussed the weakness of short cipher key in DES.

Combining this weakness with the key complement weakness, it is clear that DES can be broken using 2^{55} encryptions.

Multiple Encryption with DES

- In 2001, NIST published the Advanced Encryption Standard (AES) to replace DES.
- But users in commerce and finance are not ready to give up on DES.
- As a temporary solution to DES's security problem, one may encrypt a message (with DES) multiple times using multiple keys:
 - 2DES is not much securer than the regular DES
 - So, 3DES with either 2 or 3 keys is used

3DES with 2 keys

• A straightforward implementation would be:

$$c := E_{k_1} \left(E_{k_2} \left(E_{k_1} (m) \right) \right)$$

- In practice: $c := E_{k_1} \left(D_{k_2} \left(E_{k_1}(m) \right) \right)$
 - ☐ Also referred to as EDE encryption
- Reason: if $k_1 = k_2$, then 3DES = 1DES. Thus, a 3DES software can be used as a single-DES.
- Standardized in ANSI X9.17 & ISO 8732.
- No practical attacks are known.

3DES with 3 keys

- Encryption: $c := E_{k_3} \left(D_{k_2} \left(E_{k_1}(m) \right) \right)$.
- If $k_1 = k_3$, it becomes 3DES with 2 keys.
- If $k_1 = k_2 = k_3$, it becomes the regular DES.
- So, it is backward compatible with both 3DES with 2 keys and the regular DES.
- Some internet applications adopt 3DES with three keys; e.g. PGP and S / MIME.

Summary

- Have considered:
 - Block vs stream ciphers
 - Feistel cipher design & structure
 - DES
 - details
 - strength
 - DES attack types
 - DES implementation types