Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Gabarito $3^{\underline{a}}$ Lista - MAT 241 - Cálculo III - 2018/II

1) (a)
$$\frac{1}{54}$$

(e)
$$\frac{1}{2} - \frac{1}{2e^4}$$

(b) 0

(c)
$$\frac{e}{2} + \frac{1}{2e}$$

 $(f) \ \frac{1-\cos 1}{2}$

(d) $\frac{26}{9}$

(g) $\sin 4 - 4\cos 4$

2) (a) $\frac{1}{8}$

(c) $\frac{2}{3}$

(e) π

(h) $1 - \cos 1$

(b) $\frac{4}{3}\pi a^3$ (d) π 3) (a) $\frac{9\pi^2}{16}$ (b) $\frac{2}{3}$

(c) 2π

4) (a) $\frac{4\sqrt{2}\pi}{3}$

5) Demonstração.

6) $\frac{4\pi a^3}{3}$

7) $k = 2\sqrt{4 - 2\sqrt[3]{2}}$

8) $\frac{4\pi abc}{3}$

9) (a) $\frac{32(2\sqrt{2}-1)}{9}$

(b) $3(\cos 1 - \cos 4)$

10) R é uma elipse, S é um círculo de raio 1 e $\frac{\partial(x,y)}{\partial(u,v)}=ab$. 31) $8\left(\sqrt{e}-\frac{1}{e}\right)$

11) 117π

12) $\frac{1}{10}$

13) $\frac{4a^3}{2}$

14) A circunferência $x^2 + y^2 = a^2$ é levada na elipse

 $\frac{16u^2}{a^2} + \frac{v^2}{a^2} = 1.$

15) A reta x = c é levada na circunferência $u^2 + v^2 = e^{2c}$.

16) $\frac{\pi}{8}$

17) $\frac{3\sqrt{2}\pi}{2}$

18) $\frac{1}{3}$

19) $\frac{56}{3}\pi a^3$

20) $\frac{4a^3\pi(8-3\sqrt{3})}{3}$

21) $\frac{\pi}{12}$

22) (a) $\frac{e^2 - e + 1}{2}$

(c) $\ln 2 + \frac{1}{2}$

22) (a) $-\frac{1}{2}$ (b) $\frac{5}{12}$ (c) $\frac{5}{12}$ (d) $\frac{9}{4}$ 23) (a) $\frac{6}{35}$ (b) $\frac{31}{8}$ 24) (a) $\frac{e^9 - 1}{6}$ (b) $\frac{\ln 9}{3}$ 25) (a) 0 (b) $\frac{\pi \sec 9}{2}$ (c) $\frac{\pi(1 - e^{-4})}{2}$

26) (a) $\frac{\pi(1-\cos 9)}{2}$ (b) $\frac{2\sqrt{2}}{3}$

27) (a) 1

(b) $-\frac{2}{15}$

28) Demonstração.

29) $\frac{e}{2} - 1$

 $30) \ln 2$

32) $\frac{\pi}{3}(27-5\sqrt{5})$

33) 648

34) $\frac{1}{8}$

 $35) 36\pi$

36) $\int_{0}^{3} \int_{0}^{\frac{12-4z}{3}} \int_{0}^{\frac{12-3x-4z}{6}} dy dx dz$

37) $\frac{\pi}{8}$

38) $\frac{1}{24}$

39) $\frac{\pi a^3 h^2}{60}$

40) $\frac{2187\pi}{2}$

- 41) $\frac{16\pi(\sqrt{3}-1)}{3}$

- 45) 2π
- 46) $\frac{65}{4}\pi$

- 47) $\frac{8}{3}\pi$
- - (b) $\rho^2(\text{sen}^2 \varphi \cos^2 \theta + \cos^2 \varphi) = 9$

 - 49) (a) $\frac{4\pi}{3}$ (b) $\frac{(2-\sqrt{2})\pi}{3}$
 - 50) (a) $\frac{312000\pi}{7}$ (b) $\frac{15\pi}{16}$ (c) $\frac{1562\pi}{15}$