Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007 **2ª Aula Prática**

Soluções e algumas resoluções abreviadas

- a) Verdadeira;
 b) Falsa;
 c) Falsa;
 d) Falsa;
 e) Verdadeira;
 f) Falsa;
 j) Falsa;
 k) Verdadeira;
 l) Falsa;
 m) Verdadeira.
- 2. Seja a > 0. Se $a \ge 1$: como, para a > 0, $\frac{1}{a} > 0$, temos

$$a + \frac{1}{a} \ge 1 + 0 = 1.$$

Se 0 < a < 1: temos $a^{-1} > 1$, e da mesma forma

$$a + \frac{1}{a} > 0 + 1 > 1.$$

3. a) $1+3+\cdots+(2n-1)=n^2$, $\forall n \in \mathbb{N}_1$:

Para n=1, temos $2 \cdot 1 - 1 = 1$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}_1$, temos $1+3+\cdots+(2n-1)=n^2$.

Tese (a provar): $1+3+\cdots+(2n-1)+(2(n+1)-1)=(n+1)^2$.

Usando a hipótese de indução, temos:

$$1+3+\cdots+(2n-1)+(2(n+1)-1) = n^2+(2n+2-1) = n^2+2n+1 = (n+1)^2$$

como queríamos mostrar.

b) $\frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}$, para $n \in \mathbb{N}_1$:

Para n=1, temos $\frac{1}{1.2}=\frac{1}{1+1}\Leftrightarrow \frac{1}{2}=\frac{1}{2}$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}_1$, temos $\frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}$.

Tese (a provar): $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$

Usando a hipótese de indução, temos:

$$\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}.$$

como queríamos mostrar.

4. b) Dado $a \in \mathbb{R}$, $(a-1)(1+a+\cdots+a^n)=a^{n+1}-1$, para qualquer $n \in \mathbb{N}$: Para n=0, a condição acima fica a-1=a-1 que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$, $(a-1)(1+a+\cdots+a^n)=a^{n+1}-1$.

Tese: $(a-1)(1+a+\cdots+a^n+a^{n+1})=a^{n+2}-1$.

Simplificando o lado esquerdo da igualdade acima, temos que

$$(a-1)(1+a+\cdots+a^{n+1}) = (a-1)(1+a+\cdots+a^n)+(a-1)a^{n+1}.$$

Usando a hipótese de indução, temos agora

$$(a-1)(1+a+\cdots+a^{n+1}) = a^{n+1}-1+(a-1)a^{n+1}.$$

= $a^{n+1}-1+a^{n+2}-a^{n+1}$
= $a^{n+2}-1$,

como queríamos demonstrar.

c) $\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$, para qualquer $n \in \mathbb{N}$:

Para n=0, a condição fica $0=1-\frac{1}{1!} \Leftrightarrow 0=0,$ que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$, $\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$.

Tese: $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+2)!}$.

Usando a hipótese de indução,

$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} + \frac{n+1}{(n+2)!} = \left(1 - \frac{1}{(n+1)!}\right) + \left(\frac{n+1}{(n+2)!}\right)$$

$$= 1 - \frac{n+2-n-1}{(n+2)!}$$

$$= 1 - \frac{1}{(n+2)!}$$

como queríamos mostrar.

5. a) $(n+2)! \geq 2^{2n}$, para qualquer $n \in \mathbb{N}_1$:

Para n=1,temos que $3!\geq 4$ que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$ com $n \in \mathbb{N}_1$, temos $(n+2)! \ge 2^{2n}$.

Tese: $(n+3)! \ge 2^{2n+2}$.

Temos que $(n+3)! \ge 2^{2n+2} \Leftrightarrow (n+3)(n+2)! \ge 4 \cdot 2^{2n}$. Como, por hipótese de indução, $(n+2)! \ge 2^{2n}$ e, para $n \ge 1$, $n+3 \ge 4 > 0$, temos então que

$$(n+3)(n+2)! \ge 4 \cdot 2^{2n}$$

como queríamos mostrar.

b) $2n-3 < 2^{n-2}$, para todo o natural $n \ge 5$:

Para n=5, temos que $10-3<2^3\Leftrightarrow 7<8$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$ com $n \ge 5$, temos $2n-3 < 2^{n-2}$. Tese: $2(n+1)-3 < 2^{(n+1)-2}$.

Desenvolvendo o lado esquerdo da desigualdade acima e usando a hipótese, temos

$$2(n+1) - 3 = 2n + 2 - 3 = (2n-3) + 2 < 2^{n-2} + 2$$

Como, para $n \ge 5$, temos $2 < 2^{n-2}$, conclui-se que $2^{n-2} + 2 < 2^{n-2} + 2^{n-2} = 2 \cdot 2^{n-2} = 2^{n-1}$. Logo

$$2(n+1) - 3 < 2^{n-1}.$$

c) $7^n - 1$ é divisível por 6 para qualquer $n \in \mathbb{N}_1$:

Para n = 1, temos $7^1 - 1 = 6$, que é divísivel por 6.

Hipótese de indução: para certo $n \in \mathbb{N}_1$, $7^n - 1$ é divísivel por 6.

Tese: $7^{n+1} - 1$ é divísivel por 6.

Então:

$$7^{n+1} - 1 = 7 \cdot 7^n - 1 = (6+1)7^n - 1 = 6 \cdot 7^n + 7^n - 1.$$

Uma vez que $6 \cdot 7^n$ é divisível por 6, e, por hipótese de indução, $7^n - 1$ também, a sua soma será também divisível por 6.

6. Sendo a > -1 e $n \in \mathbb{N}$, $(1+a)^n > 1 + na$:

Para n=0, a condição fica $(1+a)^0 \ge 1 \Leftrightarrow 1 \ge 1$, que é uma proposição verdadeira.

Hipótese de indução: para certo $n \in \mathbb{N}$, $(1+a)^n \ge 1 + na$.

Tese: $(1+a)^{n+1} \ge 1 + (n+1)a$.

Desenvolvendo o lado esquerdo e usando a hipótese de indução, temos que

$$(1+a)^{n+1} = (1+a)^n (1+a) \ge (1+na)(1+a).$$

Como

 $(1+na)(1+a) = 1 + a + na + na^2 = 1 + (n+1)a + na^2 \ge 1 + (n+1)a$

uma vez que $na^2 \ge 0$, temos agora $(1+a)^{n+1} \ge 1 + (n+1)a$, como queríamos mostrar.

- 7. Seja P(n) a condição " $n^2 + 3n + 1$ é par".
 - a) Vamos ver que $P(n) \Rightarrow P(n+1)$, ou seja, que se n^2+3n+1 é par, também $(n+1)^2+3(n+1)+1$ é par. Temos

$$(n+1)^2 + 3(n+1) + 1 = n^2 + 2n + 1 + 3n + 3 + 1 = (n^2 + 3n + 1) + 2n + 4.$$

Assumindo que $n^2 + 3n + 1$ é par, como 2n + 4 = 2(n + 2) é também par, conclui-se que $(n+1)^2 + 3(n+1) + 1$ sendo uma soma de números pares será par.

- b) Não.
- c) Indução... (Como acima: se $n^2 + 3n + 1$ é ímpar, $(n+1)^2 + 3(n+1) + 1$ será uma soma de um número ímpar com um número par, e será portanto ímpar. Mas neste caso P(0) é verdadeira: 1 é ímpar.)
- 10. Para n = 1, temos $u_1 = \sqrt{2^1 1} = 1$.

Hipótese de indução: para certo $n \in \mathbb{N}$, $u_n = \sqrt{2^n - 1}$.

Tese: $u_{n+1} = \sqrt{2^{n+1} - 1}$.

Temos por hipótese, $u_n^2=2^n-1$. Assim, usando a fórmula de recorrência,

$$u_{n+1} = \sqrt{2u_n^2 + 1} = \sqrt{2(2^n - 1) + 1} = \sqrt{2^{n+1} - 2 + 1} = \sqrt{2^{n+1} - 1},$$

como queríamos mostrar.

11. Seja $n \in \mathbb{N}$ ímpar, com n=2k+1, para algum $k \in \mathbb{N}$. Então, $n^2=(2k+1)^2=4k^2+4k+1$ é ímpar, uma vez que $4k^2+4k$ é par para qualquer k.

Conclui-se que se n^2 é par, n também será.

12. Sejam $x,y\in\mathbb{Q}$, ou seja $x=\frac{p}{q},\ y=\frac{r}{s}$, com $p,q,r,s\in\mathbb{Z}$. Então, $-x=\frac{-p}{q},\ x^{-1}=\frac{q}{p},\ x+y=\frac{p}{q}+\frac{r}{s}=\frac{ps+rq}{qs},\ \mathrm{logo}\ -x,\ x^{-1},\ x+y\in\mathbb{Q}.$

13. Seja $x \neq 0$ um racional e y um irracional. Se x+y fosse racional, uma vez que a soma e a subtracção de dois racionais é também racional, teriamos que (x+y)-x seria racional. Mas (x+y)-x=y, logo y seria racional, o que contradiz a hipótese. Conclui-se que x+y é irracional.

Para mostrar x-y, xy e y/x são irracionais, a prova é semelhante (usando o facto da soma, divisão e multiplicação de racionais ser racional).

Sendo x e y irracionais, a sua soma, diferença, produto e quociente podem ser ou não ser irracionais: por exemplo: com $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$,

$$\sqrt{2}+\sqrt{2}=2\sqrt{2}\in\mathbb{R}\setminus\mathbb{Q},\quad \sqrt{2}+(-\sqrt{2})=0\in\mathbb{Q},\quad \sqrt{2}\sqrt{2}=2\in\mathbb{Q},\quad \text{etc.}$$