Ćwiczenie 5: Parametry zbiornika i prawa przepływu

1. Parametry zbiornika

- Dane geometryczne zbiornika:
 - średnica zbiornika D=218 mm,
 - średnica poziomej rurki wypływowej d=9 mm,
 - długość poziomej rurki wypływowej L=400 mm,
 - oś rurki wypływowej jest na wysokości $h_r=5\ \mathrm{mm}$ nad dnem zbiornika,
 - początkowa wysokość lustra wody (liczona od pozimu osi rurki wypływowej) $h_0=130~\mathrm{mm}.$
- Na dnie zbiornika leży (dokładniej: stoi na większej podstawie) stożek ścięty:
 - średnica dolna $D_s=90$ mm,
 - średnica górna $d_s=50$ mm,
 - wysokość $h_s = 45$ mm.

- 2. Teoretyczny opis zjawiska wypływu wody ze zbiornika przez rurkę
 - Równanie Bernoulliego,
 - Opory przepływuRównanie Darcy'ego-Weisbacha ma następujące równoważne sobie postacie:

$$\Delta p = \lambda \frac{L}{d} \frac{\rho v^2}{2}$$

lub

$$\Delta h = \lambda \frac{L}{d} \frac{v^2}{2q}$$

gdzie:

- Δp -- spadek ciśnienia [Pa],
- Δh wysokość strat ciśnienia [m],
- λ współczynnik oporu zależny od liczby Reynoldsa Re i chropowatości względnej rury [bezwymiarowy],
- L długość rurki [m],
- d -- średnica rurki [m],
- ρ gęstość wody [kg/m^3],
- v prędkość wody [m/s],
- g -- przyspieszenie ziemskie $[m/s^2]$.

Współczynnik oporu λ :

$$\lambda = \frac{a}{\mathrm{Re}}$$

Współczynnik a dla przewodów kołowych a=64.

Liczba Reynoldsa dla przepływu w przewodzie zamkniętym dana jest wzorem:

$$Re = \frac{vd\rho}{\eta}$$

gdzie: η – lepkość dynamiczna płynu [$Pa\ s$].

Zależność lepkości dynamicznej wody od temperatury:

T [°C]	η [mPa s]
0	1,789
5	1,515
10	1,306
15	1,141
20	1,002
40	0,654
60	0,468
75	0,380
100	0,280