Register map for the OpenHT

Wojciech Kaczmarski, SP5WWP M17 Project, March 2023

1 Control registers

1.1 Control register 1

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000	-		MOD]	IO0_SRC		RESERVED		E D	PD		DEMOD		BA	ND
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Bits [1:0] – **BAND** – select operating band by using one of the DDR receivers

BAND	Value	Description
	<u>0x0</u>	Sub-GHz (default)
	0x1	2.4 GHz
	0x2	invalid
	0x3	invalid

Bits [4:2] – **DEMOD** – select the demodulator

DEMOD	Value	Description
	<u>0x0</u>	FM (default)
	0x1	AM
	0x2	SSB
	0x3 to 0x7	reserved

Bit [5] – **PD** – Phase dithering for the FM transmitter submodule

PD	Value	Description
	<u>0x0</u>	phase dithering disabled (default)
	0x1	phase dithering enabled

Bits [8:6] – **RESERVED**

RESERVED	Value	Description
	<u>0x0</u>	-
	0x1 to 0x7	-

Bit [11:9] – **IO0_SRC** – IO0 signal source mux

IO0_SRC	Value	Description
	<u>0x0</u>	Logic low (default)
	0x1	DRDY signal
	0x2 to 0x7	reserved

Bits [14:12] – **MOD** – select modulation

MOD	Value	Description
	<u>0x0</u>	FM (default)
	0x1	AM
	0x2	SSB
	0x3 to 0x7	invalid

Bit [15] – reserved.

1.2 Control register 2

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0001	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW															

Reserved for future use.

1.3 I branch offset null

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0002	MSB						1	6-bit sign	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Signed 16-bit value to be added to the I branch after applying predistortion.

1.4 Q branch offset null

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0003	MSB						1	6-bit sign	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Signed 16-bit value to be added to the Q branch after applying predistortion.

1.5 Digital predistortion register 1

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0004	MSB						1	6-bit sigr	ed intege	er						LSB
0x4000	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Polynomial coefficient p_1 value of the formula below:

$$D(x) = p_1 x + p_2 sgn(x) x^2 + p_3 x^3$$

Signed, fixed point value, where 0x4000 equals positive unity, "+1.0" (default value). This applies to all 3 registers holding the predistortion coefficients. To disable the predistortion, set p_1 to 0x4000 (+1.0) and both p_2 and p_3 to 0x0000 (0.0).

1.6 Digital predistortion register 2

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0005	MSB						1	6-bit sign	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Polynomial coefficient p_2 value. See 1.5 for details. Default value is 0x0000 (zero).

1.7 Digital predistortion register 3

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0006	MSB						1	.6-bit sigr	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Polynomial coefficient p_3 value. See 1.5 for details. Default value is 0x0000 (zero).

2 Status registers

2.1 Status register 1

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0007								RI	$\Xi \mathbf{V}$							
0x4854	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Readback only register. This is mostly for fun or to check if the SPI comms are OK. Can be used to store revision number. The default **REV** value decodes to "HT".

2.2 Status register 2

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0008	-	-	1	1	1	1	1	1	-	1	1	1	-	PLL2	PLL1	PLL0
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Values in this register are reset to 0x0000 at start-up and get updated in realtime.

Bit [0] – **PLL0** – Phase locked loop lock flag, 38 MHz branch

PLL0	Value	Description
	<u>0x0</u>	PLL unlocked (default)
	0x1	PLL locked

Bit [1] – **PLL1** – Phase locked loop lock flag, 64 MHz branch

PLL1	Value	Description
	<u>0x0</u>	PLL unlocked (default)
	0x1	PLL locked

Bit [2] – PLL2 – Phase locked loop lock flag, 152 MHz branch

PLL2	Value	Description
	<u>0x0</u>	PLL unlocked (default)
	0x1	PLL locked

Bits [15:3] – reserved.

3 Demodulators

3.1 Frequency demodulator register

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0009	MSB						1	6-bit sigr	ned intege	er						LSB
•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

--

3.2 Amplitude demodulator register

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000A	MSB						16	-bit unsig	gned integ	ger						LSB
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

--

4 Modulators

4.1 Frequency modulator

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000B	MSB						1	6-bit sigr	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Instantenous frequency control word, signed.

4.2 Amplitude modulator

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000C	MSB						16	-bit unsig	gned integ	ger						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Instantenous amplitude control word, unsigned.

5 Debug, raw readback

5.1 I branch sample

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000D	MSB						1	6-bit sigr	ned intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Raw $\it I$ branch sample, 16-bit, left justified, signed. Bits [2:0] are always zero.

5.2 Q branch sample

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x000E	MSB						1	6-bit sign	ed intege	er						LSB
0x0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Raw Q branch sample, 16-bit, left justified, signed. Bits [2:0] are always zero.