STAT 111

Recitation 8

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides (adapted from Gemma Moran): github.com/mohuangx/STAT111-Fall2018

November 2, 2018

Introduction to Hypothesis Testing

- Statistics is inductive (or "bottom-up logic"). We start with finite observations and then attempt to make objective statements about the world or test hypotheses.
- ► For example: Is this coin fair? Is this medicine more effective?
- ▶ Null hypothesis (H_0): A general statement indicating no significant difference or phenomenon.
 - ► For example: This coin is fair. This medicine is equally as effective.
- ▶ Alternative hypothesis (H_1) : The hypothesis used that is contrary to the null hypothesis.
 - ▶ For example. This coin is unfair. This medicine is more effective.
- ▶ Basic premise of hypothesis testing: Observe a random sample from a population. If the sample is consistent with H_0 , do not reject H_0 . If the sample is inconsistent or unlikely under H_0 , then reject H_0 in favor of H_1 .

Approach to hypothesis testing

- 1. Define the null hypothesis H_0 and the alternative hypothesis H_1 in terms of parameters.
- 2. Choose a type I error α .
- 3. Determine the test statistic.
- 4. Calculate the critical region/p-value.
- 5. Reject or not.

1. Null and alternative hypotheses

- Null hypotheses are most often single values. In the fair coin example, H_0 : $\theta = 0.5$.
- Alternative hypotheses are typically ranges and can be one-sided or two-sided.
- For example:
 - ▶ One-sided: The coin is more likely to favor heads $(H_1: \theta > 0.5)$.
 - ▶ Two-sided: The coin is unfair $(H_1: \theta \neq 0.5)$.
- Whether the alternative is one-sided or two-sided affects the probability calculation.

2. Choose a type I error α

- ▶ The type I error α is the probability of rejecting the null hypothesis when the null hypothesis is true. Can think of this as a mistaken rejection.
- The experimenter can set α depending on how willing they are to mistakenly reject H_0 . Most common values are 0.01 and 0.05.
- For experiments where we want to be really sure we are not making a mistake, we would want α to be small.
- If $\alpha = 0.05$, this means that in roughly 5 out of every 100 repetitions of the experiment, we will mistakenly reject H_0 .

3. Determining the test statistic

- ► The test statistic is a numerical function of the data we use to reject or accept the null hypothesis.
- ▶ Most often, it is the estimate of the parameter.
- For example, the test statistic for the fair coin flip example $(H_0: \theta = 0.5)$ is the proportion of heads.
- We can also use the number of heads, which would involve a different probability calculation.

4-5. Determining significance and rejection

- ► Two equivalent approaches:
 - 1. Determine critical region/point at level α and reject H_0 if test statistic falls inside critical region.
 - 2. Calculate p-value of the test statistic and reject H_0 if less than α .
- Approach 1
 - The critical region is calculated such that the probability the test statistic falls in the critical region is α if H₀ is true.
 - ▶ One-sided: $P(X \ge A) = \alpha$ or $P(X \le A) = \alpha$. Two-sided: $P(X \le A) = P(X \ge B) = \alpha/2$.
 - ▶ Reject *H*₀ if test statistic falls inside critical region.
- Approach 2
 - ▶ The **p-value** is the probability under H_0 of obtaining a result of more or equal extremeness than the observed test statistic.
 - One-sided: p-value = $P(X \ge x)$ or $P(X \le x)$. Two-sided: p-value = $2P(X \ge |x|)$ (for symmetric distributions)
 - **Proof** Reject H_0 if p-value is less than α .

Example

▶ I want to test the hypothesis a coin is unbiased. I observed 1,070 heads out of 2,000 tosses. Let θ be the probability of tossing a head. Using approach I, calculate the critical point(s) and decide whether to reject H_0 at $\alpha = 0.05$.

Ans: $H_0: \theta = 0.5 \text{ vs. } H_1: \theta \neq 0.5.$

Test-statistic: X is the number of heads tossed. x = 1070.

Under H_0 , $\mu = n\theta = 2000(0.5) = 1000$ and $\sigma^2 = n\theta(1 - \theta) = 500$.

We have:

$$P(Z \le -1.96) = 0.025$$
 and $P(Z \ge 1.96) = 0.025$
$$P\left(\frac{X - 1000}{\sqrt{500}} \le -1.96\right) = 0.025 \text{ and } P\left(\frac{X - 1000}{\sqrt{500}} \ge 1.96\right) = 0.025$$

$$P(X \le 956) = 0.025 \text{ and } P(X \ge 1044) = 0.025$$

So critical region is $X \le 956$ and $X \ge 1044$. Since 1,070 is in the critical region, we reject H_0 .

Example

▶ I want to test the hypothesis a coin is unbiased. I observed 1,070 heads out of 2,000 tosses. Let θ be the probability of tossing a head. Calculate the p-value and decide whether to reject H_0 at $\alpha = 0.05$.

Ans: $H_0: \theta = 0.5 \text{ vs. } H_1: \theta \neq 0.5.$

Test-statistic: X is the number of heads tossed. x = 1070.

Under H_0 , $\mu = n\theta = 2000(0.5) = 1000$ and $\sigma^2 = n\theta(1 - \theta) = 500$.

We standardize:

$$z_{obs} = \frac{X - 1000}{\sqrt{500}} = \frac{1070 - 1000}{\sqrt{500}} = 3.13.$$

For a two-sided test:

p-value =
$$2 \times P(Z > |3.13|) = 2 \times (1 - 0.9991) = 0.0018$$

p-value < 0.05, so we reject H_0 .

Example

I want to test the hypothesis a coin is unbiased. I observed 1,070 heads out of 2,000 tosses. Let θ be the probability of tossing a head. How would the approach be different if we were looking at the proportion?

Ans: $H_0: \theta = 0.5$ vs. $H_1: \theta \neq 0.5$.

Test-statistic: P is the proportion of heads tossed. p = 0.535.

Under
$$H_0$$
, $\mu = \theta = 0.5$ and $\sigma^2 = \frac{\theta(1-\theta)}{n} = \frac{1}{8000}$.

Do the same as before...