

CORONA VIRUS ANALYSIS PROJECT

THE CORONA VIRUS PANDEMIC HAS HAD A SIGNIFICANT IMPACT ON PUBLIC HEALTH AND HAS CREATED AN URGENT NEED FOR DATA-DRIVEN INSIGHTS TO UNDERSTAND THE SPREAD OF THE VIRUS. AS A DATA ANALYST, YOU HAVE BEEN TASKED WITH ANALYZING A CORONA VIRUS DATASET TO DERIVE

DATA-DRIVEN INSIGHTS

Critical Need for Data

Data-driven insights are crucial to accurately assess the spread and impact of the virus.

Real-time Analysis

Real-time data analysis aids in understanding transmission patterns and predicting trends.

Policy Decision Support

Data insights guide policymakers in implementing effective mitigation strategies.

ANALYZING COVID-19 DATASET

Healthcare Resource Allocation

Insights help in allocating resources to areas with the highest impact and need.

Epidemiological Trends

Analyzing the dataset unveils geographical and demographic patterns of the virus.

Risk Factor Identification

Identifying high-risk groups and factors contributing to virus transmission.

Q1. Write a code to check NULL values

output

4 • SELECT *

5 FROM CoronaVirus

Province is not null

6 WHERE Province IS NOT NULL;

Province	Country/Region	Latitude	Longitude	Date	Confirmed	Deaths	Recovered
Afghanistan	Afghanistan	33.93911	67.709953	22-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	23-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	24-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	25-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	26-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	27-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	28-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	29-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	30-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	31-01-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	01-02-2020	0	0	0
Afghanistan	Afghanistan	33.93911	67.709953	02-02-2020	0	0	0
Afnhanistan pronaVirus 4	∆fnhanistan CoronaVirus 5)	२२ <u></u>	67 709953	03-02-2020	n	n	n

Count all and Province is null

If NULL values are present, update them with zeros for all columns.

0 RowEffecte

d

check total number of rows

Check what is start_date and end_date

Number of month present in dataset

Find monthly average for confirmed, deaths, recovered

Find most frequent value for confirmed, deaths, recovered each month

```
SELECT
    YEAR(date) AS year,
    MONTH(date) AS month,
    (SELECT confirmed FROM CoronaVirus WHERE date = '2020-04-02' GROUP BY confirmed ORDER BY COUNT(*) DESC LIMIT 1) AS most frequent confirmed
    (SELECT deaths FROM CoronaVirus WHERE date = '2020-04-02' GROUP BY deaths ORDER BY COUNT(*) DESC LIMIT 1) AS most frequent deaths,
    (SELECT recovered FROM CoronaVirus WHERE date = '2020-04-02' GROUP BY recovered ORDER BY COUNT(*) DESC LIMIT 1) AS most frequent recovered
FROM
    CoronaVirus
    date = '2020-04-02';
```

Find minimum values for confirmed, deaths, recovered per year

confirmed, recovered

Find maximum values of confirmed, deaths, recovered per year

```
SELECT
           YEAR(2024-04-12) AS year,
3
           MAX(confirmed) A5 max confirmed,
           MAX(deaths) AS max_deaths,
4
5
           MAX(recovered) AS max_recovered
6
       FROM
7
           CoronaVirus
8
       GROUP BY
           YEAR(2024-04-12);
9
10
```


max_deaths	max_recovered
7374	1123456

The total number of case of confirmed, deaths, recovered each month

1 .	SELECT	-			
2	YEAR(Date) AS year,	year	month	total_confirmed	
3	MONTH(Date) AS month,	HOLL ROLL		169065144	
4	SUM(confirmed) AS total_confirmed,				
5	SUM(deaths) AS total_deaths,				
6	SUM(recovered) AS total_recovered	total_deaths		total_recovered	
7	FROM				
8	CoronaVirus	3647894		113089548	
9	GROUP BY				
10	YEAR(Date), MONTH(Date);				
11					

Check how corona virus spread out with respect to confirmed case

(Eg.: total confirmed cases, their average, variance & STDEV)

```
-- Total confirmed cases

SELECT

SUM(confirmed) AS total_confirmed_cases

FROM

CoronaVirus;
```


-- Average confirmed cases

SELECT

AVG(confirmed) A5 average_confirmed_cases

FROM

CoronaVirus;

average_confirmed_cases

-- Variance of confirmed cases

SELECT

VARIANCE(confirmed) AS variance_confirmed_cases

FROM

CoronaVirus;

variance_confirmed_cases

-- Standard deviation of confirmed cases

SELECT

STDDEV_POP(confirmed) A5 std_dev_confirmed_cases

FROM

CoronaVirus;

std_dev_confirmed_cases

Check how corona virus spread out with respect to death case per month -- (Eg.: total confirmed cases, their average, variance & STDEV)


```
-- Average death cases per month
SELECT
   YEAR(Date) AS year,
    MONTH(Date) AS month,
    AVG(deaths) AS average_death_cases
FROM
  CoronaVirus
                                          average_death_cases
GROUP BY
   YEAR(Date), MONTH(Date);
                                          46.5376
```

```
-- Variance of death cases per month
SELECT
    YEAR(Date) AS year,
    MONTH(Date) AS month,
    VARIANCE(deaths) AS variance_death_cases
FROM
    CoronaVirus
GROUP BY
    YEAR(Date), MONTH(Date);
```

variance_death_cases

```
-- Standard deviation of death cases per month
 SELECT
     YEAR(Date) AS year,
     MONTH(Date) AS month,
     STDDEV POP(deaths) AS std dev death cases
 FROM
     CoronaVirus
GROUP BY
    YEAR(Date), MONTH(Date);
                                          std_dev_death_cases
                                          214.22422564583476
```

Check how corona virus spread out with respect to recovered case -- (Eg.: total confirmed cases, their average, variance & STDEV)

-- Average recovered cases

SELECT

AVG(recovered) A5 average_recovered_cases

FROM

CoronaVirus;

average_recovered_cases

1442,7264

-- Variance of recovered cases

SELECT

VARIANCE(recovered) AS variance_recovered_cases

FROM

CoronaVirus;

-- Standard deviation of recovered cases

SELECT

STDDEV_POP(recovered) AS std_dev_recovered_cases

FROM

CoronaVirus;

std_dev_recovered_cases 10345.507395110999

Find Country having highest number of the Confirmed case

Find Country having lowest number of the death case

Find top 5 countries having highest recovered case

Conclusion

The SQL analysis of the corona dataset provides insights into the pandemic's spread, including trends over time, monthly averages, and country-specific metrics. It reveals patterns of infection, recovery, and mortality, aiding in understanding and managing the crisis efficiently.

THANK YOU