• Tratamentos térmicos após soldadura:

- Os tratamentos térmicos mais aplicados às construções soldadas, podem ser de dois tipos:
 - Tratamentos a temperaturas inferiores a 500 °C tratamento de eliminação de hidrogénio;
 - Tratamentos a temperaturas entre 500 e 700 °C tratamento de relaxação de tensões e revenido metalúrgico.

EXX10 (250°F

• Os tratamentos térmicos a temperaturas situadas entre as temperaturas A_1 e A_3 e acima de A_3 (tratamentos de normalização e têmpera) são pouco usados, só em casos específicos.

1. Tratamento de pós-aquecimento ($T \le 500 \, {}^{\circ}C$):

Consiste em manter a peça soldada uma igual ou superior temperatura do préaquecimento durante o tempo suficiente para permitir a libertação do hidrogénio contido no metal depositado, evitando que se concentre na afectada pelo calor (ZAC) níveis de zona hidrogénio que possam induzir fenómenos de fissuração diferidos (a frio).

2. Tratamento térmico após soldadura:

- Temperaturas entre 500 a 700 °C, com a finalidade de:
 - Relaxação das tensões residuais;
 - Efeito de revenido do metal depositado, zona afectada pelo calor e material base.

• Tratamento de relaxação de tensões residuais:

- Aquecimento a uma velocidade moderada até atingir a temperatura máxima;
- Manutenção à temperatura de patamar durante um tempo que é função da espessura;
- · Arrefecimento lento no forno e em seguida ao ar.
- A fase de aquecimento é fundamental para a relaxação das tensões, sendo também importante a temperatura máxima atingida durante o tratamento.

• Efeitos metalúrgicos do tratamento:

• O tratamento térmico após soldadura produz efeitos de carácter metalúrgico tanto no metal depositado, como no metal base e ZAC.

• Efeitos benéficos:

- Revenido de estruturas de têmpera porventura formadas na ZAC;
- Melhoria das propriedades mecânicas do metal depositado de soldadura de aços Cr-Mo (tensão de rotura, cedência e resiliência);
- Restauração parcial da ductilidade de materiais fragilizados por efeito de deformações ocorridas nas operações de conformação a frio ou de soldadura);
- Melhoria da tenacidade do metal depositado de aços ao C-Mn.

• <u>Efeitos indesejáveis</u>:

- Diminuição dos níveis de resiliência em certos casos (por exemplo: aços ao C-Mn micro-ligados ao Nb ou V, chamados aços de grão fino);
- Aços com risco de fragilização por revenido, na gama de temperaturas do tratamento;
- Aços com risco de fissuração no reaquecimento;
- Aços com risco de precipitação de carbonetos de Cr ou formação de fase sigma (σ), como é o caso de aços placados ou revestidos a aço austenítico.

Tratamentos Térmicos Após Soldadura

Effect of temperature on microstructure, strength, and ductility of cold-worked materials (From Ref. [46]. © Wiley).

Tratamentos Térmicos Após Soldadura

PF I

- Exigências dos códigos de construção:
 - Os códigos de construção que mais claramente explicitam as condições de tratamento térmico após soldadura são os códigos de construção de reservatórios de pressão, sendo os mais utilizados: ASME VIII (divisão 1 e 2), BS 5500, AD-Merkblatt.

Tratamentos Térmicos Após Soldadura

	1 1									
AD HP + SEW 089	G1 Re < 370 N/mm² sauf aciers tenaces à froid l analyse chimique G5 a Aciers tenaces à froid	KCV Autres exigences Néant Néant	SEW 089 Neant Géomètrie simple	1 (2	Re < 480 N/mm² Iroid	KCV Autres exigences	Autres 89 Neant	SEW 089 et W SIE 47-51	KCV Autres exigences SEW 089 Néant	ur les autres aciers, voir
		Nuances Tous aciers	Ac.ers grain lin Ste et Ste W 26 à 36	Autres Tous aciers	aciers grain lin 370 < sauf aciers tenaces à 10 aciers tenaces à froid	Nuances	SIE et WSIE 39 et 43	aciers a grain lin SIE el aciers lenaces a froid	Nuances	aciers SEW. Pour re. 30 mn mini.
		e > 30	30 \ 6 \ 38	38 > a > 50	G2 aciers g saul ac G5b aciers l	0	8 > 30	G3 aciers a	e > 30	t 530-580 ac feuille matière.
BS 5500	MO C el CMn M1 - BS 1501 - 221 223 224	35 option C-CMn KCV 27 J - 20 -C 35 exigé < 40 option > 40 exigé	2.5 mn/mm							
		C-CMn e < 35 option e > 35 exigé	1 = 580° - 620 °C	60 mn mini 90 mn mini						
ASME VIII	P1 A 283 ABCD A 285 ABC A 515 et A 515 G 55-60-65-70 A 537 ct. 1 et ct. 2 (T.R.)	e < 34.8 mm e > 38.1 mm sì préchauffage 93* mini	0, 283 °C	1 h/25 ตก: 15 งห mini						