- Régressions linéaire et logistique

Le but de ce notebook est de présenter la régression linéaire et la régression logistique.

Chargement des librairies

Entrée [57]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sklearn
```

1. Régression linéaire

Chargement des données

Entrée [58]:

```
penguins = pd.read_csv("data/penguins.csv")
penguins.head()
```

Out[58]:

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	r
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	fer
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	fer
3	Adelie	Torgersen	36.7	19.3	193.0	3450.0	fer
4	Adelie	Torgersen	39.3	20.6	190.0	3650.0	r
4							•

Entrée [59]:

```
X = penguins[["bill_length_mm", "bill_depth_mm", "flipper_length_mm"]].to_numpy()
y_reg = penguins["body_mass_g"]
```

Entrée [62]:

Le poids (g) d'un manchot est prédit par -6445.48 + 3.29 x bill_length_mm + 17.84 x bill_depth_mm + 50.76 x flipper_length_mm

Performance du modèle

Entrée [63]:

```
plt.scatter(y_regress, y_pred)

plt.xlabel("Poids réel (g)")
plt.ylabel("Poids prédit (g)")
```

Out[63]:

Text(0, 0.5, 'Poids prédit (g)')

Entrée [64]:

```
La RMSE de notre modèle est 390.64 g
Le coefficient de détermination de notre modèle est R2 = 0.76
```

Utilisation d'un jeu de test

Séparation des données en jeu d'entraînement et jeu de test

Entrée [65]:

```
((233, 3), (233,), (100, 3), (100,))
```

Generalization du performance

Entrée [66]:

```
La RMSE de notre modèle est 411.80 g
Le coefficient de détermination de notre modèle est R2 = 0.74
```

3. Régression logistique

Chargement des données

```
Entrée [67]:

y_classif = pd.Categorical(penguins["sex"]).astype('category').codes
```

Séparation des données en jeu d'entraînement et jeu de test

```
Entrée [68]:
```

Out[68]:

LogisticRegression(penalty='none')

Entrée [69]:

```
La probabilité qu'un manchot soit mâle est prédite par sigma (-62.71 + 0.15 x bill_length_mm + 1.50 x bill_depth_mm + 0.15 x flipper_length_mm)
```