Blatt 1

Aufgabe 1

a) Gegeben sei |x-2|>1

Wir führen nun folgende Fallunterscheidung durch:

Fall 1

$$x - 2 > 0$$

$$|x-2>1|+2$$
 $\Leftrightarrow x>3$

Fall 2

$$|x-2<0|$$

$$-(x-2) > 1$$

 $\Leftrightarrow -x+2 > 1|-2$
 $\Leftrightarrow -x > -1|\cdot(-1)$
 $\Leftrightarrow x < 1$

b) Gegeben sei $x^2 + y^2 - 2x + 4y = 0$:

Lösen wir zunächst die Gleichungen $x^2 - 2x = 0$ und $y^2 + 4y = 0$:

$$x^{2} - 2x = 0$$

$$\Leftrightarrow x^{2} - 2x + \left(\frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}$$

$$\Leftrightarrow \left(x - \frac{1}{2}\right)^{2} = \frac{1}{4}|\sqrt{2}$$

$$\Leftrightarrow x - \frac{1}{2} = \frac{1}{2}| + \frac{1}{2}|\sqrt{2}|\sqrt{2}| + \frac{1}{2}|\sqrt{2}|$$

$$\Leftrightarrow x = \frac{1}{4}|\sqrt{2}|\sqrt{2}|\sqrt{2}|$$

$$y^2 + 4y = 0$$
 $\Leftrightarrow y^2 + 4y + 2^2 = 2^2$
 $\Leftrightarrow (y+2)^2 = 4|\sqrt{}$
 $\Leftrightarrow y+2=2|-2 \lor y+2=-2|-2$
 $\Leftrightarrow y=0 \lor y=-4$

Somit erhalten wir für der Menge der Punkte der Ebene: $\{(0,0)\}$

Aufgabe 2

a) Gefordert wird ein Polynom 2ten Grades mit den Nullstellen $2 + \sqrt{2}$ und $2 - \sqrt{2}$. Die Bedinungen können formal wie folgt ausgedrückt werden:

Sei $f: \mathbb{R} \to \mathbb{R}, f(x) = ax^2 + bx + c$ und f habe die Bedingungen

$$f(2+\sqrt{2})=0 \ \wedge \ f(2-\sqrt{2})=0$$

Dabei gehen wir wie folgt vor, um die Koeffizienten a, b und c zu ermitteln:

$$egin{aligned} x &= 2 + \sqrt{2} |-2 \ \lor \ x &= 2 - \sqrt{2} |-2 \ \cr &\Leftrightarrow x - 2 = \sqrt{2} |()^2 \ \lor x - 2 = -\sqrt{2} |()^2 \ \cr &\Leftrightarrow (x - 2)^2 = 2 \ \cr &\Leftrightarrow x^2 - 4x + 4 = 2 |-2 \ \cr &\Leftrightarrow x^2 - 4x + 2 = 0 \ \cr &\Leftrightarrow 1x^2 - 4x + 2x^0 = 0 \end{aligned}$$

Unsere Koeffizienten lauten also: a = 1, b = -4 und c = 2.

b) Wir führen einen Koeffzientenvergleich zwischen $(x^2+ax+1)(x^2+bx+1)$ und x^4+1 aus:

Mutliplizieren wir zunächst aus:

$$(x^2 + ax + 1)(x^2 + bx + 1)$$

$$= (x^4 + bx^3 + x^2)(ax^3 + abx^2 + ax)(x^2 + bx + 1)$$

$$= x^4 + (a + b)x^3 + (x^2 + abx^2 + x^2) + (a + b)x + 1$$

$$= x^4 + (a + b)x^3 + (abx^2 + 2x^2) + (a + b)x + 1$$

$$= x^4 + (a + b)x^3 + (ab + 2)x^2 + (a + b)x + 1$$

Betrachten wir nun $x^4 + 1$:

Sei $f(x) = x^4 + 1$:

$$f(x) = x^4 + 1$$

= $x^4 + 0x^3 + 0x^2 + 0x + 1$

Wir müssen also a, b so bestimmen, sodass für diese folgendes gilt:

$$a+b=0 \ \land ab+2=0$$

Durch a + b = 0 wissen wir: a = -b:

Setzen wir dies in die zweite Bedingung ein:

$$ab + 2 = 0$$

$$\Leftrightarrow (-b) * b + 2 = 0$$

$$\Leftrightarrow (-b)^2 + 2 = 0 \mid -2$$

$$\Leftrightarrow (-b)^2 = -2 \mid \cdot (-1)$$

$$\Leftrightarrow b^2 = 2 \mid \sqrt{2}$$

$$\Leftrightarrow b = \sqrt{2} \lor b = -\sqrt{2}$$

Dadurch, dass a = -b gilt, können wir nun a bestimmen:

$$a = -b$$
 $\Leftrightarrow a = -\sqrt{2}$

Somit erhalten wir:

$$a=-\sqrt{2} \ \wedge b=\sqrt{2}$$
 ee $a=\sqrt{2} \ \wedge b=-\sqrt{2}$

Setzen wir a und b in den ausmulitplizierten ein:

$$x^4 + (\sqrt{2} + (-\sqrt{2}))x^3 + (\sqrt{2}*(-\sqrt{2}) - 2)x^2 + (\sqrt{2} + (-\sqrt{2}))x + 1$$

Dies entspricht: $x^4 + 1$.

c) Zu lösen ist: $x^3 - 2x + 1 = 0$

Raten wir zunächst 1 als Nullstelle und führen Polynomdivision aus:

$$(x^3 - 2x + 1) \div (x - 1) = x^2 + x + 1$$

Bestimmen wir die Nullstellen von $x^2 + x + 1$:

$$x^{2} + x - 1 = 0| + 1$$

$$\Leftrightarrow x^{2} + x = 1$$

$$\Leftrightarrow x^{2} + x + \left(\frac{1}{2}\right)^{2} = 1 + \left(\frac{1}{2}\right)^{2}$$

$$\Leftrightarrow (x + \frac{1}{2})^{2} = 1 + \frac{1}{4}$$

$$\Leftrightarrow (x + \frac{1}{2})^{2} = \frac{4}{4} + \frac{1}{4}$$

$$\Leftrightarrow (x + \frac{1}{2})^{2} = \frac{5}{4}|\sqrt{2}|$$

$$\Leftrightarrow x + \frac{1}{2} = \frac{\sqrt{5}}{2}| - \frac{1}{2} \lor x + \frac{1}{2} = -\frac{\sqrt{5}}{2}| - \frac{1}{2}$$

$$\Leftrightarrow x = \frac{\sqrt{5} - 1}{2} \lor x = \frac{-\sqrt{5} - 1}{2}$$

$$\Leftrightarrow x = \frac{\sqrt{5} - 1}{2} \lor x = \frac{-(\sqrt{5} + 1)}{2}$$

Aufgabe 3

Term	enthält 2	offene Umgebung	ϵ Umgebung
$\{1, 2, 3\}$	ja	nein	nein
$\{x x \in \mathbb{Q}: 0 < x < 4\}$	ja	nein	nein
$\{x x \in \mathbb{R}: 0 < x \leq 4\}$	ja	nein	nein
$\{x x \in \mathbb{R}: 0 < x < 4\} = (0;4)$	ja	ja	ja mit ϵ =2
$(0,4)\cap \mathbb{Q}$	ja	nein	nein
$[0,4]\cap (1,5]\cap [2,3)$	ja	ja	ja mit $\epsilon=1$
$\{x x\in \mathbb{R}: x <3\}=(-3,3)$	ja	ja	nein
$\{x x\in\mathbb{R}: x-2 <0.1\}$	ja	ja	ja mit $\epsilon=0.1$

Aufgabe 4

Term	Infimum	Minimum	Supremum	Maximum
$\{4,7,11\}$	4	4	11	11
N	0	0	-	-
$\{x n\in\mathbb{N}:x=rac{n-1}{n}\}$	0	0	1	-

Term	Infimum	Minimum	Supremum	Maximum
$\{x n\in\mathbb{N}=rac{3}{2n}\}$	0	-		
$\{x m\in\mathbb{Z}:x=rac{m}{1+ m }\}$	-1	-	1	1
[1,4)	1	1	4	1
$\{y x\in (-1,1): y=rac{1}{x^2+1}\}$	$\frac{1}{2}$	-	-	-