Visualizing Data and Summary Statistics

Introduction to Evolution and Scientific Inquiry Dr. Spielman; spielman@rowan.edu

Quantitative vs. Categorical variables

- Quantitative variables are described by data as numbers
 - Height of a plant
 - Number of legs on an octopus
 - Length of gestation time

- Categorical variables are described by data as categories
 - Colors
 - Species names
 - o iPhone models

There are two types of quantitative data

- Continuous
 - Any real-number value within some range
 - Example: height, weight,
 - If it can be a decimal, it is continuous

- Discrete (also known as discontinuous in book)
 - Values are in indivisible units, i.e. whole or counting numbers
 - "Count data"
 - o If it can NOT have a decimal (i.e. there are not 2.5 people), it is discrete
- Note: discreet is different.

How we represent data depends on what kind it is

Flowers in garden

Bar plot

Visualize how **two**

relate

quantitative variables

Histograms

Boxplots

Boxplots vs. histograms

Barplots

In my garden, there are...

- 18 orange flowers
- 37 pink flowers
- 62 red flowers
- 15 white flowers

Barplots can also show mean and standard deviation

Scatterplots

• X-axis shows **independent variable**

Y-axis shows dependent (response)
 variable

Describing the location of a distribution

- Location is a fancy word for "center"
 - Mean and median for quantitative data
 - Mode for categorical data

Describing the spread of a distribution

- Range
 - \circ 1, 2, 3, 7, 9 \rightarrow 8
 - $\circ \quad 1, 2, 3, 7, 9, 500 \rightarrow \textbf{499}$

- Standard deviation
 - Variance = s^2

$$s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

 $\eta =$ The number of data points

 $\bar{x} =$ The mean of the x_i

 $x_i =$ Each of the values of the data

- Interquartile Range (IQR)
 - Middle 50% of the numbers (goes with median)

A note on the word population

• In **biology**, a population is group of organisms of a single species who live around the same area

- In **statistics**, a population is total set of observations, data points, etc.
 that can be made
 - Except in a few cases, we generally never know the population

Statistical Inference: Does my <u>sample</u> represent the true <u>population</u>?

How well does my <u>sample</u> represent the <u>population</u>?

 Standard Error: The distance between my measured statistic and the true population parameter

SEM = Standard Error of the Mean

$$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$$

Standard deviation vs standard error

- Standard Deviation: how does the sample vary around the sample mean?
 - Low SD = very narrow
 - High SD = lots of spread

- Standard error of the mean: how does the sample mean compare to the *population* mean?
 - Low SEM: sample mean is very close to "true" mean
 - High SEM: sample mean is very far from "true" mean
 - Generally larger sample size yields lower SEM

Describing relationships between quantitative variables

- One common measure is correlation.
- The Pearson Correlation Coefficient: -1 <= r <= 1

Major Correlation Caveats

- Linear relationship only! (for now)
 - Curves use different types of correlation coefficients

- - http://www.tylervigen.com/spurious-correlations

Explore quantitative data visualization

https://sjspielman.shinyapps.io/plot-iris/

http://guessthecorrelation.com/