Тест	1		2	3		4		Итого		
									← д.	ля проверяющего!
Фамил	ия, имя,	номер	руппы							
Ответы на тест:										
	2	3	4	_	6	7	8	9	10	1

1	2	3	4	5	6	7	8	9	10

Тест

Вопрос 1. При проверке модели $Y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_k X_{ik} + \varepsilon_i$ на адекватность нулевая гипотеза имеет вид:

$$\overline{A}$$
 $\beta_0 = \beta_1 = \ldots = \beta_k = 0$ \overline{C} $\beta_0 = \beta_1 = \ldots = \beta_k$ \overline{E} $X_{i1} = \ldots = X_{ik} = 0$

$$\boxed{C} \ \beta_0 = \beta_1 = \ldots = \beta_k$$

$$\boxed{E} \ X_{i1} = \ldots = X_{ik} = 0$$

$$B$$
 $\beta_1 = \ldots = \beta_k = 0$

$$\boxed{D} \ \beta_1 = \ldots = \beta_k$$

$$\lceil F \rceil$$
 нет верного ответа

Вопрос 2. При проверке модели множественной регрессии $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \varepsilon_i$ на мультиколлинеарность оказалось, что $VIF_X = VIF_Z = 10.26$. Из этого можно сделать вывод, что

- А МНК-оценки коэффициентов будут несмещённые, но не состоятельные
- | D | МНК-оценки коэффициентов не существуют
- В МНК-оценки коэффициентов будут несмещённые и состоятельные
- \overline{E} оценк коэффициентов \hat{eta}_1 и \hat{eta}_2 будут незначимы
- С МНК-оценки коэффициентов будут смещённые
- F \mid нет верного ответа

Вопрос 3. МНК-оценка уравнения регрессии в отклонениях имеет вид $\hat{y}_i = 5x_i$, оценка остаточной дисперсии равна $\hat{\sigma}^2 = 2$. Вектор регрессоров имеет вид $x = (-2, 1, 1)^T$.

Оценка дисперсии ошибки прогноза индивидуального значения y_{n+1} при $x_{n+1}=3$ равна

 $A \mid 1$

 $C \mid 1.5$

|E| 0.5

 $B \mid 5$

D 2.25

F нет верного ответа

Вопрос 4. Для переменных X, Z и W известны выборочные корреляции, $\widehat{\mathbb{C}}\mathrm{orr}(Z, W) = 0, \widehat{\mathbb{C}}\mathrm{orr}(Z, W) = 0$ 0 и $\widehat{\mathbb{C}\mathrm{orr}}(X,Z) = -0.7$. Наибольшее собственное число выборочной корреляционной матрицы равно 1.7.

Первая главная компонента, выраженная через стандартизованные переменные, имеет вид

$$A$$
 $(x+z)/\sqrt{2}$

$$C$$
 $(x+z-\sqrt{2}w)/2$

$$E (x - \sqrt{2}z + w)/2$$

$$\boxed{B} (x-z)/\sqrt{2}$$

$$\boxed{D} \ (\sqrt{2}x + z + w)/2$$

$$F$$
 нет верного ответа

Вопрос 5. По данным 28 фирм была оценена зависимость выпуска Y от труда L и капитала K с помощью двух моделей: $\ln Y_i = \beta_0 + \beta_1 \ln L_i + \beta_2 \ln K_i + \varepsilon_i$ и $\ln Y_i = \beta_0 + \beta_1 \ln (L_i K_i) + \varepsilon_i$. Коэффициенты детерминации равны 0.9 и 0.8.

Значение F-статистики для проверки гипотезы о равенстве эластичностей по труду и по капиталу равно

A 25

C 20

 \overline{E} 0.04

B 12.5

D 12

 \overline{F} нет верного ответа

Вопрос 6. Зависимость величины спроса Y в штуках от цены в тысячах рублей имеет вид $\ln \hat{Y}_i = 30 - 0.03 P_i$. Все коэффициенты регрессии значимы. Спрос снизится на 3% при увеличении цены примерно на

|A| 100 тысяч рублей

C 1 тысячу рублей

|E| 10%

В 10 тысяч рублей

|D| 1%

F нет верного ответа

Вопрос 7. Исследователь интересуется зависимостью среднегодового прироста работающих E от прироста валового национального продукта X. Обе величины измеряются в процентах. Исследователь оценил три парных регрессии E на X: по выборке для 30 развитых стран, по выборке для 24 развивающихся стран и по общей выборке.

В этих регрессиях суммы квадратов остатков оказались равны 25, 35 и 120.

Значение F—статистики для проверки гипотезы о том, что изучаемая зависимость едина для развитых и развивающихся стран, равно

A 25

C 26

|E| 27

B 25.5

D 26.5

F нет верного ответа

Вопрос 8. Известно, что выборочная корреляция между переменными Z и W равна 0.5. Величина VIF_X в регрессии $Y_i=\beta_1+\beta_2X_i+\beta_3Z_i+\beta_4W_i+u_i$

 \overline{A} не менее 2

C не более 2

[E] не может быть оценена ни сверху, ни снизу

|B| не менее 4/3

 \boxed{D} не более 4/3

|F| нет верного ответа

Вопрос 9. Исследователь исключил из регрессии со свободным членом переменную, t-статистика коэффициента при которой меньше 1 по модулю. Скорректированный коэффициент множественной детерминации при этом

A не увеличится

D станет равным нулю

В не уменьшится

[E] станет равным 1/n, где n — число наблюдений

 \boxed{C} может измениться в любую сторону

 \overline{F} нет верного ответа

Вопрос 10. С помощью метода максимального правдоподобия оценили зависимость веса индивида W_i от его роста $H_i, W_i^{(\theta)} = \beta_0 + \beta_1 H_i^{(\lambda)} + \varepsilon_i$. Здесь $W_i^{(\theta)}$ и $H_i^{(\lambda)}$ — вес и рост после преобразований Бокса-Кокса с параметрами θ и λ . Были проверены три гипотезы:

$$H_0$$
 $\theta = \lambda = -1$ $\theta = \lambda = 0$ $\theta = \lambda = 1$ $\theta = 0$ $\theta = 0$

На основании имеющейся информации исследователю следует предпочесть модель

$$\boxed{A} W_i = \beta_0 + \beta_1 H_i + \varepsilon_i$$

$$\boxed{C} \ln W_i = \beta_0 + \beta_1 \ln H_i + \varepsilon_i$$

$$\boxed{C} \ln W_i = \beta_0 + \beta_1 \ln H_i + \varepsilon_i \qquad \boxed{E} W_i = \beta_0 + \beta_1 H_i + \beta_2 H_i^2 + \varepsilon_i$$

$$\boxed{B} \ln W_i = \beta_0 + \beta_1 H_i + \varepsilon_i$$

$$\boxed{D} \ W_i = \beta_0 + \beta_1 \ln H_i + \varepsilon_i$$

$$|F|$$
 нет верного ответа

Фамилия, имя, номер группы:

Задачи

- 1. Исследователь рассматривает уравнение зависимости расходов на питание (W) от доходов (Income), с учетом сезона. Переменная сезон (S) принимает следующие значения: 1 зима, 2 весна, 3 лето и 4 осень. Исследователь предполагает, что в каждый сезон может выполняться своя линейная зависимость.
 - а) (2 балла) Выпишите уравнение оцениваемой модели. Укажите смысл всех включенных в модель переменных.
 - б) (2 балла) Как проверить гипотезу о единой линейной зависимости расходов на питание для всех сезонов? Выпишите аккуратно основную и альтернативную гипотезы, формулу расчета статистики и способ проверки.
- 2. Рассмотрим модель $y_i = \beta_1 x_i + \beta_2 z_i + \varepsilon_i$ в стандартизированных переменных, оцениваемую по n наблюдениям с помощью гребневой (ridge) регрессии с параметром регуляризации λ .
 - а) (2 балла) Выпишите условия первого порядка для задачи гребневой регрессии.
 - б) (3 балла) Выведите оценки гребневой регрессии $\hat{\beta}_1$ и $\hat{\beta}_2$.
 - в) (1 балл) Что произойдёт с оценками при $\lambda=0$?
 - r) (1 балл) Что произойдёт с оценками при $\lambda \to +\infty$?
- 3. По 24 наблюдениям была оценена модель:

$$\widehat{Y}_i = 15 - 4Z_i + 3W_i$$

Известно, что случайные ошибки нормально распределены, RSS=180, и

$$(X'X)^{-1} = \begin{pmatrix} 0.216 & -0.112 & -0.075 \\ -0.112 & 0.119 & 0.021 \\ -0.075 & 0.021 & 0.047 \end{pmatrix}$$

- а) (1 балл) Проверьте гипотезу $H_0: \beta_Z = 0$ против $H_a: \beta_Z \neq 0$ на уровне значимости 5%.
- б) (3 балла) Проверьте гипотезу $H_0: \beta_Z + \beta_W = 0$ против $H_a: \beta_Z + \beta_W \neq 0$ на уровне значимости 5%.
- в) (2 балла) Выпишите использованные при проверке гипотез предпосылки о случайных ошибках модели.

- 4. Исследовательница Глафира изучает зависимость спроса на молоко от цены молока и дохода семьи. В её распоряжении есть следующие переменные:
 - price цена молока в рублях за литр
 - income ежемесячный доход семьи в тысячах рублей
 - milk расходы семьи на молоко за последние семь дней в рублях

В данных указано, проживает ли семья в сельской или городской местности. Поэтому Глафира оценила три регрессии: (All) — по всем данным, (Urban) — по городским семьям, (Rural) — по сельским семьям.

	(All)	(Urban)	(Rural)
(Intercept)	-1.765	-4.059	-0.155
	(4.943)	(6.601)	(7.812)
income	0.308**	·* 0.341***	0.281**
	(0.052)	(0.072)	(0.079)
price	-0.383^{*}	-0.352	-0.391
	(0.161)	(0.253)	(0.221)
R-squared	0.304	0.356	0.273
adj. R-squared	0.290	0.325	0.245
sigma	4.912	4.857	5.036
F	21.216	11.593	9.744
P-value	0.000	0.000	0.000
RSS	2340.080	990.839	1318.741
n observations	100	45	55

Выборочная ковариационная матрица регрессоров по полной выборке имеет вид:

	price	income	milk
price	9.45	-1.73	-4.15
income	-1.73	90.19	28.43
milk	-4.15	28.43	33.98

- а) (1 балл) Проверьте значимость в целом регрессии (All) на 5%-ом уровне значимости.
- б) (2 балла) На 5%-ом уровне значимости проверьте гипотезу, что зависимость спроса на молоко является единой для городской и сельской местности.
- в) (3 балла) Разложите коэффициент детерминации R^2 в модели (All) в сумму эффектов переменных income и price.

Тест	1	[2		3	4		Итого			
									← д	іля проверяюц	цего!
Фамі	илия, им	ія, номер	групп	ы:							
I											
				••••							
	ы на тес	т:		••••							
	ты на тес 2	T:	4	5	6	7	8	9	10		

Тест

Вопрос 1. Исследователь исключил из регрессии со свободным членом переменную, *t*-статистика коэффициента при которой меньше 1 по модулю. Скорректированный коэффициент множественной детерминации при этом

- $A \mid$ может измениться в любую сторону
- D| не уменьшится

B станет равным нулю

E станет равным 1/n, где n — число наблюдений

C не увеличится

F нет верного ответа

Вопрос 2. С помощью метода максимального правдоподобия оценили зависимость веса индивида W_i от его роста $H_i, W_i^{(\theta)} = \beta_0 + \beta_1 H_i^{(\lambda)} + \varepsilon_i$. Здесь $W_i^{(\theta)}$ и $H_i^{(\lambda)}$ — вес и рост после преобразований Бокса-Кокса с параметрами θ и λ . Были проверены три гипотезы:

$$H_0$$
 $\theta = \lambda = -1$ $\theta = \lambda = 0$ $\theta = \lambda = 1$ P -значение 0.00 0.53 0.00

На основании имеющейся информации исследователю следует предпочесть модель

$$\boxed{A} \ln W_i = \beta_0 + \beta_1 \ln H_i + \varepsilon_i$$

$$\boxed{C} W_i = \beta_0 + \beta_1 H_i + \varepsilon_i$$

$$\boxed{A} \ \ln W_i = \beta_0 + \beta_1 \ln H_i + \varepsilon_i \qquad \boxed{C} \ W_i = \beta_0 + \beta_1 H_i + \varepsilon_i \qquad \boxed{E} \ W_i = \beta_0 + \beta_1 H_i + \beta_2 H_i^2 + \varepsilon_i$$

$$\overline{B} W_i = \beta_0 + \beta_1 \ln H_i + \varepsilon_i$$

$$oxed{B} W_i = eta_0 + eta_1 \ln H_i + arepsilon_i$$
 $oxed{D} \ln W_i = eta_0 + eta_1 H_i + arepsilon_i$ нет верного ответа

$$|F|$$
 нет верного ответа

Вопрос 3. При проверке модели $Y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_k X_{ik} + \varepsilon_i$ на адекватность нулевая гипотеза имеет вид:

$$\boxed{A} \ \beta_0 = \beta_1 = \ldots = \beta_k$$

$$C \mid \beta_0 = \beta_1 = \ldots = \beta_k = 0$$
 $E \mid X_{i1} = \ldots = X_{ik} = 0$

$$\boxed{E} \ X_{i1} = \ldots = X_{ik} = 0$$

$$\boxed{B} \ \beta_1 = \ldots = \beta_k$$

$$\boxed{D} \ \beta_1 = \ldots = \beta_k = 0$$

$$F$$
 нет верного ответа

Вопрос 4. Для переменных X,Z и W известны выборочные корреляции, $\widehat{\mathbb{C}\mathrm{orr}}(Z,W)=0$, $\widehat{\mathbb{C}\mathrm{orr}}(Z,W)=0$ и $\widehat{\mathbb{C}\mathrm{orr}}(X,Z)=-0.7$. Наибольшее собственное число выборочной корреляционной матрицы равно 1.7.

Первая главная компонента, выраженная через стандартизованные переменные, имеет вид

$$A (x+z-\sqrt{2}w)/2$$

$$C$$
 $(x+z)/\sqrt{2}$

$$|E|(x-\sqrt{2}z+w)/2$$

$$\boxed{B} (\sqrt{2}x + z + w)/2$$

$$D$$
 $(x-z)/\sqrt{2}$

$$\overline{F}$$
 нет верного ответа

Вопрос 5. Исследователь интересуется зависимостью среднегодового прироста работающих E от прироста валового национального продукта X. Обе величины измеряются в процентах. Исследователь оценил три парных регрессии E на X: по выборке для 30 развитых стран, по выборке для 24 развивающихся стран и по общей выборке.

В этих регрессиях суммы квадратов остатков оказались равны 25, 35 и 120.

Значение F—статистики для проверки гипотезы о том, что изучаемая зависимость едина для развитых и развивающихся стран, равно

$$D$$
 26.5

$$\overline{F}$$
 нет верного ответа

Вопрос 6. По данным 28 фирм была оценена зависимость выпуска Y от труда L и капитала K с помощью двух моделей: $\ln Y_i = \beta_0 + \beta_1 \ln L_i + \beta_2 \ln K_i + \varepsilon_i$ и $\ln Y_i = \beta_0 + \beta_1 \ln (L_i K_i) + \varepsilon_i$. Коэффициенты детерминации равны 0.9 и 0.8.

Значение F-статистики для проверки гипотезы о равенстве эластичностей по труду и по капиталу равно

$$|F|$$
 нет верного ответа

Вопрос 7. При проверке модели множественной регрессии $Y_i=\beta_0+\beta_1X_i+\beta_2Z_i+\varepsilon_i$ на мультиколлинеарность оказалось, что $VIF_X=VIF_Z=10.26$. Из этого можно сделать вывод, что

- [A] МНК-оценки коэффициентов будут смещённые
- D МНК-оценки коэффициентов будут несмещённые и состоятельные
- \boxed{B} МНК-оценки коэффициентов не существуют
- \fbox{E} оценк коэффициентов \hat{eta}_1 и \hat{eta}_2 будут незначимы
- [C] МНК-оценки коэффициентов будут несмещённые, но не состоятельные
- \overline{F} нет верного ответа

Вопрос 8. МНК-оценка уравнения регрессии в отклонениях имеет вид $\hat{y}_i = 5x_i$, оценка остаточной дисперсии равна $\hat{\sigma}^2 = 2$. Вектор регрессоров имеет вид $x = (-2, 1, 1)^T$.

Оценка дисперсии ошибки прогноза индивидуального значения y_{n+1} при $x_{n+1}=3$ равна

A = 5

C 2.25

E 0.5

B 1

D 1.5

 $\lfloor F \rfloor$ нет верного ответа

Вопрос 9. Зависимость величины спроса Y в штуках от цены в тысячах рублей имеет вид $\ln \hat{Y}_i = 30 - 0.03 P_i$. Все коэффициенты регрессии значимы. Спрос снизится на 3% при увеличении цены примерно на

A 1%

C 100 тысяч рублей

 $E \mid 1$ тысячу рублей

B 10%

D 10 тысяч рублей

F нет верного ответа

Вопрос 10. Известно, что выборочная корреляция между переменными Z и W равна 0.5. Величина VIF_X в регрессии $Y_i=\beta_1+\beta_2X_i+\beta_3Z_i+\beta_4W_i+u_i$

 \overline{A} не более 2

С не менее 4/3

[E] не может быть оценена ни сверху, ни снизу

|B| не менее 2

 \boxed{D} не более 4/3

|F| нет верного ответа

Фамилия, имя, номер группы:

Задачи

- 1. Исследователь рассматривает уравнение зависимости расходов на питание (W) от доходов (Income), с учетом сезона. Переменная сезон (S) принимает следующие значения: 1 зима, 2 весна, 3 лето и 4 осень. Исследователь предполагает, что в каждый сезон может выполняться своя линейная зависимость.
 - а) (2 балла) Выпишите уравнение оцениваемой модели. Укажите смысл всех включенных в модель переменных.
 - б) (2 балла) Как проверить гипотезу о единой линейной зависимости расходов на питание для всех сезонов? Выпишите аккуратно основную и альтернативную гипотезы, формулу расчета статистики и способ проверки.
- 2. Рассмотрим модель $y_i = \beta_1 x_i + \beta_2 z_i + \varepsilon_i$ в стандартизированных переменных, оцениваемую по n наблюдениям с помощью гребневой (ridge) регрессии с параметром регуляризации λ .
 - а) (2 балла) Выпишите условия первого порядка для задачи гребневой регрессии.
 - б) (3 балла) Выведите оценки гребневой регрессии $\hat{\beta}_1$ и $\hat{\beta}_2$.
 - в) (1 балл) Что произойдёт с оценками при $\lambda=0$?
 - r) (1 балл) Что произойдёт с оценками при $\lambda \to +\infty$?
- 3. По 24 наблюдениям была оценена модель:

$$\widehat{Y}_i = 15 - 4Z_i + 3W_i$$

Известно, что случайные ошибки нормально распределены, RSS=180, и

$$(X'X)^{-1} = \begin{pmatrix} 0.474 & -0.222 & -0.166 \\ -0.222 & 0.170 & 0.045 \\ -0.166 & 0.045 & 0.093 \end{pmatrix}$$

- а) (1 балл) Проверьте гипотезу $H_0: \beta_Z = 0$ против $H_a: \beta_Z \neq 0$ на уровне значимости 5%.
- б) (3 балла) Проверьте гипотезу $H_0: \beta_Z + \beta_W = 0$ против $H_a: \beta_Z + \beta_W \neq 0$ на уровне значимости 5%.
- в) (2 балла) Выпишите использованные при проверке гипотез предпосылки о случайных ошибках модели.

- 4. Исследовательница Глафира изучает зависимость спроса на молоко от цены молока и дохода семьи. В её распоряжении есть следующие переменные:
 - price цена молока в рублях за литр
 - income ежемесячный доход семьи в тысячах рублей
 - milk расходы семьи на молоко за последние семь дней в рублях

В данных указано, проживает ли семья в сельской или городской местности. Поэтому Глафира оценила три регрессии: (All) — по всем данным, (Urban) — по городским семьям, (Rural) — по сельским семьям.

	(All)	(Urban)	(Rural)
(Intercept)	-3.951	-1.220	-2.942
	(4.764)	(6.656)	(6.708)
income	0.314**	* 0.225**	0.380**
	(0.052)	(0.072)	(0.073)
price	-0.292	-0.074	-0.610^*
	(0.180)	(0.234)	(0.267)
R-squared	0.279	0.187	0.368
adj. R-squared	0.264	0.149	0.343
sigma	4.958	4.698	4.995
F	18.799	4.941	14.845
P-value	0.000	0.012	0.000
RSS	2384.629	949.009	1272.452
n observations	100	46	54

Выборочная ковариационная матрица регрессоров по полной выборке имеет вид:

	price	income	milk
price	7.77	3.14	-1.29
income	3.14	93.60	28.50
milk	-1.29	28.50	33.42

- а) (1 балл) Проверьте значимость в целом регрессии (All) на 5%-ом уровне значимости.
- б) (2 балла) На 5%-ом уровне значимости проверьте гипотезу, что зависимость спроса на молоко является единой для городской и сельской местности.
- в) (3 балла) Разложите коэффициент детерминации R^2 в модели (All) в сумму эффектов переменных income и price.