# **INDEX**

| Recurrent Neural Network                    | 2  |
|---------------------------------------------|----|
| Example                                     | 2  |
| 一、Toy Example                               | 2  |
| 二、Slot Filling Problem                      | 4  |
| Different Type of RNN                       | 6  |
| 一、Elman Network                             | 6  |
| 二、Jordan Network                            | 6  |
| 三、Bidirectional RNN                         | 7  |
| 四、Long Short-term Memory (LSTM)             | 8  |
| 1. Example                                  | 10 |
| 2. Neural Network                           | 12 |
| Learning                                    | 15 |
| 一、Training                                  | 16 |
| 二、Difficulty                                | 16 |
| 三、Clipping                                  | 17 |
| 1. LSTM VS. RNN                             | 19 |
| 2. Gated Recurrent Unit (GRU)               | 20 |
| More Applications                           | 20 |
| — Nany to One: Sentiment Analysis           | 20 |
| 二、Many to Many (Output is shorter)          | 21 |
| Connectionist Temporal Classification (CTC) |    |
| 三、Many to Many (No Limitation)              |    |
| Deen & Structured                           |    |

### **Recurrent Neural Network**

每一次 hidden layer 裡面的 neuron 產生 output 的時候,這個 output 都會被存到 memory 裡,如下圖藍色方塊。

下一次 input 進來的時候,這個 hidden layer 的 neuron 不是只會考慮 input  $x_1$  跟  $x_2$ ,它還會考慮存在這些 memory 裡面的值。意即對它來說除了  $x_1$  跟  $x_2$  以外, memory  $a_1$  與  $a_2$  的值也會影響到它的 output。



## **Example**

## 一、Toy Example

假設圖上的 network 所有的 weight 都是 1,且其內所有的 neuron 都沒有任何的 bias,然後假設 activation function 都是 linear。此處的 input 為[11] [11] [22]。

首先使用 RNN 前必須先給 memory 起始值,此處假設還沒有放任何東西之前,memory 裡面的值是 0。

輸入第一個 input [1 1]時,對綠色 neuron 來說,它除了接到 input [1 1]以外,它 還接到 memory 的 $[0\ 0]$ ,所以其 output 為  $2\ \circ$ 

接下來因為所有的 weight 都是 1 ,所以紅色 neuron 它們的 output 就是 4 。也就是說當 input 為[1 1] 的時候,它的 output 就是[4 4]。



接著 RNN 會把這些綠色 neuron 的 output 存到 memory 裡面,所以 memory 裡面的值就被 update 成  $2\,\circ$ 

若接下來再輸入[1 1] 的時候,綠色 neuron 的輸入有 4 個,[1 1]跟[2 2]。然後得到的結果為 6。

那最後紅色 neuron 的輸出就是 6+6 為 12。因此第二次再輸入[1 1]時,輸出就是[12 12]。



接下來[6 6]又會被存到 memory 裡,而我們的 input 是[2 2]。 這邊每一個綠色的 neuron,它考慮的 4 個 input:[2 2]跟[6 6],得到的值為 16。 那紅色 neuron 的 output 就是 32。



RNN 在考慮每個 input 時,並不是 independent 的,因此在做 RNN 的 input sequence 順序非常重要。

### 二、Slot Filling Problem

假設有一個使用者說 arrive Taipei on November  $2^{nd}$ ,那 arrive 就變成一個 vector,丟到 neural network 裡面,其 output 為  $a^1$ 。

然後根據這個  $\mathbf{a}^1$ ,我們產生  $\mathbf{y}^1$ ,這個  $\mathbf{y}^1$  就是 arrive 屬於哪一個 slot 的機率。接下來  $\mathbf{a}^1$  會被存到 memory 裡。

而當 Taipei 會變成 input 時,那這個 hidden layer 會同時考慮 Taipei 這個 input, 跟存在 memory 裡面的  $\mathbf{a}^1$ ,得到  $\mathbf{a}^2$ 。

然後再根據 a2 產生 y2,代表 Taipei 屬於哪一個 slot 的機率。以此類推。



因此透過 RNN 可以做到輸入同一個詞彙時,區分其 output 數值的問題。

舉例而言,同樣是輸入 Taipei 這個詞彙,但是因為紅色 Taipei 前面接的是 leave;而綠色 Taipei 前面接的是 arrive。

因為 leave 跟 arrive 它們的 vector 不一樣,所以 hidden layer 的 output 不同;同理存在 memory 的值也會不同。



## **Different Type of RNN**

#### → ` Elman Network



前述提出的 RNN 架構即是 Elman Network。也就是把 hidden layer 的值存進 memory,在下一個時間點再讀出來。

#### 二、Jordan Network



該架構把整個 network output 的值存在 memory 裡面。然後它再把 output 的值,在下一個時間點讀進來。

由於 Elman Network 的 hidden layer 沒有 target,所以有點難控制它學到什麼樣的 hidden information,也就是不知道它學到把什麼東西放到 memory 裡面。而 Jordan Network 是有 target 的,可以比較清楚我們放在 memory 裡面的,是什麼樣的東西,因此可以得到比較好的 performance。

### 三、Bidirectional RNN



在前述 RNN 中 input 一個句子的話,它就是從句首一直讀到句尾。 假設句子裡面的每一個詞彙都用  $\mathbf{x}^{t}$ 來表示的話,就是先讀  $\mathbf{x}^{t}$ 再讀  $\mathbf{x}^{t+1}$ ,最後再讀  $\mathbf{x}^{t+2}$ 。

但其實它的讀取方向可以是反過來的,它可以先讀  $\mathbf{x}^{t+2}$  再讀  $\mathbf{x}^{t+1}$ ,最後再讀  $\mathbf{x}^t$ 。所以可以同時 train 一個正向的 RNN 與一個逆向的 RNN,然後把這兩個 RNN的 hidden layer 拿出來,都接給同一個 output layer,最後  $\mathbf{y}^t$ 、 $\mathbf{y}^{t+1}$  與  $\mathbf{y}^{t+2}$ 。

用 Bidirectional RNN 的好處在於 network 在產生 output 的時候,它看的範圍是比較廣的。如果今天你只有正向的 network,在產生  $y^t$ ,跟  $y^{t+1}$  的時候,你的 network 只看過  $x^1$  一直到  $x^{t+1}$  的部分。

但如果是 Bidirectional RNN,在產生  $y^{t+1}$  的時候,你的 network 不只是看了  $x^1$  一直到  $x^{t+1}$  所有的 input,它也看了從句尾一直到  $x^{t+1}$  的 input。 等同於 network 是看了整個 input 的 sequence,因此會比只看句子的一半, 有更好的 performance。

### 四、Long Short-term Memory (LSTM)



#### LSTM 有 3 個 gate。

當 neural network 的其他部分的 output 想要被寫到 memory cell 裡面的時候,它必須先通過一個 input gate。

當它要被打開的時候,才能夠把值寫到 memory cell 裡面。至於這個 input gate 打開還是關起來,是由 neural network 自己學的。

輸出的地方也有一個 output gate,決定其他的 neuron 可不可以從 memory 裡面把值讀出來。

當 output gate 為關閉的時候,就沒有辦法把值讀出來,同樣也是由 network 自己學習。

而第三個 gate 稱 forget gate。它決定什麼時候 memory 要把過去記得的東西 format 掉。

因此整個 LSTM 可以看成它有 4 個 input 與 1 個 output。

這 4 個 input 分別是:想要被存到 memory cell 裡面的值(仰賴 input gate 要不要讓這個 information 過去)、操控 input gate 的訊號、操控 output gate 的訊號以及操控 forget gate 的訊號。



更進一步來看它的架構的話,假設現在要被存到 cell 裡面的 input 叫做 z,操控 input gate 的 signal 叫做  $z_i$ ,操控 forget gate 的數值是  $z_f$ ,而 output gate 同樣有一個操控它的數值是  $z_o$ 。綜合這些東西以後,最後會得到一個 output,寫作 a。

接著假設現在 cell 裡面在有這 4 個輸入之前已經存了值 c。而 z 通過一個 activation function 得到 g(z),然後把  $z_i$  通過另外一個 activation function,得到  $f(z_i)$ 。

而這 3 個  $z_i$ 、 $z_f$ 與  $z_o$  他們通過的 activation function f,通常會選擇 sigmoid function,它的意義就是其值是介在  $0\sim1$  之間,代表了這個 gate 被打開的程度。如果這個 f 的 output 是 1,就代表這個 gate 是處於被打開的狀態。反之就是關閉的。

接下來就把 g(z)乘上 input gate 的值  $f(z_i)$ ,得到  $g(z)*f(z_i)$ 。那這個 forget gate 的  $z_f$  通過這個 sigmoid activation function 亦得到  $f(z_f)$ 。接著把存在 memory 裡面的值 c 乘上  $f(z_f)$ ,得到  $c*f(z_f)$ ,再加上  $g(z)*f(z_i)$ 得

到 c',代表新的存在 memory 裡面的值。

根據到目前為止的運算可以發現, $f(z_i)$ 就是控制 g(z)可不可以輸入的一個關卡。因為假設  $f(z_i)=0$ ,那  $g(z)*f(z_i)$ 就等於 0,就好像是沒有輸入一樣。若  $f(z_i)=1$ ,那就等於是直接把 g(z)當作輸入。

而同樣地,f(z<sub>f</sub>)就是決定說要不要把存在 memory 裡面的值洗掉。

假設  $f(z_f) = 1$ ,也就是 forget gate 是被開啟時,這個時候 c 會直接通過,就等於是把之前存的值記憶下來。

那如果是  $f(z_f) = 0$ ,也就是 forget gate 被關閉的時候,0 乘上 c,過去存在 memory 裡面的值就會變成 0。

上述兩個值加起來,寫到 memory 裡面得到 c',其通過 h 之後,得到 h(c')。

另一方面,output gate 受  $z_o$  所操控,其通過 f 得到  $f(z_o)$ 。

若  $f(z_o)$  = 1 的話,我們會把  $f(z_o)$ 跟 h(c')乘起來,等同於是 h(c')通過 output gate。如果  $f(z_o)$  = 0,則此處 output 會變成 0,代表存在 memory 的值沒有辦法 通過 output gate 被讀取出來。

#### 1. Example

假設在 network 裡面,只有一個 LSTM cell,且 input 都是三維的 vector;output 都是一維的 vector。

當第二個 dimension  $x_2$  的值是 1 的時候, $x_1$  的值就會被寫到 memory 裡面(藍色方塊)。而  $x_2$  的值是-1 的時候,memory 就會被 reset。

另一方面,假設  $x_3$  等於 1 的時候,output gate 會打開,才能夠看到輸出。

所以假設原來存在 memory 裡面的值是 0,當  $x_2 = 1$  的時候,3 會被存到 memory 裡面去。接著第四次  $x_2 = 1$  時, $x_1 = 4$  會被存到 memory 裡面,所以其 值總合為 7。

第六次時, $x_3 = 1$ ,所以 7 會被輸出。

第七次的時候, $x_2 = -1$ ,則把 memory 裡面的值洗掉,因此看到-1 之後的下一個時間點,其 memory 的值就變成 0。



When  $x_2 = 1$ , add the numbers of  $x_1$  into the memory

When  $x_2 = -1$ , reset the memory

When  $x_3 = 1$ , output the number in the memory.

我們知道 LSTM 的 memory cell 總共有 4 個 scalar input,為三維的 input vector 乘上 linear transform 以後得到的結果。也就是乘上三個 weight 再加上 bias 後,就得到它的 input。

而這些乘上的值與 bias,是透過 training data 去學到的。



舉上圖為例,在 network 的 input 中, $x_1$  的 weight 為 1 其他都是 0,所以這邊直接把  $x_1$  當作輸入。

在 input gate 的地方,它是  $x_2*100$  且 bias 為-10。也就是說,假設  $x_2$  沒有值的 時候,因為 bias 是-10,那通過 activation function 以後,它的值會接近 0,所以 通常 input gate 是被關閉的。

只有在  $x_2$  有值(假設為 1)的時候,它就會比 bias 的這個-10 還要大,此時 input 就會是很大的正值,代表 input gate 被打開。

在 forget gate 部分,它平常都是被打開的(bias 為 10),所以會一直記得東西,只有在  $x_2$  給它一個很大的負值的時候,會壓過這個 bias,才會把 forget gate 關 起來。

output gate 平常也都是被關閉的,因為它的 bias 是很大的負值。但若  $x_3$  有一個很大的正值的話,它就可以壓過 bias,把 output gate 打開。

### (詳見講義 P.20~P.25)

#### 2. Neural Network

在原來的 neural network 中會有很多的 neuron,我們會把 input 乘上很多不同的weight,當作是不同 neuron 的輸入。每一個 neuron 它都是一個 function,輸入一個 scalar,就會輸出另外一個 scalar。

對 LSTM 來說,可以把它的 memory cell 想成是一個 neuron。

### ➤ Simply replace the neurons with LSTM



如果今天要用一個 LSTM 的 network,我們的事情就只是把原來一個簡單的 neuron,換成一個 LSTM 的 cell。而現在的 input  $x_1$  與  $x_2$  它會乘上不同的 weight,當作 LSTM 不同的輸入。

假設只有兩 neuron,那  $x_1$  與  $x_2$  乘上某一組 weight 之後,會去操控第一個 LSTM 的 output gate;乘上另外一組 weight,操控第一個 LSTM 的 input gate。 LSTM 的 input 與 forget gate 的 input 亦然。



對一個 LSTM 來說,它有 4 個不一樣的 input。但在原來的 neural network 裡,一個 neuron 就是一個 input 以及一個 output;而在 LSTM 裡面它需要 4 個 input 才能產生一個 output。

就好比有一台機器,它只要插一個電源線就可以跑;那 LSTM 就要插 4 個電源線才能跑。



進一步說明之,假設現在有一整排的 LSTM,它們每一個人的 memory 都存了一個值。

若把所有的 scalar 接起來之後,就變成一個 vector,寫作  $\mathbf{c}^{\mathsf{t-1}}$ 。

也就是說,每一個 memory 裡面存的 scalar ,就是代表這個 vector 裡面的一個 dimension。

接著在時間點 t 輸入一個 vector x<sup>t</sup>,這個 vector 會先進行 linear transform (乘上一個 matrix ),最終得到另外一個 vector z。z 這個 vector 中每一個 dimension 就代表了操控每一個 LSTM 的 input,所以 z 的 dimension 就正好是 LSTM memory cell 的數目,。

因此 z 的第一維就丟給第一個 cell,第二維就丟給第二個 cell,以此類推。  $z^f$ 、 $z^i$  與  $z^o$  同理。

結合 network 的觀念與 LSTM 的運算流程,可畫成下列架構:



而這些 memory cell 的運作是可以共同一起被運算的。

已知 input 的部分為, $z^i$  通過 activation function 之後與 z 相乘 ( element-wise product )。同樣地, $z^f$  通過 activation function 之後,跟已經存在於 cell 的值相乘。將上述兩個值加起來得到  $c^t$  (  $c^t = z * z^i + z^f * c^{t-1}$  )。

而 output gate 部分, $z^o$  通過 activation function 後,與  $c^t$  通過 activation function 相乘得到 yt( $y^t = h(c^t) * f(z^o)$ )。



此外 LSTM 會把上一個時間點的 output 接進來,當作下一個時間點的 input。 意即下一個時間點換控這些 gate 的值,不是只看那個時間點的 input x,也看前一個時間點的 output h。

而通常還會加上一個變數稱作「peephole」,用處在於把存在 memory cell 裡面的值也拉過來。也就是說,除了繼承給下一個時間點外,也作為其 input 考慮。所以在操縱 LSTM 的 4 個 gate 的時候,同時考慮了 x、h 與 c 這 3 個 vector。相乘後作為 linear transform 的 input,再去操控 LSTM。

### Learning

在做 learning 時,必須定一個 cost function 來評估 model 參數的好壞,意即選一個可以使 lost 最小的參數。



試舉例說明在 RNN 中如何定這個 lost。假設要處理的問題為 Slot Filling,那 training data 為 sentence,基於 sentence label 告訴 machine,「arrive」屬於「other」這個 slot;然後「Taipei」屬於「destination」這個 slot;而「November」與「2<sup>nd</sup>」屬於「time」的 slot。

接下來我們會希望當「arrive」丟到 RNN 後得出的 output y<sup>1</sup>,並對應到其中一項 reference vector 算它們的 cross entropy。

比如說該例有 40 個 slot,那這個 reference vector 的 dimension 就是 40。 而現在輸入的這個 word「arrive」應屬於「other」slot,那對應到「other」的那 個 dimension 就是 1,其他則為 0。

因此當輸入 x<sup>1</sup> (arrive) 時,經過 RNN 後輸出的 y<sup>1</sup>,它要跟 reference vector (other) 距離越近越好。所以 RNN 的 output 跟 reference vector 的 cross entropy 和,就是需要 minimize 的對象。

但需要注意的是,你在丢  $\mathbf{x}^2$  之前,一定要先丢  $\mathbf{x}^1$ ,否則無法知道存在 memory 裡面的值是多少。同樣地,在做 training 的時候,也不能把你 source 裡面的 word sequence 打散,而是要當作一個整體來看。

### → \ Training



進行 training 時其實也是用 gradient decent,意即如果我們已經定出了 lost function L,當需要 update network 裡面的某一個參數 w 的時候,就去計算 w 對 L 的偏微分,把這個偏微分計算出來之後,就用 gradient decent 去 update 每一個參數。

在 feed forward network 使用 GD 的時候,要用一個比較有效的演算法稱 back propagation;而在 RNN 裡面,GD 的原理是一模一樣的,但是為了要計算方便,會使用 BPTT 演算法,意即在 GD 中考慮了時間的 information。

## 二、Difficulty

RNN 的 training 是比較困難的。一般而言,在做 training 時會希望 learning curve 為下圖藍線的趨勢。

· RNN-based network is not always easy to learn



這邊的縱軸為 total loss, 橫軸則是 training epoch 的數目。一般情形下,希望說隨著 epoch 越來越多,參數不斷的被 update, loss 會慢慢下降最後趨向收斂。

然而在訓練 RNN 時,有時候會出現上圖綠線的趨勢。起因源自於 RNN 的 error surface (total loss 對參數的變化)。

RNN 的 error surface 非常崎嶇,意即該 error surface 有些地方非常平坦,但有一些地方,非常的陡峭。



假設橙色的那個點為初始點,使用 GD 調整參數後會跳到下一個橙色的點。在平坦的地方時,可能會因為 gradient 都很小,所以 learning rate 調得比較大;但當位於懸崖邊界時,跳過一個懸崖之後 gradient 突然暴增,因此很大的 gradient 再乘上很大的 learning rate 使參數就 update 很多,有可能會得出 NaN 的結果。

### 三、Clipping

當 gradient 大於某一個 threshold 時候,就不要讓它超過那個 threshold。由於 gradient 不會太大,因此就算是踩在這個懸崖上參數就不會飛太遠,如此仍然可以繼續做 RNN 的 training。如上圖綠點所示。

而為何 RNN 會有如此特性,可以直觀的使用 gradient 的大小說明之。 也就是透過把某一個參數做小小的變化,看他對 network output 的變化有多大, 並藉此測出這個參數的 gradient 大小。



舉一個簡單的 RNN 而例,假設該架構只有一個 linear neuron,它只有一個 input 沒有 bias 且 input 與 output weight 皆是 1; 而 transition 部分的 weight 是 w,也 就是從 memory 接到 neuron 的 input weight 是 w。

另外假設這個 network 的輸入是[ $1\,0\,0\,0\,0\,0$ ],只有第一個時間點輸入 1,接下來都輸入 0。因此在最後一個時間點,第 1000 個時間點,的 output 值為 w 的 999 次方。

再假設 w 為我們要 learn 的參數,我們想要知道它 gradient 的大小,也就是當我們改變 w 的值的時候對 network output 有多大的影響。

w = 1 的時候,network 在最後時間點的 output ,  $y^{1000}$  ,也是 1; 而 w = 1.01 的時候,  $y^{1000}$  是 1.01 的 999 次方,約等於 20000。 故知 w 有一點小小的變化時,對它的 output 影響是非常大的,所以 w 有很大的 gradient。此時會需要小一點的 learning rate。

而如果把 w 設成 0.99, $y^{1000}$  就為 0;把 w 設為 0.01,那  $y^{1000}$  還是等於 0。 這個時候又需要一個很大的 learning rate。

也就是說在 1 這個地方有很大的 gradient,但在 0.99 的地方 gradient 就突然變得 非常小,使 error surface 變的很崎嶇(因為 gradient 是時大時小的)。

因此 RNN training 的問題,其實是來自於在 transition 的時候,它他把同樣的東西在時間和時間轉換的時候反覆使用。也就是從 memory 接到 neuron 的那一組 weight,在不同的時間點都是反覆被使用。因此這個 w 只要一有變化,它有可能完全沒有造成任何影響,也可能造成巨大的影響。

因應該問題現在廣泛被使用的技巧就是 LSTM,它可以讓 error surface 不要那麼 崎嶇。它會把那些比較平坦的地方拿掉藉此解決 gradient vanishing,但無法解 決 gradient explode。

也就是說有些地方仍然變化會是非常劇烈的,但是不會有特別平坦的地方,所以可以把 learning rate 設的小一點。

#### 1. LSTM VS. RNN

至於 LSTM 為何可以做到解決 gradient vanish 的問題理由在於, RNN 跟 LSTM 它們在面對 memory 的時候,處理的方式不一樣。

RNN 在每一個時間點 memory 裡面的資訊都會被洗掉, neuron 的 output 都會被放到 memory 裡面去。

而在 LSTM 裡面不一樣,它是把原來的 memory 乘上一個值,再把 input 的值加 起來放到 cell 裡面去,所以它的 memory 和 input 是相加的。

也就是說,再 LSTM 中,如果 weight 可以影響到 memory 的話,這個影響會永遠都存在,所以就不會有 gradient vanishing 的問題。

除非 forget gate 決定要把 memory 的值洗掉,然而一般在訓練 LSTM 時,不要給 forget gate 特別大的 bias,確保 forget gate 在多數的情況下是開啟的,只有少數情況會被 format 掉。

### • Long Short-term Memory (LSTM)

- Can deal with gradient vanishing (not gradient explode)
- Memory and input are added
- ➤ The influence never disappears unless forget gate is closed
- No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM



#### 2. Gated Recurrent Unit (GRU)

此外有另一個版本,使用 gate 操控 memory 的 cell,稱作 Gated Recurrent Unit。它只有兩個 gate,所以 GRU 相較於 LSTM 需要的參數量比較少。也因此 GRU 在 training 是比較 robust 的。因此在 train LSTM 的時候,發現 over fitting 的情況很嚴重,可以試用 GRU 改善之。

GRU 的精神簡而言之就是「舊的不去,新的不來」。它會把 input gate 跟 forget gate 連動起來,當 input gate 被打開的時候,forget gate 被打開,存在 memory 的值就會被洗掉;當 forget gate 沒有要 format 值時,input gate 就會被關起來。也就是你要把存在 memory 裡面的值清掉之後,才可以把新的值放進來。

## **More Applications**

### — • Many to One: Sentiment Analysis

RNN 可以做到更複雜的事。例如它可以 input 一個 sequence,而 output 只是一個 vector。

· Input is a vector sequence, but output is only one vector



打個比方來說,某家公司想要知道他們的產品在網路上評價如何,他們可以寫一個爬蟲把它們產品有關係的網路文章都爬下來,接著使用 RNN 去分類這些文章哪是正向或是負向的。

它的 input 是一個 character sequence, 然後在最後一個時間點把 hidden layer 拿出來,再通過幾個 transform 得到最後的 sentiment analysis 的 prediction。

### 

該例的 input 與 output 都是 sequences,但 output sequence 比 input sequence 短。

- Both input and output are both sequences, <u>but the output</u> is shorter.
  - E.g. Speech Recognition



以語音辨識為例,其 input 是一串 acoustic feature sequence。一般處理聲音訊號 的方式為,在聲音訊號裡面每隔一小段時間,就把它用一個 vector 來表示,例 如 0.01 秒。而它的 output 就是 character 的 sequence。

若是用原來的 RNN 把這一串 input 丟進去,它充其量只能做到每一個 vector 對應到哪一個 character。因此會發生 output 產生不必要的疊字(分割時間極短)。 此處用 trimming 把重複的東西拿掉即可,但無法辨識實際上出現疊字的情形。

#### **Connectionist Temporal Classification (CTC)**



該方法可解決上述情形,在 output 的時候不只包含所有的 character,還多 output 一個符號,叫做「Null」。

在做訓練的時候,training data 就會告訴你說,這一串 acoustic feature 會對應到某一串 character sequence。

但無法得知「好」是對應第幾個 frame 到第幾個 frame 或「棒」是對應到第幾個 frame。

解法為窮舉所有可能的 alignment。簡單來說假設所有的狀況都是可能的,在 training 的時候,就全部都當作正確的一起去 train,如下圖所示。



## **≡ · Many to Many (No Limitation)**

該例子不確定 input 或 output 誰長誰短。比如說 machine translation,其 input 為英文的 word sequence,並要把它翻成中文的 character sequence。

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
  - E.g. *Machine Translation* (machine learning→機器學習)



現在假如 input 的是「machine learning」用 RNN 讀過去之後,在最後一個時間點 memory 就存了所有 input sequence 的 information,然後接下來讓 machine 吐一個 character。

如上圖所示,它吐的第一個 character 就是「機」,接著該 output 當作 input 把 memory 的值讀進來,它就會 output「器」。

如此循環下去後,若要阻止它繼續產生詞彙,就要多加一個 symbol 代表停止。

該方法的好處在於,直接 input 聲音訊號,然後 model 就得到辨識的結果,無須透過語音辨識,因此在 collect translation 的 training data 時會比較容易。

(實例繁多,另見講義 P.50~P.79 與逐字稿)

# **Deep & Structured**

(補充單元,參見講義 P.80~P.87 與逐字稿)