(12) UK Patent Application (19) GB (11) 2 305 921 (13) A

(43) Date of A Publication 23.04.1997

- (21) Application No 9620920.0
- (22) Date of Filing 07.10.1996
- (30) Priority Data
 - (31) 9520486 9601081
- (32) 06.10.1995 19.01.1996
- (33) GB

(71) Applicant(s)

Cambridge Antibody Technology Limited

(Incorporated in the United Kingdom)

The Science Park, Melbourne, ROYSTON, Cambs, SG8 6JJ, United Kingdom

(72) Inventor(s)

Julia Elizabeth Thompson Tristan John Vaughan Andrew James Williams Jonathan Alexander Green Ronald Henry Jackson Louise Bacon Kevin Stuart Johnson

- (51) INT CL⁶ C07K 16/22
- (52) UK CL (Edition O)
 C3H HB7P H675
- (56) Documents Cited EP 0290012 A1 WO 95/26203 A1 WO 93/11236 A1 Nature, Vol. 346, 26th July 1990, pages 371 t 374
- (58) Field of Search
 UK CL (Edition O) C3H HB7P
 INT CL⁶ C07K 16/22
 ONLINE: WPI, CABS, EMBASE, CEABA, DBA, CBA
- (72) cont
 Alison Jane Wilton
 Philip Ronald Tempest
 Anthony Richard Pope
- (74) Agent and/or Address for Service

 Mewburn Ellis

 York House, 23 Kingsway, LONDON, WC2B 6HP,
 United Kingdom
- (54) Human antibodies specific for human transforming growth factor beta-1 and beta-2
- (57) Human antibodies specific for human transforming growth factor-β (TGF-β), bind to TGF-β1 and/or TGF-β2 preferentially compared with TGF-β3 and are useful in the treatment of fibrotic and immune/inflammatory disease. A specifically disclosed antibody binds the active form of TGF-β2, neutralising its activity but does not bind the latent form.

•

_
<u>(P</u>
=
_
Ð
nr
įġ
ř. '

38C 65	AGC S>	CAG Q>	GTC V>	240 ACC T>	CAA O	ATC I>
CTG L	TAC	140 A GGA G	190 GGG GTC G V>	<i>T</i> 1	rn	GAA
40 TCT S	90 TTA L	CCA P	TCC	ACT	30 TGT C	330 GTG V
GTG V	$_{\rm L}^{\rm CTT}$	AAA K	GAA .	230 TTC F	28 TAC Y	AAG K
GCT	AGT	30 CAG Q	180 CGG R	GAT	TAT Y	ACC
CTG	80 CAG Q	130 CAG CAG Q Q	ACC	20 GGG ACA GAT TTC ACT CTC G T D F T L	GTT V	320 C GGG A G
30 TCC S	AGC	r TGG TAC W Y	TCT	~ 7D	eh	- 7
GAC	TCC	TGG W	170 GCA A	22 TCT S	GTG V	၁၅၅
	9	O E	Ų.	Ψ.,	260 2 F GAA GAT GTG C E D V	LO TTC F
20 TCT S	TGC	110 G ATG AAC TAC TTA GC M N Y L A	AAC	AGC	260 GAA E	31 ACG T
CAG	AAC	TAC	50 ATT I	210 GGC G	GCT	CTG L
ACC	ATC	AAC N	CTC L	AGT	CAG	CCT
10 ATG M	60 ACC T	ATG	CTG	TIC	50 CTG L	300 ACT T
GTG	GCC	A X	& X	CGA R	250 2 AGC (GCA A
ATC	AGG R	100 TAC AAC Y N	150 CCT P	GAC	AGC S	TA]
GAC	50 GAG E	16 TAC Y	CCT	CCT	ATC	290 TAT Y

Figure 1(b)(ii)

CAC GTT ATA CTG ACT CAG GAC CCT GCT GTG TCT GTG GCC TTG GGA CAG H V I L T Q D P A V S V A L G Q>

50 80 90 ACA GTC AGG ATC ACG TGC CAA GGA GAC AGC CTC AAA AGC TAC TAT GCA T V R I T C Q G D S L K S Y Y A>

100 120 130 140 AGT TGG TAC CAG AAG CCA GGA CAG GCC CCT GTA CTT GTC ATC TAT S W Y Q Q K P G Q A P V L V I Y>

GGT GAA AAC AGC CGG CCC TCC GGG ATC CCA GAC CGA TTC TCT GGC TCC G E N S R P S G I P D R F S G S>

AGC TCA GGA AAC ACA GCT TCC TTG ACC ATC ACT GGG GCT CAG GCG GAA S L T I T G A Q A E>

CAT GAA GCT GAC TAT TAC TGT AAC TCC CGG GAC AGC AGT GGT ACC CAT D E A D Y Y C N S R D S S G T H>

290 310 320 330 CTA GAA GTG TTC GGC GGA GGG ACC AAG CTG ACC GTC CTA GGT L E V F G G G T K L T V L G 290

	AGG R>	TAT Y>	GTG V>	30 GTG V>	240 TAT Y>	7GT C>
	999 9	AGC S	r D	190 <i>TCC GTG</i> <i>S V></i>	CTG	TAC
40	CCT P	90 AGT S	140 GAG TGG E W	GAC D	ACG	0 ŤAT Y
7	CAG CCT Q P	TTC	CŢĞ L	\$25°	30 AAC N	280 GTG TAT V Y
	GTC V	ACC	30 . GGG . G	180 TAT Y	AAG K	80C A
	GTG V	80 TTC	130 AAG GGG K G	TAC Y	210 220 230 230 CC ATC TCC AGA GAC AAT TCC AAG AAC ACG CTGT IS RDN SKNTL	ACG
30	၁၅၅	96. G	ည္တမ	AAA K	O AAT N	270 GAC D
	GGA G	70 F GCA GCG TCT A A S	CCA P	70 AAT N	22 GAC D	gag E
	999 9	70 GCG A	120 GCT A	AGT S	AGA R	260 : CTG AGA GCC (L R A
20	TCT	45 ⋖	CAG	৫ ৪৯	TCC	60 AGA R
	GAG	ភិទ្ធិ	CGC	GAT D	210 ATC I	CTG L
	GTG V	TCC	110 TGG GTC CGC W V R	160 3 TAT 6	ACC	A;
10	CAG CTG Q L	60 CTC L	TGG W	ata TGG I W	TTC	250 ATG GAC M D
	CAG Q	AGA R	CAC H	ATA	OO CGA	25 ATG M
	GTG V	CTG	100 GGC ATG	150 GTT V	200 GGC CGA TTC ACC	CAA
	GAG B	50 TCC	100 GGC ATV .G M	GCA	ÀAG (CTG L

290 310 310 320 330 CA ACA CTG GAG TCT AGT TTG TGG GGC CAA GGC ACC CTG GTC ACC G R T L V T> m G R T L E S S L W G Q G T L V T>

340 GTC TCA V S S

Figure 19

Figure 19 (ii)

CAG QV	GCA A>	TAT Y>	30 TCC S>	240 GAA E>	CAT H>	
ଓଡ଼ି ଓ	TAT .	40 ATC I	190 GGC TC G S	€	ACC	
to TTG	90 TAT Y	140 GTC ATC V I	TCT	CAG	ag Agt S	330 GGT G
40 GCC TTG A L	AGC	CTT	TTC	230 GGG GCT G A	280 C AGT AG	CTA
GTG V	AGA	130 CCT GTA P V	180 CGA R	වූ ප	AGC	GIC
TCT	80 CTC L	13 CCT P	GAC D	ACT	iac D	320 3 ACC (
30 GTG V	AGC	GCC	CCA	220 ACC ATC ACT G T I T	270 CGG (R	crg L
GCT	70 CAA GGA GAC , Q G D	CAG O	170 GGG ATC G I	ACC T	$\mathcal{S}_{\mathcal{S}}$	A.A.G K
20 GAC CCT	70 GGA G	120 GGA (966 6	TCC TTG 1	T AAC T	310 GGG ACC 7 G T
		CCA	77.A S	TCC S	76T 76T	31 GGG G
CAG	7 <u>6</u> 0	AAG	50 CCC P	210 GCT A	260 TAC TGT , Y C	GGA G
ACT	ACA	110 ; CAG ; Q	160 . <i>CGG CC</i> . R	ACA T	TAT	၁၅၅
10 CTG L	60 ATC I	CAG	AAC	AAC	50 GAC TAT 1 D Y	300 TTC F
GAG	AGG R	TAC	AAC	000 664 0	250 4G GCT GAC 3 A D	GTG
TCT	GTC	100 AGC TGG S W	150 AAA K	TCA	GAG E	9 999
TCG S.	50 ACA T	1(AGC S	GGT	AGC	GAT	290 CGA R

Figure 19 (iii)

150 160 170 180 190 AAA AAC AAC CGG CCC TCA GGG ATC CCA GAC CGA TTC GCT GGC TCC

K N N R P S G I P D R F A G S> 10 20 30 40 TCG TCT GAG CTG GAC CCT GCT GTG GCC TTG GGA CAG S S E L T Q D P A V S V A L G Q> 100 110 120 130 140 AGC TGG TAC CAG CAG AAG CCA GGA CAG GCC CCT GTA CTT GTC ATC TAT S W Y Q Q K P G Q A P V L V I Y> AAC TCA GGA AAC ACA GCT TCC TTG ACC ATC ACT GGG GCT CAG GCG GAG N $^{\circ}$ T A S L T I T $^{\circ}$ G A E> 50 60 70 80 90 ACA GGA GAC AGC CTC AGA AGC TAT TAT GCA T V R I T C Q G D S L R S Y Y A>GGT G

310 320 310 320 GTG GTT TTC GGC GGA GGG ACC AAG CTG ACC GTC CTA GGT V V F G G T K L T V L G

CAT GAG GCT GAC TAT TAC TGT AGC TCC CGG GAC AGC AGT GGT AAC CAT D E A D Y Y C S S R D S S G N H>

Figure 19 (iv)

GAT GTT GTG ACT CAG TCT CCA TCC TCC CTG TCT GCA TCT GTA GGA D V V M T Q S P S S L S A S V G> 50 60 70 80 90 90 GAC AGT CAG GGC ATT AGC AAT TAT D R V T I T C R A S Q G I S N Y> AGT GGA TCT GGG ACA GAA TTC ACT CTC ACA ATC AGC AGT CTG CAA CCT S G S G T E F T L T I S S L Q P> TTA GCC TGG TAT CAG CAA AAA CCA GGG AAA GCC CCT AAG CTC CTG ATC L A W Y Q Q K P G K A P K L L I I> 250 270 280 GAA GAT TTT GCA ACT TAC TGT CAA CAG AGT TAC AGT ACC CCT CGA E D F A T Y Y C Q Q S Y S T P R> 120

ACG TTC GGC CAA GGG ACC AAA GTG GAT ATC AAA CGT

CLAIMS:

- 1. A specific binding member comprising a human antibody antigen binding domain specific for human TGF β which binds the human TGF β isoforms TGF β 2, TGF β 1, or TGF β 2 and TGF β 1, preferentially over TGF β 3.
- 2. A specific binding member according to claim 1 which neutralises $TGF\beta2$, $TGF\beta1$, or $TGF\beta2$ and $TGF\beta1$.
- 3. A specific binding member according to claim 1 or claim 2 wherein said human antibody antigen binding domain is for the TGF- β isoform TGF- β 2.
 - 4. A specific binding member according to claim 3 wherein said human antibody antigen binding domain comprises a VH domain which has the amino acid sequence shown in Figure 2(a) (i) or Figure 2(a) (ii).
- 15 5. A specific binding member according to claim 3 or claim 4 wherein said human antibody antigen binding domain comprises a VL domain which has the amino acid sequence shown in any of Figures 2(b) (i) to (v)
- 6. A specific binding member according to claim 5
 wherein said human antibody antigen binding domain
 comprises a pairing of a VH domain and a VL domain
 selected from:
 - (a) 6H1 VH, of which the amino acid sequence is shown

- in Figure 2(a) (i), and 6B1 VL, of which the amino acid sequence is shown in Figure 2(b) (iii);
- (b) 6H1 VH, of which the amino acid sequence is shown in Figure 2(a) (i), and 6H1, of which the amino acid sequence is shown in Figure 2(b) (i);

- (c) 6H1 VH, of which the amino acid sequence is shown in Figure 2(a) (i), and 6A5 VL, of which the amino acid sequence is shown in Figure 2(b) (ii).
- 7. A specific binding member according to claim 6

 10 wherein said human antibody antigen binding domain comprises the VH domain 6H1 VH, of which the amino acid sequence is shown in Figure 2(a) (i), and the VL domain 6B1 VL, of which the amino acid sequence is shown in Figure 2(b) (iii).
- 8. A specific binding member according to claim 3 wherein said human antibody antigen binding domain comprises a complementarity determining region (CDR) with an amino acid sequence identified as a CDR in any of the sequences shown in Figures 19 (i) to (iv).
- 9. A specific binding member according to claim 8 wherein said human antibody antigen binding domain comprises a VH domain which comprises a CDR3 with a sequence shown as CDR3 in Figure 19 (i).
 - 10. A specific binding member according to claim 3

which competes for binding to TGF- β 2 with a specific binding member according to claim 6.

A specific binding member according to claim 10 11. which competes for binding to $TGF-\beta 2$ with a specific binding member according to claim 7.

5

16.

- A specific binding member according to claim 3 12. which binds the peptide TQHSRVLSLYNTIN.
- A specific binding member according to claim 3 which binds the active form of $TGF\beta 2$ but not the latent 10 form.
 - 14. A specific binding member according to claim 3 wherein said human antibody antigen binding domain comprises a VH sequence of the DP50 germ line, or a rearranged form thereof.
- A specific binding member according to claim 1 or 15 claim 2 wherein said human antibody antigen binding domain is for the TGF- β isoform TGF- β 1.
- A specific binding member according to claim 15 wherein said human antibody antigen binding domain comprises a VH domain which has the amino acid sequence 20 shown in any of Figure 1(a) (i), Figure 1(a) (ii) and Figure 1(c) (i).

- 17. A specific binding member according to claim 15 or claim 16 wherein said human antibody antigen binding domain comprises a VL domain which has the amino acid sequence shown in any of Figures 1(b) (i), 1(b) (ii) and 1(a) (iii).
- 18. A specific binding member according to claim 17 wherein said human antibody antigen binding domain comprises a pairing of a VH domain and a VL domain selected from:

- 10 (a) 1B2 VH, of which the amino acid sequence is shown in Figure 1(a) (i), and 7A3 VL, of which the amino acid sequence is shown in Figure 1(b) (i);
 - (b) 31G9 VH, of which the amino acid sequence is shown in Figure 1(a) (ii), and 31G9 VL, of which the amino acid sequence is shown in Figure 1(a) (iii);
 - (c) 27C1 VH, of which the amino acid sequence is shown in Figure 1(c) (i), and 10A6 VL, of which the amino acid sequence is shown in Figure 1(b) (ii).
- 19. A specific binding member according to claim 18
 20 wherein said human antibody antigen binding domain comprises the VH domain 27Cl VH, of which the amino acid sequence is shown in Figure 1(c) (i), and the VL domain 10A6 VL, of which the amino acid sequence is shown in Figure 1(b) (ii).
- 25 20. A specific binding member according to claim 15

wherein said human antibody antigen binding domain comprises a VH domain which comprises a CDR3 with an amino acid sequence selected from those shown in Figure 3.

- 5 21. A specific binding member according to claim 20 wherein said CDR3 has the sequence shown for CDR3 of 27C1 VH.
- 22. A specific binding member according to claim 15 wherein said human antibody antigen binding domain is comprises the 31G9 VH domain of which the sequence is shown in Figure 1(a) (ii) and the CS37 VL of which the sequence is shown in Figure 14.
- 23. A specific binding member according to claim 15 which competes for binding to TGF-β1 with a specific
 15 binding member according to claim 18.
 - 24. A specific binding member according to claim 23 which competes for binding to TGF- β 1 with a specific binding member according to claim 19.
- 25. A specific binding member according to claim 15 which competes for binding to $TGF\beta 1$ with a specific binding member according to claim 22.
 - 26. A specific binding member according to claim 15

which binds the peptide TQYSKVLSLYNQHN.

- 27. A specific binding member according to claim 1 wherein said human antibody antigen binding domain is for the TGF- β isoforms TGF- β 1 and TGF- β 2.
- 5 28. A specific binding member according to claim 27 wherein said human antibody antigen binding domain comprise a VL domain with the amino acid sequence shown in Figure 4 and a VH domain with the amino acid sequence shown in Figure 1(a) (ii).
- 10 29. A specific binding member according to claim 27 which competes for binding to TGF- β 1 and for binding to TGF- β 2 with a specific binding member according to claim 28.
- 30. A specific binding member according to any
 15 preceding claim comprising a single-chain Fv antibody
 molecule.
 - 31. A specific binding member according to any of claims 1 to 29 which comprises one or more amino acids in addition to those forming said human antibody antigen binding domain.

20

32. A specific binding member according to claim 31 comprising an antibody constant region.

- 33. A specific binding member according to claim 32 which comprises a whole antibody.
- 34. A specific binding member according to claim 32 or 33 wherein said antibody constant region is IgG4 isotype.

- 35. A method comprising causing or allowing binding of a specific binding member according to any preceding claim to TGF- β 1 isoform and/or TGF- β 2 isoform of human TGF- β .
- 10 36. A method according to claim 35 wherein binding takes place in vitro.
 - 37. A method according to claim 35 wherein binding takes place in vivo.
- 38. A method according to any of claims 35 to 37
 wherein said binding of the specific binding member
 neutralises said isoform or isoforms.
 - 39. Use of a specific binding member according to any of claims 1 to 34 in the manufacture of a medicament for treating an individual to counteract effects of $TGF-\beta$ which are deleterious to the individual.
 - 40. Use according to claim 39 wherein said effects

are fibrosis promoting effects.

5

- 41. Use according to claim 40 wherein said individual has a condition selected from the group consisting of glomerulonephritis, neural scarring, dermal scarring, ocular scarring, lung fibrosis, arterial injury, proliferative retinopathy, retinal detachment, adult respiratory distress syndrome, liver cirrhosis, post myocardial infarction, post angioplasty restenosis, keloid scarring, scleroderma, vascular disorders, cataract, and glaucoma.
 - 42. Use according to claim 41 wherein said condition is neural scarring or glomerulonephritis.
- 43. Use according to claim 39 wherein said effects contribute to an immune or inflammatory disease

 15 condition.
 - 44. Use according to claim 43 wherein said condition is selected from the group consisting of rheumatoid arthritis, macrophage deficiency disease and macrophage pathogen infection.
- 20 45. Nucleic acid encoding a specific binding member according to any of claims 1 to 34.
 - 46. Nucleic acid according to claim 45 which is part

of an expression vector.

5

- 47. A method which comprises use of nucleic acid according to claim 45 or claim 46 in an expression system for production of a specific binding member according to any of claims 1 to 29.
- 48. A host cell containing nucleic acid according to claim 45 or claim 46.
- 49. A host cell according to claim 48 which is capable of producing said specific binding member under
 10 appropriate culture conditions.
 - 50. A method of producing a specific binding member according to any of claims 1 to 34 comprising culturing a host cell according to claim 49 under appropriate conditions for production of said specific binding member.
 - 51. A method according to claim 50 wherein following said production said specific binding member is isolated from the cell culture.
- 52. A method according to claim 51 wherein following said isolation the specific binding member is used in formulation of a composition comprising at least one additional component.

- 53. A method according to claim 52 wherein said composition is a pharmaceutical composition comprising a pharmaceutically acceptable excipient.
- 54. A pharmaceutical composition comprising a
 5 specific binding member according to any of claims 1 to
 34 and a pharmaceutically acceptable excipient.
 - 55. A method of treatment of a condition in which effects of $TGF-\beta$ are deleterious to an individual, the method comprising administration of a pharmaceutical composition according to claim 54 to the individual.
 - 56. A method according to claim 50 wherein said effects are fibrosis promoting effects.

- 57. A method according to claim 56 wherein said individual has a condition selected from the group consisting of glomerulonephritis, neural scarring, dermal scarring, ocular scarring, lung fibrosis, arterial injury, proliferative retinopathy, retinal detachment, adult respiratory distress syndrome, liver cirrhosis, post myocardial infarction, post angioplasty restenosis, keloid scarring, scleroderma, vascular disorders, cataract, and glaucoma.
 - 58. A method according to claim 57 wherein said condition is neural scarring or glomerulonephritis.

- 59. A method according to claim 55 wherein said effects contribute to an immune or inflammatory disease condition.
- 60. A method according to claim 59 wherein said

 5 condition is selected from the group consisting of rheumatoid arthritis, macrophage deficiency disease and macrophage pathogen infection.

Application No: Claims searched: GB 9620920.0

1 to 60

Examiner:

Mr S J Pilling

Date of search:

20 January 1997

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.O): C3H (HB7P)

Int Cl (Ed.6): CO7K 16/22

Other: ONLINE: WPI, CABS, EMBASE, CEABA, DBA, CBA

Documents considered to be relevant:

Category	Identity of document and relevant passage			
Y	EP 0290012 A1	(ONCOGEN) see page 4 lines 55 to 58 Claims 15 to 17.	Claim 1 at least	
Y	WO 95/26203 A1	(UNIVERSITY OF MANCHESTER) see page 1 lines 1 to 13, page 4 line 18 to page 5 line 3 and the example.	Claim 1 at least	
Y	WO 93/11236 A1	(MRC & CAMBRIDGE ANTIBODY TECHNOLOGY) see page 1 line 3 to page 2 line 11 and page 27 lines 11 to 25.	Claim 1 at least	
Y	Nature, Vol. 346, 26th July 1990, Border et al, "Suppression of experimental glomerulonephritis by antiserum against transforming growth factor $\beta 1$ ", pages 371 to 374			

Document indicating lack of novelty or inventive step

Document indicating lack of inventive step if combined with one or more other documents of same category.

Member of the same patent family

Document indicating technological background and/or state of the art. Document published on or after the declared priority date but before

the filing date of this invention. Patent document published on or after, but with priority date earlier

than, the filing date of this application.