

Phase-3

Student Name: Kirutheesh R

Register Number: 732123104058

Institution: Nandha College of Technology

Department: BE.Computer Science And Engineering

Date of Submission: 03/05/2025

Github Repository Link:

https://github.com/732123104058/naan-mudhalvan/upload/main

1. Problem Statement

The project aims to build a smart chatbot that can automatically answer questions, and solve common problems making customer support faster and more efficient.

2. Abstract

Dialog State Tracking (DST) plays a pivotal role in task-oriented dialog systems by maintaining an up-to-date representation of a user's goals and intentions throughout a conversation. The Dialog State Tracking Challenge (DSTC) provides a standardized benchmark and dataset for evaluating state tracking models across diverse dialog scenarios

3. System Requirements

☐ Hardware:

- Minimum 4GB RAM
- Dual-core processor or above

□ Software:

Python 3.8+

- Required Libraries: pandas, numpy, nltk, spaCy, TensorFlow, sklearn
- IDE: Google Colab

4. Objectives

- Develop a chatbot that responds to user queries using natural language understanding
- Automate FAQs and common tasks in customer support
- · Reduce human intervention and response time
- Enhance customer experience with real-time query resolution

5. Flowchart of Project Workflow

o. Dataset Description
□ Source: Official DSTC (Dialog State Tracking Challenge) repository□ Type: Public
☐ Size and Structure: Thousands of labeled dialogue sessions with features like speaker, utterance, intent, slots, and context
□ Target Variable: Intent or dialogue state
7. Data Preprocessing
□ Removed incomplete/irrelevant dialogues
□ Structured text and converted timestamps
☐ Encoded categorical variables like intent and slots
Normalized and tokenized text using nltk and spaCy
8. Exploratory Data Analysis (EDA)
□ Univariate Analysis: Frequency of intents, common keywords
☐ Bivariate Analysis: Intent vs. response time
☐ Visual tools: histograms, word clouds
☐ Insights: Most common queries, typical response time

9. Feature Engineering

- Extracted keyword-based features
- Created conversation history sequences
- Encoded speaker roles and included context windows
- · Removed sparse and redundant features

10. Model Building

Train-Test Split: 80:20

☐ Models Used:

Baseline: Logistic RegressionAdvanced: RNN with Attention

☐ Chosen for their effectiveness in sequence modeling and interpretability

11. Model Evaluation

☐ **Metrics Used:** Accuracy, F1-Score, Confusion Matrix

☐ **Visuals:** Confusion matrix heatmap

☐ Insights: RNN outperformed logistic regression in both precision and recall

12. Deployment

13. Source code

import numpy as np import IPython.display as display from matplotlib import pyplot as plt import io import base64

ys = 200 + np.random.randn(100)x = [x for x in range(len(ys))]

fig = plt.figure(figsize=(4, 3), facecolor='w') plt.plot(x, ys, '-')
plt.fill_between(x, ys, 195, where=(ys > 195), facecolor='g', alpha=0.6) plt.title("Sample Visualization", fontsize=10)
data = io.BytesIO()
plt.savefig(data) image =
F"data:image/png;base64,{base64.b64encode(data.getvalue()).decode()}" alt = "Sample Visualization"
display.display(display.Markdown(F"""![{alt}]({image})""")) plt.close(fig)
14. Future scope
 □ Integrate with real-time messaging platforms (e.g., WhatsApp, Telegram) □ Incorporate multilingual support
□ Continuous learning from user feedback for self-improvement
12 T M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13. Team Members and Roles
☐ S. Harish Ragavendra: Model experimentation and development
 P. Charan Babu: Dataset exploration and understanding R. Kirutheesh: Input interpretation and dialogue context handling