Exam 1 Review

From Cs470fall2011

Contents

- 1 Exam Logistics
- 2 Frameworks for Decision Making
- 3 Control
- 4 Search
- 5 Probabilistic Reasoning

Exam Logistics

- In the testing center from Oct 14 through Oct 16. The test is available during regular hours of the testing center.
- 3 hour timed.
- Closed book
- One 8.5" by 11" sheet of notes is allowed.
- Testing center calculator is required.
- Mix of true/false, short answer, matching, and "solve the following" problems.
- I will reuse questions from old exams that I have written, so studying from my old exams is cheating.

Frameworks for Decision Making

- Designer perspective: PEAS
 - Environment Types
 - Fully/Partially observable
 - Deterministic/stochastic
 - Episodie/sequential
 - Static/dynamic
 - Discrete/continuous
 - Single agent/Multiple agent
 - Known/Unknown
- Agent perspective: CSA
 - States
 - Actions
 - Consequences
 - Goals
 - Preferences
 - Utilities
 - Goodrich's definitions of uncertainty and non-determinism
- Agent types (from reading)

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents
- Learning agents
- How would you classify the following?
 - Agents that use potential fields
 - Agents that use PD controllers
 - Agents that use search
 - Agents that use probabilistic reasoning
- Relationship between CSA and PEAS perspectives
 - Actuators/Actions
 - Sensors/States
 - Performance Criteria/Utility
- Intelligence without representation
- Rationality and optimization

Control

- PD controllers
- Definition of a behavior (from Brooks)
- Potential fields: concepts and mathematical encoding
 - Attractive
 - Repelling
 - Tangential
 - Uniform
 - Random
 - Perpendicular
- Combining behaviors by combining potential fields
- Internal states with potential fields
 - Avoid the past (from reading)
- Lessons from lab

Search

- Nodes, states, goals, fringe, goal test, visited nodes
- Search strategy: definition
- Uninformed search strategies: algorithms, completeness, optimality, time complexity, space complexity
 - Breadth-First Search
 - Depth-First Search
 - Uniform-Cost Search
 - Depth-Limited Search
 - Iterative Deepening
 - Bi-directional Search
- Informed search strategies: algorithms, completeness, optimality, time complexity, space complexity
 - Greedy Best-First Search
 - A*
 - IDA*
 - Recursive Best-First Search

- SMA*
- Cost-to-arrive, cost-to-go, heuristics, admissible heuristics, consistent heuristics
- Optimally efficient
- Graph versus tree implementations of search
- Goal-finding
 - hill-climbing
 - random restart
 - beam search
- Gradient ascent (continuous spaces)
 - partial derivatives
 - gradients
 - stepping in the direction of the gradient
- Genetic algorithms
 - chromosomes
 - fitness
 - mutation
 - crossover

Probabilistic Reasoning

- Probability spaces
 - Ω *possible* world states
 - σ "distinguishable" events (think set of subsets)
 - P and the axioms of probability "size" of distinguishable events
 - $P:2^{\Omega} \rightarrow [0,1]$
 - For all $A \subseteq \Omega, P(A) \in [0,1]$
 - $P(\Omega) = 1$
 - Any countable sequence of pairwise disjoint (synonymous with *mutually exclusive*) events

$$E_1, E_2, \ldots$$
 satisfies $P(E_1 \cup E_2 \cup \cdots) = \sum_{i=1}^{\infty} P(E_i)$. (Quoted from wikipedia

(http://en.wikipedia.org/wiki/Probability_axioms).)

- Corollaries of the axioms.
- Random variables
 - "Measurable" states
 - $X: \omega \to S$ such that X satisfies a technical condition.
- Probability mass functions (pmfs)
 - Derived distribution: $P_X(x) = P(\{\omega: X(\omega) = x\})$
 - S is discrete so we can write $P_X(x)$ as a vector.
 - $\sum_{x_i} P_X(x_i) = 1$
 - $\forall x_i \in S, P_X(x_i) \in [0, 1]$
- Joint distributions
 - Multiple measures of same distinguishable space
 - Marginal distribution
 - Examples
- Conditional distributions
 - Definition

- Properties
- Examples

$$\sum_{X} p_{X \mid Y}(x \mid y) = 1$$

$$\sum_{y} p_{X|Y}(x|y) \neq 1$$

- Bayes rule
 - States and observations
 - prior, posterior, likelihood, and normalizer

$$p_{S|O} = \frac{p_{O|S}p_S}{p_O}$$

$$p_O(o) = \sum_{S} P_{S,O}(s,o) = \sum_{S} P_{O \mid S}(o \mid s)P_S(s)$$

- Computing p_O
 - Examples: medicine, Monty Hall, 3 Prisoners (from homework)

Retrieved from "https://facwiki.cs.byu.edu/cs470fall2011/index.php/Exam_1_Review"

■ This page was last modified on 8 October 2013, at 22:30.