Clarke dual method for Hamiltonian systems with non standard grow

(In alphabetical order)

Sonia Acinas *

Dpto. de Matemática, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (L6300CLB) Santa Rosa, La Pampa, Argentina sonia.acinas@gmail.com

Jakub Maksymiuk

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto (5800) Río Cuarto, Córdoba, Argentina, fmazzone@exa.unrc.edu.ar

Abstract

In this paper we consider the problem of finding periodic solutions of certain Hamiltonian systemsblablabla

1 Main problem

Let $H:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$. We are looking for periodic solutions of the Hamiltonian system

$$\begin{cases} \dot{q}(t) &= D_p H(t, q(t), p(t)) \\ \dot{p}(t) &= -D_q H(t, q(t), p(t)) \\ p(0) &= p(T) , q(0) = q(T) \end{cases}$$
 (1)

for $t \in [0, T]$. I think that, like in [4], is better to present the Hamiltonian problem as the main problem

^{*}SECyT-UNRC, FCEyN-UNLPam and UNSL

[†]SECyT-UNRC, FCEyN-UNLPam and CONICET

²⁰¹⁰ AMS Subject Classification. Primary: 34C25. Secondary: 34B15.

 $^{{\}bf Keywords}$ and ${\bf phrases.}$ Periodic Solutions, Orlicz Spaces, Euler-Lagrange, Critical Points.

An alternative writing of (1) using the combined variable u=(q,p) and the canonical symplectic matrix

$$J = \begin{pmatrix} 0 & I_{d \times d} \\ -I_{d \times d} & 0 \end{pmatrix}$$

is the following

$$\dot{u} = J\nabla H(t, u(t)) \tag{2}$$

or equivalently

$$J\dot{u} = -\nabla H(t, u(t)) \tag{3}$$

where ∇H is the gradient of H with respect to the combined variable.

2 Preliminaries

We will use some basic concepts of convex analysis that we list below.

Let
$$\Gamma_0(\mathbb{R}^d) = \{F : \mathbb{R}^d \to (-\infty, +\infty)\}$$

convex, lower semicontinous functions with non-empty effective domain.}

The Fenchel conjugate of F is given by

$$F^*(p) = \sup_{q \in \mathbb{R}^d} \langle p, q \rangle - F(q)$$

The Fenchel conjugate satisfies the following properties:

- 1. $F^* \in \Gamma_0(\mathbb{R}^d)$
- 2. If $F \leq G$, then $G^* \leq F^*$.
- 3. If $G(q) = \alpha F(\beta q) + \sigma$ with $\alpha, \beta, \sigma > 0$ then $G^*(p) = \alpha F^*(\frac{p}{\beta \alpha}) \sigma$

Let $\Phi : \mathbb{R}^d \to [0, +\infty)$ be a differentiable, convex function such that $\Phi(0) = 0$, $\Phi(q) > 0$ if $q \neq 0$, $\Phi(-q) = \Phi(q)$, and

$$\lim_{|q| \to \infty} \frac{\Phi(q)}{|q|} = +\infty,\tag{4}$$

where $|\cdot|$ denotes the euclidean norm on \mathbb{R}^d . From now on, we say that Φ is an G-function if Φ satisfies the previous properties.

We write Ψ for the Fenchel conjugate of Φ .

We do not assume that Φ and Φ' satisfy the Δ_2 -condition.

We denote by $\partial F(q)$ the subdifferential of F in the sense of convex analysis (see [1, 2])

The next result is a generalization of [3, Prop. 2.2, p.34]

Proposition 2.1. Let $F \in \Gamma_0(\mathbb{R}^d)$. Suppose that there exist an anisotropic function Φ and non negative constants β, γ such that

$$-\beta \leqslant F(q) \leqslant \Phi(q) + \gamma, \text{ for all } q \in \mathbb{R}^d.$$
 (5)

Now, if $p \in \partial F(q)$ then

$$\Psi(p) \leqslant \Phi(2q) + 2(\beta + \gamma). \tag{6}$$

Proof. If $p \in \partial F(q)$, from [3, Thm. 2.2, p.33],

$$F^*(p) = \langle p, q \rangle - F(q) \tag{7}$$

Conjugating (5), we have

$$F^*(p) \geqslant \Psi(p) - \gamma. \tag{8}$$

From Young's inequality, we get

$$\langle p, q \rangle = \frac{1}{2} \langle p, 2q \rangle \leqslant \frac{1}{2} \Psi(p) + \frac{1}{2} \Phi(2q)$$
 (9)

By eqs. (5) and (7) to (9), we get

$$\Psi(p) \leqslant \frac{1}{2}\Psi(p) + \frac{1}{2}\Phi(2q) + \beta + \gamma$$

which implies (6)

3 Optimal bounds for a symplectic bilinear form

We consider the Euclidean space \mathbb{R}^{2d} equipped with the standard symplectic structure given by bilinear canonical symplectic 2-form

$$\Omega(u,v) := \langle Ju, v \rangle.$$

Let Φ a G -function. We consider the symplectic~G -function $\overline{\Phi}$ defined symplectic manifold \mathbb{R}^{2d}

$$\overline{\Phi}(u) = \overline{\Phi}(q, p) := \Phi(q) + \Psi(p).$$

I think the $\overline{\Phi}$ is the appropriate form of the G-function defined on the symplectic manifold \mathbb{R}^{2n}

The G-function $\overline{\Phi}$ has the following important property

$$\overline{\Phi}(Ju) = \overline{\Psi}(u). \tag{10}$$

and

$$\nabla \overline{\Phi}(Ju) = J\overline{\Psi}(u). \tag{11}$$

Here we are agreeing that $\nabla \Phi$ is a column vector.

As a consequence of (10), the matrix J induce a isometry between the spaces $L^{\overline{\Phi}}([0,T],\mathbb{R}^{2d})$ and $L^{\overline{\Psi}}([0,T],\mathbb{R}^{2d})$. Therefore we can extend Ω to a bilinear form $\overline{\Omega}$ on $L^{\overline{\Phi}}([0,T],\mathbb{R}^{2d})$ of the following way

$$\overline{\Omega}(u,v) := \int_0^T \Omega(u,v)dt, \quad u,v \in L^{\overline{\Phi}}([0,T],\mathbb{R}^{2d})$$

We consider the following functional

$$\Theta(u) := \overline{\Omega}(u, \dot{u}).$$

We are interested in to find bounds of the quadratic functional Θ of the following type

$$\theta(u) \geqslant -C \int_{0}^{T} \overline{\Phi}(\dot{u}) dt,$$
 (12)

for $u \in W^1L^{\overline{\Phi}}([0,T],\mathbb{R}^{2d})$. It is important to get the best constant C in previous inequality because this constant imposes restrictions to the Hamiltonian H. We call to the best constant in (12) C_{Φ}

If $\Phi(q) = |q|^2/2$ was proved in [3, Prop. 3.2] that $C_{\Phi,1} = T/\pi$. Below we prove that this is the optimal one. In [6, Lem. 3.3] was proved that (12) holds for $\Phi(q) = |q|^{\alpha}/\alpha$, $1 < \alpha < \infty$ and $C_{\Phi} = 2T$. Since this constant is not equal to T/π when $\alpha = 2$ it is not optimal.

Proposition 3.1. Let $\Phi: \mathbb{R}^d \to [0, +\infty)$ be any G-function and $\overline{\Phi}$. Then (12) holds for and $C = 2T^{-1}$ for every $u \in W^1L^{\overline{\Phi}}([0, T], \mathbb{R}^{2d})$.

Proof. Let $u \in W^1L^{\overline{\Phi}}([0,T],\mathbb{R}^{2d})$. As is usual we write $u = \tilde{u} + \overline{u}$ where

$$\overline{u} = \frac{1}{T} \int_0^T u(t)dt.$$

From [5, Lem. 2.4] we have that

$$\int_0^T \overline{\Phi}(\tilde{u})dt \leqslant \int_0^T \overline{\Phi}(T\dot{u})dt.$$

Then by Young's inequality and using (10)

$$\begin{split} \int_0^T \Omega\left(\dot{u},u\right)dt &= T \int_0^T \left\langle J\dot{u}, T^{-1}\tilde{u} \right\rangle dt \\ &\geqslant -T \left\{ \int_0^T \overline{\Psi}(J\dot{u})dt + \int_0^T \overline{\Phi}(T^{-1}\tilde{u})dt \right\} \\ &\geqslant -2T \left\{ \int_0^T \overline{\Phi}(\dot{u})dt \right\} \end{split}$$

Clearly the cosntant 2/T is far to be optimal. A possible way of improve C is consider other average \overline{u} . The mean value that it was used is the standard condered in the literature. But this value is appropriate for el Hilbert setting $\Phi(q) = |q|^2/2$. In this case, the value of \overline{u} is the nearest (in the L^2 -norm) constant vector to u. For a arbitrary G function, it seem more reasonable consider the nearest constant vector to u respect to the $\overline{\Phi}$ -integral, i.e.

$$\int_0^T \overline{\Phi}(u - \overline{u}) dt \leqslant \int_0^T \overline{\Phi}(u - u_0) dt, \quad \text{for every } u_0 \in \mathbb{R}^{2n}$$

Equivalently \overline{u} is characterizate by

$$\int_0^T \nabla \overline{\Phi}(u - \overline{u}) dt = 0.$$

There is not a explicit formula as in the Hilbert setting. PROBLEM 1. We can get a better constant taking this \overline{u} ???

Now, we produce a generalization of [3, Thm. 2.3, pp.].

Theorem 3.2. Suppose that

- 1. $H:[0,T]\times\mathbb{R}^{2d}\to\mathbb{R}$ is measurable in t, continuously differentiable with respect to u.
- 2. there exist $\beta, \gamma \in L^1([0,T],\mathbb{R}), \Lambda > \lambda > 0$ such that

$$\Phi^* \left(\frac{u}{\Lambda} \right) - \beta(t) \leqslant H(t, u) \leqslant \Phi^* \left(\frac{u}{\Lambda} \right) + \gamma(t) \tag{13}$$

Then there exists Λ_0 such that the dual action

$$\chi(v) = \int_0^T \frac{1}{2} \langle J\dot{v}, v \rangle + H^*(t, \dot{v}) dt$$

is continuously differentiable in $W^1L_T^{\Phi}([0,T],\mathbb{R}^d) \cap \{u|d(\dot{u},L^{\infty})<\Lambda_0\}.$

If v is a critical point of χ with $d(\dot{v}, L^{\infty}) < \Lambda_0$, the function defined by $u(t) = \nabla H^*(t, \dot{v})$ solves

$$\left\{ \begin{array}{lcl} \dot{u} & = & J \nabla H(t,u) \\ u(t) & = & u(T) \end{array} \right.$$

Proof. Conjugating 2 we obtain

$$\Phi(\lambda u) - \gamma(t) \leqslant H^*(t, v) \leqslant \Phi(\Lambda v) + \beta(t)$$
(14)

Since H^* is smooth, we have $\partial_v H^*(t,v) = \{\nabla_v H^*(t,v)\}$. Applying Proposition 2.1 with $F = H^*$, $\Phi(\Lambda v)$ instead of $\Phi(u)$ and $u = \nabla H^*(t,v) \in \partial_v H(t,v)$, inequality (13) becomes

$$\Phi^* \left(\frac{\nabla H^*(t, v)}{\Lambda} \right) \leqslant \Phi(2\Lambda v) + 2(\beta + \gamma). \tag{15}$$

which will be the main inequality in the proof.

We are planning to obtain the structure condition (??) of [5] which guarantees differentiability.

We consider the Lagrangian

$$\mathcal{L}(t, v, \xi) = \frac{1}{2} \langle J\xi, v \rangle + H^*(t, \xi) \tag{16}$$

and we have to prove that there exist $\Lambda_0 > \lambda_0 < 0$ such that

$$|\mathcal{L}| + |\nabla_v \mathcal{L}| + \Phi^* \left(\frac{\nabla_{\xi} \mathcal{L}}{\lambda_0}\right) \le a(v) \left(b(t) + \Phi\left(\frac{\xi}{\Lambda_0}\right)\right)$$
(17)

We start with $|\mathcal{L}|$. From (14),

$$|\mathcal{L}| \leqslant \frac{1}{2} |\langle J\xi, v \rangle| + H^*(t, \xi) \leqslant \frac{1}{2} |\xi| |v| + \Phi(\Lambda \xi) + \beta(t).$$

Since $\frac{\Phi(x)}{|x|} \to \infty$ as $|x| \to \infty$, there exists C > 0 such that $|x| \leq \Phi(|x|) + C$ for all $x \in \mathbb{R}^d$. Then,

$$|\mathcal{L}| \leqslant \frac{1}{2} \frac{|v|}{\Lambda} \left(\Phi(\Lambda \xi) + C \right) + \Phi(\Lambda \xi) + \beta(t) \leqslant \max \left\{ \Lambda, \frac{|v|}{2\Lambda} \right\} \left[\Phi(\Lambda \xi) + C + \beta(t) \right]$$

which is an estimate like the second member of (17).

Now, we treat $|\nabla_{v}\mathcal{L}|$ and we get

$$|\nabla_{\nu}\mathcal{L}| = \frac{1}{2}|J\xi| \le |\xi| \le \frac{1}{2\Lambda}(\Phi(\Lambda\xi) + C). \tag{18}$$

which is also an estimate of the desired type.

Finally, we deal with $\Phi(\nabla_{\xi}\mathcal{L}\lambda_0)$. As Φ^* is a convex, pair??? function, we have

$$\Phi^* \left(\frac{\nabla_{\xi} \mathcal{L}}{\lambda_0} \right) = \Phi^* \left(\frac{-\frac{1}{2} J v}{\lambda_0} + \frac{\nabla H^*(t, \xi)}{\lambda_0} \right) \leqslant \frac{1}{2} \Phi^* \left(\frac{J v}{\lambda_0} \right) + \frac{1}{2} \Phi^* \left(\frac{2 \nabla H^*(t, \xi)}{\lambda_0} \right).$$

We choose $\frac{2}{\lambda_0} = \frac{1}{\Lambda}$ with Λ as in (15) and we finally have

$$\Phi^* \left(\frac{\nabla_{\xi} \mathcal{L}}{\lambda_0} \right) \leqslant \Phi^* \left(\frac{Jv}{2\Lambda} \right) + \Phi(2\Lambda\xi) + 2(\beta + \gamma) =$$

$$\max \left\{ \Phi^* \left(\frac{Jv}{2\Lambda} \right), 1 \right\} \left[\Phi(2\Lambda\xi) + 2(\beta + \gamma) \right]$$
(19)

which is a bound like the second member of (17).

Therefore, from (17), (18), (19) and choosing the worst functions a and b, we obtain condition (??).

Next, [5, Thm. 4.5] implies differentiability of χ in a set like $W^1L_T^{\Phi}([0,T],\mathbb{R}^d) \cap \{u|d(\dot{u},L^{\infty})<\lambda_0\}.$

If $v \in W^1L_T^{\Phi}([0,T],\mathbb{R}^d)$ is a critical point of χ with $d(\dot{v},L^{\infty}) < \lambda_0$ then, from equations (21) of [5] we obtain

$$0 = \int_0^T \frac{1}{2} \langle J\dot{v}, h \rangle - \frac{1}{2} \langle \dot{h}, Jv \rangle + \langle \nabla H^*(t, \dot{v}), \dot{h} \rangle.$$

The rest of the proof follows as in [3].

Acknowledgments

The authors are partially supported by UNRC and UNLPam grants. The second author is partially supported by a UNSL grant.

References

- [1] F. Clarke. *Optimization and Nonsmooth Analysis*. Classics in Applied Mathematics. SIAM, Philadelphia, 1990.
- [2] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics. 2013.
- [3] J. Mawhin and M. Willem. *Critical point theory and Hamiltonian systems*. Springer-Verlag, New York, 1989.
- [4] J. Mawhin and M. Willem. *Critical Point Theory and Hamiltonian Systems*. Applied Mathematical Sciences. Springer, 2010.
- [5] Fernando D Mazzone and Sonia Acinas. Periodic solutions of euler-lagrange equations in an anisotropic orlicz-sobolev space setting. arXiv preprint arXiv:1708.06657, 2017.
- [6] Y. Tian and W. Ge. Periodic solutions of non-autonomous second-order systems with a p-Laplacian. Nonlinear Anal., 66(1):192-203, 2007.