Lógica e Matemática Computacional

PROPOSIÇÕES E CONECTIVOS

- → Sentenças podem ser declarativas, interrogativas, exclamativas e imperativas.
- → Nas sentenças declarativas, pode-se atribuir um valor-verdade (cada sentença será verdadeira ou falsa).
- → Funções proposicionais: expressões que contém uma ou mais variáveis.
- → Quando substitui-se as variáveis por constantes, torna-se uma proposição - sendo esta verdadeira ou falsa.
- → As sentenças básicas que são verdadeiras são consideradas axiomas.
- → Teoremas são novas sentenças verdadeiras que comprovam a veracidade de axiomas.
- → Proposições: sentenças declarativas (representadas por letras minúsculas) que possuem valor-verdade bem estabelecido, qualificando-a como verdadeira ou falsa. A proposição que é a negação de outra, possui o valor-verdade oposto ao seu.
- → Conectivos e proposições compostas
 - ^: "AND" ("e") a sentença ρ^q é verdadeira se as proposições ρ e q forem verdadeiras.
 - v: "OR" ("ou") a sentença ρ v q é verdadeira se pelo menos uma das proposições for verdadeira. Logo, a sentença será falsa somente se ambas as proposições forem falsas.
 - ~: "NOT" ("não") representa a negação de uma proposição.
- → Princípios básicos da lógica de Aristóteles
 - Princípio da identidade: todo objeto é idêntico a si mesmo.

- Princípio da contradição: o contrário de verdadeiro é falso.
- → Duas proposições são contraditórias quando uma é a negação da outra.
- → Quantificadores: expressões que aparecem no início das frases matemáticas, que indicam o universo sobre o qual será feita a afirmação.
- → Quantificador universal: ∀ representa todos os elementos de um conjunto. Exemplos: para todo[...],todo mundo[...], todas as pessoas[...], cada pessoa[...], qualquer pessoa[...].
- → Quantificador existencial: ∃ faz referência a pelo menos um elemento do conjunto. Exemplos: existe[...], alguma pessoa[...], pelo menos uma pessoa[...].
- → Ao fazer a negação de uma proposição com quantificador universal, utiliza-se um quantificador existencial e vice-versa. Exemplo:
 - p: Todo aluno é estudioso.
 - ◆ ~p: Existe aluno n\u00e3o estudioso.

TABELAS-VERDADE

- → Tabela-verdade: apresenta todas as possibilidades dos valores-verdade das proposições.
- → Tabela-verdade ρ[^]q:

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

→ Tabela-verdade ~p:

p	$\sim p$
V	F
F	V

→ Tabela-verdade p v q:

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

→ Equivalência lógica: duas proposições são logicamente equivalentes quando têm os mesmos valores-verdade em todos os casos possíveis. A representação é feita por ρ = q. Exemplo: ~(p^q) = ~p v ~q

LEIS DA LÓGICA

- → Lei da idempotência: para qualquer proposição p, p ∧ p ≡ p; p ∨ p ≡ p.
- Lei de comutatividade: dadas duas proposições ρ e q quaisquer: ρ ∧ q
 ξ q ∧ ρ; ρ ∨ q ≡ q ∨ ρ
- → Lei da associatividade: dadas três proposições quaisquer p, q e r: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r); (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
- → Lei de distributividade: dadas três proposições quaisquer ρ , $q \in r$: $\rho \lor (q \land r) \equiv (\rho \lor q) \land (\rho \lor r)$; $\rho \land (q \lor r) \equiv (\rho \land q) \lor (\rho \land r)$.
- → Leis de De Morgan: para quaisquer proposições ρ e q, \sim ($\rho \lor q$) $\equiv \sim \rho$ $\wedge \sim q$; \sim ($\rho \land q$) $\equiv \sim \rho \lor \sim q$.
- Leis de absorção: para duas proposições quaisquer ρ e q: ρ ∨ (ρ
 Λ q) ≡ ρ; ρ ∧ (ρ ∨ q) ≡ ρ.

IMPLICAÇÕES OU PROPOSIÇÕES CONDICIONAIS

- → Sejam p e q duas proposições, chama-se a proposição "se p, então q" de implicação, indicando uma condição (através do conectivo "se... então").
- → A notação é feita p ⇒ q, sendo p chamada de hipótese e q de conclusão ou tese.
- O valor-verdade da proposição é falso somente quando ρ é verdadeira, e q é falsa.
- → A proposição p ⇒ q é logicamente equivalente à proposição ~p v q.

p	q	$\sim p$	$\sim p \vee q$	$p \Longrightarrow q$
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

- → Quando se troca a hipótese pela consequência, é criada uma nova proposição (q⇒p) chamada de conversão de p⇒q.
- → Dada a proposição p⇒q, a proposição ~q⇒~p é chamada de contrapositiva. Ambas são logicamente equivalentes.
- → O símbolo ←⇒ é um conectivo bicondicional que indica "se, e somente se", ou "p é necessário e suficiente para q". A proposição p←⇒q é equivalente à proposição (p⇒q)^(q⇒p). É verdadeira quando ambas as proposições têm o mesmo valor-verdade.

p	q	$p \Rightarrow q$	$q \Rightarrow p$	$(p\Rightarrow q)\wedge (q\Rightarrow p)$	$p \Leftrightarrow q$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	V	F	F	F
F	F	V	V	V	V

TAUTOLOGIAS

- → Uma tautologia é uma proposição composta que é verdadeira independente do valor-verdade das proposições que a compõem.
- → Exemplos:
 - ρ ν ~ρ

p	$\sim p$	$p \vee \sim p$
V	F	V
F	V	V

p	q	$p \wedge q$	$p \wedge q \Rightarrow p$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

ARGUMENTAÇÃO

- → É formada pela junção de proposições, chamadas de premissas, e uma proposição final, chamada de conclusão.
- → Para uma argumentação ser logicamente válida, é necessário que a conclusão seja uma consequência das premissas.
- → Exemplo:
 - Premissas: todo homem é mortal;
 Sócrates é homem.
 - ◆ Conclusão: Sócrates é mortal.
- → O argumento será considerado válido se todas as premissas forem verdadeiras, e assim, a conclusão também será verdadeira.
- → Ou seja, um argumento com premissas ρ1, ρ2, ..., pn e conclusão c é válido sempre que ρ1 ^ ρ2 ^ ... ^ pn for verdadeira, implicando na conclusão (ρ1 ^ ρ2 ^ ... ^ pn ⇒ c).

- → Argumentação através do método direto (ou *modus ponens*):
 - ◆ Premissas: ρ⇒q; ρ
 - ♦ Conclusão: q

Tabela-verdade:

p	q	$p \Rightarrow q$	$(p \Rightarrow q) \land p$	$((p \Rightarrow q) \land p) \Rightarrow q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

- → Lei do Silogismo:
 - lacktriangle Premissas: $\rho \Rightarrow q$; $q \Rightarrow r$
 - ♦ Conclusão: p⇒r

Tabela-verdade:

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$p \Rightarrow r$	$((p\Rightarrow q)\land (q\Rightarrow r))\Rightarrow (p\Rightarrow r)$
V	V	V	V	V	V	V
V	V	F	V	F	F	V
V	F	V	F	V	V	V
V	F	F	F	V	F	V
F	V	V	V	V	V	V
F	V	F	V	F	V	V
F	F	V	V	V	V	V
F	F	F	V	V	V	V