Computational Methods of Optimization First Midterm (Sep 18 , 2024)

Time: 70 minutes

Instructions

- ullet Answer all questions
- Please write your answer in the spaces provided. Answers written outside will not be graded.
- Rough work can be done in designated spaces.
- This is a closed book exam.

Name:		
SRNO:	Degree:	Dept:

Question:	1	2	3	4	5	Total
Points:	10	10	10	10	5	45
Score:						

In the following, let $\mathbf{I} = [\mathbf{e}_1, \dots, \mathbf{e}_d]$ be a $d \times d$ matrix with e_j be the jth column. Also $\mathbf{x} = [x_1, x_2, \dots, x_d]^{\top} \in \mathbb{R}^d$ and $\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\top}\mathbf{x}}$. Set of real symmetric $d \times d$ matrices will be denoted by \mathcal{S}_d . [n] will denote the set $\{1, 2, \dots, n\}$ For a function $f : \mathbb{R}^d \to \mathbb{R}$, $f \in \mathcal{C}_L^1$ the Algorithm DESCEENT will refer to the following iteration

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{u}^{(k)} \tag{DESCENT}$$

where $\mathbf{u}^{(k)\top} \nabla f(\mathbf{x}^{(k)}) < 0$.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{3}{2}x^4 2x^3 + 1$.
 - (a) (4 points) Find all points such that f'(x) = 0.

Solution:

$$f'(x) = 6x^2(x-1) = 0, \implies x = 0, x = 1$$

(b) (6 points) For each of the points found in the above question identify if it is a local or global minima or maxima.

Solution: Check that $f''(x) = 18x^2 - 12x = 0$. Thus f''(0) = 0, f''(1) = 6. It is clear that 1 is a local minimum. It is observed that $f(x) = x^3(\frac{3}{2}x - 2) + 1$ is positive for x < 0 and x > 2. Thus $\lim_{|x| \to \infty} f(x) = \infty$. Hence there is no global maximizer. Also it is a coercive function. Since x = 1 is a local minimum it is also the global minimum. But x = 0 is an inflection point which is neither a local minimum or a local maximum. f(0) = 1. For any 0 < x < 1, f(x) < 1 but for x < 0, f(x) > 1.

D	al.	TX7-	1.
Rou	gn.	Wo	rĸ

2. It is given that $\mathbf{a} = [a_1, \dots, a_d]^\top, a_i \in \mathbb{R}, a_i \neq 0, i \in \{1, \dots, d\}$ be such that

$$\sum_{i=1}^{d} a_i = 10, \quad \frac{a_{max}}{a_{min}} = 5,$$

where $a_{max} = max_i a_i, a_{min} = min_i a_i$ respectively. Consider $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{d} \frac{x_i^2}{a_i} - \sum_{i=1}^{d} x_i$$

Let $\hat{\mathbf{x}}$ be such that $\nabla f(\hat{\mathbf{x}}) = 0$ and let $f(\tilde{\mathbf{x}}) = -20$, where $\tilde{\mathbf{x}} = \mathbf{a} + \alpha \mathbf{e}_2$ for some positive α .

- (a) (1 point) Find $f(\hat{\mathbf{x}}) = _{-5}$
- (b) (2 points) Mark all correct answers
 - A. $\hat{\mathbf{x}}$ is the global minimum
 - B. \hat{x} is not the global minimum
 - C. $a_2 > 0$
 - **D.** $a_2 < 0$
- (c) (2 points) Suppose $\tilde{\mathbf{x}}$ did not exist, but it was given that f was bounded from below. How will your answer change to the previous question. More specifically, mark all correct answers.
 - A. $\hat{\mathbf{x}}$ is the global minimum
 - B. $\hat{\mathbf{x}}$ is not the global minimum
 - C. $a_2 < 0$
 - **D.** $a_2 > 0$
- (d) (1 point) Assuming that f is bounded from below, find ρ such that

$$f(\mathbf{x}^{(k+1)}) - f(\hat{\mathbf{x}}) \le \rho(f(\mathbf{x}^{(k)}) - f(\hat{\mathbf{x}}))$$

holds for any k. $\rho = \underline{\qquad \qquad \frac{4}{9}}$ (Answer must be in fraction).

(e) (4 points) Justify your answers to the previous questions

Solution:

Equating the gradient of f to zero we obtain $\hat{\mathbf{x}} = \mathbf{a}$ and using $\sum_{i=1}^{d} a_i = 10$.

$$f(\hat{\mathbf{x}}) = -\frac{1}{2} \sum_{i=1}^{d} a_i = -5.$$

Therefore if there exists $\tilde{\mathbf{x}} = -20$ then $\hat{\mathbf{x}}$ cannot be a global minimum. Since now that the Hessian is constant, in fact it is a diagonal matrix, with the *i*th entry $\frac{1}{a_i}$. If it was positive definite then $\hat{\mathbf{x}}$ would have been the global minimum. Since $\nabla f(\mathbf{a}) = 0$, it follows that for any $\mathbf{x} \in \mathbb{R}^d$,

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{d} \frac{1}{a_i} (x_i - a_i)^2 + f(\mathbf{a})$$

Note that this can be proved from first principles $(x_i^2 = (x_i - a_i)^2 + 2a_ix_i - a_i^2)$. Hence, $f(\tilde{\mathbf{x}}) = f(\mathbf{a}) + \frac{1}{2} \frac{(\alpha - a_2)^2}{a_2}$. Given the values this can only be achieved if $a_2 < 0$. Instead of existence of $\hat{\mathbf{x}}$, if we knew f is bounded from below and since f is a quadratic function all eigenvalues must be non-negative. Otherwise we can find a direction for which a_i is negative for f to go to $-\infty$. Last question follows from the condition number of the Hessian which is 5.

- 3. Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} \mathbf{v}^{\top}\mathbf{x} + c$ where $\mathbf{v} \in \mathbb{R}^d$, $c = 10, Q \succ 0$. The condition number of Q is 10. It is given that $Q\mathbf{v} = 2\mathbf{v}$, $\|\mathbf{v}\| = 10$. Let \mathbf{x}^* be the global minimum point and $f^* = f(\mathbf{x}^*)$ is the global minimum
 - (a) i. (1 point) $\mathbf{x}^* = \underline{\frac{1}{2}\mathbf{v}}$ ii. (1 point) $f^* = \underline{\mathbf{-15}}$

 - iii. (4 points) Justify your answer

Solution:

$$Q\mathbf{x}^* = \mathbf{v}, \implies \mathbf{x}^* = Q^{-1}\mathbf{v} = \frac{1}{2}\mathbf{v}$$

$$f(\mathbf{x}^*) = \frac{1}{2} \times \frac{1}{4} \mathbf{v}^\top Q \mathbf{v} - \frac{1}{2} \mathbf{v}^\top \mathbf{v} + 10$$

$$f(\mathbf{x}^*) = 10 - \frac{1}{2} ||\mathbf{v}||^2 = 10 - 25 = -15$$

(b) (4 points) Let us execute the Algorithm DESCENT with $\mathbf{u}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$ and α_k is determined with exact line search starting at $\mathbf{x}^{(0)} = 0$. In how many iterations will the algorithm reach the global minimum point. Justify your answer.

Solution: It will reach in 1 iteration.

$$\nabla f(0) = -\mathbf{v}, \quad \mathbf{x}^{(1)} = -\alpha \nabla f(0) = \alpha \mathbf{v}.$$

$$\alpha_k = \operatorname*{argmax}_{\alpha \ge 0} f(\alpha \mathbf{v})$$

$$\alpha_k = (\alpha^2 - \alpha) \|\mathbf{v}\|^2 = \frac{1}{2}$$

(By using the fact that $Q\mathbf{v} = 2\mathbf{v}$.) Thus $\mathbf{x}^{(1)} = \frac{1}{2}\mathbf{v}$.

4. Let $f: \mathbb{R}^d \to [0, \infty), f \in \mathcal{C}_L^1$ with L = 2. Consider applying Algorithm DESCENT to minimize f where α_k is obtained through inexact line search in such a way that the following holds

$$\frac{1}{\|\nabla f(\mathbf{x}^{(k)})\|^2} (f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)})) \ge 0.2, \text{ for all } k$$

It is given that $f(\mathbf{x}^{(0)}) = 20$.

- (a) (4 points) We wish to determine the value of T for which we are sure to find $\hat{\mathbf{x}}$ such that $\|\nabla f(\hat{\mathbf{x}})\| \le 0.1$. Pick all the correct choices about value of T
 - A. T = 1000
 - B. T = 2000
 - **C.** T = 10000
 - **D.** T = 20000

Solution: 5cm

$$\|\nabla f(\mathbf{x}^{(T)})\|^2 \le \frac{f(\mathbf{x}^{(0)})}{0.2T} \le (0.1)^2$$
$$\frac{100}{(0.1)^2} \le T$$

- (b) Instead of the above we decide to use the constant stepsize, $\alpha_k = \alpha$ with $u^{(k)} = -\nabla f(\mathbf{x}^{(k)})$.
 - i. (2 points) Find $h(\alpha)$ such that at the kth iteration Decrease is at least greater than $h(\alpha) \|\nabla f(\mathbf{x}^{(k)})\|^2$

Solution:

$$h(\alpha) = \alpha(1 - \alpha)$$

- ii. (2 points) Find α which gives the maximum decrease in every iteration. $\alpha = \frac{1}{2}$
- iii. (2 points) How many iterations are required to find a point $\hat{\mathbf{x}}$ such that $\|\nabla f(\hat{\mathbf{x}})\| \le 0.1$

Solution:

$$\frac{1}{4}T\|\nabla f(\hat{\mathbf{x}})\|^2 \le 20$$

Thus $\frac{80}{T} \le (0.1)^2$

- 5. Let $f: \mathbb{R}^d \to \mathbb{R}$, $f \in C_L^1$ and \mathbf{x}^* be a point such that $\nabla f(\mathbf{x}^*) = 0$. We apply Algorithm DESCENT to this function with inexact line search to obtain iterates $\mathbf{x}^{(k)}$ Let $\Delta_k = f(\mathbf{x}^{(k)} f(\mathbf{x}^*))$. Answer True or False
 - (a) (1 point) For the Algorithm DESCENT there exists C > 0 such that $\Delta_k \Delta_{k+1} \ge C \|\nabla f(\mathbf{x}^{(k)})\|^2$.
 - (b) (1 point) In the above question if $\mathbf{u}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$ then the value of C increases \mathbf{T}
 - (c) (1 point) If f is coercive then all minimum must be global minimum $\underline{\mathbf{F}}$
 - (d) (1 point) If f is strongly convex it can be shown that $\Delta_k \Delta_{k+1} \geq C\Delta_k^2$ **F**
 - (e) (1 point) If $f \in C^2$ and $H(\mathbf{x}^*)$, the Hessian, is positive definite then \mathbf{x}^* must be global minimum \mathbf{F}