## CSX4202/ITX4202: DATA MINING

LECTURE 3'S SUPPLEMENTARY SLIDES – CREATING VISUALIZATION USING MS EXCEL



### LINE CHART





- Show the relationship between 2 variables
- Track changes or trends over time (x-axis)





#### CREATE A LINE CHART IN MS EXCEL – 1/3





### CREATE A LINE CHART IN MS EXCEL – 2/3





### CREATE A LINE CHART IN MS EXCEL – 3/3





#### **BAR CHART**

- Used with nominal data or numerical data that splits nicely into different categories.
- Compare data across multiple categories to quickly see the comparative results and trends.
- Can be either vertically or horizontally oriented.





#### CREATE A BAR CHART IN MS EXCEL





### **HISTOGRAM**

- Is a specific type of bar chart.
- Shows the frequency distribution of a variable or several variables.
  - X-axis shows the categories or ranges.
  - Y-axis shows the measures/values/frequencies.

#### **Heights of Students**





Source: <a href="http://jukebox.esc13.net/interactiveGlossary/HTML\_files/histogram.html">http://jukebox.esc13.net/interactiveGlossary/HTML\_files/histogram.html</a>

#### STACKED COLUMN CHART

- Is a specific type of bar chart;
  - A basic Excel chart type to allow part-to-whole comparisons over time, or across categories.
- Data series are stacked one on top of the other in vertical columns.





### CREATE STACKED COLUMN CHART IN MS EXCEL





#### **SCATTER PLOT**

- Is a visualization design that uses Cartesian coordinates to display values in dots.
- Explore the relationship between a few variables

Bubble charts are enhanced versions of scatter plots by varying the size and/or color of the circles to tadd additional data dimensions.





Note. Weight in Kg. is represented by size of circles.

Note. No. of orders is represented by size of circles.

#### CREATE SCATTER PLOT IN MS EXCEL





### PIE CHART

• Illustrate relative proportions of a specific measure.





#### CREATE PIE CHART IN MS EXCEL – 1/2





#### CREATE PIE CHART IN MS EXCEL – 2/2





### SPIDER CHART (RADAR PLOT)

- Compare observations with multiple quantitative variables
  - Each variable is encoded to a spoke which are equidistant apart
  - The higher the value, the further away from the center of the chart the point is made



#### CREATE SPIDER CHART IN MS EXCEL





### MORE ON CHARTS/GRAPHS



## BOX-AND-WHISKERS PLOT

- A graphical illustration of several descriptive statistics about a given dataset.
  - Centrality
  - Dispersion
  - Minimum and maximum ranges



## CALCULATE QUARTILES (Q1, Q2, Q3)

- **Position**: 1, 2, 3, 4, 5, 6, 7, 8, 9
- **Dataset**: {1, 2, 2, 3, 3, 4, 5, 5, 10}
  - Data must be sorted in ascending order first!
- The I<sup>st</sup> quartile (QI) =  $[(1/4)*(n+1)]^{th}$  =  $[(1/4)*(9+1)]^{th}$  =  $2.5^{th}$  :: (2+2)/2 = 2
- The 2<sup>nd</sup> quartile (Q2) =  $[(2/4)*(n+1)]^{th}$  =  $[(2/4)*(9+1)]^{th}$  = 5 = 3
- The 3<sup>rd</sup> quartile (Q3) =  $[(3/4)*(n+1)]^{th}$  =  $[(3/4)*(9+1)]^{th}$  =  $7.5^{th}$  :  $(5+5)/2 = 5.5^{th}$

Position of the value in the sorted data

## DETERMINE (WEAK) OUTLIERS

- Dataset: {1, 2, 2, 3, 3, 4, 5, 5, 10}
- Interquartile = 3<sup>rd</sup> quartile 1<sup>st</sup> quartile = 5 2 = 3





- If we subtract 1.5 x IQR from the first quartile, any data values that are less than this number are considered outliers.
  - 2 (1.5 \* 3) = 2 4.5 = -2.5
- If we add 1.5 x IQR from the third quartile, any data values that are greater than this number are considered outliers.
  - 5 + (1.5 \* 3) = 5 + 4.5 = 9.5

... The value 10 in the dataset is an outlier.

## CREATE BOX-AND-WHISKERS PLOT USING MS EXCEL – 1/5

#### I. Select Data





# CREATE BOX-AND-WHISKERS PLOT USING MS EXCEL – 2/5





## CREATE BOX-AND-WHISKERS PLOT USING MS EXCEL – 3/5





# CREATE BOX-AND-WHISKERS PLOT USING MS EXCEL – 4/5



# CREATE BOX-AND-WHISKERS PLOT USING MS EXCEL – 5/5



