# ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Лекция 4

#### Лекция 4

- Грубые погрешности
- Методы исключения грубых погрешностей
  - Критерий 3σ
  - Критерий Романовского
  - Критерий вариационного размаха
  - Критерий Диксона
  - Критерий Шовене

#### Классификация погрешностей

- Случайные
- Систематические
- Грубые (промахи)



## Методы исключения грубых погрешностей

 $H_0 - x_l$  принадлежит генеральной совокупности

Выбираем α и вычисляем критерий (лучше три)

При неизвестном генеральном СКО перед обработкой из выборки удаляется подозрительный результат

При известном генеральном СКО оценка математического ожидания и других параметров делается по всей выборке

#### Критерий 3 о

$$|x_l - \bar{x}| \le 3\sigma$$
 - при известном  $\sigma$ 

 $\bar{x}$  считаем по всей выборке

$$|x_l - \bar{x}| \leq 3S$$
 - при неизвестном  $\sigma$ 

 $ar{x}$  и S считаем без учета подозрительного результата

#### Критерий Романовского

n < 30

$$\frac{|x_l - \bar{x}|}{S} \le t_{\alpha,k} -$$
принимаем  $H_0$ 

k = n - 1 — число степеней свободы

 $ar{x}$  и S считаем без учета подозрительного результата  $t_{lpha,k}$  — квантиль распределения Стьюдента

#### Критерий Романовского. Пример

$$x_l = 2.91$$
 $n = 25, k = 24$ 

$$\frac{|x_l - \bar{x}|}{S} = 3.04$$



|         | Число степеней свободы <i>k</i> |      |      |      |      |      |      |      |      |      |
|---------|---------------------------------|------|------|------|------|------|------|------|------|------|
| Довери- |                                 |      |      |      |      |      |      |      |      |      |
| тельная | 3                               | 4    | 5    | 6    | 8    | 10   | 12   | 18   | 22   | 30   |
| вероят- |                                 |      |      |      |      |      |      |      |      |      |
| ность р |                                 |      |      |      |      |      |      |      |      |      |
| 0,90    | 2,35                            | 2,13 | 2,01 | 1,94 | 1,86 | 1,81 | 1,78 | 1,73 | 1,72 | 1,70 |
| 0,95    | 3,18                            | 2,78 | 2,57 | 2,45 | 2,31 | 2,23 | 2,18 | 2,10 | 2,07 | 2,04 |
| 0,99    | 5,84                            | 4,60 | 4,03 | 3,71 | 3,36 | 3,17 | 3,06 | 2,98 | 2,82 | 2,75 |

#### Критерий вариационного размаха

Упорядочиваем выборку,  $\{x_1, x_2 \dots x_n\}$ 

$$z = \frac{|x_l - \bar{x}|}{x_n - x_1}$$

 $ar{x}$  считаем без учета подозрительного результата

$$z > zn - H_0$$
 отвергаем

| n | 5   | 6   | 7   | 8-9 | 10-11 | 12-15 | 16-22 | 23-25 | 26-63 | 64-150 |
|---|-----|-----|-----|-----|-------|-------|-------|-------|-------|--------|
| Z | 1,7 | 1,6 | 1,5 | 1,4 | 1,3   | 1,2   | 1,1   | 1,0   | 0,9   | 0,8    |

### Критерий Диксона

| Число<br>измерений <i>п</i><br>(объем<br>выборки) | Коэффициент<br>Диксона | Для наименьшего экстремального значения параметра | Для наибольшего экспериментального параметра |
|---------------------------------------------------|------------------------|---------------------------------------------------|----------------------------------------------|
| 1                                                 | 2                      | 3                                                 | 4                                            |
| 3-7                                               | $r_{10}$               | $\frac{x_2 - x_1}{x_n - x_1}$                     | $\frac{x_n - x_{n-1}}{x_n - x_1}$            |
| 8-10                                              | $r_{11}$               | $\frac{x_2 - x_1}{x_{n-1} - x_1}$                 | $\frac{x_n - x_{n-1}}{x_n - x_2}$            |
| 11-13                                             | <i>r</i> <sub>21</sub> | $\frac{x_3 - x_1}{x_{n-1} - x_1}$                 | $\frac{x_n - x_{n-2}}{x_n - x_2}$            |
| 14-25                                             | $r_{22}$               | $\frac{x_3 - x_1}{x_{n-2} - x_1}$                 | $\frac{x_n - x_{n-2}}{x_n - x_3}$            |

#### Критерий Шовене

Строится на вычислении ожидаемого числа результатов наблюдений  $n_{exp}$ , имеющих такое же большое отклонение от среднего

Распределение считается нормальным, среднее значение и СКО считаются по всей выборке

При  $n_{exp} < 0.5$  гипотеза H0 отвергается

#### Критерий Шовене. Пример

$$x_l = 2.91$$

$$\bar{x} = -0.05, S = 1.17$$

$$z = \frac{x - \bar{x}}{S}$$
,  $z_{cr} = \frac{x_l - \bar{x}}{S}$ 

$$n_{exp} = n \cdot P(|z| \ge z_{cr})$$



$$P(|z| \ge z_{cr}) = 2 \int_{z_{cr}}^{\infty} f(z) dz = \sqrt{\frac{2}{\pi}} \int_{z_{cr}}^{\infty} \exp\left(-\frac{z^2}{2}\right) dz$$

#### Критерий Шовене. Пример

$$x_l = 2.91$$

$$\bar{x} = -0.05, S = 1.17$$

$$z = \frac{x - \bar{x}}{S}$$
,  $z_{cr} = \frac{x_l - \bar{x}}{S}$ 

$$n_{exp} = n \cdot P(|z| \ge z_{cr})$$

$$n_{exp} = 0.29$$

$$P(|z| \ge z_{cr}) = 2 \int_{z_{cr}}^{\infty} f(z) dz = \sqrt{\frac{2}{\pi}} \int_{z_{cr}}^{\infty} \exp\left(-\frac{z^2}{2}\right) dz$$

