

<u>Características principales de las plataformas de desarrollo</u>

A continuación se listan las principales características de Arduino (PlatformIO) y Micropython (RT-Thread) destacando sus diferencias y aplicaciones en IoT.

	•	•
Características	Arduino (PlatformIO)	Micropython (RT-Thread)
Lenguaje de programación implementado.	C/C++.	Python.
Entorno de desarrollo (IDE)	PlatformIO (o Arduino IDE).	Micropython IDE.
Facilidad de uso	Es más accesible y sencillo de entender.	Si bien es más complejo el uso de Python lo posiciona.
Velocidad	Es más lento. Hace falta volver a compilar ante cambios.	Es más rápido. No hace falta volver a compilar.
Memoria	Requiere menos memoria, el programa se almacena como código binario.	Requiere más memoria, el programa se almacena como código fuente.
Librerías	Se pueden agregar tantas librerías o scripts.	La compilación puede demorar entre más librerías se incluyan.
Comunidad	Amplia y activa, con disponibilidad a muchos recursos.	Es más reducida pero con una curva de crecimiento bastante acelerada.
Aplicaciones	Versatilidad y practicidad, desde educación hasta proyectos personales y empresariales.	Más usada por empresas (diseño mecánico, eléctrico de software, monitoreo, etc).

Módulos shield disponibles para ESP32

Los módulos shield son placas de expansión que se conectan al ESP32 para agregar nuevas funcionalidades o aumentar las prestaciones de algunas ya integradas, a continuación algunos ejemplos:

ESP32-CAM: Equipado con una cámara OV2640. ESP32-ETH: Equipado con conectividad Ethernet. ESP32-GPIO: Equipado con expansión de pines.

ESP32-LORA: Equipado con conectividad LoRa (potencia el alcance).

ESP32-V1: Equipado con conectividad Wifi y bluetooth.

Dependiendo de sus prestaciones y los alcances del proyecto los módulos shields aplican a una amplia gama de aplicaciones en controladores IoT:

ESP32-CAM: Cámara IP de videovigilancia, controlador con cámara para transmitir

imágenes de robot móvil, sensor para un sistema de visión por

computadora, etc.

ESP32-LORA: Conexiones a grandes distancias y para redes de IoT en las que se

necesiten sensores que no dispongan de corriente eléctrica de red, donde destacán Smart Cities y sistemas de monitoreo de incendios.