3111 EX	y Grega am 3 Crib	
217-36	1-8813	
13		
(G)		. 1-
@	Three Assumptions of T.A.T.	O Symmetric Airfoils (dz =0)
	D)max thickness is less than 1	$V_{\infty} \propto = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\delta(\theta) \sin \theta d\theta}{\cos \theta - \cos \theta_{0}}$
-	2) small camber	
0	<u> </u>	$\chi(\theta) = 2\alpha \sqrt{\frac{(1+\cos\theta)}{\sin\theta}}$
	Cambered & Asymmetric Airfoils $ \sqrt{(\alpha - \frac{dz}{dx})} = \frac{1}{2\pi} \int_{0}^{\pi} \frac{y(\theta) \sin \theta d\theta}{\cos \theta - \cos \theta}. $	$ \frac{1}{\int_{0}^{\infty} \frac{\cos(n\theta)d\theta}{\cos\theta - \cos\theta_{0}}} = \frac{\text{Tr}\sin(n\theta_{0})}{\sin\theta_{0}} \right) \frac{\text{Glaverts}}{\text{Integral}} $ (for any n)
		1) coso-coso sino (for any n)
۲.	MAP: $\frac{\times}{C} = \frac{1}{2}(1 - \cos\theta)$	$ \begin{array}{c c} L' = \rho V \omega^2 \propto C \Upsilon & M'_{LE} = -q \omega \propto C^2 \cdot \frac{\pi}{2} \\ C_0 = 2 \pi \propto & C_{M'LE} = -\frac{C_1}{4} = \frac{M'_{LE}}{q \omega C^2} \end{array} $
	for $\frac{dz}{dx}(x) \rightarrow \frac{dz}{dx}(\theta)$ and bounds of integration	$C_{g} = 2\pi \alpha \qquad C_{MLE} = -\frac{1}{4} - q_{\infty}c^{2}$ $L'_{xcp} = -M'_{LE}$
1	$A_0 - \sum_{n=1}^{\infty} A_n \cos(n\theta_0) = \alpha - \frac{dz}{dx}$	Kutta Condition - tangent flow @ TE
~		$\chi(TE) = \chi(rr) = 0$
	A0= x- # 50 dx 90	
	$A_n = \frac{2}{\pi r} \int \frac{dz}{dx} \cos(n\theta) d\theta$	
	$A_n = \frac{2}{\pi r} \int \frac{dz}{dx} \cos(n\theta) d\theta$, ∞,
	$ \Gamma = c \sqrt{\omega} \left[\pi A_0 + \frac{\pi}{2} A_1 \right] = \frac{c}{2} \int_0^{\pi} 2 \sqrt{\omega} \left[A_0 \frac{(1 + cc)}{\sin \theta} \right] $	$\frac{(n+1)(n+1)(n+1)(n+1)(n+1)}{(n+1)(n+1)(n+1)(n+1)}\sin\theta d\theta$
	No L= Paval	Trig Orthogonalities $\int_{0}^{\pi} \cos^{2}\theta d\theta = \frac{\pi}{2} \int_{0}^{\pi} \sin^{2}\theta d\theta = \frac{\pi}{2}$
3	$C_{\ell} = 2\pi \left[A_{\delta} + \frac{1}{2}A_{i}\right] = \frac{L'}{q_{\infty}c \cdot 1}$	$\int_{\mathcal{C}} \cos^2 \theta d\theta = \frac{\pi}{2} \qquad \int_{\mathcal{C}} \sin^2 \theta d\theta = \frac{\pi}{2}$
	$\boxed{\alpha_{L=0} = \alpha - \left[A_0 + \frac{1}{2}A_1\right] = \frac{1}{\pi} \int_0^{\pi} \frac{dz}{dx} (1 - \cos\theta)dx}$	$\int_{0}^{\pi} \int_{0}^{\pi} \cos\theta \sin^{2}\theta d\theta = 0$ $\int_{0}^{\pi} \sin(\theta) \sin(\eta \theta) = 0$ $\int_{0}^{\pi} \cos\theta \sin^{2}\theta d\theta = 0$ $\int_{0}^{\pi} \sin(\theta) \sin(\eta \theta) = 0$
		0 10, 112
	$\frac{dc_1}{d\alpha} = 2\pi i \alpha_{L=0} = \text{offset}$	$\int_{0}^{\pi} \cos\theta \sin\theta \sin(n\theta) = \begin{cases} \pi/4, n=2 \\ 0, n>2 \end{cases}$
	slope=27	/
	Vt=0	
	A	
	$C_{MLE} = -\frac{\pi}{2} \left[A_0 + A_1 - \frac{1}{2} A_2 \right] = -\frac{1}{4} \left[C_{\chi} + \pi (A_1 - A_2) \right] \text{if } C_{\chi} \text{ is known}$	
<u>_</u> @_	CM= T(A2-A1)	
	$\frac{1}{X_{CP}} = \frac{1}{4} + \frac{(A_1 - A_2)_{TT}}{4C_1} = \frac{-C_{MLE}}{C_2}$	ndependent of a, but depends on
		A, and Az which depend
	[aerodynamic center]	on dz (camber shape!)