Inverses of Functions

Objective

To be able to find inverses of functions.

Warm Up: Graph & give the domain & range.

$$f(x) = \begin{cases} x+5, & x < -3 \\ -2, & -3 < x < 1 \\ x-4, & x \ge 1 \end{cases}$$

Answer on Next Slide

Warm Up #3: Graph & give the domain & range.

$$f(x) = \begin{cases} x+5, & x < -3 \\ -2, & -3 < x < 1 \\ x-4, & x \ge 1 \end{cases}$$

X	y	X	У
-3	2	1 2	-3 -2 -1
-4	1	2	-2
-5	0	3	-1
		4	0
•	=		

$$D: (-\infty, -3) \cup (-3, \infty)$$

$$R:(-\infty,-\infty)$$

4

- If f is a function from a to b, f(a) = b we write f: $a \rightarrow b$. We say that f maps a to b
- If f is a function from x to y, f(x) = y we write $f: x \rightarrow y$. We say that f maps x to y

• If
$$g(x) = x^2 + 9x - 5$$
 we write $g: x \to x^2 + 9x - 5$

- If $f(x) = 4x^2 x$ we write $f: x \rightarrow 4x^2 - x$
- If f(x) = 17 we write $f: x \to 17$

If l(x) = cos(x) we write $l: x \rightarrow cos(x)$

- If $f(3x) = 4x^2$ we write $f: 3x \rightarrow 4x^2$
- If $f: x \to 1/x$ we write f(x) = 1/x

Vertical Line Test

 Recall that a function passes the vertical line test.

Vertical Line Test

- Used to determine if a graph is a function.
- If a vertical line intersects the graph at more than one point, then the graph is
 NOT a function

NOT a function.

Is it a function? Give the domain and range.

FUNCTION

Domain: [-4,2]

Range: [-4,4]

Give the Domain and Range.

Domain: $x \ge 1$

Range: $y \ge 2$

 $Domain: -2 \le x \le 2$

Range : $0 \le y \le 3$

Definition of a Polynomial Function

Polynomial Function

A **polynomial function of degree** *n* is defined by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

for real numbers $a_n, a_{n-1}, \ldots, a_1$, and a_0 , where $a_n \neq 0$ and n is a whole number.

Identifying Polynomial Functions

Circle only the polynomial functions.

$$f(x) = x^2 + 3x + 2$$

$$f(x) = \sqrt{x^5} + 3x^2 + 6$$

$$f(x) = x^2 + 3x + 2$$
 $f(x) = \sqrt{x^5} + 3x^2 + 6$ $f(x) = \frac{3}{4}x^3 + 9x^2 + 10x$

$$y = 2$$

$$y = 2$$
 $y = \frac{3x^2 + 6x + 10}{2x}$

Evaluating Polynomial Functions

Let
$$f(x) = 4x^3 - 5x^2 + 7$$
. Find each value.

(b)
$$f(-3)$$

$$f(x) = 4x^{3} - 5x^{2} + 7$$

$$f(-3) = 4 \cdot (-3)^{3} - 5 \cdot (-3)^{2} + 7$$

$$= 4 \cdot (-27) - 5 \cdot 9 + 7$$

$$= -108 - 45 + 7$$

$$= -146$$

Adding and Subtracting Functions

Adding and Subtracting Functions

If f(x) and g(x) define functions, then

$$(f+g)(x) = f(x) + g(x)$$
 Sum function
 $(f-g)(x) = f(x) - g(x)$. Difference function

In each case, the domain of the new function is the intersection of the domains of f(x) and g(x).

EXAMPLE

Adding and Subtracting Functions

For the polynomial functions defined by

$$f(x) = 2x^2 - 3x + 4$$
 and $g(x) = x^2 + 9x - 5$,

find (a) the sum and (b) the difference.

(a)
$$(f + g)(x) = f(x) + g(x)$$
 Use the definition.
= $(2x^2 - 3x + 4) + (x^2 + 9x - 5)$ Substitute.
= $3x^2 + 6x - 1$ Add the polynomials.

(b)
$$(f-g)(x) = f(x) - g(x)$$
 Use the definition.
= $(2x^2 - 3x + 4) - (x^2 + 9x - 5)$ Substitute.

$$= x^2 - 12x + 9$$

Add.

EXAMPLE

Adding and Subtracting Functions

For the polynomial functions defined by

$$f(x) = 4x^2 - x$$
 and $g(x) = 3x$,

$$g(x) = 3x,$$

find each of the following.

(a)
$$(f + g)$$
 (5)

$$(f+g)(5) = f(5) + g(5)$$

Use the definition.

$$= [4(5)^2 - 5] + 3(5)$$
 Substitute.

Adding and Subtracting Functions

For the polynomial functions defined by

$$f(x) = 4x^2 - x \qquad \text{and} \qquad g(x) = 3x,$$

$$g(x) = 3x$$

find each of the following.

(a)
$$(f + g)$$
 (5)

Alternatively, we could first find (f + g)(x).

$$(f+g)(x) = f(x) + g(x)$$

Use the definition.

$$= (4x^2 - x) + 3x$$

Substitute.

$$= 4x^2 + 2x$$

EXAMPLE

Adding and Subtracting Functions

For the polynomial functions defined by

$$f(x) = 4x^2 - x$$
 and $g(x) = 3x$,

$$g(x) = 3x,$$

find each of the following.

(b)
$$(f - g)(x)$$
 and $(f - g)(3)$

$$(f-g)(x) = f(x) - g(x)$$

Substitute.

$$= 4x^2 - 4x$$

 $= (4x^2 - x) - 3x$

Combine like terms.

Use the definition.

Then,

$$(f-g)(3) = 4(3)^2 - 4(3) = 24.$$

Substitute.

Confirm that f(3) - g(3) gives the same result.

Copyright © 2010 Pearson Education, Inc. All rights reserved.

A power function of degree *n* is a function

of the form

Parent Functions for Square Root and Cube Root Functions

The parent function for the family of square root functions is $f(x) = \sqrt{x}$.

Domain: $x \ge 0$, Range: $y \ge 0$

The parent function for the family of cube root functions is $f(x) = \sqrt[3]{x}$.

Domain and range: All real numbers

Exponential Functions

- A polynomial function has the basic form: $f(x) = x^3$
- An exponential function has the basic form: $f(x) = 3^x$
- An exponential function has the variable in the exponent, not in the base.
- General Form of an Exponential Function:

$$f(x) = N^x, N > 0$$

The Number *e*

A base often associated with exponential functions is:

 $e \approx 2.71828169$

The Exponential Function

$$f(x)=e^x$$

Rational Functions

Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as

$$f(x) = \frac{p(x)}{q(x)}$$

where p(x) and q(x) are polynomial functions and $q(x) \neq 0$. The **domain** of a rational function is the set of all real numbers except the x-values that make the denominator zero. For example, the domain of the rational function

$$f(x) = \frac{x^2 + 7x + 9}{x(x - 2)(x + 5)}$$
This is $p(x)$.

This is $q(x)$.

is the set of all real numbers except 0, 2, and -5.

Definition: Logarithmic Function

For x > 0, b > 0 and b not equal to 1 toe logarithm of x with base b is defined by the following:

$$\log_b x = y \iff x = b^y$$

$$Sin = \frac{Opp \text{ Leg}}{Hyp}$$

$$Cos = \frac{Adj \text{ Leg}}{Hyp}$$

$$Tan = rac{Opp \text{ Leg}}{Adj \text{ Leg}}$$

Inverse Trigonometric Function

y = sinx has a unique inverse function called the inverse sine function. It is denoted by

•
$$y = \arcsin x$$
 or $y = \sin^{-1} x$.

■ The notation $\sin^{-1} x$ is consistent with the inverse function notation $f^{-1}(x)$.

When we are trying to find a side we use sin, cos, or tan.

When we are trying to find an angle

we use sin⁻¹, cos⁻¹, or tan⁻¹.

Special Functions

Evaluating Piecewise Functions

- Piecewise functions are functions defined by at least two equations, each of which applies to a different part of the domain
- A piecewise function

$$f(x) := \begin{cases} x+3 & x \ge 0 \\ 2x-1 & x \le 0 \end{cases}$$

Step Functions

Looks like a flight of stairs

An example of a step function: $f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1 \\ 1, & \text{if } 1 \le x < 2 \\ 2, & \text{if } 2 \le x < 3 \end{cases}$

Graphically, the equation would look like this:

Absolute Value Function is a Piecewise Function

Graph of
$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Domain: $(-\infty, \infty)$

Range: $[0, \infty)$

Intercept: (0,0)

Decreasing on $(-\infty, 0)$

Increasing on $(0, \infty)$

Greatest Integer Function

The **greatest integer function**, usually written f(x) = [x], is defined as follows:

 $[\![x]\!]$ denotes the largest integer that is less than or equal to x.

For example,

$$[9] = 9,$$
 $[-3.8] = -4,$ $[5.7] = 5.$

Additional Graphs of Functions; Composition

EXAMPLE

Graphing the Greatest Integer Function

$$\mathsf{Graph}\,f(x) = [\![x]\!]$$

For
$$[x]$$
,

if
$$-1 \le x < 0$$
, then $[x] = -1$;

if
$$0 \le x < 1$$
, then $||x|| = 0$;

if
$$1 \le x < 2$$
, then $[x] = 1$,

and so on.

The appearance of the graph is the reason that this function is called a step function.

Additional Graphs of Functions; Composition

Composition of Functions

Composition of Functions

If f and g are functions, then the **composite function**, or **composition**, of g and f is defined by

$$(g \circ f)(x) = g(f(x))$$

for all x in the domain of f such that f(x) is in the domain of g.

Additional Graphs of Functions; Composition

EXAMPLE

Evaluating a Composite Function

Let
$$f(x) = 3x^2 + 5$$
 and $g(x) = x - 7$. Find $(f \circ g)(2)$.
 $(f \circ g)(2) = f(g(2))$ Definition

$$= f(2-7)$$
 Use the rule for $g(x)$; $g(2) = 2-7$.

$$= f(-5)$$
 Subtract.

$$= 3(-5)^2 + 5$$
 Use the rule for $f(x)$; $f(-5) = 3(-5)^2 + 5$.

$$= 80$$

EXAMPLE

Evaluating a Composite Function

Left
$$f(x) = 3x^2 + 5$$
 and $g(x) = x - 7$. Now find $(g \circ f)(2)$.

 $(g \circ f)(2) = g(f(2))$ Definition

 $= g(3(2)^2 + 5)$ Use the rule for $f(x)$; $f(2) = 3(2)^2 + 5$.

 $= g(17)$ Square, multiply, and then add.

 $= 17 - 7$ Use the rule for $g(x)$; $g(17) = 17 - 7$.

 $= 10$

EXAMPLE

Evaluating a Composite Function

Let
$$f(x) = 3x^2 + 5$$
 and $g(x) = x - 7$. Notice that $(f \circ g)(2) \neq (g \circ f)(2)$.

$$(f \circ g)(2) = f [g(2)]$$

$$= f(2-7)$$

$$= f(-5)$$

$$= 3(-5)^2 + 5$$

$$= 80$$

$$(g \circ f)(2) = g[f(2)]$$

= $g(3(2)^2 + 5)$
= $g(17)$
= $17 - 7$

In general, $(f \circ g)(2) \neq (g \circ f)(2)$.

= 26

EXAMPLE

Finding Composite Functions

Let
$$f(x) = 5x + 1$$
 and $g(x) = x^2 - 4$. Find each of the following.

(a)
$$(f \circ g)(-3)$$

$$(f \circ g)(-3) = f [g (-3)]$$

= $f ((-3)^2 - 4)$ $g(x) = x^2 - 4$
= $f(5)$
= $5(5) + 1$ $f(x) = 5x + 1$

EXAMPLE

Finding Composite Functions

Let
$$f(x) = 5x + 1$$
 and $g(x) = x^2 - 4$. Find each of the following.

(b)
$$(f \circ g)(n)$$

$$(f \circ g)(n) = f[g(n)]$$

= $f(n^2 - 4)$ $g(x) = x^2 - 4$
= $5(n^2 - 4) + 1$ $f(x) = 5x + 1$

 $= 5n^2 - 19$

EXAMPLE

Finding Composite Functions

Let
$$f(x) = 5x + 1$$
 and $g(x) = x^2 - 4$. Find each of the following.

(c)
$$(g \circ f)(n)$$

$$(g \circ f)(n) = g[f(n)]$$

$$= g(5n + 1) \qquad f(x) = 5x + 1$$

$$= (5n + 1)^2 - 4 \qquad g(x) = x^2 - 4$$

$$= 25n^2 + 10n + 1 - 4$$

$$= 25n^2 + 10n - 3$$

Intro to Inverses

- A function describes the relationship between 2 variables, applying a rule to an input that generates exactly one output.
- For such relationships, we are often compelled to "reverse" or "undo" the rule.

Progress of Inverses Throughout Math

- Learned Addition and then its inverse operation Subtraction.
- Learned Multiplication and then its inverse operation Division.
- Learning Perfect Squares connects with extracting Square Roots
- Basically Inverses are a second operation that reverses the first one!

Inverse of a relation

- The inverse of the ordered pairs (x, y) is the set of all ordered pairs (y, x).
- The Domain of the function is the range of the inverse and the Range of the function is the Domain of the inverse.
- Symbol: $f^{-1}(x)$

In other words, switch the x's and y's!

4

Example: {(1,2), (2, 4), (3, 6), (4, 8)}

Inverse:

$$\{(2,1), (4,2), (6,3), (8,4)\}$$

To find an inverse...

Switch the x's and y's.

Solve for y.

Change to functional notation.

Find Inverse:
$$f(x) = 8x - 1$$

$$f(x) = 8x - 1$$

$$y = 8x - 1$$

$$x = 8y - 1$$

$$8y = x + 1$$

$$y = \frac{x + 1}{8}$$

$$f^{-1}(x) = \frac{x + 1}{8}$$

Find Inverse:
$$f(x) = 8x - 2$$

$$f(x) = 8x - 2$$

$$y = 8x - 2$$

$$x = 8y - 2$$

$$8y = x + 2$$

$$y = \frac{x + 2}{8}$$

$$f^{-1} = \frac{x + 2}{8}$$

Find Inverse: |f(x)|

$$f(x) = \frac{3x+1}{2}$$

$$f(x) = \frac{3x+1}{2}$$

$$y = \frac{3x+1}{2}$$

$$x = \frac{3y+1}{2}$$

$$3y+1 = 2x$$

$$3y = 2x-1$$

$$y = \frac{2x-1}{3}$$

$$f^{-1} = \frac{2x-1}{3}$$

Find Inverse:
$$f(x) = x^2 + 4$$

$$f(x) = x^{2} + 4$$

$$y = x^{2} + 4$$

$$x = y^{2} + 4$$

$$y^{2} = x - 4$$

$$y = \sqrt{x - 4}$$

$$f^{-1}(x) = \pm \sqrt{x - 4}$$

Draw the inverse. Compare to the line y = x. What do you notice?

$$(-4,2)$$

$$(-3,1)$$

$$(-2,1)$$

$$(-1,1)$$

- (0,1)
- (1,5)

Graph the inverse of the following:

The function and its inverse are symmetric with respect to the Line y = x.

Things to note...

- > The domain of $f^{-1}(x)$ is the range of f(x).
- The graph of an inverse function can be found by reflecting a function in the line y=x.

Check this by plotting y = 3x + 1 and

$$y = \frac{x-1}{3}$$

Take a look

Reflecting..

Find the inverse of the function.

$$f(x) = \sqrt{x}$$

$$x = \sqrt{y}$$

$$x^2 = (\sqrt{y})^2$$

$$y = x^2$$

Is the inverse also a function? Let's look at the

graphs.

If
$$f(x) = x^2$$
,
 $x = y^2$
 $\sqrt{x} = \sqrt{y^2}$
 $y = \pm \sqrt{x}$ Inverse

 $f^{-1}(x) = \pm \sqrt{x}$ NOTE: Inverse is NOT
a function!

A function can only have an inverse if it is one-to-one.

You can use the horizontal line test on graphical representations to see if the function is one-to-one.

Composition and Inverses

If f and g are functions and

$$(f \circ g)(x) = (g \circ f)(x) = x,$$

then f and g are inverses of one another.

Example: Show that the following are inverses of each other.

$$f(x) = 7x - 2$$
 and $g(x) = \frac{1}{7}x + \frac{2}{7}$

$$(f \circ g)(x) = 7\left(\frac{1}{7}x + \frac{2}{7}\right) - 2$$
$$= x + 2 - 2$$
$$= x$$

$$(g \circ f)(x) = \frac{1}{7}(7x - 2) + \frac{2}{7}$$

$$= x - \frac{2}{7} + \frac{2}{7}$$

$$= x$$

The composition of each both produce a value of x; Therefore, they are inverses of each other.

Are f & g inverses?

$$f(x) = x^3 - 4$$
$$g(x) = \sqrt[3]{x+4}$$

$$(f \circ g)(x) = (\sqrt[3]{x+4})^3 - 4$$

$$= x + 4 - 4$$

$$= x$$

$$= x$$

$$= x$$

$$(g \circ f)(x) = \sqrt[3]{x^3} - 4 + 4$$

$$= \sqrt[3]{x^3}$$

$$= x$$

$$(g \circ f)(x) = \sqrt[3]{x^3 - 4 + 4}$$
$$= \sqrt[3]{x^3}$$
$$= x$$

You Try....

Show that

$$f(x) = 4x - 3$$
 and $g(x) = \frac{1}{4}x + \frac{3}{4}$

are inverses of each other.

$$(f \circ g)(x) = (g \circ f)(x) = x$$

Therefore, they ARE

Therefore, they ARE inverses of each other.

Are f & g inverses?

$$(f \circ g)(x) = 3\left(\frac{x+2}{3}\right) - 2$$
$$= x + 2 - 2$$
$$= x$$

$$(g \circ f)(x) = \frac{3x - 2 + 2}{3}$$
$$= \frac{3x}{3}$$
$$= x$$

YES!