

Bioquímica dos Alimentos

ALTERAÇÕES NOS LIPÍDEOS DE ALIMENTOS

Prof. M.Sc. Yuri Albuquerque

ÓLEOS E GORDURAS

TIPOS DE ÁCIDOS GRAXOS

RANCIDEZ DE ÓLEOS E GORDURAS

Rancidez = deterioração da gordura

RANCIDEZ OXIDATIVA (OXIDAÇÃO LIPÍDICA)

- Deterioração de alimentos ricos em lipídios, resultando em alterações indesejáveis de cor, sabor, aroma e consistência do alimento.
- Série de reações químicas, que ocorre entre o oxigênio atmosférico e os ácidos graxos insaturados dos lipídios.

1º PASSO: INICIAÇÃO OU INDUÇÃO

Formação dos primeiros radicais livres (cheiro ou gosto de ranço)

a) A decomposição do H₂O₂ e outros peróxidos orgânicos na presença de O₂ forma um radical livre, cujo elétron livre remove um elétron de um ácido graxo (RH) insaturado, com formação de um radical livre lipídico

$$RH \longrightarrow R \bullet + H$$
 (radicallivre) extremamente reativo

O oxigênio adiciona-se ao radical livre e forma um radical peróxido

$$R \bullet + O_2 \longrightarrow ROO \bullet$$

2º PASSO: PROPAGAÇÃO E RAMIFICAÇÃO

- Os radicais peróxidos formados são extremamente reativos e podem retirar hidrogênios (abstração do H) de outros lipídeos insaturados, propagando a reação de oxidação, com:
 - Formação de radicais hidroperóxido (ROOH)
 - Reação em cadeia em toda a massa lipídica
 - Aumento da quantidade de radicais livres
 - Rompimento dos radicais livres com formação de compostos voláteis (aldeídos, cetonas, alcoois, hidrocarbonetos e AG lives)
 - → alteram aroma e sabor

2º PASSO: PROPAGAÇÃO E RAMIFICAÇÃO

 Hidrogênios duplamente alílicos (localizados entre duas duplas ligações) são os mais facilmente removidos (abstração)

2º PASSO: PROPAGAÇÃO E RAMIFICAÇÃO

 A abstração de H não rompe duplas ligações, apenas rearruma de uma posição cis para trans e vice-versa, formando os dienos conjugados

2º PASSO: PROPAGAÇÃO E RAMIFICAÇÃO

- Reações alternativas (além da abstração de H)
 - Rearranjo interno ou ciclização
 - Os radicais livres tem vida muito curta
 - Se não houver um composto com H abstraível disponível, o elétron livre do radical se liga ao primeiro C de uma dupla ligação adjacente dentro da molécula, formando um epidióxido (rearranjo do radical peroxila) e epóxidos (ciclização de alcoxila) que continuam a abstração de H em outras moléculas

2º PASSO: PROPAGAÇÃO E RAMIFICAÇÃO

- Reações alternativas (além da abstração de H)
 - Adição
 - O radical se liga ao carbono insaturado do ácido graxo, transferindo seu elétron livre
 - O radical livre se estabiliza, mas instabiliza o ácido graxo que se ligou a ele

2º PASSO: PROPAGAÇÃO E RAMIFICAÇÃO

$$R_1$$
-HCH=CH-CH-CH-CH-CH-CH-CH-R₂ \longrightarrow R_1 -HCH=CH-CH-CH-CH-R₂

Reação de rearranjo interno

$$L_1OO^{\bullet} + R_1$$
— CH_2 — CH = CH = R_2 \longrightarrow R_1 — CH_2 — $\dot{C}H$ - CH - R_2

Reação de adição

3º PASSO: TERMINAÇÃO

- Rearranjo dos radicais livres para formação de diversas substâncias que causam o ranço (ex.: malonaldeídos)
 - Recombinação de radicais
 - Reações de cisão de radicais
 - Co-oxidação de moléculas não lipídicas (ex.: proteínas)
 - Eliminação de grupos ou dismutação
- Diminuição do consumo de O₂ e redução da concentração de peróxidos
- Alteração de aroma, sabor, cor e consistência.

3º PASSO: TERMINAÇÃO

- Recombinação de radicais Predomina em lipídeos viscosos, como óleos
 - Recombinação de radicais alquila (sob elevada temperatura) → polímeros de alcanos
 - Recombinação de radicais peroxila (sob elevada pressão de O₂) → peróxidos de alquila
 - Recombinação de radicais alcoxila (sob temperatura moderada)→ éteres, peróxidos, cetonas, alcanos, alcoois

3º PASSO: TERMINAÇÃO

 Reações de cisão de radicais - Predomina em soluções diluídas de lipídeos (maior velocidade na presença de água)

Alkoxy Radical
$$O \cdot R_2 \longrightarrow R_1 \longrightarrow H \longrightarrow R_2$$

$$O_2 + (R.H.) \longrightarrow O \times Aldehyde$$

$$R_1 \longrightarrow O \longrightarrow R_2 \longrightarrow O \longrightarrow O \times Aldehyde$$

$$R_1 \longrightarrow O \longrightarrow O \longrightarrow O \times Aldehyde$$

$$Aldehyde$$

$$O \times Aldehyde$$

$$O \times Alde$$

3º PASSO: TERMINAÇÃO

- Co-oxidação de moléculas não lipídicas ocorre interceptação de radicais livres de lipídeos por moléculas não lipídicas (ex.: histidina, lisina, arginina e cisteína, além de pigmentos), interrompendo a propagação
- Eliminação de grupos comumente evolve a eliminação dos grupos hidroxila e carboxila dos radicais hidroperóxido, formando carbonilas (cetonas)

RANCIDEZ OXIDATIVA EM ÓLEOS VEGETAIS

Lipoxigenase

- + Metaloenzima (ferro como cofator) que catalisa as reações de rancidez oxidativa em lipídeos vegetais
- + Quando vegetais são danificados, ocorre uma degradação dos lipídeos (principalmente ácido linolênico), mediada pela lipoxigenase com formação de hidroperóxidos
- + Enzimas presentes nos vegetais catalisam a conversão de hidroperóxidos em compostos voláteis

- + Composição do ácido graxo (AG insaturados *cis* sofrem mais oxidação)
- + Concentração de oxigênio (relação direta)
- +Área superficial (AS) \rightarrow maior AS \rightarrow maior exposição ao $O_2 \rightarrow$ maior a velocidade da reação (ex.: carne moída)

- + Temperatura
 - × Relação direta sobre a etapa de propagação
 - Decomposição dos radicais livres, formando outros radicais livres que atuam sobre os lipídeos
 - Inibição das reações de cisão dos radicais livres (evitando a etapa final de terminação da oxidação)

- + Presença de luz
 - Degradação fotoquímica, devido à geração de radicais livres
 - Captação pelos pigmentos clorofila e carotenoides em altas concentrações aumenta a oxidação lipídica (carotenoides em baixa concentração são antioxidantes)
 - Importância dos traços de clorofila em óleos vegetais na oxidação destes produtos

- + Metais de transição (Co, Cu, Fe, Mn, Ni)
 - × Iniciadores da oxidação lipídica
 - × Aumentam a velocidade de oxidação (pró-oxidantes)
 - × Acelera formação dos radicais peróxido
 - x Grupos heme com Fe⁺³ (hemoglobina, mioglobina) →
 oxidação dos lipídeos mais rapidamente do que o Fe
 isolado, devido à ligação do heme com os hidroperóxidos,
 formando Fe⁺⁴, que é extremamente oxidante

- + Atividade de água
 - Baixos valores de A_w velocidade de oxidação lipídica é rápida
 - *Sítios de oxidação dos lipídeos estão sem proteção → fácil acesso do oxigênio
 - * Metais não estão hidratados e são reativos
 - *Fácil decomposição dos hidroperóxidos gerando radicais livres

- + Atividade de água
 - Valores intermediários de A_w menor velocidade das reações de oxidação lipídica
 - *Redução da eficiência dos catalisadores (hidratação dos metais)
 - *Sequestro de radicais livres e baixa decomposição dos hidroperóxidos
 - *Dificuldade de acesso do O₂ ao lipídeo (proteção pelas moléculas de água)

- + Atividade de água
 - <u>Elevados valores intermediários de A_w (0,55-0,85)</u> maior velocidade das reações de oxidação lipídica
 - ★ Maior mobilização O₂
 - *Hidratação das moléculas aumenta a reatividade
 - *Diluição dos catalisadores permitindo maior mobilização e interação com os lipídeos

Aw X RANCIDEZ OXIDATIVA

Atividade da água

- Oxidação de lipídios (rancificação)
- 2. Isoterma de a sorção de umidade
- 3. Escurecimento não-enzimático
- Atividade enzimática
- Crescimento de fungos
- 6. Crescimento de leveduras
- Crescimento de bactérias

Antioxidantes

- + Retardam a formação de radicais livres na fase de iniciação
 - Substâncias que decompõem os radicais peróxido
 - × Remoção do O₂ (ex.: carotenoides e vitamina B₆)
 - × Quelantes de metais (ex.: EDTA)
 - × Formadores de complexos com metais (ex.: ácido cítrico)

Antioxidantes

- + Interrompem a cadeia de propagação de radicais livres
 - Doadores de H que estabilizam (e eliminam) os radicais livres (ex.: tocoferol, flavonoides)
 - × Redução ou oxidação dos radicais livres (ex.: ácido ascórbico)

Antioxidantes

- + Sequestrantes de radicais livres
 - × Antioxidante doa elétrons e estabiliza o radical livre
 - x Antioxidante se torna um radical livre, que estabiliza pelo fenômeno da ressonância no anel benzênico

AÇÃO DE ANTIOXIDANTES

Radical livre intermediário sequestrado por antioxidante

Estabilização de radical livre antioxidante por híbrido de ressonância

Antioxidantes

Ácido ascórbico

- Remoção do O₂ por meio de embalagem a vácuo
- Baixas temperaturas
- Local escuro
- ★ Adição de agentes quelantes (ácido cítrico, EDTA, fosfato) → complexação dos íons metálicos que catalisam as reações

REAÇÃO DE HIDROGENAÇÃO

 Adição de hidrogênio (H₂) às duplas ligações dos ácidos graxos insaturados

Gordura insaturada (óleo vegetal)

H₂/catalisador (Ni, Pd ou Pt)

Gordura Vegetal Hidrogenada (saturada)

REAÇÃO DE HIDROGENAÇÃO

- Importância para a indústria de alimentos
 - Conversão de óleos em gorduras plásticas (margarinas)
 - Melhora da firmeza da gordura,
 - Reduz a susceptibilidade à deterioração

RANCIDEZ HIDROLÍTICA OU LIPÓLISE

- Hidrólise de lipídeos por lipases ou agentes químicos (ácidos e bases) → síntese de compostos voláteis que conferem odor de ranço (ácido butanoico na manteiga)
 - Rompimento das ligações éster dos lipídeos
 - Temperaturas altas inativam as enzimas, mas favorecem a rancificação mediada por ácidos e bases
 - Necessária uma moderada A_w para que as reações ocorram

RANCIDEZ HIDROLÍTICA OU LIPÓLISE

 Importância para a indústria de alimentos – maturação de queijos (liberação de AG livres com propriedades flavorizantes)

INIBIÇÃO DA RANCIDEZ HIDROLÍTICA

- Redução da A_w
- Baixas temperaturas
- Evitar uso prolongado do mesmo lipídeo (usar mesmo óleo em várias frituras)

CONTROLE DE QUALIDADE

Índice de peróxidos

+ Mede o grau de rancidez oxidativa do alimento a partir da medição da quantidade de peróxidos formados

× Índice de iodo (I.I)

- + Mede o grau de insaturação de ácidos graxos
- + I se liga à dupla ligação da cadeia insaturada dos ácidos graxos
- + AG saturados → sólidos → menores I.I
- + AG insaturados → líquidos → maiores I.I e maior rancidez oxidativa

CONTROLE DE QUALIDADE

Índice de saponificação

- + Mede a concentração de AG de baixo peso molecular presentes na amostra
- + Quanto maior a lipólise, maior a concentração

Prova do ácido tiobarbitúrico (TBA)

+ Mede a concentração de malonaldeído presente na amostra (fase de terminação da rancidez oxidativa)

DECOMPOSIÇÃO TÉRMICA

- Aquecimento pode alterar as propriedades organolépticas e nutricionais dos alimentos, devido:
 - + Decomposição dos nutrientes
 - + interações entre os nutrientes formando novos compostos
- Aquecimento provoca reações
 - + Termolíticas e/ou
 - + Oxidativas nos lipídeos

ACROLEÍNA

- Indutora de diversos tipos de câncer
- Indutora do Mal de Alzheimer e Parkinson
- Indutora de neurotoxicidade
- Indutora de apoptose em massa

BIOQUÍMICA DA FRITURA

- Reações de rancidez oxidativa, com liberação de compostos voláteis (odor e sabor indesejáveis), AG livres
- Reações de rancidez hidrolítica (água liberada do alimento durante a fritura)
- X Síntese de dímeros e polímeros de AG a partir da combinação de radicais livres → aumento da viscosidade do óleo da fritura
- Escurecimento do óleo
- Formação de espuma

