Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики N 5.5.5

Компьютерная γ -спектроскопия

Автор:

Филиппенко Павел Б01-009

Долгопрудный, 2022

Цель работы

Снять и исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

Теоретическая чать

Основная задача спектрометрических измерений заключается в определении энергии, интенсивности дискретных гамма-линий от различных гамма-источников и их идентификации.

Основными процессами взаимодействия гамма-излучения с веществом являются фотоэффект, эффект Комптона и образование электрон-позитронных пар. Каждый из этих процессов вносит свой вклад в образование наблюдаемого спектра. Образующиеся при этих процессах электроны испытывают большое количество неупругих соударений с молекулами и атомами среды. Неупругие соударения могут сопровождаться как ионизацией, так и возбуждением молекул или атомов среды. В промежуточных же стадиях (при переходах возбужденных молекул или атомов в основное состояние, при рекомбинации электрических зарядов и т.п.) в веществе возникают кванты света различных длин волн, присущих данному веществу.

При фотоэффекте кинетическая энергия электрона $T_e = E_{\gamma} - I_i$, где I_i — энергия ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов. Наряду с фотоэффектом, при котором вся энергия гамма-кванта передается атомному электрону, взаимодействие гамма-излучения со средой может приводить к его рассеянию, т.е. отклонению от первоначального направления распространения на некоторый угол.

При **эффекте Компотна** происходит упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 2π и равна

$$E_{_max} = \frac{\hbar\omega}{1 + \frac{m_e c^2}{2\hbar\omega}} \tag{1}$$

При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – **образование электрон-позитронных пар**. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта, необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $_0 = 2m_ec^2 = 1{,}022$ МэВ.

Появившийся в результате процесса образования пар электрон теряет свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- а) оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- б) один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $=_{\gamma}-E0$, где $_{0}=m_{e}c^{2}=511$ кэВ;
- в) оба родившихся гамма-кванта покидают детектор, и в спектре появля- ется пик, соответствующий энергии $=_{\gamma}-2E0$, где $2_0=2m_ec^2=1022$ кэВ;

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом являются фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляются экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $_{\gamma} \gg mc^22/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле (E — энергия фотопика):

$$E = \frac{E}{1 + \frac{2E}{mc^2}} \tag{2}$$

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i} \tag{3}$$

т.е. отношение ширины пика полного поглощения (измеренной на полувысоте) к регистрируемой энергии пика поглощения. Это значение $E_i \propto \overline{n_i}$ — числу частиц на выходе ФЭУ. При этом $\Delta E_i \propto \overline{\Delta n_i} = \sqrt{\overline{n_i}}$ — ширина пика пропорциональна среднеквадратичной флуктуации, которая равна корню из числа частиц. Таким образом, наша формула (3) примет вид

$$R_i = \frac{\text{const}}{\sqrt{E_i}} \tag{4}$$

Обработка эксперементальных данных

Определим энергии края комптоновского поглощения для Co, Cs и Na, и сравним с теоретическими значениями.

	exp	thr
Со	895	963
Cs	425	477
Na	1072	1062

Таблица 1: Край комптоновского рассеяния

определим энергии пиков обратного рассеяния и сравним их с теоретическими.

	exp	thr
Со	220	214
Cs	197	184

Таблица 2: Энергии пиков обратного рассеяния