Docket No.: SON-2896

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Kohei Mori

Art Unit: N/A

Application No.: Not Yet Assigned

Filed: January 20, 2004

For: FLAT ANTENNA, ANTENNA UNIT AND

BROADCAST RECEPTION TERMINAL

APPARATUS

CLAIM FOR PRIORITY AND SUBMISSION OF DOCUMENT

MS Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign applications filed in the following foreign country on the date indicated:

	Country	Application No.	Date
	Japan	P2003-012679	January 21, 2003
	Japan	P2003-012680	January 21, 2003
In	In support of this claim, a certified copy of said original foreign application is fil		

herewith.

Dated: January 20, 2004

Respectfully/submitted,

Lion Building

1233 20th Street, N.W., Suite 501

Washington, D.C. 20036

Tel: (202) 955-3750

Fax: (202) 955-3751

Ronald P. Klamanen

Attorneys for Applicant

RADER, FISHMAN & GRAUER, PLLC

Registration No.: 24,104

(202) 955-3750

Customer No. 23353

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 1月21日

出願番号 Application Number:

特願2003-012680

[ST. 10/C]:

Applicant(s):

[J P 2 0 0 3 - 0 1 2 6 8 0]

出 願 人

ソニー株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年11月26日

【書類名】

特許願

【整理番号】

0290689801

【提出日】

平成15年 1月21日

【あて先】

特許庁長官殿

【国際特許分類】

H01Q 1/40

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

森 康平

【特許出願人】

【識別番号】

000002185

【氏名又は名称】 ソニー株式会社

【代理人】

【識別番号】

100086841

【弁理士】

【氏名又は名称】

脇 篤夫

【代理人】

【識別番号】

100114122

【弁理士】

【氏名又は名称】

鈴木 伸夫

【手数料の表示】

【予納台帳番号】

014650

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9710074

【包括委任状番号】

0007553

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 平面アンテナ

【特許請求の範囲】

【請求項1】 給電導体と、

必要とされる受信帯域に応じて、前記給電導体の片側又は両側に配置される無 給電導体とから成る、

ことを特徴とする平面アンテナ。

【請求項2】 前記給電導体は、

必要とされる受信帯域に応じた全長を有するミアンダ状に形成されていること を特徴とする請求項1に記載の平面アンテナ。

【請求項3】 前記ミアンダ状に形成されている給電導体は、必要とされる 受信帯域に応じた幅に形成されていることを特徴とする請求項2に記載の平面ア ンテナ。

【請求項4】 前記無給電導体は、必要とされる受信帯域に応じたオフセット幅が得られるように形成されていることを特徴とする請求項1に記載の平面アンテナ。

【請求項5】 前記給電導体と前記無給電導体の間に誘電体を設けるように したことを特徴とする請求項1に記載の平面アンテナ。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、例えばテレビジョン放送を受信するのに好適な平面アンテナに関するものである。

[0002]

【従来の技術】

従来から、携帯可能な大きさでテレビジョン放送波を受信することができる放送受信装置として、図14に示すようなTV放送受信端末100がある。そして、このようなTV放送受信端末100には、通常、VHF(Ultra High Frequency)帯及びUHF(Ultra High Freqency)帯のテレビジョン放送を受信するた

めのアンテナとして、図示するような棒状アンテナ101が取り付けられている。

[0003]

しかしながら、テレビジョン放送は、例えばUHF帯であれば、300MHzより高く3000MHzより低いUHF帯の周波数のうち、低い周波数帯域(470MHzより高く770MHzより低い)を利用して行われているため、上記したような棒状アンテナ101の形状は長大になる。このため、従来のTV放送受信端末100では、図示するように、棒状アンテナ101が端末本体から突出することになる。

[0004]

また、従来から上記したようなTV放送受信端末などの移動体通信向けの小型 アンテナとしては、例えばセラミック等の高誘電体材料に、三次元金属パターン を形成し、これに給電電流を励振させて電波を放射させるようにしたものがある (特許文献1)。

[0005]

【特許文献 1 】 特開 2 0 0 2 - 2 5 2 5 1 6 号公報

[0006]

【発明が解決しようとする課題】

しかしながら、上記特許文献1に記載されているように、高誘電体材料を用いて小型アンテナを構成するには、複雑な三次元の金属パターンを形成する必要があるため、アンテナを形成する基板の構造がどうしても多層構造になるため、製造コストが高く、またアンテナを電子部品等をプリント基板に対して実装するための実装コストがかかるという欠点があった。

[0007]

また、例えばプリント基板上に金属パターンを形成して、いわゆるパッチアンテナのように平面アンテナを形成することが考えられるが、この場合は利用周波数帯域が低くなるにしたがってアンテナサイズが大きくなる。このため、単に、プリント基板上に金属パターンを形成したアンテナでは、テレビジョン放送を受信可能な放送受信端末などの移動体通信には不向きであった。さらに近接する物

[0008]

【課題を解決するための手段】

そこで、本発明は上記したような点を鑑みてなされたものであり、テレビジョン放送を受信に使用する平面アンテナの小型化を図り、放送受信端末に好適な平面アンテナを提供することを目的とする。

[0009]

上記目的を達成するため、本発明の平面アンテナは、給電導体と、必要とされる受信帯域に応じて、前記給電導体の片側又は両側に配置される無給電導体とから成る。

[0010]

本発明によれば、必要とされる受信帯域に応じて、給電導体の片側又は両側に 無給電導体を配置したことで、テレビジョン放送を受信可能な平面アンテナの形 状を小さくすることが可能なる。

[0011]

【発明の実施の形態】

以下、本発明の実施の形態について説明する。

なお、本実施の形態ではUHF帯の周波数帯域の放送電波を受信する放送受信端末、アンテナユニット、及び平面アンテナを例に挙げて説明する。

$[0\ 0\ 1\ 2]$

図1は、本発明の実施の形態とされるUHF帯のテレビジョン放送を受信可能な携帯端末の外観図である。

この図1に示す携帯端末1は、その上端部にアンテナユニット2を取り付け可能な構造になっており、アンテナユニット2を取り付けることで、例えばテレビジョン放送を受信して表示画面1aにテレビジョン画像を表示することができるようになっている。また、その選局操作は操作部1bにより行うことが可能とされる。

[0013]

アンテナユニット2には、少なくともテレビジョン放送であるVHF帯及び/

[0014]

したがって、このような本実施の形態の携帯端末1においては、上記図14に示したような棒状アンテナを備えた放送受信端末に比べて、アンテナ部分が小さく、携帯性に優れたものとなっている。

[0015]

なお、図1ではアンテナユニット2が携帯端末1に着脱可能な構成を採っているため、携帯端末1の上部からアンテナユニット2の一部が露出しているが、アンテナユニット2を携帯端末1内に実装すれば、アンテナユニット2が外観から見えないように構成することも可能であり、アンテナユニット2により携帯端末1の外観が損なわれることがない。

[0016]

また、本実施の形態の携帯端末1にカード型メモリを着脱する着脱部が備えられているときは、そのカード型メモリ着脱部を利用してアンテナユニット2を取り付けることもできる。その場合にはアンテナユニット2の形状はカード型メモリと同一サイズとなる。

$[0\ 0\ 1\ 7]$

図2は、上記したアンテナユニット外観構成を示した図である。

この図2においては、アンテナユニット2がプリント基板3上に形成されている。アンテナユニット2は、平面アンテナ11とコンデンサや抵抗、コイル、I Cなどの各種電子部品4によって構成される。

なお、プリント基板3上には、後述する受信機15を構成する各種電子部品なども実装されている。

また、プリント基板3には各種電子部品4を接続して回路形成するための電極 パターンと共に、平面アンテナ11を形成する電極パターンが形成されている。 なお、平面アンテナ11の電極パターンについては後で説明する。

$[0\ 0\ 1\ 8]$

このような本実施の形態のアンテナユニット2においては、プリント基板3上

に平面アンテナ11を形成することで、従来のように小型アンテナを形成するに あたって、プリント基板3を多層構造にして複雑な金属パターンを三次元的に形 成する必要が無く、テレビジョン放送に利用可能な小型アンテナの製造コストを 低減することができる。

また、この場合は、プリント基板3に直接、平面アンテナ11を形成したことで、アンテナユニット2に搭載すべきテレビジョン放送用アンテナを別途形成する場合に比べて、実装コストを低減することができるという利点もある。

[0019]

なお、アンテナユニット2に形成すべきテレビジョン放送用アンテナは、必ず しもプリント基板3に直接形成する必要もない。

[0020]

図3は、アンテナユニット2の電気的な構成を示したブロック図である。

この図3に示すようにアンテナユニット2は、平面アンテナ11とマッチング 部12によって構成される。従って、平面アンテナ11は、マッチング部12を 介して受信機15に接続される。

[0021]

マッチング部12は、マッチング回路13とマッチング制御信号発生回路14 とから構成され、受信機15において選択される受信チャンネルの受信周波数帯 域において、平面アンテナ11で効率よく電磁波(電波)が受信できるように、 平面アンテナ11を含めてマッチング(整合)を行うようにされる。

$[0\ 0\ 2\ 2]$

マッチング回路13は、マッチング制御信号発生回路14からのマッチング制御信号S2に基づいて、平面アンテナ11を含むアンテナのマッチングを行うようにされる。なお、マッチング回路13の回路構成については後述する。

マッチング制御信号発生回路14は、受信機15からの受信チャンネル選択信号S1に応じたマッチング制御信号S2を発生するようにされる。なお、マッチング制御信号発生回路14の構成についても後述する。

[0023]

受信機15は、アンテナユニット2を介して入力されるテレビジョン放送波か

[0024]

そして、このような本実施の形態のアンテナユニット2においては、受信機15からの受信チャンネル選択信号S1に基づいて、平面アンテナ11のマッチング周波数を可変制御することで、平面アンテナ11が同調する整合周波数帯域が狭帯域であっても、或いは利用周波数帯域から外れていても、平面アンテナ11の利用可能な周波数帯域の拡大を図るようにしている。

[0025]

図4は、マッチング制御信号発生回路14の構成例を示したブロック図である。

この図4に示すようにマッチング制御信号発生回路14は、制御部21、記憶部22及びDAコンバータ23,24によって構成される。

制御部21は、受信機15から受信チャンネル選択データS1が入力されると、記憶部22に予め記憶されているデータから、入力される受信チャンネル選択 データS1に対応するデータの検索を行うようにする。

そして、検索データに基づいて、後述するマッチング回路13のバラクタダイオードDVの容量値を制御するためのマッチング制御データと、マッチング用コイルLのインダクタンス値を切り替えるための切替スイッチ16を制御するためのマッチング制御データを生成して、それぞれDAコンバータ(DAC)23,24に出力する。

[0026]

DAC23, 24は、制御部21からのマッチング制御データをデジタル/アナログ変換してマッチング制御信号S2, S3としてマッチング回路13に出力する。

[0027]

このようにして、マッチング回路13のマッチング用コイルLのインダクタン

ス値の切り替えと、バラクタダイオードDVの容量値の可変制御を行うことで、 平面アンテナ11の共振周波数を受信機15において選択された受信チャンネル の周波数帯域にインピーダンスをマッチングさせるようにしている。

なお、マッチング部12におけるマッチング動作は、必ずしも受信機15において受信が行われる周波数ごとに行う必要はなく、例えば隣接する複数のチャンネルにおいては同様の構成のマッチング回路13によりマッチング動作を行うようにしてもよい。

[0028]

図5は、上記したマッチング制御信号発生回路14の制御部21が実行する処理を示したフローチャートである。

この場合、制御部21は、先ず、ステップS101において、受信機15からの受信チャンネル選択信号S1が変更されたかどうかの判別を行い、変更されたと判別したときはステップS102に進む。

[0029]

ステップS102においては、記憶部22に格納されているデータから受信チャンネル選択データS1に対応するデータの検索を行い、続くステップS103において、検索データからマッチング制御データを生成して出力することで処理を終えることになる。

一方、ステップS101において、受信機15からの受信チャンネル選択信号 S1が変更されていないと判別したときは、そのまま処理を終えることになる。

[0030]

図6は、上記したマッチング回路13の回路構成の一例を示した図である。

この図6に示すようにマッチング回路13は、平面アンテナ11と受信機15 との間に、マッチング用コイルLと、可変容量ダイオードであるバラクタダイオードDVとを直列に接続した接続回路により形成される。

マッチング用コイルLは、インダクタンスの異なる2つのコイルLa,Lbによって構成され、切替スイッチ16により、何れか一方のコイルLaまたはLbを平面アンテナ11と受信機15との間に挿入するようにしている。なお、コンデンサC1, C2は直流カットコンデンサである。

切替スイッチ16は、例えばRFスイッチからなり、マッチング制御信号発生 回路14からのマッチング制御信号(スイッチ切替信号)S2によって切り替え 制御が行われている。

[0032]

また、バラクタダイオードDVは、そのカソード側に対してマッチング制御信号発生回路14から調整抵抗R1及びチョークコイルL1を介して供給されるマッチング制御信号(コントロール電圧信号)S3によって容量値の制御が行われている。

[0033]

このようにマッチング回路13では、マッチング制御信号発生回路14からのマッチング制御信号S2により切替スイッチ16を切り替えることで、マッチング用コイルLとしてインダクタンス値の異なるコイルLa,Lbの何れか一方を選択すると共に、マッチング制御信号発生回路14からのマッチング制御信号S3により、バラクタダイオードDVの容量値を変化させるようにしている。

これにより、受信機15からの受信チャンネル選択信号S1に基づいて平面アンテナ11がマッチングする周波数帯域の切り替えを行うようにしいてる。

[0034]

なお、図6に示したマッチング回路13の回路構成は、あくまでも一例であり、マッチング回路13はマッチング制御信号発生回路14からのマッチング制御信号に基づいて、アンテナ素子の共振周波数を可変することができるような回路構成であれば、他の回路構成でも良いことは言うまでもない。

[0035]

図7は、本実施の形態のアンテナユニット2の特性を示した図である。

なお、この図 7 に示すアンテナユニット 2 の特性は、マッチング用コイルLのインダクタンス値として 56nHと 22nHを選定し、バラクタダイオードD V の容量値として、バラクタダイオードD V の可変容量範囲 6pF \sim 20pF のうち、最小容量値(6pF)と最大容量値(20pF)を選定した時の利用周波数帯域におけるリターンロス特性を示したものである。

[0036]

この図7から本実施の形態のアンテナユニット2は、平面アンテナ11と受信機15との間に挿入するマッチング用コイルLのインダクタンス値と、バラクタダイオードDVの容量値を変化させることで、平面アンテナ11の整合周波数帯域を大きく変化させることができるのがわかる。

[0037]

例えばマッチング用コイルLのインダクタンス値を55nHにすると共に、バラクタダイオードDVの容量値を $6pF\sim20pF$ の範囲で可変することで平面アンテナ11の整合(同調)周波数帯域を周波数範囲A($430MHz\sim550MHz$)にすることができる。

また、マッチング用コイルLのインダクタンス値を22nHにして、バラクタダイオードDVの容量値を $6pF\sim20p$ Fの範囲で可変すると平面アンテナ10整合周波数帯域を周波数範囲B($570MHz\sim700MHz$)にすることができる。

[0038]

つまり、本実施の形態のアンテナユニット2においては、マッチング用コイル Lのインダクタンス値と、バラクタダイオードDVの容量値を可変することで、 平面アンテナ11の整合周波数帯域を430MHz~700MHzまで拡大する ことができることになる。

したがって、このような本実施の形態のアンテナユニット2をテレビジョン放送アンテナとすることで、UHF帯の広い周波数帯域において放送電波を受信することが可能になる。

[0039]

この結果、従来においては、テレビジョン放送を受信するためのアンテナを小型アンテナにより構成した場合は、利用周波数帯域が狭く、受信できる放送電波に限りがあった。

これに対して、本実施の形態のようなアンテナユニット2によりテレビジョン 放送アンテナを構成すると、利用周波数帯域を広げることができるので、ほぼ全 てのUHF帯の放送電波を受信することができるようになる。 従って、本実施の形態のアンテナユニット2をTV放送受信端末に使用すれば、上記図14に示したような棒状アンテナが不要になるため、TV放送受信端末の小型化を図ることができる。またその携帯性を向上させることができる。

[0040]

さらに、これまでは周波数帯域の広い小型アンテナを構成する場合には、図示していない後段のフィルタに帯域選択が要求されるので、アンテナが大きくなってしまうと欠点があったが、本実施の形態のように、平面アンテナ11自身の整合周波数帯域を切り替えるようにすると、後段のフィルタにおける帯域選択の負担を軽くすることができるので、アンテナ及びフィルタの大型化を防ぐことができる。

[0041]

さらにまた、従来の整合周波数帯域が広く、利用可能周波数帯域が広い小型アンテナにおいては、或る特定の周波数帯域において利得が極端に低下するなどの不具合が発生するため、利用周波数帯域における利得が不均一になるという欠点があったが、本実施の形態のように構成すると、利用周波数帯域の利得の不均一化を防ぐことが可能になる。

[0042]

次に、上記したようなアンテナユニット2に設けられている平面アンテナ11 について説明する。

図8は、本実施の形態としての平面アンテナの構造の一例を示した図である。 この図8に示す平面アンテナ11は、例えばプリント基板の内層電極を利用してミアンダ状の金属パターンとすることで、所定の長さの給電導体31が形成されている。そして、このような給電導体31の一端側に設けた給電部32により 給電電流を励振させることで、電波を放射する放射素子を形成するようにしている。

[0043]

ここで、給電導体31をミアンダ状にしているのは、平面アンテナ11のテレビジョン放送アンテナとして利用できるように、その共振周波数を低く、しかもその形状をより小さくするためとされる。

[0044]

また、平面アンテナ11においては、給電導体31の上層に無給電導体33を 配置するようにしている。このようにすると、無給電導体33を給電導体31と 電磁結合させて放射素子からの電波の放射を促進することができる。

また、このように給電導体31の上層に無給電導体33を配置することで、この無給電導体33による波長短縮効果によって、平面アンテナ11の共振周波数を低くすることができる。

[0045]

さらに、本実施の形態の平面アンテナ11においては、給電導体31の上層に加えて、下層にも無給電導体34を配置して、給電導体31を電磁結合させることで、平面アンテナ11からの電波の放射をより促進すると共に、平面アンテナ11の共振周波数をより低くするようにしている。

[0046]

さらに、このようにして平面アンテナ11を形成すると、給電導体31を無給電導体33,34により囲んでいるため、例えば給電導体31が露出するような構造の二次元平面アンテナより、外的要因の影響を受けにくいという利点もある

[0047]

また、平面アンテナ11においては、給電導体31と無給電導体33との間、 及び給電導体31と無給電導体34の間に、それぞれ誘電体35を設けるように している。このように誘電体35を設けるようにしても波長短縮効果により平面 アンテナ11の共振周波数をさらに低くすることができる。

[0048]

図9 (a) は平面アンテナ11の給電導体31の長さによる共振周波数の変化 特性を示した図である。

なお、給電導体31の長さ(Length)は、図9(b)に示されているように、

ミアンダラインの短辺の長さ a × (ミアンダライン繰り返し回数) + ミアンダラインの長辺の長さ b により求められるものである。

また、平面アンテナ11が形成されるプリント基板の基板厚を0.8mm、誘電体35を誘電率が4.8とされるプリント基板の材料であるガラスエポキシ樹脂とする。

[0049]

この図9(a)から、平面アンテナ11においては給電導体31の長さ(Leng th)が長くなるにしたがって共振周波数を低くできることがわかる。また、給電 導体31の全長が利用周波数の約半波長となっていることがわかる。

[0050]

また、図10は平面アンテナ11の給電導体31の幅による共振周波数の変化特性を示した図である。なお、給電導体31の幅(Width)は、図10(b)に示すようにして求められるものである。

この図10(a)からミアンダライン状に形成された給電導体31の幅を大きくすること、平面アンテナ11の共振周波数を低くできることがわかる。

[0051]

図11は、平面アンテナの無給電導体のオフセットによる共振周波数の変化特性を示した図である。

なお、無給電導体33のオフセット(Edge)は、図11(b)に示されているような給電導体31と無給電導体33との間の距離により示されるものである。

この図11(a)から無給電導体33の形状を給電導体31より大きくすると 平面アンテナの共振周波数を低くできることがわかる。

[0052]

図12は、平面アンテナの無給電導体による波長短縮効果特性を示した図である。

なお、この場合の無給電導体33,34の形状は、図12(b)のように示されるものとされる。

この図12(a)からわかるように、給電導体31の片面に無給電導体33を配置した場合は、無給電導体33を配置しない場合と比べて、平面アンテナ11

の共振周波数を約40%低くすることができる。

さらに、給電導体31の両面に無給電導体33,34を配置した場合は、無給電導体33を配置しない場合と比べて、平面アンテナ11の共振周波数を約50%低くできることがわかる。

このことから、平面アンテナ11を構成する際には給電導体31の両側に無給電導体33,34を配置すると、平面アンテナ11の共振周波数を低くすることができ、それだけ平面アンテナ11の小型化を図ることが可能になる。

[0053]

図13は、平面アンテナの指向特性を示した図である。

なお、この図13に示されている平面アンテナは、プリント基板厚=0.8mm、誘電率=4.7、給電導体31の全長=355.6mm、幅=0.2mm、オフセット=1mm、「両面無給電導体あり」の条件のもとで測定したものである。

この図13(a)に示す平面アンテナ11においては、給電部32の反対方向に電波が放射する指向性を有していることがわかる。

[0054]

したがって、このようにして平面アンテナ11を形成すれば、テレビジョン放送に利用可能な平面アンテナ11をプリント基板3上に形成することができるので、平面アンテナ11の製造コストの低減することができる。また、平面アンテナ11をアンテナユニット2に実装する必要もないので実装コストも不要になるという利点がある。

[0055]

なお、本実施の形態において説明した平面アンテナ11の構造はあくまでも一例であり、本発明の平面アンテナ11は他の構造でも良いことはいうまでもない

また、本実施の形態においては、UHF帯の放送電波を受信するのに好適なアンテナユニット、及び平面アンテナを構成する場合を例に挙げて説明したが、これはあくまでも一例であり、同様の構成でVHF帯などの他の周波帯域の電波を受信するためのアンテナユニット、及び平面アンテナとすることも可能である。

さらに、本発明のアンテナユニット及び平面アンテナを送信用アンテナとして 用いることも可能である。

[0056]

【発明の効果】

以上説明の説明したように、本発明の平面アンテナは、必要とされる受信帯域に応じて、給電導体の片側又は両側に無給電導体を配置することで、テレビジョン放送を受信可能な平面アンテナの形状を小さくするようにしている。

したがって、従来のように多層構造の基板を利用して小型アンテナを形成する場合に比べて、アンテナの製造コストの低減を図ることができると共に、アンテナを電子部品等が実装するプリント基板に直接形成することが可能になるため、実装コストも低減することができる。

[0057]

また、給電電流が励振される給電導体が、無給電導体の間に囲まれているので、無給電導体を配置することなく、給電導体が外部に露出するような構造の平面アンテナより外的要因の影響を受けにくいという利点がある。

したがって、本発明の平面アンテナを用いて、例えばテレビジョン放送を受信可能に構成すれば、アンテナ形状の小型化を図ることが可能になり、携帯性に優れた放送受信端末装置を実現することができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態としての携帯端末の外観を示した図である。

【図2】

本実施の形態としてのアンテナユニットの外観構成を示した図である。

【図3】

アンテナユニットの構成を示したブロック図である。

図4

マッチング制御信号発生回路の構成例を示したブロック図である。

【図5】

マッチング制御信号発生回路が実行する処理動作を示したフローチャートであ

る。

【図6】

マッチング回路の構成例を示した図である。

【図7】

アンテナユニットの特性を示した図である。

【図8】

本実施の形態としての平面アンテナの構造を示した図である。

【図9】

本実施の形態としての平面アンテナの給電導体の長さによる共振周波数の変化特性を示した図である。

【図10】

本実施の形態としての平面アンテナの給電導体の導体幅による共振周波数の変化特性を示した図である。

【図11】

本実施の形態としての平面アンテナの無給電導体のオフセットによる共振周波数の変化特性を示した図である。

【図12】

本実施の形態としての平面アンテナの無給電導体による波長短縮効果特性を示した図である。

【図13】

本実施の形態としての平面アンテナの指向特性を示した図である。

【図14】

従来の放送受信端末の外観図である。

【符号の説明】

1 携帯端末、1 a 表示画面、2 アンテナユニット、3 プリント基板、4 電子部品、1 1 平面アンテナ、1 2 マッチング部、1 3 マッチング回路、1 4 マッチング制御信号発生回路、1 5 受信機、1 6 切替スイッチ、2 1 制御部、2 2 記憶部、2 3 2 4 DAC、3 1 給電導体、3 2 給電部、3 3 3 4 無給電導体、3 5 誘電体、L マッチング用コイル、DV

バラクタダイオード

【書類名】図面

【図1】

[図2]

【図3】

【図4】

【図5】

【図6】

[図7]

【図8】

本実施の形態の平面アンテナ

【図9】

Length=a*(ミアンダライン繰返し回数)+b

【図10】

平面アンテナの特性図 (ミアンダラインの幅による共振周波数の変化)

厚さ: 0.8mm 誘電率: 4.7 Width 【図11】

【図12】

(a)

【図13】

水平偏波、470MHz

【図14】

ページ: 1/E

【書類名】

要約書

【要約】

【課題】 テレビジョン放送を受信可能な平面アンテナの小型化を図ること。

【解決手段】 プリント基板3上に、ミアンダ状に形成した給電導体31と、そ の上層及び下層に無給電導体33,34を配置すると共に、給電導体31と無給 電導体33,34の間に誘電体35,35を挟みこむことによって、共振周波数 の低下を図ることで、テレビジョン放送を受信可能な平面アンテナの小型化を図 るようにした。

【選択図】 図8

認定・付加情報

特許出願の番号

特願2003-012680

受付番号

5 0 3 0 0 0 9 1 0 2 2

書類名

特許願

担当官

第七担当上席

0096

作成日

平成15年 1月27日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000002185

【住所又は居所】

東京都品川区北品川6丁目7番35号

【氏名又は名称】

ソニー株式会社

【代理人】

申請人

【識別番号】

100086841

【住所又は居所】

東京都中央区新川1丁目27番8号 新川大原ビ

ル 6 階

【氏名又は名称】

脇 篤夫

【代理人】

【識別番号】

100114122

【住所又は居所】

東京都中央区新川1丁目27番8号 新川大原ビ

ル6階 脇特許事務所

【氏名又は名称】

鈴木 伸夫

特願2003-012680

出願人履歴情報

識別番号

[000002185]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名

ソニー株式会社