Appunti di Metodi Variazionali

Matteo Scarcella

Maggio 2024

•		1	•		
	n	a	1	C	Ω
1	11	u	. т	u	C

1	Introduzione	2
2	Spazi normati e minimi di funzionali	2

1 Introduzione

Questi appunti sono soltanto un riordionamento dei risultati esposti nel libro di "Metodi variazionali per il controllo ottimo" di Bruni, Di Pillo.

2 Spazi normati e minimi di funzionali

Sia $\mathcal{Z} = \mathbb{R}^{\nu}$ lo spazio ambiente, con $z \in \mathcal{Z}$. Sia $\mathcal{D} \subset \mathcal{Z}$ un sotto-insieme dello spazio ambiente detto insieme ammissibile, se necessario descritto da $\mu < \nu^1$ vincoli di uguaglianza h(z) = 0 e σ vincoli di disuguaglianza $g(z) \leq 0$, dove con σ_a e $g_a(z)$ si fa riferimento ai soli vincoli di disuguaglianza attivi, ovvero verificati all'uguaglianza. Sia $[t_i, t_f]$ un intervallo di tempo. Siano

$$||z|| = \sup_{t \in [t_i, t_f]} ||z(t)|| \tag{1}$$

$$||z|| = \sup_{t \in [t_i, t_f]} ||z(t)|| + \sup_{t} ||\dot{z}(t)||$$
(2)

Rispettivamente norma forte e norma debole, scelte a priori sullo spazio ambiente. Sia $J: \mathcal{Z} \to \mathbb{R}$ un funzionale di costo. L'obiettivo è trovare il controllo che permetta di minimizzare il valore del funzionale J, ovvero risolvere il problema

$$\begin{cases}
\min J(z) \\
z \in \mathcal{D}
\end{cases}$$
(3)

Definizione 1.29 - z^* è un punto di minimo locale (forte o debole, in base alla norma scelta) se vale

$$J(z^*) \le J(z) \quad \forall z \in \mathcal{D} \cap \mathcal{S}(z^*, \varepsilon)$$
 (4)

 $m{Definizione}$ 2.5 - Definita la matrice Jacobiana dei vincoli attivi in un punto ammissibile \overline{z}

$$\frac{\partial(h, g_a)}{\partial z} \Big|_{\bar{z}} = \begin{pmatrix} \frac{dh}{dz} \\ \frac{dg_a}{dz} \end{pmatrix}_{\bar{z}}$$
(5)

Allora \bar{z} si dice punto di regolarità dei vincoli se la matrice Jacobiana dei vincoli attivi ha rango pieno, ovvero se

$$rank\left\{ \frac{\partial(h, g_a)}{\partial z} \bigg|_{\bar{z}} \right\} = \mu + \sigma_a \tag{6}$$

Definizione 2.6 - Si definisce la funzione Lagrangiana

$$L(z, \lambda_0, \lambda, \eta) = \lambda_0 J(z) + \lambda^T h(z) + \eta^T g(z)$$
(7)

Con λ_0, λ, η moltiplicatori opportuni

Teorema 2.7 - (Condizioni necessarie di minimo) In riferimento al problema di minimo vincolato con opportuni vincoli h(z) e g(z), sia z^* un punto di minimo locale. Allora esistono moltiplicatori $\lambda_0^*, \lambda^*, \eta^*$ non tutti simultaneamente nulli tali che:

$$\begin{cases} \frac{\partial L}{\partial z} \Big|^* = 0^T \\ \eta_i^* g_i(z^*) = 0 \quad i = 1, 2, \dots, \sigma_a \\ \lambda_0^* \ge 0 \\ \eta_i^* \ge 0 \quad i = 1, 2, \dots, \sigma_a \end{cases}$$

$$(8)$$

 $^{^1}$ Nel caso $\mu=\nu$ si avrebbe un insieme di vincoli finito e verrebbe meno il concetto di minimizzazione. Ad esempio se $\mu=\nu=2,$ i due vincoli potrebbero essere due rette che si intersecano in un punto, e tale punto risulterebbe l'unico punto ammissibile

Teorema 2.8 - (Condizioni di Kuhn-Tucker) In riferimento al problema di minimo vincolato con opportuni vincoli h(z) e g(z), sia z^* un punto di minimo locale e di regolarità dei vincoli. Allora valgono le stesse condizioni del teorema (2.7), con l'aggiunta di

$$\lambda_0^* = 1 \tag{9}$$

Dimostrazione - Si supponga per assurdo $\lambda_0^* = 0$. Allora nella funzione lagrangiana sparirebbe il termine dipendente dal funzionale di costo J(z) e la prima condizione delle (8) diventerebbe

$$0^{T} = \frac{\partial L}{\partial z} \Big|^{*} = 0 + \lambda^{*T} \frac{\partial h(z)}{\partial z} + \eta^{*T} \frac{\partial g(z)}{\partial z}$$
(10)

Che in forma vettoriale diventa

$$0^{T} = \begin{pmatrix} \lambda^{*T} & \eta^{*T} \end{pmatrix} \begin{pmatrix} \frac{\partial h(z)}{\partial z} \\ \frac{\partial g(z)}{\partial z} \end{pmatrix}$$
(11)

Dove l'ultimo vettore è proprio la matrice jacobiana dei vincoli attivi. Per ipotesi z^* è un punto di regolarità dei vincoli e quindi tale matrice ha rango pieno. Dunque l'unica possibilità per cui il prodotto con i moltiplicatori valga 0^T è che i moltiplicatori siano tutti nulli, il che è assurdo perchè contraddice l'ipotesi. Pertanto, siccome $\lambda_0^* \neq 0$, sarà sempre possibile dividere tutti i moltiplicatori per λ_0^* , ottenendo così dei nuovi moltiplicatori $\bar{\lambda}_0^*, \bar{\lambda}^*, \bar{\eta}^*$, con $\bar{\lambda}_0^* = 1$ \Box Le due condizioni sono dei precedenti teoremi sono necessarie e quindi non danno direttamente luogo a dei punti di minimo, ma a dei punti candidati ad essere di minimo, che vengono definiti estremali. Gli estremali possono essere

- normali, se $\lambda_0^* \neq 0$ (e quindi conseguentemente $\lambda_0^* = 1$)
- non normali, se $\lambda_0^* = 0$

Il teorema (2.7) offre delle condizioni meno stringenti rispetto al (2.8), che fissando $\lambda_0^* = 1$ esclude gli estremali non normali, e pertanto fornisce un numero maggiore di candidati.

Esempio
$$2.1$$

Le condizioni necessarie appena viste diventano anche sufficienti nel caso in cui il funzionale di costo J(z) e l'insieme ammissibile \mathcal{D} siano convessi. La particolarizzazione dell'insieme di ammissibilità al caso convesso può essere effettuata sulla base del seguente lemma

 $\pmb{Lemma~2.13}$ - Sia $\mathcal D$ un insieme definito da vincoli di uguaglianza h(z)=0e di disuguaglianza $g(z)\leq 0.$ Se

- g(z) è dato da tutte funzioni convesse
- h(z) è dato da funzioni lineari (o affini) del tipo $h_j(z) = c_j^T z_j + b_j, j = 1, 2, \dots, \mu$

Allora
$$\mathcal{D}$$
 è convesso.

Teorema 2.14 - In riferimento al problema di minimo vincolato con un funzionale di costo J(z) convesso e con opportuni vincoli h(z) affini e g(z) convessi, di modo che l'insieme \mathcal{D} sia convesso. Se z^0 è un punto ammissibile ed esistono moltiplicatori λ^0 e η^0 tali che valgano

$$\begin{cases} \frac{dJ}{dz} + \lambda^{0T} \frac{dh}{dz} + \eta^{0T} \frac{dg}{gz} = 0^{T} \\ \eta_{i}^{0} g_{i}(z^{0}) = 0 \quad i = 1, 2, \dots, \sigma_{a} \\ \eta_{i}^{0} > 0 \quad i = 1, 2, \dots, \sigma_{a} \end{cases}$$
(12)

Allora z^0 è un punto di minimo globale. Inoltre, se J è strettamente convessa, z^0 è l'unico punto di minimo globale.

Dimostrazione - Posto z un qualunque punto ammissibile, allora valgono i vincoli e quindi si può scrivere

$$J(z) \ge J(z) + \underbrace{\lambda^{0T} h(z)}_{=0} + \underbrace{\eta^{0T} g(z)}_{\le 0}$$

$$\tag{13}$$

Siccome per ipotesi le funzioni J e g sono convesse e le funzioni h sono affini, allora si ha

$$J(z) \ge J(z^0) + \frac{dJ}{dz}(z - z^0) + \lambda^{0T} \left[h(z^0) + \frac{dh}{dz}(z - z^0) \right] + \eta^{0T} \left[g(z^0) + \frac{dg}{dz}(z - z^0) \right]$$
(14)

Per le ipotesi del teorema, nel punto z^0 si ha $\eta^{0T}g(z^0)=0$, inoltre poichè, sempre per ipotesi, z^0 è un punto ammissibile, allora valgono i vincoli, ovvero $h(z^0)=0$. Quindi raccogliendo $(z-z^0)$ si ottiene

$$J(z) \ge J(z^0) + \underbrace{\left[\frac{dJ}{dz} + \lambda^{0T}\frac{dh}{dz} + \eta^{0T}\frac{dg}{dz}\right]}_{=0^T} (z - z^0)$$

$$\tag{15}$$

E di nuovo, per le ipotesi (la prima delle (12)), si può scrivere

$$J(z) \ge J(z^0) \tag{16}$$

Ovvero z^0 è un punto di minimo globale. Se inoltre J fosse strettamente convessa, allora le stesse relazioni varrebbero strettamente, giungendo quindi a

$$J(z) > J(z^0) \tag{17}$$

Che implica l'unicità del minimo.