DEVOIR MAISON 2

Exercice 1. On considère le plan \mathbb{R}^2 muni de sa structure affine usuelle. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application $(x,y) \mapsto f(x,y) = (x+1,3)$.

- 1. Démontrer que f est une application affine.
- 2. Déterminer la nature du sous-espace affine $f^{-1}\{(0,3)\}$ (dimension et direction).
- 3. Démontrer que f peut s'écrire sous la forme $t_u \circ \varphi$ où $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ est linéaire pour \mathbb{R}^2 avec sa structure vectorielle usuelle (où l'origine est (0,0)), et déterminer explicitement les vecteurs u et φ .

Exercice 2. Soit $(\mathcal{E}, E, *)$ un espace affine de dimension finie.

- 1. Soit $f: \mathcal{E} \to \mathcal{E}$ une bijection affine qui commute avec toutes les translations. On veut démontrer que f est nécéssairement une translation (éventuellement de vecteur nul).
 - (a) On suppose pour commencer qu'il existe un point $\mathcal{O} \in \mathcal{E}$ tel que $f(\mathcal{O}) = \mathcal{O}$ (autrement dit f est linéaire pour la structure vectorielle canonique de \mathcal{E} avec origine en \mathcal{O}). Démontrer que f = Id (indication: utiliser le lemme 2.55 des notes du cours).
 - (b) On se place dans le cas général. Démontrer que f est une translation (indication: utiliser le théorème de structure du groupe affine, c'est à dire le théorème 2.52)
- 2. On veut déterminer le centre du groupe affine. On rappelle que le centre d'un groupe est le sous-ensemble de ses éléments qui commutent avec tous les autres.
 - (a) Démontrer que si f est dans le centre du groupe affine $\mathbf{Aff}(\mathcal{E})$, alors f est nécéssairement une translation. (indic: utiliser la question précédente).
 - (b) Démontrer que si une translation t_u est dans le centre de $\mathbf{Aff}(\mathcal{E})$, alors u=0 (indic: utiliser encore un lemme du cours).
 - (c) En déduire que le centre du groupe affine $\mathbf{Aff}(\mathcal{E})$ est égal à $\{\mathrm{Id}\}.$