Probabilistic Artificial Intelligence

Lecture 9: (Model-Free) Reinforcement LearningSlides, RN

further reading: Sutton&Barto v2

http://incompleteideas.net/book/the-book-2nd.html

Dr. F. Oliehoek

Recap & Motivation

We saw that... we need probability

- For complex tasks: agent needs to maintain a belief
- Bruno de Finetti:
 - If agent's beliefs violate the axioms of probability, then there exists a combination of bets against it which it is willing to accept that guarantees it will lose money, every time.
- Update a belief: Bayes' rule

Beliefs over time

- To reason over time, we needed something more...
 - prediction!

- Maintaining a belief ('filtering'): still Bayes' rule!
 - exploits conditional independence of ... given the ... ?

Beliefs over time

- To reason over time, we needed something more...
 - prediction!

And this 'inference' assumed that the CPTs were given!

When not the case...

- → try to **learn** CPTs from data
- → e.g., using the EM algorithm

: still Bayes' rule! nce of ... given the ...?

Making 'simple' decisions...

- Decision theory = utility + probability
- Maximum expected utility, or maximum 'value'
 - E.g., single shot case:

$$Q(a) = \sum_{s'} u(s') * P(s'|a)$$

Making 'simple' decisions...

- Decision theory = utility + probability
- Maximum expected utility, or maximum 'value'
 - E.g., single shot case:

$$Q(a) = \sum_{s'} u(s') * P(s'|a)$$

Notation...

- ► Russel&Norvig write 'U' for pretty much anything
- ▶ I write
 - 'u' for utility
 - 'Q' for expected utility (=value) of actions
 - 'V' for expected utility (=value) of other things

7

Complex decisions over time

- MDPs
 - now utility of a trajectory
 - e.g. discounted sum of rewards

- Value = expected utility
- Bellman optimality equations
 - $V*(s) = \max_{a} Q*(s,a)$
 - $Arr Q*(s,a) = R(s,a)+\gamma Σ_{s'} P(s'|s,a)V*(s')$

Complex decisions over time

MDPs

- now util
- ⊳ e.g. disc
- Value = ex
- Bellman d

- ▶ now need to track the belief.
- ▶i.e., belief is the state of a special MDP
 - called "belief MDP"

Complex decisions over time

- MDPs
 - now util
 - ⊳ e.g. disc
- Value = ex
- Bellman d

We did learning...

- learning = induction
- perspectives:
 - 'idealistic' (everything is Bayes' rule)
 - 'pragmatic' (some type of optimization)
- learning latent variable models
 - □ using EM
 - ▷ e.g., learning parameters of an HMM
- many different learning settings
 - supervised learning
 - unsupervised
 - active learning
 - ▶ reinforcement learning ← today

Outline

- Overview of RL
- Value-based, model-free methods:
 - "Passive learning"
 - policy evaluation
 - (without a model!)
 - "Active learning"
 - learning a good policy via Q*
 - exploration
 - Generalization
- Policy Search

Overview of RL

MDP Planning

Given an MDP:

- ▷ S set of states
- ▷ A set of actions
- transition model: p(s'|s,a)
- rewards: R(s,a)

- \triangleright **compute** a policy π
- \triangleright that optimizes value V(π)

MDP Planning Reinforcement Learning

■ Given an MDP:

- ▷ S set of states
- ▷ A set of actions
- transition model: p(s'|s,a)
- rewards: R(s,a)

■ Goal:

- ightharpoonup **compute learn** a policy π
- \triangleright that optimizes value V(π)

s⇒s′,r

MDP Planning Reinforcement Learning

■ Given an MDP:

- ▷ S set of states
- ▷ A set of actions
- transition model: p(s'|s,a)
- rewards: R(s,a)

■ Goal:

- ightharpoonup **compute learn** a policy π
- \triangleright that optimizes value V(π)

That is, we drop our agent in **any** MDP and it is able to work out how to be happy in it!

s⇒s′,r

- You are in state 23
 - what do you want to do? (A or B)

- You are in state 23
 - what do you want to do? (A or B)
 - → +14
- You are now in state 12
 - what do you want to do? (A or B)

- You are in state 23
 - what do you want to do? (A or B)
 - → +14
- You are now in state 12
 - what do you want to do? (A or B)
 - ▷ -30
- You are in state 23 again
 - what do you want to do? (A or B)

- You are in state 23
 - what do you want to do? (A or B)
 - → +14
- You are now in state 12
 - what do you want to do? (A or B)
 - ⊳ -30
- You are in state 23 again
 - what do you want to do? (A or B)
 - > -5

■ What we could do...

- What we could do...
 - try and learn the model T, R
 - then can use planning (VI and PI etc.) afterwards
 - > ...?

- What we could do...
 - try and learn the model T, R ("model-based RL")
 - then can use planning (VI and PI etc.) afterwards
 - directly try and learn the policy ("model-free RL")
 - value based: learn Q*
 - policy search: 'just optimize' π directly

- What we could do...
 - try and learn the model T, R ("model-based RL")
 - then can use planning (VI and PI etc.) afterwards
 - directly try and learn the policy ("model-free RL")
 - value based: learn Q*
 - policy search: 'just optimize' π directly
- ►S&B use 'dynamic programming' for 'planning'
- ▶ relation:

model based RL != planning but model based RL uses planning

■ A policy π , in an MDP: states to actions $\pi:S \to A$

■ How represented?

- How represented?
 - Lookup table

- How represented?
 - Lookup table

- How represented?
 - Lookup table
 - Computation
 - e.g., neural network

- How represented?
 - Lookup table
 - Computation
 - ► e.g., neural network
 - entire planning algorithm

- 1: **function** MonteCarloPlanning(state)
- 2: repeat
- 3: search(state, 0)
- 4: until Timeout
- 5: **return** bestAction(state,0)
- 6: **function** search(state, depth)
- 7: **if** Terminal(state) **then return** 0
- 8: **if** Leaf(state, d) **then return** Evaluate(state)
- 9: action := selectAction(state, depth)
- 10: (nextstate, reward) := simulateAction(state, action)
- 11: $q := reward + \gamma \operatorname{search}(next state, depth + 1)$
- 12: UpdateValue(state, action, q, depth)
- 13: return q

Again: Policy Representations

■ A policy π , in a MDP:

most classical RL algorithms states to actions $\pi:S \to (still the basis for SOTA)$ techniques)

- How represented?
 - Lookup table
 - Computation
 - e.g., neural network
 - entire planning algorithm

1: **function** MonteCarloPlanning(state) search(state learning to plan...! **Future SOTA?**

State of the Art...

- "Deep RL": Combination of RL techniques with deep neural networks
- Many recent results that demonstrate the power of these techniques. E.g.:
 - Atari Breakout:

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Pyramids:

https://www.youtube.com/watch?v=yEcBMCU VRU

▶ Locomotion:

https://www.youtube.com/watch?v=hx_bgoTF7bs

▷ Dota:

https://youtu.be/UZHTNBMAfAA?t=15

Capture the flag:

https://www.youtube.com/watch?v=MvFABFWPBrw

▷ Alpha Star:

https://www.youtube.com/watch?v=cUTMhmVh1qs

▶ Chip Design:

https://ai.googleblog.com/2020/04/chip-design-with-deep-reinforcement.html

Summarizing books with human feedback:

https://openai.com/blog/summarizing-books/

Stratego

https://www.deepmind.com/blog/mastering-stratego-the-classic-game-of-imperfect-information https://www.volkskrant.nl/nieuws-achtergrond/ook-met-stratego-wint-kunstmatige-intelligentie-nu-van-de-topspelers-wat-betekent-dat-b86429be/

▶ RL learns better sorting (2023)

https://towardsdatascience.com/deep-reinforcement-learning-improved-sorting-algorithms-2f6a1969e3af

- Current trends:
 - meta-learning
 - ▷ 'off-line' reinforcement learning (from dataset)
 - many others

Interested?

- → I and others in the SDM group offer MSc projects on this topic
- → Take the deep RL course (CS4400)

"Passive learning" model-free policy evaluation

Fixing the Policy

An MDP graphically

Fixing the Policy

An MDP graphically

- Fixing the policy...
 - \triangleright agent will always select $a=\pi(s)$
 - Induces a "Markov reward process"

Fixing the Policy

An MDP graphically

- Fixing the policy...
 - \triangleright agent will always select $a=\pi(s)$

we are assuming:

- **►** some policy π is given to us.
- ► e.g., random, or perhaps reasonable (think of "policy iteration" but without model)

Policy Evaluation

 S_0 S_1 S_2 r_0

- Want to compute $V_{\pi}(s)$
- Given the model, this is easy...
 - ▶ E.g., successive approximation:

$$V_{\pi}(s) := R(s, \pi(s)) + \gamma \Sigma_{s'} T(s'|s, \pi(s)) V_{\pi}(s')$$

- or solve system of linear equations.
- But without model...? from interaction...?

Policy Evaluation

 S_0 S_1 S_2 r_0 r_1

- Want to compute $V_{\pi}(s)$
- Given the model, this is easy...
 - E.g., successive approximation:

$$V_{\pi}(s) := R(s, \pi(s)) + \gamma \Sigma_{s'} T(s'|s, \pi(s)) V_{\pi}(s')$$

or solve system of linear equations.

We will first consider this **policy evaluation** setting.

We will consider optimizing the policy (what actions to take) later

But without model...? from interaction...?

Idea 1: "direct utility estimation" [RN 23.2.1] aka "Monte Carlo Prediction" [SBv2 5.1]

- Given a sequence $h=(s_0, r_0, s_1, r_1,...,s_T, r_T)$
 - utility ("return"):

$$u(h) = r_0 + r_1 + r_2 + ... + r_T$$

$$u(s_t) = r_t + r_{t+1} + r_{t+2} + ... + r_T$$

Discounted:

- u(h) = r₀ + γ r₁ + γ² r₂ +...+ γ^T r_T
- $\blacktriangleright u(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... + \gamma^T r_T$

■ $V_{\pi}(s)$ is the *expected* return

$$\triangleright V_{\pi}(s) = \mathbf{E} [u(s) \mid \pi]$$

 \triangleright from s, when executing π , until the end of the episode

So...?

Idea 1: "direct utility estimation" [RN 21.2.1] aka "Monte Carlo Prediction" [SBv2 5.1]

- Given a sequence $h=(s_0, r_0, s_1, r_1,...,s_T, r_T)$
 - utility ("return"):

$$u(h) = r_0 + r_1 + r_2 + ... + r_T$$

$$u(s_t) = r_t + r_{t+1} + r_{t+2} + ... + r_T$$

Discounted:

$$\mathbf{v}(\mathbf{s}_{t}) = \mathbf{r}_{t} + \mathbf{\gamma} \ \mathbf{r}_{t+1} + \mathbf{\gamma}^{2} \ \mathbf{r}_{t+2} + ... + \mathbf{\gamma}^{T} \ \mathbf{r}_{T}$$

■ $V_{\pi}(s)$ is the *expected* return

$$\triangleright V_{\pi}(s) = \mathbf{E} [u(s) \mid \pi]$$

- \triangleright from s, when executing π , until the end of the episode
- Treat as a supervised problem!
 - execute the policy many times
 - \triangleright estimate $V_{\pi}(s)$, for each s, based on the observed returns

Example

P(intended)=0.8 P(sideways)=0.2

Figure 21.1 (a) A policy π for the 4×3 world; this policy happens to be optimal with rewards of R(s) = -0.04 in the nonterminal states and no discounting. (b) The utilities of the states in the 4×3 world, given policy π .

different episodes, or 'trials':

$$(1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (2,1)_{\textbf{-.04}} \rightsquigarrow (3,1)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (4,2)_{\textbf{-1}} .$$

Example

P(intended)=0.8 P(sideways)=0.2

Figure 21.1 (a) A policy π for the 4×3 world; this policy happens to be optimal with rewards of R(s)=-0.04 in the nonterminal states and no discounting. (b) The utilities of the states in the 4×3 world, given policy π .

different episodes, or 'trials':

$$(1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (2,1)_{\textbf{-.04}} \rightsquigarrow (3,1)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (4,2)_{\textbf{-1}} .$$

$$(1,1)_{\textbf{-.04}} \rightsquigarrow (2,1)_{\textbf{-.04}} \rightsquigarrow (3,1)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (4,2)_{\textbf{-1}} .$$

$$(1,1)_{\textbf{-.04}} \rightsquigarrow (2,1)_{\textbf{-.04}} \rightsquigarrow (3,1)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (4,2)_{\textbf{-1}} .$$

TUDelft

without discounting?

Example

P(intended)=0.8 P(sideways)=0.2

Figure 21.1 (a) A policy π for the 4×3 world; this policy happens to be optimal with rewards of R(s)=-0.04 in the nonterminal states and no discounting. (b) The utilities of the states in the 4×3 world, given policy π .

different episodes, or 'trials':

$$(1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}}$$

$$(1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}}$$

$$(1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}}.$$

depends...

→ "first visit" or "every visit" MC?

Value for (1,3) without discounting?

y TUDelft

Properties of Monte Carlo Estimation

- Works if you have enough samples
- It is unbiased → will converge to right solution
- But **high variance** → need many samples in practice
- It does **not** exploit any knowledge of the Bellman equation:
 - $V_{\pi}(s) = R(s,\pi(s)) + \gamma \Sigma_{s'} T(s'|s,\pi(s)) V_{\pi}(s')$
 - but we know that the values should adhere to it...

Temporal Difference Learning

So perhaps we can use Bellman equation to make things more efficient...?

Note: still **policy evaluation** setting!

Temporal Difference Learning

- So perhaps we can use Bellman equation to make things more efficient...?
- First: incremental form of MC estimation
 - \triangleright maintain an estimate V_k of V_{π}
 - when we get a new return u(s) from s, update using:

$$V_{k+1}(s) := (1-\alpha_k) V_k(s) + \alpha_k u(s)$$

- "move in direction of u(s)"
- this is called "stochastic gradient descent" (SGD)
- \triangleright converges when picking appropriate step sizes α_{k}

How is this SGD? [S&B v2 9.3]

Our estimation $V_k(s)$ is trivially parameterized: $V_k(s) = V(s; w_k) = w_k$ → note: 's' is fixed! its value is W_k

■ So If we knew $V_{\pi}(s)$ we could minimize $[V_{\pi}(s) - V(s; w_k)]^2$ **m(**via GD:

> \

$$\begin{aligned} w_{k+1} &:= w_k - \alpha \ \nabla [V_{\pi}(s) - V(s; w_k)]^2 \ / \ 2 \\ &= w_k + \alpha \ [V_{\pi}(s) - V(s; w_k)] \ \nabla V(s; w_k) \\ &= w_k + \alpha \ [V_{\pi}(s) - V(s; w_k)] \\ &= \{\text{since } V(s; w_k) = w_k \} \end{aligned}$$

We don't know $V_{\pi}(s)$, but turns out that SGD only needs an unbiased 'estimate, such as u(s), so we can do:

$$W_{k+1} := W_k + \alpha [u(s) - V(s; W_k)]$$

Translating back:

$$V_{k+1}(s) := V_k(s) + \alpha [u(s) - V_k(s)] = (1-\alpha) V_k(s) + \alpha u(s)$$

Bootstrapping the target

■ SGD updates estimate towards **target** *T(s)*

$$V_{k+1}(s) := (1-\alpha_k) V_k(s) + \alpha_k T(s)$$

for MC updates:

$$T(s) = u(s) = r_t + r_{t+1} + ... + r_T$$

What if we don't want to wait until end of episode?

Bootstrapping the target

- SGD updates estimate towards target T(s)
 - $V_{k+1}(s) := (1-\alpha_k) V_k(s) + \alpha_k T(s)$
 - for MC updates:

$$T(s) = u(s) = r_t + r_{t+1} + ... + r_T$$

- What if we don't want to wait until end of episode?
- Suppose we would know $V_{\pi}(s_{t+1})...$

...could do:
$$T(s) = r_t + y V_{\pi}(s_{t+1})$$

- \triangleright could immediately update after seeing s_{t+1}
- ▶ would still be unbiased: $V_{\pi}(s) = r_t + \gamma E_{s'}[V_{\pi}(s')]$
- and would be an update with less variance

Bootstrapping the target

- SGD updates estimate towards target T(s)
 - $V_{k+1}(s) := (1-\alpha_k) V_k(s) + \alpha_k T(s)$
 - for MC updates:

$$T(s) = u(s) = r_t + r_{t+1} + ... + r_T$$

What if we don't want to wait until end of

Key idea: "bootstrapping"

- we don't know $V_{\pi}(s_{t+1})$
- ▶ but can approximate it using our current estimate $V_{\nu}(s_{t+1})$

■ Suppose we would know $V_{\pi}(s_{t+1})...$

...could do:
$$T(s) = r_t + y V_{\pi}(s_{t+1})$$

- \triangleright could immediately update after seeing s_{t+1}
- ▶ would still be unbiased: $V_{\pi}(s) = r_t + \gamma E_{s'}[V_{\pi}(s')]$
- and would be an update with less variance

Temporal Difference Learning

[RN 23.2.3, SBv2 6.1]

■ TD updates, after a transition (*s,r,s'*):

$$V_{k+1}(s) := (1-\alpha_k) V_k(s) + \alpha_k T(s)$$

- \triangleright with target $T(s) = r + \gamma V_k(s')$
- Usual form (just rewriting, dropping 'k'):

$$\triangleright V(s) := V(s) + \alpha [r + y V(s') - V(s)]$$

Temporal Difference Learning

■ TD updates, after a transition (*s,r,s'*):

$$V_{k+1}(s) := (1-\alpha_k) V_k(s) + \alpha_k T(s)$$

- \triangleright with target $T(s) = r + \gamma V_{k}(s')$
- Usual form (just rewriting, dropping 'k'):

$$V(s) := V(s) + \alpha [r + \gamma V(s') - V(s)]$$

"TD error"

(difference between prediction after observing the next reward and state)

TD learning: properties

(cf. S&B v2 6.2,6.3)

- Don't need to wait until end of episode to update values
- Updates have lower variance, but biased (due to bootstrapping)
- Converges to V_{π}
- Not (stochastic) gradient descent (but a "semi-gradient" method)
- how many episodes to estimate $V(s_0=(1,1))$?

TD learning: properties

(cf. S&B v2 6.2,6.3)

- Don't need to wait until end of episode to update values
- Updates have lower variance, but biased (due to bootstrapping)
- Converges to V_{π}
- Not (stochastic) gradient descent (but a "semi-gradient" method)
- how many episodes to estimate $V(s_0=(1,1))$?
 - a solution: 'eligibility traces' (cf. SBv12 chap.12)

"Active learning" model-free, value-based control

Control... to *optimize* actions! [RN 23.3.3] We now leave the

- OK, so now we can learn $V_{\pi}(s)$... great...?
 - ▶ we want V*
 - ▶ and really Q*(s,a), such that we can take actions...!
- If one would learn the model... (next week)
 - can compute Q from V by 'backprojection': Q(s,a) = R(s,a)+γ $\Sigma_{s'}$ P(s'|s,a)V(s')
 - but then, why not apply VI / PI directly...?
- Instead, try and learn Q*(s,a) directly!

policy evaluation setting and switch to

the **control** setting

Q-learning

■ TD-learning: after (s,r,s') we update

$$\vee$$
 V(s) := V(s) + α [r + γ V(s') - V(s)]

- Q-learning: after (s,a,r,s') we update
 - ▷ $Q(s,a) := Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') Q(s,a)]$
- Exploration...!

[RN 23.3.1]

- Now need to try out all actions...
- ▷ A simple rule is **epsilon greedy**:
 - random action with prob. ε,
 - greedy action otherwise
- But active research topic!

SARSA

- Q-learning learns off-policy:
 value of target does not depend the followed policy
 - due to the maximization:

$$Q(s,a) := Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

- converges to Q*
- Alternatively SARSA learns on-policy:
 - \triangleright about the policy π we are following
 - after (s,a,r,s',a') we update:

$$Q(s,a) := Q(s,a) + \alpha [r + y Q(s',a') - Q(s,a)]$$

- \triangleright converges to Q_{π}
- ightharpoonup if we want to learn Q*, need to adapt π → π*

SARSA

- Q-learning learns off-policy:
 value of target does not depend the foll
 - due to the maximization:

$$Q(s,a) := Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s',a')]$$

- converges to Q*
- Alternatively SARSA learns on-policy:
 - \triangleright about the policy π we are following
 - after (s,a,r,s',a') we update: Q(s,a) := Q(s,a) + α [r + y Q(s',a') - Q(s,a)]
 - \triangleright converges to Q_{π}
 - \triangleright if we want to learn Q*, need to adapt π → π *

What to use...?

- ► off-policy learning has great promise: learn about optimal values following **any** policy
- ▶ but when using 'function approximation' SARSA tends to be more stable
- ► "deadly triad" of RL: combining
 - 1) bootstrapping,
 - 2) off-policy learning, and
 - 3) function approximation

Function Approximation [RN 23.4]

Scaling up...?

- Methods covered so far are tabular
 - Q(s,a) values for each (s,a) in a table
- But MDPs are huge...! (e.g., number of possible screens in Atari?)
- use function approximation to scale up!
 - e.g., represent Q(s,a) with a deep neural network

Scaling up...?

- Methods covered so far are tabular
 - Q(s,a) values for each (s,a) in a table
- But MDPs are huge...! (e.g., number of possible screens in Atari?)
- use function approximation to scale up!
 - e.g., represent Q(s,a) with a deep neural network

map from

features'

'state

to values for

each action

Function approximation for RL

- For simplicity: policy evaluation
 - ▶ we want to find V_π(s;w)
 - w is a vector of parameters
- Using features:
 - \triangleright x(s)=(x₁(s),...,x_d(s)) is a d-dimensional feature vector
 - $\triangleright V_{\pi}(s;w) = f(x(s); w)$
- For instance...
 - ▶ f can be a neural network
 - ▷ or a linear function $V_{\pi}(s;w) = w^{T}x(s)$

Function approximation in TD

- F.A. in TD
 - $\Rightarrow \text{ target is } T(s) = r + \gamma V_k(s')$
 - we minimize the squared TD error:

$$w_{k+1} := w_k - \alpha \nabla [T(s) - V(s; w_k)]^2 / 2$$

= w_k + \alpha [r + \gamma V(s'; w_k) - V(s; w_k)] \quad \nabla V(s; w_k)

■ E.g., for linear function approximation:

$$> W_{k+1} := W_k + \alpha[r + \gamma V(s'; W_k) - V(s; W_k)] X(s)$$

Q-learning is adapted similarly

Properties of RL with F.A.

- What is optimal under function approximation?
 - best' value function in class
 - under some metric...
- No true gradient descent → few of the nice properties remain...
 - linear function approximation:
 - ► TD learning: **converges** to bounded approximation
 - SARSA: might 'chatter' (cycle around the optimal solution) but not diverge
 - Q-learning: can diverge ('deadly triad'!)
 - non-linear function approximation:
 - none of these methods have guarantees
- Possible solutions:
 - more principled algorithms some exist, but in practice not very effective.
 - practical tricks that help with convergence...

Tricks for Convergence

Prototypical example: DQN [Mnih et al. 2015]

- Combines a number tricks:
 - experience replay
 - gradient clipping
 - 'target network'

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function O with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
       Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
        Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
        network parameters \theta
        Every C steps reset \hat{Q} = Q
   End For
End For
```

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.

Policy Search [RN 23.5]

Policy Gradient Methods

- main idea: do not bother with value functions Q or V
- Instead,
 - \triangleright directly parametrize policy $\pi(a \mid s; w)$
 - update these parameters based on the returns u(s) observed.

■ REINFORCE:

- $\triangleright W_{t+1} := W_t + \alpha U(S_t) \nabla \log \pi(a_t \mid S_t; W_t)$
- See S&B v2 13.3

Actor-Critic Methods

- Policy gradient methods can be combined with estimated Q-value functions:
 - Policy = actor → just tries to take good actions
 - value function = critic → gives feedback to policy
- This addresses the high variance that PG methods (working directly on returns) otherwise have.
- Versions of these methods have led to state-ofthe-art performance in many domains

Summary

Summary

- RL: when we don't have a model
- Value-based, model-free methods
 - "Passive learning"
 - policy evaluation: Monte Carlo estimation, TD-learning
 - "Active learning"
 - use TD-learning to lean Q*
 - Q-learning, SARSA
 - exploration...!
 - Function approximation to scale up: generalization
- (also model free) Policy Search

