实验 4: ALU 设计

一、实验目的

- 1、掌握快速加法器 CLA 和先行进位逻辑 CLU 的设计方法。
- 2、掌握32位先行进位加法器及相关标志位的实现方法。
- 3、掌握 ALU 的设计方法,根据指令要求实现 6 种操作的 ALU 器件。

二、实验环境

Logisim-ITA V2.16.1.0。

三、实验内容

1、 根据下图给出的电路原理图(参照其他原理图亦可),实现并验证4位快速加法器CLA。

2、 根据给出的逻辑表达式,选择合适的逻辑门,实现并验证 4 位先行进位逻辑单元 CLU。

 $C_1 = G_0 + P_0C_0$

 $C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$

 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

 $C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$

3、 据给出的逻辑表达式和电路原理图,在 4 位 CLA 中增加支持组间并联的 Gg、Pg 输出端,加上 4 位 CLU,设计并实现 16 位先行进位加法器。

$$Gg = g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1 + p_3 \cdot p_2 \cdot p_1 \cdot g_0$$

$$Pg = p_3 \cdot p_2 \cdot p_1 \cdot p_0$$

4、 利用两个 16 位先行进位加法器构建一个 32 位加法器,并根据给出的标志位生成电路 原理图,在 32 位加法器中生成 CF、SF、OF、ZF 标志位。

带标志加法器的逻辑电路

5、 根据给出的电路原理图和 ALU 引脚定义,设计一个支持 9 条 RV32I 指令所包含的 6 种操作(add、or、slt、sltu、srcB、sub(判 0))的 32 位 ALU,并对 ALU 的功能进行验证。

ALU 设计原理图

对应的 ALU 操作控制信号取值

指令	功能	操作类型	SUBctr	SIGctr	0Pctr<1:0>
add rd, rs1, rs2	$R[rd] \leftarrow R[rs1] + R[rs2]$	加	0	×	00
slt rd, rs1, rs2	if $(R[rs1] < R[rs2]) R[rd] \leftarrow 1$ else $R[rd] \leftarrow 0$	减,带符号整数比较大小	1	1	11
sltu rd, rs1, rs2	if $(R[rs1] < R[rs2]) R[rd] \leftarrow 1$ else $R[rd] \leftarrow 0$	减,无符号数 比较大小	1	0	11
ori rt, rs1, imm12	R[rt]←R[rs1] SEXT(imm12) 按位或		×	×	01
lui rd, imm20	R[rt]←imm20 000H	选择操作数 B	×	×	10
lw rd, imm12(rs1)	$Addr \leftarrow R[rs1] + SEXT(imm12)$ $R[rd] \leftarrow M[Addr]$	加	0	×	00
sw rs2, imm12(rs1)	$Addr \leftarrow R[rs1] + SEXT(imm12)$ $M[Addr] \leftarrow R[rs2]$	加	0	×	00
beq rs1, rs2, imm12	$Cond \leftarrow R[rs1] - R[rs2]$	减(判0)	1	×	××
	if (Cond eq 0) PC←PC+(SEXT(imm12)×2)	加	0	×	00
jal rd, imm20	$R[rd] \leftarrow PC + 4$ $PC \leftarrow PC + (SEXT(imm20) \times 2)$	加	0	×	00

ALUctr 的一种四位编码方案

ALUctr<3:0>	操作类型	SUBctr	SIGctr	0Pctr<1:0>	OPctr 的含义
0 0 0 0	add	0	×	0 0	选择加法器的结果输出
0 0 0 1	(未用)				
0 0 1 0	slt	1	1	1 1	选择小于置位结果输出
0 0 1 1	sltu	1	0	1 1	选择小于置位结果输出
0 1 0 0	(未用)				
0 1 0 1	(未用)				
0 1 1 0	or	×	×	0 1	选择"按位或"结果输出
0 1 1 1	(未用)				
1000	sub	1	×	0 0	选择加法器的结果输出
其余	(未用)				
1111	srcB	×	×	1 0	选择操作数 B 直接输出

四、思考题

- 1、若需要增加一条"sub rd, rs1, rs2"指令,则在所设计的32位ALU中要做哪些修改?
- 2、若需要增加一条 "sll rd, rs1, rs2"指令,则在所设计的32位ALU中要做哪些修改?
- 3、如何验证运算器的结果是否正确?

五、实验报告

- 1、根据本次实验内容的要求,写出实验操作步骤,包括: 电路原理图、功能表、仿真 检测图、输入输出对应表、错误现象及原因分析、思考题等内容。以 word 或 PDF 格 式提交
- 2、将实验报告和电路图.circ 文件打包上传到教学支撑平台的网站中。