

Attention-based Deep Multiple Instance Learning

Maximilian Ilse University of Amsterdam Jakub M.Tomczak

Qualcomm Research

Max Welling
University of Amsterdam

Presented by Qianwei Wang 2018.10.15

About Author

Maximilian Ilse

PhD candidate in Deep Learning, <u>University of Amsterdam</u> 在 uva.nl 的电子邮件经过验证
medical imaging deep learning <u>machine learning</u>

标题	引用次数	年份
Attention-based deep multiple instance learning M Ilse, JM Tomczak, M Welling arXiv preprint arXiv:1802.04712	7	2018
Deep Learning with Permutation-invariant Operator for Multi-instance Histopathology Classification JM Tomczak, M Ilse, M Welling arXiv preprint arXiv:1712.00310	3	2017
Histopathological classification of precursor lesions of esophageal adenocarcinoma: A Deep Multiple Instance Learning Approach JM Tomczak, M Ilse, M Welling, M Jansen, HG Coleman, M Lucas,		2018

Outline

- Background
 - Multiple Instance Learning (MIL)
- Proposed Method
 - A General Three-step Approach of MIL
 - MIL with Neural Networks
 - Attention-based MIL pooling
- Experiments
- Conclusion

Background

- Multiple Instance Learning (MIL)
 - The training set is composed of labeled bags each consists of many unlabeled instances, and the goal is to predict unseen bags.

Proposed Method

- Multi-instance Learning In this Paper:
 - Binary classification;
 - Neither dependency nor ordering among instances.

Three-step Approach of MIL

Neither dependency nor ordering among instances

A permutation-invariant scoring function $S(X) \subseteq [0, 1]$

Theorem 1. A scoring function for a set of instances X, $S(X) \in \mathbb{R}$, is a symmetric function (i.e., permutation-invariant to the elements in X), if and only if it can be decomposed in the following form:

$$S(X) = g\left(\sum_{\mathbf{x} \in X} f(\mathbf{x})\right),\tag{3}$$

where f and g are suitable transformations.

Three step approach: (i) transformation of instances by function f, (ii) combination of transformed instances by premutation-invariant pooling function σ , (iii) transformation of combined instances by g.

Three-step Approach of MIL

Three step approach: (i) transformation of instances by function f, (ii) combination of transformed instances by premutation-invariant pooling function σ , (iii) transformation of combined instances by g.

$$f + \sigma + g = MIL algorithm$$

MIL with Neural Networks

Advantages: (i) flexible , (ii) can be trained end-to-end

Attention-based MIL Pooling

- Why Attention?
 - Previous pooling: pre-defined, non-trainable;
 - Seek for a flexible and *interpretable* pooling method.
- Attention Mechanism

$$\mathbf{z} = \sum_{k=1}^{K} a_k \mathbf{h}_k,\tag{7}$$

where:

$$a_{k} = \frac{\exp\{\mathbf{w}^{\top} \tanh\left(\mathbf{V}\mathbf{h}_{k}^{\top}\right)\}}{\sum_{j=1}^{K} \exp\{\mathbf{w}^{\top} \tanh\left(\mathbf{V}\mathbf{h}_{j}^{\top}\right)\}},$$
 (8)

Classical MIL Datasets

- MNIST-bags
 - Constructed by sample images from MNIST as instances
 - A bag is positive if it contains one or more '9'

• MNIST-bags

Figure 4. Example of attention weights for a positive bag.

- Real-world Dataset
 - Divide every image into 32 x 32 patches.

Table 2. Results on BREAST CANCER. Experiments were run 5 times and an average (\pm a standard error of the mean) is reported.

Метнор	ACCURACY	PRECISION	RECALL	F-SCORE	AUC
Instance+max	0.614 ± 0.020	$0.585\pm0.03 \\ 0.672\pm0.034$	0.477 ± 0.087	0.506 ± 0.054	0.612 ± 0.026
Instance+mean	0.672 ± 0.026		0.515 ± 0.056	0.577 ± 0.049	0.719 ± 0.019
Embedding+max	0.607±0.015	0.558±0.013	0.546 ± 0.070	0.543±0.042	0.650±0.013
Embedding+mean	0.741 ±0.023	0.741 ±0.023	0.654 ± 0.054	0.689±0.034	0.796 ±0.012
Attention	0.745 ±0.018	0.718±0.021	0.715 ±0.046	0.712 ±0.025	0.775±0.016
Gated-Attention	0.755 ±0.016	0.728 ±0.016	0.731 ±0.042	0.725 ±0.023	0.799 ±0.020

Conclusion

- General three-step approach for MIL
- Flexible and interpretable MIL model using neural networks and attention-based pooling

Q&A

Thanks!