| Name     | <b>นัสภณ</b> สู | าสมบุงกง์ | Student ID | 6201011631188 | Section: . 7 |
|----------|-----------------|-----------|------------|---------------|--------------|
| Table    |                 | Period    |            | Semester      | a12563       |
| Lecturer | KDS             | ,<br>,    |            |               |              |

### วัตถุประสงค์ :

- 1. สามารถเข้าใจคุณสมบัติและการทำงานของไดโอด โดยขบวนการทดลองแบบไบอัสตรง (Forward Bias) กับแบบไบอัส กลับ (Reverse Bias) เพื่อสังเกตคุณสมบัติแรงดันและกระแส
- 2. สามารถคำนวณปริมาณกระแสที่ไหลผ่านไดโอด สำหรับการต่อวงจรแบบใบอัสตรงและแบบใบอัสกลับ อีกทั้งสามารถ เปรียบเทียบค่าที่ได้จากการคำนวณและค่าที่ได้จากการวัดในห้องแลปได้

### อุปกรณ์การทดลอง:

| 1. เครื่องคอมพิวเตอร์พร้อมโปรแกรม LTspice IV | 1 ชุด | 5. เครื่องกำเนิดสัญญาณ (Signal Gen | erator) 1 เครื่อง |
|----------------------------------------------|-------|------------------------------------|-------------------|
| 2. ไดโอด เบอร์ 1N4001                        | 1 ตัว | 6. ออสซิลโลสโคป                    | 1 เครื่อง         |
| 3. ตัวต้านทาน 1 ${ m k}\Omega$               | 1 ตัว | 7. แผงวงจร (Prototype Board)       | 1 แผ่น            |
| 4. DC Power Supply                           | 1 ตัว | 8. มัลติมิเตอร์                    | 2 เครื่อง         |

#### 1.1 Semiconductor Diode Characteristic

ทฤษฎี เมื่อต่อไดโอดอนุกรมกับตัวต้านทานดังแสดงในรูปที่ 1 กระแส ที่ไหลผ่านไดโอดจะมีค่าเท่ากับกระแสที่ผ่านตัวต้านทาน ( ${
m I}_{
m D}={
m I}_{
m R}$ ) สามารถคำนวณได้จากการนำค่าแรงดัน  $(V_{
m R})$  ที่ตกคร่อมตัวต้านทาน หารด้วยค่าความต้านทาน (R)

$$I_D = I_R = rac{V_R}{R}$$
 รูปที่ 1

โดยที่

 ${
m I}_{
m D}$  คือ กระแสของไดโอดขณะ Forward Bias  ${
m V}_{
m R}$  คือ แรงดันตกคร่อมตัวต้านทาน

จากการต่อวงจรดังรูปที่ 1 ให้อ่านค่ากระแส  ${
m I}_{
m D}$  และแรงดัน  ${
m V}_{
m D}$ จากมิเตอร์ของไดโอดที่ทำงานแบบไบอัสตรง





รูปที่ 1





จากการต่อวงจรดังรูปที่ 2 ให้อ่านค่ากระแส  ${
m I}_D$  และแรงดัน  ${
m V}_D$  จากมิเตอร์ของไดโอดที่ทำงานแบบไบอัสกลับ (เนื่องจากขั้วของไดโอด  ${
m D}$  ถูกป้อนด้วยแรงดัน  ${
m V}_D$  ที่เป็นแบบไบอัสกลับ)

## ขั้นตอนการทดลอง



1. ให้ใช้โปรแกรม LTspice IV จำลองการทำงานของวงจรไดโอดในรูปที่ 3(a) และ 3(b) ในโหมด DC Operation Point บันทึกผลการจำลอง (Operation Point) ที่ได้ คำเตือน ให้ระมัดระวังการอ่านค่าต่าง ๆ เนื่องจากหลายค่ามีสัญลักษณ์คล้ายกัน

|            | Operating Point |  |  |
|------------|-----------------|--|--|
| V(VD+) : _ | 10 V            |  |  |
| V(VR+) : _ | 10 V            |  |  |
| I(D1) :_   | 0 A             |  |  |
| $I(V1)$ :_ | 0 A             |  |  |
|            |                 |  |  |



|            | Operating Point – |  |  |
|------------|-------------------|--|--|
| V(VD+) : _ | 0.712737 V        |  |  |
| V(VR+):_   | 9.99072 V         |  |  |
| I(D1) :_   | 0.0093 A          |  |  |
| I(V1) :    | - 0.0083 A        |  |  |



จากผลการทดลองทั้งรูป 3(a) และ 3(b) ให้ น.ศ. สรุปและอธิบายความสัมพันธ์กันของ  $V(VD+),\ V(VR+),\ I(D1)$  และ I(V1)

| torward bias m V1 = VCVD+) + VCVR+)  | to he werse bias An $V1 = V(VD+) = VCVR+$ |
|--------------------------------------|-------------------------------------------|
| ua: 1 <sub>7</sub> =1(01)≤10√)       | และไม่มีกระแก้ ในคณาน                     |
| <u>เพราะเป็นการท่อแบบอนุกรุมด้วย</u> | I(M) = I(V()=0                            |

2. ต่อวงจรตามรูปที่ 4(a) ลงบนโปรโตบอร์ด ใช้มิเตอร์วัดค่าแรงดัน  $V_D$  ของไดโอดแบบไบอัสตรง (Diode Forward Bias Voltage) บันทึกค่าที่วัดได้ จากนั้นกลับขั้วของไดโอดและวัดค่าแรงดันไบอัสกลับ (Diode Reverse Bias Voltage) ของไดโอด

**หมายเหตุ** ให้ น.ศ. วัดค่าจริงของตัวต้านทานด้วยโอห์มมิเตอร์ และวัดค่าจริงของ  $\mathbf{V_S}$  ด้วยโวลต์มิเตอร์ก่อนต่อวงจร

ค่าความต้านทานของ R ที่วัดด้วยโอห์มมิเตอร์ = ...0.980 k  $\Omega$  ค่าแรงดันของ  $V_S$  ที่วัดด้วยโวลต์มิเตอร์ = ...9.98 N

 $V_D$  หรือ  $V_{ab}$  ขณะ Forward Bias = .... 0. 692 V ....  $V_D$  หรือ  $V_{ab}$  ขณะ Reverse Bias = .... 9.98 V ....



3. คำนวณกระแส ( $I_D$ ) ขณะไบอัสตรงและไบอัสกลับของไดโอด จาก แรงดันไดโอดและค่าความต้านทานในข้อ 2

4. ต่อวงจรตามรูปที่ 4(b) อ่านค่ากระแสไบอัสตรงของไดโอด (Diode Forward Bias Current) จากมิเตอร์บันทึกค่าที่วัดได้ จากนั้นกลับขั้วของไดโอดอ่านค่ากระแสไบอัสกลับ (Diode Reverse Bias Current) ของไดโอด

ค่า  $I_D$ ขณะ Forward Bias = ...... 9. 44 mA ค่า  $I_D$ ขณะ Reverse Bias = ..... 0. 01 mA





โดยการสร้างกราฟนี้อาศัยค่าของ  $I_D$  และ  $V_D$  ที่วัดได้จากวงจรในรูปที่ 5 มาพล็อตเป็นกราฟความสัมพันธ์บนแกนของกระแส (แกนตั้ง) และแกนของ แรงดัน (แกนนอน) จะได้กราฟดังรูปที่ 6

เนื่องจากเป็นกราฟของความสัมพันธ์ระหว่างกระแสและแรงดันของ ไดโอดจึงสามารถสื่อความหมายถึงค่าความต้านทานของไดโอดที่เกิดขึ้นใน ขณะที่ไดโอดกำลังทำงาน ดังนั้น หากพิจารณาจากรูปกราฟจะพบว่า มี คุณสมบัติต่าง ๆ ของไดโอดที่สำคัญหลายประการคือ

ก) **ความต้านทานเอซีไบอัสตรง** (AC Forward Bias Resistance,  $r_{ac}$ ) ที่ค่ากระแสใด ๆ ของไดโอดสามารถหาได้โดยการลาก**เส้นสัมผัส**กับกราฟ คุณสมบัติที่ค่ากระแสนั้น ๆ โดยมีค่าเท่ากับส่วนกลับของความชันของเส้น สัมผัส ( ${f Slope}=rac{dI_D}{dV_D}$ ) หรือเท่ากับการเปลี่ยนแปลงของแรงดันตกคร่อม



ไดโอดต่อการเปลี่ยนแป<sup>ล</sup>งของกระแสที่ไหลผ่านความต้านทานเอซีนี้มีค่าต่างกันที่กระแสต่างกัน เนื่องจากความไม่เป็นเชิงเส้น ของไดโอด (**ขอให้สังเกตกราฟเส้นสีแดง ด้านฝั่งที่ V**D มีค่าเป็นบวกซึ่ง เส้นกราฟไม่เป็นเส้นตรง)

- ข) **ความต้านทานเอซีไบอัสกลับ** (AC Reverse Bias Resistance) จะมีค่าสูงมากและเกือบคงที่ เพราะความชั้นของกราฟ คุณสมบัติช่วงนี้มีค่าต่ำมากและเกือบคงที่ ( $r_{ac}=rac{1}{ ext{Slope}}$ )
  - ค) **ความต้านทานดีซีไบอัสตรง** (DC Forward Bias Resistance) สามารถหาได้โดยตรงจากกฎของโอห์ม

โดย  $R_{dc}=rac{V_f}{I_f}$  ความต้านทานดีซีของไดโอดมีค่าต่างกันเมื่อกระแสมีค่าต่างกัน (หมายเหตุ  $V_f$  = Diode Forward Bias Voltage,  $I_f$  = Diode Forward Bias Current)

- ง) Knee Voltage คือ แรงดันไบอัสตรงของไดโอดในจุดที่กราฟคุณสมบัติของไดโอดเปลี่ยนแปลงอย่างกระทันหัน (Knee of Curve)
- 1. **ให้ใช้โปรแกรม LTspice IV** จำลองการทำงานของวงจรไดโอดในรูปที่ 7(a) ในโหมด DC Sweep ถ้ากราฟที่ได้ยังดูไม่ ชัดเจนพอ ให้ลองเปลี่ยนเป็นรูปที่ 7(b) **โดยให้ V1 มีค่าอยู่ในช่วงที่เราสนใจหรือจุดที่มีการเปลี่ยนแปลงมากที่สุด** (ให้ น.ศ. ลองเปลี่ยนค่าและเลือกค่าที่ดีที่สุด) แล้วทำการบันทึกกราฟที่เห็นการเปลี่ยนแปลงได้**ชัดเจนที่สุด**ลงในรูปที่ 8 บันทึกผล ที่ได้ลงในด้านควอแดรนท์ที่ 1 (แรงดันและกระแสเป็นบวกทั้งคู่)





<u>คำเตือน</u> รูปที่ 7(b) ให้ต่อวงจรเมื่อใช้จำลองการทำงานด้วย LTspice IV เท่านั้น<u>ห้ามนำไปต่อเป็นวงจรจริงเด็ดขาด</u> เพราะอาจจะทำให้เครื่องมือ-อุปกรณ์พัง เสียหายได้ เนื่องจากไม่มีตัวต้านทาน **R** ทำหน้าที่จำกัดการไหลของกระแส

จากนั้นให้เปลี่ยนค่าของ V1 ให้มีค่าอยู่ในช่วง -15 V ถึง 0 V เพื่อทำการจำลองด้านไบอัสกลับ บันทึกผลที่ได้ลงใน กราฟควอแดรนท์ที่ 3 (แรงดันและกระแสเป็นลบ) ทั้งนี้ ขอให้ระมัดระวังเรื่องหน่วยของกระแสที่ปรากฏบนกราฟด้วย เนื่องจากช่วงไบอัสกลับค่าของกระแสจะต่ำมาก

<u>หมายเหตุ</u> น.ศ.อาจจะทดลองให้ค่าของ V1 มีค่าตั้งแต่ -15 V ถึง +15 V (โดยใช้วงจรในรูป 7(a)) ก็ได้ซึ่งก็จะให้ผล ครอบคลุมค่าทั้งควอแดรนท์ที่ 1 และ 3 ในการทำเพียงครั้งเดียวแต่ก็จะประสบปัญหาในการอ่านกราฟมากเนื่องจากค่ากระแสมี หน่วยที่แตกต่างกันระหว่างไบอัสตรง (เป็นมิลลิแอมป์) และไบอัสกลับ (อาจจะต่ำกว่าไมโครแอมป์)







วิเคราะห์ผลการทดลอง จากกราฟในรูปที่ 8 (ให้อธิบายจุดทำงานของไดโอด เช่น ON, Cutoff, ส่วนใดของกราฟที่บ่งบอก ความเป็น  $r_{ac},\ \mathrm{R}_{dc}$  โดยให้ น.ศ.เลือกจุดบนกราฟมา 1 จุดเพื่อแสดงวิธีการหาค่าดังกล่าว)

คุด ON คือจุดที่โดโอดหางาน สารกรถพาโด้ จุด Q-point และฝ่า Rdc พาค่าใจ้คุด USlope ในส่วนของควาดรินต์ ที่ 1 (ร่วง forward bias) ได้ค่า Rdc เพลข 1/Slape= 300mV/12mA = 58.33.D. และสุด Cutoff คือจุดที่โดโอดไม่ทำทน เกิด Reverse bias rac uniana Vslope aclain rac= Vslope=5mV = 8.33 MQ

(แนะนำให้เปรียบเทียบ VI-Curve ระหว่างตัว R กับ Diode จะเห็นความแตกต่างอย่างชัดเจน)



2. ต่อวงจรตามรูปที่ 9 ลงบนโปรโตบอร์ด (ใช้โวลต์มิเตอร์วัดค่าแรงดันและใช้แอมมิเตอร์วัดค่ากระแสพร้อมกัน)



จากนั้นปรับค่าแรงดันแหล่งจ่าย  $V_S$  ตามตารางที่ 1 บันทึกค่าแรงดัน ( $V_D$ ) และกระแส ( $I_D$ ) ไบอัสตรงของไดโอดค่า R ที่ วัดด้วยโอห์มมิเตอร์ได้ = ......0.98  $K\Omega$ 

#### ตารางที่ 1

| $V_{s}(V)$ | $V_D(V)$ | $I_{D}(mA)$ |
|------------|----------|-------------|
| 5          | 0.667    | 3.77        |
| 4          | 0.649    | 8.83        |
| 3          | ე. ჩ33   | 8.08        |
| 2          | 0.608    | 1.22        |
| 1          | O. 553   | 0.37        |
| 0.5        | 0.456    | 0.04        |
| 0          | 0        | 0           |

3. กลับขั้วของไดโอดในรูปที่ 9 ให้ทำงานเป็นแบบไบอัสกลับแล้วบันทึกค่า  $V_D$  และ  $I_D$  ลงในตารางที่ 2 ตารางที่ 2

| $V_{s}(V)$ | $V_D(V)$ | $I_D(\mu A)$ |
|------------|----------|--------------|
| 0          | 0        | 0            |
| 5          | 4.99     | -0.1         |
| 10         | 9.98     | - O. 1       |
| 15         | 14.97    | -0.1         |



4. นำค่าจากตารางที่ 1 และตารางที่ 2 ไปพล็อตุกราฟในรูปที่ 10 (ข<mark>อให้ระมัดระวังเรื่องสเกลของกราฟด้วย</mark>) โดยให้นำค่า



โดยให้นำค่าจากตารางที่ 1 มาพล็อตลงใน Quadrant ที่ 1 ของกราฟและนำค่าจากตารางที่ 2 มาพล็อตลงใน Quadrant ที่ 3 ของกราฟ

### วิเคราะห์ผลที่ได้จากกราฟรูปที่ 10

1. จากกราฟด้านคุณสมบัติของไบอัสตรงควอแดรนท์ (Quadrant) ที่ 1 ให้วาดเส้นสัมผัสเส้นโค้งที่จุด  $I_D$  = 4.0 mA และ คำนวณหาค่าความต้านทานเอซีไบอัสตรง (AC Forward Bias Resistance,  $r_{ac}$ ) จากความชั้นของเส้นสัมผัสแล้วให้ทำ เช่นเดียวกันที่  $I_D$  = 0.4 mA และ  $I_D$  = 0.2 mA บันทึกคำตอบที่ได้  $r_{ac}$  |  $r_{ac}$  |

$$\vec{N} I_{D} = 4.0 \text{ mA}, r_{ac} = \frac{3.14.365 \Omega}{114.385 \Omega}$$

$$\vec{N} I_{D} = 0.4 \text{ mA}, r_{ac} = \frac{3.114.385 \Omega}{114.385 \Omega}$$

$$\vec{N} I_{D} = 0.2 \text{ mA}, r_{ac} = \frac{3.114.385 \Omega}{3.440 \Omega}$$

$$\vec{N} I_{D} = 0.2 \text{ mA}, r_{ac} = \frac{3.114.385 \Omega}{3.440 \Omega}$$

2. คำนวณค่าความต้านทานดีซีไบอัสตรง (DC Forward Bias Resistance) ของไดโอดที่  $I_D$  = 4.0 mA จากสมการ  $R_{dc} = \frac{V_D}{I_D}$ 

 $\vec{n}$   $I_D$  = 4.0 mA,  $R_{dc}$  =  $\frac{\mbox{Vp}}{\mbox{Tp}}$  =  $\frac{670}{4}$  mA = 167.5.2  $\mbox{X}$  3. จากกราฟแสดงคุณสมบัติของไบอัสกลับควอแดรนท์ที่ (Quadrant) 3 ให้คำนวณค่าความต้านทานเอซีไบอัสกลับ (AC

 $r_{ac} = \frac{\Delta V p}{\Delta T p} \approx \infty \Omega \left( \begin{array}{c} \dot{n} & \dot{$ 

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

010113021 Electronics Laboratory



Diode Knee Voltage  $\approx$  0.6 V

ให้อธิบายวิธีการหาค่าของ Diode Knee Voltage จากกราฟ จุกที่ กราฟ เปลี่ยน แปลว องหบ กร:ทีนนั้น จากกราฟ จุก Vp= 0.6 V คือ จุกกกราฟ ปุลลุวจันอย่าวกร:ทันพัช.

5. ให้สรุปคุณสมบัติของไดโอดเบอร์ 1N4001 โดยอาศัยข้อมูลจากข้างต้นประกอบกับรูปที่ 8 หรือรูปที่ 10

กราฟ ของ Diode สลักขณะโกล้เคียงกับ Ideal Diode สันคือ โนคม forward bias โดโอกจะทำงานเลือ Yp เท่ากับ 0.6~0.7 V แต่โนช่วง Reverse bias ( Diode off) ค่าครามตำนจะคุวภาคนแทบไม่สการแสในล.

(แนะนำให้เปรียบเทียบ V-I Curve ระหว่าง ตัว  ${f R}$  กับ Diode จะเห็นความแตกต่างอย่างชัดเจน)

1.3 ใช้เครื่องออสซิลโลสโคปสร้างกราฟคุณสมบัติของไดโอด

#### การทดลอง

1. ต่อวงจรตามรูปที่ 11 ลงบนโปรโตบอร์ด ตั้งค่าของฟังก์ชันเจนเนอเรเตอร์และออสซิลโลสโคปตามที่กำหนดไว้ในวงจร



รูปที่ 11 <u>ขียบมูนพ</u> 1. ถายกว่าวท (GND) เบ่วบของออถจถะกรกบทุกถองแบนแนกเท่ายะว่งุหเพยวากนทุก Cathode (**k**) ของไดโอดเท่านั้น <mark>ถ้าไม่ทำเช่นนี้จะทำให้เครื่องมือพังเสียหายได้</mark> 2. รูปคลื่นของ **V**s สามารถใช้ได้ทั้งแบบรูปไซน์หรือรูปสามเหลี่ยม



## การทดลองที่ 1 Semiconductor Diode

Page **10** of **12** 

2. จ่ายแรงดันจากฟังก์ชันเจนเนอเรเตอร์ให้กับวงจร เลือก CH2 ไว้ที่ INV และเลือกการแสดงผลเป็น X-Y Mode เพื่อแสดง กราฟคุณสมบัติของไดโอดบนออสซิลโลสโคป บันทึกรูปกราฟที่ได้ลงในรูปที่ 12 (**แรงดันตกคร่อมไดโอดจะแสดงทางแกน นอนและกระแสแสดงทางแกนตั้งบนจอออสซิลโลสโคป**คล้ายในรูปที่ 8 และรูปที่ 10)

CH1: ...1.00 .....V/DIV

CH2: 1.00 V/DIV

หมายเหตุ
น.ศ.สามารถปรับขนาดของรูปกราฟ
โดยการปรับค่า Volt/DIV ของ
ออสซิลโลสโคป



ให้ลากเส้นสัมผัสเพื่อทำการประมาค่า

Knee Voltage จากกราฟ

.....ลายเซ็นอาจารย์ผู้ควบคุม



#### คำถาม

| 1. ความต้านทานไบอัสตรง (Forward Bias Resistance) และความต้านทานไบอัสกลับ (Reverse Bias Resistance) ของ<br>ไดโอดแตกต่างกันมากหรือไม่ เพราะเหตุใดจึงเป็นเช่นนั้น<br>แตกต่างกัน มาก เนื่องทุก เมื่อใดเอด ต่อแบบ forward จะทำในไดเอด (IN -> คุณมต้านทานต่ำ                                                                                                                                                                                                                                                                                                                                                                                           |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| แผ่เมื่อโดโอกต่อแพง Reverse ส่วเผลใน โดโอด off (ไม่หางาน) แสดงว่าค่า R หองโดโอกลุงมาด ทำในไม่ช่<br>2. จงอธิบายให้ชัดเจนว่าเกิดอะไรขึ้นกับความต้านทานเอซีไบอัสตรงของไดโอดเมื่อกระแสเพิ่มขึ้น ในผ่าน<br>เมื่องมา ค่าโดโอดากิงานใน ไฟฟ้า AC ที่เปลี่ยนแปลงคลอดเวลา เมื่อสระแส เพิ่มในขณะที่ แมวถึน เท่าเดิม<br>หาวน์ค่า ทาใน แต่ละจุดใน ขวมรม่ค่าไม่เพ่าสันไ                                                                                                                                                                                                                                                                                        | ) <u> </u> |
| 3. จงอธิบายความต้านทานเอซีไบอัสตรงและความต้านทานดีซีไบอัสตรงมีความแตกต่างกันหรือไม่<br><b>แตกต่</b> างก <b>ัน → Rac คงที่ ตลงดุ (มัค่าเสียวสำนรั∪ทุกงุด)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| ー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| นรุงสิน โอกพศ ได้ ได้ ที่เกิดการ เปลี่ยน แปลง ชี่ปรกรรที่นั้นนี้ (กาฟ มีผันโดดมาด.  วัมเกา: กลุ่มกับค่าขึ้นนุ)  5. จากวงจรในรูปที่ 9 ถ้าเปลี่ยนจุดที่วัดค่าในวงจรของโวลต์มิเตอร์และแอมมิเตอร์เป็นดังรูปด้านล่างแทนจะทำให้ค่า แรงดันและกระแสที่อ่านได้จากเครื่องมือวัดทั้งสองมีค่าเหมือน  หรือแตกต่างจากค่าในตารางที่ 1-2 หรือไม่ ? ด้วยขนาดที่มาก/น้อยกว่าเพียงใด ? ให้ น.ศ.ทำการพิสูจน์ ให้เห็น ได้อย่างชัดเจนด้วยวิธีดังต่อไปนี้ ก) พิสูจน์ด้วยการทดลองวัดดูจริง ๆ และหาค่า % ความ แตกต่าง พร้อมทั้งแสดงสาเหตุที่ทำให้เป็นเช่นนั้น หรือ ข) พิสูจน์ด้วยการวิเคราะห์จากเทคนิคการวัด (Measurement) ประกอบคำจุธิบายด้วย  แทกตาง ด้วยขนาดที่ไม่รมาด | 4          |
| ค่าสาภคทราที่ 1-2 ที่ Vource = 5 V จะได้ Vonton สโรกตลีเพอร์ เพ่กับ 0. 661<br>การ ต่อแบบขอ 5 ดีอรูป ที่ Vource เดียว คับ จะใต้ V (ที่รอมแอมลิเตอร์ ด้ว อ)<br>เพ่าสีบ 0.83 สาในๆ มาลาภ Ammeter ชาคามี r ภายใน ทำใน V มีค่าเพิ่มจี้ เ                                                                                                                                                                                                                                                                                                                                                                                                              | 7          |
| ในระดีบนนึ่ง ค่าคลาดเคลื่อน วาดดารทดลองในอาชาง 1-2 ด้อ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |

0. \$\$1

# การทดลองที่ 1 Semiconductor Diode