LECTURE 2

• Readings: Sections 1.3-1.4

Lecture outline

- Review
- Conditional probability
- Three important tools:
- Multiplication rule
- Total probability theorem
- Bayes' rule

Review of probability models

- Sample space Ω
- Mutually exclusive
 Collectively exhaustive
- Right granularity
- Event: Subset of the sample space
- Allocation of probabilities to events
- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$
- 3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- 3'. If A_1,A_2,\ldots are disjoint events, then: $\mathbf{P}(A_1\cup A_2\cup\cdots)=\mathbf{P}(A_1)+\mathbf{P}(A_2)+\cdots$
 - Problem solving:
 - Specify sample space
 - Define probability law
 - Identify event of interest
 - Calculate...

Conditional probability

- P(A|B) = probability of A, given that B occurred
- B is our new universe
- **Definition:** Assuming $P(B) \neq 0$,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

 $P(A \mid B)$ undefined if P(B) = 0

Die roll example

- Let B be the event: min(X,Y) = 2
- Let $M = \max(X, Y)$
- P(M = 1 | B) =
- P(M = 2 | B) =

Models based on conditional probabilities

 Event A: Airplane is flying above Event B: Something registers on radar screen

$$P(A \cap B) =$$

$$P(B) =$$

$$P(A \mid B) =$$

Multiplication rule

$$P(A \cap B \cap C) = P(A) \cdot P(B \mid A) \cdot P(C \mid A \cap B)$$

Total probability theorem

- Divide and conquer
- Partition of sample space into A_1, A_2, A_3
- Have $P(B | A_i)$, for every i

• One way of computing P(B):

$$P(B) = P(A_1)P(B | A_1) + P(A_2)P(B | A_2) + P(A_3)P(B | A_3)$$

Bayes' rule

- "Prior" probabilities $P(A_i)$
- initial "beliefs"
- We know $P(B \mid A_i)$ for each i
- Wish to compute $P(A_i \mid B)$
- revise "beliefs", given that B occurred

$$P(A_i \mid B) = \frac{P(A_i \cap B)}{P(B)}$$

$$= \frac{P(A_i)P(B \mid A_i)}{P(B)}$$

$$= \frac{P(A_i)P(B \mid A_i)}{\sum_j P(A_j)P(B \mid A_j)}$$