

Use a rectangular coordinate system to plot $\mathbf{u} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$, and their images under the given transformation T. Describe geometrically what T does to each vector \mathbf{x} in \mathbb{R}^2 .

$$T(\mathbf{x}) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Which graph below shows **u** and its image under the given transformation?

X2 Q

Which graph below shows ${\bf v}$ and its image under the given transformation?

What does T do geometrically to each vector \mathbf{x} in \mathbb{R}^2 ?

- A. A shear transformation
- O B. A rotation over the x-axis
- O. A reflection through the origin

2 of 9 🔻

▶

Test Score

If T is defined by $T(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b} , and determine whether \mathbf{x} is unique. Let $A = \begin{bmatrix} 1 & -6 & -9 \\ -4 & 15 & 18 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$

Find a single vector x whose image under T is b.

$$\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

Is the vector x found in the previous step unique?

- A. Yes, because there are no free variables in the system of equations.
- O B. No, because there are no free variables in the system of equations.
- O. Yes, because there is a free variable in the system of equations.

Score: 1 of 1 pt

4 of 9 -

1.7.14

Find the value(s) of h for which the vectors are linearly dependent. Justify your answer.

$$\begin{bmatrix} 1 \\ -3 \\ -6 \end{bmatrix}, \begin{bmatrix} -4 \\ 13 \\ 8 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ h \end{bmatrix}$$

The value(s) of h which makes the vectors linearly dependent is(are) - 178 because this will cause x₃ to be a free variable. (Use a comma to separate answers as needed.)

Score: 1 of 1 pt

1.6.9

Balance the chemical equation.

$$MnO_2 + K_2CO_3 + KNO_3 \rightarrow K_2MnO_4 + KNO_2 + CO_2$$

Assume the coefficient of CO2 is 1. What is the balanced equation?

$$1~\mathrm{MnO_2} + 1~\mathrm{K_2CO_3} + 1~\mathrm{KNO_3} \rightarrow 1~\mathrm{K_2MnO_4} + 1~\mathrm{KNO_2} + 1~\mathrm{CO_2}$$

Thus, T

linear.

1.5.7

Describe all solutions of Ax = 0 in parametric vector form, where A is row equivalent to the given matrix.

$$\mathbf{x} = \mathbf{x}_{3} \begin{bmatrix} -5 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \mathbf{x}_{4} \begin{bmatrix} 23 \\ -8 \\ 0 \\ 1 \end{bmatrix}$$

(Type an integer or fraction for each matrix element.)

Score: 1 of 1 pt

8 of 9 **▼** \blacktriangleright

Test Score: 100%, 9 of 9 pts

₩.

Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$, and let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Which is the correct image of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$?

$$\bigcirc$$
 D. $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$

Which is the correct image of $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$?

$$A. \begin{bmatrix} 3x_1 - x_2 \\ 5x_1 + 6x_2 \end{bmatrix}$$

$$\bigcirc$$
 C. $\begin{bmatrix} 5x_1 - x_2 \\ 3x_1 + 6x_2 \end{bmatrix}$

$$\bigcirc B. \begin{bmatrix} 5x_1 - 6x_2 \\ 3x_1 + x_2 \end{bmatrix}$$

$$\bigcirc$$
 D. $\begin{bmatrix} 3x_1 + x_2 \\ 5x_1 - 6x_2 \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix}$$