NATURAL LANGUAGE PROCESSING

Natural Language Processing (NLP) is a field of Artificial Intelligence that focuses on enabling computers to understand, interpret, and generate human language. The goal is for machines to process text or speech in a way that captures the meaning and context, so they can respond or take action appropriately.

Evolution of NLP

Word Embedding	 Focused on converting words into numerical representations (vectors) so that computers could process them mathematically. Achieved using linear algebraic transformations, enabling models to capture some meaning and similarity between words.
Deep Learning Era	 Neural Networks began to be applied for text-based analysis. While effective, they struggled with long sentences because all input had to be processed at once, making it difficult to capture long-range dependencies.
Recurrent Neural Networks (RNNs)	 Introduced to handle sequences by feeding the output of one step back into the network for the next step. Allowed the model to "remember" previous context when processing new words. However, for long sentences, this became computationally expensive and prone to issues like the vanishing gradient problem.

Evolution of NLP

Word2Vec	 Provided dense, context-aware vector representations for words by analyzing their usage in large corpora. Helped capture semantic relationships ("king" - "man" + "woman" ≈ "queen"). Often combined with RNNs to enhance context understanding.
Attention Mechanisms	 Enabled models to focus on the most relevant words in a sentence or paragraph rather than processing all tokens equally. Made it feasible to analyze much larger texts efficiently. Eventually became a core component of Transformer architectures.
BERT	 Bidirectional Encoder Representations from Transformers. Reads sentences both forward and backward, creating contextual embeddings for every word. Strong at tasks like sentiment analysis, question answering, and named entity recognition.
GPT Series	 Generative Pre-trained Transformers trained with billions of parameters. Specialized in text generation, conversation, and creative writing by predicting the next word in context. GPT-3 and beyond enabled advanced applications such as coding assistance, content creation, and reasoning.