

SCALEOUT

Configuration Management Tools -Software-Defined Networks

Max Andersson

- Primary goal of SDN
 - Open & Programmable
 - Traffic Engineering
 - Security
 - Qos
 - Routing
 - Switching
 - Virtualization
 - Monitoring
 - Load Balancing
 - New applications

- 3 Layer Model OS
 - South side
 - North side

- 3 Layer SDN model
 - Forwarding Device Southside
 - Net applications
 - NEtwork operating system
- Fast path, caches paths. Can ask operation system

- Forwarding devices / Data Plane
 - Can be hardware switches if they support openflow etc, but can also be software devices.

- Southbound Interface
 - OpenFlow
 - OVSDB -(Open vSwitch)
 - NETCONF
 - SNMP

- Application interfaces
 - Java Api
 - Northbound (e.g RESTConf)

- Layer details
 - Slicing, forwarding to different network operating systems
 - Logically centralized vs physically centralized
 - Clustered Network operating system.
 - Regions with EAST/WEST protocol
 - Hierarchies

- Availability and scalability
- SDN vs Traditional networks
 - Traditional networks has a control plane and data plane in one physical system
- BGP, Multiprotocol Label Switching (MPLS), Open Shortest Path First (OSPF)
 - Control plane pushes policies down to the fast path of the data plane.

- Openstack
 - Networks
 - Segmentation Methods
 - VLAN's
 - VXLAN
 - GRE
 - Network Namespaces
 - OpenFlow Rules
 - Subnet
 - Default DHCP service (dnsmasq)'

Kubernetes

- Flannel
 - Why
 - Layer 2 solution
 - Simple & Mature
 - Overlays are useful when network address space is limite
 - Overlays auto-configureate
 - Scenario
 - On-Prem or custom cloud where native routing isn't possible
 - Why not
 - Native routing is faster and easier to debug.
 - You need Calico if you want network policies.

Calico

- Why
 - Layer 3 solution
 - Good Network policy support
 - Default on most kubernetes distributions
 - Easy to debug on hosts by looking on route tables. BGP allows access inside and outside the cluster.
- Screnario
 - On-Prem with native routing or cloud kubernetes services
- Why Not
 - IP-in-IP mode is needed when routing between subnets, which negates some of the performance benefits vs an overlay
 - BGP can be scary.

Calico

- Why
 - Layer 3 solution
 - BGP
 - Good Network policy support
 - Default on most kubernetes distributions
 - Easy to debug on hosts by looking on route tables. BGP allows access inside and outside the cluster.
- Screnario
 - On-Prem with native routing or cloud kubernetes services
- Why Not
 - IP-in-IP mode is needed when routing between subnets, which negates some of the performance benefits vs an overlay
 - BGP can be scary.

- Kube-Router
 - Why
 - Layer 3 solution
 - BGP
 - Single Go binary built from the ground up for Kubernetes.
 - Uses new IPVS/LVS kernel features to improve service load balancing performance.
 - Also does direct server return to improve latency.
 - Scenario
 - On-Prem or custom cloud latency focus.
 - Why not
 - Similar to Calico in that it uses IP-in-IP by default to encapsulate traffic between subnets.
 - Quite a new project and although it's in use in production at some companies it's still not v1.

