

Anomalia bouguer, topografia e isostasia

Prof. André Luis Albuquerque dos Reis

Distúrbio de gravidade

A velocidade de rotação é a mesma!

Terra real

Caso a gravidade e a gravidade normal sejam calculadas no mesmo ponto P!

P(x,y,z)b a

Terra real

Terra Normal

(Hofmann-Wellenhof and Moritz, 2005)

Como definir isso na prática?

Vetor distúrbio de gravidade

$\mathbf{\delta}_P = \mathbf{g}_P - \mathbf{\gamma}_P$

Como definir isto na prática?

Distúrbio de gravidade

$$\delta_P = g_P - \gamma_P$$

A altura dada no GPS!

$$\delta_P = g_P - \gamma_P$$

Distúrbio de gravidade

O dado de gravidade

Fontes crustais Heterogeneidades do manto Ocean Crust Mantle

Caso as medições sejam realizadas em plataformas móveis (aviões, navios e etc)

Correção de Eotvos

Caso as medições sejam realizadas em plataformas móveis (aviões, navios e etc)

Correção de Eotvos

Uma das etapas do processamento de dados de gravidade chamada **correção de ar livre!**

Que tipo de informação podemos retirar disso?

Analisar o distúrbio nos traz informações acerca do equilíbrio isostático da região que estamos estudando!

Se o distúrbio de gravidade é próximo ou um pouco maior (ou menor) que zero, quer dizer que a região se encontra em equilíbrio, caso contrário não.

Anomalia bouguer

Correção de bouguer

Correção de bouguer

$$\delta_B = g_P - \gamma_P - g_B$$

2670 kg/m³

-400 kg/m³

 $g_B = 2\pi G \rho_c h$

Temos que retirar o efeito do acúmulo de massas acima e a defasagem de massa abaixo do nível do mar.

$$\bullet \delta (P)$$

-1630 kg/m³

400 kg/m³

$$g_B = 2\pi G(\rho_w - \rho_c)|h|$$

Correção de terreno

$$\delta_B = g_P - \gamma_P - g_B$$

Calcular o efeito de um conjunto de prismas justapostos e, a partir daí, retirar o efeito do dado

Correção de bouguer

Correção de bouguer

$$\delta_B = g_P - \gamma_P - g_B$$

O efeito da concentração – ou deficiência – das massas que representam os continentes e os oceanos.

Como isso foi descoberto?

Até o século 18, a Lei da gravitação universal não podia ser utilizada para calcular a densidade média da Terra.

No entanto, cientistas tentavam estimar a densidade de diversas formas

Pierre Bouguer tentou, em uma expedição, uma estimativa para a densidade, aproximadamente, 4 vezes maior que a verdadeira.

Chegaram a conclusão que esse desvio era ocasionado pelas "raízes" destas elevações.

Existem dois principais modelos de compensação isostática:

$$\rho_c g D = h \rho_1 g + D \rho_1 g$$

$$\rho_1 = \frac{D}{(D+h)} \rho_C$$

$$\rho_c gD = \rho_0 g(D - d) + \rho_w gd$$

$$\rho_0 = \frac{\rho_c D - \rho_w d}{(D - d)}$$

Modelo de Pratt

Isostasia

Existem dois principais modelos de compensação isostática:

Modelo de Airy

Isostasia

Existem dois principais modelos de compensação isostática:

$$\begin{aligned} p_A &= (r_1 \rho_m + t \rho_c)g \\ p_B &= (t + h + r_1)g\rho_c \\ p_C &= \rho_w g d + (t - d - r_0)g\rho_c + r_0 \rho_m g + r_1 \rho_m g \end{aligned}$$

$$p_A = p_B$$

$$p_C = p_A$$

$$r_1 = \frac{\rho_c}{(\rho_m - \rho_c)} h$$

$$r_0 = \frac{(\rho_c - \rho_w)}{(\rho_m - \rho_c)} h$$

$$p_C = p_A$$

$$= \frac{(\rho_c - \rho_w)}{(\rho_c - \rho_w)} h$$

Alguns exemplos

4. Ilha de Oahu, Hawaii

Ilha de Oahu, Hawaii

Ilha de Oahu

Ilha de Oahu

Ilha de Oahu

Por que é menos positivo sobre a Ilha?

Está em equilíbrio?

Referências

- Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press.
- Hofmann-Wellenhof, B. e H. Moritz, 2005, Physical Geodesy. Springer.

Até a próxima aula!