REPASO MÓDULO I: UNIDADES 1,2 y 3

- 1. Para cada una de las funciones siguientes hallar y graficar el dominio de derivabilidad y calcular la derivada donde exista. ¿Cuál es el dominio de analiticidad? Justificar.
 - a) $f(z) = y^2 i2xy$ b) $f(z) = (x + 3xy^2) + i(3x^2 + 3y^2 + y)$ c) $f(z) = 3xy^2 + i(3x^2 + y^3)$ d) $f(z) = (2x^2 - y^2) + i(2y^2x + 2y^3 - 3y^2)$ e) $f(z) = \overline{z}e^{-\operatorname{Im}(z)}$ f) $f(z) = (xy^2 + y) + i(x^2 + y - x)$ g) $f(z) = 3x^2y - 3y^2 + i(6xy - x^3)$ h) $f(z) = 2x^2y + i(6x^2y - 20x^2)$ i) $f(z) = (4x^3y + 4xy) - i(x^4 + 2x^2 + 4y^2)$
- 2. Sean f(z) = x + i3y, g(z) = x iy. Justificar que f(z) y g(z) no son derivables en ningún punto pero f(z) + g(z) es derivable en \mathbb{C} y f(z)g(z) es derivable en los puntos del eje real.
- 3. Mostrar que $u(x,y)=e^y\cos x-2e^x\sin y$ es armónica en $D=\mathbb{R}^2$. Encontrar sus conjugadas armónicas.
- 4. Sea $f(z) = 2ie^z + e^{-iz}$
 - a) ¿Dónde es f conforme?
 - b) Determinar el ángulo de rotación de tangentes en el punto $z_0 = 0$ bajo la transformación w = f(z).
 - c) Hallar la ecuación de la recta tangente en $w_0 = f(0)$ a la imagen por w = f(z) de la curva C: y = x.
 - d) ¿Qué ángulo forman en $w_0 = f(0)$ las imágenes por w = f(z) de las curvas $C_1: (x-1)^2 + y^2 = 1$, $C_2: y = x$? Justificar.
- 5. Hallar una transformación lineal que envíe:
 - a) el rectángulo de lados: $y=x+4,\ y=x+8,\ y+x=-4,\ y+x=4$ en el rectángulo de lados: $u=7,\ u=15,\ v=-2,\ v=-6.$
 - b) el triángulo de vértices: -4-6i, -4-10i, -2-8i en el triángulo de vértices: 3+2i, 15+2i, 9+8i.
 - c) el conjunto $A = \{z : |z + 6 4i| \le 2\}$ en $B = \{w : |w 8 + 6i| \le 5\}$
- 6. Hallar una transformación que envíe

en
$$B = \{z : |z+3-4i| \le 2, \text{Im}(z) \ge 4, \text{Im}(z) \le \sqrt{3} \operatorname{Re}(z) + 4 + 3\sqrt{3} \}$$

en $B = \{w : |w-8+6i| \ge 4\}$

- 7. Sea $A = \{(x,y) \in \mathbb{R}^2 : (x+1)^2 + y^2 \ge 1 \land (x-2)^2 + y^2 \ge 4\}$
 - a) Determinar la imagen de A por la transformación $T: w = \frac{4}{z}$
 - b) Hallar una función H(x,y) armónica en el interior del conjunto A que verifique las siguientes condiciones de contorno:

$$H(x,y) = -3 \text{ si } (x+1)^2 + y^2 = 1$$

 $H(x,y) = 0 \text{ si } (x-2)^2 + y^2 = 4$

1

- 8. Dado $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$
 - a) Encontrar la imagen de A por $w = \frac{1}{z-2}$
 - b) Hallar la distribución estacionaria de temperaturas H(x,y) en la placa A suponiendo que $\nabla^2 H = 0$ en el interior de A y se verifica:

$$H(x,y) = 7 \text{ si } x^2 + y^2 = 4, x > 0, y > 0$$

H(x,y) = 5 sobre el resto de la frontera de A

- 9. Sea $A = \{(x, y) \in \mathbb{R}^2 : x^2 + (y 2)^2 \ge 4 \ \land \ y \le 4\}$
 - a) Hallar la imagen de A por $w = \frac{4}{z 4i}$
 - b) Determinar una función H(x,y) armónica en el interior del conjunto A verificando las condiciones de borde:

$$H(x,y) = -3 \text{ si } x^2 + (y-2)^2 = 4$$

$$H(x,y) = 2$$
 si $y = 4$

- 10. Sea $A = \{(x, y) \in \mathbb{R}^2 : x^2 + (y 1)^2 \le 2 \land x^2 + (y + 1)^2 \ge 2\}$
 - a) Hallar analíticamente la imagen de A por $w = \frac{2}{z-1}$
 - b) Resolver el problema de Dirichlet para una función H(x,y) armónica en el interior del conjunto A, sujeta a las condiciones de borde:

$$H(x,y) = 1$$
 si $x^2 + (y-1)^2 = 2$

$$H(x,y) = -1$$
 si $x^2 + (y+1)^2 = 2$

- 11. Sea $A = \left\{ z \, : \, |z i\sqrt{3}| \ge 2 \ \land \ y \ge 0 \right\}$
 - a) Hallar la imagen de A por $w = \frac{2}{z-1}$
 - b) Hallar una función H(x,y) que satisfaga $\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} = 0$ en el interior del conjunto A y verifique las siguientes condiciones en la frontera:

$$H(x,y) = 1$$
 si $x^2 + (y - \sqrt{3})^2 = 4$, $y > 0$

$$H(x,y) = -1 \text{ si } y = 0, |x| > 1$$

12. Sea
$$D = \{(x,y) \in \mathbb{R}^2 : (x+5)^2 + y^2 \ge 16 \land (x-5)^2 + y^2 \ge 16\}$$

- a) Hallar T(D) siendo T: w = f(z) donde $f(z) = \frac{12}{z-3}$
- b) Hallar una solución H(x,y) de la ecuación de Laplace en el interior del conjunto D que verifique las condiciones de borde:

$$H(x,y) = 0$$
 si $(x+5)^2 + y^2 = 16$

$$H(x,y) = 4 \text{ si } (x-5)^2 + y^2 = 16$$

- 13. Sea $D = \{(x, y) \in \mathbb{R}^2 : x \ge -4 \land (x 1)^2 + y^2 \ge 9\}$
 - a) Hallar f(D) siendo $f(z) = 1 + \frac{8}{z}$
 - b) Hallar una solución H(x,y) de la ecuación de Laplace en el interior del conjunto D que verifique las condiciones de borde:

$$H(x,y) = 0 \text{ si } x = -4$$

$$H(x,y) = 2 \text{ si } (x-1)^2 + y^2 = 9$$

- 14. a) Calcular $\int_C \frac{\overline{z}}{\text{Im}(z)} dz$ siendo C el segmento dirigido desde $z_1 = 1+i$ hasta $z_2 = 2+2i$.
 - b) Mostrar que $\oint_C \frac{p(z)}{(z-i)^8} dz = 0$ si p(z) es polinómica de grado a lo sumo 6 y C es curva cerrada, simple, suave o suave por tramos, recorrida en sentido antihorario y tal que $i \notin C$.
 - c) ¿Es la integral $\int_C \left(z-\frac{1}{z}\right)^7 \left(1+\frac{1}{z^2}\right) dz$ independiente del camino en el dominio $D=\mathbb{C}-\{0\}$? Calcular:

$$\int_{1}^{i} \left(z - \frac{1}{z}\right)^{7} \left(1 + \frac{1}{z^{2}}\right) dz$$

- 15. a) Analizar si la integral $\int_C \left[8z^{15} 3 + \frac{4}{z+1} + \frac{2}{(z+1)^3} \right] dz$ es independiente del camino en $D = \{z : \text{Re}(z) > -1\}$.
 - b) Calcular

$$\int_{C} \left[8z^{15} - 3 + \frac{4}{z+1} + \frac{2}{(z+1)^3} \right] dz$$

siendo C la concatenación de C_1 , seguida de C_2 , seguida de C_3 , donde:

3

$$C_1: |z+i| = |z-1|$$
desde $z_1 = 0$ hasta $z_2 = 1-i$

$$C_2: |z-1|=1$$
antihoraria desde $z_2=1-i$ hasta $z_3=2$

$$C_3: |z-2-2i| = |z|$$
desde $z_3 = 2$ hasta $z_4 = 2i$

16. Si $C: \frac{x^2}{25} + \frac{y^2}{36} = 1$ con orientación antihoraria, hallar

$$I = \oint_C \left[\frac{e^{\frac{3}{z-8}}}{10 - iz} + \frac{3}{z^5 - 2z^4 + 2z^3} + \operatorname{sen}(4iz^2) \right] dz$$

17. Calcular

$$\int_{C} \left[4ze^{z^{2}} + 2 + 3\operatorname{Re}(z) + \frac{1}{(z+4)^{3}} \right] dz$$

siendo C: |z+2i| = 1 desde -3i hasta -i recorrida en sentido antihorario.

18. Calcular

$$I = \oint_C \frac{z+6i}{z^6 - 16z^2} \, dz$$

a lo largo de cada uno de las siguientes caminos:

- a) $C: |z-2| = \frac{1}{2}$ recorrida en sentido antihorario.
- b) $C: |z-2i| = \frac{1}{2}$ recorrida en sentido horario.
- c) $C: |z+2| = \frac{1}{2}$ recorrida en sentido antihorario.
- d) $C: |z+2i| = \frac{1}{2}$ recorrida en sentido horario.
- e) $C: |z| = \frac{1}{2}$ recorrida en sentido antihorario.
- f) C es la frontera antihoraria del cuadrado de lados $x=\pm 1,\,y=-1,\,y=-3.$
- g) C: |z+6+8i|=2 recorrida en sentido antihorario.
- h) C es la frontera horaria del rectángulo de lados $x=\pm 3,\,y=\pm 1.$
- i) C es la frontera horaria del rectángulo de lados $x=\pm 1,\,y=-1,\,y=4.$
- j) C: |x| + |y| = 10 recorrida en sentido antihorario.

19. Calcular

$$\oint_C \left(\frac{\cos(\pi z^2)}{z^2 + 1} + \frac{\operatorname{Ln}(4 - z^2)}{z^2 + 8i} \right) dz$$

siendo C: |z-i|=1 con orientación antihoraria.

20. Calcular

$$\oint_C \left[\frac{2z+1}{(z^2+z-2)^5} + \frac{z+1}{(z-1)(z^2+z-2)} \right] dz$$

siendo C la frontera antihoraria del rectángulo de vértices: 3+2i , -4+2i , -4-2i , 3-2i.

4