COMP30120

Nearest Neighbour Classifiers

Derek Greene

School of Computer Science and Informatics Autumn 2015

Overview

- Eager v Lazy Classification Strategies
- Similarity-based Learning
- The k-Nearest Neighbour Classifier
 - How do we measure distance/similarity?
 - How do we prepare the data?
 - How do we select useful training data?
- Classifying Text Documents
 - Application: Spam Filtering
- k-NN in Weka

Reminder: Classification

- Supervised Learning: Algorithm that learns a function from manually-labelled training examples.
- Classification: Training examples, usually represented by a set of features, help decide *class* to which a new unseen query input belongs.
- Binary Classification: Assign one of two possible target class labels to the new query input.

• Multiclass Classification: Assign one of *M>2* possible target class labels to the new query input.

Lazy v Eager Classifiers

Eager Learning

- Classifier builds a full model during an initial training phase, to use later when new query examples arrive.
- More offline setup work, less work at run-time.
- Generalise before seeing the query example.
- e.g. Decision Tree classifier

Lazy Learning

- Classifier keeps all the training examples for later use.
- Little work is done offline, wait for new query examples.
- Focus on the local space around the examples.
- e.g. k-Nearest Neighbour classifier (k-NN)

Example: Athlete Selection

- Dataset of performance ratings for 20 college athletes.
- Each athlete described by 2 continuous features: speed, agility.
 Binary class label indicates whether or not they were selected for the college team.

Athlete	Speed	Agility	Selected	
1	2.50	6.00	No	
2	3.75	8.00	No	
3	2.25	5.50	No	
4	3.25	8.25	No	
5	2.75	7.50	No	
6	4.50	5.00	No	
7	3.50	5.25	No	
8	3.00	3.25	No	
9	4.00	4.00	No	
10	4.25	3.75	No	

Athlete	Speed	Agility	Selected		
11	2.00	2.00	No		
12	5.00	2.50	No		
13	8.25	8.50	Yes		
14	5.75	8.75	Yes		
15	4.75	6.25	Yes		
16	5.50	6.75	Yes		
17	5.25	9.50	Yes		
18	7.00	4.25	Yes		
19	7.50	8.00	Yes		
20	7.25	3.75	Yes		

Q. Will athlete X be selected?

Athlete	Speed	Agility	Selected		
X	3.00	8.00	???		

Example: Athlete Selection

We can use the feature values to visually plot the 20 athletes in a 2-dimensional coordinate space (i.e. agility versus speed):

Similarity-based Learning

Fundamental Strategy: "Best way to make predictions is to look at past examples and repeat the same process again".

Features space:

A *D*-dimensional coordinate space used to represent the input examples for a given problem, with one coordinate per descriptive feature.

Similarity measure:

Some function to measure how similar (or distant) two input examples are from one another are in the *D*-dimensional coordinate space.

2 features describing each example (agility & speed)

→ 2 coordinate dimensions for measuring similarity

Typically: Distance = 1/Similarity OR Distance = 1-Similarity

Nearest Neighbours

Lazy Learning approach: Identify most similar previous athlete for which a selection decision has already been made (i.e. their nearest neighbours from the training set).

Example: For new query inputs, look at the label of k nearest neighbours under both features (e.g. k=3 neighbours)

Nearest Neighbours

While nearest neighbour methods only consider *local* neighbours of each example, it implicitly allows us to build a *global* model that covers the entire dataset.

k-Nearest Neighbour Classifier

Inputs:

- Set of labelled training examples represented by features F
- A query input example q represented by features F
- User specified parameter value k (i.e. number of neighbours)

Task:

 Find the k nearest neighbours for input q according to the distance measure defined as...

For each
$$x_i \in D$$

$$d(q, x_i) = \sum_{f \in F} w_f \cdot \delta(q_f, x_f)$$
 Weighted sum over all features

Difference calculation depends on feature type (e.g. continuous, binary, ordered)
$$d(q_f, x_{if}) = \begin{cases} 0, & \text{if } f \text{ discrete and } q_f = x_{if} \\ 1, & \text{if } f \text{ discrete and } q_f \neq x_{if} \\ |q_f - x_{if}|, & \text{if } f \text{ continuous} \end{cases}$$

k-Nearest Neighbour Classifier

• Majority voting: The decision on a label for a new query example is decided based on the "votes" of its k nearest neighbours, where the neighbours are selected based on minimising the distance $d(q, x_i)$

k-Nearest Neighbour Classifier

• Majority voting: The decision on a label for a new query example is decided based on the "votes" of its k nearest neighbours, where the neighbours are selected based on minimising the distance $d(q, x_i)$

Measuring Distance

 Absolute difference: Calculate the absolute value of the difference between the feature values.

Example	Height	Width
р	60	62
q	70	53

$$diff(p,q) = |60-70| + |62-53| = 10+9 = 19$$

• For *ordinal features*, calculate the absolute value of the difference between the two positions in the ordered list of possible values.

Ordinal Feature "Dosage": {Low,Medium,High} = {1, 2, 3}

diff(Low, High) =
$$|1-3| = 2$$

diff(Medium, Low) = $|2-1| = 1$
diff(High, High) = $|3-3| = 0$

• Euclidean distance: Common distance measure between two continuous features (inputs represented as numeric vectors).

$$ED(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{f \in F} (q_f - p_f)^2} \qquad ED(p, q) = \sqrt{(60 - 70)^2 + (62 - 53)^2}$$

$$= 13.45$$

Data Normalisation

- Numeric features often have different ranges, which can skew certain distance measures.
- So that all features have similar range, we apply feature normalisation.
- Min-max normalisation:
 Use min and max values for a given feature to rescale to the range [0,1]

Example	Height (Inches)	Weight (Lbs)	Age (Years)		
1	65.78	112.99	24		
2	71.52	136.49	19		
3	69.40	153.03	50		
4	68.22	142.34	40		
5	67.79	144.30	23		
6	68.70	123.30	68		
7	69.80	141.49	45		
8	70.01	136.46	33		
9	67.90	112.37	80		
10	66.78	120.67	58		

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

Example: Feature "Age"

$$\min(x) = 19$$

$$\max(x) = 80$$

$$\max(x) - \min(x) = 61$$

Age (Non-normalised)	24	19	50	40	23	68	45	33	80	58
Age (Normalised)	0.08	0.00	0.51	0.34	0.07	0.80	0.43	0.23	1.00	0.64

Noisy Data

- A simple 1-NN classifier is easy to implement.
- But it will be susceptible to "noise" in the data.
 - A misclassification will occur every time a single noisy example is retrieved.
- Using a larger neighbourhood size (e.g. k > 2) can sometimes make the classifier more robust and overcome this problem.
- But when k is large (k→N) and classes are unbalanced, we always predict the majority class.

Dimension Reduction for k-NN

Feature Selection:

For a given dataset, not all features may be required. Noisy or redundant features can hinder the algorithm.

Case Selection:

For a given dataset, not all training examples may be required. Some are redundant, increasing algorithm training time.

Q. How do we find the best feature and case subsets?

Condensed NN

- Input: A set of D training examples.
- Task: Find subset $E \subset D$, where the Nearest Neighbour rule used with E should be as good as the full set D.

Condensed NN (CNN) algorithm

- Choose an example $x \in D$ randomly
- $D \leftarrow D \setminus \{x\}$
- \bullet $E \leftarrow \{x\}$
- REPEAT
 - learning \leftarrow False
 - FOR EACH $y \in D$
 - * Classify y by nearest neighbours using E
 - * IF classification incorrect THEN
 - $\cdot D \leftarrow D \setminus \{y\}$
 - $\cdot E \leftarrow E \cup \{y\}$
 - · learning \leftarrow True
- WHILE learning \neq False

Condensed NN

• Example: 100 examples with 2 target class labels.

Complete data set

Random Initialisation

⇒ Different Condensed NN solutions

Condensed NN

- Problem: Different outcomes, depending on the data order.
 Non-deterministic → Not a desirable property in an algorithm!
- Improving CNN: Sort examples based on the distance to nearest unlike neighbour.

Motivation:

Identify examples near the *decision boundary*.

e.g. example B is more useful than A

Application: Spam Filtering

- Concept drift: 2015 spam does not look like spam from 2006!
- A Lazy Learning system should be able to adapt to the changing nature of spam/real email content.
- →Simply add more recent examples, remove old examples from the training set.
- Classifier system design questions...
 - Q. How do we represent our data?
 - Q. What are the relevant features and examples?
 - Q. How do we measure distance/similarity?
 - Q. What are the appropriate parameters for our algorithm?

Text as Bag-of-Words

- Raw email data is textual, not numeric. Requires pre-processing.
- Bag-of-Words Model: Each document is represented by a vector in a m-dimensional coordinate space, where m is number of unique terms (words) across all documents in the data.

Remove "stopwords"

School Board meeting.

Convert email text to sparse vector representation (document-term matrix).

Row is a document, column (feature) is a unique term.

N-Grams

- Bag-of-words model does not preserve sequence information, order of words in a sentence is lost.
- Solution: Build features using sequences of adjacent terms.
- Term Bigrams: Build features from every pair of adjacent terms.

Document can be represented as bag-of-words with 5 term bigram features

- Term N-grams: Build features from N adjacent terms.
- NB: This approach significantly increases the dimensionality of document vectors → makes document-term matrix more sparse.

N-Grams

 Google Ngram Viewer: Chart years counts of n-gram phrases in 5.2 million books between 1500-2008.

https://books.google.com/ngrams

Text Similarity

Cosine similarity:

Bag-of-words model produces highly sparse vectors, mostly containing 0s.

 More appropriate to measure similarity based on cosine of the angle between the two vectors.

$$\cos(\mathbf{p}, \mathbf{q}) = \frac{\mathbf{p} \cdot \mathbf{q}}{||\mathbf{p}|| \, ||\mathbf{q}||}$$

Convert to a distance metric to use with *k*-NN

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}$$

1 = Same orientation

 $0 = At 90^{\circ}$ to each other

-1 = Diametrically opposed

$$D_{cos}(\mathbf{p}, \mathbf{q}) = 1 - \cos(\mathbf{p}, \mathbf{q})$$

Classifier System Design: Spam Filtering

Offline System

Install Java Weka Toolkit (Version: Stable 3.6.12)

http://www.cs.waikato.ac.nz/ml/weka

- 1. Launch the WEKA application and click on the Explorer button.
- 2. Click Open File e.g. forecast.arff (WEKA ARFF dataset format)

- 3. In Classify tab, click Choose and find Lazy $\rightarrow IBk$ on the list.
- 4. Choose (Nom) go_out as class label from drop-down list.
- 5. Click Start.

=== Summary ===

<-- classified as

a = yes b = no

- To change algorithm parameter values:
 - 1. Click the parameter set
 - 2. Enter new value for number of neighbours (KNN) e.g 3
 - 3. Click *OK* and re-run process.


```
weka.gui.GenericObjectEditor
weka.classifiers.lazy.IBk
About
 K-nearest neighbours classifier.
                                                         More
                                                     Capabilities
                            KNN 3
                    crossValidate
                          debug
                                    False
               distanceWeighting
                                    No distance weighting
                    meanSquared
nearestNeighbourSearchAlgorithm
                                     Choose
                                               LinearNNSearch -A "
                     windowSize 0
   Open...
                                         OK
                      Save...
                                                         Cancel
```

Summary

- Eager v Lazy Classification
- Similarity-based Learning
 - Feature spaces
 - Measuring similarity/distance
- The k-Nearest Neighbour Classifier
 - Lazy classifier based on majority voting
 - Requires an appropriate distance measure
- Improving k-NN Performance
 - Feature Selection + Condensed NN
- Classifying Text Documents
 - Bag-of-Words Model + Cosine similarity
- k-NN in Weka

COMP41450 Advanced Machine Learning

- 10 credit Level 4 module
- Extended version of COMP30120
 - → Attend all COMP30120 lectures/tutorials
 - → Complete COMP30120 assignments/tests for 5 credits
- Additional 5 credits:
 - → 6 weeks additional lectures in Semester 1
 - → Programming-based assignment (Java/Python/C)
 - → In-class test

Starts 21st October
Wednesdays 2-3pm CS B109