Содержание

1	Дифф. геом. кривых	2
	Теорема о неявной функции	2
	Свойства пределов	3
	Гладка кривая, регулярная кривая	4
Φ	-ма Тейлора	6
	Длина кривой	6
	Т. о длине кривой	6
2	Репер Френе	9
3	Вектор кривизны	13
4	Формула Френе	15
5	Вычисление кривизны кручения	16
	5.1 Дополнение 1: плоскости, связ. с кривыми	18
	5.2 Дополнение 2: натур. ур-я кривой	20
	5.3 Дифференциальная геометрия поверхностей	22
	5.3.1 Понятие поверхности	22
	5.3.2 Первая квадратичная плоскость	25

Дифф. геометрия кривых (в \mathbb{R}^3) и поверхностей (в \mathbb{R}^3) 2019-09-09

1 Дифф. геом. кривых

Опр

 $f:[a,b] \to \mathbb{R}^3$ - вектор-функция. Образ f называется кривой, а f - параметризация этой кривой.

Способы задания кривых:

- 1. Параметрический $f:[a,b] \to \mathbb{R}^3$
- 2. Явное задание кривой $\begin{cases} y = y(x) \\ z = z(x) \end{cases}$ (особенно хорошо на плоскости y = f(x))
- 3. Неявное задание кривой (на плоскости) F(x,y) = 0

Пример

Окружность:
$$x^2 + y^2 - 1 = 0$$
 $y = \pm \sqrt{1 - x^2}$ явное задание рис 3

Теорема (о неявной функции)

$$F(x,y)=0$$

$$F$$
 - дифф $(\exists \frac{\partial F}{\partial x}$ и $\frac{\partial F}{\partial y}$ - непр в окр (x_0,y_0) , $F(x_0,y_0)=0$ Если $\frac{\partial F}{\partial y}(x_0,y_0)\neq 0 \Rightarrow \ \exists \mathcal{E}>0 \ \exists f: (x_0-\mathcal{E},x_0+\mathcal{E}) \to \mathbb{R}$
$$F(x,f(x))=0$$

Напоминание

$$\frac{dF}{dx}\Big|_{(x_0,y_0)} = \lim_{x \to x_0} \frac{F(x,y_0) - F(x_0,y_0)}{x - x_0}$$

$$y = f(x) \rightarrow \begin{cases} x = t \\ y = f(t) \end{cases}$$
 $f(t) = (x(t), y(t), z(t))$

Как задавать вектор-функцию? $f:[a,b] \to \mathbb{R}^3$ - вектор-функция, тогда

$$\lim_{t \to t_0} f(t) = (x_0, y_0, z_0)$$

$$orall \mathcal{E} > 0 \; \exists \delta > 0 : \; \text{если} \; \rho(t,t_0) < \delta, \; \text{то} \; \rho(f(t),(x_0,y_0)) < \mathcal{E}$$
 $(\rho(t,t_0)=|t-t_0|, \quad f(t)=\sqrt{(x(t)-x_0)^2+(y(t)-y_0)^2+(z(t)-z_0)^2})$

Теорема (свойства пределов)

$$\lim_{t\to t_0}(f(t)\pm g(t))=\lim_{t\to t_0}f(t)\pm\lim_{t\to t_0}g(t)$$

$$\lim_{t\to t_0}(f(t)\cdot g(t))=(\lim_{t\to t_0}f(t),\lim_{t\to t_0}g(t))\text{ - скалярное умножение}$$

$$\lim_{t\to t_0}(f(x)\times g(t))=\lim_{t\to t_0}f(x)\times\lim_{t\to t_0}g(t)$$

Док-во

$$\lim_{t \to t_0} f(t) = (\lim_{t \to t_0} x(t), \lim_{t \to t_0} y(t), \lim_{t \to t_0} z(0))$$
$$f(t) = (x(t), y(t), z(t))$$

Пусть
$$\mathcal{E} > 0$$
, выберем $\delta : |x(t) - x_0| < \frac{\mathcal{E}}{3}$

если
$$|t - t_0| < \delta$$

$$\Rightarrow \frac{|y(t) - y_0| < \frac{\mathcal{E}}{3}}{|z(t) - z_0| < \frac{\mathcal{E}}{3}} \Rightarrow \sqrt{(x(t) - x_0)^2 + (y(t) - y_0)^2 + (z(t) - z_0)^2} < \frac{\mathcal{E}}{\sqrt{3}}$$

Опр

$$f'(t_0) = \lim_{t \to t_0} \frac{\overline{f}(t) - \overline{f}(t_0)}{t - t_0}$$

Теорема (свойства)

1.
$$(f(t) \pm g(t))' = f'(t) \pm y'(t)$$

2.
$$(cf(t))' = cf'(t)$$

3.
$$(f(t); g(t))' = (f'(t); g(t)) + (f(t); g'(t))$$

4.
$$(f(t) \times g(t))' = f'(t) \times g(t) + f(t) \times g'(t)$$

5.
$$(f(t), g(t), h(t))' = (f', g, h) + (f, g', h) + (f, g, h')$$

Доказывается через
$$f'(t) = (x'(t), y'(t), z'(t))$$

$$f(t) = (x(t), y(t), z(t))$$

Докажем ВП:
$$(f(t) \times g(t))'|_{t=t_0} = \lim_{t \to t_0} \frac{f(t) \times g(t) - f(t_0) \times g(t_0)}{t - t_0} =$$

$$= \lim_{t \to t_0} \frac{f(x) \times g(x) - f(t_0) \times g(t_0) + f(t_0) \times g(t) - f(t_0) \times g(t_0)}{t - t_0}$$

$$= \lim_{t \to t_0} \frac{(f(t) - f(t_0)) \times g(t)}{t - t_0} + \lim_{t \to t_0} \frac{f(t_0 \times (g(t) - g(t_0)))}{t - t_0} =$$

$$= f'(t_0) \times g(t_0) + f(t_0) \times g'(t_0)$$

Пример

Контрпример

Т. Лагранжа - неверна рис 4

$$\begin{split} &\int_{b}^{a}\overrightarrow{f}(t)dt = (\int_{a}^{b}x(t)d(t), \int_{a}^{b}y(t)dt, \int_{a}^{b}z(t)dt) \\ \overrightarrow{F}'(t) = \overrightarrow{f}(t) \\ &\overrightarrow{F}(b) - \overrightarrow{F}(a) = \int_{a}^{b}\overrightarrow{f}(t)dt \\ &F(t) = (X(t), Y(t), Z(t)) \\ &f(t) = (X'(t), Y'(t), Z'(t)) = (x(t), y(t), z(t)) \\ &\int_{a}^{b}f(t)dt = (\int_{a}^{b}x(t)dt, \ldots) = (X(b) - X(a), \ldots. \end{split}$$

Опр

Гладкая кривая - образ вектороднозначнойя функция

Опр

Кривая называется регулярной, если существует производная и $f'(t) \neq \overrightarrow{0}$

Опр

Кривая называется бирегулярной, если существует вторая производная и $f''(t) \not | f'(t)$

Опр

Параметризации $\overrightarrow{f}(t)$ и $\overrightarrow{g}(t)$ эквивалентны

$$f: [a, b] \to \mathbb{R}^3$$

 $q: [c, d] \to \mathbb{R}^3$

Если \exists биекция $\tau:[a,b] \rightarrow [c,d]$

$$\tau(a) = c; \quad \tau(b) = d:$$

$$f(t) = g(\tau(t))$$
 (au возрастает и гладкая)

Лемма

Эквив параметризаций - эквививалентность

Док-во

Докажем, что экв. параметризаций - отношение эквивалентности:

- 1. (рефл.) $\tau = id$
- 2. (CHMM.) $f(t) = g(\tau(t)), g(t) = f(\tau(t))$
- 3. (тран.) $f(t) = g(b(t)), g(t) = h(\tau(t)), f(t) = h(\tau(b(t)))$

<u>Лемма</u>

$$\overrightarrow{f}(t)$$
 - вектор-функция/ регуляр. $|\overrightarrow{f}(t)|=1 o f'(t) \perp f(t)$

Док-во

$$(f(t); f(t)) = 1$$

 $0 = (f(t), f(t))' = 2(f'(t), f(t))$
 $f(t) \neq 0$
 $f'(t) \neq 0 \rightarrow f'(t) \perp f(t)$

2019-09-16

Теорема (Ф-ма Тейлора)

$$\overrightarrow{t} = \overrightarrow{t_0} + \overrightarrow{f'}(t_0)(t - t_0) + \frac{\overrightarrow{f''}(t_0)}{2!}(t - t_0)^2 + \dots$$

$$+ \frac{\overrightarrow{f^{(n)}}(t_0)}{n!}(t - t_0)^n + o(t - t_0)^n$$

$$\overrightarrow{g}(t) = o(t - t_0)^n, \text{ если}$$

$$\lim_{t \to t_0} \frac{\overrightarrow{g}(t)}{(t - t_0)^n} = \overrightarrow{0}$$

Опр (Длина кривой) рисунок 1 Пусть есть кривая
$$\overrightarrow{f}(t), t \in [a,b]$$

$$a = t_0 < t_1 < \dots < t_n = b$$

a)
$$\sup \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$$

6) $\lim_{\substack{\max \\ i=1,n}} |t_i - t_{i-1}| \to 0$

$$\mathsf{f}) \lim_{\substack{i=1...n\\i=1...n}} |t_i - t_{i-1}| \to 0 \dots$$

-длина кривой

y_{TB}

Оба определения эквивалентны

Теорема

$$S$$
 - длина кривой $\Rightarrow S = \int_a^b |\overrightarrow{f'}(t)| dt$

Опр

Кривая называется спрямляемой, если её длина конечна

Замечание

Если $|\overrightarrow{f'}(t)|$ - интегр. \Rightarrow кривая спрямляемая

Пример

$$y = \sin\frac{1}{x} \quad (0,1]$$

рисунок 2

$$y = \begin{cases} \sqrt{x} \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

рисунок 3

Док-во
$$\triangle_i t = t_i - t_{i-1}, \, \tau_i \in [t_{i-1}, t_i], \, \triangle_i f = f(t_i) - f(t_{i-1})$$

$$|\int_{a}^{b}|f'(t)|dt - \sum_{i=1}^{n}(f(t_{i}) - f(t_{i-1})| \leqslant |\int_{a}^{b}|f'(t)|dt - \sum_{i=1}^{n}|f'(\tau_{i})| \bigtriangleup_{i}t| + \\ + |\sum_{i=1}^{n}|f'(\tau_{i})| \bigtriangleup t_{i}| - \sum_{i=1}^{n}|f(t_{i}) - f(t_{i-1})|| = I + II$$
 II $\leqslant \sum_{i=1}^{n}||f'(\tau_{i})| \bigtriangleup t_{i} - |f(t_{i}) - f(t_{i-1})|| = \sum_{i=1}^{n}||f'(\tau_{i})| - |f'(\sigma_{i})|| \bigtriangleup_{i}t$ $f'(t)$ - непр на $[a,b]$ \Rightarrow равномерно непр. на $[a,b]$ (т. Кантора) $\forall \mathcal{E} > 0 \quad \exists \delta > 0, \text{ если } |\tau_{i} - \sigma_{i}| < \delta \Rightarrow |f'(\tau_{i}) - |f'(\sigma_{i})|| < \mathcal{E}$ $||f'(\tau_{i})| - |f'(\sigma_{i})|| < \mathcal{E}, \text{ если } |\sigma_{i} - \tau_{i}| < \delta$

$$II \leqslant \sum_{i=1}^{n} \mathcal{E} \triangle_{i} t = \mathcal{E}(b-a) \underset{\mathcal{E} \to 0}{\to} 0$$
$$||f'(\tau_{i})| - |f(t_{i}) - f(t_{i-1})|| \leqslant ||f'(\tau_{i})| - ||f(t_{i})| - |f(t_{i-1})||$$

$$|f(t_i)| - |f(t_{i-1})| = |f(\sigma_i)| \triangle_i t$$

Опр

Параметризация $f:[a,b] \to \mathbb{R}^3$ называется натуральной, если |f'(t)|=1

Теорема

Натуральная параметризация ∃ и ед.

Лемма

Пусть $f:[a,b]\to\mathbb{R}^3,\, \tau:[c,d]\to[a,b]$ - монотонная биекция $(\tau'>0),$ тогда $f\circ\tau:[c,d]\to\mathbb{R}^3$

Длина кривой (f) не зависит от перепараметризации $(f \circ \tau)$

Док-во

$$\int_{a}^{b} |f'(t)|dt \stackrel{?}{=} \int_{c}^{d} |(f \circ \tau)(s)|ds$$

$$\int_{c}^{d} |(f \circ \tau)(s)|ds = \int_{c}^{d} |f'(\tau(s)) \cdot \tau'(s)|ds = \int_{c}^{d} |f'(\tau(s))| \cdot \tau'(s)ds = \int_{a}^{b} |f'(t)|dt$$

$$t = \tau(s)$$

Док-во (Т)

Существование

Хотим подобрать $\tau:|f'(\tau(s))|=1$

$$\sigma(t) = \int_{a}^{t} |f'(s)| ds$$

$$\sigma: [a,b] \to [0,S]$$

S - длина кривой

 σ - возрастающая и дифф. $(\sigma'(t) = |f'(t)|)$

$$\sigma$$
 - биекция $\Rightarrow \tau = \sigma^{-1}$

$$\int_{0}^{t} |(f \circ t)'(s)| ds = \int_{0}^{t} |f'(\tau(s))| \cdot t'(s) ds =$$

$$= \int_{0}^{t} |f'(\tau(s))| \frac{ds}{\sigma'(\tau(s))} = \int_{0}^{t} \frac{|f'(\tau(s))|}{|f'(\tau(s))|} ds = t$$

Единственность

$$f(t)$$
 и $g(t)$ - нат. параметризации

$$f, g: [0, s] \to \mathbb{R}^3$$

$$f-g$$

$$\int_0^s |(f \circ g)(t)| dt = \int_0^s |f'(t) - g'(t)| dt \leqslant \int_0^s ||f'(t)| - |g'(t)|| dt = 0$$

Примеры

$$1. \ y = y(x)$$

$$\begin{cases} x = t \\ y = y(t) \end{cases}$$

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 1 \\ y'(t) \end{pmatrix}$$

$$s = \int_a^b \sqrt{1 + y^2(x)} dx$$

2.

$$\begin{cases} y = y(t) \\ z = z(t) \end{cases}$$

$$s = \int_{a}^{b} \sqrt{x^{2}(t) + y^{2}(t) + z^{2}(t)} dt$$
3. $r = r(\varphi)$

$$\begin{cases} x = r(\varphi) \cos \varphi \\ y = r(\varphi) \sin \varphi \end{cases}$$

$$\begin{cases} x' = r'(\varphi) \cos \varphi - r(\varphi) \sin \varphi \\ y' = r'(\varphi) \sin \varphi + r(\varphi) \cos \varphi \end{cases}$$

$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \sqrt{x'^{2} + y'^{2}} = \sqrt{r'^{2} \cos' 2\varphi + r^{2} \sin^{2} \varphi}$$

$$= \sqrt{r'^{2} + r^{2}}$$

$$S = \int_{\varphi_{0}}^{\varphi_{1}} \sqrt{r'^{2}(\varphi) + r^{2}(\varphi)} d\varphi$$

2 Репер Френе

Опр

$$\overrightarrow{v}=rac{f'(t)}{|f'(t)|}$$
 $\overrightarrow{v}=f'(t)$ - если парам. натуральн. v - касательный вектор

$$\overrightarrow{f(t_0)} + \overrightarrow{f}'(t_0) \cdot (t - t_0) = \overrightarrow{g}(t)$$
 $\overrightarrow{g}(t)$ - ур-е касат. прямой
Нормальная плоскость
 $f'(t_0) \cdot (\overrightarrow{h} - \overrightarrow{f}(t_0)) = 0$

Теорема

 δ - расстояние от f(t) до касат. прямой

$$\Rightarrow \lim_{t \to t_0} \frac{\delta}{|f(t) - f(t_0)|} = 0$$

Касательная прямая единств. с таким свойством

2019-09-23

Напоминание

$$\left|\sum |f(t_i) - f(t_{i-1})|\right| - \sum ||f(t_i) - f(t_{i-1})| - |f'(\tau_i)\Delta t_i|| \le$$

$$\le \sum \left|\int_{t_{i-1}}^{t_i} |f'(t)| dt - \int_{t_{i-1}}^{t_i} |f'(\tau_i)| dt\right| =$$

$$\sum \int_{t_{i-1}}^{t_i} |f'(t) - f'(t_i)| dt < \sum \mathcal{E}\Delta_i t = \mathcal{E}(b - a)$$

$$\forall \mathcal{E} > 0 \quad \exists \delta > 0 \text{ если } f_i - f_{i-1} < \delta$$

$$\Rightarrow |f'(t) - f'(\tau_i)| < \mathcal{E}$$

Лемма

$$\begin{aligned} \overrightarrow{b} &= \Pi \mathbf{p}_a b + b \frac{1}{a} \\ \overrightarrow{\Pi} \overrightarrow{\mathbf{p}_a b} &= \frac{(a,b)}{\left|a\right|^2} \overrightarrow{a} \\ \left|b \frac{1}{a}\right| &= \frac{\left|\overrightarrow{a} \times \overrightarrow{b}\right|}{\left|a\right|} \end{aligned}$$

Док-во

$$h=\frac{S}{|a|}$$

$$\frac{(\overrightarrow{a}\times\overrightarrow{b})\times\overrightarrow{a}}{|a|^2}=b\frac{1}{a}$$

$$(a,b,a\times b)\text{ - прав. тройка}$$

$$(a\times b,a,b)\text{ - прав. тройка}$$

Теорема

$$\lim_{t_1 \to t_0} \frac{\delta}{|f(t_1) - f(t_0)|} = 0$$

$$\overrightarrow{f'}(t_0) \Rightarrow \text{ по лемме}$$

$$\delta = \frac{|f'(t_0) \times (f(t_1) - f(t_0))|}{|f'(t_0)|}$$

$$\lim_{t_1 \to t_0} \frac{\delta}{f(t_1) - f(t_0)} = \lim_{t_1 \to t_0} \frac{|f'(t_0) \times \overrightarrow{a}(t_1)|}{|f'(t_0)| \cdot |a(t_1)|}$$

$$\lim_{t_1 \to t_0} \frac{\left| f'(t_0) \times \frac{f(t_1) - f(t_0)}{t_1 - t_0} \right|}{\left| f'(t_0) \cdot \left| \frac{f(t_1) - f(t_0)}{t_1 - t_0} \right| \right|} = \frac{f'(t_0) \times f'(t_0)}{\left| f'(t_0) \right|^2} = 0$$

⇔ очев

3 Вектор кривизны

Опр

$$g(\varphi(t))=g(s)=f(t)$$
 $s=\varphi(t)$ $\overrightarrow{f'}(t)=(g(\varphi_it_i))'=\overrightarrow{g'}\cdot \varphi'(t)$ $\overrightarrow{v}(t_0)=\dfrac{f'(t_0)}{|f'(t_0)|}$ $\overrightarrow{n}:|n|=1;$ $\overrightarrow{n}\perp\overrightarrow{v}$ $n\in < f',f''> \overrightarrow{n}$ и \overrightarrow{f}'' в одной полуплоскости $f'(t)$ $\overrightarrow{v}'(t)\perp\overrightarrow{v}(t)$ $\overrightarrow{v}'(t)=k\cdot\overrightarrow{n}$ $|n|=1$ $k(t)$ - кривизна кривой $k(t)\geqslant 0$ в точке t \overrightarrow{n} - вектор главной нормали \overrightarrow{v} - касат. вект

 $\mathbf{y}_{\mathbf{TB}}$

$$f(t)$$
 - натуральная парам.

$$|f'(t)| = 1 \Rightarrow v = f'(t)$$

 $f''(t) = k \overrightarrow{n}$

$$\overrightarrow{n} = \frac{f''(t)}{|f''(t)|}$$
$$k = |f''(t)|$$

рисунок 5 (центростр. ускорение)

f(t) - любая параметризация, g(s) - натур. парам.

$$f(t) = g(\varphi(t)) \qquad s = \varphi(t) \text{ - нат. парам}$$

$$s = \int_a^t (f'(\tau))d\tau$$

$$= \varphi(t)$$

$$f'(t) = g'(s) \cdot \varphi'(t)$$

$$f''(t) = (g'(\varphi(t)))' \cdot \varphi'(t) + g'(s) \cdot \varphi''(t) =$$

$$= g''(s) \cdot \varphi'^2(t) + g'(s)\varphi''(t)$$

$$= \frac{g''(s) \cdot \varphi'^2(t) + g'(s)\varphi''(t)}{|g'(s) = v|}$$

Теорема

Плоск. на вект f'(t) и f''(t) не зависит от параметризации

Опр

Эта плоскость (на вект. \overrightarrow{v} и \overrightarrow{n}) наз. соприкасающейся плоск.

4 Формула Френе

Опр

$$\overrightarrow{b}=\overrightarrow{v} imes\overrightarrow{n}$$
 - вектор бинормали $(\overrightarrow{v},\overrightarrow{n},\overrightarrow{b})$ - базис Френе

Трехвекторник Френе или ренер Френе

$$\overrightarrow{v}'=k\cdot\overrightarrow{n}$$

$$b'\perp b$$

$$b'=(\overrightarrow{v}\times\overrightarrow{n})'=\overrightarrow{v}'\times\overrightarrow{n}+\overrightarrow{v}\times n'\perp\overrightarrow{v}$$

$$\overrightarrow{v}'=k\overrightarrow{n}$$

$$\Rightarrow b'\parallel\overrightarrow{n}\Rightarrow b'=-\cancel{x}\cdot\overrightarrow{n}$$
- капа \cancel{x} наз. кручением кривой

Теорема

 $æ=0\Leftrightarrow$ Кривая плоская

Кривая плоская \Leftrightarrow она лежит в плоск $< v, n > \Leftrightarrow$ \Leftrightarrow нормаль к < v, n > постоянна $\Leftrightarrow b = const \Leftrightarrow b' = 0 \Leftrightarrow x = 0$

$$n' = (\overrightarrow{b} \times v)' = b' \times v + b \times v' = -x + n \times v + k \cdot b \times n = x \cdot \overrightarrow{b} - k \overrightarrow{v}$$

$$v' = kn$$

$$n' = -kv + x \cdot b$$

$$b' = -x \cdot n$$

$$v \mid n \mid b$$

$$\overrightarrow{v} \mid 0 \mid k \mid 0$$

$$\overrightarrow{v} \mid -k \mid 0 \mid x \cdot b$$

$$\overrightarrow{b} \mid 0 \mid -x \cdot b \mid 0$$

5 Вычисление кривизны кручения

Теорема

$$k = \frac{|f'(t) \times f''(t)|}{|t'(t)|^3}$$

Док-во

$$g(s)$$
 - нат. парам $f(t)=g(\varphi(t))$ $s=\varphi(t)$ $\varphi(t)=\int_a^t |f'(\tau)|\,d au$ $g'(s)=\overrightarrow{v}$ $g''(s)=k\overrightarrow{n}$ $\varphi'(t)=|f'(t)|$ $f''(t)=g''(s)\cdot \varphi^2(t)+g'(s)\cdot \varphi''(t)=k\cdot \overrightarrow{n}\cdot |f'(t)|^2+v\cdot \varphi''(t)$ $f''(t)\times f'(t)=k\,|f'(t)|^2\cdot \overrightarrow{n}\times f'(t)+0=$ $v'(t)=|f'(t)|\overrightarrow{v}$ $k\cdot \overrightarrow{n}\times \overrightarrow{v}\,|f'(t)|^3$ $|f''(t)\times f'(t)|=k\,|f'(t)|^3$ $k=\frac{|f''(t)\times f'(t)|}{|f'(t)|^3}$

2019-09-30 Вычисление кручения

Напоминание

$$(\overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c}) = (\overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c} + \alpha \overrightarrow{a})$$

$$k = \frac{|f' \times f''|}{|f'|^3}$$

Теорема

g(s) - нат. парам., тогда:

$$æ = \frac{(g', g'', g''')}{k^2}$$

Док-во

$$g'(s) = \overrightarrow{v} \qquad |\overrightarrow{v}| = 1$$

$$g''(s) = v' = k\overrightarrow{n}$$

$$g'''(s) = kn' = k(-k\overrightarrow{v} + \cancel{x}\overrightarrow{b}) = -k^2\overrightarrow{v} + \cancel{x}\cancel{k}\overrightarrow{b}$$

$$(g', g'', g''') = (\overrightarrow{v}; k\overrightarrow{n}; -k^2\overrightarrow{v} + \cancel{x}\cancel{k}\overrightarrow{b}) = (v; kn; \cancel{x}\cancel{k}\cancel{b}) = \cancel{x}\cancel{k}\cancel{k}$$

$$\Rightarrow \cancel{x} = \frac{(g', g'', g''')}{k^2}$$

Теорема

$$f(t)$$
 - парам (\forall) , тогда:

$$\mathbf{æ} = \frac{(f', f'', f''')}{\left|f' \times f''\right|^2}$$

Док-во

$$f(t)$$
 - парам (\forall)
$$S=\psi(t)=\int_a^t|f'(\tau)|\,d\tau\qquad g(s)$$
 - нат. парам
$$\psi'(t)=|f'(t)|$$

$$g(S)=g(\psi(t))=f(t)$$

$$f'(t)=g'(\psi(t))\cdot\psi'(t)=g'(s)\cdot|f'(t)|$$

$$f''(t) = g''(\psi(t))(\psi(t))^{2} + g'(\psi(t))\psi''(t) = g''(s) \cdot |f'(t)|^{2} + g'(s) \cdot \psi''(t)$$

$$f'''(t) = g'''(\psi(t))(\psi'(t))^{3} + g''(\psi(t)) \cdot 3\psi'(t)\psi''(t) + g'(\psi(t)) \cdot \psi'''(t)$$

$$(f', f'', f''') = (\overrightarrow{f'}(s) \cdot |f'(t)|; \overrightarrow{g}''(s) |f'(t)|^{2}, g'''(s) \cdot |f'(t)|^{3}) =$$

$$= (g', g'', g''') \cdot |f'(t)|^{6}$$

$$\approx = \frac{(g', g'', g''')}{k^{2}} = \frac{(f', f'', f''')}{|f'(t)|^{6}} \cdot \frac{|f'(t)|^{6}}{|f' \times f''|^{2}} = \frac{(f', f'', f''')}{|f' \times f''|^{2}}$$

Пример

$$\begin{cases} x = t \\ y = f(t) \end{cases}$$

$$y = f(x) \quad \overrightarrow{f} = (x; f(x); 0) \quad \overrightarrow{f}'(1; f'(x); 0) \quad f''(0; f''(x); 0)$$

$$f''' = (0; f'''(x); 0)$$

$$k = \frac{|f''(x)|}{(1 + f'^{2}(x))^{\frac{3}{2}}}$$

$$f' \times f'' = (0; 0; f''(x))$$

$$\alpha = 0$$

5.1 Дополнение 1: плоскости, связ. с кривыми

Опр

Соприкас плоскость : $\langle \overrightarrow{v}, \overrightarrow{u} \rangle$

Нормальная плоскость кривой : < n, b >

Спрямляющая плоскость : < v, b >

Теорема

$$\overrightarrow{f}(t) = (f_1(t); f_2(t); f_3(t))$$
 ур-е нормали плоск.

$$\overrightarrow{v} \parallel f'(t) = (f_1', f_2', f_3') \quad f_1'(t_0) \cdot (x - f_1(t_0)) + f_2'(t_0) \cdot (y - f_2(t_0)) + f_3'(t_0) \cdot (z - f_3(t_0)) = 0$$

$$f' \times f'' \parallel b$$

так как л.н.

$$(f_1', f_2', f_3') \times (f_1'', f_2'', f_3'') = (f_2'f_3'' - f_3'f_2''; f_3'f_1'' - f_1'f_3''; f_1'f_2'' - f_2'f_1'')$$

Соприкас плоск.

$$\begin{vmatrix} f_1'(t_0) & f_2'(t_0) & f_3'(t_0) \\ f_1''(t_0) & f_2''(t_0) & f_3''(t_0) \\ x - f_1(t_0) & y - f_2(t_0) & z - f_3(t_0) \end{vmatrix} = 0$$
$$(f'(t_0) \times f''(t_0)) \times f'(t_0) \parallel \overrightarrow{n}$$

Ур-е спрям. плоск - УПР

Теорема

 δ - расст. от f(t) до соприкас. плоскости

Если плоскость явл. соприкас., то

$$\lim_{t \to t_0} \frac{\delta}{|f(t) - f(t_0)|^2} = 0$$

Плоскость с таким соотношением ед.

Док-во Условия достигаются за счет подходящей системы координат

a)
$$f(t_0) = (0, 0, 0)$$

b)
$$OX \parallel \overrightarrow{v}(t_0)$$

c)
$$OY \parallel \overrightarrow{n}(t_0)$$

$$d) \quad t_0 = 0$$

e) t - нат. параметр

б, в
$$\Rightarrow OZ \parallel \overrightarrow{b}(t_0)$$

$$f(t) = (f_1(t); f_2(t); f_3(t)) \Rightarrow \delta = |f_3(t)s|$$

Соприкас z=0

$$\overrightarrow{v} \parallel f' = (f'_1, f'_2, f'_3) \parallel OX \Rightarrow f'_2(0) = 0, \quad f'_3(0) = 0 \quad f'_1(0) \neq 0$$

$$\overrightarrow{n} \parallel f'' = (f''_1, f''_2, f''_3) \parallel OY \Rightarrow f''_1(0) = 0; \quad f''_3(0) = 0$$

Следует из пунтка е)

Хотим
$$\lim_{t \to 0} \frac{|f_3(t)|}{|f(t)|^2} = 0$$

$$\lim_{t \to t_0} \frac{f_3(t)}{f_1(t)^2 + f_2(t)^2 + f_3(t)^2} = \lim_{t \to 0} \frac{f_3'(t)}{2f_1(t)f_1'(t) + 2f_2(t)f_2'(t) + 2f_3(t)f_3'(t)}$$

$$= \frac{1}{2} \lim_{t \to 0} \frac{f_3''(t)}{f_1'^2(t) + f_1(t)f_1''(t) + f_2(t)f_2''(t) + f_3'^2(t) + f_3(t)f_3''(t)}$$

Все кроме первого слагаемого в знаменателе стремятся к 0, числитель тоже стремится к 0. Замечание. Можно было разложить f_1, f_2, f_3 по Тейлору. Можно зачеркнуть пункт g(e) и g''(0) = 0

5.2 Дополнение 2: натур. ур-я кривой

Теорема

$$g_1(s)$$
 и $g_2(s)$ - нат. парам. двух кривых

$$k_1(s)$$
 — $k_2(s)$ — кривизны и кручения $\mathfrak{x}_1(s)$ — $\mathfrak{x}_2(s)$ — кривизны и кручения

Если
$$k_1(s) = k_2(s)$$
 $\approx_1(s) = \approx_2(s)$ \Rightarrow кривые наклад. при движении пр-ва

Док-во

$$v_1(s), n_1(s), b_1(s)$$
 - базис Френе I кривой $v_2(s), n_2(s), b_2(s)$ - базис Френе II кривой Считаем $v_1(s_0)=v_2(s_0)$ $n_1(s_0)=n_2(s_0)$ $b_1(s_0)=b_2(s_0)$

В данной точке базисы кривой одинаковы, а дальше возможно не совпадают. Почему не может?

$$h(s) = \overrightarrow{v}_1(s) \overrightarrow{v}_2(s) + \overrightarrow{n}_1(s) \overrightarrow{n}_2(s) + \overrightarrow{b}_1(s) \overrightarrow{b}_2(s) \quad h(s_0) = 3$$
$$h'(s) = v'_1 v_2 + v_1 v'_2 + n'_1 n_2 + n_1 n'_2 + b'_1 b_2 + b_1 b'_2 =$$

По формуле Френе

$$= \underline{k_1 n_1 v_2} + \underline{k_2 v_1 n_2} + (\underline{-k_1 v_1} + \underline{w_1 b_1}) n_2 + n_1 (\underline{-k_2 v_2} + \underline{w_2 b_2}) - \underline{w_1 n_1 b_2} - \underline{w_2 b_1 n_2} = 0$$

$$\Rightarrow h(s_0) \equiv 3$$

$$\Rightarrow v_1 \equiv v_2 \quad n_1 \equiv n_2 \quad b_1 \equiv b_2$$

2019-09-30

5.3 Дифференциальная геометрия поверхностей

5.3.1 Понятие поверхности

2.
$$F(x, y, z) = 0$$
 - неявное задание

Теорема (о неявной функции)

$$F(x,y,z)=0, \quad F$$
 - непр. дифф., $F(x_0,y_0,z_0)=0, \quad \frac{\partial f}{\partial z}\big|_{(x_0,y_0,z_0)} \neq 0$ $\Rightarrow \exists f(x,y): F(x,y,f(x,y))=0$ в некоторой окр.

Опр

$$D \subset \mathbb{R}^2, \quad \forall (u, v) \in D, \quad \overline{r} - \overline{r} - \overline{r}$$

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases}$$

$$\overline{r} = \overline{r}(u, v) \quad \overline{r} : D \to \mathbb{R}^3$$

Пример

$$z = f(x, y)$$

$$\begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

Координат. линии поверхности:

$$u=u_0$$
 $\overline{r}(u,v)$ - кривая $\overline{r}(u,v)$ - другое семейство

Замечание

Линии перпендикулярны

Опр

Перепараметризация биекция

Опр

Параметризация называется регулярной, если

$$\frac{\partial \overline{r}}{\partial u}$$
 и $\frac{\partial \overline{r}}{\partial v}$ не перпендикулярны ни в одной точке

$$(\Leftrightarrow \frac{\partial \overline{r}}{\partial u} \times \frac{\partial \overline{r}}{\partial v} \neq 0)$$

Опр

Кривая лежит на поверхности, если все её точки лежат на поверхности

$$\begin{cases} u = u(t) \\ v = v(t) \end{cases}$$

$$\Rightarrow \overline{r} = (x(u(t), v(t)), y(...)...)$$

Опр

Вектор называется касательным, если он является касательным к кривой на поверхности

Теорема

Если поверхность регулярная \Rightarrow касательные векторы образуют плоскость

Опр

Касательная плоскость - плоскость из касательных векторов

Базис:
$$\frac{\partial r}{\partial u} A$$
 и $\frac{\partial r}{\partial v} A$
$$\begin{cases} u = t \\ v = v_0 \end{cases}$$

$$\begin{cases} u^2 = u_0 \\ v = t \end{cases}$$
 $\overline{r}(t) = (x(t_0, v_0), \ y(t_0, v_0), \ z(t_0, v_0))$

$$\overline{r'}(t) = (x'(t_0, v_0), \ y'(t_0, v_0), \ z'(t_0, v_0)) = \left(\frac{\partial x}{\partial u}...\right)$$

$$u=u(t)$$

$$v=v(t)$$

$$\frac{dr}{dt}\Big|_A=\left(\frac{\partial \overline{r}}{\partial u}\right)\frac{du}{dt}+\frac{\partial \overline{r}}{\partial v}\frac{dv}{dt}\Big|+a$$
 Наоборот $\alpha\frac{\partial \overline{r}}{\partial u}\Big|_A+\beta\frac{\partial \overline{r}}{\partial v}\Big|_A$ - вектор
$$\begin{cases} u(t)=\alpha t\\ v(t)=\beta t \end{cases}$$

Как задать касательную плоскость в координатах?

Пусть
$$\overline{n}$$
 - нормаль к плоскости

$$\overline{n} = (A, B, C)$$

$$\Rightarrow A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

$$\overline{n} = \frac{\partial \overline{r}}{\partial u} \times \frac{\partial \overline{r}}{\partial v}$$

$$\overline{r} = (x, y, z)$$

$$\frac{\partial \overline{r}}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$$

$$\frac{\partial \overline{r}}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial u}\right)$$

$$\overline{n} = \begin{pmatrix} \left|\frac{\partial y}{\partial u} & \frac{\partial z}{\partial u}\right| & \left|\frac{\partial z}{\partial u} & \frac{\partial x}{\partial u}\right| & \left|\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u}\right| \\ \left|\frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}\right| & \left|\frac{\partial z}{\partial v} & \frac{\partial x}{\partial v}\right| & \left|\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}\right| \end{pmatrix}$$

$$\Rightarrow \det \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} = 0 - \text{уравнение касательной плоскости}$$

$$x - x_0 \quad y - y_0 \quad z - z_0 \end{vmatrix}$$

y_{TB}

В неявном виде

$$\nabla F = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) - \text{перп. плоскости}$$

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

$$\frac{dF}{dt} = 0 \quad \frac{dF}{dt} = \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = \nabla F \circ (x', y', z') = 0$$

$$\nabla F \bot \text{касат. вектору (любому)} \Rightarrow \nabla F - \text{норм пов-ть}$$

y_{TB}

Уравнение касательной плокости:

$$\frac{\partial F}{\partial x}(x-x_0) + \frac{\partial F}{\partial y}(y-y_0) + \frac{\partial F}{\partial z}(z-z_0)$$

5.3.2 Первая квадратичная плоскость

Длина кривой на поверхности
$$\begin{cases} u = u(t) \\ v = v(t) \\ \overline{r} \text{ - пов-ть} \end{cases}$$

$$r = (x, y, z) = (x(u(t), v(t)), \ y(u(t), v(t)), \ z(u(t), v(t)))$$
Длина кривой
$$= \int_{t_0}^{t_1} \left| \frac{d}{dt} \overline{r}(u(t), v(t)) \right| dt = \int_{t_0}^{t_1} \left| \left(\frac{\partial x}{\partial u} u' + \frac{\partial x}{\partial v} v', \ \frac{\partial y}{\partial u} u' + \frac{\partial y}{\partial v} v', \ \frac{\partial z}{\partial u} u' \right) \right| dt$$

$$E = \left(\frac{\partial x}{\partial u}\right)^{2} + \left(\frac{\partial y}{\partial u}\right)^{2} + \left(\frac{\partial z}{\partial u}\right)^{2} = \frac{\partial \overline{r}}{\partial u} \times \frac{\partial \overline{r}}{\partial u}$$

$$F = \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} + \frac{\partial y}{\partial u} \frac{\partial y}{\partial v} + \frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = \frac{\partial \overline{r}}{\partial u} \times \frac{\partial \overline{r}}{\partial v}$$

$$G = \left(\frac{\partial x}{\partial v}\right)^{2} + \left(\frac{\partial y}{\partial v}\right)^{2} + \left(\frac{\partial z}{\partial v}\right)^{2} = \frac{\partial \overline{r}}{\partial v} \times \frac{\partial \overline{r}}{\partial v}$$

Опр

$$\int_{t_0}^{t_1} \sqrt{Eu'^2 + 2Fu'v' + Gv'^2} dt$$
 - первая квадратичная форма

Теорема

Угол медлу кривыми

$$\cos\alpha = \frac{Eu_1'u_2' + F(u_1'v_2' + u_2'v_1') + Gv + 1'v_2'}{\sqrt{Eu_1'^2 + 2Fu_1'v_1' + Gv_1'^2}\sqrt{\dots}}$$

Док-во

Найдем, как вычисляется угол между кривыми

$$\begin{cases} u = u_1(t) \\ v = v_2(t) \end{cases} \qquad \begin{cases} u = u_2(t) \\ v = v_2(t) \end{cases}$$

Нужно найти угол между $\overline{r}'_t(u_1(t), v_1(t))$ и $\overline{r}'_t(u_2(t), v_2(t))$

$$\cos \alpha = \frac{\overline{r}'_t(u_1(t), v_1(t)) * \overline{r}'_t(u_2(t), v_2(t))}{|\overline{r}'_t(u_1(t), v_1(t))||} \overline{r}'_t(u_2(t), v_2(t))|$$

$$r'_t(u_1(t), v_1(t)) = \left(\frac{\partial x}{\partial u} \frac{du_1}{dt} + \frac{\partial x}{\partial v} \frac{dv_1}{dt}; ...\right)$$

$$\frac{d\overline{r}}{dt}(u_i(t), v_i(t)) = \frac{\partial \overline{r}}{\partial u} u'_i + \frac{\partial \overline{r}}{\partial v} v'_i$$

$$\frac{dr}{dt}(u_1(t), v_1(t)) \frac{dr}{dt}(u_2(t), v_2(t)) = \left(\frac{\partial \overline{r}}{\partial u} u'_1 + \frac{\partial \overline{r}}{\partial v} v'_1\right) \left(\frac{\partial \overline{r}}{\partial u} u'_2 + \frac{\partial \overline{r}}{\partial v} v'_2\right) = Eu'_1 u'_2 + F(u'_1 v'_2 + u'_2 v'_1) + Gv + 1'v'_2$$

$$\cos \alpha = \frac{Eu'_1 u'_2 + F(u'_1 v'_2 + u'_2 v'_1) + Gv + 1'v'_2}{\sqrt{Eu'_1^2 + 2Eu'_1 v'_1 + Gv'_2}}$$

Опр

Поверхности Φ_1 и Φ_2 называются изометричными, если \exists параметризации \overline{r}_1 у Φ_1 и \overline{r}_2 у Φ_2 $r_1, r_2: D \to \mathbb{R}^3$ и \forall кривой D длины $|r_1(l)| = |r_2(l)|$

Опр

Внутренняя метрика поверхности $(A,B)=\inf\{$ длина кривой на поверхности, с

Теорема

Если у Φ_1 и Φ_2 совпадают коэффициенты I кв. формы, то они изометричны

Док-во

Уже доказали, потому что форма вычисления длины кривой одинаковая на обеих поверхностях

Замечание

Если поверхности изометричны, то $\exists D$ и параметризации $\overline{r}_1,\overline{r}_2:D\to\mathbb{R}^3,\ r_i$ - параметризация поверхности Φ_i такие что E,F,G совпадают для \overline{r}_1 и \overline{r}_2

Док-во

Следствие

I кв. форма определяет внутреннюю геометрию

Пример

Сфера
$$x^2 + y^2 + z^2 = R^2$$

$$\begin{cases} x = R\cos\varphi\cos\psi \\ y = R\sin\varphi\cos\psi \\ z = R\sin\psi \end{cases}$$

$$\overline{r} = (R\cos\varphi\cos\psi, \ R\sin\varphi\cos\psi, \ R\sin\psi)$$

$$r'_{\varphi} = (-R\sin\varphi\cos\psi, \ R\cos\varphi\cos\psi, \ 0)$$

$$r'_{\psi} = (R\cos\varphi\sin\psi, \ -R\sin\varphi\sin\psi, \ R\cos\psi)$$

$$\begin{split} E &= r_\varphi'^2 = R^2 \sin^2 \varphi \cos^2 \psi + R^2 \cos^2 \varphi \cos^2 \psi = R^2 \cos^2 \psi \\ F &= R^2 \sin \varphi \cos \varphi \cos \varphi \sin \psi - R^2 \cos \varphi \sin \varphi \cos \varphi \sin \psi + 0 = 0 \\ G &= R^2 \end{split}$$

Пример (параметризация поверхности вращения)

$$\begin{cases} x = f(t)\cos\varphi \\ y = f(t)\sin\varphi \\ z = g(t) \end{cases}$$

Упр

У любой поверхности вращения F=0, E не зависит от $\varphi,$ G тоже

Теорема

$$|\overline{r}'_u \times \overline{r}'_v| = \sqrt{EG - F^2}$$

Док-во

$$\overline{r}_{u} \times \overline{r}_{v} = (\overline{x}_{u}, \overline{y}_{u}, \overline{z}_{u}) \times (\overline{x}_{v}, \overline{y}_{v}, \overline{z}_{v}) = (y_{u}z_{v} - z_{u}y_{v}, z_{u}x_{v} - x_{u}z_{v}, x_{u}y_{v} - y_{u}x_{v}) \\
|\overline{r}_{n} \times \overline{r}_{v}| = \sqrt{(y_{u}z_{v} - z_{n}y_{v})^{2} + (z_{u}x_{v} - x_{u}z_{v})^{2} + (x_{u}y_{v} - x_{v}y_{u})^{2}} = \\
= \sqrt{(y_{u}^{2}z_{v}^{2} + z_{n}^{2}y_{v}^{2}) - 2(y_{u}z_{v}z_{u}y_{v} + z_{u}x_{u}z_{v}x_{u} + x_{u}x_{v}y_{u}y_{v})}_{=B}} \\
EG - F^{2} = (x_{u}^{2} + y_{u}^{2} + z_{u}^{2})(z_{v}^{2} + y_{v}^{2} + z_{v}^{2}) - (x_{u}x_{v} + y_{u}y_{v} + z_{u}z_{v})^{2} = \\
= (x_{u}^{2}x_{v}^{2} + y_{u}^{2}y_{v}^{2} + z_{u}^{2}z_{v}^{2}) + (A) - (x_{u}^{2}x_{v}^{2} + y_{u}^{2}y_{v}^{2} + z_{u}^{2}z_{v}^{2}) - 2(B)$$

Следствие

$$EG - F^2 > 0$$

Теорема

Площадь поверхности
$$S = \iint\limits_{D} \sqrt{EG - F^2} du dv$$