Algebraic Number Theory

Lectured by Dr Anthony Scholl Typed by David Kurniadi Angdinata

Lent 2020

Syllabus

Contents

1	Abs	solute values and places	3	
	1.1	Absolute values	3	
	1.2	Places		
	1.3	Extensions of places		
2	Nui	mber fields	6	
	2.1	Dedekind domains	6	
	2.2	Places of number fields	8	
	2.3	Extensions of places of number fields		
3	Different and discriminant			
	3.1	Discriminant	10	
	3.2	Different		
4	Exa	amples	14	
		Quadratic fields	14	
	4.2	Cyclotomic fields		
	4.3	Frobenius elements		
	4.4	Quadratic reciprocity		
5	Ide	les and adeles	17	
	5.1	Ring of adeles	17	

Absolute values and places 1

Absolute values 1.1

Lecture 1 Thursday

Let K be a field. Recall that an absolute value (AV) on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that for all $x, y \in K$

21/01/21

- 1. |x| = 0 if and only if x = 0,
- 2. $|xy| = |x| \cdot |y|$, and
- 3. $|x+y| \le |x| + |y|$.

Also assume

4. there exists $x \in K$ such that $|x| \neq 0, 1$.

This excludes the trivial AV

$$|x| = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}.$$

An AV is a non-archimedean if

$$3^{\text{NA}}$$
. $|x+y| \leq \max(|x|,|y|)$,

and archimedean otherwise. An AV determines a metric d(x,y) = |x-y| which makes K a topological **field**, so +, \times , and $(\cdot)^{-1}$ are continuous.

Remark. It is convenient to weaken 3 to

3'. there exists $\alpha > 0$ such that for all x and $y, |x+y|^{\alpha} \le |x|^{\alpha} + |y|^{\alpha}$.

For non-archimedean AV, makes no difference. Does mean that if $|\cdot|$ is an AV, then so is $|\cdot|^{\alpha}$ for any $\alpha > 0$. The point is that we want the function $z \mapsto z\overline{z}$ on \mathbb{C} to be an AV. Explain why later.

Let us suppose $|\cdot|$ is a non-archimedean AV. Then

$$R = \{x \in K \mid |x| \le 1\}$$

is a subring of K. It is a **local ring** with maximal ideal

$$\mathfrak{m}_R = \{ |x| < 1 \}$$
.

It is a valuation ring of K, so if $x \in K \setminus R$ then $x^{-1} \in R$.

Lemma 1.1. R is a maximal subring of K.

Proof. Let $x \in K \setminus R$. Then |x| > 1. Then if $y \in R$, there exists $n \ge 0$ such that $|yx^{-n}| = |y|/|x|^n \le 1$, that is $y \in x^n R$ for $n \gg 0$. So R[x] = K, hence R is maximal.

Remark. There is a general notion of valuation, not necessarily R-valued, seen in algebraic geometry. The valuations we are considering here are rank one valuations, and they have this maximality property.

AVs $|\cdot|$ and $|\cdot|'$ are **equivalent** if there exists $\alpha > 0$ such that $|\cdot|' = |\cdot|^{\alpha}$.

Proposition 1.2. The following are equivalent.

- $|\cdot|$ and $|\cdot|'$ are equivalent.
- for all $x, y \in K$, $|x| \le |y|$ if and only if $|x|' \le |y|'$.
- for all $x, y \in K$, |x| < |y| if and only if |x|' < |y|'.

Proof. See local fields.

A corollary is if $|\cdot|$ and $|\cdot|'$ are non-archimedean AVs with valuation rings R and R', then $|\cdot|$ and $|\cdot|'$ are equivalent if and only if R = R', if and only if $R \subset R'$, by 1.1.

Equivalent AVs define equivalent metrics on K, hence the completion of K with respect to $|\cdot|$ depends only on the equivalence class of $|\cdot|$. Inequivalent AVs determine independent topologies, in the following sense.

Proposition 1.3 (Weak approximation). Let $|\cdot|_i$ for $1 \leq i \leq n$ be pairwise inequivalent AVs on K, let $a_1, \ldots, a_n \in K$, and let $\delta > 0$. Then there exists $x \in K$ such that for all $i, |x - a_i|_i < \delta$.

Proof. Suppose $z_j \in K$ such that $|z_j|_j > 1$ and $|z_j|_i < 1$ for all $i \neq j$. Then $\left|z_j^N / \left(z_j^N + 1\right)\right|_i \to 0$ as $N \to \infty$ if $i \neq j$ but $\left|z_j^N / \left(z_j^N + 1\right) - 1\right|_i = \left|1 / \left(z_j^N + 1\right)\right|_i \to 0$. So

$$x = \sum_{j} a_j \frac{z_j^N}{z_j^N + 1}$$

works if N is sufficiently large. So it is enough to find z_j , and by symmetry take j=1. Induction on n.

n = 1. Trivial.

n>1. Suppose have y with $|y|_1>1$ and $|y|_2,\ldots,|y|_{n-1}<1$. If $|y|_n<1$, finished. Otherwise, pick $w\in K$ with $|w|_1>1>|w|_n$, such as by 1.2. If $|y|_n=1$, then $z=y^Nw$ works, for N sufficiently large. If $|y|_n>1$, then $z=y^Nw/\left(y^N+1\right)$ works, for N sufficiently large.

Remark. If $K = \mathbb{Q}$ and $|\cdot|_1, \ldots, |\cdot|_n$ are p_i -adic AVs for distinct primes p_i , and $a_i \in \mathbb{Z}$, then weak approximation says that for all $n_i \geq 1$, there exists $x \in \mathbb{Q}$, which is a p_i -adic integer for all $i \in \{1, \ldots, n\}$ and $x \equiv a_i \mod p_i^{n_i}$. This of course follows from CRT, which guarantees there exists $x \in \mathbb{Z}$ satisfying this.

1.2 Places

Definition. A place of K is an equivalence class of AVs on K.

Example. If $K = \mathbb{Q}$, by Ostrowski's theorem, every AV on \mathbb{Q} is equivalent to one of

- a p-adic AV $|\cdot|_p$ for p prime, or
- a Euclidean AV $|\cdot|_{\infty}$.

So places of \mathbb{Q} are in bijection with $\{\text{primes}\} \cup \{\infty\}$. We will usually simply denote the places of \mathbb{Q} by $\{2, 3, \ldots, \infty\} = \{p \leq \infty\}$.

Notation. Let

- V_K be the places of K,
- $V_{K,\infty}$ be the places given by archimedean AVs, the **infinite places**, and
- $V_{K,f}$ be the places given by non-archimedean AVs, the finite places.

Often use letters v and w, decorated suitably, to denote places. If $v \in V_K$, then K_v will denote the completion. If $v: K^{\times} \to \mathbb{R}$ is a valuation, will also use v to denote the corresponding place, that is the class of AVs $x \mapsto r^{-v(x)}$ for r > 1.

Can restate weak approximation in terms of places.

Proposition 1.4. Let v_1, \ldots, v_n be distinct places of K. Then the image of the diagonal inclusion

$$K \hookrightarrow \prod_{1 \le i \le n} K_{v_i}$$

is dense, for the product topology.

1.3 Extensions of places

Let L/K be finite separable, and let v and w be places of K and L respectively. Say w lies over, or divides, v, denoted $w \mid v$, if $v = w \mid_K$ is the restriction of w to K. Then there exists a unique continuous $K_v \hookrightarrow L_w$ extending $K \hookrightarrow L$.

Proposition 1.5. There is a unique isomorphism of topological rings mapping

$$\begin{array}{ccc} L \otimes_K K_v & \longrightarrow & \prod_{w \in \mathcal{V}_L, \ w \mid v} L_w \\ x \otimes y & \longmapsto & (xy)_w \end{array}.$$

In the local fields course, proved this for finite places of number fields.

Proof. Let L = K(a), and let $f \in K[T]$ be the minimal polynomial, which is separable. Factor $f = \prod_i g_i$ for $g_i \in K_v[T]$ irreducible and distinct. Let $L_i = K_v[T] / \langle g_i \rangle$. Then $L \otimes_K K_v = K_v[T] / \langle f \rangle \xrightarrow{\sim} \prod_i L_i$ by CRT. Let $w \mid v$, inducing $\iota_w : L \hookrightarrow L_w$. Let $g_w \in K_v[T]$ be the minimal polynomial of $\iota_w(a)$ over K_v . Then $g_w \mid f$ so $g_w \in \{g_i\}$ and $L_w = K_v(\iota_w(a))$ is some L_i . Conversely, K_v is complete and L_i/K_v is finite, so there exists a unique extension of v to L_i , so there is a bijection $\{g_i\} \leftrightarrow \{w \mid v\}$, and thus

$$L\otimes_K K_v\cong \prod_w L_w.$$

Use that both sides are finite-dimensional normed K_v -spaces. For the left hand side, choose a basis of L/K for $L \otimes_K K_v \cong K_v^{[L:K]}$ with norm $\|(x_i)\| = \sup_i |x_i|_v$, where $|\cdot|_v$ is an AV in class of v satisfying triangle inequality. For the right hand side, $\|(y_w)\| = \sup_w |y_w|_w$, where $|\cdot|_w$ is the AV in class of w extending $|\cdot|_v$. A fact is that any two norms on a finite-dimensional vector space over a field complete with respect to an AV are equivalent. For local fields, exactly the same proof as for \mathbb{R} , and in general not much harder. See Cassels and Fröhlich chapter II, section 8.

Corollary 1.6.

• $\{w \mid v\}$ is finite, non-empty, and

$$\sum_{w|v} [L_w : K_v] = [L : K].$$

• For all $x \in L$,

$$N_{L/K}(x) = \prod_{w|v} N_{L_w/K_v}(x), \qquad \operatorname{Tr}_{L/K}(x) = \sum_{w|v} \operatorname{Tr}_{L_w/K_v}(x).$$

Let L/K be a finite Galois extension with $G = \operatorname{Gal}(L/K)$. Then G acts on places w of L lying over a given place v of K. If $|\cdot|$ is an AV on L, then for all $g \in G$, the map $x \mapsto |g^{-1}(x)|$ is an AV on L, agreeing with $|\cdot|$ on K. So this defines a left action of G on $\{w \mid v\}$ by $g(w) = w \circ g^{-1}$. If $w = v_{\mathfrak{p}}$ for a prime \mathfrak{p} in a Dedekind domain, then $g(w) = v_{g(\mathfrak{p})}$.

Lecture 2 Saturday 23/01/21

Definition. Define the **decomposition group** D_w or G_w to be the stabiliser of w in G.

If $g \in G_w$, then it is continuous for the topology induced by w on L, so extends to an automorphism of L_w , the completion. Then $G_w \hookrightarrow \operatorname{Aut}(L_w/K_v)$, by continuity, so $\#G_w \leq [L_w : K_v]$, and

$$\#G = \left(G:G_w\right) \#G_w \leq \left(G:G_w\right) \left[L_w:K_v\right] = \sum_{g \in G/G_w} \left[L_{g(w)}:K_v\right] \leq \sum_{w' \mid v} \left[L_{w'}:K_v\right] = \left[L:K\right] = \#G,$$

by 1.6. So have equality, hence $[L_w:K_v]=\#G_w$, and so L_w/K_v is Galois with group $\operatorname{Gal}(L_w/K_v) \xrightarrow{\sim} G_w \subset G$, and G acts transitively on places over v.

Notation. Suppose v is discrete valuation of L, so a finite place, and the valuation ring is a DVR. Then so is any $w \mid v$, and define $f(w \mid v) = f_{L_w/K_v}$ to be the degree of residue class extension and $e(w \mid v)$ to be the ramification degree, and

$$[L_w : K_v] = e(w \mid v) f(w \mid v).$$

2 Number fields

Remark. A lot of theory applies to other global fields, that is **function fields** $K/\mathbb{F}_p(t)$ that are finite extensions. These are less interesting, at least to number theorists, since there are no infinite places.

Let K be a **number field**, a finite extension of \mathbb{Q} , with **ring of integers** \mathcal{O}_K , the integral closure of \mathbb{Z} in K. A basic property is that \mathcal{O}_K is a Dedekind domain, that is

- 1. Noetherian, in fact, by finiteness of integral closure, \mathcal{O}_K is a finitely generated \mathbb{Z} -module,
- 2. integrally closed in K, by definition, and
- 3. every non-zero prime ideal is maximal, so Krull dimension at most one.

2.1 Dedekind domains

The following are basic results about Dedekind domains.

Theorem 2.1.

- 1. A local domain is Dedekind if and only if it is a DVR.
- 2. For a domain R, the following are equivalent.
 - (a) R is Dedekind.
 - (b) R is Noetherian and for all non-zero prime $\mathfrak{p} \subset R$, $R_{\mathfrak{p}}$ is a DVR.
 - (c) Every fractional ideal of R is invertible.
- 3. A Dedekind domain with only finitely many prime ideals, so **semi-local**, is a PID.

A fractional ideal of R is a non-zero R-submodule $I \subset K$ such that for some $0 \neq x \in R$, $xI \subset R$ is an ideal, and I is invertible if there exists a fractional ideal I^{-1} such that $II^{-1} = R$.

Proof.

- 1. A DVR is a local PID. Proved in local fields. The forward direction is the hardest part.
- 2. Let $K = \operatorname{Frac} R$.
- $(a) \implies (b)$. Enough to check ¹ that properties 1 to 3 are preserved under localisation, then use part 1.
- (b) \implies (c). To prove (c), may assume $I \subset R$ is an ideal. Let

$$I^{-1} = \{ x \in K \mid xI \subset R \}.$$

If $0 \neq y \in I$, then $R \subset I^{-1} \subset y^{-1}R$, so I^{-1} is a fractional ideal and $I^{-1}I \subset R$. Let $\mathfrak{p} \subset R$ be prime, so $R_{\mathfrak{p}}$ is a DVR. It suffices to prove $I^{-1}I \not\subset \mathfrak{p}$. Let $I = \langle a_1, \ldots, a_n \rangle$ for $a_i \in R$. Without loss of generality, $v_{\mathfrak{p}}(a_1) \leq v_{\mathfrak{p}}(a_i)$ for all i. Then $IR_{\mathfrak{p}} = a_1R_{\mathfrak{p}}$, so for all i, $a_i/a_1 = x_i/y_i \in R_{\mathfrak{p}}$ for $x_i \in R$ and $y_i \in R \setminus \mathfrak{p}$. Then $y = \prod_i y_i \notin \mathfrak{p}$ as \mathfrak{p} is prime, and $ya_i/a_1 \in R$ for all i, so $y/a_1 \in I^{-1}$. Thus $y \in II^{-1} \setminus \mathfrak{p}$.

- $(c) \implies (a)$. Check the following.
 - R is Noetherian. Let $I \subset R$ be an ideal. Then $II^{-1} = R$, so $1 = \sum_{i=1}^{n} a_i b_i$ for $a_i \in I$ and $b_i \in I^{-1}$. Let $I' = \langle a_1, \dots, a_n \rangle \subset I$. Then $I'I^{-1} = R = II^{-1}$, so I' = I. So I is finitely generated.
 - R is integrally closed. Let $x \in K$, integral over R. Then $I = R[x] = \sum_{0 \le i < d} Rx^i \subset K$, where d is the degree of the polynomial of integral independence, is a fractional ideal. Obviously $I^2 = I$, so $I = I^2I^{-1} = II^{-1} = R$, that is $x \in R$.
 - Every non-zero prime is maximal. Let $\{0\} \neq \mathfrak{q} \subset \mathfrak{p} \subsetneq R$ for \mathfrak{p} and \mathfrak{q} prime. Then $R \subsetneq \mathfrak{p}^{-1} \subset \mathfrak{q}^{-1}$, so $\mathfrak{q} \subsetneq \mathfrak{p}^{-1}\mathfrak{q} \subset R$, and $\mathfrak{p}(\mathfrak{p}^{-1}\mathfrak{q}) = \mathfrak{q}$, so as \mathfrak{q} is prime and $\mathfrak{p}^{-1}\mathfrak{q} \not\subset \mathfrak{q}$, so $\mathfrak{p} \subset \mathfrak{q}$, that is $\mathfrak{p} = \mathfrak{q}$.

 $^{^{1}}$ Exercise

3. Let R be semi-local Dedekind with non-zero primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Choose $x \in R$ with $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_1^2$ and $x \notin \mathfrak{p}_2, \ldots, \mathfrak{p}_n$. Then $\mathfrak{p}_1 = \langle x \rangle$, and every ideal is a product of powers of $\{\mathfrak{p}_i\}$, by below, so R is a PID.

Theorem 2.2. Let R be Dedekind. Then

1. the group of fractional ideals is freely generated by the non-zero prime ideals, and

$$I = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathbf{v}_{\mathfrak{p}}(I)}, \qquad \mathbf{v}_{\mathfrak{p}}(I) = \inf \left\{ \mathbf{v}_{\mathfrak{p}}\left(x\right) \mid x \in I \right\},$$

2. if $(R:I) < \infty$ for all $I \neq \{0\}$, then for all I and J,

$$(R:IJ) = (R:I)(R:J).$$

Proof.

1. If $I \neq R$, then $I \subset \mathfrak{p}$ for some prime ideal \mathfrak{p} . Then $I = \mathfrak{p}I'$ where $I' = I\mathfrak{p}^{-1} \supsetneq I$ then by Noetherian induction, using the ascending chain condition on ideals, I is a product of powers of prime ideals, $I = \prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}}$. Then get the same for fractional ideals $J = x^{-1}I$. Consider the homomorphisms

The composition is $I \mapsto v_{\mathfrak{p}}(I)$, and if $\mathfrak{q} \neq \mathfrak{p}$ then $v_{\mathfrak{p}}(\mathfrak{q}) = 0$. So

$$(\mathbf{v}_{\mathfrak{p}})_{\mathfrak{p}}$$
: {fractional ideals of R } $\longrightarrow \bigoplus_{\mathfrak{p}} \mathbb{Z}$

$$\prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}} \longmapsto (a_{\mathfrak{p}})_{\mathfrak{p}}.$$

So $a_{\mathfrak{p}}$ are unique and $(v_{\mathfrak{p}})_{\mathfrak{p}}$ is an isomorphism.

2. By unique factorisation of ideals in 1,

Lecture 3 Tuesday 26/01/21

$$\prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}} \cap \prod_{\mathfrak{p}} \mathfrak{p}^{b_{\mathfrak{p}}} = \prod_{\mathfrak{p}} \mathfrak{p}^{\max(a_{\mathfrak{p}},b_{\mathfrak{p}})},$$

so if I + J = R, then $IJ = I \cap J$, so by CRT, $R/IJ \cong R/I \times R/J$ so the result holds if I + J = R. So reduced to showing that $(R : \mathfrak{p}^{n+1}) = (R : \mathfrak{p})(R : \mathfrak{p}^n)$. Now $R/\mathfrak{p}^n \cong R_{\mathfrak{p}}/\mathfrak{p}^n R_{\mathfrak{p}}$, so without loss of generality, R is local, so a DVR, $\mathfrak{p} = \langle \pi \rangle$, and

$$\cdot \pi : R/\langle \pi^n \rangle \xrightarrow{\sim} \langle \pi \rangle / \langle \pi^{n+1} \rangle$$

hence
$$\left(R:\mathfrak{p}^{n+1}\right)=\left(R:\mathfrak{p}\right)\left(\mathfrak{p}:\mathfrak{p}^{n+1}\right)=\left(R:\mathfrak{p}\right)\left(R:\mathfrak{p}^{n}\right).$$

The quotient group

$$\operatorname{Cl} R = \{ \text{fractional ideals of } R \} / \{ \text{principal fractional ideals } aR \text{ for } a \in K^{\times} \}$$

is the class group of R, or the Picard group Pic R. If K is a number field, write $\operatorname{Cl} K = \operatorname{Cl} \mathcal{O}_K$, the ideal class group of K.

Fact. For a number field K, $\operatorname{Cl} K$ is finite.

2.2 Places of number fields

Recall that $V_{\mathbb{Q}} = \{p \mid p \text{ prime}\} \cup \{\infty\}$. Let K be a number field. Let $\mathfrak{p} \subset \mathcal{O}_K$ be non-zero prime. Then \mathfrak{p} determines a discrete valuation $v_{\mathfrak{p}}$ of K and so a non-archimedean $AV |x|_{\mathfrak{p}} = r^{-v_{\mathfrak{p}}(x)}$ for r > 1.

Theorem 2.3. This gives a bijection

$$\{non\text{-}zero\ primes\ of\ \mathcal{O}_K\} \xrightarrow{\sim} V_{K,f}.$$

Proof. Let $\mathfrak{p} \neq \mathfrak{q}$. Then there exists $x \in \mathfrak{p} \setminus \mathfrak{q}$, and then $|x|_{\mathfrak{p}} < 1 = |x|_{\mathfrak{q}}$, so $|\cdot|_{\mathfrak{p}}$ and $|\cdot|_{\mathfrak{q}}$ are inequivalent, so the map is injective. Let $|\cdot|$ be a non-archimedean AV on K, with valuation ring $R = \{x \in K \mid |x| \leq 1\}$. As $|\cdot|$ is non-archimedean, $\mathbb{Z} \subset R$, hence $R \supset \mathcal{O}_K$, as R is integrally closed, and so $R \supset \mathcal{O}_{K,\mathfrak{p}}$ for some prime $\mathfrak{p} = \mathfrak{m}_R \cap \mathcal{O}_K$. Thus $R = \mathcal{O}_{K,\mathfrak{p}}$, since by 1.1 $\mathcal{O}_{K,\mathfrak{p}}$ is a maximal subring of K, so $|\cdot|$ and $|\cdot|_{\mathfrak{p}}$ are equivalent. \square

Notation. If $v \in V_{K,f}$, then

- \mathfrak{p}_v is the corresponding prime ideal of \mathcal{O}_K ,
- K_v is a complete discretely valued field, the completion of K,
- $\mathcal{O}_v = \mathcal{O}_{K_v} \subset K_v$ is the valuation ring, not to be confused with $\mathcal{O}_{K,\mathfrak{p}_v}$,
- $\pi_v \in \mathcal{O}_v$ is any generator of the maximal ideal, the **uniformiser**, often assuming $\pi_v \in K$,
- $v: K^{\times} \to \mathbb{Z}$ is the normalised discrete valuation such that $v(\pi_v) = 1$,
- $\kappa_v = \mathcal{O}_K/\mathfrak{p}_v \cong \mathcal{O}_v/\langle \pi_v \rangle$ is finite of order $q_v = p^{f_v}$ for a prime p such that $v \mid p$, and
- $|x|_v = q_v^{-v(x)}$ is the **normalised AV**, so $|\pi_v|_v = 1/q_v$.

Recall that if L/K is a finite separable field extension and v is a place of K, then $L \otimes_K K_v \cong \prod_{w|v} L_w$. There is a unique infinite place ∞ of \mathbb{Q} and $\mathbb{Q}_{\infty} = \mathbb{R}$. So

$$K \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\sim} \prod_{v \in \mathcal{V}_{K,\infty}} K_v.$$

Each K_v is a finite extension of \mathbb{R} , so either $K_v = \mathbb{R}$, and v is **real**, or $K_v \cong \mathbb{C}$, and v is **complex**. In the second case, as $K \subset K_v$ is dense, $K \not\subset \mathbb{R}$. On the other hand, by Galois theory, $\Sigma_K = \{\text{homomorphisms } \sigma: K \hookrightarrow \mathbb{C}\}$ has order $n = [K:\mathbb{Q}]$ and there is an isomorphism

$$K \otimes_{\mathbb{Q}} \mathbb{C} \longrightarrow \prod_{\sigma \in \Sigma_K} \mathbb{C}$$

$$x \otimes z \longmapsto (\sigma(x) z)_{\sigma}$$

$$(1)$$

Complex conjugation acts on both sides by $x \otimes z \mapsto x \otimes \overline{z}$ and $(z_{\sigma})_{\sigma} \mapsto (\overline{z_{\overline{\sigma}}})_{\sigma}$. Let

$$\sigma_1, \dots, \sigma_{r_1} : K \hookrightarrow \mathbb{R}, \qquad \sigma_{r_1+1} = \overline{\sigma_{r_1+r_2+1}}, \dots, \sigma_{r_1+r_2} = \overline{\sigma_{r_1+2r_2}} : K \hookrightarrow \mathbb{C}, \qquad r_1 + 2r_2 = n.$$

Then taking fixed points under complex conjugation of (1),

$$K \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\sim} \prod_{\sigma \text{ real}} \mathbb{R} \times \prod_{(\sigma, \overline{\sigma}), \ \sigma \neq \overline{\sigma}} \{(z, \overline{z}) \in \mathbb{C} \times \mathbb{C}\} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}.$$

Therefore the following holds.

Theorem 2.4. There is a bijection

$$\begin{array}{ccc} \Sigma_K/\left(\sigma \sim \overline{\sigma}\right) & \longrightarrow & \mathrm{V}_{K,\infty} \\ & \sigma & \longmapsto & \mathit{class\ of\ AV}\ |\sigma\left(\cdot\right)| \ \mathit{in}\ \mathbb{R}\ \mathit{or}\ \mathbb{C} \end{array}.$$

Notation. Define

$$K_{\infty} = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{v \in \mathcal{V}_{K,\infty}} K_v \cong \mathbb{R}^{\{\text{real } v\}} \times \mathbb{C}^{\{\text{complex } v\}},$$

where for v complex, $K_v \cong \mathbb{C}$ is well-defined up to complex conjugation. For normalised AVs,

- v real corresponds to $\sigma: K \hookrightarrow \mathbb{R}$ and $|x|_v = |\sigma(x)|_{\infty}$ is the Euclidean AV, and
- v complex corresponds to $\sigma \neq \overline{\sigma} : K \hookrightarrow \mathbb{C}$ and $|x|_v = \sigma(x) \overline{\sigma}(x) = |\sigma(x)|_{\infty}^2$ is the square of modulus.

2.3 Extensions of places of number fields

Let L/K be an extension of number fields, and let $w \mid v$. If v is finite, L_w/K_v is a finite extension of non-archimedean local fields and $[L_w : K_v] = e(w \mid v) f(w \mid v)$. If v is infinite,

$$L_w/K_v \cong \begin{cases} \mathbb{R}/\mathbb{R} & \text{f} = \text{e} = 1\\ \mathbb{C}/\mathbb{C} & \text{f} = \text{e} = 1\\ \mathbb{C}/\mathbb{R} & \text{e} = 2, \text{f} = 1 \end{cases}.$$

Proposition 2.5. Let $x \in L$ and $v \in V_K$. Then

Lecture 4 Thursday 28/01/21

$$\left| \mathbf{N}_{L/K} \left(x \right) \right|_{v} = \prod_{w \mid v} |x|_{w}.$$

Proof. $N_{L/K}(x) = \prod_{w|v} N_{L_w/K_v}(x)$ so it is enough to show $\left|N_{L_w/K_v}(x)\right|_v = |x|_w$. If v is finite, it is enough to take $x = \pi_w \in L$, and

$$\left| \mathcal{N}_{L_w/K_v} \left(\pi_w \right) \right|_v = \left| u \pi_v^{\mathsf{f}(w|v)} \right|_v = \mathsf{q}_v^{-\mathsf{f}(w|v)} = \mathsf{q}_w^{-1} = \left| \pi_w \right|_w, \qquad u \in \mathcal{O}_K^{\times}.$$

If v is infinite, need only consider $L_w/K_v \cong \mathbb{C}/\mathbb{R}$ and $N_{\mathbb{C}/\mathbb{R}}(z) = z\overline{z}$.

Theorem 2.6 (Product formula). Let $x \in K^{\times}$. Then $|x|_v = 1$ for all but finitely many v and

$$\prod_{v \in \mathcal{V}_K} |x|_v = 1.$$

Proof. Let x = a/b for $a, b \in \mathcal{O}_K \setminus \{0\}$. Then

$$\{v \in V_K \mid |x|_v \neq 1\} \subset V_{K,\infty} \cup \{v \in V_{K,f} \mid v(a) > 0 \text{ or } v(b) > 0\}$$

is a finite set. Now

$$\prod_{v \in \mathcal{V}_K} \left| x \right|_v = \prod_{p \leq \infty} \prod_{v \mid p} \left| x \right|_v = \prod_{p \leq \infty} \left| \mathcal{N}_{K/\mathbb{Q}} \left(x \right) \right|_p.$$

So it is enough to prove for $K = \mathbb{Q}$, and by multiplicativity, reduce to

• x = q prime, where

$$|q|_p = \begin{cases} \frac{1}{q} & p = q \\ 1 & p \neq q, \infty, \\ q & p = \infty \end{cases}$$

• x = -1, where $|-1|_p = 1$ for all $p \le \infty$.

Remark.

- \mathbb{R} , with standard measure dx, transforms under $a \in \mathbb{R}^{\times}$ by d (ax) = |a| dx.
- \mathbb{C} , with standard measure dxdy, transforms under $a \in \mathbb{C}^{\times}$ by $d(ax)d(ay) = |a|^2 dxdy$, with the normalised AV on \mathbb{C} .

Fact. On K_v , for any v, there is a translation-invariant measure, the Haar measure, $d_v(x)$, and for all $a \in K_v^{\times}$, $d_v(ax) = |a|_v d_v(x)$ where $|\cdot|_v$ is the normalised AV.

3 Different and discriminant

3.1 Discriminant

Let $R \subset S$ be rings, commutative with unity, such that S is a free R-module of finite rank $n \geq 1$. Then we have a trace map given by

$$\begin{array}{cccc} \operatorname{Tr}_{S/R} & : & S & \longrightarrow & R \\ & & x & \longmapsto & \operatorname{Tr} \left(y \mapsto xy \right) \end{array},$$

the trace of the R-linear map $S \to S \cong \mathbb{R}^n$. If $x_1, \ldots, x_n \in S$, define

$$\operatorname{disc}_{S/R}(x_i) = \operatorname{disc}(x_i) = \operatorname{det}(\operatorname{Tr}_{S/R}(x_i x_j)) \in R.$$

If $y_i = \sum_{j=1}^n r_{ji}x_j$ for $r_{ji} \in R$, then $\operatorname{Tr}_{S/R}(y_iy_j) = \sum_{k,l} r_{ki}r_{lj}\operatorname{Tr}_{S/R}(x_kx_l)$, so

$$\operatorname{disc}(y_i) = \det(r_{ij})^2 \operatorname{disc}(x_i). \tag{2}$$

Definition. Let $S = \bigoplus_{i=1}^{n} Re_i$. Then the **discriminant**

$$\operatorname{disc}\left(S/R\right) = \operatorname{disc}_{S/R}\left(e_{i}\right)R \subset R$$

is an ideal of R, independent of the basis by (2).

The following are obvious properties.

• If $S = S_1 \times S_2$ for S_i free over R, then

$$\operatorname{disc}(S/R) = \operatorname{disc}(S_1/R)\operatorname{disc}(S_2/R)$$
.

• If $f: R \to R'$ is a ring homomorphism, then

$$\operatorname{disc}(S \otimes_R R'/R') = f \left(\operatorname{disc}(S/R)\right) R'.$$

• If R is a field, then $\operatorname{disc}(S/R) = R$ or $\operatorname{disc}(S/R) = \{0\}$ and $\operatorname{disc}(S/R) = R$ if and only if the R-bilinear form

$$\begin{array}{ccc} S \times S & \longrightarrow & R \\ (x,y) & \longmapsto & \operatorname{Tr}_{S/R}(xy) \end{array}$$

is non-degenerate, that is there is a duality of the R-vector space S with itself.

By field theory, if L/K is a finite field extension, then $\operatorname{disc}(L/K) = K$ if and only if the trace form is non-degenerate, if and only if there exists $x \in L$ with $\operatorname{Tr}_{L/K}(x) \neq 0$, if and only if L/K is separable. More generally is the following.

Theorem 3.1. Let k be a field, and let A be a finite-dimensional k-algebra. Then $\operatorname{disc}(A/k) \neq 0$, so $\operatorname{disc}(A/k) = k$, if and only if $A = \prod_i K_i$ for K_i/k a finite separable field extension.

Proof. Write $A = \prod_{i=1}^m A_i$ where A_i are indecomposable k-algebras, so A_i is local. So may assume A is local with maximal ideal \mathfrak{m} . If $\mathfrak{m}=0$, that is A is a field, reduced to the previous statement. If not, then every element of \mathfrak{m} is nilpotent, since $\dim_k A < \infty$. So there exists $x \in \mathfrak{m} \setminus \{0\}$ nilpotent. So the endomorphism $y \mapsto xy$ of A is nilpotent and for all $r \in A$, so is $y \mapsto (rx)y$, so for all $r \in A$, $\operatorname{Tr}_{A/k}(rx) = 0$. So the trace form is degenerate, and the discriminant is zero. See Atiyah-Macdonald chapter on Artinian rings for an explanation of $A = \prod_i A_i$.

Let R be a Dedekind domain, let $K = \operatorname{Frac} R$, let L/K be finite separable, and let S be the integral closure of R in L. Say S/R is an **extension of Dedekind domains**. Then S is a finitely generated R-module, but need not be free.

Proposition 3.2. S is locally free R-module of rank n = [L:K], that is for all $\mathfrak{p} \subset R$, $S_{\mathfrak{p}} \cong R_{\mathfrak{p}}^n$.

Proof. $S \subset L$ so S is torsion-free, hence so is $S_{\mathfrak{p}}$, and $R_{\mathfrak{p}}$ is a PID, so $S_{\mathfrak{p}}$ is free, clearly of rank $\dim_K L = n$. \square

Lecture 5

Lemma 3.3. If $x \in S$, then $\operatorname{Tr}_{L/K}(x) \in R$.

Proof. If R is local, then S is a free R-module so $\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}_{S \otimes_R K/K}(x \otimes 1) = \operatorname{Tr}_{S/R}(x) \in R$. So in general, for all $0 \neq \mathfrak{p} \subset R$, $y = \operatorname{Tr}_{L/K}(x) \in R_{\mathfrak{p}}$ and

$$\bigcap_{\mathfrak{p}}R_{\mathfrak{p}}=\left\{ x\in K\mid\forall\mathfrak{p},\ \mathbf{v}_{p}\left(x\right)\geq0\right\} =R.$$

Then there are two equivalent definitions of disc (S/R).

Definition. disc (S/R) is defined to be the ideal of R generated by

$$\left\{ \operatorname{disc}_{L/K}(x_1,\ldots,x_n) \mid x_1,\ldots,x_n \in S \right\}.$$

If S/R is free, this gives the previous definition. As $S \otimes_R K = L$ is separable over K, disc $(L/K) = K \neq 0$ and so disc $(S/R) \neq 0$. This is how we prove that S/R is finitely generated.

Proposition 3.4. disc $(S/R) R_{\mathfrak{p}} = \operatorname{disc} (S_{\mathfrak{p}}/R_{\mathfrak{p}})$ for all \mathfrak{p} .

Proof. Claim there exist $x_1, \ldots, x_n \in S$ which is an $R_{\mathfrak{p}}$ -basis for $S_{\mathfrak{p}}$. Certainly there exist $e_1, \ldots, e_n \in S_{\mathfrak{p}}$ which is an $R_{\mathfrak{p}}$ -basis. Let

$$Q = \{ \text{primes } \mathfrak{q} \subset S \mid \exists i, \ v_{\mathfrak{q}}(e_i) < 0 \}$$

be a finite set. By CRT, there exist $a_i \in S$ such that $v_{\mathfrak{q}}(a_i) + v_{\mathfrak{q}}(e_i) \geq 0$ for all $\mathfrak{q} \in \mathcal{Q}$ and $a_i - 1 \in \mathfrak{p}S$. Then $x_i = a_i e_i \in S$ and $x_i \equiv e_i \mod \mathfrak{p}S$. So (x_i) is an R/\mathfrak{p} -basis for $S/\mathfrak{p}S = S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$, so (x_i) is an $R_{\mathfrak{p}}$ -basis for $S_{\mathfrak{p}}$. Thus $\mathrm{disc}(S_{\mathfrak{p}}/R_{\mathfrak{p}}) = \mathrm{disc}(x_i)R_{\mathfrak{p}}$, and $\mathrm{disc}(x_i) \in \mathrm{disc}(S/R)$. So $\mathrm{disc}(S_{\mathfrak{p}}/R_{\mathfrak{p}}) \subset \mathrm{disc}(S/R)R_{\mathfrak{p}}$ and the other inclusion is obvious.

There is an alternative definition of $\operatorname{disc}(S/R)$. If $x_1, \ldots, x_n \in S$ is a K-basis for L, then $\operatorname{disc}_{L/K}(x_i) \neq 0$. Let

$$\mathcal{P} = \{ \mathfrak{p} \subset R \mid v_{\mathfrak{p}} \left(\operatorname{disc}_{L/K} (x_i) \right) > 0 \}$$

be a finite set. So for all $\mathfrak{p} \notin \mathcal{P}$, disc $(S_{\mathfrak{p}}/R_{\mathfrak{p}}) = R_{\mathfrak{p}}$.

Definition. Define

$$\operatorname{disc}\left(S/R\right) = \prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}^{\operatorname{v}_{\mathfrak{p}}\left(\operatorname{disc}\left(S_{\mathfrak{p}}/R_{\mathfrak{p}}\right)\right)},$$

which is equivalent by 3.4 to the previous definition.

Theorem 3.5. $v_{\mathfrak{p}}(\operatorname{disc}(S/R)) = 0$ if and only if \mathfrak{p} is unramified in S and for all $\mathfrak{q} \subset S$ over \mathfrak{p} , the residue field extension $(S/\mathfrak{q})/(R/\mathfrak{p})$ is separable.

Proof. May assume R is local, so S is free over R. Have $\mathfrak{p}S = \prod_{\mathfrak{q}} \mathfrak{q}^{e_{\mathfrak{q}}}$, so

$$S \otimes_R (R/\mathfrak{p}) \cong S/\mathfrak{p}S \cong \prod_{\mathfrak{q}} S/\mathfrak{q}^{e_{\mathfrak{q}}}.$$

So $v_{\mathfrak{p}}(\operatorname{disc}(S/R)) = 0$ if and only if $\operatorname{disc}((S/\mathfrak{p}S) / (R/\mathfrak{p})) = R/\mathfrak{p}$, if and only if each $S/\mathfrak{q}^{e_{\mathfrak{q}}}$ is a finite separable field extension of R/\mathfrak{p} by 3.1, if and only if for all \mathfrak{q} , $e_{\mathfrak{q}} = 1$ and $(S/\mathfrak{q}) / (R/\mathfrak{p})$ is separable.

Corollary 3.6. In an extension S/R of Dedekind domains, only finitely many primes are ramified, just the \mathfrak{p} such that $v_{\mathfrak{p}}(\operatorname{disc}(S/R)) > 0$.

Proposition 3.7. Let $\mathfrak{p} \subset R$. Then

$$v_{\mathfrak{p}}\left(\operatorname{disc}\left(S/R\right)\right) = \sum_{\mathfrak{q}\supset\mathfrak{p}} v_{\mathfrak{p}}\left(\operatorname{disc}\left(\widehat{S_{\mathfrak{q}}}/\widehat{R_{\mathfrak{p}}}\right)\right).$$

Proof. By 3.4 may assume R is local, so S is a free R-module, and $S \otimes_R \widehat{R} \cong \prod_{\mathfrak{q} \subset S} \widehat{S_{\mathfrak{q}}}$ so

$$\mathrm{v}_{\mathfrak{p}}\left(\mathrm{disc}\left(S/R\right)\right)=\mathrm{v}_{\mathfrak{p}}\left(\mathrm{disc}\left(S\otimes_{R}\widehat{R}/\widehat{R}\right)\right)=\sum_{\mathfrak{q}}\mathrm{v}_{\mathfrak{p}}\left(\mathrm{disc}\left(\widehat{S_{\mathfrak{q}}}/\widehat{R}\right)\right).$$

3.2 Different

There is a finer invariant of ramification.

Definition. The inverse different $\mathcal{D}_{S/R}^{-1}$ of an extension S/R of Dedekind domains is

$$\mathcal{D}_{S/R}^{-1} = \left\{ x \in L \mid \forall y \in S, \ \operatorname{Tr}_{L/K}(xy) \in R \right\}.$$

This is the dual of S with respect to the trace form $(x,y) \mapsto \operatorname{Tr}_{L/K}(xy)$, which is non-degenerate and clearly an S-submodule of L. If $\bigoplus_{i=1}^n Rx_i \subset S$, let (y_i) be the dual basis to (x_i) for the trace form, that is $\operatorname{Tr}_{L/K}(x_iy_j) = \delta_{ij}$. Then $S \subset \mathcal{D}_{S/R}^{-1} \subset \bigoplus_{i=1}^n Ry_i$, so $\mathcal{D}_{S/R}^{-1}$ is a fractional ideal, since it is finitely generated.

Definition. $\mathcal{D}_{S/R}$ is an ideal of S, the **different**.

Proposition 3.8.

- 1. If $\mathfrak{p} \subset R$, then $\mathcal{D}_{S_{\mathfrak{p}}/R_{\mathfrak{p}}} = \mathcal{D}_{S/R}S_{\mathfrak{p}}$.
- 2. $N_{L/K}(\mathcal{D}_{S/R}) = \operatorname{disc}(S/R)$.
- 3. Let $\mathfrak{q} \subset S$ lying over $\mathfrak{p} \subset R$. Then $v_{\mathfrak{q}}\left(\mathcal{D}_{S/R}\right) = v_{\mathfrak{q}}\left(\mathcal{D}_{\widehat{S_{\mathfrak{q}}}/\widehat{R_{\mathfrak{p}}}}\right)$.

Proof.

- 1. Exercise. ²
- 2. By 1 and 3.4, can suppose R is local. Then S is a PID by 2.1.3. So $\mathcal{D}_{S/R}^{-1} = x^{-1}S$ for some $0 \neq x \in S$. Let (e_i) be a basis for S over R. Then there exists a basis (e'_i) for S over R such that $\operatorname{Tr}_{L/K}\left(e_ix^{-1}e'_j\right) = \delta_{ij}$. Let $x^{-1}e'_j = \sum_k b_{kj}e_k$ for $b_{kj} \in K$. Then

$$\langle 1 \rangle = \left\langle \det \left(\operatorname{Tr}_{L/K} \left(e_i x^{-1} e'_j \right) \right) \right\rangle = \left\langle \det \left(\operatorname{Tr}_{L/K} \left(e_i e_j \right) \right) \det \left(b_{ij} \right) \right\rangle = \det \left(b_{ij} \right) \operatorname{disc} \left(S/R \right).$$

But $N_{L/K}(x^{-1})$ is $\det(b_{ij})$ times some unit in R. So $\langle 1 \rangle = \langle N_{L/K}(x^{-1}) \rangle \operatorname{disc}(S/R)$.

Lecture 6 Tuesday 02/02/21

3. Assume R is local and $\mathfrak{p} = \langle \pi_{\mathfrak{p}} \rangle$. Write $\widehat{K} = \operatorname{Frac} \widehat{R}$ and for $\mathfrak{q} = \langle \pi_{\mathfrak{q}} \rangle \subset S$ write $\widehat{L_{\mathfrak{q}}} = \operatorname{Frac} \widehat{S_{\mathfrak{q}}}$. So say

$$L\otimes_K \widehat{K}\supset S\otimes_R \widehat{R}\xrightarrow{\sim} \prod_{\mathfrak{q}} \widehat{S_{\mathfrak{q}}}\subset \prod_{\mathfrak{q}} \widehat{L_{\mathfrak{q}}},$$

and

$$\operatorname{Tr}_{L\otimes_{K}\widehat{K}/\widehat{K}}\left(x\right)=\sum_{\mathfrak{q}}\operatorname{Tr}_{\widehat{L_{\mathfrak{q}}}/\widehat{K}}\left(x\right).\tag{3}$$

Let $S = \bigoplus_{i=1}^n Rx_i$, and $\prod_{\mathfrak{q}} \pi_{\mathfrak{q}}^{-a_{\mathfrak{q}}} S = \mathcal{D}_{S/R}^{-1} = \bigoplus_{i=1}^n Ry_i$ for some $a_{\mathfrak{q}} \geq 0$ and $y_i \in L$, the dual basis to x_i . Then as $S \otimes_R \widehat{R} = \bigoplus_{i=1}^n \widehat{R}(x_i \otimes 1)$,

$$\begin{split} \mathcal{D}_{S \otimes_{R} \widehat{R} / \widehat{R}}^{-1} &= \left\{ x \in L \otimes_{K} \widehat{K} \; \middle| \; \forall y \in S \otimes_{R} \widehat{R}, \; \operatorname{Tr}_{L \otimes_{K} \widehat{K} / \widehat{K}} \left(x y \right) \in \widehat{R} \right\} \\ &= \bigoplus_{i=1}^{n} \widehat{R} \left(y_{i} \otimes 1 \right) = \mathcal{D}_{S / R}^{-1} \left(S \otimes_{R} \widehat{R} \right) = \prod_{\mathfrak{q}} \pi_{\mathfrak{q}}^{-a_{\mathfrak{q}}} \left(S \otimes_{R} \widehat{R} \right) \subset L \otimes_{K} \widehat{K}, \end{split}$$

since $\operatorname{Tr}_{L/K}(x_iy_j) = \delta_{ij}$ and trace commutes with base change. On the other hand, by (3) and the definitions

$$\mathcal{D}_{S\otimes_R \widehat{R}/\widehat{R}}^{-1} \cong \prod_{\mathfrak{q}} \mathcal{D}_{\widehat{S}_{\widehat{\mathfrak{q}}}/\widehat{R}}^{-1} \subset \prod_{\mathfrak{q}} \widehat{L}_{\mathfrak{q}},$$

SC

$$\mathcal{D}_{\widehat{S_{\mathfrak{q}}}/\widehat{R}}^{-1} = \prod_{\mathfrak{q}'} \pi_{\mathfrak{q}'}^{-a_{\mathfrak{q}'}} \widehat{S_{\mathfrak{q}}} = \pi_{\mathfrak{q}}^{-a_{\mathfrak{q}}} \widehat{S_{\mathfrak{q}}},$$

as $v_{\mathfrak{q}}(\pi_{\mathfrak{q}'}) = 0$ if $\mathfrak{q}' \neq \mathfrak{q}$.

²Exercise: the same idea as 3.4

Use this to prove the following.

Theorem 3.9. Assume all extensions of residue fields are separable. Let $\mathfrak{p}S = \prod_{i=1}^g \mathfrak{q}_i^{e_i} \subset S$. Then

- 1. $\mathfrak{q}_i \mid \mathcal{D}_{S/R}$ if and only if $e_i > 1$, and
- 2. $\mathfrak{q}_{i}^{e_{i}-1} \mid \mathcal{D}_{S/R}$.

Proof. First assume R is complete local and $\mathfrak{p} = \langle \pi_R \rangle$. Then S is also local, and complete, with unique prime $\mathfrak{q} = \langle \pi_S \rangle$, so g = 1.

- 1. So $\mathcal{D}_{S/R} = \langle \pi_S \rangle^d$ for $d \geq 0$. By 3.8.2, $\operatorname{disc}(S/R) = \langle \operatorname{N}_{L/K}(\pi_S)^d \rangle = \langle \pi_R \rangle^d$. So as $\operatorname{v}_{\mathfrak{p}}(\operatorname{disc}(S/R)) = 0$ if and only if \mathfrak{p} is unramified by 3.5, get the first statement.
- 2. Claim $\operatorname{Tr}_{L/K}(\mathfrak{q}) \subset \mathfrak{p}$. Let $x \in \mathfrak{q}$. Then multiplication by x is a nilpotent endomorphism of $S \otimes_R (R/\mathfrak{p}) \cong S/\mathfrak{q}^e$, so $\operatorname{Tr}_{S \otimes_R (R/\mathfrak{p})/(R/\mathfrak{p})}(x \otimes 1) = 0$, that is $\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}_{S/R}(x) \in \mathfrak{p}$. Hence the claim. Therefore $\operatorname{Tr}_{L/K}(\mathfrak{q}^{1-e}) = \operatorname{Tr}_{L/K}(\pi_R^{-1}\mathfrak{q}) \subset R$, so $\mathfrak{q}^{1-e} \subset \mathcal{D}_{S/R}^{-1}$, that is $\mathfrak{q}^{e-1} \mid \mathcal{D}_{S/R}$.

For the general case, apply the above to $\widehat{S_{\mathfrak{q}_i}}/\widehat{R_{\mathfrak{p}}}$ and use 3.8.3.

Fact.

- If $\mathfrak{p} \nmid e_i$ then $v_{\mathfrak{q}_i}(\mathcal{D}_{S/R}) = e_i 1$. If $\mathfrak{p} \mid e_i$ then $v_{\mathfrak{q}_i}(\mathcal{D}_{S/R}) \geq e_i$. More precisely, $v_{\mathfrak{q}_i}(\mathcal{D}_{S/R})$ is determined by the orders of the higher ramification groups, for a Galois closure of L/K. See for example Serre, Local fields, Chapter 4, Section 1, Proposition 4.
- If S = R[x], and x has minimal polynomial $f \in R[T]$ then $\mathcal{D}_{S/R} = \langle f'(x) \rangle$ where f' is the derivative. See example sheet 1. This means that $\mathcal{D}_{S/R}$ is the annihilator of the cyclic S-module $\Omega_{S/R}$ of Kähler differentials, generated by dx.

For an extension L/K of number fields write

$$\mathcal{D}_{L/K} = \mathcal{D}_{\mathcal{O}_L/\mathcal{O}_K} \subset \mathcal{O}_L, \qquad \delta_{L/K} = \operatorname{disc}\left(\mathcal{O}_L/\mathcal{O}_K\right) \subset \mathcal{O}_K.$$

Remark. Let K/\mathbb{Q} , and let (e_i) be a \mathbb{Z} -basis for \mathcal{O}_K . Then $\delta_{K/\mathbb{Q}} \subset \mathbb{Z}$ is $\langle \operatorname{disc}(e_i) \rangle$ and if (e_i') is another basis such that $e_i' = \sum_{i,j} a_{ji} e_j$, then $\operatorname{disc}(e_i') = (\det(a_{ij}))^2 \operatorname{disc}(e_i) = \operatorname{disc}(e_i)$, since $\det(a_{ij}) = \pm 1$. So the integer $\operatorname{disc}(e_i)$ is independent of the basis, not just the ideal it generates. This is called the **absolute discriminant** $\operatorname{d}_K \in \mathbb{Z} \setminus \{0\}$ of K. The sign is significant.

Theorem 3.10 (Kummer-Dedekind criterion). Let S/R be an extension of Dedekind domains, and let $x \in S$ such that L = K(x). Suppose $\mathfrak{p} \subset R$ such that $S_{\mathfrak{p}} = R_{\mathfrak{p}}[x]$. Let $g \in R[T]$ be the minimal polynomial of x and $g = \prod_i \overline{g_i}^{e_i} \in (R/\mathfrak{p})[T]$ the factorisation of reduction of g into powers of distinct monic irreducibles $\overline{g_i}$. Let $g_i \in R[T]$ be any monic lifting of $\overline{g_i}$ and $f_i = \deg g_i = \deg \overline{g_i}$. Then $\mathfrak{q}_i = \mathfrak{p}S + \langle g_i(x) \rangle \subset S$ is prime with

$$[S/\mathfrak{q}_i:R/\mathfrak{p}]=f_i, \qquad \forall i \neq j, \ \mathfrak{q}_i \neq \mathfrak{q}_j, \qquad \mathfrak{p}S=\prod_i \mathfrak{q}_i^{e_i}.$$

Proof. Can assume R is local, so then S = R[x]. Set $\mathfrak{p} = \langle \pi \rangle$ and $R/\mathfrak{p} = \kappa$. Then \mathfrak{q}_i is prime with residue degree f_i , since $S/\mathfrak{q}_i \cong \kappa[T]/\langle \overline{g_i} \rangle$, and $\overline{g_i}$ is irreducible of degree f_i . Claim that $\mathfrak{q}_i \neq \mathfrak{q}_j$. If $i \neq j$, there exist $a, b \in R[T]$ such that $\overline{ag_i} + \overline{bg_j} = 1 \in \kappa[T]$, so $1 = ag_i + bg_j + \pi c$ for some $c \in R[T]$, so $1 \in \langle \pi, g_i(x), g_j(x) \rangle = \mathfrak{q}_i + \mathfrak{q}_j$. Let $g = \prod_i g_i^{e_i} + \pi h$ for $h \in R[T]$. Then

$$\prod_{i} \mathfrak{q}_{i}^{e_{i}} = \prod_{i} \left\langle \pi, g_{i}\left(x\right)\right\rangle^{e_{i}} \subset \prod_{i} \left\langle \pi, g_{i}\left(x\right)^{e_{i}}\right\rangle \subset \left\langle \pi, \prod_{i} g_{i}\left(x\right)^{e_{i}}\right\rangle = \left\langle \pi, \pi h\left(x\right)\right\rangle \subset \mathfrak{p}S = \left\langle \pi\right\rangle.$$

Now $\dim_{\kappa} (S/\mathfrak{p}S) = n = [L:K]$, and

$$\dim_{\kappa} \left(S/\mathfrak{q}_{i}^{e_{i}} \right) = \sum_{i=0}^{e_{i}-1} \dim_{\kappa} \left(\mathfrak{q}_{i}^{j}/\mathfrak{q}_{i}^{j+1} \right) = e_{i} \dim_{\kappa} \left(S/\mathfrak{q}_{i} \right) = e_{i} f_{i},$$

so $\prod_i \mathfrak{q}_i^{e_i} \subset \mathfrak{p}S$ gives $\sum_i e_i f_i \geq n$. As $\sum_i e_i f_i = \sum_i e_i \deg \overline{g_i} = \deg \overline{g} = n$, have equality.

4 Examples

4.1 Quadratic fields

Let $K = \mathbb{Q}\left(\sqrt{d}\right)$ for $d \in \mathbb{Q}^{\times}$ not a square. Multiplying d by a square, can assume $d \in \mathbb{Z} \setminus \{0,1\}$ is squarefree. Then $\mathcal{O}_K \supset \mathbb{Z}\left[\sqrt{d}\right] = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d}$.

Lecture 7 Thursday 04/02/21

- Since $\operatorname{Tr}_{K/\mathbb{Q}}(1)=2$ and $\operatorname{Tr}_{K/\mathbb{Q}}\left(\sqrt{d}\right)=0$, disc $\left(1,\sqrt{d}\right)=4d$, so
 - either $d_K = 4d$, and $\mathcal{O}_K = \mathbb{Z}\left[\sqrt{d}\right]$,
 - or $d_K = d$, and $\left(\mathcal{O}_K : \mathbb{Z}\left[\sqrt{d}\right]\right) = 2$.

The latter holds if and only if there exist $m, n \in \mathbb{Z}$ not both even with $\frac{m+n\sqrt{d}}{2} \in \mathcal{O}_K$, if and only if $\frac{1+\sqrt{d}}{2} \in \mathcal{O}_K$ since obviously $\frac{1}{2}, \frac{\sqrt{d}}{2} \notin \mathcal{O}_K$, if and only if $d \equiv 1 \mod 4$ since the minimal polynomial of $\frac{1+\sqrt{d}}{2}$ is $\left(T-\frac{1}{2}\right)^2-\frac{d}{4}=T^2-T-\frac{d-1}{4}$, in which case $\mathcal{O}_K=\mathbb{Z}\oplus\mathbb{Z}\frac{1+\sqrt{d}}{2}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.

• The dual basis of $(1, \sqrt{d})$ for the trace form is $(\frac{1}{2}, \frac{1}{2\sqrt{d}})$, so

$$\mathcal{D}_{K/\mathbb{Q}} = \begin{cases} \left\langle 2\sqrt{d}\right\rangle & d \not\equiv 1 \mod 4 \\ \left\langle \sqrt{d}\right\rangle & d \equiv 1 \mod 4 \end{cases}.$$

- Decomposition of $\langle p \rangle \subset \mathcal{O}_K$ by Kummer-Dedekind.
 - If $p \neq 2$ or $d \not\equiv 1 \mod 4$ then $p \nmid (\mathcal{O}_K : \mathbb{Z} \lceil \sqrt{d} \rceil)$. So applying the criterion to $T^2 d$, see that
 - * $\langle p \rangle = \mathfrak{p}^2$ is ramified if $p \mid d$, so $\mathfrak{p} = \langle p, \sqrt{d} \rangle$,
 - * $\langle p \rangle = \mathfrak{p}$ is inert if $\left(\frac{d}{p}\right) = -1$, and
 - * $\langle p \rangle = \mathfrak{pp}'$ is split if $\left(\frac{d}{p}\right) = 1$, so if $d \equiv a^2 \mod p$ then $\mathfrak{p} = \left\langle p, \sqrt{d} a \right\rangle \neq \left\langle p, \sqrt{d} + a \right\rangle = \mathfrak{p}'$.
 - The remaining case is p=2 and $d\equiv 1 \mod 4$. Factoring $T^2-T-\frac{d-1}{4}$ modulo two, get
 - * $\langle 2 \rangle$ is inert if $d \equiv 5 \mod 8$, and
 - * $\langle 2 \rangle = \mathfrak{p} \mathfrak{p}'$ is split if $d \equiv 1 \mod 8$ and $\mathfrak{p} = \left\langle 2, \frac{\sqrt{d}+1}{2} \right\rangle \neq \left\langle 2, \frac{\sqrt{d}-1}{2} \right\rangle = \mathfrak{p}'$.

Go through the calculations if you have not seen them before. ³

4.2 Cyclotomic fields

Recall some Galois theory. Let n > 1, and let K be a field of characteristic zero or characteristic $p \nmid n$. Suppose $L = K(\zeta_n)$, where $\zeta_n \in L$ is a primitive n-th root of unity, that is $\zeta_n^m \neq 1$ for all $1 \leq m < n$. Equivalently, ζ_n is a root of the n-th cyclotomic polynomial $\Phi_n \in \mathbb{Z}[T]$ of degree $\phi(n)$, defined recursively by

$$T^{n}-1=\prod_{d\mid n}\Phi_{d}\left(T\right) .$$

Then L/K is Galois, with abelian Galois group, and

$$\begin{array}{ccc} \operatorname{Gal}\left(L/K\right) & \longrightarrow & \left(\mathbb{Z}/n\mathbb{Z}\right)^{\times} \\ g & \longmapsto & \text{unique } a \mod n \text{ such that } g\left(\zeta_{n}\right) = \zeta_{n}^{a} \end{array}.$$

is an injective homomorphism.

 $^{^3}$ Exercise

Theorem 4.1. Let $L = \mathbb{Q}(\zeta_n)$. Then

- 1. $\operatorname{Gal}(L/\mathbb{Q}) \xrightarrow{\sim} (\mathbb{Z}/n\mathbb{Z})^{\times}$,
- 2. p ramifies in L if and only if $p \mid n$, and
- 3. $\mathcal{O}_L = \mathbb{Z}[\zeta_n]$.

Remark. 1 if and only if Φ_n is irreducible over \mathbb{Q} , if and only if $[L:\mathbb{Q}] = \phi(n)$.

Proof. Let $n=p^rm$ for $r\geq 1$ and $p\nmid m$ prime. Let $\zeta_m=\zeta_n^{p^r}$ and $\zeta_{p^r}=\zeta_n^m$. Then there exist $a,b\in\mathbb{Z}$ such that $p^ra+mb=1$, so $\zeta_n=\zeta_m^a\zeta_{p^r}^b$. Let $K=\mathbb{Q}\left(\zeta_m\right)$. Then $L=K\left(\zeta_{p^r}\right)$. Will prove that

- Φ_{p^r} is irreducible over K,
- if $v \in V_{K,f}$ and $v \nmid p$ then v is unramified in L/K,
- if $v \mid p$ then v is totally ramified in L/K, and
- $\mathcal{O}_L = \mathcal{O}_K [\zeta_{n^r}].$

This proves 4.1 by induction on n. For a place w of L, write $x_w \in L_w$ for the image of ζ_{p^r} under $L \hookrightarrow L_w$. Suppose $v \mid p$. By induction, p is unramified in K/\mathbb{Q} , so v(p) = 1. Then

$$\Phi_{p^r}(T+1) = \frac{(T+1)^{p^r} - 1}{(T+1)^{p^{r-1}} - 1}$$

is an Eisenstein polynomial in $\mathcal{O}_{K_v}[T]$. Indeed $\Phi_{p^r}(T+1) \equiv T^{p^{r-1}(p-1)} \mod p$, and the constant coefficient is p, so has valuation one. Then from local fields,

- Φ_{p^r} is irreducible over K_v , hence over K,
- L/K is totally ramified at v, and
- if w is the unique place of L over v, then $\mathcal{O}_{L_w} = \mathcal{O}_{K_v} [\pi_w]$ where $\pi_w = x_w 1$ is the root of $\Phi_{p^r} (T+1)$ in L_w .

Now let $v \mid q \neq p$. Then Φ_{p^r} is separable modulo q. Have

$$K_v \otimes_K L \cong \prod_{w|v} L_w = \prod_{w|v} K_v(x_w).$$

Let $f_w \in \mathcal{O}_{K_v}[T]$ be the minimal polynomial of x_w over K_v . Then

- $\prod_{w|v} f_w = \Phi_{p^r}$, so the reduction of f_w at v is separable, hence L_w/K_v is unramified, and
- by local fields again, $\mathcal{O}_{L_w} = \mathcal{O}_{K_v}[x_w]$.

Thus for all $v \in V_{K,f}$,

$$\mathcal{O}_{K_v} \otimes_{\mathcal{O}_K} \mathcal{O}_K \left[\zeta_{p^r} \right] \cong \mathcal{O}_{K_v} \left[T \right] / \left\langle \Phi_{p^r} \right\rangle \cong \prod_{w \mid v} \mathcal{O}_{K_v} \left[T \right] / \left\langle f_w \right\rangle = \prod_{w \mid v} \mathcal{O}_{L_w} \cong \mathcal{O}_{K_v} \otimes_{\mathcal{O}_K} \mathcal{O}_L,$$

by CRT, so must have $\mathcal{O}_K[\zeta_{p^r}] = \mathcal{O}_L$.

4.3 Frobenius elements

Recall Frobenius elements. Let L/K be a Galois extension of number fields, let $w \mid v$ be finite places, and let $G = \text{Gal}(L/W) \supset G_w \cong \text{Gal}(L_w/K_v)$ be the decomposition group of w. Then

$$1 \to I_w \to G_w \to \operatorname{Gal}(\ell_w/\kappa_v) \to 1$$
,

where I_w is the inertia subgroup. Suppose w is unramified in L/K, if and only if v is unramified in L/K. Then $I_w = \{1\}$.

Definition. Define the **Frobenius** at w to be the unique element $\sigma_w \in G_w$ mapping to the generator $x \mapsto x^{q_v}$ of $\operatorname{Gal}(\ell_w/\kappa_v)$.

So ord $\sigma_w = f(w \mid v) = [\ell_w : \kappa_v] = [\ell_{w'} : \kappa_v]$ for any $w' \mid v$, as G acts transitively on $\{w'\}$. In particular, $\sigma_w = 1$ if and only if v splits completely in L/K, that is there exist [L : K] places of L over v. Suppose G is abelian. Then G_w and σ_w are independent of w, so depends only on v.

Notation. $\sigma_v = \sigma_{L/K,v} = \sigma_w$ is the **arithmetic Frobenius** at v. There are other notations, such as $\phi_{L/K,v}$ or (v, L/K), the **norm residue symbol**.

Remark. Let L/F/K where L/K is abelian. Then $\sigma_{L/K}|_F = \sigma_{F/K}$ by definition.

4.4 Quadratic reciprocity

Let $L = \mathbb{Q}(\zeta_n)$, let $K = \mathbb{Q}$, and let n > 2. Have an isomorphism

$$\begin{array}{cccc} \lambda & : & (\mathbb{Z}/n\mathbb{Z})^{\times} & \longrightarrow & \operatorname{Gal}\left(L/\mathbb{Q}\right) \\ & a & \operatorname{mod} n & \longmapsto & (\zeta_n \mapsto \zeta_n^a) \end{array}.$$

Claim that

$$\sigma_p = \sigma_{L/\mathbb{Q},p} = \lambda (p \mod n) = (\zeta_n \mapsto \zeta_n^p) \in \operatorname{Gal}(L/\mathbb{Q}),$$

if $p \nmid n$. Indeed, σ_p is characterised by for all $v \mid p$, σ_p induces $x \mapsto x^p$ on the residue field $\mathbb{Z}[\zeta_n]/\mathfrak{p}_v$, whereas $\lambda(p)$ induces $x \mapsto x^p$ over $\mathbb{Z}[\zeta_n]/\langle p \rangle$.

 $\begin{array}{c} \text{Lecture 8} \\ \text{Saturday} \\ 06/02/21 \end{array}$

Remark.

- These elements σ_p generate $\operatorname{Gal}(L/\mathbb{Q})$, since every integer prime to n is a product of $p \nmid n$, so gives, with some thought, another proof that $\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- If $\sigma: L \hookrightarrow \mathbb{C}$ is any embedding, then $\overline{\sigma(\zeta_n)} = \sigma(\zeta_n^{-1})$. So $\lambda(-1 \mod n)$ is complex conjugation, for any $\sigma: L \hookrightarrow \mathbb{C}$.

Specialise to the case n=q>2 is prime. Then $\operatorname{Gal}(L/\mathbb{Q})=(\mathbb{Z}/q\mathbb{Z})^{\times}$ is cyclic of order q-1, so has a unique index two subgroup $H\cong \left((\mathbb{Z}/q\mathbb{Z})^{\times}\right)^2$. Let $K=L^H$ be a quadratic extension of \mathbb{Q} . Every $p\neq q$ is unramified in L, hence also in K. So $K=\mathbb{Q}(\sqrt{\pm q})$, and as $\langle 2 \rangle$ is unramified in K, must have

$$K = \mathbb{Q}\left(\sqrt{q^*}\right), \qquad q^* = \begin{cases} q & q \equiv 1 \mod 4 \\ -q & q \equiv 3 \mod 4 \end{cases}, \qquad d_K = q^*.$$

Now let $p \neq q$ be an odd prime. Then

$$\sigma_{K/\mathbb{Q},p} = 1 \qquad \Longleftrightarrow \qquad \sigma_{L/\mathbb{Q},p} = \lambda\left(p\right) \in H \qquad \Longleftrightarrow \qquad \left(\frac{p}{q}\right) = 1.$$

But

$$\sigma_{K/\mathbb{Q},p} = 1 \qquad \iff \qquad p \text{ splits completely in } K \qquad \iff \qquad \left(\frac{q^*}{p}\right) = 1.$$

That is, $\binom{p}{q} = \binom{q^*}{p}$. Combine with $\left(\frac{-1}{q}\right) = (-1)^{(p-1)/2}$ to get the quadratic reciprocity law. In algebraic number theory, quadratic reciprocity says that splitting of p in K/\mathbb{Q} depends only on the congruence class of p modulo something. Class field theory tells us that a similar thing holds for any abelian extension of number fields, since there is a law describing the decomposition of primes in an abelian extension which is just a congruence condition.

5 Ideles and adeles

To study congruences modulo p^n for $n \geq 1$ Hensel introduced \mathbb{Z}_p and \mathbb{Q}_p such that $\mathbb{Q} \hookrightarrow \mathbb{Z}_p$. For congruences to arbitrary moduli, or to study local-global problems in general, it would be nice to simultaneously embed $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ for all $p \leq \infty$, which are locally compact. The first guess is $\mathbb{Q} \hookrightarrow \prod_{p \leq \infty} \mathbb{Q}_p$, but this product is not nice, for example not locally compact. Better is to notice that if $x \in \mathbb{Q}$, then the image of x lies in \mathbb{Z}_p for all but finitely many p. So Chevalley introduced a small product with better properties, for any number field K, the ring of adeles or valuation vectors \mathbb{A}_K of K and the group of ideles $\mathbb{J}_K = \mathbb{A}_K^{\times}$ of K. These are topological rings and groups respectively. They are highly disconnected, that is have plenty of open subgroups. Open subgroups are closed, so if $H \subset G$ is an open subgroup, then G/H is discrete, that is $G = \bigcup_T xH$ is a topological disjoint union.

5.1 Ring of adeles

Definition. Let K be a number field, let $V_K = V_{K,\infty} \sqcup V_{K,f}$, and let K_v be its completions. If $v \in V_{K,f}$, have $\mathcal{O}_v = \{x \mid |x|_v \leq 1\} \subset K_v$. The **ring of adeles** is

$$\mathbb{A}_K = \left\{ (x_v) \in \prod_{v \in \mathcal{V}_K} K_v \; \middle| \; \text{for all but finitely many } v, \; x_v \in \mathcal{O}_v \right\} = \bigcup_{\text{finite } S \subset \mathcal{V}_{K,\mathrm{f}}} \mathcal{U}_{K,S} \subset \prod_{v \in \mathcal{V}_K} K_v,$$

where

$$U_{K,S} = \prod_{v \in V_{K,\infty}} K_v \times \prod_{v \in S} K_v \times \prod_{v \in V_{K,f} \setminus S} \mathcal{O}_v.$$

Notation. Let

$$K_{\infty} = \prod_{v \in \mathcal{V}_{K,\infty}} K_v = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}.$$

Then \mathbb{A}_K is a ring. The topology on \mathbb{A}_K is generated by all open $V \subset \mathrm{U}_{K,S}$ as S varies, and where $\mathrm{U}_{K,S}$ has the product topology. This means in particular that every $\mathrm{U}_{K,S} \subset \mathbb{A}_K$ is open, so $\mathrm{U}_{K,\emptyset} = K_\infty \times \prod_{v \in \mathrm{V}_{K,\mathrm{f}}} \mathcal{O}_v$ is open and has the product topology. This completely determines the topology on \mathbb{A}_K . See example sheet 1 exercise 1(ii).

Example. Let $K = \mathbb{Q}$. Then

$$\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \left\{ (x_p)_p \in \prod_{p < \infty} \mathbb{Q}_p \mid \text{for all but finitely many } p, \ x_p \in \mathbb{Z}_p \right\}.$$

So, letting $m \in \mathbb{Z}_{>0}$ be the product of the denominators p^i of x_p see that $m(x_p)_p \in \prod_{p < \infty} \mathbb{Z}_p = \widehat{\mathbb{Z}}$, that is $(x_p)_p \in (1/m) \widehat{\mathbb{Z}} \subset \prod_p \mathbb{Q}_p$. Let $\widehat{\mathbb{Q}} = \bigcup_{m \geq 1} (1/m) \widehat{\mathbb{Z}} \cong \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$. ⁴ Then $\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \widehat{\mathbb{Q}}$.

Proposition 5.1. \mathbb{A}_K is Hausdorff and locally compact, so every point has a compact neighbourhood.

Proof. If $\widehat{\mathcal{O}_K}$ is the profinite completion, then $U_{K,\emptyset} = K_\infty \times \prod_{v \nmid \infty} \mathcal{O}_v = K_\infty \times \widehat{\mathcal{O}_K}$ is Hausdorff, and is locally compact, since K_∞ is locally compact and $\widehat{\mathcal{O}_K}$ is compact, and it is an open neighbourhood of zero. So by translation, \mathbb{A}_K is Hausdorff and locally compact.

There is a diagonal embedding $K \hookrightarrow \mathbb{A}_K$.

Proposition 5.2. K is discrete in \mathbb{A}_K .

Proof. Find a neighbourhood of zero containing only $0 \in K$. Let

$$U = \left\{ x = (x_v) \in \mathbb{A}_K \mid \begin{array}{l} \forall v \in \mathcal{V}_{K,f}, \ |x_v|_v \leq 1 \\ \forall v \in \mathcal{V}_{K,\infty}, \ |x_v|_v < 1 \end{array} \right\}.$$

Then $U \subset \mathbb{A}_K$ is open. If $x \in K \cap U$, then $|x_v|_v \leq 1$ for all $v \nmid \infty$ implies that $x \in \mathcal{O}_K$, and $|x_v|_v < 1$ for all $v \mid \infty$ implies that $|N_{K/\mathbb{Q}}(x)| < 1$, that is x = 0. So zero is isolated in K. Thus K is discrete.

⁴Exercise: easy