

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Gabarito da $2^{\underline{a}}$ Lista de MAT 140 - Cálculo I 2019/II Gabarito elaborado por Lilian Neves Santa Rosa Valentim - DMA/UFV

1. (a) -9	(c) $\frac{1}{10}$	(e) -2	(g) 4	(i) $\frac{3}{2}$
(b) $\frac{5}{4}$	(d) -1	(f) $\frac{4}{3}$	(h) $\frac{1}{2}$	~ 2

2. (a) O gráfico de f é:

(b)
$$\lim_{x \to 2^+} f(x) = 2 \text{ e } \lim_{x \to 2^-} f(x) = 1.$$
(c) Não existe e limite $\lim_{x \to 2^-} f(x) = 1$

(c) Não existe o limite $\lim_{x\to 2} f(x)$.

3. (a) O gráfico de f é:

(b)
$$\lim_{x \to 2^+} f(x) = 1 \lim_{x \to 2^-} f(x) = 1 e f(2) = 2.$$

(c) Existe $\lim_{x\to 2} f(x)$ e $\lim_{x\to 2} f(x) = 1$.

4. (a) O gráfico de f é:

5. (a) 1

(b)
$$\lim_{x \to -2^+} f(x) = 0$$
, $\lim_{x \to -2^-} f(x) = 0$ e $f(-2) = 1$.

(c) Existe o limite
$$\lim_{x \to -2} f(x)$$
 e $\lim_{x \to -2} f(x) = 0$.

(d)
$$\lim_{x \to -1^+} f(x) = -1$$
, $\lim_{x \to -1^-} f(x) = -1$ e $f(-1) = -1$.

(b) -1

(e) Existe
$$\lim_{x \to -1} f(x)$$
 e $\lim_{x \to -1} f(x) = -1$.

(f)
$$\lim_{x \to 0^+} f(x) = 1$$
, $\lim_{x \to 0^-} f(x) = -1$ e $f(0) = 0$.

(g) Não existe o limite $\lim_{x\to 0} f(x)$.

6. (a) 1 (c) 0 (e) 2 (g)
$$\frac{3}{8}$$
 (b) a (d) $\frac{1}{2}$ (f) $\frac{1}{2}$

7. (a)
$$\frac{2}{5}$$
 (d) 0 (g) $\frac{1}{2}$ (j) $-\infty$ (b) 7 (e) 0 (h) 3 (k) $-\infty$ (c) 0 (f) 0 (i) $+\infty$

(c) $\sqrt{2}$

(d) $-\sqrt{2}$

- 8. $c = -1 \text{ e } L = \frac{5}{2}$.
- 9. $\lim_{x \to 4} f(x) = 7$.
- 10. Neste exercício, considere $\lim_{x\to 2} \frac{f(x)}{x^2} = 1$. Então: $\lim_{x\to 2} \frac{f(x)}{x} = 2$ e $\lim_{x\to 2} f(x) = 4$.
- 11. $\lim_{x \to 0} f(x) = \sqrt{5}$.
- 12. $\lim_{x \to 0} f(x) = 2$.
- 13. $\lim_{x \to 0} \frac{f(x^3)}{x} = 0.$
- 14. $\lim_{x \to 0} f(x) = 0$ e $\lim_{x \to 0} \left(f(x) \cos\left(\frac{1}{x + x^2}\right) \right) = 0$.
- 15. Neste exercício, considere $0 \le g(x) \le 1 + |senx|$, para qualquer $x \in \mathbb{R}$. Então: $\lim_{x \to 0} (f(x) g(x) + cosx) = 1$.
- 16. (a) f não é contínua em x = 0.

(c) f é contínua em x=2.

- (b) f não é contínua em x=1.
- 17. (a) f é contínua em \mathbb{R} .

(d) f é contínua em $\mathbb{R} \setminus \{-2\}$.

- (b) f é contínua em $\mathbb{R} \setminus \{1\}$.
- (c) f é contínua em \mathbb{R} .

(e) f é contínua em $\mathbb{R} \setminus \{3\}$.

18. (a) a = 6

(b) $a = \frac{3}{2}$

- (c) $a = \frac{4}{3}$
- (d) Neste exercício, considere $f(x) = \begin{cases} a^2x 2a & \text{se } x \ge 2 \\ 12 & \text{se } x < 2 \end{cases}$. Você deverá encontrar a = -2 e a = 3.
- (e) Neste exercício, considere $f(x) = \begin{cases} -2 & \text{se} & x \le -1 \\ ax b & \text{se} & -1 < x < 1 \end{cases}$. Você deverá encontrar $a = \frac{5}{2}$ e $b = -\frac{1}{2}$.
- 19.
- 20.