# Digital Mass Flow Controller Type MF1

- Instruction Manual -

MKS Products provided subject to the US Export Regulations. Diversion or transfer contrary to U.S. law is prohibited.

If applicable, also subject to other laws and regulations, e.g. respective EU regulations and respective national regulations.

Copyright © 2011 by MKS Instruments Deutschland GmbH.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as may be expressly permitted in writing by MKS Instruments.

Printed in the Federal Republic of Germany

Swagelok $^{\mathbb{R}}$ , VCR $^{\mathbb{R}}$ , and VCO $^{\mathbb{R}}$  are registered trademarks of Swagelok Marketing Company, Solon, OH NUPRO $^{\mathbb{R}}$  is a registered trademark of Crawford Fitting Company, Solon, OH Kel-F $^{\mathbb{R}}$  is a registered trademark of 3M, Minneapolis, MN

# **Table of Contents**

| MASS FLOW CONTROLLER SAFETY INFORMATION                                  | 9  |
|--------------------------------------------------------------------------|----|
| SYMBOLS USED IN THIS INSTRUCTION MANUALSAFETY PROCEDURES AND PRECAUTIONS |    |
| CHAPTER 1: GENERAL INFORMATION                                           |    |
|                                                                          |    |
| INTRODUCTION                                                             |    |
| Power Supply and Readout Units                                           |    |
| INSTRUCTION MANUAL                                                       |    |
| Contents                                                                 |    |
| Conventions                                                              |    |
| CHAPTER 2: SHIPMENT                                                      |    |
| GENERAL                                                                  | 15 |
| Unpacking                                                                |    |
| UNPACKING CHECKLIST                                                      | 15 |
| Optional Accessories:                                                    |    |
| Label                                                                    | 16 |
| Clean Room Packaging                                                     | 16 |
| CHAPTER 3: INSTALLATION AND START UP                                     | 17 |
| GENERAL REQUIREMENTS                                                     | 17 |
| Environmental                                                            | 17 |
| Location and Orientation                                                 | 17 |
| Leak Integrity                                                           | 19 |
| Pressure Drop Test                                                       | 19 |
| DIMENSIONS                                                               | 19 |
| ELECTRICAL CONNECTIONS AND CABLES                                        |    |
| Cables                                                                   |    |
| Power Supply / Readout Units of other Manufacturers                      |    |
| Non MKS Cables                                                           |    |
| FINISHING THE INSTALLATION                                               |    |
| START UP THE MASS FLOW CONTROLLER/METER                                  |    |
| ZERO ADJUST                                                              |    |
| ZERO BUTTON                                                              | 25 |
| CHAPTER 4: USB SETUP INTERFACE                                           | 27 |
| GENERAL                                                                  |    |
| Installation                                                             |    |
| Electrical connection:                                                   |    |
| Cable:                                                                   |    |
| OPERATION                                                                |    |
| Address                                                                  |    |
| Configuration                                                            |    |
| MSD-Mode                                                                 |    |
| PROTOCOLL                                                                |    |
| General Description                                                      |    |
| Default settings                                                         |    |
| Objects                                                                  |    |
| Object Model                                                             |    |
| Object Parameters Description                                            |    |
| Object Parameter Reference                                               |    |
| CHAPTER 5 PROCESS INTERFACES                                             | 55 |
| 1 IIMI I D.D. 3 EDIN D.3.3 IIVID.D.D.A.I D.3                             |    |

| FUNCTIONS                            | 55 |
|--------------------------------------|----|
| Report Functions                     | 55 |
| Valve Override                       | 55 |
| Auto Zero                            | 55 |
| Alarm Limits                         |    |
| Temperature Measurement              |    |
| Valve Drive Level                    |    |
| User Span / Gas Correction           |    |
| User Zero                            |    |
| Filter                               |    |
|                                      |    |
| Gas Tables                           |    |
| Soft Start Rate                      |    |
| PROFIBUS PROCESS INTERFACE           |    |
| Installation                         |    |
| Pinout                               |    |
| Power supply                         |    |
| Cable                                |    |
| Operation                            |    |
| Address                              |    |
|                                      |    |
| Feedback and Diagnostics Error codes |    |
| LED Functions                        |    |
| Protocol (PROFIBUS cyclic telegrams) |    |
| Data Interface                       |    |
| Send Data                            |    |
| Small Receive Data                   |    |
| Full Receive Data                    |    |
| Small Setup                          |    |
| Full Setup                           |    |
| Small Diagnostics (for DPV0 only)    |    |
| Full Diagnostics (for DPV0 only)     |    |
| Calibration Table (for DPV0 only)    | 65 |
| Diagnosis (for DPV1 only)            |    |
| ANALOG PROCESS INTERFACE             | 66 |
| Functions                            | 66 |
| Valve Override                       | 66 |
| Scaling the Signal                   | 66 |
| Installation                         | 66 |
| Pinout                               |    |
| Power supply                         |    |
| Cables and Controllers by MKS        |    |
| Operation                            |    |
| Configuration                        |    |
| Feedback and Diagnostic              |    |
| LED Functions                        |    |
| RS485 AND USB INTERFACES             | 68 |
| Installation                         |    |
| Pinout                               | 68 |
| Power supply                         |    |
| Cable for RS485                      |    |
| Cable for USB                        |    |
| Operation                            |    |
| Address                              |    |
| Configuration                        |    |
| Feedback and Diagnostics             |    |
| Error Codes                          |    |
| LED Functions                        |    |
| Protocol ("Human Readable Protocol") |    |

| Send telegram                                       |    |
|-----------------------------------------------------|----|
| Receive telegram                                    |    |
| Command Reference List                              |    |
| Command list description                            |    |
| Get Actual Flow (F)                                 |    |
| Get Temperature (T)                                 |    |
| Get Valve Drive Level (V)                           |    |
| Set Flow Setpoint, Get Actual Flow (S)              |    |
| Get Flow Setpoint (s)                               |    |
| Set Valve Override Normal (N)                       |    |
| Set Valve Override Close (C)                        |    |
| Set Valve Override Purge (P)                        |    |
| Set Autozero (A)                                    |    |
| Set WinkStatus (W)                                  |    |
| Select Gas Table Index (G)                          |    |
| Get Gas Table Index (g)                             |    |
| Get Device Status (D)                               |    |
| Get MF1 Error Status (M)                            |    |
| Get Communication Status (U or u)                   |    |
|                                                     |    |
| MODBUS INTERFACE                                    |    |
| Installation                                        |    |
| Pinout                                              |    |
| Power                                               |    |
| Cable                                               |    |
| Operation                                           |    |
| Address                                             |    |
| MODBUS compatible addressing description            |    |
| Configuration                                       |    |
| Feedback and Diagnostics                            | 84 |
| Error Codes                                         |    |
| LED Functions                                       |    |
| Protocol (Modbus compatible)                        | 85 |
| Holding Registers                                   | 85 |
| Coils                                               | 85 |
| Input Registers                                     | 86 |
| Discrete Inputs                                     | 87 |
| ETHERCAT                                            | 89 |
| Installation                                        | 89 |
| Pinout                                              |    |
| Power supply                                        |    |
| Cable                                               |    |
| Operation                                           |    |
| Address                                             |    |
| Feedback and Diagnostics                            |    |
| Error Code                                          |    |
| LED functions                                       |    |
| Protocol                                            |    |
|                                                     |    |
| Process Data Objects (PDO) protocol                 |    |
| CAN application layer over EtherCAT (CoE) - Objects |    |
| PROFINET IO                                         |    |
| Installation                                        |    |
| Pinout                                              |    |
| Power supply                                        |    |
| Cable                                               |    |
| Operation                                           |    |
| Address                                             |    |
| Feedback and Diagnostics                            | 97 |
| LED functions                                       |    |
| Protocol                                            | 98 |
| 26.11                                               |    |

| Bitfields                                           | 99  |
|-----------------------------------------------------|-----|
| CHAPTER 6: GAS CORRECTION FACTOR (GCF)              | 100 |
| THE GAS CORRECTION FACTOR (GCF):                    | 100 |
| How To Calculate the GCF for Pure Gases             |     |
| How To Calculate the GCF for Gas Mixtures           |     |
| Note                                                |     |
| Example                                             |     |
| Mass Flow Rate at a Different Reference Temperature | 103 |
| CHAPTER 7: THEORY OF OPERATION                      | 104 |
| TECHNIQUE OF MEASUREMENT AND CONTROL, ELECTRONICS   | 104 |
| Flow Path                                           |     |
| Measurement Technique                               | 105 |
| Control Circuitry                                   |     |
| CONTROL VALVE                                       | 106 |
| CHAPTER 8: MAINTENANCE                              | 107 |
| General                                             | 107 |
| Zero Adjustment                                     |     |
| Checks and Recalibration                            | 107 |
| Profibus Support Kit                                | 108 |
| CUSTOMER SUPPORT                                    | 108 |
| TROUBLESHOOTING                                     | 109 |
| APPENDIX A: PRODUCT SPECIFICATIONS                  | 111 |
| SPECIFICATIONS                                      | 111 |
| ENVIRONMENTAL SPECIFICATIONS                        | 112 |
| ELECTRICAL SPECIFICATIONS                           | 112 |
| PHYSICAL SPECIFICATIONS                             | 113 |
| APPENDIX B: MODEL CODE                              | 114 |
| Variant (X)                                         | 114 |
| GAS IDENTIFICATION (YYY)                            | 114 |
| FULL SCALE RANGE (SCCM NITROGEN) (ZZZ)              | 116 |
| FITTINGS (C)                                        | 117 |
| INTERFACE (A)                                       | 117 |
| SEAL MATERIAL (E)                                   |     |
| EXTRAS/ OPTIONS (O)                                 | 118 |
| APPENDIX C: GAS CORRECTION FACTORS                  | 119 |
| APPENDIX D: CE DECLARATION OF CONFORMITY            | 122 |
|                                                     |     |
| MKS WORLDWIDE CALIBRATION & SERVICE CENTERS         | 124 |

# **List of Figures**

| Figure 1 Model Code Label                                     | 16  |
|---------------------------------------------------------------|-----|
| Figure 2 Side View - Dimensions                               | 19  |
| Figure 3 Front View – Dimensions                              | 20  |
| Figure 4 Top View – Dimensions                                | 20  |
| Figure 5 Bottom View – Dimensions                             | 21  |
| Figure 6 Connector and Control Elements for Profibus unit     | 21  |
| Figure 7 Side view - Dimensions                               | 21  |
| Figure 8 Zero Button                                          | 25  |
| Figure 9 Profibus Connector                                   | 57  |
| Figure 10 Termination resistor                                | 58  |
| Figure 11: Assembly                                           | 104 |
|                                                               |     |
| List of Tables                                                |     |
| Table 1 Total length for different fittings                   | 20  |
| Table 2 Profibus Interface                                    | 57  |
| Table 3 Cable specification (EN50170)                         | 58  |
| Table 4 Maximum segment length as a function of the baud rate | 58  |
| Table 5 Analog Interface                                      | 67  |
| Table 6 MKS Controller and cables for analog MF1 units        | 67  |
| Table 7 Troubleshooting                                       | 109 |
|                                                               |     |

# **Mass Flow Controller Safety Information**

# **Symbols Used in This Instruction Manual**

Definitions of WARNING, CAUTION, and NOTE messages used throughout the manual.

### Warning



The WARNING sign denotes a hazard to personnel. It calls attention to a procedure, practice, condition, or the like, which, if not correctly performed or adhered to, could result in injury to personnel.

### Caution



The CAUTION sign denotes a hazard to equipment. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of all or part of the product.

### **Note**



The NOTE sign denotes important information. It calls attention to a procedure, practice, condition, or the like, which is essential to highlight.

# **Safety Procedures and Precautions**

The following general safety precautions must be observed during all phases of operation of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of intended use of the instrument and may impair the protection provided by the equipment. MKS Instruments, Inc. assumes no liability for the customer's failure to comply with these requirements.

#### DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to an MKS Calibration and Service Center for service and repair to ensure that all safety features are maintained.

#### SERVICE BY QUALIFIED PERSONNEL ONLY

Operating personnel must not attempt component replacement and internal adjustments. Any service must be made by qualified service personnel only.

#### **USE CAUTION WHEN OPERATING WITH HAZARDOUS MATERIALS**

If hazardous materials are used, observe the proper safety precautions, completely purge the instrument when necessary, and ensure that the material used is compatible with the wetted materials in this product, including any sealing materials.

### **PURGE THE INSTRUMENT**

After installing the unit, or before removing it from a system, purge the unit completely with a clean, dry gas to eliminate all traces of the previously used flow material.

### **USE PROPER PROCEDURES WHEN PURGING**

This instrument must be purged under a ventilation hood, and gloves must be worn for protection.

#### DO NOT OPERATE IN AN EXPLOSIVE ENVIRONMENT

To avoid explosion, do not operate this product in an explosive environment unless it has been specifically certified for such operation.

### **USE PROPER FITTINGS AND TIGHTENING PROCEDURES**

All instrument fittings must be consistent with instrument specifications, and compatible with the intended use of the instrument. Assemble and tighten fittings according to manufacturer's directions.

#### **CHECK FOR LEAK-TIGHT FITTINGS**

Carefully check all vacuum component connections to ensure leak-tight installation.

### **OPERATE AT SAFE INLET PRESSURES**

Never operate at pressures higher than the rated maximum pressure (refer to the product specifications for the maximum allowable pressure).

### **INSTALL A SUITABLE BURST DISC**

When operating from a pressurized gas source, install a suitable burst disc in the vacuum system to prevent system explosion should the system pressure rise.

### **KEEP THE UNIT FREE OF CONTAMINANTS**

Do not allow contaminants to enter the unit before or during use. Contamination such as dust, dirt, lint, glass chips, and metal chips may permanently damage the unit or contaminate the process.

### ALLOW THE UNIT TO WARM UP

If the unit is used to control dangerous gases, they should not be applied before the unit has completely warmed up. Use a positive shutoff valve to ensure that no erroneous flow can occur during warm up.

# **Chapter 1: General Information**

# <u>Introduction</u>

MF1 is a state of the art high performance digital MFC with various options:

- Controller or meter version
- Metal or MEMS sensor versions
- Ranges from 10 sccm to 20 slm with various gases
- · various fittings available
- PROFIBUS, Analog, RS 485, EtherCAT, ProfiNet or USB Process Interface

# **Power Supply and Readout Units**

The MF1 can be ordered as an analog version and thus can interface to complementary MKS equipment which are available as single channel, dual channel, 4- and 8-channel units to display the flow signal and to provide the power and set point commands. Refer to the corresponding manuals for requirements and instructions.

# **Instruction Manual**

### **Contents**

This manual provides instructions on setup, installation, operation and service of:

- Mass flow controller MF1 analog operation
- Mass flow controller MF1 Profibus operation
- Mass flow controller MF1 RS485 operation
- Mass flow controller MF1 USB operation
- Mass flow controller MF1 EtherCAT operation
- Mass flow controller MF1 ProfiNet operation

### **Conventions**

If not explicitly expressed differently at the respective place in this handbook all data are referenced to:

- a) Temperature in °C
- b) Gas type is nitrogen N2
- c) Pressure in mbar or bar with index (a) relates to absolute pressure and whereas index (g) stands for gauge pressure, related to atmospheric and index (d) indicates differential pressure.
- d) Flow rates are given in sccm<sup>\*\*</sup> or slm<sup>\*\*\*</sup> related to nitrogen or dry air.

\_

 $<sup>^{**}</sup>$  1 sccm = 1 standard cm $^3$  / min ; Standard conditions: 1013.25 mbar and 0  $^{\circ}$ C

<sup>1</sup> slm = 1 standard liter / min = 1000 sccm

# **Chapter 2: Shipment**

# **General**

### Unpacking

MKS has carefully packed each unit so that it will reach you in perfect operating order. Upon receiving the unit, however, you should check for defects, cracks, broken connectors, damaged cables etc., to be certain that damage has not occurred during shipment.

**Note** 



Do *not* discard any packing materials until you have completed your inspection and are sure the unit arrived safely.

If you find any damage, please notify your carrier and MKS immediately. If it is necessary to return the unit to MKS, obtain an ERA Number (Equipment Return Authorization Number) from the MKS Service Center before shipping. Please refer to the inside of the back cover of this manual for a list of MKS Calibration and Service Centers.

# **Unpacking Checklist**

- Mass flow controller
- Mating connectors
- GSD file (CD) (for Profibus only)
- Manual (this book)
- Calibration sheet

# **Optional Accessories:**

Control units, power supplies, readout units

Cable

Profibus Support Kit: 1179-PB-SUPPORT

for units with profibus only

#### Label

The label shows the following information: See figure 1 as an example:

Model code MF1
Sealing FKM
Range 500 sccm

Gas type SiH4 (the range is related to this gas)

Serial number 454145G20

CE mark CE

Manufacturer MKS Instruments Deutschland GmbH

MF1C039502RPV
500 sccm / SiH4

MKS Instruments Deutschland GmbH

Figure 1 Model Code Label

Across the housing and the meter/controller body there is a warranty void sticker to avoid access to the inside by unauthorized people. Broken or removed label means lost of any warranty.

# **Clean Room Packaging**

It is possible to get the flow controller delivered in clean room packaging (as an option). When unpacking, follow these steps:

- Remove the outer bag in an ante room (garmenting room) or transfer box.
   Do not allow this outer bag to enter the clean room.
- Wipe down the exterior of the inner bag with a clean room wipe.This step reduces the contamination introduced into the clean room.
- Remove the inner bag in the clean room.

# **Chapter 3: Installation and Start Up**

# **General Requirements**

### **Environmental**

Follow the guidelines below when installing and using your mass flow controller.

- 1. Maintain the normal operating temperature between  $0 40^{\circ}$ C (32° to 104°F).
- 2. Observe the pressure limits
  - Maximum gas inlet pressure is 10 bar (g).
  - Operational differential pressure is:

For F.S. of 10 to 5000 sccm 0,7 bar (d) to 2.75 bar (d) For F.S. of 10000 to 20000 sccm 1 bar (d) to 2.75 bar (d)

- The standard orifice is sized for control over this range with the outlet at atmospheric pressure.
- 3. Two kinds of power supply are possible (applies to all units):

```
± 15 V or 24 V (20 to 31.5 V)
```

Current: < 300 mA @ 24 VDC for Profibus, USB, RS485 or analog interface

- 4. Allow minimum 15 minutes for warm-up time for analog units as well as for units with Profibus, RS 485 or USB interface.
- 5. Use high purity gas to purge the instrument.
- The use of a filter upstream of the mass flow controller is recommended, if enough pressure is available.

Refer also to Appendix A, Product Specifications for other possible precautions and restrictions.

### **Location and Orientation**

1. Set the controller into position where it will be connected to a gas supply.

Placement of flow components in an orientation other than that in which they were calibrated (typically horizontal) may cause a small zero shift. The zero offset can be removed according to the instructions for zeroing.

2. Install the flow controller in the gas stream such that the flow will be in the direction of the arrow on the side of the controller.

Take into consideration the specified leak through the closed control valve in case of a mass flow controller. The specified value refers to new and unused units, but may change during operation by age, cycles, temperature and gas. To achieve best possible leak tightness we strongly recommend the use of positive shut off valves.

The normal position is horizontal, the process interface connector pointing upwards or vertical with flow direction either upwards or downwards.

It is possible to mount the units the way that the connector points downwards but control performance and valve leak can be affected. This applies especially to units with higher flow ranges. Therefore the 'ceiling mount attitude' should be avoided.

3. Allow adequate clearance for the tubing. Take into account when designing the plumbing that a unit may be removed later, e.g. for service or maintenance.

To de-install units with metal ferrule compression fittings (for example Swagelok) the tubing must be moved away some millimeters in axial direction whereas VCR fittings allow the instrument to be removed sidewards also out from complexive and stiff plumbing systems.

- 4. Allow adequate clearance for the cable connector.
- 5. Position the unit to provide access to the zero button and rotary switches for address setting. Make sure that the status LED is visible.
- 6. The device dissipates considerable power, related to it's small volume. Make sure that the maximum specified ambient temperature close to the device is not exceeded, by providing adequate cooling. The main temperature is radiated on the both sides of the device.

# **Leak Integrity**

We recommend to check leak tightness of all ports and connections of the plumbing with a helium leak detector.

# **Pressure Drop Test**

If a leak check at high pressure is intended then check for the highest allowable pressure for all parts involved. Example: If a pressure based leak check at 5 bar (g) is done you will damage a pressure transducer in the line if it is limited to 3.5 bar (g). In this case the pressure transducer (or whatever component is affected) must be removed or protected by a suitable valve.

# **Dimensions**

The overall outline dimensions (length, width, height) are identical for the analog, Profibus, RS 485 and USB Units.

(All dimensions are listed in millimeters. Conversion: 1 inch = 25.4 mm)



Figure 2 Side View - Dimensions (for 4 VCR, Sub D Connector and "single-part-body"; flow from left to right)



Figure 3 Front View - Dimensions (4 VCR)



Figure 4 Top View – Dimensions (flow from left to right)

| Order Code | Fittings (compatible)        | L in mm    |
|------------|------------------------------|------------|
| MF1 R 0    | 4 VCR male                   | 118.74 ± 1 |
| MF1 S 0    | 1/4 " Swagelok*              | 107.6 ± 1  |
| MF1 G 0    | 4 VCO male                   | 110.6 ± 1  |
| MF1 D 0    | DN 16 KF                     | 118.73 ± 1 |
| MF1 M 0    | 6 mm Swagelok*               | 107.6 ± 1  |
| MF1 P 0    | 1/8 " Swagelok*              | 107.6 ± 1  |
|            | *) without nuts and ferrules |            |

Table 1 Total length for different fittings



Figure 5 Bottom View – Dimensions (flow from left to right)



Figure 6 Connector and Control Elements for Profibus unit (flow from left to right)



Figure 7 Side view - Dimensions (DN 16 KF, Sub D connector and "single-part-body"; flow from left to right)

# **Electrical Connections and Cables**

The units comply with the European standards and thus they are labeled with the CE-mark. To fulfill the above listed guidelines it is mandatory to use the appropriate interconnection cables.

#### Note



#### EMC Directive Requirements according to 2004/108/EC:

The instrument complies to EN 61326-2-2 with the requirements for industrial applications. Braided shielded cables must be used.

We recommend to use the cables offered by MKS Instruments.

Cables which are in compliance with the CE guidelines are marked with an "E" or "S" (example: CB259E-...).

The PROFIBUS cable must be qualified.

#### **Cables**

See for detailed information the section of the Process Interfaces.

# Power Supply / Readout Units of other Manufacturers

Should you use power supplies / readout units of manufacturers other than MKS then make sure that these units fulfill the electrical specifications for use with the mass flow controllers/meters as described herein. Refer to *Appendix A, Product Specifications*.

### Non MKS Cables

### Requirements

Should you choose to manufacture your own cables, follow the guidelines listed below:

- 1. The cable must have a <u>braided</u> shield, covering all wires. Neither aluminum foil nor spiral shielding will be as effective: using either may nullify regulatory compliance.
- 2. The connectors must have a metal case which has direct contact to the cable's shield on the whole circumference of the cable.
- 3. With very few exceptions, the connector(s) must make good contact (typical  $0.01\Omega$  or less) to the device's case (ground). The case also must be properly grounded.
- 4. When selecting the cable, consider:
  - a) The voltage ratings.
  - b) The cumulative I<sup>2</sup>R heating of all the conductors (keep them safely cool).
  - The voltage drop of the conductors, so that adequate power or signal voltage gets to the device.
  - d) The capacitance and inductance of cables which are handling fast signals
  - e) If there are specific requirements when supply units etc. of other manufacturers are used

# **Finishing the Installation**

- 1. Check all fittings and flanges for leaks.
  - Do not proceed with the next step until you have not made sure that there are no leaks.
- 2. Connect the interface cable(s) to the mass flow controller.
  - Connect the other end of the cable to the power supply/control electronics.
  - Check all electrical connections.

This ends the mass flow controller's installation.

# **Start Up the Mass Flow Controller/Meter**

 After you have successfully checked all mechanical and electrical connections and when you are certain that there is no gas leakage, then power can be applied to the mass flow controller or to the flow meter, respectively.

The first start up should be done preferably using a non-critical gas. This could be for example nitrogen or dry air (if there are no reactive residuals in the plumbing system) or any inert gas.

2. Switch on the power supply.

When power is first applied, the analog output signal will remain zero until the booting process is finished (analog version)

The unit performs automatically a reset, indicated by green blinking of the status LED ST. Finally the LED changes to green light which indicates that the unit is ready for use.

You can monitor the flow output signal as the instrument stabilizes and the output approaches zero. Approximately 15 minutes after power up the signal should be stable within some millivolts close to zero.

### **Note**



Do not use dangerous gases for the first start up. Use a non-critical gas, for example the gas which serves for purging.

### **Note**



If the instrument is being used to control dangerous gases, be sure that the system is fully warmed up before applying gases to the system. You may choose to install a positive shutoff valve to prevent inadvertent gas flow during the warm-up period.

Once the instrument is completely warmed up, you can proceed to zero the unit as required.

# Zero Adjust

- 1. If no gas is flowing and the mass flow controller has stabilized (ref. to *Appendix A, Specifications, Warm Up*) the flow output signal can be zeroed. This can be done in two different ways:
  - a) using the push button AUTOZERO, located at the gas inlet side of the unit. Use this means only when gas flow is completely stopped. Check that the flow signal has been set to zero!
  - b) Operation of these functions is also possible via one of the digital interfaces.
- When using a control unit by MKS then you should use the zeroing means there. If the control unit does not provide enough compensation range then the ZERO button at the mass flow unit must be used.

### **Note**



Zeroing should be done only on units that are installed in final position.

It is recommended to <u>completely</u> stop the gas flow prior to any zero adjustment.

If a pressure difference exists at the mass flow control unit then a small flow might occur even if the integrated control valve is closed. This is more likely with special units for low inlet pressures.

Do not adjust the flow signal then to zero because it is a real flow but use a positive shutoff valve to definitely stop the flow.

The integrated control valve may not completely shut off the gas flow.

3. Periodically check the zero adjustment of the unit, e.g. on maintenance intervals. The zero adjustment is mainly affected by thermal effects and especially by contamination.

Beside the need for achieving measurements of highest accuracy the zero signal is a very important indication for diagnosing the condition of flow sensor and control valve.

# **Zero Button**



Figure 8 Zero Button

### **Zero Button**

As long as the Zero Button is pushed, the SI LED will blink each second:

- 1-2 sec = ZERO function is triggered if the actual flow is smaller than 5% of full scale and the control valve is closed
- 5 sec = reset of device (reset is equal to a power cycle)
- 7 sec = switch USB mode from MSD to CDC or vice versa (for details see chapter Chapter
   4: USB Setup Interface page 27)

# **Chapter 4: USB Setup Interface**

# General

- The USB Setup Interface, which is included for all process interface versions, is dedicated for setup purposes only
- Process Interface is the interface to the tool host computer or controller. This interface is either a PROFIBUS-DP, RS 485, ModBus, USB, EtherCAT or an analog voltage interface.
- User Interface: AUTOZERO button, rotary switches for address setup and LED's for status display. The LED's provide information depending on the interface type.

The purpose of the Setup interface is to do setup and diagnostics. It does not guaranty a response in a controlled time frame. The USB operates either as MSD (mass storage device) or as CDC (communication device class). The USB Setup Interface serves for configuration and communication in non-industrial applications, e.g. use in a laboratory.

# **Installation**

# **Electrical connection:**

The USB Setup Interface is a micro-B connector labeled "SETUP" (see Figure 9).

The power Interface supplies the device with nominal 24V, which can vary from 20V to 31.5V. See "Chapter 5 Process interfaces" for details.

### Cable:

Any standard USB cable not longer than 3 m should support the communication with a PC.

# **Operation**

### **Address**

# Configuration

The MF1 can appear on a PC as a mass storage device as well as a serial interface. The mode of operation can be changed either via a command in the respective other mode or by pressing the zero button for 7 seconds (7 x blink-acknowledgement by SI-LED). The chosen mode will be taken with the next startup.

- Switching from CDC to MSD is done directly and the message "connection closed" is sent to the terminal.
- Switching from MSD to CDC is done after the drive is removed from the Windows PC.
- For the CDC mode "usbser.sys" has to be installed on the Windows PC. It is included on the Windows installation CD. For the installation of the MF1 the file 'mkscdc.inf' is required, which is included on the CD delivered with the MFC.

### **MSD-Mode**

Using the MF1 as a MSD can be done the following way:

- when starting the device the data from a SETUP.INI-file will be taken into the MF1-objects. Do not forget to open the link to Windows prior to re-start the MF1.
- a FACTORY.INI will be executed firstly. The FACTORY.INI can even overwrite protected parameter. To do so, however, it must hand over the password. After overwriting the FACTORY.INI will be erased.

# **Protocoll**

### **General Description**

INI-files format:

• \$ ObjectName Instance [ParameterName Value] # Comment

! ParameterName Value # Comment

Once the INI-files have been processed a REPORT.HTM file will be generated, which represents clearly status and all objects with their parameters.

The serial interface operation is performed as follows:

- for accessing the parameter of an object, select first the Object and the Instance:
   \$ ObjectName Instance [ParameterName [Value]] < CR>
- for setting additional parameter of the same object you could add (value has to fit to the type)<sup>1</sup>:
  - ! ParameterName Value <CR>
- for reading the parameter the query start with an ?:
   ? ParameterName < CR>

<sup>&</sup>lt;sup>1</sup> Parameter is referring to the last send ObjectName; It is recommended to send also the ObjectName, when ParameterName is send.

- the response for setting or the actual value will be returned:
   Value <CR>
- in case off error, e.g. wrong type or not existing name a code is returned:
   ! Code <CR>
- Command:
  - \* CommandName <CR>

#### Note



It is possible to power the MFC electronic only via the USB interface, which enables the check or the update of the settings, but not the operation of the MFC.

# **Default settings**

# **Objects**

### **Object Model**

All parameters of the device reside in objects.

### **Object Reference**

Object Definitions are documented in the <u>Object Reference</u>. Actual Values of the parameters are available in <u>REPORT.HTM</u> on the MSD drive.

### **Object Parameters Description**

| Object Parameters for all Objects [*; ObjId=*] |              |                                                     |  |
|------------------------------------------------|--------------|-----------------------------------------------------|--|
| Name                                           | Par.<br>Type | Description                                         |  |
| Objld                                          | Inst         | ID of Object                                        |  |
| ObjName                                        | Inst         | Short Name of Object                                |  |
| Length                                         | Inst         | Byte size of Object                                 |  |
| NrOfInstances                                  | Inst         | Numbers of Instances                                |  |
| ActInst                                        | Inst         | choose the actual Instance (e.g. used for Profibus) |  |

| Standard Input 1179 Object [SmallRecv; Objld=20] |              |                                                           |  |
|--------------------------------------------------|--------------|-----------------------------------------------------------|--|
| Name                                             | Par.<br>Type | Description                                               |  |
| ValveOverride                                    | Inst         | see Valve - ValveOverride                                 |  |
| Autozero                                         | Inst         | see Meter - AutoZero                                      |  |
| ReportDiag                                       | Inst         | changing generate a 6 byte Profibus Diagnostic            |  |
| WinkStatus                                       | Inst         | 0 to 1 transition sets the blue LED to blinking for 5 sec |  |
| EnableTotalizer                                  | Inst         | see Meter - EnableTotalizer                               |  |
| ResetTotalizer                                   | Inst         | see Meter - ResetTotalizer                                |  |
| ResetStatus                                      | Inst         | 0 to 1 transition resets error status bits                |  |

| Standard Input 1179 Object [SmallRecv; Objld=20] |      |                                |
|--------------------------------------------------|------|--------------------------------|
| SelectGasTable                                   | Inst | see SigProc - SelectGasTable   |
| EnGasCorrection                                  | Inst | see Meter - EnGCF              |
| FlowSetpoint                                     | Inst | in [FLOW_UNIT] in 10E-4 steps  |
| SetDefault                                       | Func | Reset object to default values |
| Autozero                                         | Func | see Meter - AutoZero           |
| ResetAutozero                                    | Func | see Meter - ResetAutoZero      |
| Wink                                             | Func | see Meter - Wink               |
| ResetTotalizer                                   | Func | see Meter - ResetTotalizer     |

| Standard Output 1179 Object [SmallSend; Objld=21] |              |                                                                                                                      |
|---------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------|
| Name                                              | Par.<br>Type | Description                                                                                                          |
| HighLimitAlarm                                    | Inst         | see SigProc - TripPointHighAlarm                                                                                     |
| LowLimitAlarm                                     | Inst         | see SigProc - TripPointLowAlarm                                                                                      |
| SystemError                                       | Inst         | any severe error condition                                                                                           |
| High2LimitAlarm                                   | Inst         | see SigProc - TripPointHigh2Alarm                                                                                    |
| Low2LimitAlarm                                    | Inst         | see SigProc - TripPointLow2Alarm                                                                                     |
| ValveClosed                                       | Inst         | (THERMAL_MASS_FOW_RATE < 1%) && (VALVE_OVERWRITE == FLOW_OFF)                                                        |
| Purge                                             | Inst         | THERMAL_MASS_FLOW_RATE > 110%                                                                                        |
| OverTemperature                                   | Inst         | INTERNAL_TEMP > MAX_TEMP                                                                                             |
| ValveDriveAlarm                                   | Inst         | VALVE_DRIVE_LEVEL > MAX_VTP                                                                                          |
| CalibrationRecommended                            | Inst         | TIME_TO_CAL count down expired                                                                                       |
| Uncalibrated                                      | Inst         | if a disabled or no table is used                                                                                    |
| ControllerError                                   | Inst         | abs (set - flow) greater for a longer time period                                                                    |
| MemoryFailure                                     | Inst         | E2PROM checksum error                                                                                                |
| UnexpectedCondition                               | Inst         | any process error condition                                                                                          |
| ThermalMassFlowRate                               | Inst         | in [FLOW_UNIT] in 10E-4 steps;                                                                                       |
| InternalTemperature                               | Inst         | temperature in [°C] (in 10E-4) steps; see System - InternalTemp                                                      |
| ValveDriveLevel                                   | Inst         | 0100% (in 10E-4 steps') 0% = valve is closed 100% = valve is in purge position (full open) see Valve - ValvePosition |
| SetDefault                                        | Func         | Reset object to default values                                                                                       |

| Full Output 1179 Object [FullSend; Objld=22] |              |                                   |
|----------------------------------------------|--------------|-----------------------------------|
| Name                                         | Par.<br>Type | Description                       |
| HighLimitAlarm                               | Inst         | see SigProc - TripPointHighAlarm  |
| LowLimitAlarm                                | Inst         | see SigProc - TripPointLowAlarm   |
| SystemError                                  | Inst         | see SmallSend - SystemError       |
| High2LimitAlarm                              | Inst         | see SigProc - TripPointHigh2Alarm |
| Low2LimitAlarm                               | Inst         | see SigProc - TripPointLow2Alarm  |
| ValveClosed                                  | Inst         | see SmallSend - ValveClosed       |

| Full Output 1179 Object [FullSend; Objld=22] |      |                                                                                      |
|----------------------------------------------|------|--------------------------------------------------------------------------------------|
| Purge                                        | Inst | see SmallSend - Purge                                                                |
| OverTemperature                              | Inst | see SmallSend - OverTemperature                                                      |
| ValveDriveAlarm                              | Inst | see SmallSend - ValveDriveAlarm                                                      |
| CalibrationRecommended                       | Inst | see SmallSend - CalibrationRecommended                                               |
| Uncalibrated                                 | Inst | see SmallSend - Uncalibrated                                                         |
| ControllerError                              | Inst | see SmallSend - ControllerError                                                      |
| MemoryFailure                                | Inst | see SmallSend - MemoryFailure                                                        |
| UnexpectedCondition                          | Inst | see SmallSend - UnexpectedCondition                                                  |
| ThermalMassFlowRate                          | Inst | see SmallSend - ThermalMassFlowRate                                                  |
| InternalTemperature                          | Inst | see SmallSend - InternalTemperature                                                  |
| ValveDriveLevel                              | Inst | see SmallSend - ValveDriveLevel                                                      |
| FlowTotalized                                | Inst | totalized flow<br>in FlowUnit (in 10E-1 steps)<br>i.e. min. 298 days for a 500 range |
| SetDefault                                   | Func | Reset object to default values                                                       |

| Standard Setup 1179 Object [SmallSetup; Objld=23] |              |                                                                      |
|---------------------------------------------------|--------------|----------------------------------------------------------------------|
| Name                                              | Par.<br>Type | Description                                                          |
| BaseUnit                                          | Inst         | Display in base unit; (base unit =>FlowUnit of CalTable Object)      |
| OperationMode                                     | Inst         | see Analog - OperationMode                                           |
| ZeroGain                                          | Inst         | 5% 200% full scale (in 1¤-4 steps); see Meter - ZeroGain             |
| ZeroOffset                                        | Inst         | -5% +5% full scale (in 1¤-4 steps); see Meter - ZeroOffset           |
| TripPointHigh                                     | Inst         | -10% + 120% full scale (in 1¤-4 steps); see SigProc - TripPointHigh  |
| TripPointLow                                      | Inst         | -10% + 120% full scale (in 1¤-4 steps); see SigProc - TripPointLow   |
| GasCorrection                                     | Inst         | (in 1E-4 steps) see Meter - GCF                                      |
| DefaultTable                                      | Inst         | see SigProc - DefaultTable                                           |
| TripPointHigh2                                    | Inst         | -10% + 120% full scale (in 1¤-4 steps); see SigProc - TripPointHigh2 |
| TripPointLow2                                     | Inst         | -10% + 120% full scale (in 1¤-4 steps); see SigProc - TripPointHigh2 |
| FilterSettling                                    | Inst         | 0.0 1000.0 in [sec] (in 1E-4 steps); see SigProc - FilterSettling    |
| SoftStartRate                                     | Inst         | 0.0 3600.0 in [sec] (in 1E-4 steps); see Controller - FilterSettling |
| TimeToCal                                         | Inst         | see System - TimeToCal                                               |
| CalDate                                           | Inst         | see Identity - CalDate                                               |
| UserTag                                           | Inst         | see Identity - UserTag                                               |
| SetDefault                                        | Func         | Reset object to default values                                       |

| Standard Diagnostic Object [SmallDiag; Objld=24] |              |                                               |  |
|--------------------------------------------------|--------------|-----------------------------------------------|--|
| Name                                             | Par.<br>Type | Description                                   |  |
| CommonExceptionDetailAlarm                       | Inst         | see Status - CommonExceptionDetailAlarm       |  |
| DeviceExceptionDetailAlarm                       | Inst         | see Status - DeviceExceptionDetailAlarm       |  |
| ManufacturerExceptionDetailAlar m                | Inst         | see Status - ManufacturerExceptionDetailAlarm |  |
| CommonExceptionDetailWarn                        | Inst         | see Status - CommonExceptionDetailWarn        |  |

| Standard Diagnostic Object [SmallDiag; Objld=24] |      |                                                                                                                      |
|--------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------|
| DeviceExceptionDetailWarn                        | Inst | see Status - DeviceExceptionDetailWarn                                                                               |
| ManufacturerExceptionDetailWarn                  | Inst | see Status - ManufacturerExceptionDetailWarn                                                                         |
| ProductCode                                      | Inst | see Identity - ProductCode                                                                                           |
| SoftwareRevision                                 | Inst | see Identity - SoftwareRevision                                                                                      |
| HardwareRevision                                 | Inst | see Identity - HardwareRevision                                                                                      |
| FullScale                                        | Inst | calculated fullscale for 1179 Objects                                                                                |
| RunHours                                         | Inst | see System - RunHours                                                                                                |
| InternalTemp                                     | Inst | temperature in [°C] (in 10E-4) steps; see System - InternalTemp                                                      |
| ValvePosition                                    | Inst | 0100% (in 10E-4 steps') 0% = valve is closed 100% = valve is in purge position (full open) see Valve - ValvePosition |
| TimeToCal                                        | Inst | see System - TimeToCal                                                                                               |
| SetDefault                                       | Func | Reset object to default values                                                                                       |

| Identity Object [Identity; ObjId=25] |              |                                                                                    |
|--------------------------------------|--------------|------------------------------------------------------------------------------------|
| Name                                 | Par.<br>Type | Description                                                                        |
| DeviceType                           | Inst         | MFC,MFM                                                                            |
| ProductCode                          | Inst         | MF1                                                                                |
| Manufacturer                         | Inst         | MKS Instruments                                                                    |
| Model                                | Inst         | MF1                                                                                |
| SerialNumber                         | Inst         | G123456G20                                                                         |
| SoftwareRevision                     | Inst         | TBD                                                                                |
| HardwareRevision                     | Inst         | TBD                                                                                |
| InterfaceType                        | Inst         | [ANALOG, PB, DNET, RS485,]                                                         |
| SensorType                           | Inst         | [MEMS, AMETAL]                                                                     |
| SpecialNr                            | Inst         | Device Special Number                                                              |
| CalDate                              | Inst         | Date of calibration                                                                |
| UserTag                              | Inst         | any 32 character string                                                            |
| SvnNr                                | Inst         | actual SVN software project number                                                 |
| SibSNr                               | Inst         | SIB Serial Number                                                                  |
| DibSNr                               | Inst         | DIB Serial Number                                                                  |
| DibFwVersion                         | Inst         | DIB Firmware Version                                                               |
| CdcName                              | Inst         | Cdc Name (default: device serial) Can used to assign a device part on the USB bus. |
| CdcRevision                          | Inst         | CDC Revision for InstrumentBrowser                                                 |
| SetDefault                           | Func         | Reset object to default values                                                     |

| Password Object [Password; Objld=26] |      |                                                  |  |
|--------------------------------------|------|--------------------------------------------------|--|
| Name Par. Type Description           |      |                                                  |  |
| SetPasswordDevice                    | Inst | Set new Device Password                          |  |
| UnlockDevice                         | Inst | Unlock device for user defined setup; (CalTable) |  |

| Password Object [Password; Objld=26] |      |                                 |
|--------------------------------------|------|---------------------------------|
| UnlockFactory                        | Inst | Unlock device for factory setup |
| UnlockDeviceStatus                   | Inst | [0=locked; 1=unlocked]          |
| UnlockFactoryStatus                  | Inst | [0=locked; 1=unlocked]          |
| SetDefault                           | Func | Reset object to default values  |

| Meter Object [Meter; ObjId=27] |              |                                                                                                                                                |
|--------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                           | Par.<br>Type | Description                                                                                                                                    |
| FlowValueF                     | Inst         | actual flow value as float in FlowUnit                                                                                                         |
| FlowValuel                     | Inst         | actual flow value as int (in 10E-4 steps) in FlowUnit                                                                                          |
| FlowUnit                       | Inst         | recalculate FlowUnit of CalTable to User defined FlowUnit [SCCM, SLM, SCCH, SLH, SCMM, SCMH, SCFM, SCFH, %, ‰, PPM, PPC, PPT, PPQ, V, DEFAULT] |
| FullScale                      | Inst         | full scale is calculated from Parameter CalConv=>FullScale and Meter=>FlowUnit.                                                                |
| GCF                            | Inst         | global GCF; default = 1.0                                                                                                                      |
| EnGCF                          | Inst         | enable global GCF [0 = disabled, 1 = enabled]                                                                                                  |
| ZeroGain                       | Inst         | for autozero ZeroGain                                                                                                                          |
| ZeroOffset                     | Inst         | for autozero, -5% +5% of full scale                                                                                                            |
| EnAutoZero                     | Inst         | enable Autozero ZeroOffset and ZeroGain [0,1]; default = 1                                                                                     |
| AutoZero                       | Inst         | 0 to 1 transition activates zeroing if (VALVE_OVERRIDE==FLOW_OFF && FLOW_SETPOINT < 5%FS)                                                      |
| UserSpan                       | Inst         | set global user span                                                                                                                           |
| UserZero                       | Inst         | set global user zero                                                                                                                           |
| Overflow                       | Inst         | TBD                                                                                                                                            |
| Underflow                      | Inst         | TBD                                                                                                                                            |
| TotalFlow                      | Inst         | Totalized Flow of Meter Object in FlowUnit (in 10E-1 steps) i.e. min. 298 days for a 500 range                                                 |
| EnableTotalizer                | Inst         | enable the totalizer function                                                                                                                  |
| ResetTotalizer                 | Inst         | 0 to 1 transition resets totalizer to zero                                                                                                     |
| SetDefault                     | Func         | Reset object to default values                                                                                                                 |
| Autozero                       | Func         | if read or write, execute Autozero if (VALVE_OVERRIDE==FLOW_OFF && FLOW_SETPOINT < 5%FS)                                                       |
| ResetAutozero                  | Func         | if read or write, clear Autozero                                                                                                               |
| Wink                           | Func         | if read or write, execute WinkStatus                                                                                                           |
| ResetTotalizer                 | Func         | if read or write, reset the TotalFlow value to 0                                                                                               |

| Controller Object [Controller; Objld=28] |              |                                  |
|------------------------------------------|--------------|----------------------------------|
| Name                                     | Par.<br>Type | Description                      |
| SetpointF                                | Inst         | setpoint as float                |
| SetpointI                                | Inst         | setpoint as int (in 10E-1 steps) |
| FlowUnit                                 | Inst         | see Meter - FlowUnit             |
| FullScale                                | Inst         | see Meter - FullScale            |
| Config                                   | Inst         | [controller, meter, direct]      |

| Controller Object [Controller; Objld=28] |      |                                                                                                                                      |
|------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                          |      | controller => Valve controls the flow<br>meter => Valve full open<br>direct => Valve is controlled with the setpoint from 0% to 100% |
| SoftStartRate                            | Inst | 0.0 3600.0 in [sec]                                                                                                                  |
| SlewRate                                 | Inst | 0.0 3600.0 in [sec]                                                                                                                  |
| SpHystLow                                | Inst | Setpoint off in [%]                                                                                                                  |
| SpHystHigh                               | Inst | Setpoint on in [%]                                                                                                                   |
| SetDefault                               | Func | Reset object to default values                                                                                                       |

| Sensor Object [Sensor; ObjId=29] |              |                                   |
|----------------------------------|--------------|-----------------------------------|
| Name                             | Par.<br>Type | Description                       |
| FlowValue                        | Inst         | Actual flow in % uncalibrated     |
| FullScaleN2                      | Inst         | Maximum flow of MF1 in sccm of N2 |
| SetDefault                       | Func         | Reset object to default values    |

| Actuator (Valve) Object [Valve; Objid=30] |              |                                                                          |
|-------------------------------------------|--------------|--------------------------------------------------------------------------|
| Name                                      | Par.<br>Type | Description                                                              |
| ValvePosition                             | Inst         | 0100% 0% = valve is closed 100% = valve is in purge position (full open) |
| ValveOverride                             | Inst         | [normal, Valve Close, Valve Purge]                                       |
| ValveType                                 | Inst         | [Meter, Controller Normally Close]                                       |
| SetDefault                                | Func         | Reset object to default values                                           |

| Signal Processing Object [SigProc; Objld=31] |              |                                                               |
|----------------------------------------------|--------------|---------------------------------------------------------------|
| Name                                         | Par.<br>Type | Description                                                   |
| TripPointHighAlarm                           | Inst         | (flow > HIGH_LIMIT), Hysteresis = 0.5%)                       |
| TripPointLowAlarm                            | Inst         | (flow < LOW_LIMIT), Hysteresis = 0.5%                         |
| TripPointHigh2Alarm                          | Inst         | (flow > HIGH2_LIMIT), Hysteresis = 0.5%)                      |
| TripPointLow2Alarm                           | Inst         | (flow < LOW2_LIMIT), Hysteresis = 0.5%                        |
| TripPointHigh                                | Inst         | -10% + 120% full scale                                        |
| TripPointLow                                 | Inst         | -10% + 120% full scale                                        |
| TripPointHigh2                               | Inst         | -10% + 120% full scale                                        |
| TripPointLow2                                | Inst         | -10% + 120% full scale                                        |
| FilterSettling                               | Inst         | 0.0 1000.0 in [sec]                                           |
| DefaultTable                                 | Inst         | 0 14 is the default table, 15 function (y=x) is the gas table |
| SelectGasTable                               | Inst         | 014; 15 = default gas table is used                           |
| SetDefault                                   | Func         | Reset object to default values                                |

|                  | Par. |                                                                                                                                                                                                                                 |
|------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name             | Туре | Description                                                                                                                                                                                                                     |
| Instance         | Inst | Show the Instance of the Object                                                                                                                                                                                                 |
| GasName          | Inst | e.g N2                                                                                                                                                                                                                          |
| GasNumber        | Inst | Gas Semi Number                                                                                                                                                                                                                 |
| ZeroTempCoef     | Inst | Zero Drift Compensation Factor                                                                                                                                                                                                  |
| SpanTempCoef     | Inst | Span Drift Compensation Factor                                                                                                                                                                                                  |
| CalTemp          | Inst | Internal Temperature while Calibration                                                                                                                                                                                          |
| SensorOffset     | Inst | Sensor Offset correction                                                                                                                                                                                                        |
| SensorSpan       | Inst | Sensor Span correction                                                                                                                                                                                                          |
| FullScaleCal     | Inst | Fullscale for calibration table                                                                                                                                                                                                 |
| FlowUnit         | Inst | Calibration FlowUnit [SCCM, SLM, SCCH, SLH, SCMM, SCMH, SCFM, SCFH, USER_MIN, USER_HOUR] USER_MIN => user defined UNIT counted in minutes if not exists jet. USER_HOUR => user defined UNIT counted in hours if not exists jet. |
| GasTableLength   | Inst | 221 = table with 221 points<br>0 or 1 = disable table                                                                                                                                                                           |
| SensorValue0     | Inst | sensor Value                                                                                                                                                                                                                    |
| FlowValue0       | Inst | flow Value                                                                                                                                                                                                                      |
| SensorValue1     | Inst |                                                                                                                                                                                                                                 |
| FlowValue1       | Inst |                                                                                                                                                                                                                                 |
| SensorValue      | Inst |                                                                                                                                                                                                                                 |
| FlowValue        | Inst |                                                                                                                                                                                                                                 |
| Pointer          | Inst | TBD                                                                                                                                                                                                                             |
| SetDefault       | Func | Reset object to default values                                                                                                                                                                                                  |
| StoreSensorValue | Func | TBD                                                                                                                                                                                                                             |

| Controller Calibration Object [ControllerTable; Objld=33] |              |                                     |
|-----------------------------------------------------------|--------------|-------------------------------------|
| Name                                                      | Par.<br>Type | Description                         |
| Instance                                                  | Inst         | Show the Instance of the Object     |
| ControllerP                                               | Inst         | Valve Controller proportional value |
| Controllerl                                               | Inst         | Valve Controller integral value     |
| ControllerD                                               | Inst         | Valve Controller derivativ value    |
| SetDefault                                                | Func         | Reset object to default values      |

| Acceleration Setup Object [AccelSetup; Objld=34] |              |                                 |
|--------------------------------------------------|--------------|---------------------------------|
| Name                                             | Par.<br>Type | Description                     |
| Instance                                         | Inst         | Show the Instance of the Object |
| SetpointFilter                                   | Inst         | Setpoint Filter                 |
| StartAddGain                                     | Inst         | Start additional Gain           |

| Acceleration Setup Object [AccelSetup; Objld=34] |      |                                                                                  |  |
|--------------------------------------------------|------|----------------------------------------------------------------------------------|--|
| StartMinFlow                                     | Inst | Start min. Flow                                                                  |  |
| TempCoefOffset                                   | Inst | reserved                                                                         |  |
| TempCoefGain                                     | Inst | reserved                                                                         |  |
| SpeedupGain                                      | Inst | Speedup Gain                                                                     |  |
| SpeedupTau                                       | Inst | Speedup Tau                                                                      |  |
| SpeedupGainFlowInc                               | Inst | Speedup Gain Flow Increment                                                      |  |
| SpeedupGainTempInc                               | Inst | Speedup Gain Temp Increment                                                      |  |
| SpeedupTauTempInc                                | Inst | Speedup Tau Temp Increment                                                       |  |
| TempValveOffset                                  | Inst | Add Valve Offset addicted to Temperature (TempValveOffset * Calibration TempDif) |  |
| FltType                                          | Inst | [no Filter, Filter1, Filter2]                                                    |  |
| Flt1StabFac                                      | Inst | Stabilization Factor for Filter 1                                                |  |
| Flt1ReactFac                                     | Inst | Reactivation Factor for Filter 1                                                 |  |
| Flt2Boarder                                      | Inst | Filter Boarder for Filter 2                                                      |  |
| Digits                                           | Inst | define the resolution                                                            |  |
| AddValveOffset                                   | Inst | Add Valve Offset                                                                 |  |
| SetDefault                                       | Func | Reset object to default values                                                   |  |

| Gas Conversion Object [GasConv; Objld=35] |              |                                                                          |
|-------------------------------------------|--------------|--------------------------------------------------------------------------|
| Name                                      | Par.<br>Type | Description                                                              |
| Instance                                  | Inst         | Show the Instance of the Object                                          |
| ID                                        | Inst         | Name of the conversion e.g. gas name                                     |
| CalTableInstance                          | Inst         | Reference to the CalTable which linearizes the flow signal               |
| ControllerSetupInstance                   | Inst         | Reference to the ControllerSetup which define the PID settings           |
| AccelSetupInstance                        | Inst         | Reference to the AccelSetup which define the speedup settings            |
| GasCorrectionFactor                       | Inst         | Factor for translating the linearized gas type to the wanted             |
| FullScale                                 | Inst         | FullScale derived from physical by the GCF and Meter - FlowUnit          |
| MinDisplay                                | Inst         | define zero for relative outputs [in Meter - FlowUnit] e.g. %, %, V      |
| MaxDisplay                                | Inst         | define FullScale for relative outputs [in Meter - FlowUnit] e.g. %, %, V |
| SetDefault                                | Func         | Reset object to default values                                           |

| Device Status Object [Status; Objld=36] |              |                                                                                             |
|-----------------------------------------|--------------|---------------------------------------------------------------------------------------------|
| Name                                    | Par.<br>Type | Description                                                                                 |
| ExceptionByte                           | Inst         | reserved                                                                                    |
| CommonExceptionDetailAlarm              | Inst         | bit0 = reserved bit1 = TripPointHigh2Alarm bit2 = TripPointLow2Alarm bit3 - bit7 = reserved |
| DeviceExceptionDetailAlarm              | Inst         | bit0 = an USB error occurred                                                                |
| ManufacturerExceptionDetailAlar m       | Inst         | reserved                                                                                    |
| CommonExceptionDetailWarn               | Inst         | bit0 = CalibrationRecommended<br>bit1 = TripPointHighAlarm                                  |

| Device Status Object [Status; Ob | jld=36] |                                                                                                                                  |
|----------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|
|                                  |         | bit2 = TripPointLowAlarm<br>bit3 = ControllerError<br>bit4 - bit7 = reserved                                                     |
| DeviceExceptionDetailWarn        | Inst    | reserved                                                                                                                         |
| ManufacturerExceptionDetailWarn  | Inst    | bit0 = an power fail occurred bit1 = an setpoint overflow occurred bit2 = an flow value overflow occurred bit3 - bit7 = reserved |
| AlarmEnable                      | Inst    | [disable, enable] Enable diagnostics if an error alarm status has changed                                                        |
| WarningEnable                    | Inst    | disable, enable]<br>Enable diagnostics if an warning alarm status has changed                                                    |
| EepromChecksumFailCnt            | Inst    | Counter for Eeprom checksum fail errors                                                                                          |
| FlashChecksumFailCnt             | Inst    | Counter for flash checksum fail errors                                                                                           |
| StartUpCnt                       | Inst    | Counts the startups                                                                                                              |
| LowVoltageCnt                    | Inst    | Counter for low voltage errors                                                                                                   |
| WpdCnt                           | Inst    | Counter for set device password                                                                                                  |
| WpfCnt                           | Inst    | Counter for set factory password                                                                                                 |
| WdSibCnt                         | Inst    | Counter for SIB watchdogs                                                                                                        |
| SibDibComExcepCnt                | Inst    | Counter for SIB<=>DIB communication lost                                                                                         |
| WdDibCnt                         | Inst    | Counter for DIB watchdogs                                                                                                        |
| SetDefault                       | Func    | Reset object to default values                                                                                                   |

| Analog Interface Object [Analog; Objld=37]     |      |                                                                 |  |  |  |  |
|------------------------------------------------|------|-----------------------------------------------------------------|--|--|--|--|
| Name Par. Type Description                     |      |                                                                 |  |  |  |  |
| OperationMode                                  | Inst | nst [Analog, Digital] sets the inputs to analog or digital mode |  |  |  |  |
| FullscaleVoltage                               | Inst | output Voltage if GasConf - MaxDisplay is reached               |  |  |  |  |
| ZeroscaleVoltage                               | Inst | output Voltage if GasConf - MinDisplay is reached               |  |  |  |  |
| SetDefault Func Reset object to default values |      |                                                                 |  |  |  |  |

| Fieldbus Interface Object [Fieldbus; Objld=38] |              |                                                                |  |  |  |
|------------------------------------------------|--------------|----------------------------------------------------------------|--|--|--|
| Name                                           | Par.<br>Type | Description                                                    |  |  |  |
| Address                                        | Inst         | configured address                                             |  |  |  |
| SoftwareAddress                                | Inst         | if software address is < 126 this address is used for fieldbus |  |  |  |
| MaxBaudrate                                    | Inst         | Shows the maximum Profibus baud rate                           |  |  |  |
| CyclTlgInputObjectId                           | Inst         | ld of last used cyclic input telegram                          |  |  |  |
| CyclTlgOutputObjectId                          | Inst         | ld of last used cyclic output telegram                         |  |  |  |
| Config                                         | Inst         | reserved                                                       |  |  |  |
| SetDefault                                     | Func         | Reset object to default values                                 |  |  |  |
| RestartFieldBus                                | Func         | Func restart RestartFieldBus                                   |  |  |  |

| Com Interface Object [0 | Com Interface Object [Comlfc; ObjId=39] |                                                                                                                       |  |  |  |  |
|-------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Name                    | Par.<br>Type                            | Description                                                                                                           |  |  |  |  |
| Address                 | Inst                                    | Defines the device address by the rotary switches.                                                                    |  |  |  |  |
| SoftwareAddress         | Inst                                    | f the software address is < 100 the rotary switches address is ignored and the software configurable address is used. |  |  |  |  |
| Baudrate                | Inst                                    | Defines the baud rate for the communication.                                                                          |  |  |  |  |
| Parity                  | Inst                                    | Define the parity setup.  0 => none  1 => even  2 => odd                                                              |  |  |  |  |
| DataBits                | Inst                                    | efine the data bits. Possible values are 7 or 8.                                                                      |  |  |  |  |
| StopBits                | Inst                                    | Define the stop bits.  0 => 1,5 Stop Bits  1 => 1 Stop Bit  2 => 2 Stop Bits                                          |  |  |  |  |
| Config                  | Inst                                    | reserved                                                                                                              |  |  |  |  |
| FailsaveTimeout         | Inst                                    | Timeout definition.                                                                                                   |  |  |  |  |
| SetDefault              | Func                                    | Reset object to default values                                                                                        |  |  |  |  |
| RestartComIfc           | Func                                    | restart ComInterface                                                                                                  |  |  |  |  |

| Network Interface Object [NetIfc; ObjId=40] |              |             |  |  |  |
|---------------------------------------------|--------------|-------------|--|--|--|
| Name                                        | Par.<br>Type | Description |  |  |  |
| IpAddress                                   | Inst         | reserved    |  |  |  |
| SubnetMask                                  | Inst         | reserved    |  |  |  |
| Gateway                                     | Inst         | reserved    |  |  |  |
| Dhcp                                        | Inst         | reserved    |  |  |  |
| Dns1                                        | Inst         | reserved    |  |  |  |
| Dns2                                        | Inst         | reserved    |  |  |  |
| HostName                                    | Inst         | reserved    |  |  |  |
| DomainName                                  | Inst         | reserved    |  |  |  |
| SmtpServer                                  | Inst         | reserved    |  |  |  |
| SmtpUser                                    | Inst         | reserved    |  |  |  |
| SmtpPswd                                    | Inst         | reserved    |  |  |  |
| Config                                      | Inst         | reserved    |  |  |  |
| SetDefault                                  | Func         | reserved    |  |  |  |
| RestartNetIfc                               | Func         | reserved    |  |  |  |

| Hardware Object [Hardware; ObjId=41] |      |                          |  |  |  |  |  |
|--------------------------------------|------|--------------------------|--|--|--|--|--|
| Name Par. Type Description           |      |                          |  |  |  |  |  |
| Chnld                                | Inst | Name of Hardware Channel |  |  |  |  |  |
| М                                    | Inst | st Calibration M value   |  |  |  |  |  |
| Inst Calibration B value             |      |                          |  |  |  |  |  |

| Hardware Object [Hardware; Objld=41] |      |                                |  |  |  |
|--------------------------------------|------|--------------------------------|--|--|--|
| Value                                | Inst | actual raw value               |  |  |  |
| SetDefault                           | Func | Reset object to default values |  |  |  |

| System Object [System; ObjId=42] |              |                                                                                   |  |  |  |
|----------------------------------|--------------|-----------------------------------------------------------------------------------|--|--|--|
| Name                             | Par.<br>Type | Description                                                                       |  |  |  |
| FirstError                       | Inst         | reserved                                                                          |  |  |  |
| LastError                        | Inst         | reserved                                                                          |  |  |  |
| RunHours                         | Inst         | run time in hours                                                                 |  |  |  |
| TimeToCal                        | Inst         | Time to cal counter                                                               |  |  |  |
| InternalTemp                     | Inst         | temperature in [°C]                                                               |  |  |  |
| SensorTemp                       | Inst         | Sensor temperature                                                                |  |  |  |
| TempCompMode                     | Inst         | [LM35 on Sensor, Internal Sensor Temp] => Sensor Temp                             |  |  |  |
| UsbMode                          | Inst         | [msd, cdc]                                                                        |  |  |  |
| MemoryMode                       | Inst         | [Littleendian, Bigendian] lsb/msb first for process communication (e.g. Profibus) |  |  |  |
| SibHwTestStat                    | Inst         | SIB factory test status                                                           |  |  |  |
| SetDefault                       | Func         | Reset object to default values                                                    |  |  |  |
| SetDefaultAll                    | Func         | Reset all object to default values                                                |  |  |  |

| Alias Constants Object [AliasConstants; Objld=43] |                                     |                                      |  |  |  |  |
|---------------------------------------------------|-------------------------------------|--------------------------------------|--|--|--|--|
| Name Par. Type Description                        |                                     |                                      |  |  |  |  |
| NullByte                                          | Inst                                | empty dummy byte for Alias Objects   |  |  |  |  |
| NullBit                                           | Inst                                | empty dummy bit for Alias Objects    |  |  |  |  |
| NullNibble                                        | Inst                                | et empty dummy bit for Alias Objects |  |  |  |  |
| SetDefault                                        | Func Reset object to default values |                                      |  |  |  |  |

| Alias Objects Object [AliasObjects; Objld=44] |      |                                |  |  |  |  |
|-----------------------------------------------|------|--------------------------------|--|--|--|--|
| Name Par. Type Description                    |      |                                |  |  |  |  |
| AliasObjectId                                 | Inst | TBD                            |  |  |  |  |
| AliasObjectName                               | Inst | TBD                            |  |  |  |  |
| AliasObjectUsage                              | Inst | TBD                            |  |  |  |  |
| SetDefault                                    | Func | TBD                            |  |  |  |  |
| DisableAliases Func TBD                       |      |                                |  |  |  |  |
| AssembleAliases                               | Func | Reset object to default values |  |  |  |  |

| Alias Params Object [AliasParams; Objld=45] |      |     |  |  |  |  |  |
|---------------------------------------------|------|-----|--|--|--|--|--|
| Name Par. Type Description                  |      |     |  |  |  |  |  |
| AliasObjectInstance                         | Inst | TBD |  |  |  |  |  |
| SourceObjectId                              | Inst | TBD |  |  |  |  |  |
| SourceAttributeId Inst TBD                  |      |     |  |  |  |  |  |

# Object Parameter Reference

| Stan | dard     | Input | 1179 Ob | ject [SmallRecv] |        |              |               |                 |            |           |
|------|----------|-------|---------|------------------|--------|--------------|---------------|-----------------|------------|-----------|
| Obj. | Slo<br>t | Inst  | Param   | Name             | Access | Туре         | Default       | Min.            | Max.       | Store     |
| 20   | 148      | 0     | 0       | Objld            | R      | uint8        | 20            | -               | -          | -         |
| 20   | 148      | 0     | 1       | ObjName          | R      | char[12<br>] | SmallRec<br>v | -               | -          | -         |
| 20   | 148      | 0     | 2       | Length           | R      | uint16       | 6             | -               | -          | -         |
| 20   | 148      | 0     | 3       | NrOfInstances    | R      | uint8        | 1             | -               | -          | -         |
| 20   | 148      | 0     | 4       | ActInst          | RW     | uint8        | 1             | 1               | 1          | -         |
| 20   | 20       | 1n    | 0       | ValveOverride    | RW     | uint:2       | 1             | 0               | 2          | NSTN<br>V |
| 20   | 20       | 1n    | 1       | Autozero         | W      | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 20   | 20       | 1n    | 2       | ReportDiag       | W      | uint:3       | 0             | 0               | 3          | NSTN<br>V |
| 20   | 20       | 1n    | 3       | WinkStatus       | W      | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 20   | 20       | 1n    | 4       | EnableTotalizer  | RW     | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 20   | 20       | 1n    | 5       | ResetTotalizer   | W      | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 20   | 20       | 1n    | 6       | ResetStatus      | W      | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 20   | 20       | 1n    | 7       | SelectGasTable   | RW     | uint:4       | 15            | 0               | 15         | NSTN<br>V |
| 20   | 20       | 1n    | 8       | EnGasCorrection  | RW     | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 20   | 20       | 1n    | 9       | FlowSetpoint     | RW     | long         | 0             | -<br>2147483647 | 2147483647 | NSTN<br>V |
| 20   | 20       | -     | 100     | SetDefault       | W      | cmd          | -             | -               | -          | -         |
| 20   | 20       | -     | 101     | Autozero         | W      | cmd          | -             | -               | -          | -         |
| 20   | 20       | -     | 102     | ResetAutozero    | W      | cmd          | -             | -               | -          | -         |
| 20   | 20       | -     | 103     | Wink             | W      | cmd          | -             | -               | -          | -         |
| 20   | 20       | -     | 104     | ResetTotalizer   | W      | cmd          | -             | -               | -          | -         |

| Stan | dard     | Outpu | ut 1179 C | Object [SmallSend] |        |      |         |      |      |       |
|------|----------|-------|-----------|--------------------|--------|------|---------|------|------|-------|
| Obj. | Slo<br>t | Inst  | Param     | Name               | Access | Туре | Default | Min. | Max. | Store |

| Stan | dard | Outpu | ıt 1179 C | Object [SmallSend]     |     |              |               |                 |            |           |
|------|------|-------|-----------|------------------------|-----|--------------|---------------|-----------------|------------|-----------|
| 21   | 149  | 0     | 0         | Objld                  | R   | uint8        | 21            | <b> </b> -      | -          | -         |
| 21   | 149  | 0     | 1         | ObjName                | R   | char[12<br>] | SmallSen<br>d | -               | -          | -         |
| 21   | 149  | 0     | 2         | Length                 | R   | uint16       | 14            | -               | -          | -         |
| 21   | 149  | 0     | 3         | NrOfInstances          | R   | uint8        | 1             | -               | -          | -         |
| 21   | 149  | 0     | 4         | ActInst                | RW  | uint8        | 1             | 1               | 1          | -         |
| 21   | 21   | 1n    | 0         | HighLimitAlarm         | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 1         | LowLimitAlarm          | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 2         | SystemError            | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 3         | High2LimitAlarm        | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 4         | Low2LimitAlarm         | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 5         | ValveClosed            | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 6         | Purge                  | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 7         | OverTemperature        | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 8         | ValveDriveAlarm        | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 9         | CalibrationRecommended | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 10        | Uncalibrated           | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 11        | ControllerError        | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 12        | MemoryFailure          | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 13        | UnexpectedCondition    | R   | uint:1       | 0             | 0               | 1          | NSTN<br>V |
| 21   | 21   | 1n    | 14        | ThermalMassFlowRate    | R   | long         | 0             | -<br>2147483647 | 2147483647 | NSTN<br>V |
| 21   | 21   | 1n    | 15        | InternalTemperature    | R   | long         | 0             | -<br>2147483647 | 2147483647 | NSTN<br>V |
| 21   | 21   | 1n    | 16        | ValveDriveLevel        | R   | long         | 0             | -<br>2147483647 | 2147483647 | NSTN<br>V |
| 21   | 21   | -     | 100       | SetDefault             | WPF | cmd          | -             | -               | -          | -         |

| Full | Outpu    | ut 117 | 9 Object | [FullSend]    |        |              |          |      |      |       |
|------|----------|--------|----------|---------------|--------|--------------|----------|------|------|-------|
| Obj. | Slo<br>t | Inst   | Param    | Name          | Access | Туре         | Default  | Min. | Max. | Store |
| 22   | 150      | 0      | 0        | Objld         | R      | uint8        | 22       | -    | -    | -     |
| 22   | 150      | 0      | 1        | ObjName       | R      | char[12<br>] | FullSend | -    | -    | -     |
| 22   | 150      | 0      | 2        | Length        | R      | uint16       | 18       | -    | -    | -     |
| 22   | 150      | 0      | 3        | NrOfInstances | R      | uint8        | 1        | -    | -    | -     |
| 22   | 150      | 0      | 4        | ActInst       | RW     | uint8        | 1        | 1    | 1    | -     |

| Full ( | Outpu | ut 117 | 9 Object | :[FullSend]            |     |        |   |                 |            |       |
|--------|-------|--------|----------|------------------------|-----|--------|---|-----------------|------------|-------|
| 22     | 22    | 1n     | 0        | HighLimitAlarm         | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 1        | LowLimitAlarm          | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 2        | SystemError            | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 3        | High2LimitAlarm        | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 4        | Low2LimitAlarm         | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 5        | ValveClosed            | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 6        | Purge                  | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 7        | OverTemperature        | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 8        | ValveDriveAlarm        | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 9        | CalibrationRecommended | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 10       | Uncalibrated           | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 11       | ControllerError        | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 12       | MemoryFailure          | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 13       | UnexpectedCondition    | R   | uint:1 | 0 | 0               | 1          | NSTNV |
| 22     | 22    | 1n     | 14       | ThermalMassFlowRate    | R   | long   | 0 | -<br>2147483647 | 2147483647 | NSTNV |
| 22     | 22    | 1n     | 15       | InternalTemperature    | R   | long   | 0 | -<br>2147483647 | 2147483647 | NSTNV |
| 22     | 22    | 1n     | 16       | ValveDriveLevel        | R   | long   | 0 | -<br>2147483647 | 2147483647 | NSTNV |
| 22     | 22    | 1n     | 17       | FlowTotalized          | R   | long   | 0 | -<br>2147483647 | 2147483647 | NSTNV |
| 22     | 22    | -      | 100      | SetDefault             | WPF | cmd    | - | -               | -          | -     |

| Stan | dard     | Setup | 1179 OI | oject [SmallSetup] |        |              |                |         |          |       |
|------|----------|-------|---------|--------------------|--------|--------------|----------------|---------|----------|-------|
| Obj. | Slo<br>t | Inst  | Param   | Name               | Access | Туре         | Default        | Min.    | Max.     | Store |
| 23   | 151      | 0     | 0       | Objld              | R      | uint8        | 23             | -       | -        | -     |
| 23   | 151      | 0     | 1       | ObjName            | R      | char[12<br>] | SmallSetu<br>p | -       | -        | -     |
| 23   | 151      | 0     | 2       | Length             | R      | uint16       | 80             | -       | -        | -     |
| 23   | 151      | 0     | 3       | NrOfInstances      | R      | uint8        | 1              | -       | -        | -     |
| 23   | 151      | 0     | 4       | ActInst            | RW     | uint8        | 1              | 1       | 1        | -     |
| 23   | 23       | 1n    | 0       | BaseUnit           | RW     | uint:1       | 0              | 0       | 1        | STNV  |
| 23   | 23       | 1n    | 1       | OperationMode      | RW     | uint:1       | 0              | 0       | 1        | STNV  |
| 23   | 23       | 1n    | 2       | ZeroGain           | RW     | long         | 1000000        | 50000   | 2000000  | STNV  |
| 23   | 23       | 1n    | 3       | ZeroOffset         | RW     | long         | 0              | -50000  | 50000    | STNV  |
| 23   | 23       | 1n    | 4       | TripPointHigh      | RW     | long         | 0              | -100000 | 1200000  | STNV  |
| 23   | 23       | 1n    | 5       | TripPointLow       | RW     | long         | 0              | -100000 | 1200000  | STNV  |
| 23   | 23       | 1n    | 6       | GasCorrection      | RW     | long         | 10000          | 100     | 100000   | STNV  |
| 23   | 23       | 1n    | 7       | DefaultTable       | RW     | uint8        | 0              | 0       | 15       | STNV  |
| 23   | 23       | 1n    | 8       | TripPointHigh2     | RW     | long         | 0              | -100000 | 1200000  | STNV  |
| 23   | 23       | 1n    | 9       | TripPointLow2      | RW     | long         | 0              | -100000 | 1200000  | STNV  |
| 23   | 23       | 1n    | 10      | FilterSettling     | RW     | long         | 0              | 0       | 10000000 | STNV  |
| 23   | 23       | 1n    | 11      | SoftStartRate      | RW     | long         | 0              | 0       | 36000000 | STNV  |
| 23   | 23       | 1n    | 12      | TimeToCal          | RW     | uint16       | 0              | 0       | 65535    | NSTNV |

| Stan | dard | Setup | 1179 OI | bject [SmallSetup] |     |              |       |   |   |      |
|------|------|-------|---------|--------------------|-----|--------------|-------|---|---|------|
| 23   | 23   | 1n    | 13      | CalDate            | RW  | char[7]      | 10108 | - | - | STNV |
| 23   | 23   | 1n    | 14      | UserTag            | RW  | char[32<br>] |       | - | - | STNV |
| 23   | 23   | -     | 100     | SetDefault         | WPF | cmd          | -     | - | - | -    |

| Stan | dard     | Diagn | ostic Ob | oject [SmallDiag]                 |        |              |               |                 |            |           |
|------|----------|-------|----------|-----------------------------------|--------|--------------|---------------|-----------------|------------|-----------|
| Obj. | Slo<br>t | Inst  | Param    | Name                              | Access | Туре         | Default       | Min.            | Max.       | Store     |
| 24   | 152      | 0     | 0        | Objld                             | R      | uint8        | 24            | -               | -          | -         |
| 24   | 152      | 0     | 1        | ObjName                           | R      | char[12<br>] | SmallDia<br>g | -               | -          | -         |
| 24   | 152      | 0     | 2        | Length                            | R      | uint16       | 48            | -               | -          | -         |
| 24   | 152      | 0     | 3        | NrOfInstances                     | R      | uint8        | 1             | -               | -          | -         |
| 24   | 152      | 0     | 4        | ActInst                           | RW     | uint8        | 1             | 1               | 1          | -         |
| 24   | 24       | 1n    | 0        | CommonExceptionDetailAlarm        | R      | uint8        | 0             | 0               | 255        | NSTN<br>V |
| 24   | 24       | 1n    | 1        | DeviceExceptionDetailAlarm        | R      | uint8        | 0             | 0               | 255        | NSTN<br>V |
| 24   | 24       | 1n    | 2        | ManufacturerExceptionDetailAlar m | R      | uint8        | 0             | 0               | 255        | NSTN<br>V |
| 24   | 24       | 1n    | 3        | CommonExceptionDetailWarn         | R      | uint8        | 0             | 0               | 255        | NSTN<br>V |
| 24   | 24       | 1n    | 4        | DeviceExceptionDetailWarn         | R      | uint8        | 0             | 0               | 255        | NSTN<br>V |
| 24   | 24       | 1n    | 5        | ManufacturerExceptionDetailWarn   | R      | uint8        | 0             | 0               | 255        | NSTN<br>V |
| 24   | 24       | 1n    | 6        | ProductCode                       | R      | char[8]      | MF1           | -               | -          | NSTN<br>V |
| 24   | 24       | 1n    | 7        | SoftwareRevision                  | R      | char[8]      | 01.01.00      | -               | -          | NSTN<br>V |
| 24   | 24       | 1n    | 8        | HardwareRevision                  | R      | char[8]      | 01.01.00      | -               | -          | NSTN<br>V |
| 24   | 24       | 1n    | 9        | FullScale                         | R      | long         | 1             | -<br>2147483647 | 2147483647 | NSTN<br>V |
| 24   | 24       | 1n    | 10       | RunHours                          | R      | long         | 0             | 0               | 2000000000 | NSTN<br>V |
| 24   | 24       | 1n    | 11       | InternalTemp                      | R      | float        | 0             | 0               | 120        | NSTN<br>V |
| 24   | 24       | 1n    | 12       | ValvePosition                     | R      | float        | 0             | 0               | 110        | NSTN<br>V |
| 24   | 24       | 1n    | 13       | TimeToCal                         | R      | uint16       | 0             | 0               | 65535      | NSTN<br>V |
| 24   | 24       | -     | 100      | SetDefault                        | WPF    | cmd          | -             | -               | -          | -         |

| Ident | ity O    | bject | [Identity] |       |        |       |         |      |      |       |
|-------|----------|-------|------------|-------|--------|-------|---------|------|------|-------|
| Obj.  | Slo<br>t | Inst  | Param      | Name  | Access | Туре  | Default | Min. | Max. | Store |
| 25    | 153      | 0     | 0          | Objld | R      | uint8 | 25      | -    | -    | -     |

| Ident | ity O | bject | [Identity] | ı                |      |              |          |   |            |      |
|-------|-------|-------|------------|------------------|------|--------------|----------|---|------------|------|
| 25    | 153   | 0     | 1          | ObjName          | R    | char[12<br>] | Identity | - | _          | -    |
| 25    | 153   | 0     | 2          | Length           | R    | uint16       | 257      | - | -          | -    |
| 25    | 153   | 0     | 3          | NrOfInstances    | R    | uint8        | 1        | - | -          | -    |
| 25    | 153   | 0     | 4          | ActInst          | RW   | uint8        | 1        | 1 | 1          | -    |
| 25    | 25    | 1n    | 0          | DeviceType       | R    | char[8]      | MFC      | - | -          | STNV |
| 25    | 25    | 1n    | 1          | ProductCode      | RWPF | char[8]      | MF1      | - | -          | STNV |
| 25    | 25    | 1n    | 2          | Manufacturer     | R    | char[16<br>] | MKSI     | - | -          | STNV |
| 25    | 25    | 1n    | 3          | Model            | RWPF | char[32<br>] | MF1      | - | -          | STNV |
| 25    | 25    | 1n    | 4          | SerialNumber     | RWPF | char[16<br>] | 123456   | - | -          | STNV |
| 25    | 25    | 1n    | 5          | SoftwareRevision | R    | char[8]      | 01.01.00 | - | -          | STNV |
| 25    | 25    | 1n    | 6          | HardwareRevision | RWPF | char[8]      | 01.01.00 | - | -          | STNV |
| 25    | 25    | 1n    | 7          | InterfaceType    | R    | char[21<br>] |          | - | -          | STNV |
| 25    | 25    | 1n    | 8          | SensorType       | RWPF | char[21<br>] |          | - | -          | STNV |
| 25    | 25    | 1n    | 9          | SpecialNr        | RWPF | uint16       | 0        | 0 | 65535      | STNV |
| 25    | 25    | 1n    | 10         | CalDate          | RW   | char[7]      | 10109    | - | -          | STNV |
| 25    | 25    | 1n    | 11         | UserTag          | RW   | char[32<br>] | user     | - | -          | STNV |
| 25    | 25    | 1n    | 12         | SvnNr            | R    | long         | 0        | 0 | 2147483647 | STNV |
| 25    | 25    | 1n    | 13         | SibSNr           | R    | char[16<br>] | х        | - | -          | STNV |
| 25    | 25    | 1n    | 14         | DibSNr           | R    | char[16<br>] | х        | - | _          | STNV |
| 25    | 25    | 1n    | 15         | DibFwVersion     | R    | char[21<br>] | х        | - | _          | STNV |
| 25    | 25    | 1n    | 16         | CdcName          | R    | char[13<br>] | MF1      | - | -          | STNV |
| 25    | 25    | 1n    | 17         | CdcRevision      | R    | char[8]      | 01.01.00 | - | -          | STNV |
| 25    | 25    | -     | 100        | SetDefault       | WPF  | cmd          | -        | - | -          | -    |

| Pass | word     | Obje | ct [Pass | word]             |        |              |          |      |      |       |
|------|----------|------|----------|-------------------|--------|--------------|----------|------|------|-------|
| Obj. | Slo<br>t | Inst | Param    | Name              | Access | Туре         | Default  | Min. | Max. | Store |
| 26   | 154      | 0    | 0        | Objld             | R      | uint8        | 26       | -    | -    | -     |
| 26   | 154      | 0    | 1        | ObjName           | R      | char[12<br>] | Password | -    | -    | -     |
| 26   | 154      | 0    | 2        | Length            | R      | uint16       | 53       | -    | -    | -     |
| 26   | 154      | 0    | 3        | NrOfInstances     | R      | uint8        | 1        | -    | -    | -     |
| 26   | 154      | 0    | 4        | ActInst           | RW     | uint8        | 1        | 1    | 1    | -     |
| 26   | 26       | 1n   | 0        | SetPasswordDevice | WPD    | char[17<br>] | -        | -    | -    | STNV  |
| 26   | 26       | 1n   | 1        | UnlockDevice      | W      | char[17<br>] | -        | -    | -    | NSTNV |
| 26   | 26       | 1n   | 2        | UnlockFactory     | W      | char[17      | -        | -    | -    | NSTNV |

| Pass | Password Object [Password] |    |     |                     |     |       |   |   |   |       |
|------|----------------------------|----|-----|---------------------|-----|-------|---|---|---|-------|
|      |                            |    |     |                     |     | ]     |   |   |   |       |
| 26   | 26                         | 1n | 3   | UnlockDeviceStatus  | R   | uint8 | 0 | 0 | 1 | NSTNV |
| 26   | 26                         | 1n | 4   | UnlockFactoryStatus | R   | uint8 | 0 | 0 | 1 | NSTNV |
| 26   | 26                         | -  | 100 | SetDefault          | WPF | cmd   | - | - | - | -     |

| Mete | r Obj    | ect [N | leter] |                 |        |              |         |                 |            |       |
|------|----------|--------|--------|-----------------|--------|--------------|---------|-----------------|------------|-------|
| Obj. | Slo<br>t | Inst   | Param  | Name            | Access | Туре         | Default | Min.            | Max.       | Store |
| 27   | 155      | 0      | 0      | Objld           | R      | uint8        | 27      | -               | -          | -     |
| 27   | 155      | 0      | 1      | ObjName         | R      | char[12<br>] | Meter   | -               |            | -     |
| 27   | 155      | 0      | 2      | Length          | R      | uint16       | 48      | -               | -          | -     |
| 27   | 155      | 0      | 3      | NrOfInstances   | R      | uint8        | 1       | -               | -          | -     |
| 27   | 155      | 0      | 4      | ActInst         | RW     | uint8        | 1       | 1               | 1          | -     |
| 27   | 27       | 1n     | 0      | FlowValueF      | R      | float        | 0       | -1,00E+038      | 1,00E+038  | NSTNV |
| 27   | 27       | 1n     | 1      | FlowValuel      | R      | long         | 0       | -<br>2147483647 | 2147483647 | NSTNV |
| 27   | 27       | 1n     | 2      | FlowUnit        | RWPD   | uint8        | 0       | 0               | 15         | STNV  |
| 27   | 27       | 1n     | 3      | FullScale       | R      | float        | 1       | -1,00E+038      | 1,00E+038  | NSTNV |
| 27   | 27       | 1n     | 4      | GCF             | RW     | float        | 1       | 0.01            | 10         | STNV  |
| 27   | 27       | 1n     | 5      | EnGCF           | RW     | uint:1       | 0       | 0               | 1          | NSTNV |
| 27   | 27       | 1n     | 6      | ZeroGain        | RW     | float        | 100     | 5               | 200        | STNV  |
| 27   | 27       | 1n     | 7      | ZeroOffset      | RW     | float        | 0       | -5              | 5          | STNV  |
| 27   | 27       | 1n     | 8      | EnAutoZero      | RW     | uint:1       | 1       | 0               | 1          | STNV  |
| 27   | 27       | 1n     | 9      | AutoZero        | RW     | uint:1       | 0       | 0               | 1          | NSTNV |
| 27   | 27       | 1n     | 10     | UserSpan        | RW     | float        | 100     | 1               | 10000      | STNV  |
| 27   | 27       | 1n     | 11     | UserZero        | RW     | float        | 0       | -10             | 10         | STNV  |
| 27   | 27       | 1n     | 12     | Overflow        | R      | float        | 0       | -1,00E+038      | 1,00E+038  | NSTNV |
| 27   | 27       | 1n     | 13     | Underflow       | R      | float        | 0       | -1,00E+038      | 1,00E+038  | NSTNV |
| 27   | 27       | 1n     | 14     | TotalFlow       | R      | long         | 0       | -<br>2147483647 | 2147483647 | NSTNV |
| 27   | 27       | 1n     | 15     | EnableTotalizer | RW     | uint:1       | 0       | 0               | 1          | NSTNV |
| 27   | 27       | 1n     | 16     | ResetTotalizer  | RW     | uint:1       | 0       | 0               | 1          | NSTNV |
| 27   | 27       | -      | 100    | SetDefault      | W      | cmd          | -       | -               | -          | -     |
| 27   | 27       | -      | 101    | Autozero        | W      | cmd          | -       | -               | -          | -     |
| 27   | 27       | -      | 102    | ResetAutozero   | W      | cmd          | -       | -               | -          | -     |
| 27   | 27       | -      | 103    | Wink            | W      | cmd          | -       | -               | -          | -     |
| 27   | 27       | -      | 104    | ResetTotalizer  | W      | cmd          | -       | -               | -          | -     |

| Cont | roller   | Obje | ct [Cont | roller] |        |              |            |      |      |       |
|------|----------|------|----------|---------|--------|--------------|------------|------|------|-------|
| Obj. | Slo<br>t | Inst | Param    | Name    | Access | Туре         | Default    | Min. | Max. | Store |
| 28   | 156      | 0    | 0        | Objld   | R      | uint8        | 28         | -    | -    | -     |
| 28   | 156      | 0    | 1        | ObjName | R      | char[12<br>] | Controller | -    | -    | -     |
| 28   | 156      | 0    | 2        | Length  | R      | uint16       | 30         | -    | -    | -     |

| Cont | roller | Obje | ct [Cont | roller]       |      |       |   |                 |            |       |
|------|--------|------|----------|---------------|------|-------|---|-----------------|------------|-------|
| 28   | 156    | 0    | 3        | NrOfInstances | R    | uint8 | 1 | -               | -          | -     |
| 28   | 156    | 0    | 4        | Actinst       | RW   | uint8 | 1 | 1               | 1          | -     |
| 28   | 28     | 1n   | 0        | SetpointF     | RW   | float | 0 | -1,00E+038      | 1,00E+038  | NSTNV |
| 28   | 28     | 1n   | 1        | SetpointI     | RW   | long  | 0 | -<br>2147483647 | 2147483647 | NSTNV |
| 28   | 28     | 1n   | 2        | FlowUnit      | R    | uint8 | 0 | 0               | 15         | NSTNV |
| 28   | 28     | 1n   | 3        | FullScale     | R    | float | 1 | -1,00E+038      | 1,00E+038  | NSTNV |
| 28   | 28     | 1n   | 4        | Config        | RW   | uint8 | 0 | 0               | 2          | STNV  |
| 28   | 28     | 1n   | 5        | SoftStartRate | RW   | float | 0 | 0               | 3600       | STNV  |
| 28   | 28     | 1n   | 6        | SlewRate      | RW   | float | 0 | 0               | 3600       | STNV  |
| 28   | 28     | 1n   | 7        | SpHystLow     | RWPD | float | 1 | 0               | 5          | STNV  |
| 28   | 28     | 1n   | 8        | SpHystHigh    | RWPD | float | 2 | 0               | 5          | STNV  |
| 28   | 28     | -    | 100      | SetDefault    | WPF  | cmd   | - | -               | -          | -     |

| Sens | or Ol    | oject [ | Sensor] |               |        |              |         |           |           |       |
|------|----------|---------|---------|---------------|--------|--------------|---------|-----------|-----------|-------|
| Obj. | Slo<br>t | Inst    | Param   | Name          | Access | Туре         | Default | Min.      | Max.      | Store |
| 29   | 157      | 0       | 0       | Objld         | R      | uint8        | 29      | -         | -         | -     |
| 29   | 157      | 0       | 1       | ObjName       | R      | char[12<br>] | Sensor  | -         | -         | -     |
| 29   | 157      | 0       | 2       | Length        | R      | uint16       | 8       | -         | -         | -     |
| 29   | 157      | 0       | 3       | NrOfInstances | R      | uint8        | 1       | -         | -         | -     |
| 29   | 157      | 0       | 4       | Actinst       | RW     | uint8        | 1       | 1         | 1         | -     |
| 29   | 29       | 1n      | 0       | FlowValue     | RW     | float        | 0       | 1,00E+006 | 1,00E+006 | NSTNV |
| 29   | 29       | 1n      | 1       | FullScaleN2   | RWPF   | float        | 1       | 0.1       | 1,00E+009 | STNV  |
| 29   | 29       | -       | 100     | SetDefault    | WPF    | cmd          | -       | -         | -         | -     |

| Actu | ator (   | Valve | ) Object | [Valve]       |        |              |         |      |      |       |
|------|----------|-------|----------|---------------|--------|--------------|---------|------|------|-------|
| Obj. | Slo<br>t | Inst  | Param    | Name          | Access | Туре         | Default | Min. | Max. | Store |
| 30   | 158      | 0     | 0        | Objld         | R      | uint8        | 30      | -    | -    | -     |
| 30   | 158      | 0     | 1        | ObjName       | R      | char[12<br>] | Valve   | -    | -    | -     |
| 30   | 158      | 0     | 2        | Length        | R      | uint16       | 6       | -    | -    | -     |
| 30   | 158      | 0     | 3        | NrOfInstances | R      | uint8        | 1       | -    | -    | -     |
| 30   | 158      | 0     | 4        | Actinst       | RW     | uint8        | 1       | 1    | 1    | -     |
| 30   | 30       | 1n    | 0        | ValvePosition | R      | float        | 0       | -1   | 100  | NSTNV |
| 30   | 30       | 1n    | 1        | ValveOverride | RW     | uint8        | 0       | 0    | 2    | NSTNV |
| 30   | 30       | 1n    | 2        | ValveType     | RWPF   | uint8        | 1       | 0    | 1    | STNV  |
| 30   | 30       | -     | 100      | SetDefault    | WPF    | cmd          | -       | -    | -    | -     |

## Signal Processing Object [SigProc]

| Sign | al Pro   | cess | ing Obje | ct [SigProc]        |        |              |         |      |           |       |
|------|----------|------|----------|---------------------|--------|--------------|---------|------|-----------|-------|
| Obj. | Slo<br>t | Inst | Param    | Name                | Access | Туре         | Default | Min. | Max.      | Store |
| 31   | 159      | 0    | 0        | Objld               | R      | uint8        | 31      | -    | -         | -     |
| 31   | 159      | 0    | 1        | ObjName             | R      | char[12<br>] | SigProc | -    | -         | -     |
| 31   | 159      | 0    | 2        | Length              | R      | uint16       | 24      | -    | -         | -     |
| 31   | 159      | 0    | 3        | NrOfInstances       | R      | uint8        | 1       | -    | -         | -     |
| 31   | 159      | 0    | 4        | Actinst             | RW     | uint8        | 1       | 1    | 1         | -     |
| 31   | 31       | 1n   | 0        | TripPointHighAlarm  | R      | uint:1       | 0       | 0    | 1         | NSTNV |
| 31   | 31       | 1n   | 1        | TripPointLowAlarm   | R      | uint:1       | 0       | 0    | 1         | NSTNV |
| 31   | 31       | 1n   | 2        | TripPointHigh2Alarm | R      | uint:1       | 0       | 0    | 1         | NSTNV |
| 31   | 31       | 1n   | 3        | TripPointLow2Alarm  | R      | uint:1       | 0       | 0    | 1         | NSTNV |
| 31   | 31       | 1n   | 4        | TripPointHigh       | RW     | float        | 0       | 0    | 110       | STNV  |
| 31   | 31       | 1n   | 5        | TripPointLow        | RW     | float        | 0       | 0    | 110       | STNV  |
| 31   | 31       | 1n   | 6        | TripPointHigh2      | RW     | float        | 0       | 0    | 110       | STNV  |
| 31   | 31       | 1n   | 7        | TripPointLow2       | RW     | float        | 0       | 0    | 110       | STNV  |
| 31   | 31       | 1n   | 8        | FilterSettling      | RW     | float        | 0       | 0    | 1,00E+007 | STNV  |
| 31   | 31       | 1n   | 9        | DefaultTable        | RW     | uint8        | 0       | 0    | 15        | STNV  |
| 31   | 31       | 1n   | 10       | SelectGasTable      | RW     | uint8        | 15      | 0    | 15        | NSTNV |
| 31   | 31       | -    | 100      | SetDefault          | WPF    | cmd          | -       | -    | -         | -     |

| Gas  | Calib    | ration | Object | [CalTable]     |        |              |          |                |           |       |
|------|----------|--------|--------|----------------|--------|--------------|----------|----------------|-----------|-------|
| Obj. | Slo<br>t | Inst   | Param  | Name           | Access | Туре         | Default  | Min.           | Max.      | Store |
| 32   | 160      | 0      | 0      | Objld          | R      | uint8        | 32       | -              | -         | -     |
| 32   | 160      | 0      | 1      | ObjName        | R      | char[12<br>] | CalTable | -              | -         | -     |
| 32   | 160      | 0      | 2      | Length         | R      | uint16       | 206      | -              | -         | -     |
| 32   | 160      | 0      | 3      | NrOfInstances  | R      | uint8        | 16       | -              | -         | -     |
| 32   | 160      | 0      | 4      | ActInst        | RW     | uint8        | 1        | 1              | 16        | -     |
| 32   | 32       | 1n     | 0      | Instance       | R      | uint8        | 1        | 1              | 16        | STNV  |
| 32   | 32       | 1n     | 1      | GasName        | RWPD   | char[8]      | N2       | -              | -         | STNV  |
| 32   | 32       | 1n     | 2      | GasNumber      | RWPD   | uint16       | 13       | 0              | 65535     | STNV  |
| 32   | 32       | 1n     | 3      | ZeroTempCoef   | RWPD   | float        | 0        | -1             | 1         | STNV  |
| 32   | 32       | 1n     | 4      | SpanTempCoef   | RWPD   | float        | 0        | -2             | 2         | STNV  |
| 32   | 32       | 1n     | 5      | CalTemp        | RWPD   | float        | 30       | 0              | 100       | STNV  |
| 32   | 32       | 1n     | 6      | SensorOffset   | RWPD   | float        | 0        | -10            | 10        | STNV  |
| 32   | 32       | 1n     | 7      | SensorSpan     | RWPD   | float        | 100      | 0              | 400       | STNV  |
| 32   | 32       | 1n     | 8      | FullScaleCal   | RWPD   | float        | 100      | -<br>1,00E+038 | 1,00E+038 | STNV  |
| 32   | 32       | 1n     | 9      | FlowUnit       | RWPD   | uint8        | 0        | 0              | 9         | STNV  |
| 32   | 32       | 1n     | 10     | GasTableLength | RWPD   | uint8        | 0        | 0              | 20        | STNV  |
| 32   | 32       | 1n     | 11     | SensorValue0   | RWPD   | float        | 0        | -<br>1,00E+038 | 1,00E+038 | STNV  |
| 32   | 32       | 1n     | 12     | FlowValue0     | RWPD   | float        | 0        | 1,00E+038      | 1,00E+038 | STNV  |

| Gas ( | Calib | ration | Object | [CalTable]       |      |       |   |                |           |      |
|-------|-------|--------|--------|------------------|------|-------|---|----------------|-----------|------|
| 32    | 32    | 1n     | 13     | SensorValue1     | RWPD | float | 0 | -<br>1,00E+038 | 1,00E+038 | STNV |
| 32    | 32    | 1n     | 14     | FlowValue1       | RWPD | float | 0 | -<br>1,00E+038 | 1,00E+038 | STNV |
| 32    | 32    | 1n     | 15     | SensorValue      | RWPD | float | 0 | -<br>1,00E+038 | 1,00E+038 | STNV |
| 32    | 32    | 1n     | 16     | FlowValue        | RWPD | float | 0 | -<br>1,00E+038 | 1,00E+038 | STNV |
| 32    | 32    | 1n     | 53     | Pointer          | RWPD | uint8 | 1 | 1              | 20        | STNV |
| 32    | 32    | -      | 100    | SetDefault       | WPF  | cmd   | - | -              | -         | -    |
| 32    | 32    | -      | 101    | StoreSensorValue | W    | cmd   | - | -              | -         | -    |

| Cont | roller   | Calib | ration C | bject [ControllerTable] |        |              |             |      |        |       |
|------|----------|-------|----------|-------------------------|--------|--------------|-------------|------|--------|-------|
| Obj. | Slo<br>t | Inst  | Param    | Name                    | Access | Туре         | Default     | Min. | Max.   | Store |
| 33   | 161      | 0     | 0        | Objld                   | R      | uint8        | 33          | -    | -      | -     |
| 33   | 161      | 0     | 1        | ObjName                 | R      | char[12<br>] | ControllerT | -    | -      | -     |
| 33   | 161      | 0     | 2        | Length                  | R      | uint16       | 13          | -    | -      | -     |
| 33   | 161      | 0     | 3        | NrOfInstances           | R      | uint8        | 16          | -    | -      | -     |
| 33   | 161      | 0     | 4        | Actinst                 | RW     | uint8        | 1           | 1    | 16     | -     |
| 33   | 33       | 1n    | 0        | Instance                | R      | uint8        | 1           | 1    | 16     | STNV  |
| 33   | 33       | 1n    | 1        | ControllerP             | RWPD   | float        | 1           | 0    | 100000 | STNV  |
| 33   | 33       | 1n    | 2        | Controllerl             | RWPD   | float        | 0           | 0    | 100000 | STNV  |
| 33   | 33       | 1n    | 3        | ControllerD             | RWPD   | float        | 0           | 0    | 100000 | STNV  |
| 33   | 33       | -     | 100      | SetDefault              | WPF    | cmd          | -           | -    | -      | -     |

| Acce | lerati   | on Se | tup Obje | ect [AccelSetup]   |        |              |                |       |        |       |
|------|----------|-------|----------|--------------------|--------|--------------|----------------|-------|--------|-------|
| Obj. | Slo<br>t | Inst  | Param    | Name               | Access | Туре         | Default        | Min.  | Max.   | Store |
| 34   | 162      | 0     | 0        | Objld              | R      | uint8        | 34             | -     | -      | -     |
| 34   | 162      | 0     | 1        | ObjName            | R      | char[12<br>] | AccelSetu<br>p | -     | -      | -     |
| 34   | 162      | 0     | 2        | Length             | R      | uint16       | 66             | -     | -      | -     |
| 34   | 162      | 0     | 3        | NrOfInstances      | R      | uint8        | 16             | -     | -      | -     |
| 34   | 162      | 0     | 4        | Actinst            | RW     | uint8        | 1              | 1     | 16     | -     |
| 34   | 34       | 1n    | 0        | Instance           | R      | uint8        | 1              | 1     | 16     | STNV  |
| 34   | 34       | 1n    | 1        | SetpointFilter     | RWPD   | float        | 0              | 0     | 1000   | STNV  |
| 34   | 34       | 1n    | 2        | StartAddGain       | RWPD   | float        | 0              | 1     | 1000   | STNV  |
| 34   | 34       | 1n    | 3        | StartMinFlow       | RWPD   | float        | 0              | 0     | 1000   | STNV  |
| 34   | 34       | 1n    | 4        | TempCoefOffset     | RWPD   | float        | 0              | 0     | 1000   | STNV  |
| 34   | 34       | 1n    | 5        | TempCoefGain       | RWPD   | float        | 0              | 0     | 1000   | STNV  |
| 34   | 34       | 1n    | 6        | SpeedupGain        | RWPD   | float        | 0              | 0     | 100000 | STNV  |
| 34   | 34       | 1n    | 7        | SpeedupTau         | RWPD   | float        | 0              | 0     | 100000 | STNV  |
| 34   | 34       | 1n    | 8        | SpeedupGainFlowInc | RWPD   | float        | -0.27          | -1000 | 1000   | STNV  |

| Acce | lerati | on Se | tup Obje | ect [AccelSetup]   |      |       |   |       |        |      |
|------|--------|-------|----------|--------------------|------|-------|---|-------|--------|------|
| 34   | 34     | 1n    | 9        | SpeedupGainTempInc | RWPD | float | 0 | -1000 | 1000   | STNV |
| 34   | 34     | 1n    | 10       | SpeedupTauTempInc  | RWPD | float | 0 | -1000 | 1000   | STNV |
| 34   | 34     | 1n    | 11       | TempValveOffset    | RWPD | float | 0 | -1000 | 1000   | STNV |
| 34   | 34     | 1n    | 12       | FltType            | RWPD | long  | 0 | 0     | 2      | STNV |
| 34   | 34     | 1n    | 13       | Flt1StabFac        | RWPD | float | 0 | 0     | 1000   | STNV |
| 34   | 34     | 1n    | 14       | Flt1ReactFac       | RWPD | float | 1 | 0     | 1      | STNV |
| 34   | 34     | 1n    | 15       | Flt2Boarder        | RWPD | float | 0 | 0     | 1000   | STNV |
| 34   | 34     | 1n    | 16       | Digits             | RWPD | uint8 | 5 | 2     | 6      | STNV |
| 34   | 34     | 1n    | 17       | AddValveOffset     | RWPD | float | 0 | 0     | 131072 | STNV |
| 34   | 34     | -     | 100      | SetDefault         | WPF  | cmd   | - | -     | -      | -    |

| Gas  | Conv     | ersio | n Object | [GasConv]               |        |              |         |                |           |       |
|------|----------|-------|----------|-------------------------|--------|--------------|---------|----------------|-----------|-------|
| Obj. | Slo<br>t | Inst  | Param    | Name                    | Access | Туре         | Default | Min.           | Max.      | Store |
| 35   | 163      | 0     | 0        | Objld                   | R      | uint8        | 35      | -              | -         | -     |
| 35   | 163      | 0     | 1        | ObjName                 | R      | char[12<br>] | GasConv | -              | -         | -     |
| 35   | 163      | 0     | 2        | Length                  | R      | uint16       | 28      | -              | -         | -     |
| 35   | 163      | 0     | 3        | NrOfInstances           | R      | uint8        | 16      | -              | -         | -     |
| 35   | 163      | 0     | 4        | ActInst                 | RW     | uint8        | 1       | 1              | 16        | -     |
| 35   | 35       | 1n    | 0        | Instance                | R      | uint8        | 1       | 1              | 16        | STNV  |
| 35   | 35       | 1n    | 1        | ID                      | RW     | char[8]      | N2      | -              | -         | STNV  |
| 35   | 35       | 1n    | 2        | CalTableInstance        | RW     | uint8        | 1       | 1              | 16        | STNV  |
| 35   | 35       | 1n    | 3        | ControllerSetupInstance | RW     | uint8        | 1       | 1              | 16        | STNV  |
| 35   | 35       | 1n    | 4        | AccelSetupInstance      | RW     | uint8        | 1       | 1              | 16        | STNV  |
| 35   | 35       | 1n    | 5        | GasCorrectionFactor     | RW     | float        | 1       | 0.1            | 20        | STNV  |
| 35   | 35       | 1n    | 6        | FullScale               | R      | float        | 100     | -<br>1,00E+038 | 1,00E+038 | STNV  |
| 35   | 35       | 1n    | 7        | MinDisplay              | RWPD   | float        | 0       | -<br>1,00E+038 | 1,00E+038 | STNV  |
| 35   | 35       | 1n    | 8        | MaxDisplay              | RWPD   | float        | 100     | -<br>1,00E+038 | 1,00E+038 | STNV  |
| 35   | 35       | -     | 100      | SetDefault              | WPD    | cmd          | -       | -              | -         | -     |

| Devi | ce Sta   | atus C | Object [S | tatus]                     |        |              |         |      |      |       |
|------|----------|--------|-----------|----------------------------|--------|--------------|---------|------|------|-------|
| Obj. | Slo<br>t | Inst   | Param     | Name                       | Access | Туре         | Default | Min. | Max. | Store |
| 36   | 164      | 0      | 0         | Objld                      | R      | uint8        | 36      | -    | -    | -     |
| 36   | 164      | 0      | 1         | ObjName                    | R      | char[12<br>] | Status  | -    | -    | -     |
| 36   | 164      | 0      | 2         | Length                     | R      | uint16       | 27      | -    | -    | -     |
| 36   | 164      | 0      | 3         | NrOfInstances              | R      | uint8        | 1       | -    | -    | -     |
| 36   | 164      | 0      | 4         | ActInst                    | RW     | uint8        | 1       | 1    | 1    | -     |
| 36   | 36       | 1n     | 0         | ExceptionByte              | R      | uint8        | 0       | 0    | 255  | STNV  |
| 36   | 36       | 1n     | 1         | CommonExceptionDetailAlarm | R      | uint8        | 0       | 0    | 255  | NSTNV |

| Devic | ce Sta | atus C | bject [S | tatus]                            |     |        |   |   |       |       |
|-------|--------|--------|----------|-----------------------------------|-----|--------|---|---|-------|-------|
| 36    | 36     | 1n     | 2        | DeviceExceptionDetailAlarm        | R   | uint8  | 0 | 0 | 255   | NSTNV |
| 36    | 36     | 1n     | 3        | ManufacturerExceptionDetailAlar m | R   | uint8  | 0 | 0 | 255   | NSTNV |
| 36    | 36     | 1n     | 4        | CommonExceptionDetailWarn         | R   | uint8  | 0 | 0 | 255   | NSTNV |
| 36    | 36     | 1n     | 5        | DeviceExceptionDetailWarn         | R   | uint8  | 0 | 0 | 255   | NSTNV |
| 36    | 36     | 1n     | 6        | ManufacturerExceptionDetailWarn   | R   | uint8  | 0 | 0 | 255   | NSTNV |
| 36    | 36     | 1n     | 7        | AlarmEnable                       | RW  | uint8  | 0 | 0 | 1     | STNV  |
| 36    | 36     | 1n     | 8        | WarningEnable                     | RW  | uint8  | 0 | 0 | 1     | STNV  |
| 36    | 36     | 1n     | 9        | EepromChecksumFailCnt             | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 10       | FlashChecksumFailCnt              | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 11       | StartUpCnt                        | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 12       | LowVoltageCnt                     | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 13       | WpdCnt                            | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 14       | WpfCnt                            | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 15       | WdSibCnt                          | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 16       | SibDibComExcepCnt                 | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | 1n     | 17       | WdDibCnt                          | R   | uint16 | 0 | 0 | 65535 | STNV  |
| 36    | 36     | -      | 100      | SetDefault                        | WPF | cmd    | - | - | -     | -     |

| Anal | og Int   | terfac | e Object | [Analog]         |        |              |         |      |      |       |
|------|----------|--------|----------|------------------|--------|--------------|---------|------|------|-------|
| Obj. | Slo<br>t | Inst   | Param    | Name             | Access | Туре         | Default | Min. | Max. | Store |
| 37   | 165      | 0      | 0        | Objld            | R      | uint8        | 37      | -    | -    | -     |
| 37   | 165      | 0      | 1        | ObjName          | R      | char[12<br>] | Analog  | -    | -    | -     |
| 37   | 165      | 0      | 2        | Length           | R      | uint16       | 10      | -    | -    | -     |
| 37   | 165      | 0      | 3        | NrOfInstances    | R      | uint8        | 1       | -    | -    | -     |
| 37   | 165      | 0      | 4        | ActInst          | RW     | uint8        | 1       | 1    | 1    | -     |
| 37   | 37       | 1n     | 0        | OperationMode    | RW     | uint:1       | 0       | 0    | 1    | STNV  |
| 37   | 37       | 1n     | 1        | FullscaleVoltage | RW     | float        | 5       | 5    | 10   | STNV  |
| 37   | 37       | 1n     | 2        | ZeroscaleVoltage | RW     | float        | 0       | 0    | 2    | STNV  |
| 37   | 37       | -      | 100      | SetDefault       | WPF    | cmd          | -       | -    | -    | -     |

| Field | lbus I   | nterfa | ice Obje | ct [Fieldbus]   |        |              |          |      |      |       |
|-------|----------|--------|----------|-----------------|--------|--------------|----------|------|------|-------|
| Obj.  | Slo<br>t | Inst   | Param    | Name            | Access | Туре         | Default  | Min. | Max. | Store |
| 38    | 166      | 0      | 0        | Objld           | R      | uint8        | 38       | -    | -    | -     |
| 38    | 166      | 0      | 1        | ObjName         | R      | char[12<br>] | Fieldbus | -    | -    | -     |
| 38    | 166      | 0      | 2        | Length          | R      | uint16       | 12       | -    | -    | -     |
| 38    | 166      | 0      | 3        | NrOfInstances   | R      | uint8        | 1        | -    | -    | -     |
| 38    | 166      | 0      | 4        | ActInst         | RW     | uint8        | 1        | 1    | 1    | -     |
| 38    | 38       | 1n     | 0        | Address         | R      | uint8        | 1        | 0    | 127  | STNV  |
| 38    | 38       | 1n     | 1        | SoftwareAddress | RW     | uint8        | 126      | 0    | 127  | STNV  |

| Field | bus I | nterfa | ce Obje | ct [Fieldbus]         |    |       |          |      |          |      |
|-------|-------|--------|---------|-----------------------|----|-------|----------|------|----------|------|
| 38    | 38    | 1n     | 2       | MaxBaudrate           | R  | long  | 12000000 | 9600 | 12000000 | STNV |
| 38    | 38    | 1n     | 3       | CyclTlgInputObjectId  | RW | uint8 | 20       | 0    | 45       | STNV |
| 38    | 38    | 1n     | 4       | CyclTlgOutputObjectId | RW | uint8 | 21       | 0    | 45       | STNV |
| 38    | 38    | 1n     | 5       | Config                | R  | long  | 0        | 0    | 0        | STNV |
| 38    | 38    | -      | 100     | SetDefault            | W  | cmd   | -        | -    | -        | -    |
| 38    | 38    | -      | 101     | RestartFieldBus       | W  | cmd   | -        | -    | -        | -    |

| Com  | Inter    | face ( | Object [C | Comlfc]         |        |              |         |      |         |       |
|------|----------|--------|-----------|-----------------|--------|--------------|---------|------|---------|-------|
| Obj. | Slo<br>t | Inst   | Param     | Name            | Access | Туре         | Default | Min. | Max.    | Store |
| 39   | 167      | 0      | 0         | Objld           | R      | uint8        | 39      | -    | -       | -     |
| 39   | 167      | 0      | 1         | ObjName         | R      | char[12<br>] | Comlfc  |      | -       | -     |
| 39   | 167      | 0      | 2         | Length          | R      | uint16       | 17      | -    | -       | -     |
| 39   | 167      | 0      | 3         | NrOfInstances   | R      | uint8        | 1       | -    | -       | -     |
| 39   | 167      | 0      | 4         | Actinst         | RW     | uint8        | 1       | 1    | 1       | -     |
| 39   | 39       | 1n     | 0         | Address         | R      | uint8        | 0       | 0    | 125     | STNV  |
| 39   | 39       | 1n     | 1         | SoftwareAddress | RW     | uint8        | 126     | 0    | 127     | STNV  |
| 39   | 39       | 1n     | 2         | Baudrate        | RW     | long         | 115200  | 110  | 3000000 | STNV  |
| 39   | 39       | 1n     | 3         | Parity          | RW     | uint8        | 0       | 0    | 2       | STNV  |
| 39   | 39       | 1n     | 4         | DataBits        | RW     | uint8        | 8       | 7    | 8       | STNV  |
| 39   | 39       | 1n     | 5         | StopBits        | RW     | uint8        | 1       | 1    | 3       | STNV  |
| 39   | 39       | 1n     | 7         | Config          | R      | long         | 0       | 0    | 0       | STNV  |
| 39   | 39       | 1n     | 6         | FailsaveTimeout | RW     | long         | 0       | 0    | 60000   | STNV  |
| 39   | 39       | -      | 100       | SetDefault      | W      | cmd          | -       | -    | -       | -     |
| 39   | 39       | -      | 101       | RestartComlfc   | W      | cmd          | -       | -    | -       | -     |

| Netw | ork lı   | nterfa | ce Objec | ct [NetIfc]   |        |              |         |      |            |       |
|------|----------|--------|----------|---------------|--------|--------------|---------|------|------------|-------|
| Obj. | Slo<br>t | Inst   | Param    | Name          | Access | Туре         | Default | Min. | Max.       | Store |
| 40   | 168      | 0      | 0        | Objld         | R      | uint8        | 40      | -    | -          | -     |
| 40   | 168      | 0      | 1        | ObjName       | R      | char[12<br>] | NetIfc  | -    | -          | -     |
| 40   | 168      | 0      | 2        | Length        | R      | uint16       | 334     | -    | -          | -     |
| 40   | 168      | 0      | 3        | NrOfInstances | R      | uint8        | 1       | -    | -          | -     |
| 40   | 168      | 0      | 4        | ActInst       | RW     | uint8        | 1       | 1    | 1          | -     |
| 40   | 40       | 1n     | 0        | IpAddress     | RW     | lpAdr        | 0       | 0    | 4294967295 | STNV  |
| 40   | 40       | 1n     | 1        | SubnetMask    | RW     | lpAdr        | 0       | 0    | 4294967295 | STNV  |
| 40   | 40       | 1n     | 2        | Gateway       | RW     | lpAdr        | 0       | 0    | 4294967295 | STNV  |
| 40   | 40       | 1n     | 3        | Dhcp          | RW     | uint8        | 0       | 0    | 1          | STNV  |
| 40   | 40       | 1n     | 4        | Dns1          | RW     | lpAdr        | 0       | 0    | 4294967295 | STNV  |
| 40   | 40       | 1n     | 5        | Dns2          | RW     | lpAdr        | 0       | 0    | 4294967295 | STNV  |
| 40   | 40       | 1n     | 6        | HostName      | RW     | char[65<br>] |         | -    | -          | STNV  |

| Netw | ork lı | nterfa | ce Objec | ct [NetIfc]   |    |              |   |   |   |      |
|------|--------|--------|----------|---------------|----|--------------|---|---|---|------|
| 40   | 40     | 1n     | 7        | DomainName    | RW | char[49<br>] |   | - | - | STNV |
| 40   | 40     | 1n     | 8        | SmtpServer    | RW | char[65<br>] |   | - | - | STNV |
| 40   | 40     | 1n     | 9        | SmtpUser      | RW | char[65<br>] |   | - | - | STNV |
| 40   | 40     | 1n     | 10       | SmtpPswd      | RW | char[65<br>] |   | - | - | STNV |
| 40   | 40     | 1n     | 11       | Config        | R  | long         | 0 | 0 | 0 | STNV |
| 40   | 40     | -      | 100      | SetDefault    | W  | cmd          | - | - | - | -    |
| 40   | 40     | -      | 101      | RestartNetIfc | W  | cmd          | - | - | - | -    |

| Hard | ware     | Obje | ct [Hardv | vare]         |        |              |          |                  |             |           |
|------|----------|------|-----------|---------------|--------|--------------|----------|------------------|-------------|-----------|
| Obj. | Slo<br>t | Inst | Param     | Name          | Access | Туре         | Default  | Min.             | Max.        | Store     |
| 41   | 169      | 0    | 0         | Objld         | R      | uint8        | 41       | -                | -           | -         |
| 41   | 169      | 0    | 1         | ObjName       | R      | char[12<br>] | Hardware | -                | -           | -         |
| 41   | 169      | 0    | 2         | Length        | R      | uint16       | 23       | -                | -           | -         |
| 41   | 169      | 0    | 3         | NrOfInstances | R      | uint8        | 10       | -                | -           | -         |
| 41   | 169      | 0    | 4         | ActInst       | RW     | uint8        | 1        | 1                | 10          | -         |
| 41   | 41       | 1n   | 0         | Chnld         | R      | char[11<br>] |          | -                | -           | NSTN<br>V |
| 41   | 41       | 1n   | 1         | М             | RWPD   | float        | 7.15e-08 | -1               | 131070      | STNV      |
| 41   | 41       | 1n   | 2         | В             | RWPD   | float        | 0        | -<br>2.14748e+09 | 2.14748e+09 | STNV      |
| 41   | 41       | 1n   | 3         | Value         | R      | long         | 0        | -<br>2147483647  | 2147483647  | NSTN<br>V |
| 41   | 41       | -    | 100       | SetDefault    | WPF    | cmd          | -        | -                | -           | -         |

| Syste | em Ol    | bject | [System] |               |        |              |         |      |            |       |
|-------|----------|-------|----------|---------------|--------|--------------|---------|------|------------|-------|
| Obj.  | Slo<br>t | Inst  | Param    | Name          | Access | Туре         | Default | Min. | Max.       | Store |
| 42    | 170      | 0     | 0        | Objld         | R      | uint8        | 42      | -    | -          | -     |
| 42    | 170      | 0     | 1        | ObjName       | R      | char[12<br>] | System  | -    | -          | -     |
| 42    | 170      | 0     | 2        | Length        | R      | uint16       | 39      | -    | -          | -     |
| 42    | 170      | 0     | 3        | NrOfInstances | R      | uint8        | 1       | -    | -          | -     |
| 42    | 170      | 0     | 4        | Actinst       | RW     | uint8        | 1       | 1    | 1          | -     |
| 42    | 42       | 1n    | 0        | FirstError    | R      | uint8        | 0       | 0    | 255        | STNV  |
| 42    | 42       | 1n    | 1        | LastError     | R      | uint8        | 0       | 0    | 255        | STNV  |
| 42    | 42       | 1n    | 2        | RunHours      | R      | long         | 0       | 0    | 2000000000 | STNV  |
| 42    | 42       | 1n    | 3        | TimeToCal     | RW     | uint16       | 0       | 0    | 65535      | STNV  |
| 42    | 42       | 1n    | 4        | InternalTemp  | R      | float        | 0       | 0    | 100        | NSTNV |
| 42    | 42       | 1n    | 5        | SensorTemp    | R      | float        | 0       | 0    | 100        | NSTNV |
| 42    | 42       | 1n    | 6        | TempCompMode  | RWPF   | uint8        | 0       | 0    | 1          | STNV  |

| Syste | m O | bject | [System] | 1             |     |              |         |   |   |      |
|-------|-----|-------|----------|---------------|-----|--------------|---------|---|---|------|
| 42    | 42  | 1n    | 7        | UsbMode       | RW  | uint8        | 0       | 0 | 1 | STNV |
| 42    | 42  | 1n    | 8        | MemoryMode    | RW  | uint8        | 1       | 0 | 1 | STNV |
| 42    | 42  | 1n    | 9        | SibHwTestStat | R   | char[20<br>] | notDone | - | - | STNV |
| 42    | 42  | -     | 100      | SetDefault    | WPD | cmd          | -       | - | - | -    |
| 42    | 42  | -     | 101      | SetDefaultAll | WPD | cmd          | -       | - | - | -    |

| Alias | Con      | stants | Object | [AliasConstants] |        |              |                 |      |      |       |
|-------|----------|--------|--------|------------------|--------|--------------|-----------------|------|------|-------|
| Obj.  | Slo<br>t | Inst   | Param  | Name             | Access | Туре         | Default         | Min. | Max. | Store |
| 43    | 171      | 0      | 0      | Objld            | R      | uint8        | 43              | -    | -    | -     |
| 43    | 171      | 0      | 1      | ObjName          | R      | char[12<br>] | AliasConst<br>a | -    | -    | -     |
| 43    | 171      | 0      | 2      | Length           | R      | uint16       | 2               | -    | -    | -     |
| 43    | 171      | 0      | 3      | NrOfInstances    | R      | uint8        | 1               | -    | -    | -     |
| 43    | 171      | 0      | 4      | ActInst          | RW     | uint8        | 1               | 1    | 1    | -     |
| 43    | 43       | 1n     | 0      | NullByte         | R      | uint8        | 0               | 0    | 255  | STNV  |
| 43    | 43       | 1n     | 1      | NullBit          | R      | uint:1       | 0               | 0    | 1    | STNV  |
| 43    | 43       | 1n     | 2      | NullNibble       | R      | uint:4       | 0               | 0    | 15   | STNV  |
| 43    | 43       | -      | 100    | SetDefault       | WPF    | cmd          | -               | -    | -    | -     |

| Alias | Obje     | cts O | bject [Al | liasObjects]           |        |              |                 |      |      |       |
|-------|----------|-------|-----------|------------------------|--------|--------------|-----------------|------|------|-------|
| Obj.  | Slo<br>t | Inst  | Param     | Name                   | Access | Туре         | Default         | Min. | Max. | Store |
| 44    | 172      | 0     | 0         | Objld                  | R      | uint8        | 44              | -    | -    | -     |
| 44    | 172      | 0     | 1         | ObjName                | R      | char[12<br>] | AliasObjec<br>t | -    | -    | -     |
| 44    | 172      | 0     | 2         | Length                 | R      | uint16       | 14              | -    | -    | -     |
| 44    | 172      | 0     | 3         | NrOfInstances          | R      | uint8        | 8               | -    | -    | -     |
| 44    | 172      | 0     | 4         | ActInst                | RW     | uint8        | 1               | 1    | 8    | -     |
| 44    | 172      | 0     | 5         | AliasObjectsDisabled   | R      | uint:1       | 1               | -    | -    | -     |
| 44    | 172      | 0     | 6         | AliasObjectsAssembled  | R      | uint:1       | 0               | -    | -    | -     |
| 44    | 172      | 0     | 7         | AliasObjectsConsistent | R      | uint:1       | 0               | -    | -    | -     |
| 44    | 172      | 0     | 8         | AssembleErrorMsg       | R      | char[64<br>] | OK              | -    | -    | -     |
| 44    | 44       | 1n    | 0         | AliasObjectId          | RW     | uint8        | 0               | 0    | 19   | STNV  |
| 44    | 44       | 1n    | 1         | AliasObjectName        | RW     | char[12<br>] |                 | -    | -    | STNV  |
| 44    | 44       | 1n    | 2         | AliasObjectUsage       | RW     | uint8        | 0               | 0    | 2    | STNV  |
| 44    | 44       | -     | 100       | SetDefault             | WPD    | cmd          | -               | -    | -    | -     |
| 44    | 44       | -     | 101       | DisableAliases         | WPD    | cmd          | -               | -    | -    | -     |
| 44    | 44       | -     | 102       | AssembleAliases        | WPD    | cmd          | -               | -    | -    | -     |

| Alias | Alias Params Object [AliasParams] |      |       |                     |        |              |                 |      |      |       |
|-------|-----------------------------------|------|-------|---------------------|--------|--------------|-----------------|------|------|-------|
| Obj.  | Slo<br>t                          | Inst | Param | Name                | Access | Туре         | Default         | Min. | Max. | Store |
| 45    | 173                               | 0    | 0     | Objld               | R      | uint8        | 45              | -    | -    | -     |
| 45    | 173                               | 0    | 1     | ObjName             | R      | char[12<br>] | AliasParam<br>s | -    | -    | -     |
| 45    | 173                               | 0    | 2     | Length              | R      | uint16       | 3               | -    | -    | -     |
| 45    | 173                               | 0    | 3     | NrOfInstances       | R      | uint8        | 254             | -    | -    | -     |
| 45    | 173                               | 0    | 4     | ActInst             | RW     | uint8        | 1               | 1    | 254  | -     |
| 45    | 45                                | 1n   | 0     | AliasObjectInstance | RW     | uint8        | 1               | 1    | 8    | STNV  |
| 45    | 45                                | 1n   | 1     | SourceObjectId      | RW     | uint8        | 0               | 0    | 45   | STNV  |
| 45    | 45                                | 1n   | 2     | SourceAttributeId   | RW     | uint8        | 0               | 0    | 254  | STNV  |

# **Chapter 5 Process Interfaces**

# **Functions**

Beside the normal flow control mode the units are equipped with digital interfaces, which provide a number of helpful functions and useful information.

## Report Functions

Calibration Date, Type, Model, Manufacturer, Serial No., Firmware/Hardware Revision, Product Code, Date of Factory Calibration, Full Scale Range, Flow Unit, Standard Temperature Standard Pressure, Valve Type, Valve Power Off Mode.

#### Valve Override

With the override signal the control valve can be driven completely open or closed.

Set the parameter VALVE\_OVERRIDE to NORMAL to allow the mass flow controller establishing a flow in accordance to the setpoint command FLOW\_SETPOINT.

Set the parameter VALVE\_OVERRIDE to FLOW\_OFF to completely close the control valve.

Set the parameter VALVE\_OVERRIDE to PURGE to completely open the control valve. This command may be used to purge or vent the instrument or the system.

#### **Auto Zero**

If VALVE\_OVERRIDE is equal to FLOW\_OFF and THERMAL\_MASS\_FLOW\_RATE is smaller than 5 % of full scale, the flag AUTOZERO (0 to 1 transition) will take the actual sensor signal as zero and will subtract this value from all future measurements (refer also to *USER ZERO*).

Note: Zero adjust can be performed also using the AUTOZERO button (See also page 24).

### **Alarm Limits**

LOW\_TRIP\_POINT and HIGH\_TRIP\_POINT define the limits for LOW\_LIMIT\_ALARM and HIGH\_LIMIT\_ALARM flags. Consider that there is a 0.5% hysteresis for each limit switch. The hysteresis of 0.5% is divided in a slope 0.25% above and another slope 0.25% below the defined limit.

### **Temperature Measurement**

The internal temperature of the device is measured in °Celsius and given as INTERNAL TEMP.

#### Valve Drive Level

The position of the valve is given in VALVE\_DRIVE\_LEVEL. 0% means that the valve is closed and 100% means that the valve is fully opened (e.g. at the PURGE command). A typical value under normal operating conditions is 40...60 % with new units. The value depends on many parameters, e.g. pressure conditions, temperature, contamination, age etc., and may change also during operation even at the same flow rate.

### **User Span / Gas Correction**

For tuning the flow controller's accuracy the USER\_SPAN parameter should be used and for application of a specific gas the nominal full scale (e.g. N2) may be multiplied by the GCF of the gas and the parameter FULL\_SCALE\_RNG may be set with the result. Another option is to set the parameter GAS\_CORRECTION to the GCF of the gas (full functionality only).

### **User Zero**

The parameter USER ZERO may be set to the flow sensors offset. (See also AUTO ZERO)

#### **Filter**

The filter is a single-pole low pass filter. The parameter that the user can adjust is the settling time of the filter (FILTER\_SETTLING). E.g. if a step input (magnitude 100) is applied to the filter with a settling time of 100 second, the response out of the filter will be within 2% of the final value (98%) in 100 second. The default value is 0 seconds (no filtering). This filter only influence the output signal and has no effect on the control circuit.

### **Gas Tables**

Gas tables may be switched off by setting the default table to 15 (i.e. no table is used) and by selecting the default table. Or by programming a 0 for POINT\_NUM (ref. to *Calibration Table* at the end of this chapter; function (y=x)) and selecting it. Or by selecting a table with no (zero) points.

A backup of the Gas Tables is generated on Factory Setup. This backup is used for reset the tables.

#### **Soft Start Rate**

A change in the set point is performed in a slope, which is defined by SOFT\_START\_RATE. Each controller is factory set to its optimum performance.

# **PROFIBUS Process Interface**

## Installation

### **Pinout**



**Figure 9 Profibus Connector** 

| PROFIBUS Interface |             |                                                                                  |  |  |  |  |  |  |
|--------------------|-------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|
| Item               | Detail      | Description                                                                      |  |  |  |  |  |  |
| SETUP              | -           | Mini USB connector, present for every interface variant. Operates as MSD or CDC. |  |  |  |  |  |  |
| PROFIBUS           | PIN 1 PIN 5 | Standard D-Sub PROFIBUS connector                                                |  |  |  |  |  |  |
|                    | Pin-1       | nc                                                                               |  |  |  |  |  |  |
|                    | Pin-2       | nc                                                                               |  |  |  |  |  |  |
|                    | Pin-3       | RXD/TXD - P                                                                      |  |  |  |  |  |  |
|                    | Pin-4       | CNTR - P                                                                         |  |  |  |  |  |  |
|                    | Pin-5       | DGND                                                                             |  |  |  |  |  |  |
|                    | Pin-6       | VP                                                                               |  |  |  |  |  |  |
|                    | Pin-7       | Nc                                                                               |  |  |  |  |  |  |
|                    | Pin-8       | RXD/TXD – N                                                                      |  |  |  |  |  |  |
|                    | Pin-9       | nc                                                                               |  |  |  |  |  |  |

**Table 2 Profibus Interface** 

# **Power supply**

The MF1 has to be powered via the Phönix MC-Series connector below the Zero switch. Therefore a mating connector is included in the delivery. For the correct power supply specification see the technical specification in Appendix A.

### Cable

It is recommended to use cables, which fulfil the EN 50170 type A:

| Wave impedance $[\Omega]$                   | 135 165 at 320 MHz |
|---------------------------------------------|--------------------|
| Loop resistance [Ω/ km]                     | < 100              |
| Core diameter                               | > 0,64             |
| Nom. Capacitance Conductor to Shield [pF/m] | < 30               |

**Table 3 Cable specification (EN 50170)** 

The maximum fieldbus cable length per segment is dependent of the baud rate.

| Baud rate              | Maximum length of segment |
|------------------------|---------------------------|
| 9,6; 19,2; 93,75 kBaud | 1200 m                    |
| 187,5 kBaud            | 1000 m                    |
| 500 kBaud              | 400 m                     |
| 1500 kBaud             | 200 m                     |
| 3000 – 12000 kBaud     | 100 m                     |

Table 4 Maximum segment length as a function of the baud rate

It is recommended to use a termination resistor, which are typically included in the fieldbus connectors. The termination resistors provide low impedance that reduces the sensitivity to electrical noise and prevents data reflection that can cause data communication corruption.



Figure 10 Termination resistor

# Operation

### **Address**

If the software address setting is 126, the address is set via the rotary switches (up to address 99). Otherwise the rotary switch setting is irrelevant and the software address setting is used.

# **Configuration (GSD)**

| For the configuration of the MFC with a PC a GSD file is required. You will find the file on the CD, |
|------------------------------------------------------------------------------------------------------|
| which is part of the delivery. There are two GSD files. For the use with Profibus DPV 0 (order code  |
| MF1 4) select "MKS_1179.gsd and for the Profibus DPV1 (order code MF1                                |
| P) select MKS_0C0B.gsd. The DPV 0 is compatible to the 1179B Profibus.                               |
| The Profibus DPV1 supports the acyclic communication.                                                |

# **Feedback and Diagnostics**

### **Error codes**

Error codes are defined by the Profibus specification.

### **LED Functions**

| LED Signals | LED Signals              |                                                     |  |  |  |  |  |
|-------------|--------------------------|-----------------------------------------------------|--|--|--|--|--|
| ST          | Off                      | No power or not initialized                         |  |  |  |  |  |
|             | Green                    | Initialized                                         |  |  |  |  |  |
|             | Flashing green           | Initialized, diagnostic events present              |  |  |  |  |  |
|             | Red                      | Exception error                                     |  |  |  |  |  |
| OP          | Off                      | No power, not initialized                           |  |  |  |  |  |
|             | Green                    | Online, data exchange                               |  |  |  |  |  |
|             | Flashing green           | Online, clear                                       |  |  |  |  |  |
|             | Flashing red (1 flash)   | Parametrization error                               |  |  |  |  |  |
|             | Flashing red (2 flashes) | PROFIBUS Configuration error                        |  |  |  |  |  |
| SI          | Green                    | Sensor OK                                           |  |  |  |  |  |
|             | Flashing red             | Power too low                                       |  |  |  |  |  |
|             | Blue                     | Pure USB operation                                  |  |  |  |  |  |
|             | Flashing red & green     | Self Test or Boot                                   |  |  |  |  |  |
|             | Flashing blue            | Shows Seconds for AUTOZERP button                   |  |  |  |  |  |
| FL          | Off                      | No flow                                             |  |  |  |  |  |
|             | Flashing blue            | Flow Indicator: Flashes proportional to actual flow |  |  |  |  |  |
|             | Blue on                  | 100% Flow                                           |  |  |  |  |  |

## Protocol (PROFIBUS cyclic telegrams)

#### **Data Interface**

The MF1 with PROFIBUS have a small data interface with a basic function set and a full data interface with the full function set of the device. The selection between small and full functionality is made at setup time with the type of configuration data, which is loaded down, to the device.

 Small / Full Parameter selects the internal function set and is declared by the GSD file parameters:

**User\_Prm\_Data\_Len** and **User\_Prm\_Data**. The content of these parameters is either the small setup or full setup structure.

• Small / Full Receive Data, is selected by the MODULE definition in the GSD file. E.g.:

```
Module = "SMALL_MFC" 0x91, 0xD5, 0xA1, 0xE1 or
Module = "FULL MFC" 0x91, 0xD7, 0xA1, 0xE1
```

The data interfaces are documented as data structures with consecutive fields. There is a table entry for each field, with name, address (add), type information and a comment for explanation. The address field (Add.) defines the byte and bit address (**ByteOffset:BitOffset).** For the memory layout the **Motorola Format** is used. The following types are used:

• uint:X an unsigned integer with X bits length.

• long signed long integer (4 bytes)

uint16 unsigned integer (2 bytes, word)

• uint8 unsigned integer (byte)

char[X] character array of length X

#### **Send Data**

| Send data        |      |        |                                                                                                                                                                                                                           |  |  |
|------------------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name             | Add. | Type   | Comment                                                                                                                                                                                                                   |  |  |
| VALVE_OVERRIDE   | 1:0  | uint:2 | NORMAL, FLOW_OFF, PURGE                                                                                                                                                                                                   |  |  |
| AUTOZERO         | 1:2  | uint:1 | 0 to 1 transition activates zeroing if (VALVE_OVERRIDE==FLOW_OFF && FLOW_SETPOINT < 5%FS)                                                                                                                                 |  |  |
| REPORT_DIAG      | 1:3  | uint:3 | transition to a new value, triggers the device to send a new actual diagnosis:  0 = no diagnosis  1 = diagnosis of small functionality  2 = diagnosis of full functionality  3 = report selected gas table  47 = reserved |  |  |
| WINK_STATUS      | 1:6  | uint:1 | 0 to 1 transition sets the LED to blink red/green for 3 seconds                                                                                                                                                           |  |  |
| ENABLE_TOTALIZER | 1:7  | uint:1 | 0 = disabled, 1 = enabled                                                                                                                                                                                                 |  |  |
| RESET_TOTALIZER  | 0:0  | uint:1 | 0 to 1 transition resets totalizer to zero                                                                                                                                                                                |  |  |
| RESET_STATUS     | 0:1  | uint:1 | 0 to 1 transition resets error status bits                                                                                                                                                                                |  |  |
| SELECT_GAS_TABLE | 0:2  | uint:4 | 014; 15 = default gas table is used                                                                                                                                                                                       |  |  |

| EN_GAS_CORRECTION | 0:6 | uint:1 | 0 = disabled, 1 = enabled           |
|-------------------|-----|--------|-------------------------------------|
| Reserved          | 0:7 | uint:1 |                                     |
| FLOW_SETPOINT     | 2:0 | long   | in [FLOW_UNIT] in 10E-4 steps       |
| _                 |     |        | valve switched off if setpoint < 1% |
|                   |     |        | valve switched on if setpoint > 2%  |

# **Small Receive Data**

| Small receive data     |      |        |                                               |  |  |
|------------------------|------|--------|-----------------------------------------------|--|--|
| Name                   | Add. | Type   | Comment                                       |  |  |
| HIGH_LIMIT_ALARM       | 1:0  | uint:1 | (flow > HIGH_LIMIT), Hysteresis = 0.5%        |  |  |
| LOW_LIMIT_ALARM        | 1:1  | uint:1 | (flow < LOW_LIMIT), Hysteresis = 0.5%         |  |  |
| SYSTEM_ERROR           | 1:2  | uint:1 | any severe error condition                    |  |  |
| Reserved               | 1:3  | uint:5 |                                               |  |  |
| Reserved               | 0:0  | uint:8 |                                               |  |  |
| THERMAL_MASS_FLOW RATE | 2:0  | long   | in [FLOW_UNIT] in 10E-4 steps                 |  |  |
| INTERNAL_TEMP          | 6:0  | long   | temperature in °C                             |  |  |
| VALVE_DRIVE_LEVEL      | 10:0 | long   | 0 100% (in 10E-4 steps)                       |  |  |
|                        |      |        | 0% = valve is closed                          |  |  |
|                        |      |        | 100% = valve is in purge position (full open) |  |  |

# Full Receive Data

| Full receive data          |      |        |                                                                  |  |  |
|----------------------------|------|--------|------------------------------------------------------------------|--|--|
| Name                       | Add. | Туре   | Comment                                                          |  |  |
| HIGH_LIMIT_ALARM           | 1:0  | uint:1 | (flow > HIGH_LIMIT), Hysteresis = 0.5% *                         |  |  |
| LOW_LIMIT_ALARM            | 1:1  | uint:1 | (flow < LOW_LIMIT), Hysteresis = 0.5% *                          |  |  |
| SYSTEM_ERROR               | 1:2  | uint:1 | any severe system error condition                                |  |  |
| HIGH2_LIMIT_ALARM          | 1:3  | uint:1 | (flow > HIGH2_LIMIT), Hysteresis = 0.25%                         |  |  |
| LOW2_LIMIT_ALARM           | 1:4  | uint:1 | (flow < LOW2_LIMIT), Hysteresis = 0.25%                          |  |  |
| VALVE_CLOSED               | 1:5  | uint:1 | (THERMAL_MASS_FLOW_RATE < 1%) &&<br>(VALVE_OVERRIDE == FLOW_OFF) |  |  |
| PURGE                      | 1:6  | uint:1 | THERMAL_MASS_FLOW_RATE > 110%                                    |  |  |
| OVER_TEMPERATURE           | 1:7  | uint:1 | INTERNAL_TEMP > MAX_TEMP                                         |  |  |
| VALVE_DRIVE_ALARM          | 0:0  | uint:1 | VALVE_DRIVE_LEVEL > MAX_VTP                                      |  |  |
| CALIBRATION_<br>RECOMMENED | 0:1  | uint:1 | TIME_TO_CAL count down expired                                   |  |  |
| UNCALIBRATED               | 0:2  | uint:1 | if a disabled or no table is used                                |  |  |
| CONTROLLER_ERROR           | 0:3  | uint:1 | abs (setp - flow) greater for a longer time period               |  |  |
| MEMORY_FAILURE             | 0:4  | uint:1 | E2PROM checksum error                                            |  |  |
| UNEXPECTED_<br>CONDITION   | 0:5  | uint:1 | any process error condition                                      |  |  |
| Reserved                   | 0:6  | uint:2 |                                                                  |  |  |
| THERMAL_MASS_FLOW _RATE    | 2:0  | long   | in [FLOW_UNIT] in 10E-4 steps                                    |  |  |
| INTERNAL_TEMP              | 6:0  | long   | temperature in ° C                                               |  |  |
| VALVE_DRIVE_LEVEL          | 10:0 | long   | 0 100% (in 10E-4 steps)                                          |  |  |
|                            |      |        | 0% = valve is closed                                             |  |  |
|                            |      |        | 100% = valve is in purge position (full open)                    |  |  |
| FLOW_TOTALIZED             | 14:0 | long   | in sl / sm3 (in 10E-4 steps)                                     |  |  |
|                            |      |        | i.e. min. 298 days for a 500 range.                              |  |  |

\*) Hysteresis is +/- 0.25% (i.e. 0.5% in total) based on current limit

# **Small Setup**

| Small setup     |      |        |                                          |  |  |
|-----------------|------|--------|------------------------------------------|--|--|
| Name            | Add. | Туре   | Comment                                  |  |  |
| STRUCT_ID       | 0:0  | uint8  | 0x10 (SMALL_SETUP)                       |  |  |
| INITIAL_SETUP   | 2:0  | uint:1 | THIS, ROM                                |  |  |
| BASE_UNIT       | 2:1  | uint:1 | Display in base unit                     |  |  |
| OPERATION_MODE  | 2:2  | uint:1 | 0=ANALOG, 1=PROFIBUS                     |  |  |
| Reserved        | 2:3  | uint:5 |                                          |  |  |
| Reserved        | 1:0  | uint:8 |                                          |  |  |
| USER_SPAN       | 3:0  | long   | 5% 200% in [%] (in 1E-4 steps)           |  |  |
| USER_ZERO       | 7:0  | long   | -5% +5% of full scale (in 1E-4 steps)    |  |  |
| HIGH_TRIP_POINT | 11:0 | long   | -10% +120% of full scale (in 1E-4 steps) |  |  |
| LOW_TRIP_POINT  | 15:0 | long   | -10% +120% of full scale (in 1E-4 steps) |  |  |

# Full Setup

| Full setup              | Full setup |         |                                                                  |  |  |  |
|-------------------------|------------|---------|------------------------------------------------------------------|--|--|--|
| Name                    | Add.       | Туре    | Comment                                                          |  |  |  |
| STRUCT ID               | 0:0        | uint8   | 0x11 (FULL SETUP)                                                |  |  |  |
| INITIAL_SETUP           | 2:0        | uint:1  | THIS, ROM                                                        |  |  |  |
| BASE_UNIT               | 2:1        | uint:1  | display in base unit                                             |  |  |  |
| OPERATION_MODE          | 2:2        | uint:1  | 0=ANALOG, 1=PROFIBUS                                             |  |  |  |
| SET_USER_SPAN           | 2:3        | uint:1  | 1=USER_SPAN will be updated                                      |  |  |  |
| SET_USER_ZERO           | 2:4        | uint:1  | 1=USER_ZERO will be updated                                      |  |  |  |
| SET_HIGH_TRIP_POIN<br>T | 2:5        | uint:1  | 1=HIGH_TRIP_POINT will be updated                                |  |  |  |
| SET_LOW_TRIP_POIN T     | 2:6        | uint:1  | 1=LOW_TRIP_POINT will be updated                                 |  |  |  |
| SET_GAS_CORRECTI<br>ON  | 1:7        | uint:1  | 1=GAS_CORRECTION will be updated                                 |  |  |  |
| SET_DEFAULT_TABLE       | 1:0        | uint:1  | 1=DEFAULT_TABLE will be updated                                  |  |  |  |
| SET_HIGH2_TRIP_POI      | 1:1        | uint:1  | 1=HIGH2_TRIP_POINT will be updated                               |  |  |  |
| SET_LOW2_TRIP_POI       | 1:2        | uint:1  | 1=LOW2_TRIP_POINT will be updated                                |  |  |  |
| SET_FILTER_SETTLIN G    | 1:3        | uint:1  | 1=FILTER_SETTLING will be updated                                |  |  |  |
| SET_SOFT_START_RA TE    | 1:4        | uint:1  | 1=SOFT_START_RATE will be updated                                |  |  |  |
| SET_TIME_TO_CAL         | 1:5        | uint:1  | 1=TIME_TO_CAL will be updated                                    |  |  |  |
| SET_CAL_DATE            | 1:6        | uint:1  | 1=CAL_DATE will be updated                                       |  |  |  |
| SET_USER_TAG            | 1:7        | uint:1  | 1=USER_TAG will be updated                                       |  |  |  |
| USER_SPAN               | 3:0        | long    | 5% 200% in [%] (in 1E-4 steps)                                   |  |  |  |
| USER_ZERO               | 7:0        | long    | -5% +5% full scale (1E-4 steps)                                  |  |  |  |
| HIGH_TRIP_POINT         | 11:0       | long    | -10% +120% full scale (1E-4 steps)                               |  |  |  |
| LOW_TRIP_POINT          | 15:0       | long    | -10% +120% full scale (1E-4 steps)                               |  |  |  |
| GAS_CORRECTION          | 19:0       | long    | 0.05 2.00 (in 1E-4 steps)                                        |  |  |  |
| DEFAULT_TABLE           | 23:0       | uint8:4 | 0 14 is the default table,<br>15 function (y=x) is the gas table |  |  |  |
| Reserved                | 23:4       | uint8:4 |                                                                  |  |  |  |
| HIGH2_TRIP_POINT        | 24:0       | long    | -10% +120% full scale (1E-4 steps)                               |  |  |  |

| LOW2_TRIP_POINT | 28:0 | long    | -10% +120% full scale (1E-4 steps)   |  |
|-----------------|------|---------|--------------------------------------|--|
| FILTER_SETTLING | 32:0 | long    | 0.0 1000.0 in [sec] (in 1E-4 steps)  |  |
| SOFT_START_RATE | 36:0 | long    | 0.0 3600.0 in [sec] (in 1E-4 steps)  |  |
| TIME_TO_CAL     | 40:0 | uint16  | if SET_TIME_TO_CAL is 1 it will last |  |
|                 |      |         | TIME_TO_CAL hours until              |  |
|                 |      |         | CALIBRATION_RECOMMENDED flag becomes |  |
|                 |      |         | active.                              |  |
| CAL_DATE        | 42:0 | char[6] | MM/DD/YY                             |  |
| USER_TAG        | 48:0 | chr[32] | any 32 character string              |  |

# **Small Diagnostics (for DPV0 only)**

| small diagnostics         |      |        |                                                 |  |  |
|---------------------------|------|--------|-------------------------------------------------|--|--|
| Name                      | Add. | Туре   | Comment                                         |  |  |
| STRUCT_ID                 | 0:0  | uint8  | 0x20 (SMALL_DIAG)                               |  |  |
| Exception Status          |      |        |                                                 |  |  |
| ALARM_DEVICE_<br>COMMON   | 1:0  | uint:1 | specific to network (e.g. power fail)           |  |  |
| ALARM_DEVICE_<br>SPECIFIC | 1:1  | uint:1 | specific to flow device (e.g. r/w EPROM)        |  |  |
| ALARM_MKS_SPECIFIC        | 1:2  | uint:1 | specific to MKS                                 |  |  |
| ALARM_TABLE_ERROR         | 1:3  | uint:1 | Reports cal. Table errors                       |  |  |
| Reserved                  | 1:4  | uint:4 |                                                 |  |  |
| Identification:           |      |        |                                                 |  |  |
| PRODUCT_CODE              | 2:0  | uint16 | 1179                                            |  |  |
| REVISION_CODE             | 4:0  | uint8  | 0x01                                            |  |  |
| VERSION_CODE              | 5:0  | uint16 | 0x0100                                          |  |  |
| Specification:            |      |        |                                                 |  |  |
| FULL_SCALE_RNG            | 7:0  | long   | full scale range in [FLOW_UNIT] (in 1E-4 steps) |  |  |
| FLOW_UNIT                 | 11:0 | uint8  | SCCM, SLM (SCCM is base unit)                   |  |  |
| Status:                   |      |        |                                                 |  |  |
| INTERNAL_TEMP             | 12:0 | long   | temperature in °C                               |  |  |
| VALVE_DRIVE_LEVEL         | 16:0 | long   | 0 100% (in 10E-4 steps)                         |  |  |
| RUN_HOURS                 | 20:0 | uint16 | hours                                           |  |  |

**Full Diagnostics (for DPV0 only)** 

| Full Diagnostics (for DF Full diagnostics |          |                       |                                                     |  |  |
|-------------------------------------------|----------|-----------------------|-----------------------------------------------------|--|--|
|                                           | I        | T_                    |                                                     |  |  |
| Name                                      | Add.     | Туре                  | Comment                                             |  |  |
| STRUCT_ID                                 | 0:0      | uint8                 | 0x21 (SMALL_DIAG)                                   |  |  |
| ALARM_DEVICE_                             | 1:0      | uint:1                | specific to network (e.g. power fail)               |  |  |
| COMMON                                    | <b>.</b> |                       |                                                     |  |  |
| ALARM_DEVICE_                             | 1:1      | uint:1                | specific to flow device (e.g. r/w EPROM)            |  |  |
| SPECIFIC                                  |          |                       |                                                     |  |  |
| ALARM_MKS_SPECIFIC                        | 1:2      | uint:1                | specific to MKS (LinTab error)                      |  |  |
| ALARM_TABLE_ERROR                         | 1:3      | uint:1                | Reports cal. Table errors                           |  |  |
| Reserved                                  | 1:4      | uint:4                |                                                     |  |  |
| PRODUCT_CODE                              | 2:0      | uint16                | 1179                                                |  |  |
| REVISION_CODE                             | 4:0      | uint8                 | 0x01                                                |  |  |
| VERSION_CODE                              | 5:0      | uint16                | 0x0100                                              |  |  |
| FULL_SCALE_RNG                            | 7:0      | long                  | full scale range in [FLOW_UNIT] (in 1E-4 steps)     |  |  |
| FLOW_UNIT                                 | 11:0     | uint8                 | SCCM, SLM                                           |  |  |
| INTERNAL_TEMP                             | 12:0     | long                  | temperature in °C                                   |  |  |
| VALVE_DRIVE_LEVEL                         | 16:0     | long                  | 0 100% (in 10E-4 steps)                             |  |  |
| RUN_HOURS                                 | 20:0     | uint16                | hours                                               |  |  |
| MANUFACTURER                              | 22:0     | char[20]              | MKS INSTRUMENTS                                     |  |  |
| MODEL DESIGNATION                         | 42:0     | char[20]              | MF1C01313CM1BV0                                     |  |  |
| SERIAL NUMBER                             | 62:0     | char[20]              | 999999 G                                            |  |  |
| DEVICE TYPE                               | 82:0     | char[6]               | MFC, MFM                                            |  |  |
| MODEL TYPE                                | 88:0     | char[6]               | MF1                                                 |  |  |
| FIRMWARE_REVISION                         | 94:0     | char[6]               | 1.01                                                |  |  |
| HARDWARE REVISION                         | 100:0    | char[6]               | A                                                   |  |  |
| FACTORY CAL DATE                          | 106:0    | char[6]               | MM/DD/YY                                            |  |  |
| VENDOR CODE                               | 112:0    | uint16                | 0                                                   |  |  |
| STANDARD TEMP                             | 114:0    | long                  | 273.0 K ( 0 °C)                                     |  |  |
| STANDARD PRESSURE                         | 118:0    | long                  | 101.3kPa (in 10E-4 steps)                           |  |  |
| VALVE TYPE                                | 122:0    | uint8                 | 0=SOLENOID, 1=VOICE_COIL,                           |  |  |
| V//L/L_111 L                              | 122.0    | anto                  | 2=PIEZO ELECTRIC                                    |  |  |
| VALVE_POWER_OFF_                          | 123:0    | uint8                 | 0=CLOSED, 1=OPEN, 2=LAST POS                        |  |  |
| MODE                                      | 120.0    | dirito                | 0-0E00ED, 1-01 EN, 2-EN01_1 00                      |  |  |
| GAS TABLE NUM                             | 124:0    | uint8                 | Number of gas tables programmed.                    |  |  |
| 0, 10_1, 10LL_110W                        | 124.0    | an ito                | i.e. values != 0 in GAS CODE OF TABLE I             |  |  |
| GAS CODE OF                               | 125:0    | uint8[15]             | gas code of gas tables                              |  |  |
| TABLE_I                                   | 120.0    |                       | 0=no table (y=x)                                    |  |  |
| POINT_NUM_OF_                             | 140:0    | uint8[15]             | Point number of gas tables                          |  |  |
| TABLE I                                   | 1 .0.0   |                       | . Cart Harrison of gao tables                       |  |  |
| TABLE_FLAGS                               | 155:0    | uint:1[15]            | 0=FACTORY; 1=USER; 1 means that the user            |  |  |
|                                           | 100.0    | 3                     | has overwritten the gas table once. All these flags |  |  |
|                                           |          |                       | will be reset at factory setup.                     |  |  |
| ACTIVE_GAS_NAME                           | 157:0    | char[16]              | e.g. N2, is name of DEFAULT TABLE if there          |  |  |
|                                           | 107.0    | 51101[10]             | was no cyclic comm. In the past.                    |  |  |
| CAL DATE                                  | 173:0    | char[6]               | MM/DD/YY                                            |  |  |
| USER_TAG                                  | 179:0    | char[32]              | any 32 character string                             |  |  |
| REM_TIME_TO_CAL                           | 211:0    | uint16                | Remaining TIME TO CAL                               |  |  |
| FLOW_TOTALIZED                            | 213:0    | long                  | in sl/sm3 (in 10E-4 steps)                          |  |  |
| I LOW_TOTALIZED                           | 213.0    | long                  | i.e. min. 298 days for a 500 range.                 |  |  |
|                                           |          | No base unit feature. |                                                     |  |  |
|                                           | L        |                       | ואט שמשכ עוווג וכמנעוכ.                             |  |  |

### **Calibration Table (for DPV0 only)**

| Calibration table |      |          |                               |  |
|-------------------|------|----------|-------------------------------|--|
| Name              | Add. | Туре     | Comment                       |  |
| STRUCT_ID         | 0:0  | uint8    | 0x12 or 0x22 for diagnosis    |  |
| GAS_TABLE_IDX     | 1:0  | uint8    | 014                           |  |
| GAS_CODE          | 2:0  | uint8    | 0254                          |  |
|                   |      |          | 255 resets to factory setup   |  |
| POINT_NUM         | 3:0  | uint8    | 215 = table with 2 15 points  |  |
|                   |      |          | 0 = disables table            |  |
|                   |      |          | 1 = enables table             |  |
| GAS_NAME          | 4:0  | char[16] | e.g. N2                       |  |
| SENSOR_VALS       | 20:0 | long[15] | in [FLOW_UNIT] in 10E-4 steps |  |
| FLOW_VALS         | 80:0 | long[15] | in [FLOW_UNIT] in 10E-4 steps |  |

If a table is loaded, which is not strict monotonous, the table will be disabled (POINT\_NUM = 0). If a table, with a not valid index, is loaded, no tables will be affected. In both case the error flag for the table will be set.

The calibration tables convert the measured value (SENSOR\_VALS) to the true physical value (FLOW\_VALS). If the actual measured value is between two SENSOR\_VALS, the flow will be calculated by linear interpolation. If the measured value is outside of the table definitions, the first (last) straight line will be continued.

The GAS\_CODE may be any definition for gases. It is not evaluated. The GAS\_NAME may be any 16 character string. It is also not evaluated.

The calibration tables stored from the factory may be recalled by an GAS\_CODE of 255. In this case the TABLE\_FLAG in the full diagnostic is reset.

## Diagnosis (for DPV1 only)

| Siagnosis (for Dr. V.)            |           |       |                                               |  |  |
|-----------------------------------|-----------|-------|-----------------------------------------------|--|--|
| Diagnosis                         | Diagnosis |       |                                               |  |  |
| Name                              | Add.      | Type  | Comment                                       |  |  |
| CommonExceptionDetailAlarm        | 0:0       | uint8 | see Status - CommonExceptionDetailAlarm       |  |  |
| DeviceExceptionDetailAlarm        | 1:0       | uint8 | see Status - DeviceExceptionDetailAlarm       |  |  |
| ManufacturerExceptionDetailAl arm | 2:0       | uint8 | see Status - ManufacturerExceptionDetailAlarm |  |  |
| CommonExceptionDetailWarn         | 3:0       | uint8 | see Status - CommonExceptionDetailWarn        |  |  |
| DeviceExceptionDetailWarn         | 4:0       | uint8 | see Status - DeviceExceptionDetailWarn        |  |  |
| ManufacturerExceptionDetailW arn  | 5:0       | uint8 | see Status - ManufacturerExceptionDetailWarn  |  |  |

# **Analog Process Interface**

### **Functions**

#### Valve Override

The valve override feature enables the control valve to be fully opened (purged) or closed independent of the set point command signal:

To close the valve, apply a TTL low to pin 1 or connect pin 1 to pin 7 (SIG GND).

To open the valve, apply a +5 V signal to pin 1. This command may be used to purge or vent the instrument or the system.

### **Scaling the Signal**

The scaling of the MF1 analog output signal could be changed via the USB Setup interface. The scaling range is 0 to 2 V for the zero signal (0%) and 5 to 10 V for the F.S. signal (100%), which means an output signal 2 to 7 V or 0 to 10 V could be setup. Default setting is 0 to 5 V. The voltage is proportional to the flow. The setpoint input is always scaled as the output signal. The resolution of the voltage signal is 0.4 mV independent of the used scaling. For changing the scaling see Chapter 4

### Installation

### **Pinout**

| Analog Inte | Analog Interface        |                                                                                   |  |  |  |
|-------------|-------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Item        | Detail                  | Description                                                                       |  |  |  |
| SETUP       | -                       | Mini USB connector, present for every interface variant. Operates as MSD or CDC.  |  |  |  |
| ANALOG      | PIN 1 PIN 5 PIN 6 PIN 9 | Standard D-Sub connector                                                          |  |  |  |
|             | Pin-1: VALVE_OVERRIDE   | Apply PWR_GND for close, apply +5V for open                                       |  |  |  |
|             | Pin-2: FLOW             | Default Range 05V, reference to SIG_GND                                           |  |  |  |
|             | Pin-3: [POWER+]         | +15V dual supply or 24V single supply (Surge protected)                           |  |  |  |
|             | Pin-4: [POWER_GND]      | Power ground for dual supply, signal ground for single supply                     |  |  |  |
|             | Pin-5: [POWER -]        | -15V or power ground for single supply; connected to "—" of the Phönix connector. |  |  |  |
|             | Pin-6: SETPOINT         | Set point input; default 0 – 5 V; reference to SIG_GND                            |  |  |  |

| Analog Interface  |               |  |  |
|-------------------|---------------|--|--|
| Pin-7: SIG_GND    | Signal ground |  |  |
| Pin-8: [reserved] | reserved      |  |  |
| Pin-9: [reserved] | reserved      |  |  |

**Table 5 Analog Interface** 

## **Power supply**

The MF1 could be powered via the Phönix MC-Series connector below the Zero switch or via the Sub D connector. Therefore a mating connector is included in the delivery. For the correct power supply specification see the technical specification in Appendix A. The Pin 5 of the 9 Pin Sub D connector is connected with the Phönix connector Pin "-". If the Phönix connector is used for power supply the Pin 5 of the Sub D connector must not be connected and vice versa.

### **Cables and Controllers by MKS**

| MKS Controller | Number of provided Channels | MKS Cable    |
|----------------|-----------------------------|--------------|
| PR4000B        | 1 or 2                      | CBE147-12-3M |
| 247D           | 4                           | CBE147-12-3M |
| 647C           | 4 or 8                      | CBE147-12-3M |

Table 6 MKS Controller and cables for analog MF1 units

# Operation

### Configuration

The analog version of the MF1 could be configured via the USB Setup Interface. See for details Chapter 4.

# **Feedback and Diagnostic**

#### **LED Functions**

| LED Signals | 3              |                                                     |  |
|-------------|----------------|-----------------------------------------------------|--|
| ST Off      |                | No power or not initialized                         |  |
|             | Green          | Initialized                                         |  |
|             | Flashing green | Initialized, diagnostic events present              |  |
|             | Red            | Exception error                                     |  |
| FL          | Off            | No flow                                             |  |
|             | Flashing blue  | Flow Indicator: Flashes proportional to actual flow |  |
|             | Blue on        | 100% Flow                                           |  |

# **RS485 and USB Interfaces**

## Installation

## **Pinout**





| RS485 and USE | RS485 and USB Interface |                                                                                  |  |  |
|---------------|-------------------------|----------------------------------------------------------------------------------|--|--|
| Item          | Detail                  | Description                                                                      |  |  |
| SETUP         | -                       | Mini USB connector, present for every interface variant. Operates as MSD or CDC. |  |  |
| USB           | -                       | USB Connector B                                                                  |  |  |
| RS 485        | PIN 1 PIN 5 PIN 6 PIN 9 | Sub D 9-poles, socket                                                            |  |  |
|               | Pin-1                   |                                                                                  |  |  |
|               | Pin-2                   |                                                                                  |  |  |
|               | Pin-3                   | A                                                                                |  |  |
|               | Pin-4                   | RTS                                                                              |  |  |
|               | Pin-5                   | GND                                                                              |  |  |
|               | Pin-6                   |                                                                                  |  |  |
|               | Pin-7                   |                                                                                  |  |  |
|               | Pin-8                   | В                                                                                |  |  |
|               | Pin-9                   |                                                                                  |  |  |

# **Power supply**

The MF1 has to be powered via the Phönix MC-Series connector below the Zero switch. Therefore a mating connector is included in the delivery. For the correct power supply specification see the technical specification in Appendix A.

#### Cable for RS485

RS485 is a balanced communication system, because signal on one wire is ideally the exact opposite of the signal on the second wire. The maximum length of cable span depends on environment, cable quality and communication speed, but relative long cable spans up to 1,200m (4,000 ft.) is possible. There are 2 wires, other than ground, that are used to transmit the digital RS485 signal. To comply with EN61326-1 immunity requirements, use a braided, shielded cable. Connect the braid to the metal hoods at both ends of the cable with the end for power supply connected to earth ground.

#### Cable for USB

The MF1 with USB process interface supports the full speed USB 2.0 connections. Therefore the maximum cable length is limited to 5 meters. Standard USB 2.0 cable must be used.

### Operation

### **Address**

Defines the device address by the rotary switches. Rotary switch address setting is used as Interface address/ID, if software address setting is 126. Otherwise the software address setting is used as Interface address/ID and the rotary switch setting is irrelevant.

### Configuration

All Parameters for the communication are defined at the 'Com Interface Object' [ComIfc].

The delivery settings are:

| Default settings |                              |  |  |
|------------------|------------------------------|--|--|
| Parameter        |                              |  |  |
|                  | RS485/USB                    |  |  |
| Software Address | 248                          |  |  |
| Baud Rate        | 115200                       |  |  |
| Parity           | 0 => none                    |  |  |
| Data Bits        | 8                            |  |  |
| Stop Bits        | 1                            |  |  |
| Failsave Timeout | 0 (not used)                 |  |  |
| Config           | 0 => Human Readable Protocol |  |  |

### Baud rate

# **Supported Baud Rate**

| Expected Baud<br>Rate | Actual Baud<br>Rate | CD<br>(Clock Divider) | Error<br>[%] | Comment |
|-----------------------|---------------------|-----------------------|--------------|---------|
| 50                    | 50                  | 60069                 | 0            |         |
| 110                   | 110                 | 27304                 | 0            |         |
| 300                   | 300,01              | 10011                 | 0            |         |
| 600                   | 599,97              | 5006                  | -0,01        |         |
| 1200                  | 1199,93             | 2503                  | -0,01        |         |
| 2400                  | 2400,82             | 1251                  | 0,03         |         |
| 4800                  | 4797,81             | 626                   | -0,05        |         |
| 9600                  | 9595,62             | 313                   | -0,05        |         |
| 14400                 | 14370,47            | 209                   | -0,21        |         |
| 19200                 | 19252,75            | 156                   | 0,27         |         |
| 28800                 | 28879,12            | 104                   | 0,27         |         |
| 38400                 | 38505,49            | 78                    | 0,27         |         |
| 56000                 | 55619,05            | 54                    | -0,68        |         |
| 57600                 | 57758,24            | 52                    | 0,27         |         |
| 115200                | 115516,48           | 26                    | 0,27         |         |
| 230400                | 231032,97           | 13                    | 0,27         |         |
| 256000                | 250285,71           | 12                    | -2,28        |         |
| 500000                | 500571,43           | 6                     | 0,11         |         |
| 1000000               | 1001142,85          | 3                     | 0,11         |         |
| 1500000               | 1501714,28          | 2                     | 0,11         |         |
| 3000000               | 3003428,56          | 1                     | 0,11         |         |

It is possible to use other baud rates, but it is not recommended to work with an error higher than 5%.

# Parity

Define the parity setup.

0 => none

1 => even

2 => odd

## **DataBits**

Define the data bits. Possible values are 7 or 8.

# StopBits

Define the stop bits.

0 => 1,5 Stop Bits

1 => 1 Stop Bit

2 => 2 Stop Bits

## Failsafe Timeout

The timeout value is defined in milliseconds.

If the value is > 0 the timeout function is active.

If the time for the next command is bigger than the timeout time a Timeout Error occurred.

If a Timeout Error occurred, the operation LED switch to red and the valve is shutdown.

To activate the valve controller you have to set the Valve Override to Normal status and send a setpoint.

To clear the red timeout LED you have to read the Communication Status.

At delivery the timeout function is deactivated by a value of 0.

A new timeout value is stored in the non-volatile memory of the device.

# **Feedback and Diagnostics**

## **Error Codes**

For every command that is send to the MF1 the device send a return message.

If a command is not existing, it cannot be executed, the value is out of range or missed or a framing error occurred the MF1 will send an error message back.

# Error Telegram (E)

receive:

| Е   | Cmd                                            | CNE | SVR                           | RVR             | VaM | FEr | VaE |  |
|-----|------------------------------------------------|-----|-------------------------------|-----------------|-----|-----|-----|--|
| Cmd | Error Messages 0 => not occurred 1 => occurred |     |                               |                 |     |     |     |  |
|     | Cmd                                            |     | Transmitted command           |                 |     |     |     |  |
|     | CNE<br>SVR<br>RVR                              |     | Command not existed           |                 |     |     |     |  |
|     |                                                |     | Send value is out of range    |                 |     |     |     |  |
|     |                                                |     | Receive value is out of range |                 |     |     |     |  |
|     | VaN                                            |     |                               | Value is needed |     |     |     |  |
|     | FEr                                            |     | Protocol frame error          |                 |     |     |     |  |
|     | Va                                             | аE  | Value Syntax Error            |                 |     |     |     |  |

## **LED Functions**

| LED Functions |                      |                              |  |  |  |
|---------------|----------------------|------------------------------|--|--|--|
| Item          | Detail               | Description                  |  |  |  |
| ST            | Off                  | No power or not initialized  |  |  |  |
|               | Green                | Initialized                  |  |  |  |
|               | Red                  | Communication Error          |  |  |  |
| OP            | Off                  | No power, not initialized    |  |  |  |
|               | Green                | Initialized                  |  |  |  |
|               | Flashing green       | Data exchange                |  |  |  |
|               | Red                  | Timeout error                |  |  |  |
|               | Flashing red         | Timeout error, data exchange |  |  |  |
| SI            | Green                | Sensor OK                    |  |  |  |
|               | Flashing red         | Power too low                |  |  |  |
|               | Blue                 | Pure USB operation           |  |  |  |
|               | Flashing red & green | Self Test or Boot            |  |  |  |

|    | Flashing blue | Shows Seconds for AUTOZERO button                   |
|----|---------------|-----------------------------------------------------|
| FL | Off           | No flow                                             |
|    | Flashing blue | Flow Indicator: Flashes proportional to actual flow |
|    | Blue on       | 100% Flow                                           |

### Protocol ("Human Readable Protocol")

The Human Readable Protocol (ASCII) is small and easy to use by manual operation via a terminal. It could be easily implemented at a host with a common (UART) serial interfaces.

#### Send telegram

| Byte1 | 2  | 3 | 4   | 5              | 6 | 7 | 8 | 9   | 10 | 11 | 12/5 |
|-------|----|---|-----|----------------|---|---|---|-----|----|----|------|
| @     | 0  | 1 | С   | 1              |   | 0 | 0 | 0   | 0  | 0  | CR   |
| Ac    | ir |   | Cmd | Val (optional) |   |   |   | End |    |    |      |

Ard: Device address

Cmd: Command (see command list)

Val: Optional numeric value for the executed command. For fixed protocol

length fill this value with zero.

End: Protocol end character CR (hex: 0x13)

Receive telegram

| Byte1 | 2   | 3   | 4   | 5 | 6   | 7 | 8 | 9 | 10 | 11  | 12 |
|-------|-----|-----|-----|---|-----|---|---|---|----|-----|----|
| @     | -   | -   | F   | 1 |     | 0 | 0 | 0 | 0  | 0   | CR |
| Str   | Err | Vlv | Cmd |   | Val |   |   |   |    | End |    |

Str: Start Character, always @

Err: Error Sign

'-' = No error

'E' = an MF1 error Occurred

'U' = an Communication error occurred

'B' = an MF1 and Communication error occurred

Val: Valve Override Mode

'N' = Normal

'C' = Close 'P' = Purge

Cmd: Received value Format

End: Protocol end character CR (hex: 0x13)

#### **Command Reference List**

This next table shows the commands with the dedicated return cmd values.

The communication is process optimized. For every command where an acknowledge is not necessary the MF1 returns the actual flow value (F) as acknowledge. Only if the command cannot be executed or an error occurred the MF1 sends an error message (E). So in normal mode it is guaranteed that the application receives the actual flow in every cyclic step.

| Cmd | Description                                | Return Cmd |
|-----|--------------------------------------------|------------|
| F   | Get Actual Flow                            | F          |
| Т   | Get Temperature                            | Т          |
| V   | Get <b>V</b> alve Drive Level              | V          |
| S   | Set Flow <b>S</b> etpoint, Get Actual Flow | F          |
| S   | Get Flow <b>S</b> etpoint                  | S          |
| N   | Set Valve Override Normal                  | F          |
| С   | Set Valve Override Close                   | F          |
| Р   | Set Valve Override Purge                   | F          |
| Α   | Set Autozero                               | F          |
| W   | Set WinkStatus                             | F          |
| G   | Select <b>G</b> as Table Index             | F          |
| g   | Get <b>G</b> as Table Index                | g          |
| D   | Get <b>D</b> evice Status                  | D          |
| М   | Get MF1 Error Status                       | M          |
| U/u | Get Communication Status                   | U          |
| E   | Error Telegram                             | E          |

### **Command list description**

#### Get Actual Flow (F)

#### send.

| ociia. |  |     |      |      |  |
|--------|--|-----|------|------|--|
| F      |  |     |      |      |  |
| Cmd    |  | not | requ | ired |  |

|     | • . |    |       |     |       |                                |
|-----|-----|----|-------|-----|-------|--------------------------------|
| F   | 1   | 0  | 0     | 0   | 0     | 0                              |
| Cmd |     | Ad | ctual | Flo | w [ca | alibrated flow unit e.g. sccm] |

# Get Temperature (T)

#### send:

| Т   |  |     |      |       |  |
|-----|--|-----|------|-------|--|
| Cmd |  | not | requ | iired |  |

#### receive:

| Т   | 1 |    | 0     | 0    | 0   | 0    | 0        |
|-----|---|----|-------|------|-----|------|----------|
| Cmd |   | In | itern | al T | emp | erat | ure [°C] |

### **Get Valve Drive Level (V)**

#### send:

| ooma. |  |     |      |       |  |
|-------|--|-----|------|-------|--|
| V     |  |     |      |       |  |
| Cmd   |  | not | requ | iired |  |

#### receive:

| V   | 1 |    | 0     | 0     | 0     | 0      | 0  |
|-----|---|----|-------|-------|-------|--------|----|
| Cmd |   | Va | lve [ | Drive | e Lev | /el [ˈ | %] |

### **Set Flow Setpoint, Get Actual Flow (S)**

#### send:

| 00  |   |                                           |   |   |   |   |   |  |  |  |  |
|-----|---|-------------------------------------------|---|---|---|---|---|--|--|--|--|
| S   | 1 |                                           | 0 | 0 | 0 | 0 | 0 |  |  |  |  |
| Cmd |   | Setpoint [calibrated flow unit e.g. sccm] |   |   |   |   |   |  |  |  |  |

#### receive:

| F   | 1 |                                              | 0 | 0 | 0 | 0 | 0 |  |  |  |  |
|-----|---|----------------------------------------------|---|---|---|---|---|--|--|--|--|
| Cmd |   | Actual Flow [calibrated flow unit e.g. sccm] |   |   |   |   |   |  |  |  |  |

# **Get Flow Setpoint (s)**

#### send:

| s   |  |   |          |    |  |
|-----|--|---|----------|----|--|
| Cmd |  | n | ot requi | ed |  |

| 100011 | <b>U</b> . |     |     |      |       |         |
|--------|------------|-----|-----|------|-------|---------|
| S      | 1          | 0   | 0   | 0    | 0     | 0       |
| Cmd    |            | Get | the | actu | al se | etpoint |

### **Set Valve Override Normal (N)**

#### send:

| N   |  |          |      |  |
|-----|--|----------|------|--|
| Cmd |  | not requ | ired |  |

#### receive:

| , 000, 10. |   |    |              |             |             |           |   |
|------------|---|----|--------------|-------------|-------------|-----------|---|
| F          | 1 | -  | 0            | 0           | 0           | 0         | 0 |
| Cmd        |   | Ac | tual Flow [c | alibrated f | flow unit e | .g. sccm] |   |

### **Set Valve Override Close (C)**

#### send:

| С   |  |          |      |  |
|-----|--|----------|------|--|
| Cmd |  | not requ | ired |  |

#### receive:

| receive. |   |    |              |           |             |            |   |
|----------|---|----|--------------|-----------|-------------|------------|---|
| F        | 1 | -  | 0            | 0         | 0           | 0          | 0 |
| Cmd      |   | Ac | tual Flow [c | alibrated | flow unit e | e.g. sccm] |   |

### **Set Valve Override Purge (P)**

### send:

| Р   |  |          |      |  |
|-----|--|----------|------|--|
| Cmd |  | not requ | ired |  |

#### receive:

| F   | 1 |    | 0            | 0           | 0           | 0         | 0 |
|-----|---|----|--------------|-------------|-------------|-----------|---|
| Cmd |   | Ac | tual Flow [c | alibrated f | flow unit e | .g. sccm] |   |

### Set Autozero (A)

#### send:

| ooma. |  |          |      |  |
|-------|--|----------|------|--|
| Α     |  |          |      |  |
| Cmd   |  | not requ | ired |  |

| F   | 1 | -  | 0            | 0           | 0           | 0         | 0 |
|-----|---|----|--------------|-------------|-------------|-----------|---|
| Cmd |   | Ac | tual Flow [c | alibrated t | flow unit e | .g. sccm] |   |

# Set WinkStatus (W)

#### send:

| W   |  |   |             |    |  |
|-----|--|---|-------------|----|--|
| Cmd |  | Ī | not require | ed |  |

#### receive:

| F   | 1 |       | 0           | 0            | 0          | 0        | 0 |
|-----|---|-------|-------------|--------------|------------|----------|---|
| Cmd |   | Actua | l Flow [cal | librated flo | w unit e.g | g. sccm] |   |

# Select Gas Table Index (G)

#### send:

| 00  |   |                     |   |   |   |   |   |  |
|-----|---|---------------------|---|---|---|---|---|--|
| G   | 0 | 0                   | 0 | 0 | 0 | 0 | 1 |  |
| Cmd |   | Gas Table Index 014 |   |   |   |   |   |  |

#### receive:

| F   | 1 |                                              | 0 | 0 | 0 | 0 | 0 |  |
|-----|---|----------------------------------------------|---|---|---|---|---|--|
| Cmd |   | Actual Flow [calibrated flow unit e.g. sccm] |   |   |   |   |   |  |

# Get Gas Table Index (g)

#### send:

| coma. |              |  |  |  |  |  |  |
|-------|--------------|--|--|--|--|--|--|
| g     |              |  |  |  |  |  |  |
| Cmd   | not required |  |  |  |  |  |  |

| g   | 0 | 0                                 | 0 | 0 | 0 | 0 | 1 |  |
|-----|---|-----------------------------------|---|---|---|---|---|--|
| Cmd |   | Return the actual Gas Table Index |   |   |   |   |   |  |

# Get Device Status (D)

#### send:

| D   |              |  |  |  |  |
|-----|--------------|--|--|--|--|
| Cmd | not required |  |  |  |  |

#### receive:

| D   | HL1    | LL1                                               | HL2               | LL2      | VCL  | PUG | CAL |  |
|-----|--------|---------------------------------------------------|-------------------|----------|------|-----|-----|--|
| Cmd | 0 => n | Status Messages  ) => not occurred  I => occurred |                   |          |      |     |     |  |
|     | Н      | HL1 High Limit Alarm 1                            |                   |          |      |     |     |  |
|     | LI     | L1                                                | Low Limit Alarm 1 |          |      |     |     |  |
|     | Н      | L2                                                | High Limit A      | larm 2   |      |     |     |  |
|     | LI     | L2                                                | _ow Limit Ala     | arm 2    |      |     |     |  |
|     | V      | CL ,                                              | Valve Closed      |          |      |     |     |  |
|     | Pl     | JG                                                | Purge             |          |      |     |     |  |
|     | C      | AL                                                | Calibration is    | s Recome | nded |     |     |  |

# Get MF1 Error Status (M)

### send:

| М   |  |   |             |    |  |
|-----|--|---|-------------|----|--|
| Cmd |  | Ī | not require | ed |  |

| М   | SYE                      | OVT                             | VDA | UNC               | COE    | MEF | UEC |  |
|-----|--------------------------|---------------------------------|-----|-------------------|--------|-----|-----|--|
| Cmd |                          | essages<br>t occurred<br>curred | d   |                   |        |     |     |  |
|     |                          | SYE                             |     | System Er         | ror    |     |     |  |
|     |                          | OVT                             |     | Over Temperature  |        |     |     |  |
|     |                          | VDA                             |     | Valve Drive Alarm |        |     |     |  |
|     |                          | UNC                             |     | Uncalibrated      |        |     |     |  |
|     |                          | COE                             |     | Controller Error  |        |     |     |  |
|     |                          | MEF                             |     | Memory F          | ailure |     |     |  |
|     | UEC Unexpected Condition |                                 |     |                   |        |     |     |  |

# Get Communication Status (U or u)

#### send:

| U or u |              |  |  |  |  |  |
|--------|--------------|--|--|--|--|--|
| Cmd    | not required |  |  |  |  |  |

#### receive:

| U or u | res | res                                | res | res      | res | ERR | TOO |  |
|--------|-----|------------------------------------|-----|----------|-----|-----|-----|--|
| Cmd    |     | lessages<br>ot occurred<br>ccurred | d   |          |     |     |     |  |
|        |     | res                                |     | reserved |     |     |     |  |
|        |     | ERR An Error Telegram Occurred     |     |          |     |     |     |  |
|        |     | TOO Timeout Occurred               |     |          |     |     |     |  |

After reading the Communication Status with 'U' the status is reset. For leaving the communication without a timeout error, send the 'U' cmd.

# **Modbus Interface**

# Installation

# **Pinout**



| 2W-Modbus | s Pinout                |                          |                                                                                       |
|-----------|-------------------------|--------------------------|---------------------------------------------------------------------------------------|
| Pin       | IDv Signal              | EIA/TIA 485<br>Name      | Description                                                                           |
|           | PIN 1 PIN 5 PIN 6 PIN 9 | Sub D 9-poles,<br>socket |                                                                                       |
| 3         | PMC                     |                          | Port Mode Control<br>Open → 2W-Mode<br>Low level (connected with Common) →<br>4W-Mode |
| 5         | D1                      | B/B'                     | Transceiver terminal 1, V1 Voltage (V1 > V0 for binary 1[OFF] state)                  |
| 9         | D0                      | A/A'                     | Transceiver terminal 0, V0 Voltage (V0 > V1 for binary 0 [ON] state)                  |
| 2         | VP                      |                          | DC Power Supply<br>Positive 20 to 31.5 V                                              |
| 1         | Common                  | C/C'                     | Signal and Power Supply Common                                                        |

| 4W-Modbus P | inout      |                  |                                                                               |
|-------------|------------|------------------|-------------------------------------------------------------------------------|
| Pin         | IDv Signal | EIA/TIA 485 Name | Description                                                                   |
| 8           | RXD0       | A'               | Receiver terminal 0, Va' Voltage<br>(Va' > Vb' for binary 0 [ON] state)       |
|             |            |                  | Receiver terminal 1, Vb' Voltage (Vb' > Va' for binary 1 [OFF] state)         |
| 3           | PMC        |                  | Port Mode Control Open → 2W-Mode Low level (connected with Common) → 4W- Mode |
| 5           | TXD1       | В                | Generator terminal 1, Vb Voltage (Vb > Va for binary 1 [OFF] state)           |
| 9           | TXD0       | А                | Generator terminal 0, Va Voltage<br>(Va > Vb for binary 0 [ON] state)         |
| 2           | VP         |                  | DC Power Supply<br>Positive 20 to 31.5 V                                      |
| 1           | Common     | C/C'             | Signal and Power Supply Common                                                |

Port mode control: PMC circuit (TTL compatible). The port mode is controlled by this external circuit. In the first case while an open circuit PMC will ask for the 2W-MODBUS mode, a Low level on PMC will switch the port into 4W-MODBUS Mode.

#### **Power**

The MF1 could be powered via the Phönix MC-Series connector below the Zero switch or via the Sub D connector. Therefore a mating connector is included in the delivery. For the correct power supply specification see the technical specification in Appendix A. The Pin 1 of the 9 Pin Sub D connector is connected with the Phönix connector Pin "-". If the Phönix connector is used for power supply the Pin 1 of the Sub D connector must not be connected and vice versa.

#### Cable

A MODBUS over Serial Line Cable must be shielded. At one end of each cable its shield must be connected to protective ground. If a connector is used at this end, the shell of the connector is connected to the shield of the cable.

An RS485-MODBUS must use a balanced pair (for D0-D1) and a third wire (for the Common). In addition to that a second balanced pair must be used in a 4W-MODBUS system (for RXD0-RXD1).

For RS485-MODBUS, Wire Gauge must be chosen sufficiently wide to permit the maximum length (1000 m). AWG 24 is always sufficient for the MODBUS Data.

Category 5 cables may operate for RS485-MODBUS, to a maximum length of 600 m.

For the balanced pairs used in an RS485-system, a characteristic impedance with a value higher than 100 Ohms may be preferred, especially for 19200 and higher baud rates.

#### Operation

#### **Address**

MODBUS compatible addressing description

The first 255 bytes of cyclic input and cyclic output data are available over the MODBUS addressing. If the software address is < 248 in ASCII Modbus mode or < 99 in RTU Modbus mode, the rotary switches are ignored and the software configurable address is used.

Note: The Address "Zero" is not supported and would cause a red ST LED.

#### Configuration

All Parameters for the communication are defined at the 'Com Interface Object' [ComIfc].

The delivery settings are:

| Default settings |                                     |  |
|------------------|-------------------------------------|--|
| Parameter        | Modbus                              |  |
| Software Address | 248                                 |  |
| Baud Rate        | 9600                                |  |
| Parity           | 1 => even                           |  |
| Data Bits        | 8                                   |  |
| Stop Bits        | 1                                   |  |
| Failsave Timeout | 0 (not used)                        |  |
| Config           | 1 => MODBUS compatible RTU protocol |  |

Configure the protocol.

- 0 → Human Readable Protocol, see RS485/USB Protocol
- 1 → MODBUS compatible RTU protocol
- 2 → MODBUS compatible ASCII protocol

#### **Parity**

Define the parity setup.

0 => none

1 => even

2 => odd

#### **DataBits**

Define the data bits. Possible values are for:

ASCII 7 or 8.

RTU 8.

**StopBits** 

Define the stop bits.

0 => 1,5 Stop Bits

1 => 1 Stop Bit

2 => 2 Stop Bits

#### Failsafe Timeout

This configures the timeout between characters at ASCII mode, at RTU mode this parameter is not used. The timeout value is defined in milliseconds. If the value is > 0 the timeout function is active. If the time for the next command is bigger than the timeout time a Timeout Error occurred.

If a Timeout Error occurred, the operation LED switch to red and the valve is shutdown.

To activate the valve controller you have to set the Valve Override to Normal status and send a setpoint.

To clear the red timeout LED you have to read the Communication Status.

At delivery the timeout function is deactivated by a value of 0.

A new timeout value is stored in the non-volatile memory of the device.

#### Baud rate

| Supported Baud Rate   |                     |                       |              |         |
|-----------------------|---------------------|-----------------------|--------------|---------|
| Expected Baud<br>Rate | Actual Baud<br>Rate | CD<br>(Clock Divider) | Error<br>[%] | Comment |
| 50                    | 50                  | 60069                 | 0            |         |
| 110                   | 110                 | 27304                 | 0            |         |
| 300                   | 300,01              | 10011                 | 0            |         |
| 600                   | 599,97              | 5006                  | -0,01        |         |
| 1200                  | 1199,93             | 2503                  | -0,01        |         |
| 2400                  | 2400,82             | 1251                  | 0,03         |         |
| 4800                  | 4797,81             | 626                   | -0,05        |         |
| 9600                  | 9595,62             | 313                   | -0,05        |         |
| 14400                 | 14370,47            | 209                   | -0,21        |         |
| 19200                 | 19252,75            | 156                   | 0,27         |         |
| 28800                 | 28879,12            | 104                   | 0,27         |         |
| 38400                 | 38505,49            | 78                    | 0,27         |         |
| 56000                 | 55619,05            | 54                    | -0,68        |         |
| 57600                 | 57758,24            | 52                    | 0,27         |         |
| 115200                | 115516,48           | 26                    | 0,27         |         |

It is possible to use other baud rates, but it is not recommended to work with an error higher than 5%. The MODBUS specification advises an error smaller than 1%.

$$CD \approx \frac{48054857}{BaudRate*16}$$

For the calculation of the error use this formula:

Rounding the CD to an integer and calculate now the error.

$$Error = 100 * \left(1 - \frac{ExpectedBaudRate * CD * 16}{48054857}\right)$$

# **Feedback and Diagnostics**

#### **Error Codes**

Standard Modbus Error codes are used.

#### **LED Functions**

| LED Functions |                      |                                                     |
|---------------|----------------------|-----------------------------------------------------|
| Item          | Detail               | Description                                         |
| ST            | Off                  | No power or not initialized                         |
|               | Green                | Initialized                                         |
|               | Red                  | Communication Error                                 |
| OP            | Off                  | No power, not initialized                           |
|               | Green                | Initialized                                         |
|               | Flashing green       | Data exchange                                       |
|               | Red                  | Timeout error                                       |
|               | Flashing red         | Timeout error, data exchange                        |
| SI            | Green                | Sensor OK                                           |
|               | Flashing red         | Power too low                                       |
|               | Blue                 | Pure USB operation                                  |
|               | Flashing red & green | Self Test or Boot                                   |
|               | Flashing blue        | Shows Seconds for AUTOZERO button                   |
| FL            | Off                  | No flow                                             |
|               | Flashing blue        | Flow Indicator: Flashes proportional to actual flow |
|               | Blue on              | 100% Flow                                           |

### **Protocol (Modbus compatible)**

#### **Holding Registers**

The address of the Holding Register starts at 1.

The Holding Registers are read- and writable.

The Holding Register represent the selected input object (default: Standard Input 1179 Object) byte by byte.

One Holding Register is an 16 bit Value and represent two bytes of the selected input object

| Example with the "Standard Input 1179 Object" |      |                                 |
|-----------------------------------------------|------|---------------------------------|
| MODBUS Holding<br>Register Address            | Bit  | Parameter                       |
| 1                                             | 12   | ValveOverride                   |
| 1                                             | 3    | Autozero                        |
| 1                                             | 46   | ReportDiag (not used at Modbus) |
| 1                                             | 7    | WinkStatus                      |
| 1                                             | 8    | EnableTotalizer                 |
| 1                                             | 9    | ResetTotalizer                  |
| 1                                             | 10   | ResetStatus                     |
| 1                                             | 1114 | SelectGasTable                  |
| 1                                             | 15   | EnGasCorrection                 |
| 1                                             | 16   | Not used                        |
| 2                                             | 116  | FlowSetpoint LSB (Byte 1 + 2)   |
| 3                                             | 116  | FlowSetpoint MSB (Byte 3 + 4)   |

#### Coils

The address of the Coils starts at 1.

The Coils are read- and writable.

The Coils represent the selected input object (default: Standard Input 1179 Object) bit by bit.

One Coil is an 1 bit Value and represent one bit of the selected input object

| Example with the "Standard Input 1179 Object" |                                 |  |
|-----------------------------------------------|---------------------------------|--|
| MODBUS Coil Address                           | Parameter                       |  |
| 12                                            | ValveOverride                   |  |
| 3                                             | Autozero                        |  |
| 46                                            | ReportDiag (not used at Modbus) |  |
| 7                                             | WinkStatus                      |  |
| 8                                             | EnableTotalizer                 |  |
| 9                                             | ResetTotalizer                  |  |
| 10                                            | ResetStatus                     |  |
| 1114                                          | SelectGasTable                  |  |
| 15                                            | EnGasCorrection                 |  |
| 16                                            | Not used                        |  |
| 1732                                          | FlowSetpoint LSB (Byte 1 + 2)   |  |
| 3364                                          | FlowSetpoint MSB (Byte 3 + 4)   |  |

### **Input Registers**

The address of the Input Register starts at 1.

The Input Registers are readable and not writable.

The Input Register represent the selected output object (default: Standard Output 1179 Object) byte by byte.

One Input Register is an 16 bit Value and represent two bytes of the selected output object

| Example with the "Standard Output 1179 Object" |       |                                      |
|------------------------------------------------|-------|--------------------------------------|
| MODBUS Input<br>Register Address               | Bit   | Parameter                            |
| 1                                              | 1     | HighLimitAlarm                       |
| 1                                              | 2     | LowLimitAlarm                        |
| 1                                              | 3     | SystemError                          |
| 1                                              | 4     | High2LimitAlarm                      |
| 1                                              | 5     | Low2LimitAlarm                       |
| 1                                              | 6     | ValveClose                           |
| 1                                              | 7     | Purge                                |
| 1                                              | 8     | OverTemperature                      |
| 1                                              | 9     | ValveDriveAlarm                      |
| 1                                              | 10    | CalibrationRecommended               |
| 1                                              | 11    | Uncalibrated                         |
| 1                                              | 12    | ControllerError                      |
| 1                                              | 13    | MemoryFailure                        |
| 1                                              | 14    | UnexpectedCondition                  |
| 1                                              | 15 16 | Not used                             |
| 2                                              | 116   | ThermalMassFlowRate LSB (Byte 1 + 2) |
| 3                                              | 116   | ThermalMassFlowRate MSB (Byte 3 + 4) |
| 4                                              | 116   | InternalTemperature LSB (Byte 1 + 2) |
| 5                                              | 116   | InternalTemperature MSB (Byte 3 + 4) |
| 6                                              | 116   | ValveDriveLevel LSB (Byte 1 + 2)     |
| 7                                              | 116   | ValveDriveLevel MSB (Byte 3 + 4)     |

### **Discrete Inputs**

The address of the Discrete Inputs starts at 1.

The Discrete Inputs are readable and not writable.

The Discrete Inputs represent the selected output object (default: Standard Output 1179 Object) bit by bit.

One Input Register is an 1 bit Value and represent 1 bit of the selected output object

| Example with the "Standard Output 1179 Object" |                                      |  |
|------------------------------------------------|--------------------------------------|--|
| MODBUS Discrete Input<br>Address               | Parameter                            |  |
| 1                                              | HighLimitAlarm                       |  |
| 2                                              | LowLimitAlarm                        |  |
| 3                                              | SystemError                          |  |
| 4                                              | High2LimitAlarm                      |  |
| 5                                              | Low2LimitAlarm                       |  |
| 6                                              | ValveClose                           |  |
| 7                                              | Purge                                |  |
| 8                                              | OverTemperature                      |  |
| 9                                              | ValveDriveAlarm                      |  |
| 10                                             | CalibrationRecommended               |  |
| 11                                             | Uncalibrated                         |  |
| 12                                             | ControllerError                      |  |
| 13                                             | MemoryFailure                        |  |
| 14                                             | UnexpectedCondition                  |  |
| 15 16                                          | Not used                             |  |
| 1732                                           | ThermalMassFlowRate LSB (Byte 1 + 2) |  |
| 3364                                           | ThermalMassFlowRate MSB (Byte 3 + 4) |  |
| 6580                                           | InternalTemperature LSB (Byte 1 + 2) |  |
| 8196                                           | InternalTemperature MSB (Byte 3 + 4) |  |
| 97112                                          | ValveDriveLevel LSB (Byte 1 + 2)     |  |
| 113128                                         | ValveDriveLevel MSB (Byte 3 + 4)     |  |

# **EtherCAT**

#### Installation

#### **Pinout**



| Ethe | EtherCAT Pinout |                                                                                    |  |  |
|------|-----------------|------------------------------------------------------------------------------------|--|--|
| Pin  | Signal          | Description                                                                        |  |  |
|      |                 | 2 x RJ45                                                                           |  |  |
| 1    | Tx+             |                                                                                    |  |  |
| 2    | Тх-             |                                                                                    |  |  |
| 3    | Rx+             |                                                                                    |  |  |
| 4    | -               | Normally left unused; to ensure signal integrity, these pins are tied together and |  |  |
| 5    | ı               | terminated to PE via a filter circuit in the interface.                            |  |  |
| 6    | Rx-             |                                                                                    |  |  |
| 7    | -               | Normally left unused; to ensure signal integrity, these pins are tied together and |  |  |
| 8    | -               | terminated to PE via a filter circuit in the interface.                            |  |  |

### **Power supply**

The MF1 has to be powered via the Phönix MC-Series connector below the Zero switch. Therefore a mating connector is included in the delivery. For the correct power supply specification see the technical specification in Appendix A.

#### Cable

According to IEC 61784-5.

| Example for cable type based on the template given in IEC 61918:2010 |                                         |  |
|----------------------------------------------------------------------|-----------------------------------------|--|
| Characteristic                                                       | CP 12/1, CP12/2 (EtherCAT) Type B cable |  |
| Nominal impedance of cable (tolerance)                               | 100 Ω ± 15 Ω (IEC 61156-5)              |  |
| Balanced or unbalanced                                               | Balanced                                |  |
| DCR of conductors                                                    | ≤ 115 Ω/km                              |  |
| Number of conductors                                                 | 4                                       |  |

| Shielding            | S/FTP, S/FTQ, S/STP                        |
|----------------------|--------------------------------------------|
| Transfer Impedance   | < 50 mΩ/m at 10 MHz                        |
| Installation Type    | Flexible, occasional movement or vibration |
| Outer cable diameter | 5,5 mm – 8 mm                              |
| Wire cross section   | AWG 22/7                                   |
| Wire diameter        | 1,5 mm ± 0,1 mm                            |
| Delay scew           | ≤ 20 ns/100 m                              |

We recommend due to the space requirements the following connector:

ManufacturerTypeOrder CodeWeidenmüllerIE-PS-RJ45-FH-BK1963600000

### Operation

#### **Address**

The addresses are defined by the master.

### **Feedback and Diagnostics**

#### **Error Code**

Standard EtherCAT Error codes are used.

#### **LED functions**

| EtherCAT Interface |                                                                                |                                                                          |
|--------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Item               | Detail                                                                         | Description                                                              |
| RUN LED            | This LED reflects the status of the CoE (CANopen over EtherCAT) communication. |                                                                          |
|                    | OFF                                                                            | CoE device in 'INIT'-state (or no power)                                 |
|                    | Green                                                                          | CoE device in 'OPERATIONAL'-state                                        |
|                    | Green, blinking                                                                | CoE device in 'PRE-OPERATIONAL'-state                                    |
| [                  | Green, single flash                                                            | CoE device in 'SAFE-OPERATIONAL'-state                                   |
|                    | Red(1)                                                                         | Fatal Event                                                              |
|                    |                                                                                | (If RUN and ERR turns red, this indicates a fatal event, forcing the bus |
|                    |                                                                                | interface to a physically passive state.)                                |
| ERR LED            | This LED indicates EtherCAT communication errors etc.                          |                                                                          |
|                    | Off                                                                            | No error (or no power)                                                   |
|                    | Red, blinking                                                                  | Invalid configuration                                                    |
|                    |                                                                                | (State change received from master is not possible due to                |
|                    |                                                                                | invalid register or object settings.)                                    |
|                    | Red, double flash                                                              | Application watchdog timeout                                             |
|                    |                                                                                | (Sync manager watchdog timeout)                                          |
|                    | Red(1)                                                                         | Application controller failure                                           |
|                    |                                                                                | (Interface in EXEPTION)                                                  |
| IN/OUT             | These LEDs indicate the EtherCAT link status and activity.                     |                                                                          |

| EtherCA | EtherCAT Interface   |                                                     |  |  |
|---------|----------------------|-----------------------------------------------------|--|--|
|         | Off                  | Link not sensed (or no power)                       |  |  |
|         | Green                | Link sensed, no traffic detected                    |  |  |
|         | Green, flickering    | Link sensed, traffic detected                       |  |  |
| SI      | Green                | Sensor OK                                           |  |  |
|         | Flashing red         | Power too low                                       |  |  |
|         | Blue                 | Pure USB operation                                  |  |  |
|         | Flashing red & green | Self Test or Boot                                   |  |  |
|         | Flashing blue        | Shows Seconds for AUTOZERO button                   |  |  |
| FL      | Off                  | No flow                                             |  |  |
|         | Flashing blue        | Flow Indicator: Flashes proportional to actual flow |  |  |
|         | Blue on              | 100% Flow                                           |  |  |

### **Protocol**

The MF1 with EtherCAT interface supports the CAN application layer over EtherCAT (CoE) protocol and the Process Data Objects (PDO) protocol.

| Data Format |             |                         |  |  |  |
|-------------|-------------|-------------------------|--|--|--|
| Data Type   | Bit<br>Size | Comment                 |  |  |  |
| USINT       | 8           | Unsigned short integer  |  |  |  |
| UINT        | 16          | Unsigned integer        |  |  |  |
| UDINT       | 32          | Unsigned double integer |  |  |  |
| DINT        | 32          | Double integer          |  |  |  |
| REAL        | 32          | Real / 32 bit float     |  |  |  |
| STRING(n)   | 8 * 2       | String; n= length       |  |  |  |

### Process Data Objects (PDO) protocol

| TxPdo (0x1A00) - Available TxPDOs of the MF1 |        |          |          |  |
|----------------------------------------------|--------|----------|----------|--|
| Name                                         | Index  | SubIndex | DataType |  |
| HighLimitAlarm                               | 0x34ec | 0        | USINT    |  |
| LowLimitAlarm                                | 0x34ed | 0        | USINT    |  |
| SystemError                                  | 0x34ee | 0        | USINT    |  |
| High2LimitAlarm                              | 0x34ef | 0        | USINT    |  |
| Low2LimitAlarm                               | 0x34f0 | 0        | USINT    |  |
| ValveClosed                                  | 0x34f1 | 0        | USINT    |  |
| Purge                                        | 0x34f2 | 0        | USINT    |  |
| OverTemperature                              | 0x34f3 | 0        | USINT    |  |

| ValveDriveAlarm        | 0x34f4 | 0 | USINT |
|------------------------|--------|---|-------|
| CalibrationRecommended | 0x34f5 | 0 | USINT |
| Uncalibrated           | 0x34f6 | 0 | USINT |
| ControllerError        | 0x34f7 | 0 | USINT |
| MemoryFailure          | 0x34f8 | 0 | USINT |
| UnexpectedCondition    | 0x34f9 | 0 | USINT |
| ThermalMassFlowRate    | 0x34fa | 0 | DINT  |
| InternalTemperature    | 0x34fb | 0 | DINT  |
| ValveDriveLevel        | 0x34fc | 0 | DINT  |

| RxPdo (0x1600) - Available RxPDOs of the MF1 |        |          |          |  |  |  |
|----------------------------------------------|--------|----------|----------|--|--|--|
| Name                                         | Index  | SubIndex | DataType |  |  |  |
| ValveOverride                                | 0x33ed | 0        | USINT    |  |  |  |
| Autozero                                     | 0x33ee | 0        | USINT    |  |  |  |
| ReportDiag                                   | 0x33ef | 0        | USINT    |  |  |  |
| WinkStatus                                   | 0x33f0 | 0        | USINT    |  |  |  |
| EnableTotalizer                              | 0x33f1 | 0        | USINT    |  |  |  |
| ResetTotalizer                               | 0x33f2 | 0        | USINT    |  |  |  |
| ResetStatus                                  | 0x33f3 | 0        | USINT    |  |  |  |
| SelectGasTable                               | 0x33f4 | 0        | USINT    |  |  |  |
| EnGasCorrection                              | 0x33f5 | 0        | USINT    |  |  |  |
| FlowSetpoint                                 | 0x33f6 | 0        | DINT     |  |  |  |

### CAN application layer over EtherCAT (CoE) - Objects

The standard object dictionary is implemented according to the DS301 communication profile (Index 0x1000 - 0x1c33).

| Index  | Name                       | Sub-<br>Index | Description                    | DataType       | Access | Comment        |
|--------|----------------------------|---------------|--------------------------------|----------------|--------|----------------|
| macx   | Nume                       | писх          | Description                    | Dutarype       | Access | 0x00000000 (No |
| 0x1000 | Device type                | 0             | Device type                    | UDINT          | ro     | profile)       |
| 0x1001 | Error register             | 0             | Error register                 | USINT          | ro     |                |
|        | Pre-defined error field    | 0             | Number of errors               | USINT          | rw     |                |
| 0x1003 | 1 5                        |               | Number of errors               | UDINT          | ro     |                |
| 0x1008 | Device name                | 0             | Device name                    | STRING(11<br>) | ro     |                |
|        | Restore default parameters | 0             | Largest sub index supported    | USINT          | ro     |                |
| 0x1011 |                            | 1             | Restore all default parameters | UDINT          | rw     |                |
| 0x1018 | Identity                   | 0             | Identity                       | USINT          | ro     |                |

| 1        | Ī                      | ĭ    |                           |         | ī   | İ                                   |
|----------|------------------------|------|---------------------------|---------|-----|-------------------------------------|
|          |                        | 1    | Vendor ID                 | UDINT   | ro  | I .                                 |
|          |                        | 2    | Product Code              | UDINT   | ro  |                                     |
|          |                        | 3    | Revision Number           | UDINT   | ro  |                                     |
|          |                        | 4    | Serial Number             | UDINT   | ro  |                                     |
|          |                        |      | No. of mapped application |         |     |                                     |
|          | DO RxPDO-Map           | 0    | objects in PDO            | USINT   | ro  | No. of mapped objects (0 254)       |
| 0x1600   | DO KXF DO-Iviap        | 1 n  | <u> </u>                  | UDINT   |     | Objects (0 254)                     |
| 0000     |                        | 1 11 | Mapped object 1 n         | ODINI   | ro  |                                     |
|          | ,                      |      | No. of mapped application |         |     | No. of mapped                       |
|          | DI TxPDO-Map           | 0    | objects in PDO            | USINT   | ro  | objects (0 254)                     |
| 0x1a00   |                        | 1 n  | Mapped object 1 n         | UDINT   | ro  |                                     |
|          |                        |      |                           |         |     |                                     |
|          | Sync manager type      | 0    | Number of entries         | USINT   | ro  | 4                                   |
|          |                        | 1    | Mailbox wr                | USINT   | ro  | 1                                   |
|          |                        | 2    | Mailbox rd                | USINT   | ro  | 2                                   |
|          |                        | 3    | Process Data out          | USINT   | ro  | 3                                   |
| 0x1c00   |                        | 4    | Process Data in           | USINT   | ro  | 4                                   |
|          | RxPDO assign           | 0    | No. of assigned PDOs      | USINT   | ro  | 1                                   |
| 0x1c12   |                        | 1    | Assigned PDO              | UINT    | ro  | 0x1600                              |
|          | TxPDO assign           | 0    | TxPDO assign              | USINT   | ro  |                                     |
| 0x1c13   |                        | 1    | Assigned PDO              | UINT    | ro  | 0x1A00                              |
|          | SM output<br>parameter | 0    | Number of entries         | USINT   | ro  | 1                                   |
| 0x1c32   | parameter              | 1    | Sync mode                 | UINT    | ro  | 0 (FREE_RUN)                        |
| 0X1002   |                        |      | - Syno mode               | Olivi   | 10  | o (FREE_RON)                        |
|          | SM input parameter     | 0    | Number of entries         | USINT   | ro  | 1                                   |
| 0x1c33   |                        | 1    | Assigned PDO              | UINT    | ro  | 0 (FREE_RUN)                        |
|          |                        |      |                           |         |     | [normal, Valve                      |
| 0,2250   | ValuaOvarrida          | 0    | ValveOverride             | USINT   | 24  | Close, Valve                        |
| 0x33ED   | ValveOverride          | 0    | valveOverride             | USINI   | rw  | Purge]                              |
|          |                        |      |                           |         |     | 0 to 1 transition activates zeroing |
|          |                        |      |                           |         |     | if                                  |
|          |                        |      |                           |         |     | (VALVE_OVER<br>RIDE==FLOW_          |
|          |                        |      |                           |         |     | OFF &&                              |
| 0x33EE   | Autozero               | 0    | Autozero                  | USINT   | rw  | FLOW_SETPOI<br>NT < 5%FS)           |
| 0x33EF   | ReportDiag             | 0    | ReportDiag                | USINT   | rw  | Not used                            |
| - CAGGE. | . toponizing           |      | . toponsing               | •••••   |     |                                     |
|          |                        |      |                           |         |     | 0 to 1 transition sets the blue     |
|          |                        |      |                           |         |     | LED to blinking                     |
| 0x33F0   | WinkStatus             | 0    | WinkStatus                | USINT   | rw  | for 5 sec                           |
| 0x33F1   | EnableTotalizer        | 0    | EnableTotalizer           | USINT   | DA/ | enable the totalizer funktion       |
| UNDOFI   | Li iavie i Ulalizei    | U    | Litable (Otalizei         | USINI   | rw  |                                     |
| 0x33F2   | ResetTotalizer         | 0    | ResetTotalizer            | USINT   | rw  | see Meter -<br>ResetTotalizer       |
|          |                        |      |                           |         |     | 0 to 1 transition                   |
| 0.2252   | PoortStatus            | _    | Paget Status              | LICINIT | n., | resets totalizer                    |
| 0x33F3   | ResetStatus            | 0    | ResetStatus               | USINT   | rw  | to zero                             |

| 1      | 1                       |   |                        |       | 1  | 1 1                                                                            |
|--------|-------------------------|---|------------------------|-------|----|--------------------------------------------------------------------------------|
| 0x33F4 | SelectGasTable          | 0 | SelectGasTable         | USINT | rw | 014; 15 =<br>default gas table<br>is used                                      |
| 0x33F5 | EnGasCorrection         | 0 | EnGasCorrection        | USINT | rw | enable global<br>GCF [0 =<br>disabled, 1 =<br>enabled]                         |
| 0x33F6 | FlowSetpoint            | 0 | FlowSetpoint           | DINT  | rw | in [FLOW_UNIT]<br>in 10E-4 steps                                               |
| 0x34EC | HighLimitAlarm          | 0 | HighLimitAlarm         | USINT | ro | (flow ><br>HIGH_LIMIT),<br>Hysteresis =<br>0.5%)                               |
| 0x34ED | LowLimitAlarm           | 0 | LowLimitAlarm          | USINT | ro | (flow <<br>LOW_LIMIT),<br>Hysteresis =<br>0.5%                                 |
| 0x34EE | SystemError             | 0 | SystemError            | USINT | ro | any severe error condition                                                     |
| 0x34EF | High2LimitAlarm         | 0 | High2LimitAlarm        | USINT | ro | (flow ><br>HIGH2_LIMIT),<br>Hysteresis =<br>0.5%)                              |
| 0x34F0 | Low2LimitAlarm          | 0 | Low2LimitAlarm         | USINT | ro | (flow <<br>LOW2_LIMIT),<br>Hysteresis =<br>0.5%                                |
| 0x34F1 | ValveClosed             | 0 | ValveClosed            | USINT | ro | (THERMAL_MA<br>SS_FOW_RATE<br>< 1%) &&<br>(VALVE_OVER<br>WRITE ==<br>FLOW_OFF) |
| 0x34F2 | Purge                   | 0 | Purge                  | USINT | ro | THERMAL_MAS<br>S_FLOW_RATE<br>> 110%                                           |
| 0x34F3 | OverTemperature         | 0 | OverTemperature        | USINT | ro | INTERNAL_TEM<br>P > MAX_TEMP                                                   |
| 0x34F4 | ValveDriveAlarm         | 0 | ValveDriveAlarm        | USINT | ro | VALVE_DRIVE_<br>LEVEL ><br>MAX_VTP                                             |
| 0x34F5 | CalibrationRecomm ended | 0 | CalibrationRecommended | USINT | ro | TIME_TO_CAL<br>count down<br>expired                                           |
| 0x34F6 | Uncalibrated            | 0 | Uncalibrated           | USINT | ro | if a disabled or<br>no table is used                                           |
| 0x34F7 | ControllerError         | 0 | ControllerError        | USINT | ro | abs (set - flow)<br>greater for a<br>longer time<br>period                     |
| 0x34F8 | MemoryFailure           | 0 | MemoryFailure          | USINT | ro | E2PROM checksum error                                                          |

| 1      | Lin aven a ata di Canaditi a |   |                     |                |    | ]                                                                           |
|--------|------------------------------|---|---------------------|----------------|----|-----------------------------------------------------------------------------|
| 0x34F9 | UnexpectedConditio n         | 0 | UnexpectedCondition | USINT          | ro | any process<br>error condition                                              |
| 0x34FA | ThermalMassFlowR<br>ate      | 0 | ThermalMassFlowRate | DINT           | ro | in [FLOW_UNIT]<br>in 10E-4 steps;                                           |
| 0x34FB | InternalTemperature          | 0 | InternalTemperature | DINT           | ro | temperature in<br>[°C] (in 10E-4)<br>steps; see<br>System -<br>InternalTemp |
|        |                              |   |                     |                |    | 0100% (in 10E-<br>4 steps´)                                                 |
|        |                              |   |                     |                |    | 0% = valve is<br>closed                                                     |
|        |                              |   |                     |                |    | 100% = valve is<br>in purge position<br>(flull open)                        |
| 0x34FC | ValveDriveLevel              | 0 | ValveDriveLevel     | DINT           | ro | see Valve -<br>ValvePosition                                                |
| 0x38EB | Model                        | 0 | Model               | STRING(32<br>) | rw | MF1                                                                         |
| 0x38EC | SerialNumber                 | 0 | SerialNumber        | STRING(16<br>) | rw | G123456G20                                                                  |
| 0x38F2 | CalDate                      | 0 | CalDate             | STRING(7)      | rw | Date of calibration                                                         |
| 0x38F3 | UserTag                      | 0 | UserTag             | STRING(32      | rw | any 32 character string                                                     |
| 0x37F3 | RunHours                     | 0 | RunHours            | DINT           | ro | run time in hours                                                           |

# **PROFINET IO**

#### Installation

#### **Pinout**



| PRO | PROFINET Pinout |                                                    |  |  |  |  |
|-----|-----------------|----------------------------------------------------|--|--|--|--|
| Pin | Signal          | Description                                        |  |  |  |  |
|     |                 | 2 x RJ45                                           |  |  |  |  |
| 1   | Tx+             |                                                    |  |  |  |  |
| 2   | Тх-             |                                                    |  |  |  |  |
| 3   | Rx+             |                                                    |  |  |  |  |
| 4   | -               | Connected to chassis ground over serial RC circuit |  |  |  |  |
| 5   | -               |                                                    |  |  |  |  |
| 6   | Rx-             |                                                    |  |  |  |  |
| 7   | -               | Connected to chassis ground over serial RC circuit |  |  |  |  |
| 8   | -               |                                                    |  |  |  |  |

### **Power supply**

The MF1 has to be powered via the Phönix MC-Series connector below the Zero switch. Therefore a mating connector is included in the delivery. For the correct power supply specification see the technical specification in Appendix A.

#### Cable

| Cable             |                                                |
|-------------------|------------------------------------------------|
| Wire Construction | Solid / Stranded                               |
| Category (min.)   | ISO/IEC 11801 Edition 2.0 Connector Category 5 |
| Shielding         | Yes                                            |

For further information, see "PROFINET Installation Guideline for Cabling and Assembly", order no. 8.072 and "PROFINET Cabling and Interconnection Technology", order no. 2.252, available for download at www.PROFINET.com.

We recommend due to the space requirements the following connector:

| Manufacturer | Туре             | Order Code |
|--------------|------------------|------------|
| Weidenmüller | IE-PS-RJ45-FH-BK | 1963600000 |

### Operation

#### **Address**

The addresses are defined by the master.

### **Feedback and Diagnostics**

#### **LED functions**

| PROFINE | T Interface                                                   |                                                                                          |
|---------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Item    | Detail                                                        | Description                                                                              |
| NS      | ====                                                          | ne PROFINET Network Status. ce is performed on this LED during startup.                  |
|         | OFF                                                           | Offline: - No Power - No connection with IO Controller                                   |
|         | Green                                                         | Online (RUN): - Connection with IO Controller established - IO Controller in RUN state   |
|         | Green, flashing                                               | Online (STOP): - Connection with IO Controller established - IO Controller in STOP state |
| MS      |                                                               | ne PROFINET Module Status.<br>ce is performed on this LED during startup.                |
|         | Off                                                           | Not Initialized                                                                          |
|         | Green                                                         | Normal Operation                                                                         |
|         | Green, 1 flash                                                | Diagnostic event(s) present                                                              |
|         | Green, 2 flashes                                              | Blink: Used by engineering tools to identify the node on the network                     |
|         | Red                                                           | Exception Error                                                                          |
|         | Red, 1 flash                                                  | Configuration Error                                                                      |
|         | Red, 2 flashes                                                | IP Address Error: IP address not set                                                     |
|         | Red, 3 flashes                                                | Station Name Error: Station Name not set                                                 |
|         | Red, 4 flashes                                                | Internal Error                                                                           |
| PORT1/2 | /2 These LEDs indicate the PROFINET link status and activity. |                                                                                          |
|         | Off                                                           | No link, no communication present                                                        |
|         | Green                                                         | Ethernet link established, no communication present                                      |
|         | Green, flickering                                             | Ethernet link established, communication present                                         |
| SI      | Green                                                         | Sensor OK                                                                                |

| PROFINET Interface |                      |                                                     |  |  |  |  |  |  |
|--------------------|----------------------|-----------------------------------------------------|--|--|--|--|--|--|
|                    | Flashing red         | Power too low                                       |  |  |  |  |  |  |
|                    | Blue                 | Pure USB operation                                  |  |  |  |  |  |  |
|                    | Flashing red & green | Self Test or Boot                                   |  |  |  |  |  |  |
|                    | Flashing blue        | Shows Seconds for AUTOZERO button                   |  |  |  |  |  |  |
| FL                 | Off                  | No flow                                             |  |  |  |  |  |  |
|                    | Flashing blue        | Flow Indicator: Flashes proportional to actual flow |  |  |  |  |  |  |
|                    | Blue on              | 100% Flow                                           |  |  |  |  |  |  |

### **Protocol**

### Modules

| Modules             |                  |            |          |                                                                                                            |  |  |
|---------------------|------------------|------------|----------|------------------------------------------------------------------------------------------------------------|--|--|
| Name                | Fixed<br>In Slot | Туре       | Category | Comment                                                                                                    |  |  |
| Bitfield            | 1                | Unsigned16 | input    | See Input Bitfield description                                                                             |  |  |
| FlowSetpoint        | 2                | Integer32  | input    | in [FLOW_UNIT] in 10E-4 steps<br>valve switched off if setpoint < 1%<br>valve switched on if setpoint > 2% |  |  |
| Bitfield            | 3                | Unsigned16 | output   | See Output Bitfield description                                                                            |  |  |
| ThermalMassFlowRate | 4                | Integer32  | output   | in [FLOW_UNIT] in 10E-4 steps                                                                              |  |  |
| InternalTemperature | 5                | Integer32  | output   | temperature in °C                                                                                          |  |  |
| ValveDriveLevel     | 6                | Integer32  | output   | 0 100% (in 10E-4 steps) 0% = valve is closed 100% = valve is in purge position (full open)                 |  |  |
| FlowTotalized       | 7                | Integer32  | output   | in sl / sm3 (in 10E-4 steps)<br>i.e. min. 298 days for a 500 range.                                        |  |  |

### **Bitfields**

| Input Bitfield (Type: Unsigned16) |         |        |                                                         |  |  |  |  |
|-----------------------------------|---------|--------|---------------------------------------------------------|--|--|--|--|
| Name                              | Bit Bit |        | Comment                                                 |  |  |  |  |
|                                   | Offset  | Length |                                                         |  |  |  |  |
| ValveOverride                     | 0       | 2      | NORMAL, FLOW_OFF, PURGE                                 |  |  |  |  |
| Autozero                          | 2       | 1      | 0 to 1 transition activates zeroing if                  |  |  |  |  |
|                                   |         |        | (VALVE_OVERRIDE==FLOW_OFF &&                            |  |  |  |  |
|                                   |         |        | FLOW_SETPOINT < 5%FS)                                   |  |  |  |  |
| Reserved                          | 3       | 3      |                                                         |  |  |  |  |
| WinkStatus                        | 6       | 1      | 0 to 1 transition sets the LED to blink red/green for 3 |  |  |  |  |
|                                   |         |        | seconds                                                 |  |  |  |  |
| EnableTotalizer                   | 7       | 1      | 0 = disabled, 1 = enabled                               |  |  |  |  |
| ResetTotalizer                    | 8       | 1      | 0 to 1 transition resets totalizer to zero              |  |  |  |  |
| ResetStatus                       | 9       | 1      | 0 to 1 transition resets error status bits              |  |  |  |  |
| SelectGasTable                    | 10      | 4      | 014; 15 = default gas table is used                     |  |  |  |  |
| EnGasCorrection                   | 14      | 1      | 0 = disabled, 1 = enabled                               |  |  |  |  |
| Reserved                          | 15      | 1      |                                                         |  |  |  |  |

| Output Bitfield (Type: Unsigned16 ) |        |        |                                                    |  |  |  |
|-------------------------------------|--------|--------|----------------------------------------------------|--|--|--|
| Name                                | Bit    | Bit    | Comment                                            |  |  |  |
|                                     | Offset | Length |                                                    |  |  |  |
| HighLimitAlarm                      | 0      | 1      | (flow > HIGH_LIMIT), Hysteresis = 0.5% *           |  |  |  |
| LowLimitAlarm                       | 1      | 1      | (flow < LOW_LIMIT), Hysteresis = 0.5% *            |  |  |  |
| SystemError                         | 2      | 1      | any severe system error condition                  |  |  |  |
| High2LimitAlarm                     | 3      | 1      | (flow > HIGH2_LIMIT), Hysteresis = 0.25%           |  |  |  |
| Low2LimitAlarm                      | 4      | 1      | (flow < LOW2_LIMIT), Hysteresis = 0.25%            |  |  |  |
| ValveClosed                         | 5      | 1      | (THERMAL_MASS_FLOW_RATE < 1%) &&                   |  |  |  |
|                                     |        |        | (VALVE_OVERRIDE == FLOW_OFF)                       |  |  |  |
| Purge                               | 6      | 1      | THERMAL_MASS_FLOW_RATE > 110%                      |  |  |  |
| OverTemperature                     | 7      | 1      | INTERNAL_TEMP > MAX_TEMP                           |  |  |  |
| ValveDriveAlarm                     | 8      | 1      | VALVE_DRIVE_LEVEL > MAX_VTP                        |  |  |  |
| CalibrationRecommended              | 9      | 1      | TIME_TO_CAL count down expired                     |  |  |  |
| Uncalibrated                        | 10     | 1      | if a disabled or no table is used                  |  |  |  |
| ControllerError                     | 11     | 1      | abs (setp - flow) greater for a longer time period |  |  |  |
| MemoryFailure                       | 12     | 1      | E2PROM checksum error                              |  |  |  |
| UnexpectedCondition                 | 13     | 1      | any process error condition                        |  |  |  |
| Reserved                            | 14     | 2      |                                                    |  |  |  |

<sup>\*)</sup> Hysteresis is +/- 0.25% (i.e. 0.5% in total) based on current limit

# **Chapter 6: Gas Correction Factor (GCF)**

### **The Gas Correction Factor (GCF):**

A Gas Correction Factor (GCF) is used to indicate the ratio of flow rates of different gases which will produce the same output signal from a mass flow meter / controller. The GCF is a function of specific heat, density, and the molecular structure of the gases. Nitrogen  $(N_2)$  is normally used as the baseline gas (GCF = 1) since flow meters and controllers are usually calibrated with nitrogen.

$$GCF(N2) = 1$$

Appendix C lists the gas correction factors for many commonly used pure gases. If the gas you are using is not listed in there, you must calculate its GCF. The equations for calculating gas correction factors are described below.

#### How To Calculate the GCF for Pure Gases

To calculate the Gas Correction Factor for any pure gas (X), use the following equation:

$$GCF_x = \frac{0.3106 * s}{\rho_{x*} cp_x}$$

where:

GCF<sub>Y</sub> = gas correction factor for gas X 0.3106 = (standard density of nitrogen) • (specific heat of nitrogen) = molecular structure correction factor where S equals: s 1.030 for monoatomic gases 1.000 for diatomic gases 0.941 for triatomic gases 0.880 for polyatomic gases = standard density of gas X, in g/l (at 0° C and 1013,25 mbar)  $d_{\mathbf{x}}$ = specific heat of gas X, in cal/g° C  $cp_x$ 

#### How To Calculate the GCF for Gas Mixtures

For gas mixtures, the calculated Gas Correction Factor is not simply the weighted average of each component's GCF. Instead, the GCF (relative to nitrogen) is calculated by the following equation:

$$GCF_x = \frac{0.3106*(a_1s_1 + a_2s_2 + ....a_ns_n)}{a_1\rho_1cp_1 + a_2\rho_2cp_2 + ....a_n\rho_ncp_n}$$

where:

GCF<sub>m</sub> = gas correction factor for a gas mixture

0.3106 = (standard density of nitrogen) (specific heat of nitrogen)

a<sub>1</sub>, a<sub>2</sub>,..an = fractional flow of gases 1 through n

Note: a<sub>1</sub> through a<sub>n</sub> must add up to 1.0

 $s_1, s_2,...s_n$  = Molecular Structure correction factor for gases 1 through n

where S equals:

1.030 for monatomic gases

1.000 for diatomic gases

0.941 for triatomic gases

0.880 for polyatomic gases

d1 through dn = standard density for gases 1 through n, in g/l

(at 0° C and 760 mmHg)

cp1 through cpn = specific heat of gases 1 through n, in cal/g° C

#### **Note**



- 1. When using the GCF, the accuracy of the flow reading may vary by  $\pm$  5%, however, the repeatability will remain  $\pm$  0.2% of FS.
- 2. The linearity and accuracy may be improved by calibrating the unit with the process gas or using a gas with equivalent properties (surrogate gas). Contact MKS for more information.
- All MKS readouts have gas correction adjustment controls to provide direct readout.

### **Example**

Calculate the GCF for a gas mixture of argon (gas 1) flowing at 150 sccm and nitrogen (gas 2) flowing at 50 sccm, where:

### Mass Flow Rate at a Different Reference Temperature

The equations for calculating the GCF assume that the MFC was calibrated at a reference temperature of 0° C (~273.15 K). If you want to read the mass flow as if the MFC was calibrated at a different reference temperature, adjust the calculated GCF value using the following equation:

$$GCF_x = GCF x \frac{T_x}{T_N}$$

where:

T<sub>x</sub> = actual reference temperature in Kelvin K

 $T_N$  = international standard temperature 273.15 K (= 0° C)

**Note** 



All MKS readouts have gas correction adjustment controls to provide direct readout. The analog setpoint output signal is generated accordingly.

# **Chapter 7: Theory of Operation**

### **Technique of Measurement and Control, Electronics**

The design of the MF1 flow controller incorporates an advanced flow sensor, a new control valve and an optimized bypass. The latest generation two-element sensing circuit provides accurate, repeatable performance even in low flow ranges (< 10 sccm). Low temperature effect from ambient temperature change and a low attitude sensitivity effect are also ensured. The newly optimized sensor/bypass arrangement minimizes the flow splitting error for gases with different densities, which dramatically improves measurement accuracy when gases other than the calibration gas are used.

The surface mount digital, processor controlled electronic circuitry allows optimum adjustment of the sensing and signal conditioning circuitry and provides tuned flow control for fast response to any set point in common with excellent stability.



Figure 11: Assembly

The flow controller type MF1 measures and controls the gas flow rate according to a given setpoint signal, which may be an analog signal or a digital command when using a MF1 with digital interface. The control range is from 2 % to 100% of full scale. The accuracy of the flow measurement is  $\pm$  (0.5 % of Reading + 0.2 % of F.S.).

#### Flow Path

Upon entering the flow controller, the gas stream passes first through the metering section of the instrument for its mass flow to be measured. The gas moves on through the control valve for its rate of flow to be regulated according to the given set point, and then exits the instrument at the established rate of flow.

The metering section consists of one of the following:

- A sensor tube for ranges < 10 sccm (N<sub>2</sub> equivalent)
- A sensor tube and parallel bypass for ranges > 10 sccm (N<sub>2</sub> equivalent)

The geometry of the sensor tube, in conjunction with the specified full scale flow rate, ensures fully developed laminar flow in the sensing region. The bypass elements, in those instruments containing them, are specifically matched to the characteristics of the sensor tube to achieve a laminar flow splitting ratio which remains constant throughout each range.

#### **Measurement Technique**

The flow measurement is based on differential heat transfer between temperature sensing heater elements, which are attached symmetrically to the sensor tube. This senses the thermal mass movement, which is converted to mass flow via the specific heat,  $C_p$ , of the gas. The resulting signal is then amplified, digitalized and linearized. The corrected digital signal is then transferred to the control section (controllers only) and also converted into a 0-5 V analog signal (Default setting).

Analog versions of the units described herein provide the analog flow signal and via the USB Setup Interface the digital information, Profibus, RS485 or USB versions provide just the digital information without the analog signal.

The measurement principle of keeping temperatures constant results in much shorter response time than conventional principles.

#### **Control Circuitry**

In the digital control section the flow rate is compared to the setpoint value and a control signal (digital) is generated.

The digital control signal is then conditioned by a PID-algorithm, optimized for fastest controlling and finally fed into the control circuitry which steers the solenoid control valve. The digital control reduces overshoots to a minimum and for completely regulating the flow until the difference from the setpoint is zero. Typical settle time is 0.8 s, for faster tuning contact MKS.

The control valve is closed when no power is applied (Normally Closed, N.C.). Controlling flow is done by levitating the valve plug from the valve orifice. The plug is mounted at the front end of the solenoid armature.

### **Control Valve**

The control valve is a specially designed solenoid driven valve. The armature is suspended by two radial springs. This design provides frictionless movement and thus precise control. Mounted at the front end of the cylindrical armature is the valve plug which incorporates the seal disc of FKM or NBR or FFKM (ref. to *Appendix A, Specifications*). By preload force of the two above mentioned springs the seal disc is pressed against the valve orifice, closing its flow channel. Therefore the valve is closed when not activated. It is a "Normally Closed" (N.C.) valve.

The inside diameter of the orifice determines the conductance. Each flow controller incorporates a valve orifice with a conductance in accordance to the full scale range. The valve orifice in standard units is sized that with a pressure difference between inlet and outlet fitting of typical 0.7 bar to 2.75 bar the specified full scale flow rate will be achieved. (related to air or nitrogen). For more information refer to *Appendix A*, *Specifications*.

For special applications with low pressure conditions, e.g. vaporizer sources, configurations can be provided. In this case the valve will have an orifice with higher conductance (=larger diameter of the flow channel). Mass flow controllers for applications where only 200 mbar (or less) are available have been realized.

At high line pressures in combination with high flow rates it may be necessary to have an orifice with smaller conductance installed.

The mass flow monitor MF1M has no valve!

# **Chapter 8: Maintenance**

### General

After proper installation and correct setup there is typically only the need for occasionally checking and - if necessary - readjusting the zero flow signal. In general no further maintenance is required. How often the calibration and the valve should be checked depends on physical influences, e.g. temperature, vibrations, dust etc., is also related to the required accuracy and last not least on how the process gas affects the wetted parts inside the unit.

If a controller fails to operate properly upon receipt, check for shipping damage, and check the power/signal cable for correct continuity. Any damage should be reported to the carrier and MKS Instruments immediately.

#### **Zero Adjustment**

To achieve optimum accuracy and reliability you should periodically check the zero readout and - if necessary - readjusting it.

#### **Checks and Recalibration**

Checks and recalibrations can be done by any service center of MKS (refer to section *Repair*). If nothing else is specified or shorter intervals are necessary we recommend annual maintenance and recalibration at a service center of MKS.

MKS offers many standard equipment for checking and calibrating mass flow meters / controllers to allow you making all testing and calibration even in situ.

For electronic testing and trouble shooting we recommend to do all measurements directly at the interface connector of the unit. This eliminates or detects erratic diagnosis, typically generated by incorrect grounding. MKS offers for this purpose so called breakout connectors. These are switched between the connector of the unit and the cable and provide a test pin for each wire, thus allowing direct access for a volt meter or oscilloscope etc.

#### **Profibus Support Kit**

This kit allows convenient setup and diagnosis of a Profibus mass flow meter/controller. It can be ordered from MKS as Profibus Support Kit, part no. 1179-PB-SUPPORT, consisting of

- 1 Disc 3,5"
- 1 RS 232 cable
- 1 Converter RS232/RS485
- 1 Instruction paper

### **Customer Support**

Standard maintenance and repair services are available at all of our regional MKS Calibration and Service Centers, listed at the end of this manual. In addition, MKS accepts the instruments of other manufacturers for recalibration using the Primary and Transfer Standard calibration equipment located at all of our regional service centers. Should any difficulties arise in the use of your instrument, or to obtain information about companion products MKS offers, contact any authorized MKS Calibration and Service Center. If it is necessary to return the instrument to MKS, the MKS Calibration and Service Center will inform you about any formal requirements.

You will find a list of MKS Calibration and Service Centers and a form for Declaration of Contamination at the end of this handbook.

Warning



All returns to MKS Instruments must be free of harmful, corrosive, radioactive, or toxic materials.

# **Troubleshooting**

| Symptoms                                       | Possible Cause                                               | Remedy                                                                                                                                            |
|------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| No output or overrange at zero (after warm-up) | Improper cable                                               | Check cable for type                                                                                                                              |
|                                                | Valve override function applied (Mass flow controller)       | Disconnect / disable valve override                                                                                                               |
|                                                | Electronics malfunctioning                                   | Return for service                                                                                                                                |
| Unit indicates a negative flow                 | Unit installed in gas stream backwards                       | Reinstall unit in proper flow direction                                                                                                           |
| Controller does not track set                  | Improper zero adjustment                                     | Zero meter output                                                                                                                                 |
| point.                                         | Improper grounding(s)                                        | Check all ground connections.<br>Check signals, if possible<br>directly at the unit's connector                                                   |
| Controller does not function                   | Electronics malfunctioning                                   | Return for service                                                                                                                                |
|                                                | Valve sticking, clogged, contaminated, corroded.             | Check compatibility of the process gas with materials wetted (corrosion is typically also visible inside the process fittings) return for service |
|                                                | Shutoff valve upstream or downstream closed                  | Open shutoff valve first, then apply again setpoint to the unit.                                                                                  |
|                                                | No inlet pressure                                            | Regulate inlet pressure                                                                                                                           |
| Oscillation                                    | Supply pressure unstable, e.g. defective pressure regulator. | Check manufacturers' specifications                                                                                                               |
|                                                | Supply pressure too high                                     | Reduce upstream pressure                                                                                                                          |
| Excessive closed conductance                   | Inadequate valve preload                                     | return for service                                                                                                                                |
|                                                | Valve seat elastomer damaged                                 | Check compatibility of process<br>gas with seat material<br>return for service to replace or<br>change valve seat elastomer                       |
| Unit does not achieve full flow                | Upstream pressure too low                                    | Increase upstream pressure                                                                                                                        |
|                                                | Excessive valve preload                                      | return for service                                                                                                                                |
|                                                | Valve seat disc damaged, e.g. swollen                        | Check compatibility of process<br>gas with seat material<br>return for service to replace or<br>change valve seat elastomer                       |

**Table 7 Troubleshooting** 

# **Appendix A: Product Specifications**

## **Specifications**

|                                                                       | ·                                                              |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------|--|
| Full Scale Ranges (nitrogen equivalent) <sup>1</sup> All metal sensor | 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 sccm |  |
| MEMS sensor                                                           | 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 sccm         |  |
| Accuracy <sup>2</sup> (with calibration gas)                          |                                                                |  |
| All metal sensor                                                      | $\pm$ (0.5 % of reading plus 0.20 % of full scale)             |  |
| MEMS sensor                                                           | TBD                                                            |  |
| Repeatability                                                         |                                                                |  |
| All metal sensor                                                      | $\pm$ 0.20 % of full scale                                     |  |
| MEMS sensor                                                           | TBD                                                            |  |
| Resolution                                                            |                                                                |  |
| All metal sensor                                                      | 0,1 % of F.S.                                                  |  |
| MEMS sensor                                                           | TBD                                                            |  |
| Measurement (Dynamic) Range                                           |                                                                |  |
| All metal sensor                                                      | 1 % to 100% of full scale                                      |  |
| MEMS sensor                                                           | TBD                                                            |  |
| Control Range                                                         |                                                                |  |
| All metal sensor                                                      | 2.0 % to 100% of full scale                                    |  |
| MEMS sensor                                                           | TBD                                                            |  |
| Controller Settling Time <sup>3</sup>                                 |                                                                |  |
| All metal sensor                                                      | < 800 msec (350 msec on request)                               |  |
| MEMS sensor                                                           | TBD                                                            |  |
| Maximum Inlet Pressure                                                | 10 bar (g)                                                     |  |

 $<sup>^{1}</sup>$  sccm = std. cm  $^{3}$  / min ; standard (std.) condition: 1013.25 mbar and 0  $^{\circ}\text{C}.$ 

<sup>&</sup>lt;sup>2</sup> includes non-linearity, hysteresis and non-repeatability.

<sup>&</sup>lt;sup>3</sup> per SEMI E17-91

### (continued from previous page)

| Operating Differential Pressure (MFC only) <sup>5</sup> |                                      |
|---------------------------------------------------------|--------------------------------------|
| 10 to 5000 sccm                                         | 0.7 bar (g) to 2.75 bar (g)          |
| 10000 to 20000 sccm                                     | 1 bar (g) to 2.75 bar (g)            |
| Pressure Coefficient                                    | < 0.02 % of reading/psi              |
| Operating Temperature Range                             | 0 – 40 °C                            |
| Temperature Coefficient on Zero                         |                                      |
| All metal sensor                                        | < 0.04 % of full scale /°C (400 ppm) |
| MEMS sensor                                             | TBD                                  |
| Temperature Coefficient on Span                         |                                      |
| All metal sensor                                        | < 0.08 % of reading /°C              |
| MEMS sensor                                             | TBD                                  |
| Warm Up Time                                            | ca. 15 min                           |

## **Environmental specifications**

| Storage Humidity Range    | 0 to 95 % relative humidity, non-condensing |
|---------------------------|---------------------------------------------|
| Storage Temperature Range | -20 to 50°C                                 |

### **Electrical Specifications**

| Connectors:                      |                                                                   |  |
|----------------------------------|-------------------------------------------------------------------|--|
| Power                            | Phoenix MC-series, 3.81 pitch                                     |  |
| USB Setup Interface              | micro-B                                                           |  |
| Analog Process Interface         | Sub D 9-poles, pin                                                |  |
| Profibus Process Interface       | Sub D 9-poles, socket                                             |  |
| RS 485/ Modbus Process Interface | Sub D 9-poles, socket                                             |  |
| USB Process Interface            | В                                                                 |  |
| EtherCAT, PROFINET IO            | 2 x RJ45                                                          |  |
| Supply Voltage/Current Required  | ± 15 V or + 24 V (20 to 31.5 V)                                   |  |
| Maximum supply current           | 300 mA @ + 24 V                                                   |  |
| Maximum idle current             | 100 mA @ + 24 V (for USB, Analog, RS 485 and Profibus interfaces) |  |

<sup>&</sup>lt;sup>5</sup> Referenced to an MFC outlet at atmosphere

| Output Signal, analog            | Default setup: 0- 5 VDC; Configurable: Zero: 0 to 2 VDC F.S.: 5 to 10 VDC                            |
|----------------------------------|------------------------------------------------------------------------------------------------------|
| Set Point Command Signal, analog | default setup: 0 - 5 VDC; Configurable (= Output Signal setting): Zero: 0 to 2 VDC F.S.: 5 to 10 VDC |

# **Physical Specifications**

| Dimensions                      | refer to Figure 2                                                                             |  |
|---------------------------------|-----------------------------------------------------------------------------------------------|--|
| Fittings:                       |                                                                                               |  |
| Standard                        | Cajon <sup>®</sup> 4-VCR <sup>®</sup> male compatible                                         |  |
| Optional                        | Cajon <sup>®</sup> 4-VCO <sup>®</sup> male compatible<br>1/4" Swagelok compatible<br>DN 16 KF |  |
|                                 | MKS Surface Mount                                                                             |  |
| Leak Integrity (mbar·l/s He)    |                                                                                               |  |
| External                        | < 1 x 10 <sup>-9</sup>                                                                        |  |
| Through closed Valve (MFC only) | < 1 x 10 <sup>-5</sup>                                                                        |  |
|                                 |                                                                                               |  |
| Materials Wetted                |                                                                                               |  |
| All Metal Sensor:               |                                                                                               |  |
| Mass Flow Controller:           | 1.4301 SST, FKM , Nickel                                                                      |  |
| Optional seals and valve seal   | NBR, FFKM                                                                                     |  |
| MEMS Sensor:                    | TBD                                                                                           |  |
| Mass                            | ca. 0.7 kg                                                                                    |  |

Due to continuing research and development activities, these product specifications are subject to change without notice.

## **Appendix B: Model Code**

The model is identified as follows:

### MF1 X YYY ZZZ C A E O

X = Variant

YYY = Gas Identification
ZZZ = Full Scale Range

C = Fittings (compatible with)

A = Interface E = Seals

### Variant (X)

| Variant                                         | Ordering Code |
|-------------------------------------------------|---------------|
| Controller with all metal sensor                | С             |
| Meter with all metal sensor                     | M             |
| 1179 compatible footprint with all metal sensor | E             |
| 179 compatible footprint with all metal sensor  | N             |

### **Gas Identification (YYY)**

| Gas                         | Code | Symbol |
|-----------------------------|------|--------|
| Acetone                     | 184  | C3H6O  |
| Acetylene                   | 42   | C2H2   |
| Air                         | 8    | Air    |
| Ammonia                     | 29   | NH3    |
| Argon                       | 4    | Ar     |
| Arsine                      | 35   | AsH3   |
| Boron Trichloride           | 70   | BCl3   |
| Boron Trifluoride           | 48   | BF3    |
| Bromine                     | 21   | Br2    |
| Bromine Trifluoride         | 76   | BrF3   |
| Butane                      | 117  | C4H10  |
| Carbon Dioxide              | 25   | CO2    |
| Carbon Disulfide            | 40   | CS2    |
| Carbon Monoxide             | 9    | CO     |
| Carbon Tetrachloride        | 101  | CCI4   |
| Carbon Tetrafluoride (R-14) | 63   | CF4    |

| Carbonyl Sulfide                      | 34  | COS     |
|---------------------------------------|-----|---------|
| Chlorine                              | 19  | CI2     |
| Chlorine Trifluoride                  | 77  | CIF3    |
| Chlorodifluoromethane (R-22)          | 57  | CHCIF2  |
| Chloroform (Trichloromethane)         | 71  | CHCl3   |
| Chloropentafluoroethane (R-115)       | 119 | C2CIF5  |
| Chlorotrifluoromethane (R-13)         | 74  | CCIF3   |
| Cyclopropane                          | 61  | C3H6    |
| Deuterium                             | 14  | D2      |
| Diborane                              | 58  | B2H6    |
| Dichlorodifluoromethane (R-12)        | 84  | CCI2F2  |
| Dichlorofluoromethane (R-21)          | 65  | CHCl2F  |
| Dichlorosilane                        | 67  | SiH2Cl2 |
| 1,2-Dichlorotetrafluoroethane (R-114) | 125 | C2Cl2F4 |
| Disilane                              | 97  | Si2H6   |
| Ethane                                | 54  | C2H6    |
| Ethanol                               | 136 | C2H6O   |
| Ethylene                              | 38  | C2H4    |
| Ethylene Oxide                        | 45  | C2H4O   |
| Fluorine                              | 18  | F2      |
| Germane                               | 43  | GeH4    |
| Germanium Tetrachloride               | 113 | GeCl4   |
| Helium                                | 1   | He      |
| Hexafluoroethane (R-116)              | 118 | C2F6    |
| Hexafluoropropylene                   | 138 | C3F6    |
| Hexane                                | 127 | C6H14   |
| Hydrogen                              | 7   | H2      |
| Hydrogen Bromide                      | 10  | HBr     |
| Hydrogen Chloride                     | 11  | HCI     |
| Hydrogen Fluoride                     | 12  | HF      |
| Hydrogen Selenide                     | 23  | H2Se    |
| Hydrogen Sulfide                      | 22  | H2S     |
| Isobutane                             | 111 | C4H10   |
| Isobutylene                           | 106 | C4H8    |
| Krypton                               | 5   | Kr      |
| Methane                               | 28  | CH4     |
| Neon                                  | 2   | Ne      |
| Nitric Oxide                          | 16  | NO      |
| Nitrogen                              | 13  | N2      |
| Nitrogen Dioxide                      | 26  | NO2     |
| Nitrogen Trifluoride                  | 53  | NF3     |
| Nitrous Oxide                         | 27  | N2O     |
| Octafluorocyclobutane (R-c318)        | 129 | C4F8    |
| Oxygen                                | 15  | 02      |
| Ozone                                 | 30  | 03      |
| Phosgene                              | 60  | CCI2O   |
| Phosphine                             | 31  | PH3     |
| Phosphorous Oxychloride               | 102 | POCI3   |
| Propane                               | 89  | C3H8    |
| Propylene                             | 69  | C3H6    |
| 1 TOP STOTIO                          | 00  | 00110   |

| Silane                             | 39  | SiH4    |
|------------------------------------|-----|---------|
| Silicon Tetrachloride              | 108 | SiCl4   |
| Silicon Tetrafluoride              | 88  | SiF4    |
| Sulfur Dioxide                     | 32  | SO2     |
| Sulfur Hexafluoride                | 110 | SF6     |
| Sulfuryl Fluoride                  | 87  | SO2F2   |
| Tetrafluoroethane (R-134a)         | 156 | C2H2F4  |
| Titanium Tetrachloride             | 114 | TiCl4   |
| Trichlorofluoromethane (R-11)      | 91  | CCI3F   |
| Trichlorosilane                    | 147 | SiHCl3  |
| Trichlorotrifluoroethane (R-113)   | 126 | C2Cl3F3 |
| Trifluoromethane (Fluoroform R-23) | 49  | CHF3    |
| Tungsten Hexafluoride              | 121 | WF6     |
| Xenon                              | 6   | Xe      |

## Full Scale Range (ZZZ)<sup>3</sup>

The full scale range is indicated by three digits. The full scale range is referring to the gas type given by the SEMI gas code. The calibration is done with nitrogen using GCF.

| Full scale flow range (sccm) | Ordering code |
|------------------------------|---------------|
| 10                           | 11C or 101    |
| 20                           | 21C or 201    |
| 50                           | 51C or 501    |
| 100                          | 12C or 102    |
| 200                          | 22C or 202    |
| 500                          | 52C or 502    |
| 1000                         | 13C or 103    |
| 2000                         | 23C or 203    |
| 5000                         | 53C or 503    |
| 10.000                       | 14C or 104    |
| 20.000 <sup>4</sup>          | 24C or 204    |
| Full scale flow range (slm)  |               |
| 10                           | 11L           |
| 20                           | 21L           |
|                              |               |

-

<sup>&</sup>lt;sup>3</sup> Max. 20000 sccm N2 equivalent, other gases on request.

<sup>&</sup>lt;sup>4</sup> Not in conjunction with FFKM seal material.

## Fittings (C)

There are different fittings available, designated by a single letter code.

| Fitting Type             | Ordering Code |
|--------------------------|---------------|
| Swagelok 4 VCR male      | R             |
| 1/4" Swagelok compatible | S             |
| 6 mm Swagelok compatible | M             |
| Swagelok 4 VCO male      | G             |
| DN 16 KF                 | D             |
| MKS Surface Mount        | E             |
| 1/8" Swagelok compatible | Р             |

### Interface (A)

| Interface Type                   | Ordering Code |
|----------------------------------|---------------|
| Profibus DPV1                    | Р             |
| Profibus DPV0 (1179B compatible) | 4             |
| Analog, 9 Pin Sub D Connector    | Α             |
| USB                              | U             |
| RS485                            | 5             |
| ModBus                           | M             |
| EtherCAT                         | Т             |
| PROFINET IO                      | F             |

## Seal Material (E)

| Seal Material         | Ordering Code |
|-----------------------|---------------|
| FKM                   | V             |
| FFKM <sup>5</sup>     | K             |
| NBR (on request only) | В             |

\_

 $<sup>^{\</sup>rm 5}$  Not for F.S. larger than 10 slm N2 equivalent.

# Extras/ options (O)

|                                     |   | Meaning of extension behind |
|-------------------------------------|---|-----------------------------|
| No extras                           | 0 | firmware                    |
| Special                             | S | Special number              |
| Initial configuration file supplied | С | File name                   |

# **Appendix C: Gas Correction Factors**

Please read also the instructions in Chapter 6: Gas Correction Factor (GCF)and the notes at the end of this table.

| GAS                                      | SYMBOL                                            | SPECIFIC HEAT, Cp<br>cal/g <sup>O</sup> C | DENSITY<br>g/l @ 0 <sup>o</sup> C | CONVERSION FACTOR |
|------------------------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------|-------------------|
| Air                                      |                                                   | 0.240                                     | 1.293                             | 1.00              |
| Ammonia                                  | NH <sub>3</sub>                                   | 0.492                                     | 0.760                             | 0.73              |
| Argon                                    | Ar                                                | 0.1244                                    | 1.782                             | 1.39 <sup>1</sup> |
| Arsine                                   | AsH <sub>3</sub>                                  | 0.1167                                    | 3.478                             | 0.67              |
| Boron Trichloride                        | BCI <sub>3</sub>                                  | 0.1279                                    | 5.227                             | 0.41              |
| Bromine                                  | Br <sub>2</sub>                                   | 0.0539                                    | 7.130                             | 0.81              |
| Carbon Dioxide                           | CO <sub>2</sub>                                   | 0.2016                                    | 1.964                             | 0.70 <sup>1</sup> |
| Carbon Monoxide                          | со                                                | 0.2488                                    | 1.250                             | 1.00              |
| Carbon Tetrachloride                     | CCI <sub>4</sub>                                  | 0.1655                                    | 6.86                              | 0.31              |
| Carbon Tetraflouride<br>(Freon - 14)     | CF <sub>4</sub>                                   | 0.1654                                    | 3.926                             | 0.42              |
| Chlorine                                 | Cl <sub>2</sub>                                   | 0.1144                                    | 3.163                             | 0.86              |
| Chlorodifluoromethane<br>(Freon - 22)    | CHCIF <sub>2</sub>                                | 0.1544                                    | 3.858                             | 0.46              |
| Chloropentafluoroethane<br>(Freon - 115) | C <sub>2</sub> CIF <sub>5</sub>                   | 0.164                                     | 6.892                             | 0.24              |
| Chlorotrifluoromethane<br>(Freon - 13)   | CCIF <sub>3</sub>                                 | 0.153                                     | 4.660                             | 0.38              |
| Cyanogen                                 | C <sub>2</sub> N <sub>2</sub>                     | 0.2613                                    | 2.322                             | 0.61              |
| Deuterium                                | $D_2$                                             | 1.722                                     | 0.1799                            | 1.00              |
| Diborane                                 | B <sub>2</sub> H <sub>6</sub>                     | 0.508                                     | 1.235                             | 0.44              |
| Dibromodifluoromethane                   | CBr <sub>2</sub> F <sub>2</sub>                   | 0.15                                      | 9.362                             | 0.19              |
| Dichlorodifluoromethane<br>(Freon - 12)  | CCl <sub>2</sub> F <sub>2</sub>                   | 0.1432                                    | 5.395                             | 0.35              |
| Dichlorofluoromethane<br>(Freon - 21)    | CHCl <sub>2</sub> F                               | 0.140                                     | 4.592                             | 0.42              |
| Dichloromethysilane                      | (CH <sub>3</sub> ) <sub>2</sub> SiCl <sub>2</sub> | 0.1882                                    | 5.758                             | 0.25              |

(Table continued on next page)

| GAS                                            | SYMBOL                                        | SPECIFIC HEAT, Cp    | DENSITY                | CONVERSION |
|------------------------------------------------|-----------------------------------------------|----------------------|------------------------|------------|
|                                                |                                               | cal/g <sup>O</sup> C | g/l @ 0 <sup>o</sup> C | FACTOR     |
| Dichlorosilane                                 | SiH <sub>2</sub> Cl <sub>2</sub>              | 0.150                | 4.506                  | 0.40       |
| 1,2-Dichlorotetrafluoroethane<br>(Freon - 114) | C <sub>2</sub> Cl <sub>2</sub> F <sub>4</sub> | 0.160                | 7.626                  | 0.22       |
| 1,1-Difluoroethylene<br>(Freon - 1132A)        | C <sub>2</sub> H <sub>2</sub> F <sub>2</sub>  | 0.224                | 2.857                  | 0.43       |
| 2,2-Dimethylpropane                            | C <sub>5</sub> H <sub>12</sub>                | 0.3914               | 3.219                  | 0.22       |
| Ethane                                         | C <sub>2</sub> H <sub>6</sub>                 | 0.4097               | 1.342                  | 0.50       |
| Fluorine                                       | F <sub>2</sub>                                | 0.1873               | 1.695                  | 0.98       |
| Fluoroform<br>(Freon - 23)                     | CHF <sub>3</sub>                              | 0.176                | 3.127                  | 0.50       |
| Freon - 11                                     | CCI <sub>3</sub> F                            | 0.1357               | 6.129                  | 0.33       |
| Freon - 12                                     | CCl <sub>2</sub> F <sub>2</sub>               | 0.1432               | 5.395                  | 0.35       |
| Freon - 13                                     | CCIF <sub>3</sub>                             | 0.153                | 4.660                  | 0.38       |
| Freon - 13 B1                                  | CBrF <sub>3</sub>                             | 0.1113               | 6.644                  | 0.37       |
| Freon - 14                                     | CF <sub>4</sub>                               | 0.1654               | 3.926                  | 0.42       |
| Freon - 21                                     | CHCl <sub>2</sub> F                           | 0.140                | 4.592                  | 0.42       |
| Freon - 22                                     | CHCIF <sub>2</sub>                            | 0.1544               | 3.858                  | 0.46       |
| Freon - 23                                     | CHF <sub>3</sub>                              | 0.176                | 3.127                  | 0.50       |
| Freon - 113                                    | C <sub>2</sub> Cl <sub>3</sub> F <sub>3</sub> | 0.161                | 8.360                  | 0.20       |
| Freon - 114                                    | C <sub>2</sub> Cl <sub>2</sub> F <sub>4</sub> | 0.160                | 7.626                  | 0.22       |
| Freon - 115                                    | C <sub>2</sub> CIF <sub>5</sub>               | 0.164                | 6.892                  | 0.24       |
| Freon - 116                                    | C <sub>2</sub> F <sub>6</sub>                 | 0.1843               | 6.157                  | 0.24       |
| Freon - C318                                   | C <sub>4</sub> F <sub>8</sub>                 | 0.185                | 8.397                  | 0.17       |
| Freon - 1132A                                  | C <sub>2</sub> H <sub>2</sub> F <sub>2</sub>  | 0.224                | 2.857                  | 0.43       |
| Helium                                         | He                                            | 1.241                | 0.1786                 | 2          |
| Hexafluoroethane<br>(Freon - 116)              | C <sub>2</sub> F <sub>6</sub>                 | 0.1843               | 6.157                  | 0.24       |
| Hydrogen                                       | H <sub>2</sub>                                | 3.419                | 0.0899                 | 2          |
| Hydrogen Bromide                               | HBr                                           | 0.0861               | 3.610                  | 1.00       |
| Hydrogen Chloride                              | HCI                                           | 0.1912               | 1.627                  | 1.00       |
| Hydrogen Fluoride                              | HF                                            | 0.3479               | 0.893                  | 1.00       |
| Isobutylene                                    | C <sub>4</sub> H <sub>8</sub>                 | 0.3701               | 2.503                  | 0.29       |
| Krypton                                        | Kr                                            | 0.0593               | 3.739                  | 1.543      |
| Methane                                        | CH <sub>4</sub>                               | 0.5328               | 0.715                  | 0.72       |

(Table continued on next page)

| GAS                                                          | SYMBOL                                                                                  | SPECIFIC HEAT, Cp    | DENSITY                | CONVERSION |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|------------------------|------------|
|                                                              |                                                                                         | cal/g <sup>O</sup> C | g/l @ 0 <sup>o</sup> C | FACTOR     |
| Methyl Fluoride                                              | CH <sub>3</sub> F                                                                       | 0.3221               | 1.518                  | 0.56       |
| Molybdenum Hexafluoride                                      | MoF <sub>6</sub>                                                                        | 0.1373               | 9.366                  | 0.21       |
| Neon                                                         | Ne                                                                                      | 0.246                | 0.900                  | 1.46       |
| Nitric Oxide                                                 | NO                                                                                      | 0.2328               | 1.339                  | 0.99       |
| Nitrogen                                                     | N <sub>2</sub>                                                                          | 0.2485               | 1.250                  | 1.00       |
| Nitrogen Dioxide                                             | NO <sub>2</sub>                                                                         | 0.1933               | 2.052                  | 2          |
| Nitrogen Trifluoride                                         | NF <sub>3</sub>                                                                         | 0.1797               | 3.168                  | 0.48       |
| Nitrous Oxide                                                | N <sub>2</sub> O                                                                        | 0.2088               | 1.964                  | 0.71       |
| Octafluorocyclobutane<br>(Freon - C318)                      | C <sub>4</sub> F <sub>8</sub>                                                           | 0.185                | 8.937                  | 0.17       |
| Oxygen                                                       | O <sub>2</sub>                                                                          | 0.2193               | 1.427                  | 0.993      |
| Pentane                                                      | C <sub>5</sub> H <sub>12</sub>                                                          | 0.398                | 3.219                  | 0.21       |
| Perfluoropropane                                             | C <sub>3</sub> F <sub>8</sub>                                                           | 0.194                | 8.388                  | 0.17       |
| Phosgene                                                     | COCI <sub>2</sub>                                                                       | 0.1394               | 4.418                  | 0.44       |
| Phosphine                                                    | PH <sub>3</sub>                                                                         | 0.2374               | 1.517                  | 0.76       |
| Propane                                                      | C <sub>3</sub> H <sub>8</sub>                                                           | 0.3885               | 1.967                  | 0.36       |
| Propylene                                                    | C <sub>3</sub> H <sub>6</sub>                                                           | 0.3541               | 1.877                  | 0.41       |
| Silane                                                       | SiH <sub>4</sub>                                                                        | 0.3189               | 1.433                  | 0.60       |
| Silicon Tetrachloride                                        | SiCl <sub>4</sub>                                                                       | 0.1270               | 7.580                  | 0.28       |
| Silicon Tetrafluoride                                        | SiF <sub>4</sub>                                                                        | 0.1691               | 4.643                  | 0.35       |
| Sulfur Dioxide                                               | SO <sub>2</sub>                                                                         | 0.1488               | 2.858                  | 0.69       |
| Sulfur Hexafluoride                                          | SF <sub>6</sub>                                                                         | 0.1592               | 6.516                  | 0.26       |
| Trichlorofluoromethane (Freon - 11)                          | CCI <sub>3</sub> F                                                                      | 0.1357               | 6.129                  | 0.33       |
| Trichlorosilane                                              | SiHCl <sub>3</sub>                                                                      | 0.1380               | 6.043                  | 0.33       |
| 1,1,2-Trichloro - 1,2,2-<br>Trifluoroethane<br>(Freon - 113) | CCI <sub>2</sub> FCCIF <sub>2</sub> or (C <sub>2</sub> CI <sub>3</sub> F <sub>3</sub> ) | 0.161                | 8.360                  | 0.20       |
| Tungsten Hexafluoride                                        | WF <sub>6</sub>                                                                         | 0.0810               | 13.28                  | 0.25       |
| Xenon                                                        | Xe                                                                                      | 0.0378               | 5.858                  | 1.32       |
| ACHUII                                                       |                                                                                         |                      |                        |            |

<sup>&</sup>lt;sup>1</sup>Empirically defined

NOTE: Standard Pressure is defined as 1013,25 mbar (760 mmHg;14.7 psia), Standard Temperature is defined as 0°C.

 $<sup>^2\</sup>mbox{Consult}$  MKS Instruments, Inc. for special applications.

# **Appendix D: CE Declaration of Conformity**

|                  | CE D                         | eclaration                          | of Conf               | ormity                  |                    |
|------------------|------------------------------|-------------------------------------|-----------------------|-------------------------|--------------------|
| Application      | of Council Directive         | e(s):                               |                       |                         |                    |
|                  | 2004/108/EC E                | lectromagnetic Compatibi            | ility (EMC) Directiv  | e,                      |                    |
| Standard(s)      | to which conformit           | y is declared:                      |                       |                         |                    |
|                  | EN 61326-2-3                 | ment for measurement, co<br>2007-05 | ontrol and laboratory | use - EMC requiremen    | ts                 |
|                  | Emission Standa              | ards:                               |                       |                         |                    |
|                  | EN 55011                     | 2007-11                             |                       |                         |                    |
|                  | Immunity Stand               | lards:                              |                       |                         |                    |
|                  | EN 61000-4-2                 | 2001-12                             |                       |                         |                    |
|                  | EN 61000-4-3<br>EN 61000-4-4 |                                     |                       |                         |                    |
|                  | EN 61000-4-5                 |                                     |                       |                         |                    |
|                  | EN 61000-4-6                 | 2008-04                             |                       |                         |                    |
|                  | EN 61000-4-11                | 2005-02                             |                       |                         |                    |
| Manufacture      | rs Name:                     |                                     |                       |                         |                    |
|                  |                              | ts Deutschland GmbH                 |                       |                         |                    |
|                  | Schatzbogen 43               |                                     |                       |                         |                    |
|                  | 81849 München<br>Germany     |                                     |                       |                         |                    |
| Importer's Nar   | ne:                          |                                     |                       |                         |                    |
| Importer's Add   | lress:                       |                                     |                       |                         |                    |
| Type of Equip    | ament:                       |                                     |                       |                         |                    |
| -ype or Educi    | Mass Flow Cont               | roller or Mass Flow Meter           | r                     |                         |                    |
|                  | Model Number:                | MF1 *                               |                       |                         |                    |
|                  |                              |                                     |                       |                         |                    |
| I the undersion  | ned hereby declare           | that the equipment specifi          | ad above conforme     | d b Di di c             |                    |
| when installed   | in accordance with           | manufacturer's specificati          | ions.                 | o the above Directive(s | ) and Standard(s), |
|                  |                              |                                     |                       |                         |                    |
| Place: Munich,   | Germany                      |                                     | The same              |                         |                    |
| Date: July 1, 20 | 100                          |                                     |                       | (Signature)             |                    |
|                  | 107                          |                                     |                       | Dr. Peter Hofmann       |                    |
| Rev: 1           |                              |                                     |                       | (Full Name)             |                    |
|                  |                              |                                     |                       | Managing Director       |                    |
|                  |                              |                                     |                       | (Position)              |                    |
|                  |                              |                                     |                       |                         |                    |
|                  |                              |                                     |                       |                         |                    |
|                  |                              |                                     |                       |                         |                    |

### MKS Worldwide Calibration & Service Centers

### **UNITED STATES**

MKS Instruments, Inc.
Corporate Service Center

651 Lowell Street Methuen, MA 01844 Tel. (978) 682-4567

Fax (978) 682-8543

MKS Instruments, Inc. HPS Division,

Vacuum Components, Valves & Gauging

5330 Sterling Drive Boulder, CO 80301

Tel. (303) 449-9861 Tel. (800) 345-1967 Fax (303) 442-6880

### CANADA

MKS Instruments, Canada Ltd.

30 Concourse Gate

Nepean, Ontario, Canada K2E 7V7 Tel. (613) 723-3386

(800) 267-3551 (CAN only)

Fax (613) 723-9160

### **FRANCE**

MKS Instruments, France s.a.

43, Rue du Commandant Rolland B.P. 41 F-93352 Le Bourget, Cedex, France Tel. 33(1)48.35.39.39

Tel. 33(1)48.35.39.39 Telex 233817 F

Fax 33(1)48.35.32.52

### **TAIWAN**

MKS Instruments, Taiwan 10F, No.93, Shoei-Yuan Street Hsinchu City 300 Taiwan, R.O.C.

Tel. 886-3-575 3040 Fax 886-3-575 3048

### **GERMANY/BENELUX**

MKS Instruments, Deutschland GmbH

Schatzbogen 43 D-81829 München Tel. 49-89-420008-0 Fax 49-89-42-41-06

Email:mks-germany@mksinst.com

### **ITALY**

G. Gambetti Kenologia Srl.

Via A. Volta No. 2 20082 Binasco (MI), Italy Tel. 39-2-90093082 Fax 39-2-905.2778

#### **JAPAN**

MKS Japan, Inc.

Harmonize Building 5-17-13, Narita-Higashi Suginami-Ku, Tokyo 166, Japan

Tel. 81-3-3398-8219 Fax 81-3-3398-8984

#### **KOREA**

MKS Korea Co., Ltd.

1<sup>st</sup> Floor DK Plaza-I 375-1 Geumgok-dong Bundang-gu,Seongnam Kyonggi-do Korea 463-805 Tel 82-31-717-9244

Fax 82-31-717-9244

### UNITED KINGDOM

MKS Instruments, U.K. Ltd.

2 Cowley Way Weston Road Crewe, Cheshire CW1 6AE, England Tel. 44-1270 253400

Fax 44-1270 848382

Next page: Declaration of Contamination.

Contact your MKS location if the form is missing.



### **HEALTH AND SAFETY FORM**

THIS FORM MUST BE COMPLETED AND RETURNED WITH EQUIPMENT OR SERVICE WILL NOT BE PERFORMED

| RETURN MATERIAL AUTHORIZATION                                                                                                                                                              | NUMB                                                                                        | BER (RMA#):                                                                                                                                                                                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| RETURN TO STOCK NUMBER/RTS# (If applicable):                                                                                                                                               | I rade in niimher (it annlicanie):                                                          |                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                            | MKS                                                                                         | Part Number:                                                                                                                                                                                    |  |  |  |
| Section 1: (one instrument per form)                                                                                                                                                       |                                                                                             | Serial Number:                                                                                                                                                                                  |  |  |  |
| and packing slip, Copper Part. Label fit TAPE on the container.  Has equipment been purged?  No Has equipment been flushed?  No Has equipment been decontaminated? How many months in use? | d in a systas (For Egases, bidgases, bidgases, bidgases) r procestinal shipp yes pu yes flu | stem. Example: Air, N2, Ar, He). ological or radioactive agents.) s. Equipment must be double bagged. Label outside bag ping container Copper Part and place a strip of ORANGE urged with what? |  |  |  |
| Section 4: Company or Organization (r                                                                                                                                                      | mandat                                                                                      | ory information)                                                                                                                                                                                |  |  |  |
| Company:                                                                                                                                                                                   |                                                                                             |                                                                                                                                                                                                 |  |  |  |
| Address:                                                                                                                                                                                   |                                                                                             |                                                                                                                                                                                                 |  |  |  |
| City:                                                                                                                                                                                      | Sta                                                                                         | ate: Zip:                                                                                                                                                                                       |  |  |  |
| Printed Name: Signature:                                                                                                                                                                   |                                                                                             |                                                                                                                                                                                                 |  |  |  |
| Date:                                                                                                                                                                                      | Date: Phone #:                                                                              |                                                                                                                                                                                                 |  |  |  |
| Email: Fax #:                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                 |  |  |  |
| End User (if applicable):                                                                                                                                                                  |                                                                                             |                                                                                                                                                                                                 |  |  |  |
| For MKS USE only:  MKS Subsidiary or Agent:  Contact Name:  Customer #                                                                                                                     |                                                                                             |                                                                                                                                                                                                 |  |  |  |
| Maximum Credit allowed (TBD a                                                                                                                                                              | Maximum Credit allowed (TBD after inspection)                                               |                                                                                                                                                                                                 |  |  |  |

ALL PRODUCTS MUST BE RETURNED IN SEALED BAGS

MKS will not accept delivery of equipment that has been chemically, radioactively or biologically contaminated, without written evidence of decontamination or laboratory analysis. Alternately, we will require evidence that the biological process is not harmful.