ESS party linking

Holger Döring and Paul Bederke

2023-08-28

Table of contents

ES	SS pa	rty linking	3
1	1.1 1.2 1.3	data sources ESS data sources	4 4 5 5
2	-	party variables	7
	2.1	prt* variables	7
	2.2	ESS-9 example	7
	2.3	prtv* ID differences	8
	2.4	prtv*/prtc* ID differences	9
3	Part	y Facts harmonization	10
	3.1	ESS party IDs	10
	3.2	Parties per country	10
4	СНЕ	S left-right validation	12
	4.1	CHES information	12
	4.2	CHES and ESS	12
	4.3	Country-year correlation	13
	4.4	Share covered	15
5	Parl	Gov losers' consent	17
	5.1	Losers' consent models	17
	5.2	Variables	17
	5.3	Summary statistics	18
	5.4	Multi-level models (ML)	19
		5.4.1 Three ML models	19
		5.4.2 Effects plot ML-1	21
	5.5	Linear effects (ML)	22
	5.6	Fixed effects model	24
	5.7	Share covered	25

ESS party linking

Code and supplementary information for: Paul Bederke and Holger Döring. 2023. "Harmonizing and Linking Party Information: The ESS as an Example of Complex Data Linking."

Note — pdf-version of notebook, see also html-version with Tidyverse-R code used to create content

1 ESS data sources

Information on ESS data sources used – see also section "ESS party data structure" in manuscript.

1.1 ESS data sources

ESS data sets from europeansocialsurvey.org/data

DOI references

- ESS Round 1 https://doi.org/10.21338/ess1e06_6
- ESS Round 2 https://doi.org/10.21338/ess2e03_6
- ESS Round 3 https://doi.org/10.21338/ess3e03_7
- ESS Round 4 https://doi.org/10.21338/ess4e04_5
- ESS Round 5 https://doi.org/10.21338/ess5e03_4
- ESS Round 6 https://doi.org/10.18712/ess6e02_5
- ESS Round 7 https://doi.org/10.21338/ess7e02_2
- ESS Round 8 https://doi.org/10.21338/ess8e02_2
- ESS Round 9 https://doi.org/10.21338/ess9e03_1
- ESS Round 10 https://doi.org/10.21338/ess10e03_1
- ESS Round 10 https://doi.org/10.21338/ess10sce03_0 (self-completion)

Data files are imported into R with readstata13

Round	ESS_file	hash
1	ESS1e06_6.dta	c61f508eb0f5b60e038be2d5793a9f4d
2	$ESS2e03_6.dta$	1 dde a 926b 393d 16417856e 1135b 29d 67
3	${\rm ESS3e03_7.dta}$	f3922c40bf5f37d0d5f1f1553a180898
4	$ESS4e04_5.dta$	f9455c929aee50fd3ab71a9ec9fd51a4
5	$ESS5e03_4.dta$	88c340e6a63d88bd7b1e42a2ded830de
6	$ESS6e02_5.dta$	eb508dfaec9f896851db7cc0de1cc1e9
7	$ESS7e02_2.dta$	0 d413 a5724618 ff 7 ec 373 a48 ed bf 5f 0 e
8	$ESS8e02_2.dta$	b1ab85d0a22aa17306e908095269e4dd
9	$ESS9e03_1.dta$	536f541f23064fd0b46ed7fd8b1e932a
10	ESS10.dta	533b89b4ebda6f58d5aef181b2c42c9b

Round	ESS_file	hash
10	ESS10SC.dta	$975 {\rm db} 0389 {\rm d844e25aa669c3d2da4f7ac}$

Note — The ESS-10 is released with two data files, one for the standard face-to-face interviews and another file for countries with self-completion mode due to the COVID-19 restrictions.

1.2 ESS rounds

Summary of ESS rounds

- n number of responses
- n_countries number of countries in ESS round
- inw_first and inw_last first and last interview

essround	n	n _countries	inw_first	inw_last
1	42359	22	2002	2003
2	47537	25	2004	2006
3	43000	23	2006	2007
4	56752	29	2008	2010
5	52458	27	2010	2012
6	54673	29	2012	2013
7	40185	21	2014	2015
8	44387	23	2016	2017
9	49519	29	2018	2020
10	58810	30	2020	2022

1.3 Countries

essround n		countries
1 22		AT, BE, CH, CZ, DE, DK, ES, FI, FR, GB, GR, HU, IE, IL, IT, LU, NL, NO,
2	25	PL, PT, SE, SI AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, LU, NL, NO,
3	23	PL, PT, SE, SI, SK, TR, UA AT, BE, BG, CH, CY, DE, DK, EE, ES, FI, FR, GB, HU, IE, NL, NO, PL, PT,
4	29	RU, SE, SI, SK, UA BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IL, LV,
		NL, NO, PL, PT, RO, RU, SE, SI, SK, TR, UA

essround n		countries
5 27		BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IL, LT,
		NL, NO, PL, PT, RU, SE, SI, SK, UA
6	29	AL, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, HU, IE, IL, IS, IT,
		LT, NL, NO, PL, PT, RU, SE, SI, SK, UA, XK
7	21	AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, GB, HU, IE, IL, LT, NL, NO, PL,
		PT, SE, SI
8	23	AT, BE, CH, CZ, DE, EE, ES, FI, FR, GB, HU, IE, IL, IS, IT, LT, NL, NO,
		PL, PT, RU, SE, SI
9	29	AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, HR, HU, IE, IS, IT,
		LT, LV, ME, NL, NO, PL, PT, RS, SE, SI, SK
10	30	AT, BE, BG, CH, CZ, DE, EE, ES, FI, FR, GB, GR, HR, HU, IE, IL, IS, IT,
		LT, LV, ME, MK, NL, NO, PL, PT, RS, SE, SI, SK

2 prt* party variables

Information on ESS party IDs from "party-voted-for" (prtc*) and "party-close-to" (prtc*) questions – see also section "ESS party data structure" in manuscript.

2.1 prt* variables

All ESS rounds include two types of survey questions with party information.

- prtv* "Party voted for in last national election, [country]?"
- prtc* "Which party feel closer to, [country]?"

essround	n	n_countries	n_prtv	n_prtc
1	42359	22	251	248
2	47537	25	281	274
3	43000	23	248	251
4	56752	29	309	296
5	52458	27	321	302
6	54673	29	331	331
7	40185	21	258	252
8	44387	23	283	271
9	49519	29	363	374
10	58810	30	380	390

2.2 ESS-9 example

We use the ESS-9 integrated file to describe the structure of the prt^* variables in ESS data files.

Each ESS round uses country level variables for the **prt*** variables (e.g. *prtvtcat* — party-voted-for Austria ESS-9).

These **prt*** variables include the following elements:

• starting with **prt**

- indicating the type of prt variable
 - \mathbf{v} "party-voted-for"
 - c "party-close-to"
- two character country code
- electoral tier number for Germany and Lithuania $(prtv^* \text{ only})$

ESS-9 **prt*** variables by country

Examples for the first four countries in ESS-9

cntry	n	variables
AT	2	prtcldat, prtvtcat
BE	2	prtcldbe, prtvtdbe
$_{\mathrm{BG}}$	2	prtcldbg, prtvtdbg
CH	2	prtclgch, prtvtgch
CY	2	prtclbcy, prtvtbcy

Germany and Lithuania include multiple $prtv^*$ variables asking for voting decisions in each electoral tier. These variables include a number for the tier in the variable name.

We use the national tier ("prtvede2", "prtvblt1") as the primary "party-voted-for" variable.

cntry	variable
DE	prtvede1
DE	prtvede2
LT	prtvblt1
LT	prtvblt2
LT	prtvblt3

2.3 prtv* ID differences

ESS may use different IDs across ESS rounds

e.g. Netherlands $prtv^*$ rounds 1–10

essround	id_4	id_5	id_6
1	List Pim Fortuyn	Democrats '66	Green Left
2	List Pim Fortuyn	Democrats '66	Green Left
3	List Pim Fortuyn	Democrats '66	Green Left

essround	id_4	id_5	id_6
4	List Pim Fortuyn	Democrats '66	Green Left
5	Christian Democratic Appeal	Socialist Party	Democrats '66
6	Christian Democratic Appeal	Socialist Party	Democrats '66
7	Socialist Party	Christian Democratic Appeal	Democrats '66
8	Socialist Party	Christian Democratic Appeal	Democrats '66
9	Socialist Party	Christian Democratic Appeal	Democrats '66
10	Socialist Party	Christian Democratic Appeal	Democrats '66

2.4 prtv*/prtc* ID differences

ESS party IDs may differ between the $prtv^*$ and $prtc^*$ variables.

Examples from six countries in ESS-9

cntry essroundparty_idprtv_party prtc_party				
BG	9	2	Balgarska sotsialisticheska partiya (BSP)	Dvizhenie za prava i svobodi (DPS)
FI	9	10	Green League	Independence Party
LT	9	2	Homeland Union - Lithuanian	Lithuanian Peasant and
			Christian Democrats (TS-LKD)	Greens Union (LVZS)
PL	9	3	Nowoczesna	Platforma Obywatelska
PT	9	17	Votou em branco/ nulo	CDS-PP
SK	9	5	ĽS Naše Slovensko	Christian Democratic
				Movement (KDH)

3 Party Facts harmonization

Information on Party Facts ESS party IDs harmonization – see also sections "Linking data sets with Party Facts" and "ESS party data structure" in manuscript.

3.1 ESS party IDs

Party Facts (PF) harmonizes ESS party IDs by creating a unique ESS party id ("first_ess_id") for all ESS rounds. — see PF GitHub // essprtv

prt_variable	n_ess_parties	n_harmonized
prtv	3304	961
prtc	2979	864

3.2 Parties per country

Number of ESS party IDs and harmonized IDs in ESS rounds by country (prtv and prtc)

cntry	$n_{essrounds}$	$n_{ess_parties}$	n_harmonized
$\overline{\mathrm{AL}}$	1	17	17
AT	7	114	26
BE	10	305	48
$_{\mathrm{BG}}$	6	149	74
CH	10	302	55
CY	5	77	21
CZ	9	169	44
DE	10	245	31
DK	8	167	26
EE	9	172	45
ES	10	307	77
FI	10	258	48
FR	10	303	61
GB	10	274	42

cntry	n_essrounds	n_ess_parties	n_harmonized
\overline{GR}	5	86	41
$_{ m HR}$	4	101	52
HU	10	197	53
IE	10	185	37
IL	7	234	80
IS	5	97	36
IT	5	141	84
LT	6	412	151
LU	2	28	14
LV	3	74	43
ME	2	55	37
MK	1	26	26
NL	10	269	49
NO	10	202	24
PL	10	197	65
PT	10	208	51
RO	1	19	19
RS	2	80	60
RU	5	107	50
SE	10	189	23
SI	10	202	38
SK	7	106	34
TR	2	55	38
UA	5	128	79
XK	1	26	26

4 CHES left-right validation

 ${\rm ESS}$ linking example – see also sections "Expert survey validation" and "Performance of Party Facts linking" in manuscript.

4.1 CHES information

Chapel Hill Expert Survey (CHES) series

year	countries	parties
1999	14	142
2002	23	171
2006	24	188
2010	24	203
2014	28	245
2019	28	247

4.2 CHES and ESS

Number of countries and parties that are included in ESS and CHES for an ESS round.

essround	year	countries_n	parties_n	ches_year	ches_parties_n
1	2002	18	196	2002	131
2	2004	18	190	2002	128
3	2006	18	191	2006	132
4	2008	21	215	2006	143
5	2010	20	241	2010	157
6	2012	20	239	2010	151
7	2014	18	216	2014	138
8	2016	18	216	2014	133
9	2018	24	299	2014	184
10	2020	23	284	2019	169

Overview country coverage ESS and CHES trend file

- ess_cntry number of countries in ESS round
- ches cntry number of ESS round countries in CHES
- ches_missing names of ESS round countries not in CHES

essround	ess_cntry	ches_cntry	ches_missing
1	22	18	CH, IL, LU, NO
2	25	18	CH, EE, IS, LU, NO, TR, UA
3	23	18	CH, CY, NO, RU, UA
4	29	21	CH, CY, HR, IL, NO, RU, TR, UA
5	27	20	CH, CY, HR, IL, NO, RU, UA
6	29	20	AL, CH, CY, IL, IS, NO, RU, UA, XK
7	21	18	CH, IL, NO
8	23	18	CH, IL, IS, NO, RU
9	29	24	CH, IS, ME, NO, RS
10	30	23	CH, IL, IS, ME, MK, NO, RS

4.3 Country-year correlation

Country-year correlations for ESS and CHES left-right positions in each ESS round with at least 3 parties and 10 responses per party in a country.

ESS left-right party positions are calculated as mean values of **lrscale** variables for respondents that voted for the party (**prtv***).

- **Irscale** self-placement on left right scale // ESS rounds
- prtv* "party-voted-for" in last national election // ESS rounds
- ches_lr left-right party position // CHES trend file
 - lrgen "position of the party in YEAR in terms of its overall ideological stance." // CHES trendfile

The table summarizes the country-year correlations by providing 0%, 10%, 25%, 50%, 75%, and 100% quantiles. The results are visualized in Figure 4.1.

ess_year	p0	p10	p25	p50	p75	p100
2002	0.82	0.87	0.94	0.95	0.99	1.00
2004	0.77	0.83	0.87	0.91	0.99	1.00
2006	0.63	0.86	0.89	0.93	0.98	1.00
2008	-0.35	0.79	0.90	0.94	0.98	1.00

ess_year p0 p10 p25 p50 p75 p1 2010 0.45 0.78 0.91 0.96 0.97 0. 2012 0.55 0.76 0.92 0.96 0.99 1. 2014 0.73 0.83 0.88 0.91 0.95 0. 2016 0.77 0.87 0.90 0.92 0.95 1.	
2012 0.55 0.76 0.92 0.96 0.99 1. 2014 0.73 0.83 0.88 0.91 0.95 0. 2016 0.77 0.87 0.90 0.92 0.95 1.	ess_year
2014 0.73 0.83 0.88 0.91 0.95 0. 2016 0.77 0.87 0.90 0.92 0.95 1.	2010
2016 0.77 0.87 0.90 0.92 0.95 1.	2012
	2014
0010 000 001 000 000 1	2016
2018 0.26 0.81 0.90 0.93 0.98 1.	2018
2020 0.35 0.56 0.82 0.93 0.98 0.	2020

Lowest country-year correlation (-0.35) for ESS Romania 2008.

cntry	year	prtv	prtv_party	lr_n	lr_mean	ches_year	ches_lr
RO	2008	RO-4-1-v	PD-L	517	6.95	2006	NA
RO	2008	RO-4-12-v	Other: PIN	14	5.25	2006	NA
RO	2008	RO-4-2-v	Alianta PSD-PC	449	3.52	2006	NA
RO	2008	RO-4-3-v	PNL	165	7.06	2006	6.7
RO	2008	RO-4-4-v	PRM	31	4.54	2006	7.0
RO	2008	RO-4-5-v	UDMR	67	5.94	2006	6.0
RO	2008	RO-4-6-v	PNG-CD	15	6.75	2006	NA
RO	2008	RO-4-9-v	PNTCD	32	5.62	2006	NA

Figure 4.1: Violin plot for country wise correlations ($<0.5~\mathrm{removed})$

4.4 Share covered

We calculate the share of matches for the "party-voted-for" (prtv) question. Excluded from the calculation are instances of other, independent, and technical (see Party Facts codebook).

The table summarizes the share of party matches across all countries and ESS rounds.

quantile	share_match
0%	11.4
10%	54.6
25%	87.7
50%	98.4
75%	99.9
100%	100.0

The share of matched parties is weighted by the number of "party-voted-for" responses and is calculated for each country in every ESS round.

The next table summarizes the country level share of party matches for ESS rounds with data set matches.

min	median	may	ess_rounds
111111	median	IIIax	
11.4	28.8	46.1	2
13.8	48.3	99.3	10
20.4	20.4	20.4	1
34.0	61.5	99.1	6
44.0	92.7	97.7	10
45.8	93.1	99.5	10
50.6	53.9	93.1	3
51.0	56.8	71.1	10
57.9	98.4	99.9	10
66.8	87.8	93.8	10
71.9	93.2	97.0	6
75.3	99.4	99.9	8
76.3	100.0	100.0	9
76.7	94.1	95.8	5
77.5	99.0	100.0	10
90.8	96.6	100.0	7
91.3	97.3	100.0	10
92.1	99.7	100.0	10
96.0	99.2	100.0	5
97.2	100.0	100.0	7
	13.8 20.4 34.0 44.0 45.8 50.6 51.0 57.9 66.8 71.9 75.3 76.7 77.5 90.8 91.3 92.1 96.0	11.4 28.8 13.8 48.3 20.4 20.4 34.0 61.5 44.0 92.7 45.8 93.1 50.6 53.9 51.0 56.8 57.9 98.4 66.8 87.8 71.9 93.2 75.3 99.4 76.3 100.0 76.7 94.1 77.5 99.0 90.8 96.6 91.3 97.3 92.1 99.7 96.0 99.2	11.4 28.8 46.1 13.8 48.3 99.3 20.4 20.4 20.4 34.0 61.5 99.1 44.0 92.7 97.7 45.8 93.1 99.5 50.6 53.9 93.1 51.0 56.8 71.1 57.9 98.4 99.9 66.8 87.8 93.8 71.9 93.2 97.0 75.3 99.4 99.9 76.3 100.0 100.0 76.7 94.1 95.8 77.5 99.0 100.0 90.8 96.6 100.0 91.3 97.3 100.0 92.1 99.7 100.0 96.0 99.2 100.0

cntry	min	median	max	ess_rounds
GB	98.0	98.6	99.5	10
IE	98.3	99.8	100.0	10
FI	98.4	99.3	99.7	10
SE	100.0	100.0	100.0	10
DK	100.0	100.0	100.0	8
CY	100.0	100.0	100.0	1

5 ParlGov losers' consent

ESS linking example – see also sections "Party-voted-for in government" and "Performance of Party Facts linking" in manuscript.

5.1 Losers' consent models

Satisfaction with democracy by those that voted for parties in government vs. opposition. For a book length discussion and empirical assessment of European democracies see Anderson et.al. (2005) – esp. model page 104. A replication and extension to other regions is provided by Farrer and Zingher (2019, 525)

- Anderson, Christopher, ed. 2005. Losers' Consent: Elections and Democratic Legitimacy.
 Oxford; New York: Oxford University Press.
- Farrer, Benjamin, and Joshua N Zingher. 2019. "A Global Analysis of How Losing an Election Affects Voter Satisfaction with Democracy." International Political Science Review 40(4): 518–34. doi: 10.1093/poq/nfad003

5.2 Variables

Variables used in losers' consent models and context information

- **stfdem** How satisfied with the way democracy works in country?
 - 0 // Extremely dissatisfied 10 // Extremely satisfied
- cabinet "party-voted-for" (prtv) in government after election
 - ParlGov based calculation
 - excluding caretaker governments
- Irscale Placement on left right scale
 - 0 // Left 10 // Right
- gndr Gender
- agea Age of respondent, calculated

- eduyrs Years of full-time education completed
- ESS identifiers
 - cntry Country
 - essround ESS round
 - pspwght Post-stratification weight // see ESS survey weights
 - inw_date Date of interview // various ESS inw* variables
- Party information
 - prtv Party voted for in last national election // aggregated ESS IDs
 - prtv_name Party voted for in last national election // party name
 - first_ess_id unique ESS party ID used in Party Facts

5.3 Summary statistics

Table 5.1: Data summary

Name	select(ess_lm, -idno)
Number of rows	433599
Number of columns	14
Column type frequency	
Column type frequency:	
character	3
Date	1
factor	4
numeric	6
Group variables	None

Variable type: character

skim_variable	n_missing	$complete_rate$	min	max	empty	n_unique	whitespace
cntry	0	1.00	2	2	0	32	0
prtv	171780	0.60	8	14	0	2704	0
prtc	240202	0.45	8	10	0	2642	0

Variable type: Date

skim_variable	n_missing	$complete_rate$	min	max	median	n_unique
inw_date	912	1.00	2002-01-14	2022-09-02	2011-06-03	4827

Variable type: factor

skim_variab	len_missin	g complete_	_rat@rdered	n_unic	quetop_counts
gndr	331	1.00	FALSE	2	Fem: 231527, Mal: 201741, No: 0
prtv_party	171780	0.60	FALSE	888	Lab: 6580, Con: 6077, Chr: 5660,
					Soc: 4972
prtc_party	240202	0.45	FALSE	900	Lab: 4949, Con: 4578, Chr: 4290,
					Soc: 3484
cabinet	209306	0.52	FALSE	2	Yes: 121092, No: 103201

Variable type: numeric

skim_varia	blen_missi	${ m ngcomplete}_{-}$	_ratemean	sd	p0	p25	p50	p75	p100	hist
essround	0	1.00	5.39	2.80	1	3.0	5.00	8.00	10.00	
pspwght	0	1.00	1.01	0.52	0	0.7	0.93	1.18	6.85	
agea	2155	1.00	48.49	18.62	13	33.0	48.00	63.00	123.00	
eduyrs	5075	0.99	12.43	4.13	0	10.0	12.00	15.00	65.00	
lrscale	55413	0.87	5.13	2.23	0	4.0	5.00	7.00	10.00	
stfdem	15516	0.96	5.28	2.51	0	4.0	5.00	7.00	10.00	

5.4 Multi-level models (ML)

Model variables preparation

- removing outliers age (99% quantile)
- selecting only variables used in models
- removing incomplete observations
- centering of continuous variables (age, education, left-right)

5.4.1 Three ML models

Multi-level models with quadric terms and interactions. Structure of models:

- Model 1 (ML-1) ESS-Round/country and country
- Model 2 (ML-2) ESS-Round and country

• Model 3 (ML-3) — country Visualization of results in Figure 5.1 and Figure 5.2 – see variable information in Section 5.3

	ML-1	ML-2	ML-3
(Intercept)	5.782	5.790	5.775
1 /	(0.169)	(0.184)	(0.172)
gndrFemale	-0.182	-0.178	-0.179
	(0.009)	(0.010)	(0.010)
cabinetNo	-0.637	-0.645	-0.640
	(0.010)	(0.010)	(0.010)
eduyrs_c	0.048	0.045	0.048
	(0.002)	(0.002)	(0.002)
poly(agea_c, 2)1	23.624	21.075	25.719
	(3.151)	(3.192)	(3.189)
$poly(agea_c, 2)2$	30.470	30.403	31.438
	(2.913)	(2.957)	(2.967)
poly(lrscale_c, 2)1	103.697	105.407	108.606
	(3.333)	(3.204)	(3.208)
poly(lrscale_c, 2)2	35.905	39.358	40.284
	(3.116)	(3.149)	(3.160)
$cabinetNo \times eduyrs_c$	0.013	0.014	0.015
	(0.003)	(0.003)	(0.003)
$cabinetNo \times poly(agea_c, 2)1$	-4.329	-2.065	-3.641
	(4.620)	(4.675)	(4.691)
$cabinetNo \times poly(agea_c, 2)2$	13.465	14.204	13.904
	(4.284)	(4.350)	(4.366)
$cabinetNo \times poly(lrscale_c, 2)1$	-22.081	-23.826	-26.594
	(4.862)	(4.494)	(4.496)
$cabinetNo \times poly(lrscale_c, 2)2$	-108.724	-113.550	-113.758
	(4.367)	(4.397)	(4.413)
SD (Intercept cntry)	0.931	0.965	0.970
SD (Observations)	2.106	2.142	2.150
SD (Intercept essround_cntrycntry)	0.500		
SD (Intercept essround)		0.219	
N Ob -	:	905611	:
Num.Obs.	205611	205611	205611
R2 Marg. R2 Cond.	$0.040 \\ 0.233$	$0.040 \\ 0.209$	0.041
AIC	0.233 918254.1		0.203 925869.4
BIC	918234.1	924409.6 924573.3	926022.9
ICC			
	0.2	0.2	0.2

	ML-1	ML-2	ML-3
RMSE	2.13	2.16	2.17

Analysis of variance (ANOVA) models and refitting with Maximum Likelihood instead of Restricted Maximum Likelihood.

term	npar	AIC	BIC	logLik	deviance	statistic	df	p.value
ml1	16	918249.0	918412.7	-459108.5	918217.0	7617.436	1	0
ml2	16	924404.7	924568.4	-462186.3	924372.7	0.000	0	
ml3	15	925864.4	926017.9	-462917.2	925834.4			

5.4.2 Effects plot ML-1

Effects plot Multi-Level Model 1 (ML-1, see Section 5.4.1) see Figure 5.1 and Figure 5.2

Figure 5.1: Effects plot (95% CIs) — Satisfaction with democracy

Figure 5.2: Effects plot (95% CIs) — Satisfaction with democracy // Article version

5.5 Linear effects (ML)

Multi-level model with linear terms and no interactions.

Visualization of results in Figure 5.3 (standardized coefficients) and Figure 5.4 (effects) – see variable information in Section 5.3

effect	group	term	estimate	$\operatorname{std.error}$	statistic
fixed		(Intercept)	5.775	0.170	33.996
fixed		cabinetNo	-0.636	0.010	-64.341
fixed		$\operatorname{gndrFemale}$	-0.178	0.009	-18.849
fixed		$eduyrs_c$	0.051	0.001	37.025
fixed		agea_c	0.002	0.000	6.679
fixed		$lrscale_c$	0.094	0.002	44.172
ran_pars	essround_cntry:cntry	sd(Intercept)	0.503		
ran_pars	cntry	sd(Intercept)	0.934		
ran_pars	Residual	sdObservation	2.112		

Figure 5.3: Standardized coefficients (95% CIs)– Linear effects model

Figure 5.4: Linear effects plot (95% CIs) — Satisfaction with democracy

5.6 Fixed effects model

Fixed effects model with quadric terms and interactions.

Visualization of results in Figure 5.5 and variable information in Section 5.3

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	6.407	0.037	173.718	0.000	6.335	6.479
gndrFemale	-0.178	0.011	-16.569	0.000	-0.199	-0.157
cabinetNo	-0.645	0.011	-58.835	0.000	-0.667	-0.624
$eduyrs_c$	0.045	0.002	21.591	0.000	0.041	0.050
agea_c	21.004	3.505	5.993	0.000	14.135	27.874
agea_c^2	30.381	3.306	9.190	0.000	23.901	36.860
$lrscale_c$	105.418	3.903	27.011	0.000	97.769	113.068
$lrscale_c^2$	39.400	4.134	9.531	0.000	31.297	47.502
$cabinetNo:eduyrs_c$	0.014	0.003	4.744	0.000	0.008	0.020
$cabinetNo:agea_c$	-2.033	5.236	-0.388	0.698	-12.295	8.229
$cabinetNo:agea_c^2$	14.216	4.958	2.867	0.004	4.499	23.933
$cabinetNo: lrscale_c$	-23.832	5.585	-4.267	0.000	-34.779	-12.885
$cabinet No: lrscale_c\widehat{\ }2$	-113.566	5.823	-19.502	0.000	-124.979	-102.153

Fixed effects for countries ("cnty") and ESS rounds ("essround") not shown.

r.squared	adj.r.squared	statistic	p.value	df.residual	nobs	se_type
0.18	0.18	756.54	0	205558	205611	HC2

Figure 5.5: Fixed effects model (95% CIs) — Satisfaction with democracy

5.7 Share covered

We calculate the share of matches for the "party-voted-for" (prtv) question. Excluded from the calculation are instances of other, independent, and technical (see Party Facts codebook).

The table summarizes the share of party matches across all countries and ESS rounds.

quantile	share_	match
0%		11.4
10%		65.4
25%		81.9
50%		95.8
75%		99.2
100%		100.0

The share of matched parties is weighted by the number of "party-voted-for" responses and is calculated for each country in every ESS round.

The next table summarizes the country level share of party matches for ESS rounds with data set matches.

cntry	min	median	max	ess_rounds
HR	11.4	73.0	100.0	4
HU	13.8	47.6	95.5	10
RO	18.0	18.0	18.0	1
$_{\mathrm{BG}}$	34.0	60.2	99.1	5
LV	37.1	68.6	100.0	2
PL	37.4	90.1	98.2	9
BE	46.8	80.1	92.0	10
PT	57.7	92.2	99.6	10
IL	58.7	71.8	78.7	6
FR	65.0	80.8	83.7	10
CH	74.3	91.0	99.9	10
CZ	74.3	100.0	100.0	9
TR	75.2	82.4	89.6	2
GB	76.5	81.9	90.8	10
IT	76.7	94.1	96.5	5
DE	77.5	89.2	92.4	9
EE	80.0	95.8	100.0	8
ES	80.1	98.3	99.7	9
LT	81.2	93.3	96.4	6
SI	85.9	95.8	100.0	10
AT	91.5	98.7	99.6	6
FI	91.8	93.0	94.5	10
NL	92.1	99.7	100.0	10
SK	94.7	100.0	100.0	7
GR	96.0	96.8	99.2	5
IS	96.0	98.7	100.0	5
NO	96.6	98.7	99.5	10
SE	96.7	99.8	100.0	9
IE	97.1	98.9	100.0	10
DK	97.6	98.8	99.4	8
CY	98.5	99.5	100.0	5
LU	99.1	99.6	100.0	2