# Sciences Physiques : DS n° 3 $_{_{15\,\mathrm{Mars}\,2018}}$

| Compétence                                                                     | Maitrise |
|--------------------------------------------------------------------------------|----------|
| Notions de molécules, atomes, ions.                                            |          |
| Conservation de la masse lors d'une transformation chimique.                   |          |
| Associer leurs symboles aux éléments à l'aide de la classification périodique. |          |
| Interpréter une formule chimique en termes atomiques.                          |          |

### 1

| 1  | Co   | omposition des molécules (4 points)                                                                                     |
|----|------|-------------------------------------------------------------------------------------------------------------------------|
| 1. | ` -  | oints) Donner la composition des molécules suivantes : $ (1\ {\rm point})\ \ {\rm l'\acute{e}thyl\grave{e}ne}\ C_2H_4 $ |
|    |      |                                                                                                                         |
|    |      | Solution: 2 atomes de carbone et 4 d'hydrogène                                                                          |
|    | (b)  | (1 point) le monoxyde d'azote $NO$                                                                                      |
|    |      |                                                                                                                         |
|    |      | Solution: 1 atome d'azote et 1 d'oxygène.                                                                               |
|    | (c)  | (1 point) l'ozone $O_3$                                                                                                 |
|    |      |                                                                                                                         |
|    |      | Solution: 3 atomes d'oxygène                                                                                            |
|    | (d)  | (1 point) l'eau oxygénée $H_2O_2$                                                                                       |
|    |      |                                                                                                                         |
|    |      | Solution: 2 atomes d'hydrogène et 2 d'oxygène                                                                           |
| 2  | De   | es mots pour une phrase (2 points)                                                                                      |
|    |      | ser les mots pour pour construire des phrases correctes les plus courtes possibles.                                     |
| 1. | (1 p | oint) nucléons - électrons - atome - noyau                                                                              |
|    |      |                                                                                                                         |

| $\alpha$ | 1  |   |    |    |    |   |   |   |
|----------|----|---|----|----|----|---|---|---|
| •        | റി | п | 11 | ь. | 14 | _ | n | • |
|          |    |   |    |    |    |   |   |   |

Les électrons d'un atome gravitent autour de son noyau, qui est constitué de nucléons.

| 2. | I point) electrons - electriquement neutres - protons - charges negativement - neutror | ıs - |
|----|----------------------------------------------------------------------------------------|------|
|    | hargés positivement                                                                    |      |
|    |                                                                                        |      |
|    |                                                                                        |      |
|    |                                                                                        |      |
|    |                                                                                        |      |
|    |                                                                                        |      |
|    |                                                                                        |      |

#### Solution:

Les neutrons sont électriquement neutres alors que les électrons sont chargés négativement et les protons sont chargés positivement.

## 3 La corrosion du fer (5 points)

Au contact du dioxygène  $O_2$  et en présence d'eau  $H_2O$ , le fer Fe se corrode en rouille  $Fe_2O_3$ . L'eau est indispensable pour ce processus, mais lors de cette transformation la quantité totale d'eau reste la même. On propose une équation pour modéliser cette réaction :

 $4 \, \mathrm{Fe} + 4 \, \mathrm{O}_2 \longrightarrow 2 \, \mathrm{Fe}_2 \mathrm{O}_3$ 

| 1. | (1  point) Expliquer pour<br>quoi l'eau n'est ni un réactif, ni un produit dans cette transformation.                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    | Solution:                                                                                                                                                       |
|    | Le texte indique que dans cette réaction, la quantité d'eau ne change pas donc il n'est pas nécessaire de la faire apparaître dans l'équation de réaction.      |
| 2. | (1  point) Compter le nombre d'atomes de fer dans les réactifs puis dans les produits de l'équation.                                                            |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    | Solution:                                                                                                                                                       |
|    | Dans les réactifs il y a 4 atomes de fer et dans les produits il y en 4 aussi.                                                                                  |
| 3. | (1 point) Faire de même pour les atomes d'oxygène.                                                                                                              |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    | Solution:                                                                                                                                                       |
|    | Dans les réactifs il y a 8 atomes d'oxygène et dans les produits il y en a 6.                                                                                   |
| 4. | (2 points) Indiquer à l'aide des réponses précédentes, si l'équation de réaction est équilibrée. Si ce n'est pas le cas, proposer une correction de l'équation. |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |

#### Solution:

Il n'y a pas le même nombre d'atomes d'oxygène dans les réactifs et les produits donc l'équation de réaction n'est pas équilibrée.

Dans l'équation suivante il y a autant d'atomes de fer et d'oxygène dans les réactifs que dans les produits, elle est donc équilibrée :

$$4\,\mathrm{Fe} + 3\,\mathrm{O}_2 \longrightarrow 2\,\mathrm{Fe}_2\mathrm{O}_3$$

#### 4 Structure des atomes

1. (4 points) Compléter le tableau

| Nom de l'atome                  |    | Chlore |    |    |   |
|---------------------------------|----|--------|----|----|---|
| Symbole de l'atome              | He |        |    |    | H |
| Nombre de protons dans le noyau |    |        | 26 |    |   |
| Nombre d'électrons              |    |        |    | 79 |   |

Solution:

| <u> </u>                        |        |        |     |    |           |
|---------------------------------|--------|--------|-----|----|-----------|
| Nom de l'atome                  | Hélium | Chlore | Fer | Or | Hydrogène |
| Symbole de l'atome              | He     | Cl     | Fe  | Au | H         |
| Nombre de protons dans le noyau | 2      | 17     | 26  | 79 | 1         |
| Nombre d'électrons              | 2      | 17     | 26  | 79 | 1         |

## 5 L'atome de Fer (4 points)

Le métal fer est un cristal, ce qui veut dire que ses atomes sont organisés selon une structure bien particulière appelée maille élémentaire. Sur l'Atomium à Bruxelles, chaque sphère de 18 m de diamètre représente un atome de fer agrandi 64 milliards de fois.



| 1. | (2 points) Calculer le diamètre d'un atome de fer.                                                      |
|----|---------------------------------------------------------------------------------------------------------|
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    | Solution: $64 \text{ milliards} = 64 \times 10^9.$                                                      |
|    | $\frac{18}{64 \times 10^9} = 2,8125 \times 10^{-10} m$                                                  |
|    | $= 281,25 \times 10^{-12} m$                                                                            |
|    |                                                                                                         |
| 2. | Un atome de fer a un diamètre de 281,25pm.<br>(1 point) Combien d'électrons contient-il?                |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    | Solution:<br>Le numéro atomique de l'atome de fer est 26, il contient 26 protons, et donc 26 électrons. |
| 3. | (1 point) Quel est le diamètre du noyau d'un atome de fer?                                              |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |
|    |                                                                                                         |

#### Solution:

Le diamètre d'un atome est  $100\,000$  fois plus grand que celui de son noyau.

$$\frac{2,8125 \times 10^{-10}}{10^5} = 2,8125 \times 10^{-15} m$$

Donc le noyau d'un atome de fer a un diamètre de 2,8125 fm.

électrons.

## 6 Quelle représentation?

Tous les atomes de ce bijou possèdent 78 protons. 33% d'entre eux possèdent 116 neutrons, 34% 117 neutrons, 25 % 118 et 7% 120 neutrons.



| 1. | (1 point) De quels atomes le bijou est-il composé?                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    | Solution:                                                                                                                          |
|    | Les atomes de ce bijou possèdent tous 78 protons, ce sont donc des atomes de l'élément chimique de numéro atomique 78, le platine. |
| 2. | (1 point) Comment appelle-t-on des atomes d'un même élément qui possèdent un nombre de neutrons différent ?                        |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    | Solution:                                                                                                                          |
|    | Les isotopes sont des atomes d'un même élément qui possèdent un nombre de neutrons différent.                                      |
| 3. | (1 point) Préciser, en le justifiant le nombre d'électrons de ces atomes.                                                          |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    | Solution:                                                                                                                          |
|    | Dans un atome il y a autant d'électrons que de protons, donc ces atomes possèdent 78                                               |

