Tests statistiques

Charles Vin

Date

1 Introduction

Un test est un mécanisme qui permet de trancher entre deux hypothèse en se basant sur une réalisation de votre échantillon.

2 Généralité sur les tests paramétriques

Exemple 2.1 (Exemple du traitement). Un médicament couramment utilisé est connu pour guérir 30% des malades. Un nouveau traitement est expérimenté sur 10 patients. On observe 7 guérison. Peut-on résonnement affirmer que le nouveau traitement est meilleurs?

 $\theta_0=0.3$ probabilité de guérrison de l'ancient traitement

 $\theta=$? probabilité de guerison du nouveau traitement

Modélisation:

$$x_i = \begin{cases} 1 \text{ si le patient ni est gueri avec le nouveau traitement} \\ 0 \text{ sinon} \end{cases}$$

$$\mathbb{P}_{\theta}(x_i=1) = \theta$$

$$X_i \sim \mathcal{B}(\theta), \theta \in]0,1[$$

2 hypothèse sont en compétition à propos de θ :

- H_0 appelée **hypothèse nulle** ou **fondamentale** : "le nouveau traitement n'est pas meilleur" $\theta=0.3$
- H_1 appelée **hypothèse alternative** : "le nouveau traitement est meilleur" $\theta > 0.3$ On considère un échantillon de taille n patients X_1, \ldots, X_n avec $X_i \sim \mathcal{B}(\theta)$.

$$S_n = \sum_{i=1}^n X_i =$$
 nombre de patients guéris du nouveau traitement.

Règle de décision :

- Si $S_n \geq k$ on décide H_1 : le nouveau traitement meilleur
- Si $S_n < k$ on ne rejette pas H_0 : le nouveau traitement n'est pas meilleur

k est appelé seuil critique.

On a deux ensemble

- $\mathcal{R}=\{(X_1,\ldots,X_n),\sum_{i=1}^n X_i\geq k\}=$ zone de rejet du test = **Région critique** $\bar{\mathcal{R}}=\{(X_1,\ldots,X_n),\sum_{i=1}^n X_i< k\}=$ zone d'acceptation de H_0 = **Région d'acceptation** Deux types d'erreurs apparaissent :
 - **Erreur de 1ère espèce** consiste à rejeter H_0 alors que H_0 est vrais (rejeter à tort $H_0 \to$ décider à tort que le nouveau traitement est meilleur)
- **Erreur de 2ème espèce** consiste à ne pas rejeter H_0 alors que H_0 est fausse (accepter à tort H_0) Risque :
 - **Risque de 1ère espèce** est la probabilité de commettre l'erreur de 1ère espèce = probabilité de rejeter à tort H_0

$$P_{H_0}(S_n \ge k) = \text{ probabilité de rejeter H0 alors que H0 vraie} = \mathbb{P}_{0.3}(S_n \ge k).$$

	Conclusion du test		
	Rejet de H_0	Non-rejet de H_0	
$\theta = \theta_0$ (H_0 vraie)	Erreur de première espèce	Pas d'erreur	
$\theta < \theta_0$ (H_0 vraie)	Pas d'erreur	Erreur de 2ème espèce	

Risque de 2ème espèce est la probabilité de commettre l'erreur de deuxième espèce.

$$P_{H_1}(S_n < k) = P_{\theta}(S_n < k)$$
 avec $\theta > 0.3$.

Le plus souvent, on ne peut pas la calculer car elle dépend de θ inconnu ($\theta > 0.3$).

Pour trouver le seuil k, on le choisit de telle sorte que $\mathbb{P}_{0.3}(S_n \ge k)$ petite (k assez grand) et $\mathbb{P}_{\theta}(S_n < k)$ pas trop grande.

Comme on ne peut pas diminuer les 2 risques à la fois (varient en sens inverse)

Compromis On fixe une probabilité **maximale** acceptable pour le risque de première espèce. En genérale, on choisit $\alpha=5\%,10\%,\ldots$

Ce risque maximal est appelé **niveau du test**. On impose

$$\mathbb{P}_{0.3}(S_n \ge k) \le \alpha.$$

Si H_0 est vraie ($\theta=0.3=\theta$) $S_n\sim\mathcal{B}(10,0.3)$ on va chercher k tel que

$$\mathbb{P}_{0.3}(S_n \ge k) \le 0.05
\mathbb{P}_{0.3}(S_n \ge 3) = 1 - \mathbb{P}_{0.3}(S_n \le 2)
= 1 - (\mathbb{P}_{0.3}(S_n = 0) + \mathbb{P}_{0.3}(S_n = 1) + \mathbb{P}_{0.3}(S_n = 2))
= 62\%$$

En choisissant le risque de rejeter à tort H_0 est de 62%.

Note. voir le diapo y'a du matériel en plus pour comprendre + L'histograme

Figure 1 – Histogramme de
$$\mathcal{B}(10, 0.3)$$

On prend k=6 car $\mathbb{P}_{0.3}(S_n\geq 6)\approx 0.0473<5\%$ (le plus proche possible du niveau) car

$$\begin{aligned} k & \operatorname{tq} \mathbb{P}_{0.3}(S_n \geq k) \leq 0.05 \\ & \Leftrightarrow 1 - \mathbb{P}_{0.3}(S_n < k) \leq 0.05 \\ & \Leftrightarrow \mathbb{P}_{0.3}(S_n \leq k - 1) \geq 0.95 \end{aligned}$$

k-1 est le plus petit entier c tel que

$$\mathbb{P}_{0.3}(Sn \le c) \ge 0.95.$$

D'après les tables, $k-1=6 \Leftrightarrow k=6$

$$\mathbb{P}_{0.3}(Sn \le 5) = 0.9527$$

$$\mathbb{P}_{0.3}(Sn \le 6) = 0.9894$$

Règle de décision

- Si $S_n \ge 6$ alors on rejette H_0 , on declare que le nouveau traitement est meilleur.
- Si $S_n < 6$, on ne rejette pas H_0 , on décide H_0 .

Dans l'exemple on a observé 7 guérisons sur les 10 patients suivis. Comme $7 \in \mathcal{R}(7 > 6)$, on rejette H_0 . Le nouveau traitement peut être pire, on teste

$$H_0: \theta < \theta_0.$$

$$H_1: \theta > \theta_0, \theta_0 = 0.3.$$

On choisit le seuil k tq $P_{\theta}(S_n \geq k) \leq \alpha, \forall \theta \leq \theta_0 \Leftrightarrow \sup_{\theta \leq \theta_0} P(S_n \geq k) \leq \alpha.$

On montre que $\theta \mapsto P_{\theta}(S_n \ge k)$ est croissante en θ ! (on verra en TD) $\Rightarrow \sup_{\theta \le \theta_0} P(S_n \ge k) = P_{\theta_0}(S_n \ge k)$.

On obtient $P_{\theta_0} \leq 0.05$. On obtient la même zone de rejet que dans le test $H_0: \theta = \theta_0, H_1: \theta > \theta_0$

- Si $S_n \geq 6$, on décide H_1
- Si $S_n < 6$, on décide H_0

Généralisation

 X_1,\ldots,X_n iid. de loi $P_\theta,\theta\in\Theta$. On suppose que $\Theta=\Theta_0\cup\Theta_1$ avec $\Theta_0\cap\Theta_1=\emptyset$. On veut tester

$$H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1.$$

 H_0 = hypothèse fondamentale, H_1 hypothèse alternative (qye l'on veut montrer)

Exemple 2.2 (du traitement).

$$\begin{split} H_0: \theta &= 0.3 \\ \Theta_0 &= \{0.3\} \\ H_0: \theta &\leq 0.3 \\ \Theta_0 &= [0.03] \\ H_1: \theta &> 0.3 \\ \Theta_1 &=]0.3, 1] \\ H_1: \theta &> 0.3 \\ \Theta_1 &=]0.3, 1] \end{split}$$

COnstruire le test au niveau α reveint à construire une région de rejet $\mathcal R$ fonction de l'échantillon

$$\sup_{\theta \in \Theta_0} P_{\theta}[\mathcal{R}] \le \alpha.$$

 $P_{\theta}[\mathcal{R}]$ = risque de rejeter à tort H_0

Règle de décision

- Si $w \in \mathcal{R}$ (\mathcal{R} se réalise), on décide H_1
- Si $w \notin \mathcal{R}$ ($\bar{\mathcal{R}}$ se réalise), on décide H_0

On une utilise une **statistique de test** dont on connaît (souvent) la loi sous H_0 .

Exemple 2.3 (du traitement). $H_0: \theta = 0.3, H_1: \theta > 0.3$

- Statistique de test : $S_n = \sum_{i=1}^n X_i \sim \mathcal{B}(n, \theta)$
- Sous H_0 (vraie), $\theta = 0.3, S_n \sim \mathcal{B}(n, 0.3)$
- Sous H_1 (vraie), $\theta > 0.3, S_n \sim \mathcal{B}(n\theta), \theta > 0.3$

La région de rejet est

$$\mathcal{R} = \{S_{10} \ge 6\}$$

$$= \{(X_1, \dots, X_{10})tq, \sum_{i=1}^{10} X_i \ge 6\}$$

$$= \{6, 7, 8, 9, 10\}$$

$$= [6, 10]$$

Terminologie

 $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1$

- $-\alpha(\theta)=P_{\theta}(\mathcal{R}), \forall \theta \in \Theta_0$ = risque de première espèce
- $-\beta(\theta)=P_{\theta}(\bar{\mathcal{R}}), \theta\in\Theta_1$ = risque de 2ème espèce
- $\begin{array}{l} \boldsymbol{-} \ \alpha_0 = \sup_{\theta \in \Theta_0} P_\theta(\mathcal{R}) \ \text{est la taille du rest (risque maximal de rejeter à tort } H_0 \ \text{)} \\ \boldsymbol{-} \ \gamma(\theta) = P_\theta(\mathcal{R}), \theta \in \Theta_1 = 1 \beta(\theta) \ \text{= Probabilité de conclure } H_1 \ \text{et que } H_1 \ \text{vrais (proba deprendre de la conclure } H_1 \ \text{et que } H_2 \ \text{order} \end{array}$ la bonne décision)

Exemple 2.4 (du traitement). $H_0: \theta \le 0.3, H_1: \theta > 0.3, \mathcal{R} = \{S_{10} \ge 6\}$

- Taille du test : $\alpha^* = \sup_{\theta \le 0.3} P_{\theta}(S_{10} \ge 6) = P_{0.3}(S_{10} \ge 6) = 4.73\% < \alpha = 5\%$ (niveau du test)
- Le risque de 2ème espèce : $\beta(\theta) = P_{\theta}(S_{10} \le 5), \theta > 0.3$ (fonction dépendant de θ)

— La puissance du test : $\gamma(\theta) = P_{\theta}(S_{10} \ge 6), \theta > 0.3$ (proba de décider H_1 alors que H_1 vraie)

Remarque. Un test de niveau α fixé est d'autant meilleur que sa puissance est grande (on ne se trombe pas en décidant H_1)

$$\gamma(0.9) = P_{0.9}(S_{10} \ge 6) = 1 - P_{0.9}(S_{10} \le 5) = 0.99$$
 fonction de répartition d'une $\mathcal{B}(10,0.9)$
$$= \sum_{k=6}^{10} P_{0.9}(S_{10} = k)$$

Le test conduit à detecter H_1 lorsque $\theta=0.9$ dans 99% des cas.

 $\gamma(0.4) = P_{0.4}(S_{10} \ge 6) = 0.166$ avec $S_{10} \sim \mathcal{B}(10, 0.4)$ Le test conduit à detecter H_1 lorsque $\theta = 0.4$ seulement dans 16% des cas. $\beta(0.4) = 1 - \gamma(0.4) = 0.84$

Définition 2.1. — On dit qu'on effectue un **test d'hypothèse simple** contre **une hypothèse simple** lorsque $\Theta_0 = \{\theta_0\}, \Theta_1 = \{\theta_1\}$ avec θ_0, θ_1 connus

- On dit qu'on effectue un **test d'hypothèse multiple** contre **un hypothèse multiple** lorsque $\Theta_0 =]-\infty, \theta_0], \Theta_1 =]\theta_0, +\infty[$
 - $-H_0: \theta \leq \theta_0$ contre $H_1: \theta > \theta_0$ test unilatéral avec région de rejet à droite
 - $-H_0: \theta \geq heta_0$ contre $H_1: \theta < heta_0$ test unilatéral avec région de rejet à gauche
 - $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_0$ test bilatérale

Exemple 2.5. Si on veut savoir si le candidat A aura la majorité absolue à une election, on test $H_0: p \le 0.5, H_1: p > 0.5$. C'est un test d'hypothèse multiple contre une hypothèse multiple.

Quelle est la valeur du niveau pour laquelle la décision du test est modifié

- Si $\alpha=10\%, \mathcal{R}=\{S_{10}\geq 6\}$ comme on observe 7 guérisons on rejette H_0
- Si $\alpha = 5\%$, $\mathcal{R} = \{S_{10} \ge 6\}$
- Si $\alpha=1\%, \mathcal{R}=\{S_{10}\geq 0.6\}$ On observe 7 guerisons, on ne rejette pas H_0

Définition 2.2. On appelle degré de signification d'un test ou p-valeur ou probabilité critique, la plus petite valeur de α pour laquelle on rejette H_0 . On note α^*

- Si $\alpha^* < \alpha$ on rejette H_0
- Si $\alpha^* \geq \alpha$ on ne rejette pas H_0

 α^* mesure la crédibilité de H_0 par rapport aux données

Nouveau cours du 09/11

Remarque. La zone de rejet dépend du niveau α fixé

Exemple 2.6. $H_0: \theta = 0.3$ contre $H_1: \theta > 0.3$.

- Si on fixe $\alpha=10\%, \mathcal{R}=\{S_n\geq k\}$ avec k tq $P_{0.3}(\mathcal{R})=P_{0.3}(S_n\geq k)\leq 10\%$ Si H_0 est vraie, $\theta=0.3$ et $S_n\sim\mathcal{B}(n,0.3), n=10$ $P_{0.3}(S_n\leq k-1)\geq 0.9$
 - D'après la table de $\mathcal{B}(10,0.3)$ on obtient k-1=5 d'où k=6 d'où $\mathcal{R}=\{S_n\geq 6\}$ et $7\in\mathbb{R}$ on rejette H_0
- Si $\alpha=1\%, \mathcal{R}=\{S_n\geq k\}$ on cherche k tq $P_{0.3}(S_n\leq k-1)\geq 0.99$ donc $k-1=7\Rightarrow k=8, \mathcal{R}=\{S_n\geq 8\}$. On observe $s_n=7\in \bar{\mathcal{R}}$ on ne rejette pas H_0

Définition 2.3. On appelle p-valeur (probabilité critique ou degré de signification) le plus petit niveau α^* pour leguel on rejette H_0 au vu des observations

- Si $\alpha^* < \alpha$, on rejette H_0
- Si $\alpha^* > \alpha$, on ne rejette pas H_0

 α^* mesure le degré de crédibilité de H_0

Exemple 2.7. Dans l'exemple α^* est entre 10% et 1%.

$$lpha^* = P_{0.3}(S_n \ge 7)$$

$$= P_{0.3}(S_n \le 6) \text{ avec } S_n \sim \mathcal{B}(10, 0.3)$$

$$= 1 - 0.9894 = 1.1\%$$

Si on accepte un risque de première espèce d'au moins 1.1%

2.1 Exemple de test de niveau asymptotique

On dispose de n=900 individus

$$X_i = \begin{cases} 1 \text{ si la i eme personne votre pour A} \\ 0 \text{ sinon} \end{cases}, X_i \sim B(\theta), \theta = P(X_i = 1).$$

On test $H_0: \theta \leq \frac{1}{2}$ A ne gagne pas. Et $H_1: \theta > \frac{1}{2}$. On prend comme statistique du test $S_{900} = \sum_{i=1}^{900} X_i$ (nombre d'individus votant pour A) ou $F_900 = \frac{S_{900}}{900}$ (fréquence empirique des votants). On rejette H_0 lorsque $S_n \geq k$ (Sn est assez grand) (on ne peut pas prendre 450 car sinon le risque de l'erreur de première espèce est très grand (0.5), il faut prendre une marge de sécurité 450+c=k) Pour trouver k, on fixe $\alpha=5\%$ par exemple et je contrôle

 $\sup_{\theta \leq 1/2} P_{\theta}(S_n \geq k) \leq \alpha = \text{ taille du test avec dedans la proba de rejeter H}.$

L'application $\theta \mapsto P_{\theta}(S_n \ge k)$ est croissante en θ , donc

$$\sup_{\theta \le 1/2} P_{\theta}(S_n \ge k) = P_{1/2}(S_n \ge k) \le \alpha = 5\%$$

$$S_n = \sum_{i=1}^n X_i \sim \mathcal{B}(900, 0.5)$$

D'après le TCL,

$$\frac{S_n - E(S_n)}{\sqrt{Var(S_n)}} \approx \mathcal{N}(0,1)Z = \frac{S_n - \frac{n}{2}}{\sqrt{\frac{n}{4}}} \approx \mathcal{N}(0,1)$$

Donc:

$$\begin{split} P_{1/2}(Z &\geq \frac{k - \frac{n}{2}}{\sqrt{n/4}}) \approx 5\% \\ P_{1/2}(Z &\geq \frac{k - 450}{\sqrt{225}}) \approx 5\% \\ P_{1/2}(Z &< \frac{k - 450}{\sqrt{225}}) \approx 0.95\% = P(Z \leq 1.645) \end{split}$$

D'après les tables de $\mathcal{N}(0,1)$

$$\frac{k - 450}{15} \approx 1.645$$
$$k = 450 + 1.645 * 15 \approx 475$$

CCL : règle de décision :

- Si $S_n \ge 475$, on décide H_1 (A va gagner)
- Si $S_n < 475$, on décide H_0 (A ne va pas gagner)

Comme on a observé, $s_n=S_n(w)=486$ personnes et $486\in\mathbb{R}$, on rejette H_0 (A va gagner). Que vaut la p-valeur du test?

$$\alpha^* = P_{1/2}(S_n \ge 486), S_n \sim \mathcal{B}(900, 1/2).$$

Il manque peut être des morceau ightarrow demander à ID

Nouveau cours du 16/11

En utilisant le TCL

$$\alpha^* = P_{0.5}(S_n \ge 486)$$

$$= P_{0.5}(\frac{S_n - E(S_n)}{\sqrt{Var(S_n)}} \ge \frac{486 - E(S_n)}{\sqrt{Var(S_n)}})$$

Avec $E(S_n) = 900 * 0.5 = 450$ et $Var(S_n) = 900 * 0.5 * 0.5 = 225$

$$lpha^* = P_{0.5}(Z \ge \frac{486 - 450}{\sqrt{225}}) \text{ avec } Z \sim \mathcal{N}(0, 1)$$

$$= P_{0.5}(Z \ge 2.4)$$

$$= 1 - P(Z < 2.4)$$

$$= 1 - 0.9918 = 0.82\% \text{ (très faible)}$$

On rejette H_0 (A va gagner)

Démarche d'un test statistique

- Choix de H_0 et H_1
- Choix d'un risque α
- Choix d'une statistique de test S_T et de sa loi sous H_0
- Détermination de la région critique ou régionn de rejet ${\cal R}$
- Conclusion : observation de la réalisation de S_T sur l'échantillon
 - Si $w \in \mathcal{R}$ alors Rejet de H_0
 - Si $w \notin \mathcal{R}$ alors Non rejet de H_0

3 Exemple : Test de conformité de la moyenne

Test sur la moyenne avec variance **connue**.

Contexte: $x_1,...,x_n$ des réalisation de $X_1,...,X_n$ iid. avec $X_1 \sim \mathcal{N}(m,\sigma^2)$ avec $\sigma^2 connu$. Soit m_0 une valeur fixée connue, on veut tester : $H_0: m=m_0, H_1: m\neq m_0$

On décide H_1 si $|\bar{X}_n - m_0 \ge c|$ Pour trouver c, on fixe le niveau α de telle sorte que

$$P_{H_0}(|\bar{X}_n - m_0| \ge c) \le \alpha.$$

Si H_0 est vraie, $m=m_0$ et $\bar{X_n}\sim \mathcal{N}(m_0,\sigma/n)$ et

$$\frac{X_n - m_0}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0, 1)$$

$$\Leftrightarrow Z = \sqrt{n} \frac{\bar{X}_n - m_0}{\sqrt{\sigma}} \sim \mathcal{N}(0, 1)$$

$$P_{m_0}(\sqrt{n}\frac{\left|\bar{X}_n - m_0\right|}{\sqrt{\sigma}} \ge \frac{\sqrt{n} * c}{\sigma}) \approx \alpha$$

$$P_{m_0}(|Z| \le \frac{\sqrt{n} * c}{\sigma}) \approx 1 - \alpha$$

D'où

$$\frac{\sqrt{n}c}{\sigma}=z_{1-\alpha/2}=\text{ le quantile=valeur dans la table}$$

$$\Leftrightarrow c=\frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}$$

Finalement la région de rejet est

$$\mathcal{R} = \{ \left| \bar{X}_n - m_0 \right| \ge \frac{\sigma}{\sqrt{n} z_{1-\alpha/2}} \}$$
$$= \{ \frac{\sqrt{n}}{\sigma} \left| \bar{X}_n - m_0 \right| \ge z_{1-\alpha/2} \}$$
$$= \{ |Z| \ge z_{1-\alpha/2} \}$$

Exemple 3.1 (Poids de vaches). X_i poids de la ième vache, $X_i \sim N(m, \sigma^2)$ avec $\sigma^2 = 10^2 kg$ (connue), $m = E(X_i)$ =poids moyen d'une vache inconnu,

 $H_0: m = 87.6kg$ le régime n'a pas d'influence sur les poids. $H_1 :\neq 87.6kg$ le régime a une influence sur le poids des vaches On va prendre en comme statistique de test :

$$Z = \sqrt{5} \frac{\bar{X}_5 - 87.6}{\sqrt{10}} \sim \mathcal{N}(0, 1).$$

Si on fixe le niveau $\alpha=5\%$

$$\mathcal{R} = \{|Z| \ge z_{1-\alpha/2=0.975}\} = \{|Z| \ge 1.96\}.$$

On observe

$$\bar{X}_5(w) = \frac{83 + 81 + 84 + 80 + 85}{5} = 82.5.$$

La statistique de test observée est

$$Z(w) = \sqrt{5} \frac{82.5 - 87.6}{\sqrt{10}} = -3.53.$$

et $Z(w) \in \mathcal{R}$, on rejette H_0 : le régime a une influence sur le poids des bêtes Remarque.

$$\begin{split} \mathcal{R} &= \{|Z| \geq 1.96\} \\ &= \{\sqrt{5} \frac{\left|\bar{X}_5 - 87.6\right|}{\sqrt{10}} \geq 1.96\} \\ &= \{\left|\bar{X}_5 - 87.6\right| \geq \frac{\sqrt{10}}{\sqrt{5}} 1.96\} \\ \bar{\mathcal{R}} &= \{\left|\bar{X}_5 - 87.6\right| < \frac{\sqrt{10}}{\sqrt{5}} 1.96\} (\text{acceptation de } H_0) \\ &= \{\bar{X}_5 - \frac{\sqrt{10}}{\sqrt{5}} 1.96 \leq 87.6 \leq \bar{X}_5 - \frac{\sqrt{10}}{\sqrt{5}}\} \end{split}$$

Remarque. Faire ce test bilateral au niveau α revient à se demander si $m_0 \in IC_{1-\alpha}(m)$ où $IC_{1-\alpha}(m) = 1$ $[\bar{X}_n - z_{1-\alpha/2\sqrt{n}}, \bar{X}_n + z_{1-\alpha/2\sqrt{n}}]$

Car on teste : $H_0: m \leq m_0, H_1: m > m_0$. Si H_1 est vrais, $\bar{X_n}$ a tendance a prendre de grandes valeurs que sous H_0 . \to On rejette H_0 lorsque $\bar{X_n} \ge c$.

Pour trouver la constance c, on fixe α tq $\sup_{m\leq m_0} P_m(\bar{X_n}\geq c) \approx \alpha$. L'application $m\mapsto P_m(\bar{X_n}\geq c)$ est croissante en m, donc le sup est atteint lorsque $m=m_0$

$$P_{m_0}(\bar{X}_n \ge c) \approx \alpha$$
$$P_{m_0}(\bar{X}_n < c) \approx 1 - \alpha$$

Si H_0 est vraie ($m=m_0$), $\bar{X_n}\sim \mathcal{N}(m_0,\sigma^2/n), Z=\sqrt{n}\frac{\bar{X_n}-m_0}{\sigma}\sim \mathcal{N}(0,1).$ **Finalement**

$$\begin{split} P_{m_0} (\sqrt{n} \frac{\bar{X}_n - m_0}{\sigma} \leq & \sqrt{n} \frac{c - m_0}{\sigma}) \approx 1 - \alpha \\ P_{m_0} (Z \leq z_{1 - \alpha/2}) \\ \Rightarrow & \sqrt{n} \frac{c - m_0}{\sigma} = z_{1 - \alpha} \Leftrightarrow c = m_0 + \frac{\sigma}{\sqrt{n}} z_{1 - \alpha} \end{split}$$

Car on teste : $H_0 : m \le m_0, H_1 : m > m_0$

$$\mathcal{R} = \{ \bar{X}_n \le m_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \}$$
$$= \{ \sqrt{n} \frac{\bar{X}_n - m_0}{\sigma} \le z_{1-\alpha} \}$$
$$= \{ Z \le z_{1-\alpha} \}$$

Nouveau cours du 23/11

4 Test du rapport de vraissemblance

On dispose de X_1, \ldots, X_n iid. de loi $P_{\theta}, \theta \in \Theta$. On souhaite tester $H_0: \theta = \theta_0, H_1: \theta = \theta_1$.

Exemple 4.1. De la pièce de monnaie : une équilibré une 30% de chance

Soit
$$X_i = \begin{cases} 1 \text{ si le ième lancer donne Pile} \\ 0 \text{ sinon.} \end{cases}, X_i \sim \mathcal{B}(\theta), S_n = \sum_{i=1}^{10} X_i \sim \mathcal{B}(10, \theta)$$

$$P_{0.3}(S_{10} = 4) = 20\%$$

 $P_{0.5}(S_{10} = 4) = 20.5\%$

Il vaut mieux parier sur la pièce équilibrée ($\theta=0.5$).

Dans un test, $H_0: \theta 0.3$ contre $H_1: \theta = 0.5$. On accepte H_1 (la pièce est équilibré) lorsque

$$rv: \frac{P_{0.5}(S_{10}=4)}{P_{0.3}(S_{10}=4)} >> 1.$$

Autrement dit, on va chercher k tq $rv \ge k > 1$ avec k choisit tq $P_{0.3}(\mathcal{R}) \le \alpha$.

Rappel : Si X_1, \ldots, X_n iid. P_θ la vraisemblance est

$$L(x_1,\dots,x_n,\theta) = \begin{cases} \prod_{i=1}^n P_\theta(X_i = x_i) \text{ si les Xi sont discret} \\ \prod_{i=1}^n f(x_i \\ \theta) \text{ si la loi des Xi est continue} \end{cases}$$

Définition 4.1 (Test du rapport de vraisemblance). Dans le test d'hypothèse simple : $H_0: \theta=\theta_0, H_1: \theta=\theta_1$ On appelle statistique du **test du rapport de vraisemblance**

$$V(X_1,\ldots,X_n) = \frac{L(X_1,\ldots,X_n,\theta_1)}{L(X_1,\ldots,X_n,\theta_0)}.$$

Par convention:

$$V(X_1,\ldots,X_n)=+\infty \text{ si } L(X_1,\ldots,X_n,\theta_0)=0$$

$$V(X_1,\ldots,X_n)=0 \text{ si } L(X_1,\ldots,X_n,\theta_0)=L(X_1,\ldots,X_n,\theta_1)=0$$

Si H_1 est vraie ($\theta=\theta_1$), $V(X_1,\ldots,X_n)$ a tendance à être grand que sous H_0 (» 1). Si H_0 est vraie ($\theta=\theta_0$), $V(X_1,\ldots,X_n)$ a tendance à être petit que sous H_1 (« 1). Au niveau α , la zone de rejet

$$\mathcal{R} = \{V(X_1, \dots, X_n) \ge V_\alpha\}, V_\alpha > 1.$$

Reprenons l'exemple de la pièce de monnaie :

Exemple 4.2 (Pièce de monnaie). $H_0: \theta=0.3, H_1: \theta=0.5$. La statistique de RV est

$$V(X_1, \dots, X_{10}) = \frac{\theta_1^{S_{10}} (1 - \theta_1)^{10 - S_{10}}}{\theta_0^{S_{10}} (1 - \theta_0)^{10 - S_{10}}}.$$

Car
$$L(x_1,\ldots,x_10,\theta)=\prod_{i=1}^{10}P_{\theta}(X_i=x_i)=\prod_{i=1}^{10}\theta^{x_i}(1-\theta)^{1-x_i}, x_i\in\{0,1\}$$

$$V(X_1, \dots, X_n) = \left(\frac{\theta_1}{\theta_0}\right)^{S_{10}} \left(\frac{1-\theta_1}{1-\theta_0}\right)^{10} \left(\frac{1-\theta_1}{1-\theta_0}\right)^{S_{10}}$$
$$= \left(\frac{\theta_1(1-\theta_0)}{\theta_0(1-\theta_1)}\right)^{S_{10}} \left(\frac{1-\theta_1}{1-\theta_0}\right)^{10}$$

La zone de rejet est

$$\begin{split} \mathcal{R} &= \{V(X_1, \dots, X_n) \geq V_{\alpha}\} \\ &= \{(\frac{\theta_1(1 - \theta_0)}{\theta_0(1 - \theta_1)})^{S_{10}} \geq C_{\alpha}\} \\ &= \{(\frac{\cancel{0}.5 * 0.7}{0.3 \cancel{0}.5})^{S_{10}} \geq C_{\alpha}\} \\ &= \{S_{10} \log(\frac{0.7}{0.3}) \geq \log(C_{\alpha})\} \\ &= \{S_{10} \geq k_{\alpha}\} \text{ (zone de rejet du test)} \end{split}$$

Pour lpha=5%, on a trouvé $k_lpha=6$ (lecture de la table $\mathcal{B}(10,0.3)$)

Théorème 4.1 (Neyman - Pearson). Pour deux hypothèses simple $H_0: \theta = \theta_0, H_1: \theta = \theta_1$ le test de RV de zone de rejet $\mathcal{R} = \{V(X_1, \dots, X_n) \geq V_\alpha\}$ est plus puissant que n'importe quel test de niveau α

Remarque. La zone de rejet $\{V(X_1,\ldots,X_n)\geq V_\alpha\}$ sera optimal (on obtient un test où le risque β est minimal pour α fixé.)

Exemple 4.3 (Test sur la moyenne). X_1,\ldots,X_n iid. $\mathcal{N}(m,\sigma^2)$, m inconnu, σ^2 connu. $H_0:m=m_0,H_1,m=m_0$ m_1 , m_0 , m_1 connu

La vraisemblance s'écrit

$$L(x_1, \dots, x_n, m) = \prod_{i=1}^n f(x_i, m)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - m)}$$

$$= \frac{1}{(\sqrt{2\pi\sigma^2})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - m)^2}$$

Statistique du RV:

$$\begin{split} V(X_1,\dots,X_n) &= \frac{L(X_1,\dots,X_n,m_1)}{L(X_1,\dots,X_n,m_0)} = \frac{\frac{1}{(\sqrt{2\pi\sigma^2})^n}e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-m_1)^2}}{\frac{1}{(\sqrt{2\pi\sigma^2})^n}e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-m_0)^2}} \\ &= \exp(-\frac{1}{2\sigma^2}(\sum_{i=1}^n(X_i-m_1)^2 - \sum_{i=1}^n(X_i-m_0)^2)) \\ &= \exp(-\frac{1}{2\sigma^2}(\sum_{i=1}^nX_i^2 - 2m_1\sum_{i=1}^nX_i + nm_1^2 - \sum_{i=1}^nX_i^2 + 2m_0\sum_{i=1}^nX_i - nm_0^2)) \\ &= \exp(-\frac{-2nm_1\bar{X}_n + 2m_0n\bar{X}_n + n(m_1^2 - m_0^2)}{2\sigma^2}) \\ &= \exp(\frac{n}{2\sigma^2}(-m_1^2 + m_0^2 + 2(m_1 - m_0)\bar{X}_n)) \\ &= \exp(\frac{n}{2\sigma^2}(2\bar{X}_n(m_1-m_0)) + m_0^2 + m_1^2) \\ \mathcal{R} &= \{V(X_1,\dots,X_n) \geq V_\alpha\} \\ &= \{e^{\frac{n}{2\sigma^2}(-m_1^2 + m_0^2 + 2(m_1 - m_0)\bar{X}_n)} \geq V_\alpha\} \text{ (fonction croissante de)} \bar{X}_n \text{ lorsque } m_1 > m_0 \\ \mathcal{R} &= \{\bar{X}_n \geq C_\alpha\} \text{ si } m_1 < m_0 \text{ on change le sens de l'inégalité} \end{split}$$

Pour trouver la constante C_{α} , on a

$$P_{m_0}(\bar{X}_n > C_\alpha) \approx \alpha.$$

$$\begin{split} & - \text{ Si } H_0 \text{ est vraie } \bar{X_n} \sim \mathcal{N}(m_0, \frac{\sigma^2}{n}) \\ & - \text{ Si } H_1 \text{ est vraie } \bar{X_n} \sim \mathcal{N}(m_1, \frac{\sigma^2}{n}) \end{split}$$

— Si
$$H_1$$
 est vraie $\bar{X_n} \sim \mathcal{N}(m_1, \frac{\sigma^2}{n})$

$$P_{m_0}(\bar{X}_n \ge C_\alpha) = P(\sqrt{n} \frac{\bar{X}_n - m_0}{\sigma} \ge \sqrt{n} \frac{C_\alpha - m_0}{\sigma}) \approx \alpha$$

$$= P(Z \le \sqrt{n} \frac{C_\alpha - m_0}{\sigma}) \approx 1 - \alpha (= \phi(z_{1-\alpha}))$$

$$\sqrt{n} \frac{C_\alpha - m_0}{\sigma} = z_{1-\alpha}$$

$$C_\alpha = m_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$$

Finalement

$$\mathcal{R} = \{\bar{X}_n \ge m_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}\} = \{\sqrt{n} \frac{\bar{X}_n - m_0}{\sigma} \ge Z_{1-\alpha}\}.$$

Exemple 4.4 (des pièces). X = variable aléatoire, $X \sim \mathcal{N}(m, 16), m = E(X)$ inconnu $H_0 = m = 20, H_1$:

Pour un niveau $\alpha=5\%$, la zone de rejet optimal du test.

$$\mathcal{R} = \{\bar{X}_n \ge 20 + z_{0.95} \frac{4}{\sqrt{25}}\}$$
$$= \{\bar{X}_n \ge 20 + 1.645 \frac{4}{5}\}$$
$$= \{\bar{X}_n \ge 21.316\}$$

Suite qu'on fait en TD du 26/11

On va utiliser le RV:

$$V(X_1, \dots, X_n) = \frac{L(X_1, \dots, X_n, 22)}{L(X_1, \dots, X_n, 20)}$$
$$= \exp(\frac{n}{2\sigma^2}(20^2 - 22^2 + (22 - 20)\bar{X_n}))$$

La zone de rejet du RV est

$$\mathcal{R} = \{V(X_1, \dots, X_n) \ge V_{\alpha}\}$$

$$= \{\exp(\frac{n}{2\sigma^2}(20^2 - 22^2 + (22 - 20)\bar{X}_n)) \ge V_{\alpha}\}$$

$$= \{\bar{X}_n \ge C_{\alpha}\}$$

Si on fixe le niveau $\alpha=5\%$ on va chercher C_{α} tel que $P_{20}(\bar{X_n}\geq C_{\alpha})\approx 5\%$

- Si H_0 est vraie (m=20), $\bar{X_n}\sim\mathcal{N}(20,\frac{16}{25})$ Si H_1 est vraie (m=22), $\bar{X_n}\sim\mathcal{N}(22,\frac{16}{25})$

$$\begin{split} P_{20}(\bar{X_n} \geq C_\alpha) \approx 0.05 \\ 1 - P_{20}(\bar{X_n} < C_\alpha) \approx 0.05 \\ P_{20}(\bar{X_n} < C_\alpha) \approx 0.95 \end{split}$$

Or sous H_0 , $\bar{X_n} \sim \mathcal{N}(20, \frac{16}{25}), n = 25$

$$\sqrt{25} \frac{\bar{X}_n - 20}{\sqrt{16}} \sim \mathcal{N}(0, 1)$$

$$P(\sqrt{25} \frac{\bar{X}_n - 20}{\sqrt{16}} < \sqrt{25} \frac{C_\alpha - 20}{\sqrt{16}})$$

$$5 * \frac{C_\alpha - 20}{4} = 1.645$$

$$C_\alpha = 20 + \frac{4}{5}1.645 = 21.31$$

La zone de rejet du test est

$$\mathcal{R} = \{\bar{X}_{25} \ge 21.31\}.$$

Règle de decision:

- $-\hspace{0.1cm}$ Si $\bar{X_{25}} \geq 21.31$, on décide H_1 $-\hspace{0.1cm}$ Si $\bar{X_{25}} < 21.31$, on décide H_0

Que vaut la puissance du test?

$$\gamma = P_{22}(\bar{X}_{25} \ge 21.31).$$

Si H_1 vraie (m=22), $\sqrt{25}\frac{X_{25}-22}{\sqrt{16}}\sim \mathcal{N}(0,1)$

$$\gamma = P(5\frac{X_{25} - 22}{4} \ge 5\frac{(21.31 - 22)}{4})$$
$$= 1 - \phi(-0.86) = \phi(0.86) = 80.6\%$$

Le risque de deuxième espèce β est

$$\beta = 1 - \gamma = 19.5\%.$$

Voir la Figure 4.4

Nouveau cours du 30/11

4.1 Test d'une hypothèse simple contre une hypothèse multiple

$$H_0: \theta = \theta_0 ext{ contre } H_1: \theta > \theta_0 \ \Leftrightarrow H_0: \theta = \theta_0 ext{ contre } H_1: \theta = \theta_1 ext{ ou } \theta_1 > \theta_0 \$$

Lorsque la zone de rejet du test ne depend pas de la valeur de θ_1 mais uniquement du sens de l'inégalité, le test sera uniformément plus puissant (UPP).

Exemple 4.5 (Application : Test sur la moyenne). X_1,\ldots,X_n iid. avec $X_1\sim\mathcal{N}(m,\sigma^2)$. σ connue $H_0:m=m_0$ contre $H_1:m>m_0$ avec m_0 fixé $H_0:m=m_0$ contre $H_1:m=m_1$ avec $m_1>m_0$ La zone de rejet du test (pour un niveau α)

$$\mathcal{R} = \{\bar{X}_n \ge m_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\}.$$

La zone de rejet ne dépend pas de la valeur de m_1 , cet test est UPP.

Exemple 4.6 (14 du diapo : fromage). On veut tester : $H_0: m=30\%$ contre $H_1: m>30\%$ On rejette H_0 lorsque $\bar{X}_n \geq c, n=16$. Pour trouver la constante c, on fixe le niveau $\alpha=2\%$ tq

$$P_{0.3}(\mathcal{R}) \approx 0.0.2$$
$$P_{0.3}(\bar{X}_n > c) \approx 0.0.2$$

Si
$$H_0$$
 vraie ($m=0.3$) et $\bar{X_n}=\frac{1}{n}\sum_{i=1}^n X_i \sim \mathcal{N}(0.3,\frac{0.16^2}{16}) \Leftrightarrow \sqrt{16}\frac{\bar{X_n}-0.3}{0.16} \sim \mathcal{N}(0,1)$
$$P_{0.3}(\sqrt{16}\frac{\bar{X_n}-0.3}{0.16} \geq \sqrt{16}\frac{c-0.3}{0.16}) \approx 0.02$$

$$P(Z<\frac{4(c-0.3)}{0.16}) \approx 0.98 = P(Z\leq 2.055)$$

$$c=0.3+\frac{0.16}{\sqrt{16}}*2.055=0.3822$$

$$=m_0+\frac{\sigma}{\sqrt{n}}*z_{1-\alpha} \text{ (on retrouve la formule exemple 4.5)}$$

$$\mathcal{R}=\{\bar{X_n}\geq 38.22\%\} \text{ test UPP}$$

Que vaut la fonction puissance?

$$\gamma :]0.3, +\infty[\to [0, 1]$$

 $m \mapsto P_m(\bar{X}_n \ge 0.3822)$

Si H_1 vraie (m>30%), $\bar{X_n}\sim \mathcal{N}(m,\frac{\sigma^2}{n})\Leftrightarrow \sqrt{n} \frac{\bar{X_n}-m}{\sigma}\sim \mathcal{N}(0,1)$

$$\begin{split} \gamma(m) &= P_m (\!\sqrt{n} \frac{\bar{X_n} - m}{\sigma} \ge \! \sqrt{n} \frac{0.3822 - m}{\sigma}) \\ &= 1 - P_m (Z < \!\! \sqrt{16} \frac{0.3822 - m}{0.16}) \\ &= 1 - \phi (\frac{4}{0.16} (0.3822 - m) \text{ avec } \phi \text{ fdr de } Z \sim \mathcal{N}(0, 1)) \end{split}$$

Par exemple

$$\gamma(0.4) = 1 - \phi(\frac{4}{0.16}(0.3822 - 0.4)) = 1 - \phi(-0.445)$$
$$\phi(0.445) = 67\%$$

Note. La zone de rejet ne vas pas dépendre de m_1 et la taille du test augmente en fonction de m_1 . Plus on s'éloigne de m_0 , plus la puissance est grande. Il est plus simple de distinguer, différencier deux valeurs éloignées.

4.2 Test d'une hypothèse multiple contre une hypothèse multiple

Généralisation:

 $H_0:\theta\in\Theta_0 \qquad \qquad {\rm contre}\ H_1:\theta\in\Theta_1$ Par exemple $H_0:m\leq 30\%$ $\qquad {\rm contre}\ H_1:m>30\%$

Définition 4.2. La statistique de test du RV est

$$V(X_1, \dots, X_n) = \frac{\sup_{\theta \in \Theta_1} L(X_1, \dots, X_n, \theta)}{\sup_{\theta \in \Theta_0} L(X_1, \dots, X_n, \theta)}$$

La zone de rejet du test de RV est

$$\mathcal{R} = \{V(X_1, \dots, X_n) \geq V_{\alpha}\}$$
 avec $V_{\alpha} > 1$ tq $\sup_{\theta \in \Theta_0} P_{\theta}(\mathcal{R}) \leq \alpha$.

4.2.1 Test sur le paramètre d'une Bernouilli

$$H_0: p = 0.48, H_1: p = 0.52 \Leftrightarrow H_0: p \le 0.48, H_1: p > 0.48 \to \mathcal{R} = \{S_n \ge k\}$$

 $H_0: p = 0.52, H_1: p = 0.48 \Leftrightarrow H_0: p \ge 0.52, H_1: p < 0.52 \to \mathcal{R} = \{S_n \le k\}$

On obtient la même zone de rejet dans tous les cas

Résumé: diapo tableau qui résume test avec leurs zone de rejet

4.2.2 Test sur la moyenne avec écart type connu

Contexte : X_1,\ldots,X_n iid. avec $X_1\sim \mathcal{N}(m,\sigma^2),\sigma$ connu. On veut tester $H_0:m=m_0$ contre $H_1:m=m_1$ avec $m_1< m_0$ On decide H_1 lorsque $X_n< c$. Pour trouver c, on fixe α tq

$$P_{m_0}(\bar{X}_n \leq c) \approx \alpha$$

$$P_{m_0}(\sqrt{n}\frac{\bar{X}_n - m_0}{\sigma} \leq \sqrt{n}\frac{c - m_0}{\sigma}) \approx \alpha = P(Z \leq z_{1-\alpha})$$

$$c = m_0 - z_{1-\alpha}\frac{\sigma}{\sqrt{n}}$$

$$\mathcal{R} = \{\bar{X}_n \leq m_0 - z_{1-\alpha}\frac{\sigma}{\sqrt{n}}\}$$

La zone de rejet de ce test est la même que pour le test $H_0: m \geq m_0, H_1: m < m_0$. De même lorsque l'on teste $H_0: m = m_0$ contre $H_1: m = m_1, m_1 > m_0$.

La zone de rejet du test est

$$\mathcal{R} = \{ \bar{X}_n \ge m_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \}.$$

Même zone de rejet que le test de niveau α : $H_0: m \leq m_0$ contre $H_1: m \neq m_0$

Cas du test bilatérale : $H_0: m=m_0$ contre $H_1: m\neq m_0$. On rejette H_0 lorsque $\left|\bar{X_n}-m_0\right|\geq c$. On fixe α tq $P_{m_0}(\left|\bar{X_n}-m_0\right|\geq c)\approx \alpha$.

Si H_0 est vraie ($m=m_0$), $\bar{X_n}\sim \mathcal{N}(m,\frac{\sigma^2}{n})\Leftrightarrow Z=\sqrt{n}\frac{\bar{X_n}-m_0}{\sigma}\sim \mathcal{N}(0,1)$

$$P(\frac{\sqrt{n}(\bar{X}_n - m_0)|}{\sigma} \ge \frac{\sqrt{n}c}{\sigma}) \approx \alpha.$$

$$P(|Z| < \frac{\sqrt{nc}}{\sigma}) \approx 1 - \alpha.$$

Donc $c = \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$. La zone de rejet est

$$\mathcal{R} = \{ \left| \bar{X}_n - m_0 \right| \ge \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \}$$
$$= \{ \bar{X}_n \le m_0 - z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \} \cup \{ \bar{X}_n \ge m_0 + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \}$$

4.2.3 Loi du Khi-Deux

 X_1,\ldots,X_n iid. avec $X_1\sim\mathcal{N}(0,1)$. Alors la v.a. $Z_n=X_1^2+X_2^2+\cdots+X_n^2$ suit la loi du Khi-Deux à n degré de liberté. On note $Z_n\sim\mathcal{X}^2(n)$.

Il existe des tables de la loi du Khi-Deux. Si $X \sim \mathcal{X}^2(d)$, les table donnent la valeur $\mathcal{X}^2_{d,1-\alpha}$ tq

$$P(X \le \mathcal{X}_{d,1-\alpha}^2) = 1 - \alpha.$$

 $\mathcal{X}^2_{d,1-lpha}$ est le quantile d'ordre 1-lpha de $\mathcal{X}^2(d)$

Exemple 4.7. Si $X \sim \mathcal{X}^2(10)$, alors

$$P(X \le 18.307) = 0.95$$
$$\mathcal{X}_{10.0.95}^2 = 19.307$$

Par lecture dans la table de la loi du Khi-deux

4.2.4 Loi de Student

Définition 4.3 (Loi de Student). Si Z et U sont deux v.a. indépendantes telle que $Z \sim \mathcal{N}(0,1)$ et $U \sim \mathcal{X}^2(n)$ alors

$$T = \frac{Z}{\sqrt{U/n}} \sim \mathcal{T}(n)$$
 loi de Student à n degrés de liberté.

Proposition 4.2. Si $T \sim \mathcal{T}(n)$, si $n \geq 2$

- T admet un moment d'ordre un E(T) = 0
- La loi est symétrique en 0
- Lorsque n augmente, T se comporte comme une $\mathcal{N}(0,1) \Leftrightarrow T \to^{\mathcal{L}} \mathcal{N}(0,1)$

$$P(|T| \le t_{d,1-\frac{q}{2}}) = 1 - q$$

Exemple 4.8. Si $T \sim \mathcal{T}(8)$.

$$P(T \le 186_{=t_{a,0.95}}) = 0.95.$$

Quantile d'ordre 0.95 de la loi de Student à 8 ddl.

$$P(|T| \le 2.306) = 0.95.$$

Quantile d'ordre 0.975 de la loi de Student à 8 ddl.

$$P(T \le 2.306_{=t_{8,0.975}}) = 0.975.$$

Théorème 4.3 (de Student). On considère X_1,\ldots,X_n iid. avec $X_1\sim\mathcal{N}(m,\sigma^2)$. On pose $\bar{X_n}=\frac{1}{n}\sum_{i=1}^n X_i$ et $S_n^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X_n})^2$

1. $\bar{X_n}$ et S_n^2 sont indépendantes

2.
$$\bar{X}_n \sim \mathcal{N}(m, \frac{\sigma^2}{n})$$

3.
$$(n-1)\frac{S_n^2}{\sigma^2} \sim \mathcal{X}^2(n-1)$$

Corollaire. Soient X_1, \ldots, X_n iid. avec $X_1 \sim \mathcal{N}(m, \sigma^2)$ alors

$$T = \sqrt{n} \frac{\bar{X}_n - m}{S_n} \sim \mathcal{T}(n-1).$$

La va. $T=\sqrt{n}rac{ar{X_n}-m}{S_n}$ suit une loi de Student à (n-1) ddl.

Preuve : En effet :
$$- \text{ D'après 2)} \sqrt{n} \frac{\bar{X_n} - m}{\sigma} \sim \mathcal{N}(0,1)$$

— D'après 3)
$$(n-1)\frac{S_n^2}{\sigma^2} \sim \mathcal{X}^{\in}(n-1)$$

— D'après 3) $(n-1)\frac{S_n^2}{\sigma^2}\sim \mathcal{X}^{\in}(n-1)$ Comme les deux variables sont indépendantes (d'après 1), on a

$$\frac{\sqrt{n}\frac{(\bar{X}_n - m)}{\sigma}}{\sqrt{\frac{(\dot{n} - 1)S_n^2}{\sigma^2(\dot{n} - 1)}}} \sim \mathcal{T}(n - 1).$$

$$\sqrt{n}\frac{\bar{X}_n - m}{S_n} \sim \mathcal{T}(n-1).$$

Test sur la variance lorsque la moyenne est connue

On a un échantillon **gaussien** X_1, \dots, X_n iid. avec $X_1 \sim \mathcal{N}(m, \sigma^2)$ avec m connue. Soient σ_0 et σ_1 fixé :

$$H_0:\sigma^2=\sigma_0^2$$
 contre $H_1:\sigma^2=\sigma_1^2$ avec $\sigma_1<\sigma_0$.

Rappel: La vraisemblance de l'échantillon

$$L(x_1, \dots, x_n, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - m)^2}.$$

L'EMV de σ^2 est

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - m)^2.$$

Le rapport de vraisemblance

$$V(X_1, ..., X_n) = \frac{L(X_1, ..., X_n, \sigma_1^2)}{L(X_1, ..., X_n, \sigma_0^2)}$$

$$= \frac{\frac{1}{(\sqrt{2\pi}\sigma_1^2)^n} e^{-\frac{1}{2\sigma_1^2} \sum_{i=1}^n (x_i - m)^2}}{\frac{1}{(\sqrt{2\pi}\sigma_0^2)^n} e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - m)^2}}$$

$$= (\frac{\sigma_0}{\sigma_1})^n e^{\frac{1}{(\sigma_0^2} - \frac{1}{\sigma_1^2}) \sum_{i=1}^n (X_i - m)^2}}$$

D'après le Théorème de N.P., la zone de rejet au niveau α est de la forme

4 27

Note. On change le signe car $\frac{1}{\sigma_0^2}-\frac{1}{\sigma_1^2}$ est négatif, donc la fonction est décroissante en nV_n^2

$$\mathcal{R} = \{ \frac{1}{n} \sum_{i=1}^{n} (X_i - m)^2 \le u_{\alpha} \} = \{ V_n^2 \le u_{\alpha} \}.$$

La statistique de test est $V_n^2=rac{1}{n}\sum_{i=1}^n(X_i-m)^2$. Pour trouver u_{lpha} , on fixe le niveau lpha tq

$$P_{\sigma_0^2}(\mathcal{R}) \le \alpha$$

$$P_{\sigma_0^2}(V_n^2 \le u_\alpha) \le \alpha$$

Si H_0 est vrais : $\frac{nV_n^2}{\sigma_0^2} = \sum_{i=1}^n (\frac{X_i - m}{\sigma_0})^2 \sim \mathcal{X}^2(n)$ par définition de la loi du Khi-Deux. Si H_1 est vrais : $\frac{nV_n^2}{\sigma_1^2} = \sum_{i=1}^n (\frac{X_i - m}{\sigma_1})^2 \sim \mathcal{X}^2(n)$ par définition de la loi du Khi-Deux

$$P_{\sigma_0^2}(rac{nV_n^2}{\sigma_0^2} \leq rac{nu_lpha}{\sigma_0^2}) pprox lpha$$
 (= fdr de la loi Khi-Deux)

Donc pour trouver u_{α}

$$rac{nu_lpha}{\sigma_0^2}=\mathcal{X}_{n,lpha}^2$$
 valeur dans la table $\Leftrightarrow u_lpha=rac{\sigma_0^2}{n}\mathcal{X}_{n,lpha}^2$

La zone de rejet est

$$\mathcal{R} = \{V_n^2 \le \frac{\sigma_0^2}{n} \mathcal{X}_{n,\alpha}\}$$

$$= \{\frac{V_n^2}{\sigma_0^2} \bigotimes \mathcal{X}_{n,\alpha}^2\}$$

Note. Ca fonctionne aussi avec

$$H_0: \sigma^2 = \sigma_0^2 \Leftrightarrow H_0: \sigma^2 \ge \sigma_0^2$$
 $H_1: \sigma^2 = \sigma_1^2 \Leftrightarrow H_1: \sigma^2 \le \sigma_1^2$

car le sup est atteint en σ_0 ou σ_1

Exemple 5.1. X= contenance d'un flacon, $X\sim\mathcal{N}(100,\sigma^2)$. On veut tester $H_0:\sigma^2=1$ contre $H_1:\sigma^2=1$ Au niveau lpha=5%, la zone de rejet est

$$\mathcal{R} = \{ V_n^2 \le \frac{\sigma_0^2}{n} \mathcal{X}_{n,0.05}^2 \}.$$

On a observé $n = 10, \sum_{i=1}^{n} (X_i - 100)^2 = 3$

$$V_n^2(w) = \frac{1}{10} \sum_{i=1}^n (X_i(w) - 100)^2 = \frac{3}{10} = 0.3.$$

La zone de rejet est

$$\mathcal{R} = \{V_n^2 \le \frac{3.94}{10}\}$$
$$= \{V_n^2 \le 0.394\}$$

 $V_n^2(w)=0.3\in\mathcal{R}$, on decide H_1

Résumé : dans le diapo beau tableau

H_0	H_1	Région de rejet : ${\cal R}$	
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\{\mathcal{K} \geq \mathcal{X}_{n,1-lpha}^2\}$	
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\{\mathcal{K} \leq \mathcal{X}_{n,\alpha}^2\}$	
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\{\mathcal{K} \leq \mathcal{X}^2_{n,1-lpha/2} ext{ ou } \mathcal{K} \geq \mathcal{X}^2_{n,lpha/2} \}$	/
	•	لہ	

6 Test sur la moyenne avec variance inconnu

Contexte : X_1, \ldots, X_n iid. avec $X_1 \sim \mathcal{N}(m, \sigma^2)$ avec m et σ^2 inconnus

Pour une valeur m_0 fixée, on veut tester : $H_0: m=m_0$ contre $H_1: m>m_0$. Sous $H_1, \bar{X_n}$ a tendance à prendre de plus grandes valeur que sous H_0 . On décide H_1 lorsque $\bar{X_n} \geq c$. Pour trouver c, on fixe α avec

$$P_{m_0}(\bar{X}_n \ge c) \le \alpha.$$

Si H_0 est vraie ($m=m_0$) et

$$\begin{split} &\bar{X_n} \sim \mathcal{N}(m, \frac{\sigma^2}{n}) \\ \Leftrightarrow & \sqrt{n} \frac{\bar{X_n} - m}{\sigma} \sim \mathcal{N}(0, 1) \\ \Leftrightarrow & \sqrt{n} \frac{\bar{X_n} - m}{S_n} \sim t(n - 1) \text{ avec } S_n = \sqrt{\frac{1}{n - 1} \sum_{i=1}^n (X_i - \bar{X_n})^2} \end{split}$$

$$\begin{split} P_{m_0} (\!\sqrt{n} \frac{\bar{X}_n - m_0}{S_n} \geq & \sqrt{n} \frac{c - m_0}{S_n}) \approx \alpha \\ \Leftrightarrow & P_{m_0} (T < & \sqrt{n} \frac{c - m_0}{S_n}) \approx 1 - \alpha \end{split}$$

D'où $\sqrt{n}\frac{c-m_0}{S_n}=t_{n-1,1-\alpha}\Leftrightarrow c=m_0+\frac{S_n}{\sqrt{n}t_{n-1,1-\alpha}}$ La zone de rejet est

$$\mathcal{R} = \{ \bar{X}_n \ge m_0 + \frac{S_n}{\sqrt{n}t_{n-1,1-\alpha}} \}$$
$$= \{ \sqrt{n} \frac{\bar{X}_n - m_0}{S_n} \ge t_{n-1,1-\alpha} \}$$

La zone de rejet est la même pour

$$H_0: m = m_0 \Leftrightarrow H_0: m \leq m_0$$

 $H_1: m > m_0 \Leftrightarrow H_1: m > m_0$

Cas où on test : $H_0 \geq m_0$ contre $H_1: m < m_0$ Pour un niveau α fixé, la zone de rejet est

$$\mathcal{R} = \{ \bar{X}_n \le m_0 - \frac{S_n}{\sqrt{n}} t_{n-1,1-\alpha} \}$$
$$= \{ \sqrt{n} \frac{\bar{X}_n - m_0}{S_n} \le -t_{n-1,1-\alpha} \}$$

Cas où on test : $H_0: m=m_0$ contre $H_1: m \neq m_0$ Pour un niveau α fixé, la zone de rejet

$$\mathcal{R} = \{ \left| \bar{X}_n - m_0 \right| \ge t_{n-1, 1-\alpha/2} \frac{S_n}{\sqrt{n}} \}$$
$$= \{ \sqrt{n} \frac{\left| \bar{X}_n - m_0 \right|}{S_n} \ge t_{n-1, 1-\alpha/2} \}$$

Résumé:

H_0	H_1	Région de rejet : ${\cal R}$
$m \leq m_0$	$m > m_0$	$\left\{ \mathcal{T} \ge t_{n-1,1-\alpha} \right\}$
$m \ge m_0$	$m < m_0$	$\{\mathcal{T} \le t_{n-1,1-\alpha}\}$
$m=m_0$	$m \neq m_0$	$ \{ \mathcal{T} \le t_{n-1,1-\alpha/2}\} $

Exemple 6.1 (exemple 17 du diapo). $X = \text{temps de sommeil}, X \sim \mathcal{N}(m, \sigma^2) m, \sigma^2 \text{ inconnus}.$

On veut tester : $H_0: m \geq 7$ contre $H_1: m < 7$. Pour $\alpha = 5\%$, la zone de rejet est

$$\mathcal{R} = \{ \bar{X}_n \le 7 - t_{n-1,0.95} \frac{S_n}{\sqrt{n}} \}$$

On a observé : $n=30, \bar{X}_n(w)=6.36, S_n(w)=\sqrt{1.85}$. La valeur lue dans la table de T(29) vaut $t_{29,0.95}=$ 1.699

$$\mathcal{R} = \{\bar{X}_n \le 6.58\}$$

Comme $\bar{X}_n(w) = 6.36 \in \mathcal{R}$ on décide H_1 .

Test sur la variance lorsque m est inconnu

Contexte : On dispose de X_1,\dots,X_n iid. avec $X_1\sim\mathcal{N}(m,\sigma^2)$ avec m et σ^2 inconnu. On veut tester $H_0:\sigma^2=\sigma_0^2$ contre $H_1:\sigma^2<\sigma_0^2$. **Rappel :** l'EMV de σ^2 est

$$V_n^2=rac{1}{n}\sum_{i=1}^n(X_i-ar{X_n})^2$$

$$=rac{n-1}{n}S_n^2 ext{ avec } S_n^2 ext{ variance empirique corrigée}$$

Sous $H_0, \sigma^2 = \sigma_0^2, (n-1)\frac{S_n^2}{\sigma_0^2} \sim \mathcal{X}^2(n-1)$ Sous $H_1, \sigma^2 < \sigma_0^2, (n-1)\frac{S_n^2}{\sigma_0^2} = (n-1)\frac{S_n^2}{\sigma^2}(\frac{\sigma^2}{\sigma_0^2})_{<1}$ prend des valeur plus petites que sous H_0 La zone de rejet est de la forme

$$\mathcal{R} = \{V_n^2 \le \frac{\sigma_0^2}{n} \mathcal{X}_{n-1,\alpha}^2\}$$
$$= \{\frac{nV_n^2}{\sigma_0^2} \le \mathcal{X}_{n-1,\alpha}^2\}$$