### Київський національний університет імені Тараса Шевченка Фізичний факультет Кафедра ядерної фізики

На правах рукопису

# Залежність ширин гігантського дипольного резонансу від спіну та температури ядра

Напрям: 0701 – фізика Спеціальність: 6.070100 –

Фізика ядра і елементарних частинок

Спеціалізація:

Експериментальна ядерна фізика

Кваліфікаційна випускна робота магістра Бурмістрова Леоніда Володимировича

Науковий керівник: Доктор фіз.-мат. наук, проф. Плюйко Володимир Андрійович

Робота заслухана на засіданні кафедри ядерної фізики та рекомендована до захисту в ДЕК, протокол № від червня 2007.

Завідувач кафедри ядерної фізики Професор, доктор фіз.-мат. наук

Каденко I. М.

### Київ 2007

### Зміст

| 1.  | Вступ. Гігантські резонанси та їхня інтерпретація                 | 3        |
|-----|-------------------------------------------------------------------|----------|
| 2.  | Ширини ГДР у системах, що утворилися при взаємодії                | важких   |
|     | йонів                                                             | 10       |
| 3.  | Зміна форми атомних ядер, що                                      | швидко   |
|     | обертаються11                                                     |          |
|     | 3.1 Залежність повної енергії системи від деформації ядра         | 11       |
|     | 3.2 Параметризація залежності параметру деформації від кутового в | моменту  |
|     | ядра                                                              | 13       |
| 4.  | Нова параметризація ширини ГДР у ядрах,                           | щс       |
|     | обертаються16                                                     |          |
| 5.  | Температурна залежність ширини ГДР в сферичних ядрах              | 18       |
| 6.  | Систематика ширини і енергії ГДР у холодних сферичних             | атомних  |
|     | ядрах                                                             | 19       |
| 7.  | Уточнення значень ширини ГДР з врахуванням асиметрії ди           | польних  |
|     | радіаційних функцій                                               | 22       |
| 8.  | Параметризації ширини і енергії ГДР у холодних сферичних          | атомних  |
|     | ядрах                                                             | 23       |
| 9.  | Результати обчислень ширини ГДР у швидкообертаючих атомни         | іх ядрах |
|     | та їх порівняння з експериментальними даними                      | 28       |
| 10. | Висновки                                                          | 3        |
|     | 4                                                                 |          |
|     | Література                                                        | 35       |
|     | Додаток1                                                          | 36       |
|     | Додаток2                                                          | 43       |
|     | Додаток3                                                          | 49       |

### 1. Вступ

### Гігантські резонанси та їхня інтерпретація

Крім вібраційних станів з низькими енергіями, зумовлених коливаннями нуклонів поверхні ядра, існують також й інші типи колективних збуджень, які спричинені різними зміщеннями значних груп нейтронів відносно протонів. У таких коливаннях може брати участь велика кількість нуклонів, і тому їхні коефіцієнт жорсткості та енергія будуть значно більшими ніж при поверхневих вібраціях, у яких беруть участь лише нуклони, що розташовані біля поверхні Високоенергетичні колективні зазвичай ядра. стани називають гігантськими резонансами, оскільки вони приводять до кривої резонансного виду для ймовірності процесу поглинання гамма-квантів ядрами. Максимум резонансної кривої фотопоглинання сферичним ядром відповідає енергії  $E_r$ гігантського резонансу, а її ширина обумовлена зв'язком гігантського резонансу з іншими станами ядра і є шириною  $\Gamma_r$  розпаду, що визначає ймовірність  $w_r = \Gamma_r / h$  його розпаду.

Уперше явище гігантського резонансу було відкрито при дослідженні поглинання електричних дипольних гамма-квантів і тому відповідний збуджений стан ядра отримав назву гігантського дипольного резонансу (ГДР). Енергії гігантських дипольних резонансів лежать в інтервалі від 14 МеВ для важких ядер, до \$4 20 МеВ для легких, а ширини — відповідно в межах від \$4 до \$7 МеВ.

Електричний дипольний момент залежить від зміщень координат усіх протонів відносно нейтронів, тому гігантський дипольний резонанс можна

інтерпретувати як колективний стан, що пов'язаний з одночасними коливаннями всіх протонів відносно всіх нейтронів.

Першу колективну модель, яка якісно описала явище резонансного поглинання електричного дипольного випромінювання, запропонував А.Б. Мігдал (1944 р.). У цій моделі ядро розглядалося як сукупність взаємно проникливих стисливих протонної і нейтронної рідин. Зовнішнє електричне поле викликає коливання протонної рідини відносно нейтронної і зміну їх густин. Ядро, таким чином, веде себе як осцилятор, вимушені коливання якого збуджуються зовнішнім електричним полем. Резонанс в ймовірності поглинання гамма-квантів виникає тоді коли частота  $\omega$  зовнішнього електричного поля збігається з власною частотою  $\omega_r = E_r / h$  осцилятора.

Мігдал уперше розглянув вимушені коливання нейтронів відносно протонів. Енергії власних коливань пізніше розглянули Гольдхабер і Теллер (1948 р.), проаналізувавши два можливих варіанти колективних рухів протонів відносно нейтронів, які можуть приводити до формування гігантського дипольного резонансу з енергіями, що зменшуються зі зростанням масового числа А (див. Рис.1.1).

1.Протони і нейтрони розглядаються як дві рідини. Вважається, що нуклони на поверхні ядра займають фіксоване положення. Коливання протонів і нейтронів відбуваються тільки всередині ядра і означають зміну густин протонної і нейтронної рідин. У цьому випадку сила пружності коливань на одиницю маси буде пропорційною градієнтам змін густин рідин нуклонів. Для такого зміщення всередині ядра максимальна зміна густини є обернено пропорційною радіусу ядра  $R_0$ , а тому градієнт і сила пружності будуть пропорційними  $1/R_0$ . Таким чином, частота, що при гармонічних коливаннях має змінюватися як квадратний корінь з сили пружності, буде пропорційною  $1/R_0$ , тобто буде обернено пропорційною кубічному кореню з маси ядра  $\omega_r = E_r/h \sim A^{-1/3}$ . У подальшому ця гідродинамічна модель ядра була розвинута Штейнведелем і Йенсеном (1950 р.) і отримала назву моделі Штейнведеля -Йенсена.

2.У другій моделі, яка пізніше отримала назву моделі Гольдхабера -Теллера, вважається, що колективні відносні коливання протонів і нейтронів у ядрі можна розглядати як коливання двох нестисливих і взаємопроникливих сфер. Біля поверхні ядра протонна і нейтронна сфери зміщуються одна відносно другої на деяку відстань x < a, де а - радіус дії ядерних сил і тому сили пружності будуть силами, що обумовлені взаємодією зміщених частин протонної і нейтронної сфер з нуклонами внутрішньої частини ядра.

Резонансна частота  $\omega_r$  осцилятора, визначається за формулою

$$\omega_r = \sqrt{k/M} \,, \tag{1.1}$$

де k — коефіцієнт пружності, M — маса осцилятора. При малих зміщеннях x кількість (оголених) нуклонів, що не перетинаються, а отже відповідно і коефіцієнти пружності є пропорційними поверхні ядра, тобто радіусу ядра у квадраті  $R_0^2$ . Маса ядра пропорційна  $R_0^3$ , тому маємо

$$E_r = h\omega_r = h\sqrt{\frac{k}{M}} = const\sqrt{\frac{R_0^2}{R_0^3}} = const\sqrt[4]{\frac{1}{6}}.$$
 (1.2)

Дотримуючись розгляду Гольдхабера і Теллера, знаходимо значення константи в цьому виразі з умови рівності при x=a потенціальної енергії  $U_G(x)$  зміщення нуклонів з положення рівноваги і мінімальної енергії  $U_D(x)$  необхідної для роз'єднання нуклонів, які зміщуються при коливаннях. Якщо зміщення протонної рідини відносно нейтронної незначне і менше радіуса дії ядерних сил (x < a), то на кожний нуклон діє пружна сила повернення, що пропорційна x. Тому потенціальна енергія зміщення нуклонів з положення рівноваги визначається виразом

$$U_G(x) = \frac{kx^2}{2} \,. \tag{1.3}$$

При x >> а кількість повністю роз'єднаних нуклонів дорівнює  $2\pi R_0^2 \rho_0 \ x/m$ , де m - маса нуклона;  $\rho_0$  — густина протонів і нейтронів (вважаємо, що їх густини однакові). Якщо  $U_0$  — глибина ядерного потенціалу притягання, то енергія, необхідна для роз'єднання нуклонів, буде дорівнювати

$$U_D(x) = \frac{2\pi R_0^2 \rho_0 x}{m} U_0.$$
 (1.4)

3 умови рівності виразів (1.3) і (1.4) при  $x = a (U_G(a) = U_D(a))$  знаходимо

$$k = \frac{4\pi R_0^2 \rho_0 U_0}{am}$$

Оскільки маса ядра M дорівнює  $\frac{4}{3}\pi R_0^3 \rho_0$  і  $R_0 = r_0 A^{\frac{1}{3}}$  то отримуємо

$$E_r \sim_{45A}^{-\frac{1}{6}},$$
 (1.5)

де були використані такі значення констант:  $r_0$  = 1.2 фм, a = 2 фм і  $U_0$  = 40 МеВ. Відповідно до першої моделі колективного руху нуклонів у ядрах, енергія гігантського дипольного резонансу пропорційна  $A^{-\frac{1}{3}}$ , згідно з іншого — енергія  $E_r$  залежить від масового числа як  $A^{-\frac{1}{6}}$ . Оскільки у свій час експериментальних даних було мало і з ними найкраще узгоджувалася залежність  $E_r \sim A^{-\frac{1}{6}}$  то Гольдхабер і Теллер віддали перевагу другій моделі, у межах якої знайшли аналітичний вираз (1.5) для енергії гігантського резонансу. Подальші експериментальні дослідження показали, що в середніх і важких ядрах залежність енергії  $E_r$  від масового числа майже пропорційна  $A^{\frac{1}{3}}$ , тому необхідно детально розглянути першу модель, що і було зроблено Штейнведелем і Йенсеном для сферичних ядер. Схематично моди колективного руху, що відповідають моделям Голдхабера — Теллера та Штейнведеля — Йенсена, зображені на рис.1.1.



Рис.1.1 Схема зображення дипольних мод коливань в ядрах: а — модель Штейнведеля-Йенсена; b — модель Голдхабера-Теллера

Згідно з гідродинамічною моделлю Штейнведеля — Йенсена, ядро складається з протонної та нейтронної рідин з густинами протонів  $\rho_p(\overset{1}{r},t)$  і нейтронів  $\rho_n(\overset{1}{r},t)$ , які змінюються у просторі та часі і гігантський дипольний резонанс обумовлений зміною густин нейтронів і протонів, тобто локальною зміною кількості протонів і нейтронів при сталій повній густині нуклонів.

Коливання нуклонів у моделі Штейеведеля-Йенсена можна інтерпретувати як ізовекторні об'ємні коливання ядерної матерії, які відповідають зміні спінізоспінового компонента  $\rho_{ST}(r,t)$  густини у станах з двома нуклонами із значеннями повного спіну S=0 та ізоспіну T=1. Оскільки нуклон може перебувати у двох спінових і двох ізоспінових станах, то, загалом, у двокомпонентній системі нуклонів можна ввести чотири типи густин, а саме: густий протонів  $\rho_{p,\phi}(r,t)$ ,  $\rho_{p,\phi}(r,t)$  і нейтронів  $\rho_{n,\phi}(r,t)$ ,  $\rho_{n,\phi}(r,t)$  із спінами, напрямленими відповідно вздовж і проти осі квантування. Повні густини протонів і нейтронів будуть дорівнювати  $\rho_{p}(r,t)=\rho_{p,\phi}(r,t)+\rho_{p,\phi}(r,t)$ ,  $\rho_{n,\phi}(r,t)=\rho_{p,\phi}(r,t)+\rho_{p,\phi}(r,t)$  вони відповідають станам двох нуклонів з повним спіном S=0,  $\rho_{p,\phi}(r,t)=\rho_{p,\phi}(r,t)$  у нескінченній ядерній речовині:

$$\rho^{-}(r,t) \, \Phi \rho_{p}(r,t) - \rho_{n}(r,t) = \rho_{S=0,T=1}(r,t) \, .$$

Тому говорять, що об'ємні коливання нуклонів, які супроводжують збудження гігантського дипольного резонансу в моделі Штейнведеля-Йенсена, відповідають повному ізоспіну Т=1. Такий гігантський резонанс називають ізовекторним, оскільки його збудження обумовлено відмінним від нуля значення ізоспіну двох нуклонів ядерної матерії, а ізоспін є вектором у ізоспіновому просторі.

Інтенсивні експериментальні і теоретичні дослідження показали, що в дійсності ізовекторний гігантський дипольний резонанс формується як об'ємними так і поверхневими збудженнями. Загалом, середні

експериментальні значення енергій ГДР у всіх ядрах (при не дуже високих енергіях теплових збуджень) описуються виразом

$$E_{GR} = 31.2A^{-1/3} + 20.6A^{-1/6}. (1.6)$$

А ширина розпаду ГДР для сферичних холодних (з нульовою енергією теплових збуджень) ядер можна подати у такому вигляді

$$\Gamma_{GR} = 0.0198 E_{GR}^{-1.9}. \tag{1.7}$$

За допомогою гідродинамічної колективної моделі Шредінгера – Йенсена збудження гігантських дипольних резонансів було успішно розглянуто і у важких деформованих ядах. Для ядер, які мають форму аксіально симетричного еліпсоїда, ізоскалярні ГДР вперше теоретично вивчалися в роботах Даноса (1958 р.) і Окамото (1959 р.), а вираз для енергій ГДР у випадку неаксільних еліпсоїдальних ядер були отримані Є. В. Інопіним (1960 р.). У сферичних ядрах існують три вироджені гігантські дипольні коливання, які відповідають стоячим хвилям уздовж трьох довільних напрямків зі зведеною довжиною хвилі  $\lambda_i = \frac{1}{k_0} \sim R_0$ , пропорційною радіусу ядра. Тому за аналогією з цим випадком можна очікувати, що у випадку деформованих ядер з поверхнею у формі неаксіального еліпсоїда будуть існувати три моди коливання, що відповідають стоячим хвилям уздовж трьох головних осей еліпсоїда зі зведеною довжиною хвилі  $\lambda_i = \frac{1}{k_i} \sim R_i$ ,  $R_i$  величина *i*-тої головної півосі еліпсоїда, тобто при збудженні ГДР мають існувати три колективні стани з частотами  $\omega_i = \frac{1}{R}$ i=1

Детальні обчислення показали, що такі співвідношення дійсно виконуються. Зокрема в аксіально-симетричних деформованих ядрах, що мають форму еліпсоїда обертання, існують дві групи гігантських дипольних колективних збуджень ізовекторного типу: одна мода збуджень відповідає коливанню вздовж осі симетрії еліпсоїда, а інші -двом виродженим коливанням

у площині, перпендикулярній до вісі симетрії. Відповідно до результатів Даноса (Dnos, 1958 р.), енергії ізовекторних ГДР у таких ядрах можна подати у вигляді

$$E_b = E_r \frac{1}{b} -1,51 \cdot 0^{-2} (a^2 - b^2) \cdot , \tag{1.8}$$

$$E_a = \frac{E_b}{1.911 \frac{a}{b} + 0,089},$$
 (1.9)

де величини a і b - відносні півосі еліпсоїда вздовж осі обертання і у перпендикулярному напрямку,

$$a = R(\theta = 0) / R_0$$
  $b = R(\theta = \pi / 2) / R_0$  1.10)

а  $R(\theta) = R_0 + \beta P_2(\cos \theta)$ ) -радіус ядра з формою еліпсоїда обертання  $\beta$  -параметр квадрупольної деформації  $P_2(\cos \theta)$  -поліном лежандра другого порядку. При малих деформаціях величина розщеплення енергії ГДР пропорційна параметру деформації.

$$E_a - E_b \quad \textcircled{a}, 5\alpha_2 E_r \quad \alpha_2 = \beta \quad (1.12)$$

Крім ізовекторних дипольних гігантських резонансів, які пов'язані з рухом у протифазі протонів і нейтронів, також можливі і інші типи гігантських коливань - монопольні, квадрупольні, октупольні тощо, мультипольність яких збігаеться з значенням мультипольності перехідної густини. У ядрах також існують ізоскалярні мультипольні резонанси, що відповідають коливання протонів і нейтронів у фазі.

Теоретичні і експериментальні дослідження показують, що енергії ГДР більш стійки відносно теплових збуджень ядер, ніж поверхневі вібраційні коливання низьких енергій. Найбільш стійкими виявляються ізовекторні дипольні коливання. Енергії таких коливань добре описуються виразом (1.6) у ядрах з енергіями теплових збуджень до 2 МеВ на один нуклон.

### 2. Ширини ГДР у системах, що утворилися при взаємодії важких йонів

Останнім часом стали проводитись експерименти з дослідження фотопоглинання нагрітих ядер, що утворюються при зіткненнях важких йонів, і які характеризуються великими енергіями збудження (температурами), кутовими моментами обертання та деформаціями. Далі розглянемо опис ширин гігантських дипольних резонанссів (ГДР) в таких ядрах.

Раніше ширини ГДР розглядалися в роботах [1-2], [8]. Майже всі аналітичні вирази для ширин, що існують базуються на підгонці експериментальних даних. Зокрема, в роботі [1] запропоновано такий вираз для ширини ГДР у нагрітих ядрах з масовим числом A, температурою T(MeB) і спіном J в одиницях h:

$$\Gamma(T,J,A) = \overline{\Gamma}_0(A,T)$$

де

$$\overline{\Gamma}_{0}(A,T) = \Gamma_{0}(A) + c(A) \ln \left(\frac{T}{T_{0}}\right)$$
(2.2)

$$c(A)$$
 **46.**45  $-\frac{A}{100}$  (2.3)

$$L(\xi) = 1.8 + e^{\frac{1.3\xi}{0.2}} + 1$$
 (2.4)

Тут  $\Gamma_0(A)$  - ширина ГДР у сферичному ядрі при нульовому спіні та нульовій температурі;  $L(\xi)$  - функція, що визначає залежність ширини від спіну; а  $T_0=1$  МеВ.

В роботі [2] боло отримано такий вираз ширини ГДР:

$$\Gamma_{2}(J,T,A) = \frac{E_{0} \langle \overline{\beta}(J,T,A) \rangle - c \langle \overline{\beta}(J,T,A) \rangle}{a \langle \overline{\beta}(J,T,A) \rangle} + \Gamma_{0}, \qquad (2.5)$$

де  $\overline{\beta}(J,T,A)$  — параметр квадрупольної деформації; a = 0.8, c = 0.12;

$$\langle \overline{\beta}(J,T,A) \rangle = \frac{8}{3\sqrt{\pi}} \sqrt{\frac{T}{C_0}} \omega_1(\xi)^{\frac{4}{(T+3)}}$$
 (2.6)

$$\omega_{1}(\xi) = 1 + \frac{a_{1}}{1 + \exp\left(\frac{a_{2} - \xi}{a_{3}}\right)} \quad a_{i} = (4.3, 1.64, 0.31) \quad \xi = \frac{J}{A^{5/6}}$$
(2.7)

$$C_0 = a_1 A^{\frac{2}{3}} + a_2 \frac{\left(N - Z\right)^2}{A} + a_3 \frac{Z^2}{A} + a_4 \frac{Z^2}{A^{1/3}} \qquad a_i = (3.09, -0.74, 0.12, -0.066)$$
 (2.8)

де Z – заряд ядра, N – кількість нейтронів.

В даній роботі запропонована нова параметризація для ширини ГДР, що враховує збільшення деформації атомного ядра, що виникає при дії відцентрових сил на нуклони ядра. Перевага такого фізично обгрунтованого підходу полягає в тому, що його можна поширити на велику кількість ядер, оскільки експериментальних даних з фотопоглинання нагрітими ядрами, що обертаються, на даний момент небагато.

### 3. Зміна форми атомних ядер, що швидко обертаються

### 3.1 Залежність повної енергії системи від деформації ядра.

При обертанні ядра виникають відцентрові сили. Тому ядро, що в основному стані було сферичним, деформується. Далі у роботі розглядатимемо деформовані ядра у рамках краплинкової моделі. В першому наближенні ядро розглядається як еліпсоїд обертання (див рис.3.1). Повна енергія ядра  $E_{tot}$ 

складається з поверхневої енергії  $E_{surf}$ , кулонівської енергії  $E_{coul}$  і енергії обертання  $E_{rot}$  [3-5]:

$$E_{tot} = E_{surf} + E_{coul} + E_{rot}. ag{3.1}$$

Формули для енергій  $E_{surf}$ ,  $E_{coul}$ ,  $E_{rot}$  мають найпростіший вигляд як функції ексцентриситету  $\varepsilon$ .

#### Витягнутий еліпсоїд

Для витягнутого еліпсоїда (а 🏶 ) ексцентриситет визначається за формулою:

$$\varepsilon^{2} = 1 - \frac{a^{2}}{b^{2}} = 1 - \frac{\beta}{2} \sqrt{\frac{5}{4\pi}} \frac{\beta}{\delta}, \quad 0 \in \mathbb{N},$$

$$(3.2)$$

де  $\beta$  — параметр деформації.

Поверхнева енергія має вигляд:

$$E_{surf} = \frac{E_{surf}^{0}}{2\varepsilon} \left( \frac{1}{2} \varepsilon^{-2} \right)^{\frac{-1}{6}} \left( \frac{1}{2} \varepsilon^{-2} \right)^{\frac{1}{2}} + \frac{\arcsin(\varepsilon)}{2\varepsilon} \left( \frac{1}{2} \varepsilon^{-2} \right)^{\frac{1}{2}} + \frac{\arcsin(\varepsilon)}{2\varepsilon} \left( \frac{1}{2} \varepsilon^{-2} \right)^{\frac{1}{2}} + \frac{1}{2} \varepsilon^{-2} \left( \frac{1}{2} \varepsilon^{-2} \right$$

де

$$E_{surf}^{0} = 4\pi\sigma R_{0}^{2} = 17.8A^{\frac{2}{3}}(MeB)$$
 (3.4)

— поверхнева енергія сфери. Тут було враховано,  $R_0 = r_0 A^{\frac{1}{3}}$  з  $r_0 = 1.216$  фм, та використано значення  $\sigma = 0.953 (MeB \text{ m}^{-2})$  з роботи [6].

Кулонівська енергія рівна:

$$E_{coul} = \frac{E_{coul}^{0}}{2\varepsilon} \left( 1\varepsilon^{-2} \right)^{\frac{1}{1}} \frac{\partial \theta}{\partial z}, \tag{3.5}$$

де

$$E_{coul}^{0} = \frac{3e^{2}Z^{2}}{5r_{0}A^{\frac{1}{3}}} = 0.17 \, ^{2} \, ^{2} \, ^{\frac{-1}{3}} (MeB) \, . \tag{3.6}$$

- кулонівська енергія для сфери.

Енергія обертання рівна:

$$E_{rot} = 2E_{rot}^{0}J(J+1)(1e^{-})^{2}(\frac{2}{2}e^{-})^{2-1},$$
(3.7)

де

$$E_{rot}^{0} = \frac{5h^{2}}{2MR_{0}^{2}} = 34.5A^{\frac{-5}{3}}.$$
 (3.8)

— енергія обертання сфери, зі спіном ядра $J=1,\ M$ — маса ядра.

### Сплюснутий еліпсоїд

Для сплюснутого еліпсоїда (а 🍪 ) ексцентриситет визначається як:

$$\varepsilon^{2} = \frac{a^{2}}{b^{2}} - 1 = \frac{2}{\sqrt[3]{\frac{5}{4\pi}}} \frac{\beta}{\sqrt[3]{\frac{5}{4\pi}}} - 1, \qquad 0$$

Поверхнева енергія має вигляд:

$$E_{\text{surf}} = \frac{E_{\text{surf}}^{0}}{2} \left( \frac{1}{2} + \varepsilon^{2} \right)^{\frac{1}{3}} + \frac{\ln \left( \frac{1}{2} - \varepsilon^{2} \right)^{\frac{1}{2}} + \varepsilon}{\varepsilon \left( 1 + \varepsilon^{2} \right)^{\frac{1}{2}}} \right)^{\frac{1}{2}}.$$
 (3.10)

Кулонівська енергія рівна:

$$E_{coul} = \frac{E_{coul}^{0}}{\varepsilon} (1 + \varepsilon^{2})^{\frac{1}{3}} \arctan(\varepsilon).$$
 (3.11)

Енергія обертання рівна:

$$E_{rot} = E_{rot}^0 J(J+1)(1e)^{2^{-\frac{1}{3}}}. (3.12)$$

### 3.2 Параметризація залежності параметру деформації від кутового моменту ядра.

Не збуджене ядро має знаходитись у стані з найменшою енергією. Тому, знаходячи мінімуму повної енергії з рівняння

$$\frac{d}{d\varepsilon}E_{tot}(\varepsilon,J) = 0, \qquad (3.13)$$

отримаємо залежність параметру деформації від спіну ядра J. Далі розв'язуючи рівняння (17) відносно  $\beta$ , отримаємо зв'язок  $\beta$  з  $\epsilon$ . Для витягнутого еліпсоїда ( $\beta$  > 0) маємо:

$$\beta = \frac{\left(1 - \sqrt{1 - \varepsilon^2}\right)}{\sqrt{\frac{5}{4\pi}}\sqrt[3]{1 - \varepsilon^2} + \frac{1}{2}\sqrt[3]{\epsilon}}.$$
(3.14)

Аналогічно для сплюснутого еліпсоїда ( $\beta$  < 0) знаходимо:

$$\beta = \frac{\left(1 - \sqrt{1 + \varepsilon^2}\right)}{\sqrt{\frac{5}{4\pi}}\sqrt{1 + \varepsilon^2} + \frac{1}{2}\sqrt{1 + \varepsilon^2}}.$$
(3.15)

Існує багато параметризацій для  $\beta$ , зокрема, в роботі [7] була запропонована така:

$$\beta(J) = E_s(J) \underbrace{a_1 + a_2 E_s(J)}_{(1 + a_3 E_s(J))^2},$$
(3.16)

$$E_s(J) = 34.5 A^{\frac{-5}{3}} J(J+1)$$
 (MeB), (3.17)

 $E_s(J)$  — енергія обертання еквівалентного сферичного ядра зі спіном J

$$a_i = b_i + c_i (A + d_i)^2 (3.18)$$

Табл. 1 Значення параметрів підгонки для сплюснутого ядра.

| $b_i$                         | $c_{i}$                | $d_{i}$ |
|-------------------------------|------------------------|---------|
| -7.46 •0 <sup>-3</sup>        | -1.94 •0 <sup>-7</sup> | -107.07 |
| -4.2 <b>4</b> 0 <sup>-5</sup> | -4.25 •0 <sup>-9</sup> | -93.904 |
| 5.7 <b>�</b> 0 <sup>-3</sup>  | 2.44 �0^-7             | -73.505 |

Табл. 2 Значення параметрів підгонки для витягнутого ядра.

| $b_i$                                 | $c_{i}$                        | $d_{i}$ |
|---------------------------------------|--------------------------------|---------|
| -6.36 •0 <sup>-3</sup>                | $-6.33$ <b>Q</b> $0^{-7}$      | -48.34  |
| $1.017  \text{\textcircled{4}}0^{-3}$ | 1.416 <b>�</b> 0 <sup>-7</sup> | -95.9   |
| 0.02                                  | 8.59 <b>�</b> 0 <sup>-7</sup>  | -74.12  |

В роботі [7] розраховано залежність повної енергії  $E_{tot} = E_{tot} \left( \beta(J,A), J, A \right)$  від спіну для сплюснутого та витягнутого ядер. Виявилося, що при малих J ядру енергетично вигідно мати форму витягнутого еліпсоїда обертання, а з ростом

спіну ядро різко змінює форму. При деякому критичному значенні спіну  $J_{cr}$  знак параметру деформації змінюється. Це означає, що ядро переходить від витягнутої форми до сплюснутої. Залежність  $J_{cr}$  від A може бути параметризована формулою:

$$J_{cr} = J_{cr}(A, Z) = q_1 + q_2 Z^2, (3.19)$$

де Z- заряд ядра параметри  $q_i$  мають вигляд:

$$q_i = \partial_{i,0} + \partial_{i,0} A + \partial_{i,0} A^2, \tag{3.20}$$

Табл.3. Значення параметрів підгонки для знаходження критичного значення спіну  $J_{\it cr}$ 

| <b>2</b> / <sub>0</sub> | <i>Q</i> <sub>1,2</sub>   | <b>9</b> / <sub>1</sub> 9 <sub>3</sub> |
|-------------------------|---------------------------|----------------------------------------|
| 55,06                   | -0,063                    | 5,12 <b>�</b> 0 <sup>-3</sup>          |
| <b>4</b> / <u>9</u> ,   | <b>4</b> / <sub>2,2</sub> | <b>4</b> /2 <sub>3</sub>               |
| -0,013                  | 2,842�0⁻⁶                 | -2,57 <b>♦</b> 0 <sup>-7</sup>         |

Ефект пов'язаний з переорієнтуванням ядра при перебільшенні деякого критичного значення спіну, в експерименті спостерігається рідко, оскільки критичне значення спіну перевищує максимальне значення спіну що досягалося.



Рис.3.1 Вплив орієнтації деформованого ядра на характер збуджених коливань а — витягнутий, б — сплюснутий.

Залежність параметру від кутового моменту при малих швидкостях обертання розглядалася в роботі [5], де було отримане наступне наближене співвідношення для параметра деформації сплюснутого еліпсоїда:

$$\beta(J) = \sqrt{\frac{5}{4}} \stackrel{\bullet}{\underbrace{1-x}}, \tag{3.21}$$

 відношення обертальної енергії до поверхневої енергії, розрахованої для еквівалентної твердотільної сфери.

$$x = \frac{3e^2}{40\pi r_0^3 \sigma} \frac{Z^2}{A} = 0.021 \frac{Z^2}{A}, \qquad (3.23)$$

– параметр подільності атомного ядра.

Далі будемо використовувати дві параметризації параметру деформації, для витягнутого ядра а саме за формулами (3.14).

### 4. Нова параметризація ширини ГДР у ядрах, що обертаються



Рис.4.1 Схема зображення зв'язку між видом перерізу фото поглинання і формою ядра: а – сферичне ядро, б – витягнуте ядро, в – сплюснуте ядро

3 рис.4.1 видно, що повну ширину ГДР в ядрах, у випадку малих швидкостей обертання можна подати у вигляді:

$$\Gamma_{tot}(T, J, A) = \frac{\Gamma_a(E_a, T, A)}{2} + \frac{\Gamma_b(E_b, T, A)}{2} + |E_b - E_a|, \tag{4.1}$$

де  $\Gamma_i(E_i, T, A)$  — ширини ГДР при відповідних значеннях енергії сферичного ядра.

Можна вважати 
$$\frac{\Gamma_a(E_a,T,A)}{2}$$
  $\bullet$   $\Gamma_b(E_b,T,A)$  , тому:

$$\Gamma_{tot}(T, J, A) = \Gamma_a(E_a, T, A) + |E_b - E_a| \tag{4.2}$$

Спінова залежність присутня лише в другому доданку  $|E_a - E_b|$  через його залежність від деформації, що обумовлена обертанням. У відповідності з моделлю Данова (див. ф. (1.9)) деформації зв'язок між величинами  $E_a$  та  $E_b$  має вигляд:

$$\frac{E_b}{E_a} = 0.911 + 0.089, \tag{4.3}$$

де  $E_b, E_a$  — енергії, що відповідають максимумам перерізів фотопоглинання; а, b — велика і мала піввісь еліпсоїда обертання відповідно. Відношення півосей визначається параметром квадрупольної деформації  $\beta$ , який в нашому випадку залежить від кутового моменту J, маємо:

$$\frac{a}{b} \mathbf{\hat{q}}_1 + \frac{3}{2} \mathbf{\hat{q}}_2 \mathbf{\hat{q}}_3 \mathbf{\hat{q}}_3 \mathbf{\hat{q}}_3 \mathbf{\hat{q}}_3 (J). \tag{4.4}$$

Після підстановки усіх виразів у (4.1) знаходимо формулу для ширини:

$$\Gamma_{tot}(T, J, A) = \Gamma_a(E_a, T, A) + E_a \left| 1.089 - 0.911 + \frac{3}{2} + \frac{3}{5} + \frac{1}{5} + \frac{1}{5} \right|$$
(4.5)

Для визначення  $\Gamma_a(E_a, T, A)$ , існує багато різних параметризацій, в даній роботі використовуємо параметризацію за виразом (5.1).

### 5. Температурна залежність ширини ГДР в сферичних ядрах

Переріз фотопоглинання ГДР аксіально деформованим ядром характеризується двома максимумами ( $E_a$ ,  $E_b$ ) (рис.5.1), пов'язаними з двома різними частотами коливань, що виникають вздовж більшої і меншої осей еліпсоїда відповідно. Так як обертання ядер призводить до їхньої деформації, розщеплення енергії ГДР у обертаючих ядрах призводить до динамічного розширення ефективної ширини перерізу фотопоглинання ГДР. Ширину кожного максимуму можна розглядати як відповідну ширину ГДР сферичного ядра з даною енергією та температурою. Для сферичних нагрітих ядер існують параметризації ГДР у широкому діапазоні мас.

В роботі [8] було запропоновано такий вираз ширини ГДР для сферичного ядра  $\Gamma_{sfer}(T,A)$  в залежності від температури:

$$\Gamma_{sph}(T,A) = 2 \left( \frac{E}{\eta(T)} \right)^{2}, \qquad (5.1)$$

де

$$\eta(T) = \frac{h}{\tau} = \frac{1}{\alpha} \left[ \frac{E^2}{4 \, \hat{\Phi}^2} + T \right],$$
(5.2)

$$q = \frac{1}{2(1+F_0)(1+\frac{F_1}{3})}. (5.3)$$

Тут  $F_0$ =0.1,  $F_1$ =0 параметри Ландау, що описують взаємодію між нуклонами;  $\tau$  час релаксації; константу  $\alpha$  знаходимо з умови  $\Gamma_0 = \Gamma_{sfer}(T=0,A)$  ( $\Gamma_0$  експериментальне значення ширини ГДР при нульовій температурі та нульовому спіні). Також для знаходження  $\Gamma_0$  можна використовувати існуючу систематику ширини ГДР для ядер на лінії  $\beta$  стабільності [9] ( $\phi$ . (1.6), (1.7)).

# 6. Систематика ширини і енергії ГДР у холодних сферичних атомних ядрах

Зазвичай ширини і енергії ГДР знаходяться з підгонки експериментальних значень перерізів фотопоглинання, або відповідних радіаційних силових функції відповідними теоретичними формулами.

Існує багато моделей, що описують радіаційні силові функції  $f_{SLO}(e_{\gamma})$ . Зазвичай, використовується модель стандартного Лоренціана (SLO):

$$\frac{\mathbf{r}}{f_{SLO}}(e_{\gamma}) = 8.674 \, \mathbf{\Theta}^{-8} \, \sigma_{GR} \, \frac{\left(e_{\gamma} \Gamma_{GR}\right)^{2}}{\left(e_{\gamma}^{2} - E_{GR}^{2}\right)^{2} + \left(\Gamma_{GR} e_{\gamma}\right)^{2}} (MeV^{-3}), \tag{6.1}$$

тут  $E_{GR}$ ,  $\sigma_{GR}$ ,  $\Gamma_{GR}$  - резонансні значення енергії, перерізу та ширини резонансу фотопоглинання відповідно,  $e_{\gamma}$  - енергія  $\gamma$  -кванта.

Переріз фотопоглинання  $\sigma_{E1}$  пропорційний до радіаційно-силової функції (6.2)

$$f_{E1}(e_{\gamma}) \stackrel{\boldsymbol{\sigma}_{E1}(e_{\gamma})}{\underbrace{3e_{\gamma}(\pi hc)^{2}}}.$$
(6.2)

Використавши (6.1) та (6.2) отримаємо:

$$\sigma(e_{\gamma}) = \sigma_{GR} \frac{\left(e_{\gamma} \Gamma_{GR}\right)^{2}}{\left(e_{\gamma}^{2} - E_{GR}^{2}\right)^{2} + \left(\Gamma_{GR} e_{\gamma}\right)^{2}} [mb]. \tag{6.3}$$

В роботі [10] з підгонки експериментальних даних для перерізів фотопоглинання  $\gamma$ - кванта стандартним Лоренціаном були отримані значення параметрів ширин, енергій ГДР та перерізів максимальних значень у 27 деформованих ядер і 44 сферичних. На основі отриманих параметрів також було отримано систематики для енергії та ширин ГДР (1.6), (1.7).

Експериментальні та теоретичні дослідження показали, що переріз фото поглинання ядром в області енергій менших від енергії ГДР краще описується модернізованим Лоренціаном (MLO) [11]. Зокрема, модель MLO враховує асиметрію функції відгуку відносно енергії ГДР та має вигляд:

 $\Gamma(e_{\gamma})$  -ширина форми кривої. Використовуючи (6.4) та (6.2) у випадку взаємодії  $\gamma$  -кванта з не збудженим ядром маємо

$$\sigma_{E1}(e_{\gamma}) = 3e_{\gamma}(\pi hc)^{2} f_{MLO}(e_{\gamma}) = \sigma_{GR} \Gamma_{GR} \frac{e_{\gamma}^{2} \Gamma(e_{\gamma})}{\left(e_{\gamma}^{2} - E_{GR}^{2}\right)^{2} + \left(\Gamma(e_{\gamma})e_{\gamma}\right)^{2}}.$$
(6.5)

Залежність ширини форми кривої від енергії  $\gamma$ -кванта та температури ядра можна брати в різному вигляді. Були розроблені різні можливі підходи MLO1, MLO2, MLO3 [11]. В даній роботі буде розглянуто лише MLO1 підхід. В цьому випадку задається ширина кривої така:

$$\Gamma(e_{\gamma}) = \partial \overline{R}(e_{\gamma}) , \qquad (6.6)$$

де

$$\overline{\Gamma}(e_{\gamma}) = \gamma_c \frac{E_{GR}^2 + E_0^2}{\left(E_{GR}^2 - E_0^2\right)^2 + \left(\gamma_c e_{\gamma}\right)^2},$$
(6.7)

$$\partial \!\!\!/ = \frac{\Gamma_{GR}}{\overline{\Gamma}(E_{GR})}, \ \gamma_c = 2 \hbar \!\!\!/ \tau_c (e_{\gamma}), \ \hbar \!\!\!/ \tau_c (e_{\gamma}) = e_{\gamma} / \alpha_e, \tag{6.8}$$

$$1/\alpha_e = \frac{1}{\alpha} \frac{E_r}{4\pi^2}, \ \alpha = \frac{9h^2/m_{aver}}{\sigma(np)}, \ \sigma(np) = 5fm, \ E_0 = 41/A^{1/3}[MeV]$$
 (6.9)

Користуючись методом найменших квадратів, тобто мінімізуючи значення  $\chi^2$ ,

$$\chi^{2} = \frac{1}{D} \sum_{i=1}^{N} \frac{\mathbf{v}_{theor} \left( e_{\gamma,i} \right) - \sigma_{exp}^{i} \left( e_{\gamma,i} \right)}{\mathsf{V} \sigma_{exp}^{i} \left( e_{\gamma,i} \right)} \stackrel{?}{\mathbf{v}} D = N - N_{par}$$

$$(6.10)$$

знаходимо параметри  $E_{GR}$ ,  $\sigma_{GR}$ ,  $\Gamma_{GR}$ . Зважаючи на те, що за енергій  $e_{\gamma}$   $E_{GR}$  в (6.7)  $\left(E_{GR}^2-E_0^2\right)^2$ ?  $\left(\gamma_c e_{\gamma}\right)^2$ , а також  $E_{GR}^2+E_0^2$ ;  $\left(E_{GR}^2-E_0^2\right)^2$ , після математичних перетворень  $\Gamma(e_{\gamma})$  можна представити у вигляді

$$\Gamma(e_{\gamma}) = \frac{\Gamma_{GR}}{E_{GR}} e_{\gamma} \,. \tag{6.11}$$

Таку параметризацію називатимемо SMLO1. Введемо параметр підгонки *а1* таким чином:

$$\Gamma(e_{\gamma}) = a1 \, \diamondsuit_{\gamma} \,. \tag{6.12}$$

3 умови рівності ширини ГДР ширині форми кривої при енергії ГДР (6.13)

$$\Gamma_{GR} = \Gamma(E_{GR}) \tag{6.13}$$

маємо для  $\Gamma_{GR}$ :

$$\Gamma_{GR} = a1 \, \mathbf{\hat{e}}_{GR} \tag{6.14}$$

Таку параметризацію називатимемо (SMLO2). Також розглядався випадок квадратичної залежності ширини форми кривої від енергії *Y*-кванта (6.15).

$$\Gamma(e_{\gamma}) = a1 \, \diamondsuit_{\gamma}^{2} \tag{6.15}$$

3 умови (6.13) маємо  $\Gamma_{GR}$ :

$$\Gamma_{GR} = a1 \, {}^{\bullet}_{GR}^{2} \tag{6.16}$$

Усі розглянуті вирази для форми кривої та ширини ГДР представлені в таблиці 6.1

Табл. 7.1 Вирази для ширин форми кривої і ширини ГДР, та зв'язані з ними назви.

| Назва моделі                | SMLO1                                       | SMLO2                        | SMLO3                         |
|-----------------------------|---------------------------------------------|------------------------------|-------------------------------|
| Ширина форми                | $\frac{\Gamma_{GR}}{\rho}$                  | a1 🍫                         | $b1  \diamondsuit_{\gamma}^2$ |
| кривої $\Gamma(e_{\gamma})$ | $rac{\Gamma_{_{GR}}}{E_{_{GR}}}e_{\gamma}$ |                              | ·                             |
| Ширина ГДР $\Gamma_{GR}$    | $\Gamma_{GR}$                               | $a1$ $\mathbf{\hat{Q}}_{GR}$ | $b1 \mathcal{R}_{GR}^{2}$     |
| ширина 1 да - GR            | = GR                                        | GR GR                        | $\sigma r + \sigma_{GR}$      |
| Кі-сть параметрів           | 3                                           | $\frac{GF}{3}$               | 3                             |

В результаті було отримані параметри радіаційно-силової функції, за такими виразами: (SLO), (MLO), (SMLO1), (SMLO2), (SMLO3) та готові до використання таблиці параметрів (див. Додаток). Загалом встановлено, що найкраще описувати експериментальні данні за допомогою моделі SMLO1.

# 7. Уточнення значень ширини ГДР з врахуванням асиметрії дипольних силових функцій

За визначенням ширина форми кривої це ширина на половині висоти. Оскільки модернізований Лоренціан не є симетричною функцією відносно  $E_{GR}$ , тобто ширина не збігається з шириною кривої моделі SLO. Для знахоження ширини форми кривої типу MLO були виконані такі обчислення. Крива f(x) з амплітудою  $A=f(e_{\gamma}=E_{GR})$  див. рис.7.1 була розрізана на половині амплітуди (A/2), і далі знаходилися точки х1 та х2, як корені рівняння.

$$f(x) - A/2 = 0 (7.1)$$

Тоді як з рисунка 7.1 видно, що ширина форми кривої є  $\Gamma = x2-x1$ . Застосувавши метод ділення відрізка навпіл для лівого та правого розв'язку рівняння (7.1) отримаємо значення ширини ГДР у випадку радіаційно-силових функцій асиметричного типу.



Рис. 7.1 Переріз фото-поглинання сферичним ядром; f(x)- Форма кривої модернізованого Лоренціану,  $\Gamma$ -ширина на половині висоти,  $E_{GR}$ -енергія  $\Gamma$ ДР,  $\Lambda$ -амплітуда, а х1 та х2 корені рівняння f(x)- $\Lambda/2$ =0.

Значення ширини форми кривої  $\Gamma_{FK}$  наведено в Додатку 2.

# 8. Параметризації для ширин і енергії ГДР у холодних сферичних ядрах

Використовуючи результати, які були отримані вище, були побудовані систематики значень енергії та ширини ГДР. Існують багато різних видів функцій якими можна апроксимувати експериментальні дані, зокрема такий:

$$E_{GR} = a \, \mathbf{\hat{Q}}^{-1/3} + b \, \mathbf{\hat{Q}}^{-1/6} \tag{8.1}$$

Що враховує об'ємний  $A^{-1/3}$  та поверхневий  $A^{-1/6}$  вклади в енергію ГДР.

Оскільки протонна та нейтронна підсистеми ядра по різному можуть реагувати на зовнішнє електромагнітне поле, то в вираз для  $E_{GR}$  має бути введено множник який враховує протон-нейтронну асиметрію ядра. Зокрема [10] було отримано такий вираз для опису енергії ГДР в холодному сферичному ядрі з Z протонами та N нейтронами.

$$E_{GR} = a\sqrt{\frac{4ZN}{A^2}}A^{-1/3}(MeV). \tag{8.2}$$

Цей вираз можна переписати в явному вигляді через протон-нейтронну асиметрію I

$$I = \frac{N - Z}{A} \,, \tag{8.3}$$

маємо:

$$E_{GR} = a\sqrt{1 - I^2} A^{-1/3}. (8.4)$$

Далі врахуємо внесок поверхневої компоненти у енергії ГДР двома такими способами:

$$E_{GR} = a\sqrt{1 - I^2}A^{-1/3} + bA^{-1/6}$$
(8.5)

$$E_{GR} = a\sqrt{1 - I^2} A^{-1/3} + b\sqrt{1 - I^2} A^{-1/6}$$
(8.6)

На відміну від (8.5) в другому компоненті виразу (8.6) враховується протоннейтрона асиметрія. Вираз (8.6) за критерієм мінімуму  $\chi^2$  найкраще описує експериментальні дані (див. рис. 8.2-8.4). Експериментальні дані із залежності енергії ГДР від маси ядра показані на рисунку 8.1. На рисунку також зображено систематика з набором параметрів {а=39.80; b=16.82}. Вони отримані в даній роботі з підгонки експериментальних даних методом найменших квадратів. Вхідними даними для знаходження параметрів систематики за методом найменших квадратів були параметри ГДР, які отримані в результаті підгонки перерізу фото-проглинання сферичними ядрами модернізованим Лоренціаном. {a=31.20; b=20.60} був отриманий в роботі [10] з Набір параметрів використанням SLO. На рисунку 8.2 та 8.3 зображено залежність енергії ГДР та систематики отримані за виразами 8.4 та 8.5, відповідно. На рис. 8.1-8.4 також зображено залежність протон-нейтронної асиметрії атомного ядра в залежності від масового числа. На рис. 8.1-8.4 Шкала зміни протон-нейтронної асиметрії відповідає шкалі відтінків кривих.



Рис. 8.1 Залежність енергії ГДР від маси ядра з урахуванням об'ємних та поверхневих коливань.



Рис. 8.2 Залежність енергії ГДР від маси ядра з урахуванням лише об'ємних коливань та протон-нейтронної асиметрії.



Рис. 8.3 Залежність енергії ГДР від маси ядра з урахуванням об'ємних та поверхневих коливань. Протон-нейтронна асиметрія врахована лише в об'ємному внеску у енергію ГДР.



Рис. 8.4 Залежність енергії ГДР від маси ядра з урахуванням об'ємних і поверхневих коливань та протон-нейтронну асиметрію.

На рисунку 8.5 та 8.6 зображена залежність ширини ГДР в холодних сферичних ядрах від масового числа при наближенні ширини ГДР виразом:

$$\Gamma_{GR} = a(E_{GR})^b \tag{8.7}$$



Рис. 8.5 Залежність енергії ГДР від маси ядра, з урахуванням об'ємних та поверхневих коливань та протон нейтронної асиметрії.



Рис. 8.6 Експериментальні дані ширини ГДР в залежності від маси ядра. Систематика отримана використовуючи вираз (9.7)

# 9. Результати обчислень ширини ГДР у швидко обертаючих атомних ядер та їх порівняння з експериментальними значеннями

Порівняємо ширини ГДР обчислені за різними виразами, з експериментальними значеннями. При розрахунках використовувалося два вирази для залежності параметра деформації від обертального моменту. При використанні виразу (3.16) маємо таке співвідношення для ширини ГДР:

$$\Gamma_{tot,1}(T,J,A) = 2qE \frac{E/\eta(T)}{1+q\left(E/\eta(T)\right)^{2}} + E_{a} \left[1.089 - 0.911 + \frac{3}{2} \left(E/\eta(T)\right) + \frac{1}{2} \left(E/\eta(T)\right)^{2}\right] \left(10.1\right)$$

3 використанням формули (3.21) маємо:

$$\Gamma_{tot,1}(T,J,A) = 2 \left( \frac{E}{\eta(T)} \right)^{2} + E_{a} \left[ 1.089 - 0.911 + \frac{3}{2} \left( \frac{1}{5} \right)^{-1} \right] \left( \frac{5}{4} \left( \frac{y}{1-x} \right) \right)^{2}$$
(10.2)

На рис.10.1 та рис.10.2 зображено залежність ширини ГДР від температури Т для ядра міді, що обертається з кутовим моментом J=19. Наведені теоретичні криві обчислені за різними виразами, а саме — з використанням формул (2.1) та (3.5), що враховують залежність ширини ГДР від спіна та температури, вираз (4.1) який враховує залежність ширини ГДР тільки від температура для сферичного ядра, та (6.1), (6.2), що враховують залежність від спіну та температури ядра. Ширина ГДР при нульових спіні та температурі знаходилася із існуючої систематики, за виразом (1.7). З рисунків видно що ширина ГДР для ядра без спіна менша ніж для ядер зі спіном, тобто при збільшенні спіну ширина ГДР зростає. На рис.4 порівняно параметризації за формулами (1) (39) та (40), в якості ширини ГДР з нульовим спіном було використане значення 3,8МеВ, яке рекомендувалося в статті [1]. Якість опису експериментальних даних різними виразами визначалася за допомогою обчислення величини  $\chi^2$ , відповідні значення наведені в таблиці 4.



Рис.10.1. Залежність ширини ГДР від температури ядра для міді при спіні  $J=19 \, \text{h}$ , ширина  $\Gamma_0$  визначалася за систематикою (1.7) 6,8 МеВ. Криві обчислені за виразами ...... – (2.1); — – (2.5); — – (4.1); — – (6.2); • • • – (6.1).



Табл.4. Значення  $\chi^2$  для залежності ширини ГДР від температури для ядер міді при спіні  $J=19~{\mbox{h}}$  .

| Вираз              | (2.1)       | (2.5) | (4.1) | (6.2) | (6.1) | (2.1) |  |
|--------------------|-------------|-------|-------|-------|-------|-------|--|
| $\Gamma_0$ (MeB)   | 6,8         | 6,8   | 6,8   | 6,8   | 6,8   | 3,8   |  |
| $\chi^2$           | 1320        | 985   | 134   | 399   | 211   | 130   |  |
| Вираз              | (2.1)       | (2.5) | (4.1) | (6.2) | (6.1) | (2.1) |  |
| $\Gamma_{0}$ (MeB) | 6,8         | 6,8   | 6,8   | 6,8   | 6,8   | 3,8   |  |
|                    | T=1,4 (MeB) |       |       |       |       |       |  |
| $\chi^2$           | 261         | 179   | 3     | 6     | 8     | 24    |  |
| T=1,6 (MeB)        |             |       |       |       |       |       |  |
| $\chi^2$           | 571         | 408   | 38    | 27    | 45    | 55    |  |
|                    | T=2 (MeB)   |       |       |       |       |       |  |
| $\chi^2$           | 224         | 155   | 153   | 23    | 46    | 32    |  |

На рис.10.3 зображено залежність ширини ГДР від спіну Jh для ядра Си при температурі T=1.4 MeB,. При обчисленнях використовувалися вирази (2.1), (2.5), (4.1), (10.2) та (10.1). Значення  $\chi^2$ , наведені в таблиці 4.



Рис.10.3. а) Залежність ширини ГДР від спіну для ядра міді при температурі T=1,4 MeB, ширина визначалася за систематикою (1.7) та дорівнювала  $\Gamma_0 = 6,8$  MeB.

б) Залежність ширини ГДР  $\Gamma$  від спіну J для міді при T=1,4МеВ. Крива: ..... – (2.1) з  $\Gamma_0=3,8$  МеВ; — – (6.2)  $\Gamma_0=6,8$  МеВ; • • • – (6.1)  $\Gamma_0=6,8$  МеВ.



Рис.10.4. а) Залежність ширини ГДР від спіну для ядер міді при температурі T=1,6 MeB, ширина визначалася за систематикою (1.7) та дорівнювала  $\Gamma_0 = 6,8$ MeB.

б) Залежність ширини ГДР від спіну J для ядер міді при T=1,6 MeB. Крива: ..... – (2.1) з  $\Gamma_0 = 3,8$  MeB; .... – (6.2) з  $\Gamma_0 = 6,8$  MeB; • • • – (6.1) з  $\Gamma_0 = 6,8$  MeB.



Рис.10.5. а) Залежність ширини ГДР від спіну для ядера міді при температурі T=2 MeB, ширина визначалася за систематикою (1.7)  $\Gamma_0=6.8$  MeB.

б) Залежність ширини ГДР  $\Gamma$  від спіну J для міді при T=2 MeB. Криві: ...... – за виразом 2.1)  $\Gamma_0 = 3,8$  MeB; — – за виразом (6.2)  $\Gamma_0 = 6,8$  MeB; • • • – за виразом (6.1);  $\Gamma_0 = 6,8$  MeB;

На рис.10.5 зображено залежність ширини ГДР в  $^{106}$ Sn від спіну при температурі ядра T=1,5 МеВ для ядра. Наведені теоретичні криві обчислені за формулами (2.1), (2.5), (4.1), (6.2) та (6.1). Значення  $\chi^2$  наведені в таблиці 5.



Рис.10.6 Залежність ширини ГДР від спіну для  $^{106}$ Sn при температурі T=1,5 MeB, ширина  $\Gamma_0$  визначалася за систематикою (1.7),  $\Gamma_0 = 5,2$  MeB. Криві: ..... – за формулою (2.1); — – – (2.5); — – за виразом (4.1); — – за виразом (6.2); • • • – за виразом (6.1).



Рис.10.7 Залежність ширини ГДР від спіну для міді при T=1,5 MeB. Криві: ..... – обчислена за виразом (2.1) з  $\Gamma_0=3,8$  MeB; — - (6.2) з  $\Gamma_0=5.2$  MeB; • • • - (6.1) з  $\Gamma_0=5.2$  (MeB).

Табл.5. Значення  $\chi^2$  при опися різними виразами залежності ширини ГДР від спіну в ядрі  $^{106}$ Sn при температурі T=1,5(MeB).

| Вираз            | (2.1) | (2.5) | (4.1) | (6.2) | (6.1) | (2.1) |
|------------------|-------|-------|-------|-------|-------|-------|
| $\Gamma_0$ (MeB) | 5,2   | 5,2   | 5,2   | 5,2   | 5,2   | 3,8   |
| $\chi^2$         | 29    | 6     | 426   | 7     | 23    | 11    |

З рисунків видно, що запропоновані формули у статтях [1] для ширин ГДР, [2], при використанні експериментальних значень для ширини ГДР при нульових температурі та спіні, погано узгоджуються з експериментом. Формули (10.1) та (10.2) запропоновані в даній роботі загалом значно краще описують експериментальні дані.

#### 11. Висновки

- 1. Запропонована фізично обґрунтована параметризація ширини розпаду ГДР в залежності від спіну та температури ядра, яка добре описує експериментальні значення. Її можна використовувати для кількісного обрахунку ширин ГДР у важких ядрах що обертаються.
- 2. Продемонстровано, що ширина ГДР збільшується із збільшенням спіну ядра при сталій температурі, що узгоджується з експериментальними даними.
- 3. Показано, що при сталому спіні ширина ГДР збільшується із зростанням температури ядра, що також узгоджується з експериментом.
- 4. У запропонованому у даній роботі підході, ширини ГДР за нульових значень спіна та температури можна використовувати значення або із систематики або з експерименту. В той час як у підході авторів роботи [1], така ширина є додатковим параметром підгонки експериментальних даних.

### Використана література

- [1] D.Kusnezov, Y.Alhassid, K.A.Snover, "Scaling Properties of the Giant Dipole Resonance Width in Hot Rotating Nuclei" // Phys. Rev., 1998. Vol. C81, №3, p.545 545.
- [2] D.Kusnezov, E.Ormandb, "Giant-dipole Resonance and the Deformation of Hot, Rotating Nuclei" // arXiv:nucl-th/0301073 v1 23 Jan (2003).
- [3] M.Mattiuzzi, A.Bracco, F.Camera, "Angular momentum dependence of the GDR width in Sn nuclei at fixed exitation energy"// *Nucl. Phys.*, 1997. Vol. A 621, p.262 278.
- [4] И.Азенберг, В.Грайнер, "Модели ядер. Колективные и одночастичные явления." //М., Атомиздат, 1975.
  - [5] О.Бор, Б.Моттельсон, "Структура атомного ядра" //М., Мир, 197.1.Т.2.
- [6] R.Beriner, W.Knox, "Liquid-drop nuclear model with high angular momentum" // Phys. Rev., 1961. Vol. 121, p.1195.
- [7] О.Горбаченко, В.Плюйко, "Залежність параметру деформації аксіальних ядер від обертального моменту", // "Вісник Київського університету" Серія фізико-математичні науки Випуск №1, 2001, с434-444.
- [8] V.Kolomietz, V.Plujko, S.Shlomo, "Interplay between one-body and collisional damping of collective motion in nuclei" // Phys. Rev., 1996. Vol. C54, №6, p.3014 3024.
- [9] В.А.Плюйко, "Основи теорії ядра та ядерних процесів" // Київ видавничо-поліграфічний центр "Київський університет" 2002 161 с.
- [10] B.L.Berman, S.C.Fultz, "Measurments of the giant dipole resonance with monoenergetic photons" // Rev. Mod. Phys. 1975. V.47. P.713.
- [11] M.Herman, V.A.Plujko, "Gamma-ray strength functions" // In: Reference Input Parameter Library RIPL-2. Handbook for calculations of nuclear reaction data. IAEA-TEDOC. 2002; http://www-nds.iaea.or.at/RIPL-2/.

### Додаток 1

На сторінках 35-41 наведені рисунки на яких зображено експериментальні дані по фотопоглинанню атомними ядрами. Експериментальні дані апроксимовані методом найменших квадратів використовуючи моделі SLO та SMLO1.

















## Додаток 2

На сторінках 42-48 зображена таблиця отриманих параметрів підгонки перерізу фотопоглинання атомним ядром, використовуючи моделі SLO, MlO, SMLO1, SMLO2, SMLO3. Посилання на експериментальні групи наведені в Додатку3.

| Z         A         symbol         Model         E GR (MeV)         GR (meV)         Γ GR (MeV)           47         107         Ag         SLO         15.90         150.00         6.71           47         107         Ag         SLO         15.90         150.47         6.71           47         107         Ag         MLO         16.17         148.95         7.25           47         107         Ag         SMLO1         16.17         148.95         7.25           47         107         Ag         SMLO2         16.17         148.95         7.25           47         107         Ag         SMLO3         16.62         142.05         9.03           79         197         Au         SLO         13.72         541.00         4.61           79         197         Au         SLO         13.72         543.60         4.53           79         197         Au         SMLO1         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO3         13.98         514.26                                                        | Γ <sub>FK</sub> | a1 χ²         | Ref     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------|
| 47         107         Ag         SLO         15.90         150.47         6.71           47         107         Ag         MLO         16.17         148.95         7.25           47         107         Ag         SMLO1         16.17         148.95         7.25           47         107         Ag         SMLO2         16.17         148.95         7.25           47         107         Ag         SMLO3         16.62         142.05         9.03           79         197         Au         SLO         13.72         541.00         4.61           79         197         Au         SLO         13.72         543.60         4.53           79         197         Au         SMLO1         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO3         15.26         327.00         4.61 <th>(MeV)</th> <th></th> <th></th>                    | (MeV)           |               |         |
| 47         107         Ag         MLO         16.17         148.95         7.25           47         107         Ag         SMLO1         16.17         148.95         7.25           47         107         Ag         SMLO2         16.17         148.95         7.25           47         107         Ag         SMLO3         16.62         142.05         9.03           79         197         Au         SLO         13.72         541.00         4.61           79         197         Au         SLO         13.72         543.60         4.53           79         197         Au         MLO         13.81         533.51         4.81           79         197         Au         SMLO1         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO3         13.98         514.26         5.51           56         138         Ba         SLO         15.26         327.00         4.61                                                         |                 | 1.33          | 69Be1   |
| 47       107       Ag       SMLO1       16.17       148.95       7.25         47       107       Ag       SMLO2       16.17       148.95       7.25         47       107       Ag       SMLO3       16.62       142.05       9.03         79       197       Au       SLO       13.72       541.00       4.61         79       197       Au       SLO       13.72       543.60       4.53         79       197       Au       MLO       13.81       533.51       4.81         79       197       Au       SMLO1       13.81       533.51       4.81         79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO3       13.98       514.26       5.51         56       138       Ba       SLO       15.26       327.00       4.61         56       138       Ba       SMLO1       15.32       323.96       4.79 <td></td> <td>1.329</td> <td>2007le1</td>                                                                                                     |                 | 1.329         | 2007le1 |
| 47       107       Ag       SMLO2       16.17       148.95       7.25         47       107       Ag       SMLO3       16.62       142.05       9.03         79       197       Au       SLO       13.72       541.00       4.61         79       197       Au       SLO       13.72       543.60       4.53         79       197       Au       MLO       13.81       533.51       4.81         79       197       Au       SMLO1       13.81       533.51       4.81         79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO3       13.98       514.26       5.51         56       138       Ba       SLO       15.26       327.00       4.61         56       138       Ba       SMLO1       15.32       323.96       4.79         56       138       Ba       SMLO2       15.32       323.96       4.79 <td>7.07</td> <td>1.292</td> <td>2007le1</td>                                                                                                 | 7.07            | 1.292         | 2007le1 |
| 47         107         Ag         SMLO3         16.62         142.05         9.03           79         197         Au         SLO         13.72         541.00         4.61           79         197         Au         SLO         13.72         543.60         4.53           79         197         Au         MLO         13.81         533.51         4.81           79         197         Au         SMLO1         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO3         13.98         514.26         5.51           56         138         Ba         SLO         15.26         327.00         4.61           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79 <td>7.07</td> <td>1.292</td> <td>2007le1</td>         | 7.07            | 1.292         | 2007le1 |
| 79         197         Au         SLO         13.72         541.00         4.61           79         197         Au         SLO         13.72         543.60         4.53           79         197         Au         MLO         13.81         533.51         4.81           79         197         Au         SMLO1         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO3         13.98         514.26         5.51           56         138         Ba         SLO         15.26         327.00         4.61           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31 <td>7.07 0.</td> <td>.449 1.292</td> <td>2007le1</td> | 7.07 0.         | .449 1.292    | 2007le1 |
| 79         197         Au         SLO         13.72         543.60         4.53           79         197         Au         MLO         13.81         533.51         4.81           79         197         Au         SMLO1         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO3         13.98         514.26         5.51           56         138         Ba         SLO         15.26         327.00         4.61           56         138         Ba         SLO         15.26         327.44         4.61           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO2         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97                                                         | 7.80 0.         | .033 1.432    | 2007le1 |
| 79         197         Au         MLO         13.81         533.51         4.81           79         197         Au         SMLO1         13.81         533.51         4.81           79         197         Au         SMLO2         13.81         533.51         4.81           79         197         Au         SMLO3         13.98         514.26         5.51           56         138         Ba         SLO         15.26         327.00         4.61           56         138         Ba         SLO         15.26         327.44         4.61           56         138         Ba         MLO         15.32         323.96         4.79           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97                                                         |                 | 2.29          | 70Ve1   |
| 79       197       Au       SMLO1       13.81       533.51       4.81         79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO3       13.98       514.26       5.51         56       138       Ba       SLO       15.26       327.00       4.61         56       138       Ba       SLO       15.26       327.44       4.61         56       138       Ba       MLO       15.32       323.96       4.79         56       138       Ba       SMLO1       15.32       323.96       4.79         56       138       Ba       SMLO2       15.32       323.96       4.79         56       138       Ba       SMLO2       15.32       323.96       4.79         56       138       Ba       SMLO3       15.44       314.62       5.31         83       209       Bi       SLO       13.45       521.00       3.97         83       209       Bi       MLO       13.49       507.19       4.29         83       209       Bi       SMLO1       13.49       507.19       4.29                                                                                                                                                 |                 | 2.286         | 2007le1 |
| 79       197       Au       SMLO2       13.81       533.51       4.81         79       197       Au       SMLO3       13.98       514.26       5.51         56       138       Ba       SLO       15.26       327.00       4.61         56       138       Ba       SLO       15.26       327.44       4.61         56       138       Ba       MLO       15.32       323.96       4.79         56       138       Ba       SMLO1       15.32       323.96       4.79         56       138       Ba       SMLO2       15.32       323.96       4.79         56       138       Ba       SMLO2       15.32       323.96       4.79         56       138       Ba       SMLO3       15.44       314.62       5.31         83       209       Bi       SLO       13.45       521.00       3.97         83       209       Bi       MLO       13.49       507.19       4.29         83       209       Bi       SMLO1       13.49       507.19       4.29         83       209       Bi       SMLO2       13.49       507.19       4.29                                                                                                                                                 | 4.73            | 0.549         | 2007le1 |
| 79         197         Au         SMLO3         13.98         514.26         5.51           56         138         Ba         SLO         15.26         327.00         4.61           56         138         Ba         SLO         15.26         327.44         4.61           56         138         Ba         MLO         15.32         323.96         4.79           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97           83         209         Bi         MLO         13.49         507.19         4.29           83         209         Bi         SMLO1         13.49         507.19         4.29                                                         | 4.73            | 0.548         | 2007le1 |
| 56         138         Ba         SLO         15.26         327.00         4.61           56         138         Ba         SLO         15.26         327.44         4.61           56         138         Ba         MLO         15.32         323.96         4.79           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97           83         209         Bi         SLO         13.45         521.02         3.97           83         209         Bi         MLO         13.49         507.19         4.29           83         209         Bi         SMLO1         13.49         507.19         4.29           83         209         Bi         SMLO2         13.49         507.19         4.29                                                                                                                                                       | 4.73 0.         | .348 0.548    | 2007le1 |
| 56         138         Ba         SLO         15.26         327.44         4.61           56         138         Ba         MLO         15.32         323.96         4.79           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97           83         209         Bi         SLO         13.45         521.02         3.97           83         209         Bi         MLO         13.49         507.19         4.29           83         209         Bi         SMLO1         13.49         507.19         4.29           83         209         Bi         SMLO2         13.49         507.19         4.29                                                                                                                                                                                                                                                 | 5.09 0.         | .028 0.439    | 2007le1 |
| 56         138         Ba         MLO         15.32         323.96         4.79           56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97           83         209         Bi         SLO         13.45         521.02         3.97           83         209         Bi         MLO         13.49         507.19         4.29           83         209         Bi         SMLO1         13.49         507.19         4.29           83         209         Bi         SMLO2         13.49         507.19         4.29                                                                                                                                                                                                                                                                                                                                           |                 | 2.13          | 70Be8   |
| 56         138         Ba         SMLO1         15.32         323.96         4.79           56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97           83         209         Bi         SLO         13.45         521.02         3.97           83         209         Bi         MLO         13.49         507.19         4.29           83         209         Bi         SMLO1         13.49         507.19         4.29           83         209         Bi         SMLO2         13.49         507.19         4.29                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 2.130         | 2007le1 |
| 56         138         Ba         SMLO2         15.32         323.96         4.79           56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97           83         209         Bi         SLO         13.45         521.02         3.97           83         209         Bi         MLO         13.49         507.19         4.29           83         209         Bi         SMLO1         13.49         507.19         4.29           83         209         Bi         SMLO2         13.49         507.19         4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.73            | 5.898         | 2007le1 |
| 56         138         Ba         SMLO3         15.44         314.62         5.31           83         209         Bi         SLO         13.45         521.00         3.97           83         209         Bi         SLO         13.45         521.02         3.97           83         209         Bi         MLO         13.49         507.19         4.29           83         209         Bi         SMLO1         13.49         507.19         4.29           83         209         Bi         SMLO2         13.49         507.19         4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.73            | 5.900         | 2007le1 |
| 83     209     Bi     SLO     13.45     521.00     3.97       83     209     Bi     SLO     13.45     521.02     3.97       83     209     Bi     MLO     13.49     507.19     4.29       83     209     Bi     SMLO1     13.49     507.19     4.29       83     209     Bi     SMLO2     13.49     507.19     4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.73 0.         | .313 5.900    | 2007le1 |
| 83     209     Bi     SLO     13.45     521.02     3.97       83     209     Bi     MLO     13.49     507.19     4.29       83     209     Bi     SMLO1     13.49     507.19     4.29       83     209     Bi     SMLO2     13.49     507.19     4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.00 0.         | .022 12.088   | 2007le1 |
| 83     209     Bi     MLO     13.49     507.19     4.29       83     209     Bi     SMLO1     13.49     507.19     4.29       83     209     Bi     SMLO2     13.49     507.19     4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 3.72          | 64Ha2   |
| 83 209 Bi SMLO1 13.49 507.19 4.29<br>83 209 Bi SMLO2 13.49 507.19 4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 3.720         | 2007le1 |
| 83   209   Bi   SMLO2   13.49   507.19   4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.24            | 7.831         | 2007le1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.24            | 7.833         | 2007le1 |
| 83 209 Bi SMLO3 13.62 481.67 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.24 0.         | .318 7.833    | 2007le1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.67 0.         | .027   13.349 | 2007le1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z  | Α   | Symbol | Model | E <sub>GR</sub> | σ <sub>GR</sub> | $\Gamma_{\it GR}$ | $\Gamma_{FK}$ | a1    | χ²    | Ref     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--------|-------|-----------------|-----------------|-------------------|---------------|-------|-------|---------|
| 55         133         Cs         SLO         15.25         287.30         5.01         2.004         2007le           55         133         Cs         MLO         15.33         287.10         5.15         5.08         1.364         2007le           55         133         Cs         SMLO2         15.33         287.10         5.15         5.08         1.364         2007le           55         133         Cs         SMLO2         15.33         287.10         5.15         5.08         0.336         1.364         2007le           29         65         Cu         SLO         16.70         75.20         6.89         0.71         64Fu           29         65         Cu         SLO         16.70         75.19         6.89         0.710         2007le           29         65         Cu         MLO         16.95         74.68         7.17         7.01         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>(MeV)</th> <th></th> <th></th> <th></th>                                                  |    |     |        |       |                 |                 |                   | (MeV)         |       |       |         |
| 55         133         Cs         MLO         15.33         287.10         5.15         5.08         1.364         2007le           55         133         Cs         SMLO1         15.33         287.10         5.15         5.08         1.364         2007le           55         133         Cs         SMLO2         15.33         287.10         5.15         5.08         0.336         1.364         2007le           55         133         Cs         SMLO3         15.46         281.06         5.68         5.30         0.024         2.290         2007le           29         65         Cu         SLO         16.70         75.20         6.89         0.71         64Fu           29         65         Cu         SLO         16.95         74.69         7.17         7.01         0.613         2007le           29         65         Cu         SMLO1         16.95         74.68         7.17         7.01         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO<                                                                                                                                                                  | 55 | 133 | Cs     | SLO   | 15.25           | 287.00          | 5.01              |               |       | 2.00  | 69Be1   |
| 55         133         Cs         SMLO1         15.33         287.10         5.15         5.08         1.364         2007le           55         133         Cs         SMLO2         15.33         287.10         5.15         5.08         0.336         1.364         2007le           55         133         Cs         SMLO3         15.46         281.06         5.68         5.30         0.024         2.290         2007le           29         65         Cu         SLO         16.70         75.20         6.89         0.710         2007le           29         65         Cu         SLO         16.70         75.19         6.89         0.710         2007le           29         65         Cu         MLO         16.95         74.68         7.17         7.01         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SL                                                                                                                                                                  | 55 | 133 | Cs     | SLO   | 15.25           | 287.30          | 5.01              |               |       | 2.004 | 2007le1 |
| 55         133         Cs         SMLO2         15.33         287.10         5.15         5.08         0.336         1.364         2007le           55         133         Cs         SMLO3         15.46         281.06         5.68         5.30         0.024         2.290         2007le           29         65         Cu         SLO         16.70         75.20         6.89         0.710         2007le           29         65         Cu         SLO         16.70         75.19         6.89         0.710         2007le           29         65         Cu         MLO         16.95         74.68         7.17         7.01         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO         15.63         266.00         5.24         2.74         69Fu           49         115         In         SMLO1         15.80<                                                                                                                                                                  | 55 | 133 | Cs     | MLO   | 15.33           | 287.10          | 5.15              | 5.08          |       | 1.364 | 2007le1 |
| 55         133         Cs         SMLO3         15.46         281.06         5.68         5.30         0.024         2.290         2007le           29         65         Cu         SLO         16.70         75.20         6.89         0.71         64Fu           29         65         Cu         SLO         16.70         75.19         6.89         0.710         2007le           29         65         Cu         MLO         16.95         74.68         7.17         7.01         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO         15.63         265.87         5.24         2.74         69Fu           49         115         In         SMLO1         15.80                                                                                                                                                                        | 55 | 133 | Cs     | SMLO1 | 15.33           | 287.10          | 5.15              | 5.08          |       | 1.364 | 2007le1 |
| 29         65         Cu         SLO         16.70         75.20         6.89         0.71         64Fu           29         65         Cu         SLO         16.70         75.19         6.89         0.710         2007le           29         65         Cu         MLO         16.95         74.69         7.17         7.01         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO         15.63         266.00         5.24         2.74         69Fu           49         115         In         MLO         15.80         262.52         5.60         5.52         0.850         2007le           49         115         In         SMLO2         15.80         262.52                                                                                                                                                                         | 55 | 133 | Cs     | SMLO2 | 15.33           | 287.10          | 5.15              | 5.08          | 0.336 | 1.364 | 2007le1 |
| 29         65         Cu         SLO         16.70         75.19         6.89         0.710         2007le           29         65         Cu         MLO         16.95         74.69         7.17         7.01         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO         15.63         266.00         5.24         2.74         69Fu           49         115         In         MLO         15.80         262.52         5.60         5.52         0.850         2007le           49         115         In         SMLO1         15.80         262.52         5.61         5.52         0.849         2007le           49         115         In         SMLO3         16.06 </td <td>55</td> <td>133</td> <td>Cs</td> <td>SMLO3</td> <td>15.46</td> <td>281.06</td> <td>5.68</td> <td>5.30</td> <td>0.024</td> <td>2.290</td> <td>2007le1</td> | 55 | 133 | Cs     | SMLO3 | 15.46           | 281.06          | 5.68              | 5.30          | 0.024 | 2.290 | 2007le1 |
| 29       65       Cu       MLO       16.95       74.69       7.17       7.01       0.613       2007le         29       65       Cu       SMLO1       16.95       74.68       7.17       7.01       0.613       2007le         29       65       Cu       SMLO2       16.95       74.68       7.17       7.01       0.423       0.613       2007le         29       65       Cu       SMLO3       17.31       72.02       8.39       7.45       0.028       0.608       2007le         49       115       In       SLO       15.63       266.00       5.24       2.74       69Fu         49       115       In       SLO       15.63       265.87       5.24       2.744       2007le         49       115       In       MLO       15.80       262.52       5.60       5.52       0.850       2007le         49       115       In       SMLO2       15.80       262.52       5.61       5.52       0.849       2007le         49       115       In       SMLO3       16.06       253.89       6.52       5.99       0.025       0.559       2007le         60       142<                                                                                                                                                                                                                                                          | 29 | 65  | Cu     | SLO   | 16.70           | 75.20           | 6.89              |               |       | 0.71  | 64Fu1   |
| 29         65         Cu         SMLO1         16.95         74.68         7.17         7.01         0.613         2007le           29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO         15.63         266.00         5.24         2.74         69Fu           49         115         In         SLO         15.63         265.87         5.24         2.744         2007le           49         115         In         MLO         15.80         262.52         5.60         5.52         0.850         2007le           49         115         In         SMLO1         15.80         262.52         5.61         5.52         0.849         2007le           49         115         In         SMLO2         15.80         262.52         5.61         5.52         0.355         0.849         2007le           49         115         In         SMLO3         1                                                                                                                                                                  | 29 | 65  | Cu     | SLO   | 16.70           | 75.19           | 6.89              |               |       | 0.710 | 2007le1 |
| 29         65         Cu         SMLO2         16.95         74.68         7.17         7.01         0.423         0.613         2007le           29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO         15.63         266.00         5.24         2.74         69Fu           49         115         In         SLO         15.63         265.87         5.24         2.744         2007le           49         115         In         MLO         15.80         262.52         5.60         5.52         0.850         2007le           49         115         In         SMLO1         15.80         262.52         5.61         5.52         0.849         2007le           49         115         In         SMLO2         15.80         262.52         5.61         5.52         0.355         0.849         2007le           49         115         In         SMLO3         16.06         253.89         6.52         5.99         0.025         0.559         2007le           60         142         Nd <td< td=""><td>29</td><td>65</td><td>Cu</td><td>MLO</td><td>16.95</td><td>74.69</td><td>7.17</td><td>7.01</td><td></td><td>0.613</td><td>2007le1</td></td<>              | 29 | 65  | Cu     | MLO   | 16.95           | 74.69           | 7.17              | 7.01          |       | 0.613 | 2007le1 |
| 29         65         Cu         SMLO3         17.31         72.02         8.39         7.45         0.028         0.608         2007le           49         115         In         SLO         15.63         266.00         5.24         2.74         69Fu           49         115         In         SLO         15.63         265.87         5.24         2.744         2007le           49         115         In         MLO         15.80         262.52         5.60         5.52         0.850         2007le           49         115         In         SMLO1         15.80         262.52         5.61         5.52         0.849         2007le           49         115         In         SMLO2         15.80         262.52         5.61         5.52         0.355         0.849         2007le           49         115         In         SMLO3         16.06         253.89         6.52         5.99         0.025         0.559         2007le           60         142         Nd         SLO         14.94         359.00         4.44         0.698         2007le           60         142         Nd         MLO         15.02                                                                                                                                                                           | 29 | 65  | Cu     | SMLO1 | 16.95           | 74.68           | 7.17              | 7.01          |       | 0.613 | 2007le1 |
| 49       115       In       SLO       15.63       266.00       5.24       2.74       69Fu         49       115       In       SLO       15.63       265.87       5.24       2.744       2007le         49       115       In       MLO       15.80       262.52       5.60       5.52       0.850       2007le         49       115       In       SMLO1       15.80       262.52       5.61       5.52       0.849       2007le         49       115       In       SMLO2       15.80       262.52       5.61       5.52       0.355       0.849       2007le         49       115       In       SMLO3       16.06       253.89       6.52       5.99       0.025       0.559       2007le         60       142       Nd       SLO       14.94       359.00       4.44       0.698       2007le         60       142       Nd       MLO       15.02       356.99       4.59       4.53       3.101       2007le         60       142       Nd       SMLO1       15.02       356.99       4.59       4.53       3.103       2007le         60       142       Nd       SM                                                                                                                                                                                                                                                          | 29 | 65  | Cu     | SMLO2 | 16.95           | 74.68           | 7.17              | 7.01          | 0.423 | 0.613 | 2007le1 |
| 49       115       In       SLO       15.63       265.87       5.24       2.744       2007le         49       115       In       MLO       15.80       262.52       5.60       5.52       0.850       2007le         49       115       In       SMLO1       15.80       262.52       5.61       5.52       0.849       2007le         49       115       In       SMLO2       15.80       262.52       5.61       5.52       0.355       0.849       2007le         49       115       In       SMLO3       16.06       253.89       6.52       5.99       0.025       0.559       2007le         60       142       Nd       SLO       14.94       359.00       4.44       0.698       2007le         60       142       Nd       SLO       14.94       359.49       4.44       0.698       2007le         60       142       Nd       MLO       15.02       356.99       4.59       4.53       3.103       2007le         60       142       Nd       SMLO2       15.02       356.99       4.59       4.53       0.305       3.103       2007le                                                                                                                                                                                                                                                                                  | 29 | 65  | Cu     | SMLO3 | 17.31           | 72.02           | 8.39              | 7.45          | 0.028 | 0.608 | 2007le1 |
| 49       115       In       MLO       15.80       262.52       5.60       5.52       0.850       2007le         49       115       In       SMLO1       15.80       262.52       5.61       5.52       0.849       2007le         49       115       In       SMLO2       15.80       262.52       5.61       5.52       0.355       0.849       2007le         49       115       In       SMLO3       16.06       253.89       6.52       5.99       0.025       0.559       2007le         60       142       Nd       SLO       14.94       359.00       4.44       0.70       71Ca         60       142       Nd       SLO       14.94       359.49       4.44       0.698       2007le         60       142       Nd       MLO       15.02       356.99       4.59       4.53       3.103       2007le         60       142       Nd       SMLO2       15.02       356.99       4.59       4.53       0.305       3.103       2007le         60       142       Nd       SMLO2       15.02       356.99       4.59       4.53       0.305       3.103       2007le   <                                                                                                                                                                                                                                                        | 49 | 115 | In     | SLO   | 15.63           | 266.00          | 5.24              |               |       | 2.74  | 69Fu1   |
| 49       115       In       SMLO1       15.80       262.52       5.61       5.52       0.849       2007le         49       115       In       SMLO2       15.80       262.52       5.61       5.52       0.355       0.849       2007le         49       115       In       SMLO3       16.06       253.89       6.52       5.99       0.025       0.559       2007le         60       142       Nd       SLO       14.94       359.00       4.44       0.70       71Ca         60       142       Nd       SLO       14.94       359.49       4.44       0.698       2007le         60       142       Nd       MLO       15.02       356.99       4.59       4.53       3.101       2007le         60       142       Nd       SMLO1       15.02       356.99       4.59       4.53       0.305       3.103       2007le         60       142       Nd       SMLO2       15.02       356.99       4.59       4.53       0.305       3.103       2007le                                                                                                                                                                                                                                                                                                                                                                            | 49 | 115 | In     | SLO   | 15.63           | 265.87          | 5.24              |               |       | 2.744 | 2007le1 |
| 49         115         In         SMLO2         15.80         262.52         5.61         5.52         0.355         0.849         2007le           49         115         In         SMLO3         16.06         253.89         6.52         5.99         0.025         0.559         2007le           60         142         Nd         SLO         14.94         359.00         4.44         0.70         71Ca           60         142         Nd         SLO         14.94         359.49         4.44         0.698         2007le           60         142         Nd         MLO         15.02         356.99         4.59         4.53         3.101         2007le           60         142         Nd         SMLO2         15.02         356.99         4.59         4.53         0.305         3.103         2007le           60         142         Nd         SMLO2         15.02         356.99         4.59         4.53         0.305         3.103         2007le                                                                                                                                                                                                                                                                                                                                                | 49 | 115 | In     | MLO   | 15.80           | 262.52          | 5.60              | 5.52          |       | 0.850 | 2007le1 |
| 49         115         In         SMLO3         16.06         253.89         6.52         5.99         0.025         0.559         2007le           60         142         Nd         SLO         14.94         359.00         4.44         0.70         71Ca           60         142         Nd         SLO         14.94         359.49         4.44         0.698         2007le           60         142         Nd         MLO         15.02         356.99         4.59         4.53         3.101         2007le           60         142         Nd         SMLO1         15.02         356.99         4.59         4.53         3.103         2007le           60         142         Nd         SMLO2         15.02         356.99         4.59         4.53         0.305         3.103         2007le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49 | 115 | In     | SMLO1 | 15.80           | 262.52          | 5.61              | 5.52          |       | 0.849 | 2007le1 |
| 60         142         Nd         SLO         14.94         359.00         4.44         0.70         71Ca           60         142         Nd         SLO         14.94         359.49         4.44         0.698         2007le           60         142         Nd         MLO         15.02         356.99         4.59         4.53         3.101         2007le           60         142         Nd         SMLO1         15.02         356.99         4.59         4.53         3.103         2007le           60         142         Nd         SMLO2         15.02         356.99         4.59         4.53         0.305         3.103         2007le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49 | 115 | In     | SMLO2 | 15.80           | 262.52          | 5.61              | 5.52          | 0.355 | 0.849 | 2007le1 |
| 60         142         Nd         SLO         14.94         359.49         4.44         0.698         2007le           60         142         Nd         MLO         15.02         356.99         4.59         4.53         3.101         2007le           60         142         Nd         SMLO1         15.02         356.99         4.59         4.53         3.103         2007le           60         142         Nd         SMLO2         15.02         356.99         4.59         4.53         0.305         3.103         2007le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49 | 115 | In     | SMLO3 | 16.06           | 253.89          | 6.52              | 5.99          | 0.025 | 0.559 | 2007le1 |
| 60         142         Nd         MLO         15.02         356.99         4.59         4.53         3.101         2007le           60         142         Nd         SMLO1         15.02         356.99         4.59         4.53         3.103         2007le           60         142         Nd         SMLO2         15.02         356.99         4.59         4.53         0.305         3.103         2007le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60 | 142 | Nd     | SLO   | 14.94           | 359.00          | 4.44              |               |       | 0.70  | 71Ca1   |
| 60 142 Nd SMLO1 15.02 356.99 4.59 4.53 3.103 2007le<br>60 142 Nd SMLO2 15.02 356.99 4.59 4.53 0.305 3.103 2007le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60 | 142 | Nd     | SLO   | 14.94           | 359.49          | 4.44              |               |       | 0.698 | 2007le1 |
| 60 142 Nd SMLO2 15.02 356.99 4.59 4.53 0.305 3.103 2007/e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60 | 142 | Nd     | MLO   | 15.02           | 356.99          | 4.59              | 4.53          |       | 3.101 | 2007le1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 | 142 | Nd     | SMLO1 | 15.02           | 356.99          | 4.59              | 4.53          |       | 3.103 | 2007le1 |
| 60 142 Nd SMLO3 15.14 348.96 5.03 4.75 0.022 8.407 2007le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60 | 142 | Nd     | SMLO2 | 15.02           | 356.99          | 4.59              | 4.53          | 0.305 | 3.103 | 2007le1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 | 142 | Nd     | SMLO3 | 15.14           | 348.96          | 5.03              | 4.75          | 0.022 | 8.407 | 2007le1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |        |       |                 |                 |                   |               |       |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |        |       |                 |                 |                   |               |       |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |        |       |                 |                 |                   |               |       |       |         |

| Z      | A   | Symbol | Model | E <sub>GR</sub> | σ <sub>GR</sub> | $\Gamma_{\it GR}$ | $\Gamma_{FK}$ | a1    | χ²    | Ref     |
|--------|-----|--------|-------|-----------------|-----------------|-------------------|---------------|-------|-------|---------|
|        |     |        |       | (MeV)           | (mb)            | l                 | (MeV)         |       |       |         |
| 60     | 143 | Nd     | SLO   | 15.01           | 349.00          | 4.75              |               |       | 1.44  | 71Ca1   |
| 60     | 143 | Nd     | SLO   | 15.01           | 348.96          | 4.75              |               |       | 1.441 | 2007le1 |
| 60     | 143 | Nd     | MLO   | 15.09           | 342.90          | 5.02              | 4.95          |       | 3.228 | 2007le1 |
| 60     | 143 | Nd     | SMLO1 | 15.09           | 342.90          | 5.02              | 4.95          |       | 3.229 | 2007le1 |
| 60     | 143 | Nd     | SMLO2 | 15.09           | 342.90          | 5.02              | 4.95          | 0.333 | 3.229 | 2007le1 |
| 60     | 143 | Nd     | SMLO3 | 15.25           | 329.99          | 5.73              | 5.33          | 0.025 | 5.604 | 2007le1 |
| 60     | 144 | Nd     | SLO   | 15.05           | 317.00          | 5.28              |               |       | 1.13  | 71Ca1   |
| 60     | 144 | Nd     | SLO   | 15.05           | 316.92          | 5.28              |               |       | 1.130 | 2007le1 |
| 60     | 144 | Nd     | MLO   | 15.18           | 312.84          | 5.59              | 5.50          |       | 2.310 | 2007le1 |
| 60     | 144 | Nd     | SMLO1 | 15.18           | 312.84          | 5.59              | 5.50          |       | 2.311 | 2007le1 |
| 60     | 144 | Nd     | SMLO2 | 15.18           | 312.84          | 5.59              | 5.50          | 0.369 | 2.311 | 2007le1 |
| 60     | 144 | Nd     | SMLO3 | 15.41           | 301.42          | 6.52              | 5.95          | 0.027 | 4.289 | 2007le1 |
| 60     | 145 | Nd     | SLO   | 14.95           | 296.00          | 6.31              |               |       | 2.46  | 71Ca1   |
| 60     | 145 | Nd     | SLO   | 14.95           | 296.53          | 6.31              |               |       | 2.461 | 2007le1 |
| 60     | 145 | Nd     | MLO   | 15.15           | 291.14          | 6.80              | 6.62          |       | 3.411 | 2007le1 |
| 60     | 145 | Nd     | SMLO1 | 15.15           | 291.14          | 6.80              | 6.62          |       | 3.411 | 2007le1 |
| 60     | 145 | Nd     | SMLO2 | 15.15           | 291.14          | 6.80              | 6.62          | 0.449 | 3.411 | 2007le1 |
| 60     | 145 | Nd     | SMLO3 | 15.56           | 274.15          | 8.60              | 7.39          | 0.036 | 4.220 | 2007le1 |
| 60     | 146 | Nd     | SLO   | 14.74           | 310.00          | 5.78              |               |       | 0.88  | 71Ca1   |
| 60     | 146 | Nd     | SLO   | 14.74           | 310.27          | 5.78              |               |       | 0.880 | 2007le1 |
| 60     | 146 | Nd     | MLO   | 14.89           | 305.38          | 6.09              | 5.96          |       | 2.035 | 2007le1 |
| 60     | 146 | Nd     | SMLO1 | 14.89           | 305.38          | 6.09              | 5.96          |       | 2.036 | 2007le1 |
| 60     | 146 | Nd     | SMLO2 | 14.89           | 305.38          | 6.09              | 5.96          | 0.409 | 2.036 | 2007le1 |
| 60     | 146 | Nd     | SMLO3 | 15.17           | 291.67          | 7.23              | 6.44          | 0.031 | 3.401 | 2007le1 |
|        |     |        |       |                 |                 |                   |               |       |       |         |
|        |     |        |       |                 |                 |                   |               |       |       |         |
|        |     |        |       |                 |                 |                   |               |       |       |         |
| $\Box$ |     |        |       |                 |                 |                   |               |       |       |         |

| Z  | Α   | Symbol | Model | E <sub>GR</sub> | σ <sub>GR</sub> | $\Gamma_{\it GR}$ | $\Gamma_{FK}$ | a1    | χ²     | Ref     |
|----|-----|--------|-------|-----------------|-----------------|-------------------|---------------|-------|--------|---------|
|    |     |        |       | (MeV)           |                 |                   | (MeV)         |       |        |         |
| 82 | 206 | Pb     | SLO   | 13.59           | 514.00          | 3.85              |               |       | 2.40   | 64Ha2   |
| 82 | 206 | Pb     | SLO   | 13.58           | 513.51          | 3.85              |               |       | 2.399  | 2007le1 |
| 82 | 206 | Pb     | MLO   | 13.62           | 504.78          | 4.03              | 3.99          |       | 5.801  | 2007le1 |
| 82 | 206 | Pb     | SMLO1 | 13.62           | 504.78          | 4.03              | 3.99          |       | 5.802  | 2007le1 |
| 82 | 206 | Pb     | SMLO2 | 13.62           | 504.78          | 4.03              | 3.99          | 0.296 | 5.802  | 2007le1 |
| 82 | 206 | Pb     | SMLO3 | 13.70           | 487.28          | 4.48              | 4.24          | 0.024 | 10.549 | 2007le1 |
| 82 | 207 | Pb     | SLO   | 13.56           | 481.00          | 3.96              |               |       | 2.79   | 64Ha2   |
| 82 | 207 | Pb     | SLO   | 13.56           | 481.13          | 3.96              |               |       | 2.787  | 2007le1 |
| 82 | 207 | Pb     | MLO   | 13.58           | 467.90          | 4.24              | 4.19          |       | 5.722  | 2007/e1 |
| 82 | 207 | Pb     | SMLO1 | 13.58           | 467.90          | 4.24              | 4.19          |       | 5.723  | 2007le1 |
| 82 | 207 | Pb     | SMLO2 | 13.58           | 467.90          | 4.24              | 4.19          | 0.312 | 5.723  | 2007le1 |
| 82 | 207 | Pb     | SMLO3 | 13.67           | 446.35          | 4.85              | 4.55          | 0.026 | 9.505  | 2007le1 |
| 82 | 208 | Pb     | SLO   | 13.46           | 491.00          | 3.90              |               |       | 4.21   | 64Ha2   |
| 82 | 208 | Pb     | SLO   | 13.46           | 490.92          | 3.90              |               |       | 4.210  | 2007le1 |
| 82 | 208 | Pb     | MLO   | 13.51           | 479.90          | 4.17              | 4.12          |       | 8.304  | 2007le1 |
| 82 | 208 | Pb     | SMLO1 | 13.51           | 479.90          | 4.17              | 4.12          |       | 8.305  | 2007le1 |
| 82 | 208 | Pb     | SMLO2 | 13.51           | 479.90          | 4.17              | 4.12          | 0.309 | 8.305  | 2007le1 |
| 82 | 208 | Pb     | SMLO3 | 13.62           | 460.37          | 4.76              | 4.47          | 0.026 | 13.524 | 2007le1 |
| 59 | 141 | Pr     | SLO   | 15.23           | 341.00          | 4.00              |               |       | 1.87   | 70Su1   |
| 59 | 141 | Pr     | SLO   | 15.23           | 341.23          | 4.00              |               |       | 1.867  | 2007le1 |
| 59 | 141 | Pr     | MLO   | 15.27           | 337.25          | 4.12              | 4.08          |       | 4.491  | 2007le1 |
| 59 | 141 | Pr     | SMLO1 | 15.27           | 337.24          | 4.12              | 4.08          |       | 4.493  | 2007/e1 |
| 59 | 141 | Pr     | SMLO2 | 15.27           | 337.24          | 4.12              | 4.08          | 0.270 | 4.493  | 2007le1 |
| 59 | 141 | Pr     | SMLO3 | 15.34           | 329.38          | 4.43              | 4.24          | 0.019 | 8.123  | 2007le1 |
|    |     |        |       |                 |                 |                   |               |       |        |         |
|    |     |        |       |                 |                 |                   |               |       |        |         |
|    |     |        |       |                 |                 |                   |               |       |        |         |

| 50 11<br>50 11<br>50 11<br>50 11<br>50 11<br>50 11<br>50 11 | 6 Sn<br>6 Sn<br>6 Sn<br>6 Sn<br>7 Sn<br>7 Sn | SLO<br>SLO<br>MLO<br>SMLO1<br>SMLO2<br>SMLO3<br>SLO | E <sub>GR</sub><br>(MeV)<br>15.68<br>15.74<br>15.74<br>15.74<br>15.85 | GR<br>(mb)<br>266.00<br>266.33<br>263.77<br>263.77<br>263.77<br>257.86 | Γ <sub>GR</sub><br>(MeV)<br>4.19<br>4.19<br>4.37<br>4.37<br>4.37<br>4.78 | Γ <sub>FK</sub> (MeV)  4.33 4.33 4.33 4.56 | 0.278<br>0.019 | 0.98<br>0.980<br>1.032<br>1.032<br>1.032 | 69Fu1<br>2007le1<br>2007le1<br>2007le1<br>2007le1 |
|-------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|----------------|------------------------------------------|---------------------------------------------------|
| 50 11<br>50 11<br>50 11<br>50 11<br>50 11                   | 6 Sn<br>6 Sn<br>6 Sn<br>6 Sn<br>7 Sn<br>7 Sn | SLO<br>MLO<br>SMLO1<br>SMLO2<br>SMLO3<br>SLO<br>SLO | 15.68<br>15.74<br>15.74<br>15.74<br>15.85<br>15.66                    | 266.33<br>263.77<br>263.77<br>263.77<br>257.86                         | 4.19<br>4.37<br>4.37<br>4.37                                             | 4.33<br>4.33                               |                | 0.980<br>1.032<br>1.032<br>1.032         | 2007le1<br>2007le1<br>2007le1                     |
| 50 11<br>50 11<br>50 11<br>50 11<br>50 11                   | 6 Sn<br>6 Sn<br>6 Sn<br>6 Sn<br>7 Sn<br>7 Sn | MLO<br>SMLO1<br>SMLO2<br>SMLO3<br>SLO<br>SLO        | 15.74<br>15.74<br>15.74<br>15.85<br>15.66                             | 263.77<br>263.77<br>263.77<br>257.86                                   | 4.37<br>4.37<br>4.37                                                     | 4.33<br>4.33                               |                | 1.032<br>1.032<br>1.032                  | 2007le1<br>2007le1                                |
| 50 11<br>50 11<br>50 11<br>50 11                            | 6 Sn<br>6 Sn<br>6 Sn<br>7 Sn<br>7 Sn         | SMLO1<br>SMLO2<br>SMLO3<br>SLO<br>SLO               | 15.74<br>15.74<br>15.85<br>15.66                                      | 263.77<br>263.77<br>257.86                                             | 4.37<br>4.37                                                             | 4.33<br>4.33                               |                | 1.032<br>1.032                           | 2007le1                                           |
| 50 11<br>50 11<br>50 11                                     | 6 Sn<br>6 Sn<br>7 Sn<br>7 Sn                 | SMLO2<br>SMLO3<br>SLO<br>SLO                        | 15.74<br>15.85<br>15.66                                               | 263.77<br>257.86                                                       | 4.37                                                                     | 4.33                                       |                | 1.032                                    |                                                   |
| 50 11<br>50 11                                              | 6 Sn<br>7 Sn<br>7 Sn                         | SMLO3<br>SLO<br>SLO                                 | 15.85<br>15.66                                                        | 257.86                                                                 |                                                                          |                                            |                |                                          | 2007le1                                           |
| 50 11                                                       | 7 Sn<br>7 Sn                                 | SLO<br>SLO                                          | 15.66                                                                 |                                                                        | 4.78                                                                     | 4.56                                       | 0.040          | 4 500                                    |                                                   |
| 1 1                                                         | 7 Sn                                         | SLO                                                 |                                                                       | 254.00                                                                 |                                                                          |                                            | 0.019          | 1.592                                    | 2007le1                                           |
| 50 11                                                       |                                              |                                                     | !                                                                     |                                                                        | 5.02                                                                     |                                            |                | 1.76                                     | 69Fu1                                             |
|                                                             | 7 Sn                                         |                                                     | 15.66                                                                 | 253.64                                                                 | 5.02                                                                     |                                            |                | 1.760                                    | 2007le1                                           |
| 50 11                                                       | I .                                          | MLO                                                 | 15.78                                                                 | 250.27                                                                 | 5.34                                                                     | 5.26                                       |                | 1.074                                    | 2007le1                                           |
| 50 11                                                       | 7   Sn                                       | SMLO1                                               | 15.78                                                                 | 250.27                                                                 | 5.34                                                                     | 5.26                                       |                | 1.074                                    | 2007le1                                           |
| 50 11                                                       | 7 Sn                                         | SMLO2                                               | 15.78                                                                 | 250.27                                                                 | 5.34                                                                     | 5.26                                       | 0.338          | 1.074                                    | 2007le1                                           |
| 50 11                                                       | 7 Sn                                         | SMLO3                                               | 15.98                                                                 | 242.16                                                                 | 6.12                                                                     | 5.68                                       | 0.024          | 1.359                                    | 2007le1                                           |
| 50 11                                                       | 8 Sn                                         | SLO                                                 | 15.59                                                                 | 256.00                                                                 | 4.77                                                                     |                                            |                | 4.25                                     | 69Fu1                                             |
| 50 11                                                       | 8 Sn                                         | SLO                                                 | 15.59                                                                 | 255.64                                                                 | 4.77                                                                     |                                            |                | 4.251                                    | 2007le1                                           |
| 50 11                                                       | 8 Sn                                         | MLO                                                 | 15.71                                                                 | 252.84                                                                 | 5.05                                                                     | 4.98                                       |                | 1.952                                    | 2007le1                                           |
| 50 11                                                       | 8 Sn                                         | SMLO1                                               | 15.71                                                                 | 252.84                                                                 | 5.05                                                                     | 4.98                                       |                | 1.951                                    | 2007le1                                           |
| 50 11                                                       | 8 Sn                                         | SMLO2                                               | 15.71                                                                 | 252.84                                                                 | 5.05                                                                     | 4.98                                       | 0.321          | 1.951                                    | 2007le1                                           |
| 50 11                                                       | 8 Sn                                         | SMLO3                                               | 15.89                                                                 | 245.92                                                                 | 5.71                                                                     | 5.35                                       | 0.023          | 1.665                                    | 2007le1                                           |
| 50 11                                                       | 9 Sn                                         | SLO                                                 | 15.53                                                                 | 253.00                                                                 | 4.81                                                                     |                                            |                | 1.24                                     | 69Fu1                                             |
| 50 11                                                       | 9 Sn                                         | SLO                                                 | 15.53                                                                 | 252.55                                                                 | 4.81                                                                     |                                            |                | 1.242                                    | 2007le1                                           |
| 50 11                                                       | 9 Sn                                         | MLO                                                 | 15.66                                                                 | 250.07                                                                 | 5.12                                                                     | 5.05                                       |                | 1.245                                    | 2007le1                                           |
| 50 11                                                       | 9 Sn                                         | SMLO1                                               | 15.66                                                                 | 250.06                                                                 | 5.12                                                                     | 5.05                                       |                | 1.245                                    | 2007le1                                           |
| 50 11                                                       | 9 Sn                                         | SMLO2                                               | 15.66                                                                 | 250.06                                                                 | 5.12                                                                     | 5.05                                       | 0.327          | 1.245                                    | 2007le1                                           |
| 50 11                                                       | 9 Sn                                         | SMLO3                                               | 15.86                                                                 | 243.26                                                                 | 5.85                                                                     | 5.45                                       | 0.023          | 1.755                                    | 2007le1                                           |
|                                                             |                                              |                                                     |                                                                       |                                                                        |                                                                          |                                            |                |                                          |                                                   |
|                                                             |                                              |                                                     |                                                                       |                                                                        |                                                                          |                                            |                |                                          |                                                   |
|                                                             |                                              |                                                     |                                                                       |                                                                        |                                                                          |                                            |                |                                          |                                                   |

| z  | A   | Symbol | Model | E <sub>GR</sub> | $\sigma_{GR}$ | $\Gamma_{\it GR}$ | $\Gamma_{FK}$ | a1    | χ²    | Ref     |
|----|-----|--------|-------|-----------------|---------------|-------------------|---------------|-------|-------|---------|
|    |     |        |       | (MeV)           | (mb)          | 1                 | (MeV)         |       |       |         |
| 50 | 120 | Sn     | SLO   | 15.40           | 280.00        | 4.89              |               |       | 5.88  | 69Fu1   |
| 50 | 120 | Sn     | SLO   | 15.40           | 280.34        | 4.89              |               |       | 5.876 | 2007le1 |
| 50 | 120 | Sn     | MLO   | 15.54           | 279.05        | 5.06              | 5.00          |       | 2.589 | 2007le1 |
| 50 | 120 | Sn     | SMLO1 | 15.54           | 279.05        | 5.06              | 5.00          |       | 2.588 | 2007le1 |
| 50 | 120 | Sn     | SMLO2 | 15.54           | 279.05        | 5.06              | 5.00          | 0.326 | 2.588 | 2007le1 |
| 50 | 120 | Sn     | SMLO3 | 15.71           | 273.03        | 5.61              | 5.25          | 0.023 | 1.674 | 2007le1 |
| 50 | 124 | Sn     | SLO   | 15.19           | 283.00        | 4.81              |               |       | 3.55  | 69Fu1   |
| 50 | 124 | Sn     | SLO   | 15.19           | 282.78        | 4.81              |               |       | 3.547 | 2007le1 |
| 50 | 124 | Sn     | MLO   | 15.31           | 280.88        | 5.01              | 4.94          |       | 1.786 | 2007le1 |
| 50 | 124 | Sn     | SMLO1 | 15.31           | 280.88        | 5.01              | 4.94          |       | 1.785 | 2007le1 |
| 50 | 124 | Sn     | SMLO2 | 15.31           | 280.88        | 5.01              | 4.94          | 0.327 | 1.785 | 2007le1 |
| 50 | 124 | Sn     | SMLO3 | 15.48           | 274.39        | 5.57              | 5.21          | 0.023 | 1.032 | 2007le1 |
| 39 | 89  | Y      | SLO   | 16.79           | 185.00        | 3.95              |               |       | 4.76  | 67Be2   |
| 39 | 89  | Y      | SLO   | 16.85           | 184.50        | 4.02              |               |       | 4.756 | 2007le1 |
| 39 | 89  | Y      | MLO   | 16.91           | 182.49        | 4.21              | 4.18          |       | 2.113 | 2007le1 |
| 39 | 89  | Y      | SMLO1 | 16.91           | 182.49        | 4.21              | 4.18          |       | 2.112 | 2007le1 |
| 39 | 89  | Y      | SMLO2 | 16.91           | 182.49        | 4.21              | 4.18          | 0.249 | 2.112 | 2007le1 |
| 39 | 89  | Υ      | SMLO3 | 17.01           | 178.82        | 4.59              | 4.42          | 0.016 | 1.306 | 2007le1 |
| 40 | 90  | Zr     | SLO   | 16.85           | 185.00        | 4.02              |               |       | 4.66  | 67Be2   |
| 40 | 90  | Zr     | SLO   | 16.85           | 184.52        | 4.01              |               |       | 4.659 | 2007le1 |
| 40 | 90  | Zr     | MLO   | 16.91           | 182.51        | 4.21              | 4.18          |       | 2.059 | 2007le1 |
| 40 | 90  | Zr     | SMLO1 | 16.91           | 182.51        | 4.21              | 4.18          |       | 2.058 | 2007le1 |
| 40 | 90  | Zr     | SMLO2 | 16.91           | 182.51        | 4.21              | 4.18          | 0.249 | 2.058 | 2007le1 |
| 40 | 90  | Zr     | SMLO3 | 17.01           | 178.84        | 4.58              | 4.42          | 0.016 | 1.290 | 2007le1 |
|    |     |        |       |                 |               |                   |               |       |       |         |
|    |     |        |       |                 |               |                   |               |       |       |         |
|    |     |        |       |                 |               |                   |               |       |       |         |

parameterizations for spherical nuclei 6

## Додаток 3

- В Додатку 3 наведено пояснення посилань на експериментальні групи. Посилання 2007le1 відповідає перепідгонці експериментальних даних мною використовуючи різні підходи.
- 62Fu1 S. C. Fultz, R. L. Bramblett, J. T. Caldwell, N. E. Hansen, C. P. Jupiter; Phys. Rev., 128, 2345(1962).
- 62Fu2 S. C. Fultz, R. L. Bramblett, J. T. Caldwell, N. A. Kerr; Phys. Rev., 127, 1273(1962).
- 63Br1 R. L. Bramblett, J. T. Caldwell, G. F. Auchampaugh, S. C. Fultz; Phys. Rev., 129,2723(1963).
- 64Bo3 C. D. Bowman, G. F. Auchampaugh, S. C. Fultz; Phys. Rev., 133, B676(1964).
- 64Br1 R. L. Bramblett, J. T. Caldwell, R. R. Harvey, S. C. Fultz; Phys. Rev., 133, B869(1964).
- 64Fu1 S. C. Fultz, R. L. Bramblett, J. T. Caldwell, R. R. Harvey; Phys. Rev., 133, B1149(1964).
- 64Ha2 R. R. Harvey, J. T. Caldwell, R. L. Bramblett, S. C. Fultz; Phys. Rev., 136, B126(1964).
- 66Ax1 P. Axel, J. Miller, C. Schuhl, G. Tamas, C. Tzara; J. Physique, 27,262(1966).
- 66Br1 R. L. Bramblett, J. T. Caldwell, B. L. Berman, R. R. Harvey, S. C. Fultz; Phys. Rev., 148, 1198(1966)
- 67Be2 B. L. Berman, J. T. Caldwell, R. R. Harvey, M. A. Kelly, R. L. Bramblett, S. C. Fultz; Phys. Rev., 162, 1098(1967).
- 68Be5 R.Bergere, R. Beil, A. Veyssiere; Nucl. Phys. A121, 463(1968).
- 68Su1 R. E. Sund, M. P. Baker, L. A. Kull, R. B. Walton; Phys. Rev., 176, 1366(1968).
- 69Be1 B. L. Berman, R. L. Bramblett, J. T. Caldwell, H. S. Davis, M. A. Kelly, S. C. Fultz; Phys. Rev., 177, 1745(1969).
- 69Be6 R. Bergere, H. Beil, P. Carlos, A. Veyssiere; Nucl. Phys., A133, 417(1969).
- 69Be8 B. L. Berman, M. A. Kelly, R. L. Bramblett, J. T. Caldwell, H. S. Davis, S. C. Fultz; Phys. Rev., 185, 1576(1969).

- 69Fu1 S. C. Fultz, B. L. Berman, J. T. Caldwell, R. L. Bramblett, M. A. Kelly; Phys. Rev., 186, 1255(1969).
- 70Be8 B. L. Berman, S. C. Fultz, J. T. Caldwell, M. A. Kelly, S. S. Dietrich; Phys. Rev., C2, 2318(1970).
- 70Su1 R. E. Sund, V. V. Verbinski, H. Weber, L. A. Kull; Phys. Rev., C2, 1129(1970).
- 70Vel A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre; Nucl. Phys. A159, 561(1970).
- 71Be4 H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. Veyssiere, A. Parlag; Nucl. Phys. A172, 426(1971).
- 71Ca1 P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. Veyssiere; Nucl. Phys. A172, 437(1971).
- 71Le1 A. Lepretre, H. Beil, R. Bergere, P. Carlos, A. Veyssiere, M. Sugawara; Nucl. Phys. A175, 609(1971).
- 72Yo L. M. Young, Ph.D. Thesis, University of Illinois(1972), unpublished.
- 73Vel A. Veyssiere, H. Reil, R. Bergere, P. Carlos, A. Lepretre, k. kernbach; Nucl. Phys. A199, 45(1973).
- 74Be3 H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac, A. Veyssiere; Nucl. Phys. A227, 427(1974).
- 74Ca5 P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. De Miniac, A. Veyssiere; Nucl. Phys. A225, 171(1974).
- 74Fu3 S. C. Fultz, R. A. Alvarez, B. L. Berman, P. Meyer; Phys.Rev., C10, 608(1974).
- 74Le1 A. Lepretre, H. Beil, R. Bergere, P. Carlos, A. De Miniac, A. Veyssiere, K. Kernbach; Nucl. Phys. A219, 39(1974).
- 74Vel A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac; Nucl. Phys. A227, 513(1974).
- 75Ve5 A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac; J. Physique 36, L-267(1975).
- 76Ca1 P. Carlos, H. Beil, R. Bergere, J. Fagot, A. Lepretre, A. Veyssiere,G. V.Solodukhov; Nucl. Phys. A258, 365(1976).

- 76Le2 A. Lepretre, H. Beil, R. Bergere, P. Carlos, J. Fagot, A. De Miniac, A. Veyssiere, H. Miyase; Nucl. Phys. A258, 350(1976).
- 77Wei J.Weise, M.N.Thompson, K.Shoda, H.Tsubata; Austr. J. Phys.,30, 401(1977) (see also IAEA-TECDOC-1178, IAEA, October 2000.)
- 79Al2 R. A. Alavarez, B. L. Berman, D. D. Faul, F. H. Lewis, Jr., P. Meyer; Phys. Rev., C20, 128(1979).
- 79Be4 B. L. Berman, D. D. Faul, R. A. Alvarez, P. Meyer, D. L. Olson; Phys. Rev., C19, 1205(1979).
- 80Ca1 J. T. Caldwell, E. J. Dowdy, B. L. Berman, R. A. Avarez, P. Meyer; Phys. Rev., C21, 1215(1980).
- 81Ram S.Raman, O.Shahal, G.G. Slauther; Phys.Rev. C23, 2794(1981).
- 86Be1 B. L. Berman, R. E. Pywell, M. N. Thompson, K. G. Mcneill, J. W. Jury, J. G. Woodworth; Bull. Am. Phys. Soc. 31, 855(1986).
- 86Be2 B. L. Berman, J. T. Caldwell, E. J. Dowdy, S. S. Dietrich, P. Meyer, R. A. Alvarez; Phys. Rev., C34, 2201(1986).
- 92Kop J.Kopecky, M.Uhl, R.E.Chrien; Preprint ECN-RX--92-011, April 1992.
- 95Li1 Liu Jianfen and Su Zongdi; J. Chinese Nucl. Phys., 16, 560(1995).