Convolução

José Luis Seixas Junior

Ciência da Computação Universidade Estadual do Paraná

Processamento de Imagens 2018

Índice

- Convolução
- 2 Média
- Mediana
- 4 Atividade

Convolução

Definição

- Integral de Superposição de duas funções resultando em uma terceira;
- Ao longo de uma região;

Convolução

Integral de Sinal com Núcleo de Integração

$$h(x,y) = f(x,y) * g(x,y) = \iint f(\alpha,\beta) \cdot g(x-\alpha,y-\beta) d\alpha d\beta$$

Laplaciano

Bordas

- Operador de detecção de bordas:
 - Gradiente;
 - Derivada segunda;
 - ullet Numérica o Discreta;

Pontos de Inflexão

- Zeros na derivada segunda;
- Derivadas parciais:
 - Gradiente em duas dimensões;

Laplaciano

Derivadas

Laplaciano

Roberts

Bordas

- Operador de detecção de bordas:
 - Gradiente;
 - Derivada primeira;
 - ullet Numérica o Discreta;

Pontos de Máximo Local

- Maiores distâncias na derivada primeira;
- Derivadas parciais:
 - Gradiente em duas dimensões;

Roberts

Roberts

$$resultado = \sqrt{R_1^2 + R_2^2}$$

Prewitt

Funções e Derivadas

resultado =
$$\sqrt{R_1^2 + R_2^2}$$

Funções e Derivadas

 R_1

 R_2

$$\textit{resultado} = \sqrt{\textit{R}_1^2 + \textit{R}_2^2}$$

Visualmente

Kirsch

Funções e Derivadas

5 5 5	-3 5 5	-3 -3 5	-3 -3 -3	-3 -3 -3	-3 -3 -3	5 -3 -3	5 5 -3
-3 0 -3	-3 0 5	-3 0 5	-3 0 5	-3 0 -3	5 0 -3	5 0 -3	5 0 -3
-3 -3 -3	-3 -3 -3	-3 -3 5	-3 5 5	5 5 5	5 5 -3	5 -3 -3	-3 -3 -3
R_1	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈

$$\textit{resultado} = \sqrt{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2 + R_7^2 + R_8^2}$$

Média

Núcleo de Convolução

(x-1,y-1)	(x,y-1)	(x+1,y-1)
(x-1,y)	(x,y)	(x+1,y)
(x-1,y+1)	(x,y+1)	(x+1,y+1)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Definição

I(x,y) =soma dos valores dos vizinhos dividido pelo número de pontos;

• Bordas possuem um número menor de pontos;

Média

Exemplo

Mediana

Núcleo de Convolução

(x-1,y-1)	(x,y-1)	(x+1,y-1)
(x-1,y)	(x,y)	(x+1,y)
(x-1,y+1)	(x,y+1)	(x+1,y+1)

10	20	100
200	5	15
30	18	40

Definição

I(x, y) = elemento do meio de vetor ordenado;

Mediana

Exemplo

Efeito

Exemplo

Diferença

Média

- Suavizar ruído;
- Complexidade de operações simples;
- Dados gerados;
- Diminui gradiente de cor;

Mediana

- Eliminar ruído;
- Complexidade de ordenação;
- Dados da imagem;
- Tende a manter o gradiente;

Atividade 06

Atividade 06/1

• Implementar a detecção de bordas com o algoritmo de Sobel;

Entrega

• 24 de Maio;

Atividade 06

Atividade 06/2

- Implemente os filtros de média e mediana:
 - Cinza;
 - Colorido;

Entrega

• 24 de Maio;

Referências I

Pratt, W. K. Digital Image Processing. Wiley-Interscience Publication 1991.

Pattern Recognition.

http://www.journals.elsevier.com/pattern-recognition/.

