EE488 Special Topics in EE <Deep Learning and AlphaGo>

Sae-Young Chung
Some mid-term exam problems
October 23, 2017

Problem 1

1. (Local minimum, global minimum and saddle point)

Note that the global minimum is also a local minimum since the function value only increases in a small neighborhood of x = 3. x = 2 is a saddle point since f'(2) = 0 but it is neither local minimum or local maximum. Note that f(x) is differentiable once at x = 2, but not twice.

Problem 6

6. (Backpropagation)

Solution)

(a)

$$\frac{\partial J}{\partial z_i} = -\frac{\partial}{\partial z_i} \sum_{i'} \log \sigma((2y_{i'} - 1)z_{i'})$$

$$= -\frac{\partial}{\partial z_i} \log \sigma((2y_i - 1)z_i)$$

$$= (1 - 2y_i)(1 - \sigma((2y_i - 1)z_i))$$

$$= \begin{cases} \hat{y}_i & \text{if } y_i = 0\\ \hat{y}_i - 1 & \text{if } y_i = 1 \end{cases}$$

$$= \hat{y}_i - y_i,$$

where the third equality follows since $\frac{\partial}{\partial z} \log \sigma(\alpha z) = \frac{\partial}{\partial z} \log \frac{1}{1 + \exp(-\alpha z)} = \frac{\alpha \exp(-\alpha z)}{1 + \exp(-\alpha z)} = \alpha(1 - \sigma(\alpha z))$ and the fourth equality follows by considering two cases $y_i = 0$ or 1 and by using $1 - \sigma(-z) = \sigma(z)$.

(b) Using the result in (a), we get

$$\nabla_{\mathbf{z}}J = \hat{\mathbf{y}} - \mathbf{y}.$$

Recap – Example 1 (Lecture Notes #6)

- Training set: (\mathbf{x}, \mathbf{y})
 - $-\mathbf{x}$: $m \times 1$ vector of m inputs for training
 - y: $m \times 1$ vector of m outputs for training
- Assume *l* layers with 1 neuron in each layer
 - First layer output: $\mathbf{h}_1 = \phi^{(1)}(\mathbf{x}w_1)$ (assume no bias for simplicity) (define also $\mathbf{h}_0 = \mathbf{x}$)
 - * w_1 : weight of the first layer
 - * $\phi^{(1)}(\cdot)$: activation function of the first layer
 - * \mathbf{h}_1 : $m \times 1$ vector containing m outputs of the first layer
 - Second layer output: $\mathbf{h}_2 = \phi^{(2)}(\mathbf{h}_1 w_2)$
 - * w_2 : weight of the second layer
 - * $\phi^{(2)}(\cdot)$: activation function of the second layer
 - * \mathbf{h}_2 : $m \times 1$ vector containing m outputs of the second layer
 - l-th layer output: $\mathbf{h}_l = \phi^{(l)}(\mathbf{h}_{l-1}w_l)$ (output layer)
- Cost

$$J(w_1, w_2, \dots, w_l) = \frac{1}{2m} \|\mathbf{y} - \mathbf{h}_l\|^2$$

Recap – Example 1 (Lecture Notes #6)

- Goal: to calculate gradients $\frac{\partial J}{\partial w_1}$, $\frac{\partial J}{\partial w_2}$, ..., $\frac{\partial J}{\partial w_l}$
- Let's define $\mathbf{u}_k = \mathbf{h}_{k-1} w_k$ and $\mathbf{g}_k = \nabla_{\mathbf{u}_k} J$, $k = 1, \dots, l$, then $\mathbf{g}_l = \frac{1}{m} \phi^{(l)'}(\mathbf{u}_l) \odot (\mathbf{h}_l \mathbf{y})$ and $\mathbf{g}_{k-1} = \phi^{(k-1)'}(\mathbf{u}_{k-1}) \odot \mathbf{g}_k w_k$, $k = 2, \dots, l$ since

$$g_{l,i} = \frac{\partial J}{\partial u_{l,i}} = \frac{\partial}{\partial u_{l,i}} \frac{1}{2m} \|\mathbf{y} - \phi^{(l)}(\mathbf{u}_l)\|^2 = \frac{\partial}{\partial u_{l,i}} \frac{1}{2m} (y_i - \phi^{(l)}(u_{l,i}))^2 = \frac{1}{m} \phi^{(l)'}(u_{l,i}) (\phi^{(l)}(u_{l,i}) - y_i)$$

$$g_{l-1,i} = \frac{\partial J}{\partial u_{l-1,i}} = \sum_{i'} \frac{\partial u_{l,i'}}{\partial u_{l-1,i}} \frac{\partial J}{\partial u_{l,i'}} = \phi^{(l-1)'}(u_{l-1,i}) w_l g_{l,i}$$

: $g_{1,i} = \phi^{(1)'}(u_{1,i})w_2g_{2,i}$

• $\frac{\partial J}{\partial w_k} = \mathbf{h}_{k-1}^T \mathbf{g}_k, k = 1, \dots, l \text{ since}$

$$\frac{\partial J}{\partial w_k} = \sum_{i'} \frac{\partial u_{k,i'}}{\partial w_k} \frac{\partial J}{\partial u_{k,i'}} = \sum_{i'} h_{k-1,i'} g_{k,i'} = \mathbf{h}_{k-1}^T \mathbf{g}_k$$

6. (Backpropagation -10 points) Let's consider a two-layer neural network given by

$$h = \phi(w_1 x + b_1)$$
$$\hat{y} = \sigma(w_2 h + b_2),$$

where x is the input, h is the output of the first layer, \hat{y} is the final output, $\phi(\cdot)$ is an activation function for the hidden layer and $\sigma(x) = \frac{1}{1 + \exp(-x)}$ is the sigmoid function. x, w_1, b_1, h, w_2, b_2 and \hat{y} are all scalars. Let (\mathbf{x}, \mathbf{y}) denote the set of m training examples, where \mathbf{x} is the $m \times 1$ vector of m inputs for training and \mathbf{y} is the $m \times 1$ vector of m outputs for training. Let x_i and y_i denote the i-th element of \mathbf{x} and \mathbf{y} , respectively. Let's define $\mathbf{u} = w_1\mathbf{x} + b_1$, $\mathbf{h} = \phi(\mathbf{u})$, $\mathbf{z} = w_2\mathbf{h} + b_2$, and $\hat{\mathbf{y}} = \sigma(\mathbf{z})$. Let u_i, h_i, z_i , and \hat{y}_i denote the i-th element of \mathbf{u} , \mathbf{h} , \mathbf{z} , and $\hat{\mathbf{y}}$, respectively. Assume the elements of \mathbf{y} are binary, i.e., 0 or 1. Assume the cost function J is defined using the cross entropy, i.e., $J = -\sum_{i=1}^{m} \log \sigma((2y_i - 1)z_i)$. Let \mathbf{f} and \mathbf{g} denote $\nabla_{\mathbf{u}}J$ and $\nabla_{\mathbf{z}}J$, respectively and let f_i and g_i denote the i-th element of \mathbf{f} and \mathbf{g} , respectively.

- (b) What is $\nabla_{\mathbf{z}} J$? Write your answer below. Your answer should be expressed in terms of vectors we defined so far, e.g., \mathbf{x} , \mathbf{h} , \mathbf{y} , etc. Make your final expression as simple as possible. You will get 0 point if the final expression is not of the simplest form.
- (e) Derive $\frac{\partial J}{\partial w_2}$, $\frac{\partial J}{\partial b_2}$, $\frac{\partial J}{\partial w_1}$, and $\frac{\partial J}{\partial b_1}$ and write your answers in the boxes below. Make your final expression as simple as possible. For each item, you will get 0 point if the final expression is not of the simplest form or if you do not provide detailed derivation steps. Your final expression should only contain vectors such as \mathbf{x} , \mathbf{h} , \mathbf{y} , etc.

Problem 8

8. (Overfitting or underfitting)

(a) An estimator $\hat{\theta}(x) = \frac{0.95 + 0.1x}{2}$ that estimates $0 \le \theta \le 1$ from x following $Bernoulli(\theta)$

Solution) This is an example of underfitting since $\hat{\theta}(x)$ is either 0.475 (when x = 0) or 0.525 (when x = 1), which is close to a trivial estimator that always outputs 0.5. Such a trivial estimator and the estimator in this problem would be in the underfitting regime whereas $\hat{\theta}(x) = x$ would be in the overfitting regime. $\hat{\theta}(x) = \frac{1+2x}{4}$ would achieve a good balance between underfitting and overfitting.

(b) Someone thinks Earth is sitting on four giant elephants.

Solution)

Overfitting. Why four? Why elephants? There are infinitely many other possibilities and you are simply believing what you chose to believe based on your limited experience.

Recap – Estimation

- Point estimation: estimation of a quantity of interest, say θ
 - $-\{x^{(1)},\ldots,x^{(m)}\}$: m i.i.d. data points generated by p_{θ}
 - $-\hat{\theta}_m = g(x^{(1)}, \dots, x^{(m)})$
 - Cf) function estimation: estimation of a function f(x) based on samples of (x,y)
- Bias of an estimator: $\operatorname{bias}(\hat{\theta}_m) = \mathbb{E}(\hat{\theta}_m) \theta$
- Variance of an estimator: $Var(\hat{\theta}_m)$
- Mean squared error (MSE)

$$MSE = \mathbb{E}[(\hat{\theta}_m - \theta)^2]$$

$$= \mathbb{E}[(\hat{\theta}_m - \mathbb{E}(\hat{\theta}_m) + \mathbb{E}(\hat{\theta}_m) - \theta)^2]$$

$$= Var(\hat{\theta}_m) + 2\mathbb{E}[\hat{\theta}_m - \mathbb{E}(\hat{\theta}_m)]\mathbb{E}[\mathbb{E}(\hat{\theta}_m) - \theta] + (\mathbb{E}(\hat{\theta}_m) - \theta)^2$$

$$= Var(\hat{\theta}_m) + 2\{\mathbb{E}(\hat{\theta}_m) - \mathbb{E}(\hat{\theta}_m)\} \cdot \{\mathbb{E}(\hat{\theta}_m) - \theta\} + Bias(\hat{\theta}_m)^2$$

$$= Var(\hat{\theta}_m) + Bias(\hat{\theta}_m)^2$$

Problem 8 (a)

$$\bullet$$
 $\hat{\theta}(x) = x$

- Bias:
$$\mathbb{E}[\hat{\theta}(x)] - \theta = \mathbb{E}[x] - \theta = \theta - \theta = 0$$

- Variance:
$$\mathbb{E}[(\hat{\theta}(x) - \mathbb{E}[\hat{\theta}(x)])^2] = \mathbb{E}[(x-\theta)^2] = (0-\theta)^2(1-\theta) + (1-\theta)^2\theta = \theta(1-\theta)$$

$$\bullet \ \hat{\theta}(x) = \frac{1}{2}$$

- Bias:
$$\mathbb{E}[\hat{\theta}(x)] - \theta = \frac{1}{2} - \theta$$

- Variance:
$$\mathbb{E}[(\hat{\theta}(x) - \mathbb{E}[\hat{\theta}(x)])^2] = 0$$

•
$$\hat{\theta}(x) = \frac{1+2x}{4} = \begin{cases} \frac{1}{4} & \text{if } x = 0\\ \frac{3}{4} & \text{if } x = 1 \end{cases}$$

– Bias:
$$\mathbb{E}[\hat{\theta}(x)] - \theta = \frac{1+2\theta}{4} - \theta = \frac{1-2\theta}{4}$$

– Variance:
$$\mathbb{E}[(\hat{\theta}(x) - \mathbb{E}[\hat{\theta}(x)])^2] = \frac{\theta(1-\theta)}{4}$$
 (see solution set #2 of last year)

– Achieves a good balance between the above two since $0 \le \left|\frac{1-2\theta}{4}\right| \le \left|\frac{1}{2}-\theta\right|$ and $0 \le \frac{\theta(1-\theta)}{4} \le \theta(1-\theta)$

Recap

Recap – Underfitting & Overfitting

Recap – Overfitting & Underfitting in Classification

Answer

Underfitting or Overfitting?

Four Elements, Thomas Vogel

Answer (Not Found Yet)

Standard Model of Elementary Particles

Source: Wikipedia

The Subtle Art of Not Giving a F*ck: A Counterintuitive Approach to Living a Good Life by Mark Manson, pp. 120-122

Which One is Better?

Multiple underfitted agents

Multiple overfitted agents

Photograph by Yukihiro Fukuda

Mid-term Stat

Mean: 26.8

Median: 27

Stdev: 6.5

Best score: 39 out of 42 (1 student)

Distribution (128 students)

