PUNE INSTITUTE OF COMPUTER TECHNOLOGY

DHANKAWADI, PUNE –43

SCHEDULE OF LAB ASSIGNMENTS

ACADEMIC YEAR: 2019-2020

Department: Computer Engineering. Date: 03/06/2019

Class: B.E Semester: VII

Subject: Laboratory Practice I (410246) Examination scheme:

TW-50, PR-50

Select any four assignments individually and any one mini-project with group of 2-3 students.					
Sr.No.	Assign	Problem Statement	Last date		
	. No.		for		
			perform		
			nce		
1	HPC1	a) Implement Parallel Reduction using Min, Max, Sum and	29/06/19		
		Average operations.			
		b) Write a CUDA program that, given an N-element vector, find-			
		The maximum element in the vector			
		The minimum element in the vector			
		The arithmetic mean of the vector			
		The standard deviation of the values in the vector			
		Test for input N and generate a randomized vector V of length N			
		(N should be large). The program should generate output as the			
		two computed maximum values as well as the time taken to find			

		each value.	
2	HPC2		27/07/19
		Vector and Matrix Operations-	
		Design parallel algorithm to	
		1. Add two large vectors	
		2. Multiply Vector and Matrix	
		3. Multiply two N × N arrays using n ² processors	
3	HPC3		24/8/19
		Parallel Sorting Algorithms-	
		For Bubble Sort and Merger Sort, based on existing sequential	
		algorithms, design and implement parallel algorithm utilizing all	
	IIDC4/	resources available.	20/00/40
4	HPC4/		28/09/19
	HPC5	Parallel Search Algorithm-	
		Design and implement parallel algorithm utilizing all resources	
		available. for	
		Binary Search for Sorted Array	
		Depth-First Search (tree or an undirected graph) OR	
		Breadth-First Search (tree or an undirected graph) OR	
		Best-First Search that (traversal of graph to reach a target in	
		the shortest possible path)	
5		Parallel Implementation of the K Nearest Neighbors Classifier	-
		HPC Sample Mini Projects	
6		Compression Module (Image /Video)	05/10/19
		Large amount of bandwidth is required for transmission or	
		storage of images. This has driven the research area of image	

		compression to develop parallel algorithms that compress images.					
		OR					
		For video: RGB To YUV Transform concurrently on many core					
7		GPU					
/							
		Generic Compression					
8		Run length encoding concurrently on many core GPU Encoding					
		Huffman encoding concurrently on many core GPU					
410242:	Artificial	Intelligence & Robotics					
		_					
Select an	y four as	signments individually and any one mini-project with group of					
2-3 stude	ents.						
	AIR1/		15/06/19				
1	AIR2/	Implement Tic-Tac-Toe using A* algorithm					
	AIR3/						
2	AIR8						
		Implement 3 missionaries and 3 cannibals problem depicting					
		appropriate graph. Use A* algorithm.					
		Solve 8-puzzle problem using A* algorithm. Assume any initial					
3		configuration and define goal configuration clearly.					
8	<u> </u> -	Colve following C tiles puoblem story rise using A* algorithm					
0		Solve following 6-tiles problem stepwise using A* algorithm,					
		Initial Configuration					
		B W B W B W					
		Final Configuration					
		Final Configuration					

		В	В	В	W	W	W		
			Tiles can be		left or right 1	or 2 position	s with		
	AIR4/							13/7/19	
4	AIR5/	Define the	operators fo	r controll	ing domestic	robot; use th	ese		
	AIR6/	operators to	plan an act	ivity to b	e executed b	y the robot. F	or		
	AIR10	example, transferring two/three objects one over the other from							
		one place to	another. U	se Means	s-Ends analys	sis with all the	e steps		
		revealed.							
5		Implement	any one of t	he follov	ving Expert S	System ,			
		□ Medical I	Diagnosis of	10 disea	ses based on	adequate sym	ptoms		
		Identifyin	g birds of In	ıdia base	d on characte	eristics			
								-	
6		Implement	alnha-heta r	rııning g	ranhically w	ith proper exa	mnle		
O		1 -	the pruning.		rupincumy w	iui propei exu	impic		
		and justify	me pruming.						
10								-	
		Use Heuris	tic Search To	echnique	s to Impleme	ent Hill-Climb	oing		
		Algorithm.		1	ı		J		
7	AIR7/	, , , , , , , , , , , , , , , , , , ,						10/08/19	
	AIR9	Develop ele	ementary ch	atbot for	suggesting i	nvestment as]	per the		
		customers i	need.						
9									
		Implement	goal stack p	lanning f	for the follow	ing configura	ations		
		from the bl	ocks world,						

		B C D A D					
		Start Goal	I				
11	AIR11		07/09/19				
	/AIR1	Use Heuristic Search Techniques to Implement Best first search					
	2/AIR	(Best-Solution but not always optimal) and A* algorithm (Always					
	13	gives optimal solution).					
12							
		Constraint Satisfaction Problem:					
		Implement crypt-arithmetic problem or n-queens or graph					
13		coloring problem (Branch and Bound and Backtracking)	_				
		Implement syntax analysis for the assertive English statements.					
		The stages to be executed are,					
		Sentence segmentation					
		Word tokenization					
		Part-of-speech/morpho syntactic tagging					
		Syntactic parsing (Use any of the parser like Stanford)					
			05/10/19				
AIR Min	i Project						
410243::	410243:: Data Analytics						
Select an	Select any four assignments individually and any one mini-project with group of						
2-3 stude	1	T	00/00/40				
	DA1		08/06/19				
_ 1		Download the Iris flower dataset or any other dataset into a					

		DataFrame. (eg https://archive.ics.uci.edu/ml/datasets/Iris) Use	
		Python/R and Perform following –	
		• How many features are there and what are their types (e.g.,	
		numeric, nominal)?	
		© Compute and display summary statistics for each feature	
		available in the dataset. (eg. minimum value, maximum value,	
		mean, range, standard deviation, variance and percentiles	
		Data Visualization-Create a histogram for each feature in the	
		dataset to illustrate the feature distributions. Plot each histogram.	
		Create a boxplot for each feature in the dataset. All of the	
		boxplots should be combined into a single plot. Compare	
		distributions and identify outliers.	
	DA2		06/07/19
2		Download Pima Indians Diabetes dataset. Use Naive Bayes"	
		Algorithm for classification	
		Load the data from CSV file and split it into training and test	
		datasets.	
		summarize the properties in the training dataset so that we can	
		calculate probabilities and make predictions.	
		Classify samples from a test dataset and a summarized training	
		dataset.	
	DA3/	Write a Hadoop program that counts the number of occurrences	03/08/19
3	DA5	of each word in a text file.	
5			
		Use Movies Dataset. Write the map and reduce methods to	
		determine the average ratings of movies. The input consists of a	
		series of lines, each containing a movie number, user number,	
		rating, and a timestamp: The map should emit movie number and	
		list of rating, and reduce should return for each movie number a	
		list of average rating.	

4			31/08/19
		Write a program that interacts with the weather database. Find the	
		day and the station with the maximum snowfall in 2013	
6	DA4/		
	DA6/	Trip History Analysis: Use trip history dataset that is from a bike	
	DA7/	sharing service in the United States. The data is provided quarter-	
	DA8/	wise from 2010 (Q4) onwards. Each file has 7 columns. Predict	
	DA9	the class of user. Sample Test data set available here	
		https://www.capitalbikeshare.com/trip-history-data	
7			
		Bigmart Sales Analysis: For data comprising of transaction	
		records of a sales store. The data has 8523 rows of 12 variables.	
		Predict the sales of a store. Sample Test data set available here	
		https://datahack.analyticsvidhya.com/contest/practice-problem-	
		big-mart-sales-iii/	
8			
		Twitter Data Analysis: Use Twitter data for sentiment analysis.	
		The dataset is 3MB in size and has 31,962 tweets. Identify the	
		tweets which are hate tweets and which are not. Sample Test	
		data set available here	
		https://datahack.analyticsvidhya.com/contest/practice-problem-	
		twitter-sentiment-analysis/	
9			
		Time Series Analysis: Use time series and forecast traffic on a	
		mode of transportation. Sample Test data set available here	
		https://datahack.analyticsvidhya.com/contest/practice-problem-	
		time-series-2/	05/40/40
		Data Analytics Mini Project	05/10/19

Subject Coordinator (Hemlata P. Channe)

Head, Dept. of Computer Engg. (Dr. R. B. Ingle)