Complexité des algorithmes Algorithmique 1 - 2019-2020

Stéphane Grandcolas

Aix-Marseille Université

Contact: stephane.grandcolas@univ-amu.fr

Algorithmique 1

Objectifs:

- ▶ introduire les structures de données et les techniques de conception de base de l'algorithmique,
- étudier les outils d'analyse et de preuve de correction des algorithmes.

Modalités de contrôle :

session 1 : $NF = 0.8 \times ET + 0.2 \times CC$

session 2 : NF = ET

Contrôle continu : quatre TP évalués.

Algorithmique 1

Programme:

- algorithmes : complexité, tris,
- structures de données : arbres, tas, dictionnaires,
- méthodes : backtracking, programmation dynamique,
- graphes : plus courts chemins, arbres couvrants.

Livre de référence : Introduction à l'algorithmique, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.

Algorithmes et structures de données

 ${\mathcal P}$: un problème

 ${\mathcal M}$: une méthode pour résoudre le problème ${\mathcal P}$

 $\textbf{Algorithme}: \ \ \text{description de la méthode} \ \mathcal{M} \ \ \text{dans un}$

langage algorithmique

du nom du mathématicien perse Al Khuwarizmi (780 - 850)

Algorithmes et structures de données

 ${\mathcal P}$: un problème

 ${\mathcal M}$: une méthode pour résoudre le problème ${\mathcal P}$

 $\textbf{Algorithme}: \ \ \text{description} \ \ \text{de} \ \ \text{la} \ \ \text{m\'ethode} \ \ \mathcal{M} \ \ \text{dans} \ \ \text{un}$

langage algorithmique

du nom du mathématicien perse Al Khuwarizmi (780 - 850)

Structure de données : manière d'organiser et de stocker les données (supposée rendre efficace certaines opérations)

Structures algorithmiques

Structures de contrôle

- séquence
- embranchement (ou sélection)
- boucle (ou itération)

Structures de données : supports

- constantes, variables
- tableaux
- structures récursives (listes, arbres, graphes)

Complexité des algorithmes

On veut

- Evaluer l'efficacité de la méthode M
- lacktriangle Comparer ${\mathcal M}$ avec une autre méthode ${\mathcal M}'$

indépendamment de l'environnement (machine, système, compilateur, . . .)

Complexité des algorithmes

Evaluation du nombre d'opérations élémentaires en fonction

- de la taille des données (par ex. le nombre d'éléments à trier)
- de la nature des données (provoquant par ex. la sortie d'une boucle)

Notations:

- n : taille des données,
- ► T(n) : nombre d'opérations élémentaires

Configurations caractéristiques :

- meilleur cas,
- pire des cas,
- cas moyen.

Somme des coûts.

Traitement1
$$T_1(n)$$
Traitement2 $T_2(n)$

$$T(n) = T_1(n) + T_2(n)$$

Evaluation de T(n)

(embranchement)

Max des coûts.

$$T_c(n) + max(T_1(n), T_2(n))$$

Somme des coûts des passages successifs

$$ant \, ext{que} < ext{condition} > ext{faire} \qquad \qquad C_i(n) \ \qquad Traitement \qquad \qquad T_i(n) \ \qquad$$
 fin faire

$$\sum_{i=1}^{k} (C_i(n) + T_i(n)) + C_{k+1}(n)$$

 $T_i(n)$: coût de la $i^{\rm eme}$ itération

souvent défini par une équation récursive

Evaluation de T(n) (fonctions récursives : exemple)

fonction FunctionRecursive (n)

```
si (n > 1) alors

FunctionRecursive(n/2), coût T(n/2)

Traitement(n), coût C(n)

FunctionRecursive(n/2), coût T(n/2)
```

Equation récursive

$$T(n) = 1 + 2 \times T(n/2) + C(n)$$

si
$$C(n) = 1$$
 alors $T(n) = K \times n$
si $C(n) = n$ alors $T(n) = K \times n \times \log n$

. . .

Notation de Landau $\mathcal{O}(f(n))$

Caractérise le comportement asymptotique (i.e. qd $n \to \infty$).

$$T(n) = \mathcal{O}(f(n))$$
 si $\exists c \ \exists n_0 \text{ tels que } \forall n > n_0, \ T(n) \le c \times f(n)$

Notation $\Theta(f(n))$

$$T(n) = \Theta(f(n))$$
 si $\exists c_1, c_2, n_0$ tels que $\forall n > n_0, \ c_1 \times f(n) \le T(n) \le c_2 \times f(n)$

Exemples

$$T(n) = n^3 + 2 n^2 + 4 n + 2 = \mathcal{O}(n^3)$$
(si $n \ge 1$ alors $T(n) \le 9 \times n^3$)

Exemples

$$T(n) = n^3 + 2 n^2 + 4 n + 2 = \mathcal{O}(n^3)$$
(si $n \ge 1$ alors $T(n) \le 9 \times n^3$)
$$T(n) = n \log n + 12 n + 2 = \mathcal{O}(n \log n)$$

Exemples

$$T(n) = n^{3} + 2 n^{2} + 4 n + 2 = \mathcal{O}(n^{3})$$

$$(\text{si } n \ge 1 \text{ alors } T(n) \le 9 \times n^{3})$$

$$T(n) = n \log n + 12 n + 2 = \mathcal{O}(n \log n)$$

$$T(n) = 2 n^{10} + n^{7} + 12 n^{4} + \frac{2^{n}}{100} = \mathcal{O}(2^{n})$$

Les principales classes de complexité

 $\mathcal{O}(1)$ temps constant $\mathcal{O}(\log n)$ logarithmique $\mathcal{O}(n)$ linéaire $\mathcal{O}(n \times \log n)$ tris par comparaisons optimaux $\mathcal{O}(n^2)$ quadratique, polynomial $\mathcal{O}(n^3)$ cubique, polynomial $\mathcal{O}(2^n)$ exponentiel (problèmes très difficiles)

Exemple: permutation dans un tableau

fonction Permutation (S, i, j)

1	tmp := S[i],	coût c ₁
2	S[i] := S[j],	coût <i>c</i> ₂
3	S[j] := tmp,	coût c ₃
4	renvoyer S	coût <i>c</i> ₄

Coût total

$$T(n) = c_1 + c_2 + c_3 + c_4 = \mathcal{O}(1)$$

Exemple: recherche séquentielle

fonction Recherche_sequentielle(x, S[1, ..., n])

1
$$i := 1$$
, (c_1)
2 $tant que ((i < n) et (S[i] \neq x)) faire (c_2)$
3 $i := i + 1$, (c_3)
4 $renvoyer (S[i] = x)$

Pire des cas : n fois la boucle

$$T(n) = c_1 + c_2 + \sum_{i=1}^{n} (c_3 + c_2) + c_4 = \mathcal{O}(n)$$

Exemple : tri à bulle

fonction TRI_A_BULLES $(S[1,\ldots,n])$

```
\begin{array}{lll} 1 & \mathsf{pour} \ i := n \ \mathsf{\grave{a}} \ 2 \ \mathsf{faire} \\ 2 & \mathsf{pour} \ j := 1 \ \mathsf{\grave{a}} \ i - 1 \ \mathsf{faire} \\ 3 & \mathsf{si} \ (S[j] > S[j+1]) \ \mathsf{alors} & i-1 \ \mathsf{fois} \\ 4 & \mathsf{PERMUTER}(S,j,j+1), & C_{perm} \end{array}
```

$$T(n) = (1 + C_{perm}) \times \sum_{i=1}^{n-1} i = (1 + C_{perm}) \times \frac{n \times (n-1)}{2} = \mathcal{O}(n^2)$$

Equations récursives

Boucles itératives, fonctions récursives, approches de type diviser pour régner

Cas général

$$T(n) = a \times T(n/b) + f(n)$$

- méthode par substitution,
- méthode par développement itératif,
- méthode générale.

Méthode par substitution

Principe : on vérifie une intuition

$$T(n) = a \times T(n/b) + f(n)$$
 et $T(1) = c$

Intuition

$$T(n) = \mathcal{O}(g(n))$$

A démontrer en fixant les constantes

fonction Recherche_dichotomique (x, S[1, ..., n])

```
1 g:=0, d:=n+1, g< position \le d

2 tant \ que \ (g< d-1) \ faire termine \ quand \ g=d-1

3 si \ (x>S[(g+d)/2]) \ alors g<(g+d)/2< d

4 g:=(g+d)/2, et \ donc \ g< position \le d

5 sinon

6 d:=(g+d)/2, et \ donc \ g< position \le d

7 renvoyer \ d, g< position \le d \ et \ g=d-1
```

position : la position de x s'il apparaît dans S[], la position à laquelle il faudrait l'insérer sinon

fonction Recherche_dichotomique (x, S[1, ..., n])

```
\begin{array}{lll} 1 & g := 0, \ d := n+1, & g < position \leq d \\ 2 & \text{tant que } \left(g < d-1\right) \text{ faire} & termine \ quand \ g = d-1 \\ 3 & \text{si } \left(x > S[(g+d)/2]\right) \text{ alors} & g < (g+d)/2 < d \\ 4 & g := (g+d)/2, & et \ donc \ g < position \leq d \\ 5 & \text{sinon} & \\ 6 & d := (g+d)/2, & et \ donc \ g < position \leq d \\ 7 & \text{renvoyer } d, & g < position \leq d \ et \ g = d-1 \\ \end{array}
```

Nombre d'itérations :
$$T(n) = 1 + T(\lceil n/2 \rceil)$$

Nombre d'itérations

$$T(n) = 1 + T(n/2)$$
 et $T(1) = 1$

- T(1) = 1 car s'il y a un seul élément on fera une itération
- ► $T(\lceil n/2 \rceil) = T(n/2)$ (pour simplifier on considère que n est de la forme 2^k)

$$T(n) = 1 + T(n/2)$$
 et $T(1) = 1$

Intuition
$$T(n) = \mathcal{O}(\log_2 n)$$

$$T(n) = 1 + T(n/2)$$
 et $T(1) = 1$

Intuition
$$T(n) = \mathcal{O}(\log_2 n)$$

Hypothèse
$$T(n) = k_1 \times \log_2 n + k_2$$

$$T(n) = 1 + T(n/2)$$
 et $T(1) = 1$

Intuition
$$T(n) = \mathcal{O}(\log_2 n)$$

Hypothèse
$$T(n) = k_1 \times \log_2 n + k_2$$

donc
$$T(n/2) = k_1 \times \log_2 n - k_1 + k_2$$

donc $T(n) = 1 + T(n/2) = 1 + k_1 \times \log_2 n - k_1 + k_2$
donc $1 - k_1 + k_2 = k_2$ et donc $k_1 = 1$,
enfin, puisque $T(1) = 1$, on a $k_2 = 1$

$$T(n) = 1 + T(n/2)$$
 et $T(1) = 1$

Intuition
$$T(n) = \mathcal{O}(\log_2 n)$$

Hypothèse
$$T(n) = k_1 \times \log_2 n + k_2$$

donc
$$T(n/2) = k_1 \times \log_2 n - k_1 + k_2$$

donc $T(n) = 1 + T(n/2) = 1 + k_1 \times \log_2 n - k_1 + k_2$
donc $1 - k_1 + k_2 = k_2$ et donc $k_1 = 1$,
enfin, puisque $T(1) = 1$, on a $k_2 = 1$

Conclusion
$$T(n) = \log_2 n + 1 = \mathcal{O}(\log_2 n)$$
 $(\Theta(\log_2 n))$

Méthode itérative : rappel sommations

$$\sum_{i=1}^{n-1} i = \frac{n \times (n-1)}{2} = \Theta(n^2) = \mathcal{O}(n^2)$$

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1}-1}{x-1}$$

en particulier quand x vaut 2

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

Tri par fusion

Tri par fusion

fonction Tri_par_fusion (S)

```
1 si (longueur(S) > 1) alors

2 d\'{e}composer S \longrightarrow (S_1, S_2), \quad (n)

3 S_1 := \mathsf{TRI\_PAR\_FUSION}(S_1), \quad (T(\lceil n/2 \rceil))

4 S_2 := \mathsf{TRI\_PAR\_FUSION}(S_2), \quad (T(\lfloor n/2 \rfloor))

5 S := \mathsf{FUSIONNER}(S_1, S_2), \quad (n)
```

6 renvoyer S

$$T(n) = 1 + n + T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$$
 et $T(1) = 1$

Tri par fusion

fonction Tri_par_fusion (S)

```
1 si (longueur(S) > 1) alors

2 d\'{e}composer S \longrightarrow (S_1, S_2), \quad (n)

3 S_1 := \mathsf{TRI\_PAR\_FUSION}(S_1), \quad (T(\lceil n/2 \rceil))

4 S_2 := \mathsf{TRI\_PAR\_FUSION}(S_2), \quad (T(\lfloor n/2 \rfloor))

5 S := \mathsf{FUSIONNER}(S_1, S_2), \quad (n)
```

6 renvoyer S

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

on suppose que n est de la forme 2^k

Méthode itérative [tri par fusion]

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

Méthode itérative [tri par fusion]

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

donc $T(n/2) = n + 1 + 2 \times T(n/4)$

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

 $donc T(n/2) = n + 1 + 2 \times T(n/4)$
 $= (2n + 1) + (2n + 2) + 4 \times T(n/4)$

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

 $donc T(n/2) = n + 1 + 2 \times T(n/4)$
 $= (2n + 1) + (2n + 2) + 4 \times T(n/4)$
or $T(n/4) = n/2 + 1 + 2 \times T(n/8)$

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

$$donc T(n/2) = n + 1 + 2 \times T(n/4)$$

$$= (2n + 1) + (2n + 2) + 4 \times T(n/4)$$
or $T(n/4) = n/2 + 1 + 2 \times T(n/8)$

$$= (2n + 1) + (2n + 2) + (2n + 4) + 8 \times T(n/8)$$

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

$$= (2n + 1) + (2n + 2) + 4 \times T(n/4)$$

$$= (2n + 1) + (2n + 2) + 4 \times T(n/4)$$
or $T(n/4) = n/2 + 1 + 2 \times T(n/8)$

$$= (2n + 1) + (2n + 2) + (2n + 4) + 8 \times T(n/8)$$
...
$$T(n) = \sum_{i=0}^{\log n-1} (2n + 2^i) + 2^{\log n} \times T(1)$$

 $= 2n \log n + \sum_{i=0}^{\log n-1} 2^i + n$

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

$$= (2n + 1) + (2n + 2) + 4 \times T(n/4)$$

$$= (2n + 1) + (2n + 2) + 4 \times T(n/4)$$
or $T(n/4) = n/2 + 1 + 2 \times T(n/8)$

$$= (2n + 1) + (2n + 2) + (2n + 4) + 8 \times T(n/8)$$
...
$$T(n) = \sum_{i=0}^{\log n-1} (2n + 2^i) + 2^{\log n} \times T(1)$$

$$T(n) = 2n + 1 + 2 \times T(n/2)$$

$$donc T(n/2) = n + 1 + 2 \times T(n/4)$$

$$= (2n + 1) + (2n + 2) + 4 \times T(n/4)$$
or $T(n/4) = n/2 + 1 + 2 \times T(n/8)$

$$= (2n + 1) + (2n + 2) + (2n + 4) + 8 \times T(n/8)$$

$$T(n) = \sum_{i=0}^{\log n-1} (2n+2^i) + 2^{\log n} \times T(1)$$

$$= 2n \log n + \sum_{i=0}^{\log n-1} 2^i + n$$
or $\sum_{i=0}^{\log n-1} 2^i = 2^{\log n} - 1 = n-1$

$$= 2n \log n + 2n - 1 = \Theta(n \log n)$$

Tri par fusion

décomposition ou fusion d'une suite de longueur n/k : coût $\mathcal{O}(n/k)$

$$T(n) = 2 \times n \times \lceil \log_2 n \rceil$$

Master theorem [Equations récursives]

$$T(n) = a \times T(n/b) + f(n)$$

avec $a \ge 1$, b > 1 et f(n) est positive asymptotiquement.

- ▶ si $\exists \epsilon > 0$, $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ alors $T(n) = \Theta(n^{\log_b a})$,
- si $f(n) = \Theta(n^{\log_b a})$ alors $T(n) = \Theta(n^{\log_b a} \times \lg n)$,
- ▶ si $\exists \epsilon > 0$, $f(n) = \Omega(n^{\log_b a + \epsilon})$ et si $\exists c < 1$, $\exists n_0, \ \forall n > n_0, \ a \times f(n/b) \le c \times f(n)$ alors $T(n) = \Theta(f(n))$

Master theorem [Equations récursives]

$$T(n) = a \times T(n/b) + f(n)$$

avec $a \ge 1$, b > 1 et f(n) est positive asymptotiquement.

- ightharpoonup si $\exists \epsilon > 0, \ f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ alors $T(n) = \Theta(n^{\log_b a})$,
- si $f(n) = \Theta(n^{\log_b a})$ alors $T(n) = \Theta(n^{\log_b a} \times \lg n)$,
- ▶ si $\exists \epsilon > 0$, $f(n) = \Omega(n^{\log_b a + \epsilon})$ et si $\exists c < 1$, $\exists n_0$, $\forall n > n_0$, $a \times f(n/b) \le c \times f(n)$ alors $T(n) = \Theta(f(n))$

Tri par fusion
$$(T(n) = 2 \times T(n/2) + 2n + 1)$$
 cas 2:
 $a = b = 2$ et $f(n) = 2n + 1 = \Theta(n)$
et donc $T(n) = \Theta(n \log n)$

Méthode par substitution [tri par fusion]

$$T(n) = 2n + 1 + 2 \times T(n/2)$$
 et $T(1) = 1$

Hypothèse :
$$T(n) = \mathcal{O}(n \log n) = an \log n + bn + c$$

et donc
$$T(n/2) = an/2 \log n + (b-a)n/2 + c$$

$$T(n) = 2n + 1 + 2T(n/2) = 2n + 1 + an \log n + (b - a)n + 2c$$

= $an \log n + (b - a + 2)n + 2c + 1$

- (1) b = b a + 2 et donc a = 2
- (2) c = 2c + 1 et donc c = -1
- (3) T(1) = b + c = 1 et donc b = 2

et finalement
$$T(n) = 2n \log n + 2n - 1 = \mathcal{O}(n \log n)$$

Temps de calcul [simulation]

Combien de temps pour traiter un problème?

Taille	$\log_2 n$	n	$n\log_2 n$	n ²	2 ⁿ
10	0.003 ms	0.01 <i>ms</i>	0.03 <i>ms</i>	0.1 <i>ms</i>	1 ms
100	0.006 ms	0.1 <i>ms</i>	0.6 <i>ms</i>	10 ms	10 ¹⁴ siecles
1000	0.01 <i>ms</i>	1 ms	10 <i>ms</i>	1 s	
10 ⁴	0.013 ms	10 ms	0.1 <i>s</i>	100 s	
10 ⁵	0.016 ms	100 ms	1.6 <i>s</i>	3 heures	
10 ⁶	0.02 <i>ms</i>	1 <i>s</i>	20 <i>s</i>	10 jours	

pour une machine qui effectue 106 traitements par seconde

Temps de calcul [simulation]

Quel problème peut-on traiter en une seconde?

nTs	2 ⁿ	n ²	$n\log_2 n$	n	$\log_2 n$
10 ⁶	20	1000	63000	10 ⁶	10 ³⁰⁰⁰⁰⁰
10 ⁷	23	3162	600000	10 ⁷	10 ³⁰⁰⁰⁰⁰⁰
10 ⁹	30	31000	4.10^{7}	10 ⁹	
10 ¹²	40	10 ⁶	3.10^{10}		

nTs = nombre d'instructions effectuées chaque seconde