

Master de Chimie 1A

Laboratoire de Modélisation Supplement au Fascicule de Concepts et exercices

Responsable: Pr S. Humbel Stephane.Humbel@univ-amu.fr

Préambule

Ce document contient des exercices en plus, qu'on n'a pas voulu jeter, mais qu'on n'a pas voulu donner pour ne pas surcharger les étudiants.

version - sept 2023

TD nº1 - Surface de potentiel et préparation aux TP

_____ Exercices _____

Exercice 1 - Base de gaussiennes

La base de Pople 6-31G(d) peut décrire un atome d'Oxygène par des gaussiennes plus ou moins contractées.

- 1. En 1 dimension x, rappelez l'expression d'une gaussienne et d'une contraction de gaussiennes $(g_i(x) = \ldots)$.
- 2. Pour cet oxygène, combien de gaussiennes contractées décrivent chaque orbitale (1s, 2s, $2p_x$. $2p_y$, etc)?
- 3. La base contient des gaussiennes d'exposant compris entre $\zeta_1 = 5485.67$ et $\zeta_{10} = 0.27$. Celles servant à décrire les orbitales de coeur correspondent-elles aux gaussiennes ayant un grand ou un petit exposant?

Exercice 2 - Energie potentielle: PH₃

Les figures suivantes décrivent l'inversion de PH₃. Les atomes H^b P H^c forment un plan normal à l'axe P- X^1 . L'angle θ indique l'angle de pyramidalisation (en degrés). A gauche on a indiqué l'effet d'une variation de la valeur de θ .

- 1. Pour quelle valeur de l'angle de pyramidalisation θ a-t-on PH₃ plan?
- 2. Donnez la valeur approximative de la longueur de liaison P-H (en Å) aux minima d'énergie.
- 3. Donnez les valeurs approximative de θ (en degré) aux minima d'énergie.
- 4. Verifiez que l'état de transition correspond à la symétrie D_{3h} (triangulaire plane avec P au centre).
- 5. Situez le point $\theta = 150$, $R_{PH} = 2\text{Å}$, et indiquez le trajet que ferait un optimiseur de géométrie cherchant un minimum.

Exercice 3 - Energie potentielle d'une triatomique (B-A-C)

On a tracé la surface d'énergie potentielle d'une triatomique (B-A-C) en fonction des coordonnées de pliage θ (en degrés) et d'élongation (simultanée) R=d(B-A)=d(A-C) en Å, tel qu'indiqué ci-dessous (à gauche).

- Localisez les structures des minima et de l'état de transition; donnez les valeurs des coordonnées correspondantes et dessinez l'allure de ces structures.
- 2. Décrire la coordonnée de réaction et dessiner le chemin réactionnel entre les 2 minima.
- 3. Y a -t-il un point d'ordre 2?
- 4. Partant du point A indiqué sur la figure, où l'optimiseur nous conduit-il?
- 5. Le tracé de cette surface de potentiel a demandé 400 calculs. Expliquez pourquoi : que représente chaque calcul?
- 6. La différence d'énergie entre les deux minima vaut $\Delta E = 100kJ.mol^{-1}$. Avec l'approche de Boltzmann, quelle est la proportion de chaque minima à température ambiante (300K)? (R=8.314 $J.K^{-1}.mol^{-1}$)

TD n°2345 - Mécanique Quantique

Exercice 4 - Couplage de moments cinétiques de spin : application à l'atome He

On considère le premier état excité de l'atome d'hélium qui possède la configuration électronique $1s^{1}2s^{1}$.

- 1. Soient \hat{S} , \hat{s}_1 et \hat{s}_2 respectivement l'opérateur de spin total, l'opérateur de spin de l'électron 1 et l'opérateur de spin de l'électron 2.
 - (a) Exprimer \hat{S} en fonction de \hat{s}_1 , \hat{s}_2 .
 - (b) Exprimer \hat{S}^2 en fonction de \hat{s}_1 , \hat{s}_2 , des composantes \hat{s}_{1z} et \hat{s}_{2z} , et des opérateurs \hat{s}_{i+} , \hat{s}_{i-} (i=1,2).
- 2. Soit le déterminant $|1s \ 2s|$.
 - (a) Développez ce déterminant en un produit de fonctions d'espace et de spin de chaque électron.
 - (b) Montrez qu'il est fonction propre de \hat{S}^2 avec la valeur propre 2.

Exercice 5 - \hat{S}^2 dans un modèle des carbènes

La molécule CH₂ est le carbène le plus simple. Sa structure électronique comprend 6 électrons de valence. La configuration électronique des 2 électrons les plus hauts en énergie peut définir des états triplet ou singulets. Les orbitales correspondantes sont notées $2a_1$ et b_1 , conformément à la symétrie du système (C_{2v}) . La figure ci-dessous montre quelques-uns des déterminants envisageables et leur représentation. On cherche à établir des fonctions propres de \hat{S}^2 sur la base de tous les déterminants possibles. On se servira de la définition suivante : $\hat{S}^2 = \frac{1}{2} \left(\hat{S}_+ \hat{S}_- + \hat{S}_- \hat{S}_+ \right) + \hat{S}_z^2$

! Change pour 2015

- 1. Donnez les 4 déterminants manquants permettant de définir toutes les occupations possibles de 2 électrons dans 2 orbitales et représentez-les par des flèches dans les niveaux d'énergie.
 - (a) Montrez que $|2a_1b_1|$ est fonction propre de \hat{S}^2 avec la valeur propre 2.
 - (b) Montrez que $|\overline{2a_1b_1}|$ est fonction propre de \hat{S}^2 avec la valeur propre 2.
 - (c) Montrez que $|2a_1\overline{b_1}|$ n'est pas fonction propre de $\hat{S}^2.$
 - (d) Montrez que les combinaisons $\Psi_S^{B_1} = \frac{1}{\sqrt{2}} \left(|2a_1\overline{b_1}| + |b_1\overline{2a_1}| \right)$ et $\Psi_T^{B_1} = \frac{1}{\sqrt{2}} \left(|2a_1\overline{b_1}| |b_1\overline{2a_1}| \right)$ sont fonctions propres de \hat{S}^2 . Donnez les valeurs propres correspondantes.
 - (e) Donnez et justifier la multiplicité de spin 3 de l'état triplet.
- 2. Montrez que $\Psi_S^{A_1} = |2a_1\overline{2a_1}|$ est fonction propre de \hat{S}^2 avec la valeur propre S(S+1) = 0.

Exercice 6 - Règle de Hund

Soient deux orbitales dégénérées $\{a,b\}$ et les spin orbitales correspondantes $\{a,\bar{a},b,\bar{b}\}$. La règle de Hund prédit que la configuration préférée sera "de spin maximum" donc triplet et non singulet. Les fonctions d'onde correspondantes sont représentées ci-dessous (Figure 1) et valent respectivement $\Psi_T(1,2) = |ab|$ et $\Psi_S(1,2) = \frac{1}{\sqrt{2}}[|a\bar{b}| - |\bar{a}b|]$. On suppose dans la suite que les orbitales a et b sont communes aux 2 états.

communes aux 2 états. Avec $\hat{S}^2 = \frac{1}{2} \left(\hat{S}_+ \hat{S}_- + \hat{S}_- \hat{S}_+ \right) + \hat{S}_z^2$, montrez que $\Psi_S(1,2)$ est bien un singulet.

FIGURE 1 – Règle de Hund : configuration triplet (à gauche) et un déterminant du singulet (à droite).