```
import pandas as pd
import numpy as np
from statsmodels.formula.api import ols
from scipy import stats
import statsmodels.api as sm
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import StratifiedKFold
from sklearn preprocessing import StandardScaler, OneHotEncoder, StandardScaler,
MinMaxScaler, LabelEncoder
from sklearn.linear model import LogisticRegression
from sklearn ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.metrics import accuracy score, recall score, precision score, f1 score,
confusion_matrix, classification_report, roc_auc_score, roc_curve
df = pd.read_csv('MCI.csv', encoding='utf-8-sig')
# remove rows with null values.. there are 100 of null values as we saw in exploratory
analysis
df = df.dropna()
#remove trailing spaces & delete columns that are not needed
df.columns = df.columns.str.strip() #For column names
df.columns = [col.strip() for col in df.columns] #For data in each column
del df["X"]
del df["Y"]
del df["Index "]
del df["event_unique_id"]
del df["Division"]
del df["occurrencedate"]
del df["reporteddate"]
del df["ucr code"]
del df["ucr ext"]
del df["reporteddayofyear"]
del df["occurrencedayofyear"]
del df["Hood ID"]
del df["Longitude"]
del df["Latitude"]
del df["ObjectId"]
del df["Neighbourhood"]
del df["location type"]
#logistics regression
print('\n')
# one hot encoding
print("creating a df dummy")
#remove mci from df_dummy since its now encoded
```

```
df_lr = pd.get_dummies(df, drop_first=False) #logisic regression
df_dummy=pd.get_dummies(df['mci_category'])
#changing each mci type to INT for one hot encoding
df_dummy['Assault']=df_dummy['Assault'].astype(int)
df dummy['Auto Theft']=df dummy['Auto Theft'].astype(int)
df dummy['Break and Enter']=df dummy['Break and Enter'].astype(int)
df dummy['Robbery']=df dummy['Robbery'].astype(int)
df_dummy['Theft Over']=df_dummy['Theft Over'].astype(int)
print("printing to see df1 with INT encoding")
print(df dummy.info())
creating a df dummy
printing to see df1 with INT encoding
<class 'pandas.core.frame.DataFrame'>
Int64Index: 299828 entries, 0 to 299827
Data columns (total 5 columns):
 #
     Column
                       Non-Null Count
                                        Dtype
 ___
 0
    Assault
                       299828 non-null int64
 1
     Auto Theft
                       299828 non-null int64
     Break and Enter 299828 non-null int64
 3
                      299828 non-null int64
     Robbery
 4
     Theft Over
                      299828 non-null int64
dtypes: int64(5)
memory usage: 13.7 MB
None
                             _____Now lets view the contents of df_dummy")
df_dummy=pd.concat([df, df_dummy], axis=1) #adding the df_dummy to df_premise
print(df_dummy_info())
                             Now lets view the contents of df_dummy
 <class 'pandas.core.frame.DataFrame'>
 Int64Index: 299828 entries, 0 to 299827
 Data columns (total 18 columns):
 #
     Column
                          Non-Null Count
                                           Dtype
  0
     premises_type
                          299828 non-null object
  1
     offence
                          299828 non-null object
  2
     reportedyear
                          299828 non-null int64
  3
     reportedmonth
                         299828 non-null object
     reportedday
                          299828 non-null int64
                          299828 non-null object
  5
     reporteddayofweek
                          299828 non-null int64
     reportedhour
                          299828 non-null float64
  7
     occurrenceyear
                          299828 non-null object
     occurrencemonth
  9
     occurrenceday
                          299828 non-null float64
  10 occurrencedayofweek 299828 non-null object
                          299828 non-null int64
  11 occurrencehour
                          299828 non-null object
  12 mci_category
  13 Assault
                          299828 non-null int64
  14 Auto Theft
                          299828 non-null int64
  15 Break and Enter
                          299828 non-null int64
                          299828 non-null int64
  16 Robbery
  17 Theft Over
                          299828 non-null int64
 dtypes: float64(2), int64(9), object(7)
 memory usage: 43.5+ MB
None
```

#Since auto theft, break and enter, robbery and theft over are related to theft and stealing, the 'Assault' category stands out.

#it will all be all considered as "theft/stealing" while the assault category will be left as "Assault" and is independent.

#Therefore, we will compare "Assault" vs "Stealing"

#Here we remove all other categories so 1 is for Assault and 0 for "Stealing"

print("Regression Analysis of Assault mci-category with Occurrence Hour and Auto Theft
mci-category")

reg1 = sm.OLS(df_dummy["Assault"], sm.add_constant(df_dummy[["occurrencehour","Auto
Theft"]])).fit()
print(reg1.summary())

Regression Analysis of Assault mci-category with Occurrence Hour and Auto Theft mci-category OLS Regression Results

=======================================			
Dep. Variable:	Assault	R-squared:	0.185
Model:	0LS	Adj. R-squared:	0.185
Method:	Least Squares	F-statistic:	3.401e+04
Date:	Sun, 02 Apr 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	20:29:37	Log-Likelihood:	-1.8618e+05
No. Observations:	299828	AIC:	3.724e+05
Df Residuals:	299825	BIC:	3.724e+05
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
			242 204		0 560	0 575
const	0.5722	0.002	343.204	0.000	0.569	0.575
occurrencehour	0.0039	0.000	34.115	0.000	0.004	0.004
Auto Theft	-0.6271	0.002	-260.469	0.000	-0.632	-0.622
Omnibus:	1	1631805.431	Durbin-Wa	tson:		1.738

Omnibus:	1631805.431	Durbin-Watson:	1.738
Prob(Omnibus):	0.000	Jarque-Bera (JB):	43933.709
Skew:	-0.531	Prob(JB):	0.00
Kurtosis:	1.455	Cond. No.	43.0

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

print("Regression Analysis of Assault mci-category with Occurrence Hour and Break and Enter mci-category")

```
reg2 = sm.OLS(df_dummy["Assault"], sm.add_constant(df_dummy[["occurrencehour","Break
and Enter"]])).fit()
print(reg2.summary())
```

Regression Analysis of Assault mci-category with Occurrence Hour and Break and Enter mci-category OLS Regression Results

						====	
Dep. Variable:	Assault		R-squared:		0	0.288	
Model:	0LS		Adj. R-squared:		0.288		
Method:	Leas	t Squares	F-statistic:		6.050e+04		
Date:	Sun, 02	Apr 2023	Prob (F-sta	tistic):		0.00	
Time:		20:29:37	Log-Likelih	ood:	-1.6600	e+05	
No. Observations:		299828	AIC:		3.320	e+05	
Df Residuals:		299825	BIC:		3.320	e+05	
Df Model:		2					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	0.7121	0.002	432.978	0.000	0.709	0.715	
occurrencehour	-0.0033	0.000	-31.114	0.000	-0.004	-0.003	
Break and Enter	-0.6763	0.002	-347.582	0.000	-0.680	-0.672	
Omnibus:	 1	======= 54553.639	 Durbin-Wats	======= on:	1	239	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	46939	.067	
Skew:		-0.796	Prob(JB):			0.00	
Kurtosis:		1.893	Cond. No.			40.1	
				========		====	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
print("Regression Analysis of Assault mci-category with Occurrence Hour and Robbery
mci-category")
```

reg3= sm.OLS(df_dummy["Assault"],
sm.add_constant(df_dummy[["occurrencehour","Robbery"]])).fit()
print(reg3.summary())

Regression Analysis of Assault mci-category with Occurrence Hour and Robbery mci-category OLS Regression Results

Dep. Variable:	Assault	R-squared:	0.126
Model:	0LS	Adj. R-squared:	0.126
Method:	Least Squares	F-statistic:	2.163e+04
Date:	Sun, 02 Apr 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	20:29:37	Log-Likelihood:	-1.9662e+05
No. Observations:	299828	AIC:	3.932e+05
Df Residuals:	299825	BIC:	3.933e+05
Df Model:	2		
Covariance Type:	nonrobust		

Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const occurrencehour Robbery	0.5609 0.0026 -0.5970	0.002 0.000 0.003	325.098 22.411 -207.616	0.000 0.000 0.000	0.558 0.002 -0.603	0.564 0.003 -0.591
Omnibus: Prob(Omnibus): Skew: Kurtosis:	1262824.646 0.000 -0.402 1.276		Durbin-Wat Jarque-Ber Prob(JB): Cond. No.		4520	1.453 4.863 0.00 49.4

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
print('\n')
print("Regression Analysis of Assault mci-category with Occurrence Hour and Theft
Over mci-category")
reg4= sm.OLS(df_dummy["Assault"], sm.add_constant(df_dummy[["occurrencehour","Theft
Over"]])).fit()
print(reg4.summary())
```

Regression Analysis of Assault mci-category with Occurrence Hour and Theft Over mci-category OLS Regression Results

		OLS Regres	sion Results	; 			
Dep. Variable: Model: Method: Date: Time:	OLS A Least Squares F Sun, 02 Apr 2023 F		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood:		0.040 0.040 6166. 0.00 -2.1078e+05		
No. Observations: Df Residuals: Df Model: Covariance Type:		299828 299825 2 nonrobust	8 AIC: 5 BIC: 2			4.216e+05 4.216e+05	
	coef	std err	t	P> t	[0.025	0.975]	
const occurrencehour Theft Over	0.0014	0.002 0.000	297.412 11.440 -110.399	0.000 0.000 0.000		0.002 -0.544	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	1	0.000	Durbin-Watson: Jarque-Bera (JB): Prob(JB):			1.503 33.805 0.00 82.0	

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.