

## Istanbul Technical University – Faculty of Mechanical Engineering Automotive Laboratory

MAK 202E Numerical Methods Lecture – HW 2, Duration: 4 weeks

## **Problem Definition:**

**Table 1:** Vehicle speed and CO<sub>2</sub> factors.

| X <sub>i</sub> (Vehicle Speed [km/h]) | Y <sub>i</sub> (CO <sub>2</sub> Emission Factor [g/km]) |
|---------------------------------------|---------------------------------------------------------|
| 20                                    | 190                                                     |
| 30                                    | 170                                                     |
| 40                                    | 155                                                     |
| 50                                    | 140                                                     |
| 60                                    | 118                                                     |
| 70                                    | 130                                                     |
| 80                                    | 132                                                     |
| 90                                    | 140                                                     |
| 100                                   | 150                                                     |
| 110                                   | 170                                                     |
| 120                                   | 180                                                     |

- 1) Average speed and CO2 emission factors of a passenger vehicle are given in Table 1. Using this data matrix;
  - a) Obtain the best-fitting curve coefficients using the second-order polynomial regression method. (20 points)
  - b) Calculate the standard deviation and correlation coefficient (R<sup>2</sup>) for the regression curve you created. (15 points)

2)

- a) For the regression curve obtained in the first question; write a computer program (in any language) which
  - Finding the numerical solution according to the Multiple Trapezoidal Rule method for the number of steps from n=10 to n=20 by interval 2 in the speed range of 20 120 km/h, (20 points)
  - Finding the numerical solution according to the Multiple Simpson's 1/3 Rule method for the number of steps from n=10 to n=20 by interval 2 in the speed range of 20 120 km/h, (20 points)
  - According to both methods, finding the total error for real average (the mean of the values given in the Table 1) and the regression curve, (15 points)
- b) Write your comments according to the total error obtained (compared to the real values and compared to the regression curve for both methods). (10 points)

Note: Be careful about unit when you make numerical and analytical solution.