

I키포인트

- 로지스틱 회귀의 원리.
- 로지스틱 회귀를 적용한 학습과 예측.

I통계 예측모형

수치 예측

 $Y = 13.45, 73, 9.5, \dots$

분류 예측

Y = red, green, blue,

FAST CAMPUS ONLINE

I통계 예측모형

통계 예측의 평가

수치 예측

MSE, MAE, RMSE, 등.

분류 예측

Accuracy (정확도), Precision (정 밀도), Recall (재현율, 민감도), 등.

FAST CAMPUS ONLINE 장순용 강사.

Fast campus

I로지스틱 회귀 개요

- 로지스틱 회귀는 대표적인 분류 예측 방법이다.
- 한개 이상의 독립변수 (설명변수)가 있다: $X_1, X_2, ..., X_K$
- 한개의 종속변수가 있다: Y
- 종속변수의 값은 () 또는 1이어야만 한다: 이분법적인 상황을 모델 링.
- 종속변수의 값 예측 ← 조건부 확률 계산.

- * 개의 독립변수 (설명변수)가 있다고 가정한다.
 - → 가능한 값에 대해서는 제약이 없다.

$$X_1, X_2, ..., X_K$$
.

• 그리고 한개의 종속변수가 있다고 가정한다.

→ 그런데 가능한 값은 0과 1로 국한됨.

$$Y = \begin{cases} 1 \\ 0 \end{cases}$$

FAST CAMPUS ONLINE 장순용 강사.

• 즉, 이분법적인 상황이다.

$$Y =$$
 \begin{cases} 참 (True) $\\$ 거짓 (False)

• 즉, 이분법적인 상황이다.

$$Y = \begin{cases} \text{유형 } a \\ \text{유형 } b \end{cases}$$

• 이제는 독립변수 $\{X_i\}$ 를 선형조합하여 S 변수 (logit)을 만든다.

$$S = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$$

독립변수 (데이터로 값이 주어짐)

FAST CAMPUS ONLINE 장순용 강사.

• 이제는 독립변수 $\{X_i\}$ 를 선형조합하여 S 변수 (logit)을 만든다.

• 종속변수Y의 값이 1이 될 조건부 확률 $P(Y = 1 | \{x_i\})$ 은 "로지스틱 함수"또는 "Sigmoid 함수"를 사용해서 계산된다.

$$f(S) = \frac{e^{S}}{1 + e^{S}}$$

→ 인공신경망에서 "활성화 함수" (activation function)의 역할을 함.

FAST CAMPUS ONLINE

FAST CAMPUS ONLINE

FAST CAMPUS ONLINE

• 학습이란 모형의 파라미터, β 계수들의 값을 구하는 것.

$$S = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$$

$$f(S) = \frac{e^{S}}{1 + e^{S}}$$

- 로그우도 L을 최소화하는 방법으로 β 계수들의 값을 구할 수 있다.
- 로그우도 L 은 일종의 "손실함수"이다.
 - → 예측 오류에 의한 "손실"을 최소화 하고자 한다.

• 로그우도 L 의 수식은 다음과 같다:

$$L(\vec{\beta}) = -\sum_{i=1}^{N} Log \left(1 + e^{-y_i \vec{\beta}^t \vec{x}_i}\right)$$

- L의 값은 gradient 방향으로 증가율 최고.
 - → -gradient 방향으로는 감소율 최고.

• L의 gradient는 다음과 같이 구할 수 있다.

$$\overrightarrow{\nabla L} = -\sum_{i=1}^{N} \frac{y_{i \overrightarrow{x}_{i}} e^{-\overrightarrow{\beta}^{t} \overrightarrow{x}_{i}}}{1 + e^{-\overrightarrow{\beta}^{t} \overrightarrow{x}_{i}}}$$

- → L을 미분하여 구할 수 있다.
- $\rightarrow \overrightarrow{x}_i$ 와 y_i 는 실제 데이터 값을 의미한다.

- Gradient descent 알고리즘: 감소율 최고인 $-\overrightarrow{VL}$ 로 반복적으로 이동.
 - a). β 를 임의의 값으로 초기화 한다.
 - b). Gradient Ⅵ를 계산한다.
- c). $\vec{\beta} = \vec{\beta} \eta \vec{\nabla L}$ 와 같이 갱신한다. "Learning rate" η 로 수렴 속도 조절.

ғах самриз d). 스텝 b)로 돌아가서 일정 횟수만큼 반복한다.

• Gradient descent 알고리즘: 감소율 최고인 $-\overrightarrow{VL}$ 로 반복적으로 이동.

fast campus

모형의 파라미터, 즉 $\{\beta_i\}$ 를 학습용 데이터를 사용하여 계산해 놓는다.

FAST CAMPUS ONLINE 장순용 강사.

I로지스틱회귀 예측

독립변수의 값이 새롭게 주어졌을 때 $\{x_i'\}$, 모르는 상태인 종속변수의 값 y' 을 계산을 통해서 알아낸다.

"조건부 확률"

 $P(Y' = 1 | \{x_i'\}) > 기준확률?$

$$\rightarrow y' = 1 \text{ or } 0$$

FAST CAMPUS ONLINE 장순용 강사.

감사합니다.

