Le but de ce problème est l'étude de l'opérateur aux différences finies. Dans tout le problème, on désigne par Δ l'endomorphisme de $\mathbb{R}[X]$ qui à P associe P(X+1) - P(X).

Partie I : généralités algébriques

- **I.A.** Si $P \in \mathbb{R}[X]$ et $n \in \mathbb{N}^*$, exprimer $\Delta^n(P)$ en fonction de $P(X), P(X+1), \ldots, P(X+n)$.
- **I.B.** Soit $P \in \text{Ker } \Delta$; exhiber une infinité de zéros de P(X) P(0); en déduire que $P \in \mathbb{R}_0[X]$. Conclure quant à Ker Δ .
- **I.C.** Soit $P \in \mathbb{R}_n[X]$, où $n \geqslant 1$. Montrer que $\Delta(P) \in \mathbb{R}_{n-1}[X]$. Déduire de ce qui précède que $\Delta(\mathbb{R}_n[X]) = \mathbb{R}_{n-1}[X]$ puis que Δ est surjectif. [Pour ce dernier point, on pourra remarquer que tout polynôme appartient à un certain $\mathbb{R}_{n-1}[X]$.
- **I.D.** Soit des entiers $n \ge k \ge 1$. Déterminer $\Delta^k(\mathbb{R}_n[X])$. Que peut-on en conclure quant à Ker Δ^k ?
- **I.E.** Quels sont les polynômes $P \in \mathbb{R}[X]$ tels que $P(\mathbb{Z}) = \mathbb{Z}$? [On pourra montrer qu'un tel polynôme P est nécessairement de degré impair puis considérer $\lim_{n \to \infty} (\Delta P)(n)$.
- **I.F.** [Polynômes de HILBERT.] On définit $H_0 = 1, H_1 = X$ et $H_n = \frac{1}{n!} \prod_{k=0}^{n-1} (X k)$ pour $n \ge 2$.
- **I.F1.** Montrer que $\mathcal{H} = (H_k)_{k \in \mathbb{N}}$ est une base de $\mathbb{R}[X]$.
- **I.F2.** Montrer que $\Delta(H_n) = H_{n-1}$ pour tout entier $n \ge 1$. Retrouver alors les expressions du noyau et de l'image de Δ .
- **I.F3.** Montrer que, quels que soient les entiers $n \ge 0$ et k, $H_n(k) \in \mathbb{Z}$. [On distinguera les cas $k \ge n$, $k < 0 \ et \ 0 \le k < n.$

- I.G. Soit \mathscr{Z} l'ensemble des $P \in \mathbb{R}[X]$ tels que $P(\mathbb{Z}) \subset \mathbb{Z}$. I.G1. Si $P \in \mathscr{Z}$, montrer que $\Delta^k(P) \in \mathscr{Z}$ pour tout entier k. I.G2. Si $P = \sum_{k=0}^{n} a_k H_k \in \mathbb{R}[X]$, où les $a_k \in \mathbb{R}$, exprimer les a_k à l'aide des $(\Delta^{\ell}(P))$ (0). En déduire que

 $P \in \mathscr{Z} \Longrightarrow \forall k \in \{0, \ldots, n\}, a_k \in \mathbb{Z}.$

I.G3. Établir la réciproque.

Partie II : liens entre D et Δ

On désigne par $D \in \mathcal{L}(\mathbb{R}[X])$ l'endomorphisme de dérivation.

- **II.A.** Vérifier que D et Δ commutent.
- II.B. Soit $(\alpha_k)_{k\in\mathbb{N}}$ une suite de réels, **indexée par** \mathbb{N} .
- **II.B1.** Si $P \in \mathbb{R}[X]$, donner un sens à $A(P) = \sum_{k=0}^{+\infty} \alpha_k \Delta^k(P)$. On rappelle que, par convention, $\Delta^0 = \mathbb{I}$.

II.B2. Montrer que l'application A ainsi définie est un endomorphisme de $\mathbb{R}[X]$ et qu'il est inversible si, et seulement si, $\alpha_0 \neq 0$.

II.C. Dans cette question, on désire montrer que D est l'endomorphisme A obtenu pour une suite (α_k) bien choisie⁽¹⁾.

II.C1. On choisit $n \in \mathbb{N}^*$; montrer qu'il existe des réels $(\beta_1, \ldots, \beta_n)$ tels que $D(H_n) = \sum_{k=1}^n \beta_k \Delta^k(H_n)$.

Déterminer β_n en fonction de n (on pourra utiliser $H'_n(0)$).

II.C2. Montrer que, pour tout $P \in \mathbb{R}[X]$, $D(P) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} \Delta^k(P)$. [Commencer par le vérifier pour les éléments de \mathcal{H} .]

II.C3. Énoncer et établir une formule donnant, de même, $\Delta(P)$ à l'aide des $D^k(P)$ pour tout polynôme P. Voyez-vous un lien entre ces deux expressions?

Partie III: un autre exercice de concours⁽²⁾

Soit $P = a_0 X^k + \cdots + a_k \in \mathbb{Z}[X]$, avec $a_0 \neq 0$, $k \in \mathbb{N}$. On suppose qu'il existe $n \in \mathbb{N}^*$ tel qu'à tout entier $m \in \mathbb{Z}$ on puisse associer $q \in \mathbb{Z}$ tel que $P(m) = q^n$. Alors, on va montrer qu'il existe $Q \in \mathbb{Z}[X]$ tel que $P = Q^n$. Dans un premier temps, on suppose $a_0 > 0$.

III.A. Montrer qu'il existe $x_0 \in \mathbb{R}$, que l'on supposera désormais fixé, tel que $\varphi : x \longmapsto \sqrt[n]{P(x)}$ soit définie pour $x \geqslant x_0$. On notera que $\varphi(m)$ prend des valeurs entières pour les entiers $m \geqslant x_0$.

III.B. On pose $b = \sqrt[n]{a_0}$; montrer qu'il existe, pour tout entier $p \ge 0$, des polynômes A_1, \ldots, A_p tels que l'on ait

$$\varphi(X+l) = bX^{k/n} \left(1 + \frac{A_1(l)}{X} + \frac{A_2(l)}{X^2} + \dots + \frac{A_p(l)}{X^p} + o(1/X^p) \right)$$

lorsque $X \longrightarrow +\infty$, pour $l \in \mathbb{N}$ fixé. [On pourra partir d'une expression de la forme $P(X + l) = a_0X^k + \frac{P^{(k-1)}(l)}{(k-1)!}X^{k-1} + \cdots + P(l)$ et y factoriser a_0X^k .]

III.C. On désigne par $\mathscr E$ l'espace vectoriel des fonctions réelles définies sur $[x_0; +\infty[$, et par δ l'endomorphisme qui à $f \in \mathscr E$ associe $g \in \mathscr E$ définie par $x \longmapsto f(x+1) - f(x)$.

III.C1. Montrer que

$$(\delta^{r}(\varphi))(X) = bX^{k/n} \left(\frac{\Delta^{r}(A_{1})(0)}{X} + \frac{\Delta^{r}(A_{2})(0)}{X^{2}} + \dots + \frac{\Delta^{r}(A_{p})(0)}{X^{p}} + o(1/X^{p}) \right)$$

pour tout entier r > 0, quand $X \longrightarrow +\infty$.

Dire comment on peut choisir p et r pour que $(\delta^r(\varphi))(X) = o(1)$ quand $X \longrightarrow +\infty$.

III.C2. Avec un tel choix, montrer que $(\delta^r(\varphi))(m) = 0$ pour m entier assez grand. En s'inspirant des résultats de la partie **I**, en conclure qu'il existe une application polynomiale $Q_0 \in \mathbb{R}[X]$ telle que $\varphi(m) = Q_0(m)$ pour m entier assez grand et que Q_0 est de la forme $\frac{a}{b}R$, où $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$, $a \wedge b = 1$ et $R \in \mathbb{Z}[X]$ dont les coefficients sont premiers entre eux dans leur ensemble.

III.C3. Montrer que les fonctions polynomiales P et $\frac{a^n}{b^n}$ Rⁿ sont égales, puis⁽³⁾ que b=1. Conclure alors.

III.D. Étudier enfin le cas où $a_0 < 0$.

^{1.} Exercice de l'X, 2002.

^{2.} Ulm 2001.

^{3.} Difficile!