10/19

Nathan Keough

Acknowledgements: Utilized the study session: Worked independently and checked work cooperatively with other classmates on this practice set.

Wade Exercise 2.3.6

This result is used in Section 6.3 and elsewhere.

- a. Suppose that $\{x_n\}$ is a monotone increasing sequence in \mathbb{R} (not necessarily bounded above). Prove that there is an extended real number x such that $x_n \to x$ as $n \to \infty$.
- b. State and prove an analogous result for decreasing sequences.

Proof.

a. Let x_n be be a monotone increasing sequence.

If x_n is bounded above, then $\exists x \in \mathbb{R} \ni x_n \to x$ [MCT].

If x_n is not bounded, then given any upper bound M > 0, $\exists N \in \mathbb{N} \ni x_N > M$.

So, x_n is increasing and $n \ge N \implies x_n \ge x_N > M$.

Thus if x_n is increasing and not bounded above, then x_n diverges to ∞ as $n \to \infty$.

b. Likewise, $-x_n$ is a decreasing sequence.

If $-x_n$ is bounded below, then $\exists x \in \mathbb{R} \ni -x_n \to -x$ [MCT].

If $-x_n$ is not bounded, then given any lower bound M < 0, $\exists N \in \mathbb{N} \ni x_N < M$.

So, $-x_n$ is decreasing and $n \leq N \implies x_n \leq x_N < M$.

Thus if $-x_n$ is decreasing and not bounded below, then $-x_n$ diverges to $-\infty$ as $n \to \infty$.