# Tarea N°1 - Máquinas de Aprendizaje - ILI393

#### Martín Villanueva A.

## Introducción

En es primera tarea, se tiene como objetivo la implementación y testeo de algoritmos para regresión lineal y regresión logística. En ambos casos la busqueda de los mejores parámetros del modelo se realiza por medio de *Gradiente Descendente* (batch y online) y *Newton-Raphson*. Para la correcta selección de los *hiperparámetros* se realiza 5-fold crossvalidation, intentando de este modo que los modelos resultantes no caigan en problemas de *overfitting*.

## Parte 1 - Regresión Lineal

```
In [29]:
```

```
#alphas to try on raw data
alphas1 = np.linspace(4.0e-7, 4.5e-7, 5, endpoint=True)
#alphas to try on rescaled and normalized data
alphas2 = np.array([1.0e-3, 0.8e-3, 0.6e-3, 0.4e-3, 0.2e-3])
```

## 1a) Gradiente Descendente Batch

#### Raw data

```
In [42]:
```

```
solve_regression(gd_batch, 'linear', params=alphas1, show=[0,14])
```

Dataset: 0

Best alpha: 4.5e-07



Training error: 291.529613576 Testing error: 224.340517783

N° iterations: 64

0.0076039 ]

Dataset: 14

Best alpha: 4.5e-07



Training error: 236.271311927 Testing error: 424.701874

N° iterations: 53

 $0.10491754 \ -0.03100194 \ 0.1036039 \ 0.02771736 \ 0.01037837 \ 0.00402665$ 

0.0064281 ]



#### Rescaled data

In [44]:

```
solve_regression(gd_batch, 'linear', params=alphas2, data_func=rescale, show=[0,14])
```

Dataset: 0
Best alpha: 0.001



Training error: 20.6182739329 Testing error: 42.5328851194

N° iterations: 530

Beta: [ 39.27502848 -13.60536851 17.88310933 -16.95659792 -13.32113539

21.00349746 14.26238428 -17.86462666 10.29693403 -11.62685618

3.58148223 4.97282493 18.67876439]

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Dataset: 14
Best alpha: 0.001



Training error: 21.9788628555 Testing error: 91.1000283764

N° iterations: 548

Beta: [ 31.86746216 -11.73989936 18.4682303 -15.58587584 -10.42352654

16.69472148 16.37413566 -14.74326499 7.4469539 -7.23761563

4.18365522 3.54434565 18.06400087]



#### Normalized data

In [45]:

solve\_regression(gd\_batch, 'linear', params=alphas2, data\_func=normalize, show=[0,14])

Dataset: 0
Best alpha: 0.001



Training error: 13.4194733738
Testing error: 36.5826804086

 ${\tt N}^{\circ}$  iterations: 137

Beta: [ 42.22626947 -4.02131789 4.23055468 -3.50410785 -3.8804333

1.98386787 1.43159348 3.59464352]

Dataset: 14
Best alpha: 0.001



Training error: 16.3098751254
Testing error: 65.7517896491

N° iterations: 96

Beta: [ 40.87319656 -3.87689122 4.66900552 -3.56542152 -3.20285147

5.02062112 2.99775041 -3.08497395 0.46571746 -1.71364208

1.8960333 1.21081326 3.61273617]



## 1b) Gradiente Descendente Online

#### Raw data

In [46]:

```
solve_regression(gd_online, 'linear', params=alphas1, show=[0,14])
```

Dataset: 0

Best alpha: 4.5e-07



Training error: 292.641332227 Testing error: 216.286212008

N° iterations: 66

0.00780838]

Dataset: 14

Best alpha: 4.5e-07



Training error: 236.224475078 Testing error: 425.608168754

N° iterations: 54

0.00649339]



## Rescaled data

In [47]:

solve\_regression(gd\_online, 'linear', params=alphas2, data\_func=rescale, show=[0,14])

Dataset: 0
Best alpha: 0.001



Training error: 20.6132205513 Testing error: 42.5978431746

 ${\tt N}^{\circ}$  iterations: 531

Beta: [ 39.25933591 -13.60674956 17.89442223 -16.95968836 -13.34024487

3.58670305 4.99221433 18.68272861]

Dataset: 14
Best alpha: 0.001



Training error: 21.9786834767 Testing error: 90.8722318343

N° iterations: 548

Beta: [ 31.87057958 -11.74525815 18.46781379 -15.57800553 -10.41308722

4.19564227 3.56494144 18.04271745]



#### Normalized data

In [48]:

```
solve_regression(gd_online, 'linear', params=alphas2, data_func=normalize, show=[0,14])
```

Dataset: 0
Best alpha: 0.001



Training error: 13.4160931261
Testing error: 36.4127700422

N° iterations: 137

Beta: [ 42.22489559 -4.01812148 4.22806184 -3.50756328 -3.86158705

6.74149223 3.19810492 -4.11134324 -0.61343112 -3.0115829

1.97701226 1.44230261 3.57298429]

## \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Dataset: 14
Best alpha: 0.001



Training error: 16.3153752729 Testing error: 65.4658388653

N° iterations: 95

Beta: [ 40.88418912 -3.86109769 4.6767013 -3.52334001 -3.23350274

5.05247161 3.00863291 -3.07361825 0.48458418 -1.72351009

1.90061769 1.19267068 3.59741601]



## 1c) Newton Raphson

#### Raw data

```
In [33]:
```

```
solve regression(nr linear, 'linear', show=[0,14])
Dataset: 0
Training error: 12.690235978
Testing error: 29.8692128464
{\tt N}^{\, \circ} iterations: 2
Beta: [ 27.77312374 -0.19196441 3.64271996 -2.61978866 -0.04940511
  3.27558724
           0.8950743
                    -0.94639251 -0.03448292 -0.13677948
  2.89862662 12.4397042
                     13.71043458]
Dataset: 14
Training error: 15.5168045543
Testing error: 22.256882111
{\tt N}^{\, \circ} iterations: 2
Beta: [ 2.92044009e+01 -2.45567403e-01 3.72846884e+00 -2.50624227e+00
 -3.72800837e-02 2.92327199e+00 8.33168001e-01 -6.98788024e-01
 -1.71242668e-02 -1.04831696e-01 2.76379484e+00 1.24136911e+01
  1.31720844e+01]
```

#### Rescaled data

```
In [35]:
solve_regression(nr_linear, 'linear', data_func=rescale, show=[0,14])
Dataset: 0
Training error: 12.690235978
Testing error: 70.8230012379
N° iterations: 2
Beta: [ 37.68776506 -21.30804932 18.21359978 -15.71873198 -15.80963497
 45.85822131 16.11133741 -17.03506525 -10.86211949 -13.67794787 5.79725325 12.4397042 24.27432442]
Dataset: 14
Training error: 15.5168045543
Testing error: 153.683962628
N° iterations: 2
29.23271995 18.32969603 -12.57818444 -5.37701976 -10.48316963
  5.52758969 12.41369113 23.32117544]
Normalized data
In [36]:
solve_regression(nr_linear, 'linear', data_func=normalize, show=[0,14])
Dataset: 0
Training error: 12.690235978
Testing error: 39.1167896725
N° iterations: 2
              -3.99216233 4.26196505 -3.44486437 -3.93375017
Beta: [ 42.22724
  8.28671753 3.23536861 -4.20056151 -2.37742955 -3.2700182
  2.44555845 1.89445678 3.72993749]
Dataset: 14
Training error: 15.5168045543
Testing error: 61.1820073443
N° iterations: 2
Beta: [ 40.89617333 -4.54027498 4.63264649 -3.14293395 -2.94434592
  6.47945038 3.19280105 -3.05719739 -1.09358413 -2.01526648
```

2.3439993 1.82778689 3.80201253]

#### 2a) Gradiente Descendente Batch

| DataSet | Training MSE  | Training MSE  | Training MSE    | Testing MSE   | Testing MSE   | Testing MSE     |
|---------|---------------|---------------|-----------------|---------------|---------------|-----------------|
| Dataset | raw data      | rescaled data | normalized data | raw data      | rescaled data | normalized data |
| 0       | 47.7018651247 | 13.0062050605 | 12.7266740348   | 98.5365507026 | 65.2571301369 | 38.4079585793   |
| 1       | 64.7550597054 | 16.3602257442 | 16.0715344155   | 48.2315757796 | 92.0230671423 | 65.1941175822   |
| 2       | 60.7481463585 | 18.1457842322 | 17.7788520385   | 79.3615414274 | 115.610985266 | 18.2024811924   |
| 3       | 58.9987667645 | 14.1017329842 | 13.9377761345   | 97.6149558458 | 171.105766665 | 48.6525469488   |
| 4       | 60.3072912204 | 15.5749130727 | 15.3894271276   | 88.023192366  | 55.4477742699 | 24.1581873664   |
| 5       | 50.8161360455 | 14.2610314693 | 13.3703648326   | 103.273046989 | 53.7595016258 | 27.1554482493   |
| 6       | 65.6541052631 | 17.0409159049 | 15.7806050056   | 57.5892393027 | 138.507544424 | 50.1360687667   |
| 7       | 55.4439862945 | 16.7780811429 | 16.5841191369   | 75.1149772436 | 47.9171960704 | 28.077556808    |
| 8       | 54.5426469971 | 17.6594834655 | 17.0797580788   | 82.2107819498 | 27.7334819973 | 18.6923467845   |
| 9       | 62.4168368555 | 16.3081104286 | 15.8926108555   | 59.7595593067 | 337.991435488 | 32.4322681958   |
| 10      | 54.2623055884 | 13.4248859313 | 13.2809364772   | 102.249628704 | 76.0132818686 | 51.964392846    |
| 11      | 62.0340545439 | 15.8168112322 | 15.1229661239   | 96.3581158257 | 29.6423010367 | 58.2778323768   |
| 12      | 60.1712404807 | 14.7897334494 | 14.2704574864   | 47.6982336899 | 79.6061371602 | 33.4736955049   |
| 13      | 63.8754224266 | 13.5218597059 | 13.3686890914   | 54.6855768246 | 246.084167693 | 49.4021401471   |
| 14      | 55.3889121746 | 16.0666898014 | 15.5571989603   | 87.9559175097 | 117.196223122 | 62.1502546032   |
| 15      | 46.1065815649 | 7.96105164535 | 7.7831599526    | 120.74160843  | 102.779537282 | 103.539701305   |
| 16      | 58.7921426086 | 10.6974314356 | 10.4686233286   | 82.0169113703 | 509.388015464 | 79.8182740031   |
| 17      | 65.6326333879 | 14.3023622226 | 14.0575024157   | 50.8059305089 | 72.9172185356 | 39.4462557317   |
| 18      | 56.5555399322 | 16.4039458304 | 16.1738495233   | 89.5246242367 | 101.716074157 | 19.219045776    |
| 19      | 53.8965499152 | 13.1956721947 | 12.7453067041   | 101.423157308 | 79.6597927613 | 41.4905102572   |

Cuadro 1: MSE obtenidos en cada dataset con Gradiente Descendente Batch

# 2b) Gradiente Descendente Online

| DataSet | Training MSE  | Training MSE  | Training MSE    | Testing MSE   | Testing MSE   | Testing MSE     |
|---------|---------------|---------------|-----------------|---------------|---------------|-----------------|
| Dataset | raw data      | rescaled data | normalized data | raw data      | rescaled data | normalized data |
| 0       | 47.893692584  | 13.0074188914 | 12.7265440344   | 92.0966603914 | 65.2775158068 | 38.3704391845   |
| 1       | 64.6988609429 | 16.3629180412 | 16.0711580478   | 47.9123694862 | 93.6913520605 | 65.2908059333   |
| 2       | 60.9392772213 | 18.1476046506 | 17.7880949034   | 78.1358655876 | 115.411791641 | 18.0041725612   |
| 3       | 58.9787768796 | 14.1002166575 | 13.9375577433   | 99.2667062665 | 171.566596167 | 48.6369000543   |
| 4       | 60.1774212144 | 15.5749021184 | 15.3892917875   | 88.333392035  | 55.4869693485 | 24.1745417821   |
| 5       | 51.0422341216 | 14.260531204  | 13.370563385    | 103.788709289 | 53.7282011004 | 27.1142854438   |
| 6       | 65.5165575721 | 17.0406053124 | 15.7815019554   | 57.4194579169 | 138.43489681  | 50.2731709417   |
| 7       | 55.3588268682 | 16.780307963  | 16.5841646531   | 75.6410018834 | 47.5944048007 | 28.0681605601   |
| 8       | 54.6439352519 | 17.6584519859 | 17.0797739827   | 80.7421944912 | 27.7337192325 | 18.6695277152   |
| 9       | 62.1799637644 | 16.1913895977 | 15.892886139    | 58.8581361381 | 342.077775481 | 32.407908827    |
| 10      | 54.2693780177 | 13.4256912568 | 13.2804573566   | 102.231247534 | 75.9971396011 | 52.0015285506   |
| 11      | 62.2595665841 | 15.8160994494 | 15.1230550605   | 86.3623966795 | 29.6439787773 | 58.2777057111   |
| 12      | 60.2843606249 | 14.7899074557 | 14.2703041781   | 48.357913035  | 79.7909631268 | 33.5181606162   |
| 13      | 63.2651920301 | 13.5241617939 | 13.3663998961   | 53.681043548  | 245.88695962  | 49.3798234136   |
| 14      | 55.8103948422 | 16.0677328294 | 15.5578083558   | 90.6429254352 | 116.829116646 | 62.0802332363   |
| 15      | 45.8872186824 | 7.96097566712 | 7.7830831329    | 120.024573066 | 102.830744793 | 103.525379024   |
| 16      | 59.139425774  | 10.700077422  | 10.4703925557   | 84.7003440117 | 507.801818338 | 80.0407382824   |
| 17      | 65.8135992766 | 14.3060025597 | 14.0814594646   | 51.1345452402 | 73.3125213211 | 39.0982468252   |
| 18      | 56.780939942  | 16.4046917857 | 16.1771940462   | 89.4773158001 | 100.697687488 | 19.2541349743   |
| 19      | 56.4175529102 | 13.1946751264 | 12.74837702     | 95.239291694  | 79.7129789852 | 41.4471018701   |

Cuadro 2: MSE obtenidos en cada dataset con **Gradiente Descendente Online** 

# 2c) Newton Raphson

| DataSet | Training MSE  | Training MSE  | Training MSE    | Testing MSE   | Testing MSE   | Testing MSE     |
|---------|---------------|---------------|-----------------|---------------|---------------|-----------------|
| Dataset | raw data      | rescaled data | normalized data | raw data      | rescaled data | normalized data |
| 0       | 12.690235978  | 12.690235978  | 12.690235978    | 29.8692128464 | 70.8230012379 | 39.1167896725   |
| 1       | 15.9947888908 | 15.9947888908 | 15.9947888908   | 19.1213963039 | 105.300112485 | 67.378076989    |
| 2       | 17.7637059001 | 17.7637059001 | 17.7637059001   | 13.1702299683 | 139.177707921 | 18.9190672901   |
| 3       | 13.9043524941 | 13.9043524941 | 13.9043524941   | 28.1945882457 | 191.26333343  | 49.6104454505   |
| 4       | 15.3443534674 | 15.3443534674 | 15.3443534674   | 18.5845078343 | 60.566792667  | 24.2427186032   |
| 5       | 13.3367816832 | 13.3367816832 | 13.3367816832   | 29.3915243362 | 58.7330478202 | 26.930481888    |
| 6       | 15.7714352077 | 15.7714352077 | 15.7714352077   | 19.0828661051 | 183.563542547 | 50.2499676832   |
| 7       | 16.5377588238 | 16.5377588238 | 16.5377588238   | 16.3703204049 | 50.4205344035 | 28.4870497309   |
| 8       | 17.0315091906 | 17.0315091906 | 17.0315091906   | 16.1490495786 | 30.3017645531 | 18.8447579043   |
| 9       | 15.8241747153 | 15.8241747153 | 15.8241747153   | 21.9579912403 | 363.7143535   | 34.6682484071   |
| 10      | 13.2459812442 | 13.2459812442 | 13.2459812442   | 31.6607303987 | 77.7453577289 | 51.7167752009   |
| 11      | 15.0861602358 | 15.0861602358 | 15.0861602358   | 30.0689055712 | 30.5014191423 | 57.8116748334   |
| 12      | 14.2247910054 | 14.2247910054 | 14.2247910054   | 29.1616123114 | 85.4768097109 | 33.1587602379   |
| 13      | 13.3574116939 | 13.3574116939 | 13.3574116939   | 29.9555390274 | 245.72965064  | 49.7847446069   |
| 14      | 15.5168045543 | 15.5168045543 | 15.5168045543   | 22.256882111  | 153.683962628 | 61.1820073443   |
| 15      | 7.74295071369 | 7.74295071369 | 7.74295071369   | 86.5926285733 | 119.511903868 | 108.660106191   |
| 16      | 10.4584851241 | 10.4584851241 | 10.4584851241   | 40.2690867836 | 609.941477727 | 81.8616628828   |
| 17      | 14.0324636777 | 14.0324636777 | 14.0324636777   | 27.1971535112 | 76.3009933269 | 40.5837491905   |
| 18      | 16.1663277544 | 16.1663277544 | 16.1663277544   | 18.400069049  | 120.393356486 | 19.3481384185   |
| 19      | 12.7383399098 | 12.7383399098 | 12.7383399098   | 30.4741332593 | 90.2870113388 | 41.4018142274   |

Cuadro 3: MSE obtenidos en cada dataset con Newton Raphson

# 3) Locally weighted linear regression

```
In [49]:
```

```
taus1 = np.linspace(30.,200.,5, endpoint=True)
taus2 = np.linspace(1.,10.,5, endpoint=True)
```

#### Raw data

In [57]:

```
solve_weighted(taus1, show=[0,14])
```

Dataset: 0
Best tau: 30.0



Training error (weighted): 0.185160073025 Testing error (weighted): 9.27828692439

Training error: 240.503072277 Testing error: 332.258498635

Dataset: 14
Best tau: 30.0



Training error (weighted): 0.26539563072 Testing error (weighted): 2.51726674875

Training error: 99.4681361427 Testing error: 136.928680467



## Rescaled data

In [58]:

solve\_weighted(taus2, data\_func=rescale, show=[0,14])

Dataset: 0
Best tau: 1.0



Training error (weighted): 5.8374635318 Testing error (weighted): 34.5095818121

Training error: 12.9492812413 Testing error: 70.2835184179

Dataset: 14
Best tau: 1.0



Training error (weighted): 6.62249985344
Testing error (weighted): 66.2273010366

Training error: 16.0705146463 Testing error: 159.675444498



## Normalized data

In [59]:

solve\_weighted(taus2, data\_func=rescale, show=[0,14])

Dataset: 0
Best tau: 1.0



Training error (weighted): 5.8374635318 Testing error (weighted): 34.5095818121

Training error: 12.9492812413 Testing error: 70.2835184179

Dataset: 14
Best tau: 1.0



Training error (weighted): 6.62249985344
Testing error (weighted): 66.2273010366

Training error: 16.0705146463 Testing error: 159.675444498



4)

| DataSet | Mean wMSE (tr) | Mean wMSE (tr) | Mean wMSE (tr)   | Mean wMSE (ts) | Mean wMSE (ts) | Mean wMSE (ts)  |
|---------|----------------|----------------|------------------|----------------|----------------|-----------------|
| Dataset | raw data       | rescaled data  | normalized data  | raw data       | rescaled data  | normalized data |
| 0       | 0.185160073025 | 5.8374635318   | 0.0116268353211  | 9.27828692439  | 34.5095818121  | 2.7189137064    |
| 1       | 0.551491481187 | 7.42357667352  | 0.0140799530963  | 3.05010877493  | 45.8455651983  | 3.3947079304    |
| 2       | 4.22787452513  | 8.48216750479  | 0.0226595699254  | 4.11617089859  | 61.9495888587  | 1.53273149511   |
| 3       | 0.191190178173 | 6.41636593947  | 0.0164662870107  | 7.20283101934  | 80.2978274427  | 3.23027756977   |
| 4       | 0.286859127666 | 6.69590718878  | 0.00958848273139 | 5.87301786989  | 29.8022620265  | 2.69509073311   |
| 5       | 0.226068459737 | 5.99605881163  | 0.00721053354812 | 4.49815058632  | 28.8133003779  | 3.24257416177   |
| 6       | 0.228083553709 | 7.67975166864  | 0.0168670776746  | 10.6024610579  | 84.2729908046  | 3.50642360936   |
| 7       | 0.34233665971  | 7.12120761645  | 0.0114984678544  | 2.44973336275  | 22.0677520929  | 1.68708756991   |
| 8       | 0.30614464963  | 7.60106315371  | 0.0101669385035  | 8.8393949496   | 16.8947768907  | 1.98017305453   |
| 9       | 0.356655968295 | 6.90782752004  | 0.0116325674784  | 2.64749173719  | 168.900834481  | 1.8423408332    |
| 10      | 0.186997085423 | 6.06839289636  | 0.021925671126   | 8.51090362379  | 33.0346360177  | 4.03371732978   |
| 11      | 0.276747062181 | 7.54961200333  | 0.0181817424015  | 4.58154236743  | 15.0643647309  | 2.04514230794   |
| 12      | 0.384425821692 | 6.6105341413   | 0.0113366594152  | 3.9540924914   | 35.5408277928  | 1.23149062131   |
| 13      | 0.384997960811 | 5.04906381141  | 0.0169705085118  | 5.71929159871  | 115.979760351  | 3.13274681413   |
| 14      | 0.26539563072  | 6.62249985344  | 0.00717152063922 | 2.51726674875  | 66.2273010366  | 2.71192505401   |
| 15      | 1.4738023321   | 3.53142047     | 0.0097002934449  | 30.8945551067  | 51.3328189029  | 5.85392884421   |
| 16      | 0.257585475846 | 4.32100222221  | 0.0047222240917  | 7.64154951211  | 236.272101869  | 4.71691292037   |
| 17      | 0.199371376596 | 6.2636251599   | 0.00905094522373 | 6.73644640536  | 29.8133605895  | 2.98543515937   |
| 18      | 3.57537468158  | 7.01610995628  | 0.0185609581019  | 6.17709649767  | 50.9331564681  | 1.58109126714   |
| 19      | 0.299194740568 | 5.79724233979  | 0.023799033615   | 5.02264510199  | 37.2626320223  | 2.43789003229   |

Cuadro 4: Mean wMSE (weighted Mean Squared Error) en cada dataset con Locally Weighted Linear Regression

5)

# Parte 2 - Regresión Logística

## 1a) Gradiente ascendente online

In [61]:

```
#alphas to try on ascent gradient stochastic
alphas3 = np.linspace(1e-2, 1e-3, 5, endpoint=True)
```

## Raw data

In [73]:

```
solve_regression(gd_stochastic, 'logistic', params=alphas3, show=[0,14])
```

Dataset: 0
Best alpha: 0.00775



N° iterations: 13625

Beta: [ -6.07258811e+00 7.03329870e+00 -8.26724873e+00 -2.25430210e-01

1.24680827e+02 -2.80636719e+02 3.07024050e+00]

Dataset: 14

Best alpha: 0.0055



Training error: 0.15555555556 Testing error: 0.166666666667

 ${
m N}^{\circ}$  iterations: 100000

Beta: [ 85.582449 5.51768624 -6.92887744 0.90383805 137.34901635

-394.48396529 0.9807746 ]



#### Rescaled data

In [71]:

solve\_regression(gd\_stochastic, 'logistic', params=alphas3, data\_func=rescale, show=[0,14])

Dataset: 0
Best alpha: 0.01



Training error: 0.0666666666667

Testing error: 0.1 N° iterations: 364

Beta: [-0.89067992 1.89240682 -3.06533656 -0.49413702 8.38805164 -3.67234941

1.39561496]

#### 

Dataset: 14
Best alpha: 0.01



Training error: 0.0888888888889

Testing error: 0.1 N° iterations: 341

Beta: [-0.86739457 2.20861945 -2.52849556 -0.58885793 8.37423558 -3.46780645

0.54455779]

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*



## Normalized data

In [72]:

solve\_regression(gd\_stochastic, 'logistic', params=alphas3, data\_func=normalize, show=[0,14])

Dataset: 0

Best alpha: 0.00325



 ${\tt N}^{\circ}$  iterations: 345

0.40282272]

Dataset: 14

Best alpha: 0.0055



 $\mbox{N}^{\, \circ}$  iterations: 290

0.09574176]



# 1b) Newton Raphson

## Raw data

```
In [67]:
```

```
solve_regression(nr_logistic, 'logistic', data_func=normalize, show=[0,14])
Dataset: 0
Training error: 0.0
Testing error: 0.03333333333333
N° iterations: 17
Beta: [ -10.17632429
             51.90495222 -223.06462833 -72.5822921 446.92953071
-290.39247559 5.29862312]
Dataset: 14
Training error: 0.02222222222
Testing error: 0.03333333333333
N° iterations: 14
Beta: [ 6.21575176
             18.14870684 -124.70691036 -40.65161461 235.09789749
-145.40751338 -3.765009341
```

#### Rescaled data

In [69]:

```
solve regression(nr logistic, 'logistic', data func=rescale, show=[0,14])
```

```
Dataset: 0
Training error: 0.0
Testing error: 0.1
N° iterations: 17
Beta: [ 73.98701993
             180.88595375 -814.87368456 -183.34781483 1865.9231994
 -602.60602669
          22.16612173]
Dataset: 14
Training error: 0.022222222222
Testing error: 0.133333333333
{	t N}^{\circ} iterations: 14
Beta: [ 66.60527006
             62.6697612 -440.52106091 -98.52834405 948.8637574
-296.81184378 -17.070773381
```

#### Normalized data

solve\_regression(nr\_logistic, 'logistic', data\_func=normalize, show=[0,14])

Dataset: 0

Training error: 0.0

Testing error: 0.03333333333333

N° iterations: 17

Beta: [ -10.17632429 51.90495222 -223.06462833 -72.5822921 446.92953071

-290.39247559 5.29862312]

Dataset: 14

 ${\tt N}^{\, \circ}$  iterations: 14

Beta: [ 6.21575176 18.14870684 -124.70691036 -40.65161461 235.09789749

-145.40751338 -3.76500934]

## 2a) Gradiente Ascendente Online

| DataSet | Error rate (tr) | Error rate (tr) | Error rate (tr) | Error rate (ts) | Error rate (ts) | Error rate (ts) |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|         | raw data        | rescaled data   | normalized data | raw data        | rescaled data   | normalized data |
| 0       | 0.0444444444444 | 0.0666666666667 | 0.02222222222   | 0.0666666666667 | 0.1             | 0.0333333333333 |
| 1       | 0.0444444444444 | 0.05555555556   | 0.0444444444444 | 0.0333333333333 | 0.0             | 0.1             |
| 2       | 0.266666666667  | 0.0444444444444 | 0.02222222222   | 0.33333333333   | 0.3             | 0.133333333333  |
| 3       | 0.0666666666667 | 0.05555555556   | 0.02222222222   | 0.0333333333333 | 0.166666666667  | 0.0666666666667 |
| 4       | 0.0666666666667 | 0.077777777778  | 0.0444444444444 | 0.1             | 0.0333333333333 | 0.166666666667  |
| 5       | 0.18888888889   | 0.077777777778  | 0.0333333333333 | 0.166666666667  | 0.0333333333333 | 0.0333333333333 |
| 6       | 0.07777777778   | 0.05555555556   | 0.02222222222   | 0.233333333333  | 0.1             | 0.0333333333333 |
| 7       | 0.17777777778   | 0.088888888889  | 0.066666666666  | 0.0             | 0.0666666666667 | 0.0666666666667 |
| 8       | 0.18888888889   | 0.0444444444444 | 0.02222222222   | 0.133333333333  | 0.0666666666667 | 0.1             |
| 9       | 0.15555555556   | 0.077777777778  | 0.0444444444444 | 0.0666666666667 | 0.1             | 0.0666666666667 |
| 10      | 0.111111111111  | 0.0666666666667 | 0.0333333333333 | 0.166666666667  | 0.1             | 0.0666666666667 |
| 11      | 0.0444444444444 | 0.0666666666667 | 0.0333333333333 | 0.0666666666667 | 0.133333333333  | 0.0666666666667 |
| 12      | 0.2             | 0.077777777778  | 0.05555555556   | 0.133333333333  | 0.133333333333  | 0.0             |
| 13      | 0.2777777778    | 0.05555555556   | 0.05555555556   | 0.366666666667  | 0.1             | 0.1             |
| 14      | 0.15555555556   | 0.088888888889  | 0.0444444444444 | 0.166666666667  | 0.1             | 0.0666666666667 |
| 15      | 0.144444444444  | 0.077777777778  | 0.0333333333333 | 0.0666666666667 | 0.0666666666667 | 0.0666666666667 |
| 16      | 0.0444444444444 | 0.0333333333333 | 0.0333333333333 | 0.133333333333  | 0.0666666666667 | 0.133333333333  |
| 17      | 0.055555555556  | 0.0666666666667 | 0.0333333333333 | 0.0666666666667 | 0.0333333333333 | 0.133333333333  |
| 18      | 0.02222222222   | 0.077777777778  | 0.02222222222   | 0.1             | 0.133333333333  | 0.0333333333333 |
| 19      | 0.18888888889   | 0.0444444444444 | 0.0111111111111 | 0.266666666667  | 0.2             | 0.133333333333  |

Cuadro 5: Error rate en cada dataset obtenido con Gradiente Ascendente Online para regresión logística

# 2b) Newton Raphson

| DataSet | Error rate (tr) | Error rate (tr) | Error rate (tr) | Error rate (ts) | Error rate (ts) | Error rate (ts) |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Dataset | raw data        | rescaled data   | normalized data | raw data        | rescaled data   | normalized data |
| 0       | 0.0             | 0.0             | 0.0             | 0.0666666666667 | 0.1             | 0.0333333333333 |
| 1       | 0.0             | 0.0             | 0.0             | 0.0666666666667 | 0.0666666666667 | 0.0666666666667 |
| 2       | 0.0             | 0.0             | 0.0             | 0.1             | 0.2             | 0.133333333333  |
| 3       | 0.0             | 0.0             | 0.0             | 0.0666666666667 | 0.166666666667  | 0.0666666666667 |
| 4       | 0.0             | 0.0             | 0.0             | 0.0666666666667 | 0.0666666666667 | 0.166666666667  |
| 5       | 0.0             | 0.0             | 0.0             | 0.0333333333333 | 0.0333333333333 | 0.0666666666667 |
| 6       | 0.0             | 0.0             | 0.0             | 0.133333333333  | 0.133333333333  | 0.0333333333333 |
| 7       | 0.02222222222   | 0.02222222222   | 0.02222222222   | 0.0333333333333 | 0.0333333333333 | 0.0333333333333 |
| 8       | 0.0             | 0.0             | 0.0             | 0.0666666666667 | 0.0666666666667 | 0.0666666666667 |
| 9       | 0.75555555556   | 0.866666666667  | 0.6222222222    | 0.833333333333  | 0.666666666667  | 0.533333333333  |
| 10      | 0.0             | 0.0             | 0.0             | 0.0666666666667 | 0.1             | 0.1             |
| 11      | 0.1             | 0.133333333333  | 0.633333333333  | 0.133333333333  | 0.233333333333  | 0.4             |
| 12      | 0.0             | 0.0             | 0.0             | 0.0333333333333 | 0.0333333333333 | 0.0333333333333 |
| 13      | 0.5222222222    | 0.58888888889   | 0.6             | 0.566666666667  | 0.733333333333  | 0.633333333333  |
| 14      | 0.111111111111  | 0.788888888889  | 0.45555555556   | 0.0333333333333 | 0.566666666667  | 0.733333333333  |
| 15      | 0.02222222222   | 0.02222222222   | 0.4             | 0.0666666666667 | 0.166666666667  | 0.33333333333   |
| 16      | 0.0             | 0.0             | 0.0             | 0.166666666667  | 0.166666666667  | 0.2             |
| 17      | 0.0             | 0.0             | 0.0             | 0.066666666666  | 0.166666666667  | 0.133333333333  |
| 18      | 0.0             | 0.0             | 0.0             | 0.0666666666667 | 0.0333333333333 | 0.1             |
| 19      | 0.0             | 0.0             | 0.0             | 0.133333333333  | 0.133333333333  | 0.133333333333  |

Cuadro 6: Error rate en cada dataset obtenido con Newton Raphson para regresión logística

3)

## **Conclusiones**

#### **Anexos**

En la siguiente sección se encuentra todo el código necesario para reproducir cada uno de los resultados mostrados anteriormente. Para poder ejecutar el código en el informe, se debe en primer lugar ejecutar las celdas de código presentes en este anexo.

## Configuración del notebook

```
In [17]:
```

```
#notebook settings
%matplotlib inline

#import some useful libraries and utilities
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cross_validation import KFold
from sklearn.cross_validation import KFold

#avoid numpy warning (they are handled correctly)
np.seterr('ignore')

#setting some paths
path1 = './cereales/'
#data directory
path2 = './credit/'
```

## Métricas de error para regresión lineal

```
In [18]:
```

```
#overall cost function for linear regresion
def J(X, y, beta):
    f = np.dot(X,beta)
    diff = f-y
    return 0.5*np.dot(diff,diff)

#mean squared error for linear regression
def mse(X, y, beta):
    M,_ = X.shape
    f = np.dot(X,beta)
    diff = f-y
    return (1./(M-1))*np.dot(diff,diff)
```

#### Implementación de algoritmos de regresión lineal

```
In [32]:
```

```
#batch gradient descent for linear regression
def gd batch(X, y, alpha, eps=1e-3, max iter=100000):
   M,N = X.shape
   beta = np.zeros(N)
    J1 = J(X, y, beta)
    for i in xrange(max_iter):
        J0 = J1
        f = np.dot(X, beta)
        dJ = np.dot(X.T, f-y)
        beta -= alpha*dJ
        J1 = J(X, y, beta)
        if np.abs(J1-J0)/J0 < eps:
            break
    return (beta,i+1)
#online gradient descent for linear regression
def gd_online(X, y, alpha, eps=1e-3, max_iter=100000):
   M,N = X.shape
   beta = np.zeros(N)
    J1 = J(X, y, beta)
    for i in xrange(max iter):
        J0 = J1
        for m in xrange(M):
            beta -= alpha*(np.dot(X[m],beta)-y[m])*X[m]
        J1 = J(X, y, beta)
        if np.abs(J1-J0)/J0 < eps: break</pre>
    return (beta, i+1)
#Newton-Raphson method for linear regression
def nr_linear(X, y, eps=1e-5, max_iter=100000):
   M,N = X.shape
   beta = np.zeros(N)
    J1 = J(X, y, beta)
   Hess = np.dot(X.T,X)
    for i in xrange(max iter):
        J0 = J1
        f = np.dot(X, beta)
        dJ = np.dot(X.T, f-y)
        beta -= np.linalg.solve(Hess, dJ)
        J1 = J(X, y, beta)
        if np.abs(J1-J0)/J0 < eps: break</pre>
    return (beta, i+1)
```

#### Comentarios de implementación:

- Para todos los algoritmos existen básicamente dos criterios de salida. El primero es cuando el error relativo es menor a eps, vale decir, cuando la función de error esta cambiando muy poco de iteración en iteración. El segundo es el número máximo de iteraciones, mas que nada para detener algoritmos que no pueden cumplir con el criterio del error (learning rates muy altos por ejemplo).
- Todos los starting guest son el vector zeros. Esto para reproducir y comparar resultados de manera adecuada.
- En vez de invertir la matriz Hessiana en Newton-Raphson, se opta por resolver el sistema lineal asociado, por razones de estabilidad numérica

## Implementación de locally weighted linear regression

```
In [53]:
```

```
\# compute weights for all samples in X matrix, respect to x0
def weight(X, x0, tau):
   Diff = X - x0
   Diff *= Diff
   return np.exp(-1*np.sum(Diff,axis=1)/(2.*tau**2))
#weighted cost function
def wJ(X, y, beta, w):
    f = np.dot(X, beta)
   diff = f-y
    diff **=2
   return 0.5*np.dot(w,diff)
#weighted mean squared error
def wmse(X, y, beta, w):
   M_{,-} = X.shape
    f = np.dot(X, beta)
   diff = f-y
    diff **=2
    return (1./(M-1))*np.dot(w,diff)
#find best beta for locally weighted linear regression
def min weighted(X, y, w):
   W = np.diag(w)
   M = np.dot(X.T, np.dot(W, X))
   b = np.dot(X.T, np.dot(W, y))
   return np.linalg.solve(M,b)
```

## Métricas de error para regresión logística

```
In [20]:
```

```
#log likelihood function for logistic regression
"""
Computing l this way, make it more stable numerically (no overflows en exp)
"""

def l(X, y, beta):
    y1_mask = y.astype(bool)
    y0_mask = np.logical_not(y1_mask)
    f = sigmoid(np.dot(X,beta))
    return (np.log(f[y1_mask])).sum() + (np.log(1-f[y0_mask])).sum()

#error rate for logistic regression
def error_rate(X, y, beta):
    h = np.round(sigmoid(np.dot(X,beta)))
    h = h.astype(int)
    y = y.astype(int)
    m, = h.shape
    return np.logical_xor(h,y).sum()/np.float(m)
```

## Implementación de algoritmo de regresión logística

```
#sigmoid function
def sigmoid(z):
    return 1./(1.+np.exp(-z))
#stochastic gradient ascent for logistic regression
def gd stochastic(X, y, alpha, eps=1e-3, max iter=100000):
   M,N = X.shape
   beta = np.zeros(N)
   11 = 1(X, y, beta) + 1.
    for i in xrange(max_iter):
        10 = 11
        for m in xrange(M):
            beta += alpha*(y[m]-sigmoid(np.dot(X[m],beta)))*X[m]
        11 = 1(X, y, beta) + 1.
        if np.abs(11-10)/np.abs(10) < eps: break</pre>
    return (beta,i+1)
#Newton-Raphson method for logistic regression
def nr logistic(X, y, eps=1e-3, max iter=100000):
   M, \overline{N} = X.shape
   beta = np.zeros(N)
    11 = 1(X, y, beta) + 1.
    for i in xrange(max_iter):
        10 = 11
        f = sigmoid(np.dot(X,beta))
        W = np.diag(f*(1-f))
        Hess = -1*np.dot(X.T, np.dot(W, X))
        Dl = np.dot(X.T, y-f)
        #when it converges, Hess became singular
            beta -= np.linalg.solve(Hess, Dl)
        except np.linalg.LinAlgError:
           break
        11 = 1(X, y, beta) + 1.
        if np.abs(11-10)/np.abs(10) < eps: break
    return (beta, i+1)
```

#### Comentarios de implementación:

- Para ambos algoritmos hay dos criterios de salida. El primero es cuando la función log verosimilitud cambia relativamente menor a eps en cada iteración (pues es la función que se quiere maximizar). Se tiene en cuenta además que en el óptimo esta función debe ser \$0\$ (en el óptimo la función de verosimilitud es \$1\$, pues maximiza la probabilidad para cada dato), por lo que se le suma un \$1\$ para evitar problemas al computar el criterio de salida. El segundo criterio el número máximo de iteraciones
- Existe un tercer criterio de salida en el método de Newton-Raphson. A medida que converge, el vector \$f\$ con las probabilidades de pertenecer a la clase \$1\$ de todos los datos, tiene sólo valores cercanos a \$0\$ y \$1\$. Luego al computar la matriz \$W\$, esta empezará a tener filas completas de \$0\$ o valores muy cercanos a \$0\$, y por lo tanto la matriz Hessiana también, y al converger esta matriz se vuelve singular. Para eso se ocupa el manejo de la excepción en caso de existir singularidad.

## Funciones para manejo de la data

```
In [22]:
```

```
#Rescale features of M to [a,b] range
def rescale(M, a=0., b=1.):
    #max and min vectors
    maxv = np.max(M, axis=0)
    minv = np.min(M, axis=0)
    return (b-a)*M/(maxv-minv) + (a*maxv-b*minv)/(maxv-minv)

#Normalize features of M
def normalize(M):
    #mean and standard deviation vectors
    meanv = np.mean(M, axis=0)
    stdv = np.std(M, axis=0)
    return (M-meanv)/stdv
```

## **Funciones para Cross-Validation**

```
In [23]:
```

```
""" find the best learning parameter for algorithm, between
parameters in params using 5-fold cross validation """
def cross_alpha(X, y, algorithm, error_func, params):
   #creating kfold
   m, n = X.shape
   kf = KFold(m, n folds=5)
   cv err = np.empty((5,5))
   i = 0 #index of fold
    for tr index, ts index in kf:
        j = 0 #index of parameter
       X_tr, X_ts = X[tr_index], X[ts_index]
       y_tr, y_ts = y[tr_index], y[ts_index]
        for param in params:
           beta,_ = algorithm(X_tr, y_tr, alpha=param)
            cv_err[i,j] = error_func(X_ts, y_ts, beta)
           j += 1
        i += 1
    #arrays with mean cv-error for each alpha
   cv mean = np.mean(cv err, axis=0)
   return params[np.argmin(cv mean)], cv err
""" find the best band width parameter for locally
weighted linear regression, between parameters in params
using 5-fold cross validation """
def cross tau(X, y, params):
   #creating kfolds
   m,n = X.shape
   kf = KFold(m, n folds=5)
   cv err = np.zeros((5,5))
   i = 0 #index of fold
    for tr_index,ts_index in kf:
       X_tr, X_ts = X[tr_index], X[ts_index]
       y_tr, y_ts = y[tr_index], y[ts_index]
        j = 0 #index of parameter
        for tau in params:
            for x0 in X ts:
                w1 = weight(X_tr, x0, tau)
                w2 = weight(X ts, x0, tau)
               beta = min weighted(X tr, y tr, w1)
                cv err[i,j] += wmse(X_ts, y_ts, beta, w2)
            cv_err[i,j] /= X_ts.shape[0]
            j +=1
        i +=1
    #arrays with mean costs for each alpha
    cv mean = np.mean(cv err, axis=0)
    return params[np.argmin(cv_mean)], cv_err
```

#### Funciones complementarias (Helpers) para obtener resultados

```
In [56]:
```

```
"""
Function to generate histogram of winners
"""

def make_hist(winners,params):
    winners = np.array(winners)
    freqs = np.zeros(5)
    for i in xrange(5):
        freqs[i] = np.sum(params[i]==winners)

    labels = map(str,params)
    pos = np.arange(len(labels))
    width = 1.0
    fig = plt.figure()
    fig.set_figheight(6)
    fig.set_figwidth(6)
```

```
ax = plt.axes()
   ax.set xticks(pos + (width / 2))
   ax.set xticklabels(labels)
   plt.ylabel('Frequency')
   plt.title('Histogram of winner parameters')
   plt.bar(pos, freqs, width, color='0.5')
   plt.show()
Generate solutions for regression problems
(linear and logistic)
def solve regression(algorithm, kind, params=None, data func=None, show=None):
   if params is not None:
       winners = list()
   if kind=='linear':
       path = path1+'cereales'
       error_func = mse
   elif kind=='logistic':
       path = path2+'credit'
       error_func = error_rate
       print "Unknown kind!"
       return -1
   for i in xrange(20):
       #Loading dataset
       tr file = path+'-tr-{0}.npy'.format(i)
       ts file = path+'-ts-{0}.npy'.format(i)
       tr data = np.load(tr_file)
       ts_data = np.load(ts_file)
       if data func is not None:
           X_tr = data_func(tr_data[:,:-1])
       else:
           X tr = tr data[:,:-1]
       y tr = np.ascontiguousarray(tr data[:,-1])
       #Adding column of 1's
       m,n = X tr.shape
       X tr = np.concatenate((np.ones((m,1)),X tr),axis=1)
       if data func is not None:
           X 	ext{ ts = data func(ts data[:,:-1])}
       else:
           X ts = ts data[:,:-1]
       y_ts = np.ascontiguousarray(ts_data[:,-1])
       #Adding column of 1's
       m,n = X ts.shape
       X_{ts} = np.concatenate((np.ones((m,1)),X ts),axis=1)
       if params is not None:
           alpha,cv_err = cross_alpha(X_tr, y_tr, algorithm, error_func, params)
           winners.append(alpha)
           beta,it = algorithm(X_tr, y_tr, alpha)
           beta, it = algorithm(X tr, y tr)
       if (show is not None) and (i not in show): continue
       print "Dataset: {0}".format(i)
       if params is not None:
           print 'Best alpha: {0}'.format(alpha)
           fig = plt.figure()
           fig.set_figheight(5)
           fig.set_figwidth(10)
           plt.xlabel('Parameters')
           plt.ylabel('Cross-Validation Errors')
           plt.boxplot(cv_err, showmeans=True, meanline=True)
           plt.xticks([1, 2, 3, 4, 5], map(str,params))
       print 'Training error: {0}'.format(error_func(X_tr,y_tr,beta))
       print 'Testing error: {0}'.format(error func(X ts,y ts,beta))
       print 'N° iterations: {0}'.format(it)
       print 'Beta: {0}'.format(beta)
```

```
print '\n'
    if params is not None:
       make hist (winners, params)
Generate solutions for locally weighted linear regression problems
def solve weighted(params, data func=None, show=None):
    #list with winners-alphas
    winners = list()
    for i in xrange(20):
        #Loading dataset
       tr file = path1+'cereales-tr-{0}.npy'.format(i)
       ts file = path1+'cereales-ts-{0}.npy'.format(i)
       tr_data = np.load(tr_file)
       ts data = np.load(ts file)
       if data func is not None:
           X tr = data func(tr data[:,:-1])
       else:
           X tr = tr data[:,:-1]
       y_tr = np.ascontiguousarray(tr_data[:,-1])
        #Adding column of 1's
       m,n = X tr.shape
       X_tr = np.concatenate((np.ones((m,1)),X_tr),axis=1)
       if data func is not None:
           X_ts = data_func(ts_data[:,:-1])
       else:
           X_ts = ts_data[:,:-1]
        y_ts = np.ascontiguousarray(ts_data[:,-1])
        #Adding column of 1's
       m,n = X ts.shape
       X_{ts} = np.concatenate((np.ones((m,1)),X_{ts}),axis=1)
       tau,cv_err = cross_tau(X_tr, y_tr, params)
       winners.append(tau)
       wtr err = 0
       wts err = 0
       tr err = 0
       ts_err = 0
       for x0 in X ts:
           w1 = weight(X tr, x0, tau)
           w2 = weight(X ts, x0, tau)
           beta = min weighted(X_tr, y_tr, w1)
           wtr_err += wmse(X_tr, y_tr, beta, w1)
           wts_err += wmse(X_ts, y_ts, beta, w2)
           tr_err += mse(X_tr, y_tr, beta)
           ts_err += mse(X_ts, y_ts, beta)
       M = X ts.shape[0]
       wtr err /= M
       wts_err /= M
       tr err /= M
       ts_err /= M
       if (show is not None) and (i not in show): continue
       print "#######################
       print "Dataset: {0}".format(i)
       print 'Best tau: {0}'.format(tau)
       fig = plt.figure()
       fig.set figheight(5)
       fig.set_figwidth(10)
       plt.xlabel('Parameters')
       plt.ylabel('Cross-Validation Errors')
       plt.boxplot(cv_err, showmeans=True, meanline=True)
       plt.xticks([1, 2, 3, 4, 5], map(str,params))
       plt.show()
       print 'Training error (weighted): {0}'.format(wtr err)
       print 'Testing error (weighted): {0}'.format(wts err)
       print 'Training error: {0}'.format(tr err)
       print 'Testing error: {0}'.format(ts err)
       print '\n'
```