NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

1/24

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

25. Februar 2019

Inhalt I	NP-Vollständigkeit wichtiger Probleme
Komplexitätsklassen	Sebastian Bernauer
Satisfiability Problem (SAT) 3-SAT	Komplexitätsklassen
	Satisfiability Problem (SAT)
Clique Problem	3-SAT
Beweis	Clique Problem
Knapsack Problem	Knapsack Problem
Beweis	Beweis
	Partition Problem
Partition Problem	Beweis
Beweis	BP Problem
	Beweis
BP	DHC
Problem	Problem
Beweis	Beweis HC
	Problem
DHC	Beweis
Problem	TSP
	Problem 2 / 24

Inhalt II Beweis

Bernauer mplexitätsklasse

NP-Vollständigkeit

wichtiger Probleme

Sebastian

HC Problem Beweis

TSP Problem Beweis

r jue Problem eis apsack Problem

ition Problem

em s

m

n

Aufsteigende Komplexitätsklassen:

1. P - polynomiell lösbar

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Problem (SAT)

Clique Problem

napsack Problem

rtition Problem

BP

roblem

HC

oblem

С

roblem eweis

lem

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig

$$\rightarrow \forall L' \in NP : L' \leq_{p} L$$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig $\rightarrow \forall L' \in NP : L' \leq_p L$
- 4. NP-vollständig $\rightarrow L \in NP$ und $\forall L' \in NP : L' \leq_p L$

$$ightarrow \mathit{L} \in \mathit{NP}$$
 und $orall \mathit{L}' \in \mathit{NP}$: $\mathit{L}' \leq_{\mathit{p}} \mathit{L}$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Komplexitätsklassen

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig $\rightarrow \forall L' \in NP : L' \leq_p L$
- 4. NP-vollständig
 - $\rightarrow L \in NP$ und $\forall L' \in NP : L' \leq_p L$
 - →Alle folgenden Probleme sind NP-vollständig

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

Komplexitätsklassen

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig $\rightarrow \forall L' \in NP : L' \leq_p L$
- 4. NP-vollständig
 - $\rightarrow L \in NP$ und $\forall L' \in NP : L' \leq_p L$
 - →Alle folgenden Probleme sind NP-vollständig
- 5. nicht rekursiv

Satisfiability Problem

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i,j \in \{1,...,n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1,...,a_n\} \in \{0,1\}^n$ der Variablen $x_1,...,x_n$ gibt, so dass alle Klauseln erfüllt sind.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

Satisfiability Problem (SAT)

3-3A1

Clique Problem

napsack Problem

Doublish Doubless

artition Problem

BP

roblem

НС

blem

10

Problem

eweis

roblem

Satisfiability Problem

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i,j \in \{1,...,n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1,...,a_n\} \in \{0,1\}^n$ der Variablen $x_1,...,x_n$ gibt, so dass alle Klauseln erfüllt sind.

Fragestellung: Existiert eine Wahrheitsbelegung der Variablen $x_1, ..., x_n$, so dass alle Klauseln erfüllt sind?

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT

Clique Problem

Inapsack Problem

Partition Problem

Partition Problem
Beweis

BP

Problem

НС

blem

C ...

roblem leweis

lem

5,

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i, j \in \{1, ..., n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1, ..., a_n\} \in \{0, 1\}^n$ der Variablen $x_1, ..., x_n$ gibt, so dass alle Klauseln erfüllt sind.

Fragestellung: Existiert eine Wahrheitsbelegung der Variablen x_1, \dots, x_n so dass alle Klauseln erfüllt sind?

→Satz von Cook: SAT is NP-vollständig

3-SAT

- Spezialfall von SAT
- Jede Klausel enthält 3 Literale
- Es wurde bewiesen, dass SAT durch 3-SAT abbildbar und damit gleich komplex (NP-vollständig) ist

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

3-SAT

Clique Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subset V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Complexitätsklass

oblem (SAT)

Clique Problem

Knapsack Problem

weis rtition Problem

BP

Proble

DHC

oblem

C

Problem

Р

roblem

Clique Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

Abbildung: Ein Graph mit einer Clique der Größe 3.

Quelle: https://de.wikipedia.org/wiki/Clique_(Graphentheorie)#/media/File:6n-graf-clique.svg

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique Problem

Clique - Beispiel

Abbildung: Ein Graph mit 2 Cliquen der Größe 4.

Quelle: https://en.wikipedia.org/wiki/Clique_(graph_theory)#/media/File:VR_complex.svg

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique Problem

Clique - Fragestellungen

1. Gibt es eine Clique der Größe k?

ightarrowEntscheidungsproblem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

roblem (SAT)

Clique Problem

Clique Problem

nansack Probler

veis

DD

roblem

IC.

eweis

IC

eweis

P

m .

Clique - Fragestellungen

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem
- 2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.
 - →Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

Problem (SAT)

Clique Problem

eweis

napsack Problem eweis

rtition Problem

RD.

Problem

IC

blem

c

Problem Beweis

Problem

Clique - Fragestellungen

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Clique Problem

1. Gibt es eine Clique der Größe k?

 \rightarrow Entscheidungsproblem

2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.

→Optimale Lösung

3. Berechne eine Clique mit dem größten k.

 \rightarrow Optimierungsproblem

Clique - Beweis

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

Komplexitätsklasse

Satisfiability Problem (SAT)

lique Proble

Beweis

psack Problem

tion Prob

roblem

C .

olem

blem

P

10 / 24

Beweis

Problem Boussis

Knapsack Problem

Gegeben sind ein Rucksack und n Objekte mit Gewichten $g_1,...,g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1,...,a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

mplexitätsklasser

Satisfiability Problem (SAT)

SAT

eweis

Knapsack Problem

artition Problem

BP

Problem

HC

oblem

IC.

Problem Beweis

Problem

Knapsack Problem

Gegeben sind ein Rucksack und n Objekte mit Gewichten $g_1,...,g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1,...,a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

Abbildung: Ein zu befüllender Rucksack.

 $Quelle: \ https://de.wikipedia.org/wiki/Rucksackproblem\#/media/File:Knapsack.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT

weis

Knapsack Problem

Beweis

Partition Problem

BP

Problem Beweis

HC

Problem

HC

Problem Beweis

em

olem 11

Knapsack - Fragestellungen

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - $\rightarrow\! Entscheidungsproblem$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassei

tisfiability oblem (SAT)

Clique Problem

Knapsack Problem

eweis

Beweis

BP

Problem

HC

eweis

HC

Beweis

roblem

lem 12

Knapsack - Fragestellungen

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - \rightarrow Entscheidungsproblem
- 2. Berechne den größtmöglichen Nutzwert.
 - →Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Knapsack Problem

Knapsack - Fragestellungen

1. Gibt es - unter Beachtung des Limits - eine Beladung mit mindestens diesem Nutzwert?

 \rightarrow Entscheidungsproblem

2. Berechne den größtmöglichen Nutzwert.

ightarrow Optimale Lösung

3. Berechne die optimale Beladung.

ightarrowOptimierungsproblem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

tisfiability oblem (SAT)

3-5A1

Clique Problem
Beweis

Knapsack Problem

weis

artition Problem

RP.

BP

Beweis

HC ...

roblem

С

oblem weis

·

roblem

wichtiger Probleme

Sebastian
Bernauer

NP-Vollständigkeit

Komplexitätsklasser

Problem (SAT)

3-SAT

eweis

Beweis

ion Problem

.....

)

oblem

veis

veis

oblem weis

13 /

13 / 24

Knapsack - Beweis

Beweis

Partition Problem

Gegeben sind $b_1, ..., b_n \in \mathbb{N}$. Gibt es eine Teilmenge $I \subseteq \{1, ..., n\}$, so dass die Summe aller b_i , $i \in I$ gleich der Summe aller b_i , $i \notin I$ ist? → Teil eine Menge von Gewichten in 2 gleich schwere Haufen auf.

NP-Vollständigkeit wichtiger Probleme

> Sebastian Bernauer

Partition Problem

Partition - Beweis

Beweis

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Beweis

BP Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Problem

16 / 24

Problem

BP Beweis

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Beweis

17 / 24

Beweis

DHC Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

.....

Problem (SAT)

que Probl

apsack Probler

tition F

)

blem

eis

Problem

eis

.

18 / 24

·m 18

Problem

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

Beweis

19 / 24

DHC Beweis

Beweis

HC Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Problem

20 / 24

Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Beweis

21 / 24

HC Beweis

Beweis

TSP Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

TSP Beweis

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

Beweis

Roweis

Quellen

Ingo WEGENER. Theoretische Informatik. Eine algorithmenorientierte Einführung. Teubner, 2005.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

Satisfiability Problem (SAT)

3-SA

ique Problem

Bev

napsack Problem

artition Problen

BD.

BP

Problem

IC.

oblem

.

HC

eweis

roblem

lem 24 / 24