例9.3.5. 设 $\{a_n\}$ 单调且 $\lim_{n\to\infty} a_n = 0$.

则
$$\sum_{n=0}^{+\infty} a_n \sin nx \quad (x \in \mathbb{R})$$
 和 $\sum_{n=0}^{+\infty} a_n \cos nx \quad (x \in \mathbb{R}, \ x \neq 2k\pi, \ k \in \mathbb{N})$ 收敛.

由于 $\{a_n\}$ 单调趋于零, 所以 $\{a_n\}$ 定号, 不妨设 $a_n \ge 0$, $n \in \mathbb{N}$. 事实上, 我们可以证明更强的结论:

事实上, 我们可以证明更强的结论: 从而
$$\sum_{n=1}^{+\infty} a_n$$
 收敛可推出 $\sum_{n=1}^{+\infty} a_n \sin nx$, $\sum_{n=1}^{+\infty} a_n \cos nx$ ($x \in \mathbb{R}$) 绝对收敛.

 $(1) \sum_{n=1}^{+\infty} a_n \text{ 收敛} \Rightarrow \sum_{n=1}^{+\infty} a_n \sin nx, \sum_{n=1}^{+\infty} a_n \cos nx \text{ } (x \in \mathbb{R} \text{ 绝对收敛}).$ $\text{如果 } \sum_{n=1}^{+\infty} a_n \text{ 发散},$

关于 $\sum a_n \cos nx$ 的结论类似可证.

即 $\sum a_n \sin nx$ 条件收敛.

最后, 关于一般项级数的加括号, 有如下结论.

定理9.3.5. 【同号可括】 设 $\{n_k\}_{k=1}^{\infty}$ 是自然数的一个子列, 令 $n_0=0$, $\{a_i\}_{i=n_k+1}^{i=n_{k+1}}$, $k=1,2,\cdots$ 不变号,

 $i A_k = \sum_{i=n_1, i+1}^{n_k} a_i, \quad k=1,2,\cdots, \sum_{k=1}^{\infty} A_k$ 形成交错级数. 则 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{k=1}^{\infty} A_k$ 同致散, 且收敛时, 其和相等.

证明. 首先, $S_K' = \sum_{k=1}^K A_k$, $K = 1, 2, \cdots$ 是 $S_N = \sum_{n=1}^N a_n$, $N = 1, 2, \cdots$ 的一个子列.

如果 $\sum_{N=0}^{\infty} a_n$ 收敛, 即 $\lim_{N\to\infty} S_N = S$ 存在, 当然 $\lim_{K\to\infty} S_K' = S$, 即 $\sum_{k=1}^{\infty} A_k$ 也收敛.

其次, 如果 $\sum_{k=0}^{\infty} A_k$ 收敛, 即 $S_K' = \sum_{k=0}^{K} A_k$, $K = 1, 2, \cdots$ 收敛.

由于 $\forall N \in \mathbb{N}, \exists K \text{ s.t. } n_{K-1} < N \leqslant n_K,$ 所以有 $\begin{cases} S'_{K-1} < S_N \leqslant S'_K, & a_n \geqslant 0, & n \in (n_{K-1}, n_K] \\ S'_K < S_N \leqslant S'_{K-1}, & a_n \leqslant 0, & n \in (n_{K-1}, n_K] \end{cases}$

