Optimization Lecture 6+7

Qingfu Zhang

Dept of CS , CityU

Outline

Lagrangian and dual function

Lagrangian dual problem

KKT condition

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Recap

- ightharpoonup conjugate of f(x)
- ▶ first order condition for a differentiable convex function
- ► Jensen inequality
- implicit constraints, explicit constraints
- first order sufficient and necessary optimality condition for convex optimization problem.

Lagrangian and dual function

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

▶ **Lagrangian**: $L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with dom $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x,\lambda,v) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- \blacktriangleright μ_i is Lagrange multiplier associated with $h_i(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\mu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\mu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x) \right)$$

- ▶ g is concave, can be $-\infty$ for some λ, μ
- ▶ lower bound property: if $\lambda \ge 0$, then $g(\lambda, \mu) \le p^*$
- **proof**: if \tilde{x} is feasible and $\lambda > 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \mu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \mu) = g(\lambda, \mu)$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \mu)$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

- ▶ Lagrangian is $L(x, \mu) = x^T x + \mu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \mu) = 2\mathbf{x} + \mathbf{A}^T \mu = 0 \implies \mathbf{x} = -(1/2)\mathbf{A}^T \mu$$

▶ plug *x* into *L* to obtain

$$g(\mu) = L((-1/2)A^T\mu, \mu) = -\frac{1}{4}\mu^T AA^T\mu - b^T\mu$$

▶ lower bound property: $p^* \ge -(1/4)\mu^T A A^T \mu - b^T \mu$ for all μ

Standard form LP

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$

Lagrangian is

$$L(x,\lambda,\mu) = c^T x + \mu^T (Ax - b) - \lambda^T x = -b^T \mu + (c + A^T \mu - \lambda)^T x$$

ightharpoonup L is affine in x, so

$$g(\lambda, \mu) = \inf_{x} L(x, \lambda, \mu) = \begin{cases} -b^{T} \mu & A^{T} \mu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

- ▶ g is linear on affine domain $\{(\lambda, \mu) \mid A^T \mu \lambda + c = 0\}$, hence concave
- ▶ lower bound property: $p^* \ge -b^T \mu$ if $A^T \mu + c \ge 0$

Equality constrained norm minimization

minimize
$$||x||$$
 subject to $Ax = b$

dual function is

$$g(\mu) = \inf_{\mathbf{x}} \left(\|\mathbf{x}\| - \mu^T A \mathbf{x} + b^T \mu \right) = \begin{cases} b^T \mu & \|A^T \mu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

where
$$\|\mu\|_* = \sup_{\|\mu\| \le 1} u^T \mu$$
 is dual norm of $\|\cdot\|$

▶ lower bound property: $p^* \ge b^T \mu$ if $\|A^T \mu\|_* \le 1$

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \le b$, $Cx = d$

dual function

$$g(\lambda, \mu) = \inf_{\mathbf{x} \in \text{dom } f_0} \left(f_0(\mathbf{x}) + \left(\mathbf{A}^T \lambda + \mathbf{C}^T \mu \right)^T \mathbf{x} - \mathbf{b}^T \lambda - \mathbf{d}^T \mu \right)$$
$$= -f_0^* \left(-\mathbf{A}^T \lambda - \mathbf{C}^T \mu \right) - \mathbf{b}^T \lambda - \mathbf{d}^T \mu$$

where $f^*(y) = \sup_{x \in \text{dom } f} [y^T x - f(x)]$ is the conjugate of f_0

- \triangleright simplifies derivation of dual if conjugate of f_0 is known
- example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \quad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Lagrangian dual problem

The Lagrange dual problem

(Lagrange) dual problem

maximize
$$g(\lambda, \mu)$$
 subject to $\lambda \geq 0$

- ▶ finds best lower bound on p^* , obtained from Lagrange dual function
- a convex optimization problem, even if original primal problem is not
- dual optimal value denoted d*
- λ, μ are dual feasible if $\lambda \geq 0, (\lambda, \mu) \in \mathbf{dom}(g)$
- often simplified by making implicit constraint $(\lambda, \mu) \in \mathbf{dom}(g)$ explicit

Example: standard form LP

primal standard form LP:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

dual problem is

maximize
$$g(\lambda, \mu)$$
 subject to $\lambda \geq 0$

with
$$g(\lambda, \mu) = -b^T \mu$$
 if $A^T \mu - \lambda + c = 0, -\infty$ otherwise

ightharpoonup make implicit constraint explicit, and eliminate λ to obtain (transformed) dual problem

maximize
$$-b^T \mu$$

subject to $A^T \mu + c > 0$

Weak and strong duality

weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems.

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

if it is strictly feasible, i.e., there is an $x \in \text{int } \mathcal{D}$ with $f_i(x) < 0, i = 1, \dots, m, Ax = b$

- lacktriangle also guarantees that the dual optimum is attained (if $p^\star > -\infty$)
- can be sharpened: e.g.,
 - ightharpoonup can replace int $\mathcal D$ with relint $\mathcal D$ (interior relative to affine hull)
 - linear inequalities do not need to hold with strict inequality
- there are many other types of constraint qualifications

Inequality form LP

primal Problem

minimize
$$c^T x$$

subject to $Ax \le b$

dual function

$$g(\lambda) = \inf_{x} \left(\left(c + A^{T} \lambda \right)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & A^{T} \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize
$$-b^T \lambda$$

subject to $A^T \lambda + c = 0, \quad \lambda \ge 0$

 $p^* = d^*$ except when primal and dual are both infeasible (See books on LP)

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

minimize
$$x^T P x$$

subject to $Ax \le b$

dual function

$$g(\lambda) = \inf_{x} [x^{T} P x + \lambda^{T} (Ax - b)] = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

dual problem

maximize
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

subject to $\lambda \ge 0$

- from the sharpened Slater's condition: $p^* = d^*$ if the primal problem is feasible
- ightharpoonup in fact, $p^* = d^*$ always

Geometric interpretation

- ▶ for simplicity, consider problem with one constraint $f_1(x) \le 0$
- ▶ $G = \{(f_1(x), f_0(x)) \mid x \in D\}$ is set of achievable (constraint, objective) values
- ▶ interpretation of dual function: $g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u)$
- $ightharpoonup \lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to ${\cal G}$
- ▶ hyperplane intersects t-axis at $t = g(\lambda)$

Epigraph variation

▶ same with \mathcal{G} replaced with $\mathcal{A} = \{(u, t) \mid f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in \mathcal{D}\}$

- ▶ strong duality holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^*)$
- for convex problem, \mathcal{A} is convex, hence has supporting hyperplane at $(0, p^*)$
- ▶ Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplane at $(0, p^*)$ must be non-vertical

KKT condition

Complementary slackness

Assume (i) strong duality holds, (ii) x^* is primal optimal, and (iii) (λ^*, μ^*) is dual optimal. Then

$$f_{0}(x^{*}) = g(\lambda^{*}, \mu^{*}) = \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \mu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \mu_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

The two inequalities must hold with equality. Then:

- \blacktriangleright x^* minimizes $L(x, \lambda^*, \mu^*)$
- $\lambda_i^* f_i(x^*) = 0$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_{i}^{\star} > 0 \Longrightarrow f_{i}(x^{\star}) = 0, \quad f_{i}(x^{\star}) < 0 \Longrightarrow \lambda_{i}^{\star} = 0$$

Karush-Kuhn-Tucker (KKT) conditions

the KKT conditions (for a problem with differentiable f_i , h_i) are

- 1. primal constraints: $f_i(x) \leq 0, i = 1, \ldots, m, h_i(x) = 0, i = 1, \ldots, p$
- 2. dual constraints: $\lambda > 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \mu_i \nabla h_i(x) = 0$$

Theorem: If strong duality holds and x, λ, μ are optimal, they satisfy the KKT conditions.

How to prove it?

KKT conditions for convex problem

Theorem: If $\tilde{x}, \tilde{\lambda}, \tilde{\mu}$ satisfy KKT for a convex problem, then they are optimal.

Outline of Pf:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\mu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\mu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\mu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\mu})$

Theorem: If Slater's condition is satisfied. Then, x is optimal if and only if there exist λ, μ that satisfy KKT conditions Outline of Pf:

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Sensitivity analysis

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize
$$f_0(x)$$
 maximize $g(\lambda,\mu)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ subject to $\lambda \geq 0$ $h_i(x)=0, \quad i=1,\ldots,p$

perturbed problem and its dual

minimoize
$$f_0(x)$$
 maximize $g(\lambda, \mu) - u^T \lambda - v^T \mu$ subject to $f_i(x) \leq u_i, \quad i = 1, \dots, m$ subject to $\lambda \geq 0$ $h_i(x) = v_i, \quad i = 1, \dots, p$

- \triangleright x is primal variable; u, v are parameters
- $ightharpoonup p^*(u,v)$ is optimal value as a function of u,v
- $ightharpoonup p^*(0,0)$ is optimal value of unperturbed problem

Global sensitivity via duality

Assume strong duality holds for unperturbed problem, with λ^\star, μ^\star dual optimal. Apply weak duality to perturbed problem:

$$p^{*}(u, v) \ge g(\lambda^{*}, \mu^{*}) - u^{T}\lambda^{*} - v^{T}\mu^{*} = p^{*}(0, 0) - u^{T}\lambda^{*} - v^{T}\mu^{*}$$

implications:

- if λ_i^* large: p^* increases greatly if we tighten constraint $i(u_i < 0)$
- ▶ if λ_i^* small: p^* does not decrease much if we loosen constraint $i(u_i > 0)$
- lacktriangle if μ_i^\star large and positive: p^\star increases greatly if we take $v_i < 0$
- if μ_i^{\star} large and negative: p^{\star} increases greatly if we take $v_i > 0$
- if μ_i^* small and positive: p^* does not decrease much if we take $v_i > 0$
- if μ_i^* small and negative: p^* does not decrease much if we take $v_i < 0$

Local sensitivity via duality

if (in addition) $p^*(u, v)$ is differentiable at (0,0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \quad \mu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

proof (for λ_i^*): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \searrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \ge -\lambda_{i}^{\star}$$
$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \nearrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \le -\lambda_{i}^{\star}$$

hence, equality $p^*(u)$ for a problem with one (inequality) constraint:

Problem reformulations

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating primal problem can be useful when dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- ▶ transform objective or constraint functions, e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

- unconstrained problem: minimize $f_0(Ax + b)$
- dual function is constant: $g = \inf_{x} L(x) = \inf_{x} f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless
- introduce new variable y and equality constraints y = Ax + b

minimize
$$f_0(y)$$

subject to $Ax + b - y = 0$

dual of reformulated problem is

maximize
$$b^T \mu - f_0^*(\mu)$$

subject to $A^T \mu = 0$

▶ a nontrivial, useful dual (assuming the conjugate f_0^* is easy to express)

Example: Norm approximation

- ▶ minimize ||Ax b||
- reformulate as minimize ||y|| subject to y = Ax b
- recall conjugate of general norm:

$$\|z\|^* = egin{cases} 0 & \|z\|_* \le 1 \ \infty & ext{otherwise} \end{cases}$$

dual of (reformulated) norm approximation problem:

$$\begin{array}{ll} \text{maximize} & b^{\mathsf{T}}\mu \\ \text{subject to} & A^{\mathsf{T}}\mu = 0, \quad \|\mu\|_* \leq 1 \end{array}$$

Theorems of alternatives

Theorems of alternatives

- consider two systems of inequality and equality constraints
- called weak alternatives if no more than one system is feasible
- called strong alternatives if exactly one of them is feasible
- ▶ examples: for any $a \in \mathbb{R}$, with variable $x \in \mathbb{R}$, ▶ x > a, x < b and x > b, x < a are weak alternatives
- a theorem of alternatives states that two inequality systems are (weak or strong) alternatives
- > can be considered the extension of duality to feasibility problems

System A is called a strong alternative to System B iff exactly one is feasible.

System A is called a weak alternative to System B if that system A is feasible implies B is infeasible.

Feasibility problems

consider system of (not necessarily convex) inequalities and equalities

$$f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad h_i(x) = 0, \quad i = 1, \ldots, p$$

express as feasibility problem

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

▶ if system if feasible, $p^* = 0$; if not, $p^* = \infty$

Duality for feasibility problems

- ▶ dual function of feasibility problem is $g(\lambda, \mu) = \inf_{x} \left(\sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \sum_{i=1}^{p} \mu_{i} h_{i}(x) \right)$
- ▶ for $\lambda \geq 0$, we have $g(\lambda, \mu) \leq p^*$
- it follows that feasibility of the inequality system

$$\lambda \ge 0$$
, $g(\lambda, \mu) > 0$

implies the original system is infeasible

- so this is a weak alternative to original system
- \triangleright it is strong if f_i convex, h_i affine, and a constraint qualification holds
- ightharpoonup g is positive homogeneous so we can write alternative system as

$$\lambda \ge 0$$
, $g(\lambda, \mu) \ge 1$

Example: Nonnegative solution of linear equations

consider system

$$\mathsf{A} x = b, \quad x \geq 0$$
 dual function is $g(\lambda, \mu) = \begin{cases} -\mu^\mathsf{T} b & \mathsf{A}^\mathsf{T} v = \lambda \\ -\infty & \text{otherwise} \end{cases}$

ightharpoonup can express strong alternative of $Ax = b, x \ge 0$ as

$$A^T \mu \ge 0, \quad \mu^T b \le -1$$

(we can replace $\mu^T b \leq -1$ with $\mu^T b = -1$)

Farkas' lemma

Farkas' lemma:

$$Ax \le 0, c^T x < 0$$
 (1) and $A^T y + c = 0, y \ge 0$ (2)

are strong alternatives

Proof: Consider (primal) LP and its dual

minimize
$$c^T x$$
 maximize 0
subject to $Ax \le 0$ subject to $A^T y + c = 0, y \ge 0$

- $p*=0 \text{ or } -\infty. \text{ And } d*=0 \text{ or } -\infty.$
- ▶ If (1) is infeasible, then $p^* = 0$.
- ▶ If (1) is feasible, then $p^* = -\infty$.
- ▶ If (2) is feasible, then $d^* = 0$.
- ▶ If (2) is infeasible, then $d^* = -\infty$. Noting that x = 0 is feasible for the primal problem, Strong duality for LP holds (see slide on inequality form LP).
- ▶ (1) and (2) are strong alternatives

another version

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Either

- $ightharpoonup Ax \leq b$ has a solution, or
- $\triangleright yA = 0, y \ge 0, b^T y < 0$ has a solution

but not both.

How to prove it: rewrite $Ax \le b$ as ???. (tutorial question)

Investment arbitrage

- we invest x_j in each of n assets $1, \ldots, n$ with prices p_1, \ldots, p_n
- \triangleright our initial cost is $p^T x$
- ▶ at the end of the investment period there are only m possible outcomes i = 1, ..., m
- $ightharpoonup V_{ij}$ is the payoff or final value of asset j in outcome i
- first investment is risk-free (cash): $p_1 = 1$ and $V_{i1} = 1$ for all i
- ▶ arbitrage means there is x with $p^Tx < 0, Vx \ge 0$
- arbitrage means we receive money up front, and our investment cannot lose
- standard assumption in economics: the prices are such that there is no arbitrage

Absence of arbitrage

- ▶ by Farkas' lemma, there is no arbitrage \iff there exists $y \in \mathbf{R}_+^m$ with $V^T y = p$
- ▶ since first column of V is $\mathbf{1}$, we have $\mathbf{1}^T y = 1$
- ightharpoonup y is interpreted as a risk-neutral probability on the outcomes $1, \ldots, m$
- $V^T y$ are the expected values of the payoffs under the risk-neutral probability
- ▶ interpretation of $V^T y = p$: asset prices equal their expected payoff under the risk-neutral probability
- arbitrage theorem: there is no arbitrage ⇔ there exists a risk-neutral probability distribution under which each asset price is its expected payoff

Example

$$V = \begin{bmatrix} 1.0 & 0.5 & 0.0 \\ 1.0 & 0.8 & 0.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.3 & 4.0 \end{bmatrix}, \quad p = \begin{bmatrix} 1.0 \\ 0.9 \\ 0.3 \end{bmatrix}, \quad \tilde{p} = \begin{bmatrix} 1.0 \\ 0.8 \\ 0.7 \end{bmatrix}$$

with prices p, there is an arbitrage

$$x = \begin{bmatrix} 6.2 \\ -7.7 \\ 1.5 \end{bmatrix}, \quad p^T x = -0.2, \quad \mathbf{1}^T x = 0, \quad Vx = \begin{bmatrix} 2.35 \\ 0.04 \\ 0.00 \\ 2.19 \end{bmatrix}$$

ightharpoonup with prices \tilde{p} , there is no arbitrage, with risk-neutral probability

$$y = \begin{bmatrix} 0.36 \\ 0.27 \\ 0.26 \\ 0.11 \end{bmatrix} \quad V^T y = \begin{bmatrix} 1.0 \\ 0.8 \\ 0.7 \end{bmatrix}$$