1 Компакты на \mathbb{R} : определение, 3 базовых свойства. Теорема Бореля-Гейне-Лебега о компактности отрезка. Два эквивалентных описания компактных множеств на \mathbb{R} .

1.1 Определение.

Определение 1. Говорят, что набор множеств $\{U_{\alpha}\}_{{\alpha}\in A}$ образует покрытие множества $M\subset\mathbb{R}$, если $M\subset\bigcup_{{\alpha}\in A}U_{\alpha}$ (также гооврят, что система $\{U_{\alpha}\}_{{\alpha}\in A}$ является покрытием множества M).

Определение 2. Множество $K \subset \mathbb{R}$ называется **компактом** (или компактным множеством), если для каждого покрытия $\{U_{\alpha}\}_{\alpha \in A}$ множества K открытыми множествами U_{α} существует конечный поднабор $\{U_{\alpha_1}, \ldots, U_{\alpha_N}\}$ этих множеств все еще покрывающий K (т.е. $K \subset \bigcup_{j=1}^N U_{\alpha_j}$).

Кратко иногда это свойство формулируют так: Множество K — компакт, если из каждого покрытия этого множества открытыми множествами можно выбрать конечное подпокрытие.

1.2 Теорема Бореля-Гейне-Лебега о компактности отрезка.

Теорема 3 (Борель-Гейне-Лебег). Каждый отрезок является компактным множеством.

Доказательство. Предположим, что есть такой отрезок [a,b] и такое его покрытие $\{U_{\alpha}\}_{\alpha\in A}$ окрытыми множествами, что никакой конечный поднабор этих множеств не покрывает [a,b]. Рассмотрим подотрезки $[a,\frac{a+b}{2}]$ и $[\frac{a+b}{2},b]$. Для какой-то из этих половинок никакой конечный поднабор множеств $\{U_{\alpha}\}_{\alpha\in A}$ не покрывает эту половинку (если бы для каждой из половинок был бы покрывающий ее конечный поднабор, то и весь отрезок бы покрывался объединением этих конечных поднаборов). Обозначим эту половинку $[a_1,b_1]$. Снова поделим отрезок пополам и рассмотрим подотрезки $[a_1,\frac{a_1+b_1}{2}]$ и $[\frac{a_1+b_1}{2},b_1]$. Для какой-то из этих половинок никакой конечный поднабор множеств $\{U_{\alpha}\}_{\alpha\in A}$ не покрывает эту половинку. Обозначим эту половинку $[a_2,b_2]$. Продолжая описанную процедуру индуктивно, строим последовательность вложенных отрезков $[a_{n+1},b_{n+1}]\subset [a_n,b_n]$ с тем свойством, что никакой конечный поднабор множеств $\{U_{\alpha}\}_{\alpha\in A}$ не покрывает отрезок $[a_n,b_n]$. Пусть $c\in\bigcap_{n=1}^{\infty}[a_n,b_n]$. Т.к. $c\in[a,b]$, то для некоторого индекса α точка $c\in U_{\alpha}$. Т.к. U_{α}

Пусть $c \in [a_n, b_n]$. Т.к. $c \in [a, b]$, то для некоторого индекса α точка $c \in U_\alpha$. Т.к. U_α — открытое множество, то найдется такое число $\varepsilon > 0$, что $(c - \varepsilon, c + \varepsilon) \subset U_\alpha$. Т.к. $b_n - a_n = \frac{b-a}{2^n} \to 0$, то $a_n \to c$ и $b_n \to c$. Тогда для некоторого номера a_0 выполнено $a_{n_0} \in (c - \varepsilon, c]$ и $b_{n_0} \in [c, c + \varepsilon)$. Т.е. $[a_{n_0}, b_{n_0}] \subset (c - \varepsilon, c + \varepsilon) \subset U_\alpha$, что противоречит построению отрезков $[a_n, b_n]$.

1.3 3 базовых свойства компактных множеств.

Лемма 4. Пусть $K - \kappa$ омпакт. Тогда

- 1) K ограниченное множество;
- 2) K замкнутое множество;
- 3) замкнутое подмножество K также компактно.

Доказательство. 1) Заметим, что $K \subset \bigcup_{n=1}^{\infty} (-n,n)$. Т.к. K — компакт, то у данного покрытия найдется конечное подпокрытие, т.е. $K \subset \bigcup_{j=1}^{m} (-n_j,n_j)$. Пусть $C := \max\{n_1,\ldots,n_m\}$. Тогда $K \subset (-C,C)$.

2) Пусть $a \in \mathbb{R} \setminus K$. Тогда $K \subset \bigcup_{n=1}^{\infty} U_n$, где $U_n := (-\infty, a - \frac{1}{n}) \cup (a + \frac{1}{n}, +\infty)$. Выбрав конечное подпокрытие, получаем, что $K \subset \bigcup_{j=1}^{m} U_{n_j}$. Пусть $C := \max\{n_1, \dots, n_m\}$. Тогда $K \subset (-\infty, a - \frac{1}{C}) \cup (a + \frac{1}{C}, +\infty)$ и $B_{1/C}(a) \subset \mathbb{R} \setminus K$.

1.4 Два эквивалентных описания компактных множеств на \mathbb{R} .

Следствие 5. Множество $K \subset \mathbb{R}$ компактно тогда и только тогда, когда оно ограничено и замкнуто.

Доказательство. Компактные множества обязаны быть замкнутыми и ограниченными. Наоборот, если K ограниченное множество, то $K \subset [-C,C]$ для некоторого числа C>0. Т.к. отрезок — компактное множество, а K — замкнутое множество, то K также будет компактным множеством по предыдущей лемме.

Следствие 6. Множество $K \subset \mathbb{R}$ компактно тогда и только тогда, когда из каждой последовательности элементов этого множества можно выбрать подпоследовательность, сходящуюся к элементу этого множества.

Доказательство. Если множество K — компактно, то оно замкнуто и ограничено. Пусть $\{a_n\}_{n=1}^{\infty} \subset K$. По теореме Больцано в данной последовательности найдется сходящаяся подпоследовательность $a_{n_k} \to a$. В силу замкнутости множества K получаем, что $a \in K$.

Наоборот, пусть из каждой последовательности элементов множества K можно выбрать подпоследовательность, сходящуюся к элементу этого множества. Если бы множество K не являлось ограниченным, то для каждого $n \in \mathbb{N}$ была бы точка $a_n \in K$, $|a_n| > n$. Из такой последовательности невозможно выбрать сходящуюся подпоследовательность. Пусть теперь $a_n \in K$, $a_n \to a$. По условию, из этой последовательности можно выбрать подпоследовательность a_{n_k} , сходящуюся к точке множества K, т.е. $a_{n_k} \to b \in K$. В силу единственности предела и совпадения предела подпоследовательности с пределом всей последовательности получаем, что $a = b \in K$.