Energy consumption for Travel Optimisation

Aman Sharma, Darren Mo, Vishva Gajaraj

Problem Statement

What are we trying to optimize?

 The pathfinding algorithm for electric vehicle (EV) travel, incorporating energy consumption statistics, congestion fees, and real-time traffic data.

Applications

- In contrast to conventional navigation software, we want to offer accurate insights on energy-efficient travel while accounting for urban constraints.
- Calculate concrete figures to represent energy consumption over routes.

Success Metrics & Limitations

How we gauge success:

- Comparison to baseline models
- Accuracy of energy-efficient routing
- Performance vs. Google Maps & proprietary software

Key limitations:

- Real-time data access issues
- Computational efficiency challenges
- Trade-off between speed & energy efficiency
- Problem breadth

Data Requirements & Challenges

Key Data Sources

- <u>IEEE dataset</u>
- Traffic Congestion Dataset
- EV consumption dataset

Challenges

- Resolving very large datasets into small workable instances.
- Dataset Synchronization between different cities.

Technical Approach

Mathematical Formulation:

Algorithm choices:

- **Baseline**: Dijkstra's Algorithm
- **Enhancements**: A*, ML-based models, Loss Optimisation from basic consumption formulation
- Deep Learning: Graph Neural Networks (GNNs) via PyTorch

Current Progress

What's done so far:

- Initial pathfinding with Dijkstra's Algorithm
- Basic energy modeling

Preliminary results:

- Correct path calculation in small NYC road sections
- A* with simple heuristics also delivers viable results

Performance Metrics & Findings

Key performance indicators:

- Execution time efficiency
- Accuracy of EV energy estimation
- Portability to regular fuel usage estimations

Limitations observed:

- Lack of real-time updates
- Need for improved energy consumption modeling
- No available data to incorporate differences between various EV models

Next Steps & Improvements

Short-term goals:

- Incorporate real-time congestion data
- Enhance energy consumption modeling
- Implement A* pathfinding with better heuristics
- More complete mathematical formulation of the problem statement

Long-term goals:

- Implement machine learning-based dynamic routing
- Scale model for larger road networks

Areas to explore

- Machine Learning & RL: Adaptive route prediction
- **Urban Constraints:** Road closures, pedestrian zones
- Optimized Algorithms: Localizing existing pathfinding methods
- Alternative Data: Satellite imagery for traffic prediction