Deloitte.

Classifying Breast Cancer Tumor categories

Agenda

01 **Business Understanding** Introduction to Data **Overview** 02 Approach Modeling **Modeling &** Evaluation **Evaluation** Summary 03 **Next Steps** Questions Wrap-Up

Business Understanding & Problem

Business Understanding

- Breast cancer is the most common cancer in women, causing over 40,000 deaths every year
- One of the main challenges for radiologists is to diagnose breast cancer
- Early detection of breast cancer is key and can help improve the chances of survival

Business Problem

A hospital wants to build a model that detects if the cancer diagnosed is malign or benignant

Data Understanding

It consists of characteristics of the tumors

Data Understanding

Dataset Characteristics

569 Rows

33 Columns

Target Variable

357 Benign

212 Malignant

Data Understanding

Multiple columns are highly correlated, causing multicollinearity among independent variables.

Modeling & Evaluation

Logistic regression

Labels	Recall score
0 – Benign	0.98
1 - Malignant	0.97

Modeling & Evaluation

Decision Tree - After Optimization

Labels	Recall score
0 – Benign	0.95
1 - Malignant	0.94

Conclusion

1>

Final model

After comparing Logistic regression and Decision Tree scores, it was found that Logistic regression model is the better performing model

2>

Limitations

Training data used is small

3>

Next Steps

Train the model on a neural network with larger dataset