Параметрические критерии однородности

Грауэр Л.В.

Проверка гипотез об однородности

Гипотезы о равенстве параметров двух нормально распределенных генеральных совокупностей

Критерий Фишера Критерий Стьюдента

Гипотезы о наличии сдвига

Критерий Вилкоксона Критерий Манна-Уитни

Гипотезы о равенстве функций распределения

Критерий Колмогорова-Смирнова Критерий χ^2

Проверка гипотезы о равенстве дисперсий

$$\eta \sim \textit{N}(a_1, \sigma_1)$$
 , $X_{[m]}$ $\xi \sim \textit{N}(a_2, \sigma_2)$, $Y_{[n]}$ $H_0: \sigma_1^2 = \sigma_2^2$ $H_1^1: \sigma_1^2 \neq \sigma_2^2$ $H_2^2: \sigma_1^2 > \sigma_2^2$

$$\bar{X}, \bar{Y}$$

$$s_X^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \bar{X})^2, \quad s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2.$$

Критерий Фишера

Рассмотрим

$$\frac{(m-1)s_X^2}{\sigma_1^2}$$

$$\frac{(n-1)s_Y^2}{\sigma_2^2}$$

Критическая область. P-value

$$Z = \frac{s_X^2}{s_Y^2}$$

H_1	V_k	p — value
$\sigma_1^2 > \sigma_2^2$		
$\sigma_1^2 eq \sigma_2^2$		

Пример

A: $n_A = 16$, $\bar{x}_A = 37.5$ mm, $s_A^2 = 1.21$ mm²

B: $n_B = 25$, $\bar{x}_B = 36.8$ mm, $s_B^2 = 1.44$ mm²

Проверка гипотезы о равенстве мат.ожиданий

$$\eta \sim \textit{N}(a_1, \sigma_1)$$
 , $X_{[m]}$ $\xi \sim \textit{N}(a_2, \sigma_2)$, $Y_{[n]}$ $H_0: a_1 = a_2$ $H_1^1: a_1
eq a_2$ $H_1^2: a_1 > a_2$

- **1.** σ_1^2 , σ_2^2 известны.
- **2.** Дисперсии неизвестны, но $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
- **3**. Дисперсии неизвестны и $\sigma_1^2 \neq \sigma_2^2$.

Критерий Стьюдента

$$\begin{array}{c|c} \sigma_{1}^{2},\,\sigma_{2}^{2} \text{ изв.} & \frac{\bar{X}-\bar{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}} \\ \sigma_{1}^{2},\,\sigma_{2}^{2} \text{ неизв.,} & \frac{\bar{X}-\bar{Y}}{\sqrt{\frac{m+n}{mn}}\sqrt{\frac{s_{X}^{2}(m-1)+s_{Y}^{2}(n-1)}{m+n-2}}} \\ \sigma_{1}^{2},\,\sigma_{1}^{2} \neq \sigma_{2}^{2} & \frac{\bar{X}-\bar{Y}}{\sqrt{\frac{s_{X}^{2}}{m}+\frac{s_{Y}^{2}}{n}}} \end{array}$$

$$K = \frac{\left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)^2}{\frac{(s_X^2/m)^2}{m-1} + \frac{(s_Y^2/n)^2}{n-1}}$$

Критическая область. P-value

$$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_X^2}{m} + \frac{s_Y^2}{n}}}$$

H_1	V_k	p — value
$a_1 > a_2$		
$a_1 \neq a_2$		

Пример

A: $n_A = 16$, $\bar{x}_A = 37.5$ mm, $s_A^2 = 1.21$ mm²

B: $n_B = 25$, $\bar{x}_B = 36.8$ mm, $s_B^2 = 1.44$ mm²

Критерий Стьюдента для парных выборок

$$(\eta,\xi)$$
, $(X,Y)_{[n]}$ a_1 — математическое ожидание η a_2 — математическое ожидание ξ .

$$H_0:a_1=a_2$$

$$H_1^1: a_1 \neq a_2$$

$$H_1^2: a_1 > a_2$$

$$\zeta = \eta - \xi$$
, $Q_i = X_i - Y_i$, $i = 1, \ldots, n$

 $H_0': a = 0.$

 H_1' : $a \neq 0$.

$$\bar{Q} =$$

$$S_{Q}^{2} =$$

Критическая область. P-value

$$\zeta \sim N(a, \sigma)$$
.

$$Z=rac{ar{Q}}{S_Q/\sqrt{n}}$$

H_1	H_1'	V_k	p — value
$a_1 > a_2$	a > 0		
$a_1 \neq a_2$	$a \neq 0$		

Вероятность ошибки 1 рода

Вероятность ошибки 2 рода

Объем выборки и мощность

