

 $C_{n}(A) \xrightarrow{\partial} C_{n-1}(A) (a) := \partial (c)$ $C_{n}(A) \xrightarrow{\partial} C_{n}(A) (a) := \partial (c)$ Cn (X, A) ; 2 Cn-1 (X, A) Claim: dis a well-det homom. Two choices: • C in [c] We'll check that choice of ~ doesn't matter.

Say & another choice... Then $q(\tilde{c}) = q(\tilde{c}')$ or: $\tilde{c}' = \tilde{c} + i(\alpha')$ Instead of man 22 we get 800 26' = 26 + 2i(a') $= \partial_{C}^{\infty} + i\partial(a')$

This is homologous to a since 3(a') = 0 in Hn-1 (A).

You: check choice of C &

homom.

* $\partial q(b) = q \partial (b) = q(a) = 0$ Thm 1'. Long ex. seq. $\xrightarrow{\longrightarrow} H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{q_*} H_n(X,A)$ $\xrightarrow{\longrightarrow} H_{n-1}(A) \xrightarrow{\longrightarrow} \cdots$ Some facts about relative hom: Prop. Hn(X,A) = 0 Vn (Hn(A) = $H_n(x) \forall n$ Pf. More diagram chasing. Keduced relative homology makes 6 containments to check. · Im d = ker i* i.e. i*d =0. $\longrightarrow \widetilde{H}_n(X,A) = H_n(X,A) \text{ if } A \neq \emptyset.$ ixd tates [c] to [de]=0. Prop. If f,g: (X,A) - (Y,B) homotopic · Keri* = Imd: Say af Cn-1(A) then f* = 9* acter ix $\Rightarrow i(a) = \partial c$ $c \in C_n(X)$ $\Rightarrow q(c)$ is a cycle (its ∂ is in A)*
and $\partial [q(c)] = a$

More: For a triple BSASX Next Thm 2. A, B = X ... $\rightarrow H_n(A,B) \rightarrow H_n(X,B) \rightarrow H_n(X,A)$ Mayor- interiors of A,B cover X Vietoris - Hnol (A,B) -··· Then spectral sequences... $\longrightarrow H_n(A \cap B) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_n(X)$ → Hn-1 (AnB) →··· "Van Kampen for Homology" Example 5"=X A=B=D" AnB = Sn-1 \sim $H_n(S^n)$.