SZÁMÍTÓGÉPES SZIMULÁCIÓK

Populációdinamika

JEGYZŐKÖNYV

Jakobi Ádám 2021.04.29.

Tartalomjegyzék

1.	Bev	rezető	1											
2.	Elm	néleti bevezetés	1											
	2.1.	Egy szabadon fejlődő faj	1											
		2.1.1. Logisztikus egyenlet	2											
		2.1.2. Logisztikus egyenlet stabilitása	2											
	2.2.	Fajok versengése közös erőforrásét	3											
		2.2.1. Csatolt logisztikus egyenlet	3											
	2.3.	Ragadozó-préda rendszerek	3											
		2.3.1. Lotka-Volterra-modell	4											
		2.3.2. Realisztikusabb Lotka-Volterra-modell	4											
		2.3.3. Tápláléklánc 3 fajra	5											
3.	Meg	goldás módszerei	5											
	3.1.	Differenciálegyenlet megoldó módszerek	5											
		3.1.1. Euler algoritmus	5											
		3.1.2. Negyedrendű Runge-Kutta módszer (RK4)	6											
		3.1.3. Adaptív negyedrendű Runge-Kutta módszer (ARK4)	6											
4.	. Kiértékelés													
	4.1.	Logisztikus egyenlet	7											
	4.2.	Versengés	7											
	4.3.	Lotka-Volterra-modell	7											
	4.4.	Realisztikus Lotka-Volterra-modell	7											
	4.5.	Tápláléklánc	9											
5.	Disz	zkusszió	9											
6.	Füg	gelék	10											
	6.1.	Logisztikus egyenlet	10											
		6.1.1. Euler-módszer	10											
		6.1.2. Adaptív negyedrendű Runge-Kutta módszer	11											
	6.2.	Versengés	12											
		6.2.1. Kompetitív kizárás	12											
		6.2.2. Két faj együttélése	13											
	6.3.	Lotka-Volterra-modell	14											
	6.4.	Realisztikus Lotka-Volterra-modell	15											
	6.5.	Tápláléklánc	16											
		6.5.1. Populációk létszámai	16											

6.5.2.	Populációk fázistere															1	7

1. Bevezető

Ebben a jegyzőkönyvben a számítógépes szimulációk tárgy hatodik beadandóját, a populációdinamika témakörét dolgozom fel. Vizsgálom a logisztikus egyenletet Euler- és adaptív negyedrendű Runge-Kutta-módszerrel, ezeket összevetem a logisztikus egyenlet analitikus megoldásával. Ezt követően két, egymással versengő faj szaporodását szimulálom csatolt logisztikus modell segítségével, példát mutatok a kompetitív kizárás törvényére illetve megmutatom két faj együttélésének szükséges feltételeit. Implementálom a Lotka-Volterra-modellt és kiegészítem úgy, hogy figyelembe vegye a véges táplálék illetve telítődés hatását. Ezekről populáció létszám és fázistér ábrákat készítek. Végül létre fogok hozni egy 3 fajból álló tápláléklánc modellt, ennek szemléltetésére is készítek populáció létszám és fázistér ábrákat.

2. Elméleti bevezetés

Newton eredetileg a fizikai rendszerek megértésére vezette be a differenciálegyenleteket, azonban a differenciálegyenletek az élet számos más területén is hasznosnak bizonyultak, például a kémia, populáció biológia, pénzügyi-gazdasági és társadalmi folyamatok leírása során. Fontos megjegyezni, hogy ezek a modellek csupán a valóság közelítései, de fontos összefüggések fedezhetők fel általuk.

2.1. Egy szabadon fejlődő faj

A populáció létszámának (n) változását vizsgáljuk az idő (t) függvényében. Ha más tényező nincs, akkor logikus feltételezni, hogy a szaporodás és a természetes halálozás a populáció létszámával arányos. A szaporodási ráta (a) írja le, hogy mennyi utód jön létre, a halálozási ráta (d) pedig az elhunyt egyedek számát adja meg egy adott Δt időintervallumra (például egy évre).

$$n(t + \Delta t) = n(t) + an(t) - dn(t) = n(t) + rn(t),$$

ahol r ráta egyenlő a-d-vel. Ha Δt kicsi, akkor r-t átskálázva a fenti egyenlet határesetben $(\Delta t \to 0)$ a következő differenciálegyenletet adja:

$$\frac{dn}{dt} = rn.$$

A folytonos egyenlet jó közelítés, ha a populáció mérete kellően nagy és a szaporodási ráta elfolytonosítása nem okoz gondot. Az eredeti diszkrét megoldás a kiértékelt folytonos egyenlet újra diszkretizálásával történik. A valóságban ezzel vigyázni kell az erős éves szaporodási ciklusok miatt. Az egyenlet megoldása a jól ismert exponenciális növekedés:

$$n(t) = e^{rt}.$$

Vegyük figyelembe, hogy az erőforrások korlátosak, vagyis a rendelkezésre álló táplálék véges:

$$\frac{dn}{dt} = rnF(n).$$

Tegyük fel, hogy az erőforrások egy maximum k létszámú populációt képes fenntartani (kapacitás). F legegyszerűbb modellje n-ben lineáris, kis populáció esetében elhanyagolható a hatása, a kapacitás elérésekor pedig nem enged további szaporodást.

Ezt a feltételt kielégíti:

$$F(n) = 1 - \frac{n}{k}.$$

Így a differenciálegyenletünk:

$$\frac{dn}{dt} = rn(1 - \frac{n}{k}).$$

2.1.1. Logisztikus egyenlet

Az úgynevezett logisztikus egyenletet $x = \frac{n}{k}$ -val átskálázva kapjuk:

$$\frac{dx}{dt} = rx(1-x).$$

Ennek megoldása r-től és az x_0 kezdeti feltételtől függően növekedő vagy csökkenő szigmoid jellegű görbe lesz:

$$x(t) = \frac{1}{1 + (\frac{1}{x_0} - 1)e^{-rt}}.$$

2.1.2. Logisztikus egyenlet stabilitása

A logisztikus egyenlet egy nemlineáris differenciálegyenlet. A nemlineáris differenciálegyenletek nem minden esetben oldhatók meg analitikusan. Az egyenlet fixpontja $\frac{dx}{dt}=0$ helyen találhatók (a mi esetünkben x=0 és x=1-nél). A fixpontok lehetnek stabilak vagy instabilak, annak függvényében, hogy a fixpontból történő kitérítés során a rendszer visszatér-e a fixpontjába, ahonnan kitérítettük (ha visszatér, akkor stabil, ha nem, akkor instabil). A stabilitás legegyszerűbben lineáris perturbációszámítással vizsgálható. Legyen a differenciálegyenlet a következő alakú:

$$\frac{dx}{dt} = f(x),$$

és egy fix pontja x^* ($f(x^*) = 0$). Kis perturbációval kimozdítva a rendszert a megoldás lineáris közelítésben kereshető:

$$\frac{dx}{dt} = x^* + \epsilon(t).$$

Beírva az eredeti egyenletve és Taylor-sorba fejtve:

$$\frac{d\epsilon}{dt} = f(x^* + \epsilon) = f(x^*) + \epsilon f'(x^*) + \dots,$$

a magasabb rendű deriváltakat elhagyva:

$$\frac{\epsilon}{dt} = \epsilon f'(x^*),$$

amit megold:

$$\epsilon(t) = \epsilon(0)e^{f'(x^*)t}.$$

A megoldás akkor stabil, ha $\lim_{t\to\infty}\epsilon(t)=0$, azaz $f'(x^*)<0$ (a mi esetünkben r>0 esetén $x^*=0$ instabil és $x^*=1$ stabil).

2.2. Fajok versengése közös erőforrásét

Ha egy élőhelyen (niche) több faj küzd egyazon táplálékért, a véges erőforrásokon keresztül kölcsönhtásba kerülnek. Egymáshoz viszonyított szaporodási rátájuk és a környezet eltartóképessége függvényében a "rátermettebb" faj akár teljesen el is foglalhatja a nichet.

2.2.1. Csatolt logisztikus egyenlet

A két faj modelljében figyelembe vesszük, hogy az erőforrásért folytatott verseny során az egyik faj szaporodása a másik faj erőforrásainak csökkenését is jelenti, és fordítva.

$$\frac{dn_1}{dt} = r_1 n_1 (1 - \frac{n_1 + \alpha n_2}{k_1}),$$

$$\frac{dn_2}{dt} = r_2 n_2 (1 - \frac{n_2 + \beta n_1}{k_2}),$$

ahol α és β dimenziótlan paraméterek azt fejezik ki, milyen mértékben hat egyik faj a másik erőforrásaira és viszont. A rendszer fixpontjai függenek az α , β , r_1 , r_2 , k_1 , k_2 értékeitől.

2.3. Ragadozó-préda rendszerek

A fajok együttélése nem csak a közös erőforrásokért folytatott harcban merülhet ki, hanem ragadozó-préda kapcsolat is létrejöhet több egyéb lehetőség mellett. Ha sok prédaállat él, a ragadozók elszaporodhatnak. Ha a ragadozók elszaporodnak, túlvadásszák a prédaállatot, így azok száma csökken. Ha a prédaállat száma lecsökken, a ragadozók éhen maradnak és az ő számuk is csökkenni fog addig, amíg a prédaállatok újra elszaporodhatnak és kezdődhet az egész elölről. A következő részekben a ragadozókat az egyszerűség kedvéért rókának, a prédaállatokat pedig nyulaknak fogom venni.

2.3.1. Lotka-Volterra-modell

Hipotézisek: a nyulak (R) számára korlátlan táplálék áll rendelkezésre, így szaporodásukat az erőforrások nem korlátozzák. A rókák kapacitása korlátlan, vagyis a nyulak számától lineárisan függ, hogy egy róka hány nyulat tud megenni adott idő alatt.

$$\frac{dn_R}{dt} = an_R - bn_F n_R,$$

$$\frac{dn_F}{dt} = cn_R n_F - dn_F.$$

A paraméterek jelentése:

1. n_R : a nyulak száma,

2. n_F : a rókák száma,

3. a: a nyulak születési-halálozási rátája,

4. cn_R : a rókák szaporodási rátája,

5. bn_F : a nyulak pusztulási rátája,

6. d: a rókák pusztulási rátája.

2.3.2. Realisztikusabb Lotka-Volterra-modell

A Lotka-Volterra-modell realisztikusabbá tehető, ha figyelembe vesszük, hogy a nyulak számára rendelkezésre álló élelem korlátos, illetve, hogy egy róka nyúl fogyasztási kapacitása véges, hiába van belőle rengeteg.

A fentieket figyelembevéve két taggal lehet kiegészíteni az egyenleteket:

$$a \to a(1 - \frac{n_R}{k}),$$

$$n_R n_F \to \frac{n_R n_F}{1 + \frac{n_R}{s}},$$

ahol k a nyulak kapacitása és s a rókák telítődése.

Így a realisztikusabb Lotka-Volterra-modell:

$$\frac{dn_R}{dt} = a(1 - \frac{n_R}{k})n_R - b\frac{n_R n_F}{1 + \frac{n_R}{s}},$$

$$\frac{dn_F}{dt} = c \frac{n_R n_F}{1 + \frac{n_R}{s}} - dn_F.$$

2.3.3. Tápláléklánc 3 fajra

Az utolsó feladat során válsztani lehetett két egymással versengő növényevő és egy rájuk vadászó ragadozó, vagy egy három főből álló tápláléklánc szimulációja közül. Én az utóbbit választottam, a Déli sarkon élő fókákat (F), pingvineket (P) és halakat (H) használva példaállatoknak. A modellem alapjául a realisztikusabb Lotka-Volterra-modell szolgál. Két kiegészítést tettem, az egyik, hogy a középen elhelyezkedő ragadozónak is van külön halálozási rátája (így akkor is kipusztul, ha a rá vadászó csúcsragadozók ugyan elfogynak, de nem marad élelme), a másik, hogy egyik fajt sem hagyom teljesen kipusztulni, minden körben a fajok elemszáma legalább egy (ez az egyenletekben nem jelenik meg, csak a programkódomban, a ciklustörzsben minden kör során ellenőrzöm a fajok számát, és ha kisebb-egyenlő mint nulla, akkor egyre módosítom). Így a modellem a következő formába önthető:

$$\begin{split} \frac{dn_{H}}{dt} &= a(1 - \frac{n_{H}}{k})n_{H} - b\frac{n_{H}n_{P}}{1 + \frac{n_{H}}{s_{P}}},\\ \frac{dn_{P}}{dt} &= c\frac{n_{H}n_{P}}{1 + \frac{n_{H}}{s_{P}}} - d\frac{n_{P}n_{F}}{1 + \frac{n_{P}}{s_{F}}} - eN_{P},\\ \frac{dn_{F}}{dt} &= f\frac{n_{P}n_{F}}{1 + \frac{n_{P}}{s_{F}}} - gn_{F}. \end{split}$$

3. Megoldás módszerei

A populációdinamika szimuláció numerikus megoldásához az Euler és az adaptív negyedrendű Runge-Kutta differenciálegyenlet megoldó módszereket fogom alkalmazni, melyeket a következő alfejezetben tárgyalok.

3.1. Differenciálegyenlet megoldó módszerek

3.1.1. Euler algoritmus

Az elsőrendű, explicit Runge-Kutta módszert hívjuk Euler algoritmusnak, lokális csonkolási hibája (LTE) $\mathcal{O}(\delta t^3)$, a globális csonkolási hibája pedig $\mathcal{O}(\delta t^2)$. A feladat során használt módszerek közül az Euler algoritmus numerikusan a legkevésbé stabil. Az algoritmus az inga esetére nézve a következőképpen írható fel:

$$t_{n+1} = t_n + \delta t$$

$$\theta_{n+1} = \theta_n + \omega_n \delta t$$

$$\omega_{n+1} = \omega_n + \beta_n \delta t$$

$$\beta_n = -\frac{g}{l} \sin(\theta) - q\omega + F_D \sin(\omega_D t)$$

3.1.2. Negyedrendű Runge-Kutta módszer (RK4)

A negyedrendű Runge-Kutta módszer explicit Runge-Kutta módszer, lokális csonkolási hibája (LTE) $\mathcal{O}(\delta t^5)$, a globális csonkolási hibája pedig $\mathcal{O}(\delta t^4)$, numerikusan stabil. Felépítése a következő:

$$k_1 = f(t_n, y_n)$$

$$k_2 = f(t_n + \frac{\delta t}{2}, y_n + \frac{k_1}{2})$$

$$k_3 = f(t_n + \frac{\delta t}{2}, y_n + \frac{k_2}{2})$$

$$k_4 = f(t_n + \delta t, y_n + k_3)$$

$$y_{n+1} = y_n + \frac{\delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

ahol f a léptetéshez szükséges deriváltfüggvény az adott helyen és időben. Az implementáció során az idő, elmozdulás és sebesség mennyiségeket vektorként kezeltem, az f derivált függvény pedig az adott vektorkomponensekhez tartozó deriváltakat adja vissza a következő módon:

$$\frac{dt}{dt} = 1$$

$$\frac{dr_x}{dt} = v_x$$

$$\frac{dr_y}{dt} = v_y$$

$$\frac{dv_x}{dt} = -Gm_{Sun} \frac{r_x}{(r_x^2 + r_y^2)^{3/2}}$$

$$\frac{dv_y}{dt} = -Gm_{Sun} \frac{r_y}{(r_x^2 + r_y^2)^{3/2}}$$

3.1.3. Adaptív negyedrendű Runge-Kutta módszer (ARK4)

Az adaptív negyedrendű Runge-Kutta módszer annyival tér el a nem adaptív változattól, hogy lépéshosszát a lokális hiba szerint változtatja: ha bármelyik mennyiség becsült hibája meghaladja a pontossági paramétert, a lépéshossz lecsökken, majd az adott lépést és hibáját újra számolja az algoritmus az új lépéshosszal. Ugyanez a helyzet akkor is, ha a lépéshez tartozó hiba nagyon alacsony értéket ad, csak akkor a lépéshosszt nem csökkenteni, hanem növelni fogjuk, amíg a hiba megfelelő tartományba nem kerül. Minél meredekebb a derivált, annál kisebb lépéshosszra van szükség ugyanazon pontosság eléréséhez. A becsült hiba kiszámítási módja az, hogy minden lépést kétszer végzünk el: első verzióban, az egyszerű negyedrendű Runge-Kuttához hasonlóan kiszámolunk egy teljes lépést, a második verzióban pedig két fél lépést teszünk meg, majd megnézzük a két verzió közötti eltérést, mely megadja a becsült lokális csonkolási hibát az adott lépésre.

4. Kiértékelés

4.1. Logisztikus egyenlet

Az első feladat során a logisztikus egyenletet szimuláltam Euler- és adaptív negyedrendű Runge-Kutta-módszerek segítségével. Több paramétert is kipróbáltam, ezekről ábra a függelékben található.

Azt tapasztaltam, hogy az adaptív Runge-Kutta módszer segítségével mindössze pár pont felhasználásával is nagyon pontos eredményt kaphatunk, szemben az Euler-módszerrel, ahol az állandó lépéshossz miatt pontjaink száma sokszorosa a Runge-Kutta módszer által használt mennyiségnek, az eredményünk mégis pontatlanabb. A jelenlegi felbontásban ez így is alig észrevehető. Megfigyelhető még, hogy minél távolabb vagyunk a fix ponttól, az eltérés annál nagyobb. Ennek oka valószínűleg az, hogy a fix pont közelében kisebbek a deriváltak, így ott a hiba is kissebb.

4.2. Versengés

A második feladat folyamán két egymással versengő faj populációváltozását szimuláltam, itt már csak az adaptív negyedrendű Runge-Kutta-módszert használtam. Először egy példával bemutattam a kompetitív kizárás törvényét, mely $\alpha=\beta=1$ esetben fordul elő. Ez esetben a nagyobb kapacitással rendelkező faj teljesen ki fogja szorítani a másikat. Ezt követően numerikus úton bebizonyítottam, hogy két faj együttélése csak $\alpha k_1 < k_2$ és $\beta k_1 < k_2$ esetén lehetséges. Ehhez az α és β paraméterek változtatásával gyártottam példákat, majd ábrázoltam a hosszútávon megmaradt fajok számát az $\alpha k_2 - k_1$) - $\beta k_1 - k_2$) síkon. A függelékben elhelyezett ábra igazolja a fenti összefüggést, jól látható, hogy csak ott marad meg mind a két faj egyszerre, ahol mindkét tengelynek negatív az értéke.

4.3. Lotka-Volterra-modell

Ennél a feladatnál az egyszerű Lotka-Volterra modellt implementáltam és ábrázoltam a populációk létszámát és a populációk fázisterét, az ábrák megtalálhatók a függelékben.

4.4. Realisztikus Lotka-Volterra-modell

A harmadik feladat után most a relativisztikus Lotka-Volterra-modellt implementáltam és a harmadik feladathoz hasonló ábrákat készítettem, melyek a függelékben megtekinthetők. Készítettem egy értelmező ábrát a rókák telítődési számához (s), ez lejjebb látható:

Minél kisebb s értéke, annál kevésbé tudnak a ragodozók többet fogyasztani a prédákból annak ellenére, hogy a prédák létszáma nő.

A függelék ábrái alapján a következő következtetéseket tudtam még levonni:

ha nem veszem számításba a nyulak véges táplálékát és a rókák telítődési száma megfelelő (vagyis nem halnak meg a rókák a nyulak kezdeti populáció létszáma mellett), akkor a nyulak és rókák populáció létszáma egymással szinkronban oszcillálva divergálni kezdenek a végtelenbe (hol felszökik a létszámuk, hol nulla közelébe esik vissza, és minden felszökés exponenciálisan növekszik az előzőekhez képest). Ha számításba veszem a nyulak véges táplálékmennyiségét és a rókák telídősési száma megfelelő, akkor a két faj tud egymás mellett létezni, mindkét faj populációs száma tart egy-egy adott értékhez. Ha a telítődési szám túl kicsi, a rókák kihalnak, a nyulak pedig beállnak a kapacitásuk értékére. Tehát a triviális (a rókák kipusztulnak) esetet leszámítva, a fixpontok a nyulak korlátozott kapacitása és a rókák megfelelően beállított telítődési száma mellett tudnak létrejönni, a lehetséges értékek közül pedig a kisebb telítődési számok mellett áll be gyorsabban az egyensúly.

4.5. Tápláléklánc

Az utolsó feladatban, ahogy azt már az elmélet végén is írtam, egy három fajból álló táplálékláncot szimuláltam. Az antarktisz élővilágából merítettem, a táplálékláncom planktonevő halak, pingvinek, és a pingvinekre vadászó fókákból áll. Felteszem, hogy a halak csak planktonokat, a pingvinek csak halakat, a fókák pedig csak pingvineket fogyasztanak. Az ezekhez tartozó ábrák szintén a függelékben lelhetők fel.

5. Diszkusszió

Ebben a jegyzőkönyvben a számítógépes szimulációk tárgy populációdinamika témakörét dolgoztam fel. Megvizsgáltam a logisztikus egyenletet Euler- és adaptív negyedrendű Runge-Kutta-módszerrel, ezeket összevetettem a logisztikus egyenlet analitikus megoldásával. Ezt követően két, egymással versengő faj szaporodását szimuláltam a csatolt logisztikus modell segítségével, példát mutattam a kompetitív kizárás törvényére illetve megmutattam két faj együttélésének szükséges feltételeit. Implementáltam a Lotka-Volterra-modellt és kiegészíttem úgy, hogy figyelembe vegye a véges táplálék illetve telítődés hatását. Ezekről populáció létszám és fázistér ábrákat készítettem. Végül létrehoztam egy három fajból álló tápláléklánc modelljét, ennek szemléltetésére is készítettem populáció létszám és fázistér ábrát.

6. Függelék

6.1. Logisztikus egyenlet

6.1.1. Euler-módszer

2. ábra. A logisztikus egyenlet numerikus (Euler) és analitikus megoldásai. Az időbeli lépésköz dt=0.1 volt.

6.1.2. Adaptív negyedrendű Runge-Kutta módszer

3. ábra. A logisztikus egyenlet numerikus (adaptív negyedrendű Runge-Kutta (ARK4)) és analitikus megoldásai. Az ARK4-hez tartozó pontosság accuracy=0.01 volt.

6.2. Versengés

6.2.1. Kompetitív kizárás

4. ábra. Kompetitív kizárás, $\alpha=\beta=1$ (adaptív negyedrendű Runge-Kutta). $r_1=1,\,r_2=1,$ accuracy=1e-6, első ábrán $k_1=5000,\,k_2=10000,$ második ábrán $k_1=4000,\,k_2=3000.$

6.2.2. Két faj együttélése

5. ábra. Két faj együttélésének vizsgálata (adaptív negyedrendű Runge-Kutta). $r_1=1,\,r_2=1,$ $k_1=2000,\,k_2=5000\,\,accuracy=1e-6.$

6.3. Lotka-Volterra-modell

6. ábra. Lotka-Volterra-modell ábrái (adaptív negyedrendű Runge-Kutta). $a=0.4,\, d=0.9,$ accuracy=1e-6.

6.4. Realisztikus Lotka-Volterra-modell

7. ábra. Realisztikus Lotka-Volterra-modell ábrái (adaptív negyedrendű Runge-Kutta). a=0.4, $b=0.004,\,c=0.004,\,d=0.9,\,accuracy=1e-6.$

6.5. Tápláléklánc

6.5.1. Populációk létszámai

8. ábra. Tápláléklánc populációk létszámai (adaptív negyedrendű Runge-Kutta). $a=3,\,b=0.1,\,c=0.09,\,d=0.001,\,e=0.885,\,f=0.0025,\,g=0.9,\,k=2000,\,sP=10,\,sF=2000,\,T=500,\,accuracy=1e-6.$

6.5.2. Populációk fázistere

9. ábra. Tápláléklánc populációk fázistere (adaptív negyedrendű Runge-Kutta). $a=3,\,b=0.1,\,c=0.09,\,d=0.001,\,e=0.885,\,f=0.0025,\,g=0.9,\,k=2000,\,sP=10,\,sF=2000,\,T=500,\,accuracy=1e-6.$