http://www.makaut.com

CS/B.TECH/CSE/EVEN/SEM-6/CS-604B/2015-16

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL Paper Code: CS-604B

COMPUTER GRAPHICS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for the following:

$$10 \times 1 = 10$$

- i) The orthographic projections have the projectors where
 - the direction of these projectors is parallel to the view plane
 - projectors b) the direction of these is perpendicular to the image plane
 - direction of these projectors c) is perpendicular to the view plane
 - the direction of these projectors is parallel to the image plane.

http://www.makaut.com

- a) Splines
- b) Bernstein polynomials
- Lagrangian polynomials
- d) Newton polynomials.
- In Breshenham's circle algorithm, if points are generated from 90° to 45° and (x, y) are the coordinates of last scan converted pixel then the next pixel coordinate is
 - a) (x+1,y+1) or (x-1,y-1)
 - b) (x+1,u) or (x,u+1)
 - c) $\{x+1,y+1\}$ or $\{x+1,y-1\}$
 - d) (x+1,y) or (x+1,y-1).
- The term that is not synonymous 'vector CRT' is
 - a) Calligraphic CRT
 - b) Raster CRT
 - c) Stroke-writing CRT d) Random-scan CRT.
- A monitor can display 4 shades of red, 8 shades of blue and 16 shades of green. The colour depth supported by the monitor is
 - a) 7 bits

8 bits

9 bits

- d) 10 bits.
- If X_1 , X_R , Y_R , Y_T represent the four parameters of x-left, x-right, y-bottom, y-top of the clipping window respectively and (x, y) is a point inside the window then
 - a) $X_1 \le x \le X_p$ and $Y_n \le y \le Y_r$
 - b) $X_1 \le x \le X_R$ and $Y_B \ge y \ge Y_T$
 - c) $X_1 \ge x \ge X_R$ and $Y_R \le y \le Y_T$
 - d) $X_t \ge x \ge X_R$ and $Y_R \ge y \ge Y_T$.

6/60403

http://www.makaut.com

Turn over

6/60403

2

http://www.makaut.com

CS/B.TECH/CSE/EVEN/SEM-6/CS-604B/2015-16

- vii) Resolution can be defined by
 - number of small square boxes
 - number of pixels
 - number of pixels per unit length c)
 - d) none of these.
- viii) The viewing transformation is formed by
 - Translations
 - Translation and Scaling bì
 - Translation, Scaling and Translation c)
 - Translation, Scaling and Rotation.
- For the scan-line polygon fill algorithm, each horizontal edge should be
 - ignored a)

http://www.makaut.com

- treated as a single intersection point
- treated as two intersection points 1 c)
 - treated as one or two intersection points, depending on the adjacent vertices.
- Line end point codes of 4 lines are given below. Which one of the following is totally invisible?
 - 1010, 0110
- 0000,0000 b)
- 1001,0000 c)
- 0001, 0100. d)

GROUP - B

(Short Answer Type Questions)

 $3 \times 5 = 15$ Answer any three of the following.

- Write two techniques for producing colour displays with a CRT.
- What is horizontal retrace of the electron beam?
- What is run length coding?
- classifications shear What are the two transformation?
- What is the need of homogeneous coordinates?
- How does a video controller work?

6/60403

3

[Turn over

6/60403

http://www.makaut.com

4

CS/B.TECH/CSE/EVEN/SEM-6/CS-604B/2015-16

GROUP - C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 8. What are the side effects of scan conversion? a١
 - Write the Bresenham's Line drawing algorithm (with mathematical derivations).
 - Using Mid-point circle drawing algorithm, draw a circle whose centre is (3, 5) with radius 10 units.

3 + 6 + 6

- 9. What is the difference between a viewport and window?
 - Derive the transformation matrices for 2D reflection about X-axis and Y-axis.
 - A clipping window ABCD is located as follows: A (100, 10), B (160, 10), C (160, 40), D (100, 40); Using Cohen-Sutherland clipping algorithm find the visible portion of the line segment p_1p_2 , where 3 + 4 + 8 p_1 (120, 5), p_2 (180, 30).
- A cubic Bezier curve with control points 10. a) P_0 (10, 10), P_1 (20, 30), P_2 (30, -10) and P_3 (50, 50) is to be joined smoothly with another cubic Bezier curve S_0 , S_1 , S_2 and S_3 . Find the control points S_0 , S_1 , S_2 and S_3 .
 - Explain Painter's algorithm.
- 11. a) Derive a composite matrix to reflect any object along any arbitrary line y = mx + c.
 - Derive a composite matrix to scale a square by a factor 2 along one of its diagonal.
 - Show for what condition rotation and scaling are commutative.
- 12. Write an algorithm to display $\sin(x)/x$, $0 \le x \le 8\pi$ on a text-only display, however crude it may look. The x-axis runs horizontally at the middle of the display.