Math 240: Homework 5

Daniel Ko

Spring 2020

§1 1

Fix positive integers a and b. Here's an inductive definition of a set S: Foundation rule: $a, b \in S$

Constructor rule: If $m, n \in S$, then $m - n \in S$.

a. Suppose h is a common factor of a and b. Use the exclusion rule to prove that for every $n \in S$, h divides n.

Proof.

There must be integers c_a and c_b such that $a = hc_a$ and $b = hc_b$. By the contructor rule, $a - b \in S$ where $a - b = hc_a - hc_b = h(c_a - c_b)$. Thus, all other generated elements will have h as a common factor because of the exclusion rule. Therefore, by the exclusion rule we have proven that for every $n \in S$, h divides n.

b. Suppose $k \in S$ is a positive integer which is not a factor of a. Prove that there is some $l \in S$ such that 0 < l < k.

Proof.

Consider the sequence: $\{a, a-k, a-2k, \cdots\}$. Let this sequence be a subset of $\mathbb N$. It is clear that all elements in this sequence are elements of S by the constructor rule. By the well ordering principle, there exists a smallest element in this sequence. An I that always fits the criteria of 0 < I < k is the smallest element in this sequence. I must be less than k because if I wasn't less than k then I would not be the smallest element in the sequence. Let a-nk be the first negative term that is generated. Then, our sequence must stop at a-(n+1)k and this would be the smallest element in this set by the well ordering principle. Since, a is not a factor of k, I cannot be 0. Therefore, there exists an I such that 0 < I < k.

c. Use (b) and the above fact to prove that there is some positive integer in S which is a common factor of a and b.

Proof.

Consider this strictly decreasing sequence: $\{(a+b), (a+b)-k, (a+b)-2k, \cdots\}$ which is a subset of \mathbb{N} . By the well ordering principle, this sequence must be finite, such that it ends at (a+b)-nk>0 and (a+b)-(n+1)k<0, where $n\in\mathbb{N}$. Suppose there is no positive integer, I, in S that is a common factor of a and b. By construction of our sequence a+b-(n+1)k< I. By (b) I such that, $0<I< k_{!a}$ and $0<I< k_{!b}$, where $k_{!a}$ and $k_{!b}$ are integers that are not factors of a and b respectively. However, this leads to a contradiction because if this were true, then I would be a common factor of a and b. Thus, there exists a positive interger in S which is a common factor of a and b.

d. Use (a) and (c) to conclude that S contains gcd(a,b)

Proof. From part c, we know there is a positive integer in S that is a common divisor of a and b. From part a, we know that this will divide all $n \in S$. Assume that there is a gcd(a,b) that is greater than the common divisor in S. This must mean $gcd(a,b) \neq m-n$, where $m, n \in S$. However, this is a contradiction because all common divisors must be generated using the constructor rule because it is a multiple of all $n \in S$. Thus, S must contain gcd(a,b).

§2 2

a. Prove by structural induction that for all $x \in \{0, 1\}^*$, $\lambda x = x$.

Proof.

We proceed by induction on x. Let P(x) be the predicate " $x \in \{0,1\}^*$, $\lambda x = x$ ".

Base case: Show $P(\lambda)$ holds.

 $P(\lambda) = \lambda \lambda = \lambda$ by foundation rule in concatenation.

Inductive step: If P(x) holds, then P(xi) holds, where $i \in \{0, 1\}$ Fix $x \in \{0, 1\}^*$ and $i \in \{0, 1\}$ and assume that P(x) holds. We show that P(xi) holds.

$$P(xi) = \lambda xi$$
= xi by inductive hypothesis

b. Consider the function reverse: $\{0,1\}^* \to \{0,1\}^*$ which reverses a binary string e.g. reverse(01001) = 10010. Give an inductive definition of reverse.

Proof.

Foundation rule: reverse(i) = i, where $i \in \{\lambda, 0, 1\}$. Constructor rule: reverse(xi) = ireverse(x), where $x \in \{0, 1\}^*$

c. Using your inductive definition, prove that for all $x, y \in \{0, 1\}^*$, reverse(xy) = reverse(y)reverse(x).

Proof.

Let $y \in \{0, 1\}^*$. y_n repesents the nth digit and y_0^{n-4} represents the substring from 0 to n-4. Let the length of y be n.

reverse(
$$xy$$
) = y_n reverse(xy_0^{n-1})
= $y_{n_1}y_{n-1}$ reverse(xy_0^{n-2})
...
= $y_ny_{n-1}y_{n-2} \cdots y_1y_0$ reverse(x)
= reverse(y_n) $y_{n-1}y_{n-2} \cdots y_1y_0$ reverse(x)
= reverse($y_{n-1}y_n$) $y_{n-2} \cdots y_1y_0$ reverse(x)
...
= reverse(y)reverse(x)