Take-Home Eksamen DM500 Efterår 2020

h8 - studiegruppe 3:
Andreas Rosenstjerne(andrh20)
Frederik Mortensen Dam(Frdam20)
Gabrielle Hvid Benn Madsen (gamad20)
Nanta Veliovits (navel16)

November 2020

1 Opgave 1(Reeksamen februar 2015)

I det følgende lader vi $U = \{1, 2, 3, ..., 15\}$ være universet (universal set).

Betragt de to mængder $A = \{2n|n\} \in SogB\{3n+2|n\} \in S$ hvor $S = \{1,2,3,4\}$

Angiv samtlige elementer i hver af følgende mængder

- a) $A\{2,4,6,8\}$
- b) B {5, 8, 11, 14}
- c) $A \cap B\{8\}$
- d) $A \cup B\{2, 4, 5, 6, 8, 11, 14\}$
- e) $A B\{2, 4, 6\}$
- f) \overline{A} { 1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15}

2 Opgave 2 (Reeksamen februar 2015)

a) Hvilke af følgende udsagn er sande?

 $\forall x \in N : \exists y \in N : x < y \quad Det \ er \ sandt.$

 $\forall x \in N: \exists \ ! \ y \in N: x < y \quad Det \ er \ ikke \ sandt.$

$$\exists y \in N : \forall x \in N : x < y \ Det \ er \ sandt.$$

b) Angiv negeringen af udsagn 1. fra spørgsmål a).

Negerings-operatoren (\neg) må ikke indgå i dit udsagn.

$$\exists x \in N : \forall y \in N : x > y$$

3 Opgave 3 (Reeksamen februar 2015)

Lad R, S og T være binære relationer på mængden $\{1, 2, 3, 4\}$. a) Lad R = $\{(1,1), (2,1), (2,2), (2,4), (3,1), (3,3), (3,4), (4,1), (4,4)\}$. Er R en partiel ordning? Svar: Ja, da relationen er både refleksiv, antisymmetrisk og transitiv.

b) Lad $S = \{(1,2), (2,3), (2,4), (4,2)\}$. Angiv den transitive lukning af S.

Svar: Vi tilføjer de par, der mangler for, at relationen lever op til den transitive egenskab. Den nye relation ser sådan ud: $\{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (4,2), (4,3), (4,4)\}$

c) Lad $T = \{(1,1), (1,3), (2,2), (2,4), (3,1), (3,3), (4,2), (4,4)\}$. Bemærk at T er en ækvivalensrelation. Angiv T's ækvivalensklasser.

Svar:

$$[1] \cup [3] = \{1, 3\}$$

$$[2] \cup [4] = \{2, 4\}$$

Opskriv desuden matricerne, der repræsenterer de tre relationer R, S og T.

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$