

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6668/01)

June 2009 6668 Further Pure Mathematics FP2 (new) Mark Scheme

	stion nber	Scheme			Mark	S
Q1	(a)	$\frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{2(r+2)}$	$\frac{1}{2r} - \frac{1}{2(r+2)}$	B1	aef	(1)
		$\sum_{r=1}^{n} \frac{4}{r(r+2)} = \sum_{r=1}^{n} \left(\frac{2}{r} - \frac{2}{r+2} \right)$				
		$= \left(\frac{2}{1} - \frac{2}{3}\right) + \left(\frac{2}{2} - \frac{2}{4}\right) + \dots + \left(\frac{2}{n-1} - \frac{2}{n+1}\right) + \left(\frac{2}{n} - \frac{2}{n+2}\right)$	List the first two terms and the last two terms	M1		
		$= \frac{2}{1} + \frac{2}{2}; -\frac{2}{n+1} - \frac{2}{n+2}$	Includes the first two underlined terms and includes the final two underlined terms. $\frac{2}{1} + \frac{2}{2} - \frac{2}{n+1} - \frac{2}{n+2}$	M1 A1		
		$= 3 - \frac{2}{n+1} - \frac{2}{n+2}$				
		$= \frac{3(n+1)(n+2) - 2(n+2) - 2(n+1)}{(n+1)(n+2)}$ $= \frac{3n^2 + 9n + 6 - 2n - 4 - 2n - 2}{(n+1)(n+2)}$	Attempt to combine to an at least 3 term fraction to a single fraction and an attempt to take out the brackets from their numerator.	M1		
		$= \frac{3n^2 + 5n}{(n+1)(n+2)}$				
		$= \frac{n(3n+5)}{(n+1)(n+2)}$	Correct Result	A1	cso .	AG (5)
						[6]

Question Number	Scheme	Marks
Q2 (a)	$z^{3} = 4\sqrt{2} - 4\sqrt{2}i, -\pi < \theta, \pi$ y $\sqrt{4\sqrt{2}}$ $\sqrt{4\sqrt{2}}$ $\sqrt{4\sqrt{2}}$ $\sqrt{4\sqrt{2}}$ $\sqrt{4\sqrt{2}}$ $\sqrt{4\sqrt{2}}$	
	$r = \sqrt{\left(4\sqrt{2}\right)^2 + \left(-4\sqrt{2}\right)^2} = \sqrt{32 + 32} = \sqrt{64} = 8$ $\theta = -\tan^{-1}\left(\frac{4\sqrt{2}}{4\sqrt{2}}\right) = -\frac{\pi}{4}$ A valid attempt to find the modulus and argument of $4\sqrt{2} - 4\sqrt{2}$ and $4\sqrt{2} - 4\sqrt{2}$ and $4\sqrt{2} - 4\sqrt{2}$ are $2\sqrt{2} + 2\sqrt{2}$.	of M1
	So, $z = (8)^{\frac{1}{3}} \left(\cos \left(\frac{-\frac{\pi}{4}}{3} \right) + i \sin \left(\frac{-\frac{\pi}{4}}{3} \right) \right)$ Taking the cube root of the modulus and dividing the argument by $z = (8)^{\frac{1}{3}} \left(\cos \left(\frac{-\frac{\pi}{4}}{3} \right) + i \sin \left(\frac{-\frac{\pi}{4}}{3} \right) \right)$	e M1
	$\Rightarrow z = 2\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$ $2\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$) A1
	Also, $z^3 = 8\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right)$ Adding or subtracting 2π to the argument for z^3 in order to fin other root.	d M1
	$\Rightarrow z = 2\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$ Any one of the final two roo	s A1
	and $z = 2\left(\cos\left(\frac{-3\pi}{4}\right) + i\sin\left(\frac{-3\pi}{4}\right)\right)$ Both of the final two root	s. A1
	Special Case 1 : Award SC: M1M1A1M1A0A0 for ALL three of $2(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12})$, $2(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$ and $2(\cos (\frac{-7\pi}{12}) + i \sin (\frac{-7\pi}{12}))$. Special Case 2: If r is incorrect (and not equal to 8) and candidate states the brackets	[6]
	() correctly then give the first accuracy mark ONLY where this is applicable.	

Question Number	Scheme	Marks
Q3	$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} - y \cos x = \sin 2x \sin x$	
	$\frac{dy}{dx} - \frac{y \cos x}{\sin x} = \frac{\sin 2x \sin x}{\sin x}$ An attempt to divide every term in the differential equation by $\sin x$. Can be implied.	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin x} = \sin 2x$	
	Integrating factor = $e^{\int -\frac{\cos x}{\sin x} dx}$ = $e^{-\ln \sin x}$ $e^{\int \pm \frac{\cos x}{\sin x} (dx)}$ or $e^{\int \pm \frac{\cos x}{\sin x} (dx)}$ or $e^{-\ln \sin x}$ or $e^{-\ln \sin x}$	dM1 A1 aef
	$= \frac{1}{\sin x} \frac{1}{\sin x} \text{ or } (\sin x)^{-1} \text{ or } \csc x$	A1 aef
	$\left(\frac{1}{\sin x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin^2 x} = \frac{\sin 2x}{\sin x}$	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sin x} \right) = \sin 2x \times \frac{1}{\sin x}$ $\frac{\mathrm{d}}{\mathrm{d}x} \left(y \times \text{their I.F.} \right) = \sin 2x \times \text{their I.F.}$	M1
	$\frac{d}{dx}\left(\frac{y}{\sin x}\right) = 2\cos x \qquad \frac{d}{dx}\left(\frac{y}{\sin x}\right) = 2\cos x \text{ or}$ $\frac{y}{\sin x} = \int 2\cos x (dx)$	A1
	$\frac{y}{\sin x} = \int 2\cos x \mathrm{d}x$	
	$\frac{y}{\sin x} = 2\sin x + K$ A credible attempt to integrate the RHS with/without + K	dddM1
	$y = 2\sin^2 x + K\sin x \qquad \qquad y = 2\sin^2 x + K\sin x$	A1 cao [8]

Question Number	Scheme		Marks
Q4	$A = \frac{1}{2} \int_{0}^{2\pi} (a + 3\cos\theta)^2 d\theta$	Applies $\frac{1}{2} \int_{0}^{2\pi} r^{2} (d\theta)$ with correct limits. Ignore $d\theta$.	B1
	$(a+3\cos\theta)^2 = a^2 + 6a\cos\theta + 9\cos^2\theta$ $= a^2 + 6a\cos\theta + 9\left(\frac{1+\cos 2\theta}{2}\right)$ $A = \frac{1}{2} \int_0^{2\pi} \left(a^2 + 6a\cos\theta + \frac{9}{2} + \frac{9}{2}\cos 2\theta\right) d\theta$	$\cos^2 \theta = \frac{\pm 1 \pm \cos 2\theta}{2}$ Correct underlined expression.	M1 A1
	$= \left(\frac{1}{2}\right) \left[a^2\theta + 6a\sin\theta + \frac{9}{2}\theta + \frac{9}{4}\sin 2\theta\right]_0^{2\pi}$	Integrated expression with at least 3 out of 4 terms of the form $\pm A\theta \pm B\sin\theta \pm C\theta \pm D\sin2\theta$. Ignore the $\frac{1}{2}$. Ignore limits. $a^2\theta + 6a\sin\theta + \text{correct ft}$ integration. Ignore the $\frac{1}{2}$. Ignore limits.	M1*
	$= \frac{1}{2} \left[\left(2\pi a^2 + 0 + 9\pi + 0 \right) - (0) \right]$ $= \pi a^2 + \frac{9\pi}{2}$ Hence, $\pi a^2 + \frac{9\pi}{2} = \frac{107}{2}\pi$	$\pi a^2 + \frac{9\pi}{2}$ Integrated expression equal to $\frac{107}{2}\pi$.	A1 dM1*
	$a^2 + \frac{9}{2} = \frac{107}{2}$ $a^2 = 49$ As $a > 0$, $a = 7$ Some candidates may achieve $a = 7$ from incorrect working. Such candidates will not get full marks	<i>a</i> = 7	A1 cso [8]

Question Number	Scheme			Marks	;
Q5 (a)	$y = \sec^2 x = (\sec x)^2$ $\frac{dy}{dx} = 2(\sec x)^1 (\sec x \tan x) = 2\sec^2 x \tan x$	Either $2(\sec x)^{1}(\sec x \tan x)$	B1	aef	
	Apply product rule: $\begin{cases} u = 2\sec^2 x & v = \tan x \\ \frac{du}{dx} = 4\sec^2 x \tan x & \frac{dv}{dx} = \sec^2 x \end{cases}$	or $2\sec^2 x \tan x$	<i>.</i>	uei	
	$\frac{d^2y}{dx^2} = 4\sec^2x\tan^2x + 2\sec^4x$	Two terms added with one of either $A \sec^2 x \tan^2 x$ or $B \sec^4 x$ in the correct form. Correct differentiation	M1 A1		
	$= 4\sec^{2} x(\sec^{2} x - 1) + 2\sec^{4} x$ Hence, $\frac{d^{2} y}{dx^{2}} = 6\sec^{4} x - 4\sec^{2} x$	Applies $\tan^2 x = \sec^2 x - 1$ leading to the correct result.	A1	AG	
(b)	$y_{\frac{\pi}{4}} = (\sqrt{2})^2 = 2, \ \left(\frac{dy}{dx}\right)_{\frac{\pi}{4}} = 2(\sqrt{2})^2 (1) = 4$	Both $y_{\frac{\pi}{4}} = \underline{2}$ and $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\frac{\pi}{4}} = \underline{4}$	B1		(4)
	$\left(\frac{d^2 y}{dx^2}\right)_{\frac{\pi}{4}} = 6\left(\sqrt{2}\right)^4 - 4\left(\sqrt{2}\right)^2 = 24 - 8 = 16$	Attempts to substitute $x = \frac{\pi}{4}$ into both terms in the expression for $\frac{d^2y}{dx^2}.$	M1		
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 24\sec^3 x(\sec x \tan x) - 8\sec x(\sec x \tan x)$	Two terms differentiated with either $24\sec^4 x \tan x$ or $-8\sec^2 x \tan x$ being correct	M1		
	$= 24\sec^4 x \tan x - 8\sec^2 x \tan x$				
	$\left(\frac{d^2y}{dx^2}\right)_{\frac{\pi}{4}} = 24\left(\sqrt{2}\right)^4(1) - 8\left(\sqrt{2}\right)^2(1) = 96 - 16 = 80$	$\left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)_{\frac{x}{4}} = \underline{80}$	B1		
	$\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + \frac{16}{2}\left(x - \frac{\pi}{4}\right)^2 + \frac{80}{6}\left(x - \frac{\pi}{4}\right)^3 + \dots$	Applies a Taylor expansion with at least 3 out of 4 terms ft correctly. Correct Taylor series expansion.	M1 A1		(6)
	$\left\{\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + 8\left(x - \frac{\pi}{4}\right)^2 + \frac{40}{3}\left(x - \frac{\pi}{4}\right)^3 + \ldots\right\}$				(6)
				[10]

Question Number	Scheme		Marks
Q6	$w = \frac{z}{z+i}, z = -i$		
(a)	$w(z+i) = z \implies wz + iw = z \implies iw = z - wz$ $\implies iw = z(1-w) \implies z = \frac{iw}{(1-w)}$	Complete method of rearranging to make z the subject.	M1
	$\Rightarrow i w = z(1 - w) \Rightarrow z = \frac{i w}{(1 - w)}$	$z = \frac{\mathrm{i}w}{(1-w)}$	A1 aef
	$ z = 3 \Rightarrow \left \frac{\mathrm{i}w}{1 - w} \right = 3$	Putting $ z $ in terms of their $ z $ in terms of their $ z $	dM1
	$\begin{cases} i w = 3 1 - w \implies w = 3 w - 1 \implies w ^2 = 9 w - 1 ^2 \\ \implies u + iv ^2 = 9 u + iv - 1 ^2 \end{cases}$		
	$\Rightarrow u^2 + v^2 = 9\left[(u-1)^2 + v^2\right]$	Applies $w = u + iv$, and uses Pythagoras correctly to get an equation in terms of u and v without any i's.	ddM1
	$\begin{cases} \Rightarrow u^2 + v^2 = 9u^2 - 18u + 9 + 9v^2 \\ \Rightarrow 0 = 8u^2 - 18u + 8v^2 + 9 \end{cases}$	Correct equation.	A1
	$\Rightarrow 0 = u^2 - \frac{9}{4}u + v^2 + \frac{9}{8}$	Simplifies down to $u^2 + v^2 \pm \alpha u \pm \beta v \pm \delta = 0.$	dddM1
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 - \frac{81}{64} + v^2 + \frac{9}{8} = 0$		
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 + v^2 = \frac{9}{64}$		
	{Circle} centre $\left(\frac{9}{8}, 0\right)$, radius $\frac{3}{8}$	One of centre or radius correct. Both centre and radius correct.	A1 A1 (8)
(b)	V A	Circle indicated on the Argand diagram in the correct position in follow through quadrants. Ignore plotted coordinates.	B1ft
	o u	Region outside a circle indicated only.	B1
			(2)
			[10]

Question Number	Scheme		Mark	
Q7 (a)	$y = x^2 - a^2 , \ a > 1$ Correct Shape. Ignore cusps. Correct coordinates.	B1 B1		(2)
(b)	$ x^{2} - a^{2} = a^{2} - x$, $a > 1$ $\{ x > a\}$, $x^{2} - a^{2} = a^{2} - x$ $\Rightarrow x^{2} + x - 2a^{2} = 0$	M1	aef	
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1)(-2a^2)}}{2}$ Applies the quadratic formula or completes the square in order to find the roots.	M1		
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 + 8a^2}}{2}$ Both correct "simplified down" solutions.	A1		
	$\{ x < a\}, \qquad -x^2 + a^2 = a^2 - x $ $-x^2 + a^2 = a^2 - x \text{ or } $ $x^2 - a^2 = x - a^2$	M1	aef	
	$\left\{ \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0 \right\}$			
	$\Rightarrow x = 0, 1$ $x = 0$ $x = 1$	B1 A1		(6)
(c)	$ x^2 - a^2 > a^2 - x$, $a > 1$			
	$\left x^{2}-a^{2}\right >a^{2}-x$, $a>1$ $x<\frac{-1-\sqrt{1+8a^{2}}}{2} \text{{or}} x>\frac{-1+\sqrt{1+8a^{2}}}{2} \qquad x \text{ is less than their least value}$ $x \text{ is greater than their maximum}$ value	B1 B1		
	$ \{or\} 0 < x < 1 $ For $\{ x < a\}$, Lowest $< x <$ Highest $ 0 < x < 1 $	M1 A1		(4)
				[12]

Question Number	Scheme		Marks
Q8	$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 2e^{-t}$, $x = 0$, $\frac{dx}{dt} = 2$ at $t = 0$.		
(a)	AE, $m^2 + 5m + 6 = 0 \implies (m+3)(m+2) = 0$ $\implies m = -3, -2.$		
	So, $x_{CF} = Ae^{-3t} + Be^{-2t}$	$Ae^{m_1t} + Be^{m_2t}$, where $m_1 \neq m_2$. $Ae^{-3t} + Be^{-2t}$	M1 A1
	$\left\{ x = k e^{-t} \implies \frac{dx}{dt} = -k e^{-t} \implies \frac{d^2x}{dt^2} = k e^{-t} \right\}$		
	$\Rightarrow k e^{-t} + 5(-k e^{-t}) + 6k e^{-t} = 2e^{-t} \Rightarrow 2k e^{-t} = 2e^{-t}$ \Rightarrow k = 1	Substitutes $k e^{-t}$ into the differential equation given in the question.	M1
		Finds $k = 1$.	A1
	$\left\{ \text{So, } x_{\text{PI}} = e^{-t} \right\}$ $\text{So, } x = Ae^{-3t} + Be^{-2t} + e^{-t}$	their $x_{\rm CF}$ + their $x_{\rm PI}$	M1*
	$\frac{dx}{dt} = -3Ae^{-3t} - 2Be^{-2t} - e^{-t}$	Finds $\frac{dx}{dt}$ by differentiating their x_{CF} and their x_{PI}	dM1*
	$t = 0, x = 0 \Rightarrow 0 = A + B + 1$ $t = 0, \frac{dx}{dt} = 2 \Rightarrow 2 = -3A - 2B - 1$	Applies $t = 0$, $x = 0$ to x and $t = 0$, $\frac{dx}{dt} = 2$ to $\frac{dx}{dt}$ to form simultaneous equations.	ddM1*
	$\begin{cases} 2A + 2B = -2 \\ -3A - 2B = 3 \end{cases}$ $\Rightarrow A = -1, B = 0$ So, $x = -e^{-3t} + e^{-t}$		
	$\Rightarrow A = -1, B = 0$		
	So, $x = -e^{-3t} + e^{-t}$	$x = -e^{-3t} + e^{-t}$	A1 cao (8)

Question	Schomo		Marks
Number	Scheme		Marks
	$x = -e^{-3t} + e^{-t}$		
(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3\mathrm{e}^{-3t} - \mathrm{e}^{-t} = 0$	Differentiates their x to give $\frac{dx}{dt}$ and puts $\frac{dx}{dt}$ equal to 0.	M1
	$3 - e^{2t} = 0$	A credible attempt to solve.	dM1*
	$\Rightarrow t = \frac{1}{2} \ln 3$	$t = \frac{1}{2} \ln 3$ or $t = \ln \sqrt{3}$ or awrt 0.55	A1
	So, $x = -e^{-\frac{3}{2}\ln 3} + e^{-\frac{1}{2}\ln 3} = -e^{\ln 3^{-\frac{3}{2}}} + e^{\ln 3^{-\frac{1}{2}}}$	Substitutes their <i>t</i> back into <i>x</i>	
	$x = -3^{-\frac{3}{2}} + 3^{-\frac{1}{2}}$	and an attempt to eliminate out the ln's.	ddM1
	$= -\frac{1}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$	uses exact values to give $\frac{2\sqrt{3}}{9}$	A1 AG
	$\frac{d^2x}{dt^2} = -9e^{-3t} + e^{-t}$	Finds $\frac{d^2x}{dt^2}$	
	At $t = \frac{1}{2} \ln 3$, $\frac{d^2 x}{dt^2} = -9e^{-\frac{3}{2} \ln 3} + e^{-\frac{1}{2} \ln 3}$	and substitutes their t into $\frac{d^2x}{dt^2}$	dM1*
	$= -9(3)^{-\frac{3}{2}} + 3^{-\frac{1}{2}} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = -\frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3}}$		
	As $\frac{d^2x}{dt^2} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \left\{-\frac{2}{\sqrt{3}}\right\} < 0$	$-\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} < 0 \text{ and maximum}$	A1
	then x is maximum.	conclusion.	(7)
			[15]