

The Null space of a matrix

in applications of liner algebrasubspaces \mathbb{R}^n usually arise in one of two ways:

- 1. as the set of all solutions to a system of homogeneous linear equations
- 2. as the set of all linear combinations of certain specified vectos.
- When Nul A contains nonzero vectors, the number of vectors in the spanning set for Nul A equals the number of free variables in the equation Ax = 0.

The columns space of a matrix

DEFINITION

The **column space** of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]$, then

$$\operatorname{Col} A = \operatorname{Span} \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

Since Span $\{a_1, \ldots, a_n\}$ is a subspace, by Theorem 1, the next theorem follows from the definition of Col A and the fact that the columns of A are in \mathbb{R}^m .

THEOREM 3

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Note that a typical vector in Col A can be written as A**x** for some **x** because the notation A**x** stands for a linear combination of the columns of A. That is,

$$\operatorname{Col} A = \{ \mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n \}$$

The notation $A\mathbf{x}$ for vectors in Col A also shows that Col A is the *range* of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$. We will return to this point of view at the end of the section.

EXAMPLE 4 Find a matrix A such that $W = \operatorname{Col} A$.

$$W = \left\{ \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$

SOLUTION First, write W as a set of linear combinations.

$$W = \left\{ a \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix} + b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Second, use the vectors in the spanning set as the columns of A. Let $A = \begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix}$.

Then $W = \operatorname{Col} A$, as desired.

Recall from Theorem 4 in Section 1.4 that the columns of A span \mathbb{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} . We can restate this fact as follows:

The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m .

EXAMPLE 5 Let

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$

- a. If the column space of A is a subspace of \mathbb{R}^k , what is k?
- b. If the null space of A is a subspace of \mathbb{R}^k , what is k?

SOLUTION

- a. The columns of A each have three entries, so $\operatorname{Col} A$ is a subspace of \mathbb{R}^k , where k=3.
- b. A vector **x** such that A**x** is defined must have four entries, so Nul A is a subspace of \mathbb{R}^k , where k = 4.

When a matrix is not square, as in Example 5, the vectors in Nul A and Col A live in entirely different "universes." For example, no linear combination of vectors in \mathbb{R}^3 can produce a vector in \mathbb{R}^4 . When A is square, Nul A and Col A do have the zero vector in common, and in special cases it is possible that some nonzero vectors belong to both Nul A and Col A.

Nul 4	Col 4
INUI A	COLA

- **1**. Nul *A* is a subspace of \mathbb{R}^n .
- Nul A is implicitly defined; that is, you are given only a condition (Ax = 0) that vectors in Nul A must satisfy.
- It takes time to find vectors in Nul A. Row operations on [A 0] are required.
- There is no obvious relation between Nul A and the entries in A.
- 5. A typical vector \mathbf{v} in Nul A has the property that $A\mathbf{v} = \mathbf{0}$.
- Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av.
- 7. Nul $A = \{0\}$ if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 8. Nul $A = \{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.

- 1. Col A is a subspace of \mathbb{R}^m .
- Col A is explicitly defined; that is, you are told how to build vectors in Col A.
- It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
- There is an obvious relation between Col A
 and the entries in A, since each column of
 A is in Col A.
- 5. A typical vector \mathbf{v} in Col A has the property that the equation $A\mathbf{x} = \mathbf{v}$ is consistent.
- Given a specific vector v, it may take time to tell if v is in Col A. Row operations on [A v] are required.
- 7. Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .
- **8.** Col $A = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n *onto* \mathbb{R}^m .

DEFINITION

A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for all \mathbf{u} , \mathbf{v} in V , and

(ii)
$$T(c\mathbf{u}) = cT(\mathbf{u})$$
 for all \mathbf{u} in V and all scalars c .

The **kernel** (or **null space**) of such a T is the set of all \mathbf{u} in V such that $T(\mathbf{u}) = \mathbf{0}$ (the zero vector in W). The **range** of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. If T happens to arise as a matrix transformation—say, $T(\mathbf{x}) = A\mathbf{x}$

for some matrix A—then the kernel and the range of T are just the null space and the column space of A, as defined earlier.

FIGURE 2 Subspaces associated with a linear transformation.

in applications, a subspace usually arises as either the kernel or the range of an appropriate linear transformation. For instance, the set of all solutions of a homogenous linear differential equation turns out to be the kernel of a linear transformation. Typically, such a linear transformation is described in terms of one or more derivatives of a fucntion.

Examples

EXAMPLE 8 (Calculus required) Let V be the vector space of all real-valued functions f defined on an interval [a,b] with the property that they are differentiable and their derivatives are continuous functions on [a,b]. Let W be the vector space C[a,b] of all continuous functions on [a,b], and let $D:V\to W$ be the transformation that changes f in V into its derivative f'. In calculus, two simple differentiation rules are

$$D(f+g) = D(f) + D(g)$$
 and $D(cf) = cD(f)$

That is, D is a linear transformation. It can be shown that the kernel of D is the set of constant functions on [a, b] and the range of D is the set W of all continuous functions on [a, b].

EXAMPLE 9 (Calculus required) The differential equation

$$y'' + \omega^2 y = 0 \tag{4}$$

where ω is a constant, is used to describe a variety of physical systems, such as the vibration of a weighted spring, the movement of a pendulum, and the voltage in an inductance-capacitance electrical circuit. The set of solutions of (4) is precisely the kernel of the linear transformation that maps a function y = f(t) into the function $f''(t) + \omega^2 f(t)$. Finding an explicit description of this vector space is a problem in differential equations. The solution set turns out to be the space described in Exercise 19 in Section 4.1.