International TOR Rectifier

IR2111

Features

- Floating channel designed for bootstrap operation Fully operational to +600V

 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- CMOS Schmitt-triggered inputs with pull-down
- Matched propagation delay for both channels
- Internally set deadtime
- High side output in phase with input

Description

The IR2111 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for half-bridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

HALF-BRIDGE DRIVER

Product Summary

Voffset	600V max.
l _O +/-	200 mA / 420 mA
V _{OUT}	10 - 20V
t _{on/off} (typ.)	850 & 150 ns
Deadtime (typ.)	700 ns

Packages

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 7 through 10.

Parameter			Va		
Symbol	Definition		Min.	Max.	Units
V _B	High Side Floating SupplyVoltage		-0.3	625	
Vs	High Side Floating Supply Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating OutputVoltage		V _S - 0.3	V _B +0.3	V
V _{CC}	Low Side and Logic Fixed Supply Voltage		-0.3	25	V
V_{LO}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic InputVoltage	-0.3	V _{CC} + 0.3		
dV _s /dt	Allowable Offset SupplyVoltageTransient (Figure 2)		_	50	V/ns
PD	Package Power Dissipation @ T _A ≤ +25°C	(8 Lead DIP)	_	1.0	W
		(8 Lead SOIC)	_	0.625	VV
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	_	125	°C/W
		(8 Lead SOIC)	_	200	C/VV
TJ	JunctionTemperature		_	150	
T _S	Storage Temperature		-55	150	℃
TL	LeadTemperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Parameter		Va			
Symbol	Definition Min. Max.				
V _B	High Side Floating Supply Absolute Voltage	V _S + 10	V _S + 20		
Vs	High Side Floating Supply Offset Voltage	Note 1	600		
V _{HO}	High Side Floating Output Voltage	VS	V		
V _{CC}	Low Side and Logic Fixed Supply Voltage	10	20	V	
V_{LO}	Low Side Output Voltage	0			
V _{IN}	Logic InputVoltage	0	V _{CC}		
TA	AmbientTemperature	-40	125	°C	

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}.

Dynamic Electrical Characteristics

V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Parameter			Value			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	_	850	1,000		V _S = 0V
t _{off}	Turn-Off Propagation Delay	_	150	180		V _S = 600V
t _r	Turn-On Rise Time	_	80	130		
t _f	Turn-Off Fall Time	_	40	65	ns	
DT	Deadtime, LS Turn-Off to HS Turn-On &	_	700	900		
	HS Turn-Off to LS Turn-On					
MT	Delay Matching, HS & LS Turn-On/Off	_	30	_		

Static Electrical Characteristics

V_{BIAS} (V_{CC}, V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter		Value				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" Input Voltage for HO & Logic "0" for LO	6.4	_	_		V _{CC} = 10V
		9.5	_	_		V _{CC} = 15V
		12.6	_	_	V	V _{CC} = 20V
V _{IL}	Logic "0" Input Voltage for HO & Logic "1" for LO	_	_	3.8	ď	V _{CC} = 10V
		_	_	6.0		$V_{CC} = 15V$
		_	_	8.3		V _{CC} = 20V
VoH	High Level Output Voltage, VBIAS - VO	_	_	100	mV	I _O = 0A
V _{OL}	Low Level Output Voltage, VO	_	_	100	111.0	I _O = 0A
I _{LK}	Offset Supply Leakage Current	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	_	50	100		$V_{IN} = 0V \text{ or } V_{CC}$
Iqcc	Quiescent V _{CC} Supply Current	_	70	180	μA	$V_{IN} = 0V \text{ or } V_{CC}$
I _{IN+}	Logic "1" Input Bias Current	_	20	40		$V_{IN} = V_{CC}$
I _{IN-}	Logic "0" Input Bias Current	_	_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	7.3	8.4	9.5		
V _{BSUV} -	$V_{\mbox{\footnotesize{BS}}}$ Supply Undervoltage Negative Going Threshold	7.0	8.1	9.2	V	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	7.6	8.6	9.6	ľ	
V _{CCUV} -	$V_{\mbox{\footnotesize{CC}}}$ Supply Undervoltage Negative Going Threshold	7.2	8.2	9.2		
I _{O+}	Output High Short Circuit Pulsed Current	200	250	_		$V_O = 0V$, $V_{IN} = V_{CC}$
					mA	PW ≤10 μs
I _{O-}	Output Low Short Circuit Pulsed Current	420	500	_	IIIA	V _O = 15V, V _{IN} = 0V
						PW ≤10 μs

Functional Block Diagram

Lead Definitions

Le	ad
Symbol	Description
IN	Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
Vcc	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Device Information

Process & Design Rule			HVDCMOS 4.0 μm		
Transistor Count			164		
Die Size			70 X 96 X 26 (mil)		
Die Outline					
Thickness o	f Gate Oxide		800Å		
Connections	S	Material	Poly Silicon		
	First	Width	4 μm		
	Layer	Spacing	6 µm		
	•	Thickness	5000Å		
		Material	AI - Si (Si: 1.0% ±0.1%)		
	Second	Width	6 μm		
	Layer	Spacing	9 µm		
	•	Thickness	20,000Å		
Contact Hol	e Dimension		8 µm X 8 µm		
Insulation La	ayer	Material	PSG (SiO ₂)		
		Thickness	1.5 µm		
Passivation		Material	PSG (SiO ₂)		
		Thickness	1.5 µm		
Method of S	Saw		Full Cut		
Method of D	ie Bond		Ablebond 84 - 1		
Wire Bond		Method	Thermo Sonic		
		Material	Au (1.0 mil / 1.3 mil)		
Leadframe		Material	Cu		
		Die Area	Ag		
		Lead Plating	Pb : Sn (37 : 63)		
Ţ.		Types	8 Lead PDIP / SO-8		
	Materials		EME6300 / MP150 / MP190		
Remarks:					

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. Deadtime Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

Figure 7. IR2111 TJ vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega, V_{CC} = 15V$

Figure 9. IR2111 T_J vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega, V_{CC} = 15V$

Figure 8. IR2111 TJ vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega, V_{CC} = 15V$

Figure 10. IR2111 T_J vs. Frequency (IRFPE50) $R_{GATE} = 10\Omega, V_{CC} = 15V$