A verification procedure for environmental acoustic codes

Pierre Chobeau, Judicaël Picaut

April 23rd 2018, CFA Le Havre.

Verification

Code verification

Geometrical spreading

Ground reflection

Scattering by a circular obstacle

Conclusion

Outline

Introduction

Verification and Validation (V&V): checking that a code returns the correct value for a given application.

Criteria for code assessment in order of increasing rigor [1]:

- **expert judgment**: e.g. spectrum overlapping (it fits!),
- error quantification: comparison with a reference,
- consistency/convergence: behavior of the solution,
- **order of accuracy**: rate of convergence.

[1] P. Knupp, K. Salari, Verification of Computer Codes in Computational Science and Engineering, Chapman and Hall/CRC, Boca Raton, FL, 2003.

Definitions

- **Verification:** process of assessing software correctness and numerical accuracy of the solution to a given mathematical model [2].
- Validation: process of assessing the physical accuracy of a mathematical model based on comparisons between computational results and experimental data [2].

[2] W. L. Oberkampf and C. J. Roy. *Verification and Validation in Scientific Computing*, Cambridge University Press, 2010.

Verification

Absolute errors:

$$\operatorname{error}(x, y, t) = \left| \hat{p}_{i,j}^{n} - p_{(x,y,t)}^{\operatorname{exact}} \right| \tag{1}$$

- Verification = simplified cases,
- use of analytical solutions $\rightarrow p_{(x,y,z,t)}^{\text{exact}}$ is known.

Norms (continuous) - 2D:

$$||\operatorname{error}||_q = \left(\int_{x,y} |\operatorname{error}(x,y,t=t_n)|^q dx dy\right)^{1/q}$$
 (2)

Norms

Norms (discretized):

$$||\operatorname{error}||_{q} = \left(\sum_{i,j} |\operatorname{error}_{i,j}^{n}|^{q} h^{2}\right)^{1/q}, \tag{3}$$

$$||\text{ERROR}||_q = \left(\sum_{i,j} |\text{ERROR}_{i,j}^{f_n}|^q h^2\right)^{1/q}.$$
 (4)

2D rectilinear grid

Observed order of accuracy:

$$p_{\text{obs}} = \frac{\log_{10}(||\text{error}||_q(h_1)/||\text{error}||_q(h_2))}{\log_{10}(h_1/h_2)}$$
(5)

h2 h₂ Grid $2: h_2$

Verification

A verification procedure

The 5 steps of the procedure:

- use of an initial condition or a well known signal.
- calculation of the absolute error.
- **repetition of step 2** for at least five spatial steps,
- calculation of the spatial norms,
- convergence rate and observed order of accuracy.

Test cases

'... all numerical wave models have advantages and disadvantages concerning the computational efficiency and the accuracy of the results. And this strongly depends on the case study chosen... '[3]

[3] M. Vorländer, Computer simulations in room acoustics: Concepts and uncertainties, The Journal of the Acoustical Society of America, 2012.

5 test cases:

- Laplace eigenfunction,
- geometrical spreading,
- acoustic modes,
- ground reflection,
- scattering by a circle.

3 numerical methods (2D):

- Finite Difference on Helmholtz (FDH),
- Finite Difference Time Domain (FDTD),
- Transmission Line Matrix (TLM).

Q Geometrical spreading

Simulations setup:

Verification

- Spatial steps: h = [0.01, 0.02, 0.04, 0.08, 0.16] m
- Time steps: $T_s = [1.25e 05, 2.50e 05, 5.00e 05, 1.00e 04, 2.00e 04]$ s,
- Simulation length: $T_{\rm sim} = 0.06 \text{ s}$,
- Source signal: Gaussian pulse with $f_{\text{max}} = 2000 \text{ Hz}$.

Geometry of the case 1: the maximal distance between the source and the receiver is $d_{sr} = 4 \text{ m}$, with 8 receivers per axis.

Formulation

Gaussian source term:

$$\hat{f}_{i,j}^n = \exp\left(-\pi^2 \left(0.5 fn T_s - 1\right)^2\right),$$
 (6)

Pressure at receivers:

$$\hat{p}_{i,j}^{n} = 1/\sqrt{d_{sr}} \exp\left(-\pi^2 \left(0.5f(nT_s - d_{sr}/c) - 1\right)^2\right).$$
 (7)

Time signals for the FDTD compared to analytic.

Case 2: spreading Case 4: ground Case 5: scattering Conclusion

Results

Verification

Two-norm and max-norm of the absolute error (top) and the corresponding observed orders of accuracy (bottom) for case 2, using the FDTD and the TLM methods.

Outline

Verification

Geometry

Simulations setup:

- Ground: perfectly reflecting,
- Spatial steps: h = [0.01, 0.02, 0.04, 0.08, 0.16] m,
- Time steps: $T_s = [1.25e 05, 2.50e 05, 5.00e 05, 1.00e 04, 2.00e 04]$ s,
 - Simulation length: $T_{\rm sim} = 0.04 \; \rm s$,
- Source signal: Gaussian pulse with $f_{\text{max}} = 2000 \text{ Hz}$.

Attenuation relative to free-field propagation for 4 receiver positions.

Case 4: ground

Results

Verification

Two-norm and max-norm of the absolute error (top) and the corresponding observed orders of accuracy (bottom) for case 4, using the FDTD and the TLM methods.

Outline

Verification

Scattering by a circular obstacle

Geometry

Simulations setup:

- Lengths: $L_x = 12 \text{ m}$ and $L_y = 12 \text{ m}$.
- Spatial steps: h = [0.0213, ..., 0.0695] m,
- Simulation length: $T_{\rm sim} = 0.08 \text{ s}$,
- Source signal: Gaussian pulse with $f_{\text{max}} = 2000 \text{ Hz}$, line source.

Geometry of the numerical domain.

Polar diagrams of the scattered fields for f = 449 Hz.

Results

Two-norm and max-norm of the absolute error (top) and their observed orders of accuracy (bottom) for case 5, with f = 449 Hz.

 Verification
 Case 2: spreading
 Case 4: ground
 Case 5: scattering
 Conclusion

 0000000
 00
 00
 00
 00

Outline

Conclusion

Verification

Numerical methods have been verified for several test cases related to outdoor sound propagation using:

- grid convergence study,
- convergence rate,
- order of accuracy.

All codes available at:

https://github.com/pchobeau/sinecity_testcases

Test cases pushed on the benchmarks EAA webpage: https://eaa-bench.mec.tuwien.ac.at/main/.

Future work

Verification

- verification procedure as a function of frequency,
- increase of the complexity: 3D and additional cases (meteo, impedance models, noise barriers...),
- validation procedure using measurement results ('real world'),
- development of a 'user friendly' online tool (e.g. use of java script for online calculations).

All codes available at:

https://github.com/pchobeau/sinecity_testcases

Test cases pushed on the benchmarks EAA webpage: https://eaa-bench.mec.tuwien.ac.at/main/

Thanks for your attention.

A verification procedure for environmental acoustic codes

Pierre Chobeau, Judicaël Picaut

April 23rd 2018, CFA Le Havre.

Verification