Predictive Distribution of Light Curves as Gaussian Processes

YZ

Last Updated: October 21, 2011¹

Minimum Variance Estimate. Ignoring any large time trend in the light curve, we can write any realization as

$$y = s + n \tag{1}$$

and define

$$\mathbf{S} \equiv \langle \mathbf{s} \mathbf{s}^T \rangle, \ \mathbf{N} \equiv \langle \mathbf{n} \mathbf{n}^T \rangle, \ \mathbf{S}_* \equiv \langle (s_*) \mathbf{s} \rangle$$
 (2)

We then have the minimum variance estimate (MVE) $\hat{s_*}$ for s_* as

$$\widehat{s_*} = \mathbf{S}_*^T [\mathbf{S} + \mathbf{N}]^{-1} \mathbf{y} \tag{3}$$

with the variance of s_* about $\hat{s_*}$ as

$$\langle (s_* - \widehat{s_*})^2 \rangle = \langle s_*^2 \rangle - \mathbf{S}_*^T [\mathbf{S} + \mathbf{N}]^{-1} \mathbf{S}_*$$
(4)

Unconstrained Realizations of the Underlying Process. Given the symmetric, postive-definite covariance matrix $C \equiv S + N$, generating a random realization is straightforward.

- Cholesky decompose $\mathbf{C} = MM^T$, where M is the lower triangular matrix.
- Generate $\mathbf{r} \sim \mathcal{N}(\mathbf{0}, I)$
- Compute $\mathbf{x} = M\mathbf{r}$ so that $\langle \mathbf{x}\mathbf{x}^T \rangle = \langle M\mathbf{r}(M\mathbf{r})^T \rangle = \langle M\mathbf{r}\mathbf{r}^T M^T \rangle = \mathbf{C}$

Predictive Distribution from the Observed Light Curve. Given C and the observed light curve vector **y**, we can compute Equation (3) and (4) by

- Cholesky decompose $\mathbf{C} = MM^T$, where M is the lower.
- Solve $MA = \mathbf{y}$ for A and then $M^T \alpha = A$ for α , so that $\mathbf{C}\alpha = (MM^T)\alpha = \mathbf{y}$, thus $\alpha = \mathbf{C}^{-1}\mathbf{y}$.
- $\widehat{s_*} = \mathbf{S}_*^T \alpha$ is the MVE.
- Solve $M\mathbf{v} = \mathbf{S}_*$ for \mathbf{v}
- $\langle (s_* \widehat{s_*})^2 \rangle = \langle s_*^2 \rangle \mathbf{v}^T \mathbf{v}$, given $\mathbf{S}_*^T \mathbf{C}^{-1} \mathbf{S}_* = \mathbf{S}_*^T (M^T)^{-1} M^{-1} \mathbf{S}_* = \mathbf{v}^T \mathbf{v}$

Constrained Realizations of the Underlying Process by Observed Light Curves. A typical realization contrained by the data at unmeasured epoch can be produced as s_* by

$$s_* = u_* + \widehat{s_*} \tag{5}$$

where u_* is a Gaussian process with zero mean and correlation matrix \mathbf{Q}

$$Q = [S^{-1} + N^{-1}]^{1} = S[S + N]^{-1}N = N[S + N]^{-1}S$$
(6)

 u_* can be generated using the same way as in the unconstrained prediction case using the Cholesky decomposition of \mathbf{Q} .

References

 $^{^{1}}$ Written in Oct 20, 2011