	$f_X(x) \mid p_X(x)$	E[X]	Var(X)
Uniforme	$\frac{1}{b-a}, a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponencial	$\begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & x \ge 0 \end{cases}$	1/2	$\frac{1}{\lambda^2}$
Normal (Gaussiana)	$\frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$	μ	σ^2
Binomial	$C_k^n p^k (1-p)^{n-k}$	np	<i>np</i> (1- <i>p</i>)
Poisson	$rac{lpha^k}{k!}e^{-lpha},$	α	α
Geométrica	$p(1-p)^{k-1}$	1/p	$(1-p)/p^2$

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{P(B)}$$

$$P(B) = \sum_{i} P(B \mid A_{i}) P(A_{i})$$

Momentos de uma V.A.

$$E[X^n] = \sum_i x^n p_X(x_i)$$

$$E[X^n] = \sum_i x^n p_X(x_i)$$
 $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Correlação:
$$corr(X, Y) = E[XY]$$

Covariância:
$$\operatorname{cov}(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

Função Q(x) relativa a uma V.A. N(0,1)

$Q(x) = \frac{1}{\sqrt{x}}$	$\frac{1}{2\pi}$	$\int_{x}^{\infty}e^{-t^{2}/2}dt$
-----------------------------	------------------	-----------------------------------

Х	Q(x)	X	Q(x)	X	Q(x)
0.00	0.500	1.20	0.114	2.40	0.008
0.10	0.458	1.30	0.096	2.50	0.006
0.20	0.417	1.40	0.080	2.60	0.005
0.30	0.378	1.50	0.066	2.70	0.003
0.40	0.341	1.60	0.054	2.80	0.003
0.50	0.305	1.70	0.044	2.90	0.002
0.60	0.271	1.80	0.036	3.00	0.001
0.70	0.239	1.90	0.029	3.10	0.001
0.80	0.209	2.00	0.023	3.20	0.001
0.90	0.182	2.10	0.018	3.30	0.000
1.00	0.157	2.20	0.014	3.40	0.000
1.10	0.134	2.30	0.011	3.50	0.000

Cálculo combinatório:

Arranjos $A_{i}^{n} = n(n-1)(n-2)...(n-k+1)$

 $P_n = A_n^n = n(n-1)...2.1 = n!$ Permutações.

 $A^{n}_{k} = n^{k}$ Arranjos com repetição

Permutações com repetição $P_{\alpha,\beta,\delta,\dots,\mu}^n = \frac{n!}{\alpha!\beta!\delta!\dots\mu!}; n=\alpha+\beta+\delta+\dots+\mu$

 $C_k^n = \frac{A_k^n}{P_k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$ Combinações

Combinações com repetição $C^{n}_{k} = C_{k}^{n+k-1}$