香港中文大學

版權所有 不得翻印 Copyright Reserved

The Chinese University of Hong Kong

二 0 一四至一五年度上學期科目考試 Course Examination 1st Term, 2014-15

科目編號及名稱					
Course Code & Title:	CSCI3130 Formal Languages and Automata Theory				
時間		小時	分鐘		
Time allowed:	2	hours	minutes		
學號			座號		
Student I.D. No. :	Seat No.:				

Answer all questions.

1. (10 marks) Let $n_a(\omega)$ denote the number of occurrences of symbol a in string ω , and $n_b(\omega)$ the number of occurrences of symbol b in string ω . Is the language $\{\omega \mid \omega \in \{a,b\}^*, n_a(\omega) = n_b(\omega)\}$

regular? Prove your answer.

2. Consider the following ε -NFA.

- a. (10 marks) Convert the ε -NFA to a DFA.
- b. (10 marks) Give a regular expression that is equivalent to the ε -NFA.
- 3. Consider the following language.

$$\{a^ib^jc^k \mid 0 < j < i, j = i + k\}$$

(10 marks) Is the language context free? Prove your answer.

4. (10 marks) Prove that the following language is not context free.

$$\{a^ib^{2i}c^j \mid 0 < j < i\}$$

5. A CFG (with E as its start symbol) and its SLR parsing table are shown below.

STATE			AC	TION			(зоте	Э С
	id	+	*	()	\$	E	T'	F
0	sõ			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		$\mathbf{r4}$	$\mathbf{r}4$		r4	r4			
4	s5			s4			8	2	3
$\bar{5}$		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Figure 4.37: Parsing table for expression grammar

(Source: Aho, Lam, Sethi & Ullman, Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley.)

a. (10 marks) Copy the following table to the answer book, and show using the copied table the process of parsing the string 'id * (id)' using the parsing table above.

	Stack	Symbols	Input	Action
(1)			id * (id) \$	
(2)				

b. Consider the following CFG, in which S is the start symbol.

$$(1) S \rightarrow iBtSeS$$

(2)
$$S \rightarrow a$$

(3)
$$B \rightarrow \mathbf{id}$$

- i. (10 marks) Give a PDA that accepts the language of this CFG.
- ii. (10 marks) Define the FIRST and FOLLOW functions for this CFG.
- iii. (10 marks) Is this grammar LL(1)? Justify your answer.

6. (10 marks) Despite the existence of the halting problem, we know that some Turing machines do halt on some particular inputs. Let H denote the set $\{\langle T,i\rangle \mid T \text{ is a Turing machine that halts on input } i\}$. Discuss whether or not the following problem is decidable: given any Turing machine X , whether or not there exists input a such that $\langle X,a\rangle \in H$.	
— End of Paper —	