МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ по лабораторной работе 2

ТЕМА «Задача о погоне»

по дисциплине «Математическое моделирование»

Выполнил:

Студент группы НПИбд-02-21 Студенческий билет № 1032205641 Сатлихана Петрити

Содержание

Цель работы	4
Последовательность выполнения работы	. 4
Код:	
Вывод	/

Список иллюстраций

Рисунок 1 : Скорость лодки по тангенциальной и радиальной составляющим	4
Рисунок 2: 1-ый случай	ϵ
Рисунок 3: 2-ой случай	7

Цель работы

Цель задачи о погоне - разработать математическую модель стратегии береговой охраны при преследовании браконьерских лодок в тумане. Задача заключается в оптимизации действий патрульного катера, учитывая начальные расстояния, скорости и неизвестное направление лодки браконьера после исчезновения в тумане. Эта задача демонстрирует применение математического моделирования и решения задач в реальных сценариях преследования.

Последовательность выполнения работы

Вариант 62

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодкаобнаруживается на расстоянии 18,1 км от катера. Затем лодка снова скрывается втумане и уходит прямолинейно в неизвестном направлении. Известно, что скоростькатера в 4,5 раза больше скорости браконьерской лодки.

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

1. Принимает за

 t_0 = 0, x_(л0)=0 место нахождения лодки браконьеров в момент обнаружения $x_{\rm c}$ (k0)= 18.1 км место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

2. Введем полярные координаты.

Рисунок 1 : Скорость лодки по тангенциальной и радиальной составляющим

3. найти расстояние х

$$\frac{x}{v} = \frac{k - x}{4.5 * v}$$

$$\frac{x}{v} = \frac{x + k}{4.5 * v}$$

$$\mathbf{x_1} = \mathbf{3.29} \text{ km}$$

x₂=5.17 KM

4. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса.

$$v_t = \sqrt{4.5v^2 - v^2} = \sqrt{20.25v^2 - v^2} = \sqrt{20.25v}$$

Тогда получаем $r \frac{d\theta}{dt} = \sqrt{20.25v}$

5. Решение исходной задачи сводится к решению системы из двух

дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r \frac{d\theta}{dt} = \sqrt{20.25v} \end{cases}$$
 с начальными условиями
$$\begin{cases} \theta_0 = 0 \\ r_0 = x_1 = 3.29 \end{cases}$$
 или
$$\begin{cases} \theta_0 = 0 \\ r_0 = x_2 = 5.17 \end{cases}$$

Код:

s=4.5;// начальное расстояние от лодки до катера

k=18.1;

fi=3*%pi/4;

//функция, описывающая движение катера береговой охраны

function dr=f(tetha, r)

dr=r/sqrt(3);

endfunction;

//начальные условия в случае 1

r0=k/(s+1);

tetha0=0;

tetha=0:0.01:2*%pi;

r=ode(r0,tetha0,tetha,f);

```
//функция, описывающая движение лодки браконьеров function xt=f2(t)
xt=tan(3+%pi/4)*t;
endfunction
t=0:1:800;
plot2d(t,f2(t),style = color(255, 0, 0));
polarplot(tetha,r,style = color(0, 255, 0));
//начальные условия в случае 2
r0=k/ (s-1);
tetha0=-%pi;
figure();
r=ode(r0,tetha0,tetha,f);

plot2d(t,f2(t),style = color('red'));
polarplot(tetha,r,style = color('green'));
```


Рисунок 2: 1-ый случай

Рисунок 3: 2-ой случай

Вывод

Я научилась разрабатывать математическую модель стратегии береговой охраны при преследовании браконьерских лодок в тумане. Задача состоит в оптимизации действий патрульного катера с учетом начальных расстояний, скоростей и неизвестного направления лодки браконьера после исчезновения в тумане.