

Extracción de información de imágenes

- ¿Qué es una imagen?
- ¿Qué es una imagen digital?
- ¿Cómo podemos representar una imagen?
- ¿Qué es una "buena" representación?

Propiedades de las representaciones

Invarianza

- Tamaño
- Rotaciones
- Traslaciones
- Reflexiones

- Posición
- Ángulo
- •Iluminación
- Contraste

Representación en crudo

 Tomar todos los valores de la imagen

• Implementación trivial

• Altamente dependiente

• Espacios de color

Pixel of an RGB image are formed from the corresponding pixel of the three component images

Espacios de color

- RGB
 - Red, Green, blue
- HSB
 - Hue(longitud de onda), staturacion(pureza), valor(intensidad)
- LAB
 - Lignes(intensidad), A(verde-magenta), B(azul-amarillo)
- YCrCb
 - Y (iluminación), Cr (componente rojo), Cb(componente azul)

Histogramas de color

- Cuantos pixeles tiene ese valor para ese canal
- Independiente
 - Rotaciones
 - Reflexiones
- Dependiente
 - Iluminación
 - Contraste
 - Artefactos
- Pueden ser imágenes completamente distintas

Características de textura

- GLCM
 - Gray-Level Co-occurrence Matrices
 - Cuenta cuantas veces un valor es vecino de otro
 - Construye matriz
 - Calcula estadísticos de esta matriz
 - Contraste
 - Desimilaridad
 - Homogeneidad
 - Energía
 - Correlación
 - ASM

Detección de esquinas

- Harris
 - Variación de intensidad
 - Iluminación
 - M es Tensor de estructura (derivada imágenes)
 - Función de los valores propios de M

$$SSD(u, v) = \sum_{(x,y) \in W} g(x,y) [I(x,y) - I(x+u, y+v)]^{2}$$

$$SSD(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

Herramientas para extracción de información en imágenes

- Numpy
- OpenCV
- Skimage

