Формула Тейлора. Ряды Тейлора

Теорема 1. Если f n-раз дифференцируема в точке a, то

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^{k}}{k!} + \alpha(x) \cdot (x-a)^{n} \wedge \lim_{x \to a} \alpha(x) = 0$$

 \square Рассмотрим функцию $g(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^k}{k!}$, $g(a) = g'(a) = \ldots = g^{(n)}(a) = 0$. Надо доказать, что $\lim_{x \to a} \frac{g(x)}{(x-a)^n} = 0$. В пределе неопределенность $\frac{0}{0} \Rightarrow$ поскольку функция f n-раз дифференцируема,

что $\lim_{x\to a} \frac{3(x)}{(x-a)^n} = 0$. В пределе неопределенность $\frac{\omega}{0} \Rightarrow$ поскольку функция f n-раз дифференцируема, то (n-1) производная будет определена в некоторой окрестности точки a и мы используем теорему Лопиталя до порядка (n-1), а затем обычное определение производной в точке a:

$$\lim_{x \to a} \frac{g(x)}{(x-a)^n} = \lim_{x \to a} \frac{g'(x)}{n(x-a)^{n-1}} = \dots = \lim_{x \to a} \frac{g^{(n-1)}(x)}{n!(x-a)} = \lim_{x \to a} \frac{g^{(n-1)}(x) - g^{(n-1)}(a)}{n!(x-a)} = \frac{1}{n!}g^{(n)}(a) = 0$$

Rm: 1. Функция n раз дифференцируема в точке $a \Leftrightarrow в$ окрестности точки a существуют все производные до (n-1)-го порядка и (n-1)-ая производная в точке a - дифференцируема.

О-символика и о-символика

Пусть функции f и g определены в проколотой окрестности точки a ($\mathcal{U}'(a)$).

Опр: 1. \bar{o} -малое: Если $f(x) = h(x) \cdot g(x), \ \forall x \in \mathcal{U}'(a) \land \lim_{x \to a} h(x) = 0 \Rightarrow f(x) = \bar{o}(g(x)), \ \text{при } x \to a.$

Опр: 2. *Q***-большое**: Если $f(x) = h(x) \cdot g(x)$, $\forall x \in \mathcal{U}'(a) \land \exists C > 0 \colon |h(x)| \le C$, $\forall x \in \mathcal{U}'(a) \Rightarrow f(x) = Q(g(x))$, при $x \to a$.

Rm: 2. Если хотим сказать, что функция f получилась из функции g, <u>умножением на ограниченную функцию</u> \Rightarrow используем Q-символику.

Если хотим сказать, что функция f получилась из функции g, <u>умножением на функцию стремящуюся к нулю</u> \Rightarrow используем \bar{o} -символику.

Пример: $f(x) = x^3, g(x) = x^2, a = 0 \Rightarrow f = \bar{o}(g)$ при $x \to 0$, так как $f(x) = x \cdot g(x)$, где $x \to 0$. Надо заметить, что $g \neq \bar{o}(f)$.

Опр: 3. Утверждение последней теоремы записывается так:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^{k}}{k!} + \bar{o}((x-a)^{n})$$

этот вид называется формулой Тейлора с остаточным членом в форме Пеано.

Пример: $f(x) = e^x$, a = 0; Производные экспоненты $(e^x)^{(n)} = e^x \Rightarrow$

$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + \bar{o}(x^n)$$

Пример: $f(x) = \sin x, \ a = 0;$ Производные синуса:

 $(\sin x)^{(0)} = \sin x$, $(\sin x)' = \cos x$, $(\sin x)'' = -\sin x$, $(\sin x)^{(3)} = -\cos x$, $(\sin x)^{(4)} = \sin x \Rightarrow$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + \bar{o}(x^{2n+2})$$

Пример: $f(x) = \cos x$, a = 0; Производные косинуса:

 $(\cos x)^{(0)} = \cos x, \ (\cos x)' = -\sin x, \ (\cos x)'' = -\cos x, \ (\cos x)^{(3)} = \sin x, \ (\cos x)^{(4)} = \cos x \Rightarrow$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + \bar{o}(x^{2n+1})$$

Пример: $f(x) = \ln(1+x)$, a = 0; Производные логарифма:

$$(\ln(1+x))^{(0)} = \ln(1+x), \ (\ln(1+x))' = \frac{1}{1+x}, \ (\ln(1+x))^{(n)} = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n} \Rightarrow$$

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k+1}(k-1)!x^k}{k!} + \bar{o}(x^n) = \sum_{k=1}^{n} \frac{(-1)^{k+1}x^k}{k} + \bar{o}(x^n)$$

Пример: $f(x) = (1+x)^{\alpha}, \ \alpha \in \mathbb{R}, \ a = 0$; Производные логарифма:

$$((1+x)^{\alpha})^{(0)} = (1+x)^{\alpha}, \ ((1+x)^{\alpha})' = \alpha(1+x)^{\alpha-1}, \ ((1+x)^{\alpha})^{(n)} = \alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)(1+x)^{\alpha-n} \Rightarrow \alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)(1$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n + \bar{o}(x^n), \ \alpha \in \mathbb{R}$$

Мы пока мало, что знаем про остаточный член в формуле Тейлора. Хотелось бы выяснить его более понятный вид.

Теорема 2. (формула Тейлора с остаточным членом в общей форме) Пусть f n-раз дифференцируема в каждой точке отрезка [a,x]. Функция $f^{(n)}$ - непрерывна на [a,x] и дифференцируема на интервале (a,x). Пусть функция g - непрерывна на отрезке [a,x] и дифференцируема на интервале (a,x), причем $g' \neq 0$ на (a,x). Тогда $\exists c \in (a,x)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^k}{k!} + r_n(x,a)$$
, где $r_n(x,a) = \frac{f^{(n+1)}(c)(g(x)-g(a))(x-c)^n}{n!g'(c)}$

Rm: 3. Порядок [a, x] здесь не важен, то есть возможно как [a, x], так и [x, a].

<u>Идея</u>: Применить теорему Коши к функциям g(x) и $F(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)(x-t)^k}{k!}$.

 \square Пусть a, x - зафиксированы, $t \in [a, x] \lor t \in (a, x)$ - меняется. $F(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)(x-t)^{k}}{k!}$.

Функция f(x) n раз дифференцируема и её производная, вплоть до n-го порядка, непрерывна на отрезке $[a,x] \Rightarrow F(t)$ - непрерывна на отрезке [a,x]. Внутри, на интервале (a,x), у функции f есть производная до (n+1)-го порядка \Rightarrow можно продифференцировать F(t) по t. Тогда по теореме Коши:

$$\exists c \in (a, x) : \frac{F(x) - F(a)}{g(x) - g(a)} = \frac{F'(c)}{g'(c)}$$

Заметим, что F(x)=f(x)-f(x)=0, $F(a)=f(x)-\sum\limits_{k=0}^{n}\frac{f^{(k)}(a)(x-a)^{k}}{k!},$ тогда:

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^k}{k!} = -\frac{F'(c)(g(x) - g(a))}{g'(c)}$$

Найдем F'(c):

$$F'(t) = -f'(t) - f''(t)(x-t) + f'(t) - \frac{f'''(t)(x-t)^2}{2!} + f''(t)(x-t) - \dots = -\frac{f^{(n+1)}(t)(x-t)^n}{n!}$$

Подставляя полученный результат, получим требуемое:

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^k}{k!} = -\frac{F'(c)(g(x) - g(a))}{g'(c)} = \frac{f^{(n+1)}(c)(x-c)^n(g(x) - g(a))}{n!g'(c)}$$

Получив формулу Тейлора с остаточным членом в общей форме, хочется поподставлять разные функции g(x). Рассмотрим конкретные случаи функции g(x).

Следствие 1. (остаточный член в форме Коши)

$$g(t) = x - t \Rightarrow r_n(a, x) = \frac{f^{(n+1)}(c)(x - c)^n(x - a)}{n!}$$

 \Box g'(t) = -1, g(x) = 0, $g(a) = x - a \Rightarrow$

$$r_n(a,x) = \frac{f^{(n+1)}(c)(x-c)^n(0-(x-a))}{-n!} = \frac{f^{(n+1)}(c)(x-c)^n(x-a)}{n!}$$

Следствие 2. (остаточный член в форме Лагранжа)

$$g(t) = (x-t)^{n+1} \Rightarrow r_n(a,x) = \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$$

 \Box $g'(t) = (n+1)(x-t)^n(-1), g(x) = 0, g(a) = (x-a)^{n+1} \Rightarrow$

$$r_n(a,x) = \frac{f^{(n+1)}(c)(x-c)^n(0-(x-a)^{n+1})}{-n!(n+1)(x-c)^n} = \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$$

Пример: $f(x) = e^x$, a = 0, Рассмотрим остаточный член в форме Лагранжа:

$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{e^c x^{n+1}}{(n+1)!}, c \in (0, x) \lor c \in (x, 0)$$

где $\sum_{k=0}^{n} \frac{x^k}{k!}$ - частичная сумма. Как себя ведет остаточное слагаемое, при $n \to \infty$?

 $\forall x, \left| \frac{e^c x^{n+1}}{(n+1)!} \right| \leq \frac{e^{|x|}|x|^{n+1}}{(n+1)!} \to 0$. Тогда $\forall x$ ряд $\sum_{k=0}^n \frac{x^k}{k!}$ сходится к e^x (то есть сумма этого ряда в точности равна e^x).

Более того, на всяком отрезке это стремление будет равномерным:

$$x \in [-A, A] \Rightarrow \left| \frac{e^c x^{n+1}}{(n+1)!} \right| \le \frac{e^A A^{n+1}}{(n+1)!} \Rightarrow \sup_{x \in [-A, A]} \left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{e^A A^{n+1}}{(n+1)!} \xrightarrow[n \to \infty]{} 0$$

Таким образом $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ и ряд сходится равномерно на всяком отрезке [-A, A].

Пример: $f(x) = \ln(1+x)$, a = 0, Рассмотрим остаточный член в форме Лагранжа:

$$\ln(1+x) = \sum_{k=0}^{n} \frac{(-1)^{k+1}x^k}{k} + \frac{(-1)^{n+2}n!x^{n+1}}{(n+1)!(1+c)^{n+1}} = \sum_{k=0}^{n} \frac{(-1)^{k+1}x^k}{k} + \frac{(-1)^nx^{n+1}}{(n+1)(1+c)^{n+1}}, \ c \in (0,x) \ \forall \ c \in (x,0)$$

Если x > 1, то ряд $\sum_{k=0}^{n} \frac{(-1)^{k+1} x^k}{k}$ расходится.

Если $0 < x \le 1$, тогда $c \in (0,x), c > 0$, $(1+c) > 1 \Rightarrow \left| \frac{(-1)^n x^{n+1}}{(n+1)(1+c)^{n+1}} \right| \le \frac{1}{n+1} \to 0$. Тогда $\forall x$ ряд $\sum_{k=0}^{n} \frac{(-1)^{k+1} x^k}{k}$ сходится к $\ln(1+x)$ (то есть сумма этого ряда в точности равна $\ln(1+x)$).

Если -1 < x < 0, тогда $c \in (x,0)$, c < 0, но мы не можем сказать как соотносится x и $c - (-1) = 1 + c \Rightarrow$ также не можем ничего сказать про остаточный член $\frac{(-1)^n}{n+1} \left(\frac{x}{1+c}\right)^{n+1} \Rightarrow$ рассмотрим остаточный член в форме Коши:

$$\frac{(-1)^n n!}{(1+c)^{n+1}} \frac{(x-c)^n x}{n!} = \frac{(-1)^n (x-c)^n x}{(1+c)^{n+1}} = \frac{(-1)^n (x-c)^n}{(1+c)^n} \cdot \frac{x}{(1+c)}$$

 $c > x \Rightarrow 1 + c > 1 + x \Rightarrow \frac{x}{1 + c} \le \frac{|x|}{|1 + x|}, \text{ так как } c < 0 \land x < 0 \land 1 > |x| > |c| \Rightarrow \left|\frac{x - c}{1 + c}\right| = \frac{|x| - |c|}{1 - |c|} = \frac{1 - |x|}{|x|}$

 $1 - \frac{1 - |x|}{1 - |c|} \le 1 - (1 - |x|) = |x| \Rightarrow$ оценим остаточный член:

$$\left| \frac{(-1)^n (x-c)^n x}{(1+c)^{n+1}} \right| = \left| \frac{(-1)^n (x-c)^n}{(1+c)^n} \cdot \frac{x}{(1+c)} \right| \le \frac{|x|}{|1+x|} |x|^n \xrightarrow[n \to \infty]{} 0$$

Таким образом $\forall x \in (-1,1], \ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^k}{k}$

Rm: 4. Ряд Лейбница: $\ln 2 = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k}$. Ряд сходится, но не сходится ряд из его модулей.