"Análise de Repositórios do GitHub

Matheus Vinícius Mota Rodrigues Gabriel Henrique Mota Rodrigues João Queiroga

TABLE OF CONTENTS

1. Introdução

Este estudo tem como objetivo analisar a qualidade interna de repositórios Java a partir de métricas coletadas com a ferramenta CK. Além das métricas de qualidade (CBO, DIT, LCOM), foram coletados dados de processo no GitHub (popularidade, atividade e maturidade).

```
query

q = "language:java"

url = f"https://api.github.com/search/repositories?q=
{q}&sort=stars&order=desc&per_page={PER_PAGE}&page={page}"

print(f"GET {url}")

r = requests.get(url, headers=HEADERS)

if r.status_code != 200:

print("Erro na API:", r.status_code, r.text)

sys.exit(1)

data = r.json()

items = data.get("items", [])

if not items:

print("Nenhum item retornado na página", page)

break
```

Antes da análise, levantamos as seguintes hipóteses:

- HO: Repositórios mais populares tenderiam a apresentar maior complexidade (CBO mais alto) devido ao tamanho do código.
- H1: Projetos mais maduros deveriam ter melhor coesão (LCOM menor) por passarem por refatorações ao longo do tempo.
- H2: Projetos mais ativos (mais releases) teriam maior
 profundidade de herança (DIT) pela evolução contínua.

HO - Repositórios mais populares tenderiam a apresentar maior complexidade (CBO mais alto) devido ao tamanho do código.

 A hipótese é rejeitada pelos dados: A correlação entre popularidade (estrelas) e CBO foi muito fraca (Pearson ≈ -0.11; Spearman ≈ 0.03). Isso indica que a popularidade não está associada ao aumento de acoplamento ou complexidade.

H1: Projetos mais maduros deveriam ter melhor coesão (LCOM menor) por passarem por refatorações ao longo do tempo.

 A hipótese é rejeitada pelos dados: A maturidade (idade do repositório) apresentou correlação fraca com LCOM (Spearman ≈ 0.20, positiva e não negativa). Ou seja, projetos mais antigos não mostraram melhoria clara de coesão.

H2: Projetos mais ativos (mais releases) teriam maior profundidade de herança (DIT) pela evolução contínua.

A hipótese é parcialmente confirmada pelos dados: Releases correlacionaram mais fortemente com CBO (Spearman ≈ 0.40) do que com DIT (Spearman ≈ 0.22). Isso sugere que projetos mais ativos tendem a aumentar o acoplamento, mas não necessariamente a profundidade da herança.

3. Metodologia

- 1. Coleta de dados:
 - Utilizamos a API REST do GitHub.
 - o Foram coletados 1000 repositórios mais populares em número de estrelas.
 - Para cada repositório, registramos
 - Nome
 - Quantidade de estrelas
 - Tamanho
 - Idade
 - Número de releases

3. Metodologia

2. Análise CK:

- Com a ferramenta CK, foram extraídas métricas de classes e sumarizadas por repositório
- CBO (acoplamento entre objetos)
- DIT (profundidade de herança)
- LCQM (falta de coesão)
- LOC (linhas de código)

```
run_ck_on_list.sh
process_repo() {
  full_name="$1" # ex: spring-projects/spring-boot
  owner=$(echo "$full name" | cut -d'/' -f1)
  repo=$(echo "$full_name" | cut -d'/' -f2)
  target_dir="./clones/${owner}_${repo}"
  out_dir="${OUTROOT}/${owner}_${repo}"
  mkdir -p "$(dirname "$target_dir")"
 if [ ! -d "$target_dir/.git" ]; then
    echo "Clonando $full_name ..."
    git clone --depth 1 "https://github.com/${full_name}.git" "$target_dir" || { echo
"Clone falhou: $full_name"; return; }
    echo "Repositório já clonado: $full_name"
  fi
  # Verifica se há arquivos .java
  java_count=$(find "$target_dir" -name "*.java" | wc -l)
 if [ "$java_count" -eq 0 ]; then
    echo "Nenhum arquivo Java encontrado em $full_name. Pulando."
   return
  fi
  mkdir -p "$out_dir"
  echo "Rodando CK em $full_name -> $out_dir"
  java -jar $CK_JAR "$target_dir" false 0 false "$out_dir" "build/" "target/" || {
echo "CK falhou para $full_name"; return; }
  echo "OK: $full name"
```

Estatísticas descritivas (Exemplo (trecho do resultado_final.csv):

 As métricas foram agregadas em média, mediana e desvio padrão por repositório.

Repositório	CBO_media	DIT_media	LCOM_media	LOC_total	Estrelas	Releases	Idade (anos)
krahets_hello-algo	1.87	1.00	4.70	7,707	117,036	9	2.88
GrowingGit_GitHub-Chinese-Top- Charts	0.00	1.00	0.00	5	102,419	0	6.05
iluwatar_java-design-patterns	3.36	1.20	1.84	35,484	92,713	0	11.12
macrozheng_mall	3.93	1.24	1110.80	100,903	81,625	3	7.47
spring-projects_spring-boot	5.37	1.29	12.61	373,644	78,446	323	12.93

Correlações Estatísticas:

Pearson

	CBO_media	DIT_media	LCOM_media	LOC_total	Estrelas	Releases	Idade_anos
CBO_media	1.00	0.29	0.07	0.17	-0.11	0.15	0.00
DIT_media	0.29	1.00	0.07	0.05	-0.11	0.04	0.19
LCOM_media	0.07	0.07	1.00	0.05	0.02	-0.01	0.03
LOC_total	0.17	0.05	0.05	1.00	0.05	0.07	0.12
Estrelas	-0.11	-0.11	0.02	0.05	1.00	0.08	-0.02
Releases	0.15	0.04	-0.01	0.07	0.08	1.00	-0.00
Idade	0.00	0.19	0.03	0.12	-0.02	-0.00	1.00

Correlações Estatísticas:

Spearman

	CBO_media	DIT_media	LCOM_media	LOC_total	Estrelas	Releases	Idade_anos
CBO_media	1.00	0.39	0.37	0.41	0.03	0.40	0.00
DIT_media	0.39	1.00	0.36	0.29	-0.04	0.22	0.29
LCOM_media	0.37	0.36	1.00	0.49	0.04	0.32	0.20
LOC_total	0.41	0.29	0.49	1.00	0.13	0.41	0.13
Estrelas	0.03	-0.04	0.04	0.13	1.00	0.13	0.07
Releases	0.40	0.22	0.32	0.41	0.13	1.00	-0.01
Idade	0.00	0.29	0.20	0.13	0.07	-0.01	1.00

Visualização dos dados:

RQ 01. Qual a relação entre a popularidade dos repositórios e as suas características de qualidade?

Resultado: As correlações foram fracas (Pearson ≈ -0.11, Spearman ≈ 0.03). Isso mostra que a popularidade (estrelas) não tem relação direta com CBO, DIT ou LCOM.

RQ 02. Qual a relação entre a maturidade do repositórios e as suas características de qualidade ?

Resultado: A maturidade apresentou correlação baixa, mas positiva com DIT (Spearman ≈ 0.29), indicando que projetos mais antigos podem adotar hierarquias de herança mais complexas.

RQ 03. Qual a relação entre a atividade dos repositórios e as suas características de qualidade?

Resultado: Releases correlacionaram positivamente com CBO (Spearman ≈ 0.40), sugerindo que projetos mais ativos podem ter maior acoplamento.

RQ 04. Qual a relação entre o tamanho dos repositórios e as suas características de qualidade?

Resultado: LOC teve correlação moderada com CBO e LCOM (Spearman ≈ 0.41–0.49), confirmando que projetos maiores tendem a apresentar mais acoplamento e menor coesão.

Conclusão

Em suma, a análise realizada indicou que a popularidade de um projeto não exerce influência direta sobre sua qualidade interna. Observou-se que a maturidade do software possui um efeito leve sobre as estruturas de herança utilizadas. Por outro lado, a atividade do projeto apresenta associação com níveis maiores de acoplamento. Finalmente, o tamanho do software mostrou-se fortemente relacionado tanto ao acoplamento quanto à coesão, indicando que projetos maiores tendem a apresentar estruturas mais complexas e interdependentes.