Testes de hipótese

Parte 4

Prof.: Eduardo Vargas Ferreira

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_1) .
- 2. Com base em H_1 , definir o tipo de teste.
- 3. Definir um nível de significância α , análogo o nível de confiança $100(1-\alpha)\%$ do IC.
- 4. Determinar a região crítica (região de rejeição) baseado na distribuição amostral, sob H_0 .
- 5. Calcular a estatística de teste, com base na sua distribuição amostral sob a hipótese nula.
- 6. Conclusão.

$$H_0: p = 0.5 \quad vs \quad H_1: p \neq 0.5$$

Se $\hat{p} = 0.65$, existe evidência para rejeitar H_0 ao nível de significância de 5%?

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_1) .
- 2. Com base em H_1 , definir o tipo de teste.
- 3. Definir um nível de significância α , análogo o nível de confiança $100(1-\alpha)\%$ do IC.
- 4. Determinar a região crítica (região de rejeição) baseado na distribuição amostral, sob H_0 .
- 5. Calcular a estatística de teste, com base na sua distribuição amostral sob a hipótese nula.
- 6. Conclusão.

$$H_0: p = 0.5 \quad vs \quad H_1: p \neq 0.5$$

Se $\hat{p} = 0.65$, existe evidência para rejeitar H_0 ao nível de significância de 5%?

Determinação da região crítica

► A estatística de teste é um valor usado para tomar a decisão sobre H₀, supondo ela verdadeira.

$$H_0: \ \mu = \mu_0 \quad vs \quad H_1: \ \mu > \mu_0$$

$$H_0: p = p_0 \quad vs \quad H_1: p > p_0$$

$$H_0: \ \sigma^2 = \sigma_0^2 \quad vs \quad H_1: \ \sigma^2 > \sigma_0^2$$

Relembrando de intervalos de confiança

Fixando a probabilidade em $1-\alpha$, queremos encontrar os pontos c_1 e c_2 , tal que

$$P(c_1 < \mu < c_2) = 1 - \alpha.$$

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

$$\frac{\hat{p}-p}{\sqrt{p(1-p)/n}} \sim N(0,1)$$

$$P(c_1 < \sigma^2 < c_2) = 1 - \alpha.$$

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$$

Determinação da região crítica

A estatística de teste é um valor usado para tomar a decisão sobre H₀, supondo ela verdadeira.

$$H_0: \ \mu = \mu_0 \quad vs \quad H_1: \ \mu > \mu_0$$

Estatística de teste para a média μ

•
$$\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$$

•
$$\frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$

Determinação da região crítica

$$H_0: \mu = \mu_0 \quad vs \quad H_1: \mu > \mu_0$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07
0.00	0.000000	0.003989	0.007978	0.011966	0.015953	0.019939	0.023922	0.027903
0.10	0.039828	0.043795	0.047758	0.051717	0.055670	0.059618	0.063559	0.067499
0.20	0.079260	0.083166	0.087064	0.090954	0.094835	0.098706	0.102568	0.106420
0.30	0.117911	0.121720	0.125516	0.129300	0.133072	0.136831	0.140576	0.144309
0.40	0.155422	0.159097	0.162757	0.166402	0.170031	0.173645	0.177242	0.180822
0.50	0.191462	0.194974	0.198468	0.201944	0.205401	0.208840	0.212260	0.21566
0.60	0.225747	0.229069	0.232371	0.235653	0.238914	0.242154	0.245373	0.24857
0.70	0.258036	0.261148	0.264238	0.267305	0.270350	0.273373	0.276373	0.279350
0.80	0.288145	0.291030	0.293892	0.296731	0.299546	0.302337	0.305105	0.307850
0.90	0.315940	0.318589	0.321214	0.323814	0.326391	0.328944	0.331472	0.333977
1.00	0.341345	0.343752	0.346136	0.348495	0.350830	0.353141	0.355428	0.357690
1.10	0.364334	0.366500	0.368643	0.370762	0.372857	0.374928	0.376976	0.379000
1.20	0.384930	0.386861	0.388768	0.390651	0.392512	0.394350	0.396165	0.397958
1.30	0.403200	0.404902	0.406582	0.408241	0.409877	0.411492	0.413085	0.414657
1.40	0.419243	0.420730	0.422196	0.423641	0.425066	0.426471	0.427855	0.429219
1.50	0.433193	0.434478	0.435745	0.436992	0.438220	0.439429	0.440620	0.44179
1.60	0.445201	0.446301	0.447384	0.448449	0.449497	0.450529	0.451543	0.45254
1.70	0.455435	0.456367	0.457284	0.458185	0.459070	0.459941	0.460796	0.46163

 Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x} = 210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

1. Definição das hipóteses:

 $H_0: \mu = 206 \quad vs \quad H_1: \mu > 206.$

 Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x}=210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

2. Definir o tipo de teste: unilateral à direita.

Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x}=210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

3. Definição do nível de significância: $\alpha = 10\%$.

Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x} = 210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

4. Determinação da região crítica:

Tabela Normal

Probabilidades	nara a	distribuição	normal	padrão

Trobabilidades para a distribuição normal padras.										
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.000000	0.003989	0.007978	0.011966	0.015953	0.019939	0.023922	0.027903	0.031881	0.035856
0.10	0.039828	0.043795	0.047758	0.051717	0.055670	0.059618	0.063559	0.067495	0.071424	0.075345
0.20	0.079260	0.083166	0.087064	0.090954	0.094835	0.098706	0.102568	0.106420	0.110261	0.114092
0.30	0.117911	0.121720	0.125516	0.129300	0.133072	0.136831	0.140576	0.144309	0.148027	0.151732
0.40	0.155422	0.159097	0.162757	0.166402	0.170031	0.173645	0.177242	0.180822	0.184386	0.187933
0.50	0.191462	0.194974	0.198468	0.201944	0.205401	0.208840	0.212260	0.215661	0.219043	0.222405
0.60	0.225747	0.229069	0.232371	0.235653	0.238914	0.242154	0.245373	0.248571	0.251748	0.254903
0.70	0.258036	0.261148	0.264238	0.267305	0.270350	0.273373	0.276373	0.279350	0.282305	0.285236
0.80	0.288145	0.291030	0.293892	0.296731	0.299546	0.302337	0.305105	0.307850	0.310570	0.313267
0.90	0.315940	0.318589	0.321214	0.323814	0.326391	0.328944	0.331472	0.333977	0.336457	0.338913
1.00	0.341345	0.343752	0.346136	0.348495	0.350830	0.353141	0.355428	0.357690	0.359929	0.362143
1.10	0.364334	0.366500	0.368643	0.370762	0.372857	0.374928	0.376976	0.379000	0.381000	0.382977
1.20	0.384930	0.386861	0.388768	0.390651	0.392512	0.394350	0.396165	0.397958	0.399727	0.401475
1.30	0.403200	0.404902	0.406582	0.408241	0.409877	0.411492	0.413085	0.414657	0.416207	0.417736

Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x} = 210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

4. Determinação da região crítica: $RC = \{z > 1.282\}$.

Deseja-se estimar a média anual de débitos no cartão de crédito nas famílias brasileiras. Uma amostra de 15 famílias forneceu média de saldos de R\$ 5200,00 e o desvio padrão de R\$ 3058,00.

► Teste a hipótese de que a média anual de débitos é de R\$ 6000, 00, com nível com significância de 5%.

Resposta:

1. Definição das hipóteses:

 $H_0: \mu = 6000 \quad vs \quad H_1: \mu \neq 6000.$

Deseja-se estimar a média anual de débitos no cartão de crédito nas famílias brasileiras. Uma amostra de 15 famílias forneceu média de saldos de R\$ 5200,00 e o desvio padrão de R\$ 3058,00.

Teste a hipótese de que a média anual de débitos é de R\$ 6000, 00, com nível com significância de 5%.

Resposta:

2. Definir o tipo de teste: teste bilateral.

Deseja-se estimar a média anual de débitos no cartão de crédito nas famílias brasileiras. Uma amostra de 15 famílias forneceu média de saldos de R\$ 5200,00 e o desvio padrão de R\$ 3058,00.

Teste a hipótese de que a média anual de débitos é de R\$ 6000, 00, com nível com significância de 5%.

Resposta:

3. Definição do nível de significância: $\alpha = 5\%$.

Deseja-se estimar a média anual de débitos no cartão de crédito nas famílias brasileiras. Uma amostra de 15 famílias forneceu média de saldos de R\$ 5200,00 e o desvio padrão de R\$ 3058,00.

Teste a hipótese de que a média anual de débitos é de R\$ 6000, 00, com nível com significância de 5%.

Resposta:

4. Determinação da região crítica:

Tabela t

Pontos	nercentuais da	a distribuição	t de Student com	áreas na calda direita.

ν/p	0.4	0.25	0.1	0.05	0.025	0.01	0.005	0.0025	0.001
v = 11	0.2596	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058	3.4966	4.0247
12	0.2590	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545	3.4284	3.9296
13	0.2586	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123	3.3725	3.8520
14	0.2582	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768	3.3257	3.7874
15	0.2579	0.6912	1.3406	1.7531	2.1314	2.6025	2.9467	3.2860	3.7328
16	0.2576	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208	3.2520	3.6862
17	0.2573	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982	3.2224	3.6458

Deseja-se estimar a média anual de débitos no cartão de crédito nas famílias brasileiras. Uma amostra de 15 famílias forneceu média de saldos de R\$ 5200,00 e o desvio padrão de R\$ 3058,00.

Teste a hipótese de que a média anual de débitos é de R\$ 6000, 00, com nível com significância de 5%.

Resposta:

4. Determinação da região crítica: $RC = \{t < -2.14 \text{ ou } t > 2.14\}$.

Determinação da região crítica

► A estatística de teste é um valor usado para tomar a decisão sobre H₀, supondo ela verdadeira.

$$H_0: p = p_0 \quad vs \quad H_1: p > p_0$$

Estatística de teste para a proporção p

$$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1).$$

Uma empresa desenvolveu uma vacina e afirma que a proporção de imunizados é maior do que 50%. Sabe-se que em uma amostra de 726 pessoas vacinadas, 668 estavam imunizadas.

▶ Use este resultado para testar se a proporção de imunizados é maior do que 50%, com um nível de significância de 5%

Resposta:

1. Definição das hipóteses:

$$H_0: p = 0.5 \quad vs \quad H_1: p > 0.5.$$

Uma empresa desenvolveu uma vacina e afirma que a proporção de imunizados é maior do que 50%. Sabe-se que em uma amostra de 726 pessoas vacinadas, 668 estavam imunizadas.

► Use este resultado para testar se a proporção de imunizados é maior do que 50%, com um nível de significância de 5%

Resposta:

2. Definir o tipo de teste: unilateral à direita.

Uma empresa desenvolveu uma vacina e afirma que a proporção de imunizados é maior do que 50%. Sabe-se que em uma amostra de 726 pessoas vacinadas, 668 estavam imunizadas.

► Use este resultado para testar se a proporção de imunizados é maior do que 50%, com um nível de significância de 5%

Resposta:

3. Definição do nível de significância: $\alpha = 5\%$.

Uma empresa desenvolveu uma vacina e afirma que a proporção de imunizados é maior do que 50%. Sabe-se que em uma amostra de 726 pessoas vacinadas, 668 estavam imunizadas.

Use este resultado para testar se a proporção de imunizados é maior do que 50%, com um nível de significância de 5%

Resposta:

4. Determinação da região crítica: $RC = \{z > 1.645\}$.

Determinação da região crítica

 \triangleright A estatística de teste é um valor usado para tomar a decisão sobre H_0 , supondo ela verdadeira.

$$H_0: \sigma^2 = \sigma_0^2 \quad vs \quad H_1: \sigma^2 > \sigma_0^2$$

Estatística de teste para a variância

•
$$(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$$
.

▶ Na indústria farmacêutica, baixa variabilidade é sinônimo de qualidade. Por isso, monitora-se a produção a fim de que $\sigma^2 < 0.0009$, caso contrário o lote é rejeitado.

- Uma amostra de tamanho 16 foi inspecionada resultando em $s^2 = 0.0013$. Verifique se o lote será descartado, com $\alpha = 5\%$.
- Resposta:
 - 1. Definição das hipóteses:

 $H_0: \sigma^2 = 0.0009 \quad vs \quad H_1: \sigma^2 > 0.0009.$

Na indústria farmacêutica, baixa variabilidade é sinônimo de qualidade. Por isso, monitora-se a produção a fim de que $\sigma^2 \leq 0.0009$, caso contrário o lote é rejeitado.

- Uma amostra de tamanho 16 foi inspecionada resultando em $s^2 = 0.0013$. Verifique se o lote será descartado, com $\alpha = 5\%$.
- Resposta:
 - 2. Definir o tipo de teste: unilateral à direita.

Na indústria farmacêutica, baixa variabilidade é sinônimo de qualidade. Por isso, monitora-se a produção a fim de que $\sigma^2 < 0.0009$, caso contrário o lote é rejeitado.

- Uma amostra de tamanho 16 foi inspecionada resultando em $s^2 = 0.0013$. Verifique se o lote será descartado, com $\alpha = 5\%$.
- Resposta:
 - 3. Definição do nível de significância: $\alpha = 5\%$.

Na indústria farmacêutica, baixa variabilidade é sinônimo de qualidade. Por isso, monitora-se a produção a fim de que $\sigma^2 \leq 0.0009$, caso contrário o lote é rejeitado.

- Uma amostra de tamanho 16 foi inspecionada resultando em $s^2 = 0.0013$. Verifique se o lote será descartado, com $\alpha = 5\%$.
- Resposta:
 - 4. Determinação da região crítica: $RC = \{q > 24.996\}$.

Referências

- Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

