Curs - Probabilități și Statistică 2022/2023 Secția Informatică

Facultatea de Matematică și Informatică Universitatea Babeș-Bolyai, Cluj-Napoca Dr. Habil. Hannelore Lisei

Teoria Probabilităților

Teoria probabilităților este o disciplină a matematicii care se ocupă de studiul fenomenelor aleatoare.

- aleator = care depinde de o împrejurare viitoare şi nesigură; supus întâmplării
- provine din latină: aleatorius; alea (lat.) = zar; joc cu zaruri; joc de noroc; şansă; risc
- \hookrightarrow se măsoară *şansele pentru succes* sau *riscul pentru insucces* al unor evenimente

Fenomene și procese aleatoare apar, de exemplu, în:

- → pariuri, loto (6 din 49), jocuri de noroc / jocuri online
- \rightarrow previziuni meteo

[Sursa: www.financialmarket.ro

- → previziuni economice / financiare, investiții, cumpărături online (predicția comportamentului clienților)
- → sondaje de opinie (analiza unor strategii politice), asigurări (evaluarea riscurilor / pierderilor)

\rightarrow în informatică:

- > sisteme de comunicare, prelucrarea informației, modelarea traficului în rețea, criptografie;
- > analiza probabilistică a performanței unor algoritmi, fiabilitatea sistemelor, predicții în cazul unor sisteme complexe;
- > algoritmi de simulare, machine learning, data mining, recunoașterea formelor / a vocii;
- > generarea de numere aleatoare (pseudo-aleatoare cu ajutorul calculatorului), algoritmi aleatori
- ▷ https://www.random.org/randomness/

se pot genera numere cu "adevarat aleatoare" (*true random numbers*), folosind ca sursă un fenomen fizic, ca de exemplu o sursă radioactivă (momentele de timp în care particulele se dezintegrează sunt complet imprevizibile - de exemplu *HotBits service* din Eleveţia), sau variaţiile de amplitudine din perturbările atmosferice (atmospheric noise, folosit de Random.org), sau zgomotul de fond dintr-un birou etc.

Octave online: https://octave-online.net

Exemplu: Generarea de valori aleatoare (în Octave)

clear all %şterge datele folosite anterior
clc % şterge informaţiile anterioare afişate pe terminal
a=rand
% o valoare aleatoare în intervalul (0,1)

```
v1=rand(1,10)
% un vector cu 10 valori aleatoare în intervalul (0,1)
a=4; b=10;
v2=a+(b-a)*rand(1,15)
%un vector cu 15 valori aleatoare în intervalul (4,10)
A=randi(5,2,4)
% o matrice 2 x 4 de valori aleatoare din mulţimea {1,2,3,4,5},
% fiecare cu şansa de apariţie 1/5
v3=randi(2,1,10)-1
% un vector cu 10 valori aleatoare 0 şi 1,
% fiecare cu şansa de apariţie 1/2
```

Algoritmi aleatori

Def. 1. Un algoritm pe cursul executării căruia se iau anumite decizii aleatoare este numit algoritm aleator (randomizat).

⊳ durata de execuție, spațiul de stocare, rezultatul obținut sunt variabile aleatoare (chiar dacă se folosesc aceleași valori input)

⊳ la anumite tipuri de algoritmi corectitudinea e garantată doar cu o anumită probabilitate

> în mod paradoxal, uneori incertitudinea ne poate oferi mai multă eficiență

Exemplu: Random QuickSort, în care elementul pivot este selectat aleator

- Algoritm de tip **Las Vegas** este un algoritm aleator, care returnează la fiecare execuție rezultatul corect (independent de alegerile aleatoare făcute); durata de execuție este o variabilă aleatoare. Exemplu: Random QuickSort
- Un algoritm aleator pentru care rezultatele obținute sunt corecte *doar* cu o anumită probabilitate se numește algoritm **Monte Carlo**.
- \hookrightarrow se examinează probabilitatea cu care rezultatul este corect; probabilitatea de eroare poate fi scăzută semnificativ prin execuții repetate, independente;

Exemplu:

⊳ testul Miller-Rabin, care verifică dacă un număr natural este prim sau este număr compus; testul returnează fie răspunsul "numărul este sigur un număr compus" sau răspunsul "numărul este probabil un număr prim";

Exercițiu: Fie S(1),...,S(300) un vector cu 300 de elemente, din mulțimea $\{0, 1, 2\}$ (ordinea lor este necunoscută; se presupune că șirul conține cel puțin un 0). \longrightarrow De care tip este următorul algoritm (scris în Octave)?

```
clear all
clc
disp('prima versiune')
S=randi(3,1,300)-1;
%un vector cu 300 de elemente, din multimea {0,1,2}
k=0;
do
    k=k+1;
    i=randi(300);
until (S(i) == 0)
    % i indicele, pentru care S(i)=0
    % k = număr iteraţii până se găseşte aleator un 0
fprintf('la a %d-a iteratie s-a gasit aleator 0 in S \n',k)
```

Răspuns: Algoritm de tip Las Vegas.

Versiunea Monte Carlo a problemei formulate anterior: se dă M numărul maxim de iterații.

```
clear all
disp('a doua versiune')
M=4;
% număr maxim de iterații
S=randi(3,1,300)-1;
%un vector cu 300 de elemente, din multimea {0,1,2}
k=0;
do
    k=k+1;
    i=randi(300);
until ((S(i) == 0) | (k==M))
% i =indicele, pentru care S(i)=0 sau pentru care k==M
% k =număr iterații până se găsește
% aleator un O sau programul s-a oprit
if S(i) == 0
 fprintf('la a %d-a iteratie s-a gasit aleator 0 in S \n',k)
 fprintf('in %d iteratii nu s-a gasit aleator 0 in S \n',k)
endif
```

⊳ dacă 0 este găsit, atunci algoritmul se încheie cu rezultatul corect, altfel algoritmul nu găseşte niciun 0.

Noțiuni introductive:

- Experiența aleatoare este acea experiență al cărei rezultat nu poate fi cunoscut decât după încheierea ei.
- Evenimentul este rezultatul unui experiment.

Exemple:

- ⊳ Experiment: aruncarea a două zaruri, eveniment: ambele zaruri indică 1
- > experiment: aruncarea unei monede, eveniment: moneda indică pajură
- > experiment: extragerea unei cărți de joc, eveniment: s-a extras as
- > experiment: extragerea unui număr la loto, eveniment: s-a extras numărul 27
- ullet evenimentul imposibil, notat cu \emptyset , este evenimentul care nu se realizează niciodată la efectuarea experienței aleatoare
- evenimentul sigur este un eveniment care se realizează cu certitudine la fiecare efectuare a experienței aleatoare
- \bullet spațiul de selecție, notat cu Ω , este mulțimea tuturor rezultatelor posibile ale experimentului considerat
 - ♦ spațiul de selecție poate fi finit sau infinit
- ullet dacă A este o submulțime a lui Ω atunci A se numește eveniment aleator, iar dacă A are un singur element atunci A este un eveniment elementar.
- ⊳ O *analogie între evenimente şi mulțimi* permite o scriere şi o exprimare mai comode ale unor idei şi rezultate legate de conceptul de eveniment aleator.

Exemplu: Experimentul: aruncarea unui zar, spaţiul de selecţie: $\Omega = \{e_1, e_2, e_3, e_4, e_5, e_6\}$, e_i : s-a obţinut numărul i (i = 1, ..., 6); $e_1, e_2, e_3, e_4, e_5, e_6$ sunt evenimente elementare

A: s-a obţinut un număr par $\Rightarrow A = \{e_2, e_4, e_6\}$

 \bar{A} : s-a obținut un număr impar $\Rightarrow \bar{A} = \{e_1, e_3, e_5\}$

Operații cu evenimente

- dacă $A, B \subseteq \Omega$, atunci evenimentul reuniune $A \cup B$ este un eveniment care se produce dacă cel puţin unul din evenimentele A sau B se produce
- dacă $A, B \subseteq \Omega$, atunci evenimentul intersecție $A \cap B$ este un eveniment care se produce dacă cele două evenimente A și B se produc în același timp
- ullet dacă $A\subseteq\Omega$ atunci evenimentul contrar sau complemetar \bar{A} este un eveniment care se realizează atunci când evenimentul A nu se realizează
- $A, B \subseteq \Omega$ sunt evenimente incompatibile (disjuncte), dacă $A \cap B = \emptyset$

ullet dacă $A,B\subseteq \Omega$, atunci evenimentul diferență $A\setminus B$ este un eveniment care se produce dacă A are loc și B nu are loc, adică

$$A \setminus B = A \cap \bar{B}$$

Relații între evenimente

- dacă $A,B\subseteq \Omega$, atunci A implică B, dacă producerea evenimentului A conduce la producerea evenimentului $B\colon A\subseteq B$
- dacă A implică B şi B implică A, atunci evenimentele A şi B sunt egale: A = B

Proprietăți ale operațiilor între evenimente $A, B, C \subseteq \Omega$

Operațiile de reuniune și intersecție sunt operații comutative:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$,

asociative

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C),$$

și distributive

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C), \quad (A \cap B) \cup C = (A \cup C) \cap (B \cup C);$$

satisfac legile lui De Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Are loc $\bar{\bar{A}} = A$.

Frecvenţa relativă și frecvenţa absolută

Def. 2. Fie A un eveniment asociat unei experiențe, repetăm experiența de n ori (în aceleași condiții date) și notăm cu $r_n(A)$ numărul de realizări ale evenimentului A; frecvența relativă a evenimentului A este numărul

$$f_n(A) = \frac{r_n(A)}{n}$$

 $r_n(A)$ este frecvența absolută a evenimentului A.

Definiția clasică a probabilității

Def. 3. Într-un experiment în care cazurile posibile sunt finite la număr și au aceleași șanse de a se realiza, **probabilitatea** unui eveniment A este numărul

$$P(A) = \frac{\textit{numărul de cazuri favorabile apariției lui } A}{\textit{numărul total de cazuri posibile}}.$$

 \triangleright Prin repetarea de multe ori a unui experiment, în condiții practic identice, frecvența relativă $f_n(A)$ de apariție a evenimentului A este aproximativ egală cu P(A)

$$f_n(A) \approx P(A), \text{ dacă } n \to \infty.$$

Exemplu: Experiment: Se aruncă 4 monede. Evenimentul A: (exact) 3 din cele 4 monede indică pajură; experimentul s-a repetat de n = 100 de ori și evenimentul A a apărut de 22 de ori.

$$f_n(A) = ?, P(A) = ?$$

Răspuns: $f_n(A) = \frac{22}{100} = 0.22$ frecvența relativă a evenimentului A

$$\Omega = \{(c, c, c, c), (c, p, p, p), \dots, (p, p, p, c), (p, p, p, p)\}$$

$$A = \{(c, p, p, p), (p, c, p, p), (p, p, c, p), (p, p, p, c)\}$$

 $\Rightarrow P(A) = \frac{4}{2^4} = 0.25$ probabilitatea evenimentului A .

Exemplu istoric - Joc de zaruri (sec. XVII): Un pasionat jucător de zaruri, cavalerul de Méré, susținea în discuțiile sale cu B. Pascal că a arunca un zar de 4 ori pentru a obține cel puțin o dată fața șase, este același lucru cu a arunca de 24 ori câte două zaruri pentru a obține cel puțin o dublă de șase.

Cu toate acestea, cavalerul de Méré a observat că jucând în modul al doilea (cu două zaruri aruncate de 24 ori), pierdea față de adversarul său, dacă acesta alegea primul mod (aruncarea unui singur zar de 4 ori). Pascal și Fermat au arătat că probabilitatea de câștig la jocul cu un singur zar aruncat de 4 ori este $p_1 \approx 0.5177$, iar probabilitatea $p_2 \approx 0.4914$ la jocul cu două zaruri aruncate de 24 de ori. Deși diferența dintre cele două probabilități este mică, totuși, la un număr mare de partide, jucătorul cu probabilitatea de câștig p_1 câștigă în fața jucătorului cu probabilitatea de câștig p_2 . Practica jocului confirmă astfel justețea raționamentului matematic, contrar credinței lui de Méré.

Definiția axiomatică a probabilității

Definiția clasică a probabilității poate fi utilizată numai în cazul în care numărul cazurilor posibile este finit. Dacă numărul evenimentelor elementare este infinit, atunci există evenimente pentru care probabilitatea în sensul clasic nu are nici un înțeles.

Probabilitatea geometrică: Măsura unei mulțimi corespunde lungimii în \mathbb{R} , ariei în \mathbb{R}^2 , volumului în \mathbb{R}^3 . Fie $M \subset D \subset \mathbb{R}^n$, $n \in \{1, 2, 3\}$, mulțimi cu măsură finită.

Alegem aleator un punct $A \in D$ (în acest caz spațiul de selecție este D). Probabilitatea geometrică a evenimentului " $A \in M$ " este

$$P(A \in M) := \frac{\mathsf{m\breve{a}sura}(M)}{\mathsf{m\breve{a}sura}(D)}.$$

O teorie formală a probabilității a fost creată în anii '30 ai secolului XX de către matematicianul rus **Andrei Nikolaevici Kolmogorov**, care, în anul **1933**, a dezvoltat teoria axiomatică a probabilității în lucrarea sa *Conceptele de bază ale Calculului Probabilității*.

- $\Rightarrow P: \mathcal{K} \to \mathbb{R}$ este o funcție astfel încât oricărui eveniment aleator $A \in \mathcal{K}$ i se asociază valoarea P(A), probabilitatea de apariție a evenimentului A
- $\hookrightarrow \mathcal{K}$ este o mulțime de evenimente și are structura unei σ -algebre (vezi Def. 4)
- $\hookrightarrow P$ satisface anumite axiome (vezi Def. 5)
- **Def. 4.** O familie K de evenimente din spațiul de selecție Ω se numește σ -algebră dacă sunt satisfăcute condițiile:
 - (1) K este nevidă;
 - (2) $dac\check{a} A \in \mathcal{K}$, $atunci \bar{A} \in \mathcal{K}$;
- (3) $\operatorname{dac\check{a}} A_n \in \mathcal{K}, n \in \mathbb{N}^*, \operatorname{atunci} \bigcup_{n=1}^{\infty} A_n \in \mathcal{K}.$

Observație: În context probabilistic, o familie \mathcal{A} de evenimente din Ω este o *algebră*, dacă au loc (1) şi (2) din Def. 4, iar (3) este valabilă pentru un număr finit de evenimente (\mathcal{A} este închisă în raport cu reuniuni finite).

Fie
$$M = \{1, 2, 3, ...\}$$
 şi fie

$$\mathcal{A} := \{ A \subseteq M : A \text{ sau } \bar{A} = M \setminus A \text{ este finită} \}.$$

 \mathcal{A} verifică (1) şi (2) din Def. 4, dar \mathcal{A} îndeplineşte (3) din Def. 4 doar pentru o reuniune finită de mulțimi din \mathcal{A} ; \mathcal{A} este o algebră, dar nu este o σ -algebră, pentru că există un număr infinit numărabil de evenimente A_n , $n \in \{1, 2, 3, \ldots\}$, din \mathcal{A} a căror reuniune nu este în \mathcal{A} . De exemplu, fie $A_n = \{2n\}$ pentru $n \in \{1, 2, 3, \ldots\}$. Observăm că $A_n \in \mathcal{A}$ pentru fiecare $n \in \{1, 2, 3, \ldots\}$, dar

$$\bigcup_{n=1}^{\infty} A_n = \{2, 4, 6, \ldots\} \notin \mathcal{A}.$$

Exemple: 1) Dacă $\emptyset \neq A \subset \Omega$ atunci $\mathcal{K} = \{\emptyset, A, \bar{A}, \Omega\}$ este o σ -algebră.

- 2) $\mathcal{P}(\Omega)$:= mulţimea tuturor submulţimilor lui Ω este o σ -algebră.
- 3) Dacă \mathcal{K} este o σ -algebră pe Ω și $\emptyset \neq B \subseteq \Omega$, atunci

$$B \cap \mathcal{K} = \{B \cap A : A \in \mathcal{K}\}\$$

 \Diamond

este o σ -algebră pe mulțimea B.

- **P. 1.** Proprietăți ale unei σ -algebre: Dacă K este o σ -algebră în Ω , atunci au loc proprietățile:
 - (1) $\emptyset, \Omega \in \mathcal{K}$;
 - (2) $A, B \in \mathcal{K} \Longrightarrow A \cap B, A \setminus B \in \mathcal{K};$
- (3) $A_n \in \mathcal{K}, n \in \mathbb{N}^* \Longrightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{K}.$
- **Def. 5.** Fie K o σ -algebră pe Ω . O funcție $P: K \to \mathbb{R}$ se numește **probabilitate** dacă satisface axiomele:
 - (1) $P(\Omega) = 1$;
 - (2) $P(A) \ge 0$ pentru orice $A \in \mathcal{K}$;
 - (3) pentru orice şir $(A_n)_{n\in\mathbb{N}^*}$ de evenimente două câte două disjuncte (adică $A_i\cap A_j=\emptyset$ pentru orice $i\neq j$) din \mathcal{K} are loc

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \sum_{n=1}^{\infty} P(A_n).$$

Tripletul (Ω, \mathcal{K}, P) se numește spațiu de probabilitate.

Exemplu: 1) Cea mai simplă (funcție de) probabilitate se obține pentru cazul unui *spațiu de selecție finit* Ω : fie $\mathcal{K} = \mathcal{P}(\Omega)$ (mulțimea tuturor submulțimilor lui Ω) și $P: \mathcal{K} \to \mathbb{R}$ definită astfel

$$P(A) = \frac{\#A}{\#\Omega}$$
, unde $\#A$ reprezintă numărul elementelor lui $A \in \mathcal{P}(\Omega)$.

P astfel definită verifică Def. 5 și corespunde definiției clasice a probabilității unui eveniment (a se vedea Def. 3).

2) Fie $\Omega = \mathbb{N} = \{0, 1, 2, \ldots\}, \, \mathcal{K} = \mathcal{P}(\mathbb{N}) \,$ și $P : \mathcal{K} \to \mathbb{R} \,$ definită prin $P(\{n\}) = \frac{1}{2^{n+1}}, \, n \in \mathbb{N}.$

Are loc $P(\mathbb{N}) = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} = 1$, iar axiomele din Def. 5 sunt îndeplinite . $(\mathbb{N}, \mathcal{P}(\mathbb{N}), P)$ este un

spaţiu de probabilitate; Def. 5-(3) este îndeplinită, datorită teoremei din analiză, care afirmă că pentru o serie cu termeni pozitivi, schimbarea ordinii termenilor seriei nu schimbă natura seriei şi nici suma ei.

P. 2. Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate. Au loc proprietățile:

(1)
$$P(\bar{A}) = 1 - P(A)$$
 si $0 \le P(A) \le 1$;

- (2) $P(\emptyset) = 0$;
- (3) $P(A \setminus B) = P(A) P(A \cap B)$;
- (4) $A \subseteq B \Longrightarrow P(A) \le P(B)$, adică P este monotonă;
- (5) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Exercițiu: Să se arate că pentru $\forall A, B, C \in \mathcal{K}$ are loc:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Exemplu: Dintr-un pachet de 52 de cărți de joc se extrage o carte aleator. Care este probabilitatea p de a extrage a) un as sau o damă de pică? b) o carte cu inimă sau un as?

R.: a) A: s-a extras un as; D: s-a extras damă de pică; A şi D sunt două evenimente disjuncte (incompatibile)

$$p = P(A \cup D) = P(A) + P(D) = \frac{4+1}{52};$$

b) I: s-a extras o carte cu inimă; I și A nu sunt evenimente incompatibile

$$p = P(I \cup A) = P(I) + P(A) - P(I \cap A) = \frac{13 + 4 - 1}{52} = \frac{4}{13}.$$

 \bigcirc

Evenimente independente

Def. 6. Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate. Evenimentele $A, B \in \mathcal{K}$ sunt evenimente independente, dacă

$$P(A \cap B) = P(A)P(B)$$
.

Observație: Fie evenimentele $A, B \in \mathcal{K}$. Evenimentele A și B sunt independente, dacă apariția evenimentului A, nu influențează apariția evenimentului B și invers. Două evenimente se numesc dependente dacă probabilitatea realizării unuia dintre ele depinde de faptul că celălalt eveniment s-a produs sau nu.

Exercițiu: Se aruncă un zar de două ori.

A: primul număr este 6; B: al doilea număr este 5; C: primul număr este 1.

Sunt A şi B evenimente independente? Sunt A şi B evenimente disjuncte?

Sunt A şi C evenimente independente? Sunt A şi C evenimente disjuncte?

P. 3. Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate și fie $A, B \in \mathcal{K}$. Sunt echivalente afirmațiile:

- (1) A şi B sunt independente.
- (2) \bar{A} şi B sunt independente.
- (3) $A \sin \bar{B} \sin t$ independente.
- (4) \bar{A} și \bar{B} sunt independente.

Def. 7. Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate. B_1, \ldots, B_n sunt n evenimente independente (în totalitate) din \mathcal{K} dacă

$$P(B_{i_1} \cap \cdots \cap B_{i_m}) = P(B_{i_1}) \cdot \ldots \cdot P(B_{i_m})$$

pentru orice submulțime finită $\{i_1, \ldots, i_m\} \subseteq \{1, 2, ..., n\}$.

Observație; Din Def. 7 avem $A, B, C \in \mathcal{K}$ sunt trei evenimente independente (în totalitate), dacă

$$P(A \cap B) = P(A)P(B), \ P(A \cap C) = P(A)P(C), \ P(B \cap C) = P(B)P(C),$$

$$P(A \cap B \cap C) = P(A)P(B)P(C).$$

Exemplu: 1) Din Def. 6 și Def. 7 deducem că, independența (în totalitate) implică și independența a două câte două evenimente. Afirmația inversă, însă, nu are loc. Drept (contra) exemplu putem lua experimentul aleator ce constă în aruncarea unui tetraedru regulat, ale cărui patru fețe sunt vopsite astfel: una este roșie, una este albastră, una este verde și una este colorată având cele trei culori. Se aruncă tetraedrul și se consideră evenimentele:

R: tetraedrul cade pe o parte ce conține culoarea roșie;

A: tetraedrul cade pe o parte ce conține culoarea albastră;

V: tetraedrul cade pe o partea ce conține culoarea verde.

Sunt cele 3 evenimente independente în totalitate?

R.: Nu, cele 3 evenimente nu sunt independente în totalitate pentru că $P(R \cap A \cap V) = \frac{1}{4} \neq P(R)P(A)P(V) = \frac{1}{8}$. Însă cele 3 evenimente verifică:

$$P(R \cap A) = P(R)P(A) = \frac{1}{4}; P(V \cap A) = P(V)P(A) = \frac{1}{4}; P(R \cap V) = P(R)P(V) = \frac{1}{4}.$$

2) Pentru a verifica dacă n evenimente distincte B_1, \ldots, B_n sunt independente în totalitate câte relații trebuie verificate?

R.:
$$C_n^2 + C_n^3 + \dots + C_n^n = 2^n - C_n^0 - C_n^1 = 2^n - 1 - n$$
.

Exemplu:

Se dă algoritmul de tip Monte-Carlo (Exemplu de căutare aleatoare a unui element într-un vector): Fie S o permutare aleatoare a vectorului $[0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 3\ 3\ 3]$. Se caută aleator un 2 în S în cel mult M iterații .

```
clear all
clc
M=input('M='); % numar maxim de iteratii; M >= 1
% de ex. M=3
U=[0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 3\ 3\ 3];
% 0,1,2,3 apar fiecare cu probabilitatea 5/20=1/4
S=U(randperm(length(U)))
% S este o permutare aleatoare a vectorului initial U
% vom cauta aleator un 2 in vectorul S
% iteratiile se repeta pana se gaseste aleator un 2 din S
% sau se atinge numarul maxim M de iteratii
k=0;
do
    k=k+1; % se numara iteratiile
    i=randi(20); % se alege o valoare aleatoare din S -> S(i)
    fprintf('S(%d)=%d n', i, S(i))
until ((S(i) == 2) | (k==M))
if S(i) == 2
 fprintf('la a %d-a iteratie s-a gasit aleator 2 in S \n',k)
 fprintf('in %d iteratii nu s-a gasit aleator 2 in S \n',k)
endif
```

Se calculează probabilitățile (teoretice) ale următoarelor evenimente:

$$P(\text{"primul 2 este găsit aleator la a M-a iterație"}) = \left(\frac{3}{4}\right)^{M-1} \cdot \frac{1}{4}\,,$$

$$P("2 \text{ nu este găsit în } M \text{ iterații"}) = \left(\frac{3}{4}\right)^{M},$$

probabilitatea evenimentului complementar este

$$P(\text{``cel puţin un 2 este găsit în }M\text{ iteraţii''}) = 1 - \left(\frac{3}{4}\right)^M \longrightarrow 1, \text{ când }M \to \infty.$$

å

Probabilitate condiționată

În anumite situații este necesar să cunoaștem probabilitatea unui eveniment particular, care urmează să aibă loc, știind deja că alt eveniment a avut loc.

 \triangleright Experiment: Se aruncă simultan două zaruri. Notăm cu S suma numerelor rezultate din aruncarea celor două zaruri.

- a) P(S = 11) = ?
- b) Dacă se știe că S este un număr prim, care este probabilitatea ca S=11?

Def. 8. Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate și fie $A, B \in \mathcal{K}$. Probabilitatea condiționată a evenimentului A de către evenimentul B este $P(\cdot|B) : \mathcal{K} \to [0,1]$ definită prin

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

dacă P(B)>0. P(A|B) este probabilitatea apariției evenimentului ${\bf A}$, știind că evenimentul ${\bf B}$ s-a produs.

Observație: 1) P(A|B): probabilitatea condiționată a lui A de către B, este probabilitatea de a se realiza evenimentul A dacă în prealabil s-a realizat evenimentul B.

2) Într-un experiment în care cazurile posibile sunt finite la număr și au aceleași șanse de a se realiza, atunci se poate folosi

$$P(A|B) = \frac{\text{numărul de cazuri favorabile apariţiei lui } A \cap B}{\text{numărul total de cazuri posibile pentru apariţia lui } B}.$$

3) Fie evenimentele $A,B\in\mathcal{K}$ astfel încât P(A)>0 și P(B)>0. Evenimentele A și B

sunt **independente** (a se vedea Def. 6), dacă apariția evenimentului A, nu influențează apariția evenimentului B și invers, adică

$$P(A|B) = P(A)$$
 și $P(B|A) = P(B)$.

Exemplu: Se extrag succesiv fără returnare două bile dintr-o urnă cu 4 bile albe şi 5 bile roşii.

- a) Ştiind că prima bilă este roşie, care este probabilitatea (condiționată) ca a doua bilă să fie albă?
- **b**) Care este probabilitatea ca ambele bile să fie roșii?

R.: pentru $i \in \{1, 2\}$ fie evenimentele

 R_i : la a *i*-a extragere s-a obținut o bilă roșie;

 $A_i = \bar{R}_i$: la a *i*-a extragere s-a obținut o bilă albă;

a) $P(A_2|R_1) = \frac{4}{8}$.

Extragere fără retrunare

Probabilități condiționate

Def. 9. O familie $\{H_1, \ldots H_n\} \subset \mathcal{K}$ de evenimente din Ω se numeşte **partiție** sau **sistem complet** de evenimente a lui Ω , dacă $\bigcup_{i=1}^n H_i = \Omega$ și pentru fiecare $i, j \in \{1, \ldots, n\}, i \neq j$, evenimentele H_i și H_j sunt disjuncte, adică $H_i \cap H_j = \emptyset$.

Exemplu: Dacă $B \subset \Omega$ atunci $\{B, \bar{B}\}$ formează o partiție a lui Ω .

P. 5. (Formula probabilității totale) Într-un spațiu de probabilitate (Ω, \mathcal{K}, P) considerăm partiția $\{H_1, ..., H_n\}$ a lui Ω cu $H_i \in \mathcal{K}$ și $P(H_i) > 0 \ \forall \ i \in \{1, ..., n\}$, și fie $A \in \mathcal{K}$. Atunci are loc

$$P(A) = P(A|H_1)P(H_1) + \dots + P(A|H_n)P(H_n).$$

Exemplu: Într-o urnă sunt 7 bile albe, notate cu 1, 2, 3, 4, 5, 6, 7, şi 6 bile roşii notate cu 8, 9, 10, 11, 12, 13. Se extrage o bilă. **a)** Știind că bila extrasă este roşie, care este probabilitatea p_1 , ca

numărul de pe bilă să fie divizibil cu 4? **b**) Ştiind că prima bilă este roşie, care este probabilitatea p_2 , ca o a doua bilă extrasă să indice un număr impar? (Prima bilă nu s-a returnat în urnă!)

R.: Se consideră evenimentele:

 A_1 : prima bilă extrasă are înscris un număr divizibil cu 4;

 B_1 : prima bilă extrasă este roșie;

 C_1 : prima bilă extrasă are înscris un număr impar;

 C_2 : a doua bilă extrasă are înscris un număr impar.

a)
$$p_1 = P(A_1|B_1) = \frac{2}{6}$$
.

b) $p_2 = P(C_2|B_1) = ?$ Folosim Def.8 și P.4, scriem succesiv

$$p_2 = P(C_2|B_1) = \frac{P(C_2 \cap B_1)}{P(B_1)} = \frac{P(C_2 \cap B_1 \cap C_1) + P(C_2 \cap B_1 \cap \bar{C}_1)}{P(B_1)}$$

$$= \frac{P(C_2|B_1 \cap C_1)P(B_1 \cap C_1) + P(C_2|B_1 \cap \bar{C}_1)P(B_1 \cap \bar{C}_1)}{P(B_1)} = \frac{\frac{6}{12} \cdot \frac{3}{13} + \frac{7}{12} \cdot \frac{3}{13}}{\frac{6}{13}} = \frac{13}{24}.$$

Exemplu: Ce probabilități calculează programul de mai jos? Ce tip de algoritm aleator este?

▶ randi (imax, n, m) generează o n×m matrice cu valori întregi aleatoare (pseudoaleatoare) între 1 şi imax.

 \bigcirc

```
clear all
ci=0;
cp=0;
c = 0;
a = 0;
b=0;
N=1000;
A = [1:20];
for i=1:N
 v=A(randi(length(A)));
 ci=ci+mod(v,2);
 cp = cp + (mod(v, 2) == 0);
  a1=a1+ mod(v, 2) * (mod(v, 3) == 0);
  a2=a2+ \pmod{(v,2)}==0 \times (6 <= v \& \& v <= 10);
end
p1=a1/ci
p2=a2/cp
```

R.: Se extrage aleator un număr din şirul A = [1, 2, ..., 20].

- ▶p1 estimează probabilitatea condiționată ca numărul ales aleator să fie divizibil cu 3, *ştiind* că s-a extras un număr impar;
- \blacktriangleright p2 estimează probabilitatea condiționată ca numărul ales aleator să provină din mulțimea $\{6, 7, 8, 9, 10\}$, *știind* că s-a extras un număr par;

Algoritmul este de tip Monte-Carlo!

Care sunt valorile teoretice pentru probabilitățile p1, p2 din acest exemplu?

P. 6. (Formula înmulțirii probabilităților)

Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate și fie $A_1, \ldots, A_n \in \mathcal{K}$ astfel încât $P(A_1 \cap \cdots \cap A_{n-1}) > 0$. Atunci,

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1) \dots P(A_n|A_1 \cap \cdots \cap A_{n-1}).$$

Observație: 1) Formula înmulțirii probabilităților a două evenimente (n = 2) este

$$P(A_1 \cap A_2) = P(A_1)P(A_2|A_1).$$

2) În cazul, în care evenimentele aleatoare A_1, \ldots, A_n sunt independente în totalitate, atunci formula înmulțirii probabilităților are forma

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2) \dots P(A_n).$$

Exemplu: Într-o urnă sunt 2 bile verzi şi 3 bile albastre. Se extrag 2 bile succesiv, fără returnare. Care este probabilitatea ca

- a) prima bilă să fie verde, iar cea de-a doua albastră?
- b) cele 2 bile să aibă aceeași culoare?
- c) a doua bilă să fie albastră?
- d) prima bilă să fie verde, *ştiind* că a doua este albastră?
- e) se mai extrage o a treia bilă; se cere probabilitatea ca prima bilă să fie verde, cea de-a doua albastră și a treia tot albastră.

R.: Notăm pentru $i \in \{1, 2, 3\}$ evenimentele:

 A_i : la a *i*-a extragere s-a obținut bilă albastră; V_i : la a *i*-a extragere s-a obținut bilă verde;

- a) folosim P.4: $P(V_1 \cap A_2) = P(A_2|V_1)P(V_1) = \frac{3}{4} \cdot \frac{2}{5}$
- b) $P((V_1 \cap V_2) \cup (A_1 \cap A_2)) = P(V_1 \cap V_2) + P(A_1 \cap A_2) = P(V_2 | V_1) P(V_1) + P(A_2 | A_1) P(A_1) = \frac{1}{4} \cdot \frac{2}{5} + \frac{2}{4} \cdot \frac{3}{5}$
- c) folosim formula probabilității totale P.7:

$$P(A_2) = P(A_2|V_1)P(V_1) + P(A_2|A_1)P(A_1) = \frac{3}{4} \cdot \frac{2}{5} + \frac{2}{4} \cdot \frac{3}{5}$$

d) folosim P.4:
$$P(V_1|A_2) = \frac{P(V_1 \cap A_2)}{P(A_2)} = \frac{P(A_2|V_1)P(V_1)}{P(A_2)} = \frac{\frac{3}{4} \cdot \frac{2}{5}}{\frac{3}{4} \cdot \frac{2}{5} + \frac{2}{4} \cdot \frac{3}{5}}$$

e) formula de înmulțire a probabilităților P.6:

$$P(V_1 \cap A_2 \cap A_3) = P(V_1) \cdot P(A_2|V_1) \cdot P(A_3|V_1 \cap A_2) = \frac{2}{5} \cdot \frac{3}{4} \cdot \frac{2}{3}.$$

Fig. 3. Extragere fără returnare

Formula lui Bayes

Formula lui Bayes este o metodă de a "corecta" (a revizui, a îmbunătăți) pe baza unor noi date (informații) disponibile o probabilitate determinată apriori. Se pornește cu o estimare pentru probabilitatea unei anumite ipoteze H (engl. hypothesis). Dacă avem noi date (date de antrenare, dovezi, informații, evidențe - engl. evidence) E, ce privesc ipoteza H, se poate calcula o probabilitate "corectată" pentru ipoteza H, numită probabilitate posterioară (a-posteriori).

- $\hookrightarrow P(H)$ probabilitatea ca ipoteza H să fie adevărată, numită și probabilitatea apriori;
- \hookrightarrow probabilitatea condiționată P(H|E) este *probabilitatea posterioară* (corectată de cunoașterea noilor date / informații / evidențe);
- $\hookrightarrow P(E|H)$ probabilitatea ca să apară datele (informațiile), știind că ipoteza H este adevarată;
- $\hookrightarrow P(E|\bar{H})$ probabilitatea ca să apară datele (informațiile), știind că ipoteza H este falsă (ipoteza \bar{H} este adevarată).

Folosind P.5 (cu partiția $\{H, \bar{H}\}$) are loc:

$$P(E) = P(E|H) \cdot P(H) + P(E|\bar{H}) \cdot P(\bar{H}) = P(E|H) \cdot P(H) + P(E|\bar{H}) \cdot (1 - P(H)).$$

Formula lui Bayes este în acest caz

$$P(H|E) = \frac{P(H \cap E)}{P(E)} = \frac{P(E|H) \cdot P(H)}{P(E)} = \frac{P(E|H) \cdot P(H)}{P(E|H) \cdot P(H) + P(E|\bar{H}) \cdot P(\bar{H})}.$$

P. 7. (Formula lui Bayes)

Într-un spațiu de probabilitate (Ω, \mathcal{K}, P) considerăm partiția $\{H_1, \ldots, H_n\}$ a lui Ω cu $H_i \in \mathcal{K}$ și $P(H_i) > 0 \ \forall \ i \in \{1, ...n\}$, și fie $E \in \mathcal{K}$ astfel încât P(E) > 0. Atunci,

$$P(H_j|E) = \frac{P(E|H_j)P(H_j)}{P(E)} = \frac{P(E|H_j)P(H_j)}{P(E|H_1)P(H_1) + \dots + P(E|H_n)P(H_n)} \quad \forall j \in \{1, 2, \dots, n\}.$$

 \triangleright pentru $i \in \{1, 2, ..., n\}$ $P(H_i)$ sunt **probabilități apriori** pentru H_i , numite și ipoteze (aserțiuni; engl. *hypothesis*)

 $\triangleright E$ se numește **evidență** (dovadă, premisă, informație; engl. *evidence*);

 \triangleright cu formula lui Bayes se calculează probabilitățile pentru ipoteze, cunoscând evidența: $P(H_j|E)$, $j \in \{1, 2, ..., n\}$, care se numesc **probabilități posterioare** (ulterioare);

 $\triangleright P(E|H_i), i \in \{1, 2, ..., n\}$, reprezintă verosimilitatea (engl. likelihood) datelor observate.

⊳ Se pot calcula probabilitățile *cauzelor*, date fiind (cunoscând / știind) *efectele*; formula lui Bayes ne ajută să diagnosticăm o anumită situație sau să testăm o ipoteză.

Exemplu: Considerăm evenimentele (în teste clinice, programe de screening):

H: o persoană aleasă aleator dintr-o populație are o anumită alergie $\mathcal A$

E: testul clinic returnează pozițiv privind alergia \mathcal{A}

 \bar{E} : testul clinic returnează negativ privind alergia ${\cal A}$

- p = P(H), probabilitatea ca o persoană selectată aleator din populație să sufere de alergia A;
- sensibilitatea testului $s_1 = P(E|H)$ probabilitatea ca testul să fie pozitiv, știind că (în timp ce) alergia este prezentă [probabilitatea ca prezența alergiei A să fi fost corect identificată de test];
- specificitatea testului $s_2 = P(\bar{E}|\bar{H})$ probabilitatea ca testul să fie negativ, știind că (în timp ce) alergia nu este prezentă [probabilitatea ca absența alergiei \mathcal{A} să fi fost corect identificată de test]; \triangleright probabilitatea de a obține răspuns fals pozitiv este $P(E|\bar{H}) = 1 s_2$ testul este pozitiv, dar persoana (se știe că) nu are alergia \mathcal{A} ;

 \triangleright probabilitatea de a obține răspuns fals negativ este $P(\bar{E}|H)=1-s_1$ testul este negativ, dar persoana (se știe că) are alergia \mathcal{A} ;

 \triangleright un test clinic predictiv bun implică valori apropiate de 1 pentru s_1 şi s_2 ;

▶ cunoscând p, s_1, s_2 se dorește a se determina *valoarea predictivă* P(H|E) [este probabilitatea ca o persoană, care are un test pozitiv, să fie corect diagnosticată cu alergia A]:

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)} = \frac{P(E|H) \cdot P(H)}{P(E|H) \cdot P(H) + P(E|\bar{H}) \cdot P(\bar{H})}$$
$$= \frac{s_1 \cdot p}{s_1 \cdot p + (1 - s_2) \cdot (1 - p)}.$$

Date statistice: 2120 persoane au fost testate în cadrul unui program de screening, privind alergia A. S-au obținut următoarele informații:

 \triangleright AP=400 este numărul persoanelor adevărat pozitive din setul de testare, adică numărul persoanelor care au alergia $\mathcal A$ și au test pozitiv; $\#(H\cap E)^{-1}$

ightharpoonup FP=210 este numărul persoanelor fals pozitive din setul de testare adică numărul persoanelor care nu au alergia $\mathcal A$ și au test pozitiv; $\#(\bar H\cap E)$

ightharpoonup FN=310 este numărul persoanelor fals negative din setul de testare adică numărul persoanelor care au alergia $\mathcal A$ și au test negativ; $\#(H\cap \bar E)$

 \triangleright AN=1200 este numărul persoanelor adevărat negative din setul de testare, adică numărul persoanelor care nu au alergia \mathcal{A} și au test negativ; $\#(\bar{H} \cap \bar{E})$.

		starea actuală		
		(+)	(-)	total
ţia	(+)	AP	FP	AP+FP
(-)		FN	AN	FN+AN
pre	total	AP+FN	FP+AN	AP+FP+FN+AN

Matricea de confuzie (engl. confusion matrix)

		starea actuală (realitatea)		
		H : are alergia $\mathcal{A}(+)$	\bar{H} : nu are alergia \mathcal{A} (-)	total
	Extest positive A(1)	400	210	610
a	E : test pozitiv \mathcal{A} (+)	(adevărat pozitiv AP)	(fals pozitiv FP)	
icţi	E. tost pagetin A()	310	1200	1510
oredicția	E : test negativ \mathcal{A} (-)	(fals negativ FN)	(adevărat negativ AN)	
ď	total	710	1410	2120

Matricea de confuzie construită cu datele statistice

Pe baza datelor statistice: a) probabilitatea ca o persoană, despre care se știe că are test pozitiv, are în realitate alergia A, este

$$P(H|E) = \frac{400}{610} \approx 0.65$$
 (valoarea predictivă pozitivă);

b) probabilitatea ca o persoană, despre care se știe că are test negativ, nu are în realitate alergia \mathcal{A} , este

$$P(\bar{H}|\bar{E}) = \frac{1200}{1510} \approx 0.79$$
 (valoarea predictivă negativă).

 $^{^{1}}$ numărul de elemente din $H \cap E$

diagnosticare	machine learning (ML)
măsuri de performanță	measuring the performance of
	a binary classification model
valoarea predictivă pozitivă= $\frac{AP}{AP+FP}$	positive predictive value; precision
valoarea predictivă negativă= $\frac{AN}{AN+FN}$	negative predictive value
sensibilitatea= $\frac{AP}{AP+FN}$	recall; probability of detection;
	true positive rate
specificitatea= $\frac{AN}{AN+FP}$	true negative rate
$acurateţea = \frac{AP + AN}{AP + FP + AN + FN}$	accuracy

★ Probabilitățile condiționate sunt folosite în probleme de clasificare, în teoria deciziilor, în predicție, în diagnosticare, etc.

Variable aleatoare

 \rightarrow Variabilele aleatoare apar ca funcții, ce depind de rezultatul (aleator) al efectuării unui anumit experiment.

Exemplu: 1) La aruncarea a două zaruri, suma numerelor obținute este o variabilă aleatoare $S:\Omega \to \{2,3,...,12\}$, unde Ω conține toate evenimentele elementare ce se pot obține la aruncarea a două zaruri, adică $\Omega = \{(\omega_i^1,\omega_j^2): i,j=\overline{1,6}\}$, unde

 (ω_i^1, ω_j^2) este evenimentul elementar: la primul zar s-a obținut numărul i și la al doilea zar s-a obținut numărul j, unde $i, j = \overline{1, 6}$.

Astfel, $P(S = 5) = \frac{4}{36}$, $P(S = 6) = \frac{5}{36}$, etc.

2) Un jucător aruncă două monede \Rightarrow $\Omega = \{(c, p), (c, c), (p, c), (p, p)\}$ (c=cap; p=pajură)

X indică de câte ori a apărut pajură: $\Rightarrow X: \Omega \rightarrow \{0,1,2\}$

$$\Rightarrow P(X=0) = P(X=2) = \frac{1}{4}, P(X=1) = \frac{1}{2}$$

Notație 1. *variabilă/variabile aleatoare* \rightarrow *v.a.*

O variabilă aleatoare este:

- ▶ discretă, dacă ia un număr finit de valori (x_1, \ldots, x_n) sau un număr infinit numărabil de valori $(x_1, \ldots, x_n, \ldots)$
- **ightharpoonup continuă**, dacă valorile sale posibile sunt nenumărabile și sunt într-un interval (sau reunine de intervale) sau în \mathbb{R}
- V.a. discrete: exemple de v.a. numerice discrete: suma numerelor obținute la aruncarea a 4 zaruri, numărul produselor defecte produse de o anumită firmă într-o săptămână; numărul

apelurilor telefonice într-un call center în decursul unei ore; numărul de accesări ale unei anumite pagini web în decursul unei anumite zile (de ex. duminica); numărul de caractere transmise eronat într-un mesaj de o anumită lungime; exemple de v.a. categoriale (→ se clasifică în categorii): prognoza meteo: *ploios, senin, înnorat, ceţos*; calitatea unor servicii: *nesatisfăcătoare, satisfăcătoare, bune, foarte bune, excepţionale*, etc.

V.a. continue sunt v.a. numerice: timpul de funcționare până la defectare a unei piese electronice, temperatura într-un oraș, viteza înregistrată de radar pentru mașini care parcurg o anumită zonă, cantitatea de apă de ploaie (într-o anumită perioadă), duritatea unui anumit material, etc.

Variabile aleatoare numerice - definiție formală

Def. 10. Fie (Ω, \mathcal{K}, P) spațiu de probabilitate. $X : \Omega \to \mathbb{R}$ este o variabilă aleatoare, dacă

$$\{\omega \in \Omega : X(\omega) \leq x\} \in \mathcal{K} \text{ pentru fiecare } x \in \mathbb{R}.$$

Variabile aleatoare discrete $X: \Omega \to \{x_1, x_2, \dots, x_i, \dots\}$

Def. 11. Distribuția de probabilitate a v.a. discrete X

$$X \sim \begin{pmatrix} x_1 & x_2 & \dots & x_i & \dots \\ p_1 & p_2 & \dots & p_i & \dots \end{pmatrix} = \begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}$$

 $I \subseteq \mathbb{N}$ (mulţime de indici nevidă); $p_i = P(X = x_i) > 0$, $i \in I$, cu $\sum_{i \in I} p_i = 1$.

 \rhd O variabilă aleatoare discretă X este caracterizată de distribuția de probabilitate! \rhd Notăm $\{X=x_i\}=\{\omega\in\Omega:X(\omega)=x_i\},i\in I;$ acesta este un eveniment din $\mathcal K$ pentru fiecare $i\in I$.

Distribuții discrete clasice

Distribuția discretă uniformă: $X \sim Unid(n), n \in \mathbb{N}^*$

$$X \sim \begin{pmatrix} 1 & 2 & \dots & n \\ & & & \\ \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{pmatrix}$$

Exemplu: Se aruncă un zar, fie X v.a. care indică numărul apărut

$$\Rightarrow X \sim \begin{pmatrix} 1 & 2 & \dots & 6 \\ \frac{1}{6} & \frac{1}{6} & \dots & \frac{1}{6} \end{pmatrix}$$

Matlab/Octave: unidrnd(n, ...), randi(n, ...) generează valori aleatoare; unidpdf(x, n) calculează P(X = x), dacă $X \sim Unid(n)$.

Distribuția Bernoulli: $X \sim Bernoulli(p), p \in (0,1)$

$$X \sim \begin{pmatrix} 0 & 1 \\ 1 - p & p \end{pmatrix}$$

Exemplu: în cadrul unui experiment poate să apară evenimentul A (succes) sau \bar{A} (insucces) $X=0 \Leftrightarrow {\rm dac}\,\bar{A}$ apare; $X=1 \Leftrightarrow {\rm dac}\,\bar{A}$ apare $\Rightarrow X \sim Bernoulli(p)$ cu p:=P(A)

$$X \sim \begin{pmatrix} 0 & 1 \\ 1 - P(A) & P(A) \end{pmatrix}$$

generare în Matlab/Octave:

n=1000;
p=0.3;
nr=rand(1,n);
X=(nr<=p) % vector de date avand distributia Bernoulli(p)
%%%%%%%
Y=floor(rand(1,n)+p)% vector de date avand distributia Bernoulli(p)
%%%%%%%%</pre>

Distribuția binomială: $X \sim Bino(n, p), n \in \mathbb{N}^*, p \in (0, 1)$

în cadrul unui experiment poate să apară evenimentul A (succes) sau \bar{A} (insucces)

- A = succes cu P(A) = p, $\bar{A} = \text{insucces } P(\bar{A}) = 1 p$
- ullet se repetă experimentul de n ori
- v.a. X= numărul de succese în n repetări independente ale experimentului \Rightarrow valori posibile: $X \in \{0, 1, \dots, n\}$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad k \in \{0, \dots, n\}.$$

$$X \sim Bino(n, p) \iff X \sim \binom{k}{C_n^k p^k (1 - p)^{n - k}}_{k \in \{0, \dots, n\}}$$

Exemplu: Un zar se aruncă de 10 ori, fie X v.a. care indică de câte ori a apărut numărul 6 $\Rightarrow X \sim Bino(10, \frac{1}{6})$.

→ are loc formula binomială

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

pentru a = p și b = 1 - p se obține

$$1 = \sum_{k=0}^{n} C_n^k p^k (1-p)^{n-k}.$$

Matlab/Octave: binornd(n, p, ...) generează valori aleatoare; binopdf(x, n, p) calculează P(X = x), dacă $X \sim Bino(n, p)$.

▷ Distribuţia binomială corespunde modelului cu extragerea bilelor dintr-o urnă cu bile de două culori şi cu returnarea bilei după fiecare extragere:

Într-o urnă sunt n_1 bile albe şi n_2 bile negre. Se extrag cu returnare n bile; fie v.a. X_1 = numărul de bile albe extrase; X_2 = numărul de bile negre extrase

$$\Rightarrow X_1 \sim Bino(n, p_1)$$
 cu $p_1 = \frac{n_1}{n_1 + n_2}, X_2 \sim Bino(n, p_2)$ cu $p_2 = \frac{n_2}{n_1 + n_2}$.

 \triangleright **Exemplu:** Fie un canal de comunicare binară care transmite cuvinte codificate de N biţi fiecare. Probabilitatea transmiterii cu succes a unui singur bit este p, iar probabilitatea unei erori este 1-p. Presupunem, de asemenea, că un astfel de cod este capabil să corecteze până la m erori (într-un cuvânt), unde $0 \le m \le N$. Se ştie că transmiterea biţilor succesivi este independentă, atunci probabilitatea transmiterii cu succes a unui cuvânt este P(A), unde

A: cel mult m erori apar în transmiterea celor N biţi

$$P(A) = \sum_{k=0}^{m} C_N^k p^{N-k} (1-p)^k.$$

Exerciții: 1) Un client accesează o dată pe zi o anumită pagină web (care oferă anumite produse) cu probabilitatea 0.4. Cu ce probabilitate clientul accesează această pagină în total de 3 ori în următoarele 6 zile?

- 2) O rețea de laborator este compusă din 15 calculatoare. Rețeaua a fost atacată de un virus nou, care atacă un calculator cu o probabilitatea 0.4, independent de alte calculatoare. Care este probabilitatea ca virusul a atacat
- a) cel mult 10,
- b) cel puţin 10,
- c) exact 10

calculatoare?

Distribuția hipergeometrică: $X \sim Hyge(n, n_1, n_2), n, n_1, n_2 \in \mathbb{N}^*$

Într-o urnă sunt n_1 bile albe și n_2 bile negre. Se extrag **fără returnare** n bile.

Fie v.a. X = numărul de bile albe extrase \Rightarrow valori posibile pentru X sunt $\{0, 1, \dots, n^*\}$ cu

$$n^* = \min(n_1, n) = \left\{ \begin{array}{ll} n_1 & \text{dacă} \ n_1 < n \ (\text{mai puţine bile albe decât numărul de extrageri})} \\ n & \text{dacă} \ n_1 \ge n \ (\text{mai multe bile albe decât numărul de extrageri}) \end{array} \right.$$

Fie $n_1, n_2, n \in \mathbb{N}$ cu $n \leq n_1 + n_2$ şi notăm $n^* = \min(n_1, n)$.

$$\Rightarrow P(X = k) = \frac{C_{n_1}^k C_{n_2}^{n-k}}{C_{n_1+n_2}^n}, \quad k \in \{0, \dots, n^*\}.$$

Matlab/Octave: hygernd $(n_1+n_2,n_1,n,...)$ generează valori aleatoare; hygepdf (x,n_1+n_2,n_1,n) calculează P(X=x), dacă $X\sim Hyge(n,n_1,n_2)$.

Exemplu: 1) Într-o urnă sunt $n_1 = 2$ bile albe şi $n_2 = 3$ bile negre. Se extrag fără returnare n = 3 bile. Fie v.a. X = numărul de bile albe extrase. Vom calcula P(X = 1) cu două metode: $Prima \ metodă$: Pentru $i \in \{1, 2, 3\}$ fie evenimentele

 A_i : la a *i*-a extragere s-a obținut bilă albă

 $N_i = \bar{A}_i$: la a *i*-a extragere s-a obținut bilă neagră.

Scriem

$$P(X = 1) = P(A_1 \cap N_2 \cap N_3) + P(N_1 \cap A_2 \cap N_3) + P(N_1 \cap N_2 \cap A_3),$$

$$P(A_1 \cap N_2 \cap N_3) = P(A_1)P(N_2|A_1)P(N_3|A_1 \cap N_2) = \frac{2}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} = \frac{1}{5}$$

$$P(N_1 \cap A_2 \cap N_3) = P(N_1)P(A_2|N_1)P(N_3|N_1 \cap A_2) = \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} = \frac{1}{5}$$

$$P(N_1 \cap N_2 \cap A_3) = P(N_1)P(N_2|N_1)P(A_3|N_1 \cap N_2) = \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} = \frac{1}{5}$$

$$\Rightarrow P(X = 1) = \frac{3}{5}.$$

A doua metodă: O bilă albă din două se poate alege în $C_2^1=2$ moduri, două bile neagre din trei se pot alege în $C_3^2=3$ moduri, trei bile din cinci se pot alege în $C_5^3=10$ moduri

$$\Rightarrow P(X=1) = \frac{C_2^1 \cdot C_3^2}{C_5^3} = \frac{2 \cdot 3}{10} = \frac{3}{5}.$$

2) Loto $6 \dim 49 \to \text{Care}$ este probabilitatea de a nimeri exact 4 numere câştigătoare? R.: Între cele $49 \det \text{part} = 6 \text{ sunt } \text{câştigătoare}$ ("bilele albe") şi $n_2 = 43 \text{ necâştigătoare}$ ("bilele negre"). Care este probabilitatea ca din n = 6 extrageri fără returnare, exact k = 4 numere să fie câştigătoare (ordinea nu contează)?

$$\Rightarrow P(X=4) = \frac{C_6^4 C_{43}^2}{C_{49}^6}$$

\Diamond

Distribuția geometrică $X \sim Geo(p), p \in (0,1)$

În cadrul unui experiment poate să apară evenimentul A (succes) sau \bar{A} (insucces)

- A = succes cu P(A) = p, $\bar{A} = \text{insucces } P(\bar{A}) = 1 p$
- ullet se repetă (independent) experimentul până apare prima dată A ("succes")
- v.a. X arată de câte ori apare \bar{A} (numărul de "insuccese") $p \hat{a} n \check{a}$ la apariția primului A ("succes") \Rightarrow valori posibile: $X \in \{0, 1, \ldots\}$

$$P(X = k) = p(1 - p)^k$$
 pentru $k \in \{0, 1, 2, \dots\}$.

Matlab/Octave: geornd(p,...) generează valori aleatoare; geopdf(x,p) calculează P(X=x), dacă $X \sim Geo(p)$.

Exemplu: X v.a. ce indică numărul de retransmisii printr-un canal cu perturbări (aleatoare) până la (înainte de) prima recepție corectă a mesajului $\Rightarrow X$ are distribuție geometrică.

Variabile aleatoare independente

Def. 12. Variabilele aleatoare discrete X (care ia valorile $\{x_i, i \in I\}$) și Y (care ia valorile $\{y_j, j \in J\}$) sunt **independente**, dacă și numai dacă

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i) \quad \forall i \in I, j \in J,$$

unde
$$P(X = x_i, Y = y_j) = P(\{X = x_i\} \cap \{Y = y_j\}) \ \forall i \in I, j \in J.$$

Observație: Fie evenimentele $A_i = \{X = x_i\}, i \in I$, și $B_j = \{Y = y_j\}, j \in J$.

V.a. X şi Y sunt independente $\iff \forall (i, j) \in I \times J$ evenimentele A_i şi B_j sunt independente (a se vedea Def. 6).

Exemplu: Se aruncă o monedă de 10 ori. Fie X v.a. care indică de câte ori a apărut pajură în primele cinci aruncări ale monedei; fie Y v.a. care indică de câte ori a apărut pajură în ultimele cinci aruncări ale monedei. X şi Y sunt v.a. independente. Care este distribuţia de probabilitate a lui X, respectiv Y?

- **P. 8.** Fie variabilele aleatoare discrete X (care ia valorile $\{x_i, i \in I\}$) şi Y (care ia valorile $\{y_j, j \in J\}$). Sunt echivalente afirmațiile:
- (1) X şi Y sunt v.a. sunt independente;
- (2) $P(X = x | Y = y) = P(X = x) \quad \forall x \in \{x_i, i \in I\}, y \in \{y_j, j \in J\};$
- (3) $P(Y = y | X = x) = P(Y = y) \quad \forall x \in \{x_i, i \in I\}, y \in \{y_j, j \in J\};$
- (4) $P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y) \quad \forall x, y \in \mathbb{R}.$

Def. 13. $\mathbb{X} = (X_1, \dots, X_m)$ este un vector aleator discret dacă fiecare componentă a sa este o variabiă aleatoare discretă.

Fie $K \subseteq \mathbb{N}$ o mulțime de indici și fie date $\mathbf{x}_k := (x_{1,k},...,x_{m,k}) \in \mathbb{R}^m, k \in K$.

 $\textit{Dac}\ X : \Omega \to \{x_k, k \in K\} \ \textit{este un vector aleator discret, atunci}$

$$P(X = X_k) := P(\{\omega \in \Omega : X(\omega) = X_k\}), k \in K,$$

determină distribuția de probabilitate a vectorului aleator discret X

$$\mathbb{X} \sim \begin{pmatrix} \mathbb{X}_k \\ P(\mathbb{X} = \mathbb{X}_k) \end{pmatrix}_{k \in K}$$
.

> Vectorii aleatori sunt caracterizați de distribuțiile lor de probabilitate! De exemplu, un vector aleator cu 2 componente:

$$\mathbb{X} = (X, Y) \sim \begin{pmatrix} (x_i, y_j) \\ p_{ij} \end{pmatrix}_{(i,j) \in I \times J}$$

unde $I, J \subseteq \mathbb{N}$ sunt multimi de indici,

$$p_{ij} := P((X, Y) = (x_i, y_j)) = P(\{X = x_i\} \cap \{Y = y_j\}), p_{ij} > 0 \ \forall \ i \in I, j \in J,$$

$$\lim_{(i,j)\in I\times J} p_{ij} = 1.$$

Exemplu: Fie vectorul aleator discret (X, Y) cu distribuția dată de

următorul tabel:
$$X = \begin{bmatrix} X & 0 & 1 \\ -1 & \frac{1}{4} & \frac{1}{2} \\ 2 & \frac{1}{8} & \frac{1}{8} \end{bmatrix} \Longrightarrow P(X = -1, Y = 0) = \frac{1}{4}, P(X = -1, Y = 1) = \frac{1}{2},$$
 etc. a) Să se determine $P(X = -1), P(X \le 3),$ respectiv $P(Y = 1), P(Y \le -1).$

- b) Sunt X şi Y v.a. independente?

Observație: Dacă X și Y sunt v.a. independente, atunci

(1)
$$p_{ij} = P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j) \quad \forall i \in I, j \in J.$$

 \triangleright Dacă X şi Y sunt v.a. independente, şi se ştiu distribuţiile lor, atunci distribuţia vectorului aleator (X, Y) se determină pe baza formulei (1).

 \triangleright Dacă se cunoaște distribuția vectorului aleator (X,Y) distribuțiile lui X și Y se determină astfel:

$$P(X = x_i) = \sum_{j \in J} p_{ij} \quad \forall i \in I, \qquad P(Y = y_j) = \sum_{i \in I} p_{ij} \quad \forall j \in J.$$

Observații:

ightharpoonup Modelul urnei cu r culori cu returnarea bilei după fiecare extragere: fie p_i probabilitatea de a extrage o bilă cu culoarea $i, i = \overline{1,r}$ dintr-o urnă; fie X_i v.a. ce indică numărul de bile de culoarea $i, i = \overline{1,r}$ după n extrageri cu returnarea bilei extrase, iar ordinea de extragere a bilelor de diverse culori nu contează

$$P(X_1 = k_1, \dots, X_r = k_r) = \text{probabilitatea de a obține } k_i \text{ bile cu culoarea } i, i = \overline{1, r},$$

$$\dim n = k_1 + \dots + k_r \text{ extrageri } cu \text{ returnarea bilei extrase}$$

$$= \frac{n!}{k_1! \dots k_r!} \cdot p_1^{k_1} \cdot \dots \cdot p_r^{k_r},$$

 $\triangleright (X_1,...,X_r)$ este un vector aleator discret.

 \triangleright cazul r=2 corespunde distribuţiei binomiale (modelul binomial cu bile de două culori într-o urnă, a se vedea pg. 22): (X_1, X_2) este un vector aleator discret, iar $X_1 + X_2 = n$; X_1 şi X_2 nu sunt v.a. independente.

Extragerea cu returnare (engl. sampling with replacement) este folosită în metoda bootstrap, care este o metodă utilizată pentru a estima proprietățile statistice dintrun set de date (de exemplu, date statistice). Tehnica implică reeșantionarea (engl. resampling) unui număr mare de seturi de date dintrun singur set de date. Pornind de la

1 x1 y1	3 x2 y1	1 x1 y1	5 x2 y2
2 x1 y2	5 x2 y2	4 x2 y1	2 x1 y2
3 x2 y1	1 x1 y1	7 x3 y1	1 x1 y1
4 x2 y1	3 x2 y1	2 x1 y2	7 x3 y1
5 x2 y2	7 x3 y1	7 x3 y1	6 x2 y2
6 x2 y2	2 x1 y2	2 x1 y2	8 x3 y1
7 x3 y1	5 x2 y2	5 x2 y2	3 x2 y1
Original Data Set	3 X2 y2 4 X2 y1 Bootstrap 1	3 x2 y2 3 x2 y1 Bootstrap 2	3 x2 y1 1 x1 y1 Bootstrap 3

un set de date cu n observații, un set de date bootstrap este un set format din n observații alese aleator cu returnare (și independent) din setul de date inițial.

ightharpoonup Modelul urnei cu r culori și bilă nereturnată: fie n_i =numărul inițial de bile cu culoarea i

din urnă, $i = \overline{1, r}$;

$$p(k_1,\ldots,k_r;n) = \text{probabilitatea de a obține } k_i \text{ bile cu culoarea } i, i = \overline{1,r},$$

$$\dim n = k_1 + \ldots + k_r \text{ extrageri } f \breve{a}r \breve{a} \text{ returnarea bilei extrase,}$$

$$\text{în care ordinea de extragere a bilelor de diverse culori nu contează}$$

$$= \frac{C_{n_1}^{k_1} \cdot \ldots \cdot C_{n_r}^{k_r}}{C_{n_1+\ldots+n_r}^n}.$$

- \triangleright Cazul r=2 corespunde **distribuției hipergeometrice**.
- Extragerea fără returnare (engl. sampling without replacement) este folosită în metoda validării încrucișate (engl. k-fold cross validation): În cazul validării încrucișate (k-fold cross validation), eșantionul original de date este împărțit aleatoriu în k sub-eșantioane de dimensiuni egale. Din cele k sub-eșantioane, un singur sub-eșantion este folosit ca date de validare pentru testarea modelului, iar celelalte k-1 sub-eșantioane sunt utilizate ca date de antrenament. Procesul de validare încrucișată se repetă apoi de k ori, fiecare dintre cele k sub-eșantioane fiind utilizat exact o dată ca date de validare. Avantajul acestei metode constă în faptul că toate observațiile sunt utilizate atât pentru antrenare, cât și pentru validare, iar fiecare observație este utilizată pentru validare exact o dată. Validarea încrucișată cu k=10 (sau k=5) este utilizată în mod obișnuit. Atunci când k=n (numărul de observații), validarea încrucișată este echivalentă cu validarea încrucișată numită în engleză leave-one-out.

Operații cu variabile aleatoare (numerice)

• Cunoscând distribuţia vectorului (X,Y) cum se determină distribuţia pentru $X+Y, X\cdot Y, X^2-1, 2Y$?

Exemplu: Fie vectorul aleator discret (X_1, X_2) cu distribuția dată de următorul tabel:

$X_1^{X_2}$				
1	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{2}{16}$. Determinați: a) distribuțiile variabilelor aleatoare X_1 și X_2 ;
2	$\frac{1}{16}$	$\frac{5}{16}$	$\frac{5}{16}$. Determinați: a) distribuțiile variabilelor aleatoare X_1 și X_2 ;

- b) distribuţiile variabilelor aleatoare $X_1 + X_2$ şi $X_1 \cdot X_2, X_1^2 1$;
- c) dacă variabilele aleatoare X_1 și X_2 sunt independente sau dependente.

R.: a)
$$X_1 \sim \begin{pmatrix} 1 & 2 \\ \frac{5}{16} & \frac{11}{16} \end{pmatrix}$$
 şi $X_2 \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{3}{16} & \frac{6}{16} & \frac{7}{16} \end{pmatrix}$.
b) $X_1 + X_2 \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ \frac{2}{16} & \frac{2}{16} & \frac{7}{16} & \frac{5}{16} \end{pmatrix}$ şi $X_1 \cdot X_2 \sim \begin{pmatrix} 0 & 1 & 2 & 4 \\ \frac{3}{16} & \frac{1}{16} & \frac{7}{16} & \frac{5}{16} \end{pmatrix}$, $X_1^2 - 1 \sim \begin{pmatrix} 0 & 3 \\ \frac{5}{16} & \frac{11}{16} \end{pmatrix}$ c) X_1 şi X_2 nu sunt independente, pentru că $\frac{2}{16} = P(X_1 = 1, X_2 = 0) \neq P(X_1 = 1)P(X_2 = 0) = \frac{5}{16} \cdot \frac{3}{16}$.

• Cunoscând distribuţiile variabilelor aleatoare independente (discrete) X şi Y, cum se determină distribuţia pentru X + Y, $X \cdot Y$?

Exercițiu: Fie X,Y v.a. independente, având distribuțiile

$$X \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}, \quad Y \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

- a) Care sunt distribuţiile v.a. 2X + 1, Y^2 , dar distribuţia vectorului aleator (X, Y)?
- b) Care sunt distribuțiile v.a. X + Y, $X \cdot Y$, $\max(X, Y)$, $\min(X, Y^2)$?

Exerciţiu: Se aruncă două zaruri. a) Să se scrie distribuţia de probabilitate pentru variabila aleatoare, care este suma celor două numere apărute. b) Să se scrie distribuţia de probabilitate pentru variabila aleatoare, care este produsul celor două numere apărute.

Clasificarea naivă Bayes

În învăţarea automată, clasificatorii bayesieni naivi sunt o familie de clasificatori probabilistici simpli, bazaţi pe aplicarea formulei lui Bayes (a se vedea P.5) cu ipoteze "naive" de independenţă condiţionată între atribute (engl. *features*), cunoscând clasificarea. Pentru unele tipuri de modele de probabilitate, clasificatorii bayesieni naivi pot fi antrenaţi foarte eficient. În aplicaţii practice pentru modelele bayesiene naive se foloseşte *metoda probabilităţii maxime*. Noţiunea folosită în acest context este condiţional independenţa între v.a.

Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate. De asemenea considerăm că toate probabilitățile condiționate sunt definite (adică condiționarea se face în raport cu un eveniment a cărui probabilitate nu este 0).

Def. 14. Evenimentele $A, B \in \mathcal{K}$ sunt **condițional independente**, cunoscând evenimentul $C \in \mathcal{K}$, dacă și numai dacă

$$P(A \cap B|C) = P(A|C)P(B|C).$$

Exemplu: Într-o cutie sunt 2 zaruri. La primul zar 3 apare cu probabilitatea $\frac{1}{6}$, iar la celălalt zar (care e măsluit) 3 apare cu probabilitatea $\frac{5}{6}$. Se alege aleator un zar, care este apoi aruncat de 2 ori. Considerăm evenimentele

 A_i : "zarul ales indică 3 la aruncarea i", $i \in \{1, 2\}$

 Z_j : "se alege zarul j", $j \in \{1, 2\}$.

Sunt A_1 şi A_2 condițional independente, cunoscând Z_1 ? Sunt A_1 şi A_2 independente?

R.: Dacă se cunoaște tipul zarului ales, atunci aruncările sunt în mod evident independente: $P(A_1 \cap A_2|Z_1) = \frac{1}{36} = P(A_1|Z_1) \cdot P(A_2|Z_1)$.

Din formula probabilității totale P.5 avem:

$$P(A_1) = P(A_1|Z_1)P(Z_1) + P(A_1|Z_2)P(Z_2) = \frac{1}{6} \cdot \frac{1}{2} + \frac{5}{6} \cdot \frac{1}{2} = \frac{1}{2},$$

$$P(A_2) = P(A_2|Z_1)P(Z_1) + P(A_2|Z_2)P(Z_2) = \frac{1}{6} \cdot \frac{1}{2} + \frac{5}{6} \cdot \frac{1}{2} = \frac{1}{2},$$

$$P(A_1 \cap A_2) = P(A_1 \cap A_2|Z_1)P(Z_1) + P(A_1 \cap A_2|Z_2)P(Z_2) = \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{2} + \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{2} = \frac{13}{36}.$$
Deci $P(A_2|A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)} = \frac{13}{18} \Longrightarrow P(A_2|A_1) \neq P(A_2) \Longrightarrow A_1$ şi A_2 nu sunt independente.

Def. 15. Fie X, Y, Z v.a. discrete, care iau valori în mulțimile $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$. V.a. X este **condițional** independentă de Y, cunoscând (știind) v.a. Z, dacă pentru fiecare $x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}$, are loc

$$P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)$$
.

	Vreme	Timp	Trafic
1	înnorat	noapte	relaxat
2	zăpadă	seară	aglomerat
3	senin	noapte	relaxat
4	ploaie	seară	aglomerat
5	înnorat	amiază	aglomerat
6	senin	amiază	aglomerat
7	senin	dimineață	relaxat
8	ploaie	noapte	relaxat
9	înnorat	dimineață	aglomerat
10	zăpadă	noapte	aglomerat
11	senin	seară	relaxat
12	zăpadă	amiază	relaxat
13	înnorat	seară	aglomerat
14	ploaie	dimineaţă	aglomerat
15	zăpadă	dimineață	aglomerat

Tabel de date obținute în urma unor observații

Exemplu de clasificare naivă Bayes

Se dorește *clasificarea* **traficului** T pe un anumit bulevard, în *clasele*: aglomerat a sau relaxat r, în funcție de următoarele *atribute* cu valorile lor posibile:

- **vreme** V: ploaie p, zăpadă z, senin s, înnorat \hat{i} (dar nu plouă și nu ninge);
- timp Ti: dimineață di, amiază am, seară se, noapte no.

Considerăm evenimentul următor, denumit *vector de atribute*:

$$E = (V = p) \cap (Ti = am).$$

Se caută o clasă pentru E, stabilind care din următoarele probabilități este mai mare: P(T = a|E) sau P(T = r|E); aceasta este **metoda de probabilitate maximă.** Știind că vremea este ploioasă și este amiază, ce *previziune* se poate face despre trafic?

Se face următoarea presupunere *naivă*: atributele sunt **condițional independente**, dacă se dă clasificarea, adică

(2)
$$P(V = v, Ti = ti | \mathbf{T} = \mathbf{t}) = P(V = v | \mathbf{T} = \mathbf{t}) P(Ti = ti | \mathbf{T} = \mathbf{t}),$$

pentru fiecare $v \in \{p, z, s, \hat{\imath}\}, ti \in \{di, am, se, no\}, \mathbf{t} \in \{\mathbf{a}, \mathbf{r}\}$. De exemplu, avem:

$$P(V = p, Ti = di | \mathbf{T} = \mathbf{a}) = P(V = p | \mathbf{T} = \mathbf{a}) P(Ti = di | \mathbf{T} = \mathbf{a}).$$

► Folosind datele din tabel, determinăm mai întâi probabilitățile claselor și probabilitățile condiționate ale atributelor, cunoscând clasa.

T = a	T = r	$P(\mathbf{T} = \mathbf{a})$	$P(\mathbf{T} = \mathbf{r})$
9	6	$\frac{9}{15}$	$\frac{6}{15}$

V	T = a	T = r	$P(V = \mathbf{T} = \mathbf{a})$	$P(V = \mathbf{T} = \mathbf{r})$
p	2	1	$\frac{2}{9}$	$\frac{1}{6}$
z	3	1	$\frac{3}{9}$	$\frac{1}{6}$
s	1	3	$\frac{1}{9}$	$\frac{3}{6}$
î	3	1	$\frac{3}{9}$	$\frac{1}{6}$

Ti	T = a	T = r	$P(Ti = \mathbf{T} = \mathbf{a})$	$P(Ti = \mathbf{T} = \mathbf{r})$
di	3	1	$\frac{3}{9}$	$\frac{1}{6}$
am	2	1	$\frac{2}{9}$	$\frac{1}{6}$
se	3	1	$\frac{3}{9}$	$\frac{1}{6}$
no	1	3	$\frac{1}{9}$	$\frac{3}{6}$

▶ Pe baza formulei lui Bayes P. 5 și a ipotezei de independență condiționată, deducem că:

$$P(\mathbf{T} = \mathbf{a}|E) = \frac{P(E|\mathbf{T} = \mathbf{a})P(\mathbf{T} = \mathbf{a})}{P(E)} = \frac{P(V = p, Ti = am|\mathbf{T} = \mathbf{a})P(\mathbf{T} = \mathbf{a})}{P(E)}$$

$$= \frac{P(V = p | \mathbf{T} = \mathbf{a}) P(Ti = am | \mathbf{T} = \mathbf{a}) P(\mathbf{T} = \mathbf{a})}{P(E)} = \frac{\frac{2}{9} \cdot \frac{2}{9} \cdot \frac{9}{15}}{P(E)} = \frac{1}{P(E)} \cdot \frac{4}{135}$$

şi

$$P(\mathbf{T} = \mathbf{r}|E) = \frac{P(E|\mathbf{T} = \mathbf{r})P(\mathbf{T} = \mathbf{r})}{P(E)} = \frac{P(V = p, Ti = am|\mathbf{T} = \mathbf{r})P(\mathbf{T} = \mathbf{r})}{P(E)}$$
$$= \frac{P(V = p|\mathbf{T} = \mathbf{r})P(Ti = am|\mathbf{T} = \mathbf{r})P(\mathbf{T} = \mathbf{r})}{P(E)} = \frac{\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{6}{15}}{P(E)} = \frac{1}{P(E)} \cdot \frac{1}{90}.$$

Deoarece $P(\mathbf{T} = \mathbf{a}|E) > P(\mathbf{T} = \mathbf{r}|E)$, asociem vectorului de atribute

$$E = (V = p) \cap (Ti = am)$$
 clasa $\mathbf{T} = \mathbf{a}$.

lacktriangle În plus, putem determina P(E)=P(V=p,Ti=am) astfel: Scriem

1 =
$$P(\mathbf{T} = \mathbf{a}|E) + P(\mathbf{T} = \mathbf{r}|E) = \frac{1}{P(E)} \left(\frac{4}{135} + \frac{1}{90}\right)$$

şi deducem
$$P(E) = P(V = p, Ti = am) = \frac{11}{270} \approx 0.04$$
.

Valoarea medie a unor variabile aleatoare discrete

Def. 16. Valoarea medie a unei variabile aleatoare discrete (numerice) X, care ia valorile $\{x_i, i \in I\}$, este

$$E(X) = \sum_{i \in I} x_i P(X = x_i),$$

$$dac \check{a} \sum_{i \in I} |x_i| P(X = x_i) < \infty.$$

∨ Valoarea medie a unei variabile aleatoare caracterizează tendinţa centrală a valorilor acesteia.

P. 9. Fie X și Y v.a. discrete. Au loc proprietățile:

- $\rightarrow E(aX + b) = aE(X) + b$ pentru orice $a, b \in \mathbb{R}$;
- $\to E(X+Y) = E(X) + E(Y);$
- \rightarrow Dacă X şi Y sunt v.a. independente, atunci $E(X \cdot Y) = E(X)E(Y)$.
- $\to Dac \ g: \mathbb{R} \to \mathbb{R} \ e \ o \ funcție \ astfel \ încât \ g(X) \ este \ v.a., \ atunci$

$$E(g(X)) = \sum_{i \in I} g(x_i) P(X = x_i),$$

$$dac \ \ \sum_{i \in I} |g(x_i)| P(X = x_i) < \infty.$$

Matlab/Octave: mean (x)

pentru
$$x=[x(1),...,x(n)]$$
, se calculează $\mathrm{mean}(x)=\frac{1}{n}\big(x(1)+...+x(n)\big)$

Exemplu: Joc: Se aruncă un zar; dacă apare 6, se câştigă 3 u.m. (unități monetare), dacă apare 1 se câştigă 2 u.m., dacă apare 2,3,4,5 se pierde 1 u.m. În medie cât va câştiga sau pierde un jucător după 30 de repetiții ale jocului?

Răspuns: Fie X v.a. care indică venitul la un joc

$$X \sim \begin{pmatrix} -1 & 2 & 3 \\ \frac{4}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

Pentru $i \in \{1, ..., 30\}$ fie X_i venitul la al i-lea joc; X_i are aceeași distribuție ca X. Venitul mediu al jucătorului după 30 de repetiții ale jocului este

$$E(X_1 + \dots + X_{30}) = E(X_1) + \dots + E(X_{30}) = 30 \cdot E(X) = 30 \cdot \frac{1}{6} \cdot (2 - 4 + 3) = 5 \text{ (u.m.)}.$$

Aşadar jucătorul câştigă în medie 5 u.m.

```
%simulare - Exemplul anterior pkg load statistics clear all clc v=0; N=2000; for i=1:N s=sum(randsample([-1,-1,-1,-1,2,3],30,1)); %venitul dupa 30 de jocuri % randsample([-1,-1,-1,-1,2,3],30,1) -> 30 de extrageri cu returnare v=v+s; endfor fprintf('venitul mediu (dupa 30 de jocuri): %4.3f u.m. n', v/N)
```

Exercițiu:

Input: Fie A(1),...,A(200) un vector cu 200 de elemente, din care 50 sunt egale cu 0, 70 egale cu 1 și 80 sunt egale cu 2 (ordinea lor este necunoscută).

Output: Să se găsească un 0 în vector, alegând aleator un element din şir şi verificând dacă acesta este 0.

Întrebare: În medie câte iterații sunt necesare înainte să apară primul 0?

```
clear all
A=[zeros(1,50), zeros(1,70)+1, zeros(1,80)+2];
index=randperm(length(A));
A=A (index);
c = 0;
i=randi(length(A));
while A(i)^{-}=0
c = c + 1;
i=randi(length(A));
fprintf('nr. iteratii inainte sa apara primul 0: %d \n',c)
clear all
A=[zeros(1,50), zeros(1,70)+1, zeros(1,80)+2];
s=[];
N=1000;
for j=1:N
index=randperm(length(A));
A=A (index);
c = 0;
i=randi(length(A));
while A(i)^{\sim}=0
c = c + 1;
i=randi(length(A));
end
s=[s,c];
```

end

fprintf('nr. mediu de iteratii: %4.3f \n', mean(s))

R.: Probabilitatea să apară la orice iterație 0 este $p = \frac{50}{200} = 0.25$.

Notăm cu X v.a. care indică numărul de iterații necesare *înainte* să apară primul $0 \Rightarrow X \sim Geo(p)$.

Numărul mediu de iterații necesare *înainte* să apară primul 0 este E(X). Se poate arăta că $E(X) = \frac{1-p}{p} = \frac{1-0.25}{0.25} = 3$.

Def. 17. Fie X_1, \ldots, X_n cu $n \in \mathbb{N}$, $n \geq 2$, variabile aleatoare discrete, care iau valori în mulțimile $\mathcal{X}_1, \ldots, \mathcal{X}_n$. X_1, \ldots, X_n sunt variabile aleatoare independente, dacă

$$P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1) \cdot \dots \cdot P(X_n = x_n)$$

pentru fiecare $x_1 \in \mathcal{X}_1, \ldots, x_n \in \mathcal{X}_n$.

Exemplu: Se aruncă patru zaruri. Fie X_i v.a. care indică numărul apărut la al i-lea zar.

- a) X_1, X_2, X_3, X_4 sunt v.a. independente;
- b) $X_1 + X_2$ şi $X_3 + X_4$ sunt v.a. independente;
- c) $X_1 + X_2 + X_3$ şi X_4 sunt v.a. independente.

Def. 18. Funcția de repartiție $F: \mathbb{R} \to [0,1]$ a unei variabile aleatoare X discrete, care ia valorile $\{x_i, i \in I\}$, este

$$F(x) = P(X \le x) = \sum_{i \in I: x_i \le x} P(X = x_i) \quad \forall x \in \mathbb{R}.$$

Exemplu: Fie v.a. discretă X dată prin:

$$P(X = -1) = 0.5, P(X = 1) = 0.3, P(X = 4) = 0.2.$$

 $\Longrightarrow X$ are funcția de repartiție $F_X: \mathbb{R} \to [0,1]$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & \text{dacă } x < -1 \\ 0.5, & \text{dacă } -1 \le x < 1 \\ 0.5 + 0.3 = 0.8, & \text{dacă } 1 \le x < 4 \\ 0.5 + 0.3 + 0.2 = 1, & \text{dacă } 4 \le x \,. \end{cases}$$

P. 10. Funcția de repartiție F a unei variabile aleatoare discrete X are următoarele proprietăți:

- (1) $F(b) F(a) = P(X \le b) P(X \le a) = P(a < X \le b) \ \forall a, b \in \mathbb{R}, a < b.$
- (2) F este monoton crescătoare, adică pentru orice $x_1 < x_2$ rezultă $F(x_1) \le F(x_2)$.
- (3) F este continuă la dreapta, adică $\lim_{x \searrow x_0} F(x) = F(x_0) \ \forall \ x_0 \in \mathbb{R}$.

(4)
$$\lim_{x \to \infty} F(x) = 1$$
 si $\lim_{x \to -\infty} F(x) = 0$.

Matlab/Octave: binocdf (x, n, p), hygecdf $(x, n_1 + n_2, n_1, n)$, geocdf (x, p) calculează $F(x) = P(X \le x)$ pentru $X \sim Bino(n, p), X \sim Hyge(n_1 + n_2, n_1, n)$, respectiv $X \sim Geo(p)$.

```
pkg load statistics
clear all
close all
% X urmeaza distributia Bino(n,p)
n=5; % nr. repetari ale experimentului
p=0.4; %probabilitatea de a obtine succes
x=-1:0.001:6;
y=binocdf(x,n,p);
plot(x,y,'r.')
title('FUNCTIA DE REPARTITIE - Distr. binomiala')
```

Variabile aleatoare continue

V.a. continuă: ia un număr infinit şi nenumărabil de valori într-un interval sau reuniune de intervale (v.a. poate lua orice valoare din intervalul considerat);

⊳ v.a. continue pot modela caracteristici fizice precum timp (de ex. timp de instalare, timp de aşteptare), greutate, lungime, poziție, volum, temperatură (de ex. X e v.a. care indică durata de funcționare a unui dispozitiv până la prima defectare; X e v.a. care indică temperatura într-un oraș la ora amiezii)

⊳ v.a. continuă este caracterizată de funcția de densitate.

Def. 19. Funcția de densitate a unei v.a. continue X este funcția $f: \mathbb{R} \to \mathbb{R}$ pentru care are loc

$$P(X \le x) = \int_{-\infty}^{x} f(t)dt, \ \forall \ x \in \mathbb{R}.$$

Funcția $F: \mathbb{R} \to [0,1]$ definită prin

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt, \ \forall \ x \in \mathbb{R},$$

se numește funcția de repartiție a v.a. continue X.

(1) $f(t) \ge 0$ pentru orice $t \in \mathbb{R}$;

$$(2)\int_{-\infty}^{\infty} f(t) dt = 1;$$

(3)
$$F(b) - F(a) = P(a < X \le b) = \int_a^b f(t)dt \ \forall \ a, b \in \mathbb{R}, a < b;$$

- $(4) P(X = a) = 0 \ \forall a \in \mathbb{R};$
- (5) pentru $\forall a < b, a, b \in \mathbb{R}$ au loc

$$F(b) - F(a) = P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b) = \int_{a}^{b} f(t)dt;$$

- (6) F este o funcție monoton crescătoare și continuă pe \mathbb{R} ;
- (7) $\lim_{x \to \infty} F(x) = 1$ şi $\lim_{x \to -\infty} F(x) = 0$. (8) dacă F este derivabilă în punctul x, atunci F'(x) = f(x).

Observație: Orice funcție $f: \mathbb{R} \to \mathbb{R}$, care are proprietățile (1), (2) din **P.11** este o funcție de densitate.

Exemple de distribuții clasice continue

- **Distribuția uniformă pe un interval** [a,b]: $X \sim Unif[a,b], a,b \in \mathbb{R}, a < b$
- funcția de densitate este

$$f(x) = \begin{cases} & \frac{1}{b-a}, \text{pentru } x \in [a,b] \\ & 0, \text{ pentru } x \in \mathbb{R} \setminus [a,b] \end{cases}$$

Matlab/Octave:

 \triangleright pentru a=0,b=1: rand(M,N) returnează o matrice $M\times N$ cu valori aleatoare din [0,1]

 \triangleright unifrnd(a, b, M, N) returnează o matrice $M \times N$ cu valori aleatoare din [a, b]

 \triangleright pentru $X \sim Unif[a,b]$: unifpdf(x,a,b) calculează f(x), iar unifcdf(x,a,b) calculează $F(x) = P(X \le x).$

- **Distribuția normală (Gauss):** $X \sim N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0$
- funcția de densitate este

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), x \in \mathbb{R}.$$

- Pentru $\mu = 0, \sigma = 1$: N(0,1) se numește distribuția standard normală.
- Distribuția normală se aplică în: măsurarea erorilor (de ex. termenul eroare în analiza regresională), în statistică (teorema limită centrală, teste statistice) etc.

Friedrich Gauss și legea normală $N(\mu, \sigma^2)$ (bancnota de 10 DM)

Matlab/Octave: normrnd (μ, σ, M, N) returnează o matrice $M \times N$ cu valori aleatoare; \triangleright pentru $X \sim N(\mu, \sigma^2)$: normpdf (x, μ, σ) calculează f(x), iar normcdf (x, μ, σ) calculează $F(x) = P(X \le x)$.

- **Distribuția exponențială:** $X \sim Exp(\lambda), \lambda > 0$
- funcția de densitate este

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{pentru } x > 0 \\ 0, & \text{pentru } x \le 0 \end{cases}$$

Matlab/Octave: exprnd $\left(\frac{1}{\lambda},M,N\right)$ returnează o matrice $M\times N$ cu valori aleatoare; \triangleright pentru $X\sim Exp(\lambda)$: exppdf $\left(x,\frac{1}{\lambda}\right)$ calculează f(x), iar expcdf $\left(x,\frac{1}{\lambda}\right)$ calculează $F(x)=P(X\leq x)$.

```
pkg load statistics
clear all
close all
figure
title('Functia de densitate a legii exponentiale')
hold on
L=[1,2,4]; % lambda parametru
t=[-1:0.01:2];
plot(t, exppdf(t,1/L(1)), 'r*')
plot(t, exppdf(t,1/L(2)), 'b*')
plot(t, exppdf(t,1/L(3)), 'g*')
legend('lambda=1','lambda=2','lambda=4')
```

- **Distribuția Student:** $X \sim St(n), n \in \mathbb{N}^*$
- ullet distribuția Student cu $n\in\mathbb{N}^*$ grade de libertate are funcția de densitate

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, \ t \in \mathbb{R}$$

unde funcția Gamma este

$$\Gamma(a) = \int_{0}^{\infty} v^{a-1} \exp(-v) dv, \ a > 0$$

Matlab/Octave: trnd(n, M, N) returnează o matrice $M \times N$ cu valori aleatoare; $pointru X \sim St(n)$: tpdf(x, n) calculează f(x), iar tcdf(x, n) calculează $F(x) = P(X \le x)$.

- **Distribuția Chi-pătrat:** $X \sim \chi^2(n), n \in \mathbb{N}^*$
- \bullet distribuția χ^2 cu $n\in\mathbb{N}^*$ grade de libertate are funcția de densitate

$$f(x) = \left\{ \begin{array}{ll} 0, & \operatorname{dacă} x \leq 0 \\ \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}}} \cdot x^{\frac{n}{2}-1} \cdot \exp\left(-\frac{x}{2}\right), & \operatorname{dacă} x > 0, \end{array} \right.$$

Matlab/Octave: chi2rnd(n, M, N) returnează o matrice $M \times N$ cu valori aleatoare; pointry pointry pointry pointry pointry pointry pointry <math>pointry pointry pointry

Exemplu: Fie $X \sim Exp(0.5)$ v.a. care indică timpul de funcționare a unei baterii (câte luni funcționează bateria). Folosind simulări, să se estimeze a) $P(2 \le X \le 4)$; b) P(X > 3) și să se compare rezultatele obținute cu rezultatele teoretice.

pkg load statistics
N=10000;
X=exprnd(2,1,N);
p=sum((2<=X)&(X<=4))/N
q=sum(X>3)/N
> p=0.23280
> q=0.22060

$$P(2 \le X \le 4) = \int_{2}^{4} 0.5e^{-0.5t}dt = -e^{-0.5t}\Big|_{2}^{4} = e^{-1} - e^{-2} \approx 0.23254$$

$$P(X > 3) = 1 - \int_{-\infty}^{3} 0.5e^{-0.5t}dt = \int_{3}^{\infty} 0.5e^{-0.5t}dt = -e^{-0.5t}\Big|_{3}^{\infty} = e^{-1.5} \approx 0.22313$$

Matlab/Octave:

Distribuţia	Generare	Funcția de repartiție	Probabilitate
v.a. discrete X	valori aleatoare	$F_X(x) = P(X \le x)$	P(X=x)
Bino(n,p)	binornd(n,p)	binocdf(x, n, p)	binopdf(x, n, p)
Unid(n)	unidrnd(n)	unidcdf(x,n)	unidpdf(x,n)
$Hyge(n,n_1,n_2)$	hygernd (n_1+n_2,n_1,n)	hygecdf (x,n_1+n_2,n_1,n)	hygepdf (x,n_1+n_2,n_1,n)
Geo(p)	geornd(p)	geocdf(x,p)	geopdf(x,p)

Distribuţia	Generare	Funcția de repartiție	Funcția de densitate
v.a. continue X	valori aleatoare	$F_X(x) = P(X \le x)$	$f_X(x)$
Unif[a,b]	unifrnd(a,b)	$\mathrm{unifcdf}(x,a,b)$	unifpdf(x,a,b)
$N(\mu, \sigma^2)$	$\operatorname{normrnd}(\mu,\sigma)$	$\texttt{normcdf}(x,\mu,\sigma)$	$\texttt{normpdf}(x,\mu,\sigma)$
$Exp(\lambda)$	$\operatorname{exprnd}(\frac{1}{\lambda})$	$expcdf(x, \frac{1}{\lambda})$	$exppdf(x, \frac{1}{\lambda})$

Observație: Dacă în cadrul aceluiași program Matlab/Octave se generează valori aleatoare (de exemplu cu rand, randi, binornd, hygernd, unidrnd, geornd, unifrnd, normrnd, exprnd, etc.) atunci acestea pot fi considerate ca fiind valorile unor variabile aleatoare independente.

Proprietăți

V.a. discretă

• caracterizată de distribuţia de probabilitate discretă

$$X \sim \begin{pmatrix} x_i \\ P(X = x_i) \end{pmatrix}_{i \in I}$$

$$\bullet \sum_{i \in I} P(X = x_i) = 1$$

$$P(X \in A) = \sum_{i \in I: x_i \in A} P(X = x_i)$$

• funcția de repartiție $F(x)=P(X \le x) \ \forall x \in \mathbb{R}$

•
$$F(x) = \sum_{i \in I: x_i \le x} P(X = x_i) \ \forall x \in \mathbb{R}$$

- F este funcție continuă la dreapta
- F este discontinuă în punctele $x_i, \forall i \in I$

$$\bullet \ \forall \ a < b, a, b \in \mathbb{R}$$
$$P(a \le X \le b) = \sum_{i \in I: a \le x_i \le b} P(X = x_i)$$

•
$$P(X = a) = 0$$
 dacă $a \notin \{x_i : i \in I\}$

V.a. continuă

• caracterizată de funcția de densitate f

$$P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

$$\bullet \int_{-\infty}^{\infty} f(t)dt = 1$$

•
$$P(X \in A) = \int_A f(t)dt$$

• funcția de repartiție $F(x)=P(X \le x) \ \forall x \in \mathbb{R}$

•
$$F(x) = \int_{-\infty}^{x} f(t)dt \quad \forall x \in \mathbb{R}$$

 \bullet F este funcție continuă în orice punct $x \in \mathbb{R}$

$$\bullet \ \forall \ a < b, a, b \in \mathbb{R}$$
$$P(a \le X \le b) = P(a < X \le b)$$

$$= P(a \le X < b) = P(a < X < b) = \int_{a}^{b} f(t) dt$$

•
$$P(X = a) = \int_{a}^{a} f(t) dt = 0 \,\forall \, a \in \mathbb{R}$$

• dacă F este derivabilă în punctul x $\Rightarrow F'(x) = f(x)$.

Exercițiu: Fie X v.a. care indică timpul de funcționare neîntreruptă (în ore) până la prima defectare a unui aparat, pentru care $P(X > x) = 2^{-x}, x > 0$ și $P(X > x) = 1, x \le 0$. Să se determine f_X și P(2 < X < 3).

Vector aleator continuu

Def. 20. (X_1, \ldots, X_n) este un **vector aleator continuu** dacă fiecare componentă a sa este o variabiă aleatoare continuă.

Def. 21. $f_{(X,Y)}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ este funcția de densitate a vectorului aleator continuu (X,Y), dacă

$$P(X \le x, Y \le y) = \int_{-\infty}^{x} \left(\int_{-\infty}^{y} f_{(X,Y)}(s,t) dt \right) ds \ \forall x, y \in \mathbb{R}.$$

Def. 22. $F_{(X,Y)}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ este funcția de repartiție a vectorului aleator (X,Y) (discret sau continuu), dacă

$$F_{(X,Y)}(x,y) = P(X \le x, Y \le y) \quad \forall \ x, y \in \mathbb{R}.$$

Exemplu: Vectorul aleator discret (X_1, X_2) este dat prin următorul X_1 X_2 0 3 tabel de contingență: X_1 X_2 0 0.3 0.3

Calculăm

$$F_{(X_1,X_2)}(3,5) = P(X_1 \le 3, X_2 \le 5) = P(X_1 = -2, X_2 \in \{0,3\}) = 0.7;$$

$$F_{(X_1,X_2)}(5,2) = P(X_1 \le 5, X_2 \le 2) = P(X_1 \in \{-2,4\}, X_2 = 0) = 0.6.$$

P. 12. Pentru un vector aleator continuu (X,Y) au loc proprietățile:

1.
$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f_{(X,Y)}(u,v) \, dv \right) du = 1.$$

- 2. $F_{(X,Y)}$ este funcție continuă.
- 3. Dacă $F_{(X,Y)}$ este derivabilă parțial în (x,y), atunci are loc:

$$\frac{\partial^2 F_{(X,Y)}(x,y)}{\partial x \partial y} = f_{(X,Y)}(x,y).$$

4.
$$P((X,Y) \in A) = \int \int_A \int_{A} f_{(X,Y)}(u,v) du dv, \ A \subset \mathbb{R}^2.$$

▶ Dacă se cunoaște funcția de repartiție $F_{(X,Y)}$ pentru vectorul aleator (X,Y) (discret sau continuu), atunci F_X , respectiv F_Y , se determină cu

(3)
$$F_X(x) = \lim_{y \to \infty} F_{(X,Y)}(x,y), \quad F_Y(y) = \lim_{x \to \infty} F_{(X,Y)}(x,y).$$

Exemplu: Funcția de repartiție a vectorului aleator (X,Y) este $F_{(X,Y)}: \mathbb{R} \times \mathbb{R} \to [0,1]$

$$F_{(X,Y)}(x,y) = \left\{ \begin{array}{ll} 0, & \operatorname{dacă} \; x < 0 \; \mathrm{sau} \; y < 1 \\ x(y-1), & \operatorname{dacă} \; 0 \leq x < 1 \; \mathrm{şi} \; 1 \leq y < 2 \\ x, & \operatorname{dacă} \; 0 \leq x < 1 \; \mathrm{şi} \; 2 \leq y \\ y-1, & \operatorname{dacă} \; 1 \leq x \; \mathrm{şi} \; 1 \leq y < 2 \\ 1, & \operatorname{dacă} \; 1 \leq x \; \mathrm{şi} \; 2 \leq y \; . \end{array} \right.$$

Ce distribuţie au X, respectiv Y?

R.: Se determină F_X, F_Y cu (3) şi se calculează $f_X = F_X', f_Y = F_Y'$; se obține $X \sim Unif[0,1], Y \sim Unif[1,2]$ (a se vedea expresia funcției de densitate a distribuției uniforme pe un interval pe pg. 35).

▶ Dacă se cunoaște funcția de densitate $f_{(X,Y)}$ pentru vectorul aleator continuu (X,Y), atunci f_X , respectiv f_Y , se determină cu

$$(4) f_X(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dy, \ \forall x \in \mathbb{R}, f_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dx, \ \forall y \in \mathbb{R}.$$

Exemplu pentru o distribuţie normală bidimensională: (X, Y) are funcția de densitate (graficul acestei funcții este dat în figura alăturată)

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}}, \quad x, y \in \mathbb{R}.$$

$$\stackrel{\text{(4)}}{\Longrightarrow} f_X(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad \forall x \in \mathbb{R},$$

$$\stackrel{\text{(4)}}{\Longrightarrow} f_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad \forall y \in \mathbb{R}.$$

$$\stackrel{\text{(4)}}{\Longrightarrow} X, Y \sim N(0,1).$$

 $f_{(X,Y)}$ pentru distribuția normală bidimensională

```
%graficul unei functii de densitate normala bidimensionala
clear all
close all
figure(1)
hold on
f=0(x,y) (1/(2*pi))*exp(-(x.^2+y.^2)/2);
% functie de densitate normala 2-dimensionala
x=-2:0.1:2;
y=-1.5:0.1:1.5;
view(30, 10)
[xx,yy] = meshgrid(x,y);
ff=f(xx,yy);
surf(x, y, ff)
title ('functie de densitate normala 2-dimensionala')
xlabel('x')
ylabel('y')
zlabel('z')
figure(2)
view(30, 10)
hold on
title ('functie de densitate normala 2-dimensionala / animatie')
xlabel('x')
vlabel('v')
zlabel('z')
for i=1:length(x)
for j=1:length(y)
plot3(x(i),y(j),f(x(i),y(j)),'r*')
pause (0.000001)
end
end
```

Variabilele aleatoare independente (discrete sau continue)

Def. 23. X_1, \ldots, X_n sunt **n variabilele aleatoare independente** (discrete sau continue), dacă

$$P(X_1 \le x_1, \dots, X_n \le x_n) = P(X_1 \le x_1) \cdot \dots \cdot P(X_n \le x_n) \ \forall \ x_1, \dots, x_n \in \mathbb{R}.$$

Observație (n=2 in definiția de mai sus): X_1 și X_2 sunt două variabilele aleatoare independente (discrete sau continue), dacă

$$P(X_1 \le x_1, X_2 \le x_2) = P(X_1 \le x_1) \cdot P(X_2 \le x_2) \quad \forall x_1, x_2 \in \mathbb{R},$$

adică

$$F_{(X_1,X_2)}(x_1,x_2) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \quad \forall x_1,x_2 \in \mathbb{R}.$$

P. 13. Variabilele aleatoare continue X_1 (cu funcția de densitate f_{X_1}) și X_2 (cu funcția de densitate f_{X_2}) sunt independente, dacă și numai dacă

$$f_{(X_1,X_2)}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2) \quad \forall \ x_1,x_2 \in \mathbb{R},$$

unde $f_{(X_1,X_2)}$ este funcția de densitate a vectorului aleator (X_1,X_2) .

Exemplul 1: (X_1, X_2) are distribuție uniformă pe $I = [a_1, b_1] \times [a_2, b_2]$, cu $a_1, a_2, b_1, b_2 \in \mathbb{R}$, $a_1 < b_1, a_2 < b_2$ dacă

$$f_{(X_1,X_2)}(x_1,x_2) {=} \left\{ \begin{array}{ll} \frac{1}{(b_1-a_1)(b_2-a_2)} & \mathrm{dac} \ \ (x_1,x_2) \in I \\ 0 & \mathrm{dac} \ \ (x_1,x_2) \notin I. \end{array} \right.$$

Cu (4) se calculează

$$f_{X_1}(x_1) = \left\{ \begin{array}{ll} \frac{1}{b_1 - a_1} & \text{dacă} \ x_1 \in [a_1, b_1] \\ 0 & \text{dacă} \ x_1 \in \mathbb{R} \setminus [a_1, b_1]. \end{array} \right. \quad \text{şi } f_{X_2}(x_2) = \left\{ \begin{array}{ll} \frac{1}{b_2 - a_2} & \text{dacă} \ x_2 \in [a_2, b_2] \\ 0 & \text{dacă} \ x_2 \in \mathbb{R} \setminus [a_2, b_2]. \end{array} \right.$$

 $\Longrightarrow X_1 \sim Unif[a_1,b_1], X_2 \sim Unif[a_2,b_2];$ se observă $f_{(X_1,X_2)} = f_{X_1} \cdot f_{X_2} \Longrightarrow X_1$ şi X_2 sunt v.a. independente!

Exemplul 2: Fie (X, Y) vector aleator continuu, având funcția de repartiție

$$F_{(X,Y)}(x,y) = \begin{cases} (1-e^{-x})(1-e^{-2y}) & \text{dacă } x > 0 \text{ și } y > 0 \\ 0 & \text{în rest} \end{cases}$$

Sunt X și Y v.a. independente? Să se calculeze $P(1 \le X \le 2 \le Y \le 3)$.

R.: Se calculează $F_X(x)=1-e^{-x}$ pentru x>0 și $F_X(x)=0$ pentru $x\le 0$, precum și $F_Y(y)=1-e^{-2y}$ pentru y>0 și $F_Y(y)=0$ pentru $y\le 0$. Se verifică

$$F_{(X,Y)}(x,y) = F_X(x) \cdot F_Y(y) \quad \forall \ x, y \in \mathbb{R}.$$

Deci, X și Y sunt v.a. independente.

$$P(1 \le X \le 2 \le Y \le 3) = \int_{1}^{2} \int_{2}^{3} f_{X}(u) f_{Y}(v) du dv = (e^{-1} - e^{-2})(e^{-4} - e^{-6}) \approx 0.00368.$$

Def. 24. Valoarea medie a unei v.a. continue X, care are funcția de densitate f, este

$$E(X) = \int_{-\infty}^{\infty} t f(t) dt, \ dac \ \ \int_{-\infty}^{\infty} |t| f(t) dt < \infty.$$

> Valoarea medie a unei variabile aleatoare caracterizează tendința centrală a valorilor acesteia.

P. 14. Proprietăți ale valorii medii; fie X, Y v.a. continue:

- $\rightarrow E(aX + b) = aE(X) + b$ pentru orice $a, b \in \mathbb{R}$;
- $\rightarrow E(X + Y) = E(X) + E(Y);$
- \rightarrow Dacă X şi Y sunt variabile aleatoare **independente**, atunci $E(X \cdot Y) = E(X)E(Y)$.
- $ightarrow Dacă g: \mathbb{R}
 ightarrow \mathbb{R}$ e o funcție, astfel încât g(X) este o v.a. continuă, atunci

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$

$$dac \check{a} \int_{-\infty}^{\infty} |g(x)| f_X(x) dx < \infty.$$

Exemplu: Durata drumului parcurs de un elev dimineața de acasă până la școală este o v.a. uniform distribuită între 20 și 26 minute. Dacă elevul pornește la 7:35 (a.m.) de acasă și are ore de la 8 (a.m.), care este probabilitatea ca elevul să ajungă la timp la școală? *În medie* cât durează drumul elevului până la școală?

Răspuns: fie X (v.a.) = durata drumului parcurs până la școală (în minute) $\Rightarrow X \sim Unif[20, 26]$

$$\implies f_X(t) = \left\{ \begin{array}{ll} \frac{1}{26-20} = \frac{1}{6}, & \operatorname{dacă} 20 \leq t \leq 26 \\ 0, & \text{in rest.} \end{array} \right.$$

 $P(\text{``elevul ajunge la timp la şcoală''}) = P(X \le 25) = \int_{-\infty}^{25} f_X(t) dt = \int_{20}^{25} \frac{1}{6} dt = \frac{25-20}{6} = \frac{5}{6}.$

$$E(X) = \int_{-\infty}^{\infty} t f_X(t) dt = \int_{20}^{26} t \cdot \frac{1}{6} dt = \frac{1}{6} \cdot \frac{t^2}{2} \Big|_{20}^{26} = 23 \text{ (minute)}.$$

Varianța unei variabile aleatoare

Def. 25. Varianța (dispersia) unei variabile aleatoare X (discrete sau continue) este

$$V(X) = E\left((X - E(X))^2\right),\,$$

(dacă valoarea medie $E\left((X-E(X))^2\right)$ există). Valoarea $\sqrt{V(X)}$ se numește **deviația standard** a lui X și o notăm cu Std(X).

- Varianța unei variabile aleatoare caracterizează împrăștierea (dispersia) valorilor lui X în jurul valorii medii E(X).
- **P. 15.** Proprietăți ale varianței (pentru v.a. discrete sau continue):

$$\to V(X) = E(X^2) - E^2(X).$$

$$\rightarrow V(aX + b) = a^2V(X) \ \forall \ a, b \in \mathbb{R}.$$

 \rightarrow Dacă X şi Y sunt variabile aleatoare **independente**, atunci V(X+Y)=V(X)+V(Y).

Exemple: 1) Fie $X \sim Bino(n, p)$. Să se arate că E(X) = np şi V(X) = np(1 - p).

R.: Pentru $i \in \{1, ..., n\}$ fie $X_i \sim Bernoulli(p)$ (adică $P(X_i = 1) = p$, $P(X_i = 0) = 1 - p$), astfel încât $X_1, ..., X_n$ sunt v.a. independente. Observăm că $X_1 + ... + X_n \sim Bino(n, p)$. Deci, $X_1 + ... + X_n$ și X au aceeași distribuție, așadar ele au aceeași valoare medie și aceeași varianță

$$E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = p + \dots + p = np.$$

V.a. X_1, \ldots, X_n sunt independente şi folosind P.15, obţinem

$$V(X) = V(X_1 + \dots + X_n) = V(X_1) + \dots + V(X_n) = np(1-p) = np(1-p).$$

2) Dacă $X \sim N(\mu, \sigma^2)$ să se arate că $E(X) = \mu, V(X) = \sigma^2$.

R.: Funcția de densitate a lui X este

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, x \in \mathbb{R}.$$

Când $\mu = 0$ și $\sigma = 1$ obținem funcția de densitate a distribuției normale standard

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}, x \in \mathbb{R}.$$

Din P.11-(2) rezultă

$$\int_{-\infty}^{\infty} \varphi(t)dt = 1.$$

În calculele de mai jos utilizăm schimbarea de variabilă $t = \frac{x - \mu}{\sigma}$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$
$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t \exp\left\{-\frac{t^2}{2}\right\} dt + \mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{t^2}{2}\right\} dt$$
$$= 0 + \mu \int_{-\infty}^{\infty} \varphi(t) dt = \mu.$$

Folosind aceeași schimbare de variabilă și apoi integrare prin părți, avem

$$V(X) = E[(X - \mu)^2] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x - \mu)^2 \exp\left\{-\frac{(x - \mu)^2}{2\sigma^2}\right\} dx$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 \exp\left\{-\frac{t^2}{2}\right\} dt = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t \left(-\exp\left\{-\frac{t^2}{2}\right\}\right)' dt$$

$$= t \left(-\exp\left\{-\frac{t^2}{2}\right\}\right) \Big|_{-\infty}^{\infty} - \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(-\exp\left\{-\frac{t^2}{2}\right\}\right) dt$$

$$= 0 - 0 + \sigma^2 \int_{-\infty}^{\infty} \varphi(t) dt = \sigma^2.$$

3) Vectorul aleator (X, Y) are funcția de densitate

$$f_{(X,Y)}:\mathbb{R}^2\to\mathbb{R} \qquad f_{(X,Y)}(x,y) \ = \ \left\{ \begin{array}{ll} x-y, & \mathrm{dac\check{a}} \ 0\leq x\leq 1 \ \mathrm{şi} \ -1\leq y\leq 0 \\ 0, & \mathrm{altfel} \ . \end{array} \right.$$

Să se calculeze E(X) și $E(X^2)$.

R.:

$$f_X(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dy = \begin{cases} \int_{-1}^{0} (x-y) \, dy = x + \frac{1}{2}, & \text{dacă } 0 \le x \le 1 \\ 0, & \text{altfel } . \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \left(x + \frac{1}{2} \right) dx = \frac{7}{12}.$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx = \int_{0}^{1} x^{2} \left(x + \frac{1}{2} \right) dx = \frac{5}{12}.$$

▶ Matlab/Octave: mean, var, std Fie $x = [x_1, ..., x_n]$ valorile unei v.a. X

$$mean(x) = \frac{1}{n}(x_1 + \dots + x_n)$$

 $mean(x) \approx E(X)$ pentru n suficient de mare

$$var(x,1) = \frac{1}{n} \sum_{i=1}^{n} (x_i - mean(x))^2, \quad var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - mean(x))^2$$

 $var(x,1) \approx V(X), var(x) \approx V(X)$ pentru n suficient de mare

$$std(x,1) = \left(\frac{1}{n}\sum_{i=1}^{n}(x_i - mean(x))^2\right)^{\frac{1}{2}}, std(x) = \left(\frac{1}{n-1}\sum_{i=1}^{n}(x_i - mean(x))^2\right)^{\frac{1}{2}}$$

 $std(x,1) \approx Std(X), std(x) \approx Std(X)$ pentru n suficient de mare

Def. 26. $(X_n)_n$ este **şir de v.a. independente**, $dac \Breve{a} \ \forall \ \{i_1, \ldots, i_k\} \subset \mathbb{N}$ v.a. X_{i_1}, \ldots, X_{i_k} sunt independente, $adic \Breve{a}$

$$P(X_{i_1} \le x_{i_1}, \dots, X_{i_k} \le x_{i_k}) = P(X_{i_1} \le x_{i_1}) \cdot \dots \cdot P(X_{i_k} \le x_{i_k})$$

 $\forall x_{i_1}, \ldots, x_{i_k} \in \mathbb{R}.$

Exemplu: a) X_n = v.a. care indică numărul apărut la a n-aruncare a unui zar $\Rightarrow (X_n)_n$ şir de v.a. independente.

b) Se aruncă o monedă

 $X_n = \begin{cases} 0 & : \text{ la a } n\text{-a aruncare a apărut } cap, \\ 1 & : \text{ la a } n\text{-a aruncare a apărut } pajură. \end{cases}$

- $\Rightarrow (X_n)_n$ şir de v.a. independente.
- c) X_n = v.a. care indică numărul apărut la al n-lea joc de ruletă
- $\Rightarrow (X_n)_n$ şir de v.a. independente.

Def. 27. Şirul de v.a. $(X_n)_n$ converge aproape sigur (a.s.) la v.a. X, dacă

$$P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1.$$

Notație: $X_n \xrightarrow{\text{a.s.}} X$

▶ Cu alte cuvinte, convergența aproape sigură $X_n \stackrel{\text{a.s.}}{\to} X$ impune ca $\left(X_n(\omega)\right)_n$ să conveargă la $X(\omega)$ pentru fiecare $\omega \in \Omega$, cu excepția unei mulțimi "mici" de probabilitate nulă; dacă $X_n \stackrel{a.s.}{\longrightarrow} X$ atunci evenimentul

$$M = \{\omega \in \Omega : (X_n(\omega))_n \text{ nu converge la } X(\omega) \}$$
 are $P(M) = 0$.

Exemple: 1) În spațiul de probabilitate (Ω, \mathcal{K}, P) fie $A \in \mathcal{K}$ cu P(A) = 0.4 și $P(\bar{A}) = 0.6$:

$$X_n(\omega) = \begin{cases} 1 + \frac{1}{n}, & \text{pentru } \omega \in A \\ -\frac{1}{n}, & \text{pentru } \omega \in \bar{A}. \end{cases} \implies P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = ???\}) = 1.$$

Definim

$$X(\omega) = \begin{cases} 1, & \text{pentru } \omega \in A \\ 0, & \text{pentru } \omega \in \bar{A}. \end{cases} \implies P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = P(A) + P(\bar{A}) = 1.$$

Aşadar $X_n \xrightarrow{\text{a.s.}} X$.

2) Fie $\Omega := [0,1]$ spațiul de selecție, P probabilitatea pe [0,1] (care este numită măsura Lebesgue pe [0,1]), adică pentru $\forall \alpha < \beta$ din [0,1] are loc

$$P([\alpha, \beta]) = P([\alpha, \beta]) = P((\alpha, \beta]) = P((\alpha, \beta)) := \beta - \alpha$$
 (lungimea intervalului)

2a) $X_n(\omega) = \omega + \omega^n + (1 - \omega)^n$, $\omega \in [0, 1], n \ge 1 \Rightarrow X_n \xrightarrow{a.s.}$????

$$\lim_{n \to \infty} X_n(\omega) = \begin{cases} \omega & \text{pentru } \omega \in (0, 1) \\ 1 & \text{pentru } \omega = 0 \\ 2 & \text{pentru } \omega = 1. \end{cases}$$

Fie $X(\omega) = \omega$ pentru fiecare $\omega \in \Omega$

$$\Rightarrow \{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = \omega\} = (0, 1)$$

$$\Rightarrow P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = \omega\}) = P((0, 1)) = 1.$$

$$X_n \xrightarrow{a.s.} X.$$

2b) $X_n(\omega) = (-1)^n \omega, \ \omega \in [0,1], n \ge 1$; converge $(X_n)_n$ a.s.?

R.: $(X_n)_n$ nu converge a.s. spre o v.a.; şirul $(X_n(\omega))_n^n$ este convergent doar în $\omega = 0$, iar $P(\{0\}) = 0$.

Frecvențe relative și absolute (a se vedea Def.2): Fie A un eveniment asociat unei experiențe, repetăm experiența de n ori (în aceleași condiții date) și notăm cu r_n numărul de realizări ale evenimentului A; frecvența relativă a evenimentului A este numărul

$$f_n(A) = \frac{r_n(A)}{n}$$

 $r_n(A)$ este **frecvența absolută** a evenimentului A.

Experiment: Se aruncă o monedă de n ori; A: se obține pajură

\overline{n}	frecvență absolută	frecvență relativă	
	$r_n(A)$	$\int f_n(A)$	
100	48	0.48	
1000	497	0.497	
10000	5005	0.5005	

$$f_n(A) \xrightarrow{a.s.} \frac{1}{2}$$
 (a se vedea P.17)

la probabilitatea teoretică."

Legea tare a numerelor mari (LTNM)

Legea numerelor mari se referă la descrierea rezultatelor unui experiment repetat de foarte multe ori. Conform acestei legi, rezultatul mediu obținut se apropie tot mai mult de valoarea așteptată, cu cât experimentul se repetă de mai multe ori. Aceasta se explică prin faptul că abaterile aleatoare se compensează reciproc.

Legea numerelor mari are două formulări: **legea slabă a numerelor mari (LSNM)** și **legea tare a numerelor mari (LTNM)**. ▲ **Scurt istoric**: Jacob Bernoulli (1655 -1705) a formulat LSNM pentru frecvența relativă a unui experiment și a dat răspunsul la întrebarea "*Putem aproxima empiric probabilitățile*?" (în opera publicată postum, în 1713, *Ars conjectandi*); ▷ Teorema lui

Bernoulli afirmă: "Frecvențele relative converg în probabilitate

Fig. 5. Jacob Bernoulli (timbru emis în 1994 cu ocazia Congresului Internațional al Matematicienilor din Elveția)

Def. 28. Şirul de v.a. $(X_n)_n$ cu $E|X_n|<\infty$ \forall $n\in\mathbb{N}$ verifică legea tare a numerelor mari (LTNM) dacă

$$P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(X_k(\omega) - E(X_k)\right) = 0\right\}\right) = 1,$$

adică

$$\frac{1}{n}\sum_{k=1}^{n} \left(X_k - E(X_k)\right) \xrightarrow{a.s.} 0.$$

P. 16. Fie $(X_n)_n$ şir de v.a. independente având aceeaşi distribuţie şi există $m = E(X_n) \, \forall \, n \in \mathbb{N}$. $\Rightarrow (X_n)_n$ verifică **LTNM**, adică

$$\frac{1}{n}(X_1 + \dots + X_n) \xrightarrow{a.s.} m.$$

În simulări: $\frac{1}{n}(X_1 + \cdots + X_n) \approx m$, dacă n este suficient de mare.

Exemplu 1: Fie $X_1, ..., X_n, ... \sim Unid(6)$ v.a. independente; are loc $E(X_n) = \frac{1+2+3+4+5+6}{6} = 3.5 \ \forall \ n \geq 1$. Folosind P.16 rezultă că $(X_n)_n$ verifică **LTNM**, adică $\frac{1}{n}(X_1 + ... + X_n) \xrightarrow{a.s.} 3.5$. Simulare LTNM (Matlab/Octave):

Fig. 4. Simulare LTNM

P. 17. Fie A un eveniment asociat unei experiențe, repetăm experiența de n ori (în aceleași condiții date și independent unele de altele). LTNM: cu cât repetăm mai des un experiment ($n \to \infty$), cu atât mai bine aproximează frecvența relativă $f_n(A)$ a evenimentului A probabilitatea sa teoretică de apariție P(A):

$$f_n(A) \xrightarrow{a.s.} P(A), \ dac \ \ n \to \infty.$$

În simulări: $f_n(A) \approx P(A)$, dacă n este suficient de mare.

Demonstrație pentru P.17: Aplicăm P.16 pentru șirul de v.a. independente $(X_n)_n$, unde

$$X_n = \left\{ \begin{array}{ll} 1, & \text{dacă } A \text{ apare în a } n\text{- a execuție a experimentului} \\ 0, & \text{dacă } \bar{A} \text{ apare în a } n\text{- a execuție a experimentului} \end{array} \right.$$

$$\Longrightarrow X_n \sim \begin{pmatrix} 0 & 1 \\ 1 - P(A) & P(A) \end{pmatrix} \Longrightarrow X_n \sim Bernoulli(P(A))$$

$$\Longrightarrow E(X_n) = 0 \cdot (1 - P(A)) + 1 \cdot P(A) = P(A) \ \forall n \in \mathbb{N}^*.$$

$$P.16 \Longrightarrow \frac{1}{n}(X_1 + \dots + X_n) \xrightarrow{a.s.} P(A).$$

$$\operatorname{Dar} \frac{1}{n}(X_1 + \dots + X_n) = f_n(A) \text{ (freevenţa relativă a lui } A) \Longrightarrow f_n(A) \xrightarrow{a.s.} P(A).$$

Exemplu 2: Fie $(X_n)_n$ şir de v.a. independente, având aceeaşi distribuţie ca v.a. X şi varianţă finită: $E(X_n) = E(X) \in \mathbb{R}, \ V(X_n) = V(X) \in \mathbb{R}$ pentru fiecare $n \in \mathbb{N}^*$.

Definim $Y_n = (X_n - E(X))^2 \ \forall \ n \in \mathbb{N}^* \Rightarrow (Y_n)_n$ este şir de v.a. independente, având aceeaşi distribuţie ca v.a. $(X - E(X))^2$ şi $E(Y_n) = E((X - E(X))^2) = V(X) \ \forall \ n \in \mathbb{N}^*$.

 $P.16 \Rightarrow (Y_n)_n$ verifică **LTNM**

$$\frac{1}{n}(Y_1 + \dots + Y_n) \xrightarrow{a.s.} V(X),$$

adică

$$\frac{1}{n}\Big((X_1 - E(X))^2 + \dots + (X_n - E(X))^2\Big) \xrightarrow{a.s.} V(X).$$

Caz particular: Fie $X_1,...,X_n,... \sim Unid(6)$ v.a. independente; are loc $E(X_n) = \frac{1+2+3+4+5+6}{6} = 3.5,\ V(X_n) = E(X_n^2) - E^2(X_n) = \frac{35}{12} \approx 2.916 \ \forall \ n \geq 1.$ Folosind P.16 rezultă că $(Y_n)_n = ((X_n - 3.5)^2)_n$ verifică **LTNM**, adică $\frac{1}{n} \big((X_1 - 3.5)^2 + ... + (X_n - 3.5)^2 \big) \xrightarrow{a.s.} \frac{35}{12}.$

Exemplu 3: Fie $X_1, ..., X_n, ... \sim Unif[-1,1]$ v.a. independente. Spre ce valoare converge a.s. şirul

$$Z_n = \frac{1}{n}(X_1^2 + \dots + X_n^2), \ n \in \mathbb{N}^* \ ?$$

R.: Aplicăm P.16 pentru șirul de v.a. independente $(X_n^2)_n \Longrightarrow Z_n \xrightarrow{a.s.} E(X_1^2)$. Calculăm

$$E(X_1^2) = \int_{-1}^1 t^2 \frac{1}{1 - (-1)} dt = \frac{1}{2} \cdot \frac{t^3}{3} \Big|_{-1}^1 = \frac{1}{3}.$$

$$\Longrightarrow Z_n \xrightarrow{a.s.} \frac{1}{3}.$$

Statistică matematică

- ► Statistica matematică este o ramură a matematicii aplicate, care se ocupă de *colectarea*, *gru*parea, analiza și interpretarea datelor referitoare la anumite fenomene în scopul obținerii unor previziuni;
- statistica descriptivă: metode de colectare, organizare, sintetizare, prezentare şi descriere a datelor numerice (sau nenumerice) într-o formă convenabilă
- statistica inferențială: metode de interpretare a rezultatelor obținute prin metodele statisticii descriptive, utilizate apoi pentru luarea deciziilor.
- ▶ O colectivitate sau populație statistică C este o mulțime de elemente care au anumite însuşiri comune ce fac obiectul analizei statistice. Numărul elementelor populației se numește volumul populației.

Exemple de populații statistice: mulțimea persoanelor dintr-o anumită țară, localitate, zonă etc. într-un anumit an; multimea gospodăriilor din Romania la un moment dat; mulțimea consumatorilor unui anumit produs; mulțimea societăților care produc un anumit produs; angajații unei societăți; studenții unei facultăți.

▶ *Eşantionul* \mathcal{E} reprezintă o submulțime a unei populații statistice $\mathcal{E} \subset \mathcal{C}$, constituită după criterii bine stabilite:

- a) să fie aleatoare;
- b) toate elementele colectivității să aibe aceeași șansă de a fi alese în eșantion;
- c) eşantionul să fie reprezentativ (structura eşantionului să fie apropiată de structura populației);
- d) volumul eșantionului să fie suficient de mare.
- ► Unitatea statistică (indivizii) este elementul, entitatea de sine stătătoare a unei populații statistice, care posedă o serie de trăsături caracteristice ce-i conferă apartenența la populația studiată. De exemplu: unitatea statistică simplă: un salariat, un student, un agent economic, o trăsătură, o părere; unitatea statistică complexă: o grupă de studenți sau o echipă de salariați, o familie sau o gospodărie, o categorie de mărfuri.
- ► Variabila statistică sau caracteristica reprezintă o însuşire, o proprietate măsurabilă a unei unități statistice, întâlnită la toate unitățile care aparțin aceleiași colectivități și care prezintă variabilitate de la o unitate statistică la alta. Caracteristica sau variabila statistică corespunde unei variabile aleatoare.

Exemple de caracteristici: vârsta, salariul, preferințele politice, prețul unui produs, calitatea unor servicii, nivelul de studii.

- a) variabile (caracteristici) continue \rightarrow iau un număr infinit şi nenumărabil de valori într-un interval sau reuniune de intervale (de ex.: greutatea, înălțimea, valoarea glicemiei, temperatura aerului)
- b) variabile (caracteristici) discrete \rightarrow iau număr finit sau infinit dar numărabil de valori discrete (de ex.: numări elevi ai unei școli, numărul liceelor existente într-un oraș, valoarea IQ)
- ⊳ caracteristicile de la a) și b) sunt variabile numerice (cantitative)
- c) variabile (caracteristici) nominale (de ex.: culoarea ochilor, ramura de activitate, religia)
- d) variabile (caracteristici) nominale ordinale (de ex.: starea de sănătate / calitatea unor servicii precară, mai bună, bună, foarte bună)
- e) variabile (caracteristici) dihotomiale (binare) (de ex.: stagiul militar satisfăcut/nesatisfăcut, starea civilă căsătorit/necăsătorit)
- > caracteristicile de la c),d),e) sunt variabile calitative
- > variabilele nominale mai sunt numite variabile categoriale
- ▶ *Datele statistice* reprezintă observațiile rezultate dintr-o cercetare statistică, sau ansamblul valorilor colectate în urma unei cercetări statistice.

De exemplu: un angajat al unei companii are o vechime de 6 ani în muncă. Angajatul reprezintă unitatea statistică, vechimea în muncă este caracteristica (variabila) cercetată, iar 6 este valoarea acestei caracteristici.

O *colectivitate* (populație) \mathcal{C} este cercetatată din punctul de vedere al caracteristicii (variabilei statistice) X.

Distribuția caracteristicii X poate fi

- 1) complet specificată (de ex.: $X \sim Exp(3), X \sim Bin(10, 0.3), X \sim N(0, 1)$)
- 2) specificată, dar depinzând de unul sau mai mulți parametri necunoscuți

(de ex.:
$$X \sim Exp(\lambda), X \sim Bin(10, p), X \sim N(m, \sigma^2)$$
)

- 3) necunoscută: $X \sim ?$
- în cazul 2) parametrii sunt necunoscuți, iar în cazul 3) distribuția este necunoscută
 - \hookrightarrow se estimează \rightarrow teoria estimației / intervale de încredere
 - \hookrightarrow se testează \rightarrow teste statistice
- ▶ Fie $\mathcal{E} \subset \mathcal{C}$ un eşantion. Se numesc date de selecție relative la caracteristica X datele statistice x_1, \ldots, x_n obținute prin cercetarea indivizilor care fac parte din eşantionul \mathcal{E} .
- ▶ Datele de selecție x_1, \ldots, x_n pot fi considerate ca fiind valorile unor variabile aleatoare X_1, \ldots, X_n , numite variabile de selecție și care se consideră a fi variabile aleatoare independente și având aceeași distribuție ca X.
- ▶ Fie x_1, \ldots, x_n datele statistice pentru caracteristica cercetată X, notăm cu X_1, \ldots, X_n variabilele de selecție corespunzătoare. Fie $g: \mathbb{R}^n \to \mathbb{R}$ o funcție astfel încât $g(X_1, \ldots, X_n)$ este o variabilă aleatoare.

 $g(X_1, \ldots, X_n)$ se numește funcție de selecție sau estimator $g(x_1, \ldots, x_n)$ se numește valoarea funcției de selecție sau valoarea estimatorului.

- Exemple de estimatori (funcții de selecție) sunt: media de selecție, dispersia de selecție, momentul centrat de selecție de ordinul doi, funcția de repartiție empirică.
- ⊳ Estimatorii (funcțiile de selecție) se folosesc în statistică pentru estimarea punctuală a unor parametri necunoscuți, pentru obținerea unor intervale de încredere pentru parametri necunoscuți, pentru verificarea unor ipoteze statistice.

Fie x_1, \ldots, x_n datele statistice pentru caracteristica cercetată X, notăm cu X_1, \ldots, X_n variabilele de selecție corespunzătoare:

► media de selecţie (empirică)

$$\bar{X}_n = \frac{1}{n} \left(X_1 + \dots + X_n \right)$$

▶ valoarea mediei de selecție

$$\bar{x}_n = \frac{1}{n} \left(x_1 + \dots + x_n \right)$$

▶ varianța (dispersia) de selecție (empirică)

$$S_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2$$

▶ valoarea varianței (dispersiei) de selecție

$$s_n^2 = \frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x}_n)^2$$

▶ abaterea standard de selecție (empirică)

$$S_n = \left(\frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2\right)^{\frac{1}{2}}$$

▶ valoarea abaterii standard de selecţie

$$s_n = \left(\frac{1}{n-1}\sum_{k=1}^n (x_k - \bar{x}_n)^2\right)^{\frac{1}{2}}$$

▶ momentul centrat de selecție (empiric) de ordinul doi

$$M_n = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X}_n)^2$$

▶ valoarea momentului centrat de selecție (empiric) de ordinul doi

$$m_n = \frac{1}{n} \sum_{k=1}^{n} (x_k - \bar{x}_n)^2$$

▶ funcția de repartiție empirică $\mathcal{F}_n : \mathbb{R} \times \Omega \to [0,1]$

$$\mathcal{F}_n(x,\omega) = \frac{\#\{i \in \{1,...,n\} : X_i(\omega) \le x\}}{n}, x \in \mathbb{R}$$

 \blacktriangleright valoarea (expresia) funcției de repartiție empirice $\mathcal{F}_n:\mathbb{R} \to [0,1]$

$$\mathcal{F}_n(x) = \frac{\#\{i \in \{1, ..., n\} : x_i \le x\}}{n}, x \in \mathbb{R}.$$

Def. 29. $g(X_1, \ldots, X_n)$ este estimator nedeplasat pentru parametrul necunoscut θ , dacă

$$E(q(X_1,\ldots,X_n))=\theta.$$

 $g(X_1,\ldots,X_n)$ este estimator consistent pentru parametrul necunoscut θ , dacă

$$g(X_1,\ldots,X_n) \xrightarrow{a.s.} \theta.$$

Fie $g_1 = g_1(X_1, \ldots, X_n)$ și $g_2 = g_2(X_1, \ldots, X_n)$ estimatori nedeplasați pentru parametrul necunoscut θ . $g_1(X_1, \ldots, X_n)$ este mai eficient decât $g_2(X_1, \ldots, X_n)$, dacă $V(g_1) < V(g_2)$.

Observații:

1) Media de selecție \bar{X}_n este un estimator nedeplasat și consistent pentru media teoretică E(X) a caracteristicii X; în simulări $E(X) \approx \bar{x}_n$.

În Octave: mean (d), unde $d=[x_1,...,x_n]$ este vectorul datelor statistice.

2) Varianța de selecție S_n^2 este un estimator nedeplasat și consistent pentru varianța teoretică V(X) a caracteristicii X; în simulări $V(X) \approx s_n^2$.

În Octave: var (d), unde d este vectorul datelor statistice.

2*) Momentul centrat de selecție de ordinul doi M_n nu este un estimator nedeplasat pentru varianța teoretică V(X) a caracteristicii X; el este un estimator consistent pentru varianța teoretică V(X) a caracteristicii X; în simulări se folosește și $V(X) \approx m_n$.

În Octave: var (d, 1), unde d este vectorul datelor statistice.

3) Deviaţia standard de selecţie S_n nu este un estimator nedeplasat pentru deviaţia standard teoretică $Std(X) = \sqrt{V(X)}$ a caracteristicii X; el este un estimator consistent pentru deviaţia standard teoretică Std(X) a caracteristicii X; în simulări se foloseşte $Std(X) \approx s_n$.

În Octave: std(d), unde d este vectorul datelor statistice.

4) Funcția de repartiție de selecție $\mathcal{F}_n(x,\cdot)$ calculată în $x \in \mathbb{R}$ este un estimator nedeplasat și consistent pentru $F_X(x)$, care este valoarea funcției de repartiție teoretice calculată în x; în simulări $F_X(x) \approx \mathcal{F}_n(x)$.

În Octave: empirical_cdf (x, d) = $\mathcal{F}_n(x)$, unde d este vectorul datelor statistice şi length (d) =n.

```
% exemple de estimatori
pkg load statistics
clear all
close all
d=randsample([4:10],400,1);
% note (la o anumita materie) in clasa a X-a intr-un anumit oras
% extragere cu repetitie (de 400 de ori) din vectorul [4,5,6,7,8,9,10]
% distributia teoretica X: P(X=k)=1/7 pentru k in \{4,5,6,7,8,9,10\}
note=[4:10];
           % valoarea mediei de selectie
m teor=mean(note) %media teoretica E(X)
 v=var(d) % valoarea variantei de selectie
 v1=var(d,1) % valoarea momentului centrat de selectie de ordinul 2
 v1_teor=var(note,1) %varianta teoretica V(X)
                     % sau altfel: mean(note.^2)-mean(note)^2
 st=std(d) % valoarea deviatiei standard de selectie
 st1 teor=std(note,1) %deviatia standard teoretica Std(X)=sqrt(V(X))
figure(1)
hold on
 x=4:0.01:10;
```

```
y=empirical_cdf(x,d); %valoarea functiei de repartitie de selectie
plot(x,y,'r*') % graficul functiei de repartitie de selectie
y_teor=empirical_cdf(x,note); %valoarea functiei de repartitie teoretice
plot(x,y_teor,'b*')
legend('F. de repartitie de selectie', 'F. de repartitie teoretica')
title('FUNCTIA DE REPARTITIE EMPIRICA / TEORETICA')
figure(2)
h=hist(d,[4:10])
bar([4:10],h/length(d),'hist');
title('HISTOGRAMA FRECVENTELOR RELATIVE')
figure(3)
bar([4:10],h,'hist');
title('HISTOGRAMA FRECVENTELOR ABSOLUTE')
```

Exemplu: Fie $(X_n)_n$ şirul variabilelor de selecție pentru caracteristica cercetată $X \sim Bernoulli(p)$, unde $p \in (0,1)$ este parametru necunoscut. Estimatorul

$$\hat{p}(X_1, ..., X_n) = \frac{1}{n}(X_1 + ... + X_n) = \bar{X}_n$$
 (media de selecţie)

este un estimator *nedeplasat* și *consistent* pentru parametrul necunoscut p.

R.: $X \sim Bernoulli(p) \Longrightarrow E(X) = p;$

$$\Longrightarrow E\Big(\hat{p}(X_1,...,X_n)\Big) = \frac{1}{n}\Big(E(X_1) + ... + E(X_n)\Big) = E(X) = p.$$

LTNM (a se vedea P.16) implică

$$\hat{p}(X_1, ..., X_n) = \frac{1}{n}(X_1 + ... + X_n) \xrightarrow{a.s.} p.$$

Deci, $\hat{p}(X_1, ..., X_n)$ este un estimator nedeplasat şi consistent pentru parametrul necunoscut p. Dacă $x_1, ..., x_n \in \{0, 1\}$ sunt date statistice, atunci valoarea estimată pentru p este

$$p \approx \hat{p}(x_1, ..., x_n) = \frac{1}{n}(x_1 + ... + x_n) = \bar{x}_n.$$

Metoda momentelor pentru estimarea parametrilor necunoscuţi $\theta=(\theta_1,\dots,\theta_r)$ pentru distribuţia caracteristicii cercetate X

de exemplu:

 $X \sim Exp(\lambda)$ parametrul necunoscut: $\theta = \lambda$

 $X \sim N(\mu, \sigma^2)$ parametri necunoscuţi: $(\theta_1, \theta_2) = (\mu, \sigma^2)$

 $X \sim Unif[a,b]$ parametri necunoscuţi: $(\theta_1,\theta_2) = (a,b)$

Fie x_1, \ldots, x_n datele statistice pentru caracteristica cercetată X şi fie X_1, \ldots, X_n variabilele de selecție corespunzătoare.

Se rezolvă sistemul

$$\begin{cases} E(X^k) = \frac{1}{n} \sum_{i=1}^n x_i^k, \\ k = \{1, ..., r\} \end{cases}$$

cu necunoscutele $\theta_1, \ldots, \theta_r$.

Soluţia sistemului $\hat{\theta}_1, \dots, \hat{\theta}_r$ sunt valorile estimate pentru parametrii necunoscuţi $\theta_1, \dots, \theta_r$ ai distribuţiei caracteristicii X.

Exemplu 1: Folosind metoda momentelor, să se estimeze parametrul necunoscut $\theta := a$ pentru $X \sim Unif[0, a]$; se dau datele statistice: 0.1,0.3,0.9,0.49,0.12,0.31,0.98,0.73, 0.13,0.62.

R.: Fie X_1,\ldots,X_n variabilele de selecție. Avem cazul: r=1, calculăm $E(X)=\frac{a}{2},\,n=10$, $\bar{x}_n=0.468$. Se rezolvă

$$E(X) = \frac{1}{n} \sum_{i=1}^{n} x_i \Longrightarrow \frac{a}{2} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Valoarea estimatorului este

$$\hat{a}(x_1, ..., x_n) = \frac{2}{n} \sum_{i=1}^n x_i = 0.936.$$

Estimatorul pentru parametrul necunoscut a este

$$\hat{a}(X_1, ..., X_n) = \frac{2}{n} \sum_{i=1}^n X_i.$$

Parametrul necunoscut a este estimat cu valoarea 0.936.

► Este $\hat{a}(X_1,...,X_n)$ un estimator nedeplasat pentru parametrul a?

R.: Da, se arată că
$$E(\hat{a}(X_1,...,X_n)) = a$$
.

Exemplu 2:

Folosind metoda momentelor, să se estimeze parametrii necunoscuţi $\theta_1 := \mu$ şi $\theta_2 = \sigma^2$ pentru $X \sim N(\mu, \sigma^2)$; se dau datele statistice:

 \bigcirc

$$0.831, 0.71, -0.2, -0.04, 2.08, -1.2, 0.448, -0.18, -0.27, -0.55$$
.

R.: Fie $n=10,\,x_1,...,x_n$ sunt datele statistice, iar $X_1,...,X_n$ sunt variabile de selecție. Avem cazul: r=2, calculăm $E(X)=\mu,\,E(X^2)=V(X)+E^2(X)=\sigma^2+\mu^2$ (a se vedea exemplul de pe p. 45), $\bar{x}_n=0.1629$ (calculat în Octave cu mean (x), unde x este vectorul datelor statistice), $m_n=0.7346$ (calculat în Octave cu var (x, 1)). Se rezolvă

$$\begin{cases} \mu = \frac{1}{n} \sum_{i=1}^{n} x_{i} \\ \sigma^{2} + \mu^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \end{cases} \implies \text{are soluția} \begin{cases} \hat{\mu}(x_{1}, ..., x_{n}) = \frac{1}{n} \sum_{i=1}^{n} x_{i} \\ \hat{\sigma}^{2}(x_{1}, ..., x_{n}) = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} \end{cases}$$

Valorile estimatorilor sunt

$$\hat{\mu}(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}_n = 0.1629,$$

$$\hat{\sigma}^2(x_1,...,x_n) = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2 = m_n = 0.7346.$$

Estimatorii sunt

$$\hat{\mu}(X_1,...,X_n) = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}_n$$
 (media de selecție),

$$\hat{\sigma}^2(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2 = M_n$$

(momentul centrat de selecție de ordinul doi, a se vedea pe p.54).

Metoda verosimilității maxime pentru estimarea parametrului necunoscut θ al distribuției caracteristicii cercetate X

Fie x_1, \ldots, x_n datele statistice pentru caracteristica cercetată X și fie X_1, \ldots, X_n variabilele de selecție corespunzătoare. Notăm

$$L(x_1,\dots,x_n;\theta) = \begin{cases} P(X=x_1)\cdot\dots\cdot P(X=x_n), \text{ dacă } X \text{ e v.a. discretă} \\ f_X(x_1)\cdot\dots\cdot f_X(x_n), \text{ dacă } X \text{ e v.a. continuă cu funcție de densitate } f_X. \end{cases}$$

Aceasta este funcția de verosimilitate pentru parametrul θ și datele statistice x_1, \ldots, x_n .

Metoda verosimilității maxime se bazează pe principiul că valoarea cea mai verosimilă (cea mai potrivită) a parametrului necunoscut θ este aceea pentru care funcția de verosimilitate $L(x_1, \ldots, x_n; \theta)$ ia valoarea maximă:

(1)
$$L(x_1, \dots, x_n; \hat{\theta}) = \max_{\theta} L(x_1, \dots, x_n; \theta).$$

 $\hat{\theta}$ este *punct de maxim global* pentru funcția de verosimilitate. Se rezolvă sistemul $\frac{\partial L}{\partial \theta} = 0$ și se arată că $\frac{\partial^2 L}{\partial \theta^2} < 0$.

Deseori este mai practic să se considere varianta transformată

 $\frac{\partial \ln L}{\partial \theta} = 0 \text{ cu } \frac{\partial^2 \ln L}{\partial \theta^2} < 0. \text{ În unele situații (1) se rezolvă prin alte metode; de exemplu în cazul în care } \frac{\partial L}{\partial \theta} = 0 \text{ nu are soluție (echivalent cu } \frac{\partial \ln L}{\partial \theta} = 0 \text{ nu are soluție).}$

Observație: Dacă distribuția caracteristicii cercetate depinde de k parametri necunoscuți $(\theta_1, \dots, \theta_k)$ atunci se rezolvă sistemul

$$\frac{\partial L}{\partial \theta_j} = 0, j = \overline{1,k} \text{ si se arată că matricea } \left(\frac{\partial^2 L}{\partial \theta_i \partial \theta_j}\right)_{1 \leq i \leq j \leq k} \text{ este negativ definită.}$$

Se poate lucra și cu varianta transformată:

$$\frac{\partial \ln L}{\partial \theta_j} = 0, j = \overline{1,k} \text{ \sharp is a arată că matricea } \Big(\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\Big)_{1 \leq i \leq j \leq k} \text{ este negativ definită.}$$

O matrice M este negativ definită dacă $y^t M y < 0$ pentru orice $y \in \mathbb{R}^n \setminus \{0_n\}$.

Reamintire: dacă a, b > 0, atunci au loc proprietățile:

$$\ln(a \cdot b) = \ln a + \ln b, \ \ln(a^b) = b \cdot \ln a, \ \ln\left(\frac{a}{b}\right) = \ln a - \ln b.$$

Exemplu: Folosind metoda verosimilității maxime să se estimeze parametrul $\theta := p \in (0,1)$ al distribuției Bernoulli,

$$X \sim \begin{pmatrix} 0 & 1 \\ 1 - p & p \end{pmatrix}, \text{ cu datele statistice: } 0,1,1,0,0,0,1,0,1,0.$$

$$\Rightarrow n = 10, x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0...; P(X = x) = p^x (1 - p)^{1-x}, x \in \{0,1\}$$

$$\Rightarrow L(x_1, \dots, x_n; p) = P(X = x_1) \cdot \dots \cdot P(X = x_n) = p^{x_1 + \dots + x_n} (1 - p)^{n - (x_1 + \dots + x_n)}$$

$$\Rightarrow \ln L(x_1, \dots, x_n; p) = (x_1 + \dots + x_n) \ln(p) + (n - (x_1 + \dots + x_n)) \ln(1 - p)$$

$$\frac{\partial \ln L}{\partial p} = 0 \implies p = \frac{1}{n}(x_1 + \dots + x_n).$$

Are loc: $\frac{\partial^2 \ln L}{\partial p^2} < 0$.

Estimatorul de verosimilitate maximă pentru parametrul necunoscut p este

$$\hat{p}(X_1,\ldots,X_n) = \frac{1}{n}(X_1 + \cdots + X_n) = \bar{X}_n,$$

unde X_1, \ldots, X_n sunt variabilele de selecție. Valoarea estimată este

$$\hat{p}(x_1,\ldots,x_n) = \frac{1}{n}(x_1+\cdots+x_n) = \bar{x}_n = \frac{4}{10} = 0.4.$$

► Este $\hat{p}(X_1, ..., X_n)$ un estimator nedeplasat pentru parametrul p?

Intervale de încredere și teste statistice

Noțiuni de bază

▶ Fie $\alpha \in (0,1)$ nivelul de semnificație (probabilitatea de risc).

Def. 30. Cuantila de ordin α pentru distribuția caracteristicii cercetate X este numărul $z_{\alpha} \in \mathbb{R}$ pentru care

$$P(X < z_{\alpha}) \le \alpha \le P(X \le z_{\alpha}).$$

Dacă $\alpha = 0.5$ atunci $z_{0.5}$ se numește **mediană**.

- ▶ dacă X este v.a. continuă, atunci: z_{α} este cuantilă de ordin $\alpha \iff P(X \leq z_{\alpha}) = \alpha \iff F_X(z_{\alpha}) = \alpha$
- \blacktriangleright dacă F_X este funcție inversabilă, atunci $z_\alpha = F_X^{-1}(\alpha)$
- $\alpha \cdot 100\%$ din valorile lui X sunt mai mici sau egale cu z_{α} De exemplu, pentru $\alpha = 0.5$ și X v.a.continuă: 50% din valorile aleatoare ale lui X sunt mai mici sau egale cu $z_{0.5}$ (mediana), adică $P(X \le z_{0.5}) = 0.5$.
- Matlab/Octave: quantile

```
clear all
pkg load statistics
N=1000;
x = normrnd(0,1,1,N);
alfa=[0.25 0.50 0.95];
```

Exemplu: Fie $X \sim \begin{pmatrix} 1 & 3 & 5 & 7 \\ 0.2 & 0.35 & 0.35 & 0.1 \end{pmatrix}$ v.a. discretă

$$\implies P(X < 3) = 0.2 \le 0.5 \le P(X \le 3) = 0.2 + 0.35 = 0.55 \implies z_{0.5} = 3$$
 este mediana.

Distribuții de probabilitate continue frecvent folosite în statistică și cuantilele lor corespunzătoare

Proprietăți:

- Pentru cuantilele distribuţiei normale N(0,1) are loc $z_{\alpha} = -z_{1-\alpha}$ pentru orice $\alpha \in (0,1)$;
- pentru cuantilele distribuției Student St(n) are loc $t_{\alpha} = -t_{1-\alpha}$ pentru orice $\alpha \in (0,1)$.

Exerciții (cu soluție): Să se arate că: a) $X \sim N(0,1) \Longleftrightarrow -X \sim N(0,1)$; b) pentru cuantilele distribuției normale N(0,1) are loc $z_{\alpha} = -z_{1-\alpha}$ pentru orice $\alpha \in (0,1)$; c) pentru cuantilele distribuţiei Student St(n) are loc $t_{\alpha} = -t_{1-\alpha}$ pentru orice $\alpha \in (0,1)$. R.: a) Fie $x \sim N(0,1)$. Scriem pentru orice $u \in \mathbb{R}$

$$F_{-X}(u) = P(-X \le u) = P(X > -u) = 1 - P(X \le -u) = 1 - F_X(-u).$$

Aceasta implică

$$f_{-X}(u) = F'_{-X}(u) = F'_{X}(-u) = f_{X}(-u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u^{2}}{2}}, \ \forall u \in \mathbb{R}.$$

Deci $-X \sim N(0,1)$. Folosind rezultatul deja demonstrat și relația X=-(-X), obținem că $-X \sim N(0,1) \Longrightarrow X \sim N(0,1)$.

b) Fie $X \sim N(0,1)$ și $z_{\alpha}, z_{1-\alpha}$ cuantile ale sale. Rezultă că

$$P(X \le z_{\alpha}) = \alpha, \ P(X \le z_{1-\alpha}) = 1 - \alpha.$$

Scriem şi folosim faptul că -X şi X urmează distribuția N(0,1)

$$P(X \le z_{\alpha}) = \alpha = 1 - P(X \le z_{1-\alpha}) = P(X > z_{1-\alpha}) = P(-X < -z_{1-\alpha}) = P(X < -z_{1-\alpha})$$

= $P(X \le -z_{1-\alpha})$.

Pentru distribuția N(0,1) cuantila z_{α} e unic determinată din relația $P(X \leq z_{\alpha}) = \alpha$ (pentru că F_X e o funcție inversabilă și atunci $z_{\alpha} = F_X^{-1}(\alpha)$), așadar obținem că $z_{\alpha} = -z_{1-\alpha}$.

c) Raţionamentul este analog. Se foloseşte
$$X \sim St(n) \Longleftrightarrow -X \sim St(n)$$
.

Intervale de încredere

În paragrafele anterioare s-a văzut cum poate fi estimat un parametru necunoscut, folosind datele dintr-un eşantion. Se pune problema cât este de bună această estimare a parametrului necunoscut, adică vom calcula o anumită "marjă de eroare".

Presupunem că studiem media (teoretică) a timpului de așteptare la un anumit ghișeu al unei bănci. Prin studierea unui eșantion de volum 200 s-a constatat că media de seleție a timpului de așteptare este $\bar{x}_{200}=10$ (minute). Dacă considerăm un alt eșantion probabil obținem o altă valoare pentru \bar{x}_{200} .

Problemă: putem construi un interval (aleator) care să acopere valoarea reală a parametrului necunoscut studiat cu o anumită probabilitate dată (numit nivel de încredere)?

Pe baza datelor din eşantion acest interval aleator va deveni un interval numeric.

Fie x_1, \ldots, x_n datele statistice pentru caracteristica cercetată X, a cărei distribuţie (de obicei necunoscută) depinde de parametrul necunoscut θ ; notăm cu X_1, \ldots, X_n variabilele de selecţie corespunzătoare. Se precizează fie $\alpha \in (0,1)$ nivelul de semnificație, fie $1-\alpha$, care se numeşte

nivelul de încredere.

Se caută doi estimatori $g_1(X_1,\ldots,X_n)$ și $g_2(X_1,\ldots,X_n)$ astfel încât

$$P(g_1(X_1, ..., X_n) < \theta < g_2(X_1, ..., X_n)) = 1 - \alpha$$

$$\Leftrightarrow P\Big(\theta \notin \Big(g_1(X_1,\ldots,X_n),g_2(X_1,\ldots,X_n)\Big)\Big) = \alpha$$

- $\blacktriangleright \left(g_1(X_1,\ldots,X_n),g_2(X_1,\ldots,X_n)\right)$ se numeşte interval de încredere bilateral pentru parametrul necunoscut θ
- ► $(g_1(x_1,...,x_n),g_2(x_1,...,x_n))$ este **valoarea intervalului de încredere** pentru parametrul necunoscut θ
- $ightharpoonup g_1(X_1,\ldots,X_n)$ este limita inferioară a intervalului de încredere, valoarea sa este $g_1(x_1,\ldots,x_n)$
- $ightharpoonup g_2(X_1,\ldots,X_n)$ este limita superioară a intervalului de încredere, valoarea sa este $g_2(x_1,\ldots,x_n)$
- ▶ probabilitatea ca parametrul necunoscut θ să fie în intervalul $\left(g_1(X_1,\ldots,X_n),g_2(X_1,\ldots,X_n)\right)$ este $1-\alpha$ (nivelul de încredere)
- \blacktriangleright există și **intervale de încredere unilaterale**: $\left(-\infty, g_3(X_1, \dots, X_n)\right)$, $\left(g_4(X_1, \dots, X_n), \infty\right)$, estimatorii g_3 și g_4 sunt astfel încât

$$P(\theta < g_3(X_1, \dots, X_n)) = 1 - \alpha$$
, respectiv $P(g_4(X_1, \dots, X_n) < \theta) = 1 - \alpha$

- $\blacktriangleright \left(-\infty, g_3(x_1, \dots, x_n)\right) \left(g_4(x_1, \dots, x_n), \infty\right)$ sunt valorile intervalelor de încredere unilaterale pentru parametrul necunoscut θ
- ▶ probabilitatea ca parametrul necunoscut θ să fie în intervalul $\left(-\infty, g_3(X_1, \dots, X_n)\right)$ este 1α , respectiv probabilitatea ca θ să fie în intervalul $\left(g_4(X_1, \dots, X_n), \infty\right)$ este 1α .

Nu este corect să afirmăm că probabilitatea ca intervalul numeric construit (din datele statistice) să cuprindă valoarea reală a parametrului necunoscut θ este $1-\alpha$. Intervalul de încredere este un interval aleator, deci extremitățile sale sunt v.a. Prin urmare interpretarea corectă a lui $1-\alpha$ este următoarea: dacă, facem un număr foarte mare de selecții (din mai multe eșantioane) și calculăm de fiecare dată intervalul de încredere cu nivelul de încredere $1-\alpha$, atunci $(1-\alpha)\cdot 100\%$ din aceste intervale vor conține valoarea reală pentru θ .

în această simulare: din 25 de intervale de încredere, un interval nu conține

valoarea reală 0; parametrul necunoscut este θ =media teoretică; datele statistice au fost generate, de fapt, cu normrnd (0, 1)

P. 18. (Teorema limită centrală) Fie

 $(X_n)_n$ un şir de v.a. independente,

care au aceeași distribuție. Fie $m = E(X_n)$ și $\sigma^2 = V(X_n) > 0 \ \forall \ n \geq 1$. Are loc

$$\lim_{n\to\infty} P\left(\frac{\bar{X}_n - m}{\frac{\sigma}{\sqrt{n}}} \le b\right) = F_{N(0,1)}(b) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^b e^{-\frac{t^2}{2}} dt,$$

pentru orice $b \in \mathbb{R}$, iar $\bar{X}_n = \frac{1}{n}(X_1 + \cdots + X_n)$.

- $ightharpoonup F_{N(0,1)}(b) = \operatorname{normcdf}(b,0,1)$ funcția de repartiție a legii normale standard N(0,1)
- **→ Consecință** (la P. 18):
- $ightharpoonup rac{X_n-m}{rac{\sigma}{\sqrt{n}}} \sim N(0,1)$ pentru n>30 (n suficient de mare) și atunci

$$P\left(a < \frac{\bar{X}_n - m}{\frac{\sigma}{\sqrt{n}}} < b\right) \approx F_{N(0,1)}(b) - F_{N(0,1)}(a).$$

Exemplul 1:

Dacă $(X_n)_{1 \le n \le 100}$ sunt variabile de selecție pentru caracteristica $X \sim Bernoulli(0.5)$, să se estimeze $P(0.35 < \bar{X}_{100} < 0.65)$, folosind P.18 (Teorema limită centrală).

R.: Se calculează $m=E(X_n)=E(X)=0.5$ și $\sigma=\sqrt{V(X_n)}=\sqrt{V(X)}=0.5$ și se scrie

$$P(0.35 < \bar{X}_{100} < 0.65) = P\left(-3 < \frac{\bar{X}_{100} - 0.5}{\frac{0.5}{\sqrt{100}}} < 3\right).$$

Cf. P. 18 și a consecinței de mai sus

$$\Longrightarrow P\bigg(-3<\frac{\bar{X}_{100}-0.5}{\frac{0.5}{\sqrt{100}}}<3\bigg)\approx \mathrm{normcdf}(3,0,1)-\mathrm{normcdf}(-3,0,1)=0.9973$$

$$\Longrightarrow P\Big(\bar{X}_{100}\in(0.35,0.65)\Big)\approx0.9973,$$

așadar pentru o caracteristică de tip Bernoulli(0.5), media de selecție \bar{X}_{100} aparține cu o probabilitate foarte mare intervalului (0.35, 0.65).

Exemplul 2: Se știe că 40% din populația unui orășel susține un anumit candidat la alegerile viitoare. Dacă $(X_n)_{1 \le n \le 600}$ sunt variabile de selecție pentru distribuția Bernoulli(0.4), adică $\forall n \in \{1, ..., 600\}$

 $X_n = 1 \iff$ persoana a n-a votează acest candidat,

 $X_n = 0 \iff$ persoana a n-a nu votează acest candidat,

deci $X_n \sim Bernoulli(0.4)$. Folosind P.18 (Teorema limită centrală) estimați $P(\bar{X}_{600} > 0.43)$. Calculați $E(\bar{X}_{600})$ și $V(\bar{X}_{600})$.

R.: Dacă $(X_n)_{1 \le n \le 600}$ sunt variabile de selecție pentru Bernoulli(0.4), se calculează $m = E(X_n) = 0.4$ și $\sigma^2 = V(X_n) = 0.24 \ \forall \ n \in \mathbb{N}^*$ și se dorește estimarea probabilității

$$P(\bar{X}_{600} > 0.43) = 1 - P(\bar{X}_{600} \le 0.43).$$

$$\begin{split} \text{Cf. P.18} &\Longrightarrow P(\bar{X}_{600} \leq 0.43) = P\left(\frac{\bar{X}_{600} - 0.4}{\sqrt{\frac{0.24}{600}}} \leq \frac{0.43 - 0.4}{\sqrt{\frac{0.24}{600}}}\right) = P\left(\frac{\bar{X}_{600} - 0.43}{\sqrt{\frac{0.24}{600}}} \leq 1.5\right) \\ &\approx F_{N(0,1)}(1.5) = \text{normcdf}(1.5,0,1) = 0.93319 \end{split}$$

$$\implies P(\bar{X}_{600} > 0.43) \approx 0.066807.$$

$$E(\bar{X}_{600}) = \frac{1}{600} \Big(E(X_1) + \dots E(X_{600}) \Big) = 0.4 \text{ şi}$$

$$V(\bar{X}_{600}) = \frac{1}{600^2} \Big(V(X_1) + \dots + V(X_{600}) \Big) = \frac{1}{600} \cdot 0.24 = 0.0004.$$

Exercițiu: 100 de zaruri sunt aruncate. Folosind P.18 (Teorema limită centrală), estimați probabilitatea ca suma numerelor obținute să fie între 300 și 400!

Recapitulare (notații)

Variabilele de selecție pentru caracteristica X	datele statistice pentru caracteristica X
$X_1,,X_n$	$ x_1,,x_n $
sunt v.a. independente, au aceeași distribuție ca X	sunt valorile (numerice) ale v.a. $X_1,, X_n$
Estimator	Valoarea estimatorului
media de selecție	valoarea mediei de selecție
$\bar{X}_n = \frac{1}{n} \left(X_1 + \dots + X_n \right)$	$\bar{x}_n = \frac{1}{n} (x_1 + \dots + x_n)$
varianța (dispersia) de selecție	valoarea varianței (dispersiei) de selecție
$S_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2$	$s_n^2 = \frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x}_n)^2$
abaterea standard de selecție	valoarea abaterii standard de selecţie
$S_n = \left(\frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2\right)^{\frac{1}{2}}$	$s_n = \left(\frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x}_n)^2\right)^{\frac{1}{2}}$

P. 19. Fie X_1, \ldots, X_n variabile de selecție pentru $X \sim N(\mu, \sigma^2)$, atunci pentru **media de selecție** are $\log \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$, unde $\bar{X}_n = \frac{1}{n} \left(X_1 + \cdots + X_n \right)$.

Reamintim: $X \sim N(\mu, \sigma^2) \Longrightarrow E(X) = \mu, V(X) = \sigma^2$ (a se vedea calculele de pe pg. 45).

Interval de încredere pentru media teoretică m=E(X) a caracteristicii cercetate X, când dispersia $\sigma^2=V(X)$ este cunoscută

Exemplu: Un profesor a înregistrat pe parcursul mai multor ani rezultatele elevilor săi la un anumit tip de test. Punctajul unui elev este o v.a. $X \in (0,100)$, având abaterea standard egală cu 10. Media de selecție a calificativelor a 144 de elevi este 68. Dacă $\alpha = 0.05$, să se construiască un interval de încredere bilateral pentru valoarea medie (teoretică) E(X) a punctajului obținut de un elev la test.

- \blacktriangleright se dau $\alpha \in (0,1)$, σ , datele statistice x_1,\ldots,x_n
- lacktriangle fie X_1,\ldots,X_n variabilele de selecție corespunzătoare caracteristicii cercetate X
- ightharpoonup construim intervale de încredere pentru parametrul necunoscut m=E(X)
- ightharpoonup dacă $X \sim N(m, \sigma^2)$ sau n > 30 și X are o distribuție necunoscută, atunci P18, respectiv P.19,

implică

(5)
$$\frac{\bar{X}_n - m}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

 \blacktriangleright cuantilele legii normale N(0,1):

$$z_{1-\frac{\alpha}{2}} = \operatorname{norminv}(1-\tfrac{\alpha}{2},0,1), z_{1-\alpha} = \operatorname{norminv}(1-\alpha,0,1), z_{\alpha} = \operatorname{norminv}(\alpha,0,1)$$

ullet un interval de încredere bilateral pentru m=E(X) (media teoretică) când dispersia este cunoscută este

$$\left(\bar{X}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}}, \ \bar{X}_n + \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}}\right),$$

deoarece:

$$P\left(\bar{X}_{n} - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}} < m < \bar{X}_{n} + \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}}\right) = P\left(-z_{1-\frac{\alpha}{2}} < \frac{\bar{X}_{n} - m}{\frac{\sigma}{\sqrt{n}}} < z_{1-\frac{\alpha}{2}}\right)$$

$$\stackrel{(5)}{=} F_{N(0,1)}(z_{1-\frac{\alpha}{2}}) - F_{N(0,1)}(-z_{1-\frac{\alpha}{2}}) = F_{N(0,1)}(z_{1-\frac{\alpha}{2}}) - F_{N(0,1)}(z_{\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha$$

• intervale de încredere unilaterale: $\left(-\infty, \bar{X}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{\alpha}\right), \left(\bar{X}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha}, \infty\right)$, adică

$$P\left(m < \bar{X}_n - \frac{\sigma}{\sqrt{n}} \cdot z_\alpha\right) = 1 - \alpha, \ P\left(\bar{X}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha} < m\right) = 1 - \alpha.$$

Interval de încredere pentru **media teoretică** E(X) când dispersia $\sigma^2 = V(X)$ este cunoscută:

bilateral

unilateral

Expresia intervalului de încredere, folosind datele statistice

$$\left(\bar{x}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}}, \ \bar{x}_n + \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}}\right)$$

$$\left(-\infty, \bar{x}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{\alpha}\right)$$

$$\left(\bar{x}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha}, \infty\right)$$

Exemplu: Un profesor a înregistrat pe parcursul mai multor ani rezultatele elevilor săi la un anumit tip de test. Punctajul unui elev este o v.a. $X \in (0,100)$, având abaterea standard egală cu 10. Media de selecție a calificativelor a 144 de elevi este 68. Dacă $\alpha = 0.05$, să se construiască un interval de încredere bilateral pentru valoarea medie (teoretică) E(X) a punctajului obținut de un elev la test.

R:

$$\left(\bar{x}_n - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}}, \ \bar{x}_n + \frac{\sigma}{\sqrt{n}} \cdot z_{1-\frac{\alpha}{2}}\right)$$

unde $n=144, \sigma=10, \bar{x}_n=68, \alpha=0.05, z_{1-\frac{\alpha}{2}}=\text{norminv}(1-\frac{0.05}{2},0,1)\approx 1.96$. Pe baza datelor statistice valoarea intervalului de încredere bilateral este (66.367,69.633).