

ЭТИКЕТКА <u>УПЗ.487.314 ЭТ</u>

Микросхема интегральная 564 АГ1В Функциональное назначение – Два моностабильных мультивибратора

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода
2,14	Установка длительности импульса
3,13	Вход установки 0
4,12	Вход запуска фронтом
5,11	Вход запуска спадом
6,10	Выход прямой
7,9	Выход инверсный
1,8,15	Общий
16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 ± 10) °C) Таблица 1

Цанионования поромотра одинина наморония рожим наморония	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, В, при:			
$U_{CC} = 5.0 \text{ B}$	U_{OL}	-	0,05
$U_{CC} = 10.0 \text{ B}$	COL	-	0,05
$U_{CC} = 15.0 \text{ B}$		-	0,05
2. Выходное напряжение высокого уровня, В, при:			
$U_{CC} = 5.0 B$	U _{OH}	4,95	=
$U_{CC} = 10,0 B$	ООН	9,95	=
$U_{CC} = 15,0 \text{ B}$		14,95	-
3. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC} = 5.0 B$	U _{OL max}	-	0,8
$U_{CC} = 10.0 B$	- OL max	-	1,0
$U_{CC} = 15,0 \text{ B}$		-	1,5
4. Минимальное выходное напряжение высокого уровня, В, при:		4.0	
$U_{CC} = 5.0 B$	$ m U_{OHmin}$	4,2	-
$U_{CC} = 10.0 \text{ B}$	- 011 11111	9,0	-
$U_{CC} = 15,0 \text{ B}$		13,5	-
5. Входной ток низкого уровня, мкА, при:	I_{IL}	_	/-0,1/
$U_{CC} = 15,0 \text{ B}$	*IL		7 0,17
6. Входной ток высокого уровня, мкА, при:	, , , , , , , , , , , , , , , , , , ,		0.1
$U_{CC} = 15,0 \text{ B}$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при:			
$U_{CC} = 5.0 \text{ B}, U_{O} = 0.4 \text{ B}$	т .	0,51	-
$U_{CC} = 10.0 \text{ B}, U_0 = 0.5 \text{ B}$	I_{OL}	1,3	-
$U_{CC} = 15,0 \text{ B}, U_0 = 1,5 \text{ B}$		3,4	=

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5,0$ В, $U_{O} = 2,5$ В $U_{CC} = 10,0$ В, $U_{O} = 9,8$ В $U_{CC} = 15,0$ В, $U_{O} = 13,5$ В	I_{OH}	/-1,6/ /-1,3/ /-3,4/	- - -
9. Ток потребления, мкА, при: U _{CC} = 5,0 В U _{CC} = 10,0 В U _{CC} = 15,0 В	I_{CC}	- - -	1,0 2,0 4,0
10. Время задержки распространения при выключении (включении), нС, при: $U_{CC}=5,0\text{ B, }C_{L}=50\text{ пФ, }R_{BH}=10\text{ кОм, }C_{BH}=100\text{ пФ}$ $U_{CC}=10,0\text{ B, }C_{L}=50\text{ пФ, }R_{BH}=10\text{ кОм, }C_{BH}=100\text{ пФ}$	$t_{ m PLH} \ (t_{ m PHL})$	- -	500 250
11. Время перехода при выключении (включении), нС, при: $U_{CC}=5,0~B,~C_L=50~\pi\Phi,~R_{BH}=10~\kappa\text{Ом},~C_{BH}=100~\pi\Phi$ $U_{CC}=10,0~B,~C_L=50~\pi\Phi,~R_{BH}=10~\kappa\text{Om},~C_{BH}=100~\pi\Phi$	$t_{TLH} \ (t_{THL})$		200 100
12. Время задержки распространения при выключении (включении), (по установочному входу), нС, при: $U_{CC} = 5.0 \; B, \; C_L = 50 \; п\Phi, \; R_{BH} = 10 \; кОм, \; C_{BH} = 100 \; п\Phi$ $U_{CC} = 10.0 \; B, \; C_L = 50 \; n\Phi, \; R_{BH} = 10 \; кОм, \; C_{BH} = 100 \; n\Phi$	t _{PLH} (t _{PHL})	-	450 250

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC} = 5B \pm 10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс (T_{DY}) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \Gamma$ арантии предприятия — изготовителя — по ОСТ В $11\ 0398 - 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ						
4 СВЕЛЕНИЯ О ПРИЕМКЕ	4	CDET	DIHITA	\sim	TIDIAL	ATCT
	4	CBE/I	ЕПИЯ	υ,	прив	VIKE

Цена договорная

OCVEMBI 564 AFIR CONTRETCTRUINT	техническим условиям бК0.347.064	TV 32 и признаны г	олиыми ппа эксплуатании

Приняты по (извещение, акт	от	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа « Перепро	эверка произведе	:на	
Приняты по(извещение, акт	от	(дата)	
Место для штампа ОТК			Место для штампа ВП

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.