3 MENGEN, ALPHABETE, ABBILDUNGEN

Allgemeiner wichtiger Hinweis

Ab diesem Jahr ist die Vorlesung dreistündig. Wir machen insbesondere viel ausführlicher Aussagenlogik und Prädikatenlogik. (Kapitel 5 und 6)

Bis dahin benutzen wir NICHT die Zeichen \land und \lor und so weiter, sondern schreiben das IMMER ALLE schön aus und wir benutzen auch noch NICHT die Quantoren \forall und \exists .

3.1 MENGEN

Vereinigung und Durchschnitt (1)

- Deutlich darauf hinweisen: $\{1,2,3\} \cup \{2,3,4\} = \{1,2,3,4\}$
- kein Element kann "mehrfach vorkommen"
- so etwas wie {1,2,3,2,3,4}
 - darf man schreiben
 - aber es bedeutet einfach {1,2,3,4}
 - wer so schreibt muss sich fragen, ob er schon alles verstanden hat
- $M \cup \{\} = M$
- $M \cap \{\} = \{\}$

Vereinigung und Durchschnitt (2)

Man mache sich klar: $A \cup (B \cup C) = (A \cup B) \cup C$ (analog für Durchschnitt) Man mache sich klar: $A \cup (B \cap C) = (A \cup B) \cap (A \cap C)$ (analog für Vertauschung von ∪ und ∩)

Mengendifferenz

Es seien *A* und *B* beliebige Mengen. Man mache sich klar, dass dann die beiden folgenden Aussagen äquivalent sind:

- $A \setminus B = \{\}$
- *A* ⊆ *B*

Kardinalität

- für endliche Mengen ist das Konzept harmlos
 - vielleicht mit Ausnahme der leeren Menge: $|\{\}| = 0$.
- - Frage: Wie groß ist |{1,2,3,2,3,4}|?
 - Antwort: 4 (und *nicht* (!) 6)
- Man überlege, was man allgemein über $|A \cup B|$ sagen kann (vergleiche Abbildung 3.2 im Skript):

$$|A \cup B| = |A| + |B| - |A \cap B|$$

3.2 ALPHABETE

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Was ein Zeichen ist, wird nicht weiter diskutiert, hinterfragt, o.ä., weshalb man letzten Endes "theoretisch" *jede* endliche nichtleere Menge als Alphabet nehmen könnte.

3.3 RELATIONEN UND ABBILDUNGEN

3.3.1 Paare, Tupel und kartesische Produkte

Paare

Bitte noch mal Unterschiede zwischen Paaren und Menge klar machen

$$(1,2) \neq (2,1)$$
 aber $\{1,2\} = \{2,1\}$

Kartesisches Produkt

Erst mal an einfachem endlichen Beispiel klar machen:

$${a,b} \times {1,2,3} = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}$$

induktive Definitionen

- muss man immer darauf achten, dass
 - "für alle Fälle" etwas definiert wird und
 - und nicht für den gleichen Fall widersprüchliche Dinge festgelegt werden (Gefahr z. B. bei Fallunterscheidungen). Das nennt man auch Wohldefiniertheit.
- Vorläufig kommen wir erst mal mit der einfachen Vorgehensweise aus, dass man sich von n nach n+1 weiterhangelt, wie bei

$$x_0 = 0$$
 für jedes $n \in \mathbb{N}_0 : x_{n+1} = x_n + 2$

• Solche Definitionen kann man erst mal benutzen, um Werte auszurechnen. Hier also z.B. $x_1 = 2$, $x_2 = 4$, $x_3 = 6$, $x_4 = 8$ usw.. Man kommt hoffentlich auf die Hypothese:

für jedes
$$n \in \mathbb{N}_0 : x_n = 2n$$

Größere kartesische Produkte

Beispiele machen

•
$$\{0,1\}^3 = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1)$$

 $(1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$

Begriff der Relation

- Des öfteren ist bei einer Relation $R \subseteq A \times B$ auch A = B; man spricht dann auch von einer Relation *auf der Menge A*.
- Beispiel "Kleiner-Gleich-Relation" auf der Menge $M = \{1, 2, 3\}$, d. h. als Teilmenge von $M \times M$, gegeben durch die Paare

$$R_{\leq} = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

- Manchmal benutzt man bekanntlich lieber Infixschreibweise und notiert $1 \le 3$ statt $(1,3) \in R_{<}$.
- Spezialfälle $A = \emptyset$ oder/und $B = \emptyset$: dann ist auch $A \times B = \emptyset$ und die einzig mögliche Relation ist $R = \emptyset$.
- Beispiel für eine ternäre Relation $R \subseteq \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0$

$$R = \{(x, y, z) \mid x \cdot y = z\}$$

Linkstotal etc.

- Begriffe linkstotal, rechtseindeutig und Abbildung an Beispielen wiederholen, Definitionen in äquivalente umformulieren, z.B. "rechtstotal, wenn es kein $b \in B$ gibt, zu dem kein $a \in A$ in Relation steht"
- Begriffe linkseindeutig/injektiv und rechtstotal/surjektiv und bijektiv wiederholen
- Begriffe Definitionsbereich, Zielbereich
- Betrachte $f: A \to A$, also Definitionsbereich gleich Zielbereich und A sei *endlich*.
 - Zeige: Wenn injektiv, dann auch surjektiv.
 - Zeige: Wenn surjektiv, dann auch injektiv.
 - Zeige: Wenn A unendlich ist, dann stimmen diese Behauptungen im allgemeinen nicht mehr.

Betrachte z. B.
$$f: \mathbb{N}_0 \to \mathbb{N}_0: n \mapsto 2n$$
 und $g: \mathbb{N}_0 \to \mathbb{N}_0: n \mapsto \lfloor n/2 \rfloor$

Notation für Abbildungen

Bitte bei sich selbst und bei den Tutanden darauf achten, dass Abbildungen immer ordentlich hingeschrieben werden:

- Definitions- und Zielbereich mit einem einfachen Pfeil → dazwischen und
- Argument(e) und Funktionswert mit einem → dazwischen

Wir werden darauf im Abschnitt zu O-Notation noch einmal zurückkommen.

Notation von Abbildungen für Mengen von Argumenten

Beispiel für $f(M) = \{f(a) \mid a \in M\}$ machen

3.4 MEHR ZU MENGEN

Mengen als Elemente von Mengen

Unbedingt den Unterschied zwischen {} und { {} } klar machen.

Potenzmenge