VERSUCH 302

Brückenschaltung

Tabea Hacheney tabea.hacheney@tu-dortmund.de

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 30.11.2021 Abgabe: 07.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie 2.1 Wheatstonesche Brückenschaltung 2.2 Kapazitätsmessbrücke 2.3 Induktivitätsmessbrücke 2.4 Maxwell-Brücke 2.5 Wien-Robinson-Brücke	3 4 4 5 6 7
3	Durchführung3.1 Wheatstonesche Brückenschaltung3.2 Kapazitätsmessbrücke3.3 Induktivitätsmessbrücke3.4 Maxwell-Brücke3.5 Wien-Robinson-Brücke	9 9 9 9 9
4	Auswertung4.1 Fehlerrechnung	10 10 10 10 11 11 12
5	Diskussion	14
6	Messwerte	15
Lit	eratur	21

1 Zielsetzung

In diesem Versuch werden Brückenschaltungen dazu verwendet verschiedene unbekannte Ohm'sche Widerstände, Kapazitäten und Induktivitäten zu bestimmen. Zudem wird die Wien-Robinson-Brücke dazu verwendet die Frequenzabhängigkeit der Brückenspannung und Speisespannung zu untersuchen.

Dabei werden bisher nur in der Theorie benutze Konzepte angewendet, wie beispielsweise die Abgleichbedingung und die Kirchhoff'schen Gesetze.

2 Theorie

Brückenschaltungen werden dazu benutzt, durch bereits bekannte Widerstände Unbekannte zu bestimmen. Zu diesen Widerständen zählen Ohm'sche Widerstände, induktive Widerstände und kapazitative Widerstände. Bei den letzteren Beiden handelt es sich um komplexe Widerstände.

Zudem werden Brückenschaltungen oft in der Messtechnik dazu verwendet, die Auflösung einer Messung zu erhöhen, indem sie bestimmte Frequenzen filtern kann.

Allgemein werden bei allen folgenden Schaltungen die Kirchhoffschen Gesetze verwendet. Das Erste besagt, dass die Summe aller eingehenden und ausgehenden Ströme an einem Knoten Null ist:

$$\sum_{k} I_k = 0 \tag{1}$$

Das Zweite besagt, dass die Summe aller Speisespannungen gleich der Summe der Produkte der Stromstärken und Widerständen innerhalb einer Masche ist:

$$\sum_{k} U_k = \sum_{k} I_k R_k \tag{2}$$

Bei Gleichung 2 werden alle I_k im Uhzeigersinn als positiv und alle gegen den Uhzeigersinn als negativ gewertet.

Aus diesen grundlegenden Gesetzten (Gleichung 1 und Gleichung 2) lässt sich die Abgleichbedingung herleiten:

$$U_{Br} = \frac{R_2 R_3 - R_1 R_4}{(R_3 + R_4)(R_1 + R_2)} U_S$$

Wenn nun die Brückenspannung verschwindet, ergibt sich:

$$R_1 R_4 = R_2 R_3 \tag{3}$$

Abbildung 1: Wheatstonesche Brückenschaltung [1]

2.1 Wheatstonesche Brückenschaltung

Der einfachste Aufbau einer Brückenschaltung besteht aus einer Speisespannung U_S , drei bekannten und einem unbekannten Ohm'schen Widerstand und einem Spannungsmessgerät, was wie in Abbildung 1 aufgebaut wird.

Bei Abbildung 1 handelt es sich um eine Wheatstonesche Brückenschaltung. Sie kann sowohl mit Gleichstrom, als auch mit Wechselstrom betrieben werden. Diese Schaltung wird zur Bestimmung des Ohm'schen Widerstands R_X benutzt. Die Widerstände R_3 und R_4 können in diesem Fall durch ein Potentiometer ersetzt werden, da nur das Verhätnis der beiden Widerstände relevant zur Bestimmung von R_X ist.

Mit Gleichung 3 wird nun eine Formel für R_X bestimmt:

$$R_X = R_2 \frac{R_3}{R_4} (4)$$

Da diese Formel nur erfüllt ist, wenn die Brückenspannung Null ist, wird das Potentiometer [Verhätnis von R_3 und R_4] angepasst, bis die mit dem Spannungsmessgerät gemessene Spannung verschwindet.

2.2 Kapazitätsmessbrücke

Bei der Kapazitätsmessbrücke wird grundlegend derselbe Aufbau verwendet wie bei Abbildung 1. Da Kondensatoren einen Teil der durchfließenden elektrischen Energie in Wärme umwandeln, wird ein Ersatzschaltbild verwendet. Die dielektrischen Verluste

Abbildung 2: Kapazitätsmessbrücke [1]

werden durch einen mit dem Kondensator in Reihe geschalteten fiktiven Ohm'schen Widerstand dargestellt. Der reale Widerstand des Kondensators berechnet sich also aus:

$$Z_{C_{real}} = R - \frac{j}{\omega C}$$

In dem Aufbau Abbildung 2 der Brückenschaltung wird zudem ein zweiter Abstimmfreiheitsgrad (R_2) gewählt, um die durch R_X auftretende Phasenverschiebung zu kompensieren. Die beiden Unbekannten berechnen sich dann mit Gleichung 3 folgendermaßen:

$$R_X = R_2 \frac{R_3}{R_4} \tag{5}$$

$$C_X = C_2 \frac{R_4}{R_3} \tag{6}$$

2.3 Induktivitätsmessbrücke

Die Spule hat genau dasselbe Problem wie der Kondensator. Sie setzt einen Teil der magnetischen Feldenergie irreversibel in Wärme um. Daher wird wie beim Kondensator ein Ersatzschaltbild mit einem Ohm'schen Widerstand verwendet. Der Aufbau Abbildung 3 ist ähnlich wie bei Abbildung 2. Der reale Widerstand der Spule setzt sich folgendermaßen zusammen:

$$Z_{L_{real}} = R + j\omega L$$

Abbildung 3: Induktivitätsmessbrücke [1]

Analog zu Gleichung 5 und Gleichung 6 lassen sich die jeweils gesuchten Größen so formulieren:

$$R_X = R_2 \frac{R_3}{R_4} \tag{7}$$

$$L_X = L_2 \frac{R_4}{R_3} \tag{8}$$

Wie auch bei der Kapazitätsmessbrücke wird hier der Widerstand R_2 variabel gewählt, um der durch R_X verursachten Phasenverschiebung entgegen zu wirken.

2.4 Maxwell-Brücke

Eine weitere Möglichkeit eine unbekannte Induktivität zu bestimmen besteht durch die Maxwell-Brückenschaltung. Der Unterschied zu allen bisherigen Schaltungen liegt darin, dass bei keiner der Abgleichbedingungen die Frequenz der Speisespannung mit einging. Der Aufbau der Schaltung Abbildung 4 ist wieder ähnlich zu Abbildung 3. Allerdings werden anstelle des Potentiometer die Widerstände R_3 und R_4 variabel gewählt. Zudem wird parallel zu R_4 ein bekannter Kondensator geschaltet.

Mit der Abgleichbedingung ergeben sich nun folgende Formeln für die gesuchten Größen:

$$R_X = R_2 \frac{R_3}{R_4} \tag{9}$$

Abbildung 4: Maxwell-Brücke [1]

$$L_X = R_2 R_3 C_4 (10)$$

2.5 Wien-Robinson-Brücke

Die Wien-Robinson-Brücke hat im Gegensatz zu den anderen keine Abgleichelemente und ist eine frequenzabhängige Brückenschaltung. Sie wird nicht zur Bestimmung von Widerständen verwendet, sondern als elektrischer Filter. Mithilfe dieser Schaltung soll im Rahmen des Versuchs die Frequenzabhängigkeit der Speisespannung und der Brückenspannung gemessen werden. Die Brückenspannung wird folgendermaßen bestimmt:

$$U_{Br} = \frac{\omega^2 R^2 C^2 - 1}{3(1 - \omega^2 R^2 C^2) + 9j\omega RC} U_S$$
 (11)

Durch teilen von ${\cal U}_S$ und quadrieren ergibt sich folgende Formel:

$$\left|\frac{U_{Br}}{U_{S}}\right|^{2} = \frac{(\omega^{2}R^{2}C^{2} - 1)^{2}}{9[(1 - \omega^{2}R^{2}C^{2})^{2} + 9\omega^{2}R^{2}C^{2}]}$$
 (12)

Abbildung 5: Wien-Robinson-Brücke [1]

Anhand Gleichung 12 erkennt man gut, dass die Brückenspannung verschwindet wenn $\omega_0 = \frac{1}{RC}$ ist. Wir wählen zudem $\Omega := \frac{\omega}{\omega_0}$. Damit verkürzt sich Gleichung 12 zu:

$$\left| \frac{U_{Br}}{U_S} \right|^2 = \frac{(\Omega^2 - 1)^2}{9[(1 - \Omega^2)^2 + 9\Omega^2]} \tag{13}$$

Die Wien-Robinson-Brücke filtert aus einem kontinuierlichen Frequenzspektrum Schwingungen mit $\omega_0 = \frac{1}{RC}$ und schwächt die in nächster Nähe stark. Bei realen Messungen wird aber trotzdem ein Wert gemessen, der durch Oberwellen verursacht wird. Das Verhältnis dieser Oberwellen kann durch den Klirrfaktor ausgedrückt werden:

$$k := \frac{\sqrt{\sum_{i=2}^{N} U_i^2}}{U_1} \tag{14}$$

Wenn der Klirrfaktor Null ist, handelt es sich um einen idealen Sinusspannungsgenegrator. Es werden also keine Oberwellen erzeugt.

3 Durchführung

Alle Brückenschaltungen werden mit einer Wechselspannung mit 1000 Hz betrieben und als Spannungsmessgerät wird ein digitales Oszilloskop benutzt.

3.1 Wheatstonesche Brückenschaltung

Die Schaltung wird nach Abbildung 1 aufgebaut und sich zwei unbekannte Widerstände ausgesucht. In diesem Fall wurden Wert 13 und Wert 14 verwendet. Für Wert 13 wird das Potentiometer zunächst solange verstellt, bis die gemessene Brückenspannung verschwindet. Dann werden alle bekannten Werte abgelesen und notiert. Dies wird für jeweils drei verschiedene bekannte Widerstände R_2 wiederholt. Anschließend wird das Ganze nochmal für Wert 14 durchgeführt.

3.2 Kapazitätsmessbrücke

Die Schaltung wird zunächst wie in Abbildung 2 aufgebaut und sich zwei Kondensatoren mit unbekannten Kapazitäten und in Reihe geschalteten unbekannten Widerständen rausgesucht. Hier wurde nur Wert 8 verwendet, da Wert 15 fehlerhafte Ergebnisse am Oszilloskop angezeigt hatte.

Das Potentiometer und der veränderliche Widerstand R_2 werden so lange verändert, bis die Brückenspannung minimal ist. Alle bekannten Werte werden wieder abgelesen und notiert.

3.3 Induktivitätsmessbrücke

Die Schaltung wird nach Abbildung 3 aufgebaut und analog zur Kapazitätsmessbrücke durchgeführt. Nur, dass anstelle des Kondensators C_2 nun eine bekannte Spule L_2 verwendet wird. Die Werte werden wieder abgelesen und notiert.

3.4 Maxwell-Brücke

Die Brückenschaltung wird wie in Abbildung 4 aufgebaut und sich dasselbe unbekannte Bauteil wie bei der Induktivitätsmessbrücke genommen, welches aus einer unbekannten Spule und einem unbekannten Ohm'schen Widerstand besteht. Die Widerstände R_3 und R_4 werden so lange varriiert, bis die gemessene Brückenspannung Null wird. Dann werden wieder alle Werte notiert.

3.5 Wien-Robinson-Brücke

Die Schaltung wird wie in Abbildung 5 gezeigt aufgebaut. Bei diesem Versuch sind alle verwendeten Bauteile bekannt. Es wird die Spannungsfrequenz zwischen 20 und 30 000 Hz varriiert und notiert wie sich die Brückenspannung U_{Br} dementsprechend verändert. Hierzu wurde bei 20 Hz begonnen und der nächste Wert immer als doppeltes des vorherigen genommen, also: 20 Hz, 40 Hz, 80 Hz... . Anschließend wurde die Speisespannung U_S nach dem gleichen Schema untersucht.

4 Auswertung

4.1 Fehlerrechnung

Da die baubedingten relativen Fehler bei den Bauteilen angegeben sind, lässt sich die Gaußsche Fehlerfortpflanzung zu

$$\Delta z = \bar{z}\sqrt{(\Delta x)^2 + (\Delta y)^2} \tag{15}$$

für Größen der Form

$$z = x \cdot y$$

bestimmen. Δx und Δy sind dabei die relativen Fehler und \bar{z} ist der Mittelwert.

4.2 Wheatston'sche Messbrücke

Der relative Fehler für $\frac{R_3}{R_4}$ ist mit $0,5\,\%$ und der für R_2 ist mit $0,2\,\%$ angegeben. Die Werte für R_{14} und R_{13} sind in Tabelle 1 und 2 zu finden. Mit Hilfe von (4) lassen sich die Werte

$$\begin{split} R_{14} &= (704 \pm 631)\,\Omega \\ R_{13} &= (1724 \pm 1440)\,\Omega \end{split}$$

bestimmen. Die Fehler aus der Standarabweichung sind wesentlich größer als die angegeben relativen Fehler.

$$\begin{split} \Delta R_{14} &= 4\,\Omega \\ \Delta R_{13} &= 9\,\Omega \end{split}$$

Tabelle 1: Messung von R_3 und R_4 für R_{14}

R_2/Ω	R_3/Ω	R_4/Ω	R_{14}/Ω
332	243	757	106,6
664	392	608	428,1
1000	612	388	1577,3

4.3 Kapazitätsmessbrücke

Der relative Fehler für R_2 beträgt 3% und der für C_2 ist mit 0,2% angegeben. Der relative Fehler des Potentiometers ist gleich geblieben. C_2 ist als $C_2 = 597 \cdot 10^{-9} \, \mathrm{F}$ angegeben. Die Werte für C_8 und R_8 lassen sich in Tabelle 3 finden.

Mit Hilfe von (6) und (5) sind C_8 und R_8 bestimmt als

$$\begin{split} C_8 &= (578 \pm 146) \cdot 10^{-9} \, \mathrm{F} \\ R_8 &= (787 \pm 73) \, \Omega \end{split}$$

Tabelle 2: Messung von ${\cal R}_3$ und ${\cal R}_4$ für ${\cal R}_{13}$

R_2/Ω	R_3/Ω	R_4/Ω	R_{13}/Ω
332	579	421	456,6
664	595	405	975,5
1000	789	211	3739,3

Auch hier sind die Fehler aus der Standarabweichung wesentlich größer als die angegebenen relativen Fehler.

$$\begin{split} \Delta C_8 &= 9 \cdot 10^{-9} \, \mathrm{F} \\ \Delta R_8 &= 24 \, \Omega \end{split}$$

Tabelle 3: Messung von C_8 und R_8

R_2/Ω	R_3/Ω	R_4/Ω	$C_8/10^{-9}{ m F}$	R_8/Ω
500	640	360	336	889
600	580	420	432	829
700	480	520	647	646
800	491	509	619	772
900	470	530	673	789
1000	440	560	760	786

4.4 Induktivitätsmessbrücke

Der relative Fehler für R_2 und das Potentiometer ist gleich geblieben. Der baubedingte Fehler für L_2 ist als 0,2% angegeben. Die Werte für L_{16} und R_{16} sind in Tabelle 4 angegeben. Mit (8) und (7) ergibt sich

$$\begin{split} L_{16} &= (12, 4 \pm 2, 7) \cdot 10^{-3} \, \mathrm{H} \\ R_{16} &= (663 \pm 255) \, \Omega. \end{split}$$

Die Fehler der Mittelwerte sind erneut größer als die der relativen Fehler.

$$\begin{split} \Delta L_{16} &= 0, 1\cdot 10^{-3}\,\mathrm{H} \\ \Delta R_{16} &= 20\,\Omega \end{split}$$

4.5 Maxwellbrücke

Die relativen Fehler von R_3 und R_4 sind mit 3% angegeben. Die für R_2 und C_2 betragen 0, 2%. Die Messwerte für L_{16} und R_{16} sind in Tabelle 5 zu finden. Mit (10) und (9) ergibt

Tabelle 4: Messung von L_{16} und R_{16}

R_2/Ω	R_3/Ω	R_4/Ω	$L_{16}/10^{-3}{\rm H}$	R_{16}/Ω
500	342	638	268,0	7,8
600	430	570	$452,\!6$	11,0
700	492	508	678,0	14,1
800	445	555	$641,\!4$	11,7
900	527	473	1002,7	16,3
1000	532	568	$936,\!6$	13,7

sich

$$\begin{split} L_{16} &= (91, 9 \pm 47, 7) \cdot 10^{-3} \, \mathrm{H} \\ R_{16} &= (239 \pm 150) \, \Omega. \end{split}$$

Auch hier sind die Fehler der Standardabweichung wieder wesentlich größer als die angegebene relativen Fehler.

$$\begin{split} \Delta L_{16} &= 2, 8 \cdot 10^{-3} \, \mathrm{H} \\ \Delta R_{16} &= 1 \, \Omega \end{split}$$

Tabelle 5: Messung von L_{16} und R_{16}

R_3/Ω	R_4/Ω	$L_{16}/10^{-3}{\rm H}$	R_{16}/Ω
222	500	132,5	444
218	600	130,1	363
210	700	$125,\!4$	300
175	800	104,5	219
95	900	56,7	106
4	1000	0,2	4

4.6 Wien-Robinson-Brücke

Es soll die Frequenzabhängigkeit der Brückenspannung untersucht werden. Dazu wird der Quotient aus effektiver Brückenspannung $U_{Br,eff}$ und Speisespannung U_s gegen $\Omega = \frac{f}{f_0}$ aufgetragen und eine Theoriekurve eingezeichnet. Die Messwerte sind in Tabelle 7 eingetragen. Die Theoriekurve bestimmt sich aus (12) und ist in Abbildung 6 aufgezeichnet. Die effektive Brückenspannung ist gegeben durch

$$U_{Br,eff} = \frac{U_{Br}}{2\sqrt{2}}.$$

Die Werte der verwendeten Bauteile lassen sich in Tabelle 6 finden. f_0 bestimmt sich durch

$$\begin{split} \omega_0 &= \frac{1}{RC} = \frac{1}{1000\,\Omega \cdot 660 \cdot 10^{-9}\,\mathrm{F}} = 1515\,\mathrm{Hz} \\ \iff f_0 &= \frac{\omega_0}{2\pi} = 241\,\mathrm{Hz} \end{split}$$

Tabelle 6: Bauteile der Wien-Robinson-Brücke

R/Ω	R'/Ω	$2R'/\Omega$	$C/10^{-9}\mathrm{F}$
1000	332	664	660

Tabelle 7: Spannung in Abhängigkeit von der Frequenz des Sinusgenerators

f/Hz	$U_{Br}/10^{-3}\mathrm{V}$	$U_{Br,eff}/10^{-3} \mathrm{V}$	$U_S/10^{-3}\mathrm{V}$
20	560	198	2500
40	510	180	2500
80	390	138	2600
160	150	53	2700
220	40	14	2750
240	2	0,71	2750
260	30	11	2750
280	60	21	2750
320	100	35	2750
640	320	113	2700
1280	500	177	2600
2560	560	198	2600
5120	600	212	2500
10240	580	205	2500
20480	400	141	2300
30000	300	106	1000

Es fällt auf, dass die Messwerte immer mehr von der Theoriekurve abweichen, je weiter sie vom Minimum entfernt sind. Dies spricht für eine ungenaue Messung. Weiterhin lässt sich die Abweichung um das Minimum herum durch einen relativ hohen Klirrfaktor erklären. Nichts desto trotz ist eine Ähnlichkeit zur Theoriekurve feststellbar.

Der Klirrfaktor bestimmt sich durch (14). Dabei wird die Näherung verwendet, dass die Summe der Oberwellen nur von der zweiten Oberwelle abhängt. Dementsprechen werden nur noch U_1 und U_2 benötigt. U_1 ist durch 2,75 V von U_s bei f_0 gegeben. U_2 bestimmt

Abbildung 6: Abgleich mit Theoriekurve

sich aus (12) und $\Omega = 2$ zu

$$\begin{split} U_2 &= \frac{0,71\,\mathrm{V}}{\sqrt{\frac{(2^2-1)^2}{9((1-2^2)^2+9\cdot 2^2)}}} \\ &= 4,76\,\mathrm{V}. \end{split}$$

Der Klirrfaktor ergibt sich dann zu

$$k = \frac{U_2}{U_1} = \frac{4,76\,\mathrm{V}}{2,75\,\mathrm{V}}$$
 = 1,73.

5 Diskussion

Allgemein fällt auf, dass die Fehler der Messwerte, die sich aus der Standardabweichung ergeben, wesentlich größer als die angegebenen baubedingten Fehler sind. Da der Versuchsaufbau korrekt umgesetzt wurde, bleibt als Fehlerquelle lediglich die Genauigkeit der Bauelemente. Dabei ist fest zu stellen, dass die Bauelemente alle relativ alt sind. Besonders sei dabei das Potentiometer erwähnt, da es bei leichtem Verstellen schon für enorme Abweichungen, die sich selbst nach einer Wartezeit nicht verbessert haben, bei der Messung gesorgt hat.

Weiterhin ist die Abweichung für L_{16} und R_{16} ziemlich groß, obwohl die Werte einmal mit einer Induktivitäts- und einmal mit einer Maxwellbrücke bestimmt wurden. Die Werte von L_{16} weichen um 641, 13 % voneinander ab. Die Werte von R_{16} weichen um 177, 41 % voneinander ab.

Weiterhin scheint auch der Sinusgenerator größere Ungenauigkeiten zu haben, da ein relativ hoher Klirrfaktor von k=1,73 bestimmt wurde. Dieser reicht aber aus, um die Abweichungen von der Theoriekurve zu erklären. Der Klirrfaktor scheint sich dabei besonders auf die höheren Frequenzen aus zu wirken.

6 Messwerte

Brückenschaltunge	n
a) 1. Unbekannte: West 14	
R2: 1000 SZ	
R3, R4: 612	
Rz: 664 SL	
K3, R4: 392	ne
R ₂ :332 Ω K ₄ :243	212
- Kg. Kq · 275	n.
2. Un beliannte: West 13	
Re: 100052 Ks. Re: 789	
R2: 332 52	33
Rz: 664, Rz, Ru: 595	

Abbildung 7: Messdaten 1

```
6) Wet 8 C2: 597nF
    Rz: 500 Rz, Ru: 640
               1 " : 580
               . :480
               " : 491
   Rg: 800
                 : 470
  Rt : 900
                 : 448
  R2: 1000
 Wet 15 G: 597NF
 R; 500 R3, R4:
Rz : 600
" : 700
: 1000
```

Abbildung 8: Messdaten 2

c) Not 16 Lx und Rx R: 50052 L2: 14,6 mlt Kz, Ru 342 R2: 600 SZ R3, Ru: 430 L: 700 sz R3, Ru: 492 R: 800 SZ R3, R4: 445 R, : 900 SZ Ry Ru: 527 12:1000 SL Hailu 532

Abbildung 9: Messdaten 3

\$10 Pr 000 Pr 50 St St	Date
d) West	(6
Rz: 1KD	
C4:597NF	
H5 1500 (34)	1/4/5/6/6/
## ## / / / / / / / / / / / / / / / / /	18/36/19
V/ 246///	18/1/26881
	700
Rz: 222	, Ry: 500 SZ
R 3: 238	, Ry: 600 SZ
R3: 210	1R4:700s
Rs: 175	, Ru: 800 52
(3: 95	1Ru . 90052
Rs: 4	Ry: 1000.

Abbildung 10: Messdaten 4

e) C = 660nF				
	1=664_2			
	R=14.DL			
Up : 560	Ø= 20	A Us		
BBB 510	40	2500 V		
390	80 us.	-69		
X12 150	160 / 240 2	2700		
100	320 = 280 60	2200		
320	646 200	2800		
560	1280 7 400	2600		
560	1560 Puro	2600 260		
600	4405 5620	2000 2500		
580	10240	2600 2500		
400	20480	-2600 2300		
300	40 960 30000	2600 1600		
		K.POPP		

Abbildung 11: Messdaten 5

Literatur

 $[1] \quad \textit{Versuchsanleitung zu "Elektrische Br\"{u}ckenschaltungen"}.$