Data Science

Dr. Muhammad Adeel Nisar

Assistant Professor – Department of IT, Faculty of Computing and Information Technology, University of the Punjab, Lahore

Slides Courtesy: Dr. Kamran Malik

•
$$P(X = 0) = \frac{5}{12}$$

•
$$P(Y = 3) = \frac{1}{2}$$

•
$$P(X = 1, Y = 2) = \frac{2}{12}$$

•
$$P(Y = 2, X = 1) = \frac{2}{12}$$

•
$$P(X = 1 | Y = 2) = \frac{1}{3}$$

•
$$P(Y = 2 | X = 1) = \frac{2}{9}$$

	X	Y
_	X 0	0
	0	1
	1	0
(1)	2
	 1 2 2 2 2 	0 2 3 0
	2	0
	2	3
(1	3
	(1)	
_	0	3
_	0	0
_	0	0

$$P(bag1) = 0.3$$

•
$$P(Red|bag1) = 0.4$$

P(bag2) = 0.5

P(bag3) = 0.2

- $P(A, B) \text{ or } P(A \cap B) = ?$
- P(A,B) = P(A|B) * P(B) = P(B|A) * P(A)

$$P(A,B|C) = P(A|B,C) * P(B|C) = P(B|A,C) * P(A|C)$$

$$P(A|B,C) \times P(B|C)$$

$$P(C,B)$$

• P(A
$$\cap$$
 B \cap C) = P(A,B,C) = P(A|B,C) × P(B|C) × P(C)
 $P(A|B,C)$ × $P(B|C)$ × $P(B|C)$

• P(A)B)C)
$$(A|B)$$
 $(A|B)$ $(A|B$

if all events are independent

- P(A, B) = P(A)*P(B)
 P(A, B, C) = P(A) × P(B) × P(C)
- P (A , B , C, D) =
- P(A1,A2,...,An) =

Conditionally independent

- P(A, B | C) = P(A | C) * P(B | C)
- $P(A, B, C | D) = P(A(D) \times P(B|D) \times P(Z|D)$ $P(A1,A2,...,An | Z) = P(A|Z) \times ... \times P(A|Z)$

Classification

Classification Examples

Classification Algorithms

- Classification algorithms are used when the output variable is categorical, which means there are two or more classes.
- Algorithms
 - Naïve Bayes
 - Logistic Regression
 - Support vector Machines
 - Random Forest
 - Decision Trees

How to Perform Classification

Classification of a Family Car

 $(p_1 \le \text{price} \le p_2) \text{ AND } (e_1 \le \text{engine power} \le e_2)$

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } h \text{ classifies } \mathbf{x} \text{ as a positive example} \\ 0 & \text{if } h \text{ classifies } \mathbf{x} \text{ as a negative example} \end{cases}$$

$$E(h|\mathcal{X}) = \sum_{t=1}^{N} 1(h(\mathbf{x}^{t}) \neq r^{t})$$

Evaluation of a Classifier

FC: Family Car

NFC: Not a Family Car

Car	Actual	Predicted	
1	FC	FC	
2	FC	NFC	
3	NFC	FC	
4	FC	FC	
5	NFC	FC	
6	NFC	NFC	
7	FC	NFC	
8	FC	FC	
9	NFC	FC	
10	FC	FC	
11	NFC	NFC	
12	NFC	NFC	

- True positives (TP): data points predicted/labeled as positive that are actually positive
- False positives (FP): data points predicted/labeled as positive that are actually negative
- True negatives (TN): data points predicted/labeled as negative that are actually negative
- False negatives (TN): data points predicted/labeled as negative that are actually positive

Cor	fusion	Act	ual
	latrix	Positive (FC)	Negative (NFC)
icted	Positive (FC)	TP	FP
Predicted	Negative (NFC)	FN	TN

Car	Actual	Predicted
1	FC	FC
2	FC	FC
3	NFC	FC
4	FC	FC
5	NFC	FC
6	NFC	NFC
7	FC	NFC
8	FC	FC
9	FC	FC
10	FC	NFC
11	NFC	NFC
12	NFC	NFC

Confusion		Actual		
Ma	trix	Positive (FC)	Negative (NFC)	
icted	Positive (FC)		2	
Predicted	Negative (NFC)	2	3	

Car	Actual	Predicted	
1	FC	FC	
2	FC	FC	
3	NFC	FC	
4	FC	FC	
5	NFC /	FC	
6	NFC	NFC	
7	FC	NFC /	
8	FC	FC	
9	FC	FC	
10	FC	NFC	
11	NFC	NFC	
12	NFC	NFC	

- Accuracy: Closeness of a measured value to a standard or known value ((TP + TN)/(TP+TN+FN+FP)) = 8/12 = 0.67
- Recall: Ability of a classification model to identify all relevant instances (TP / TP + FN) = 5/7
- **Precision:** Ability of a classification model to return only relevant instances (TP / TP + FP) = **5/7**
- **F1 score:** A single metric that combines recall and precision using the harmonic mean (2 (Precision * Recall)/(Precision + Recall)) = ?

Example 2

		Actual			
Confusio	on Matrix	Positive	Negative		
ted	Positive				
Predicted	Negative				

- Accuracy = ?
- Recall = ?
- Precision = ?
- F1-Score = ?

Images	Actual Label	Predicted Label
lmage1	Нарру	Sad
Image2	Sad	Sad
Image3	Sad	Нарру
Image4	Нарру	Нарру
Image5	Нарру	Нарру
Image6	Sad	Нарру
Image7	Sad	Нарру
Image8	Нарру	Нарру
Image9	Нарру	Нарру
Image10	Sad	Sad

Example 3

Actual

Positive

Patient2

Patient1

Images

Not Corona

Actual Label

Not Corona

Not Corona

Model 1

Not Corona

Model 2

Not Corona

Confusion Matrix

Negative

Patient3

Not Corona

Not Corona Not Corona Not Corona Not Corona

Predicted

Positive

Patient4 Patient5 Not Corona Not Corona

Not Corona Corona

Not Corona Corona

Not Corona Corona

Not Corona

Not Corona Not Corona

Negative

- Recall = ?
- Precision = ?
- F1-Score = ?

Patient6

Not Corona

Patient10 Corona

Not Corona

Corona

Not Corona Corona

Patient7

Not Corona

Not Corona Corona

Patient8

Patient9

(Classification Algorithms)

$$P(x \mid c)$$

$$P(x_1, x_2, \ldots, x_n \mid c)$$

$$P(x_1,...,x_n \mid c) = P(x_1 \mid c) \bullet P(x_2 \mid c) \bullet P(x_3 \mid c) \bullet ... \bullet P(x_n \mid c)$$

Assumption

Conditional Independence: Assume the feature probabilities x are independent given the class *c*.

$$P(x \mid c)$$

$$P(x_1, x_2, \ldots, x_n \mid c)$$

$$P(x_1,...,x_n \mid c) = P(x_1 \mid c) \bullet P(x_2 \mid c) \bullet P(x_3 \mid c) \bullet ... \bullet P(x_n \mid c)$$

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Bayes Rule:
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$c_{MAP} = \operatorname*{argmax} P(c \mid x)$$

$$c \in C$$

MAP is "maximum a posteriori" = most likely class

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(x | c)P(c)}{P(x)}$$

Bayes Rule

$$= \underset{c \in C}{\operatorname{argmax}} P(x \mid c) P(c)$$

Dropping the denominator

• 7	Γrair	ing	Data
-----	-------	-----	------

a	x 1	x 2	x 3	x 4	x 5	х6	Class	P(y) =	P(n) =
	1	0	0	1	1	1	У	P(x1=1 y) =	P(x1=0 y)=
	1	1	0	1	1	1	-	P(x1=1 n) = P(x2=1 y) =	P(x1=0 n) = P(x2=0 y) =
	Τ	1	_	_	Τ	_	У	P(x2=1 y) = P(x2=1 n) =	P(x2=0 y) =
	0	1	0	0	0	0	У	P(x3=1 y) =	P(x3=0 y) =
	0	0	1	0	0	1	n	P(x3=1 n) =	P(x3=0 n) =
	1	1	0	1	1	0	n	P(x4=1 y) = P(x4=1 n) =	P(x4=0 y) = P(x4=0 n) =
	0	1	0	1	1	0	n	P(x5=1 y) =	P(x5=0 y) = P(x5=0 x) = 0
		_		_	_			P(x5=1 n) = P(x6=1 y) =	P(x5=0 n) = P(x6=0 y) =
								_	_

Testing Data

$$\underset{c \in C}{\operatorname{argmax}} P(x \mid c) P(c)$$

P(x6=1|n) =

P(x6=0|n) =

Training Data

а	x 1	x2	x 3	x 4	x 5	x6	Class	P(y) = 1/2
	1	0	0	1	1	1	У	P(x1=1 y) = 2/3
	1	1	0	1	1	1	У	P(x1=1 n) = 1/3 P(x2=1 y) = 2/3
	0	1	0	0	0	0	У	P(x2=1 n) = 2/3 P(x3=1 y) = 0
	0	0	1	0	0	1	n	P(x3=1 n) = 1/3
	1	1	0	1	1	0	n	P(x4=1 y) = 2/3 P(x4=1 n) = 2/3
	0	1	0	1	1	0	n	P(x5=1 y) = 2/3 P(x5=1 n) = 2/3

Testing Data

$$P(x2=1|y) = 2/3$$
 $P(x2=0|y) = 1/3$
 $P(x2=1|n) = 2/3$ $P(x2=0|n) = 1/3$
 $P(x3=1|y) = 0$ $P(x3=0|y) = 1$
 $P(x3=1|n) = 1/3$ $P(x3=0|n) = 2/3$
 $P(x4=1|y) = 2/3$ $P(x4=0|y) = 1/3$
 $P(x4=1|n) = 2/3$ $P(x4=0|n) = 1/3$
 $P(x5=1|y) = 2/3$ $P(x5=0|y) = 1/3$
 $P(x5=1|n) = 2/3$ $P(x5=0|n) = 1/3$
 $P(x6=1|y) = 2/3$ $P(x6=0|y) = 1/3$
 $P(x6=1|n) = 1/3$ $P(x6=0|n) = 2/3$

 $\operatorname{argmax} P(x \mid c) P(c)$

c∈*C*

P(n) = 1/2

P(x1=0|y)=1/3

P(x1=0|n) = 2/3

Training Data

а	x 1	x2	x 3	x 4	x 5	x 6	Class	P(y) = 1/2
	1	0	0	1	1	1	У	P(x1=1 y) = 2/3
	1	1	0	1	1	1	У	P(x1=1 n) = 1/3 P(x2=1 y) = 2/3
	0	1	0	0	0	0	У	P(x2=1 n) = 2/3 P(x3=1 y) = 0
	0	0	1	0	0	1	n	P(x3=1 n) = 1/3
	1	1	0	1	1	0	n	P(x4=1 y) = 2/3 P(x4=1 n) = 2/3
	0	1	0	1	1	0	n	P(x5=1 y) = 2/3 P(x5=1 n) = 2/3

Testing Data

$$P(x2=1|y) = 2/3$$
 $P(x2=0|y) = 1/3$
 $P(x2=1|n) = 2/3$ $P(x2=0|n) = 1/3$
 $P(x3=1|y) = 0$ $P(x3=0|y) = 1$
 $P(x3=1|n) = 1/3$ $P(x3=0|n) = 2/3$
 $P(x4=1|y) = 2/3$ $P(x4=0|y) = 1/3$
 $P(x4=1|n) = 2/3$ $P(x4=0|n) = 1/3$
 $P(x5=1|y) = 2/3$ $P(x5=0|y) = 1/3$
 $P(x5=1|n) = 2/3$ $P(x5=0|n) = 1/3$
 $P(x6=1|y) = 2/3$ $P(x6=0|y) = 1/3$
 $P(x6=1|n) = 1/3$ $P(x6=0|n) = 2/3$

 $\operatorname{argmax} P(x \mid c) P(c)$

c∈*C*

P(n) = 1/2

P(x1=0|y)=1/3

P(x1=0|n) = 2/3

Naïve Bayes Classifier (smoothing)

Naïve Bayes Classifier (Smoothing)

- A solution would be Laplace smoothing, which is a technique for smoothing categorical data.
- A small-sample correction, or pseudo-count, will be incorporated in every probability estimate.
- Consequently, no probability will be zero.
- This is a way of regularizing Naive Bayes, and when the pseudocount is zero, it is called Laplace smoothing.
- While in the general case it is often called Lidstone smoothing.

Naïve Bayes Classifier (after Smoothing)

Training Data

a	x 1	x2	x 3	x 4	x5	x6	Class	P(y) =	P(n) =
	1	0	0	1	1	1	V	P(x1=1 y) =	P(x1=0 y)=
					_	_	7	P(x1=1 n) =	P(x1=0 n) =
	1	1	0	1	1	1	У	P(x2=1 y) =	P(x2=0 y) =
	•	4			_		-	P(x2=1 n) =	P(x2=0 n) =
	0	1	0	0	0	0	У	P(x3=1 y) =	P(x3=0 y) =
	0	0	1	0	0	1	n	P(x3=1 n) =	P(x3=0 n) =
			_			_		P(x4=1 y) =	P(x4=0 y) =
	1	1	0	1	1	0	n	P(x4=1 n) =	P(x4=0 n) =
		4	0	4	4			P(x5=1 y) =	P(x5=0 y) =
	0	1	0	1	1	0	n	P(x5=1 n) =	P(x5=0 n) =
								P(x6=1 y) =	P(x6=0 y) =
								P(x6=1 n) =	P(x6=0 n) =

Testing Data

1, 1, 0, 0, 0, 1 y 1, 0, 1, 1, 1, y

 $\underset{c \in C}{\operatorname{argmax}} P(x \mid c) P(c)$

Naïve Bayes Classifier (Smoothing)

Training Data

3	x 1	x 2	x 3	x 4	x 5	x6	Class	P(y) = 1/2
	1	0	0	1	1	1	V	P(x1=1 y) = 3/5
	1	1	0	1	1	1	У	P(x1=1 n) = 2/5 P(x2=1 y) = 3/5
	0	1	0	0	0	0	У	P(x2=1 n) = 3/5 P(x3=1 y) = 1/5
	0	0	1	0	0	1	n	P(x3=1 n) = 2/5
	1	1	0	1	1	0	n	P(x4=1 y) = 3/5 P(x4=1 n) = 3/5
	0	1	0	1	1	0	n	P(x5=1 y) = 3/5 P(x5=1 n) = 3/5
								P(x6=1 y) = 3/5

Testing Data

1, 1, 0, 0, 0, 1 y 1, 0, 1, 1, 1, 1 y

$$\underset{c \in C}{\operatorname{argmax}} P(x \mid c) P(c)$$

P(x6=1|n) = 2/5 P(x6=0|n) = 3/5

P(n) = 1/2

P(x1=0|y)=2/3

P(x1=0|n) = 3/5

P(x2=0|y) = 2/5

P(x2=0|n) = 2/5

P(x3=0|y) = 4/5

P(x3=0|n) = 3/5

P(x4=0|y) = 2/5

P(x4=0|n) = 2/5

P(x5=0|y) = 2/5

P(x5=0|n) = 2/5

P(x6=0|y) = 2/5

Programming Assignment (example)

• 7	Γrain	ing	Data
-----	-------	-----	------

a x1	x 2	x 3	x 4	x 5	х6	Class	P(y) =	P(n) =
1	0	0	1	1	1	У	P(x1=1 y) =	P(x1=0 y)=
1	1	0	1	1	1	-	P(x1=1 n) = P(x2=1 y) =	P(x1=0 n) = P(x2=0 y) =
T	1	-	_	Т	_	У	P(x2=1 n) =	P(x2=0 n) =
0	1	0	0	0	0	У	P(x3=1 y) =	P(x3=0 y) =
0	0	1	0	0	1	n	P(x3=1 n) =	P(x3=0 n) =
1	1	0	1	1	0	n	P(x4=1 y) = P(x4=1 n) =	P(x4=0 y) = P(x4=0 n) =
0	1	0	1	1	0	n	P(x5=1 y) = P(x5=1 n) =	P(x5=0 y) = P(x5=0 n) =
	_		_	_			P(x6=1 y) =	P(x6=0 y) =

Testing Data

$$\underset{c \in C}{\operatorname{argmax}} P(x \mid c) P(c)$$

P(x6=1|n) =

P(x6=0|n) =

1 yes zero Prob = 1 - yes one Prob

2 print(yes zero Prob)

					_							
x1	x2	х3	x4	x 5	x6	Class	$X_{\text{Train}} = \text{np.array}([[1,0,0,1,1,1]],$					
1	0	0	1	1	1	У	[1,1,0,1,1,1], [0,1,0,0,0,0],					
1	1	0	1	1	1	У	[0,0,1,0,0,1],					
0	1	0	0	0	0	У	[1,1,0,1,1,0], [0,1,0,1,1,0]])					
0	0	1	0	0	1	n	<pre>print(X_Train) 1 yes train = X Train[:3,:]</pre>					
1	1	0	1	1	0	n	2 print (yes_train)					
0	1	0	1	1	0	n	[[1 0 0 1 1 1] [1 1 0 1 1 1]					
yes_t	rain.s	shape					[0 1 0 0 0 0]]					
	<pre>1 yes_one_Prob = yes_train.sum(axis=0)/yes_train.shape[0] 2 print(yes_one_Prob)</pre>											
[0.66												

Training Data

а	x 1	x2	x 3	x 4	x 5	x 6	Class	P(y) = 1/2
	1	0	0	1	1	1	У	P(x1=1 y) = 2/3
	1	1	0	1	1	1	У	P(x1=1 n) = 1/3 P(x2=1 y) = 2/3
	0	1	0	0	0	0	У	P(x2=1 n) = 2/3 P(x3=1 y) = 0
	0	0	1	0	0	1	n	P(x3=1 n) = 1/3
	1	1	0	1	1	0	n	P(x4=1 y) = 2/3 P(x4=1 n) = 2/3
	0	1	0	1	1	0	n	P(x5=1 y) = 2/3 P(x5=1 n) = 2/3

Testing Data

$$P(x2=1|y) = 2/3$$
 $P(x2=0|y) = 1/3$
 $P(x2=1|n) = 2/3$ $P(x2=0|n) = 1/3$
 $P(x3=1|y) = 0$ $P(x3=0|y) = 1$
 $P(x3=1|n) = 1/3$ $P(x3=0|n) = 2/3$
 $P(x4=1|y) = 2/3$ $P(x4=0|y) = 1/3$
 $P(x4=1|n) = 2/3$ $P(x4=0|n) = 1/3$
 $P(x5=1|y) = 2/3$ $P(x5=0|y) = 1/3$
 $P(x5=1|n) = 2/3$ $P(x5=0|n) = 1/3$
 $P(x6=1|y) = 2/3$ $P(x6=0|y) = 1/3$
 $P(x6=1|n) = 1/3$ $P(x6=0|n) = 2/3$

 $\operatorname{argmax} P(x \mid c) P(c)$

c∈*C*

P(n) = 1/2

P(x1=0|y)=1/3

P(x1=0|n) = 2/3

Programming Assignment (OCR)

Programming Assignment

- Implement an OCR system that distinguishes between the images of digits
- Four files (trainX, trainY, testX and testY)

```
from keras.datasets import mnist
```

- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train=x_train.reshape(60000,784)
- x_test=x_test.reshape(10000,784)

Programming Assignment

```
%matplotlib inline
import numpy as np
from matplotlib import pyplot as plt
0,0,0,0], dtype=np.uint8)
```

Programming Assignment

```
1 img2.shape
(256,)

img = np.reshape(img2, (16,16), order='F')
1 img.shape
(16, 16)
```


<matplotlib.image.AxesImage at 0x5cc1780>

