ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 2.3.1. Получение и измерение вакуума

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

Содержание

1	Анн		3					
2	Teo	ретические сведения	3					
3	Экс	периментальная установка	6					
4	Me	ика измерений						
	4.1	Определение полного объёма установки	8					
	4.2	Измерение скорости откачки форвауумным и турбомолекулярным насосами	8					
	4.3	Определение уровня течей	9					
5	Обработка результатов измерений							
	5.1	Определение полного объёма установки	9					
	5.2	Измерение скорости откачки форвакуумным насосом	10					
	5.3	Измерение скорости откачки турбомолекулярным насосом .	11					
	5.4	Определение уровня течей	11					
6	Вы	вод	12					
7	Прі	ложения	13					

1 Аннотация

В данной работе исследуются некоторые свойства вакуума, полученного с помощью вакуумного насоса. Измеряется объём форвакуумной и высоковакуумной частей установки, а также определяются скорости откачки системы при различных состояниях вакуума.

2 Теоретические сведения

Введём основные термины, используемые в данной работе.

Вакуум - такое состояние газа, при котором длина свободного пробега его молекул по порядку величины сравнима с характерным линейным размером сосуда.

Быстрота откачивающего действия (скорость откачки) вакуумной системы (S) - объём газа, проходящего через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении.

$$S = \frac{dV}{dt}, \quad [S] = \frac{M^3}{c} \tag{1}$$

Пропускная способность (проводимость) (U) - отношение потока газа через вакуумпровод к разность давлений в откачиваемом объёме и на входе в насос.

$$U = \frac{Q}{P_1 - P_2}, \quad [U] = \frac{M^3}{c},$$
 (2)

где P_1 - давление в откачиваемом объёме, P_2 - давление на входе в насос, Q - поток газа через вакуумпровод с соответствующими давлениями на концах.

Ясно, что в процессе откачки давление меняется как во времени, так и вдоль вакуумпровода. Однако через некоторое время, зависящее от параметров системы) течение разреженного газа переходит в квазистационарный режим, в котором поток газа становится практически постоянным и равным количеству газа, поступающего в систему в единицу времени вследствие наличия течей. Для такого режима справедливо уравнение непрерывности:

$$P_1S_1 = P_2S_2 = Q (3)$$

Получим основное уравнение вакуумной техники. Из (2) и (3):

$$U = \frac{Q}{P_1 - P_2} = \frac{Q}{\frac{Q}{S_1} - \frac{Q}{S_2}} = \frac{1}{\frac{1}{S_1} - \frac{1}{S_2}}$$

$$\frac{1}{S_1} = \frac{1}{S_2} + \frac{1}{U}$$
(4)

Возникновение течей количественно характеризуется величиной, которая называется натекание.

Натекание (Q_{out}) - быстрота изменения давления в данном объёме при отключенных средствах откачки.

$$Q_{\text{out}} = V \frac{dP}{dt} \tag{5}$$

Допустимым считается такое натекание, что $Q_{\text{out}} \ll Q$

Режимы течения газа:

Для классификации режимов течения применяется число Кнудсена (Кn $= \frac{\lambda}{d}$), равное отношению длины свободного пробега молекулы газа к характерному линейному размеру сосуда.

Если Kn \ll 1, то течение называется гидродинамическим (вязкостным); молекулы сталкиваются преимущественно друг с другом. Если Kn \gg 1, то течение называется молекулярным (кнудсеновским); молекулы сталкиваются преимущественно со стенками сосуда. Если Kn \approx 1, то в системе могут существовать оба описанных вида течения.

Проводимость отверстия в стенке:

Далее индекс 1 относится к величинам с одной стороны от стенки, 2 - с другой. Пусть ν - число молекул, пролетающих через единицу площади отверстия за единицу времени, A - площадь отверстия, n - концентрация молекул, ν - средняя скорость молекул, тогда справедливы соотношения:

1) Из определения:

$$\begin{split} \nu &= \frac{1}{A} \left(\frac{dN_2}{dt} - \frac{dN_1}{dt} \right) = \frac{1}{A} \left(\frac{d(n_2V)}{dt} - \frac{d(n_1V)}{dt} \right) = \\ &= \frac{n_2 - n_1}{A} \frac{dV}{dt} = \frac{1}{AkT} (P_2 - P_1) U_{\text{otb}} \end{split} \tag{6}$$

2) Из анализа движения молекул

$$v = v_1 - v_2 = \frac{1}{4}n_2v - \frac{1}{4}n_1v = \frac{1}{4}v(n_1 - n_2) = \frac{1}{4}\frac{v}{kT}(P_2 - P_1)$$
 (7)

Из уравнений (6) и (7) получаем выражение для проводимости отверстия:

$$U_{\text{OTB}} = \frac{1}{4} A v = \frac{1}{4} \pi R^2 \sqrt{\frac{8kT}{\pi m}}$$
 (8)

Проводимость длинного трубопровода:

Будем рассматривать длинный трубопровод, то есть такой, что L \gg

≫ R, где L - длина трубопровода, R - его радиус.

В случае гидродинамического режима откачки проводимость получается из формулы Пуазёйля:

$$U_{\rm TP} = \frac{\pi R^4}{8\eta L} \Delta P, \tag{9}$$

где ΔP - перепад давления вдоль трубы, η - вязкость газа.

В случае молекулярного режима откачки выражение для проводимости имеет вид:

$$U_{\text{p}} = \frac{4}{3} \frac{R^3}{L} \sqrt{\frac{2\pi kT}{m}},\tag{10}$$

где т - масса молекулы газа.

Время откачки:

Пусть в начальный момент времени в откачиваемом объёме V_0 было давление Р. Пусть также за время dt это давление изменилось на dP. Тогда верно соотношение: $S_0Pdt=-V_0dP$, которое можно записать в виде

$$dt = \frac{V_0}{S_1} \frac{dP}{P} \tag{11}$$

С учётом уравнение (4) получаем:

$$dt = -V_0 \left(\frac{1}{S_2} + \frac{1}{U}\right) \frac{dP}{P} \tag{12}$$

В общем случае для решения (12) нужно знать зависимость S_2 от давления. Если же $S_2 = const$, то решение имеет вид:

$$P(t) = P_1 \cdot exp\left(-\frac{S_0}{V_0}t\right) \tag{13}$$

3 Экспериментальная установка

В данной работе применяются два вида насосов: мембранный (диафрагменный) и турбомолекулярный. Мембранный насос обладает низкой скоростью откачки, и с его помощью возможно получить лишь средний вакуум. Турбомолекулярный насос позволяет получить высокий вакуум.

Для измерения давления используются два вакуумметра: терморезисторный (вакуумметр Пирани) и магнетронный (с холодным катодом). Вакуумметр Пирани не применим в области низкого вакуума, так как его принцип действия основан на зависимости теплопроводности газа от давления, но при давлении менее 10^{-3} Торр теплопроводность становится постоянной. Магнетронный вакуумметр работает в условиях высокого и сверхвысокого вакуума, однако его не рекомендовано применять для исследования среднего вакуума, поскольку материал катода распыляется потоком ионов газа.

Схема экспериментальной установки приведена на рисунке 1.

Рис. 1 Схема экспериментальной установки

Управление основными функциями установки осуществляется с помощью программного обеспечения PV TurboViewer. Откачка вакуммной камеры может производиться как двумя насосами через шиберный затвор, так и только диафрагменным насосом по пути: сильфон \rightarrow мембранный кран $2 \rightarrow$ тройник \rightarrow шланг. Для измерения давления используются цифровой терморезисторный вакуумметр PPT 100 и комбинированный вауумметр MPT 100 (одновременно терморезисторный и магнетронный).

4 Методика измерений

4.1 Определение полного объёма установки

К откачанной установке был подключен сильфон, заполненный воздухом при атмосферном давлении. Объём сильфона равен V_c .

Далее был открыт кран МКЗ, вследствие чего воздух из сильфона распространился по всей установке и занял объём $V_{\rm yct}+V_{\rm c}$. Такое расширение является неравновесным процессом, однако внутренняя энергия газа остаётся постоянной в предположении, что установка является адиабатической оболочной. Таким образом, для газа в двух состояния справедлив закон Бойля-Мариотта:

$$P_{\text{atm}}V_{c} = P_{2}(V_{\text{vct}} + V_{c}), \tag{14}$$

где $P_{\text{атм}}$ - атмосферное давление, P_2 - установившееся давление во всей установке.

Отсюда получаем:

$$V_{\text{yct}} = V_c \frac{P_{\text{atm}} - P_2}{P_2} \tag{15}$$

4.2 Измерение скорости откачки форвауумным и турбомолекулярным насосами

Установка была заполнена воздухом при атмосферном давлении, а затем откачивалась форвакуумным насосом до тех пор, пока давление в системе не перестало меняться с точностью до возникающих флуктуаций. По зависимости P(t) можно получить величину $\frac{S_0}{V_{ycr}}$, откуда уже найти S_0 .

В случае откачки турбомолекулярным насосом величина S_0 получается идентично.

4.3 Определение уровня течей

Для оценки уровня течей после остановки откачки турбомолекулярным насосом измерялось давление в системе с помощью вакуумметра В2. По полученной зависимости, используя формулу (5), можно определить величину натекания.

5 Обработка результатов измерений

5.1 Определение полного объёма установки

Объём сильфона: $V_c=265$ мл (погрешность считаем равной нулю, так как данные получены непосредственно из текста методического пособия). Измерение атмосферного давления не производилось, поэтому считаем, что $P_{\text{атм}}=760$ Торр. Давление в системе, измеренное с помощью вакуумметра В1 будем обозначать P_1 , с помощью В2 - P_2 .

После откачки объёма установки:

 $P_1 = 3,7$ мбар;

 $P_2 = 3,9$ мбар.

Заметим, что эти величины на 3 порядка меньше атмосферного давления, то есть давления воздуха в сильфоне. Поэтому этим давлением можно пренебречь и считать, что воздух из сильфона расширяется в вакуум.

После распространения воздуха в форвакуумную камеру:

 $P_1 = 0, 18$ бар;

 $P_2 = 1 \, \text{fap}.$

Более корректно давление измерено вакуумметром РРТ 100, так как в силу своей конструкции он больше подходит для измерения высокого и среднего вакуума, в то время как МРТ 100 более точен в области низкого вакуума. Отсюда получаем:

$$V_{\text{фвк}} = 1,2$$
 л

После распространения воздуха в форвакуумную магистраль:

$$P_1 = 0, 17 \text{ fap};$$

$$V_{\mathtt{mar}} = 86 \, \mathrm{мл}$$

После распространения воздуха в объём турбомолекулярного насоса:

$$P_1 = 0, 12 \text{ fap};$$

$$V_{\text{тмн}} = 650 \text{ мл}$$

Информации о погрешности измерения давления вакуумметром B_1 у автора нет, поэтому погрешность полученного результата можно считать равной нулю. Заметим лишь, что данный эксперимент был проведён 3 раза и каждый раз результаты измерений давления были одинаковыми.

5.2 Измерение скорости откачки форвакуумным насосом

Таблица с результатами измерение P(t) и график этой зависимости, построенный по экспериментальным точкам, представлены в разделе "Приложения" (таблица 1, рисунок 1, таблица 2, рисунок 2).

Из анализа графика для вакуумметра PPT 100 методом наименьших квадратов:

$$\frac{V_{\rm фвк}}{S_0} = (6,794 \pm 0,003)c$$

Откуда получаем:

$$S_0 = (148 \pm 4) \frac{\text{va}}{c}$$

Из анализа графика для вакуумметра MPT 100 методом наименьших квадратов:

$$\frac{V_{\text{фвк}}}{S_0} = (4,908 \pm 0,004)c$$

Откуда получаем:

$$S_0 = (244 \pm 6) \frac{MA}{c}$$

5.3 Измерение скорости откачки турбомолекулярным насосом

Таблица с результатами измерение P(t) и график этой зависимости, построенный по экспериментальным точкам, представлены в разделе "Приложения" (таблица 3, рисунок 3).

Из анализа графика для вакуумметра PPT 100 методом наименьших квадратов:

$$\frac{V_{\text{\tiny TMH}}}{S_0} = (15,828 \pm 0,005)c$$

Откуда получаем:

$$S_0 = (76 \pm 6) \frac{\text{ma}}{c}$$

Показания вакуумметра MPT 100 на протяжении 76 секунд отображались как underranged, поэтому делать выводы, основываясь на данных с этого вакуумметра не вполне корректно.

5.4 Определение уровня течей

Таблица с результатами измерение P(t) и график этой зависимости, построенный по экспериментальным точкам, представлены в разделе "Приложения" (таблица 4, рисунок 4, таблица 5, рисунок 5).

Из анализа графика для вакуумметра PPT 100 методом наименьших квадратов:

$$\frac{dP}{dt} = (3, 21 \pm 0, 05) \cdot 10^{-5} \frac{\text{mbap}}{c}$$

Откуда получаем:

$$Q_{\text{out}} = (3,85\pm0,06)\cdot10^{-5}\frac{\text{mGap}\cdot\text{n}}{c}$$

6 Вывод

7 Приложения

Таблица 1. Зависимость давления от времени откачки диффузным насосом по данным вакуумметра РРТ 100.

t, c	Р, мбар						
2	1000	60	9,7	118	4	176	3,6
4	600	62	9,2	120	4	178	3,6
6	450	64	8,7	122	3,9	180	3,6
8	340	66	8,1	124	3,9	182	3,6
10	290	68	7,7	126	3,9	184	3,6
12	230	70	7,3	128	3,9	186	3,6
14	180	72	6,9	130	3,8	188	3,6
16	150	74	6,7	132	3,8	190	3,6
18	130	76	6,5	134	3,8	192	3,6
20	100	78	6,3	136	3,8	194	3,5
22	90	80	6,1	138	3,8	196	3,5
24	73	82	5,9	140	3,8	198	3,5
26	65	84	5,8	142	3,8	200	3,5
28	59	86	5,6	144	3,7	202	3,5
30	51	88	5,5	146	3,7	204	3,5
32	43	90	5,4	148	3,7	206	3,5
34	38	92	5,2	150	3,7	208	3,5
36	35	94	5,1	152	3,7	210	3,5
38	32	96	5	154	3,7	212	3,5
40	28	98	4,9	156	3,7	214	3,5
42	25	100	4,8	158	3,7	216	3,5
44	21	102	4,7	160	3,6	218	3,5
46	19	104	4,6	162	3,6	220	3,5
48	17	106	4,5	164	3,6	222	3,5
50	16	108	4,4	166	3,6	224	3,5
52	15	110	4,3	168	3,6	226	3,5
54	13	112	4,2	170	3,6	228	3,5
56	12	114	4,2	172	3,6	230	3,5
58	10	116	4,1	174	3,6	232	3,5

 Таблица 2. Зависимость давления от времени откачки диффузным насосом по данным вакуумметра MPT 100.

t, c	Р, мбар						
2	1000	60	8	118	4,3	176	3,8
4	550	62	7,5	120	4,2	178	3,8
6	410	64	7	122	4,2	180	3,8
8	290	66	6,8	124	4,1	182	3,8
10	180	68	6,7	126	4,1	184	3,8
12	160	70	6,5	128	4,1	186	3,8
14	110	72	6,3	130	4	188	3,8
16	89	74	6,2	132	4	190	3,8
18	77	76	6	134	4	192	3,8
20	64	78	5,9	136	3,9	194	3,8
22	55	80	5,7	138	3,9	196	3,8
24	46	82	5,6	140	3,9	198	3,8
26	39	84	5,5	142	3,9	200	3,8
28	35	86	5,4	144	3,9	202	3,8
30	32	88	5,3	146	3,9	204	3,8
32	29	90	5,2	148	3,9	206	3,8
34	25	92	5,1	150	3,9	208	3,8
36	22	94	5	152	3,9	210	3,8
38	19	96	4,9	154	3,9	212	3,8
40	17	98	4,9	156	3,9	214	3,8
42	16	100	4,8	158	3,8	216	3,8
44	15	102	4,7	160	3,8	218	3,8
46	13	104	4,7	162	3,8	220	3,8
48	12	106	4,6	164	3,8	222	3,8
50	10	108	4,5	166	3,8	224	3,8
52	9,8	110	4,5	168	3,8	226	3,8
54	9,4	112	4,4	170	3,8	228	3,8
56	8,8	114	4,4	172	3,8	230	3,8
58	8,3	116	4,3	174	3,8	232	3,8

Рисунок 2. График к таблице 2.

Таблица 3. Зависимость давления от времени откачки турбомолекулярным насосом по данным вакуумметра РРТ 100.

t, с Р, мбар		t, c	Р, мбар	
2	3,5	60	0,0004	
4	3,4	62	0,00035	
6	3,3	64	0,0003	
8	3,2	66	0,0003	
10	3	68	0,0003	
12	2,8	70	0,0003	
14	2,5	72	0,0003	
16	2,2	74	0,0003	
18	1,9	76	0,0003	
20	1,6	78	0,0003	
22	1,2	80	0,0003	
24	0,92	82	0,0003	
26	0,55	84	0,0003	
28	0,26	86	0,0003	
30	0,058	88	0,0003	
32	0,0083	90	0,0003	
34	0,0033	92	0,0003	
36	0,0019	94	0,00025	
38	0,0012	96	0,00025	
40	0,001	98	0,00025	
42	0,00085	100	0,0002	
44	0,0008	102	0,0002	
46	0,00065	104	0,0002	
48	0,0006	106	0,0002	
50	0,0006	108	0,0002	
52	0,0005	110	0,0002	
54	0,0005	112	0,0002	
56	0,0004	114	0,0002	
58	0,00045	116	0,0002	

P(t) для вакуумметра PPT 100 (турбомолекулярный насос)

 Таблица 4. Зависимость давления от времени после создания течи по данным вакуумметра РРТ 100.

t, c	Р, мбар	t, c	Р, мбар
2	3,5	60	0,0004
4	3,4	62	0,00035
6	3,3	64	0,0003
8	3,2	66	0,0003
10	3	68	0,0003
12	2,8	70	0,0003
14	2,5	72	0,0003
16	2,2	74	0,0003
18	1,9	76	0,0003
20	1,6	78	0,0003
22	1,2	80	0,0003
24	0,92	82	0,0003
26	0,55	84	0,0003
28	0,26	86	0,0003
30	0,058	88	0,0003
32	0,0083	90	0,0003
34	0,0033	92	0,0003
36	0,0019	94	0,00025
38	0,0012	96	0,00025
40	0,001	98	0,00025
42	0,00085	100	0,0002
44	0,0008	102	0,0002
46	0,00065	104	0,0002
48	0,0006	106	0,0002
50	0,0006	108	0,0002
52	0,0005	110	0,0002
54	0,0005	112	0,0002
56	0,0004	114	0,0002
58	0,00045	116	0,0002

Рисунок 4. График к таблице 4.

P(t) при создании течи (диафрагменный насос)

