When and Why is the Unsupervised Neural Machine Translation Useless?

Yunsu Kim

RWTH Aachen University, Aachen, Germany kim@cs.rwth-aachen.de

EAMT 2020 November 3rd, 2020

Unsupervised Machine Translation

Many recent works in unsupervised machine translation:

```
[Artetxe & Labaka<sup>+</sup> 18b] [Lample & Denoyer<sup>+</sup> 18] [Yang & Chen<sup>+</sup> 18] [Lample & Ott<sup>+</sup> 18] 
[Kim & Geng<sup>+</sup> 18] [Artetxe & Labaka<sup>+</sup> 18a] [Ren & Zhang<sup>+</sup> 19] [Artetxe & Labaka<sup>+</sup> 19] 
[Sun & Wang<sup>+</sup> 19] [Conneau & Lample 19] [Pourdamghani & Aldarrab<sup>+</sup> 19] [Song & Tan<sup>+</sup> 19] 
[Sen & Gupta<sup>+</sup> 19] [Liu & Gu<sup>+</sup> 20] 
:
```

- Tested mostly on a high-resource language pair
 - ▷ German↔English, French↔English, ...
 - ▶ Linguistically similar source-target: already lots of bilingual corpora
- They do not need unsupervised learning in practice

Question: Is it useful also in low-resource, linguistically different language pairs?

Our Experiments

		de	-en	ru	ı-en	zł	n-en	kl	r-en	gι	ı-en
		German	English	Russian	English	Chinese	English	Kazakh	English	Gujarati	English
Language Alphabe	•	Germanic 60	Germanic 52	Slavic 66	Germanic 52	Sinitic 8,105	Germanic 52	Turkic 42	Germanic 52	Indic 91	Germanic 52
Monolingual	Sentences Words	10 1.8B	0M 2.3B	71 1.1B	.6M 2.0B	30 1.4B	0.8M 699M	18 278.5M	8.5M 421.5M	4. 121.5M	1M 93.8M
Bilingual	Sentences Words	5.9 137.4M			.4M 790M		8.9M 482.9M		22k 1.9M		95.6W 56k 1.5M

- Linguistically distant pairs: ru-en, zh-en, kk-en, gu-en
- Low-resource (bilingual data): kk-en, gu-en

Method: XLM [Conneau & Lample 19]

- Model: Transformer base
- Training: iterative back-translation + denoising autoencoder
- Initialization: cross-lingual masked LM

Unsupervised NMT

Bidirectional model

Iterative back-translation

Unsupervised vs. Supervised vs. Semi-supervised

	BLEU [%]									
Approach	de-en	en-de	ru-en	en-ru	zh-en	en-zh	kk-en	en-kk	gu-en	en-gu
Supervised	39.5	39.1	29.1	24.7	26.2	39.6	10.3	2.4	9.9	3.5
Semi-supervised	43.6	41.0	31.4	31.3	25.9	42.7	12.5	3.1	14.2	4.0
Unsupervised	23.8	20.2	12.0	9.4	1.5	2.5	2.0	0.8	0.6	0.6

Unsupervised: much worse than (semi-)supervised

ru-en: When is the unsupervised learning useful?

• Only if bilingual data has less than 20k lines

Performance Factor: Training Data Size

How much monolingual data is needed for unsupervised NMT to work?

training sentences - performance

- 1M: already close to the best result
- 5M: starts to saturate
- 20M: no further improvment

Important: similarity of source/target languages (de-en > ru-en)

Massive training data is not important

Performance Factor: Unbalanced Training Data

What if the data size is largely different for source and target languages?

Source: varying (x-axis)
Target: fixed (20M sents)

- Oversizing one side has no effect
- Performance decided by the smaller side

Important: similar data distribution on source/target

Performance Factor: Domain Similarity

Domain	Domain	BLEU [%]					
(en)	(de/ru)	de-en	en-de	ru-en	en-ru		
	Newswire	23.3	19.9	11.9	9.3		
Newswire	Politics	11.5	12.2	2.3	2.5		
	Random	18.4	16.4	6.9	6.1		

• Degenerates if domains do not match!

Years	Years	#sents	BLEU [%]		
(en)	(zh)	(en/zh)	zh-en	en-zh	
2014-2017	2008-2018	1.7M	5.4	15.1	
201 4 -2017	1995-2008	28.6M	1.5	1.9	

• Degenerates if topics, styles, periods do not match!

Performance Factor: Initialization

Initialization vs. Back-translation: Which is more important?

Good initialization

 > 20% BLEU already with 1M sentences in back-translation training

Bad initialization

 < 5% BLEU even with 100M sentences in back-translation training

Important: decent initialization

Back-translation training relies on the quality of the initial model

Why fail?

Task	Source input	System output	Reference output
zh-en	调整要兼顾生产需要和 消费需求。	週整要兼顾生产需要 and 消费需求.	adjustment must balance pro- duction needs with consumer de- mands.

- Input copying (wrong language)
- Reason: trained on copied back-translations

Task	Source input	System output	Reference output	
de-en	<i>München</i> 1856: <i>Vier</i> Karten, die Ihren Blick auf die <i>Stadt</i> verändern	Austrailia 1856: Eight things that can keep your way to the UK	•	

- Vier (Four in English) \rightarrow Eight
- Cannot distinguish words that appear in the same context (1856, things)

Remarks

Unsupervised NMT fails when...

- 1. source and target languages are linguistically dissimilar
- 2. source and target monolingual data are from different domains

These conditions are very common in low-resource language pairs!

ullet In practice: if you have $\sim\!50{
m k}$ bilingual sentence pairs, just do semi-supervised

You can also find in our paper:

Why does the copied back-translations occur in training?

When and Why is the Unsupervised Neural Machine Translation Useless?

Yunsu Kim, Miguel Graça, Hermann Ney

https://arxiv.org/abs/2004.10581

References

```
[Artetxe & Labaka<sup>+</sup> 18a] M. Artetxe, G. Labaka, E. Agirre.
  Unsupervised statistical machine translation.
  In EMNLP, 3632-3642, 2018.
[Artetxe & Labaka<sup>+</sup> 18b] M. Artetxe, G. Labaka, E. Agirre, K. Cho.
  Unsupervised neural machine translation.
  In ICLR, 2018.
[Artetxe & Labaka<sup>+</sup> 19] M. Artetxe, G. Labaka, E. Agirre.
  An effective approach to unsupervised machine translation.
  In ACL, pp. 194-203, 2019.
[Conneau & Lample 19] A. Conneau, G. Lample.
  Cross-lingual language model pretraining.
  In NeurIPS, pp. 7057-7067, 2019.
[Kim & Geng<sup>+</sup> 18] Y. Kim, J. Geng, H. Ney.
  Improving unsupervised word-by-word translation with language model and denoising autoencoder.
  In EMNLP, pp. 862-868, 2018.
[Lample & Denoyer+ 18] G. Lample, L. Denoyer, M. Ranzato.
  Unsupervised machine translation using monolingual corpora only.
  In ICLR, 2018.
[Lample & Ott+ 18] G. Lample, M. Ott, A. Conneau, L. Denoyer, M. Ranzato.
  Phrase-based & neural unsupervised machine translation.
  In EMNLP, pp. 5039-5049, 2018.
[Liu & Gu<sup>+</sup> 20] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis, L. Zettlemoyer.
```


Multilingual denoising pre-training for neural machine translation, 2020.

References

```
[Pourdamghani & Aldarrab<sup>+</sup> 19] N. Pourdamghani, N. Aldarrab, M. Ghazvininejad, K. Knight, J. May. Translating translationese: A two-step approach to unsupervised machine translation. In ACL, pp. 3057–3062, 2019.
```

[Ren & Zhang⁺ 19] S. Ren, Z. Zhang, S. Liu, M. Zhou, S. Ma. Unsupervised neural machine translation with smt as posterior regularization, 2019.

[Sen & Gupta⁺ 19] S. Sen, K. K. Gupta, A. Ekbal, P. Bhattacharyya. Multilingual unsupervised NMT using shared encoder and language-specific decoders. In ACL, pp. 3083–3089, 2019.

[Song & Tan+ 19] K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu.
Mass: Masked sequence to sequence pre-training for language generation.
In ICML, pp. 5926–5936, 2019.

[Sun & Wang⁺ 19] H. Sun, R. Wang, K. Chen, M. Utiyama, E. Sumita, T. Zhao. Unsupervised bilingual word embedding agreement for unsupervised neural machine translation. In ACL, pp. 1235–1245, 2019.

[Yang & Chen⁺ 18] Z. Yang, W. Chen, F. Wang, B. Xu. Unsupervised neural machine translation with weight sharing. In ACL, pp. 46–55, 2018.

