E.T.S. de INGENIERÍA INFORMÁTICA

Curso 2022/2023

Estructuras Algebraicas para la Computación Relación de ejercicios del tema 1

1. En el conjunto $G=\mathbb{R}-\{-1\}$ se define la operación binaria *

*:
$$G \times G \longrightarrow G$$

 $(x,y) \longmapsto x * y = x + y + xy$

- a) Demuestra que (G,*) es grupo abeliano.
- b) Encuentra el valor de $x \in G$ tal que 2 * x * 3 = 35
- 2. En el conjunto $\mathbb{R} \{0\}$ se define la operación binaria

$$x * y = \frac{x \cdot y}{2}$$

Estudia si $(\mathbb{R} - \{0\}, *)$ es un grupo.

3. En el conjunto $G = \{e, a, b, c, d, f\}$ se considera una operación binaria * dada por

*	e	a	b	c	d	f
e	e	a	b	c	d	f
a	a		e	f	c	d
b	b	e	a			
c	c				a	
d	d	f				
f	f	c		a		

Completa la tabla anterior para que (G,*) sea un grupo. ¿Es abeliano?

- 4. Sea S_3 el conjunto de las permutaciones de 3 elementos.
 - a) Demuestra que (S_3, \circ) es un grupo de orden 6 no conmutativo.
 - b) Halla un subgrupo de S_3 que sea conmutativo.
- 5. Sea (S_5,\circ) el grupo de las permutaciones de 5 elementos y sean $\sigma,\rho\in S_5$

$$\sigma = [3, 5, 2, 1, 4] \qquad \qquad \rho = [3, 1, 4, 2, 5]$$

Halla $(\sigma \circ \rho)^{-1}$ y $(\rho \circ \sigma)^{-1}$.

6. Hemos visto que el subconjunto de \mathbb{Z} formado por los números pares constituyen un subgrupo de \mathbb{Z} , estudia si el subconjunto de los número impares también es un subgrupo.

1

- 7. Demuestra las siguientes propiedades
 - a) Si (G,*) es un grupo tal que $x^2 = e$ para todo $x \in G$, entonces es abeliano.
 - b) Si (G,*) es un grupo tal que $(x*y)^{-1} = x^{-1}*y^{-1}$ para todo $x,y \in G$, entonces es abeliano.
- 8. Se considera el conjunto $\mathcal{F}(\mathbb{R},\mathbb{R})$ de las funciones de \mathbb{R} en \mathbb{R} en el que se consideran las operaciones de suma y producto habituales

$$(f+g)(x) = f(x) + g(x), \qquad (f \cdot g)(x) = f(x) \cdot g(x)$$

Estudia si $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\cdot)$ es anillo unitario.

9. Estudia qué estructura algebraica tiene el conjunto

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{x + y\sqrt{2} \; ; \; x, y \in \mathbb{Z}\right\}$$

con la suma y el producto habituales.

10. En el conjunto

$$\mathcal{M}_{2\times 2}(\mathbb{Z}_3) = \left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} ; \ x, y \in \mathbb{Z}_3 \right\}$$

se consideran la suma y el producto de matrices habituales (definidos a partir de la suma y el producto en \mathbb{Z}_3). Estudia si $(\mathcal{M}_{2\times 2}(\mathbb{Z}_3), +, \cdot)$ es un anillo.

11. En el anillo unitario $(\mathbb{Z}_{15}, +_{15}, \cdot_{15})$ se considera el subconjunto

$$S = \{0, 3, 6, 9, 12\}$$

Estudia si es un anillo unitario. ¿Es un subanillo de \mathbb{Z}_{15} ?

- 12. Halla los valores de a en el anillo \mathbb{Z}_8 que hacen que la ecuación ax = a tenga solución única.
- 13. Estudia para qué valores de $m \in \{2, 3, 4, 5, 6, 7, 8\}$, la ecuación 2x = 6 tiene solución única en el anillo \mathbb{Z}_m .
- 14. a) En el anillo ($\mathbb{Z}_{36}, +_{36}, \cdot_{36}$) determina los elementos que son divisores de cero.
 - b) En el subgrupo grupo multiplicativo (U_{36}, \cdot_{36}) formado por los elementos invertibles de \mathbb{Z}_{36} , halla los inversos de cada uno de los elementos.
- 15. Para cada una de las siguientes matrices generadoras, determina cuantos errores detecta y cuantos errores corrige el correspondiente código:

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{pmatrix}
\qquad (ii)
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{pmatrix}$$

16. Sea \mathcal{C} el código de grupo dado por la matriz generadora

$$\mathcal{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Sin hallarlas, determina cuántas clases laterales distintas tiene. Usa la matriz \mathcal{H} de verificación de paridad para decodificar el mensaje

 $1100011 \quad 1011000 \quad 0101110 \quad 0110001 \quad 1010110$

- 17. Sea $\mathcal C$ un código de grupo (2,5). Sabiendo que 10101 y 11010 son palabras clave, determina:
 - a) Las restantes palabras clave de \mathcal{C} .
 - b) La matriz generadora del código y la matriz de verificación de paridad asociada.
- 18. Sabembos que la matriz de verificación de paridad de un código de grupo $\mathcal C$ es

$$\mathcal{H} = \begin{pmatrix} a & 0 & c & 1 \\ 1 & b & 0 & d \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- a) Calcula los valores a,b,c,d para que \mathcal{H} reconozca las palabras 101011 y 110110 como palabras clave del código.
- b) Halla las demás palabras clave y determina hasta cuántos errores pueden corregir.