ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE		KATEDRA FYZIKY				
LABORATORNÍ CVIČENÍ Z FYZIKY						
^{Jméno} Mii	roslav	Tržil			Datum měření	14.10.2017
Stud. rok	2017	'-2018	Ročník	Druhý	Datum odevzdání	28.10.2017
Stud. skupina	1-10	2-1021	Lab. skupina	9	Klasifikace	
					I	
Číslo úlohy 5		Název úlohy	Měře	ní rychlosti z	vuku sonarovou	metodou

1. Úkol měření

 Určení rychlosti zvuku pomocí měření doby mezi vysílanými a odraženými ultrazvukovými pulzy. Naměřenou hodnotu rychlosti zvuku porovnejte s hodnotou vypočtenou

2. Použité pomůcky

- Digitální osciloskop Agilent DSO-X 2012A
 - o Měřeno Δt
- Ultrazvukový přijímač a vysílač
- Metr
 - o Měření Δk
 - o Velikost jednoho dílku 1 mm
- Prostorový digitální teploměr
 - \circ Měřena teplota θ
 - Přesnost 0,5°C

3. Postup měření

- Zapnuli jsme osciloskop, obnovili výchozí nastavení, jeden ukazatel jsem nastavil na náběžnou hranu obdélníkového vysílaného signálu (spíná na něj i Trigger). Druhým ukazatelem, jsme najeli na nejvyšší amplitudu první vlny, která přišla od přijímače
- Tento postup jsme opakovaly po 5 cm.
- Pro vypočtení statistických nejistot jsme měřili 9 pro jednu fixní hodnotu.

4. Použité veličiny a konstanty

•	Δt	rozdíl času mezi odesláním signálu a jeho přijetím	[ms]
•	Δk	vzdálenost mezi přijímačem a odraznou plochou	[cm]
•	d	kolmá vzdálenost mezi přijímačem a vysílačem	[cm]
•	ΔΙ	vzdálenost kterou urazí zvuk ($\sqrt{(2\cdot\Delta k)^2+d^2}$)	[cm]
•	θ	Teplota	[°C]

5. Stanovení rychlosti zvuku výpočtem z teploty vzduchu

• Tabulky naměřených hodnot

Čas měření	θ _i [°C]
11:00	23,6
11:45	24,0
12:15	24,2

Průměrná teplota

$$\theta = \frac{1}{3} \sum_{i=1}^{3} \theta_i = 23.9 \, ^{\circ}\text{C}$$

Statistická nejistota teploty

$$u_A(\theta) = \sqrt{\frac{1}{3(3-1)} \sum_{i=1}^{3} \theta_i - \theta} = 0,19^{\circ}\text{C}$$

• Nejistota teploměru

$$u_{\rm R}(\theta) = \pm 0.5$$
 °C

• Kombinovaná nejistota

$$u_C(\theta) = \pm \sqrt{u_A(\theta)^2 + u_B(\theta)^2} = \pm 0.53$$
°C

Rychlost zvuku

$$c_{vypoctena} = 331,06 + 0,61\theta = (345,67 \pm 0,32) \text{ m} \cdot \text{s}^{-1}$$

6. Stanovení rychlosti zvuku z měření sonarovou metodou

$$c_{zmerena} = \frac{\Delta l}{\Delta t} = \frac{\sqrt{(2 \cdot \Delta \mathbf{k})^2 + \mathbf{d}^2}}{\Delta t} = 337,93 \text{ m} \cdot \text{s}^{-1}$$

- Nejistoty
 - Statistická nejistota osciloskopu

$$u_a(t) = \sqrt{\frac{1}{9(9-1)} \sum_{i=1}^{9} (t_i - t)^2} = 0,001 \, ms$$

- o Nejistota osciloskopu 1 jedna perioda $u_a(t) = 0.08 \, ms$
- o Statistická nejistota metru

$$u_a(k) = \sqrt{\frac{1}{9(9-1)} \sum_{i=1}^{9} (k_i - k)^2} = 2,25 cm$$

o Nejistota metru

$$u_{b(k)} = \frac{0.1}{\sqrt{3}} = 0.057 \, cm$$

o Kombinovaná nejistota

$$u = \sqrt{\left(\frac{\partial v}{\partial k} \cdot \sqrt{u_a(k)^2 + u_b(k)^2}\right)^2 + \left(\frac{\partial v}{\partial t} \sqrt{u_a(t)^2 + u_b(t)^2}\right)^2} = \mathbf{2}, \mathbf{25} \ \mathbf{m} \cdot \mathbf{s}^{-1}$$

7. Tabulka naměřených hodnot

Δk [cm]	Δt[ms]
10	0,670
20	1,238
25	1,527
30	1,838
35	2,131
40	2,415
45	2,698
50	2,987
55	3,277
60	3,557
65	3,838
70	4,129
75	4,426
80	4,718
85	5,022
90	5,334
95	5,622
100	5,918
105	6,203
110	6,482
115	6,754
120	7,018
125	7,350
130	7,560
137	8,068

statistická nejistota osciloskopu			
i	k [cm]	t[ms]	
1		6,4710	
2		6,4734	
3		6,4708	
4		6,4736	
5	110	6,4746	
6		6,4734	
7		6,4734	
8		6,4738	
9		6,4752	

statistická nejistota metru			
i	k [cm]	t[ms]	
1	111		
2	111		
3	117		
4	114		
5	115	6,47	
6	117		
7	109		
8	108		
9	112		

8. Graf rych

Rychlost zvuku ve vzduchu

9. Výsledek

- Rychlost zvuku vypočtená z teploty
 - Rychlost zvuku změřená
- $c_{vypoctena} = (345, 67 \pm 0, 32) \text{ m} \cdot \text{s}^{-1}$

 $c_{zmerena} = (337, 93 \pm 2, 25) \text{m} \cdot \text{s}^{-1}$

10. Závěr

Bohužel se nám ani po započtení nejistot nepodařilo získat stejné výsledky. Mezi
rychlostí zvuku spočtenou na základě teploty a mezi rychlostí zvuku změřenou
sonarovou metodou je rozdíl 2,31 %.

11. Použitá Literatura

- http://herodes.feld.cvut.cz/mereni/downloads/navody/tuht.pdf
- http://herodes.feld.cvut.cz/mereni/downloads/manualy/my65.pdf
- http://herodes.feld.cvut.cz/mereni/grafy-new/ukaz.php