Page No.		7.		
Date				

Practical - 02.

· dim: Classify the email using the binary classification method. Email spam detection has two states:

a) Normal state: Not spam b) Abnormal State - spam,

Use Knearest neighbours and support vector machines

for classification. Analyse their performance.

Theory:

Dbjective:

The aim of this project is to classify emails as either spam, or Not Spam using machine Learning techniques specifically two classification algorithms—

R nearest KNN and Support Vector Machine (SVM).

are applied and their performance compared using evaluation metrics such as accuracy, precivion,

2) Theory-

Data preparation —

The dataset consists of email texts labeled as spam or not spam Preprocessing is necessary to convert naw email text into structured numerical features suitable for machine learning

"Text cleaning - Removal of stop words, puntuation and special symbols.

similar to the new one).

Page No	9.
Date	

3.	Perform a majority vote among these neighbours = to assign the class label (spam or not spam)
*	Key characteristics -
	 Non parametric - Mokes no assumptions about the underlying data distribution. Simple yet powerful - Works well when decision boundaries are intregular. Hyperparameter K: Choosing the right value of K is critical; too small may overfit k, too large may oversmoth.
*	 Strengths— Easy to implement and understand. Naturally handles multiclass problems.
*	Limitations -
	computationally expensive for large datasets (requires storing and comparing with all training samples) sensitive to irrelevant features and high dimensionality (common in text data).
	Y
3]	Support Vector Machines (SVM)
	SVM is a supervised learning algorithm widely used for binary classification tasks like spam detection. It finds the optimal hyperplane that separates the classes with maximum margin.

	Page No lo . Date
*	How it works -
1.	Each email is represented as a feature vector (TF-IDF weighted terms)
2	SVM identifies a decision boundary (hyperplane) that best separates spam and not spam Classes.
3.	
*	Key characteristics -
•	Maximizes generalization - Focuses on robust classification by maximizing margins.
•	Effective in high dimensional spaces - works well with text data where feature space is large.
*	Strengths -
•	High accuracy for binary classification.
0	Effective even with sparse data (common in text classification).
b	Less perone to overfitting in high dimensional
*	Limitations -
•	Computationally intensive for very large datasets.

Page No	11.
Date	

====!	
	· Choice of Kernel and tuning hyperparameters (c, gamma) is crucial for performance
	4] Model Evaluation -
	The classification performance is assessed using: • Accuracy Percentage of correctly classified emails. • Precision: Fraction of predicted spam emails that
	o Recall: Fraction of actual spam conails correctly
	• F1 score: Harmonic mean of precision and remall (balances both).
*	Expected Outcome:
	okning provides decent performance but struggles with high dimensional text data, making predictions slower and less scalable.
	o SVM generally outperforms KNN, offering higher precision and recall and proving more robust for spam detection tasks.
*	CONCLUSION:
	This practical demonstrated the use of KNN and SVM for binary email spam classification. KNN, while simple and intuitive was computational heavy and Jess accurate in handling high

dimensional text features. On the other hand, sym effectively modeled the decision boundary between spam and not spam emails, and FI-scores

Thus SVM emerges as the superior model for email spam detection, highlighting its effective ness in binary classification problems involving high dimensional feature spaces such as natural language text