

به نام خدا اصول سیستم های مخابراتی کوییز ۲

ابر برابر با SSB توسط ساختار زیر مدوله شده است، فرکانس حامل را برابر با $x(t) = 10 \operatorname{sinc}(400t)$ به صورت t توسط ساختار زیر مدوله شده است، فرکانس حامل را برابر با t و خامل توسط سیگنال پیام t و خامل توسط سیگنال پیام t و خامل توسط ساختار زیر مدوله شده است، فرکانس حامل را برابر با t و خامل توسط سیگنال پیام t و خامل توسط ساختار زیر مدوله شده است، فرکانس حامل را برابر با t و خامل توسط سیگنال پیام t و خامل توسط ساختار زیر مدوله شده است، فرکانس حامل را برابر با

الف) روابط سیگنال های $X=1, X=2, x_c(t)$ را ابتدا در حوزه زمان و سپس در حوزه فرکانس به دست آورده و طیف آن ها را رسم کنید. $X=1, X=2, x_c(t)$ است یا USSB $X_c(t)$ است یا USSB $X_c(t)$ است یا $X=1, X=2, x_c(t)$ است یا X=1, X=

ج) اگر مطابق شکل ۲، سیگنال y(t) را از یک envelop detector بگذرانیم، سیگنال خروجی چه خواهد بود و با اعمال چه شرطی می توانیم به فرمی از سیگنال پیام دست پیدا کنیم؟ فرم نهایی سیگنال خروجی را با اعمال شرط بنویسید.

سیگنال پیام $m(t) = 10\cos(25\pi t)$ وارد یک مدولاتور FM میشود. خروجی این مدولاتور به صورت زیر میباشد:

$$u(t) = 10\cos\left(4000\pi t + 2\pi k_f \int_{-\infty}^t m(\tau)d\tau\right)$$

که در آن $k_f = 10$ میباشد. الف) اگر خروجی مدولاتور از یک فیلتر مطابق شکل زیر عبور کند، توان مؤلفههای فرکانسی در خروجی فیلتر را تعیین کنید. چند درصد از توان فرستنده در خروجی فیلتر ظاهر میشود؟ \mathbf{v} فیلتر \mathbf{p} را به نحوی طراحی کنید که حداقل ۶۰٪ از توان سیگنال حفظ گردد.

راهنمایی:

$$x_c(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos[(\omega_c + n\omega_m)t]$$

$$J_{-n}(\beta) = (-1)^n J_n(\beta)$$

به نام خدا اصول سیستم های مخابراتی کوییز ۲

Function	v(t)	V(f)
Rectangular	$\Pi\left(\frac{t}{\tau}\right)$	au sinc $f au$
Triangular	$\Lambda\left(\frac{t}{\tau}\right)$	$ au\sin^2 f au$
Gaussian	$e^{-\pi(bt)^2}$	$(1/b) e^{-\pi(f/b)^2}$
Causal exponential	$e^{-bt}u(t)$	$\frac{1}{b+j2\pi f}$
Symmetric exponential	$e^{-b t }$	$\frac{2b}{b^2+(2\pi f)^2}$
Sinc	sinc 2Wt	$\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$
Sinc squared	sinc ² 2Wt	$\frac{1}{2W}\Lambda\left(\frac{f}{2W}\right)$
Constant	1	$\delta(f)$
Phasor	$e^{j(\omega_{\epsilon}t+\phi)}$	$e^{j\phi}\delta(f-f_c)$
Sinusoid	$\cos(\omega_c t + \phi)$	$\frac{1}{2}[e^{j\phi}\delta(f-f_c)+e^{-j\phi}\delta(f+f_c)]$
Impulse	$\delta(t-t_d)$	$e^{-j\omega t_d}$
Sampling	$\sum_{k=-\infty}^{\infty} \delta(t-kT_s)$	$f_s \sum_{n=-\infty}^{\infty} \delta(f - nf_s)$
Signum	sgn t	$1/j\pi f$
Step	u(t)	$\frac{1}{j2\pi f} + \frac{1}{2}\delta(f)$

 TABLE 3.1
 TABLE OF BESSEL FUNCTION VALUES

n	$\beta = 0.1$	$\beta = 0.2$	$\beta = 0.5$	$\beta = 1$	$\beta = 2$	$\beta = 5$	$\beta = 8$	$\beta = 10$
0	0.997	0.990	0.938	0.765	0.224	-0.178	0.172	-0.246
1	0.050	0.100	0.242	0.440	0.577	-0.328	0.235	0.043
2	0.001	0.005	0.031	0.115	0.353	0.047	-0.113	0.255
3				0.020	0.129	0.365	-0.291	0.058
4				0.002	$\frac{0.129}{0.034}$	0.391	-0.105	-0.220
5					0.007	0.261	0.186	-0.234
6					0.001	0.131	0.338	-0.014
7						0.053	0.321	0.217
8						0.018	0.223	0.318
9						0.006	0.126	0.292
10						0.001	0.061	0.207
11							0.026	0.123
12							0.010	0.063
13							0.003	0.029
14							0.001	0.012
15								0.004
16								0.001

(From Ziemer and Tranter; © 1990 Houghton Mifflin, reprinted by permission.)