

Learning Self-Supervised Representations for Label Efficient Cross-Domain Knowledge Transfer on Diabetic Retinopathy Fundus Images

- Ekta Gupta¹, Varun Gupta¹, Muskaan Chopra¹, Prakash Chandra Chhipa² and Marcus Liwicki²
- ¹Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India ²Machine Learning Group, EISLAB, Lulea° Tekniska Universitet, Lulea°, Sweden

Vision & Medical Imaging Domain

- Labeled scarcity
- Effectiveness of transfer learning
- Distinct visual concepts

Why Label Scarcity?

Annotation by experts

High human error

Device dependance

Privacy concerns

Transfer Learning from ImageNet?

ImageNet transfer learning does not significantly affect performance on medical imaging tasks¹

Task specific learning - only initial layers with low-level features are useful

Visual Concepts in Medical Imaging

Vs.

Limited human understanding

• Due to Lack of interpretation for domain specific properties

Why Diabetic Retinopathy Diagnosis is Important?

diabetic retinopathy is the leading cause of blindness in the working-age population of the developed world. It is estimated to affect over 93 million people.

Need Knowledge Transfer Method – Pretraining?

✓ Efficient

✓ Less human supervision

✓ Effective representations

Self-supervised Representation Learning (SSL) Approach

Figure Inspired : Chhipa, Prakash Chandra. "Self-supervised Representation Learning for Visual Domains Beyond Natural Scenes."

Licentiate Thesis, Luleå tekniska universitet (2023).

Adapting SSL on Diabetic Retinopathy

- ✓ Contrastive Self-Supervision ()
 - O SimCLR¹
 - o learn similarity for positive pair
 - o learn dissimilarity otherwise
 - ResNet-50 backbone

proliferative DR

no DR

- ✓ Pretraining Dataset
 - EyePACS² diabetic retinopathy (DR)
 - 35,126 training images

¹Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020 ²Diabetic Retinopathy Detection Dataset, https://www.kaggle.com/c/diabetic-retinopathy-detection/data

Adapting SSL on Diabetic Retinopathy

Cross-Domain Knowledge Transfer

Source Dataset

proliferative DR severe DR

o Aptos 2019³

3660 examples

mild DR moderate DR no DR

severe DR prolific DR

Target Datasets

1200 examples

o Messidor I⁴

grade 1 grade 0

grade 3 grade 2

○ Fundus⁵

747 examples

NPDR

advanced PDR

²Diabetic Retinopathy Detection Dataset, https://www.kaggle.com/c/diabetic-retinopathy-detection/data

³Aptos 2019, https://www.kaggle.com/competitions/aptos2019-blindness-detection/data

⁴Messidor I dataset, https://www.adcis.net/en/third-party/messidor/

⁵Fundus Dataset, Benítez, Veronica Elisa Castillo, et al. "Dataset from fundus images for the study of diabetic retinopathy." Data in brief 36 (2021): 107068.

Experimental Evaluations on SSL Knowledge Transfer

- 1. Downstream Tasks
 - Binary classification
 - Multi-class classification
- 2. Label Efficiency Analysis
 - o 10%,
 - 0 20%
 - o 50%
 - 0 100%

- 3. Qualitative Analysis
 - Class Activations

Binary classification Task

Finetuned on respective target datasets

Method	Accuracy	Precision	Recall		
Dataset - Messidor					
Abramoff et al [281]	96.7	96.8	87		
Chakraborty et al [26]	97.13	97.2	97		
Dhanasekaran et al. [29] (SVM)	97.89	98.68	100		
Dhanasekaran et al. [29] (PNN)	94.76	96.64	98.46		
Proposed work - SSL Cross domain*	98.49	98	100		
Dataset - Aptos 2019					
Islam et al [27]	98.36	98.37	98.36		
Proposed work - SSL Cross domain*	99.59	100	99		

Multiclass classification Task

Finetuned on respective target datasets

Dataset - Aptos 2019

Authors	Accuracy	Precision	Recall
Kassani et al [32]	83.09	88.24	82.35
Gangwar & Ravi [33]	72.33	/	/
Proposed Work - SSL Cross domain*	83.43	81.00	85.00

Label Efficiency of SSL Knowledge Transfer N

SSL Pretrained on EyePACS data and finetuned on Aptos 2019 data

binary classification task

multiclass classification task

Label Efficiency of SSL Knowledge Transfer N

SSL Pretrained on EyePACS data and finetuned on Messidor I data

binary classification task

multiclass classification task

Label Efficiency of SSL Knowledge Transfer N

SSL Pretrained on EyePACS data and finetuned on Fundus data

binary classification task

multiclass classification task

Qualitative Analysis (**)

Attention maps for samples from target datasets

Conclusions

Contribution

Adapting contrastive selfsupervised representation learning to medical image domain concerning diabetic retinopathy towards label free approaches

Achievements

Achieved cross-domain knowledge transfer to multiple target small-scale datasets and shown performance improvement in multiple downstream tasks

Future Work

Further investigating other
SSL approaches and the
knowledge transfer for
challenging downstream tasks
including segmentations and
detections

Thank you prakash.chandra.chhipa@ltu.se

GitHub

