

Speech Analytics

RECONOCIMIENTO DEL GENERO A PARTIR DE LA VOZ JSOSABRI@EVERIS.COM

Estado del arte

AVANCE DEL ANÁLISIS DE LA VOZ EN NUESTROS DÍAS

¿Qué ofrece la tecnología?

- Síntesis de Voz Text to Speech
- Reconocimiento de Voz Speech to text
- Análisis del Lenguaje y la Minería de Texto
- Traducción en tiempo real
- Procesamiento de Lenguaje Natural (NLP)
- Motores de búsqueda inteligentes

¿Qué es el Speech Analytics?

CONCEPTOS GENERALES

Definición de Speech Analytics

El análisis del habla o speech analytics trata de sistemas que permiten extraer información a partir del análisis de las conversaciones grabadas. Esto permite, por ejemplo recopilar información del cliente para mejorar la comunicación y la interacción futura. El proceso es utilizado principalmente por los centros de contacto de los clientes para extraer información oculta en las interacciones del cliente con una empresa.

Para ello se basa en diferentes herramientas:

- Síntesis de voz.
- Reconocimiento del habla.
- Reconocimiento de patrones sonoros.

Fuente: Wikipedia

La Voz

1 Second

El Sonido – Tiempo y Trecuencia

Análisis de Fourier

Por suerte!

- □ Cualquier onda continua puede ser descompuesta en ondas sinusoidales puras con frecuencia y amplitud (Análisis de Fourier)
- Los gráficos en el dominio de frecuencia son MUY útiles para comparar sonidos!

$$S_i(k) = \sum_{n=1}^{N} s_i(n)h(n)e^{-j2\pi kn/N}$$
, $1 \le k \le K$

Análisis de Fourier

Análisis de Fourier - Espectrograma

La banda de frecuencia de <u>voz</u> utilizable oscila entre aproximadamente 300 <u>Hz</u> y 3400 Hz. Según el <u>teorema de muestreo Nyquist-Shannon</u>, la frecuencia de muestreo (8 kHz) debe ser al menos el doble del componente más alto de la frecuencia de voz a través del filtrado apropiado antes del muestreo en tiempos discretos (4 kHz) para la reconstrucción efectiva de la señal de voz.

La Voz – un ejemplo en tiempo

La Voz – un ejemplo en frecuencia

La Voz – Distribución de frecuencias

La Voz – Espectrograma

Síntesis de la Voz

PRODUCCIÓN ARTIFICIAL DEL HABLA

Síntesis de voz (Text to Speech)

- ☐ Sintetic voice (ejemplo)
- ☐ Parametric TTS

Concatenative TTS

☐ Deep Learnig (RNN, WaveNet)

Síntesis de voz - Parametric TTS

Síntesis de voz (Text to Speech)

Síntesis de voz - WaveNet

Reconocimiento del habla

DETECCIÓN DEL CONTENIDO DE UNA CONVERSACIÓN

Reconocimiento del habla

Reconocimiento de Patrones

RECONOCIMIENTO DE PATRONES SONOROS DE UNA CONVERSACIÓN Y SU ENTORNO

Extracción de características

La Voz – Espectrograma

Detección de silencios - pyAudioAnalysis

Speech Diarization

Fig. 3 Processing model for speaker clustering using DNN.

Cocktail_Party

Reconocimiento de emociones

UN EJEMPLO DE RECONOCIMIENTO DE PATRONES EN LA VOZ


```
> str(datos)
'data.frame':
               3168 obs. of 21 variables:
                 0.0598 0.066 0.0773 0.1512 0.1351 ...
                0.032 0.0402 0.0367 0.158 0.1247 ...
 $ Q25
                 0.0151 0.0194 0.0087 0.0966 0.0787 ...
 $ Q75
                 0.0902 0.0927 0.1319 0.208 0.206 ...
 $ IOR
                 0.0751 0.0733 0.1232 0.1114 0.1273 ...
                 12.86 22.42 30.76 1.23 1.1 ...
                 274.4 634.61 1024.93 4.18 4.33 ...
                 0.893 0.892 0.846 0.963 0.972 ...
                 0.492 0.514 0.479 0.727 0.784 ...
                 0 0 0 0.0839 0.1043 ...
          : num
  : num 0.0157 0.0158 0.0157 0.0178 0.0169 ...
 $ maxfun : num 0.276 0.25 0.271 0.25 0.267 ...
 $ meandom : num
                0.00781 0.00781 0.00781 0.00781 0.00781
                0.00781 0.05469 0.01562 0.5625 5.48438 ...
 $ dfrange : num 0 0.04688 0.00781 0.55469 5.47656 ...
 $ modindx : num 0 0.0526 0.0465 0.2471 0.2083 ...
          : Factor w/ 2 levels "female", "male": 2 2 2 2 2 2 2 2 2 2
                                                                                           PC1
```


modelo_base


```
> CrossTable(tprueba$label, results, prop.chisq = FALSE,
+ prop.c = TRUE, prop.r = TRUE, dnn = c("actual gender",
+ "predicted gender"))
```

Total Observations in Table: 792

actual gender	predicted of female	gender male	Row Total
female	372 0.987 0.982 0.470	0.013 0.012 0.006	377 0.476
male	7 0.017 0.018 0.009	408 0.983 0.988 0.515	415 0.524
Column Total	379 0.479	413 0.521	792 792

> cat(sum(diag(mc))/sum(mc) * 100,"% casos correctamente clasificados\n")
98.48485 % casos correctamente clasificados

Servicios

SERVICIOS SOBRE LA VOZ

Servicios cognitivos basados en voz

- Existe otros APIs de servicios a diferentes niveles:
 - a) CMU Sphinx (works offline)
 - b) Google Speech Recognition
 - c) Wit.ai
 - d) Microsoft Bing Voice Recognition
 - e) Houndify API
 - f) IBM Speech to Text
 - g) Snowboy Hotword Detection (works offline)

Proyectos

ALGUNOS EJEMPLOS DE PROYECTOS DE CIENCIA DE DATOS

Speech Analytics POC

POC – Speech Analytics

POC: análisis de voz


```
"guion": [ □
  { □
     "SentenceNum":0,
     "SentenceNumSpeaker": 0,
     "confidence": 0.88210535,
     "metadata":{
        "magnitude": 0.20000000298023224,
        "score": -0.20000000298023224
     "speakerId":0,
     "time": [ -
        0.0.
        4.98
     "transcript": "Buenos días Te estoy llamando para ver si me pueden dar la clave de internet"
  { □
      "SentenceNum":1.
     "SentenceNumSpeaker":1,
     "confidence": 0.9268964,
     "metadata":{
        "magnitude":0.5,
        "score":0.5
     "speakerId":0,
     "time":[ =
        11.24.
        15.2000000000000001
     "transcript": "la clave de internet muy bien Vamos a verificarlo momento por favor"
```


POC – Speech Analytics

Tecnología utilizada

- → Python 2.7 y 3.6
 - ◆ PyDub 3.6
 - PyAudioAnalysis 2.7
 - ♦ GoogleCloud 3.6
- \rightarrow R
 - Reconocimiento de género en audios
- → Programas para manipulación de audios
 - ◆ Sox
 - Ffmpeg

- ◆ Speech Recognition
- Sentiment Analysis

Google Cloud Platform

- → Microsoft Azure
 - ◆ Ubuntu Virtual Machine

SOCIAL

Everis virtual agent - eVA

eva is transactional service

Our AI is capable of:

- Perform transactions.
- Provide relevant information.
- Walk through conversational flow.
- Memorize customer information to quickly solve their problems.
- Uses next best actions rules.

eva is IVR

- Enrich your interactions through voice recognition.
- Multiply your channels using phone calls and voice commands.
- Text to Speech and Speech to Text features.
- Multi-language supported.
- Our Al understands the language of your industry.

AR/VR

http://eva.bot/

APP

GRACIAS

JOSÉ R. SOSA

email: jsosabri@everis.com

Linkedin: https://ve.linkedin.com/in/josersosa

Twitter: http://www.twitter.com/josersosab