

REGION-LEVEL LABELS IN ICE CHARTS CAN PRODUCE PIXEL-LEVEL SEGMENTATION FOR SEA ICE TYPES

Muhammed Patel¹, Xinwei Chen², Yuhao Chen¹, Linlin Xu¹, David A. Clausi¹, Andrea Scott³

- **VIPlab**
- ¹ VIP lab, Department of Systems Design Engineering, University of Waterloo
- ² School of Marine Science and Engineering, South China University of Technology
- ³ Department of Mechanical and Mechatronics Engineering University of Waterloo

Ice survived at least one melt season

Label description

Introduction

- Ice charts are crucial for Arctic ship navigation and climate research
- Ice analyst produces ice charts manually on a weekly basis
- They represent approximate ice concentration and types in polygonal regions
- Lack pixel-level annotations
- Auto ice competition [1] provides pseudo pixel level ground truth generated from Ice-charts and uses only dominant polygons (partial concentration > 65 %) to generate pixellevel labels

Can we design a learning scheme that directly learns from region-level labels (egg codes) to produce pixel level Ice types?

- Yes, we design a novel loss function to produce pixel level ice type (Stage of development) from polygon level labels
- The proposed scheme produces high resolution segmentations compared to benchmark model [2] (top solution of Autolce competition) which is trained on pseudo pixel level ground truth

Method

Dataset

- We use Al4artic dataset and follow the same train-test split in the competition
- The input to the U-Net model is SAR images + Passive microwave + Spatial (lat, long) + Temporal Channels (month)

Designing differentiable loss function

- U-Net produced raw logits can be passed through argmax to produce pixel-level ice types
- One can then count number of pixels belonging to each class to produce partial concentration of each ice-types in a polygon
- However, argmax and count operation are non-differentiable
- We introduce a differentiable approximate function for counting each ice type and obtain partial concentration

$$Y_i = \frac{1}{N_{pixel}} \sum_{j=1}^{N_{pixel}} y_i^j$$
, $i = 1, ..., 4$

Predicted pixel-

wise Ice types

Pseudo pixel wise

Ground-truth

Result

- Due to absence of pixel level ground-truth, we calculate R2 score between predicted and GT partial concentration at a polygon level
- The proposed methods outperforms the benchmark U-Net for all classes and produces high-resolution prediction

Models	Cross Validation				Test set			
	Open Water	Younglee	First year ice	Multiyear ice	Open water	Youngice	First year ice	Multiyear ice
Benchmark U-Net trained with Psuedo per pixel labels [2]	93.95%	57.57%	75.54%	80.78%	91.37%	41.22%	75.52%	83.61%
Weakly supervised U-Net	97.45% (+4.00)	68.16% (+10.59)	85.23% (+9.69)	95.73% (+8.17)	95.73% (+4.36)	58.83% (+17.61)	83.09% (7.57)	86.04% (2.43)

