

#### Electrical Arc Ignition Testing of Spacesuit Materials

October 2006

Sarah Smith Tim Gallus Susana Tapia Elizabeth Ball Harold Beeson



#### Background

- Testing in response to frayed cable discovered during spacewalk
- Reliance on Apollo-era arc testing
- Limited applicability to current materials
- Significant changes in voltage and circuitry
- Poor understanding of test configuration



#### Test Objectives

- Gain better understanding of Apollo-era data
- Investigate new test methods
- Characterize minimum current levels necessary for combustion of EMU materials (at a given voltage)



### Test Sample Materials





#### Test Methods

- Multiple location intermittent arcing (scratch) test
- Single location intermittent arcing (poke) test
- Single location wire-break arcing test

## Scratch Test Objectives

- Simulate Apollo-era testing
- Determine configurational effects
- Test materials currently used in the EMU



## M.CottoMhiSerateMacTest Video





### Scratch Test Results

- Testing yielded results similar to Apollo-era testing
- Frayed materials more reactive
- No distinguishable difference between horizontal samples and vertical samples
- Tests performed at 23.5 psia 100% O2, 22.5 V
- 7 materials tested
- Current required for ignition ranged from 0.8 A to 1.4 A











### Scratch Test Problems

- Not possible to determine which arc ignited material
- Arc energies vary widely from test to test and arc to arc
- Difficult to ensure that test sample material is in intimate contact with arcing event
- Configuration not realistic for inside spacesuit because of size of stylus



### Poke Test Objectives

- Determine whether more severe to arc with wires or stylus
- Determine whether more severe to arc in single location (poke test) or multiple locations (scratch test)





#### Poke Test Results

- Poke test results consistent with scratch test results
- No detectable difference between arcing in one location or multiple locations
- Tests showed that it is more severe to arc with a wire than a stylus
- Wires are flammable and can burn in oxygen
- Burning wires easily ignite test materials



### Poke Test Problems

- Not possible to determine which arc ignited material
- Arc energies vary widely from test to test and arc to arc
- Difficult to ensure that test sample material is in intimate contact with arcing event

## Wire-break Test Objectives

- Reduce variability in tests
- Test all materials
- Determine whether ignition is dependent on voltage or current



| Approximate Current<br>Required to Break Wire<br>(A) | 9.00   | 5.00  | 3.80   | 3.00   | 2.60   | 2.30   | 1.80   | 1.50  | 1.30   | 1.10   | 06:0   | 0.83   | 0.70   | 0.63  | 0.50    | 0.45    | 0.35    |
|------------------------------------------------------|--------|-------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|-------|---------|---------|---------|
| % of Flight Wire Cross<br>Sectional Area             | 1550   | 625   | 479    | 375    | 908    | 244    | 189    | 156   | 127    | 100    | 22     | 99     | 45     | 68    | 30      | 24      | 15      |
| Diameter (in.)                                       | 0.0063 | 0.004 | 0.0035 | 0.0031 | 0.0028 | 0.0025 | 0.0022 | 0.002 | 0.0018 | 0.0016 | 0.0014 | 0.0012 | 0.0011 | 0.001 | 0.00088 | 0.00078 | 0.00062 |
| AWG Size                                             | 34     | 38    | 39     | 40     | 41     | 42     | 43     | 44    | 45     | 46     | 47     | 48     | 49     | 20    | 51      | 52      | 54      |

# Cotton Wire-Break Test Video



# High Speed Cotton Wire-break Test Video



23

#### Typical Data Plot







## Wire-break Test Results

Much more severe than scratch and poke tests

Test conditions

23.5 psia 100% O2, 22.5 V

50 psia 50% O2 and 50% N2, 15 V

Several materials failed testing at the lowest possible current, ~0.3 A Current required for ignition for most materials ranged from <0.3 A to 0.97 A

# Wire-Break Test Results (cont.)

- Gore-Tex only ignited under much more severe conditions
- 100% O2, 54 psia
- Zigzag wire configuration



# Wire-break Tests vs. Scratch Tests

## 23.5 psia 100% O2, 22.5 V

| Material               | Wire Test Available Current<br>at Ignition (A) | Scratch Test Available<br>Current at Ignition (A) |
|------------------------|------------------------------------------------|---------------------------------------------------|
| Generic cotton         | 0.36                                           | 0.95                                              |
| Moleskin               | 0.3                                            | 0.8                                               |
| UCN (shiny side)       | 02'0                                           | 1.4                                               |
| Nylon/Lycra Comm Cap   | 69.0                                           | 1.3                                               |
| Astronaut undergarment | 0.64                                           | 1.4                                               |
| LCVG spandex           | 0.53                                           | 1.4                                               |
| LCVG tricot            | 0.49                                           | 1.3                                               |
|                        |                                                |                                                   |





- -6.8 Watt Power Curve
- ▲ Ignition
- No Ignition

1.3 V, 0.25 A



|              |                                                                                         | Surface         |
|--------------|-----------------------------------------------------------------------------------------|-----------------|
|              | Material                                                                                | Characteristics |
| Best         | Interface cable Gore-Tex® sleeve                                                        | Smooth          |
| <del> </del> | Urethane-coated nylon suit bladder (fabric side)                                        | Smooth          |
|              | PVC                                                                                     | Smooth          |
|              | Interface cable polyurethane jacket                                                     | Smooth          |
|              | Urethane-coated nylon suit bladder (shiny side)                                         | Smooth          |
|              | Astronaut longhandle undergarment                                                       | Fuzzy           |
|              | CCA cap spandex (nylon & Lycra® knit fabric)                                            | Smooth          |
|              | LCVG garment (multifilament nylon / spandex knit 1106 treated with 3% TCHDE solution)   | Smooth          |
|              | LCVG garment inner liner (nylon tricot treated with 3% TCHDE solution)                  | Smooth          |
|              | Cotton flocked Rucothane® glove bladder                                                 | Fuzzy           |
|              | TCU assembly (Capilene® – hollow fiber polyester treated with 3% TCHDE solution) (gray) | Fuzzy           |
|              | Kerlix dressing                                                                         | Fuzzy           |
|              | Generic cotton                                                                          | Fuzzy           |
| Worst        | Moleskin                                                                                | Fuzzy           |

#### Conclusions

- Wire-break test is worst-case
- Fuzzy materials generally easier to ignite
- Current appears to have greater effect than voltage
- Controlling risk must include both
- Physical isolation of easy to ignite materials
- Limiting current and voltage