

Knowledge Representation and Reasoning Computational Argumentation

Jean-Guy Mailly

M1 Computer Science

Outline

- General Introduction to Argumentation
- 2 Abstract Argumentation Framework
 - Basics of Abstract Argumentation
 - Acceptability Semantics
 - Computational Approaches for Reasoning with Dung's AFs
 - Other Semantics

Other Frameworks

Arguments are used in everyday life to defend or explain a point of view

Arguments are used in everyday life to defend or explain a point of view

• John: "I'm hungry, let's go to this restaurant."

Arguments are used in everyday life to defend or explain a point of view

• John: "I'm hungry, let's go to this restaurant."

• Yoko: "I've seen on Tripadvisor that the food is bad, let's go somewhere else."

Arguments are used in everyday life to defend or explain a point of view

- John: "I'm hungry, let's go to this restaurant."
- Yoko: "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
- John: "The Tripadvisor grades are old and there is a new chef, so it should be better now."

Arguments are used in everyday life to defend or explain a point of view

- John: "I'm hungry, let's go to this restaurant."
- Yoko: "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
- John: "The Tripadvisor grades are old and there is a new chef, so it should be better now."
- John: "Moreover, the other restaurants in the streets are closed."

Formalizing Arguments

Formally, an argument is made of a support which allows to deduce a given claim

Formalizing Arguments

Formally, an argument is made of a support which allows to deduce a given claim I'm hungry, let's go to this restaurant.

Conflicts between Arguments

The support (or the claim) of an argument can be incompatible with the support (or the claim) of another argument: **attack**

Conflicts between Arguments

The support (or the claim) of an argument can be incompatible with the support (or the claim) of another argument: **attack**

 claim vs claim (rebuttal): "I'm hungry, let's go to this restaurant." vs "Its grades on Tripadvisor are bad, let's go somewhere else."

Conflicts between Arguments

The support (or the claim) of an argument can be incompatible with the support (or the claim) of another argument: attack

- claim vs claim (rebuttal): "I'm hungry, let's go to this restaurant." vs "Its grades on Tripadvisor are bad, let's go somewhere else."
- claim vs support (undercut): "The Tripadvisor grades are old and there is a new chef, so it should be better now." vs "I've seen on Tripadvisor that the food is bad, let's go somewhere else."

Different argumentation formalisms

Several formalisms capture the nature of arguments and attacks

- Deductive argumentation [Besnard and Hunter 2008]
- Rule-based argumentation [Kakas and Moraitis 2003, Toni 2014, Modgil and Prakken 2014]

Support and claims are represented as logical formulas or rules, then arguments and attacks are built

Argument mining

[Lippi and Torroni 2016]

References

P. Besnard and A. Hunter, Elements of Argumentation . MIT Press, 2008.

F. Toni, A tutorial on assumption-based argumentation. Argument & Computation 5(1), pp 89-117, 2014.

A. Kakas, P. Moraitis, Argumentation based decision making for autonomous agents. AAMAS'03, pp 883-890, 2013.

S. Modgil, H. Prakken, *The ASPIC+ framework for structured argumentation: a tutorial*. Argument & Computation 5(1), pp 31-62, 2014.

M. Lippi and P. Torroni, *Argumentation mining: State of the art and emerging trends*. ACM Transactions on Internet Technology (TOIT), 2016.

Outline

- General Introduction to Argumentation
- Abstract Argumentation Framework
 - Basics of Abstract Argumentation
 - Acceptability Semantics
 - Computational Approaches for Reasoning with Dung's AFs
 - Other Semantics
- Other Frameworks

Abstracting arguments and relationships

Dung's Argumentation Framework [Dung 1995]

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments

Abstracting arguments and relationships

Dung's Argumentation Framework [Dung 1995]

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - a₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "The Tripadvisor grades are old and there is a new chef, so it should be better now."
 - a₄: (John) "Moreover, the other restaurants in the streets are closed."

Given an argumentation framework F = (A, R):

• What is acceptable?

- What is acceptable?
- Intuitively:

Given an argumentation framework F = (A, R):

- What is acceptable?
- Intuitively:

• We say that a_1 is defended by a_3 and a_4 against a_2

Cycles: Dilemmas

- a₁: "I like this restaurant, let's eat here." (John)
- a2: "I don't like this restaurant, let's go somewhere else." (Yoko)

Cycles: Dilemmas

- a₁: "I like this restaurant, let's eat here." (John)
- a2: "I don't like this restaurant, let's go somewhere else." (Yoko)

What can we accept?

Cycles: Paradoxes

- a1: "John says that Paul is a liar."
- a2: "Paul says that George is a liar."
- a3: "George says that John is a liar."

Cycles: Paradoxes

- a1: "John says that Paul is a liar."
- a2: "Paul says that George is a liar."
- a3: "George says that John is a liar."

What can we accept?

Extension-based Semantics [Dung 1995]

- Extension: set of jointly acceptable arguments
 - "solution" of the debate
 - "point of view" about the situation
- A set of arguments has to satisfy some properties to be an extension: e.g. we
 don't accept arguments a₁ and a₂ together if there is an attack between them
- Semantics: Function σ which maps an AF $F = \langle A, R \rangle$ to a set of extensions $\sigma(F) \subseteq 2^A$

Dung's Semantics

Basic principles

A set $S \subseteq A$ is

- conflict-free (cf) w.r.t. F if $\nexists a_i, a_i \in S$ s.t. $(a_i, a_i) \in R$
- admissible (ad) w.r.t. F if S is cf and S defends each $a_i \in S$ (i.e. $\forall a_i \in S, \ \forall a_j$ s.t. $(a_j, a_i) \in R, \ \exists a_k \in S$ s.t. $(a_k, a_j) \in R$)

Classical semantics

A set $S \subseteq A$ is

- complete (co) w.r.t. F if S is ad and S contains all the arguments that it defends
- preferred (pr) w.r.t. F if S is a maximal co extension (w.r.t. \subseteq)
- stable (st) w.r.t. F if S is cf and S attacks every $a_j \in A \setminus S$
- grounded (gr) w.r.t. F if S is a minimal co extension (w.r.t. \subseteq)

Arguments' Acceptance

Skeptical Acceptance

Given $F = \langle A, R \rangle$ and σ , $a \in A$ is skeptically accepted by F w.r.t. σ iff $\forall S \in \sigma(F)$, $a \in S$ $skep_{\sigma}(F)$ is the set of skeptically accepted arguments

Credulous Acceptance

Given $F = \langle A, R \rangle$ and σ , $a \in A$ is credulously accepted by F w.r.t. σ iff $\exists S \in \sigma(F)$, s.t. $a \in S$ $cred_{\sigma}(F)$ is the set of credulously accepted arguments

Dung's Semantics

Example:

- $\{a_1, a_3, a_4\}$ is the unique complete (resp. preferred, stable, grounded) **extension**.
- This set is then also the set of skeptically and of credulously accepted arguments under these semantics.

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	{∅}	Ø	Ø

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	{Ø}	Ø	Ø
stable	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	{Ø}	Ø	Ø
stable	$\{\{a_1\}, \{a_2\}\}$	$\{a_1, a_2\}$	Ø

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	{∅}	Ø	Ø
stable	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
preferred	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	{∅}	Ø	Ø
stable	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
preferred	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\emptyset\}$	Ø	Ø
stable	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
preferred	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
complete	$\{\emptyset, \{a_1\}, \{a_2\}\}$	$\{a_1, a_2\}$	Ø

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	{Ø}	Ø	Ø
stable	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
preferred	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
complete	$\{\emptyset, \{a_1\}, \{a_2\}\}$	$\{a_1, a_2\}$	Ø

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\emptyset\}$	Ø	Ø
stable	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
preferred	$\{\{a_1\},\{a_2\}\}$	$\{a_1, a_2\}$	Ø
complete	$\{\emptyset, \{a_1\}, \{a_2\}\}$	$\{a_1, a_2\}$	Ø

How Semantics Deal with Paradoxes

How Semantics Deal with Paradoxes

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	{∅}	Ø	Ø
stable	Ø	Ø	$\{a_1, a_2, a_3\}$
preferred	{∅ }	Ø	Ø
complete	(∅)	Ø	Ø

Exercise

Questions:

- What are the extensions under the various semantics (grounded, stable, preferred, complete)?
- Under each semantics, which arguments are credulously accepted? Which ones are skeptically accepted?

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1, a_4, a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\mid \{a_1\}$

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1, a_4, a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1, a_4, a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1, a_4, a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\mid \{a_1\}$

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1, a_4, a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\mid \{a_1\}$

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1, a_4, a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\mid \{a_1\}$

Semantics σ	σ -extensions	$cred_{\sigma}$	skep $_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1, a_4, a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\mid \{a_1\}$

Computational Complexity

• Reasoning with AFs is generally hard [Dvorak and Dunne 2018]

Problem	Grounded	Stable	Preferred	Complete
Exist	Trivial	NP-c	Trivial	Trivial
Exist ^{NT}	L	NP-c	NP-c	NP-c
Verif	P-c	L	coNP-c	L
Cred	P-c	NP-c	NP-c	NP-c
Skep	P-c	coNP-c	П <mark>Р</mark> -с	P-c

• Exist: For F and σ , is $\sigma(F) \neq \emptyset$?

• Exist^{NT}: For F and σ , is $\sigma(F) \neq \emptyset$ s.t. F has at least one non-empty extension?

• Verif: For F, S and σ , is $S \in \sigma(F)$?

• Cred: For F, a and σ , is there some $S \in \sigma(F)$ s.t. $a \in S$?

• Skep: For F, a and σ , is $a \in S$ for each $S \in \sigma(F)$?

A (very) naive approach

- Apply the definitions: compute all the cf sets, and then choose among them
 - Choose the ones that attack everything else: st
 - Choose the ones that defend themselves: ad
 - · Choose the ones that contain everything they defend: co
 - Choose the ⊆-maximal ad sets: pr
 - Choose the ⊆-minimal co extension: gr

A (very) naive approach

- Apply the definitions: compute all the cf sets, and then choose among them
 - · Choose the ones that attack everything else: st
 - Choose the ones that defend themselves: ad
 - · Choose the ones that contain everything they defend: co
 - Choose the ⊆-maximal ad sets: pr
 - Choose the ⊆-minimal co extension: gr
- · Not efficient at all!
 - The number of conflict-free sets can be exponential

Dung's Characteristic Function

Definition

The characteristic function of an AF $\langle A, R \rangle$ is $\mathcal{F}: 2^A \to 2^A$ defined, for $S \subseteq A$, by

$$\mathcal{F}(S) = \{ a \in A \mid S \text{ defends } a \}$$

Dung's Characteristic Function

Definition

The characteristic function of an AF $\langle A, R \rangle$ is $\mathcal{F}: 2^A \to 2^A$ defined, for $S \subseteq A$, by

$$\mathcal{F}(S) = \{a \in A \mid S \text{ defends } a\}$$

Proposition

Let S be a conflict-free set. $S \in ad(F)$ iff $S \subseteq \mathcal{F}(S)$

Dung's Characteristic Function

Definition

The characteristic function of an AF $\langle A, R \rangle$ is $\mathcal{F}: 2^A \to 2^A$ defined, for $S \subseteq A$, by

$$\mathcal{F}(S) = \{a \in A \mid S \text{ defends } a\}$$

Proposition

Let S be a conflict-free set. $S \in ad(F)$ iff $S \subseteq \mathcal{F}(S)$

We can use the characteristic function to determine the extensions for all the semantics based on admissibility

Proposition

Let S be a conflict-free set. $S \in co(F)$ iff $S = \mathcal{F}(S)$

Proposition

Let S be a conflict-free set. $S \in co(F)$ iff $S = \mathcal{F}(S)$

• To compute a complete extension, consider a conflict-free set S, and apply iteratively the characteristic function until a fixed point is reached

Proposition

Let S be a conflict-free set. $S \in co(F)$ iff $S = \mathcal{F}(S)$

• To compute a complete extension, consider a conflict-free set *S*, and apply iteratively the characteristic function until a fixed point is reached

•
$$S = \{a_1, a_4\}$$

•
$$S^2 = \mathcal{F}(S) = \{a_1, a_4, a_6\}$$

Proposition

Let S be a conflict-free set. $S \in co(F)$ iff $S = \mathcal{F}(S)$

• To compute a complete extension, consider a conflict-free set *S*, and apply iteratively the characteristic function until a fixed point is reached

•
$$S = \{a_1, a_4\}$$

•
$$S^2 = \mathcal{F}(S) = \{a_1, a_4, a_6\}$$

•
$$S^3 = \mathcal{F}(S^2) = \{a_1, a_4, a_6\}$$

- \bullet To compute a preferred extension with the characteristic function, first compute a complete extension S
- Then, define $A^S = \{a \in A \setminus S \mid S \cup \{a\} \in \mathbf{cf}(F)\}$
- If $A^S = \emptyset$, then S is a preferred extension of F
- Otherwise, choose some $a \in A^S$, and apply iteratively \mathcal{F} from $S \cup \{a\}$ until a new complete extension S^2 is obtained
- Repeat the process: if A^{S²} = ∅, then S² is a preferred extension, otherwise choose some a ∈ A^{S²}, etc.

- $S = \{a_1\}$ is a **co**-extension
- $A^S = \{a_3, a_4, a_5, a_6, a_7\}$

- $S = \{a_1\}$ is a **co**-extension
- $A^S = \{a_3, a_4, a_5, a_6, a_7\}$
- Pick $a_4 \in A^S$

- $S = \{a_1\}$ is a **co**-extension
- $A^S = \{a_3, a_4, a_5, a_6, a_7\}$
- Pick $a_4 \in A^S$
- $S^2 = \mathcal{F}(S \cup \{a_4\}) = \{a_1, a_4, a_6\}$

- $S = \{a_1\}$ is a **co**-extension
- $A^S = \{a_3, a_4, a_5, a_6, a_7\}$
- Pick $a_4 \in A^S$
- $S^2 = \mathcal{F}(S \cup \{a_4\}) = \{a_1, a_4, a_6\}$
- $A^{S^2} = \emptyset$: $S^2 \in pr(F)$

Proposition

The grounded extension of F is the fixed-point obtained when $\mathcal F$ is applied iteratively from \emptyset

In short: take the unattacked arguments, and then propagate

Proposition

The grounded extension of F is the fixed-point obtained when $\mathcal F$ is applied iteratively from \emptyset

In short: take the unattacked arguments, and then propagate

Proposition

The grounded extension of F is the fixed-point obtained when $\mathcal F$ is applied iteratively from \emptyset

In short: take the unattacked arguments, and then propagate

Proposition

The grounded extension of F is the fixed-point obtained when $\mathcal F$ is applied iteratively from \emptyset

In short: take the unattacked arguments, and then propagate

gr-Semantics and Characteristic Function

Proposition

The grounded extension of F is the fixed-point obtained when $\mathcal F$ is applied iteratively from \emptyset

In short: take the unattacked arguments, and then propagate

Example

gr-Semantics and Characteristic Function

Proposition

The grounded extension of F is the fixed-point obtained when $\mathcal F$ is applied iteratively from \emptyset

In short: take the unattacked arguments, and then propagate

Example

gr-Semantics and Characteristic Function

Proposition

The grounded extension of F is the fixed-point obtained when $\mathcal F$ is applied iteratively from \emptyset

In short: take the unattacked arguments, and then propagate

Example

Well-founded AFs

Definition [Dung 1995]

An AF $F = \langle A, R \rangle$ is well-founded iff $\not\exists a_0, a_1, \ldots$ an infinite sequence of arguments s.t. $\forall i \in \mathbb{N}^+$, $(a_{i+1}, a_i) \in R$

Well-founded AFs

Definition [Dung 1995]

An AF $F = \langle A, R \rangle$ is well-founded iff $\not\exists a_0, a_1, \ldots$ an infinite sequence of arguments s.t. $\forall i \in \mathbb{N}^+$, $(a_{i+1}, a_i) \in R$

• If A is finite, then well-founded is equivalent to acyclic

Well-founded AFs

Definition [Dung 1995]

An AF $F = \langle A, R \rangle$ is well-founded iff $\not \exists a_0, a_1, \ldots$ an infinite sequence of arguments s.t. $\forall i \in \mathbb{N}^+$, $(a_{i+1}, a_i) \in R$

• If A is finite, then well-founded is equivalent to acyclic

Theorem [Dung 1995]

For every well-founded AF F, gr(F) = st(F) = pr(F) = co(F)

 So it might be useful to check whether the graph is acyclic before computing extensions

Stable Semantics and SAT

Intuition:

- Encoding arguments' acceptance in Boolean variables
- Define a formula such that each model corresponds to an extension

Logical Encoding of Stable Semantics [Besnard and Doutre 2004]

For $F = \langle A, R \rangle$, $S \subseteq A$ is a stable extension of F iff S is a model of

$$\phi_{st}(F) = \bigwedge_{a \in A} (a \leftrightarrow \bigwedge_{(b,a) \in R} \neg b)$$

Stable Semantics and SAT

Intuition:

- Encoding arguments' acceptance in Boolean variables
- Define a formula such that each model corresponds to an extension

Logical Encoding of Stable Semantics [Besnard and Doutre 2004]

For $F = \langle A, R \rangle$, $S \subseteq A$ is a stable extension of F iff S is a model of

$$\phi_{st}(F) = \bigwedge_{a \in A} (a \leftrightarrow \bigwedge_{(b,a) \in R} \neg b)$$

 Stable extensions corresponds to kernels of the graph (see the Algorithmic Complexity lessons)

Admissible Sets and SAT

Logical Encoding of Conflict-freeness [Besnard and Doutre 2004]

For $F = \langle A, R \rangle$, $S \subseteq A$ is conflict-free in F iff S is a model of

$$\phi_{cf}(F) = \bigwedge_{(a,b) \in R} (\neg a \lor \neg b)$$

Logical Encoding of Defense [Besnard and Doutre 2004]

For $F = \langle A, R \rangle$, $S \subseteq A$ defends itself in F iff S is a model of

$$\phi_{def}(F) = \bigwedge_{a \in A} (a \to \bigwedge_{(b,a) \in R} (\bigvee_{(c,b) \in R} c))$$

Logical Encoding of Admissibility [Besnard and Doutre 2004]

For $F = \langle A, R \rangle$, $S \subseteq A$ is admissible in F iff S is a model of $\phi_{ad}(F) = \phi_{cf}(F) \wedge \phi_{def}(F)$

Complete Extensions and SAT

- Complete extensions contain everything that they defend
- Modify φ_{def}(F):

$$\phi'_{def}(F) = \bigwedge_{a \in A} (a \leftrightarrow \bigwedge_{(b,a) \in R} (\bigvee_{(c,b) \in R} c))$$

Logical Encoding of Complete Semantics [Besnard and Doutre 2004]

For $F = \langle A, R \rangle$, $S \subseteq A$ is a complete extension of F iff S is a model of

$$\phi_{co}(F) = \phi_{cf}(F) \wedge \phi'_{def}(F)$$

• For grounded semantics, just apply unit propagation to $\phi_{co}(F)$

Preferred Extensions and SAT

- Preferred extensions cannot be directly encoded to SAT, since skeptical acceptance is Π^P₂-complete (except if the polynomial hierarchy collapses)
- An algorithm for using SAT at the second level of polynomial hierarchy: CEGAR [Dvorak et al 2012]
- Counter Example Guided Abstraction Refinement
- · Principle of the algorithm:
 - Find an abstraction of the solution (e.g. a complete extension S instead of a preferred extension)
 - If S is preferred, then it's ok
 - Otherwise, modify the logical encoding to forbid S, and try again

A Competition of Solvers

- Since 2015, ICCMA (International Competition of Computational Models of Argumentation) evaluates te best algorithms for reasoning with AFs
- The best solvers are usually based on SAT
 - CoQuiAAS [Lagniez et al 2015]
 - ArgSemSAT [Cerruti et al 2014]
 - Cegartix [Dvorak et al 2012]
 - μ-Toksia (https://www.cs.helsinki.fi/u/andreasn/)
- Next competition: in 2023
 - http://argumentationcompetition.org

More Semantics

Other extension-based semantics:

- naive
- ideal
- stage
- semi-stable
- eager
- . . .

See [Baroni et al 2018]

More Semantics

Other types of semantics:

- Labelling-based semantics
 - Every argument is assigned a label: in, out or undec.
 - a is labelled in iff $\forall b$ s.t. $(b, a) \in R$, b is labelled out
 - a is labelled out iff $\exists b \text{ s.t. } (b, a) \in R \text{ and } b \text{ is labelled in }$
 - a is labelled undec iff a is neither labelled in nor out
 - Several possible labellings can result.
 - Correspondence shown between labellings and extensions
 - ⇒ [Caminada 2006]

More Semantics

Other types of semantics:

- Ranking-based semantics
 - A pre-order on arguments is defined, instead of sets of collectively acceptable arguments.
 - The pre-order compares the acceptability of arguments.
 - The comparison may be based on the number of attacking and defending arguments, for example.
 - \Rightarrow See [Bonzon, Delobelle, Konieczny, Maudet 2016] for a comparative study of ranking-based semantics

References

P. M. Dung, On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 1995.

W. Dvorák and P.E. Dunne, *Computational Problems in Formal Argumentation and their Complexity*. Handbook of Formal Argumentation (1), pp. 631–688, 2018.

P. Besnard and S. Doutre, *Checking the acceptability of a set of arguments*. NMR 2004: 59-64:

W. Dvorák, M. Järvisalo, J. P. Wallner and S. Woltran, *Complexity-Sensitive Decision Procedures for Abstract Argumentation*. KR 2012

References

J.-M. Lagniez, E. Lonca and J.-G. Mailly, CoQuiAAS: A Constraint-Based Quick Abstract Argumentation Solver. ICTAI 2015: 928-935

F. Cerutti, M. Giacomin and M. Vallati, *ArgSemSAT: Solving Argumentation Problems Using SAT.* COMMA 2014: 455-456

P. Baroni, M. Caminada and M. Giacomin, *Abstract Argumentation Frameworks and Their Semantics*. Handbookof Formal Argumentation (1), pp. 159–236, 2018

M. Caminada, On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123

E. Bonzon, J. Delobelle, S. Konieczny and N. Maudet, A Comparative Study of Ranking-Based Semantics for Abstract Argumentation. AAAI, 2016.

Outline

General Introduction to Argumentation

- 2 Abstract Argumentation Framework
 - Basics of Abstract Argumentation
 - Acceptability Semantics
 - Computational Approaches for Reasoning with Dung's AFs
 - Other Semantics

Other Frameworks

Generalization of Dung's Framework

There are many ways to extend the expressiveness of abstract argumentation, e.g.:

- Preferences
- Uncertainty in the graph
- Support relation
- · Abstract dialectical frameworks

- besides conflicts between arguments, the agent has some preferences between arguments [Amgoud and Cayrol 2002]
- if a_1 is preferred to a_2 , then no attack from a_2 to a_1 can succeed

- besides conflicts between arguments, the agent has some preferences between arguments [Amgoud and Cayrol 2002]
- if a_1 is preferred to a_2 , then no attack from a_2 to a_1 can succeed

 $PrF = \langle A, R, \leq \rangle$ with

- $A = \{a_1, a_2\}$
- $R = \{(a_1, a_2), (a_2, a_1)\}$
- $a_2 \le a_1$ (i.e. a_1 is "better than" a_2)

- besides conflicts between arguments, the agent has some preferences between arguments [Amgoud and Cayrol 2002]
- if a_1 is preferred to a_2 , then no attack from a_2 to a_1 can succeed

 $PrF = \langle A, R, \leq \rangle$ with

•
$$A = \{a_1, a_2\}$$

•
$$R = \{(a_1, a_2), (a_2, a_1)\}$$

•
$$a_2 \le a_1$$
 (i.e. a_1 is "better than" a_2)

$$\sim$$

$$F = \langle A, R \rangle$$
 with

•
$$A = \{a_1, a_2\}$$

•
$$R = \{(a_1, a_2)\}$$

- besides conflicts between arguments, the agent has some preferences between arguments [Amgoud and Cayrol 2002]
- if a_1 is preferred to a_2 , then no attack from a_2 to a_1 can succeed

 $a_1 \longrightarrow a_2$

 $PrF = \langle A, R, \leq \rangle$ with

•
$$A = \{a_1, a_2\}$$

•
$$R = \{(a_1, a_2), (a_2, a_1)\}$$

•
$$a_2 \le a_1$$
 (i.e. a_1 is "better than" a_2)

 Other definitions exist for the defeat relation [Amgoud and Vesic 2014, Kaci et al 2018]

$$F = \langle A, R \rangle$$
 with

•
$$A = \{a_1, a_2\}$$

•
$$R = \{(a_1, a_2)\}$$

Uncertainty in Abstract Argumentation

- · Uncertainty is omnipresent in reel world, and should be taken into account in Al
- · Two possibilities:
 - Qualitative uncertainty: "I'm not sure whether this is true or false"
 - Quantitative uncertainty: "I believe that this is true at some degree"
 → probabilities, possibilities,...

Uncertainty in Abstract Argumentation

- Uncertainty is omnipresent in reel world, and should be taken into account in AI
- · Two possibilities:
 - Qualitative uncertainty: "I'm not sure whether this is true or false"
 - Quantitative uncertainty: "I believe that this is true at some degree"
 → probabilities, possibilities....
- Both qualitative and quantitative approaches are considered in argumentation:
 - Probabilistic argumentation
 [Li et al 2011, Thimm 2012, Hunter 2014, Gaignier et al 2021]
 - Partial/Incomplete argumentation frameworks
 [Coste-Marquis et al 2007, Baumeister et al 2018, Dimopoulos et al 2018]

Incomplete AFs [Baumeister et al 2018]

Incomplete AFs [Baumeister et al 2018]

Bipolar Argumentation

- besides conflicts between arguments, there are supports between arguments
- ullet pure support graphs also exist (e.g. recommendation letter, job application,...)

Bipolar Argumentation

- besides conflicts between arguments, there are supports between arguments
- pure support graphs also exist (e.g. recommendation letter, job application,...)

 Concepts like conflict-freeness and admissibility are generalized for this setting, then semantics can also be defined (see [Amgoud et al 2008] for technical details)

- Proposed by [Brewka et al 2013]
- Abstract entities are called statements
- Statements can be linked together
- Each statement s_i is associated with a propositional formula built on other statements s_i s.t. there is a **link** from s_i to s_i
- s_i is accepted if its formula is true
- acceptance formulas can express (collective) attacks, (collective) supports or any complex relation

- Proposed by [Brewka et al 2013]
- Abstract entities are called statements
- Statements can be linked together
- Each statement s_i is associated with a propositional formula built on other statements s_i s.t. there is a **link** from s_i to s_i
- s_i is accepted if its formula is true
- acceptance formulas can express (collective) attacks, (collective) supports or any complex relation

- Proposed by [Brewka et al 2013]
- Abstract entities are called statements
- Statements can be linked together
- Each statement s_i is associated with a propositional formula built on other statements s_i s.t. there is a **link** from s_i to s_i
- s_i is accepted if its formula is true
- acceptance formulas can express (collective) attacks, (collective) supports or any complex relation

- Proposed by [Brewka et al 2013]
- Abstract entities are called statements
- Statements can be linked together
- Each statement s_i is associated with a propositional formula built on other statements s_i s.t. there is a **link** from s_i to s_i
- s_i is accepted if its formula is true
- acceptance formulas can express (collective) attacks, (collective) supports or any complex relation

- Proposed by [Brewka et al 2013]
- Abstract entities are called statements
- Statements can be linked together
- Each statement s_i is associated with a propositional formula built on other statements s_i s.t. there is a **link** from s_i to s_i
- s_i is accepted if its formula is true
- acceptance formulas can express (collective) attacks, (collective) supports or any complex relation

References

L. Amgoud and C. Cayrol, *Inferring from Inconsistency in Preference-Based Argumentation Frameworks*. J. Autom. Reasoning 29(2), pp 125-169, 2002.

L. Amgoud and S. Vesic, *Rich preference-based argumentation frameworks*. Int. J. Approx. Reason. 55(2): 585-606, 2014

S. Kaci, L. van der Torre and S. Villata, *Preference in Abstract Argumentation*. COMMA 2018: 405-412, 2018

H. Li, N. Oren and T. J. Norman, *Probabilistic argumentation frameworks*. TAFA'11, 1–16, 2011

A. Hunter, *Probabilistic qualification of attackin abstract argumentation*. Int. J. Approx. Reasoning 55(2):607–638, 2014

M. Thimm, A probabilistic semantics for abstractargumentation. ECAl'12, 750–755, 2012

F. Gaignier, Y. Dimopoulos, J.-G. Mailly, P. Moraitis, *Probabilistic Control Argumentation Frameworks*. AAMAS'21.

References

S. Coste-Marquis, C. Devred, S. Konieczny, M.-C. Lagasquie-Schiex and P. Marquis, *On the merging of Dung's argumentation systems*. Artif. Intell. 171(10-15): 730-753, 2007

D. Baumeister, D. Neugebauer, J. Rothe and H. Schadrack, Verification in incomplete argumentation frameworks. Artif. Intell. 264: 1-26, 2018

Y. Dimopoulos, J.-G. Mailly and P. Moraitis, *Control Argumentation Frameworks*. AAAI'18: 4678-4685, 2018

L. Amgoud, C. Cayrol, M.-C. Lagasquie-Schiex and P. Livet, *On bipolarity in argumentation frameworks*. Int. J. Intell. Syst. 23(10), 1062-1093, 2008.

G. Brewka, H. Strass, S. Ellmauthaler, J. . Wallner, S. Woltran, *Abstract Dialectical Frameworks Revisited*. IJCAl'13, 2013.