Linear Optimization - Homework 2

Howie Benefiel phb337

March 8, 2018

Problem 1. (1^{st} Bullet)

Formally, following the argument on pg. 83, if **d** is a feasible direction at **x**, that means $\exists \theta > 0$ s.t. $\mathbf{x} + \theta \mathbf{d} \in \text{the feasible polyhedron}$, P. Since we're only looking for feasible solutions, $\mathbf{A}(\mathbf{x} + \theta \mathbf{d}) = \mathbf{b}$. Also, since x is feasible, $\mathbf{A}\mathbf{x} = \mathbf{b}$. Since, $\theta > 0$ and subtracting b from both sides, it is apparent Ad = 0.

Now for the second part of the statement, we're moving in a feasible direction in the polyhedron, so $\mathbf{x} + \theta \mathbf{d} \geq 0$. That means for a given index, i, $x_i + \theta d_i \geq 0$. Since $\theta > 0$, $d_i \geq 0$ for any index where $x_i = 0$.

(2nd Bullet)

We should follow the same analysis as above.

If we can move in the d direction then $\mathbf{A}(x+\theta\mathbf{d}) = \mathbf{b}$. Since $\mathbf{A}\mathbf{x} = \mathbf{b}$, those terms cancel leaving $\theta \mathbf{A}\mathbf{d} = 0$. We divide out θ leaving $\mathbf{A}\mathbf{d} = 0$. This proves the first statement of the set.

For, $\mathbf{Dd} \leq 0$, we again start with the definition of moving in a feasible direction. This gives us $\mathbf{D}(\mathbf{x} + \theta \mathbf{d}) \leq \mathbf{f}$. From the problem statement, $\mathbf{Dx} \leq \mathbf{f}$, so those terms cancel. That leaves us with $\theta \mathbf{Dd} \leq 0$. We divide out θ , leaving us with the second statement defining the set, $\mathbf{Dd} \leq 0$.

Problem 2. (1st Bullet) The extreme points will be on the axes of the polyhedron. That means the extreme points will be $\{(0,0,\frac{1}{3}),(0,\frac{1}{2},0),(1,0,0),(0,0,0)\}$.

 (2^{nd} Bullet) Assuming cost can not be negative,

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1/3 \end{pmatrix} \implies \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ 0 \end{pmatrix} \forall c_1, c_2$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 1/2 \\ 0 \end{pmatrix} \implies \mathbf{c} = \begin{pmatrix} c_1 \\ 0 \\ c_3 \end{pmatrix} \forall c_1, c_3$$

$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \implies \mathbf{c} = \begin{pmatrix} 0 \\ c_2 \\ c_3 \end{pmatrix} \forall c_2, c_3$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \forall c_2, c_3$$

Problem 3.12. (a) In standard form, our problem is described as

minimize
$$-2x_1 - x_2$$
st
$$x_1 - x_2 + x_3 = 2$$

$$x_1 + x_2 + x_4 = 6$$

$$x_1, x_2, x_3, x_4 \ge 0$$

BFS of $(x_1, x_2) = (0, 0)$ yields a cost of 0 and $x_3 = 2$ and $x_4 = 6$. (b)

That means we have an optimal solution at $x_1 = 4, x_2 = 2$. (c) Graph goes here.

Problem 4.

$$y_{1} \begin{bmatrix} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & y_{1} & y_{2} & y_{3} \\ \hline -5 & -1 & -1 & -3 & -1 & -2 & 0 & 0 & 0 \\ \hline 2 & 1 & 3 & 0 & 4 & 1^{*} & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & -3 & 1 & 0 & 1 & 0 \\ y_{3} & 1 & -1 & -4 & 3 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(4)$$

We still have y_2 in the basis which we must drive out. We apply a change of basis to drive it out.

This means our Phase I BFS is $(x_5, x_2, x_3) = (2, 0, \frac{1}{3})$. We now re-introduce the original objective function.

Problem 5. (a)

(b) The price of gasoline can go arbitrarily high because that does not change the geometry of the solution.

Problem 6. We formulate this as a transportation problem. The supplier nodes S will be the teams with "supply" or number of wins $\mathbf{x} = (x_1, x_2, ..., x_n)$. The consumer nodes, C, will be games between S_i and S_j . That means there will be a total number of $\frac{n(n-1)k}{2}$ which is equal to $\sum_{i=1}^{n} x_i$. The arcs are between nodes in S and C and they represent the number of games won by i against team j. We then solve the transportation problem for a our test vector \mathbf{x} . If the problem for \mathbf{x} is feasible then \mathbf{x} is a valid solution.