Example – Sparse projection

- Find: $\widehat{x} \in \underset{x \in \mathbb{R}^p}{\operatorname{argmin}} \quad \|x - y\|_2^2$

s.t. $||x||_0 \le k < p$

" " " "

– Step 1: Assume we know $\mathcal{S} := \operatorname{supp}(\widehat{\widehat{x}}) \subset \{1,\dots,p\}$

 $\operatorname{upp}(x) \subset \{1, \dots, p\}$

for given $g \in \mathbb{R}^p$

- Step 2: Transform original problem

 $\mathcal{S} \in \underset{\operatorname{card}(\mathcal{S}) \leq k}{\operatorname{argmin}} \quad \|y_{\mathcal{S}} - y\|_2^2 \quad \equiv \quad \mathcal{S} \in \underset{\operatorname{card}(\mathcal{S}) \leq k}{\operatorname{argmax}} \quad \|y_{\mathcal{S}}\|_2^2 := \sum_{i \in \mathcal{S}} y_i^2$

- Step 3: Find efficient ways to solve the last part!

- Rank of a matrix: maximum # of independent columns or rows

Definition: If A is a square $n \times n$ matrix, then the **Trace of** A denoted $\operatorname{tr}(A)$ is the sum of all of the entries in the main diagonal, that is $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$. If A is not a square matrix, then the trace of A is undefined.

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

Positive semi-definite matrices: $A \succeq 0$

- 1. $A \in \mathbb{R}^{n \times n}$
- 2. A is symmetric
- 3. $x^{\top} A x \ge 0$, $\forall x \in \mathbb{R}^n$, $x \ne 0$

To denote an estimator, e.g., $\hat{\mu} = m$ for the sample mean.

Example - Low-rank projection

- Find:

 $\widehat{X} \in \min_{X} \quad \frac{1}{2} \|X - Y\|_F^2$

s.t. $\operatorname{rank}(X) < r$

for given $Y \in \mathbb{R}^{m \times n}$

How does this relate to sparse projection?

- Step 1: Observe $||X - Y||_F^2 = ||X - U\Sigma V^\top||_F^2$

 $= \|U^\top X V - \Sigma\|_F^2$

- Step 2: Transform original problem

 $\min_{\mathbf{Y}} \quad \frac{1}{2} \|C - \Sigma\|_F^2$

s.t. $\operatorname{rank}(C) \leq r$

– Step 3: Optimal C is diagonal with singular values from Σ

The definition of convex function:

A function $f: \mathcal{X} \to \mathbb{R}$ is said to be convex if it always lies below its

$$\forall (x, y, \gamma) \in \mathcal{X} \times \mathcal{X} \times [0, 1], \ f((1 - \gamma)x + \gamma y) \le (1 - \gamma)f(x) + \gamma f(y).$$

chords, that is

examples (one convex, two nonconvex sets)

where $C = U^{\top}XV$

line through x_1, x_2 : all points

Affine set

Difference between Affine set and convex set, it theta in affine don't Need to be within 0 and 1, all the points On that line is okay, but in convex, theta Need to be between 0 and 1, i.e., between X1 and x2,

 $Q\subset R^n$. means subset

 $\operatorname{supp}(f)=\{x\in X\,|\,f(x)\neq 0\}.$

points in X where f is non-zero

 $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r)$ contains singular values where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r$

 $\mathbf{U} \quad \mathbf{U}^* = \mathbf{I}_m$

 $V V^* = I_n$

Can we consider SVD as a special way to calculate eigen-values from those not square matrices?

orthogonal: $U^{\top}U = I$ and $V^{\top}V = I$

$$\|A\|_F = \sqrt{\sum_{ij} A_{ij}^2}$$

 $||A||_* = \sum_i^r \sigma_i$

 $||A||_2 = \max_i \sigma_i$

(Frobenius norm)

(Nuclear norm)

(Spectral norm)

$$f(x) \triangleq \|y - Ax\|_2^2$$

What does this triangle mean?

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

$$x = \underbrace{\theta_1 x_1 + \theta_2 x_2}_{}$$

with $\theta_1 \geq 0$, $\theta_2 \geq 0$

Convex cone

 $\textbf{convex combination} \ \text{of} \ \underline{x_1,\ldots,\,x_k} \! : \ \text{any point} \ x \ \text{of the form}$

$$x = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$$

with $\underline{\theta_1 + \cdots + \theta_k} = 1$, $\underline{\theta_i \ge 0}$

Combination don't need to be unique

convex hull $\widehat{\operatorname{conv} S}$ set of all convex combinations of points in S

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$${x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1}$$

with $P \in \mathbf{S}^n_{++}$ (i.e., P symmetric positive definite)

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- $||tx|| = |t| \, ||x||$ for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$ \preceq is componentwise inequality)

$$Ax \leq b$$
, All x meet Ax <= b.

the intersection of (any number of) convex sets is convex suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex $\Longrightarrow f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

The perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is defined mathematically as:

$$P(x,t) = x/t$$
, domain of $P = \{(x,t)|t > 0\}$

Intuitively it can be explained as Professor Stephen Boyd explains, "Divide first n elements of the vector by its last component".

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^Tx + d}, \qquad \mathbf{dom}\, f = \{x \mid c^Tx + d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

more involved task. The main contribution of this paper is the derivation of gradient projections with ℓ_1 domain constraints that can be performed almost as fast as gradient projection with ℓ_2 constraints.

polyhedron is intersection of finite number of halfspaces and hyperplanes

 \mathbf{S}^n is set of symmetric $n \times n$ matrices

$$\mathbf{S}^n_+ = \{X \in \mathbf{S}^n \mid X \succeq 0\}$$
: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

$$\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$$
: positive definite $n \times n$ matrices

Illustration showing f, a function from the pink domain X to the blue codomain Y. The yellow oval inside Y is the image of f. Both the image and the codomain are sometimes called the range of f.

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

