Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики

Высшая школа прикладной математики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

по дисциплине «Математическая статистика»

Выполнила студентка гр.3630102/80101

А.А. Тимофеева

Руководитель доцент, к.ф.-м.н.

А.Н.Баженов

СОДЕРЖАНИЕ

СПИСОК ИЛЛЮСТРАЦИЙ			
СПИСОК ТАБЛИЦ	4		
1 ПОСТАНОВКА ЗАДАЧИ	5		
2 ТЕОРИЯ 2.1 Эмпирическая функция распределения 2.1.1 Статистический ряд			
2.1.2 Эмпирическая функция распределения	5		
2.1.3 Описание	5		
2.2 Оценки плотности вероятности 2.2.1 Определение 2.2.2 Ядерные оценки	6		
3 РЕАЛИЗАЦИЯ	7		
4 РЕЗУЛЬТАТЫ	7		
4.1 Эмпирическая функция распределения	7		
4.2 Ядерные оценки плотности распределения	9		
5 ОБСУЖДЕНИЕ	16		
6 ПРИЛОЖЕНИЕ	17		

СПИСОК ИЛЛЮСТРАЦИЙ

Рисунок 1: Нормальное распределение	7
Рисунок 2: Распределение Коши	7
Рисунок 3: Распределение Лапласа	8
Рисунок 4: Распределение Пуассона	8
Рисунок 5: Равномерное распределение	9
Рисунок 6: Нормальное распределение n = 20	9
Рисунок 7: Нормальное распределение n = 60	10
Рисунок 8: Нормальное распределение n = 100	10
Рисунок 9: Распределение Коши n = 20	11
Рисунок 10: Распределение Коши n = 60	11
Рисунок 11: Распределение Коши n = 100	12
Рисунок 12: Распределение Лапласа n = 20	12
Рисунок 13: Распределение Лапласа n = 60	13
Рисунок 14: Распределение Лапласа n = 100	13
Рисунок 15: Распределение Пуассона n = 20	14
Рисунок 16: Распределение Пуассона n = 60	14
Рисунок 17: Распределение Пуассона n = 100	15
Рисунок 18: Равномерное распределение n = 20	15
Рисунок 19: Равномерное распределение n = 60	16
Рисунок 20: Равномерное распределение n = 100	16

СПИСОК ТАБЛИЦ

5
•

1 ПОСТАНОВКА ЗАДАЧИ

Сгенерировать выборки размером 20, 60 и 100 элементов.

Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4; 4] для непрерывных распределений и на отрезке [6; 14] для распределения Пуассона.

2 ТЕОРИЯ

2.1 Эмпирическая функция распределения

2.1.1 Статистический ряд

Статистическим рядом называется последовательность различных элементов выборки z_1, z_2, \dots, z_k , расположенных в возрастающем порядке с указанием частот n_1, n_2, \dots, n_k , с которыми эти элементы содержатся в выборке.

2.1.2 Эмпирическая функция распределения

Эмпирической (выборочной) функцией распределения (э. ф. р.) называется относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x)$$

2.1.3 Описание

Для получения относительной частоты $P^*(X < x)$ просуммируем в статистическом ряде, построенном по данной выборке, все частоты n_i , для которых элементы z_i , статистического ряда меньше x. Тогда $P^*(X < x) = \frac{1}{n} \sum_{z_i < x} n_i$. Получаем

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i.$$

 $F^*(x)$ — функция распределения дискретной случайной величины X^* , заданной таблицей распределения

<i>X</i> *	z_1	Z_2	 Z_k
P	n_1	n_2	 n_k
	n	n	n

Таблица 1: Таблица распределения

Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x)$$
.

2.2 Оценки плотности вероятности

2.2.1 Определение

Оценкой плотности вероятности f(x) называется функция f(x), построенная на основе выборки, приближённо равная f(x)

$$\hat{f}(x) \approx f(x)$$
.

2.2.2 Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\widehat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - x_i}{h_n}\right).$$

Здесь функция K(u), называемая ядерной (ядром), непрерывна и является плотностью вероятности, x_1, \dots, x_n — элементы выборки, $\{h_n\}_{n \in \mathbb{N}}$ — любая последовательность положительных чисел, обладающая свойствами

$$h_n \xrightarrow[n \to \infty]{} 0; nh_n \xrightarrow[n \to \infty]{} \infty.$$

Такие оценки называются непрерывными ядерными.

Гауссово (нормальное) ядро

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}.$$

Правило Сильвермана

$$h_n = \left(\frac{4\hat{\sigma}^5}{3n}\right)^{\frac{1}{5}} \approx 1.06\hat{\sigma}n^{-\frac{1}{5}}$$

где $\hat{\sigma}$ – выборочное стандартное отклонение.

3 РЕАЛИЗАЦИЯ

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Исходный код лабораторной работы приведён в приложении.

4 РЕЗУЛЬТАТЫ

4.1 Эмпирическая функция распределения

Рисунок 1: Нормальное распределение

Рисунок 2: Распределение Коши

Рисунок 3: Распределение Лапласа

Рисунок 4: Распределение Пуассона

Рисунок 5: Равномерное распределение

4.2 Ядерные оценки плотности распределения

Рисунок 6: Нормальное распределение n = 20

Рисунок 7: Нормальное распределение n = 60

Рисунок 8: Нормальное распределение n = 100

Рисунок 9: Распределение Коши n = 20

Рисунок 10: Распределение Коши n = 60

Рисунок 11: Распределение Коши n = 100

Рисунок 12: Распределение Лапласа n = 20

Рисунок 13: Распределение Лапласа n = 60

Рисунок 14: Распределение Лапласа n = 100

Рисунок 15: Распределение Пуассона n = 20

Рисунок 16: Распределение Пуассона n = 60

Рисунок 17: Распределение Пуассона n = 100

Рисунок 18: Равномерное распределение n = 20

Рисунок 19: Равномерное распределение n = 60

Рисунок 20: Равномерное распределение n = 100

5 ОБСУЖДЕНИЕ

Можем наблюдать на иллюстрациях с э. ф. р., что ступенчатая эмпирическая функция распределения тем лучше приближает функцию распределения реальной выборки, чем мощнее эта выборка. Заметим так же, что для распределения Пуассона и равномерного распределения отклонение функций друг от друга наибольшее.

Рисунки, посвященные ядерным оценкам, иллюстрируют сближение ядерной оценки и функции плотности вероятности для всех h с ростом размера выборки. Для распределения Пуассона наиболее ярко видно, как сглаживает отклонения увеличение параметра сглаживания h.

В зависимости от особенностей распределений для их описания лучше подходят разные параметры h в ядерной оценке: для равномерного распределения и распределения Пуассона лучше подойдет параметр $h = 2h_n$, для распределения Лапласа $-h = h_n/2$, а для нормального и Коши $-h = h_n$. Такие значения дают вид ядерной оценки наиболее близкий к плотности, характерной данным распределениям.

Также можно увидеть, что чем больше коэффициент при параметре сглаживания $\widehat{h_n}$, тем меньше изменений знака производной у аппроксимирующей функции, вплоть до того, что при $h = 2h_n$ функция становится унимодальной на рассматриваемом промежутке. Также видно, что при $h = 2h_n$ по полученным приближениям становится сложно сказать плотность вероятности какого распределения они должны повторять, так как они очень похожи между собой.

6 ПРИЛОЖЕНИЕ

Код программы URL:https://github.com/tmffv/MathStat/blob/master/lab4/lab4.py