Chapter 10: Unsupervised Learning

Thiago G. Martins | NTNU & Verizon Spring 2020

- Partition the data into different groups
 - Observations within each group are quite similar
 - Observations in different groups are quite different

- Partition the data into different groups
 - Observations within each group are quite similar
 - Observations in different groups are quite different
- · Must define what it means to be similar or different
 - Domain specific considerations

- Partition the data into different groups
 - Observations within each group are quite similar
 - Observations in different groups are quite different
- Must define what it means to be similar or different
 - Domain specific considerations
- Examples:
 - Different types of cancer
 - Market segmentation
 - Search Engine

PCA vs. Clustering methods

· Both aim to simplify the data via small number of summaries

PCA vs. Clustering methods

- Both aim to simplify the data via small number of summaries
- PCA looks for a low-dim representation that explains good fraction of variance
 - Principal Components

PCA vs. Clustering methods

- · Both aim to simplify the data via small number of summaries
- PCA looks for a low-dim representation that explains good fraction of variance
 - Principal Components
- Clustering looks for homogeneous subgroups among the observations
 - Clusters

Types of clustering

- · K-means
- hierarchical clustering

K-means clustering

K-means clustering

• It is an approach for partitioning a dataset into K distinct, non-overlapping clusters.

K-means clustering

- It is an approach for partitioning a dataset into K distinct, non-overlapping clusters.
- C_1, \ldots, C_k : Sets containing indices of observations in each cluster.
- This sets satisfy two properties:
 - $C_1 \cup C_2 \cup ... \cup C_k = \{1, ..., n\}$
 - $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$

Within-cluster variation

A good cluster is one for which the within-cluster variation is as small as possible

Within-cluster variation

- A good cluster is one for which the within-cluster variation is as small as possible
- Within-cluster variation (squared Euclidean distance)

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

Within-cluster variation

- A good cluster is one for which the within-cluster variation is as small as possible
- Within-cluster variation (squared Euclidean distance)

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

· As small as possible

$$\underset{C_1,\ldots,C_k}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

Find algorithm to solve:

minimize
$$\left\{ \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 \right\}$$

Find algorithm to solve:

minimize
$$\left\{ \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 \right\}$$

· Difficult problem: K^n ways to partition n observations into K clusters.

Find algorithm to solve:

minimize
$$\left\{ \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 \right\}$$

- Difficult problem: K^n ways to partition n observations into K clusters.
- · Fortunately, there is a simple algorithm that can provide a local optimum

Algorithm 10.1 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster *centroid*. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Recommended Exercise 2

Show that the algorithm in the previous slide is guaranteed to decrease the value of the objective

minimize
$$\left\{ \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 \right\}$$

at each step.

 Depend on random start conditions, need to run multiple times and select the best run

- Potential disadvantage of K-means, we need to select K
 - But this is not always a disadvantage, e.g. search engine

Recommended exercise 3

Perform k-means clustering in the New York Times stories dataset.

The pca-examples.rdata can be downloaded from the Blackboard.

· Does not require us to commit to a particular choice of K in advance

- · Does not require us to commit to a particular choice of K in advance
- Produces an attractive tree-based representation called dendogram

- Does not require us to commit to a particular choice of K in advance
- Produces an attractive tree-based representation called dendogram
- We will describe bottom-up or agglomerative clustering
 - Most common type of hierarchical clustering

Interpreting a dendogram

Dendograms can be misleading

Hierarchical structure

- Not always suited for a arbitrary dataset
- · Group of people
 - evenly split between male and female
 - evenly split between americans, japanese and french

Hierarchical structure

- Not always suited for a arbitrary dataset
- Group of people
 - evenly split between male and female
 - evenly split between americans, japanese and french
 - best division in two groups -> gender
 - best division in three groups -> nationality

Hierarchical structure

- Not always suited for a arbitrary dataset
- Group of people
 - evenly split between male and female
 - evenly split between americans, japanese and french
 - best division in two groups -> gender
 - best division in three groups -> nationality
 - not nested
- This explains why hierarchical clusters can sometimes yield worse results than K-means for a given number of clusters

The hierarchical clustering algorithm

- 1. Start at the botton of the dendogram
 - Each of the *n* observations is treated as its own cluster

The hierarchical clustering algorithm

- 1. Start at the botton of the dendogram
 - Each of the *n* observations is treated as its own cluster
- 2. Fuse the two clusters that are more similar to each other
 - There are now n-1 clusters

The hierarchical clustering algorithm

- 1. Start at the botton of the dendogram
 - Each of the *n* observations is treated as its own cluster
- 2. Fuse the two clusters that are more similar to each other
 - There are now n-1 clusters
- 3. Repeat step 2 until there are only one cluster

The hierarchical clustering algorithm

Choice of dissimilarity measure

- · Euclidean distance is most common dissimilarity measure to use.
- But there are other options

Choice of dissimilarity measure

- · Euclidean distance is most common dissimilarity measure to use.
- But there are other options
- Correlation-based distance
 - Correlation focus on shape of the observation profile rather than their magnitude

Correlation-based distance

Online retailer example

- · Online retailer example
 - Identify subgroups of similar shoppers
 - Matrix with shoppers (rows) and items (columns)
 - Value indicate number of times a shopper bought an item

Online retailer example

- Online retailer example
 - Identify subgroups of similar shoppers
 - Matrix with shoppers (rows) and items (columns)
 - Value indicate number of times a shopper bought an item
- · Euclidean distance
 - Infrequent shoppers will be clustered together
 - The amount of itens bought matters

Online retailer example

- Online retailer example
 - Identify subgroups of similar shoppers
 - Matrix with shoppers (rows) and items (columns)
 - Value indicate number of times a shopper bought an item
- Euclidean distance
 - Infrequent shoppers will be clustered together
 - The amount of itens bought matters
- Correlation distance
 - Shoppers with similar preference will be clustered together
 - Including both high and low volumes shoppers

Linkage

 Need to extend the concept between dissimilarity between pairs of observations to pairs of groups of observations

Linkage

- Need to extend the concept between dissimilarity between pairs of observations to pairs of groups of observations
- Linkages
 - Complete: Maximal intercluster dissimilarity
 - Single: Minimal intercluster dissimilarity
 - Average: Mean intercluster dissimilarity

Linkage

Dendogram depends strongly on the type of linkage used

Average and complete linkage tend to yield more balanced clusters.

Scaling variable

Usually wise to scale the variables

Recommended exercise 4

Perform hierarchical clustering in the New York Times stories dataset.

The pca-examples.rdata can be downloaded from the Blackboard.

- · Should standardize the variables?
 - Usually yes

- · Should standardize the variables?
 - Usually yes
- K-means clustering
 - What K?

- Should standardize the variables?
 - Usually yes
- K-means clustering
 - What K?
- Hierarchical clustering:
 - dissimilarity measure?
 - Linkage?
 - Where to cut the dendogram?

- Should standardize the variables?
 - Usually yes
- K-means clustering
 - What K?
- Hierarchical clustering:
 - dissimilarity measure?
 - Linkage?
 - Where to cut the dendogram?
- · With these methods, there is no single right answer—any solution that exposes some interesting aspects of the data should be considered.

Extra slides

- Blog post applying k-means clustering on data from Twitter
 - http://thinktostart.com/cluster-twitter-data-with-r-and-k-means/
- Blog post applying hierarchical clustering on data based on the complete works of william shakespeare
 - https://www.r-bloggers.com/clustering-the-words-of-william-shakespeare/