Московский Авиационный Институт (Национальный исследовательский университет)

Институт №8 "Информационных технологий и прикладной математики"

Курсовой проект

по курсу «Вычислительные системы» I семестр

Задание 3

Студент:	М.
Группа:	М8О-101Б-22
Руководитель:	Крылов С. С.
Оценка:	
Дата:	
Подпись преподавателя:	

Парфенов М

Москва, 2022

1. Задача

Составить программу на языке Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon \times \kappa$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а κ - экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

2. Вариант

18	$\frac{x^3}{3} - \frac{x^5}{15} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1}$	0.1	0.6	$\frac{1+x^2}{2}\arctan x - \frac{x}{2}$
----	---	-----	-----	--

3. Общий метод решения

Вычисление значений функции на отрезке от 0.1 до 0.6 через ряд Тейлора и с помощью программных средств.

4. Общие сведения о программе

Аппаратное обеспечение: домашний ноутбук

Операционная система: Arch Linux

Язык и система программирования: C, GNU C++

Число строк программы: 40

Местонахождение файлов: Documents/MAI/Informatics/Labs/cp3/main.c

Компиляция программы в консоли Arch Linux: g++ main.c

Вызов программы: ./a.out

5. Функциональное назначение

Программа предназначена для проведения высокоточных вычислений значения функции в определенной точке двумя способами. Объем данных не ограничен. Значения ограничены размерами переменной типа double для аргумента функции и типом double для значения функции.

6. Описание логической структуры

Программы вычисляет значение в данной точке с помощью ряда Тейлора и при помощи программных средств языка программирования. Ряд Тейлора преобразуется в функцию, которая вычисляет слагаемые ряда. Далее сложение полученных слагаемых до тех пор, пока одно из них станет незначительным (по модулю меньше ε) или количество итераций превысит 100. В итоге выводится таблица с текущим значением аргумента, номером шага, значением функции, вычисленным с помощью ряда Тейлора и с помощью подключаемой библиотеки.

7. Описание переменных и констант

Имя	Тип	Назначение			
х		значение аргумента функции			
f		значение функции, вычисленной с помощью средств языка программирования			
ans	double значение функции, вычисленной при помощи ряда Тейлора				
eps		Машинное ε			
d		Последнее значение элемента ряда Тейлора			
I		левая граница отрезка			
r		правая граница отрезка			
n		Количество разбиений отрезка			
cnt	int	Количество итераций при вычислении функции с помощью ряда Тейлора			
k		коэффициент, определяющий точность			

8. Входные данные

На вход подается одно число n (10, 13, 15)

9. Выходные данные

Машинное эпсилон для типа double = 2.2204460492503131e-16 Введите число разбиений отрезка: 10 Таблица значений ряда Тейлора и стандартной функции для $f(x) = (1+x^2)/2 \cdot \arctan(x) - x/2$

=====	:======	·=====	=====	========	======	======	=======	=======
x	sum		f(x)	число ите	раций			
0.05	0.000041	645855	6238	0.0000416458	556238	50	<u> </u>	
0.10	0.000332	669508	30368	0.0003326695	080368	50	 	
0.15	0.001119	985715	3555	0.00111998571	153555	50		
0.20	0.002645	691121	9380	0.00264569112	219380	50		
0.25	0.005144	914786	1466	0.0051449147	861466	50	 	
0.30	0.008843	952990	04376	0.0088439529	904376	50	 	
0.35	0.013958	742380	8006	0.0139587423	808006	50	 	
0.40	0.020693	698725	51716	0.0206936987	251716	50	 	
0.45	0.029240	923087	74306	0.0292409230	874306	50	<u> </u>	
0.50	0.039779	755625	5038	0.0397797556	255038	50	 	
0.55	0.052476	641116	7693	0.05247664111	167694	50		

10. Тестовые примеры

Не предусмотрены.

11. Дневник отладки

Дата	Место	Событие	Действие по
			исправлению

12. Выводы по задаче

Я составил программу на языке Си с вычислением функции двумя способами, и значения функций не совпадают (точность примерно 0,1).

13. Протокол

```
#include <stdio.h>
#include <math.h>
int main(){
 double ans, f;
  double eps = 1;
  while (1 + eps/2 > 1) eps /= 2;
  printf("Машинное эпсилон для типа double = %.16e\n", eps);
  int n, cnt;
  int k = 50;
  printf("Введите число разбиений отрезка: ");
  scanf("%d", &n);
  double a = 0.1;
  double b = 0.6;
  double step = (b - a)/n;
  printf("Таблица значений ряда Тейлора и стандартной функции для f(x) =
(1+x^2)/2*arctg(x)-x/2\n");
=== \n");
 printf("| x | sum | f(x) | число итераций|\n");
=== \n");
 double x = 0;
 for(int i=0; i<=n; ++i){
   double d = 1;
   x += step:
   ans = 0; // част сумма ряда
   cnt = 1; // число иттераций
   f = (1+x*x)/2*atan(x)-x/2;
   while (cnt < 50) {
     d = pow((-1), cnt - 1) * pow(x,2*cnt+1)/(4*cnt*cnt-1);
     // printf("%d ", d);
     ans += d;
     cnt++;
   }
   printf("| %.2f | %.16f | %.16f | %d |\n", x, ans, f, cnt);
==== \n");
 }
 return 0;
```