异常检测 Anomaly Detection

电子信息与通信学院 冯 镔 fengbin@hust.edu.cn

常见应用场景

- ▶金融领域
 - ▶信用卡欺诈、虚假信贷
- ▶网络安全
 - > 网络入侵模式
- ▶电商领域
 - ▶羊毛党、恶意刷单
- ▶生态预警
 - ▶极端天气

RATORYI

WUHAN NATIONAL WUHAN OPTOEWHAN

Anomaly Detection

- What are anomalies/outliers?
 - > The set of data points that are considerably different than the remainder of the data
- Variants of Anomaly Detection Problems
 - \triangleright Given a database D, find all the data points $x \in D$ with anomaly scores greater than some threshold t
 - \triangleright Given a database D, find all the data points $x \in D$ having the top-n largest anomaly scores f(x)
- Working assumption:
 - > There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data

异常点类型

- ▶ 单点异常(Global Outlier)
 - > 某个点与全局大多数点都不一样

- ➤上下文异常(Contextual Outliers)
 - ▶时间序列中的异常
- ➤ 集体异常(Collective Outliers)
 - ▶单独看某个个体可能并不存在异常,但这些个体同时出现,则构成了一种异常

Anomaly Detection

- > Challenges
 - > How many outliers are there in the data?
 - Method is unsupervised
 - > Validation can be quite challenging (just like for clustering)
 - > Finding needle in a haystack

Anomaly Detection Schemes

- **➢ General Steps**
 - ➤ Build a profile of the "normal" behavior
 - ➤ Profile can be patterns or summary statistics for the overall population
 - ➤ Use the "normal" profile to detect anomalies
 - ➤ Anomalies are observations whose characteristics differ significantly from the normal profile

Anomaly Detection Schemes

- ➤ Types of anomaly detection schemes
 - >Statistical-based
 - Distance-based
 - >Tree-based
 - > Dimensionality reduction-based
 - > Prediction-based

≻3sigma

▶基于正态分布,认为超过3sigma的数据为异

常点

RATORY

- >Z-score
- ▶Z-score为标准分数,测量数据点A和平均值的距离
 - ▶若A与平均值相差2个标准差,Z-score为2
 - ▶当把Z-score=3作为阈值去剔除异常点时,便相 当于3sigma

- **≻ Grubbs' Test**
- > Assume data comes from normal distribution
- > Detects one outlier at a time, remove the outlier, and repeat
 - \rightarrow H₀: There is no outlier in data
 - > H_A: There is at least one outlier
- > Grubbs' test statistic:

$$G = \frac{\max |X - X|}{\sum_{i=1}^{n} x_i |X - X|}$$

> Reject H₀ if: $G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N,N-2)}^2}{N-2+t_{(\alpha/N,N-2)}^2}}$

- Likelihood Approach
- Assume the data set D contains samples from a mixture of two probability distributions:
 - > M (majority distribution)
 - > A (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to M
 - ► Let L_t(D) be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - \triangleright Let L_{t+1} (D) be the new log likelihood.
 - \triangleright Compute the difference, $\triangle = L_t(D) L_{t+1}(D)$
 - > If Δ > c (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Limitations of Statistical Approaches

Most of the tests are for a single attribute

➤ In many cases, data distribution may not be known

For high dimensional data, it may be difficult to estimate the true distribution

Distance-based Approaches

Data is represented as a vector of features

- > Three major approaches
 - Nearest-neighbor based
 - Density based
 - Clustering based

Nearest-Neighbor Based Approach

- > Approach:
 - Compute the distance between every pair of data points
- > There are various ways to define outliers:
 - ▶ Data points for which there are fewer than p neighboring points within a distance D
 - ➤ The top *n* data points whose distance to the *k*th nearest neighbor is greatest
 - ➤ The top n data points whose average distance to the k nearest neighbors is greatest

基于到第五个最近邻距离的离群点得分

1-最近邻导致较低的离群点得分

5-最近邻导致整簇变成离群点

固定阈值不能处理不同密度簇的情况

Outliers in Lower Dimensional Projection

- In high-dimensional space, data is sparse and notion of proximity becomes meaningless
 - ➤ Every point is an almost equally good outlier from the perspective of proximity-based definitions
- > Lower-dimensional projection methods
 - ➤ A point is an outlier if in some lower dimensional projection, it is present in a local region of abnormally low density

Outliers in Lower Dimensional Projection

- Divide each attribute into φ equal-depth intervals
 - \triangleright Each interval contains a fraction f = 1/ ϕ of the records
- Consider a k-dimensional cube created by picking grid ranges from k different dimensions
 - ➢ If attributes are independent, we expect region to contain a fraction f^k of the records

Outliers in Lower Dimensional Projection

➢ If there are N points, we can measure sparsity of a cube D as:

$$S(\mathcal{D}) = \frac{n(D) - N \cdot f^k}{\sqrt{N \cdot f^k \cdot (1 - f^k)}}$$

Negative sparsity indicates cube contains smaller number of points than expected

Example

> N=100, ϕ = 5, f = 1/5 = 0.2, N × f² = 4

Deep Autoencoder based Anomaly Detection

▶1. 将原始数据映射到低维特征空间,在其中 评估每一个点跟其他数据点的偏离程度

▶ 2. 将原始数据映射到低维特征空间,然后由低维特征空间重新映射回原空间,尝试用低维特征重构原始数据,看重构误差的大小

Deep Autoencoder based Anomaly Detection

Deep Autoencoder based Anomaly Detection

Density-based Approaches

▶1. 一个对象的离群点得分是该对象周围密度的逆

density(x, k) =
$$\left(\frac{\sum_{y \in N(x,k)} distance(x,y)}{|N(x,k)|} \right)^{-1}$$

- ▶ 2. 一个对象周围的密度等于该对象指定距离 d内对象的个数
- ▶ 3. 相对密度

average relative density(x, k) =
$$\frac{density(x, k)}{\sum_{y \in N(x, k)} density(y, k) / |N(x, k)|}$$

Density-based Approaches

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- ➤ Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- > Outliers are points with largest LOF value

In the NN approach, o_2 is not considered as outlier, while LOF approach find both o_1 and o_2 as outliers

Clustering-Based

Basic idea:

- Cluster the data into groups of different density
- Choose points in small cluster as candidate outliers
- Compute the distance between candidate points and non-candidate clusters
 - ➢ If candidate points are far from all other non-candidate points, they are outliers

Clustering-Based

点到最近质心的距离

▶如何从下面的数据中,将A和B单独分离出来?

》将数据拓展到二维

- > Basic Idea
- ▶ 异常数据由于与其他数据点较疏离,可能需要较少几次切分就可以将它们单独划分出来,而正常数据恰恰相反

➤采用二叉树对数据进行切分,数据点在二叉 树中所处的深度反应了数据的"疏离"程度

▶算法步骤:

▶1.训练:抽取多个样本,构建多棵二叉树(Isolation Tree,即 iTree)

▶2. 预测:综合多棵二叉树的结果,计算每个数据点的异常分值

训练过程

- >(1)从全量数据中抽取一批样本
- >(2)随机选择一个特征作为起始节点
- 》(3)在该特征值的范围内随机选择一个值,将样本中小于该取值的数据划到左分支,大于等于该取值的划到右分支
- ▶ (4) 重复第 (3) 步,直到满足停止条件
 - ▶数据不可再分
 - ▶二叉树达到限定的最大深度

预测过程

➤ (1) 估算数据x在每棵树 iTree 中的路径长度(深度)

$$h(x) = e + C (T.size)$$

- \triangleright (2) 综合多棵树的结果,得到数据x的异常 分数 $Score(x) = 2^{-\frac{E(h(x))}{C(\psi)}}$
- ▶ 得分越接近1,表示越异常;越接近0,表示 越正常

Isolation Forest

- ▶总结
- ▶两个主要参数
 - ▶二叉树个数
 - ▶训练单棵二叉树时抽取的样本数目
- >是一种无监督的的异常检测算法
- ▶具有线性时间复杂度
- 一不能违背异常数据比例低的基本假设

Performance Comparison

Data	#Samples	# Dimensions	Outline Base	ABOD	CBLOF	FB	HDOC	1Egrant	KNN	LOF	MCD	OCSVM	DCA
	10000		Outlier Perc	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN	20040000000000		HBOS	IForest			MCD		PCA
arrhythmia	452	274	70.00	115,000	0.0000000000000000000000000000000000000	0.778	200A4A0A	T-0444-000-000	J903160NJ00941	0.7787	100000	THE RESERVE OF THE PERSON NAMED IN	100000000000000000000000000000000000000
ardio	1,831	21	9.61	0.5692	0.9276	0.586	7 0.8351	0.9213	0.7236	0.5736	0.8135	0.9348	0.950
glass	214	9	4.21	0.7951	0.8504	0.872	6 0.7389	0.7569	0.8508	0.8644	0.7901	0.6324	0.674
onosphere	351	33	35,90	0.9248	0.8134	0.87	3 0.5614	0.8499	0.9267	0.8753	0.9557	0.8419	0.796
etter	1,600	32	6.25	0.8783	0,507	0.86	6 0,5927	0.642	0.8766	0.8594	0.8074	0.6118	0.528
ympho	148	18	4.05	0.911	0.9728	0.975	3 0.9957	0.9941	0.9745	0.9771	0.9	0.9759	0.984
mnist	7,603	100	9.21	0.7815	0.8009	0.720	5 0.57.42	0.8159	0.8481	0.7161	0.8666	0.8529	0.852
nusk	3,062	166	3.17	0.1844	0.9879	0.526	3 1	0.9999	0.7986	0.5287	0.9998	1	
optdigits	5,216	64	2.88	0.4667	0.5089	0.443	4 0.8732	0.7253	0.3708	0.45	0.3979	0.4997	0.508
pendigits	6,870			0.0000000000000000000000000000000000000	0.9486	0.459	0.9238	0.9435	0.7486	0.4698	0.8344	0.9303	0.935
oima	768	8		100000000000000000000000000000000000000	0.7348	0,623	5 0.7	0.6806	0.7078	0.6271	0.6753	0.6215	0.648
satellite	6,435	36	31.64	0.5714	0.6693	0.557	2 0.7581	0.7022	0.6836	0.5573	0.803	0.6622	0.598
satimage-2	5,803	36	1.22	0.819	0.9917	0.45	7 0.9804	0.9947	0.9536	0.4577	0.9959	0.9978	0.982
huttle	49,097	9	(2000)	0.6234	0.6272	0.472	4 0.9855	0.9971	0.6537	0.5264	0.9903	0.9917	0.989
vertebral	240	6			0.3486	0.416	6 0.3263	0.3905	0.3817	0.4081	0.3906	0.4431	0.402
vowels	1,456	100		1000000	0.5856	0.942	5 0.6727	0.7585	0.968	0.941	0.8076	0.7802	The second second
wbc	378	30		0.9047	0.9227	0.932	100000000	700	0.9366	0.9349	0.921	0.9319	LA SOCIETATION DE
			mean	0.7031		0.676	200000000000000000000000000000000000000	THE RESIDENCE OF THE PERSON NAMED IN	1000000	0.6792	20000000		100000000000000000000000000000000000000
			median	0.7688		0.623		100000000000000000000000000000000000000	1000000	0.6271	2000	THE RESIDENCE OF THE PARTY OF T	104033603
			sd	0.2038	4,767,772	0.196	9,000,000	THE PARTY NAMED IN	A September 1982	0.1929	100000000000000000000000000000000000000	1000000000	000000000

Isolation Forest

- ▶缺点
- ▶1. 不适用于特别高维数据
- ▶2. 仅对全局异常点敏感, 相对异常点
- ▶3. 划分边界平行于坐标轴

不擅长处理局部的

INNE

- ▶iForest的改进算法
 - ➤ Isolation-based anomaly detection using nearest-neighbor ensembles
- ▶借鉴数据孤立机制,并结合最近邻距离计算
 - > 采用多维超球体切割数据空间
 - ▶考虑了数据局部分布特性

训练阶段

1. 从训练数据中随机选择Ψ个样本点构成子空间,对于每个样本点都找到其在另外(Ψ-1)个点中距离最近的点(最近邻),以到该最近邻的距离为半径,自己为圆心画出Ψ个超球

▶2. 重复上一步t次,得到t组超球,每次样本点都是独立从所有原始数据中随机抽样产生

测试阶段

▶1. 如果测试数据不在任何一个超球内,则其 异常值为1,判为孤立点

▶2. 如果该测试数据在某个超球Q的范围内,首先记录超球Q的半径为q,之后再找到离超球Q最近的超球P,记录其半径为p,该测试数据的异常值为 1 - p/q

测试阶段

▶3. 将测试数据分别放进每组超球中进行评估,得出 t 个异常值,然后计算平均值做为测试数据最后的异常指标

Example

性能对比

First vs. inner First vs. inner

参数影响

- ▶1. 重复抽样t次,得到t组超球
 - >t 取值越大结果越稳定,运行时间越长

- ▶2.随机选择Ψ个样本点构成子空间
 - ▶根据数据中有多少个高密度区域来调整

参数影响

高维数据异常检测

- ▶针对十万至百万级别维度的数据
- ▶维度灾难
 - >数据变的稀疏, 异常点被遮挡
 - >数据两两之间的距离几乎相等(距离集中效应)
 - ▶最近邻 (NN) 概念无意义

基于角度的异常检测

> Angle-based Outlier Factor (ABOF)

- ▶基于角度的度量比距离更稳定
- ▶基于角度的度量对维灾难更鲁棒

时间序列异常检测

- > 关注时间序列(如信号)的异常检测
 - ▶峰值
 - ▶趋势变化
 - >等级转换

- ▶ 革新性异常: Innovational Outlier (IO)
 - ➤ 干扰不仅作用于X(T),而且影响T时刻以后的序列
- ➤ 附加性异常: Additive Outlier (AO)
 - > 只影响该干扰发生的时刻T上的序列值,不影响该时刻以后的序列值
- ▶ 水平移位异常: Level Shift (LS)
 - ➤ 持续影响T时刻以后的所有行为,往往表现出T时刻前后的序列均值 发生水平位移
- ➤ 暂时变更异常: Temporary Change (TC)
 - ➤ 在T时刻干扰发生时具有一定初始效应,以后随时间呈指数衰减

▶革新性异常

▶附加性异常

▶水平移位异常

▶暂时变更异常

时序预测模型

>3-Sigma

▶假设一组检测数据只含有随机误差,对原始数据进行计算处理得到标准差,然后按一定的概率确定一个区间,误差超过这个区间的就属于异常值

美团案例

▶基于形变分析模型的异常检测系统

▶ 现状: 业务持续高速成长,业务迭代快,逻辑复杂,关联服务多

业务痛点

难平衡

典型故障场景分析需要 人工介入

工配置告警阈值 成本高

重大事故时如何避免 告警洪潮

RATORY

数据特点

▶1. 有规律的时间序列

数据特点

▶2. 无规律的时间序列

AVG、 TP99 等性 能指 标

形变分析模型

形变分析 (1 - 余弦相关) x |实时当前值- 基线当前值|

相关性变点检测

针对当前值减去基线值趋近于0的超级变点,采用前一分钟数值减去当前值作为补充。

(1-余弦相关)x|前一分钟数值-当前值|

链路维度收敛:同一刻单链路多条曲线告警收敛为一条。

告警收敛策略

按照次数或时间桶进行收敛。

图形化告警信息,直观体现前后异常趋势。

模型分析过程

模型分析过程

66

二次处理

> 真实数据与基线数据进行归一化操作

-

归一化互相关(余弦相关性):

$$norm_corr(x,y) = \frac{\sum_{n=0}^{n-1} x[n] * y[n]}{\sqrt{\sum_{n=0}^{n-1} x[n]^2 * \sum_{n=0}^{n-1} y[n]^2}}$$

二次处理

• 形变量计算:

(1-余弦相关性)x |实时当前值-基线当前值|

告警收敛策略

▶目标

- ▶1. 针对典型场景,快速给出简单直观的建议
- ▶2. 针对重大事故,避免出现告警洪潮

告警收敛策略

▶1. 简化告警内容,直观展示异常点与变化趋势

【P1业务告警】

【业务大盘】:

【业务图表】:

【业务指标】

【异常时间】: 2018-11-24 12:33:00

【指标详情】: 当前值:115436, 预测线值:144665, 下降:29229, 降幅:20.2%

模型分析过程

▶2. 从时间和业务两个维度上避免告警洪潮

在事故持续时间较长时,每分钟都发送告警会对业务造成干扰,在连续三分钟发送异常告警之后,采用间隔3、5、7、7.........直到判断异常恢复为止。

根据业务相关性,从强相关的业务链路上收集异常告警事件进行分析,从更高维度给出链路级分析报告。

不应该被识别为异常的非事故案例

案例1:因为全国大范围出现恶 劣天气,引起了午晚高峰整体 抬升,这种情况不希望出现连 续告警。

一次处理,将历史样本与基线进行归一化互相关计算,得到数据集看到在业务低峰期时,相关性波动很大,在午晚高峰时相关性较高。

二次处理,还原量级,去除量级 维度,并通过基准形变量计算出 不同告警等级对应的形变量,我 们发现没有任何点需要告警,符 合预期。

P₀

过相应等级的告警阈值,符合预期。

需要被识别为异常的事故案例

案例3:某服务入口流量因为某一渠道突然故障,引起整体流量 陡降,之后曲线形状保持不变, 陡降异常点需要被识别出。

[1 - 余弦相关) x |实时当前值- 基线当前值|

一次处理,将历史样本与基线进行归一化互相关计算,因为故障之后曲线形状迅速恢复,相关性依然很高。

二次处理,还原量级,去除量级维度,并通过基准形变量计算出不同告警等级对应的形变量,因为异常之后真实值与基线基本吻合,形变量计算在这种特例下无法识别,需要同时增加前后一分钟的形变量分析,在两个结果中任何一个超过对应等级的告警阈值则认为是异常点,符合预期。

需要被识别为异常的非事故案例

案例4:世界杯期间的营销活动 不定时引起指标陡升,正常需 要识别出异常点。

一次处理,将历史样本与基线进行归一化互相关计算,得到数据集看到在活动期间相关性波动较大

二次处理,还原量级,去除量级 维度,并通过基准形变量计算出 不同告警等级对应的形变量,三 处活动期间引起的指标陡升超过 告警阈值,符合预期。

使用效果

▶覆盖美团外卖核心业务指标2400多个

▶单次异常检测流程时间可以控制在200ms

▶异常检测的精确率、召回率可以达到80%

异常检测面临的困难

>数据没有标签,无法使用监督学习方法

>噪声和异常点混杂,难以区分

>不同类型的异常难以区分,无法定义

▶解决思路: 无监督学习+专家经验