

Fonte da imagem: https://cutt.ly/D4jVvQY

Sistema Binário

OBJETIVOS (continuação)

- → Compreender os conceitos do que seria a aritmética computacional:
 - Representação de números ✓;
 - Conversões entre bases √.
- → Como trabalhar com a aritmética não decimal ou aritmética binária ✓.
- → Aritmética Octal, Hexadecimal ✓.
- → Representação Numérica:
 - Binário mais significativo e menos significativo ✓;
 - Conhecer os números fracionários na arquitetura de computadores ✓;
 - Ser capaz de realizar a representação numérica computacional √;
 - Forma dos complementos de 1 e de 2 de um número binário ✓.
- → Divisão e Multiplicação.
- → Ponto Fixo e Ponto Flutuante.

Sistema Binário

Adição Hexadecimal

Sistema Binário – Hexadecimal

A STATE OF THE SECOND OF THE SECOND OF	TABELA DE CONVERSÃO DE BASES Do valor "0" ao valor "15"			TABELA DE CONVERSÃO DE BASES Do valor "16" ao valor "31"				TABELA DE CONVERSÃO DE BASES Do valor "32" ao valor "47"			
Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16	Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16	Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0	16	10000	20	10	32	100000	40	20
1	001	1	1	17	10001	21	11	33	100001	41	21
2	010	2	2	18	10010	22	12	34	100010	42	22
3	011	3	3	19	10011	23	13	35	100011	43	23
4	100	4	4	20	10100	24	14	36	100100	44	24
5	101	5	5	21	10101	25	15	37	100101	45	25
6	110	6	6	22	10110	26	16	38	100110	46	26
7	111	7	7	23	10111	27	17	39	100111	47	27
8	1000	10	8	24	11000	30	18	40	101000	50	28
9	1001	11	9	25	11001	31	19	41	101001	51	29
10	1010	12	Α	26	11010	32	1A	42	101010	52	2A
11	1011	13	В	27	11011	33	1B	43	101011	53	2B
12	1100	14	С	28	11100	34	1C	44	101100	54	2C
13	1101	15	D	29	11101	35	1D	45	101101	55	2D
14	1110	16	E	30	11110	36	1E	46	101110	56	2E
15	1111	17	F	31	11111	37	1F	47	101111	57	2F

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL				
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte		
Valor igual a 16 = o resultado será = 0		Com transporte de 1 ou vai 1		
Valor maior que 16 = Diferença da soma parcial		Com transporte de 1 ou vai 1		

Valor menor que 16:

→ Se o <u>resultado da soma parcial</u> for menor que o hexadecimal F, então o "resultado final é igual ao resultado da soma sem vai 1".

Valor igual a 16:

→ Se o <u>resultado da soma parcial</u> for **menor** que o hexadecimal **F** e **resultar em 0 (zero)**, teremos um **resultado igual á 0 (zero) com um vai 1**.

Valor maior que 16:

→ Se o <u>resultado da soma parcial</u> for subtraído do hexadecimal máximo F e resultar em um valor maior que 0 (zero), o resultado final é igual a diferença do hexadecimal F menos o valor que está sendo somado com vai um.

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL				
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte		
Valor igual a 16 = o resultado será = 0		Com transporte de 1 ou vai 1		
Valor maior que 16 = Diferença da soma parcial		Com transporte de 1 ou vai 1		

Símbolo	Valor absoluto				
0	0				
1	1				
2	2				
3	3				
4	4				
5	5				
6	6				
7	7				
8	8				
9	9				
Α	10				
В	11				
С	12				
D	13				
E	14				
F	15				

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL				
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte		
Valor igual a 16 = o resultado será = 0		Com transporte de 1 ou vai 1		
Valor maior que 16 = Diferença da soma parcial		Com transporte de 1 ou vai 1		

Símbolo	Valor absoluto					
0	0					
1	1					
2	2					
3	3					
4	4					
5	5					
6	6					
7	7					
8	8					
9	9					
Α	10					
В	11					
С	12					
D	13					
E	14					
F	15					

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL				
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte		
Valor igual a 16 = o resultado será = 0		Com transporte de 1 ou vai 1		
Valor maior que 16 = Diferença da soma parcial		Com transporte de 1 ou vai 1		

Símbolo	Valor absoluto					
0	0					
1	1					
2	2					
3	3					
4	4					
5	5					
6	6					
7	7					
8	8					
9	9					
Α	10					
В	11					
С	12					
D	13					
E	14					
F	15					

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL			
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte	
Valor igual a 16 = o resultado será = 0		Com transporte de 1 ou vai 1	
Valor maior que 16 = Diferença da soma parcial		Com transporte de 1 ou vai 1	

Símbolo	Valor absoluto				
0	0				
1	1				
2	2				
3	3				
4	4				
5	5				
6	6				
7	7				
8	8				
9	9				
Α	10				
В	11				
С	12				
D	13				
E	14				
F	15				

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL				
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte		
Valor igual a 16 = o resultado será = 0		Com transporte de 1 ou vai 1		
Valor maior que 16 = Diferença da soma parcial		Com transporte de 1 ou vai 1		

Símbolo	Valor absoluto					
0	0					
1	1					
2	2					
3	3					
4	4					
5	5					
6	6					
7	7					
8	8					
9	9					
Α	10					
В	11					
С	12					
D	13					
E	14					
F	15					

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL			
Valor menor que 16 = valor da soma → Sem transporte			
Valor igual a 16 = o resultado será = 0	\rightarrow	Com transporte de 1 ou vai 1	
Valor maior que 16 = Diferença da soma parcial	\rightarrow	Com transporte de 1 ou vai 1	

Tabela Hexadecimal

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Resposta:

5 E 4 C 1 0 = 6179856

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL				
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte		
Valor igual a 16 = o resultado será = 0	\rightarrow	Com transporte de 1 ou vai 1		
Valor maior que 16 = Diferença da soma parcial	\rightarrow	Com transporte de 1 ou vai 1		

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

	Soma Hexadecimal na forma de Tabela					
Col_6	Col_5	Col_4	Col_3	Col_2	Col_1	
1	1		1	1		
	5	F	9	C(12)	C (12)	
	B(11)	9	2	B(11)	4	
1	1	8	С	8	0	

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL				
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte		
Valor igual a 16 = o resultado será = 0	\rightarrow	Com transporte de 1 ou vai 1		
Valor maior que 16 = Diferença da soma parcial	\rightarrow	Com transporte de 1 ou vai 1		

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

	Soma Hexadecimal na forma de Tabela						
Col_7	Col_6	Col_5	Col_4	Col_3	Col_2	Col_1	
	1	1	1	13+4=17			
	7	A(10)	C(12)	D(13)	3	4	
+	7	B(11)	F(15)	4	C(12)	B(11)	
	F	6	C(12)	1	F	F	
			1+12+15=28 28-16=12=C e vai 1 para a prox. col.				

Sistema Binário – Hexadecimal – Adição

REGRAS PARA SOMA HEXADECIMAL			
Valor menor que 16 = valor da soma	\rightarrow	Sem transporte	
Valor igual a 16 = o resultado será = 0	\rightarrow	Com transporte de 1 ou vai 1	
Valor maior que 16 = Diferença da soma parcial	\rightarrow	Com transporte de 1 ou vai 1	

Tabela Hexadecimal

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

	Soma Hexadecimal na forma de Tabela					
Col_7	Col_5	Col_4	Col_3	Col_2	Col_1	
		1	1	15+12=27 27-16=11		
		2	(3C) = F	F	1	
+			Α	(1B) = C	2	
		3	A	В	3	
		1+15+10=26-16=10=A		11+1=12=C		

Segunda Col.: F=15 e 1B = 12 = C

Terceira Col.: 3C = 15 = F

Sistema Binário – Hexadecimal – Subtração

Regras para a Subtração hexadecimal:

- 1. Minuendo Subtraindo = Diferença;
- 2. A operação é realizada algarismo por algarismo;
- 3. Se o algarismo do minuendo **for menor que o** subtraindo, **acrescentamos** ao minuendo **um valor igual ao da base 16**, ou seja, **16 emprestados do minuendo a sua esquerda**.
- 4. O minuendo da esquerda para a representar um valor de uma base 16 a menos, por exemplo: se a esquerda tivermos um hexadecimal "E", este passará a representar um hexadecimal "D", e passará a direita um valor de 16 para concluir a subtração da coluna.
- 5. Se o minuendo **for maior que o** subtraindo apenas efetuamos a subtração.
- 6. Não possui tabela de regras para aplicação.

Sistema Binário – Hexadecimal – Subtração

Tabela Hexadecimal

Símbolo	Valor absoluto
0	0
1	1
2	2 3
3	
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

8 é menor que o hexa "A=10", então precisamos emprestar 1 (16) a direita e o hexa "E" passa para "D". 16 + 8 = 24 e "A" = 1024 - 10 = 14 =**E**" 4 C 7 B E Minuendo 1 E 9 2 7 A Subtraindo

Sistema Binário – Hexadecimal – Subtração

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Sistema Binário – Hexadecimal – Subtração

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Sistema Binário – Hexadecimal – Subtração

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Sistema Binário – Hexadecimal – Subtração

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Sistema Binário – Hexadecimal – Subtração

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Sistema Binário – Hexadecimal – Subtração

Símbolo	Valor absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

	Subtração Hexa usando tabela							
Colunas ⇒	7	6	5	4	3	2	1	
		16			16	16		
	Ø= 0	1	Е	9 = 8	2 ′= 1	7	Α	
	-	4	C	7	В	E	8	
	0	D	2	1	6	9	2	

1. Coluna:
$$A - 8 = 2$$

2. Coluna:
$$(16 + 7) - E = 9$$

3. Coluna:
$$(16 + 1) - B = 6$$

4. Coluna:
$$8 - 7 = 1$$

5. Coluna:
$$E - C = 2$$

6. Coluna:
$$(16 + 1) - 4 = D$$

7. Coluna:
$$\phi = \phi$$

Sistema Binário

Multiplicação e Divisão Binária

Sistema Binário – Multiplicação

Multiplicação Binária de Números inteiros sem Sinal

O processo de multiplicação é feita manualmente, complexo e demorado, onde:

- → Envolve a **geração** de produtos **parciais**, um resultado para cada dígito do multiplicador que serão somados ao final na obtenção do resultado final.
- \rightarrow Caso o **bit do multiplicador seja** ϕ , o valor parcial \dot{e} ϕ .
- → Se o bit do multiplicador for 1, o produto parcial será o próprio multiplicando.
- → Cada produto parcial é **deslocado** um dígito a esquerda em relação ao anterior.
- → A resultante "N" será obtida somando todos os produtos parciais.
- \rightarrow A multiplicação de números inteiros de "**n** *bits*", sendo "**n**" usado parra indicar a posição e o cálculo do expoente da base, n-1.
- \rightarrow A fórmula usada no cálculo, já treinada e estuda, é "N = n * bⁿ⁻¹ ou N = n * b^{\lambda}", está última desenvolvida pelo professor.

Sistema Binário – Multiplicação Binária de Números inteiros sem Sinal

Um exemplo de como estamos acostumados a multiplicar:

Multiplicação Binária							
Multiplicando				3	2	4	
Multiplicador	X			2	2	3	
Primeiro Produto Parcial				9	7	2	
Segundo Produto Parcial	+		6	4	8		
Terceiro Produto Parcial		6	4	8			
Produto Final		7	2	2	5	2	

Na multiplicação de base 10 o **multiplicando** multiplica cada dígito do **multiplicador** para após as multiplicações, somar os **produtos parciais e obter o valor final**.

Simples!

Sistema Binário – Multiplicação Binária de Números inteiros sem Sinal

Na multiplicação de base 2 os conceitos são parecidos, calcula-se os valores do **multiplicando** *bit* a *bit* pelo **multiplicador** e soma-se os valores para obter a **Resultante**.

	REGRAS DA MULTIPLICAÇÃO BINÁRIA						
Regra 1	0 * 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
Regra 2	0 * 1 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
Regra 3	1 * 0 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.				
Regra 4	1 * 1 = 1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.				

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO						
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.				
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.				

Sistema Binário – Multiplicação Binária de Números inteiros sem Sinal

Então pode-se dizer que a multiplicação de base 2 é um processo de deslocamento e soma, assim como na base 10, onde para cada *bit* do multiplicador é usado para multiplicar cada *bit* do multiplicando, mas para verificar qual regra será aplicada vamos analisar um exemplo usando as regras da multiplicação e depois com as regras da soma:

	Multiplicação de números inteiros binários sem Sinal							
	(1011) ₂		Multiplicando (11) ₁₀	Multiplicação				
х	(1101) ₂		Multiplicador (13) ₁₀	de 4 bits				
	1011		Produtos Parciais: como os biná					
	0000		são de 4 bits não há i					
+	1011		se igualar o número de bits do multiplicador ou do multiplicano					
	1011							
	(10001111) ₂		Produto = (143) ₁₀					

Sistema Binário – Multiplicação Binária de Números inteiros sem Sinal

Assim, com base no cálculo do slide anterior não serão usadas as "Regras da Multiplicação Binária" por não necessitar, mas será usado as "Regras da Soma Binária".

	REGRAC DA MULTIPLICAÇÃO POLÁRIA							
Regra 1	0 * 0 = 0	\Rightarrow	Sem c	y vai um	a próxima coluna/posição.			
Regra 2	0 * 1 = 0	\Rightarrow	Sem car	ry ou an	n para a próxima coluna/posição.			
Regra 3	1 * 0 = 0	\Rightarrow	Com ca	vai	ra a próxima coluna/posição.			
Regra 4	1 * 1 = 1	\Rightarrow	Col	ry ou vai un	m part próxima coluna/posição.			

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou yal um para a próxima coluna/posição.						
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1 + 1 = 0	⇒	Com carry um para a próxima coluna/posição.						
1+1+1=1	⇒	Com carry ot vai um para a próxima coluna/posição.						

Sistema Binário – Multiplicação Binária de Números em Complemento de Dois

- \rightarrow Já foi estudado como somar e subtrair números na notação em complemento de dois com valores positivo, \oplus , por exemplo: $(1001)_2 + (0011)_2 = (1100)_2$.
- \rightarrow Quando os valores de base 2 booleanos assumem valores positivos é fácil de se resolver, basta fazer a soma, por exemplo: $(9)_{10} (1001)_2 + (3)_{10} (0011)_2 = (12)_{10} (1100)_2$.
- → Vimos também que ao representar os números em complementos de dois, por exemplo na soma também é possível calcular valores negativos, θ , como: $(-7)_{10}$ $(1001)_2$ + $(3)_{10}$ $(0011)_2$ com um resultado igual à $(-4)_{10}$ $(1100)_2$.

Simples, mas essa forma de cálculo para um binário booleano de base 2 **não funciona** na multiplicação. Para uma melhor compreensão vamos a uma **explicação** mais detalhada.

Sistema Binário – Multiplicação Binária de Números em Complemento de Dois

ı	Multiplicação de números inteiros binários sem Sinal									
	(1011) ₂		Multiplicando (11) ₁₀	Multiplicação						
x	(1101) ₂		Multiplicador (13) ₁₀	de 4 <i>bits</i>						
	1011		Duadutas Davisiais, sa							
	0000			Produtos Parciais: como os binários são de 4 bits não há necessidade de						
+	1011		se igualar o número de bits do							
	1011		multiplicador ou do multiplicando.							
	(10001111) ₂		Produto = (143) ₁₀							

Na multiplicação de $(11)_{10}$ $(1011)_2$ **X** $(13)_{10}$ $(1101)_2$ temos $(143)_{10}$ $(10001111)_2$. Mas e se os valores estivessem em complemento de 2 negativos?

Então, teríamos conforme tabela $(-5)_{10}$ $(1011)_2$ X $(-3)_{10}$ $(1101)_2$, $= (-113)_{10}$ ou $(01110001)_2$, como na multiplicação o multiplicador e multiplicando negativos, não funcionam, então, passa-se o complemento de 2 para positivos e obter um *bit de sinal* positivo, ou seja, *bit* zero.

Binário com Sinal em Compl. de 2 (C2)

Binário com Sinal em Compl. de 2 (C2)											
	ВА	BASE 2 (b ₂)									
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sinal e Complemento									
	- Binário	C1	C2								
+8 ₁₀	0 1000	1 0111	1 1000								
+7 ₁₀	0111	1 000	1 001								
+610	0 110	1 001	1 010								
+510	0 101	1 010	1 011								
+410	0 100	1 011	1 100								
+3 ₁₀	0011	1 100	1 101								
+210	0 010	1 101	1 110								
+1 ₁₀	0001	1 110	1 111								
0	0000	1 111	1 0000								
-1 ₁₀	1 111	0000	0001								
-2 ₁₀	1 110	0001	0 010								
-3 ₁₀	1 101	0 010	0 011								
-4 ₁₀	1 100	0011	0 100								
-5 ₁₀	1 011	0100	0 101								
-6 ₁₀	1 010	0101	0 101								
-7 ₁₀	1 001	0 110	0111								
-8 ₁₀	1 1000	00111	01000								

Sistema Binário – Multiplicação Binária de Números em Complemento de Dois

Treino – Multiplicar os valores binários:

 $(011011)_2(27)_{10} \times (0101)_2(5)_{10}$

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	⇒	Sem carry ou vai um para a próxima coluna/posição.					
0 + 1 = 1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1+0=1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1 + 1 = 0	⇒	Com carry ou vai um para a próxima coluna/posição.					
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					

	Bit de Binal			Multiplicação Binária								
		0	1	1	0	1	1	(27) ₁₀	Multiplicando			
X		0			1	0	1	(5) ₁₀	Multiplicador			
+												
								(135) ₁₀				

Sistema Binário – Multiplicação Binária de Números em Complemento de Dois

Treino – Multiplicar os valores binários:

 $(0111001)_2 (57)_{10} \times (01010)_2 (10)_{10}$

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					

Bit de Sinal								Multiplicação Binária							
			0		1	1	1	0	0	1	(57) ₁₀	Multiplicando			
X			0				1	0	1	0	(10) ₁₀	Multiplicador			
+															
											(570) ₁₀				

Sistema Binário – Multiplicação Binária de Números em Complemento de Dois

Treino – Multiplicar os valores binários:

 $(1000100)_2 (-60)_{10} \times (10001)_2 (-15)_{10}$

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	⇒	Sem carry ou vai um para a próxima coluna/posição.					
0 + 1 = 1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1+0=1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1 + 1 = 0	⇒	Com carry ou vai um para a próxima coluna/posição.					
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					

	Bit de Sinal								Multiplicação Binária						
				0		1	1	1	1	0	0	(60) ₁₀	Multiplicando		
X				0				1	1	1	1	(15) ₁₀	Multiplicador		
+															
0	1	1	1	0	0	0	0	0	1	0	0	(900) ₁₀			

Sistema Binário

Divisão Binária de Números inteiros sem Sinal

- → A divisão binária é o reverso da multiplicação e também requer o lápis e o papel.
- → A ideia é saber o números de vezes que um valor poderia ser subtraído por outro.
- → Chamamos esse processo de "divisão longa", por exemplo, ao dividir 181 por 45, teremos um quociente inteiro de valor 4 com resto 1.
- → A divisão binária poderá ser um valor exata ou não, com vírgula, seria como em uma divisão decimal, poderá gerar uma "dizima periódica".
- → Não possui uma tabela para auxiliar ao resultado (quociente).
- → A divisão binária poderá ser um processo simples se a base for dois (2).
- → Na divisão binária temos no **quociente** apenas 0 ou 1.

Dividendo 181	45	Divisor
- 180	4	Quociente
0 0 1	Resto	

Sistema Binário – Divisão Binária de Números inteiros sem Sinal

- → É necessário **subtrair o divisor** do valor do **dividendo selecionado** e o **transporte** do próximo *bit* **mais significativo** do **dividendo** para o atual **resto**.
- → Segue as regras da subtração binária.

Exemplo 01:

- Dividir (100011)₂ por (101)₂;
- Sempre iniciar a partir do segundo binário da esquerda para direita no Dividendo.

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO					
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-1=0	\Rightarrow	Sem empréstimo ou empresta 1.			
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.			
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.			

Resposta: $(111)_2$ com resto igual a zero.

Sistema Binário – Divisão Binária de Números inteiros sem Sinal

Exemplo 01:

- Dividir (101010)₂ por (110)₂;
- Sempre iniciar a partir do segundo binário

RE	REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO						
0 - 0 = 0	⇒	Sem empréstimo ou empresta 1.					
1-1=0	⇒	Sem empréstimo ou empresta 1.					
1-0=1	⇒	Sem empréstimo ou empresta 1.					
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.					

36

da esquerda para direita no Dividendo.

Divisão Binária de Números inteiros sem Sinal

Obs.: Quando os primeiros valores do dividendo forem menor que o divisor o cálculo se iniciará a partir do segundo *bit* "1" ou "**0**".

Sistema Binário – Divisão Binária de Números inteiros sem Sinal

Exemplo 02:

 \rightarrow Dividir o binário (100101)₂ / (100)₂

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO						
0 - 0 = 0	\Rightarrow	Sem empréstimo ou empresta 1.				
1-1=0	⇒	Sem empréstimo ou empresta 1.				
1-0=1	\Rightarrow	Sem empréstimo ou empresta 1.				
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.				

"dividendo

Resto

Dividendo 1 0 0 1 0 1 1 0 0 \rightarrow Divisor Resposta: (1001)₂ com esto de "1". Caso o resto Dividendo 1 0 0 1 0 1 1 0 0 \rightarrow Divisor Os zeros foram acrescidos para se baixar os valores do

0

0

Divisão Binária de Números inteiros sem Sinal

resto de "1". Caso o resto fosse considerado a resposta seria (1001.10)₂.

Quando não for possível trabalhar com **dividendos** que possuem um valor muito baixo para a próxima subtração acrescentamos um "0" no quociente e desce-se ao próximo bit do dividendo, e caso ainda não seja possível a subtração, a sequência de zeros no quociente deverá ser repetida, até ser possível efetuar a subtração com o divisor.

Sistema Binário – Divisão Binária de Números inteiros sem Sinal

Exemplo 03:

 \rightarrow Dividir o binário (100110010)₂ / (10001)₂

REGRAS DA SUBTRAÇÃO BINÁRIA – TABELA PADRÃO							
$0-0=0$ \Rightarrow Sem empréstimo ou empresta 1.							
1-1=0	⇒	Sem empréstimo ou empresta 1.					
1-0=1	⇒	Sem empréstimo ou empresta 1.					
0-1=1	⇒	Com empréstimo ou empresta 1 da coluna a esquerda para a coluna da direita.					

Divisão Binária de Números inteiros sem Sinal

Resposta: (10010)₂ com

resto igual a zero.

Sistema Binário

Soma e Divisão com Octais

Tabela de Octal									
Decimal	Binário	Octal							
0	000	0							
1	001	1							
2	010	2							
3	011	3							
4	100	4							
5	101	5							
6	110	6							
7	111	7							

Sistema Binário

Soma Octal

- → A operação de soma de dois ou mais números em base 8 é efetuada de modo semelhante à soma decimal.
- → Vamos a alguns exemplos:

Exemplo A – Calcular $(3657)_8 + (1741)_8 = (5620)_8$:

Soma Octal

Vamos compreender o cálculo!

Sistema Binário – Soma Octal

Compreendendo o resultado de $(3657)_8$ + $(1741)_8$ = $(5620)_8$:

1) 7 + 1 é igual a 8, na aritmética octal não temos o algarismo 8, o máximo é 7, então, emprega-se o conceito posicional, elevando o valor de 1 a próxima coluna da esquerda. Essa movimentação apresentará um resultado igual à 0 (zero) na coluna 1 e "vai 1" para a coluna 2 a esquerda.

Tabela de Octal										
Decimal	Binário	Octal								
0	000	0								
1	001	1								
2	010	2								
3	011	3								
4	100	4								
5	101	5								
6	110	6								
7	111	7								

Soma Octal "vai 1" → 1 3 6 5 7 + 1 7 4 1 5 6 2 0

Sistema Binário – Soma Octal

Soma Octal

Compreendendo o resultado de $(3657)_8 + (1741)_8 = (5620)_8$:

2) 1 + 5 + 4 é igual a 10, utilizaremos o mesmo conceito do passo 1, onde teremos uma soma total de 10, precisando ser descontado o valor da base 8, onde 10 - 8 = 2, e novamente temos "vai 1" para a próxima coluna 3 da esquerda.

Tabela de Octal									
Decimal	Binário	Octal							
0	000	0							
1	001	1							
2	010	2							
3	011	3							
4	100	4							
5	101	5							
6	110	6							
7	111	7							

	Soma	a Oc	ctal			
"vai 1"	\rightarrow		1	1		
		3	6	5	7	
	+	_1	7	4	1	
		5	6	2	0	

Sistema Binário – Soma Octal

Soma Octal

Compreendendo o resultado de $(3657)_8 + (1741)_8 = (5620)_8$:

3) 1 + 6 + 7 é igual a 14, novamente utilizamos o mesmo conceito do passo 1. Desta vez teremos: 14 onde será desconta a base 8,
14 - 8 = 6, e novamente "vai 1" para a próxima coluna 4 da esquerda.

Tabela de Octal									
Decimal	Binário	Octal							
0	000	0							
1	001	1							
2	010	2							
3	011	3							
4	100	4							
5	101	5							
6	110	6							
7	111	7							

Soma Octal

Sistema Binário – Soma Octal

Soma Octal

Compreendendo o resultado de $(3657)_8 + (1741)_8 = (5620)_8$:

- 4) 1 + 3 + 1 é igual a 5, como o número está abaixo do valor da base octal a soma se mantém e não teremos "vai 1".
 - A resultante "N" será igual à (5620)₈.

Tabela de Octal									
Decimal	Binário	Octal							
0	000	0							
1	001	1							
2	010	2							
3	011	3							
4	100	4							
5	101	5							
6	110	6							
7	111	7							

Soma Octal "vai 1" → 1 1 1 3 6 5 7 + 1 7 4 1

Sistema Binário – Soma Octal

Exemplo B – Calcular $(443)_8$ + $(653)_8$ = $(1316)_8$:

- → Primeira coluna: "3 + 3 = 6" e não ultrapassa a base 8, então são somados os valores e não temos "vai 1" para a segunda coluna.
- → Segunda coluna: "4 + 5 = 9", esta ultrapassa a base 8, então subtraímos a base 8, "9 8 = 1", para obter o resultado da segunda coluna que terá "vai 1" para terceira coluna.
- → Terceira coluna: "1 + 4 + 6 = 11", o valor também ultrapassa base 8, então uma novamente temos uma subtração, "11 - 8 = 3", para obter o resultado da terceira coluna com "vai 1" para uma quarta coluna.
- → Quarta coluna: temos o "vai 1" e mais nada, então simplesmente descemos o "vai 1" para o resultado final.
- → Resultado da soma será (1316)₈.

Tab	ela de Oct	tal
Decimal	Binário	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

Soma Octal

"vai 1" → **1** 1 4 4 3

+ 653

1 3 1 6

Sistema Binário – Soma Octal

Soma Octal

Calcular a soma Octal dos valores:

- **•** 77657₈
- 5667₈
- Soma = $(XXXX)_8$.

Soma Octal "vai 1" → 7 7 6 5 7 + 5 6 6 7

Tabela de Octal									
Binário	Octal								
000	0								
001	1								
010	2								
011	3								
100	4								
101	5								
110	6								
111	7								
	Binário 000 001 010 011 100 101 110								

Sistema Binário

Subtração Octal

A subtração em base 8 é relativamente mais complicada por necessitar de "empréstimo" ("vem 1") de um valor igual à base (8) obtido através do primeiro algarismo diferente de 0 (zero) existente à esquerda, por exemplo, $(7312)_8 - (3465)_8 = (3625)_8$:

	Subtração Octal								
						Empréstimo ou "vem 1"			
	6	8			-	2 - 4 não é possível, então temos "vem 1" do minuendo da esquerda.			
		2	8		→	0 - 6 não é possível, então temos "vem 1" do minuendo da esquerda.			
			0	8	→	2 - 5 não é possível, então temos "vem 1" do minuendo da esquerda.			
Minuendo	7	3	1	2					
Subtraindo -	3	4	6	5	_	Na quarta coluna (cinza) temos $6 - 3 = 3$, finalizando o cálculo em $(3625)_8$.			
	3	6	2	5	-				

Sistema Binário – Subtração Octal

Entendo o que o cálculo!

1. 2 – 5 não é possível, então, retira-se 1 da coluna à esquerda o valor da base 8 = 8 para termos na primeira coluna (8 + 2) - 5 = 5 e no minuendo da segunda coluna anula-se o valor de "1" que passa a valor "0".

Subtração Octal								
						Empréstimo ou "vem 1"		
	6 8 -		→	2 - 4 não é possível, então temos "vem 1" do minuendo da esquerda.				
		2	8		→	0 - 6 não é possível, então temos "vem 1" do minuendo da esquerda.		
			0	8	→	2 - 5 não é possível, então temos "vem 1" do minuendo da esquerda.		
Minuendo	7	3	1	2				
Subtraindo -	3	4	6	5		Na quarta coluna (cinza) temos 6 - 3 = 3, finalizando o cálculo em (3625) ₈ .		
	3	6	2	5	-			

Sistema Binário – Subtração Octal

Entendo o que o cálculo!

2. 0 – 6 não é possível, então retira-se o valor da base 8 = 8 da coluna à esquerda, para acrescermos na segunda coluna um valor de 8 e termos (8 + 0) – 6 e obter o resultado de 2, já no minuendo da terceira coluna que era 3 passa a ter um valor de 2 devido ao vem 1 para a coluna 2.

	Subtração Octal											
						Empréstimo ou "vem 1"						
	6	8			→	2 - 4 não é possível, então temos "vem 1" do minuendo da esquerda.						
		2	8		→	0 - 6 não é possível, então temos "vem 1" do minuendo da esquerda.						
			0	8	→	2 - 5 não é possível, então temos "vem 1" do minuendo da esquerda.						
Minuendo	7	3	1	2								
Subtraindo -	3	4	6	5		Na quarta coluna (cinza) temos 6 - 3 = 3, finalizando o cálculo em (362						
	3	6	2	5	-							

Sistema Binário – Subtração Octal

Entendo o que o cálculo!

3. 2 – 4 não é possível, então, faz-se um "vem 1" da coluna à esquerda, para termos na terceira coluna o valor da base 8 = 8 e termos uma equação de (8 + 2) – 4 = 6, com o "vem 1" o minuendo da quarta coluna passa a ter um valor = 6 ou (7 – 1).

Subtração Octal											
						Empréstimo ou "vem 1"					
	6 8 →				→	2 - 4 não é possível, então temos "vem 1" do minuendo da esquerda.					
		2	8		→	0 - 6 não é possível, então temos "vem 1" do minuendo da esquerda.					
			0	8	→	2 - 5 não é possível, então temos "vem 1" do minuendo da esquerda.					
Minuendo	7	3	1	2							
Subtraindo -	3	4	6	5		Na quarta coluna (cinza) temos 6 - 3 = 3, finalizando o cálculo em (3625) ₈ .					
	3	6	2	5							

Sistema Binário – Subtração Octal

Entendo o que o cálculo!

4. Na quarta coluna temos agora 6 em vez de 7 no minuendo devido ao "vem 1" para a coluna 3. O valo de "6" é maior que o subtraindo "3" não acontecendo "vem 1" e apenas fazemos a subtração finalizando o processo e obtendo o valor de (3 6 2 5)₈.

	Subtração Octal											
						Empréstimo ou "vem 1"						
	6 8				→	2 - 4 não é possível, então temos "vem 1" do minuendo da esquerda.						
		2	8		→	0 - 6 não é possível, então temos "vem 1" do minuendo da esquerda.						
			0	8	→	2 - 5 não é possível, então temos "vem 1" do minuendo da esquerda.						
Minuendo	7	3	1	2								
Subtraindo -	3	4	6	5		Na quarta coluna (cinza) temos 6 - 3 = 3, finalizando o cálculo em (3625) ₈ .						
	3	6	2	5	-							

Sistema Binário – Subtração Octal

Vamos a outro exemplo, $5113_8 - 3775_8 = 1116_8$:

	Subtração Octal											
						Empréstimo ou "vem 1"						
	4	8			1	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.						
		0	8		†	0 - 7 não é possível, então temos "vem 1 " do minuendo da esquerda.						
			0	8	→	3 - 5 não é possível, então temos "vem 1" do minuendo da esquerda.						
Minuendo	5	X	X	3								
Subtraindo -	3	7	7	5	_	Na quarta coluna (cinza) temos 4 - 3 = 1, finalizando o cálculo em (1216),						
	1	2	1	6	•							

Sistema Binário – Subtração Octal

Entendo o que foi calculado

3 - 5 não é possível, então temos vem 1 da coluna à esquerda e termos na primeira coluna (8 + 3) - 5 = 6 e no minuendo da segunda coluna um valor = 0 (1 - 1) devido ao vem 1 para o coluna 2.

	Subtração Octal											
						Empréstimo ou "vem 1"						
	4	8			→	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.						
		0	8		→	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.						
			0	8	†	3 - 5 não é possível, então temos " vem 1 " do minuendo da esquerda.						
Minuendo	5	1	1	3								
Subtraindo -	3	7	7	5	Na quarta coluna (cinza) temos 4 - 3 = 1 , finalizando o cálculo em							
	1	2	1	6								

Sistema Binário – Subtração Octal

Entendo o que foi calculado

2. 0 – 7 não é possível, então, novamente temos vem 1 da coluna à esquerda para a da direita, segunda coluna, e ter-se uma equação de (8 + 0) – 7 = 1 e no minuendo da terceira coluna um valor = 0 (1 - 1) devido ao vem 1 para o coluna 2.

	Subtração Octal											
						Empréstimo ou "vem 1"						
	4	8			→	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.						
		0	8		→	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.						
			0	8	†	3 - 5 não é possível, então temos " vem 1 " do minuendo da esquerda.						
Minuendo	5	1	1	3								
Subtraindo -	3	7	7	5	Na quarta coluna (cinza) temos 4 - 3 = 1, finalizando o cálculo em (3							
	1	2	1	6	_							

Sistema Binário – Subtração Octal

Entendo o que foi calculado

3. 0 - 7 não é possível, então, novamente temos vem 1 da coluna à esquerda para a da direita, terceira coluna (8 + 0) - 7 = 1 e no minuendo da quarta coluna um valor = 4 (5 - 1) devido ao vem 1 para o coluna 3.

	Subtração Octal											
						Empréstimo ou "vem 1"						
	4	8			→	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.						
		0	8		→	0 - 7 não é possível, então temos "vem 1" do minuendo da esquerda.						
			0	8	†	3 - 5 não é possível, então temos " vem 1 " do minuendo da esquerda.						
Minuendo	5	1	1	3								
Subtraindo -	3	7	7	5		Na quarta coluna (cinza) temos 4 - 3 = 1, finalizando o cálculo em (1216						
•	1	2	1	6	-							

Sistema Binário – Subtração Octal

Entendo o que foi calculado

4. Na quarta coluna não termos vem 1 e apenas resolve-se a equação de $\mathbf{4} - \mathbf{3} = \mathbf{1}$, finalizando o processo e obter uma resultante de "N" de $(1216)_8$.

	Subtração Octal												
						Empréstimo ou "vem 1"							
	4	4 8			1	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.							
		0	8		†	0 - 7 não é possível, então temos " vem 1 " do minuendo da esquerda.							
			0	8	→	3 - 5 não é possível, então temos " vem 1 " do minuendo da esquerda.							
Minuendo	5	1	1	3									
Subtraindo -	3	7	7	5		Na quarta coluna (cinza) temos 4 - 3 = 1, finalizando o cálculo em (12:							
	1	2	1	6	-								

Sistema Binário – Subtração Octal

Subtração Octal

TREINO: Fazer a subtração de (65133)₈ – (43715)₈

Subtração Octal										
							Empréstimo ou "vem 1"			
						→	Não houve "vem 1".			
		4	8			→	(8+1)-7=2 -> Resultado da terceira coluna			
				2	8	\rightarrow	(8+3)-5=6 -> Resultado da primeira coluna.			
Minuendo	6	Æ	1	Z	3					
Subtraindo -	4	3	7	1	5	_	Resultado é igual a 21216 ₈ .			
	2	1	2	1	6	•				

Bibliografia do Curso

Bibliografia Básica

TANENBAUM, A. S. Organização estruturada de computadores. 6. ed. São Paulo: Pearson Prentice Hall, 2013 (e-book).

MONTEIRO, M. A. Introdução à organização de computadores. 4. ed. Rio de Janeiro: LTC, 2002.

STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 5. ed. São Paulo: Prentice-Hall, 2002.

Bibliografia Complementar

CORRÊA, A. G. D. [org.]. Organização e arquitetura de computadores. São Paulo: Pearson Education do Brasil, 2016 (e-book).

DELGADO, J.; RIBEIRO, C. Arquitetura de computadores. 5. ed. Rio de Janeiro: LTC, 2017 (e-book).

PAIXÃO, R. R. Arquitetura de computadores - PCs. São Paulo: Érica, 2014 (e-book).

WEBER, R. F. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012 (e-book).

WIDMER, N. S.; MOSS, G. L.; TOCCI, R. J. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo: Pearson Education do Brasil, 2018 (e-book).

Conteúdo elaborado por:

Prof. Ms. Celso Candido celsoc@unicid.edu.br

Fim da Apresentação