Autograd

Computational graphs, backpropagation and the automatic gradient computation.

Jan Vlk
Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Computational graph

Training weights

Gradient in broadcasting

Backpropagation in code Under the hood of autograd library

Activation functions

Sigmoid

ReLU

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f(x)=max(0,x)$$

$$f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

$$\frac{\partial f}{\partial x} = \frac{e^{-x}}{(e^{-x} + 1)^2}$$

$$\frac{\partial f}{\partial x} = 1, x \ge 0$$

$$0, x < 0$$

$$\frac{\partial f}{\partial x} = \frac{4e^{2x}}{(e^{2x} + 1)^2}$$

Logistic loss

$$f(x,y) = \log(1+e^{-xy}) \qquad \frac{\partial f(x,y)}{\partial x} = -\frac{y}{1+e^{xy}}$$

HW1 Autograd Creating your own library

Matrix multiplication

$$\begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \vdots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix} \times \begin{bmatrix} y_{11} & \cdots & y_{1m} \\ \vdots & \vdots & \vdots \\ y_{n1} & \cdots & y_{nm} \end{bmatrix} = \begin{bmatrix} x_{11} \cdot y_{11} + \cdots + x_{1n} \cdot y_{n1} & \cdots & x_{11} \cdot y_{1m} + \cdots + x_{1n} \cdot y_{nm} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m1} \cdot y_{11} + \cdots + x_{mn} \cdot y_{n1} & \cdots & x_{11} \cdot y_{1m} + \cdots + x_{1n} \cdot y_{nm} \end{bmatrix}$$

$$\frac{\partial f}{\partial Y} = X^{T} \qquad \frac{\partial f}{\partial X} = Y^{T}$$

Backward pass in code

$$vjp_f(v, X) = v \times \frac{\partial f}{\partial X} = v \times Y^T$$
 $vjp_f(v, Y) = \frac{\partial f}{\partial Y} \times v = X^T \times v$

Regularization loss

$$f(x,y) = y \cdot \sum_{i} x_{i}^{2}$$
$$y \in R$$

$$\frac{\partial f}{\partial x_i} = 2 \cdot y \cdot x_i$$

Cross-entropy loss

$$f(x,y) = -\sum_{c \in Y} [y = c] \log(x) \qquad \frac{\partial f}{\partial x} = -\sum_{c \in Y} [y = c] \frac{1}{x}$$

x is a matrix with class probabilities for inputsy is a vector of correct class predictions for inputsY is a matrix of all possible classes

Cross-entropy loss

$$f(x,y) = -\sum_{i} y_{i} \log(a_{i}), a_{i} = h(x_{i}) = \frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}}$$

$$\frac{\partial f}{\partial x_{i}} = \sum_{j} \frac{\partial f}{\partial a_{j}} \cdot \frac{\partial a_{j}}{\partial x_{i}}$$

$$\frac{\partial f}{\partial x_{i}} = \sum_{j \neq i} \frac{\partial f}{\partial a_{j}} \cdot \frac{\partial a_{j}}{\partial x_{i}} + \frac{\partial f}{\partial a_{i}} \cdot \frac{\partial a_{i}}{\partial x_{i}}$$

$$\frac{\partial f}{\partial x_{i}} = \sum_{j \neq i} y_{j} \cdot a_{i} - y_{i} (1 - a_{i}) = \sum_{j \neq i} y_{j} \cdot a_{i} + y_{i} \cdot a_{i} - y_{i}$$

$$\frac{\partial f}{\partial x_{i}} = \sum_{j} y_{j} \cdot a_{i} - y_{i} = a_{i} \sum_{j} y_{j} - y_{i}$$

$$\frac{\partial f}{\partial x_{i}} = a_{i} - y_{i}$$

$$\frac{\partial f}{\partial a_{i}} = \frac{\partial \left(-\sum_{j} y_{j} \cdot \log(a_{j})\right)}{\partial a_{i}} = \frac{\partial -y_{i} \cdot \log(a_{i})}{\partial a_{i}} = -\frac{y_{i}}{a_{i}}$$

$$\frac{\partial a_{i}}{\partial x_{i}} = \frac{\partial \left(\frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}}\right)}{\partial x_{i}} = \frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}} \left(\frac{e^{x_{i}}}{e^{x_{i}}} - \frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}}\right) = a_{i}(1 - a_{i})$$

$$\frac{\partial f}{\partial a_{j}} = \frac{\partial \left(-\sum_{k} y_{k} \cdot \log(a_{k})\right)}{\partial a_{j}} = -\frac{y_{j}}{a_{j}}$$

$$\frac{\partial a_{j}}{\partial x_{i}} = \frac{\partial \left(\frac{e^{x_{j}}}{\sum_{k} e^{x_{k}}}\right)}{\partial x_{i}} = \frac{e^{x_{j}}}{\sum_{k} e^{x_{k}}} \left(\frac{\partial e^{x_{j}}}{\partial x_{i}} - \frac{\partial \sum_{k} e^{x_{k}}}{\partial x_{i}}\right) = \frac{e^{x_{j}}}{\sum_{k} e^{x_{k}}} \left(0 - \frac{e^{x_{i}}}{\sum_{k} e^{x_{k}}}\right) = -a_{j} \cdot a_{i}$$

Direct kinematic task Use of backpropagation