Tópicos de Física Moderna (LEI)

2011 / 2012 - 2º semestre

The SI Base Units

Quantity	Name	Symbol	Definition
length	meter	m	" the length of the path traveled by light in vacuum in 1/299,792,458 of a second." (1983)
mass	kilogram	kg	" this prototype [a certain platinum-iridium cylinder] shall henceforth be considered to be the unit of mass." (1889)
time	second	S	" the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom." (1967)
electric current	ampere	A	" that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 × 10 ⁻⁷ newton per meter of length." (1946)
thermodynamic temperature	kelvin	K	" the fraction 1/273.16 of the thermodynamic tempera- ture of the triple point of water." (1967)
amount of substance	mole	mol	" the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilo- gram of carbon-12." (1971)
luminous intensity	candela	cd	" the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian." (1979)

Some SI Derived Units

Quantity	Name of Unit	Sym	bol
area	square meter	m ²	
volume	cubic meter	m^3	
frequency	hertz	Hz	s^{-1}
mass density (density)	kilogram per cubic meter	kg/m ³	
speed, velocity	meter per second	m/s	
angular velocity	radian per second	rad/s	
acceleration	meter per second per second	m/s ²	
angular acceleration	radian per second per second	rad/s ²	
force	newton	N	kg·m/s
pressure	pascal	Pa	N/m ²
work, energy, quantity of heat	joule	J	$N\cdot m$
power	watt	W	J/s
quantity of electric charge	coulomb	C	$A \cdot s$
potential difference, electromotive force	volt	V	W/A
electric field strength	volt per meter (or newton per coulomb)	V/m	N/C
electric resistance	ohm	Ω	V/A
capacitance	farad	F	$A \cdot s/V$
magnetic flux	weber	Wb	V·s
inductance	henry	H	$V \cdot s/A$
magnetic flux density	tesla	T	Wb/m ²
magnetic field strength	ampere per meter	A/m	
entropy	joule per kelvin	J/K	
specific heat	joule per kilogram kelvin	$J/(kg \cdot K)$	
thermal conductivity	watt per meter kelvin	$W/(m \cdot K)$	
radiant intensity	watt per steradian	W/sr	

SI Prefixes*

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ²⁴	yotta	Y	10-1	deci	d
10^{21}	zetta	Z	10-2	centi	c
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
105	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	Z
10^{1}	deka	da	10^{-24}	yocto	y

			Best (1998) Value		
Constant	Symbol	Computational Value	Value ^a	Uncertainty ⁶	
Speed of light in a vacuum	С	$3.00 \times 10^{8} \text{ m/s}$	2.997 924 58	exact	
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$	1.602 176 462	0.039	
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{m}^3/\mathrm{s}^2 \cdot \mathrm{kg}$	6.673	1500	
Universal gas constant	R	8.31 J/mol·K	8.314 472	1.7	
Avogadro constant	$N_{ m A}$	$6.02 \times 10^{23} \mathrm{mol^{-1}}$	6.022 141 99	0.079	
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ J/K}$	1.380 650 3	1.7	
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \text{W/m}^2 \cdot \text{K}^4$	5.670 400	7.0	
Molar volume of ideal gas at STPd	V_{m}	$2.27 \times 10^{-2} \text{m}^3/\text{mol}$	2.271 098 1	1.7	
Permittivity constant	ϵ_0	$8.85 \times 10^{-12} \text{F/m}$	8.854 187 817 62	exact	
Permeability constant	μ_0	$1.26 \times 10^{-6} \text{H/m}$	1.256 637 061 43	exact	
Planck constant	h	$6.63 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$	6.626 068 76	0.078	
Electron mass ^c	$m_{ m e}$	$9.11 \times 10^{-31} \mathrm{kg}$	9.109 381 88	0.079	
		$5.49 \times 10^{-4} \mathrm{u}$	5.485 799 110	0.0021	
Proton mass ^c	$m_{ m p}$	$1.67 \times 10^{-27} \mathrm{kg}$	1.672 621 58	0.079	
		1.0073 u	1.007 276 466 88	1.3×10^{-4}	
Ratio of proton mass to electron mass	$m_{ m p}/m_{ m e}$	1840	1836.152 667 5	0.0021	
Electron charge-to-mass ratio	$e/m_{\rm e}$	$1.76 imes 10^{11}$ C/kg	1.758 820 174	0.040	
Neutron mass ^c	$m_{ m n}$	$1.68 \times 10^{-27} \mathrm{kg}$	1.674 927 16	0.079	
		1.0087 u	1.008 664 915 78	5.4×10^{-4}	
Hydrogen atom mass ^c	m_{1_n}	1.0078 u	1.007 825 031 6	0.0005	
Deuterium atom mass ^c	m_{2_n}	2.0141 u	2.014 101 777 9	0.0005	
Helium atom mass ^c	$m_{4_{16e}}$	4.0026 u	4.002 603 2	0.067	
Muon mass	m_{μ}	$1.88 \times 10^{-28} \mathrm{kg}$	1.883 531 09	0.084	
Electron magnetic moment	μ_{e}	$9.28 \times 10^{-24} \text{J/T}$	9.284 763 62	0.040	
Proton magnetic moment -	$\mu_{ m p}$	$1.41 \times 10^{-26} \mathrm{J/T}$	1.410 606 663	0.041	
Bohr magneton	$\mu_{ m B}$	$9.27 \times 10^{-24} \mathrm{J/T}$	9.274 008 99	0.040	
Nuclear magneton	$\mu_{ m N}$	$5.05 imes 10^{-27} \mathrm{J/T}$	5.050 783 17	0.040	
Bohr radius	a	$5.29 \times 10^{-11} \mathrm{m}$	5.291 772 083	0.0037	
Rydberg constant	R	$1.10 \times 10^7 \mathrm{m}^{-1}$	1.097 373 156 854 8	7.6×10^{-6}	
Electron Compton wavelength	λ_{C}	$2.43 \times 10^{-12} \mathrm{m}$	2.426 310 215	0.0073	

Some Distances from Earth

To the Moon*	$3.82 \times 10^8 \mathrm{m}$	To the center of our galaxy	$2.2\times10^{20}\mathrm{m}$
To the Sun*	$1.50 \times 10^{1.} \text{ m}$	To the Andromeda Galaxy	$2.1\times10^{22}\mathrm{m}$
To the nearest star (Proxima Centauri)	$4.04\times10^{16}\mathrm{m}$	To the edge of the observable universe	$\sim 10^{26}\mathrm{m}$

*Mean distance.

The Sun, Earth, and the Moon

Property	Unit	Sun	ш	Earth	Moon
Mass	kg.	1.99×10^{30}		5.98×10^{34}	7.36×10^{22}
Mean radius	E	6.96×10^{8}		$6.37 \times 10^{\circ}$	1.74×10^6
Mean density	kg/m³	1410		5520	3340
Free-fall acceleration at the surface	m/s ²	274		9.81	1.67
Escape velocity	km/s	819		11.2	2.38
Period of rotation"	I	37 d at poles ^b	37 d at poles ^b 26 d at equator ^b	23 h 56 min	27.3 d
Radiation power	W	3.90×10^{26}			

"Measured with respect to the distant stars.

bThe Sun, a ball of gas, does not rotate as a rigid body.

Just cutside Earth's atmosphere solar energy is received, assuming normal incidence, at the rate of 1340 W/m²,

Some Properties of the Planets

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Mean cistance from Sun, 10° km	57.9	108	150	228	778	1430	2870	4500	2000
Period of revolution, y	0.241	0.515	1.00	1.88	11.9	29.5	84.0	165	248
Period of rotation,a d	58.7	-243 ^b	766'0	1.03	0.409	0.426	-0.451	959.0	6.39
Orbital speed, km/s	47.9	35.0	29.8	24.1	13.1	9.64	5.81	5,43	4.74
Inclination of axis to orbit	<28°	≈3°	23.4°	25.0°	3.08°	26.7°	°6.76	29.6°	57.5°
Inclination of orbit to Earth's orbit	7.00°	339°		185°	1.30°	2.49°	0.77°	1.77°	172°
Eccentricity of orbit	0.206	0.0068	0.0167	0.0934	0.0485	0.0556	0.0472	9800.0	0.250
Equatorial diameter, km	4880	12 100	12 800	0629	143 000	120 000	51 800	49 500	2300
Mass (Earth = 1)	0.0558	0.815	1.000	0.107	318	95.1	145	17.2	0.002
Density (water = 1)	5.60	5.20	5.52	3.95	1.31	9.704	1.21	1.67	2.03
Surface value of g,c m/s2	3.78	8.60	9.78	3.72	22.9	9.05	77.7	11.0	0.5
Escape velocity, km/s	4.3	10.3	11.2	5.0	59.5	35.6	212	23.6	1.1
Known satellites	0	0	_	2	60 + ring	31 + rings	21 + rings	11 + rings	1

Conversion Factors

Plane Angle

a	,	"	RADIAN	rev
1 degree = 1	60	3600	1.745×10^{-2}	2.778×10^{-3}
1 minute = 1.667×10^{-2}	1	60	2.909×10^{-4}	4.630×10^{-5}
$1 \text{ second} = 2.778 \times 10^{-4}$	1.667×10^{-2}	1	4.848×10^{-6}	7.716×10^{-7}
1 RADIAN = 57.30	3438	2.063×10^{5}	1	0.1592
1 revolution = 360	2.16×10^{4}	1.296×10^{6}	6.283	1

Length

cm	METER	km	in.	ft	mi
1 centimeter = 1	10-2	10-5	0.3937	3.281×10^{-2}	6.214×10^{-6}
1 METER = 100	1	10^{-3}	39.37	3.281	6.214×10^{-4}
1 kilometer = 10 ⁵	1000	1	3.937×10^{4}	3281	0.6214
1 inch = 2.540	2.540×10^{-2}	2.540×10^{-5}	1	8.333×10^{-2}	1.578×10^{-5}
1 foot = 30.48	0.3048	3.048×10^{-4}	12	1	1.894×10^{-4}
1 mile = 1.609×10^5	1609	1.609	$6.336 imes 10^4$	5280	1
1 angström = 10^{-j0} m	1 fermi = 10 ⁻¹⁵ m		1 fathom = 6 ft		1 rod = 16.5 ft
1 nautical mile = 1852 m	1 light-year = 9.461	\times 10 ¹² km	1 Bohr radius = 5.29	$02 \times 10^{-11} \text{ m}$	$1 \text{ mil} = 10^{-3} \text{ in}$
= 1.151 miles = 6076 ft	$1 \text{ parsec} = 3.084 \times 1$	10 ¹³ km	1 yard = 3 ft		$1 \text{ nm} = 10^{-9} \text{ m}$

Mass

Quantities in the colored areas are not mass units but are often used as such. For example, when we write 1 kg "=" 2.205 lb, this means that a kilogram is a *mass* that *weighs* 2.205 pounds at a location where g has the standard value of 9.80665 m/s^2 .

g	KILOGRAM	slug	u	OZ	Ib	ton
1 gram = 1	0.001	6.852×10^{-5}	6.022×10^{23}	3.527×10^{-2}	2.205×10^{-3}	1.102×10^{-6}
1 KILOGRAM = 1000	1	6.852×10^{-2}	6.022×10^{26}	35.27	2.205	1.102×10^{-3}
$1 \text{ slug} = 1.459 \times 10^4$	14.59	1	8.786×10^{27}	514.8	32.17	1.609×10^{-2}
1 atomic mass unit = 1.661×10^{-24}	1.661×10^{-27}	1.138×10^{-28}	1	5.857×10^{-26}	3.662×10^{-27}	1.830×10^{-30}
1 ounce = 28.35	2.835×10^{-2}	1.943×10^{-3}	1.718×10^{25}	1	6.250×10^{-2}	3.125×10^{-5}
1 pound = 453.6	0.4536	3.108×10^{-2}	2.732×10^{26}	16	1	0.0005
$1 \text{ ton} = 9.072 \times 10^5$	907.2	62.16	5.463×10^{29}	3.2×10^{4}	2000	1

1 metric ton = 1000 kg

Conversion Factors Pressure

Power

Btu/h	ft·lb/s	hp	cal/s	kW	WATT
1 British thermal unit per hour = 1	0.2161	3.929×10^{-4}	6.998×10^{-2}	2.930×10^{-4}	0.2930
1 foot-pound per second = 4.628	1	1.818×10^{-3}	0.3239	1.356×10^{-3}	1.356
1 horsepower = 2545	550	1	178.1	0.7457	745.7
1 calorie per second = 14.29	3.088	5.615×10^{-3}	1	4.186×10^{-3}	4.186
1 kilowatt = 3413	737.6	1.341	238.9	1	1000
1 WATT = 3.413	0.7376	1.341×10^{-3}	0.2389	0.001	1

Force

Force units in the colored areas are now little used. To clarify: 1 gram-force (= 1 gf) is the force of gravity that would act on an object whose mass is 1 gram at a location where g has the standard value of 9.80665 m/s^2 .

dyne	NEWTON	lb	pdl	gf	kgf
1 dyne = 1	10-5	2.248×10^{-6}	7.233×10^{-5}	1.020×10^{-3}	1.020×10^{-6}
$1 \text{ NEWTON} = 10^5$	1	0.2248	7.233	102.0	0.1020
1 pound = 4.448×10^5	4.448	1	32.17	453.6	0.4536
1 poundal = 1.383×10^4	0.1383	3.108×10^{-2}	1	14.10	1.410×10^{2}
1 gram-force = 980.7	9.807×10^{-3}	2.205×10^{-3}	7.093×10^{-2}	1	0.001
1 kilogram-force = 9.807×10^5	9.807	2.205	70.93	1000	1

atm	dyne/cm ²	inch of water	cm Hg	PASCAL	lb/in. ²	lb/ft ²	
1 atmosphere = 1	1.013×10^{6}	406.8	76	1.013×10^{5}	14.70	2116	
1 dyne per centimeter ² = 9.869×10^{-7}	1	4.015×10^{-4}	7.501×10^{-5}	0.1	1.405×10^{-5}	2.089×10^{-3}	
1 inch of water" at $4^{\circ}C = 2.458 \times 10^{-3}$	2491	1	0.1868	249.1	3.613×10^{-2}	5.202	
1 centimeter of mercury ^a							
at 0° C = 1.316×10^{-2}	1.333×10^{4}	5.353	1	1333	0.1934	27.85	
$1 \text{ PASCAL} = 9.869 \times 10^{-6}$	10	4.015×10^{-3}	7.501×10^{-4}	1	1.450×10^{-4}	2.089×10^{-2}	
1 pound per inch ² = 6.805×10^{-2}	6.895×10^{4}	27.68	5.171	6.895×10^{3}	1	144	
1 pound per foot ² = 4.725×10^{-4}	478.8	0.1922	3.591×10^{-2}	47.88	6.944×10^{-3}	1	

"Where the acceleration of gravity has the standard value of 9.80665 m/s2.

 $1 \text{ bar} = 10^6 \text{ dyne/cm}^2 = 0.1 \text{ MPa}$

 $1 \text{ millibar} = 10^3 \text{ dyne/cm}^2 = 10^2 \text{ Pa}$

1 torr = 1 mm Hg

Conversion Factors

Energy, Work, Heat

Quantities in the colored areas are not energy units but are included for convenience. They arise from the relativistic mass-energy equivalence formula $E = mc^2$ and represent the energy released if a kilogram or unified atomic mass unit (u) is completely converted to energy (bottom two rows) or the mass that would be completely converted to one unit of energy (rightmost two columns).

Btu	erg	ft·lb	hp·h	JOULE	cal	kW·h	eV	MeV	kg	u
1 British thermal unit = 1	1.055 × 10 ¹⁰	777.9	3.929 × 10 ⁻⁴	1055	252.0	2.930 × 10 ⁻⁴	6.585 × 10 ²¹	6.585 × 10 ¹⁵	1.174×10^{-14}	7.070 × 10 ¹²
$1 \text{ erg} = {9.481 \atop \times 10^{-11}}$	1	7.376×10^{-8}	3.725×10^{-14}	10-7	2.389×10^{-8}	2.778×10^{-14}	6.242 × 10 ¹¹	6.242 × 10 ⁵	1.113 × 10 ⁻²⁴	670.2
1.285 1 foot-pound = $\times 10^{-3}$	1.356×10^{7}	1	5.051×10^{-7}	1.356	0.3238	3.766×10^{-7}	8.464×10^{18}	8.464×10^{12}	1.509×10^{-17}	9.037 × 10 ⁹
1 horsepower- hour = 2545	2.685×10^{13}	1.980×10^{6}	1	2.685 × 10 ⁶	6.413 × 10 ⁵	0.7457	1.676×10^{25}	1.676×10^{19}	2.988 × 10 ⁻¹¹	1.799 × 10 ¹⁶
$1 \text{ JOULE} = \overset{9.481}{\times} 10^{-4}$	107	0.7376	3.725×10^{-7}	1	0.2389	2.778×10^{-7}	6.242×10^{18}	6.242×10^{12}	1.113×10^{-17}	6.702 × 10°
3.968 1 calorie = $\times 10^{-3}$	4.1868×10^{7}	3.088	1.560×10^{-6}	4.1868	1	1.163×10^{-6}	2.613 × 10 ¹⁹	2.613×10^{13}	4.660 × 10 ⁻¹⁷	2.806 × 10 ¹⁰
1 kilowatt- hour = 3413	$3,600 \times 10^{13}$	2.655×10^{6}	1.341	3.600×10^{6}	8.600 × 10 ⁵	1	2.247×10^{25}	2.247×10^{19}	4.007 × 10 ⁻¹¹	2.413 × 10 ¹⁶
1.519 1 electron-volt = $\times 10^{-22}$	1.602×10^{-12}	$^{1.182}_{00000000000000000000000000000000000$	5.967 × 10 ⁻²⁶	1.602×10^{-19}	3.827×10^{-20}	4.450 × 10 ⁻²⁶	1	10-6	1.783 × 10 ⁻³⁶	1.074 × 10 ⁻⁹
1 million 1.519 electron-volts = $\times 10^{-16}$	1.602×10^{-6}	1.182×10^{-13}	5.967×10^{-20}	1.602×10^{-13}	3.827×10^{-14}	4.450×10^{-20}	10-6	1	1.783×10^{-30}	1.074 × 10 ⁻³
$1 \text{ kilogram} = \begin{cases} 8.521 \\ \times 10^{13} \\ 1 \text{ unified} \end{cases}$	8.987 × 10 ²³	6.629 × 10 ¹⁶	3.348×10^{10}	8.987 × 10 ¹⁶	2.146×10^{16}	2.497 × 10 ¹⁰	5.610 × 10 ³⁵	5.610 × 10 ²⁹	1	6.022 × 10 ²⁶
atomic mass 1.415 unit = \times 10 ⁻¹³	1.492 × 10 ⁻³	1.101×10^{-10}	5.559×10^{-17}	1.492×10^{-10}	3.564 × 10 ⁻¹¹	4.146×10^{-17}	9.320×10^{8}	932.0	1.661 × 10 ⁻²⁷	1

Mathematical Formulas*

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Binomial Theorem

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$
 $(x^2 < 1)$

Products of Vectors

Let θ be the smaller of the two angles between \vec{a} and \vec{b} . Then

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = a_x b_x + a_x b_y + a_z b_z = ab \cos \theta$$

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$= \hat{\mathbf{i}} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \hat{\mathbf{j}} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

$$= (a_y b_z - b_y a_z) \hat{\mathbf{i}} + (a_z b_x - b_z a_x) \hat{\mathbf{j}} + (a_x b_y - b_x a_y) \hat{\mathbf{k}}$$

$$|\vec{a} \times \vec{b}| = ab \sin \theta$$

Trigonometric Identities

Derivatives and Integrals

$$\frac{d}{dx}\sin x = \cos x \qquad \int \sin x \, dx = -\cos x$$

$$\frac{d}{dx}\cos x = -\sin x \qquad \int \cos x \, dx = \sin x$$

$$\frac{d}{dx}e^{x} = e^{x} \qquad \int e^{x} \, dx = e^{x}$$

$$\int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \ln(x + \sqrt{x^{2} + a^{2}})$$

$$\int \frac{x \, dx}{(x^{2} + a^{2})^{3/2}} = -\frac{1}{(x^{2} + a^{2})^{1/2}}$$

$$\int \frac{dx}{(x^{2} + a^{2})^{3/2}} = \frac{x}{a^{2}(x^{2} + a^{2})^{1/2}}$$

Cramer's Rule

Two simultaneous equations in unknowns x and y.

$$a_1x + b_1y = c_1$$
 and $a_2x + b_2y = c_2$,

have the solutions

$$x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} = \frac{c_1 b_2 - c_2 b_1}{a_1 b_2 - a_2 b_1}$$

and

$$\begin{vmatrix} a_1 & c_1 \end{vmatrix}$$

Geometry

Circle of radius r: circumference = $2\pi r$; area = πr^2 . Sphere of radius r: area = $4\pi r^2$; volume = $\frac{4}{3}\pi r^3$. Right circular cylinder of radius r and height h:

area = $2\pi r^2 + 2\pi rh$; volume = $\pi r^2 h$.

Triangle of base a and altitude h: area = $\frac{1}{2}ah$.

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{5^2 - 4ac}}{2a}$,

Trigonometric Functions of Angle θ

$$\sin \theta = \frac{y}{r} = \cos \theta = \frac{x}{r}$$

$$\sin \theta = \frac{y}{r} \quad \cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sec \theta = \frac{r}{x} \quad \csc \theta = \frac{r}{x}$$

Pythagorean Theorem

In this right triangle,

$$a^2 + b^2 = c^2$$

Triangles

Angles are A, B, C

Angles $A + B + C = 180^{\circ}$ Opposite sides are a, b, c

$$\frac{\sin A}{\sin B} = \frac{\sin C}{h} = \frac{\sin C}{h}$$

$$a = a^{2} + b^{2} - 2ab \cos C$$
Exterior angle $D = A + C$

Mathematical Signs and Symbols

= equals

≈ equals approximately

is the order of magnitude of

≠ is not equal to

≡ is identical to, is defined as

> is greater than (≥ is much greater than)

< is less than (

is much less than)

is greater than or equal to (or, is no less than)

≤ is less than or equal to (or, is no more than)

± plus or minus

is proportional to

Σ the sum of

 x_{avg} the average value of x

Trigonometric Identities

 $\sin(90^{\circ} - \theta) = \cos \theta$

 $\cos(90^{\circ} - \theta) = \sin \theta$

xaxis

 $\sin \theta \cos \theta = \tan \theta$ $\sin^2\theta + \cos^2\theta = 1$

 $\sec^2 \theta - \tan^2 \theta = 1$

 $\cos^2\theta - \cot^2\theta = 1$

 $\sin 2\theta = 2 \sin \theta \cos \theta$

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1$

 $-2\sin^2\theta$

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\tan(\alpha \pm \beta) = \frac{1}{1 \mp \tan \alpha \tan \beta}$ $\tan \alpha \pm \tan \beta$

 $\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \mp \beta)$

 $\cos \alpha - \cos \beta = -2 \sin \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\alpha - \beta)$ $\cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$