Fast Matroid Intersection Algorithms

Sunghyeon Jo

Seoul National University

TCS season3 Oct 9, 2023

Overview

- Introduction
 - Matroid
 - Matroid Intersection

- Paster Algorithms
 - Oracle Models
 - Core ideas and algorithms

- Introduction
 - Matroid
 - Matroid Intersection
- 2 Faster Algorithms

Matroid

Matroid

A tuple $M=(V,\mathcal{I})$ for finite set V and $\mathcal{I}\subset 2^V$ is called a matroid if

- 1. $\phi \in \mathcal{I}$
- 2. $Y \subset X, X \in \mathcal{I} \Rightarrow Y \in \mathcal{I}$
- 3. $X,Y\in\mathcal{I},|X|<|Y|\Rightarrow y\in Y\setminus X$ exists such that $X+y\in\mathcal{I}$
- $rank(S) = \max\{|A| : A \subset S, A \in \mathcal{I}\}\$
- Basis: maximal/maximum independent set
- Ex) Graphic Matroid. V: edges, \mathcal{I} : acyclic subgraphs

Matroid Problems

- Matroid Intersection
 - $\mathcal{M}_1 = (V, \mathcal{I}_1), \mathcal{M}_2 = (V, \mathcal{I}_2)$
 - Find maximum size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$
- Matroid Union
 - $\mathcal{M}_1 = (V_1, \mathcal{I}_1), \cdots \mathcal{M}_k = (V_k, \mathcal{I}_k)$
 - Find maximum size $S = S_1 \cup \cdots \cup S_k$ where $S_i \in \mathcal{I}_i$
- k-fold Matroid Union
 - $\mathcal{M} = (V, \mathcal{I})$
 - ullet Find maximum size $S=S_1\cup\cdots\cup S_k$ where $S_i\in\mathcal{I}$

Many problems can be solved.

Ex) Bipartite Matching, Colorful Spanning Tree, k-disjoint spanning tree, Arboricity

Examples

- ullet Bipartite Matching for $G=(V,E), V=L\cup R$
 - ullet Matroid Intersection of two counting matroid \mathcal{M}_L , \mathcal{M}_R
 - indepedent set in M_L : subgraph s.t. each vertex in L have ≤ 1 edges
- Colorful Spanning tree
 - Matroid Intersection of graphic matroid and color matroid
 - color matroid: subgraph s.t. each color is used at most once
- k-disjoint spanning tree
 - k-fold Matroid Union for graphic matroid

k-disjoint spanning tree for k=2

How to solve matroid problems?

Matroid Union, k-folded matroid union can be reduced to Matroid intersection. Rightarrow Algorithm for matroid intersection is important!

How to solve Matroid intersection? By idea of exchange graph G(S) for $S \in \mathcal{I}_1 \cap \mathcal{I}_2.$

Exchange graph

Exchange graph

For two matroids $\mathcal{M}_1 = (V, \mathcal{I}_1)$, $\mathcal{M}_2 = (V, \mathcal{I}_2)$ over the same ground set and an $S \in \mathcal{I}_1 \cap \mathcal{I}_2$, the *exchange graph* with respect to S is a directed bipartite graph $G(S) = (V \cup \{s,t\}, E)$ where:

- $-E = E_1 \cup E_2 \cup E_s \cup E_t$
- $-E_1 = \{(u, v) | u \in S, v \in V \setminus S, S u + v \in \mathcal{I}_1\}$
- $E_2 = \{(v, u) | u \in S, v \in V \setminus S, S u + v \in \mathcal{I}_2\}$
- $-E_s = \{(s, v) | v \in V \setminus S, S + v \in \mathcal{I}_1\}$
- $-E_t = \{(v,t)|v \in V \setminus S, S+v \in \mathcal{I}_2\}$

Matroid Intersection Algorithm

Augmenting Path Lemma

Let P be a shortest (s,t)-path of G(S). Then, the set $S' = S \oplus (V(P) \setminus \{s,t\})$ is a common independent set with |S'| = |S| + 1. On the other hand, if t is unreachable from s in G(S), then S is a largest common independent set.

From the above, we can obtain the following algorithm for matroid intersection.

- Initialize $S = \emptyset$.
- ② Find a shortest (s,t)-path P in G(S).
- While P exists:
 - Update S with $S' = S \oplus (V(P) \setminus \{s,t\})$ (called augmenting S along path P).
 - ② Find a new shortest (s,t)-path P in G(S).

- Introduction
- Paster Algorithms
 - Oracle Models
 - Core ideas and algorithms

Oracle - How to define fast?

Independence-oracle model

For a matroid $M=(V,\mathcal{I})$, the algorithm can access the oracle via the following operation for an arbitrary subset S of V.

• Query(S): Return true if $S \in \mathcal{I}$, false otherwise.

Rank-oracle model

For a matroid $M=(V,\mathcal{I})$, the algorithm can access the oracle via the following operation for an arbitrary subset S of V.

ullet Query(S): Return the rank of S, i.e., the size of the largest independent subset of S.

rank oracle is stronger than independence oracle. Need fewer oracle queries to solve the problem \Rightarrow Fast algorithm!

Progress of Matroid Intersection Algorithms

Let r be the maximum size of the common independent set.

- Exact algorithm
 - Independent-oracle model
 - \bullet $\tilde{O}(nr)$ oracle queries ([Ngu19] , [CLS+19])
 - $\tilde{O}(nr^{3/4})$ oracle queries ([Bli21])
 - Rank-oracle model
 - $\tilde{O}(n\sqrt{r})$ oracle queries ([CLS+19])
 - Dynamic-rank-oracle model
 - $\tilde{O}(n\sqrt{r})$ oracle queries ([CLS+19])
- Approximate algorithm
 - Independent-oracle model
 - $\tilde{O}(n^{1.5}/\epsilon^{1.5})$ oracle queries ([CLS+19])
 - Rank-oracle model
 - \bullet $\tilde{O}(n/\epsilon)$ oracle queries ([CLS+19])

Matroid Intersection Algorithm Recall

Algorithm

- Initialize $S = \emptyset$.
- ② Find a shortest (s,t)-path P in G(S).
- \bigcirc While P exists:
 - **0** $Update <math>S \text{ with } S' = S \oplus (V(P) \setminus \{s,t\}).$
 - $\textbf{ 9} \ \, \mathsf{Find} \,\, \mathsf{a} \,\, \mathsf{new} \,\, \mathsf{shortest} \,\, (s,t) \mathsf{-path} \,\, P \,\, \mathsf{in} \,\, G(S).$

Question: How to find the shortest (s,t)-path in G(S) for given S?

Matroid Intersection Algorithm Recall

Algorithm

- Initialize $S = \emptyset$.
- ② Find a shortest (s,t)-path P in G(S).
- \bigcirc While P exists:
 - **0** $Update <math>S \text{ with } S' = S \oplus (V(P) \setminus \{s,t\}).$
 - ② Find a new shortest (s,t)-path P in G(S).

Question: How to find the shortest (s,t)-path in G(S) for given S?

Simple answer: Do BFS from s in G(S)!

Matroid Intersection Algorithm Recall

Algorithm

- Initialize $S = \emptyset$.
- ② Find a shortest (s,t)-path P in G(S).
- \bigcirc While P exists:
 - **0** $Update <math>S \text{ with } S' = S \oplus (V(P) \setminus \{s,t\}).$
 - ② Find a new shortest (s,t)-path P in G(S).

Question: How to find the shortest (s,t)-path in G(S) for given S?

Simple answer: Do BFS from s in G(S)!

Question: how to find outgoing edges from a vertex?

want to do: BFS from s and find all layers $L_1, L_2, \cdots L_d$ where $L_i: \{v|dist(s,v)=i\}$

to do BFS in G(S), we have to find edges from the current vertex u to v that have not visited yet.

Let's consider the following problem.

Problem $FindE_2$

Let $S \in \mathcal{I}_1 \cap \mathcal{I}_2$. Given $u \in V \setminus S$ and $B \subset S$, find $v \in B$ s.t. $(u,v) \in G(S)$. i.e, $S+u-v \in \mathcal{I}_2$, or decide such v does not exist.

If the current vertex u is in $V \setminus S$, we can do BFS in G(S) by solving the above problem simply by giving B as unvisited vertices in S.

 $\mathit{Find}E_2$ can be done with binary search: list B as $b_1, \cdots b_k$ and then find first i such that $S+u-\{b_1, \cdots b_i\} \in \mathcal{I}_2$. Then $S+u-b_i \in \mathcal{I}_2$ holds. This requires $O(\log n)$ independence/rank queries.

What if the current vertex u is in S? we have to find $(u,v) \in E_1$.

Problem FindE₁

Let $S \in \mathcal{I}_1 \cap \mathcal{I}_2$. Given $u \in S$ and $A \subset V \setminus S$, find $v \in A$ s.t. $(u,v) \in G(S)$. i.e, $S-u+v \in \mathcal{I}_1$, or decide such v does not exist.

If we can use rank queries, then it is the same to $FindE_2$: list A as $a_1, \cdots a_k$ and find first i such that $S-u+\{a_1, \cdots a_i\}>=rank(S)$. By property of matroids, $S-u+a_i\in\mathcal{I}_1$ holds.

However, solving problem $\mathit{Find}E_1$ with $O(\log n)$ independence queries is not easy.

Instead, for $U\subset S$, we can find all $v\in A$ such that edge (u,v) exists for some $u\in U$. This can be done in O(n) independence quries. (Given a distance layer L_i , finding next distance layer L_{i+1})

using algorithms for $\mathit{Find}E_1$ and $\mathit{Find}E_2$, BFS from s to t can be done in

- $O(n \log n)$ rank queries
- $O(n \log n + nl)$ rank queries where l = dist(s, t)

Therefore, simply repeating BFS, matroid intersection can be solved in $O(nr\log n)$ rank queries or $O(r(n\log n + n^2))$ independence queries.

By far, we have $\tilde{O}(nr)$ rank queries algorithm. In the Hopcroft-Karp algorithm, we use "Blocking Flow". We can do the same way for this and it will reduce the query complexity.

Blocking Flow

Algorithm *BlockFlow(S)*

- **①** Perform BFS from vertex v. Let d_v be the distance from s to v in G(S).
- **②** Define L_i as $L_i = \{v \mid d_v = i\}$. Initialize *visited* as an empty set.
- lacktriangle Repeat execute DFS(v) until S remains unchanged.
- Return S.

Algorithm DFS(v)

- - ullet Augment S using the current path from s to t.
 - Return.
- **2** Add v to the set *visited*: $visited = visited \cup \{v\}$.
- **1** Identify a vertex x such that (v, x) is an edge in G(S) and x belongs to L_{d_n+1} but not in *visited*.
- **4** If such an x exists, run DFS(x). Otherwise, return.

Blocking Flow

Let $S' \leftarrow BlockingFlow(S)$.

Want To Show:

- At most $\tilde{O}(n)$ queries are used in one execution of BlockingFlow(S).
- $dist_{G(S')}(s,t) > dist_{G(S)}(s,t)$
- Throughout the algorithm, dist(s,t) have at most \sqrt{r} distinct values.

If the above all holds, then $O(n\sqrt{r})$ rank queries are suffice to matroid intersection.

For the first condition, no vertices will visited twice in a BlockingFlow execution. Therefore, it requires $O(n \log n)$ rank queries.

Monotonicity Lemma

Why
$$dist_{G(S')}(s,t) > dist_{G(S)}(s,t)$$
?

First of all, Following lemma holds. It is just like monotonicity lemma of Hopcroft-Karp algorithm.

Why distance is increasing strictly?

Assume that we obtained S' by augmenting S along P, an augmenting path of G(S). Then, the following are satisfied:

- $d(s,a) < d(s,t) \Rightarrow d(s,a) \leq d'(s,a). \text{ Likewise,}$ $d(a,t) < d(s,t) \Rightarrow d(a,t) \leq d'(a,t).$
- ② $d(s,a) \geq d(s,t) \Rightarrow d'(s,a) \geq d'(s,t)$. Likewise, $d(a,t) \geq d(s,t) \Rightarrow d'(a,t) \geq d'(s,t)$.

where d and d' are distance function of G(S) and G(S'), respectively.

Why distance is increasing strictly?

Want to show: $dist_{G(S')}(s,t) > dist_{G(S)}(s,t)$

Proof

Let d be the distance function of G(S) and d' be that of G(S'). Define l as d(s,t).

Assume there exists an (s,t)-path P in G(S') with length $\leq l$. By the Monotonicity Lemma, the length of P is $\geq l$. Thus, its length is exactly l.

Let the path P be represented as $P=(s,p_1,\cdots,p_{l-1},t)$.

Why distance is increasing strictly?

Want to show: $dist_{G(S')}(s,t) > dist_{G(S)}(s,t)$

Proof

By Monotonicity Lemma, $d'(s, p_i) \ge d(s, p_i)$ and $d'(p_i, t) \ge d(p_i, t)$.

Given that p_i lies on P of length l, we can conclude that $d'(s,p_i)=d(s,p_i)=i$ and $d'(p_i,t)=d(p_i,t)=l-i$.

Since *BlockFlow* process is terminated, at least one p_i must have been visited during the process. Let p_i be a vertex that is visited first among vertices in $p_1, \cdots p_{l-1}$. Then p_i must have been augmented during *BlockFlow* process. It follows that $p_i \in S$ if and only if $p_i \notin S'$.

However, the condition $d(s,p_i)=d'(s,p_i)=i$ is untenable, given that paths in the exchange graph G(S) alternate between members of S and $V\setminus S$. \blacksquare

Algorithm

We can solve matroid intersection by repeating $S \leftarrow BlockFlow(S)$, and each BlockFlow execution uses $O(n \log n)$ rank queries.

Therefore, the number of different d(s,t) for this process decides query complexity.

Meanwhile, the following lemma holds:

Lemma

For a common independent set S with |S| < r, there is an augmenting path in G(S) where its length $\leq 2|S|/(r-|S|)+2$.

This is because for two common independent set $S_1, S_2(|S_1| < |S_2|)$, there are $|S_2| - |S_1|$ disjoint (s,t)-path in $G(S_1)$ which consists vertices only from $S_1 \cap S_2 \cap \{s,t\}$ ([Cunningham86]).

Algorithm

Lemma

For a common independent set S with |S| < r, there is an augmenting path in G(S) where its length $\leq 2|S|/(r-|S|)+2$.

By the lemma, there are only $O(\sqrt{r})$ different length of augmenting paths. Therefore our algorithm uses at most $O(n \log n \sqrt{r})$ rank quries.

On the other hand, for independence queries, one BFS uses at most $O(nl+n\log n)$ queries. And by the lemma, total summation of l is bounded to $O(r\log r)$. Therefore, we obtained an $O(nr\log n)$ independence queries algorithm by just repeating BFS.

- ... Matroid Intersection is can be done by
 - $\tilde{O}(n\sqrt{r})$ rank queries
 - ullet $ilde{O}(nr)$ independence queries

Faster Algorithms

- $1-\epsilon$ approximation algorithm that uses $O(n^{1.5}/\epsilon^{1.5})$ indepence queries (2019)
 - use brilliant "Augmenting set" and "Partially augmenting set" idea.
- ullet exact algorithm that uses $O(nr^{3/4})$ independence queries (2021)
 - uses above approximation algorithm
- Dynamic Rank Oracle Model uses $\tilde{O}(n+r^{1.5})$ oracle queries for matorid intersection. (2023)
 - ullet more practical, since each query runs $ilde{O}(1)$ in amortized manner.

Dynamic-rank-oracle Model

- \bullet Limit of rank query / independence query: rank(S) takes at least $O(\min(|S|,r))$ time
- For most matroid we interests in: one element update is not expensive. i.e. $rank(S) \rightarrow rank(S \pm \{e\})$ is fast
 - ullet graphic matroid: fully-dynamic counting components: O(polylog n)
 - \bullet counting matroid: O(1)
- Fully persistent update costs only additional $\log N$ factor [DSST'86]. i.e, $S_i = S_j \pm \{e\}$ for j < i.

Dynamic-rank-oracle Model

Dynamic-rank-oracle model

For a matroid $M=(V,\mathcal{I})$, starting from $S_0=\phi$ and k=0, the algorithm can access the oracle via the following three operations.

- Insert(v,i): Create a new set $S_{k+1} := S_i \cup \{v\}$ and increment k by one.
- Delete(v,i): Create a new set $S_{k+1} := S_i \setminus \{v\}$ and increment k by one.
- Query(i): Return the rank of S_i , i.e., the size of the largest independent subset of S_i

 ${\cal O}(T)$ Dynamic rank queries for graphic, counting, color matroids guarantees $\tilde{\cal O}(T)$ time complexity!

Dynamic-rank-oracle model

Theorem

Matroid intersection can be solved in $\tilde{O}(n+r^{1.5})$ dyanmic rank queries.

Basic idea is the same: do BFS and find all distance from s in G(S).

Since Binary search for BFS requires many dynamic queries (difference between adjacent queries may big), data structure for precomputing is required for this algorithm.

Idea: Construct binary search tree and lazily update when ${\cal S}$ changes

Results

problems	our bounds	state-of-the-art results
(Via k-fold matroid union)		
k-forest ⁸	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
k-pseudoforest	$\tilde{O}(E + (k V)^{3/2})$ X	$ E ^{1+o(1)}$ [CKL ⁺ 22]
k-disjoint spanning trees	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
arboricity ⁹	$\tilde{O}(E V)$ X	$\tilde{O}(E ^{3/2})$ [Gab95]
tree packing	$\tilde{O}(E ^{3/2})$	$\tilde{O}(E ^{3/2})$ [GW88]
Shannon Switching Game	$\tilde{O}(E + V ^{3/2})$	$\tilde{O}(V \sqrt{ E })$ [GW88]
graph k-irreducibility	$\tilde{O}(E + (k V)^{3/2} + k^2 V)$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
(Via matroid union)		
(f, p)-mixed forest-pseudoforest	$ \tilde{O}_{f,p}(E + V \sqrt{ V })$	$\tilde{O}((f+p) V \sqrt{f E })$ [GW88]
(Via matroid intersection)		
bipartite matching (combinatorial ¹²)	$O(E \sqrt{ V })$	$O(E \sqrt{ V })$ [HK73]
bipartite matching (continuous)	$ \tilde{O}(E \sqrt{ V }) $	$ E ^{1+o(1)}$ [CKL ⁺ 22]
graphic matroid intersection	$ \tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GX89]
simple job scheduling matroid intersection	$\tilde{O}(n\sqrt{r})$	$\tilde{O}(n\sqrt{r})$ [XG94]
convex transversal matroid [EF65] intersection	$\tilde{O}(V \sqrt{\mu})$	$\tilde{O}(V \sqrt{\mu})$ [XG94]
linear matroid intersection ¹⁰	$\tilde{O}(n^{2.529}\sqrt{r})$ X	$\tilde{O}(nr^{\omega-1})$ [Har09]
colorful spanning tree	$ \tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GS85]
maximum forest with deadlines	$\tilde{O}(E \sqrt{ V })$	(no prior work)

