Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Tuyfyakov Nikita Гр. 320207

Вариант 9

Часть I. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4e69:6b69:7400:0/102

Задание 1.2: разбить сеть из п.1.1 на 8 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'{\Gamma}C,}$	2001: db8: 0: 4 eef: 4e69: 6b69: 7400: 0/105
Префикс $N_{\rm C,PePS}$	2001: db8: 0: 4 eef: 4e69: 6b69: 7780: 0/105

Часть II. Планирование адресного пространства IPv4

X0 = целая часть (N*16)/256+10 = целая часть (9*16)/256+10 = 10

X1 = остаток от деления (N*16)/256 = остаток от деления (9*16)/256 = 144

Дано: Сеть 10.144.0.0/12

Задание 2.1.1: разбить сеть на 256 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	144	U	U
Адрес сети	00001010	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 4 бит из 2-го октета.

3. Итого, получается, что сеть 10.144.0.0/12 мы разбили на 256 подсети, в каждой из которых по 4094 узлов, указываем первые 5 подсетей:

	10	144	0	0
Адрес сети дв.с	00001010	10010000	00000000	00000000
Маска дв.с	11111111	11111111	11110000	00000000
	255	255	240	0

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.144.0.0/20
Адрес первого узла N_1	10.144.0.1
Адрес последнего узла N_1	10.144.15.254
Широковещательный адрес N_1	10.144.15.255
Адрес сети $N_2/$ Префикс N_2	10.144.16.0/20
Адрес первого узла N_2	10.144.16.1
Адрес последнего узла N_2	10.144.31.254
Широковещательный адрес N_2	10.144.31.255
Адрес сети $N_3/$ Префикс N_3	10.144.32.0/20
Адрес первого узла N_3	10.144.32.1
Адрес последнего узла N_3	10.144.47.254
Широковещательный адрес N_3	10.144.47.255
Адрес сети $N_4/$ Префикс N_4	10.144.48.0/20
Адрес первого узла N_4	10.144.48.1
Адрес последнего узла N_4	10.144.63.254
Широковещательный адрес N_4	10.144.63.255
$oxed{f A}$ дрес сети $N_5/$ Префикс N_5	10.144.64.0/20
Адрес первого узла N_5	10.144.64.1
Адрес последнего узла N_5	10.144.79.254
Широковещательный адрес N_5	10.144.79.255

Дано: Сеть 10.144.0.0/12

Задание 2.1.2: разбить сеть на 33 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(33\leqslant 2^6=64)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 2 бит из 2-го октета (получается, что сеть можно разбить на 64 подсетей: $2^6=64$; оставшиеся 14 бит идут под узлы: $2^{14}-2=16382$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	10.144.0.0/18
${ m A}$ дрес первого узла N_1	10.144.0.1
Адрес последнего узла N_1	10.144.63.254
Широковещательный адрес N_1	10.144.63.255
Λ дрес сети $N_2/$ Префикс N_2	10.150.0.0/10
Адрес сети N_2 / Префикс N_2	10.152.0.0/18
Адрес сети $N_2/$ префикс N_2 Адрес первого узла N_2	10.152.0.0/18
,	<u>'</u>

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 1024 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	144	0	0
Адрес сети	00001010	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022$. Т.е. нужно выбрать такую маску, которря выделит ровно 10 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{10}=8192$ подсетей по 1022 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	10.159.236.0/22
Адрес первого узла N_1	10.159.236.1
Адрес последнего узла N_1	10.159.239.254
Широковещательный адрес N_1	10.159.239.255
$oxed{A}$ дрес сети $N_2/$ Префикс N_2	10.159.240.0/22
Адрес первого узла N_2	10.159.240.1
Адрес последнего узла N_2	10.159.243.254
Широковещательный адрес N_2	10.159.243.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	$\fbox{10.159.244.0/22}$
Адрес первого узла N_3	10.159.244.1
Адрес последнего узла N_3	10.159.247.254
Широковещательный адрес N_3	10.159.247.255

Адрес сети $N_4/$ Префикс N_4	10.159.248.0/22
Адрес первого узла N_4	10.159.248.1
Адрес последнего узла N_4	10.159.251.254
Широковещательный адрес N_4	10.159.251.255
Адрес сети $N_5/$ Префикс N_5	10.159.252.0/22
Адрес первого узла N_5	10.159.252.1
Адрес последнего узла N_5	10.159.255.254

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 120 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	144	0	0
Адрес сети	00001010	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=7, т.к. $2^7-2=126\ \geqslant 120$.

	10	144	U	U
Адрес сети дв.с	00001010	10010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	10000000
	255	255	255	128

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	10.144.0.0/25
Адрес первого узла N_1	10.144.0.1
Адрес последнего узла N_1	10.144.0.126
Широковещательный адрес N_1	10.144.0.127

Адрес сети $N_2/$ Префикс N_2	10.159.255.128/25
Адрес первого узла N_2	10.159.255.129
Адрес последнего узла N_2	10.159.255.254
Широковещательный адрес N_2	10.159.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 48 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	144	0	0
Адрес сети	00001010	10010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=6, т.к. $2^6-2=62$.

	10	144	0	0
Адрес сети дв.с	00001010	10010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11000000
	255	255	255	192

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	$\fbox{10.159.254.192/26}$
Адрес первого узла N_1	10.159.254.193
Адрес последнего узла N_1	10.159.254.254
Широковещательный адрес N_1	10.159.254.255
Λ дрес сети $N_2/$ Префикс N_2	10.159.255.0/26
${ m A}$ дрес первого узла N_2	10.159.255.1
Адрес последнего узла N_2	10.159.255.62
Широковещательный адрес N_2	10.159.255.63

10.159.255.64/26	
10.159.255.65	
10.159.255.126	
10.159.255.127	
10.159.255.128/26	
10.159.255.129	
10.159.255.190	
10.159.255.191	
$\fbox{10.159.255.192/26}$	
10.159.255.193	
10.159.255.254	
10.159.255.255	