前言

简介

本题卷为数学-1题卷。

本题卷分为两个题组,从思维难度上而言,题组一整体较简单,题组二整体较难。

本题卷整体难度较高。

本题卷出题人:方梓轩、舒熙皓、郑晓阳。以下是各个题目的出题人及分数。出题人有题意解释权,并且负责题目的讲解(包括题解和答疑)。

题号	出题人	分数
А	方梓轩	4
В	方梓轩	2+2+2=6
С	舒熙皓	8
D	方梓轩	8
Е	郑晓阳	6
F	方梓轩	8
G	舒熙皓	6
Н	舒熙皓	6
I	舒熙皓	8
J	方梓轩	2+3+5=10
К	舒熙皓	10
L	方梓轩	3+3+4=10
М	舒熙皓	2+2+3+3=10

评价通道

可以在下方评论区留言反馈。

我们希望听取关于 题目难度、题目质量、作答用时、作答分数等方面的反馈。

题解

题解将在一周以内放出。

出题人对所有题目有题意解释权,如果有任何题意和作答上的疑惑,欢迎咨询出题人。

题组—

A / 在平面直角坐标系 xOy 中有两点 A(0,4), B(2,0),现在作线段 AB 垂直平分线 l_1 交AB 于点 D,记 l_1 上一点 C 使得 CD=BD,然后将 l_1 绕点 C 顺时针旋转 90° ,记作 l_2 ,求 l_2 的解析式。

B / 东京奥运会的中国首金诞生于女子十米气步枪项目中,由杨倩选手摘得。凯凯的工厂迎来了第一届全厂射击大赛,以下是决赛表现优异,可以进入市级决赛角逐冠军的三位选手的成绩:

选手	第一枪	第二枪	第三枪	第四枪	第五枪	第六枪
张三	7.4	7.7	7.9	8.3	8.1	10.1
陆仁甲	8.5	8.5	8.6	8.8	9.1	8.4
马冬梅	9.3	10.2	7.5	8.4	8.2	7.7

市级决赛有三项赛事:争霸赛、娱乐赛和炸鱼赛。争霸赛中,平均分高者优胜;娱乐赛中,分数稳定者优胜;炸鱼赛中,分数波动大者优胜。

现在凯凯希望在这三项奖项上都要斩获佳绩。但是他更希望在争霸赛中获得好成绩,其次是娱乐赛,再次是炸鱼赛。每位选手只能报名一项赛事。请你告诉凯凯,对于每项赛事,他该让哪位选手报名。

C / 如图,四边形 ABCD 为正方形,CE=5, $EC\perp EF$,C,D,F 三点共线,设 BC=a,请用含 a 的式子表示 EF。

D / 轩轩随手写了一个关于x 的一元二次方程 $x^2+(2k-1)x+k^2-1=0$,现在请你告诉轩轩 $x_1^2+x_2^2$ 的最大值和最小值存不存在。如果存在,请告诉他分别是多少。

E / 如图,动点 O_1, O_2 分别在 x, y 轴上。分别以 O_1, O_2 为圆心, O_1O, O_2O 为半径作圆交 x, y 轴与点 A, B。两圆交于 C, O 两点。请证明:A, B, C 三点在同一直线上。

F/同学聚会,每个参与者都会给其他所有参与者赠送一份礼物,其中某人财大气粗,给一些同学多准备了一份礼物,整场同学聚会下来有77件礼物被赠送。问有多少件礼物是第二件礼物,由于参与同学聚会的人都是各个学校的巨佬,他们要求你不能枚举这个问题的答案。

G / 在平面直角坐标系 xOy 中,设一道光线的解析式为 $y=\frac{2}{3}x+\frac{1}{3}$,以及三面镜子 AB,CD,EF,其中 A(2,8),B(3,6),C(9,8),D(11,6),E(4,1),F(8,1),求光线经过反射后的解析式。

H / 如图,给定正方形 ABCD, M 为 AB 中点, N 为 CD 中点。连接 AD,BC,MC,MD,AN,请猜测并证明小圆与大圆的面积关系。

I/如图,给定一个正方形,设它的边长为a,请求出蓝色内接圆的半径。

题组二

 ${f J}/$ 我们定义两个函数的横坐标同为 x 时纵坐标差的绝对值 $|y_1-y_2|$ 为这两个函数横坐标是 x 时的 **高度差**。在点与点、点与函数中,这个定义也适用。

a /试求当函数 y=2x+5, y=4x+3 的高度差为 4 时 x 的值。

b / 现有一动点 $P(x_0,y_0)$ 其坐标满足 $-\frac{3x_0}{5}+\frac{y_0}{5}=1$,记其与抛物线 $y=2x^2+(k-1)x+5$ 的高度差为 z,若 z 与常函数 y=1 的高度差总是不小于 1,求 k 的取值范围。

c / 如果一条直线与一个函数有且仅有一个交点,那么我们说这条直线是这个函数的切线。现有一点 M(3,5),一个动点 $P(x_0,y_0)$ 满足 $x_0^2+y_0^2-10x_0-6y_0+32=0$,作一条 P 的轨迹的切线 l_1 使得 MP 和 l_1 的高度差恒为 d,求当 d 取最大值时 MP 的解析式。

K / 如图,给定五个正方形,请猜测并证明三角形 JMK 和正方形 IDJH 的面积关系。

L/阅读材料,回答问题:

对于一个一次函数 y=kx+b,如果我们知道两点 $(x_0,kx_0+b),(x_0+\Delta x,kx_0+k\Delta x+b)$,则我们可以将其纵坐标作差,得到 $\Delta y=k\Delta x$,其中 Δ 意为增量,即差值,则我们能够得到 $k=\frac{\Delta y}{\Delta x}$ 。

对二次函数如法炮制。对于一个二次函数 $f(x) = ax^2 + bx + c$,

$$f(x) = ax^2 + bx + c;$$
 $f(x + \Delta x) = ax^2 + 2ax\Delta x + a\Delta x^2 + bx + b\Delta x + c.$
 $\frac{\Delta y}{\Delta x} = \frac{2ax\Delta x + a\Delta x^2 + b\Delta x}{\Delta x}.$
 $= 2ax + a\Delta x + b.$

如果我们将 Δx 看成一个无限接近 0 但不是 0 的实数,则我们可以将 $a\Delta x$ 看成一个无限接近 0 但不是 0 的实数。

我们记一个函数的函数值与自变量值的商为这个函数的导数,记做 f'(x),例如 f(x) = kx + b,则 f'(x) = k, $f(x) = ax^2 + bx + c$,则 f'(x) = 2ax + b。导数的几何意义是过函数上某一点作该函数的切线、代数意义是函数瞬时的增长率,所以当一个函数的导数大于零时,其函数值随自变量值的增大而增大,称作单调递增,反之则亦然,称为单调递减。

a / 对于一个过原点的二次函数 $f(x)=ax^2+bx+c$,我们有f'(2)=4,f'(7)=19,试确定该二次函数的解析式。

b / 对于一个三次函数,其有两个极值点,每一个极值点的两侧单调性不同。试确定 $f(x)=\frac{1}{3}x^3+\frac{k-3}{2}x^2+(k-4)x+t,\ \ \, \pm -5\leq t\leq 14, -14\leq k\leq 5\ {\rm th},\ \ \, 请求出 \ f(x)\ {\rm th}$ 值点的横坐标的取值范围。

c / 定义 $\sum_{i=a}^b c$ 为 i 取大于等于 a 小于等于 b 的整数时对应的 c 的值之和,设 $f(x)=x^3-3x^2$,求 $\sum_{i=1}^{4033} f(\frac{i}{2017})$ 的值。

M/阅读以下材料,回答问题。

相信大家都知道 "勾股数" 这个东西。 (3,4,5) 是一组勾股数,因为 $3^2+4^2=5^2$ 。同样的,我们定义 "本原勾股数" 为一组数 (a,b,c),满足 $a^2+b^2=c^2$ 且 $\gcd(a,b,c)=1$,即 a,b,c 只存在 1 这个公因数。

下面是关于本题可能用到的一些记号:

 $a \mid b$: $a \neq b$ 的因数。

 $a \perp b$: $a \ni b$ 互质。

gcd(a,b): a 和 b 的最大公因数,即能够整除 a 和 b 的最大数。

mod: 取余符号, $a \mod b$ 的值就是 a 除以 b 剩下的余数。

 $a \equiv b \pmod{p}$: 同余符号,表示 a 除以 p 的余数是 b。

引理: $gcd(a, b) = gcd(b, a \mod b)$, 在解答中可以直接使用,以下是证明:

先证: gcd(a,b)|b, 而且 $gcd(a,b)|(a \mod b)$.

我们设 $a \mod b = r$,则有 a = kb + r (k 为非负整数)。同时设 g 为 a, b 的最大公因数。

 $\therefore g \mid a, g \mid b, \quad \therefore g \mid kb + r, \quad \therefore g \mid r$

所以, g 既是 a, b 的公因数, 也是 b, r 的公因数。

再证:不存在任意一个大于 gcd(a, b) 的数 c 满足 $c \mid b \perp b \mid c \mid (a \mod b)$ 。

使用反证法: 如果存在 $c > \gcd(a, b)$ 旦满足 $c \mid b \bowtie c \mid r$ 。

 $\therefore a = kb + r \, \exists \, c \mid b, \, c \mid r, \quad \therefore c \mid a, \quad \mathbf{V} \therefore c \mid b, \quad \therefore c \not \equiv a, b \,$ 的公因数。

但又因为 $c>\gcd(a,b)$,矛盾,所以不存在任何大于 $\gcd(a,b)$ 的数满足条件。

综上, $gcd(a, b) = gcd(b, a \mod b)$.

a / 请证明:对于本原勾股数 (a, b, c), a 和 b 的奇偶性必然不同。

由于 (1) 中证明,我们接下来规定:对于本原勾股数 (a,b,c), a 为奇数,b 为偶数。

b / 请证明:对于本原勾股数 (a, b, c), $\gcd(c + b, c - b) = 1$.

c / 请证明:对于本原勾股数 (a,b,c), c+b 和 c-b 均为完全平方数。

根据(2)(3)的证明,我们就可以得出勾股数组定理:

 \mathbf{d} / 请证明:对于所有三元数对 (a,b,c), 当且仅当其满足以下条件时,才构成一个本原勾股数:

$$a=st,\ b=rac{s^2-t^2}{2},\ c=rac{s^2+t^2}{2}$$

其中s > t > 0是互质的奇数。

PS: 如果你有耐心或者会一点点编程,可以用这个定理求出许多组本原勾股数。