10 $\frac{df}{dx} = -\alpha f + \delta(x) - \gamma - \alpha f(k) + 1 = \frac{\alpha}{\alpha + i\kappa} + 1 = \frac{ck}{\alpha + i\kappa}$ which agrees with ikf(k)(11) $u' + \alpha u = \delta(x - d)$, $ik\hat{u}(k) + \alpha \hat{u}(k) = e^{-ikd}$ $\hat{u}(k) = \frac{e^{-ikd}}{ik + \alpha}$ $ik(k) = \frac{e^{-ikd}}{ik + \alpha}$ $ik(k) = e^{-ikd}\hat{u}(k) = \frac{1}{\alpha + ik}$ $ik(x) = \int_{0}^{\alpha x} \frac{1}{x^{2} + \alpha} dx$ (12) (integral of u(x)) - (knivative of u(x)) = $\delta(x)$ $ik(k) - ik\hat{u}(k) = 1$ $jk(k) = \frac{1}{ik - ik} = \frac{1 + k^{2}}{ik}$ function

(23) 5×5=5