The Memory Hierarchy

15-213/18-243: Introduction to Computer Systems 10th Lecture, Feb. 13, 2014

Instructors:

Anthony Rowe, Seth Goldstein and Gregory Kesden

Today

Storage technologies and trends

- Locality of reference
- Caching in the memory hierarchy

Random-Access Memory (RAM)

Key features

- RAM is traditionally packaged as a chip.
- Basic storage unit is normally a cell (one bit per cell).
- Multiple RAM chips form a memory.

Static RAM (SRAM)

- Each cell stores a bit with a four or six-transistor circuit.
- Retains value indefinitely, as long as it is kept powered.
- Relatively insensitive to electrical noise (EMI), radiation, etc.
- Faster and more expensive than DRAM.

Dynamic RAM (DRAM)

- Each cell stores bit with a capacitor. One transistor is used for access
- Value must be refreshed every 10-100 ms.
- More sensitive to disturbances (EMI, radiation,...) than SRAM.
- Slower and cheaper than SRAM.

SRAM vs DRAM Summary

	Trans. per bit	Access time	Needs refresh?	Needs EDC?	Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

Carnegie Mello

Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966.
 - Commercialized by Intel in 1970.
- DRAM cores with better interface logic and faster I/O:
 - Synchronous DRAM (SDRAM)
 - Uses a conventional clock signal instead of asynchronous control
 - Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Double edge clocking sends two bits per cycle per pin
 - Different types distinguished by size of small prefetch buffer:
 - DDR (2 bits), DDR2 (4 bits), DDR4 (8 bits)
 - By 2010, standard for most server and desktop systems
 - Intel Core i7 supports only DDR3 SDRAM

negie Mellon

Traditional Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Register file

ALU

System bus

Memory bus

Main

memory

Nonvolatile Memories

- DRAM and SRAM are volatile memories
 - Lose information if powered off.
- Nonvolatile memories retain value even if powered off
 - Read-only memory (ROM): programmed during production
 - Programmable ROM (PROM): can be programmed once
 - Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - Electrically eraseable PROM (EEPROM): electronic erase capability
 - Flash memory: EEPROMs with partial (sector) erase capability
 - Wears out after about 100,000 erasings.
- Uses for Nonvolatile Memories
 - Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...)
 - Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,...)
 - Disk caches

Memory Read Transaction (1)

CPU places address A on the memory bus.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB), where
 1 GB = 109 Bytes (Lawsuit pending! Claims deceptive advertising).
- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density.
- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track

21

Disk Structure - top view of single platter

Surface organized into tracks

Tracks divided into sectors

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

Disk Access Time

- Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - Time to position heads over cylinder containing target sector.
 - Typical Tavg seek is 3—9 ms
- Rotational latency (Tavg rotation)
 - Time waiting for first bit of target sector to pass under r/w head.
 - Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
 - Typical Tavg rotation = 7200 RPMs
- Transfer time (Tavg transfer)
 - Time to read the bits in the target sector.
 - Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Disk Access Time Example

Given:

- Rotational rate = 7,200 RPM
- Average seek time = 9 ms.
- Avg # sectors/track = 400.

Derived:

- Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
- Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
- Taccess = 9 ms + 4 ms + 0.02 ms

Important points:

- Access time dominated by seek time and rotational latency.
- First bit in a sector is the most expensive, the rest are free.
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - Disk is about 40,000 times slower than SRAM,
 - 2,500 times slower then DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

I/O Bus CPU chip Register file ALU Memory bus System bus bridge I/O bus other devices such as network adapters. USB Graphics controller adapter controller Mouse Keyboard Monitor Disk

								Carnegie Me
Storage	e Tre	nds						
_								
SRAM								
Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	19,200	2,900	320	256	100	75	60	320
access (ns)	300	150	35	15	3	2	1.5	200
DRAM								
Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	8,000	880	100	30	1	0.1	0.06	130,000
access (ns)	375	200	100	70	60	50	40	9
typical size (MB)	0.064	0.256	4	16	64	2,000	8,000	125,000
Disk								
Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	500	100	8	0.30	0.01	0.005	0.0003	1,600,000
access (ms)	87	75	28	10	8	4	3	29
typical size (MB)	1	10	160	1,000	20,000	160,000	1 500 000	1,500,000

Today

Storage technologies and trends
Locality of reference
Caching in the memory hierarchy

Qualitative Estimates of Locality

• Claim: Being able to look at code and get a qualitative sense of its locality is a key skill for a professional programmer.

• Question: Does this function have good locality with respect to array a?

[int sum_array_rows(int a[M][N]) {
 int i, j, sum = 0;
 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}</pre>

Carnegie Mell

Locality Example

Question: Does this function have good locality with respect to array a?

```
int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}</pre>
```

......

Carnegie Mello

Locality Example

Question: Can you permute the loops so that the function scans the 3-d array a with a stride-1 reference pattern (and thus has good spatial locality)?

```
int sum_array_3d(int a[M][N][N])
{
   int i, j, k, sum = 0;

   for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
        for (k = 0; k < N; k++)
        sum += a[k][i][j];
   return sum;
}</pre>
```

54

Carnegie Mellon

Memory Hierarchies

- Some fundamental and enduring properties of hardware and software:
 - Fast storage technologies cost more per byte, have less capacity, and require more power (heat!).
 - The gap between CPU and main memory speed is widening.
 - Well-written programs tend to exhibit good locality.
- These fundamental properties complement each other beautifully.
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy.

Today

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

General Cache Concepts: Miss							
	Request: 12	Data in block b is needed					
Cache	8 12 14 3	Block b is not in cache: Miss!					
	Request: 12	Block b is fetched from memory					
Memory	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Block b is stored in cache Placement policy: determines where b goes Replacement policy: determines which block gets evicted (victim)					

Examples of Caching in the Hierarchy Where is it Cached? Latency (cycles) Managed By Cache Type What is Cached? Registers 4-8 bytes words **CPU** core 0 Compiler TLB Address translations On-Chip TLB 0 Hardware L1 cache On-Chip L1 64-bytes block 1 Hardware L2 cache 64-bytes block On/Off-Chip L2 10 Hardware **Virtual Memory** 4-KB page Main memory 100 Hardware + OS Parts of files 100 OS Buffer cache Main memory Disk cache **Disk sectors** Disk controller 100,000 Disk firmware **Network buffer** Parts of files 10,000,000 AFS/NFS client Local disk cache Web pages Web browser Browser cache Local disk 10,000,000 Web cache 1,000,000,000 Web proxy Web pages Remote server disks

General Caching Concepts: Types of Cache Misses

■ Cold (compulsory) miss

Cold misses occur because the cache is empty.

Conflict miss

 Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of the block positions at level k.

• E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

• Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block.

• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

• Occurs when the set of active cache blocks (working set) is larger than the cache.

Summary

■ The speed gap between CPU, memory and mass storage continues to widen.

Well-written programs exhibit a property called locality.

 Memory hierarchies based on caching close the gap by exploiting locality.