Rick Mousseau, et al.

Serial No.

09/699,78

Page

2

IN THE SPECIFICATION:

On page 1, please replace the paragraph starting on line 2 with the following

new paragraph:

3

This application is a continuation-in-part of eo-pending <u>U.S. patcnt</u> application entitled VEHICLE INTERIOR REARVIEW MIRROR ASSEMBLY WITH DISPLAY, Ser. No. 09/663,036, filed Sept. 15, 2000, now <u>U.S. Pat. No. 6,520,667</u>, which is herein incorporated by reference in its entircty.

On page 1, please replace the paragraph starting on line with the following new paragraph:

Recently, vehicle mirrors have incorporated a number of electronic and electrical devices, including information displays that provide information to the driver or occupants of the vehicle, such as compass headings or warnings relating to the status of the passenger airbag. In commonly assigned so-pending application Scr. No. 09/244,726, filed by Jonathan E. DeLine and Niall R. Lynam on Feb. 5, 1999, entitled REARVIEW MIRROR ASSEMBLY INCORPORATING VEHICLE INFORMATION DISPLAY, now U.S. Pat. No. 6,172,613, the disclosure of which is incorporated herein by reference in its entirety, information displays have been provided which include information relating to vehicle orengine status, warning information, such as information relating to oil pressure, levels of fuel, time, temperature, and the like. Furthermore, as described in eo-pending commonly owned U.S. Pat. application Ser. No. 09/057,428, filed Apr. 8, 1998, now U.S. Pat. No. 6,158,655, which is incorporated in its entirety by reference herein, such displays can be used to engage in remote transactions.

0.....

On page 6, please replace the paragraph starting on line 15 with the following

new paragraph:

B3

In addition, mirror system 10 may incorporate other utility functions, such as those described in eo-pending application U.S. Pat. No. 6,428,172, entitled REARVIEW

Rick Mousseau, et al.

Scrial No.

09/699,78

Page

3

MIRROR ASSEMBLY WITH UTILITY FUNCTIONS, filed Nov. 24, 1999, by Barry W. Hutzel, Niall R. Lynam, and Darryl P. DeWind (Attorney Docket DON01 P-778), which is herein incorporated by reference herein in its entirety. Alternately or in addition, mirror system 10 may incorporate a microphone or a plurality of microphones preferably to provide hands-free input to a wireless telecommunication system such as the ONSTARTM system in use in General Motors vehicles. Most preferably such microphones provide input to an audio system that transmits and communicates wirelessly with a remote transceiver, preferably in voice recognition mode. Such systems are described in U.S. Pat. Application Ser. No. 09/382,720, filed Aug. 25, 1999, now U.S. Pat. No. 6,243,003, the disclosure of which is hereby incorporated by reference herein. Microphones, sound processing systems, and other accessories suitable to use in the mirror systems of the present invention are disclosed in eepending and co-assigned U.S. Pat. applications Ser. Nos.: 09/466,010 filed Dec. 17, 1999, now U.S. Pat. No. 6,420,975; 09/396,179 filed Sep. 14, 1999, now U.S. Pat. No. 6,278,377; 09/382,720 filed Aug. 25, 1999<u>, now U.S. Pat. No. 6,243,003</u>; 09/449,121 filed Nov. 24, 1999, now U.S. Pat. No. 6,428,172; 09/433,467 filed Nov. 4, 1999, now U.S. Pat. No. 6,326,613; and 09/448,700 filed Nov. 24, 1999, now U.S. Pat. No. 6,329,925, the entire disclosures of all of which are hereby incorporated by reference herein.

On page 7, please replace the paragraph starting on line 25 with the following new paragraph:

positioned within mirror case 16. Alternately, display element 34 may be removably

detection system, such as the type disclosed in U.S. Pat. application Ser. No. 08/799,734 entitled VEHICLE BLIND SPOT DETECTION AND DISPLAY SYSTEM, invented by

Preferably, display element 34 is soldered to printed circuit board 32, which is

mounted to circuit board 32. Circuit board 32 may support other devices, such as a compass sensor circuit or one or more light assemblies, such as map lights, or the like, so that devices to be placed in mirror case 16 can be pre-assembled on circuit board 32 prior to placement in the case which substantially improves the manufacturing process of mirror system 10. For example, circuit board 32 may include electronic and electric devices, including a blind spot

git

Rick Mousseau, et al.

Serial No.

09/699,78

Page

.

Schofield et al., and filed Feb. 12, 1997, now U.S. Pat. No. 5,786,772, or rain sensor systems, for example rain sensor systems which include windshield contacting rain sensors, such as described in U.S. Pat. No. 4,973,844 entitled VEHICULAR MOISTURE SENSOR AND MOUNTING APPARATUS THEREFORE, or non-windshield contacting rain sensors, such as described in PCT International Application PCT/US94/05093 entitled MULTI-FUNCTION LIGHT SENSOR FOR VEHICLE, published as WO 94/27262 on Nov. 24, 1994, the disclosures of which are hereby incorporated by reference herein in their entireties. Also, circuit board 32 may include circuitry for mirror mounted video cameras, which are used to visually detect the presence of moisture on the windshield and actuate windshield wipers accordingly, such as described in eo-pending U.S. application Ser. No. 08/621,863, filed Mar. 25, 1996, entitled VEHICLE HEADLIGHT CONTROL USING IMAGING SENSOR, by Schofield et al., now U.S. Pat. No. 5,796,094, or mirror mounted cameras for vehicle internal cabin monitoring disclosed in U.S. Pat. Nos. 5,877,897 and 5,760,962, both commonly assigned to Donnelly Corporation, which are hereby incorporated herein by reference in their entireties. Other electronic or electrical devices mounted to circuit board 32 may include for example home access transmitters, a high/low or daylight running beam low headlight controller, a hands free cellular phone attachment, a video device, such as a video camera for internal cabin surveillance and/or video telephone function, remote keyless entry receiver, a compass, a seat occupancy detector, a trip computer, an intrusion detector, and the like. As used in the specification, an electrical device encompasses an electrically operated accessory or device such as a map light or the like. An electronic device encompasses an electronic circuit board or PCB (such as an automatic light dimming circuit board, a compass sensing and directional circuit board or the like) or electron devices or circuits or systems, including electron tubes, microprocessors, amplifiers, transistors, and other devices that do the work of electron tubes. In addition, by placing or mounting the devices on a common printed circuit board, the use of common parts is facilitated and, therefore, the number of parts can be reduced in the assembly process, which ultimately reduces costs as well as improves the assembly process.

Boom

Applicants Serial No.

Rick Mousseau, et al.

*0*9/699,78

Page

On page 12, please replace the paragraph starting on line 23 with the following new paragraph:

In the illustrated embodiment, bracket assembly 58 forms part of the pivot structure for mirror system 10 and is pivotally mounted to a frame 61, which is mounted to case 16 and is actuated to pivot about frame 61 to thereby pivot case 16 about support 52 by a toggle assembly 60. Reflective element 20 is adjusted between its day time viewing position and its night time viewing position by toggle assembly 60 when toggle assembly 60 pivots casing 16 about ball mount 56. Preferably toggle assembly 60 includes a knob 64 and a cam 66, which is pivotally positioned within bracket assembly 58, such that rotation of knob 64 causes pivoting of mirror case 16, including bezel 18 and reflective element 20, relative to support 52 such as disclosed in commonly assigned U.S. Pat. application Ser. No. 09/448,700, filed Nov. 24, 1999, by Skiever et al., entitled REARVIEW MIRROR ASSEMBLY WITH ADDED FEATURE MODULAR DISPLAY, now U.S. Pat. No. 09/448,700, the disclosure of which is hereby incorporated in its entirety by reference herein. Alternately, toggle assembly 60 may comprise the type disclosed in commonly assigned eepending U.S. Pat. application Scr. No. 09/533,127, filed Mar. 23, 2000, by Ralph A. Spooner and Jerry L. Beck, entitled TOGGLE ASSEMBLY FOR REARVIEW MIRROR, now U.S. Pat. No. 6,318,870, the disclosure of which is hereby incorporated by reference in its entirety.

On page 12, please replace the paragraph starting on link with the following new paragraph:

Other suitable mounting brackets or mounting arrangements are also disclosed in U.S. Pat. Nos. 5,487,522; 5,671,996; 5,820,097; 5,615,857; 5,330,149; 5,100,105; 4,930,742; or 4,936,530 or co-pending U.S. Pat. application Ser. No. 08/781,408, filed Jan. 10, 1997, now U.S. Pat. No. 5,820,097, all commonly assigned to Donnelly Corporation, the entire disclosures of which are hereby incorporated herein by reference.

On page 13, please replace the paragraph starting on line 11 with the following new paragraph:

Applicants Serial No.

Rick Mousseau, et al.

al No. : 09/699,78

Page

6

Mirror system 10 may also incorporate a plurality of other features, including, for example map lights, such as disclosed in commonly assigned U.S. Pat. Nos. 5,669,698; 5,820,245; 5,671,996; 5,813,745; 5,178,448; 4,733,336; and 4,646,210, the disclosures of all of which are herein incorporated by reference in their entireties. In addition, mirror system 10 may incorporate a microphone module, such as described in commonly assigned eopending application Ser. No. 09/382,720, entitled ACCESSORY MODULE FOR VEHICLE, filed by Jonathan E. Deline and Niall R. Lynam on Aug. 25, 1999, now U.S. Pat. No. 6,243,003, the disclosure of which is herein incorporated by reference in its entirety. Such microphone modules may be used, for example to provide a hands-free input to wireless communication systems such as an ONSTAR system used in General Motors vehicles. In addition or alternatively, such microphones provide input to an audio system that transmits and communicates wirelessly with a remote transceiver, preferably in a voice recognition mode. Such systems are described in U.S. Pat. application Ser. No. 09/382,720, filed Aug. 25, 1999, now U.S. Pat. No. 6,243,003, the disclosure of which is herein incorporated by reference in its entirety. In this manner, desirably all the electronics and electrical devices, with the exception of, for example a microphone module, may be supported, formed and/or housed on circuit board 32. Thus, the mirror assembly can be quickly and readily assembled with circuit board 32 which forms a carrier member or cartridge or modular unit/assembly which can be quickly inserted into the cavity of casing 16.

On page 13, please replace the paragraph starting on line 29 with the following new paragraph:

In addition, display 12 may include a display of the speed limit applicable to the location of where the vehicle is traveling. Conventionally, speed limits are posted as a fixed limit (for example, 45 MPH) that is read by the vehicle driver upon passing a sign. As an improvement to this, an information display (preferably an alphanumerical display and more preferably, a reconfigurable display) can be provided within the vehicle cabin, such as display screen 36, readable by the driver, that displays the speed limit at whatever location on the road/highway the vehicle actually is at any moment. For example, existing speed limit

B'

Rick Mousscau, et al.

Scrial No.

09/699,78

Page

signs could be enhanced to include a transmitter that broadcasts a local speed limit signal, such signal being received by an in-vehicle receiver and displayed to the driver. The speed limit signal can be transmitted by a variety of wireless transmission methods, such as radio transmission, and such systems can benefit from wireless transmission protocols and standards, such as the BLUETOOTH low-cost, low-power radio based cable replacement or wireless link based on short-range radio-based technology. BLUETOOTH enables creation of a short-range (typically 30 feet or so although longer and shorter ranges are possible), wireless personal area network via small radio transmitters built into various devices. For example, transmission can be on a 2.45 gigahertz band, moving data at about 721 kilobits per second, or faster. BLUETOOTH, and similar systems, allow creation of an in-vehicle area network. Conventionally, features and accessories in the vehicle or wired together. Thus, for example, an interior electrochromic mirror and an exterior electrochromic mirror is connected by at least one wire in order to transmit control signal and the like. With BLUETOOTH and similar systems, control commands can be broadcast between the interior mirror and the exterior mirror (and vice versa) without the need for physical wiring interconnecting the two. Likewise, the two exterior mirror assemblies on the vehicle can exchange, transmit and/or receive control commands/signals (such as of memory position or the like such as is described in U.S. Patent No. 5,798,575, the disclosure of which is hereby incorporated by reference herein) via an in-vehicle short-range radio local-network such as BLUETOOTH. Similarly, tire pressure sensors in the wheels can transmit via BLUETOOTH to a receiver in the interior mirror assembly, and tire pressure status can be displayed, preferably at the interior rearview mirror. In the case of the dynamic speed limit system described above, preferably, the in-vehicle receiver is located at and/or the display of local speed limit is displayed at the interior mirror assembly (for example, a speed limit display can be located in a chin or eyebrow portion of the mirror case, such as in the mirror reflector itself, such as in the cover 40, or such as in a pod attached to the interior mirror assembly). More preferably, the actual speed of the vehicle can be displayed simultaneously with and beside the local speed limit in-vehicle display and/or the difference or excess thereto can be displayed. Optionally, the wireless-based speed limit transmission system can actually

P.10/24

Applicants

Rick Mousseau, et al.

Scrial No.

09/699,78

Page

control the speed at which a subject vehicle travels in a certain location (such as by controlling an engine governor or the like). Thus, a school zone speed limit can be enforced by transmission of a speed-limiting signal into the vehicle. Likewise, different classes of vehicles can be set for different speed limits for the same stretch of highway. The system may also require driver identification and then set individual speed limits for individual drivers reflecting their skill level, age, driving record and the like. Moreover, a global positioning system (GPS) can be used to locate a specific vehicle, calculate its velocity on the highway, verify what the allowed speed limit is at that specific moment on that specific stretch of highway, transmit that specific speed limit to the vehicle for display (preferably at the interior rearview mirror that the driver constantly looks at as part of the driving task) and optionally alert the driver or retard the driver's ability to exceed the speed limit as deemed appropriate. A short-range, local communication system such as envisaged in the BLUETOOTH protocol finds broad utility in vehicular applications, and particularly where information is to be displayed at the interior mirror assembly, or where a microphone or userinterface (such as buttons to connect/interact with a remote wireless receiver) is to be located at the interior (or exterior) rearview mirror assembly. For example, a train approaching a railway crossing may transmit a wireless signal such as a radio signal (using the BLUETOOTH protocol or another protocol) and that signal may be received by and/or displayed at the interior rearview mirror assembly (or the exterior sideview mirror assembly). Also, the interior rearview mirror and/or the exterior side view mirrors can function as transceivers/display locations/interface locations for intelligent vehicle highway systems, using protocols such as the BLUETOOTH protocol. Protocols such as BLUETOOTH, as known in the telecommunications art, can facilitate voice/data, voice over data, digital, and analogue communication and vehicle/external wireless connectivity, preferably using the interior and/or exterior mirror assemblies as transceiver/display/user-interaction sites. Electronic accessories to achieve the above can be accommodated in casing 16, and/or clsewhere in the interior rearview mirror assembly (such as in the housing disclosed in U.S. Pat, application Ser. No. 09/433,467 (Attorney Docket No. P-783) filed Nov. 4, 1999 entitled

Bank

Rick Mousseau, et al.

Scrial No.

09/699,78

Page

.

Bank

VEHICLE INTERIOR MIRROR ASSEMBLY to Patrick Heslin and Niall R. Lynam, now U.S. Pat. No. 6,326,613.

On page 13, please replace the paragraph starting on line 28 with the following new paragraph:

As described, the rearview mirror assembly of the present invention can include a wide variety of electrical and electronic devices incorporated therein and, further, may incorporate utility functions, such as described in co-pending application U.S. Pat. No. 6.428,172, entitled REARVIEW MIRROR ASSEMBLY WITH UTILITY FUNCTIONS, filed Nov. 24, 1999, by Barry W. Hutzel, Niall R. Lynam, and Darryl P. DeWind (Attorney Docket DON01 P-778), which is herein incorporated by reference herein in its entirety. For example, rearview mirror assemblies may include: Antennas, including GPS or cellular phone antennas, such as disclosed in U.S. Pat. No. 5,971,552; a communication module, such as disclosed in U.S. Pat. No. 5,798,688; displays such as shown in U.S. Pat. No. 5,530,240 or in U.S. pending application Ser. No. 09/244,726, filed Feb. 5, 1999; blind spot detection systems, such as disclosed in U.S. Pat. Nos. 5,929,786 or 5,786,772; transmitters and/or receivers, such as garage door openers, a digital network, such as described in U.S. Pat. No. 5,798,575; a high/low head lamp controller, such as disclosed in U.S. Pat. No. 5,715,093; a memory mirror system, such as disclosed in U.S. Pat. No. 5,796,176; a hands-free phone attachment, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962 and 5,877,897 and eo-pending application Ser. No. 09/433,467, now U.S. Pat. No. 6,326,613; a remote keyless entry receiver; map lights, such as disclosed in U.S. Pat. Nos. 5,938,321, 5,813,745, 5,820,245, 5,673,994, 5,649,756, or 5,178,448; microphones and/or speakers, such as disclosed in U.S. Pat. applications Ser. No. 09/361,814, filed Jul. 27, 1999, now U.S. Pat. No. 6,201,642, and 09/199,907, filed Nov. 25, 1998; a compass, such as disclosed in U.S. Pat. No. 5,924,212; seat occupancy detector; a trip computer; an ONSTAR System or the like, with all of the referenced patents and applications being commonly assigned to Donnelly Corporation, the disclosures of which are herein incorporated by reference in their entireties. Other features which can be incorporated

Rick Mousseau, et al.

Serial No.

09/699,78

Page

10

include: A baby minder system, such as the vehicle interior monitoring system described in U.S. Pat. Nos. 5,877,897 and 5,760,962 or the rear vision system described in pending U.S. Pat. applications Ser. No. 09/361,814, filed Jul. 27, 1999, now U.S. Pat. No. 6,201,642, and Ser. No. 09/199,907, filed Nov. 25, 1998, and U.S. Pat. application Ser. No. 09/433,467 (Attorney Docket No. P-783), filed Nov. 4, 1999, entitled VEHICLE INTERIOR MIRROR ASSEMBLY to Patrick Heslin and Niall R. Lynam, now U.S. Pat. No. 6,326,613, all of which are incorporated by reference in their entireties herein.

On page 16, please replace the paragraph starting on line 25 with the following new paragraph:

For example, in the case of an interior rearview mirror assembly, a camera, such as a CMOS or CCD camera, can be mounted in mirror system 10 to view the rear seat area of the vehicle so that the driver can view what is occurring, such as in a rear seat mounted baby seat or with a rear seat passenger such as children. Preferably, to enable vicwing of the rear seat occupant or occupants even by night, the target field of view of the camera may be illuminated in a manner that provides adequate visibility for the camera to discern what is occurring in the rear seat in a darkened vehicle cabin but not illuminating in a manner that causes glare, distraction, and/or discomfort to any vehicle occupants, including the driver and/or rear seat passengers. For example, such a rear seat monitoring camera illumination is preferably achieved using directed low level non-incandescent light sources, such as light emitting diodes (LEDs), organic light emitting material, electroluminescent sources, and the like, and most preferably such non-incandescent sources are low power and are directed low intensity sources, such as described in U.S. Pat. No. 5,938,321, and eo-pending <u>U.S. Pat.</u> application entitled INTERIOR MIRROR ASSEMBLY FOR A VEHICLE INCORPORATING A SOLID-STATE LIGHT SOURCE, Ser. No. 09/287,926, filed Apr. 7, 1999, now U.S. Pat. No. 6,139,172, which are incorporated herein by reference in their entireties. A baby minder camera may be mounted as a part of the rearview mirror assembly and, most preferably, may be mounted as a part of a header, including a front header of a roof or a rear header of a roof. It may be desirable to mount a baby minder camera to the rear

D10

Rick Mousseau, et al.

Serial No.

09/699,78

Page

11

header of a roof when it is desirable to view rear facing child support seats. Most preferably, a plurality of at least two, more preferably at least four, and most preferably at least six LEDs are mounted with a camera (such as to form a ring around the camera) with the light projected from the individual LEDs directed to be coincident with the camera field of view and to illuminate the target area desired to be viewed. The LEDs being directed low level sources will not glare or cause discomfort to occupants when illuminated. Further, nonincandescent camera illumination sources can be illuminated whenever the ignition switch is on to operate the vehicle or at least when the ignition switch is placed in "an accessory on" position so that both the camera and illumination lights are operating on vehicle battery power even when parked. Alternately, the illumination lights can be operational only when the baby minder camera is selected to be operational. While it is preferred to use nonincandescent lights, such incandescent light sources can be used and more preferably high intensity, low current incandescent light sources. An interior surveillance system permits the driver of the vehicle to observe behavior or the activities of babies or children or other passengers scated in the rear seat. This is especially advantageous when the child or baby is in a rearward facing car scat, where the child or baby would ordinarily not be visible. For example, a camera, such as a CMOS or CCD camera, can be mounted to view the rear seat area of the vehicle so that the driver can view what is occurring, such as in a rear seat mounted baby seat or with a rear seat passenger such as children. Preferably, to enable viewing of the rear seat occupant or occupants even by night, the target field of view of the camera may be illuminated in a manner that provides adequate visibility for the camera to discern what is occurring in the rear seat in a darkened vehicle cabin but not illuminating in a manner that causes glare, distraction, and/or discomfort to any vehicle occupants, including the driver and/or rear seat passengers.

On page 18, please replace the paragraph starting on line 3 with the following new paragraph:

Furthermore, the mirror assemblies of the present invention may incorporate a navigation system, such as described in co-pending provisional application Ser. No.

3 Cont

Rick Mousseau, et al.

Serial No.

09/699,78

Page

12

60/131.593. filed Apr. 29, 1999, entitled VEHICLE-BASED NAVIGATION SYSTEM WITH SMART MAP FILTERING, PORTABLE UNIT HOME-BASE REGISTRATION AND MULTIPLE NAVIGATION SYSTEM PREFERENTIAL USE, which is herein incorporated by reference in its entirety. Alternately or in addition, the modular aspects of the present invention can be combined with or incorporate a wide variety of other interior rearview mirror assemblies including electrically operated compass mirrors such as disclosed in U.S. Pat. No. 5,253,109; electrically operated interior rearview mirrors incorporating map reading lights such as disclosed in U.S. Pat. Nos. 4,646,210, 4,733,336, 4,807,096, and 5,178,448; and electrically operated automatically dimming mirrors such as described in U.S. Pat. Nos. 4,793,690, 4,799,768, 4,886,960, and 5,193,029; mirror assemblics incorporating GPS such as disclosed in U.S. Pat. application Scr. No. 08/569,851, filed Dec. 8, 1995, by Roger L. Veldman and Desmond O'Farrell entitled A VEHICLE GLOBAL POSITIONING SYSTEM NAVIGATIONAL AID, now U.S. Pat. No. 5,971,552; mirrors including head light controls, such as disclosed in U.S. Pat. application Ser. No. 08/621,863, filed Mar. 25, 1996, entitled VEHICLE HEADLIGHT CONTROL USING IMAGING SENSOR, now U.S. Pat. No. 5.796.094; mirrors incorporating displays, such as disclosed in U.S. Pat. application Ser. No. 09/244,726, filed Feb. 5, 1999, entitled REARVIEW MIRROR ASSEMBLY INCORPORATING VEHICLE INFORMATION DISPLAY, now U.S. Pat. No. 6,172,613, and U.S. Pat. No. 5,530,240, entitled DISPLAY FOR AUTOMATIC REARVIEW MIRROR: mirrors incorporating blind spot detection systems, such as disclosed in U.S. Pat. No. 5,530,240, U.S. Pat. No. 5,576,687, and U.S. Pat. application Ser. No. 08/799,734 08/799,735, entitled VEHICLE BLIND SPOT DETECTION AND DISPLAY SYSTEM, filed Feb. 12, 1997, now U.S. Pat. No. 5,786,772; and mirrors incorporating remote transaction systems, such as disclosed in U.S. Pat. application Ser. No. 09/057,428, filed Apr. 8, 1998, entitled A VEHICLE MOUNTED REMOTE TRANSACTION INTERFACE SYSTEM, now U.S. Pat. No. 6,158,655, (Attorney Docket No. DON01 P-696), and U.S. Pat. No. 5,798,575, all commonly assigned to Donnelly Corporation, Holland Mich., the disclosures of which are herein incorporated by reference in their entircties.

Applicants Serial No. Rick Mousscau, et al.

09/699,78

Page

On page 18, please replace the paragraph starting on line 32 with the

following new paragraph:

In addition, reflective element 20 may include one or more video screens, such as described in co-pending provisional U.S. Pat. applications Ser. No. 60/186,520, filed Mar. 2, 2000, entitled INTERIOR REARVIEW MIRROR ASSEMBLY INCORPORATING A VIDEO SCREEN (Attorney Docket DON01 P-802); Ser. No. 60/218,336, filed Jul. 14, 2000, entitled INTERIOR REARVIEW MIRROR ASSEMBLY INCORPORATING A VIDEO SCREEN (Attorney Docket DON01 P-831); Ser. No. <u>60/234,412</u> [Scpt. 21, 2000, entitled VIDEO MIRROR SYSTEMS (Attorney Docket DON01 P-841); Ser. No. 60/237,077 [], filed September 29, 2000, entitled VIDEO MIRROR SYSTEMS (Attorney Docket DON01 P-846); and Ser. No. 60/243,986 [], filed Oct. 27, 2000, entitled VIDEO MIRROR SYSTEMS INCORPORATING AN ACCESSORY MODULE (Attorney Docket DON01 P-857), which are incorporated by reference in their entireties herein. Referring to FIG. 10, the numeral 110 generally designates a second embodiment of the vehicle mirror system of the present invention. As will be more fully described below, mirror system 110 incorporates a display area 112 which is formed by a display member 114, such as a display screen, such as a transparent or colored or the like molded plastic plate member which is adapted to display one or more display characters 115 for viewing by the driver or one or more occupants of the vehicle. Reference is made to U.S. Pat. No. 6,087,953 and co pending U.S. Pat. applications Ser. No. 09/244,726, filed Feb. 5, 1999, now U.S. Pat. No. 6,172,613 (Attorney Docket DON01 P-734), and Ser. No. 09/609,100, filed Jun. 30, 2000, now U.S. Pat. No. 6,222,460 (Attorney Docket DON01 P-821), for suitable displays which are incorporated by reference herein by their entireties. In the illustrated embodiment, display member 114 is adapted to have a mechanical connection, such as a snap-fit or other mechanical connection, including a releasable mechanical connection, with mirror case or housing 116 of mirror system 110 so that display member 114 is readily interchangeable with other similar display members which have additional or different features to greatly enhance the in-line assembly of mirror system 110. By providing a mechanical connection, the sonic welding or heating staking or adhesive bonding (a typical

Rick Mousseau, et al.

Serial No.

09/699,78

Page

14

assembly method for mirror assembly components that has been heretofore used) may be eliminated. Thus, the display member can be readily installed and is optionally removable for upgrade, replacement, or repair. In addition, the interchangeable display member eliminates the need for the retooling or retrofit of the whole mirror to add features and, instead, permits features to be added, removed, repaired, or replaced simply by removing and replacing or upgrading the display member. It should be understood that it may be desirable to mount the display member in a manner that would require the mechanical connectors to be broken to remove the display member.

On page 23, please replace the paragraph starting on line 4 with the following new paragraph;

Light sources 154a and 154b are supported in housing 116 and, in the illustrated embodiment, are mounted to circuit board 132. Each reflector 153a, 153b includes a reflective surface to direct light from the respective light sources 154a, 154b through openings 116a, 116a' and covers 152a, 152b. Optionally, reflectors 153a, 153b may comprise plastic members which are coated with a metallic surface or otherwise provided with a reflective surface to direct light from light sources 154a, 154b. Optionally, reflectors 153a, 153b may be configured to produce an asymmetrical pattern. For examples of suitable reflectors, light sources, and alternate covers reference is made to U.S. Pat. Nos.-5,669,698; 4,646,210; 5,820,245; 6,000,823; 5,178,448; and eopending U.S. Pat. applications Ser. No. 09/448,700, filed Nov. 24, 1999, by Skiver et al., entitled "REARVIEW MIRROR ASSEMBLY WITH ADDED FEATURE MODULAR DISPLAY", now U.S. Pat. No. 6,329,925 (Attorney Docket No. DON01 P-702) and Ser. No. 09/371,871 filed August 6, 1999, now U.S. Pat. No. 6,183,199 (Attorney Docket No. DON01 P-765), all commonly assigned to Donnelly Corp. of Holland, Michigan, the entire disclosures of which are incorporated by reference berein.

3

Applicants Serial No.

Rick Mousscau, et al.

09/699,78

Page

15

On page 23, please replace the paragraph starting on line 18 with the

following new paragraph:

In the illustrated embodiment, reflective element 120 comprises a prismatic element which is moved between its day and night viewing positions by a toggle assembly 160. It should be understood that reflective element 120 may comprise an electro-optic reflective member, such as electrochromic reflective element, instead. For examples of suitable electrochromic reflective elements, reference is made to the previous embodiment. As best understood by FIG. 11A, housing 116 is mounted in the interior of a vehicle by a support 152, such as a dual ball mount support. In the illustrated embodiment, support 152 mounts housing 116 to the vehicle windshield, for example, with a break-away connection. As noted, support 152 comprises a dual-ball mount support with a first ball mount 154 and a mirror mount 155 on one end for mounting to the interior of a vehicle, such as to a mounting button on an inner surface of the windshield, and a second ball mount 156 on its other end which extends through forward facing opening 157 of housing 116 and is pivotally received in a bracket 158 provided in housing 116. Support 152 preferably incorporates a ball mount of the type described in eo-pending Pat. application entitled "REARVIEW MIRROR MOUNTING ASSEMBLY", Ser. No. 09/470,791, filed Dec. 23, 1999, now U.S. Pat. No. 6,540,193 (Attorney Docket No. DON01 P-790), which is incorporated by reference herein in its entirety.

On page 24, please replace the paragraph starting on line 1 with the following ncw paragraph:

As best seen in FIG. 11A, toggle assembly 160 pivots housing 116 about ball mount 156 of support 152. In the illustrated embodiment, toggle assembly 160 includes a rotating actuator or grasping member 164, such as a knob, and a cam 166, which is pivotally positioned within bracket 158. Bracket 158 in turn is pivotally mounted to a frame 161, which is rigidly mounted in housing 116. When actuator 164 is rotated, carn 166 induces pivoting of bracket 158 about frame 161 thereby pivoting housing 116, including bezel 118 and reflective element 120, relative to support 152. For further details of toggle assembly

P.18/24

Applicants

Rick Mousseau, et al.

Serial No.

09/699,78

Page

16

160, reference is made to commonly assigned U.S. Pat. application Ser. No. 09/448,700, filed Nov. 24, 1999, by Skiver et al., entitled "REARVIEW MIRROR ASSEMBLY WITH ADDED FEATURE MODULAR DISPLAY", now U.S. Pat. No. 6,329,925 (Attorney Docket No. DON01 P-702), the disclosure of which is hereby incorporated by reference in its entirety. Alternately, toggle assembly 160 may comprise other toggle assemblies including a toggle assembly which incorporates a pivoting actuator that moves back and forth such as the type disclosed in commonly assigned eo-pending U.S. Pat. application Ser. No. 09/533,127, filed Mar. 23, 2000, by Ralph A. Spooner and Jerry L. Beck, entitled "TOGGLE ASSEMBLY FOR REARVIEW MIRROR", now U.S. Pat. No. 6,318,870, the disclosure of which is hereby incorporated by reference in its entirety. As described in reference to the previous embodiment, numerous other mounting brackets or mounting arrangements may be used in mirror system 110.

Bisal