

Spiking Convolutional Deep Belief Networks for Unsupervised High Level Feature Extraction and Pattern Reconstruction

"Most of human and animal learning is unsupervised learning."

FZI If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, and reinforcement learning would be the cherry on the cake.

We know how to make the icing and the cherry, but we don't know how to make the cake."

Y Lecun, NIPS 2016

"Learn the data"

"We believe that this can be achieved by learning a disentangled posterior distribution of the generative factors of the observed sensory input by leveraging the wealth of unsupervised data."[1]

Overview

- Restricted Boltzmann Machines (RBMs)
- Convolutional Deep Belief Networks
- Neural Sampling
- Event-Driven Contrastive Divergence
- Conversion
- Experiments & Results
- Conclusion

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

Neural Network:

hidden

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

Neural Network:

hidden

- **Binary Units**
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- **Energy-based Model**

Neural Network:

hidden

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

Neural Network:

hidden

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

Neural Network:

hidden

- Binary Units
- Symmetric Connections
- Two bipartite Layers
- Stochastic Activations $p("active") = \sigma("input")$
- Energy-based Model

$$\frac{\partial E(v)}{\partial w} = \dots = (v h^{T})_{\text{model}} - (v h^{T})_{\text{data}}$$

$$\rightarrow w^{\text{new}} = w^{\text{old}} + \mu ((v h^T)_{data} - (v h^T)_{model})$$

$$\frac{\partial E(v)}{\partial w} = \dots = (v h^{T})_{model} - (v h^{T})_{data}$$

$$\rightarrow$$
 w^{new} = w^{old} + $\mu ((v h^T)_{data} - (v h^T)_{model})$

$$\frac{\partial E(v)}{\partial w} = \dots = (v h^{T})_{\text{model}} - (v h^{T})_{\text{data}}$$

$$\rightarrow w^{\text{new}} = w^{\text{old}} + \mu ((v h^T)_{data} - (v h^T)_{model})$$

$$\frac{\partial E(v)}{\partial w} = \dots = (v h^{T})_{\text{model}} - (v h^{T})_{\text{data}}$$

$$\rightarrow$$
 w^{new} = w^{old} + $\mu ((v h^T)_{data} - (v h^T)_{model})$

$$\frac{\partial E(v)}{\partial w} = \dots = (v h^{T})_{\text{model}} - (v h^{T})_{\text{data}}$$

$$\rightarrow \mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} + \mu \left((v h^T)_{data} - (v h^T)_{model} \right)$$

Contrastive Divergence: $w^{\text{new}} = w^{\text{old}} + \mu ((v h^T)_{data} - (v h^T)_{model})$

+

Contrastive Divergence: $w^{new} = w^{old} + \mu ((v h^T)_{data} - (v h^T)_{model})$

+

Contrastive Divergence: $w^{\text{new}} = w^{\text{old}} + \mu ((v h^T)_{data} - (v h^T)_{model})$

+

- Adding Hidden Layers increases Representational Power
- DBNs can approximate any distribution over binary vectors

- Adding Hidden Layers increases Representational Power
- DBNs can approximate any distribution over binary vectors

Built up by stacking up RBMs:

- Fit parameters W₁ of the 1st layer RBM to data (x)
- Freeze W₁ and use samples h₁ as data for the next layer
- Fit parameters W₂ of the 2nd layer RBM to data (h₁)
- Proceed recursively for the next layers

Built up by stacking up RBMs:

- Fit parameters W₁ of the 1st layer RBM to data (x)
- Freeze W₁ and use samples h₁ as data for the next layer
- Fit parameters W₂ of the 2nd layer RBM to data (h₁)
- Proceed recursively for the next layers

"Diving in Deeper": Deep Belief Networks

Built up by stacking up RBMs:

- Fit parameters W₁ of the 1st layer RBM to data (x)
- Freeze W₁ and use samples h₁ as data for the next layer
- Fit parameters W₂ of the 2nd layer RBM to data (h₁)
- Proceed recursively for the next layers

"Diving in Deeper": Deep Belief Networks

Built up by stacking up RBMs:

- Fit parameters W₁ of the 1st layer RBM to data (x)
- Freeze W₁ and use samples h₁ as data for the next layer
- Fit parameters W₂ of the 2nd layer RBM to data (h₁)
- Proceed recursively for the next layers

"Diving in Deeper": Deep Belief Networks

Built up by stacking up RBMs:

- Fit parameters W₁ of the 1st layer RBM to data (x)
- Freeze W₁ and use samples h₁ as data for the next layer
- Fit parameters W₂ of the 2nd layer RBM to data (h₁)
- Proceed recursively for the next layers

Classification with DBNs

 Top Layer : Joint density for labels and images

Bottom Layers : Feature Extraction

Convolutional DBNs

Using a convolutional architecture:

- Partially connected
- Shared weights

Sampling in Spiking Neural Networks

State of Neuron defined by its Firing

State of Network defined by Neurons

Sampling in Spiking Neural Networks

- State of Neuron defined by its Firing
 - Firing probability: $p(x=1) \propto \sigma(Wz)$
- State of Network defined by Neurons

Event-driven Contrastive Divergence

Contrastive Divergence:

- For Spiking Neural Networks
- With Spike-time Dependent (Synaptic) Plasticity (STDP)

Data burn-in Data distribution Model burn-in Model distribution

- Layerwise Training with eCD
- Weight sharing with weight synchronization
- Inhibitory lateral Connections
- Forward Connections between RBMs

- Layerwise Training with eCD
- Weight sharing with weight synchronization
- Inhibitory lateral Connections
- Forward Connections between RBMs

- Layerwise Training with eCD
- Weight sharing with weight synchronization
- **Inhibitory lateral Connections**
- Forward Connections between RBMs

S

- Layerwise Training with eCD
- Weight sharing with weight synchronization
- Inhibitory lateral Connections
- Forward Connections between RBMs

- Layerwise Training with eCD
- Weight sharing with weight synchronization
- Inhibitory lateral Connections
- Forward Connections between RBMs

Conversion

- Train a DBN
- Replace Binary Neurons with Spiking Neurons
- Use Synaptic Connections
- Scale Synaptic Weights
- Add external Poisson-Noise

Experiments

Datasets

Stripes

10 x 10 Pixel

Poker (Event-based)

16 x 16 Pixel

Ball-Can-Pen (Event-based)

16 x 16 Pixel

eCD - Results

Accuracy:

Stripes: 1.00

Poker: 0.94

Ball-Can-Pen: 0.90

© FZI Forschungszentrum Informatik

eCD - Weights

eCD - Weights

eCD - Spikes

eCD - Reconstruction

Reconstruction

Bottom half missing

Right half missing

eCD - Reconstruction

Reco	netri	iction
VECO	เาอแบ	1 しいしい

٥

Bottom half missing

Comparison

Artificial DBN and Spiking DBN trained with 100 Samples

Discussion

- → Train a spiking convolutional DBN
- + Unsupervised Learning
- + Spiking Neural Network
- + Event-based
- + Biological Plausibility
- Computational Resources

Thanks!

"We have truly autonomous cars when you tell it to drive to the office, and it decides to drive to the beach."

"Geoff Hinton doesn't disagree with you, he contrastively diverges."

"Geoff Hinton discovered how the brain really works. Once a year for the last 25 years."

References

Lecun, Yann; Predictive Learning; NIPS 2016, https://drive.google.com/file/d/08xKBnD5y2M8NREZod0tVdW5FLTQ/view

Kokkinos, lasonas; Introduction to Deep Learning; http://cvn.ecp.fr/personnel/iasonas/course/DL5.pdf

Larochelle, Hugo; Neural networks: RBM - CD; http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Lamblin, Pascal; Deep belief networks; http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepBeliefNetworks

M. Zorzi, A. Testolin, and I. Stoianov. Modeling language and cognition with deep unsupervised learning: a tutorial overview.

L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons.

M. A. Petrovici. Form Versus Function: Theory and Models for Neuronal Substrates. 2016.

K. A. Buchanan and J. R. Mellor. The activity requirements for spike timing-dependent plasticity in the hippocampus.

I. Higgins. Early Visual Concept Learning with Unsupervised Deep Learning. 2016

* Actually Bernoulli

$$C_m \frac{\partial u}{\partial t} = g_l(E_l - u(t)) + I^{syn} + I^{ext}$$

Resting potential	-65 mV
Membrane capacity	1.0 nF
Membrane time constant	20.0 ms
Refractory period	10.0 ms
Offset current	1.0 nA
Reset potential	-53.0 mV
Spike threshold	-52.0 mV
Inhibitory reversal potential	90.0 mV
Excitatory reversal potential	-0.0 mV

$$STDP(v_i(t), h_j(t)) = v_i(t)A_{h_j}(t) + h_j(t)A_{v_i}(t),$$

$$A_{h_j}(t) = A \int_{-\infty}^t W(t-s)h_j(s)ds,$$

$$A_{v_i}(t) = A \int_{-\infty}^t W(t-s)v_i(s)ds.$$

$$W(x) = exp(\frac{x}{\sigma}).$$

$$A_{v} = A_{v} \exp(\frac{-\Delta t}{\tau}) + a_{\delta},$$

$$A_{h} = A_{h} \exp(\frac{-\Delta t}{\tau}),$$

$$\delta w = \mu g(t) A_{v},$$

25.01.2017 t [ms] 64

© FZI Forschungszentrum Informatik

	Spiking CNN		CUBA LIF DBN	
Simulated time	Classification Accuracy	Runtime	Classification Accuracy	Runtime
50 ms	0.69	7.8 s	0.81	8.1 s
100 ms	0.77	9.2 s	0.89	10.5 s
200 ms	0.76	13.1 s	0.89	14.6 s
300 ms	0.75	15.1 s	0.91	18.5 s
500 ms	0.83	24.2 s	0.93	30.6 s

t _{burn-in}	14 ms
t _{learn}	56 ms
t _{flush}	28 ms
Learn-rate	1.0
Weight-decay	0.001
Weight synchronization after n samples	1

	Stripes	Poker	Ball-Pen-Can
Input	100	256	256
#1. Layer Params	20 x 7 x 7 = 980	10 x 14 x 14 = 1960	20 x 14 x 14 = 3920
1. Layer	20 x 4 x 4 = 320	10 x 3 x 3 = 90	20 x 3 x 3 = 180
#2. Layer Params	(320 + 3) x 20 = 6460	(90 + 4) x 10 = 940	$(180 + 4) \times 10 = 1840$
2. Layer	20	10	10
Labels	3	4	4

	Stripes	Poker	Ball-Pen-Can
Neurons	443	360	450
Synapses	22140	18580	37120
Parameters	7440	2900	5760

