CLASS 30, NOVEMBER 26: COMPLETIONS OF METRIC SPACES

Recall the notion of completeness of a metric space:

Definition 30.1. A metric space (X, d) is said to be **complete** if every Cauchy sequence converges. A sequence (x_n) is said to be **Cauchy** if for every $\epsilon > 0$, $\exists N \gg 0$ such that

$$d(x_N, x_n) < \epsilon$$

for every n > N.

Example 30.2. \mathbb{R}^n is a complete metric space with the Euclidean metric d_2 (and thus d_{∞} or d_1 since they are all equivalent metrics). Indeed, let (x_n) be a Cauchy sequence. For a given ϵ , choose N_{ϵ} such that $x_n \in B(x_{N_{\epsilon}}, \epsilon)$ for all $n > N_{\epsilon}$. Then note that the collection

$$\{\bar{B}(x_{N_{\epsilon}},\epsilon) \mid 0 < \epsilon < 1\}$$

has the finite intersection property, and is contained within a compact set $\bar{B}(x_{N_1}, 1)$. Therefore there is an element

$$x \in \bigcap_{0 < \epsilon < 1} B(x_{N_{\epsilon}}, \epsilon)$$

and x is the limit of x_n .

Now we note that there is an extension of Example 30.2 to $\mathbb{R}^{\mathbb{N}}$.

Lemma 30.3. If X_{α} are topological spaces, and $X = \prod_{\alpha} X_{\alpha}$ with the product topology, then if x_n is a sequence in X, $x_n \to x$ if and only if $\pi_{\alpha}(x_n) \to \pi_{\alpha}(x)$ for all α .

Proof. (\Rightarrow): Since π_{α} is continuous, this follows from Theorem 14.6.

 (\Leftarrow) : Let $x \in U = U_{\alpha_1} \times \ldots \times U_{\alpha_m} \times \prod_{\alpha \neq \alpha_i} X_{\alpha}$ is an open set. Since $\pi_{\alpha_i}(x_n) \to \pi_{\alpha}(x)$, for some $n > N_i$ we have $\pi_{\alpha_i}(x_n) \in U_i$ for each $n > N_i$. Choosing $N = \max\{N_1, \ldots, N_m\}$, we have this condition uniformly satisfied for n > N. As a result, $x_n \in U$ for n > N. Thus $x_n \to x$ as asserted.

Corollary 30.4. $\mathbb{R}^{\mathbb{N}}$ with the product topology is a complete metric space.

Examples of non-complete metric spaces are as follows:

Example 30.5. (\mathbb{Q}, d) with the Euclidean metric is non-complete. Indeed, we can find a sequence of rational numbers in \mathbb{R} converging to an irrational number. The same sequence will not converge in \mathbb{Q} .

More generally, given a complete metric space and a convergent sequence $x_n \to x$ such that $x_n \neq x$, then $X \setminus \{x\}$ is no longer complete. This follows since sequences converge uniquely in Hausdorff spaces. \mathbb{Q} is an example of this happening uncountably many times, and $(0, \infty) \subseteq [0, \infty) \subseteq \mathbb{R}$ is another such example.

We can similarly state the same result for the uniform topology (with bigger products):

Theorem 30.6. If (X, d) is a metric space, we can put the uniform metric ρ onto $Y = X^{\Lambda}$:

$$\rho(x,y) = \sup_{\alpha \in \Lambda} \left\{ \min \left\{ d\left(\pi_{\alpha}(x), \pi_{\alpha}(x)\right), 1 \right\} \right\}$$

If (X, d) is complete, so is (Y, ρ) .

Proof. Let x_n be a Cauchy sequence in Y. This implies $\forall \epsilon > 0$, there exists $N \gg 0$ such that $\sup_{\alpha \in \Lambda} \{d(\pi_{\alpha}(x_N), \pi_{\alpha}(x_n))\} < \frac{\epsilon}{2}$. But this implies that the statement is true for each coordinate, thus we have a Cauchy sequence $\pi_{\alpha}(x_n)$ in X. Let x_{α} be its limit. Then it is immediate that $d(\pi_{\alpha}(x_n), x_{\alpha}) \leq \frac{\epsilon}{2}$. As a result,

$$\rho(x_n, (x_\alpha)) = \sup\{d(\pi_\alpha(x_n), x_\alpha)\} \le \frac{\epsilon}{2} < \epsilon$$

Recall that we can view the set of all (not necessarily continuous) functions $f: X \to Y$ as Y^X . Since Theorem 30.6 applies to any generic set Λ , it also applies to Y^X . This allows us to prove an interesting theorem about the resulting product.

Theorem 30.7. If X is a topological space and (Y, d) is a metric space. The subsets $\mathcal{C}, \mathcal{B} \subseteq Y^X$ of continuous and bounded (resp.) functions from X to Y is closed under ρ .

Corollary 30.8. If Y is a complete metric space, then so are C, B.

Proof. (of Theorem 30.7). The result for continuous functions follows from Lemma 20.2 (whose proof extends naturally to any metric space); A sequence of functions $f_n \in Y^X$ converges to a function f under ρ if and only if it converges uniformly. This is just unravelling definitions:

$$\rho(f_n, f) = \sup_{x \in X} \{ d(f_n(x), f(x)) \}$$

Therefore, it only goes to show that a uniform limit of bounded functions is bounded. But being ϵ away from f_n means $d(f_n(x), f(x)) < \epsilon$ for every x!

As an application, we have the notion of a **completion** of a metric space!

Theorem 30.9. Given a metric space (X, d), there exists an isometric (distance preserving) embedding ι of X into a complete metric space \hat{X} with $\overline{\iota(X)} = \hat{X}$.

Proof. We can consider $\mathcal{B} \subseteq \mathbb{R}^X$ to be the set of bounded functions $X \to \mathbb{R}$. Since \mathbb{R} is complete, Corollary 30.8 allows us to conclude that \mathcal{B} is complete with the uniform metric. Given $a, b \in X$, we can define

$$\phi_b(x) = d(x, a) - d(x, b)$$

By the triangle inequality, ϕ_b is bounded in [-d(a,b),d(a,b)]. Therefore, we can define

$$\iota: X \to \mathcal{B}: b \mapsto \phi_b$$

Note that this map is injective, since

 $x_n \to (x_\alpha)$.

$$\phi_b(b') - \phi_{b'}(b') = d(b, b') - d(b', b') = d(b, b') = 0 \iff b = b'$$

Furthermore, distances are preserved:

$$\rho(\iota(b), \iota(b')) = \rho(\phi_b, \phi_{b'}) = \sup\{|d(x, b) - d(x, b')| \mid x \in X\} \le d(b, b')$$

On the other hand, lettings x = b' or x = b, we see that equality is achieved. Therefore they are equal. The closure statement results by replacing \mathcal{B} with $\overline{\iota(X)}$.

 \hat{X} is called the **completion** of X, and plays a similar role to a compactification.