MEASUREMENT SYSTEM ANALYSIS DEMO -L15 INTEGRATED LOADBOARD PROJECT

- -The objective of this study to perform MSA on automated dc fet tester metrology tool to quantify the source of variation since a new component(Loadboard) from supplier BIM technologies has been added to metrology tool which might affect the performance.
- -No intentional hardware or software changes were performed during the evaluation.
- Also ventured into other data collection areas:

The MSA was done based on the following steps:

- I. Stability
- 2. Accuracy (Bias)
- 3. Linearity
- 4. Precision(Repeatability and Reproducibility)

GENERAL N PROCESS SPECIFIC INFORMATION

The Metrology tool used under study consist of:-

Measurement Equipment :

- a) FET tester to measure the dc parametric
- b) ISMECA test handler to load parts into loadboard, laser marking and sorting into tubes or tape n reel.
- c) LOADBOARD as an interface between FET test and device under test.

Measurement :VDSP,BVGSS,VGS

Process Spec : I) VDSP = 0 - 800 mV

: 2) BVGSS = 4 - 7V

: 3) VGS = 3 - 5 V

Test, Tape & Reel Machine

I)STABILITY-MSA

I) STABILITY THEORY

Gage stability examines how stable the measurements made from metrology tools ie is measurement varies a lot time to time, between part to part or within part when the same part is measured over time with repeated measurements for each time.

2) SAMPLING PLAN/PROCEDURE-STABILITY

- Manufacturing technician will load the same part for three times in auto handler per day for total of 6 days (Day I to Day 6).
- -The three repeated measurements were made per day with current loadboard(BIM) will be recorded.
- DC parametric data(Vds on) will be recorded.

- 1. Stability
- 2. Accuracy (Bias)
- 3. Linearity
- 4. Precision

3) ANALYSIS METHOD/ASSUMPTIONS-MULTIVARI CHART

DC test data on the same part was collected for day I to day 6 and repeated 3 times.

Day	Rep	DC-Vds on
1	1	227
1	2	226
1	3	226
2	1	227
2	2	227
2	3	229
3	1	227
3	2	228
3	3	230
4	1	228
4	2	228
4	3	228
5	1	227
5	2	228
5	3	229
6	1	229
6	2	229
6	3	229
MEAN		227.8888889

- 1. Stability
- 2. Accuracy (Bias)
- 3. Linearity
- 4. Precision

P-value > 0.05 The Vds on data is normally distributed

Multi-Vari chart shows there is no variation for Time to Time, between part to part and within part.
Thus, the Vds on data is STABLE

2) STABILITY-MSA

3) ANALYSIS METHOD/ASSUMPTIONS XB/	AR –R CHART
------------------------------------	-------------

Day	Rep	DC-Vds on
1	1	227
1	2	226
1	3	226
2	1	227
2	2	227
2	3	229
3	1	227
3	2	228
3	3	230
4	1	228
4	2	228
4	3	228
5	1	227
5	2	228
5	3	229
6	1	229
6	2	229
6	3	229
MEAN		227.8888889

• No abnormally shown on Xbar-R chart which indicates that the measurement system is stable.

2. Accuracy (Bias)

3. Linearity

2) ACCURACY(BIAS) -MSA

1. Stability

2. Accuracy (Bias)

3. Linearity

4. Precision

I) BIAS THEORY

Gage bias examines the difference between the observed average measurement and a reference or master value. It answers the question, "How biased is my gage when compared to a master value?"

2) LINEARITY THEORY

Gage linearity tells you how accurate your measurements are through the expected range of the measurements. It answers the question, "Does my gage have the same accuracy for all sizes of objects being measured?"

3) SAMPLING PLAN /PROCEDURE-BIAS AND LINEARITY

- -Firstly three golden parts were selected.
- -Manufacturing tech. will load each of this golden part in automated dc test system and repeats for 5 times to make the 5 measurements for each golden parts.
- -Measured data will be recorded and compared against actual data.

2) ACCURACY(BIAS) -MSA

In order to test either the measurement system is "Bias" or not, one-sample T-test (two sided) is used.

1.Test for Independence

H_O: Data is order independent

H_A: Data is not order independent

Graphical summary

Runs Test: BIAS

Runs test for BIAS

Runs above and below K = -0.1

The observed number of runs = 13

The expected number of runs = 10.12

19 observations above K, 6 below

P-value = 0.101

PART	ACTUAL	REPEATABILITY	VDSON(mV)	BIAS
1	1 226 1		226.1	-0.10
1	226	2	226.2	-0.20
1	226	3	226	0.00
1	226	4	225.9	0.10
1	226	5	226.1	-0.10
1	226	6	226.1	-0.10
1	226	7	226	0.00
1	226	8	225.9	0.10
1	226	9	226.3	-0.30
1	226	10	226.2	-0.20
1	226	11	226.8	-0.80
1	226	12	225.4	0.60
1	226	13	226.4	-0.40
1	226	14	225.5	0.50
1	226	15	226.6	-0.60
1	226	16	16 226	
1	226	17	225.7	0.30
1	226	18	226.2	-0.20
1	226	19	225.9	0.10
1	226	20	226.1	-0.10
1	226	21	226.2	-0.20
1	226	22	225.8	0.20
1	226	23	226.9	-0.90
1	226	24	225.9	0.10
1	226	25	226	0.00
MEAN			226.088	-0.088
MEDIAN			226.1	-0.1
STDEV			0.3444	0.344

DADT ACTUAL DEDEATABLETY VDCON(mV)

1. Stability

2. Accuracy (Bias)

3. Linearity

4. Precision

Conclusion: The observed number of runs, 13, is smaller than the expected number of runs, 10.12. The P-value for the test is 0.101, which is higher than $\alpha =$ 0.05. This result indicates that the data is independent in time order.

2) ACCURACY(BIAS) -MSA

D M A D V

1. Stability

2. Accuracy (Bias)

3. Linearity

4. Precision

2. Test for Normality

H_O: Sample data are normally distributed

H_A: Sample data are not normally distributed

The P-value for the normal probability test is 0.103, which is higher than $\alpha = 0.05$. This result indicates that we fail to reject the null hypothesis (Ho) and accept the distribution as from a normal distribution.

3. Comparison statement

 H_O : No Bias i.e. Mean (observed data) = 0

 H_A : Bias i.e. Mean (observed data) $\neq 0$

One-Sample T: BIAS

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P

BIAS 25 -0.088000 0.344384 0.068877 (-0.230155, 0.054155) -1.28 0.214

The hypothesis result shows P value > 0.05, so fail to reject H_O . It can be interpreted as at the 95% confidence level, estimated that the gage has no significant bias from zero.

4) ANALYSIS METHOD/ASSUMPTIONS

Part	Actual	Measured
1	218	217.9
1	218	217.5
1	218	218.2
1	218	218
1	218	217.9
2	225	224.9
2	225	225.1
2	225	224.9
2	225	224.9
2	225	225.1
3	235	234.9
3	235	235.2
3	235	234.9
3	235	235.1
3	235	235.4

1. Stability

2. Accuracy (Bias)

3. Linearity

4. Precision

** The actual value computed based on industry standard curve traced parts

The hypothesis result shown that all p>0.05. It can be interpreted as at the 95% confidence level, estimated that the gage is performing well in the operating range of 217mV to 235mV.

- D M A D V
 - 1. Stability
 - 2. Accuracy (Bias)
 - 3. Linearity
 - 4. Precision

STEP I: OVERVIEW OF PROCEDURE/SAMPLING PLAN

-For GRnR study, firstly manufacturing tech. will load 9 parts into dc test handler in serialized form to do the measurements using the new load board from vendor BIM. Repeat loading 2X and data will be recorded for the total of 27 measurements per time period.

Due to automation, operator is not a factor here. Instead the data were collected over three time periods (three different days).

Factors Factors	<u>Type</u>	Levels	
I) TIME	Qualitative	3 levels	
2) PART	Qualitative	9 levels per time	
3) READINGS	Qualitative	3 levels per part	

- 1. Stability
- 2. Accuracy (Bias)
- 3. Linearity
- 4. Precision

STEP I: OVERVIEW OF PROCEDURE/SAMPLING PLAN

-The corresponding tree diagram for this study is as shown in BELOW

STEP2: OUTLIERS / ODD DATA POINTS

-There were no unusual measurements observed in the data. The tool continued to perform over the period of the evaluation with no unexpected hardware or software changes being required. An overall summary of the data in terms of its distributional properties is shown below.

- 1. Stability
- 2. Accuracy (Bias)
- 3. Linearity
- 4. Precision

STEP 3: ANALYSIS METHOD/ASSUMPTIONS

Analysis Method

- Analysis of variance method were used to analyze the data and estimate the sources of variability using MINITAB 14.
- Since we are interested in time variability and part variability, time and parts are random factors while the lowest level which Readings is nested within all above factors(Error term).
- -The model used to fit the data was a two factor cross model as shown below:-

Observed Y = Time + Parts + Time*Parts + Error

- -The repeatability of the measurement system is observed from the error term in the model.
- -The reproducibility of the measurement system is obtained from both the Time and Time to Part interactions variance components.
- -The resulting multivariate chart and accompanying variance component estimates text report are shown in next slides. This is a two factor crossed model.

1. Stability

2. Accuracy (Bias)

3. Linearity

STEP 3: ANALYSIS METHOD/ASSUMPTIONS

The above analysis assumes the following:

- I.The repeatability estimate is the same for all parts measured.
- 2. The reproducibility estimate is the same for all parts measured.

1. Stability

2. Accuracy (Bias)

3. Linearity

4. Precision

STEP 4: ANALYSIS RESULTS AND ASSOCIATED GRAPHICS-MULTIVARI CHART

STEP 5: ANOVA ANALYSIS AND VARIANCE COMPONENTS ESTIMATES-VDSP.VGSTAND BVGSS

VARIANCE COMPONENT 1. Stability

2. Accuracy (Bias)

0.18 0.839

1.04 0.428

3. Linearity

```
WERE
ANOVA: VDSP-134 versus TIME, PART
                                                            ZERO
Factor Type
               Levels Values
                                                    ANOVA: VGS1-135 versus TIME, PART
                    3 1, 2, 3
       random
                                                                   Levels Values
                                                    Factor Type
PART
                    9 1, 3, 4, 5, 6, 7, 8,
       random
                                                           random
                                                                        3 1, 2, 3
                                                    TIME
9, 10
                                                    PART
                                                           random
                                                                        9 1, 3, 4, 5
                                                                                           ANOVA: BVGSS-136 versus TIME, PART
Analysis of Variance for VDSP-134
                                                    9, 10
                                                                                                         Levels Values
                                                                                           Factor Type
                                   MS
Source
                       SS
                                                    Analysis of Variance for VGS1-135
                                                                                           TIME
                                                                                                   random
                                                                                                               3 1, 2, 3
TIME
           2 0.000000025 0.000000012 **
                                                                         SS
                                                    Source
                                                                                           PART
                                                                                                               9 1, 3, 4, 5, 6, 7, 8,
                                                                                                   random
PART
           8 0.000958321 0.000119790 **
                                                               2 0.0000542 0.0000271
                                                    TIME
                                                                                            9, 10
TIME*PART 16 0.000000198 0.000000012 **
                                                               8 0.1620987 0.0202623 3
                                                    PART
                                                                                           Analysis of Variance for BVGSS-136
Error
          54 0.000000667 0.000000012
                                                      ME*PART
                                                             16 0.0000971 0.0000061
                                                                                           Source
Total
          80 0.000959210
                                                    Error
                                                              54 0.0002160 0.0000
                                                                                           TIME
                                                                                                      2 0.000004 0.000002
** Denominator of F-test is zero.
                                                   Total
                                                               80 0.1624660
                                                                                           PART
                                                                                                       8 0.471453 0.058932 5187.85 0.000
S = 0.0001111111 R-Sq = 99.93% R-Sq(adj)
                                                   S = 0.002
                                                               R-Sq = 99.87%
                                                                                 Sq(adj)
                                                                                           TIME*PART 16 0.000182 0.000011
                                                                   Expected Mean
                                                                                 quare
                                                                                           Error
                                                                                                      54 0.000587 0.000011
                               Expected Mean S
                                                                  Variance
                                                                                           Total
                                                                                                      80 0.472227
              Variance Error for Each Term (usin
                                                      Source
                                                                 component
                                                                                           S = 0.00329796  R-Sq = 99.88%  R-Sq(adj) = 99.82%
  Source
             component
                         term unrestricted model)
                                                    1 TIME
                                                                   0.00000
                                                                                3 (4)
                                                                                                          Expected Mean Square
               0.00000
  TIME
                            3 (4) + 3 (3) + 27 (1)
                                                   2 PART
                                                                   0.00225
                                                                                3 (4) +
                                                                                                          Variance Error for Each Term (using
2 PART
               0.00001
                            3 (4) + 3 (3) + 9 (2)
                                                    3 TIME*PART
                                                                   0.00000
                                                                                4 (4) +
                                                                                              Source
                                                                                                                     term unrestricted model)
3 TIME*PART
              -0.00000
                            4 (4) + 3 (3)
                                                    4 Error
                                                                   0.00000
                                                                                   (4)
                                                                                            1 TIME
                                                                                                                       3 (4) + 3 (3) + 27 (1)
4 Error
               0.00000
                               (4)
                                                                                           2 PART
                                                                                                                       3 (4) + 3 (3) + 9 (2)
                                                                                           3 TIME*PART
                                                                                                                       4 (4) + 3 (3)
                                                                                           4 Error
```


STEP 5 : ANOVA ANALYSIS-RESPONSES MULTIPLIED BY 1000

₩o	Worksheet 1 ***											
→	C2	СЗ	C4	C5	C6	C7	C8	C9				
	TRIAL	PART	VGS1-135	VGS1*1000-135	BVGSS-136	BVGSS*1000-136	VDSP-134	VDSP*1000-134				
1	1	1	3.414	3414	6.082	6082	0.228	228				
2	1	3	3.382	3382	6.039	6039	0.227	227				
3	1	4	3.318	3318	5.935	5935	0.224	224				
4	1	5	3.353	3353	6.034	6034	0.225	225				
5	1	6	3.350	3350	6.013	6013	0.226	226				
6	1	7	3.411	3411	6.074	6074	0.228	228				
7	1	8	3.286	3286	5.872	5872	0.218	218				
8	1	9	3.377	3377	6.025	6025	0.228	228				
9	1	10	3.432	3432	6.142	6142	0.231	231				
10	2	1	3.408	3408	6.086	6086	0.229	229				
11	2	3	3.381	3381	6.039	6039	0.227	227				
12	2	4	3.316	3316	5.933	5933	0.224	224				
13	2	5	3.351	3351	6.029	6029	0.225	225				
14	2	6	3.349	3349	6.009	6009	0.227	227				
15	2	7	3.410	3410	6.075	6075	0.228	228				
16	2	8	3.286	3286	5.872	5872	0.218	218				
17	2	9	3.374	3374	6.031	6031	0.227	227				
18	2	10	3.428	3428	6.147	6147	0.233	233				
19	3	1	3.412	3412	6.084	6084	0.228	228				
20	3	3	3.384	3384	6.038	6038	0.226	226				

1	Sta	hi	litv

2. Accuracy (Bias)

3. Linearity

D M A D V

STPE 5 : RECOMPUTE ANOVA ANALYSIS N VARIANCE COMPONENTS -BVGSS*1000,

STAT-ANOVA-BALANCED ANOVA

1. Stability

2. Accuracy (Bias)

3. Linearity

ΔN	OVA: VI	OSP*1000	-134 1 versus	TIME PA	ΔRT					
			Levels							ı
			ı 3							
PA:		random				4,	5,	6,	7	,
An	alysi	s of Va	riance for	r VDSP	*10	00-1	134_1			
So	urce	DF	SS		MS		E	,		P
TI	ME	2	0.025	0.0	12		1.00	0	.39	0
PA	RT	8	958.321	119.7	90	970	3.00	0	.00	0
TI	ME*PA	RT 16	0.198	0.0	12		1.00	0	. 47	1
Er	ror	54	0.667	0.0	12					
То	tal	80	959.210							
S	= 0.1	11111	R-Sq = 9	9.93%	R	-Sq	(adj)	=	99	90%
						Expe	ected	l Me	an	Squ
			Variance	Erro	r	for	Each	Te	rm	(us
	Sour	ce	component	ter	m ·	unre	estri	cte	d m	ode
1	TIME		0.0000		3	(4)	+ 3	(3)	+	27
2	PART		13.3086		3	(4)	+ 3	(3)	+	9 (
3	TIME	*PART	-0.0000		4	(4)	+ 3	(3)		
4	Erro	r	0.0123			(4)				
						- ^				

P	NOVA: V	GS1*1000-	135 versus T	IME, PART			
E	actor	Type	Levels	Values			
Г	IME	random	3	1, 2,	3		
E	PART	random	9	1, 3	, 4,	5,	6,
	9, 10						
P	Analysi	s of Va	riance fo	or VGS1*	1000-1	L35	
5	Source	DF	SS	3 1	MS		F
Г	CIME _	2	54.2	27	.1	4.4	7
		8	162098.7	20262	.3 33	339.2	7
	-ME^PA	RT 16	97.1	. 6	.1	1.5	2
E	lrror	54	216.0) 4	. 0		
T	otal	80	162466.0)			
	7 5	R-Sq =	99.87%	R-Sq(a	dj) =	99	
	\\	d Mean	Square				
5	(using		Variance	e Error	for	tach	T€
9			component	+0~~	112.20		1
1	TIME		0.78		(4)		
	(1)		0.76	, 5	(4)	T 3	(5)
2	PART		2250.70) 3	(4)	+ 3	(3)
3	3 TIME	*PART	0.69	9 4	(4)	+ 3	(3)
4	Erro	r	4.00)	(4)		
							-1

	AN	OVA: B\	/GSS*:	1000)-136 versus	TIME, PA	ART						
6,	Fa	ctor	Туре	9	Levels	Value	es						
	TI	ME	rand	dom	3	1, 2	, 3						
	PA	RT	rand	dom	9	1,	3,	4,	5,	6,	7,	8,	
,	9	, 10											
7	An	alysi	s of	Vai	riance f	or BVG	SS*	1000-1	L36				
	So	urce	Ι	OF	SS	MS		E	?	Р			
	TI	ME		2	4	2		0.18	3 0	.839			
	PA	RT		8	471453	58932	5	187.85	5 0	.000			
J		*PA	RT 1	L 6	182	11		1.04	1 0	.428			
	_	r	Ü	54	587	11							
	То	tal	8	30	472227								
Тє													
	1	= 3.2	9796	Ι	R-Sq = 9	9.88%	R-	-Sq(ac	dj)	= 99	.82%		
					Expecte	d Mean	Sqı	ıare					
7	\mathcal{V}				Varianc	e Erro	or	for E	Each	Terr	n (u	sing	
(3)		Sour	ce	(componen	t te	rm	unres	stri	cted	mod	el)	
(3)	1	TIME			-0.3	5	3	(4)	+ 3	(3) -	+ 27	(1)	
	2	PART			6546.7	0	3	(4) +	+ 3	(3) -	+ 9	(2)	
	3	TIME	*PARI	ľ	0.1	6	4	(4)	+ 3	(3)			
	4	Erro	r		10.8	8		(4)					

D M A D V

STEP 6: PARETO CHART FOR SOURCE-BVGSS, VGS I AND VDS ON

1. Stability

2. Accuracy (Bias)

3. Linearity

4. Precision

Conclusion: Majority of variation in measurement system coming from part itself which is part of the process which is accountable for >99% of total variation.

W	orksheet 2 ***	*	CCXV	UU
+	C7-T	C8	OB COM	C10
	SOURCE_1	VAR .COMP_1	‰Ì⊎ÌAL_1	TrueVarComp_1
1	TIME	0.78	0.0346	0.0000007800
2	PART	2250.70	99.7130	0.0022507000
3	TIME*PART	0.69	0.0305	0.0000006900
4	Error	4.00	0.1777	0.0000040000
			-	

= Error term = 0.000004

 $= \sigma^2_{PART} + \sigma^2_{MS} = 0.00225070 +$

0.00000547

Repeatability, σ_{RPT} =	= 0.002
Reproducibility, σ^2_{RPD} =	Time + Time* Part = 0.00000078 + 0.00000069
Reproducibility, σ _{RPD} =	0.0012124
Measurement, $\sigma^2_{MS} = \sigma^2_{RPT}$	$+ \sigma^2_{RPD} = 0.000004 + 0.00$ 0147
Measurement, σ _{MS}	= 0.002338 (Precision)
Part Variability, σ ² _{PART}	= 0.00225070

Repeatability, σ^2_{RPT}

tal Variability, σ²_{TOTAL}

$Iotal Variability, \sigma_{TOTAL} = 0.04/4991$
% R & Æ (σ _{MS} /σ _{TOTAL})*100=(0.002338/0.0474991)*100=4.92%
% P/T = (6* σ_{MS} / USL-LSL)*100=(6*0.002338/3)*100= 0.47%

			VPS		1. Stability		
🏢 Worksheet 2 ***					2 ^4	Pauracy (Rias)	
I	+	C1-T	C2		3. AC	curacy (Bias)	
ı		SOURCE	VAR.COMP	% T	3. Lir	nearity	
ı	1	TIME	0.0000	0.0	4 5	recision	
ı	2	PART	13.3086	99.9	4. Pr		
ı	3	TIME*PART	0.0000	0.00000 0.09230		0.0000000000	
	4	Error	0.0123			0.0000000123	
			2				

Repeatability, σ_{RPT}^2 = Error term = 0.0000000123							
Repeatability, $\sigma_{RPT} = 0.000111$							
Reproducibility, σ_{RPD}^2 = Time + Time* Part =0+0							
Reproducibility, $\sigma_{RPD} = 0.0000$							
Measurement, $\sigma^2_{MS} = \sigma^2_{RPT} + \sigma^2_{RPD} = 0.0000000123+0$							
Measurement, $\sigma_{MS} = 0.000111(Precision)$							
Part Variability, $\sigma^2_{PART} = 0.0000133086$							
Total Variability, $\sigma^2_{TOTAL} = \sigma^2_{PART} + \sigma^2_{MS}$							
Total Variability, $\sigma_{TOTAL} = 0.003649$							
% R & R = $(\sigma_{MS} / \sigma_{TOTAL})*100=(0.00011/0.003649)*100=3%$							
% P/T = $(6*\sigma_{MS}/USL-LSL)*100 = 6*0.00011/(0.8)*100$							
= 0.08%							

Conclusion

The percentage variation for both %RR and %P/T is less than 10%. In this experiment we do not have process variation, σ process however the spec. limits are specified. This measurement process is deemed acceptable. From the GRR study total six sigma spread for Bygss is 0.019V while for Vgs1 is 0.014V while for Vdson is 0.0006V which is rather low.

Two-Way ANOVA Table Without Interaction

Source DF SS MS F P
PART 8 0.471453 0.0589317 5363.79 0.000
TIME 2 0.000004 0.0000020 0.18 0.833
Repeatability 70 0.000769 0.0000110

Total 80 0.472227

Gage R&R

%Contribution

 Source
 VarComp (of VarComp)

 Total Gage R&R
 0.0000110 0.17

 Repeatability
 0.0000110 0.17

 Reproducibility
 0.0000000 0.00

 TIME
 0.0000000 0.00

 Part-To-Part
 0.0065467 99.83

 Total Variation
 0.0065577 100.00

		Study Var	%Study Var	%Tolerance	
Source	StdDev (SD)	(6 * SD)	(%SV)	(SV/Toler)	
Total Gage R&R	0.0033147	0.019888	4.09	0.66	
Repeatability	0.0033147	0.019888	4.09	0.66	
Reproducibility	0.0000000	0.000000	0.00	0.00	
TIME	0.0000000	0.000000	0.00	0.00	
Part-To-Part	0.0809119	0.485472	99.92	16.18	
Total Variation	0.0809798	0.485879	100.00	16.20	

Conclusion: The gauge is suitable for maintaining Bygss within specification limits since %PT <<< 10% which is 0.66%. The gauge also suitable for process improvement since % R+R is < 10% which is 4.09%.

Gage R&R Study - ANOVA Method
Two-Way ANOVA Table With Interaction
Source DF SS MS F P
PART 8 0.162099 0.0202623 3339.27 0.000
TIME 2 0.000054 0.0000271 4.47 0.029
PART * TIME 16 0.000097 0.0000061 1.52 0.128
Repeatability 54 0.000216 0.0000040
Total 80 0.162466
Gage R&R

%Contribution

VarComp (of VarComp) Source Total Gage R&R 0.0000055 0.24 Repeatability 0.0000040 0.18 Reproducibility 0.0000015 0.07 0.0000008 0.03 TIME*PART 0.0000007 0.03 0.0022507 99.76 Total Variation 0.0022562 100.00

Source	StdDev (SD)	(6 * SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.0023386	0.014032	4.92	0.47
Repeatability	0.0020000	0.012000	4.21	0.40
Reproducibility	0.0012121	0.007272	2.55	0.24
TIME	0.0008831	0.005298	1.86	0.18
TIME*PART	0.0008302	0.004981	1.75	0.17
Part-To-Part	0.0474415	0.284649	99.88	9.49
Total Variation	0.0474991	0.284995	100.00	9.50

Conclusion: The gauge is suitable for maintaining Vgs I within specification limits since %PT <<< 10% which is 0.47%. The gauge also suitable for process improvement since % R+R is < 10% which is 4.92%.

Two-Way ANOVA Table Without Interaction

ource DF SS MS F P

PART 8 0.0009583 0.0001198 9703 0.000 TIME 2 0.0000000 0.0000000 1 0.373

Repeatability 70 0.0000009 0.0000000

Total 80 0.0009592

Gage R&R

%Contribution

 Source
 VarComp (of VarComp)

 Total Gage R&R
 0.0000000
 0.09

 Repeatability
 0.0000000
 0.09

 Reproducibility
 0.0000000
 0.00

 TIME
 0.0000000
 0.00

 Part-To-Part
 0.0000133
 99.91

 Total Variation
 0.0000133
 100.00

Study Var %Study Var %Tolerance

		-	-		
Source	StdDev (SD)	(6 * SD)	(%SV)	(SV/Toler)	
Total Gage R&R	0.0001111	0.0006667	3.04	0.08	
Repeatability	0.0001111	0.0006667	3.04	0.08	_
Reproducibility	0.0000000	0.0000000	0.00	0.00	
TIME	0.0000000	0.0000000	0.00	0.00	
Part-To-Part	0.0036481	0.0218886	99.95	2.74	
Total Variation	0.0036498	0.0218988	100.00	2.74	

Number of Distinct Categories = 46

Conclusion: The gauge is suitable for maintaining Vdsp within specification limits since %PT <<< 10% which is 0.08%. The gauge also suitable for process improvement since % R+R is < 10% which is 3.04%.