Algèbre 2

Extensions séparables

Question 1/5

K est parfait

Réponse 1/5

Question 2/5

CNS pour
$$\mathbb{K}$$
 parfait $\operatorname{car}(\mathbb{K}) = p > 0$

Réponse 2/5

frob $_p$ est surjectif En particulier, si $\mathbb{K} = \mathbb{K}^a$ ou \mathbb{K} est fini, \mathbb{K} est parfait

Question 3/5

CNS pour P' = 0 pour $P \in \mathbb{K}[X]$, car(K) = 0

Réponse 3/5

Il existe
$$S \in \mathbb{K}[X]$$
 tel que $P(X) = S(X^p)$
Il existe $Q \in \mathbb{K}^a[X]$ tel que $P = Q^p$, c'est vrai
pour Q tel que $Q^{\sigma} = S$ où

$$\left(\sum_{i=1}^n (c_i X^i)\right)^{\sigma} = \sum_{i=1}^n (c_i^p X^i)$$

Question 4/5

Polynôme séparable Polynôme inséparable Polynôme totalement inséparable

Réponse 4/5

P est un polynôme irréductible¹ $P \text{ est séparable si } P' \neq 0$ P est inséparable si P' = 0 $P \text{ est pûrement inséparable si } P = (X_a)^{p^n} \text{ avec}$ $a \in \mathbb{K}^a$

^{1.} Pour une définition générale, voir racines des polynômes minimaux

Question 5/5

$$a \in \mathbb{K}^{a}$$
 est séparable $a \in \mathbb{K}^{a}$ est inséparable $a \in \mathbb{K}^{a}$ est totalement inséparable

Réponse 5/5

 $P_{\alpha,\mathbb{K}}$ l'est