Programme n°10

ELECTROCINETIQUE

EL2 Les circuits linéaires

Cours et exercices

EL3 Les circuits linéaires du premier ordre

Cours et exercices

EL4 Les oscillateurs amortis (Cours uniquement)

- Observation Circuit électrique
 - Dispositif mécanique
 - Conclusion
- Mise en équation
- Pour le circuit électrique
- → Cas général
- \rightarrow Cas particulier où R = 0 Ω
- Pour le dispositif mécanique
- Analogie entre la mécanique t l'électricité
- Forme canonique (introduction du facteur de qualité)
- Résolution
- Recherche générale - Cas où Q <1/2
- Cas où Q > 1/2
- Cas intermédiaire Q = 1/2
- En résumé
- Introduction à l'échelon de tension

- introduction a recheion de tension	Supuotes exiginies
7. Oscillateurs amortis	
Circuit RLC série et oscillateur mécanique amorti par frottement visqueux.	Mettre en évidence la similitude des comportements des oscillateurs mécanique et électronique. Réaliser l'acquisition d'un régime transitoire du deuxième ordre et analyser ses caractéristiques.
	Analyser, sur des relevés expérimentaux, l'évolution de la forme des régimes transitoires en fonction des paramètres caractéristiques.
	Prévoir l'évolution du système à partir de considérations énergétiques.
	Prévoir l'évolution du système en utilisant un portrait de phase fourni.
	Écrire sous forme canonique l'équation différentielle afin d'identifier la pulsation propre et le facteur de qualité.
	Connaître la nature de la réponse en fonction de la valeur du facteur de qualité.
	Déterminer la réponse détaillée dans le cas d'un régime libre ou d'un système soumis à un échelon en recherchant les racines du polynôme caractéristique.

INTRODUCTION A LA MECANIQUE QUANTIQUE

Cours uniquement

CINETIQUE CHIMIQUE

CX1. Généralité sur la cinétique chimique

Cours uniquement

CX2 Cinétique formelle, réaction et ordre

Cours et exercices

TP

La lunette astronomique : le cercle oculaire, diphragmes et pupilles, mesure du grossissement Le goniométre : lampe à vapeur de sodium, à vapeur de mercure : spectroscopie à réseau. Mesure de résistances, montage longue ou courte dérivation. Incertitudes de mesure.