Medians and Order Statistics

CS 624 — Analysis of Algorithms

February 20, 2024

Midterm Exam 1

- ► **Tentative dates:** The midterm exam will take place on either March 5 (Tuesday) or March 7 (Thursday), in class.
- Covered material: Induction, runtime analysis, sorting (mergesort, insertion sort, quicksort, heapsort, lower bounds), heaps, medians and order statistics, binary search trees. Not covered: dynamic programming.
- ► The previous class will be partly a review class.
- Prepare your own questions to ask me!

Midterm Exam 1

- Probably 4 questions. Assume every topic will be covered.
- No books, no computers, no cellphones/smartphones/tablets, strictly no friends.
- You may bring up to 20 pages of handwritten notes.
 (That is, 20 pieces of paper, up to letter size.)
 No printouts, no photocopies.

Medians and Order Statistics

Definition (Order Statistic)

The i^{th} order statistic is the i^{th} smallest element of a set of n elements.

In particular:

- ightharpoonup minimum = 1^{st} order statistic
- **maximum** = n^{th} order statistic
- median: "half-way point" of the set
 - ▶ the **lower median** is at $\lfloor (n+1)/2 \rfloor$
 - ▶ the **upper median** is at $\lceil (n+1)/2 \rceil$
 - ightharpoonup same when n is odd, different when n is even
 - ► for simplicity, "median" refers to the lower median

Selection Problem

Definition (Selection Problem)

The **selection problem** is defined as follows:

- ▶ Input: A set A of n **distinct** numbers and a number k, with $1 \le k \le n$.
- ▶ Output: the element $x \in A$ that is larger than exactly k-1 other elements of A (that is, the k^{th} order statistic).

Can be solved in $O(n \log n)$ time. How?

Selection Problem

Definition (Selection Problem)

The **selection problem** is defined as follows:

- ▶ Input: A set A of n **distinct** numbers and a number k, with 1 < k < n.
- ▶ Output: the element $x \in A$ that is larger than exactly k-1 other elements of A (that is, the k^{th} order statistic).

Can be solved in $O(n \log n)$ time. How?

There are faster, linear-time algorithms.

- For the special cases when k = 1 and k = n.
- ► For the general problem.

Minimum and Maximum

The minimum or maximum can be found in $\Theta(n)$ time.

► Simply scan all the elements and find the smallest/largest.

Some applications need to determine both the minimum and maximum of a set of elements.

Example: Graphics program trying to fit a set of points onto a rectangular display.

Calculating the minimum and maximum independently requires 2n-2 comparisons. Can we reduce this number?

The algorithm sketch:

- maintain *min* and *max* elements seen so far
- process elements in pairs, compare to get smaller and larger
- compare smaller to min and larger to max, update

There are 3 comparisons per pair, and $\lfloor n/2 \rfloor$ pairs.

The algorithm sketch:

- maintain *min* and *max* elements seen so far
- process elements in pairs, compare to get smaller and larger
- ightharpoonup compare smaller to min and larger to max, update

There are 3 comparisons per pair, and $\lfloor n/2 \rfloor$ pairs.

Analysis:

- For odd n: initialize min and max to A[1]. Pair the remaining elements. So, number of pairs $= \lfloor n/2 \rfloor$.
- For even n: initialize min to the smaller of the first pair and max to the larger. So, remaining number of pairs $=(n-2)/2<\lfloor n/2\rfloor$.
- ▶ Total number of comparisons, $C \le 3|n/2|$.
- For odd n: $C = 3\lfloor n/2 \rfloor$.
- For even n: $C = 3(n-2)/2 + 1 = 3n/2 2 < 3\lfloor n/2 \rfloor$.

Finding k^{th} Smallest Element

Can we use a similar method for any order statistic in linear time?

- ▶ The cost of finding the k^{th} order statistic using either of these methods is $\Theta(kn)$. If k is fixed, this is $\Theta(n)$.
- ▶ If k is not fixed, this is not so good. For instance, suppose we want to find the median. Then k is n/2, and the cost is $\Theta(n^2)$, worse than sorting the array.

Is there an O(n) time (independent of k) algorithm for selecting the k^{th} order statistic?

Finding k^{th} Smallest Element

Can we use a similar method for any order statistic in linear time?

- ▶ The cost of finding the k^{th} order statistic using either of these methods is $\Theta(kn)$. If k is fixed, this is $\Theta(n)$.
- ▶ If k is not fixed, this is not so good. For instance, suppose we want to find the median. Then k is n/2, and the cost is $\Theta(n^2)$, worse than sorting the array.

Is there an O(n) time (independent of k) algorithm for selecting the k^{th} order statistic? Yes:

- ightharpoonup a simple algorithm with expected O(n) complexity
- ightharpoonup a variant with worst-case O(n) complexity

General Selection Problem

Given: array A of size n and k such that $1 \le k \le n$

- ▶ If the array A were sorted, we would simply find the k^{th} order statistic at A[k]. But we don't actually care if A is completely sorted, as long as A[k] contains the right element.
- ► That is one of the properties that Quicksort establishes: Once Partition chooses a pivot and that call to Partition completes, that pivot never moves again.
- We modify Quicksort to eliminate unnecessary work: We only recur on the side containing k.
- In the average case, the cost of the Partition steps should be

$$n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\cdots=2n$$

That is, O(n) average-case complexity.

Randomized Select

Algorithm 1 Randomized Select (A, p, r, k_{rel})

```
Require: 1 \le k_{\rm rel} \le r - p + 1
 1: if p = r then
    return A[p]
 3 end if
 4: q \leftarrow \text{RandomizedPartition}(A, p, r)
 5: q_{rel} \leftarrow q - p + 1
 6: if k_{\rm rel} = q_{\rm rel} then
    return A[q]
 8: else if k_{\rm rel} < q_{\rm rel} then
       return Randomized Select (A, p, a-1, k_{rol})
10: else
       return RandomizedSelect(A, q + 1, r, k_{rel} - q_{rel})
 11:
12: end if
```

Randomized Select

Notation used in the algorithm RandomizedSelect:

- ightharpoonup p, q, and r are indices in the original array A.
- ▶ q_{rel} is the 1-based index of the pivot A[q] in the subarray $A[p \dots r]$ that is, relative to the range $[p \dots r]$.

Analysis

We see that Randomized-Select is divided into 3 cases:

- 1. $q_{
 m rel} < k_{
 m rel}$, so we search for the $(k_{
 m rel} q_{
 m rel})^{th}$ element in $A[q+1 \ .. \ r]$
- 2. $q_{
 m rel}=k_{
 m rel}$, so we found it, and we return A[q]
- 3. $q_{
 m rel}>k_{
 m rel}$, so we search for the $k_{
 m rel}^{\it th}$ element in $A[p\mathinner{...} q-1]$

Analysis

Worst-case complexity:

 $ightharpoonup \Theta(n^2)$ — (Like Quicksort) We could get unlucky and always recur on a subarray that is only one element smaller.

Average-case complexity:

- $\Theta(n)$ Intuition: Because the pivot is chosen at random, we expect that we get rid of half of the list each time we choose a random pivot q.
- ▶ Why $\Theta(n)$ and not $\Theta(n \log n)$?

Average-Case Analysis

Let C(n,i) denote the average running time of RandomizedSelect(A, 1, n, i).

Let T(n) denote the worst average-case time of computing any i^{th} element of an array of size n using RandomizedSelect. That is:

$$T(n) = \max \left\{ C(n,i) \mid 1 \leq i \leq n \right\}$$

We will prove that T(n) = O(n).

Average-Case Analysis

The cost of Partition is O(n), so we can bound it by an for some a. Therefore:

$$C(n,i) \leq an + rac{1}{n} \Biggl(\sum_{q=1}^{i-1} C(n-q,i-q) + 0 + \sum_{q=i+1}^{n} C(q-1,i) \Biggr)$$

- ► The call to RandomizedSelect has two parts:
 - \blacktriangleright the Partition call, whose cost is an, and
 - ▶ the recursive call, whose cost varies depending on the location of the pivot which we denote q (really should be q_{rel}).
- We assume that the pivot is equally likely to wind up in any of the n positions in the array, and we average over all those n possibilities.
- ightharpoonup Inside the parentheses is the sum of the n possible pivots q:
 - the first term is if the pivot falls before i
 - the second term is if the pivot is exactly i (we just return)
 - ightharpoonup the third term is if the pivot falls after i

Average-Case Analysis

$$egin{aligned} C(n,i) & \leq an + rac{1}{n} \left(\sum_{q=1}^{i-1} C(n-q,i-q) + 0 + \sum_{q=i+1}^{n} C(q-1,i)
ight) \ & \leq an + rac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1)
ight) \ & \leq \max \left\{ an + rac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1)
ight) \, \middle| \, 1 \leq i \leq n
ight\} \ & = an + \max \left\{ rac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1)
ight) \, \middle| \, 1 \leq i \leq n
ight\} \end{aligned}$$

Average-Case Analysis — Explanation

- Note: i is a separate variable, different from the i in the left-hand side C(n,i). In fact, in the final inequality for C(n,i), the right-hand side no longer depends on i.
- ightharpoonup Substituting in the definition of T(n), we get:

$$egin{aligned} T(n) &= \max \left\{ C(n,i) \mid 1 \leq i \leq n
ight\} \ &\leq an + \max \left\{ rac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^n T(q-1)
ight) \, \middle| \, 1 \leq i \leq n
ight\} \end{aligned}$$

We'll guess that T(n)=O(n) and prove by induction that T(n)=Cn satisfies the inequality above.

Theorem

Suppose that

$$T(n) \leq an + \max \left\{ rac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^n T(q-1)
ight) \, \middle| \, 1 \leq i \leq n
ight\}$$

Then $T(n) \leq Cn$ for some C > 0.

Proof.

Base Case: We can arrange that this is true for n=2 by making sure (when we finally figure out an appropriate value for C) that $C \ge a$.

Inductive Case: We must show that $T(n) \leq Cn$.

IH: Assume that $T(k) \le Ck$ for all $1 \le k < n$.

Proof.

We start with the recursive inequality:

$$\begin{split} T(n) &\leq an + \max\left\{\frac{1}{n}\left(\sum_{q=1}^{i-1}T(n-q) + \sum_{q=i+1}^{n}T(q-1)\right) \,\middle|\, 1 \leq i \leq n\right\} \\ &\leq an + \max\left\{\frac{C}{n}\left(\sum_{q=1}^{i-1}(n-q) + \sum_{q=i+1}^{n}(q-1)\right) \,\middle|\, 1 \leq i \leq n\right\} \\ &= an + \max\left\{\frac{C}{n}\left((i-1)n - \frac{(i-1)i}{2} + \frac{(n-1)n}{2} - \frac{(i-1)i}{2}\right) \,\middle|\, 1 \leq i \leq n\right\} \\ &= an + \max\left\{\frac{C}{n}\left((i-1)n - (i-1)i + \frac{(n-1)n}{2}\right) \,\middle|\, 1 \leq i \leq n\right\} \end{split}$$

Proof.

- We have to find the maximum of (i-1)n (i-1)i= $-i^2 + (n+1)i - n$ between i=1 and i=n. This is a concave function of i; in fact, it's an "upside-down parabola", and so its maximum occurs where the derivative is 0.
- ▶ The derivative is -2i + (n+1) and this is 0 when $i = \frac{n+1}{2}$.
- ightharpoonup So the maximum value of the expression (i-1)n-(i-1)i, which is also (i-1)(n-i), is

$$\left(rac{n+1}{2}-1
ight)\!\left(n-rac{n+1}{2}
ight)=rac{n-1}{2}rac{n-1}{2}=rac{(n-1)^2}{4}$$

Proof.

So we have

$$egin{align} T(n) & \leq an + rac{C}{n} \Big(rac{(n-1)^2}{4} + rac{(n-1)n}{2}\Big) \ & = an + rac{C}{n} \Big(rac{n^2 - 2n + 1}{4} + rac{n^2 - n}{2}\Big) \ & = an + rac{C}{n} \Big(rac{3n^2}{4} - n + rac{1}{4}\Big) \ & = an + C \Big(rac{3n}{4} - 1 + rac{1}{4n}\Big) \ & \leq an + Crac{3n}{4} & ext{for } n \geq 1 \ & = \Big(a + rac{3}{4}C\Big)n \ \end{pmatrix}$$

Proof.

So we can fix C finally so that

- $ightharpoonup C \geq a$, and
- ▶ $a + (3/4)C \le C$

For instance, C=4a would work.

Then we get $T(n) \leq Cn$ and we are done.

Selection in Worst-Case Linear-Time

The previous algorithm has expected O(n) running time, but the worst case is $O(n^2)$, like Quicksort.

There is a variant that runs in O(n) time in the worst case:

- instead of picking a random pivot, use the median of medians
- divide the input range A[p ... r] into $\lfloor n/5 \rfloor$ groups of 5
- sort each group to find its median
- recursively find the median of the group medians
- that is a good enough pivot to guarantee linear complexity

Let m be the median of medians. In each full column to the left or right of m, 3 of the 5 elements are < or > to m, respectively.

Analysis of Select

Let T(n) be the running time of Select using median of medians:

- ▶ sort each group of 5 to find its median $-O(5^2)\lfloor n/5 \rfloor = \Theta(n)$
- lacktriangle recursively find the median of the group medians $T(\lfloor n/5 \rfloor)$
- ightharpoonup partition using the median of medians as pivot $\Theta(n)$
- recur on one of the partitions $\le T(7n/10)$ (?!)

To summarize:

$$T(n) \leq T(n/5) + T(7n/10) + \Theta(n)$$

We can use guess and prove to show that this is O(n). We also know $T(n) = \Omega(n)$, so we get $T(n) = \Theta(n)$.