Algorithmen und schriftliche Datenstrukturen 1 Einzelpruefung	11.10.2004	1
---	------------	---

Aufgabe 1 [2]

- a. [1,5] Schreiben Sie eine Funktion in C++ deren Laufzeitkomplexität gleichzeitig die Ordnungen $O(n^3)$, $\Omega(n)$ und $\Theta(n^2)$ hat.
- b. [0,5] Was versteht man unter der algorithmischen Lücke? Geben Sie jeweils ein Beispiel für eine geschlossene, bzw. offene algorithmische Lücke an.

Algorithmen und Datenstrukturen 1	schriftliche Einzelpruefung	11.10.2004		2
--------------------------------------	--------------------------------	------------	--	---

Aufgabe 2 [2]

- a. [1,5] Begründen Sie informell, warum Sortieralgorithmen, die auf dem Prinzip des Wertevergleichs und -austauschs basieren (Comparison Sort Verfahren), eine minimale Laufzeitkomplexität von $n \log(n)$ haben.
- b. [0,5] Gibt es Sortierverfahren, die eine bessere Laufzeitkomplexität als $O(n \log(n))$ erreichen können? Belegen Sie Ihre Antwort anhand eines Beispiels.

Aufgabe 3 [2]

Gegeben ist ein ungerichteter Graph G=(V,E) mit $V=\{1,2,3,4,5,6\}$ und $E=\{[1,2],[1,6],[2,3],[2,6],[3,4],[3,5],[3,6],[4,5],[5,6]\}.$

- a. [0,2] Skizzieren Sie den Graphen
- b. [0,2] Geben Sie eine Adjazenzmatrix für den Graphen an
- c. [0,8] Traversieren Sie den Graphen mit dem depth first Algorithmus
- d. [0,8] Traversieren Sie den Graphen mit dem breadth first Algorithmus

Beim Traversieren starten Sie jeweils vom Knoten 1 und geben die Reihenfolge der besuchten Knoten an.

Algorithmen und schriftliche Datenstrukturen 1 Einzelpruefung	11.10.2004	4
---	------------	---

Aufgabe 4 [2]

Die Analyse dreier Algorithmen hat folgende Rekurrenzgleichungen für deren Laufzeitverhalten ergeben:

Algorithmus A: $T(n) = 9 * T(n/3) + n^2$

Algorithmus B: $T(n) = T(n/9) + n^2/2$

Algorithmus C: $T(n) = 8 * T(n/2) + 5n^2$

- a. [1,5] Berechnen Sie das asymptotische Laufzeitverhalten (in Θ -Notation) für alle drei Algorithmen.
- b. [0,3] Ordnen Sie die drei Algorithmen nach aufsteigender Laufzeitkomplexität beginnend mit dem 'Schnellsten'.
- c. [0,2] Ist es möglich, dass der 'schnellste' Algorithmus für bestimmte Problemgrößen eine wesentlich größere Laufzeit aufweist, als die anderen beiden? Begründen Sie Ihre Antwort.

Algorithmen und schriftliche Datenstrukturen 1 Einzelpruefung	11.10.2004	5
---	------------	---

Aufgabe 5 [1]

Die Werte 17, 99, 21, 85, 39, 3, 47, 62, 81, 25 sollen mittels Bucket Sort unter Verwendung von 10 Buckets sortiert werden.

- a. $\left[0,2\right]$ Geben Sie passende Intervallgrenzen für die Buckets an.
- b. [0,5] Skizzieren Sie den Zustand (Inhalt) der Buckets nach dem Einfügen der Werte jeweils vor und nach dem Durchführen des Selection Sort innerhalb der Buckets.

Algorithmen und Datenstrukturen 1	schriftliche Einzelpruefung	11.10.2004		6
--------------------------------------	--------------------------------	------------	--	---

Aufgabe 6 [1]

Erklären Sie die Algorithmenentwurfsparadigmen greedy, divide and conquer und dynamic programming. Geben Sie jeweils einen Beispielalgorithmus für jedes Paradigma an.