

## Escopo da disciplina:

Unidade 1:
INTRODUÇÃO À
LOGICA

> O due librica?

> Aure estudar lógica?

> Histórico e evolução.

Unidade 2:

#### LÓGICA PROPOSICIONAL

- >> Introdução: proposições, princípios, operadores lógicos;
- >> Linguagem: sintaxe e semântica;
- >> Métodos para verificar a validade de fórmulas: (a) tabelas verdade, (b) método da refutação, (c) dedução formal
- >> Formalização de problemas.

Unidade 3:

#### LÓGICA DE PREDICADOS

- >> Introdução;
- >> Linguagem: sintaxe e semântica;
- >> Métodos para verificar a validade de fórmulas: dedução formal;
- >> Formalização de Problemas.

Unidade 4:

FORMALIZAÇÃO DE PROGRAMAS E SISTEMAS DE COMPUTAÇÃO SIMPLES

>> PROgramming in LOGic (PROLOG)







#### Exemplos de proposições:

São proposições:

- 1. Paraguai e Brasil são países vizinhos.
- 2. Blumenau é a capital do Brasil.
- 3.  $4 \times 3 = 3 \times 4$
- 4. Vou ao cinema se e somente se conseguir dinheiro.
- 5. As rosas são vermelhas.
- 6. As violetas são brancas.
- 7. As rosas são vermelhas e as violetas são brancas.

# Contraexemplos de proposições:

#### Não são proposições:

- 1. Onde você mora?
- 2. 8-16
- 3. Escreva um verso.
- 4. Triângulo equilátero.
- 5. x 6 = 5







## Quais das seguintes sentenças são proposições?

- a) 1 + 4 = 5
- b) 8 não é um número ímpar.
- c) A Terra é arredondada.
- d) x > 7
- e) Elefante branco.
- f) Você fala italiano?
- g) Leia o livro texto.

proposição, V proposição, V proposição, V afirmação, mas não proposição não é proposição não é proposição não é proposição



## Princípios

#### Princípio da Identidade:

Uma proposição verdadeira é verdadeira, uma proposição falsa é falsa.

- A é A e não pode ser B, C ou D
- Uma proposição é o que é.



#### Princípios

#### Princípio da Não Contradição:

- Uma proposição não pode ser falsa e verdadeira ao mesmo tempo.
  - Maria é e não é Catarinense.
- Uma coisa não pode ser e não ser ao mesmo tempo.
- Uma proposição e a sua negação não podem ser simultaneamente verdadeiras.
- Duas proposições contraditórias não podem ser simultaneamente verdadeiras.



#### Princípios

#### Princípio do Terceiro Excluído:

- Qualquer proposição é verdadeira ou é falsa, não podendo ser nada mais do que isso.
- Não há meio termo.





## Valor Lógico das Proposições

 V ou 1 - True (Verdadeiro) se uma proposição é verdadeira

F ou 0 - False (Falso)
 se uma proposição é falsa



## Proposições: Tipos

• Tipos:

| Simples (Atômica)     | Composta                                                                                               |
|-----------------------|--------------------------------------------------------------------------------------------------------|
| Apenas uma proposição | Combinação de uma ou mais proposições simples por meio de elementos chamados operadores ou conectivos. |
| Ex.: José é careca.   | Ex.: José é careca e Pedro é estudante.                                                                |



#### Proposições: Tipos

 Proposições são representadas por letras chamadas símbolos proposicionais:

P, Q, R, S, P1, Q1, R1, S1, P2, Q2, R2, S2,

- P = José é careca.
- Q = Pedro é estudante
- (P ∧ Q) = José é careca e Pedro é estudante.



#### Conectivos Proposicionais ou Operadores Lógicos





# Conectivos Proposicionais: **Exemplos**

- Conjunção: ^ (e)
  - Paulo é advogado e Maria é enfermeira.
- P ^ Q
- Disjunção: V (ou)
  - Paulo é contador ou Joana é médica.
- P V Q
- Implicação: → (Se...então)
  - Se eu viajar então não irei a escola.
  - $P \rightarrow Q$
- Bi-Implicação: 
   ← (se e somente se)
  - Você será aprovado nesta disciplina se e somente se estudar bastante.
- $\bullet$  P  $\longleftrightarrow$  0
- Negação: ¬ ~ (não)
  - O Sol **não** é verde.
- ~ F



## Lógica Proposicional

 A especificação da linguagem da lógica proposicional envolve:

**Sintaxe:** regras para escrever fórmulas bem formadas a partir de símbolos proposicionais, de pontuação, de conectivos proposicionais.

Exemplo na aritmética:

$$\checkmark$$
 x+y=4



## Lógica Proposicional

**Semântica:** regras para determinar o significado das fórmulas.

- Exemplo:
- a sentença "x+y=4" é verdadeira em um mundo no qual x=2 e y=2, mas é falsa em um mundo em que x=1 e y=1.



#### Lógica Proposicional: Sintaxe da Linguagem

É constituida pelos seguintes símbolos:

- símbolos de pontuação:
  - ( )
- símbolos verdade:
  - True (Verdadeiro V), False (Falso F); 0 e 1
- símbolos proposicionais:
  - P, Q, R, S, P1, Q1, R1, S1, P2, Q2, R2, S2, ...
- conectivos proposicionais:
  - $\neg$  ~ (não),  $\land$  (e),  $\lor$  (ou),  $\rightarrow$  (se-então),  $\leftrightarrow$  (se-somente-se).



#### Lógica Proposicional: Fórmulas

As sentenças podem ser expressas como fórmulas.

Se interpretarmos o símbolo proposicional **P** como:

- P = Hoje é terça-feira.
- então: "Hoje não é terça-feira." pode ser formalizada como ~P.

Para formalizar a sentença:

"Hoje não é, ambos, terça-feia e quarta-feira.":

- Se formalizamos como: ~P ∧ Q
- A forma correta de formalizar a sentença é: ~(P ∧ Q)



#### Exercício: Fórmulas

- Interprete os símbolos proposicionais:
  - P = Está chovendo.
  - Q = Está nevando.

e expresse a forma de cada sentença na notação do cálculo proposicional:

- a) Está chovendo. P
- b) Não está chovendo. ~P
- c) Está chovendo ou nevando. P v Q
- d) Está chovendo e nevando. P \Lambda Q
- e) Está chovendo, mas não está nevando. P ^ ~Q
- f) Se não está chovendo, então está nevando. ~P → Q
- g) Está chovendo se e somente se está nevando. P↔ Q
- h) Não é o caso que está chovendo e nevando. ~(P ∧ Q)



## Lógica Proposicional: Fórmulas

Well-formed formula (wff) ou fórmula bem-formada (fbf): fórmulas sem erro de sintaxe em sua escrita.

#### Regras:

- 1) Qualquer sentença simples  $(\alpha)$  é uma fórmula.
- 2) Se  $\alpha$  é uma fórmula então  $\sim \alpha$  também é.
- 3) Se  $\alpha$  e  $\beta$  são fórmulas, então também são fórmulas:
  - $(\neg \alpha)$  negação,
  - $(\alpha \wedge \beta)$  conjunção,
  - $(\alpha \vee \beta)$  disjunção,
  - $(\alpha \rightarrow \beta)$  implicação  $(\alpha \text{ \'e o antecedente}, \beta \text{ \'e o consequente}),$
  - $(\alpha \leftrightarrow \beta)$  bi-implicação  $(\alpha \in \alpha)$  lado esquerdo,  $\beta \in \alpha$  lado direito).

## Lógica Proposicional: Fórmulas

- Erros de sintaxe mais comuns:
  - 1)  $(P \rightarrow Q \leftrightarrow (Q \rightarrow P)$ 
    - falta um fecha parênteses.
  - $(P \lor \sim) \to (Q \land \sim Q)$ 
    - a primeira negação não foi seguida de uma proposição
  - 3)  $\sim ((P \sim Q) \rightarrow \sim R)$ 
    - falta um operador lógico entre P e ~Q.
  - $4) \qquad (V \sim P) \rightarrow (Q \wedge \sim Q)$ 
    - falta uma proposição no lado esquerdo do operador ∨.
  - $5) \qquad (P \lor \sim P) \to (Q \land)$ 
    - 🕨 falta uma proposição no lado direito do operador ^.



#### Exercício:

 Utilize as regras de formação para determinar quais das seguintes fórmulas estão bem formuladas (wff) e quais não são estão:

- a)  $\sim R$  É wff R2.
- b) PQ Não é wff falta conectivo R3.
- c)  $P \rightarrow Q$  é wff R3
- d)  $(P \rightarrow Q)$  é wff R3
- e)  $\sim (P \rightarrow Q)$  é wff aplicação da R2 na fórmula
- f)  $((P) \rightarrow (Q))$  Não é wff nenhuma regra permite parênteses nos símbolos proposicionais
- g)  $(P \lor \sim) \rightarrow (P \land \sim Q)$  Não é wff a primeira negação não foi seguida de uma proposição.



#### Lógica Proposicional: Subfórmulas

Uma subfórmula é definida pelas seguintes regras:

- se  $\alpha$  é uma fórmula, então  $\alpha$  é subfórmula de  $\alpha$ ;
- se  $\alpha = (\neg \beta)$  é uma fórmula, então  $\beta$  é subfórmula de  $\alpha$ ;
- se  $\alpha = (\gamma \land \beta)$  ou  $\alpha = (\gamma \lor \beta)$  ou  $\alpha = (\gamma \to \beta)$  ou  $\alpha = (\gamma \leftrightarrow \beta)$  são fórmulas, então  $\gamma$  e  $\beta$  são subfórmulas de  $\alpha$ ;
- se  $\beta$  é subfórmula de  $\alpha$ , então toda subfórmula de  $\beta$  é subfórmula de  $\alpha$ .
  - Exemplo: Dada a fórmula proposicional (P → Q) ↔ R
    - P → Q, P, Q, R, são as subfórmulas de α



#### Precedência dos Operadores

```
(maior precedência) \neg \rightarrow \leftrightarrow (menor precedência) \land \lor
```

- Fórmula dentro de parênteses tem maior precedência (os mais internos primeiro)
- No caso de dois conectivos com a mesma precedência, resolve-se da esquerda para direita o que aparecer primeiro.





1. O alfabeto da lógica proposicional é constituído por: símbolos de pontuação, símbolos verdade, símbolos proposicionais e conectivos proposicionais. Dito isto, associe a segunda coluna de acordo com a primeira, observando que itens da segunda coluna podem não possuir associação com a primeira e vice-versa.

(1) símbolo de pontuação(2) símbolo verdade(3) símbolo proposicional

(4) conectivo proposicional

(3) P, Q, R, S, ... (2) true (-)|?\*+( ) false ( 3) P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>, P<sub>4</sub>, ... (3) a, b, c  $(4) \land \lor \rightarrow \longleftrightarrow$ 

2. Qual a ordem de precedência dos conectivos proposicionais (da maior para a menor)?

3. Quais são princípios (condições fundamentais) da lógica proposicional?

```
orisbabrer : Uma proposiçõe V (suf) sompre será undadeiro saus sabrênces (suf) em + sabes seus sarinas santemente pode Ser V IF sometonemente. In levelie extra chier existe exis
```

## Lógica Proposicional

**Semântica:** regras para determinar o significado das fórmulas.

- Exemplo:
- a sentença "x+y=4" é verdadeira em um mundo no qual x=2 e y=2, mas é falsa em um mundo em que x=1 e y=1.



## Lógica Proposicional: Semântica

Interpretação de fórmulas: a associação de um valor (V ou F) a uma fórmula é feita da seguinte forma:

- I[true] = V, a interpretação de true é V;
- I[false] = F, a interpretação de false é F;

 I[P] ∈ {V, F}, a interpretação de P pode ser V ou F, depende a que P se refere.



 I[∝] ∈ {V, F}, a interpretação de ∝, onde ∝ é uma fórmula composta por conectivos, depende da interpretação das subfórmulas de ∝ juntamente com a semântica dos conectivos, conforme a tabela:

| Р | Q | ⊸P | P∧Q | P∨Q | $P \rightarrow Q$ | $P \leftrightarrow Q$ |
|---|---|----|-----|-----|-------------------|-----------------------|
| V | V | F  | V   | V   | V                 | V                     |
| V | F | F  | F   | V   | F                 | F                     |
| F | V | V  | F   | V   | V                 | F                     |
| F | F | V  | F   | F   | V                 | V                     |

• Assim,  $I[P \land Q] = V$ , se I[P] = V e I[Q] = V.



- Proposições Simples:
  - Princípio do terceiro excluído: uma proposição simples P é verdadeira (V) ou é falsa (F).
  - $x = 2^n$ , onde n é o número de proposições simples e x é o número de linhas da tabela verdade.
    - 1 proposição:  $x = 2^1$   $\rightarrow$  x = 2 linhas e  $2^1$  combinações (V ou F)



Está chovendo.



- Proposições Compostas:
  - $x = 2^n$ , onde n é o número de proposições simples e x é o número de linhas da tabela verdade.
    - 2 proposições:  $x = 2^2$   $\rightarrow$   $x = 4 linhas e <math>2^2$  combinações
  - Está chovendo e nevando.

| P |   | C |
|---|---|---|
|   | Р | Q |
| 1 | V | V |
| 2 | V | F |
| 3 | F | V |
| 4 | F | F |



- Proposições Compostas:
  - $x = 2^n$ , onde n é o número de proposições simples e x é o número de linhas da tabela verdade.

```
• 1 proposição: x = 2^1 \rightarrow x = 2 linhas e 2^1 combinações (V ou F)
```

• 2 proposições: 
$$x = 2^2$$
  $\rightarrow$   $x = 4$  linhas e  $2^2$  combinações

• 3 proposições: 
$$x = 2^3$$
  $\rightarrow$   $x = 8 linhas e  $2^3$  combinações$ 

• ...

• n proposições: 
$$x = 2^n$$
  $\rightarrow$   $x = 2^n$  linhas e  $2^n$  combinações

|   | Р | Q |
|---|---|---|
| 1 | V | V |
| 2 | V | F |
| 3 | F | V |
| 4 | F | F |



Proposições Compostas:

```
    x
    ni
    Como montar a Tabela-verdade com 3 ou mais proposições?
    2 proposições: x = 2² → x = 4 iinnas e 2² combinações
```

• 3 proposições:  $x = 2^3$   $\rightarrow$  x = 8 linhas e  $2^3$  combinações

• ...

• n proposições:  $x = 2^n$   $\rightarrow$   $x = 2^n$  linhas e  $2^n$  combinações

|   | Р | Q |
|---|---|---|
| 1 | V | V |
| 2 | V | F |
| 3 | F | V |
| 4 | F | F |



#### Sabemos que:

- Proposições Compostas:  $x = 2^n$ , onde n é o número de proposições simples e x é o número de linhas da tabela verdade.
- Então, 3 proposições:  $x = 2^3$   $\rightarrow$  x = 8 linhas e  $2^3$  combinações
- 1. Divida o total de linhas por 2 e este será o número de repetições de valores V e F.
- 2. Após, divida sucessivamente este valor para as demais proposições.
  - 3 proposições:  $x = 2^3 \implies x = 8$  linhas

1. 
$$2^3 = 8$$

2. 
$$8 \div 2 = 4$$

3. 
$$4 \div 2 = 2$$

4. 
$$2 \div 2 = 1$$

|   | Р | Q | R |
|---|---|---|---|
| 1 | V | V | V |
| 2 | V | V | F |
| 3 | V | F | V |
| 4 | V | F | F |
| 5 | F | V | V |
| 6 | F | V | F |
| 7 | F | F | V |
| 8 | F | F | F |



EXERCÍCIO: Tabela Verdade das Proposições

- Faça a Tabela Verdade para as proposições: P,Q,R,S
  - São 4 proposições: 2<sup>4</sup>=16

1. 
$$16 \div 2 = 8$$

2. 
$$8 \div 2 = 4$$

3. 
$$4 \div 2 = 2$$

4. 
$$2 \div 2 = 1$$

|             | Р | Q | R | S |
|-------------|---|---|---|---|
| 1           |   |   |   |   |
| 2           |   |   |   |   |
| 3           |   |   |   |   |
| 4           |   |   |   |   |
| 5<br>6<br>7 |   |   |   |   |
| 6           |   |   |   |   |
| 7           |   |   |   |   |
| 8           |   |   |   |   |
| 9           |   |   |   |   |
| 10          |   |   |   |   |
| 11          |   |   |   |   |
| 12          |   |   |   |   |
| 13          |   |   |   |   |
| 14          |   |   |   |   |
| 15          |   |   |   |   |
| 16          |   |   |   |   |



- Faça a Tabela Verdade para as proposições: P,Q,R,S
  - São 4 proposições: 2<sup>4</sup>=16

1. 
$$16 \div 2 = 8$$

2. 
$$8 \div 2 = 4$$

3. 
$$4 \div 2 = 2$$

4. 
$$2 \div 2 = 1$$

|    | Р | Q | R | S |
|----|---|---|---|---|
| 1  | V |   |   |   |
| 2  | V |   |   |   |
| 3  | V |   |   |   |
| 4  | V |   |   |   |
| 5  | V |   |   |   |
| 6  | V |   |   |   |
| 7  | V |   |   |   |
| 8  | V |   |   |   |
| 9  | F |   |   |   |
| 10 | F |   |   |   |
| 11 | F |   |   |   |
| 12 | F |   |   |   |
| 13 | F |   |   |   |
| 14 | F |   |   |   |
| 15 | F |   |   |   |
| 16 | F |   |   |   |



- Faça a Tabela Verdade para as proposições: P,Q,R,S
  - São 4 proposições: 2<sup>4</sup>=16

1. 
$$16 \div 2 = 8$$

2. 
$$8 \div 2 = 4$$

3. 
$$4 \div 2 = 2$$

4. 
$$2 \div 2 = 1$$

|    | Р | Q      | R | S |
|----|---|--------|---|---|
| 1  | V | V      |   |   |
| 2  | V | V      |   |   |
| 3  | V | V      |   |   |
| 4  | V | V      |   |   |
| 5  | V | F      |   |   |
| 6  | V | F      |   |   |
| 7  | V | F      |   |   |
| 8  | V | F      |   |   |
| 9  | F | V      |   |   |
| 10 | F | V      |   |   |
| 11 | F | V      |   |   |
| 12 | F | V      |   |   |
| 13 | F | F      |   |   |
| 14 | F | F      |   |   |
| 15 | F | F<br>F |   |   |
| 16 | F | F      |   |   |



- Faça a Tabela Verdade para as proposições: P,Q,R,S
  - São 4 proposições: 2<sup>4</sup>=16

1. 
$$16 \div 2 = 8$$

2. 
$$8 \div 2 = 4$$

3. 
$$4 \div 2 = 2$$

4. 
$$2 \div 2 = 1$$

|    | Р | Q      | R      | S |
|----|---|--------|--------|---|
| 1  | V | V      | V      |   |
| 2  | V | V      | V      |   |
| 3  | V | V      | F      |   |
| 4  | V | V      | F      |   |
| 5  | V | F      | V      |   |
| 6  | V | F      | V      |   |
| 7  | V | F      | F      |   |
| 8  | V | F      | F      |   |
| 9  | F | V      | V      |   |
| 10 | F | V      | V      |   |
| 11 | F | V      | F      |   |
| 12 | F | V      | F      |   |
| 13 | F | F      | V      |   |
| 14 | F | F      | V      |   |
| 15 | F | F<br>F | F<br>F |   |
| 16 | F | F      | F      |   |



- Faça a Tabela Verdade para as proposições: P,Q,R,S
  - São 4 proposições: 2<sup>4</sup>=16

1. 
$$16 \div 2 = 8$$

2. 
$$8 \div 2 = 4$$

3. 
$$4 \div 2 = 2$$

4. 
$$2 \div 2 = 1$$

|    | Р | Q | R      | S      |
|----|---|---|--------|--------|
| 1  | V | V | V      | V      |
| 2  | V | V | V      | F      |
| 3  | V | V | F      | V      |
| 4  | V | V | F      | F<br>V |
| 5  | V | F | V      | V      |
| 6  | V | F | V      | F      |
| 7  | V | F | F      | V      |
| 8  | V | F | F      | F      |
| 9  | F | V | V      | V      |
| 10 | F | V | V      | F      |
| 11 | F | V | F      | V      |
| 12 | F | V | F      | F      |
| 13 | F | F | V      | V      |
| 14 | F | F | V      | F      |
| 15 | F | F | F<br>F | V<br>F |
| 16 | F | F | F      | F      |



## Lógica Proposicional: Valor Lógico

#### Proposição simples:

P é dado por I(P), então I(P) pode ser:

$$I(P) = V$$

OU

$$I(P) = F$$

#### Proposição composta:

- Para definir I(P, Q) é necessário:
  - Conhecer os valores lógicos de I(P) e de I(Q);
  - Conhecer e interpretar os operadores lógicos.



### Negação de uma Proposição (não, ¬, ~)

Se P é uma proposição verdadeira então ¬P ou ~P será uma proposição falsa e vice-versa. Ou seja ~P é a **negação lógica** de P.











### Negação de uma Proposição

Pode-se adicionar indefinidamente o operador de negação:

- Está chovendo.
- Não está chovendo.
- Não é o caso que não está chovendo. / É falso que não está chovendo.

| Р | ~P | ~~P | ~~~P |
|---|----|-----|------|
| V | F  | V   | F    |
| F | V  | F   | V    |

Lê-se de traz pra frente: ~~~P → se P(V); ~(F) ~(V) ~(F) então é F

Ou

~~P é equivalente a P, assim como, ~~~P é equivalente a ~P



### Conjunção de Proposições (e / ^)

Uma conjunção somente é verdadeira, quando todas as proposições que a compõem são verdadeiras, e é falsa em todos os outros casos.

EXEMPLO 1: Paulo é advogado e Maria é professora. (P ∧ Q)

| Paulo é advogado | Maria é professora | Paulo é advogado E<br>Maria é professora |
|------------------|--------------------|------------------------------------------|
| Р                | Q                  | P∧Q                                      |
| V                | V                  | V                                        |
| V                | F                  | F                                        |
| F                | V                  | F                                        |
| F                | F                  | F                                        |



### Disjunção de Proposições (ou / V)

Uma disjunção somente é falsa quando todas as proposições que a compõem são falsas, e é verdadeira em todos os outros casos.

 EXEMPLO 1: A mulher de João está fazendo uma polenta para o almoço e precisa de uma carne como acompanhamento. Ela pede para ele ir ao supermercado e comprar frango ou carne bovina.

| João comprou<br>frango | João comprou<br>carne bovina | A esposa conseguiu<br>fazer o almoço? |
|------------------------|------------------------------|---------------------------------------|
| Р                      | Q                            | PVQ                                   |
| V                      | V                            | <b>V</b>                              |
| V                      | F                            | $\checkmark$                          |
| F                      | V                            | V                                     |
| F                      | F                            | F                                     |



### Disjunção de Proposições (ou / V)

 EXEMPLO 2: No Natal te darei de presente um celular ou um relógio. (P v Q)

| Darei um celular | Darei um relógio | A pessoa foi presenteada? |
|------------------|------------------|---------------------------|
| Р                | Q                | PVQ                       |
| V                | V                | V                         |
| V                | F                | V                         |
| F                | V                | V                         |
| F                | F                | F                         |





### Disjunção EXCLUSIVA de Proposições (ou /<u>V</u>)

A disjunção exclusiva só será verdadeira quando apenas uma das variáveis envolvidas é V, nos demais o resultado é falso.

EXEMPLO 1: Ou irei jogar basquete ou irei à casa de João. (P ∨ Q)

| Irei jogar basquete | Irei à casa de João | Ou irei jogar basquete ou irei<br>à casa de João. |
|---------------------|---------------------|---------------------------------------------------|
| Р                   | Q                   | P <u>v</u> Q                                      |
| V                   | V                   | F                                                 |
| V                   | F                   | V                                                 |
| F                   | V                   | $\checkmark$                                      |
| F                   | F                   | F                                                 |



# Implicação de Proposições (Se…então / →) Anticolento Consumento

Uma implicação P → Q somente é falsa, quando a condição P for verdadeira e a conclusão Q for falsa. Ela é verdadeira em todos os outros casos.

#### EXEMPLO 1:

Se eu vier amanhã para a Furb então terá um bolo de chocolate.

#### Antecedente

Consequente

| Р | Q | $P \rightarrow Q$ |
|---|---|-------------------|
| V | V | V                 |
| V | F | F                 |
| F | V | V                 |
| F | F | V                 |

Eu vim e teve o bolo.

Eu vim e NÃO teve o bolo.

Não vim, mas teve o bolo.

Não vim e não teve o bolo.



#### Implicação de Proposições (Se…então / →)

#### EXEMPLO 2:

Se minha namorada está grávida, então eu aceito casar. ( $P \rightarrow Q$ )

| Р | Q | $P \rightarrow Q$ |
|---|---|-------------------|
| V | V | V                 |
| V | F | F                 |
| F | V | V                 |
| F | F | V                 |

Namorada está grávida e eu casei.

Namorada está grávida e eu não casei.

Namorada não está grávida e eu casei.

Namorada não está grávida e eu não casei



#### Bi-implicação de Proposições (Se e somente se / ↔)

Uma bi-implicação  $P \leftrightarrow Q$  é verdadeira quando P = Q e falsa caso  $P \neq Q$ .

$$P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$$

EXEMPLO 1: João é careca, se e somente se João não tem cabelo. ( $P \leftrightarrow Q$ )

- Se João é careca, então João não tem cabelo.
- Se João não tem cabelo, então João é careca.

| João é careca | João não tem cabelo | João é careca, se e somente se<br>João não tem cabelo |
|---------------|---------------------|-------------------------------------------------------|
| Р             | Q                   | $P \leftrightarrow Q$                                 |
| V             | V                   | V                                                     |
| V             | F                   | F                                                     |
| F             | V                   | F                                                     |
| F             | F                   | V                                                     |



#### Exercício:

Para resumir as regras de cada um dos operadores lógicos vistos anteriormente, vamos montar a tabela verdade para as proposições P e Q.

|   |   | <u> </u> |    |     |              |              |     |          |
|---|---|----------|----|-----|--------------|--------------|-----|----------|
| Р | Q | ~P       | ~Q | P۸Q | PvQ          | P <u>∨</u> Q | P→Q | P↔Q      |
| V | V | F        | F  | V   | V            | F            | V   | V        |
| V | F | F        | V  | F   | $\checkmark$ | V            | F   | F        |
| F | V | V        | F  | F   | V            | V            | V   | F        |
| F | F | V        | V  | F   | F            | F            | V   | <b>√</b> |
| · |   | ·        | ·  | ·   | ·            | ·            | ·   | ·        |





P: É falso que vocês não farão o exercício 4 agora.



- 4. Determine a interpretação ( I ) das fórmulas abaixo:
  - a)  $I[true] = \bigvee$
  - b) I[false] = F
  - c) I[P] = \ ou F
  - d) I[Q] = V au F
  - e) I[P<sub>1</sub>] = V ou F
  - f)  $I[\neg P] = V \text{ ou } F$
  - g) I[P ∧ Q], quando I[P] = V e I[Q] = V <u></u>
  - h)  $I[P \lor Q]$ , quando  $I[P] = F \in I[Q] = F = F$
  - i)  $I[P \rightarrow Q]$ , quando  $I[P] = F = \bigvee$
  - j)  $I[P \leftrightarrow Q]$ , quando  $I[P] \neq I[Q] =$

- Como resolver a proposição composta (P ∨ Q) → R ?
  - 1. Montar a tabela verdade com N linhas (nosso caso 2<sup>3</sup>=8 linhas) para P, Q e R.
  - 2. Determinar a tabela verdade apenas para a relação (P v Q), observando-se os valores lógicos de P e Q.
  - Então, estabelecer a tabela verdade da relação entre a coluna obtida (v) e a proposição R.



1º passo: Montar a tabela verdade com 8 linhas (2³=8) para P, Q e R.

$$(P \lor Q) \rightarrow R$$

| (P | V | Q) | $\rightarrow$ | R |
|----|---|----|---------------|---|
| V  |   | V  |               | V |
| V  |   | V  |               | F |
| V  |   | F  |               | V |
| V  |   | F  |               | F |
| F  |   | V  |               | V |
| F  |   | V  |               | F |
| F  |   | F  |               | V |
| F  |   | F  |               | F |



**2º passo:** Determinar a tabela verdade apenas para a relação (P v Q), observando-se os valores lógicos de P e Q.

| (P | V | Q) | $\rightarrow$ | R |
|----|---|----|---------------|---|
| V  | V | V  |               | V |
| V  | V | V  |               | F |
| V  | V | F  |               | V |
| V  | V | F  |               | F |
| F  | V | V  |               | V |
| F  | V | V  |               | F |
| F  | F | F  |               | V |
| F  | F | F  |               | F |



3º passo: estabelecer a tabela verdade da relação entre a coluna obtida e a proposição R.

$$(P \lor Q) \rightarrow R$$

| (P | V | Q) | $\rightarrow$ | R |
|----|---|----|---------------|---|
| V  | V | V  | V             | V |
| V  | V | V  | F             | F |
| V  | V | F  | V             | V |
| V  | V | F  | F             | F |
| F  | V | V  | V             | V |
| F  | V | V  | F             | F |
| F  | F | F  | V             | V |
| F  | F | F  | V             | F |





### Qual o valor lógico:

Se eu fizer o exercício 5 então terei um bom desempenho na disciplina.





| a) | $true \rightarrow$ | Q |
|----|--------------------|---|
|    |                    |   |

|    | true | - | Q |
|----|------|---|---|
| a) | V    | V | V |
|    | V    | F | F |

b)

| <u>-</u>    | <u>-&gt;</u> : | R  |
|-------------|----------------|----|
| <b>P</b> od | 4              |    |
| Vole        | Q              | c) |
| t           | 7              |    |

#### b) $Q \rightarrow \neg P$

|          | <b>-&gt;</b> | ~ | P      |
|----------|--------------|---|--------|
| <b>\</b> | F            | F | ·      |
| V        | V            | V | F      |
| F        | V            | + | V      |
| F        |              | V | 1      |
| 4        | = 36         | 1 | 5 17.1 |

|  | c) | (false - | → Q) | $\leftrightarrow R$ |
|--|----|----------|------|---------------------|
|--|----|----------|------|---------------------|

| (Folse | <b>∽</b> | Q )  | کے | R |
|--------|----------|------|----|---|
| F      | V        | V    | V  | V |
| F      | V        | V    | F  | F |
| F      | V        | F    | V  | V |
| F      | V        | F    | F  | ト |
| BARA   | 4        | 3795 |    | * |

#### d) $(P \rightarrow false) \leftrightarrow R$

| (P | <b>~</b> | fose) | ک | R        |
|----|----------|-------|---|----------|
| V  | F        | F     | - | V        |
| V  | F        | F     | V | F        |
| F  | V        | F     | V | V        |
| F  | V        | F     | F | E        |
|    |          |       |   | $\wedge$ |

e) 
$$(\neg P \lor Q) \leftrightarrow (P \rightarrow Q)$$



|      | ( ¬ | P    |      | Q) | ←>  | (P |        | Q)       |
|------|-----|------|------|----|-----|----|--------|----------|
|      | F   | V    | V    | V  | V   | V  | V      | V        |
| e) 📗 | F   | V    | F    | F  | V   | V  | F      | <u>t</u> |
|      | V   | F    | V    | V  | V   | F  | V      | J        |
|      | V   | F    | V    | P  | V   | F  | V      | F        |
|      | 4   | 13,3 | 2000 | 7  | 450 |    | IN-THE | -        |



f) 
$$(P \rightarrow \neg Q) \leftrightarrow \neg P$$

| ŕ |         |        |         |        |        |        |        |
|---|---------|--------|---------|--------|--------|--------|--------|
| i | Tellor. |        |         |        | 1000   |        |        |
| i | 1. 18   |        | NOTE OF | K-N-X  |        | Silker | 1569   |
|   | SAME.   | 100    | 183     | 374    | 1,150  |        | HE WAY |
|   |         | ATT TX |         | by all | Det de |        | THERE  |





# Equivalência Lógica

- Se duas fórmulas α e β têm os mesmos valores para qualquer interpretação (têm a mesma tabela verdade), então α é equivalente a β (α ≡ β).
- Tendo-se que  $\alpha$  é equivalente a  $\beta$ , é possível substituir  $\alpha$  por  $\beta$  e vice-versa, pois fórmulas equivalentes preservam os valores lógicos.



# Equivalência Lógica

**EXEMPLO**:

Se chover então ficarei em casa.

| Р | Q | ~P | ~Q | ho | ~Q→~P |
|---|---|----|----|----|-------|
| V | V | F  | F  | V  | V     |
| V | F | F  | V  | F  | F     |
| F | V | V  | F  | V  | V     |
| F | F | V  | V  | V  | V     |

Se não fiquei em casa então não choveu.







|    | α          | β        |
|----|------------|----------|
| a) | $P \lor Q$ | $\neg P$ |

a)









e)  $P \wedge (Q \vee R)$ 

 $(P \wedge Q) \vee (P \wedge R)$ 



f)

#### Exercício 7:



| a) | (P | <b>†</b> | false) | $\Rightarrow$ | R |
|----|----|----------|--------|---------------|---|
|    |    |          |        |               |   |



| c) | (_ | Р | > | Q) | $\leftrightarrow$ | (P | <b>↑</b> | Q) |
|----|----|---|---|----|-------------------|----|----------|----|
|    |    |   |   |    |                   |    |          |    |



| d) | J | ((P | $\rightarrow$ | (Q | ^ | J | Q)) | ^ | P) |
|----|---|-----|---------------|----|---|---|-----|---|----|
|    |   |     |               |    |   |   |     |   |    |



| f) | (P | $\rightarrow$ | (Q | $\rightarrow$ | R)) | $\leftrightarrow$ | ((P | ^ | Q) | $\rightarrow$ | R) |
|----|----|---------------|----|---------------|-----|-------------------|-----|---|----|---------------|----|
|    |    |               |    |               |     |                   |     |   |    |               |    |



