BDS/GNSS 全星座定位授时模块

ATGM332D-5T

用户手册

杭州中科微电子有限公司

杭州市滨江区江南大道 3850 号创新大厦 10 楼

电话: 0571-28918107

传真: 0571-28918122

网站: http://www.icofchina.com

ATGM332D-5TXX User Manual

版本更新历史

版本	日期	更新内容
1.0	2016/7/12	初稿
1.1	2018/1/05	文本完善
1.2	2018/1/19	文本修正
1.3	2018/11/20	文本修正

1 功能描述

1.1 概述

ATGM332D-5T 系列模块是 12X16 尺寸的高性能 BDS/GNSS 定位授时模块系列的总称。该系列模块产品是基于中科微第四代低功耗 GNSS SOC 单芯片—AT6558, 支持多种卫星导航系统,包括中国的 BDS(北斗卫星导航系统),美国的 GPS,俄罗斯的 GLONASS,欧盟的 GALILEO,日本的 QZSS 以及卫星增强系统 SBAS(WAAS,EGNOS,GAGAN,MSAS)。AT6558 是一款真正意义的六合一多模卫星导航定位芯片,包含 32 个跟踪通道,可以同时接收六个卫星导航系统的 GNSS 信号,并且实现联合定位、导航与授时。

ATGM332D-5T 系列模块具有高灵敏度、低功耗、低成本等优势,适用于各类授时设备,时钟服务器,守时设备,可以直接替换 Ublox NEO T 系列模块。

1.2 产品选购

型号	多模功能	电源 接口		特性			
	GPS BDS GLONASS	2.7V~3.6V 1.65V~3.6V	UART1 UART2	Flash TCXO 天线检测 天线过流保护 前置 SAW 外置 LNA			
ATGM332D-5T11	•	•	• •	• • • • •			
ATGM332D-5T21	•	•	• •	• • • •			
ATGM332D-5T31	• •	•	• •				

1.3 性能指标

- 出色的授时功能,支持 BDS/GPS 卫星导航系统的单系统授时并支持 QZSS 和 SBAS 系统
- 支持 A-GNSS
- 冷启动捕获灵敏度: -148dBm
- 跟踪灵敏度: -162dBm
- 授时精度: <30ns (1 o)
- 首次时间输出: 32 秒
- 低功耗:连续运行<25mA(@3.3V)
- 内置天线检测及天线短路保护功能
 - 注 1: 以上性能指标适用于 ATGM332D-5T11、ATGM332D-5T31 模块。
 - 注 2: ATGM332D-5T21 模块的性能指标,请向销售代表确认。
- 完备的授时告警信息

1.4 模块功能框图

1.5 应用领域

- 通信基站授时
- 电力授时
- 广播电视授时
- 轨道系统授时
- 其他授时应用

1.6 辅助 GNSS (Assisted GNSS、AGNSS)

ATGM332D-5T 系列模块全部支持辅助 GNSS (AGNSS) 功能。

1.7 1PPS

ATGM332D-5T 系列模块支持精确秒脉冲输出,脉冲上升沿与 UTC 时间对齐。

1.8 输出协议

ATGM332D-5T 系列模块通过 UART 作为主要输出通道,按照 NMEA0183 的协议格式输出,具体信息请参照《CASIC 多模卫星导航接收机协议规范》。

1.9 FLASH

ATGM332D-5T 系列模块配备 Flash,可以通过在线升级功能,更新算法。这种配置功能,可以让客户自主配置定位更新率,获得适用的低功耗;可以让客户及时更新全球多模定位的最新优化进展;可以让客户增加新的控制功能,如定位记录,规则的地理围栏,自定义的输出格式。

1.10 在线升级功能

ATGM332D-5T 系列模块支持中科微的在线升级协议。用户可在上位机中按照升级协议,与模块通信,将中科微提供的新的软件程序,升级到模块中,以获得新的软件特色。用户还可以采用远程命令方式,遥控设备启动以上升级过程,实现远程在线升级。在线升级协议,请参考《ATGM 模块在线升级协议》。

1.11 天线

ATGM332D-5T系列授时模块支持有源天线与无源天线。

1.12 上位机工具

中科微提供《GNSSToolKit》Lite 版软件包(Windows 版本、Android 版本),用于定位输出解析与工作模式配置。

中科微提供《UBF 串口升级工具》软件包(Windows 版本),用于基于 PC 的 在线升级工具。

基于设备的在线升级程序需客户自己开发。

2 技术描述

2.1 外观尺寸 (单位: mm)

2.2 PCB layout (单位: mm)

2.3 PIN 排列图

2.4 管脚定义

引脚	b th		IRAN	. t bearble tot	
编号	名称	I/O	描述	电气特性	
1	NC				
2	Reserved			悬空	
3	1PPS	0	秒脉冲输出		
4	Reserved			悬空	
5	NC				
6	NC				
7	NC				
8	nRESET	_	模块复位输入, 低电平有效	不用时悬空	
9	VCC_RF	0	输出电源	+3.3V,可给天线供电	
10	GND	1	地		
11	RF_IN	I	天线信号输入		
12	GND	I	地		
13	GND	I	地		
14	NC				
15	NC				
16	TXD2	0	辅助串口数据输出, 可用于		
			代码升级		
17	RXD2	1	辅助串行数据输入,可用于		
			代码升级		
18	SDA	I/O	I ² C 数据接口	悬空	
19	SCL	0	I ² C 时钟接口	悬空	
20	TXD1	0	导航数据输出	NMEA0183 协议	
21	RXD1	I	交互命令输入	配置命令输入	
22	VBAT	I	RTC 及 SRAM 后备电源	提供 1.5~3.6V 电源以保证	
				模块热启动	
23	VCC	I	模块电源输入	直流 3.3V±10% ,100mA	
24	GND	I	地		

2.5 电气参数

极限参数

参数	符号	最小值	最大值	单位
模块供电电压(VCC)	Vcc	-0.3	3.6	V
备份电池电压(VBAT)	Vbat	-0.3	3.6	V
数字输入引脚电压	Vin	-0.3	Vcc+0.2	V
最大可承受ESD水平	VESD(HBM)		2000	V

运行条件

参数	符号	最小值	典型值	最大值	单位
供电电压	Vcc	2.7	3.3	3.6	V
Vcc峰值电流(不包括天线)	Ipeak			100	mA
备份电源	Vbat	1.5	3.0	3.6	V
备份电源(Vbat)电流	lbat		10		uA
t스) 기 바미	Vil			0.2*Vcc	V
输入引脚	Vih	0.7*Vcc			V
	Vol Io=-			0.4	V
ᄷᆟᄀᅖ	12mA			0.4	V
输出引脚 	Voh	Vcc-0.5	5		V
	lo=12mA				V
有源天线输出电压	VCC_RF		3.3		V
天线短路保护电流	lant short		50		mA
电源来自VCC_RF (=3.3V)	iant Short		50		IIIA
天线开路电流	lant ones		3		m 1
电源来自VCC_RF (=3.3V)	lant open		<u></u>		mA
天线增益	Gant	15		30	dB

2.6 技术规范

指标	技术参数		
信号接收	BDS/GPS/QZSS		
射频通道数目	双通道射频,支持全星座 BDS、GPS 同时接收		
冷启动 TTFF	≤32s		
热启动 TTFF	≤1s		
重捕获 TTFF	≤1s		
冷启动捕获灵敏度	-148dBm		
热启动捕获灵敏度	-156dBm		
重捕获灵敏度	-160dBm		
跟踪灵敏度	-162dBm		
定位精度	<2.5m (CEP50)		
测速精度	<0.1m/s (1σ)		
授时精度	<30ns (1σ)		
定位更新率	1Hz (默认), 最大 10Hz		
串口特性	波特率范围: 4800 bps ~115200 bps,默认 9600bps,		
	8 个数据位,无校验,1 个停止位		
协议	NMEA0183, CASBIN		
最大高度	18000m		
最大速度	515m/s		
最大加速度	4g		
后备电池	1.5V ~ 3.6V		
电源供电	2.7V ~ 3.6V		
GPS&BD 典型功耗	<25mA @3.3V		
工作温度	-40 到+85 摄氏度		
存储温度	-45 到+125 摄氏度		
尺寸	16.0mm×12.2mm×2.4mm		
重量	1.6g		

2.7 模块应用电路

2.7.1 有源天线应用方案(模块内部提供天线电源、天线检测及短路保护)

2.7.2 无源天线应用方案(模块 RF_IN 输入端增加一级 LNA)

2.8 模块使用注意事项

为了充分发挥 ATGM332D-5T 的优良性能,用户在使用本模块时需要注意以下 几点:

- 采用低纹波的 LDO 电源,将纹波控制在 50mVpp 以内。
- 模块附近尽量不要走其它频率高、幅度大的数字信号。模块下面全部以地 线填充为佳。
- 天线接口尽量靠近模块的 RF 输入引脚,并注意 50 欧姆的阻抗匹配。
- 模块本身具有有源天线接入、拔出、短路检测电路,同时在天线意外短路时,对天线的供电电流进行限制(50mA),起到保护的作用。在上述3种天线端口状态发生变化时,可以从串口输出相应的信息。如

\$GPTXT,01,01,01,ANTENNA SHORT*63

\$GPTXT,01,01,01,ANTENNA OPEN*25

\$GPTXT,01,01,01,ANTENNA OK*35

● 模块使用无源天线时,无法支持天线接入、拔出、短路检测电路,串口输 出语句均为开路。如

\$GPTXT,01,01,01,ANTENNA OPEN*25

3 可靠性测试与认证

3.1 RoHS 认证

ATGM332D-5T 系列模块均符合 RoHS 认证。

4 模块传送与焊接

4.1 模块包装

ATGM332D-5T 系列模块采用真空卷带包装,具备防潮,防静电等特性,使用过程与业内主要贴片机兼容。按照每盘 1000 片进行包装。具体卷带尺寸如下:

4.2 模块传送与存储

4.2.1 防潮等级:

Moisture Sensitivity Level (MSL): 4级 MSL 请参考 IPC/JEDEC J-STD-020 标准。

4.2.2 回流焊曲线:

! 注意

调整平衡时间以保证锡膏溶化时气体的合理化处理。如果PCB板上有过多空隙,可以增加平衡时间。

考虑到产品长时间放置在焊接区(温度在**180**℃以上),为了防止元器件和底板的损伤,应尽可能缩短放置时间。

! 曲线的重要特征:

上升速度=1~4°C /sec, 25°C to150°C平均

预热温度=140°C to 150°C, 60sec~90sec

温度波动=225°C to 250°C, 大约 30sec

下降速度=2~6°C/sec, to 183°C, 大约 15sec

总时间 = 大约 300sec

4.2.3 静电防护:

ATGM332D-5T 模块系列,属静电敏感器件。经常性的静电接触会导致模块产生意外的损坏。除了按照标准的静电防护要求操作外,如下几点需尽量遵循:

- 1) 除非 PCB GND 已经很好的接地,否则接触模块的第一位置应该是 PCB GND。
- 2) 连接天线的时候,请首先连接 GND,再连信号线。
- 3)接触 RF 部分电路时,请不要接触充电电容,请远离可产生静电的器件与设备,如介质天线,同轴电线,电烙铁等。
- 4)为避免通过射频输入端进行电荷放电,请不要接触天线介质裸露部分。 对于可能出现接触天线介质裸露的情况,需要在设计中增加防静电保护 电路。
- 5) 在焊接与射频输入端相连接的连接器,天线,请确保使用无静电焊枪。

5 模块标签与下单型号

5.1 模块标签

ATGM332D-5T的标签包含重要的产品信息,标签内容格式如下:

5.2 型号命名规则:

以 ATGM332D-5T31 为例,解释如下:

字段	示例	解释
Product code	ATGM332D	12mmX16mm 模块系列
产品名		
Type code	5T	采用 AT6558 硬件平台的授时模块
类型名		
Hardware code	31	具有 GPS+BDS 功能的 Hardware
硬件功能名		Version=1 的硬件版本

参考文献

- 1. 《中科微 AGNSS 解决方案》
- 2. 《CASIC 多模卫星导航接收机协议规范》
- 3. 《ATGM 模块在线升级协议》
- 4. 《AT6558 芯片数据手册》
- 5. 《GNSSToolKit 工具使用说明》
- 6. 《UBF 串口升级工具使用说明》