Übungsblatt 9 zur Kommutativen Algebra

Aufgabe 1. (2) Ganz, endlich und von endlichem Typ

Sei $A \to B$ ein Ringhomomorphismus. Zeige, dass B genau dann endlich über A ist, wenn B von endlichem Typ und ganz über A ist.

Aufgabe 2. (2+m) Anwendungen der Noether-Normalisierung

- a) Sei A eine endlich erzeugte Algebra über einem Körper K und sei \mathfrak{m} ein maximales Ideal in A. Zeige, dass A/\mathfrak{m} eine endliche Erweiterung von K ist.
- b) Sei $\phi:A\to B$ ein Homomorphismus endlich erzeugter Algebren über einem Körper. Zeige, dass das Urbild eines maximalen Ideals unter ϕ wieder maximal ist.

Aufgabe 3. (2) Lokalität der Noetherianität, verfeinert

Sei A ein Ring, dessen Halme alle noethersch sind. Gelte außerdem, dass jedes Element $x \in A \setminus \{0\}$ nur in endlich vielen maximalen Idealen liegt. Zeige, dass A noethersch ist.

Aufgabe 4. (2) Ein schlimmes Ideal

Finde ein Beispiel für ein Ideal \mathfrak{a} , sodass für kein $n \geq 0$ die Inklusion $(\sqrt{\mathfrak{a}})^n \subseteq \mathfrak{a}$ gilt.

Aufgabe 5. (m+1+m+1+m+1+1+1) Großer Tag der Gegenbeispiele

Welche der folgenden Aussagen sind wahr? Kurze Begründung oder Gegenbeispiel!

- 1. Das Bild eines Ideals unter einem Ringhomomorphismus ist ein Ideal.
- 2. Untermoduln endlich erzeugter Moduln sind endlich erzeugt.
- 3. Unterringe noetherscher Ringe sind noethersch.
- 4. Sind alle Halme eines Moduls endlich erzeugt, so auch der Modul selbst.
- 5. Wenn ein Ringhomomorphismus $\varphi: A \to B$ surjektiv ist, so folgt für jeden Ring C und je zwei Ringhomomorphismen $\alpha, \beta: B \to C$ aus $\alpha \circ \varphi = \beta \circ \varphi$ schon $\alpha = \beta$.
- 6. Es gilt die Umkehrung von 5.
- 7. Ein normiertes Polynom vom Grad n über einem Ring hat höchstens n Nullstellen.
- 8. Seien $f, g, h \in K[X, Y]$ Polynome. Dann gilt $(f, g) \cap (h) = (\text{kgV}(f, h), \text{kgV}(g, h))$.

Wenn ein Ring nicht noethersch ist: http://tiny.cc/no-no-noether