report_20180373.md 2021. 12. 4.

CSED342 - Artificial Intelligence

Assignment 4. K-Means Clustering

20180373 김현지

Problem 1e: Clustering 2D points

Result - python kmeans.py

report 20180373.md 2021. 12. 4.

Problem 1f: Trying the Algorithm on MNIST

Q. Why the centroid of each cluster looks like an actual digit?

mnist dataset의 여러 data point(number image)들이 그저 Gaussian noise처럼 보이는 init centroid image중 그나마 가장 유사한 centroid image에 clustering된다. 그 후, 각 centroid에 대해 모인 data point image에 대해 centroid를 다시 찾고, 다시 clustering하고, centroid를 찾는 과정을 반복한다. 그러다 보면, 점점 그 centroid는 결국 mnist dataset에 있는 숫자들의 이미지의 평균값이기 때문에, 반복하다보면 특정 숫자와 유사한 형태의 centroid를 그리게 되는것이다.

Problem 2d: Clustering 2D points

Result - python soft kmeans.py

report_20180373.md 2021. 12. 4.

Result - Changed β to 50

report_20180373.md 2021. 12. 4.

hard k-mean clustering은 각 data point가 속한 cluster의 경계를 명확히 나누는 반면, soft k-mean clustering은 data point마다 각 cluster에 대한 responsibility에 따라 그 경계를 부드럽게 나누는 것이다.

이때 β 는 이 responsibility를 결정하는데 필요한 parameter인데, β 가 커질수록 그 responsibility가 명확하게 경계가 나누어지는 경향이 생기고 점점 hard k-mean clustering 과 유사해진다.