

Credit Scoring & Client Default Prediction

Overview

Home Credit Business Model Business Objectives

Fast Loans, Easy Installments!

Eyeing the latest cellphone, laptop, TV, refrigerator, or air conditioner? Simply buy now and pay later from over 100 trusted brands in Home Credit partner stores near you. Repay loan amounts over the counter or via your bank account. Enjoy our fast loan application and easy installments today.

Get Product Installments Today

Cash Loans? Get Fast Approvals Online!

Our online cash loans are ready for your needs. Existing customers who have previously availed of our installment shopping deals are eligible for our cash loan offers. Enjoy competitive interest rates and flexible payments! Pay in 12 months or more, depending on the loan.

Use our quick cash loans for your small business, home renovation, school tuition, or other needs. Check for offers, apply conveniently, and get fast approvals.

Check Cash Loan Offers

About the Company

An international consumer finance provider in multiple European & Asian Markets

With a focus on responsible lending primarily to individuals with little to no credit

HOME CREDIT

Market Environment

Consumer Lending Market Size, Share & Forecast, 2032 (businessresearchinsights.com)
Financial Inclusion, Accenture and CARE International UK Study

Market Environment

HOME CREDIT

Business Model

Versus Traditional Lending and Credit Scoring

is achieved through

Easier Application Process

Less Rigid Metrics for Approval

Problem Statement

HOME CREDIT

Credit History

Without traditional data, someone with little to no credit history is likely to be denied.

Dynamic Financial Market

Loan providers aren't able to spot potential problems any sooner... Stability in the future is critical, as a sudden drop in performance means that loans will be issued to worse clients on average.

Our Mission:

Assess potential clients' default risks will enable consumer finance providers to accept more loan applications. This may improve the lives of people who have historically been denied due to lack of credit history.

https://www.kaggle.com/competitions/home-credit-credit-risk-model-stability

Model Development & Results

Dataset

Large amount and high dimension of data needed a faster and more automated way of extracting possible features.

Feature Engineering

Common Data Type Handling and Aggregation functions were applied on both numerical and categorical functions – Pipeline and Aggregator classes.

Study Base

Data was split into Train (80%) - Test (20%) set. Data is highly imbalanced.

	Size	Non-Defaulters	Defaulters	%Default
Training Set (80%)	1,221,327	1,182,886	38,441	3.15%
Test Set (20%)	305,332	295,779	9,553	3.13%
Total (100%)	1,526,689	1,478,665	47,994	3.14%

Target Labels: Default = 1, otherwise 0.

Feature Selection

Columns with zero to low usability, high complexity, and high correlation with other features will be dropped from the base table

Missing Values

 Features with greater than 95% Null values were excluded from the dataset

No Variance

- Features with Zero
 Variance were
 excluded from the
 dataset
- Numeric: std = 0
- Categorical: 1 unique value

Complex Variables

 Categorical Features with greater than 50 unique values were excluded from the dataset

Correlated Variables

- Highly Correlated (>0.9)
 Features were reduced based on Importance
- Used Correlation, Chi-square Test, and Anova F-Value

1.5M unique cases, 455 features

Baseline Models

A set of simple and non-informative models were created to provide a benchmark for the more optimized and sophisticated models.

Dumb Classifier

Predicts the majority class. Used to benchmark imbalanced data

Metrics **Dumb Classif Random Chance** Accuracy 96.85% 93.96% 0.00% 3.19% Precision Recall 0.00% 3.13% 0.00% 3.16% F1 Score 0.5000 ROC-AUC 0.5002 PR-AUC 0.0315 0.0315

Random Chance Classifier

Randomly predicts the target variable based on event rate

Hyperparameter Tuning

Given a hyperparameter space, a Bayesian-based search algorithm was used to look for the parameters that will yield optimal results.

ML Algorithm

LightGBM & CatBoost

Objective Function

Maximize Avg PR-AUC (5-Fold Cross Validation)

Search Algorithm

Hyperopt - Tree of Parzen (max of 250 trials per algo)

- Gradient Boosting Decision Trees
- Accepts Categorical Values
- Handles Missing Values
- Faster Training Times

```
space = {
    'max_depth': hp.quniform("max_depth", 3, 10, 1), #Max depth 10
    'gamma': hp.loguniform('gamma', np.log(1), np.log(100)),
    'reg_alpha': hp.uniform('reg_alpha', 0, 10),
    'reg_lambda': hp.uniform('reg_lambda', 0, 10),
    'colsample_bytree': hp.uniform('colsample_bytree', 0.5, 1),
    'min_chlld_weight': hp.loguniform('min_chlld_weight', np.log(1), np.log(100)),
    'n_estimators': hp.quniform('n_estimators', 50, 250, 1),
    'learning_rate': hp.loguniform('learning_rate', np.log(0.01), np.log(0.2)),
    'subsample': hp.uniform('subsample', 0.5, 1),
    'random_state': 42,
    'verbose': -1
}
```

Average of 5-Fold Cross Validation (Training Dataset - 80%)						
model_name	ROC AUC	PR AUC	Gini			
LGB_Tune34	0.84925	0.18499	0.69850			
LGB_Tune28	0.84923	0.18492	0.69846			
LGB_Tune3	0.84956	0.18449	0.69911			
LGB_Tune2	0.84909	0.18426	0.69819			
LGB_Tune33	0.84851	0.18343	0.69702			
LGB_Tune23	0.84866	0.18339	0.69732			
LGB_Tune26	0.84862	0.18276	0.69725			
LGB_Tune25	0.84778	0.18271	0.69556			
LGB_Tune22	0.84774	0.18259	0.69548			
LGB_Tune27	0.84726	0.18207	0.69453			
LGB_Tune5	0.84733	0.18148	0.69467			
LGB_Tune20	0.84778	0.18144	0.69556			
LGB_Tune21	0.84819	0.18111	0.69638			
LGB_Tune24	0.84786	0.18049	0.69572			
LGB_Tune6	0.84447	0.17763	0.68894			
LGB_Tune14	0.84529	0.17756	0.69057			
CatBoost_Tune12	0.84359	0.17745	0.68718			
CatBoost_Tune0	0.84425	0.17736	0.68850			
LGB_Tune12	0.84364	0.17728	0.68728			
CatBoost_Tune6	0.84302	0.17720	0.68604			
CatBoost_Tune14	0.84400	0.17672	0.68800			
LGB_Tune30	0.84382	0.17652	0.68764			
CatBoost_Tune15	0.84173	0.17499	0.68347			
LGB_Tune10	0.84192	0.17495	0.68384			
CatBoost_Tune10	0.84176	0.17164	0.68352			

Optimizing Features

Using the importance scores of the features from the optimized model, we experiment on the effect of recursive feature elimination.

Recursive Feature Elimination

- → Slightly Better Performance at Top 95% Features (Removed 192 Vars)
- → Continued Decrease in Performance below 90%
- → Some features might have added noise and complexity to the model

129	166	218	258	312	450
				450000	
0.8551	0.8556	0.8565	0.8561	0.8566	0.8561
0.1887	0.1897	0.1907	0.1919	0.1903	0.1896
	0.1887	0.1887 0.1897	0.1887 0.1897 0.1907	0.1887 0.1897 0.1907 0.1919	0.1887 0.1897 0.1907 0.1919 0.1903

Experimenting with PCA

Using the PCA explained variance, we experiment on the effect of varying the n components of the dataset.

PCA Dimensionality Reduction

- Overall Performance is worse than original dataset
- Reducing Principal Components continuously decreased performance
- Unlike RFE, PCA's ranking is not influenced by relationship with target

%Cum Imp	50%	60%	70%	80%	90%	95%	99%	100%
n_features	122	140	164	198	245	285	351	450
ROC-AUC	0.8198	0.8223	0.8232	0.8247	0.8259	0.8274	0.8289	0.8335
PR-AUC	0.1467	0.1496	0.1511	0.1522	0.1529	0.1534	0.1550	0.1580

Model Performance

The best performing model is selected from all iterations. Optimizing thresholds/cutoffs for prediction will also be determined.

LightGBM Tuned Model, 285 Features

	ROC-AUC	PR-AUC	GINI
Dumb Classifier	0.500	0.032	0.000
Random Chance Classifier	0.500	0.032	0.000
LightGBM Tuned Model	0.860	0.190	0.720

Kaggle Leaderboard 0.67303

Best Submission 0.63763

Model Performance

The best performing model is selected from all iterations. Optimizing thresholds/cutoffs for prediction will also be determined.

Captured Response

- → 72% of Defaulters are captured at 20% of the base.
- → Trade-off of precision
- → Maximize Returns based on Risk & Returns

Percentile Threshold	3%	5%	7%	10%	15%	20%	30%	50%
Accuracy	95.37%	93.97%	92.47%	90.09%	85.83%	81.37%	72.11%	52.80%
Precision	24.97%	21.00%	18.59%	16.07%	13.18%	11.24%	8.73%	5.93%
Recall	23.94%	33.56%	41.60%	51.38%	63.19%	71.85%	83.69%	94.79%
F1	24.45%	25.84%	25.70%	24.49%	21.81%	19.44%	15.81%	11.16%
Lift	7.98	6.71	5.94	5.14	4.21	3.59	2.79	1.90

Data Strategy

Business Impact & Use Case

WHAT INFORMATION ARE NECESSARY TO APPROVE LOANS?

Top 20 features are a good balance between credit data and non-credit data.

Little to None Credit History

- Income
- Income Type
- Age
- Education
- Tax Payments

With Credit History

- Promptness of Payments
- Consistency of Payments
- Delinquency History
- Annuity Amount
- Loan Tenure

...on top of requirements for little to no credit history

Defaulters Profile

Payment behavior of experienced loaners are determinant of default while income, age, and application frequency are determinant for new applicants.

WHAT TYPES OF APPLICANTS HAVE HIGH LIKELIHOOD TO DEFAULT ON LOANS?

Little to None Credit History

- Private Employees
- Duplicate/ Redundant Applications
- Younger Loaners
- Lower Tax Bracket

With Credit History

- Late Payers
- Delinquent Loaners
- Irregular Payers
- Larger Annuity Amounts
- Newer Loaners

Features	Defaulters	Good Loaners
Gender	Male	Female
Payment Frequency	16x	12x
Income Type	Private Sector Employee	Other, Retired Pensioner
Days Past Due of Terminated Contract	7.37	0.28
Monthly Annuity Amount	3,288.40	3,142.20
Tax Authority Request Type	DEDUCTION_6	PENSION_6
Years since First Credit	1.5 Years	2 Years
Persons with the same Mobile Number	2	1
Std Dev of Days Past Due	0.45	0
Age	38 yrs	43 yrs
%Late Payments on Installation	29%	8%
Taxes	5,800.00	8,520.60
Education Level	MASKED	CATEGORIES
# of Credit Bureau Queries	2	1
Residual Amount of Closed Contract	23,339.93	10,449.90
Months with Payment by Client	8	10
Interst Rate	0.30	0.28
Oustanding Debt from Previous Application	11,695.25	7,837.31

Impact & Strategy

Simulated Gains/Loss for the Test Data using the Predictions. Find Optimal Rejection Criteria based on Risk Appetite.

- Traditional credit companies has 20% rejection rate.
- Profit can be increased by 43M (~0.4%) by relaxing rejection rate to 10%.

Recommendations

1 Model Enhancements 2 Consider Market Nuances

- Experiment with Handling Imbalanced Datasets
- Separate Models for those with Credit History and those without
- Explore other Algorithms

- Demographics might be skewed for each location
- Different Markets (i.e. jurisdictions) have different financial legal frameworks.
- Identify location with good credit scores for expansion

 Adjust Credit Limit, Fees, and Max Loan Terms according to default risk and other significant features

WE ARE LT4.

THANK YOU!

Impact & Strategy
Simulated Gains/Loss for the Test Data using the Predictions. Find Optimal Rejection Criteria based on Risk Appetite.

Rejection Criteria	Actual Default Rate	Approved Loans	Performing Loans	Interest Earned (Assume 10% EIR)	Non-Performing Loans (Assume Uncollectible)	Gains/Loss	
Reject Top 3% High Probability to Default	2.40%	14,640,507,000	14,259,040,000	1,425,904,000	381,467,000	1,044,437,000	
Reject Top 5% High Probability to Default	2.20%	14,312,962,100	13,980,840,000	1,398,084,000	332,122,100	1,042,178,600	
Reject Top 10% High Probability to Default	1.70%	13,516,131,300	13,275,980,000	1,327,598,000	240,151,300	1,087,446,700	Highest Pro
Reject Top 15% High Probability to Default	1.40%	12,718,963,300	12,539,970,000	1,253,997,000	178,993,300	1,075,003,700	
Reject Top 20% High Probability to Default	1.10%	11,928,779,400	11,791,780,000	1,253,997,000	136,999,400	1,042,178,600	Avg Credit Rejection R
Reject Top 30% High Probability to Default	0.71%	10,340,142,990	10,263,300,000	1,026,330,000	76,842,990	949,487,010	
Reject Top 50% High Probability to Default	0.33%	7,161,089,380	7,136,630,000	713,663,000	24,459,380	689,203,620	
Rejection Criteria using Model Scores	%Default Rate of Approved Applicants	Sum of All Loan Amounts/ Approved by chosen criteria	Sum of all Approved Loan Amounts that did not default	Interest Earned (assumed 10% EIR) from Performing Loans	Sum of all Approved Loan Amounts that defaulted (considered as loss if uncollectible)	Net of Interest Earned - Non-Performing Loans	_

HOME

