Complex Analysis Notes

SIVMENG HUN

December 7, 2022

1 Conformal Mapping

A conformal map is a holomorphic and a bijection. It turned out that its inverse is then automatically holorphic. To prove this, consider the following:

Lemma 1. If $f: U \to V$ is holomorphic and injective, then $f'(z) \neq 0$.

Proof. Assume by contradiction that there is $f'(z_0) = 0$ for some $z_0 \in U$. Then we can choose small R so that $f'(z) \neq 0$ for all $z \neq z_0$ and $z \in D_R(z_0)$, and f has power series

$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \cdots$$
$$= f(z_0) + a(z - z_0)^k + G(z)$$

converges in the disc $\overline{D_R}(z_0)$, where $a \neq 0, k \geq 2$ and G(z) has zero at $z = z_0$ of oder k+1. Next we choose w small such that $|G(z)| < |a(z-z_0)^k - w|$ on some smaller circle $|z-z_0| = r < R$.

• Write $G(z) = (z-z_0)^{k+1}H(z)$ where H(z) is also holomorphic, then it has a maximum on the closure $\overline{D_R}(z_0)$, say |H(z)| < M for all $z \in D_R(z_0)$. Then we have

$$|G(z)| = |(z - z_0)^{k+1}H(z)| < r^{k+1}M$$

on the disc $|z - z_0| \leq R$.

• Denote $F(z) := a(z-z_0)^k - w$, where we choose r < R so that $r < \frac{|a|}{2M}$, and w so that $w = \frac{a}{2}r^k$, then for $|z-z_0| = r$

$$|F(z)| \ge ||a|r^k - |w||$$

$$= \frac{|a|}{2}r^k > Mr^{k+1} > |G(z)|$$

Thus we've found r < R such that |G(z)| < |F(z)| on the circle $|z - z_0| = r$, moreover $F(z) = a(z - z_0)^k - \frac{a}{2}r^k$ has at least two zeros inside this circle, then by Rouché's theorem

$$f(z) - f(z_0) - w = F(z) + G(z)$$

has at least two zero inside this small circle. Let $\alpha \in D_r(z_0)$, $\alpha \neq z_0$ be a zero of $f(z) - f(z_0) - w$. Because f is injective, then α has to be a double zero, then we can write $f(z) = (z - \alpha)^2 J(z)$, and differentiating both sides gives us $f'(w_0) = 0$ which contradicts the fact $f'(z) \neq 0$.

So if $f: U \to V$ is conformal, then let $g = f^{-1}$ denote the inverse of f. Suppose $w_0 := f(z_0) \in V$ and w := f(z) is close to w_0 , then if $w \neq w_0$

$$\frac{g(w) - g(w_0)}{w - w_0} = \frac{1}{\frac{w - w_0}{g(w) - g(w_0)}} = \frac{1}{\frac{f(z) - f(z_0)}{z - z_0}}.$$

Since $f'(z_0) \neq 0$, we may let $z \to z_0$ and conclude that $g'(w_0) = 1/f'(g(w_0))$. Hence the invere f^{-1} is also holomorphic.

Theorem 2. The upper half-plane is conformally equivalent to the unit circle by the map

$$F(z) := \frac{i-z}{i+z}.$$

2 Automorphisms of the disc

We say a conformal map from an open set Ω to itself an *automorphism* of Ω . In this section, we want to characterize all the automorphism of the unit disc, denoted by $\operatorname{Aut}(\mathbb{D})$. Some important maps in $\operatorname{Aut}(\mathbb{D})$ are:

- the map $\operatorname{rot}_{\theta}: z \mapsto e^{i\theta}z$.
- the map $\psi_{\alpha}: z \mapsto \frac{\alpha z}{1 \overline{\alpha}z}$, where $\alpha \in \mathbb{D}$. This map ψ_{α} interchanges 0 and α , namely $\psi_{\alpha}(0) = \alpha$ and $\psi_{\alpha}(\alpha) = 0$. Often it's called *Blaschke factors*.

The result in this chapter is that the maps $\operatorname{rot}_{\theta}$ and ψ_{α} exhaust all of $\operatorname{Aut}(\mathbb{D})$. Before proving this result, let us first present

Lemma 3 (Schwarz Lemma). Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic with f(0) = 0. Then $|f(z)| \leq |z|$ for all $z \in \mathbb{D}$, and if some $z_0 \neq 0$ is such that $|f(z_0)| = |z_0|$ then f is a rotation.

Proof. Expand power series of f centered at z = 0,

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

where the series converges in all of \mathbb{D} . Since f(0) = 0 we get $a_0 = 0$, and therefore f(z)/z has removable singularity at z = 0, hence it's holomorphic. Let r < 1. Then on the circle |z| = r we have

$$\left| \frac{f(z)}{z} \right| = \frac{|f(z)|}{|z|} \le \frac{1}{r}.$$

By Maximum Modulus principle, we conclude that this expression is true for all $|z| \le r$. Letting $r \to 1$, we get $|f(z)| \le |z|$.

Now if there is such a $z_0 \in \mathbb{D}$ for which $|f(z_0)| = |z_0|$, that means f(z)/z attains maximum in the interior of \mathbb{D} , thus it must be constant, i.e.

$$f(z) = cz$$
, for some $c \in \mathbb{C}$

Replacing $z = z_0$ then take absolute value we obtain |c| = 1, thus we can write $c = e^{i\theta}$. Therefore, $f(z) = e^{i\theta}z$ is a rotation.

The corollary of the Schwarz lemma is of out great interest, it states:

Lemma 4. Any automorphism of \mathbb{D} that fixes the origin is a rotation.

Proof. Let $f \in \operatorname{Aut}(\mathbb{D})$ that fixes the origin. Because both f and f^{-1} are holomorphic and because f(0) = 0, $f^{-1}(0) = 0$, applying Schwarz lemma gives

$$|f(z)| \le |z|,$$

and for any w = f(z),

$$|f^{-1}(w)| \le |w| \implies |z| \le |f(z)|,$$

we conclude that |f(z)| = |z|. Thus f is a rotation.

Now we are ready to prove the result promised above.

Theorem 5. If $f \in Aut(\mathbb{D})$, then there exist $\alpha \in \mathbb{D}$ and $\theta \in \mathbb{R}$ such that

$$f(z) = (\operatorname{rot}_{\theta} \circ \psi_{\alpha})(z) = e^{i\theta} \cdot \frac{\alpha - z}{1 - \overline{\alpha}z}.$$

Proof. Since $f \in \text{Aut}(\mathbb{D})$, then there is a unique $\alpha \in \mathbb{D}$ so that $f(\alpha) = 0$. Then the map $g := f \circ \psi_{\alpha}$ is in $\text{Aut}(\mathbb{D})$ and g(0) = 0. By Schwarz lemma, any automorphism that fixes the origin is a rotation, then we obtain that $g(z) = e^{i\theta}z$ for some $\theta \in \mathbb{R}$. Replace z by $\psi_{\alpha}(z)$, we deduce that

$$e^{i\theta}\psi_{\alpha}(z) = g(\psi_{\alpha}(z)) = f(\psi_{\alpha}(\psi_{\alpha}(z))) = f(z).$$

Thus we conclude that $f = \operatorname{rot}_{\theta} \circ \psi_{\alpha}$ for some $\alpha \in \mathbb{D}$ and $\theta \in \mathbb{R}$.

3 Automorphisms of the upper half-plane

Previously we've seen that the upper half-plane $\mathbb H$ could be mapped conformally to the unit circle $\mathbb D$ by the map $F: z \mapsto \frac{i-z}{i+z}$. It turned out that automorphisms of $\mathbb H$ could be identified by automorphisms of $\mathbb D$. And moreover $\operatorname{Aut}(\mathbb D) \simeq \operatorname{Aut}(\mathbb H)$.

To see why this is true, consider the map $\Gamma : \operatorname{Aut}(\mathbb{D}) \to \operatorname{Aut}(\mathbb{H})$ by

$$\Gamma(\varphi) = F^{-1}\varphi F$$

conjugation by F. It can be shown that Γ is indeed an isomorphism between these two groups. Next we want to characterize $\operatorname{Aut}(\mathbb{H})$ like we did for $\operatorname{Aut}(\mathbb{D})$ earlier. But first we define

$$\mathrm{SL}_2(\mathbb{R}) := \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \; : \; a,b,c,d \in \mathbb{R} \text{ and } \det M = 1 \right\}$$

called the special linear group. Given a matrix $M \in \mathrm{SL}_2(\mathbb{R})$ we define the mapping f_M by

$$f_M(z) = \frac{az+b}{cz+d}.$$

Theorem 6. Every automorphism of \mathbb{H} takes the form f_M for some $M \in SL_2(\mathbb{R})$. Conversely, every map of this form is an automorphism of \mathbb{H} .

Proof.

 (\Leftarrow) "every map of this form is an automorphism of \mathbb{H} "

For $M, N \in \mathrm{SL}_2(\mathbb{R})$, tedious calculations showed that

 $ightharpoonup \operatorname{Im}(f_M(z)) > 0$ i.e. f_M maps the upper half-plane to itself.

 $\triangleright f_M \circ f_N = f_{MN}$

 $(f_N)^{-1} = f_{N^{-1}}$

As a consequence, f_M is an automorphism of \mathbb{H} .

 (\Rightarrow) "every automorphim of \mathbb{H} takes the form f_M "

First, let $f \in Aut(\mathbb{H})$. Then there is a unique $\beta \in \mathbb{H}$ such that $f(\beta) = i$. We then claim the following facts, which we won't give any proof for the moment.

Claim 1. There is a matrix $N \in \mathrm{SL}_2(\mathbb{R})$ such that $f_N(i) = \beta$.

Claim 2. Every rotation in \mathbb{D} corresponds to Ff_MF^{-1} for some $M\in \mathrm{SL}_2(\mathbb{R})$.

With these claims at hand, we can proceed the proof as follows: Let $g=f\circ f_N$, then g(i)=i, and therefore FgF^{-1} is an automorphism of the disc that fixes the origin. By Schwarz lemma, it must be a rotation. Thus by the second claim, we conclude that $FgF^{-1}=Ff_MF^{-1}$ for some $M\in \mathrm{SL}_2(\mathbb{R})$. Hence $g=f_M$, i.e.

$$f = f_M(f_N)^{-1} = f_M f_{N^{-1}} = f_{MN^{-1}}$$

as desired. \Box