Package 'rfcipDemand'

August 27, 2025

Type Package
Title Estimate

Title Estimate Federal Crop Insurance Program Demand Models

Version 0.0.0.9000

Author Francis Tsiboe [aut, cre] (https://orcid.org/0000-0001-5984-1072)

Maintainer Francis Tsiboe <ftsiboe@hotmail.com>

Contributor -

Reviewer -

Creator Francis Tsiboe

Description Tools to construct county–crop–practice–plan–unit panels from the USDA RMA Summary of Business (SOBTPU) and related sources, and to estimate FCIP demand systems with two-way cluster-robust covariance. The pipeline standardizes coverage measures, merges price and instrument variables, adds rental-rate and price-index controls, reconciles county acreage (FSA/NASS), and produces diagnostics including robust first-stage F-tests. Methods align with the empirical design in ``The crop insurance demand response to premium subsidies Evidence from U.S. Agriculture" (Food Policy, 2023, 119(3)).

License GPL-3 + file LICENSE

URL https://github.com/you/rfcipDemand

BugReports https://github.com/you/rfcipDemand/issues

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

VignetteBuilder knitr

Depends R (>= 4.1.0)

Imports rfcip, rfsa, data.table, systemfit, sandwich, doBy, car, plyr, usmap, stats, utils, tidyr

Remotes github::dylan-turner25/rfcip, github::UrbanInstitute/urbnmapr, github::dylan-turner25/rfsa, github::JanMarvin/nlsur

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

LazyData true

Cite-us If you find it useful, please consider staring the repository and citing the following studies - Tsiboe, F. and Turner, D. (2025). ``Incorporating buy-up price loss coverage into the United States farm safety net." Applied Economic Perspectives and Policy.

- Tsiboe, F., et al. (2025). ``Risk reduction impacts of crop insurance in the United States." Applied Economic Perspectives and Policy.
- Gaku, S. and Tsiboe, F. (2024). Evaluation of alternative farm safety net program combination strategies. Agricultural Finance Review.

Contents

Index		21
	panel_based_spatial_smoothing_estimator	19
	get_yu2018_instrument	
	fixed_effect_model_data_prep	17
	fcip_demand_sys_vcov	16
	fcip_demand_sys_tests	15
	fcip_demand_sys_restricted	14
	fcip_demand_sys_partial	13
	fcip_demand_sys_level_run	13
	fcip_demand_sys_level_prep	12
	fcip_demand_sys_fit	11
	fcip_demand_sys_estimate	11
	fcip_demand_sys_effect	10
	fcip_demand_sys_coeff_table	10
	fcip_demand_data_reconcile_acreage	9
	fcip_demand_data_prep_sob	7
	fcip_demand_data_finalize	7
	fcip_demand_data_dispatcher	6
	fcip_demand_data_controls	5
	estimate_fcip_unloaded_rate	3
	estimate_fcip_instruments	2

estimate_fcip_instruments

Estimate FCIP Instrumental Variables (Unloaded Rates)

Description

Uses historical FCIP rate data to build instrumented unloaded-rate variables following:

1. Tsiboe & Turner (2023), Econometric identification of crop insurance participation *Agricultural and Resource Economics Review*, 52(3):476-497. https://doi.org/10.1017/age. 2023.13

Usage

```
estimate_fcip_instruments(year, statplan)
```

Arguments

year Integer. The target crop year for which to construct instruments. statplan A data.table containing FCIP rate elements, including at least:

commodity_year Year of the rate observation.
state_code, county_code County identifiers.

commodity_code Crop identifier.

insured_area, lcr, contiguous_state_code, contiguous_county_code Fields required by estimate_fcip_unloaded_rate().

Details

- 1. **Task list**: Identify all unique (state, county) pairs with data in the 2-21 years before year.
- 2. **Unloaded-rate calculation**: For each county in task_list, call estimate_fcip_unloaded_rate() on the same 2-21 year window to get tau. Errors return NULL so processing continues.
- 3. Contiguous-county smoothing:
 - Build a lookup table of contiguous counties (using contiguous_county).
 - For each contiguous group, compute the mean tau to get tau_c.
- 4. **Merge & fill**: Left-join the raw adm and contiguous_adm; replace any zero/NA/Inf tau with the group mean tau_c into tau_sob.
- Cleanup: Drop helper columns (tau, tau_c), remove invalid rows, add commodity_year, and return the result.

Value

A data.table with one row per county-crop for the specified year, containing:

```
state_code, county_code, commodity_code Keys.tau_sob Smoothed unloaded rate (uses contiguous-county means to fill zeros/NAs).commodity_year The input year, repeated.
```

See Also

```
estimate_fcip_unloaded_rate
Other FCIP Demand Estimation: fcip_demand_data_controls(), fcip_demand_data_dispatcher(),
fcip_demand_data_finalize(), fcip_demand_data_prep_sob(), fcip_demand_data_reconcile_acreage(),
get_yu2018_instrument()
```

```
{\tt estimate\_fcip\_unloaded\_rate}
```

Estimate FCIP Unloaded (County) Rates

Description

Computes the unloaded loss cost rates (tau) for counties based on the FCIC Rate Methodology Handbook (2009), pp. 65-70.

Usage

```
estimate_fcip_unloaded_rate(
  statplan,
  year = 2011,
  crop = NULL,
  state = NULL,
  county = NULL
)
```

Arguments

statplan A data.table containing FCIP rate elements with at least the columns:

state_code, county_code Identifiers for each county.

contiguous_state_code, contiguous_county_code Mapping to county group.

insured_area Total insured acres in the county.

lcr Loss Cost Rate for each county.
commodity_code Crop identifier.

year Integer. Crop year for which rates are being estimated (currently not used but

reserved for future subsetting).

crop Optional vector of commodity codes to filter by crop.
state Optional vector of state codes to restrict the analysis.
county Optional vector of county codes to restrict the analysis.

Details

1. Target data is filtered to the selected state(s)/county(ies).

2. Group data finds contiguous-county groupings, unions them with the target.

3. Computes group-level statistics:

• c_alpha: mean insured acres

• c_u: mean LCR

• c_a: variance of LCR

1. Computes target county statistics:

• c_x: mean LCR

• c_v: variance of LCR

• c_net_acre: total insured acres

1. Applies the blending formula

$$\tau = Z\,x + (1-Z)\,u, \quad Z = P/(P+K)$$
 where $P = c_{net_acre}/c_{\alpha}, \quad K = c_v/c_a.$

Value

A data.frame with columns:

state_code, county_code, commodity_code Keys identifying county and crop.tau Estimated FCIP county unloaded rate.

References

FCIC Rate Methodology Handbook APH (2009), pp. 65-70. https://legacy.rma.usda.gov/pubs/2008/ratemethodology.pdf

fcip_demand_data_controls

Add recodes, prices, instruments, rental rates, and price index

Description

Adds commodity prices (ADM; projected price with fallback to harvest price), instruments (tau plus benchmark subsidy rates 65/75), state-level land rental rates, and NASS "index for price received". Also performs within-group price imputation to fill sparse county-year * crop-type-practice cells.

Usage

fcip_demand_data_controls(df)

Arguments

df

A data.table produced by fcip_demand_data_prep_sob().

Value

The same data.table with added columns: price, tau, subsidy_rate_65, subsidy_rate_75, rent, index_for_price_recived.

Data sources

- ADM price release: adm_extracts/fcip_commodity_price.rds
- Instrument release: reps/fcip_demand_instruments.rds (uses tau_adm, fallback tau_sob)
- Assumes in-memory tables: nass_state_rental_rates, nass_index_for_price_recived

Note

Column name index_for_price_recived follows the source spelling.

See Also

```
Other FCIP Demand Estimation: estimate_fcip_instruments(), fcip_demand_data_dispatcher(), fcip_demand_data_finalize(), fcip_demand_data_prep_sob(), fcip_demand_data_reconcile_acreage(), get_yu2018_instrument()
```

```
fcip_demand_data_dispatcher
```

Build dataset to estimate Federal Crop Insurance Program (FCIP) demand (modular pipeline)

Description

End-to-end pipeline that: (1) prepares SOBTPU and coverage aggregates, (2) adds prices/instruments/rental rates/price index, (3) reconciles county acreage (FSA + NASS), and (4) finalizes bins/labels/pooling for demand estimation.

Usage

```
fcip_demand_data_dispatcher(
  study_years = 2001:(as.numeric(format(Sys.Date(), "%Y")) - 1),
  identifiers = c("commodity_year", FCIP_INSURANCE_POOL, "insurance_plan_code",
        "unit_structure_code")
)
```

Arguments

study_years

Integer vector of commodity years to include. Defaults to 2001: (as.numeric(format(Sys.Date(),

"%Y")) - 1).

identifiers

Character vector of grouping keys that define the aggregation grain. Must be columns present in SOBTPU (e.g., "commodity_year", FCIP_INSURANCE_POOL, "insurance_plan_code", "unit_structure_code", and-if desired-additional keys like "commodity_code" or "practice_code"). Enrichment joins for recodes are performed only when the required keys are included in identifiers

Details

Aligned with Asche, Bekkerman, & Li (2023), *Food Policy*, 119(3):102505 (doi:10.1016/j.foodpol.2023.102505). Requires internet access to download release .rds assets and several in-memory lookup tables (see stage docs).

Value

A data.table ready for FCIP demand estimation.

See Also

```
fcip_demand_data_prep_sob(), fcip_demand_data_controls(), fcip_demand_data_reconcile_acreage(),
fcip_demand_data_finalize()
Other FCIP Demand Estimation: estimate_fcip_instruments(), fcip_demand_data_controls(),
fcip_demand_data_finalize(), fcip_demand_data_prep_sob(), fcip_demand_data_reconcile_acreage(),
get_yu2018_instrument()
```

fcip_demand_data_finalize

Finalize FCIP demand dataset

Description

Applies required log-based validity filters, enforces crop support thresholds, creates Mundlak pooling identifiers, forms subsidy-share bins, attaches Farm Bill period labels, derives a simple before/after indicator, and adds state names/abbreviations.

Usage

```
fcip_demand_data_finalize(df)
```

Arguments

df

A data.table from fcip_demand_data_reconcile_acreage().

Details

- Filters: drops rows where logs of key variables are 0, NA, Inf, or -Inf.
- **Support thresholds**: keep crops with >= 30 obs per year for >= 10 years.
- Mundlak pooling: produces pool and a singleton flag per cross-sectional key.
- **Binning**: subsidy_bins in 0.02 steps from 0.40 to 0.80 (inclusive, with clamp).
- Labels: period_farmbill factor (pre-1980 ... 2018) and period_combo ("Before"/"After" 2012).

Value

Final data. table ready for estimation.

See Also

```
Other FCIP Demand Estimation: estimate_fcip_instruments(), fcip_demand_data_controls(), fcip_demand_data_dispatcher(), fcip_demand_data_prep_sob(), fcip_demand_data_reconcile_acreage(), get_yu2018_instrument()
```

fcip_demand_data_prep_sob

Prep SOBTPU and compute coverage/financial aggregates for demand estimation

Description

Loads RMA Summary of Business (SOBTPU) data, filters valid observations, normalizes coverage levels, computes coverage summaries, and collapses financials at a chosen identifier grain. Optionally enriches with recode tables depending on which keys are present in identifiers.

Usage

```
fcip_demand_data_prep_sob(
   study_years = 2001:(as.numeric(format(Sys.Date(), "%Y")) - 1),
   identifiers = c("commodity_year", FCIP_INSURANCE_POOL, "insurance_plan_code",
        "unit_structure_code")
)
```

Arguments

study_years Integer vector of commodity years to include. Defaults to 2001:(as.numeric(format(Sys.Date(), "%Y")) - 1).

identifiers Character vector of grouping keys that define the aggregation grain. Must be

columns present in SOBTPU (e.g., "commodity_year", FCIP_INSURANCE_POOL, "insurance_plan_code", "unit_structure_code", and-if desired-additional keys like "commodity_code" or "practice_code"). Enrichment joins for recodes are performed only when the required keys are included in identifiers (see details below).

Details

Normalization of coverage: values > 1 are treated as percentages and converted to proportions, snapped to a 0.05 grid, and clamped to 0.50:0.95.

Aggregation:

- Per-identifier coverage summaries: max, mean, mode (dominant), and weighted average (weights = net_reporting_level_amount).
- potential_liability_amount = liability_amount / coverage_level_percent
- coverage_level_percent_aggregate = liability_amount / potential_liability_amount

Optional enrichment (requires certain keys in identifiers):

- Commodity grouping (commodity_year + commodity_code)
- Practice recodes (commodity_year + commodity_code + practice_code)
- Insurance plan recodes (commodity_year + insurance_plan_code, filtered to triger_level
 "Individual")

Environment requirements (for optional enrichment):

- $\bullet \ \, \texttt{fcip_recodes_commodity_groupings}, \\ \texttt{fcip_recodes_practice}, \\ \texttt{fcip_recodes_insurance_plan}.$
- A function calculate_mode() used to compute the coverage mode.

Value

A data. table at the chosen identifier grain with coverage aggregates and the columns listed under **What this stage produces**.

What this stage produces

- Coverage metrics: coverage_level_percent_{max,avg,dominant,wavg,aggregate}
- Financial totals: net_reporting_level_amount, liability_amount, total_premium_amount, subsidy_amount
- Ratios: premium_per_liability, subsidy_per_premium

Data source

Downloads a released .rds: USFarmSafetyNetLab/sob/sobtpu_all.rds (GitHub Releases).

See Also

Other FCIP Demand Estimation: estimate_fcip_instruments(), fcip_demand_data_controls(), fcip_demand_data_dispatcher(), fcip_demand_data_finalize(), fcip_demand_data_reconcile_acreage(), get_yu2018_instrument()

fcip_demand_data_reconcile_acreage

Reconcile county acreage from FSA and NASS

Description

Builds county-year planted acres from FSA (fsaCropAcreage joined via fsa_crop_linker) and merges NASS county series (planted, bearing, harvested). Sets county_acreage choosing the first non-missing in the order: FSA planted - NASS planted - NASS bearing - NASS harvested. Intermediate columns are dropped.

Usage

fcip_demand_data_reconcile_acreage(df)

Arguments

df

A data.table from fcip_demand_data_controls().

Value

The same data. table with a single county_acreage column and without nassSurvey_AREA $_*$ or fsa_planted_acres intermediates.

Data sources

- Package data: fsaCropAcreage (loaded via data(fsaCropAcreage))
- Linker: fsa_crop_linker (columns: crop_cd_fsa, crop, crop_yr)
- Release download: nass_extracts/nass_production_data.rds

See Also

Other FCIP Demand Estimation: estimate_fcip_instruments(), fcip_demand_data_controls(), fcip_demand_data_dispatcher(), fcip_demand_data_finalize(), fcip_demand_data_prep_sob(), get_yu2018_instrument()

fcip_demand_sys_coeff_table

Tidy coefficient table with cluster-robust SEs (from supplied VCOV)

Description

Builds a clean coefficient table for a systemfit model using a **user-supplied covariance matrix** (e.g., two-way clustered from fcip_demand_sys_vcov()). Estimates come from coef(fit), standard errors from diag(vcMat), then Z-scores and two-sided normal p-values are computed. The demand column is inferred from the equation prefix in the coefficient names:

- "Gamma_*" to "Gamma"
- "Theta_*", "Theta1_*", "Theta2_*", ... to "Theta" Otherwise the prefix itself is used.

Usage

```
fcip_demand_sys_coeff_table(fit, vcMat, p_digits = 5)
```

Arguments

fit A fitted systemfit object.

vcMat A covariance matrix conformable with coef(fit). Row/column names are used

to align; if missing, positional alignment is assumed.

p_digits Integer; number of digits to keep for p-values (default 5).

Value

A data.frame with columns: demand, coef, Estimate, StdError, Zvalue, Pvalue.

```
fcip_demand_sys_effect
```

Delta-method "total protection response"

Description

Combines equation-specific effects into a single "Total" effect for each regressor in c(fields\$endogenous, fields\$included) using car::deltaMethod and a supplied covariance matrix.

Usage

```
fcip_demand_sys_effect(fit, vcMat, fields, data)
```

Arguments

fit	A fitted systemfit object	(the structural system).
-----	---------------------------	--------------------------

vcMat Covariance matrix conformable with coef(fit) (e.g., from fcip_demand_sys_vcov()).

fields Named list carrying model fields; must include outcome, endogenous, and

included.

data Estimation data used to check variable availability and build delta-method ex-

pressions.

Value

A data.frame with rows demand="Total" and columns: demand, coef, Estimate, StdError, Zvalue, Pvalue.

```
fcip_demand_sys_estimate
```

System estimator (modular wrapper; preserves original outputs)

Description

Runs: per-level prep -> partial/tilda -> systemfit -> clustered VCOV -> delta-method totals -> (optional) restricted NLSUR -> diagnostics -> bind rows.

Usage

```
fcip_demand_sys_estimate(model, data)
```

Arguments

model List with elements: outcome, endogenous, included, excluded (opt), partial

(opt), FE (logical), disag (string colname), optional restrict (logical), name

(string).

data Input data.frame/data.table with all referenced columns plus pool and commodity_year.

Value

A data frame aggregating results across all disaggregation levels.

```
fcip_demand_sys_fit Build systemfit formulas and estimate the system
```

Description

Constructs the list of structural equations (g) and instrument sets (h), then runs systemfit() using OLS (when no excluded instruments) or 3SLS-GMM (when excluded instruments are present).

Usage

```
fcip_demand_sys_fit(
  data,
  fields,
  tilda_included,
  tilda_endogenous,
  tilda_excluded
```

Arguments

data Estimation data.frame/data.table containing the tilda_* and instr_* vari-

ables referenced by the formulas.

fields Named list with at least outcome, included, endogenous, and optionally excluded.

tilda_included Character vector of residualized included regressor names (e.g., "tilda_x1").

tilda_endogenous

Character vector of residualized endogenous regressor names (e.g., "tilda_z1").

tilda_excluded Character vector of instrument names (e.g., "instr_z1"), or NULL when no ex-

cluded instruments are used.

Value

A list with elements:

fit Fitted systemfit object.

g List of structural formulas.

h List of instrument formulas.

fcip_demand_sys_level_prep

Prepare data for a single level

Description

Filters to one disaggregation level, drops incomplete/invalid rows, removes constant partials, and optionally demeans via a fixed-effects helper.

Usage

```
fcip_demand_sys_level_prep(data, fields, level)
```

Arguments

data Estimation dataset that already contains all columns referenced by fields.

fields Named list: outcome, endogenous, included, excluded (opt), partial (opt),

FE (logical), disag (column name).

level One element of the disaggregation levels.

Value

A list: data (prepped), NFE (number of FE), partial (possibly reduced).

fcip_demand_sys_level_run

Orchestrate one disaggregation level

Description

Runs the full pipeline for a single level: level prep -> partial/tilda creation -> systemfit -> two-way clustered VCOV -> delta-method totals -> optional restricted step -> diagnostics; then returns a tidy coefficient table with metadata.

Usage

```
fcip_demand_sys_level_run(base_data, fields, level)
```

Arguments

base_data Full estimation dataset (before subsetting to the level).

fields Named list carrying model fields (see fcip_demand_estimation()), includ-

ing disag, FE, outcome, endogenous, included, optional excluded, partial,

restrict, and name.

level One value of fields\$disag to estimate for (e.g., a crop name).

Value

A data.frame with columns demand, coef, Estimate, StdError, Zvalue, Pvalue and metacolumns model, endogenous, FE, name, disag, level.

fcip_demand_sys_partial

Residualize ("partial out") and build tilded / instrument variables

Description

If excluded instruments exist, runs first-stage OLS for each endogenous variable e: e ~ 1 + partial + included + excluded, storing the fitted values as instr_e. If partial is non-empty, it then regresses instr_e ~ 1 + partial and replaces instr_e <- instr_e - fitted(instr_e ~ partial) (i.e., removes the partial component; conceptually $\widehat{instr}_e(partial)$ but expressed here without raw LaTeX macros).

Outcomes, included, and endogenous variables are residualized on partial to create tilda_<var> (or copied if partial is empty).

Usage

```
fcip_demand_sys_partial(data, fields, partial_override = NULL)
```

Arguments

```
data A data.frame/data.table with referenced variables.

fields List with: outcome, endogenous, included, optional excluded, optional partial.

partial_override

Optional character vector to override fields$partial.
```

Value

List with data, tilda_included, tilda_endogenous, tilda_excluded.

Description

If enabled and feasible, estimates a nonlinear SUR with re-parameterized coefficients (negative exponents) using the optional **nlsur** package and appends "restricted_" rows to the results. Skips gracefully if **nlsur** is not installed or the step fails.

Usage

```
fcip_demand_sys_restricted(
  restrict,
  res,
  fit,
  data,
  outcome,
  tilda_endogenous,
  tilda_excluded,
  tilda_included
)
```

Arguments

```
restrict Logical flag; when TRUE attempt the restricted step.

res Coefficient table from the unrestricted system (used to check signs).

fit Fitted systemfit object from the unrestricted system.

data Estimation data used to fit the restricted NLSUR model.

outcome Character vector of outcome equation names (length 2 expected).

tilda_endogenous

Character vector of endogenous regressors used in the tilded system (e.g., "tilda_z1").

tilda_excluded Character vector of excluded instruments (e.g., "instr_z1").

tilda_included Character vector of included regressors ("tilda_x1", ...).
```

Value

A data.frame with rows for Gamma, Theta, and Total labeled restricted_*, or an empty data.frame if skipped.

Note

This step uses nlsur::nlsur() if available; it is optional and should be listed under Suggests in DESCRIPTION.

```
 \begin{array}{ll} \texttt{fcip\_demand\_sys\_tests} & \textit{System diagnostics: two-way robust first-stage } F \ (\texttt{+ optional approx.} \\ & J) \end{array}
```

Description

Produces diagnostics without re-running GMM:

- FTest: joint relevance of excluded instruments in each first stage, using the same two-way (pool by crop year) cluster-robust covariance via fcip_demand_sys_vcov() with kind = "lm". Reports the minimum F across endogenous regressors.
- **JTest** (optional): an *approximate* over-identification test computed as the sum of per-equation Sargan statistics $J_k \approx n_k R_k^2$ from regressions of equation residuals on that equation's instrument set. This is a quick check (not the system Hansen J).

Usage

```
fcip_demand_sys_tests(g, h, data, fit, NFE, approx_j = FALSE)
```

Arguments

g	List of system equations (the same formulas passed to systemfit).
h	List of instrument formulas (the same formulas passed to systemfit).
data	Estimation data.frame/data.table containing all variables in g/h plus clustering columns pool and crop_yr.
fit	A fitted systemfit object (used for N and residCov_* extraction).
NFE	Integer: number of absorbed fixed effects (for reporting only).
approx_j	Logical, compute the approximate (non-robust) Sargan J as described above. Default FALSE (returns NA for JTest).

Value

```
A \; {\sf data.frame \; with \; rows: \; N, \; NFE, \; residCov\_11, \; residCov\_22, \; residCov\_12, \; JTest, \; FTest.}
```

fcip_demand_sys_vcov Two-way cluster-robust covariance for FCIP demand models

Description

Computes a Cameron-Gelbach-Miller two-way cluster-robust covariance matrix using inclusion-exclusion: $V = V_{pool} + V_{year} - V_{pool_year}$. Works for both systemfit (stacked system) and 1m (first-stage).

Usage

```
fcip_demand_sys_vcov(
  object,
  data,
  kind = c("systemfit", "lm"),
  pool_col = "pool",
  year_col = "crop_yr",
  NFE = 0L,
  n_partial = 0L,
  n_eq = NULL
)
```

Arguments

object	Fitted model: either a systemfit or lm.
data	Estimation data containing pool and year identifiers.
kind	One of c("systemfit", "lm"). If omitted, auto-detected.
pool_col	Name of the pool/cluster id column in data (default "pool").
year_col	Name of the year/time id column in data (default "crop_yr").
NFE	Integer; number of absorbed fixed effects (for df rescaling).
n_partial	Integer; count of variables partialed out per equation.
n_eq	Integer; number of equations (length(object\$eq) for systemfit, 1 for lm). You can override if needed.

Details

Rescaling. Let n be the number of observations (stacked across equations for systemfit). With k_old the number of coefficients and $k_new = k_old + NFE + n_partial * n_eq$, the returned matrix is scaled by $(n - k_old - 1)/(n - k_new - 1)$.

Row alignment (lm). Rows used by 1m are inferred from rownames(model.matrix(object)). If they cannot be mapped back to data, the first nobs(object) rows are used.

Value

Covariance matrix aligned with coef(object).

```
fixed_effect_model_data_prep
```

Prepare and demean data for fixed-effects models

Description

This function

- 1. Filters to complete cases on the specified panel, time, weight, variables, and output
- 2. If output is NULL, creates a dummy output column filled with 1s
- 3. Drops any panel with only one observation
- 4. Computes within-panel means for the output + each variable in varlist (_mean_i)
- 5. Computes overall sample means for the same set of variables (_mean)
- 6. Replaces each variable in varlist by value within_panel_mean + overall_mean

Usage

```
fixed_effect_model_data_prep(
  data,
  varlist,
  panel,
  time,
  wvar = NULL,
  output = NULL
)
```

Arguments

data	A data.frame or data.table containing the data.
varlist	Character vector of variable names to be demeaned.
panel	Character vector of column name(s) defining the panel identifier.
time	Character scalar name of the time variable.
wvar	Character scalar name of a variable to keep but <i>not</i> demean (optional, default NULL).
output	Character scalar name of an output variable whose means are computed but not altered; if NULL, a dummy column named "output" is created (optional, default NULL).

Value

A list with components

- data: a data.table containing
 - the original panel, time, wvar, varlist, and output columns
 - two mean columns for each of c(output, varlist): <name>_mean_i (within-panel) and <name>_mean (overall)
- NFE: the number of panels with more than one observation

See Also

Other Estimators panel models: panel_based_spatial_smoothing_estimator()

get_yu2018_instrument Formulate & Merge National Subsidy Rate Instrument (Yu et al., 2018)

Description

Downloads the historical Summary of Business RDS and computes national subsidy-rate instruments at specified coverage levels, following Yu et al. (2018).

Usage

```
get_yu2018_instrument(
   dt,
   delivery_systems = c("RBUP", "FBUP"),
   plan_codes = c(1:3, 90, 44, 25, 42),
   coverage_levels = c(65, 75)
)
```

Arguments

Value

A data.table with columns: commodity_year, subsidy_rate_65, subsidy_rate_75.

See Also

```
Other FCIP Demand Estimation: estimate_fcip_instruments(), fcip_demand_data_controls(), fcip_demand_data_dispatcher(), fcip_demand_data_finalize(), fcip_demand_data_prep_sob(), fcip_demand_data_reconcile_acreage()
```

Description

This function

- 1. Constructs spatially-varying treatment interactions (one variable per spatial unit)
- 2. Applies within-panel/time fixed-effects demeaning to both outcome and interactions
- 3. Fits an OLS model by hand (lm.fit) to recover one coefficient per spatial unit

Usage

```
panel_based_spatial_smoothing_estimator(
  data,
  output,
  treatment,
  time,
  panel,
  spatialvar
)
```

Arguments

data A data.table or data.frame containing panel data.

output Name of the outcome variable (character scalar).

treatment Name of the treatment variable whose spatial effects we estimate (character scalar).

time Name of the time variable (character scalar).

panel Name(s) of the panel identifier variable(s) (character vector).

spatialvar Name of the spatial grouping variable (e.g. county FIPS; character scalar).

Details

Internally, we

- 1. Build treatment_code = I(spatialvar==code) * treatment for each spatial unit code.
- 2. Call fixed_effect_model_data_prep() to demean the outcome and all treatment_code variables.
- 3. Assemble the design matrix X = [output_mean_i, treatment_*] and response y.
- 4. Solve $\hat{\beta} = (\tilde{X}'\tilde{X})^{-1}\tilde{X}'\tilde{y}$ via lm. fit.
- 5. Return a row per spatial unit with its coefficient.

Value

A data.table with columns:

- estimate: the estimated spatial-unit coefficient
- county_fips: the spatial unit identifier (5-digit FIPS)
- state_code, county_code: parsed FIPS components

See Also

Other Estimators panel models: $fixed_effect_model_data_prep()$

Index

fcip_demand_sys_vcov, 16

```
* Estimators panel models
                                                fcip_demand_sys_vcov(), 15
    fixed_effect_model_data_prep, 17
                                                fixed_effect_model_data_prep, 17, 20
    panel_based_spatial_smoothing_estimator,
                                                get_yu2018_instrument, 3, 5-7, 9, 18
        19
* FCIP Demand Estimation
                                                panel_based_spatial_smoothing_estimator,
    estimate_fcip_instruments, 2
                                                         18. 19
    fcip_demand_data_controls, 5
    fcip_demand_data_dispatcher, 6
    fcip_demand_data_finalize, 7
    fcip_demand_data_prep_sob, 7
    fcip_demand_data_reconcile_acreage,
    get_yu2018_instrument, 18
* FCIP rating helpers
    estimate_fcip_unloaded_rate, 3
data.table, 4
estimate_fcip_instruments, 2, 5-7, 9, 18
estimate_fcip_unloaded_rate, 3, 3
fcip_demand_data_controls, 3, 5, 6, 7, 9, 18
fcip_demand_data_controls(), 6, 9
fcip_demand_data_dispatcher, 3, 5, 6, 7, 9,
fcip_demand_data_finalize, 3, 5, 6, 7, 9, 18
fcip_demand_data_finalize(), 6
fcip_demand_data_prep_sob, 3, 5, 6, 7, 7, 9,
        18
fcip_demand_data_prep_sob(), 5, 6
fcip_demand_data_reconcile_acreage, 3,
        5–7, 9, 9, 18
fcip_demand_data_reconcile_acreage(),
        6, 7
fcip_demand_sys_coeff_table, 10
fcip\_demand\_sys\_effect, 10
fcip_demand_sys_estimate, 11
fcip_demand_sys_fit, 11
fcip_demand_sys_level_prep, 12
fcip_demand_sys_level_run, 13
fcip_demand_sys_partial, 13
fcip_demand_sys_restricted, 14
fcip_demand_sys_tests, 15
```