Non-cyanobacterial diazotrophs dominate dinitrogen fixation in biological soil crusts at the early stage of crust formation.

Charles Pepe-Ranney 1 , Chantal Koechli 1 , Ruth Potrafka 2 , Ferran Garcia-Pichel 2 , Daniel H Buckley 1,*

¹Cornell University, Department of Crop and Soil Sciences, Ithaca, NY, USA

Correspondence*:

Daniel H Buckley

Cornell University, Department of Crop and Soil Sciences, Ithaca, NY, USA,

1 ABSTRACT

Biological soil crusts (BSC) cover a vast global area and are key components of ecosystem productivity in arid soils. In particular, BSC contribute significantly to the nitrogen (N) budget in arid ecosystems via N₂-fixation. N₂-fixation in mature crusts is largely attributed to heterocystous cyanobacteria, however, 4 early successional crusts possess few N-fixing cyanobacteria and this suggests that microorganisms 5 other than cyanobacteria mediate N_2 -fixation during the early stages of BSC development. DNA stable isotope probing (DNA-SIP) with $^{15}N_2$ revealed that *Clostridiaceae* and *Proteobacteria* are the most common microorganisms to assimilate ^{15}N in early successional 'light' crusts. The maximum relative 6 7 abundance of non-cyanobacterial ¹⁵N₂-assimilating taxa in environmental BSC SSU rRNA gene sequence 9 collections was 0.00225% and 0.00127% for taxa that belong to Clostridiaceae and Proteobacteria, 10 respectively. Their low abundance may explain why these heterotrophic diazotrophs have not previously 11 been characterized in BSC. Diazotrophs play a critical role in BSC formation and characterization of these organisms represents a crucial step towards understanding how antropogenic change will effect the formation and ecological function of BSC in arid ecosystems.

2 INTRODUCTION

Biological soil crusts (BSC) are specialized microbial mat communities that form at the soil surface in arid environmets and fill a variety of important ecological functions in arid ecosystems. BSC occupy plant interspaces and cover a wide, global geographic range (Garcia-Pichel et al., 2003b). The ground cover 17 of BSC on the Colorado Plateau has been measured as high as 80% by remote sensing (Karnieli et al., 18 2003). The global biomass of BSC Cyanobacteria alone is estimated at 54 x 10¹² g C (Garcia-Pichel 19 et al., 2003b). BSC play important roles in arid ecosystem productivity and are responsible for significant 20 nitrogen (N) flux (for review of BSC N₂-fixation see Belnap (2003)). N₂-fixation represents the dominant 21 source of new ecosystem N in more than 80% of BSC from diverse sites across North America, Africa, 22 and Australia (Evans and Belnap, 1999), while atmospheric N deposition was a dominant source of N in 23 only a minority of sites. The presence of BSC is positively correlated with vascular plant survival due in 24 part to BSC ecosystem N contributions (for review of BSC-vascular plant interactions see Belnap et al. 25 (2003)). Climate change and disturbance could alter BSC microbial community structure/membership and therefore it is possible that there will also be changes in diazotroph diversity and N₂-fixation and that 27 these changes can alter the BSC N-budget.

² Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA.

32

34

35

36

37

38

39

40 41

42

43

45

46

47 48

49

50 51

52

53

54 55

56

57

58

61

64

65

67

68

69

70

75

BSC N₂-fixation rate studies (typically employing the acetylene reduction assay (ARA)) have explored BSC diazotroph activity across various ecological gradients. Reported BSC N2-fixation rates vary significantly across samples and studies (Evans and Lange, 2001). The reasons for inter-site and interstudy variability are complex and likely include the spatial heterogeneity of BSC (Evans and Lange, 2001) and the impact of recent environmental change on N₂-fixation rates (see Belnap (2001) for discussion). Moreover, the ARA assay is subject to methodological artifacts that can complicate making robust comparisons across sample types that differ in physical and biological characteristics (see Belnap (2001) for review). Nonetheless, N₂-fixation rates are consistently higher in mature BSC than in young, early successional BSC (Belnap, 2002; Yeager et al., 2004). This difference may be due to the proliferation of heterocystous Cyanobacteria in older mats and is consistent with the theory that heterocystous Cyanobacteria provide the main source of fixed-N in BSC. Alternatively, the N₂-fixation rate differences between young and old BSC might be attributable to methodological artifacts. For instance, Johnson et al. (2005) show that N₂-fixation in mature mats is maximal at the crust surface (coincident with heterocystous cyanobacteria) while it is maximal below the crust surface in early successional BSC. Diffusional limitation can potentially cause ARA to underestimate N₂-fixation which occurs below the crust surface and as a result ARA may systematically underestimate rates of N₂-fixation in early successional BSC. Diffusion would not be an issue when measuring N₂-fixation rates in mature crust as nitrogenase activity peaks near the surface. Differences of N₂ fixation rates between developing and mature BSC were not statistically significant when aerial rates were estimated by integrating across ARA performed on thin (1-3mm) slices across a BSC depth profile Johnson et al. (2005).

Molecular studies of BSC microbial diversity include explorations of the BSC microbial community vertical profile (Garcia-Pichel et al., 2003a), BSC *nifH* gene content surveys (e.g. Yeager et al. (2004), Yeager et al. (2012), Yeager et al. (2006) and Steppe et al. (1996)), and next-generation-sequencing (NGS) enabled studies of BSC SSU rRNA gene content across wide geographic ranges (Garcia-Pichel et al., 2013; Steven et al., 2013). Early successional BSC are often described as "light" in appearance relative to "dark" mature BSC (Belnap, 2002; Yeager et al., 2004). Mature BSC possess greater numbers of heterocystous *Cyanobacteria* (i.e. *Scytonema*, *Spirirestis*, and *Nostoc* (Yeager et al., 2006, 2012)) than developing BSC but both young and old BSC are dominated by non-heterocystous *Cyanobacteria* (*Microcoleus vaginatus* or *M. steenstrupii*) (Yeager et al., 2004; Garcia-Pichel et al., 2013). Heterocystous *Cyanobacteria* are the numerically dominant BSC diazotrophs in *nifH* clone libraries (Yeager et al., 2006, 2004, 2012). Eighty-nine perent of 693 *nifH* sequences derived from Colorado Plateau and New Mexico BSC samples as heterocystous cyanobacterial (non-cyanobacterial *nifH* sequences were largely attributed to alpha- and beta- *proteobacteria*) Yeager et al. (2006). However, an early survey of Colorado Plateau BSC *nifH* diversity recovered *nifH* genes related to *Gammaproteobacteria* as well as a clade that included *nifH* genes from the anaerobes *Clostridium pssteurianum*, *Desulfovibrio gigas* and *Chromatium buderi*,

The influence of microbial community membership and structure on BSC N₂-fixation is an ongoing research question (Belnap, 2013). While the presence/abundance of heterocystous *Cyanobacteria* has been proposed as the mechanism behind increased N₂-fixation in mature BSC, it is unclear if mature BSC actually fix more N than early successional BSC (see Johnson et al. (2005)). More studies are necessary to elucidate the microbial membership influence on BSC N₂-fixation and to determine if heterocystous *Cyanobacteria* are the only keystone diazotrophs. The first step in defining structure function relationships with respect to N₂-fixation is a full accounting of BSC diazotrophs. Towards this end we conducted ¹⁵N₂ DNA stable isotope probing (DNA-SIP) experiments with light, developing Colorado Plateau BSC. DNA-SIP with ¹⁵N₂ has not been attempted with BSC. DNA-SIP provides an accounting of *active* diazotrophs whereas *nifH* clone libraries account for microbes with the genomic potential for N₂-fixation. Further, we investiage the distribution of these active diazotrophs through collections of SSU rRNA gene sequences from BSC NGS microbial diversity surveys over a range of spatial scales and soil types (Garcia-Pichel et al., 2013; Steven et al., 2013).

3 RESULTS

3.1 ORDINATION OF CSCL GRADIENT FRACTION SSU RRNA SEQUENCE COLLECTIONS SHOWS HEAVY FRACTIONS FROM CONTROL AND LABELED CSCL GRADIENTS ARE DIFFERENT

BSC were incubated for 4 days in the presence or absence of ¹⁵N₂ and DNA was extracted for DNA-SIP at 2 and 4 days. Fractionation of CsCl gradients permitted separation of DNA on the basis of buoyant density. Ordination of Bray-Curtis (Bray and Curtis, 1957) distances between SSU-rRNA amplicon sequence collections from gradient fractions reveals that labeled gradient fraction (i.e. gradient fractions of DNA from ¹⁵N₂ incubations) sequence collections diverge from control (i.e. DNA from incubations without ¹⁵N₂) at the "heavy" of the CsCl gradients (Figure 1 and Figure S2). Differences among label/control groups with heavy fractions are statistically significant by the Adonis test (p-value: 0.001, r²: 0.18) (Anderson, 2001).

3.2 OTUS RESPONSIVE TO $^{15}\mathrm{N}_2$ ARE PRIMARILY *PROTEOBACTERIA* AND *CLOSTRIDIACEAE*

A statistically significant increase in OTU abundance in heavy fractions of ¹⁵N₂ labeled samples relative to corresponding control fractions provides evidence for OTUs that have incorporated ¹⁵N into their DNA. 86 Specifically, we compared OTU proportion means between labeled and control samples from heavy 87 88 gradient fractions using statistics developed to find differentially expressed genes with RNASeq data (McMurdie and Holmes, 2014; Love et al., 2014). OTUs that incorporated ¹⁵N into DNA and increased 89 in bouyant density were identified by rejecting the the null hypothesis that the labeled versus control 90 proportion mean ratio for an OTU was below a chosen threshold (see methods). p-values were adjusted by 91 the BH method (Benjamini and Hochberg, 1995) and we used a false discovery rate (FDR) cutoff of 0.10 92 (typical FDR threshold in gene expression data analysis). A total of 2,127 and 2,160 OTUs were detected 93 in days 2 and 4, respectively, and interrogated for evidence of ¹⁵N₂-labelling. Of these OTU, only 208 and 233, respectively, passed a sparsity threshold we applied as an independent filtering step to pre-screen 95 out OTUs not likely to produce significant p-values (see Love et al. (2014) for discussion of independent 96 filtering). From these OTUs a total of 38 were found to have a significant increase in "heavy" fractions 97 relative to control. These OTUs likely incorporated ¹⁵N into DNA (¹⁵N₂ "responders"). Of these 38, 26 98 are annotated as Firmicutes, 9 as Proteobacteria, 2 as Acidobacteria and 1 as Actinobacteria (Figure 3, 99 Figure 2). If the OTUs are ranked by descending, moderated proportion mean labeled:control ratios, the 100 top 10 ratios (i.e. the 10 OTUs that were most enriched in the labeled gradients considering only heavy 101 fractions) are either Firmicutes (6 OTUs) or Proteobacteria (4 OTUs) (Figure 4). Proteobacteria OTU 102 centroid sequences for the top 10 responders all share high identity (>98.48% identity, Table 1) with 103 cultivars from genera known to possess diazotrophs including Klebsiella, Shigella, Acinetobacter, and 104 *Ideonella*. None of the *Firmicutes* OTUs in the top 10 responders share greater than 97% sequence identity 105 106 with sequences in the LTP database (release 115) (see Table 1). OTUs that passed the sparsity threshold but were not classified as ¹⁵N-'responsive additionally tested with the null hypothesis that the OTU proportion 107 mean ratio was above the selected threshold. Rejecting the second null would indicate an OTU did not 108 incorporate ¹⁵N into biomass. There were 58 and 70 "non-responders" at days 2 and 4, respectively. 109 OTUs that did not pass sparsity or could not be classified as either a responder or non-responder are 110 simply ambiguous with respect to ¹⁵N labelling.

3.3 COMPARING SEQUENCE COLLECTIONS AT "STUDY"-LEVEL

- We compared the sequences determined in this study to two previous surveys of SSU rRNA amplicons
- 113 from BSC communities: X and Y with cites. There were 3,079 OTUs (209,354 total sequences after
- 114 quality control) in the DNA-SIP data, 3,203 OTUs (129,033 total sequences after quality control) in the

Garcia-Pichel et al. (2013) study, and 2,481 OTUs (129,358 total sequences after quality control) in the 115 Steven et al. (2013) study. Of the 4,340 OTU centroids established for this study (including sequences 116 from Steven et al. (2013) and Garcia-Pichel et al. (2013)) 445 have matches in the Living Tree Project 117 (LTP) (a collection of 16S gene sequences for all sequenced type strains (Yarza et al., 2008)) at greater or 118 equal than 97% sequence identity (LTP version 115). That is, 445 of 4,340 OTUs are closely related to 119 cultivars. The DNA-SIP data set shares 56% OTUs with the Steven et al. (2013) data and 46% of OTUs 120 121 with the Garcia-Pichel et al. (2013) data (where total OTUs are from the combined data for each pairwise comparison). The Steven et al. (2013) and Garcia-Pichel et al. (2013) share 46% of OTUs. Cyanobacteria 122 and *Proteobacteria* were the top two phylum-level sequence annotations for all three studies of BSC. Only 123 the DNA-SIP data had more Proteobacteria annotations than Cyanobacteria. Proteobacteria represented 124 the 29.8% of sequence annotations in DNA-SIP data as opposed to 17.8% and 19.2% for the Garcia-Pichel 125 et al. (2013) and Steven et al. (2013) data, respectively. There is a stark contrast in the total percentage 126 127 of sequences annotated as *Firmicutes* between the raw environmental samples and the DNA-SIP data. 128 Firmicutes represent only 0.21% and 0.23% of total phylum level sequence annotations in the Steven et al. (2013) and Garcia-Pichel et al. (2013) studies, respectively (Figure S1). In the DNA-SIP sequence 129 collection Firmicutes make up 19% of phylum level sequence annotations. Also in sharp contrast for the 130 131 DNA-SIP versus environmental data is the number of putative heterocystous *Cyanobacteria* sequences. Only 0.29% of Cyanobacteria sequences in the DNA-SIP data are annotated as belonging to "Subsection 132 IV" which is the heterocystous order of Cyanobacteria in the Silva taxonomic nomenclature (Pruesse 133 et al., 2007). In the Steven et al. (2013) and Garcia-Pichel et al. (2013) studies 15% and 23%, respectively, 134 of Cyanobacteria sequences are annotated as belonging to "Subsection IV". 135

3.4 15N-RESPONSIVE OTUS IN ENVIRONMENTAL SAMPLES

Five of the 6 *Firmicutes* with the strongest response to ¹⁵N-labelling (Table X) belong in the *Clostridiacea*. 136 We only observed one of these strongly responding *Clostridiaceae* in the data presented by Garcia-Pichel 137 et al. (2013), "OTU.108" (closest BLAST hit in LTP Release 115 – Caloramotor proteoclasticus, BLAST 138 139 %ID 96.94, Accession X90488). OTU.108 was found in two samples both characterized as "light" crust. One other Clostridiaceae OTU with a proportion mean ratio (labeled:control) p-value less than 0.10 but 140 outside the top 10 responders was found in the Garcia-Pichel et al. (2013) data (a "light" crust sample) 141 (Figure 2). None of the strongly responding *Clostridiacea* were found in the sequences provided by Steven 142 et al. (2013). Clostridiaceae ¹⁵N-responder OTU are not closely related to cultivars. (Table 1, Figure 5). 143 One of the proteobacterial OTUs with the strongest ¹⁵-N response (Table X) was found in Garcia-Pichel 144 et al. (2013) (closest BLAST hit in LTP Release 115, BLAST %ID 100, Accession ZD3440, Acinetobacter 145 johnsonii). None of the strongly responding Protebacteria OTUs were found in the Steven et al. (2013) 146 sequences. Responder OTUs were found in Steven et al. (2013) samples 133 times. 83 were in "below 147 crust" samples, 50 in crust samples (see Figure 2). Two ¹⁵N-responsive OTUs were found in an extensive 148 number of environmental samples (61 of 65 samples from the combined data sets of Garcia-Pichel et al. 149 (2013) and Steven et al. (2013)). Both OTUs were annotated as Acidobacteria but shared little sequence 150 identity to any cultivar SSU rRNA gene sequences in the LTP (Release 115), with best LTP BLAST hits 151 of 81.91 and 81.32% identity. Additionally, the ¹⁵N-response for each OTU was weak relative to other 152 putative responders (3. Of the remaining 36 stable isotope responder OTUs, only 14 were observed in the 153 environmental data (Figure 2, Figure S5). 154

4 DISCUSSION

4.1 STUDY-LEVEL DIFFERENCES

- SIP places focus upon organisms based on isotope incorporation and has the ability to detect activity by low abundance members of the community. DNA from OTUs that incopororate ¹⁵N into their biomass
- moves towards the heavy end of the CsCl gradient and therefore OTUs in "labeled" DNA are enriched

- 158 in the full data pool relative to bulk DNA. Phylum-level taxonomic annotations of ¹⁵N-responsive OTUs
- 159 (i.e. Firmicutes and Proteobacteria) are enriched in the DNA-SIP data relative to environmental data
- 160 (Figure S1).

193

194

195

196

197

198

199

200

4.2 ORDINATION OF CSCL GRADIENT FRACTION 16S RRNA GENE SEQUENCE COLLECTIONS

- 161 The ordination of Bray-Curtis distances between CsCl gradient fraction 16S sequence collections show
- that control fractions differ from labeled fractions in the "heavy" range of the CsCl gradients (Figure S2).
- 163 If each control fraction is paired to the labeled fraction from the same incubation day for which it is closest
- in density, there is a positive and statistically significant correlation between Bray-Curtis distances within
- 165 fraction pairs and density of the pair (see inset Figure S2). Therefore, the "heavy" end of the control and
- 166 labeled gradients differ and the OTUs enriched in the labeled fractions (relative to control) would have
- 167 incorporated ¹⁵N into their DNA during the incubation timeframe.

4.3 BSC DIAZOTROPHS IDENTIFIED IN THE STUDY

168 BSC N-fixation has long been attributed to heterocystous Cyanobacteria and molecular microbial ecology 169 surveys of BSC nifH gene content have been consistent with this hypothesis finding cyanobacterial nifH types to be numerically dominant in *nifH* gene libraries (Yeager et al., 2006, 2004, 2012). Even poorly 170 developed BSC samples have yielded predominantly cyanobacterial nifH genes (Yeager et al., 2004). 171 172 And, "sub-biocrust" samples have yielded *entirely* heterocystous cyanobacterial *nifH* genes (Yeager et al., 2012). It is possible, however, that PCR-driven molecular surveys of *nifH* gene content have been biased 173 against non-heterocystous Cyanobacteria. In general the nifH PCR primers used by Yeager et al. (2006, 174 2004, 2012) ("19F" and "nifH3") for the first round of nested PCR have broad specificity and display at 175 least 86% in silico coverage for Proteobacteria, Cyanobacteria and "Cluster III" nifH reference sequences 176 (Gaby and Buckley, 2012). In the second round of the nested PCR protocol (Yeager et al., 2006, 2004, 177 2012), primer "nifH11" is slightly biased against "Cluster III" (50% coverage) but biased in favor of *Proteobacteria* (79% in silico coverage against 67% for *Cyanobacteria*) and primer "nifH22" matches 178 179 180 Proteobacteria, Cyanobacteria and "Cluster III" reference sequences poorly (16%, 23% and 21% in silico coverage, respectively) (Gaby and Buckley, 2012). Unfortunately, it is difficult to assess or quantify this 181 bias (in either direction) without knowing the *nifH* gene content *de novo*. Another potential bias in favor of 182 183 Cyanobacteria in BSC nifH gene libraries is heterocysts (the specialized N-fixing cells along the trichome of filamentous heterocystous Cyanobacteria such as Nostoc and Scytonema) may be overrepresented 184 with respect to non-cyanobacterial diazotrophs because heterocysts make up a fraction of cells along a 185 trichome and even the non-heterocyst cells in a trichome will possess the nifH gene. Polyploidy could 186 further exacerbate this bias, as many Cyanobacteria are estimated to have multiple genome copies per 187 cell (Griese et al., 2011). It should also be noted that nifH gene content is not directly extrapolable to 188 the taxonomic relative abundances of nitrogenase proteins. Regardless, our results suggest that BSC N-189 190 fixation may include a significant non-cyanobacterial component that requires further assessment across a more comprehensive sampling of BSC types. 191

We did not observe evidence for N-fixation by heterocystous *Cyanobacteria* in the "light" crust samples used in this study. One possible explanation for our results is that the "light", still developing BSC samples used in this study possessed too few heterocystous *Cyanobacteria* to statistically evaluate their ¹⁵N-incorporation. Indeed, only 0.29% of sequences from this study's DNA-SIP 16S rRNA gene sequence libraries were from heterocystous *Cyanobacteria* (see results) as opposed to 15% and 23% of total sequences in the Steven et al. (2013) and Garcia-Pichel et al. (2013) data, respectively. Nonetheless, we would still expect even low abundance diazotrophs to show evidence for ¹⁵N-incorporation, provided sequence counts were not too sparse in heavy fractions. The OTUs defined by selected heterocystous *Cyanobacteria* sequences presented in Yeager et al. (2006), however, all fall below the sparsity threshold used in our analysis (see methods). Given the sparsity of heterocystous *Cyanobacteria* sequences in

221

202 the DNA-SIP data set, it is not possible to assess whether heterocystous Cyanobacteria incorporated ¹⁵N during the incubation. It should be noted that "light" and in particular "sub-biocrust" samples 203 possess much less heterocystous Cyanobacteria in general (Figure S3) so the samples used in this study 204 are not necessarily unrepresentative of typical poorly developed BSC simply because they are lacking 205 heterocystous Cyanobacteria. 206

The OTUs that did appear to incorporate ¹⁵N during the incubation were predominantly *Proteobacteria* and Firmicutes. The Proteobacteria OTUs for which ¹⁵N-incorporation signal was strongest all shared 208 high sequence identity (>=98.48% sequence identity) with 16S sequences from cultivars in genera with 209 known diazotrophs (Table 1). The *Firmicutes* that displayed signal for ¹⁵N-incorporation (predominantly 210 Clostridiaceae) were not closely related to any cultivars (Table 1, Figure 5). These BSC Clostrodiaceae 211 diazotrophs represent a gap in culture collections. As culture-based ecophysiological studies have proven 212 useful towards explaining ecological phenomena in BSC 16S rRNA gene sequence libraries (Garcia-213 214 Pichel et al., 2013), it would seem that these putative Clostridiaceae diazotrophs would be prime candidates for targeted culturing efforts. Assessing the physiological response of these diazotrophic 215 Clostridiaceae to temperature would be useful for predicting how climate change will affect the BSC 216 nitrogen budget. Gamma-proteobacteria and spore-forming Firmicutes are classic opportunistic lineages 217 that would presumably be suited to the boom/bust BSC environment. The compatible solutes produced 218 219 and secreted by cyanobacteria in response to dessication and subsequent wetting would create C-rich environment after wetting. Diazotrophs would be uniquely suited to respond quickly in high C:N 220 conditions.

Although too undersampled in the environmental data sets to reach statistical conclusions, ¹⁵N-222 responsive OTUs were found more often in sub-crust or "light" BSC samples (Figure 2 and Figure S5). 223 This result generates some hypotheses that are counter to prior discussions regarding BSC diazotroph 224 temporal dynamics. Specifically, the transition of BSC from a light colored, developing crust to a 225 dark, mature crust may not mark the emergence of diazotrophs in BSC but rather the transition of the 226 diazotroph community from heterotroph dominance to cyanobacteria. Additionally, the soil beneath BSC 227 may contribute significantly to the N budget in arid ecosystems. 228

4.4 SEQUENCING DEPTH

Rarefaction curves of all samples from Steven et al. (2013) and Garcia-Pichel et al. (2013) are still 229 sharply increasing especially for "below crust" samples (Figure S4). Parametric richness estimates of BSC 230 diversity indicate the Steven et al. (2013) and Garcia-Pichel et al. (2013) sequencing efforts recovered on 231 average 40.5% (sd. 9.99%) and 45.5% (sd. 11.6%) of existing 16S OTUs from samples (inset Figure S4), 232 respectively. Further, the Steven et al. (2013) and Garcia-Pichel et al. (2013) sequence collections only 233 share 57.6% of total OTUs found in at least one of the studies. In fact, this study shares more OTUs with 234 Steven et al. (2013), 62.4% of OTUs in the combined data, than the Steven et al. (2013) study shares with 235 Garcia-Pichel et al. (2013). Therefore, is not alarming that few of the ¹⁵N-responsive OTUS were found 236 by Garcia-Pichel et al. (2013) and Steven et al. (2013). Even next-generation sequencing efforts of BSC 237 16S rRNA genes have only shallowly sampled the full diversity of BSC microbes. 238

CONCLUSION 4.5

Heterocystous *Cyanobacteria* are key contributors to the BSC N-budget, but, the ¹⁵N-responsive OTUs 239 found in this study and the nifH gene sequences from Steppe et al. (1996) in addition to the N-fixation 240 rate data presented by Johnson et al. (2005) suggest there may be significant non-cyanobacterial BSC 241 diazotrophs specifically within the *Clostrideaceae* and *Proteobacteria*. It seems clear that heterocystous 242 Cyanobacteria increase in abundance with BSC age (Yeager et al., 2004). It is less clear if this transition marks the emergence of diazotrophy versus a re-structuring of the BSC diazotroph community from 244 one dominated by *Firmicutes* and *Proteobacteria* to one predominantly heterocystous *Cyanobacteria*. 245

- 246 DNA-SIP is a valuable tool in the molecular microbial ecologist's toolbox for identifying members of
- microbial community functional guilds (Neufeld et al., 2007). PCR-based surveys of diagnostic marker 247
- 248 genes and DNA-SIP are both used to connect microbial phylogenetic types to microbial activities, but
- they occupy a non-overlapping set of strengths and weaknesses. DNA-SIP does not focus on a specific 249
- 250 diagnostic marker but does identify active players in the studied process (i.e. N-fixation). Combined these
- tools can powerfully reveal connections between ecosystem membership/structure and function. Here we 251
- supplement previous surveys of BSC nifH diversity, a diagnostic marker PCR-driven approach, with ¹⁵N₂ 252
- DNA-SIP, While we do not confirm previous results, we expand knowledge of BSC diazotroph diversity. 253
- 254 Predicting BSC N-fixation with respect to climate change, althered precipitation regimes and physical
- disturbance requires a careful accounting of diazotrophs including non-cyanobacterial types. 255

MATERIALS AND METHODS 5

BSC SAMPLING AND INCUBATION CONDITIONS

- Light crust samples (37.5 cm², average mass 35 g) were incubated in sealed chambers under controlled 256
- atmosphere and in the light for 4 days. Crusts were dry prior to time zero and were wetted at initiation of 257
- experiment. Treatments included control air (unenriched headspace) and enriched air (>98% atom $^{15}N_2$) 258
- headspace. Samples were taken at 2 days and 4 days incubation. Acetylene reduction rates were measured 259
- 260 daily. DNA was extracted from 1 g of crust. Samples were taken from Green Butte, Arizona as previously
- described (site CP3, Beraldi-Campesi et al. (2009)). All samples were from light crusts as described by 261
- 262 Johnson et al. (2005).

5.2 DNA EXTRACTION

- 263 DNA from each sample was extracted using a MoBio PowerSoil DNA Isolation Kit (following
- 264 manufacturers protocol, but substituting a 2 minute bead beating for the vortexing step), and then gel
- 265 purified. Extracts were quantified using PicoGreen nucleic acid quantification dyes (Molecular Probes).

5.3 **DNA-SIP**

- Gradient density centrifugation of DNA was undertaken in 4.7 mL polyallomer centrifuge tubes in a 266
- TLA-110 fixed angle rotor (both Beckman Coulter) in CsCl gradients with an average density of 1.725 267
- 268 g/mL. Average density for all prepared gradients was checked with an AR200 refractometer before runs.
- 269 Between 2.5-5 μ g of DNA extract was added to the CsCl solution (15mM Tris-HCl, pH 8; 15mM EDTA;
- 15mM KCl), and gradients were run under conditions of 20C for 67 hours at 55,000 rpm (Buckley et al.). 270
- Centrifuged gradients were fractionated from bottom to top in 36 equal fractions of 100 μ L, using a by 271
- syringe pump as described Manefield et al. (2002). The density of each fraction was determined using 272
- 273
- using an AR200 refractometer modified to accomidate 5ul samples (Buckley et al.). DNA in each fraction
- 274 was desalted on a filter plate (PALL, AcroPrep Advance 96 Filter Plate, Product Number 8035), using four
- washes with 300μ L TE per fraction. After each wash, the filter plate was spun at 500 g for 10 minutes, 275
- with a final spin of 20 minutes. Fractions were resuspended in 50 uL of TE buffer. 276

5.4 PCR, LIBRARY NORMALIZATION AND DNA SEQUENCING

- Barcoded PCR of bacterial and archaeal 16S rRNA genes, in preparation for 454 Pyrosequencing, was 277
- carried out using primer set 515F/806R (Walters et al., 2011) (primers purchased from Integrated DNA 278
- Technologies). The primer 806R contained an 8 bp barcode sequence, a "TC" linker, and a Roche 454 279
- B sequencing adaptor, while the primer 515F contained the Roche 454 A sequencing adapter. Each 280
- 25 μ L reaction contained 1x PCR Gold Buffer (Roche), 2.5 mM MgCl₂, 200 μ M of each of the four 281
- dNTPs (Promega), 0.5 mg/mL BSA (New England Biolabs), 0.3 μ M of each primers, 1.25 U of Amplitaq 282

- 283 Gold (Roche), and 8 μ L of template. Each sample was amplified in triplicate. Thermal cycling occurred
- with an initial denaturation step of 5 minutes at 95C, followed by 40 cycles of amplification (20s at 284
- 285 95C, 20s at 53C, 30s at 72C), and a final extension step of 5 min at 72C. Triplicate amplicons were
- pooled and purified using Agencourt AMPure PCR purification beads, following manufacturers protocol. 286
- Once cleaned, amplicons were quantified using PicoGreen nucleic acid quantification dyes (Molecular Probes) and pooled together in equimolar amounts. Samples were sent to the Environmental Genomics 288
- 289 Core Facility at the University of South Carolina (now Selah Genomics) to be run on a Roche FLX 454
- pyrosequencing machine. 290

5.5 **DATA ANALYSIS**

- All code to take raw sequencing data through the presented figures can be found at: 291
- 292 http://nbviewer.ipython.org/github/chuckpr/NSIP_data_analysis
- 5.5.1 Sequence quality control Sequences were initially screened by maximum expected errors at a 293 specific read length threshold (Edgar, 2013) which has been shown to be as effective as denoising 454 294 295 reads with respect to removing pyrosequencing errors. Specifically, reads were first truncated to 230 nucleotides (nt) (all reads shorter than 230 nt were discarded) and any read that exceeded a maximum 296 297 expected error threshold of 1.0 was removed. After truncation and max expected error trimming, 91% of original reads remained. The first 30 nt representing the forward primer and barcode on high quality, 298 truncated reads were trimmed. Remaining reads were taxonomically annotated using the "UClust" 299 300 taxonomic annotation framework in the QIIME software package (Caporaso et al., 2010; Edgar, 2010) with cluster seeds from Silva SSU rRNA database (Pruesse et al., 2007) 97% sequence identity OTUs as 301 reference (release 111Ref). Reads annotated as "Chloroplast", "Eukaryota", "Archaea", "Unassigned" or 302 303 "mitochondria" were culled from the dataset. Finally, reads were aligned to the Silva reference alignment provided by the Mothur software package (Schloss et al., 2009) using the Mothur NAST aligner (DeSantis 304 et al., 2006). All reads that did not appear to align to the expected amplicon region of the SSU rRNA gene 305 were discarded. Quality control parameters removed 34,716 of 258,763 raw reads. 306
- Sequence clustering Sequences were distributed into OTUs using the UParse methodology 307 (Edgar, 2013). Specifically, cluster seeds were identified using USearch with a collection of non-redundant 308 reads sorted by count as input. The sequence identity threshold for establishing a new OTU centroid 309 310 was 97%. After initial cluster centroid selection, select 16S rRNA gene sequences trimmed to the same alignment positions as the other centroids from Yeager et al. (2006) were added to the centroid collection. 311 Specifically, Yeager et al. (2006) Colorado Plateau or Moab, Utah sequences were added which included 312 the 16S rRNA gene sequences for Calothrix MCC-3A (accession DQ531700.1), Nostoc commune MCT-1 313 314 (accession DQ531903), Nostoc commune MFG-1 (accession DQ531699.1), Scytonema hyalinum DC-A 315 (accession DQ531701.1), Scytonema hyalinum FGP-7A (accession DQ531697.1), Spirirestis rafaelensis 316 LQ-10 (accession DQ531696.1). Centroid sequences that matched selected Yeager et al. (2006) sequences with greater than to 97% sequence identity were subsequently removed from the centroid collection. With 317 USearch/UParse, potential chimeras are identified during OTU centroid selection and are not allowed to 318 become cluster centroids effectively removing chimeras from the read pool. All quality controlled reads 319 were then mapped to cluster centroids at an identity threshold of 97% again using USearch. 95.6% of 320 quality controlled reads could be mapped to centroids. Unmapped reads do not count towards sample 321 counts and are essentially removed from downstream analyses. The USearch software version for cluster 322 323 generation was 7.0.1090.
- 324 Merging data from this study, Garcia-Pichel et al. (2013), and Steven et al. (2013) As only 325 sequences without corresponding quality scores were publicly available from Garcia-Pichel et al. (2013) and Steven et al. (2013), these data sets were only quality screened by determining if they covered the 326 expected region of the 16S rRNA gene (described above). All data (this study, Garcia-Pichel et al. (2013) 327

- and Steven et al. (2013)) were included as input to USearch for OTU centroid selection and subsequent mapping to OTU centroids.
- 330 5.5.4 Phylogenetic tree The alignment for the "Clostridiaceae" phylogeny was created using SSU-331 Align which is based on Infernal (Nawrocki and Eddy, 2013; Nawrocki et al., 2009). Columns in 332 the alignment that were not included in the SSU-Align covariance models or were aligned with poor
- 333 confidence (less than 95% of characters in a position had posterior probability alignment scores of 334 at least 95%) were masked for phylogenetic reconstruction. Additionally, the alignment was trimmed
- at least 95%) were masked for phylogenetic reconstruction. Additionally, the alignment was trimmed to coordinates such that all sequences in the alignment began and ended at the same positions. The
- 336 "Clostridiaceae" tree included all top BLAST hits (parameters below) for ¹⁵N Clostridiaceae responders
- 337 in the Living Tree Project database (Yarza et al., 2008) in addition to BLAST hits within a sequence
- 338 identity threshold of 97% to ¹⁵N responders from the Silva SSURef_NR SSU rRNA database (Pruesse
- et al., 2007). Only one SSURef_NR115 hit per study per OTU ("study" was determined by "title" field)
- 340 was selected for the tree. FastTree (Price et al., 2010) was used to build the tree and support values are
- 341 SH-like scores reported by FastTree.
- 342 Placement of short sequences into backbone phylogeny Short sequences were mapped to the reference
- backbone using pplacer (Matsen et al., 2010) (default parameters). pplacer finds the edge placements that
- 344 maximize phylogenetic likelihood. Prior to being mapped to the reference tree, short sequences were
- 345 aligned to the reference alignment using Infernal (Nawrocki et al., 2009) against the same SSU-Align
- 346 covariance model used to align reference sequences.
- 347 5.5.5 BLAST searches BLAST searches were done with the "blastn" program from BLAST+ toolkit
- 348 (Camacho et al., 2009) version 2.2.29+. Default parameters were always employed and the BioPython
- 349 (Cock et al., 2009) BLAST+ wrapper was used to invoke the blastn program. Pandas (McKinney, 2012)
- and dplyr (Wickham and Francois, 2014) were used to parse and munge BLAST output tables.
- 351 5.5.6 Identifying OTUs that incorporated ¹⁵N into their DNA SIP is a culture-independent approach
- 352 towards defining identity-function connections in microbial communities (Buckley, 2011; Neufeld et al.,
- 353 2007). Microbes incubated in the presence of ¹³C or ¹⁵N labeled substrates can incorporate the stable
- heavy isotope into biomass if they participate in the substrate's transformation. Stable isotope labeled nucleic acids can then be separated from unlabeled by buoyant density in a CsCl gradient. As the buoyant
- density of a macromolecule is dependent on many factors in addition to stable isotope incorporation
- 357 (e.g. GC-content in nucleic acids (Youngblut and Buckley, 2014)), labeled nucleic acids from one
- 358 microbial population may have the same buoyant density of unlabeled nucleic acids from another (i.e.
- 359 each population's nucleic acids would be found at the same point along a density gradient although
- only one population's nucleic acids are labeled). Therefore it is imperative to compare density gradients
- with nucleic acids from heavy stable isotope incubations to gradients from "control" incubations where
- everything mimics the experimental conditions except that unlabeled substrates are used (and all DNA would be unlabeled). By contracting "heavy" density gradient fractions in experimental density gradients
- would be unlabeled). By contrasting "heavy" density gradient fractions in experimental density gradients (hereafter referred to as "labeled" gradients) against beavy fractions in control gradients, the identities of
- 364 (hereafter referred to as "labeled" gradients) against heavy fractions in control gradients, the identities of
- 365 microbes with labeled nucleic acids can be determined
- We used an RNA-Seq differential expression statistical framework (Love et al., 2014) to find OTUs enriched in heavy fractions of labeled gradients relative to corresponding density fractions in control
- 368 gradients (for review of RNA-Seq differential expression statistics applied to microbiome OTU count data
- see McMurdie and Holmes (2014)). We use the term differential abundance (coined by McMurdie and Holmes (2014)) to denote OTUs that have different proportion means across sample classes (in this case
- Holmes (2014)) to denote OTUs that have different proportion means across sample classes (in this case the only sample class is labeled/control). CsCl gradient fractions were categorized as "heavy" or "light".
- The heavy category denotes fractions with density values above 1.725 g/mL. Since we are only interested
- 373 in enriched OTUs (labeled versus control), we used a one-sided z-test for differential abundance (the null

385

386

387

388

389

391 392

393

374 hypothesis is the labeled:control proportion mean ratio for an OTU is less than a selected threshold). Pvalues were corrected with the Benjamini and Hochberg method (Benjamini and Hochberg, 1995). We 375 selected a log₂ fold change null threshold of 0.25 (or a labeled:control proportion mean ratio of 1.19). 376 DESeq2 was used to calculate the moderated log₂ fold change of labeled:control proportion mean ratios 377 and corresponding standard errors. Mean ratio moderation allows for reliable ratio ranking such that 378 high variance and likely statistically insignificant mean ratios are appropriately shrunk and subsequently 379 ranked lower than they would be as raw ratios. To summarize, OTUs with high moderated labeled:control 380 proportion mean ratios have higher proportion means in heavy fractions of labeled gradients relative to 381 heavy fractions of control gradients, and therefore have likely incorporated ¹⁵N into their DNA during the 382 incubation. 383

Although DNA-SIP is a powerful technique, analysis of DNA-SIP data is not without ambiguities. One limitation is the discrete, selected boundary in the form of a adjusted p-value threshold (or false discovery rate) that marks which OTUs we consider to be enriched in the heavy fractions of labeled CsCl gradients (and thus have likely incorporated ¹⁵N into their DNA during the incubation). In reality the metric we use to quantify the magnitude of an OTU's response to a stable isotope is continuous, and there is only an artificial boundary between which OTUs appear to have "responded" and which OTUs have unknown response. For this reason, we have presented all the OTUs that satisfy our "response" criteria but focused 390 on the most strongly responding OTUs. As with any hypothesis-based statistical test, care should be taken when interpreting the significance of results where p-values are near the selected threshold for rejecting the null hypothesis.

5.5.7 Ordination Principal coordinate ordinations depict the relationship between samples at each time 394 point (day 2 and 4). Bray-Curtis distances were used as the sample distance metric for ordination. The 395 Phyloseq (McMurdie and Holmes, 2014) wrapper for Vegan (Oksanen et al., 2013) (both R packages) was 396 used to compute sample values along principal coordinate axes. GGplot2 (Wickham, 2009) was used to 397 398 display sample points along the first and second principal axes. Adonis tests Anderson (2001) were done with default number of permutations (1000).

RICHNESS ANALYSES 5.6

Rarefaction curves were created using bioinformatics modules in the PyCogent Python package (Knight et al., 2007). Parametric richness estimates were made with CatchAll using only the best model for total 401 402 OTU estimates (Bunge, 2010).

REFERENCES

- Marti J. Anderson. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 403 26(1):32-46, Feb 2001. doi: 10.1111/j.1442-9993.2001.01070.pp.x. URL http://dx.doi.org/ 404 405 10.1111/j.1442-9993.2001.01070.pp.x.
- J. Belnap. Factors Influencing Nitrogen Fixation and Nitrogen Release in Biological Soil Crusts. In 406 Biological Soil Crusts: Structure Function, and Management, pages 241-261. Springer Science + 407 408 Business Media, 2001. doi: 10.1007/978-3-642-56475-8_19. URL http://dx.doi.org/10. 1007/978-3-642-56475-8 19. 409
- J. Belnap. Factors Influencing Nitrogen Fixation and Nitrogen Release in Biological Soil Crusts. In 410 Jayne Belnap and OttoL. Lange, editors, Biological Soil Crusts: Structure, Function, and Management, 411 volume 150 of Ecological Studies, pages 241–261. Springer Berlin Heidelberg, 2003. ISBN 978-412 413 3-540-43757-4. doi: 10.1007/978-3-642-56475-8_19. URL http://dx.doi.org/10.1007/ 978-3-642-56475-8_19. 414
- J. Belnap, R. Prasse, and K.T. Harper. Influence of Biological Soil Crusts on Soil Environments and 415 Vascular Plants. In Jayne Belnap and OttoL. Lange, editors, Biological Soil Crusts: Structure, Function, 416

- 417 and Management, volume 150 of Ecological Studies, pages 281–300. Springer Berlin Heidelberg, 2003. 418 ISBN 978-3-540-43757-4. doi: 10.1007/978-3-642-56475-8_21. URL http://dx.doi.org/10.410
- 419 1007/978-3-642-56475-8_21.
- Jayne Belnap. Nitrogen fixation in biological soil crusts from southeast Utah USA. *Biology and Fertility* of Soils, 35(2):128–135, Apr 2002. doi: 10.1007/s00374-002-0452-x. URL http://dx.doi.org/
 10.1007/s00374-002-0452-x.
- Jayne Belnap. Some Like It Hot, Some Not. *Science*, 340(6140):1533-1534, 2013. doi: 10.1126/science. 1240318. URL http://www.sciencemag.org/content/340/6140/1533.short.
- Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)*, 57 (1):289–300, 1995. ISSN 00359246. doi: 10.2307/2346101. URL http://dx.doi.org/10.2307/2346101.
- H. Beraldi-Campesi, H. E. Hartnett, A. Anbar, G. W. Gordon, and F. Garcia-Pichel. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. *Geobiology*, 7(3):348–359, jun 2009. doi: 10.1111/j.1472-4669.
 2009.00204.x. URL http://dx.doi.org/10.1111/j.1472-4669.2009.00204.x.
- J. Roger Bray and J. T. Curtis. An Ordination of the Upland Forest Communities of Southern Wisconsin. *Ecological Monographs*, 27(4):325, Oct 1957. doi: 10.2307/1942268. URL http://dx.doi.org/10.2307/1942268.
- Daniel H. Buckley. Stable Isotope Probing Techniques Using 15N. In *Stable Isotope Probing and Related Technologies*, pages 129–147. American Society of Microbiology, jan 2011. doi: 10.1128/9781555816896.ch7. URL http://dx.doi.org/10.1128/9781555816896.ch7.
- DH Buckley, V Huangyutitham, SF Hsu, and TA Nelson. Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. *Appl Environ Microbiol*, 73:3196–204.
- John Bunge. Estimating the Number of Species with Catchall. In *Biocomputing 2011*, pages 121–130.
 WORLD SCIENTIFIC, nov 2010. doi: 10.1142/9789814335058_0014. URL http://dx.doi.org/10.1142/9789814335058_0014.
- 444 C Camacho, G Coulouris, V Avagyan, N Ma, J Papadopoulos, K Bealer, and TL Madden. BLAST+: architecture and applications. 10:421, Dec 2009.
- JG Caporaso, J Kuczynski, J Stombaugh, K Bittinger, FD Bushman, EK Costello, N Fierer, AG Pea,
 JK Goodrich, JI Gordon, GA Huttley, ST Kelley, D Knights, JE Koenig, RE Ley, CA Lozupone,
 D McDonald, BD Muegge, M Pirrung, J Reeder, JR Sevinsky, PJ Turnbaugh, WA Walters, J Widmann,
 T Yatsunenko, J Zaneveld, and R Knight. QIIME allows analysis of high-throughput community
 sequencing data. 7:335–6, 2010.
- PJ Cock, T Antao, JT Chang, BA Chapman, CJ Cox, A Dalke, I Friedberg, T Hamelryck, F Kauff,
 B Wilczynski, and Hoon MJ de. Biopython: freely available Python tools for computational molecular
 biology and bioinformatics. 25:1422–3, 2009.
- TZ Jr DeSantis, P Hugenholtz, K Keller, EL Brodie, N Larsen, YM Piceno, R Phan, and GL Andersen.

 NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. 34:W394–9,
 2006.
- 457 RC Edgar. Search and clustering orders of magnitude faster than BLAST. 26:2460–1, 2010.
- 458 RC Edgar. UPARSE: highly accurate OTU sequences from microbial amplicon reads. 10:996–8, 2013.
- R. D. Evans and J. Belnap. Long-Term Consequences of Disturbance on Nitrogen Dynamics in an Arid Ecosystem. *Ecology*, 80(1):150–160, Jan 1999. doi: 10.1890/0012-9658(1999)080[0150:ltcodo]2.
 0.co;2. URL http://dx.doi.org/10.1890/0012-9658(1999)080[0150:LTCODO]2.
 0.CO; 2.
- 463 R. D. Evans and O. L. Lange. Biological Soil Crusts and Ecosystem Nitrogen and Carbon Dynamics.

 464 In *Biological Soil Crusts: Structure Function, and Management*, pages 263–279. Springer Science +

 465 Business Media, 2001. doi: 10.1007/978-3-642-56475-8_20. URL http://dx.doi.org/10.

 466 1007/978-3-642-56475-8_20.
- John Christian Gaby and Daniel H. Buckley. A Comprehensive Evaluation of {PCR} Primers to Amplify the {nifH} Gene of Nitrogenase. {PLoS} {ONE}, 7(7):e42149, jul 2012. doi: 10.1371/journal.pone. 0042149. URL http://dx.doi.org/10.1371/journal.pone.0042149.

- F. Garcia-Pichel, S. L. Johnson, D. Youngkin, and J. Belnap. Small-Scale Vertical Distribution of Bacterial Biomass and Diversity in Biological Soil Crusts from Arid Lands in the Colorado Plateau. *Microbial Ecology*, 46(3):312–321, Nov 2003a. doi: 10.1007/s00248-003-1004-0. URL http://dx.doi.org/10.1007/s00248-003-1004-0.
- F. Garcia-Pichel, V. Loza, Y. Marusenko, P. Mateo, and R. M. Potrafka. Temperature Drives the Continental-Scale Distribution of Key Microbes in Topsoil Communities. *Science*, 340(6140): 1574–1577, Jun 2013. doi: 10.1126/science.1236404. URL http://dx.doi.org/10.1126/science.1236404.
- Ferran Garcia-Pichel, Jayne Belnap, Susanne Neuer, and Ferdinand Schanz. Estimates of global cyanobacterial biomass and its distribution. *Algological Studies*, 109(1):213–227, 2003b.
- Marco Griese, Christian Lange, and Jrg Soppa. Ploidy in cyanobacteria. FEMS Microbiology Letters, 323
 (2):124–131, sep 2011. doi: 10.1111/j.1574-6968.2011.02368.x. URL http://dx.doi.org/10.
 1111/j.1574-6968.2011.02368.x.
- 483 SL Johnson, CR Budinoff, J Belnap, and F Garcia-Pichel. Relevance of ammonium oxidation within biological soil crust communities. 7:1–12, 2005.
- A. Karnieli, R.F. Kokaly, N.E. West, and R.N. Clark. Remote Sensing of Biological Soil Crusts. In Jayne Belnap and OttoL. Lange, editors, *Biological Soil Crusts: Structure, Function, and Management*, volume 150 of *Ecological Studies*, pages 431–455. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-43757-4. doi: 10.1007/978-3-642-56475-8_31. URL http://dx.doi.org/10.1007/978-3-642-56475-8_31.
- Rob Knight, Peter Maxwell, Amanda Birmingham, Jason Carnes, J Gregory Caporaso, Brett C Easton, Michael Eaton, Michael Eaton, Michael Eaton, Michael Eaton, Michael Robeson, Raymond Sammut, Sandra Smit, Matthew J Wakefield, Jeremy Widmann, Shandy Wikman, Stephanie Wilson, Hua Ying, and Gavin A Huttley. {PyCogent}: a toolkit for making sense from sequence. *Genome Biol*, 8(8):R171, 2007. doi: 10.1186/gb-2007-8-8-r171. URL http://dx.doi.org/10.1186/gb-2007-8-8-r171.
- M. I. Love, W. Huber, and S. Anders. Moderated estimation of fold change and dispersion for {RNA} Seq data with {DESeq}2. Technical report, feb 2014. URL http://dx.doi.org/10.1101/
 002832.
- Frederick A Matsen, Robin B Kodner, and E Virginia Armbrust. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. *BMC Bioinformatics*, 11(1):538, 2010. doi: 10.1186/1471-2105-11-538. URL http://dx.doi.org/10.1186/1471-2105-11-538.
- Wes McKinney. pandas: Python Data Analysis Library. Online, 2012. URL http://pandas. 504 pydata.org/.
- 505 PJ McMurdie and S Holmes. Waste not, want not: why rarefying microbiome data is inadmissible. 10: e1003531, 2014.
- 507 EP Nawrocki and SR Eddy. Infernal 1.1: 100-fold faster RNA homology searches. 29:2933–5, Nov 2013.
- 508 EP Nawrocki, DL Kolbe, and SR Eddy. Infernal 1.0: inference of RNA alignments. 25:1335–7, May 2009.
- 510 JD Neufeld, J Vohra, MG Dumont, T Lueders, M Manefield, MW Friedrich, and JC Murrell. DNA stable-isotope probing. 2:860–6, 2007.
- Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, and Helene Wagner. *vegan: Community Ecology Package*, 2013. URL http://CRAN.R-project.org/package=vegan. R package version 2.0-10.
- 516 MN Price, PS Dehal, and AP Arkin. FastTree 2–approximately maximum-likelihood trees for large alignments. 5:e9490, Mar 2010.
- E Pruesse, C Quast, K Knittel, BM Fuchs, W Ludwig, J Peplies, and FO Glckner. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. 35:7188–96, 2007.
- PD Schloss, SL Westcott, T Ryabin, JR Hall, M Hartmann, EB Hollister, RA Lesniewski, BB Oakley, DH Parks, CJ Robinson, JW Sahl, B Stres, GG Thallinger, Horn DJ Van, and CF Weber.

- Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. 75:7537–41, 2009.
- T.F. Steppe, J.B. Olson, H.W. Paerl, R.W. Litaker, and J. Belnap. Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiology Ecology, 21(3):149–156, Nov 1996. doi: 10.1111/j.1574-6941.1996.tb00342.x. URL http://dx.doi.org/10.1111/j.1574-6941.1996.tb00342.x.
- Blaire Steven, La Verne Gallegos-Graves, Jayne Belnap, and Cheryl R. Kuske. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. *FEMS Microbiol Ecol*, 86(1):101–113, May 2013. doi: 10.1111/1574-6941.12143. URL http://dx.doi.org/10.1111/1574-6941.12143.
- WA Walters, JG Caporaso, CL Lauber, D Berg-Lyons, N Fierer, and R Knight. PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. 27:1159–61, Apr 2011.
- Hadley Wickham. *ggplot2: elegant graphics for data analysis*. Springer New York, 2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.
- Hadley Wickham and Romain Francois. *dplyr: dplyr: a grammar of data manipulation*, 2014. URL http://CRAN.R-project.org/package=dplyr. R package version 0.2.
- Pablo Yarza, Michael Richter, Jörg Peplies, Jean Euzeby, Rudolf Amann, Karl-Heinz Schleifer, Wolfgang Ludwig, Frank Oliver Glöckner, and Ramon Rosselló-Móra. The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Systematic and Applied Microbiology, 31(4):241–250, Sep 2008. doi: 10.1016/j.syapm.2008.07.001. URL http://dx.doi.org/10.1016/j.syapm.2008.07.001.
- Chris M. Yeager, Jennifer L. Kornosky, Rachael E. Morgan, Elizabeth C. Cain, Ferran Garcia-Pichel, David C. Housman, Jayne Belnap, and Cheryl R. Kuske. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau USA. *FEMS Microbiology Ecology*, 60(1):85–97, 2006. doi: 10.1111/j.1574-6941.2006.00265. x. URL http://dx.doi.org/10.1111/j.1574-6941.2006.00265.x.
- Chris M. Yeager, Cheryl R. Kuske, Travis D. Carney, Shannon L. Johnson, Lawrence O. Ticknor, and Jayne Belnap. Response of Biological Soil Crust Diazotrophs to Season Altered Summer Precipitation, and Year-Round Increased Temperature in an Arid Grassland of the Colorado Plateau, USA. Front. Microbio., 3, 2012. doi: 10.3389/fmicb.2012.00358. URL http://dx.doi.org/10.3389/fmicb.2012.00358.
- 554 CM Yeager, JL Kornosky, DC Housman, EE Grote, J Belnap, and CR Kuske. Diazotrophic community 555 structure and function in two successional stages of biological soil crusts from the Colorado Plateau 556 and Chihuahuan Desert. 70:973–83, 2004.
- ND Youngblut and DH Buckley. Intra-genomic variation in G+C content and its implications for DNA stable isotope probing (DNA-SIP). Aug 2014.

6 FIGURES AND LONG TABLES

Table 1.15N responders BLAST against Living Tree Project

OTU ID	Species Names	BLAST %ID
OTU.342	Acinetobacter johnsonii	100.0
OTU.263	Azospirillum picis	98.48
OTU.137	Azospirillum rugosum, A. lipoferum	98.98
OTU.3	Bacillus azotoformans	100.0
OTU.140	Bacillus korlensis, B. beringensis	100.0
OTU.108	Caloramator proteoclasticus	96.94
OTU.61	Clostridium drakei, C. carboxidivorans	95.92
OTU.11	Clostridium drakei, C. carboxidivorans	95.94
OTU.1673	Clostridium drakei, C. carboxidivorans	95.9
OTU.1747	Clostridium hydrogeniformans, C. algidicarnis	94.36
OTU.327	Clostridium hydrogeniformans, C. amylolyticum	94.92
OTU.330	Clostridium lundense	96.94
OTU.75	Clostridium lundense	96.97
OTU.2175	Clostridium paraputrificum, C. lundense	95.96
OTU.643	Clostridium tagluense, C. estertheticum subsp. laramiense, C. estertheticum subsp. estertheticum, C. bowmanii, C. algoriphilum	97.45
OTU.17	Clostridium thiosulfatireducens, C. sulfidigenes, C. subterminale	95.45
OTU.176	Delftia tsuruhatensis, D. lacustris	100.0
OTU.78	Desulfocella halophila, Bryobacter aggregatus	80.31
OTU.55	Desulfocella halophila, Bryobacter aggregatus	81.03
OTU.2404	Domibacillus robiginosus	99.49
OTU.3712	Eubacterium tarantellae, Clostridium perfringens	96.43
OTU.4167	Fonticella tunisiensis	93.43
OTU.4037	Fonticella tunisiensis	93.85
OTU.57	Fonticella tunisiensis, Caloramator proteoclasticus	93.88
OTU.575	Gracilibacter thermotolerans	94.42
OTU.37	Ilyobacter delafieldii, Clostridium nitrophenolicum, C. aciditolerans	96.43
OTU.14	Pantoea rwandensis, P. rodasii, Kluyvera intermedia, K. cryocrescens, Klebsiella variicola, K. pneumoniae subsp. rhinoscleromatis, K. pneumoniae subsp. pneumoniae, Erwinia aphidicola, Enterobacter soli, E. ludwigii, E. kobei, E. hormaechei, E. cloacae subsp. dissolvens, E. cancerogenus, E. asburiae, E. amnigenus, E. aerogenes, Buttiauxella warmboldiae, B. noackiae, B. izardii, B. agrestis	99.49
OTU.259	Parasporobacterium paucivorans	98.47
OTU.321	Pseudomonas beteli	100.0
OTU.54	Shigella sonnei, S. flexneri, Escherichia fergusonii, E. coli	100.0
OTU.116	Streptomyces ziwulingensis, S. viridodiastaticus, S. viridochromogenes, S. violascens, S. violarus, S. violaceorubidus, S. violaceoruber, S. violaceolatus, S. violaceochromogenes, S. vinaceusdrappus, S. variabilis, S. tuirus, S. tricolor, S. thinghirensis, S. tendae, S. spectabilis,	100.0
his is a pr	Osis ilacquille Stratification of the majority of the control of t	14

Figure 1. Ordination of heavy gradient fraction sequence collections by Bray-Curtis distances.

Figure 2. Phylogenetic trees of OTUs passing sparsity threshold for selected phyla. *A)* Point denotes OTU is classified as a 15 N "responder". *B)* Heatmap of moderated \log_2 proportion mean ratios (labeled:control gradients) for each OTU at each incubation day. High values indicate 15 N incorporation. *C)* Presence/absence of OTUs (black indicates presence) in lichen, light, or dark environmental samples (Garcia-Pichel et al., 2013). *D)* Presence/absence of OTUs (black indicates presence) in crust and below crust samples (Steven et al., 2013).

Figure 3. Moderated log_2 of proportion mean ratios for labeled versus control gradients (heavy fractions only, densities i_0 1.725 g/mL). All OTUs found in at least 62.5% of heavy fractions at a specific incubation day are shown. Red color denotes a proportion mean ratio that has a corresponding adjusted p-value below a false discovery rate of 10% (the null model is that the proportion mean is ratio is below 0.25). The horizontal line is the proportion mean threshold for the null model, 0.25. The inset figure summarizes the taxonomy of OTUs that with proportion mean ratio p-vaules under 0.10 for at least one time point.

Figure 4. Relative abundance values in heavy fractions (density greater or equal to 1.725 g/mL) for the top 10 ¹⁵N "responders" (putative diazotrophs, see results for selection criteria of top 10) at each incubation day. See Table 1 for BLAST results of top 10 responders against the LTP database (release 115). Point area is proportional to CsCl gradient fraction density, and color signifies control (red) or labeled (blue) treatment.

Figure 5. See methods for selection criteria for sequences in backbone tree. Edge width is proportional to number of short putative *Clostridiaceae* diazotroph sequences placed at that position. Placement of short sequences can be spread across multiple edges Matsen et al. (2010). Reference sequences from cultivars have boxes at tips and full species names. Tips with only accession annotations are from environmental reference sequences.

7 SUPPLEMENTAL FIGURES

Figure S1. Distribution of sequences into top 9 phyla (phyla ranked by sum of all sequence annotations).

Figure S2. Ordination of Bray-Curtis sample pairwise distances for each incubation time. Point area is proportional to the density of the CsCl gradient fraction for each sequence library, and color/shape reflects control (red triangles) or labeled (blue circles) treatment. Inset shows Bray-Curtis distances for paired control versus labeled CsCl gradient fractions (i.e. fractions from the same incubation day and same density) against the density of the pair (p-value: 4.526e⁻⁵, r²: 0.434).

Figure S3. Relative abundance of selected heterocystous cyanobacterial OTUs with centroids from sequences described in Yeager et al. (2006) (see methods for selection criteria) in Steven et al. (2013) data set.

Figure S4. Rarefaction curves for all samples presented by Garcia-Pichel et al. (2013) and Steven et al. (2013). Inset is boxplot of estimated sampling effort for all samples in Garcia-Pichel et al. (2013) and Steven et al. (2013) (number of observed OTUs divided by number of CatchAll Bunge (2010) estimated total OTUs)

Figure S5. Counts of "responder" OTU occurrences in samples from Steven et al. (2013) and Garcia-Pichel et al. (2013). Steven et al. (2013) collected BSC samples (25 samples total) and samples from soil beneath BSC (17 samples total, "below" column in figure). Garcia-Pichel et al. (2013) collected samples from "dark" (9 samples total) and "light" (12 samples total) crusts in addition to "lichen" (2 samples total) dominated crusts.

Garcia-Pichel et al. (2013)

Steven et al. (2013)

