Korištenje računalnih klastera

E. Imamagić, Srce Klasterska i grid radionica Srca

Paralelno sklopovlie

- Superračunala
 - najmoćnija dostupna računala
 - za zahtjevne računalne probleme
- Vektorska superračunala
 - Cray SV, NEC SX
 - Cray-1: 1976, 160.00 MFLOPS8.8 M\$
- Velika paralelna računala
 - MPP (engl. massively parallel processors)
 - Connection Systems CM1 i CM2, Earth Simulator, Blue Gene
 - IBM Blue Gene/L: 2005, 360.00 (70.72) TFLOPS, ~100 M\$

Računalni klasteri

 "... skup umreženih samostalnih računala jedinstven računalni resurs"
R. Buyya

- Ekonomična alternativa za superračunala
 - sastoji se od standardnih komponenata
 - "superračunalo za siromahe"
- Ključni faktori (80-tih)
 - mikroprocesori
 - brze mrežne tehnologije
 - Parallel Virtual Machine (PVM)

Računalni klasteri

- Beowulf klaster (1994)
 - T. Sterling & M. Baker
 - NASA Ames Centre

Danas

- široko rasprostranjeni u paralelnom računarstvu
- 82,2% Top500 liste najmoćnijih računala

Računalni klasteri

Arhitektura klastera

- Komponente klastera
 - računalni čvorovi
 - mreža
 - operacijski sustav (OS)
 - klasterski posrednički sustav (engl. middleware)

Beowulf arhitektura

Frontend

- pristupno računalo
- pristup pomoću protokola ssh
- središnji servisi klasterskih posredničkih sustava

 dijeljeni diskovni prostor (direktorij /home)

Beowulf arhitektura

Čvorovi

- dedicirana računala za izvođenje poslova
- povezani privatnom mrežom
- lokalni diskovni prostor (/scratch)

Privatne mreže

- visoka propustnost
- malo kašnjenje
- moguće korištenje više mreža

Komponente klastera

Računalni čvorovi

- poslužitelji, radne stanice, osobna računala
- 32-bitna i 64-bitna arhitektura procesora
 - Intel Xeon, Itanium, AMD Opteron, Alpha

Mrežna tehnoloije

Gigabit Ethernet, Infiniband, Myrinet, Quadrics QsNet II

OS

Linux, HPUX, Solaris, MS Windows

- Upravlja izvođenjem korisničkih aplikacija na klasteru
 - engl. Job Management System (JMS), batch system
- Posao izvođenje aplikacije
- Vrste poslova
 - batch ne zahtijevaju korisničku interakciju (npr. dugotrajna računanja, obrada podataka)
 - interaktivni zahtijevaju korisničku interakciju (npr. grafička sučelja, unos dodatnih podataka, potvrđivanje akcija)
 - serijski zahtijevaju samo jedan procesor za izvođenje
 - paralelni zahtijevaju više procesora za izvođenje

- Korisničko sučelje za podnošenje i upravljanje poslovima
 - podnošenje, upravljanje, dohvat detaljnih informacija o izvođenju
- Omogućava definiranje politike korištenja klastera
 - npr. fair-share, rezervacije, prioriteti, ...
- Optimizira korištenje čvorova
 - raspoređivanje poslova po čvorovima
 - praćenje opterećenja čvorovova

- Otvoreni problemi
 - spremanje stanja poslova (engl. checkpointing)
 - selidba poslova između čvorova (engl. process migration)
 - preemption
 - rezervacija čvorova (engl. advance reservation)
 - otpornost na greške u radu čvorova (engl. fault tolerance)

- Son of Grid Engine (SGE)
 - napredno raspoređivanje poslova (fair share, tickets)
 - definiranje projekata i grupa korisnika
 - detaljno opisivanje čvorova
 - prilagodba okoline za specifične paralelne aplikacije
- Torque + Maui
 - napredno raspoređivanje poslova
 - rezervacije resursa
 - precizno definiranje resursa kod paralelnih poslova

Klaster Isabella

- Računalni klaster na Srcu
 - dostupan cijeloj akademskoj zajednici
 - http://isabella.srce.hr
- Arhitektura
 - brza mreža Infiniband
 - Son of Grid Engine
 - dijeljeni datotečni sustav FhGFS
 - koristi Infiniband
 - visoka dostupnost frontenda i podatkovnih elementa

Klaster Isabella

Brojke

- 28 računalnih čvorova
- 480 procesorskih jezgri
- 4 grafička procesora (GPU)
- 2 TB RAM
- 4 TB dijeljenog diskovnog prostora
- 36 TB dijeljenog privremenog prostora (/shared/isabella)

Klaster Isabella

Podnošenje poslova

Opisivanje poslova

- Što se treba izvesti?
- Koji su argumenti?
- Gdje treba spremiti standardni izlaz i greške?
- Gdje se nalazi standardni ulaz?
- Koji podaci su potrebni za izvođenje poslova?

Opisivanje poslova

- Gdje spremati privremene podatke i rezultate?
- Gdje je radni direktorij na čvorovima?
- Koje okoline varijable treba postaviti?
- Koliko procesora posao zahtjeva? Koju arhitekturu procesora?
- Koliko memorije, prostora na disku, vremena je potrebno?

Ganglia

- Sustav za nadzor
 - prikuplja informacije o čvorovima
 - razmjenjuje informacije između frontenda i čvorova
 - arhivira podatke
- Web sučelje
 - prikaz grafova pojedinih parametara (CPU, memorija, mreža, disk)
 - povijest: sat, dan, mjesec, godina
- http://tannat.srce.hr/ganglia

Hvala na pažnji!

http://isabella.srce.hr

http://wiki.cro-ngi.hr

