实验目录

1. 基于逻辑回归的信用欺诈预测识别模型

实验内容

1. 基于逻辑回归的信用欺诈预测识别模型

知识点

- 1) 逻辑回归通过预测分类概率判断分类
- 2) 对于平衡集,默认分类概率阈值 0.5
- 3) 对于不平衡集,使用阈值 0.5 可能和业务要求不符
- 4) 可以通过重抽样或 ROC 选择阈值的方法解决不平衡集问题

实验目的

- 1) 学习在逻辑回归中使用重抽样方法
- 2) 学习在逻辑回归中使用 ROC 计算概率阈值
- 3) 比较数据集未处理、重抽样、ROC 方法的逻辑回归模型结果

实验步骤

1) 打开 Jupyter, 并新建 python 工程

2) 读取数据

- 1. Jupyter 输入代码后,使用 shift+enter 执行,下同。
- 2. 数据集包含欧洲持卡人于 2013 年 9 月通过信用卡进行的交易。数据集提供两天内的交易数据,在 284,807 笔交易中有 492 起欺诈行为。数据集非常不平衡,正面类别(欺诈)占所有交易的 0.172%。数据经过脱敏处理,V1~V28 是主成分,Time 是每次交易与第一次交易之间距离的时间,单位为秒。Amount代表消费金额,Class 为因变量,1表示欺诈,0表示正常。
- 3. 使用 pandas 读取 csv 文件

[Code 001]:

import pandas as pd

df = pd.read_csv('/root/experiment/datas/creditcard.csv')

查看数据维度

df.shape

```
import pandas as pd

df = pd.read_csv('/root/experiment/datas/creditcard.csv')
df.shape

(284807, 31)
```

3) 描述性分析与可视化分析

1. 查看数据的随机五项

[Code 002]:

df.sample(5)

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	•••	V21	V22	V23	
92906	64162.0	1.271152	-0.094375	0.578396	0.583881	-0.682050	-0.517704	-0.254191	-0.177471	-1.299405		-0.224204	-0.035673	0.022118	0
181991	125209.0	2.060753	-0.106978	-1.077315	0.426283	-0.218084	-1.237582	0.132239	-0.291339	0.658977	314	-0.297535	-0.761412	0.350515	0
62856	50459.0	0.866669	-0.274743	0.360535	1.431041	-0.360001	0.060282	0.097299	0.118012	0.086117	275	0.032325	-0.017397	-0.152403	0
191478	129270.0	-2.114596	0.956760	-3.404809	-0.670049	-0.991710	-0.258851	0.878415	1.121784	-0.762714		0.280020	0.934799	0.381783	-0
219250	141651.0	-0.408603	0.548039	1.465247	-0.961440	0.205615	-0.142031	0.436857	0.137149	-0.167917	100	-0.146824	-0.456057	-0.004966	-0

2. 查看缺失值

[Code 003]:

df.isnull().sum().sum()

```
df.isnull().sum().sum()
```

3. 查看因变量分布,因变量极不平衡(绘图时,由于 jupyter 的问题,执行时可能需重复执行才能显示绘图结果,下同)

[Code 004]:

import matplotlib.pyplot as plt
import seaborn as sns
sns.countplot(x='Class', data=df)
plt.show()

```
import matplotlib.pyplot as plt
import seaborn as sns

sns.countplot(x='Class', data=df)
plt.show()
```


4. 查看数据分布

[Code 005]:

df.hist(figsize=(24,16))
plt.show()

4) 数据预处理

1. 字段处理

[Code 006]:

```
# 对 Amount 进行标准化处理,存储在 normal_amount 字段中 from sklearn.preprocessing import StandardScaler df['normal_amount'] = StandardScaler().fit_transform(df['Amount'].values.reshape(-1,1)) # 去掉 Amount 和 Time 字段 df = df.drop(['Amount','Time'], axis=1) df.columns
```

2. 划分自变量和因变量,训练集和测试集

[Code 007]:

#划分自变量和因变量

X = df.loc[:,df.columns != 'Class']

```
y = df.loc[:,df.columns == 'Class']
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
X_tr,X_ts,y_tr,y_ts = train_test_split(X,y,test_size=0.2)
X_tr.shape,X_ts.shape
```

```
X = df.loc[:,df.columns != 'Class']
y = df.loc[:,df.columns == 'Class']

from sklearn.model_selection import train_test_split

X_tr,X_ts,y_tr,y_ts = train_test_split(X,y,test_size=0.2)
X_tr.shape,X_ts.shape
((227845, 29), (56962, 29))
```

5) 建立模型

1. 建立普通逻辑回归模型

[Code 008]:

from sklearn.linear_model import LogisticRegression model_original = LogisticRegression() model_original.fit(X_tr,y_tr.values.ravel())

2. 建立重抽样平衡后的逻辑回归模型

[Code 009]:

 $model_rs = LogisticRegression(class_weight='balanced')$ $model_rs.fit(X_tr,y_tr.values.ravel())$

3. 建立普通逻辑回归模型,使用 ROC 曲线选取阈值

[Code 010]:

```
model_roc = LogisticRegression()
model_roc.fit(X_tr,y_tr.values.ravel())
```

4. 使用 ROC 计算 FPR、TPR 以及对应的阈值

[Code 011]:

```
from sklearn.metrics import roc_curve
import numpy as np
preds = model\_roc.predict\_proba(X\_ts)[:,1]
fpr, tpr, thresh = roc_curve(y_ts, preds)
df = pd.DataFrame(dict(fpr=fpr, tpr=tpr))
# 计算 ROC 曲线最优阈值
idx = np.argmax(tpr-fpr)
Thresh = thresh[idx]
# 绘制 ROC 曲线, 查看阈值
plt.plot(fpr,tpr)
plt.scatter(fpr[idx], tpr[idx], c='r')
plt.text(fpr[idx], tpr[idx], '(\%.4f, \%.4f, \%.4f)'\%(fpr[idx], tpr[idx], Thresh), v
a='top'
plt.title('ROC curve')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.grid(True)
```

```
from sklearn.metrics import roc_curve
import numpy as np

preds = model_roc.predict_proba(X_ts)[:,1]
fpr, tpr, thresh = roc_curve(y_ts, preds)

df = pd.DataFrame(dict(fpr=fpr, tpr=tpr))
idx = np.argmax(tpr-fpr)
Thresh = thresh[idx]

plt.plot(fpr,tpr)

plt.scatter(fpr[idx],tpr[idx],c='r')
plt.text(fpr[idx],tpr[idx],'(%.4f, %.4f, %.4f)'%(fpr[idx],tpr[idx],Thresh),va='top')

plt.title('ROC curve')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
```


6) 模型预测与评估

plt.grid(True)

1. 使用普通逻辑回归模型对测试集预测,查看混淆矩阵

[Code 012]:

```
y_original_pred = model_original.predict(X_ts)
from sklearn.metrics import confusion_matrix, classification_report
confusion_matrix(y_ts,y_original_pred)
```

2. 使用重抽样方法对测试集预测,并查看混淆矩阵

[Code 013]:

y_rs_pred = model_rs.predict(X_ts)
confusion_matrix(y_ts,y_rs_pred)

3. 使用 ROC 阈值预测,并查看混淆矩阵

[Code 014]:

 $pred_prob = model_roc.predict_proba(X_ts)$ $pred_thresh = [int(x[1]>Thresh) for x in pred_prob]$ $confusion_matrix(y_ts, pred_thresh)$

7) 实验结论

- 1. 对于信用欺诈分析而言,业务目的是尽可能准确的识别欺诈用户,为此可以一定程度上"忍受"对非欺诈客户的"误伤"。
- 2. 未经处理的数据集模型,识别出 63 名欺诈用户,放过 32 名欺诈用户,误伤 9 名非欺诈用户。
- 3. 经过重抽样的模型,识别出 91 名欺诈用户,放过 4 名欺诈用户,误伤 1362 名非欺诈用户。
- 4. 使用 ROC 的模型,识别出 90 名欺诈用户,放过 5 名欺诈用户,误伤 1623 名 非欺诈用户。
- 5. 本次分析中,原始的逻辑回归模型未能有效识别出欺诈用户,重抽样方法和 ROC 方法都比较准确的识别出了欺诈用户。
- 6. 本次分析中,重抽样方法略优于 ROC 方法。