例 1 通过对某健将级女子铅球运动员的跟踪调查,获得其 1982 年至 1986 年每年最好成绩及 16 项专项素质和身体素质的时间序列资料,见表 2,试对此铅球运动员的专项成绩进行因素分析。

表 2 各项成绩数据

	1982	1983	1984	1985	1986
铅球专项成绩 x ₀	13.6	14.01	14.54	15.64	15.69
4kg 前抛 x ₁	11.50	13.00	15.15	15.30	15.02
4kg 后抛 x ₂	13.76	16.36	16.90	16.56	17.30
4kg 原地 x ₃	12.41	12.70	13.96	14.04	13.46
立定跳远 x ₄	2.48	2.49	2.56	2.64	2.59
高 翻 x,	95 95		90	100	105
抓 举 x ₆	55	65	75	80	80
卧 推 x,	65	70	75	85	90
3kg 前抛 x _s	12.80	15.30 16.24		16.40	17.05
3kg 后抛 x ₉	15.30	18.40	18.75	17.95	19.30
3kg 原地 x ₁₀	12.71	14.50	14.66	15.88	15.70
3kg 滑步 x ₁₁	14.78	15.54	16.03	16.87	17.82
立定三级跳远 x ₁₂	7.64	7.56	7.76	7.54	7.70
全 蹲 x ₁₃	120	125	130	140	140
挺 举 x ₁₄	80	85	90	90	95
30 米起跑 x ₁₅	4"2	4"25	4"1	4"06	3"99
100米 x ₁₆	13"1	13"42	12"85	12"72	12"56

依照问题的要求,我们自然选取铅球运动员专项成绩作为参考数列,将表 2 中的各个数列的初始化数列代入(1)及(2)式,易算出各数列的关联度如下表(这里 $\rho=0.5$)。

表 3 关联度计算结果

r_1	r_2	<i>r</i> ₃	r_4	r_5	r ₆	<i>r</i> ₇	r_8
0.588	0.663	0.854	0.776	0.855	0.502	0.659	0.582
r_9	r_{10}	r_{11}	r_{12}	r_{13}	r_{14}	<i>r</i> ₁₅	r_{16}
0.683	0.696	0.896	0.705	0.933	0.847	0.745	0.726