Laboratorium 2 Wprowadzenie do sztucznej inteligencji

Agnieszka Głuszkiewicz

1 Opis zadania

Celem zadania było zaimplementowanie **algorytmu A*** do rozwiązywania układanki logicznej *Piętnastka*. W mojej implementacji zastosowałam algorytm **Bidirectional A***. Równocześnie przeszukuję od stanu początkowego do docelowego oraz od stanu docelowego do początkowego, spotykając się w środku, co często znacząco redukuje przestrzeń przeszukiwania. Skupiłam się na dwóch heurystykach: **Manhattan** oraz **Linear Conflict**.

2 Opis heurystyk

2.1 Manhattan

Heurystyka odległości Manhattan to suma odległości w pionie i poziomie, jaką każdy kafelek musiałby przebyć z obecnej pozycji do swojej pozycji docelowej.

$$h_{\text{Manhattan}}(s) = \sum_{i=1}^{N^2 - 1} (|row_i - row_{\text{goal}_i}| + |col_i - col_{\text{goal}_i}|)$$

2.2 Manhattan + Linear Conflict

Ta heurystyka jest rozszerzeniem heurystyki Manhattana, dodając karę za "konflikty liniowe" (dwa kafelki w docelowym wierszu/kolumnie, ale w odwrotnej kolejności). Oferuje silniejsze szacowanie niż sama heurystyka Manhattan.

 $h_{\text{LinearConflict}}(s) = h_{\text{Manhattan}}(s) + 2 \times \text{liczba konfliktów liniowych}$

3 Generowanie permutacji

3.1 Algorytm Fisher-Yates

Użyłam algorytmu **Fisher-Yates shuffle** do generowania permutacji. Jest to standardowy algorytm, który dla danej sekwencji elementów generuje losową permutację w sposób **równomierny** (**jednostajny**). Każda możliwa permutacja ma taką samą szansę wylosowania (zakładając, że pole w prawym dolnym rogu jest zawsze puste i nie uwzględniamy go podczas tasowania wartości łami-główki - tak jak w treści zadania na liście).

```
// ...
// fragment funkcji initializePuzzle
vector<int> base(total);
for (int i = 0; i < total - 1; i++)
       base[i] = i + 1;
base[total - 1] = 0;
initState.tiles = base;
initState.blank = total - 1;
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();</pre>
```

```
std::mt19937 generator(seed);
do {
    for (int i = total - 2; i > 0; i--) {
        std::uniform_int_distribution<int> distribution(0, i);
        int j = distribution(generator);
        swap(initState.tiles[i], initState.tiles[j]);
    }
    initState.tiles[total - 1] = 0;
} while (!isSolvable(initState.tiles));
initState.blank = total - 1;
// ...
```

3.2 Sprawdzanie rozwiązywalności

Po wygenerowaniu permutacji, sprawdzana jest jej rozwiązywalność za pomocą funkcji 'isSolvable'. Układanka o rozmiarze NxN jest rozwiązywalna, jeśli suma liczby inwersji (par kafelków w niewłaściwej kolejności) i numeru wiersza, w którym znajduje się puste pole, spełnia określone kryteria:

- \bullet Dla N nieparzystego: układanka jest rozwiązywalna, jeśli liczba inwersji jest parzysta.
- Dla N parzystego: układanka jest rozwiązywalna, jeśli suma liczby inwersji i numeru wiersza pustego pola (liczonego od dołu) jest nieparzysta.

Losowanie jest powtarzane, dopóki nie zostanie znaleziona rozwiązywalna konfiguracja.

```
bool isSolvable(const std::vector<int> &tiles) {
    int inv = 0;
    int blank_row = 0;
    for (int i = 0; i < tiles.size(); i++) {</pre>
        if (tiles[i] == 0) {
            blank_row = (N - 1) - (i / N);
        }
        for (int j = i + 1; j < tiles.size(); ++j) {
            if (tiles[i] != 0 && tiles[j] != 0 && tiles[i] > tiles[j]) {
                inv++;
        }
    }
    if (N \% 2 == 1)
        return inv % 2 == 0;
    return (inv + blank_row) % 2 == 1;
}
```

4 Opis działania algorytmu Bidirectional A*

Algorytm Bidirectional A* jest rozszerzeniem standardowego algorytmu A*, który przeszukuje jednocześnie z dwóch stron: od stanu początkowego do celu (w przód) i od stanu docelowego do początku (wstecz). Przeszukiwanie zatrzymuje się, gdy oba "spotkają się".

4.1 Graf połączeń i przeglądanie stanów

Przestrzeń stanów układanki można traktować jako **graf**, gdzie każdy wierzchołek reprezentuje unikalną konfigurację kafelków, a krawędzie łączą stany, które można osiągnąć za pomocą pojedynczego ruchu pustego pola. Krawędzie mają wagę 1.

Algorytm utrzymuje dwie kolejki priorytetowe ('openF', 'openB') i dwie mapy odwiedzonych stanów ('visitedF', 'visitedB'):

- 'openF', 'openB': przechowują węzły do odwiedzenia, sortowane według funkcji f = g + h.
- \bullet 'visitedF', 'visitedB': mapują odwiedzone stany na parę (koszt g, stan-rodzic), co pozwala na odtworzenie ścieżki i uniknięcie cykli.

W każdej iteracji algorytm wybiera węzeł z kolejki o mniejszej wartości f_{top} . Następnie generuje sąsiadów wybranego stanu, oblicza ich koszt g_2 (koszt dotarcia do tego stanu) oraz h_2 (heurystyka), i dodaje je do odpowiedniej struktury, jeśli znaleziono krótsza ścieżkę lub stan jest nowy.

4.2 Znajdowanie rozwiązania

- Spotkanie obu przeszukiwań następuje, gdy stan rozszerzony z jednej strony ('s') znajduje się w mapie 'visited' z drugiej strony. Wtedy obliczany jest potencjalny całkowity koszt 'totalCost = g_forward(s) + g_backward(s)'. Algorytm kontynuuje rozszerzanie, dopóki suma f wartości na szczycie obu kolejek priorytetowych jest mniejsza niż 'bestCost' (najlepszy znaleziony koszt spotkania).
- Po znalezieniu spotkania, ścieżka do rozwiązania jest rekonstruowana poprzez cofanie się od stanu spotkania do stanu początkowego (używając 'visitedF') i od stanu spotkania do stanu docelowego (używając 'visitedB'). Następnie te dwie części ścieżki są łączone.

4.3 Złożoność pamięciowa i czasowa

- **Złożoność pamięciowa** jest zależna głównie od rozmiaru map 'visitedF' i 'visitedB' (typu 'unordered_map'). Dla układanki N=3, przestrzeń stanów to $9!/2\approx 180,000$ rozwiązywalnych stanów. Dla N=4, przestrzeń stanów to $16!/2\approx 10^{13}$ stanów, co sprawia, że przechowywanie wszystkich stanów jest niemożliwe. Bidirectional A* redukuje to, ale nadal może być pamięciożerny.
- **Złożoność czasowa** Bidirectional A* zależy od liczby odwiedzonych stanów, a także od kosztu operacji na kolejkach priorytetowych i mapach hash. Dla *M* odwiedzonych stanów:
 - Wstawianie/Pobieranie z kolejki priorytetowej: $O(\log k)$, gdzie k to rozmiar kolejki (zakładając, że jest zaimplementowana np. jako kopiec binarny).
 - Wstawianie/Wyszukiwanie w 'unordered map': Średnio O(1), w najgorszym przypadku O(M) (przy złych funkcjach hash, ale funkcja FNV-1a minimalizuje to ryzyko).
 - Generowanie sąsiadów: Stały czas, O(1) dla układanki $N \times N$ (maksymalnie 4 sąsiadów).

Całkowita złożoność to około $O(M\log M)$ w średnim przypadku, gdzie M to liczba odwiedzonych stanów. Dzięki Bidirectional A* zazwyczaj złożoność czasowa jest redukowana z $O(b^d)$ do $O(b^{d/2})$, gdzie b to współczynnik rozgałęzienia, a d to głębokość rozwiązania.

5 Mechanizmy przyspieszające działanie

- Zmniejszenie przestrzeni przeszukiwania: Głównym mechanizmem przyspieszającym działanie jest algorytm Bidirectional A^* . Zamiast przeszukiwać całą przestrzeń stanów od początku do końca, przeszukuje ją z dwóch stron jednocześnie. Przeszukiwanie dwóch kul o promieniu d/2 jest znacznie efektywniejsze niż jednej kuli o promieniu d, redukując liczbę odwiedzonych stanów.
- Użycie 'std::unordered_map': Implementacja map hashujących zapewnia średnio czas O(1) dla operacji wstawiania i wyszukiwania, co jest kluczowe dla wydajności przy dużych N. Funkcja hashująca FNV-1a minimalizuje kolizje.

6 Wykresy

Poniższe wykresy prezentują wyniki eksperymentów dla układanek 3×3 i 4×4 , pozwalając na analizę efektywności heurystyk.

6.1 Rozkład ilościowy długości rozwiązania

6.2 Liczba odwiedzonych stanów vs. długość rozwiązania

Visited States vs. Solution Length for 3x3 Puzzles

Visited States vs. Solution Length for 4x4 Puzzles

6.3 Porównanie heurystyk: średnia liczba odwiedzonych stanów

6.4 Stosunek liczby stanów odwiedzonych do wygenerowanych

6.5 Średni czas rozwiązania vs. długość rozwiązania

7 Wnioski

Przeprowadzone eksperymenty potwierdzają, że algorytm Bidirectional A^* jest efektywnym narzędziem do rozwiązywania układanki Piętnastka.

- ullet Heurystyka **Manhattan** + **Linear Conflict** jest zdecydowanie bardziej efektywna niż heurystyka **Manhattan**, prowadząc do mniejszej liczby odwiedzonych stanów i krótszego czasu rozwiązania.
- \bullet Bidirectional A jest skutecznym mechanizmem przyspieszającym, redukującym przestrzeń przeszukiwania.
- Optymalna implementacja struktur danych, takich jak 'unordered_map', ma spore znaczenie dla wydajności.