Lab1 设计一个FIR滤波器分离鸟类声音

目标

在完成本实验后, 您应当学会:

- 如何使用Vitis HLS构建一个项目
- 在Vitis HLS中进行仿真、综合与IP导出

简而言之,您将掌握使用HLS进行加速核设计与部署到PYNQ的基本流程。出于篇幅限制,本实验仅介绍基本工具操作流程。

环境要求

- PYNQ-Z2远程实验室服务或物理板卡Vitis HLS
- Vivado

实验步骤 (Linux版本的HLS)

- 1. 在Vitis_HLS中设计FIR
- 1.1 Linux环境设置 (如果您使用校内公共服务器平台的话,这些设置都已配好,直接拷贝即可)
 - 1. 设置以下信息,比如bash环境下修改自己根目录下的.bashrc文件(路径请根据自己情况修改)
 - # Xilinx License
 - export XILINXD LICENSE FILE=/mnt/home/software/vivadoML21.2/Xilinx2037.lic
 - # HLS basic settings
 - source /mnt/home/tools/xilinx/Vitis_HLS/2021.2/settings64.sh
 - # PATH setting

export PATH=\$PATH:/mnt/home/tools/xilinx/Vitis_HLS/2021.2/lnx64/tools/clang/bin # Library settings

export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/mnt/home/tools/xilinx/Vitis_HLS/2021.2/lib/lnx64.0:/mnt/home/tools/xilinx/Vitis_HLS/2021.2/lib/lnx64.0/Default

2. 测试自己的环境是否已经OK

输入以下命令,看能否找到:

which vitis_hls

1.2 代码脚本设置

新建一个目录 mkdir FIR

进入该目录 cd FIR

将目标C文件拷贝到该目录下 cp -r /mnt/home/students/zhaokang/Lab/ ./

用vim新建一个TCL脚本文件,命名为 "run.tcl",将以下内容输入并保存。

1. project name

open_project prj -reset

2. set top name

set_top fir_wrap

3. add files

add_files fir.cpp

```
add_files -tb fir_tb.cpp
# 4. solution name
open_solution "solution1" -reset
# 5. device name
set_part virtex7
# 6. clock setting
create_clock -period 13 -name default
config_export -version 2.0.1;
#7. C-simulation
csim_design
# 8. synthesis
csynth_design
# 9. co-simulation
cosim_design
```

1.3 执行HLS,生成RTL硬件描述

在该目录下,执行命令: vitis hls run.tcl

则会自动执行c-simulation, synthesis, co-simulation等过程,并生成日志文件vitis_hls.log,同时输出到屏幕。

1.4 查看HLS的生成结果

(1) 查看LOG日志

vim vitis_hls.log

你会看到,HLS先执行c-simulation,并输出结果;之后是详细的综合(synthesis)过程,既包括前端编译结果,也包括后端的调度和资源绑定结果;最后是co-simulation结果。

(2) 查看生成的RTL文件

cd prj/solution1/syn/

ls

你会看到,除了报告report外,生成了verilog和VHDL两种RTL硬件描述。

(3) 查看综合synthesis报告,评估其性能

可以看到其预估的timing值、latency值:

cd prj/solution1/syn/report/

打开顶层module名字对应的rpt报告文件,比如该顶层文件名叫"fir_wrap",则打开fir_wrap_csynth.rpt: vim fir_wrap_csynth.rpt

也可以看到预估的各类资源的使用量:

======================================										
* Summary:										
Name	BRAM_18K BRAM_18K	DSP	F FF	LUT	+ URAM					
DSP	++ -	-	+ -	-	++ -					
Expression	-		-	-	-					
FIFO	-		-	-	-					
Instance	4	297	5686	6813	-					
Memory	-		-	-	-					
Multiplexer	-		-	270	-					
Register	-		3400	-	-					
Total	+		9086	7083	0					
Available	1590	1260	728400	364200	0					
Utilization (%)	+ ~0 +	23		1	0 +					

(4) 查看更精确的性能latency结果,即co-simulation结果

cd prj/solution1/sim/report/

vim fir_wrap_cosim.rpt

可以看到精确的latency值:

Latency(Clock Cycles)									
min		avg		max					
	NA 442		NA 142		NA 442				