$$\int R = \frac{2 \text{ Von Voy}}{g}$$

PaPa Formula:

Rtand = 4H Range Horizontal)

Height (Vortical Distan)

HIGHBROW	Date:
S. H. M	
Fokz	
$z = A \cos(\omega t + \emptyset)$	
w= k v= - Aw(sin	(wt+\$))
m	
$\omega = 2\pi f$ $\alpha = -A \omega^2 (\omega s \omega t + c$	8))
α= - ω1 ×	
a(+)=-(2 xf) 2 (+)	
Time period T = 2x m	
2 {t) - A cos (2xft + Ø)
V _{max} = ωα max	
Enry = A2	
Total E= 15 K (220)	
k.E = 1 kx2 sin2 (wt+0)	7
2	7. (20)
U= 1 Kx2 (wt+0)	
2	
Total: 1 kx 2 co	52 (wt+0)+1 k x 2 sin'
= 1 x = K(cos2(wt-	2 +Ø) + sin'(wt+Ø)]
<i>E</i>	

HIGHBROW	Date:
Domped Oscillations	
Fd: -bv force 1 domping constant	ma=-bu-kz
Frit:	Total net force.
w'= damped oscillation frequency Can	
$\omega' = \begin{cases} k - b \\ \sqrt{m} & y_n \end{cases}$	
if b < 4/m => w'=w,	
Damped Energy	
$E(t) = \frac{1}{2} k_x^{\mu} e$	- 69m
· · · · · · · · · · · · · · · · · · ·	As
	46
-	577
	The state of the s
- X 3	
THE TIME	OW

Oscillations

$$\omega = \sqrt{\frac{K}{m}} \Rightarrow \omega = 2\pi f$$

,
$$T = \frac{2\pi}{\omega} \Rightarrow T = \frac{2\pi}{K}$$

$$f = \frac{1}{T} \Rightarrow f = \frac{1}{2\pi} \int_{M}^{K}$$

$$a = -\frac{kN}{m} \Rightarrow a = +w^2n$$

$$T = 2\pi \int_{9}^{1}$$

$$V = \begin{bmatrix} \gamma & 0 & \mu = m \\ \mu & 0 & 1 \end{bmatrix}$$

HIGHBROW	Date:
Waves	
c = 3 x10° selectromag	netic wave speed.
Wave Function	
y (a,t)= d (a-vt)	Whe thankling to the night
y (x, l) = S (x + vt)	lett
wave number $k = 2\kappa$ $K = \omega$ $Y = A \sin(kx - \omega)$	1 = ω
Super Porthe	th.
y = 4, -42	a = kx - wt B = kx - wt + p
y= A[s:0(α) + s:0β]	
= 2 A cos (\$\bar{Q}\$) 5 in (k	x-wt+ø)
Ay = 2A cos(Q)	
	MY M

Electrostatics

$$K = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9$$
 $\epsilon_0 = 8.85 \times 10^{-12}$

$$E = F$$

$$E = V$$

$$Fd = -bv$$

$$\omega' = \frac{|K - b^2|}{m + \frac{4m^2}{m}}$$

$$E(t) = \frac{1}{2} k \chi_0^2 e^{-bt/m}$$

$$F = -kx - bv$$

Waves

$$y(x,t) = y_m \sin(\kappa x - \omega t)$$

at t=0:

$$\cdot k = \frac{2\pi}{\lambda} \qquad \cdot f = \frac{1}{1} = \frac{\omega}{2\pi}$$

with phase constant:

o
$$V = \frac{\text{coefficient of t}}{\text{coefficient of } x} = \frac{w}{K} = \frac{\lambda}{T}$$

$$V = \lambda f$$

Direction of wave i

phase difference: (same particle)

$$\Delta \varphi = \frac{27}{T} \Delta t \Rightarrow \omega \Delta t$$
-, same phase conditions:
. same disp
. same velocity
. Same QCC.

Interference of waves:

Superposition principle:
$$\frac{\varphi}{2\pi} + \frac{\varphi}{2}$$
path difference:
$$\Delta r = \frac{\varphi}{2\pi} \lambda$$
constructive interference.
$$\Delta net \rightarrow max$$

$$\varphi = 0, 2\pi, 34\pi, 6\pi = 2n\pi$$

$$\Delta r = 0, \lambda, 2\lambda, 3\lambda = n\lambda$$
Destructive Interference:
$$\Delta net \rightarrow min$$

$$\varphi = \pi, 3\pi, 5\pi = 2(2n+1)\lambda$$

$$\Delta r = \lambda, 3\lambda, 5\lambda = 2(2n+1)\lambda$$

$$\Delta r = \lambda, 3\lambda, 5\lambda = 2(2n+1)\lambda$$

Interference of waves:

. A = 2A cos 0

· longest wavelength = nb

It can be used for multiple.
cases. One of them is to
find the angle at which
range is equal to height.

Rtand = 4H

· R=H

 $tan \theta = 4$ $\theta = tan'(4)$

0 = 76°

Magnetic fields FB = qlVBmiol FB campot The direction of for is opposite change. particles. + q meran FB: syruaid spead it to the class / perp Lewoly chars It is f Quiceversa. product. Motion of particle in iniform [VXB] magratic field. F-ma 1m/2 qV QVB= Vmvz V= \(\frac{29V}{2} N= mV m=1 = 28 JoeV ÷ W=21xf T= 2x : w=4. eV-)J × いたがん T-2xm TB left to light (leads) west (inclide)
generated (left) when charge partice experiences bothy FE : FB

A/E = gVB

Magnetic force on a current carrying wire.

13= MOTIT 250

MO-47VIO7

HA FB = LLXB

Hall Effect.