Esercitazione 3 - Gruppo BG Circuiti RC

Tommaso Pajero

Alessandro Podo

30 ottobre 2014

L'esercitazione ha come scopo il progetto, la realizzazione e l'analisi di vari filtri passivi RC.

1. Filtro passa-basso

1.1 Progettazione filtro passa-basso RC

Figura 1: Filtro passa-basso con resistenza a valle

Si vuole progettare un filtro passa-basso passivo RC che minimizzi il rumore a 20 kHz su un segnale a 2 kHz quando viene fatto lavorare con una resistenza di carico R_c di valore superiore a 100 k Ω . Il modulo della funzione di trasferimento del circuito, rappresentato nella figura 1, è:

$$|A_{\rm V}| = |\frac{V_{\rm out}}{V_{\rm in}}| = \frac{1}{\sqrt{(1+r)^2 + (f/f_{\rm T})^2}}$$
 (1)

dove si è posto $r=R/R_{\rm C}$ e $f_{\rm T}=\frac{1}{2\pi RC}$. Si è definito fattore di soppressione del filtro $s=\frac{|A_{\rm V}(2~{\rm kHz})|}{|A_{\rm V}(20~{\rm kHz})|}$. Sostituendo l'espressione (1) nell'ultima con i valori opportuni si ottiene:

$$s = \sqrt{\frac{1+400x^2}{1+4x^2}}$$
 $x \equiv \frac{1}{(1+r)f_{\rm T}/\,\text{kHz}}$ (2)

Si vede chiaramente che $s < 10 \ \forall x$. Inoltre la funzione è crescente in x e tende piuttosto velocemente al suo limite 10. Si vorrebbe massimizzarla, evitando però di attenuare troppo il segnale in uscita V_{out} . Le condizioni da imporre sono le seguenti:

- 1. Per avere un valore abbastanza alto di s, serve che x sia sufficientemente grande. Già il valore x=0.7, sostituito nell'equazione (2), fornisce $s \simeq 8$, che è un buon fattore.
- 2. Per evitare che l'attenuazione del segnale sia troppo marcata, occorre che $r\ll 1$ e $f_{\rm T}\sim~2$ kHz o maggiore.

Riassumendo, le condizioni si scrivono:

$$\begin{cases} r \ll 1 \\ f_{\rm T} \sim 2 \text{ kHz} \\ \frac{1}{(1+r)f_{\rm T}/\text{ kHz}} \ge 0.7 \end{cases} \implies \begin{cases} R/R_{\rm c} \ll 1 \\ \frac{1}{2\pi RC} \sim 2 \text{ kHz} \\ \frac{1}{2\pi RC} \le 1.4 \text{ kHz} \end{cases}$$

Una buona scelta potrebbe essere $\frac{1}{2\pi RC}=1.4~\mathrm{kHz}$ con $R<1~\mathrm{k}\Omega$. Esaminando i valori di capacità disponibili per montare il circuito, si è deciso di utilizzare $C=230\pm9~\mathrm{nF}$ e $R=670\pm5~\Omega^1$. Con questi componenti si prevedono per la frequenza di taglio e per l'attenuazione a 2 kHz e a 20 kHz:

$$f_{\rm T} = 1.03 \pm 0.04 \text{ kHz}$$
 $|A_{\rm V}(2 \text{ kHz})| = 0.458 \pm 0.015$ $|A_{\rm V}(20 \text{ kHz})| = 0.051 \pm 0.002$

Il fattore di soppressione è invece 9.0 ± 0.6 .

1.2 Misura della frequenza di taglio

Si è montato il circuito e si è eseguita una misura diretta della frequenza di taglio, ottenendo $f_{\rm T}=1.06\pm0.05$ kHz (tale valore è la media aritmetica dei due valori di frequenza in corrispondenza dei quali si aveva $V_{\rm out}=(V_{\rm in}\pm\sigma V_{\rm in})/\sqrt{2}$, mentre l'incertezza è la loro semidispersione).

Si sono poi prese varie misure dell'ampiezza della tensione in uscita $V_{\rm out}$ per valori di frequenza compresi fra 30 Hz e 160 kHz, mantenendo costante la tensione in ingresso $V_{\rm in}=20.4\pm0.7~{\rm V}^2$. Si riportano i dati relativi nella tabella 1.

f	$\sigma_{ m f}$	Vout	$\sigma_{ m V_{out}}$
$[\mathrm{kHz}]$	$[\mathrm{kHz}]$	[V]	[V]
0.0338	0.0003	20.8	0.6
0.0568	0.0006	20.7	0.6
0.0913	0.0009	20.8	0.6
0.196	0.002	20.5	0.6
0.269	0.003	20.1	0.6
0.372	0.004	19.4	0.6
0.603	0.006	17.7	0.5
1.06	0.01	14.1	0.4
2.00	0.02	9.1	0.3
3.96	0.04	5.0	0.2
7.83	0.08	2.59	0.09
12.5	0.01	1.64	0.05
20.0	0.2	1.03	0.04
39.8	0.4	0.52	0.02
78.8	0.8	0.261	0.009
159	1	0.126	0.004

Tabella 1: Filtro passa-basso RC con $R=670\pm5~\Omega$ e $C=230\pm9~\mathrm{nF};~V_\mathrm{in}=20.4\pm0.7~\mathrm{V}$

Si sono eseguiti due fit dei dati.

- 1. Si sono interpolati con due rette (la prima orizzontale e la seconda a coefficiente angolare libero) gli andamenti asintotici nel diagramma di Bode. Per la retta orizzontale $y=q_1$ si sono considerati i primi quattro punti della tabella 1 ottenendo $q_1=0.13\pm0.03~(\chi^2_{\rm rid}=0.04)^3$; per quella obliqua $y=m_2x+q_2$ gli ultimi cinque punti ottenendo $m_2=-20.2\pm0.2$ e $q_2=0.4\pm0.3$, matrice di covarianza $\begin{pmatrix}0.04&-0.06\\-0.06&0.1\end{pmatrix}$ $(\chi^2_{\rm rid}=0.32)$. Le due rette sono riportate, in sovrimpressione ai dati, nella figura 2. Si è quindi calcolata l'ascissa del punto di intersezione delle due rette $\log_{10}\left(f/1~{\rm kHz}\right)=0.013\pm0.015$ da cui si ricava $f_{\rm T}=1.04\pm0.04~{\rm kHz}$.
- 2. Si è eseguito un fit su tutti i dati tramite la funzione di trasferimento $|A_{\rm V}| = \frac{1}{\sqrt{1+(f/f_{\rm T})^2}}$. Si trova così $f_{\rm T} = 1.006 \pm 0.006$ kHz ($\chi^2_{\rm rid} = 0.12$). Il diagramma di Bode con la funzione di fit in sovrimpressione è riportato in figura 3

1.3 Misura del tempo di salita

Si è impostato il generatore di funzioni affinché fornisse al circuito un'onda quadra a frequenza prossima ai 200 Hz. Quindi, utilizzando la funzione di misura integrata nell'oscilloscopio, si è misurato il tempo di salita del

¹Nel corso di questa esperienza i valori dei componenti passivi dei circuiti si sono misurati tutti con il multimetro digitale.

 $^{^2}$ L'incertezza è la somma in quadratura dell'incertezza sulla misura di $V_{\rm in}$ e della semidispersione dei valori della stessa tensione in ingresso al variare delle frequenze considerate.

³L'esiguità del chi quadro ridotto è probabilmente dovuta al basso numero di dati utilizzati per il fit, oltre che all'alto valore delle incertezze sulla misura, che sono probabilmente di tipo sistematico.

Figura 2: Diagramma di Bode per un filtro passa-basso RC con $R=670\pm5~\Omega$ e $C=230\pm9~\mathrm{nF}$; in sovrimpressione i fit rettilinei per gli andamenti asintotici del guadagno

Figura 3: Diagramma di Bode per un filtro passa-basso RC con $R=670\pm5~\Omega$ e $C=230\pm9~\mathrm{nF};$ in sovrimpressione la funzione di trasferimento con i parametri ottenuti dal fit

segnale fra il 10% e il 90% dell'intervallo fra un ventre e una cresta, ottenendo $t_{\rm salita}=357\pm6~\mu s^4$. Da questo si ricava $\tau=RC=t_{\rm salita}$ lg 9= 162 ± 3 μs , da cui $f_{\rm T}=0.98\pm0.02~{\rm kHz}$.

1.4.a Impedenza in ingresso di un circuito passa-basso RC

Si vuole studiare l'impedenza in ingresso del circuito rappresentato in figura 1, quando $R_{\rm C}=0$. Si trova con facili calcoli $Z_{\rm in}=R+\frac{1}{j2\pi fC}$. In particolare:

- 1. Per basse frequenze $Z_{\rm in}(f \ll 1/RC) \to \infty$
- 2. Per alte frequenze $Z_{\rm in}(f\gg 1/RC)\simeq R$
- 3. Alla frequenza di taglio $Z_{in}(f_T) = (1-j)R$

1.4.b Impedenza in ingresso di un circuito passa-basso RC con resistenza di carico a valle

Si vuole ripetere l'analisi eseguita nel 1.4.a nel caso in cui $R_{\rm C} \neq 0$. In questo caso:

$$Z_{\rm in} = R + \frac{R_{\rm C}}{1 + j2\pi f R_{\rm C}C}$$

- 1. Per basse frequenze $Z_{\rm in}(f \ll 1/RC) \simeq R + R_C$
- 2. Per alte frequenze $Z_{\rm in}(f\gg 1/RC)\simeq R$
- 3. Alla frequenza di taglio $Z_{\rm in}(f_{\rm T})=R+\frac{R_{\rm C}}{1+iR_{\rm C}/R}$

Si nota in particolare che il comportamento ad alte frequenze è analogo. A basse frequenze, invece, l'impedenza non diverge ma è limitata (sul canale $V_{\rm out}$ non si osserva però diversità di comportamento se $R/R_{\rm C}\ll 1$, poiché il segnale a basse frequenze è attenuato di questo fattore). Infine, l'impedenza alla frequenza di taglio è quasi invariata se $R\ll R_{\rm C}$. Più in generale, se la resistenza di carico soddisfa $R_{\rm C}\gg R$ il circuito è imperturbato tranne che per ficcole frequenze, per le quali però il segnale è molto attenuato in entrambi i circuiti (questo è il caso di $R_{\rm C}=100~{\rm k}\Omega$). Se invece si inserisse nel circuito una resistenza di carico da 10 k Ω questo sarebbe perturbato in maniera facilmente osservabile (ad esempio, il guadagno a basse frequenze sarebbe minore di zero).

2. Filtro passa-banda

2.2 Filtro RC passa-basso

Si è montato un filtro passa-basso RC utilizzando componenti di valore $R_1 = 3.23 \pm 0.03$ k Ω , $C_1 = 11.2 \pm 0.5$ nF. La frequenza di taglio attesa per il circuito è $f_{\rm T,1,att} = 4.40 \pm 0.16$ kHz. Dopo aver verificato qualitativamente che la funzione di trasferimento avesse l'andamento atteso, si è controllato che il guadagno massimo fosse nullo, ottenendo per basse frequenze (inferiori a 50 Hz) $V_{\rm in} = V_{\rm out} = 10.1 \pm 0.3$ V \Longrightarrow $G_1 = 0 \pm 0.4$ dB. Si è quindi misurata la frequenza di taglio del circuito⁵ ottenendo $f_{\rm T,1} = 4.1 \pm 0.2$ kHz.

2.3 Filtro RC passa-alto

Si è quindi montato, analogamente al punto precedente, un filtro passa-alto RC utilizzando componenti di valore $R_2=3.28\pm0.03~\mathrm{k}\Omega,~C_2=107\pm4~\mathrm{n}$ F. La frequenza di taglio attesa per il circuito è $f_{\mathrm{T,2,att}}=0.45\pm0.02~\mathrm{kHz}$. Dopo aver verificato qualitativamente che la funzione di trasferimento avesse l'andamento atteso, si è misurato il guadagno massimo, ottenendo per alte frequenze (intorno a 1 MHz) $V_{\mathrm{in}}=10.6\pm0.3~\mathrm{V}$ e $V_{\mathrm{out}}=10.5\pm0.3~\mathrm{V}$, da cui $G_2=-0.1\pm0.4~\mathrm{dB}$. Infine si è misurata la frequenza di taglio del circuito come per il filtro passa-basso ottenendo $f_{\mathrm{T,2}}=0.46\pm0.01~\mathrm{kHz}$.

2.4 Filtro RC passa-banda

Si è montato un filtro passa-banda realizzato ponendo in serie i due filtri RC sopra descritti, come rappresentato in figura 4.

 $^{^4}$ Si è eseguita pure una misura tramite cursori seguendo le indicazioni del manuale, ottenendo $t_{\rm salita}=360\pm 8~\mu {\rm s}$, che è compatibile ma meno precisa, e dunque non è stata considerata.

⁵La misura è stata effettuata analogamente a quella del punto 1.2.

Figura 4: Filtro passa-banda con generatore di funzioni e oscilloscopio

Si è effettuata una serie di misure dell'ampiezza della tensione in uscita al variare della frequenza del segnale in ingresso per studiare la risposta in frequenza del circuito. Si è fatta variare la frequenza in un ampio intervallo (tra 10 Hz e 300 kHz), in modo da comprendere frequenze un ordine di grandezza sopra e sotto le frequenze di taglio attese. Nel fare quest'operazione si è verificato che il valore della tensione in ingresso $V_{\rm in}=20.8\pm0.6~{\rm V}$ si mantiene costante entro l'incertezza in tutto l'intervallo di frequenze considerato. I valori delle misure sono riportati nella tabella 2.

Tabella 2: Filtro passa-banda RC con $R_1 = 3.23 \pm 0.03 \text{ k}\Omega, C_1 = 11.2 \pm 0.5 \text{ nF}, R_2 = 3.28 \pm 0.03 \text{ k}\Omega, C_2 = 107 \pm 4 \text{ nF}$

f [kHz]	$\sigma_{ m f}$ [kHz]	$V_{ m out} \ [V]$	$\sigma_{ m V_{ m out}} \ [m V]$
	0.0004	0.440	0.045
0.0099	0.0001	0.448	0.015
0.0203	0.0002	0.92	0.03
0.0413	0.0004	1.85	0.06
0.0806	0.0008	3.5	0.1
0.159	0.001	5.9	0.2
0.342	0.003	8.5	0.3
0.652	0.007	9.4	0.3
0.900	0.009	9.7	0.3
1.24	0.01	9.8	0.3
1.70	0.02	9.9	0.3
2.39	0.02	9.7	0.3
4.83	0.05	8.7	0.3
10.1	0.01	6.5	0.2
20.4	0.02	3.9	0.1
41.3	0.4	2.08	0.06
81.5	0.8	1.09	0.04
158	2	0.57	0.02
316	3	0.28	0.01

Lavorando con i logaritmi decimali delle frequenze e con il guadagno, si sono eseguiti tre fit lineari separati dei dati per i tre intervalli di frequenze $f \ll f_1$ (si sono considerate le frequenze fino a 80.6 Hz, retta di fit $y = m_1 x + q_1$) $f_2 \ll f \ll f_1$ (frequenze fra 0.900 kHz e 2.39 kHz, retta $y = q_2$), e infine per $f \gg f_1$ (frequenze maggiori o uguali a 41.3 kHz, retta di fit $y = m_3 x + q_3$)⁶.

I fit restituiscono i valori dei parametri

- $m_1 = 19.60 \pm 0.15, q_1 = 6.0 \pm 0.2, \chi_{\text{rid}}^2 = 0.08$
- $q_2 = -6.56 \pm 0.04$, $\chi^2_{\rm rid} = 0.54$
- $m_3 = -19.7 \pm 0.2$, $q_3 = 11.9 \pm 0.05$, $\chi^2_{\text{rid}} = 0.17$

 $^{^6}$ Si è usato il simbolo « non per indicare che i due membri debbano essere di ordini di grandezza diversi, ma per richiedere che alle frequenze in considerazione il circuito passa-basso e/o passa-alto modifichino l'ampiezza in modo rispettivamente inversamente e direttamente proporzionale alla frequenza, o non lo facciano affatto (naturalmente in prima approssimazione).

Le matrici di covarianza per la prima e la terza retta sono rispettivamente $\begin{pmatrix} 0.02 & 0.03 \\ 0.03 & 0.055 \end{pmatrix}$ e $\begin{pmatrix} 0.055 & -0.1 \\ -0.1 & 0.2 \end{pmatrix}$. Le tre rette sono state disegnate in sovrapposizione ai dati nella figura 5.

Figura 5: Fit a tre rette dei dati relativi a un filtro passa-banda RC con $R_1=3.23\pm0.03~\mathrm{k}\Omega,~C_1=11.2\pm0.5~\mathrm{nF},~R_2=3.28\pm0.03~\mathrm{k}\Omega,~C_2=107\pm4~\mathrm{nF}$ (rappresentazione in diagramma di Bode)

Il guadagno massimo corrisponde all'intercetta della seconda retta, quella orizzontale, per cui dai parametri di fit si ha $G_{\text{max}} = -6.56 \pm 0.04$ dB.

Le frequenze f_L e f_H sono le potenze in base dieci delle ascisse delle intersezioni rispettivamente delle prime due e delle ultime due rette. Chiamando x_0 e y_0 l'ascissa e l'ordinata di tali punti, si ha $y_0 = m_i x_0 + q_i$. Propagando l'errore tenendo conto della correlazione fra i parametri m_i e q_i si ottiene $f_L = 228 \pm 7$ Hz e $f_H = 8.7 \pm 0.3$ kHz. Dunque $\frac{f_L}{f_2} \simeq \frac{1}{2}$ e $\frac{f_H}{f_1} \simeq 2$.

Questi risultati sono coerenti con le attese teoriche. Il filtro passa-banda può infatti essere modellizzato con la serie di un filtro passa-basso (1) e di uno passa-alto (2), a loro volta modellizzati come quadrupoli dotati di impedenza in ingresso e in uscita. Si ha per tali quadrupoli:

$$Z_{{
m in},i} = R_{
m i} + rac{1}{j2\pi f R_{
m i} C_{
m i}} \qquad Z_{{
m in},i} = rac{R_{
m i}}{1+jf/f_{
m T,i}} \qquad V_{{
m out},i} = V_{{
m in},i} A_{
m i}$$

Studiando la serie dei due circuiti:

$$V_{\mathrm{out,2}} = A_2 V_{\mathrm{in,2}} = A_2 V_{\mathrm{out,1}} \frac{Z_{\mathrm{in,2}}}{Z_{\mathrm{out,1}} + Z_{\mathrm{in,2}}} = A_2 A_1 V_{\mathrm{in,1}} \frac{Z_{\mathrm{in,2}}}{Z_{\mathrm{out,1}} + Z_{\mathrm{in,2}}}$$

Dopo alcuni semplici passaggi, usando le espressioni per Z_{out,1} e Z_{in,2}:

$$A_{\text{TOT}} = \frac{A_1 A_2}{1 + (R_1 / R_2) A_1 A_2}$$

Da questa formula si vede facilmente che se si vuole che la funzione di trasferimento complessiva sia pari al prodotto delle funzioni di trasferimento dei singoli filtri è necessario scegliere $R_1 \ll R_2$. Nel caso in esame $R_1 \simeq R_2$, dunque $A_{\rm TOT} \simeq \frac{A_1 A_2}{1 + A_1 A_2}$ e il massimo del suo modulo (ottenuto per $A_1 = A_2 = 1$, condizione realizzabile con $f \simeq 1.5$ kHz) vale 1/2 (corrispondente a un guadagno di -6 dB).

Si vuole mostrare che $f_{\rm H}\simeq 2f_{\rm T,2}$ (la dimostrazione che $f_{\rm L}\simeq f_{\rm T,1}/2$ è analoga). Per $f\gg f_{\rm T,2}$ si ha infatti $A_2\simeq 1$, dunque

$$A_{\text{TOT}} \simeq \frac{A_1}{1 + A_1} = \frac{\frac{\frac{1}{j2\pi fC_1}}{R_1 + \frac{1}{j2\pi fC_1}}}{1 + \frac{\frac{1}{j2\pi fC_1}}{R_1 + \frac{1}{j2\pi fC_1}}} = \frac{\frac{1}{1 + jf/f_{\text{T},1}}}{1 + \frac{1}{1 + jf/f_{\text{T},1}}} = \frac{1}{2 + jf/f_{\text{T},1}} = \frac{1}{2} \frac{1}{1 + jf/(2f_{\text{T},1})}$$

da cui la tesi.

Si è eseguito anche un fit utilizzando la funzione di trasferimento completa per il filtro passa banda nel caso $R_1 = R_2$:

$$|A_{\text{TOT}}| = \frac{1}{\sqrt{\left(2 + \frac{f_2}{f_1}\right)^2 + \left(\frac{f}{f_1} - \frac{f_2}{f}\right)^2}}$$

I valori ottenuti sono: $f_1 = 4.23 \pm 0.02$ kHz e $f_2 = 0.455 \pm 0.003$ kHz, $\chi^2_{\rm rid} = 0.08$, compatibili entro l'incertezza con i valori trovati nel fit a tre rette.

Commenti finali

Misure di frequenza

Per le misure di frequenza ci si è affidati alla funzione integrata nell'oscilloscopio. Infatti, dopo le prime cinque misure eseguite (due delle quali su frequenze estremali rispetto all'intervallo considerato nel corso dell'esperienza), ci si è accorti che tale funzione ha fornito sempre un valore largamente compatibile entro l'incertezza con quello ottenuto utilizzando i cursori. Tuttavia, il manuale non fornisce indicazioni riguardo all'incertezza delle misure del frequenzimetro fatte su intervalli di tempo inferiori a 1 ms. Poiché questo è stato il caso della maggior parte delle misure effettuate nel corso dell'esperimento, si è deciso di assumere come come incertezza relativa sulla frequenza quella che si avrebbe avuta in una misura tramite cursori, che se eseguita in maniera ottimale è con buona approssimazione costante e pari al 1%.

Compatibilità fra le misure delle frequenze di taglio nella sezione 1

Si nota per inciso che tutte le misure (dirette e indirette) della frequenza di taglio effettuate nel corso della prima parte dell'esperienza sono compatibili entro l'incertezza.