

IN-MEMORY PROCESSING WITH SPARK (PYSPARK EDITION) BIG DATA PROCESSING

Félix Cuadrado, Ben Steer

felix.cuadrado@qmul.ac.uk, b.a.steer@qmul.ac.uk

Queen Mary University of London
School of Electronic Engineering and Computer Science

Contents

- In-memory Processing
- Apache Spark
- Spark programming
- Spark parallelism considerations

Hadoop is a batch processing framework

- Designed to process very large datasets
- Efficient at processing the Map stage
 - Data already distributed
- Inefficient in I/O Communications
 - Data must be loaded and written from HDFS
 - Shuffle and Sort incur on large network traffic
- Job startup and finish takes seconds, regardless of size of the dataset

Map/Reduce is not a good fit for every case

- Rigid structure: Map, Shuffle Sort, Reduce
- No native support for iterations
- Only one synchronization barrier

In-memory processing

- Data is already loaded in memory before starting computation
- More flexible computation processes
- Iterations can be efficiently supported
- Three big initiatives
 - Graph-centric: Pregel
 - General purpose: Spark, Flink
 - SQL focused (read-only): Cloudera Impala (Google Dremel)

Spark project

- Originated at Berkeley uni, at AMPLab (creator Matei Zaharia)
 - Now spin off company, DataBricks, handles development
- Origin: Resillient Distributed Datasets Paper
 - NSDI' 12 Best paper award
- Released as open source
- Became Apache top level project recently
 - Currently the most active Apache project!

Spark

- Data flow programming model, operating on distributed collections
- Collections are kept in-memory
 - Good support for iterations/interactive queries
- Retain the attractive properties of MapReduce:
 - No references to parallelism in programming logic
 - Fault tolerance (for crashes / stragglers)
 - Data locality
 - Scalability

Resillient Distributed Datasets (RDDs)

- Immutable collections distributed across the cluster
 - Can be rebuilt if a partition is lost
 - Can be cached across parallel operations
- Immutable: can be transformed into new RDDs as part of the data flow, but no edits
- Created generally by reading data from HDFS
- Can be saved back to HDFS / other programs with actions

Map Reduce Processing Flow

RDD data processing flows

RDD Operations

- Transformations (e.g. map, filter, groupBy, join)
 - Lazy operations to build RDDs from other RDDs
 - Executed in parallel (similar to Map, Shuffle from Map/Reduce)
- Actions (e.g. count, collect, save)
 - Return a result or write it to storage

Deferred execution

- Spark only executes RDD transformations the moment are needed
- Only the invocation of an action (needing a final result) triggers the execution chain
- Allows several internal optimisations
 - Combining several operations to the same element without keeping internal state

Spark RDD operations

Transformations (define a new RDD from an existing one)

map filter sample union groupByKey reduceByKey join persist

Actions

(take an RDD and return a result to driver//HDFS)

reduce collect count saveAsTextFile lookupKey forEach

. . .

Python notes for Spark

- It is possible to write Spark programs in Java, or Python, but Scala is the native language
- Dynamically typed language: we do not specify types in variable creation
- Tuples of elements (a,b,c) are first order elements.
 - Pairs (2-Tuples) will be very useful to model key-value pair elements
- Python lambda expressions allow us to declare functions

```
    lambda x: x + 2 // adds 2 to each value
```

• lambda s: (s, 1) //creates a tuple with 1 as value

Word Count in Spark (Python code)

```
lines = sc.textFile("/input/path")
words = lines.flatMap(
              lambda lines: lines.split(" ") )
counts = words.map(lambda word : (word, 1))
              .reduceByKey(lambda a,b : a + b)
counts.saveAsTextFile("/output/path")
```


Word Count in Spark (RDD flow)

Word Count in Spark (RDD flow)

Word Count in Spark (RDD flow)

Spark parallelism

- RDDs are split into n partitions
 - Partitions might be located in different machines
- Transformations/actions are executed in parallel on each partition
- How many partitions?
 - Default: 1 per HDFS block size when reading from HDFS, can be higher
 - CPU cores process one partition at a time.
 - Number of partitions is automatically computed

Spark applications

- A Spark application consists of a driver program that executes various parallel operations on RDDs partitioned across the cluster.
- The application is a 'standard' program written in any programming language
- The driver is in a different machine of the machines where the RDDs are created
 - Actions are required to retrieve values from the RDDs (e.g. count)

Spark RDD dataflows

- The dataflow consists of transformations from one RDD to another
- The initial RDD is created from an HDFS input folder, or an existing Scala collection in the driver program.
 - Users may also ask Spark to persist an RDD in memory, allowing it to be reused efficiently across parallel operations.
- Actions allow to retrieve RDDs to either HDFS storage, or the memory of the driver program

Spark Execution Architecture

Creating RDDs

Any existing collection can be converted to an RDD using parallelize

```
sc.parallelize([1, 2, 3])
```

 RDDs can be created from HDFS input data with sc methods

```
sc.textFile("/hdfspath/to/file")
```

- The created RDD is a collection of lines
- Other sc methods for reading SequenceFiles, or any Hadoop compatible InputFormat
- Analogous RDD actions save to HDFS (e.g. saveasTextFile)

Types of RDD operations

- Two main types of RDD operations
- Element-wise operations are applied to each list element independently
 - E.g. map, flatMap, filter
- Shuffle operations require to aggregate/collect elements from all the other partitions
 - Equivalent to running one Shuffle in MapReduce
 - E.g. groupByKey, join, reduceByKey
 - Significantly more costly in performance.

Spark Transformations – MapReduce equivalence

Map map flatMap Map filter Map sample Map union | Map (2 input) groupByKey | Shuffle reduceByKey ShuffleReduce join ShuffleReduce persist

Spark Element-wise Transformations (I)

 map: creates a new RDD with the same number of elements, each one is the result of applying the transformation function to it

```
tweet = messages.map( lambda x: x.split(",")[3] )
//we select the 3<sup>rd</sup> element
```

- filter: creates a new RDD with at most the number of elements from the original one. The element is only transferred if the function returns true for the element grave = logs.filter(lambda x: x.startswith("GRAVE"))
- Both map and filter results have the same partitions as source RDD

Spark Element-wise Transformations (II)

- flatMap: creates a new RDD with a new collection. Each original element generates a variable number of elements when applying the transformation.
 - All elements belong to the same collection (no hierarchy)
 - Same partitions as source RDD
 - Frequently used for item segmentation/splitting
 - words = lines.flatMap(lambda x: x.split(" "))

Visualise map, flatMap, filter

```
map, filter, and reduce
explained with emoji 🙈
map([₩, ♠, ♠, ♦], cook)
=> [●, ●, ∿, ↑]
filter([🔍, 🤎, 🍗, 📗], isVegetarian)
=> ┌ ** , ↑ ↑
reduce([🕌, 🤎, 🍗, 🖺], eat)
=> 💩
```


Spark RDD Set transformations

- union: returns elements contained in either RDD
- intersection, substraction: returns elements contained in both RDDs // appearing in the first RDD and not the second
 - Requires shuffle: costly to compute
- distinct: returns a set with the unique elements
 - Requires shuffle: costly to compute
- cartesian: returns all possible pairs from both sets
 - Requires shuffle: costly to compute
 - Base for performing joins

Spark RDD reduce operations

- reduce is an action: returns to the driver one single value from the RDD
 - Analogous to functional programming.
 - Iteratively applies a binary function

```
list.reduce (lambda a, b: a + b)
[1,2,3,4,5] -> ((1 + 2) + (3 + 4)) + 5 = 15
```

- reduceByKey is a transformation analogous to MapReduce's Reduce + Combine
 - Reduces values for each key, into a new RDD

Retrieving information to the driver

- RDDs exist in the cluster, they cannot be read directly
- Actions allow the driver program to retrieve values from the RDDs
 - Useful for algorithms, and interactive applications
- Multiple actions defined for that purpose:
- count: returns number of elements
- takeSample: returns a sample of elements
- reduce: reduces collection to a single value
- collect: returns whole RDD to driver
 - Potential Out Of Memory Errors! Almost never used

Controlling RDD parallelism

- The number of partitions of an RDD can be explicitly set when creating the RDD for the first time, or through an RDD transformation
- Also possible to specify strategy (Hash, Range,...)
- Transformations that redistribute partitions
- coalesce: collapses partitions into a smaller number. Useful after filter
- repartition: random shuffle into n partitions

RDD Execution & message flows

Grouping RDDs in Spark

- Some RDDs will be lists of key/value pairs
 - Represented by Scala Tuple2 s
 - Easily created with (k,v) notation
 rdd.map(lambda x: (x,1))
 - Tuple keys/values are accessed with the [0]/[1] operator
- Additional transformations/actions are available for RDD tuples
 - Eg reduceByKey

Group by transformations

- Group by transformations mirror the shuffling taking place between Map and Reduce jobs
 - RDD must be a collection of pairs of (key,value) elements
- reduceByKey: groups together all the values belonging to the same key, computing a reduce function on each
 - Combiner is automatically invoked
 - Almost equivalent to shuffle + Reduce
- groupByKey: returns a dataset of (K, Iterable<V>) pairs
 - Equivalent to MapReduce's shuffle
 - If followed by a Map it is equivalent to MapReduce's Reduce

Joins in Spark

- Joins in Spark are implemented for Tuple RDDs
 - Shuffle operation, same as MapReduce repartition joins
- Joins are performed by the tuple keys
- Often requires previous map to set up join keys
- join: Performs an Inner Join with another RDD.
 - Other join types also implemented: leftOuterJoin, rightOuterJoin, fullOuterJoin
- Joins are computed much faster if both RDDs have same partitions and strategy

RDD memory management

- RDDs are not materialised until an action is needed
 - Some might never be, e.g. chaining map
- Once the result is obtained, they can be discarded, but might be temporarily held in node cache
- RDDs can always be recreated from a chain of transformations
- For iterative algorithms/ interactive queries, the driver program can explicitly request an RDD to be kept in memory

RDD Persistence

- The persist and cache methods of RDDs tell Spark to maintain an RDD in memory after its first computation.
 - Future transformations on the same RDD will run much faster.
 - Key tool for iterative algorithms and fast interactive use.
- Multiple persistence options (memory & | disk)
 - By default RDDs persisted only in memory
 - Can be difficult to use properly

Example: Log Mining

• Load error messages from a log into memory, then interactively search for various patterns

```
Cache 1
                                          Transformed RDD
lines = sc.textFile("/data...")
                                                                             Worker
                                                               results
errors = lines.filter(lambda l: l.startswith("ERROR"))
                                                                    tasks
messages = errors.map(lambda l: l. split("\t")[2])
                                                                          Block 1
                                                            Driver
cachedMsgs = messages.cache()
                                       Cached RDD
                                                           Parallel operation
cachedMsgs.filter(lambda 1: l.contains("foo")).count()
                                                                              Cache 2
cachedMsgs.filter(lambda l: l.contains("bar")).count()
                                                                            Worker
                                                            Cache 3
                                                                         Block 2
                                                        Worker
       Result: full-text search of Wikipedia in <1 sec (vs
                 20 sec for on-disk data)
                                                        Block 3
```


Spark execution platform

- Spark runs on multiple cluster execution platforms
 - Apache YARN: integration with the Hadoop resource manager
 - allows Spark and MapReduce to coexist. One resource manager watches for resources for both systems
 - SparkApplicationMaster and MapReduceApplicationMaster control specific jobs
 - Mesos: solution developed also at UC Berkeley, default option. Also supports other frameworks

Logistic Regression Code

```
data = sc.textFile(...).map(readPoint).cache()
w = np.random.rand(D)
for i in range (1,ITERATIONS):
  gradient = data.map(lambda p:
    (1 / (1 + math.exp(-p[1]*(np.dot(w,p[0]))))-
1)*p[1]*p[0]
  ).reduce(lambda a, b: a + b)
  w -= gradient
print("Final w: " + w)
```


Numeric RDD operations

- When the type of the elements of an RDD is numeric (eg Integer or Double), Spark also provides aggregated summarisation methods on the rdd
- mean, sum, max, min, variance, stddev

Spark performance issues

- "With great power comes great responsibility"
 Ben Parker
- All the added expressivity of Spark makes the task of efficiently allocating the different RDDs much more challenging
- Errors appear more often, and they can be hard to debug
- Knowledge of basics (eg Map/Reduce greatly helps)

Spark performance tuning

- Memory tuning
 - Much more prone to OutOfMemory errors than MapReduce.
 - How much memory is taken for each RDD slice?
- How many partitions make sense for each RDD?
- What are the performance implications of each operation?
- Good advice can be found in
 - http://spark.apache.org/docs/latest/tuning.html

Spark explicit data partitioning

- One possible approach to improve performance of Spark is to exert explicit control in how data is partitioned
 - partitionBy transformation, selecting partitioning strategy and number of operations
- Can substantially speedup groupBy operations, by having the datasets already distributed in the same destination nodes where the grouping takes place.

Spark Dataframes

- R-like interface for operating with large datasets
- More limited API than RDDs
- Better performance, as it is possible to optimize planning thanks to more predictability

Spark ecosystem

- Spark Dataframes
- GraphX
 - Node and edge-centric graph processing RDD
- Spark Streaming
 - Stream processing model with D-Stream RDDs
- MLib
 - Set of machine learning algorithms implemented in Spark
- Spark SQL