Image Analysis Excercise Sheet 3

Markus Doering, 3153320

May 7, 2013

1 Convolution in 1-D

Given are an input signal g and a filter h, which will act on the signal:

$$g(x) = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}^{T}$$

 $h(x) = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \end{pmatrix}^{T}$.

The output signal will be

$$(g*h)(x) = \begin{pmatrix} 4 & 3 & 1 & 0 & 0 & 0 & 0 & 1 & 3 \end{pmatrix}^{\mathrm{T}},$$

a smoothened, shifted and amplified version of the signal. The circulant matrix of the filter is given by

$$H = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

The convolution of g and h can be computed as

$$g * h = H \cdot g$$
.

Theorem. Let g be a signal and let h be a filter with

$$\sum_{k} (h * g)(k) = \sum_{k} g(k).$$

In the general case $\sum_k g(k) \neq 0$, we find that the DC term $\sum_k h(k) = 1$.

Proof. Define $s := (1, \dots, 1)^{\mathrm{T}}$.

$$\begin{split} \sum_{j} g(j) &= \sum_{k} (h * g)(j) = s^{\mathrm{T}}(h * g) \overset{\mathrm{Convolution\ Theorem}}{=} \\ &= s^{\mathrm{T}} \mathcal{F}^{-1} \left(\mathcal{F} f \odot \mathcal{F} g \right) = s^{\mathrm{T}} F^{\dagger} \left(F f \odot F g \right) \frac{1}{n} = \\ &= (1, 0, 0, \dots, 0) \left(F f \odot F g \right) = \left(s^{\mathrm{T}} f \cdot s^{\mathrm{T}} g \right) = \\ &= \left(\sum_{k} h(k) \right) \left(\sum_{j} g(j) \right) \end{split}$$

We can divide both sides by the signal's sum and get $\sum_{k} h(k) = 1$.

2 DFT in 1-D

Given is the transformed function

$$\mathring{g}(k) = \sqrt{n} \frac{i}{2} (\delta_{+2}(k) - \delta_{-2}(k)),$$

and we want to compute the original function by discrete Fourier transform. Let $F_{l,\cdot}$ denote the l-th row of the Fourier matrix.

$$g(l) = \frac{1}{\sqrt{n}} F_{l,\cdot} \mathring{g} = \frac{i}{2} \sum_{k=0}^{n-1} e^{\frac{2\pi i}{n} l k} \left(\delta_{+2}(k) - \delta_{-2}(k) \right)$$
$$= \frac{i}{2} \left(e^{\frac{4\pi i}{n} l} - e^{-\frac{4\pi i}{n} l} \right) = \frac{i}{2} \left(2i \sin \left(\frac{4\pi}{n} l \right) \right) = -\sin \left(\frac{4\pi}{n} l \right)$$

3 DFT in 2-D

When two matrices have no spectral overlap, the convolution theorem asserts that

$$a*b=\mathcal{F}^{-1}\left(\mathcal{F}(a)\odot\mathcal{F}(b)\right)=\mathcal{F}^{-1}(0)=0.$$

The python code is found in the appendix.

4 Correlation Theorem

Theorem. Cross Correlation Theorem

$$\mathcal{F}(a \star a) = \mathcal{F}(a)^* \odot \mathcal{F}(a)$$

Proof. We observe that the cross correlation operation can be stated in terms of the circulant matrix A of a as

$$a \star g = A^{\dagger} g$$
.

We recall the equation

$$AW = W\mathring{A} \iff W^{\dagger}A^{\dagger} = \mathring{A}^{\dagger}W^{\dagger} \iff W^{\dagger}A^{\dagger}W = \mathring{A}^{*},$$

where \mathring{A} is the diagonal matrix with entries $\mathring{a} = \mathcal{F}a$ and W is the normalized Fourier matrix $(WW^{\dagger} = I)$. We obtain

$$\begin{split} \mathcal{F}\left(a\star g\right) &= \mathcal{F}\left(A^{\dagger}g\right) = W^{\dagger}A^{\dagger}g = W^{\dagger}A^{\dagger}WW^{\dagger}g \\ &= \mathring{A}^{*}W^{\dagger}g = \mathcal{F}(a)^{*}\odot\mathcal{F}(g). \end{split}$$