東南大學

系统实验(微波组) 仿真实验 3

04022212 钟源

2025年3月29日

School of Information Science and Engineering

Southeast University

一、实验内容

- 1、 按照前面的仿真实验 2, 功率放大器模型不变, 利用 VNA 分析放大器的 IM3, 得到 IM3 vs Power Sweep 图:
 - -中心工作频率 915MHz,两个双音分别为 914MHz 和 916MHz
 - -输入功率范围还是-40dBm~0dBm, 步进 1dB
 - -观察输入输出频谱特性
- 2、 仿真实验1中的相位噪声仿真:
 - -将仿真实验 1 中的 1285MHz 信号源做相位噪声的仿真
 - -信号源是由 PLL 芯片 SI4133 产生,附 si4133 手册
 - -建立相噪模板数据,仿真输出相噪曲线以及输出频谱曲线
- 3、仿真实验 2 中的放大器在使用 QPSK 信号时候的 ACLR 仿真:
 - -符号速率 3.84MHz, 16 倍采样, 相邻带宽 5MHz, alpha=0.22
- -载波还是 915MHz, 功率在-40dBm, -30dBm, -20dBm 时候统计信道功率 , 相邻上边信号功率, 相邻下边信号功率, ACLR
 - -仿真-40dBm~0dBm 时候的 EVM 变化规律以及 IQ 星座图(解调后)的变化

二、实验步骤

2.1 放大器的 VNA 仿真

2.1.1 建立仿真系统框图

同仿真实验 2, 查阅 SGA-4586z 器件手册,参数如下:

				Frequency (MHz)					
Symbol	F	^o arameter	Unit	100	500	850	1950	2400	3500
G	Small Signal Gain		dB		26.2	24.0	18.0	16.3	
OIP ₃	Output Third Order Intercept Point		dBm		27.7	28.6	26.0	26.3	
P _{1dB}	Output Power at 1dB Compression		dBm		16.3	16.5	14.0	12.7	
IRL	Input Return Loss		dB	18.1	14.9	15.0	19.4	19.8	16.1
ORL	Output Return Loss		dB	18.5	20.6	24.4	21.5	18.3	16.1
S ₁₂	Reverse Isolation		dB	30.1	28.4	26.6	21.2	19.3	15.8
NF	Noise Figure		dB		1.7	1.7	1.9	2.3	
lest Conditions:		I _D = 45 i T _i = 25°	mA Typ. OIP ₃ Tone Spacing = 1 MHz, Pout per tone 3 C $Z_{s} = Z_{i} = 50$ Ohms		t per tone =	-5 dBm			

图 1. SGA-4586z 器件参数

同仿真实验 2,编写文件"Data_AMP",并通过 AMP_F来使用,如下:

Freq(,Hz)	G(,dB)	P1dB(,dB)	OIP3(,dBm)
5.0E+08	26.2	16.3	27.7
8.5E+08	24.0	16.5	28.6
19.5E+08	18.0	14.0	26.0
24.0E+08	16.3	12.7	26.3

建立 Tx 放大器的 VNA 仿真电路,包括两个 SGA-4586z 放大芯片以及中间的一个 3dB

衰减器。建立系统框图模型如下,并设置 VNA 的参数为:输入功率范围时-40dBm~0dBm, 步进 1dB。

图 2. Tx 放大器的 VNA 仿真系统框图

接下来设置 VNA 的参数:中心工作频率设为 915MHz,双音信号频率设为 914MHz 和 916MHz,如下图所示:

图 3. 设置 VNA 仿真参数

2.2.2 仿真 Tx 放大器的 IM3 图

在输入功率从-40dBm 变化到 0dBm (步进 1dB) 时,建立 Tx 放大器的 IM3 特性曲线 图如下图所示:

图 4. 放大器的 IM3 随输入功率变化特性曲线

当输入功率在范围-40dBm~-28dBm 时,输入功率增加 1dB,输出 IM3 约增加 2dB,是由于 IM3 计算中包含 v²; -20dBm 后当输入功率增大,输出 IM3 不再明显改变,趋于常数。

2.2.3 仿真 Tx 放大器的频谱图

当输入功率为-40dBm 时,观察 Tx 放大器的输入和输出频谱如下:

图 5. 输入功率为-40dBm 时, 放大器的输入和输出频谱

当输入功率为-20dBm时,观察Tx放大器的输入和输出频谱如下:

图 6. 输入功率为-20dBm 时, 放大器的输入和输出频谱

当输入功率为 0dBm 时,观察 Tx 放大器的输入和输出频谱如下:

图 7. 输入功率为 0dBm 时, 放大器的输入和输出频谱

由上图对比和频谱特性,输入为纯净双音信号,输入信号谱线始终为两根,输出信号谱线为 4 根,是由于双音信号三阶互调导致,且输出谱线间距相等均为 2MHz。但同时可见放大器的输出信号的功率有上限(约 16dBm 左右),这时如果输入功率过大,可能会激发其他高阶频率分量。

2.2 信号源的相位噪声仿真

2.2.1 建立仿真系统框图

根据芯片手册中的图像获得元件相位参数

Figure 9. Typical RF2 Phase Noise at 1.2 GHz with 200 kHz Phase Detector Update Frequency

图 8. 芯片 SI4133 的相位噪声曲线

编写文件 "Pn_mask", 并通过 TONE 来使用, 如下:

(,Hz)	(,dB)
500	-69
200	-75
300	-77
400	-81
1e3	-83

```
-85
2e3
           -87
3e3
           -87.5
4e3
           -88
1e4
           -91
2e4
3e4
           -95
4e4
           -100
1e5
           -113
           -121.5
2e5
           -125
3e5
           -128
4e5
           -137
1e6
```

根据仿真实验 1 中信号源要求建立系统框图模型如下,其中设置信号源的频率为 1285MHz。

TONE
ID=A1
FRQ=1.285 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=0.01 GHz
ZS=_Z0 Ohm
T=_TAMB DegK
NOISE=Auto
PNMASK="Pn_mask"
PNOISE=Generate phase noise

图 9. 信号源相位噪声仿真的系统框图

2.2.2 信号源的相位噪声谱线仿真

PHS_NOISE(TP.TP1,100,1,1,3,100,1,0,1,1285,3,100,2,10,2,-1,10,-1,0,1,1) (dB) PN

图 10. 信号源的相位噪声谱线

VCO 自由振荡相位噪声由环路内相位噪声和环路外相位噪声构成,故而图中的前半部分环路内受 20logN 限制噪声曲线随频率波动较小,后半部分噪声随频率增大而降低。

2.2.3 信号源的相位噪声功率谱仿真

图 11(1). 信号源 (有相位噪声) 的功率谱

图 11(2). 信号源(有相位噪声)的功率谱

去掉相位噪声后,信号源的输出功率谱线仅为干净的单根线,两图对比可知相位在谱 线上的作用影响。

2.3 使用 QPSK 信号的放大器的仿真

2.3.1 ACLR 仿真

1) 建立系统框图:

建立使用 QPSK 信号的 Tx 放大器的仿真系统,包括两个 SGA-4586z 放大芯片以及中间的一个 3dB 衰减器,并在输入处加入 QPSK 调制器。建立系统框图模型如下,并设置 VNA 的参数为:输入功率范围时-40dBm~0dBm,步进 1dB。

图 12. ACLR 仿真系统框图

根据实验要求设置符号速率为 3.84MHz, 16 倍采样,相邻带宽为 5MHz, $\alpha = 0.22$, 载波频率为 915MHz,并将 QPSK 调制器模式设置为 Root Raised Cosine。

图 13. 设置 QPSK 调制器的参数

2) 观察输入输出信号的频谱:

— DB(PWR_SPEC(TP.TP1,1,3,10,2,-1,0,-1,0,1,4,0,1,0)) (dBm) ACLR

DB(PWR_SPEC(TP.TP2,1000,0,10,0,-1,0,-1,1,0,4,0,1,0)) (dBm) ACLR

图 14. 放大器的输入输出信号频谱图

由图像可得,经过Tx放大器后,输出信号(粉色部分)存在互调突起,SNR降低。

3) ACLR 功率仿真:

计算出 BW=3.84*1.22=4.685MHz, 进而设置功率仿真表格。

统计输入功率分别为-40dBm、-30dBm、-20dBm, 放大器输出的信道功率, 相邻上边信号功率, 相邻下边信号功率, ACLR。统计结果如下表所示:

输入功率(dBm)	信道功率/相邻上边信号功率/相邻下边信号功率(dBm)	ACLR(dB)	
-40	Time DB(PWR_vsT(TP.TP DB(PWR_vsT(TP.TP ACLR DB(PWR_vsT(TP.TP ACLR ACLR	DB(ACPR(TP.TP2,91 DB(ACPR(TP.TP2,91 ACLR X Values (Unitless) 1 -60.344	
-30	Time DB(PWR_vsT(TP.TP DB(PWR_vsT(TP.TP DB(PWR_vsT(TP.TP ACLR ACLR	DB(ACPR(TP.TP2.91 DB(ACPR(TP.TP2.91 ACLR	
-20	Time	DB(ACPR(TP.TP2.91 DB(ACPR(TP.TP2.91 ACLR x Values (Unitless) 1 -20.767	

表 1. 不同输入功率下, 放大器的输出各功率和 ACLR

可见,功率相减和系统自动计算 ACLR 相等;随着输入功率的提高,信道功率、相邻上边信号功率、相邻下边信号功率和 ACLR 均有所提高。

2.3.2 EVM 与星座图

1) 建立系统框图:

建立使用 QPSK 信号的 Tx 放大器的 VSA 仿真系统,包括两个 SGA-4586z 放大芯片以及中间的一个 3dB 衰减器,并在输入处加入 QPSK 调制器。建立系统框图模型如下,并设置 VNA 的参数为:输入功率范围时-40dBm~0dBm,步进 1dB。

图 15. EVM 及星座图仿真系统框图

根据实验要求设置符号速率为 3.84MHz, 16 倍采样,相邻带宽为 5MHz, $\alpha = 0.22$, 载波频率为 915MHz, 并将 QPSK 调制器和解调器模式均设置为 Root Raised Cosine。

2) EVM 仿真:

EVM_PS(VSA.M1,TP.TP2,1,1,1,100,2,0,5,0,1,1,0,0,915,3,61.44,3,0,1000,0,10,0)[x] QPSK

图 16. 放大器的 EVM 图

由图像可得,随输入功率升高,Tx 放大器的 EVM 变大,然后逐渐趋于常数达到饱和。

3) 星座图仿真:

当输入功率为-40dBm 时, TP2 和 TP3 的星座图仿真如下:

图 17. 输入功率为-40dBm 时, TP2 和 TP3 的星座图

当输入功率为-20dBm时,观察Tx放大器的输入和输出频谱如下:

图 18. 输入功率为-20dBm 时, 放大器的输入和输出频谱

当输入功率为 0dBm 时,观察 Tx 放大器的输入和输出频谱如下:

图 19. 输入功率为 0dBm 时, 放大器的输入和输出频谱

可以看见,随着输入功率的升高, TP2 和 TP3 处的解调效果都有所下降。但整体而言, TP3 的解调效果要远好于 TP2。

三、实验总结

3.1 遇到的问题及解决方法

问题 1: 星座图仿真很久没有成功;

解决方法: 1000samples 改为 500samples。

问题 2: 小信号输入时的星座图仿真达不到预期效果;

解决方法:删除 VSA, 使功率扫描功能失效。

问题 3: VNA 仿真时,输出频谱的效果不如预期:

解决方法:扫描了输入功率分别为-40dBm、-20dBm、0dBm 时的输出频谱,总结变化规律,得到另一种视角。

3.2 实验心得

通过此次实验,我极大地提升了自己的自学能力和问题分析能力,并对 QPSK 的原理与效果有了更深刻的了解。