Indice

1	Elet	trochimica
	1.1	Termodinamica elettrochimica
		1.1.1 Lavoro elettrico
		1.1.2 Variazione di Energia Libera
		1.1.3 Variazione di Entropia
		1.1.4 Variazione di Entalpia
		1.1.5 Capacità termica a pressione costante
		1.1.6 Costante di equilibrio
	1.2	Equazione di Nerst
		1.2.1 Cella a concentrazione
		1.2.2 Potenziale di contatto
	1.3	Teoria di Debye-Huckel
		1.3.1 Forza ionica
		1.3.2 Legge di Debye-Huckel
	1.4	Legge di Davies
2	Gas	ideale 10
	2.1	Gas ideale o perfetto
		2.1.1 Legge generale
		2.1.2 Legge di Dalton
	2.2	Gas di Van der Waals
	2.3	Legge degli stati corrispondenti

3	Esp	ansion	e del gas ideale 1	.3
	3.1	Lavoro	di espansione	13
		3.1.1		13
		3.1.2	Reversibile (isoterma)	14
	3.2	ΔH e		14
		3.2.1		14
		3.2.2		15
		3.2.3	- /	15
	3.3	Espans	•	16
		3.3.1		16
		3.3.2		۱7
4	Ter	mochin	nica 2	20
	4.1	Entalp	ia ed Energia libera di reazione	21
	4.2	Legge	di Kirchoff	21
	4.3	Legge	di Hess	22
	4.4			22
5	Ent	ropia	2	24
	5.1	Teoria		24
		5.1.1		24
		5.1.2	Espansione isoterma	26
		5.1.3	Transizione di fase	28
		5.1.4		28
		5.1.5	Reazione chimica	28
		5.1.6	Entropia sistema-ambiente-universo	28
6	Ene	ergia di	Gibbs (ΔG) 3	80
	6.1	Teoria		30
		6.1.1	Energia di Gibbs	30
		6.1.2	Equazione fondamentale	30
		6.1.3	ΔG di reazione standard	31

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6.1.4	Spontaneità
7.1 Teoria 7.1.1 Variazione di entropia nelle reazioni chimiche 7.1.2 ΔC_p 7.1.3 Kirchoff 7.1.4 Energia di Helmholtz 8 Transizioni di fase 8.1 Teoria 8.1.1 Equazione di Clausius-Clapeyron 8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase 9 Proprietà colligative 9.1 Teoria 9.1.1 Pressione Osmotica 9.1.2 Abbassamento crioscopico 9.1.3 Innalzamento ebullioscopico 10 Miscele 10.1 Teoria 10.1.1 Legge di Raoult (miscele liquide) 10.1.2 Legge di Dalton (miscele di gas)			6.1.5	Mescolamento
7.1 Teoria 7.1.1 Variazione di entropia nelle reazioni chimiche 7.1.2 ΔC_p 7.1.3 Kirchoff 7.1.4 Energia di Helmholtz 8 Transizioni di fase 8.1 Teoria 8.1.1 Equazione di Clausius-Clapeyron 8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase 9 Proprietà colligative 9.1 Teoria 9.1.1 Pressione Osmotica 9.1.2 Abbassamento crioscopico 9.1.3 Innalzamento ebullioscopico 10 Miscele 10.1 Teoria 10.1.1 Legge di Raoult (miscele liquide) 10.1.2 Legge di Dalton (miscele di gas)	7	Ent	ropia r	eazioni chimiche
$7.1.2 \Delta C_p$ $7.1.3 \text{Kirchoff}$ $7.1.4 \text{Energia di Helmholtz}$ 8 Transizioni di fase 8.1Teoria $8.1.1 \text{Equazione di Clausius-Clapeyron}$ $8.1.2 \text{Equazione di fase}$ $8.1.3 \text{Transizione di fase}$ 9 Proprietà colligative 9.1Teoria $9.1.1 \text{Pressione Osmotica}$ $9.1.2 \text{Abbassamento crioscopico}$ $9.1.3 \text{Innalzamento ebullioscopico}$ 10 Miscele 10.1Teoria $10.1.1 \text{Legge di Raoult (miscele liquide)}$ $10.1.2 \text{Legge di Dalton (miscele di gas)}$			_	
$7.1.2 \Delta C_p$ $7.1.3 \text{Kirchoff}$ $7.1.4 \text{Energia di Helmholtz}$ 8 Transizioni di fase 8.1Teoria $8.1.1 \text{Equazione di Clausius-Clapeyron}$ $8.1.2 \text{Equazione di fase}$ $8.1.3 \text{Transizione di fase}$ 9 Proprietà colligative 9.1Teoria $9.1.1 \text{Pressione Osmotica}$ $9.1.2 \text{Abbassamento crioscopico}$ $9.1.3 \text{Innalzamento ebullioscopico}$ 10 Miscele 10.1Teoria $10.1.1 \text{Legge di Raoult (miscele liquide)}$ $10.1.2 \text{Legge di Dalton (miscele di gas)}$			7.1.1	Variazione di entropia nelle reazioni chimiche
7.1.3 Kirchoff 7.1.4 Energia di Helmholtz 8 Transizioni di fase 8.1 Teoria 8.1.1 Equazione di Clausius-Clapeyron 8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase 9 Proprietà colligative 9.1 Teoria 9.1.1 Pressione Osmotica 9.1.2 Abbassamento crioscopico 9.1.3 Innalzamento ebullioscopico 10 Miscele 10.1 Teoria 10.1.1 Legge di Raoult (miscele liquide) 10.1.2 Legge di Dalton (miscele di gas)			7.1.2	
7.1.4 Energia di Helmholtz 8 Transizioni di fase 8.1 Teoria 8.1.1 Equazione di Clausius-Clapeyron 8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase 9 Proprietà colligative 9.1 Teoria 9.1.1 Pressione Osmotica 9.1.2 Abbassamento crioscopico 9.1.3 Innalzamento ebullioscopico 10 Miscele 10.1 Teoria 10.1.1 Legge di Raoult (miscele liquide) 10.1.2 Legge di Dalton (miscele di gas)				
8.1 Teoria 8.1.1 Equazione di Clausius-Clapeyron 8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase 9 Proprietà colligative 9.1 Teoria 9.1.1 Pressione Osmotica 9.1.2 Abbassamento crioscopico 9.1.3 Innalzamento ebullioscopico 10 Miscele 10.1 Teoria 10.1.1 Legge di Raoult (miscele liquide) 10.1.2 Legge di Dalton (miscele di gas)				
8.1 Teoria 8.1.1 Equazione di Clausius-Clapeyron 8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase 9 Proprietà colligative 9.1 Teoria 9.1.1 Pressione Osmotica 9.1.2 Abbassamento crioscopico 9.1.3 Innalzamento ebullioscopico 10 Miscele 10.1 Teoria 10.1.1 Legge di Raoult (miscele liquide) 10.1.2 Legge di Dalton (miscele di gas)	8	Trai	nsizion	i di fase
8.1.1 Equazione di Clausius-Clapeyron 8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase 9 Proprietà colligative 9.1 Teoria 9.1.1 Pressione Osmotica 9.1.2 Abbassamento crioscopico 9.1.3 Innalzamento ebullioscopico 10 Miscele 10.1 Teoria 10.1.1 Legge di Raoult (miscele liquide) 10.1.2 Legge di Dalton (miscele di gas)				
8.1.2 Equazione di Clapeyron 8.1.3 Transizione di fase				
8.1.3 Transizione di fase				
9.1 Teoria				
9.1 Teoria	9	Pro	prietà	colligative
9.1.1 Pressione Osmotica		-	-	3
9.1.2 Abbassamento crioscopico		0.1		
9.1.3 Innalzamento ebullioscopico			_	
10.1 Teoria				• • • • • • • • • • • • • • • • • • •
10.1 Teoria	10	Mis	cele	
10.1.1 Legge di Raoult (miscele liquide)				
10.1.2 Legge di Dalton (miscele di gas)		10.1		
11 Equilibrio Chimico				
	11	Eau	ilibrio	Chimico
11.1 Teoria		-		
11.1.1 $\Delta_{\mathbf{r}}\mathbf{G}^{\circ}$		11.1		
$11.1.2 Q, K, K_p, K_c \dots \dots \dots \dots$				
11.1.2 Q, K, K_p, K_c				

		11.1.4	Equilibrio e frazioni molari 4	5
		11.1.5	Equazione di van't Hoff	5
12	Cine	etica	4°	7
	12.1	Teoria		7
			Velocità di reazione	7
			Leggi cinetiche	7
			Legge di Arrhenius 4	8
			Leggi cinetiche integrate 4	8
			Metodo dell'integrazione 4	8
			Metodo delle velocità iniziali	1
13	Com	pendi	$_{ m O}$	4
		-	$rac{1}{2} = ra$	
			percentuale	
			età matematiche	
	10.0		Integrali	
			Derivate	
			Proprietà dei logaritmi	
			Proprietà delle potenze	
	13 /	Termin		

Elettrochimica

1.1 Termodinamica elettrochimica

1.1.1 Lavoro elettrico

In condizioni di reversibilità:

$$w_{e,max} = \Delta G \tag{1.1}$$

 w_e : lavoro elettrico

1.1.2 Variazione di Energia Libera

$$\Delta G = -\nu F E \tag{1.2}$$

 $\nu =$ numero elettroni trasferiti

F =Costante di Faraday

E =Potenziale di cella

$$\Delta G = \Delta H - T\Delta S \tag{1.3}$$

1.1.3 Variazione di Entropia

$$\left(\frac{dG}{dT}\right)_{p} = -S$$

$$\left(\frac{d\Delta G}{dT}\right)_{p} = -\Delta S$$
(1.4)

poiché $\Delta G = -\nu F E$

allora $d\Delta G = -\nu F dE$

$$\left(\frac{-\nu F dE}{dT}\right)_{p} = -\Delta S$$

$$-\nu F \left(\frac{dE}{dT}\right)_{p} = -\Delta S$$

$$\Delta S = \nu F \left(\frac{dE}{dT}\right)_{p} \tag{1.5}$$

1.1.4 Variazione di Entalpia

$$\Delta G = \Delta H - T\Delta S$$

$$T\Delta S + \Delta G = \Delta H$$

$$\Delta H = \Delta G + T\Delta S$$
(1.6)

1.1.5 Capacità termica a pressione costante

$$\left(\frac{dH}{dT}\right)_p = C_p$$

$$\left(\frac{\partial H}{\partial T}\right)_p =$$
(1.7)

$$\Delta C_{p} = \left(\frac{\partial \Delta H}{\partial T}\right)_{p} \\
= \frac{\partial}{\partial T} \left(\Delta G + T \Delta S\right) \\
= \frac{\partial}{\partial T} \left(-\nu F E + T \nu F \left(\frac{dE}{dT}\right)_{p}\right) \\
= -\nu F \left(\frac{\partial E}{\partial T}\right)_{p} + \nu F \left(\frac{\partial}{\partial T}\right) \left(T \left(\frac{dE}{dT}\right)_{p}\right) \\
= -\nu F \left(\frac{\partial E}{\partial T}\right)_{p} + \nu F \left(\left(\frac{\partial T}{\partial T} \left(\frac{dE}{dT}\right)_{p}\right) \left(T \left(\frac{\partial^{2} E}{\partial T^{2}}\right)_{p}\right)\right) \\
= -\nu F \left(\frac{\partial E}{\partial T}\right)_{p} + \nu F \left(\left(1 \left(\frac{dE}{dT}\right)_{p}\right) \left(T \left(\frac{\partial^{2} E}{\partial T^{2}}\right)_{p}\right)\right) \\
= \nu F \left(\left(-\frac{\partial E}{\partial T}\right)_{p} + \left(\frac{dE}{dT}\right)_{p} + T \left(\frac{\partial^{2} E}{\partial T^{2}}\right)_{p}\right) \\
= \nu F \left(T \left(\frac{\partial^{2} E}{\partial T^{2}}\right)_{p}\right) \\
= \nu F \left(T \left(\frac{\partial^{2} E}{\partial T^{2}}\right)_{p}\right) \tag{1.8}$$

1.1.6 Costante di equilibrio

$$\ln K = -\frac{\Delta G}{RT}$$

$$= -\frac{(-\nu FE)}{RT}$$
(1.9)

$$=\frac{\nu FE}{RT}\tag{1.10}$$

$$K = e^{\left(\frac{\nu FE}{RT}\right)} \tag{1.11}$$

1.2 Equazione di Nerst

$$E = E^{\circ} - \frac{RT}{\nu F} \ln Q \tag{1.12}$$

poiché
$$Q = \frac{\prod_{prodotto_j} (a_{prodotto_j})^{cs_{prodotto_j}}}{\prod_{reagente_i} (a_{reagente_i})^{cs_{reagente_i}}}$$

$$E = E^{\circ} - \frac{RT}{\nu F} \ln \left(\frac{\prod_{prodotto_{j}} (a_{prodotto_{j}})^{cs_{prodotto_{j}}}}{\prod_{reagente_{i}} (a_{reagente_{i}})^{cs_{reagente_{i}}}} \right)$$
(1.13)

 ν : numero elettroni trasferiti

cs: coefficiente stechiometrico

F: Costante di Faraday = $96485.3365 \,\mathrm{C} \,\mathrm{mol}^{-1}$

R: costante dei gas = 8.314 472 J mol⁻¹ K⁻¹

T: temperatura

$$\frac{RT^{\circ}}{F} \approx 0.0257 \,\mathrm{V}$$

E: Potenziale di cella

 $E^{\circ}=E_{destro}^{\circ}-E_{sinistro}^{\circ}\to \mathrm{Si}$ può interpretare come la E corrispondente alla condizione in cui i reagenti e i prodotti si trovano nel loro stato standard $Q=1\Longrightarrow \ln Q=0$

$$a_{prodotto_j} = \gamma_{\pm prodotto_j} \frac{m_{prodotto_j}}{m^{\circ}}$$

$$a_{reagente_i} = \gamma_{\pm reagente_i} \frac{m_{reagente_i}}{m^{\circ}}$$

m: molalità

 m° : molalità standard = 1 \Longrightarrow serve a rendere adimensionale la molalità

$$E = E^{\circ} - \frac{RT}{\nu F} \ln \left(\frac{\prod_{prodotto_{j}} \left(\frac{m_{prodotto_{j}}}{m^{\circ}} \right)^{cs_{prodotto_{j}}} \left(\gamma_{\pm prodotto_{j}} \right)^{cs_{prodotto_{j}}}}{\prod_{reagente_{i}} \left(\frac{m_{reagente_{i}}}{m^{\circ}} \right)^{cs_{reagente_{i}}} \left(\gamma_{\pm reagente_{i}} \right)^{cs_{reagente_{i}}}} \right)$$

$$(1.14)$$

1.2.1 Cella a concentrazione

Una cella a concentrazione, in chimica, è un tipo di cella elettrochimica che genera un potenziale elettrico attraverso la differenza di concentrazione di una specie chimica elettroattiva tra due soluzioni separate da una membrana semipermeabile o da un ponte salino. Questo tipo di cella sfrutta la differenza di concentrazione delle specie chimiche per generare una differenza di potenziale elettrico.

$$E = -\frac{RT}{F} \ln \left(\frac{a_{Left}}{a_{Right}} \right) \tag{1.15}$$

 $\nu = 1$

 $E^{\circ} = 0$

se
$$\frac{m_{Right}}{m^{\circ}} > \frac{m_{Left}}{m^{\circ}} \Longrightarrow E > 0$$

Il potenziale positivo insorge perché gli ioni positivi tendono a ridursi sottraendo così elettroni al catodo

(1.16)

1.2.2 Potenziale di contatto

Potenziale di contatto: $E_j \longrightarrow (E_{junction})$

$$E = \left(E^{\circ} - \frac{RT}{\nu F} \ln Q\right) + E_j \tag{1.17}$$

1.3 Teoria di Debye-Huckel

1.3.1 Forza ionica

$$I = \frac{1}{2} \sum_{i} m_i z_i^2 \tag{1.18}$$

 m_i : molalità ione i-esimo

 z_i : carica ione i-esimo

1.3.2 Legge di Debye-Huckel

$$\log \gamma_{\pm} = -0.50926|z_{+}z_{-}|\sqrt{I} \tag{1.19}$$

I: (1.18)

 z_{+} : carica catione

 z_{-} : carica anione

 γ_{\pm} : coefficiente di attività ionico medio

0.50926 = A

1.4 Legge di Davies

$$\log \gamma_{\pm} = -0.50926|z_{+}z_{-}| \left[\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.30\sqrt{I} \right]$$
 (1.20)

Gas ideale

2.1 Gas ideale o perfetto

è costituito da molecole puntiformi, con volume trascurabile rispetto al volume del recipiente e non interagenti tra loro.

$$\lim_{p \to 0} \frac{pV_m}{T} = R = costante$$

2.1.1 Legge generale

$$pV = nRT (2.1)$$

2.1.2 Legge di Dalton

$$p_{tot} = \sum_{i} p_i \tag{2.2}$$

$$p_i = \sum_{i} (p_{tot}) \chi_i \tag{2.3}$$

 χ_i : frazione molare del gas *i*-esimo

 p_i : pressione parziale del gas *i*-esimo

(2.4)

2.2 Gas di Van der Waals

$$\left(p + n^2 \frac{a}{V^2}\right) (V - nb) = nRT$$
(2.5)

$$Z = \frac{V_m}{V_m^{\circ}} \tag{2.6}$$

Z: fattore di comprimibilità

a, b sono gli stessi sia per 2.2 che per 2.3

2.3 Legge degli stati corrispondenti

$$\left(p_R + \frac{3}{\overline{V}_R^2}\right) \left(\overline{V}_R^2 - \frac{1}{3}\right) = \frac{8}{3} T_R$$
(2.7)

a, b sono gli stessi sia per 2.2 che per 2.3

Costanti critiche	Quantità ridotte
$\overline{V}_c = 3b$	$\overline{V}_R = rac{\overline{V}}{\overline{V}_c}$
$p_c = \frac{a}{27b^2}$	$p_R = \frac{p}{p_c}$
$T_c = \frac{8a}{27bR}$	$T_R = \frac{T}{T_c}$

Espansione del gas ideale

3.1 Lavoro di espansione

3.1.1 Irreversibile

$$w = -p_{ext}\Delta V \tag{3.1}$$

p = costante

$$\Delta H = q$$

$$\Delta U = q + w$$
$$= \Delta H + w$$
$$w = \Delta U - \Delta H$$

$$w = -p_{ext}\Delta V$$
$$= -nR(T_2 - T_1)$$

3.1.2 Reversibile (isoterma)

$$w = -nRT \ln \frac{V_2}{V_1} \tag{3.2}$$

Dimostrazione.

$$dw = -pdV$$

$$w = \int_{V_1}^{V_2} -p \, dV$$

$$= \int_{V_1}^{V_2} -\frac{nRT}{V} \, dV$$

$$= -nRT \int_{V_1}^{V_2} \frac{1}{V} \, dV$$

$$= -nRT \ln \frac{V_2}{V_1}$$

3.2 ΔH e ΔU nei processi di riscaldamento

3.2.1 ΔU , (riscaldamento V = costante)

$$\left(\frac{\partial U}{\partial T}\right)_V = C_V \tag{3.3}$$

 C_V : capacità termica a volume costante

$$dU = C_V dT (3.4)$$

$$\Delta U = \int_{T_1}^{T_2} C_V dT \tag{3.5}$$

3.2.2 ΔH , (riscaldamento p = costante)

$$\left(\frac{\partial H}{\partial T}\right)_p = C_p \tag{3.6}$$

$$dH = C_p dT$$

$$\Delta H = \int_{T_1}^{T_2} C_p \, dT \tag{3.7}$$

3.2.3 C_p, C_V

$$\overline{C}_V = \frac{3}{2}R$$
 monoatomico $\overline{C}_V = \frac{5}{2}R$ biatomico

$$\overline{C}_p = \overline{C}_V + R \tag{3.8}$$

La dipendenza delle capacità termiche da T è spesso espressa mediante sviluppi in serie:

$$C_{V,p} = a + bT + cT^2 + dT^3 + \dots$$
 (3.9)

il cui integrale è:

(3.10)

3.3 Espansione adiabatica (q = 0)

$$\Delta U = q + w$$
$$= 0 + w$$
$$= w$$

$$\Delta H = 0$$

3.3.1 Reversibile

$$\begin{aligned} dU &= 0 + dw \\ &= -pdV \\ &= -\frac{nRT}{V}dV \\ &= \overline{C}_V dT \end{aligned}$$

$$\gamma = \frac{\overline{C}_p}{\overline{C}_V} \tag{3.11}$$

$$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1} \tag{3.12}$$

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \tag{3.13}$$

$$T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{\left(\frac{\gamma-1}{\gamma}\right)} \tag{3.14}$$

$$w = \int_{1}^{2} dU \tag{3.15}$$

 $w = \Delta U$

 $dU = n\overline{C}_V dT$

$$= \int_{T_1}^{T_2} n\overline{C}_V dT \tag{3.16}$$

3.3.2 Irreversibile

$$(p_1, V_1, T_1) \longrightarrow \left(p_2, \underbrace{V_2, T_2}_{\text{non noti}}\right)$$

abbiamo due incognite (V_2, T_2)

$$\Delta U = n\overline{C}_V(T_2 - T_1)$$

$$= w$$

$$= -p_2(V_2 - V_1)$$
(3.17)

quindi

$$\Delta U = n\overline{C}_V(T_2 - T_1) = w = -p_2(V_2 - V_1)$$

cerchiamo di esprimere V_2 in funzione di T_2 e di ciò che conosciamo:

$$V_1 = \frac{nRT_1}{p_1}$$

$$V_2 = \frac{nRT_2}{p_2}$$

$$n\overline{C}_V(T_2 - T_1) = -p_2 \left(\frac{nRT_2}{p_2} - \frac{nRT_1}{p_1}\right)$$
 (3.18)

da cui ricaviamo T_2

Distribuiamo il termine p_2 sul lato destro:

$$n\overline{C}_V(T_2 - T_1) = -nRT_2 + \frac{nRT_1p_2}{p_1}$$

Portiamo tutti i termini contenenti T_2 sul lato sinistro:

$$n\overline{C}_V(T_2) + nRT_2 = n\overline{C}_V T_1 + \frac{nRT_1 p_2}{p_1}$$

Isoliamo T_2 dividendo per il coefficiente di T_2 :

$$T_2(n\overline{C}_V + nR) = n\overline{C}_V T_1 + \frac{nRT_1 p_2}{p_1}$$

Infine, semplifichiamo n e raccogliamo T_1 :

$$T_{2} = \frac{\overline{C}_{V}T_{1} + \frac{RT_{1}p_{2}}{p_{1}}}{\overline{C}_{V} + R}$$

$$= \frac{T_{1}\left(\overline{C}_{V} + R\frac{p_{2}}{p_{1}}\right)}{\overline{C}_{V} + R}$$
(3.19)

per (3.8)

$$=\frac{T_1\left(\overline{C}_V+R\frac{p_2}{p_1}\right)}{\overline{C}_p}\tag{3.20}$$

ed infine ricaviamo w

$$w = n\overline{C}_V(T_2 - T_1) \tag{3.21}$$

Termochimica

Stato standard (°): sostanza pura alla pressione di 1 bar ed alla temperatura specificata. Nel caso di gas si suppone comportamento ideale.

Entalpia standard di reazione $\Delta_r H^{\circ}$:

Calore scambiato nel processo che dai reagenti nello stato standard passa ai prodotti, sempre nello stato standard.

$$\Delta_r H^\circ = \sum_{prodotti} \nu_i \Delta_f \overline{H}^\circ - \sum_{reagenti} \nu_i \Delta_f \overline{H}^\circ$$
 (4.1)

 ν_i : coefficiente stechiometrico della specie i-esima

 $\Delta_f \overline{H}^\circ$: Entalpia standard di formazione \Longrightarrow Variazione di entalpia relativa alla formazione di una mole di sostanza dagli elementi costituenti a 1 bar e 298 K. Per gli elementi nel loro stato più stabile alla temperatura specificata essa vale zero.

4.1 Entalpia ed Energia libera di reazione

$$\Delta U = q + w$$

$$\Delta U = \Delta H - p\Delta V$$

$$p\Delta V + \Delta U = \Delta H$$

$$\Delta H = \Delta U + p\Delta V$$

$$\Delta V = \frac{\Delta nRT}{p}$$

$$\Delta H = \Delta U + p \frac{\Delta nRT}{p}$$

$$\Delta H = \Delta U + \Delta nRT \tag{4.2}$$

La variazione di entalpia differisce da quella di energia interna ΔU solo quando la reazione comporta la formazione o la scomparsa di specie in fase gassosa.

$$\Delta_r U = \sum_{prodotti} \nu \Delta_f U - \sum_{reagenti} \nu \Delta_f U$$
 (4.3)

4.2 Legge di Kirchoff

Spesso è necessario conoscere il ΔH ad una temperatura (T_2) diversa da quella relativa ai dati disponibili (T_1) .

Si ricorre allora alla legge di Kirchoff:

$$\Delta H_{T_2} = \Delta H_{T_1} + \int_{T_1}^{T_2} \Delta C_p \, dT \tag{4.4}$$

$$\Delta C_p = \sum_{prodotti} \nu_j(C_p)_j - \sum_{reagenti} \nu_i(C_p)_i$$

nell'ipotesi che le capacità termiche coinvolte nel ΔC_p siano costanti al variare della temperatura:

$$= \Delta H_{T_1} + \Delta C_p (T_2 - T_1) \tag{4.5}$$

4.3 Legge di Hess

Non sempre l'entalpia di reazione è misurabile per via sperimentale. La si può tuttavia spesso ricavare combinando opportunamente altri processi noti, grazie al fatto che l'entalpia è una funzione di stato.

Quando i reagenti si trasformano in prodotti, la variazione di entalpia è la stessa sia che la reazione avvenga in un solo stadio, sia che avvenga attraverso una serie di stadi (legge di Hess)

Figura 4.1: $\Delta H_{A} \longrightarrow_{B} = \Delta H_{A} \longrightarrow_{C} + \Delta H_{C} \longrightarrow_{B}$

4.4 Uso dei calori di combustione

• Le entalpie di formazione e di altre reazioni di composti organici possono essere ricavate combinando opportunamente le entalpie di combustione, facilmente ricavabili da misure calorimetriche.

- In pratica, le equazioni chimiche corrispondenti ai processi di combustione devono essere disposte in modo tale da elidere tutte quelle specie che non compaiono nella reazione di interesse.
- Per ottenere questo risultato è spesso necessario moltiplicare dette equazioni, e le relative variazioni di entalpia, per un opportuno coefficiente.
- Se il ΔH viene moltiplicato per un coefficiente < 0 quella reazione viene rovesciata.
- La somma algebrica delle reazioni dovrà dare come risultato la reazione in oggetto, e quella delle entalpie di reazione darà come risultato la variazione di entalpia di detta reazione.
- Alla fine della somma algebrica controllare che i coefficienti stechiometrici delle specie coinvolte nella reazione target siano identici a quelli che vengono moltiplicati per il ΔH di quella reazione specifica.

Entropia

Contents

5.1 Teor	ria	24
5.1.1	Riscaldamento	24
5.1.2	Espansione isoterma	26
5.1.3	Transizione di fase	28
5.1.4	Mescolamento di gas ideali	28
5.1.5	Reazione chimica	28
5.1.6	Entropia sistema-ambiente-universo	28

5.1 Teoria

$$dS = \frac{dq_{\text{rev}}}{T} \tag{5.1}$$

5.1.1 Riscaldamento

Riscaldamento a volume costante

$$dq_{\text{rev}} = dU = dH = C_{V,p}dT \tag{5.2}$$

$$\Delta S = \int_{T_1}^{T_2} \frac{C_V}{T} dT \tag{5.3}$$

Dimostrazione.

$$dS = \frac{dU}{T}$$

poiché $\frac{\partial U}{\partial T} = C_V \Longrightarrow dU = C_V dT$

$$= \frac{C_V dT}{T}$$

$$\int dS = \int_{T_1}^{T_2} \frac{C_V}{T} dT$$

$$\Delta S = \int_{T_1}^{T_2} \frac{C_V}{T} dT$$

Riscaldamento a pressione costante

$$\Delta S = \int_{T_1}^{T_2} \frac{C_p}{T} dT \tag{5.4}$$

Dimostrazione.

$$dS = \frac{C_p}{T}dT$$

continua come sopra (5.3)

Se C_V o C_p dipendono dalla temperatura secondo uno sviluppo in serie di Taylor:

 $\Delta S = \int_{T_1}^{T_2} \frac{C_{V,p}}{T} dT$ $= \int_{T_1}^{T_2} \frac{(\alpha + \beta T + \gamma T^2 + \delta T^3)}{T} dT$ $= \int_{T_1}^{T_2} \frac{\alpha}{T} dT + \int_{T_1}^{T_2} \beta dT + \int_{T_1}^{T_2} \gamma T dT + \int_{T_1}^{T_2} \delta T^2 dT$ $= \alpha \int_{T_1}^{T_2} \frac{1}{T} dT + \beta \int_{T_1}^{T_2} dT + \gamma \int_{T_1}^{T_2} T dT + \delta \int_{T_1}^{T_2} T^2 dT$ $= \alpha \left(\ln \frac{T_2}{T_1} \right) + \beta (T_2 - T_1) + \gamma \left(\frac{T_2^2 - T_1^2}{2} \right) + \delta \left(\frac{T_2^3 - T_1^3}{3} \right)$

5.1.2 Espansione isoterma

$$\Delta S = nR \ln \frac{V_f}{V_i} \tag{5.5}$$

Dimostrazione.

$$dS = \frac{dq}{T}$$

$$\int dS = \int \frac{dq}{T}$$

$$\Delta U = q + w = 0 \Longrightarrow q = -w$$

$$=\int \frac{-dw}{T}$$

dw = -pdV

$$= \int \frac{-(-pdV)}{T}$$

 $p = \frac{nRT}{V}$

$$= \int \frac{nRT}{V} \frac{1}{T} dV$$

$$= nR \int \frac{1}{V} dV$$

$$\int_{S_i}^{S_f} dS = nR \int_{V_i}^{V_f} \frac{1}{V} dV$$

$$\Delta S = nR \ln \frac{V_f}{V_i}$$

$$\Delta S = nR \ln \frac{p_i}{p_f} \tag{5.6}$$

Dimostrazione.

$$\Delta S = nR \ln \frac{V_f}{V_i}$$

$$V_i = \frac{nRT}{p_i}$$

$$= nR \ln \frac{\frac{nRT}{p_f}}{\frac{nRT}{p_i}}$$

$$= nR \ln \left(\frac{nRT}{p_f} \frac{p_i}{nRT}\right)$$

$$= nR \ln \frac{p_i}{p_f}$$

5.1.3 Transizione di fase

$$\Delta_{tr}S^{\circ} = \frac{\Delta_{tr}H^{\circ}}{T_{tr}} \tag{5.7}$$

5.1.4 Mescolamento di gas ideali

$$\Delta_{mix}S = -R\left(n_A \ln \chi_A + n_B \ln \chi_B\right) \tag{5.8}$$

moltiplico il termine di destra per $\frac{n_{tot}}{n_{tat}}$

$$\chi_i = \frac{n_i}{n_{tot}}$$

$$= -n_{tot}R(\chi_A \ln \chi_A + \chi_B \ln \chi_B) \tag{5.9}$$

 $R = 8.314\,\mathrm{J\,K^{-1}\,mol}^{-1}$

5.1.5 Reazione chimica

$$\Delta_r S^{\circ} = \sum_{prodotti} \nu S^{\circ}_{prodotti} - \sum_{reagenti} \nu S^{\circ}_{reagenti}$$
 (5.10)

5.1.6 Entropia sistema-ambiente-universo

$$\Delta_{\text{universo}}S = \Delta_{\text{sist}}S + \Delta_{\text{amb}}S \tag{5.11}$$

$$\Delta_{\rm amb}S = \frac{q_{\rm scambiato\ con\ l'ambiente}}{T_{\rm ambiente}} \tag{5.12}$$

isoterma reversibile

$$q_{\text{scambiato con l'ambiente}} = -q_{\text{assorbito dal sistema}}$$
 (5.13)

espansione contro il vuoto

 $q_{
m scambiato~con~l'ambiente} = -q_{
m assorbito~dal~sistema}$ $q_{
m scambiato~con~l'ambiente} = 0$

$$\Delta_{\rm amb}S = 0$$

Energia di Gibbs (ΔG)

Contents

6.1 Teoria	 30
6.1.1 Energia di Gibbs	 30
6.1.2 Equazione fondamentale	 30
6.1.3 ΔG di reazione standard	 31
6.1.4 Spontaneità	 31
6.1.5 Mescolamento	 31

6.1 Teoria

6.1.1 Energia di Gibbs

$$G = H - TdS \tag{6.1}$$

$$\Delta G = \Delta H - T\Delta S \tag{6.2}$$

6.1.2 Equazione fondamentale

$$dG = Vdp - SdT (6.3)$$

Dimostrazione.

$$dU = dq + dw$$

 $dS = \frac{dq}{T}$

$$dU = TdS + dw$$
$$= TdS - pdV$$

$$\left(\frac{\partial G}{\partial p}\right)_T = V
\tag{6.4}$$

$$\left(\frac{\partial \Delta G}{\partial p}\right)_T = \Delta V \tag{6.5}$$

$$\left(\frac{\partial G}{\partial T}\right)_{p} = -S \tag{6.6}$$

$$\left(\frac{\partial \Delta G}{\partial T}\right)_p = -\Delta S \tag{6.7}$$

6.1.3 ΔG di reazione standard

 $aA + bB \longrightarrow cC + dD$

$$\Delta_r G^{\circ} = c \Delta_f G^{\circ}(C) + d \Delta_f G^{\circ}(D) - a \Delta_f G^{\circ}(A) - b \Delta_f G^{\circ}(B)$$

$$= \sum_{i} \nu \Delta_f G^{\circ}(prodotti) - \sum_{i} \nu \Delta_f G^{\circ}(reagenti)$$
 (6.8)

6.1.4 Spontaneità

$$dG \le 0 \tag{6.9}$$

Per un processo finito:

$$\Delta G = \Delta H - T\Delta S \le 0$$
 $p, T = \text{costanti}$ (6.10)

6.1.5 Mescolamento

$$\Delta_{mix}G = -T\Delta_{mix}S\tag{6.11}$$

$$\Delta_{mix}G = RT(n_A \ln \chi_A + n_B \ln \chi_B) \tag{6.12}$$

moltiplico il termine di destra per $\frac{n_{tot}}{n_{tot}}$

$$\chi_i = \frac{n_i}{n_{tot}}$$

$$= n_{tot}RT(\chi_A \ln \chi_A + \chi_B \ln \chi_B) \tag{6.13}$$

$$R = 8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}$$

Dimostrazione.

$$\Delta_{mix}G = -T\Delta_{mix}S$$

$$\Delta_{mix}S = -R(n_A \ln \chi_A + n_B \ln \chi_B)$$

$$= -T(-R(n_A \ln \chi_A + n_B \ln \chi_B))$$

$$= RT(n_A \ln \chi_A + n_B \ln \chi_B)$$

Entropia reazioni chimiche

Contents

7.1 Teor	ria
7.1.1	Variazione di entropia nelle reazioni chimiche 33
7.1.2	ΔC_p
7.1.3	Kirchoff
7.1.4	Energia di Helmholtz

7.1 Teoria

7.1.1 Variazione di entropia nelle reazioni chimiche

$$\Delta_r S^{\circ} = \sum_{\text{prodotti}} \nu_j \left(\Delta_{form} S_j^{\circ} \right) - \sum_{\text{reagenti}} \nu_i \left(\Delta_{form} S_i^{\circ} \right)$$
 (7.1)

 $\Delta_{\text{formazione}} S^{\circ}$ delle sostanze nel loro stato elementare più stabile = 0

7.1.2 ΔC_p

 $aA + bB \longrightarrow cC + dD$

$$\Delta C_p = \sum_{\text{prodotti}} \nu_j(C_p)_j - \sum_{\text{reagenti}} \nu_i(C_p)_i$$
$$= cC_p(C) + dC_p(D) - (aC_p(A) + bC_p(B))$$

Se le C_p sono espresse come serie di Taylor conviene fare i calcoli in colonna

7.1.3 Kirchoff

vedi 4.4

$$\Delta S_{T_2} = \Delta S_{T_1} + \int_{T_1}^{T_2} \frac{\Delta C_p}{T} dT$$
 (7.2)

7.1.4 Energia di Helmholtz

$$\Delta_r A^\circ = \Delta_r U^\circ - T \Delta S^\circ \tag{7.3}$$

La variazione di energia di Helmholtz corrisponde al lavoro massimo che un sistema può effettuare

Transizioni di fase

Contents

8.1 Teor	ria	35
8.1.1	Equazione di Clausius-Clapeyron	35
8.1.2	Equazione di Clapeyron	37
8.1.3	Transizione di fase	37

8.1 Teoria

8.1.1 Equazione di Clausius-Clapeyron

Una delle due fasi è la fase vapore

$$\frac{d(\ln p)}{dT} = \frac{\Delta_{\text{trans}}\overline{H}}{RT^2}$$
 (8.1)

$$\ln \frac{p_2}{p_1} = \frac{-\Delta_{\text{trans}}\overline{H}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \tag{8.2}$$

trans: transizione

Dimostrazione.

$$\frac{d(\ln p)}{dT} = \frac{\Delta_{\text{trans}}\overline{H}}{RT^2}$$

$$d(\ln p) = \frac{\Delta_{\text{trans}}\overline{H}}{RT^2}dT$$

$$\int_{p_1}^{p_2} d(\ln p) = \frac{\Delta_{\text{trans}}\overline{H}}{R} \int_{T_1}^{T_2} \frac{1}{T^2}dT$$

$$\ln p_2 - \ln p_1 = \frac{\Delta_{\text{trans}}\overline{H}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\ln \frac{p_2}{p_1} = \frac{-\Delta_{\text{trans}}\overline{H}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$T_2 = -T_1 \left(\frac{\Delta H}{RT_1 \ln\left(\frac{p_2}{p_1}\right) - \Delta H} \right) \tag{8.3}$$

$$p_2 = p_1 \exp\left(\frac{-\Delta H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right) \tag{8.4}$$

$$= p_1 \exp\left(\frac{-(T_1\Delta H - T_2\Delta H)}{RT_1T_2}\right) \tag{8.5}$$

$$T_1 = T_2 \left(\frac{\Delta H}{RT_2 \ln\left(\frac{p_2}{p_1}\right) + \Delta H} \right) \tag{8.6}$$

8.1.2 Equazione di Clapeyron

$$\frac{dp}{dT} = \frac{\Delta \overline{S}}{\Delta \overline{V}} \tag{8.7}$$

Dimostrazione.

8.1.3 Transizione di fase

$$\Delta_{tr}S^{\circ} = \frac{\Delta_{tr}H^{\circ}}{T_{tr}} \tag{8.8}$$

Proprietà colligative

Contents

9.1 Teon	ria	38
9.1.1	Pressione Osmotica	38
9.1.2	Abbassamento crioscopico	38
9.1.3	Innalzamento ebullioscopico	39

9.1 Teoria

9.1.1 Pressione Osmotica

$$\Pi = [B] RT \tag{9.1}$$

B: Molarità (c_m) molecola di interesse (mol L^{-1})

R: Costante dei gas $\left(\frac{[\text{volume}][\text{pressione}]}{[\text{temperatura}][\text{mol}]}\right)$

9.1.2 Abbassamento crioscopico

$$\Delta T_{cr} = K_{cr}b \tag{9.2}$$

b: molalità = $\frac{n_{\text{soluto}}}{m_{\text{solvente}}}$ (mol kg⁻¹)

 $m_{\rm solvente}$: massa solvente

 K_{cr} : Costante crioscopica (K kg mol⁻¹)

$$K_{cr} = \frac{RT^2 M_{solv}}{\Delta_{\text{fus}} \overline{H}^{\circ}} \frac{1 \text{ kg}}{1000 \text{ g}}$$
(9.3)

 M_{solv} : Massa molare solvente (g mol⁻¹)

9.1.3 Innalzamento ebullioscopico

$$\Delta T_{eb} = K_{eb}b \tag{9.4}$$

b: molalità = $\frac{n_{\text{soluto}}}{m_{\text{solvente}}}$ (mol kg⁻¹)

 $m_{\rm solvente}$: massa solvente

$$K_{eb} = \frac{RT^2 M_{solv}}{\Delta_{\text{vap}} \overline{H}^{\circ}} \frac{1 \text{ kg}}{1000 \text{ g}}$$
(9.5)

 M_{solv} : Massa molare solvente (g mol⁻¹)

Miscele

Contents

10.1 Teoria .		
10.1.1 Legge	di Raoult (miscele liquide) 40	
10.1.2 Legge	di Dalton (miscele di gas) 40	

10.1 Teoria

10.1.1 Legge di Raoult (miscele liquide)

$$p_i = \chi_i p_i^* \tag{10.1}$$

 p_i^* : Pressione di vapore

 χ_i : Frazione molare

 p_i : Pressione parziale

10.1.2 Legge di Dalton (miscele di gas)

$$p_i = y_i p_{\text{tot}} \tag{10.2}$$

 p_i : Pressione parziale

 p_{tot} : Pressione totale

 y_i : Frazione molare del vapore, non si chiama χ_i per distinguerla da quella della Legge di Raoult

$$y_i = \frac{p_i}{p_{\text{tot}}} \tag{10.3}$$

In caso di richiesta di:

- $\Delta_{\text{mix}}S$ (liq)
- $\Delta_{\min}G$ (liq)
- $\Delta_{\text{mix}}S$ (vap)
- $\Delta_{\min}G$ (vap)

$$\left. \begin{array}{c} \Delta_{\text{mix}} S(\text{liq}) \\ \Delta_{\text{mix}} G(\text{liq}) \end{array} \right\} \chi_i \tag{10.4}$$

$$\frac{\Delta_{\text{mix}}S(\text{vap})}{\Delta_{\text{mix}}G(\text{vap})} y_i$$
(10.5)

Equilibrio Chimico

Contents

11.1 Teoria	12
11.1.1 $\Delta_{\mathbf{r}}\mathbf{G}^{\circ}$	42
11.1.2 $Q, K, K_p, K_c \dots \dots \dots \dots \dots \dots$	43
11.1.3 Grado di dissociazione (α)	44
11.1.4 Equilibrio e frazioni molari	45
11.1.5 Equazione di van't Hoff	45

11.1 Teoria

11.1.1 $\Delta_r G^{\circ}$

$$\Delta_r G^{\circ} = \sum_{\text{prodotti}} \nu_i \Delta_f \overline{G}^{\circ} - \sum_{\text{reagenti}} \nu_i \Delta_f \overline{G}^{\circ}$$
 (11.1)

Per gli elementi nel loro stato più stabile alla temperatura specificata il $\Delta_f \overline{G}$ vale zero.

$$\Delta_r G = \Delta_r \overline{G}^{\circ} + RT \ln Q \tag{11.2}$$

$$\Delta_r \overline{G}^{\circ} = -RT \ln K \tag{11.3}$$

Dimostrazione.

$$\Delta_r G = \Delta_r \overline{G}^\circ + RT \ln Q$$

se $\Delta_r G = 0$ (equilibrio) $\Longrightarrow Q = K$

$$0 = \Delta_r \overline{G}^{\circ} + RT \ln K$$
$$\Delta_r \overline{G}^{\circ} = -RT \ln K$$

$$\Delta_r G = -RT \ln K + RT \ln Q \tag{11.4}$$

$$K = \exp\left(\frac{-\Delta_r \overline{G}^{\circ}}{RT}\right) \tag{11.5}$$

11.1.2 Q, K, K_p, K_c

$$Q = \prod_{i} a_i^{\nu_i} \tag{11.6}$$

 $\nu_i = \text{positivo} \rightarrow \text{prodotti}$

 $\nu_i = \text{negativo} \rightarrow \text{reagenti}$

All'equilibrio:

$$Q = K \tag{11.7}$$

quindi

$$K = \prod_{i} a_i^{\nu_i} \tag{11.8}$$

Nel caso di gas:

pr: prodotti, re: reagenti

 p° : pressione allo stato standard (1 atm o equivalenti)

 ν : coefficiente stechiometrico

$$K_p = \frac{\prod_{\text{pr}} \left(\frac{p_{\text{pr}}}{p^{\circ}}\right)^{\nu_{\text{pr}}}}{\prod_{\text{re}} \left(\frac{p_{\text{re}}}{p^{\circ}}\right)^{\nu_{\text{re}}}}$$
(11.9)

$$K_c = \frac{K_p}{\left(\frac{RTC^{\circ}}{p^{\circ}}\right)^{\sum \nu_i}} \tag{11.10}$$

11.1.3 Grado di dissociazione (α)

Il grado di dissociazione all'equilibrio (α) per una sostanza è definito come il rapporto tra il numero di moli di quella sostanza che hanno reagito fratto il numero di moli iniziali:

$$\alpha = \frac{n_{\text{(che hanno reagito)}}}{n_{\text{(iniziali)}}} \tag{11.11}$$

11.1.4 Equilibrio e frazioni molari

Inizio
$$n_A$$
 \Longrightarrow bB $+$ cC

quilibrio $n_A - ax$ $n_B + bx$ $n_C + cx$
 $n_{tot} = (n_A - ax) + n_B + bx + n_C + cx$

frazione molare $\frac{n_A - ax}{n_{tot}}$ $\frac{n_B + bx}{n_{tot}}$ $\frac{n_C + cx}{n_{tot}}$

pressione parziale $\left(\frac{n_A - ax}{n_{tot}}\right) p_{tot}$ $\left(\frac{n_B + bx}{n_{tot}}\right) p_{tot}$ $\left(\frac{n_C + cx}{n_{tot}}\right) p_{tot}$

11.1.5 Equazione di van't Hoff

 $\Delta_r H$ non varia al variare della temperatura nell'intervallo T_1, T_2

$$\ln \frac{K_2}{K_1} = \frac{-\Delta_r H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$
(11.12)

$$T_2 = \frac{T_1 \Delta_r H}{R T_1 \ln \frac{K_1}{K_2} + \Delta_r H}$$
 (11.13)

$$K_2 = K_1 \exp\left(\frac{T_1 \Delta_r H - T_2 \Delta_r H}{R T_1 T_2}\right) \tag{11.14}$$

Se invece varia son cazzi (più o meno):

 \bullet Consideriamo che $\Delta_r H^\circ$ ed il $\Delta_r S^\circ$ varino con la temperatura.

• Teniamo conto del riscaldamento attraverso le capacità termiche e ci calcoliamo $\Delta_r H^{\circ}$ ed il $\Delta_r S^{\circ}$, alla temperatura di $T_2 \Longrightarrow$ Legge di Kirchoff:

$$\Delta_r H_{T_2} = \Delta_r H_{T_1} + \Delta C_p (T_2 - T_1)$$

La possiamo scrivere anche come:

$$\Delta_r S_{T_2} = \Delta_r S_{T_1} + \Delta C_p \ln \frac{T_2}{T_1}$$

- Calcolo $\Delta_r G_{T_2} = \Delta_r H_{T_2} T_2 \Delta_r S_{T_2}$
- $\bullet\,$ Calcoleremo poi la K_p sfruttando la relazione $\Delta_r G_{T_2} = -RT_2 \ln K_p$

Cinetica

Contents

12.1 Teor	ria	47
12.1.1	Velocità di reazione	47
12.1.2	Leggi cinetiche	47
12.1.3	Legge di Arrhenius	48
12.1.4	Leggi cinetiche integrate	48
12.1.5	Metodo dell'integrazione	48
12.1.6	Metodo delle velocità iniziali	51

12.1 Teoria

$$aA + bB \longrightarrow cC + dD$$

12.1.1 Velocità di reazione

$$v = \frac{-1}{a} \frac{d[A]}{dt} = \frac{-1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$$
(12.1)

12.1.2 Leggi cinetiche

$$v = k[A]^x[B]^y (12.2)$$

x: ordine di reazione rispetto ad A

y: ordine di reazione rispetto a B

12.1.3 Legge di Arrhenius

$$\ln k = \ln A - \frac{E_a}{RT} \tag{12.3}$$

$$k = A \exp\left(\frac{-E_a}{RT}\right) \tag{12.4}$$

$$A = k \left(\exp\left(\frac{-E_a}{RT}\right) \right)^{-1} \tag{12.5}$$

$$\ln \frac{k_2}{k_1} = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \tag{12.6}$$

$$E_a = R \ln \frac{k_2}{k_1} \left(\frac{T_1 T_2}{T_2 - T_1} \right) \tag{12.7}$$

12.1.4 Leggi cinetiche integrate

vedi foglio lezione

12.1.5 Metodo dell'integrazione

$$aA + bB \longrightarrow cC + dD$$

$$v = \frac{-1}{a} \frac{d[A]}{dt} = \frac{-1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$$
(12.8)

 $A \longrightarrow prodotti$

$$-\frac{d[A]}{dt} = k[A]^x$$

Test ordine 0 Test ordine 1 Test ordine 2

tempo (t)
$$k = \frac{[A]_0 - [A]_t}{t}$$
 $k = \frac{1}{t} \ln \frac{[A]_0}{[A]_t}$ $k = \frac{1}{t} \left(\frac{1}{[A]_t} - \frac{1}{[A]_0} \right)$

 t_1

 t_2

 t_3

:

 t_i

Calcola i primi tre o quattro valori di k e valuta l'ordine più appropriato in base a chi non varia troppo e soprattutto chi non ha un andamento crescente o decrescente.

Come calcolare la costante cinetica? Una volta individuato il modello migliore, calcolarsi tutte le k_i e farne la media.

 $\mathbf{aA} \longrightarrow \mathbf{prodotti}$

$$\frac{-1}{a}\frac{d[A]}{dt} = k[A]^{x}$$
$$-\frac{d[A]}{dt} = ak[A]^{x}$$

Non posso usare k direttamente così:

k' = ak

$$-\frac{d[A]}{dt} = k'[A]^x$$

Test ordine 0 Test ordine 1 Test ordine 2

tempo
$$(t)$$
 $k' = \frac{[A]_0 - [A]_t}{t}$ $k' = \frac{1}{t} \ln \frac{[A]_0}{[A]_t}$ $k' = \frac{1}{t} \left(\frac{1}{[A]_t} - \frac{1}{[A]_0} \right)$

 t_1

 t_2

 t_3

:

 t_i

una volta trovato il modello giusto e fatta la media di tutte le k_i' :

$$k' = ak$$

$$k = \frac{k'}{a}$$

Assorbanza (Abs) di un reagente in funzione del tempo

$$\begin{array}{c|ccccc} t & t_1 & t_2 & \dots & t_i \\ Abs & Abs_1 & Abs_2 & \dots & Abs_i \end{array}$$

Legge di Lambert-Beer:

$$Abs = \varepsilon[A]l \tag{12.9}$$

 ε : Coefficiente di estinzione molare

[A]: concentrazione

l: lunghezza cella portacampione

$$[A] = \frac{Abs}{\varepsilon l} \tag{12.10}$$

ora si vanno a sostituire $[A]_t = \frac{Abs_t}{\varepsilon l}$, $[A]_0 = \frac{Abs_0}{\varepsilon l}$ nei tre modelli (ordine 0, ordine 1, ordine 2):

Test ordine 1 Test ordine 2
$$k = \frac{1}{t} \ln \frac{Abs_0}{Abs_t} \quad k = \frac{\varepsilon l}{t} \left(\frac{1}{Abs_t} - \frac{1}{Abs_0} \right)$$

12.1.6 Metodo delle velocità iniziali

Quando ci vengono fornite in tabella le velocità della reazione si applica il metodo delle velocità iniziali

$$v = k[A]^{\alpha}[B]^{\beta} \tag{12.11}$$

passo ai logaritmi naturali

$$\ln v = \ln \left(k[A]^{\alpha} [B]^{\beta} \right)$$

$$= \ln k + \ln [A]^{\alpha} + \ln [B]^{\beta}$$

$$= \ln k + \alpha \ln [A] + \beta \ln [B]$$
(12.12)

bisogna verificare se esiste una coppia di dati sperimentali o di esperimenti in cui la concentrazione di uno dei due reagenti viene mantenuta costante

per esempio alle righe 2) e 3), [B] è uguale in entrambe $([B] = [B]_2)$

$$(3) - 2)$$
 (va bene anche viceversa $(2) - 3)$):

$$(\ln v_3 = \ln k + \alpha \ln [A]_3 + \beta \ln [B]_2) - (\ln v_2 = \ln k + \alpha \ln [A]_2 + \beta \ln [B]_2)$$

$$\ln v_3 - \ln v_2 = \ln k - \ln k + \alpha \ln [A]_3 - \alpha \ln [A]_2 + \beta \ln [B]_2 - \beta \ln [B]_2$$

$$\ln \frac{v_3}{v_2} = \alpha \ln \frac{[A]_3}{[A]_2} + \beta \ln \frac{[B]_2}{[B]_2}$$

$$\ln \frac{v_3}{v_2} = \alpha \ln \frac{[A]_3}{[A]_2}$$

$$\alpha = \frac{\ln \frac{v_3}{v_2}}{\ln \frac{[A]_3}{[A]_2}}$$

ora procedo a trovare β

$$(va bene anche viceversa 2) - 1)$$
:

ricordiamo che ora α è nota

$$(\ln v_1 = \ln k + \alpha \ln [A]_1 + \beta \ln [B]_1) - (\ln v_2 = \ln k + \alpha \ln [A]_2 + \beta \ln [B]_2)$$

e ci si ricava β

Per calcolare la costate cinetica k:

$$k = \frac{v}{[A]^{\alpha}[B]^{\beta}} \tag{12.13}$$

Compendio

Contents

13.1 Cifro	$e ext{ significative} \dots \dots$
13.2 Erro	$egin{array}{cccccccccccccccccccccccccccccccccccc$
13.3 Prop	orietà matematiche
13.3.1	Integrali
13.3.2	Derivate
13.3.3	Proprietà dei logaritmi
13 3 4	Proprietà delle potenze 50

13.1 Cifre significative

• Tutti i numeri diversi da zero sono considerati cifre significative. Ad esempio, 1, 2, 3, 4, 5, 6, 7, 8, 9 sono tutti considerati cifre significative.

- Tutti i zeri compresi tra cifre diverse da zero sono considerati cifre significative. Ad esempio, 101, 2003, e 5,06 hanno quattro cifre significative ciascuno.
- Zeri finali alla destra di un numero decimale sono considerati cifre significative. Ad esempio, 2,00 ha tre cifre significative.
- Zeri usati come segnaposto per allineare i numeri decimali o i numeri interi non sono considerati cifre significative. Ad esempio, 5000 potrebbe avere 1, 2, 3 o 4 cifre significative a seconda del contesto.

13.2 Errore percentuale

$$Errore\ percentuale = \frac{|valore\ osservato-valore\ di\ riferimento|}{|valore\ di\ riferimento|} \times 100\%$$

Dove:

- valore osservato rappresenta il valore che è stato effettivamente misurato o ottenuto sperimentalmente.
- valore di riferimento è il valore con cui il valore osservato viene confrontato o rispetto al quale viene valutato l'errore.

13.3 Proprietà matematiche

13.3.1 Integrali

$$\int \ln x \, dx = x(\ln x - 1) + C$$
$$\int x^{\alpha} \, dx = \frac{x^{\alpha+1}}{\alpha+1} + C$$

$$\int \frac{1}{x} dx = \ln x + C$$

13.3.2 Derivate

$$d(x^{\alpha}) = (\alpha - 1)x^{\alpha - 1}$$

13.3.3 Proprietà dei logaritmi

• Proprietà della moltiplicazione:

$$\log_b(x \cdot y) = \log_b(x) + \log_b(y)$$

• Proprietà della divisione:

$$\log_b \left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

• Proprietà della potenza:

$$\log_b(x^n) = n \cdot \log_b(x)$$

• Proprietà del cambio di base:

$$\log_b(x) = \frac{\log_c(x)}{\log_c(b)}$$

• Proprietà dell'inverso:

$$\log_b\left(\frac{1}{x}\right) = \log_b(x)^{-1} = -\log_b(x)$$

• Proprietà del logaritmo naturale:

$$ln(x) = \log_e(x)$$

13.3.4 Proprietà delle potenze

Base uguale, esponenti diversi

• Proprietà della moltiplicazione:

$$a^m \cdot a^n = a^{m+n}$$

• Proprietà della divisione:

$$\frac{a^m}{a^n} = a^{m-n}$$

• Proprietà della potenza di una potenza:

$$(a^m)^n = a^{m \cdot n}$$

• Proprietà della potenza di uno:

$$a^1 = a$$

• Proprietà della potenza di zero:

$$a^0 = 1$$

Basi diverse, esponente uguale

• Potenze con basi diverse e esponenti uguali:

$$a^n \cdot b^n = (a \cdot b)^n$$

• Divisione di potenze con basi diverse e esponenti uguali:

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

13.4 Terminologia

 ${\rm calore\ latente} = {\rm entalpia}$