Course: Intelligent Systems

Unit 4: Language Technologies

Language technologies Part 2

Mariano Rico 2021 Technical University of Madrid

Table of Contents

- 1. Part of Speech
- 2. Sparse Vector models
- 3. TF-IDF
- 4. Document classification
- 5. Hands-on 2

PART OF SPEECH

Part-of-speech tagging

Part of speech (POS):

 Noun, verb, pronoun, preposition, adverb, conjunction, participle, article, etc.

POS Tagging

 Automatic assignment of part-of-speech descriptors (tags) to input tokens

Tagset /DT: determiner /JJ: adjective /NN: noun /VBD: verb, past tense ... The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./. 7

Lexical classes of English words

- Two broad categories
 - Open class types. Commonly accept the addition of new words
 - Nouns, verbs, adjectives, adverbs
 - Closed class types. New words are rarely added
 - Prepositions, determiners, pronouns, conjunctions, etc.

Others

- Interjections (oh, ah, hey, man, alas, uh, um)
- Negatives (no, not)
- Politeness markers (please, thank you)
- Greetings (hello, goodbye)
- The existential there (there are two on the table)

– ...

- Framework for a coherent annotation of
 - POS
 - grammar trees
 - Syntactic dependencies
- Created by an open community
 - More than 300 collaborators
 - 200 treebanks
 - More than 100 languages
- UD annotations are the evolution of
 - Stanford Universal Dependencies. <u>More info</u>.
 - Google Universal POS. <u>More info</u>.
 - Interlingua from Interset for morph syntactic tagsets. More info.
- Even more info

Treebanks for Spanish

- IULA Spanish LSP Treebank
 - Syntactic annotation of 42.000 phrases (590.000 tokens, 631.642 lines)
 - 41MB (uncompressed) in CONLL format (<u>CONLL tagset</u>)
 - Warning, it is NOT CONLL-U.
 - The corpus contains text from newspapers, and texts from areas like law, economy, medicine, genomics, etc.

- Tags (labels) for POS
 - The most important (core)
 - More info
 - Additional properties

Open class words	Closed class words	Other
ADJ	<u>ADP</u>	PUNCT
ADV	<u>AUX</u>	SYM
INTJ	CCONJ	<u>X</u>
<u>NOUN</u>	DET	
<u>PROPN</u>	<u>NUM</u>	
<u>VERB</u>	PART	
	PRON	
	SCONJ	

Lexical features*	Inflectional features*		
	Nominal*	Verbal*	
PronType	<u>Gender</u>	<u>VerbForm</u>	
<u>NumType</u>	<u>Animacy</u>	Mood	
Poss	<u>NounClass</u>	<u>Tense</u>	
Reflex	Number	<u>Aspect</u>	
<u>Foreign</u>	<u>Case</u>	<u>Voice</u>	
Abbr	<u>Definite</u>	<u>Evident</u>	
<u>Typo</u>	<u>Degree</u>	<u>Polarity</u>	
		<u>Person</u>	
		<u>Polite</u>	
		<u>Clusivity</u>	

Source: Jurafsky 3rd ed.

POS tags in detail (Nivre et al. 2016)

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
[]	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open	VERB	words for actions and processes	draw, provide, go
Ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
S,		spacial, temporal, or other relation	
Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class	DET	Determiner: marks noun phrase properties	a, an, the, this
[<u>D</u>	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
C10	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

- Tags for relations
 - The most relevant:
 - nsubj: the subject

• obj: the direct object

• iobj: the indirect objet

root: the verb

Not represented explicitly in CoNLL-U

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj obj iobj	csubj ccomp xcomp		
Non-core dependents	obl vocative expl dislocated	advol	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	acl_	amod	det clf case
Coordination	MWE	Loose	Special	Other
<u>coni</u> <u>cc</u>	fixed flat compound	<u>list</u> parataxis	orphan goeswith reparandum	punct root dep

* The advmod relation is used for modifiers not only of predicates but also of other modifier words.

UD from R

```
model <- udpipe download model(language = "spanish-ancora") #Alternative: "spanish-gsd"</pre>
udmodel es <- udpipe load model(file = model$file model)</pre>
txt <- c("En un lugar de La Mancha, Don Quijote y Sancho esperaban a Cervantes.")
anno <- udpipe annotate(udmodel_es, x = txt)</pre>
df <- as.data.frame(anno)</pre>
#Has 14 columns doc_id, paragraph_id, sentence_id, sentence, token_id, token,
#
                        lemma,
                                            upos,
                                                               xpos,
                                                                            feats,
                                                                                        head token id,
                     dep rel,
                                            deps,
                                                               misc
df[,5:14]
         token id
                                                                                     feats head token id dep rel deps
                    token
                             lemma upos xpos
                                                                                                                            misc
                                     ADP
                                          ADP
                                                                                AdpType=Prep
                                                                                                          case <NA>
                                 en
                                                                                                                             <NA>
       2
                                                Definite=Ind | Gender=Masc | Number=Sing | PronType=Art
                        un
                                uno
                                     DET
                                          DET
                                                                                                           det <NA>
                                                                                                                             <NA>
       3
                                                                       Gender=Masc|Number=Sing
                                    NOUN
                                         NOUN
                                                                                                           obl <NA>
                     lugar
                              lugar
                                                                                                                             <NA>
                        de
                                     ADP
                                          ADP
                                                                                AdpType=Prep
                                                                                                          case <NA>
                                                                                                                             <NA>
       5
                        La
                                     DET
                                          DET
                                                 Definite=Def|Gender=Fem|Number=Sing|PronType=Art
                                                                                                           det <NA>
                                                                                                                             <NA>
                    Mancha
                             Mancha PROPN PROPN
                                                                                                          nmod <NA>
                                                                                                                     SpaceAfter=No
                7
                                  , PUNCT PUNCT
                                                                               PunctType=Comm
                                                                                                          punct <NA>
                                                                                                                             <NA>
                       Don
                                Don PROPN PROPN
                                                                                       <NA>
                                                                                                          nsubj <NA>
                                                                                                                             <NA>
                   Quijote
                            Quijote PROPN PROPN
                                                                                       <NA>
                                                                                                          flat <NA>
                                                                                                                             <NA>
       10
               10
                                 y CCONJ CCONJ
                                                                                       <NA>
                                                                                                     11
                                                                                                            cc <NA>
                                                                                                                             <NA>
       11
                                                                                       <NA>
               11
                    Sancho
                             Sancho PROPN PROPN
                                                                                                          conj <NA>
                                                                                                                             <NA>
                                         VERB Mood=Ind|Number=Plur|Person=3|Tense=Imp|VerbForm=Fin
       12
               12 esperaban
                                                                                                          root <NA>
                                                                                                                             <NA>
                                                                                                          case <NA>
       13
                                     ADP
                                                                                AdpType=Prep
                                                                                                     14
                                                                                                                             <NA>
               14 Cervantes Cervantes PROPN PROPN
                                                                                                     12
       14
                                                                                                           obi <NA>
                                                                                                                     SpaceAfter=No
       15
                                                                               PunctType=Peri
                                                                                                          punct <NA> SpacesAfter=\\n
```

¡Warn!, anno is a list containing 3 things (the last two thigs were lost when converted to dataframe):

1) x: The x character vector with text.

library(udpipe)

2) conllu: annotation in CONLL-U format

. PUNCT PUNCT

3) error: A vector with the same length of x containing possible errors when annotating x cat(anno\$conllu, file = "my annotacion.conllu") #You can load it with udpipe read conllu()

CoNLL-U tools

- UniversalDependencies/Tools
 - Relevant command line tools
 - validate.py Verifies that a file is CoNLL-U
 - normalize_Unicode.pl Convierta UTF-8 to NFC format
 - conllu_to_conllx.pl Convierts from CoNLL-U to the previous format (CoNLL-X) that some tools still use
 - restore_conlu_lines.pl Joins a CoNLL-U file with a CoNLL-X, returning a CoNLL-U file

UD Tools

This repository contains various scripts in Perl and Python that can be used as tools for Universal Dependencies.

Playing with CoNLL-U files (1/2)

- CoNLL-U Viewer
 - One of the tools in UD

CoNLL-U File

- URL:

https://universaldependencies.org/conllu_vie

wer.html

- It is interactive! (0.9kb loaded)

Load CoNLL-U File .

Playing with CoNLL-U files (2/2)

- The tool created by Kleiweg
 - Developed at Univ. Groningen
 - URL: https://urd2.let.rug.nl/~kleiweg/conllu
 - Load the file created previously

Dependencies with SpaCy

- SpaCy (spacy.io) now it is explosion.ai
- Web app to test dependencies
 - For Spanish only has the sm(all) model
- Spacy is faster than UD

Evaluating POS taggers

Tagset metrics

- Informativeness. Not easy to measure; rough measures:
 - Size of the tagset
 - Amount of ambiguity present in the input
- Specificability. Degree to which different linguists uniformly use the tagset when independently tagging the same texts
- Tagger metrics (using a benchmark corpus)
 - Precision/accuracy
 - Recall
 - Error rate
 - Ambiguity. Average number of analyses in the tagger's output

POS tagging applications

Syntax parsing

- Basic unit for parsing
- Information extraction
 - Indication of names, relations
- Machine translation
 - The meaning of a particular word depends on its POS tag
- Sentiment analysis
 - Adjectives are the major opinion holders
 - Good vs Bad, Excellent vs Terrible
- Linguistic studies
 - Thanks to large tagged text corpora
- ...

Table of Contents

- 1. Part of Speech
- 2. Sparse Vector models
- 3. TF-IDF
- 4. Document classification
- 5. Hands-on 2

SPARSE VECTOR MODELS

The term-document matrix

- Each row is a word (token) in the vocabulary
- Each columns is a document in the corpus
- The cell value is the number of occurrences of the word in the document
 - Example: 4 plays by Shakespeare

Occurrence table

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

The term-document matrix

- Each row is a word (token) in the vocabulary
- Each columns is a document in the corpus
- The cell value is the number of occurrences of the word in the document
 - Example: 4 plays by Shakespeare

Occurrence table

	As You Like It	Twelfth Night	Juli <mark>us C</mark> aesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

The term-document matrix

- Let us make a projection to 2 dimensions
 - Over any 2 axis in the space
 - Example: over axis fool and battle

As You Like It Twelfth Night Julius Caesar Henry V battle 89 114 80 62 good Epic plays (high values of *battle*) 36 fool wit 20 15 Henry V [4,13] battle Comedies (high values of *fool*) 10 Julius Caesar [1,7] Twelfth Night [58,0] As You Like It [36,1] 30 35 fool X

Occurrence table

X

Semantic similarity Similarity between words and vectors

- Operation with two vectors: dot product $a \cdot b$
 - We have to normalize the vectors (more words frequency do not implies more similarity)

$$\frac{a \cdot b}{|a| |b|}$$

- It is the $\cos \theta$
- As occurrences are always positive, the value of $\cos \theta$ is always between 0 and 1.

Semantic similarity Similarity between words and vectors

 An example (Jurafsky 2021)

Occurrence table over the dimensions of the columns

	У		X
	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

$$\cos(\text{cherry,information}) = \frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

$$\cos(\text{digital,information}) = \frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Semantic similarity TF-IDF matrix

- TF from *term-frequency*
 - A Word occurring 100 times in a document is not 100 times more important than a word occurring only once
 - Calculate the **matrix** tf so:

$$tf_{t,d} = \log_{10}(1 + occurrences(t,d))$$

If $occurrences(t,d) = 0$ then $tf_{t,d} = 0$

- - it's a hyphen, not a minus
- IDF from *inverse document frequency*
 - Gives a higher weight to words occurring only in some documents (valuable words for charactering)
 - Calculate the **vector** idf_t (it is not a matrix) so:

$$idf_t = \log_{10}\left(\frac{N}{df_t}\right)$$
, where $\begin{cases} N & \text{number of documents in the corpus} \\ df_t & \text{number of documents containing } t \end{cases}$

Semantic similarity TF-IDF matrix

Example with plays by Shakespeare

Occurrence table

Matrix *term-frequency* (the cell's value is the number of occurrences of the term (word in the row) in the document of the column). Let's compute: $tf_{t,d}$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36 log(1+36)		1	4
wit	20 log(1+20)	= 1.322 15	2	3

column). Let's compute: $tf_{t,d} = \log_{10}(1 + occurrencies(t,d))$

Vector *df* (number of documents containing the word)

sweet

Word	df	idf	log(N/df)
Romeo	1	1.57	$= log(37)^{2}$
salad	2	1.27	= log(37/2)
Falstaff	4	0.967	$= \log(37/4)$
forest	12	0.489	etc
battle	21	0.246	
wit	34	0.037	
fool	36	0.012	$idf_t = \log t$
good	37	0	

1.57

= log(37/1) = 1.57= log(37/2) = 1.27= log(37/4) = 0.967etc

$$idf_t = \log_{10}\left(\frac{N}{df_t}\right)$$

We know that N (number of plays) is 37

TF-IDF matrix: $w_{t,d} = tf_{t,d} * idf_t$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

$$w_{wit,As\ You\ Like\ It} = tf_{wit,As\ You\ Like\ It} * idf_{wit}$$
$$= 1.322 * 0.037 = 0.049$$

Semantic similarity TF-IDF matrix

From R

- The quanteda package computes the tf-idf matrix from a given corpus
 - Function <u>textstat_simil()</u> returns a matrix of similarities
 - Function <u>textstat dist()</u> returns a matrix of distances
 - With distances you can do dendrograms

Table of Contents

- 1. Part of Speech
- 2. Sparse Vector models
- 3. TF-IDF
- 4. Document classification
- 5. Hands-on 2

DOCUMENT CLASSIFICATION

Dataset

Data Frame

Independent variables, features, characteristics...

Dependent variable, class...

X (X1, X2, X3...)

Y

	X	Y
	X-train	Y-train
Split —	X-test	Y-test

	X	Y
	X-train	Y-train
Split —	X-test	Y-test

Classification

MODELS: EVALUATION

How do we measure if prediction (binary) is good?

		Y-test		
		pos	neg	
Y-predict	pos			
	neg			

Y-test

compare

Y-predict

How do we measure if prediction (**binary**) is good? We use the **confusión matrix**

		Y-test	
		pos	neg
Y-predict	pos	True positives (<i>TP</i>)	False positives (<i>FP</i>)
	neg	False negativos (<i>FN</i>)	True negatives (<i>TN</i>)

Y-test

compare

Y-predict

How do we measure if prediction (binary) is good?

We use the **confusion matrix**, and **calcule** *p* (**precision**) and *r* (*recall*)

		Y-test	
		pos	neg
Y-predict	pos	True positives (<i>TP</i>)	False positives (<i>FP</i>)
	neg	False negatives (<i>FN</i>)	True negatives (<i>TN</i>)

$$p = \frac{TP}{TP + FP}$$

$$r = \frac{TP}{TP + FN}$$

An example with spam detection:

Each email is classified as **spam** or **normal** The confusion matrix is this:

Total emails: 60+50+30+200 = 340

We know (Y-test) than 60+30=90 are normal

Our predictor (Y-predict) says that 60+50 = 110 are normal

$$30+200 = 230$$
 are spam

001200 200 at 0 0patri				
		Y-test		
		pos (normal)	neg (spam)	
Y-predict	pos (normal)	True positives (<i>TP</i>) = 60	False positives (<i>FP</i>) = 50	$p = \frac{TP}{TP + FP}$
	neg (spam)	False negatives (<i>FN</i>) = 30	True negatives (<i>VN</i>)=200	$= \frac{60}{60 + 50}$ $= 0.54 (54\%)$
		TP	60	

$$r = \frac{TP}{TP + FN} = \frac{60}{60 + 30} = 0.66 = 66\%$$

If we have more than two classes (is not binary):

Example: each email is classified as **spam**, **normal**, or as **urgent**.

		Y-test		
		urgent	normal	spam
Y-predict	urgent	8	10	1
	normal	5	60	50
	spam	3	30	200

$$p_{urgent} = \frac{8}{8 + 10 + 1}$$

$$p_{normal} = \frac{60}{5 + 60 + 50}$$

$$p_{spam} = \frac{200}{3 + 30 + 200}$$

$$r_u = \frac{8}{8+5+3}$$
 $r_n = \frac{60}{10+60+30}$ $r_s = \frac{200}{1+50+200}$

Hands-on 2

1.- to learn how to perform different annotations (word, sentence, part-of-speech) over text documents

Materials:

R script at: http://rpubs.com/rgcmme/IS-HO2

Tasks:

Annotate corpus

2.- work with dictionaries using aspell

Materials:

Aspell manual

Post by Typethinker (usage of aspell and affixes)

Deliverable ideas:

For a given language (e.g. English, Spanish), provide:
List of nouns (masculine, singular)
List of verbs (infinitive)

3.- More in Moodle (to appear)

Text classification From R

Dendrograms with hclust()

```
m <- as.matrix(dtm)
distMatrix <- dist(m, method="euclidean")

groups <- hclust(distMatrix, method="ward.D")
plot(groups, cex=0.9, hang=-1)
rect.hclust(groups, k=5)</pre>
```

Cluster Dendrogram

Text classification From R

- Package <u>quanteda.textmodels</u> (in <u>CRAN</u>). Has 8 basic models for quanteda corpora
 - The simplest is the Naive Bayes classifier
 - Function textmodel_nb().With 2 types of distributions:
 - » Multinomial
 - » Bernoulli
 - A more advanced (SVM)
 - Function textmodel svm()
- Package <u>quanteda.classifiers</u> (no in CRAN).
 Advanced models for quanteda corpora
 - Two classifiers (using neuronal networks)
 - Multilevel perceptron network
 - Convolutional neural network + LSTM model fitted to word embeddings

Questions?

Course: Intelligent Systems

Unit 4: Language Technologies

Language technologies Part 2

Mariano Rico 2021 Technical University of Madrid

