Massless ϕ^4 theory is not asymptotically free

H. Alhendi and M.O. Taha

Department of Physics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received 12 November 1992

An ambiguity in the renormalization group β -function of massless ϕ^4 theory is resolved, leaving the known one-loop expression intact. Contrary to recent claims, this theory is therefore not asymptotically free.

The one-loop perturbative renormalization group (RG) β -function for massless $\lambda \phi^4$ theory is known to be

$$\beta_{1-\text{loop}} = \frac{3h\lambda^2}{16\pi^2}.$$
 (1)

The positivity of the β -function at the origin ensures that $\lambda \phi^4$ is not asymptotically free. Although this conclusion is based on the perturbative β -function, it may be challenged if the exact β -function is known to contain a non-perturbative part which is non-analytic at $\lambda = 0$ and in which the negative contribution dominates over the leading perturbative term as $h\lambda \to 0$. However, an analytic non-perturbative expression for the β -function, defined at $\lambda = 0$, cannot differ from the perturbative β -function as $h\lambda \to 0$. Any such discrepancy would lead to conflicting physical consequences, such as the asymptotic behaviour of Green functions in momentum space [1] or the asymptotic behaviour of the effective potential in field space [2].

It has, however, been claimed [3] recently that such a non-perturbative β -function, defined and analytic at $\lambda = 0$ and in contradiction with eq. (1), does in fact exist for $\lambda \phi^4$. This function is given as

$$\beta = \frac{-3h\lambda^2}{16\pi^2} + O(\lambda^3) \ . \tag{2}$$

The derivation of this result is based on the renormalization group equation (RGE) of the effective potential $V(\phi)$:

$$\left(M\frac{\partial}{\partial M} + \beta\frac{\partial}{\partial \lambda} - \gamma\phi\frac{\partial}{\partial \phi}\right)V(\phi, \lambda, M) = 0,$$
(3)

and the one-loop expression $V_{1-loop}(\phi)$ for $V(\phi)$.

Assuming that $\lambda \phi^4$ theory undergoes spontaneous symmetry breaking (SSB), the value $V(\bar{\phi}, \lambda, M)$ of the effective potential at its absolute minimum $\phi = \bar{\phi}$ satisfies

$$\left(M\frac{\partial}{\partial M} + \beta\frac{\partial}{\partial \lambda}\right)V(\tilde{\phi}, \lambda, M) = 0.$$
(4)

This equation determines the β -function when $V(\bar{\phi}, \lambda, M)$ is known. The expression for $V_{1-loop}(\phi)$ [4] is

$$V_{1-\text{loop}}(\phi) = \frac{\lambda}{4!} \phi^4 + \frac{\lambda^2 \phi^4}{256\pi^2} \left(\log \frac{\lambda \phi^2}{2M^2} - \frac{1}{2} \right).$$
 (5)

From this one finds,

$$\bar{\phi}_{1\text{-loop}}^2 = \frac{2M^2}{\lambda} \exp\left(\frac{-32\pi^2}{3\lambda}\right),\tag{6}$$

so that

$$V_{\text{1-loop}}(\bar{\phi}) = -\frac{\lambda^2 \bar{\phi}^4}{512\pi^2}.\tag{7}$$

Substitution from this equation into eq. (4) yields the result in eq. (2) for β . It is then claimed that one has obtained asymptotic freedom for $\lambda \phi^4$ as a consequence of its vacuum instability i.e. its property of SSB as demonstrated by $V_{1-\text{loop}}(\phi)$.

Now, although it is true that eq. (4) determines β

non-perturbatively, it is necessary to use a non-perturbative expression for $V(\bar{\phi}, \lambda, M)$ before one can claim [3,5] independence of perturbation. It is clear that when $V_{1-\text{loop}}(\phi)$ is used for $V(\phi)$, eqs. (5), (6) and (7) are all perturbative and there is no way for β of eq. (2) to be non-perturbative.

In fact the minimum of $V_{1\text{-loop}}(\phi)$ at $\phi = \bar{\phi}$ has been known, since the original paper of Coleman and Weinberg [4], to be false, i.e. it is known not to approximate a true minimum of the exact effective potential $V(\phi)$ of massless $\lambda \phi^4$ theory. The use of eq. (7) in eq. (4) is therefore unjustified and should not be expected to give even a correct perturbative result for β .

The assumption that $\phi = \bar{\phi}$ is an approximate minimum of $V(\phi)$ was in fact shown in ref. [6] to be inconsistent with the RGE, where it was pointed out that, if a minimum at $\phi = \bar{\phi}$ exists, then the RGE requires the small- λ asymptotic form of $\bar{\phi}$ to be given by $\bar{\phi}^2 \sim \exp(32\pi^2/3\lambda)$ whereas $V_{1-\text{loop}}(\phi)$ gives $\bar{\phi}_{1-\text{loop}}^2 \sim \exp(-32\pi^2/3\lambda)$. Our interpretation of the result of ref. [3] is that it demonstrates the same contradiction with the RGE. Ref. [3] makes the assumption of the validity of the minimum at $\phi = \bar{\phi}$ and obtains a β -function different from the known expression of the β -function for $\lambda \phi^4$ theory in a region where both are assumed valid i.e. for small λ . This demonstration of the inconsistency of SSB in $V_{1-\text{loop}}(\phi)$ and the RGE for $\lambda \phi^4$ is of the same type as that of ref. [6], i.e. a difference in sign that leads to $\bar{\phi}_{1-\text{loop}} \to 0$ as $\lambda \to 0$ in one case and to $\bar{\lambda}_{1-\text{loop}}(t) \to 0$ as $t\rightarrow\infty$ in the other case, contradicting the RGE in both cases.

The same remarks apply to the gaussian approximation for $\bar{\phi}$, i.e. $\bar{\phi}_{Gauss}^2 \sim \exp(-16\pi^2/\lambda)$ is inconsistent with the RGE for $\bar{\phi}$ and it cannot therefore approximate the true $\bar{\phi}$ of $\lambda\phi^4$ theory, if it exists. In fact the assumption that $\bar{\phi}_{Gauss}$ satisfies the RGE for $\bar{\phi}$ leads [3] to

$$\beta_{\text{Gauss}} = \frac{-\lambda^2}{8\pi^2},\tag{8}$$

different from both previous expressions.

We now show that if one recognizes the perturbative nature of the loop-expansion, for both the effective potential and the RG-functions as explained in ref. [7], one does not obtain eq. (2) from $V_{1-\text{loop}}(\phi)$ For, in this case, one has from eq. (3)

$$M\frac{\partial V_1}{\partial M} + \left(\beta_1 \frac{\partial}{\partial \lambda} - \gamma_1 \phi \frac{\partial}{\partial \phi}\right) V_0 = 0, \qquad (9)$$

where

$$V = V_0 + hV_1 + \dots, \quad \beta = h\beta_1 + \dots, \quad \gamma = h\gamma_1 + \dots,$$

$$V_0 = \frac{\lambda}{4!} \phi^4, \quad V_1 = \frac{\lambda^2 \phi^4}{256\pi^2} \left(\log \frac{\lambda \phi^2}{2M^2} - \frac{1}{2} \right). \quad (10)$$

Eq. (9) is then an identity in ϕ , which for all $\phi \neq 0$ leads to

$$\beta_1 - 4\lambda \gamma_1 = \frac{3}{16\pi^2} \lambda^2 \,. \tag{11}$$

No more conditions on β and γ may be obtained from a proper application of the RGE to $V_{1-loop}(\phi)$. Since eq. (11) does not enable a simultaneous determination of both β_1 and γ_1 , one must feed information from renormalization of Green functions, which gives $\gamma_1 = 0$ so that eq. (11) yields eq. (1) for β_1 .

Finally we remark that the result (2) has nothing to do with SSB. It can be obtained on the basis of the assumption that $V_{1-\text{loop}}(\phi)$ is an exact solution to the RGE for $V(\phi)$. For, this assumption leads to an identity in ϕ that yields the two equations

$$\beta - 4\lambda \gamma = \frac{3h}{16\pi^2} \lambda^2 \,, \quad \beta - 2\lambda \gamma = 0 \,, \tag{12}$$

from the independent terms proportional to ϕ^4 and $\phi^4 \log(\lambda \phi^2/2M^2)$ respectively. The solutions to eqs. (12) are β of eq. (2) and

$$\gamma = -\frac{3h\lambda}{32\pi^2}\,,\tag{13}$$

which is also reported in ref. [3]. The assumption that $V_{1-loop}(\phi)$ exactly solves the RGE is, however, obviously inadmissible. Eqs. (2) and (13) are equivalent to it.

Thus, in conclusion, the use of a perturbative $V_{\rm eff}(\phi)$ in the RGE will not lead to expressions for the RG functions that are different from the conventional ones. In particular there is no perturbative or non-perturbative alternative to the one-loop β -function in eq. (1) for small λ . If non-trivial, massless ϕ^4 is therefore not asymptotically free whether or not SSB occurs.

References

- See, for example, D.J. Gross, in Methods in field theory, eds R. Balian and J. Zinn-Justin (North-Holland, Amsterdam, 1976).
- [2] M.O. Taha, Phys. Rev. D 26 (1982) 2766
- [3] P Castorina and M. Consoli, Phys. Lett. B 235 (1990) 302,
 V. Branchina, P. Castorina, M. Consoli and D. Zappala, Phys Rev. D 42 (1990) 3587, Phys Lett. B 274 (1992) 404
- [4] S. Coleman and E. Weinberg, Phys Rev D 7 (1973) 1888
- [5] G. Pancheri and Y.N Srivastava, preprint LNF-92/010(R) (1992);
 - V. Branchina and M. Consoli, University of Catania preprint (1992).
- [6] M.O. Taha, Phys. Rev D 33 (1986) 1108.
- [7] H Alhendi, Phys Rev D 37 (1988) 3749