Correction Composition Du 2nd Semestre

Exercice 1 :(04.75 pts)

Partie I: (02,5 points)

Construisons un arbre pondère correspondant à cette épreuve.

1 Déterminons la valeur de α

$$P(A_2) = P(A_1) \times P_{A_1}(A_2) + P(B_1) \times P_{B_1}(A_2)$$

$$= \alpha \times 0, 2 + (1 - \alpha) \times 0, 8$$

$$= 0, 2\alpha + 0, 8 - 0, 8\alpha$$

$$= -0, 6\alpha + 0, 8$$

Si
$$P(A_1) = P(A_2) \implies \alpha = -0, 6\alpha + 0, 8$$

 $\implies 1, 6\alpha = 0, 8$
 $\alpha = \frac{0, 8}{1, 6}$
 $\alpha = 0, 5$

2 Calculons la probabilité qu'un athlète se rende au même stade pendant les deux jours.

 A_1 : « l'athlète choisit le stade A le 1^{er} jour »

 B_1 : « l'athlète choisit le stade B le 1^{er} jour »

 A_2 : « l'athlète choisit le stade A le 2^{er} jour »

 B_2 : « l'athlète choisit le stade B le 2^{er} jour »

Un athlète se rende au même stade pendant les deux jours se traduit par: $A_1\cap A_2$ ou $B_1\cap B_2$

$$P((A_1 \cap A_2) \cup (B_1 \cap B_2)) = P(A_1 \cap A_2) + P(B_1 \cap B_2)$$

$$= P(A_1) \times P_{A_1}(A_2) + P(B_1) \times P_{B_1}(B_2)$$

$$= 0, 5 \times 0, 2 + 0, 5 \times 0, 2$$

$$= 0, 1 + 0, 1$$

$$= 0, 2$$

