

Prognosis of the energy price mainly based on solar energy in Germany

A comparison of Random Forest, Gradient Boosting und XGBoost

Structure

- Introduction
- Data Collection & Cleansing incl. Visualization
- Three ways for regression Comparison
- Regression Model and Results
- Analysis of our Results
- Finetuning
- Improvements

How was our procedure? - Introduction

1. Data collection & cleansing

2. Creation of three regression models

3. Analysis & Finetuning

Our Data → Focus: Solar energy

- Day-Ahead Total Load FC
- Actual Total Load
- Day-Ahead Solar generation FC
- Actual Solar Generation
- Sun hours
- Day-Ahead generation Last (w/o Solar)
- Electricity Prices

Our regression models:

- Random forest
- Gradient Boosting
- Extreme Gradient Boosting

Comparative indicator: R²

Our analysis:

- Hyperparameter Tuning & Cross-Validation
- Feature Importance
- Adjustments of the Modell
 - Dummy variable
 - Adding explainable variable

Model assumptions

- Merit Order assumption
- Renewable energy → lowest cost, lower energy price
- Solar power easy to relate to weather conditions
- Wind energy more complex

Data collection & cleansing

Day-Ahead Total Load FC

Actual Total Load

Day-Ahead Solar generation FC

Actual Solar Generation

Sun hours

Day-Ahead generation Last (w/o Solar)

Electricity Prices

• Sources: Deutscher Wetterdienst, Frauenhofer ISE, entso-e Transparency platform, EMBER

- Standardization → Monthly basis
- Reason: Sun hours just available per month or per hour
- Including all data in one file for further processing

Data Visualization

How did our data look like?

How did our data look like?

How did our data look like?

Phillip Dürscheidt, Monika Pallasch, Laura Zammataro | Dortmund, 25.09.2024

Comparison to other studies:

- Sgarlato/Ziel (2023): meterologic data improves electricity price forcasts, Germany,
 LASSO and matrices
- **Trebbien et al. (2022):** effect of renewable energy on the merit order, Germany, XAI machine learning, SHAP, GBT
- Contreras et al. (2003): autoregressive model, prediction based on historical data
- Lucas et al. (2020):explain and forecast the price behavior of a multi-variable regression model, Great Britain, GB, RF and XGBoost
- Kumar Jana & Kumar Paul (2023): hour ahead forecast of electricity prices, Spain, linear regression, XGBoost, CNN (Convolutional Neural Network), RNN (Recurrent Neural Networks), stacked RNN, LSTM, stacked LSTM etc.

Separation of the three used models:

Random Forest	Gradient Boosting	XGBoost
 Combines multiple decsion trees to enhance accuracy and robustness Final predictions are made thorugh averaging Hyperparameter got tuned with gridsearch 	 Computes descision trees that learn from each other Computes a strong learner from multiple weak learners accuracy and performance are unmatched for tabular supervised learning tasks 	 Optimized version of gradient boosting Speed Efficiency Regularization of model complexity (L1 and L2 regularization) Parallelization (efficient computing time) Out-of-core computing (good for huge data sets)

What did our regression model look like?

Electricity Price = $b_0 + b_1^*$ Day-Ahead Load + b_2^* ACT Load + b_3^* Day-Ahead Solar gen. + b_4^* ACT Solar gen. + b_5^* Sun hours + b_7^* Day-Ahead gen. Last (w/o Solar) + b_8^* Date

Performance on training data:

Phillip Dürscheidt, Monika Pallasch, Laura Zammataro | Dortmund, 25.09.2024

Our Results:

Performance on test data:

XGBoost best Performance on test data due to highest R²!

Further analysis: 1. Hyperparameter Tuning

	Random Forest	Gradient Boosting	XGBoost
Best Parameters found ¹ :	Estimator: 20 Max depth: 15 Min samples split: 4 Max features: sqr	learning_rate: 0.1 max_depth: 3 n_estimators: 100	Learning rate: 0,2 Max_depth: 3 N estimators = 150
R ² R ² CV	R ² = 53% R ² CV = 53%	R ² = 83,53% (from 86,40%) R ² CV = 60,27% (from 40,52 %)	R ² = 75,2% (from 92,4%) R ² CV = 56,03% (from 49,78%)

¹used Gridsearch for optimized Parameters (Gökçe et al. (2022), P. 4)

Due to high dependence on test set R² CV optimized

Further analysis: 2. Feature Importance

Feature Importance - outlier

Comments:

- Analysis based on SHAP (SHappely Additive exPlanation) Values
 - Concept of game theory to identify the contribution of every single feature
- Year biggest impact on value
 - Mean prognosis:73,668
 - Actual prognosted value of 248,75
 - → Impact of 157 mainly caused due to year

Based on Lundberg (2017), p.1 f.

Adjustments

Initial Model:

Electricity Price = $b_0 + b_1$ * Day-Ahead Load + b_2 * ACT Load + b_3 * Day-Ahead Solar gen. + b_4 * ACT Solar gen. + b_5 * Sun hours + b_7 * Day-Ahead gen. Last (w/o Solar) + b_8 * Date

Dummy Variable

- signals the one-time effect of Ukraine war ¹
- Problem: not optimal for a small data basis
- XGBoost: Further CV-R² Improvement to 66,8%
- Dummy for period: 2022-2023

Extracting effect by including GPR

- GPR (Geopolitical Risk Index)
 - War potencial by counting key words e.g. "War" and assuming the connected riks

Too high feature importance of the date \rightarrow biased by the ukrainian war (price determined by political regulations)

The adjusted regression model

Electricity Price = $b_0 + b_1$ * Day-Ahead Load + b_2 * ACT Load + b_3 * Day-Ahead Solar gen. + b_4 * ACT Solar gen. + b_5 * Sun hours + b_7 * Day-Ahead gen. Last (w/o Solar) + b_8 * Date + b_9 * GPR Germany + b_{10} * GPR Russia

Performance on test data:

Phillip Dürscheidt, Monika Pallasch, Laura Zammataro | Dortmund, 25.09.2024

Analysis adjusted model: Feature Importance

Comments:

- •The GPRHC_RUS variable shows the highest feature importance.
- •The political effects were isolated from the 'year' variable.
- •Despite this, the 'year' feature still holds high importance, likely due to other unaddressed factors.

Feature Importance – outlier adjusted model

Comments:

- Biggest impact not based on the date anymore
- Moved to GPR from Russia and Germany
 - Fits more real-world
 - Still not all impacts from date identified

Limitations / Improvements

Data:

- Daily / monthly basis not yearly
- More Data
- Include calendar and seasonal effects (holiday, weekend)
- Weather data like cloud cover, irradiance that influence PV plants, temperature influences load
- Location data, temperature higher in denser areas

Model:

- Finetuning for our adjusted Modell
 - HyperparameterTuning
 - Cross Validation
- Further extracting impacts out of the date
 - o e.g. Inflation

General:

- Difficult to prognose electricity prices per month
- Market more determined by political regulations than weather or electricity demand, especially in the long term
- XGBoost regression achieved best results

Literature Sources

- Contreras, J., Espinola, R., Nogales, F., Conejo, A., (2003). ARIMA models to predict next-day electricity prices. In IEEE
 Transactions on Power Systems 18 (pp. 1014–1020).
- Gökçe, M. M., & Duman, E. (2022, December). Performance comparison of simple regression, random forest and XGBoost algorithms for forecasting electricity demand. In 2022 3rd International Informatics and Software Engineering Conference (IISEC) (pp. 1-6). IEEE.
- Hirth, L. (2022). The Merit Order Model and Marginal Pricing in Electricity Markets. Neon energy. https://neon.energy/marginal-pricing (22.09.2024, 21:09).
- Kumar Jana, A., Kumar Paul, R. (2023). Performance Comparison of Advanced Machine Learning Techniques for Electricity Price Forecasting. In 2023 North American Power Symposium (NAPS). IEEE.
- Lundberg, S. (2017). A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874.
- Lucas, A., Pegios, K., Kotsakis, E., Clarke, D. (2020). Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression. In 2020 Energies, 13, 5420. doi:10.3390/en13205420
- Sgarlato, R., Ziel, F. (2023). The Role of Weather Predictions in Electricity Price Forecasting Beyond the Day-Ahead Horizon. In IEEE TRANSACTIONS ON POWER SYSTEMS, Vol. 38, No. 3 (pp. 2500-2511).
- Trebbien, J., Rydin Gorjao, L., Praktiknjo, A., et al. (2022). Understanding electricity prices beyond the merit order principle using explainable Al. In *Energy and Al, Volume 13, July 2023, 100250.* Elsevier.