Lecture 8 - Phasor

Outline

Sinusoidal signals

Phasor

Sinusoidal Signal (Current or Voltage)

$$v(t) = V_m \cos(\omega t + \theta)$$

 V_m is the **peak value**

 ω is the **angular** frequency in radians per second

$$f = \frac{1}{T}$$
 $\omega = 2\pi f$

Sinusoidal Signals

$$v(t) = V_{\rm m} \cos(\omega t + \phi)$$

Useful relations

$$\sin x = \pm \cos(x \mp 90^{\circ})$$

$$\cos x = \pm \sin(x \pm 90^{\circ})$$

$$\sin x = -\sin(x \pm 180^{\circ})$$

$$\cos x = -\cos(x \pm 180^{\circ})$$

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$2 \sin x \sin y = \cos(x - y) - \cos(x + y)$$

$$2 \sin x \cos y = \sin(x + y) + \sin(x - y)$$

$$2 \cos x \cos y = \cos(x + y) + \cos(x - y)$$

Phase Lead/Lag

$$V_{\rm m}\cos\frac{2\pi t}{T}$$
 $V_{\rm m}\cos\left(\frac{2\pi t}{T} - \frac{\pi}{4}\right)$ $V_{\rm m}\cos\left(\frac{2\pi t}{T} + \frac{\pi}{4}\right)$

Why Sinusoids?

- Numbers of natural phenomenon are sinusoidal in nature.
 - Motion of a pendulum, vibration of a string, ripples on ocean surface
- A very easy signal to generate and transmit
 - Dominant form of signal in communication/electric power industries
 - In the late 1800's there was a battle between proponents of DC and AC. AC won out due to its efficiency for long distance transmission.
- Lastly, they are very easy to handle mathematically.
 - Derivative and integral are also sinusoids.
- Through Fourier analysis, any practical periodic function can be represented as sum of sinusoids.

Representing a Square Wave as a Sum of Sinusoids

(b) Several of the sinusoidal components and the sum of the first five components

$$v_{\text{sq}}(t) = \frac{4A}{\pi} \sin(\omega_0 t) + \frac{4A}{3\pi} \sin(3\omega_0 t) + \frac{4A}{5\pi} \sin(5\omega_0 t) + \cdots$$
$$\omega_0 = 2\pi/T$$

The Sinusoidal Response

$$v_S = V_m \cos(\omega t + \phi), i(0^-) = 0.$$

Find $i(t), t \ge 0.$

$$L\frac{di}{dt} + Ri = V_m \cos(\omega t + \phi)$$

Ordinary differential equation

Sinusoidal Steady-State Response

$$i = \frac{-V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos(\phi - \theta) e^{-(R/L)t} + \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos(\omega t + \phi - \theta)$$

Transient response

Steady-state response

- Steady-state solution is sinusoidal
- Response frequency = source frequency
- Magnitude & phase of response differs from that of source

Lecture 7

The Magic of Sinusoids

- When a linear, time invariant (LTI) circuit is excited by a sinusoid, it's output is a sinusoid at the same frequency.
 - Only the magnitude and phase (<u>initial phase angle</u>) of the output differ from the input.
- In order to find a steady-state voltage or current, all we need to know is its <u>magnitude</u> and its <u>initial phase angle</u> relative to the source.

Complex Numbers

- A powerful method for representing sinusoids is the phasor.
- A complex number z can be represented in rectangular form as:

$$z = x + jy$$
 $\operatorname{Re}(z) = x$ $\operatorname{Im}(z) = y$

 It can also be written in polar or exponential form as:

$$z = r \angle \phi = re^{j\phi}$$

Euler's Formula

Euler's Identities $e^{j\pi} + 1 = 0$

$$e^{j\pi} + 1 = 0$$

$$e^{j\varphi} = \cos\varphi + j\sin\varphi$$

$$\cos \varphi = \frac{e^{j\varphi} + e^{-j\varphi}}{2}$$

$$\sin \varphi = \frac{e^{j\varphi} - e^{-j\varphi}}{2}$$

$$\left| e^{j\varphi} \right| = \sqrt{\cos^2 \varphi + \sin^2 \varphi} = 1$$

Exponential Form of a complex number Z

$$\mathbf{Z} = |\mathbf{Z}|e^{j\varphi} = ze^{j\varphi} = z\angle\varphi$$

Arithmetic With Complex Numbers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Addition

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$
 $z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$ $z_1 z_2 = r_1 r_2 \angle (\phi_1 + \phi_2)$

Multiplication

$$z_1 z_2 = r_1 r_2 \angle \left(\phi_1 + \phi_2 \right)$$

Division

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \left(\phi_1 - \phi_2\right)$$

Reciprocal

$$\frac{1}{z} = \frac{1}{r} \angle \left(-\phi\right)$$

Square Root

$$\sqrt{z} = \sqrt{r} \angle \left(\phi / 2 \right)$$

Complex Conjugate

$$z^* = x - jy = r \angle - \phi = re^{-j\phi}$$

Example

Evaluate these complex numbers

(a)
$$(40/50^{\circ} + 20/-30^{\circ})^{1/2}$$

(b)
$$\frac{10/(-30^\circ) + (3-j4)}{(2+j4)(3-j5)^*}$$

Exercise

Evaluate the following complex numbers

(a)
$$[(5 + j2)(-1 + j4) - 5/60^{\circ}]$$
*

(b)
$$\frac{10 + j5 + 3/40^{\circ}}{-3 + j4} + 10/30^{\circ} + j5$$

Relations for Complex Numbers

Euler's Identity:
$$e^{j\theta} = \cos\theta + j \sin\theta$$

$$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} \qquad \cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\mathbf{z} = x + jy = |\mathbf{z}|e^{j\theta} \qquad \mathbf{z}^* = x - jy = |\mathbf{z}|e^{-j\theta}$$

$$x = \Re(\mathbf{z}) = |\mathbf{z}|\cos\theta \qquad |\mathbf{z}| = \sqrt[4]{\mathbf{z}}\mathbf{z}^* = \sqrt[4]{x^2 + y^2}$$

$$y = \Im(\mathbf{z}) = |\mathbf{z}|\sin\theta \qquad \theta = \tan^{-1}(y/x)$$

$$\mathbf{z}^n = |\mathbf{z}|^n e^{jn\theta} \qquad \mathbf{z}^{1/2} = \pm |\mathbf{z}|^{1/2} e^{j\theta/2}$$

$$\mathbf{z}_1 = \mathbf{z}_1 + jy_1 \qquad \mathbf{z}_2 = x_2 + jy_2$$

$$\mathbf{z}_1 = \mathbf{z}_2 \text{ iff } x_1 = x_2 \text{ and } y_1 = y_2 \qquad \mathbf{z}_1 + \mathbf{z}_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$\mathbf{z}_1\mathbf{z}_2 = |\mathbf{z}_1||\mathbf{z}_2|e^{j(\theta_1 + \theta_2)} \qquad \frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|} e^{j(\theta_1 - \theta_2)}$$

$$-1 = e^{j\pi} = e^{-j\pi} = 1 \angle \pm 180^\circ$$

$$j = e^{j\pi/2} = 1 \angle 90^\circ \qquad -j = e^{-j\pi/2} = 1 \angle -90^\circ$$

$$\sqrt{j} = \pm e^{j\pi/4} = \pm \frac{(1 + j)}{\sqrt{2}} \qquad \sqrt{-j} = \pm e^{-j\pi/4} = \pm \frac{(1 - j)}{\sqrt{2}}$$

Phasor

 The idea of phasor representation is based on Euler's identity:

$$e^{\pm j\phi} = \cos\phi \pm j\sin\phi$$

 From this we can represent a sinusoid as the <u>real component</u> of a vector in the complex plane.

$$\cos \phi = \operatorname{Re}(e^{j\phi})$$

 $\sin \phi = \operatorname{Im}(e^{j\phi})$

Similarly,
$$v(t) = V \cos(\omega t + \phi) = \text{Re}\{Ve^{j\phi}e^{j\omega t}\}$$

Lecture 7 24

Phasor:

$$v(t) = V \cos(\omega t + \phi) = \text{Re}\left\{Ve^{j\phi}e^{j\omega t}\right\} = \text{Re}\left(Ve^{j\omega t}\right) \quad V = Ve^{j\phi}$$

Complex representation of the magnitude and phase of a sinusoid

[Source: Berkeley] Lecture 7

25

Example

Transform these sinusoids to phasors

(a)
$$i = 6 \cos(50t - 40^\circ)$$
 A

(b)
$$v = -4 \sin(30t + 50^\circ) \text{ V}$$

Example

Find the sinusoids represented by these phasors

$$\mathbf{I} = -3 + j4 \,\mathbf{A}$$

$$\mathbf{V} = j8e^{-j20^{\circ}} \,\mathrm{V}$$

$$V = -25/40^{\circ} V$$

$$\mathbf{I} = j(12 - j5) \,\mathbf{A}$$

Phasors

$$v(t) = V_m \cos(\omega t + \phi)$$
 \Leftrightarrow $\mathbf{V} = V_m / \phi$
(Time-domain representation) (Phasor-domain representation)

Sinusoid-Phasor Transformation

$$v(t) = V_m \cos(\omega t + \phi)$$
 \Leftrightarrow $\mathbf{V} = V_m / \phi$
(Time-domain representation) (Phasor-domain representation)

Applying a derivative to a phasor yields:

$$\frac{dv}{dt} \Leftrightarrow j\omega V$$
(Time domain) (Phasor domain)

Applying an integral to a phasor yields:

$$\int v dt \Leftrightarrow \frac{V}{j\omega}$$
(Time domain) (Phasor domain)

Example

• Use the phasor approach, determine the current i(t) in the circuit described by the integrodifferential equation

$$4i + 8 \int i \, dt + 3 \frac{di}{dt} = 50 \cos(2t + 75^\circ)$$

Time Domain - Phasor Domain Transformation

x(t)		X
$A\cos\omega t$	\leftrightarrow	A
$A\cos(\omega t + \phi)$	\leftrightarrow	$Ae^{j\phi}$
$-A\cos(\omega t + \phi)$	\leftrightarrow	$Ae^{j(\phi\pm\pi)}$
$A \sin \omega t$	\leftrightarrow	$Ae^{-j\pi/2} = -jA$
$A\sin(\omega t + \phi)$	\leftrightarrow	$Ae^{j(\phi-\pi/2)}$
$-A\sin(\omega t + \phi)$	\leftrightarrow	$Ae^{j(\phi+\pi/2)}$
$\frac{d}{dt}(x(t))$	\leftrightarrow	$j\omega\mathbf{X}$
$\frac{d}{dt}[A\cos(\omega t + \phi)]$	\leftrightarrow	$j\omega Ae^{j\phi}$
$\int x(t) dt$	\leftrightarrow	$\frac{1}{j\omega}\mathbf{X}$
$\int A\cos(\omega t + \phi) dt$	\leftrightarrow	$\frac{1}{j\omega} A e^{j\phi}$

It is much easier to deal with exponentials in the phasor domain than sinusoidal relations in the time domain.

 You just need to track magnitude/phase, knowing that everything is at frequency ω.

Phasor Relationships for Resistors

 For the resistor, the voltage and current are related via Ohm's law. As such, the voltage and current are in phase with each other.

$$i = I_m \cos(\omega t + \phi)$$
 $\mathbf{I} = I_m \angle \phi$
 $v = RI_m \cos(\omega t + \phi)$ $\mathbf{V} = RI_m \angle \phi$

$$V = RI$$

Phasor Relationships for Inductors

$$i = I_m \cos(\omega t + \phi)$$
 $\mathbf{I} = I_m \angle \phi$
 $v = L \frac{di}{dt} = -\omega L I_m \sin(\omega t + \phi)$
 $= \omega L I_m \cos(\omega t + \phi + 90^\circ)$

$$\mathbf{V} = \omega L I_m \angle \phi + 90^\circ = \omega L I_m e^{j(\phi + 90^\circ)} = \omega L e^{j90^\circ} \cdot I_m e^{j\phi} = j\omega L \cdot \mathbf{I}$$

$$\mathbf{V} = j\omega L\mathbf{I}$$

 The voltage leads the current by 90° (phase shift = 90°)

Lecture 7

Phasor Relationships for Capacitors

$$v = V_m \cos(\omega t + \phi) \quad \mathbf{V} = V_m \angle \phi$$

$$i = C \frac{dv}{dt} = -\omega C V_m \sin(\omega t + \phi)$$

$$= \omega C V_m \cos(\omega t + \phi + 90^\circ)$$

$$\mathbf{I} = \omega C V_m \angle \phi + 90^\circ = \cdots = j\omega C \cdot \mathbf{V}$$

The voltage lags the current by 90°.

Impedance

The voltage-current relations for R, L and C elements are

$$\mathbf{V} = R\mathbf{I} \qquad \mathbf{V} = j\omega L\mathbf{I} \qquad \mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

$$\frac{\mathbf{V}}{\mathbf{I}} = R \qquad \frac{\mathbf{V}}{\mathbf{I}} = j\omega L \qquad \frac{\mathbf{V}}{\mathbf{I}} = \frac{1}{j\omega C}$$

 Phasors allow us to express the relationship between current and voltage using a formula like Ohm's law:

$$\mathbf{V} = \mathbf{I} \, \mathbf{Z}$$
 or $\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}}$

- **Z** is called impedance, measured in ohms.
 - Impedance is not a phasor! But it is (often) a complex number.

Lecture 7

Impedance depends on the frequency ω.

Admittance

Admittance is simply the inverse of impedance, unit: Simens.

$$\mathbf{Y} = \frac{\mathbf{I}}{\mathbf{V}}$$

Element	Impedance	Admittance
R	$\mathbf{Z} = R$	$\mathbf{Y} = \frac{1}{R}$
L	$\mathbf{Z}=j\omega L$	$\mathbf{Y} = \frac{1}{j\omega L}$
C	$\mathbf{Z} = \frac{1}{j\omega C}$	$\mathbf{Y}=j\omega C$

Summary of R, L, C

[Source: Berkeley]

Property	R	L	C
v– i	v = Ri	$v = L \frac{di}{dt}$	$i = C \frac{dv}{dt}$
V–I	V = RI	$\mathbf{V} = j\omega L\mathbf{I}$	$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$
Z	R	$j\omega L$	$\frac{1}{j\omega C}$
dc equivalent	R	Short circuit	Open circuit
High-frequency equivalent	R	Open circuit	Short circuit
Frequency response	$R \xrightarrow{ \mathbf{Z}_{R} } \omega$	$ \mathbf{Z}_{L} $ ωL	$ \mathbf{Z}_{\mathrm{C}} $ $1/\omega C$ ω