UNIVERSIDADE DO MINHO		19 de novembro de 2011
	Álgebra Linear	
1 171	$1^{\underline{0}}$ Teste - ${\bf A}$	D~- 0 h
LEI		Duração: 2 horas

Nome:	Nº:

Responda às seguintes questões, do grupo I e II, justificando convenientemente a sua resposta e apresentando todos os cálculos efectuados.

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

1. **a**) Se
$$2\left(3A + \begin{pmatrix} 1 & 3 \end{pmatrix}^T\right) = \begin{pmatrix} 0 \\ 8 \end{pmatrix} - 2A$$
 então $A = \begin{pmatrix} -1/4 \\ 1/4 \end{pmatrix}$.

b) A matriz
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 verifica $A^2 - 5A + 4I_2 = O$.

c) As matrizes
$$A = \begin{pmatrix} 3 & -4 \\ -5 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 7 & 4 \\ 5 & k \end{pmatrix}$ são comutáveis, se $k = 4$ ou $k = -11$. V F

d) Se
$$A$$
 e B são matrizes de ordem n invertíveis, tais que $ABA = A$, então $B = A^{-1}$. V

e) Se
$$A$$
 é uma matriz idempotente $(A^2 = A)$ então $A^k = A$, para qualquer $k \in \mathbb{N}$. V

2. Considere a matriz
$$A = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix}$$
, onde α é um número real.

a) A matriz
$$A$$
 é simétrica, para qualquer $\alpha \in \mathbb{R}$. V F

b) A matriz
$$A$$
 é ortogonal, para qualquer $\alpha \in \mathbb{R}$. V F

c) A matriz
$$A$$
 é invertível tendo-se $A^{-1}=A$, para qualquer $\alpha\in\mathbb{R}$. V

- ${\bf d})$ O subespaço das soluções do sistema homogéneo associado a A é gerado pelo conjunto $\{{\bf 0}\}.$ V \quad F
- 3. Sejam ${\bf u}$ e ${\bf v}$ dois vectores linearmente independentes de \mathbb{R}^3 e S um subespaço de \mathbb{R}^3 gerado por estes.

a) Os vectores
$$\mathbf{u}$$
, \mathbf{v} e \mathbf{u} + \mathbf{v} geram S .

$${f b})$$
 Os vectores ${f u}, {f v}$ e ${f 0}$ são linearmente dependentes.

c) Existem reais
$$\alpha$$
 e β tais que $\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{0}$.

d) A caracteristica da matriz
$$A = (\mathbf{u} \ \mathbf{v} \ \mathbf{u} + \mathbf{v})$$
 é igual 3. V F

1. Considere o seguinte sistema de equações lineares

$$\begin{cases} x+y-z &= 0 \\ \alpha y + \beta z &= 1 \end{cases} \quad \text{com } \alpha, \beta \in R.$$

- a) Complete, de acordo com os valores de α e β , de modo a obter afirmações verdadeiras.
 - (i) O sistema é impossível se
 - (ii) O sistema é possível indeterminado se
- **b**) Existem valores para α e β que tornam o sistema possível determinado? Se sim, quais?
- c) Sendo $\alpha=0$ e $\beta=1$ determine o conjunto solução do sistema.

d) Considere o respectivo sistema homogéneo associado ao sistema dado e determine, tendo em atenção as diferentes possibilidades para os parâmetros α e β , o seu conjunto solução.

- **2.** Considere a matriz $A = \begin{pmatrix} 1 & 0 & a \\ 0 & \sqrt{2}b & 3 \\ a & 0 & 1 \end{pmatrix}$ com $a, b \in \mathbb{R}$. Determine os valores de a e b para os quais:
 - (i) a característica de A é igual a 2,
 - (ii) a característica de A é igual a 3.

3. Seja U_{α} , uma família de subconjuntos de \mathbb{R}^3 , definida por:

$$U_{\alpha} = \{ (3a, b + \alpha, b) \in \mathbb{R}^3 : a, b \in \mathbb{R} \}.$$

- a) Considere $\alpha = 0$ e mostre que $U = U_0$ é um subespaço vectorial real de \mathbb{R}^3 .
- b) Determine um conjunto de vectores geradores de U_0 que sejam linearmente independentes.
- c) Para que valores de α , U_{α} é um subespaço vectorial real de \mathbb{R}^3 ? Justifique.

4. Mostre que:

a) Se A, B e C são matrizes de ordem n, invertíveis, tais que, $C^{-1}(A+X)B^{-1}=I_n$, então X=CB-A.

b) Sejam A e S matrizes de ordem n. Se A é uma simétrica e S é ortogonal, então $S^{-1}AS$ é uma matriz simétrica.

Cotação:

Council	ta şa o.					
I	II - 1	II - 2	II - 3	II - 4		
6.5	1 + 1 + 1 + 1.5	3	1.5+2+1	0.75 + 0.75		