

Unsupervised Meta-Learning for Few-Shot Image Classification

Siavash Khodadadeh

Dept. of Computer Science siavash.khodadadeh@knights.ucf. edu

Ladislau Bölöni

Dept. of Computer Science lboloni@cs.ucf.edu

Mubarak Shah Center for Research in Computer

> Vision shah@crcv.ucf.edu

Motivation

Meta learning (learning to learn) algorithms facilitate few-shot learning

Model-agnostic meta learning (MAML) [1]

- Meta-learning phase: learn from tasks T₁...T_n
- Target learning phase: few shot learning on T

The good:

- Model-agnostic: no requirement for the network structure
- Very little labeled data needed at the target phase

The bad:

- A lot of labeled data needed at the meta-learning phase
- Tasks T₄...T_n need to be drawn from the same distribution as the

Keep the general flow of MAML but use unlabeled data for

```
Algorithm 1: Unsupervised Meta-learning with Tasks constructed by Random sampling and
Augmentation (UMTRA)
require: N: class-count, N_{MB}: meta-batch size, N_U: no. of updates
require : U = \{...x_i...\} unlabeled dataset
require : \( \alpha \) \( \beta \): sten size hyperparameters
require: A: augmentation function
randomly initialize \theta:
while not done do
    for i in 1 \dots N_{MB} do
         Sample N data points x_1 ... x_N from U:
         T_i \leftarrow \{x_1, \dots x_N\};
         Generate training set D_i = \{(x_1, 1), ..., (x_N, N)\};
         \theta' = \theta:
         for j in 1 \dots N_U do
             Evaluate \nabla_{\theta'} \mathcal{L}_{T_i}(f_{\theta'});
             Compute adapted parameters with gradient descent: \theta'_i = \theta'_i - \alpha \nabla_{\theta'} \mathcal{L}_{T_i}(f_{\theta'});
         Generate validation set for the meta-update D'_i = \{(A(x_1), 1), ..., (A(x_N), N)\}
    Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T} \mathcal{L}_{T_i}(f_{\theta'}) using each \mathcal{D}'_i;
```

[1] C. Finn, P. Abbeel, and S. Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In Proc. of the 34th Int'l Conf. on Machine Learning (ICML-2017), pp. 1126-1135,, 2017.

Unsupervised Meta-learning with Tasks constructed by Random sampling and

Start with an unlabeled data set D of samples

 We assume a large number of classes C present, but we don't know the class of each sample

Generate synthetic one shot training tasks T....T.

- o Random selection of samples with artificial labels
- o The large number of classes ensures high likelihood that classes are different

Create validation data by augmentation x = A(x)

o Augmentation type varies by domain, the objective is to maintain class membership of the augmented data

o On video: use frame selection to create augmented video

C3D architecture

Few shot learning benchmarks: outperforms other unsupervised algorithms and alternates for best with CACTUs-MAML [2]. Massive reduction of required labeled data: 25000 to 25 for Omiglot (5.5) for 95.43% vs 98.83 vs MAML.

		Omniglot				Mini-Imagenet				
Algorithm (N, K)	Clustering	(5,1)	(5,5)	(20,1)	(20,5)	(5,1)	(5,5)	(5,20)	(5,50)	
Training from scratch	N/A	52.50	74.78	24.91	47.62	27.59	38.48	51.53	59.63	
k _{nn} -nearest neighbors	BiGAN	49.55	68.06	27.37	46.70	25.56	31.10	37.31	43.60	
linear classifier	BiGAN	48.28	68.72	27.80	45.82	27.08	33.91	44.00	50.41	
MLP with dropout	BiGAN	40.54	62.56	19.92	40.71	22.91	29.06	40.06	48.36	
cluster matching	BiGAN	43.96	58.62	21.54	31.06	24.63	29.49	33.89	36.13	
CACTUs-MAML	BiGAN	58.18	78.66	35.56	58.62	36.24	51.28	61.33	66.91	
CACTUs-ProtoNets	BiGAN	54.74	71.69	33.40	50.62	36.62	50.16	59.56	63.27	
k_{nn} -nearest neighbors	ACAI/DC	57.46	81.16	39.73	66.38	28.90	42.25	56.44	63.90	
linear classifier	ACAI/DC	61.08	81.82	43.20	66.33	29.44	39.79	56.19	65.28	
MLP with dropout	ACAI/DC	51.95	77.20	30.65	58.62	29.03	39.67	52.71	60.95	
cluster matching	ACAI/DC	54.94	71.09	32.19	45.93	22.20	23.50	24.97	26.87	
CACTUs-MAML	ACAI/DC	68.84	87.78	48.09	73.36	39.90	53.97	63.84	69.64	
CACTUs-ProtoNets	ACAI/DC	68.12	83.58	47.75	66.27	39.18	53.36	61.54	63.55	
UMTRA (ours)	N/A	83.80	95.43	74.25	92.12	39.93	50.73	61.11	67.15	
MAML (Supervised)	N/A	94.46	98.83	84.60	96.29	46.81	62.13	71.03	75.54	
ProtoNets (Supervised)	N/A	98.35	99.58	95.31	98.81	46.56	62.29	70.05	72.04	

Works on video classification as well: Test on all samples of each class by looking at just one example for train

Algorithm	Test Accuracy / F1-Score
Training from scratch	29.30 / 20.48
Pre-trained on Kinetics	45.51 / 42.49
UMTRA on unlabeled Kinetics (ours)	60.33 / 58.47
Supervised MAML on Kinetics	71.08 / 69.44

Algorithm (N, K)	(5, 1)	(5, 5)	(5, 10)
Training from scratch	26.86	39.65	50.61
UMTRA	33.43	50.19	58.84

This research is based upon work supported in parts by the National Science Foundation under Grant numbers IIS-1409823 and IIS-1741431 and Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. D17PC00345.