A Template for Bachelor's Theses and Master's Theses

Bachelorarbeit

zur Erlangung des Grades Bachelor of Science (B. Sc.) im Studiengang Volkswirtschaftslehre an der Rheinischen Friedrich-Wilhelms-Universität Bonn

Themensteller: Prof. Dr. Vae-Ree Smart

Vorgelegt im Januar 2019 von

Lou E. Vüí-Tøn

Matrikelnummer: 7654321

Inhaltsverzeichnis

1	Introduction						
2	Metl	nods		3			
	2.1	Desig	n of the Main Experiment	3			
		2.1.1	General Features	3			
		2.1.2	More Specific Features	4			
		2.1.3	Some More Details	7			
		2.1.4	Procedure	8			
	2.2	Predic	etions	9			
		2.2.1	Discounted Utility	11			
		2.2.2	Focus-Weighted Utility	12			
		2.2.3	Hypotheses	14			
3	Resu	ılts		15			
	3.1	Test o	f Hypothesis 1	15			
	3.2	Test o	f Hypothesis 2	16			
	3.3	Hetero	ogeneity	17			
	3.4	Struct	ural Estimation	19			
4	Disc	ussion		20			
	4.1	Some	Limitations	20			
	4.2	Utility	from Money	20			
5	Con	clusion	í	22			
Aı	nhang	A Pu	nt More Complicated Derivations and Proofs Here	24			
	A.1	Apper	ndix Subsection	24			
	A.2	Salien	ice	25			
Aı	nhang	B So	me Additional Figures	26			
Aı	nhang	C si	unitx Example Tables	29			
Aı	nhang	D Ma	ath Test Serif	30			
	D.1	Overv	riew Serif	30			
	D.2	Formu	ılas Serif	30			

D.3	Math Alphabets Serif	32
D.4	Character Sidebearings Serif	33
D.5	Superscript Positioning Serif	34
D.6	Subscript Positioning Serif	35
D.7	Accent Positioning Serif	36
D.8	Differentials Serif	38
D.9	Slash Kerning Serif	39
D.10	Big Operators Serif	40
D.11	Radicals Serif	40
D.12	Over- and Underbraces Serif	40
D.13	Normal and Wide Accents Serif	40
D.14	Long Arrows Serif	41
D.15	Left and Right Delimiters Serif	41
D.16	Big-g-g Delimiters Serif	41
D.17	Binary Operators Serif	42
D.18	Relations Serif	42
D.19	Punctuation Serif	42
D.20	Arrows Serif	42
D.21	Miscellaneous Symbols Serif	43
D.22	Variable-Sized Operators Serif	43
D.23	Log-Like Operators Serif	43
D.24	Delimiters Serif	43
D.25	Large Delimiters Serif	43
D.26	Math Mode Accents Serif	43
D.27	Miscellaneous Constructions Serif	44
D.28	AMS Delimiters Serif	44
D.29	AMS Arrows Serif	44
D.30	AMS Negated Arrows Serif	44
D.31	AMS Greek Serif	44
D.32	AMS Hebrew Serif	44
D.33	AMS Miscellaneous Serif	45
D.34	AMS Binary Operators Serif	45
D.35	AMS Relations Serif	46
D.36	AMS Negated Relations Serif	47

Literaturverzeichnis 48

1 Introduction

"Most people can save a few dollars a day or even \$10 a day," she said. "That's doable. But if you say, 'Can you save \$300 a month or a couple of thousand dollars a year?' people will say, 'Whoa.'Avoiding that 'whoa,' which is the hesitancy that can derail planning, is what consultants like Ms. Davidson are trying to do."

—New York Times, März 27, 2016

This template uses the Times Roman typeface for the body text and headings. Times Roman is a serif typeface and was designed in 1931 by Stanley Morison.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Let us cite some publications: Andersen u. a. (2008), Andreoni und Sprenger (2012), Kőszegi und Szeidl (2013) und Balakrishnan, Haushofer und Jakiela (2016). With the options set for BibLaTeX in the preamble, citations in the body text are automatically sorted chronologically—irrespective of the order of the "citekeys" in your input. Of course, entries are sorted alphabetically by author surname in the list of references.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen

und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Some more references: See Sims (2003) und Gabaix (2014) for models of "rational inattention" or "goal-driven attention." See Bordalo, Gennaioli und Shleifer (2012, 2013), Kőszegi und Szeidl (2013), Taubinsky (2014) und Bushong, Rabin und Schwartzstein (2016) for models of "stimulus-driven attention." Let's also reference some tables: Tabelle 2 and Tabelle 3.

Nach diesem vierten Absatz beginnen wir eine neue Zählung. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige

Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

In Abschnitt 2, we describe the design of our study. We present the data analysis and our results in Abschnitt 3. In Abschnitt 4, we discuss the plausibility of potential alternative explanations. Abschnitt 5 concludes.

2 Methods

In this section, we first present the design of the experiment (2.1) and derive behavioral predictions (2.2).

2.1 Design of the Main Experiment

2.1.1 General Features

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[6]{b} = \sqrt[6]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[6]{a}}{\sqrt[6]{b}} = \sqrt[6]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[6]{b} = \sqrt[6]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

2.1.2 More Specific Features

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[6]{b} = \sqrt[6]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[6]{a}}{\sqrt[6]{b}} = \sqrt[6]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[6]{b} = \sqrt[6]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Let's test the euro symbol: €1,234.56. Let's also test text superscripts: i^{th} and text subscripts: CO_2 and H_2O . Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Let's test the footnote settings.¹

Abbildung 3 shows an exemplary decision screen with B = €11 and $r \approx 15\%$ for both BAL $_{1:1}^{\text{I}}$ (upper panel) and UNBAL $_{1:8}^{\text{I}}$ (lower panel). Through a slider, subjects choose their preferred $x \in X$.² The slider position in Figure 3 indicates x = 0.5, i.e., the earliest payment is reduced by €5.50. Since $r \approx 15\%$ in this example, this slider position amounts to €6.30 that are paid at later payment dates. While these €6.30 are paid in a single bank transfer on the latest

^{1.} Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

^{2.} The slider had no initial position—it appeared only after subjects first positioned the mouse cursor over the slider bar. This was done to avoid default effects.

Abbildung 2. Budget Sets $C_{1:1}^{\mathrm{BAL,\,II}}$ and $C_{n:1}^{\mathrm{UNBAL,\,II}}$

Notes: For the values of B, R, and w that we used, see Unterunterabschnitt 2.1.4. The savings rate x is individuals' choice variable: they choose some $x \in X = \{0, \frac{1}{100}, \frac{2}{100}, \dots, 1\}$ in each trial. The arrows indicate whether and in which direction payments at the respective payment dates change if x is increased. This figure was taken from Dertwinkel-Kalt u. a. (2017).

Abbildung 3. Screenshots of a BAL $_{1:1}^{I}$ Decision (Top) and an UNBAL $_{1:8}^{I}$ Decision (Bottom) *Note:* This figure was taken from Dertwinkel-Kalt u. a. (2017).

payment date in BAL $^{\rm I}_{1:1}$, the amount is dispersed in equal parts over the last 8 payment dates in UNBAL $^{\rm I}_{1:8}$ —i.e., 8 consecutive payments of $\{0.79.3\}$

3. We always rounded the second decimal place up so that the sum of the payments included in a dispersed payoff was always at least as great as the respective concentrated payoff.

2.1.3 Some More Details

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Here's a bulleted list:

- Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[4]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[4]{a}}{\sqrt[4]{b}} = \sqrt[4]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[4]{b} = \sqrt[4]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.
- Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[4]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[4]{a}}{\sqrt[4]{b}} = \sqrt[4]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[4]{b} = \sqrt[4]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.
- Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder

"Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

2.1.4 Procedure

Describe the sequence of events in your study. You could do this with the help of an enumerated list:

- 1. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[4]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[4]{a}}{\sqrt[4]{b}} = \sqrt[4]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[4]{b} = \sqrt[4]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.
- 2. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.
- 3. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder

"Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

2.2 Predictions

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[6]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[6]{a}}{\sqrt[6]{b}} = \sqrt[6]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[6]{b} = \sqrt[6]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages. Let's include a really, really long footnote to check how it is split across two pages.

^{4.} Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte

By discounted utility we understand any intertemporal utility function that is time-separable and that values a payment farther in the future at most as much as an equal-sized payment closer in the future. Importantly, the predictions derived below hold for all three frequently used types of discounting—exponential, hyperbolic, and quasi-hyperbolic.

In the following, we assume that individuals base their decisions on utility derived from receiving monetary payments c_t at various dates t. This is an assumption that is frequently made in experiments on intertemporal decision making. One way to justify this assumption is

wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift - mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift - mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift - mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

that individuals anticipate to consume the payments they receive within a short period around date t. Given that the maximum payment was below ϵ 20 and that any two payment dates were separated by at least two weeks, this assumption seems reasonable (see the arguments in favor of this view in Halevy, 2014). Kőszegi und Szeidl (2013) themselves make the same assumption of "money in the utility function": "in some applications we also assume that monetary transactions induce direct utility consequences, so that for instance an agent making a payment experiences an immediate utility loss. The idea that people experience monetary transactions as immediate utility is both intuitively compelling and supported in the literature: ... some evidence on individuals' attitudes toward money, such as narrow bracketing (...) and laboratory evidence on hyperbolic discounting (...), is difficult to explain without it." Last but not least, the papers by McClure u. a. (2004, 2007) demonstrate that brain activation, as measured by functional magnetic resonance imaging, is similar for primary and monetary rewards. Additionally, we make the standard assumption that utility from money is increasing in its argument but not convex: $u'(c_t) \ge 0$ and $u''(c_t) \le 0$.

2.2.1 Discounted Utility

Individuals make their allocation decisions by comparing the aggregated consumption utility of each earnings sequence $c \in C$. Discounted utility assumes that the utility of each period enters overall utility additively. That is, utility derived from the payment to be received at future date t can be expressed as $u_t(c_t) := D(t) u(c_t)$. Here, D(t) denotes the individual's discount function for conversion of future utility into present utility. The discount function satisfies $0 \le D(t)$ and $D'(t) \le 0$, such that a payment further in the future is valued at most as much as an equal-sized payment closer in the future.⁵

The utility of earnings sequence c with payments c_t in periods $t = 1, \dots, T$ is

$$U(c) = \sum_{t=1}^{T} u_t(c_t) = \sum_{t=1}^{T} D(t) u(c_t).$$
 (1)

Individuals choose how much to allocate to the different periods by maximizing their utility over all possible earnings sequences available within a given budget set C, see equation (1). We use the superscript $^{\mathrm{DU}}$ to indicate decisions based on discounted utility.

^{5.} Normalization such that $D(t) \le 1$ is not necessary in our case. Provided that t is a metric time measure, where t = 0 stands for the present, examples are $D(t) := \delta^t$ with some $\delta > 0$ for exponential discounting and $D(t) := (1 + \alpha t)^{-\gamma/\alpha}$ with some $\alpha, \gamma > 0$ for generalized hyperbolic discounting.

A Subparagraph. Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Nach diesem vierten Absatz beginnen wir eine neue Zählung. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[4]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[4]{a}}{\sqrt[4]{b}} = \sqrt[4]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[4]{b} = \sqrt[4]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Another Subparagraph. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

2.2.2 Focus-Weighted Utility

In this section, we extend the model of discounted utility through "focus weights," as proposed by Kőszegi und Szeidl (2013). Period-t weights g_t scale period-t consumption utility u_t . Individuals are assumed to maximize focus-weighted utility, which is defined as follows:

$$\tilde{U}(\boldsymbol{c},\boldsymbol{C}) := \sum_{t=1}^{T} g_t(\boldsymbol{C}) u_t(c_t).$$
 (2)

In contrast to discounted utility U(c), focus-weighted utility $\tilde{U}(c,C)$ has two arguments: the earnings sequence c and the choice set C. The latter dependence is due to the weights g_t . These are given by a strictly increasing weighting function g that takes as its argument the difference between the maximum and the minimum attainable utility in period t over all possible earnings sequences in set C:

$$g_t(\mathbf{C}) := g[\Delta_t(\mathbf{C})] \quad \text{with} \quad \Delta_t(\mathbf{C}) := \max_{\mathbf{c} \in \mathbf{C}} u_t(c_t) - \min_{\mathbf{c} \in \mathbf{C}} u_t(c_t).$$
 (3)

If the underlying consumption utility function is characterized by discounted utility, then $u_t(c_t) := D(t) u(c_t)$. That is, focused thinkers put more weight on period t than on period t' if the discounted-utility distance between the best and worst alternative is larger for period t than for period t'.

A Subparagraph. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Yet Another Subparagraph. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

2.2.3 Hypotheses

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. This gives rise to our first hypothesis:

Hypothesis 1. This environment can be used to clearly state your hypothesis and set them apart from the body text.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Based on this, we can state our second hypothesis:

Hypothesis 2. This environment can be used to clearly state your hypothesis and set them apart from the body text.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige

Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3 Results

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. With this, we can test our hypotheses.

3.1 Test of Hypothesis 1

Our first result supports Hypothesis 1. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. The analysis we conducted to obtain Result 1 is described in detail in Tabelle 1. Let's reference a section, a subsection, and a figure from the appendices: C, Unterabschnitt A.2, Abbildung B.1.

Result 1. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte mög-

Tabelle 1. An Example Table

Dependent variable	\hat{d}
Estimate	0.123*** (0.011)
Observations	750
Subjects	250

Notes: Standard errors in parentheses, clustered on the subject level. * p < 0.10, ** p < 0.05, *** p < 0.01.

lichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. $a\sqrt[4]{b} = \sqrt[4]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^n b}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.2 Test of Hypothesis 2

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. We thereby test Hypothesis 2.

Result 2. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Our second result provides evidence in support of Hypothesis 2. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.3 Heterogeneity

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[6]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[6]{a}}{\sqrt[6]{b}} = \sqrt[6]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[6]{b} = \sqrt[6]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist

das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[4]{a} \cdot \sqrt[4]{b} = \sqrt[6]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[6]{a}}{\sqrt[6]{b}} = \sqrt[6]{a}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[6]{b} = \sqrt[6]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"?

Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^n b}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \theta d\theta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.4 Structural Estimation

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext

Tabelle 2. Points awarded in our typeface competition—basic formatting

	Utopia	Computer Modern	Charter	Times Roman	Palatino
Yoël	1	1	2	0	1
Çelik	2	0	2	1	0
Anità	1	2	1	2	0
Uğur	1	2	0	1	0
Håkan	1	0	2	0	1
Allison	2	0	1	2	1
Pía	1	0	2	1	0
David	1	0	2	1	1
Sum	10	5	12	8	4

sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

4 Discussion

4.1 Some Limitations

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

4.2 Utility from Money

In deriving our predictions (Unterabschnitt 2.2), we assume that subjects base their decisions on utility derived from receiving monetary payments c_t at various dates t. We also make the standard assumption that utility from money is increasing in its argument but not convex, i.e., $u'(c_t) \ge 0$ and $u''(c_t) \le 0$. Both assumptions are frequently made in studies on intertemporal decision making.

A second justification is consistency within the discipline: Halevy (2014) points out that "in the domain of risk and uncertainty ... preferences are often defined over payments." In line with this, Kőszegi und Szeidl (2013, p. 62) make the same assumption of "money in the utility function":

in some applications we also assume that monetary transactions induce *direct* utility consequences, so that for instance an agent making a payment experiences an immediate utility loss. The idea that people experience monetary transactions as immediate utility is both intuitively compelling and supported in the literature: ... some evidence on individuals' attitudes toward money, such as narrow bracketing (...) and laboratory evidence on hyperbolic discounting (...), is difficult to explain without it.

Last but not least, the papers by McClure u. a. (2004, 2007) demonstrate that brain activation, as measured by functional magnetic resonance imaging, is similar for primary and monetary rewards.

Let us now discuss the second assumption: that utility from money is nonconvex. We find that subjects allocate more money to the concentrated payoffs in the unbalanced than in the associated balanced budget sets—which we call concentration bias. One might argue that this

Tabelle 3. Points awarded in our typeface competition—more sophisticated formatting

	Utopia ^a	Computer Modern ^b	Charter ^c	Times Roman ^d	Palatino ^e
Yoël	1	1	2	0	1
Çelik	2	0	2	1	0
Anità	1	2	1	2	0
Uğur	1	2	0	1	0
Håkan	1	0	2	0	1
Allison	2	0	1	2	1
Pía	1	0	2	1	0
David	1	0	2	1	1
Sum	10	5	12	8	4

a \usepackage{fourier}

^b The LATEX standard serif font.

c \usepackage[charter]{mathdesign}

d \usepackage{newtxtext, newtxmath}

e \usepackage[sc]{mathpazo}

relative preference for concentrated payoffs can be explained by the per-period utility function over money being convex.

Obtaining evidence on the shape of utility over money is nontrivial because it requires that at least two monetary amounts be compared with each other without the one clearly dominating the other. Thus, estimates of the curvature of the utility function over money can be obtained in two ways: the monetary amounts must be paid in different states of the world, i.e., comprise a lottery, or they have to be paid at different points in time.⁶ Both methods entail particular theoretical assumptions.

Andersen u. a. (2008) advocate the former approach and argue that when estimating time preference parameters, one should control for the curvature of the utility function through a measure of the curvature that is based on observed choices under risk. Their study and numerous other studies on risk attitudes consistently reveal that the vast majority of subjects is risk-averse even over small stakes. Hence, for the vast majority of subjects, utility over money is concave according to this methodology (at least in the absence of probability weighting). However, others, most notably Andreoni und Sprenger (2012), have argued that the degree of curvature measured via risky choices probably overstates the degree of curvature effective in intertemporal choices (which could be due to the contribution of probability weighting to risk aversion). Nevertheless, also Andreoni und Sprenger (2012) find that utility is concave (albeit close to linear). Given this unambiguous evidence from previous studies, it is implausible that our subjects exhibit convex utility over money.

5 Conclusion

Cite some more papers (see, e.g., Yaari, 1965; Warner und Pleeter, 2001; Davidoff, Brown und Diamond, 2005; Benartzi, Previtero und Thaler, 2011). Let's cite a book: Luce (1959). Let's cite a contribution to a collected volume: Harrison und Rutström (2008). Let's cite a collection (an edited volume) itself: Kagel und Roth (2016). Now let's cite some papers presented at conferences: Vosgerau u. a. (2008) und Beute und Kort (2012).

Attema u. a. (2016) propose a highly elegant method of "measuring discounting without measuring utility". Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so?

^{6.} As a matter of fact, the latter was the motivation behind Samuelson (1937): "Under the following four assumptions, it is believed possible to arrive theoretically at a precise measure of the marginal utility of *money income*..." (p. 155; emphasis in the original).

^{7.} The basic idea of their method is intriguingly simple: Imagine an individual who is indifferent between, say, Option A: \$10 today and Option B: \$10 in one year plus \$10 in two years. With a constant annual discount

Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

factor δ , this indifference translates to $u(\$10) = \delta u(\$10) + \delta^2 u(\$10)$, so that u(\$10) cancels out, and δ can be readily calculated as the solution to $1 = \delta + \delta^2$.

Anhang A Put More Complicated Derivations and Proofs Here

A.1 Appendix Subsection

Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$. An ihm messe ich die *Lesbarkeit einer Schrift*, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele *verschiedene Buchstaben* enthalten und in der Originalsprache gesetzt sein. $a\sqrt[q]{b} = \sqrt[q]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

- 1. Erster Listenpunkt, Stufe 1
 - a. Erster Listenpunkt, Stufe 2
 - i. Erster Listenpunkt, Stufe 3
 - ii. Zweiter Listenpunkt, Stufe 3
 - iii. Dritter Listenpunkt, Stufe 3
 - iv. Vierter Listenpunkt, Stufe 3
 - b. Zweiter Listenpunkt, Stufe 2
 - c. Dritter Listenpunkt, Stufe 2
 - d. Vierter Listenpunkt, Stufe 2
- 2. Zweiter Listenpunkt, Stufe 1
- 3. Dritter Listenpunkt, Stufe 1
- 4. Vierter Listenpunkt, Stufe 1

The typeset math below follows the ISO recommendations that only variables be set in italic. Note the use of upright shapes for "d," "e," and " π ." (These are entered as \mathup{d}, \mathup{e}, and \mathup{\pi}, respectively.)

Theorem 1 (Simplest form of the *Central Limit Theorem*). Let X_1, X_2, \cdots be a sequence of *i.i.d.* random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then

$$\mathbb{P}\left(\frac{X_1 + \cdots + X_n}{\sqrt{n}} \leq y\right) \rightarrow \mathfrak{N}(y) := \int_{-\infty}^{y} \frac{\mathrm{e}^{-v^2/2}}{\sqrt{2\pi}} \, \mathrm{d}v \quad as \ n \rightarrow \infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$,

$$\mathbb{E} f\left(S_n/\sqrt{n}\right) \to \int_{-\infty}^{\infty} f(v) \frac{\mathrm{e}^{-v^2/2}}{\sqrt{2\pi}} \, \mathrm{d}v \quad \text{as } n \to \infty, \text{ for every } f \in \mathrm{b}C(\mathbb{R}).$$

A.2 Salience

Salience theory (Bordalo, Gennaioli und Shleifer, 2012, 2013) represents a behavioral model according to which the most distinctive features of the available alternatives receive a particularly large share of attention and are therefore over-weighted. More precisely, a particular attribute out of all attributes of an alternative becomes the more salient, the more it differs from that attribute's average level over all available alternatives.

Formally, alternatives are assumed to be uniquely characterized by the values they take in $T \ge 1$ attributes (or, "dimensions"). Utility is assumed to be additively separable in attributes, and salience attaches a decision weight to each attribute of each good which indicates how salient the respective attribute is for that good. Suppose an agent chooses one alternative from some finite choice set C. Let t index the T different attributes, and let t index the t available alternatives. Let t denote the function which assigns utility to values in dimension t. Denote by t the level of attribute t of good t and define t is at the utility that dimension t of good t yields. Let t be the average utility level, across all t goods, of dimension t. The salience of each dimension of good t is determined by a symmetric and continuous salience function t that satisfies the following two properties:

1. Ordering. Let $\mu := \operatorname{sgn}(u_t^k - \overline{u}_t)$. Then for any $\epsilon, \epsilon' \ge 0$ with $\epsilon + \epsilon' > 0$, it holds that

$$\sigma(u_t^k + \mu \, \epsilon, \overline{u}_t - \mu \, \epsilon') > \sigma(u_t^k, \overline{u}_t). \tag{A.1}$$

2. *Diminishing sensitivity*. For any $u_t^k, \overline{u}_t \ge 0$ and all $\epsilon > 0$, it holds that

$$\sigma(u_t^k + \epsilon, \overline{u}_t + \epsilon) < \sigma(u_t^k, \overline{u}_t). \tag{A.2}$$

Following the smooth salience characterization proposed in Bordalo, Gennaioli und Shleifer (2012, p. 1255), each dimension t of good k receives weight $\Delta^{-\sigma(u_t^k, \overline{u}_t)}$, where $\Delta \in (0, 1]$ is a constant that captures an agent's susceptibility to salience. $\Delta = 1$ gives rise to a rational decision maker, and the smaller Δ , the stronger is the salience bias. We call an agent with $\Delta < 1$ a salient thinker.

Anhang B Some Additional Figures

	w v	veeks					w w	eeks	
									$\longrightarrow t$
$c_{\mathrm{CL}}^{\mathrm{BAL}}(1)$:	1 + B	1	1	1	1	1	1	1	1
$c_{\mathrm{CL}}^{\mathrm{BAL}}(2)$:	1	B + i	1	1	1	1	1	1	1
$c_{\mathrm{CL}}^{\mathrm{BAL}}(3)$:	1	1	B + 2i	1	1	1	1	1	1
$c_{\mathrm{CL}}^{\mathrm{BAL}}(4)$:	1	1	1	$\begin{matrix} 1 \\ + \\ B+3i \end{matrix}$	1	1	1	1	1
$c_{\mathrm{CL}}^{\mathrm{BAL}}(5)$:	1	1	1	1	$\begin{matrix} 1 \\ + \\ B + 4i \end{matrix}$	1	1	1	1
$c_{\mathrm{CL}}^{\mathrm{BAL}}(6)$:	1	1	1	1	1	$1 \\ + \\ B + 5i$	1	1	1
$c_{\mathrm{CL}}^{\mathrm{BAL}}(7)$:	1	1	1	1	1	1	$\begin{matrix} 1 \\ + \\ B + 6i \end{matrix}$	1	1
$c_{\mathrm{CL}}^{\mathrm{BAL}}(8)$:	1	1	1	1	1	1	1	$\begin{matrix} 1 \\ + \\ B + 7i \end{matrix}$	1
$\boldsymbol{c}_{\mathrm{CL}}^{\mathrm{BAL}}(9)$:	1	1	1	1	1	1	1	1	B + 8i

Abbildung B.1. Earnings Sequences Included in Choice List $C_{\mathrm{CL}}^{\mathrm{BAL}}$

Notes: For the values of B, i, and w that we used see Abschnitt 2. Figure taken from Dertwinkel-Kalt u. a. (2017).

Abbildung B.2. Earnings Sequences Included in Choice List $C_{\mathrm{CL}}^{\mathrm{UNBAL,\,I}}$

Notes: For the values of B, i, and w that we used see Abschnitt 2. Figure taken from Dertwinkel-Kalt u. a. (2017).

	w weeks								
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(1)$:	1 + <u>B</u> 9	1 + B 9	1 + B 9	1 + B 9	1 + B 9	1 + B 9	1 + B 9	1 <u>B</u> 9	$\begin{array}{c} \longrightarrow & t \\ \frac{1}{B} \\ \frac{B}{9} \end{array}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(2)$:	1	$\frac{1}{\frac{B+i}{8}}$	$\frac{1}{+} \frac{B+i}{8}$	$\frac{1}{\overset{+}{8}}$	$\frac{1}{B+i} \\ \frac{B+i}{8}$	$\frac{1}{\frac{B+i}{8}}$	$\frac{1}{B+i} \\ \frac{B+i}{8}$	$\frac{1}{\frac{B+i}{8}}$	$\begin{array}{c} 1\\+\\\underline{B+i}\\8 \end{array}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(3)$:	1	1	$\frac{1}{B+2i}$	$\frac{1}{+}$ $\frac{B+2i}{7}$	$\frac{1}{\frac{B+2i}{7}}$	$\frac{1}{B+2i}$	$\frac{1}{7}$ $\frac{B+2i}{7}$	$\frac{1}{\frac{B+2i}{7}}$	$\frac{1}{\frac{B+2i}{7}}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(4)$:	1	1	1	$\frac{\stackrel{1}{\underset{B+3i}{+}}}{\stackrel{B+3i}{6}}$	$\frac{1}{+}$ $\frac{B+3i}{6}$	$\frac{1}{\frac{B+3i}{6}}$	$\frac{1}{4}$ $\frac{B+3i}{6}$	$\frac{1}{\frac{B+3i}{6}}$	$\frac{1}{\frac{B+3i}{6}}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(5)$:	1	1	1	1	$\frac{1}{4}$ $\frac{B+4i}{5}$	$\frac{1}{\frac{B+4i}{5}}$	$\frac{1}{\frac{B+4i}{5}}$	$\frac{1}{\frac{B+4i}{5}}$	$\frac{1}{4}$ $\frac{B+4i}{5}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(6)$:	1	1	1	1	1	$\frac{1}{4}$ $\frac{B+5i}{4}$	$\frac{1}{4}$ $\frac{B+5i}{4}$	$\frac{1}{4}$ $\frac{B+5i}{4}$	$\frac{1}{4}$ $\frac{B+5i}{4}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(7)$:	1	1	1	1	1	1	$\frac{1}{\cancel{B}+6i}$	$\frac{1}{\frac{B+6i}{3}}$	$\frac{1}{4}$ $\frac{B+6i}{3}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL},\mathrm{II}}(8)$:	1	1	1	1	1	1	1	$\frac{1}{\frac{B+7i}{2}}$	$\frac{1}{\frac{B+7i}{2}}$
$c_{\mathrm{CL}}^{\mathrm{UNBAL,II}}(9)$:	1	1	1	1	1	1	1	1	$\begin{matrix} 1 \\ + \\ B + 8i \end{matrix}$

Abbildung B.3. Earnings Sequences Included in Choice List $C_{\mathrm{CL}}^{\mathrm{UNBAL,\,II}}$

Notes: For the values of B, i, and w that we used see Abschnitt 2. Figure taken from Dertwinkel-Kalt u. a. (2017).

Anhang C siunitx Example Tables

Tabelle C.1. An Example of a Regression Table. Don't Forget to Mention the Dependent Variable.

	(1)	(2)	(3)	(4)	(5)
Treatment	-0.390	-0.228	-0.729*	-0.449*	-0.453**
	(+0.352)	(-0.205)	[+0.377]	[-0.245]	{+0.204}
Female	0.948***	0.061	0.188	0.305	0.385*
	(0.354)	(0.233)	(0.372)	(0.226)	(0.222)
Female × Treatment	0.169	0.251	0.892*	0.454	0.439
	(0.514)	(0.325)	(0.533)	(0.341)	(0.307)
Final high school grade	-0.101	0.013	0.076	0.117	0.039
	(0.198)	(0.144)	(0.224)	(0.146)	(0.133)
Trait self-control	-0.016	0.002	-0.016	-0.000	-0.007
	(0.016)	(0.010)	(0.015)	(0.010)	(0.009)
Constant	2.357***	1.512***	-0.322	2.158***	1.437***
	(0.239)	(0.144)	(0.265)	(0.161)	(0.152)
Observations	303	289	295	304	1191
R^2	0.057	0.008	0.039	0.043	0.024
$\overline{\text{Treatment} \times (1 + \text{Female})}$	-0.221	0.023	0.163	0.004	-0.014
$p_F[\text{Treatment} \times (1 + \text{Female}) = 0]$	0.327	0.008	0.192	0.000	0.003

Notes: Dependent variable: m_{\sim} . Robust standard errors (cluster-corrected for column 5) in parentheses. *** p < 0.01, *** p < 0.05, *p < 0.1. Missing observations (N < 308) due to exclusion of trials in which subjects behaved irrationally (i.e., chose a dominated option). The regressors Final high school grade and Trait self-control are mean-centered.

Tabelle C.2. Figure Grouping via siunitx in a Table.

(1)	(2)	(3)
-0.100*	-0.10001*	-123456.444***
(2.871)	(2.87123)	[+50000.123]

Anhang D Math Test Serif

D.1 Overview Serif

Default: $a\alpha b\beta G\Gamma P\Pi \alpha\beta$

mathnormal: $a\alpha b\beta G\Gamma P\Pi$

mathrm: $a\alpha\alpha b\beta G\Gamma P\Pi$

mathup: aααbβGΓΡΠ

mathit: $a\alpha b\beta G\Gamma P\Pi$

mathbf: $a\alpha b\beta G\Gamma P\Pi$

mathbfit: $a\alpha b\beta G\Gamma P\Pi$

mathbfup: aαbβGΓPΠ

Default: $a\alpha b\beta G\Gamma P\Pi$

mathnormal: $a\alpha b\beta G\Gamma P\Pi$

mathrm: $a\alpha b\beta G\Gamma P\Pi$

mathup: aαbβGΓΡΠ

mathit: $a\alpha b\beta G\Gamma P\Pi$

mathbf: $a\alpha b\beta G\Gamma P\Pi$

mathbfit: $a\alpha b\beta G\Gamma P\Pi$

mathbfup: $a\alpha b\beta G\Gamma P\Pi$

Default: $a\alpha b\beta G\Gamma P\Pi$

mathnormal: $a\alpha b\beta G\Gamma P\Pi$

mathrm: $a\alpha b\beta G\Gamma P\Pi$

mathup: aαbβGΓPΠ

mathit: $a\alpha b\beta G\Gamma P\Pi$

mathbf: $a\alpha b\beta G\Gamma P\Pi$

mathbfit: $a\alpha b\beta G\Gamma P\Pi$

mathbfup: $a\alpha b\beta G\Gamma P\Pi$

D.2 Formulas Serif

 $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \zeta, \tau, \nu, \phi, \chi, \psi, \omega, F, A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega, F,$

 $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \zeta, \tau, \upsilon, \phi, \chi, \psi, \omega, F, A, B, \Gamma, \Delta, E, Z,$ $H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega, F,$

 $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \varsigma, \tau, \nu, \phi, \chi, \psi, \omega, F, A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega, F,$

 $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \varsigma, \tau, \upsilon, \phi, \chi, \psi, \omega, F, A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega, F,$

$$\alpha a > 0, \beta b + (3 \times 27), \Gamma G = 7 < 8, \lambda$$

$$\alpha a > 0, \beta b + (3 \times 27), \Gamma G = 7 < 8, \lambda$$

$$s \pm 3\gamma + y - 1 = 4 \times 7$$

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

$$s \pm 3\gamma + y - 1 \times 7$$
$$\hat{\beta} = (X'X)^{-1}X'y$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

$$s \pm 3\gamma + y - 1 \times 7$$
$$\hat{\beta} = (X'X)^{-1}X'y$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

$$s \pm 3\gamma + y - 1 \times 7$$
$$\hat{\beta} = (X'X)^{-1}X'y$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

D.3 Math Alphabets Serif

Default

0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, $A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega,$ $\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,\upsilon,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\rho,\varsigma,\varphi,$

Math Normal (\mathnormal)

0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, $A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega,$ $\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,\upsilon,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\varrho,\varsigma,\varphi,$

Math Italic (\mathit)

 $\begin{aligned} &0,1,2,3,4,5,6,7,8,9,\\ &A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,\\ &a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,\\ &A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega,\\ &\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,\upsilon,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\varrho,\varsigma,\varphi,\end{aligned}$

Math Roman (\mathrm)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Υ , Φ , X, Ψ , Ω , α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , τ , ν , ϕ , χ , ψ , ω , ε , ϑ , ϖ , ρ , ς , φ ,

Math Bold (\mathbf)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, $A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega,$ $\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,\upsilon,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\varrho,\varsigma,\varphi,$

Caligraphic (\mathcal)

 $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{C}, \mathcal{C}$

Script (\mathscr)

 $\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}, \mathscr{E}, \mathscr{F}, \mathscr{G}, \mathscr{H}, \mathscr{I}, \mathscr{J}, \mathscr{K}, \mathscr{L}, \mathscr{M}, \mathscr{N}, \mathscr{O}, \mathscr{P}, \mathscr{Q}, \mathscr{R}, \mathscr{F}, \mathscr{T}, \mathscr{U}, \mathscr{V}, \mathscr{W}, \mathscr{X}, \mathscr{Y}, \mathscr{Z}, \mathscr{Z}$

Fraktur (\mathfrak)

 $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{H}, \mathfrak{I}, \mathfrak{R}, \mathfrak{L}, \mathfrak{M}, \mathfrak{N}, \mathfrak{D}, \mathfrak{P}, \mathfrak{Q}, \mathfrak{R}, \mathfrak{S}, \mathfrak{T}, \mathfrak{U}, \mathfrak{B}, \mathfrak{W}, \mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}, \mathfrak{A}, \mathfrak{L}, \mathfrak{L}$

Blackboard Bold (\mathbb)

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

D.4 Character Sidebearings Serif

$$|A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + |a| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + |A| + |B| + |T| + |A| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + |N| + |E| + |O| + |I| + |E| + |Z| + |T| + |T| + |\Phi| + |X| + |\Psi| + |Q| + |\alpha| + |\beta| + |\gamma| + |\delta| + |\epsilon| + |\zeta| + |\eta| + |\theta| + |\iota| + |\kappa| + |\lambda| + |\mu| + |v| + |\xi| + |o| + |\pi| + |\rho| + |\sigma| + |\tau| + |v| + |\phi| + |\chi| + |\psi| + |\omega| + |\varepsilon| + |\partial| + |\sigma| + |\sigma|$$

Math Roman (\mathrm)

$$\begin{aligned} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |I| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \end{aligned}$$

Math Bold (\mathbf)

$$|A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + |A| + |B| + |C| + |A| + |A|$$

Math Calligraphic (\mathcal)

$$\begin{aligned} |\mathcal{A}| + |\mathcal{B}| + |C| + |\mathcal{D}| + |\mathcal{E}| + |\mathcal{F}| + |\mathcal{G}| + |\mathcal{H}| + |I| + |\mathcal{J}| + |\mathcal{K}| + |\mathcal{L}| + |\mathcal{M}| + \\ |\mathcal{N}| + |\mathcal{O}| + |\mathcal{P}| + |\mathcal{Q}| + |\mathcal{R}| + |\mathcal{S}| + |\mathcal{T}| + |\mathcal{U}| + |\mathcal{V}| + |\mathcal{W}| + |\mathcal{X}| + |\mathcal{Y}| + |\mathcal{Z}| + \\ \end{aligned}$$

D.5 Superscript Positioning Serif

$$A^{2} + B^{2} + C^{2} + D^{2} + E^{2} + F^{2} + G^{2} + H^{2} + I^{2} + J^{2} + K^{2} + L^{2} + M^{2} + N^{2} + O^{2} + P^{2} + Q^{2} + R^{2} + S^{2} + T^{2} + U^{2} + V^{2} + W^{2} + X^{2} + Y^{2} + Z^{2} + A^{2} + B^{2} + C^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} + j^{2} + k^{2} + l^{2} + m^{2} + N^{2} + O^{2} + p^{2} + q^{2} + r^{2} + s^{2} + t^{2} + u^{2} + v^{2} + w^{2} + x^{2} + y^{2} + z^{2} + A^{2} + B^{2} + \Gamma^{2} + \Delta^{2} + E^{2} + Z^{2} + H^{2} + \Theta^{2} + I^{2} + K^{2} + \Lambda^{2} + M^{2} + N^{2} + E^{2} + O^{2} + \Pi^{2} + P^{2} + \Sigma^{2} + T^{2} + \Upsilon^{2} + \Phi^{2} + X^{2} + \Psi^{2} + \Omega^{2} + \Omega^{2$$

Math Roman (\mathrm)

$$A^{2} + B^{2} + C^{2} + D^{2} + E^{2} + F^{2} + G^{2} + H^{2} + I^{2} + J^{2} + K^{2} + L^{2} + M^{2} + N^{2} + O^{2} + P^{2} + Q^{2} + R^{2} + S^{2} + T^{2} + U^{2} + V^{2} + W^{2} + X^{2} + Y^{2} + Z^{2} + A^{2} + B^{2} + C^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} + j^{2} + k^{2} + I^{2} + m^{2} + D^{2} + D^{2$$

Math Bold (\mathbf)

$$A^{2} + B^{2} + C^{2} + D^{2} + E^{2} + F^{2} + G^{2} + H^{2} + I^{2} + J^{2} + K^{2} + L^{2} + M^{2} + N^{2} + O^{2} + P^{2} + Q^{2} + R^{2} + S^{2} + T^{2} + U^{2} + V^{2} + W^{2} + X^{2} + Y^{2} + Z^{2} + A^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} + j^{2} + k^{2} + l^{2} + m^{2} + n^{2} + o^{2} + p^{2} + q^{2} + r^{2} + s^{2} + t^{2} + u^{2} + v^{2} + w^{2} + x^{2} + y^{2} + z^{2} + A^{2} + B^{2} + \Gamma^{2} + \Delta^{2} + E^{2} + Z^{2} + H^{2} + \Theta^{2} + I^{2} + K^{2} + \Lambda^{2} + M^{2} + N^{2} + \Xi^{2} + O^{2} + \Pi^{2} + P^{2} + \Sigma^{2} + T^{2} + \Upsilon^{2} + \Phi^{2} + X^{2} + \Psi^{2} + \Omega^{2} + D^{2} + D^{2$$

Math Calligraphic (\mathcal)

$$\mathcal{A}^{2} + \mathcal{B}^{2} + C^{2} + \mathcal{D}^{2} + \mathcal{E}^{2} + \mathcal{F}^{2} + \mathcal{G}^{2} + \mathcal{H}^{2} + I^{2} + \mathcal{J}^{2} + \mathcal{K}^{2} + \mathcal{L}^{2} + \mathcal{M}^{2} + \mathcal{N}^{2} + \mathcal{O}^{2} + \mathcal{P}^{2} + \mathcal{Q}^{2} + \mathcal{R}^{2} + \mathcal{S}^{2} + \mathcal{T}^{2} + \mathcal{U}^{2} + \mathcal{V}^{2} + \mathcal{W}^{2} + \mathcal{X}^{2} + \mathcal{Y}^{2} + \mathcal{Z}^{2} + \mathcal{D}^{2} + \mathcal{D}$$

D.6 Subscript Positioning Serif

$$A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + A_{i} + B_{i} + C_{i} + A_{i} + E_{i} + G_{i} + A_{i} + A_{i$$

Math Roman (\mathrm)

$$A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + A_{i} + A_{i} + C_{i} + A_{i} + E_{i} + A_{i} + A_{i$$

Math Bold (\mathbf)

$$A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + A_{i} + A_{i} + C_{i} + A_{i} + E_{i} + G_{i} + A_{i} + A_{i$$

Math Calligraphic (\mathcal)

$$\mathcal{A}_i + \mathcal{B}_i + C_i + \mathcal{D}_i + \mathcal{E}_i + \mathcal{F}_i + \mathcal{G}_i + \mathcal{H}_i + \mathcal{I}_i + \mathcal{J}_i + \mathcal{K}_i + \mathcal{L}_i + \mathcal{M}_i + \mathcal{N}_i + O_i + \mathcal{P}_i + Q_i + \mathcal{R}_i + \mathcal{S}_i + \mathcal{T}_i + \mathcal{U}_i + \mathcal{V}_i + \mathcal{W}_i + \mathcal{X}_i + \mathcal{Y}_i + \mathcal{Z}_i + \mathcal{V}_i + \mathcal$$

D.7 Accent Positioning Serif

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{Z} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{Z} + \hat{T} + \hat{\Upsilon} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{Q} + \\ \hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\zeta} + \hat{\eta} + \hat{\theta} + \hat{i} + \hat{k} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{o} + \hat{\pi} + \hat{\rho} + \hat{\sigma} + \hat{\tau} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\psi} + \hat{\omega} + \\ \hat{\varepsilon} + \hat{\vartheta} + \hat{\varpi} + \hat{\rho} + \hat{\varsigma} + \hat{\varsigma} + \hat{\varphi} +$$

Math Italic (\mathit)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{1} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \hat{\ell} + \hat{\wp} + \hat{i} + \hat{j} + \hat{i} \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{T} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \\ \hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\zeta} + \hat{\eta} + \hat{\theta} + \hat{i} + \hat{\kappa} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{o} + \hat{\pi} + \hat{\rho} + \hat{\sigma} + \hat{\tau} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\psi} + \hat{\omega} + \\ \hat{\varepsilon} + \hat{\vartheta} + \hat{\varpi} + \hat{\rho} + \hat{\varsigma} + \hat{\varsigma} + \hat{\varphi} + \end{aligned}$$

Math Roman (\mathrm)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \\ \hat{A} + \hat{B} + \hat{C} +$$

Math Bold (\mathbf)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{A} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{A} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{X} + \hat{Y} + \hat{Q} + \\ \end{aligned}$$

Math Calligraphic (\mathcal)

$$\hat{\mathcal{A}} + \hat{\mathcal{B}} + \hat{\mathcal{C}} + \hat{\mathcal{D}} + \hat{\mathcal{E}} + \hat{\mathcal{F}} + \hat{\mathcal{G}} + \hat{\mathcal{H}} + \hat{\mathcal{I}} + \hat{\mathcal{J}} + \hat{\mathcal{K}} + \hat{\mathcal{L}} + \hat{\mathcal{M}} + \hat{\mathcal{N}} + \hat{\mathcal{O}} + \hat{\mathcal{O}} + \hat{\mathcal{O}} + \hat{\mathcal{O}} + \hat{\mathcal{O}} + \hat{\mathcal{C}} + \hat{\mathcal{$$

D.8 Differentials Serif

$$\begin{split} \partial A + \partial B + \partial C + \partial D + \partial E + \partial F + \partial G + \partial H + \partial I + \partial J + \partial K + \partial L + \partial M + \partial N + \partial O + \partial P + \partial Q + \partial R + \partial S + \partial T + \partial U + \partial V + \partial W + \partial X + \partial Y + \partial Z + \partial A + \partial b + \partial c + \partial d + \partial e + \partial f + \partial g + \partial h + \partial i + \partial j + \partial k + \partial l + \partial m + \partial n + \partial o + \partial p + \partial q + \partial r + \partial s + \partial t + \partial u + \partial v + \partial w + \partial x + \partial y + \partial z + \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \partial A + \partial$$

D.9 Slash Kerning Serif

$$1/A + 1/B + 1/C + 1/D + 1/E + 1/F + 1/G + 1/H + 1/I + 1/J + 1/K + 1/L + 1/M + 1/N + 1/O + 1/P + 1/Q + 1/R + 1/S + 1/T + 1/U + 1/V + 1/W + 1/X + 1/Y + 1/Z + 1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g + 1/h + 1/i + 1/j + 1/k + 1/l + 1/m + 1/n + 1/o + 1/p + 1/q + 1/r + 1/s + 1/t + 1/u + 1/v + 1/w + 1/x + 1/y + 1/z + 1/A + 1/B + 1/\Gamma + 1/\Delta + 1/E + 1/Z + 1/H + 1/\Theta + 1/I + 1/K + 1/\Lambda + 1/M + 1/N + 1/\Xi + 1/O + 1/\Pi + 1/P + 1/\Xi + 1/T + 1/\Upsilon + 1/\Phi + 1/X + 1/\Psi + 1/\Omega + 1/\alpha + 1/\beta + 1/\gamma + 1/\delta + 1/\epsilon + 1/\zeta + 1/\eta + 1/\theta + 1/\iota + 1/\iota$$

 $A/2 + B/2 + C/2 + D/2 + E/2 + F/2 + G/2 + H/2 + I/2 + J/2 + K/2 + L/2 + M/2 + N/2 + O/2 + P/2 + Q/2 + R/2 + S/2 + T/2 + U/2 + V/2 + W/2 + X/2 + Y/2 + Z/2 + a/2 + b/2 + c/2 + d/2 + e/2 + f/2 + g/2 + h/2 + i/2 + j/2 + k/2 + I/2 + m/2 + n/2 + o/2 + p/2 + q/2 + r/2 + s/2 + t/2 + u/2 + v/2 + w/2 + x/2 + y/2 + z/2 + A/2 + B/2 + \Gamma/2 + A/2 + E/2 + Z/2 + H/2 + \Theta/2 + I/2 + K/2 + A/2 + M/2 + N/2 + E/2 + O/2 + H/2 + P/2 + E/2 + T/2 + T/2 + P/2 + X/2 + P/2 + Q/2 + A/2 + B/2 + T/2 + O/2 + E/2 + Z/2 + J/2 + O/2 + J/2 + J/2$

D.10 Big Operators Serif

$$\sum_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \int_{i=1}^{n} x^{n} \oint_{i=1}^{n} x^{n}$$

$$\bigotimes_{i=1}^{n} x^{n} \bigoplus_{i=1}^{n} x^{n} \bigcap_{i=1}^{n} x^{n} \bigvee_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcap_{i=1}^{n} x^{n}$$

D.11 Radicals Serif

$$\sqrt{x+y} \qquad \sqrt{x^2+y^2} \qquad \sqrt{x_i^2+y_j^2} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)}$$

D.12 Over- and Underbraces Serif

$$x = x + y = x^2 + y^2 = x^2 + y^2 = x = x + y = x_i + y_j = x^2 + y^2_j$$

D.13 Normal and Wide Accents Serif

$$\dot{x} \quad \ddot{x} \quad \bar{x} \quad \bar{x} \quad \overline{x} \quad \overline{x} \quad \widetilde{x} \quad \widehat{x} \quad$$

$$\hat{x} \quad \check{x} \quad \tilde{x} \quad \acute{x} \quad \dot{x} \quad \dot{x} \quad \ddot{x} \quad \ddot{x} \quad \vec{x} \quad \vec{x}$$

D.14 Long Arrows Serif

 $\leftarrow - \rightarrow \ \leftrightarrow \ \leftarrow \ \rightarrow \ \longleftrightarrow \ \Longleftrightarrow \ \Longleftrightarrow \ \Longleftrightarrow \ \Longleftrightarrow$

D.15 Left and Right Delimiters Serif

$$-(f) - -\lfloor f \rfloor - - \lfloor f \rfloor - - \lceil f \rceil - - \langle f \rangle - - \{f\} -$$

Using \left and \right.

$$-(f) - -[f] - -\lfloor f \rfloor - -\lceil f \rceil - -\langle f \rangle - - \{f\} -$$

D.16 Big-g-g Delimiters Serif

D.17 Binary Operators Serif

$x \pm y$	/pm	$x \cap y$	\cap	$x \diamond y$	\diamond	$x \oplus y$	\oplus
$x \mp y$	\mp	$x \cup y$	\cup	$x \triangle y$	\bigtriangleup	$x \ominus y$	\ominus
$x \times y$	\times	$x \uplus y$	\uplus	$x \nabla y$	\bigtriangledown	$x \otimes y$	\otimes
$x \div y$	\div	$x \sqcap y$	\sqcap	$x \triangleleft y$	\triangleleft	$x \oslash y$	\oslash
x * y	\ast	$x \sqcup y$	\sqcup	$x \triangleright y$	\triangleright	$x \odot y$	\odot
$x \star y$	\star	$x \vee y$	\vee	$x \triangleleft y$	\lhd	$x \bigcirc y$	\bigcirc
$x \circ y$	\circ	$x \wedge y$	\wedge	$x \triangleright y$	\rhd	$x \dagger y$	\dagger
$x \bullet y$	\bullet	$x \setminus y$	\setminus	$x \leq y$	\unlhd	$x \ddagger y$	\ddagger
$x \cdot y$	\cdot	$x \wr y$	\wr	$x \trianglerighteq y$	\unrhd	$x \S y$	\S
x + y	+	x - y	-	$x \coprod y$	\amalg	$x \P y$	\P

D.18 Relations Serif

```
\models
x \leq y
         \leq
                            x \ge y
                                                        x \equiv y
                                                                 \equiv
                                                                              x \models y
                                      \geq
x < y
          \prec
                            x > y
                                      \succ
                                                        x \sim y
                                                                 \sim
                                                                              x \perp y
                                                                                        \perp
                                                                              x \mid y
                                                                                        \mid
x \leq y
          \preceq
                            x \geq y
                                      \succeq
                                                        x \simeq y
                                                                 \simeq
         \11
x \ll y
                            x \gg y
                                                        x \times y
                                                                 \asymp
                                                                              x \parallel y
                                                                                        \parallel
                                      \gg
x \subset y
          \subset
                            x\supset y
                                      \supset
                                                        x \approx y
                                                                 \approx
                                                                              x \bowtie y
                                                                                        \bowtie
         \subseteq
                                      \supseteq
                                                        x \cong y
                                                                 \cong
                                                                                        \Join
x \subseteq y
                            x \supseteq y
                                                                              x\bowtie y
x \sqsubset y
         \sqsubset
                            x \supset y
                                      \sqsupset
                                                        x \neq y
                                                                 \neq
                                                                              x \smile y
                                                                                        \smile
x \sqsubseteq y
          \sqsubseteq
                           x \supseteq y
                                      \sqsupseteq x \doteq y
                                                                 \doteq
                                                                              x \frown y
                                                                                        \frown
          \in
                                      \ni
                                                        x \propto y
                                                                 \propto
x \in y
                            x \ni y
                                                                              x = y
          \vdash
                                      \dashv
x \vdash y
                            x \dashv y
                                                        x < y
                                                                 <
                                                                              x > y
                                                                                        >
x:y
```

D.19 Punctuation Serif

```
x,y , x;y ; x:y \colon x.y \ldotp x\cdot y \cdotp
```

D.20 Arrows Serif

```
\leftarrow
                                                       \longleftarrow
                                                                                       x \uparrow y
                                                                                                   \uparrow
x \leftarrow y
                                          \Longleftarrow
x \leftarrow y
           \Leftarrow
                                                                                       x \uparrow y
                                                                                                   \Uparrow
                                          x \longleftarrow y
          \rightarrow
                                          x \longrightarrow y
                                                       \longrightarrow
                                                                                       x \downarrow y
                                                                                                   \downarrow
x \rightarrow y
          \Rightarrow
                                                       \Longrightarrow
                                                                                       x \downarrow y
                                                                                                   \Downarrow
x \Rightarrow y
                                          x \Longrightarrow y
                                          x \longleftrightarrow y \setminus longleftrightarrow
          \leftrightarrow
                                                                                       x \uparrow y
                                                                                                   \updownarrow
x \leftrightarrow y
                                                                                       x \updownarrow y
          \Leftrightarrow
                                                      \Longleftrightarrow
x \Leftrightarrow y
                                          x \iff y
                                                                                                   \Updownarrow
x \mapsto y
           \mapsto
                                          x \longmapsto y
                                                       \longmapsto
                                                                                       x \nearrow y
                                                                                                  \nearrow
          \hookleftarrow
                                          x \hookrightarrow y
                                                       \hookrightarrow
                                                                                       x \searrow y
                                                                                                   \searrow
x \leftarrow y
           \leftharpoonup
                                                       \rightharpoonup
                                                                                       x \swarrow y
x \leftarrow y
                                          x \rightarrow y
                                                                                                   \swarrow
                                                       \rightharpoondown
           \leftharpoondown
                                                                                       x \setminus y
x \leftarrow y
                                          x \rightarrow y
                                                                                                   \nwarrow
           \rightleftharpoons
                                                       \leadsto
x \rightleftharpoons y
                                          x \rightsquigarrow y
```

D.21 Miscellaneous Symbols Serif

```
\ldots
                       x \cdots y
                                  \cdots
                                                    x:y
                                                             \vdots
                                                                                x \cdot \cdot \cdot y
                                                                                           \ddots
x \dots y
x \aleph y
           \aleph
                       xy
                                   \prime
                                                    x \forall y
                                                             \forall
                                                                                x \infty y
                                                                                           \infty
x\hbar y
           \hbar
                        x\emptyset y
                                   \emptyset
                                                    x \exists y
                                                             \exists
                                                                                           \Box
                                                                                x \square y
                                                                                           \Diamond
                       x\nabla y
           \imath
                                   \nabla
                                                             \neg
                                                                                x \diamondsuit y
хıу
                                                    x \neg y
                       x\sqrt{y}
                                                             \flat
                                                                                           \triangle
x_{Jy}
           \jmath
                                   \surd
                                                    xby
                                                                                x \triangle y
x\ell y
           \ell
                        x \top y
                                   \top
                                                    x 
array
                                                             \natural
                                                                                x♣y
                                                                                           \clubsuit
           \wp
                        x \perp y
                                   \bot
                                                    x \sharp y
                                                             \sharp
                                                                                           \diamondsuit
x \wp y
                                                                                x \diamond y
x\Re y
           \Re
                        x||y
                                                                                           \heartsuit
                                   II
                                                    x \setminus y
                                                             \backslash
                                                                                x \nabla y
x\Im y
           \Im
                                   \angle
                                                    x\partial y
                                                             \partial
                                                                                           \spadesuit
                        x \angle y
                                                                                x \spadesuit y
x \nabla y
           \mho
                                                                                           !
                        x.y
                                                    x|y
                                                                                x!y
```

D.22 Variable-Sized Operators Serif

```
x \sum y
                                                      \bigodot
         \sum
                     x \cap y
                              \bigcap
                                             x \odot y
x \prod y
         \prod
                     x \cup y
                              \bigcup
                                             x \otimes y
                                                      \bigotimes
x \mid \mid y
         \coprod
                     x \sqcup y
                              \bigsqcup
                                             x \oplus y
                                                      \bigoplus
x \mid y
                                                      \biguplus
         \int
                     x \vee y
                              \bigvee
                                             x \uplus y
x \phi y
         \oint
                     x \wedge y
                              \bigwedge
```

D.23 Log-Like Operators Serif

```
x arccos y
              x \cos y
                          x \csc y
                                      x \exp y
                                                  x ker y
                                                                 x \lim \sup y
                                                                                x \min y
                                                                                           x sinh y
x arcsin y
              x \cosh y
                          x \deg y
                                      x \gcd y
                                                  x \lg y
                                                                 x \ln y
                                                                                x\mathbb{P}y
                                                                                            x \sup y
x arctan y
              x \cot y
                          x det y
                                      x hom y
                                                  x \lim y
                                                                 x \log y
                                                                                x \sec y
                                                                                            x \tan y
              x \coth y
                          x dim y
                                                  x \lim \inf y
x \arg y
                                      x \inf y
                                                                 x \max y
                                                                                x \sin y
                                                                                            x tanh y
```

D.24 Delimiters Serif

```
x(y)
       (
                     x)y
                                           x \uparrow y
                                                    \uparrow
                                                                          x \uparrow y
                                                                                    \Uparrow
                             )
x[y]
       [
                     x]y
                             ]
                                           x \downarrow y
                                                    \downarrow
                                                                          x \downarrow y
                                                                                    \Downarrow
                                           x \uparrow y
x\{y
                     x\}y
                            \}
                                                    \updownarrow
                                                                          x \updownarrow y
                                                                                    \Updownarrow
       \lfloor
                     x \mid y
                            \rfloor
                                           x \lceil y
                                                     \lceil
                                                                          x y
                                                                                    \rceil
x \mid y
x\langle y
       \langle x \rangle y
                             \rangle
                                          x/y
                                                                          x \setminus y
                                                                                    \backslash
                                                     /
x|y
                     x||y
                             \mathbf{I}
```

D.25 Large Delimiters Serif

```
\ \rmoustache \ \ \lmoustache \ \ \rgroup \ \ \arrowvert \ \ \bracevert \ \ \ \rmoustache \ \ \ \ \rmoustache \ \ \ \ \ \rmoustache \ \ \ \ \rmoustache \ \ \ \rmoustache \ \ \ \ \rmoustache \ \ \rmoustache \ \ \ \rmoustache \ \rmoustache \ \ \rmoustache \ \ \rmoustache \ \ \rmoustache \rmoustache \rmoustache \rmoustache \rmoustache \ \rmoustache \rmoustache \rmoustache \rmoustache \rmoustache \rmoustache \rm
```

D.26 Math Mode Accents Serif

```
\hat{a} \hat{a} \acute{a} \acute{a} \ddot{a} \bar{a} \acute{a} \dot{a} \breve{a} \breve{a} \breve{a} \check{a} \dddot{a} \grave{a} \dddot{a} \vec{a} \dddot{a} \dot{a} \breve{a} \tilde{a}
```

D.27 Miscellaneous Constructions Serif

```
abc
       \widetilde{abc}
                              abc
                                      \widehat{abc}
abc
       \overleftarrow{abc} abc
                                      \overrightarrow{abc}
abc
       \overline{abc}
                              abc
                                      \underline{abc}
abc
       \overbrace{abc}
                               abc
                                      \underbrace{abc}
\sqrt{a}bc
                               \sqrt[n]{abc}
       \sqrt{abc}
                                      \sqrt[n]{abc}
                               <u>abc</u>
       f′
                                      \frac{abc}{xyz}
```

D.28 AMS Delimiters Serif

 $x^{T}y$ \ulcorner $x^{J}y$ \urcorner $x \perp y$ \llcorner $x \perp y$ \llcorner

D.29 AMS Arrows Serif

```
\dashrightarrow
x \rightarrow y
                                             x \leftarrow y \setminus dashleftarrow
          \leftleftarrows
                                             x \leftrightharpoons y \leftrightarrows
x \not\sqsubseteq y
x \Leftarrow y \setminus Lleftarrow
                                             x \leftarrow y \twoheadleftarrow
x \leftrightarrow y \looparrowleft
                                             x \curvearrowleft y \setminus \text{curvearrowleft}
          \leftrightharpoons
x \leftrightharpoons y
          \circlearrowleft
x \circlearrowleft y
                                             x  \forall y
                                                        \Lsh
x \uparrow \uparrow y
          \upuparrows
                                                        \upharpoonleft
                                             x \mid y
x \downarrow y
           \downharpoonleft
                                             x \multimap y \setminus \text{multimap}
x \leftrightarrow y \leftrightsquigarrow x \rightrightarrows y \rightrightarrows
                                             x \Rightarrow y \rightrightarrows
          \rightleftarrows
x \rightleftarrows y
          \rightleftarrows
x \rightleftharpoons y
                                             x \rightarrow y \twoheadrightarrow
x \mapsto y
          \rightarrowtail
                                             x \leftrightarrow y
                                                       \looparrowright
          \rightleftharpoons
                                             x \sim y \setminus \text{curvearrowright}
x \rightleftharpoons y
          \circlearrowright
                                             x 
ightharpoonup y
x \cup y
                                                        \Rsh
x \downarrow \downarrow y
          \downdownarrows
                                             x \upharpoonright y \upharpoonright
x \mid y
           \downharpoonright
                                            x \rightsquigarrow y \setminus \text{rightsquigarrow}
```

D.30 AMS Negated Arrows Serif

```
x \nleftrightarrow y \nleftarrow x \nleftrightarrow y \nrightarrow x \nleftrightarrow y \nRightarrow x \nleftrightarrow y \nleftrightarrow x \nleftrightarrow y \nleftrightarrow
```

D.31 AMS Greek Serif

xFy \digamma xxy \varkappa

D.32 AMS Hebrew Serif

 $x \exists y \ \text{beth} \ x \exists y \ \text{daleth} \ x \exists y \ \text{gimel}$

D.33 AMS Miscellaneous Serif

```
x\hbar y
        \hbar
                                      \hslash
                              хħу
x \triangle y \vartriangle
                              x \nabla y
                                     \triangledown
                                     \lozenge
x \square y
        \square
                              x \diamond y
        \circledS
                                     \angle
xy
                              x \angle y
        \measuredangle x \not\equiv y
x \angle y
                                     \nexists
x \nabla y
        \mho
                              x \exists y
                                      \ Finv^u
x \supset y
        \Game^u
                                     \Bbbk^u
                              x k y
        \backprime
x y
                              x \varnothing y
                                     \varnothing
        \blacktriangle x \vee y
x \blacktriangle y
                                     \blacktriangledown
x■y \blacksquare
                              x \blacklozenge y
                                     \blacklozenge
x★y \bigstar
                                     \sphericalangle
                              x \triangleleft y
x C y
        \complement
                                      \eth
                              хðу
        \diagup^u
                              x \setminus y \setminus diagdown^u
x/y
     ^{\it u} Not defined in amssymb.sty, define using the \newsymbol command.
```

D.34 AMS Binary Operators Serif

λ	$\dot{x} + y$	\dotplus	$x \setminus y$	\smallsetminus
λ	$C \cap y$	\Cap	$x \cup y$	\Cup
λ	$\overline{\wedge} y$	\barwedge	$x \vee y$	\veebar
λ	$\bar{\wedge} y$	\doublebarwedge	$x \boxminus y$	\boxminus
λ	$z \boxtimes y$	\boxtimes	$x \odot y$	\boxdot
λ	$z \boxplus y$	\boxplus	x * y	\divideontimes
λ	$x \ltimes y$	\ltimes	$x \rtimes y$	\rtimes
λ	z > y	\leftthreetimes	$x \prec y$	\rightthreetimes
λ	ску	\curlywedge	$x \vee y$	\curlyvee
λ	$c \ominus y$	\circleddash	$x \circledast y$	\circledast
λ	$c \otimes y$	\circledcirc	$x \cdot y$	\centerdot
λ	τy	\intercal		

D.35 AMS Relations Serif

```
x \leq y
        \leqslant
          \lesssim
x \lesssim y
x \approx y
        \approxeq
x \ll y \setminus 1111
x \leq y \lesseqgtr
x \neq y
         \doteqdot
x = y
          \fallingdotseq
x \simeq y
         \backsimeq
         \Subset
x \subseteq y
         \preccurlyeq
x \leq y
         \precsim
x \lesssim y
x \triangleleft y
         \vartriangleleft
          \vDash
x \models y
          \smallsmile
x \sim y
x = y
         \bumpeq
x \geq y
         \geqq
x \geqslant y
         \eqslantgtr
x \geq y
          \gtrapprox
x \gg y \setminus ggg
x \geq y
         \gtreqless
x = y
         \eqcirc
x \triangleq y
        \triangleq
          \thickapprox
x \approx y
x \ni y
          \Supset
          \succcurlyeq
x \ge y
          \succsim
x \gtrsim y
         \vartriangleright
x \triangleright y
         \Vdash
x \Vdash y
         \shortparallel
x \parallel y
         \pitchfork
x \pitchfork y
          \blacktriangleleft
x \triangleleft y
          \backepsilon
x \ni y
x :: y
          \because
```

D.36 AMS Negated Relations Serif

```
x \not< y
           \nless
                                       x \not \leq y \setminus \mathsf{nleq}
x \not\leq y
           \nleqslant
                                       x \not \leq y \setminus \mathsf{nleqq}
                                       x \not \leq y \setminus lneqq
x \leq y
          \lneq
x \leq y
           \lvertneqq
                                       x \leq y \setminus lnsim
x \leq y
           \lnapprox
                                       x \not\prec y \setminus \mathsf{nprec}
x \not \leq y \npreceq
                                                  \precnsim
                                       x \lesssim y
x \nleq y
           \precnapprox
                                       x \not\sim y
                                                  \nsim
x * y
           \nshortmid
                                       x \nmid y
                                                  \nmid
           \nvdash
                                                  \nvDash
x \not\vdash y
                                       x \not\models y
x \not = y
           \ntriangleleft
                                       x \not \triangleq y
                                                  \ntrianglelefteq
x \not\subseteq y \nsubseteq
                                       x \subsetneq y \subsetneq
x \subsetneq y \varsubsetneq
                                       x \subsetneq y \subsetneqq
x \subsetneq y \varsubsetneqq
                                       x \neq y \setminus \text{ngtr}
                                       x \not \geq y
x \not\geq y \setminus \mathsf{ngeq}
                                                  \ngeqslant
x \not \geq y
         \ngeqq
                                       x \ge y
                                                  \gneq
x \not\ge y \setminus \mathsf{gneqq}
                                       x \geq y
                                                  \gvertneqq
x \gtrsim y \setminus gnsim
                                       x \geq y
                                                  \gnapprox
x \neq y \setminus \text{nsucc}
                                       x \not\succeq y
                                                  \nsucceq
x \not \geq y \nsucceqq
                                       x \gtrsim y
                                                  \succnsim
x \geq y
          \succnapprox
                                       x \not\cong y
                                                  \ncong
x \times y
           \nshortparallel x \not\parallel y
                                                  \nparallel
           \nvDash
                                                  \nVDash
x \not\models y
                                       x \not \sqsubseteq y
x \not\triangleright y \ntriangleright x \not\trianglerighteq y
                                                  \ntrianglerighteq
x \not\supseteq y \setminus \text{nsupseteq}
                                       x \not\supseteq y \nsupseteqq
x \supseteq y \setminus \text{supsetneq}
                                       x \supseteq y \varsupsetneq
x \supseteq y \supsetneqq
                                       x \supseteq y \varsupsetneqq
```

Literaturverzeichnis

- Andersen, Steffen, Glenn W. Harrison, Morten I. Lau und E. Elisabet Rutström. 2008. "Eliciting Risk and Time Preferences". *Econometrica* 76 (3): 583–618. DOI: 10.1111/j.1468-0262.2008.00848.x. [1, 22]
- **Andreoni, James und Charles Sprenger.** 2012. "Estimating Time Preferences from Convex Budgets". *American Economic Review* 102 (7): 3333–56. DOI: 10.1257/aer.102.7.3333. [1, 22]
- Attema, Arthur E., Han Bleichrodt, Yu Gao, Zhenxing Huang und Peter P. Wakker. 2016. "Measuring Discounting without Measuring Utility". *American Economic Review* 106 (6): 1476–94. DOI: 10.1257/aer.20150208. [22]
- **Balakrishnan, Uttara, Johannes Haushofer und Pamela Jakiela.** 2016. "How Soon Is Now? Evidence of Present Bias from Convex Time Budget Experiments". IZA Discussion Paper. URL: http://ftp.iza.org/dp9653.pdf. [1]
- **Benartzi, Shlomo, Alessandro Previtero und Richard H. Thaler.** 2011. "Annuitization Puzzles". *Journal of Economic Perspectives* 25 (4): 143–64. DOI: 10.1257/jep.25.4.143. [22]
- **Beute, Femke und Yvonne A. W. de Kort.** 2012. "Always Look on the Bright Side of Life: Ego-Replenishing Effects of Daylight versus Artificial Light". In *Proceedings of Experiencing Light 2012: International Conference on the Effects of Light on Wellbeing*. Herausgegeben von Y. A. W. de Kort, M. P. J. Aarts, F. Beute, A. Haans, W. A. IJsselsteijn, D. Lakens, K. C. H. J. Smolders und L. van Rijswijk. Eindhoven University of Technology. Eindhoven, The Netherlands, 1–4. URL: http://2012.experiencinglight.nl/doc/41.pdf. [22]
- **Bordalo, Pedro, Nicola Gennaioli und Andrei Shleifer.** 2012. "Salience Theory of Choice Under Risk". *Quarterly Journal of Economics* 127 (3): 1243–85. DOI: 10.1093/qje/qjs018. [2, 25]
- **Bordalo, Pedro, Nicola Gennaioli und Andrei Shleifer.** 2013. "Salience and Consumer Choice". *Journal of Political Economy* 121 (5): 803–43. DOI: 10.1086/673885. [2, 25]
- **Bushong, Benjamin, Matthew Rabin und Joshua Schwartzstein.** 2016. "A Model of Relative Thinking". Working paper. Cambridge, MA, USA: Harvard University. URL: http://people.hbs.edu/jschwartzstein/RelativeThinking.pdf. [2]
- **Davidoff, Thomas, Jeffrey R. Brown und Peter A. Diamond.** 2005. "Annuities and Individual Welfare". *American Economic Review* 95 (5): 1573–90. DOI: 10.1257/000282805775014281. [22]
- Dertwinkel-Kalt, Markus, Holger Gerhardt, Gerhard Riener, Frederik Schwerter und Louis Strang. 2017. "Concentration Bias in Intertemporal Choice". Working paper. Bonn, Germany, et al.: University of Bonn et al. URL: https://www.dropbox.com/s/dv20mcu0qkygmjz/Concentration_Bias_in_Intertemporal_Choice.pdf. [5, 6, 26–28]
- **Gabaix, Xavier.** 2014. "A Sparsity-Based Model of Bounded Rationality". *Quarterly Journal of Economics* 129 (4): 1661–710. DOI: 10.1093/qje/qju024. [2]
- **Halevy, Yoram.** 2014. "Some Comments on the Use of Monetary and Primary Rewards in the Measurement of Time Preferences". Working paper. University of British Columbia. URL: http://faculty.arts.ubc.ca/yhalevy/monetary_primary.pdf. [11, 21]
- **Harrison, Glenn W. und E. Elisabet Rutström.** 2008. "Risk Aversion in the Laboratory". In *Risk Aversion in Experiments*. Herausgegeben von Glenn W. Harrison und James C. Cox. Band 12, Research in Experimental Economics. Bingley, UK: Emerald Group. Kapitel 1, 41–196. DOI: 10.1016/S0193-2306(08)00003-3. [22]
- **Kagel, John H. und Alvin E. Roth, Herausgeber.** 2016. *The Handbook of Experimental Economics*. Band 2, Princeton, NJ, USA: Princeton University Press. [22]
- **Kőszegi, Botond und Adam Szeidl.** 2013. "A Model of Focusing in Economic Choice". *Quarterly Journal of Economics* 128 (1): 53–104. DOI: 10.1093/qje/qjs049. [1, 2, 11, 12, 21]
- **Luce, R. Duncan.** 1959. *Individual Choice Behavior: A Theoretical Analysis*. New York, NY, USA: John Wiley & Sons. [22]

- McClure, Samuel M., Keith M. Ericson, David Laibson, George Loewenstein und Jonathan D. Cohen. 2007. "Time Discounting for Primary Rewards". *Journal of Neuroscience* 27 (21): 5796–804. DOI: 10.1523/JNEUROSCI.4246-06.2007. [11, 21]
- McClure, Samuel M., David Laibson, George Loewenstein und Jonathan D. Cohen. 2004. "Separate Neural Systems Value Immediate and Delayed Monetary Rewards". *Science* 306 (5695): 503–7. DOI: 10.1126/science.1100907. [11, 21]
- **Samuelson, Paul.** 1937. "A Note on Measurement of Utility". *Review of Economic Studies* 4 (2): 155–61. DOI: 10.2307/2967612. [22]
- **Sims, Christopher A.** 2003. "Implications of rational inattention". *Journal of Monetary Economics* 50 (3): 665–90. DOI: 10.1016/S0304-3932(03)00029-1. [2]
- **Sullivan, Paul.** 2016. "Fresh Thinking on Saving". *New York Times* (New York edition), 27. März 2016: F2. URL: http://nytimes.com/2016/03/27/your-money/getting-workers-to-save-more-for-retirement. html. [1]
- Taubinsky, **Dmitry.** 2014. ..From Intentions Actions: Α Model and Experito mental Evidence of Inattentive Choice". Working NH, paper. Hanover, USA: Dartmouth College. URL: https://docs.google.com/viewer?a=v&pid=sites&srcid= ZGVmYXVsdGRvbWFpbnxkbWl0cnlwYXBlcnN8Z3g6NmIzYWM0MWIwNTc4MjkwNQ. [2]
- **Vosgerau, Joachim, Sabrina Bruyneel, Ravi Dhar und Klaus Wertenbroch.** 2008. "Ego Depletion and Cognitive Load: Same or Different Constructs?" In *Advances in Consumer Research*. Band 35, Association for Consumer Research, 217–20. URL: http://www.acrwebsite.org/search/view-conference-proceedings.aspx?Id=13549. [22]
- **Warner, John T. und Saul Pleeter.** 2001. "The Personal Discount Rate: Evidence from Military Downsizing Programs". *American Economic Review* 91 (1): 33–53. DOI: 10.1257/aer.91.1.33. [22]
- **Yaari, Menahem E.** 1965. "Uncertain Lifetime, Life Insurance, and the Theory of the Consumer". *Review of Economic Studies* 32 (2): 137–50. DOI: 10.2307/2296058. [22]

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich die vorstehende Bachelorarbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass die vorgelegte Arbeit noch an keiner anderen Hochschule zur Prüfung vorgelegt wurde und dass sie weder ganz noch in Teilen bereits veröffentlicht wurde. Wörtliche Zitate und Stellen, die anderen Werken dem Sinn nach entnommen sind, habe ich in jedem einzelnen Fall kenntlich gemacht.

8. Januar 2019

Lou E. Vüí-Tøn