STAT 7200

Introduction to Advanced Probability
Lecture 19

Taylor R. Brown

• Weak Convergence

Equivalent Definitions of Weakly Convergence

Theorem 1 (Equivalent Definitions of Weakly Convergence)

The following statements are all equivalent definition of weak convergence: (1) $\{\mu_n\}$ converges weakly to μ . (Original definition)

- (2) $\mu_n(A) \to \mu(A)$ for all measurable set A such that $\mu(\partial A) = 0$. (∂A is defined as the boundary of set A)
- (3) $\mu_n((-\infty,x]) \to \mu((-\infty,x])$ for all $x \in \mathbf{R}$ such that $\mu(\{x\}) = 0$. That is, the convergence of CDFs. (Note, $\{x\}$ is the boundary of set $(-\infty,x]$.)
- (4) (Skorohod's Theorem) there are random variable Y, Y_1, Y_2, \cdots defined on the same probability triple, with $\mathcal{L}(Y) = \mu$ and $\mathcal{L}(Y_n) = \mu_n$ such that $Y_n \to Y$ with probability 1 (This theorem connects the strongest type of convergence: convergence almost surely, with the week convergence.)
- (5) $\int_{\mathbf{R}} f d\mu_n \to \int_{\mathbf{R}} f d\mu$ for all bounded Borel-measurable functions $f: \mathbf{R} \to \mathbf{R}$. such that $\mu(D_f) = 0$, where D_f is the set of discontinuous points of f. (The continuous condition of definition 1) is relaxed.)

Structure of Proof

- Our proof will follow the following structure:
- We have proved: $(5) \Rightarrow (1)$, $(5) \Rightarrow (2)$ and $(2) \Rightarrow (3)$

Proof: $(1) \Rightarrow (3)$

• (1) $\{\mu_n\}$ converges weakly to μ : $\int_{\mathbf{R}} f d\mu_n \to \int_{\mathbf{R}} f d\mu$ for all bounded continuous functions f.

(3)
$$\mu_n((-\infty,x]) \to \mu((-\infty,x])$$
 for all $x \in \mathbf{R}$ such that $\mu(\{x\}) = 0$.

- **Strategy:** We can not apply (1) directly by setting $f = \mathbf{1}_{(-\infty,x]}$ since $\mathbf{1}_{(-\infty,x]}$, although bounded, is discontinuous at x. We may resolve this issue by constructing continuous approximation of $\mathbf{1}_{(-\infty,x]}$.
- **Proof:** For any $\varepsilon > 0$ (which is used to control how good the approximation is), define f(t) = 1 for $t \le x$ and 0 for $t \ge x + \varepsilon$, but let f(t) be a linear function on $(x, x + \varepsilon)$.
- As f is now continuous and $\mathbf{1}_{(-\infty,x]} \leq f \leq \mathbf{1}_{(-\infty,x+\varepsilon]}$:

$$\limsup_{n} \mu_{n}((-\infty,x]) \leq \limsup_{n} \int f d\mu_{n} = \int f d\mu \leq \mu((-\infty,x+\varepsilon])$$

- Let $\varepsilon \to 0$. By the continuity of probability, we have $\limsup_n \mu_n((-\infty, x]) \le \mu((-\infty, x])$

Proof: $(1) \Rightarrow (3)$: continued

• **Proof: continued** Similarly, define f(t) = 1 for $t \le x - \varepsilon$ and 0 for $t \ge x$, but let f(t) be a linear function on $(x - \varepsilon, x)$. Then f is linear and $\mathbf{1}_{(-\infty, x - \varepsilon)} \le f \le \mathbf{1}_{(-\infty, x]}$. And:

$$\liminf_n \mu_n((-\infty,x]) \geq \liminf_n \int f d\mu_n = \int f d\mu \geq \mu((-\infty,x-\varepsilon])$$

- Let $\varepsilon \to 0$, $\liminf_n \mu_n((-\infty, x]) \ge \mu((-\infty, x)) = \mu((-\infty, x])$. The last equality holds since $\mu(\{x\}) = 0$.
- In summary:

$$\liminf_n \mu_n((-\infty,x]) \ge \mu((-\infty,x]) \ge \limsup_n \mu_n((-\infty,x])$$

- we then must have:

$$\lim_{n} \mu_n((-\infty, x]) = \mu((-\infty, x])$$

Proof: $(4) \Rightarrow (5)$

- (4) there are random variable Y, Y_1, Y_2, \cdots defined on the same probability triple, with $\mathcal{L}(Y) = \mu$ and $\mathcal{L}(Y_n) = \mu_n$ such that $Y_n \to Y$ with probability 1.
 - (5) $\int_{\mathbf{R}} f d\mu_n \to \int_{\mathbf{R}} f d\mu$ for all bounded Borel-measurable functions $f: \mathbf{R} \to \mathbf{R}$. such that $\mu(D_f) = 0$, where D_f is the set of discontinuous points of f.
- **Proof:** Pick an appropriate f. First, we want to show that $P(f(Y_n) \to f(Y)) = 1$. Note that
 - $0 \le P(Y_n(\omega) \to Y(\omega), D_f) \le P(D_f) = 0$
 - $\qquad \qquad 1 = P(Y_n \to Y) = P(Y_n \to Y, D_f) + P(Y_n \to Y, D_f^c) + P(Y_n \to Y, D_f^c)$
 - $\blacktriangleright \{\omega : f(Y_n) \to f(Y)\} \supseteq \{\omega : Y_n(\omega) \to Y(\omega)\} \cap \{\omega : Y(\omega) \in D_f^c\}$
 - so $f(Y_n) \to f(Y)$ wp1 by (4) and monotonicity of **P**.
- Because f is bounded, f(Y) is integrable, so $\mathbf{E}[f(Y_n)] \to \mathbf{E}[f(Y)]$ by the dominated convergence theorem.

Proof: $(3) \Rightarrow (4)$

- (3) $\mu_n((-\infty,x]) \to \mu((-\infty,x])$ for all $x \in \mathbf{R}$ such that $\mu(\{x\}) = 0$. (4) there are random variables Y, Y_1, Y_2, \ldots defined on the same probability triple, with $\mathcal{L}(Y) = \mu$ and $\mathcal{L}(Y_n) = \mu_n$ such that $Y_n \to Y$ with probability 1
- **Strategy:** We will construct random variables with CDFs $F_n(x) = \mu_n((-\infty, x]), F(x) = \mu((-\infty, x]),$ then we will show the convergence of these random variables using the fact that the corresponding CDFs converge.

STAT 7200 8/12

Proof: $(3) \Rightarrow (4)$: Probability Integral Transform

- **Proof:** We can construct random variable with given CDF using probability integral transform theorem.
- This theorem states that, for random variable U that follows uniform distribution, given any CDF F(x), define quantile function $Q(p) = \inf\{x : F(x) \ge p\}$, then the random variable Q(U) follows distribution with CDF F(x).
- The reason is, by definition $Q(p) \le q \Leftrightarrow F(q) \ge p$

$$P[Q(U) \le x] = P[F(x) \ge U] = F(x)$$

- Other useful results include:
 - a) F(q) q
 - b) When the CDF is continuous and strictly increasing, the quantile function is the inverse of CDF.
 - c) The quantile function Q(p) is a non-decreasing function, same as the CDF.

Proof: $(3) \Rightarrow (4)$: continued

- **Proof: continued** Let $F_n(x) = \mu_n((-\infty, x])$, $F(x) = \mu((-\infty, x])$, and let $(\Omega, \mathcal{F}, \mathbf{P})$ be the uniform measure over $\Omega = [0, 1]$, and $Y_n(\omega) = \inf\{y : F_n(y) \ge \omega\}$, $Y(\omega) = \inf\{y : F(y) \ge \omega\}$. Then Y_n has CDF $F_n(x)$ and Y has CDF F(x).
- Now we will show that $Y_n(\omega) \to Y(\omega)$ if $Y(\omega)$ is continuous at ω .
- Firstly, define $Y(\omega) = y$. Then $y \varepsilon < Y(\omega) < y + \varepsilon$ implies:

$$F(y-\varepsilon)<\omega\leq F(y+\varepsilon)$$

If $Y(\omega)$ is continuous at ω , the above inequality must be strict.

- The reason: if $F(y+\varepsilon)=\omega$, for any $\delta>0$, $F(y+\varepsilon)<\omega+\delta$, then $Y(\omega+\delta)>y+\varepsilon=Y(\omega)+\varepsilon$. This indicates that there is a jump of at least size ε of $Y(\omega)$ at ω , which is a contradiction to the continuity of Y at ω .
- Thus, $F(y \varepsilon) < \omega < F(y + \varepsilon)$

Proof: $(3) \Rightarrow (4)$: continued

- **Proof: continued** In the previous slide, if Y is continuous at ω , and $Y(\omega) = y$, then $F(y \varepsilon) < \omega < F(y + \varepsilon)$ for all $\varepsilon > 0$.
- Now for a particular ε , we can always find $0 < \varepsilon' < \varepsilon$, so that $\mu(y \varepsilon') = \mu(y + \varepsilon') = 0$. ($\mathbf{P}(x) > 0$ only for at most countably many $\{x\}$). Then $F_n(y \varepsilon') \to F(y \varepsilon')$ and $F_n(y + \varepsilon') \to F(y + \varepsilon')$. Thus, for large enough n, we have:

$$F_n(y - \varepsilon') < \omega < F_n(y + \varepsilon')$$

- Since $\omega < F_n(y + \varepsilon')$, $\omega \le F_n(y + \varepsilon')$, then: $Y_n(\omega) \le y + \varepsilon' = Y(\omega) + \varepsilon'$.
- Since $F_n(y \varepsilon') < \omega$, then $y \varepsilon' < Y_n(\omega)$, which implies a weaker inequality:

$$Y_n(\omega) \ge y - \varepsilon' = Y(\omega) - \varepsilon'.$$

- In summary, $|Y_n(\omega) - Y(\omega)| \le \varepsilon' < \varepsilon$ for large enough n. Thus, $Y_n(\omega) \to Y(\omega)$ when Y is continuous at ω

Proof: $(3) \Rightarrow (4)$: continued

- Proof: continued Finally, we need to establish the fact that Y is continuous with probability 1. Or equivalently, D_Y, the set of the discontinuous points of Y, has probability 0. This statement can be justified based on: a) Y is defined on a uniform measure over [0, 1], b)D_Y is at most countable.
- To show D_f is at most countable, let us first create a partition of $\mathbf{R} = \bigcup_{z \in \mathbf{Z}} (z,z+1]$, and define $\Omega_z = \{\omega: z < Y(\omega) \le z+1\} = Y^{-1}((z,z+1])$. Since Y is a non-decreasing function, each Ω_z should be an interval on [0,1] and $\{\Omega_z\}$ forms a partition of [0,1].
- Then Let $D_f^z = \text{Discontinuous points in } \Omega_z$. Clearly $D_f = \bigcup_z D_f^z$.
- Next define $D_f^z \supseteq D_f^z(m) = \{ \text{ jumps that have size } \ge m^{-1} \}.$
- Clearly $|D_f^z| \le m$ and $D_f = \bigcup_z \bigcup_m D_f^z(m)$. Therefore the number of discontinuous points is at most countable.