1.
$$IG(y_i) = H(y_{out}) - H(y_{out} | y_i)$$

 $H(y) = \frac{2}{5} - \rho(y_1) \log_2 \left[\rho(y_i)\right]$

· [41 >0,4]:

D	ya	92	y ₃	94	yout
N5	0,45	1	0	2	C
46	0,52	0	0	0	B
N7	0,58	2	1	2	C
ng	0,62	1	0	1	A
Kq	0,71	1	2	1	A
Mo	0,83	1	2	1	В
Ku	0,90	2	1	2	В
1412	0,95	2	2	2	C

$$-p(A) = \frac{a}{8} = \frac{1}{4}$$

•
$$H(y_{out}) = -\rho(A) \log_2 [\rho(A)] - \rho(B) \log_2 [\rho(B)] - \rho(C) \log_2 [\rho(C)] =$$

$$= -\frac{1}{4} \log_2 (\frac{1}{4}) - \frac{3}{8} \log_2 (\frac{3}{8}) - \frac{3}{8} \log_2 (\frac{3}{8}) \sim 1,561$$

•
$$H(y_{out}|y_2) = p(0) H(y_{out}|y_2=0) + p(1) H(y_{out}|y_2=1) + p(2) H(y_{out}|y_2=2) =$$

$$= \frac{1}{8} \times 0 + \frac{1}{2} \times \left[-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{4} \log_2(\frac{1}{4}) - \frac{1}{4} \log_2(\frac{1}{4}) \right] + \frac{3}{8} \times \left[-\frac{3}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{1}{3}) \right] \approx 1.094$$

• H(yout 1/3) =
$$\rho(0)$$
 H(yout 1/3=0) + $\rho(1)$ H(yout 1/3=1) + $\rho(3)$ H(yout 1/3=2) =
$$= \frac{3}{8} \left[-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) \right] + \frac{1}{4} \times 1 + \frac{3}{8} \times \left[-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) \right] = 1.439$$

94=0: No →B 94=1: No, No, No A A B

•	yı	>	0,4	t	44	=2	1.4

	yout	74	y ₃	42	ya .	D
	C	2	0	1	0,45	k5
· p(B) = 1/4	C					
1) 3	В	2	1	2	0,90	W.M

•
$$H(yort) = -p(A)\log_2[p(A)] - p(B)\log_2[p(B)] - p(C)\log_2[p(C)] =$$

$$= 0 - \frac{1}{4}\log_2(\frac{1}{4}) - \frac{3}{4}\log_2(\frac{3}{4}) = 0.811$$
• $H(yort | y_2) = p(0) H(yort | y_2 = 0) + p(A)H(yort | y_2 = 1) + p(a)H(yort | y_2 = 2) =$

$$= 0 + \frac{1}{4}x_0 + \frac{3}{4}x[-\frac{1}{3}\log_2(\frac{1}{3}) - \frac{2}{3}\log_2(\frac{2}{3})] = 0.689$$

IG(43) > IG(42)

$$y_{3} = 0$$
: $y_{5} \rightarrow C$
 $y_{3} = 1$: $y_{1} y_{1}$
 $y_{3} = 1$: $y_{2} y_{3}$
 $y_{3} = 1$: $y_{4} y_{5}$
 $y_{5} = 1$: $y_{5} y_{5}$

D	yat (tre)	yest (predict)	
M	A	A	/
112	В	В	~
kz	C	C	~
44	A	Α	/
hs	C	C	V
No	В	В	1
47	C	В	X
щ	A	A	/
Kq	A	A	/
400	В	A	×
144	B	В	1
42	C	C	/

	1	Paining	Confusion	Mater		
TRUE						
		A	B	C		
	A	4	1	0		
drot	B	0	3	1		
97	C	0	0	3		
		,				

3.
$$F_1 = \frac{2 - Precision - Recall}{Precision + Recall}$$

$$A = 4$$
 $T_{N} = 3 + 1 + 3 = 7$
 $T_{N} = 3 + 1 + 3 = 7$
 $T_{N} = 3 + 1 + 3 = 7$
 $T_{N} = 4 + 1 + 3 = 8$
 $T_{N} = 0$
 $T_{N} = 0$

$$Q_2 = \frac{0.52 + 0.58}{2} = 0.55$$