MEEK 2 KEY

Compound	Lewis Structure	Electronic Geometry	Molecular Geometry, Bond Angle	Is this molecule polar?	Hybridization of central atom
XeF ₃ -	Xe-F:	actahedral	T-shaped 90°		Sp3da
SBr ₂	Br S: Br	tetrahedral	bent <109.5°	yeo	-ap3
. 13		trigonal bipyramidal	linear 180°	no	-8p³d
SF ₅	F.S. F.	octahedral	pyramidal 1	yeo	sp3d2
PF ₃	F. P. F.	tetrahedrai	trigonal pyramidal 4109.5°	yes	Op3

1. The data to the right was collected for the reaction below. What is the <u>average rate of ammonia (NH₃) formation</u> from 30-60s if this experiment was performed in a 2.00 L flask?

$$2N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

Time (s)	Moles of H ₂	
0	8.54	
15	7.44	
30	6.29	
45	5.16	
60	4.09	

$$\Delta [H_2] = \frac{4.09 \, \text{mol} / 2L - 6.29 \, \text{mol} / 2L}{\Delta t} = -0.036667 \, \text{Ms}^{-1}$$

$$rati = \frac{-1}{3} \frac{\Delta [H2]}{\Delta t} = \frac{1}{2} \frac{\Delta [NH3]}{\Delta t}$$

$$\frac{\Delta(NH_3)}{\Delta t} = \frac{-2}{3} \cdot \frac{\Delta(H_2)}{\Delta t} = \frac{-2}{3} (-.036667) = 2.44 \times 10^{-2} \, \text{Ms}^{-1}$$

2. The rate of the reaction, HgCl₂(aq) + ½ C₂O₄²(aq) → Cl² (aq) + CO₂(g) + ½ Hg₂Cl₂(s), is followed by measuring the number of moles of Hg₂Cl₂ that precipitate per liter per second. What is the rate constant and overall rate order?

[HgCl ₂]	[C ₂ O ₄ ² ·]	Initial Rate (mol/L ·s)
0.10	0.10	1.3 x 10 ⁻⁷
0.10	0.20	5.2 x 10 ⁻⁷
0.20	0.20	1.0 x 10 °
0.20	0.10	2.6 x 10 ⁻⁷

$$\frac{O2}{1.3 \times 10^{-7} \text{Ms}^{-1}} = \frac{1 \times (0.10)^m (0.20)^n}{1 \times (0.10)^m (0.10)^n}$$

$$4 = 2^n$$

$$\frac{exp!}{exp!} \cdot \frac{2.6 \times 10^{-7} Ms^{-1}}{1.3 \times 10^{-7} Ms^{-1}} = \frac{k(0.20)^{m}(0.10)^{n}}{k(0.10)^{m}(0.10)^{n}}$$

$$2 = 2^{m}$$

overall rate order=m-n=1+2

3. The rate law for the reaction: $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$ is given by rate = $k[NH_4^+][NO_2^-]$. At 25°C, the rate constant is 3.0×10^{-4} M⁻¹ s⁻¹. Calculate the rate of reaction at this temperature if $[NH_4^+] = 0.36$ M and $[NO_2^-] = 0.075$ M. What is the rate of H_2O production?

$$rate = k[NH_{4}^{1}][NO_{2}^{-1}]$$

$$= 3.0 \times 10^{-4} M^{-1}S^{-1}(0.36M)(0.07SM)$$

$$rate = 8.1 \times 10^{-6} MS^{-1}$$

$$rate = \Delta[HzO]/abt$$

$$\Delta[HzO] = 1.6 \times 10^{-5} MS^{-1}$$

4. Determine the overall orders of the reactions to which the following rate laws apply:

a. rate =
$$k[NO_2]^2$$

c. rate =
$$k[H_2]^2[Br_2]^{1/2}$$

b. rate =
$$k$$

d. rate =
$$k[NQ]^2[Q_2]$$

- 5. Write the reaction rate expressions for the following reactions in terms of the disappearance of the reactants and the appearance of products:
 - a. $2NO_2 \rightarrow 2NO + O_2$

$$rate = \frac{-\Delta[NO_2]}{2\Delta t} = \frac{\Delta[NO]}{2\Delta t} = \frac{\Delta[O_2]}{\Delta t}$$

b. $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$

Prate =
$$\frac{-\Delta(NH_3)}{4\Delta t} = \frac{-\Delta(O_2)}{5\Delta t} = \frac{\Delta(NO)}{4\Delta t} = \frac{\Delta(H_2O)}{10\Delta t}$$

c. $2NO_2(g) + Cl_2(g) \rightarrow 2NO_2Cl(g)$

rate =
$$-\Delta[NO_2]$$
 = $-\Delta[Ulz]$ = $\Delta[NO_2(l)]$ = $\Delta[NO_2(l)]$