Bias Estimation of Biological Reference Points Under Two-Parameter SRRs

Nick Grunloh

In collaboration with: Dr. E.J. Dick Dr. H. K.H. Lee

02 Dec 2021

Mangel et al. 2013, CJFAS

$$\frac{dB(t)}{dt} = \frac{\alpha B(t)}{1 + \beta B(t)} - (M + F(t))B(t)$$

$$h = \frac{\frac{\alpha}{M}}{4 + \frac{\alpha}{M}}$$

Introduction .0

$$rac{F^*}{M} = \sqrt{rac{4h}{1-h}} - 1$$

$$\frac{B^*}{B_0} = \frac{\sqrt{\frac{m}{1-h}} - 1}{\frac{4h}{1-h} - 1}$$

Mangel et al. 2013, CJFAS

Introduction

$$\frac{dB(t)}{dt} = \frac{\alpha B(t)}{1 + \beta B(t)^{\frac{1}{\gamma}}} - (M + F(t))B(t)$$

Mangel et al. (2013) suggest exploration of three parameter stock recruit relationships (SRRs) to avoid pre-determined reference points (RP) in assessments

A'Priori RP Prior Relationships

$$\frac{dB(t)}{dt} = \frac{\alpha B(t)}{1 + \beta B(t)} - (M + F(t))B(t)$$

$$\frac{B^*}{B_0} = \frac{1}{\frac{F^*}{M} + 2}$$

Introduction 00

$$log(F^*) \sim N(\mu, \sigma^2)$$

$$\updownarrow$$

$$2\frac{B^*}{B_0} \sim logit-N\left(log(2M) - \mu, \sigma^2\right)$$

Pella-Tomlinson Production Model

$$I(t) \sim LN(qB(t), \sigma^2)$$
 $\frac{dB(t)}{dt} = R_{\theta}(B(t)) - F(t)B(t)$ $R_{\theta}(B) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K}\right)^{\gamma - 1}$ $\theta = (r, K, \gamma)$

$$\gamma = 2 \Rightarrow \mathsf{Schaefer} \; \mathsf{Model}$$

Pella-Tomlinson Production Model

$$I(t) \sim LN(qB(t), \sigma^{2})$$

$$\frac{dB(t)}{dt} = R_{\theta}(B(t)) - F(t)B(t)$$

$$R_{\theta}(B) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K}\right)^{\gamma - 1}$$

$$\theta = (r, K, \gamma)$$

 $\gamma = 2 \Rightarrow \mathsf{Schaefer} \; \mathsf{Model}$

Pella-Tomlinson Family of Curves

Reference Point Space

Catch

Catch

roduction Simulation Bias Examples

Flat: Misspecified SRR

Biomass

Depletion

Introduction Simulation Bias Examples
00 000 0000000 0000000 0000000

Contrast: Misspecified SRR

Biomass

Depletion

ContrastT45: Misspecified SRR Biomass Depletion

ContrastT60: Misspecified SRR Biomass Depletion

SchnuteExpT45: Misspecified SRR Biomass Depletion

SchnuteExpT30: Misspecified SRR Biomass Depletion

SchnuteExpT30L2: SRR

Biomass

Depletion

Examples 0000000

SchnuteExpT30L3: SRR

Biomass

Depletion

ntroduction Simulation Bias Examples 0000 0000000 00000000

SchnuteFlatT30: SRR

Biomass

Depletion

