statistics in R workshop 3

statistical tests

- categorical
 - goodness of fit for one categorical variable
 - t-tests
 - analysis of variance (anova)
- continuous
 - correlation and regression-linear relationships
- general linear models

types of data

continuous data

correlation

assumptions

 confirm that the relationship between the DV and IV are linear

hypothesis for correlation

- H0: x variable and y variable are not correlated (p = 0).
- HA: x variable and y variable are correlated (p ≠ 0).

Table 1

Means, standard deviations, and correlations with confidence intervals

Variable	М	SD	1	2
1. satisfaction	-0.02	1.34		
2. exam1	77.68	10.38	.56** [.47, .63]	
3. age	23.85	3.81	07 [18, .05]	01 [13, .10]

interpretation for correlation

- This data provides evidence that exam 1 score is significantly correlated to class satisfaction (t(298) = 11.60, p < .001). There is a strong positive relationship between score and satisfaction, and we are 95% confident that the correlation coefficient is between .47 and .63.
- We found no evidence that the relationship between age and exam 1 score is correlated (t(298) = -.24, p = .80)

Table 1

Means, standard deviations, and correlations with confidence intervals

Variable	М	SD	1	2
1. satisfaction	-0.02	1.34		
2. exam1	77.68	10.38	.56** [.47, .63]	
3. age	23.85	3.81	07 [18, .05]	01 [13, .10]

regression

assumptions

confirm that the relationship between the DV and IV are linear

- normality
 - qqplots
 - residual plots

hypothesis for regression

- HO: x variable is **not** a linear predictor of y variable ($\beta = 0$).
- HA: x variable is a linear predictor of y variable ($\beta \neq 0$).

interpretation for regression

- The data shows evidence that class satisfaction is **significantly linearly** related to exam 1 score (t(298) = 11.6, p < .001). For every additional point increase in satisfaction, **exam 1 score increased by 4.32, on average.**
- There was not a significantly linear relationship between age and exam 1 score (t(298) = -.24, p = .81).

general linear model

assumptions

confirm that the relationship between the DV and IV are linear

- qqplots
- residual plots for equal variance

hypothesis for glm

- exam 1 score ~ satisfaction + time
- HO: when controlling for class time, satisfaction is **not** a linear predictor of exam 1 score.
- HA: when controlling for class time, satisfaction is a linear predictor of exam 1 score.
- HO: when controlling for satisfaction, class time is **not** a linear predictor of exam 1 score.
- HA: when controlling for satisfaction, class time is a linear predictor of exam 1 score.

hypothesis for glm

- exam 1 score ~ satisfaction + time
- HO: when controlling for class time, satisfaction is **not** a linear predictor of exam 1 score.
- HA: when controlling for class time, satisfaction is a linear predictor of exam 1 score.
- HO: when controlling for satisfaction, class time is **not** a linear predictor of exam 1 score.
- HA: when controlling for satisfaction, class time is a linear predictor of exam 1 score.

hypothesis for glm

- exam 1 score ~ satisfaction + time
- HO: when controlling for class time, satisfaction is **not** a linear predictor of exam 1 score.
- HA: when controlling for class time, satisfaction is a linear predictor of exam 1 score.
- HO: when controlling for satisfaction, class time is **not** a linear predictor of exam 1 score.
- HA: when controlling for satisfaction, class time is a linear predictor of exam 1 score.

interpretation for glm

- While controlling for class time, satisfaction is a significant linear predictor of exam 1 score (t(2, 297) = 11.55, p < .001). For every one point increase in satisfaction, there was a 4.32 points increase in exam score, on average while holding class time constant.
- While controlling for satisfaction, class time was not a significant linear predictor of exam 1 score (t(2, 297) = .10, p = .92).

interaction for glm

- similar to multi-factor ANOVA, we can test if the effect of one variable differs based on the other
- HO: the effect of satisfaction on exam 1 score is the same for AM and PM classes.
- HA: the effect of satisfaction on exam 1 score is **not** the same for AM and PM classes. (there is an interaction between satisfaction x time on exam 1)

interaction for glm

- similar to multi-factor ANOVA, we can test if the effect of one variable differs based on the other
- HO: the effect of satisfaction on exam 1 score is the same for AM and PM classes.
- HA: the effect of satisfaction on exam 1 score is **not** the same for AM and PM classes. (there is an interaction between satisfaction x time on exam 1)
- if there was a sign. interaction
 - There was a significant interaction between class time and satisfaction on exam 1 score. We found that students in the afternoon class had a positive linear relationship between satisfaction and exam 1 score (insert stats), whereas the students in the morning class had a non-significant linear relationship between satisfaction and exam score (insert stats).