

Entrance Exam ULFG2 Session 2021 Maths - Bac Libanais

Retirée Par: Social Club ULFG2

Ce PDF contient la session de Maths de l'année 2021 **Retirée par:** Social Club ULFG2

Lisez les consignes suivantes avant d'entamer la résolution;

Cette épreuve comporte 40 questions:

A chaque question sont proposées 4 réponses dont une seule est correcte: dans la grille ci-dessous, écrire en face du numéro de chaque question la lettre correspendant à la bonne réponse .

Aucun brouillon n'est distribué. Les pages blanches peuvent être utulisées comme brouillon.

L'usage de la calculatrice est interdit.

Grille de réponses

				arille de reponse
Question	Réponse		Question	Réponse
1			21	
2			22	
3			23	
4			24	
5			25	
6			26	
7	-		27	
8			28	
9			29	-0
10			30	
11			31	
12			32	
13		1	33	
14			34	
15			35	
16			36	
17		11	37	
18			38	
19		4	39	
20			40	

UNIVERSITE LIBANAISE

FACULTE DE GENIE

NOMBRES COMPLEXES

Le plan complexe est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

 z_1 et z_2 sont les racines de l'équation $4z^2 + (1+i)z + 1 + i\sqrt{3} = 0$ dans l'ensemble des nombres complexes.

- 1- |z₁ z₂| =
 - a) 0.25.
 - b) 1.
 - c) 0.5.
 - d) aucune des trois réponses ci-dessus n'est correcte.

2- Un argument de $z_1 + z_2$ est

- a) $\frac{\pi}{4}$.
- b) $-\frac{3\pi}{4}$.
- c) $-\frac{3\pi}{16}$.
- **d**) $\frac{3\pi}{4}$.

3- $arg(z_1) =$

- a) $\pi \arg(z_2)$.
- **b)** $\frac{\pi}{6} \arg(z_2)$
- c) $\arg(z_2) \frac{\pi}{3}$.
- d) $\frac{\pi}{3}$ arg (z_2) .

4- Les racines de l'équation $4\overline{z}^2 - (1+i)\overline{z} + 1 + i\sqrt{3} = 0$ sont

- a) z_1 et z_2 .
- b) $\overline{z_1}$ et $\overline{z_2}$.
- c) $-\overline{z_1}$ et $-\overline{z_2}$.
- d) aucune des trois propositions ci-dessus n'est correcte.

- 5- Le nombre $(1-i)^{14}$ est
 - a) est un réel pure .
 - b) est un imaginaire pure dont la partie imaginaire est positive.
 - c) est un imaginaire pure dont la partie imaginaire est négative .
 - d) aucune des trois propositions ci-dessus n'est correcte.
- 6- Soit θ un argument du nombre complexe $(1-\sqrt{3}i)^{12}+(4+3i)^9$

Si
$$z = \frac{(1 - \sqrt{3}i)^{12} + (4 + 3i)^9}{(1 + \sqrt{3}i)^{12} + (4 - 3i)^9}$$
, alors:

- a) |z| = 1 et 2θ est un argument de z.
- b) |z| = 0 et 2θ est un argument de z.
- c) |z| = 1 et 0 est un argument de z.
- d) aucune des trois propositions ci-dessus n'est correcte.
- f est l'application qui, à tout point M d'affixe $z \neq 0$, associe le point M' d'affixe $z' = \frac{4i}{\pi}$.
- 7- L'ensemble des points invariants par f est :
 - a) $\{I(0;2);J(0;-2)\}$.
 - b) l'ensemble des points du cercle de centre O et de rayon 2.
 - c) l'ensemble des points de l'axe des ordonnées
 - d) l'ensemble vide .
- 8- Les points M et M' sont tels que :
 - a) (OM) et (OM') sont perpendiculaires.
 - b) O, M et M' sont alignés.
 - e) M et M' appartiennent au cercle de centre O et de rayon 2.
 - d) M et M' appartiennent à l'axe $(O; \vec{v})$.

PROBABILITE

Le comité d'élèves d'un certain lycée est constitué de cinq filles et trois garçons . On choisit successivement deux membres du comité .

9- La probabilité que les membres choisis soient de même sexe est égale à :

- a) $\frac{17}{32}$.
- **b)** $\frac{13}{28}$.
- c) $\frac{13}{14}$
- d) $\frac{15}{32}$.

10- La probabilité que le second membre choisi soit une fille sachant que le premier est un garçon est égale à :

- a) $\frac{5}{7}$.
- b) $\frac{4}{7}$
- e) $\frac{15}{56}$.
- d) $\frac{3}{7}$

11- A et B sont deux événements de l'univers d'une certaine expérience aléatoire,

Si $p(\overline{A}) = \frac{5}{8}$, $p(B) = \frac{1}{2}$ et $p(A \cap \overline{B}) = \frac{1}{4}$, alors $p(B/\overline{A})$ est égale à :

- a) $\frac{3}{4}$.
- b) $\frac{1}{4}$.
- c) $\frac{3}{8}$.
 - d) $\frac{3}{5}$.

Une boite E contient 2 boules rouges, 1 boule blanche et 4 boules jaunes; Une boite F contient 1 boule rouge, 2 boules blanches et 3 boules jaunes. On tire au hasard 2 boules de chaque boite.

- 12- La probabilité que les 4 boules soient de même couleur est égale à :
 - a) $\frac{1}{7}$
 - b) $\frac{1}{35}$.
 - c) $\frac{2}{35}$
 - d) 0.4.
- 13- La probabilité que 3 des 4 boules soient jaunes est égale à :
 - a) $\frac{5}{63}$
 - b) $\frac{2}{7}$
 - c) $\frac{1}{45}$
 - d) aucune des trois propositions ci-dessus n'est correcte.

Deux équipes de basketball A et B vont jouer une série de trois parties telle que l'équipe qui gagne deux parties gagne la série.

On sait que, pour chaque partie, la probabilité que l'équipe A gagne est égale à $\frac{2}{3}$.

- 14- La probabilité que l'équipe B gagnera la série est égale à :
 - a) $\frac{4}{27}$.
 - **b**) $\frac{1}{9}$.
 - c) $\frac{7}{27}$.
 - d) $\frac{4}{9}$.
- 15- Sachant que l'équipe A a gagné la série, la probabilité que l'équipe B a gagné la première partie est égale à 1
 - a) $\frac{2}{7}$.
 - **b**) $\frac{1}{5}$.
 - c) $\frac{2}{7}$.
 - d) $\frac{2}{5}$.

EQUATIONS ET INEQUATIONS

- 16- L'ensemble des solutions de l'inéquation $\exp(\ln(4-x^2)) \ge 1-2x$ est :
 - a) [-1;3].
 - b) $]-\infty; -1] \cup [3; +\infty[$.
 - c)]-2;2[.
 - d) [-1; 2[.
- 17- L'ensemble des solutions de l'inéquation $e^{\frac{1}{x}} e^{-\frac{1}{3}}$ est :
 - a) IR .
 - **b)** $IR \{0\}$.
 - c) [-3;0[.
 - d) [-3;0].
- 18- L'ensemble des solutions de l'équation $e^{4x} e^{2x} = 2$ est :
 - a) $\{-1; 2\}$.
 - b) { ln2 }.
 - c) {ln1}.
 - d) \en√2 \.
- 19- L'ensemble des solutions de l'inéquation $\ln(4-\sqrt{4-x}) < \ln 2$ est :
 - a) [-12;4].
 - b)]-12;4[.
 - c)]-12;0[.
 - d) aucune des trois propositions ci-dessus n'est correcte.
- 20- L'ensemble des solutions de l'inéquation $\ell n(x-1) + \ell n(x-3) \le 3 \ell n^2$ est :
 - a)]3;5].
 - b) [3;5[.
 - c)]3;+∞[.
 - d) [-3;5[.

FONCTIONS

Le plan est rapporté à un repère orthonormé direct $(O; \overline{i}, \overline{j})$

21- La fonction f définie sur IR par $f(x) = \begin{cases} 1 - e^{x-1} & \text{if } x \le 1 \\ -\ell nx & \text{if } x > 1 \end{cases}$ est

- a) continue et non dérivable en 1 .
- b) dérivable et non continue en 1.
- e) continue et dérivable en 1 .
- d) ni continue ni dérivable en 1.

La fonction h est définie sur $]0; 2[\cup]2; +\infty[$ par $h(x) = \frac{\ell nx}{x-2}$.

22- $\lim_{x\to 0^+} h(x) = \ell_1$ et $\lim_{x\to +\infty} h(x) = \ell_2$ où :

- a) $\ell_1 = +\infty$ et $\ell_2 = -\infty$
- b) $\ell_1 = -\infty$ et $\ell_2 = 0$.
- c) $\ell_1 = -\infty$ et $\ell_2 = -\infty$.
- d) $\ell_1 = +\infty$ et $\ell_2 = 0$.

23- $\lim_{x \to 2^{-}} h(x) = L_1$ et $\lim_{x \to 2^{+}} h(x) = L_2$ où:

- a) $L_1 = -\infty$ et $L_2 = -\infty$.
- b) $L_1 = -\infty$ et $L_2 = +\infty$.
- c) $L_1 = -\infty$ et $L_2 = 0$.
- d) $L_1 = 0$ et $L_2 = +\infty$.

La fonction g est définie sur]0; +\infty[par $g(x) = x^2 \left(\frac{3}{2} - \ell nx \right)$.

La courbe représentative (C) de g coupe l'axe des abscisses en un point A.

24- La tangente à (C) en A coupe l'axe des ordonnées au point d'ordonnée :

- a) $-e\sqrt{e}$.
- b) $e\sqrt{e}$.
- c) e^3 .
- d) e^2 .

25- La tangente à (C) au point d'inflexion coupe l'axe des abscisses au point d'abscisse :

- a) $\frac{1}{4}$.
- b) -2
- c) $\frac{7}{4}$.
- d) 1.

La fonction f est définie sur IR par $f(x) = (x+1)e^{-x}$. Soit (y) la courbe représentative de f.

16. La tangente à (y) au point d'abscisse α coupe l'axe des ordonnées au point d'ordonnée $\beta = 1$

- a) $(\alpha^2 + 1)e^{-\alpha}$.
- b) $a^2 e^{-a}$.
- (c) $(\alpha^2 + \alpha + 1)e^{-\alpha}$
- d) a2e-a,

Soit S(m) la mesure, en unités d'aire, de l'aire du domaine limité par (y), les deux axes de coordonnées et la droite d'équation x = m où m > 0; $\ell im S(m) =$

- a) e ..
- b) 1.
- c) e+1.
- d) 2.

La fonction F est définie sur]0; $+\infty[$ par $F(x) = x \ln x - \ln x$. Soit (L) la courbe représentative de F.

28- Le signe de F(x) est tel que :

- a) F(x) < 0 dans [0; 1[et F(x) > 0 dans $[1; +\infty[$
- b) Pour tout x dans $]0; +\infty[, F(x) \ge 0]$
- c) F(x) > 0 dans [0; 1[et F(x) < 0 dans $[1; +\infty[$.
- d) Pour tout x dans $]0; +\infty[, F(x) \le 0]$

29. La droite d'équation y = 2x - 2 coupe (L) aux points d'abscisses respectives :

- a) let e^2 .
- b) 2 et d = e.
- c) 1 et e.
- d) √e et 1.

30- La courbe (L):

- a) n'a aucun point commun avec l'axe des abscisses.
- b) coupe l'axe des abscisses aux points d'abscisses 0 et 1.
- c) est tangente à l'axe des abscisses au point d'abscisse 1.
- d) est tangente à l'axe des abscisses au point d'abscisse e.

INTEGRALES

31.
$$\int_{e^{x}-3}^{e^{x}} dx \text{ est égale à };$$

- a) tn2.
- b) £n2.
- c) -1.5.
- d) aucune des trois propositions ci-dessus n'est correcte.

$$y \cdot \int \left(2x + \frac{x+1}{x^2 + 2x + 3}\right) dx \text{ est égale à :}$$

- a) $2 + \ell n \sqrt{3}$.
- b) ln3.
- c) ln \sqrt{3}.
- d) $2 + \ln 3$.

$$\lim_{x \to \frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^9 x \ dx \text{ est égale à :}$$

- a) 0
- b) $2(\sqrt{3})^{10}$
- c) 0.2 (\sqrt{3})10
- d) aucune des trois propositions ci-dessus n'est correcte.

34 f est la fonction continue définie sur IR par $f(x) = \begin{cases} 2x-2 & \text{if } x < 1 \\ \ell n x & \text{if } x \ge 1 \end{cases}$; $\int_{-2}^{6} f(x) dx$ est égale à :

- a) 8.
- b) -8,
- c) -10.
- d) aucune des trois propositions ci-dessus n'est correcte.

La fonction g est définie sur $]-\infty$; 0[par g(x)=fn(-x). Une primitive G de g est définie sur $]-\infty$; 0[par G(x).

- a) $x \ln(-x) + x$.
- b) $-x \ln(-x) + x$.
- c) $-x \ln(-x) x$.
- d) x in(-x) x.

TRANSFORMATIONS

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v).

pans la figure, ABCD et EFBA sont deux carrés directs. Soit \mathcal{T} la translation de vecteur \overrightarrow{CD} et S la similitude de centre A, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$.

a)
$$T \circ S(B) = D$$
 et $S \circ T(B) = D$.

b)
$$T \circ S(B) = A$$
 et $S \circ T(B) = A$

c)
$$T \circ S(B) = D$$
 et $S \circ T(B) = A$.

d) aucune des trois propositions ci-dessus n'est correcte.

37- les points $T \circ S(E)$ et $S \circ T(F)$ sont tels que :

a)
$$T \circ S(E) = E$$
 et $S \circ T(F) = C$.

b)
$$T \circ S(E) = B$$
 et $S \circ T(F) = F$.

c)
$$T \circ S(E) = F$$
 et $S \circ T(F) = E$.

d)
$$T \circ S(E) = E$$
 et $S \circ T(F) = F$.

38- Le rapport k et l'angle α de la similitude $T \circ S$ sont :

a)
$$k = \frac{1}{\sqrt{2}}$$
 et $\alpha = \frac{\pi}{4}$.

b)
$$k = \sqrt{2}$$
 et $\alpha = \frac{\pi}{4}$.

c)
$$k=2$$
 et $\alpha=-\frac{\pi}{4}$.

d) aucune des trois propositions ci-dessus n'est correcte.

g est la transformation définie par sa relation complexe $z' = (1 - \sqrt{3}i)z + 3i$.

39- L'image par g d'un cercle de rayon $\sqrt{2}$ est un cercle d'aire :

c)
$$8\pi$$
 unités d'aire.

40. Si
$$f = g \circ g \circ g$$
, alors f est:

a) La symétrie centrale de centre
$$G(0; \sqrt{3})$$
.

b) la similitude de centre
$$L(-\sqrt{3}; 0)$$
, de rapport 2 et d'angle $-\frac{\pi}{2}$.

e) la similitude de centre
$$I(\sqrt{3}; 0)$$
, de rapport 8 et d'angle $-\frac{\pi}{3}$

d) l'homothétie de centre
$$J(\sqrt{3}; 0)$$
 et de rapport -8 .

Lisez les consignes suivantes avant d'entamer la résolution:

Cette épreuve comporte 40 questions:

A chaque question sont proposées 4 réponses dont une seule est correcte: dans la grille ci-dessous, écrire en face du numéro de chaque question la let<u>tre corr</u>espendant à la bonne réponse .

Aucun brouillon n'est distribué. Les pages blanches peuvent être utulisées comme brouillon.

L'usage de la calculatrice est interdit.

Grille de réponses

Question	Réponse		Question	Réponse
1			21	
2			22	
3			-23	
4			24	
5			25	
6			26	
7			27	
8	HE BUILDING		28	
9			29	
10		8/6	30	
11		LEGIS A	31	1
12			32	- ol
13			33	
14			34	
15		7.8	35	
16			36	
17			37	
18			38	
19			39	
20			40	

UNIVERSITE LIBANAISE

FACULTE DE GENIE

NOMBRES COMPLEXES

Le plan complexe est rapporté à un repère orthonormé direct (0; u, v).

f est l'application qui , à tout point M d'affixe $z \neq 0$, associe le point M' d'affixe $z' = \frac{9i}{z}$.

- 1- L'ensemble des points invariants par f est :
 - a) $\{I(0;3); J(0;-3)\}$.
 - b) l'ensemble des points du cercle de centre O et de rayon 3.
 - c) l'ensemble des points de l'axe des ordonnées .
 - d) l'ensemble vide .
- 2- Quand M décrit le cercle (γ) de centre O et de rayon 1, le point M' décrit :
 - a) le cercle (γ)
 - b) le cercle de centre O et de rayon 9.
 - c) une droite ne passant pas par O.
 - d) aucune des trois propositions ci-dessus n'est correcte.
- 3- Le triangle OMM' est rectangle isocèle en O si et seulement si :
 - a) OM = 9.
 - b) $M(-1; \sqrt{2})$.
 - c) M appartient au cercle de centre O et de rayon 3.
 - d) OM = 3 et $(\overline{u}, \overline{OM}) = \frac{\pi}{4}$ (2π) .
- 4- |z'-2i| =
 - a) $\frac{|2+z|}{|\bar{z}|}$.
 - b) $\frac{|z-2|}{|\bar{z}|}$.
 - c) $\frac{2|z-2|}{|z|}$
 - d) aucune des trois propositions ci-dessus n'est correcte.
- 5- (C) est le cercle de centre le point A, d'affixe 2i, passant par O.

Quand M' décrit le cercle (C) privé du point O, le point M décrit :

- a) une droite.
- b) un cercle.
- c) une droite privée d'un point.
- d) un cercle privé d'un point.

Le nombre complexe a = -1 + 2i est l'une des racines cubiques d'un nombre complexe d.

- 6- d = :
 - a) 11 + 2i
 - b) 2 + 11i.
 - c) 11 2i.
 - d) -1-2i.
- 7- Si b et c sont les autres racines cubiques de d, alors b+c=:
 - a) -2-5i.
 - b) 1-2i.
 - c) -2-i.
 - d) -3+4i.
- 8- Les points A, B, C d'affixes respectives a, b et c sont tels que :
 - a) OABC est un carré.
 - b) ABC est un triangle équilatéral de coté 1.
 - c) ABC est un triangle équilatéral inscrit dans le cercle de centre O et de rayon 1.
 - d) ABC est un triangle équilatéral inscrit dans le cercle de centre O et de rayon $\sqrt{5}$.

PROBABILITE

Une boite contient les lettres P, R, O, B, A. On tire successivement, avec remplacement, trois lettres de la boite

9- La probabilité de l'événement " aucune voyelle n'est tirée " est égale à :

- a) 0,124
- b) 0,216
- c) 0,16
- d) 0,064

10- La probabilité de l'événement " au moins une voyelle est tirée " est égale à :

- a) 0,784
- b) 0,544
- c) 0,304
- d) 0,416

On tire au hasard 3 boules d'une urne contenant 5 boules blanches , 2 boules rouges et 3 boules noires indiscernables au toucher.

11- Si au moins une des boules tirées est rouge, alors la probabilité qu'une seule boule rouge soit tirée est égale à :

- d) 0.5

12- Si les boules tirées sont de même couleur, alors la probabilité qu'elle soient toutes blanches est égale à :

- a) $\frac{11}{120}$
- **b)** $\frac{10}{11}$

13- 40 % des élèves d'une certaine université au Liban, sont des garçons.

On sait que, parmi ces élèves, 10 % des filles et 5 % des garçons ne sont pas libanais. Un élève dans cette université est choisi au hasard.

Si cet élève n'est pas libanais, alors la probabilité qu'il soit un garçon est égale à :

- a) 0,25
- b) 0,02
- c) 0,15
- d) 0,04

Lors d'une épidémie de grippe, 12,5 % d'une population vaccinée contracte la grippe. On s'intéresse à une famille de 5 personnes.

14- La probabilité qu'au plus un des membres de cette famille contracte la grippe est égale à :

- a) $\left(\frac{7}{8}\right)^4$.
- **b)** $1.5 \times \left(\frac{7}{8}\right)^4$.
- e) $0,125 \times \left(\frac{7}{8}\right)^4$.
- d) $1,25 \times \left(\frac{7}{8}\right)^4$.

15- La probabilité qu'au moins trois des membres de cette famille contractent la grippe est égale à :

- a) $\frac{57}{8^5}$.
- b) $\frac{520}{8^5}$.
- c) $\frac{625}{8^5}$.
- d) $\frac{526}{8^5}$.

EQUATIONS ET INEQUATIONS

16- L'ensemble des solutions de l'inéquation $\ell n(3-\sqrt{1-x}) \le \ell n2$ est :

- a)]-8;1].
- b)]-8;0].
- c)]-8;0[.
- d) aucune des trois propositions ci-dessus n'est correcte.

17- L'ensemble des solutions de l'équation $ln(4-\sqrt{4-x}) = lnx$ est :

- a) [3].
- b) {6;4}.
- c) {3;4}.
- d) {4}.

8- L'ensemble des solutions de l'inéquation $(e^{-x}-1)(x+1) \ge 0$ est :

- a) [-1;0].
- b) $]-\infty; -1] \cup [0; +\infty[.$
- c)]-\infty; -1].
- d) [0;+∞[...

19- L'ensemble des solutions de l'inéquation $e^{2x} - 7e^x + 10 < 0$ est :

- a)]2;5[
- b) $]-\infty$; 2] \cup]5; $+\infty[$.
- c)]ln2; ln5[.
- d)]e2; e5[.

20- L'ensemble des solutions de l'équation $e^{\ln(x-2)} = x^2 - 4x + 2$ est :

- a) {1;4}
- **b)** {1}.
- c) {2;-4}.
- d) {4}.

FONCTIONS

Le plan est rapporté à un repère orthonormé direct $(0; \vec{i}, \vec{j})$

21- La fonction f définie sur [0; e] par $\begin{cases} f(0) = 0 \\ f(x) = x\sqrt{1 - \ell nx} & \text{if } x \in]0; e \end{cases}$ est :

- a) dérivable en 0 à droite et en e à gauche .
- b) dérivable en 0 à droite et non dérivable en e à gauche.
- e) dérivable en e à gauche et non dérivable en 0 à droite.
- d) non dérivable en 0 à droite et non dérivable en e à gauche.

La fonction h est définie sur]0; $e[\,\cup\,]e$; $+\infty[$ par $h(x) = \frac{x-2}{\ln x-1}$.

22-
$$\lim_{x\to 0^+} h(x) = \ell_1 \text{ et } \lim_{x\to +\infty} h(x) = \ell_2 \text{ où }$$
;

- a) $\ell_1 = 0$ et $\ell_2 = 0$.
- b) $\ell_1 = -\infty$ et $\ell_2 = +\infty$.
- c) $\ell_1 = 0$ et $\ell_2 = +\infty$.
- d) $\ell_1 = +\infty$ et $\ell_2 = 0$.

23-
$$\lim_{x \to e^{-}} h(x) = L_1$$
 et $\lim_{x \to e^{+}} h(x) = L_2$ où :

- a) $L_1 = -\infty$ et $L_2 = -\infty$.
- b) $L_1 = -\infty$ et $L_2 = +\infty$.
- c) $L_1 = -\infty$ et $L_2 = 0$.
- d) $L_1 = 0$ et $L_2 = +\infty$

La fonction g est définie sur]0; $+\infty[$ par $g(x) = 2 \ln x - x + 2$.

Soit (γ) la courbe représentative de g et M un point de (γ) d'abscisse m.

- 24- La tangente à (γ) en M coupe l'axe des ordonnées au point d'ordonnée :
 - a) $2 \ln(m)$.
 - b) $2 \ln(m) 4$.
 - c) $\ell n(m)$.
 - d) $-2\ell n(m)$.
- 25- La distance de M à la droite d'équation y = -x est égale à $\sqrt{2}$ si et seulement si :
 - a) m = 1 ou $m = e^{-1}$
 - b) m = 1.
 - c) m = 1 ou $m = e^{-2}$.
 - d) $m = e^{-2}$.

La fonction f est définie sur]0; $+\infty[$ par $f(x) = \frac{1 + \ell nx}{\ell n^2 x + 2\ell nx + 5}$

26- $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$ sont respectivement égales à :

- a) 0 et 1 .
- b) 0 et + ∞.
- e) -∞ et 0.
- d) 1 et + ...

27- La fonction f:

- a) change de signe en 1 et admet un maximum en e.
- b) change de signe en $\frac{1}{e}$ et admet un maximum en e.
- e) change de signe en $\frac{1}{e}$ et admet un minimum en e.
- d) est toujours positive et n'a pas d'extremums.

28- L'ensemble de solutions de l'équation $f(x) = \frac{5}{29}$ est :

- a) $\{-0.2;4\}$.
- b) {2;4}.
- c) $\{e^4\}$.
- d) {0.4;8}.

La fonction F est définie sur IR par $F(x) = -e^x - x - 1$. Soit (L) la courbe représentative de F.

29- La courbe (L) admet à -∞ une asymptote d'équation :

- a) y = -1.
- **b)** y = -x + 1.
- c) y = x + 1.
- d) y = -x 1.

30- Soit S la mesure, en unités d'aire, de l'aire du domaine limité par (L), la droite d'équation y = -x - 1 et les droites d'équations x = a and x = 0 où a < 0; $\ell im S = :$

- a) -1.
- b) 2.
- c) 1.
- d) + ...

31- Dans la figure ci-contre , (y) et (δ) ont pour équations respectives $y = \sqrt{\frac{1 - \ell n x}{x}}$ et y = x.

Le volume, en unités de volume, du solide de révolution engendré par la rotation du domaine hachuré autour de l'axe des abscisses est égal à :

- a) 0.5.
- b) $\frac{5}{6}$.
- c) 1.
- d) 1.5

- $\tan^2 x \, dx = :$
- 33- La fonction f est définie sur IR par f(x) =
 - a) 2-e.
 - b) 3-e.
 - c) e.
 - d) e-1

La fonction h est définie sur IR par $h(x) = xe^x$. Soit (Δ) le domaine limité par la courbe représentative de h, les deux axes de coordonnées et la droite d'équation x = 1.

34- L'aire, en unités d'aire, du domaine (Δ) égale à :

- a) 1.
- b) π.
- c) e-1.
- d) e.

35- Le volume, en unités de volume, du solide de révolution engendré par la rotation de (Δ) autour de l'axe des abscisses égale à :

- a) $0.25(e^2-1)$.
- **b)** $0.25\pi(e^2-e+1)$.
- e) $0.25\pi(e^2-1)$.
- d) $0.25\pi(e-1)$.

TRANSFORMATIONS

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

ABC est un triangle équilatéral de centre G et D est le milieu[BC].

16- Le rapport k et l'angle α de la similitude de centre C qui transforme D en A sont :

a)
$$k=2$$
; $\alpha = \frac{\pi}{3}$.

b)
$$k = 2$$
 ; $\alpha = \frac{\pi}{6}$.

e)
$$k=2$$
 ; $\alpha = -\frac{\pi}{3}$.

d)
$$k = \frac{1}{2}$$
; $\alpha = -\frac{\pi}{3}$.

37- Le rapport λ et l'angle θ de la similitude qui transforme A en D et C en B sont :

a)
$$\lambda = 2$$
 ; $\theta = \frac{\pi}{3}$.

b)
$$\lambda = \frac{1}{2}$$
; $\theta = -\frac{2\pi}{3}$.

c)
$$\lambda = \frac{1}{2}$$
 ; $\theta = -\frac{\pi}{3}$.

d) aucune des trois propositions ci-dessus n'est correcte.

E et F sont deux points distincts et ω est le milieu de [EF].

38- L'ensemble des centres des homothéties qui transforment E en F est :

- a) {E: F }
- b) le segment [EF]
- e) La droite (EF) privée du point ω .
- d) La droite (EF) privée des points E et F.

39- L'ensemble des centres des rotations qui transforment un cercle (C) de centre E et de rayon R en le cercle (C') de centre F et de même rayon est :

- a) [0].
- b) la médiatrice de [EF].
- c) la médiatrice de [EF] privée du point ω .
- d) aucune des trois propositions ci-dessus n'est correcte.

40- Le nombre de rotations d'angle donné α appartenant à $]-\pi$; π] $-\{0\}$ qui transforment (C) en (C') est :

- a) 1.
- b) 2.
- c) plus que 2.
- d) aucune des trois propositions ci-dessus n'est correcte.

Lisez les consignes suivantes avant d'entamer la résolution:

Cette épreuve comporte 40 questions:

A chaque question sont proposées 4 réponses dont une seule est correcte: dans la grille ci-dessous, écrire en face du numéro de chaque question la lettre correspendant à la bonne réponse .

Aucun brouillon n'est distribué. Les pages blanches peuvent être utulisées comme brouillon.

L'usage de la calculatrice est interdit.

Grille de réponses

Question	Dámas		rille de réponses
1	Réponse	Question	Réponse
2		21	
		22	
3	(1)	23	
5		24	
		25	
6	R	26	
7		27	
8		28	
9		29	
10		30	
11	100/20	31	and and
12	9	32	
13		33	
14			-
15		34	
16		35	
17		36	
18		37	1 1/2 - 1
19	-	38	
		39	
20		40	53

UNIVERSITE LIBANAISE

FACULTE DE GENIE

Test :

NOMBRES COMPLEXES

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v).

On considère l'équation $(E): (z-1)^2 + \tan^2 \alpha = 0$ où $\alpha \in \left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$.

- 1- Les racines z_1 et z_2 de (E) sont telles que :
 - a) $z_1 = 1 \tan \alpha$ et $z_2 = i i \tan \alpha$
 - **b)** $z_1 = 1 i \tan \alpha$ et $z_2 = 1 + i \tan \alpha$.
 - c) $z_1 \times z_2 = \tan^2 \alpha$.
 - d) aucune des trois propositions ci-dessus n'est correcte.
- **2-** Soit M et N les images de z_1 et z_2 et I le milieu de $\lfloor MN \rfloor$. Lorsque α varie, le point I:
 - a) varie sur la droite d'équation x = 1.
 - b) décrit le segment [AB] où A(1;-1) et B(1;1).
 - c) décrit le segment ouvert]AB[.
 - d) reste fixe .

p et q sont deux nombres complexes.

3- Pour tout p et tout q:

a)
$$|p+q|^2 = |p|^2 + |q|^2$$
.

b)
$$|p+q|^2 + |p-q|^2 = 2(p^2 + q^2)$$
.

c)
$$|p+q|^2 + |p-q|^2 = 2(|p|^2 + |q|^2)$$
.

d)
$$|p+q|^2 - |p-q|^2 = 2(|p|^2 - |q|^2)$$
.

- **4-** Si |p| = |q| = 1 et $|p+q| = \sqrt{3}$ alors |p-q| = 1
 - a) $\sqrt{3}$.
 - b) 1 ou -1.
 - c) 1.
 - d) $\sqrt{2}$.

A tout point M d'affixe $z \neq 0$ on associe le point N d'affixe z' telle que $z' = \frac{(1+I)(z+1)}{z}$.

- 5- Quand N décrit le cercle de centre O et de rayon $\sqrt{2}$, alors M décrit :
 - a) une droite ..
 - b) le cercle de centre A(-1;0) et de rayon 2.
 - e) le cercle de centre A(-1; 0) et de rayon $\sqrt{2}$.
 - d) le segment [OA] où A(-1;0).
- 6- Si N décrit le cercle de centre I(1:1) et de rayon $\sqrt{2}$, alors M décrit :
 - a) une droite .
 - b) la médiatrice de [OI].
 - e) le cercle de centre O et de rayon 1 .
 - d) le cercle de centre O et de rayon $\sqrt{2}$
- 7- On considère l'équation (E) : $z^3 + iz^2 + (1+i)z + 2i = 0$.
 - a) 1+i est une racines de (E).
 - b) si p est le produit des trois racines de (E), alors p^{2021} est un imaginaire pur.
 - c) si z_0 est une racines de (E), alors z_0 est aussi une racine de (E).
 - d) une des racines de (E) est un nombre réel.
- 8- Soit n un entier naturel; le nombre $(1-i\sqrt{3})^n$ est un réel positif si et seulemet si :
 - a) n = 6
 - b) n = 6k où $k \in IN$.
 - c) n = 6k + 3 où $k \in IN$
 - d) n = 6k où $k \in IN^*$.

PROBABILITE

9- A et B sont deux événements d'un certain univers.

Si p(A) = 0.4, p(A/B) = 0.2 et p(B/A) = 0.3, alors $p(A \cup B) = 1$

- a) 0,8
- b) 0,12
- c) 0,88
- d) aucune des trois réponses ci-dessus n'est correcte.

Deux amis, Fadi et Sami, veulent tirer sur une certaine cible.

La probabilité que Fadi atteigne la cible est $\frac{3}{4}$ et la probabilité que Sami atteigne la cible est $\frac{2}{3}$.

10- Si Fadi tire trois fois, la probabilité que la cible soit atteinte exactement deux fois est égale à :

- a) $\frac{9}{64}$
- b) $\frac{9}{16}$.
- c) $\frac{3}{64}$
- d) $\frac{27}{64}$.
- 11- Si Fadi tire trois fois et Sami tire deux fois , la probabilité que la cible soit atteinte exactement deux fois par chacun des deux amis est égale à :
 - a) $\frac{1}{4}$.
 - b) $\frac{3}{16}$.
 - e) $\frac{1}{16}$
 - d) $\frac{1}{32}$.
- 12- Si Fadi tire trois fois et Sami tire deux fois, la probabilité que la cible soit atteinte exactement quatre fois est égale à :
 - a) $\frac{3}{8}$.
 - **b)** $\frac{3}{16}$.
 - c) $\frac{1}{16}$.
 - d) $\frac{5}{32}$.

13- Un dé a été truqué de sorte que les probabilités d'apparition des faces 1, 2, 3, 4, 5, 6 soient proportionnelles aux nombres 1, 2, 3, 4, 5, 6.

On lance une fois ce dé , la probabilité de l'événement " le résultat obtenu est impair " est égale à :

- a) $\frac{1}{2}$.
- b) $\frac{3}{7}$
- c) $\frac{3}{8}$
- d) $\frac{4}{7}$.

Une boite contient 12 boules indiscernables au toucher dont 4 sont rouges, 3 blanches et 5 jaunes. Une autre boite contient 8 boules, indiscernables au toucher, dont 3 sont rouges, 1 blanche et 4 jaunes. On tire au hasard 2 boules de chaque boite.

14- La probabilité que les 4 boules soient rouges sachant qu'elles ont la même couleur est égale à :

- a) $\frac{3}{308}$.
- b) $\frac{13}{308}$.
- c) $\frac{3}{13}$.
- d) $\frac{4}{13}$.

15- La probabilité que 3 des 4 boules soient jaunes est égale à :

- a) $\frac{20}{231}$.
- b) $\frac{185}{924}$.
- c) $\frac{5}{44}$.
- d) $\frac{5}{231}$.

EQUATIONS ET INEQUATIONS

16- L'ensemble des solutions de l'équation $\ell n(x^1) + (\ell n x)^2 = 0$ est :

- a) $\{e^{-3}\}$
- b) {1;e}
- c) $\{e^{-3};1\}$
- d) aucune des trois propositions ci-dessus n'est correcte.

17- L'ensemble des solutions de l'inéquation $\frac{e}{e^{2x}} < e^{4-x}$ est :

- a)]-3;4].
- b)]-3;+∞[.
- c)]-3;4[.
- d) $[-3; +\infty[$.

18- L'ensemble des solutions de l'équation $\ell n(|x|) = x$ est :

- a) 1.
- b) 0.
- c) 2.
- d) aucune des trois propositions ci-dessus n'est correcte.

19- L'ensemble des solutions de l'équation $e^{(n(4-x^2))} = 1-2x$ est :

- a) {-1;3}
- b) $\{e^{-1}: e^3\}$
- c) {-1}
- d) aucune des trois propositions ci-dessus n'est correcte.

20- L'ensemble des solutions de l'inéquation $e^{3x+1} + e^{2x+1} \le e^{x+2} + e^{2x+2}$ est :

- a) [-1;+∞[.
- b)]-∞;1].
- c) [-1;2[.
- d)]-∞;0[.

FONCTIONS

Le plan est rapporté à un repère orthonormé direct (O; i, j)

La fonction f est définie sur IR par $f(x) = e^x - \frac{1}{6}x^3$.

21- La dérivée f' de f:

- a) admet un maximum en 0.
- b) est strictement décroissante sur IR
- e) est strictement décroissante sur]-∞; 0] et strictement croissante sur [0; +∞[.
- d) aucune des trois propositions ci-dessus n'est correcte.

22- Soit (C) la courbe représentative de f et (C') celle de f' dans le même repère.

- a) (C) a une asymptote oblique à +∞.
- b) (C) a une asymptote oblique à -∞.
- c) (C') a une asymptote horizontale à +∞
- d) (C) et (C') sont tangentes en le point d'abscisse 0.

La fonction g est définie sur IR par $g(x) = \exp(-\frac{x^4}{2})$

23- g'(x) = 1

a)
$$2x^3 \times g(x)$$
.

b)
$$-\frac{x^4}{2} \times g(x)$$
.

e)
$$-2x^3 \times g(x)$$
.

d)
$$-2x^3 \times \exp(\frac{x^4}{2})$$
.

24- Si g" est la seconde dérivée de g , alors :

- a) $g''(x) = 4x^6 \times g(x)$.
- b) chacune des fonctions g et g' a exactement un extremum.
- e) chacune des fonctions g et g' a un extremum en 0
- **d)** pour tout x dans IR, $g''(x) + 2x^3 \times g'(x) + 6x^2 \times g(x) = 0$.

25- Les fonctions p et q sont définies sur IR^* par $p(x) = \frac{e^x - 1}{x}$ et q(x) = p'(x) - p(x);

La fonction q est telle que:

- a) pour tout x dans IR^* , q(x) > 0.
- b) l'équation q(x) = 0 admet une racine unique α et , pour tout x dans $IR \{0; \alpha\}$, q(x) > 0.
- e) pour tout x dans IR^* , q(x) < 0.
- d) aucune des trois propositions ci-dessus n'est correcte.

Les fonctions f et g sont définies sur R par $f(x) = \ell n \left(x + \sqrt{x^2 + 1} \right)$ et $g(x) = \ell n \left(-x + \sqrt{x^2 + 1} \right)$.

26- La fonction f est telle que :

- a) f est impaire et $f(2x) = f(x) + \ln 2$.
- b) f est impaire et strictement décroissante.
- c) f est paire et admet un minimum en 0.
- d) f est impaire et strictement croissante

27- La fonction g est telle que :

- a) g est impaire et $g(2x) = g(x) \ln 2$.
- b) g est impaire et strictement décroissante.
- c) g est impaire et strictement croissante.
- d) g est paire et admet un minimum en 0.

28- Les courbes représentative de f et g sont

- a) tangentes à l'axe des abscisses en O.
- b) tangentes à la droite d'équation y = x en O.
- c) orthogonales en O.
- d) symétriques par rapport au point O.

La fonction h est définie sur l'intervalle I =]2; $10[par h(x) = 2\ell n(x-2) - \ell n(10-x) - \ell n4]$.

29- La fonction h:

- a) admet un maximum en 6.
- b) admet un minimum en 6.
- c) est strictement décroissante sur 1.
- d) est strictement croissante sur 1.

30- L'ensemble des solutions de l'inéquation $h(x) \le 0$ est :

- a)]2;6].
- b) [2;6].
- c)]2;+∞[
- d)]2;6[.

INTEGRALES

Le plan est rapporté à un repère orthonormé direct $(0; \vec{i}, \vec{j})$

31- La fonction f est définie sur]0; $+\infty[$ par $f(x) = 4x \ln x$

Une primitive de f est la fonction F telle que :

a)
$$F(x) = x^2(2 \ln x + 1)$$

b)
$$F(x) = 2x^2 \ln(x-1)$$

c)
$$F(x) = x^2 (2 \ln x - 1) + \pi$$
.

d)
$$F(x) = x^2(1-2\ln x)-1$$
.

La fonction g est définie sur IR par $g(x) = x^2 e^x$.

32- Une primitive de g est la fonction G telle que :

a)
$$G(x) = (x-1)^2 e^x$$

b)
$$G(x) = (x^2 - 2x + 2)e^x + \sqrt{e}$$
.

c)
$$G(x) = (x^2 - 2x - 2)e^x + 5$$
.

d)
$$G(x) = (x^2 - 1)e^x$$
.

33- Pour tout réel a, $\int_{-a}^{a} g(x) dx$ est :

- a) 0.
- b) négative .
- c) positive.
- d) aucune des trois propositions ci-dessus n'est correcte.

La fonction h est définie sur]0; $+\infty[$ par $h(x) = -\ln x$.

Soit (C) la courbe représentative de h et (D) le domaine limité par (C), l'axe des abscisses et les droites d'équations x = 1 et x = e.

34- l'aire de (D), en unités d'aire, est égale à :

- a) -1.
- b) 1-e.
- c) 1 .
- d) e-1.

35- Le volume, en unités de volume, du solide engendré par la rotation de (D) autour de l'axe des abscisses est égal à :

- a) e-2.
- b) $\pi(e-1)$.
- c) π .
- d) $\pi(e-2)$.

TRANSFORMATIONS

Le plan est rapporté à un repère orthonormé direct (O, u, v).

- 36- z'= $(2+2\sqrt{3}i)z+8\sqrt{3}-2-(4+4\sqrt{3})i$ est la relation complexe de la similitude $S(I;k;\alpha)$ où:
 - a) I(4;2); k=4; $\alpha = \frac{2\pi}{3}$ rad
 - **b)** I(-2;-4); k=4; $\alpha = \frac{\pi}{6}$ rad
 - c) I(2;4); k=4; $\alpha = \frac{\pi}{3} rad$.
 - **d)** I(2;0); k=16; $\alpha=-\frac{\pi}{3}$ rad
- 37- la composée d'une rotation d'angle $\alpha \in]-\pi$; $\pi[-\{0\}]$ et d'une homothétie de rapport $k \neq 0$ est :
 - a) une homothétie de rapport k
 - b) une similitude de rapport k et d'angle α .
 - e) une similitude d'angle α et de rapport k si k > 0 et -k si k < 0.
 - d) aucune des trois propositions ci-dessus n'est correcte.
- 38- On donne les points A(2;-1), B(6;-3), C(2;-2) et D(4;-8).

La similitude T qui transforme A en C et B en D, transforme le point E(1;3) en le point :

- a) F(-1;3).
- b) G(5; 3).
- c) H(3;1).
- d) K(-3;0).
- 39- La composée d'une symétrie centrale de centre I et d'une homothétie de centre J et de rapport k est :
 - a) une symétrie centrale.
 - b) une réflexion (symétrie axiale) d'axe (II).
 - c) une homothétie de rapport k .
 - d) une homothétie de rapport -k.
- 40- Dans la figure, A est le point d'affixe 2+i et M est un point quelconque du plan

Le triangle OMM, est rectangle isocèle en O de sens direct.

OAM2M et OM1M'M2 sont deux parallélogrammes

Soit T la transformation telle que T(M) = M.

La relation complexe de T est:

- a) z' = iz + 2 + i.
- b) z' = (1+i)z+2+i.
- e) z' = (1-i)z 2 + i.
- d) z' = (2+i)z+1+i.

Lisez les consignes suivantes avant d'entamer la résolution:

Cette épreuve comporte 40 questions:

A chaque question sont proposées 4 réponses dont une seule est correcte: dans la grille ci-dessous, écrire en face du numéro de chaque question la lettre correspendant à la bonne réponse .

Aucun brouillon n'est distribué. Les pages blanches peuvent être utulisées comme brouillon.

L'usage de la calculatrice est interdit.

Grille de réponses

100		Offine de rep	
Réponse		Question	Réponse
		21	
		22	
		23	
		24	
		25	
		26	
		27	
		28	
		the state of the s	III A
		the state of the s	
		31	
		32	
	1	33	
		34	
10.2		35	la Parti.
1.142		The second secon	1.46
		A Company of the Comp	
			91
	Réponse	Réponse	Réponse Question 21 22 23 24 25 26 27 28 29 30 31 32 33 33

UNIVERSITE LIBANAISE

FACULTE DE GENIE

NOMBRES COMPLEXES

Le plan complexe est rapporté à un repère orthonormé direct (0; u, v).

Soit $p = -\sqrt{5} + i\sqrt{15}$ et $q = 2\sqrt{3} + 2i$.

- 1- n est un entier naturel différent de 0; l'égalité $|p|^n = |q|^n$ est vraie pour :
 - a) n = 3.
 - b) n = 1.
 - c) aucune valeur de n .
 - d) aucune des trois propositions ci-dessus n'est correcte.
- 2- Un argument du nombre complexe $2p + \sqrt{5}q$ est :
 - a) $\frac{\pi}{4}$.
 - **b)** $\frac{5\pi}{12}$
 - c) $\frac{3\pi}{4}$.
 - d) $\frac{\pi}{12}$.
- 3- On considère l'équation (E): $z^2 + 2(1+i)z + a + bi = 0$ où a et b sont deux paramètres réels. Soit M et N les images des racines de (E). Quand a et b varient, le milieu I de [MN]:
 - a) varie sur la droite d'équation y = x.
 - b) décrit le segment [AB] où A(-1;-1) et B(-1;1).
 - c) reste fixe .
 - d) décrit l'axe des abscisses .

Les nombres complexes r, s et t sont les racines cubiques d'un nombre complexe z.

- 4- Si r = 1 + 2i, alors z = :
 - a) -11-2i.
 - b) 2+11i.
 - c) 11-2i.
 - d) aucune des trois propositions ci-dessus n'est correcte.
- 5- Si r + s = 3 4i, alors t = 3
 - a) -3-4i.
 - b) -2+5i.
 - c) 3 + 4i.
 - d) -3+4i.

A et B étant les points d'affixes respectives -i et i. Soit f l'application qui , à tout point M d'affixe $z \neq 0$, associe le point M' d'affixe z' telle que $z' + i = \frac{4}{\overline{z} - i}$.

- 6- Pour tout point M:
 - a) les points O. M et M' sont alignés.
 - b) les points A, M and M' sont alignés.
 - e) les points B, M and M' sont alignés
 - d) $\overrightarrow{AM} \cdot \overrightarrow{AM}' = 0$.
- 7- L'ensemble des points invariants par f est :
 - a) {B}.
 - b) le cercle de centre B et de rayon 2.
 - e) le cercle de centre A et de rayon 2.
 - d) le cercle de centre A et de rayon 4.
- 8- Lorsque M décrit la droite d'équation x = 2, $|z^i + i 1| =$:
 - a) 4
 - b) -1.
 - c) i
 - d) 1.

PROBABILITE

9- A et B sont deux événements d'un certain univers.

Si p(A) = 0.25; p(B) = 0.6 et $p(A \cap \overline{B}) = 0.15$, alors p(B/A) =

- a) 0,4.
- b) 0,6.
- c) 0.25 .
- d) 0,65.
- 10- Deux urnes A et B sont telles que :

A contient 4 boules identiques dont 3 sont rouges et 1 est noire.

B contient 5 boules identiques dont 2 sont rouges et 3 sont noires .

On tire de chaque urne 2 boules, l'une après l'autre avec replacement.

La probabilité de l'événement " exactement deux des 4 boules tirées sont rouges " est égale à :

- a) $\frac{19}{144}$.
- **b)** $\frac{29}{144}$.
- c) $\frac{37}{144}$.
- d) $\frac{13}{231}$
- 11- Une urne contient n boules (n > 3), indiscernables au toucher, parmi lesquelles 3 sont noires.

On tire au hasard 2 boules de cette urne . On considère les événements :

A: " les boules tirées sont noires " et B: " au plus une des boules tirées est noire " La probabilité de l'événement B est égale à six fois celle de A si et seulement si :

- a) n = 6.
- b) n = 7.
- e) n = 6 or n = 7.
- d) n = -6 or n = 7.

Deux boites B_1 et B_2 sont telles que

- B1 contient neuf cartes numérotées de 1 à 9.
- B2 contient cinq cartes numérotées de 1 à 5.

On choisit une boite au hasard et on en tire une carte .

- 12- La probabilité que la carte soit tirée de la boite B₁ et que le nombre qu'elle porte soit pair est égale à :
 - a) $\frac{4}{9}$.
 - b) $\frac{2}{9}$.
 - c) $\frac{5}{9}$.
 - d) aucune des trois réponses ci-dessus n'est correcte.
- 13- Sachant que le nombre porté par la carte tirée est impair, la probabilité que la carte soit tirée de la boite B₂ est égale à :
 - a) $\frac{4}{9}$.
 - b) $\frac{2}{9}$.
 - c) $\frac{5}{9}$.
 - d) $\frac{27}{52}$.

Une urne U contient 9 boules identiques parmi lesquelles , trois boules sont rouges et numérotées 0 ; deux boules sont vertes et numérotées 1 et quatre sont bleues et numérotées 2 . On tire de l'urne trois boules simultanément .

- 14- La probabilité que la somme des nombres inscrits sur les boules tirées soit pair est égale à :
 - a) 0.5 .
 - **b)** 0.6 .
 - c) 0.54 .
 - d) 0.42 .
- 15- La probabilité que le produit des nombres inscrits sur les boules tirées soit nul est égale à :
 - a) $\frac{4}{21}$.
 - **b)** $\frac{6}{21}$.
 - c) $\frac{16}{21}$.
 - d) $\frac{8}{21}$.

EQUATIONS Et INEQUATIONS

16- L'ensemble des solutions de l'inéquation $\ell n(x^4) + (\ell n x)^2 < 0$ est :

- a) P .
- b)]-4;0[.
- e)]e-4; 0[.
- d)]e-4;1[.

17. L'ensemble des solutions de l'inéquation $\frac{e^{2x}}{e^2} \ge e^{x-3}$ est :

- a) $[-1; +\infty[$.
- b) |3; +∞[.
- c) 10;3].
- d) $[-1; +\infty[-\{0\}]$.

18- Le nombre des solutions de l'équation $\ell n(|x|) = |x|$ est :

- a) 1.
- b) 0 .
- c) 2.
- d) aucune des trois réponses ci-dessus n'est correcte.

19- L'ensemble des solutions de l'inéquation $\ln (|x|) < e^{|x|}$ est :

- a) $IR \{0\}$.
- b) IR .
- c) {1}.
- d) aucune des trois réponses ci-dessus n'est correcte.

20-L'ensemble des solutions de l'équation $e^{3x+1} + e^{2x+1} = e^{x+2} + e^{2x+2}$ est :

- a) $\{-1; e\}$.
- b) $\{1; -e\}$.
- c) {1}.
- d) {1; e}.

FONCTIONS

Le plan est rapporté à un repère orthonormé direct (0; i, j)

La fonction f est telle que $f(x) = \sqrt{1 - \ell nx}$.

21- Le domaine de définition D de f est l'intervalle :

- a)]1; e].
- b)]-∞;1].
- c)]0;e].
- d) [1; +of.

22- Pour tout x de]0; $e[, f(x) \times f'(x) = :$

- a) -1,
- b) $\frac{1}{2r}$.
- c) $-\frac{1}{2r}$.
- d) $-\frac{1}{r}$.

23- L'ensemble des solutions de l'inéquation $\ell n(f(x)) \le 0$ est :

- a) [0;1].
- b) [1; e[.
- c) [1; e].
- d) le-1:11.

La fonction g est définie sur]0; $+\infty$ [par $g(x) = x(\ell nx - 1)^2$.

Soit (C) la courbe représentative de g et (d) la droite d'équation y = x.

24- La fonction g a deux extremums en α et β tels que :

a)
$$\alpha + \beta = 0$$
 et $g(\alpha) + g(\beta) = 1$.

b)
$$\alpha + \beta = 1$$
 et $g(\alpha) \times g(\beta) = \frac{2}{e}$.

c)
$$\alpha \times \beta = 1$$
 et $g(\alpha) + g(\beta) = 1$.

d)
$$\alpha \times \beta = 1$$
 et $g(\alpha) + g(\beta) = \frac{4}{e}$.

25- (C) et (d) se coupent en :

- a) trois points tels que l'un d'eux soit un point d'inflexion de (C).
- b) deux points tels que l'un d'eux soit un point d'inflexion de (C).
- e) deux points tels que g ait un maximum en l'un d'eux .
- d) aucune des trois propositions ci-dessus n'est correcte.

La fonction f est définie sur IR par $f(x) = (1-x)e^x - 1$ et la fonction h est définie sur IR^*

$$par h(x) = \frac{e^x - 1}{x}$$

26- $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$ sont respectivement égales à :

- a) $-\infty$ et -1.
- b) 1 et $+\infty$.
- c) oo et 1.
- d) -1 et $-\infty$.

27- La fonction f est telle que:

- a) pour tout nombre réel x, $f(x) \le -1$
- **b)** pour tout nombre réel x, f(x) < 0.
- e) pour tout nombre réel x de l'intervalle $]-\infty;1], -1 \le f(x) \le 0$.
- d) pour tout nombre réel x de l'intervalle $]-\infty;1]$, $-1 < f(x) \le 0$.

28- La fonction h:

- a) a même sens de variation que f sur chacun des intervalles $]-\infty$; 0[et $]0; +\infty[$.
- b) est strictement croissante sur chacun des intervalles]-∞; 0[et]0; +∞[.
- c) a un maximum en 0 .
- d) est strictement croissante sur chacun des intervalles]-∞; 0[et]0; +∞[.

Les fonctions p et q sont définies sur IR par $p(x) = \frac{e^x + e^{-x}}{2}$ et $q(x) = \frac{e^x - e^{-x}}{2}$.

29- p et q:

- a) sont paires .
- b) ont la même limite à -∞.
- c) ont deux limites opposées à +∞.
- d) les courbes représentatives de p et q n'ont aucun point commun.

30- Pour tout x dans IR:

a)
$$(p(x))^2 + (q(x))^2 = 1$$

b)
$$p(2x) = (p(x))^2 - 2$$
.

c)
$$q(2x) = 2p(x) \times q(x)$$
.

d)
$$p(-x) = q(x)$$
.

INTEGRALES

31- Dans la figure, (C) est la parabole d'équation $y = (x-2)^2 - 1$ et (d) est la droite d'équation y = x - 1.

La mesure, en unités d'aire, de l'aire du domaine hachuré est :

- a) 7,5.
- b) 4,5.
- c) 6.
- d) 6,5

- 32- Le nombre $\int 2\ell n(1+x^2) dx$ est égal à :
 - a) $\ln 2 + \pi 2$.
 - b) $2\ell n 2 + \pi 2$.
 - c) $\ln 4 + \pi 4$.
 - d) $2\ell n 2 4$.
- 33- $\int \frac{e^{1-\sqrt{x}}}{\sqrt{x}} dx$ est égal à :
 - a) e 1.
 - b) 2(e-1).
 - c) 2e-1
 - d) aucune des trois réponses ci-dessus n'est correcte.
- La fonction f est définie sur l'intervalle I =]-2; 2[par $f(x) = \frac{1}{4-x^2}$.
- 34- pour tout x dans 1:
 - a) $f(x) = \frac{1}{4-x} + \frac{1}{4+x}$
 - **b)** $f(x) = \frac{1}{2-x} + \frac{1}{2+x}$

 - c) $f(x) = \frac{4}{2-x} + \frac{4}{2+x}$. d) $f(x) = \frac{1}{4(2-x)} + \frac{1}{4(2+x)}$
- 35- L'intégrale $\int \frac{2x^3 \ln(4-x^2)-4}{4-x^2} dx$ égale à :
 - a) ln3.
 - b) $-0.5 \ln 3$.
 - c) $-2 \ln 3$.
 - d) 2ln3.

TRANSFORMATIONS

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v).

36- Dans la figure, ABC est un triangle quelconque.

MAB et NAC sont deux triangles équilatéraux.

I et J sont les milieux respectifs de [AM] et [AC].

Soit S la similitude de centre A telle que S(I) = B.

Le rapport k de S et l'image du point J sont respectivement :

b)
$$k = \sqrt{3}$$
 et $S(J) = N$.

c)
$$k = 2$$
 et $S(J) = N$

d) aucune des trois propositions ci-dessus n'est correcte.

37- f est une similitude de rapport 6 et d'angle θ ; r est une rotation d'angle β et h une homothétiq de rapport -2.

Le rapport k et un angle α de la similitude g telle que $h \circ g \circ r = f$ sont :

a)
$$k = -3$$
; $\alpha = \theta - \beta$.

b)
$$k=3$$
 ; $\alpha=\theta-\beta+\pi$.

c)
$$k = -3$$
; $\alpha = \theta + \beta + \pi$.

d)
$$k=3$$
 ; $\alpha = \pi + \beta - \theta$.

38- S est une symétrie centrale de centre E et S' est une symétrie centrale de centre F . $S' \circ S$ est :

- a) la symétrie centrale de centre le milieu ω de [EF].
- b) la translation de vecteur 2 EF
- c) la translation de vecteur \overline{FE} .
- d) la translation de vecteur \overrightarrow{EF} .

f est la transformation dont la relation complexe est z' = -2z + 3 + 9i et g est la transformation qui , à tout point M(x; y), associe le point M'(x'; y') tel que x' = -y + 4 et y' = x + 2.

39- f est la similitude de centre A, de rapport k et d'angle α où :

a)
$$A(3;1)$$
 ; $k=-2$; $\alpha=0$.

b)
$$A(1;3)$$
 ; $k=-2$; $\alpha=\pi$.

c)
$$A(-1;3)$$
; $k=2$; $\alpha=0$.

d)
$$A(1;3)$$
 ; $k=2$; $\alpha = \pi$.

40- $g\circ f$ est la similitude de centre I , de rapport λ et d'angle θ où :

a)
$$I(1;3)$$
 ; $\lambda = 2$; $\theta = -\frac{\pi}{2}$

b)
$$I(1;3)$$
 ; $\lambda = -2$; $\theta = \frac{\pi}{2}$.

c)
$$I(-1;3)$$
; $\lambda = 2$; $\theta = \pi$.

d)
$$I(3;1)$$
 ; $\lambda = 2$; $\theta = -\frac{\pi}{3}$.