SEQUENCE LISTING

- <110> Uchida, Nobuko Tsukamoto, Ann Tamaki, Stanley Capela, Alexandra Austin, Tim <120> Enriched Pancreatic Stem Cell and Progenitor Cell Populations, and Methods for Identifying, Isolating and Enriching for Such Populations <130> 17810-519 NATL <140> US 10/568,568 2006-02-15 <141> US 60/498,470 <150> <151> 2003-08-27 <150> PCT/US2004/028111 <151> 2004-08-27 <160> 2 <170> PatentIn version 3.2 <210> 1 1125 <211> <212> PRT <213> Homo sapiens <400> 1 Met Ala Ala Gly Gln Leu Cys Leu Leu Tyr Leu Ser Ala Gly Leu 15 Leu Ser Arg Leu Gly Ala Ala Phe Asn Leu Asp Thr Arg Glu Asp Asn 25 Val Ile Arg Lys Tyr Gly Asp Gly Ser Leu Phe Gly Phe Ser Leu Ala 35 40 Met His Trp Gln Leu Gln Pro Glu Asp Lys Arg Leu Leu Val Gly 50 Ala Pro Arg Gly Glu Ala Leu Pro Leu Gln Arg Ala Asn Arg Thr Gly Gly Leu Tyr Ser Cys Asp Ile Thr Ala Arg Gly Pro Cys Thr Arg Ile
- Trp Met Gly Val Thr Val Gln Ser Gln Gly Pro Gly Gly Lys Trp Thr 115 120 125

Glu Phe Asp Asn Asp Ala Asp Pro Thr Ser Glu Ser Lys Glu Asp Gln

Cys	Ala 130	His	Arg	Tyr	Glu	Lys 135	Arg	Gln	His	Val	Asn 140	Thr	Lys	Gln	Glu	
Ser 145	Arg	Asp	Ile	Phe	Gly 150	Arg	Cys	Tyr	Val	Leu 155	Ser	Gln	Asn	Leu	Arg 160	
Ile	Glu	Asp	Asp	Met 165	Asp	Gly	Gly	Asp	Trp 170	Ser	Phe	Cys	Asp	Gly 175	Arg	
Leu	Arg	Gly	His 180	Glu	Lys	Phe	Gly	Ser 185	Cys	Gln	Gln	Gly	Val 190	Ala	Ala	
Thr	Phe	Thr 195	Lys	Asp	Phe	His	Tyr 200	Ile	Val	Phe	Gly	Ala 205	Pro	Gly	Thr	
Tyr	Asn 210	Trp	Lys	Gly	Ile	Val 215	Arg	Val	Glu	Gln	Lys 220	Asn	Asn	Thr	Phe	
Phe 225	Asp	Met	Asn	Ile	Phe 230	Glu	Asp	Gly	Pro	Tyr 235	Glu	Val	Gly	Gly	Glu 240	
Thr	Glu	His	Asp	Glu 245	Ser	Leu	Val	Pro	Val 250	Pro	Ala	Asn	Ser	Tyr 255	Leu	
Gly	Leu	Leu	Phe 260	Leu	Thr	Ser	Val	Ser 265	Tyr	Thr	Asp	Pro	Asp 270	Gln	Phe	
Val	Tyr	Lys 275	Thr	Arg	Pro	Pro	Arg 280	Glu	Gln	Pro	Asp	Thr 285	Phe	Pro	Asp	
Val	Met 290	Met	Asn	Ser	Tyr	Leu 295	Gly	Phe	Ser	Leu	Asp 300	Ser	Gly	Lys	Gly	
Ile 305	Val	Ser	Lys	Asp	Glu 310	Ile	Thr	Phe	Val	Ser 315	Gly	Ala	Pro	Arg	Ala 320	
Asn	His	Ser	Gly	Ala 325	Trp	Leu	Leu	Lys	Arg 330	Asp	Met	Lys	Ser	Ala 335	His	
Leu	Leu	Pro	Glu 340	His	Ile	Phe	Asp	Gly 345	Glu	Gly	Leu	Ala	Ser 350	Ser	Phe	
Gly	Tyr	Asp 355	Val	Ala	Trp	Asp	Leu 360	Asn	Lys	Asp	Gly	Trp 365	Gln	Asp	Ile	
Val	Ile 370	Gly	Ala	Pro	Gln	Tyr 375	Phe	Asp	Arg	Asp	Gly 380	Glu	Val	Gly	Gly	

Ala Val Tyr Val Tyr Met Asn Gln Gln Gly Arg Trp Asn Asn Val Lys 390 395 Pro Ile Arg Leu Asn Gly Thr Lys Asp Ser Met Phe Gly Ile Ala Val Lys Asn Ile Gly Asp Ile Asn Gln Asp Gly Tyr Pro Asp Ile Ala Val Gly Ala Pro Tyr Asp Asp Leu Gly Lys Val Phe Ile Tyr His Gly Ser Ala Asn Gly Ile Asn Thr Lys Pro Thr Gln Val Leu Lys Gly Ile Ser 455 460 Pro Tyr Phe Gly Tyr Ser Ile Ala Gly Asn Met Asp Leu Asp Arg Asn Ser Tyr Pro Asp Val Ala Val Gly Ser Leu Ser Asp Ser Val Thr Ile 490 Phe Arg Ser Arg Pro Val Ile Asn Ile Gln Lys Thr Ile Thr Val Thr Pro Asn Arg Ile Asp Leu Arg Gln Lys Thr Ala Cys Gly Ala Pro Ser 515 Gly Ile Cys Leu Gln Val Lys Ser Cys Phe Glu Tyr Thr Ala Asn Pro 530 535 540 Ala Gly Tyr Asn Pro Ser Ile Ser Ile Val Gly Thr Leu Glu Ala Glu 545 550 Lys Glu Arg Arg Lys Ser Gly Leu Ser Ser Arg Val Gln Phe Arg Asn 565 570 Gln Gly Ser Glu Pro Lys Tyr Thr Gln Glu Leu Thr Leu Lys Arg Gln Lys Gln Lys Val Cys Met Glu Glu Thr Leu Trp Leu Gln Asp Asn Ile 600 Arg Asp Lys Leu Arg Pro Ile Pro Ile Thr Ala Ser Val Glu Ile Gln 615 620 610 Glu Pro Ser Ser Arg Arg Val Asn Ser Leu Pro Glu Val Leu Pro 630 635

Ile Leu Asn Ser Asp Glu Pro Lys Thr Ala His Ile Asp Val His Phe 645 Leu Lys Glu Gly Cys Gly Asp Asp Asn Val Cys Asn Ser Asn Leu Lys 665 Leu Glu Tyr Lys Phe Cys Thr Arg Glu Gly Asn Gln Asp Lys Phe Ser 680 Tyr Leu Pro Ile Gln Lys Gly Val Pro Glu Leu Val Leu Lys Asp Gln Lys Asp Ile Ala Leu Glu Ile Thr Val Thr Asn Ser Pro Ser Asn Pro 715 Arg Asn Pro Thr Lys Asp Gly Asp Asp Ala His Glu Ala Lys Leu Ile Ala Thr Phe Pro Asp Thr Leu Thr Tyr Ser Ala Tyr Arg Glu Leu Arg Ala Phe Pro Glu Lys Gln Leu Ser Cys Val Ala Asn Gln Asn Gly Ser Gln Ala Asp Cys Glu Leu Gly Asn Pro Phe Lys Arg Asn Ser Asn Val 775 Thr Phe Tyr Leu Val Leu Ser Thr Thr Glu Val Thr Phe Asp Thr Pro 785 790 Asp Leu Asp Ile Asn Leu Lys Leu Glu Thr Thr Ser Asn Gln Asp Asn 810 805 Leu Ala Pro Ile Thr Ala Lys Ala Lys Val Val Ile Glu Leu Leu 820 825 Ser Val Ser Gly Val Ala Lys Pro Ser Gln Val Tyr Phe Gly Gly Thr Trp Gly Glu Gln Ala Met Lys Ser Glu Asp Glu Val Gly Ser Leu Ile Glu Tyr Glu Phe Arg Val Ile Asn Leu Gly Lys Pro Leu Thr Asn Leu 870 865 Gly Thr Ala Thr Leu Asn Ile Gln Trp Pro Lys Glu Ile Ser Asn Gly 890 885

Lys Trp Leu Leu Tyr Leu Val Lys Val Glu Ser Lys Gly Leu Glu Lys 900 905 910

Val Thr Cys Glu Pro Gln Lys Glu Ile Asn Ser Leu Asn Leu Thr Glu 915 920 925

Ser His Asn Ser Arg Lys Lys Arg Glu Ile Thr Glu Lys Gln Ile Asp 930 935 940

Asp Asn Arg Lys Phe Ser Leu Phe Ala Glu Arg Lys Tyr Gln Thr Leu 945 950 955 960

Asn Cys Ser Val Asn Val Asn Cys Val Asn Ile Arg Cys Pro Leu Arg 965 970 975

Gly Leu Asp Ser Lys Ala Ser Leu Ile Leu Arg Ser Arg Leu Trp Asn 980 985 990

Ser Thr Phe Leu Glu Glu Tyr Ser Lys Leu Asn Tyr Leu Asp Ile Leu 995 1000 1005

Met Arg Ala Phe Ile Asp Val Thr Ala Ala Ala Glu Asn Ile Arg 1010 1015 1020

Leu Pro Asn Ala Gly Thr Gln Val Arg Val Thr Val Phe Pro Ser 1025 1030 1035

Lys Thr Val Ala Gln Tyr Ser Gly Val Pro Trp Trp Ile Ile Leu 1040 1045 1050

Val Ala Ile Leu Ala Gly Ile Leu Met Leu Ala Leu Leu Val Phe 1055 1060 1065

Ile Leu Trp Lys Cys Gly Phe Phe Lys Arg Ser Arg Tyr Asp Asp 1070 1075 1080

Ser Val Pro Arg Tyr His Ala Val Arg Ile Arg Lys Glu Glu Arg 1085 1090 1095

Glu Ile Lys Asp Glu Lys Tyr Ile Asp Asn Leu Glu Lys Lys Gln 1100 1105 1110

Trp Ile Thr Lys Trp Asn Arg Asn Glu Ser Tyr Ser 1115 1120 1129

<210> 2 <211> 2861

<212> DNA

<213> Homo sapiens

<400> ctgctcctgc gcggcagctg ctttagaagg tctcgagcct cctgtacctt cccagggatg 60 120 aaccgggcct tccctctgga aggcgagggt tcgggccaca gtgagcgagg gccagggcgg tgggcgcgcg cagagggaaa ccggatcagt tgagagagaa tcaagagtag cggatgaggc 180 gcttgtgggg cgcggcccgg aagccctcgg gcgcgggctg ggagaaggag tgggcggagg 240 cgccgcagga ggctcccggg gcctggtcgg gccggctggg ccccqqqcqc agtggaaqaa 300 agggacgggc ggtgcccggt tgggcgtcct ggccagctca ccttgccctg gcggctcgcc 360 ccgcccggca cttgggagga gcagggcagg gcccgcggcc tttgcattct gggaccgccc 420 cettecatte cegggecage ggegagegge agegaegget ggageegeag etacageatg 480 agageeggtg cegeteetee acgeetgegg acgegtggeg ageggaggea gegetgeetg 540 ttcgcgccat gggggcaccg tggggctcgc cgacggcggc ggcggggggg cggcgcgggt 600 ggcgccgagg ccgggggctg ccatggaccg tctgtgtgct ggcggccgcc ggcttgacgt 660 gtacggcgct gatcacctac gcttgctggg ggcagctgcc gccgctgccc tgggcgtcgc 720 caaccccgtc gcgaccggtg ggcgtgctgc tgtggtggga gcccttcggg gggcgcgata 780 gegeeeegag geegeeeeet gaetgeegge tgegetteaa eateagegge tgeegeetge 840 tcaccgaccg cgcgtcctac ggagaggctc aggccgtgct tttccaccac cgcgacctcg 900 tgaaggggcc ccccgactgg cccccgccct ggggcatcca ggcgcacact gccgaggagg 960 tggatetgeg egtgttggae taegaggagg eageggegge ggeagaagee etggegaeet 1020 ccagccccag gcccccgggc cagcgctggg tttggatgaa cttcgagtcg ccctcgcact 1080 ccccggggct gcgaagcctg gcaagtaacc tcttcaactg gacgctctcc taccgggcgg 1140 actoggacgt ctttgtgcct tatggctacc tctaccccag aagccacccc ggcgacccgc 1200 cctcaggcct ggccccgcca ctgtccagga aacaggggct ggtggcatgg gtggtgagcc 1260 actgggacga gcgccaggcc cgggtccgct actaccacca actgagccaa catgtgaccg 1320 tggacgtgtt cggccggggc gggccggggc agccggtgcc cgaaattggg ctcctgcaca 1380 cagtggcccg ctacaagttc tacctggctt tcgagaactc gcagcacctg gattatatca 1440 ccgagaagct ctggcgcaac gcgttgctcg ctggggcggt gccggtggtg ctgggcccag 1500 accgtgccaa ctacgagcgc tttgtgcccc gcggcgcctt catccacgtg gacgacttcc 1560 caagtgcctc ctccctggcc tcgtacctgc ttttcctcga ccgcaacccc gcggtctatc 1620

1680

1740

1800

gccgctactt ccactggcgc cggagctacg ctgtccacat cacctccttc tgggacgagc

cttggtgccg ggtgtgccag gctgtacaga gggctgggga ccggcccaag agcatacgga

acttggccag ctggttcgag cggtgaagcc gcgctcccct ggaagcgacc caggggaggc

caagttgtca	gctttttgat	cctctactgt	gcatctcctt	gactgccgca	tcatgggagt	1860
aagttcttca	aacacccatt	tttgctctat	gggaaaaaaa	cgatttacca	attaatatta	1920
ctcagcacag	agatgggggc	ccggtttcca	tattttttgc	acagctagca	attgggctcc	1980
ctttgctgct	gatgggcatc	attgtttagg	ggtgaaggag	ggggttcttc	ctcaccttgt	2040
aaccagtgca	gaaatgaaat	agcttagcgg	caagaagccg	ttgaggcggt	ttcctgaatt	2100
tccccatctg	ccacaggcca	tatttgtggc	ccgtgcagct	tccaaatctc	atacacaact	2160
gttcccgatt	cacgtttttc	tggaccaagg	tgaagcaaat	ttgtggttgt	agaaggagcc	2220
ttgttggtgg	agagtggaag	gactgtggct	gcaggtggga	ctttgttgtt	tggattcctc	2280
acagccttgg	ctcctgagaa	aggtgaggag	ggcagtccaa	gaggggccgc	tgacttcttt	2340
cacaagtact	atctgttccc	ctgtcctgtg	aatggaagca	aagtgctgga	ttgtccttgg	2400
aggaaactta	agatgaatac	atgcgtgtac	ctcactttac	ataagaaatg	tattcctgaa	2460
aagctgcatt	taaatcaagt	cccaaattca	ttgacttagg	ggagttcagt	atttaatgaa	2520
accctatgga	gaatttatcc	ctttacaatg	tgaatagtca	tctcctaatt	tgtttcttct	2580
gtctttatgt	ttttctataa	cctggatttt	ttaaatcata	ttaaaattac	agatgtgaaa	2640
ataaagcaga	agcaaccttt	ttccctcttc	ccagaaaacc	agtctgtgtt	tacagacaga	2700
agagaaggaa	gccatagtgt	cacttccaca	caattattta	tttcatgtct	ttactggacc	2760
tgaaatttaa	actgcaatgc	cagtcctgca	ggagtgctgg	cattaccctc	tgcagaacag	2820
tgaaaggtat	tgcactacat	tatggaatca	tgcaaaaaaa	a ·		2861