FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2013. május 16. 8:00

Az írásbeli vizsga időtartama: 120 perc

Pótlapok száma			
Tisztázati			
Piszkozati			

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika — középszint	Név:	osztály:
---------------------	------	----------

Fontos tudnivalók

A feladatlap megoldásához 120 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap végén található üres oldalakon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

		ELSŐ RÉSZ	
a ł		kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja b t a jobb oldali fehér négyzetbe! (Ha szükséges, számításokkal	
1.		cisméretű testet leejtünk. Hogyan változik a sebessége a zuha dpercében? (A közegellenállás elhanyagolható.)	nás második
	A) B) C)	Ugyanannyival nő, mint a zuhanás első másodpercében. Kétszer annyival nő, mint a zuhanás első másodpercében. Négyszer annyival nő, mint a zuhanás első másodpercében.	2 pont
2.	Jelen	legi ismereteink szerint az alábbiak közül melyik bolygónak	van holdja?
	A)	A Jupiternek.	
	B) C)	A Merkúrnak. Egyiknek sem.	
			2 pont
3.	hősug	en huzalból kell elkészíteni egy 230 V-os hálózatról működő, o gárzó fűtőszálát? (A falban futó vezetékek ellenállása a fűtősz et elhanyagolható.)	
	A)	A hősugárzó fűtőszála kis ellenállású, hogy rajta nagy áram hal	adhasson
	B)	keresztül a megfelelően nagy teljesítmény elérése érdekében. Nagy ellenállású fűtőszálat használunk melegítés céljára, mert a feszültség esik, ilyenkor a hősugárzó teljesítménye nagy.	azon nagy
	C)	A hősugárzó fűtőszálának ellenállása nem befolyásolja a teljesí fontos, hogy a felülete nagy legyen.	tményét,

Név: osztály:.....

Fizika — középszint

Fizika —	- középszint	
i izika —	- KOZCPSZIII	

Név: osztály:.....

4. Egy 100 kg tömegű ládát vízszintes, <u>nem</u> súrlódásmentes talajon 10 m-t tolunk egyenes vonalban, a talajjal párhuzamos erővel, állandó sebességgel kétféleképpen. Az első esetben 0,1 m/s sebességgel toljuk, a másodikban pedig 0,5 m/s sebességgel. Melyik állítás helyes? (A közegellenállástól eltekintünk.)

A) Amikor nagyobb sebességgel toljuk a ládát, több munkát végzünk, mint amikor kisebbel, ezért nagyobb a teljesítményünk.

B) Amikor nagyobb sebességgel toljuk a ládát, ugyanannyi munkát végzünk, mint amikor kisebbel, de a teljesítményünk nagyobb.

C) Amikor nagyobb sebességgel toljuk a ládát, ugyanannyi munkát végzünk, mint amikor kisebbel, ezért a teljesítményünk is ugyanannyi.

2 pont

5. Egy anyagmintát 0 °C hőmérsékletről melegítünk fel úgy, hogy a fűtőberendezés teljesítménye végig állandó maradjon. A grafikonon az anyagminta hőmérsékletét ábrázoltuk az eltelt idő függvényében. Mit állapíthatunk meg a grafikonról?

A) Az anyag olvadáshője nagyobb, mint a forráshője.

B) Az anyag forráshője nagyobb, mint az olvadáshője.

C) Az anyag olvadáshője és forráshője megegyezik.

2 pont

6. Van két ellenállásunk, egy 1 ohmos és egy 2 ohmos. Mekkora ellenállást hozhatunk létre az összekapcsolásuk segítségével?

A) Egy 2/3 ohmosat.

B) Egy 3/2 ohmosat.

C) Egy 3/4 ohmosat.

Fizi	ka —	középszint Név:	osztály:	
			2 pont	
7.	_	yan aránylik egymáshoz egy mutatós óra kis- és nagymutatóján sebessége?	ak átlagos	
	A) B) C)	A nagymutató szögsebessége egyenlő a kismutató szögsebességéve A nagymutató szögsebessége a kismutató szögsebességének 12-sz A nagymutató szögsebessége a kismutató szögsebességének 24-sz	zerese.	
			2 pont	
8.	kíséi üreg azut szétv	von Guericke 1654-ben egy látványos rletben kiszivattyúzta a levegőt két es fém félgömb közül, amelyeket án 30 ló próbált meg egymástól választani – sikertelenül. Mit nyított be ezzel Guericke?		
	A) B)	Azt bizonyította be, hogy a félgömbök között lévő légüres tér nagtartja össze azokat. Azt bizonyította be, hogy a levegő nagy erővel nyomja össze a	y erővel	
	C)	félgömböket. Azt bizonyította be, hogy a félgömbök közti kohéziós erő a vákuu következtében nagymértékben megnő.	m	
			2 pont	
9.	Az e	lektron vagy a proton töltésének abszolút értéke kisebb?		
	A)B)C)	Az elektroné, mivel az elektron töltése az elemi töltés, minden má csak ennek egész számú többszöröse lehet. A protoné, mivel az elemi részek tömege és töltése fordítottan ará egymással. Egyforma a proton és az elektron töltésének nagysága, ezért lehetr semlegesek az atomok.	nyos	
			2 pont	

10. Egy pontszerű q töltéstől *l* távolságra elhelyezünk egy másik Q ponttöltést. A q töltésre ekkor 1 N erő hat. Mekkora erő hat a q töltésre, ha az előbbiek mellé még egy, ugyancsak Q nagyságú ponttöltést helyezünk el az ábra szerint?

- **A)** F = 1.25 N
- **B)** F = 2 N
- **C)** F = 4.16 N

11. Az ábrán látható elrendezésben a kiskocsira helyezett testet *F* erővel húzzuk, és vele a kiskocsi is előremozdul. Milyen erő gyorsítja a kiskocsit?

- A) A kiskocsit a felső testre ható húzóerő gyorsítja.
- B) A kiskocsit a súrlódási erő gyorsítja.
- C) A kiskocsit a nyomóerő gyorsítja.

- 12. Egy atommag-átalakulás a következő összefüggés szerint megy végbe: ${}_{2}^{4}$ He + ${}_{9}^{9}$ Be $\rightarrow {}_{6}^{12}$ C + ${}_{7}^{A}$ X . Mi lehet a keletkező "X" részecske?
 - A) Egy alfa-részecske.
 - **B)** Egy proton.
 - **C)** Egy neutron.

2 pont

Fizika -	– középszint	Név:	osztály:
13. Iga	nz-e a következő állít	ás? A meleg levegő ritkább, mint a	nála hidegebb.
A) B) C)	Nem, sosem igaz.	hamis is, attól függően, hogy mekkora nása.	a a meleg, illetve a
			2 pont
14. Mi	lyen formában terje	d a mobiltelefonok között az energi	a használatuk során?
A) B) C)	Mikrohullám form	njában terjed az energia. ájában terjed az energia. ehanikai hullám formájában terjed az	energia.
			2 pont
	atommag m tömegér $m = Z \cdot m_{\text{proton}} + N \cdot m$ $m > Z \cdot m_{\text{proton}} + N \cdot m$	$n_{ m neutron}$	száma N. Mit állíthatunk
			2 pont
16. Ho	l helyezkedik el a Na	nprendszer a Tejútrendszerhez kép	est?
A)	csillagrendszer.	ejútrendszeren kívül található, de a h	ozzá legközelebbi
B) C)	•	ejútrendszer közepén található. ejútrendszer pereme és közepe közöt	t helyezkedik el.
			2 pont

FIZI	ка —	kozepszint Nev:	OSZtary
17.		autó 30 km/h sebességről 90 km/h sebességre gyorsult fel. Mily ozott meg a gyorsítás során az autó mozgási energiája?	en mértékben
	A)B)C)	Az autó mozgási energiája megháromszorozódott. Az autó mozgási energiája $\sqrt{3}$ -szorosára nőtt. Az autó mozgási energiája kilencszeresére nőtt.	
18.	_	yan változik egy belül üreges fémgolyó anyagának térfogata, ha	2 pont
	A)	Nő, mert a fém kitágul.	
	B) C)	Csökken, mert a belső üres rész kitágul. Nem változik, mert a levegő is tágul.	
			2 pont
19.		et-e egy elektron homogén, időben állandó elektromos és mágno ósan nyugalomban? (Az elektronra más erők nem hatnak.)	eses tér hatására
	A)	Igen, ha a rá ható elektromos, illetve mágneses erő pontosan egy nagyságú és ellentétes irányú.	
	B) C)	Nem, mert a nyugalomban lévő elektronra csak az elektromos tér Igen, mert az elektromágneses erők csak a mozgó elektronra hatn	
			2 pont
20.	Mir	e lehet következtetni az atomi színképvonalakhoz tartozó frekv	enciákból?
	A) B)	Meghatározható belőle az atom elektronállapotai közti energiakül Meghatározható, hogy hány darab elektron található az egyes energiaszinteken.	lönbség.
	C)	Kiszámítható segítségükkel az atommagot összetartó kötési energ	gia.
			2 pont

Fizika — közé _l	oszint	Név:	osztály:

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy akkumulátorral végig üzemi hőmérsékleten működtetett lámpa 5 percig világít. Ezalatt az izzószálon 800 C töltés áramlik át, és 192 J energia szabadul fel fény formájában. Tudjuk, hogy a lámpa hatásfoka 2%.

Mekkora az akkumulátor feszültsége? Mekkora a lámpa izzószálának ellenállása működés közben?

Összesen

16 pont

2. Tegyük fel, hogy egy hidrogénatom fotont bocsát ki, miközben elektronja az n = 5 főkvantumszámmal jelzett állapotból az n = 3 főkvantumszámmal jelzett állapotba jut. Az így kibocsátott fotont elnyeli egy másik hidrogénatom, amely így ionizálódik. Hányas főkvantumszámú állapotban lehetett az ionizált hidrogénatom elektronja a foton elnyelése előtt?

A hidrogénatom elektronjának energiája az n főkvantumszámmal jelzett állapotban $E_n = -13,6 \text{ eV} / n^2$.

Összesen

14 pont

Fizika — középszint Név: osztály:.....

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A Henry Cavendish a 18. században úgynevezett torziós ingával mérte meg két ólomgolyó között a gravitációs erőt. A torziós vagy csavarodási inga szögelfordulása a csavaró hatás mértékével egyenesen arányos. A mért értékek ismeretében Cavendish a Föld tömegét, illetve a gravitációs állandót is ki tudta számítani. A kísérletben egy vízszintes rúd két végére kis ólomgömböket helyezett, ezt a rudat egy vékony torziós szálra függesztette fel. Két nagy tömegű ólomgömböt pedig az ábrán látható módon közel helyezett a kis gömbökhöz, és megmérte a torziós szálra függesztett rúd elfordulását.

A mérés elvi vázlata a jobb oldali ábrán látható. Ennek segítségével válaszoljon az alábbi kérdésekre!

- a) Mitől fordul el a rúd? A nagy gömböket miért kell a kis gömbök ellentétes oldalára helyezni? Mi történne, ha azonos oldalra helyeznénk a nagy gömböket (azaz a rajzon mindkét gömbpárnál jobb oldalt lenne a nagy gömb és bal oldalon a kicsi)? Mi történne, ha ugyanakkora tömegű platinagömböket tennénk az ólomgömbök helyére, s így végeznénk el a kísérletet?
- b) Mit kell tudni a torziós szálról ahhoz, hogy a gravitációs erőt ki tudjuk számítani?
- c) Mi a szerepe a rúd hosszának? Nő vagy csökken a rúd elfordulási szöge, ha ugyanakkora ólomgömböket hosszabb rúd végére rögzítünk? Miért?
- d) Értelmezze a vázlat alapján, hogyan tette könnyen mérhetővé Cavendish a rúd kicsiny elfordulását!

a)	b)	c)	d)	Összesen
7 pont	2 pont	5 pont	6 pont	20 pont

3/B Egy kiránduló útja során keskeny patakhoz érkezik, amely fölött egy öt méter hosszú, homogén tömegeloszlású vízszintes palló vezet át. A kiránduló gyaloglás közben fellép a pallóra és egyenletes, változatlan tempóban átkel a patak fölött. Az alábbi táblázat a palló jobb oldali alátámasztását nyomó F erőt tartalmazza különböző időpillanatokban.

- a) Ábrázolja grafikonon a táblázatban szereplő adatokat!
- b) Mekkora a palló tömege?
- c) Mekkora az ember tömege?
- d) Melyik pillanatban lépett a kiránduló a pallóra? Milyen gyorsan haladt a pallón?
- e) Ábrázolja a grafikonon a palló bal oldali alátámasztását nyomó erőt a táblázatban szereplő időpontokban! Ügyeljen arra, hogy az adatpontok jelölése megkülönböztethető legyen az a) pontban ábrázolt adatokétól!

<i>t</i> (s)	0	1	2	3	4	5	6	7	8	9	10	11
F(N)	150	150	150	270	390	510	630	750	870	990	150	150

írásbeli vizsga 1312 13 / 16 2013. május 16.

a)	b)	c)	d)	e)	Összesen
5 pont	3 pont	4 pont	4 pont	4 pont	20 pont

Fizika — középszint	Név:	osztály:
1 izika kozepsziit		obzearj

Figyelem! Az értékelő tanár tölti ki!

. Feleletválasztós kérdéssor	pontszám	
	1	pontszán
T Ö C1 1 . 1	40	
I. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	
<u>-</u>	javító tanár	
Dátum:		
Dátum:	olárt	
	elért pontszám	programba
	pontszám egész számra	programba beírt egész pontszám
	pontszám egész	beírt egész

írásbeli vizsga 1312 16 / 16 2013. május 16.

Dátum:

Dátum: