Inhaltsverzeichnis

m 1 11 ' 1 '	• 1
Tabellenverzeichnis	11

1 Formel 1

Tabellenverzeichnis

1	Allgemeine Konstanten	1
2	Konstanten Radialgenerator	2
	Funktionen aus der Klasse (Radial)	2

Abbildungsverzeichnis

1 Formel

Tabelle 1: Allgemeine Konstanten

Bezeichnung Python	Bedeutung	Formelzeichen
$\operatorname{num}_{-}\operatorname{pole}_{-}\operatorname{pairs}$	-	p = 4
$\operatorname{num_coils}$	-	$n_{coil} = 4$
${\rm rot_speed}$	-	n_{rotor}
$\mathrm{M}_{-}\mathrm{T}$		M_T
R_L	Lastwiderstand	R_L

Tabelle 2: Konstanten Radialgenerator

Bezeichnung Python	Bedeutung	Formelzeichen und Wert
b_avg	durch. Mag.feld	b_{avg}
${\rm angle_magnet}$	Bogenlänge Magnet	$\alpha_{mag} = 70^{\circ}$
${ m angle_coil}$	Bogenlänge Spule	$\alpha_{coil} = 20^{\circ}$
${\rm rotor_r_inner}$	Radius zu Mag. Innen	$r_{rot.in} = 35 \mathrm{mm}$
${\rm rotor_r_outer}$	Radius zu Mag. Innen	$r_{rot.out} = 45 \text{mm}$
$stator_r_inner$	Radius zu Stat. Innen	$r_{stat.in} = 47 \text{mm}$
$stator_r_outer$	Radius zu Stat. Innen	$r_{stat.out} = 50$ mm
l_coil_eff	effektive Länge	$l_{coil.eff} = 12 \text{ mm}$

Tabelle 3: Funktionen aus der Klasse (Radial)

Bezeichnung Python	${\bf Bedeutung}$	Formel
angle_magnet_space	Bogenlänge zw. Magnet	$\alpha_{mag.space} = \frac{180}{p} - \alpha_{mag}$
$angle_coil_space$	Bogenlänge zw. Spule	$\alpha_{coil.space} = \frac{360}{p} - \alpha_{coil}$
${\tt r_magnet}$	Rad. Mag. innen	$r_{mag} = \frac{r_{rot.in} + r_{rot.out}}{2}$
${\rm dist_rot_stat}$	Spaltgröße	$l_{spalt} 2 \text{ mm} + r_{stat.out} - r_{stat.in}$
l_coil_outer	-	$l_{coil.out} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{coil} + \alpha_{coil.space})$
l_coil_inner	-	$l_{coil.in} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{coil} + \alpha_{coil.space})$
l_coil_space	-	$l_{coil.space} = \frac{2 \cdot r_{stat.out} \cdot \pi \cdot \alpha_{coil.space}}{360^{\circ}}$