定理 (Abel) 设 $u_n(x), v_n(x)$ 在 I 上有定义, 且满足

- $\sum u_n(x)$ 在 I 上一致收敛,
- $\{v_n(x)\}$ 对 $\forall x \in X$ 为单调序列, 且 $v_n(x)$ 一致有界,

则 $\sum u_n(x)v_n(x)$ 一致收敛.

证明 $\forall \varepsilon > 0$, 找 N 使 $\forall n > N, \forall p \ge 1$ s.t. $\forall x \in I$,

$$\left|\sum_{k=n+1}^{n+p}u_k(x)v_k(x)\right|<\varepsilon.$$

记 $S_n(x) = \sum_{k=1}^n u_k(x), T_n(x) = S_n(x) - S(x)$, 则上述和式可以写成

$$\begin{split} \left| \sum_{k=n+1}^{n+p} (S_k - S_{k-1}) v_k \right| &= \left| S_{n+p} v_{n+p} - S_n v_{n+1} + \sum_{k=n+1}^{n+p-1} S_k (v_k - v_{k+1}) \right| \\ &= \left| T_{n+p} v_{n+p} - T_n v_{n+1} + \sum_{k=n+1}^{n+p-1} T_k (v_k - v_{k+1}) \right| \end{split}$$

 $\forall \varepsilon > 0, \exists N, \forall n > N, |T_n(x)| < \frac{\varepsilon}{5M},$ 此时

$$\left|\sum_{k=n+1}^{n+p} u_k(x) v_k(x)\right| \leq \frac{\varepsilon}{5M} \big(\big|v_{n+p}\big| + \big|v_{n+1}\big| + \big|v_{n+1} - v_{n+p}\big| \big) \leq \frac{4}{5}\varepsilon < \varepsilon.$$

例 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+x}$ 在 $[0,+\infty)$ 上一致收敛, 但不绝对收敛.

证明 级数在x=0处不绝对收敛.

记 $u_n(x)=(-1)^n, v_n(x)=\frac{1}{n+x}$. 则 $\sum u_n(x)$ 一致有界而 $v_n(x)$ 单调且一致收敛到 0. 由 Dirichlet 判别法知该函数项级数在 $[0,+\infty)$ 上收敛.

例
$$\sum_{n=1}^{\infty} \frac{a_n}{n^x}$$
 在 $[1,+\infty)$ 上一致收敛 $\iff \sum_{n=1}^{\infty} \frac{a_n}{n}$ 收敛.

证明 \Longrightarrow 属显然. \Longleftrightarrow $\sum_{n=1}^{\infty} \frac{a_n}{n^x} = \sum_{n=1}^{\infty} \frac{a_n}{n} \cdot \frac{1}{n^{x-1}}$, 其中 $\sum_{n=1}^{\infty} \frac{a_n}{n} - 2$ 收敛, $\frac{1}{n^{x-1}}$ 单调且一致有界. 由 Abel 判别法知 $\sum_{n=1}^{\infty} \frac{a_n}{n^x} - 2$ 收敛.

例 讨论级数 $\sum_{n=1}^{\infty} (-1)^n (1-x) x^n$ 在 [0,1] 上的一致收敛性、绝对收敛性和绝对一致收敛性.

解 $\sum (-1)^n$ 一致有界, $(1-x)x^n$ 单调减. 只需说明 $(1-x)x^n \rightrightarrows 0$, 这是已知的结论.

$$\sum (1-x)x^n = (1-x)\frac{x^n}{1-x^n}$$
 收敛 \Longrightarrow 绝对收敛.

然而上述和函数并不一致收敛, 因为和函数在 x = 1 不连续. 于是级数不绝对一致收敛.

§4 一致收敛的极限函数 / 和函数的性质

极限函数/和函数的连续性

函数 $f_n(x) = x^n, x \in [0,1]$ 的极限函数不是连续函数. 关于极限函数连续性, 我们有如下结论:

定理 设 $f_n(x) \in C[a,b], \forall n \geq 1,$ 且 $f_n(x) \Rightarrow f(x), x \in [a,b],$ 则 $f(x) \in C[a,b].$

证明 $\forall x_0 \in [a, b]$, 来证 f(x) 在 $x = x_0$ 处连续. 这是因为连续性是一局部的性质.

回忆连续性的定义: $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall |x - x_0| < \delta, |f(x) - f(x_0)| < \varepsilon$.

$$\begin{split} |f(x)-f(x_0)| &= \left| (f(x)-f_n(x)) + (f_n(x)-f_n(x_0)) + \left(f_n(x_0) - f_{x_0} \right) \right| \\ &= |f(x)-f_n(x)| + |f_n(x)-f_n(x_0)| + |f_n(x_0)-f(x_0)|, \end{split}$$

前后两项可以用一致收敛限制,中间一项用 $f_n(x)$ 的连续性限制.

 $f_n(x)$ 在 $x=x_0$ 连续 $\Longrightarrow \exists \delta>0, \forall |x-x_0|<\delta, |f_n(x)-f(x)|<\frac{\varepsilon}{3}$. 但是这里的 $\delta=\delta(n)$ 仍取决于 n 的选取, 需要进一步理清逻辑.

 $\forall \varepsilon > 0, f_n(x) \rightrightarrows f(x) \Longrightarrow \exists N, \forall n > N, |f_n(x) - f(x)| < \frac{\varepsilon}{3}.$

特别的
$$|f(x)-f_N(x)|<rac{arepsilon}{3}, |f(x_0)-f_N(x_0)|<rac{arepsilon}{3}.$$
 由 $f_N(x)$ 在 x_0 处连续, $\exists \delta>0$ s.t. $|x-x_0|<\delta\Longrightarrow |f_N(x)-f_N(x_0)|<rac{arepsilon}{3}.$ 此时即有 $|f(x)-f(x_0)|$

注意到上述论证不要求区间是闭区间,任意区间I的版本均成立.这是因为连续性是局部性质,与整体区间的选取无关.

定理 设 f_n 在 (a,b) 有定义, $f_n(x) \rightarrow f(x)$, $\forall x \in (a,b)$. 给定 $x_0 \in (a,b)$, 若 $\exists \delta_0 > 0$, s.t. $f_n(x) \rightrightarrows f(x)$, $x \in (x_0 - \delta_0, x_0 + \delta_0)$, 则 f 在 $x = x_0$ 连续.

证明 这是上一定理的直接结果.

定义 设 $f_n(x) \to f(x), x \in (a,b)$, 且 $\forall [c,d] \subset (a,b), f_n(x) \Rightarrow f(x), x \in [c,d]$, 则称 $f_n(x)$ 在 (a,b) 上內闭一致收敛.

定理 设 $f_n(x)$ 在 (a,b) 上内闭一致收敛到 f(x). 若 $f_n(x) \in C(a,b)$, $\forall n \geq 1$, 则 $f(x) \in C(a,b)$.

例 x^n 在 (0,1) 上内闭一致收敛到 0.

例 设 $\{a_n\}$ 单调, $\lim_{n\to\infty}a_n=0$, 则 $\sum_{n=1}^\infty a_n\cos nx$ 在 $(0,2\pi)$ 内闭一致收敛.

证明 任取 $\delta_0 > 0$, 考虑闭区间 $[\delta_0, 2\pi - \delta_0] \subset (0, 2\pi)$.

$$a_n \neq 调趋于 \ 0, S_n(x) = \sum_{k=1}^n \cos nx = \frac{\sin\frac{x}{2} - \sin\frac{2n+1}{2}x}{2\sin\frac{x}{2}} \Longrightarrow |S_n(x)| \leq \frac{1}{\sin\frac{x}{2}} \leq \frac{1}{\sin\frac{\delta_0}{2}}.$$

于是 $S_n(x)$ 一致有界. 由 Dirichlet 判别法知原级数在 $[\delta_0, 2\pi - \delta_0]$ 上一致收敛, 再由 δ_0 的任意性得到原级数在 $(0, 2\pi)$ 上内闭一致收敛.

上述极限函数的连续性由一致收敛性保证,然而不一致收敛未必使极限函数不连续;换言之,极限函数连续不能推出一致收敛性:

例
$$f_n(x) = \frac{nx}{1 + n^2x^2}, x \in [0, 1].$$
 $f_n(x) \to 0, f_n\left(\frac{1}{n}\right) = \frac{1}{2}$ 不一致收敛.

然而在补上一些条件之后,上面的推断就可以成立:

定理 (Dini) 设 $f_n(x)$ 在 [a,b] 上单调趋于 f(x), 若 $f_n(x)$, $f(x) \in C[a,b]$, 则 $f_n(x) \rightrightarrows f(x)$, $x \in [a,b]$.

证明 $\forall \varepsilon>0, \exists N, \forall n>N, |f_n(x)-f(x)|<\varepsilon.$

任给 $x \in [a,b]$, 由 $f_n(x) \to f(x)$, $\exists N, \forall n > N, |f_n(x) - f(x)| < \frac{\varepsilon}{3}$. 特别的 $|f_N(x) - f(x)| < \frac{\varepsilon}{3}$. 再由 f, f_N 在 x 处连续 $\exists \delta > 0$ s.t. $\forall x' \in (x - \delta, x + \delta)$,

$$|f_N(x)-f_N(x')|<\frac{\varepsilon}{3},\quad |f(x)-f(x')|<\frac{\varepsilon}{3},$$

从而 $|f_N(x') - f(x')| < \varepsilon$.

$$\bigcup_{x \in [a,b]} (x - \delta_x, x + \delta_x) \text{ 有有限子覆盖, 设为} \bigcup_{i=1}^m (x_i - \delta_i, x_i + \delta_i) \supset [a,b], 再取 N = \max \Big\{ N_{x_i} \Big\},$$

$$\forall n > N, \forall x' \in [a,b], \exists i, x' \in (x_i - \delta_i, x_i + \delta_i),$$

$$f_n(x') \geq f_N(x') \geq f_{N_i}(x') \geq f(x') - \varepsilon,$$

另一个方向的不等式是显然的. 于是
$$|f_n(x') - f(x')| < \varepsilon$$
.