

# **Qdrant Collections and Vectors: A Beginner's Guide**

#### What is Qdrant?

Qdrant is a vector database that stores and searches through "vectors" - lists of numbers that represent data like text, images, or any information you want to search through semantically.

Think of a Qdrant collection like a filing cabinet, but instead of storing documents, it stores vectors that represent the meaning of your data.

# **Understanding Vectors**

A vector is like a coordinate that describes something in multi-dimensional space.

**Simple Example:** Describing a person with numbers:

Height: 5.8Weight: 150

• Age: 25

That's a 3-dimensional vector: [5.8, 150, 25]

**In Qdrant**: Vectors are usually much longer (100-1500+ numbers) and represent complex concepts like the "meaning" of a sentence or document.

# **Creating Collections - The Basics**

Creating a collection is straightforward:

```
client.create_collection(
    collection_name="my_collection",
    vectors_config=VectorParams(size=384, distance=Distance.COSINE)
)
```

# **Vector Parameters Explained**

When creating a collection, you must specify three key parameters:

#### 1. Size - How Many Numbers in Each Vector?

Important: You don't choose the size arbitrarily - your embedding model determines it.

Common embedding model sizes:

```
• OpenAl text-embedding-3-small: 1536 dimensions
```

- OpenAl text-embedding-3-large: 3072 dimensions
- Sentence Transformers all-MinilM-L6-v2: 384 dimensions
- Google's models: Often 768 dimensions

Rule: The collection size must exactly match your embedding model's output size.

```
# If using OpenAI embeddings
collection_config = VectorParams(
    size=1536,  # Must match OpenAI's output exactly
    distance=Distance.COSINE
)
```

#### **Smaller vs Larger Vectors:**

- Smaller (384): Faster searches, less storage, less detailed understanding
- Larger (1536+): More detailed understanding, slower searches, more storage

## 2. Distance - How to Measure Similarity

Three main options:

- COSINE: Best for text/semantic similarity (most common choice)
- **EUCLIDEAN**: Measures straight-line distance between points
- **DOT**: For when larger numbers indicate higher similarity

#### 3. Vector Name (Optional)

You can store multiple types of vectors in one collection:

- "text\_vector" and "image\_vector" in the same collection
- Each can have different sizes and distance metrics

# **Understanding PointStruct**

PointStruct is Qdrant's way of organizing data - like a database row format:

# The Payload - Your Flexible Metadata

The payload can contain unlimited metadata about your data:

```
PointStruct(
   id=1,
   vector=embedding_vector, # From your embedding model
   payload={
        "review": "Great pizza!",
        "rating": 5,
        "customer_name": "John Smith",
        "phone": "555-1234",
        "visit_date": "2024-06-15",
        "restaurant_name": "Tony's Pizza",
        "location": "Downtown",
        "price_range": "$$",
        "cuisine_type": "Italian"
   }
}
```

# Complete Real-World Example

```
import openai
from qdrant_client import QdrantClient
from qdrant client.models import PointStruct, VectorParams, Distance
# 1. Create collection (size matches OpenAI's model)
client.create collection(
    collection name="restaurant reviews",
   vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
# 2. Convert text to vector using OpenAI
review_text = "Great pizza, friendly service!"
embedding = openai.Embedding.create(
    input=review text,
   model="text-embedding-3-small"
vector = embedding['data'][0]['embedding'] # This will be 1536 numbers
# 3. Store in Odrant
client.upsert(
    collection_name="restaurant_reviews",
    points=[
        PointStruct(
            id=1,
            vector=vector, # The 1536 numbers from OpenAI
            payload={
                "review": review_text,
                "rating": 5,
                "customer": "Alice",
                "date": "2024-06-18",
                "restaurant": "Tony's Pizza",
                "location": "Downtown"
        )
   ]
```

# The Power of Hybrid Search

Qdrant gives you two types of search capabilities:

## 1. Vector Search Only (Semantic Similarity)

Find content with similar meaning:

```
# Find reviews similar to "great food"
results = client.search(
    collection_name="restaurant_reviews",
    query_vector=embed_text("great food"),
    limit=5
)
```

## 2. Hybrid Search (Vector + Metadata Filtering)

Combine semantic search with precise filtering:

```
# Find reviews similar to "great food"
# BUT only from Italian restaurants in downtown with 4+ stars
results = client.search(
    collection_name="restaurant_reviews",
    query_vector=embed_text("great food"),
    query_filter=Filter(
        must=[
            FieldCondition(key="cuisine_type", match=MatchValue(value="Italian")),
            FieldCondition(key="location", match=MatchValue(value="Downtown")),
            FieldCondition(key="rating", range=Range(gte=4))
        ]
    ),
    limit=5
)
```

# Real-World Use Case Example

Building a restaurant recommendation system:

```
# User asks: "I want great pasta near downtown with good service"
search_query = "great pasta good service"
user location = "downtown"
results = client.search(
    collection name="restaurant reviews",
   query vector=embed text(search query), # Semantic similarity
   query filter=Filter(
       must=[
            FieldCondition(key="location", match=MatchValue(value=user location)),
            FieldCondition(key="rating", range=Range(gte=4))
   )
)
# Returns reviews that:
# 1. Are semantically similar to "great pasta good service" (vector search)
# 2. Are from downtown restaurants (metadata filter)
# 3. Have 4+ star ratings (metadata filter)
```

# Why Hybrid Search is Powerful

Traditional SQL databases can't understand that "delicious" and "tasty" mean similar things.

Pure vector search can't easily filter by exact criteria like "only Italian restaurants."

**Qdrant's hybrid approach** gives you:

- Semantic understanding from vectors ("great food" matches "delicious meal")
- Precise filtering from metadata (price range, location, date, ratings)
- Fast searches because Qdrant indexes both vectors and metadata

## **Key Takeaways**

- 1. Vector size is determined by your embedding model you must match it exactly
- 2. Only embed the meaningful text (like review content) store everything else as metadata
- 3. Use COSINE distance for most text applications
- 4. Combine vector search with metadata filtering for powerful, precise results
- 5. **Think of it as a semantic-aware SQL database** that understands meaning while allowing precise filtering

## **Best Practices**

- Choose your embedding model first, then set collection size to match
- Store rich metadata in the payload for flexible filtering
- Use descriptive field names in your payload
- Index frequently filtered fields for better performance
- Test different distance metrics with your specific use case