Challenges in Large Scale Article Discounting

Torsten Gellert Pricing Platform

GOR working group Real World Optimization, 2022-10-06

Champion of style

Fashion

- > 1,800,000 articles
- > 6,500 brands

Dedicated content creation

by Zalando Content Solutions

Beauty

> 35,000 products

Strategic partnership with Sephora

Large Scale Article Discounting

Pricing Goal: Provide profit optimal discounts

simplistic Pricing Idea: stock bought ahead of time → sell it for best profit

- recommend best discount schedule per article
 - for all articles in the shop
 - for all countries we are serving
 - with a certain frequency, e.g., weekly until season end (→ couple hundred millions of discounts)

rationale: maximum profit for entire assortment → maximum profit per article

Issue: Business targets (et.al.) combine single article optimization (discount rate in Italy 20%, discount rate Kids articles 10%)

→ profit maximization is a huge connected problem

Optimal Discounts with Targets

- Given some forecasts (demand, return rate, cost...), the stock flow can be modeled as
 Mixed Integer Program per article
- → Optimal discount schedule computable easily per article over all countries (few seconds)
 - Targets across articles modelled via Lagrangian Relaxation (decouples huge single problem in many small problems)

Optimal Discounts with Targets

Target Steering Optimization

- consumes article data and forecasts
- runs iterations of the lagrangian relaxation
- heuristic generates prefered solution at the end
- reaches typical targets
- generates reports to for users

Large-scale Price
Optimization for an Online
Fashion Retailer

Optimal Discounts with Targets

Success?: Yes

- hitting targets given by business partners
- provable gap and lower bound
- predictable and stable runtime and execution
- scalable towards an ever-growing assortment

BUT.....

Lots of hidden challenges and complications for this rather clean approach

Expectations And Requirements

"Pricing" Department

Mission: Provide Engaging Discounts to our Customers

Disclaimer: This reflects my point of view mostly

Important Aspects for Optimization & Forecasting:

- black prices (original price)
 - setting original prices per country (e.g. different VAT)
- red prices (discounts)
 - risk: ensuring to sell seasonal articles until the end of the season
 - competitive and strategic: creating engaging offers

- vouchers
 - for certain customers/markets on all or part of the assortment
- specific marketing campaigns
 - e.g., special sales periods in selected countries

Resulting Requirements & Challenges

Competitive Discounting match competitors` discounts strategically

Sales Events

support themed events selected countries

Legal Requirements
different rules per country,
i.e., share of articles at certain
discount if advertised

Seasonal and **Non-Seasonal** Articles some articles available all the time

Brand Perception

careful discounting for premium brands

Guidance for Planning forecast impact of business goals

Warehouse Capacities/Stock Availabilities slow down sales for warehouse capacities

Forecasting related Challenges

Forecasting Components - Demand or Sales

Sales Forecast

Input: discount schedule

(all countries/weeks)

Output: resulting sales

considering stock, returns, resupply,...

matches observable data

 fewer parameter for optimization to keep track/work

Demand Forecast

Input: single country-week discount Output: resulting demand

- less coupling between countries
- demand only observable if below stock
- more possibilities/responsibilities for the optimization

Forecasting Components - Sales & Demand

Uncertainty in Article **Elasticity**

How far is the future reliable to predict?

- big spontaneous impact: weather
- also consumer's willingness to spend money
- certain discounts rarely observed

Possible approaches:

- (telescopic) time aggregation
- probabilistic forecasts
- → highly coupled to optimization

Forecasting Components - Sales & Demand

Sizes and niche articles

Which type of article has the most sizes?

Forecasting Components - Sales & Demand

Sizes and niche articles

Choose your size
34x30
34x32
34x34
34x36
34x38
34x40 Standard delivery

Size

Some articles have lots of sizes.

(e.g., Jeans with 17 widths, each with several lengths →100 sizes)

→ Group sizes for forecasting purposes

Niche

Big share of assortment is sold rarely (long tail)

→ How to forecast when article is sold only every other week?

Forecasting Components - Expected Costs

- Shipping and Handling
 - discounts are set per article, shipping is done with entire order
 - mixed calculation of costs
 - articles might or might not be in the same warehouse (cost depends on customer's order and warehouse allocation)

- Return Rates and Return Costs
 - returns are possible up to 14 weeks after purchase → observed very late
 - returns are not always in re-sellable (in shop) condition (estimated share)

Mixed calculations that aren't perfect

Forecasting Components - Expected Costs

Cannibalization and Halo Effect

- demand/sales interdependent between articles
- High discount on similar article
 - → less demand (e.g., similar sweater)
- High discount on a complementing article
 - → higher demand (matching shorts & t-shirt)

Also: Recommendations play a big role, can work as price anchor

Residual Values

- How to deal with stock that cannot be sold? What is its value?
- Past observations might be incorrect for this seasons article

Optimization related Challenges

Model Behavior & Reality

sales are modelled as variables, bound by stock & demand (depending on discount)

Balanced Sales

demand profit/sale

What could clash with reality if model "decides" sales?

Model Behavior & Reality

sales are modelled as variables, bound by stock & demand (depending on discount)

Balanced Sales

demand profit/sale

Model

- pushes sales to most lucrative countries
- refuse to sell if it is unprofitable

Example: stock = 25 items

→ sales: CH: 20 (100% demand), DE: 0 (0%), FR: 5 (50%)

Reality: No country preference, orders fulfilled as they occur

Simple Constraint: Same ratio of demand fulfilled per time

Model Behavior & Reality

sales are modelled as variables, bound by stock & demand (depending on discount)

Stock Hedging

→ optimization could choose against fulfilling demand

- fighting against sales periods
- potentially exploiting demand forecasts

Reality: Articles are not taken offline

Binary constraint: either demand fulfilled or stock depleted

Infeasible Targets

different types of targets hard to judge (GMV, average discount, stock levels,...)

Business Targets can be incompatible

Lagrangian Relaxation:

best upper bound is -∞

- How to detect upfront?
- What is smallest change to make it feasible?
 - → Theoretical hard questions

Approaches (all with lots of effort)

- provide guidance to planners
- adjusts targets automatically
- provide reasonable fallback solution

Long Term Profit Optimization

Business has **quarterly**, **monthly**, **weekly**, targets Optimization looks ahead at the end of a season

Targets affect optimization in nearest future → optimizer's believes it can be compensated later

Adjusted targets can harm this plan

Approaches: Hierarchical model, include long term targets as well

AB Testing

"Easy": different web page layout, checkout, recommendations, sortings, ...

AB Tests possible but tricky to setup and analyze

Complications:

- How to setup an AB test?
 - o different prices per customer
 - → **forbidden** price discrimination
 - o different prices per country
 - → countries already show different behavior
 - o different prices per article granting
 - same general behavior
 - robust against cross effects, e.g., cannibalization
 - keep for some time to observe long term effects
- How to measure long term profits of two different discount strategies?

Conclusion

Attention to Detail in Modelling

setup optimization and forecast models carefully mathematically perfect solution pointless if missing details

Measure Real Impact

analysis can be complicated but crucial starting point to spot issues or celebrate successes

Stay in Contact with Users

learn how and why they use or avoid your product misusage or desired feature can lead to better products

Thank you