

Análise e Síntese de Algoritmos

Programação Linear

CLRS Cap. 29

Instituto Superior Técnico 2022/2023

Resumo

Motivação

Formulações

Reduções para Programação Linear

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Algoritmos greedy
 - Programação dinâmica
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos
 - Árvores abrangentes
 - Fluxos máximos
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Complexidade Computacional

Análise e Síntese de Algoritmos - 2022/2023

1/32

Motivação - Exemplo 1

Como ganhar uma eleição?

- Comprando-a, gastando dinheiro em campanhas :)
- No entanto, um político quer minimizar os seus custos
- Necessário fazer chegar a mensagem certa à demografia certa

Motivação - Exemplo 1

Existem três regiões principais (demografia):

- Urbanos 100.000 votantes registados
- Suburbanos 200.000 votantes registados
- Rurais 50.000 votantes registados

É preciso estimar o número de votos obtido por cada € gasto nas campanhas em cada tema

Análise e Síntese de Algoritmos - 2022/2023

4/32

Motivação - Exemplo 1

	Urbanos	Suburbanos	Rurais
Estradas	-2	5	3
Liberalização da Droga	8	2	-5
Subsídios Agricultura	0	0	10
Imposto sobre Gasolina	10	0	-2

Definição do problema

• variáveis denotam quantia a gastar em campanha nos diferentes temas: $x_1 = \text{estradas}$; $x_2 = \text{droga}$; $x_3 = \text{subsídios}$; $x_4 = \text{imposto}$

Motivação - Exemplo 1

	Urbanos	Suburbanos	Rurais
Estradas	-2	5	3
Liberalização da Droga	8	2	-5
Subsídios Agricultura	0	0	10
Imposto sobre Gasolina	10	0	-2

- Cada entrada representa o número de (milhares) votos ganhos por cada 1.000€ gastos em campanhas
- Valores negativos indicam votos perdidos

Objectivo

- Queremos ganhar pelo menos 50% dos votos (100.000 urbanos, 200.000 suburbanos e 50.000 rurais)
- Minimizar o total a gastar nas campanhas

Análise e Síntese de Algoritmos - 2022/2023

5/3

Motivação - Exemplo 1

Programa Linear

Combinação da função objectivo com as restrições lineares

Exemplo

minimizar
$$x_1 + x_2 + x_3 + x_4$$

sujeito a $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
 $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$
 $3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25$
 $x_1, x_2, x_3, x_4 \ge 0$

Solução do programa linear \Rightarrow estratégia óptima

Motivação - Exemplo 2

TÉCNICO LISBOA

Uma pessoa tem insuficiências nos nutrientes N_a, N_b, N_c . No entanto, estes nutrientes podem ser encontrados em diferentes tipos de comida.

Considere a seguinte tabela que mostra a quantidade de cada nutriente N_a , N_b , N_c por cada dose unitária de comida x_1 , x_2 , x_3 , x_4 .

	N_a	N_b	N_c
<i>x</i> ₁	3	10	5
<i>x</i> ₂	8	4	7
<i>X</i> 3	10	5	2
<i>X</i> 4	0	15	10

Análise e Síntese de Algoritmos - 2022/2023

8/32

Motivação - Exemplo 3

Novo horários do IST - MEPP Restrições

- aulas teóricas de UCs do mesmo ano/período não se podem sobrepor
- um turno X tem de poder ter acesso a pelo menos uma aula prática de cada UC desse ano/periodo
- um professor não pode estar a atribuído a mais de uma aula ao mesmo tempo
- tem de haver um intervalo de tempo t entre aulas que mudem de campus para qualquer aluno/professor
- uma sala não pode ter mais de uma aula atribuída ao mesmo tempo
- ...

Função objectivo: minimizar

- intervalos sem aulas
- mudanças entre campus
- ...

Motivação - Exemplo 2

TÉCNICO LISBOA

Para suprimir as suas necessidades, deverá consumir 40 unidades do nutriente N_a e N_c , assim como 50 unidades de N_b . No entanto, o custo por cada dose unitária de comida varia da seguinte forma: $custo(x_1) = 4$, $custo(x_2) = 3$, $custo(x_3) = 2$, e $custo(x_4) = 6$.

Assumindo que pode comprar doses parciais, qual a quantidade de cada tipo de comida a consumir para ficar saudável e da forma mais barata possível?

minimizar
$$4x_1 + 3x_2 + 2x_3 + 6x_4$$

sujeito a $3x_1 + 8x_2 + 10x_3 + 0x_4 \ge 40$
 $10x_1 + 4x_2 + 5x_3 + 15x_4 \ge 50$
 $5x_1 + 7x_2 + 2x_3 + 10x_4 \ge 40$
 $x_1, x_2, x_3, x_4 \ge 0$

Análise e Síntese de Algoritmos - 2022/2023

9/32

Formulação Geral

- Optimizar (minimizar ou maximizar) função linear sujeita a conjunto de restrições lineares
- Função linear (função objectivo):

$$f(x_1,x_2,\ldots,x_n)=\sum_{j=1}^n c_jx_j$$

• Restrições lineares:

$$g_i(x_1, x_2, \dots, x_n) = \sum_{j=1}^n a_{ij} x_j = b_i$$

Interpretação geométrica

Interpretação geométrica

Ji TÉCNICO LISBOA

Exemplo

maximizar sujeito a

 $x_1, x_2 \geq 0$

Análise e Síntese de Algoritmos - 2022/2023

12/3

Exemplo

maximizar sujeito a

$$x_1, x_2 \geq 0$$

Análise e Síntese de Algoritmos - 2022/2023

13/3

Interpretação geométrica

Exemplo

maximizar sujeito a

$$4x_1 - x_2 \leq 8$$

$$x_1, x_2 \geq 0$$

Interpretação geométrica

Exemplo

maximizar sujeito a

$$x_1, x_2 \geq 0$$

Análise e Síntese de Algoritmos - 2022/2023

14/32

Análise e Síntese de Algoritmos - 2022/2023

Interpretação geométrica

Interpretação geométrica

Exemplo

maximizar sujeito a

Análise e Síntese de Algoritmos - 2022/2023

Análise e Síntese de Algoritmos - 2022/2023

Exemplo

maximizar sujeito a

Análise e Síntese de Algoritmos - 2022/2023

Interpretação geométrica

Definições

- Solução exequível: qualquer solução que satisfaça o conjunto de restrições
- A cada solução exequível corresponde um valor (custo) da função objectivo
- O conjunto de soluções exequíveis é designado por região exequível
- A região exequível é um conjunto convexo no espaço *n*-dimensional

 x_2

- Conjunto convexo S: qualquer ponto

19/32

Definições

- Solução: exequível ou não exequível
- Valor da função objectivo: valor objectivo
- Valor máximo/mínimo: valor objectivo óptimo
- Se formulação não tem soluções exequíveis diz-se não exequível; caso contrário diz-se exequível
- Se formulação é exequível, mas sem solução óptima, diz-se não limitado
- Dois programas lineares L e L' são equivalentes se para cada solução solução exequível \bar{x} para L com valor objectivo z, existe uma solução exequível \bar{x}' para L' com valor objectivo z, e vice-versa

Análise e Síntese de Algoritmos - 2022/2023

20/32

Conversão para Forma Standard

Passo 1: Se for um problema de minimização

 \Rightarrow Converter para maximização multiplicando coeficientes por -1

minimizar
$$-2x_1 + 3x_2$$

sujeito a
$$x_1 + x_2 = 7$$

$$x_1 - 2x_2 \le 4$$

$$x_1 > 0$$

Forma Standard

TÉCNICO LISBOA

Forma Standard

maximizar
$$\sum\limits_{j=1}^n c_j x_j$$
 sujeito a $\sum\limits_{j=1}^n a_{ij} x_j \leq b_i$ $i=1,2,\ldots,m$ $x_j \geq 0$ $j=1,2,\ldots,n$

- Todos os valores c_i , a_{ii} , b_i são valores reais
- Representação Matricial

maximizar
$$\mathbf{c}^T \mathbf{x}$$
 sujeito a $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ $\mathbf{x} > 0$

Em que
$$\mathbf{A} = (a_{ij}), \mathbf{b} = (b_i), \mathbf{c} = (c_i)$$
 e $\mathbf{x} = (x_i)$

Análise e Síntese de Algoritmos - 2022/2023

21/32

Conversão para Forma Standard

Passo 2: Variáveis sem restrição de serem não negativas \Rightarrow Substituir cada ocorrência de x_i por $(x_{i1} - x_{i2})$,

 \Rightarrow Substituir cada ocorrencia de x_i por $(x_{i1} - x_{i2})$ em que x_{i1} e x_{i2} são novas variáveis

maximizar
$$2x_1 - 3x_2$$
 sujeito a $x_1 + x_2 = 7$ $x_1 - 2x_2 \le 4$ $x_1 \ge 0$

maximizar
$$2x_1 - 3x_2' + 3x_2''$$
 sujeito a
$$x_1 + x_2' - x_2'' = 7 \\ x_1 - 2x_2' + 2x_2'' \leq 4 \\ x_1, x_2', x_2'' \geq 0$$

Conversão para Forma Standard

Passo 3: Restrições com igualdade

 \Rightarrow Introduzir duas restrições, uma com \leq e outra com \geq

maximizar
$$2x_1 - 3x_2' + 3x_2''$$
 sujeito a

$$x_1 + x'_2 - x''_2 = 7$$

 $x_1 - 2x'_2 + 2x''_2 \le 4$
 $x_1, x'_2, x''_2 \ge 0$

maximizar
$$2x_1 - 3x_2' + 3x_2''$$
 sujeito a

$$x_1 + x'_2 - x''_2 \le 7$$

 $x_1 + x'_2 - x''_2 \ge 7$
 $x_1 - 2x'_2 + 2x''_2 \le 4$
 $x_1, x'_2, x''_2 \ge 0$

Análise e Síntese de Algoritmos - 2022/2023

24/32

Conversão para Forma Standard

Passo 4: Restrições com >

⇒ Multiplicar por -1 a restrição

maximizar
$$2x_1 - 3x_2' + 3x_2''$$
 sujeito a $x_1 + x_2' - x_2''$

$$x_1 + x'_2 - x''_2 \le 7$$

 $x_1 + x'_2 - x''_2 \ge 7$
 $x_1 - 2x'_2 + 2x''_2 \le 4$
 $x_1, x'_2, x''_2 \ge 0$

Análise e Síntese de Algoritmos - 2022/2023

25/32

Forma Slack

Conversão para a forma Slack

Objectivo: trabalhar apenas com igualdades

- Todas as restrições, excepto as restrições das variáveis serem não negativas, são igualdades
- Para cada restrição introduzir uma nova variável s_i (variável de slack)

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad s_i + \sum_{j=1}^{n} a_{ij} x_j = b_i$$

$$s_i = b_i - \sum_{j=1}^{n} a_{ij} x_j \quad s_i \ge 0$$

Conversão da Forma Standard para Forma Slack

$$x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$x_{n+i} \ge 0$$

Conversão para a Forma Slack

Nas expressões: $x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j$

- Variáveis expressas em função de outras variáveis designam-se por variáveis básicas
- As variáveis que definem as variáveis básicas designam-se por variáveis não-básicas
- A solução básica é obtida quando se colocam as variáveis não-básicas com valor 0

Na Forma Slack, a função objectivo é definida como:

$$z = \sum_{j=1}^{n} c_j x_j$$

Forma Slack

Conversão para a Forma Slack

- N: Conjunto de índices das variáveis não básicas, |N| = n
- B: Conjunto de índices das variáveis básicas, |B| = m
 N∪B = {1,2,...,n+m}
- Forma Slack descrita por: (N, B, A, b, c, v)
 - v: constante na função objectivo

$$z = v + \sum_{j=1}^{n} c_{j} x_{j}$$

 $x_{n+i} = b_{i} - \sum_{j=1}^{n} a_{ij} x_{j} \quad i = 1, 2, ..., m$

Análise e Síntese de Algoritmos - 2022/2023

28/32

Forma Slack

CLRS Ex 29.1-5

Converta o programa linear para a forma Slack

$$\begin{array}{rclcrcr}
 z & = & 2x_1 & - & 6x_3 \\
 x_4 & = & 7 & - & x_1 & - & x_2 & + & x_3 \\
 x_5 & = & -8 & + & 3x_1 & - & x_2 & & & \\
 x_6 & = & - & x_1 & + & 2x_2 & + & 2x_3 \\
 & & x_1, x_2, x_3, x_4, x_5, x_6 & \geq & 0 & & & \\
 \end{array}$$

Análise e Síntese de Algoritmos - 2022/2023

Forma Slack

Ji TÉCNICO LISBOA

Exemplo: conversão para forma Slack (se já estiver na forma Standard)

maximizar
$$2x_1 - 3x_2 + 3x_3$$

sujeito a $x_1 + x_2 - x_3 \le 7$
 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

$$z = 2x_1 - 3x_2 + 3x_3$$

 $x_4 = 7 - x_1 - x_2 + x_3$
 $x_5 = -7 + x_1 + x_2 - x_3$
 $x_6 = 4 - x_1 + 2x_2 - 2x_3$

Análise e Síntese de Algoritmos - 2022/2023

29/32

Reduções para Programação Linear

Fluxo Máximo

maximizar
$$\sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$
 sujeito a $f(u, v) \leq c(u, v) \quad \forall u, v \in V$ $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \quad \forall u, v \in V \setminus \{s, t\}$ $f(u, v) \geq 0 \quad \forall u \in V$

- ullet $|V|^2$ variáveis, correspondentes ao fluxo entre cada par de vértices
- $2|V|^2 + |V| 2$ restrições

Reduções para Programação Linear

Caminhos Mais Curtos

Caminhos mais curtos entre s e t:

 $\mathsf{maximizar} \quad d[t]$

sujeito a
$$d[v] \le d[u] + w(u,v), \ \ \forall (u,v) \in E$$
 $d[s] = 0$

Análise e Síntese de Algoritmos - 2022/2023

32/3