Contents

1	Basics		2
2	chapter 1	Topological Spaces and Continuous Functions	3
	2.0.1	Relation	3
	2.0.2	Cartesian Product	
3	chapter 2		4
	3.0.1	12 Topological Spaces	4
	3.0.2	13 Basis for a Topology	
	3.0.3	14 Order Topology	5
	3.0.4	15 Product Topology	5
	3.0.5	16 Subspace Topology	
	3.0.6	17 Closed Sets and Limit Points	6
	3.0.7	18 Continuous Functions	8
	3.0.8	18 The Product Topology	9
	3.0.9	19 The Metric Topology	10
	3.0.10		
	3.0.11	22 The Quotient Topology	
4	Connectedness and Compactness		
	4.0.1	23 Connected Spaces	14
	4.0.2	24 Connected Subspaces of the Real Line	
	4.0.3		16

1 Basics

1. Functions

- injective $f: X \to Y$ injective or one-to-one if $\forall a, b \in X$, $f(a) = f(b) \Rightarrow a = b$
- surjective $f: X \to Y$ is surjective if any $y \in Y \Rightarrow y = f(x)$ for some $x \in X$
- composition of injective/surjective/bijective functions are injective/surjective/bijective
- If f is injective with range Y, then its inverse function $f^{-1}: Y \to X$ is a bijective function

2. Set Relations

• De Morgan's Law

$$X \setminus \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} \left(X \setminus A_{\alpha}\right) \qquad X \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} \left(X \setminus A_{\alpha}\right)$$

- how functions acts on sets Let $A, B \subseteq X$ and $C, D \subseteq Y$
 - f well-behaved for union

$$f(A \cup B) = f(A) \cup f(B)$$

- f not well-behaved for intersection, difference

$$f(A \cap B) \subseteq f(A) \cap f(B)$$
$$f(A) \setminus f(B) \subseteq f(A \setminus B)$$

 $-f^{-1}$ well-behaved with union, intersection, difference, and set complement

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
$$f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$$
$$f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$$

- f and f^{-1} mixed

$$A\subseteq f^{-1}(f(A)) \qquad \qquad \text{(with equality if f is injective)}$$

$$f(f^{-1}(C))\subseteq C \qquad \qquad \text{(with equality if f surjective)}$$

Remark. Read

- 1. chapter 1, 1-8
- 2. chapter 2, 12-22
- 3. chapter 3, 23-29
- 4. chapter 4. 30-35

2 chapter 1 Topological Spaces and Continuous Functions

2.0.1 Relation

- 1. A relation on a set A is a subset C of cartesian product $A \times A$. xCy means $(x,y) \in C$
- 2. equivalence relation is a relation if it satisfies reflexivity, symmetry, transitivity
- 3. equivalence class a subset of A determined by some $x \in A$, i.e. $E = \{y \mid y \sim x\}$
- 4. partition of a set A is a collection of disjoint nonempty subsets of A whose union is all of A
- 5. **order relation** is a relation if it satisfies comparability (any $x \neq y \in A$ either xCy or yCx but not both) nonreflexivity (xCx does not hold for any $x \in A$) and transitivity
- 6. **dictionary order relation** Let A, B bet sets and $<_A$ and $<_B$ be order relations. The order relation on $A \times B$ is defined by $a_1 <_A a_2$ or if $a_1 = a_2$ and $b_1 <_B b_2$
- 7. **least upper bound property** An ordered set A has the property if every nonempty subset A_0 of A that is bounded above $(\exists b \in A \text{ s.t. } x \leq b \text{ for all } x \in A_0)$ has a least upper bound (all bounds of A_0 has a smallest element)
 - \mathbb{R} and (-1,1) has least upper bounde property
 - $B = (-1,0) \cup (0,1)$ does not heave least upper bound property, $\{-1/2n \mid n \in \mathbb{Z}_+\}$ is bounded above by any $b \in (0,1)$ but its least upper bound $0 \notin B$

2.0.2 Cartesian Product

- 1. **indexed family of sets** Let \mathcal{A} be nonempty collection of sets, let $f: J \to \mathcal{A}$ be a surjective indexing function. (\mathcal{A}, f) is called indexed family of sets, denoted by $\{\mathcal{A}_{\alpha}\}_{{\alpha}\in J} = \{\mathcal{A}_{\alpha}\}$ where $f(\alpha) = \mathcal{A}_{\alpha}$
- 2. **m-tuple** Let $m \in \mathbb{Z}_+$, Given a set X, define m-tuple of X to be a function $\mathbf{x} : \{1, \dots, m\} \to X$ and denote $\mathbf{x} = (x_1, \dots, x_m)$
- 3. **cartesian product** Let $A = \{A_1, \dots, A_m\}$ be indexed family of sets, let $X = \bigcup_{i=1}^m A_i$. Then cartesian product of A is

$$X^m = \prod_{i=1}^m A_i \qquad A_1 \times \dots \times A_m$$

to be the set of all m-tuples ${\bf x}$ of elements of X such that $x_i \in A_i$ for each i

- 4. ω -tuple Given a set X, define ω -tuple of elements of X be a function $\mathbf{x} : \mathbb{Z}_+ \to X$. \mathbf{x} is an *infinite sequence*, of elements of X. Denote $x_i = \mathbf{x}(i)$ as i-th coordinate of \mathbf{x} . Denote \mathbf{x} itself by (x_1, x_2, \cdots) or $(x_n)_{n \in \mathbb{Z}_+}$
- 5. **cartesian product (infinite)** Let $\mathcal{A} = \{A_1, A_2, \dots\}$ be indexed family of sets and X be union of sets in \mathcal{A} , the cartesian product of \mathcal{A}

$$X^{\omega} = \prod_{i \in \mathbb{Z}_+} A_i \qquad A_1 \times A_2 \times \cdots$$

is defined to be the set of all ω -tuples (x_1, x_2, \cdots) of elements of X such that $x_i \in A_i$ for each i

3 chapter 2

3.0.1 12 Topological Spaces

Definition. (Topology) Topology on a set X is a collection \mathcal{T} of subsets of X having properties

- 1. $\emptyset, X \in \mathcal{T}$
- 2. Arbitrary union of subcollection of \mathcal{T} is in \mathcal{T} (If $\forall \alpha \in I, U_{\alpha} \in \mathcal{T}$, then $\cap_{\alpha \in I} U_{\alpha} \in \mathcal{T}$)
- 3. Finite intersection of subcollection of \mathcal{T} is in \mathcal{T} (If $\forall 1 \leq i \leq n, U_i \in \mathcal{T}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$)

A topological space is a pair (X, \mathcal{T}) , where \mathcal{T} are the open sets.

- Standard topology on \mathbb{R}^n is $\mathcal{T}_0 = \mathcal{T}_{std} = \{U \subset \mathbb{R}^n \mid \forall x \in U, \exists \epsilon > 0 \ B_{\epsilon}(x) \subset U\}$
- Standard topology on \mathbb{R} is generated by $\mathcal{B}_{std} = \{(a,b) = \{x \mid a < x < b\} \text{ the open intervals}$
- Lower limit topology on \mathbb{R} is generated by $\mathcal{B}_{l.l.} = \{x \mid a \leq x < b\}$ the half-open intervals
- Discrete topology $\mathcal{T}_1 = \mathcal{T}_{disc} = \mathcal{P}(X)$ all subsets are open
- Trivial topology $\mathcal{T}_2 = \mathcal{T}_{triv} = \{\emptyset, X\}$ only empty set and X are open
- Finite complement topology $\mathcal{T}_{f.c.} = \{U \subseteq X \mid X U \text{ is finite or all of } X\}$
- Countable complement topology $\mathcal{T}_c = \{U \subseteq X \mid X U \text{ is countable or all of } X\}$

Lemma. (Arbitrary intersection of topologies is a topology) $\forall \alpha \in I \ \mathcal{T}_{\alpha}$ is a topology, so is $\cap_{\alpha \in I} \mathcal{T}_{\alpha}$

Definition. (Compare topology) If $\mathcal{T}' \subset \mathcal{T}$, then \mathcal{T}' is coarser / weaker / smaller than \mathcal{T} , \mathcal{T} is finer / stronger / larger than \mathcal{T}' . \mathcal{T} and \mathcal{T}' are comparable if $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T}' \subset \mathcal{T}$

$$\mathcal{T}_{triv} \subset \mathcal{T}_{f.c.} \subset \mathcal{T}_{std} \subset \mathcal{T}_{disc}$$
 $\mathcal{T}_{std} \subset \mathcal{T}_{l.l.}$

3.0.2 13 Basis for a Topology

A terser representation of T

Definition. (Basis) If X is a set, a basis for (X, \mathcal{T}) is a collection \mathcal{B} (basis elements) of subsets of X s.t.

- 1. For each $x \in X$, exists at least one basis element $B \in \mathcal{B}$ containing it
- 2. If $x \in B_1 \cap B_2$, then exists $B_3 \in \mathcal{B}$ s.t. $x \in B_3 \in B_1 \cap B_2$

A topology $\mathcal{T}_{\mathcal{B}}$ generated by \mathcal{B} is defined as

$$\mathcal{T}_{\mathcal{B}} = \{ U \subset X \mid \forall x \in U, \exists B \in \mathcal{B}, x \in B \subset U \}$$

ullet $\mathcal{T}_{\mathcal{B}}$ is the unique minimal topology containing \mathcal{B}

$$\mathcal{T}_{\mathcal{B}} = \bigcap_{\mathcal{T} \in \mathbb{T}} \mathcal{T}$$

where $\mathbb{T} = \{ \mathcal{T} \mid \mathcal{T} \supset \mathcal{B} \text{ and } \mathcal{T} \text{is a topology} \}$

• For any X, all one point sets of X is a basis for \mathcal{T}_{disc}

Lemma. $(\mathcal{B} \to \mathcal{T}_{\mathcal{B}})$ $\mathcal{T}_{\mathcal{B}}$ equals the collections of all unions of elements of \mathcal{B}

$$\mathcal{T}_{\mathcal{B}} = \left\{ \bigcup_{\alpha \in I} B_{\alpha} \mid B_{\alpha} \in \mathcal{B} \quad \forall \alpha \in I \right\}$$

Lemma. $(\mathcal{T}_{\mathcal{B}} \to \mathcal{B})$ Let (X, \mathcal{T}) be topological space. Let \mathcal{C} be a collection of open sets of X such that

$$\forall U \subset X, \quad \forall x \in U, \quad \exists C \in \mathcal{C} \text{ s.t. } x \in C \subset U$$

Then C is a basis for T (handy in deciding $\mathcal{B}_Y = \{B \cap Y \mid B \in \mathcal{B}\}\)$ is a basis for $Y \subset X$)

Lemma. (compare topology by basis) Let \mathcal{B} and \mathcal{B}' be bases for \mathcal{T} and \mathcal{T}' , respectively, on X. Then following equivalent

- 1. $\mathcal{T}' \supset \mathcal{T}$ (\mathcal{T}' is finer than \mathcal{T})
- 2. For each $x \in X$ and each $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$

3.0.3 14 Order Topology

Definition. (Order Topology) Let X be a set with simple order relation. Let \mathcal{B} be a collection of all sets of the following type

$$\mathcal{B} = \{(a,b) \mid a < b \quad a,b \in X\}$$

$$\bigcup \{[a_0,b) \mid a_0 \text{ is minimal element (if any) of } X \text{ } b \in X \quad b \neq a_0\}$$

$$\bigcup \{(a,b_0] \mid b_0 \text{ is maximal element (if any) of } X \text{ } a \in X \quad a \neq b_0\}$$

Generated topology $\mathcal{T}_{\mathcal{B}}$ is called order topology

- In \mathbb{R} , $\mathcal{T}_{ord} = \mathcal{T}_{std}$
- In \mathbb{Z}_+ , $\mathcal{T}_{ord} = \mathcal{T}_{disc}$ (since any $\{n\} = (n-1, n+1) \in \mathcal{T}_{ord}$)
- In $\{1,2\} \times \mathbb{Z}_+$ in \mathcal{T}_{dict} is not in \mathcal{T}_{disc} (although most single point set are open, 2×1 is not open)
- In \mathbb{R}^2 , both \mathcal{B} and \mathcal{B}' generates \mathcal{T}_{dict}

$$\mathcal{B} = \{(a \times b, c \times d) \mid a < c \lor (a = c \land b < d)\} \quad \mathcal{B}' = \{(a \times b, a \times d) \mid b < d\}$$

3.0.4 15 Product Topology

Definition. (Product Topology) Let X, Y be topological spaces, the product topology on $X \times Y$ is generated by the basis

$$\mathcal{B} = \{ U \times V \mid U \in \mathcal{T}_X \ V \in \mathcal{T}_Y \}$$

Alternatively define product topology with basis. If \mathcal{B} , \mathcal{C} are basis for X and Y respectively. Then

$$\mathcal{D} = \{ B \times C \mid B \in \mathcal{B} \ C \in \mathcal{C} \}$$

is a basis for topology of $X \times Y$

- $X \times \{y\} \cong X$
- $X \times Y \cong Y \times X$
- $(X \times Y) \times Z \cong X \times (Y \times Z)$
- Product spaces does not work well with order topology.
 - Consider $X = \mathbb{R}^2$ and $Y = [0,1] \times [0,1]$, then $\{0.5\} \times [0,1]$ is not open in \mathcal{T}_{ord} but is open in $\mathcal{T}_{subspace}$

Definition. (Projection) Let $\pi_1: X \times Y \to X$ be defined by $\pi_1(x,y) = x$. π_1 is a projection of $X \times Y$ onto the first factor. (note projections are surjective)

Definition. (Product Topology by Continuity of Functions) Given X, Y, there exists unique topology on $X \times Y$ such that

- 1. projections π_X and π_Y are continuous
- 2. If $f: Z \to X$ and $g: Z \to Y$, hen $f \times g: Z \to X \times Y$ is continuous

Proof. Define $\mathcal{B} = \{U \times V \mid U \subset X \text{ open } V \subset Y \text{ open } \}$. Show $\mathcal{T}_{\mathcal{B}}$ satisfies the above 2 conditions. Prove uniqueness by showing $id: (X, \mathcal{T}') \to (X, \mathcal{T}'')$ is a homeomorphism utilizing the above 2 conditions.

3.0.5 16 Subspace Topology

Definition. (Subspace Topology) Let (X, \mathcal{T}) . Let $Y \subset X$, then

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

is the subspace topology on Y. Alternatively, define using basis. If B generates T, then

$$\mathcal{B}_Y = \{ B \cap Y \mid B \in \mathcal{B} \}$$

is a basis for \mathcal{T}_Y .

- (lemma) $Y \subset X$. U open in Y and Y open in X, then U open in X
- (lemma) A subspace of a subspace is a subspace
- (theorem) A product of subspaces is a subspace of the product (subspace and product topology work well)

- X ordered and $Y \subset X$. order topology on Y may not be same as order topology of Y inherited as a subspace of X (subspace and order topology does not work well)
 - Let $Y = [0,1] \subset \mathbb{R}$. \mathcal{B}_Y are of the form $(a,b) \cap [0,1]$. Note
 - 1. [0,b) where $b \notin [0,1]$ is open in [0,1] but not in \mathbb{R}
 - 2. $\mathcal{T}_{ord} \cong \mathcal{T}_{subspace}$ since the basis elements of the same form
 - $Let Y = [0,1) \cup \{2\} \subset \mathbb{R}.$
 - 1. $\{2\}$ open in $\mathcal{T}_{subspace}$ since $(1.5, 2.5) \cap Y = \{2\}$.
 - 2. $\{2\}$ not open in order topology since any basis of the form $\{x \in Y \mid a < x \le 2 \ a \in Y\}$ contains some other point other than $\{2\}$
 - 3. $\mathcal{T}_{ord} \not\cong \mathcal{T}_{subspace}$
- (theorem) subspace and order topology works well if the subspace is convex

Definition. (convex) Given ordered X and subset $Y \subset X$ is convex if $(a,b) \subset X$ lies in Y completely

Theorem. (subspace and order topology works well if the subspace is convex)

Let X be ordered and $Y \subset X$ be convex. Then order topology on Y same as topology Y inherits as a subspace of X.

Definition. (Subspace Topology by Continuity of Functions) Let X be topological space, $Y \subset X$, there exists unique topology on Y such that

- 1. inclusion $i_Y: Y \hookrightarrow X$ is continuous
- 2. If $f: Z \to Y$ such that $i_Y \circ f: Z \to X$ is continuous, then f is continuous

3.0.6 17 Closed Sets and Limit Points

Definition. (Closed) A subset A of X is closed if X - A is open.

- In $\mathcal{T}_{f.c.}$, all finite subsets and X are closed
- In \mathcal{T}_{disc} every set is closed.
- In $Y = [0,1] \cup (2,3)$, [0,1] and (2,3) are open and closed in subspace topology of Y
- C closed in Y does not imply C is closed in X. However a closed set in a closed subspace is closed overall, i.e. in X (Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.)

Theorem. (Topology by closed sets)

- 1. \emptyset and X are closed
- 2. Arbitrary intersection of closed sets are closed
- 3. Finite unions of closed sets are closed

Theorem. (Closedness in Subspace) Let Y be a subspace of X. Then A is closed in Y if and only if it equals the intersection of a closed set X with Y $(Y \subset X, \text{ then } A \subset Y \text{ closed in Y if exists } K \subset X \text{ s.t. } A = K \cap Y)$

Definition. (Closure and Interior) If $A \subset X$

- 1. Interior $Int_X A = \mathring{A}$ is
 - the union of all open sets in X contained in A, i.e. $Int_X A = \bigcup_{U \in \mathcal{T}_X: U \subset A} U$
 - maximal open subests of A in X
- 2. Closure $Cl_XA = \overline{A}$ is
 - the intersection of all closed sets containing A, i.e. $Cl_X A = \cap_{U \in \mathcal{T}_X: U \supset A} U$
 - minimal closed set containing A
- Set relationship

$$IntA \subset A \subset \overline{A}$$

- (theorem). Let $A \subset Y \subset X$, Let \overline{A} denote closure of A in X. Then the closure of A in Y is $\overline{A} \cap Y$
 - $-In \mathbb{R}, Y = (0,1], let A = (0,0.5) \subset Y. Cl_{\mathbb{R}}A = [0,0.5], Cl_YA = Cl_{\mathbb{R}}A \cap Y = (0,0.5]$
- If A open, then Int(A) = A; If A closed, then $\overline{A} = A$
- If $A \subset X$, then $(\mathring{A})^c = \overline{(A^c)}$ (Complement of interior is closure of the complement)

• In \mathbb{R} , let $A = \mathbb{Q}$ or $A = \mathbb{R} - \mathbb{Q}$, $int(A) = \emptyset$ and $\overline{A} = \mathbb{R}$ (int(A) = \emptyset since no (a, b) contained fully in \mathbb{Q} or $\mathbb{R} - \mathbb{Q}$)

Definition. (neighborhood) U is an open set containing x is equivalent to U is a neighborhood of x

Definition. (intersects) A intersects B if and only if $A \cap B \neq \emptyset$

Theorem. (define closure using neighborhoods) Let A be a subset of X,

- 1. then $x \in \overline{A}$ if and only if every neighborhood of x intersects A
- 2. Let \mathcal{B} be basis of X, then $x \in \overline{A}$ if and only if every basic neighborhood B of x intersects A

proof by contraposition. Following are examples which uses this theorem to test/determine the closure

- If A = (0,1] then $\overline{A} = [0,1]$ (since every neighborhood of $\{0\}$ intersects A)
- If $B = \{1/n \mid n \in \mathbb{Z}_+\}$, then $\overline{B} = \{0\} \cup B$
- If $C = \{0\} \cup (1,2)$ then $\overline{C} = \{0\} \cup [1,2]$
- In \mathbb{R} , $\overline{\mathbb{Q}} = \mathbb{R}$ since every neighborhood of $x \in \mathbb{R}$ contains some rational number, so intersects \mathbb{Q}
- $In \mathbb{Z}_+, \overline{\mathbb{Z}_+} = \mathbb{Z}_+$

Definition. (Limit Point) Let $A \subset X$ and $x \in X$, x is a limit point of A if every neighborhood of x intersects A in some point other than x itself. In other words,

$$x \in \overline{A - \{x\}}$$

- In \mathbb{R} , A = (0,1], then any $x \in [0,1]$ is a limit point of A and no other point in \mathbb{R} is a limit point
- In \mathbb{R} , $B = \{1/n \mid n \in \mathbb{Z}_+\}$, 0 is the only limit point of B (any other $x \in \mathbb{R}$ has neighborhood that does not intersect B or intersects at x itself)
- In \mathbb{R} , $C = \{0\} \cup (1,2)$, all $x \in [1,2]$ are limit points of C
- In \mathbb{R} , every $x \in \mathbb{R}$ is a limit point of \mathbb{Q}
- In \mathbb{R} , no point is a limit point of \mathbb{Z}_+

Theorem. (define closure using limit point) Let $A \subset X$, let A' be set of all limit points, then

$$\overline{A} = A \cup A'$$

• (corollary) $A \subset X$ is closed if and only if it contains all its limit points, i.e. $A' \subset A$

Remark. ways to prove A is closed

- 1. show A^c is open
- 2. show $\overline{A} = A$ by proving that every $x \in A^c$ has open neighborhood that does not intersect A
 - $A = \{x_0\} \subset \mathbb{R}$ closed since every point different from x_0 has neighborhood not intersecting $\{x_0\}$

Definition. (Sequence Convergence) A sequence (x_n) converges to a point $x \in X$, denoted $x_n \to x$ or $\lim_{n \to \infty} x_n = x$ if

 $\forall \ neighborhood \ U \ of \ x \ \exists N \in \mathbb{N} \ such \ that \ \forall n \geq N \ x_n \in U$

For metric spaces

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n \ge N \; |x_n - x| < \epsilon$$

Definition. (Separated) Let $x, y \in X$, x and y can be separated if each lies in a neighborhood which does not contain the other point. (neighborhood not necessarily disjoint)

Definition. (T_1 Space) X is T_1 if any two distinct points in X are separated.

- (theorem) Let $A \subset X$ T_1 . $x \in A'$ if and only if every neighborhood of x contains infinitely many points of A.
- (theorem) Every finite point set, specifically one-point set, in a T₁ space is closed

Definition. (T_2 Hausdorff Space) A topological space X is called Hausdorff space if for each pair x_1, x_2 of distinct points of X, there exists neighborhoods U_1 and U_2 of x_1 and x_2 , respectively that are disjoint.

$$\forall x \neq y \in X \exists neighborhoods \ U, V \ of \ x \ and \ y \ respectively \ s.t. \ U \cap V = \emptyset$$

• (motivation) Generally, one point set not always closed; Sequences converges can converge to more than limit.

- (theorem) Every finite point set, specifically one-point set, in a Hausdorff space is closed
- (theorem) If X is T_2 , then a sequence of points of X converges to at most 1 point of X
- (theorem) Every simply ordered set is T_2 in the order topology. Product of two T_2 space is T_2 ; Subspace of a T_2 space is T_2 (order/product/subspace topology well behaved with T_2)
- (examples)
 - $-\mathbb{R}^n_{std}$, X_{disc} are T_2
 - X_{triv} not T_2 except when $|X_{triv}| = 1$
 - $X_{f.c.}$ not T_2 when X is infinite (since any $x, y \in X_{f.c.}$ are infinite and intersects)

3.0.7 18 Continuous Functions

Definition. (Continuous) A function $f: X \to Y$ is continuous if each open subset $V \subset Y$, the set $f^{-1}(V)$ is open. Alternatively formulated with basis, f is continuous if every basis element $B \in \mathcal{B}$, $f^{-1}(B)$ is open

• $id: \mathbb{R}_{std} \to \mathbb{R}_{l.l}$ is not continuous; $id: \mathbb{R}_{l.l.} \to \mathbb{R}_{std}$ is continuous

Theorem. (TFAE for continuous function) $f: X \to Y$

- 1. f is continuous
- 2. For every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$ (convergence: $x_n \to x \Rightarrow f(x_n) \to f(x)$ to $x \in \overline{A} \Rightarrow f(x) \in \overline{f(A)}$)
- 3. For every closed set B of Y, the set $f^{-1}(B)$ is closed
- 4. (generalized ϵ - δ) $\forall x \in X$ and \forall neighborhood V of f(x), \exists neighborhood U of x such that $f(U) \subset V$
- In metric space, 4 can be reformulated with ϵ - δ definition. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if

$$\forall x_0 \in \mathbb{R}^n, \quad \forall \epsilon > 0 \quad \exists \delta > 0 \text{ s.t. } |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

$$i.e. \ (x \in B_{\delta}(x_0) \Rightarrow f(x) \in B_{\epsilon}(f(x_0)))$$

Definition. (Homeomorphism) Let $f: X \to Y$ be a bijection If f and the inverse function $f^{-1}: Y \to X$ are continuous, then f is called a homeomorphism. (continuous bijection)

- (theorem) If $X \cong Y$, then X and Y share topological property, i.e. property expressed in terms of topology only.
- (example) $(-1,1) \cong \mathbb{R}$ since $f:(0,1) \to \mathbb{R}$ by $f(x) = \tan(x)$ is a homeomorphism
- (example) A function can be continuous but not homeomorphic. Consider $S^1 = \{x \times y \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$ the unit circle. Let $f: [0,1) \to S^1$ by $f(t) = (\cos(2\pi t), \sin(2\pi t))$. f is bijective and continuous but f^{-1} not continuous
- If $\mathcal{T}_1 \subset \mathcal{T}_2$, then $Id: (X, \mathcal{T}_2) \to (X, \mathcal{T}_1)$ is continuous
- If $\mathcal{T}_1 = \mathcal{T}_2$, then $Id: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ is a homeomorphism

Definition. (Imbedding) An injective map $f: X \to Y$ is a topological imbedding of X in Y if $f': X \to Z$ is a homeomorphism (note the image set Z = f(X) carries subspace topology inherited from Y)

- Intuitively, an imbedding $f: X \to Y$ let us treat X as a subspace of Y.
- (theorem) Every map that is injective, continuous, and either open or closed is am imbedding.
- (example) $f:[0,1)\to\mathbb{R}$ by $f(t)=(\cos(2\pi t),\sin(2\pi t))$ maps to S^1 . f is a continuous injective map but not am imbedding.

Theorem. (Constructing Continuous Functions) Given X, Y, Z

- 1. (constant function) If $f: X \to Y$ by $f(X) = \{y_0\}$, then f is continuous
- 2. (inclusion) If $A \subset X$ with subspace topology, inclusion $i_A : A \hookrightarrow X$ is continuous
- 3. (composition) If $f: X \to Y$ and $g: Y \to Z$ are continous, then $g \circ f: X \to Z$ is continuous
- 4. (restricting domain) If $f: X \to Y$ is continuous and $A \subset X$, then $f|_A: A \to Y$ is continuous $(f|_A = f \circ i_A)$
- 5. (restricting or expanding range) Let $f: X \to Y$ continuous. If $f(X) \subset A \subset Y \subset B$, then $g: X \to A$ obtained by restricting range of f is continuous. $h: X \to B$ obtained by expanding range of f also continuous $(h = i_Y \circ f)$

- 6. (local formulation of continuity) $f: X \to Y$ is continuous if $X = \bigcup_{\alpha \in I} U_{\alpha}$ such that $f|_{U_{\alpha}}$ is continuous for each $\alpha \in I$
- 7. (map to products) Let $f: A \to X \times Y$ given by $f(t) = (f_1(t), f_2(t))$ and $f_1: A \to X$, $f_2: A \to Y$. Then f continuous if and only if f_1 and f_2 are continuous
- 8. (Algebraic Operations) If $f, g: X \to \mathbb{R}$ continous, then f+g, f-g, $f \cdot g$, f/g ($g(x) \neq 0$) all continous
- 9. (Uniform Limit Theorem) If a sequence of continuous real-valued function of a real variable converges uniformly to a limit function, then the limit function is continuous

Theorem. (the pasting lemma) Let $X = A \cup B$, where A and B are both closed or both open in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous. If f(x) = g(x) for every $x \in A \cap B$, set $h: X \to Y$

$$h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \in B \end{cases}$$

then h is continuous

• h(x) = x for $x \le 0$ and h(x) = x/2 for $x \ge 0$ is continous

3.0.8 18 The Product Topology

Definition. (*J*-tuple) Let J be index set. Define J-tuple of elements of X be a function $\mathbf{x}: J \to X$. Given $\alpha \in J$, denote α th coordinate as \mathbf{x} at α by x_{α} instead of $\mathbf{x}(\alpha)$. Denote \mathbf{x} as $(x_{\alpha})_{\alpha \in J}$. Denote the set of all J-tuples of elements of X by X^J

Definition. (Cartesian Product) Let $\{A_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of sets; Let $X=\cup_{{\alpha}\in J}A_{\alpha}$. The cartesian product of this indexed family is given by

$$\prod_{\alpha \in J} A_{\alpha} = \{(x_{\alpha})_{\alpha \in J} \in X \mid x_{\alpha} \in A_{\alpha}\} = \{\mathbf{x} : J \to \bigcup_{\alpha \in J} X \mid \forall \alpha \in J \ \mathbf{x}(\alpha) \in A_{\alpha}\}$$

is the set of all J-tuples $(x_{\alpha})_{\alpha \in J}$ of elements of X such that $x_{\alpha} \in A_{\alpha}$ for each $\alpha \in J$. Equivalently, the set of all functions $\mathbf{x}: J \to \bigcup_{\alpha \in J} X$ such that $\mathbf{x}(\alpha) = A_{\alpha}$ for each $\alpha \in J$

Definition. (Projection) The projection mapping associated with index β is defined by

$$\pi_{\beta} = \prod_{\alpha \in J} X_{\alpha} \to X_{\beta} \qquad \pi_{\beta}((x_{\alpha})_{\alpha \in J}) = x_{\beta}$$

Definition. (Box Topology) Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be indexed family of topological spaces. Basis

$$\mathcal{B}_{box} = \left\{ \prod_{\alpha \in J} U_{\alpha} \mid U_{\alpha} \text{ open in } X_{\alpha} \, \forall \alpha \in J \right\}$$

generates box topology

• (theorem) Given basis \mathcal{B}_{α} for each X_{α} , $\prod_{\alpha \in J} \mathcal{B}_{\alpha}$ where $B_{\alpha} \in \mathcal{B}_{\alpha}$ is a basis for $\prod_{\alpha \in J} X_{\alpha}$

Definition. (Product Topology) Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be indexed family of topological spaces. Basis

$$\mathcal{B}_{prod} = \left\{ \pi_{\beta_1}^{-1}(U_{\beta_1}) \cap \dots \cap \pi_{\beta_n}^{-1}(U_{\beta_n}) \mid U_{\beta_i} \in \mathcal{T}_{X_{\beta_i}} \ \beta_1, \dots, \beta_n \in J \right\}$$
$$= \left\{ \prod_{\alpha \in J} U_{\alpha} \mid \forall \alpha \in J \ U_{\alpha} \in \mathcal{T}_{X_{\alpha}} \ for \ almost \ all \ \alpha \ U_{\alpha} = X_{\alpha} \right\}$$

generates product topology

- (theorem) Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ defined by $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha}: A \to X_{\alpha}$ for each α , Then f is continuous if and only if each function f_{α} is continuous
- (theorem) For finite products, $\mathcal{T}_{box} = \mathcal{T}_{prod}$
- (example where product topology works while box topology does not) In $\mathbb{R}^{\omega} = \prod_{n \in \mathbb{Z}_+} \mathbb{R}$, countably infinite product of \mathbb{R} . Define $f : \mathbb{R} \to \mathbb{R}^{\omega}$ by $f(t) = (t, t, \cdots)$. Each $f_{\alpha} = \pi_{\alpha} \circ f$ continuous so f continuous in product topology. However f not continuous in box topology. Consider $B = \{(-1/n, 1/n) \mid n \in \mathbb{Z}_+\} \in \mathcal{B}_{box}$ open,

$$f^{-1}(B) = \{t \mid (t, t, \dots) \in B\} = \bigcap_{n \in \mathbb{Z}_+} (-\frac{1}{n}, \frac{1}{n}) = \{0\}$$

not open in \mathbb{R}

Definition. (product topology by continuity of functions) There is a unique topology \mathcal{T}_{prod} on $X = \prod_{\alpha \in J} X_{\alpha}$ with

- 1. $\pi_{\beta}: X \to X_{\beta}$ continuous for every $\beta \in J$
- 2. Given $f: Z \to \prod_{\alpha \in I} X_{\alpha}$. If $f_{\alpha} = \pi_{\alpha} \circ f$ is continuous for every α , then f is continuous

Note \mathcal{B}_{prod} satisfies the two condition

Proof. 1. by design. proof for 2 as follows

$$f^{-1}\left(\bigcap_{i=1}^{n} \pi_{\beta_i}^{-1}(U_{\beta_i})\right) = \{z \in Z \mid \forall i \ f_{\beta_i} \in U_{\beta_i}\} = \bigcap_{i=1}^{n} f_{\beta_i}^{-1}(U_{\beta_i})$$

is open as finite intersection of open sets

Theorem. (Both box and product topology works well with subspace/ T_2 /closure)

- 1. Let $A_{\alpha} \subset X_{\alpha}$. Then $\prod A_{\alpha}$ is a subspace of $\prod X_{\alpha}$
- 2. If X_{α} is T_2 , then $\prod X_{\alpha}$ is T_2
- 3. Let $A_{\alpha} \subset X_{\alpha}$, then $\prod \overline{A_{\alpha}} = \overline{\prod A_{\alpha}}$

Proof. **proof of 2.** Let $\mathbf{x} = (x_{\alpha})$ and $\mathbf{y} = (y_{\alpha})$ where $\mathbf{x} \neq \mathbf{y}$. So exists $\beta \in J$ such that $x_{\beta} \neq y_{\beta}$. Since X_{β} is T_2 , exsits neighborhoods U_{β}, V_{β} for x_{β} and y_{β} s.t. $U_{\beta} \cap V_{\beta} = \emptyset$. Note $\pi^{-1}(U_{\beta})$ and $\pi^{-1}(V_{\beta})$ are disjoint neighborhoods of \mathbf{x} , \mathbf{y} . **proof of 3.** Mainly use the definition of closure using neighborhoods. (\Rightarrow) Let $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{\alpha}}$. Need to show $\mathbf{x} \in \prod \overline{A_{\alpha}}$. Let $U = \prod U_{\alpha}$ be basic neighborhood of \mathbf{x} in \mathcal{T}_{box} or \mathcal{T}_{prod} . For each α , since $x_{\alpha} \in A_{\alpha}$, can find $y_{\alpha} \in U_{\alpha} \cap A_{\alpha}$. Note $\mathbf{y} = (y_{\alpha}) \in U \cap \prod A_{\alpha}$. Since U arbitrary, $\mathbf{x} \in \prod \overline{A_{\alpha}}$. (\Leftarrow) Let $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{\alpha}}$. Want to show $x_{\beta} \in \overline{A_{\beta}}$ for all β . Let V_{β} be arbitrary neighborhood of x_{β} . Consider $\pi^{-1}(V_{\beta})$, which is open in both \mathcal{T}_{box} and \mathcal{T}_{prod} . By definition of closure, exsits $\mathbf{y} = (y_{\alpha}) \in \pi^{-1}(V_{\beta}) \cap \prod A_{\alpha}$. Hence $y_{\beta} \in V_{\beta} \cap A_{\beta}$. Hence, $x_{\beta} \in \overline{A_{\beta}}$

3.0.9 19 The Metric Topology

Definition. (Metric) A metric on X is a function

$$d: X \times X \to \mathbb{R}$$

with properties

- 1. (non-negativity) $d(x,y) \ge 0$ for all $x,y \in X$, with equality if x=y
- 2. (symmetry) d(x,y) = d(y,x) for all $x,y \in X$
- 3. (triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in X$

Definition. (ϵ -ball centered at x)

$$B_d(x,\epsilon) = \{ y \mid d(x,y) < \epsilon \}$$

Definition. (norm) Given $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, the norm of \mathbf{x} defined by $||x|| = (x_1^2 + \dots + x_n^2)^{1/2}$.

Definition. (Metric Topology) Given X and a metric d, basis

$$\mathcal{B}_d = \{ B_d(x, \epsilon) \mid x \in X \ \epsilon > 0 \}$$

generates the metric topology \mathcal{T}_d induced by d. Therefore

$$\mathcal{T} = \{ U \subset X \mid \forall x \in U \ \exists \epsilon > 0 \ B(x, \epsilon) \subset U \}$$

- 1. discrete metric d_{disc} , defined by $d_{disc}(x,y) = 1$ if $x \neq y$ and $d_{disc}(x,y) = 0$ if x = y induces \mathcal{T}_{disc}
- 2. standard metric on \mathbb{R} defined by d(x,y) = |x-y| induces \mathcal{T}_{ord}
- 3. (diamond) $d_1 = \sum_i |x_i y_i|$
- 4. euclidean metric (circle) on \mathbb{R}^n , $d_2 = d(\mathbf{x}, \mathbf{y}) = ||x y|| = \sqrt{(x_1 y_2)^2 + \dots + (x_n y_n)^2}$
- 5. square metric (square) on \mathbb{R}^n , $d_{\infty} = \rho(\mathbf{x}, \mathbf{y}) = max\{|x_1 y_1|, \cdots, |x_n y_n|\}$ (furthest coordinate within ϵ)
- 6. (theorem) In \mathbb{R}^n , $\mathcal{T}_{d_1} = \mathcal{T}_{d_2} = \mathcal{T}_{\infty}$ induces same topology \mathcal{T}_{std} (proof by showing basis elements nests!)
- 7. (theorem) If X is metrizable, then X is T_2
- 8. (theorem) Subspaces of metric space behaves well $d|_{A\times A}$ induces subspace topology for $A\subset X$.

Definition. (Metrizable) If X is topological space, X is metrizable if there exists metric d that induces the topology of X. A metric space is a metrizable space X together with a specific metric d that gives the topology of X

- Metrizability is a topological property
- (not every topology comes with a metric) consider X_{triv} where $|X| \geq 2$, X not metrizable since it's not T_2
- \mathbb{R}^n is metrizable $(d_1, d_2, d_\infty \text{ induces } \mathbb{R}^n_{std})$
- \mathbb{R}^{ω} is metrizable under product topology but not box topology
- \bullet \mathbb{R}^J where J uncountable is not metrizable
- (theorem) countable products of metrizable spaces is metrizable
- (by sequence lemma) sequences are sufficient to describe metrizable spaces

Definition. (Bounded and Diameter) Given (X,d), $A \subset X$ is bounded if there is some M such that

$$d(a_1, a_2) \le M$$

for all $a_1, a_2 \in A$. The **diameter** of A is defined

$$diam(A, d) = \sup\{d(a_1, a_2) \mid a_1, a_2 \in A\}$$

• boundedness is not a topological property, since it depends on a specific d (consider d and \overline{d})

Definition. (Standard Bounded Metric) Given (X, d), define $\overline{d}: X \times X \to \mathbb{R}$ by

$$\overline{d}(x,y) = \min\{d(x,y), 1\}$$

to be the standard bounded metric corresponding to d

- (theorem) d and \overline{d} induces the same topology, i.e. $\mathcal{T}_d = \mathcal{T}_{\overline{d}}$
- (trick) by above theorem, we can say $diam(A) \leq 1$ without loss of generality by replacing d with \overline{d}

Definition. (Uniform Metric and Uniform Topology) Generalize square metric to \mathbb{R}^J . Given $\mathbf{x} = (x_\alpha)_{\alpha \in J}$, $\mathbf{y} = (y_\alpha)_{\alpha \in J} \in \mathbb{R}^J$. Define metric $\overline{\rho}$ by

$$\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup{\overline{d}(x_{\alpha}, y_{\alpha}) \mid \alpha \in J}$$

is called uniform metric on \mathbb{R}^J inducing uniform topology.

Theorem. (Relationship of Topologies on \mathbb{R}^J)

$$\mathcal{T}_{prod} \subset \mathcal{T}_{uniform} \subset \mathcal{T}_{box}$$

where the three topologies are all different if J is infinite.

Theorem. (Metric inducing product topology) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\omega}$, define

$$D(x,y) = \sup \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}$$

is a metric that induces product topology on \mathbb{R}^{ω}

Proof. Show D is a metric. Then show D gives product topology. Now show $\mathcal{T}_D = \mathcal{T}_{prod}$. To show \mathcal{T}_{prod} is finer, show there exists basis element in product topology that contains in a basis element of the metric topology. Let $B_D(\mathbf{x}, \epsilon)$ be basic neighborhood of \mathbf{x} . Let N be such that $1/N < \epsilon$. Consider $V \subset \mathcal{T}_{prod}$ defined as

$$V = (x_1 - \epsilon, x_1 + \epsilon) \times \cdots \times (x_N - \epsilon, x_N + \epsilon) \times \mathbb{R} \times \mathbb{R} \cdots$$

Show $V \subset B_D(\mathbf{x}, \epsilon)$. Note for any $\mathbf{y} \in \mathbb{R}^{\omega}$, $\overline{d}(x_i, y_i)/i \leq 1/N$ for $i \geq N$. Therefore,

$$D(\mathbf{x}, \mathbf{y}) = \sup \left\{ \frac{\overline{d}(x_1, y_1)}{1}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \right\}$$

If $\mathbf{y} \in V$, then $\overline{d}(x_i, y_i) < \epsilon$ for all i < N. So $D(\mathbf{x}, \mathbf{y}) < \epsilon$. Hence $V \subset B_D(\mathbf{x}, \epsilon)$. Conversely, want to show \mathcal{T}_D is finer. The key here is recognize that product topology $\prod U_i$ where each component is metrizable and induced by d. Let $U = \prod_{i \in I} U_i \times \prod_{i \notin I} \mathbb{R}$ be a basis element in \mathcal{T}_{prod} where I is finite. Let $\mathbf{x} \in U$, want to find a basic neighborhood $V \in \mathcal{T}_D$ such that $\mathbf{x} \in V \subset U$. For each $i \in I$, find an interval $(x_i - \epsilon_i, x_i + \epsilon_i)$ such that $i\epsilon < \epsilon_i$ and $\epsilon \le 1$. We can achieve this by setting $\epsilon = \min\{\epsilon_i/i \mid i \in I\}$. Now we claim that $\mathbf{x} \in B_D(\mathbf{x}, \epsilon) \subset U$. Let $\mathbf{y} \in B_D(\mathbf{x}, \epsilon)$, then for all i,

$$\frac{\overline{d}(x_i, y_i)}{i} \le D(\mathbf{x}, \mathbf{y}) < \epsilon$$

We need to show that $\mathbf{y} \in U$. We only care about $i \in I$ since $y_i \in \mathbb{R}$ for all $i \notin I$. When $i \in I$, $\overline{d}(x_i, y_i) < i\epsilon < \epsilon_i \le 1$. Therefore, $d(x_i, y_i) < \epsilon_i$ implying $\mathbf{y} \in U$

3.0.10 21 The Metric Topology Continued

Definition. (Continuity in Metric Spaces) Let $f: X \to Y$ where (X, d_X) and (Y, d_Y) are metrizable. Then f continuous if and only if $\forall x \in X$ and $\forall \epsilon > 0$, $\exists \delta > 0$ such that

$$d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \epsilon$$

Definition. (almost always) means all but finitely many

Definition. (Convergence) $(x_n) \to x$ if for all neighborhood U of x, almost always $x_n \in U$.

Definition. (Uniform Convergence) Let $f_n: X \to Y$ be a sequence of functions where Y is metrizable. Let d be metric for Y. The sequence (f_n) converges uniformly to the function $f: X \to Y$ if given $\epsilon > 0$, there exists N > 0 such that

$$d(f_n(x), f(x)) < \epsilon$$

for all n > N and all $x \in X$.

- depends on \mathcal{T}_Y and metric d
- $\bullet \ \ stronger \ than \ point-wise \ convergence$
- (uniform limite theorem) Given $f_n: X \to Y$ where Y metrizable. If (f_n) converges uniformly to f, then f is continuous.

Definition. (Sequantial Closure) Given $A \subset X$, sequential closure is given by

$$seq - cl(A) = \{ x \in X \mid \exists (x_n) \to x \ x_n \in A \}$$

- $(fact) A \subset seq cl(A) \subset \overline{A}$
- (the sequence lemma) seq $-cl(A) \subset cl(A)$ and with equality if X is metrizable.

Lemma. (The sequence lemma) Let X be a topological space and let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$. The converse holds if X is metrizable.

Proof. (\Rightarrow) If $x_n \to x$ where $x_n \in A$. Let U be any neighborhood of x. By definition of convergent sequence, $\exists N$ such that $\forall n \geq N, \ x \in U$. Since U arbitrary, every neighborhood of x contains some $x_n \in A$, hence $x \in \overline{A}$. Conversely, let d be metric inducing topology of X. Consider neighborhood $B_d(x, 1/n)$ for all $n \in \mathbb{Z}_+$, pick n-th term for the sequence as $x_n \in B_d(x, 1/n) \cap A$. We claim that $(x_n)_{n \in \mathbb{Z}_+}$ is convergent. Indeed, take $B_d(x, \epsilon)$ be arbitrary basic neighborhood of x, take N > 0 such that $1/N < \epsilon$. Therefore, for all $i \geq N$, $x_i \in B_d(x, \epsilon)$ by construction.

Theorem. (Sequence Continuity) Let $f: X \to Y$. If f continuous, then every convergent sequence $x_n \to x$ in X, the sequence $f(x_n) \to f(x)$. The converse is true if X is metrizable.

Definition. (First countability axiom) A space X that has a countable basis at each point satisfies first countability axiom. A space X said to have countable basis at the point x if there is a countable collection $\{U_n\}_{n\in\mathbb{Z}_+}$ of neighborhoods of x such that any neighborhood U of x contains at least one of the sets U_n .

• used to prove the above lemma/theorem; metrizability is not necessary.

Definition. Spaces that are not metrizable

- 1. \mathbb{R}^{ω} in box topology is not metrizable
- 2. \mathbb{R}^J where J uncountable is not metrizable in product topology

Proof. Generally, to show that a space X is not metrizable, we can show that the space does not satisfy the sequence lemma. Specifically, if X is metrizable, then seq - cl(A) = cl(A), to prove X not metrizable, find $A \subset X$ and $x \in X$ such that $x \in cl(A)$ and $x \notin seq - cl(A)$ (Point 1) Consider $A \subset \mathbb{R}^{\omega}$ be points with only positive coordinate values, i.e $A = \{(x_1, x_2, \cdots) \mid x_i > 0 \mid i \in \mathbb{Z}_+\}$. Now we claim that $\mathbf{0} = (0, 0, \cdots)$ is in cl(A) but not seq - cl(A). $\mathbf{0} \in cl(A)$: any neighborhood $B = (a_1, b_1) \times (a_2, b_2) \times \cdots$ of **0** intersects A at point $(\frac{1}{2}b_1, \frac{1}{2}b_2, \cdots)$. Now we show there is no sequence of A converging to 0. Assume for contradiction that $(\mathbf{x}_n) \to \mathbf{0}$ where $\mathbf{x}_n = (x_{n,k})_{k=1}^{\infty}$. Let $U = \prod_n (-1, x_{n,n}) \subset \mathcal{T}_{box}$ be a neighborhood of **0**. However not almost always $\mathbf{x}_n \in U$: in fact U contains no elements of the sequence (\mathbf{x}_n) since *n*-th coordinate $x_{n,n} \notin (-1, x_{n,n})$. Contradicts assumption that $(\mathbf{x}_n) \to \mathbf{0}$. Therefore $\mathbf{0} \notin seq - cl(A)$. (**Point 2**) Let $A = \{(x_\alpha) \mid x_\alpha = 1 \text{ except for finitely many } \alpha \in I\}$. Let $\mathbf{0} \in \mathbb{R}^J$ be origin. Now we show $\mathbf{0} \in cl(A)$. Let $U = \prod U_\alpha$ be neighborhood of **0** where $U_{\alpha} \neq \mathbb{R}$ for all $\alpha \in \{\alpha_1, \dots, \alpha_n\}$ in product topology. Now we show $U \cap A \neq \emptyset$. Consider $\mathbf{y} = (y_{\alpha}) \in \mathbb{R}^{J}$ where $y_{\alpha} = 0$ for all $\alpha \in \{\alpha_{1}, \dots, \alpha_{n}\}$ and $y_{\alpha} = 1$ otherwise. Note $\mathbf{y} \in A$ since all but finitely many y_{α} is 1; $\mathbf{y} \in U$ since $y_{\alpha} \in U_{\alpha}$ for $\alpha_{1}, \dots, \alpha_{n}$ and $y_{\alpha} \in \mathbb{R} = U_{\alpha}$ otherwise. Hence $\mathbf{y} \in U \cap A$ and therefore $\mathbf{0} \in cl(A)$. Now we show $\mathbf{0} \notin seq - cl(A)$. Let \mathbf{a}_n be a sequence of A. Let $J_n \subset J$ such that $\mathbf{a}_n(\alpha) \neq 1$ for all $\alpha \in J_n$. J finite by of A. Let $J' = \bigcup_{n \in \mathbb{Z}_+} J_n$. Note J' is a countable union of finite set and hence countable. Since J uncountable, exists $\beta \in J$ such that $\beta \notin J'$ and therefore every point in the sequence $\mathbf{a}_n(\beta) = 1$ for all $n \in \mathbb{Z}_+$. Let $U_\beta = (-1,1) \in \mathbb{R}$. Consider a neighborhood $U = \pi^{-1}(U_{\beta}) \subset R^J$ of **0** that contains no points in \mathbf{a}_n . Therefore \mathbf{a}_n does not converge to **0**. Therefore $\mathbf{0} \not\in seq - cl(A)$.

3.0.11 22 The Quotient Topology

Definition. (Quotient Map) Given X, Y and $p: X \to Y$ be a surjective map. p is a quotient map if a subset $U \subset Y$ is open if and only if $p^{-1}(U)$ is open in X.

- (theorem) p is a surjective continuous map that is either open or closed, then p is a quotient map
- (example) projection maps $\pi_1: X \times Y \to X$ is surjective, continuous, open and therefore a quotient map. However π_1 is not a closed map (since $\pi_1(\{x \times y \mid xy = 1\}) = \mathbb{R} \{0\}$ not closed)

Definition. (Quotient Topology and Quotient Space) Let X be a space and A be a set. If $p: X \to A$ is a surjective map, then there uniquely exists one topology T on A relative to which p is a quotient map; T is called the quotient topology induced by p.

$$\mathcal{T} = \{ U \subset Y \mid p^{-1}(U) \in \mathcal{T}_X \}$$

As a special case. Given \sim be an equivalence relation on X and $Y = X/\sim = \{\{y: y \sim x_0\} \mid x_0 \in X\} \subset \mathcal{P}(X)$ are equivalence classes of X. Then $p: X \to Y$ exists and is a surjection. The space Y with the quotient topology is called a quotient space of X.

Definition. define quotient topology with continuity of functions Given topological space X and $\pi: X \to Y$ a surjection, there is a unique topology on Y satisfying

- 1. $\pi: X \to Y$ continuous
- 2. If Z is a topological space, $g: Y \to Z$ is a function. If $g \circ \pi$ is continuous, then g is continuous.

4 Connectedness and Compactness

theorems about continuous functions

- (intermediate value theorem) If $f:[a,b] \to \mathbb{R}$ continuous and f(a) < r < f(b), then exists $c \in [a,b]$ s.t. f(c) = r
- (maximum value theorem) If $f:[a,b]\to\mathbb{R}$ continuous then exists $c\in[a,b]$ such that $f(x)\leq f(c)$ for all $x\in[a,b]$
- (uniform continuity theorem) If $f:[a,b]\to\mathbb{R}$ continuous, then given $\epsilon>0$ exists $\delta>0$ such that $|f(x_1)-f(x_2)|<\epsilon$ for every pair $x_1,x_2\in[a,b]$ for which $|x_1-x_2|<\delta$

4.0.1 23 Connected Spaces

Definition. (Separation and Connected) Given topological space X. A separation of X is a pair U, V where $U \cap V = \emptyset$ and $X = U \cup V$ and U, V both nonempty. The space X is connected if there does not exists a separation of X. Equivalently, X is connected if the only clopen sets are \emptyset and X.

• (fact) connectedness is a topological property

Definition. (Separation and Connected for subspaces) Given $Y \subset X$. A separation of Y is a pair of disjoint nonempty sets A and B whose union is Y, neither of which contains a limit point of the other (i.e. $cl_Y(A) \cap B = \overline{A} \cap B = \emptyset$). The space Y is connected if there exits no separation of Y

Proof. Suppose A, B forms a separation of Y. Then $cl_Y(A) = \overline{A} \cap Y$. Since A closed in $Y, A = cl_Y(A) = \overline{A} \cap Y$. Since A, B disjoint, $\overline{A} \cap B = \emptyset$. Since \overline{A} contains all its limit point, B has no limit points of A. Conversely, given assumption we have $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$. Hence $\overline{A} \cap Y = A$ and $\overline{B} \cap Y = B$. Then A, B are closed in Y. Since A, B partitions Y, A, B are open in Y as well.

- (examples)
 - $-\{a,b\}$ with \mathcal{T}_{triv} is connected
 - $-Y = [-1,0) \cup (0,1] \subset \mathbb{R}$ is connected since [-1,0) and (0,1] is a separation. (0 is a limit point to both, but does not matter since 0 is not contained in [-1,0) or (0,1])
 - $-X = [-1,1] \subset \mathbb{R}$. [-1,0] and (0,1] is not a separation (0 is a limit point of (0,1] but contained in [-1,0])
 - $-\mathbb{Q}$ not connected. Only one point subsets of \mathbb{Q} are connected.
 - $-X = \{(x,y) \mid y=0\} \cup \{(x,y) \mid y=1/x\} \subset \mathbb{R}^2 \text{ not connected (neither contain a limit point of each other)}$
- (lemma) If C, D forms a separation of X and Y is a connected subspace of X, then Y lies entirely in C or D
- (theorem) Union of connected subspaces of X with a commont point is connected $(\cap A_{\alpha} \neq \emptyset)$ where A_{α} connected for all α then $\cup A_{\alpha}$ connected)
- (theorem) If $A \subset X$ be a connected subspace. If $A \subset B \subset \overline{A}$, then B also connected
- (theorem) Image of a connected space under a continuous map is connected
- (theorem) Finite product $\prod X_{\alpha}$ connected if and only if X_{α} connected for all α

Definition. (Connectedness for Infinite Products)

- 1. \mathbb{R}^{ω} is not connected in box topology
- 2. \mathbb{R}^{ω} is connected in product topology

Proof. (Point 1) Enough to find a separation of \mathbb{R}^{ω} . Interprete \mathbb{R}^{ω} as the collection of all real numbered sequences and is partitioned by the set of all bounded sequences of real numbers A and the set of all unbounded sequences of real numbers B. Now we show A, B both open. Consider $\mathbf{a} \in \mathbb{R}^{\omega}$, we can find a neighborhood of \mathbf{a} in the box topology by $U = (a_1 - 1, a_1 + 1) \times (a_2 - 1, a_2 + 1) \times \cdots$. If \mathbf{a} is bounded, U consists of only bounded sequences so $\mathbf{a} \in U \subset A$. If \mathbf{a} is unbounded, then U consists of only unbounded sequences and $\mathbf{a} \in U \subset B$. Therefore \mathbb{R}^{ω} not connected in box topology. (Point 2) To show \mathbb{R}^{ω} in product topology is connected, we find some connected $C \subset \mathbb{R}^{\omega}$ where $C \subset \mathbb{R}^{\omega} \subset \overline{C}$ and use the lemma to show that \mathbb{R}^{ω} is connected. Consider $\mathbb{R}^n \subset \mathbb{R}^n$ defined to be the set of all sequences fixed to 0 beyond n: $\mathbf{x} \in \mathbb{R}^{\omega}$ such that $x_i > 0$ for all i > n. Since $\mathbb{R}^n \cong \mathbb{R}^n$ and \mathbb{R}^n is connected. Since each \mathbb{R}^n is connected and $\bigcap_n \mathbb{R}^n = \{0,0,\cdots\} = \mathbf{0}$, we have $\mathbb{R}^\infty = \bigcup_n \mathbb{R}^n$ connected. To complete the proof, we show $\mathbb{R}^\infty = \mathbb{R}^\omega$. Consider $\mathbf{a} = (a_1,a_2,\cdots) \in \mathbb{R}^\omega$ and $U = \prod_n U_n$ be neighborhood of \mathbf{a} in box topology. We show $U \cap \mathbb{R}^\infty \neq \emptyset$. Let N be such that $U_i = \mathbb{R}$ for all i > N. Consider $\mathbf{x} = \{a_1, a_2, \cdots, a_N, 0, 0, \cdots\} \in \mathbb{R}^\infty$. $\mathbf{x} \in U$ since $x_i \in U_i$ for all $i \leq N$ and $x_i \in \mathbb{R} = U_i$ for all i > N. Therefore $\mathbf{x} \in U \cap \mathbb{R}^\infty$ hence $\mathbb{R}^\infty = \mathbb{R}^\omega$

4.0.2 24 Connected Subspaces of the Real Line

Definition. (convex) $Y \subset X$ is convex if every $a < b \in Y$, $[a, b] \in Y$

Definition. (Linear Continuum) A simply ordered set L having more than 1 eleent is called a linear continuum if

- 1. L has least upper bound property
- 2. If x < y, there exists z such that x < z < y
- (fact) condition for connectedness to hold on \mathbb{R}
- (theorem) If L is linear continuum in order topology, then L is connected, and so are intervals and rays in L
- (theorem) If $Y \subset \mathbb{R}$, then Y is connected if and only if Y is convex and nonempty
- (corollary) \mathbb{R} , intervals and rays in \mathbb{R} are all connected

Theorem. (Unit interval in $I = [0,1] \subset \mathbb{R}$ is connected)

Proof. Idea is to show any separation (A,A^c) gives A=I. Let $A\subset I$ be clopen. without loss of generality let $0\in A$. Define $G=\{x\in I\mid [0,x]\in A\}\subset A$ and $g=\sup G$. Goal is to show $1=g\in G$ such that A=G and therefore $I-A=\emptyset$ which contradicts assumption of separation. **First** we show g>0, note $0\in A$ where A is open, hence $[0,\epsilon)\in A$ and therefore $\epsilon/2\in G$. So $g=\sup G\geq \epsilon/2>0$. **Second** we show $g\not<1$. We first show $g\in A$. Since $G\subset A$, we have $\overline{G}\subset \overline{A}=A$. Then $g=\sup G=\overline{G}\in A$. Hence $g\in A$. Since A open, can find $(g-\epsilon,g+\epsilon)\in A$. Easily, $[0,g+\epsilon/2]\in A$ and hence $g+\epsilon/2\in G$ which contradicts $g=\sup G$. **Third** we show $g\in G$. Same as before we show $g\in A$. Can find open neighborhood $(1-\epsilon,1]\in A$. Easily $[0,1]\in A$ hence A=I. To conclude (A,A^c) is not a separation.

Theorem. (Intermediate Value Theorem) Let $f: X \to Y$ be continuous map, where X is connected and Y is in order topology. If $a, b \in X$ and $r \in Y$ such that f(a) < r < f(b), then there exists $c \in X$ such that f(c) = r.

Proof. Let $A = f(X) \cap (-\infty, r)$ and $B = f(X) \cap (r, \infty)$. Note $A \cap B = \emptyset$ and neither are empty since $f(a) \in A$ and $f(b) \in B$. Note $A, B \subset f(X)$ are open in the subspace topology by definition. If no $c \in X$ such that f(c) = r, then $f(X) = A \cup B$ then (A, B) constitutes a separation of f(X), contradicting the fact that image of a connected space under a continuous map f(X) is connected.

Definition. (Path Connectedness) Let $x, y \in X$, a path in X from x to y is a continuous map $f : [a, b] \to X$ such that f(a) = x and f(b) = y. A space X is path-connected if every pair of points in X can be joined by a path.

$$\forall x, y \in X \exists continuous f : [0,1] \rightarrow X f(0) = x f(1) = y$$

- (theorem) continuous image of path-connected space is path-connected
- (theorem) path-connected space is connected. (converse not always true: see topologist's sine curve)
- (proposition) connectedness and path-connected subsets of $\mathbb R$ are the same
- (theorem) If X_{α} path-connected, then $\prod X_{\alpha}$ is also path-connected (in product topology)
- (example) unit ball $B^n = \{\mathbf{x} \mid ||\mathbf{x}|| \le 1\} \subset \mathbb{R}^n$ is path-connected $(f : [0,1] \to \mathbb{R}^n \ t \to (1-t)\mathbf{x} + t\mathbf{y} \text{ for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n)$
- (example) punctured euclidean space $\mathbb{R} \{0\}$ is path-connected
- (example) unit sphere $S^{n-1}\{\mathbf{x} \mid \|\mathbf{x}\| = 1\} \subset \mathbb{R}^n$ is path-connected $(g : \mathbb{R}^n \setminus \{0\}) \to S^{n-1}(\mathbf{x}) \to \mathbf{x}$ is continuous)
- (example) Let $S = \{x \times \sin(1/x) \mid 0 < x \le 1\} \subset \mathbb{R}^2$. The **topologist's sine curve** \overline{S} is connected but not path-connected

$$\overline{S} = (\{0\} \times [-1, 1]) \bigcup \{x \times \sin(1/x) \mid 0 < x \le 1\} \subset \mathbb{R}^2$$

Theorem. (Topologist's sine curve is connected but not path-connected.)

Proof. Let $S' = (\{0\} \times [-1,1])$ and let $S = \{x \times \sin(1/x) \mid 0 < x \le 1\} \subset \mathbb{R}^2$ and hence $\overline{S} = S' \cup S$. Since S is connected and \overline{S} is image of a connected set (0,1] under continuous map, \overline{S} is also connected. Now we show \overline{S} is not path-connected. Let $f: [a,c] \to \overline{S}$, a < 0 be a path connecting (0,0) and (1,0). Since S' is closed, $f^{-1}(S')$ is closed and has a largest element b. Therefore $f': [b,c] \to \overline{S}$ where f' maps b to S' and rest of points to S. Replace [b,c] with [0,1] for convenience. Let f(t) = (x(t), y(t)) which has to be continuous. Then x(0) = 0 and x(t) > 0 and $y(t) = \sin(1/x(t))$ for t > 0. There exists t_n a sequence such that $y(t_n) = (-1)^n$ does not converge, contradicting continuity of f. We construct t_n as follows. For each n, pick u in range 0 < u < x(1/n) such that $\sin(1/u) = (-1)^n$. Use intermediate value theorem to find t_n suc that $x(t_n) = u$.

4.0.3 26 Compact Spaces

Definition 4.1. (Cover and Compact) A collection $A \subset \mathcal{P}(X)$ cover X, or be a covering of X, if $\bigcup_{A \in \mathcal{A}} A = X$. A is open cover, if it is a cover and all $A \in \mathcal{A}$ are open. A space X is said to be **compact** if every open cover \mathcal{A} contains a finite subcollection that also covers X, i.e. if $\{A_{\alpha}\}$ is an open cover, exists $I = \{\alpha_1, \dots, \alpha_n\}$ such that $\bigcup_{\alpha \in I} A_{\alpha} = X$

- (example) \mathbb{R} not compact, since $\mathcal{A} = \{(n, n+2) \mid n \in \mathbb{Z}_+\}$ does not have a finite subcover
- (example) $X = \{0\} \cup \{1/n \mid n \in \mathbb{Z}_+\} \subset \mathbb{R}$ is compact.