04 Numerical Optimization

May 29, 2021

Information: Brief introduction to convexity, optimization, and gradient descent

Written by: Zihao Xu

Last update date: 05.29.2021

1 Convexity

1.1 Introduction

• Convexity plays a vital rule in the design of optimization algorithms, which is largely due to fact that it is much easier to analyze and test algorithms in such a context.

• If the algorithm performs poorly even in the convex setting, typically we should not hope to see great results otherwise.

• Even though the optimization problems in ML/DL are generally non-convex, they often exhibit some properties of convex ones near local minimum.

1.2 Open and Closed Sets

• Define

$$A \subset \mathbb{R}^n$$

and open ball of diameter ϵ is $B(r, \epsilon) = \{r \in \mathbb{R}^n : ||r - r_o|| < \epsilon\}$

- A set A is **open** if
 - At every point, there is an open ball contained in A
 - $\forall r \in A, \exists \epsilon > 0 \text{ s.t. } B(r, \epsilon) \subset A$
- A set A is **closed** if $A^c = \mathbb{R}^n A$ is open
- A set A is compact if it is closed and bounded
- Facts:
 - $-\mathbb{R}^N$ is both open and closed, but it is not compact
 - If A is compact, then every sequence in A has a limit point in A

1.3 Convex Sets

1.3.1 Definition

• A set C is convex if, for any $x, y \in C$ and $\theta \in \mathbb{R}$ with $0 \le \theta \le 1$:

$$\theta x + (1 - \theta)y \in C$$

- Intuitively, it means if we take any two elements in C and draw a line segment between these two elements, then every point on that line segment also belongs to C

• The point $\theta x + (1 - \theta)y$ is called a **convex combination** of the points x and y

1.3.2Examples

- All of \mathbb{R}^n .
 - Given any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\theta \mathbf{x} + (1 - \theta) \mathbf{v} \in \mathbb{R}^n$$

- The non-negative orthant \mathbb{R}^n_+ .
 - $-\mathbb{R}^n_+$ consists of all vectors in \mathbb{R}^n whose elements are all non-negative

$$\mathbb{R}_+^n = \{\mathbf{x} : x_i \ge 0 \ \forall i = 1, \cdots, n\}$$

– Given any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N_+$ and $0 \le \theta \le 1$,

$$(\theta \mathbf{x} + (1 - \theta)\mathbf{y})_i = \theta x_i + (1 - \theta)y_i \ge 0 \ \forall i$$

- Norm balls
 - Let $\|\cdot\|$ be some norm on \mathbb{R}^n (e.g., the Euclidean norm $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$). Then the set $\{\mathbf{x}: \|\mathbf{x}\| \le 1\}$ is a convex set.
 - Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ with $\|\mathbf{x}\| \le 1$, $\|\mathbf{y}\| \le 1$ and $0 \le \theta \le 1$. Then

$$\|\theta \mathbf{x} + (1 - \theta)\mathbf{y}\| \le \|\theta \mathbf{x}\| + \|(1 - \theta)\mathbf{y}\| = \theta \|\mathbf{x}\| + (1 - \theta)\|\mathbf{y}\| \le 1$$

where the triangle inequality and the positive homogeneity of norms are used

- Affine subspaces and polyhedra
 - Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^m$, an affine subspace is the set $\{\mathbf{x} \in \mathbb{R}^n :$ Ax = b (note this could possible be empty if b is not in range of A).
 - Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} = \mathbf{b}$, then for $0 < \theta < 1$:

$$\mathbf{A}(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) = \theta \mathbf{A}\mathbf{x} + (1 - \theta)\mathbf{A}\mathbf{y} = \theta \mathbf{b} + (1 - \theta)\mathbf{b} = \mathbf{b}$$

- Similarly, a polyhedron is the set $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \prec \mathbf{b}\}$ (also possibly empty), where \prec denotes componentwise inequality
 - * All the entries of $\mathbf{A}\mathbf{x}$ are less than or equal to their corresponding element in \mathbf{b}
- Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ that satisfy $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ and $\mathbf{A}\mathbf{y} \leq \mathbf{b}$ and $0 \leq \theta \leq 1$:

$$\mathbf{A}(\theta \mathbf{x} + (1 - \theta)\mathbf{v}) < \theta \mathbf{b} + (1 - \theta)\mathbf{b} = \mathbf{b}$$

- Intersection of convex sets
 - Suppose C_1, C_2, \cdots, C_k are convex sets. Then their intersection

$$\bigcap_{i=1}^{k} C_i = \{x : x \in C_i \ \forall i = 1, \cdots, k\}$$

is also a convex set $- \text{ Given } x,y \in \bigcap_{i=1}^k C_i \text{ and } 0 \leq \theta \leq 1. \text{ Then }$

$$\theta x + (1 - \theta)y \in C_i \ \forall i = 1, \cdots, k$$

by the definition of a convex set. Therefore

$$\theta x + (1 - \theta)y \in \bigcap_{i=1}^{k} C_i$$

- Note that the *union* of convex sets in general will not be convex

• Positive semidefinite matrices

- The set of all symmetric positive semidefinite matrices, often times called the *positive* semidefinite cone and denoted \mathbb{S}^n_+ is a convex set (in general, $\mathbb{S}^n \subset \mathbb{R}^{n \times n}$ denotes the set of symmetric $n \times n$ matrices).
- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric positive semidefinite if and only if $\mathbf{A} = \mathbf{A}^T$ and for all $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{A} \mathbf{x} \leq 0$
- Given two symmetric positive semidefinite matrices $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n_+$ and $0 \leq \theta \leq 1$, then for any $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x}^{T}(\theta \mathbf{A} + (1 - \theta)\mathbf{B})\mathbf{x} = \theta \mathbf{x}^{T}\mathbf{A}\mathbf{x} + (1 - \theta)\mathbf{x}^{T}\mathbf{B}\mathbf{x} \ge 0$$

- The logic to show that all **positive definite**, **negative definite**, and **negative semidefinite** matrices are each also convex

1.4 Convex Functions

1.4.1 Definition

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if its domain (denoted $\mathcal{D}(f)$) is a *convex set*, and if, for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}(f)$ and $\theta \in \mathbb{R}, 0 \le \theta \le 1$:

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

- Intuitively, it means if we pick any two points on the graph pf a convex function and draw a straight line between them, then the portion of function between these two points will lie below this straight line.
- A function is called **strictly convex** if the definition holds with strict inequality for $\mathbf{x} \neq \mathbf{y}$ and $0 < \theta < 1$
- A function f is called **concave** if -f is convex
- A function f is called **strictly concave** if -f is strictly convex

1.4.2 First Order Condition for Convexity

• Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is convex if and only if $\mathcal{D}(f)$ is a convex set and for $\mathbf{x}, \mathbf{y} \in \mathcal{D}(f)$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla_x f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

where the function $f(\mathbf{x}) + \nabla_x f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$ is called the **first-order approximation** to the function f at the point \mathbf{x}

- Intuitively, this can be thought of as approximating f with its tangent line at the point \mathbf{x} .
- Similarly, f would be
 - strictly convex if this holds with strict inequality
 - concave if the inequality is reversed
 - strictly concave if the reverse inequality is strict

1.4.3 Second Order Condition for Convexity

• Suppose a function $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable. Then f is convex if and only if $\mathcal{D}(f)$ is a convex set and its Hessian is positive semidefinite:

$$\forall x \in \mathcal{D}(f), \ \nabla_x^2 f(x) \succeq 0$$

- Here the notation \succeq refers to positive semidefiniteness
- In one dimension, this is equivalent to the condition that the second derivative f''(x) always be positive
- Similarly, f is
 - strictly convex if its Hessian is positive definite
 - concave if the Hessian is negative semidefinite
 - strictly concave if the Hessian is negative definite

1.4.4 Jensen's Inequality

• Start with the inequality in the basic definition of a convex function

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
 for $0 \le \theta \le 1$

Using induction, extend this definition to convex combinations of more than one point

$$f\left(\sum_{i=1}^{k} \theta_i x_i\right) \le \sum_{i=1}^{k} \theta_i f(x_i) \text{ for } \sum_{i=1}^{k} \theta_i = 1, \ \theta_i \ge 0 \ \forall i$$

This can also extend to infinite sums or integrals. In the latter case, the inequality can be written as

$$f\left(\int p(x)xdx\right) \le \int p(x)f(x)dx$$
 for $\int p(x)dx = 1$, $p(x) \ge 0 \ \forall x$

Since $\int p(x)dx = 1$, it is common to consider it a probability density, in which case the previous equation can be written in terms of expectations

$$f(\mathbb{E}[x]) \le \mathbb{E}[f(x)]$$

which is called **Jensen's inequality**

1.4.5 Examples

- Exponential
 - Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{ax}$ for any $a \in \mathbb{R}$.
 - $-f''(x) = a^2 e^{ax}$ is positive for all x
- Negative logarithm
 - Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -\log x$ with domain $\mathcal{D}(f) = \mathbb{R}_{++} = \{x: x > 0\}$
 - $-f''(x) = \frac{1}{x^2} > 0$ for all x
- Affine functions
 - Let $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = \mathbf{b}^T \mathbf{x} + c$ for some $\mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R}$
 - The Hessian $\nabla_{\mathbf{x}}^2 f(\mathbf{x}) = 0$ for all \mathbf{x}
 - Affine functions of this form are the **only** functions that are **both convex and concave**
- Quadratic function
 - Let $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c$ for a symmetric matrix $\mathbf{A} \in \mathbb{S}^n, b \in \mathbb{R}^n$ and $c \in \mathbb{R}$
 - The Hessian for this function is $\nabla_{\mathbf{x}}^2 f(\mathbf{x}) = \mathbf{A}$
 - The convexity or non-convexity of f is determined entirely by whether or not \mathbf{A} is positive semidefinite

– The squared Euclidean norm $f(\mathbf{x}) = \|\mathbf{x}\|_2^2 = \mathbf{x}^T \mathbf{x}$ is a special case of quadratic functions where $\mathbf{A} = \mathbf{I}, \mathbf{b} = \mathbf{0}, c = 0$, so it is therefore a **strictly convex function**

• Norms

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be some norm on \mathbb{R}^n .
- By the **triangle inequality** and **positive homogeneity** of norms, for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n, 0 \le \theta \le 1$,

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le f(\theta \mathbf{x}) + f((1 - \theta)\mathbf{y}) = \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

- Not possible to prove convexity based on the first or second order conditions because norms are not generally differentiable
- Nonnegative weighted sums of convex functions
 - Let f_1, f_2, \dots, f_k be convex functions and w_1, w_2, \dots, w_k be nonnegative real numbers. Then

$$f(x) = \sum_{i=1}^{k} w_i f_i(x)$$

is a convex function, since

$$f(\theta x + (1 - \theta)y) = \sum_{i=1}^{k} w_i f_i(\theta x + (1 - \theta)y)$$

$$\leq \sum_{i=1}^{k} w_i (\theta f_i(x) + (1 - \theta)f_i(y))$$

$$= \theta \sum_{i=1}^{k} w_i f_i(x) + (1 - \theta) \sum_{i=1}^{k} w_i f_i(y)$$

$$= \theta f(x) + (1 - \theta)f(x)$$

2 Optimization

2.1 Motivation

- Most ML/DL algorithms involve **optimization** of some sort.
 - Optimization refers to the task of either **minimizing** or maximizing some function $f(\mathbf{x})$ by altering \mathbf{x}
 - Usually phrase most optimization problems in terms of minimizing $f(\mathbf{x})$
 - Maximization may be accomplished via s minimization algorithm by minimizing $-f(\mathbf{x})$
- Usually the function we want to minimize is called the **objective function**, or **criterion**. In ML/DL contexts, the name **loss function** is often used.
 - As mentioned in introduction, a loss function quantifies the distance between the real and predicted value of the target.
 - Usually be a non-negative number where smaller values are better and perfect predictions incur a loss of 0
 - Usually denoted as $L(\theta)$ where θ is usually the parameter of ML/DL models
- Usually denote the value that minimizes a function with a superscript *
 - $-\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} L(\boldsymbol{\theta})$
- Most ML/DL algorithms are so complex that it is difficult or impossible to find the closed form solution for the optimization problem
 - Use numerical optimization method instead
- One common algorithm is **gradient descent**, other optimization algorithms are
 - Expectation Maximization
 - Sampling-based optimization
 - Greedy optimization

2.2 Local Minimum and Global Minimum

2.2.1 Local Minimum

- Let $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}^N$, a point x is locally minimal if it is available and if there exists some R < 0 such that all feasible points z with $||x z||_2 \le R$, satisfy $f(x) \le f(z)$
- Necessary condition for local minimum
 - Let f be continuously differentiable and let $x \in A$ be a local minimum, then $\nabla f(x) = 0$
- Saddle Point:
 - We say that $x \in A$ is a saddle point of f if $\nabla f(x) = 0$ and r_o is not a local minimum

2.2.2 Global Minimum

- A point x is globally minimal if it is available and for all feasible points $z, f(x) \leq f(z)$
 - A global minimum must also be a local minimum

2.3 Optimization Theorems

- Let $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}^N$
 - If f is continuous and A is **compact**, then f takes on a global minimum in A
 - If f is **convex** on A, then any local minimum is a global minimum
 - If f is continuously differentiable and convex on A, then $\nabla f(x) = 0$ implies the $x \in A$ is a global minimum of f

- Important Facts:
 - Global minimum may not be unique
 - If A is closed but not bounded, then f may not take on a global minimum
 - Most interesting functions in ML/DL are **not** convex

2.4 Convex Optimization

• Formally, a convex optimization problem is an optimization problem of the form

minimize
$$f(x)$$

subject to $x \in C$

where f is a convex function, C is a convex set, and x is the optimization variable

• Often written as

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ $i = 1, \dots, m$
 $h_i(x) = 0$ $i = 1, \dots, p$

where f is a convex function, g_i are convex functions and h_i are affine functions and x is the optimization variable

2.5 Constrained Optimization

2.5.1 Definition

- Sometimes we wish not only to maximize or minimize a function $f(\mathbf{x})$ over all possible values of \mathbf{x} . Instead the maximal or minimal value of $f(\mathbf{x})$ for values of \mathbf{x} in some set \mathbb{S} . This is known as **constrained optimization**
- Points x that lies within the set S are called **feasible** points in constrained optimization terminology

2.5.2 Solution

- **Intuition**: Design a different, **unconstrained** optimization problem whose solution can be converted into a solution to the original constrained optimization problem
 - For example, to minimize $f(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^2$ with \mathbf{x} constrained to have exactly unit L^2 norm, we can instead minimize

$$g(\theta) = f([\cos\theta, \sin\theta]^T)$$

with respect to θ , then return $[\cos\theta, \sin\theta]$ as the solution to the original problem

- Requires creativity
- The transformation between optimization problems must be designed specifically for each case we counter
- Karush-Kuhn-Tucker (KKT) approach
 - Provides a very general solution to constrained optimization

3 Gradient Descent

3.1 Basic Concepts

3.1.1 Definition

- Definition:
 - A first-order iterative optimization algorithm for finding local minimum of a differential function.
 - * The idea is to take *repeated steps* in the opposite direction of the *gradient* of the function at the current point, because this is the direction of steepest descent.
 - * As it only calculates the *first-order* derivative, it requires the objective function to be differential and is called *first-order optimization algorithms*
 - \cdot Some optimization algorithms that also use the Hessian matrix are called $second-order\ optimization\ algorithms$
 - * Converge when first-order derivative is zero, which only ensures reaching **local minimum** for general functions
 - · That is to say, the start point will sometimes affect final convergence
 - * Generally speaking, gradient descent algorithms converge to the **global minimum** of continuously differentiable **convex** functions
- Theory:
 - Based on the observation that if the multi-variable function $F(\mathbf{x})$ is defined and differentiable in a neighborhood of a point \mathbf{a} , then $F(\mathbf{x})$ decreases **fastest** if one goes from \mathbf{a} in the direction of the negative gradient of F at \mathbf{a} , which is $-\nabla F(\mathbf{a})$. It follows that if

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma \nabla F(\mathbf{a}_n)$$

for a $\gamma \in \mathbb{R}_+$ small enough, then

$$F(\mathbf{a}_n) \ge F(\mathbf{a}_{n+1})$$

- Simple form of vanilla gradient descent (GD):
 - 1. Start at random parameter θ
 - 2. Repeat until converged

$$-\mathbf{d} \leftarrow -\nabla L(\boldsymbol{\theta})$$

$$-\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \mathbf{d}^T$$

 $-\alpha$ is called **learning rate** or step size

3.1.2 Compute Loss Gradient

• Take the **mean square error** as an example:

$$\nabla_{\boldsymbol{\theta}} L_{MSE}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \left\{ \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{y}_{i} - f_{\boldsymbol{\theta}}(\mathbf{x}_{i})\|^{2} \right\}$$
$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} \left\{ (\mathbf{y}_{i} - f_{\boldsymbol{\theta}}(\mathbf{x}_{i}))^{T} (\mathbf{y}_{i} - f_{\boldsymbol{\theta}}(\mathbf{x}_{i})) \right\}$$

Use the chain rule and scale-by-vector matrix calculus identity that

$$\frac{\partial \mathbf{x}^T \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{x}^T$$

We can get

$$\nabla_{\boldsymbol{\theta}} L_{MSE}(\boldsymbol{\theta}) = \frac{2}{N} \sum_{i=1}^{N} (\mathbf{y}_i - f_{\boldsymbol{\theta}}(\mathbf{x}_i))^T \nabla_{\boldsymbol{\theta}} (\mathbf{y}_i - f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$

$$= \frac{2}{N} \sum_{i=1}^{N} (\mathbf{y}_i - f_{\boldsymbol{\theta}}(\mathbf{x}_i))^T \nabla_{\boldsymbol{\theta}} (-f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (\mathbf{y}_i - f_{\boldsymbol{\theta}}(\mathbf{x}_i))^T \nabla_{\boldsymbol{\theta}} (f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$

- The result of the gradient usually includes three parts:
 - Sum over training data. It consists of a lot of computations but the way of computation is relatively easy and straight forward
 - Prediction error term such as $\mathbf{y}_i f_{\boldsymbol{\theta}}(\mathbf{x}_i)$ in MSE, which is usually easy to get
 - Gradient of inference function $\nabla_{\theta}(f_{\theta}(\mathbf{x}_i))$, which is difficult to solve
 - * Enabled by **automatic differentiation** built into modern domain specific languages such as Pytorch, Tensorflow, ...
 - * For neural networks, this is known as back propagation

3.1.3 Select appropriate learning rate

- Too large α leads to instability and even divergence
- Too small α leads to slow convergence
- Steepest gradient descent use line search to compute the best α
 - 1. Start at random parameter θ
 - 2. Repeat until converged
 - $-\mathbf{d} \leftarrow -\nabla L(\boldsymbol{\theta})$ $-\alpha^* \leftarrow \underset{\alpha}{\operatorname{argmin}} \{ L(\boldsymbol{\theta} + \alpha \mathbf{d}^T) \}$ $-\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^* \mathbf{d}^T$
- Adaptive learning rates may help, but not always
 - $-\alpha = \frac{1}{t}$, approaches 0 but can cover an infinite distance since $\lim_{a\to\infty}\sum_{t=1}^{a}\frac{1}{t}=\infty$
- Coordinate Descent update one parameter at a time
 - Removes problem of selecting step size
 - Each update can be very fast, but lots of updates

3.1.4 Slow convergence due to Poor Conditioning

- Conditioning refers to how rapidly a function changes with respect to small changes in its inputs.
- Consider the function

$$f(x) = \mathbf{A}^{-1}\mathbf{x}$$

When $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an eigenvalue decomposition, its **condition number** is

$$\max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right|$$

This is the ratio of the magnitude of the largest and smallest eigenvalue

• A problem with a **low condition number** is said to be **well-conditioned**, while a problem with a high condition number is said to be ill-conditioned

- In non-mathematical terms, an ill-conditioned problem is one where, for a small change in the inputs there is a large change in the answer or dependent variable, which means the correct solution to the equation becomes hard to find
- Condition number is a property of the problem
- Gradient descent is very sensitive to condition number of the problem
 - No good choice of step size. Tiny change in one variable could lead to great change in dependent variable.
- Solutions:
 - **Newton's method:** Correct for local second derivative.
 - * Too much computation and too difficult to implement
 - * Harmful when near saddle points
 - Alternative methods:
 - * Preconditioning: Easy, but tends to be ad-hoc, not so robust
 - * Momentum

3.1.5 Vanishing Gradients

- The most insidious problem to encounter
- Some function leads to almost zero gradients far away from local minimums, which makes the optimization stuck for a long time or even stop.
- For example, assume that we want to minimize the function

$$f(x) = \tanh(x)$$

The derivative is

$$f'(x) = 1 - \tanh^2(x)$$

If we happen to get started at x = 4 then the derivative at that point is

$$f'(4) = 0.0013$$

The gradient is close to nil. Consequently, optimization will get stuck for a long time before we make progress

- Possible Solutions:
 - Reparameterize the problem
 - Good initialization of the parameter
 - Reconstruct the objective function (e.g., change activation function in neural networks)