Non-Local ConvLSTM for Video Compression Artifact Reduction

Yi Xu^{1*} Longwen Gao² Kai Tian¹ Shuigeng Zhou^{1†} Huyang Sun²

¹Shanghai Key Lab of Intelligent Information Processing, and School of
Computer Science, Fudan University, Shanghai, China

²Bilibili, Shanghai, China

{yxu17,ktian14,sgzhou}@fudan.edu.cn {gaolongwen,sunhuyang}@bilibili.com

ICCV 2019

Presented by Qing Lyu on 7/22/20

Background

- Video compression artifact reduction
 - Single image compression artifact reduction
 - Video compression artifact reduction
 - Deep Kalman filter network (ECCV 2018, DL club: July 31, 2019)
 - Task-oriented motion-based network(IJCV 2019, DL club: September 11, 2019)
 - Network using motion-compensated nearest PQFs (PAMI 2019)

Prediction Network

Temporal Mapping Network

↓

Linearization Network

Covariance estimation

Prediction Residual Estimate

→ Measurement Networ

Estimation

 \hat{X}_{t-1}

Restored

Decoded Frame

Shortcoming of existing methods

 Existing methods used a pair of neighboring frames, may miss highquality details of some other neighbor frames

Advantageous

- No accurate motion estimation and compensation is explicitly needed
- It is applicable to videos compressed by various commonly-used compression algorithms such as H.264/AVC and H.265/HEVC
- The proposed method outperforms the existing methods

Method: network

- End-to-end framework with three modules
 - Encoder
 - NL-ConvLSTM
 - Decoder

Figure 2. The framework of our method (left) and the architecture of NL-ConvLSTM (right)

Method: Non-Local ConvLSTM

ConvLSTM

$$[\mathcal{H}_t, \mathcal{C}_t] = ConvLSTM(F_t, [\mathcal{H}_{t-1}, \mathcal{C}_{t-1}])$$

NL-ConvLSTM

$$S_{t} = NL(F_{t-1}, F_{t}),$$

$$\left[\hat{\mathcal{H}}_{t-1}, \hat{\mathcal{C}}_{t-1}\right] = NLWarp(\left[\mathcal{H}_{t-1}, \mathcal{C}_{t-1}\right], S_{t}),$$

$$\left[H_{t}, C_{t}\right] = ConvLSTM(F_{t}, \left[\hat{\mathcal{H}}_{t-1}, \hat{\mathcal{C}}_{t-1}\right]),$$

$$D_{t}(i, j) = \|F_{t-1}(i) - F_{t}(j)\|_{2},$$

$$S_{t}(i,j) = \frac{\exp\left(-D_{t}(i,j)/\beta\right)}{\sum_{\forall i} \exp\left(-D_{t}(i,j)/\beta\right)},$$
$$\left[\hat{\mathcal{H}}_{t-1}, \hat{\mathcal{C}}_{t-1}\right] = \left[\mathcal{H}_{t} \cdot S_{t}, \mathcal{C}_{t} \cdot S_{t}\right],$$

Calculation simplification

- Directly compute S is the warping operation will incur extremely high computation and memory cost
- To simplify the calculation, proposing a two stage NL approximation method
 - Use average pooling to downsample the feature map from the Encoder

$$D_t(i,j) = \|F_{t-1}(i) - F_t(j)\|_2, \longrightarrow D_t^p(i,j) = \|F_{t-1}^p(i) - F_t^p(j)\|_2$$

• Compute and store the similarities between each pixel of F_t^p and the corresponding $k \times p^2$ pixels of F_{t-1}^p . While for the other pixels in the preceding frame, the elements of D_t and S_t are set to infinity and 0 respectively.

Figure 3. The workflow of two-stage similarity approximation. ① finding the top-k most similar blocks in F_{t-1} with respect to block $F_t^p(j)$ from F_t ; ② extracting blocks in \mathcal{H}_{t-1} from the corresponding positions of the top-k most similar blocks in F_{t-1} ; ③ calculating pixel-wise similarity between the selected blocks from F_{t-1} and $F_t^p(j)$; ④ NLWarp operation for \mathcal{H}_t .

Complexity analysis

Table 1. Complexity comparison of the original non-local approach and ours. Here, N and C are the numbers of positions and channels, k and p are the number of pre-filtered blocks and the downsampling scale. By setting k=4 and p=10, our method cuts the time and space to about 1/1000 of that consumed by the original non-local method in 1080P videos.

	Original non-local	NL-ConvLSTM		
Time Space	$ \mathcal{O}(2N^2C) \\ \mathcal{O}(2N^2) $	$\mathcal{O}((N/p^2)^2(C + \log k) + 2kNCp^2)$ $\mathcal{O}((N/p^2)^2 + kN/p^2 + 2kNp^2)$		

to $\mathcal{O}((N/p^2)^2C + 2kNCp^2)$. By properly choosing the values of k and p so that $kp^2 \ll N$, we have $\phi/\psi = 1/(2p^4) + kp^2/N \ll 1$, which means that our method dramatically reduces the computation cost of the original method. And for a given k, ϕ/ψ achieves the minimum $1.5(k/N)^{2/3}$ with $p=(N/k)^{1/6}$. Similar conclusion can be

Experiment

- Datasets
 - Vimeo-90K
 - 89,800 video sequences
 - 448x256 resolution
 - Compression algorithm: x265 in FFmpeg with QP=32 or 37
 - Yang's dataset
 - 70 video sequences
 - Resolution vary from 352x240 to 2560x1600
 - Compression algorithm: HEVC LDP

Ablation study

Table 2. Ablation study of the proposed NL-ConvLSTM on Yang et al.'s dataset with QP=37. The results of PSNR improvement Δ PSNR (db) are reported in the 1^{st} row. The results of SSIM improvement Δ SSIM ($\times 10^{-2}$) are listed in the 2^{nd} row.

	Encoder-Decoder with 1 frame		ME-ConvLSTM with 7 frames	
Δ PSNR	0.395	0.456	0.503	0.601
Δ SSIM	0.684	0.723	0.827	0.897

Quantitative comparison

Table 3. Average PSNR/SSIM on Vimeo-90K.

QP	32	37	
HEVC [34]	34.19 / 0.950	31.98 / 0.923	
ARCNN [11]	34.87 / 0.954	32.54 / 0.930	
DnCNN [49]	35.58 / 0.961	33.01 / 0.936	
DSCNN [44]	35.61 / 0.960	32.99 / 0.938	
DKFN [26]	35.81 / 0.962	33.23 / 0.939	
3D CNN	35.81 / 0.961	33.25 / 0.938	
Our method	35.95 / 0.965	33.39 / 0.943	

Figure 5. PSNR/SSIM curves of HEVC baseline, MFQE and NL-ConvLSTM on the sequence TunnelFlag with QP=37.

Table 4. Average $\Delta PSNR$ (dB) and $\Delta SSIM$ ($\times 10^{-2}$) on Yang et al.'s dataset.

. s dataset.						
QP	Seq.	ARCNN [11]	DnCNN [49]	DSCNN [44]	MFQE [45]	Our method
37	1	0.241 / 0.51	0.448 / 0.83	0.492 / 0.87	0.772 / 1.15	0.827 / 1.21
	2	0.115 / 0.30	0.439 / 0.52	0.458 / 0.58	0.604 / 0.63	0.971 / 0.92
	3	0.161 / 0.49	0.276 / 0.76	0.271/0.74	0.472 / 0.91	0.483 / 0.99
	4	0.183 / 0.35	0.377 / 0.55	0.393 / 0.54	0.438 / 0.48	0.576 / 0.66
	5	0.150 / 0.30	0.333 / 0.48	0.356 / 0.53	0.550 / 0.52	0.598 / 0.74
	6	0.161 / 0.23	0.415 / 0.50	0.435 / 0.49	0.598 / 0.51	0.658 / 0.67
	7	0.128 / 0.29	0.284 / 0.44	0.277 / 0.45	0.390 / 0.45	0.394 / 0.58
	8	0.125 / 0.37	0.276 / 0.61	0.230 / 0.63	0.484 / 1.01	0.563 / 1.18
	9	0.149 / 0.38	0.299 / 0.71	0.271 / 0.66	0.394 / 0.92	0.439 / 1.03
	10	0.146 / 0.24	0.289 / 0.58	0.274 / 0.54	0.402 / 0.80	0.501 / 0.99
	Ave.	0.156 / 0.35	0.344 / 0.59	0.346 / 0.60	0.510 / 0.74	0.601 / 0.90
42	Ave.	0.252 / 0.83	0.301 / 0.96	0.364 / 1.06	0.461 / —	0.614 / 1.47

1: PeopleOnStreet 2: TunnelFlag 3: Kimono 4: BarScene 5: Vidyo1 6: Vidyo3 7: Vidyo4 8: BasketballPass 9: RaceHorses 10: MaD

Qualitative comparison

Run time comparison

Table 5. Run-time (ms per frame) comparison among six methods.

Resolution	180x 180	416x240	640x360	1280x720	1920x1080
ARCNN [11]	1.73	4.58	9.19	36.06	80.70
DnCNN [49]	6.30	15.84	35.51	139.77	315.83
DSCNN [44]	15.26	36.88	82.31	322.92	731.21
MFQE ⁴ [45]	20.28+	51.01+	112.87+	443.82+	1009.00+
original NL	4391.75	-	-	-	-
ours	102.13	304.11	621.94	2607.60	6738.00

Contribution

- Propose a new idea for video compression artifact reduction by exploiting multiple preceding and following frames of the target frame, without explicitly computing and compensating motion between frames
- Develop an end-to-end deep neural network called non-local ConvLSTM to learn the spatiotemporal information from multiple neighboring frames
- Design an approximate method to compute the inter-frame pixel-wise similarity
- Conduct extensive experiments over two datasets to evaluate the proposed method, which achieves state-of-the-art performance for video compression artifact reduction