
8.11 PSPICE MULTISIM

The two switches in the circuit seen in Fig. P8.11 operate synchronously. When switch 1 is in position a, switch 2 is in position d. When switch 1 moves to position b, switch 2 moves to position c. Switch 1 has been in position a for a long time. At t = 0, the switches move to their alternate positions. Find $v_o(t)$ for $t \ge 0$.

$$|y| = |y|^{2} - x^{2} = 300 \text{ rad/s} |B| = V_{0} = 100 \text{ rad/s} |B| = 100 \text{ rad/s} |B$$

8.27
PSPICE
MULTISIM

Assume that at the instant the 2A dc current source is applied to the circuit in Fig. P8.27, the initial current in the 25 mH inductor is 1 A, and the initial voltage on the capacitor is 50 V (positive at the upper terminal). Find the expression for $i_L(t)$ for $t \ge 0$ if R equals 12.5 Ω .

8.35
PSPICE
MULTISIM

The switch in the circuit in Fig. P8.35 has been in the left position for a long time before moving to the right position at t = 0. Find

- a) $i_L(t)$ for $t \ge 0$,
- b) $v_C(t)$ for $t \ge 0$.

Figure P8.35

$$i_{c}(t) = A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t} + I_{f}$$
 (insert everything)
$$i_{c}(t) = \frac{e^{-200t} - 800t}{2} + O_{1}I_{A}$$

$$V_{c}(t) = L\left(S_{1}A_{1}e^{s_{1}t} + S_{2}A_{2}e^{s_{2}t}\right) \text{ (insert everything)}$$

$$V_{c}(t) = 250 \times 10^{-3} \left(-200.0_{1}5.e^{-200t} - 800.0_{1}5.e^{-800t}\right)$$

$$= 0,25.(-100e^{-200t} - 400e^{-400t}) = -25e^{-400t} - 100e^{-400t}$$

8.47 The switch in the circuit shown in Fig. P8.47 has been closed for a long time. The switch opens at t = 0. Find $v_o(t)$ for $t \ge 0^+$.

Figure P8.47

300 is
$$+ (\infty(i_1-i_2) + 100 i_1 = 0)$$
 $i_1 = 0, 1$ $-100 i_2 + 100 i_2 + 100 i_2 = 1$ $-100 i_2 + 100 i_2 = 1$ $-100 i_2 + 100 i_2 = 1$ $-100 i_2 = 1$ -10

8.54
PSPICE
MULTISIM

The two switches in the circuit seen in Fig. P8.55 operate synchronously. When switch 1 is in position a, switch 2 is closed. When switch 1 is in position b, switch 2 is open. Switch 1 has been in position a for a long time. At t = 0, it moves instantaneously to position b. Find $v_c(t)$ for $t \ge 0$.

Figure P8.54

9.32 Find I_b and Z in the circuit shown in Fig. P9.32 if $V_g = 25 / 0^\circ V$ and $I_a = 5 / 90^\circ A$.

$$V_{-32} = 5 \angle 90^{\circ} \cdot -j2 \triangle = 5 \cos(90) + 5 \sin(90)j) \cdot -j2 \triangle$$

$$= 35 \cdot -j2 = -10j^{\circ} = 10V$$

$$= 15 \cdot -j2 = -10j^{\circ} = 10V$$

$$= 16 \cdot -25 + 10 + (4-j3) \cdot -16 = -31 \cdot -27 \cdot -37 \cdot A$$

$$= 16 \cdot -16 - 16 \cdot -16 \cdot -1$$

9.45 Use source transformations to find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown in Fig. P9.45.

$$-j400 \Omega$$

$$120/0^{\circ} \text{ mA}$$

$$250 \Omega$$

$$j150 \Omega$$

$$V = |20 \text{ mA} \cdot 250 \Omega = |V = 30 \text{ V}$$

$$\frac{1}{300} \times \frac{1}{300} \times \frac{1}{3000} \times$$

9.46 Find the Norton equivalent circuit with respect to the terminals a,b for the circuit shown in Fig. P9.46.

9.55 Use the node-voltage method to find the phasor voltage V_g in the circuit shown in Fig. P9.55.

Figure P9.55

9.62 Use the mesh-current method to find the branch currents I_a, I_b, I_c, and I_d in the circuit shown in Fig. P9.62.

$$I_{10} = I_{10} = I$$