Thane: 022 2540 8086 / 809 701 8086 Nerul: 022 2771 8086 / 865 509 8086

8086 MINIMUM MODE CONFIGURATION

Mail: bharatsir@hotmail.com_ Bharat Acharya Cell: 98204 08217

Chopra Academy: 022 2642 1927

MICROPROCESSORS

Sem IV (EXTC, ETRX) Mumbai - 2017

- 1) 8086 works in Minimum Mode, when $MN/\overline{MX} = 1$.
- 2) In Minimum Mode, 8086 is the ONLY processor in the system.

The Minimum Mode circuit of 8086 is as shown above.

- 3) Clock is provided by the 8284 Clock Generator.
- 4) Address from the address bus is latched into 8282 8-bit latch.

Three such latches are needed, as address bus is 20-bit.

The ALE of 8086 is connected to STB of the latch.

The ALE for this latch is given by 8086 itself. #Please refer Bharat Sir's Lecture Notes for this ...

5) The data bus is driven through 8286 8-bit transreceiver.

Two such transreceivers are needed, as the data bus is 16-bit.

The transreceivers are enabled through the **DEN** signal, while the direction of data is controlled by

the $\overline{DT/R}$ signal. \overline{DEN} is connected to \overline{OE} and $\overline{DT/R}$ is connected to T. Both \overline{DEN} and $\overline{DT/R}$ are given by 8086 itself.

DEN	DT/ R	Action
1	X	Transreceiver is disabled
0	0	Receive data
0	1	Transmit data

6) Control signals for all operations are generated by decoding M/ IO , RD and \overline{WR} signals.

For doubts contact Bharat Sir on 98204 08217

M/ TO	RD	WR	Action
1	0	1	Memory Read
1	1	0	Memory Write
0	0	1	I/O Read
0	1	0	I/O Write

- 7) M/ $\overline{10}$, \overline{RD} , \overline{WR} are decoded by a 3:8 decoder like IC 74138.
- 8) Bus Request (DMA) is done using the HOLD and HLDA signals.
- 9) INTA is given by 8086, in response to an interrupt on INTR line.
- 10) The Circuit is simpler than Maximum Mode but does not support multiprocessing.

BHARAT ACADEMY

Thane: 022 2540 8086 / 809 701 8086 Nerul: 022 2771 8086 / 865 509 8086

Timing Diagrams:

Mail: bharatsir@hotmail.com_ Chopra Academy: 022 2642 1927 **Bharat Acharya**

Cell: 98204 08217

Page 96

8086 MAXIMUM MODE CONFIGURATION

BHARAT ACADEMY

Thane: 022 2540 8086 / 809 701 8086 Nerul: 022 2771 8086 / 865 509 8086

- 1) 8086 works in Maximum Mode, when MN/ $\overline{MX} = 0$.
- 2) In Maximum Mode, we can connect more processors to 8086 (8087/8089). The Maximum Mode circuit of 8086 is as shown above.
- 3) Clock is provided by the 8284 Clock Generator.
- 4) The most significant part of the Maximum Mode circuit is the 8288 Bus Controller. Instead of 8086, the Bus Controller provides the various control signals as explained below.
- **5)** Address form the address bus is latched into 8282 8-bit latch. Three such latches are needed, as address bus is 20-bit. This ALE is connected to STB of the latch.
 - The ALE for this latch is given by 8288 Bus Controller.
- The data bus is driven through 8286 8-bit transreceiver.
 Two such transreceivers are needed, as the data bus is 16-bit.
 The transreceivers are enabled through the DEN signal, while the direction of data is controlled by the DT/ R signal.

DEN is connected to $\overline{\mathbf{OE}}$ and $\overline{\mathbf{DT/R}}$ is connected to T.

Both DEN and DT/ \overline{R} are given by 8288 Bus Controller.

DEN (0f 8288)	DT/R	Action
0	X	Transreceiver is disabled
1	0	Receive data
1	1	Transmit data

7) Control signals for all operations are generated by decoding $\overline{S_2}$, $\overline{S_1}$ and $\overline{S_0}$ signals. For doubts contact Bharat Sir on 98204 08217

S ₂	S ₁	S ₀	Processor State (What the μP wants to do)	8288 Active Output (What Control signal should 8288 generate)
0	0	0	Int. Acknowledge	INTA
0	0	1	Read I/O Port	IORC
0	1	0	Write I/O Port	TOWC and AIOWC
0	1	1	Halt	None
1	0	0	Instruction Fetch	MRDC
1	0	1	Memory Read	MRDC
1	1	0	Memory Write	MWTC and AMWTC
1	1	1	Inactive	None

Mail: bharatsir@hotmail.com_ Bharat Acharya Cell: 98204 08217

Page 98

Chopra Academy: 022 2642 1927

MICROPROCESSORS

Sem IV (EXTC, ETRX) Mumbai - 2017

- 8) $\overline{S_2}$, $\overline{S_1}$ and $\overline{S_0}$ are decoded using 8288 bus controller.
- 9) Bus request is done using \overline{RQ} / \overline{GT} lines interfaced with 8086. RQ_0/GT_0 has higher priority than RQ_1/GT_1 . \bigcirc For doubts contact Bharat Sir on 98204 08217
- 10) INTA is given by 8288 Bus Controller, in response to an int. on INTR line of 8086.
- 11)Max mode circuit is more complex than Min mode but supports multiprocessing hence gives better performance.
- 12)In max mode, the advanced write signals get activated one T-State in advance as compared to normal write signals. This gives slower devices more time to get ready to accept the data (as μP is writing), and hence reduces the number of "wait states".

Mail: bharatsir@hotmail.com
JAVA Batches starting June 2017!

Bharat Acharya

Cell: 98204 08217

Page 99

BHARAT ACADEMY

Thane: 022 2540 8086 / 809 701 8086 Nerul: 022 2771 8086 / 865 509 8086

TIMING DIAGRAMS

Mail: bharatsir@hotmail.com_ Chopra Academy: 022 2642 1927 **Bharat Acharya**

Cell: 98204 08217

Page 100

Sem IV (EXTC, ETRX) Mumbai - 2017

Differentiate between

	MIN MODE	MAX MODE
1	It is a uniprocessor mode . 8086 is the only processor in the circuit.	It is a multiprocessor mode . Along with 8086, there can be other processors like 8087 and 8089 in the circuit.
2	Here MN/ MX is connected to Vcc.	Here MN/ MX is connected to Ground.
3	ALE for the latch is given by 8086 itself.	As there are multiple processors, ALE for the latch is given by 8288 bus controller .
4	DEN and DT/ R for the transreceivers are given by 8086 itself.	As there are multiple processors, DEN and DT/ R for the transreceivers is given by 8288 bus controller.
5	Direct control signals like M/ IO , RD and WR are produced by 8086 itself.	Instead of control signals, all processors produce status signals $\overline{S_2}$, $\overline{S_1}$ and $\overline{S_0}$
6	Control signals M/ IO , RD and WR are decocded by a 3:8 decoder IC 74138.	Status signals $\overline{S_2}$, $\overline{S_1}$ and $\overline{S_0}$ require special decoding are decoded by 8288 bus controller.
7	INTA for interrupt acknowledgement is produced by 8086.	INTA for interrupt acknowledgement is produced by 8288 Bus Controller.
8	Bus request are grant is handled using HOLD and HLDA signals.	Bus request are grant is handled using RQ / GT signals.
9	Since 74138 does not independently generate any signals, it does not need a CLK .	Since 8288 independently generates control signals, it needs a CLK from 8284 clock generator.
10	The circuit is simpler but does not support multiprocessing .	The circuit is more complex but supports multiprocessing.