

Kourosh Davoudi kourosh@uoit.ca

Advanced Cluster Analysis:
GMM
Spectral Clustering

CSCI 4150U: Data Mining

Outline

- GMM and The EM Algorithm
- Spectral Clustering

The Gaussian Distribution

Multivariate Gaussian

$$\mathcal{N}(x|\mu,\Sigma) = \frac{1}{(2\pi|\Sigma|)^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}_{\text{The Gaussian Distribution}}$$

$$\text{covariance}$$

Maximum likelihood estimation

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T$$

Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

parameters to be estimated

• Incomplete Data vs. Complete data

• Example: Mixture of 3 Gaussians

- To generate a data point:
 - first pick one of the components with probability π_k
 - ullet then draw a sample x_i from that component distribution

- To generate a data point:
 - ullet first pick one of the components with probability $\ \pi_k$
 - ullet then draw a sample x_i from that component distribution
- Each data point is generated by one of K components, a latent variable is associated with each x_i

$$z_i = (z_{i1}, \dots, z_{iK})$$

$$\sum_{k=1}^{K} z_{ik} = 1 \text{ and } p(z_{ik} = 1) = \pi_k$$

- Loss function: the negative log likelihood of the data.
 - Equivalently, maximize the log likelihood.

$$\ln p(x|\pi,\mu,\Sigma) = \sum_{i=1}^n \ln \{\sum_{k=1}^K \pi_k \mathcal{N}(x_i|\mu_k,\Sigma_k)\}$$

- Without knowing values of **latent variables**, we have to maximize the incomplete log likelihood.
 - Sum over components appears inside the logarithm, no closed-form solution.

Fitting the Gaussian Mixture

- Given the complete data set $(x, z) = (x_i, z_i)_{i=1,...,n}$
 - Maximize the complete log likelihood.

$$\ln p(x, z | \pi, \mu, \Sigma) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_{ik} \{ \ln \pi_k + \ln \mathcal{N}(x_i | \mu_k, \Sigma_k) \}$$

 Need a procedure that would let us optimize the incomplete log likelihood by working with the (easier) complete log likelihood instead.

Expectation-Maximization (EM) Algorithm

• E-step: for given parameter values we can compute the expected values of the latent variables (responsibilities of data points)

Bayes rule

$$r_{ik} \equiv E(z_{ik}) = p(z_{ik} = 1 | x_i, \pi, \mu, \Sigma)$$

$$= \frac{p(z_{ik} = 1)p(x_i | z_{ik} = 1, \pi, \mu, \Sigma)}{\sum_{k=1}^{K} p(z_{ik} = 1)p(x_i | z_{ik} = 1, \pi, \mu, \Sigma)}$$

$$= \frac{\pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

• Note that $r_{ik} \in [0,1]$ instead of $\{0,1\}$ but we still have

$$\sum_{k=1}^{K} r_{ik} = 1 \text{ for all } i$$

The EM Algorithm

M-step: maximize the expected complete log likelihood

$$E[\ln p(x, z | \pi, \mu, \Sigma)] = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \{ \ln \pi_k + \ln \mathcal{N}(x_i | \mu_k, \Sigma_k) \}$$

Parameter update:

$$\pi_k = \frac{\sum_i r_{ik}}{n} \qquad \mu_k = \frac{\sum_i r_{ik} x_i}{\sum_i r_{ik}}$$

$$\Sigma_k = \frac{\sum_i r_{ik} (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_i r_{ik}}$$

The EM Algorithm

- Iterate E-step and M-step until the log likelihood of data does not increase any more.
 - Converge to local optima.
 - Need to restart algorithm with different initial guess of parameters (as in K-means).
- Relation to K-means
 - Consider GMM $\Sigma_k = \delta^2 I$ with common covariance.
 - As $\delta^2 \to 0, r_{ik} \to 0 \text{ or } 1$, two methods coincide.

EM Algorithm Summary

Given the data set: $x_1, x_2, ..., x_n$, and number of cluster K

Initialize $\pi_k \mu_k \Sigma_k$ randomly (k = 1, 2, ...K)

Loop (until convergence)

E-step: computer Expectation (r_{ik})

M-step: petameter update $(\pi_k \mu_k \Sigma_k)$

End

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html

Spectral Clustering

- Another well-known graph based clustering
- Algorithms that cluster points using eigenvectors of similarity matrices derived from the data
- Obtain data representation embedded in the low-dimensional space that can be easily clustered
- Can handle non-convex clusters

Spectral Clustering Example: 2-Spirals

Dataset exhibits complex cluster shapes

⇒ K-means performs very poorly in this space due bias toward dense spherical clusters.

-0.7075

-0.707

-0.7065

-0.708

-0.709

-0.7085

In the embedded space given by two leading eigenvectors, clusters are trivial to separate.

Spectral Clustering Algorithm (NIPS'02 Ng et al.)

Motivation

• Given a set of n points:

$$S = \{s_1, ..., s_n\} \in R^l$$

We would like to cluster them into k subsets

Algorithm

• Form the affinity matrix $A \in \mathbb{R}^{n \times n}$

• Define
$$A_{ij}=e^{-\|s_i-s_j\|^2/2\sigma^2}$$
 if $i
eq j$
$$A_{ii}=0$$

• Scaling parameter σ^2 chosen by user

Algorithm

Form the normalized matrix

$$L = D^{-1/2} A D^{-1/2}$$

• Define D a diagonal matrix whose (i,i) element is the sum of A's row i

• Find $x_1, x_2, ..., x_k$, the k largest eigenvectors of L

- These form the columns of the new matrix X
 - Note: have reduced dimension from $n \times n$ to $n \times k$

Algorithm

- Form the matrix $Y \in \mathbb{R}^{nxk}$
 - Normalize each of X's rows to have unit length

$$Y_{ij} = X_{ij} / (\sum_{j} X_{ij}^{2})^{0.5}$$

- Treat each row of Y as a point in R^k
- Cluster Y into k clusters via K-means
- Final Cluster Assignment
 - Assign point S_i to cluster j if row i of Y was assigned to cluster j

Why?

 If we eventually use K-means, why not just apply K-means to the original data?

• It makes use of the spectrum of the similarity matrix of the data to perform dimensionality reduction for clustering in the fewer/lower dimensional space.

This method allows us to cluster non-convex regions

Pros and Cons of Spectral Clustering

- Pros
 - Simple and empirically proven successful method for clustering
 - Can effectively discover non-convex patterns
 - Enjoy solid theoretical foundation
- Cons
 - Choosing a similarity matrix/graph can be non-trivial and may require extensive preprocessing.
 - Require to select the scaling factor carefully
 - Finding automatically the number of groups

