PEF — 3202 — Introdução à Mecânica dos Sólidos

Prof. Dr. Rodrigo Provasi

e-mail: provasi@usp.br

Sala 11 – Prédio de Engenharia Civil

Introdução

- Porque estudarmos as propriedades das figuras planas?
 - As tensões podem ser escritas em função do esforço solicitante e de alguma propriedade da seção transversal
 - Essas podem ser áreas e momentos de inércia de áreas

$$\sigma = \frac{N}{A}$$
 $\sigma = \frac{M}{I_{z0}}y$ $\tau = \frac{T}{J}r$

- Para uma figura plana qualquer, definimos:
- Área da figura S:

$$A = \int_{S} dA$$

• Momento estático de *S*:

$$M_z = \int_S y \ dA$$
 , em relação à z

$$M_y = \int_S z \, dA$$
, em relação à y

• Momento de inércia de S:

$$I_z = \int_S y^2 dA$$
, em relação à z

$$I_y = \int_S z^2 dA$$
 , em relação à y

• Momento polar de inércia de *S*:

$$J = \int_{S} r^2 dA$$

onde r é a posição radial da área infinitesimal dA, ou seja $r^2=y^2+z^2$.

Propriedades do Momento Estático

- Considere o problema da figura.
- Para haver equilíbrio ao redor de *z*, temos:

$$\sum_{i} m_{i} \mathbf{g} d_{i} = \mathbf{0} \rightarrow \sum_{i} m_{i} d_{i} = 0$$

Importante: d_i tem sinal!

Propriedades do Momento Estático

• Se estendermos o mesmo conceito para um sólido de densidade γ e espessura t constante:

$$\int_{S} y \, dm = \int_{S} y \, \gamma \, t \, dA = 0$$

$$\gamma t \int_{S} y \, dA = \gamma t \, M_{z} = 0$$

Logo, para haver equilíbrio: $M_z=0$

Propriedades do Momento Estático

- Agora, não é todo o eixo que apresenta a propriedade anteriormente descrita.
- É fácil ver na figura que $M_{z'} \neq 0$

Baricentro de uma figura plana

- O baricentro (G) é o centro de massa da figura.
- Por ele passam dois eixos principais que satisfazem:

$$M_{S,z_0} = \int_S y \, dA = 0$$
$$M_{S,y_0} = \int_S z \, dA = 0$$

$$M_{S,y_0} = \int_S z \, dA = 0$$

Baricentro de uma figura plana

• Observando a figura:

$$y' = y + y_G$$

 Assim, o momento estático em relação ao eixo z pode ser escrito como:

$$M_{S,Z} = \int_{S} y' dA = \int_{S} (y + y_G) dA = \int_{S} y dA + \int_{S} y_G dA$$

$$M_{S,Z} = M_{S,Z_0} + y_G \int_S dA = y_G A$$

Baricentro de uma figura plana

Baricentro de figuras compostas

• Para determinar o baricentro de figuras compostas:

$$M_{S,Z}^{total} = \sum_{i=1}^{n} y_{Gi} A_i = y_G A$$

• Logo:

$$y_G = \frac{M_{S,Z}^{total}}{A}$$

 $com A = \sum A_i$.

Exemplo: Retângulo

 Vamos fazer os cálculos para determinar o baricentro do retângulo:

$$y_G = \frac{M_{S,Z}}{A}$$
, $A = b h$

$$M_{S,Z} = \int_{S} y \, dA = \int_{0}^{h} y \, b \, dy = b \left[\frac{y^{2}}{2} \right]_{0}^{h} = \frac{b \, h^{2}}{2}$$

$$y_G = \frac{b h^2}{2 h h} = \frac{h}{2}$$

Exemplo: Retângulo

• Agora, para a posição z_G :

$$z_G = \frac{M_{S,y}}{A}, A = b h$$

$$M_{s,y} = \int_{S} z \, dA = \int_{0}^{b} z \, h \, dz = h \left[\frac{z^{2}}{2} \right]_{0}^{b} = \frac{h \, b^{2}}{2}$$

$$z_G = \frac{h b^2}{h h} = \frac{b}{2}$$

Exemplo: Retângulo

 Para mostrar que o eixo z₀ é o eixo no qual o momento estático é zero:

$$M_{S,Z_0} = \int_S y \, dA = \int_{-\frac{h}{2}}^{\frac{h}{2}} y \, b \, dy = b \left[\frac{y^2}{2} \right]_{-\frac{h}{2}}^{\frac{h}{2}}$$

$$M_{S,Z_0} = b \left[\frac{1}{2} \left(\frac{h}{2} \right)^2 - \frac{1}{2} \left(-\frac{h}{2} \right)^2 \right] = 0$$

Baricentro

• Nota importante: o baricentro **sempre** está sobre os eixos de simetria da área!

Baricentro ou centroide

Forma de Superfície		\bar{x}	ÿ	Área
Triângulo	$\sqrt{\frac{y}{2} - \frac{b}{2}}$		$\frac{h}{3}$	$\frac{bh}{2}$
Quarto de círculo	c c	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicírculo	0 \overline{x} 0	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$

extraído de Beer, F. P. & Johnston Jr., R.

Baricentro ou centroide

Limitada por dois segmentos de reta perpendiculares e um quarto de elipse		$\frac{4a}{3\pi}$	<u>4b</u> 3π	$\frac{\pi ab}{4}$
Limitada por um segmento de reța e uma semi-elipse	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	4 <u>b</u> 3π	$\frac{\pi ab}{2}$
Limitada por dois segmentos de reta perpendiculares e uma semiparábola		3 <u>a</u> 8	$\frac{3h}{5}$	$\frac{2ah}{3}$
Limitada por um segmento de reta e uma parábola	0 \overline{x} 0 a	0	$\frac{3h}{5}$	$\frac{4ah}{3}$

extraído de Beer, F. P. & Johnston Jr., R.

Baricentro ou centroide

Limitada por dois segmentos de reta perpendiculares e um arco de parábola do 2º grau.	$y = kx^{2}$ \overline{y}	$\frac{3a}{4}$	$\frac{3h}{10}$	$\frac{ah}{3}$
Limitada por dois segmentos de reta perpendiculares e um arco de parábola do grau n.	$y = kx^{2} $ \overline{x} h	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Setor circular		$\frac{2r \operatorname{sen} \alpha}{3\alpha}$	0	αr^2

extraído de Beer, F. P. & Johnston Jr., R.

Momentos de Inércia

 Os momentos de inércia são importantes para a flexão → Determinam a rigidez a flexão (com o módulo de elasticidade do material determinam quão rígido uma barra é em relação à Flexão)

- Para o retângulo que vimos anteriormente, vamos calcular os momentos de inércia em relação aos eixos y e z.
- Para o eixo z:

$$I_z = \int_S y^2 dA = \int_0^h y^2 b dy = b \left[\frac{y^3}{3} \right]_0^h = \frac{b h^3}{3}$$

• Para o eixo *y*:

$$I_y = \int_S z^2 dA = \int_0^b z^2 h dz = h \left[\frac{z^3}{3} \right]_0^b = \frac{h b^3}{3}$$

- Vamos repetir o procedimento para os eixos y_0 e z_0 .
- Para o eixo z_0 :

$$I_{z_0} = \int_{S} y^2 dA = \int_{-\frac{h}{2}}^{\frac{h}{2}} y^2 b dy = b \left[\frac{y^3}{3} \right]_{-\frac{h}{2}}^{\frac{h}{2}}$$

$$I_{z_0} = b \left[\frac{1}{3} \left(\frac{h}{2} \right)^3 - \frac{1}{3} \left(-\frac{h}{2} \right)^3 \right] = \frac{b h^3}{12}$$

• Para o eixo y_0 :

$$I_{y_0} = \int_{S} z^2 dA = \int_{-\frac{b}{2}}^{\frac{b}{2}} z^2 h dz = b \left[\frac{z^3}{3} \right]_{-\frac{b}{2}}^{\frac{b}{2}}$$

$$I_{y_0} = h \left[\frac{1}{3} \left(\frac{b}{2} \right)^3 - \frac{1}{3} \left(-\frac{b}{2} \right)^3 \right] = \frac{h b^3}{12}$$

- Como pode ser visto, os momentos de inércia em relação aos eixos que passam pelo baricentro não são nulos, porém são mínimos!
- Como relacionar os momentos de inércia dos dois sistemas?

Teorema de Steiner

 Vamos analisar a relação entre os eixos z e s.
 Podemos escrever a relação entre as distâncias medidas entre a área infinitesimal e os eixos como:

$$y = t + d$$

Teorema de Steiner

 Assim, podemos escrever o momento de inércia em relação ao eixo z como:

$$I_z = \int_S y^2 dA = \int_S (t+d)^2 dA = \int_S (t^2 + 2td + d^2) dA$$

$$I_z = \int_S t^2 dA + 2d \int_S t dA + d^2 \int_S dA$$

$$I_z = I_S + 2d M_{S,S} + d^2 A$$

Teorema de Steiner

Se o eixo s coincidir com o eixo que passa pelo baricentro z_0 (ou seja, $M_{z_0}=0$):

$$I_z = I_{z_0} + d^2 A$$

Se a figura é composta, é possível obter o baricentro da figura composta transportando todos os momentos de inércia para o eixo do baricentro da figura composta:

$$I_{z_0} = \sum_{i=1}^{n} (I_{z_0,i} + d_i^2 A_i)$$

Momento de inércia de um triângulo

• É possível demonstrar que:

$$I_z = \frac{b \ h^3}{12}$$

$$I_{z_0} = \frac{b h^3}{36}$$

Momento de inércia de um círculo

• É possível demonstrar que:

$$I_z = I_y = \frac{\pi R^4}{4}$$

Momento de inércia de figuras geométricas comuns

Momento de inércia de figuras geométricas comuns

Momento de inércia de figuras geométricas comuns

Momento Polar de Inércia

 Para calcular o momento polar de inércia vamos utilizar um círculo. Assim:

$$J = \int_{S} r^{2} dA = \int_{0}^{2\pi} \int_{0}^{R} r^{2} r dr d\theta$$

$$J = 2\pi \int_0^R r^3 dr = 2\pi \left[\frac{r^4}{4} \right]_0^R = \frac{\pi R^4}{2}$$

1ª Questão: Considere a figura plana data (pentágono) e determine:

- A) O centro de gravidade G em relação aos eixos Y e Z dados;
- B) O momento de inércia em torno do **eixo vertical** que passa por G.

Para o cálculo do item A) precisamos dividir a figura em áreas mais simples para o cálculo:

Considerando as figuras ao lado, podemos construir uma tabela com os valores e posições dos baricentros das figuras em relação aos eixos dados.

Área	y_G	Z_{G}	A
I – Quadrado	6	3	36
II - Triângulo	6	1	9

$$y_G = \frac{y_I A_I - y_{II} A_{II}}{A_I - A_{II}} = \frac{6 \cdot 36 - 6 \cdot 9}{36 - 9} = 6 cm$$

Está sobre o eixo de simetria

$$z_G = \frac{z_I A_I - z_{II} A_{II}}{A_I - A_{II}} = \frac{6 \cdot 36 - 1 \cdot 9}{36 - 9} = \frac{11}{3} = 3,67 \text{ cm}$$

Sendo assim:

A) As coordenadas do baricentro G são (6; 3,67).

Já para o item B, precisamos redividir as áreas com o triângulos cuja base esteja paralela ao eixo z.

Já para o item B, precisamos redividir as áreas com o triângulos cuja base esteja paralela ao eixo z.

Dessa forma:

$$I_{z0} = I_{zo}^{quad} - 2I_{zo}^{tri}$$

$$I_{z0} = \left(\frac{6 \cdot 6^3}{12}\right) - 2\left(\frac{3 \cdot 3^3}{36} + 1^2 \cdot \frac{3 \cdot 3}{2}\right)$$

$$I_{z0} = 108 - 2(2,25 + 4,5) = 94,5 cm^4$$

Dessa forma:

$$I_{z0} = I_{zo}^{quad} - 2I_{zo}^{tri}$$

$$I_{z0} = \left(\frac{6 \cdot 6^3}{12}\right) - 2\left(\frac{3 \cdot 3^3}{36} + 1^2 \cdot \frac{3 \cdot 3}{2}\right)$$

$$I_{z0} = 108 - 2(2,25 + 4,5) = 94,5 cm^4$$

Apesar de não ser pedido no exercício, vamos calcular o momento de inércia na outra direção:

$$I_{y0} = I_{yo}^{quad} - I_{zo}^{tri}$$

$$I_{y0} = \left(\frac{6 \cdot 6^3}{12} + |3 - 3,67|^2 \cdot 36\right) - \left(\frac{6 \cdot 3^3}{36} + |2 - 3,67|^2 \cdot 9\right)$$

$$I_{y0} = (108 + 16) - (4,5 + 25) = 153,5 cm^4$$

Exemplo: Prova Sub / 2019

Questão B (3 pontos): Para a seção transversal da figura, determine:

- a) a posição de centro de gravidade G, fornecendo coordenadas e indicando os eixos de referência;
- b) o momento de inércia em relação ao eixo horizontal passando por G.

Exemplo: Prova Sub / 2019

Exemplo: Prova Sub / 2019

b)
$$\pm_{80} = ?$$

$$\pm_{80} = \left[\left(\frac{2a \cdot a^{3}}{12} \right) + \left(\frac{a}{2} \cdot \frac{13}{8}a \right)^{2} \cdot 2a^{2} \right] + \left[\left(\frac{4a \cdot 3a^{3}}{36} \right) + \left(\frac{2a \cdot 13}{8}a \right)^{2} \cdot 6a^{2} \right]$$

$$\pm_{20} = \left[\frac{a^{4}}{6} + \frac{81}{64}a^{2} \cdot 2a^{2} \right] + \left[3a^{4} + \frac{9}{64}a^{2} \cdot 6a^{2} \right] =$$

$$\pm_{20} = \frac{157}{24}a^{4} \quad (6.5416a^{4})$$

$$1.5$$

Calcule os Momentos de Inércia em relação aos seus eixos principais de inércia.

1) Calculo do Centro de Gravidade.

 $s_{CG} = 0$ Pois Ot é um eixo de simetria da peça.

$$t_{CG} = \frac{A_{I} \cdot t_{CGI} + A_{II} \cdot t_{CGII} + A_{III} \cdot t_{CGIII}}{A_{I} + A_{II} + A_{III}}$$

$$t_{CG} = \frac{60.12.66 + 12.48.36 + 36.12.6}{60.12 + 12.48 + 36.12}$$
 \rightarrow $t_{CG} = 41 \text{ cm}$

2) Momento de Inércia em relação ao eixo Oy.

$$\boldsymbol{I}_{\boldsymbol{y}} = \boldsymbol{I}_{\boldsymbol{I}\boldsymbol{y}} + \boldsymbol{I}_{\boldsymbol{I}\boldsymbol{I}\boldsymbol{y}} + \boldsymbol{I}_{\boldsymbol{I}\boldsymbol{I}\boldsymbol{I}\boldsymbol{y}}$$

$$I_{Iy} = I_{Is} + A_{I} \cdot d^{2} \rightarrow I_{Iy} = \frac{60.12^{3}}{12} + 60.12 \cdot (66 - 41)^{2} = 458 640 \text{ cm}^{4}$$

$$I_{IIy} = I_{IIs} + A_{II} \cdot d^2 \rightarrow I_{IIy} = \frac{12.48^3}{12} + 12.48 \cdot (36 - 41)^2 = 124 992 \text{ cm}^4$$

$$I_{IIIy} = I_{IIIs} + A_{III} \cdot d^2 \rightarrow I_{IIIy} = \frac{36.12^3}{12} + 36.12 \cdot (6-41)^2 = 534 \cdot 384 \text{ cm}^4$$

$$I_{IIIy} = 1 118 016 \text{ cm}^4$$

3) Momento de Inércia em relação ao eixo Oz.

$$I_z = I_{Iz} + I_{IIz} + I_{IIIz}$$

$$I_{lz} = I_{lt} + A_1.0^2$$
 \rightarrow $I_{lz} = \frac{12.60^3}{12} = 216\ 000\ cm^4$

$$I_{IIz} = I_{IIt} + A_{II} \cdot 0^2 \rightarrow I_{IIz} = \frac{48.12^3}{12} = 6.912 \text{ cm}^4$$

$$I_{IIIz} = I_{IIIt} + A_{III}.0^2 \rightarrow I_{IIIz} = \frac{12.36^3}{12} = 46.656 \text{ cm}^4$$

$$I_{IIIz} = 269 568 \text{ cm}^4$$

4) Conclusão: a peça é mais estável em torno do eixo Oy.

(E5) Para a seção transversal da figura abaixo, determine:

- a) A posição do centro de gravidade (fornecer as coordenadas e indicar os eixos de referência).
- b)Os momentos principais (centrais) de inércia.
- c) As direções dos eixos principais (centrais) de inércia.

Decompondo a peça em 3 partes temos:

1) Cálculo da Área.

$$A = A_1 - A_{11} - A_{111}$$
 \Rightarrow $A = 24.24 - 18.15 - \frac{18.6}{2}$ \Rightarrow $A = 252 \text{ cm}^2$

2) Cálculo do Centro de Gravidade.

 $s_{CG} = 12$ cm Pois um eixo perpendicular a Os em 12 cm divide a peça simetricamente.

$$t_{CG} = \frac{A_{I} \cdot t_{CGI} - A_{II} \cdot t_{CGII} - A_{III} \cdot t_{CGIII}}{A_{I} - A_{II} - A_{III}}$$

$$t_{CG} = \frac{24.24.12 - 18.15.7, 5 - \frac{18.6}{2}.17}{252} \rightarrow t_{CG} = 15,75 \text{ cm}$$

3) Momento de Inércia em relação ao eixo Oy.

$$\mathbf{I}_{\mathbf{y}} = \mathbf{I}_{\mathbf{I}\mathbf{y}} - \mathbf{I}_{\mathbf{I}\mathbf{I}\mathbf{y}} - \mathbf{I}_{\mathbf{I}\mathbf{I}\mathbf{I}\mathbf{y}}$$

$$I_{ly} = I_{ls} + A_1 \cdot d^2$$
 \rightarrow $I_{ly} = \frac{24.24^3}{12} + 24.24 \cdot (12 - 15, 75)^2 = 35748 \text{ cm}^4$

$$I_{IIy} = I_{IIs} + A_{II} \cdot d^2 \rightarrow I_{IIy} = \frac{18.15^3}{12} + 18.15 \cdot (7, 5 - 15, 75)^2 = 23 \ 439 \ cm^4$$

$$I_{\text{IIIy}} = I_{\text{IIIs}} + A_{\text{III}} \cdot d^2 \rightarrow I_{\text{IIIy}} = \frac{18.6^3}{36} + \frac{18.6}{2} \cdot (17 - 15, 75)^2 = 192 \text{ cm}^4$$

$$\therefore I_{IIIy} = 12 \ 116 \ cm^4$$

4) Momento de Inércia em relação ao eixo Oz.

$$\mathbf{I}_{z} = \mathbf{I}_{Iz} - \mathbf{I}_{IIz} - \mathbf{I}_{IIIz}$$

$$I_{Iz} = I_{It} + A_1.0^2$$
 \rightarrow $I_{Iz} = \frac{24.24^3}{12} = 27.648 \text{ cm}^4$

$$I_{IIz} = I_{IIt} + A_{II} .0^2 \rightarrow I_{IIz} = \frac{15.18^3}{12} = 7 \ 290 \ cm^4$$

$$I_{IIIz} = I_{IIIt} + A_{III} \cdot d^2 \rightarrow I_{IIIz} = 2 \cdot \left(\frac{6.9^3}{36} + \frac{6.9}{2} \cdot 3^2 \right) = 729 \text{ cm}^4$$

$$I_{IIIz} = 19629 \text{ cm}^4$$

5) Conclusão: a peça é mais estável em torno do eixo Oz.

Exercício (Presença)

Questão 2

Considere a figura plana dada (hexágono) e determine:

- (a) o centro de gravidade em relação ao eixo Y e Z dados;
- (b) os momentos centrais de inércia.

Considere b = (algarismo das dezenas do número USP) + 1.

Agradecimento

Gostaria de agradecer aos professores Martin Paul Schwark e Osvaldo Nakao pelas sugestões e por exercícios extras.