南京大学 电子科学与工程学院 全日制统招本科生 《信号与系统》期末考试试卷 闭卷

考生年级		考生专业		考生学号		考生姓名_	
题号	_	=	Ξ	四	五	六	总分
得分							
一. (19分)填空与计算:							
(1) 已失	口一带通滤	波器 <i>H</i> (jæ	$\left(\frac{1}{1+i(\alpha)} \right) = \frac{1}{1+i(\alpha)}$	$\frac{10^{5}}{10^{5}} + \frac{1}{10^{5}}$	$\frac{1}{(c+10^5)}$,则其冲激响	本题得分
			$1+J(\omega$	-10°) 1+	$J(\omega+10^{\circ})$		
应 $h(t)$ =	=						
(2) 已知因果信号 $f(t)$ 的拉氏变换 $F(s) = \frac{s^3 + s^2 + 2s + 1}{(s-1)(s+2)(s+3)}$, 则 $f(t)$ 的终值							
$f(\infty) =$:	,初仁	直 $f(0_{+}) = _{-}$		·		
(3) 已知因果信号 $f(t)$ 的单边拉氏变换 $F(s) = \frac{1}{s^2 + s - 1}$, 求的 $y(t) = \frac{df(\frac{1}{3}t - 2)}{dt}$ 单							
边拉氏变换 $Y(s) =$							
(4) 已知 $X(z) = \frac{1+z^{-1}}{1-\frac{5}{6}z^{-1}+\frac{1}{6}z^{-2}}(z >\frac{1}{2})$,求其逆变换 $x(n) = \underline{\hspace{1cm}}$.							
(5) 描述某离散系统的差分方程为 $y(n)+3y(n-1)+2y(n-2)=x(n)$,且							
$y(0) = 0, y(1) = 2$, 设激励 $x(n) = 2^n u(n)$, 求 $y(n) = $							
(6)利月	月 <i>z</i> 变换求:	卷积 y(n)=	= [u(n) - u(n)]	$[n-4)]*2^nu($	(n) =		

二. (18 分) 如图所示系统, 已知 $f(t) = \frac{1}{2}Sa^2(\frac{\pi t}{2})$,

本题得分

$$g(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

- (1) 画出 f(t) 的频谱图并求对信号 f(t) 采样的奈奎斯特间隔 T_0 ;
- (2) $T = \frac{1}{5}$ 时,画出 $r_1(t)$ 、 $r_2(t)$ 、 $r_3(t)$ 的频谱 $R_1(\omega)$ 、 $R_2(\omega)$ 、 $R_3(\omega)$;
- (3) $T = \frac{1}{5}$ 时,若 y(t) = f(t), 画出 $H_2(\omega)$ 的图形

三. (16分)如图所示系统:

本题得分

- (1) 求系统函数 $H(s) = \frac{R(s)}{E(s)}$
- (2) 求使系统稳定的 K_1, K_2 的约束条件
- (3) 在稳定条件下,画H(s)的极点分布图
- (4) 在稳定条件下, 画系统的单位冲激响应的波形图

四. (15分)已知两个级联型系统,其中第一个系统的输入是x(n),

本题得分

系统函数为 $H_1(z) = \frac{2z+1}{z-1}$,输出w(n)。第二个系统输入w(n),系统函数 $H_2(z) = \frac{1}{z-1}$,输出y(n)。试求:

- (1)该系统总的系统函数H(z),并写出系统的差分方程;
- (2) 当输入为 $(\frac{1}{2})^n u(n)$,且y(-2) = 2,w(-2) = 2时,求全响应;
- (3) 当输入为u(n),且y(-2) = 0,y(-1) = 0,求全响应。

五. (16 分) 已知横向滤波器的差分方程为 $y(n) = \sum_{i=0}^{M-1} a^i x(n-i)$, 当

本题得分

M=8时,试求: (1)系统函数H(z)和单位样值响应h(n); (2)画出系统函数

的零极点分布图; (3)粗略画出幅频响应曲线; (4)画系统的结构框图

六. (16分) 如图所示电路中含有理想运算放大器,理想运算放大器 输入阻抗为无限大,输出阻抗为0。试求:

本题得分

- (1) 系统函数 $H(s) = \frac{V_2(s)}{V_1(s)}$
- (2) 为保证稳定工作,求放大器放大 系统 K 的变化范围

(4) 当 K=1, R₁=R₂=R, C₁=C₂=C 时, 粗略画出系统幅频特性曲线