Name	of Student:
------	-------------

Roll	No		
Roll	No:	 •••••	

TKM COLLEGE OF ENGINEERING, KOLLAM-5 Department of Computer Applications III Semester MCA

Internal Assessment (ReTest) March 2022 Course with Code: 20MCA203 Design and Analysis of Algorithms

Fime:2 Qn.	Max		imum Marks: 50		
No.	PART – A	Marks	BL	C	
1_	Answer all questions If f(n)=0m m-1				
2	If $f(n)=a_{m}n^{m}+a_{m-1}n^{m-1}+a_{1}n+a_{0}$. Prove that $f(n)=O(n^{m})$.	3	L2	1	
3	Explain about control abstraction of D&C technique	3	L2	\downarrow_1	
	Describe the control abstraction of Kruskals algorithm to compute the minimum cost spanning tree.		L1	2	
4	State and illustrate the Principle of Optimal Substantant	3	-	-	
5	complexity.	3	L1	3	
6	Differentiate class P and NP in complexity theory				
7	Explain residual graph in network flow	3	L1	3	
8	Explain bipartite graph and its matching with switch it	3	L1	4	
9	Discuss about approximation ratio in Approximate	3	L1	4	
10	Explain polynomial identity testing in Schwartz-Zippel Lemma.	3	L1	5	
	PART – B	3	L1	5	
	MODULE-3				
11 a.	Explain N Queens problem and analyse the solution based on				
	algorithm.	5	L2	3	
	OR				
b	Illustrate the state space tree and explain Subset Sum problem using backtracking technique for w={2,3,4,6,10} and d=12.	5	L2	3	
	MODITE 4				
2 a.	Show that the Clique problem is NP-Complete.				
b .	Describe the procedure and find	5	L2	4	
	network for the figure given below using ford fulkerson algorithm.				
	ı				
	3 Source: 0 Sink: 5	5	L2 .	4	

	MODULE-5	-	+	_
13 a.	a) Describe the 2-approximation algorithm for Vertex Cover	5	L2	5
	problem in approximation algorithm.			
	OR			
	b) Explain randomised quick sort in randomised algorithm.	5	T 0	
	MODULE-3&4	3	L2	5
4 a	Prove that any comparison based sorting has a lower bound complexity of $\Omega(n \log n)$.	5	L2	3
	OR			
)	Show that the Vertex cover problem is NP-Complete.	5	L2	4
1				
1		l .	1 1	

DQAC MCA Department TKMCE