Финальный проект

Прогнозирование стоимости дома по характеристикам

План проекта

1. Постановка задачи	2
2. Выбор метрики	2
3. EDA	2
4. Дубликаты	5
5. Выбросы	5
6. Выбор значимых признаков	5
6.1. Корреляция числовых признаков	5
6.2. Категорийные признаки с небольшим количеством категорий	6
6.3. Категорийные признаки с большим количеством категорий	9
6.4. Тест Стьюдента	9
7. Model 0: Наивная модель	9
8. Model 1: CatBoost	9
9. Model 2: RandomForestRegressor	9
10. Model 3: GradientBoostingRegressor	9
11. Model 4: Простая полносвязная нейросеть	9
12. Blending	10
13. Общие выводы	10

1. Постановка задачи

Необходимо создать модели прогнозирования стоимости объекта недвижимости по заданным характеристикам и определить наиболее точную модель по метрике качества Для обучения моделей будет использован датасет https://drive.google.com/file/d/1An8LtTSdv6pB5nSpNBwH1Njcwh2SpY W6/view

Сложность заключается в том, что представленный датасет не имеет описания. Поэтому значительная часть времени затрачена на анализ данных датасета.

2. Выбор метрики

Для определения качества модели будем использовать метрику МАРЕ. Эта метрика показывает, на сколько процентов в среднем наше предсказание отклоняется от реального значения.

3. EDA

На начало анализа датасета у нас не было описания полей и данных в них. После анализа датасета мы определили и создали следующие признаки:

- 1. Target целевая переменная. Преобразовали в числовое значение. Удалили записи со значениями более 3000000
- 2. Status статус жилья. Всего было вариантов 159. Мы преобразовали все возможные варианты к основным вариантам:
 - 1) 'for sale' на продажу;
 - 2) 'active' активно используется;
 - 3) 'unknown' значение пропущено или непонятно;
 - 4) 'new' новое жилье;
 - 5) 'for rent' сдается в аренду
- 3. private pool и PrivatePool наличие частного бассейна. Объединили оба признака в один PrivatePool, привели его к числовому значению
- 4. propertyType Признак 'тип недвижимости'. Всего было вариантов 1253. Мы преобразовали значения в следующие категории типа недвижимости:
 - houses различные типы домов;

- condos/coops кономиниумы и кооперативы;
- unknown неизвестный или непонятный тип недвижимости;
- lots/land участки земли;
- townhomes таунхаус;
- multi-family дом на несколько семей;
- other style; 8) manufactured новый дом
- 5. homeFacts Признак "Факты о доме". Из этого признака выделили новые признаки:
 - "Year built" год постройки
 - "Remodeled year" год реконструкции
 - 'Heating' отопление
 - 'Cooling' кондиционер
 - 'Parking' парковка
 - 'lotsize' площадь участка
 - 'Price/sqft' цена за 1 ед площади участка
- 6. street Признак- адрес. Из этого признака выделили новые признаки:
 - house num номер дома
 - street_name название улицы
- 7. baths Признак "ванные комнаты". Преобразовали в числовой признак. Значения более 30 заменили на медианное значение для каждого значения propertyType
- 8. fireplace Признак "камин". Преобразовали в числовой признак
- 9. city Признак "город". Отсутствующие значения заменили на «nocity»
- 10. schools Признак 'школа'. Данные о ближайших школах. Выделили новые признаки:
 - elem_scl_mean_count Количество начальных школ
 - elem scl mean rat Средний рейтинг начальных школ
 - elem scl mean dist Среднее расстояние до начальной школы
 - mid_scl_mean_count Количество средних школ
 - mid_scl_mean_rat Средний рейтинг средних школ
 - mid scl mean dist Среднее расстояние до средней школы
 - high scl mean count Количество высших школ
 - high scl mean rat Средний рейтинг высших школ
 - high scl mean dist Среднее расстояние до высшей школы
 - priv scl mean dist Количество частных школ
 - priv_scl_mean_count Среднее расстояние до частной школы Заменили расстояние до школ свыше 35 миль и пропущенные значения на среднее значение Заменили пропущенные значения рейтингов на 0
- 11. sqft Признак "площадь дома в квадратных футах". Преобразовали в числовой признак. Значения представленные в акрах преобразовали в квадратные футы Заменили значения более 7000 и стоимостью менее 1500000 на медианные значения

- 12. zipcode Признак "почтовый индекс". Преобразовали в 5ти значное значения типа строки. С помощью библиотеки uszipcode создали новые признаки связанные с почтовым индексом:
 - population население
 - population_density плотность населения
 - land_area_in_sqmi площадь земли
 - water area in sqmi площадь воды
 - housing units количество жилых единиц
 - occupied_housing_units количество заселенных жилых единиц
 - median_home_value медианная стоимость жилья
 - median_household_income медианная доход домохозяйства Удалили пропущенные значения
- 13. beds Признак "количество спален". В признаке имелись значения 'Baths' и другие примеси. Преобразовали признак в числовой и убрали примеси. Значения с примесями заменили на медианное
- 14. state Признак "штат"
- 15. stories Признак "количество этажей". Преобразовали в числовой признак. Пропущенные значения заменили на медианные
- 16. mls-id и MlsId это признаки идинтификатора включения в единую базу данных участников на рынке недвижимости США. На основании этих признаков создали новый признак MLS со значениями 1 или 0
- 17. Year built Признак 'год постройки'. Отсутствующие значения заменили на 2100. Создали новый признак "возраст дома" (age_house)
- 18. Remodeled year признак «год реконструкции». Отсутствующие значения заменили на 2100. Создали новый признак "возраст реконструкции" (age_remodeled)
- 19. Heating Признак "отопление". Было много вариантов 1887. Преобразовали все варианты в следующие категории отопления:
 - central
 - forced air
 - electric
 - gas
 - other
 - unknown
- 20. Cooling Признак "охлаждение". Было много вариантов 1324. Преобразовали все варианты в следующие категории охлаждения дома:
 - central
 - has cooling
 - ceiling fan
 - other
 - no cooling
 - unknown

- 21. Parking Признак "парковка". Создали новые признаки из этого поля:
 - attached_garage пристроенный гараж
 - detached_garage отделенный гараж
 - carport Навес
 - parking_space парковочное место
 - Признаки числовые. Если признак равен 0, то означает что он отсутствует, если значение более 0, то это количество машиномест в этом признаке. Удалили записи со значением parking space более 100
- 22. lotsize Признак 'размер участка'. Преобразовали в числовое значение. Значения выраженные в акрах привели к квадратным футам
- 23. Price/sqft признак 'стоимость квадратного фута площади дома'. Привели в числовой формат

4. Дубликаты

В датасете удалили дупликаты по следующим столбцам: 'city', 'street', 'target'

5. Выбросы

- Удалено выбросов в столбце target 24350
- Удалено выбросов в столбце lotsize 36140
- Удалено выбросов в столбце beds 27938
- Удалено выбросов в столбце baths 15492
- Удалено выбросов в столбце sqft 15440
- Размер датафрейма до удаления выбросов 303100, после удаления -220286

6. Выбор значимых признаков.

6.1. Корреляция числовых признаков

Числовые признаки, которые наиболее коррелируют с целевой переменной:

- zip_median_home_value 0.585197
- baths 0.585197
- zip_median_household_income 0.341109
- zip population density 0.264796
- beds 0.204898
- high_scl_mean_rat 0.115149

- zip land area in sqmi 0.112175
- elem scl mean rat 0.105801
- parking space 0.093926
- sqft 0.092984

Вполне ожидаемо, что на первом месте показатель медианного стоимости жилья для почтогого индекса с корреляцией 59%, но достаточно странно, что у площади жилья корелляция с целевой переменной всего 9%. Возможно в признаке sqft есть ошибки.

6.2. Категорийные признаки с небольшим количеством категорий

Признак status:

- минимальное значение target для категории аренда. Разница между ней и остальными категориями в 2 порядка
- максимальная верхняя граница значения target для категории new ~1.3 млн.
- категории active, for sale, unknown практически одинаковые 1й, 2й и 3й квартили
- для всех категорий признака имеются "выбросы". Здесь и далее под выбросами мы будем понимать не ошибку в данных (разное жилье может стоить и 50 тыс. и 50 млн.), а статистические выбросы. Хотя, возможно, где-то в данных имеются ошибки.

Признак propertyType:

- максимальная верхняя граница значения target для категории multifamily ~2.25 млн.
- минимальная верхняя граница значения target для категории manufactured ~0.33 млн.
- для всех категорий признака имеются "выбросы"

Признак state:

- максимальная верхняя граница значения target для штатов СА ~2.05 млн и NY ~2 млн.
- минимальная верхняя граница значения target для штата AL ~2.05 млн NY ~0.1 млн.
- для всех штатов кроме AL имеются "выбросы"

Признак Heating:

- максимальная верхняя граница значения target для категории unknown ~1.15 млн.
- минимальная верхняя граница значения target для категории electric ~0.9 млн.
- для всех категорий признака имеются "выбросы"

Признак Cooling:

- максимальная верхняя граница значения target для категории ceiling fan \sim 1.5 млн.
- максимальная верхняя граница значения target для категории no cooling ~0.3 млн.
- для всех категорий признака имеются "выбросы"

Для категорийных признаков с небольшим количеством категорий было использовано кодирование One-hot encoding

6.3. Категорийные признаки с большим количеством категорий

Признаки city, zipcode, street_name имеют большое количество категорий. Для их кодирования было использовано кодирование **FeatureHasher**, которое в проходимом курсе не изучали

6.4. Тест Стьюдента

Статистически значимые различия на тесте Стьюдента были обнаружены для всех категорийных признаков

7. Model 0: Наивная модель

Точность наивной модели - МАРЕ: 58.34%

8. Model 1: CatBoost

По сравнению с наивной моделью (MAPE: 58.34%) с помощью CatBoost мы улучшили метрику до 20.96%

9. Model 2: RandomForestRegressor

По сравнению с CatBoost (MAPE: 20.96%) с помощью RandomForestRegressor мы улучшили метрику до 20.29%

10. Model 3: GradientBoostingRegressor

Метрика MAPE: 24.97% ухудшилась по сравнению с RandomForestRegressor (MAPE: 20.29%)

11. Model 4: Простая полносвязная нейросеть

С помощью простой полносвязной нейросети на 2х этапах (1й с шагом обучения 0.01, 2й с шагом обучения 0.001) мы достигли метрики МАРЕ 20.61% и не смогли улучшить результат RandomForestRegressor MAPE: 20.29%

12. Blending

• Были смешаны результаты моделей: CatBoost, RandomForestRegressor, Простая полносвязная нейросеть

Метрика МАРЕ: 18.73%

Результат метрики существенно улучшился по сравнению с лучшей метрикой

RandomForestRegressor(MAPE: 20.29%)

13. Общие выводы

Что мы делали в проекте:

- 1) анализ и обработка датасета 80% времени
 - определение признаков, создание новых категорий
 - создание новых признаков на основе существующих
 - анализ числовых признаков
 - анализ категорийных признаков
 - определение и удаление дубликатов записей
 - определение и замена (удаление) пропусков
 - определение и удаление выбросов
- 2) определение метрики качества (МАРЕ)
- 3) Создали несколько моделей для прогнозирования стоимости недвижимости:
 - CatBoost
 - RandomForestRegressor
 - GradientBoostingRegressor
 - Простая полносвязная нейросеть

Лучший одиночный результат MAPE: 20.29% был достигнут на модели RandomForestRegressor

Далее по ухудшению метрики:

- 20.61% простая полносвязная нейросеть
- 20.96% CatBoost
- 24.97% GradientBoostingRegressor

- 4) С помощью Blending существенно была увеличена метрика качества МАРЕ до 18.73%. Смешивались следующие модели:
 - CatBoost
 - RandomForestRegressor
 - Простая полносвязная нейросеть

Что не удалось сделать: улучшить метрику качества моделей до 15%. Вероятно проблема во входном датасете и создании на его основе новых категорий.

Для улучшения качества модели предлагается улучшить качество входных данных и дополнить их фотографиями недвижимости, сделать перебор гиперпараметров и признаков.