1 Definiciones y teoremas

Definition 1. Sea A un intervalo abierto que contiene al punto a. Se dice que la función $f: A \to \mathbb{R}$ es continua en a si $\lim_{x\to a} f(x) = f(a)$

Proposition 2. Sify g son continuas en a, entonces f+g, fg y f/g $(g(a)\neq 0)$ son continuas en a. Si ademas g es continua en a y f es continua en g(a) entonces f(g(a)) es continua en a.

Definition 3. Sea A un intervalo abierto. La función $f:A \rightarrow R$ se dice continua en A si f es continua en a para todo $a \in A$.

Theorem 4. Primer Teorema Fuerte. Sea f una función continua en el intervalo [a, b]. Si f(a) <0 y f(b)>0, entonces existe un número $\alpha \in (a,b)$ tal que $f(\alpha)=0$

Corollary 5. Si la función g es continua en [a, b] y satisface g(a)>0 y g (b)<0 entonces existe $a \in (a, b)$ tal que g (a) = 0.

Corollary 6. Si $g : [a, b] \to R$ es continua $g : [a, b] \to R$ es contin

1.

- 2. Determinar en que puntos son continuas las siguientes funciones:
 - a) Esta funcion no es continua en 0
 - b) Esta funcion no es continua en $k \in \mathbb{Z}$

$$- \lim_{x \to k^+} [x] = k$$

$$-\lim_{x\to k^{-}} [x] = k-1$$

- c) Esta funcion ES continua en x=0
- d)
- e)
- f) No esta definido f(0)

3.

- a) $|f(x)| \leq |x|$
 - $\quad -|x| < f(x) < |x|$
 - Si tomo el limite de estas funciones obtengo: $\lim_{x\to 0} -|x| \le \lim_{x\to 0} f(x) \le \lim_{x\to 0} |x|$
 - De manera que: $\lim_{x\to 0} f(x) = 0$
- b) Lo demostramos por definicion:
 - $|f(x)| \le |g(x) g(0)| < \varepsilon \operatorname{si} |x 0| < \delta$
 - Claramente si $|x-0| < \delta \Rightarrow |f(x)| < \varepsilon$