Sistema de controle de mesa de som - Sistemas digitais e microcontrolados

Giovanna Bughi¹, Gustavo Ratier Cardoso², João Vitor Medeiros³, and Luís Spengler⁴

^{1,2,3,4}Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul

Conteúdo

1 Problema proposto

Uma mesa de som conecta três microfones numa única caixa de som amplificada, que são: Microfone Presidente, Microfone Diretor e Microfone Coordenador. Sabendo que somente um microfone pode falar por vez. Elabore um circuito lógico combinacional que permita ligar os microfones segundo a prioridade abaixo:

Prioridade 1 : Presidente

Prioridade 2: Diretor

Prioridade 3: Coordenador

Cada Microfone é acionado pelo usuário por um interruptor (liga-desliga) (ChP, ChD, ChC). Cada microfone ao ser acionado tem sua saída comutada (0 ou 1) informando ao circuito lógico, que por sua vez, aciona uma das saídas (SP, SD, SC), para a caixa amplificada. Então, quando o Presidente ligar seu microfone, terá prioridade sobre os demais. Quando o Diretor ligar seu microfone só terá prioridade sobre o Coordenador. O Coordenador só fala quando os demais não estiverem com seus microfones ligados.

1.1 Esboço do esquema proposto

O problema pode ser esboçado de acordo com o texto apresentado acima.

2 Solução do problema proposto

2.1 Identificação das variáveis de entrada e saída

Foi definido a cada usuário do microfone uma variável distinta, estas sendo as variáveis de entrada (ChP, ChD, ChC). Foram definidas como variáveis de saída SP, SD e SC, suas respectivas saídas.

2.2 Identificação dos estados das variáveis de entrada e saída

As entradas (ChP, ChD, ChC) apenas serão 1 (nível lógico alto) quando os usuários tiverem seus microfones ligados. Se todos tiverem seus microfones ligados, então ChP=1, ChD=1, ChC=1. No entanto, em um estado inicial, todas as variáveis serão igual a 0, portanto: ChP=0, ChD=0,

ChC=0. Conforme a conversa prossegue, cada um dos usuários (que aqui são as variáveis de entrada), alterarão o seu estado lógico para o nível 1.

2.3 Montagem da tabela verdade

Obedecendo a prioridade de cada falante, as saídas na tabela verdade podem ter seus estados definidos pelos valores abaixo.

INPUT			OUTPUT		
ChP	ChD	ChC	SP	SD	SC
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

2.4 Obtenção da expressão de saída

A partir da tabela verdade, pôde-se obter as seguintes expressões:

1. Para SP, em função de ChP:

$$SP = ChP \cdot ChC' + ChP \cdot ChC$$

 $SP = ChP \cdot (ChC' + ChC)$
 $SP = ChP$

2. Para SD, em função de ChD:

$$SD = ChP' \cdot ChD$$

3. Para SC, em função de ChC:

$$SC = (ChP' \cdot ChD') \cdot ChC$$

2.5 Mapa de Karnaugh

Mapa de Karnaugh para a saída do presidente (SP)

		ChPChD			
		00	01	11	10
ChC	0	0	0	1	1
	1	0	0	1	1

Mapa de Karnaugh para a saída do diretor (SD)

		ChPChD			
		00	01	11	10
ChC	0	0	1	0	0
	1	0	1	0	0

Mapa de Karnaugh para a saída do coordenador (SC)

		ChPChD			
		00	01	11	10
ChC	0	0	0	0	0
	1	1	0	0	0

2.6 Simplificação da expressão pelo mapa de Karnaugh

A única expressão que pôde ser simplificada através do mapa de Karnaugh é a expressão referente à SP em função de ChP, pois apenas esta apresenta uma propriedade de simplificação.

- 2.7 Obtenção do circuito lógico
- 2.8 Implementação do hardware a partir do circuito lógico
- 3 Conclusão