Advanced Statistics DS2003 (BDS-4A) Lecture 28

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science, FAST
02 June, 2022

Previous Lecture

- Example of Dr. House and the question, "its never really lupus"
 - Using our knowledge of Bayes' Theorem, we can construct a tree, and then find out the prob(lupus|+)
- Definitions:
 - True Positive
 - True Negative
 - False Positive
 - False Negative
 - Sensitivity and Specificity
- Spam Emails
 - Deciding a threshold

Recap

- Sensitivity
- Specificity
- True Positive
- True Negative
- False Positive
- False Negative

Hypothetical Example 1 - Screening Test A

- 100 people are tested for the disease. 15 people have the disease; 85 people are not diseased. So, prevalence is 15%:
- Sensitivity is two-thirds, so the test is able to detect two-thirds of the people with the disease. The test misses one-third of the people who have the disease.
- The test has 53% specificity. In other words, out of 85 persons without the disease, 45 have true negative results while 40 individuals test positive for a disease that they do not have.

Hypothetical Example 1 - Screening Test A

• Sensitivity:

$$A/(A + C) \times 100$$

 $10/15 \times 100 = 67\%$

• Specificity:

$$D/(D + B) \times 100$$

 $45/85 \times 100 = 53\%$

Positive Predictive Value:

$$A/(A + B) \times 100$$

 $10/50 \times 100 = 20\%$

Truth

	Disease	Non Disease	Total
	(number)	(number)	(number)
Positive (number)	10 A (True Positive)	40 B (False Positive)	50 T _{Test Positive}
Negative (number)	5 C (False Negative)	45 D (True Negative)	50 T _{Test Negative}
	15	85	100
	T _{Disease}	T _{Non Disease}	Total

Hypothetical Example 2 - Increased Prevalence, Same Test

- 100 people are tested for the disease. 30 people have the disease; 70 people are not diseased. *So, prevalence is now 30%*:
- Sensitivity is two-thirds, so the test is able to detect two-thirds of the people with the disease. The test misses one-third of the people who have the disease.
- The test has 53% specificity. In other words, out of **70** persons without the disease, **37** have true negative results while **33** individuals test positive for a disease that they do not have.

Hypothetical Example 2 - Increased Prevalence, Same Test

Sensitivity:

$$A/(A + C) \times 100$$

20/30 × 100 = 67%

• Specificity:

$$D/(D + B) \times 100$$

37/70 × 100 = 53%

• Positive Predictive Value:

$$A/(A + B) \times 100$$

20/53 × 100 = 38%

Truth

	Disease	Non Disease	Total
	(number)	(number)	(number)
Positive (number)	20 A (True Positive)	33 B (False Positive)	53 T _{Test Positive}
Negative (number)	(False Negative)	37 D (True Negative)	47 T _{Test Negative}
	30	70	100
	T _{Disease}	T _{Non Disease}	Total

Useful Links & Resources

• Reference:

• https://online.stat.psu.edu/stat507/lesson/10/10.3