exercise	fit	unfit
fit	.99, 8	.01, 8
unfit	.2, 0	.8, 0

relax	fit	unfit
fit	.7, 10	.3, 10
unfit	0, 5	1, 5

exercise	fit	unfit
fit	.99, 8	.01, 8
unfit	.2, 0	.8, 0

$$q_0(s,a) := p(s,a,\mathrm{fit})r(s,a,\mathrm{fit}) + p(s,a,\mathrm{unfit})r(s,a,\mathrm{unfit})$$

$$V_n(s) := \max(q_n(s,\mathrm{exercise}),q_n(s,\mathrm{relax}))$$

$$q_{n+1}(s,a) := q_0(s,a) + .9(p(s,a,\mathrm{fit})V_n(\mathrm{fit}) + p(s,a,\mathrm{unfit})V_n(\mathrm{unfit}))$$

$$q_0(s, a) := p(s, a, \text{fit})r(s, a, \text{fit}) + p(s, a, \text{unfit})r(s, a, \text{unfit})$$

 $V_n(s) := max(q_n(s, \text{exercise}), q_n(s, \text{relax}))$
 $q_{n+1}(s, a) := q_0(s, a) + .9(p(s, a, \text{fit})V_n(\text{fit}) + p(s, a, \text{unfit})V_n(\text{unfit}))$

		exercise		relax		π
fit	8		10		relax	
unfit	0		5		relax	

exercise	fit	unfit
fit	.99, 8	.01, 8
unfit	.2, 0	.8, 0

$$q_0(s, a) := p(s, a, \text{fit})r(s, a, \text{fit}) + p(s, a, \text{unfit})r(s, a, \text{unfit})$$

 $V_n(s) := max(q_n(s, \text{exercise}), q_n(s, \text{relax}))$
 $q_{n+1}(s, a) := q_0(s, a) + .9(p(s, a, \text{fit})V_n(\text{fit}) + p(s, a, \text{unfit})V_n(\text{unfit}))$

	exercise	relax	π
fit	8, 16.955	10, 17.65	relax, relax
unfit	0, 5.4	5, 9.5	relax, relax

exercise	fit	unfit
fit	.99, 8	.01, 8
unfit	.2, 0	.8, 0

$$q_0(s, a) := p(s, a, \text{fit})r(s, a, \text{fit}) + p(s, a, \text{unfit})r(s, a, \text{unfit})$$

 $V_n(s) := max(q_n(s, \text{exercise}), q_n(s, \text{relax}))$
 $q_{n+1}(s, a) := q_0(s, a) + .9(p(s, a, \text{fit})V_n(\text{fit}) + p(s, a, \text{unfit})V_n(\text{unfit}))$

	exercise	relax	π
fit	8, 16.955, <mark>23.812</mark>	10, 17.65, 23.685	relax, relax, exercise
unfit	0, 5.4, 10.017	5, 9.5, 13.55	relax, relax, relax

Temporal difference (TD)

A sequence of values

$$v_1, v_2, v_3, \dots$$

averages at time k to

$$A_k := \frac{v_1 + \cdots + v_k}{k}$$

Temporal difference (TD)

A sequence of values

$$v_1, v_2, v_3, \ldots$$

averages at time k to

$$A_k := \frac{v_1 + \cdots + v_k}{k}$$

which learning v_{k+1} updates to

$$A_{k+1} = \frac{v_1 + \dots + v_k + v_{k+1}}{k+1}$$
$$= \frac{k}{k+1} A_k + \frac{1}{k+1} v_{k+1}$$

Temporal difference (TD)

A sequence of values

$$v_1, v_2, v_3, \ldots$$

averages at time k to

$$A_k := \frac{v_1 + \cdots + v_k}{k}$$

which learning v_{k+1} updates to

$$A_{k+1} = \frac{v_1 + \dots + v_k + v_{k+1}}{k+1}$$
$$= \frac{k}{k+1} A_k + \frac{1}{k+1} v_{k+1}$$

so if
$$\alpha_k = \frac{1}{k}$$
,

new

$$\begin{array}{rcl} A_{k+1} &=& (1-\alpha_{k+1})A_k + \alpha_{k+1} \overbrace{\nu_{k+1}} \\ &=& \underbrace{A_k} + \alpha_{k+1} (\underbrace{\nu_{k+1} - A_k}) \\ & \text{old} & \text{temp diff: new-old} \end{array}$$

Q-Learning

Assume v_{k+1} is derived from r_{k+1}, s_{k+1} , observed sequentially

$$s_1 \stackrel{a_1}{\rightarrow} r_2, s_2 \stackrel{a_2}{\rightarrow} r_3, s_3 \stackrel{a_3}{\rightarrow} \cdots \underbrace{s_k \stackrel{a_k}{\rightarrow} r_{k+1}, s_{k+1}}_{s_{k+1}} \stackrel{a_{k+1}}{\rightarrow} \cdots$$

experience from which we learn

$$v_{k+1} := r_{k+1} + \gamma \max_{a} Q_k(s_{k+1}, a)$$

Q-Learning

Assume v_{k+1} is derived from r_{k+1}, s_{k+1} , observed sequentially

$$s_1 \stackrel{a_1}{\rightarrow} r_2, s_2 \stackrel{a_2}{\rightarrow} r_3, s_3 \stackrel{a_3}{\rightarrow} \cdots \underbrace{s_k \stackrel{a_k}{\rightarrow} r_{k+1}, s_{k+1}}_{+1} \stackrel{a_{k+1}}{\rightarrow} \cdots$$

experience from which we learn

$$v_{k+1} := r_{k+1} + \gamma \max_{a} Q_k(s_{k+1}, a)$$

given $0 \leq \gamma < 1$, $\mathit{Q}_1: (\mathit{S} \times \mathit{A}) \to \mathbb{R}$ and $\mathit{v}_1 \in \mathbb{R}$, with

$$Q_{k+1}(s_k, a_k) := (1 - \alpha)Q_k(s_k, a_k) + \alpha v_{k+1}$$

for $0 \le \alpha \le 1$,

Q-Learning

Assume v_{k+1} is derived from r_{k+1}, s_{k+1} , observed sequentially

$$s_1 \stackrel{a_1}{\rightarrow} r_2, s_2 \stackrel{a_2}{\rightarrow} r_3, s_3 \stackrel{a_3}{\rightarrow} \cdots \underbrace{s_k \stackrel{a_k}{\rightarrow} r_{k+1}, s_{k+1}}_{+1} \stackrel{a_{k+1}}{\rightarrow} \cdots$$

experience from which we learn

$$v_{k+1} := r_{k+1} + \gamma \max_{a} Q_k(s_{k+1}, a)$$

given $0 \leq \gamma < 1$, $\mathit{Q}_1: (\mathit{S} \times \mathit{A}) \to \mathbb{R}$ and $\mathit{v}_1 \in \mathbb{R}$, with

$$Q_{k+1}(s_k, a_k) := (1 - \alpha)Q_k(s_k, a_k) + \alpha v_{k+1}$$

for $0 \le \alpha \le 1$, smelling like

$$A_{k+1} = (1 - \alpha_{k+1})A_k + \alpha_{k+1}v_{k+1}$$
 for $\alpha_{k+1} = \frac{1}{k+1}$

from previous slide (on TD).

Averaging?

$$v_{k+1} = r_{k+1} + \gamma \max_{a} Q_k(s_{k+1}, a)$$

$$\underbrace{Q_{k+1}(s_k, a_k)}_{A_{k+1}} = (1 - \alpha) \underbrace{Q_k(s_k, a_k)}_{e} + \alpha v_{k+1}$$

$$\neq Q_k(s_{k-1}, a_{k-1}) = A_k$$

Averaging?

$$\begin{array}{ll}
v_{k+1} &= r_{k+1} + \gamma \max_{a} Q_{k}(s_{k+1}, a) \\
\underline{Q_{k+1}(s_{k}, a_{k})} &= (1 - \alpha) \underbrace{Q_{k}(s_{k}, a_{k})}_{d} + \alpha v_{k+1} \\
A_{k+1} &\neq Q_{k}(s_{k-1}, a_{k-1}) = A_{k}
\end{array}$$

for a deterministic MDP

i.e.,
$$p(s, a, s') \in \{0, 1\}$$
 for all s, a, s'

let $\alpha=1$ as v_{k+1} may look-ahead further than Q_k for the experience $s_k, a_k, r_{k+1}, s_{k+1}$ (determined by s_k, a_k)

Averaging?

$$\begin{array}{ll}
v_{k+1} &= r_{k+1} + \gamma \max_{a} Q_{k}(s_{k+1}, a) \\
\underline{Q_{k+1}(s_{k}, a_{k})} &= (1 - \alpha) \underbrace{Q_{k}(s_{k}, a_{k})}_{d} + \alpha v_{k+1} \\
A_{k+1} &\neq Q_{k}(s_{k-1}, a_{k-1}) = A_{k}
\end{array}$$

for a deterministic MDP

i.e.,
$$p(s, a, s') \in \{0, 1\}$$
 for all s, a, s'

let $\alpha=1$ as v_{k+1} may look-ahead further than Q_k for the experience $s_k, a_k, r_{k+1}, s_{k+1}$ (determined by s_k, a_k)

for 0 < p(s, a, s') < 1, sample s' at frequency $\propto p(s, a, s')$ to average Q as a whole (not just Q(s, a) at a particular (s, a)), converging to optimal Q under certain assumptions, including

$$\sum \alpha_k = \infty$$
 and $\sum \alpha_k^2 < \infty$ (e.g. $\alpha_k = \frac{1}{k}$)

MDP, one experience at a time

Update $q:(S\times A)\to\mathbb{R}$ via p,r for

$$q'(s, a) := \sum_{s'} p(s, a, s')(r(s, a, s') + \gamma \max_{a'} q(s', a'))$$

or pointwise via experience $s_1 \stackrel{a_1}{\rightarrow} r_2, s_2$ for

$$q'(s,a) := \left\{ egin{array}{ll} lpha(r_2 + \gamma \max_{a'} q(s_2,a')) \ + (1-lpha)q(s,a) & ext{if } s = s_1 ext{ and } a = a_1 \ q(s,a) & ext{otherwise.} \end{array}
ight.$$

MDP, one experience at a time

Update $q:(S\times A)\to\mathbb{R}$ via p,r for

$$q'(s, a) := \sum_{s'} p(s, a, s')(r(s, a, s') + \gamma \max_{a'} q(s', a'))$$

or pointwise via experience $s_1 \stackrel{a_1}{\to} r_2, s_2$ for

$$q'(s,a) := \left\{ egin{array}{ll} lpha(r_2 + \gamma \max_{a'} q(s_2,a')) & \\ + (1-lpha)q(s,a) & ext{if } s = s_1 ext{ and } a = a_1 \\ q(s,a) & ext{otherwise}. \end{array}
ight.$$

To converge to MDP's optimal Q-value, visit every state-action pair (s, a) repeatedly (for $s \stackrel{a}{\to} r', s'$ with diff s', r' under p, r).

MDP, one experience at a time

Update $q:(S\times A)\to\mathbb{R}$ via p,r for

$$q'(s, a) := \sum_{s'} p(s, a, s')(r(s, a, s') + \gamma \max_{a'} q(s', a'))$$

or pointwise via experience $s_1 \stackrel{a_1}{\rightarrow} r_2, s_2$ for

$$q'(s,a) := \left\{ egin{array}{ll} lpha(r_2 + \gamma \max_{a'} q(s_2,a')) \ + (1-lpha)q(s,a) & ext{if } s = s_1 ext{ and } a = a_1 \ q(s,a) & ext{otherwise.} \end{array}
ight.$$

To converge to MDP's optimal Q-value, visit every state-action pair (s, a) repeatedly (for $s \stackrel{a}{\to} r', s'$ with diff s', r' under p, r).

End episode

$$s_1 \stackrel{a_1}{\rightarrow} r_2, s_2 \stackrel{a_2}{\rightarrow} r_3, s_3 \stackrel{a_3}{\rightarrow} \cdots \stackrel{a_{n-1}}{\rightarrow} r_n, s_n$$

at an absorbing state s_n with $r(s_n, a, s_n) = 0$ for every action a.

Exploration-exploitation tradeoff

$$s \stackrel{a}{ o} r', s'$$
 r', s' from environment, but a ?
$$Q_{n+1}(s,a) := \alpha[r' + \gamma \max_{a'} Q_n(s',a')] + (1-\alpha)Q_n(s,a)$$
 from functional policy $\pi: S \to A$ [e.g. $\pi_Q(s) = \arg\max_a Q(s,a)$]

Exploration-exploitation tradeoff

$$s \overset{a}{\to} r', s' \qquad r', s' \text{ from environment, but } a?$$

$$Q_{n+1}(s,a) := \alpha[r' + \gamma \max_{a'} Q_n(s',a')] + (1-\alpha)Q_n(s,a)$$
 from functional policy $\pi: S \to A$ [e.g. $\pi_Q(s) = \arg\max_a Q(s,a)$] to $\pi: (S \times A) \to [0,1]$ s.t. $\sum_{a \in A} \pi(s,a) = 1$ for each $s \in S$ e.g. for n actions, m having $\max_a Q(s,\cdot)$
$$\pi_Q^\epsilon(s,a) = \left\{\begin{array}{cc} \frac{1-\epsilon}{m} + \frac{\epsilon}{n} & \text{if } Q(s,a) \text{ is max } (\dagger) \\ \frac{\epsilon}{n} & \text{otherwise} \end{array} \right.$$
 (†) says exploit: use what we know

(‡) says explore: try something new (for the future)

Exploration-exploitation tradeoff

$$s \stackrel{\textbf{a}}{\to} r', s' \stackrel{\textbf{a}'}{\to} \cdots$$
 r', s' from environment, but a ? $Q_{n+1}(s,a) := \alpha[r' + \gamma \max_{a'} Q_n(s',a')] + (1-\alpha)Q_n(s,a)$ from functional policy $\pi: S \to A$ [e.g. $\pi_Q(s) = \arg\max_a Q(s,a)$] to $\pi: (S \times A) \to [0,1]$ s.t. $\sum_{a \in A} \pi(s,a) = 1$ for each $s \in S$

e.g. for *n* actions, *m* having max $Q(s,\cdot)$

$$\pi_Q^{\epsilon}(s,a) = \left\{ egin{array}{ll} rac{1-\epsilon}{m} + rac{\epsilon}{n} & ext{if } Q(s,a) ext{ is max} & (\dagger) \ rac{\epsilon}{n} & ext{otherwise} & (\ddagger) \end{array}
ight.$$

- (†) says exploit: use what we know
- (‡) says explore: try something new (for the future)

SARSA: replace arg max by policy in use

$$Q_{n+1}(s,a) := \alpha[r' + \gamma Q_n(s',a')] + (1-\alpha)Q_n(s,a)$$