

Breast Cancer Data Insights: A Rigorous Analysis of SEER Records (1992-2020)

By:

Keerthi Dwaraka Kovelamudi

Teja Katikam

Tiffany Neza

Mayuresh Abhay Shastri

Agenda

Introduction

Background

Dataset Background Research question

Variables

Data Analysis

Conclusion

References

Introduction

Breast Cancer is the second leading cause of death among women.

Breast Cancer is the one of the most common diagnosable cancers in women in the United States.

4,100,000 Women who are living with or have a history of breast cancer.

287,850 Invasive breast cancer cases are estimated to be diagnosed this year.

43,250 Women are estimated to die from breast cancer this year.

Background

Risk Factors of Breast Cancer

Key Symptoms of Breast Cancer

Early Signs of Breast Cancer

and Breast self-examination

Treatments

Treatment Options

Prevention

PREVENTION BREAST CANCER

you can exercise breast cancer prevention by doing these

Dataset Background

- •Data was obtained from the National Cancer Institute of Surveillance, Epidemiology, and End Results Program (SEER).
- •Our dataset from the SEER Registry, includes individuals who were diagnosed with breast cancer between 1992 and 2020.
- •The dataset contains information on age, sex, main cancer site, year of diagnosis, ICD codes, months from diagnosis to therapy, race, cause of death, course of treatment, and other facts.
- •SEER now collects and disseminates data on cancer incidence and survival from population-based cancer registries, which cover approximately 48.0% of the US population.
- •SEER receives death data from the National Center for Health Statistics. The demographic data required to calculate cancer rates are frequently provided by the Census Bureau. The registration is updated annually.

Focus of the study:

Survival length

Overall average length of survival of breast cancer and survival rates.

Research Question:

What is the impact of delay in treatment on survival months?

Variables

VARIABLES	ТҮРЕ	VARIABLE NAME	
GENDER OF PATIENT	NOMINAL	SEX	
RACE OF PATIENT	NOMINAL	RACE_RECODE_WHITE_BLACK_OTHE	
AGE RANGE OF PATIENT	CATEGORICAL	AGE_RECODE_WITH1_YEAR_OLDS	
MONTHS OF SURVIVAL	CONTINUOUS	SURVIVAL_MONTHS	
YEAR OF DIAGNOSIS	CONTINUOUS	YEAR_OF_DIAGNOSIS	
DEATH ASSOCIATED WITH CANCER	BINARY	SEER_CAUSE_SPECIFIC_DEATH_CLASS	
MONTHS BETWEEN DIAGNOSIS AND TREATMENT	CONTINUOUS	MONTHS_FROM_DIAGNOSIS_TO_TREATMENT	

Handling Data

Missing Data

• The term "unknown" is used to remove missing data as "Blanks" from records.

Survival Months

- survival months are recoded into four categories as survival code.
 - <5 years
 - 5-<10 years
 - 10-<15 years
 - 15-20 years

Data Analysis

Demographics

SEX:

• FEMALE: 99.31%

• MALE: 0.69%

RACE

- WHITE= 81.15%
- BLACK= 10.02%
- OTHER= 8.82%

Percent and frequency Chart of Survivalcode

FREQUENCY of Survivalcode

Survival Months

Descriptive Statistics and Tests of Normality

Mean Survival_months was 86.57 with SD(64.19)

- Median = 108.0
- Skewness = 0.76
- Kurtosis = -0.33
- IQR (Interquartile Range) = 129
- All tests for normality for Survival _months variable were <0.05.
- ⇒Shows non Normal distribution.

Descriptive statistics

The UNIVARIATE Procedure Variable: Survival_months

Moments						
N	723916	Sum Weights	723916			
Mean	108.405457	Sum Observations	78476445			
Std Deviation	86.0216328	Variance	7399.7213			
Skewness	0.7661484	Kurtosis	-0.3355452			
Uncorrected SS	1.3864E10	Corrected SS	5356769248			
Coeff Variation	79.3517549	Std Error Mean	0.1011029			

Basic Statistical Measures					
Location Variability					
Mean	108.4055	Std Deviation	86.02163		
Median	88.0000	Variance	7400		
Mode	0.0000	Range	348.00000		
		Interquartile Range	129.00000		

Tests for Location: Mu0=0						
Test	Statistic p Value					
Student's t	t	1072.229	Pr > t	<.0001		
Sign	M	357830	Pr >= M	<.0001		
Signed Rank	s	1.28E11	Pr >= S	<.0001		

Tests for Normality						
Test Statistic p Value						
Kolmogorov-Smirnov	D	0.103797	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	2650.471	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	16830.85	Pr > A-Sq	<0.0050		

Scatter Plot

Grouped scatter plot displaying as months from diagnosis to treatment increases, length of survival decreases.

Weak/negative correlation.

Box Plot

Similar to the scatter plot, this Box Plot is also displaying that as months from diagnosis increases, length of survival decreases.

5-year Survival Association with Race

Survival rate between race?

- Only 57% of breast cancer patients survived for at least 5 years.
- 5yr survival among Race
 - Black = 50.64%
 - Other Race = 55.24%
 - White = 58.62%

Black patients have lower 5 yr survival

chi-s quare analysis 5 years survival

The FREQ Procedure

Frequency
Expected
Percent
Row Pct
Col Pct

	Race_recodeWhiteBlackOthe					
New_Survival code	Black	Other (American Indian/AK Native, Asian/Pacific Islander)	White	Total		
N	53992	43107	366502	483801		
	48488	40912	376223			
	4.95	3.95	33.58	42.48		
	11.65	9.30	79.06			
	49.36	44.76	41.38			
Υ	55390	53200	519136	627726		
	62916	55395	509415			
	5.08	4.87	47.57	57.52		
	8.82	8.48	82.70			
	50.64	55.24	58.62			
Total	109382	96307	885638	1091327		
	10.02	8.82	81.15	100.00		

Statistics for Table of New_Survival code by Race_recode_White_Black_Othe

Statistic	DF	Value	Prob
Chi-Square	2	2760.7342	<.0001
Likelihood Ratio Chi-Square	2	2738.1389	<.0001
Mantel-Haenszel Chi-Square	1	2748.9001	<.0001
Phi Coefficient		0.0503	
Contingency Coefficient		0.0502	
Cramer's V		0.0503	

Sample Size = 1091327

*New_Survivalcode Y = Patient survived for >= 5 years

Chi Square Analysis

Only 40% patients started Chemotherapy.

(While only 51.6% of black patients, 38.08% white patients, and 44.08% others received chemotherapy.)

Patients who got chemotherapy have better 5 year survival (58.19%)

chi-square analysis chemotherapy with Race

The FREQ Procedure

Fre quency	Table of Chemotherapy_recodeyes_	_no_un by Race_recodeWhiteBlackOthe				
Expected Percent Row Pct Col Pct		Race_recodeWhiteBlackOthe				
	Chemotherapy_recodeyesno_un	Black	Other (A merican Indian/AK Native, Asian/Pacific Islander)	White	Total	
	No/Unknown	52884 65888 4.85 8.07 48.35	53856 57816 4.93 8.22 55.92	548421 531679 50.25 83.71 61.92	655161	
	Yes	58498 43718 5.18 12.95 51.65	42451 38491 3.89 9.73 44.08	337217 353959 30.90 77.31 38.08	436166 39.97	
	Total	109382	96307 8.82	885638 81.15	1091327	

Statistics for Table of Chemotherapy_recode_yes_no_un by Race_recode_White_Black_Othe

Statistic	DF	Value	Prob
Chi-S quare	2	8222.9656	<.0001
Likelihood Ratio Chi-Square	2	8083.8640	<.0001
Mantel-Haenszel Chi-Square	1	8203.1146	<.0001
Phi Coefficient		0.0868	
Contingency Coefficient		0.0865	
Cramer's V		0.0868	

Sample Size = 1091327

*Missing data excluded

chi-square analysis 5 years survival by chemotherapy

The FREQ Procedure

Frequency Expected	Table of New_Survivalco			
Percent		Che mothe rapy_re	ecode_yes	_no_un
Row Pct Col Pct	New_Survivatcode	No/Unknown	Yes	Tota
Col Pet	N	281234	182367	46360
		278316	185285	
		25.77	16.71	42.4
		60.66	39.34	
		42.93	41.81	
	Y	373927	253799	627726
		376845	250881	
		34.26	23.26	57.5
		59.57	40.43	
		57.07	58.19	
	Total	655161	436166	109132
		60.03	39.97	100.0

Statistics for Table of New_Survival code by Chemotherapy_recode_yes_no_un

Sta tistic	DF	Value	Prob
Chi-Square	1	133.1218	<.0001
Likelihood Ratio Chi-Square	1	133.1864	<.0001
Continuity Adj. Chi-Square	1	133.0762	<.0001
Mantel-Haen szel Chi-Square	1	133.1217	<.0001
Phi Coefficient		0.0110	
Contingency Coefficient		0.0110	
Cramer's V		0.0110	

Fisher's Exact Te	st
Cell (1,1) Frequency (F)	28123
Left-sided Pr <= F	1.000
Right-sided Pr >= F	<.000
Table Probability (P)	<.000
Two-sided Pr <= P	< 000

\$ample \$1ze = 1091327

"Missing data excluded

20

Analysis of variance: Months of survival and Age category

•Ho: No difference in means

•H1: there is difference

• Findings: P<0.05 suggests rejecting the null hypothesis, there is a statistically significant difference in survival months between age categories.

Analysis of variance in Surval months between Age groups

The ANOVA Procedure

Dependent Variable: Survival_months

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	17	196986548	11587444	2939.47	<.0001
Error	1.1E6	4322670133	3942		
Corrected Total	1.1E6	4519656680			

R-Square	Coeff Var	Root MSE	Survival_months Mean
0.043584	72.52531	62.78551	86.57049

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Age_recode_with1_y	17	196986547.8	11587444.0	2939.47	<.0001

Independent T-Test: Survival Months by Gender

Means and Standard Deviations:

- Female group: Mean = 108.6, S.D = 86.08
- Male group: Mean = 83.55, S.D = 73.64

95% Confidence Intervals:

- Females = 108.4 108.8
- Males = 81.51 85.59
- Difference in means = 22.64 27.42

T-Test Results:

• The t-value is 20.54 with a very low p-value (< 0.0001), suggesting a statistically significant difference in survival months between males and females.

The TTEST Procedure

Variable: Survival_months1

Sex	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
Female		718900	108.6	86.0766	0.1015	0	348.0
Male		5016	83.5486	73.6421	1.0398	0	347.0
Diff (1-2)	Pooled		25.0302	85.9966	1.2185		
Diff (1-2)	Satterthwaite		25.0302		1.0447		

Sex	Method	Mean	95% CL	. Mean	Std Dev	95% CL	Std Dev
Female		108.6	108.4	108.8	88.0788	85.9361	86.2175
Male		83.5486	81.5102	85.5871	73.6421	72.2288	75.1122
Diff (1-2)	Pooled	25.0302	22.6421	27.4184	85.9966	85.8568	86.1369
Diff (1-2)	Satterthwaite	25.0302	22.9821	27.0784			

Equality of Variances:

• The test for equality of variances (Folded F) is statistically significant (p < 0.0001), indicating that the variances in survival months are significantly different between males and females.

In summary, females have a significantly higher and clinically meaningful survival rate than males, supported by both statistical tests and confidence intervals.

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	723914	20.54	<.0001
Satterthwaite	Unequal	5111.1	23.96	<.0001

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	718899	5015	1.37	<.0001			

Box Plot : Survival Months by Gender

Females:

1. Central Tendency:

Mean survival month: ~91.24 Median (50th percentile): 60.0

2. Variability:

Standard deviation: ~85.42 Interquartile range (IQR): 118.0

3. Distribution Shape:

Positively skewed (Skewness = 1.12) Kurtosis: 0.22 (relatively normal)

Males:

1. Central Tendency:

Mean survival month: ~108.41 Median (50th percentile): 88.0

2. Variability:

Standard deviation: ~86.02 Interquartile range (IQR): 129.0

3. Distribution Shape:

Positively skewed (Skewness = 0.77) Kurtosis: -0.34 (flatter distribution)

- Both genders show positively skewed distributions with wide ranges.
- Extreme values impact the mean, which is higher than the median for both males and females.
- Females have a relatively lower median survival month compared to males.
- The distributions have varying shapes, with females showing a right-skewed distribution and males having a flatter distribution.

Contingency Table: Sex vs Survival

Cell Frequencies:

 The frequencies in the cells show the distribution of individuals who survived across different months for both males and females.

Chi-Square Test:

• The Chi-Square test indicates a statistically significant realation between "Sex" and "Survival_months1" (p-value < 0.05).

Observation:

 While a statistically significant relation between gender and survival months has been identified, the weak association indicates that gender might not be a strong predictor or determinant of survival months after diagnosis.

Total	131	130	129	128	127	126	125
313087	1174	1326	1337	1240	1379	1406	1374
99.25	0.37	0.42	0.42	0.39	0.44	0.45	0.44
	0.37	0.42	0.43	0.40	0.44	0.45	0.44
	99.75	99.18	99.48	99.28	99.35	99.79	99.42
2384	3	11	7	9	9	3	8
0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.13	0.47	0.30	0.38	0.38	0.13	0.34
	0.25	0.82	0.52	0.72	0.65	0.21	0.58
315451	1177	1337	1344	1249	1388	1409	1382
100.00	0.37	0.42	0.43	0.40	0.44	0.45	0.44

Phi Coefficient, Contingency Coefficient, Cramer's V:

• These coefficients measure the strength of association. In this case, they are all very close to zero (0.0233), suggesting a weak association between gender and survival months

Statistics for Table of Sex by Survival_months1

Statistic	DF	Value	Prob
Chi-Square	131	171.8578	0.0096
Likelihood Ratio Chi-Square	131	180.2993	0.0028
Mante I-Haenszel Chi-Square	1	60.8604	<.0001
Phi Coefficient		0.0233	
Contingency Coefficient		0.0233	
Cramer's V		0.0233	

Sample Size = 315451

Linear Regression Analysis

Linear regression analysis in SAS is used for modeling the relationship between a dependent variable and one or more independent variables. It helps in predicting outcomes and understanding the strength and nature of the relationship between variables.

Our R-Square value here is approximately 0.26, suggesting that around 26% of the variability in survival can be explained by our model.

The F-values are well above the threshold for statistical significance, showing that our model has a strong fit.

All p-values are $<0.05 \rightarrow$ all variables are significantly associated with survival months.

In conclusion, this regression model is a valuable tool for predicting outcomes and analyzing the interplay of various factors affecting survival time.

Linear Regression analysis

The GLM Procedure

Dependent Variable: Survival_months

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	118632839	29658210	7391.32	<.0001
Error	1.09E6	4379006311	4013		
Corrected Total	1.09E6	4497639149			

R-Square	Coeff Var	Root MSE	Survival_months Mean
0.026377	73.07641	63.34485	86.68304

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Months_from_diagnosi	1	104027994.3	104027994.3	25925.5	<.0001
Chemotherapy_recode_	1	2889798.8	2889798.8	720.19	<.0001
Race_recodeWhite	2	11715045.5	5857522.8	1459.79	<.0001

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Months_from_diagnosi	1	98671036.91	98671036.91	24590.5	<.0001
Chemotherapy_recode_	1	3989392.02	3989392.02	994.22	<.0001
Race_recodeWhite	2	11715045.54	5857522.77	1459.79	<.0001

*New_Survivalcode Y= Patient survived for >=5 years

Conclusion

Insights from Breast Cancer Survival Data

- Survival Rates Following Diagnosis
- Length of Survival
- Differences in Survival Rates
- Chemotherapy differs based on groups

Methods Critique and Suggestions

- Analysis Approach
- Examination of Disparities
- Understanding Treatment
 Utilization

- Enhanced Reporting
- Exploring Various Factors
- Consider Generalizability

What Would We Have Done Differently?

- Consider performing more in-depth exploratory data analysis
 - Evaluate the impact of outliers
 - Analyze time-to-event data more effectively.

Enjoyable and Challenging Aspects

- Enjoyable: Creating visualizations like pie charts, bar charts, and scatter plots to understand the data distribution.
- Challenging: Dealing with missing or unknown data and deciding on appropriate strategies for handling them. Also, interpreting the results of statistical tests accurately.

References

Centers for Disease Control and Prevention. (2022, September 26). Breast cancer. Centers for Disease Control and Prevention. Retrieved December 1, 2022, from https://www.cdc.gov/cancer/breast/index.htm

- Akram, M., Iqbal, M., Daniyal, M., & Samp; Khan, A. U. (2017). Awareness and current knowledge of breast cancer. Biological Research, 50(1). https://doi.org/10.1186/s40659-017-0140-9
- Sun, Y.-S., Zhao, Z., Yang, Z.-N., Xu, F., Lu, H.-J., Zhu, Z.-Y., Shi, W., Jiang, J., Yao, P.-P., & Shu, H.-P. (2017). Risk factors and preventions of breast cancer. International Journal of Biological Sciences, 13(11), 1387–1397. https://doi.org/10.7150/ijbs.21635
- Wheeler, S. B., Reeder-Hayes, K. E., & E., & Disparities in breast cancer treatment and outcomes: Biological, social, and Health System Determinants and opportunities for research. The Oncologist, 18(9), 986–993. https://doi.org/10.1634/theoncologist.2013-0243

THANK YOU

