Lösungsstrategien für NP-schwere Probleme Blatt 7

Jakob Rieck 6423721 Konstantin Kobs 6414943 Thomas Maier 6319878

Tom Petersen 6359640

Abgabe zum 06.06.16

Aufgabe 1

Wir wenden die Pricing-Methode auf das gewichtete Hitting-Set-Problem an

Es sei $B(a_i)$ die Familie von Mengen B_j , in denen a_i enthalten ist. Jedes Element B_j erhält einen Preis p_j , der im Laufe des Algorithmus berechnet wird. Weiterhin gelte folgende Fairness-Regel für alle Elemente $a_i \in A$:

$$\sum_{B_j \in B(a_i)} p_j \le w_i$$

Ein Element $a_i \in A$ ist tight, wenn

$$\sum_{B_j \in B(a_i)} p_j = w_i$$

gilt. Der Algorithmus läuft nun solange noch Mengen B_j , die ein nicht-tightes Element aus A enthalten, existieren und wählt eines dieser Elemente aus. Der Preis dieses Elements wird nun maximal erhöht, ohne die Fairness-Regel zu verletzen. Nach Beendigung der Schleife bilden alle tighten Elemente aus A ein Hitting Set.

Die Schleife terminiert, da in jedem Schritt mindestens ein Element aus A tight gemacht wird und A endlich ist. Nachdem der Algorithmus beendet

wurde, enthält jedes B_j mindestens ein tightes Element, das in das Hitting Set aufgenommen wird, daher arbeitet der Algorithmus auch korrekt.

TBD: k-Approximation

Aufgabe 2

a) Dynamic Programming 1: Waagerecht ist das Gewicht aufgetragen; vertikal die Items; Einträge in der Tabelle sind die (summierten) Werte der Items.

4	0	2	2	3	3	3	5	7	7	<u>8</u>
3	0	2	2	3	3	3	5	7	7	<u>8</u>
2	0	0	1	1	1	1	5	5	<u>6</u>	<u>6</u>
1	0	0	0	0	0	0	<u>5</u>	5	<u>5</u>	5
0	0	0	0	0	0	0	<u>0</u>	0	7 7 $\underline{6}$ $\underline{5}$ 0	0
	0	1	2	3	4	5	6	7	8	9

Die Tabelle zeigt, dass wir einen maximalen Wert von 8 erreichen können. Hierzu müssen wir die Items 1, 2 und 3 in den Rucksack packen.

b) Dynamic Programming 2: Waagerecht ist der maximale Gesamtwert (11) aufgetragen; vertikal die Items; Einträge in der Tabelle sind die (summierten) Gewichte.

Die Tabelle zeigt, dass wir ein Gewicht von maximal 9 erreichen, wobei wir einen Wert von 8 erreichen. Hierzu müssen, wie schon in a), Items 1, 2 und 3 hinzugefügt werden. Dies ist das gleiche Ergebnis wie in a), denn schließlich handelt es sich hier nur um zwei verschiedene Berechnungsweisen des gleichen Problems.