

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

Sec: Sr.IPLCO JEE-ADVANCE
Time: 02:00 PM to 05:00 PM 2014-P2-Model

Date: 02-08-15 Max Marks: 180

PAPER-II KEY & SOLUTIONS

PHYSICS

1	D	2	A	3	В	4	A	5	A	6	A
7	A	8	A	9	A	10	D	11	С	12	В
13	В	14	C	15	С	16	D	17	С	18	A
19	D	20	A								

CHEMISTRY

21	D	22	A	23	D	24	В	25	В	26	С
27	A	28	В	29	В	30	D	31	В	32	С
33	В	34	С	35	С	36	D	37	С	38	В
39	A	40	A						W	JJJ	

MATHS

41	В	42	A	43	В	44	C	45	D	46	C
47	C	48	D	49	D	50	C	51	A	52	В
53	A	54	C	55	В	56	D	57	D	58	A
59	A	60	C	111-							

Sri Chaitanya IIT Academy

PHYSICS

- 1. In scientific notation measured mass is $1.201 \times 10^{-5} kg$. Limit of resolution of balance used is 0.1 gram in measurement some systematic error may their so true weight of object may not be in the range obtained in measurement.
- 2. Let distance is 'd'.

 $d(\theta)$ = diameter of earth

$$d = \frac{diameter\ of\ earth}{\theta} = 3.84 \times 10^8\ m.$$

3. At t=0, they are at same position $\Rightarrow y_2 - y_1 = 0$. If t is the time taken by first particle to strike the ground,

$$240 = -10t + \frac{1}{2}(10)t^2 \Longrightarrow t = 8s$$

Up to t = 8s, $a_{rel} = g - g = 0 \Rightarrow v_{rel} = \text{constant}$ and it is same as initial value.

Up to
$$t = 8s, y_2 - y_1 = v_{rel}t$$

⇒ the graph will be a straight line passing through origin.

At
$$t > 8s$$
, $a_1 = 0$, $a_2 = g \Rightarrow a_{rel} = a_2 - a_1 = g$

 $\Rightarrow v_{rel}$ i.e. |slope| of given graph should increase with time. Hence option (3) is correct.

4. $a = -\frac{dv}{dt}$

$$kv^{2} = -\frac{dv}{dt}, \int_{0}^{t} kdt = \int_{v_{0}}^{v} -\frac{dv}{v^{2}}$$

$$kt + \frac{1}{v_0} = \frac{1}{v}$$

$$v = \frac{v_0}{1 + kv_0 t}$$

 $\vec{v}_c = 25\vec{i}$

$$\vec{v}_{b/c} = 10\cos 37\vec{k} + 10\sin 37\vec{j}$$

$$\vec{v}_{b/c} = 8\vec{k} + 6\vec{j}$$

$$\vec{v}_b - \vec{v}_c = 8\vec{k} + 6\vec{j}$$

$$\vec{v}_b = \vec{v}_c = 8\vec{k} + 6\vec{j}$$

$$\vec{v}_{b} - 25\vec{i} + 8\vec{k} + 6\vec{j}$$

6. Horizontal component velocity of the projectile is constant

$$V\cos(\alpha-\theta)=u\cos\theta$$

$$V = \frac{u\cos\theta}{\cos(\alpha - \theta)}$$

And apply
$$-V_y = u_y - gt$$

$$t = \frac{u \sin \alpha}{g \cos (\alpha - \theta)}$$

7. A

9.

$$From \ graph \ V = -\frac{V_0}{x_0} \, x + V_0$$

$$a = \frac{dV}{dt} = -\frac{V_0}{X_0} \left(\frac{dx}{dt} \right) = -\frac{V_0}{X_0} \left(-\frac{V_0}{X_0} x + V_0 \right) = \frac{V_0^2}{X_0^2} x - \frac{V_0^2}{X_0}$$

8. The rate of change of speed of the projectile is $\frac{d}{dt} |\vec{V}|$

Hence
$$\frac{d}{dt} |\vec{V}|_{\text{at half of max.height}} = \frac{g \tan \theta}{\sqrt{2 + \tan^2 \theta}}$$

Sol:
$$V_{avg} = \frac{displacement}{time}$$

Time is same for all the particles.

Displacement is distance between vertex and incentre.

10. Sol: The difference is 0.02m

11. Let
$$\omega_p = N^a e^b m^c \in {}^d_0$$

Using dimensional analysis it is found that (c) is correct

12.
$$\omega = \omega_p = \sqrt{\frac{Ne^2}{m \in_0}}$$

$$=3.2\times10^{15} rad / s$$

$$\lambda = 6 \times 10^{-7} \, m$$

13.
$$\%error = \frac{\Delta L}{L} \times 100\% = \frac{0.1}{50} \times 100\% = 0.2\%$$

14.
$$\frac{\Delta T}{T} \times 100\% = \frac{0.2}{4 \times 60} \times 100\% = 0.8\%$$

15.
$$V_x = 2$$
 $V_y = 10\cos 2t$

$$V_{max} = \sqrt{2^2 + 10^2} = 2\sqrt{26}$$

16. Path of particle follows $y = 5 \sin x$