

CIKM 2022

AnalytiCup - EvalRS: a Rounded Evaluation of Recommender Systems

Track2Vec: Fairness Music Recommendation with a GPU-Free Customizable-Driven Framework

Wei-Wei Du, Wei-Yao Wang, Wen-Chih Peng National Yang Ming Chiao Tung University, Taiwan Oct. 21, 2022

Contact: Wei-Wei Du (wwdu.cs10@nycu.edu.tw)

Introduction

- We propose Track2Vec as a fairness recommendation system with a customizabledriven framework in a GPU-free environment
 - Customized fairness-aware groups for modeling different features
 - Track representation learning module for learning better user embedding
 - Ensemble module for ranking the recommendation results from different track representation learning modules
- Also, we introduce a novel metric, MR-ITF, to measure the predictive distribution of the model by weighting importance based on the number of predictions of each class
- Experiments show that our framework achieves 4th prize ranking

Model Framework: Track2Vec

1. Customized Fairness-Aware Groups

- **Discretize each feature** based on the feature distribution
- Bunch users into different groups by the customizable input configuration to avoid the unbalance issue (e.g., majority dominating the model behavior)

1. Customized Fairness-Aware Groups

- Discretize each feature based on the feature distribution
- Bunch users into different groups by the customizable input configuration to avoid the unbalance issue (e.g., majoritydominating the model behavior)
- In this paper, we use user playcount, user gender and track count as the three most important factors
- Details
 - The playcount group and track count gorup use logarithmic bucketing in base 10
 - The gender group divides the each sequence into male, female and neutral

2. Track Representation Learning

- Due to time constraint in this challenge, we focus on an unsupervised method
- We use Word2Vec to train track embeddings by calculating the interactions between tracks

3. Ensemble Techniques

- To produce more robust and diverse recommendations, voting is used for ensembling each group with different priorities
- Ensemble re-ranking strategy
 - Priority 1: Cumulative recommending times in descending order

Evaluation Metric: MR-ITF

- Previous Problems
 - HR, nDCG and MRR fail to reflect the model behavior
 - MRED, being less wrong and latent diversity [1] require human settings for the number of bins and hard to generalize
- Motivation: TF-IDF (term frequency inverse document frequency)

Evaluation Metric: MR-ITF(Miss Rate - Inverse ground Truth Frequency)

$$MR - ITF = \frac{\sum_{i=1}^{|C|} MR_i \times ITF_i}{\sum_{j=1}^{N} MR_j},$$
 (1)

$$ITF_i = log(\frac{\#total\ predictions}{\#track_i}), \tag{2}$$

C is the number of classes, N is the number of total instances,

Evaluation Metric: MR-ITF

	Ground Truth	Model 1 prediction	Model 2 prediction
Hit rate		80%	80%
MR-ITF		-25	-0.39

Experiment: Ablation Study

Track2Vec performs the best compared to each module

	G	Р	U	G+P	G+U	P+U	Track2Vec (ours)
Standard RSs metrics (1)	0.0103	0.0118	0.0128	0.0127	0.0136	0.0143	0.0146
Standard metrics on a per-group (2)	-0.0073	-0.0039	-0.0061	-0.0052	-0.0055	-0.0044	-0.0055
Behavioral tests (3)	-0.0138	0.0014	0.0008	0.0188	0.0156	0.0223	0.0271
MR-ITF (ours)	-4.3862	-4.3863	<u>-4.3861</u>	-4.3862	<u>-4.3861</u>	-4.3860	<u>-4.3861</u>
Total Score	-0.0048	0.0008	-0.0003	0.0041	0.0035	0.0057	0.0062

G: Gender. P: Playcount. U: User track count.

Total score is computed as ((1) + (2) + (3)) / 3

Experiment: Testing Performance

• In phase 2, our method won **4th** prize among all the participants

Rank	Model	Score	Standard RSs metrics	Standard metrics on a per-group	Behavioral tests
4	Track2Vec	1.1847	0.0088	2.9481	0.2050
-	CBOWRecSysBaseline	-1.2122	0.0512	-3.7194	0.4527
Improvements (%)	-	198	-83	179	-55

Conclusion

- We propose a framework called **Track2Vec** as a fairness recommendation system including three modules, customizable-driven groups, track representation learning and an ensemble technique
- We introduce MR-ITF by weighting different degrees of importance for each class based on the corresponding frequency
- In phase 2, our framework achieves 4th prize ranking and outperforms the official baseline about 200% without any GPU

CIKM 2022

AnalytiCup - EvalRS: a Rounded Evaluation of Recommender Systems

Thanks for Your Attention!

Code

