使用手册 MingPCACluster

目录

MingPCACluster	0
1.简介	1
各版本新功能和计划	1
2.应用场景示例	2
2.1 千人 VCF 重测序 SNP 基因型	2
2.2 cellbin 时空细胞表达量 pca 和聚类(beta)	3
3. 下载与安装	6
3.1 下载网址	6
3.2 预先安装	6
3.3 安装	6
4. 用法和参数说明	6
4.1 MingPCACluster 参数	6
4.1.1 更多详细参数	7
4.1.2 其它脚本参数	9
4.2 输入文件	10
4.2.1 数据文件	10
4.2.2 样品分群信息(可选)	11
4.3 输出文件	12
5.实例	12
6.优势	12
7.常见问题	13
7.1 为什么要重复开发这个 PCA 分析软件	13
7.2 MingPCACluster 和准确性如何?	13
7.3 联系与打赏	13

1.简介

MingPCACluster 是于基于 VCF 开发的 **PCA** 分析和聚类软件,同时兼并了 Genotype 等格式软件,同时开发针对时空单细胞表达量的格式(xx.gem.gz)文件(beta 功能)。即只要对应的一个输入文件进来,这 PCA 和作图分组等一位到位。

主要亮点:

A:

一步高效生成 PCA 和聚类图。其中为了强调核心是高效**低内存**,一步操作,一个输入 到位 PCA 结果和图,对用户友好。

简易强调说明:

- 1 结果和 tassel gapit 和 gcta 这三个软件比对,结果是一样,仅精度差别。
- 2 功能有 1 多种 kinship 矩阵 2 PCA 结果 3 聚类结果 和 4 以 cluster 染色并作图。
- 3 一个 VCF 输入, 一步到位, 方便用户使用.
- 4 边读边算, 内存剥离受位点多少的影响(时空组是剥离受基因数量多少的影响), 内存只受样品量影响, 故上 100k 的样品当也行, 在这个基础上开发时空细胞 PCA 和聚类,虽然时空组学上主要是样品多。(80K 60G 内存)
- 5 Kmean 聚类分析,并找出最佳 K 值,和 Structure 和 K 值一样. 作图以此染色。
- 6 提作作图小脚本,可以用这个脚本优化作图等。

程序提供了 两个应用场景实例之后,重测序千人 VCF 和时空 cellbin 的细胞聚类 pca 如乎专栏也收集了一些用户的配置和说明。

各版本新功能和计划

- A. 初放版本, 大家试用 有 bug 联系和更的需求有空再丰富
- B. 作图初步依赖于 R 和 ggplot 包,后面看须要可以开发独立的 svg 画图功能和软件

C. .

2.应用场景示例

初步开发主要针对群体重测序和时空单细胞表达量 pca 分析和聚类分析。 其中其它只要造相应的数据作为输入,即可以分析

2.1 千人 VCF 重测序 SNP 基因型

共从 K 人数据 chr22 dbsnp 里面随机挑出了 1194 个位点,挑 CEU (49) , CHB (46) , JPT (56) 和 YRI (52) 共 203 个样品来分析。

用法如下: 结果 pca 和用 gatc 的结果是一致的,其中 CHB 和 JPT 分不开的原因极可能是位点太多,这儿不深研究,已经确保同一数据,pca 的结果是相当的了。那么我们这的

MingPCACluster -InVCF Khuman.vcf -OutPut OUT

其中可以用 -InSampleGroup 输入样品和分群信息看和聚类结果是否一致。

MingPCACluster -InVCF Khuman.vcf -OutPut OUT -InSampleGroup pop.info

文件 pop.info 的格式为两列,第一样为样品名,第二列为分群名。

结果: 软件根据 K 和 SSE 的关系,认为最佳的聚类为 K=4, 4 后面之后**就平缓了** or 高了,软件可以取 best K=4. 软件默认输出了 K3-12 的结果,用户若认为聚类不好,要用 K=3 可以从文件 OUT.cluster 里面挑 K=3 的结果出来即可。

其中 best K 一般认为 是 SSE **第一次开始平滑 变缓**那时对应的 K. 并不是最小值 ,在 1.07 的版本后更新多计算 Dbi 的功能,软件根据 K 和 Davies—Bouldin index (DBI)的关系**,DBi 最 小值**就是 best K. 其中 SSE 和 DBi 的相关说明和介绍可以点击打开查看。

那么 K=4 的结果和 pca 画图如下:

如上,主要多出来的两个聚类主要是在 YRI,相当 wild 种 聚类看起来较乱 (其实当在 pca3 时 YRI 能分出来)。若要手动把 K=3 拿出来重新画图(软件提供了 ploteig 画图软件,有很多参数,对默认的图不满意,可以单独重新用这个软件快速作图),脚本如下:

perl aa.pl OUT.cluster OUT.eigenvec NewOUT.eigenvec perl ../../bin/ploteig -InPCA NewOUT.eigenvec -OutPrefix NewFig (aa.pl 见 example1)

另外 ploteig 有 -ColShap 的参数,可以把上面的 颜色和 形状 对换一下。

有时边缘点在聚类分析中有时因为初始散点质心而有所影响,即找 best K 时会有所变化,在 1.08 后的版本提供了可以 repeat 多次聚类的参数 (*-RandomCenter*) 查看聚类结果。用户可以多次使用 看看各种的效果。

./MingPCACluster -InKinship in.BaldingNicols.Kinship -RandomCenter -OutPut NewOUT

2.2 cellbin 时空细胞表达量 pca 和聚类 (beta)

我的软件内存主要受样品量 n 的影响。n*n. 见常问题 1.

时空分析我初了解主要是: seurat , 我很浅淡的了解, 这个包用到的 n*m (n 是样品, m 是位点)的稀疏矩阵, 好像周边的做时空的人总说内存很大, 我这没有对时空数据敏感, 对表达量进行了取 log10. 也用了稀疏矩阵 和 n*n, 由于时空 n 是样品量很大, 怕难下降。

初以 我这用了文件大于(File.gem.gz:177M), 范围: XXmin: 4975 XXmax: 23374 YYmin: 2525 YYmax: 20724)。取 bin 50, n 达到的 88507, 即主要 88507*88507 的矩阵 double 上,占用 60.742G (稀疏矩阵 5G 矩阵:55G)。

额外话:

但我这聚类结果和 pca 还没有和 seurat 等其它比较差异和准确和时间存等,建议有人来测和处理,速度时间暂时估计 beta 版本 ,可能不会快多少,内存可能会降低一点,但不会低太多,最近回家开发这软件(家人对我意见很大,怕是没有多的时间弄这,即使弄会很慢,后面有空再优化更新这儿的功能)。 这儿自己还不是很不知道详细比较信息,而且估计还没有绝对的质的提高,故记为 beta 功能

直接上脚本和结果: 用法如下:

MingPCACluster -InSTOgem Test.gem.gz -OutPut Test -CellBin 500 下面是测序可以跑通,取 bin=500,数据和结果 准确性还盼其它高手测试之软件以 K=3 认为最优

PCA 1-2 维图:

对应坐标用 cluster 染色如下:

绿的偏右下 红的两边几个

3. 下载与安装

3.1 下载网址

这主要是防止大家还在用 beta 版本,还在用可能存在 bug 的程序,强迫*大家定期更新*。/hwfssz4/BC PUB/Software/08.Centos7/MingPCACluster-*

里面有 example1-4

持续更新在这: https://github.com/hewm2008/MingPCACluster 下载时记得*加个星星* 哦

3.2 预先安装

MingPCACluster 适用于 Linux/Unix/macOS 系统。在安装之前,请先安装以下使用条件:

- 1) R 和 ggplot2 包, (后期有空将看要不要独立来开)
- 2) convert: 系和 ps2pdf 系统命令其中一个,可以将 svg 转 png。莫有也无关系,有则更佳
- 3) q++: q++ with --std=c++11 > 4.8+ is recommended

3.3 安装

使用者可采用以下直接 chmod 755 运行: 1)

git clone https://github.com/hewm2008/ MingPCACluster cd MingPCACluster; chmod 755 bin/*
./bin/MingPCACluster -h # 直接运行

4. 用法和参数说明

4.1 MingPCACluster 参数

程序 MingPCACluster 很简单,一个输入和一个输出. 具体如下。

[heweiming@cngb-ologin-25 bin]\$./MingPCACluster

Usage: MingPCACluster -InVCF <in.vcf.gz> -OutPut <outPrefix>

-InVCF <str> Input SNP VCF Format -InGenotype <str> InPut Genotype File

-InKinship <str>-OutPut <str>OutPut File Prefix(Kinship PCA etc)

-Method <int> Method of Kinship [1-4],defaut [1]

1:BaldingNicolsKinship(VanRaden/Normalized_IBS)

2:IBSKinshipImpute 3:IBSKinship 4:p_dis

-help v1.03 Show more Parameters and help [hewm2008]

只要一个 VCF or STOgem 文件作为输入即要可一个输出文件前辍。

其中对 VCF 可以传多一个文件,只计算里面部分样品的 pca 的结果。
-Method 是生成样品之间 kinship 的算法,也是 pca 依赖的计算矩阵。

4.1.1 更多详细参数

上面是简要输入,更多详情可以 -h 查看。

```
[heweiming@cngb-ologin-25 bin]$ ./ MingPCACluster -h
More Help document please see the doc/pdf
         Para [-i] is show for [-InVCF], Para [-o] is show for [-OutPut]
    Usage: MingPCACluster -InVCF <in.vcf.gz> -OutPut <outPrefix>
        -InVCF
                        <str>
                                    Input SNP VCF Format
        -InGenotype
                                    InPut Genotype File
                        <str>
                                  Input SNP K Kinship File Format
        -InKinship
                       <str>
        -OutPut
                                    OutPut File Prefix(Kinship PCA etc)
                        <str>
        -Method
                         <int>
                                     Method of Kinship [1-4], defaut [1]
                                    1:BaldingNicolsKinship(VanRaden/Normalized_IBS)
                                    2:IBSKinshipImpute 3:IBSKinship 4:p_dis
        -help
                    v1.03
                                   Show more Parameters and help [hewm2008]
        -InSampleGroup <string>
                                    In File of sampleGroup info,format(sample groupA)
        -MAF
                          <float>
                                      Min minor allele frequency filter [0.001]
        -Fchr
                                     Filter the chrX chr[chrX,chrY,X,Y]
                         <str>
                                    Max ratio of miss allele filter [0.25]
        -Miss
                         <float>
        -Het
                         <float>
                                     Max ratio of het allele filter [1.00]
        -HWE
                          <float>
                                      Exact test of Hardy-Weinberg Equilibrium for SNP Pvalue[0]
        -SubPop
                                      Sub Sample File List to PCA[ALLsample]
                          <str>
        -KeepRemainVCF
                                      keep the VCF after filter
        -InSTOgem
                          <str>
                                      InPut STOmics gem File of MIDCounts(beta)
        -STOName
                           <string>
                                      STOmics Sample Name STOName
        -CellBin
                          <int>
                                      STOmics cell bin[100]
        -PCANum
                           <int>
                                       Num of PCA eig [10]
```

Max Cluster Num to find Best K [12]

Get the best K Cluster by deta-SSE Ratio[0.15]

参数当一看即明,不过多说明。 中间主要是过滤 SNP 的参数 和 STO 的 bin 50 参数

下面一般参数 如设 K 的最大值, cluster, 可以理解 structer 的 K 值

<int>

<float>

-MaxCluNum

-BestKRatio

4.1.2 其它脚本参数

程序也提供了作图软件 perl 作图脚本(这个脚本后面将会优化更动较大,主要是最近时间较忙),作图脚本的简要参数说明如下:

[heweiming@cngb-ologin-25 bin]\$./ploteig

Version:1.03 hewm2008@gmail.com

Usage: ploteig -InPCA pca.eigenvec -OutPrefix Fig

Options

-InPCA <s> : InPut File of PCA -OutPrefix <s> : OutPut file prefix

-help : Show more help [hewm2008]

即輸入 MingPCACluster 的 pca 结果即可。更详细 help 可以-h 查看,主要作图参数,如

[heweiming@cngb-ologin-25 bin]\$ ploteig -h

Version:1.03 hewm2008@gmail.com

Usage: ploteig -InPCA pca.eigenvec -OutPrefix Fig

Options

-InPCA <s> : InPut File of PCA -OutPrefix <s> : OutPut file prefix

-help : Show more help [hewm2008]

-columns <s> : the columns to plot a:b [3:4]

-ColShap : colour <=> shape for cluster or subpop -pops <s> : Populations to plot, eg -p GA:GB:GC [ALL] -border <i> : how to plot the border (1,2,4,8,3,31) [3]

-title <s> : title (legend) [PCA]

-keystyle <s> : put key at top right default(in) [outside]box [outside]

-pointsize <i> : point size for plot [3]

-BinDir <s> : The Bin Dir of gnuplot/R/ps2pdf/convert [\$PATH]

4.2 输入文件

- 1 常规群体 VCF 格式, 多样品的
- 2 群体 genotype 格式
- 3 时空表达量 xx.gem.gz 格式

4.2.1 数据文件

VCF 文件格式

具体 VCF 格式见这儿,<u>点击打开查看</u> 文件截图:

1.1 An example

```
##fileDate=20090805
##sourco=yImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=N, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=N, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=P, Number=1, Type=Float, Description="Accestral Allele">
##INFO=<ID=A, Number=1, Type=String, Description="Accestral Allele">
##INFO=<ID=A, Number=1, Type=String, Description="HapMap2 membership">
##INFO=<ID=A, Number=1, Type=Float, Description="HapMap2 membership">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=H0, Description="Quality below 10">
##FILTER=<ID=H0, Description="Less than 50% of samples have data">
##FORMAT=<ID=O, Number=1, Type=Integer, Description="Genotype">
##FORMAT=<ID=O, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=DH, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=O, Number=1, Type=Integer, Description="Read Depth
```

genotype 文件格式

A 样品和位点 的基因型格式,直接见下面截图即知

时空 xx.gem.gz 文件格式

如下是, 共四列, 基因 x , y 和表达量

geneID	X	У	MIDCounts
A1BG	20870	10517	3
A1BG	16276	13190	2
A1BG	17095	10127	3
A1BG	10024	10804	1
A1BG	15667	9103	1
A1BG	18740	12537	3
A1BG	9007	15766	1
A1BG	7762	5636	1
A1BG	10275	10030	4

4.2.2 样品分群信息(可选)

有时已经知道样品的分群信息了,要看已知分群信息和聚类的差异。传入和各聚类结果比较。 格式很简单,就两列。第一列 样品名 第二列 分群名。 如下截图

用 -InSampleGroup 输入上面的文件

另顺说 -SubPop 只要样品名一列就行,这儿是计算某些样品之间的 pca

4.3 输出文件

主要结果有如下文件:

输出文件	说明		
out.kinship	输出的亲缘矩阵,各样品的两两关系		
out.eigenvec	输出最优聚类和 pca 结果		
out.eigenval	输出 pca 结果的特征向量		
out.PCA1_PCA2.pdf	输出按 cluster 染色后的 pca 1 2 图		
out.K.pdf	输出 cluster K 图		
out.cluster	输出的各种 K 的 cluster 聚类结果		
Out.cellbin.gz	输出 bin50 cell 的结果,若是 -InSTOgem		
Out.cluster pdf/ png	输出坐标 cluester 图,若是-InSTOgem		

示例图见上面应用场景给的图。示例图和格式当一看即明,相关图可以见 example 1 和 2

5.实例

Example1 是抽了小样品的,可以当实例

Example2 的实便数据较大, 在这只提取缩小区域取了

更多实例 随时更新,见 website 网页,具体见这: https://github.com/Hewm2008/MingPCACluster 里面的

6.优势

- 1 快速少内存 可以用于多种场景
- 2 用法简易,对小白用户十分友好。
- 3 应用场景广泛, 应用场景多种多样, 自主性较大, 用户可以结合自己的数据画图。
- 4 免安装,使用方便

7.常见问题

7.1 为什么要重复开发这个 PCA 分析软件

A.PCA 分析很多软件,但很多须要原始数据转格式,对小白不友好。

B tassle gapit 的软件是: n*m (n 是样品, m 是位点) n*n 的矩阵去算 kinship 和 pca 的 由于用到 m 位点一多 内存极大。 我这是连读连算 只是两个 n*n 的内存。 速度更快 结果比较会 除了精度问题 kinship 是一致的。 和 gcta 是一样的。 我这添加了新的 聚类分析 k-means 算法和染色

C 时空用到的工具 seurat 也是 R 包,我猜也是用到 n*m 的稀疏矩阵,但还是耗大量的内存,同时在时空组学中,样品多(n),聚类耗的内存也大,我这主要使之不受 m 的影,n 大,n*n 的矩阵也是很耗内存,在这还没有和 seurat 进行过系统比较和测评(本人还对这数据不敏感),希望能够用,同时降低内存。

7.2 MingPCACluster 和准确性如何?

用同一数据做 pca 分析,同 gcta 和 tassle gapit 的 kinship 是一致的, pca 的结果也是一样的。 再次 Example 也是很好把各人群分开, 说明软件的准确性不用质凝, 效率从开发时就是考虑 要高效低内存的,具体后面有空再给出测评比较图表。

By the way 其中 tassle gapit 主要做 gwas,是过滤 maf 0.05 后去做的 pca, 对特异的样品 (离群的) 影响大, mingPCA 默认 maf 为 0.001, 几不过滤 maf, PCA 能把离群样品找到。

7.3 联系与打赏

随意 是缘是福, 一切随风

- Mark hewm2008@gmail.com / hewm2008@gg.com
- join the **QQ Group**: 125293663

微信 打赏

QQ 入群: 125293663

群名称:Reseqtools (itools) 群 号:125293663

微信公众号

