Finding Hidden Market States with Kalman Filter, HMM and VAE

Yizhou Wang, Yuting Kou, Rong Liu

Overview

- Motivation
- Data
 - Preprocessing: denoise using Kalman Filter
- Models and Preliminary Results
 - Hidden Markov Model
 - Variational Recurrent Auto-encoder with LSTM
- Future Work

Data Generation Process: How does stock market work?

- Market states drive the price
- We want to recover the market states by prices
- Why we need to know market states?
 - Understand current states: predicting price, changing strategies, etc.
 - Know underlying connections: making contingent policy, etc.

- 1. What is the Market States?
 - Bull and Bear markets?

- 1. What is the Market States?
 - Bull and Bear markets? Or more?
 - Discrete or Continuous?
- 2. Is there any difference/connection among industries?
 - Periodicity because of industry periodical factors
 - Connections between industry because of supply chains

- 1. What is the Market States?
 - Bull and Bear markets? Or more?
 - Discrete or Continuous?
- 2. Is there any difference/connection between industries?
 - Periodicity of the industry
 - Connection like supply chain
- Hidden states → Latent Variable Models: HMM and VAE

Data

- Daily closing prices of stocks in 9 industries, in 2010-2018
- CRSP The Center for Research in Security Prices

Data

- Daily closing prices of stocks in 9 industries, in 2010-2018
 - We focus on Finance index first.

Kalman Filter

Denoise 9 Industry price using extended Kalman filter

$$\begin{cases} \Phi(L)(p_t) = \theta(L)\epsilon_t & \epsilon_t \sim N(0, \sigma_\epsilon^2), \text{L is lag operator} \\ y_t = \theta_t + \delta_t & \delta_t \sim N(0, \sigma_\delta^2) \end{cases} \Rightarrow \begin{cases} p_{tlt-1} = \sum_{i=1}^5 \Phi_i p_{t-ilt-i} \\ \sigma_{tlt-1}^2 = \sum_{i=1}^5 \Phi_i \sigma_{t-ilt-i} + \sigma_\epsilon^2 \sum_{i=1}^5 \theta_i \\ \theta_{tlt} = p_{t-1lt-1} + \frac{\sigma_{tl-1}^2}{\sigma_{tlt-1}^2 + \sigma_\delta^2} (y_t - p_{t-1lt-1}) \\ \sigma_{tlt}^2 = (\frac{1}{\sigma_{tlt-1}^2} + \frac{1}{\sigma_\delta^2})^{-1} \end{cases}$$

Model: General Approach

S: hidden state

O: observation

A: transition

B: emission

Transition

Emission

Model: General Approach

S: hidden state

O: observation

A: transition

B: emission

Transition

Emission

HMM

- Motivation:
 - It is generally assumed that there are a finite number of market states: bull, bear, etc.
- A Hidden Markov Model is defined by:
 - \circ S = {s₁,s₂,s₃...}: Set of possible states
 - \circ O = {o₁,o₂,o₃...}: Set of possible observations
 - A: Transition probabilities p(s_{t+1}|s_t)
 - B: Emission probabilities p(o,|s,)
 - \circ π : Initial state probabilities $p(s_1)$

HMM - Training and Prediction

Hyperparameters

- Emission Model: Gaussian
- Number of States: Five
- Prior initial state probability and transition probability: **Uniform**

Training

- Input data sequence
- Learns S, A, B, and π through iterative **Expectation-Maximization (EM)** to maximize posterior marginal likelihood

Prediction

- Viterbi algorithm: estimates optimal sequence of hidden states
- Forward algorithm: calculate posterior marginal likelihood

HMM - Results (Unfiltered Input)

State No.	State (Mean, Variance)
1	(0.01606521, 0.29648902)
2	(0.96253467, 0.89453984)
3	(-1.53629294, 1.53925792)
4	(0.28834739, 0.3053085)
5	(-0.4837531, 0.57186103)

HMM - Results (Filtered Input)

Application: Industry comparison

Case 1: Finance and Mining

- Finance fluctuates much more than mining
- No apparent correlation in sequence
- Finance: larger variance when falling

Application: Industry comparison

Case 2: Manufacturing, Wholesale, Retail

- Similar states
- Similar trend in sequence
- Fluctuation: Manufacturing < Wholesale < Retail

VAE with LSTM

- Motivation
 - Continuous hidden state
 - More complicated emission probability distribution
- VAE
 - Replace the deterministic function with a learned posterior q(z|x).
 - Reparameterization trick to calculate gradient.
 - Total loss = KL Divergence loss

VAE with LSTM

- LSTM
 - Prevent vanishing gradients
 - o Forget gate, input gate, output gate, cell gate
- Network Structure
 - Latent dim: 16
 - o Time step: 60
 - Output: price sequence with 1 day forward

VAE-LSTM Results

- Perform PCA on the latent mean and variance and extract top 2 components.
- Color the points using the states achieved by HMM.

1.100

Future Work

- Improve model performance: involve more features
 - Volume
 - Technical indicators like MACD
- Model application: Dig deeper into industry comparison using HMM and VAE

Q&A