CSCI4333 Database Design & Implement

Lecture Two – Intro to Database (cont.)

Instructor: Dr. Yifeng Gao

Why do we need database management systems?

• A **Database Management System** (DBMS) is a tool that allows us to store, modify, and query data.

However, I can store, modify and query data in a text file!

What can a DBMS do that I can't do with my text file solution?

A simple solution to manage data:- stick them all in a text file!

Enforcing Constraints

- With the text file solution, there is no way to enforce integrity constraints on the data. In other words people can put bad data into the text file.
- In contrast, a DBMS allows us to enforce all kinds of constraints. This really helps (but does not guarantee) that our data is correct.

A typo gives Roberta Wickham a GPA of 44.00

Ann's Data Notepad				
<u>File Edit Format Yiew H</u> elp				
STUDENT NAME	GPA	EMAIL	PHONE	^
Bingo, Little Bertie, Woster Roberta Wickham Tuppy Glossop Rosie Little Peggy Mainwaring	2.23 1.12 44.00 2.86 3.99 2.45	Bingo@hotmail Woster@hotmail bobie@yahoo glo@hotmail writer@hotmail PM@hotmail	None 7876789 6872673 2316644 1238631 3411345	∀
<	Ш			3

Scalability

- The text file solution might work for small datasets. What happens when we have big datasets?
- Most real world datasets are so large that we can only have a small fraction of them in main memory at any time, the rest has to stay on disk.

🔼 Ann's Data - Notepad				
<u>File Edit Format View H</u> elp				
STUDENT NAME	GPA	EMAIL	PHONE	
Bingo, Little	2.23	Bingo@hotmail	None	
Bertie, Woster	1.12	Woster@hotmail	7876789	
Roberta Wickham	4.00	bobie@yahoo	6872673	
Tuppy Glossop	2.86	glo@hotmail	2316644	
Rosie Little	3.99	writer@hotmail	1238631	
Peggy Mainwaring	2.45	PM@hotmail	3411345	~
<	IIII			> ,;;

Query Expressiveness

• The text file solution would allow me to search for keywords or certain numbers (slowly).

• With a DBMS I can search with much more expressive queries. For example I can ask.. "Find all students whose GPA is greater than 2.5, and who don't own a phone" or "what is the average GPA of the

students" Find Find Next 📗 Ann's Data - Notepad Find what: Peggy File Edit Format View Help Direction Cancel STUDENT NAME **GPA EMA** O Up O Down Match case Bind Bingo, Little 2.23 1.12 Bertie, Woster Roberta Wickham 6872673 4.00 bobie@yahoo Tuppy Glossop 2.86 glo@hotmail 2316644 Rosie Little 3.99 writer@hotmail 1238631 PM@hotmail Peggy Mainwaring 2.45 3411345

Different Views

- The text file solution only allows one view of the data.
- With a DBMS I can arrange for different people to have different views of the data. For example, I can see everything, a student can see only his/her data, the TA can see data for students in his/her section, etc.

🔼 Ann's Data - Notepad				
<u>File Edit Fo</u> rmat <u>V</u> iew <u>H</u> elp				
STUDENT NAME	GPA	EMAIL	PHONE	^
Bingo, Little	2.23	Bingo@hotmail	None	
Bertie, Woster	1.12	Woster@hotmail	7876789	
Roberta Wickham	4.00	bobie@yahoo	6872673	
Tuppy Glossop	2.86	glo@hotmail	2316644	
Rosie Little	3.99	writer@hotmail	1238631	
Peggy Mainwaring	2.45	PM@hotmail	3411345	~
<	IIII			> ;;

Concurrency

- Suppose I leave my text file on UNIX account, and I log in and begin to modify it at the same time my TA is modifying it!
- A DBMS will automatically make sure that this kind of thing cannot happen.

🔼 Ann's Data - Notepad				
<u>File Edit Format View H</u> elp				
STUDENT NAME	GPA	EMAIL	PHONE	^
Bingo, Little	2.23	Bingo@hotmail	None	
Bertie, Woster	1.12	Woster@hotmail	7876789	
Roberta Wickham	4.00	bobie@yahoo	6872673	
Tuppy Glossop	2.86	glo@hotmail	2316644	
Rosie Little	3.99	writer@hotmail	1238631	
Peggy Mainwaring	2.45	PM@hotmail	3411345	V
<				> .;;

Security

- Suppose I leave my text file on UNIX account, and a student hacks in and changes their grades...
- A DBMS will allow multiple levels of security.

Crash Recovery

- Suppose I am editing my text file and the system crashes!
- A DBMS is able to guarantee 100% recovery from system crashes (to a consistent state).

Summary: Plain Text vs. Database

- When design a reliable database:
 - Verify Valid Input
 - Improve Scalability (Reading/Writing)
 - Support Comprehensive Query / Formal Expression
 - Prevent Data Loss
 - Prevent Unauthorized Access
 - Prevent Conflict Action

– ...

Don't need to consider about these issues! Not so good example: C++ vs. Python

Data Independence

- Applications are insulated from how data is structured and stored.
- <u>Logical data independence</u>: Protection from changes in *logical* structure of data.
- <u>Physical data independence</u>: Protection from changes in *physical* structure of data.
 - **►** One of the most important benefits of using a DBMS!

Purposes of DBMS

- Provide support for "easy-to-use" data
 - Data model (data)
 - Transaction model (operation)
- Provide efficient storage and access of the data in terms of the data model and transactional model.

To sum up: Why Use a DBMS?

Easier and More Efficient

- Data independence and efficient access.
- Query expressiveness
- Reduced application development time.
- Data integrity and security.
- Concurrent access, recovery from crashes.
- Any reasons to NOT use a DBMS?

Database Users

- End users (or DB application users)
- DB application programmers (more precisely, they are *DBMS* users)
 - E.g. webmasters
- Database administrator (DBA)
 - Designs logical /physical schemas
 - Handles security and authorization
 - Data availability, crash recovery
 - Database tuning as needs evolve

Must understand how a DBMS works!

Data Models

- Data model: A class of mathematical structures, with description and operations
- Necessary to be *general* and *intuitive*.
- Conceptual data model: Just structural description
 - Identifies the highest-level relationships between different entities
 - Features include the main entities and the relationships among them

Something we need to consider

- **High Availability**: must be operational while enterprise is functioning
- High Reliability: correctly tracks state, does not lose data, controlled concurrency
- **High Throughput:** many users => many operations/sec
- Low Response Time: users are waiting

Database System Requirement

- Long Lifetime: complex systems are not easily replaced
 - Must be designed so they can be easily extended as the needs of the enterprise change
- Security: sensitive information must be carefully protected since system accessible to many users

Database System

- Applications interact with a database by generating:
- Queries: that access different parts of data and formulate the result of a request.
 - report grade of all students in CSCI4333 of Spring 2023
- **Transactions**: that may read some data and "update" certain values or generate new data and store that in the database

Transaction

• A transaction is an application program with special properties to guarantee it maintains database correctness

Transaction

- When an event in the real world changes the state of the enterprise, a transaction is executed to cause the corresponding change in the database state
 - With an on-line database, the event causes the transaction to be executed in real time

Transaction Processing System

- Transaction execution is controlled by a TP monitor
 - Creates the abstraction of a transaction,
 analogous to the way an operating system
 creates the abstraction of a process
 - TP monitor and DBMS together guarantee the special properties of transactions
- A Transaction Processing System consists of TP monitor, databases, and transactions

Transaction Processing System

Transaction Processing System

OLTP vs. OLAP

On-line Transaction Processing (OLTP)

- Day-to-day handling of transactions that result from enterprise operation
- Maintains correspondence between database state and enterprise state

On-line Analytic Processing (OLAP)

 Analysis of information in a database for the purpose of making management decisions

OLAP

- Analyzes historical data (terabytes) using complex queries
- Due to volume of data and complexity of queries, OLAP often uses a data warehouse
- **Data Warehouse** (offline) repository of historical data generated from OLTP or other sources
- **Data Mining** use of warehouse data to discover relationships that might influenterprise strategy

Example: Supermarket

OLTP

 Event is 3 cans of soup and 1 box of crackers bought; update database to reflect that event

OLAP

– Last winter in all stores in northeast, how many customers bought soup and crackers together?

Data Mining

– Are there any interesting combinations of foods that customers frequently bought together?

Overview of Database Design

- Conceptual design
 - Use *ER Model*: E- *Entities* and R-*Relationships*
 - Decide the *entities* and *relationships* in the enterprise.
 - Decide what information about these entities and relationships should we store in the database.
 - Decide the *integrity constraints* or *business rules*.
- Implementation (logical design)
 - Map an ER model into a relational schema.

```
Students(sid, name, login, age)
```

Faculty(fid, fname, sal)

Courses(cid, cname, credits, semester)

Enrolled(sid, cid)

Teaches(fid, cid)

Grades(sid, cid, gpa)

Students(sid:string, name:string, login:string, age:integer)

Faculty(fid:string, fname:string, sal:real)

Courses(cid:string, cname:string, credits:integer, semester:string)

Enrolled(sid:string, cid:string)

Teaches(fid:string, cid:string)

Grades(sid:string, cid:string, gpa:real)

Students(sid:string, name:string, login:string, age:integer)

Faculty(fid:string, fname:string, sal:real)

Courses(cid:string, cname:string, credits:integer, semester:string)

Enrolled(sid:string, cid:string)

Teaches(*fid*:string, *cid*:string)

Grades(sid:string, cid:string, gpa:real)

Entities:

Students

Faculty

Courses

• • •

```
Students(sid:string, name:string, login:string, age:integer)
```

Faculty(fid:string, fname:string, sal:real)

Courses(cid:string, cname:string, credits:integer, semester:string)

Enrolled(sid:string, cid:string)

Teaches(fid:string, cid:string)

Grades(sid:string, cid:string, gpa:real)

Relation:

Students take **Courses** (Enrolled)

Faculty teach Courses (Teaches)

• • •

```
Students(sid:string, name:string, login:string, age:integer)
```

Faculty(fid:string, fname:string, sal:real)

Courses(cid:string, cname:string, credits:integer, semester:string)

Enrolled(sid:string, cid:string)

Teaches(*fid*:string, *cid*:string)

Grades(sid:string, cid:string, gpa:real)

Constraint:

We only have three semester {Fall, Summer, Spring}

A faculty teach 1 to 3 courses

A student can take no more than 6 courses

• • •

Levels of Abstraction

- Many <u>views</u>, single <u>conceptual</u>
 (<u>logical</u>) <u>schema</u> and <u>physical</u>
 <u>schema</u>.
 - Views describe how users see the data.
 - Conceptual schema defines logical structure
 - Physical schema describes the files and indexes used.

Back to Example: University Database

Students(sid:string, name:string, login:string, age:integer)

Faculty(fid:string, fname:string, sal:real)

Courses(cid:string, cname:string, credits:integer, semester:string)

Enrolled(sid:string, cid:string)

Teaches(fid:string, cid:string)

Grades(sid:string, cid:string, gpa:real)

View:

CourseInfo (*cid*:string, *cname*:string, *credits*:integer, semester:string, *fname*:string)

Transcript (sid:string, name:string, cname:string, credits:integer, gpa:real)

Summary

- DBMS used to maintain, query large datasets.
- Benefits include recovery from system crashes, concurrent access, quick application development, data integrity and security.
- Levels of abstraction give data independence.
- We will learn how to
 - Design and set up a database
 - Design (ER and Relational Models), and refine (Relational Normalization Theory)
 - Query the database
 - Relational Algebra and SQL
 - Implement database applications