

<110> WATANABE, Eijiro OEDA, Kenji <120> Raffinose Synthase Genes and Their Use <130> 0020-4348P <140> 08/992,914 <141> 1997-12-18 <150> 8-338673/1996 JAPAN <151> 1996-12-18 <160> 86 <170> PatentIn Ver. 2.0 <210> 1 <211> 2746. <212> DNA <213> Vicia faba <220> <221> CDS <222> (101)..(2497) aattttcaag catagccaag ttaaccacct tagaaacatt cctacaagct acttatccct 60 gtcaataagc tactaagcta ccagagtctc atcaatcacc atg gca cca cca agc Met Ala Pro Pro Ser ata acc aaa act gca acc ctc caa gac gta ata agc acc atc gat att 163 Ile Thr Lys Thr Ala Thr Leu Gln Asp Val Ile Ser Thr Ile Asp Ile 10 15 ggt aat ggt aac tca ccc tta ttc tcc ata acc tta gac caa tca cgt 211 Gly Asn Gly Asn Ser Pro Leu Phe Ser Ile Thr Leu Asp Gln Ser Arg gac ttc ctt gca aat ggc cac cct ttc ctc acc caa gtc cca cct aac 259 Asp Phe Leu Ala Asn Gly His Pro Phe Leu Thr Gln Val Pro Pro Asn 40 ata aca aca aca aca acc act gct tcc tct ttt ctc aat ctc aaa 307 Ile Thr Thr Thr Thr Thr Thr Ala Ser Ser Phe Leu Asn Leu Lys 55 tcc aac aaa gat acc att ccc aac aac aac acc atg ttg ttg caa 355 Ser Asn Lys Asp Thr Ile Pro Asn Asn Asn Thr Met Leu Leu Gln caa ggt tgt ttc gtt ggt ttc aac tcc acc gaa ccc aaa agc cac cac 403 Gln Gly Cys Phe Val Gly Phe Asn Ser Thr Glu Pro Lys Ser His His

451

gta gtt cca ctc ggc aaa cta aaa gga atc aaa ttc atg agc ata ttc

Val Val Pro Leu Gly Lys Leu Lys Gly Ile Lys Phe Met Ser Ile Phe

105 110 115

							act Thr 125									499
_				_			atg Met			_	_			_		547
		_			_		ctc Leu		Pro			_				595
_							ctc Leu		_				_		_	643
_	_					_	acc Thr			_			_	_		691
				_		_	cca Pro 205		_				_	_	_	739
	_				_		gga Gly			_			_	_		787
							aaa Lys									835
		-	_	-			aaa Lys		_		_		_	_		883
							ccc Pro									931
				_		_	gat Asp 285	_	_	_	_	_			_	979
							caa Gln									1027
							gaa Glu									1075
							gtg Val									1123
							tgg Trp									1171

	gtt Val						_	_				_	_	_	1219
	aag Lys 375														1267
	aag Lys														1315
	gag Glu														1363
_	ggt Gly	_	_	_	_			_							1411
_	tat Tyr		 -	_	Glu		_	-	_				_		1459
	tca Ser 455														1507
	gag Glu														1555
	ggc Gly														1603
	aat Asn														1651
	aac Asn	_		_					_		_		_	_	1699
	cag Gln 535				_	_	_			_	_		_	_	1747
	tcc Ser														1795
	aag Lys														1843
	caa Gln														1891
							·	3							

ttg cat aat ggc aaa aca atg ctg aaa att tgg aat ctc aac aaa tat 19 Leu His Asn Gly Lys Thr Met Leu Lys Ile Trp Asn Leu Asn Lys Tyr 600 605 610	39
aca ggt gtt ttg ggt ctt ttc aac tgc caa ggt ggt ggg tgg tgt cct 19 Thr Gly Val Leu Gly Leu Phe Asn Cys Gln Gly Gly Gly Trp Cys Pro 615 620 625	87
gag gca cgg cga aac aag agt gta tct gaa ttt tca cgc gcg gtg aca Glu Ala Arg Arg Asn Lys Ser Val Ser Glu Phe Ser Arg Ala Val Thr 630 645	35
tgt tat gca agt ccc gaa gac att gaa tgg tgc aat ggg aaa act cca 20 Cys Tyr Ala Ser Pro Glu Asp Ile Glu Trp Cys Asn Gly Lys Thr Pro 650 655 660	83
atg agc acc aaa ggt gtg gat ttt ttt gct gtg tat ttt ttc aag gag 21 Met Ser Thr Lys Gly Val Asp Phe Phe Ala Val Tyr Phe Phe Lys Glu 665 670 675	31
aag aaa ttg agg ctc atg aag tgt tct gat aga ttg aaa gtt tcg ctt 21 Lys Lys Leu Arg Leu Met Lys Cys Ser Asp Arg Leu Lys Val Ser Leu 680 685 690	.79
gag cca ttt agt ttt gag cta atg aca gtg tct cca gtg aaa gtg ttt 22 Glu Pro Phe Ser Phe Glu Leu Met Thr Val Ser Pro Val Lys Val Phe 695 700 705	27
tcg aaa agg ttt ata cag ttt gca ccg att ggg tta gtg aac atg ctg Ser Lys Arg Phe Ile Gln Phe Ala Pro Ile Gly Leu Val Asn Met Leu 710 715 720 725	75
aac tct ggt ggt gcg att cag tct ctg gag ttt gat gat aat gca agt Asn Ser Gly Gly Ala Ile Gln Ser Leu Glu Phe Asp Asp Asn Ala Ser 730 735 740	23
ttg gtc aag att ggg gtg aga ggt tgc ggg gag atg agc gtg ttt gcg 23 Leu Val Lys Ile Gly Val Arg Gly Cys Gly Glu Met Ser Val Phe Ala 745 750 755	71
tct gag aaa ccg gtt tgc tgc aaa att gat ggg gtt aag gtg aaa ttt 24 Ser Glu Lys Pro Val Cys Cys Lys Ile Asp Gly Val Lys Val Lys Phe 760 765 770	19
ctt tat gag gac aaa atg gca aga gtt caa att ctg tgg cct agt tct 24 Leu Tyr Glu Asp Lys Met Ala Arg Val Gln Ile Leu Trp Pro Ser Ser 775 780 785	67
tca aca ttg tct ttg gtc cag ttt tta ttt tgatccctag gaatcctatg 25 Ser Thr Leu Ser Leu Val Gln Phe Leu Phe 790 795	17
cacgtgtctc tgtttacaag tactttatat aagtataata tgtatctatt tccatttta 25	77
actgtcttta tgcaattagg tggtcaatta gttatttgtt tgtgaagtaa ctaacttgct 26	37
tgtgttgtaa gcttataata tatggtcaag ttcctcactt gtatatacct gttgtatgta 26	97
taaattttac tatatatgac taacatcatt atcttgtgag caaaaaaaa 27	46

E

6.

<210> 2 <211> 799

u

<212> PRT

<213> Vicia faba

<400> 2

Met Ala Pro Pro Ser Ile Thr Lys Thr Ala Thr Leu Gln Asp Val Ile
1 5 10 15

Ser Thr Ile Asp Ile Gly Asn Gly Asn Ser Pro Leu Phe Ser Ile Thr 20 25 30

Leu Asp Gln Ser Arg Asp Phe Leu Ala Asn Gly His Pro Phe Leu Thr 35 40 45

Gln Val Pro Pro Asn Ile Thr Thr Thr Thr Thr Thr Ala Ser Ser
50 60

Phe Leu Asn Leu Lys Ser Asn Lys Asp Thr Ile Pro Asn Asn Asn 65 70 75 80

Thr Met Leu Leu Gln Gln Gly Cys Phe Val Gly Phe Asn Ser Thr Glu 85 90 95

Pro Lys Ser His His Val Val Pro Leu Gly Lys Leu Lys Gly Ile Lys 100 105 110

Phe Met Ser Ile Phe Arg Phe Lys Val Trp Trp Thr Thr His Trp Val 115 120 125

Gly Thr Asn Gly Gln Glu Leu Gln His Glu Thr Gln Met Leu Ile Leu 130 135 140

Asp Lys Asn Asp Ser Leu Gly Arg Pro Tyr Val Leu Leu Pro Ile 145 150 155 160

Leu Glu Asn Thr Phe Arg Thr Ser Leu Gln Pro Gly Leu Asn Asp His
165 170 175

Ile Gly Met Ser Val Glu Ser Gly Ser Thr His Val Thr Gly Ser Ser 180 185 190

Phe Lys Ala Cys Leu Tyr Ile His Leu Ser Asn Asp Pro Tyr Ser Ile 195 200 205

Leu Lys Glu Ala Val Lys Val Ile Gln Thr Gln Leu Gly Thr Phe Lys 210 215 220

Thr Leu Glu Glu Lys Thr Ala Pro Ser Ile Ile Asp Lys Phe Gly Trp 225 230 235 240

Cys Thr Trp Asp Ala Phe Tyr Leu Lys Val His Pro Lys Gly Val Trp
245 250 255

Glu Gly Val Lys Ser Leu Thr Asp Gly Gly Cys Pro Pro Gly Phe Val 260 265 270

Ile Ile Asp Asp Gly Trp Gln Ser Ile Cys His Asp Asp Asp Glu 275 280 285

Asp Asp Ser Gly Met Asn Arg Thr Ser Ala Gly Glu Gln Met Pro Cys

290 295 300

ø

۷

Arg Leu Val Lys Tyr Glu Glu Asn Ser Lys Phe Arg Glu Tyr Glu Asn 310 315 Pro Glu Asn Gly Gly Lys Lys Gly Leu Gly Gly Phe Val Arg Asp Leu Lys Glu Glu Phe Gly Ser Val Glu Ser Val Tyr Val Trp His Ala Leu 345 Cys Gly Tyr Trp Gly Gly Val Arg Pro Gly Val His Gly Met Pro Lys Ala Arg Val Val Pro Lys Val Ser Gln Gly Leu Lys Met Thr Met 375 Glu Asp Leu Ala Val Asp Lys Ile Val Glu Asn Gly Val Gly Leu Val 395 Pro Pro Asp Phe Ala His Glu Met Phe Asp Gly Leu His Ser His Leu Glu Ser Ala Gly Ile Asp Gly Val Lys Val Asp Val Ile His Leu Leu Glu Leu Leu Ser Glu Glu Tyr Gly Gly Arg Val Glu Leu Ala Arg Ala Tyr Tyr Lys Ala Leu Thr Ser Ser Val Lys Lys His Phe Lys Gly Asn 455 Gly Val Ile Ala Ser Met Glu His Cys Asn Asp Phe Phe Leu Leu Gly 465 470 475 Thr Glu Ala Ile Ser Leu Gly Arg Val Gly Asp Asp Phe Trp Cys Ser 490 Asp Pro Ser Gly Asp Pro Asn Gly Thr Tyr Trp Leu Gln Gly Cys His 505 Met Val His Cys Ala Tyr Asn Ser Leu Trp Met Gly Asn Phe Ile Gln 520 Pro Asp Trp Asp Met Phe Gln Ser Thr His Pro Cys Ala Glu Phe His 530 535 Ala Ala Ser Arg Ala Ile Ser Gly Gly Pro Ile Tyr Val Ser Asp Cys 550 555 Val Gly Asn His Asn Phe Lys Leu Leu Lys Ser Leu Val Leu Pro Asp 565 Gly Ser Ile Leu Arg Cys Gln His Tyr Ala Leu Pro Thr Arg Asp Cys 585 Leu Phe Glu Asp Pro Leu His Asn Gly Lys Thr Met Leu Lys Ile Trp 595 Asn Leu Asn Lys Tyr Thr Gly Val Leu Gly Leu Phe Asn Cys Gln Gly 615 620

Gly Gly Trp Cys Pro Glu Ala Arg Arg Asn Lys Ser Val Ser Glu Phe 625 Ser Arg Ala Val Thr Cys Tyr Ala Ser Pro Glu Asp Ile Glu Trp Cys 645 650 Asn Gly Lys Thr Pro Met Ser Thr Lys Gly Val Asp Phe Phe Ala Val 665 Tyr Phe Phe Lys Glu Lys Lys Leu Arg Leu Met Lys Cys Ser Asp Arg Leu Lys Val Ser Leu Glu Pro Phe Ser Phe Glu Leu Met Thr Val Ser 695 Pro Val Lys Val Phe Ser Lys Arg Phe Ile Gln Phe Ala Pro Ile Gly Leu Val Asn Met Leu Asn Ser Gly Gly Ala Ile Gln Ser Leu Glu Phe Asp Asp Asn Ala Ser Leu Val Lys Ile Gly Val Arg Gly Cys Gly Glu 740 745 Met Ser Val Phe Ala Ser Glu Lys Pro Val Cys Cys Lys Ile Asp Gly 760 Val Lys Val Lys Phe Leu Tyr Glu Asp Lys Met Ala Arg Val Gln Ile 770 775 780 Leu Trp Pro Ser Ser Ser Thr Leu Ser Leu Val Gln Phe Leu Phe 790 795 <210> 3 <211> 2498 <212> DNA <213> Glycine max <220> <221> CDS <222> (62)..(2404) ccaaaccata gcaaacctaa gcaccaaacc tetttette aagateettg aatteagtee 60 c atg gct cca agc ata agc aaa act gtg gaa cta aat tca ttt ggt ctt 109 Met Ala Pro Ser Ile Ser Lys Thr Val Glu Leu Asn Ser Phe Gly Leu 5 gtc aac ggt aat ttg cct ttg tcc ata acc cta gaa gga tca aat ttc 157 Val Asn Gly Asn Leu Pro Leu Ser Ile Thr Leu Glu Gly Ser Asn Phe 20 ctc gcc aac ggc cac cct ttt ctc acg gaa gtt ccc gaa aac ata ata 205 Leu Ala Asn Gly His Pro Phe Leu Thr Glu Val Pro Glu Asn Ile Ile 35 gtc acc cct tca ccc atc gac gcc aag agt agt aag aac aac gag gac 253 Val Thr Pro Ser Pro Ile Asp Ala Lys Ser Ser Lys Asn Asn Glu Asp

	50					55					60				
								ggc							301
_	_		_	_				aag Lys		-				_	349
_					_			tgg Trp 105				 -		_	397
								aca Thr							445
								gtg Val							493
								ccc Pro							541
-	_	_		_		-		cgt Arg	_	_		_		ggg ggg	589
								cat His 185							637
_	_			_	_		_	cat His	_		_	_			685
								ata Ile							733
		-			_	_		cat His				 			781
								tgc- Cys							829
_	_				_		_	cac His 265	_		_		_	_	877
								gca Ala							925
-		_	_		_			aag Lys		_	_	_	_		973

aag Lys 305	gat Asp	tct Ser	gag Glu	aag Lys	ggt Gly 310	atg Met	ggt Gly	gcc Ala	ttt Phe	gtt Val 315	agg Arg	gac Asp	ttg Leu	aag Lys	gaa Glu 320	1021
								tat Tyr								1069
tat Tyr	tgg Trp	ggt Gly	ggg Gly 340	gtc Val	aga Arg	ccc Pro	aag Lys	gtt Val 345	ccg Pro	ggc	atg Met	ccc Pro	cag Gln 350	gct [.] Ala	aag Lys	1117
								gga Gly								1165
								aac Asn								1213
								gjå aaa								1261
								gac Asp		Ile						1309
								gtt Val 425								1357
								aag Lys								1405
		-	-			-		gac Asp								1453
_		_			_	_		gat Asp	_			-		_		1501
		_				_		tgg Trp				_		_		1549
								atg Met 505								1597
								cct Pro								1645
								gtt Val		Val						1693

-		Lys Ser Leu A	gct ttg cct gat ggg acg 17 Ala Leu Pro Asp Gly Thr 555 560	41
Ile Leu Arg Cys			aca cga gac tgt ttg ttt 17 Thr Arg Asp Cys Leu Phe 575	89
			ctc aaa att tgg aat ctc 18 Leu Lys Ile Trp Asn Leu 590	337
			aat tgc caa gga ggt ggg 18 Asn Cys Gln Gly Gly Gly 605	885
55 5 5			gcc tct gaa ttt tca caa 19 Ala Ser Glu Phe Ser Gln 620	33
		Pro Gln Asp	att gaa tgg agc aat ggg 19 Tle Glu Trp Ser Asn Gly 535 640	81
Lys Ser Pro Ile			gtg ttt gct gta tat ttg 20 Val Phe Ala Val Tyr Leu 655	29
	_		yca tca gag aaa ttg gaa 20 Ala Ser Glu Lys Leu Glu 670	77
			tg aca gtg tet eca gtg 21 Leu Thr Val Ser Pro Val 685	.25
	-		gct cca att gga tta gtg 21 Ala Pro Ile Gly Leu Val 700	.73
		Ala Ile Gln S	cc atg gag ttt gac aac 22 Ger Met Glu Phe Asp Asn 715 720	21
His Ile Asp Val			ggt tgt ggg gag atg aag 22 Gly Cys Gly Glu Met Lys 735	269
			aaa cta gat ggg gta gtt 23 Lys Leu Asp Gly Val Val 750	317
			aga gtg caa gtt ccc tgg 23 Arg Val Gln Val Pro Trp 765	865
cct agt gct tca Pro Ser Ala Ser 770	_		3 3	114
aggtgaattt gggat	actat gatgtt	tgac tctcttt	ta agtaataaga gtcatatttt 24	74

tctgttgtaa aaaaaaaaa aaaa

2498

<210> 4

<211> 781

<212> PRT

<213> Glycine max

<400> 4

Met Ala Pro Ser Ile Ser Lys Thr Val Glu Leu Asn Ser Phe Gly Leu 1 5 10 15

Val Asn Gly Asn Leu Pro Leu Ser Ile Thr Leu Glu Gly Ser Asn Phe 20 25 30

Leu Ala Asn Gly His Pro Phe Leu Thr Glu Val Pro Glu Asn Ile Ile 35 40 45

Val Thr Pro Ser Pro Ile Asp Ala Lys Ser Ser Lys Asn Asn Glu Asp
50 55 60

Asp Asp Val Val Gly Cys Phe Val Gly Phe His Ala Asp Glu Pro Arg 65 70 75 80

Ser Arg His Val Ala Ser Leu Gly Lys Leu Arg Gly Ile Lys Phe Met 85 90 95

Ser Ile Phe Arg Phe Lys Val Trp Trp Thr Thr His Trp Val Gly Ser

Asn Gly His Glu Leu Glu His Glu Thr Gln Met Met Leu Leu Asp Lys 115 120 125

Asn Asp Gln Leu Gly Arg Pro Phe Val Leu Ile Leu Pro Ile Leu Gln 130 135 140

Ala Ser Phe Arg Ala Ser Leu Gln Pro Gly Leu Asp Asp Tyr Val Asp 145 150 155 160

Val Cys Met Glu Ser Gly Ser Thr Arg Val Cys Gly Ser Ser Phe Gly 165 170 175

Ser Cys Leu Tyr Val His Val Gly His Asp Pro Tyr Gln Leu Leu Arg 180 185 190

Glu Ala Thr Lys Val Val Arg Met His Leu Gly Thr Phe Lys Leu Leu 195 200 205

Glu Glu Lys Thr Ala Pro Val Ile Ile Asp Lys Phe Gly Trp Cys Thr 210 215 220

Trp Asp Ala Phe Tyr Leu Lys Val His Pro Ser Gly Val Trp Glu Gly 225 230 235 240

Val Lys Gly Leu Val Glu Gly Gly Cys Pro Pro Gly Met Val Leu Ile 245 250 255

Asp Asp Gly Trp Gln Ala Ile Cys His Asp Glu Asp Pro Ile Thr Asp 260 265 270

Gln Glu Gly Met Lys Arg Thr Ser Ala Gly Glu Gln Met Pro Cys Arg 280 Leu Val Lys Leu Glu Glu Asn Tyr Lys Phe Arg Gln Tyr Cys Ser Gly Lys Asp Ser Glu Lys Gly Met Gly Ala Phe Val Arg Asp Leu Lys Glu Gln Phe Arg Ser Val Glu Gln Val Tyr Val Trp His Ala Leu Cys Gly Tyr Trp Gly Gly Val Arg Pro Lys Val Pro Gly Met Pro Gln Ala Lys Val Val Thr Pro Lys Leu Ser Asn Gly Leu Lys Leu Thr Met Lys Asp Leu Ala Val Asp Lys Ile Val Ser Asn Gly Val Gly Leu Val Pro Pro 375 His Leu Ala His Leu Leu Tyr Glu Gly Leu His Ser Arg Leu Glu Ser Ala Gly Ile Asp Gly Val Lys Val Asp Val Ile His Leu Leu Glu Met Leu Ser Glu Glu Tyr Gly Gly Arg Val Glu Leu Ala Lys Ala Tyr Tyr Lys Ala Leu Thr Ala Ser Val Lys Lys His Phe Lys Gly Asn Gly Val Ile Ala Ser Met Glu His Cys Asn Asp Phe Phe Leu Leu Gly Thr Glu 455 Ala Ile Ala Leu Gly Arg Val Gly Asp Asp Phe Trp Cys Thr Asp Pro 475 Ser Gly Asp Pro Asn Gly Thr Tyr Trp Leu Gln Gly Cys His Met Val His Cys Ala Tyr Asn Ser Leu Trp Met Gly Asn Phe Ile Gln Pro Asp Trp Asp Met Phe Gln Ser Thr His Pro Cys Ala Glu Phe His Ala Ala Ser Arg Ala Ile Ser Gly Gly Pro Val Tyr Val Ser Asp Cys Val Gly Lys His Asn Phe Lys Leu Leu Lys Ser Leu Ala Leu Pro Asp Gly Thr Ile Leu Arg Cys Gln His Tyr Ala Leu Pro Thr Arg Asp Cys Leu Phe Glu Asp Pro Leu His Asp Gly Lys Thr Met Leu Lys Ile Trp Asn Leu Asn Lys Tyr Thr Gly Val Leu Gly Leu Phe Asn Cys Gln Gly Gly Gly

595 600 605 Trp Cys Pro Val Thr Arg Arg Asn Lys Ser Ala Ser Glu Phe Ser Gln 615 Thr Val Thr Cys Leu Ala Ser Pro Gln Asp Ile Glu Trp Ser Asn Gly 635 Lys Ser Pro Ile Cys Ile Lys Gly Met Asn Val Phe Ala Val Tyr Leu Phe Lys Asp His Lys Leu Lys Leu Met Lys Ala Ser Glu Lys Leu Glu 665 Val Ser Leu Glu Pro Phe Thr Phe Glu Leu Leu Thr Val Ser Pro Val 680 Ile Val Leu Ser Lys Lys Leu Ile Gln Phe Ala Pro Ile Gly Leu Val 690 695 Asn Met Leu Asn Thr Gly Gly Ala Ile Gln Ser Met Glu Phe Asp Asn His Ile Asp Val Val Lys Ile Gly Val Arg Gly Cys Gly Glu Met Lys Val Phe Ala Ser Glu Lys Pro Val Ser Cys Lys Leu Asp Gly Val Val Val Lys Phe Asp Tyr Glu Asp Lys Met Leu Arg Val Gln Val Pro Trp 760 Pro Ser Ala Ser Lys Leu Ser Met Val Glu Phe Leu Phe 775 <210> 5 <211> 1762 <212> DNA <213> Stachys sieboldii <220> <221> CDS <222> (2)..(1759) g aca aac ggg tcg gat ctt gag cgg gaa act caa ata gtc gtg ctc gac 49 Thr Asn Gly Ser Asp Leu Glu Arg Glu Thr Gln Ile Val Val Leu Asp 1 aag tee gae gae agg eee tae ate gtg etg ett eeg ete ate gag ggg 97 Lys Ser Asp Asp Arg Pro Tyr Ile Val Leu Leu Pro Leu Ile Glu Gly

ò

cag ttt cgg gct tcc ctt cag ccc ggt gtg gat gat ttt atc gat att 14 Gln Phe Arg Ala Ser Leu Gln Pro Gly Val Asp Asp Phe Ile Asp Ile 35 40 45

tgt gtc gaa agc ggg tca acc aag gtc aac gag tcc tcg ttc cgt gct 19 Cys Val Glu Ser Gly Ser Thr Lys Val Asn Glu Ser Ser Phe Arg Ala 50 55 60

Ser 65	Leu	Tyr	Met	His	Ala 70	Gly	Asp	Asp	Pro	Phe 75	Thr	Leu	Val	Lys	Asp 80		
					cgc Arg											289	
					gjå aaa											337	
					aac Asn											385	
					ggc Gly											433	
					att Ile 150											481	
	_		_		tcc Ser	_				_		_		_		529	
					tac Tyr											577	·
			Gly		aat Asn											625	
					agt Ser											673	
					ggg Gly 230											721	
					ccc Pro											769	·
					gat Asp											817	
					gaa Glu											865	
gaa Glu	tct Ser 290	gtg Val	gly ggg	att Ile	gat Asp	gga Gly 295	gtc Val	aaa Lys	gtt Val	gac Asp	gtc Val 300	atc Ile	cat His	ttg Leu	ttg Leu	913	
			•				-										
									14								

•>

	atg Met															961
	tac Tyr	_	_			_		_								1009
	gtc Val															1057
	gag Glu															1105
	cca Pro 370							_			_			_		1153
	gtg Val		_	_			_			_						1201
	gat Asp															1249
_	gcc Ala											_	_	_	_	1297
	gga Gly									_					_	1345
	tcc Ser 450			_	_	_					_		_	_	_	1393
	ttt Phe	_	_						_		_					1441
Asn	tat Tyr	Asn	Lys	Phe 485	Thr	Gly	Val	Val	Gly 490	Thr	Phe	Asn	Cys	Gln 495	Gly	1489
	gjà aaa															1537
	cac His															1585
	gga Gly 530															1633
tac	cta	ttc	cac	gag	aag	aaa	ctc	gtc	ctt	tct	aag	cca	tca	gac	aaa	1681

Tyr 545	Leu	Phe	His	Glu	Lys 550	Lys	Leu	Val	Leu	Ser 555	Lys	Pro	Ser	Asp	Lys 560	
									ttt Phe 570							1729
	_				_		_	acc Thr 585	gtc Val	caa						1762
<212	.> 58 ?> PF	TS	ys si	iebo]	ldii											
<400 Thr 1		Gly	Ser	Asp 5	Leu	Glu	Arg	Glu	Thr 10	Gln	Ile	Val	Val	Leu 15	Asp	
Lys	Ser	Asp	Asp 20	Arg	Pro	Tyr	Ile	Val 25	Leu	Leu	Pro	Leu	Ile 30	Glu	Gly	
Gln	Phe	Arg 35	Ala	Ser	Leu	Gln	Pro 40	Gly	Val	Asp	Asp	Phe 45	Ile	Asp	Ile	
Cys	Val 50	Glu	Ser	Gly	Ser	Thr 55	Lys	Val	Asn	Glu	Ser 60	Ser	Phe	Arg	Ala	
Ser 65	Leu	Tyr	Met	His	Ala 70	Gly	Asp	Asp	Pro	Phe 75	Thr	Leu	Val	Lys	qaA 08	
Ala	Val	Lys	Val	Ala 85	Arg	His	His	Leu	Gly 90	Thr	Phe	Arg	Leu	Leu 95	Glu	
Glu	Lys	Thr	Pro 100	Pro	Gly	Ile	Val	Asp 105	Lys	Phe	Gly	Trp	Cys 110	Thr	Trp	
Asp	Ala	Phe 115	Tyr	Leu	Asn	Val	Gln 120	Pro	His	Gly	Val	Met 125	Glu	Gly	Val	
Gln	Gly 130	Leu	Val	Asp	Gly	Gly 135	Cys	Pro	Pro	Gly	Leu 140	Val	Leu	Ile	Asp	
Asp 145	Gly	Trp	Gln	Ser	Ile 150	Cys	His	Asp	Asn	Asp 155	Ala	Leu	Thr	Thr	Glu 160	
Gly	Met	Gly	Arg	Thr 165	Ser	Ala	Gly	Glu	Gln 170	Met	Pro	Cys	Arg	Leu 175	Ile	
Lys	Phe	Glu	Glu 180	Asn	Tyr	Lys	Phe	Arg 185	Glu	Tyr	Glu	Ser	Pro 190	Asn	Lys	
Thr	Gly	Pro 195	Gly	Pro	Asn	Thr	Gly 200	Met	Gly	Ala	Phe	Ile 205	Arg	Asp	Met	
Lys	Asp 210	Asn	Phe	Lys	Ser	Val 215	Asp	Tyr	Val	туг	Val 220	Trp	His	Ala	Leu	
				_						_						

Cys Gly Tyr Trp Gly Gly Leu Arg Pro Asn Val Pro Gly Leu Pro Glu

225		:	230					235					240
Ala Lys 1	Leu Ile	Glu 1 245	Pro	Lys	Leu	Thr	Pro 250	Gly	Leu	Lys	Thr	Thr 255	Met
Glu Asp 1	Leu Ala 260	Val i	Asp	Lys	Ile	Val 265	Asn	Asn	Gly	Val	Gly 270	Leu	Val
Pro Pro (Glu Phe 275	Val (Glu	Gln	Met 280	Tyr	Glu	Gly	Leu	His 285	Ser	His	Leu
Glu Ser V 290	Val Gly	Ile A	Asp	Gly 295	Val	Lys	Val	Asp	Val 300	Ile	His	Leu	Leu
Glu Met 1 305	Leu Cys		Asp 310	Tyr	Gly	Gly	Arg	Val 315	Asp	Leu	Ala	Lys	Ala 320
Tyr Tyr I	Lys Ala	Leu 5 325	Ser	Ser	Ser	Val	Asn 330	Asn	His	Phe	Asn	Gly 335	Asn
Gly Val	Ile Ala 340	Gly 1	Leu	Glu	His	Cys 345	Asn	Asp	Phe	Met	Phe 350	Leu	Gly
Thr Glu A	Ala Ile 355	Thr I	Leu	Gly	Arg 360	Val	Gly	Asp	Asp	Phe 365	Trp	Cys	Thr
Asp Pro S	Ser Gly	Asp 1		Asn 375	Gly	Thr	Phe	Trp	Leu 380	Gln	Gly	Cys	His
Met Val I 385	His Cys		Tyr 390	Asn	Ser	Ile	Trp	Met 395	Gly	Asn	Phe	Ile	His . 400
Pro Asp 7	Trp Asp	Met I 405	Phe	Gln	Ser	Thr	His 410	Pro	Cys	Ala	Glu	Phe 415	His
Ala Ala S	Ser Arg 420	Ala 1	Ile	Ser	Gly	Gly 425	Pro	Ile	Tyr	Val	Ser 430	Asp	Ser
Val Gly I	Lys His 435	Asn I	Phe	Glu	Leu 440	Leu	Arg	Ser	Leu	Val 445	Leu	Pro	Asp
Gly Ser 1 450	Ile Leu	Arg (Asp 455	Tyr	Tyr	Ala	Leu	Pro 460	Thr	Arg	Asp	Cys
Leu Phe (Glu Asp		Leu 470	His	Asn	Gly	Lys	Thr 475	Met	Leu	Lys	Ile	Trp 480
Asn Tyr A	Asn Lys	Phe 3	Thr	Gly	Val	Val	Gly 490	Thr	Phe	Asn	Суз	Gln 495	Gly
Gly Gly T	Trp Ser 500	Arg (Glu	Val	Arg	Arg 505	Asn	Gln	Cys	Ala	Ala 510	Glu	Tyr
Ser His A	Ala Val 515	Ser S	Ser	Ser	Ala 520	Gly	Pro	Ser	Asp	Ile 525	Glu	Trp	Lys
Gln Gly T	Thr Ser	Pro 1		Asp 535	Val	Asp	Gly	Val	Lys 540	Thr	Phe	Ala	Leu
Tyr Leu F 545	Phe His		Lys 550	Lys	Leu	Val	Leu	Ser 555	Lys	Pro	Ser	Asp	Lys 560

Ile Asp Ile Thr Leu Glu Pro Phe Asp Phe Glu Leu Ile Thr Val Ser 565 570 575

Pro Val Lys Thr Leu Ala Asn Cys Thr Val 580 585

<21 <21	0> 7 1> 9 2> D 3> Z	AN	ays													
	0> 1> C 2> ((814)												
CC							_		he H	_	_	_		rg A	cc atc la Ile 15	49
				atc Ile			_	_	_			_		-		97
				cgc Arg												145
				ctg Leu		_	_	•	-			_	_	_		193
				acc Thr												241
ggc	gtc Val	gtc Val	ggc Gly	gcc Ala 85	ttc Phe	aac Asn	tgc Cys	cag Gln	ggc Gly 90	ggc Gly	gl ^a aaa	tgg Trp	agc Ser	ccc Pro 95	gag Glu	289
				aag Lys												337
				tcc Ser												385
ggc Gly	gtc Val 130	agc Ser	gtc Val	aag Lys	gac Asp	gtc Val 135	tcc Ser	cag Gln	ttc Phe	gcc Ala	gtg Val 140	tac Tyr	gcg Ala	gtc Val	gag Glu	433
				cag Gln												481
				acc Thr 165												529

Ile Ser His Gl	_	_					_		577
atg ctc aac ac Met Leu Asn Th 195									625
gct agc ggc gt Ala Ser Gly Va 210				Lys					673
gtg gcg tac to Val Ala Tyr Se 225		_		_				_	721
gag gcc gag tt Glu Ala Glu Ph									769
tgg tcg ggg tc Trp Ser Gly Se 26	r Ser Ser								814
tgagccggac ggg	ecgatga c	tatgagta	t ctgctc	cctg	ctggcct	get d	cagga	cataa	874
tctaatgttt aga	gcttacc a	ggttttac	a gctcta	tcag	tttactt	ttg t	tttt	ctgct	934
cttcgttttt taa	gaattat t	tctattgt	g tgaatta	aatg	agtgctt	taa t	tcta	aaaa	993
<210> 8 <211> 271 <212> PRT <213> Zea mays									
<211> 271 <212> PRT	s Pro Cys 5	Ala Ala	Phe His	Ala	Ala Ser	Arg	Ala 15	Ile	
<211> 271 <212> PRT <213> Zea mays <400> 8 Gln Ser Thr Hi	5 o Ile Tyr		10				15		
<211> 271 <212> PRT <213> Zea mays <400> 8 Gln Ser Thr Hi 1 Ser Gly Gly Pr	5 O Ile Tyr	Val Ser	10 Asp Ser 25	Val (Gly Gln	His 30	15 Asp	Phe	
<pre><211> 271 <212> PRT <213> Zea mays <400> 8 Gln Ser Thr Hi 1 Ser Gly Gly Pr</pre>	5 O Ile Tyr O G Arg Leu	Val Ser Ala Leu 40	Asp Ser 25 Pro Asp	Val Gly	Gly Gln Thr Val 45	His 30 Leu	15 Asp Arg	Phe Cys	
<pre><211> 271 <212> PRT <213> Zea mays <400> 8 Gln Ser Thr Hi</pre>	5 O Ile Tyr O Arg Leu A Leu Pro	Val Ser Ala Leu 40 Thr Arg 55	Asp Ser 25 Pro Asp Asp Cys	Val Gly	Gly Gln Thr Val 45 Phe Ala 60	His 30 Leu Asp	15 Asp Arg Pro	Phe Cys Leu	
<pre><211> 271 <212> PRT <213> Zea mays <400> 8 Gln Ser Thr Hi 1 Ser Gly Gly Pr</pre>	5 Dile Tyr Dia Arg Leu A Leu Pro G Thr Val	Val Ser Ala Leu 40 Thr Arg 55 Leu Lys	Asp Ser 25 Pro Asp Asp Cys Ile Trp	Gly Leu Asn 75	Gly Gln Thr Val 45 Phe Ala 60 Val Asn	His 30 Leu Asp	Asp Arg Pro	Phe Cys Leu Ala 80	
<pre><211> 271 <212> PRT <213> Zea mays <400> 8 Gln Ser Thr Hi 1 Ser Gly Gly Pr</pre>	5 Ile Tyr Arg Leu Leu Pro Thr Val 70 Ala Phe 85	Val Ser Ala Leu 40 Thr Arg 55 Leu Lys Asn Cys	Asp Ser 25 Pro Asp Asp Cys Ile Trp Gln Gly 90	Cal Gly Gly Gly Gly Gly Gly Gly Gly Gly Gl	Gly Gln Thr Val 45 Phe Ala 60 Val Asn Gly Trp	His 30 Leu Asp Arg	Asp Arg Pro Phe	Phe Cys Leu Ala 80 Glu	

Gly Val Ser Val Lys Asp Val Ser Gln Phe Ala Val Tyr Ala Val Glu 130 135 Ala Arg Thr Leu Gln Leu Leu Arg Pro Asp Glu Gly Val Asp Leu Thr 155 Leu Gln Pro Phe Thr Tyr Glu Leu Phe Val Val Ala Pro Val Arq Val Ile Ser His Glu Arg Ala Ile Lys Phe Ala Pro Ile Gly Leu Ala Asn Met Leu Asn Thr Ala Gly Ala Val Gln Ala Phe Glu Ala Lys Lys Asp Ala Ser Gly Val Thr Ala Glu Val Phe Val Lys Gly Ala Gly Glu Leu 215 210 220 Val Ala Tyr Ser Ser Ala Thr Pro Arg Leu Cys Lys Val Asn Gly Asp 230 235 Glu Ala Glu Phe Thr Tyr Lys Asp Gly Val Val Thr Val Asp Val Pro Trp Ser Gly Ser Ser Lys Leu Cys Cys Val Gln Tyr Val Tyr 265 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence:synthetic primer 1 (from list 1) <400> 9 aattttcaag catagccaag ttaaccacct 30 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:synthetic primer 2 (from list 1) <400> 10 gctcacaaga taatgatgtt agtc 24 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence

<220>

<223>	primer 3 (from list 1)	Sequence:synthetic	
<400>	11		
atacaa	agtga ggaacttgac ca	•	22
<210>	10		
<211>		·	
<212>			
	Artificial Sequence		
	The state of the s		
<220>			
<223>	Description of Artificial	Sequence:synthetic	
	primer 4 (from list 1)		
<400>			
ccaaac	ccata gcaaacctaa gcac		24
.010-	12		
<210><211>			
<211>			
	Artificial Sequence		
12207			
<220>	•		
<223>	Description of Artificial	Sequence:synthetic	
	primer 5 (from list 1)	-	
<400>			
acaaca	igaaa aatatgactc ttattact		28
<210>	14		
<211>			
<212>			
	Artificial Sequence	•	
	- ·		
<220>			
	Description of Artificial	Sequence:synthetic	
	primer 6 (from list 1)	•	
<400>			
aaaaga	gagt caaacatcat agtatc		26
<210>	15		
<211>			
<212>			
<213>	Artificial Sequence		
	-		
<220>			
	Description of Artificial	Sequence:synthetic	
	primer 1 (from list 2)		
<400>	-		
atggca	ccac caagcataac caaaactgc	:	29
-210-	1.6	•	
<210>			

<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic primer 2 (from list 2)	
<400> 16 atggcaccac caagcataac caaaactgca accetecaag acg	43
<210> 17 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic primer 3 (from list 2)	
<400> 17 tcaaaataaa aactggacca aagac	25
<210> 18 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic primer 4 (from list 2)	
<400> 18 tcaaaataaa aactggacca aagacaatgt	30
<210> 19 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic primer 5 (from list 2)	
<400> 19 atggctccaa gcataagcaa aactg	25
<210> 20 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic primer 6 (from list 2)	
<400> 20 atggctccaa qcataaqcaa aactgtggaa ct	32

```
<210> 21
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:synthetic
      primer 7 (from list 2)
<400> 21
tcaaaataaa aactcaacca ttgac
                                                                    25
<210> 22
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer 8 (from list 2)
<400> 22
tcaaaataaa aactcaacca ttgacaattt tgaagcact
                                                                    39
<210> 23
<211> 20
<212> PRT
<213> Vicia faba
<400> 23
Gly Ile Lys Phe Met Ser Ile Phe Arg Phe Lys Val Trp Trp Thr Thr
                                      10
His Trp Val Gly
<210> 24
<211> 14
<212> PRT
<213> Vicia faba
<400> 24
Ile Ile Asp Lys Phe Gly Trp Cys Thr Trp Asp Ala Phe Tyr
<210> 25
<211> 15
<212> PRT
<213> Vicia faba
<400> 25
Gly Gly Cys Pro Pro Gly Phe Val Ile Ile Asp Asp Gly Trp Gln
                                      10
```

```
<210> 26
<211> 17
<212> PRT
<213> Vicia faba
<400> 26
Thr Ser Ala Gly Glu Gln Met Pro Cys Arg Leu Val Lys Tyr Glu Glu
                                      10
Asn
<210> 27
<211> 16
<212> PRT
<213> Vicia faba
<400> 27
Val Tyr Val Trp His Ala Leu Cys Gly Tyr Trp Gly Gly Val Arg Pro
<210> 28
<211> 20
<212> PRT
<213> Vicia faba
<400> 28
Thr Met Glu Asp Leu Ala Val Asp Lys Ile Val Glu Asn Gly Val Gly
Leu Val Pro Pro
             20
<210> 29
<211> 23
<212> PRT
<213> Vicia faba
<400> 29
Gly Leu His Ser His Leu Glu Ser Ala Gly Ile Asp Gly Val Lys Val
Asp Val Ile His Leu Leu Glu
             20
<210> 30
<211> 14
<212> PRT
<213> Vicia faba
<400> 30
Gly Gly Arg Val Glu Leu Ala Arg Ala Tyr Tyr Lys Ala Leu
                                      10
<210> 31
<211> 12
```

24

```
<212> PRT
<213> Vicia faba
<400> 31
Val Lys Lys His Phe Lys Gly Asn Gly Val Ile Ala
<210> 32
<211> 46
<212> PRT
<213> Vicia faba
<400> 32
Glu His Cys Asn Asp Phe Phe Leu Leu Gly Thr Glu Ala Ile Ser Leu
Gly Arg Val Gly Asp Asp Phe Trp Cys Ser Asp Pro Ser Gly Asp Pro
             20
                                  25
Asn Gly Thr Tyr Trp Leu Gln Gly Cys His Met Val His Cys
                              40
<210> 33
<211> 43
<212> PRT
<213> Vicia faba
<400> 33
Ala Tyr Asn Ser Leu Trp Met Gly Asn Phe Ile Gln Pro Asp Trp Asp
Met Phe Gln Ser Thr His Pro Cys Ala Glu Phe His Ala Ala Ser Arg
                                  25
Ala Ile Ser Gly Gly Pro Ile Tyr Val Ser Asp
         35
                              40
<210> 34
<211> 9
<212> PRT
<213> Vicia faba
Leu Pro Asp Gly Ser Ile Leu Arg Cys
 1
<210> 35
<211> 24
<212> PRT
<213> Vicia faba
<400> 35
Ala Leu Pro Thr Arg Asp Cys Leu Phe Glu Asp Pro Leu His Asn Gly
                  5
```

25

Lys Thr Met Leu Lys Ile Trp Asn

20

.

```
<210> 36
<211> 13
<212> PRT
<213> Vicia faba
<400> 36
Gly Val Leu Gly Leu Phe Asn Cys Gln Gly Gly Trp
<210> 37
<211> 9
<212> PRT
<213> Vicia faba
<400> 37
Phe Ala Pro Ile Gly Leu Val Asn Met
                  5
<210> 38
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> modified_base
<222> (1)..(32)
<223> n = inosine
<220>
<223> Description of Artificial Sequence:synthetic
      primer 1-F (from list 4)
<400> 38
ttnaangtnt ggtggacnac ncantgggtn gg
                                                                    32
<210> 39
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<221> modified base
<222> (1)..(41)
<223> n = inosine
<223> Description of Artificial Sequence:synthetic
      primer 2-F (from list 4)
atnatngana anttnggntg gtgnacntgg gangenttnt a
                                                                    41
<210> 40
<211> 41
```

<212> DNA

```
<213> Artificial Sequence
<220>
<221> modified base
<222> (1)..(41)
<223> n = inosine
<223> Description of Artificial Sequence:synthetic
      primer 2-RV (from list 4)
tanaangent eccangtnea ceancenaan ttntenatna t
                                                                     41
<210> 41
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<221> modified_base
<222> (1)..(44)
\langle 223 \rangle n = inosine
<223> Description of Artificial Sequence:synthetic
      primer 3-F (from list 4)
ggnggntgnc encenggntt ngtnatnatn ganganggnt ggca
                                                                     44
<210> 42
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<221> modified base
<222> (1)..(44)
<223> n = inosine
<220>
<223> Description of Artificial Sequence:synthetic
      primer 3-RV (from list 4)
<400> 42
tgccancent entenatnat nacnaaneen ggnggneane ence
                                                                     44
<210> 43
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> modified base
<222> (1)..(32)
<223> n = inosine
```

```
<220>
<223> Description of Artificial Sequence:synthetic
      primer 4-F (from list 4)
<400> 43
aanaancant tnaanggnaa nggngtnatn gc
                                                                    32
<210> 44
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> modified_base
<222> (1)..(32)
<223> n = inosine
<220>
<223> Description of Artificial Sequence:synthetic
      primer 4-RV (from list 4)
<400> 44
genatnaene enttneentt naantgnttn tt
                                                                    32
<210> 45
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<221> modified_base
<222> (1)..(38)
<223> n = inosine
<220>
<223> Description of Artificial Sequence:synthetic
      primer 5-F (from list 4)
<400> 45
tggatgggna anttnatnca nccngantgg ganatgtt
                                                                    38
<210> 46
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<221> modified base
<222> (1)..(38)
<223> n = inosine
<223> Description of Artificial Sequence:synthetic
      primer 5-RV (from list 4)
<400> 46
aacatntccc antenggntg natnaanttn cccatcca
                                                                    38
```

```
<210> 47
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<221> modified base
<222> (1)..(27)
<223> n = inosine
<220>
<223> Description of Artificial Sequence:synthetic
      primer 6-RV (from list 4)
<400> 47
catnttnacn arncenatng gngenaa
                                                                     27
<210> 48
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer 8.2 (from list 5)
<400> 48
aaracngcnc cnagyathat hgacaa
                                                                    26
<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer 13.4 (from list 5)
<400> 49
aarathtgga ayctnaacaa
                                                                    20
<210> 50
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer 7.4 (from list 5)
<400> 50
aargcnagrg tngtngtncc naag
                                                                    24
<210> 51
<211> 21
<212> DNA
```

<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence:synthetic primer 13.3RV (from list 5)	
<400>	E1	
	tnagr ttccadattt t	21
yccrc	inagi ecceadate t	21
<210>	52	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic	
	primer 10.3RV (from list 5)	
<400>		
yttrt	cytor tanagraatt t	21
<210>	. 52	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic primer RES-2RV (from list 6)	
<400>	53	
ggctga	aggtt cggttcattc ctgaatcatc	30
-010		
<210><211>		
<211>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic primer RS-7 (from list 6)	
<400>	54	
ccaaat	ggta catattggct ccaaggttgt	30
<210>		
<211>	·	
<212>		
	Artificial Sequence	
<220>		
	Description of Artificial Sequence:synthetic primer RS-8 (from list 6)	
<400>	55	
	gtat ctgaattttc acgcgcggtg	30

```
<210> 56
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer RS-9 (from list 6)
<400> 56
tggtgcaatg ggaaaactcc aatgagcacc
                                                                    30
<210> 57
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:synthetic
      primer RS-10 (from list 6)
atgaagtgtt ctgatagatt gaaagtttcg
                                                                    30
<210> 58
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer RS-11 (from list 6)
<400> 58
cagtctctgg agtttgatga taatgcaagt
                                                                    30
<210> 59
<211> 41
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:synthetic
      primer RS-N (from list 7)
cgcggatcca ccatggcacc accaagcata accaaaactg c
                                                                    41
<210> 60
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
     primer RS-C (from list 7)
```

```
<220>
<221> modified_base
<222> (1)..(37)
<223> n = inosine
<400> 60
tgctctagat tatcaaaata aaaactggac caaagac
                                                                    37
<210> 61
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer 1-F (from list 8)
<220>
<221> modified base
<222> (1)..(35)
<223> n= inosine
<400> 61
cgattnaang tntggtggac nacncantgg gtngg
                                                                    35
<210> 62
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:synthetic
      primer 2-RV (from list 8)
<220>
<221> modified base
<222> (1)..(45)
<223> n = inosine
<400> 62
ggcctanaan genteccang tneaceance naanttnten atnat
                                                                    45
<210> 63
<211> 41
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:synthetic
      primer 5-F (from list 8)
<220>
<221> modified base
<222> (1)..(41)
<223> n = inosine
<400> 63
```

32

cgatggatgg gnaanttnat ncancengan tggganatgt t	41
<210> 64	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:synthetic	
primer 6-RV (from list 8)	
<220>	
<221> modified base	
<222> (1)(32)	
<223> n = inosine	
<400> 64	
ggccacatnt tnacnarnce natnggngen aa	32
<210> 65	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	:
<223> Description of Artificial Sequence:synthetic	
primer SN-1 (from list 9)	
100 55	
<400> 65	2.0
cacgaactgg ggcacgagac acagatgatg	. 30
<210> 66	
<211> 30	
<212> DNA <213> Artificial Sequence	
tatos Attitudat bequeñoe	
<220>	
<223> Description of Artificial Sequence:synthetic	
<pre>primer SC-3RV (from list 9)</pre>	
<400> 66	
aagcaagtca cggagtgtga atagtcagag	30
	30
<210> 67	
<211> 30 <212> DNA	
<213> Artificial Sequence	
in olliforation bequence	
<220>	
<223> Description of Artificial Sequence:synthetic	
primer SC-5 (from list 9)	
<400> 67	
acacgagact gtttgtttga agaccccttg	30
<210× 60	

```
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
       primer SC-6 (from list 9)
<400> 68
tggaatctca acaaatatac aggtg
                                                                      25
<210> 69
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer SN-3RV (from list 9)
<400> 69
gggtcatggc caacgtggac gtataagcac
                                                                     30
<210> 70
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer SN-4RV (from list 9)
<400> 70
gatgatcact ggcgcggttt tctcctcgag
                                                                     30
<210> 71
<211> 35
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:synthetic
      primer 1-F (from list 10)
<220>
<221> modified base
<222> (1)..(35)
\langle 223 \rangle n = inosine
<400> 71
cgattnaang tntggtggac nacncantgg gtngg
                                                                     35
<210> 72
<211> 37
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence:synthetic
      primer 4-RV (from list 10)
<220>
<221> modified base
<222> (1) .. (37)
<223> n = inosine
<400> 72
ggccagcnat nacncenttn centtnaant gnttntt
                                                                    37
<210> 73
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer 2-F (from list 10)
<220>
<221> modified base
<222> (1)..(44)
<223> n = inosine
cgaatnatng anaanttngg ntggtgnacn tgggangent tnta
                                                                    44
<210> 74
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthetic
      primer 6-RV (from list 10)
<220>
<221> modified base
<222> (1)..(32)
<223> n = inosine
ggccacatnt tnacnarnce natnggngen aa
                                                                    32
<210> 75
<211> 41
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:synthetic
      primer 5-F (from list 11)
<221> modified base
<222> (1)..(41)
```

<223>	n= inosine	
<400>	75	
	gatgg gnaanttnat ncancengan tggganatgt t	41
<210>		
<211>		
<212>	·	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence:synthetic	
	primer 6-RV (from list 11)	
<220>		
	modified_base	
	(1) (32)	
<223>	n = inosine	
<400>	76	
ggcca	catnt tnacnarnce natnggngen aa	32
	· 	
<210>		
<211><212>		
(213)	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic	
	primer M10 (from list 12)	
<400>	77	
	cgagt ggaagagcgg caagg	25
34030	- January Caraga	23
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic	
	primer M-11 (from list 12)	
400		
<400>	acgag ctcttcgtcg ttgcc	25
cucco	acyay coccegocy cogec	25
<210>		
<211>		
<212>	\cdot	
<213>	Artificial Sequence	
<220>	·	
	Description of Artificial Sequence:synthetic	
	primer BamSac-(+) (from list 13)	
	<u> </u>	
<400>	79	
gatcga	agete gtgteggate eaget	25

\Z10>	80	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic	•
	<pre>primer BamSac-(-) (from list 13)</pre>	
<400>	80	
ggatc	cgaca cgagete	17
<210>	81	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic	
	primer 35S (from list 14)	
<400>	81	
ttcca	gtatg gacgattcaa ggcttgcttc	30
	Jenes, Suesuccau Adecedecee	30
-210-	02	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence:synthetic	
	primer NOS (from list 14)	
		•
<400>	82	
	caatt gegggaetet aatea	25
acyca	saact gegggaetet aatea	25
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:synthetic	
	primer RS-F (from list 14)	
	primer no i (from frac 14)	
<400>	. 02	
aagagı	gtat ctgaattttc acgcgcggtg	30
	·	
	•	
<210>	84	
<211>	33	
<212>	DNA ·	
<213>	Artificial Sequence	
* *	·	
<220>		
	Description of Artificial Seguence symthetic	

primer RS-RV (from list 14)

<400> 84	
acctteceat acacettttg gatgaacett caa	33
<210> 85	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:BamHI-NcoI linker (from Fig. 1)	
<400> 85	
ggatccacca tggcaccacc aagcataacc aaaactgc	38
<210> 86	
<210> 86	
<211> 36 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:XbaI-NotI-SacI linker (from Fig. 1)	
<400> 86	
tgataateta gageggeege cacegeggtg gagete	36