STAT 401A - Statistical Methods for Research Workers Inference Using *t*-Distributions

Jarad Niemi (Dr. J)

Iowa State University

last updated: September 8, 2014

Random variables

From: http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html

Definition

A random variable is a function that associates a unique numerical value with every outcome of an experiment.

Definition

A discrete random variable is one which may take on only a countable number of distinct values such as 0, 1, 2, 3, 4,... Discrete random variables are usually (but not necessarily) counts.

Definition

A continuous random variable is one which takes an infinite number of possible values. Continuous random variables are usually measurements.

Random variables

Examples:

- Discrete random variables
 - Coin toss: Heads (1) or Tails (0)
 - Die roll: 1, 2, 3, 4, 5, or 6
 - Number of Ovenbirds at a 10-minute point count
 - RNAseq feature count
- Continuous random variables
 - Pig average daily (weight) gain
 - Corn yield per acre

Statistical notation

Let Y be 1 if the coin toss is heads and 0 if tails, then

$$Y \sim Bin(n, p)$$

which means

Y is a binomial random variable with n trials and probability of success p

For example, if Y is the number of heads observed when tossing a fair coin ten times, then $Y \sim Bin(10, 0.5)$.

Later we will be constructing $100(1-\alpha)\%$ confidence intervals, these intervals are constructed such that if n of them are constructed then $Y \sim Bin(n, 1-\alpha)$ will cover the true value.

Statistical notation

Let Y_i be the average daily (weight) gain in pounds for the ith pig, then

$$Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

which means

 Y_i are independent and identically distributed normal (Gaussian) random variables with expected value $E[Y_i] = \mu$ and variance $V[Y_i] = \sigma^2$ (standard deviation σ).

For example, if a litter of pigs is expected to gain 2 lbs/day with a standard deviation of 0.5 lbs/day and the knowledge of how much one pig gained does not affect what we think about how much the others have gained, then $Y_i \stackrel{iid}{\sim} N(2, 0.5^2)$.

Normal (Gaussian) distribution

A random variable Y has a normal distribution, i.e. $Y \sim N(\mu, \sigma^2)$, with mean μ and variance σ^2 if draws from this distribution follow a bell curve centered at μ with spread determined by σ^2 :

Probability density function

3

t-distribution

A random variable Y has a t-distribution, i.e. $Y \sim t_{\nu}$, with degrees of freedom ν if draws from this distribution follow a similar bell shaped pattern:

Probability density function

t-distribution

As $v \to \infty$, then $t_v \overset{d}{\to} N(0,1)$, i.e. as the degrees of freedom increase, a t distribution gets closer and closer to a standard normal distribution, i.e. N(0,1). If v>30, the differences is negligible.

Probability density function

t critical value

Definition

If $T \sim t_v$, a $t_v(1 - \alpha/2)$ critical value is the value such that $P(T < t_v(1 - \alpha/2)) = 1 - \alpha/2$ (or $P(T > t_v(1 - \alpha)) = \alpha/2$).

Probability density function t₅

₽

Cedar-apple rust

Cedar-apple rust is a (non-fatal) disease that affects apple trees. Its most obvious symptom is rust-colored spots on apple leaves. Red cedar trees are the immediate source of the fungus that infects the apple trees. If you could remove all red cedar trees within a few miles of the orchard, you should eliminate the problem. In the first year of this experiment the number of affected leaves on 8 trees was counted; the following winter all red cedar trees within 100 yards of the orchard were removed and the following year the same trees were examined for affected leaves.

- Statistical hypothesis:
 - H_0 : Removing red cedar trees increases or maintains the same mean number of rusty leaves.
 - H_1 : Removing red cedar trees decreases the mean number of rusty leaves.
- Statistical question:
 - What is the expected reduction of rusty leaves in our sample between year 1 and year 2 (perhaps due to removal of red cedar trees)?

Data

Here are the data

```
library(plyr)
y1 = c(38, 10, 84, 36, 50, 35, 73, 48)
v2 = c(32,16,57,28,55,12,61,29)
leaves = data.frame(year1=y1, year2=y2, diff=y1-y2)
leaves
  year1 year2 diff
     38
          32
          16
              -6
              27
    50
        55
              -5
        12
              23
    73
          61
               12
     48
           29
               19
summarize(leaves, n=length(diff), mean=mean(diff), sd=sd(diff))
  n mean
1 8 10.5 12.2
```

Is this a statistically significant difference?

Assumptions

Let

- Y_{1j} be the number of rusty leaves on tree j in year 1
- Y_{2j} be the number of rusty leaves on tree j in year 2

Assume

$$D_j = Y_{1j} - Y_{2j} \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

Then the statistical hypothesis test is

$$H_0$$
: $\mu = 0 \ (\mu \le 0)$

*H*₁:
$$\mu > 0$$

while the statistical question is 'what is μ ?'

Paired t-test pvalue

Test statistic

$$t = \frac{D - \mu}{SE(\overline{D})}$$

where $SE(\overline{D}) = s/\sqrt{n}$ with

- n being the number of observations (differences),
- s being the sample standard deviation of the differences, and
- \bullet \overline{D} being the average difference.

If H_0 is true, then $\mu=0$ and $t\sim t_{n-1}$. The pvalue is $P(t_{n-1}>t)$ since this is a one-sided test. By symmetry, $P(t_{n-1}>t)=P(t_{n-1}<-t)$.

For these data,

$$\overline{D} = 10.5, SE(\overline{D}) = 4.31, t_7 = 2.43, and p = 0.02$$

Confidence interval for μ

The $100(1-\alpha)\%$ confidence interval has lower endpoint

$$\overline{D} - t_{n-1}(1-\alpha)SE(\overline{D})$$

and upper endpoint at infinity

For these data at 95% confidence, $t_7(0.9) = 1.89$ and thus the lower endpoint is

$$10.5 - 1.89 \cdot 4.31 = 2.33$$

So we are 95% confident that the true difference in the number of rusty leaves is greater than 2.33.

SAS code for paired t-test

```
DATA leaves;
  INPUT tree year1 year2;
  DATALINES;
1 38 32
2 10 16
3 84 57
4 36 28
5 50 55
6 35 12
7 73 61
8 48 29
PROC TTEST DATA=leaves SIDES=U;
    PAIRED year1*year2;
    RUN;
```

,

SAS output for paired t-test

10.5000

The TTEST Procedure

Difference: year1 - year2 N Std Dev Std Err Mean Minimum 10.5000 12.2007 4.3136 -6.0000 Mean 95% CL Mean Std Dev 95% CL Std Dev

df t Value Pr > t

2.3275 Infty

7 2.43 0.0226

12.2007

Maximum

27,0000

8.0668 24.8317

SAS

R output for paired t-test

```
t.test(leaves$year1, leaves$year2, paired=TRUE, alternative="greater")
Paired t-test
data: leaves$year1 and leaves$year2
t = 2.434, df = 7, p-value = 0.02257
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
2.328 Inf
sample estimates:
mean of the differences
                   10.5
```

Statistical Conclusion

Removal of red cedar trees within 100 yards is associated with a significant reduction in rusty apple leaves (paired t-test t_7 =2.43, p=0.023). The mean reduction in rust color leaves is 10.5 [95% CI (2.33, ∞)].

Do Japanese cars get better mileage than American cars?

- Statistical hypothesis:
 - H_0 : Mean mpg of Japanese cars is the same as mean mpg of American cars.
 - *H*₁: Mean mpg of Japanese cars is different than mean mpg of American cars.
- Statistical question:

What is the difference in mean mpg between Japanese and American cars?

- Data collection:
 - Collect a random sample of Japanese/American cars

```
mpg = read.csv("mpg.csv")
library(ggplot2)
ggplot(mpg, aes(x=mpg))+
geom_histogram(data=subset(mpg,country=="Japan"), fill="red", alpha=0.5)+
geom_histogram(data=subset(mpg,country=="US"), fill="blue", alpha=0.5)
```


Assumptions

Let

- Y_{1i} represent the jth Japanese car
- Y_{2j} represent the jth American car

Assume

$$Y_{1j} \stackrel{\textit{iid}}{\sim} N(\mu_1, \sigma^2) \qquad Y_{2j} \stackrel{\textit{iid}}{\sim} N(\mu_2, \sigma^2)$$

Restate the hypotheses using this notation

 H_0 : $\mu_1 = \mu_2$

 H_1 : $\mu_1 \neq \mu_2$

Alternatively

 H_0 : $\mu_1 - \mu_2 = 0$

 $H_1: \mu_1 - \mu_2 \neq 0$

Test statistic

The test statistic we use here is

$$\frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{SE(\overline{Y}_1 - \overline{Y}_2)}$$

where

- \bullet \overline{Y}_1 is the sample average mpg of the Japanese cars
- ullet \overline{Y}_2 is the sample average mpg of the American cars

and

$$SE(\overline{Y}_1 - \overline{Y}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
 $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}}$

where

- ullet s_1 is the sample standard deviation of the mpg of the Japanese cars
- \bullet s_2 is the sample standard deviation of the mpg of the American cars

Pvalue

If H_0 is true, then $\mu_1=\mu_2$ and the test statistic

$$t = rac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{\mathit{SE}(\overline{Y}_1 - \overline{Y}_2)} \sim t_{n_1 + n_2 - 2}$$

where t_{ν} is a t-distribution with ν degrees of freedom.

Pvalue is $P(|t_{n_1+n_2-2}| > |t|) = P(t_{n_1+n_2-2} > |t|) + P(t_{n_1+n_2-2} < -|t|)$ or as a picture

Hand calculation

To calculate the quantity by hand, we need 6 numbers:

```
library(plyr)
ddply(mpg, .(country), summarize, n=length(mpg), mean=mean(mpg), sd=sd(mpg))

country n mean sd
1 Japan 79 30.48 6.108
2 US 249 20.14 6.415
```

Calculate

$$s_p = \sqrt{\frac{(79-1)\cdot 6.11^2 + (249-1)\cdot 6.41^2}{79+249-2}} = 6.34$$

$$SE(\overline{Y}_1 - \overline{Y}_2) = 6.34\sqrt{\frac{1}{79} + \frac{1}{249}} = 0.82$$

$$t = \frac{30.5 - 20.1}{0.82} = 12.6$$

Finally, we are interested in finding $P(|t_{326}| > |12.6|) = 2P(t_{326} < -|12.6|) < 0.0001$ which is found using a table or software.

Confidence interval

Alternatively, we can construct a $100(1-\alpha)\%$ confidence interval. The formula is

$$\overline{Y}_1 - \overline{Y}_2 \pm t_{n_1+n_2-2}(1-\alpha/2)SE(\overline{Y}_1 - \overline{Y}_2)$$

where \pm indicates plus and minus and $t_{\nu}(1-\alpha/2)$ is the value such that $P(t_{\nu} < t_{\nu}(1-\alpha/2)) = 1-\alpha/2$. If $\alpha = 0.05$ and $\nu = 326$, then $t_{\nu}(1-\alpha/2) = 1.97$.

The 95% confidence interval is

$$30.5 - 20.1 \pm 1.97 \cdot 0.82 = (8.73, 11.9)$$

We are 95% confident that, on average, Japanese cars get between 8.73 and 11.9 more mpg than American cars.

SAS code for two-sample t-test

```
DATA mpg;
    INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
    INPUT mpg country $;
PROC TTEST DATA=mpg;
    CLASS country;
    VAR mpg;
    RUN;
```

The TTEST Procedure

Variable: mpg

2011	country N		Mean	Std Dev	Std E	Err Minir	num Marrimu	Maximum	
coun	try	IN	mean	sta Dev	Sta E	srr minii	num raximu	ш	
Japa	n	79	30.4810	6.1077	0.68	372 18.00	000 47.000	0	
US		249	20.1446	6.4147	0.40	9.00	39.000	0	
Diff	(1-2)		10.3364	6.3426	0.81	.90			
country	Method		Mean	95% (CL Mean	Std De	ev 95% CL	Std Dev	
Japan			30.4810	29.1130	31.849	6.10	77 5.2814	7.2429	
บร			20.1446	19.3439	9 20.945	6.414	47 5.8964	7.0336	
Diff (1-2)	Pooled		10.3364	8.7252	2 11.947	77 6.342	26 5.8909	6.8699	
Diff (1-2)	Satterthwaite		10.3364	8.7576	5 11.915	52			
	Method		Variance	s	df t	Value Pr	> t		
	Pooled Satterthwaite		Equal	3	326	12.62	<.0001		
			e Unequal	136	. 87	12.95	<.0001		
			Equali	ty of Va	riances				
		Method	Num df	Den df	F Val	lue Pr > I	F		
		Folded I	248	78	1.	10 0.6194	4		

R code/output for two-sample t-test

```
t.test(mpg~country, data=mpg, var.equal=TRUE)

Two Sample t-test

data: mpg by country

t = 12.62, df = 326, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
8.725 11.948

sample estimates:
mean in group Japan mean in group US
30.48 20.14
```

Conclusion

Mean miles per gallon of Japanese cars is significantly different than mean miles per gallon of American cars (two-sample t-test t=12.62, p<0.0001). Japanese cars get an average of 10.3 [95% CI (8.7,11.9)] more miles per gallon than American cars.

Hypotheses

Three key features:

- a test statistic calculated from data
- a sampling distribution for the test statistic under the null hypothesis
- a region that is as or more extreme (one-sided vs two-sided hypotheses)

Calculate probability of being in the region:

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

- ullet If pvalue is less than or equal to lpha, we reject the null hypothesis.
- If pvalue is greater than α , we fail to reject the null hypothesis.

Hypothesis framework

Let's assume, we have

- $Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$ for i = 1, ..., n and have
- calculated a test statistic t, and
- ullet if the null hypothesis is true, t has a $t_{
 u}$ sampling distribution.

Now, we can have one of three types of hypotheses:

• Two-sided ($H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$):

$$\mathsf{pvalue} = P(|t_{\nu}| > |t|) = P(t_{\nu} > |t|) + P(t_{\nu} < -|t|) = 2P(t_{\nu} < -|t|)$$

• One-sided $(H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0)$:

$$\mathsf{pvalue} = P(t_{\nu} > t) = P(t_{\nu} < -t)$$

• One-sided $(H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0)$:

$$pvalue = P(t_{\nu} < t)$$

 $F(c) = P(t_{\nu} < c)$ is the cumulative distribution function for a t distribution with ν degrees of freedom.

Symmetric distributions

The standard normal and t distributions are both symmetric around zero.

$$P(T_{\nu} > c) = P(t_{\nu} < -c)$$
 blue area is equal to red area

Paired t-test example

In the paired t-test example, we had a test statistic t=2.43 with a t_7 sampling distribution if the null hypothesis is true.

Consider the following hypotheses (μ is the expected difference):

• Two-sided ($H_0: \mu = 0 \text{ vs } H_1: \mu \neq 0$):

pvalue =
$$2P(t_7 < -2.43) = 0.0454$$

• One-sided ($H_0: \mu \leq 0 \text{ vs } H_1: \mu > 0$):

pvalue =
$$P(t_7 < -2.43) = 0.0227$$

• One-sided ($H_0: \mu \ge 0 \text{ vs } H_1: \mu < 0$):

pvalue =
$$P(t_7 < 2.43) = 0.9773$$

Two-sample t-test example

In a two-sample t-test, we might have a test statistic t=-2 with a t_{30} sampling distribution if the null hypothesis is true.

Consider the following hypotheses ($\mu_1 - \mu_2$ is the expected difference):

• Two-sided $(H_0: \mu_1 - \mu_2 = 0 \text{ vs } H_1: \mu_1 - \mu_2 \neq 0)$:

pvalue =
$$2P(t_{30} < -2) = 0.0546$$

• One-sided $(H_0: \mu_1 - \mu_2 \le 0 \text{ vs } H_1: \mu_1 - \mu_2 > 0)$:

pvalue =
$$P(t_{30} < 2) = 0.9727$$

• One-sided $(H_0: \mu_1 - \mu_2 \ge 0 \text{ vs } H_1: \mu_1 - \mu_2 < 0)$:

pvalue =
$$P(t_{30} < -2) = 0.0273$$

Confidence interval construction

Key steps in confidence interval construction:

- Calculate point estimate
- Calculate standard error of the statistic
- \odot Set error level α
- Find the appropriate critical value
- **5** Construct the $100(1-\alpha)\%$ confidence interval
 - Two-sided $(H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0)$: (L, U)

$$(L,U)=$$
 estimate \pm critical value $(1-lpha/2) imes$ standard error

• One-sided $(H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0)$: (L, ∞)

$$L = \text{estimate} - \text{critical value}(1 - \alpha) \times \text{standard error}$$

• One-sided $(H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0)$: $(-\infty, U)$

$$U = \text{estimate} + \text{critical value}(1 - \alpha) \times \text{standard error}$$

Critical values

A related quantity are critical values, e.g. $t_{\nu}(1-\alpha/2)$.

Let $c = t_{\nu}(1 - \alpha/2)$, then we need $P(t_{\nu} < c) = 1 - \alpha/2$, i.e. the inverse of the cumulative distribution function.

Paired t-test example

In paired t-test example, we had an estimate $\hat{\mu}=10.5$ and a standard error of 4.3136 with 7 degrees of freedom.

The 95%, i.e. $\alpha =$ 0.05, confidence intervals for μ are

• Two-sided $(t_7(.975) = 2.364624)$

$$10.5 \pm 2.364624 \cdot 4.3136 = (0.30, 20.7)$$

• One-sided (positive) $(t_7(.95) = 1.894579)$

$$(10.5 - 1.894579 \cdot 4.3136, \infty) = (2.33, \infty)$$

• One-sided (negative) $(t_7(.95) = 1.894579)$

$$(-\infty, 10.5 + 1.894579 \cdot 4.3136) = (-\infty, 18.7)$$

Two-sample t-test example

In the two-sample t-test example, we had an estimate $\mu_1 \hat{-} \mu_2 = 10.33643$ and a pooled standard error of 0.8190 with 326 degrees of freedom.

The 90%, i.e. $\alpha =$ 0.10, confidence intervals for μ are

• Two-sided $(t_{326}(.95) = 1.649541)$

$$10.33643 \pm 1.649541 \cdot 0.8190 = (9.0, 11.7)$$

• One-sided (positive) $(t_{326}(.90) = 1.285149)$

$$(10.33643 - 1.285149 \cdot 0.8190, \infty) = (9.3, \infty)$$

• One-sided (negative) $(t_{326}(.90) = 1.285149)$

$$(-\infty, 10.33643 + 1.285149 \cdot 0.8190) = (-\infty, 11.4)$$

Find critical values using SAS or R

```
If \alpha = 0.05, then 1 - \alpha/2 = 0.975.
In SAS.
PROC IML;
  q = QUANTILE('T', 0.975, 7);
  PRINT q;
  QUIT;
In R,
q = qt(0.975,7)
```

Both obtain q=2.364.

Equivalence of confidence intervals and pvalues

Theorem

If the $100(1-\alpha)\%$ confidence interval does not contain μ_0 , then the associated hypothesis test would reject the null hypothesis at level α , i.e. the pvalue will be less than α .

Examples:

- In the paired t-test example, the one-sided 95% confidence interval for the difference was $(2.33,\infty)$ which does not include 0. Thus the pvalue for the one-sided hypothesis test (with alternative that the difference was greater than zero) was less than 0.05 (it was 0.02) and the null hypothesis was rejected.
- In the two-sample t-test example, the two-sided 95% confidence interval for the difference was (9.0,11.7) which does not include 0. Thus the pvalue for the two-sided hypothesis test was less than 0.05 (it was < 0.0001) and the null hypothesis was rejected.

Remark Rather than reporting the pvalue, report the confidence interval as it provides the same information and more.

Summary

Two main approaches to statistical inference:

- Statistical hypothesis (hypothesis test)
- Statistical question (confidence interval)