Métodos Numéricos

Primer Cuatrimestre 2020 **Práctica 5**

Autovalores y Autovectores. Método de la potencia.

1. Hallar los autovalores y autovectores de las siguientes matrices:

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & -1 & 0 \\
-2 & 4 & -2 \\
0 & -1 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
-1 & -3 & -9 \\
0 & 5 & 18 \\
0 & -2 & -7
\end{pmatrix}$$

- 2. Sea A una matriz de $\mathbb{R}^{n\times n}$. Demostrar las afirmaciones siguientes:
 - a) Si A es simétrica entonces todos sus autovalores son reales.
 - b) Si todos los autovalores de A son reales, entonces todos los autovectores pueden tomarse en \mathbb{R}^n (es decir, ningún autovector es puramente complejo).
 - c) Si A es simétrica y definida positiva (resp. negativa) entonces todos sus autovalores son reales positivos (resp. negativos).
 - d) Si A es ortogonal entonces todos sus autovalores tienen módulo 1.
 - e) Si A es antisimétrica entonces 0 es el único autovalor real posible.
 - f) Si A es triangular entonces sus autovalores son los elementos de la diagonal.
- 3. Sea A una matriz de $n \times n$ y λ un autovalor de A.
 - a) Probar que λ^k es un autovalor de A^k para todo $k \in \mathbb{N}$.
 - b) Probar que si $\lambda \neq 0$ y A es inversible entonces λ^{-1} es un autovalor de A^{-1} .
 - c) Probar que $a\lambda + b$ es un autovalor de aA + bI.
 - d) Sea $P(x) := a_0 x^m + a_1 x^{m-1} + \dots + a_m$. Probar que $P(\lambda)$ es un autovalor de $P(A) := a_0 A^m + a_1 A^{m-1} + \dots + a_m I$.
- 4. Sea A una matriz con dos autovalores distintos λ_1, λ_2 . Sean v_1, v_2 autovectores de A correspondientes λ_1, λ_2 respectivamente.
 - a) Demostrar que v_1, v_2 son linealmente independientes.
 - b) Si A es simétrica, demostrar que v_1, v_2 son ortogonales.
- 5. Sea $u \in \mathbb{R}^n$ un vector no nulo y $H_u = I 2\frac{u\,u^t}{u^t u}$ la matriz de Householder asociada.
 - a) Demostrar que u es autovector de H_u . ¿Cuál es el autovalor correspondiente?
 - b) Sea $U = \langle u \rangle$ el subespacio generado por el vector u. Demostrar que cualquier $v \in U^{\perp}$ es autovector de H_u . ¿Cuáles son los autovalores correspondientes?
- 6. Sea $A \in \mathbb{R}^{n \times n}$ una matriz con autovalores $\lambda_1, \ldots, \lambda_n$ distintos y autovectores $\{v_1, \ldots, v_n\}$.
 - a) Demostrar que $\{v_1, \ldots, v_n\}$ es un conjunto linealmente independiente.
 - b) Demostrar que A es diagonalizable, es decir, existe una matriz no singular $S \in \mathbb{R}^{n \times n}$ y una matriz diagonal $D \in \mathbb{R}^{n \times n}$, tal que $A = SDS^{-1}$.

- 7. Sea $A \in \mathbb{R}^{3\times 3}$ cuyos autovalores son $\{1;1;2\}$. Indicar cuáles de las siguientes afirmaciones son verdaderas y justificar.
 - a) A es inversible
 - b) A es diagonalizable
 - c) A no es diagonalizable
- 8. Sea $A \in \mathbb{R}^{3\times 3}$ tal que todos sus autovectores son múltiplos de e_1 . Indicar cuáles de las siguientes afirmaciones son verdaderas y justificar.
 - a) A es singular
 - b) A tiene un autovalor repetido
 - c) A no es diagonalizable
- 9. Sea A inversible. Mostrar que si A es diagonalizable, entonces también lo son A^{-1} y A^t .
- 10. Sea $A \in \mathbb{R}^{n \times n}$ una matriz diagonalizable tal que $A = SDS^{-1}$. Calcular A^n y A 3I en función de S y D.
- 11. Probar que la matriz nula es la única matriz $A \in \mathbb{R}^{n \times n}$ diagonalizable con un autovalor $\lambda = 0$ de multiplicidad algebraica $m_A(\lambda) = n$.
- 12. Sea $A \in \mathbb{R}^{n \times n}$ una matriz nilpotente ¹ no nula. Probar que A no es diagonalizable.
- 13. Sea $A \in \mathbb{R}^{n \times n}$ diagonalizable con autovalores $\lambda_1, \ldots, \lambda_n$. Demostrar que $tr(A) = \sum_i \lambda_i$ y $\det(A) = \prod_i \lambda_i$. Sugerencia: usar que tr(BC) = tr(CB) para C y B convenientes.
- 14. Sea $A \in \mathbb{R}^{n \times n}$ una matriz con autovalores reales $\lambda_1, \dots, \lambda_n$ distintos y autovectores v_1, \dots, v_n .
 - a) Sea $H \in \mathbb{R}^{n \times n}$ una matriz ortogonal tal que $Hv_1 = \alpha e_1$. Justificar como se puede obtener esta matriz. Demostrar que

$$HAH^{-1} = \begin{bmatrix} \lambda_1 & b^t \\ 0 & B \end{bmatrix}$$

con $B \in \mathbb{R}^{n-1 \times n-1}$ y $b \in \mathbb{R}^{n-1}$.

- b) Demostrar que $\lambda_2, \ldots, \lambda_n$ son autovalores de B.
- c) Sea w_2 el autovector de B asociado a λ_2 . Demostrar que

$$v_2 = H^{-1} \begin{bmatrix} \beta \\ w_2 \end{bmatrix}, \text{ con } \beta = \frac{1}{\lambda_2 - \lambda_1} b^t w_2.$$

- d) Si A es simétrica, probar que b = 0.
- 15. Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica.
 - a) Demostrar que A es ortogonalmente diagonalizable, es decir, existe una matriz ortogonal $Q \in \mathbb{R}^{n \times n}$ y una matriz diagonal $D \in \mathbb{R}^{n \times n}$, tal que $A = QDQ^t$.
 - b) Demostrar que A es definida positiva si y sólo si existe una matriz B simétrica y no singular tal que $A=B^2$.

 $^{^{1}}A^{k}=0$ para algún $k\in\mathbb{N}.$

16. Sea A una matriz simétrica de $\mathbb{R}^{n\times n}$ cuyos autovalores (reales) $\lambda_1, \ldots, \lambda_n$ satisfacen la condición $|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$. Sea $\{x_1, \ldots, x_n\}$ una base ortonormal de autovectores de A tal que x_i es autovector de autovalor λ_i para $1 \le i \le n$. Dado un vector inicial $y_0 \in \mathbb{R}^n$ tal que $x_1^t y_0 \ne 0$, se define la sucesión $\{y_k\}_{k \in \mathbb{N}_0}$ por:

$$y_{k+1} := \frac{Ay_k}{\|Ay_k\|}$$
 para $k = 0, 1, 2, \dots$

donde $\|\cdot\|$ es una norma arbitraria.

- a) Demostrar que $A^k y_0 = a_1 \lambda_1^k x_1 + \dots + a_n \lambda_n^k x_n$ (donde $a_i = y_0^t x_i$ para $1 \le i \le n$).
- b) Demostrar que $y_k = \frac{A^k y_0}{\|A^k y_0\|}$ para todo $k \in \mathbb{N}$.
- c) Analizar la convergencia de y_k cuando $k \to \infty$ y comprobar que para k suficientemente grande, $y_k \approx \alpha x_1$, con $\alpha \in \mathbb{R}$ una constante.
- 17. Sea $\alpha \in \mathbb{R}$ y sea $A \in \mathbb{R}^{2 \times 2}$ la siguiente matriz simétrica:

$$A = \left(\begin{array}{cc} 1 & \alpha \\ \alpha & 1 \end{array}\right)$$

- a) Si $\alpha = 1$, explicar qué sucede cuando aplicamos el método de las potencias a A, comenzando con el vector $x_0 = (1,0)$ y comenzando con el vector $x_0 = (1,-1)$. ¿Converge el método en cualquier caso a un autovalor dominante? ¿Por qué?
- b) Determinar los valores de $\alpha \in \mathbb{R}$ para los cuales las dos sucesiones del método de las potencias comenzando con los vectores $x_0 = (1,0)$ y $x_0 = (1,-1)$ convergen al autovalor dominante.
- 18. Para cada $k \in \mathbb{N}$ se define el cociente de Rayleigh r_k por $r_k := \frac{y_k^t A y_k}{y_k^t y_k}$, siendo y_k la sucesión definida por el método de la potencia. Demostrar que $\lim_{k \to \infty} r_k = \lambda_1$, es decir, que el método de las potencias converge. Más aún, demostrar que los errores relativos verifican:

$$\frac{r_k - \lambda_1}{\lambda_1} = n_k \left(\frac{\lambda_2}{\lambda_1}\right)^{2k},$$

donde los números n_k forman una sucesión acotada (notación: $\frac{r_k - \lambda_1}{\lambda_1} = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$). Sugerencia: Usar que si n_k converge entonces es acotada.

19. Sea $A \in \mathbb{R}^{n \times n}$. Se define una generalización del cociente de Rayleigh en la forma:

$$r_A(x) = \frac{x^t A x}{x^t x} \quad \forall x \in \mathbb{R}^n$$

Probar que si $A \in \mathbb{R}^{n \times n}$ es simétrica y λ_{min} y λ_{max} son el menor y el mayor autovalor de A respectivamente entonces $\lambda_{min} \leq r_A(x) \leq \lambda_{max} \ \forall x \in \mathbb{R}^n$.

Resolver en computadora

I Aplicar el método de las potencias para encontrar el máximo autovalor de A comenzando con $x^{(0)} = (1,0,0)^t$.

$$A = \left(\begin{array}{rrr} 4 & -1 & 1\\ -1 & 3 & -2\\ 1 & -2 & 3 \end{array}\right)$$

II Hallar todos los autovalores y autovectores de las siguientes matrices usando el método de las potencias:

$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 4 & -2 \\ 0 & -1 & 1 \end{pmatrix} \qquad A_3 = \begin{pmatrix} -1 & -3 & -9 \\ 0 & 5 & 18 \\ 0 & -2 & -7 \end{pmatrix}$$

Referencias

- [1] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, Cengage Learning, 2005.
- [2] G.H. Golub and C.F. Van Loan. *Matrix Computations*. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2012.
- [3] D.S. Watkins. Fundamentals of Matrix Computations. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2010.