Методы оптимизации. Семинар 7 Субдифференциальное исчисление.

Корнилов Никита Максимович

Московский физико-технический институт

16 октября 2025г

Субдифференциал

Обощение свойств градиента на точки недифференцируемости.

Definition (Субградиент)

Пусть дана функция $f:U\to \overline{\mathbb{R}}$ и точка $x_0\in \mathsf{dom}\ f$. Элемент $s\in U$ называется *субградиентом функции f в точке* x_0 , если

$$f(x) \ge f(x_0) + \langle s, x - x_0 \rangle, \quad \forall x \in \text{dom } f.$$

- Множество всех субград. в точке $x_0 \in \text{dom } f$ называется субдифференциалом f в точке x_0 и обозначается как $\partial f(x_0)$. Для $x_0 \notin \text{dom } f$ считаем $\partial f(x_0) = \emptyset$.
- Если $\partial f(x_0) \neq \emptyset$, то функция f называется субдифференцируемой в точке x_0 .

Посчитаем по определению

Example

Пусть $f: \mathbb{R} \to \mathbb{R}$ функция модуля f(x) = |x|. Посчитайте субдифференциал $\partial f(0)$ в точке 0.

Example

Пусть $f:\mathbb{S}^n \to \mathbb{R}$ задаётся как $f(X) = \lambda_{\max}(X)$. Покажите, что $uu^\top \in \partial f(X)$, где u — нормированный собственный вектор, соответствующий наибольшему собственному числу $\lambda_{\max}(X)$.

Example

Пусть даны функции $f:\mathbb{R}^n o \mathbb{R}$ и $h:\mathbb{R}^n o \mathbb{R}^d$. По определению функция $g:\mathbb{R}^d o \mathbb{R}$ задана как

$$g(\lambda) = -\min_{x \in \mathbb{R}^n} \left\{ f(x) + \langle \lambda, h(x) \rangle \right\}.$$

Покажите, что $-h(x_0) \in \partial g(\lambda_0)$ для $\lambda_0 \in \text{dom } g$, где x_0 — точка, в которой достигается min в $g(\lambda_0)$.

Свойства субдифференциала для выпуклых функций

- ① Субдифференциал это выпуклое замкнутое множество (возможно, пустое) $\partial f(x_0) = \bigcap_{x \in \text{dom } f} \{s \in U : f(x) \ge f(x_0) + \langle s, x x_0 \rangle \}$
- ② Пусть $x_0 \in int(\mathsf{dom}\ f)$ и функция f выпуклая. Тогда $\partial f(x_0)$ не пуст и является выпуклым компактом (f субдиф на $int(\mathsf{dom}\ f))$.
- **③** Пусть $x_0 \in int(\text{dom } f)$ и функция f выпуклая. Тогда функция дифференцируемая в точке x_0 тогда и только тогда, когда субдифференциал состоит из одного элемента $\partial f(x_0) = \{\nabla f(x_0)\}$.
- **© Критерий глобального минимума**. Точка x_0 глобальный минимум функции $f:U \to \mathbb{R}$ тогда и только тогда, когда $0 \in \partial f(x_0)$.
- **⑤** Критерий условного минимума. Точка $x_0 \in Q$ условный минимум функции $f: U \to \mathbb{R}$ на $Q \subset U$ тогда и только тогда, когда $\exists g \in \partial f(x_0): \langle g, x x_0 \rangle \geq 0, \forall x \in Q$.

H. М. Корнилов 16 октября 2025г 4 / 18

Свойства субдифференциала для произвольных функций

- Субдифференциал это всё ещё выпуклое замкнутое множество (возможно, пустое).
- ② Пусть $x_0 \in int(\text{dom } f)$ и f дифференцируема в x_0 . Тогда либо $\partial f(x_0) = \emptyset$, либо $\partial f(x_0) = \{\nabla f(x_0)\}$. Только в случае выпуклых функций множество дифференцируемых точек является подмножеством субдифференцируемых!
- **© Критерий глобального минимума**. Точка x_0 глобальный минимум функции $f:U \to \mathbb{R}$ тогда и только тогда, когда $0 \in \partial f(x_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへで

Example

Пусть $f:\mathbb{R} o \mathbb{R}$ функция f(x) = |x|. Найдите $\partial f(x)$.

Example

Пусть $f: [0, \frac{3\pi}{2}] \to \mathbb{R}$ функция $f(x) = \cos(x)$. Найдите $\partial f(x)$.

Многомерный пример

Example (Норма)

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) = \|x\|$. Найдите $\partial f(x)$.

Hint. По определению, сопряженная норма $\|g\|_* := \sup_{\|x\| \leq 1} \langle g, x \rangle$.

(Суб)Диффренцируемость и выпуклость

- Если функция f имеет открытый dom f, то субдифференцируемость эквивалентна выпуклости.
- В общем случае для неоткрытых dom f из выпуклости не следует субдифференцируемость на граничных точках $(f(x) = -\sqrt{x})$.
- Но из субдифференцируемости всегда следует выпуклость.
- Если функция f выпуклая, то она может быть не дифференцируема только в счетном числе точек из $int\ dom\ f$.

<ロ > → □ → → □ → → □ → → へ ○ ○

Общий алгоритм

Для выпуклых функций:

- **1** Для внутренних дифференцируемых точек считаем градиент, он и есть субдифференциал $\partial f(x_0) = \{\nabla f(x_0)\}.$
- Для недифф, сложно дифференцируемых или граничных точек смотрим по субдифф исчислению или по определению (или на график).

Для невыпуклых функций:

Внимательно изучаем каждую внутреннюю и граничную точку по определению или графику.

Субдифференциальное исчисление І

Для простоты изложения считаем, что dom всех функций это U.

• Умножение на константу. Пусть дана произвольная функция f, точка $x_0 \in U$ и положительный коеф $c \ge 0$, тогда

$$\partial [c \cdot f](x_0) = c \cdot \partial f(x_0).$$

ullet Сумма. Пусть даны *выпуклые* функции f и g на U, тогда

$$\partial (f+g)(x_0) = \partial f(x_0) + \partial g(x_0).$$

Обобщение на m выпуклых функций и $c_i \geq 0, i \in \overline{1,m}$

$$\partial\left(\sum_{i=1}^m c_i f_i\right)(x_0) = \sum_{i=1}^m c_i \partial f_i(x_0).$$

Если f, g — произвольные, то верно только

$$\partial(f+g)(x_0) \supseteq \partial f(x_0) + \partial g(x_0).$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Example

Посчитайте $\partial f(x)$ для $f(x): \mathbb{R} \to \mathbb{R} = 2|x+1| + |x-1|$.

Субдифференциальное исчисление II

• Аффинное преобразование. Аффинное преобразование g(x) = Ax + b и выпуклая f в точке x_0 дают

$$\partial (f(Ax+b))(x_0) = A^{\top} \partial f(Ax_0+b).$$

• **Неубывающая композиция.** Пусть $g_i(x): \mathbb{R}^n \to \mathbb{R}$ выпуклые функции для всех $i \in \overline{1,m}$, а $\phi(u): \mathbb{R}^m \to \mathbb{R}$ неубывающая выпуклая функция. Тогда для композиции $f(x): \mathbb{R}^n \to \mathbb{R} := \phi(g_1(x), \dots, g_m(x))$ и точки x_0 верно

$$\partial f(x_0) = \bigcup_{p \in \partial \phi(g(x_0))} \sum_{i=1}^m p_i \partial g_i(x_0).$$

Если ϕ дифф, то

$$\partial f(x_0) = \sum_{i=1}^m \frac{\partial \phi}{\partial u_i} \partial g_i(x_0).$$

H. М. Корнилов 16 октября 2025г 12 / 18

Example

Посчитайте $\partial f(x)$ для $f(x): \mathbb{R}^n \to \mathbb{R} = \exp(\|Ax + b\|_2)$.

Субдифференциальное исчисление III

• Конечный максимум. Пусть даны выпуклые функции $f_i: U \to \mathbb{R}$ функции для $i = \overline{1,m}$ и $f(x) := \max_{i=\overline{1,m}} f_i(x)$. Тогда для $x_0 \in U$ верно

$$\partial f(x_0) = \operatorname{Conv}\left(\bigcup_{i \in I(x_0)} \partial f_i(x_0)\right),$$

где $I(x_0) := \{i \in \overline{1,m} : f_i(x_0) = f(x_0)\}$ – множество индексов, на которых достигается max.

Если f_i — произвольные, то верно только

$$\partial f(x_0) \supseteq \overline{\mathsf{Conv}} \left(\bigcup_{i \in I(x_0)} \partial f_i(x_0) \right).$$

Субдифференциальное исчисление IV

• Бесконечный максимум. Пусть даны выпуклые функции $f_i: U \to \mathbb{R}$ функции для $i \in I$, где I — произвольное компактное множество такое, что $i \to f_i(x)$ полунепрерывна сверху на I. Тогда для $f(x) := \max_{i \in I} f_i(x)$ и точки $x_0 \in U$ верно

$$\partial f(x_0) = \operatorname{Conv}\left(\bigcup_{i \in I(x_0)} \partial f_i(x_0)\right),$$

где $I(x_0) := \{i \in I : f_i(x_0) = f(x_0)\}$ – множество индексов, на которых достигается max.

Если f_i и I произвольные, то верно только

$$\partial f(x_0) \supseteq \overline{\mathsf{Conv}}\left(\bigcup_{i \in I(x_0)} \partial f_i(x_0)\right).$$

H. М. Корнилов 16 октября 2025г 15 / 18

Example (Модуль через max)

Посчитайте $\partial f(x)$ для $f(x):\mathbb{R} o \mathbb{R} = |x|$ через субдифф максимума.

Example (Норма через max)

Посчитайте $\partial f(x)$ для $f(x):\mathbb{R}^n o \mathbb{R} = \|x\|$ через субдифф максимума.

Example (ℓ_1 -норма)

Посчитайте $\partial f(x)$ для $f(x): \mathbb{R}^n \to \mathbb{R} = \|x\|_1$ через сумму.

◆ロト ◆個ト ◆重ト ◆重ト 重 めので

Moreau-Yosida Envelope

- ullet $f(x): \mathbb{R}^n o \mathbb{R}$ выпуклая, но негладкая.
- Moreau-Yosida envelope($\lambda>0$) позволяет сделать новую выпуклую гладкую функцию

$$M_{\lambda f}(x) = \inf_{u \in \mathbb{R}^n} \left(f(u) + \frac{1}{2\lambda} ||u - x||_2^2 \right).$$

• Посчитаем $M_{\lambda f}$ для |x|

$$M_{\lambda|\cdot|}(x) = \begin{cases} \frac{x^2}{2\lambda}, & |x| \leq \lambda, \\ |x| - \lambda/2, & |x| \geq \lambda. \end{cases}$$

Свойства Moreau-Yosida Envelope

- $M_{\lambda f}(x)$ выпуклая (infimal convolution) и $\frac{1}{\lambda}$ -гладкая.
- ullet Можно построить градиентные методы над $M_{\lambda f}$

$$\nabla_x M_{\lambda f}(x) = \frac{1}{\lambda} (x - u^*), \quad u^* = \arg\min\left(f(u) + \frac{1}{2\lambda} \|u - x\|_2^2\right).$$

• Множество минимумов f и $M_{\lambda f}$ совпадают.

<ロト <個ト < 直ト < 重ト < 重ト の Q (*)