Учебники

- 1. Мартинсон Л.К., Морозов А.Н., Смирнов Е.В. Электромагнитное поле. 2013 и др.
- 2. Иродов И.Е. Электромагнетизм. Основные законы. 2003 идр.
- Савельев И.В. Курс общей физики. Электричество и магнетизм. 2004 и др.

Доп. материалы на персональной страничке www.bmstu.ru/

Презентации лекций: http://hoster.bmstu.ru/ Зарегистрироваться или войти гостем Кодовое слово: не требуется. Далее Новые курсы. Электромагнетизм и оптика – 2020-2021.

Лекция 1. Электрическое поле системы неподвижных зарядов в вакууме. Теорема Гаусса для электростатического поля

- 1. Электрический заряд. Закон Кулона.
- 2. Напряженность электростатического поля. Силовые линии.
- 3. Принцип суперпозиции и его применение к расчету поля системы неподвижных зарядов.
- 4. Поток вектора напряженности электрического поля.
- 5. Теорема Гаусса в интегральной и дифференциальной формах в вакууме и ее применение для расчета электрических полей.

Что такое электрический заряд???

два вида зарядов

положительный

отрицательный МуShared

Проявления электрических зарядов

- Электризация при трении.
- Электро янтарь.
- Молния.

Силовое взаимодействие заряженных тел

$$F_2 = k_0 \frac{q_1 q_2}{r_{12}^2} \frac{r_{12}}{r_{12}} = -F_1$$

Прибор Кулона

Закон Кулона

$$F = k_o \frac{|q_1 q_2|}{r^2}$$

$$F_{2} = k_{0} \frac{q_{1}q_{2}}{r_{12}^{2}} \frac{r_{12}}{r_{12}} = -F_{1}$$

B CM:
$$k_0 = \frac{1}{4\pi\varepsilon_0} = 9.10^9 \frac{\text{H} \cdot \text{M}^2}{\text{K}\pi^2}$$

 $\neq c^2$

- Электрические заряды не существуют сами по себе, а являются внутренними свойствами элементарных частиц электронов, протонов и др.
- Опытным путем в 1914 г. американский физик Р. Милликен показал что электрический заряд дискретен.
- Заряд Q любого тела составляет целое кратное от элементарного электрического заряда:

$$q = \pm ne$$
 $e = 1,602 \cdot 10^{-19} \text{ Кл}$

Определения плотностей заряда:

• $\lambda = dq/dl$ – линейная плотность заряда, измеряется в Кл/м;

- $\sigma = dq/dS$ поверхностная плотность заряда измеряется в Кл/м²;
- $\rho = dq/dV$ объемная плотность заряда, измеряется в Кл/м 3 .

Электростатическое поле (напряженность)

$$F = q_i E$$

$$F = k_0 \frac{q_1 q_2}{r_{12}^2} \frac{r_{12}}{r_{12}}$$

А.С. Чуев - 2021

Силовая характеристика электростатического поля - напряженность

Определение **E** со стороны пробного заряда: это отношение силы к величине пробного заряда

$$\vec{E} = \frac{F}{q_{\Pi p}}$$

Определение Е со стороны заряда, создающего поле

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q_0}{r^2} \vec{e_r}$$

Иная форма записи:

$$E = \frac{q}{4\pi\epsilon_0 r^2} \frac{r}{r}$$

здесь *r* – расстояние от заряда *q* до точки, где мы воспринимаем это поле.

В скалярном виде:

$$E = \frac{F}{q'} = \frac{q_0}{\varepsilon_0 4\pi r^2}$$

$$F \cdot 4\pi r^2 = \frac{q_0 q'}{\varepsilon_0} = \Pi = const$$

А.С. Чуев - 2021

Энергетическая характеристика электростатического поля – электрический потенциал (скалярный)

Определение потенциала со стороны пробного заряда: это отношение энергии к величине пробного заряда

$$\varphi = \frac{W}{q_{\Pi p}}$$

Определение потенциала со стороны заряда, создающего поле

$$\varphi = \frac{1}{\varepsilon_0} \frac{q_0}{4\pi r}$$

Система электромагнитных величин и их взаимосвязей

$$\rho = q/V$$

Система электромагнитных величин и их взаимосвязей

СИСТЕМА ЭЛЕКТРОМАГНИТНЫХ ВЕЛИЧИН И ИХ ВЗАИМОСВЯЗЕЙ

Эквипотенциальные линии

Циркуляция вектора **E** = ?

Сложение действия электростатических сил. Принцип суперпозиции

- Если поле создается несколькими точечными зарядами, то на пробный заряд q'действует несколько сил, складываемых по принципу суперпозиции (линейного наложения).
- То есть со стороны каждого отдельного заряда q₀ действует такая сила, как если бы других зарядов не было.

Принцип наложения или суперпозиции электрических полей:

• Напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности.

$$E = E_1 + E_2 + ... = \sum_{k} E_k.$$

Принцип суперпозиции электростатических сил

$$\overrightarrow{F}_1 = \overrightarrow{F}_{21} + \overrightarrow{F}_{31}; \qquad \overrightarrow{F}_2 = \overrightarrow{F}_{12} + \overrightarrow{F}_{32}; \qquad \overrightarrow{F}_3 = \overrightarrow{F}_{13} + \overrightarrow{F}_{23};$$

Электрический диполь

Электрический дипольный момент

$$p_e = q \cdot l$$

Поток вектора напряженности электрического поля

$$\Phi = \int_{S} \mathbf{E} \, d\mathbf{S}.$$

 $d\Omega$ — величина алгебраическая: если $d\Omega$ опирается на внутреннюю сторону поверхности S, то $d\Omega>0$, если же на внешнюю сторону, то $d\Omega<0$.

Определение потока вектора Е

$$\Phi = \int_{S} \mathbf{E} \, d\mathbf{S}.$$

Телесный угол, единица измерения - стерадиан

Стерадиан – телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

При таком определении телесный угол не зависит от радиуса сферы.

Плоский угол, единица измерения - радиан

1 радиан — центральный угол, длина дуги которого равна радиусу окружности. При таком определении угол не зависит то радиуса.

Закон (теорема) Гаусса в интегральной форме.

 Телесный угол – часть пространства, ограниченная конической поверхностью.

Мера телесного угла – отношение площади S сферы, вырезаемой на поверхности сферы конической поверхностью к квадрату радиуса R сферы. Ω =

1 стерадиан – телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу этой сферы.

Поток электрического поля точечного заряда через произвольную поверхность S, окружающую заряд.

Внешний поток сквозь замкнутую поверхность = 0

Теорема Гаусса в интегральной форме (в вакууме)

поток вектора Е сквозь замкнутую поверхность равен алгебраической сумме зарядов внутри этой поверхности, деленной на ϵ_0 .

$$\oint E dS = \frac{1}{\varepsilon_0} q_{\text{внутр}},$$

Доказательство:
$$d\Phi = E dS = E dS \cos \alpha = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} dS \cos \alpha = \frac{q}{4\pi\epsilon_0} d\Omega$$
,

$$\Phi = \int_{0}^{4\pi} \frac{q}{4\pi\epsilon_{0}} d\Omega = \frac{q}{\epsilon_{0}}$$

Теорема Гаусса в дифференциальной форме (в вакууме). Уравнение Пуассона

$$\frac{q_{\text{внутр}} = \int \rho \, dV}{V} = \frac{1}{V} \frac{q}{\varepsilon_0}$$

$$\text{div } \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial V} + \frac{\partial E_z}{\partial z}$$

$$\frac{\rho}{\varepsilon_0}$$

Уравнение Пуассона

$$\operatorname{div} E = \frac{\rho}{\varepsilon_0}$$

Источники электрического и магнитного полей $q\vec{\nabla} = I\vec{l} = \vec{j}V$; $\vec{p}_m = IS\vec{n}$ $\vec{p}_{\bullet} = q\vec{l}$ $q = \lambda I = \sigma S = \rho V;$

$$\vec{E} = \frac{\vec{F}}{q_{\Pi p}}; \quad \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q_0}{r^2} \vec{e}_r$$

$$B = \frac{F}{|jV|_{\Pi p}}; \quad d\vec{B} = \frac{\mu_0}{4\pi r^2} \left[\vec{j}_0 \times \vec{e}_r \right] dV$$

Взаимосвязь полевых параметров и источников поля

$$\vec{E} = -\operatorname{grad} \varphi$$
; $\Delta \varphi = -\rho/\epsilon_0$ $\vec{B} = \operatorname{rot} \vec{A}$; $\Delta \vec{A} = -\mu_0 \vec{j}$

$$\vec{E}(r) = \frac{1}{\varepsilon \varepsilon_0} \frac{\vec{p}_e \cdot \vec{e}_r}{4\pi r^3}; \qquad E = \frac{1}{\varepsilon_0} \frac{p_e}{4\pi r^3} \sqrt{1 + 3\cos^2 \theta} \qquad \vec{B}(r) = \frac{\mu \mu_0}{4\pi} \frac{[\vec{p}_m, \vec{e}_r]}{r^3}; \qquad B = \mu_0 \frac{p_m}{4\pi r^3} \sqrt{1 + 3\cos^2 \theta}$$

$$W = -\vec{p}_{\bullet}\vec{E}$$
 $W = -\vec{p}_{m}\vec{B}$

ащательный момент сил, действующих на диполь в однородном поле
$$\vec{M} = [\vec{p}_{o} \times \vec{E}]$$
 $\vec{M} = [\vec{p}_{o} \times \vec{B}]$

$$F = p_{\rm e} \frac{\partial E}{\partial x}$$

$$F = p_{\rm m} \frac{\partial B}{\partial x}$$

Реакция вещества на внешнее поле

$$\vec{P} = \kappa \epsilon_0 \vec{E} = \frac{(\epsilon - 1)\vec{D}}{\epsilon}; \quad \kappa = \epsilon - 1; \quad \left[\vec{P} = \frac{\sum \vec{P}_{\rm q}}{V} \right] \qquad \vec{J} = \chi \vec{H}; \quad \chi = \mu - 1; \quad \left[\vec{J} = \frac{\sum \vec{P}_{\rm m}}{V} \right]$$

СИСТЕМА ЭЛЕКТРОМАГНИТНЫХ ВЕЛИЧИН И ИХ ВЗАИМОСВЯЗЕЙ

 $\Phi_{\rm E} = ES$

А.С. Чуев - 2021

37

СИСТЕМА ЭЛЕКТРОМАГНИТНЫХ ВЕЛИЧИН И ИХ ВЗАИМОСВЯЗЕЙ

 $\Phi_{\rm E} = ES = q/\varepsilon_{\rm 0}$

Система электромагнитных величин и их взаимосвязей

 $\operatorname{div} E = \rho / \varepsilon_0$

А.С. Чуев - 2021

39

Приводимые далее примеры рассмотреть самостоятельно

$$E_{\Sigma} = 2E_{\pm} \cdot \cos \alpha$$

$$\cos \alpha = \frac{l/2}{\sqrt{\left(r^2 + \frac{l^2}{4}\right)}}$$

$$E=rac{1}{4\piarepsilon_0}rac{ql}{\left(r^2+rac{l^2}{4}
ight)^{rac{3}{2}}}.$$

Не срисовывать

- Определим напряженность электрического поля в точке А на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда.
- λ заряд, приходящийся на единицу длины.

• Считаем, что х – мало по сравнению с длиной проводника. Элемент длины dy, несет заряд $dq = dy \lambda$. Создаваемая этим элементом напряженность электрического поля в точке А:

$$dE = \frac{1}{4\pi\epsilon_0} \frac{\lambda dy}{(x^2 + y^2)}.$$
A.C. Yveb - 2021

• Вектор dE имеет проекции dE_x и dE_y причем $dE_x = dE \cos \theta;$ $dE_y = dE \sin \theta.$

Тогда
$$E = E_x = \int dE \cos\theta = \frac{\lambda}{4\pi\epsilon_0} \int \frac{\cos\theta dy}{x^2 + y^2}$$

Теперь выразим y через θ .

T.к.
$$y = x \operatorname{tg} \theta$$
,

$$dy = xd\theta / \cos^2 \theta$$

С учетом:
$$(x^2 + y^2) = x^2 / \cos^2 \theta$$

$$E = \frac{\lambda}{4\pi\varepsilon_0} \frac{1}{x} \int_{-\frac{\pi}{2}, \text{C. YyeB - 2021}}^{\frac{\pi}{2}} \cos\theta d\theta = \frac{\lambda}{2\pi\varepsilon_0 x}.$$

$$E = \frac{\lambda}{2\pi\varepsilon_0 x}.$$

 Напряженность электрического поля от линейно распределенных зарядов (заряженной нити) изменяется обратно пропорционально расстоянию до заряда.

Пример с кольцом

Пример 1. Поле на оси тонкого равномерно заряженного кольца. Заряд q > 0 равномерно распределен по тонкому кольцу радиусом а. Найти напряженность Е электрического поля на оси кольца как функцию расстояния г от его центра.

Легко сообразить, что в данном случае вектор E должен быть направлен по оси кольца (рис. 1.1). Выделим на кольце

около точки A элемент $\mathrm{d} l$. Запишем выражение для составляющей $\mathrm{d} E_z$ от этого элемента в точке C:

$$dE_{z} = \frac{1}{4\pi\epsilon_{0}} \frac{\lambda dl}{r^{2}} \cos \alpha,$$

Видно, что при $z\gg a$ поле $E\approx q/4\pi\epsilon_0z^2$, т. е. на больших расстояниях эта система ведет себя как точечный заряд.

Пример с кольцом подробнее

Задано: q и R. Найти зависимость E(x)

$$\vec{E} = \frac{1}{\varepsilon_0} \frac{q}{4\pi r^2} \vec{e}_{r}$$

$$l^2 = R^2 + x^2$$

$$\cos\theta = \frac{x}{\sqrt{R^2 + x^2}}$$

$$\lambda = \frac{q}{2\pi R}$$

$$dq = \lambda dL = \frac{q dL}{2\pi R} = \frac{q}{2\pi} d\varphi$$

$$dE = \frac{dq}{\epsilon_0 4\pi l^2}$$

$$dE_{x} = \frac{q}{\epsilon_{0} 8\pi^{2}} \frac{x}{(R^{2} + x^{2})^{3/2}} \int_{A^{0} \text{ Hyer}}^{2\pi} d\phi$$

$$E_{x} = \frac{qx}{4\pi\varepsilon_{0}(R^{2} + x^{2})^{3/2}}$$

Максимальное значение E определяется поиском экстремума функции E(x)

Иродов, задача 2.12

$$E_{\text{max}} = \frac{q}{6\sqrt{3}\pi\epsilon_0 R^2} \qquad x = \frac{R}{\sqrt{2}}$$

Системные уровни и действующие межуровневые связи физических величин:

1 - общие базовые кинематические величины

G - общие базовые динамические величины

 G^{-1} - уровень гравитационной константы

 k^{-1} - полевые электромагнитные величины Gk^2 - структуро-средовые ЭМВ 1 подгруппы $G^{-1}k^{-2}$ - структуро-средовые ЭМВ 2 подгруппы

Gk - базовые электромагнитные величины A.C. Чуев - $k^{-1}G^{-1}k^{-1}$ - дополнительные системные уровни

Факультативно

Токовый характер основных силовых взаимодействий

Наименование силового взаимодействия	Взаимодействую- щие физические величины		Уравнение связи, определяющее силу взаимодействия
	по заряду	по току	ьзаимоденетыня
Электро- статическое	q	It	$F = \frac{1}{\varepsilon_0} \frac{q_1 q_2}{4\pi r^2} = \frac{1}{\varepsilon_0} \frac{(It)_1 (It)_2}{4\pi r^2}$
Электро- динамическое	$q_{ m V}$	Il	$F = \mu_0 \frac{(qv)_1 (qv)_2}{4\pi r^2} = \mu_0 \frac{(II)_1 (II)_2}{4\pi r^2}$
Гравитационное	q/t	I	$F = \frac{I_1 I_2}{4\pi r^2}$

Конец лекции 1