

Organisches Elektronikbauteil und Verfahren zur Herstellung
organischer Elektronik

5

Die Erfindung betrifft ein organisches elektronisches Bauteil und ein Verfahren zur kostengünstigen und massenfertigungstauglichen Herstellung organischer Elektronik.

10 Bekannt ist die Herstellung organischer Bauteile durch eine Kombination kontinuierlicher und diskontinuierlicher Verfahren. So werden beispielsweise die nicht strukturierten Schichten durch diskontinuierliche Beschichtungsprozesse wie Spin Coating (wobei jeweils einzelne Scheiben beschichtet werden) hergestellt und strukturierte Schichten durch Bedrucken oder ähnliches im kontinuierlichen Rolle-zu-Rolle Verfahren (z.B. DE 10033112.2).

20 Bislang galt es als unwahrscheinlich, dass sich ein organisches elektronisches Bauteil komplett im kontinuierlichen Verfahren herstellen lässt, weil die gängigen Beschichtungstechniken, allen voran Spin Coating, nicht rollenkompatibel ist.

25 Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zu schaffen, mit dem der Aufbau eines organischen elektronischen Bauteils im Rolle-zu-Rolle Verfahren hergestellt werden kann. Ebenso ist es Aufgabe der vorliegenden Erfindung ein organisches elektronisches Bauteil zur Verfügung zu stellen, das in 30 Massenfertigung kontinuierlich herstellbar ist.

Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung eines organischen elektronischen Bauteils, das kontinuierlich oder zumindest quasi kontinuierlich geführt wird.

35 Insbesondere ist Gegenstand der Erfindung ein Verfahren zur Herstellung eines organischen elektronischen Bauteils, das komplett im Rolle-zu-Rolle Verfahren ausgeführt wird. Außer-

dem ist Gegenstand der Erfindung ein organisches elektronisches Bauteil, das in einem kontinuierlichen oder zumindest quasi kontinuierlichen Massenfertigungsprozess herstellbar ist.

5

Insbesondere ist Gegenstand der Erfindung ein Verfahren zur kontinuierlichen oder zumindest quasi kontinuierlichen Herstellung des organischen Bauteils folgende Produktionsschritte umfassend:

10

- auf einem Substrat, das ein durchgehendes Band, zusammenhängend (web feed) oder aneinander gereihte einzelne Bögen (sheet feed), bildet, wird über eine kontinuierliche Beschichtungsmethode ein funktionales organisches Material (leitend, halbleitend oder isolierend) aufgetragen,
- auf diese funktionale Schicht wird strukturiert ein Lack aufgedruckt,
durch diesen Lack wird die funktionale Schicht, eventuell über weitere Prozessschritte, strukturiert.

20

Ausgestaltungen der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Beschreibung.

Als organisches elektronisches Bauteil wird ein organischer Feld-Effekt-Transistor (OFET), ein organisches photovoltaisches Element, eine organische Diode, insbesondere eine organische Leuchtdiode (OLED), oder ein sonstiges elektronisches Bauteil bezeichnet, das zumindest eine organische Funktions- schicht wie die halbleitende Schicht oder die leitende Schicht umfasst.

Nach einer Ausführungsform des Verfahrens zur kontinuierlichen Herstellung des organischen Bauteils sind folgende Produktionsschritte umfasst:

35

- auf einem Substrat, das ein durchgehendes Band, das beispielsweise ein zusammenhängendes Band sein kann (web

feed) oder aneinander gereihte einzelne Bögen (sheet feed), bildet, wird über eine kontinuierliche Beschichtungsmethode ein funktionales organisches Material (leitend) aufgetragen,

- 5 - auf diese funktionale Schicht wird strukturiert ein Lack aufgedruckt,
- durch diesen Lack wird die leitfähige Schicht strukturiert,
- auf die so gebildeten Leiterbahnen oder Elektroden wird über eine kontinuierliche Beschichtungsmethode eine halbleitende Schicht aufgetragen,
- auf die halbleitende Schicht wird ebenfalls über eine kontinuierliche Beschichtungsmethode eine Isolatorschicht aufgetragen und
- 15 - auf die Isolatorschicht wird eine obere Elektrode aufgedruckt.

Als kontinuierliche Beschichtungsmethode werden beispielsweise die vorgeschlagen, die in „Coatings Technology Handbook“

20 2nd Edition Herausgeber: D. Satas und Arthur A. Tracton Verlag Marcel Dekker New York Basel, Kapitel 18 „Porous Roll Coater“ Seiten 165 bis 178 und „Modern Coating and Drying Technology“ Herausgeber: Edward D. Cohen und Edgar B. Gutoff Wiley-Verlag Weinheim, Seiten 1 bis 10 beschrieben werden.

25 Überraschend ist, dass die dort aufgeführten Verfahren rollenkompatibel zum Aufbau organischer Elektronik einsetzbar sind, so dass homogene Polymerschichten für den Aufbau von organischer Elektronik resultieren.

30 Es handelt sich hierbei um rollenkompatible Beschichtungstechniken. Folgende Beispiele fassen kurz zusammen, welche Techniken hierbei besonders vorteilhaft erscheinen:

35 Das Porous Roll Coating hat eine Entsprechung im Siebdruck, nur dass anstelle einer Siebrolle ein poröser Zylinder verwendet wird. Die Beschichtungsflüssigkeit dringt vom Inneren des Zylinders durch die Poren entweder auf eine weitere Rolle

und von dort auf das zu beschichtende Band oder direkt auf das Band. Der Vorteil gegenüber dem Siebdruck besteht darin, dass die Poren wesentlich feiner ausführbar sind als die Öffnungen im Sieb, somit kann mit sehr viel niederviskoseren (dünneren) Flüssigkeiten gearbeitet werden. Das Porous Roll Coating ist eines der wenigen Verfahren (außerdem nur noch das Gravure Coating), dass auch einen strukturierten Auftrag (direkte Strukturierung) erlaubt, indem die Poren lokal verschlossen werden, d.h. es eignet sich sowohl zum Beschichten als auch zum Drucken.

Dip Coating, wobei ein kontinuierliches Band durch zumindest eine Flüssigkeit gezogen wird, Rod Coating, bei dem ein Band tangentiall an einer Rolle oder Walze vorbeigezogen wird, die noch mit einer Flüssigkeit benetzt ist, Blade Coating, bei dem ein Band an einer Walze anliegt, die an einem mit Flüssigkeit gefüllten Behältnis vorbeiführt, wobei das Behältnis an zwei Seiten geschlossen ist, an einer dritten Seite durch die Walze und an einer vierten Seite durch ein Rakel begrenzt wird, das in einem Abstand über dem Band anliegt, so dass die Flüssigkeit in dem Abstand in dem Behältnis zurückgehalten wird und nicht auf dem Band haftet in dem sich das Rakel über dem Band befindet.

Ein weiteres rollenkompatibles Beschichtungs- oder Coating-Verfahren ist das air knife coating, das dem Dip Coating gleich ist bis auf ein Gebläse, durch das die Flüssigkeit auf dem durch die Flüssigkeit gezogene Band an einer Stelle getrocknet und/oder weggeblasen wird. Diese vier Coating Prozesse sind bereits zur Herstellung anderer Polymerschichten bekannt und in dem eingangs zitierten Text beschrieben und durch Zeichnungen erläutert. Weitere rollenkompatible Beschichtungsverfahren sind Gravure Coating, bei dem zwei nicht gleich große Walzen (oder Rollen) in der gleichen Richtung betrieben werden und aneinandergrenzen, wobei die größere Walze durch eine Flüssigkeit geführt wird und an der kleineren Walze das Band anliegt, wobei die Dicke der Benetzung,

mit der die größere Walze an die kleinere anschließt, durch ein Rakel, das an der größeren befestigt ist, begrenzt ist, ein weiteres Verfahren ist das reverse roll coating, bei dem zwei gegenläufig sich bewegende Walzen aneinander gedrückt

5 werden, wobei die eine Walze mit Flüssigkeit benetzt ist und entlang der anderen Walze das kontinuierliche Band geführt wird. Schließlich sind noch die dort beschriebenen Techniken des Forward Roll Coatings, des Slot und Extrusion coatings, des Slide Coatings, des Curtain Coatings besonders vorteilhaft, wobei aus der Reihenfolge in der sie beschrieben und/oder benannt wurde keine Wertung herausgelesen werden sollte. Schließlich gibt es noch das Spraying Coating, das vor dem Hintergrund, dass Spraying „sprühen“ heißt, selbst erklärend ist.

15 Der Vorteil der Beschichtungstechniken allgemein für die organische Elektronik ist der, dass damit dünne homogene Schichten (Dicke etwa 0.02 bis 2.0µm) kontinuierlich herstellbar sind. Da die Beschichtungstechniken selbst nicht
20 strukturgebend sind, können sie nur in Kombination mit strukturgebenden Verfahren, wie den Drucktechniken, eingesetzt werden. Durch Kombination von rollenkompatiblen Beschichtungstechniken mit Rolle-zu-Rolle Druckverfahren kann man sämtliche Produktionsschritte eines organischen elektronischen Bauteils rollenkompatibel machen.

Als Rolle-zu-Rolle Verfahren wird ein Verfahren bezeichnet, das kontinuierlich ist, also als Bandware in dem oben erwähnten Sinn, also sowohl web feed als auch sheet feed, produziert werden kann und in dem im wesentlichen Walzen zur Beschichtung, zum Bedrucken und/oder zu sonstigen Verarbeitungsschritten eingesetzt werden.

35 Als Aufbau eines organischen elektronischen Bauteils werden die Grundelemente eines organischen elektronischen Bauteils bezeichnet, Substrat als Bandware in dem oben erwähnten Sinn, also sowohl web feed als auch sheet feed, die den Träger bil-

det, darauf eine untere Elektrode, eine halbleitende, photo-voltaisch aktive und/oder emittierende Schicht, isolierende Schicht(en) und obere Elektrode.

5 Unter „Massenfertigung“ wird eine Produktion verstanden, die die Herstellung von low-cost Produkten wie Einwegchips durch einfache Produktionsschritte mit hoher Durchsatzquote, also hohe Stückzahl pro Zeiteinheit und optimale Auslastung der Maschinen, Vermeidung von Verweilzeiten in Maschinen etc. er-
10 laubt und/oder erst ermöglicht.

Als „kontinuierliches“ Verfahren wird eine Produktion bezeichnet, durch die nicht „Stück für Stück“ verarbeitet wird, sondern „am laufenden Meter“ wie die Produktion an einem
15 durchgehenden Band. Im diskontinuierlichen Verfahren, also der Produktion „Stück für Stück“ wird für eine low cost Produktion zuviel Zeit durch einlegen und ausladen des gerade produzierten Stückes in die Maschine und aus der Maschine wieder heraus. Die Vorteile des Fließbandes sind die, die mit
20 dem Term „kontinuierliches Verfahren“ hier gemeint sind. Ein quasi kontinuierliches Verfahren kann dabei kleinere Stops in der Produktionskette umfassen, verfügt aber zumindest über zwei aneinanderhängende kontinuierlich verlaufende Produktionschritte.

25 Nach einer Ausführungsform ist das organische elektronische Bauteil ein Feld-Effekt-Transistor, zumindest ein Substrat, eine untere, Source und Drain umfassende Elektrode, eine halbleitende Schicht, eine isolierende Schicht und eine obere Elektrode umfassend.

30 Als "indirekte Strukturierung" wird die Art der Strukturierung bezeichnet, bei der zunächst eine eigens zur Strukturierung einer unteren Schicht aufgebrachte Schicht (Lackschicht etc.) strukturiert wird. Eine "direkte Strukturierung" ist entsprechend eine unmittelbare Strukturierung einer Schicht.

Nach einer Ausführungsform des Verfahren finden vor den jeweiligen Beschichtungs- und Bedruckungsverfahren Vorbehandlungsverfahren statt, beispielsweise zur Reinigung und/oder Vorbehandlung der Oberfläche, z.B. Corona-, Flammen-, UV-,

5 Plasmabehandlung und/oder sonstige Verfahren.

Nach einer weiteren Ausführungsform des Verfahrens findet nach dem jeweiligen Beschichtungs- und/oder Bedruckungsverfahren zumindest ein Trocknungs- oder Härtungsprozess
10 statt, z.B. mit Wärme, UV-Licht, Infrarotlicht und/oder sonstigen Verfahren.

15 Im folgenden wird die Erfindung noch anhand der beispielhaften Herstellung eines organischen Feld-Effekt-Transistors näher erläutert.

Die Figur zeigt die Verfahrensschritte zur Herstellung der unteren Elektrode(n) 2, der halbleitenden Schicht 7, der Isolatorschicht 8 und der oberen Elektrode 9 auf einem Substrat
20 1: Zu sehen ist das Band 1, das das Substrat bildet, darauf wird über eine kontinuierliche Beschichtungsmethode ein funktionales organisches Material, insbesondere ein leitfähiges Polymer, 2 aufgebracht. Das organische Funktionsmaterial
25 kann in einem oder mehreren organischen oder anorganischen Lösungsmitteln gelöst oder dispergiert sein, als reines Material vorliegen, als Mischung und/oder mit Additiven versehen.

Die kontinuierliche Beschichtungsmethode umfasst ein Rakel 6
30 das in eine Maschine 3 integriert ist. Auf die Beschichtung 2 wird über eine Walze 4 ein Lack 5 strukturiert aufgebracht, mit dessen Hilfe die untere(n) Elektrode(n) 2 strukturiert wird. Auf die strukturierte(n) untere(n) Elektrode(n) 2 wird eine halbleitende Schicht 7 wieder unter Einsatz einer mit
35 einem Rakel 6 ausgestatteten Maschine 3 aufgebracht. Auf diese Schicht legt man eine Isolatorschicht 8 wieder mit einer Beschichtungstechnik auf die schließlich strukturiert eine

obere Elektrode 9 aufgebracht wird (direkte Strukturierung). Die Maschine 3 ist vorzugsweise zum Dip Coating, Rod Coating, Knife Coating, Blade Coating, Air Knife Coating, Gravure Coating, Forward und Reverse Roll Coating, Slot und Extrusion

5 Coating, Slide Coating, Curtain Coating und/oder Spraying Coating mit einer Walze kombiniert, wie in der oben zitierten Literatur und in der Beschreibung bereits erwähnt. Beim Blade Coating wird, wie aus der schematischen Figur ersichtlich, eine planare Schicht angewendet.

10

Durch das erfindungsgemäße Verfahren wird erstmals eine Möglichkeit aufgezeigt, mit der eine kontinuierliche Rolle-zu-Rolle Beschichtung für die kostengünstige Massenproduktion organischer elektronischer Bauteile durchführbar ist. Bisher 15 waren nur kontinuierliche Verfahren bekannt, die sich der Drucktechniken bedienen, wobei das Problem ist, dass mit keiner Drucktechnik dünne Schichten mit für die organische Elektronik ausreichender Homogenität erzeugbar sind.

20 Mit Hilfe der Erfindung können alle Arten organischer elektronischer Bauteile in einem kontinuierlichen Massenfertigungsprozess hergestellt werden. Dazu gehören z.B. organische Transistoren und Schaltungen hieraus, organische Diolen, organisch basierte Kondensatoren, organische Photovoltaik-Zellen, organische Sensoren und Aktoren, sowie Kombinationen hieraus.

25

Patentansprüche

1. Verfahren zur Herstellung eines organischen elektronischen Bauteils, das kontinuierlich oder quasi kontinuierlich ge-

5 führt wird.

2. Verfahren zur Herstellung eines organischen elektronischen Bauteils, das komplett im Rolle-zu-Rolle Verfahren beispielsweise als durchgehendes Band oder auf Bögen ausgeführt wird.

10

3. Verfahren nach einem der Ansprüche 1 und/oder 2, wobei mindestens eine funktionelle organisch basierte Schicht durch ein Beschichtungsverfahren aufgetragen wird.

15 4. Verfahren nach einem der vorstehenden Ansprüche, wobei das elektronische Bauteil aus mehreren Einzelschichten aufgebaut wird und mindestens eine funktionelle organisch basierte Schicht verwendet wird.

20 5. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Schichten direkt oder indirekt strukturiert werden.

6. Verfahren zur kontinuierlichen Herstellung eines organischen Bauteils folgende Produktionsschritte umfassend:

25

- auf einem Substrat, das ein durchgehendes Band, zusammenhängend (web feed) oder aneinandergereihte einzelne Bögen (sheet feed), bildet, wird über eine kontinuierliche Beschichtungsmethode ein funktionales organisches Material (leitend, halbleitend oder isolierend) aufgetragen,
- auf diese funktionale Schicht wird strukturiert ein Lack aufgedruckt,
- durch diesen Lack wird die funktionale Schicht direkt oder über weitere Prozessschritte strukturiert.

35

7. Verfahren zur kontinuierlichen Herstellung eines organischen Bauteils nach Anspruch 1 folgenden Produktionsschritt umfassend:

5 auf einem Substrat, das ein durchgehendes Band, zusammenhängend (web feed) oder aneinander gereihte einzelne Bögen (sheet feed), bildet, wird über eine kontinuierliche Druckmethode ein funktionales organisches Material (leitend, halbleitend und/oder isolierend) strukturiert aufgetragen.

10

8. Verfahren nach einem der vorstehenden Ansprüche, bei dem vor den jeweiligen Beschichtungs- und Bedruckungsverfahren zumindest ein Vorbehandlungsverfahren stattfindet.

15 9. Verfahren nach einem der vorstehenden Ansprüche, bei dem nach dem jeweiligen Beschichtungs- und/oder Strukturierungsschritt eine Nachbehandlung der Schicht durchgeführt wird.

20 10. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Beschichtung in einem rollenkompatiblen Verfahren durchgeführt wird, wie Porous Roll Coating, Dip Coating, Rod Coating, Knife Coating, Blade Coating, Air Knife Coating, Gravure Coating, Forward und Reverse Coating, Slot und Extrusion Coating, Slide Coating, Curtain Coating, Spraying.

25

30 11. Verfahren nach einem der vorstehenden Ansprüche, bei dem eine Strukturierung der Schichten in einem rollenkompatiblen Verfahren durchgeführt wird, wie Tiefdruck, Flachdruck (Offset), Hochdruck (Flexo), Tintenstrahl, Laserdruck, sowie Kombinationen dieser und verwandter Verfahren.

12. Elektronisches Bauteil, das durch eines oder mehrere der Verfahren nach den Ansprüchen 1 bis 10 aufgebaut wird.

Zusammenfassung

Organisches Elektronikbauteil und Verfahren zur Herstellung
organischer Elektronik

5

Die Erfindung betrifft ein organisches elektronisches Bauteil und ein Verfahren zur kostengünstigen und massenfertigungstauglichen Herstellung organischer Elektronik, wobei rollenkompatible Beschichtungstechniken in Kombination mit Drucktechniken eingesetzt werden.

10