Stability

Qi'ao Chen

February 19, 2022

Contents

1	Pre	face	2
2	Pre	reliminaries	
	2.1	Indiscernibles	2
	2.2	Definability and Generalizations	4
	2.3	Imaginaries and T^{eq}	7
	2.4	Examples and counterexamples	18
3	Stability		
	3.1	Historic remarks and motivations	20
	3.2	Counting types and stability	20
	3.3	Local ranks and definability of types	25
	3.4	Cantor-Bendixson Rank	29
	3.5	Indiscernible sequences and stability	30
	3.6	Stable=NIP∩NSOP and the classification picture	34
	3.7	Examples of stable theories	35
	3.8	Number of types and definabibility of types is NIP	36
4	Forking Calculus		37
	4.1	Keisler measures and generically prime ideals	37
	4.2	Dividing and forking	39
	4.3	Special extensions of types	41
	4.4	Tensor product of invariant types and Morley sequences	44
5	TODO Problems		46
6	Ind	ex	46

7 References 47

1 Preface

A combination of various notes from [Pillay(2018)] [Chernikov(2019)] [Tent and Ziegler(2012)] [van den Dries(2019)]

A monster model € [Pillay(2018)] has many typos⊜

2 Preliminaries

2.1 Indiscernibles

Definition 2.1. Let I be a linear order and $\mathfrak A$ an L-structure. A family $(a_i)_{i \in I}$ of elements of A is called a **sequence of indiscernibles** if for all L-formulas $\varphi(x_1,\ldots,x_n)$ and all $i_1<\cdots< i_n$ and $j_1<\cdots< j_n$ from I

$$\mathfrak{A}\vDash\varphi(a_{i_1},\dots,a_{i_n})\leftrightarrow\varphi(a_{j_1},\dots,a_{j_n})$$

or

$$\operatorname{tp}(a_{i_1},\dots,a_{i_n}) = \operatorname{tp}(a_{j_1},\dots,a_{j_n})$$

Theorem 2.2. Compactness let us "stretch" indiscernibles. Let $(a_i: i \in \omega)$ be indiscernibles in $\mathfrak C$, and (I,<) an ordering. Then there exists an indiscernible $(b_i: i \in I)$ in $\mathfrak C$ s.t. $\forall i_1 < \cdots < i_n \in I$

$$\operatorname{tp}(a_1,\dots,a_n)=\operatorname{tp}(b_{i_1},\dots,b_{i_n})$$

Indiscernible sequence are a fundamental tool of model theory, and there are many ways to obtain them.

Theorem 2.3 (Ramsey, extended). Let $n_1, \ldots, n_r < \omega$. For each $i = 1, \ldots, r$, let $X_{i,1}, X_{i,2}$ be a partition of $[\omega]^{n_i}$. Then there is an infinite subset $Y \subseteq \omega$ which is homogeneous, i.e., $\forall i = 1, \ldots, r$, either $[Y]^{n_i} \subseteq X_{i,1}$ or $[Y]^{n_i} \subseteq Y_{i,2}$

Proposition 2.4. For each $n \in \omega$, let $\Sigma_n(x_1, \dots, x_n)$ be a collection of L-formulas in variables x_1, \dots, x_n . Suppose that there are $a_1, a_2, \dots \in \mathfrak{C}$ s.t.

$$\vDash \Sigma_n(a_{i_1}, \dots, a_{i_n}), \quad \forall i_1 < \dots < i_n < \omega$$

Then there is an indiscernible $(b_i : i \in \omega)$ in \mathfrak{C} s.t.

$$\vDash \Sigma_n(b_{i_1}, \dots, b_{i_n}), \quad \forall i_1 < \dots < i_n < \omega$$

we can expand $\bigcup_{n\in\omega}\Sigma_n$ and obtain the Ehrenfeucht-Mostowski type $\mathrm{EM}((a_i)_{i\in\omega})$. This is just the Standard Lemma in Tent

Example 2.1. Suppose $\Sigma_2 = \{x_1 \neq x_2\}$. Then the proposition yields the existence of infinite indiscernible sequences

Proof. Consider

$$\begin{split} \Gamma(x_1, x_2, \dots) &= \{\varphi(x_{i_1}, \dots, x_{i_n}) \leftrightarrow \varphi(x_{j_1}, \dots, x_{j_n}) : \\ &\quad i_1 < \dots < i_n, j_1 < \dots < j_n \in \omega, \varphi \in L\} \\ &\quad \cup \bigcup_n \Sigma(x_1, \dots, x_n) \end{split}$$

Let $\Gamma'(x_1,\ldots,x_n)\subseteq_f\Gamma$. Let $\varphi_1,\ldots,\varphi_r$ be the L-formulas appearing in Γ' . For $i=1,\ldots,r$, let

$$\begin{split} X_{i,1} &= \{ (j_1, \dots, j_n) : j_1 < \dots < j_n \in \omega, \vDash \varphi_i(a_{j_1}, \dots, a_{j_n}) \} \\ X_{i,2} &= \{ (j_1, \dots, j_n) : j_1 < \dots < j_n \in \omega, \vDash \neg \varphi_i(a_{j_1}, \dots, a_{j_n}) \} \end{split}$$

By Ramsey's theorem, there exists an infinite $Y\subseteq \mathbb{N}$ s.t. $\forall i=1,\ldots,r$, $[Y]^{n_i}$ is either contained in $X_{i,1}$ or in $X_{i,2}$. Write $Y=\{k_1< k_2<\ldots\}$. Interpret each x_i as a_{k_i} to satisfy Γ'

Definition 2.5. Let $M \prec N \prec \mathfrak{C}$ be models, and $p(\bar{x}) \in S_{\overline{x}}(N)$. We say p is finitely satisfiable in M, or $p(\bar{x})$ is a **coheir** of $p \upharpoonright M \in S_{\overline{x}}(M)$, if every $\varphi(\bar{x}) \in p(\bar{x})$ is satisfied by some $\bar{a} \in M$

Remark. $p(\bar{x}) \in S_n(N)$ is finitely satisfiable (f.s.) in M iff $p(\bar{x})$ is in the topological closure of $\{\operatorname{tp}(\bar{a}/N): \bar{a} \in M\} \subseteq S_n(N)$

Lemma 2.6. Suppose $p(\bar{x}) \in S_{\bar{x}}(M)$ and $M \prec N$, then there is $p'(\bar{x}) \in S_{\bar{x}}(N)$ s.t. $p \subseteq p'$ and p' is f.s. in M

Proof. Consider $\Gamma(\bar{x})=p(\bar{x})\cup\{\neg\varphi(\bar{x}):\varphi(\bar{x})\in L_N \text{ and not realized in }M\}.$ Let $\Gamma\supseteq_f\Gamma'=\{\Psi(\bar{x}),\neg\varphi_1(\bar{x}),\dots,\neg\varphi_r(\bar{x})\}\in p.$ Then any solution \bar{a} of Ψ in M satisfies Γ' as $M\vDash\forall\bar{x}(\neg\varphi_i(\bar{x}))$

Remark. Let $i_M:M^{\overline{x}}\to S_{\overline{x}}(M)$ s.t. $m\mapsto \operatorname{tp}(m/M)$. Define $i_N:M^{\overline{x}}\to S_{\overline{x}}(N)$ similarly. Let $r:S_{\overline{x}}(N)\to S_{\overline{x}}(M)$. Note that $r\circ i_N=i_M$ and the set of types in $S_{\overline{x}}(N)$ that are f.s. in M is exactly the closure of $i_N(M^{\overline{x}})$ in $S_{\overline{x}}(N)$. Hence its image under r is closed. However the image must contain $i_M(M^{\overline{x}})$ which is dense in $S_{\overline{x}}(M)$. Therefore it must be onto, which proves the desired result

r is continuous and $r(i_N(M^n))\supseteq i_M(M^n)$ is closed. $i_M(M^n)=S_n(M)$. Then r is onto? Then its preimage of p is what we want

Proposition 2.7. Let $p(\bar{x}) \in S_{\bar{x}}(M)$, N > M be $|M|^+$ -saturated, and $p'(\bar{x}) \in S_{\bar{x}}(N)$ a coheir of p. Let $\bar{a}_1, \bar{a}_2, \dots \in N$ be defined as follows

$$\begin{split} &\bar{a}_1 \text{ realises } p(\bar{x}) \\ &\bar{a}_2 \text{ realises } p'(\bar{x}) \upharpoonright (M, \bar{a}_1) \\ &\bar{a}_3 \text{ realises } p'(\bar{x}) \upharpoonright (M, \bar{a}_1, \bar{a}_2) \\ & \dots \end{split}$$

Then $(\bar{a}_i : i \in \omega)$ is indiscernible over M

Proof. We prove by induction on k that for any $n \le k$ and $i_1 < \dots < i_n \le k$ and $j_1 < \dots < j_n \le k$, we have

$$\operatorname{tp}_M(\bar{a}_{i_1},\dots,\bar{a}_{i_n}/M) = \operatorname{tp}_M(\bar{a}_{j_1},\dots,\bar{a}_{j_n}/M)$$

Assume this is true for k and consider k+1. Let $i_1 < \cdots < i_n \le k$, $j_1 < \cdots < j_n \le k$. We need to show that

$$\operatorname{tp}_M(\bar{a}_{i_1},\dots,\bar{a}_{i_n},\bar{a}_{k+1}/M) = \operatorname{tp}_M(\bar{a}_{j_1},\dots,\bar{a}_{j_n},\bar{a}_{k+1}/M)$$

Consider a formula $\varphi(\bar{x}_1,\ldots,\bar{x}_n,\bar{x}_{n+1})\in L_M$. Assume by contradiction that

$$M \vDash \varphi(\bar{a}_{i_1}, \cdots, \bar{a}_{i_n}, \bar{a}_{k+1}) \land \neg \varphi(\bar{a}_{j_1}, \cdots, \bar{a}_{j_n}, \bar{a}_{k+1})$$

But $\operatorname{tp}(\bar{a}_{k+1}/M, \bar{a}_1, \dots, \bar{a}_k)$ is f.s. in M, so there is $\bar{a}' \in M$ s.t.

$$M \vDash \varphi(\bar{a}_{i_1}, \cdots, \bar{a}_{i_n}, \bar{a}') \land \neg \varphi(\bar{a}_{j_1}, \cdots, \bar{a}_{j_n}, \bar{a}')$$

contradicting IH

2.2 Definability and Generalizations

Definition 2.8. $X \subseteq \mathfrak{C}^n$ is **definable almost over** A if there is an A-definable equivalence relation E on \mathfrak{C}^n with finitely many classes and X is a union of some E-classes

Lemma 2.9. Let \mathbb{D} be a definable class and A a set of parameters. T.F.A.E.

- 1. \mathbb{D} is definable over A
- 2. \mathbb{D} is invariant under all automorphisms of \mathfrak{C} which fix A pointwise

$$S \subseteq K^{\operatorname{alg}} \Rightarrow M \setminus S \subseteq K^{\operatorname{alg}}$$

Proof. \Rightarrow is easy as for any $F \in \operatorname{Aut}(\mathfrak{C}/A)$ and $\mathbb{D} = \varphi(\mathfrak{C}, \bar{a})$, $\mathfrak{C} \models \varphi(\bar{s}, \bar{a})$ iff $\mathfrak{C} \models \varphi(F(\bar{s}), \bar{a})$. StackExchange

$$x \in \mathbb{D} \Leftrightarrow \vDash \varphi(x, \bar{a}) \Leftrightarrow \varphi(F(x), F(\bar{a})) \leftrightarrow \varphi(F(x), \bar{a}) \Leftrightarrow F(x) \in \mathbb{D}$$

 \Leftarrow . Another proof from Chernikov. Assume that $\mathbb{D}=\varphi(\mathfrak{C},b)$ where $b\in\mathfrak{C}$, and let $p(y)=\operatorname{tp}(b/A)$

Claim 1. $p(y) \vdash \forall x(\varphi(x,y) \leftrightarrow \varphi(x,b))$, which says that for any realisations b', $\varphi(\mathfrak{C},b) = \varphi(\mathfrak{C},b')$

Indeed, let $b' \models p(y)$ be arbitrary. Then $\operatorname{tp}(b/A) = \operatorname{tp}(b'/A)$ so there is some $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$ with $\sigma(b) = b'$. Then $\sigma(X) = \varphi(\mathfrak{C}, b')$ and by assumption $\sigma(X) = X$, thus $\varphi(\mathfrak{C}, b) = X = \varphi(\mathfrak{C}, b')$.

There is some $\psi(y) \in p$ (there is a finite subset of p(y) that does the job and we take the conjunction) s.t.

$$\psi(y) \vDash \forall x (\varphi(x, y) \leftrightarrow \varphi(x, b))$$

Let $\theta(x)$ be the formula $\exists y(\psi(y) \land \varphi(x,y))$. Note that $\theta(x)$ is an L(A)-formula, as $\psi(y)$ is

Claim 2. $X = \theta(\mathfrak{C})$

If $a \in X$, then $\models \varphi(a,b)$, and as $\psi(y) \in \operatorname{tp}(b/A)$ we have $\models \theta(a)$. Conversely, if $\models \theta(a)$, let b' be s.t. $\models \psi(b') \land \varphi(a,b')$. But by the choice of ψ this implies that $\models \varphi(a,b)$

 \Leftarrow Let $\mathbb D$ be defined by φ , defined over $B \supset A$. Consider the maps

$$\mathfrak{C} \xrightarrow{\tau} S(B) \xrightarrow{\pi} S(A)$$

where $\tau(c)=\operatorname{tp}(c/B)$ and π is the restriction map. Let Y be the image of $\mathbb D$ in S(A). Since $Y=\pi[\varphi]$. Y is closed. Note that $\tau(\mathbb D)=[\varphi]$. $\tau(\mathbb D)=\{\operatorname{tp}(c/B):\mathfrak C\models\varphi(c)\}\subseteq[\varphi]$. For any $q(x)\in[\varphi]$, as $\mathfrak C$ is saturated, $\mathfrak C\models q(d)$ and $d\in\mathbb D$. Thus $q\in\tau(\mathbb D)$. π is continuous

Assume that $\mathbb D$ is invariant under all automorphisms of $\mathfrak C$ which fix A pointwise. Since elements which have the same type over A are conjugate by an automorphism of $\mathfrak C$, this means that $\mathbb D$ -membership depends only on the type over A, i.e., $\mathbb D=(\pi\tau)^{-1}(Y)$. For any $\operatorname{tp}(c/A)=\operatorname{tp}(d/A)$ and $c\in\mathbb D$, as c and d are conjugate, $d\in\mathbb D$.

For any $c \notin \mathbb{D}$, $\pi \tau(c) \in Y$ iff $\operatorname{tp}(c/A) \in \pi[\varphi]$ iff there is $d \in \mathbb{D}$ s.t. $\operatorname{tp}(c/A) = \operatorname{tp}(d/A)$ but then $c \in \mathbb{D}$.

This implies that $[\varphi]=\pi^{-1}(Y)$ $\tau(\mathbb{D})=[\varphi]=\tau(\tau^{-1}\pi^{-1})(Y)=\pi^{-1}(Y)$, or $S(A)\setminus Y=\pi[\neg\varphi]$; hence $S(A)\setminus Y$ is also closed and we conclude that Y is clopen. By Lemma $\ref{L}(A)$ -formula ψ . This ψ defines \mathbb{D} . For any $d\in\mathfrak{C}$

$$\vDash \psi(d) \Leftrightarrow \operatorname{tp}(d/A) \Leftrightarrow d \in \mathbb{D}$$

A slight generalization of the previous lemma

Lemma 2.10. *Let* $X \subseteq \mathfrak{C}^n$ *be definable. TFAE*

1. X is almost A-definable, i.e., there is an A-definable equivalence relation E on \mathfrak{C}^n with finitely many classes, s.t. X is a union of E-classes

- 2. The set $\{\sigma(X) : \sigma \in Aut(\mathfrak{C}/A)\}$ is finite
- 3. The set $\{\sigma(X) : \sigma \in Aut(\mathfrak{C}/A)\}$ is small

Proof. $1 \to 2$. Let $\varphi(x_1, x_2) \in L(A)$ be the A-definable equivalence relation E, and let $b_1, \ldots, b_n \in M$ be representatives in each equivalence class so that each class can be written as $[b_i] = \varphi(\mathfrak{C}, b_i)$. Given $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$, since $\varphi(x_1, x_2) \leftrightarrow \varphi(\sigma(x_1), \sigma(x_2))$, the image of each $[b_i]$ under σ will be

$$\sigma([b_i]) = \{\sigma(x) : \varphi(x,b_i)\} = \{x' : \varphi(x',\sigma(b_i))\} = \{x : \varphi(x,b_{j_i})\} = [b_{j_1}]$$

for some $j_i \leq n$. Now X is a disjoint union of some $[b_i]$'s, so $\sigma(X)$ is a disjoint union of some $[b_j]$'s. Since there are only finitely many equivalence classes, there can only be finitely many possibilities for disjoint unions of these classes

 $2 \to 1$. Let $X = \varphi(\mathfrak{C}, b)$ and $p(y) = \operatorname{tp}(b/A)$. Given $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$, we have $\sigma(X) = \varphi(\mathfrak{C}, \sigma(b))$. Then from assumption, there must be distinct b_1, \dots, b_n s.t.

$$\{\sigma(X) : \sigma \in \operatorname{Aut}(\mathfrak{C}/A)\} = \{\varphi(\mathfrak{C}, b_i) : i \le n\}$$

Now if $\operatorname{tp}(b'/A) = \operatorname{tp}(b/A)$, then strong homogeneity yields some $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$ s.t. $\sigma(b) = b'$. Then the above argument again shows that $\varphi(x,b')$ defines $\sigma(X)$ for some $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$. Thus $\sigma(X) = \varphi(\mathfrak{C},b') = \varphi(\mathfrak{C},b_i)$ for some $i \leq k$. Therefore $p(y) \vdash \bigvee_{i \leq k} \forall x (\phi(x,y) \leftrightarrow \phi(x,b_i))$. By compactness there is some $\psi(y) \in p$ s.t. $\psi(y) \vdash \bigvee_{i \leq k} \forall x (\phi(x,y) \leftrightarrow \phi(x,b_i))$. Now define $E(x_1,x_2)$ as

$$\forall y (\psi(y) \to (\phi(x_1,y) \leftrightarrow \phi(x_2,y)))$$

so it is A-definable. It is easy to check that E is an equivalence relation with finitely many classes, and that X is a union of E-classes $(a_1Ea_2$ iff they agree on $\phi(x,b_i)$ for all $i\leq k$, and so $X=\phi(\mathfrak{C},b_0)$ is given by the union of all possible combinations intersected with it)

 $3 \rightarrow 1$ Assume for contradiction that

$$|\{\sigma(X): \sigma \in \operatorname{Aut}(\mathfrak{C}/A)\}| = \lambda \ge \omega$$

we can find λ -many elements $(b_i:i<\lambda)\subset\mathfrak C$ to represent the distinct images under automorphisms. Then the set

$$q(y) = p(y) \cup \{ \neg \forall x (\varphi(x, y) \leftrightarrow \varphi(x, b_i)) : i < \lambda \}$$

will be finitely satisfiable. Thus q(y) is realised by some b'. But such b' has the same type as b over A and so strong homogeneity yields some $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$ s.t. $\sigma(b) = b'$. Applying such σ on X gives the image $\varphi(\mathfrak{C},b') = \varphi(\mathfrak{C},b_i)$ for some $i < \lambda$, a contradiction

Proposition 2.11. We can identify definable sets with continuous functions in a certain settings

- 1. Formulas $\varphi(\bar{x}), \psi(\bar{x}) \in L_A$ are equivalent iff $[\varphi(\bar{x})] = [\psi(\bar{x})]$
- 2. The clopen subsets of $S_{\overline{x}}(A)$ are precisely the basic clopen sets
- 3. Clopen subsets X of $S_{\overline{x}}(A)$ correspond exactly to continuous functions $f:S_{\overline{x}}(A)\to 2$ (with discrete topology) where $f(p(\overline{x}))=1$ if $p(\overline{x})\in X$ and 0 otherwise
- 4. The definable subsets of \mathfrak{C}^c are in one-to-one correspondence with continuous functions from $S_{\overline{x}}(A)$ to 2

Proof. 3. If
$$X$$
 is clopen, then $f^{-1}(2)=S_{\overline{x}}(A)$, $f^{-1}(0)=\emptyset$, $f^{-1}(\{1\})=X$, $f^{-1}(\{0\})=X^c$

4. By 1, definable sets are in one-to-one correspondence with basic clopen subsets. By 2, basic clopen sets are exactly all of the clopen subsets, so definable sets are in one-to-one correspondence with clopen sets. By 3, clopen sets are in one-to-one correspondence with continuous functions $f:S_{\overline{x}}(A)\to 2$

2.3 Imaginaries and $T^{ m eq}$

A **multi-sorted** structure is a family of sets $(M_s)_{s\in S}$ equipped with relations

$$R\subseteq M_{s_1}\times \cdots \times M_{s_m}, \quad (s_1,\ldots,s_m\in S)$$

A multi-sorted language L is a triple (S, L^r, L^f) and S are the sorts of L

 M_s is the underlying set of sort s. Elements of M_s are also called "elements of \mathcal{M} " of sort s Given any tuple $\bar{s}=(s_i)_{i\in I}$ of sorts in S, we let $M_{\bar{s}}=\prod_{i\in I}M_{s_i}$

Given a variable $x=(x_i)_{i\in I}$ of L, with x_i of sorts s_i for $i\in I$, we define the x-set of $\mathcal M$ to be the product set

$$M_x := M_{\bar{s}} = \prod_i M_{s_i}, \quad \bar{s} = (s_i)_{i \in I}$$

 $x=(x_i)_{i\in I}$ and $y=(y_j)_{j\in J}$ is **disjoint** if $x_i\neq y_j$ for all $i\in I$ and $j\in J$, and in that case we put $M_{x,y}=M_x\times M_y$. If in addition I=J and x_i and y_i have the same sort for $i\in I$ (so that $M_x=M_y$), we call x and y **disjoint and similar**

Definition 2.12. The **definable closure** $\operatorname{dcl}(A)$ of A is the set of elements c for which there is an L(A)-formula $\varphi(x)$ s.t. c is the unique element satisfying φ . Elements or tuples a and b are said to be **interdefinable** if $a \in \operatorname{dcl}(b)$ and $b \in \operatorname{dcl}(a)$.

Lemma 2.13. Assume $A \subseteq \mathfrak{C}$ and $\bar{b} \in \mathfrak{C}$

- 1. $\bar{b} \in \operatorname{acl}(A)$ iff $\{f(\bar{b}) : f \in \operatorname{Aut}(\mathfrak{C}/A)\}$ is finite
- 2. $\bar{b} \in \operatorname{dcl}(A)$ iff $f(\bar{b}) = \bar{b}$ for all $f \in \operatorname{Aut}(\mathfrak{C}/A)$

Proof. 1. Suppose $\bar{b} \in \operatorname{acl}(A)$ with witness $\exists^{\leq k} \varphi(\bar{x})$. Then $\varphi(\mathfrak{C})$ is A-definable and hence is $\operatorname{Aut}(\mathfrak{C}/A)$ -invariant by Lemma 2.9

Suppose the finiteness. Since the composition of automorphisms is an automorphism, this set is $\operatorname{Aut}(\mathfrak{C}/A)$ -invariant and therefore A-definable by some $\varphi(\bar{x})$.

2. $\{\bar{b}\}$ is $\operatorname{Aut}(\mathfrak{C}/A)$ -invariant

The first motivation to develop $T^{\rm eq}$ is dealing with quotient objects, without leaving the context of first order logic. That is, if E is some definable equivalence relation on some definable set X, we want to view X/E as a definable set

We work in the setting of multi-sorted languages. Let L be a 1-sorted language and let T be a (complete) L-theory. We shall build a many-sorted language $L^{\rm eq}$ -theory $T^{\rm eq}$. We will ensure that in natural sense, $L^{\rm eq}$ contains L and $T^{\rm eq}$ contains T

8

First we define $L^{\rm eq}$. Consider the set L-formula $\varphi(x,y)$, up to equivalence, such that T models that φ is an equivalence relation. For each φ , define s_{φ} to be a new sort in $L^{\rm eq}$. Of particular importance is $s_{=}$, the sort given by the formula "x=y". = is an equivalence relation This sort $s_{=}$ will yield, in each model of $T^{\rm eq}$, a model of T

Also define f_φ to be a function symbol with domain sort $s^n_=$ (where φ has n free variables) and codomain sort s_φ

For each m-place relation symbol $R \in L$, make $R^{\rm eq}$ an m-place relation symbol in $L^{\rm eq}$ on $s^m_=$. Likewise for all constant and function symbols in L. Finally, for the sake of formality, we put a unique equality symbol $=_{\varphi}$ on each sort

Remark. Let N be an L^{eq} structure. Then N has interpretations $s_{\varphi}(N)$ of each sort s_{φ} and $f_{\varphi}(N): s_{=}(N)^{n_{f_{\varphi}}} \to s_{\varphi}(N)$ of each function symbol f_{φ} . Additionally, N will contain an L-structure consisting of $s_{=}$ and interpretations of the symbols of L inside of $s_{=}$

Definition 2.14. T^{eq} is the L^{eq} -theory which is axiomatised by the following

- 1. T, where the quantifiers in the formulas of T now range over the sort s_{\pm}
- 2. For each suitable L-formula $\varphi(x,y)$, the axiom $\forall_{s_{=}} \overline{x} \forall_{s_{=}} \overline{y} (\varphi(x,y) \leftrightarrow f_{\varphi}(\overline{x}) = f_{\varphi}(\overline{y}))$
- 3. For each L -formula φ , the axiom $\forall_{s_{\varphi}}y\exists_{s_{=}}\bar{x}(f_{\varphi}(\bar{x})=y)$

Axioms 2 and 3 simply state that f_{φ} is the quotient function for the equivalence relation given by φ

Definition 2.15. Let $M \models T$. Then M^{eq} is the L^{eq} structure s.t. $s_{=}(M^{\mathrm{eq}}) = M$ and for each suitable L-formula $\varphi(x,y)$ of n variables, the sort $s_{\varphi}(M^{\mathrm{eq}})$ is equal to $M^{n_{f_{\varphi}}}/E$ where E is the equivalence relation defined by $\varphi(x,y)$ and $f_{\varphi}(M^{\mathrm{eq}})(b) = b/E$

Example 2.2 (Projective planes). From Hodges.

Suppose A is a three-dimensional vector space over a finite field, and let L be the first-order language of A. Then we can write a formula $\theta(x,y)$ of L which expresses 'vectors x and y are non-zero and are linearly dependent on each other'. The formula θ is an equivalence formula of A, and the sort s_{θ} is the set of points of the projective plane P associated with A

Now $M^{\text{eq}} \models T^{\text{eq}}$. Moreover, passing from T to T^{eq} is a canonical operation, in the following sense

Lemma 2.16. 1. For any $N \models T^{eq}$, there is an $M \models T$ s.t. $N \cong M^{eq}$

- 2. Suppose $M, N \models T$ are isomorphic, and let $h: M \cong N$. Then h extends uniquely to $h^{\rm eq}: M^{\rm eq} \cong N^{\rm eq}$
- 3. T^{eq} is a complete L^{eq} -theory
- 4. Suppose $M, N \models T$ and let $\bar{a} \in M$, $\bar{b} \in N$ with $\operatorname{tp}_M(\bar{a}) = \operatorname{tp}_N(\bar{b})$. Then $\operatorname{tp}_{M^{\operatorname{eq}}}(\bar{a}) = \operatorname{tp}_{N^{\operatorname{eq}}}(\bar{b})$

Proof. 1. Take $M = s_{=}(N)$

2. Let $h^{\mathrm{eq}}:M^{\mathrm{eq}}\to N^{\mathrm{eq}}$ be defined as $h^{\mathrm{eq}}(f_{\varphi}(M^{\mathrm{eq}})(b))=f_{\varphi}(N^{\mathrm{eq}})(h(b))$ for each $\varphi\in L$. This defines a function on M^{eq} , because $f_{\varphi}(M^{\mathrm{eq}})$ is surjective by the T^{eq} axioms. Moreover h^{eq} is well-defined. Suppose $f_{\varphi}(M^{\mathrm{eq}})(b)=f_{\varphi}(M^{\mathrm{eq}})(b')$, then $\varphi(b,b')$ and hence $\varphi(h(b),h(b'))$, therefore $f_{\varphi}(N^{\mathrm{eq}})(h(b))=f_{\varphi}(N^{\mathrm{eq}})(h(b'))$. Injectivity is the same since $\varphi(b,b')\leftrightarrow \varphi(h(b),h(b'))$.

$$\begin{split} f_{\varphi}(N^{\mathrm{eq}})(h(b)) &= f_{\varphi}(N^{\mathrm{eq}})(h(b')) \Leftrightarrow h(b)/E_{\varphi} = h(b')/E_{\varphi} \\ &\Leftrightarrow \varphi(h(b),h(b')) \\ &\Leftrightarrow \varphi(b,b') \\ &\Leftrightarrow f_{\varphi}(M^{\mathrm{eq}})(b) = f_{\varphi}(M^{\mathrm{eq}})(b') \end{split}$$

3. Let $M, N \models T^{\operatorname{eq}}$, we want to show that they are elementary equivalent. Assume the generalized continuum hypothesis. By GCH, there are $M', N' \models T^{\operatorname{eq}}$ which are λ saturated of size λ , for some large λ (strongly inaccessible), which $M \leq M'$ and $N \leq N'$. Since we want to show elementary equivalence, we can replace M, N with M' and N'. By 1, we have $M = M_0^{\operatorname{eq}}, N = N_0^{\operatorname{eq}}$ for some $M_0, N_0 \models T$. Furthermore, M_0, N_0 are λ -saturated of size λ . By assumption, T is complete, so $M_0 \equiv N_0$, and therefore $M_0 \cong N_0$. By 2, $M \cong N$, and therefore $M \equiv N$

We could simply prove that there is a back and forth system between M and N, using such a system between $M \supset M_0 \models T$ and $N \supset N_0 \models T$ $M_0 \equiv N_0$ iff $M_0 \sim_{\omega} N_0$. We want to show that $M \sim_{\omega} N$. For any $p \in \omega$,

- given $a \in s_{=}(M)$, choose according to M
- given $a \in s_{\varphi}(M)$, then there is $\bar{b}\bar{c} \in s_{=}(M)$ s.t. $f_{\varphi}(M^{\mathrm{eq}})(\bar{b}\bar{c}) = a$ and $\varphi(\bar{b},\bar{c})$. If $\bar{b} \in s_{=}(M^{\mathrm{eq}})^n$, then there is a local isomorphism $\bar{b} \mapsto \bar{d}$ as $M \sim_{\omega} N$. Take $b = \bar{d}/E_{\omega}$.

4. Let $M,N \vDash T$, they are elementary submodels of $\mathfrak C$. Since $\operatorname{tp}_M(\bar a) = \operatorname{tp}_N(\bar b)$, there exists an $\sigma \in \operatorname{Aut}(\mathfrak C/A)$ with $\sigma(\bar a) = \bar b$. By 2, this automorphism extends to $\sigma^{\operatorname{eq}} : \mathfrak C^{\operatorname{eq}} \to \mathfrak C^{\operatorname{eq}}$ with $\sigma^{\operatorname{eq}}(a) = b$, hence $\operatorname{tp}_{M^{\operatorname{eq}}}(a) = \operatorname{tp}_{\mathfrak C^{\operatorname{eq}}}(b) = \operatorname{tp}_{N^{\operatorname{eq}}}(b)$

Corollary 2.17. Consider the Strong space $S_{(s_=)^n}(T^{eq})$. The forgetful map $\pi: S_{(s_-)^n}(T^{eq}) \to S_n(T)$ is a homeomorphism

Proof. Observe that it is continuous and surjective. By 4 of the previous lemma it is injective. Any continuous bijection from a compact space to a Hausdorff space is a homeomorphism \Box

Proposition 2.18. Let $\varphi(x_1,\ldots,x_k)$ be an L^{eq} formula, where x_i is of sort S_{E_i} . There is an L-formula $\psi(\bar{y}_1,\ldots,\bar{y}_k)$ s.t.

$$T^{\mathrm{eq}} \vDash \forall \bar{y}_1, \dots, \bar{y}_k(\psi(\bar{y}_1, \dots, \bar{y}_k) \leftrightarrow \varphi(f_{E_1}(\bar{y}_1), \dots, f_{E_k}(\bar{y}_k)))$$

Proof. Let n be the length of $\bar{y}_1,\ldots,\bar{y}_k$. Consider the set $\pi[\varphi(f_{E_1}(\bar{y}_1),\ldots,f_{E_k}(\bar{y}_k))]$, it is a clopen subset of $S_n(T)$ by the previous lemma, hence equal to $\psi(\bar{y}_1,\ldots,\bar{y}_k)$ for some formula ψ .

Guess the intuition is $[\varphi] = [\psi]$ iff $\models \varphi \leftrightarrow \psi$. Consider $\pi[\psi(\bar{y}_1, \dots, \bar{y}_k)] = \pi[\varphi(f_{E_1}(\bar{y}_1), \dots, f_{E_k}(\bar{y}_k))]$ and as π is homeomorphism, $[\psi(\bar{y}_1, \dots, \bar{y}_k)] = [\varphi(f_{E_1}(\bar{y}_1), \dots, f_{E_k}(\bar{y}_k))]$

This proposition also shows that T^{eq} is complete since f_{E_i} is surjective Also, for any $\bar{c} \in \mathfrak{C}$, $\bar{c} \in \mathrm{dcl}^{\mathrm{eq}}(\emptyset) \Leftrightarrow \bar{c} \in \mathrm{dcl}(\emptyset)$, $\bar{c} \in \mathrm{acl}^{\mathrm{eq}}(\emptyset) \Leftrightarrow \bar{c} \in \mathrm{acl}(\emptyset)$

- **Corollary 2.19.** 1. Let $M, N \models T$, and let $h : M \to N$ be an elementary embedding. Then $h^{\text{eq}} : M^{\text{eq}} \to N^{\text{eq}}$ is also an elementary embedding
 - 2. \mathfrak{C}^{eq} is also κ -saturated

Proof. 1. $h: M \to \operatorname{im}(h)$ is an isomorphism and can extend to $h^{\operatorname{eq}}: M^{\operatorname{eq}} \to (\operatorname{im}(h))^{\operatorname{eq}}$, and $(\operatorname{im}(h))^{\operatorname{eq}} \subseteq N^{\operatorname{eq}}$

2. By Proposition 2.18

Remark. For $M \vDash T$, a definable set $X \subseteq M^n$ can be viewed as an element of M^{eq} . Suppose X is defined in M by $\varphi(\bar{x},\bar{a})$ where $\bar{a} \in M$. Consider the equivalence relation E_{ψ} defined by $\psi(\bar{y}_1,\bar{y}_2) = \forall \bar{x}(\varphi(\bar{x},\bar{y}_1) \leftrightarrow \varphi(\bar{x},\bar{y}_2))$ $\bar{y}_1 \sim \bar{y}_2$ iff this $\varphi(M,\bar{y}_1) = \varphi(M,\bar{y}_2)$, and consider $c = \bar{a}/E_{\psi} = f_{\psi}(\bar{a}) \in$

 M^{eq} . Then X is defined in M^{eq} by $\chi(\bar{x},c)=\exists \bar{y}(\varphi(\bar{x},\bar{y})\wedge f_{\psi}(\bar{y})=c)$. Moreover, if $c'\in S_{\psi}(M^{\mathrm{eq}})$ and $\forall \bar{x}(\chi(\bar{x},c)\leftrightarrow \chi(\bar{x},c'))$, then c=c'. To see this, let $c'=f_{\psi}(\bar{a}')$, and let X' be defined in M by $\varphi(\bar{x},\bar{a}')$. Then X' is defined in M^{eq} by $\chi(\bar{x},c')$, so we have that X=X' (in M^{eq}). And then X=X' (in M) so $c=f_{\psi}(\bar{a})=f_{\psi'}(\bar{a}')=c'$

Definition 2.20. With the above considerations in mind, given $M \models T$ and a definable set $X \subseteq M^n$, we call such a $c \in M^{eq}$ a **code** for X

Remark. Any automorphism of \mathfrak{C}^{eq} fixes a definable set X set-wise iff it fixes a code for X. However, the choice of a code for X will depend on the formula φ used to define it

$$\begin{split} \sigma(X) &= X \Leftrightarrow \sigma(X) = \{\sigma(x) : \varphi(x,b)\} = \{x : \varphi(x,\sigma(b))\} = \{x : \varphi(x,b)\} = X \\ &\Leftrightarrow \forall x (\varphi(x,b) \leftrightarrow \varphi(x,\sigma(b))) \\ &\Leftrightarrow \psi(b,\sigma(b)) \Leftrightarrow f_{\psi}(b) = f_{\psi}(\sigma(b)) \end{split}$$

We can think of \mathfrak{C}^{eq} as adjoining codes for all definable equivalence relations (as c/E' codes E'(x,c) for an arbitrary equivalence relation E)

Definition 2.21. Let $A\subseteq M\models T$. Then $\operatorname{acl}^{\operatorname{eq}}(A)=\{c\in M^{\operatorname{eq}}:c\in\operatorname{acl}_{M^{\operatorname{eq}}}(A)\}$ and $\operatorname{dcl}^{\operatorname{eq}}(A)$ is defined similarly

Remark. Suppose $A\subseteq M\prec N$, then $\mathrm{acl}_{N^{\mathrm{eq}}}(A),\mathrm{dcl}_{N^{\mathrm{eq}}}(A)\subseteq M^{\mathrm{eq}}$, so this notation is unambiguous

Lemma 2.22. Let $M \models T$, a definable subset X of M^n , and $A \subseteq M$. Then X is almost A-definable iff X is definable in M^{eq} by a formula with parameters in $\operatorname{acl}^{eq}(A)$

Proof. We can work in $\mathfrak C$, since $M < \mathfrak C$. Let c be a code for X. From 2.10 X is almost A-definable iff $|\{\sigma(X): \sigma \in \operatorname{Aut}(\mathfrak C/A)\}| < \omega$ iff $|\{\sigma(c): \sigma \in \operatorname{Aut}(\mathfrak C^{\operatorname{eq}}/A)\}| < \omega$ (note that σ extends uniquely in $\mathfrak C^{\operatorname{eq}}$), that is, $c \in \operatorname{acl}^{\operatorname{eq}}(A)$.

$$\begin{split} \sigma(b)/E &= \sigma'(b)/E \Leftrightarrow \forall x (\varphi(x,\sigma(b)) \leftrightarrow \varphi(x,\sigma'(b))) \\ &\Leftrightarrow \sigma(X) = \sigma'(X) \end{split}$$

Definition 2.23. Let $\bar{a}, \bar{b} \in \mathfrak{C}$ have length n. Let \bar{a}, \bar{b} have the same strong type over A (written as $\sup_{\mathfrak{C}}(\bar{a}/A) = \sup_{\mathfrak{C}}(\bar{a}/A)$) if $E(\bar{a}, \bar{b})$ for any finite equivalence relation (finitely many classes) defined over A

Remark. If $\varphi(\bar{x})$ is a formula over A, then it defines an equivalence with two classes $E(\bar{x}_1, \bar{x}_2)$ iff $(\varphi(\bar{x}_1) \land \varphi(\bar{x}_2)) \lor (\neg \varphi(\bar{x}_1) \land \neg \varphi(\bar{x}_2))$. Hence strong types are a refinement of types

Hence for any formula if $\operatorname{stp}(\bar{a}/A)=\operatorname{stp}(\bar{b}/B)$, at least we have $\varphi(\bar{a})\leftrightarrow\varphi(\bar{b})$

Lemma 2.24. If
$$A=M < \mathfrak{C}$$
, then $\operatorname{tp}_{\sigma}(a/M) \vDash \operatorname{stp}_{\sigma}(a/M)$

$$\operatorname{tp}_{\mathfrak{C}}(a/M) = \operatorname{tp}_{\mathfrak{C}}(b/M) \Rightarrow \operatorname{stp}_{\mathfrak{C}}(a/M) = \operatorname{stp}_{\mathfrak{C}}(b/M)$$

Proof. Let E be an equivalence relation with finitely many classes, defined over M, and \bar{b} another realization of $\operatorname{tp}_{\mathfrak{C}}(\bar{a}/M)$, we want to show E(a,b). Since E has only finitely many classes, and M is a model, there are representants e_1,\ldots,e_n of each E-class in M. Hence we must have $E(a,e_i)$ for some i, and therefore $E(b,e_i)$, which yields E(a,b)

Lemma 2.25. *Let* $A \subseteq M \models T$, and let $\bar{a}, \bar{b} \in M$. *TFAE*

- 1. $stp(\bar{a}/A) = stp(\bar{b}/A)$
- 2. \bar{a}, \bar{b} satisfy the same formulas almost A-definable
- 3. $\operatorname{tp}_{\mathfrak{C}}(\bar{a}/\operatorname{acl}^{\operatorname{eq}}(A)) = \operatorname{tp}_{\sigma}(\bar{b}/\operatorname{acl}^{\operatorname{eq}}(A))$

Proof. $3 \to 2$. 2.22. Suppose $X = \varphi(\mathfrak{C}, \bar{d})$ is almost A-definable, then $\bar{a}, \bar{b} \in \varphi(\mathfrak{C}, \bar{d})$ iff $\bar{a}, \bar{b} \in \theta(\mathfrak{C}) := \exists \bar{y} (\varphi(\mathfrak{C}, \bar{y}) \land \bar{y}/E_{\psi} = \bar{c})$ where $\bar{c} = \bar{d}/E_{\psi} \in \operatorname{acl}^{\operatorname{eq}}(A)$. $2 \to 3$

 $1 \to 2$. Let X be almost definable over A. We want to show that $\bar{a} \in X$ iff $\bar{b} \in X$.

Since X is almost definable over A, there is an A-definable equivalence relation E with finitely many classes, and $\bar{c}_1,\dots,\bar{c}_n$ s.t. for all $\bar{x}\in M$, we have $\bar{x}\in X$ iff $M\vDash E(\bar{x},\bar{c}_1)\vee\dots\vee E(\bar{x},\bar{c}_n)$. Hence $E(\bar{a},\bar{c}_i)$ for some i, so by assumption $E(\bar{b},\bar{c}_i)$.

 $2 \to 1$. Let E be an A-definable equivalence relation with finitely many classes, we want to show that $E(\bar{a}, \bar{b})$. The set $X = \{\bar{x} \in M : E(\bar{x}, \bar{a})\}$ is definable almost over A. But $\bar{a} \in X$, so $\bar{b} \in X$, hence $E(\bar{a}, \bar{b})$

Here is a note from scanlon

Definition 2.26. An **imaginary element** of $\mathfrak A$ is a class a/E where $a \in A^n$ and E is a definable equivalence relation on A^n

Definition 2.27. $\mathfrak A$ **eliminates imaginaries** if, for every definable equivalence relation E on A^n there exists definable function $f:A^n\to A^m$ s.t. for $x,y\in A^n$ we have

$$xEy \Leftrightarrow f(x) = f(y)$$

Remark. The definition give above is what Hodges calls **uniform elimination of imaginaries**

Remark. If $\mathfrak A$ eliminates imaginaries, then for any definable set X and definable equivalence relation E on X, there is a definable set Y and a definable bijection $f: X/E \to Y$. Of course this is not literally true, we should rather say that there is a definable map $f': X \to Y$ s.t. f' is invariant on the equivalence classes defined by E

So elimination of imaginaries is saying that quotients exists in the category of definable sets

Remark. If $\mathfrak A$ eliminates imaginaries then for any imaginaries element $a/E=\tilde a$ there is some tuple $\hat a\in A^m$ s.t. $\tilde a$ and $\hat a$ are **interdefinable**, i.e. there is a formula $\varphi(x,y)$ s.t.

- $\mathfrak{A} \models \varphi(a, \tilde{a})$
- If a'Ea then $\mathfrak{A} \models \varphi(a', \hat{a})$
- If $\varphi(b, \hat{a})$ then bEa
- If $\varphi(a,c)$ then $c=\hat{a}$

To get the formula φ we use the function f given by the definition of elimination of imaginaries and let $\varphi(x,y):=f(x)=y$

Almost conversely, if for every $\mathfrak{A}' \equiv \mathfrak{A}$ every imaginary in \mathfrak{A}' is interdefinable with a **real** (non-imaginary) tuple then \mathfrak{A} eliminates imaginaries

$$\{ \forall xy (xEy \leftrightarrow f_E(x) = f_E(y)) \mid \forall E \}$$

Example 2.3. For any structure \mathfrak{A} , every imaginary in \mathfrak{A}_A is interdefinable with a sequence of real elements

Example 2.4. Let $\mathfrak{A} = (\mathbb{N}, <, \equiv \mod 2)$. Then \mathfrak{A} eliminates imaginaries. For example, to eliminate the "odd/even" equivalence relation, E, we can define $f: \mathbb{N} \to \mathbb{N}$ by

$$f(x) = y \Leftrightarrow xEy \land \forall z[xEz \to y < z \lor y = z]$$

Definition 2.28. $\mathfrak A$ has **definable choice functions** if for any formula $\theta(\bar x, \bar y)$ there is a definable function $f(\bar y)$ s.t.

$$\forall \bar{y} \exists \bar{x} [\theta(\bar{x}, \bar{y}) \leftrightarrow \theta(f(\bar{y}), \bar{y})]$$

(i.e., f is a skolem function for θ) and s.t.

$$\forall \bar{y} \forall \bar{z} [\forall \bar{x} (\theta(\bar{x}, \bar{y}) \leftrightarrow \theta(\bar{x}, \bar{z})) \rightarrow f(\bar{y}) = f(\bar{z})]$$

Proof. If $\mathfrak A$ has definable choice functions then $\mathfrak A$ eliminates imaginaries \Box

Proof. Given a definable equivalence relation E on A^n let f be a definable choice function for $E(\bar x,\bar y)$. Since E is an equivalence relation we have $\forall \bar y E(f(\bar y),\bar y)$ and

$$\forall \bar{y}\bar{z}[\bar{y}/E = \bar{z}/E \to f(\bar{y}) = f(\bar{z})]$$

Thus
$$f(\bar{y}) = f(\bar{z}) \Leftrightarrow \bar{y}E\bar{z}$$

Example 2.5. We now see that $\mathfrak{A}=(\mathbb{N},<,\equiv\mod 2)$ eliminates imaginaries. Basically since \mathfrak{A} is well ordered, we can find a least element to witness membership of definable sets, hence we have definable functions

Example 2.6. $\mathfrak{A} = (\mathbb{N}, \equiv \mod 2)$ does not eliminate imaginaries

First note that the only definable subsets of $\mathbb N$ are $\emptyset, \mathbb N, 2\mathbb N, (2n+1)\mathbb N$. This is because $\mathfrak A$ has an automorphisms which switches $(2n+1)\mathbb N$ and $2\mathbb N$

Now suppose $f: \mathbb{N} \to \mathbb{N}^m$ eliminates the equivalence relation $\equiv \mod 2$, i.e.,

$$f(x) = f(y) \Leftrightarrow y \equiv 2 \mod 2$$

The $\operatorname{im}(f)$ is definable and has cardinality 2. Since there are no definable subsets of $\mathbb N$ of cardinality 2, we must have m>1. Now let $\pi:\mathbb N^m\to\mathbb N$ be a projection. Then $\pi(\operatorname{im}(f))$ is a finite nonempty definable subset of $\mathbb N$. But no such set exists

Proposition 2.29. *If* $\mathfrak A$ *eliminates imaginaries, then* $\mathfrak A_A$ *eliminates imaginaries*

Proof. The idea is that an equivalence relation with parameters can be obtained as a fiber of an equivalence relation in more variables. Let $E\subseteq A^n$ be an equivalence relation definable in \mathfrak{A}_A . Let $\varphi(x,y;z)\in L$ and $a\in A^l$ be s.t.

$$xEy \Leftrightarrow \mathfrak{A} \vDash \varphi(x,y;a)$$

We now define

$$\psi(x,u,y,v) = \begin{cases} u = v \wedge \text{"}\varphi \text{ defines an equivalence relation"} & \text{or } \\ u \neq v & \text{or } \\ \text{"}\varphi(x,y,v) \text{ does not define an equivalence relation"} \end{cases}$$

Now ψ defines an equivalence relation on A^{n+l} . Let $f:A^{n+l}\to A^m$ eliminate ψ , then f(-,a) eliminates E

Back to [Pillay(2018)]

- **Definition 2.30.** 1. T has elimination of imaginaries (EI) if for any model $M \models T$ and $e \in M^{\text{eq}}$, there is a $\bar{c} \in M$ s.t. $e \in \operatorname{dcl}_{M^{\text{eq}}}(\bar{c})$ and $\bar{c} \in \operatorname{dcl}_{M^{\text{eq}}}(e)$
 - 2. T has weak elimination of imaginaries if, as above, except $\bar{c} \in \operatorname{acl}_{M^{\operatorname{eq}}}(e)$ (that is, $e \in \operatorname{dcl}_{M^{\operatorname{eq}}}(\bar{c})$ and $\bar{c} \in \operatorname{acl}_{M^{\operatorname{eq}}}(e)$)
 - 3. T has geometric elimination of imaginaries if, as above, except $e\in \operatorname{acl}_{M^{\operatorname{eq}}(\bar{c})}$ and $\bar{c}\in\operatorname{acl}_{M^{\operatorname{eq}}}(e)$

Note that in particular, elimination of imaginaries imply the existence of codes for definable sets

Proposition 2.31. *TFAE*

- 1. T has EI
- 2. For some model $M \vDash T$, we have that for any \emptyset -definable equivalence relation E, there is a partition of M^n into \emptyset -definable sets Y_1, \ldots, Y_r and for each $i=1,\ldots,r$ a \emptyset -definable $f_i:Y_i\to M^{k_i}$ where $k_i\geq 1$ s.t. for each $i=1,\ldots,r$, for all $\bar{b}_1,\bar{b}_2\in Y_i$, we have $E(\bar{b}_1,\bar{b}_2)$ iff $f_i(\bar{b}_1)=f_i(\bar{b}_2)$
- 3. For any model $M \vDash T$, we have that for any \emptyset -definable equivalence relation E, there is a partition of M^n into \emptyset -definable sets Y_1, \ldots, Y_r and for each $i=1,\ldots,r$ a \emptyset -definable $f_i:Y_i\to M^{k_i}$ where $k_i\geq 1$ s.t. for each $i=1,\ldots,r$, for all $\bar{b}_1,\bar{b}_2\in Y_i$, we have $E(\bar{b}_1,\bar{b}_2)$ iff $f_i(\bar{b}_1)=f_i(\bar{b}_2)$
- 4. For any model $M \models T$, and any definable $X \subseteq M^n$ there is an L-formula $\varphi(\bar{x}, \bar{y})$ and $\bar{b} \in M$ s.t. X is defined by $\varphi(\bar{x}, \bar{b})$ and for all $\bar{b}' \in M$ if X is defined by $\varphi(\bar{x}, \bar{b}')$ then $\bar{b} = \bar{b}'$. We call such a \bar{b} a code for X.

most typos i've ever seen in a proof

Proof. $2 \Leftrightarrow 3$. Since we concern only \emptyset -definable relations and functions, if it is true in some model, then it is true in any model

 $1 \to 2$. Let $\pi_E: S^n_= \to S_E$ the canonical definable quotient map. Let $e \in S_E$. By assumption, there is $k \in \mathbb{N}$ and $\bar{c} \in \mathfrak{C}^k$ s.t. e and \bar{c} are interdefinable. In other words, there is a formula $\varphi_e(x,\bar{y})$ over \emptyset s.t. $\varphi_e(e,\bar{c})$. Moreover, $|\varphi_e(\mathfrak{C},\bar{c})| = |\varphi_e(e,\mathfrak{C})| = 1$ Let

$$\begin{split} X_e &= \{ \bar{x} \in \mathfrak{C}, \vDash \exists ! \bar{y} \varphi_e(\pi_E(\bar{x}), \bar{y}) \\ & \wedge \forall z (E(\bar{x}, \bar{z}) \leftrightarrow \\ & (\forall y (\varphi_e(\pi_E(\bar{x}), \bar{y}) \leftrightarrow \varphi_e(\pi_E(\bar{z}), \bar{y}))) \} \end{split}$$

This means that φ_e defines a function on X_e , and that this function separates E-classes.

Then $\pi^{-1}(\{e\}) \subset X_e$.

Since each X_e contains $\pi^{-1}(\{e\})$, we get $\mathfrak{C}^n = \bigcup_{e \in \pi_E(\mathfrak{C}^n)} X_e$, and by compactness, there are e_1, \dots, e_l s.t. $\mathfrak{C}^n = \bigcup_{i=1}^l X_{e_i}$. As each X_e is \emptyset -definable. Let $\bar{x} \in X_e \Leftrightarrow \theta_e(\bar{x})$. Suppose there is no such l, then $\{x = x\} \cup \{\neg \theta_e(x)\}$ is satisfiable and realised since \mathfrak{C} is saturated Naively, we can pick $f_i = \varphi_{e_i} \circ \pi_E$, but X_{e_i} are not disjoint

However we can consider Y_1, \dots, Y_r to be the atoms of the boolean algebra generated by the X_i . These are disjoint, and we can pick, for each Y_j , appropriate f_i , to get the result

 $3 \to 4$. Let $X = \varphi(\mathfrak{C}, \bar{a})$. Consider the \emptyset -definable equivalence relation $E(\bar{y}, \bar{z}) \Leftrightarrow \forall x (\varphi(\bar{x}, \bar{y}) \leftrightarrow \varphi(\bar{x}, \bar{z}))$. Let Y_i and f_i be as in 3 and say $\bar{a} \in Y_1$, and let $\bar{b} = f_1(\bar{a})$. Then $\exists \bar{y} (f_1(\bar{y}) = \bar{b} \land \varphi(\bar{x}, \bar{y}))$ defines X, call this formula ψ

We have to show that \bar{b} is unique. Let \bar{b}' be s.t. $\exists \bar{y}(f_1(\bar{y}) = \bar{b}' \land \varphi(\bar{x}, \bar{y}))$ also defines X, and let \bar{a}_0 be as the \bar{y} in the formula. Then $\varphi(x, \bar{a}_0)$ defines X, hence $\bar{a}_0 E \bar{a}$, which implies $\bar{b}' = f_1(\bar{a}_0) = f_1(\bar{a}) = \bar{b}$

 $4 \to 1$. Let $e \in \mathfrak{C}^{\mathrm{eq}}$, then $e = \pi_E(\bar{a})$ for some $\bar{a} \in \mathfrak{C}^n$ and some \emptyset -definable equivalence relation E

The set $X=\{\bar{x}\in\mathfrak{C}^n\mid \vDash E(\bar{x},\bar{a})\}$ has a code $\bar{b}\in\mathfrak{C}^k$, so that $X=\psi(\mathfrak{C}^n,\bar{b})$. We are going to prove interdefinability of e and \bar{b} using automorphisms of σ

First suppose that $\sigma \in \operatorname{Aut}(\mathfrak{C})$, and fixes e. We have $\mathfrak{C}^{\operatorname{eq}} \vDash \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\bar{a}) \leftrightarrow \psi(\bar{x},\bar{b}))$. Applying σ , we get $\mathfrak{C}^{\operatorname{eq}} \vDash \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\bar{a}) \leftrightarrow \psi(\bar{x},\sigma(\bar{b})))$. But \bar{b} is a code for X, hence $\bar{b} = \sigma(\bar{b})$. This implies $\bar{b} \in \operatorname{dcl}(e)$

Now suppose $\sigma \in \operatorname{Aut}(\mathfrak{C})$ and fixes \bar{b} . Again $\mathfrak{C}^{\operatorname{eq}} \vDash \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\bar{a}) \leftrightarrow \pi_E(\bar{x})$

$$\psi(\bar{x},\bar{b}))$$
 and $\mathfrak{C}^{eq} \models \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\sigma(\bar{a})) \leftrightarrow \psi(\bar{x},\bar{b}))$. But $\psi(\bar{a},\bar{b})$, $e = \pi_E(\bar{a}) = \pi_E(\sigma(\bar{a})) = \sigma(e)$. Hence $e \in \operatorname{dcl}(\bar{b})$

Note that condition 2 is somewhat unsatisfying, as we would like to have a quotient function for E, that is, r=1

Proposition 2.32. *Suppose* T *eliminates imaginaries. We get* r = 1 *in condition* 2 *iff* $dcl(\emptyset)$ *has at least two elements*

Proof. First, suppose that r=1. Consider the equivalence on \mathfrak{C}^2 given by E((x,y),(x',y')) iff $x=y\leftrightarrow x'=y'$. In other words, the E classes are the diagonal and its complement (only two). Then $\pi_E(\mathfrak{C}^2)$ has two elements, and they belong to $\operatorname{dcl}^{\operatorname{eq}}(\emptyset)$. But because T eliminates imaginaries, this implies that there is also two elements in $\operatorname{dcl}(\emptyset)$ by Proposition 2.18

Second, suppose that $\operatorname{dcl}(\emptyset)$ contains two constants a and b. Let Y_i, f_i be as in condition 2. Using a and b, we can find some number k and functions $g_i: \mathfrak{C}^{k_i} \to \mathfrak{C}^k$ s.t. $g_i(\mathfrak{C}^{k_i})$ are pairwise disjoint. We can check that the \emptyset -definable function $f: \mathfrak{C}^n \to \mathfrak{C}^k$ sending $y \in Y_i$ to $g_i(f_i(y))$ has all the required properties

Remark. Elimination of imaginaries also makes sense for many sorted theories

Proposition 2.33 (Assume T 1-sorted). T^{eq} has elimination of imaginaries

Proof. Prove a strong version of 2 in Proposition 2.31 that is, we don't need to distinguish Y_1,\ldots,Y_r and f_1,\ldots,f_r . Let E' be a \emptyset -definable equivalence relation on a sort s_E in some model $M^{\rm eq}$ of $T^{\rm eq}$. By Proposition 2.18 there is an L-formula $\psi(\bar{y}_1,\bar{y}_2)$ (\bar{y}_i the appropriate length) s.t. for all $\bar{a}_1,\bar{a}_2\in M$, $M\models\psi(\bar{a}_1,\bar{a}_2)$ iff $M^{\rm eq}\models E'(f_E(\bar{a}_1),f_E(\bar{a}_2))$. So $\psi(\bar{y}_1,\bar{y}_2)$ is an L-formula defining an equivalence relation on M^k for the suitable length k. Consider the map h, taking $e\in S_E$ to $f_\psi(\bar{a})$ for any $\bar{a}\in M^k$ s.t. $f_E(\bar{a})=e$ for any $\bar{a}\in M^k$ s.t. $f_E(\bar{a})=e$ Suppose $f_E(\bar{a})=e=f_E(\bar{a}')$, we easily see that $f_\psi(\bar{a})=f_\psi(\bar{a}')$, hence the map h is well-defined, and satisfies 2 of 2.31 \square

2.4 Examples and counterexamples

Example 2.7. The theory of an infinite set has weak elimination of imaginaries but not full elimination of imaginaries

Proof. First, we show that T has weak elimination of imaginaries. Let M be an infinite set and let $e \in M^{eq}$ be an imaginary element. Suppose that. Let $A \subset M$ be a finite set over which X is definable ??. Consider the set

$$\hat{A} := \bigcap_{\substack{\sigma \in \operatorname{Aut}(M) \\ \sigma(X) = X}} \sigma(A)$$

Since *A* is finite, there are $\sigma_1, \dots, \sigma_n$ s.t. $\hat{A} = \bigcap_i \sigma_i(A)$

To see that T does not have full elimination of imaginaries, observe that there is never a code for any finite set. Indeed, if M is an infinite set, $X \subset_f M$, and $\bar{a} \in M$, we can find a permutation of M which fixes X as a set but does not fix \bar{a} , meaning \bar{a} could not be a code for X

Example 2.8. Let $T = \operatorname{Th}(M, <, \dots)$ where < is a total well-ordering. Then T has elimination of imaginaries

Proof. Every definable set has a least element. We verify (2) in 2.31. Let E be a \emptyset -definable equivalence relation on M^n . Let $f:M^n\to M^n$ s.t. for any \bar{a} , $f(\bar{a})$ is the least element of the E-class of \bar{a} . Notice that f is \emptyset -definable, and for all \bar{a} , \bar{b} , $f(\bar{a})=f(\bar{b})$ iff $E(\bar{a},\bar{b})$

Lemma 2.34. Let T be strongly minimal and $acl(\emptyset)$ be infinite (in some, any model). Then T has weak elimination of imaginaries

Proof. Fix a model M. Let $e \in M^{\mathrm{eq}}$ Ok, now i think the convention for pillay is that $e \in M^{\mathrm{eq}}$ is automatically imaginary, so $e = \bar{a}/E$ for some \bar{a} and E some \emptyset -definable equivalence relation. Let $A = \mathrm{acl}_{M^{\mathrm{eq}}}(e) \cap M$. A is infinite as it contains $\mathrm{acl}(\emptyset)$.

We first prove that there exists some $b\subset A$ s.t. $E(\bar{a},b)$. Let $X_1=\{y_1\in M: M\vDash \exists y_2\dots y_n(\bar{y}E\bar{a})\}$. It is definable over e. If X_1 is finite, any $b_1\in X_1$ then belongs to A. Otherwise, X_1 is cofinite, hence meets the infinite set A. Either way, $X_1\cap A\neq\emptyset$ and we have $b_1\in X_1\cap A$

Now let $X_2=\{y_2\in M: M\vDash \exists y_3\dots y_n(b_1\bar{y}E\bar{a})\}$. We remark $X_2\neq\emptyset$ since $b_1\in X_1$. Now X_2 is either finite or cofinite since T is strongly minimal. By the same argument above, we may find $b_2\in X_2\cap A$. Then repeating this process, we may find $\bar{b}\subset A$. Therefore $\bar{b}\in\operatorname{acl}_{M^{eq}}(e)$.

Finally notice that $e\in\operatorname{dcl}_{M^{\operatorname{eq}}}(\bar{b})$ since $\bar{a}/E=\bar{b}/E=e$

Example 2.9. The theory ACF $_p$ has elimination of imaginaries, for any p

Proof. By Lemma 2.34, ACF $_p$ has weak elimination of imaginaries. Therefore it suffices to show that every finite set can be coded. Let K be an algebraically closed field and let $X = \{c_1, \dots, c_n\} \subseteq K$. Consider the polynomial

$$P(x) = \prod_{i=1}^{n} (x - c_i)$$

= $x^n + e_{n-1}x^{n-1} + \dots + e_1x + e_0$

Then we may take the tuple $\bar{e}=(e_n,\ldots,e_0)$ to be our code for X. \square

3 Stability

3.1 Historic remarks and motivations

Thoughout this chapter we will fix a complete theory T in some language L. Moreover, we will have no problem in working in $T^{\rm eq}$ (that is to say, to assume $T=T^{\rm eq}$)

For a given theory T, the spectrum functions is given as

$$I(T,-): Card \rightarrow Card$$

 $I(T, \lambda) = \#$ of models of T or cardinality λ (up to isomorphism)

Conjecture 3.1 (Morley). Let T be countable, then function $I_T(\kappa)$ is non-decreasing on uncountable cardinals

One of such dividing lines is stability

3.2 Counting types and stability

Definition 3.2. For a complete first order theory T, let $f_T: Card \to Card$ be defined by $f_T(\kappa) = \sup\{|S_1(M)| : M \models T, |M| = \kappa\}$, for κ an infinite cardinal

Exercise 3.2.1. Show that

$$f_T(\kappa) = \sup\{|S_n(M)| : M \vDash T, |M| = \kappa, n \in \omega\}$$

gives an equivalent definition

It is easy to see that $\kappa \leq f_T(\kappa) \leq 2^{\kappa + |T|}$

Fact 3.3 (Keisler, Shelah [Keisler(1976)]). Let T be an arbitrary complete theory in a countable language. Then $f_T(\kappa)$ is one of the following functions (and all of these options occur for some T):

$$\kappa, \kappa + 2^{\aleph_0}, \kappa^{\aleph_0}, \operatorname{ded} \kappa, (\operatorname{ded} \kappa)^{\aleph_0}, 2^{\kappa}$$

Here, $\operatorname{ded} \kappa = \sup\{|I| : I \text{ is a linear order with a dense subset of size } \kappa\}$, equivalently $\sup\{\lambda : \text{ there is a linear order of size } \kappa \text{ with } \lambda \text{ cuts}\}$

ded is called the **Dedekind function**

Lemma 3.4. $\kappa < \operatorname{ded} \kappa \leq 2^{\kappa}$

Proof. Let μ be minimal s.t. $2^{\mu} > \kappa$, and consider the tree $2^{<\mu}$. Take the lexicographic ordering I on it, then $|I| = 2^{<\mu} \le \kappa$ by the minimality of μ , but there are at least $2^{\mu} > \kappa$ cuts

Every cut is **uniquely** determined by the subset of elements in its lower half \Box

Definition 3.5. Let $M \models T$

- 1. A formula $\phi(x,y)$ with its variables partitioned into two groups x,y, has the k-order property, $k \in \omega$, if there are some $a_i \in M_x$, $b_i \in M_y$ for i < k s.t. $M \vDash \phi(a_i,b_j) \Leftrightarrow i < j$
- 2. $\phi(x,y)$ has the **order property** if it has the k-order property for all $k \in \omega$
- 3. A formula $\phi(x,y)$ is **stable** if there is some $k \in \omega$ s.t. it does not have the k-order property
- 4. A theory is **stable** if it implies that all formulas are stable

Proposition 3.6. Assume that T is unstable, then $f_T(\kappa) \ge \operatorname{ded} \kappa$ for all cardinals $\kappa \ge |T|$

Proof. Fix a cardinal κ . Let $\phi(x,y) \in L$ be a formula that has the k-order property for all $k \in \omega$. Then by compactness we have:

Claim. Let I be an arbitrary linear order. Then we can find some $\mathcal{M} \vDash T$ and $a_ib_i: i \in I$ from M s.t. $\mathcal{M} \vDash \phi(a_i,b_j) \Leftrightarrow i < j$, for all $i,j \in I$ Consider

$$T' = T \cup \{\phi(a_i,b_j) : i < j\} \cup \{\neg \phi(a_i,b_j) : igej\}$$

Let I be an arbitrary dense linear order of size κ , and let $(a_ib_i:i\in I)$ in $\mathcal M$ be as given by the claim. By Löwenheim–Skolem Theorem, we can assume that $|\mathcal M|=\kappa$

Given a cut C = (A, B) in I, consider the set of L(M)-formulas

$$\Phi_C = \{\phi(x,b_i): j \in B\} \cup \{\neg \phi(x,b_i): j \in A\}$$

Note that by compactness it is a partial type, let $p_C \in S_x(M)$ be a complete type over M extending $\Phi_C(x)$. Given two cuts C_1, C_2 , we have $p_{C_1} \neq p_{C_2}$. As I was arbitrary, this shows that $\sup\{|S_x(M)|: M \vDash T, |M| = \kappa\} \ge \det \kappa$. Note that we may have |x| > 1, however using Exercise $\ref{f_T}(\kappa) \ge \det \kappa$

Fact 3.7 (Ramsey). $\aleph_0 \to (\aleph_0)_k^n$ holds for all $n, k \in \omega$ (i.e., for any coloring of subsets of \mathbb{N} of size n in k colors, there is some infinite subset I of \mathbb{N} s.t. all n-element subsets of I have the same color)

Lemma 3.8. Let $\phi(x, y)$, $\psi(x, z)$ be stable formulas (where y, z are not necessarily disjoint tuples of variables). Then

- 1. $\neg \phi(x,y)$ is stable
- 2. Let $\phi^*(y,x) := \phi(x,y)$, i.e., we switch the roles of the variables. Then $\phi^*(y,x)$ is stable
- 3. $\theta(x,yz) := \phi(x,y) \wedge \psi(x,z)$ and $\theta'(x,yz) := \phi(x,y) \vee \psi(x,z)$ are stable
- 4. If y = uv and $c \in M_v$, then $\theta(x, u) := \phi(x, uc)$ is stable
- 5. If T is stable, then every L^{eq} -formula is stable as well
- 6. The formula $\varphi(x,y)$ is stable for T iff there is $n < \omega$ s.t. $\varphi(x,y)$ is n-stable: it is not the case that there are a_i, b_i (in \mathfrak{C} , or in some/any $M \vDash T$), i < n, s.t. $\vDash \varphi(a_i, b_i)$ iff i < j for all i, j < n
- 7. There are T, $M \models T$ and $\varphi(x,y)$ s.t. $\varphi(x,y)$ is stable in M but it is not stable for T

Proof. 1. Suppose $\neg \phi(x,y)$ is unstable, then there is $I=(a_i,b_i)_{i\in\omega}$ s.t. $\models \neg \varphi(a_i,b_j) \Leftrightarrow i < j$, equivalently, $\models \varphi(a_i,b_j) \Leftrightarrow i \geq j$. Then add constants $(a_i,b_i)_{i\in\omega}$ and consider

$$\Gamma = T \cup \{\varphi(a_i,b_j) : i < j\} \cup \{\neg \varphi(a_i,b_j) : i \geq j\}$$

For any finite subset $\Gamma' \subset_f \Gamma$, we can reverse the order of I: suppose n is the maximum index and then let i' = n - i, j' = n + 1 - j. Then $i' < j' \Leftrightarrow n - i < n + 1 - j \Leftrightarrow i \ge j$. Hence I satisfies this, and hence $\varphi(x,y)$ is unstable

- 2. Suppose $\varphi^*(y,x)$ is not stable, then $\neg \varphi^*(y,x)$ is also unstable. Let a_i,b_i be witnesses in $\mathfrak C$ of the latter. Then $a_i'=b_i$ and $b_i'=a_{i+1},\,i<\omega$, witness the instability of $\varphi(x,y)$ as j+1>i
- 3. Suppose that $\theta'(x,yz)$ is unstable, i.e., there are $(a_i,b_ib_i':i\in\mathbb{N})$ s.t. $\models \phi(a_i,b_j)\vee\psi(a_i,b_j')\Leftrightarrow i< j$ for all $i,j\in\mathbb{N}$. Let

$$P := \{(i,j) \in \mathbb{N}^2 : i < j, \vDash \phi(a_i,b_j)\}, Q := \{(i,j) \in \mathbb{N}^2 : i < j, \vDash \psi(a_i,b_j')\}$$

then $P \cup Q = \{(i, j) \in \mathbb{N}^2 : i < j\}$. By Ramsey there is an infinite $I \subseteq \mathbb{N}$ s.t. either all increasing pairs from I belong to P, or all increasing pairs from I belong to Q

7. Consider the graph G, disjoint union of all finite graphs. Then the edge relation E is stable in G. Indeed, if it wasn't, we would have a vertex x_0 and infinitely many vertices $\{y_i:i\in\mathbb{N}\}$ s.t. $E(x_0,y_i)$ for all i, which is impossible

But by 6, edge relation is not stable in Th(G)

Lemma 3.9. Let X be a set and Y_1, \dots, Y_n are subsets of X. Define

$$E(x,y) := \bigwedge_{i=1}^n (x \in X_i \Leftrightarrow y \in X_i)$$

Then E is an equivalence relation on X and $Z \subseteq X$ is a boolean combination of X_i 's iff

$$E(x,y) \Rightarrow (x \in Z \Leftrightarrow y \in Z)$$

Proof. E is an equivalence relation is obvious

⇒: obvious

 \Leftarrow : Let U be the set of all boolean combination of X_i 's. Let V be all the set Z satisfying $E(x,y) \Rightarrow (x \in Z \Leftrightarrow y \in Z)$. We want to show that $U \subseteq V$. First each X_i satisfies the condition.

Theorem 3.10 (Erdős-Makkai). Let B be an infinite set and $\mathcal{F} \subseteq \mathcal{P}(B)$ a collection of subsets of B with $|B| < |\mathcal{F}|$. Then there are sequences $(b_i : i < \omega)$ of elements of B and $(S_i : i < \omega)$ of elements of \mathcal{F} s.t. one of the following holds

- 1. $b_i \in S_i \Leftrightarrow j < i(\forall i, j \in \omega)$
- $2. \ b_i \in S_i \Leftrightarrow i < j (\forall i, j \in \omega)$

Proof. Choose $\mathcal{F}'\subseteq\mathcal{F}$ with $|\mathcal{F}'|=|B|$, s.t. any two finite subsets B_0,B_1 of B, if $\mathbf{n}\exists S\in\mathcal{F}$ with $B_0\subseteq S$, $B_1\subseteq B\setminus S$, then there is some $S'\in\mathcal{F}'$ with $B_0\subseteq S'$, $B_1\subseteq B\setminus S'$ (possible as there are at most |B|-many pairs of finite subsets of B)

By assumption there is some $S^* \in \mathcal{F}$ which is not a Boolean combination of elements of \mathcal{F}' (again there are at most |B|-many different Boolean combinations of sets from \mathcal{F}')

We choose by induction sequences $(b_i':i<\omega)$ in S^* , $(b_i'':i<\omega)$ in $B\smallsetminus S^*$ and $(S_i:i<\omega)$ in \mathcal{F}' s.t.

- $\{b'_0, \dots, b'_n\} \subseteq S_n$ and $\{b''_0, \dots, b''_n\} \subseteq B \setminus S_n$
- $\bullet \ \forall i < n(b_n' \in S_i \Leftrightarrow b_n'' \in S_i)$

Assume $(b_i':i< n)$, $(b_i'':i< n)$ and $(S_i:i< n)$ have already been constructed. Since S^* is not a Boolean combination of S_0,\ldots,S_{n-1} , there are $b_n'\in S^*$, $b_n''\in B\setminus S^*$ s.t. for all i< n

$$b'_n \in S_i \Leftrightarrow b''_n \in S_i$$

by Lemma 3.9

By the choice of \mathcal{F}' , there is some $S_n \in \mathcal{F}'$ with $\{b_0', \dots, b_n'\} \subseteq S_n$ and $\{b_0'', \dots, b_n''\} \subseteq B \setminus S_n$.

Now by Ramsey theorem we may assume that either $b_n' \in S_i$ for all $i < n < \omega$ or $b_n' \notin S_i$ for all $i < n < \omega$ (for $\{x,y\} \subset [\mathbb{N}]^2$ and assume x < y, color it according to whether $b_y' \in S_x$. Thus by Ramsey, there is an infinite $I \subseteq \omega$ s.t.

- $\bullet \ \ \text{either} \ \forall n>j \in I(b_n' \in S_j) \Rightarrow \forall i,j \in I(b_i'' \in S_j \Leftrightarrow i>j)$
- or $\forall n > j \in I(b'_n \notin S_j) \Rightarrow \forall i, j \in I(a'_i \in S_j \Leftrightarrow i \leq j)$

Note that if $b_i'' \in S_j$ and $i \leq j$, then as $\{b_0'', \dots, b_i''\} \subseteq B \setminus S_j$, $b_i'' \notin S_j$ In the first case we set $b_i = b_i''$ and get 1, in the second case we set $b_i = b_{i+1}'$ and get 2.

Definition 3.11. Fix $\varphi(x,y)\in L$. By a **complete** φ -**type over** $A\subseteq M_y$, we mean a maximal consistent collection of formulas of the form $\varphi(x,b)$, $\neg\varphi(x,b)$ where b ranges over A. Let $S_{\varphi}(A)$ be the space of all complete φ -types over A

Proposition 3.12. Assume that $|S_{\varphi}(B)| > |B|$ for some infinite set of parameters B. Then $\varphi(x,y)$ is unstable

Proof. For $a \in \mathbb{M}_x$, $\operatorname{tp}_{\varphi}(a/B)$ is determined by $\varphi(a,B) = \{b \in B \mid \vdash \phi(a,b)\}$. Then $\left|S_{\varphi}(B)\right| > |B| \Rightarrow |\{|\phi(a,B) \mid a \in \mathbb{M}_x\} > |B|$. By Erdős-Makkai, there are sequences $(a_i)_{i < \omega}$ and $(b_i)_{i < \omega}$ s.t.

$$\text{either } \vDash \phi(a_i,b_j) \Leftrightarrow i < j, \text{ or } \vDash \phi(a_i,b_j) \Leftrightarrow j < i$$

Remark. 1. By a φ -formula over M we mean a Boolean combination of instances (over M) of φ and $\neg \varphi$. For example, $(\varphi(x,c) \land \varphi(x,b)) \lor \neg \varphi(x,d)$ is a φ -formula

- 2. Any type $p(x) \in S_{\varphi}(M)$ decides any φ -formula $\psi(x)$ over M, that is to say $p(x) \vDash \psi(x)$ or $p(x) \vDash \neg \psi(x)$, so in fact p(x) extends to a unique maximal consistent set of φ -formulas over M
- 3. By defining the basic open sets of $S_{\varphi}(M)$ to be $\{p(x) \in S_{\varphi}(M) : \psi(x) \in p\}$ for ψ a φ -formula, $S_{\varphi}(M)$ becomes a compact totally disconnected space, where in addition the clopen sets are precisely given by φ -formulas, i.e., they are the basic clopen sets
- 4. Any $p(x) \in S_{\varphi}(M)$ extends to some $q(x) \in S_x(M)$ s.t. $p = q \upharpoonright \varphi$, where $q \upharpoonright \varphi$ is the set of φ -formulas in q(x) (or instances of φ , $\neg \varphi$ in q(x))

3.3 Local ranks and definability of types

Definition 3.13. We define **Shelah's local 2-rank** taking values in $\{-\infty\} \cup \omega \cup \{+\infty\}$ by induction on $n \in \omega$. Let Δ be a set of L-formulas, and $\theta(x)$ a partial type over $\mathfrak C$

- $R_{\Delta}(\theta(x)) \geq 0$ iff $\theta(x)$ is consistent $(-\infty$ otherwise)
- $R_{\Delta}(\theta(x)) \geq n+1$ if for some $\phi(x,y) \in \Delta$ and $a \in \mathfrak{C}_y$ we have both $R_{\Delta}(\theta(x) \wedge \phi(x,a)) \geq n$ and $R_{\Delta}(\theta(x) \wedge \neg \phi(x,a)) \geq n$
- $\begin{array}{l} \bullet \ \ R_{\Delta}(\theta(x)) = n \ \text{if} \ R_{\Delta}(\theta(x)) \geq n \ \text{and} \ R_{\Delta}(\theta(x)) \not \geq n+1 \text{, and} \ R_{\Delta}(\theta(x)) = \\ \infty \ \text{if for} \ n \in \omega, R_{\Delta}(\theta(x)) \geq n \end{array}$

If $\phi(x,y)$ is a formula, we write R_ϕ instead of $R_{\{\phi\}}$

Proposition 3.14. $\phi(x,y)$ is stable iff $R_{\phi}(x=x)$ is finite (and so also $R_{\phi}(\theta(x))$ is finite for any partial type θ). Here $x=(x_i:i\in I)$ is a tuple of variables and x=x is an abuse of notation for $\bigwedge_{i\in I}x_i=x_i$

Proof. If $\phi(x,y)$ is unstable, i.e., it has the k-order property for all $k \in \omega$, by compactness, we find $(a_ib_i:i\in[0,1])$ s.t. $\models \phi(a_i,b_j) \Leftrightarrow i < j$. We know both $\phi(x,b_{1/2})$ and $\neg \phi(x,b_{1/2})$ contain dense subsequences of a_i 's. Each of these sets can be split again

Conversely, suppose the rank is infinite, then we can find an infinite tree of parameters $B=(B_\eta:\eta\in 2^{<\omega})$ s.t. for every $\eta\in 2^\omega$ there set of formulas $\{\phi^{\eta(i)}(x,b_{\eta|i}):i<\omega\}$ is consistent where $\phi^1=\phi$ and $\phi^0=\neg\phi$ (rank being $\geq k$ guarantees that we can find such a tree of height k, and then use compactness to find one of infinite height). This gives us that $|S_\phi(B)|>|B|$, which by Proposition 3.12 implies that $\phi(x,y)$ is unstable

Definition 3.15. 1. Let $\phi(x,y) \in L$ be given. A type $p(x) \in S_{\phi}(A)$ is **definable over** B if there is some L(B)-formula $\psi(y)$ s.t. $\forall a \in A$

$$\phi(x,a) \in p \Leftrightarrow \vDash \psi(a)$$

2. A type $p \in S_x(A)$ is definable over B if $p \mid \phi$ is definable over B for all $\phi(x,y) \in L$

$$\forall \phi(x,y) \in L, \ \exists \psi(y) \in L(B), \ \forall a \in A \text{ s.t.}$$

$$\phi(x,a) \in p \Leftrightarrow \vDash \psi(a)$$

- 3. A type is **definable** if it is definable over its domain
- 4. types in T are **uniformly definable** if for every $\phi(x,y)$ there is some $\psi(y,z)$ s.t. every type can be defined by an instance of $\psi(y,z)$, i.e., for any A and $p \in S_{\phi}(A)$ there is some $b \in A$ s.t. $\phi(x,a) \in p \Leftrightarrow \vDash \psi(a,b)$ for all $a \in A$

Remark. Another way to think about it:

Given a set $A \subseteq \mathfrak{C}_x$, $B \subseteq A$ is **externally definable** (as a subset of A) if there is some definable (over \mathfrak{C}) set X s.t. $B = X \cap A$

Assume moreover that we have $X=\phi(c,\mathfrak{C})$ above. Then $\operatorname{tp}_\phi(c/A)$ is definable iff B is internally definable, i.e., $B=A\cap Y$ for some A-definable Y. A set is called **stably embedded** if every externally definable subset of it is internally definable. $\phi(x,a)\in\operatorname{tp}_\phi(c/A)\Leftrightarrow\models\phi(c,a)\Leftrightarrow a\in X\Leftrightarrow\models\psi(a).$ Thus $X=\phi(c,\mathfrak{C})=\psi(\mathfrak{C})$

Example 3.1. Consider $(\mathbb{Q}, <) \models \mathsf{DLO}$ and let $p = \mathsf{tp}(\pi/\mathbb{Q})$. Then $x < y \in p(y) \Leftrightarrow x < \pi$. By QE, p is not definable

Lemma 3.16. 1. The set $\{e\in \mathbb{M}^k: R_\phi(\theta(x,e))\geq n\}$ is definable, for all $n\in\omega$

- 2. If $R_{\phi}(\theta(x))=n$, then for any $a\in\mathbb{M}_y$, at most one of $\theta(x)\wedge\phi(x,a)$, $\theta(x)\wedge\neg\phi(x,a)$ has R_{ϕ} -rank n
- *Proof.* 1. Let $S_n(\theta)=\{e:R_\phi(\theta(x,e))\geq n\}$ and suppose it is defined by $\psi_{n,\theta}(x)$. Induction on n to show that $S_n(\theta)$ is definable for any θ . For n=0, consider $\psi_{0,\theta}(x):=\exists y(\theta(y,x))$. Then $e\in R_0(\theta)$ iff $\theta(x,e)$ is consistent iff $\vDash \exists x(\theta(x,e))$ iff $e\in \psi_{0,\theta}(\mathfrak{C})$.

Now for n e $\in S_n(\theta)$ iff $\exists a (R_\phi(\theta(x,e) \land \phi(x,a)) \geq n-1 \land R_\phi(\theta(x,e) \land \neg \phi(x,a)) \geq n-1)$

Proposition 3.17. *Let* $\phi(x,y)$ *be a stable formula. Then all* ϕ *-types are uniformly definable*

Proof. Suppose that $R_\phi(x=x)=n\in\omega.$ Let $p\in S_\phi(A).$ Then there is $\chi(x)\in p$ s.t. $R_\phi(\chi(x))=\min\{R_\phi(\varphi(x))\mid\varphi\in p\}.$ For each $b\in A_y$ either $\phi(x,b)\in p$ or $\neg\phi(x,b)\in p.$ Either $R_\phi(\chi(x)\wedge\phi(x,b))< n$ or $R_\phi(\chi(x)\wedge\neg\phi(x,b))< n.$ $R_\phi(\chi(x))$ is minimal $\Rightarrow (\phi(x,b)\in p\Leftrightarrow R_\phi(\chi(x)\wedge\phi(x,b))=n)$

Summary

Theorem 3.18. TFAE

- 1. $\phi(x,y)$ is stable
- 2. $R_{\phi}(x=x) < \omega$
- 3. All ϕ -types are uniformly definable
- 4. All ϕ -types over models are definable
- 5. $|S_{\phi}(M)| \le \kappa$ for all $\kappa \ge |L|$ and $M \vDash T$ with $|M| = \kappa$
- 6. There is some κ s.t. $\left|S_{\phi}(M)\right|<\det\kappa$ for all $M\vDash T$ with $|M|=\kappa$

Proof. $1 \leftrightarrow 2$ 3.14. $1 \rightarrow 3$ 3.17. $3 \rightarrow 4$ obvious.

 $4 \to 5$. There are $|L| + \kappa = \kappa$ possible formulas defining $S_{\phi}(M)$ over $M \to 1$ 3.6

Global case:

Theorem 3.19. *Let* T *be a complete theory. TFAE:*

- 1. *T* is stable
- 2. There is NO sequence of tuples $(c_i)_{i\in\omega}$ from $\mathbb M$ and formula $\phi(z_1,z_2)\in L(M)$ s.t.

$$\vDash \phi(c_i, c_j) \Leftrightarrow i < j$$

- 3. $f_T(\kappa) \le \kappa^{|T|}$ for all infinite cardinals κ
- 4. There is some κ s.t. $f_T(\kappa) \leq \kappa$
- 5. There is some κ s.t. $f_T(\kappa) < \operatorname{ded} \kappa$
- 6. All formulas of the form $\phi(x,y)$ where x is a singleton variable are stable
- 7. All types over models are definable

Proof. $1 \rightarrow 2$: definition

 $2 \rightarrow 1 {:}\; \operatorname{Let} \psi(x,y)$ be a formula with order property witnessed by sequence

$$\{(a_i,b_i)\mid i<\omega\}$$

Let $\phi(x_1y_1, x_2y_2) := \psi(x_1, y_2)$ and $c_i : a_ib_i$. Then $\vDash \phi(c_ic_j) \Leftrightarrow i < j$

$$1 \to 3 : S_x(M) \to \prod_{\phi \in L} S_\phi(M)$$
 is injective

$$3 \rightarrow 4, 4 \rightarrow 5$$
: obvious

$$5 \rightarrow 1:3.6$$

 $6 \leftrightarrow 1 \text{: Fix some } \kappa \text{, then } S_1(M) \leq \kappa \text{ for all } M \text{ with } |M| = \kappa \text{ iff } S_n(M) \leq \kappa \text{ for all } M \text{ with } |M| = \kappa$

$$1 \leftrightarrow 7:3.18$$

Example 3.2. • stability \Leftrightarrow all types over all models are definable

- some unstable theories have certain special models over which all types are definable
- $\mathcal{M} = (\mathbb{R}, +, \times, 0, 1)$, all types over \mathbb{R} are uniformly definable

As we will see later, a theory T iff all types over **all** models of T are definable.

Note that there are unstable theories for which all the types over a certain models are definable. For instance, in the case of dense linear orders, all types over $\mathbb R$ are definable

Indeed, by quantifier elimination, any non-realised 1-type over any model of DLO corresponds to a cut in its order. But in the case of $\mathbb R$, the order is complete, so for any cut, there will in fact exist a real number r s.t. the cut is of the form $(\{l \in \mathbb R, l < r\}, \{d \in \mathbb R, d > r\})$. Using this real number r, one can easily show definability of 1-types over $\mathbb R$

Proposition 3.20. *Fix a model* $M \models T$ *and an* L-formula $\varphi(x, y)$. *TFAE*

- 1. $\varphi(x,y)$ is stable in M
- 2. Whenever $M^* > M$ is $|M|^+$ -saturated and $\operatorname{tp}(a^*/M^*)$ is finitely satisfiable in M, then $\operatorname{tp}_{\varphi}(a^*/M^*)$ is definable over M and, moreover, it is defined by some φ -formula φ^* , i.e., a Boolean combination of $\varphi(a,y)$'s, $a \in M$

 $1\# + \text{BEGIN}_{\text{proof}} \ 1 \to 2. \ \text{Fix some} \ p^*(x) = \operatorname{tp}_{\varphi}(a^*/M^*) \ \text{finitely satisfiable} \ \text{in} \ M. \ \text{We want to prove} \ \operatorname{tp}_{\varphi}(a^*/M^*) \ \text{is definable over} \ M \ \text{by a} \ \varphi^* \text{-formula}. \ \text{Note first that, as} \ p^* \ \text{is finitely satisfiable} \ \text{in} \ M \text{, whether or not some} \ \varphi(x,b), \ b \in M^* \text{, is in} \ p^* \ \text{depends only on} \ \operatorname{tp}(b/M); \ \text{in fact, even only on} \ \operatorname{tp}_{\varphi^*}(b/M) = q(y) \in S_{\varphi^*}(M)$

Suppose we had $b'\in M^*$ s.t. $\operatorname{tp}_{\varphi^*}(b'/M)=\operatorname{tp}_{\varphi^*}(b/M)$, but $\varphi(x,b)\in p^*$ and $\neg\varphi(x,b')\in p^*$. Then we would have \vDash #+END $_{\operatorname{proof}}$

3.4 Cantor-Bendixson Rank

Definition 3.21 (Cantor-Bendixson Rank). Let X be a topological space. The **Cantor-Bendixson rank** is a function $CB_X: X \to On \cup \{\infty\}$. Let $p \in X$, then:

- 1. $CB_X(p) \ge 0$
- 2. $CB_X(p) = \alpha$ if $CB_X(p) \ge \alpha$ and p is isolated in the (closed) subspace $\{q \in X : CB_X(q) \ge \alpha\}$
- 3. $CB_X(p) = \infty$ if $CB_X(p) > \alpha$ for every ordinal α

For example, $CB_X(p)=0$ if p is isolated, equivalently if $\{p\}$ is open. $CB_X(p)\geq 1$ otherwise

Note that 2 claims that the subspace $\{q \in X : CB_X(q) \ge \alpha\}$ is closed for all α . This is a consequence of the fact that the set of isolated points of any topological space form an open set, as a union of open sets

Proposition 3.22. Suppose X is compact and $CB_X(p) < \infty$ for every p in X. Then there exists a maximal element α of $\{CB_X(p): p \in X\}$ and $\{p \in X: CB_X(p) = \alpha\}$ is finite and non empty

Proof. Assume there is no maximal element. Then, for each ordinal α there exists some p_{α} in X s.t. $CB_X(p_{\alpha}) > \alpha$. The set $\{p_{\alpha} : \alpha \in On\}$ must have a limit point p in the compact set X, which cannot be isolated in any of the $\{q \in X : CB_X(q) \geq \alpha\}$. Hence $CB_X(p) = \infty$, a contradiction

Let $\alpha=\sup\{CB_X(p):p\in X\}$. We want to show that $X_\alpha=\{p\in X:CB_X(p)=\alpha\}$ is non-empty. We only need to consider the limit case. Assume it is empty and for each $\beta<\alpha$, $X_{<\beta}=\{p\in X:CB_X(p)<\beta\}$. Since $\mathcal{C}=\{X_\beta:\beta<\alpha\}$ is an open cover of X which clearly has no finite subcover as α is a limit ordinal, a contradiction

 $\{p\in X: CB_X(p)\}\geq \alpha \text{ is closed, so compact. Since }\alpha \text{ is maximal, all points in }\{p\in X: CB_X(p)\geq \alpha\} \text{ are isolated. Therefore }\{p\in X: CB_X(p)\geq \alpha\} \text{ is finite } \square$

Lemma 3.23. Suppose $\varphi(x,y)$ is stable in T. Let $M \models T$, $X = S_{\varphi}(M)$. Then $CB_X(p) < \infty$ for each $p \in X$

Proof. $X_{\alpha}=\{p\in X:CB_X(p)\geq \alpha\}.$ If $\exists q\in X \text{ s.t. } CB_X(q)=\infty$, then for some $\alpha,X_{\alpha}\neq\emptyset$ and has no isolated points. If not, then each X_{α} has at least one isolation point and we could conclude that $CB_X(p)\leq |X|$ for any $p\in X$

Now fix an α . Since there are no isolated points in X_{α} , we can find $p_0, p_1 \in X_{\alpha}$ where $p_0 \neq p_1$. Since $S_{\varphi}(M)$ is Hausdorff, we can find $\psi_0(x)$ s.t. $\psi_0(x) \in p_0$ and $\neg \psi_0(x) \in p_1$. Notice that $\{p: p \in X_{\alpha}\} \cap [\psi_0(x)]$ and $\{p: p \in X_{\alpha}\} \cap [\psi_1(x)]$ have no isolated points. Thus we could build a tree and $|S_{\varphi}(M')| \geq 2^{\aleph_0}$ for some countable model M' by Löwenheim–Skolem Theorem since there is only countable many parameters

3.5 Indiscernible sequences and stability

Definition 3.24. Given a linear order I, a sequence of tuples $(a_i:i\in I)$ with $a_i\in\mathfrak{C}_x$ is **indiscernible** over a set of parameters A if $a_{i_0}\dots a_{i_n}\equiv_A a_{j_0}\dots a_{j_n}$ for all $i_0<\dots< i_n$ and $j_0<\dots< j_n$ from I and all $n\in\omega$

Example 3.3. 1. A constant sequence is indiscernible over any set

- 2. A subsequence of a *A*-indiscernible sequence is *A*-indiscernible
- 3. In the theory of equality, any sequence of singletons is indiscernible
- 4. Any increasing sequence of singletons in a dense linear order is indiscernible
- 5. Any basis in a vector space is an indiscernible sequence

Definition 3.25. For any sequence $\bar{a}=(a_i\mid i\in I)$ and a set of parameters B, we define $\mathrm{EM}(\bar{a}/B)$, the Ehrenfeucht-Mostowski type of the sequence \bar{a} over B, as a partial type over B in countably many variables indexed by ω and given by the following collection of formulas

$$\{\phi(x_0,\dots,x_n) \in L(B) \mid \forall i_0 < \dots < i_n, \vDash \phi(a_{i_0},\dots,a_{i_n}), n \in \omega\}$$

Exercise 3.5.1. For any sequence $\bar{a}=(a_i\mid i\in I)$ and a set of parameters B. If J is an infinite linear order, then there is a sequence $\bar{b}=(b_i\mid i\in J)$ which realises $\mathrm{EM}(\bar{a}/A)$

Exercise 3.5.2. If $\bar{a}=(a_i\mid i\in I)$ is an A-indiscernible sequence. Then $\mathrm{EM}(\bar{a}/A)$ is a complete ω -type over A

Let $\bar{a}=(a_i\mid i\in I)$ and $\bar{b}=(b_j\mid j\in J)$ be A-indiscernible sequences. We denote $\bar{a}\equiv_{\mathrm{EM},A}\bar{b}$ if $\mathrm{EM}(\bar{a}/A)=\mathrm{EM}(\bar{b}/A)\in S_{\omega}(A)$

Proposition 3.26. Let $\bar{a}=(a_i:i\in J)$ be an arbitrary sequence in $\mathfrak C$, where J is an arbitrary linear order and A is a small set of parameters. Then for any small linear order I we can find (in $\mathbb M$) an A-indiscernible sequence $(b_i:i\in I)$ realize the EM-type of \bar{a} over A

Corollary 3.27. If $(a_i: i \in I)$ is an A-indiscernible sequence and $J \supseteq I$ is an arbitrary linear order, then there is an A-indiscernible sequence $(b_j: j \in J)$ s.t. $b_i = a_i$ for all $i \in I$ (everything involved is small)

Proof. Let $(b_j: j \in J)$ be an arbitrary A-indiscernible sequence in $\mathfrak C$ based on I, obtained by 3.26. In particular

$$(b_j:j\in I)\equiv_A (a_j:i\in I)$$

which by strong homogeneity of $\mathfrak C$ implies that there is some $\sigma \in \operatorname{Aut}(\mathfrak C/A)$ s.t. $\sigma(b_j) = a_j$. Then define $b_j' = \sigma(b_j)$ for all $j \in J$

Lemma 3.28. If $\bar{a}=(a_i\mid i\in I)$ is an infinite A-indiscernible sequence, then for all $S\subseteq I$ and $i\in I\setminus S$, $a_i\notin\operatorname{acl}(A,a_{j\in S})$

 $\begin{array}{l} \textit{Proof.} \ \ a_i \in \ \operatorname{acl}(A, a_{j \in S}) \ \Leftrightarrow \ \exists S_0 \ \subseteq_f \ S(a_i \in \operatorname{acl}(A, a_{j \in S_0})). \ \ \text{Let} \ (b_i \mid i \in \mathbb{Q}) \\ \mathbb{Q}) \equiv_{\operatorname{EM}, A} \ (a_i \mid i \in I). \ \ \text{Then for any} \ i_0 < \dots < i_n \in I \ \ \text{and} \ j_0 < \dots < j_n \in \mathbb{Q} \end{array}$

$$a_{i_k} \in \operatorname{acl}(A, \{a_{i_s} \mid s \neq k, s \leq n\}) \Leftrightarrow b_{j_k} \in \operatorname{acl}(A, \{b_{j_s} \mid s \neq k, s \leq n\})$$

WLOG, we assume that $I = (\mathbb{Q}, <)$.

Suppose that

$$a_{i_k} \in \operatorname{acl}(A, \{a_{i_s} \mid s \neq k, s \leq n\})$$

and $\phi(x_0,\ldots,x_k,\ldots,x_n)\in L(A)$ witness the property. Then for any $q\in\mathbb{Q}$ realizing the same cut of a_{i_k} over $\{a_{i_s}\mid s\neq k,s\leq n\}$ we have

$$\vDash \phi(a_{i_0}, \dots, a_q, \dots, a_{i_n})$$

So $\phi(a_{i_0},\dots,\mathbb{M},\dots,a_{i_n})$ is infinite, a contradiction

Exercise 3.5.3. Start with the sequence $\bar{a}=(1,2,3,...)$ in $(\mathbb{C},+,\times,0,1)$ \models ACF₀. Give an explicit example of an indiscernible sequence realizing EM(\bar{a})

Proof. $x \in \mathbb{R}_{>0} \Leftrightarrow \exists y \ x = y^2 \land x \neq 0$. And in $\mathbb{R}_{>0}$ we can define an order $x > y \Leftrightarrow \exists z (x = y + z^2 \land z \neq 0)$. Note that $\mathrm{EM}_{\mathbb{R}_{>0}}(\bar{a}) \subseteq \mathrm{EM}_{\mathbb{C}}(\bar{a})$.

Thus \bar{b} should be an increasing sequence of reals greater than or equal to 1.

Proposition 3.29. Let κ , λ be small cardinals and let $(a_i)_{i \in \lambda}$ be a sequence of tuples with $|a_i| < \kappa$ and a set B be given. If $\lambda \geq \beth_{(2^{\kappa + |B| + |T|})^+}$ there is a B-indiscernible sequence $(a_i')_{i \in \omega}$ s.t. for every $n \in \omega$ there are $i_0 < \dots < i_n \in \kappa$ s.t. $a_0' \dots a_n' \equiv_B a_{i_0} \dots a_{i_n}$

Let A be a set of parameters, and $\lambda \geq |S_{\kappa}(A)|$ (for example, $\lambda = 2^{|T|+|A|+\kappa}$). Set $\mu = \beth_{\lambda^+}$. Then for any sequence $(a_i:i<\mu)$ of κ -tuples there is an A-indiscernible sequence $(b_i:i<\omega)$ s.t. for all $n<\omega$ there are $i_0<\dots< i_{n-1}<\mu$ for which $b_0\dots b_{n-1}\equiv_A a_{i_0}\dots a_{i_{n-1}}$

Proof. We construct by induction a sequence of types p_n , each one a complete $n \times \kappa$ -type over A, s.t. for all n

- $1. \ \ \text{for any} \ i_0 < \dots < i_{m-1} < n \ \text{we have} \ p_n(x_0, \dots, x_{n-1}) \vdash p_m(x_{i_0}, \dots, x_{i_{m-1}})$
- 2. For all $\eta<\mu$ there is $I\subseteq\mu$, $|I|=\eta$ s.t. every n elements in order from a_I satisfy p_n

For n=0 there is nothing to do. Given p_n , consider the set of all $(n+1) \times \kappa$ -types over A that satisfy the first condition. If there is $q \in S$ that also satisfies the second,we are done. If not, then for each $q \in S$ there is an $\eta_q < \mu$ that witnesses it. As $|S| \leq \lambda < \operatorname{cf}(\mu) = \lambda^+$, we have that $\eta = \lambda + \sup\{\eta_q: q \in S\} < \mu$ is such that for all $q \in S$, for all $I \subseteq \mu$ with $|I| = \eta$, not all (n+1)-sub-tuples in order from a_I satisfy q. As $\eta < \mu$, $\eta < \beth_\theta$ for some $\theta < \lambda^+$. Write $\nu = \beth_{\theta+n+1}$. Then on the one hand, $\nu < \mu$. On the other, $\nu \geq \beth_n(\eta)^+$. By the inductive hypothesis, there is $I \subseteq \mu$, $|I| = \nu$ s.t. all n-tuples in order in a_I satisfy p_n . As there are at most λ possible A-types for (n+1)-tuples and $\lambda \leq \eta$, the Erdős-Rado theorem gives us $I' \subseteq I$ with $|I'| = \eta^+$ where all (n+1)-tuples in order have the same type over A. This gives the wanted contradiction. Take p_{ω} as the limit of p_n

Definition 3.30. A sequence $(a_i \mid i \in I)$ is **totally indiscernible over** A if $a_{i_0} \dots a_{i_n} \equiv_A a_{j_0} \dots a_{j_n}$ for any $i_0 \neq \dots \neq i_n$, $j_0 \neq \dots \neq j_n$ from I

Theorem 3.31. *T is stable iff every indiscernible sequence is totally indiscernible*

Proof. ⇒: Suppose T is stable and $(a_i \mid i \in I)$ is indiscernible over A. If $(a_i \mid i \in I)$ is not totally indiscernible, then there are $i_0 \neq ... \neq i_n$, $j_0 \neq ... \neq j_n$ from I s.t. $a_{i_0} ... a_{i_n} \not\equiv_A a_{j_0} ... a_{j_n}$ which implies they are in different orders. WLOG, assume that $I = (\mathbb{Q}, <)$ and $i_0 = 0, ..., i_n = n$. Then there is $\sigma \in S_{n+1}$ s.t.

$$a_{\sigma(0)} \dots a_{\sigma(n)} \equiv_A a_{j_0} \dots a_{j_n}$$

 $\sigma = au_m \dots au_1$, where au_1, \dots, au_m are transpositions. Then there is 0 < k < m s.t. $a_{ au_k(0), \dots, a_{ au_k(n)}} \not\equiv_A a_0 \dots a_n$. Assume $au_k = (s, s+1)$, then there is an L(A)-formula $\psi(x_0, \dots, x_n)$ s.t.

$$\vDash \psi(a_0,\ldots,a_s,a_{s+1},\ldots,s_n) \land \neg \psi(a_0,\ldots,a_{s+1},a_s,\ldots,s_n)$$

Let $\phi(x,y):=\psi(a_0,\ldots,a_{s-1},x,y,a_{s+2},\ldots,a_n)$. Then for all s< q, r< s+1, $dash \phi(a_q,q_r) \Leftrightarrow q< r$, contradicting 3.19

 \Leftarrow : Assume T is unstable. Then suppose that $\bar{c}=(c_i\mid i\in\omega)$ witnesses the order property of $\phi(x,y)$. Let $\bar{a}=(a_i\mid i\in\omega)$ be an indiscernible sequence based on \bar{c} . Then

$$\vDash \phi(a_i, a_j) \Leftrightarrow i < j$$

so \bar{a} is not totally indiscernible

Proposition 3.32. For any stable formula $\phi(x,y)$, in an arbitrary theory, there is some $k_{\phi} \in \omega$ depending just on ϕ s.t. for any indiscernible sequence $I \subseteq \mathbb{M}_x$ and any $b \in \mathbb{M}_y$, either $|\phi(I,b)| \leq k_{\phi}$ or $|\neg \phi(I,b)| \leq k_{\phi}$

Proof. Suppose that $|\phi(I,b)| > k$ and $|\neg \phi(I,b)| > k$. By compactness, we assume that $I = \omega$. Then either $\phi(I,b)$ or $\neg \phi(I,b)$ is infinite. Assume that $\neg \phi(I,b)$ is infinite. Then there is a subsequence $J = \{n_0 < n_1 < \dots\} \subseteq \omega$ s.t.

$$\vDash \phi(a_{n_i},b) \Leftrightarrow i \leq k$$

by $\vDash \neg \phi(a_{n_i}, b) \Leftrightarrow i > k$.

Let $c_i = a_{n_i}$ and $b_k = b$ we have

$$\vDash \bigwedge_{i \leq k} \phi(c_i, b_k) \land \bigwedge_{i=k+1}^{2k} \neg \phi(c_i, b_k)$$

Since $(c_i)_{i<\omega}$ is indiscernible, we have

$$\vDash \exists y \left(\bigwedge_{i \leq k} \phi(c_i, y) \land \bigwedge_{i = k+1}^{2k} \neg \phi(c_i, y) \right) \rightarrow \exists y \left(\bigwedge_{i \leq j} \phi(c_i, y) \land \bigwedge_{i = j+1}^{k} \neg \phi(c_i, y) \right)$$

for each j < k (pick k elements from 2k and choose by indiscernibility) Let

$$b_j \vDash \bigwedge_{i \leq j} \phi(c_i, y) \land \bigwedge_{i = j+1}^k \neg \phi(c_i, y)$$

Then $\vDash \phi(c_i,b_j) \Leftrightarrow i \le j$, so ϕ has k-order property. Since ϕ is stable, k_ϕ exists

Corollary 3.33. In a stable theory, we can define the average type of an indiscernible sequence $\bar{b} = (b_i)_{i \in I}$ over a set of parameters A as

$$\operatorname{Av}(\bar{b}/A) = \{\phi(x) \in L(A) \mid \vDash \phi(b_i) \text{ for all but finitely many } i \in I\}$$

By proposition 3.32 it is a complete consistent type over A

3.6 Stable=NIP∩NSOP and the classification picture

Definition 3.34 (NSOP). • A (partitioned) formula $\phi(x,y) \in L$ has the **strict order property**, or **SOP**, if there is an infinite sequence $(b_i)_{i \in \omega}$ s.t. $\phi(\mathbb{M}, b_i) \subsetneq \phi(\mathbb{M}, b_j)$ for all $i < j \in \omega$

- A theory *T* has **SOP** if some formula does
- T is NSOP if it does not have the strict order property

Remark. • SOP implies order property by picking an element in each $\phi(\mathbb{M},b_{i+1}) \setminus \phi(\mathbb{M},b_i)$

- If $\phi(x,y)$ has SOP, then by 3.26 we can choose an indiscernible sequence $(b_i)_{i\in\omega}$ satisfying the condition above
- DLO has SOP
- \bullet T is NSOP iff all formulas with parameters are NSOP iff all formulas $\phi(x,y)$ with x singleton are NSOP

Exercise 3.6.1. T has SOP iff there is a definable partial order with infinite chains

Proof.

Definition 3.35 (NIP). A (partitioned) formula $\phi(x,y)$ has the **independence property**, or **IP**, if (in \mathbb{M}) there are infinite sequences $(b_i)_{i\in\omega}$ and $(a_s)_{s\subset\omega}$ s.t.

$$\vDash \phi(a_s, b_i) \Leftrightarrow i \in s$$

Thus we can define any subset of $(b_i)_{i\in\omega}$ and there is no special subset A theory T has **IP** if some formula does, otherwise T is **NIP**

- *Remark.* If we have arbitrary long finite sequences $(b_i)_{i < n}$ satisfying the condition above for a fixed formula $\phi(x,y)$ then by compactness we can find an infinite sequence satisfying the condition above, hence $\phi(x,y)$ has IP
 - If $\phi(x,y)$ has IP, then by Ramsey and compactness we can choose an indiscernible sequence $(b_i)_{i\in\omega}$ in the definition above

Lemma 3.36. A formula $\phi(x,y)$ has IP iff there is an indiscernible sequence $\bar{b}=(b_n)_{n\in\omega}$ and a parameter c s.t.

$$\models \phi(c, b_n) \Leftrightarrow n \text{ is even}$$

Proof. ⇒: Suppose $\phi(x,y)$ has IP. There are $\bar{b}=(b_n)_{n\in\omega}$ and $\bar{a}=(a_s)_{s\subseteq\omega}$ s.t. $\phi(a_s,b_n)\Leftrightarrow n\in s$. We may assume that \bar{b} is indiscernible and let $s=\{0,2,4,\dots\}$. Let $c=a_s$, then $\models \phi(c,b_n)\Leftrightarrow n$ is even \Leftarrow :

Theorem 3.37 (Shelah). *T is unstable iff*

3.7 Examples of stable theories

Example 3.4. The theory of a countable number of equivalence relations E_n for n = 0, 1, 2, ...,

- Each equivalence relation has an infinite number of equivalence classes
- $\bullet\,$ Each equivalence class of E_n is the union of an infinite number of different classes of E_{n+1}

This theory has QE by Back-and-Forth

So 1-types are determined by specifying the class w.r.t. each of the equivalence relation, which implies that over an set A, a type $p \in S_1(A)$ is determined by the function

$$f:\omega\to A\cup\{\infty\}$$

where f(n) = a if $\exists a \in A$ s.t. $E_n(x, a) \in p$, otherwise $f(n) = \infty$ There are at most $|A|^{\aleph_0}$ many 1-types (3.19)

Example 3.5 (Modules are stable).

Example 3.6. ACF_0 and ACF_p are stable All strongly minimal theories are stable

3.8 Number of types and definabibility of types is NIP

Lemma 3.38. If $F \subseteq 2^{\lambda}$ and $|F| > \text{ded } \lambda$, then for each $n < \omega$ there is some $I \subseteq \lambda$ s.t. |I| = n and $F \upharpoonright I = 2^I$

Proof. Consider each element of 2^{λ} as a $\{0,1\}$ -sequence of length λ , then 2^{λ} is a dense linear order. For $f < g \in F$, there is $\alpha < \lambda$ s.t. $f \upharpoonright \alpha = g \upharpoonright \alpha$ and $f(\alpha) < g(\alpha)$. So each $f \in F$ realize a cut over $(\bigcup_{\alpha < \lambda} F \upharpoonright \alpha) \subseteq 2^{<\lambda}$. $|F| > \det \lambda \Rightarrow |\bigcup_{\alpha < \lambda} F \upharpoonright \alpha| > \lambda \Rightarrow |F \upharpoonright \alpha| > \lambda$ for some α

Let λ and F be a counterexample s.t. λ is minimal. By the minimality of λ , we have $|F \upharpoonright \alpha| \leq \operatorname{ded} \lambda$ for each $\alpha < \lambda$

For each $f \in F \upharpoonright \alpha$, let

$$\begin{split} & \operatorname{Ext}_F(f) := \{g \in F : f \subseteq g\} \\ & G_\alpha := \{f \in F \upharpoonright \alpha : |\operatorname{Ext}_F(f)| > \operatorname{ded} \lambda\} \\ & G := \{f \in F : \forall \alpha < \lambda (f \upharpoonright \alpha \in G_\alpha)\} \end{split}$$

Then $F \backslash G = \bigcup_{\alpha < \lambda} \bigcup_{f \in F \upharpoonright \alpha \backslash G_{\alpha}} \operatorname{Ext}_F(f). \ |F \backslash G| \leq \lambda \times \operatorname{ded} \lambda \times \operatorname{ded} \lambda \leq \operatorname{ded} \lambda,$ which implies |G| = |F|, we may assume that F = G. Namely, for each $f \in F$ and $\alpha < \lambda$, $|\operatorname{Ext}_F(f \upharpoonright \alpha)| > \operatorname{ded} \lambda$. We now prove by induction on $n < \omega$ that:

$$\forall n<\omega, \forall \alpha<\lambda, \forall h\in F\upharpoonright\alpha\text{, there is }I\subseteq\lambda\text{ with }|I|=n\text{ s.t.}$$

$$\operatorname{Ext}_F(h)\upharpoonright I=2^I$$

It is for n = 0 since $\operatorname{Ext}_F(h) \neq \emptyset$.

We now consider the case of n+1. $|\mathrm{Ext}_F(h)| > \det \lambda \Rightarrow |\mathrm{Ext}_F(h) \upharpoonright \alpha| > \lambda$ for some $\alpha < \lambda$. For each $g \in \mathrm{Ext}_F(h) \upharpoonright \alpha$ there is $I_g \subseteq \lambda$ with $|I_g| = n$ s.t. $\mathrm{Ext}_F(g) \upharpoonright I_g = 2^{I_g}$. There are at most λ -many I_g 's for $g \in \mathrm{Ext}_F(h)$, thus there are $f,g \in \mathrm{Ext}_F(h)$ s.t. $I_g = I_h$. Let $a \in f \triangle g$ $(f(a) \neq g(a))$ and $I = I_g \cup \{a\}$, then $\mathrm{Ext}_F(h) \upharpoonright I = 2^I$

Proposition 3.39. 1. If $\phi(x,y)$ has IP, then for each cardinal κ there is a set A of cardinality κ s.t. $|S_{\phi}(A)| = 2^{\kappa}$

- 2. If $\phi(x,y)$ has NIP, then for each cardinal κ and a set A of cardinality κ , we have $|S_{\phi}(A)| \leq \operatorname{ded} \kappa$
- *Proof.* 1. If $\phi(x;y)$ has IP. Let $C=\{c_i:i<\kappa\}$ and $\{d_S\mid S\subseteq\kappa\}$ be two sets of new constants. By compactness

$$\{\phi(c_i, d_S) : i \in S\} \cup \{\neg \phi(c_i, d_S) : j \notin S\}$$

is consistent, then $S_1(C) = 2^{|C|}$

2. Suppose that $\left|S_{\phi}(A)\right| > \operatorname{ded} \kappa$. $S_{\phi}(A) = \{\operatorname{tp}_{\phi}(a/A) : a \in \mathbb{M}\}$ and $\operatorname{tp}_{\phi}(a/A)$ is determined by $\phi(a,A) \subseteq A$. Hence we are considering $T = \{\phi(a,A) \subseteq A : a \in \mathbb{M}\} \subseteq 2^A$. By Lemma 3.38, for each $n < \omega$, there is a finite subset $B \subseteq A$ with |B| = n s.t.

$$\{\phi(a,B): a \in \mathbb{M}\} = \mathcal{P}(B)$$

For each $S\subseteq B$, there is a_S s.t. $\models \phi(a_S,b)\Leftrightarrow b\in S$ for all $b\in B$. By compactness, ϕ has IP

Γ

Lemma 3.40. A formula $\phi(x;y)$ is NIP iff there are some $d,c \in \omega$ s.t. for any finite set A with |A| = n we have $|S_{\phi}(A)| \leq cn^d$. In fact, d can be taken to be the maximal size of a set that can be shattered by instances of $\phi(x;y)$

4 Forking Calculus

4.1 Keisler measures and generically prime ideals

- **Definition 4.1.** 1. A **Keisler measure** (over a set of parameters A) is a finitely-additive probability measure on the Boolean algebra of A-definable subsets of \mathbb{M}_x . That is, a Keisler measure over A is a map $\mu: \mathrm{Def}_x(A) \to [0,1]$ s.t.
 - (a) $\mu(\mathbb{M}_x) = 1$
 - (b) $\mu(P \cup Q) = \mu(P) + \mu(Q)$ for all disjoint $P, Q \in \operatorname{Def}_x(A)$
 - 2. A Keisler measure μ is **invariant over** A if $a \equiv_A b$ implies $\mu(\phi(x,a)) = \mu(\phi(x,b))$

A type can be thought of as a $\{0,1\}$ -measure

Definition 4.2. A set $I \subseteq \mathrm{Def}_x(A)$ is an **ideal** if

- 1. $\emptyset \in I$
- 2. $\phi(x,a) \vdash \psi(x,b)$ and $\psi(x,b) \in I$ implies $\phi(x,a) \in I$
- 3. $\phi(x,a) \in I$ and $\psi(x,b) \in I$ implies $\phi(x,a) \vee \psi(x,b) \in I$

Lemma 4.3 (Extension of a type avoiding an ideal). If a partial type $\pi(x)$ over a set A doesn't imply a formula from an ideal \mathcal{I} , then for any set $B \supseteq A$ there is a complete type p(x) over B not containing any formulas from \mathcal{I}

Proof. We claim that the set of formulas

$$\tau(x) := \pi(x) \cup \{\neg \phi(x, b) : b \in B \text{ and } \phi(x, b) \in \mathcal{I}\}\$$

is consistent. If not, then by compactness there are finitely many formulas $\phi_i(x,b_i) \in \mathcal{I}$ s.t. $\pi(x) \vdash \bigvee \phi_i(x,b_i)$. As \mathcal{I} is an ideal, this is a contradiction

Hence any complete type p(x) over B extending $\tau(x)$ satisfies the requirement \Box

An ideal I is **invariant over** A if $\phi(x,a) \in I$ and $a \equiv_A b$ implies $\phi(x,b) \in I$. As usual, an ideal I in $Def(\mathbb{M})$ is **prime** if whenever $\phi(x,a) \wedge \psi(x,b) \in I$, then either $\phi(x,a) \in I$ or $\psi(x,b) \in I$. However, in the Boolean algebra $Def_x(\mathbb{M})$, prime ideals correspond to complete types in $S_x(\mathbb{M})$ (as for any $\phi(x,b)$, $\phi(x,b) \wedge \neg \phi(x,b) = \emptyset$, so either $\phi(x,b)$ or $\neg \phi(x,b)$ has to belong to I). We introduce weaker version

Definition 4.4. Given a cardinal κ , we say that an ideal $\mathcal I$ in $\operatorname{Def}_x(A)$ is κ -prime if for any family $(S_i)_{i<\kappa}$ of A-definable sets with $S_i\notin\mathcal I$ for all $i<\kappa$, there are some $i< j<\kappa$ s.t. $S_i\cap S_j\notin\mathcal I$. We say that an ideal $\mathcal I$ is **generically prime** if it is κ -prime for some κ

Example 4.1. 1. An ideal is prime iff it is 2-prime

2. Let μ be an arbitrary finitely-additive probability measure on X, and let 0_{μ} be its 0-ideal containing all 0-measure elements. Then 0_{μ} is \aleph_1 -prime. Indeed, take $J=\aleph_1$ and assume we are given a family $(S_i:i\in J)$ of sets of positive measure, say $\mu(S_i)>\frac{1}{n_i}$ for some $n_i\in\omega$. Then by pigeon-hole there is some $n\in\omega$ and some infinite $J'\subseteq J$ s.t. $\mu(S_i)>\frac{1}{n}$ for all $i\in J'$.

Proposition 4.5. Let I be an A-invariant ideal in $Def_x(\mathbb{M})$. TFAE

1. I is S1, i.e., for any A-indiscernible sequence $(b_i)_{i \in \omega}$ and any formula $\phi(x, y)$, if $\phi(x, b_0) \notin I$ then $\phi(x, b_0) \land \phi(x, b_1) \notin I$

- 2. I is generically prime
- 3. I is $(2^{|A|+|T|})^+$ -prime

Proof. Assume that we have an A-indiscernible sequence $(a_i)_{i\in\omega}$ s.t. $\phi(x,a_0)\wedge\phi(x,a_1)\in I$ but $\phi(x,a_0)\notin I$. By compactness, indiscernibility and invariance of I, for any κ we can find a sequence $(a_i)_{i\in\kappa}$ s.t. $\phi(x,a_i)\notin I$ and $\phi(x,a_i)\wedge\phi(x,a_j)\in I$ for all $i\neq j\in\kappa$, thus I is not generically prime By indiscernibility, $\phi(x,a_i)\notin I$ for any $i\in\omega$. $\phi(x,a_i)\wedge\phi(x,a_j)\in I$ for all $i\neq j\in\omega$ by indiscernibility. And we can extend ω to κ by compactness

Conversely, assume that I is not generically prime. Then for any κ we can find $(\phi_i(x,a_i))_{i\in\kappa}$ with $\phi_i(x,a_i)\notin I$ and $\phi_i(x,a_i)\wedge\phi_j(x,a_j)\in I$. Taking κ large enough and applying 3.29 we find an A-indiscernible sequence starting with a_i,a_j for some $i\neq j$ and s.t. $\phi_i=\phi_j$

4.2 Dividing and forking

Definition 4.6. 1. A formula $\phi(x,a)$ **divides** over B if there is a sequence $(a_i)_{i\in\omega}$ and $k\in\omega$ s.t. $a_i\equiv_B a$ and $\{\phi(x,a_i)\}_{i\in\omega}$ is k-inconsistent. Equivalently, if there is a B-indiscernible sequence $(a_i)_{i\in\omega}$ starting with a and s.t. $\{\phi(x,a_i)_{i\in\omega}\}$ is inconsistent (by compactness and 3.29) Tent Lemma 7.1.4

2. A formula $\phi(x,a)$ forks over B if it belongs to the ideal generated by the formulas dividing over B, i.e., if there are $\psi_i(x,c_i)$ dividing over B for i < n and s.t.

$$\phi(x,a) \vdash \bigvee_{i < n} \psi_i(x,c_i)$$

3. We denote by $\mathbf{F}(B)$ the ideal of formulas forking over B. It is invariant over B If $\phi(x,b)$ divides over B and given a $\sigma \in \operatorname{Aut}(\mathcal{U}/B)$, then $\sigma(b) \equiv_B b$ and hence $\phi(x,\sigma(b))$ divides over B

Example 4.2. Let T be DLO, then a < x does not divide over \emptyset , but a < x < b does

Example 4.3. In general there are formulas which fork, but don't divide. Consider the unit circle around the origin on the plane, and a ternary relation R(x,y,z) on it which holds iff y is between x and z, ordered clock-wise. Let T be the theory of this relation. Check

1. This theory has QE

- 2. There is a unique 2-type p(x,y) over \emptyset consistent with " $x \neq y$ ". There is no constant and we can talk nothing:D
- 3. R(a, y, c) divides over \emptyset for any a, c
- 4. The formula "x = x" forks over \emptyset (but it does not divide no formula can divide over its own parameters)

Definition 4.7. A (partial) type **does not divide** (fork) over B if it does not imply any formula which divides (resp. forks) over B

Note: if $a \notin \operatorname{acl}(A)$ then $\operatorname{tp}(a/Aa)$ divides over A (take x=a). Also, if $\pi(x)$ is consistent and defined over $\operatorname{acl}(A)$, then it doesn't divide over A *Exercise* 4.2.1. Let $p \in S_x(\mathbb{M})$ be a global type, and assume that it doesn't divide over a small set A. Then it doesn't fork over A

Proposition 4.8. F(B) is contained in every generically prime B-invariant ideal

Proof. It is enough to show that if $\varphi(x,a)$ divides over B and I is generically prime ideal, then $\varphi(x,a) \in I$. We use the equivalence from Proposition 4.5. Let $(a_i)_{i \in \omega}$ be indiscernible over B with $a_0 = a$ and $\{\varphi(x,a_i)_{i \in \omega}\}$ inconsistent. If $\varphi(x,a_0) \notin I$, then by induction using that I is generically prime (and that if $(a_i)_{i \in \omega}$ is indiscernible over B, then $(a_{2i}a_{2i+1})_{i \in \omega}$ is indiscernible over B), we see that $\bigwedge_{i < k} \varphi(x,a_i) \notin I$ for all $k \in \omega$. But as $\emptyset \in I$ this would imply that $\{\varphi(x,a_i)\}$ is consistent, a contradiction

Note that any intersection of B-invariant generically prime ideals is still B-invariant and generically prime

Definition 4.9. 1. Let GP(A) be the smallest generically prime ideal invariant over A

2. Let $\mathbf{0}(A)$ be the ideal of formulas which have measure 0 w.r.t. every A-invariant Keisler measure

Summing up the previous observations, we have

Proposition 4.10. *In any theory and for any set* A, $F(A) \subseteq GP(A) \subseteq O(A)$

Example 4.4. There are theories with $\mathbf{F}(A) \subseteq \mathbf{GP}(A)$, equivalently theories

4.3 Special extensions of types

- Let $A \subseteq B$ and $p \in S_x(A)$. Then there is some $q \in S_x(B)$ with $p \subseteq q$ (as p is a filter in $Def_x(B)$, so extends to an ultrafilter)
- We would like to be able to choose a "generic" extension q of p, s.t. it
 doesn't add any new conditions on q w.r.t. the new parameters from
 B which were not already present w.r.t. the parameters from A

Definition 4.11. A global type $p(x) \in S(\mathbb{M})$ is called **invariant** over C if it is invariant under all automorphisms of \mathbb{M} fixing C.

Applying Proposition 4.8 to $\{0,1\}$ -measures, every global type invariant over A is non-forking over A

Definition 4.12. Let $A \subseteq B$, $p \in S_x(A)$ and $q \in S_x(B)$ extending p be given (so $p = q \upharpoonright \mathrm{Def}_x(A)$, which also denote as p = q|A)

- 1. q is an **heir** of p (or "an heir over A") if for every formula $\phi(x,y) \in L(A)$, if $\phi(x,b) \in q$ for some $b \in B$, then $\phi(x,b') \in p$ for some $b' \in A$. Note that if q is an heir of p, then in fact A has to be a model of T
- 2. q is a **coheir** of p ("coheir over A", "finitely satisfiable in A") if for any $\phi(x,b) \in q$ there is some $a \in A$ s.t. $\models \phi(a,b)$

Exercise 4.3.1. $A \subseteq B$

- 1. If a type $q \in S(B)$ is definable over A or is finitely satisfiable in A, then it **does not split** over A, i.e., for all $a \equiv_A a'$ from B and $\phi(x,y) \in L(A)$ we have that $\phi(x,a) \in q \Leftrightarrow \phi(x,a') \in q$. In particular, if $B = \mathbb{M}$ then q is A-invariant
- 2. If A is a model of T and $q \in S(B)$ is definable over A, then it is an heir over A
- 3. If $B = \mathbb{M}$ and $q \in S(B)$ is A-invariant then it doesn't fork over A
- 4. tp(a/Mc) is an heir of tp(a/M) iff tp(c/Ma) is a coheir of tp(b/M)

Proof. 1. Obvious

- 2. $\phi(x,b) \in q \iff d\phi(b) \implies \exists x d\phi(x) \implies A \models d\phi(a)$ for some $a \in A$
- 3. $L(xB) \setminus p$ is an A-invariant prime ideal and $F(B) \subseteq L(xB) \setminus p$ by 4.8

4. $\operatorname{tp}(a/Mc)$ is an heir of $\operatorname{tp}(a/M)$ iff $\forall \phi(x,y) \in L(M)$, $\phi(x,b) \in \operatorname{tp}(a/Mc) \Rightarrow \exists b'. \phi(x,b') \in \operatorname{tp}(a/M)$ iff $\forall \phi(x,y) \in L(M)$, $\phi(x,c) \in \operatorname{tp}(a/Mc) \Rightarrow \exists b' \ \phi(x,b') \in \operatorname{tp}(a/M)$ iff $\operatorname{tp}(c/Ma)$ is a coheir of $\operatorname{tp}(b/M)$

Example 4.5. Let $M=(\mathbb{Q},<)$ and consider the type $p\in S_x(M)$ given by $p=\{a< x: a\in M\}$. Now consider two global extensions $q_1,q_2\in S_x(\mathbb{M})$ of p:

- $q_1(x) = \{a < x : a \in \mathbb{M}\}$
- $\bullet \ q_2(x) = p(x) \cup \{x < b : M < b \in \mathbb{M}\}$

 q_1 is M-definable, so it is an heir of p, but not a heir of p. On the other hand, q_2 is a coheir of p, but it is not an heir over M

Remark. Note the space of A-invariant global types is a closed subset of $S(\mathbb{M})$ (as it equals $\bigcap_{\phi \in L, a \equiv_A b \in \mathbb{M}} \langle \phi(x, a) \leftrightarrow \phi(x, b) \rangle$), thus compact. Similarly, the space of types finitely satisfiable in A is a closed subset of A - it equals $\bigcap_{\phi(x,a) \in L(M), \phi(A,a) = \emptyset} \langle \neg \phi(x,a) \rangle$. It can also be described as the closure of the set of types realized in A, i.e., of $\{\operatorname{tp}(a/\mathbb{M}) : a \in A\}$

Exercise 4.3.2. 1. If $\pi(x)$ is finitely satisfiable in A, then there exists a complete global type extending $\pi(x)$ and finitely satisfiable in A

2. Every global type finitely satisfiable in A is invariant over A

Proof. 1. Let $p = \pi(x) \cup \{\phi(x) : \pi(x) \cup \{\phi(x)\}\$ is finitely satisfiable in $A\}$

Proposition 4.13. Let $p \in S_x(M)$ be arbitrary, where $M \models T$ is a small model

- 1. There is a global coheir q of p
- 2. There is a global heir r of p

Proof. 1. Let $A\subseteq \mathbb{M}_x$ be small and let \mathcal{U} be an ultrafilter on $\mathcal{P}(A)$. We can define a global type $q_{\mathcal{U}}\in S_x(\mathbb{M})$ in the following way. For a formula $\phi(x,b)\in L(\mathbb{M})$ we define $\phi(x,b)\in q_{\mathcal{U}}\Leftrightarrow \phi(A,b)\in \mathcal{U}$. Then $q_{\mathcal{U}}$ is finitely satisfiable in A.

Conversely, every global type q finitely satisfiable in A is of the form $q_{\mathcal{U}}$ for some ultrafilter \mathcal{U} on $\mathcal{P}(A)$

Now any $p \in S_x(M)$ is finitely satisfiable in M since $M \prec \mathbb{M}$. It follows that $\{\phi(M): \phi(x) \in p\}$ is a filter, so extends to some ultrafilter $\mathcal U$ on $\mathcal P(M)$. Then the global type $q_{\mathcal U}$ is a coheir of p

2. It is enough to show that the following set of formulas is consistent

$$s(x) := p(x) \cup \{\phi(x,c) : c \in \mathbb{M}, \phi(x,y) \in L(M), \phi(x,m) \in p \text{ for all } m \in M\}$$

As then any complete type $r(x) \in S_x(\mathbb{M})$ with $r \supseteq s$ is an heir of p. If for $\phi(x,b) \in r$, for all $b' \in M$, $\phi(x,b') \notin p$, then $\neg \phi(x,b) \in r$.

Assume it is not consistent, then by compactness there are formulas $\phi(x,c) \in p$ and $\phi_i(x,c_i)$, i < n from s(x) s.t. $\models \phi(x,c) \to \bigvee_{i < n} \neg \phi_i(x,c_i)$. As $\phi(x,c) \in L(M)$ and $M \prec \mathbb{M}$, it follows that there are $m_i, i < n$ s.t. $M \models \phi(x,c) \to \bigvee_{i < n} \neg \phi_i(x,m_i)$. But by definition of s(x) we have $\phi_i(x,m_i) \in p$ for all i < n, as well as $\phi(x,c) \in p$ - thus their conjunction is consistent, a contradiction

Proposition 4.14. Let $p \in S_x(M)$ be a definable type. Then it has a unique global heir $q \supseteq p$ which is definable over M

Proof. First we show that p has a global M-definable extension. As p(x) is definable, it follows that for every $\phi(x,y) \in L$ there is some $d\phi(y) \in L(M)$ s.t. $\phi(x,a) \in p \Leftrightarrow d\phi(a)$, for all $a \in M$. Consider the following set of formulas

$$q(x):=\{\phi(x,a):\phi(x,y)\in L, a\in \mathbb{M}_y, \vDash d\phi(a)\}$$

By compactness, it is enough to show that for any $\phi_1(x,y_1),\phi_2(x,y_2)$

$$\vDash \forall y_1 y_2 \exists x (\phi_1(x, y_1) \land \phi_2(x, y_2))$$

As $M \prec M$, this is equivalent to

$$M \vDash \forall y_1 y_2 \exists (\phi_1(x, y_1) \land \phi_2(x_2, y_2))$$

But for any $a_1,a_2\in M$, $\phi_1(x,a_1)\wedge\phi_2(x,a_2)\Leftrightarrow \vdash d\phi(a_1)\wedge d\phi(a_2)$. Thus this holds.

Assume that q,r are two global types extending p which are both definable over M. This implies that for their corresponding defining schemas $(d_q(\phi))_{\phi(x,y)\in L}$ and $(d_r\phi(y))_{\phi(x,y)\in L}$ we must have $d_q\phi(M)=d_r\phi(M)$ and hence $M\vDash \forall y(\phi(x,y)\leftrightarrow d\phi(y))$. But again as $M\prec M$, this implies that $d_q\phi(M)=d_r\phi(M)$, and so q=r

By Exercise 4.3.1, q(x) is an heir of p(x). Now if $q \neq q'$ is another global type extending p, then for some $\phi(x,b) \in q'$ we have $\neg \phi(x,b) \in q$ and so $\not\models d\phi(b)$, and so $(\phi(x,b) \land \neg d\phi(b)) \in q'$. But as there can be no $m \in M$ with $\models \phi(x.m) \land \neg d\phi(m)$ and as $\phi(x,y) \land \neg d\phi(y) \in L$, it follows that q' is not a heir of p

Proposition 4.15. Let $p \in S_x(\mathbb{M})$ be a global A-invariant type

- 1. If p is definable, then in fact it is definable over A
- 2. If p is finitely satisfiable in some small set, then in fact it is finitely satisfiable in any model $M \supseteq A$
- *Proof.* 1. As p is definable, for any formula $\phi(x,y) \in L$ there is some $d\phi(y) \in L(\mathbb{M})$ s.t. for any $b \in \mathbb{M}$ we have $\phi(x,b) \in p \Leftarrow b \in d\phi(\mathbb{M})$. As p is A-invariant, the definable set $d\phi(\mathbb{M})$ is also $\operatorname{Aut}(\mathbb{M}/A)$ -invariant. But then the set $d\phi(\mathbb{M})$ is in fact A-definable by Lemma 2.9
 - 2. Suppose p is finitely satisfiable in some small model N. Let M be an arbitrary small model containing A. Let $\phi(x,b) \in p$ be arbitrary. Consider the type $\operatorname{tp}(N/M)$. By Proposition 4.13, this type has a global coheir r(x), let $N_1 \models r|Mb$. Then by invariance p is finitely satisfiable in N_1 , in particular $\phi(N_1,b) \neq \emptyset$. But as the type $\operatorname{tp}(N_1/Mb)$ is finitely satisfiable in M, it follows that $\phi(M,b) \neq \emptyset$

4.4 Tensor product of invariant types and Morley sequences

Definition 4.16. Let $p \in S_x(\mathbb{M})$, $q \in S_y(\mathbb{M})$ be two global, A-invariant types. Then we define their tensor product $p \otimes q \in S_{xy}(\mathbb{M})$ as follows:

given a formula $\phi(x,y) \in L(B)$, $A \subseteq B \subseteq \mathbb{M}$, we set $\phi(x,y) \in p \otimes q \Leftrightarrow \phi(x,b) \in p$ for some (equivalently, any, by invariance of p) $b \in \mathbb{M}_y$ s.t. $b \models q \mid B$ since $b \models q \mid B \Rightarrow \operatorname{tp}(b/B) = q \mid B$

For any small $B\supseteq A$, $ab\vDash p\otimes q$ iff $b\vDash q|B$ and $a\vDash p|Bb$.

Remark. 1. Note that $p \otimes q$ is a complete type, as

$$p\otimes q=\bigcup_{A\subseteq B\subset_{small}\mathbb{M}}\{\operatorname{tp}(ab/B):a\vDash p|Bb,b\vDash q|B\}$$

- 2. If both p and q are A-invariant, then so is $p \otimes q$. If $\phi(x,y,c) \in p \otimes q$, then there is $\phi(x,b,c) \in p$ and $b \models q|c$. Since p and q are A-invariant, for any $\sigma(\mathbb{M}/A)$, $\phi(x,\sigma(b),\sigma(c)) \in p$ and $\operatorname{tp}(\sigma(b)/\sigma(c)) = \sigma(q|c) = q|\sigma(c) \Rightarrow \sigma(b) \models q|\sigma(c)$. Hence $\phi(x,y,\sigma(c)) \in p \otimes q$
- 3. The operation \otimes is associative, i.e., $p \otimes (q \otimes r) = (p \otimes q) \otimes r$. For any small B, both products restricted to B are equal to $\operatorname{tp}(abc/B)$ for $c \models r|B$, $b \models q|Bc$, $a \models q|Bbc$

- 4. \otimes need not be commutative. Let T be DLO, and let p=q be the type at $+\infty$, it is \emptyset -invariant. Then $p(x)\otimes q(y)\vdash x>y$, while $q(y)\otimes p(x)\vdash x< y$
- 5. In fact, in the definition of the tensor product, we have only used that *p* is invariant

Definition 4.17. Let $p \in S_x(\mathbb{M})$ be a global A-invariant type. Then for any $n \in \omega$ we define by induction $p^{(1)}(x_0) := p(x_0)$ and $p^{(n+1)}(x_0,\dots,x_n) := p(x_n) \otimes p^{(n)}(x_0,\dots,x_{n-1})$. We also let $p^{(\omega)} = (x_0,x_1,\dots) := \bigcup_{n \in \omega} p^{(n)}(x_0,\dots,x_{n-1})$. For any set $B \supseteq A$, a sequence $(a_i:i\in\omega) \models p^{(\omega)}|B$ is called a **Morley sequence** of p over B (indexed by ω)

Remark. 1. We can define $p^{(I)}$ for an arbitrary order type I in a natural way

2. Note that for any $(a_i : i < \omega)$, $(b_i : i < \omega) \models p^{(\omega)}|B$

$$(a_i:i<\omega)\equiv_B(b_i:i<\omega)$$

as $\operatorname{tp}((a_i)_{i<\omega}/B)=\operatorname{tp}((b_i)_{i<\omega}/B)$. In particular, any Morley sequence of p over B is B-indiscernible, by the associativity of \otimes

Lemma 4.18. TFAE

- 1. tp(a/Ab) doesn't divide over A
- 2. For every infinite A-indiscernible sequence I s.t. $b \in I$, there is some $a' \equiv_{Ab} a$ s.t. I is Aa'-indiscernible
- 3. For every infinite A-indiscernible sequence I s.t. $b \in I$, there is some $J \equiv_{Ab} I$ s.t. J is Aa-indiscernible

Proof.
$$2 \leftrightarrow 3$$
: by an A -automorphism $1 \rightarrow 3$:

Corollary 4.19. If tp(a/B) does not divide over $A \subseteq B$ and tp(b/Ba) does not divide over Aa, then tp(ab/B) does not divide over A

Proof. By Lemma 4.18. Let I be an arbitrary A-indiscernible sequence starting with B. Then we can find $I' \equiv_B I$ with I' Aa-indiscernible and $I'' \equiv_{Ba} I'$ with I'' abB-indiscernible. In particular $I'' \equiv_B I$

Corollary 4.20. If $\phi(x, a)$ k-divides over A and $\operatorname{tp}(b/Aa)$ does not divide over A, then $\phi(x, a)$ k-divides over Ab

Proof. Let $I=(a_i:i\in\omega)$ be an infinite A-indiscernible sequence s.t. $a_0=a$ and $\{\phi(x,a_i):i\in\omega\}$ is k-inconsistent. By assumption and Lemma 4.18 there is $J\equiv_{Aa}I$ which is Ab-indiscernible. Then J witnesses that $\phi(x,a)$ k-divides over Ab

Proposition 4.21. Let $p \in S_x(\mathbb{M})$ be a global type, and let M be a small model. TFAE

- 1. If p is definable over A, then p does not divide over A
- 2. If T is stable and p does not divide over M, then p is definable over M

Proof. (1) is obvious

Assume that T is stable and that p does not divide over M. We will show that p is an heir of p|M, which is enough (as p|M is a definable type by stability and Theorem 3.17, which using Proposition 4.14 implies that p is definable over M) So let $\phi(x,y) \in L(M)$ be given and assume that $\phi(x,b) \in p$. We want to show that $\phi(x,b') \in p$ for some $b' \in M$. Let $I = (b_i : i \in \omega)$ be a Morley sequence of a global coheir extension of $\operatorname{tp}(b/M)$ over M starting with $b_0 = b$ (exists by Proposition 4.13 and take the automorphism to shift b_0 to b) Let $a \models p|Mb$. Since $\operatorname{tp}(a/Mb)$ doesn't divide over M

5 TODO Problems

6 Index

7 References

References

- [Pillay(2018)] Anand Pillay. Topics in Stability Theory. https://www3.nd.edu/~apillay/Topics_in_Stability_Theory__No_Intro_.pdf, 2018.
- [Chernikov(2019)] Artem Chernikov. Lecture notes on stability theory. https://www.ams.org/open-math-notes/omn-view-listing? listingId=110792, 2019.
- [Tent and Ziegler(2012)] Katrin Tent and Martin Ziegler. *A course in model theory*. Number 40. Cambridge University Press, 2012.
- [van den Dries(2019)] Lou van den Dries. Introduction to Model-theoretic Stability. https://faculty.math.illinois.edu/~vddries/stable.pdf, 2019.
- [Keisler(1976)] H Jerome Keisler. Six classes of theories. *Journal of the Australian Mathematical Society*, 21(3):257–266, 1976.