2003-AL-P-MATH-1-Q07

7(a)(i)

(E) has a unique solution.

$$\Rightarrow \Delta \neq 0$$

$$\Rightarrow egin{array}{cccc} 1 & a & -1 \ 2 & -1 & a \ -1 & 2a^2 & a-3 \ \end{array}
end{array}
eq 0$$

$$\Rightarrow -2a^3 - 7a^2 + 5a + 4 \neq 0$$

$$\Rightarrow -(a+4)(2a+1)(a-1)
eq 0$$

$$\Rightarrow a
eq -4$$
 and $a
eq -rac{1}{2}$ and $a
eq 1$

Also,

$$\Delta_x=egin{array}{c|ccc}0&a&-1\-2a&-1&a\2a&2a^2&a-3\end{array}=2a(4a+1)(a-1)$$
 and

$$\Delta_y=egin{bmatrix}1&0&-1\2&-2a&a\-1&2a&a-3\end{bmatrix}=-4a(a-1)$$
 and

$$\Delta_z = egin{vmatrix} 1 & a & 0 \ 2 & -1 & -2a \ -1 & 2a^2 & 2a \end{bmatrix} = 2a(2a+1)(a-1)$$

When $\Delta \neq 0$

$$\Rightarrow x = rac{\Delta_x}{\Delta}$$
 and $y = rac{\Delta_y}{\Delta}$ and $z = rac{\Delta_z}{\Delta}$

$$\Rightarrow x = rac{2a(4a+1)(a-1)}{-(a+4)(2a+1)(a-1)}$$
 , $y = rac{-4a(a-1)}{-(a+4)(2a+1)(a-1)}$, $z = rac{2a(2a+1)(a-1)}{-(a+4)(2a+1)(a-1)}$

$$\Rightarrow x=rac{-2a(4a+1)}{(a+4)(2a+1)}$$
 , $y=rac{4a}{(a+4)(2a+1)}$, $z=rac{-2a}{(a+4)}$

8(a)(ii)(1)

When a = 1,

(E)
$$\begin{cases} x + y - z = 0 \\ 2x - y + z = -2 \\ -x + 2y - 2z = 2 \end{cases}$$

$$\Rightarrow \begin{cases} x + y - z = 0 \\ 2x - y + z = -2 \end{cases}$$

Consider the augmented matrix:

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 2 & -1 & 1 & -2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & -3 & 3 & -2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & -1 & \frac{2}{3} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & -\frac{2}{3} \\ 0 & 1 & -1 & \frac{2}{3} \end{bmatrix}$$

 \Rightarrow The solutions are $x=-rac{2}{3}$, $y=t+rac{2}{3}$, z=t where $t\in R$

8(a)(ii)(2)

When a = -4 (i.e. $\Delta = 0$),

$$\Delta_x=2a(4a+1)(a-1)=-600
eq 0$$
 and

$$\Delta_y = -4a(a-1) = -80
eq 0$$
 and

$$\Delta_z = 2a(2a+1)(a-1) = -280
eq 0$$

 \Rightarrow (E) has NO solution.

8(b)

Using result in (a)(ii)(1),

$$x=-rac{2}{3}$$
 , $y=t+rac{2}{3}$, $z=t$ where $t\in R$

$$24x^2 + 3y^2 + 2z$$

=
$$24(-rac{2}{3})^2+3(t+rac{2}{3})^2+2t$$
 for some $t\in R$

=
$$3t^2+6t+12$$
 for some $t\in R$

=3
$$(t+1)^2+9$$
 for some $t\in R$

 ≤ 9

Therefore, the least value of $24x^2+3y^2+2z$ is 9 when t=-1, i.e. $x=-\frac{2}{3}$, $y=-\frac{1}{3}$, z=-1