Fast Dictionary Attacks on Passwords Using Time-Space Tradeoff

Tyler Combs

The University of Oklahoma tyler.combs@ou.edu

April 14, 2015

Overview

```
Introduction
```

Introduction

Time-Space Tradeoff

Smart Dictionary Attack

Filtering

Markovian

Finite Automaton

Indexing Algorithms

Experiment

Conclusions

Analysis

- Humans tend to generate passwords that are easy to remember
- Common defense: composition rules require passwords to include digits and special characters
- Even with the addition of digits and special characters,
 Humans are not too random

- Consider a string "abababababababab" 16 characters long
- Although the string is long and hard to brute-force, is is not very random
- ► This can be modeled by the *Kolmogrov conplexity* (K-Complexity)
 - ► Kolmogrov complexity: The length of the shortest Turing Machine that outputs a string and then haults

- ▶ Itterate over all strings with K-Complexity ≤ some threshold
- Can't be done
 - K-Complexity is uncomputable
 - Human randomness is different than computational randomness
- Solution: Use techniques from natural language processing, such as "Markovian Filters" to generate strings that are phonetically simmilar to the users natural language

Goal

Ultimate goal: given a cipher text c recover the password k such that H(k)=c

Time-Space Tradeoff

Full look up table Brute-force attack Time Time O(1) ?????? $O(|\mathcal{K}|)$ Space $O(|\mathcal{K}|)$ Space O(1)

Time-Space Tradeoff

In 1980 Martin Hellman answes this question by contributing a Time-Space tradeoff for the problem of cryptanalysis.

- Precompute: m "chains" of length t
- Store only the first and last items in each chain

Chain Generation

The function f(k) maps from one key to another. Where:

$$f(k) = R[H(k)]$$

where

- H(k) is a hash function that maps from key k to ciphertext c
- ▶ R(c) is a Reduction function mapping from a ciphertext cback to a value $k \in \mathcal{K}$
- Example reduction function: drop last n characters/bits

$$\begin{array}{c} t \\ \\ m \downarrow \begin{bmatrix} k_{1,1}^{1} \xrightarrow{f_{1}} & f_{1}^{1} & \cdots & f_{1}^{1} & k_{1,t}^{1} \\ k_{m,1}^{1} & f_{2}^{1} & \cdots & f_{2}^{1} & k_{m,t}^{1} \end{bmatrix} \\ \\ m \downarrow \begin{bmatrix} k_{1,1}^{2} & f_{2}^{2} & f_{2}^{2} & \cdots & f_{2}^{2} & k_{1,t}^{2} \\ k_{m,1}^{2} & f_{2}^{2} & f_{2}^{2} & \cdots & f_{2}^{2} & k_{m,t}^{2} \end{bmatrix} \\ \vdots & & \vdots & & \vdots \\ \\ m \downarrow \begin{bmatrix} k_{1,1}^{t-1} & f_{1-1} & f_{t-1} & \cdots & f_{t-1}^{t-1} & k_{1,t}^{t-1} \\ k_{m,1}^{t-1} & f_{2}^{t-1} & f_{2}^{t-1} & \cdots & f_{t}^{t-1} & k_{m,t}^{t-1} \end{bmatrix} \\ \\ m \downarrow \begin{bmatrix} k_{1,1}^{t} & f_{1}^{t-1} & f_{1-1}^{t-1} & \cdots & f_{t}^{t-1} & k_{m,t}^{t-1} \\ k_{m,1}^{t} & f_{2}^{t-1} & f_{2}^{t-1} & \cdots & f_{t}^{t} & k_{1,t}^{t-1} \\ k_{m,1}^{t} & f_{2}^{t-1} & f_{2}^{t-1} & \cdots & f_{2}^{t} & k_{1,t}^{t-1} \end{bmatrix} \end{array}$$

Chain Generation

Example (Chain Generation)
4-character passwords
6-character password sets

$$pass \rightarrow^H FE4gT6 \rightarrow^R ofie \rightarrow^H FP03u2 \rightarrow^R ueyf \cdots \rightarrow^R lswq$$

Key Recovery

- ▶ Given any cipher text c, use the reduction function R to generate a key k_i
- Generate a new chain of length t (where t is the length of chains in the stored table)
- Search the *last* elements of the precomputed table for every key generated from the given ciphertext c

Key Recovery

- ► Because we found the chain our ciphertext belongs to, we can recover the key that generates the ciphertext
- ► Time-Space Tradeoff comes from the length of the chains

Example (On Board)

$$\begin{array}{c} & & & & & & \\ m & & \begin{bmatrix} k_{1,1}^{1} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{1} \\ k_{m,1}^{1} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{m,t}^{1} \end{bmatrix} \\ m & & \begin{bmatrix} k_{1,1}^{2} \stackrel{f_{2}}{\rightarrow} & \stackrel{f_{2}}{\rightarrow} & \cdots & \stackrel{f_{2}}{\rightarrow} & k_{m,t}^{2} \\ k_{m,1}^{2} \stackrel{f_{2}}{\rightarrow} & \stackrel{f_{2}}{\rightarrow} & \cdots & \stackrel{f_{2}}{\rightarrow} & k_{m,t}^{2} \end{bmatrix} \\ & & & & & & & \\ \vdots & & & & & & \\ m & & & & & \\ k_{1,1}^{t-1} \stackrel{f_{t-1}}{\rightarrow} \stackrel{f_{t-1}}{\rightarrow} & \cdots & \stackrel{f_{t-1}}{\rightarrow} & k_{1,t}^{t-1} \\ k_{m,1}^{t-1} \stackrel{f_{t-1}}{\rightarrow} \stackrel{f_{t-1}}{\rightarrow} & \cdots & \stackrel{f_{t-1}}{\rightarrow} & k_{m,t}^{t-1} \end{bmatrix} \\ m & & & & & \\ k_{1,1}^{t} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,1}^{t} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k_{1,t}^{t} \\ k_{1,t}^{t} \stackrel{f_{1}}{\rightarrow} & \cdots & \stackrel{f_{1}}{\rightarrow} & k$$

Problem

Chains can merge. The reduction function can produce the same key for two different ciphertexts

- ▶ If the merge happens early in the chain generation, the table will not cover as many passwords
- Hard to detect because the chains will still have different end points (Unless the merge happens at the same position in the two chains)

Solution

Rainbow Tables

- ▶ Use different related reduction functions R_1 to R_n where n is the length of the chain
- ▶ If a collision happens, It has to be at the same position in chain generation and collisions can be detected
- Key recovery changes because we are using a different reduction function each time.
 - ▶ assume generate chain starting at position n-1 use reduction function R_{n-1} and move backwards through the chain

Smart Dictionary Attack

Smart Dictionary Attacks

- Rainbow tables and the classical space-time tradeoff make no assumptions about the keyspace other than its size
- Narayanan and Shmatikov use Markov chains and Regular expressions to make some assumptions about the keyspace. This means that we can search only a "smart" portion of the keyspace.

Markov Chains

- Markov chains are commonly used in natural language processing. Most notably speech recognition systems.
- Markov models have been used to generate passwords for users.
- ▶ Given a set of states $S = \{s_1, s_2, \dots, s_n\}$ there is some probability p_{ij} that denotes the probability of transitioning from state s_i to state s_i
- ► The probability of transitioning to the next state depends only on the current state

Markov Chains

The order of a Markov chain of order n is defined as:

$$P(X_n = x_n | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \dots, X_1 = x_1) = P(X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_{n-m} = x_{n-m})$$

Zero-order Markov Chain:

$$P(X_n = x_n | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \dots, X_1 = x_1) = P(X_n = x_n)$$

First-order Markov Chain:

$$P(X_n = x_n | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \dots, X_1 = x_1) = P(X_n = x_n | X_{n-1} = x_{n-1})$$

Zero-order Markov Model

In a zero-order Markov model, each character is generated given its underlying proability distribution. This is based on the frequency of the letter in the users natural language. Formally the zero-order model can be written as:

$$P(\alpha) = \prod_{x \in \alpha} \mathcal{V}(x)$$

where: where

- \triangleright $P(\cdot)$ is the markovian proability distrubuion
- ightharpoonup lpha is a string of characacters
- $\triangleright \mathcal{V}(\cdot)$ is the frequency of a letter occurring in English
- x is an individual character

First-order Markov Model

In a First-order Markov model, each ordered pair is assigned a proability and each character is generated by looking at the pervious character. The first-order markov model can be written as:

$$P(x_1x_2x_3\cdots x_n)=\mathcal{V}(x_1)\prod_{i=1}^n\mathcal{V}(x_{i+1}|x_i)$$

where: where

- $ightharpoonup P(\cdot)$ is the markovian proability distrubuion
- x_i are individual characters
- $ightharpoonup \mathcal{V}(\cdot)$ is the frequency of a letter or ordered pair occuring in English

Markov Dictionary

A probability distribution is not a dictionary. To create a dictionary, discretize the probabilities into two levels using a threshold θ

Zero-order dictionary

$$\mathcal{D}_{\mathcal{V},\theta} = \{\alpha : \prod_{x \in \alpha} \mathcal{V}(x) \ge \theta\}$$

First-order dictionary

$$\mathcal{D}_{\mathcal{V},\theta} = \{x_1 x_2 \cdots x_n : \mathcal{V}(x_1) \prod_{i=1}^{n-1} \mathcal{V}(x_{i+1}|x_i) \ge \theta\}$$

Markov Dictionary

The zero-order model is better for abrivtations and acrynyms. For example, a user picks their favorite song lyric and the first letter of each word creates their password.

Figure: Convergence vs reduction in Keyspace size ($|\mathcal{K}|$) for 8-character sequences

Deterministic Finite Automaton

- ▶ A DFA or Deterministic Finite Automaton is a finite state machine that accepts or rejects a string
- A regular expression can be constructed from a DFA
- Humans are not random with how they use numerals and special characters
 - ▶ Numbers tend to be at the end of a password: password1
 - Capital letters are typically at the begining of a password: Password
 - there are typically more lowercase letters in passwords than uppercase letters, numerals, or special characters

Dictionary using a DFA

An improved dictionary is one where strings are both accepted by a Markovian filter and accepted by at least one DFA from some set of DFA's. The updated dictionary is defined as:

$$\mathcal{D}_{\mathcal{V},\theta,\langle M_i\rangle} = \{\alpha : \prod_{x \in \alpha} \mathcal{V}(x) \ge \theta, \text{ and } \exists i : M_i \text{ accepts} \alpha\}$$

where

- ► *A* is the set of 26 uppercase characters
- a is the set of 26 lowercase characters
- n is the set if 10 numerals
- ▶ s is the set of 5 special characters {space, hyphen, underscore, period, comma}

Indexing Algorithms

- ► The goal is to create an algorithm that will efficiently enumerate the passwords in a given password space. Given i as input return the ith
- ▶ In the rainbow attack the reduction function maps from ciphertext space to $\{0,1,\cdots,|\mathcal{K}-1|\}$
- ▶ Composed with a mapping from $\{0,1,\cdots,|\mathcal{K}-1|\}$ to a key in \mathcal{K} .
- Makes no assumption about keyspace other than its size
- Use the rainbow attack with a "smart" way to choose the keyspace

Dictionary Modification

Modify the dictionary to only consider fixed length strings. This allows for different threshold values θ for each length.

$$\mathcal{D}_{\mathcal{V},\theta,\ell} = \{\alpha : |\alpha| = \ell \text{ and } \prod_{x \in \alpha} \mathcal{V}(x) \ge \theta\}$$

Discretization

The algorithm also needs to discretize the probability distribution of the strings. First, turn the dictionary into a sum rather than a product.

Transform the product

$$egin{aligned} \prod_{x \in lpha} \mathcal{V}(x) &\geq \theta \ &\log(\prod_{x \in lpha} \mathcal{V}(x)) \geq \log(heta) \ &\log(\mathcal{V}(x_1)\mathcal{V}(x_2) \cdots \mathcal{V}(x_n)) \geq \log(heta) \ &\log(\mathcal{V}(x_1)) + \log(\mathcal{V}(x_2)) + \cdots + \log(\mathcal{V}(x_n)) \geq \log(heta) \end{aligned}$$

Discretization

To arrive at a discrete version of the modified dictionary:

$$\mathcal{D}_{\mathcal{V},\theta,\ell} = \{\alpha : |\alpha| = \ell \text{ and } \sum_{x \in \alpha} \mu(x) \ge \lambda\}$$

Where where

- $\mu(x) = \log(\mathcal{V}(x))$
- $\lambda = \log(\theta)$

Discretization

- $\mu(x) = \log(\mathcal{V}(x))$
- \blacktriangleright Discretize the values of the μ function to the nearest multiple of some μ_0
- Narayanan and Shmatikov use a μ_0 that yields approximately 1000 different discrete values

Partial Dictionary

Define a partial dictionary $\mathcal{D}_{\mathcal{V},\theta,\ell,\theta',\ell'}$ as follows:

- ▶ let α be a string such that $|\alpha| = \ell'$

Then

$$\mathcal{D}_{\mathcal{V},\theta,\ell,\theta',\ell'} = \{\beta : \alpha\beta \in \mathcal{D}_{\mathcal{V},\theta,\ell}\}$$

Precompute the size of a partial dictionary (recursively) and store in a 2D-array of size (ℓ , num_levels)

 $|\mathcal{D}_{\mathcal{V},\mathsf{threshold},\mathsf{total_length},\mathsf{level},\mathsf{current_length}}|$

Complexity linear in the product of total length, number of characters in alphabet, and number of levels

- ▶ For cryptanalysis, given an index i produce the corresponding key k in the dictionary \mathcal{D}
- Use precomputed partial size to determine the first character by looking up a value from the precomputed matrix.
 - Adjust the index to a new index relative to the first character
 - Adjust the threshold based on the frequency of the first character

```
Initally call get_key1(0,0)
get_key1(current_length, index, level)
{
    if total_length = current_length: return
    sum = 0
    for each char in alphabet
        new level = level + mu(char)
        // looked up from precomputed array
        size = partial size1[
            current length+1] [new level]
        if sum + size > index
            return char + get key1(
                current length+1,
                index-sum, new_level)
        sum = sum + size
```

First-Order Markovian Dictionary

Same as zero order only in get_key, we need to keep track of the last character

DFA Dictionary

Similar to zero-order Markov dictionary except instead of a threshold and levels, we have states and transitions

Any Keyspace $\mathcal K$

Assume that we have a superspace $\mathcal{K}' \supset \mathcal{K}$ ad we need to decide that given $\alpha \in \mathcal{K}'$ if $\alpha \in \mathcal{K}$

Split K' into m bins of size t and precompute the number of members in each bin that are in K

Given an index, quickly figuew out what bin it falls into and interate over all keys in that bin and test each one for membership O(|K'|) precomputation time ... storage and index

$Hybrid\ Markovian/DFA$

Multiple Keyspaces

Experiment

- Measure coverage of rainbow attack vs hybrid attack
- ▶ 142 real user passwords
- ▶ 6-Character alphanumeric sequences for the rainbow attack ($|\mathcal{K}| = 36^6 \approx 2*10^9$)
- ▶ 70 regular expressions

Results

Category	Count	Rainbow	Hybrid
Length at most 5	63	29	63
Length 6	21	10	17
Length 7	18	0	10
Length 8, A* or a*	9	0	6
Others	31	0	0
Total	142	39(27.5%)	96(67.6%)
only length ≥ 6	79	10(12.7%)	33(41.8%)

Figure: Passwords recovered in Hybrid attack vs. Rainbow attack

Conclusions

- One of many attacks targeting human weakness
- Some possible defences against dictionary attacks for human memorable passwords
 - Graphical passwords
 - Biometric information
- Are these actually safer?

Analysis