POLITECHNIKA WARSZAWSKA

Wydział Elektroniki i Technik Informacyjnych

Systemy Agentowe

Wieloagentowy system giełdowy

Sprawozdanie wstępne

Autorzy:
Jacek Sosnowski
Maciej Suchecki
Jacek Witkowski

Prowadzący: dr inż. Piotr Andruszkiewicz

1 Treść zadania

Tytuł Wieloagentowy system gieldowy

Opis Celem projektu jest stworzenie systemu symulacji giełdowej, w której udział biorą dwa typy agentów:

- grające indywidualnie,
- grajace w grupie.

Celem każdego z agentów jest podejmowanie takich decyzji o kupnie lub sprzedaży akcji, by uzyskać jak największy zysk. Agenty grające w grupie aby osiągnąć większy zysk niż inne agenty tworzą bański spekulacyjne. Z tego powodu wymieniają ze sobą informacje o aktualnej strategii działania.

2 Opis rozwiązania

System składać się będzie z trzech modułów:

- serwera symbolizującego giełdę,
- agenta indywidualnego,
- agenta grupowego.

Po uruchomieniu symulacji program będzie uruchamiał serwer giełdowy, a następnie inicjalizował zdefiniowaną przez użytkownika liczbę agentów indywidualnych oraz grupowych. Każdy z agentów, po uruchomieniu będzie próbował zarejestrować się w serwerze giełdowym, przy czym agenty grupowe będą automatycznie nawiązywały połączenia również między sobą. Następnie jeden z agentów grupowych zostanie koordynatorem grupy. Potem w pętli wykonują się kolejne iteracje symulacji.

Przebieg iteracji

- 1. Agenty pytają o cenę akcji w poprzedniej iteracji.
- 2. Na podstawie historii cen akcji agenty podejmują decyzje o kupnie lub sprzedaży akcji.
- 3. Agenty zgłaszają serwerowi oferty.
- 4. Agenty czekają na zakończenie iteracji i pobierają rezultat ich transakcji z serwera, aktualizując dane.

Iteracje są powtarzane, dopóki nie zostanie przekroczony ich – zdefiniowany wcześniej – limit, lub użytkownik przerwie wykonywanie symulacji ręcznie.

2.1 Wybór koordynatora

Zaraz po utworzeniu wszystkie agenty grupowe zaczynają procedurę wyboru koordynatora, który będzie podejmował decyzje o wykonywanych wspólnie akcjach. W pierwszej kolejności każdy z agentów grupowych rozgłasza losowo wygenerowany numer i czeka przez określony w konfiguracji czas na zgłoszenia innych agentów. Po upływie określonego czasu każdy agent grupowy sprawdza czy jego numer był największy i jeśli tak, rozgłasza do pozostałych agentów, że jest koordynatorem. W odpowiedzi agenty zgłaszają mu swój numer użytkownika wraz ze stanem konta.

2.2 Pozostałe założenia

- dostępny jest tylko jeden typ akcji,
- każdy z agentów przy inicjalizacji losuje, jak dużą ilością pieniędzy dysponuje,
- każdy z agentów zgłasza tylko jedną ofertę na iterację.

2.3 Opis modułów

2.3.1 Serwer giełdowy

Serwer symbolizujący w symulacji giełdę będzie napisany w języku Python, prawdopodobnie z wykorzystaniem biblioteki Flask. Biblioteka ta zostanie wykorzystana do obsługiwania zapytań REST, które będą używane do komunikacji z agentami. Serwer będzie miał cztery główne zadania:

• komunikacja z agentami,

- nawiązywanie transakcji,
- $\bullet\,$ wyliczanie aktualnej ceny akcji,
- prezentacja przebiegu symulacji.

Serwer giełdy, po uruchomieniu, ustala liczbę dostępnych akcji oraz generuję historię zmian cen. Parametry te mogą być konfigurowane przez użytkownika przed uruchomieniem symulacji.

Komunikacja z agentami W celu komunikacji z agentami, serwer będzie udostępniał *API* zgodne ze specyfikacją *REST*. Dostępne będą następujące metody:

Adres	Typ	Parametry	Zwracana	Opis
			wartość	
/brokers	POST	-	ID zarejestro-	Metoda służąca
			wanego broke-	do rejestrowania
			ra	nowego agenta
				w symulacji.
/stock/price	GET	day numer iteracji	cena akcji	Metoda służąca
			w danej itera-	do pobierania
			cji	historycznej ceny
				akcji.
/stock/buy	POST	price proponowana cena,	liczba kupio-	Metoda służąca
		amount liczba akcji do ku-	nych akcji i ich	do złożenia oferty
		pienia	cena	zakupu akcji przez
				agenta.
/stock/sell	POST	price proponowana ce-	liczba kupio-	Metoda służąca
		na, amount liczba akcji	nych akcji i ich	do złożenia oferty
		do sprzedania	cena	sprzedaży akcji
				przez agenta.

Wyliczanie ceny akcji Aktualna cena akcji (w danej iteracji) będzie wyznaczana na podstawie aktualnych ofert (czyli popytu oraz podaży dla danej akcji) jako cena równowagi rynkowej.

Prezentacja przebiegu symulacji W trakcie trwania symulacji, serwer będzie udostępniał stronę internetową dostępną z poziomu przeglądarki. Będą na niej dostępne dane nt. aktualnego przebiegu symulacji, między innymi wykres ceny akcji.

2.3.2 Agent indywidualny

Strategia Jedyne informacje, jakie wpływają na decyzje o kupnie lub sprzedaży akcji przez agenta indywidualnego, to historia zmian cen akcji. W realizowanym projekcie przyjęto, że agent kupuje akcje, jeśli ich cena w ciągu ostatnich k iteracji wzrosła i sprzedaje, jeśli ich cena w ciągu ostatnich k iteracji spadła.

2.3.3 Agent grupowy

Strategia W przeciwieństwie do agentów indywidualnych agenty grupowe podejmują decyzję zarówno na podstawie informacji o zmianach cen akcji, jak i na podstawie informacji o zamiarach innych agentów grupowych. Wszystkie agenty grupowe tworzą jedną grupę, która stara się maksymalizować średni zysk przypadający na członka grupy, poprzez tworzenie baniek spekulacyjnych.

Koordynator podejmuje decyzje o tworzeniu bańki spekulacyjnej od razu po otrzymaniu kompletu informacji o członkach grupy. Wówczas rozgłasza informację o kupowaniu akcji przez k kolejnych iteracji. Po upływie k iteracji agenty otrzymują polecenie sprzedaży wszystkich posiadanych akcji. Następnie, gdy koordynator zauważy, że w ciągu ostatnich n iteracji cena akcji nie spadła bardziej niż o 5%, wysyła polecenie utworzenia kolejnej bańki spekulacyjnej itd.

Komunikacja agentów Agenty grupowe muszą się ze sobą porozumiewać po to, by:

- ustalać, kto jest koordynatorem,
- wymieniać informacje o stanach portfeli agentów,
- podejmować decyzję o kupnie lub sprzedaży.

Stąd, konieczne jest zdefiniowanie interfejsu komunikacyjnego właściwego dla tego typu agentów.

Wiadomość	Parametry	Zwracana	Opis
		wartość	
WhosMaster	losowo wy-	referencja	wiadomość przesyłana
	generowana	na koordy-	do agenta w celu uzyska-
	liczba	natora lub	nia informacji o tym, kto jest
		null	koordynatorem. Dodatkowo
			należy podać własną loso-
			wą liczbę. Jeśli koordynator
			już został wybrany, metoda
			od razu zwraca referencję
			do koordynatora. Jeśli pro-
			cedura wyboru koordynatora
			trwa, metoda nie zwraca
			żadnej wartości.
ImMaster	-	-	Wiadomość przesyłana
			do agenta w celu przeka-
			zania mu informacji o nowym
			koordynatorze.
WhatsYourAccountState	-	ilość pieniędzy	Wiadomość przesyłana
			do agenta w celu uzyska-
			nia informacji o stanie jego
			portfela.

Platforma MAS Do implementacji agentów postanowiono wykorzystać język Scala. Do zapewnienia komunikacji pomiędzy agentami grupowymi wykorzystana zostanie platforma Akka.