1

Registr je délky 4 a jsme nad \mathbb{Z}_2 , takže nabývá 2^4 různých stavů.

2

Známe tedy i schéma v Galoisově tvaru, takže stačí dopočítat vnitřní stavy (x_0,\ldots,x_4) . Víme, že prvních 5 bitů výstupu jsou 11111. Vždy se tedy k počátečním stavům přičte jednička při posunu nebo ne. Máme tedy rovnice:

$$s_0 = 1 = x_0 \Rightarrow x_0 = 1$$

$$s_1 = 1 = x_1 + 1 \Rightarrow x_1 = 0$$

$$s_2 = 1 = x_2 + 1 \Rightarrow x_2 = 0$$

$$s_3 = 1 = x_3 + 1 + 1 \Rightarrow x_3 = 1$$

$$s_4 = 1 = x_4 + 1 + 1 + 1 \Rightarrow x_4 = 0$$

Počáteční stav v Galoisově módu tedy je 10010. $x^5 + x^4 + x^2 + x + 1$ je sice ireducibilní nad \mathbb{Z}_2 ale 1 (primitivní prvek \mathbb{Z}_2) není kořenem, takže nemůžeme použít větu. Každopádně po implementaci registru zjistíme, že perioda je stejně ta největší možná a to $2^5 - 1 = 31$.

3

Pokud je $x_1=0$, tak výsledek odpovídá součinu $x_2\cdot x_3$. Pokud je $x_1=1$, tak výsledek odpovídá skoro (až na poslední řádek, ale to se opraví přičtením již zjistěného $x_2\cdot x_3$) součtu x_2+x_3 , takže kandidátem na polynom je $x_1\cdot (x_2+x_3)+x_2\cdot x_3=x_1\cdot x_2+x_1\cdot x_3+x_2\cdot x_3$ a ten funguje.