Transformada de Laplace

Coordinación de Ecuaciones Diferenciales y Métodos Numéricos, DMCC

• Tema 1: Definición y propiedades.

DMCC, Facultad de Ciencia, USACH

Definición y propiedades

Definición: Sea $f:[0,+\infty[\to \mathbb{R}$, entonces se dice que la integral

$$\int_0^\infty e^{-st} f(t) dt = \lim_{R \to \infty} \int_0^R e^{-st} f(t) dt$$

es la Transformada de Laplace de f y se denota $\mathcal{L}(f(t))(s)$, siempre que la integral converja para algunos valores de s. Notar que $\mathcal{L}(f(t))(s) = F(s)$ es una función de s.

Teorema: \mathcal{L} es lineal, es decir dadas $f, g: [0, +\infty[\longrightarrow \mathbb{R}$ tales que F(s) y G(s) existen, $\forall a, b \in \mathbb{R}$ se tiene

$$\mathcal{L}(af(t) + bg(t))(s) = a\mathcal{L}(f(t))(s) + b\mathcal{L}(g(t))(s)$$

Ejemplo 1.:
$$\mathcal{L}(1)(s) = \frac{1}{s}$$
 $\forall s > 0$.

En efecto si s>0

$$\int_0^R e^{-st} dt = -\frac{1}{s} (e^{-sR} - 1),$$

lo que implica

$$\mathcal{L}(1)(s) = \lim_{R \to +\infty} \int_0^R e^{-st} dt = \lim_{R \to +\infty} \left[-\frac{1}{s} e^{-Rs} + \frac{1}{s} \right] = \frac{1}{s} \quad \forall s > 0.$$

Observe que $\mathcal{L}(1)(s)$ no existe para $s \leq 0$. Así $\mathcal{L}(1)(s)$ sólo está definida para s > 0.

Ejemplos del cálculo de T.L.

Ejemplo 2.:
$$\mathcal{L}(t)(s) = \frac{1}{s^2} \quad \forall s > 0.$$

Integrando por partes y usando $\lim_{t\to\infty} te^{-st} = 0$, si s > 0, tenemos

$$\begin{split} \mathcal{L}(t)(s) & = & \frac{-te^{-st}}{s} \left| \int\limits_0^\infty + \frac{1}{s} \int\limits_0^\infty e^{-st} \, dt \right. \\ & = & \frac{1}{s} \mathcal{L}(1) = \frac{1}{s^2} \qquad \forall s > 0 \; . \end{split}$$

Ejemplo 3.: $\mathcal{L}(e^t)(s) = \frac{1}{s} \quad \forall s > 1.$

Para
$$R > 0$$

$$\int_0^R e^{-st} e^t dt = \int_0^R e^{(1-s)t} dt = \frac{1}{1-s} e^{(1-s)t} \Big|_0^R = \frac{1}{1-s} \left[e^{(1-s)R} - 1 \right] .$$

$$\therefore \lim_{R \to +\infty} \int_0^R e^{-st} e^t dt = \frac{1}{s-1} + \frac{1}{1-s} \lim_{R \to +\infty} e^{(1-s)R} = \frac{1}{s-1} + 0 \quad \forall s > 1 .$$

$$\therefore \mathcal{L}(e^t)(s) = \frac{1}{s-1} \quad \forall s > 1 .$$

Transformadas de algunas funciones

Transformadas de algunas funciones básicas:

2
$$\mathcal{L}(t^n)(s) = \frac{n!}{s^{n+1}}, n = 1, 2, ... \forall s > 0$$

Definición y propiedades

Definición: Sea $f:[0,+\infty[\longrightarrow \mathbb{R}$ continua. Decimos que f es de orden exponencial b (orden exp. b) si existe M > 0 tal que $|f(t)| < Me^{bt} \quad \forall t > 0$.

Teorema (Existencia de la T.L.): Sea $f:[0,+\infty[\longrightarrow \mathbb{R} \text{ continua por tramos})$ y de orden exp. b. Entonces $\mathcal{L}(f(t))(s)$ existe $\forall s > b$.

Demostración: Estudiaremos la convergencia absoluta que implica la convergencia, entonces es suficiente probar que la integral

$$\int_0^\infty |e^{-st}f(t)|dt$$

existe para s>b. Como f es de orden exponencial, existe M>0 tal que $|f(t)|< Me^{bt}$ implica que

$$\int_0^\infty |e^{-st}f(t)|dt \le \int_0^\infty |e^{-st}Me^{bt}|dt = M \int_0^\infty e^{-(s-b)t}dt = \frac{M}{s-b}$$

si s > b. Hemos mostrado que la integral impropia permanece acotada luego existe para s > b.

Observación: Notar que

$$|F(s)| = |\mathcal{L}(f(t))(s)| \le \frac{M}{s-b}$$

luego

$$\lim_{s\to\infty} F(s) = 0.$$

4D + 4B + 4B + B + 900

Definición y propiedades

Teorema (Unicidad de la T.L.): Si $f,g:[0,+\infty[\longrightarrow \mathbb{R} \text{ son continuas } y \mathcal{L}(f(t))(s) = \mathcal{L}(g(t))(s) \ \forall s > s_0,$ entonces $f(t) = g(t) \ \forall t > 0$.

Usando este teorema podemos definir el operador inverso \mathcal{L}^{-1} de la siguiente forma:

$$\mathcal{L}^{-1}(F(s))(t) = f(t) \iff \mathcal{L}(f(t))(s) = F(s).$$

Observaciones: \mathcal{L}^{-1} es un operador lineal; es decir, $\forall a, b \in \mathbb{R}$ se tiene

$$\mathcal{L}^{-1}(aF(s)+bG(s))(t)=a\mathcal{L}^{-1}(F(s))(t)+b\mathcal{L}^{-1}(G(s))(t)\,.$$

Transformadas inversas de algunas funciones:

2
$$\mathcal{L}^{-1}(\frac{n!}{s^{n+1}}) = t^n, \ n = 1, 2, ...$$

3
$$\mathcal{L}^{-1}(\frac{1}{s-a}) = e^{at}$$

$$6 \mathcal{L}^{-1}(\frac{s}{s^2-k^2}) = \cosh(kt)$$

Ejemplo:

Calcular

$$\mathcal{L}^{-1}\left(\frac{1}{s^2(s^2+4)}\right)(t).$$

Usando la linealidad de la transformada inversa se tiene

$$\begin{split} \mathcal{L}^{-1}\left(\frac{1}{s^2(s^2+4)}\right)(t) &=& \frac{1}{4}\,\mathcal{L}^{-1}\left(\frac{1}{s^2}-\frac{1}{s^2+4}\right)(t) \\ &=& \frac{1}{4}\,\mathcal{L}^{-1}\left(\frac{1}{s^2}\right)(t)-\frac{1}{8}\,\mathcal{L}^{-1}\left(\frac{2}{s^2+4}\right)(t) \\ &=& \frac{1}{4}\,t-\frac{1}{8}\,\sin{(2t)}. \end{split}$$

Propiedades

Los siguientes resultados nos permiten calcula la T.L. de $e^{at}f(t)$ y $t^nf(t)$ conociendo $\mathcal{L}(f(t))(s)=F(s)$.

Teorema: Primer Teorema de Traslación

Si $\mathcal{L}(f(t))(s) = F(s)$ y a es cualquier número real, entonces

$$\mathcal{L}(e^{at}f(t))(s) = \mathcal{L}(f(t))(s-a) = F(s-a),$$

o equivalentemente si $\mathcal{L}^{-1}(F(s))(t) = f(t)$, entonces

$$\mathcal{L}^{-1}(F(s-a))(t)=e^{at}f(t).$$

Demostración: Es inmediata de la definición de T.L.

$$\mathcal{L}(e^{at}f(t))(s) \quad = \quad \int_0^\infty e^{-st}e^{at}f(t)dt = \int_0^\infty e^{-(s-a)t}f(t)dt = \mathcal{L}(f(t))(s-a).$$

Propiedades

Ejemplos:

$$\mathcal{L}(e^{6t}t^3)(s) = \mathcal{L}(t^3)(s-6) = \frac{6}{(s-6)^4},$$

•

$$\mathcal{L}(e^{-2t}\cos(4t))(s) = \mathcal{L}(\cos(4t))(s+2) = \frac{s+2}{(s+2)^2+16},$$

•

$$\begin{split} \mathcal{L}^{-1}\left(\frac{1}{(s-1)^3} + \frac{1}{s^2 + 2s - 8}\right)(t) &= & \mathcal{L}^{-1}\left(\frac{1}{(s-1)^3}\right) + \mathcal{L}^{-1}\left(\frac{1}{(s+1)^2 - 9}\right) \\ &= & \frac{1}{2}\mathcal{L}^{-1}\left(\frac{2}{(s-1)^3}\right) + \frac{1}{3}\mathcal{L}^{-1}\left(\frac{3}{(s+1)^2 - 9}\right) \\ &= & \frac{1}{2}e^tt^2 + \frac{1}{3}e^{-t}\sinh(3t). \end{split}$$

Propiedades

Teorema: Derivadas de transformadas

Si
$$\mathcal{L}(f(t))(s) = F(s)$$
 y $n = 1, 2, ...$, entonces

$$\mathcal{L}(t^n f(t))(s) = (-1)^n \frac{d^n}{ds^n} F(s).$$

Notar que, para el caso de la primera derivada

$$F'(s) = \frac{d}{ds} \int_0^\infty e^{-st} f(t) dt = \int_0^\infty (-t) e^{-st} f(t) dt = -\int_0^\infty e^{-st} (t f(t)) dt = -\mathcal{L}(t f(t))(s).$$

Ejemplos

•

•

$$\mathcal{L}(t \sin(3t))(s) = -\frac{d}{ds}\mathcal{L}(\sin(3t))(s)$$
$$= -\frac{d}{ds}\left(\frac{3}{s^2+9}\right) = \frac{6s}{(s^2+9)^2}$$

$$\mathcal{L}(t e^{-t} \cos(t))(s) = -\frac{d}{ds} \mathcal{L}(e^{-t} \cos(t))(s)$$
$$= -\frac{d}{ds} \left(\frac{s+1}{(s+1)^2 + 1}\right) = \frac{(s+1)^2 - 1}{((s+1)^2 + 1)^2}$$