INT201 Decision, Computation and Language

Lecture 5 – Regular Languages (2)

Dr Yushi Li

Kleene's Theorem

Let L be a language. Then L is **regular** if and only if there exists a regular expression that describes L.

- If a language is described by a regular expression, then it is regular.
- If a language is regular, then it has a regular expression.

Proof Convert a regular expression *R* into a NFA M

1st case. If $R = \epsilon$, then $L(R) = \{\epsilon\}$. The NFA is $M = (\{q\}, \Sigma, \delta, q, \{q\})$ where:

$$\delta(q, a) = \emptyset$$
 for all $a \in \Sigma_{\epsilon}$

2nd case. If $R = \emptyset$, then $L(R) = \emptyset$. The NFA is $M = (\{q\}, \Sigma, \delta, q, \emptyset)$ where:

$$\delta(q, a) = \emptyset$$
 for all $a \in \Sigma_{\epsilon}$

Proof

3rd case. If R = a for $a \in \Sigma$, then $L(R) = \{a\}$. The NFA is $M = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$

where:

$$\delta(q_1, a) = \{q_2\}$$

$$\delta(q_l, b) = \emptyset \text{ for all } b \in \Sigma_{\epsilon} \setminus \{a\}$$

$$\delta(q_2, b) = \emptyset$$
 for all $b \in \Sigma_{\epsilon}$

Proof

4th case (union). If $R = (R_1 \cup R_2)$ and

- $L(R_I)$ has NFA M_1
- $L(R_2)$ has NFA M_2

Then $L(R_1) = L(R_1) \cup L(R_2)$ has NFA as:

Proof

5th case (concatenation). If $R = R_1 R_2$ and

- $L(R_I)$ has NFA M_1
- $L(R_2)$ has NFA M_2

Then $L(R_1) = L(R_1) L(R_2)$ has NFA as:

Proof

6th case (Kleene star). If $R = (R_I)^*$ and $L(R_I)$ has NFA N, then $L(R) = (L(R_I))^*$ has NFA M as:

Example

Given a regular expression $R = (ab \cup a)^*$, where the alphabet is $\{a, b\}$. Prove that this regular expression describes a regular language, by constructing a NFA that accepts L(R).

Example

Convert DFA into regular expression

Every DFA M can be converted to a regular expression that describes the language L(M).

Generalized NFA (GNFA)

A GNFA can be defined as a 5-tuple, $(Q, \Sigma, \delta, \{s\}, \{t\})$, consisting of

- a finite set of states Q;
- a finite set called the alphabet Σ;
- a transition function $(\delta: (Q \setminus \{t\}) \times (Q \setminus \{s\}) \rightarrow R)$;
- a start state $(s \in Q)$;
- an accept state $(t \in Q)$;

where R is the collection of all regular expressions over the alphabet Σ .

Iterative procedure for converting a DFA M = $(Q, \Sigma, \delta, q, F)$ into a regular expression:

- 1. Convert DFA M = $(Q, \Sigma, \delta, q, F)$ into equivalent GFNA G:
- Introduce new start state s
- Introduce new start state t
- Change edge labels into regular expressions
 e.g., "a, b" becomes "a ∪ b"
- 2. Iteratively eliminate a state from GNFA G until only 2 states remaining: start and accept.
- Need to take into account all possible previous paths.
- Never eliminate new start state s or new accept state t.

Example

Convert the given DFA into regular expression

Example

Convert the given DFA into regular expression

Exercise

M = $(Q, \Sigma, \delta, q_0, F)$, where $Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}$, and δ is given as:

Convert it to a regular expression.

Exercise

Exercise

A tool that can be used to prove that certain languages are not regular. This theorem states that all regular languages have a special property.

This property states that all strings in the language can be "pumped" if they are at least as long as a certain special value, called the **pumping length**. That means each such string contains a section that can be repeated any number of times with resulting string remaining in the language

- If a language L is regular, it always satisfies pumping lemma. If there exists at least one string made from pumping which is not in L, then L is surely not regular.
- The opposite may not be true. If pumping lemma holds, it does not mean that the language is regular.

Example

DFA with $\Sigma = \{0, 1\}$ for language A.

$$Q = \{q_1, q_2, q_3, q_4, q_5\}$$

For any string s with $|s| \ge 5$, guaranteed to visit some state twice by the **pigeonhole principle**.

String s = 0011011 is accepted by DFA, i.e., $s \in A$

 q_2 is first state visited twice.

Using q_2 , divide string s into 3 parts x, y, z such that s = xyz.

- x = 0, the symbols read until first visit to q_2 .
- y = 0110, the symbols read from first to second visit to q_2 .
- z = 11, the symbols read after second visit to q_2 .

DFA accepts string

$$s = \underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{11}_{z}$$

DFA also accepts string

$$xyyz = \underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{11}_{z},$$

$$xyyyz = \underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{11}_{z},$$

$$xz = \underbrace{0}_{x} \underbrace{11}_{z}.$$

String $xy^iz \in A$ for each $i \ge 0$.

Let A be a regular language. Then there exists an integer $p \ge 1$, called the pumping length, such that the following holds: Every string s in A, with $|s| \ge p$, can be written as s = xyz, such that

1.
$$y \neq \epsilon$$
 (i.e., $|y| \ge 1$),

- 2. $|xy| \le p$, and
- 3. for all $i \ge 0$, $xy^iz \in A$.

Example

Language $A=\{\ 0^n1^n\ |\ n\geq 0\ \}$ is Nonregular

Proof

Example

Language $A=\{\ 0^n1^n\ |\ n\geq 0\ \}$ is Nonregular

Proof

