Barium

From Wikipedia, the free encyclopedia

Barium is a chemical element with symbol **Ba** and atomic number 56. It is the fifth element in Group 2, a soft silvery metallic alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Its hydroxide, known in pre-modern history as baryta, does not occur as a mineral, but can be prepared by heating barium carbonate.

The most common naturally occurring minerals of barium are barite (barium sulfate, $BaSO_4$) and witherite (barium carbonate, $BaCO_3$), both insoluble in water. The barium name originates from the alchemical derivative "baryta", from Greek $\beta\alpha\rho\dot{}$ (barys), meaning "heavy." **Baric** is the adjective form of barium. Barium was identified as a new element in 1774, but not reduced to a metal until 1808 with the advent of electrolysis.

Barium has few industrial applications. Historically, it was used as a getter for vacuum tubes. It is a component of YBCO (high-temperature superconductors) and electroceramics, and is added to steel and cast iron to reduce the size of carbon grains within the microstructure. Barium compounds are added to fireworks to impart a green color. Barium sulfate is used as an insoluble additive to oil well drilling fluid, as well as in a purer form, as X-ray radiocontrast agents for imaging the human gastrointestinal tract. The soluble barium ion and soluble compounds are poisonous, and have been used as rodenticides.

Characteristics

Physical properties

Barium is a soft, silvery-white metal, with a slight golden shade when ultrapure. The silvery-white color of barium metal rapidly vanishes upon oxidation in air yielding a dark gray oxide layer. Barium has a medium specific

Barium, 56Ba

General properties

Name, symbol barium, Ba

Appearance silvery gray; with a pale yellow

tint^[1]

Barium in the periodic table

Atomic number (Z) 56

Group, block group 2 (alkaline earth metals),

s-block

Period period 6

Element category □ alkaline earth metals

Standard atomic weight (\pm) (A_r)

 $137.327(7)^{[2]}$

Electron configuration

[Xe] 6s²

per shell 2, 8, 18, 18, 8, 2

Physical properties

Phase solid

 Melting point
 1000 K (727 °C, 1341 °F)

 Boiling point
 2118 K (1845 °C, 3353 °F)

Density near r.t.

weight and good electrical conductivity. Ultrapure barium is very difficult to prepare, and therefore many properties of barium have not been accurately measured yet.[4]:2

At room temperature and pressure, barium has a body-centered cubic structure, with a barium-barium distance of 503 picometers, expanding with heating at a rate of approximately 1.8×10^{-5} /°C.^{[4]:2} It is a very soft metal with a Mohs hardness of 1.25.[4]:2 Its melting temperature of 1,000 K (730 °C: 1.340 °F)^{[5]:4-43} is intermediate between those of the lighter strontium (1,050 K or 780 °C or $1.430 \, ^{\circ}\text{F})^{[5]:4-86}$ and heavier radium (973 K or 700 °C or 1,292 °F); $^{[5]:4-78}$ however, its boiling point of 2.170 K (1,900 °C; 3,450 °F) exceeds that of strontium (1,655 K or 1,382 °C or

2,519 °F). [5]:4-86 The density $(3.62 \text{ g} \cdot \text{cm}^{-3})^{[5]:4-43}$ is again intermediate between those of strontium $(2.36 \text{ g}\cdot\text{cm}^{-3})^{[5]:4-86}$ and radium $(\sim 5 \text{ a} \cdot \text{cm}^{-3}).^{[5]:4-78}$

Chemical reactivity

Barium is chemically similar to magnesium, calcium, and strontium, but even more reactive. It always exhibits the oxidation state of +2.^{[4]:2} Reactions with chalcogens are highly exothermic (release energy); the reaction with oxygen or air occurs at room temperature, and therefore barium is stored under oil or in an inert atmosphere. [4]:2 Reactions with other nonmetals, such as carbon, nitrogen, phosphorus, silicon, and hydrogen, are generally exothermic and proceed upon heating.[4]:2-3 Reactions with water and alcohols are very exothermic and release hydrogen gas:[4]:3

Ba + 2 ROH \rightarrow Ba(OR)₂ + H₂ \(\tau\) (R is an alkyl or a hydrogen atom)

				_
~	г 1	/	ı	
٦.	ור	a,	Cr	m-
				11

when liquid, at m.p. 3.338 a/cm^3

7.12 kl/mol Heat of fusion 142 kl/mol Heat of

vaporization

Molar heat 28.07 I/(mol·K)

capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	911	1038	1185	1388	1686	2170

Atomic properties

Oxidation states +2, +1 (a strongly basic oxide)

Pauling scale: 0.89 **Electronegativity** 1st: 502.9 kJ/mol Ionization energies 2nd: 965.2 kJ/mol

3rd: 3600 kl/mol

empirical: 222 pm **Atomic radius**

Covalent radius 215±11 pm Van der Waals

radius

268 pm

Miscellanea

body-centered cubic (bcc) **Crystal structure**

Speed of sound 1620 m/s (at 20 °C)

thin rod

20.6 µm/(m·K) (at 25 °C) **Thermal**

expansion

18.4 W/(m·K)

Thermal conductivity

332 nΩ·m (at 20 °C)

Electrical resistivity Barium reacts with ammonia to form complexes such as $Ba(NH_3)_6$. [4]:3

The metal is readily attacked by most acids. Sulfuric acid is a notable exception because passivation stops the reaction by forming the insoluble barium sulfate on the surface.^[6] Barium combines with several metals, including aluminium, zinc, lead, and tin, forming intermetallic phases and alloys.^[7]

Compounds

Barium salts are typically white when solid and colorless when dissolved, and barium ions provide no specific coloring.^[8] They are denser than the strontium or calcium analogs, except for the halides (see table; zinc is given for comparison).

Barium hydroxide ("baryta") was known to alchemists, who produced it by heating barium carbonate. Unlike calcium hydroxide, it absorbs very little ${\rm CO_2}$ in aqueous solutions and is therefore insensitive to atmospheric fluctuations. This property is used in calibrating pH equipment.

Volatile barium compounds burn with a green to pale green flame, which is an efficient test to detect a barium compound. The color results from spectral lines at 455.4, 493.4, 553.6, and 611.1 nm.^{[4]:3}

Organobarium compounds are a growing field of knowledge: recently discovered are dialkylbariums and alkylhalobariums.^{[4]:3}

Magnetic ordering	paramagnetic ^[3]
Young's modulus	13 GPa
Shear modulus	4.9 GPa
Bulk modulus	9.6 GPa
Mohs hardness	1.25
CAS Number	7440-39-3
	History
Discovery	Carl Wilhelm Scheele (1772)
First isolation	Humphry Davy (1808)

Most stable isotopes of barium

iso	NA	half-life	DM	DE (MeV)	DP
¹³⁰ Ba	0.11%	$(0.5-2.7)\times10^{21}$ y	33	2.620	¹³⁰ Xe
¹³² Ba	0.10%	is stable with 76 neutrons			
¹³³ Ba	syn	10.51 y	ε	0.517	¹³³ Cs
¹³⁴ Ba	2.42%	is stable with 78 neutrons			
¹³⁵ Ba	6.59%	is stable with 79 neutrons			
¹³⁶ Ba	7.85%	is stable with 80 neutrons			
¹³⁷ Ba	11.23%	is stable wi	th 82	L neutrons	
¹³⁸ Ba	71.70%	is stable wi	th 82	2 neutrons	

Isotopes

Barium found in the Earth's crust is a mixture of seven primordial nuclides, barium-130, 132, and 134 through 138.^[9] Barium-130 undergoes very slow radioactive decay to xenon-130 by double beta plus decay, and barium-132 theoretically decays like xenon-132, with half-lives a thousand times greater than the age of the Universe.^[10] The abundance is \sim 0.1% that of natural barium.^[9] The radioactivity of these isotopes is so weak that they pose no danger to life.

Of the stable isotopes, barium-138 composes 71.7% of all barium, and the lighter the isotope, the less abundant. [9]

In total, barium has about 50 known isotopes, ranging in mass between 114 and 153. The most stable metastable isotope is barium-133 with a half-life of approximately 10.51 years. Five other isotopes have half-lives longer than a day. [10] Barium also has 10 meta states, out of which barium-133m1 is the most stable with a half-life of about 39 hours. [10]

Source

Wikipedia: Barium (https://en.wikipedia.org/wiki/Barium)