GENERALITIES ON ORBIFOLD COHOMOLOGY AND TORIC DM STACKS

PATRICK LEI

ABSTRACT. I will explain various technicalities in Gromov-Witten theory for Deligne-Mumford stacks and how to construct toric Deligne-Mumford stacks from (extended) stacky fans.

CONTENTS

1. Orbifold Gromov-Witten theory	1
1.1. Moduli of stable maps	2
1.2. Quantum cohomology	3
2. Toric Deligne-Mumford stacks	4
2.1. Orbifold cohomology	4
3. Gamma-integral structure	5

1. Orbifold Gromov-Witten Theory

Let X be a smooth and separated Deligne-Mumford stack of finite type over C.

Definition 1.1. The *inertia stack* of X is the fiber product in the diagram

$$\begin{array}{ccc}
IX & \longrightarrow & X \\
\downarrow & & \downarrow \Delta \\
X & \xrightarrow{\Delta} & X \times X.
\end{array}$$

More concretely, we may think about |X| as parameterizing pairs (x, g), where $x \in X$ and $g \in Aut(x)$. There is another description of IX if X lives over C. In general, IX is disconnected. We will write

$$IX = \bigsqcup_{i \in I} X_i.$$

It also has an important morphism inv: $IX \to IX$ given by $(x,g) \mapsto (x,g^{-1})$.

Definition 1.2. A morphism $X \to Y$ of algebraic stacks is *representable* if for all schemes S and morphisms $S \to Y$, the fiber product $X \times_S Y$ is an algebraic space.

Theorem 1.3. Let

$$I_{\mu}X \coloneqq \bigsqcup_{r\geqslant 0} Hom_{rep}(B\mu_r, X)$$

Date: April 4, 2024.

PATRICK LEI

denote the stack of representable morphisms from classifying stacks of roots of unity to X (the cyclotomic inertia stack). Then $I_u X \simeq IX$.

We need to make one more definition, which will appear as a degree shift on cohomology. Let $(x,g) \in X_i$. Because $\langle g \rangle \subset \operatorname{Aut}(x)$ is cyclic, there is a decomposition

$$T_x X = \bigoplus_{0 \leqslant \ell < r_i} V_\ell,$$

where V_ℓ is the eigenspace with eigenvalue $e^{2\pi\sqrt{-1}\frac{\ell}{r_i}}$ and r_i is the order of g. Then the function

$$age := \frac{1}{r_i} \sum_{0 \le \ell < r_i} \ell \cdot dim \, V_{\ell}$$

is constant on X_i , so we denote its value by $age(X_i)$.

Recall that by the Keel-Mori theorem, X (which has finite inertia) has a coarse moduli space |X|, which is an algebraic space satisfying two properties:

- The morphism π: X → |X| is bijective on k-points whenever k is an algebraically closed field;
- |X| is initial for morphisms from X to any algebraic space.

From now on, we will assume that |X| is quasiprojective, and in particular that it is a scheme.

1.1. Moduli of stable maps.

Definition 1.4. The moduli space of stable maps $\overline{\mathcal{M}}_{q,n}(X,\beta)$ parameterizes objects

$$(C,\{\Sigma_i\}) \xrightarrow{f} X$$

$$\downarrow$$

$$T,$$

where

2

- (1) C is a prestable balanced twisted curve of genus g. This means that C has stacky structure only at nodes and marked points, and the nodes are formally locally $[(\mathbb{C}[x,y]/xy)/\mu_r]$, where μ_r acts by $\zeta(x,y) = (\zeta x, \zeta^{-1}y)$;
- (2) $\Sigma_i \subset C$ is an étale cyclotomic gerbe over T with a trivialization for all i;
- (3) f: C \rightarrow X is representable and the induced morphism between coarse moduli spaces is a stable map of degree β with n marked points.

We see that $\overline{\mathbb{M}}_{g,n}(X,\beta)$ has evaluation maps $\operatorname{ev}_i \colon \overline{\mathbb{M}}_{g,n}(X,\beta) \to \operatorname{IX}$. It is also disconnected, with the connected components being indexed by components of IX. Let

$$\overline{\mathbb{M}}_{g,n}(X,\beta,i_1,\ldots,i_n)\coloneqq \bigcap_{j=1}^n \operatorname{ev}_j^{-1}(X_{i_j}).$$

Then

$$\overline{\mathbb{M}}_{g,n}(X,\beta) = \bigsqcup_{\mathfrak{i}_1,\ldots,\mathfrak{i}_n} \overline{\mathbb{M}}_{g,n}(X,\beta,\mathfrak{i}_1,\ldots,\mathfrak{i}_n).$$

Each component has a virtual fundamental class

$$[\overline{\mathbb{M}}_{g,n}(X,\beta,i_1,\ldots i_n)]^{vir}\in H_*(\overline{\mathbb{M}}_{g,n}(X,\beta,i_1,\ldots,i_n),Q)$$

of virtual dimension

$$\int_{\beta} c_1(X) + (1-g)(\dim X - 3) + n - \sum_{j=1}^{n} age(X_{i_j}).$$

given by the relative perfect obstruction theory $(R\pi_*f^*TX)^{\vee}$, where $\pi\colon C\to \overline{\mathbb{M}}_{g,n}(X,\beta)$ is the universal curve, over the moduli stack $\mathfrak{M}_{g,n}^{tw}$ of prestable twisted curves. Because we chose to work with trivialized gerbe markings, we need to multiply the virtual fundamental class as follows. Note that the j-th marked point is

$$\Sigma_{j} \cong \overline{\mathcal{M}}_{g,n}(X,\beta,i_{1},\ldots,i_{n}) \times B\mu_{r_{i_{1}}}.$$

Here, if $x = [B\mu_r \to X] \in X_{i_j} \subset IX$, then $r_{i_j} = r$. Then set

$$[\overline{\mathbb{M}}_{g,n}(X,\beta,\mathfrak{i}_1,\ldots\mathfrak{i}_n)]^w \coloneqq \left(\prod_{j=1}^n r_{\mathfrak{i}_j}\right) [\overline{\mathbb{M}}_{g,n}(X,\beta,\mathfrak{i}_1,\ldots\mathfrak{i}_n)]^{vir}.$$

Now consider the morphism $p\colon \overline{\mathbb{M}}_{g,n}(X,\beta) \to \overline{\mathbb{M}}_{g,n}(|X|,\beta)$ given by taking the coarse moduli space. Let $C_{|X|} \to \overline{\mathbb{M}}_{g,n}(|X|,\beta)$ be the universal curve and $\sigma_{i,|X|}$ be the marked points. Then the descendant classes¹ are defined to be

$$\psi_{j} \coloneqq \mathfrak{p}^{*} c_{1}(\sigma_{j}^{*} \omega_{C_{|X|}/\overline{\mathbb{M}}_{q,n}(|X|,\beta)}).$$

1.2. **Quantum cohomology.** We are now able to define Gromov-Witten invariants. Let $\alpha_j \in H^{p_j}(X_{i_j}, C)$. Then define

$$\left\langle \alpha_1 \psi^{k_1}, \dots, \alpha_n \psi^{k_n} \right\rangle_{g,n,\beta}^X \coloneqq \int_{[\overline{\mathbb{M}}_{g,n}(X,\beta,i_1,\dots,i_n)]^w} \prod_{j=1}^n \mathrm{ev}_j^* \, \alpha_j \psi_j^{k_j}.$$

We are still able to form generating series \mathcal{F}_g , J_X , ... as before, and the invariants satisfy the string, dilaton, and divisor equations (although we have to be careful that the marked point we delete is a scheme point), so the orbifold Gromov-Witten theory has a Lagrangian cone $\mathcal{L}_X \subset \mathcal{H}$.

The orbifold Poincaré pairing is defined by the formula

$$(\alpha, \beta) := \int_{\mathrm{IX}} \alpha \cup \mathrm{inv}^* \beta,$$

where \cup denotes the usual cup product. This is well-defined because of the formula

$$age(X_i) + age(X_{inv(i)}) = dim X - dim X_i$$

when X is proper. When X is not proper, we will assume we are working equivariantly. Now we may define the *quantum product* by the formula

$$(a \star_{\tau} b, c) := \sum_{n,\beta} \frac{Q^{\beta}}{n!} \langle a, b, c, \tau, \dots, \tau \rangle_{0,n+3,\beta}^{X}$$

for $a, b, c, \tau \in H^*(IX, \mathbb{C})$. Restricting to the degree 0 part and setting $\tau = 0$, we obtain the *orbifold cup product*, which is given by

$$(a \star b, c) = \langle a, b, c \rangle_{0.3.0}^{X}$$

¹Most people call these $\overline{\psi}$, but I am extremely lazy.

PATRICK LEI

Denote $H^*_{CR}(X) := (H^*(IX, \mathbb{C}), \cup)$. Note that this product is graded for the grading $deg(\mathfrak{a}) = \mathfrak{p} + 2 \, age(X_\mathfrak{i})$ for $\mathfrak{a} \in H^p(X_\mathfrak{i})$. Using the quantum product, we may define the quantum connection and its fundamental solution.

2. Toric Deligne-Mumford Stacks

We will assume the reader is familiar with the fan presentation of a toric variety. If you are not, there are many references.

Definition 2.1. An *extended stacky fan* is a quadruple $\Sigma = (N, \Sigma, \beta, S)$ of

- (1) A finitely generated abelian group N of rank n;
- (2) A rational simplicial fan Σ in $N_{\mathbb{R}} = N \otimes \mathbb{R}$;
- (3) A homomorphism $\beta \colon \mathbb{Z}^m \to \mathbb{N}$. We will write $b_i = \beta(e_i) \in \mathbb{N}$ for the image of the standard basis vector $e_i \in \mathbb{Z}^m$ and \overline{b}_i for its image in $\mathbb{N}_{\mathbb{R}}$;
- (4) A subset $S \subset \{1, ..., m\}$

satisfying the following conditions:

- (1) The set $\Sigma(1)$ of 1-dimensional cones is exactly the set $\{\mathbb{R}_{\geqslant 0} \cdot \overline{b}_i \mid i \notin S\}$;
- (2) For all $i \in S$, $\overline{b}_i \in |\Sigma|$.

We will now assume that $|\Sigma|$ is convex and full-dimensional and, that there is a strictly convex piecewise linear function $f\colon |\Sigma|\to \mathbb{R}$ which is linear on each cone, and that β is surjective. From this data, we will now obtain a GIT presentation. Define \mathbb{L} by the exact sequence

$$0 \to \mathbb{L} \to \mathbb{Z}^m \xrightarrow{\beta} N \to 0.$$

Then define $K \coloneqq \mathbb{L} \otimes \mathbb{C}^{\times}$. Then define $D_i \in \mathbb{L}^{\vee}$ to be the image of the i-th standard basis vector in $(\mathbb{Z}^m)^{\vee}$ under the last arrow in the exact sequence

$$0 \to N^{\vee} \to (\mathbb{Z}^m)^{\vee} \to \mathbb{L}^{\vee}$$

Finally, set

4

$$A_{\omega} = \{ I \subset \{1, \dots, m\} \mid S \subset I, \sigma_{\overline{I}} \text{ is a cone of } \Sigma \}.$$

Choose a stability condition

$$\omega \in C_{\omega} \coloneqq \bigcup_{I \in \mathcal{A}_{\omega}} \left\{ \sum_{i \in I} \alpha_i D_i \mid \alpha_i \in \mathbb{R}_{>0} \right\}.$$

Then we define

$$X_{\Sigma} := [(\mathbb{C}^{\mathfrak{m}})^{\mathfrak{s}}/K].$$

The ample cone is $C'_{\omega} \subset \mathbb{L}_{\mathbb{R}}^{\vee} / \sum_{i \in S} \mathbb{R} D_i \cong H^2(X_{\Sigma}, \mathbb{R})$, which is defined in the same way as C_{ω} after deleting S from the extended stacky fan, and the cone of effective curve classes is its dual.

2.1. **Orbifold cohomology.** First, we will describe the equivariant cohomology of X_{Σ} . Let $\mathfrak{Q} = (\mathbb{C}^{\times})^{\mathfrak{m}}/K$. Then if $\mathfrak{u}_{\mathfrak{i}}$ is Poincaré dual to $(\mathfrak{x}_{\mathfrak{i}} = \mathfrak{0} \subset (\mathbb{C}^{\mathfrak{m}})^{\mathfrak{s}})/K$, we have

$$H^*_{\mathfrak{Q}}(X_{\boldsymbol{\varSigma}},\mathbb{C})=H^*_{\mathfrak{Q}}(pt,\mathbb{C})[\mathfrak{u}_1,\ldots,\mathfrak{u}_{\mathfrak{m}}]/(\mathfrak{I}+\mathfrak{J}),$$

where

$$\begin{split} \mathfrak{I} &\coloneqq \left\langle \chi - \sum_{i=1}^m \langle \chi, b_i \rangle u_i \mid \chi \in \mathsf{N}_{\mathbb{C}}^{\vee} \right\rangle \\ \mathfrak{J} &\coloneqq \left\langle \prod_{i \notin I} u_i \mid I \notin \mathcal{A}_{\omega} \right\rangle. \end{split}$$

There is a combinatorial description of the components of the inertia stack IX_{Σ} . Because X_{Σ} is a global quotient, the components of the inertia stack correspond to elements $g \in K$ such that $((\mathbb{C}^m)^s)^g$ is nonempty. Equivalently, if we define

$$\mathbb{K} := \{ f \in \mathbb{L} \otimes \mathbb{Q} \mid \{ i \in \{1, \dots, m\} \mid D_i \cdot f \in \mathbb{Z} \} \in \mathcal{A}_{\omega} \},$$

then the components of IX_{Σ} are in bijection with \mathbb{K}/\mathbb{L} . To give a description in terms of the fan, for any $\sigma \in \Sigma(n)$, define

$$Box(\sigma) := \left\{ v \in N \mid \overline{v} = \sum_{\rho_i \subseteq \sigma} \alpha_i \overline{b}_i \mid 0 \leqslant \alpha_i < 1 \right\}$$

and then

$$\operatorname{Box}(\boldsymbol{\varSigma}) \coloneqq \bigcup_{\sigma \in \Sigma(\mathfrak{n})} \operatorname{Box}(\sigma).$$

Then there is a natural bijection $\mathbb{K}/\mathbb{L} \cong Box(\Sigma)$. For any $f \in \mathbb{K}/\mathbb{L}$, X_f is a toric DM stack with K, \mathbb{L}, ω the same as for X_{ω} and characters D_i for i such that $D_i \cdot f \in \mathbb{Z}$. At the level of fans, this corresponds to killing the minimal cone of Σ containing the corresponding $\overline{\nu}$.

We will now give the orbifold cohomology of X_{Σ} . Define the *deformed group* $ring \mathbb{C}[N]^{\Sigma}$ as the vector space $\mathbb{C}[N]$ with product given by

$$y^{c_1} \cdot y^{c_2} \coloneqq \begin{cases} y^{c_1 + c_2} & \text{there exists } \sigma \in \Sigma \text{ such that } \overline{c}_1, \overline{c}_2 \in \sigma \\ 0 & \text{otherwise.} \end{cases}$$

Then there is an isomorphism of rings

$$H^*_{CR}(X_{\boldsymbol{\varSigma}}) \cong \frac{\mathbb{C}[N]^{\boldsymbol{\varSigma}}}{\left\langle \sum_{i \notin S} \chi(b_i) y^{b_i} \mid \chi \in N^{\vee} \right\rangle}.$$

Remark 2.2. This result also works in families over a base B, where \mathbb{C}^m is replaced by a direct sum of m line bundles on B. Then we need to add a $c_1(L_\chi)$ to the relations and obtain

$$H^*_{CR}(X^B_{\boldsymbol{\varSigma}}) \coloneqq \frac{H^*(B)[N]^{\boldsymbol{\varSigma}}}{\left\langle c_1(L_\chi) + \sum_{i \not\in S} \chi(b_i) y^{b_i} \mid \chi \in N^\vee \right\rangle}.$$

3. Gamma-integral structure

Let $IX = \bigsqcup_{\nu \in B} X_{\nu}$ and $q_{\nu} \colon X_{\nu} \to X$ be the restriction of $IX \to X$. Let E be a T-equivariant vector bundle on X. Recall that ν corresponds to some $g_{\nu} \in K$, so we obtain an eigenbundle decomposition

$$q_{\nu}^*E = \bigoplus_{0 \leqslant f < 1} E_{\nu,f},$$

PATRICK LEI

6

where $E_{\nu,f}$ is the subbundle where g_{ν} acts by $e^{2\pi i f}$. We now define the orbifold Chern character to be

$$\widetilde{ch}(E) = \bigoplus_{\nu \in B} \sum_{0 \leqslant f < 1} e^{2\pi i f} \, ch(E_{\nu,f}).$$

Now let $\delta_{\nu,f,i}$ be the Chern roots of $E_{\nu,f}$. We define the orbifold Todd class to be

$$\widetilde{Td}(E) := \bigoplus_{\nu \in B} \left(\prod_{0 < f < 1} \prod_i \frac{1}{1 - e^{-2\pi i f - \delta_{\nu,f,i}}} \right) \prod_i \frac{\delta_{\nu,0,i}}{1 - e^{-\delta_{\nu,0,i}}}.$$

The $\widehat{\Gamma}$ -class should be a square root of this and is defined by

$$\widehat{\Gamma}(E) = \bigoplus_{\nu \in B} \prod_{0 \leqslant f < 1} \prod_{i} \Gamma(1 - f + \delta_{\nu,f,i}),$$

where we expand Γ around 1-f. The reflection formula for the Γ -function implies that the X_{ν} -component of $\widehat{\Gamma}(E^{\vee}) \cup \widehat{\Gamma}(E)$ is given by

$$[\widehat{\Gamma}(\mathsf{E}^{\vee}) \cup \widehat{\Gamma}(\mathsf{E})]_{\nu} = (2\pi \mathfrak{i})^{rk(\mathfrak{q}_{\nu}^{*}\mathsf{E})^{mov}} \bigg[e^{-\pi \mathfrak{i}(\mathsf{age}(\mathfrak{q}^{*}\mathsf{E}) + c_{1}(\mathfrak{q}^{*}\mathsf{E}))} (2\pi \mathfrak{i})^{\frac{\mathsf{deg}_{0}}{2}} \widetilde{Td}(\mathsf{E}) \bigg]_{inv(\nu)}.$$

Here, deg₀ is the grading operator given by the degree without age shifting.

Definition 3.1. Define the K-group framing $\mathfrak{s}\colon K_T(X)\to H^*_{CR,T}(X)\otimes_{R_T}R_T[\log z](\!\![z^{-\frac{1}{k}}]\!\!][\![Q,\tau]\!\!]$ by the formula

$$\mathfrak{s}(\mathsf{E})(\tau,z) \coloneqq \frac{1}{(2\pi)^{\frac{\dim X}{2}}} \mathsf{L}(\tau,z) z^{-\mu} z^{\rho} \widehat{\Gamma}_X \cup (2\pi \mathfrak{i})^{\frac{\deg_0}{2}} \operatorname{inv}^* \widetilde{\operatorname{ch}}(\mathsf{E}),$$

where $L(\tau,z)$ is the fundamental solution to the quantum connection, μ is the usual grading operator given by $\frac{1}{2}(\deg-\dim X)$ on homogeneous elements, and $\rho=c_1(TX)\in H^2(X)$.

Proposition 3.2. Define the equivariant Euler pairing by

$$\chi(E,F) \coloneqq \sum_{\mathbf{i}} (-1)^{\mathbf{i}} \, \text{ch}^T(\text{Ext}^{\mathbf{i}}(E,F))$$

and the modified version $\chi_z(E,F)$ by replacing the equivariant parameters λ_j by $\frac{2\pi i \lambda_j}{z}$. Then

$$(\mathfrak{s}(\mathsf{E})(\tau,e^{-\mathfrak{i}\pi}z),\mathfrak{s}(\mathsf{F})(\tau,z))=\chi_z(\mathsf{E},\mathsf{F}).$$

Remark 3.3. Everything we have discussed so far makes sense for toric DM stacks after specializing Q=1.