2 pkt

1. Zdefiniuj plik **fun.m** definiujący funkcję zmiennej x:

$$f(x) = (x_1 - 2x_3)^4 + 2(x_1 + x_2)^2 + 5(x_3 - 2x_2)^2$$

Oprócz wartości funkcji, policz również jej gradient.

Zastosuj f. <u>fminbnd</u>, do znalezienia *min* funkcji w kierunku $d_0 = -\nabla f(x_0)$, dla $x_0 = [1;-1;2]$ w przedziale $[\alpha_0, \alpha_{\max}]$, gdzie lewa granica $\alpha_0 = 0$ odpowiada x_0 , natomiast α_{\max} ustalić na podstawie <u>swojej własnej</u> funkcji **alfa_max.m** z parametrami:

$$\alpha_{\text{max}}$$
 =alfa max(@(alfa)fun(x0+alfa*d0),...);

Narysować wykres (f. **fplot**) w przedziale $[\alpha_0, \alpha_{max}]$

wskazówka:

x0=ustalone d0=ustalone fplot(@(alfa)fun(x0+alfa*d0), [$\alpha_{\rm 0},\alpha_{\rm max}$]);

Przyjąć dokładność obliczeń e=1e-4

1,5 pkt

2. napisać funkcję wykorzystującą <u>algorytm złotego podziału</u> (zdefiniuj funkcję **ZP.m**):

alfa_ZP=**ZP**(@(alfa)fun(x0+alfa*d0),
$$\alpha_{\rm o}$$
, $\alpha_{\rm max}$,e)

Podaj wartość kroku alfa_ZP=?

Ile wykonano iteracji ? Podaj kolejne przybliżenia.

1,5 pkt

3. napisać funkcję wykorzystującą <u>test jednoskośny z kontrakcją (alg. Armijo)</u> (zdefiniuj funkcję **Armijo.m**):

alfa Armijo=**Armijo**(@(alfa)fun(x0+alfa*d0),
$$\alpha_0$$
, d0)

Podaj wartość kroku alfa Armijo =?

Ile wykonano iteracji? Podaj kolejne przybliżenia.