- 30. Sejam G um grupo e N_1, N_2, H subgrupos de G tais que N_1 é subgrupo normal de N_2 . Mostre que:
 - (a) $N_1 \cap H$ é subgrupo normal de $N_2 \cap H$;
 - (b) Se H é subgrupo normal de G, então N_1H é subgrupo normal de N_2H .
- 31. Sejam G um grupo e H e K subgrupos normais de G.
 - (a) Prove que HK é um subgrupo normal de G.
 - (b) Supondo que $H \cap K = \{1_G\}$, mostre que:
 - i. qualquer elemento de HK se escreve de maneira única (a menos da ordem dos fatores), como produto de um elemento de H por um elemento de K;
 - ii. se $h \in H$ e $k \in K$ tiverem ambos ordem finita então

$$|\langle h \rangle \langle k \rangle| = o(h)o(k).$$

- 32. Seja G um grupo que contém subgrupos normais H e K de ordens m e n, respetivamente, em que $\mathrm{m.d.c.}(m,n)=1$. Prove que:
 - (a) Os elementos de H comutam com os elementos de K;
 - (b) O grupo G contém um subgrupo de ordem mn.
- 33. Diga, justificando, qual o valor lógico das seguintes afirmações:
 - (a) Todo o grupo contém um subgrupo normal;
 - (b) Existem grupos que só admitem um subgrupo próprio normal;
 - (c) Existem grupos cujos subgrupos são todos normais;
 - (d) A intersecção de dois subgrupos normais de um grupo G é um subgrupo normal de G;
 - (e) Todo o subgrupo normal de um subgrupo normal de um grupo G é normal em G;
 - (f) É condição suficiente para que a intersecção de dois subgrupos de um grupo G seja um subgrupo normal de G que um dos subgrupos seja normal em G;
 - (g) É condição necessária para que a união de dois subgrupos de um grupo G seja um subgrupo normal de G que um dos dois subgrupos seja normal em G.
- 34. Diga quais das aplicações seguintes são morfismos de grupos, e, nesses casos, classifique-os:
 - (a) $\varphi_1: (\mathbb{Z},+) \to (\mathbb{Z},+)$ definida por $\varphi_1(x) = x+3$, para todo $x \in \mathbb{Z}$;
 - (b) $\varphi_2: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ definida por $\varphi_2(x) = 3x$, para todo $x \in \mathbb{Z}$;
 - (c) $\varphi_3: (\mathbb{R}, +) \to (\mathbb{R}^+, +)$ definida por $\varphi_3(x) = 2^x$, para todo $x \in \mathbb{R}$.
- 35. Seja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}\otimes\mathbb{Z}$ a aplicação definida por

$$\varphi((x,y)) = (x+y, x-y) \qquad (x, y \in \mathbb{Z}).$$

- (a) Mostre que φ é um endomorfismo em $\mathbb{Z} \otimes \mathbb{Z}$.
- (b) Determine Nuc φ .
- (c) Classifique o endomorfismo φ .
- (d) Prove que, para todo $n \in \mathbb{N}$, φ^n é um endomorfismo em $\mathbb{Z} \otimes \mathbb{Z}$.
- 36. Seja G um grupo. Para cada $a \in G$, considere a aplicação $\theta_a : G \to G$ definida por $\theta_a(x) = axa^{-1}$. Mostre que:
 - (a) Para cada $a \in G$ a aplicação θ_a é um automorfismo de G. Para cada $a \in G$, o automorfismo θ_a designa-se por automorfismo interno de G:
 - (b) Para cada $\alpha \in \operatorname{Aut}(G)$ e cada $a \in G$, $\alpha \theta_a \alpha^{-1} = \theta_{\alpha(a)}$;
 - (c) $\{\theta_a : a \in G\}$ é um subgrupo normal do grupo $\operatorname{Aut}(G)$. Este subgrupo representa-se por $\operatorname{Inn}(G)$;
 - (d) A correspondência ϕ definida por $a \mapsto \theta_a$, com $a \in G$, é um morfismo de G em $\operatorname{Aut}(G)$;
 - (e) Nuc $\phi = Z(G)$.