Which one?

Heat is a concern!

Short Discussion of Parallelism

- Types of Parallelism
 - task parallelism
 - data parallelism

Task Parallelism

- Simple to understand
 - make a list of things to do
 - you have a set of T tasks
 - you have a set of P processors
 - give each task to a separate machine
 - time O(T/P)

Amdahl's Law

- Scaling O(T/P) is a lie
- Assume P is infinite, time can't be zero
 - always serial costs: startup, I/O, interprocess communication (MPI), ...
- WARNING, file system (NFS) is a serial resource, shared by everyone
 - write to local /tmp or /scratch when possible

Processor Topology

- A set of P processes can be arranged in a virtual grid of Mp*Np = P processes
- 2 rows by 3 columns = 6 processes

Data Grid Topology

- Cells of data can be arranged in a grid of M*N
 L cells
- 10 rows by 9 columns = 90 cells

Data Parallelism

- Distribute a group of cells to a processor
- Scales well (up to 100 K + processors)
 - weak scaling: as cell count increases, use more processors
- 5 rows by 3 columns = 15 cells per processor

Data Parallelism: Communication

- Communication is usually between neighboring processors
 - communication costs scale as processor surface
 - computation done on volume (# of cells)
- Global communication often scales O(log(P))
 - calculate an average over all cells (e.g., average temperature)

Data Parallelism Scaling

- Weak scaling beats Amdahl's law because number of cells per processor is constant
- Unless global communication, communication costs are also fixed

Access to ACISS

- Sign up for ACISS:
 - http://prodigal.nic.uoregon.edu:4063/ newuser
- Try simple commands on ACISS
 - https://blogs.uoregon.edu/casspr/
 2012/05/25/mpi-workshop-simple-task/