CIENCIA DE DATOS

<u>Iris Dataset</u> - Datos sobre flores Iris

BOGOTA DC - 2024

SANTIAGO CARVAJAL FERNANDEZ

Introducción

El Iris Dataset es uno de los conjuntos de datos más utilizados en el campo de la Ciencia de Datos y el aprendizaje automático. Creado por Ronald A. Fisher en 1936, este conjunto de datos contiene información sobre tres especies de la flor iris: Iris setosa, Iris versicolor e Iris virginica. Cada observación incluye cuatro características: la longitud y el ancho del sépalo, y la longitud y el ancho del pétalo, las cuales se utilizan para clasificar correctamente las especies de iris.

En el código presentado, el Iris Dataset se carga y se utiliza para realizar un análisis exploratorio inicial. Se comienza imprimiendo las primeras filas de las características (X) y las etiquetas objetivo (y), seguido por el cálculo de estadísticas descriptivas clave, como la media, la mediana y la desviación estándar para cada característica. Este análisis permite obtener una comprensión inicial de la distribución y el comportamiento de los datos, lo cual es un paso esencial en cualquier proceso de análisis en ciencia de datos.

ENSAYO

El código implementado tiene como objetivo introducir al usuario en el manejo de datos utilizando la librería pandas y trabajar con el conjunto de datos Iris, disponible en la plataforma UCI Machine Learning Repository. Este dataset consta de 150 observaciones que describen tres especies de iris (setosa, versicolor y virginica), con cuatro características numéricas: longitud y ancho del sépalo, y longitud y ancho del pétalo. Estas características se utilizan para entrenar modelos de clasificación y análisis estadístico.

El script comienza imprimiendo la información básica del estudiante: su nombre, la materia y el salón de clases. A continuación, importa necesarias (pandas bibliotecas y numpy), fundamentales para el manejo de datos en Python. La función fetch_ucirepo se emplea para descargar el dataset Iris, y los datos se dividen en dos conjuntos: X, que contiene las características del almacena los objetivos etiquetas dataset, У, que correspondientes a las especies de flores.

Después de la carga de los datos, el código imprime las primeras filas de las características y los objetivos, lo que permite visualizar rápidamente los valores del conjunto de datos. A continuación, se realizan varios cálculos estadísticos descriptivos que son cruciales para entender mejor la distribución de los datos:

- 1. **Media:** La media de cada característica proporciona una visión general de los valores promedio para cada variable. Esto es útil para identificar posibles tendencias o diferencias entre las especies.
- 2. **Mediana:** La mediana es un indicador clave de la tendencia central que es menos susceptible a valores atípicos, lo que la convierte en una medida robusta para el análisis exploratorio.
- 3. **Desviación estándar:** La desviación estándar mide la dispersión de los datos, es decir, cuánto varían los valores de cada característica con respecto a la media. Un valor alto indica una mayor variabilidad, mientras que un valor bajo sugiere que los datos están más concentrados cerca de la media.