Homework 5

Math 324F Advanced Multivariable Calculus Due on 13th November 2015

Read sections 16.1, 16,2 and 16.3 from the text.

Problem 16.2.11 (5 points) Evaluate $\int_C xe^{yz} dS$ where C is the line segment from (0,0,0) to (1,2,3).

Problem 16.2.33 (5 points) A thin wire is bent into the shape of a semicircle $x^2 + y^2 =$ 4, $x \ge 0$. If the linear density is a constant k, find the mass and center of mass of the wire.

(Note that the center of mass of a wire with density $\rho(x,y)$ is located at (\bar{x},\bar{y}) where $\bar{x} = \frac{1}{m} \int\limits_C x \rho(x,y) \, ds$, $\bar{y} = \frac{1}{m} \int\limits_C y \rho(x,y) \, ds$, and $m = \int\limits_C \rho(x,y) \, ds$.)

Problem 16.2.44 (5 points) An object with mass m moves with position function $\vec{y}(t) = a\sin(t)\mathbf{i} + b\cos(t)\mathbf{j} + ct\mathbf{k}$, $0 \le t \le \frac{\pi}{2}$. Find the work done on the object during this period.

Problem 16.3.15 (5 points) Find a function f such that $\nabla f = \mathbf{F}$ and use that to evaluate $\int \mathbf{F} \cdot \mathbf{dr}$. where $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + (xy + 2z)\mathbf{k}$, C is the line segment from (1,0,-2) to (4,6,3).

Problem 16.3.35 (7 points) Let $F(x,y) = \frac{-yi+xj}{x^2+y^2}$.

- (a) Show that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. (b) Show that $\int_C \mathbf{F} \cdot \mathbf{dr}$ is not independent of the path. Also show why this does not contradict Theorem 6.

Hint: Are all the hypotheses for Theorem 6 satisfied?

Problem 16.3.21 (3 points) Suppose you are asked to determine the curve that requires the least amount of work for a conservative force field F to move a particle one given point to another given point. What should your answer be and why?