

simple and semi-simple Lie algebras

Canonical name SimpleAndSemisimpleLieAlgebras

Date of creation 2013-03-22 13:11:28

Last modified on 2013-03-22 13:11:28

Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Definition
Classification msc 17B20
Related topic LieAlgebra
Related topic LieGroup
Related topic RootSystem

Related topic RootSystemUnderlyingASemiSimpleLieAlgebra

Defines simple Lie algebra
Defines semi-simple Lie algebra
Defines semisimple Lie algebra

Defines simple
Defines semi-simple
Defines semisimple

A Lie algebra is called *simple* if it has no proper ideals and is not abelian. A Lie algebra is called *semi-simple* if it has no proper solvable ideals and is not abelian.

Let $k = \mathbb{R}$ or \mathbb{C} . Examples of simple algebras are $\mathfrak{sl}_n k$, the Lie algebra of the special linear group (traceless matrices), $\mathfrak{so}_n k$, the Lie algebra of the special orthogonal group (skew-symmetric matrices), and $\mathfrak{sp}_{2n}k$ the Lie algebra of the symplectic group. Over \mathbb{R} , there are other simple Lie algebra, such as \mathfrak{su}_n , the Lie algebra of the special unitary group (skew-Hermitian matrices). Any semi-simple Lie algebra is a direct product of simple Lie algebras.

Simple and semi-simple Lie algebras are one of the most widely studied classes of algebras for a number of reasons. First of all, many of the most interesting Lie groups have semi-simple Lie algebras. Secondly, their representation theory is very well understood. Finally, there is a beautiful classification of simple Lie algebras.

Over \mathbb{C} , there are 3 infinite series of simple Lie algebras: \mathfrak{sl}_n , \mathfrak{so}_n and \mathfrak{sp}_{2n} , and 5 exceptional simple Lie algebras \mathfrak{g}_2 , \mathfrak{f}_4 , \mathfrak{e}_6 , \mathfrak{e}_7 , and \mathfrak{e}_8 . Over \mathbb{R} the picture is more complicated, as several different Lie algebras can have the same complexification (for example, \mathfrak{su}_n and $\mathfrak{sl}_n\mathbb{R}$ both have complexification $\mathfrak{sl}_n\mathbb{C}$).