

CHEMISTRY Chapter 10

Unidades Químicas de Masa

MOTIVATING STRATEGY

¿Sabes qué tan grande es el número de Avogadro?

 $N_{\Delta} = 6$, 022_x10²³ unidades estructurales / mol

Si pudieras viajar a la velocidad más alta posible, la velocidad de la luz (300.000 km/s), te tomaría alrededor de 62 mil millones de años el recorrer el N_A de kilómetros

HELICO THEORY

¿QUE SE ENTIENDE POR UNIDADES QUÍMICAS DE MASA?

Consiste en el estudio de unidades químicas que expresan cantidad de materia para las sustancias químicas (elementos y compuestos).

Nos permiten hacer cálculos de masa, cantidad de átomos o moléculas, composición de las sustancias compuestas, etc.

Unidad de masa atómica

Es una unidad de masa que permite expresar la masa de la materia nanoscópica como átomos, moléculas, protones, neutrones, entre otros.

Unidades: u.m.a. (u)

 $luma = 1,66 \cdot 10^{-24}g = 1,66 \cdot 10^{-27}kg$

2 El mol

Es la cantidad de sustancia que contiene tantas unidades estructurales (átomos, iones, moléculas, electrones, etc.) como átomos están contenidos en 12 gramos de C-12. Dicha cantidad se conoce como número de Avogadro $(N_{\Delta} \circ N_{O})$.

 $N_{\Delta} = 6$, 022_x10²³ unidades estructurales / mol

1 mol de átomos (He) = $6,022 \times 10^{23} \approx 6 \times 10^{23}$ átomos (He)

1 mol de moléculas $(H_2O) \approx 6x10^{23}$ moléculas (H_2O)

5 mol de moléculas(H_2O) $\approx 30 \times 10^{23}$ moléculas(H_2O)

 $3x10^{24}$ moléculas(H_2O)

3 Masa Atómica (m.A.)

- ✓ Es el resultado del promedio ponderado entre las masas isotópicas con su respectivas abundancias.
- ✓ Para cálculo rápido se trabaja con valores enteros obteniéndose una masa atómica aproximada.

$$\mathbf{MA}_{\text{aproximada}} = \frac{A_1 \times a_1 \% + A_2 \times a_2 \% + \dots + A_n \times a_n \%}{a_1 \% + a_2 \% + a_3 \% + \dots + a_n \%}$$

A: Número de masa

a%: Porcentaje de abundancia

Masa Molecular

Llamado también masa molar.

Es la sumatoria de masas atómicas de los elementos expresado en uma.

Aplicación

Determine la masa molecular de ácido oxálico $C_2H_2O_4$. Datos: m.A.(uma): C=12; H=1; O=16

$$\overline{M}_{C_2H_2O_4} = 2 \times 12 + 2 \times 1 + 4 \times 16$$

$$\overline{M}_{C_2H_2O_4} = 90 \text{ uma}$$

El magnesio presenta dos isótopos, cuyos números de masa son 24 y 26. Si sus porcentajes de abundancia son, respectivamente, 84% y 16 %, determine su masa atómica promedio.

Resolución:

$$^{24}_{12}Mg$$
 $^{26}_{12}Mg$ (84%) (16%)

$$\mathbf{MA}_{\text{aproximada}} = \frac{\mathbf{A}_{1} \times a_{1} \% + \mathbf{A}_{2} \times a_{2} \% + \dots + \mathbf{A}_{n} \times a_{n} \%}{a_{1} \% + a_{2} \% + a_{3} \% + \dots + a_{n} \%}$$

m.A.(Mg) =
$$24 \times 84 + 26 \times 16$$

84 + 16

$$m.A.(Mg) = 24,32 u$$

Determine la masa de una aleación formada por 4 mol de cobre y 15 mol de zinc.

Datos: m.A. (u) Cu = 63,5; Zn = 65

Resolución:

$$n_{Cu} = 4 \text{ mol } (Cu)$$

$$n_{Zn} = \frac{m_{Cu}}{m.A.}$$

$$k = \frac{m_{Cu}}{62}$$
 mCu = 254 g

$$n_{Zn} = \frac{m_{Zn}}{m_{Zn}}$$

 $n_{Zn} = 15 \text{ mol } (Zn)$

$$\mathbf{n}_{\mathbf{Z}\mathbf{n}} = \frac{\mathbf{m}_{\mathbf{Z}\mathbf{n}}}{\mathbf{m}_{\cdot} \mathbf{A}_{\cdot \mathbf{Z}\mathbf{n}}}$$

$$15 = \frac{m_{Zn}}{65}$$

$$m Zn = 975 g$$

m total = 254 g + 975 g

Rpta: 1229g

Si se tiene $32,721 \times 10^{23}$ átomos de litio, ¿cuál será su masa, expresada en gramos? Dato: m.A. (uma): Li = 7

Resolución:

$$n = \frac{masa(g)}{\overline{M}} = \frac{\#U.\,estructurales}{N_A}$$

$$\frac{m}{7} = \frac{32,721 \times 10^{23}}{6,022 \times 10^{23}}$$

$$m = \frac{(7).32,721 \times 10^{23}}{6,022 \times 10^{23}}$$

Rpta: 38, 04 g

¿Cuántos gramos de vanadio están contenidos en 23,075 × 10²³ átomos de este elemento?

Dato: mA(u): V = 51

Resolución:

$$n = \frac{masa(g)}{\overline{M}} = \frac{\#U.\,estructurales}{N_A}$$

$$\frac{m}{51} = \frac{23,075 \times 10^{23}}{6,022 \times 10^{23}}$$

$$m = \frac{(51).\ 23,075 \times 10^{23}}{6,022 \times 10^{23}}$$

Rpta: 195, 42 g

¿Cuál es el valor de x si la masa molecular de C₃H_x es 44?

Datos: MA(C = 12, H = 1)

Resolución:

$$\sum \overline{M} = 0$$

$$\overline{M}_{C_3H_X} = 3 \times 12 + X \times 1$$

$$44 = 36 + X$$

$$X = 8$$

Rpta: 8

CHEMISTRY

Pregunta N°6

La composición del gas natural varía según el yacimiento, pero el componente principal del gas natural es el metano, que se presenta en un 70 a 90%, además lleva en su composición otros hidrocarburos más ligeros, como el etano, el propano y el butano, en cantidades significativas. En un recipiente cerrado se tiene 88 g de C₃H₈ y 180 g de C₂H₆. Determine el número de mol de la mezcla.

```
Metano (CH<sub>4</sub>)
Etano (C<sub>2</sub>H<sub>6</sub>)

Propano (C<sub>3</sub>H<sub>8</sub>)

Butano (C<sub>4</sub>H<sub>10</sub>)
```

Otros componentes (impuresas) nitrógeno (N₂), dióxido de carbono (CO₂), ácido sulfhídrico, (H₂S) y agua (H₂O)

Resolución:

$$\overline{M}_{C_3H_8} = 3(12) + 8(1) = 44g/mol$$

$$n = \frac{m}{\overline{\overline{M}}}$$

$$n_{C_3H_8} = \frac{88g}{44g/mol}$$

$$n_{C_3H_8} = 2 \text{ mol}$$

$$\overline{M}_{C_2H_6} = 2(12) + 6(1) = 30g/mol$$

$$n = \frac{m}{\overline{\overline{M}}}$$

$$n_{C_2H_6} = \frac{180g}{30g/mol}$$

$$n_{C_2H_6} = 6 \text{ mol}$$

$$n_{\text{(mezcla)}} = n_{C_3H_8} + n_{C_2H_6} = 2 \text{ mol } + 6 \text{ mol}$$

Rpta: 8 mol

Así como en la vida diaria utilizamos unidades como la "docena" para hablar de doce cantidades, los químicos utilizamos otra unidad muy útil a la que llamamos "mol", que a diferencia de la "docena", no solo nos permite contar unidades sino que además nos permite relacionarlas con una masa fija de sustancia.

Al respecto, escriba verdadero (V) o falso (F) según corresponda.

- a. Un mol de átomos de nitrógeno equivale a 28 g y 6,02×10²³átomos ()
- b. En dos moles de agua hay 1,2 × 10²⁴ moléculas.
- c. Un mol de óxido de calcio (CaO) contiene en total $1,2 \times 10^{24}$ iones.

Datos: m.A. (u):N=14, O=16

Resolución:

- 1 mol de átomo(E) \rightarrow m. A. (E)_(g) \rightarrow 6,02x10²³ átomos(E) (F) a) 1 mol de átomo(N) \leftrightarrow 14 g (N) \rightarrow 6,02x10²³ átomos(N) **b**) 1 mol de molécula $\rightarrow \overline{M}_{(g)} \rightarrow 6x10^{23}$ moléculas (V)
 - 1 mol de molécula(H_2O) \rightarrow 18 g (H_2O) \rightarrow 6x10²³ molécula(H_2O)
 - 2 mol de molécula(H_2O) \rightarrow 36 g (H_2O) \rightarrow 12x10²³ molécula(H_2O)
 - $1,2x10^{24}$ molécula(H_2O)
 - $2(1,2x10^{24})$ átomos(H) = $2,4x10^{24}$ átomos(H)
- $1CaO \rightarrow 1Ca^{2+} + 10^{2-}$ 1 mol CaO \rightarrow 2 mol de iones \rightarrow 2(6x10²³)iones (V) 1.2×10^{24} iones

Rpta: FVV

MUCHAS GRACIAS

