MATH 2111: Tutorial 11: Eigenvalue, Eigenspace, Similarity and Diagona

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

Department of Mathematics, HKUST

Review

- Eigenspace
- Characteristic Function
- Similarities & Diagonalization

Example 1

Eigenspace

Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix. Given λ and ρ are two distinct eigenvalues of A. Show that eigenspaces of λ and ρ are orthogonal. Namely, for any vectors $x_1 \in \mathcal{E}_{\rho}(A)$, $x_2 \in \mathcal{E}_{\lambda}(A)$, it has $x_1^{\top} x_2 = 0$.

Given $A \in \mathbb{R}^{n \times n}$ and its characteristic function $f(\lambda) = \lambda^2 (\lambda + 1)(\lambda - 1)(3 - \lambda)^{n-4}$.

- (1) Write down eigenvalues and their multiplicities.
- (2) What is characteristics function of matrix A + 2I?

Suppose
$$A = \begin{pmatrix} 4 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

- (1) Find out characteristics function of A.
- (2) Determine whether A is diagonalizable.

Example 4

Diagonalization

Diagonalize the following matrix, if possible,

$$A = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 4 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Example 5

Diagonalization

Determine range of α such that the following matrix is similar to some real diagonal matrix,

$$A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}.$$

Remark

Given λ and ρ are two distinct eigenvalues of matrix $A \in \mathbb{R}^{n \times n}$. Suppose x_1 is an eigenvector corresponding to λ and x_2 is an eigenvector corresponding to ρ , namely,

$$Ax_1 = \lambda x_1, \quad Ax_2 = \rho x_2.$$

Then $x_1 + x_2$ is not eigenvector of A.

