Chapter 1 Module

1.2 Exercise

- 2.1 Let M be an R module, prove that the following statements are equivalent:
- (1) M = 0.
- (2) For any R module N, there is unique module map from N to M.
- (3) For any R module N, there is unique module map from M to N.

Proof. This is to prove zero module is a zero object, viz., it's initial and terminal.

- "(d) => (2)"; obvious.
- "(2) \Rightarrow (1)": Suppose $M \neq 0$. Take N = M. id: $M \rightarrow M$ and $o: M \rightarrow M$ are different module maps, thus we arrive at a contradiction.
- " $(4) \Rightarrow (3): \text{ Obvious }.$
- "(3) \Rightarrow (1)": similar as "(2) \Rightarrow (1)".
- 2.2 Prove the equivalence of following statements:
 - (1) M is simple module.
 - c2) Any nonzero module map $M \rightarrow N$ is monomorphism.
 - (3) Any nonzero mobile map $N \rightarrow M$ is epimorphism.
- Proof. "(1) \Rightarrow (2)": If $f: M \to N$ is not monomorphic, Kerf will be a nonzero submodule of M, thus a contradiction.
 - "(2) \Rightarrow (1)": Suppose M is not simple and N is a submodule ($\neq \circ$, M). Then quotient map $Q: M \to M/N$ has ker Q = N, thus not monomorphic, we arrive at a contradiction.
 - "(1) => (3)": Similar to "(1) => (2)".
 - "(3) \Rightarrow (1)": Suppose M is not simple, $N \neq M$, $N \neq 0$, $N \hookrightarrow M$ is a module map, but it's not epimorphic.
- 2.3 (Schur's lemma) If M, N are simple modules, then any nonzero module map from M to N is an isomorphism. If M is simple, then $\operatorname{End}_R(M) = \operatorname{Hom}_R(M,M)$ is a division ring.

Proof. This is a result of Exercise 2.2.

- 2.4 For module map $f: M \rightarrow N$:
 - (1) If f is monomorphism, then Ann (M) = Ann (N).
 - 2) If f is epimorphism, then Ann(M)

 Ann(N).

- Proof. (1) For monomorphism $M > \stackrel{f}{\longrightarrow} N$. If re Ann (N), $r \cdot N = 0$. For any $m \in M$, firm $y = r \cdot f(m) = 0$. Thus $rm \in Kerf = 0$, thus $r \in Ann (M)$.
 - (2) For epimorphism $M \xrightarrow{f} N$, if $r \in Ann(M)$, for any $n \in N$, there is $m \in M$ st. f(m) = n. $r \cdot n = r \cdot f(m) = f(r \cdot m) = 0$. Since n is arbitrary, we see $r \in Ann(N)$.
- 2.5 Let $f: M \to N$ be an epimorphism and K be a submodule of M. Show:
 - (1) If $K \cap \ker f = 0$, then $f \mid K : K \to N$ is monomorphic.
 - (2) If K + Kerf = M, then $f|_{K}: K \to N$ is epimorphic.
- Proof. (1) $\operatorname{Ker}(f/_{k}) = k \Lambda \operatorname{Ker} f$.
 - (2) Use isomorphism theorem (A+B)/B \cong A/(AAB).

Here $f: M \to N$ is epimorphic, $N \cong M/\text{kerf}$, define quotient map

 $9: M/\text{Ker} f \rightarrow N$. Since M = K + Ker f, $M/\text{Ker} f = (K + \text{Ker} f)/\text{Ker} f \cong K/(K \cap \text{Ker} f) \cong N$.

- 2.6 Prove that for R module M, we have R module isomorphism Homa (R,M) &M.
- Proof. Define a map $\Psi: Hom_{\mathcal{K}}(R, M) \to M$, $f \mapsto f(\mathfrak{L})$. It satisfies $\Psi(f+g) = \Psi(f) + \Psi(g)$ and $\Psi(rf) = r \Psi(f)$. Thus Ψ is a module map.

Set f(1) = m, for any $m \in M$, $f(r) = f(r\cdot 1) = r \cdot f(1) = r \cdot m$. f is a module map, thus $f \in Hom_R(R, M)$. This means there Ψ is surjective.

Ker $\Psi = 0$ is clear.

- 2.7 Let A be a \mathbb{Z} module. For \mathbb{Z} module $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$ prove :
 - (1) $Hom_{2}(\mathcal{L}_{m}, A) \cong ALm1 := \{a \in A \mid m \cdot a = o\}.$
 - (2) Use (1) to show that $Hom_{\mathbb{Z}}(\mathbb{Z}_m,\mathbb{Z}_n)=\mathbb{Z}_{(m,n)},$ where (m,n)=gcd(m,n).
- Proof. (1) Define module map $\Psi: f \mapsto f(\bar{1})$ (check it by yourself). Since $m \cdot f(\bar{z}) = f(m \cdot \bar{1}) = 0$. In $\Psi \subseteq A[m]$. For any $\chi \in A[m]$, we define $g(\bar{1}) = \chi$, it's clear that g_{χ} is in $Hom_{Z}(Zm, A)$. This implies $A[m] \subseteq Im \Psi$.

To show $\ker \Psi = 0$, consider $f \in \ker \Psi$, $f(\overline{1}) = 0$, this implies $f(\overline{k}) = f(k \cdot \overline{1}) = k \cdot f(\overline{1}) = 0$. Thus f = 0.

(2) We need to show $\{\alpha \in \mathbb{Z}_n \mid m \cdot \alpha = 0\} \cong \mathbb{Z}_{(m,n)}$. Let $d = \gcd(m,n)$ and $n = n_1 \cdot d$. We see $\{\overline{0}, \overline{n_1}, \overline{2n_1}, \cdots, \overline{(d-1) \cdot n_1}\}$

is anihilated via the action of m. (Since $m = m_1 \cdot d$, $m \cdot k \cdot n_1 = m_1 k \cdot n$.) The above module is isomorphic to $\mathbb{Z}_{(m,n)}$.

(Notice: $m = m_1 d$, $n = n_1 d$, and m_1 , n_1 coprime. For $m \cdot \bar{\alpha} = \bar{\sigma}$, we have $n \mid m \alpha$.

Thus nid/mida, this implies nilmia, since ni+mi, we have ni/a.)

- 2.8 Determine $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}_n)$, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_n,\mathbb{Z})$, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z})$, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Q})$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q})$.
 - (1) $Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}_n) \cong \mathbb{Z}_n$ (by Exercise 2.6)
 - (2) $Hom_{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}) \cong \{0\}$. Cby Exercise 2.7)
 - (3) Hom Z(Q, Z) ≥ {o}.

For $f \in Hom_{\mathbb{Z}}(\emptyset, \mathbb{Z})$, f is an Abelian group homomorphism. Consider $Inf \in \mathbb{Z}$, suppose these n is the smallest positiven integer in Im f. There is $\frac{S}{t} \in \mathbb{Q}$ s.t. $f(\frac{1}{t}) = n$. This implies that $f(\frac{S}{2t}) + f(\frac{S}{2t}) = f(\frac{S}{t}) = n$. Let $f(\frac{S}{2t}) = m$, we have 2m = n. m must be smaller than n. This is a contradiction.

- (4) $Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q}) \cong \mathbb{Q}$ (by exercise 2.6)
- (5) $Hom_{\mathbb{Z}}(\mathbb{Q}_1\mathbb{Q})\cong\mathbb{Q}_1$

By (4) $\mathbb{Q} \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Q})$, we only need to show $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Q})$.

Define $\Psi \colon \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q}) \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Q})$ by restriction of $f \colon \mathbb{Q} \to \mathbb{Q}$ to $f_{\mathbb{Z}} \colon \mathbb{Z} \to \mathbb{Q}$.

"Ker $\Psi = 0$ ": If $\Psi(f) = f_{\mathbb{Z}} = 0$. f(1) = 0. This implies that $f \colon f(\frac{1}{2}) = f(s) = s \colon f(1) = 0$.

Thus f = 0.

"In $\Psi = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q})^n$. For any $g \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q})$, define $\widehat{g}(\frac{5}{6}) = g$ s.t. $t \cdot g = g(5)$. We need to show $\widehat{g} \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Q})$. $\widehat{g}(\frac{5}{6} + \frac{\mathfrak{Q}}{\mathfrak{b}}) = \widehat{g}(\frac{5b+\mathfrak{Q}t}{tb}) = \frac{1}{tb} \cdot g(sb+\mathfrak{q}t) = \frac{1}{tb} (b \cdot g(s) + t \cdot g(a)) = \frac{1}{t}g(s) + \frac{1}{b}g(a) = \widehat{g}(\frac{5}{6}) + \widehat{g}(\frac{5}{6})$.

- 2.9. Let M, N be \mathbb{Z} module, Ann $(M) = m\mathbb{Z}$, Ann $(N) = n\mathbb{Z}$, Ann $(Hom_{\mathbb{Z}}(M,N)) = d\mathbb{Z}$. From these divides gcd(m,n). (Recall that \mathbb{Z} is PID, every ideal is generated by a single element).
- Proof. We need to show $g(dcm,n) \in Am(Hom_{\geq}(M,N))$. Since there exist $a,b \in \mathbb{Z}$ such that g(dcm,n) = am + bn. For any $f \in Hom_{\geq}(M,N)$, we have (am + bn) f(x) = am f(x) + bn f(x) = f(am x) + bn f(x). $am \in Ann(M)$ implies am x = o. $bn \in Ann(N)$ implies that bn f(x) = o. Thus (am + bn) f(x) = o for all x. Since f is arbitrary, we see $g(dcm,n) \in Ann(Hom_{\geq}(M,N))$.

2.10 Let R be an integral domain.

- (1) For R module map $f: M \to N$, prove that $f(T(M)) \subseteq T(N)$ with T(M) and T(N) being torsion submodules. This means the restriction $f_T: T(M) \to T(N)$ is module map.
- (3) Give a counterexample that $T(M) \stackrel{g}{\longrightarrow} T(N) \rightarrow 0$ is not exact even when $M \stackrel{g}{\longrightarrow} N \rightarrow 0$ exact.

- Proof. (1) If $x \in T(M)$, $Ann(x) \neq 0$. If $e \in R$ s.t. $e \in R$ s.t.
 - (2) Step 1. $\ker f_T = \ker f \cap T(k) = 0$ since $\ker f = 0$. Step 2. Show $\operatorname{Im} f_T = \ker g_T = \ker g \cap T(M) = \operatorname{Im} f \cap T(M)$ For any $m \in \operatorname{Im} f \cap T(M)$. $\exists \circ \neq r \in k$ s.t. rm = 0. and $\exists k \in k$ s.c. f(k) = m. Then $r \cdot f(k) = f(r \cdot k) = 0$. Since $\ker f = 0$. $r \cdot k = 0 \Rightarrow k \in T(k)$. This means $\operatorname{Im} f \cap T(M) \subseteq \operatorname{Im} f_T$. The other direction is obvious.
 - (3) For $\mathbb{Z} \xrightarrow{?} \mathbb{Z}/6\mathbb{Z} \to 0$. $T(\mathbb{Z}) = 0$, $T(\mathbb{Z}_6) = \mathbb{Z}_6$ $T(\mathbb{Z}) \to T(\mathbb{Z}/6\mathbb{Z}) \to 0 \quad \text{is not exact.}$
- 2.12. (1) If $0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0$ $0 \rightarrow C \xrightarrow{g} D \rightarrow E \rightarrow 0 \text{ are exact, then}$ $0 \rightarrow A \rightarrow B \xrightarrow{gf} D \rightarrow E \rightarrow 0 \text{ is exact.}$
- (2) Every excut sequence can be composed from short exact sequences from (1). Proof. $0 \to A \xrightarrow{\varphi} B \xrightarrow{f} C \xrightarrow{g} D \xrightarrow{\psi} E \to 0$

 \otimes ker g = 0 thus ker $g = f^{-1} \circ g^{-1}(0) = f^{-1}(0) = \text{Ker } f = \text{Im } \varphi$.