

Before modification:

```
Toggle Coverage:
   Enabled Coverage
                           Bins
                                          Misses Coverage
                             30
   Toggles
                                                  96.66%
Toggle Coverage for instance /\TB#a1 --
                                                       0L->1H "Coverage"
                                             1H->0L
                                     Node
                                   A[0-3]
                                                                 100.00
                                   B[0-3]
                                                                100.00
                                   C[4-0]
                                                                100.00
                                                                100.00
                                     c1k
                                    reset
                                                           0
                                                                 50.00
Total Node Count
Toggled Node Count
Untoggled Node Count =
Toggle Coverage
                      96.66% (29 of 30 bins)
Total Coverage By Instance (filtered view): 98.88%
```

Issue: reset signal didn't change from 0 to 1 during simulation.

Fix:

```
reset = 1;
    check_result(0);
    $display("Error Count = %0d\n", Error_Count);
    $display("Correct Count = %0d\n", Correct_Count);
    $stop;
end
Toggle Coverage:
   Enabled Coverage
                                              Misses Coverage
Toggle Coverage for instance /\TB#a1 --
                                                            0L->1H "Coverage"
                                       A[0-3]
                                                                       100.00
                                                                       100.00
                                                                       100.00
                                                                       100.00
100.00
                                        reset
Total Node Count =
Toggled Node Count =
Untoggled Node Count =
                           15
0
                      100.00% (30 of 30 bins)
Toggle Coverage
Total Coverage By Instance (filtered view): 100.00%
```

Q2) Priority Encoder:

❖ <u>Verification Plan:</u>

Label	Design Requirement Description			Functionality Check		
	at posedge clk, if rst is asserted all outputs should be low	Directed at the start of the simulation	-	A checker in the testbench to make sure the output is correct		
ENC_2	When D = 'b0000, Valid should be low	Directed during the simulation	-	A Checker in the testbench to make sure the output is correct		
ENC_3	exhaustively verify all possible inputs combination.	Directed during the simulation	-	A checker in the testbench to make sure the output is correct		
ENC_4	Some values of the inputs to complete the toggle coverage	Directed at the end of the simulation	-	A checker in the testbench to make sure the output is correct		

* TestBench:

```
// ENC_2
 D = 'b0000;
 @(negedge clk);
 if (valid == 'b0) begin
     $display("Passed for D = 'b%0b",D);
     Correct_Count++;
 else begin
      $display("Passed for D = 'b%0b",D);
      Error_Count++;
 end
 D = 'b0001;
 check_result('b11,'b1);
 D = 'b0010;
check_result('b10,'b1);
 D = 'b0011;
 check_result('b11,'b1);
 D = 'b0100;
 check_result('b01,'b1);
 D = 'b0101;
 check_result('b11,'b1);
 D = 'b0110;
 check_result('b10,'b1);
 D = 'b0111;
 check_result('b11,'b1);
 D = 'b1000;
 check_result('b00,'b1);
 D = 'b1001;
check_result('b11,'b1);
 D = 'b1010;
 check_result('b10,'b1);
 D = 'b1011;
 check_result('b11,'b1);
 D = 'b1100;
 check_result('b01,'b1);
 D = 'b1101;
 check_result('b11,'b1);
 D = 'b1110;
check_result('b10,'b1);
 D = 'b1111;
check_result('b11,'b1);
//ENC_4
assert_reset; // rst : L->H & valid: H:L
D = 'b0001;
                // D[3]: H->L
check_result('b11,'b1);
$display("Error Count: %0d", Error_Count);
$display("Correct Count: %0d", Correct_Count);
$stop;
end
```

```
task assert_reset ;
103
104
           rst = 1;
105
           @(negedge clk);
106
107
           if ((Y != 'b0)|| (valid != 'b0))
             $display("Reset failed");
109
110
            Error_Count++;
111
112
           else begin
113
            $display("Reset Passed");
114
           Correct_Count++;
115
116
           rst = 0;
117
118
       endtask
119
120
       task check_result(logic [1:0] expected_Y, logic excpected_valid);
121
           @(negedge clk);
123
124
           if ((Y == expected_Y) && (valid == excpected_valid)) begin
125
                $display("Passed for D = 'b%0b",D);
126
                Correct_Count++;
127
128
           else begin
                $display("Passed for D = 'b%0b",D);
                Error_Count++;
       endtask
       endmodule
```

❖ Bugs found:

Label	Bug Description	Wrong code	Correction
	Output (Y) was defined as wire, not reg.	output [1:0] Y,	Defined Y as output reg
ENC1	rst signal only resets the value of Y but does nothing to valid	<pre>if (rst) Y <= 2'b0; else</pre>	(rst) signal must reset the value of valid too, and valid signal should take its value inside the else statement, to ensure the priority of rst signal

❖ Fixed design:

```
module priority_enc (
      input clk,
      input rst,
      input [3:0] D,
      output reg [1:0] Y,
      output reg valid
      );
      always @(posedge clk) begin
         if (rst) begin
            Y <= 2'b0;
11
           valid <= 1'b0;</pre>
12
13
14
         else begin
           casex (D)
15
               4'b1000: Y <= 0;
               4'bX100: Y <= 1;
17
18
               4'bXX10: Y <= 2;
               4'bXXX1: Y <= 3;
19
           endcase
21
22
          valid <= (~|D)? 1'b0: 1'b1;</pre>
23
      end
25
      endmodule
```

❖ Result:

```
# vsim -voptargs="+acc" work.enc_tb -coverage
# Start time: 01:16:37 on Mar 06,2025
# ** Note: (vsim-8009) Loading existing optimized design _opt
# Loading sv std.std
# Loading work.enc tb(fast)
# Loading work.priority enc(fast)
# Reset Passed
# Passed for D = 'b0
# Passed for D = 'bl
# Passed for D = 'bl0
# Passed for D = 'bll
# Passed for D = 'bl00
# Passed for D = 'b101
# Passed for D = 'bll0
# Passed for D = 'blll
# Passed for D = 'b1000
# Passed for D = 'b1001
# Passed for D = 'b1010
# Passed for D = 'b1011
# Passed for D = 'bl100
# Passed for D = 'bl101
# Passed for D = 'blll0
# Passed for D = 'bllll
# Reset Passed
# Passed for D = 'bl
# Error Count: 0
# Correct Count: 19
 ** Note: $stop : priority_enc_TB.sv(99)
   Time: 38 ns Iteration: 1 Instance: /enc tb
 Break in Module enc_tb at priority_enc_TB.sv line 99
```

Waveform:

❖ Coverage Report:

```
Branch Coverage:
                             Bins Hits Misses Coverage
      Enabled Coverage
                                             0 100.00%
10
      Branches
11
12
   13
14
   Branch Coverage for instance /\enc_tb#DUT
15
16
      Line
                Item
                                    Count
                                           Source
17
18
     File priority_enc.v
      ----IF Branch-----
19
20
                                      19
                                           Count coming in to IF
21
      10
                                            if (rst) begin
22
23
                                            else begin
24
25
   Branch totals: 2 hits of 2 branches = 100.00%
26
27
      ------CASE Branch------
28
                                          Count coming in to CASE
29
      16
                                                4'b1000: Y <= 0;
30
31
                                                 4'bX100: Y <= 1;
32
33
      18
                                       4
                                                 4'bXX10: Y <= 2;
34
35
      19
                                                 4'bXXX1: Y <= 3;
36
                                           All False Count
   Branch totals: 5 hits of 5 branches = 100.00%
```

40						
41	Statement Coverage:					
42	Enabled Coverage	Bins	Hits	Misses	Coverage	
43						
44	Statements	8	8	0	100.00%	
45						
46	=======================================	=====Statement	Details=			=======
47						

```
Toggle Coverage:
         Enabled Coverage
                                             Hits Misses Coverage
                                                       0 100.00%
         Toggles
          Toggle Coverage for instance /\enc_tb#DUT --
                                               Node
                                                                 0L->1H "Coverage"
109
110
111
112
113
                                                                              100.00
                                                                              100.00
                                                                              100.00
100.00
100.00
                                              valid
114
115
      Total Node Count
Toggled Node Count
      Untoggled Node Count =
118
119
120
                            100.00% (18 of 18 bins)
      Toggle Coverage =
      Total Coverage By Instance (filtered view): 100.00%
```

Q3) ALU

❖ <u>Verification Plan:</u>

Label	Design Requirement Description	Stimulus Generation	Functional Coverage	Functionality Check
ALU1	when reset is asserted, Output (C) should be Low	Directed at the start of the simulation	-	A checker in the testbench to make sure the output is correct
ALU2	Hitting the bounary cases of A and B and try addition then subtraction	Directed during the simulation	-	A checker in the testbench to make sure the output is correct
ALU3	verify bitwise invert input A	Random during the simulation	-	A checker in the testbench to make sure the output is correct
ALU4	verify reduction OR input B	Random during the simulation	-	A checker in the testbench to make sure the output is correct
ALU5	overall functionality of the ALU by select two values for A,B and the apply all opcodes on them	Random during the simulation	-	A checker in the testbench to make sure the output is correct

* TestBench:

```
Opcode = Not_A;
    repeat(10) begin
        A = $random;
        check_Ainvert_result;
    Opcode = ReductionOR_B;
    repeat(10) begin
        B = $random;
        check_RedOR_B_result;
    A = 6; B = -3;
    Opcode = Add; check_Add_result(3);
    Opcode = Sub; check_Sub_result(9);
    Opcode = Not_A; check_Ainvert_result;
    Opcode = ReductionOR_B; check_RedOR_B_result;
assert_reset; // to complete toggle coverage
    $display("Error Count = %0d\n",Error_Count);
$display("Correct Count = %0d\n",Correct_Count);
    $stop;
```

```
task assert_reset ;
110
            reset = 1;
            @(negedge clk);
111
112
            if (C != 'b0)
113
              $display("Reset failed");
115
              Error_Count++;
           end
            else begin
             $display("Reset Passed");
118
            Correct_Count++;
119
121
            reset = 0;
       endtask //
```

```
task check_Ainvert_result;
    @(negedge clk);
    if (C == ~A) begin
        $display("Passed Op1 Inverting for A = %0b,output: %0b",A,C);
        Correct_Count++;
    else begin
        $display("Failed Op1 Inverting for A = %0b,output: %0b",A,C);
         Error_Count++;
task check_RedOR_B_result;
    @(negedge clk);
        $display("Passed Op2 Reduction OR for B = %0b,output: %0b",B,C);
        Correct_Count++;
    else begin
        $display("Failed Op2 Reduction OR for B = %0b,output: %0b",B,C);
        Error_Count++;
endmodule
```

* Results:

```
vsim -voptargs="+acc" ALU_tb -coverage
Start time: 01:07:31 on Mar 06,2025
** Note: (vsim-8009) Loading existing optimized design _optl
Loading sv std.std
Loading work.ALU_tb(fast)
Loading work.ALU_4_bit(fast)
Reset Passed
Passed Adding for A = -8, B = -8 exceeded output: -16
Passed Subtracting for A = -8, B = -8 exceeded output: 0
Passed Adding for A = -8, B = 0 excepted output: -8
Passed Subtracting for A = -8, B = 0 excepted output: -8
Passed Adding for A = -8, B = 7 excepted output: -1
Passed Subtracting for A = -8, B = 7 exceeded output: -15
Passed Adding for A = 0, B = 7 excepted output: 7
Passed Subtracting for A = 0, B = 7 exceeded output: -7
Passed Adding for A = 7, B = 7 excpected output: 14
Passed Subtracting for A = 7, B = 7 exceeded output: 0
Passed Adding for A = 7, B = 0 excpected output: 7
Passed Subtracting for A = 7, B = 0 exceeded output: 7
Passed Adding for A = 0, B = 0 excpected output: 0
Passed Subtracting for A = 0, B = 0 exceeded output: 0
Passed Adding for A = -8, B = 0 excepted output: -8
Passed Subtracting for A = -8, B = 0 exceeded output: -8
Passed Opl Inverting for A = 100,output: 11011
Passed Opl Inverting for A = 1,output: 11110
Passed Opl Inverting for A = 1001, output: 110
Passed Opl Inverting for A = 11, output: 11100
Passed Opl Inverting for A = 1101, output: 10
Passed Opl Inverting for A = 1101,output: 10
Passed Opl Inverting for A = 101,output: 11010
Passed Opl Inverting for A = 10, output: 11101
Passed Opl Inverting for A = 1,output: 11110
Passed Opl Inverting for A = 1101,output: 10
Passed Op2 Reduction OR for B = 110, output: 1
Passed Op2 Reduction OR for B = 1101, output: 1
Passed Op2 Reduction OR for B = 1101, output: 1
Passed Op2 Reduction OR for B = 1100,output: 1
Passed Op2 Reduction OR for B = 1001, output: 1
Passed Op2 Reduction OR for B = 110,output: 1
Passed Op2 Reduction OR for B = 101, output: 1
Passed Op2 Reduction OR for B = 1010, output: 1
Passed Op2 Reduction OR for B = 101, output: 1
Passed Op2 Reduction OR for B = 111, output: 1
Passed Adding for A = 6, B = -3 excpected output: 3
Passed Subtracting for A = 6, B = -3 exceeded output: 9
Passed Opl Inverting for A = 110, output: 11001
Passed Op2 Reduction OR for B = 1101, output: 1
Reset Passed
Error Count = 0
Correct Count = 42
```

Waveform:

4 2 •	Msgs																	
→ /ALU_tb/MAXPOS	32'h00000007	0000007																
/ALU_tb/MAXNEG	32'hfffffff8	fffffff8																
→ /ALU_tb/Add	2'h0	0																
→ /ALU_tb/Sub	2'h1	1																
→ /ALU_tb/Not_A	2'h2	2																
/ALU_tb/Reduction	2h3	3																
+ /ALU_tb/A	4'h6	1 (8		(0	(7		(0	8 (4	(1 (9	3 (d	(5 (2	1 (d				χ.		
→ /ALU_tb/B	4'hd	1 (8	0	7		(0						(6	(d	c (9 (6	(5 (a	5 (7 (
→ /ALU_tb/dk	1'h0														ייייו	LLL.	יייין	LOO.
/ALU_tb/reset	1'h0																	
★ /ALU_tb/Opcode	2'h3	0 (1	(0 (1	0 (1 (0	(1 (0	1 (0 (1	(0 (1	0 (1 (2				(3				χc	1 (2	3
→ /ALU_tb/C	5'h00	00 10	18	(1f)	(19)	(07	(00	(18	()()(0	6 (1c (02	(1a)	(02	01				03 (
<u>→</u> /ALU_tb/Error_Count		00000000																
→ /ALU_tb/Correct_C	32'h0000002a		X X				XX		X X		X X							

❖ Coverage Report:

```
Coverage Report by instance with details
    === Instance: /\ALU_tb#DUT
    === Design Unit: work.ALU_4_bit
   Branch Coverage:
      Enabled Coverage
      Branches
      Branch Coverage for instance /\ALU_tb#DUT
     File ALU.v
                  -----CASE Branch-----
                                            Count coming in to CASE
                                                               Alu_out = A + B;
                                                   Sub:
                                                               Alu_out = A - B;
                                                   Not_A:
                                                               Alu_out = ~A;
                                                   ReductionOR_B: Alu_out = |B;
     Branch totals: 4 hits of 5 branches = 80.00%
    Toggle Coverage:
Enabled Coverage
                                      Hits
                                              Misses Coverage
                                                0 100.00%
    Toggle Coverage for instance /\ALU_tb#DUT --
                                                           0L->1H "Coverage"
40
41
42
43
    Total Node Count =
Toggled Node Count =
Untoggled Node Count =
```

- Missing Bin in Branch and statement coverages is the **default** of the Opcode Case Statement.
- This statement can't be reached because the Case statement handles all the possible Opcode value, so this miss will be excluded from both reports.

```
ALU.v

20 always @* begin

22 Add: Alu_out = A + B;

23 Sub: Alu_out = A - B;

24 Not_A: Alu_out = ~A;

25 ReductionOR_B: Alu_out = |B;

E 26 default: Alu_out = 5'b0;

31 always @(posedge clk or posedge reset) begin

33 C <= 5'b0;

35 C<= Alu_out;
```

```
Statement Coverage:
Enabled Coverage
Statements
Statements
Statements
Statements
Statements
Statements
Statements
Statements
Statements
Statement
```

Q3) DSP

❖ <u>Verification Plan:</u>

Label	Design Requirement Description	Stimulus Generation	Functional Coverage	Functionality Check
DSP1	when reset is de-asserted, Output (P) should be Low for three clock cycles (Internal registers should also be reset).	Directed at the start of the simulation	-	A checker in the testbench to make sure the output is correct
DSP2	checking the normal operation out of reset.	Randomized during the simulation	-	Comparing P to the output of a reference golden model's P_expected.

* TestBench:

```
module DSP_tb ();
logic [17:0] A,B,D;
logic [47:0] C;
    logic rst_n,clk;
logic [47:0] P;
    integer Error_Count, Correct_Count;
    DSP DUT (.*);
initial begin
    clk = 0;
forever begin
         #1 clk = ~clk;
initial begin
    Error_Count = 0; Correct_Count = 0;
    A = 1;B = 1; D = 1; C = 1;
    assert_reset;
     repeat (25) begin
       A = $random;
B = $random;
         D = $random;
C = $random;
         check_result(A,B,D,C);
    assert_reset; // to complete the toggle coverage for rst_n signal
```

```
$display("Error Count = %0d\n",Error_Count);
          $display("Correct Count = %0d\n",Correct_Count);
          $stop;
     end
 task DSP_Golden_Model(
             input [17:0] A,B,D,
input [47:0] C,
             output [47:0] P_expected
          logic [17:0] adder_result;
          adder_result = B+D;
          P_expected = (adder_result * A)+C;
     endtask
v task assert_reset;
         rst_n = 0;
         @(negedge clk); // check the reset of the Output register
\
         if (P != 'b0)
           $display("Reset failed");
           Error_Count++;
         else begin
              C = 0;
 V
              rst_n = 1; // to allow inputs to propegate
               @(negedge clk);
               @(negedge clk);
                if (P !== 'b0)
               begin
                   $display("Reset failed");
                   Error_Count++;
              else begin
                     $display("Reset Passed");
                     Correct_Count++;
              end
task check_result (
input [17:0] A,B,D,
input [47:0] C
   logic [47:0] P_expected;
   DSP_Golden_Model(A,B,D,C,P_expected);
   @(negedge clk);
   @(negedge clk);
@(negedge clk);
@(negedge clk);
      P == P_expected) begin
$display("Passed for A = %0h, B = %0h, D = %0h, C = %0h -> Expected Result = %0h",A,B,D,C,P_expected);
Correct_Count++;
   else begin
$display("Time: %0t, Failed for A = %0h, B = %0h, D = %0h, C = %0h -> Expected Result = %0h, Result = %0h",
$time, A,B,D,C,P_expected,P);
      $stop;
endmodule
```

* Results:

- Transcript:

```
vsim -voptargs="+acc" DSP_tb -covera
Start time: 22:23:19 on Mar 06,2025
** Note: (vsim-3813) Design is being optimized due to module recompilation...
Loading sv_std.std
Loading work.DSP_tb(fast)
Loading work.DSP(fast)
Reset Passed
Passed for A = 13524, B = 15e81, D = d609, C = ffffblf05663 \rightarrow Expected Result = 25baa4bcb Passed for A = 17b0d, B = 3998d, D = 28465, C = ffff89375212 \rightarrow Expected Result = 2aba81d5c
Passed for A = 3e301, B = 3cd0d, D = 3f176, C = 1e8dcd3d -> Expected Result = eac08b4c0
Passed for A = 57ed, B = 1f78c, D = 1e9f9, C = ffffe33724c6 -> Expected Result = 138731fe7
Passed for A = 384c5, B = 3d2aa, D = 3f7e5, C = ffffbbd27277 -> Expected Result = d12dc0e82
Passed for A = 2d612, B = db8f, D = 69f2, C = ffffe77696ce -> Expected Result = 382a94fe0
Passed for A = 7ae8, B = 24ec5, D = 495c, C = ffffde8e28bd -> Expected Result = 11d67c0a5
Passed for A = 3582d, B = 32665, D = 36263, C = 573870a -> Expected Result = 87f425232 Passed for A = 32280, B = 2120, D = 45aa, C = ffffcecccc9d -> Expected Result = 11105059d Passed for A = 3e96, B = 3b813, D = 380d, C = ffffa9a7d653 -> Expected Result = a01e4913
Passed for A = 3dd6b, B = 22ad5, D = 34a02, C = ffffd7563eae -> Expected Result = 57854af8b
Passed for A = 3e91d, B = 172cf, D = 4923, C = 509650a -> Expected Result = 6cd20f174
Passed for A = 30aca, B = 14c3c, D = bdf2, C = 452e618a -> Expected Result = 679ba35d6
Passed for A = b341, B = 334d8, D = f378, C = ffffc48a1289 -> Expected Result = ffffe0c43ed9
Passed for A = 10deb, B = 265b6, D = 3f9c6, C = 571513ae -> Expected Result = 2d7980682
Passed for A = 102bc, B = 3dd2a, D = 39a0b, C = ffffb897be71 -> Expected Result = 33946b35d
Passed for A = 24185, B = 2554f, D = 603b, C = 1006333a -> Expected Result = 6399a8dec
Passed for A = 3327e, B = 24b15, D = 19bf1, C = 6c9c4bd9 -> Expected Result = ce6b92ccd Passed for A = 30762, B = 1fb4c, D = 1559f, C = 47b9a18f -> Expected Result = a52f60885
Passed for A = 1a9f8, B = 160b7, D = 569f, C = ffffae7d945c -> Expected Result = 28984f5ac
Passed for A = 3c05b, B = 23789, D = 23249, C = ffffe8233ed0 -> Expected Result = 1751c5c76
Passed for A = 2c0d7, B = 3fc51, D = 12f96, C = 6ld7f0c -> Expected Result = 33fd49e0d
Passed for A = cec2, B = 3edc8, D = 25a77, C = lef2ed3d \rightarrow Expected Result = 1f6d05efb Passed for A = db12, B = 1007e, D = 1816d, C = lcd9e739 \rightarrow Expected Result = 2422b12bf
Passed for A = 28flf, B = 3f6d3, D = 12f85, C = ffffbc148878 -> Expected Result = 2ad535520
Reset Passed
Passed for A = 3ffff, B = 1, D = 0, C = 0 \rightarrow Expected Result = 3ffff
Error Count = 0
Correct Count = 28
** Note: $stop
                       : DSP_tb.sv(44)
    Time: 220 ns Iteration: 1 Instance: /DSP_tb
```

- DSP_1:

 ∕> /DSP_tb/A	18'h28f1f	00001					13524		
∓ - /DSP_tb/B	18'h3f6d3	00001					15e81		
∓ - /DSP_tb/D	18'h12f85	00001					0d609		
	48'h0000000000000	0000000	00001	0000000	00000		ffffb1f0	5663	
<pre>/DSP_tb/rst_n</pre>	1'h1								
<pre>/DSP_tb/dk</pre>	1'h0								
₽- /DSP_tb/P	48'h0000000000000	0000000	00000						
-// /DSP_tb/Error_Count	32'h00000000	0000000	0						
+	32'h0000001b	0000000	0				0000000	1	

- DSP_2:

≨ 1 •	Msgs																			
DSP_tb/A DSP_tb/A	18'h28f1f	00001	13524	(17b0d	(3e30)		057ed	(384	c5	2d612	X	07ae8	(35820		32280	(03e	96	(3dd6b	(3e91d
■ - / /DSP_tb/B	18'h3f6d3	00001	15e81		998d	(3cd0c		1f78c	(3d2	aa	(0db8f	X	24ec5	(3266		02120	(3b8	13	(22ad5	(172cf
II → /DSP_tb/D	18'h12f85	00001	0d609	X	28465	(3f176		1e9f9	(3f7	e5	(069f2	X	0495c	(3626		045aa	(038	0d	(34a02	(04923
→ /DSP_tb/C	48"h0000000000000	(000	ffffb1f0	5663	fff89375212	(0000)	1e8dcd3d	ffffe33724	c6 (ffff	bbd27277	ffffe776	96ce (ffffde8e28bd	(00000	573870a	ffffcecccc	d (ffff	a9a7d653	(ffffd7563e	ae (000005
<pre>/DSP_tb/rst_n</pre>	1h1																			
<pre>/DSP_tb/dk</pre>	1'h0	لىمىا	T				L				ייייו	LL.					LLL.	டா		
→ /DSP_tb/P		000000000	000 (f	ffb)(00	(000	(000	000 (0	000 (000	(000	(000	000 0	00 (00	0 (000	(000	000 (0	00 (000	(000	(000	000 (000	(000)(
♣ /DSP_tb/Error_Count	32'h00000000	00000000																		
■- /DSP_tb/Correct_C DSP_tb/Correct_C DSP_tb/Correct_C	32'h0000001b	00000000	000000	1 (00000002	(00000	003	00000004	(000	00005	(0000000	6)(00000007	(00000	008	00000009	(000	0000a	(0000000b	(000000
		<u> </u>			<u>' '</u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>				<u> </u>		<u>' '</u>	<u>'</u>

❖ Bugs found:

Label	Bug Description							
DSP_1	Internal register(C_reg) wasn't affected by rst_n.	<pre>// reset</pre>	Added C_reg to the reset condition in the RTL.					
DSP_2	the internal signal (adder_out_stg2) is redundant and causes an extra register after the first stage adder	<pre>//adder_out_stg2 <= adder_out_stg1; //Bug: causing a redundant register after the first adder</pre>	Signal is totally removed, and multiplier_out signal will directly take the value of adder_out_stg1.					

❖ Coverage Report:

```
=== Instance: /\DSP_tb#DUT
=== Design Unit: work.DSP
Branch Coverage:
  Enabled Coverage
                                Hits Misses Coverage
                                        0 100.00%
  Branches
 Branch Coverage for instance /\DSP_tb#DUT
            -----IF Branch-----
                                112 Count coming in to IF
                                       if (!rst_n) begin
                                        else begin
Branch totals: 2 hits of 2 branches = 100.00%
Statement Coverage:
  Enabled Coverage
                                       0 100.00%
  Statements
```

```
Toggle Coverage:
   Enabled Coverage
                               Bins
                                               Misses Coverage
                                676
                                                         96.44%
   Toggles
Toggle Coverage for instance /\DSP_tb#DUT --
                                     Node 1H->0L 0L->1H "Coverage"
                                                                         100.00
                               A_reg_stg1[17-0]
A_reg_stg2[17-0]
                                                                         100.00
                                                                         100.00
                                   B[0-17]
B_reg[17-0]
C[0-47]
C_reg[47-0]
D[0-17]
                                                                         100.00
                                                                       100.00
100.00
100.00
                                                                       100.00
100.00
100.00
100.00
100.00
                                   D_reg[17-0]
                           adder_out_stg1[17-0]
                                clk
mult_out[47-36]
mult_out[35-0]
                                                                          0.00
                                                                         100.00
                                        rst_n
                                                                         100.00
                         338
Total Node Count
Toggled Node Count
Untoggled Node Count =
Toggle Coverage
               = 96.44% (652 of 676 bins)
Total Coverage By Instance (filtered view): 98.81%
```

- Un-Toggled upper bits of mult_out (mult_out[47:36]) will never be toggled, since the multiplier inputs (A and B/D) are **18-bit signals**, so their multiplication will need at most **36 bits** (mult_out[35:0]).

Toggle Coverage:				
Enabled Coverage	Bins	Hits	Misses	Coverage
Toggles	652	652	0	100.00%

Toggle Coverage for instance /\DSP_tb#DUT --

Node	1H->0L	0L->1H	"Coverage"
A[0-17]	1	1	100.00
A reg stg1[17-0]	1	1	100.00
A_reg_stg2[17-0]	1	1	100.00
B[0-17]	1	1	100.00
B_reg[17-0]	1	1	100.00
C[0-47]	1	1	100.00
C_reg[47-0]	1	1	100.00
D[0-17]	1	1	100.00
D_reg[17-0]	1	1	100.00
P[47-0]	1	1	100.00
adder_out_stg1[17-0]	1	1	100.00
clk	1	1	100.00
mult_out[35-0]	1	1	100.00
rst n	1	1	100.00

Total Node Count = 326 Toggled Node Count = 326 Untoggled Node Count = 0

Toggle Coverage = 100.00% (652 of 652 bins)

Total Coverage By Instance (filtered view): 100.00%