HR Analytics Promotion Recommendation

Agenda

- Dataset Description
- Objective
- Exploratory Data Analysis
- Data Cleaning/Preprocessing
- Feature Engineering
- Models Used
- Results/Comparison
- Challenges
- Future Work

Dataset Description

Variable	Definition	
employee_id	Unique ID for employee	
department	Department of employee	
region	Region of employment (unordered)	
education	Education Level	
gender	Gender of Employee	
recruitment_channel	Channel of recruitment for employee	
no_of_trainings	no of other trainings completed in previous year on soft skills, technical skills etc.	
age	Age of Employee	
previous_year_rating	Employee Rating for the previous year	
length_of_service	Length of service in years	
KPIs_met >80%	if Percent of KPIs(Key performance Indicators) >80% then 1 else 0	
awards_won?	if awards won during previous year then 1 else 0	
avg_training_score	Average score in current training evaluations	
is promoted	(Target) Recommended for promotion	

Dataset Overview

Data Source : Analytics Vidhya

https://datahack.analyticsvidhya.com/contest/wns-analytics-hackathon-2018-1/

Data Dictionary:

Attributes: 14

Observations: 54808

	employee_id department <int> <chr></chr></int>	region <chr></chr>	education <chr></chr>	gender <chr></chr>	recruitment_channel <chr></chr>	no_of_trainings <int></int>	age <int></int>	previous_year_rating <int></int>	length_of_service <int></int>	KPIs_met80. <int></int>	awards_won. <int></int>	avg_training_score <int></int>	is_promoted <int></int>
1	65438 Sales & Marketing	region_7	Master's & above	f	sourcing	1	35	5	8	1	0	49	0
2	65141 Operations	region_22	Bachelor's	m	other	1	30	5	4	0	0	60	0
3	7513 Sales & Marketing	region_19	Bachelor's	m	sourcing	1	34	3	7	0	0	50	0
4	2542 Sales & Marketing	region_23	Bachelor's	m	other	2	39	1	10	0	0	50	0
5	48945 Technology	region_26	Bachelor's	m	other	1	45	3	2	0	0	73	0
6	58896 Analytics	region_2	Bachelor's	m	sourcing	2	31	3	7	0	0	85	0

Objective

To predict whether an employee will be recommended for promotion based on various factors given in the data set.

- Identifying the categorical and numerical variables
- Analyzing the target variable
- Analyzing the categorical variable with target variable
- Analyzing the numerical variable
- Analyzing the relationship between variables

Step 1: Identifying the categorical and numerical variables

```
Classes 'data.table' and 'data.frame': 54808 obs. of 14 variables:
$ employee_id : int 65438 65141 7513 2542 48945 58896 20379 16290 73202 28911 ...
$ department : chr "Sales & Marketing" "Operations" "Sales & Marketing" "Sales &
Marketing" ...
            : chr "region_7" "region_22" "region_19" "region_23" ...
$ region
$ education : chr "Master's & above" "Bachelor's" "Bachelor's" "Bachelor's" "Bachelor's" ...
            : chr "f" "m" "m" "m" ...
$ gender
$ recruitment_channel : chr "sourcing" "other" "sourcing" "other" ...
$ no_of_trainings : int 1 1 1 2 1 2 1 1 1 1 ...
                   : int 35 30 34 39 45 31 31 33 28 32 ...
$ age
 $ previous_year_rating: int 5 5 3 1 3 3 3 4 5 ...
 $ length_of_service : int 8 4 7 10 2 7 5 6 5 5 ...
$ KPIs_met : int 1 0 0 0 0 0 0 0 1 ...
$ awards_won : int 000000000...
 $ avg_training_score : int 49 60 50 50 73 85 59 63 83 54 ...
$ is_promoted : int 000000000...
- attr(*, ".internal.selfref")=<externalptr>
```

Step 2: Analyzing the target variable

- This indicates a huge imbalance in the target variable for classification.
- This issue needs to be addressed before modeling.

- Department:
 - I. We observe that even though Sales & Marketing department is big, employees recommended are very few.
 - II. In other departments like Analytics, Operations, Technology, Procurement employee recommendation is relatively good
- Region : Even though Region 19 has more employees, promotion recommendation is comparatively low

Previous Year Rating

is promoted

- Education: People who are recommended for promotion mostly holds a Master's & above
- Previous Year Rating: Employees with previous year rating of 5 have fair amount of chance of being recommended for promotion

- KPI's met >80%: Employees who have KPI's greater than 80 have higher chances of being recommended for promotion
- Awards Won: People who have not won more awards are not likely to be recommended for promotion

Length of Service

Avg Training Score

- Length of Service: Distribution shows a right skewness
- Avg Training Score: Skewness is not evident in the distribution

Avg Training Score vs Age

Length of Service vs Avg Training Score

- Avg_training_score vs Age: Higher the average score across all ages, are highly recommended for promotion
- Length of Service vs Avg Training Score: Employees with length of service of 1 to 11 years along with high average training scores are highly recommended for promotion

Data Cleaning/Data Preprocessing

- Observed NA values in previous_year_rating and education attributes.
- Replaced the NA values in the previous_year_rating with 0, since the length of the service of those employees was only one year.

```
> relation<-hr_analytics[is.na(previous_year_rating),.(length_of_service,previous_year_rating)]
> unique(relation$length_of_service)
[1] 1
```

Added the NA as a factor level for the education attribute.

```
> levels(hr_analytics$education)
[1] "Bachelor's" "Below Secondary" "Master's & above" NA
```

- No significant correlation observed between the attributes
- Converted Age, Department, Region, No: of Trainings, Previous Year Rating, KPI's >80%, Awards Won, Region, is promoted, Education, Recruitment Channel, Gender to factors.

Feature Engineering

- Converted age into bins E.g.: 20-30,30-40,40-50,50-60
- Converted NA level in the education attribute to 'Unavailable' as the rows with NA's were being omitted during logistic regression
- Employee ID's attribute was not considered for modelling as it was a nominal factor.
- Handling the imbalanced data by applying synthetic resampling techniques as ROSE and SMOTE.
- Split the data into train and validation set in the ratio 75:25

Feature Selection

Variable importance chart before applying various models on the data

Models Used

ROSE

- Decision Tree(CART/RPART)
- Random Forest
- Logistic Regression

SMOTE

- Decision Tree(CART/RPART)
- Random Forest
- Logistic Regression

ROSE-Decision Tree (CART/RPART)

Accuracy is 68.22%

	Predicted 0	Predicted 1
Actual	8283	96
0	TN	FP
Actual	4258	1065
1	FN	TP

ROSE-Random Forest

Accuracy is 82.36%

	Predicted 0	Predicted 1
Actual	10428	303
0	TN	FP
Actual	2113	858
1	FN	TP

ROSE-Logistic Regression

Accuracy is 78.15%

	Predicted 0	Predicted 1
Actual	9799	252
0	TN	FP
Actual	2742	909
1	FN	TP

SMOTE – Decision tree (CART/RPART)

Accuracy is 84.6%

	Predicted 0	Predicted 1
Actual	10926	479
0	TN	FP
Actual	1629	667
1	FN	TP

SMOTE – Random Forest

Accuracy is 84.6%

	Predicted 0	Predicted 1
Actual	10848	401
0	TN	FP
Actual	1708	745
1	FN	TP

SMOTE – Random Forest

Variable Importance Plot

SMOTE – Logistic Regression

Accuracy is 88.29%

	Predicted 0	Predicted 1
Actual 0	11493 TN	577 FP
Actual 1	1028 FN	604

Results Comparison

Model	Accuracy (%)	AUC
ROSE – Decision tree (RPART)	68.22	0.789
ROSE – Random Forest	82.36	0.785
ROSE – Logistic Regression	78.15	0.87
SMOTE – Decision tree (RPART)	84.6	0.72
SMOTE – Random Forest	84.6	0.75
SMOTE – Logistic Regression	88.29	0.857

Challenges

- High Imbalance in the data set
- Only 2 Quantitative attributes

Future Work

- Creating new relevant features
- Using other resampling techniques to overcome the imbalance
- Other Machine Learning models like Clustering.

Thank You