Def: Let P be a prob. distribution on a discrete Ω . The (Shanner) entropy $H(P):=\sum_{w\in \Lambda}P(w)\log\frac{1}{p(w)}$ For a discrete R.V. $X: \Omega \to X$ $H(X):=H(P_X)=\sum_{x\in X}P_X(x)\log\frac{1}{p_X(x)}=\mathbb{E}\left(\log\frac{1}{p_X(x)}\right)$ real P_X . log $P_X(x)$: the suprisal of X=X happens, P_X : the superisal of Y=X happens, P_X : the superisal of Y=X happens P_X : P_X

Example (Bernoulli): $X \in \{0,1\}$. P(X=1)=P P(X=0)=1-P P(X)=P(X=0)=1-P P(X)=P(X=0)=1-P P(X)=P(X=0)=1-P P(X)=P(X=0)=1-P P(X)=P(X=0)=1-P P(X)=P(X=0)=1-P P(X)=P(X=0)=1-P P(X=0)=1-P P

Example (∞ entropy): Can $H(X) = +\infty$? Yes $P(X=k) = \frac{c}{k \ln^2 k}$, k=23.

Time for ant scout to describe the location of food $\sim \log_2 2^d = d$ left, right left $\sim -$ d binary digit ant communication α 7-1 bit/min

Convexity V a vector space $(V \cong \mathbb{R}^n)$,

A subset $S \subseteq V$ is convex if $V \times V \in S$, $V \times V \in S$, $V \times V \in S$ for $V \in V \in S$ and $V \times V \in S$ and $V \times V \in S$ for $V \in V \in S$ and $V \in V$ and

Example: (i)
$$\mathbb{R}^n$$
 is convex

 $[0,1] \subseteq \mathbb{R}$, $(a,b) \subseteq \mathbb{R}$

(ii) $\mathbb{P}(X) = \mathbb{P}(X) = \mathbb{P}$

A function
$$f: S \rightarrow \mathbb{R}$$
 is

(i) convex if $f(\lambda x + (-\lambda)y) \leq \lambda f(x) + ((-\lambda)f(y), \forall x, y \in S, \lambda \in [0,1]$

(ii) strictly convex if $f(\lambda x + (-\lambda)y) \leq \lambda f(x) + ((-\lambda)f(y), \forall x \neq y \in S, \lambda \in [0,1]$

(iii) (prictly) con cave if $-f$ is (strictly) convex

Example: ① $x \mapsto x \log x$ convex strictly

 $x \mapsto \log x$ convex but not strictly

(Proof?)

Jensen inequality:
$$\forall X: JZ \rightarrow S \subseteq \mathbb{R}^n \text{ vector valued } R.v.$$

$$f(\text{onvex}) \Rightarrow f(\mathbb{E}X) \leq \mathbb{E}f(x)$$
If strictly convex, then $f(\mathbb{E}x) = \mathbb{E}f(x)$ iff $X = \mathbb{E}x \quad a.s.$
conseant $R.v.$

Pf: Convexity =>
$$f(\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n)$$

 $\leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \cdots + \lambda_n f(x_n)$
 $\lambda_i \geq 0$ $\sum_{i=1}^{n} \lambda_i = 1$
 $f(\mathbb{E}X) = f(\sum_{w} P(w) X(w)) \leq \sum_{w} P(w) = f(X(w))$
 $P(w) \geq 0 \leq P(w) = 1$ $\leq \mathbb{E} f(x)$

Properties of H

② If
$$X$$
 is finite, $H(X) \leq \log |X|$ with equality iff P_X is uniform on X

3 For any bijective f,
$$H(x) = H(f(x))$$

$$P \mapsto H(P)$$
 is strictly concave

Pf: 0 H(X)=
$$\mathbb{E}\left[\log \frac{1}{R}\right] \ge 0$$
 $R_{x}(x) \le 1$, $\log \frac{1}{R_{x}(x)} \ge 0$
2 H(X)= $\mathbb{E}\left[\log \frac{1}{R}\right] \le \log \mathbb{E}\left(\frac{1}{R}\right)$
= $\log \sum_{x} P(x) \frac{1}{R^{2}(x)} = \log |X|$
equality iff $\log \frac{1}{R}$ is consecunt
 $\iff R_{x}(x) = 1 \implies R_{x}(x) = \frac{1}{|X|}$

$$P_{X}(x) = P(\{w \mid x(w) = xy\}) = P(\{w \mid f \circ x(w) = f \circ xy\}) = P_{f(X)}(f \circ x)$$

$$H(X) = \sum_{x} P_{f(x)}(y) = \sum_{x} P_{f(x)}(f \circ x) = H(X)$$

(4):
$$H(\lambda P_1 + U \lambda)P_2) = \sum_{\omega} f(\lambda P_1(\omega) + U \lambda)P_2(\omega)$$
 $f(t) = t \log t$

$$7 \sum_{\omega} \lambda f(P_1(\omega)) + U \lambda f(P_2(\omega)) = -t \log t$$

$$= \lambda \sum_{\omega} f(P_1(\omega)) + U \lambda \sum_{\omega} f(P_2(\omega))$$

$$= \lambda H(P_1) + \lambda H(P_2)$$