

GEORG JUNG

- C# & .NET
- AI in .NET produktiv nutzbar machen
- Open Source
 - FastBertTokenizer
 - FaceAiSharp
 - rund 1,5 Mio. NuGet Downloads

georg@gjung.com

linkedin.com/in/georg-jung/

github.com/georg-jung/

- ✓ PoV: Software-Entwickler
- ✓ HyDE verstehen
- ✓ Alle Bausteine überblicken
- ✓ Praktische Vorgehensweise verstehen
- ✓ On-device: keine Cloud-Dienste nötig
- × AI-Interna & Details
- × Fertige Produkte

ERWARTUNGEN

SEMANTISCHE SUCHE

- Gleiche Bedeutung, statt gleiche Buchstaben
- Arbeitet mit Embeddings
- Gefühlt: Googlen vs. Strg+F

SEMANTISCHE SUCHE

- Gleiche Bedeutung, statt gleiche Buchstaben
- Arbeitet mit Embeddings
- Gefühlt: Googlen vs. Strg+F
- Bibliothekar

LARGE LANGUAGE MODEL

- × Eigene Daten / firmeninternes Wissen
- × Halluzinationen
- × Nachvollziehbare Quellen

- ✓ Kreativität
- ✓ Kontextverständnis
- ✓ Mehrere Quellen kombinieren

LARGE LANGUAGE MODEL

- × Eigene Daten / firmeninternes Wissen
- × Halluzinationen
- × Nachvollziehbare Quellen

- ✓ Kreativität
- ✓ Kontextverständnis
- ✓ Mehrere Quellen kombinieren

> "Dorfältester"

RAG?

- Retrieval Augmented Generation
- Erst semantisch Suchen, dann Ergebnisse in LLM-Prompt integrieren
- ✓ Präzisere Antworten/weniger Halluzinationen
- ✓ Eigene Informationen beisteuern

HyDE!

- Hypothetical Document Embeddings
- "Erfundene" LLM-Antwort als Embedding nutzen
 - Den Dokumenten strukturell ähnlicher als ein Query -> Bessere Embeddings
- ✓ Original-Quellen finden
- ✓ LLM-Kreativität & -Kontextwissen für Suche nutzen

RAG

- Individuelle Antwort
- Steht & fällt mit Qualität der semantischen Suche
- Präziser/halluzinationsärmer

Semantische Suche mit HyDE

- Bessere Ergebnisse durch mehr Kontext aus der LLM-Antwort
- Halluzinationsfrei & Original-Quellen

Demo: Ziel?

- Simple semantische "Suchmaschine" auf lokalem Datensatz
 - Hier: .NET-, ASP.NET-, EF Core & Npgsql-Dokumentation
- Ausführung vollständig on-device
- Wir implementieren alle interessanten Schritte

Projektplan

- 1. Modellauswahl
- 2. Semantische Embeddings berechnen
- 3. Ähnliche Vektoren finden
- 4. HyDE ergänzen

Modellauswahl

- Embedding-Modell
 - Vektorrepräsentation der Corpus-Dokumente (hier: Dokumentation) erzeugen
 - Vektorrepräsentation des Search Query erzeugen
- Language Model
 - Hypothetisches Dokument aus Search Query erzeugen
- Trade-Off: Qualität der Ergebnisse vs. benötigte Rechenleistung & (V)RAM

- Ranking/Ergebnisqualität
- Speicherbedarf (RAM/VRAM)
- Kontextgröße
- Embeddingdimensionen
- Format (ONNX?)

- Wo ausführbar (CUDA, DirectML, ...)?
- Modellarchitektur
- Lizenz
- Dateigröße
- Anzahl Modellparameter

Embedding-Modell: MTEB-Leaderboard

Massive Text Embedding Benchmark

Rank 🛦	Model	Model Size (Million A	Memory Usage (GB, fp32)	Embedding Dimensions	Max Tokens	Average (56 Adatasets)
6	dunzhang-stella en 400M v5	435	1.62	1024	8192	70.11
7	stella en 400M v5	435	1.62	8192	8192	70.11
23	jina-embeddings-v3	572	2.13	1024	8194	65.51
24	gte-large-en-v1.5	434	1.62	1024	8192	65.39
26	cde-small-v1	143	0.53	768	512	65
29	mxbai-embed-large-v1	335	1.25	1024	512	64.68
30	UAE-Large-V1	335	1.25	1024	512	64.64
34	multilingual-e5-large-instruc	560	2.09	1024	514	64.41
36	GIST-large-Embedding-v0	335	1.25	1024	512	64.34
37	bge-large-en-v1.5	335	1.25	1024	512	64.23

- Nur Englisch
- Fokus hauptsächlich Effizienz
- In verschiedenen "Intelligenz" vs. Effizienz Trade-offs verfügbar
- Klassische BERT-Architektur

Language Model: Open LLM Leaderboard oder Chatbot Arena

T A	Model	A	Average 🚹 🔺	Hub License	#Params (B)
	Goekdeniz-Guelmez/Josiefied-Qwen2.5-78-Instruct-abliterated-v2		27.76	apache-2.0	7
•	BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B		27.74	apache-2.0	8
•	cognitivecomputations/dolphin-2.9.1-yi-1.5-34b		27.73	apache-2.0	34
	01-ai/Yi-1.5-98-Chat 3		27.71	apache-2.0	8
	jpacifico/Chocolatine-3B-Instruct-DPO-Revised		27.63	mit	3
•	Gryphe/Pantheon-RP-Pure-1.6.2-22b-Small		27.58	other	22
•	nbeerbower/Mistral-Small-Gutenberg-Doppel-228		27.58	other	22
9	cloudyu/Mixtral 34Bx2 MoE 60B 🖪		27.42	apache-2.0	60
	microsoft/Phi-3.5-mini-instruct		27.4	mit	3
0	NAPS-ai/naps-llama-3 1-8b-instruct-v0.4		27.31	apache-2.0	8

Rank* (UB)	Rank (StyleCtrl)	Model	Arena Score	95% CI	Votes 🔺	Organizatio	License A	Knowledge Cutoff
1	1	ChatGPT-4o-latest (2024- 09-03)	1339	+4/-4	28488	OpenAI	Proprietary	2023/10
1	1	ol-preview	1335	+4/-5	17562	OpenAI	Proprietary	2023/10
3	3	ol-mini	1313	+4/-4	17919	OpenAI	Proprietary	2023/10
3	3	Gemini-1.5-Pro-002	1305	+5/-4	11430	Google	Proprietary	Unknown
4	3	Gemini-1.5-Pro-Exp-0827	1299	+4/-3	32437	Google	Proprietary	2023/11
6	8	Grok-2-08-13	1291	+3/-3	35661	xAI	Proprietary	2024/3
6	9	Yi-Lightning	1287	+5/-3	13262	01 AI	Proprietary	Unknown
7	5	GPT-40-2024-05-13	1285	+3/-2	99251	0penAI	Proprietary	2023/10
9	15	GLM-4-Plus	1274	+5/-5	13674	Zhipu AI	Proprietary	Unknown
9	17	GPT-40-mini-2024-07-18	1274	+4/-3	38831	0penAI	Proprietary	2023/10
9	13	Gemini-1.5-Flash-Exp-0827	1269	+3/-4	25555	Google	Proprietary	2023/11
9	20	Gemini-1.5-Flash-002	1269	+8/-5	8957	Google	Proprietary	Unknown

huggingface.co/spaces/open-Ilm-leaderboard/open_Ilm_leaderboard

Imarena.ai

Phi-3

- Gefühlt: "Kostenloses lokales Mini-ChatGPT"
- Durchaus intelligent, weniger wissend
- Auf normalen Notebooks problemlos nutzbar
- Von Microsoft, unter MIT-Lizenz

Projektplan

- 1. Modellauswahl 🗸
- 2. Semantische Embeddings berechnen
- 3. Ähnliche Vektoren finden
- 4. HyDE ergänzen

DEMO

Projektplan

- 1. Modellauswahl 🗸
- 2. Semantische Embeddings berechnen 🗸
- 3. Ähnliche Vektoren finden 🗸
- 4. HyDE ergänzen

Bisher: knapp 75 Lines of Code

Projektplan

- 1. Modellauswahl 🗸
- 2. Semantische Embeddings berechnen 🗸
- 3. Ähnliche Vektoren finden 🗸
- 4. HyDE ergänzen 🗸

Insgesamt: unter 140 Lines of Code

DEMO

github.com/georg-jung/HyDE-with-Phi3-talk

Perspektive & Herausforderung: Kombination der Bausteine

- Semantische Suche mit HyDE?
- Semantische Suche mit HyDE, danach RAG?
- Semantische Suche mit HyDE mit RAG?
- Semantische Suche mit HyDE mit RAG, danach RAG?
- Mehrere Interationen?

24

Perspektive & Herausforderung: Kombination der Bausteine

Perspektive: Zukünftige Modelle

- Es werden stetig sowohl "schlauere" als auch effizientere Modelle veröffentlicht.
 - insbesondere auch frei nutzbare

• bspw. bge-large war vor gut einem Jahr MTEB-Leader, jetzt Platz 38

Perspektive: Neue Software und APIs

- <u>SemanticKernel</u>
- <u>SmartComponents</u>
- <u>onnxruntime-genai</u>

Perspektive: Neue Hardware

- Neue CPU-Generationen kommen mit integrierten NPUs
- Mehr (i)GPUs werden mit DirectML nutzbar
- ➤ OnnxRuntime

28

VIELEN DANK

Georg Jung

georg@gjung.com
github.com/georg-jung/
linkedin.com/in/georg-jung/