

COM303: Digital Signal Processing

Lecture 12: Filter design

Overview

- ▶ two more ideal filters
- ▶ filter design: problem statement
- ► IIR design

Overview

- ▶ the fractional delay
- ▶ the Hilbert filter

consider a simple delay...

$$x[n] \longrightarrow z^{-d} \longrightarrow x[n-d]$$

$$H(e^{j\omega}) = e^{-j\omega d}$$
 $d \in \mathbb{Z}$

question

what happens if, in $H(e^{j\omega})$ we use a non-integer $d\in\mathbb{R}?$

Fractional delay: magnitude response

Ē

$$h[n] = IDTFT \left\{ e^{-j\omega d} \right\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega d} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-d)} d\omega$$

$$= \frac{1}{\pi(n-d)} \frac{e^{j\pi(n-d)} - e^{-j\pi(n-d)}}{2j}$$

$$= \frac{\sin \pi(n-d)}{\pi(n-d)}$$

$$= \operatorname{sinc}(n-d)$$

$$h[n] = IDTFT \left\{ e^{-j\omega d} \right\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega d} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-d)} d\omega$$

$$= \frac{1}{\pi(n-d)} \frac{e^{j\pi(n-d)} - e^{-j\pi(n-d)}}{2j}$$

$$= \frac{\sin \pi(n-d)}{\pi(n-d)}$$

$$= \operatorname{sinc}(n-d)$$

$$h[n] = IDTFT \left\{ e^{-j\omega d} \right\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega d} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-d)} d\omega$$

$$= \frac{1}{\pi(n-d)} \frac{e^{j\pi(n-d)} - e^{-j\pi(n-d)}}{2j}$$

$$= \frac{\sin \pi(n-d)}{\pi(n-d)}$$

$$= \operatorname{sinc}(n-d)$$

$$h[n] = IDTFT \left\{ e^{-j\omega d} \right\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega d} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-d)} d\omega$$

$$= \frac{1}{\pi(n-d)} \frac{e^{j\pi(n-d)} - e^{-j\pi(n-d)}}{2j}$$

$$= \frac{\sin \pi(n-d)}{\pi(n-d)}$$

$$= \operatorname{sinc}(n-d)$$

$$h[n] = IDTFT \left\{ e^{-j\omega d} \right\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega d} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-d)} d\omega$$

$$= \frac{1}{\pi(n-d)} \frac{e^{j\pi(n-d)} - e^{-j\pi(n-d)}}{2j}$$

$$= \frac{\sin \pi(n-d)}{\pi(n-d)}$$

$$= \operatorname{sinc}(n-d)$$

$$h[n] = IDTFT \left\{ e^{-j\omega d} \right\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega d} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-d)} d\omega$$

$$= \frac{1}{\pi(n-d)} \frac{e^{j\pi(n-d)} - e^{-j\pi(n-d)}}{2j}$$

$$= \frac{\sin \pi(n-d)}{\pi(n-d)}$$

$$= \operatorname{sinc}(n-d)$$

fractional delay

- ▶ fractional delay computes "in-between" values for samples
- ▶ it is an ideal filter!
- often approximated with local interpolation
- ▶ all will be clear when we study the sampling theorem

a quirky machine

can we build such a thing?

in the frequency domain

$$H(e^{j\omega})[\tilde{\delta}(\omega-\omega_0)+\tilde{\delta}(\omega+\omega_0)]=-j[\tilde{\delta}(\omega-\omega_0)-\tilde{\delta}(\omega+\omega_0)]$$

we can derive two values:

$$\begin{cases} H(e^{j\omega_0}) &= -\\ H(e^{-j\omega_0}) &= + \end{cases}$$

in the frequency domain

$$H(e^{j\omega})[\tilde{\delta}(\omega-\omega_0)+\tilde{\delta}(\omega+\omega_0)]=-j[\tilde{\delta}(\omega-\omega_0)-\tilde{\delta}(\omega+\omega_0)]$$

we can derive two values:

$$\begin{cases} H(e^{j\omega_0}) & = -j \\ H(e^{-j\omega_0}) & = +j \end{cases}$$

in the frequency domain

for the machine to work at all frequencies:

$$H(e^{j\omega_0}) = egin{cases} -j & ext{for } 0 \leq \omega < \pi \ +j & ext{for } -\pi \leq \omega < 0 \end{cases}$$
 (2 π -periodic)

Hilbert filter

Hilbert filter is an allpass

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{0} j e^{j\omega n} d\omega + \frac{1}{2\pi} \int_{0}^{\pi} -j e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi n} [1 - e^{-j\pi n} - e^{-j\pi n} + 1]$$
$$= \begin{cases} \frac{2}{\pi n} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{0} j e^{j\omega n} d\omega + \frac{1}{2\pi} \int_{0}^{\pi} -j e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi n} [1 - e^{-j\pi n} - e^{-j\pi n} + 1]$$
$$= \begin{cases} \frac{2}{\pi n} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{0} j e^{j\omega n} d\omega + \frac{1}{2\pi} \int_{0}^{\pi} -j e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi n} [1 - e^{-j\pi n} - e^{-j\pi n} + 1]$$
$$= \begin{cases} \frac{2}{\pi n} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

Hilbert filter

what does the Hilbert filter do?

what does the Hilbert filter do?

effect of the Hilbert filter (real part)

effect of the Hilbert filter (real part)

Hilbert demodulation

Hilbert demodulation

x[n]

Hilbert demodulation

$$x[n]\cos(\omega_0 n) = y[n]$$

y[n]

jy[n]

jy[n]

jy[n]*h[n]

jy[n]*h[n]

Hilbert demodulation: $jy[n] * h[n] + y[n] = x[n]e^{j\omega_0 n}$

Hilbert demodulation: $(jy[n]*h[n] + y[n])e^{-j\omega_0 n}$

The filter design problem

You are given a set of requirements:

- ► frequency response: passband(s) and stopband(s)
- phase: overall delay, linearity
- ▶ some limit on computational resources and/or numerical precision

You must determine N, M, a_k 's and b_k 's in

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_{M-1} z^{-(M-1)}}{a_0 + a_1 z^{-1} + \ldots + a_{N-1} z^{-(N-1)}}$$

in order to best fulfill the requirements

The filter design problem

You are given a set of requirements:

- ► frequency response: passband(s) and stopband(s)
- phase: overall delay, linearity
- ▶ some limit on computational resources and/or numerical precision

You must determine N, M, a_k 's and b_k 's in

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_{M-1} z^{-(M-1)}}{a_0 + a_1 z^{-1} + \ldots + a_{N-1} z^{-(N-1)}}$$

in order to best fulfill the requirements

Example: lowpass specs

- passband/stopband transitions cannot be infinitely sharp
 use transition bands
- magnitude response cannot be constant over an interva
 specify magnitude tolerances over bands

- ▶ in general:
 - smaller transition bands ⇒ higher filter order
 - smaller error tolerances ⇒ higher filter order
 - higher filter order ⇒ more expensive, larger delay

- ▶ passband/stopband transitions cannot be infinitely sharp ⇒ use transition bands
- magnitude response cannot be constant over an interval
 specify magnitude tolerances over bands

- ▶ in general:
 - smaller transition bands ⇒ higher filter order
 - smaller error tolerances ⇒ higher filter order
 - higher filter order ⇒ more expensive, larger delay

- ▶ passband/stopband transitions cannot be infinitely sharp ⇒ use transition bands
- ▶ magnitude response cannot be constant over an interval ⇒ specify magnitude tolerances over bands

- ▶ in general:
 - smaller transition bands ⇒ higher filter order
 - smaller error tolerances ⇒ higher filter order
 - higher filter order ⇒ more expensive, larger delay

- ▶ passband/stopband transitions cannot be infinitely sharp
 ⇒ use transition bands
- ▶ magnitude response cannot be constant over an interval
 ⇒ specify magnitude tolerances over bands

- ▶ in general:
 - smaller transition bands ⇒ higher filter order
 - smaller error tolerances ⇒ higher filter order
 - higher filter order \Rightarrow more expensive, larger delay

- ▶ passband/stopband transitions cannot be infinitely sharp
 ⇒ use transition bands
- ▶ magnitude response cannot be constant over an interval
 ⇒ specify magnitude tolerances over bands

- ▶ in general:
 - smaller transition bands ⇒ higher filter order
 - ullet smaller error tolerances \Rightarrow higher filter order
 - higher filter order ⇒ more expensive, larger delay

Example: lowpass specs

Realistic specs

Why we can't have a "vertical" transition

$$H(z) = B(z)/A(z)$$
 is C^{∞}

$$H(z) = B(z)/A(z)$$
, with A and B polynomials

$$H(e^{j\omega})=c$$
 over an interval $\Rightarrow B(z)-cA(z)=0$ over an interval $\Rightarrow B(z)-cA(z)$ has an infinite number of roots $\Rightarrow B(z)-cA(z)=0$ for all values of z $\Rightarrow H(e^{j\omega})=c$ over the entire $[-\pi,\pi]$ interval.

$$H(z) = B(z)/A(z)$$
, with A and B polynomials

$$H(e^{j\omega})=c$$
 over an interval $\Rightarrow B(z)-cA(z)=0$ over an interval $\Rightarrow B(z)-cA(z)$ has an infinite number of roots $\Rightarrow B(z)-cA(z)=0$ for all values of z $\Rightarrow H(e^{j\omega})=c$ over the entire $[-\pi,\pi]$ interval.

$$H(z) = B(z)/A(z)$$
, with A and B polynomials

$$H(e^{j\omega})=c$$
 over an interval $\Rightarrow B(z)-cA(z)=0$ over an interval $\Rightarrow B(z)-cA(z)$ has an infinite number of roots $\Rightarrow B(z)-cA(z)=0$ for all values of z $\Rightarrow H(e^{j\omega})=c$ over the entire $[-\pi,\pi]$ interval.

$$H(z) = B(z)/A(z)$$
, with A and B polynomials

$$H(e^{j\omega})=c$$
 over an interval $\Rightarrow B(z)-cA(z)=0$ over an interval $\Rightarrow B(z)-cA(z)$ has an infinite number of roots $\Rightarrow B(z)-cA(z)=0$ for all values of z $\Rightarrow H(e^{j\omega})=c$ over the entire $[-\pi,\pi]$ interval.

$$H(z) = B(z)/A(z)$$
, with A and B polynomials

$$H(e^{j\omega})=c$$
 over an interval $\Rightarrow B(z)-cA(z)=0$ over an interval $\Rightarrow B(z)-cA(z)$ has an infinite number of roots $\Rightarrow B(z)-cA(z)=0$ for all values of z $\Rightarrow H(e^{j\omega})=c$ over the entire $[-\pi,\pi]$ interval.

Important case: equiripple error

The big questions

- ► IIR or FIR?
- ▶ how to determine the coefficients?
- ▶ how to evaluate the performance?

IIRs: pros and cons

Pros:

- computationally efficient
- strong attenuation easy
- ▶ good for audio

Cons:

- stability issues
- difficult to design for arbitrary response
- nonlinear phase

FIRs: pros and cons

Pros:

- ► always stable
- optimal design techniques exist
- can be designed with linear phase

Cons:

- computationally much more expensive
- may "sound" harsh

- finding N, M, a_k 's and b_k 's from specs is a hard nonlinear problem
- established methods:
 - IIR: conversion of analog design
 - FIR: optimal minimax filter design

- finding N, M, a_k 's and b_k 's from specs is a hard nonlinear problem
- established methods:
 - IIR: conversion of analog design
 - FIR: optimal minimax filter design

- ▶ finding N, M, a_k 's and b_k 's from specs is a hard nonlinear problem
- established methods:
 - IIR: conversion of analog design
 - FIR: optimal minimax filter design

- ▶ finding N, M, a_k 's and b_k 's from specs is a hard nonlinear problem
- established methods:
 - IIR: conversion of analog design
 - FIR: optimal minimax filter design

- ▶ lots of nice analog filters exist
- methods exist to "translate" the analog design into a rational transfer function
- ▶ most numerical packages (Matlab, etc.) provide ready-made routines
- design involves specifying some parameters and testing that the specs are fulfilled

- ▶ lots of nice analog filters exist
- ▶ methods exist to "translate" the analog design into a rational transfer function
- ▶ most numerical packages (Matlab, etc.) provide ready-made routines
- design involves specifying some parameters and testing that the specs are fulfilled

- ▶ lots of nice analog filters exist
- methods exist to "translate" the analog design into a rational transfer function
- ▶ most numerical packages (Matlab, etc.) provide ready-made routines
- design involves specifying some parameters and testing that the specs are fulfilled

- ▶ lots of nice analog filters exist
- methods exist to "translate" the analog design into a rational transfer function
- ▶ most numerical packages (Matlab, etc.) provide ready-made routines
- design involves specifying some parameters and testing that the specs are fulfilled

Butterworth lowpass

Magnitude response:

- ► maximally flat
- ▶ monotonic over $[0, \pi]$

Design parameters:

- ▶ order N (N poles and N zeros)
- cutoff frequency

Design test criterion:

- ▶ width of transition band
- passband error

Butterworth lowpass

Magnitude response:

- ► maximally flat
- ▶ monotonic over $[0, \pi]$

Design parameters:

- ▶ order N (N poles and N zeros)
- cutoff frequency

Design test criterion:

- ▶ width of transition band
- passband error

Butterworth lowpass example

$$N = 4, \omega_c = \pi/4$$

Butterworth lowpass example

$$N = 8, \omega_c = \pi/4$$

Chebyshev lowpass

Magnitude response:

- equiripple in passband
- monotonic in stopband

Design parameters:

- ▶ order N (N poles and N zeros)
- passband max error
- cutoff frequency

Design test criterion:

- width of transition band
- stopband error

Chebyshev lowpass

Magnitude response:

- equiripple in passband
- monotonic in stopband

Design parameters:

- ▶ order N (N poles and N zeros)
- passband max error
- cutoff frequency

Design test criterion:

- width of transition band
- stopband error

Chebyshev lowpass example

$$N = 4, \omega_c = \pi/4, e_{\sf max} = 12\%$$

Chebyshev lowpass example

$$N = 8, \omega_c = \pi/4, e_{\sf max} = 12\%$$

Elliptic lowpass

Magnitude response:

equiripple in passband and stopband

Design parameters:

- ► order *N*
- cutoff frequency
- passband max error
- ► stopband min attenuation

Design test criterion

width of transition band

Elliptic lowpass

Magnitude response:

equiripple in passband and stopband

Design parameters:

- ► order *N*
- cutoff frequency
- passband max error
- ► stopband min attenuation

Design test criterion:

▶ width of transition band

Elliptic lowpass example

$$N = 4, \omega_c = \pi/4, e_{\sf max} = 12\%, {\sf att_{min}} = 0.03$$

Elliptic lowpass example

$$N = 6, \omega_c = \pi/4, e_{\sf max} = 12\%, {\sf att_{min}} = 0.03$$

Elliptic lowpass example

Magnitude response in decibels

- ▶ filter max passband magnitude *G*
- ▶ filter attenuation expressed in decibels as:

$$A_{\mathsf{dB}} = 20 \log_{10}(|H(e^{j\omega})|/G)$$

useful to compare attenuations between filters

4-th order lowpass comparison

