CS-2050-All-Sections CS 2050 Homework 4 (HOWARD, FAULKNER, ELLEN)

Vidit Dharmendra Pokharna

TOTAL POINTS

96.5 / 101

OUESTION 1

Question 1 12 pts

1.1 a 3 / 3

- √ 0 pts False
 - 3 pts True
 - 3 pts Incorrect / Missing

1.2 b 3 / 3

- ✓ 0 pts True
 - 3 pts False
 - 3 pts Incorrect / Missing

1.3 C 3 / 3

- √ 0 pts False
 - 3 pts True
 - 3 pts Incorrect / Missing

1.4 d 3 / 3

- √ 0 pts False
 - 3 pts True
 - 3 pts Incorrect / Missing

QUESTION 2

Question 2 12 pts

2.1 a 3 / 3

- **√ 0 pts** 0
 - 3 pts Incorrect / Missing

2.2 b 3/3

- √ 0 pts 1
 - 3 pts Incorrect / Missing

2.3 C 3 / 3

- **√ 0 pts** 5
 - 3 pts Incorrect / Missing

2.4 d 3 / 3

- $\sqrt{-0}$ pts 3
 - 3 pts Incorrect / Missing

QUESTION 3

Question 3 24 pts

3.1 **a 3 / 3**

- $\sqrt{-0}$ pts \$\$\{a, b, c, d, e, f, m, n, o\}\$\$
 - 3 pts Incorrect / Missing

3.2 b 3/3

- √ 0 pts \$\$\emptyset\$\$
 - 3 pts Incorrect / Missing

3.3 C 3 / 3

 $\sqrt{-0}$ pts \$\$\{(m, m), (m, n), (m, o), (n, m), (n, n), (n,

o), (o, m), (o, n), (o, o)\}\$\$

- 1.5 pts Used anything except a set of tuplese.g. used a set of sets

- 3 pts Incorrect / Missing

3.4 d 3 / 3

√ - 0 pts \$\$\{ \emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{n, o\}, \{m, o\}, \{m, n, o\}\}\$\$

- 3 pts Incorrect / Missing

3.5 **e 3 / 3**

√ - 0 pts \$\$\emptyset\$\$

- 3 pts Incorrect / Missing

3.6 **f 3 / 3**

√ - 0 pts 15

- 3 pts Incorrect / Missing

3.7 **g 3 / 3**

 \checkmark - 0 pts \$\$2^{2^{2^{2^{2^{3}}}}} = 2^{2^{2^{3}}} = 2^{2^{8}} = 2^{256}\$\$

- 3 pts Incorrect / Missing

3.8 h 3/3

 $\sqrt{-0}$ pts \$\$\{a, b, c, d, e, m, n, o\}\$\$

- 3 pts Incorrect / Missing

QUESTION 4

4 Question 4 10 / 10

√ - 0 pts Correct

- 6 pts Uses a Venn Diagram for a proof

- 5 pts Uses mutual subsets approach but only shows one direction

- **5 pts** Did not cite any steps

Invalid Steps

- 2 pts 1 Invalid Step

- 4 pts 2 Invalid Steps

- 6 pts 3 Invalid Steps

- 8 pts 4 Invalid Steps

- 10 pts 5+ Invalid Steps

Skipped Steps

- 2 pts 1 Skipped Step

- 4 pts 2 Skipped Steps

- 6 pts 3 Skipped Steps

- 8 pts 4 Skipped Steps

- 10 pts 5+ Skipped Steps

Uncited Steps

- 1 pts 1 Uncited Step

- 2 pts 2 Uncited Steps

- 3 pts 3 Uncited Steps

- 4 pts 4+ Uncited Steps

Miscited Steps

- 1 pts 1 Miscited Step

- 2 pts 2 Miscited Steps

- 3 pts 3 Miscited Steps

- 4 pts 4+ Miscited Steps

- 8 pts Uses set equivalencies.

- 10 pts Disproves Statement

- 10 pts No Answer

QUESTION 5

5 Question 5 0 / 6

- 0 pts \$\$\{\emptyset, \{\\emptyset\}\},

 ${\mathbb{}}\$

- 3 pts Working shown with incorrect order of operators used

√ - 6 pts Incorrect/No Answer

QUESTION 6

Question 6 12 pts

6.1 a 3 / 3

√ - 0 pts \$\$T\cap\overline{S}\cap C\$\$
or

\$\$\$T \cap \overline{S} \cap \overline{C}\$\$\$

- 3 pts Incorrect / Missing

6.2 b 3 / 3

√ - 0 pts \$\$(C \cup T) - (C \cap T)\$\$

or

\$\$(C \cup T) \cap \overline{(C \cap T)}\$\$

or

\$\$(T-C) \cup (C-T)\$\$

- 3 pts Incorrect / Missing

6.3 C 3 / 3

√ - 0 pts \$\$C - (T \cap S)\$\$ or \$\$C \cap \overline{T\cap S}\$\$

- 3 pts Incorrect / Missing

6.4 d 3 / 3

√ - 0 pts \$\$C - T - S\$\$

or

\$\$C - (T \cup S)\$\$

or

\$\$C\cap\overline{T}\cap\overline{S}\$\$

or

\$\$C\cap\overline{T\cup S}\$\$

- 3 pts Incorrect / Missing

QUESTION 7

7 Question 7 5 / 5

✓ - 0 pts A = \$\$\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\\$\$

or

A = \$\$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$\$

- **2.5 pts** Correctly satisfied one of the two constraints i.e. either \$ | A| = 3\$\$ or \$\$A \in P(P(A))\$\$
 - 5 pts Does not exist
 - 5 pts No Answer

QUESTION 8

Question 8 6 pts

8.1 a 2/3

- √ 0 pts Correct
- 1 pts Says statement is True but provides an invalid proof
- 2 pts Says statement is True but does not provide a proof
- 3 pts Says statement is False and provides a counter example
 - 3 pts No Answer
- 1 Point adjustment
- 1 You needed to provide a 2 column proof.

8.2 b 3 / 3

√ - 0 pts Valid counterexample

 $e.g. \$\$A = \{1\}\$\$ \text{ and } \$\$B = \{2\}\$\$$

- 1 pts Says statement is False but provides invalid counter example
- **2 pts** Says statement is False but does not provide a counter example

- 3 pts Proves the statement
- 3 pts No Answer

QUESTION 9

9 Question 9 9 / 9

- √ 0 pts Correct
 - 5 pts Only shows one direction
 - **5 pts** Did not cite any steps

Invalid Steps

- 2 pts 1 Invalid Step
- 4 pts 2 Invalid Steps
- 6 pts 3 Invalid Steps
- 8 pts 4 Invalid Steps
- 10 pts 5+ Invalid Steps

Skipped Steps

- 2 pts 1 Skipped Step
- 4 pts 2 Skipped Steps
- 6 pts 3 Skipped Steps
- 8 pts 4 Skipped Steps
- 10 pts 5+ Skipped Steps

Uncited Steps

- 1 pts 1 Uncited Step
- 2 pts 2 Uncited Steps
- 3 pts 3 Uncited Steps
- 4 pts 4+ Uncited Steps

Miscited Steps

- 1 pts 1 Miscited Step
- 2 pts 2 Miscited Steps
- 3 pts 3 Miscited Steps
- 4 pts 4+ Miscited Steps
- 9 pts Disproves Statement
- 9 pts No Answer

QUESTION 10

10 Question 10 5 / 5

√ - 0 pts Correct examples provided

e.g.
$$$$A = B = C = D = \text{emptyset}$$$$

OR

$$$$A = \{1,2,3\}$$
\$\$; $$$B = \{1\}$ \$\$; $$$C = \{2\}$ \$\$; $$$D$

- = \{3\}\$\$
 - 5 pts Incorrect / No Answer

QUESTION 11

11 On Time 2.5 / 0

- √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - 10 pts 1 day late
 - 25 pts 2 days late

QUESTION 12

12 Matching 0 / 0

- ✓ 0 pts Correct
 - 5 pts Incorrect

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

1.1 a 3 / 3

- **√ 0 pts** *False*
 - 3 pts True
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

1.2 b 3 / 3

- ✓ 0 pts True
 - 3 pts False
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

1.3 **C 3 / 3**

- **√ 0 pts** *False*
 - 3 pts True
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

1.4 **d** 3 / 3

- **√ 0 pts** *False*
 - 3 pts True
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

2.1 a 3 / 3

√ - 0 pts 0

- 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

2.2 **b** 3 / 3

√ - **0** pts 1

- 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

2.3 **C 3 / 3**

√ - 0 pts 5

- 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

2.4 **d** 3 / 3

√ - 0 pts 3

- 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.1 **a 3 / 3**

- \checkmark **0 pts** \$\$\{a, b, c, d, e, f, m, n, o\}\$\$
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.2 **b 3 / 3**

- √ 0 pts \$\$\emptyset\$\$
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.3 **C 3 / 3**

- $\sqrt{-0}$ pts \$\$\{(m, m), (m, n), (m, o), (n, m), (n, n), (n, o), (o, m), (o, n), (o, o)\}\$\$
 - 1.5 pts Used anything except a set of tuples e.g. used a set of sets
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.4 **d 3 / 3**

- - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.5 **e 3 / 3**

- ✓ 0 pts \$\$\emptyset\$\$
 - 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.6 **f 3 / 3**

√ - 0 pts 15

- 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.7 **g 3 / 3**

 \checkmark - 0 pts \$\$2^{2^{2^{1}}} = 2^{2^{2}}} = 2^{2^{8}} = 2^{256}\$\$

- 3 pts Incorrect / Missing

1.

- a. False; no set is a proper subset of itself
- b. True; the null set is a proper subset of all sets besides itself
- c. False; the right side contains only one element that does not hold the value of the right hand side and therefore is not a subset
- d. False; no set is a proper subset of itself and the right-hand side is simply the null set

2.

- a. 0
- b. 1
- c. 5
- d. 3

- a. $\{a, b, c, d, e, m, n, o, f\}$
- b. Ø
- c. $\{(m,m),(m,n),(n,o),(n,m),(n,n),(n,o),(o,m),(o,n),(o,o)\}$
- d. $\{\emptyset, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\}\}\$
- e. Ø
- f. 15
- g. $2^{2^{2^3}} = 2^{256}$
- h. $\{a, b, c, d, e, m, n, o\}$

3.8 **h 3 / 3**

- $\sqrt{-0}$ pts \$\$\{a, b, c, d, e, m, n, o\}\$\$
 - 3 pts Incorrect / Missing

I will proceed with a direct proof, showing the equivalence of $(\overline{X} \cap \overline{Y}) \cap Z$ and $(\overline{X} \cap \overline{Y}) \cap Z$ $Z)\cup (\overline{Y}\cap Z)$

		7
1	X, where X is a set	Define new set
2	Y, where Y is a set	Define new set
3	Z, where Z is a set	Define new set
4	$(\overline{X \cap Y}) \cap Z$	Given
5	$(\overline{X \cap Y}) \cap Z = \{a \mid a \in (\overline{X \cap Y}) \land a \in Z\}$	Set building notation
6	$\{a \mid a \notin (X \cap Y) \land a \in Z\}$	Definition of complement
7	$\{a \mid \neg (a \in (X \cap Y)) \land (a \in Z)\}$	Definition of complement
8	$\{a \mid \neg((a \in X) \land (a \in Y)) \land (a \in Z)\}$	Definition of intersection
9	$\{a \mid (\neg(a \in X) \lor \neg(a \in Y)) \land (a \in Z)\}$	DeMorgan's Law for
		propositions
10	$\{a \mid ((a \notin X) \lor \neg (a \in Y)) \land (a \in Z)\}$	Negation Law
11	$\{a \mid ((a \notin X) \lor (a \notin Y)) \land (a \in Z)\}$	Negation Law
12	$\{a \mid ((a \in \overline{X}) \lor (a \notin Y)) \land (a \in Z)\}$	Definition of complement
13	$\{a \mid ((a \in \overline{X}) \lor (a \in \overline{Y})) \land (a \in Z)\}$	Definition of complement
14	$\{a \mid (a \in Z) \land ((a \in \overline{X}) \lor (a \in \overline{Y}))\}$	Commutative Law
15	$\{a \mid [(a \in Z) \land (a \in \overline{X})] \lor [(a \in Z) \land (a \in Z)] \land (a \in Z)\}$	Distributive Law
	$\in \overline{Y})]\}$	
16	$\{a \mid [(a \in \overline{X}) \land (a \in Z\})] \lor [(a \in \overline{Y}) \land (a$	Commutative Law
	$\in Z)]$	
17	$\{a \mid [(a \in (\overline{X} \cap Z))] \lor [(a \in \overline{Y}) \land (a \in Z)]\}$	Definition of intersection
18	$\{a \mid [(a \in (\bar{X} \cap Z))] \lor [(a \in (\bar{Y} \cap Z))]\}$	Definition of intersection
19	$\{a \mid [(a \in (\bar{X} \cap Z))] \cup [(a \in (\bar{Y} \cap Z))]\}$	Definition of union
20	$(\bar{X} \cap Z) \cup (\bar{Y} \cap Z)$	Set building notation

5. $\{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. The elements of this are $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset\}\}$

a.
$$T \cap (\bar{S} \cap C)$$

b.
$$C \cup T - (C \cap T)$$

c.
$$C \cap (\overline{S \cap T})$$

d. $C \cap \overline{S} \cap \overline{T}$

d.
$$C \cap \overline{S} \cap \overline{T}$$

4 Question 4 10 / 10

- √ 0 pts Correct
 - 6 pts Uses a Venn Diagram for a proof
 - **5 pts** Uses mutual subsets approach but only shows one direction
 - **5 pts** Did not cite any steps

Invalid Steps

- 2 pts 1 Invalid Step
- 4 pts 2 Invalid Steps
- 6 pts 3 Invalid Steps
- 8 pts 4 Invalid Steps
- **10 pts** 5+ Invalid Steps

Skipped Steps

- 2 pts 1 Skipped Step
- 4 pts 2 Skipped Steps
- 6 pts 3 Skipped Steps
- 8 pts 4 Skipped Steps
- 10 pts 5+ Skipped Steps

Uncited Steps

- 1 pts 1 Uncited Step
- 2 pts 2 Uncited Steps
- 3 pts 3 Uncited Steps
- 4 pts 4+ Uncited Steps

Miscited Steps

- 1 pts 1 Miscited Step
- 2 pts 2 Miscited Steps
- 3 pts 3 Miscited Steps
- 4 pts 4+ Miscited Steps
- 8 pts Uses set equivalencies.
- 10 pts Disproves Statement
- 10 pts No Answer

I will proceed with a direct proof, showing the equivalence of $(\overline{X} \cap \overline{Y}) \cap Z$ and $(\overline{X} \cap \overline{Y}) \cap Z$ $Z)\cup (\overline{Y}\cap Z)$

		7
1	X, where X is a set	Define new set
2	Y, where Y is a set	Define new set
3	Z, where Z is a set	Define new set
4	$(\overline{X \cap Y}) \cap Z$	Given
5	$(\overline{X \cap Y}) \cap Z = \{a \mid a \in (\overline{X \cap Y}) \land a \in Z\}$	Set building notation
6	$\{a \mid a \notin (X \cap Y) \land a \in Z\}$	Definition of complement
7	$\{a \mid \neg (a \in (X \cap Y)) \land (a \in Z)\}$	Definition of complement
8	$\{a \mid \neg((a \in X) \land (a \in Y)) \land (a \in Z)\}$	Definition of intersection
9	$\{a \mid (\neg(a \in X) \lor \neg(a \in Y)) \land (a \in Z)\}$	DeMorgan's Law for
		propositions
10	$\{a \mid ((a \notin X) \lor \neg (a \in Y)) \land (a \in Z)\}$	Negation Law
11	$\{a \mid ((a \notin X) \lor (a \notin Y)) \land (a \in Z)\}$	Negation Law
12	$\{a \mid ((a \in \overline{X}) \lor (a \notin Y)) \land (a \in Z)\}$	Definition of complement
13	$\{a \mid ((a \in \overline{X}) \lor (a \in \overline{Y})) \land (a \in Z)\}$	Definition of complement
14	$\{a \mid (a \in Z) \land ((a \in \overline{X}) \lor (a \in \overline{Y}))\}$	Commutative Law
15	$\{a \mid [(a \in Z) \land (a \in \overline{X})] \lor [(a \in Z) \land (a \in Z)] \land (a \in Z)\}$	Distributive Law
	$\in \overline{Y})]\}$	
16	$\{a \mid [(a \in \overline{X}) \land (a \in Z\})] \lor [(a \in \overline{Y}) \land (a$	Commutative Law
	$\in Z)]$	
17	$\{a \mid [(a \in (\overline{X} \cap Z))] \lor [(a \in \overline{Y}) \land (a \in Z)]\}$	Definition of intersection
18	$\{a \mid [(a \in (\bar{X} \cap Z))] \lor [(a \in (\bar{Y} \cap Z))]\}$	Definition of intersection
19	$\{a \mid [(a \in (\bar{X} \cap Z))] \cup [(a \in (\bar{Y} \cap Z))]\}$	Definition of union
20	$(\bar{X} \cap Z) \cup (\bar{Y} \cap Z)$	Set building notation

5. $\{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. The elements of this are $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset\}\}$

a.
$$T \cap (\bar{S} \cap C)$$

b.
$$C \cup T - (C \cap T)$$

c.
$$C \cap (\overline{S \cap T})$$

d. $C \cap \overline{S} \cap \overline{T}$

d.
$$C \cap \overline{S} \cap \overline{T}$$

5 Question 5 0 / 6

- **0 pts** \$\$\{\emptyset, \{\\emptyset\}\}, \{\emptyset, \\\emptyset\}\}\}\$\$
- **3 pts** Working shown with incorrect order of operators used

√ - 6 pts Incorrect/No Answer

I will proceed with a direct proof, showing the equivalence of $(\overline{X} \cap \overline{Y}) \cap Z$ and $(\overline{X} \cap \overline{Y}) \cap Z$ $Z)\cup (\overline{Y}\cap Z)$

		7
1	X, where X is a set	Define new set
2	Y, where Y is a set	Define new set
3	Z, where Z is a set	Define new set
4	$(\overline{X \cap Y}) \cap Z$	Given
5	$(\overline{X \cap Y}) \cap Z = \{a \mid a \in (\overline{X \cap Y}) \land a \in Z\}$	Set building notation
6	$\{a \mid a \notin (X \cap Y) \land a \in Z\}$	Definition of complement
7	$\{a \mid \neg (a \in (X \cap Y)) \land (a \in Z)\}$	Definition of complement
8	$\{a \mid \neg((a \in X) \land (a \in Y)) \land (a \in Z)\}$	Definition of intersection
9	$\{a \mid (\neg(a \in X) \lor \neg(a \in Y)) \land (a \in Z)\}$	DeMorgan's Law for
		propositions
10	$\{a \mid ((a \notin X) \lor \neg (a \in Y)) \land (a \in Z)\}$	Negation Law
11	$\{a \mid ((a \notin X) \lor (a \notin Y)) \land (a \in Z)\}$	Negation Law
12	$\{a \mid ((a \in \overline{X}) \lor (a \notin Y)) \land (a \in Z)\}$	Definition of complement
13	$\{a \mid ((a \in \overline{X}) \lor (a \in \overline{Y})) \land (a \in Z)\}$	Definition of complement
14	$\{a \mid (a \in Z) \land ((a \in \overline{X}) \lor (a \in \overline{Y}))\}$	Commutative Law
15	$\{a \mid [(a \in Z) \land (a \in \overline{X})] \lor [(a \in Z) \land (a \in Z)] \land (a \in Z)\}$	Distributive Law
	$\in \overline{Y})]\}$	
16	$\{a \mid [(a \in \overline{X}) \land (a \in Z\})] \lor [(a \in \overline{Y}) \land (a$	Commutative Law
	$\in Z)]$	
17	$\{a \mid [(a \in (\overline{X} \cap Z))] \lor [(a \in \overline{Y}) \land (a \in Z)]\}$	Definition of intersection
18	$\{a \mid [(a \in (\bar{X} \cap Z))] \lor [(a \in (\bar{Y} \cap Z))]\}$	Definition of intersection
19	$\{a \mid [(a \in (\bar{X} \cap Z))] \cup [(a \in (\bar{Y} \cap Z))]\}$	Definition of union
20	$(\bar{X} \cap Z) \cup (\bar{Y} \cap Z)$	Set building notation

5. $\{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. The elements of this are $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset\}\}$

a.
$$T \cap (\bar{S} \cap C)$$

b.
$$C \cup T - (C \cap T)$$

c.
$$C \cap (\overline{S \cap T})$$

d. $C \cap \overline{S} \cap \overline{T}$

d.
$$C \cap \overline{S} \cap \overline{T}$$

6.1 **a 3 / 3**

√ - 0 pts \$\$T\cap\overline{S}\cap C\$\$

or

\$\$\$T \cap \overline{S} \cap \overline{C}\$\$\$

- 3 pts Incorrect / Missing

I will proceed with a direct proof, showing the equivalence of $(\overline{X} \cap \overline{Y}) \cap Z$ and $(\overline{X} \cap \overline{Y}) \cap Z$ $Z)\cup (\overline{Y}\cap Z)$

		7
1	X, where X is a set	Define new set
2	Y, where Y is a set	Define new set
3	Z, where Z is a set	Define new set
4	$(\overline{X \cap Y}) \cap Z$	Given
5	$(\overline{X \cap Y}) \cap Z = \{a \mid a \in (\overline{X \cap Y}) \land a \in Z\}$	Set building notation
6	$\{a \mid a \notin (X \cap Y) \land a \in Z\}$	Definition of complement
7	$\{a \mid \neg (a \in (X \cap Y)) \land (a \in Z)\}$	Definition of complement
8	$\{a \mid \neg((a \in X) \land (a \in Y)) \land (a \in Z)\}$	Definition of intersection
9	$\{a \mid (\neg(a \in X) \lor \neg(a \in Y)) \land (a \in Z)\}$	DeMorgan's Law for
		propositions
10	$\{a \mid ((a \notin X) \lor \neg (a \in Y)) \land (a \in Z)\}$	Negation Law
11	$\{a \mid ((a \notin X) \lor (a \notin Y)) \land (a \in Z)\}$	Negation Law
12	$\{a \mid ((a \in \overline{X}) \lor (a \notin Y)) \land (a \in Z)\}$	Definition of complement
13	$\{a \mid ((a \in \overline{X}) \lor (a \in \overline{Y})) \land (a \in Z)\}$	Definition of complement
14	$\{a \mid (a \in Z) \land ((a \in \overline{X}) \lor (a \in \overline{Y}))\}$	Commutative Law
15	$\{a \mid [(a \in Z) \land (a \in \overline{X})] \lor [(a \in Z) \land (a \in Z)] \land (a \in Z)\}$	Distributive Law
	$\in \overline{Y})]\}$	
16	$\{a \mid [(a \in \overline{X}) \land (a \in Z\})] \lor [(a \in \overline{Y}) \land (a$	Commutative Law
	$\in Z)]$	
17	$\{a \mid [(a \in (\overline{X} \cap Z))] \lor [(a \in \overline{Y}) \land (a \in Z)]\}$	Definition of intersection
18	$\{a \mid [(a \in (\bar{X} \cap Z))] \lor [(a \in (\bar{Y} \cap Z))]\}$	Definition of intersection
19	$\{a \mid [(a \in (\bar{X} \cap Z))] \cup [(a \in (\bar{Y} \cap Z))]\}$	Definition of union
20	$(\bar{X} \cap Z) \cup (\bar{Y} \cap Z)$	Set building notation

5. $\{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. The elements of this are $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset\}\}$

a.
$$T \cap (\bar{S} \cap C)$$

b.
$$C \cup T - (C \cap T)$$

c.
$$C \cap (\overline{S \cap T})$$

d. $C \cap \overline{S} \cap \overline{T}$

d.
$$C \cap \overline{S} \cap \overline{T}$$

6.2 **b** 3 / 3

```
√ - 0 pts $$(C \cup T) - (C \cap T)$$
or
$$(C \cup T) \cap \overline{(C \cap T)}$$
or
$$(T-C) \cup (C-T)$$
- 3 pts Incorrect / Missing
```

I will proceed with a direct proof, showing the equivalence of $(\overline{X} \cap \overline{Y}) \cap Z$ and $(\overline{X} \cap \overline{Y}) \cap Z$ $Z)\cup (\overline{Y}\cap Z)$

		7
1	X, where X is a set	Define new set
2	Y, where Y is a set	Define new set
3	Z, where Z is a set	Define new set
4	$(\overline{X \cap Y}) \cap Z$	Given
5	$(\overline{X \cap Y}) \cap Z = \{a \mid a \in (\overline{X \cap Y}) \land a \in Z\}$	Set building notation
6	$\{a \mid a \notin (X \cap Y) \land a \in Z\}$	Definition of complement
7	$\{a \mid \neg (a \in (X \cap Y)) \land (a \in Z)\}$	Definition of complement
8	$\{a \mid \neg((a \in X) \land (a \in Y)) \land (a \in Z)\}$	Definition of intersection
9	$\{a \mid (\neg(a \in X) \lor \neg(a \in Y)) \land (a \in Z)\}$	DeMorgan's Law for
		propositions
10	$\{a \mid ((a \notin X) \lor \neg (a \in Y)) \land (a \in Z)\}$	Negation Law
11	$\{a \mid ((a \notin X) \lor (a \notin Y)) \land (a \in Z)\}$	Negation Law
12	$\{a \mid ((a \in \overline{X}) \lor (a \notin Y)) \land (a \in Z)\}$	Definition of complement
13	$\{a \mid ((a \in \overline{X}) \lor (a \in \overline{Y})) \land (a \in Z)\}$	Definition of complement
14	$\{a \mid (a \in Z) \land ((a \in \overline{X}) \lor (a \in \overline{Y}))\}$	Commutative Law
15	$\{a \mid [(a \in Z) \land (a \in \overline{X})] \lor [(a \in Z) \land (a \in Z)] \land (a \in Z)\}$	Distributive Law
	$\in \overline{Y})]\}$	
16	$\{a \mid [(a \in \overline{X}) \land (a \in Z\})] \lor [(a \in \overline{Y}) \land (a$	Commutative Law
	$\in Z)]$	
17	$\{a \mid [(a \in (\overline{X} \cap Z))] \lor [(a \in \overline{Y}) \land (a \in Z)]\}$	Definition of intersection
18	$\{a \mid [(a \in (\bar{X} \cap Z))] \lor [(a \in (\bar{Y} \cap Z))]\}$	Definition of intersection
19	$\{a \mid [(a \in (\bar{X} \cap Z))] \cup [(a \in (\bar{Y} \cap Z))]\}$	Definition of union
20	$(\bar{X} \cap Z) \cup (\bar{Y} \cap Z)$	Set building notation

5. $\{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. The elements of this are $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset\}\}$

a.
$$T \cap (\bar{S} \cap C)$$

b.
$$C \cup T - (C \cap T)$$

c.
$$C \cap (\overline{S \cap T})$$

d. $C \cap \overline{S} \cap \overline{T}$

d.
$$C \cap \overline{S} \cap \overline{T}$$

6.3 **C 3 / 3**

- \checkmark 0 pts \$\$C (T \cap S)\$\$ or \$\$C \cap \overline{T\cap S}\$\$
 - 3 pts Incorrect / Missing

I will proceed with a direct proof, showing the equivalence of $(\overline{X} \cap \overline{Y}) \cap Z$ and $(\overline{X} \cap \overline{Y}) \cap Z$ $Z)\cup (\overline{Y}\cap Z)$

		7
1	X, where X is a set	Define new set
2	Y, where Y is a set	Define new set
3	Z, where Z is a set	Define new set
4	$(\overline{X \cap Y}) \cap Z$	Given
5	$(\overline{X \cap Y}) \cap Z = \{a \mid a \in (\overline{X \cap Y}) \land a \in Z\}$	Set building notation
6	$\{a \mid a \notin (X \cap Y) \land a \in Z\}$	Definition of complement
7	$\{a \mid \neg (a \in (X \cap Y)) \land (a \in Z)\}$	Definition of complement
8	$\{a \mid \neg((a \in X) \land (a \in Y)) \land (a \in Z)\}$	Definition of intersection
9	$\{a \mid (\neg(a \in X) \lor \neg(a \in Y)) \land (a \in Z)\}$	DeMorgan's Law for
		propositions
10	$\{a \mid ((a \notin X) \lor \neg (a \in Y)) \land (a \in Z)\}$	Negation Law
11	$\{a \mid ((a \notin X) \lor (a \notin Y)) \land (a \in Z)\}$	Negation Law
12	$\{a \mid ((a \in \overline{X}) \lor (a \notin Y)) \land (a \in Z)\}$	Definition of complement
13	$\{a \mid ((a \in \overline{X}) \lor (a \in \overline{Y})) \land (a \in Z)\}$	Definition of complement
14	$\{a \mid (a \in Z) \land ((a \in \overline{X}) \lor (a \in \overline{Y}))\}$	Commutative Law
15	$\{a \mid [(a \in Z) \land (a \in \overline{X})] \lor [(a \in Z) \land (a \in Z)] \land (a \in Z)\}$	Distributive Law
	$\in \overline{Y})]\}$	
16	$\{a \mid [(a \in \overline{X}) \land (a \in Z\})] \lor [(a \in \overline{Y}) \land (a$	Commutative Law
	$\in Z)]$	
17	$\{a \mid [(a \in (\overline{X} \cap Z))] \lor [(a \in \overline{Y}) \land (a \in Z)]\}$	Definition of intersection
18	$\{a \mid [(a \in (\bar{X} \cap Z))] \lor [(a \in (\bar{Y} \cap Z))]\}$	Definition of intersection
19	$\{a \mid [(a \in (\bar{X} \cap Z))] \cup [(a \in (\bar{Y} \cap Z))]\}$	Definition of union
20	$(\bar{X} \cap Z) \cup (\bar{Y} \cap Z)$	Set building notation

5. $\{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. The elements of this are $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset\}\}$

a.
$$T \cap (\bar{S} \cap C)$$

b.
$$C \cup T - (C \cap T)$$

c.
$$C \cap (\overline{S \cap T})$$

d. $C \cap \overline{S} \cap \overline{T}$

d.
$$C \cap \overline{S} \cap \overline{T}$$

6.4 **d** 3 / 3

✓ - **0 pts** \$\$C - T - S\$\$

or

\$\$C - (T \cup S)\$\$

or

\$\$C\cap\overline{T}\cap\overline{S}\$\$

or

\$\$C\cap\overline{T\cup S}\$\$

- 3 pts Incorrect / Missing

7. $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$ We know this meets the condition that |A| = 3 Additionally, P(A) contains the null set, and then sets holding the first and second element of A. Therefore, each element of A is in P(A). We can use the same logic in P(P(A)), where the first three elements of P(P(A)) would be the same elements as those in A. Therefore $A \in P(P(A))$

- a. Suppose x is an element of A and that sets A and C are disjoint. Since we take the union of A and $A \cap C$, we need to check if it is an element of either A or $A \cap C$, or both. However, given the first sentence, this must be true as x is an element of A, while it also cannot be in $A \cap C$ because this is the null set as they are disjoint. Now suppose y is an element of $A \cup (A \cap C)$. Then y is an element of either A or $A \cap C$. It cannot be an element of $A \cap C$ as this is the null set (as mentioned before), and therefore, it must be an element of A. Then it is clearly an element of A. Therefore, every element of A is an element in $A \cup (A \cap C)$ and every element in $A \cup (A \cap C)$ is an element in A.
- b. This is not true; given sets $A = \{1,2\}$ and $B = \{2,3\}$, we can determine $P(A) \cup P(B)$ to be $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}\}\}$. We also know $A \cup B = \{1,2,3\}$. The power set of this is $P(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$. It is noticeable that the set $\{1,2,3\}$ is an element of $P(A \cup B)$, but not an element of $P(A) \cup P(B)$. Therefore $P(A) \cup P(B) \neq P(A \cup B)$.
- 9. We need to prove that every integer is a member of this set. We need to prove that for any integers a, b and n, 9a + 17b = n. To do this, we first find that the greatest common divisor of 9 and 17 is 1. Therefore, there must exist some integers c and d such that 9c + 17d = 1. Multiplying both sides by an integer n, we get 9cn + 17dn = n. This shows that n is a member of the set $\{9a + 17b \mid a, b \in \mathbb{Z}\}$. Given that for 9a + 17b = n, n is a linear combination of 9 and 17. Being integer coefficients, n must be an integer. Therefore, every integer is a member of the set, and every member of the set is an integer, so we can conclude that $\{9a + 17b \mid a, b \in \mathbb{Z}\} = \mathbb{Z}$.

7 Question 7 5 / 5

 $A = $$ {\{emptyset, \{emptyset\}, \{emptyset, \{emptyset\}\}\}}$

- 2.5 pts Correctly satisfied one of the two constraints i.e. either |A| = 3 or $A \in P(P(A))$
- 5 pts Does not exist
- **5 pts** No Answer

7. $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$ We know this meets the condition that |A| = 3 Additionally, P(A) contains the null set, and then sets holding the first and second element of A. Therefore, each element of A is in P(A). We can use the same logic in P(P(A)), where the first three elements of P(P(A)) would be the same elements as those in A. Therefore $A \in P(P(A))$

- a. Suppose x is an element of A and that sets A and C are disjoint. Since we take the union of A and $A \cap C$, we need to check if it is an element of either A or $A \cap C$, or both. However, given the first sentence, this must be true as x is an element of A, while it also cannot be in $A \cap C$ because this is the null set as they are disjoint. Now suppose y is an element of $A \cup (A \cap C)$. Then y is an element of either A or $A \cap C$. It cannot be an element of $A \cap C$ as this is the null set (as mentioned before), and therefore, it must be an element of A. Then it is clearly an element of A. Therefore, every element of A is an element in $A \cup (A \cap C)$ and every element in $A \cup (A \cap C)$ is an element in A.
- b. This is not true; given sets $A = \{1,2\}$ and $B = \{2,3\}$, we can determine $P(A) \cup P(B)$ to be $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}\}\}$. We also know $A \cup B = \{1,2,3\}$. The power set of this is $P(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$. It is noticeable that the set $\{1,2,3\}$ is an element of $P(A \cup B)$, but not an element of $P(A) \cup P(B)$. Therefore $P(A) \cup P(B) \neq P(A \cup B)$.
- 9. We need to prove that every integer is a member of this set. We need to prove that for any integers a, b and n, 9a + 17b = n. To do this, we first find that the greatest common divisor of 9 and 17 is 1. Therefore, there must exist some integers c and d such that 9c + 17d = 1. Multiplying both sides by an integer n, we get 9cn + 17dn = n. This shows that n is a member of the set $\{9a + 17b \mid a, b \in \mathbb{Z}\}$. Given that for 9a + 17b = n, n is a linear combination of 9 and 17. Being integer coefficients, n must be an integer. Therefore, every integer is a member of the set, and every member of the set is an integer, so we can conclude that $\{9a + 17b \mid a, b \in \mathbb{Z}\} = \mathbb{Z}$.

8.1 a 2/3

- ✓ 0 pts Correct
 - 1 pts Says statement is True but provides an invalid proof
 - 2 pts Says statement is True but does not provide a proof
 - 3 pts Says statement is False and provides a counter example
 - 3 pts No Answer
- 1 Point adjustment
- 1 You needed to provide a 2 column proof.

7. $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$ We know this meets the condition that |A| = 3 Additionally, P(A) contains the null set, and then sets holding the first and second element of A. Therefore, each element of A is in P(A). We can use the same logic in P(P(A)), where the first three elements of P(P(A)) would be the same elements as those in A. Therefore $A \in P(P(A))$

- a. Suppose x is an element of A and that sets A and C are disjoint. Since we take the union of A and $A \cap C$, we need to check if it is an element of either A or $A \cap C$, or both. However, given the first sentence, this must be true as x is an element of A, while it also cannot be in $A \cap C$ because this is the null set as they are disjoint. Now suppose y is an element of $A \cup (A \cap C)$. Then y is an element of either A or $A \cap C$. It cannot be an element of $A \cap C$ as this is the null set (as mentioned before), and therefore, it must be an element of A. Then it is clearly an element of A. Therefore, every element of A is an element in $A \cup (A \cap C)$ and every element in $A \cup (A \cap C)$ is an element in A.
- b. This is not true; given sets $A = \{1,2\}$ and $B = \{2,3\}$, we can determine $P(A) \cup P(B)$ to be $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}\}\}$. We also know $A \cup B = \{1,2,3\}$. The power set of this is $P(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$. It is noticeable that the set $\{1,2,3\}$ is an element of $P(A \cup B)$, but not an element of $P(A) \cup P(B)$. Therefore $P(A) \cup P(B) \neq P(A \cup B)$.
- 9. We need to prove that every integer is a member of this set. We need to prove that for any integers a, b and n, 9a + 17b = n. To do this, we first find that the greatest common divisor of 9 and 17 is 1. Therefore, there must exist some integers c and d such that 9c + 17d = 1. Multiplying both sides by an integer n, we get 9cn + 17dn = n. This shows that n is a member of the set $\{9a + 17b \mid a, b \in \mathbb{Z}\}$. Given that for 9a + 17b = n, n is a linear combination of 9 and 17. Being integer coefficients, n must be an integer. Therefore, every integer is a member of the set, and every member of the set is an integer, so we can conclude that $\{9a + 17b \mid a, b \in \mathbb{Z}\} = \mathbb{Z}$.

8.2 **b** 3 / 3

√ - 0 pts Valid counterexample

$$e.g. \$\$A = \{1\}\$\$ \text{ and } \$\$B = \{2\}\$\$$$

- 1 pts Says statement is False but provides invalid counter example
- 2 pts Says statement is False but does not provide a counter example
- **3 pts** Proves the statement
- 3 pts No Answer

7. $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$ We know this meets the condition that |A| = 3 Additionally, P(A) contains the null set, and then sets holding the first and second element of A. Therefore, each element of A is in P(A). We can use the same logic in P(P(A)), where the first three elements of P(P(A)) would be the same elements as those in A. Therefore $A \in P(P(A))$

- a. Suppose x is an element of A and that sets A and C are disjoint. Since we take the union of A and $A \cap C$, we need to check if it is an element of either A or $A \cap C$, or both. However, given the first sentence, this must be true as x is an element of A, while it also cannot be in $A \cap C$ because this is the null set as they are disjoint. Now suppose y is an element of $A \cup (A \cap C)$. Then y is an element of either A or $A \cap C$. It cannot be an element of $A \cap C$ as this is the null set (as mentioned before), and therefore, it must be an element of A. Then it is clearly an element of A. Therefore, every element of A is an element in $A \cup (A \cap C)$ and every element in $A \cup (A \cap C)$ is an element in A.
- b. This is not true; given sets $A = \{1,2\}$ and $B = \{2,3\}$, we can determine $P(A) \cup P(B)$ to be $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}\}\}$. We also know $A \cup B = \{1,2,3\}$. The power set of this is $P(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$. It is noticeable that the set $\{1,2,3\}$ is an element of $P(A \cup B)$, but not an element of $P(A) \cup P(B)$. Therefore $P(A) \cup P(B) \neq P(A \cup B)$.
- 9. We need to prove that every integer is a member of this set. We need to prove that for any integers a, b and n, 9a + 17b = n. To do this, we first find that the greatest common divisor of 9 and 17 is 1. Therefore, there must exist some integers c and d such that 9c + 17d = 1. Multiplying both sides by an integer n, we get 9cn + 17dn = n. This shows that n is a member of the set $\{9a + 17b \mid a, b \in \mathbb{Z}\}$. Given that for 9a + 17b = n, n is a linear combination of 9 and 17. Being integer coefficients, n must be an integer. Therefore, every integer is a member of the set, and every member of the set is an integer, so we can conclude that $\{9a + 17b \mid a, b \in \mathbb{Z}\} = \mathbb{Z}$.

9 Question 9 9 / 9

- √ 0 pts Correct
 - 5 pts Only shows one direction
 - **5 pts** Did not cite any steps

Invalid Steps

- 2 pts 1 Invalid Step
- 4 pts 2 Invalid Steps
- 6 pts 3 Invalid Steps
- 8 pts 4 Invalid Steps
- 10 pts 5+ Invalid Steps

Skipped Steps

- 2 pts 1 Skipped Step
- 4 pts 2 Skipped Steps
- 6 pts 3 Skipped Steps
- 8 pts 4 Skipped Steps
- 10 pts 5+ Skipped Steps

Uncited Steps

- 1 pts 1 Uncited Step
- 2 pts 2 Uncited Steps
- 3 pts 3 Uncited Steps
- 4 pts 4+ Uncited Steps

Miscited Steps

- 1 pts 1 Miscited Step
- **2 pts** 2 Miscited Steps
- **3 pts** 3 Miscited Steps
- 4 pts 4+ Miscited Steps
- 9 pts Disproves Statement
- 9 pts No Answer

10. There exists sets A, B, C, D such that

- 1. $|A|, |B|, |C|, |D| \ge 0$,
- 2. $B, C, D \in A$
- 3. $B \cap C = \emptyset$
- 4. $B \cap D = \emptyset$
- 5. $C \cap D = \emptyset$

An example of this would be:

- $A = \{1,2,3,4\}$
- $B = \{1\}$
- $C=\{2\}$
- $D = {3}$

$$|A - B - C - D| = |\{4\}| = 1$$

 $|A| - |B| - |C| - |D| = 4 - 1 - 1 - 1 = 1$

10 Question 10 **5 / 5**

✓ - **0 pts** Correct examples provided

e.g.
$$$$A = B = C = D = \text{emptyset}$$$$

OR

$$\$A = \{1,2,3\}$$
 \$\$; \$\$B = \{1\}\$\$; \$\$C = \{2\}\$\$; \$\$D = \{3\}\$\$

- **5 pts** Incorrect / No Answer

11 On Time 2.5 / 0

- √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - **10 pts** 1 day late
 - **25 pts** 2 days late

12 Matching 0 / 0

- **√ 0 pts** Correct
 - **5 pts** Incorrect