AIC HW4

110011222 陳立珩

NMOS:
$$I_{DS} = \frac{1}{2} \times \mu_n C_{OX} \times \frac{W}{L} (V_{GS} - |V_{th}|)^2$$

$$gm = \frac{2 \cdot Id}{Vov}$$
2

$$Vov = \sqrt{2u_n C_{ox} \frac{W}{L} Id} \qquad \dots \dots 3$$

PART1:

- I. 分析此電路的小訊號模型,得出 differential gain 為gmm1(rom1(M2)||Rd),因此可知若要 gain > 20,則 gmm1 要很大⇒ Iss 要大, i.e. Wm3/Lm3 要大 ⇒ choose Wm3/Lm3 = 25um/1um。
- II. 若 Vb 太大,會使 M1(M2) 的 source voltage 太大,造成 M1(M2) 操作在不飽和區,因此使 Vb 能超過 M3 的 Vth 就好,假設 Vth = 0.4V \Rightarrow choose Vb = 0.44V。
- III. 若 Vin_CM 太大,根據電流①公式,為了維持電流相同,如果 Vov 不變,代表 Vs 因此提高,會容易造成 M3 操作在不飽和區,因此使 Vin_CM 能超過 M3 的 Vth,假設 Vth=0.4V \Longrightarrow choose $Vin_CM=0.5V$ 。
- IV. 因為 M1(M2) 的 $ro_{M1(M2)}$ 與 gain 有關係,而且此題要求的 gain 很大, 預估 Rd 會取很大,所以盡量讓 $ro_{M1(M2)}$ 更大來減少 $ro_{M1(M2)}$ ||Rd 的值, 根據 hw1 $ro \propto L$,i.e. $L_{M1(M2)}$ 不能太小 choose $L_{M1(M2)} = 4um$ 。
- V. 一開始假設讓 M3 和 M1(M2)的 Vov 相同,所以根據公式③,Vov_{M3} = $Vov_{M1(M2)}, \, \text{可以推得}(\frac{w}{L})_{M3} = 2(\frac{w}{L})_{M1(M2)}, \, \text{取} \, W_{M1(M2)} = 25 \, \text{um} \, (\text{m} = 2) \, .$
- VI. 大概推算一下 $\operatorname{Iss} = \frac{1}{2} u_n C_{ox} (\frac{W}{L})_{M3} Vov_{M3}^2 = 9.68 \text{ uA} \Longrightarrow \operatorname{gmm}_{1(M2)} =$ $\frac{2(\frac{1}{2} Iss)}{Vov_{M1(M2)}} = 193 \text{ uA} , 假設 ro \to \infty , \operatorname{Ad} = \operatorname{gmm}_{1(M2)} \operatorname{Rd} > 20 \Longrightarrow$ $\operatorname{Rd} = 100 \mathrm{k}\Omega \circ$
- VII. 驗證 mos region:

$$I_{SS} \approx 9.68 \text{MA} \qquad V_{TH} \approx 0.4 \text{V} \qquad \text{Mn(px} \approx 300 \text{x}) \text{D}^{+}$$

$$\stackrel{V}{\underset{\text{Del}}{\bigvee}} I_{SS} = \stackrel{V}{\underset{\text{Mn}}{\bigvee}} I_{\text{Mn}} (I_{\text{M2}}) \left(V_{\text{In-cM}} - V_{p} - V_{\text{TH}} \right)^{2}$$

$$V_{\text{In-cM}} - V_{p} - V_{\text{TH}} \approx 0.05 \text{V}$$

$$\Rightarrow V_{p} \approx 0.05$$

$$V_{p} \approx 0.05$$

$$V_{p} \approx 0.05$$

$$V_{p} \approx 0.05 \Rightarrow 0.44 \approx 0.4$$

$$V_{p} \approx 0.05 \Rightarrow 0.44 \Rightarrow 0.4$$

$$V_{p} \approx 0.05 \Rightarrow 0.44 \Rightarrow 0.4$$

$$V_{p} \approx 0.05 \Rightarrow 0.44 \Rightarrow 0.4$$

第 1 次測試:

Design parameter:

Vb	Vin_CM	W _{M3} /L _{M3}	W _{M1(M2)} /L _{M1(M2)}	Rd
0.44 V	0.5V	25um/1um	25 um/4um (m = 2)	100kΩ

Result:

```
        Subckt
        element
        0:mm1
        0:mm2
        0:mm3

        nodel
        0:n 18.1
        0:n 18.1
        0:n 18.1

        region
        10:7036u
        10.7036u
        21.4073u

        ibs
        -354.7274a
        -354.7274a
        -3.270e-21

        ibd
        -1.5775f
        -1.5775f
        -1.5775f
        -1.77.3596a

        vds
        333.0237m
        333.0237m
        96.6134m
        0.

        vbs
        -96.6134m
        -96.6134m
        0.
        84.2819m
        88.7119m

        vds
        33.994.275sm
        387.9827m
        367.4469m
        96.74469m
        96.74469m

        beta
        3.7593m
        3.7593m
        7.7755m
        97.4469m
        96.4469m

        gm
        191.1409u
        357.8438m
        74.9557u
        97.4569m
        97.4456m

        gmb
        37.3125u
        73.3125u
        74.5557u
        74.5557u
        97.4569m
        98.751664f
        96.61564f
        96.61564f
```

```
v(voutp,voutn)/vip = 16.9571
input resistance at vip = 1.000e+20
output resistance at v(voutp,voutn) = 177.4316k
```

dcgain_in_db= 24.5870 at= 1.0000 from= 1.0000 to= 100.0000g bw= 1.6703x

觀察與微調:

M1、M2、M3 都進入了飽和區,且如預期三者的 Vov 接近,很明顯可以發現 ADM 還差一些,是因為 ro 把 output resistance 分掉了,有兩個做法,第一個是將 Rd 繼續提高,但這樣做會讓 bw 降低,於是我選擇第二個方法,增加 gm_{M1(M2)},根據公式②,如果將 Vov_{M1(M2)}降低就可以增加 gm_{M1(M2)}的值,再觀察公式①,可

以發現如果提高 $(\frac{W}{L})_{M3}$ 的值,就可以降低 $Vov_{M1(M2)}$,試取 $(\frac{W}{L})_{M3} = \frac{50um}{4um}$ 。

第 2 次測試:

Design parameter:

Vb	Vin_CM	W _{M3} /L _{M3}	W _{M1(M2)} /L _{M1(M2)}	Rd
0.44 V	0.5V	25um/1um	50um/4um (m = 2)	100kΩ

Result:

subckt			
element	0:mm1	0:mm2	0:mm3
model	0:n_18.1	0:n_18.1	0:n_18.1
region	Saturation	Saturation	Saturation
id	11.1959u	11.1959u	22.3918u
ibs	-898.3297a	-898.3297a	-3.420e-21
ibd	-2.7380f		-229.1217a
	375.1906m		440.0000m
vds	255.5985m	255.5985m	124.8094m
vbs	-124.8094m	-124.8094m	Θ.
vth	355.0247m	355.0247m	387.7696m
vdsat	67.9273m	67.9273m	88.8316m
vod	20.1660m	20.1660m	52.2304m
beta	7.5168m	7.5168m	7.7754m
gam eff	510.8295m	510.8295m	507.4460m
gm gds	230.8634u	230.8634u	386.1202u
gds	1.6559u	1.6559u	23.0819u
gmb	44.8729u	44.8729u	80.2472u
cdtot	144.6724f	144.6724f	41.5689f
cgtot	2.0169p	2.0169p	160.0552f
cstot	1.9074p	1.9074p	173.2041f
cbtot	859.7789f	859.7789f	98.0280f
cgs	1.6330p	1.6330p	133.4956f
cgd	35.4268f	35.4268f	10. 5633f

dcgain_in_db= 25.9362 at= 1.0000 from= 1.0000 to= 100.0000g bw= 1.6170x

觀察與微調:

發現 $Vov_{M1(M2)}$ 降低使得 A_{DM} 提高了,繼續調高 $(\frac{W}{L})_{M3}$ 的值。試取 $(\frac{W}{L})_{M3} = \frac{50um}{4um}$ 。

第 3 次測試:

Design parameter:

Vb	Vin_CM	W _{M3} /L _{M3}	W _{M1(M2)} /L _{M1(M2)}	Rd
0.44 V	0.5V	25um/1um	55um/4um (m = 2)	100kΩ

Result:

```
subckt
element
                                                                0:mm1
                                                                                                                                              0:mm2
                                                                                                                                                                                                                             0:mm3
                                                                                                                                              0:n_18.1
  model
                                                                  0:n_18.1
                                                                                                                                                                                                                             0:n_18.1
                                                               ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.1 ## 16.
    region
id
         ibd
        vgs
vds
                                                                        128.4970m - 128.4970m 0.
355.7577m 355.7577m 387.7417m
66.0495m 66.0495m 88.8472m
         vbs
        vth
        vdsat
                                                                                15.7453m
                                                                                                                                                                                                                                             52.2583m
         vod
        beta
                                                                                   8.2683m
                                                                                                                                                                  8.2683m
        gam eff 510.9262m 510.9262m 507.4460m gm 235.5891u 235.5891u 388.3616u
        gm
gds
                                                                                       1.7098u
                                                                                                                                                                     1.7098u
                                                                                                                                                                                                                                           21.1271u
                                                                      1.7090u 1.7090u
45.7584u 45.7584u
159.1119f 159.1119f
2.1392p 2.1392p
1.9924p 1.9924p
943.5317f 943.5317f
        gmb
cdtot
                                                                                                                                                                                                                                         80.6950u
                                                                                                                                                                                                                                           41.2243f
                                                                                                                                                                                                                                    159.9281f
        cgtot
                                                                                                                                                                                                                                   173.2585f
97.9681f
133.4636f
        cstot
        cbtot
                                                                                                                                                            1.7008p
39.1976f
                                                                                1.7008p
39.1976f
        cgs
cgd
                                                                                                                                                                                                                                           10.4400f
```

```
v(voutp,voutn)/vip = 20.1189
input resistance at vip = 1.000e+20
output resistance at v(voutp,voutn) = 170.7975k
```

```
dcgain_in_db= 26.0721 at= 1.0000
from= 1.0000 to= 100.0000g
bw= 1.6042x
```

觀察與微調:

發現已達到題目要求, A_{DM} > 20(V/V), bw > 1.5M(Hz)

(b)

subckt			
element	0:mm1	0:mm2	0:mm3
model	0:n 18.1	0:n 18.1	0:n 18.1
region	Saturation	Saturation	Saturation
id	11.2366u	11.2366u	22.4733u
ibs	11.2366u -1.0155f	-1.0155f	-3.433e-21
ibd	-2.9741f	-2.9741f	-235.8914a
vgs	371.5030m	371.5030m	440.0000m
vds	247.8396m	247.8396m	128.4970m
vbs	-128.4970m	-128.4970m	0.
vth	355.7577m	355.7577m	387.7417m
vdsat	66.0495m	66.0495m	88.8472m
vod	15.7453m	15.7453m	52.2583m
beta	8.2683m	8.2683m	7.7754m
gam eff	510.9262m	510.9262m	507.4460m
gm	235.5891u 1.7098u	235.5891u	388.3616u
gds	1.7098u		21.1271u
gmb	45.7584u	45.7584u	80.6950u
cdtot	159.1119f	159.1119f	41.2243f
cgtot	2.1392p	2.1392p	159.9281f
cstot	1.9924p		173.2585f
cbtot	943.5317f	943.5317f	97.9681f
cgs	1.7008p	1.7008p	133.4636f
cgd	39.1976f	39.1976f	10.4400f

(c)

```
**** small-signal transfer characteristics

v(voutp,voutn)/vip = 20.1189
input resistance at vip = 1.000e+20
output resistance at v(voutp,voutn) = 170.7975k
```

(d)

(e)

CMRR simulated = $20 \log(20.1189) - (-1.4903) = 27.562 dB$

(f)

gm1	gm2	R_D	r_{o1}	r_{o3}
235.5891u Ω^{-1}	235.5891u Ω^{-1}	$100 \mathrm{k}\Omega$	584863Ω	47332Ω
C_L	C_p	W		
1pF	4.026 pF	10kHz		

$R_D \mid\mid r_{o1} \mid\mid \frac{1}{C_L S}$	$r_{o3} \mid\mid \frac{1}{C_p S}$
85398.72Ω	$47332.49\varOmega$

$$|\text{Ac,cm}| = \frac{gm1 \left[R_D \mid\mid r_{01} \mid\mid \frac{1}{C_L S} \right]}{(gm1 + gm2) \left[r_{03} \mid\mid \frac{1}{C_P S} \right] + 1} = \frac{235.5891 \cdot 10^{-6} \cdot 85398.72}{2 \cdot 235.5891 \cdot 10^{-6} 47332.49 + 1} = 0.86340126 \text{ (V/V)}$$

CMRR hand = 20 · log (
$$|\frac{A_{DM}}{A_{V,CM}}|$$
) = 27.34786044 dB

CMRR error =
$$\frac{\text{CMRR}_{\text{Simulated}} - \text{CMRR}_{\text{hand}}}{\text{CMRR}_{\text{hand}}} \cdot 100\% = \left| \frac{27.562 \, dB - 27.34786044 \, dB}{27.34786044 \, dB} \right| \cdot 100\%$$

= 0.783%

從圖中可以發現 pole 1 和 zero 1 的值非常相近,所以其實會互相抵銷,使得 dominant pole 出現在 pole 2 的位置也幾乎就是-3dB bandwidth 的位置。

(h)

$$-3dB \text{ pole}$$

$$\frac{gain, -3dB}{gain, max} = \frac{1}{N^{2}} = \left| \frac{as+b}{cs+d} \right| \cdot \frac{1}{|gain, max|}$$

$$\Rightarrow \frac{1}{N^{2}} |gain, max| = \sqrt{\frac{b^{2}+w^{2}a^{2}}{a^{2}+w^{2}c^{2}}} = A$$

$$\Rightarrow A^{2}d^{2} + w^{2} \cdot A^{2}c^{2} = b^{2} + w^{2}a^{2}$$

$$\Rightarrow w^{2} (A^{2}c^{2} - a^{2}) = b^{2} - A^{2}d^{2}$$

$$\Rightarrow w = \left(\frac{b^{2}-A^{2}d^{2}}{A^{2}c^{2}-a^{2}}\right)^{\frac{1}{2}}$$

CL	CGS	CDB	CGD	C2
1E-12	1.7008E-12	1.199143 E-13	39.1976E-15	1.1199143E-12
R1	gm			
85398.55506	388.3616E-6			

$$\mathsf{a} = \mathsf{C}_\mathsf{GD} \quad , \quad \mathsf{b} = \mathsf{gm} \quad , \quad \mathsf{c} = \mathsf{C}_\mathsf{GD} + \mathsf{C}_2 \quad , \quad \mathsf{d} = \frac{1}{ro||Rd} \quad , \quad \mathsf{A} = \frac{1}{\sqrt{2}} \cdot |gain_{max}|$$

a	b	С	d	Α
3.91976E-14	2.355891E-4	1.1591119 E-12	1.17098E-5	14.22621062

from transfer function : as + b = 0

$$\Rightarrow$$
 s = zero = $\frac{b}{a} = \frac{2.355891 \cdot 10^{-4}}{3.91976 \cdot 10^{-14}} = 6010293998 ($\frac{rad}{sec}$) = 956567999.2 (Hz)$

from transfer function : cs + d = 0

$$\Rightarrow$$
 s = pole = $\frac{-d}{c} = \frac{-1.17098 \cdot 10^{-5}}{1.1591119 \cdot 10^{-12}} = 10099801.41 ($\frac{rad}{sec}$) = 1607433.318(Hz)$

$$-3dB BW = \omega = \left(\frac{b^2 - A^2 d^2}{A^2 c^2 - a^2}\right)^{\frac{1}{2}} = \left(\frac{(2.355891 \cdot 10^{-4})^2 - (14.22621062)^2 (1.17095 \cdot 10^{-5})^2}{(14.22621062)^2 (1.1591119 \cdot 10^{-12})^2 - (3.91976 \cdot 10^{-14})^2}\right)^{\frac{1}{2}}$$
$$= 1.60786077 \text{ (MHz)}$$

	hand calculation	hspice	error
pole	1.607433318 MHz	1.60780 MHz	0.0228%
-3dB Bandwidth	1.607860770 MHz	1.60420 MHz	0.2275%

推測造成誤差的原因為電路中的寄生電容,且因此式較為複雜,故計算時,各值的四捨五入也會造成最終計算結果有些許誤差。

(i)

480.0000m	1.000e+20	32.5407k	4.6728
481.0000m	1.000e+20	33.7857k	4.8002
482.0000m	1.000e+20	35.2950k	4.9565
483.0000m	1.000e+20	37.1470k	5.1503
484.0000m	1.000e+20	39 . 4535 k	5.3939
485.0000m	1.000e+20	42.3765k	5.7053
486.0000m	1.000e+20	46.1569k	6.1108
487.0000m	1.000e+20	51.1587k	6.6508
488.0000m	1.000e+20	57.9240k	7.3853
489.0000m	1.000e+20	67.2311k	8.4012
490.0000m	1.000e+20	80.0127k	9.8036
491.0000m	1.000e+20	96.8021k	11.6562
492.0000m	1.000e+20	116.4050k	13.8342
493.0000m	1.000e+20	135.2069k	15.9430
494.0000m	1.000e+20	149.6557k	17.5865
495.0000m	1.000e+20	159.0365k	18.6756
496.0000m	1.000e+20	164.6168k	19.3418
497.0000m	1.000e+20	167.8247k	19.7376
498.0000m	1.000e+20	169.6156k	19.9661
499.0000m	1.000e+20	170.5210k	20.0843
500.0000m	1.000e+20	170.7975k	20.1189
501.0000m	1.000e+20	170.5210k	20.0761
502.0000m	1.000e+20	169.6156k	19.9441
503.0000m	1.000e+20	167.8247k	19.6884
504.0000m	1.000e+20	164.6168k	19.2398
505.0000m	1.000e+20	159.0365k	18.4750
506.0000m	1.000e+20	149.6557k	17.2115
507.0000m	1.000e+20	135.2069k	15.2908
508.0000m	1.000e+20	116.4050k	12.8138
509.0000m	1.000e+20	96.8021k	10.2457
510.0000m	1.000e+20	80.0127k	8.0532
511.0000m	1.000e+20	67.2311k	6.3859
512.0000m	1.000e+20	57.9240k	5.1710
513.0000m	1.000e+20	51.1587k	4.2857
514.0000m	1.000e+20	46.1576k	3.6283

$$FoM = \frac{total\ current(uA)}{input\ range(mV)* - 3dB\ bandwidth\ (MHz)} = \frac{22.4733\ (uA)}{29\ (mV)* 1.6042(MHz)} = 0.4830703025$$

優化:

題目説明 $FoM = \frac{total\ current(uA)}{input\ range(mV)\cdot -3dB\ bandwidth\ (MHz)}$ 越小越好,根據測試發現

如果調小 Vin_CM,可以大幅提升 input range 的範圍,但是一旦調太小有可能會使得 VGS 變得比 Vth 小, mos 進入 cutoff,所以非常需要注意 VovM1(M2)的

值,不能因為為了讓 A_{DM} 增加,而不斷去調高 $(\frac{W}{L})_{\mathrm{M3}}$ 的值,使得 $\mathrm{Vov}_{\mathrm{M1(M2)}}$ 太

小,而需要適時的調高 Rd 來達到 ADM 增加的目的,當然這麼做就會降低 bw 的頻寬,所以需要作出取捨,同時我也注意到如果降低 Iss,雖然會降低 gmM1(M2) 造成需要更大的 Rd,但 bw 下降的幅度比 Iss 還多,也有助於降低 Fom。至於

$$\text{Acm 根據公式 Ac,cm} = \frac{gm1 \left[R_D \, || \, r_{o1} \, || \, \frac{1}{c_L \, s} \, \right]}{(gm1 + gm2) \left[\, r_{o3} \, || \, \frac{1}{c_n \, s} \, \right] + 1} \, \, \text{如果提高 r_{o3} 有助於降低 A_{CM} ,根 }$$

據 $hw1 r_0 \propto L$, L_{M3} 不能取太小,且電阻不能太大,代表說為了要達到 A_{DM} >20(V/V)的要求, I_D 不能太小。

大致流程:

- 1. 先大概取一個 L_{M3} 的值,取 L_{M3} =3um,再跑看看 hspice 發現 Vth 大約等於 0.34V,所以取一個較接近的 Vb 值,取 Vb=0.35 V 。 Vin CM 取 0.45V 。
- 2. 經過幾次測試後發現電流不太能夠小於 20 uA,我取電流大約為 21 uA,經過公式①計算後和實際跑 hspice 後大概推得 W_{M3}/L_{M3} 大約要等於 60,所以我設 5.2 um/3 um (m=35)。
- 3. 跑看看 hspice 發現電流不夠大,於是加大 Vb 值,取 0.352 V。
- 4. 經過幾次測試後發現如果 range 要 39mV 的話, $\text{Vod}_{\text{M1(M2)}}$ 不能太小,要大於 15.6mV 左右。
- 6. 跑看看 A_{CM} 發現值蠻大的,根據經驗如果升高 Vin_CM 和減少 $Vod_{M1(M2)}$ 可以降低 A_{CM} ,但因為不希望動到電流,所以加大 Vin_CM ,大約要取到 $Vin_CM=0.4565V$ 。
- 7. 將 Vod_{M1(M2)}控制到約 15.6mV 左右,發現 gain 超過 20V/V。 根據經驗發現降低電流減少 A_{DM} 比增加電阻可以得到更好的 Fom 值,所以 我打算降低電流使得 A_{DM} 接近 20V/V。經過測試可以得到 W_{M3}/L_{M3}=5.15um/3um(m=35),要同時注意 Vod_{M1(M2)}有沒有小於約 15.6mV,不然到時候測 input range 會進到 cut off,所以在這個過程中需要

不斷嘗試 $W_{M1(M2)}$ / $L_{M1(M2)}$ 和 Rd ,最後得到 $W_{M1(M2)}$ / $L_{M1(M2)}$ = 14.6um/4.4um (m = 8) ,Rd =101.5k Ω

- 8. 再跑看看 A_{CM} 發現值還大了一點點,所以稍稍提升 Vin_CM 值, $Vin_CM=0.4566V$ 。
- 9. 重複回到步驟 7., 因為 Vin CM 也會影響到 Vod_{M1(M2)}。
- 10. 跑看看 input range,發現在邊界的地方 M2 進到 linear,推測應該是電阻太大造成 V_{DS} 值過小,但觀察發現離飽和區不遠了,所以稍微減少 Rd 值,取 Rd =100.6k Ω 。
- 11. 重複步驟 7.、10.。
- 12. 經過多次嘗試後我取得 Fom 最小的設計。

第 4 次測試:

Design parameter

Vb	Vin_CM	W _{M3} /L _{M3}	W _{M1(M2)} /L _{M1(M2)}	Rd
0.352 V	0.4566V	5.166um/3um(m=35)	14.685um/4.4um (m = 8)	100.690kΩ

Result

v(voutp,voutn)/vip

subckt			
element	0:mm1	0:mm2	0:mm3
model	0:n 18.1	0:n 18.1	0:n 18.1
region	Saturation	Saturation	Saturation
id	10.7673u	10.7673u	21.5346u
ibs	-828.6809a	-828.6809a	-3.790e-21
ibd	-3.6873f	-3.6873f	-1.4297f
vgs	363.1444m	363.1444m	352.0000m
vds	322.3845m	322.3845m	93.4556m
vbs	-93.4556m	-93.4556m	Θ.
vth	347.4730m	347.4730m	339.9587m
vdsat	65.1735m	65.1735m	63.3044m
vod	15.6714m	15.6714m	12.0413m
beta	8.0034m	8.0034m	18.0797m
gam eff	510.0001m	510.0001m	507.4459m
gm	225.7648u	225.7648u	446.9981u
gds	1.3566u	1.3566u	28.4525u
gmb	44.5799u	44.5799u	93.6443u
cdtot	167.0234f	167.0234f	341.5147f
cgtot	2.5128p	2.5128p	2.6471p
cstot		2.3345p	
cbtot		1.1000p	
cgs	1.9944p		
cgd	40.8139f	40.8139f	90.0559f

```
input resistance at vip = 1.000e+20 output resistance at v(voutp,voutn) = 177.1775k dcgain_in_db= 26.0207 at= 1.0000
```

from= 1.0000 to= 100.0000g bw= 1.5355x

觀察與微調:

發現達到題目要求,A_{DM} > 20(V/V),bw > 1.5M(Hz)。

Input range:

input range = 472(mV) - 433(mV) = 39(mV)

Acm:

```
***** ac analysis tnom= 25.000 temp= 25.000 ****** acm_in_db= 1.0104
```

 $CMRR_{simulated} = 20 log(20.0001) - 1.0104 = 25.0103 dB > 25 dB$

FoM:

$$FoM = \frac{total\ current(uA)}{input\ range(mV)* - 3dB\ bandwidth\ (MHz)} = \frac{21.5346\ (uA)}{39\ (mV)* 1.5355(MHz)} = 0.35960223$$

PART2

(a)

在 cascode stage 出現的電阻公式 Ron 可以推得 Rout ≅ (gm4+gmb4)ro3ro4 但因為 ro 不好去計算,所以換個方式觀察。

→ Vb = Vx+VA = VGSZ + (VGSI - VTH) = Vb - VA + VX - VTH

if we assume Vx = 410 mV, VTH = 360 mV

⇒ Va = 50mV > Vb = 460mV

For M, to be on, sat

VX = VIH

> 410mV = 360 mV

 $V_{GSI} - V_{THI} \le V_A (= V_b - V_{GS2}) \Rightarrow 410 \text{mV} - 360 \text{mV} \le 50 \text{mV}$

- II. 因為此題的 spec 電阻要大於 700k,觀察 Rout = $\frac{Vout}{lout}$ (at Vout 300mV),可以推斷如果 current mirror 越快達到 120 uA,也就是如果能讓 M4 在越小的 Vout 下達到飽和區, $\frac{lout}{Vout}$ 更小 \Rightarrow Rout 更大。所以讓 M4 的 Vov 越小越好 $\Rightarrow \frac{W_{M4}}{L_{M4}}$ 取大 , $\frac{W_{M4}}{L_{M4}} = \frac{60um}{1um}$ (m=5)。
- III. 因為 V_B 也會隨著 V_{out} 增加(sweep from 0V to 1.8V)升高到穩定值,如果能讓 M3 的 V_{ov} 越内 \Longrightarrow M3 越快進入飽和 \Longrightarrow $\frac{W_{M3}}{I_{M2}}$ 取大

$$\frac{W_{M3}}{L_{M3}} = \frac{60um}{1um} \text{ (m=5)}$$

IV. 根據 current mirror 和電流公式①, M1 與 M3 的 size 需成比例 1:6, 且如果電流要準確, 也需讓 VA、VB 同電壓, 因此 M2 和 M4 的 size 也需成比

例 1:6,所以
$$\frac{W_{M1}}{L_{M1}} = \frac{50um}{1um} \cdot \frac{W_{M2}}{L_{M2}} = \frac{50um}{1um}$$

第 1 次測試:

Design parameter:
$$\frac{W_{M4}}{L_{M4}} = \frac{W_{M3}}{L_{M3}} = \frac{60um}{1um} \text{ (m=5)} \cdot \frac{W_{M1}}{L_{M1}} = \frac{W_{M2}}{L_{M2}} = \frac{50um}{1um} \text{ (m=1)} \cdot$$

$$V_b=460 \text{mV}$$

Result:

****** dc transfer curves tnom= 25.000 temp= 25.000 ****** deriv= 8.8870u rout= 112.5239k

****** operating point status is all simulation time is 0.

node =voltage node =voltage

+0:a = 55.2105m 0:b = 54.3728m 0:vb = 460.0000m
+0:vdd = 1.8000 0:vout = 300.0000m 0:vss = 0.

觀察與微調:

發現 Rout 還不夠大,猜測或許是因為 V_B 小使得 M3 隨著 V_B 增加,進入飽和區時的 V_{out} 值較接近 300 mV,所以電流還未完全穩定,所以如果能稍微提高 V_b 的值,電流變化不大的情況下, V_B 的值就會提高,或許能讓 M3 早一些進入飽和區,電流更快在 $V_{out} = 300 mV$ 時達到 120 uA。

取 Vb=500mV。

第 2 次測試:

Design parameter:
$$\frac{W_{M4}}{L_{M4}} = \frac{W_{M3}}{L_{M3}} = \frac{60um}{1um} \text{ (m=5)}$$
, $\frac{W_{M1}}{L_{M1}} = \frac{W_{M2}}{L_{M2}} = \frac{50um}{1um} \text{ (m=1)}$

$$V_b=500mV$$

Result:

觀察與微調:

與預期一樣,如果提高 VB 的值,就可讓 M3 更早進入飽和區,電流在 Vout=300mV 時提高了,代表電流更早穩定,Rout 更大,但和標準還差了一點,於是繼續加大 Vb。

取 Vb=550mV。

第 3 次測試:

Design parameter:
$$\frac{W_{M4}}{L_{M4}} = \frac{W_{M3}}{L_{M3}} = \frac{60um}{1um} \text{ (m=5)} , \frac{W_{M1}}{L_{M1}} = \frac{W_{M2}}{L_{M2}} = \frac{50um}{1um} \text{ (m=1)}$$

$$V_b = 550 \text{mV}$$

Result:

+0:a = 129.4570m 0:b = 128.2304m 0:vb = 550.0000m +0:vdd = 1.8000 0:vout = 300.0000m 0:vss = 0. +0:vx = 396.9599m

觀察與微調:

達到題目要求,Rout > 700k Ω 。

計算驗證:

Rout \cong $(g_{m4}+g_{mb4})r_{o3}r_{o4}$

=
$$(2.5304 \cdot 10^{-3} + 491.2481 \cdot 10^{-6}) \cdot (\frac{1}{81.8960 \cdot 10^{-6}}) \cdot (\frac{1}{49.4711 \cdot 10^{-6}})$$

 $= 745813.9558 \Omega$

Rout error =
$$\left| \frac{757750 - 745813.9558}{745813.9558} \right| \cdot 100\% = 1.6\%$$

(b)

Assume
$$(\frac{W}{L})_{H,I} = \frac{W}{L}M_{L} = 6(\frac{W}{L})_{M,2} = 6(\frac{W}{L})_{M,4} = \frac{1}{4}(\frac{W}{L})_{M,5} = \frac{1}{4}(\frac{W}{L})$$

第 1 次測試:

Design parameter:
$$\frac{W_{M4}}{L_{M4}} = \frac{W_{M3}}{L_{M3}} = \frac{60um}{1um}$$
 (m=5) $\frac{W_{M1}}{L_{M1}} = \frac{W_{M2}}{L_{M2}} = \frac{50um}{1um}$ (m=1) $\frac{1}{1}$

$$\frac{W_{M5}}{L_{M5}} = \frac{50um}{3.5um}$$
 (m=1) $\frac{W_{M6}}{L_{M6}} = \frac{50um}{0.5um}$ (m=1)

Result:

subckt element	0:mm1	0:mm2	0:mm3	0:mm4	0:mm5	0:mm6	*****	oper	rati	ng point	status	all	s	.000 temp= imulation	time is	
model	0:n 18.1	node	е	=vo	ltage	node	=vol	tage	node	=voltag	e					
region	Saturation	Saturation	Saturation	Saturation	Subth	Saturation	+0:a		_	44.4601m	A·h	- 4	13.7067m	0.0	= 26.4	805m
id	118.9567u	118.9567u	20.0000u	20.0000u	20.0000u	20.0000u	+0:vb			46.8642m				0:vout	= 300.0	
ibs	-1.775e-20	-940.5868a	-2.994e-21	-160.0061a	-2.994e-21	-95.3333a	+0:vss				0:vx		.3.4145m			
ibd	-940.5513a	-6.4560f	-160.0001a	-1.4878f	-95.3273a	-1.6082f										
vgs	413.4145m	403.1574m	413.4145m	402.4041m	446.8642m	420.3747m										
vds	43.7067m	256.2933m	44.4601m	368.9544m	26.4895m	420.3747m										
vbs	Θ.	-43.7067m	0.	-44.4601m	0.	-26.4895m										
vth	387.9146m	395.5579m	387.9760m	394.9095m	447.5388m	337.1020m										
vdsat	75.1679m	67.4777m	75.0914m	67.3980m	70.2272m	101.1466m										
vod	25.4999m	7.5995m	25.4385m	7.4946m	-674.5779u	83.2728m										
beta	93.2515m	93.3099m	15.5415m	15.5503m	32.3998m	4.3011m										
gam eff	507.4459m	508.6564m	507.4459m		507.4459m	508.1831m										
gm	1.9916m	2.5107m		422.1281u	348.1071u	309.5045u										
gds	1.6363m	34.0540u		5.0378u	575.1132u	2.0863u										
gmb	421.7711u		71.1344u	85.7675u	70.1558u	62.1721u										
cdtot	710.9319f	431.7491f		69.9311f	96.7734f	70.7775f										
cgtot	1.7814p		296.4363f			1.1223p										
cstot	1.7891p		298.0257f		149.5446f	1.1642p										
cbtot	1.1945p	1.1293p	199.0480f	186.3564f	155.1980f	404.7903f										
cgs	1.3472p	1.0761p	224.4894f	178.8085f	85.0151f	998.9430f										
cgd	210.4275f	111.2369f	34.5368f	18.4537f	26.6011f	17.0002f										

觀察與微調:

發現 Vb 比預估的值還要小,所以造成 M5 進入 cut off,要讓 Vb 的值大一些,可以發現 Vb 其實就是 M5 的 VG,觀察公式①如果要增加 Vb 的值,可以減少 $\frac{W_{M5}}{L_{M5}}$,因為變動到 L 就會同時影響到 Vth,所以我打算調小 W 來降低 $\frac{W_{M5}}{L_{M5}}$ 。

試取 $\frac{W_{M5}}{L_{M5}} = \frac{40um}{3.5um}$,因為 M5 和 M6 要 W 要相同,所以 $\frac{W_{M6}}{L_{M6}} = \frac{40um}{0.5um}$ 。

第 2 次測試:

Design parameter:
$$\frac{W_{M4}}{L_{M4}} = \frac{W_{M3}}{L_{M3}} = \frac{60um}{1um}$$
 (m=5) $\frac{W_{M1}}{L_{M1}} = \frac{W_{M2}}{L_{M2}} = \frac{50um}{1um}$ (m=1) \circ

$$\frac{W_{M5}}{L_{M5}} = \frac{40um}{3.5um}$$
 (m=1) $\frac{W_{M6}}{L_{M6}} = \frac{40um}{0.5um}$ (m=1)

Result:

subckt						
element	0:mm1	0:mm2	0:mm3	0:mm4	0:mm5	0:mm6
model			0:n_18.1		0:n_18.1	
region					Saturation	
id	119.3818u	119.3818u	20.0000u	20.0000u	20.0000u	20.0000u
ibs	-1.781e-20	-1.1920f	-2.994e-21	-202.3884a	-3.009e-21	-75.1287a
ibd	-1.1920f	-6.4560f	-202.3825a	-1.4626f	-75.1227a	-1.3347f
vgs	406.4158m	405.8601m	406.4158m	405.0147m	461.2516m	435.2889m
	55.3915m		56.2369m			435.2889m
vbs	Θ.	-55.3915m	Θ.	-56.2369m	Θ.	-25.9627m
vth	387.8263m			397.4973m	447.6499m	337.0325m
vdsat	71.9307m	67.6426m	71.8580m	67.4966m	76.3698m	110.4754m
vod	18.5895m			7.5174m	13.6017m	98.2564m
beta	93.2321m	93.3419m	15.5382m	15.5557m	25.9232m	3.4432m
gam eff						
gm	2.1712m	2.5187m	364.9194u	422.2780u	321.3872u	287.2352u
	980.3291u		158.4394u			
gmb	458.7350u					57.4187u
cdtot	590.2004f	432.0342f	97.6706f	70.0563f	86.0848f	56.6172f
cgtot	1.6684p		277.7324f	244.9788f		910.0527f
cstot	1.6878p	1.5144p		251.7912f	134.7305f	947.7303f
cbtot	1.1864p	1.1249p	197.7124f	185.7178f	124.7011f	323.3170f
	1.2570p					814.4899f
cgd	162.6341f	111.2918f	26.8170f	18.4535f	24.6231f	13.6124f

觀察與微調:

Vb 的值與預估的一樣提高了,所有 mos 都進入飽和區。

lout=119.33818 uA 約等於 6 · lin = 120uA。