Search in Complex Environments

Jihoon Yang

Machine Learning Research Laboratory
Department of Computer Science & Engineering
Sogang University

Local search and optimization

- Previously: systematic exploration of search space
 - Solution to problem is path to goal
- Local search: evaluate and modify one or more current states; All that matters is the solution state, not the path cost to reach it
- E.g. 8-queens using complete-state formulation
 - States: 8 queens on the board, one per column
 - Actions: Move a queen to a square in the same column

Local search and optimization

- Local search is suitable for optimization problems
 - State space = set of "complete" configurations
 - Find best state according to some objective function h(s)
 - E.g. h(s) =number of conflicts
- Many optimization problems do not fit the standard search model
- Local search = keep a single current state and move to neighboring states to improve it
- Advantages:
 - Use very little memory
 - Often find reasonable solutions in large or infinite state spaces unsuitable for systematic algorithms (e.g. solve million-queens quickly)

Hill-climbing search

- Keep a single current node and move to neighboring states to improve it
- A loop that continuously moves in the direction of increasing value
 - Chooses randomly to break ties
 - It terminates when a peak is reached where no neighbor has a higher value
 - "Like climbing Everest in thick fog with amnesia"
- Hill-climbing a.k.a. greedy local search, steepest ascent/descent

Hill-climbing search

function HILL-CLIMBING(*problem*) **return** a state that is a local maximum

```
loop do
    neighbor ← a highest valued successor of current
    if neighbor.VALUE ≤ current.VALUE
    then return current.STATE
    current ← neighbor
```

 $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$

Hill-climbing example

- E.g. 8-queens (complete-state formulation)
 - States: 8 queens on the board, one per column
 - Actions: Move a single queen to another square in the same column
- Heuristic function h(n): the number of pairs of queens that are attacking each other (directly or indirectly)

Hill-climbing example

- The first shows a state of h = 17 and the h-value for each possible successor
- ullet The second shows a local minimum in the 8-queens state space (h=1)

Drawbacks

State space landscape

- Depending on initial state, can get stuck in local maxima, plateaux
- A sideways move can be allowed in the hope that the plateau is really shoulder

Hill-climbing variations

- Stochastic HC
 - Random selection among the uphill moves
 - The selection probability can vary with the steepness of the uphill move
- First-choice HC
 - Generating successors randomly until a better (than the current) one is found
 - Useful when a state has many successors
- Random-restart HC
 - Restart search from random initial state
 - A reasonably good local maximum can often be found after a small number of restarts

Simulated annealing

- Escape local maxima by allowing "bad" moves
 - Idea: but gradually decrease their frequency
- T, a "temperature" controlling the probability of downward steps
- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- ullet Commonly used: $T \leftarrow cT$ with c constant close to, but smaller than, 1
- Applied to VLSI layout, airline scheduling, etc.

Simulated annealing

```
function SIMULATED-ANNEALING(problem, schedule) return a
   solution state
   input: problem, a problem
        schedule, a mapping from time to temperature
   local variables: T, a "temperature" controlling the probability of
   downward steps
   current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow next.VALUE - current.VALUE
        if \Lambda F > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Local beam search

- Keep track of k states instead of one
 - Initially: *k* random states
 - Next: determine all successors of k states
 - ullet If any of successors is goal o finished
 - Else select k best from successors and repeat
- Major difference with random-restart search
 - Information is shared among k search threads
- Can suffer from lack of diversity
 - Stochastic variant: choose k successors randomly with probability proportional to state value difference

- Inspired by the process of biological evolution
- Start with *k* randomly generated states/individuals (**population**)
- States are scored by evaluation function (fitness function)
- At each step, the most fit states are selected (survival of the fittest)
 probabilistically: used as seeds for producing the next generation
 population the children or offspring, by means of operations such as
 crossover and mutation
- The process is repeated until sufficiently fit states are discovered the best state has a score exceeding a criterion
- They have been applied successfully to a variety of learning tasks and optimization problems

```
function GENETIC ALGORITHM(population, FITNESS-FN) return an
   individual
   input: population, a set of individuals
        FITNESS-FN, a function which determines the fitness of an
        individual
   repeat
        new population \leftarrow empty set
        loop for i from 1 to SIZE(population) do
            x \leftarrow \text{RANDOM\_SELECTION}(population, FITNESS\_FN)
            y \leftarrow RANDOM SELECTION(population, FITNESS FN)
            child \leftarrow REPRODUCE(x,y)
            if (small random probability) then child \leftarrow MUTATE(child)
            add child to new population
        population ← new population
   until some individual is fit enough or enough time has elapsed
   return the best individual in population
```

- In basic GAs, the fundamental representation of each state is a string over a finite alphabet (often a string of 0s and 1s), called a chromosome
- The mapping depends on the problem domain, and the designers
- Genetic Operators
 - Replication: A chromosome is merely reproduced
 - **Crossover**: Involves the mating of two parent chromosomes to yield two new offspring by copying selected bits from each parent
 - Mutation: Creates a single descendant from a single parent by changing the value of a randomly chosen bit (from a 1 to 0 or vice versa)
 - Other operators: specialized to the particular representation

Fitness Selection Pairs Cross-Over Mutation

Suppose we want to site three airports in Romania:

- 6-D state space defined by (x_1, y_2) , (x_2, y_2) , (x_3, y_3)
- objective function $f(x_1,y_2,x_2,y_2,x_3,y_3)=$

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers $\pm\delta$ change in each coordinate Gradient methods compute

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$ Sometimes can solve for $\nabla f(\mathbf{x}) = 0$ exactly (e.g., with one city). Newton–Raphson (1664, 1690) iterates $\mathbf{x} \leftarrow \mathbf{x} - \mathbf{H}_f^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x}) = 0$, where $\mathbf{H}_{ij} = \partial^2 f/\partial x_i \partial x_j$

Offline search algorithms compute a complete solution before exec.

VS.

online search ones interleave computation and action (processing input data as they are received)

necessary for unknown environment
 (dynamic or semidynamic, and nonderterministic domains)

 \Leftarrow exploration problem

An online search agent solves problem by executing actions, rather than by pure computation (offline)

The competitive ratio – the total cost of the path that the agent actually travels (online cost) / that the agent would follow if it knew the search space in advance (offline cost) \Leftarrow as small as possible

Online search expands nodes in a local order, say, $\rm DEPTHFIRST$ and $\rm HILLCLIMBING$ have exactly this property

```
function Online-DFS-Agent(problem, s') returns an action
               s, a, the previous state and action, initially null
  persistent: result, a table mapping (s, a) to s', initially empty
               untried, a table mapping s to a list of untried actions
               unbacktracked, a table mapping s to a list of states never backtracked to
  if problem.IS-GOAL(s') then return stop
  if s' is a new state (not in untried) then untried[s'] \leftarrow problem.ACTIONS(s')
  if s is not null then
      result[s, a] \leftarrow s'
      add s to the front of unbacktracked[s']
  if untried[s'] is empty then
      if unbacktracked[s'] is empty then return stop
      else a \leftarrow an action b such that result[s', b] = POP(unbacktracked[s'])
  else a \leftarrow Pop(untried[s'])
  s \leftarrow s'
  return a
```

Figure 4.20 An online search agent that uses depth-first exploration. The agent can safely explore only in state spaces in which every action can be "undone" by some other action.