

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

A1

(43) International Publication Date:

PT, SE).

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

EP

(34) Countries for which the regional or international application was filed:

DE et al.

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

(81) Designated States: AU, CA, JP, US, European patent (AT, BE,

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		an.	The transfer of the same	MW	Malawi
AM	Armenia	GB	United Kingdom	MX	Mexico
ΑT	Austria	GE	Georgia		
ΑU	Australia	GN	Guinca	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IТ	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Кутgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
	and the state of t				•

BNSDOCID <WO 9708320A1 I >

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immnoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: V_K1 , V_K2 , V_K3 , V_K4 , V_K1 , V_K2 , V_K3 , V_K4 , V_K1

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine resides (Hochuli et al.; 1988), which are able to bind to metal ions.

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL $H3\kappa2$ single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

<u>Universal framework:</u>

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7 A/B: Sequences of the synthetic genes encoding the constant domains C_κ (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector pIG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from pIG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEl derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- **Fig. 14:** Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102. Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein softy fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-ß, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b: List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the β-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for V_K CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 V κ , 3 V λ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: $S_{65}T$ V_K1: $N_{34}A$,

Vκ3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_K , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH6-35-1	VH6-35-1
HuCAL-Vκ1	Vκ1-14,- 1 5	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vĸ2-6	Vκ2-6
HuCAL-Vκ3	Vκ3-1,-4	V⊼3-4
HuCAL-Vκ4	Vĸ4-1	V _K 4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-V).3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ. genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S₄₂G

Vκ3: E,D, I, V

Vκ4: Κ₂₄R

Vλ.3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vκ2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vκ2 consensus gene and the Cκ gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGS. The two oligonucleotides encoding this linker were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3k2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI) GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and trinucleotide mixtures encoding are phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 10⁷ and 3.4 x 10¹⁰ for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3k2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 µl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture.

In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a non-functional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100~\mu\text{g/ml}$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 10⁹ cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 μ I FITC-BSA (100 μ g/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of saFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at $OD_{600nm} = 0.4$ and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pI of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3 k2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to β-estradiol, testosterone, LeY, LT-β, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-β-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, β-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. i.g. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via AatII/XbaI), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via AatII/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the CoIE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-V κ 2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et *al.*, 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa 1\&V\kappa 3$, $V\kappa 2$ and $V\kappa 4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the β-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone $H3\kappa2$, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM clucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{600nm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α-FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

WO 97/08320

PCT/EP96/03647

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in 15

buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD $1.0 = 40~\mu g/ml$). 10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the

concentration determined by OD measurement, and the cassettes aliquoted (15

7.2 Library cloning:

pmole) for being stored at -80°C.

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. <u>136</u>, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology <u>6</u>, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology 6, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry <u>30</u>, 10832-10838 (1991).
- Pauk, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

-44-

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering <u>5</u>, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques <u>18</u>, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today <u>14</u>, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference ²	Family ³	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	. 1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk 1 - 4	9	1	L11
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk 1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1	1	L4; L18; Va*; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	O12a (V3b)
Vk1-19	6	1	O2; O12; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04, 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	2	O1; O11(1); DPK13
Vk2-3	6	2	O12(2); V3a
Vk2-4	2	2 -	L13
V k2-5	1	2	DPK14
Vk2-6	. 4	2	A3; A19; DPK15
Vk2-7	4	2.	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name'	Reference'	Family ³	Germline genes
Vk2-10	4	. 2	A7; DPK17
Vk2-11	. 4	2	A17; DPK18
Vk2-12	4 .	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	· · 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	1 .	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	. 1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	,
DPL12	1.	2	
DPL13	1	2	
DPL14	1	2	•
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3 .	
DPL18	1	7	4A; HUMIGLVA
DPL19	· 1	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1 .	9	
DPL24	1	unassigned	I VLAMBDA N.2
gVLX-4.4	6	10	

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1 .	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	· 2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3 .	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	[′] 3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64, YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	. :4	3	V3-33

Table 1C: (continued)

Used Name'	Reference ²	Family	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4 .	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	Н8 .
VH4-11-11	20	· 4	H9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11- 1 6	10	4 .	71-4; V4-59.
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

51

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH4-21-4	.19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	H11
VH4-31 - 8	23	4	4.31
VH4-31-9	2 3	4 '	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	2 3	. 4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	. 5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	- 5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
III-3R	108	1	0.8	1	1,1%	70
No.86	109	1 .	08	3	3,2%	80
AU	108	1 .	80	6	6,3%	103
ROY	108	1	80	6	6,3%	43
IC4	108	1	08	6	6.3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1.	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	80	12	12,6%	48
HIV-b13	106	1	80	9 -	9,7%	8
MAL-NaCl	108	1	80	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CR0	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	. 0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0.0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB .	108	1	02	7	7,40/0	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	1	. 02	9	9,5%	73

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline 6	Reference ⁷
TR1.32	103	1 .	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0,0%	9.
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	. 7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
1-2a	108	1	L8	8	8,4%	70
RF-KL1	97	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	9 5	1 .	A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8.
TNF-E1	105	1	L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108	1	L8	3	3,2%	72
KUE	108	1	L12(2)	11	11,6%	32
LUNm01	108	1	L12(2)	10	10,5%	6
HIV-b1	106	1	A20	4	4,3%	8
HIV-s4	103	1 .	02	2	2,2%	8

Table 2A: (continued)

Name ¹	aa²	Computed family ³ .	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	122
CLL PATIENT 1	88	. 1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CĽL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0.0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1	L12(2)	20	21,1%	6 8
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0,0%	66
GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0.0%	66
PIE	109	3	A27	0	0,0%	91
HAH 14.1	109	3	A27	1 .	1,0%	51
HAH 14.2	109	3	A27	1	1,0%	51

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1.0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	1	1,0%	. 66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2.1%	15
ESC	109	3	A27	2	2.1%	98
HEW.	110	3	A27	2 .	2,1%	9 8
YES8c	109	3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3 .	A27	0	0,0%	94
NG9	96	3	A27	4	4.2%	11
NEU	109	3	A27	4.	4,2%	6 6
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
HAH	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	3	A27	6	6,3%	87
JH'	107	- 3	A27	6	6,3%	38
EV1-15	109	3	A27	6	6,3%	83
SCA .	108	3	A27 .	6	6,3%	65
			56			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL,	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9.	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	. 8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	. 1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109	3	·A27	13	13,5%	. 6
IARC/BL41	108	3	A27	. 13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

5,7

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	9 9
LS2S3-12	107	. 3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	. 8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	. 3	A27	13	14,3%	8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1.2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	. 3	L6	4	4.7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	. 87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	9 9	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27.	9	10,3%	78
CLL PATIENT 28	83.	3	L2/L16	4	4.8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3 .	۲6 ،	0 .	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6 .	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
·GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	. 0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

59

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	0	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A2 7	1	1,3%	54
M3.4N	91	3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A 27	9	11,4%	54
GA3.8	93	3 .	A2 7	4	5,1%	54
GA3.3	92	3	A27	8 .	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	. 12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	. 39
RZ	107	1	08	14	14,7%	50
ВІ	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	69
2 A 4	109	1	02	12	12,6%	23
KA	108	1	80	19	20,0%	107
MEV	109	1	02 .	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	1	08	21	24,1%	1
NI	112	1	. O8	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

PCT/EP96/03647

Table 2A: (continued)

Name¹ .	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CLL PATIENT 6	71	1	A20	0	0,0%	122
ВJ19	85	1	08	16	21,9%	1
GM 607	113	2	A 3	0	0,0%	58
R5A3K	114	2	A 3	1	1,0%	125
R1C8K	114	2	A 3	1	1,0%	125
VK2.R149	113	2	A3	2	2,0%	118
TR1.6	109	2	A 3	4	4,0%	92
TR1.37	104	. 2	A 3	5	5,0%	. 92
FS-1	113	2	A 3	6	6,0%	87
TR1.8	110	2	A 3	6	6,0%	92
NIM	113	2	A3	8	8,0%	28
Inc	112	2 .	A 3	11	11,0%	, 35
TEW	107	2	A 3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	7,1	2	A 3	4 .	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A 3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A3	20	20,0%	101
MAL-Urine	83	1 .	02	6	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	, A27	1	1,6%	52
HIV-b29	93	3	A27.	14	17,5%	8
1-185-37	110	3	A27	0	0,0%	119
1-187-29	110	3	A27	0	0,0%	119
Π117	110	3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	. 3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	- 3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	.3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	. 21	22,3%	8
			61			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HIV-LC3	107	3	· A27	. 21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A 27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27, 7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
TT125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	.02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPM16410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5.0%	45
FK-001	113	4	B3	0	0,0%	81
CD5+.28	101	4	B3 .	1	1,0%	27
LEN	114	4	В3	1	1.0%	104
UC	114	4	В3	1	1,0%	111
CD5+.5	101	4	В3	1	1,0%	27

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2,0%	27
CD5+.23	101	4	B3	2	2.0%	27
CD5+.7	101	4	B3 -	2	2,0%	27
VJI	113	4	B 3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	B 3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	B3	3	3,0%	. 70
PB17IV	114	4	В3 -	4	4,0%	74
CD5+.27	101	4	B 3	4	4,0%	27
CD5+.9	101	.4	B 3	4	4,0%	27
CD528	101	4	B3	5	5,0%	27
CD526	101	4	B 3	6	5,9%	27
CD5+.24	101	. 4	B 3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	B 3	10	9,9%	. 27
MD4.1	92	4	В3	0	0,0%	54
MD4.4	92	4	B 3	0	0,0%	54
MD4.5	92	4	B 3	0	0,0%	54
MD4.6	92	4	B 3	0	0,0%	54
MD4.7	92	4	В3	0	0,0%	54
MD4.2	92	4	В3	i	1,3%	54
MD4.3	92	4	B 3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2.4%	122

Table 2B: rearranged human lambda sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	. 7	7%	36
mAb67	89	1	DPL3	0	0%	. 29
HiH2	110	1	DPL3	12	11%	3
NIG-77	112	1	DPL2	9	9%	72
OKA	112	j	DPL2	7 .	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	5 5
4G12	111	1	DPL5	1	1%	`35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	. 79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	O%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	- 50
H210	111	2	DPL10	4	4%	45
NOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	- 2	DPL11	. 8	80/0	84
FOG1-A3	. 111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11	7	7%	28
		٠.	•			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HMST-1	110	2 ·	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	. 34
11-50	110	2	DPL11	7	7%	82
HBp2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2 ·	DPL12	1	1%	7
BSA3	109	-3	DPL16	0	O %	49
THY-29	110	3	DPL16	0	0%	27
PR-TS2	108	3	DPL16	0	O%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	3	DPL16	6	6 %	49
6H-3C4	108	3	DPL16	7	7 %	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c .	. 111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	5.3
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
во	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	. 1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	DPL8	. 17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	108	3	·DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE .	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	43
SH0	108	3	DPL23	19	18%	19
HAN	108	3	DPL23	20	19%	: 19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
COT	106	3	DPL23	13	12%	19
Pag-1	111	3	Humlv318	, 5	5%	31
	•		62			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
DIS	107	3	Humiv318	2	2%	19
WIT	108	3	Humlv318	7	. 7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humiv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	- 11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	. 26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0.0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	-118	1.	VH1-13-6	4	4,1%	42
qF1	98	1	VH1-13-12	10	10,2%	7 5
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1.0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	5 5
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	7 7
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	9 8
LS2S3-10	125	1	VH1-12-7	5	5,1%	9 8
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	. 1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6.1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	. 1	VH1-12-7	7	7,1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0,0%	105
NEI	127	1	VH1-12-1	0	0,0%	55
AND	127	1	VH1-12-1	0	0,0%	. 55
L7	127	1	VH1-12-1	0	0,0%	54
L22	124	1	VH1-12-1	. 0	0.0%	54
L24	127	1.	VH1-12-1	0	0.0%	54

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	- 54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0.0%	54
L41	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1.0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	1	1,0%	54
TNF-E7	116	1	VH1-12-1	2	2,0%	42
mAb111	122	1	VH1-12-1	. 7	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7.1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5.1%	52
EV1-15	127	. 1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU ·	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1 .	VH1-12-1	0	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0	0,0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	1	1.0%	30
ALL56-1	85	. 1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

ZC

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
ALL56 15-4	85	1	. VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	30
Au92.1	. 98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	. 1	VH1-13-15	3	3,1%	26
SP2	119	1	VH1-13-6	15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20.4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	. 0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0.0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH]-13-15	3	3,1%	46
PHOX15	124	1	VH1-12-7	20	20,4%	73
			≯ 1			

Table 2C: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9.0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
ΟU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2.0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	2 2	22,0%	131
MTFC8	125	3	VH3-14-4	23	23.0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	114	3	VH3-14-4	5	5 ,0 %	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	9	9,0%	85
N51P8	126	3	VH3-14-1	9	9.0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	. 14	14.0%	2
38P1 .	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM 1 - 1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0,0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100	3	VH3-13-26	5	5.1%	96
OST577	122	3	VH3-13-13	6	6.1%	5

, --

Table 2C:

(continued)

Name¹ .	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
во	113	3	VH3-13-19	15	15,3%	10
TT125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	8 5
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-						
9	118	3	VH3-13-13	16	16,3%	41
В1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	7 7
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14.3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0 -	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16 .	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	. 3	VH3-13-13	0	0,0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0.0%	46
822	94	3	VH3-13-13	0	0,0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20,4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2.0%	46
L2E8	9 9	3	VH3-13-19	0	0,00/0	46
L2D10	101	3	VH3-13-10	1 .	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name ¹	a a²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
L3A10	100	3	VH3-13-24	0	0,0%	.46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0,0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	8 8
s6H9	101	3	VH3-13-25	0	0,0%	46
8	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	3	VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A 7 7	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0.0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	-111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2.0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3,1%	57

74

Table 2C: (continued)

Name'	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5.1%	100
N87	126	3	VH3-13-10	4	4,1%	77
ED8.4	99	3 -	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8.2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9.2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0,0%	104
AL3.5	90	3	VH3-13-10	. 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	. 117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0.0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3 .	VH3-13-12	2	2,0%	51
mAb56	₄ 128	3	VH3-13-12	2	2.0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	. 3	VH3-13-12	2	2.0%	51
mAb107	128	3	VH3-13-12	2	2,0%	51
E55 3.14	110	3	VH3-13-19	0 -	0,0%	26

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	· 117	3	VH3-13-24	. 6	6,1%	72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7 .	7,1%	42
0-81	115	3	VH3-13-19	11	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4,1%	129
4B4	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0,0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0,0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	.3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5 .	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3	· VH3-1X-6	11	11,0%	1
56P1	119	3	VH3-13-7	0	0.0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0.0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	1	1,0%	26
3.B6	114	3	. VH3-13-13	1	1,0%	108
E54 3.6	110	3	VH3-13-13	· 1	1,0%	26
FL2-2	114	3	VH3-13-13	1	1,0%	80

Table 2C: (continued)

Name ¹	aa²	Computed	Germline	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
		family ³	gene⁴ 	J	<i>J</i>	
RF-SJ3	112	3.	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	. 73
HMST-1	119	3	VH3-13-7	3	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4.1%	82
E55 3.12	109	3	VH3-13-15	0	0.0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	. 116	3	VH3-13-7	8	8.2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	· 12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110		VH3-13-19	10	10,2%	126
К6Н6	119		VH3-1X-6	18	18,0%	60
K4B8	119		VH3-1X-6	18	18,0%	60
K5B8	119		VH3-1X-6	18	18,0%	60

アア

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	. 119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3 ^	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43 —
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0.0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	.124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4 .	VH4-11-2	. 6	6,2%	84
HIG1	126	4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI ·	78	4	VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8.	8.1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	. 5
WAH	129	4	VH4-31-13	19	19,2%	93
268-D	122	4	VH4-11-8	22	22,7%	6
58P2	118	4	VH4-11-8	0	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2,1%	108
mF7	111	4	VH4-31-13	3	3,0%	75
					•	_

Z8

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	. 4	VH4-11-16	5	5,2%	50
В3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	7 7
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	· 4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	. 4	VH4-31-13	0	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
wag .	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0.0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0.0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0	0,0%	17

そら

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
CD+1	98	5	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0.0%	17
CD+4	98	5	VH5-12-1	. 0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	-17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	. 17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	9 8	5	VH5-12-1	0	0,0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	2	2,0%	17
CD-2	98	5	VH5-12-1	2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	3	3,1%	17
PBL13	98	5	VH5-12-1	3	3,1%	17
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3.1%	17
PBL5	94	5	VH5-12-1	0	0,0%	1 7
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	4	4,1%	17
VERG2	98	5	VH5-12-1	5	5,1%	17

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLL6	- 98	5	VH5-12-1	. 6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOW'	120	5	VH5-12-4	0	0,0%	9 ⁻ 7
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	. 0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
TuO .	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	· 123	5	VH5-12-1.	3	3,1%	121
P3-69	. 127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4.1%	121

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline⁵	% diff. to germline ⁶	Reference
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 .	VH6-35-1	0	0,0%	6 8
L16	120	6	VH6-35-1	0	0,0%	6 9
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	6 9
F19ML1	· 107	6	VH6-35-1	0	0.0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	. 0	0,0%	122
VH6.N11	123	6 .	VH6-35-1	0	0,0%	122
VH6.N12	. 123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	. 0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0.0%	122
VH6.N7	126	. 6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123	F	VH6-35-1	0	0,0%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	. 6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26 .
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	6 8
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5.0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6.	VH6-35-1	5	5, 0 %	122
VH6.A9	125	6 .	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2.0%	. 123
VH6.A10	. 126	6	VH6-35-1	12	11,9%	122

8_3

Table 2C: (continued)

Name ¹	aa².	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	_ 8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9 %	123
JU17 ·	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family .	Name	Rearranged ²	Sum
1	Vkl-l	28	-
1	Vk1-2	0	•
l	Vk1-3	1	·
1	Vk1-4	0	
1	Vk1-5	7	
1	Vk 1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
1	Vk1-9	9	
1	Vk1-10	0	•
1	Vk1-11^	1	
1	Vk1-12	7	
1	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	
1	Vk1-17	16	
. 1	Vk1-18	I	
1	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	i	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-1	0	
2	Vk2-2	1	•
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	-16	
2	Vk2-7	0	
2	Vk2-8	0	
2 -	Vk2-9	1	
2	Vk2-10	0 -	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-I	1	

WO 97/08320

Table 3A:

(continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	•
. 3	Vk3-6	0	
3	Vk3-7	1	•
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	1	I entry
6	Vk6-1	0	
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

\$ 0.5

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	·
1	DPL2	14	
1 .	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
. 8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
.1	VH1-12-9	2	•
1	VH1-12-3	. 0	
1	VH1-12-4	0	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1	VH1-13-2	1	
1	VH1-13-3	0	
1	VH113-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
- 1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
.1	VH1-13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	
2	VH2-31-2	1.	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2 .	
2	VH2-31-6	0	
2	VH2-31-7	0	

Table 3C: (continued)

2	Family ¹	Name	Rearranged ²	Sum
2	2	VH2-31-14	1	
2 VH2-31-10 0 2 VH2-31-11 1 2 VH2-31-12 0 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-10 46 3 VH3-13-10 10 46 3 VH3-13-10 11 11 11 11 11 11 11 11 11 11 11 11 1	2	VH2-31-8	0	
2 VH2-31-11 1 2 VH2-31-12 0 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-1 9 3 VH3-13-1 0 0 3 VH3-13-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	VH2-31-9	0	•
2 VH2-31-12 0 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-1 0 46 3 VH3-13-1 10 3 VH3-13-2 1 1	2	VH2-31-10	0	
2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	2	VH2-31-11	1	
3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	2	VH2-31-12	0	
3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	2	VH2-31-13	1	7 entries
3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	3	VH3-11-1	0	
3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	3	VH3-11-2	0 .	
3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-3	5	
3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-4	0	
3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-5	1	
3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-12 11 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-6	1	
3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-7	0.	
3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-11-8	5	
3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-13-1	9	
3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-2	3	
3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-3	0	
3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-4	0	
3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-5	0	
3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-6	0	
3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-16 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-7	32	
3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-8	4	
3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-9	0	
3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-10	46	
3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-11	0	•
3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	. 3	VH3-13-12	11	•
3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-13	17	
3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-14	8	
3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-15	4 .	
3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-16	3	
3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-17	2	
3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-18	1	
3 VH3-13-21 1	3	VH3-13-19	13 .	
	. 3	VH3-13-20	. 1	
3 VH3-13-22 0	3 .	VH3-13-21	1	
	3	VH3-13 -2 2	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
. 3	VH3-13-25	1	
3	VH3-13-26	6	•
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	•
3	VH3-14-3	0	
3	VH3-1X-1	0	
3	VH3-1X-2	0	
3	VH3-1X-3	6	
3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	. 0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	•
4	VH4-11-5	. 0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11 - 9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	0 .	
4	VH4-11 -1 5	0	
4	VH4-11-16	1.	
4	VH4-21-1	0	
4	VH4-21-2	0	,
4	VH4-21-3	1	
4	VH4-21-4	1 .	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3.	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

 \mathcal{S}^{I} SUBSTITUTE SHEET (RULE 26)

WO 97/08320 Table 4A: Analysis of V kappa subgroup 1

PCT/EP96/03647

												Fran	newo	rk l		
amino acid'	_	2	က	4	2	9	7	&	6	10	Ξ	12	13	14	15	16
А		1							1		:	<u>:</u>	102		1	
В			1			1			: : : :	<u>.</u>	· • • •		<u>.</u>			
С						<u> </u>						: : : : :		1		
D	64									:	· · · · ·	; ; ; ; ; ;	<u>.</u>			
E	8		14					.				· · · · · · · · · · · · · · · · · · ·	<u> </u>		1	
F									1	6				1		
G													: : : : : :			105
Н																
		6 5													4	
К			1					•••••								••••
L	ļ	6		21			••••		•		96	•	1			••••••
M	1			6 6												••••
N								·····								
P			•••••					103		1		2			1	
Q			62			8 8					1					
R												•				
S							89		102	80		103		103		
Т		1			88					18						•
. V		1	9								8		2		9 8	
. W														<u></u>		
X	1															
Y																
-																
unknown (?)	ļ															
not sequenced	31	31	18	18	17	16	16	2	1							
		:		:		:			:		·····	:	•	105	····÷	
oomcaa ³	64	65	62	66	88	88	89	103	102	80	96	103	102	103	98	105
- mcaa⁴	D	1	Q	М	T	Ω	S	Р	S	S	L	S	Α	S	V	G
rel. oomcaas	96%	88%	71%	76%	100%	966	100%	100%	%86	26%	91%	98%	97%	98%	93%	100%
pos occupied ⁶	4	5	5	2	1	2	1	1	3	4	3	2	3	:	5	1

 \mathfrak{Z}^2 SUBSTITUTE SHEET (RULE 26)

amino acid'	17	18	19	. 20	21	22	23	24	25	.92	27	∀	8	ں ·	٥
Α			1	1		1			103						
В											1				
С							105								
D	101														
Е	2							1	1		2				
F					2										
G										1					
Н											1				
1			6	4	101	1									
K								2			1				
L								1							
М															
N										1					
P															
O .								20			100				
R		94			,			81							·····
S		5		1						102					
Т		6		9 9		103			1	1					····
. V			98		2										
W															
X	1														
Y	1														
_												105	105	105	105
unknown (?)		,										,		······	······································
not sequenced															
sum of seq ²	105	105	105	105	105	105	105	:	:		:	:		:	
oomcaa,	101	94	98	99	101	103	105	81	103	102	100	105	105	105	105
mcaa*	D	R	V	T.	1	Т	С	R	Α	S	Q	-	-	-	-
rel. oomcaas	%96	90%	93%	94%	%96	%86	100%	77%	986%	97%	95%	100%	100%	100%	100%
pos occupied ⁶		· · · · · · · · · · · · · · · · · · ·		4	: · · · · · · · · · · · · · · · · · · ·		-	5	3	4	5	1	1	1	1

PCT/EP96/03647

Table 4A: Analysis of V kappa subgroup 1

. 4A. Anarysis or	CDRI	•		·											
amino acid'	ш	L.	28	.62	30	31	32	33	34	35	36	37	38	33	40
. А					1	1		1	42						
В												1	1		
C							1								
D			25		1	5	7					1			
E							1					2			
F				1	1		7				6			·	
G			25		7	3			4						
Н					1	2	2		1			2			
1				98	1	4			1						
Κ						7								95	
L					2	1		101							
М										-					
N			6		16	42			50						
Р															102
Q												98	103	2	
R					16	3	2							3	1
S			41	2	57	32	3	1	1						1
. Т			7			4			4					1	
V			1	4	1			1	••••					•••••	
W					•••••		21	••••	•••••	104					
X					••••				1						
Y					1		60				98				
-	105	105													
unknown (?)) - , - · · · · · · · · · · · · · · · · ·				,						3	
not sequenced						1	1	1	1	1	1	1	1	1	1
sum of seq ²	105	105	105	105	105	104	104	104	104	104	104	104	104	104	104
oomcaa³	105	105	41	98	57	42	60	101	50	104	98	98	1 03	95	102
mcaa¹	-	-	Ş	ı	S	N	Υ	L	N	W	Υ	Ω	Q	K	Р
rel. oomcaas	100%	100%	39%	93%	54%	40%	58%	9266	48%	100%	94%	94%	999%	910%	980%
pos occupied ⁶	1	1	6	4	12	11	9	4	8	1	2	5	2	4	

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

_	Fram	ewor	k II									C	DR II		
amino acid¹	41	42	43	44	45	46	47	48	49	20	51	52	53	54	52
Α			94							50	95				
В															••••••
C															
D										21	1	1	1		
E	1	3			1	1				1		1			33
F						1			3			1			
G	100		1							9	2				
Н									2						1
١		1				1		100					1		
К		95			86					16			2		
L		1				89	103							101	
М								2							
N					10					2		1	25		
Р				104						1					
Q		1			1										6
R					3	3		·					1		
S					1				5	1	1	99	41	2	
Ţ		3			1					1	4	1	31		
V			9			9					1		1		
W															
Χ					1								1		
· Y									92	1					
_															
unknown (?)	3					ļ									
not sequenced							:								_
sum of seq ²	104	104	104	104	104	:		:	102	:		•	:	•	:
oomcaa³	100	95	94	104	86	89	103	100				·····	· · · · · · · · · · · · · · · · · · ·	101	
mcaa*	G	K	Α	Р	K	L	L	1	Υ	Α	Α	S	S	L	C
rel. oomcaas	%96	91%	%06	100%	83%	%98	100%	0/086	%06	490%	910%	95%	39%	97%	,
pos occupied ⁶		2 6		1	8	€	1	2	2 4	10	6	6	9	3	

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

-		-													
amino acid'	26	57	58	59	09	61	62	63	64	65	99	29	89	69	70
А	3										2	1	1	1	
В				1											
. C.															
D	1														67
E													1		30
F			1				103					3			
G	2	105							105	4	101		102		
Н															3
	3		4				1	3							
K	1					1									1
L								1							
М														1	
N	6														
Р	1			101	2										
Q										1					
R	1					103		1		1	1			2	
S	68			2	103			98		96		100			
T	19			1		1		2		3				101	
V		·····	99				1								1
W					•••••										
X			1								1		1		2
Y												1			1
-	-				••••			••••							
unknown (?)						•••••									
not sequenced															
sum of seq ²		:		•••••	••••••	•••••					•••••	105			
oomcaa,		105			103	••••			105	•••••	••••••	100		•••••	67
mcaa'	S	G	V	Р	S	R	F	S	G	S	G	S	G	T	D
rel. oomcaas	65%	100%	94%	96%	%86	98%	9/086	93%	100%	910/0	%96	95%	97%	%96	64%
pos occupied ⁶	10	1	4	4	:	:	•	•	•		:	4	:		7

PCT/EP96/03647

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•	Fr	amev	ork II												
amino acid'	7.1	72	73	74	75	92	77	78	62	. 08	81	82	83	84	82
Α		3	•			1				2				101	1.
В					1				3		2				
. C															
D						1					16	101			
E											83				·····
F	102	1	21										73		·····
G							4				1			2	
Н															
					9 9	. 5							17		•••••
K															
L			81					103	1				1		
М															
N						7	4								
Р										97					
Q									97						
R	Į					2	1		2						
<u>.</u> S		2		1		86	94			4			1		
T	<u> </u>	98		102		2	1								9
V	1		2		4			1					11		
W															····
X	Į			1							1	2			
Y	1														
_															
unknown (?)	Į.						,								
not sequenced	1	1	1	1	1	1	1	1	2	2	2	2	2	2	
sum of seq ²	104	104	104	104	104	104	104	104	103	103	103	103	103	103	10
oomcaa³	102	98	81	102	99	86	94	103	97	97	83	101	73	101	9
mcaa*	F	T	L	Τ	1	S	S	L	Ω	Р	E	D	F	Α	T
rel. oomcaa'.	%86	94%	78%	%86	95%	83%	0,006	, %66	94%	94%	81%	0/086	71%	98%	ò
pos occupied				· · · · · · · · · · · · · · · · · · ·		:	:	:	1	:					

Table 4A: Analysis of V kappa subgroup 1

										CDR	111					
amino acid'	98	87	88	68	06	91	92	93	94	95	⋖	8	ပ	Q	ш	ш
А					1	7	1		5	1						
В				2	3											
С			102				:	:		**************************************		<u> </u>				
D							23	5	1	••••••••••••••••••••••••••••••••••••••		-				
Ε							1	1		1	1	<u> </u>	<u> </u>			
F		7				3		·	13			<u> </u>				
G					· · · · · · · · · · · · · · · · · · ·	1		1		:		1				
Н		1		4	6	7	3	1			<u></u>		<u> </u>			
1							4	1	2	1	······································		•••••			
K	1				7		1									
L				7		6	2		18	2						
М																
N						6	31	19	1							
Р		· ·							1	82	6		<u></u>	<u></u>		
Q				90	86	1	2									
R			,			1		. 2	2							
S	1					27	3	58	5	10			• • • • • • • • • • • • • • • • • • •			
Т						3	1	15	25							
V									5							
W						,			1							
X																
Y	101	93				42	32	1	23							
_								_		3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa,	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa•	Υ	Υ	С	Q	Q	Υ	Υ	S	Т	Р	-	-	-	-	-	-
rel. oomcaa ^s	989⁄0	91%	100%	87%	83%	40%	31%	56%	240/0	81%	95%	%66	100%	100%	100%	100 _%
pos occupied ⁶	:	3	1			:	12	••••••	•••••••	8	:	ټ :	1	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•							Fra	mev	ork	IV					
amino acid'	96	97	98	66	100	101	102	103	104	105	106	⋖	107	108	sum
А	1														627
В					1					1					19
С															209
D	1									15		<u> </u>			459
E					2					65					258 -
F	6		86								2	-			451
G				87	29	87								2	894
Н	2	1				•									40
1	5								1		72				606
К	1	1						77					79		480
L	18	1	1						22	4	2				793
M		1									5				77
N	1				<u></u>						1		2		232
Р	6				7								•••••	1	620
Q	1				48					1			•••••		865
R	6				ļ			6					2	70	413
S	2	2			<u> </u>	<u> </u>				•••••					1636
T	2	82		<u></u>	<u></u>	<u></u>	87	: :					2		1021
V	2	ļ				-		1	63		3				440
<u> </u>	15		<u> </u>		<u></u>	<u> </u>							••••	<u> </u>	141
X	ļ			<u></u>	<u>.</u>	ļ	<u></u>								14
Y	16		<u> </u>		<u>!</u>	<u> </u>									564
-	4	1		<u> </u>	<u> </u>	<u>.</u>						85		1	1250
unknown (?)]														7
not sequenced	-					-	:	:	: -	: -	:	:	:	:	7
sum of seq ²	······	• • • • • • • • • • • • • • • • • • • •	•••••••		• ÷ •		:	:	· · · · · · · · · · · · · · · · · · ·	:	85	:		Ŧ · · · · · · · ·	`}
oomcaa³					•	•	:	;	:	:	72	:		1	
mcaa*	L	• • • • • • • • • • • • • • • • • • • •	F	· -	·÷	- 	÷	·÷·····	•		l	-	-	R	
rel. oomcaas	20%	920/0	%66	100%	55%	100%	100%	89%	73%	76%	85%	100%	93%	95%	•
pos occupied	17	7	2) !	5 1	1	2	3	5	6	1		4	ij

 $\Im\Im$

Table 4B: Analysis of V kappa subgroup 2

					···						Fran	new	ork	1					•		
amino acid'	-	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	11	18	19	20	21
Α																			22		
В								•													
· C																					
D	14																				
E	3																15				
F									1	1											
G			,													22					
Н																					
I		8																			22
K										·											
L		3		1					17		18				6						
М				15																	
N																					
Р								18				18			15			22			
Q						18											7				
R .																					
5							18	,		17										22	
Т					17									21							
V		6	17	1									18								
W																					
X																					
Y																					
_																					
unknown (?)					1																
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1						
sum of seq ²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
oomcaa ³	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa*	D	١	٧	М	T	Q	S	Ρ	L	S.	L	Р	V	Τ	Р	G	Ε	Р	Α	S	1
rel. oomcaa'	82%	47%	100%	9/088	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	0/89	100%	100%	100%	100%
pos occupied	: :	:																•••••	1	1	1

PCT/EP96/03647

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

											CDR	1									
amino acid'	22	23	24	25	56	27	⋖	ω	ں		ш	u.	28	29	30	31	32	33	34	35	20
А																					
В	.		<u></u>					,													
С	ļ	22																			
D		<u>.</u>								1			9		1	1			11		
E																					
F															2						•
G											1			22							•
Н							•••••			16						• • • • • • • • • • • • • • • • • • • •	1		1		••••
l					•																
K			1													1					•
L					•••••	1		22	13					•				22			
M									1										••••		••••
N							•						10		7	12			9		• • • •
Р					•••••	••••															•••
Q	1				•	21															
R			21		•						2				•••••				•••••		
S	21			22	22		22				19		1			*********			••••		·
Ţ										••••						8	•••••				••••
V									8												
W					••••••					1										22	
Χ		•			•••••	•••••							1		1				1		
Υ			,							4			1	••••	11	••••••	21				1
											-	22									
unknown (?)																•••••	••••••				•••
ot sequenced			,												•	••••••			•••••		••
sum of seq ²	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	2
oomcaa¹	:		:	22					:						•	*********					• • • •
mcaa'	: "			S																	• • • • •
rel. oomcaaʻ													••••••					••••••••••••••••••••••••••••••••••••••			
ici. Oomeaa	95%	100	950	100%	100	950	100	100	590	730	%98	100	450	100	20%	55%	95%	100%	20%	100%	
pos occupied ^a	2	1	2	1	1	2	1	1	3	4	3	1	5	1	5	4	2	1	4	1	

Table 4B: Analysis of V kappa subgroup 2

ic 40. Miaiyaia oi					ran		ork	11			-				-	(DR	11			
amino acid'	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57
А																			14		
В																					
· C																					
D																		<u></u>	7		
E									1												
F																					
G					22										12				1		22
Н																					
l										1		22									
К			15											5							
L	16									14	21			14	1						
M							,														
N																	18				
Р				22				21													
Q	6	22				22			12					1							
R			7						8	7				1				22			
S							21								2	22	2			22	
Т																	1				
V											1				6						
W											•										
X																					
Y													21				1				
-											••••										
unknown (?)					•••••																
not sequenced									1					1							·
3												22							••••••••	·····	
:												22	21	14	12	22	18	22	14	22	22
mcaa'	L												• • • • • • • • • • • • • • • • • • • •	L	•••••	• • • • • • • • • • • • • • • • • • • •		R			•
rel. oomcaa'	73%	100%	68%	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	9/0/9	57%	100%	82%	100%	64%	100%	100%
pos occupied ^a	2	. 1	:			: :			: :												• • • • • • • • • • • • • • • • • • • •

102

Table 4B: Analysis of V kappa subgroup 2

														Fra	mev	worl	(III				
amino acid'	28	59	09	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75	.9/	11	78
Α																					
В										,											
С																					
D			22				1				. 1		22								.
E																					
F					21									22							
G							21		22	:	21										
Н																					
1																	1	21			.
К																	19				
L																21	1				
М																					
N																					
Р		22	١																		
Q			·																		
R				20				1												20	
S				1		22		21		22									20	1	·•••
T				1								22			21				1		
V	22				1																2
W																					
Χ																					
Υ								, -													:
-																					
unknown (?)								,							1			.,.,			
not sequenced																1	1	1	1	1	
sum of seq ²	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	2
oomcaa,	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	2
mcaa'	V	Р	D	R	F	S	G	S	G	S	G	Ţ	D	F	Ţ	L	Κ	1	S	R	
rel. oomcaa ⁵	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	1000%
pos occupied ^a	1	:	:					:		:								1	:		

Table 4B: Analysis of V kappa subgroup 2

																	(DR	Ш		
amino acid'	79	08	81	85	83	84	85	98	87	88	83	90	91	92	93	94	95	A	8	ပ	0
Α		20											14			1					
В							,					1			1						
· C										21											
D			1	21									<u> </u>								
E	19		20																		
F	<u> </u>																				
G	1	<u> </u>				21	,						6			1		2			
Н	ļ		<u></u>										1		7	,					
ı							1									1					
Κ																					
L							1							12			2				
М											21										
N		<u> </u>																			
Р		1														2	16	1			
Q	1								·			20			13						
R														1							
S																3	2				
T -														8		7					
V					21		19														
W																6					
X																					
Y								21	21												
_																		14	17	17	17
unknown (?)																					
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
sum of seq ²	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa3	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa*	Ε	Α	Ε	D	V	G	٧	Υ	Υ	С	М	Q	Α	L	Q	Τ	Р	-	-	-	_
rel. oomcaa'	900%	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	67%	57%	62%	33%	%08	82%	100%	100%	100%
pos occupied ⁶	3	2						:						:	3		:		1	1	1

104

PCT/EP96/03647

Table 4B: Analysis of V kappa subgroup 2

Alialysis of V Kap									Fra	mev	vork	(IV					
amino acid'	ш	ட	96	97	86	66	100	101	102	103	104	105	106	A	107	108	sum
А									·			-					71
В		·										1					3
C																	43
D																	112
E												13					71
F			1		17												72
G						17	2	16				1					233
Н																	26
l			3										14				94
K										12					13		66
L			2								11						219
М																	37
N																	56
Р			1														159
Ω ,			. 1				14										159
R										4						12	126
S																	325
Т				17					16								140
V											5						146
W			2														31
X																	3
Y			7														123
_	17	17												13			134
unknown (?)																	2
not sequenced	5	5	5	5	5	- 5	6	6	6	6	6	7	8	9	9	10	211
sum of seq ²	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa,	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa'	-	-	Υ	T	F		Q	G	Ţ	K	L	Ε	1	-	Κ	R	
rel. oomcaaʻ	100%	100%	41%	100%	100%	100%	88%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ^a	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	

105

Table 4C: Analysis of V kappa subgroup 3

						-					Fra	mew	ork l			
amino acid'		7	က	4	2	9	7	œ	6	10	=	12	13	14	15	16
А		5					2		27						1	
В	1	<u>:</u>														
. C												2				
D	2								14							
E	7 6		27	<u> </u>	<u></u>											
F.		1		<u> </u>	<u> </u>	<u> </u>	<u></u>							1	<u>.</u>	
G	1			<u></u>				<u>.</u>	82	<u> </u>	<u>.</u>				1	152
Н					<u></u>	<u>:</u>	<u></u>	<u>.</u>		1	<u></u>			<u></u>		
1		75			<u> </u>	<u> </u>	<u></u>	<u></u>	<u>.</u>		<u> </u>	<u> </u>			<u>.</u>	
K	3	•			<u>.</u>	<u>.</u>	<u>.</u>		<u></u>	<u>.</u>	<u></u>	<u>.</u>	<u> </u>			
L		4	1	104			1				150		129		1	
М	5			13		<u> </u>	<u>.</u>		<u> </u>	<u>.</u>	<u>.</u>					
N						<u></u>								5		
Р		•						124							147	
Q						123						ì				
R					1											
S							119		3	1		150	1	141		
T		2			117					147				5	1	
V		1	89	1			1				1		22		1	
W																
X .																
Y																
-																
unknown (?)					••••••							•••••				
not sequenced										_						
sum of seq ²	88	:	:	;		:	: :		126		:		• • • • • • • • • • • • • • • • • • • •			
oomcaa,	76	75							82	147	150	150	129	141	147	152
mcaa'	E	1	V	L	T	Q	S	Р	G	Ţ	L	S	L	S	Р	G
rel. oomcaa ^s	96%	85%	26%	98%	%66	100%	97%	100%	65%	99%	99%	%66	85%	93%	97%	100%
pos occupied"	6	6	3	3	2	1	4	1	4	3	2	2	3	4	6	1

108

Table 4C: Analysis of V kappa subgroup 3

				•					······							CDI
amino acid'			19	50	21	22	23	24	25	26	27	A	<u>&</u>	ပ		ىنا
Α			178	2					166	1					· · · · · · · · · · · · · · · · · · ·	
В																
С				-			181	· ·		1						
D	6															
E	146	1									1					
F		,			7	1										
G	1	1							-1	1		1				
Н											17				-	
		1		5	2											
K		1						5								
L					173						1	1				
M																
N												9				
Р.			,													
Q											159					··
R		175						176		1	1	10				
5						180			7	175		87				
T		1		174					7	2		1				·····
V		1	4	1					1			1				·
W								1								
Χ																·····
Y						1					1					
	.											72	182	182	182	18
unknown (?)											.1					
not sequenced	L															
sum of seq ⁷	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	18
oomcaa¹ .	146	175	178	174	·····	180	181	176	166	175	159	87	182	182	182	18
mcaa*	Ε	R	Α	T	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaas	95%	. %26	98%	96%	95%	%66	100%	97%	910%	97%	9%88	48%	100%	100%	100%	0
pos occupied ⁶	:	7			:	:	:	:	5	:			1	-	1	

1°7

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

									<u> </u>					<u> </u>	Fran	nev
amino acid'	14.	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
A				1	1			181								
В																
. C																
D			1	1	2	1										
E						1							1			
F		1				7				1						
G			2	7	3	1		2						1	184	
Н			1			2				1		12	1	1		
		24	4	1	1		<u> </u>									
K				1	1								153			
L		8	1			1	176					3				
·M																
N			3	12	25	32										
Р					1		•							170		
Q					1	1			•		183	167	1			18
R			10	3	18	16		1			1		27	5		
S		72	86	151	118	4								5		
Ţ		1	1	3	8	1							1			
V		76	68		1		7					3		2		
W			5						185							
Χ																
Y				1	1	115				183	·					
-	182															
unknown (?)											1					
not sequenced					·											
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	184
oomcaa,	182	76	86	1 51	118	115	176	181	185	183	183	167	153	170	184	18
mcaa⁴ .	-	V	S	S	S	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	D
rel. oomcaa ^s	100%	42%	47%	83%	65%	63%	%96	0/86	100%	99%	99%	%06	83%	92%	%00 l	⁰ /08b
pos occupied ⁶	1	6		:	;	12		;							1	•••••

Table 4C: Analysis of V kappa subgroup 3

	rk II	_								(DR I	<u> </u>				
amino acid'	43	44	45	46	47	48	49	20	21	52	53	54	52	26	57	28
A	176				-			4	147				176	1		
В						•										
С									1							
D								43					2		4	
E																
F				1		1	4			·						
G								125					2	10	179	
Н							9		1							
1						178								1		16
K			1								7	1				•••••
L		1		179	174	1										
- M						3					1					
N			1					1			53			2		
Р	5	184								2			2	2		· • • • • • • • • • • • • • • • • • • •
Q							1									
R.			182					1			4	180				
S							3	6	4	179	74	1		5		
T	3								11	2	44			164		
V				3	9			3	19				3			1
W							1					1				
Χ																
Y							165								2	
-																
unknown (?)			1													
not sequenced																
sum of seq ²	184	185	185	183	183	183	183	183	.183	183	183	183	185	185	185	18
oomcaa³	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	16
mcaa*	Α	Р	R	L	L	١	Υ	G	Α	S	S	R	Α	T	G	١
rel. oomcaa'	%96	%66	98%	%86	95%	97%	%06	0%89	80%	98%	40%	98%	95%	89%	97%	č
pos occupied					1			:		:	:	:				:

Table 4C: Analysis of V kappa subgroup 3

													F	rame	work	111
amino acid'	59	09	61	62	.63	64	65	99	29	89	69	70	7.1	72	73	74
А		68						3		5	3	1		3		
В																
. C													Ī			
D		112				1						152			<u> </u>	
E	ļ							1		1		30			<u></u>	
F		<u></u>	<u>.</u>	183									183		2	
G			<u></u>	<u>.</u>	<u>.</u>	184	3	178		177			<u> </u>		<u> </u>	
Н		1	<u> </u>	<u></u>	<u>.</u>	<u></u>										
1		<u> </u>	<u> </u>	1	<u> </u>			<u>.</u>						1		3
K		<u> </u>	1	<u>.</u>	<u>.</u>		<u>.</u>			<u>.</u>						
L		ļ		1				: : :							182	
M		<u></u>		<u>.</u>	<u> </u>			1	<u>.</u>	: : : :						
N		1		<u> </u>	<u></u>									1		
P	177	<u></u>		<u></u>	<u></u>											
Q				<u> </u>	<u> </u>							1				
R			182		2		1				2					
5	7			<u></u>	180		179		185		3			7		2
T	1		2		3	•••••	2				177			172		179
V		3	••••					1		1						
W										1						
X																
Y			· · ·			_							1	u-		
- (2)																
unknown (?)								1								
not sequenced	-										-					
•	1		:		:		:		185		· · · · · · · · · · · · · · · · · · ·	· -	**********	•••••••		
:	:	:		:	:	:	:	:	185	:			:		182	179
mcaa'	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	L	T
rel. oomcaas	%96	61%	98%	%66	97%	99%	97%	%96	100%	%96	%96	83%	93%	93%	99%	97%
pos occupied ⁶	3	5	3	3	3	2	4		1.	:	4		2	5	2	

Table 4C: Analysis of V kappa subgroup 3-

4C.7 (11d1)313 01		, pu 30														
amino acid'	75	9/	77	78	79	08	8	82	83	84	85	98	87	88	68	06
А							3			174						
В					1											
. C									.2				1	182		
D			1				3	182								
E					149		175								٠	2
F		1							178		2	1	4			
G			3					1		2						
Н											1				1	7
1	178							1	1		9					
K							1									
L				178		1			1		7		1			1
·M										1	5			,		
N	1	5														
Р						149										
Q					34									1	181	155
R		1	111							3						1
S		169	65			34			1				2			
T		8	4							1						8
V	4			6					1	3	159					7
W																
Х																
Υ	1										1	183	176		1	2
-																
unknown (?)																•••••
not sequenced																
sum of seq ²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa ⁱ .	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa*	1	S	R	L	Ε	Р	Ε	D	F	Α	V	Υ	Υ	С	Q	Q
rel. oomcaas	97%	92%	%09	97%	81%	81%	%96	°,066	97%	95%	86%	99%	%96	%66	990%	85%
pos occupied		:			:	. 3		3	:	:	Ī				:	

Table 4C: Analysis of V kappa subgroup 3

4C. Allalysis U						DR I	11							1	<u> </u>	
amino acid'	91	92	93	94	95	∢	ω	ပ	۵	ш	. 11	96	97	86	99	100
А		1	8	3	3											1
В		<u> </u>														
· C	2			1			<u> </u>	<u>.</u>				. 2				
D		8	5		<u></u>		<u>.</u>	<u>.</u>	<u></u>	<u></u>	<u>.</u>		1			
Ε		2					<u>.</u>					1				
F	5		2				· · · ·		<u> </u>	<u> </u>	: : : : : :	7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1										2				
l			1			1				<u> </u>		4				
К			2			1						1				1
L		,		2	7	5						42				
М		1			1	2										
N		28	71									1				
Р				1	139	24						7	2			9
Q	1		1		3	1						3				114
R·	34	2	3		2	2						19			,	
S	2	33	58	102	15	2						1	8			
Т		2	13	1	1	2						1	154			
V					3	· 1						2				
W				69								24				
X																
Y	134	1	1								,	43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)																
not sequenced						14	14	14	14	14	14	14	. 17	16	16	16
sum of seq ²	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa³	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa*	Υ	G	Ň	S	Р	-	-	-	-	-	-	Υ	Ţ	F	G	Q
rel. oomcaa ^s	73%	57%	39%	56%	76%	75%	%66	100%	100%	100%	100%	25%	93%	99%	99%	%89
pos occupied ⁶	8	11	13	8	11	12			1	1	1	• • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·	

Table 4C: Analysis of V kappa subgroup 3

WO 97/08320

		F	rame	work	IV			-]
amino acid'	101	102	103	104	105	106	∢	107	108	sum
А										1345
В			,							2
С			-							375
D			Ī		23	<u></u>				564
E			3		141		<u></u>			759
F				<u> </u>		6				765
G	166					· · · · · · · · · · · · · · · · · · ·			1	1804
Н					1					64
1						143				803
K			152					157		489
L				54		1		: :	2	1596
M						3				36
N		1		·				3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		4	134	1326
S		2								2629
Т		162	1					1		1593
. v				111		11	·			646
W								••••		287
X			•							
Y			1			·				1014
_	1	1	1	1	1	1	166	1	1	2151
unknown (?)			•							4
not sequenced	16	16	15	16	16	16	17	17	45	337
sum of seq'	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
mcaa¹	G	T	Κ	V	Е	1	-	K	R	
rel. oomcaa'	%66	97%	, %06	0/099	84%	86%	100%	95%	92%	
pos occupied ^r	2	5	. 7		5 1 3	7	1	5		

Table 4D: Analysis of V kappa subgroup 4

											Frai	new	ork l					
amino acid'	-	2	c	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18
А												24					1	
В													·					
C										1						1		
D	25			·					26									
Е																	25	
F																		
G												1				24		-
Н							·											
1		26																
K						1												
L				1							26				26			
М				24														
N	1																	
Р	ļ							26				1						
Q			1			25												
R																		26
5							26			25				26		1		
Ţ					26													
. V			25	1								`	26					
W																		
Х								,										
Υ																		
-																		
unknown (?)																		
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq ²	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa,	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa'	D	1	V	М	Ţ	Q	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	L	Α	٧	S	· L	G	Ε	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	96%	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ^a	2	1	2	3	1	2	:				:	•••••••••••••••••••••••••••••••••••••••	1	1	1	•••••		1

Table 4D: Analysis of V kappa subgroup 4

														CDR	1			
amino acid'	19	20	21	22	23	24	25	56	27	<	· ຜ	U	٥	ш	ш.	28	29	3
Α	26						1				1							
В														, 				
C					33													
D											1		1			1		•••••
E							-											••••
F .																,		
G																		
Н																		
			26								1							
K						33										2		3
L							,				2	31						
M																		•••••
N				26												30	31	•••••
Р							1								1			
Q									32									
R									1								1	
S .							31	33		33				32	32		1	•••••
T		26				•								1				
V											28	2		·				••••
W					•													
Χ																		
Y											·		32				·	••••
-																		
unknown (?)																		••••
not sequenced	7	7	7	7									•	••••		•		••••
sum of seq?	26	. 26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa ³				26			• • • • • • • • • • • • • • • • • • • •								:	30		
mcaa'	Α		ı	N	С	K	S	S	Q	S		L	•••••••	S	S	Ν		
rel. oomcaa ^s	100%	100%	100%	100%.	100%	100%	94%		97%	100%	85%	94%	97%	37%		91%	94%	(
pos occupied ⁶	1	1	1	1	1	1	<u> </u>				:		:	:	:			

Table 4D: Analysis of V kappa subgroup 4

			<u>. </u>								Fran	new	ork I	<u> </u>				
amino acid'	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Α				32						2								
В		<u>.</u>																
. С		<u></u>									-							
D																		
E											1							
F																		
G											32							
Н						2												
l										,								3
K									33						32			
L			3 3													29	33	
M																		•
N	33																	
Р										31			31	33				
Q							32	33				32						
R							1					1			1			
S													2					
Т				1						,								
V																4		
W					33											•		
X									,									
Y		3 3				31												
-																		
unknown (?)																		••••
not sequenced																		•••••
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa ³	33	33	33	32	33	31	32	3 3	33	31	32	32	31	33	32	29	33	3
mcaa'	N	Υ	L	Α	W	Υ	Q	Q	Κ	Ρ	G	Q	Р	Р	К	L	L	
rei. oomcaa ⁵	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	9/088	100%	ò
pos occupied ⁶	1	1	1		1	:		1	1		······			•••••		······································	1	• • • • •

Table 4D: Analysis of V kappa subgroup 4

				(DR	11							<u> </u>					
amino acid'	49	20	51	52	53	54	55	26	22	28	29	09	61	62	63	64	65	99
Α			30													,		
В																	•	
C																		
D												33						
E							32											
F														33				
G									33						1	33		3
Н																		
l					1	,									٠			
κ																		
L																		
M													<u> </u>		<u> </u>		<u></u>	
N					2													
Р				1							33		1					
Q																		
R			<u> </u>			33					<u> </u>		32		<u></u>			
S			1	31	1			33							32		33	
T			2	1	29													
V							1			33			<u> </u>					
W		33																
X																		
Υ	.33																	
-																		
unknown (?)		,																
not sequenced						·												
sum of seq?	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa ³	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	3
mcaa*	Υ	W	Α	S	T	R	Ε	S	G	٧	Р	D	R	F	S	G	S	(
rel. oomcaa'	100%	100%	91%	94%	98%	100%	9/0/6	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	0
pr=pccupied ^a	1	1						1	1	1	1	1		• • • • • • • • • • • • • • • • • • • •		1	1	

Table 4D: Analysis of V kappa subgroup 4

					Fr	ame	worl	k III										
amino acid'	67	89	69	70	71	72	73	74	75	9/	77	7.8	79	80	81	82	83	84
А														33				32
В																		
С									<u> </u>					<u> </u>		<u> </u>		
D				32						······································		<u>†</u>		<u> </u>	!	33		
E															33	<u> </u>		
F.					32							·······				· ·		
G		33		1							<u> </u>					<u> </u>		1
Н					••••••••••••••••••••••••••••••••••••••		••••••		<u> </u>	 !				J	•••••	L		
l							• • • • • • • • • • • • • • • • • • • •		33		<u></u>	······						
K								<u> </u>							••••••			
L							33	······		•••••		32	•••••				•••••	••••
M							•••••					1	•••••					
N		Ī					******			2	1		•••••					
Р		<u>*</u>																
Q							•					•	32					•••••
R										•••••			1					•••••
S	3 3						••••••			30	32							
T			33			33	•••••	33		1								•••••
V					1	••••••											33	•••••
W																		
X	Ĭ				••••••		•••••	•••••										
Y																		•••••
-																		
unknown (?)						·····				•••••								······································
not sequenced								••••••										••••••
sum of seq²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa¹	:		33		- ;	:	:	:	:	:	:	32		33		33		
mcaa*	S		Т	D	F	T	L	T	1	S	S	L	Q	••••••••	E	D	у У	<u></u> .
rel. oomcaa ^s	100%	100%	100%	97%	97%	0,001	100%	%001	0001		97%	*********	97%	000%	, %00	»00	100%	97%
pos occupied"	1	1			2	1	1				:		ი 2		1	1	1	<u>ි</u> 2

Table 4D: Analysis of V kappa subgroup 4

									 -		CI	OR II	1	·			-	
amino acid'	85	98	87	88	83	90	91	92	93	94	95	⋖	8	ں	۵	u	u	96
Α										1								
В																		•••••
С				33		<u> </u>												
D								1	1				,					
E						<u> </u>												
F			1					1			<u></u>							•••••
G									2									••••
Н			1		3													
i										2	<u> </u>							
Κ																		<i>-</i> -
L						1		2		1	3							
M																		
N						<u> </u>			4	4								
Р										1	29	1						•
Q					30	32					1		į					
R	Ž.								1			1			<u></u>			
S							2		23	2								
1									2	22								
V	33																	••••
W																		•••••
Х																		
Y		33	31				31	29										
-												13	15	15	15	15	15	
unknown (?)	<u> </u>				,						,							
not sequenced												18	18	18	18	18	18	1
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	1
oomcaa³	33	33	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	
mcaa ⁴	٧	Υ	Υ	С	Q	Q	Υ	Υ	S	Ţ	Р	-	_	-	-	-	-	I
rel. oomcaa ^s	100%	100%	94%	100%	91%	97%	94%	88%	70%	0/0/29	88%	87%	100%	100%	100%	100%	100%	
pos ocmipied ⁶ .	1	1	:	:	:	:	:	:	•	•	:	: :	1	1	1	1	1	

Table 4D: Analysis of V kappa subgroup 4

						Fra	ame	work	IV				
amino acid'	97	86	66	100	101	102	103	104	105	106	A	107	108
A													
В													
С													
D													
E									14				
F		15				,							
G			15	4	15								
Н													
1										14			
K							14					13	
L								4					
M	1												
N												1	
Р						1							
Q				11				1					
R							1		1		-	1	11
S	2									1			
Ţ.	12					14							
V								9					
W							-	1					
Χ													
Υ.													
-											15		
unknown (?)													
ot sequenced	18	18	18	18	18	18	18	18	18	18	18	18	22
sum of seq ²	15	15	15	15	15	15	15	15	15	15	15	15	11
oomcaa¹	12	15	15	11	15	14	14	9	14	14	15	13	11
mcaa*	Τ	F	G	Q	G	Ţ	Κ	٧	Ε	1	-	К	R
rel. oomcaaʻ	80%	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%
os occupied ^a	3	1	1			· · · · · · · · · · · · · · · · · · ·	2		2	2	1	3	1

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

							·				Frar	new	ork I	<u> </u>					
amino acid'	_	7	m	4	2	9	7	æ	6	10	=	12	13	14	15	16	17	18	19
А											19		18	20					
В																			
· C																			
D																			
E																		1	
F.												·							
G								•					22			42			
Н	2																		
ı			1								1								
К																		14	
L			1	41							1								
М																			
N										•••••••									
Р							41	41						1	41				••••
Q	22		1			41											42		
R		•				•••••			·									25	
S .		39		·					41			41			1			1	
Т					41									19		•••••		1	
V		1	38								20		1	1					42
w																			
X																			
Y																			
Z	16																		
-										41									
unknown (?)																			
not sequenced	2	2	1	1	1	1	1	1	1	1	1	1	- 1	1					
sum of seq ²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	42
oomcaa'	22	39	38	41	41	41	41	41	41	41	20	41	22	20	41	42	42	25	42
mçaa'	Ω	S	٧	L	T	Q	Р	Р	S	-	٧	S	G	Α	Р	G	Q	R	V
rel. oomcaa ^s	55%	%86	93%	100%	0001	. %0001	100%	100%	0/0001	100%	49%	100%	54%	49%	980%	100%	100%	%09	100%
pos occupied"						• • • • • • • • • • • • • • • • • • • •		••••••		•••••						•••••			• • • • • • • • • • • • • • • • • • • •

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

								· ·			CD	RI							
amino acid'	20	21	22	23	24	22	56	27	0	<u></u>	28	29	30	31	4	32	33	34	35
Α	2							1				2	2			1			
В					<u>.</u>														
C .				42			İ												
D										3			3	1		3		1	········
E													1						
F					1				1						1	1			•••••
G						42	3	1			2	39	4	2					
Н														2		2		2	
1	1	41								1	37			<u></u>				1	
К							<u> </u>			1		<u> </u>	1	<u> </u>					
L		1									1			ĺ					
М											1								
N								2	1	37			13	31	2		1	9	
Р																1			
Q									·							1			
R							1	1					5	<u></u>					·
S	1		42		38		34	34	38				13	1	1	3		19	
Т	38				3		4	3	2			1		1		7		2	
V											1					2	40	<u></u>	
W																	<u></u>		42
X																ļ			
Υ											<u></u>			4	1	20	<u> </u>	7	
Z												<u> </u>							
_															36			<u> </u>	<u></u>
unknown (?)													<u> </u>		<u></u>		<u> </u>	<u> </u>	
not sequenced															1	1	1	1	
sum of seq'	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	42
oomcaa	38	41	42	42	38	42	34	34	38	37	37	39	13	31	36	20	40	19	42
mcaa*	T	1	S	С	S	G	S	S	S	N	1	G	N	N	_	Υ	٧	S	W
rel. oomcaa ^s	%06	38%	%001	%001	%0€	%001	31%	31%	%0€	38%	38%	33%	31%	74%	98%	49%	%86	46%	100%
pos occupied ⁶	Ī	1	•	•	3	•	•	•	:	•	:	:	:	:	:	10	:	:	

Table 5A: Analysis of V lambda subgroup 1

						ran	iewo	rk II											
amino acid	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
А							4	40									1		
В												<u> </u>		·					
C																			
D				,		1									13	10	8		
E										2					5			1	
F	1			4										1				·	
G						39									1				
Н	1	1	6	1										1				1	
1													40		1				- -
K							1			35					1	1		18	
Į			1	31							41	40		<u></u>				1	
M							1						1					1	
N				ļ						1					3	28	30	2	
Р		ļ	ļ	ļ	42	1			42										
0	ļ	39	34	ļ														15	
R	<u> </u>	2	<u></u>	1		1				4					7			2	4
S		<u></u>	<u></u>	<u></u>				1				<u>į</u>			9	2	3	1	
Ţ	ļ		<u></u>	<u></u>			36	1							1				<u></u>
V		ļ	1	5	ļ						1	2	1				•••••		
W			ļ	<u></u>	ļ														<u></u>
Χ		ļ	ļ	ļ															
Y	40	<u>.</u>	<u></u>	ļ		ļ								40	1	1			
Z																			_
		<u></u>	<u></u>	ļ											• • • • • • • • • • • • • • • • • • • •	<u></u>			ļ
unknown (?)			<u>.</u>	ļ		<u>.</u>		ļ		<u> </u>								<u></u>	
not sequenced		-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>						<u> </u>		:	
sum of seq'		-:	• • • • • • • • • • • • • • • • • • • •	•••••••	• ; • • • • • • • • • • • • • • • • • •	÷	.:	*	·····	•	42	•	• • • • • • • • • • • • • • • • • • • •					1	
oomcaa¹	40	39	34	31	::	···········		:		:	41	40	40	:	:	·•••••••••••••••••••••••••••••••••••••	:	:	
mcaa ⁴	Y	Q	O	L	Р	G	1	Α	Р	Κ	L	L	1	Υ	D	N	N	K	
rel. oomcaa ^s	95%	93%	81%	74%	100%	93%	969%	95%	100%	83%	%86	95%	95%	95%	31%	67%	71%	43%	
pos occupied		•	3 4	7				Ė	-	1	:	:]		10				

Table 5A: Analysis of V lambda subgroup 1

	CD	RΙ																	
amino acid'	55	99	۷,	8	ں	٥	w	57	28	59	09	61	62	63	64	65	99	⋖	8
А	1														5				
В																			
С																			
D											38		·						
Е																			
F													38						
G								41			2				36			,	
Н				·							1								
l									17				3						
K				,													38		
L		1								1									
М																			
N																			
Р	38									38									
Q																			
R												42					4		
S	2	40								2				42		42			
T															1				
V									24				1						
W																			
X																			
Y																			
Z														·					
_			41	41	41	41	42											42	42
unknown (?)																			
not sequenced	1	1						1	. 1	1	1								
sum of seq²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa ³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	42
mcaa'	Р	S	-	-	-	-	-	G	V	Р	D	R	F	S	G	S	Κ	-	-
rel. oomcaa ^s	93%	980%	100%	100%	100%	100%	100%	100%	29%	93%	93%	100%	%06	100%	%98	100%	%06	100%	100%
pos occupied ⁶			1	1	1	1	1					1	3	**********				1	1

Table 5A: Analysis of V lambda subgroup 1

				Fra	amev	vork	. 111												
amino acid'	29	89	69	70	7.1	72	73	74	75	9/	77	78	79	80	81	82	83	84	85
А		1	3		41			24						2				38	1
В																			
· C																			
D		1													1	41			37
E													1		24		42		1
F .																			
G		40						17		1	42				15				*******
Н													1						2
1		-							41										1
K												:							••••
L							42					41							******
М																			
N																1			•••••
Р														2					•••••
Q											•••••		31	•••••••					••••••
R						•••••							8	••••••					
S .	42		1	42		24				20	••••		•••••••••••••••••••••••••••••••••••••••	20		•••••		1	*******
Ţ			38			18				21	••••••			17				3	
V					1			1	1	•••••••••••••••••••••••••••••••••••••••	••••••	1		1		••••••			••••••
W													1	•••••••••••••••••••••••••••••••••••••••	2				
Х																			
Υ							•••••				•••••			••••••					••••••
Z											*******								•••••
_										_									
unknown (?)										<u>i</u>				<u>i</u>					•••••
not sequenced														<u>i</u>					
sum of seq?		42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa¹					••••••			••••••		21	••••••		••••••		•••••••••••••••••••••••••••••••••••••••				•••••
mcaa*	S				Α			Α			G				Ε	D	Ε	Α	• • • • • • • • • • • • • • • • • • • •
rel. oomcaa'	100%			_			_							48%			100%		0,088
pos occupied ⁶					<u>ი</u>			,				<u>ත</u> 2		:			;	::	<u> </u>

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

										CDF	R 111								
amino acid	98	87	88	83	90	91	92	93	94	95	٧	8	ပ	۵	w	ட	96	97	98
A				22	15			1				16					4	1	•••••
В																			
С			42							•									
D							39	17			7								
E												1					1		
F		2			<u></u>					1									3
G				14	<u> </u>			1				.17	1				5	1	
Н		1											1						
ľ					<u> </u>						1							1	
K											1								
L				1						37			1					1	
М								• •• • • • • • • • • • • • • • • • • • •										1	<u></u>
N							2	2			9	1							
Р										1							6	<u></u>	<u>.</u>
Q		<u></u>		3														ļ	<u> </u>
R	<u></u>	<u></u>							5	1	2						2	ļ	<u> </u>
S	<u> </u>	<u></u>			4			17	35	<u> </u>	18		1				1	<u> </u>	<u>.</u>
T	ļ	<u></u>			22			1	1	<u> </u>	1							ļ	<u>.</u>
V	.	<u></u>	<u> </u>	1				1	<u></u>	1	<u></u>	2					9	34	
W		<u></u>				38		<u> </u>		<u></u>	<u></u>						7	ļ	
X					ļ			<u></u>	<u></u>	<u></u>									<u>.</u>
Υ	42	39	<u>.</u>	ļ	ļ	3		1	<u> </u>	<u></u>	ļ						3		
Z			<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>								<u> </u>	-
_		<u>.</u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u></u>	2	4	35	39	38	38	1	ļ	<u> </u>
unknown (?)	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>	ļ	<u> </u>		<u> </u>	<u></u>	<u>.</u>	<u> </u>						<u> </u>		-
not sequence	-		<u> </u>	1	+	+		1			1	+		3		:	==	3	÷
sum of seq ²	P			÷		÷	.,				• • • • • • • • • • • • • • • • • • • •	41	:		•			•	•
oomcaa,		•••	· ····	•••••••••	• • • • • • • • • • • • • • • • • • • •	· ÷ · · · · · · · ·	.;					17	:	39	38	38	:	:	:
mcaa*	Υ	Y	С	Α	T	W	D	D	S	L	S	G		-	÷	• • • • • • • • • • • • • • • • • • • •	V	٧	
rel. oomcaa ^s	100%	93%	100%	54%	54%	93%	92%	41%	85%	%06	44%	410/0	%06	100%	100%	100%	23%	87%	2
pos occupied	n												:			•	:) (6

SUBSTITUTE SHEET (RULE 26)

Table 5A: Analysis of V lambda subgroup 1

•		· .	F	ram	ewo	rk IV						
amino acid'	66	100	101	102	103	104	105	106	٧	107	108	sum
Α								Ì				285
В			Ī		•							
С			•							•		84
D										•		224
E		1		******		••••••						. 81
F												87
G	36	31	36		Ī					26		559
Н										Ī		25
1								•				188
K					30							141
L						25			34			344
М										-		5
N					1							176
Р											1	296
Q					3				1		18	251
R					1	•				2		156
S		1								2		720
Т		3		36	1		36					359
V			<u></u>			11		36	1			282
W										1		92
X												
Y												202
Z												16
-												524
unknown (?)												
not sequenced	4	6	6	6	6	6	6	6	6	10	22	141
sum of seq'	36	36	36	36	36	36	36	36	36	31	19	
oomcaa,	36	31	36	36	30	25	36	36	34	26	18	
mcaa*	G	G	G	T	Κ	L	T	V	L	G	Q	
rel. oomcaa ^s	100%	9,098	100%	100%	83%	%69	100%	100%	94%	84%	95%	
. pos occupied ⁶	1			1	5	7	··········	1				

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

											Fran	new	ork l						
amino acid'		2	3	4	5	9	7	8	6	0	=	12	13	14	15	16	17	18	19
Α			3 5					30			6		1	1					
В																			
· C																			
D									•••••							1			
E						: :								•					•••••
F .						: :			*********						•				•••••
- G													42			42		•	••••••
Н	2								••••••					•			1		••••••
١			1																28
K																			•••••
Ĺ				40											3				1
М																			
N									•••••										••••••
Р							42	6							40	•••••			
Q	22		4			41				••••							42		•••••
R								6	1										
S		41							40			42		42				43	
Ţ					42				1										••••••
V		1	2			•					36								14
W							·												
Х																			•••••
Y																			•••••
Z	16																		••••••
-										42									
unknown (?)						1													•••••
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1						_	_
sum of seq ²	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa³	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa'	Q	S	Α	L	T	Q	Ρ	Α	S	-	V	S	G	S	Р	G	Q	S	l
rel. oomcaa ^s	55%	0,086	83%	100%	100%	0/086	100%	71%	95%	100%	96%	100%	%86	%86	93%	%86	980%	00001	920%
pos occupied ⁶						<u>v</u>			3	••••••	2	·····	2		2	<u> </u>	:		9

Table 5B: Analysis of V lambda subgroup 2

											CD	RI							
amino acid'	20	21	22	23	24	25	56	27	٥	ш	28	29	30	31	⋖	32	33	34	35
Α					3		1						1			1			
В																			
С				42				-	1					1					
D										39		1	4		5				
E												<u> </u>			1				
F		1								,			1		,	4			
G						43		1				39	26						
Н								1				<u></u>			1	1			
İ		41			1						6								
K												<u> </u>			4				
Ĺ		1														4			
· M														<u> </u>					
N	·							1	3	4		1	4	3	28				
P								1											
Q																			
R									1				2						
S			42		3		3	35	38				5	1	2	4	1	42	
Ţ	43				36		39	3				1		1					
V					<u></u>						37						41		•
W																			4
Χ																			
Y								1				1		37		29			
Z			<u> </u>																
-	·														1		·		
unknown (?)				·											1				
not sequenced			1	1													1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	4
oomcaa³	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	4
mcaa'	T	ı	S	С	T	G	T	S	S	D	٧	G	G	Υ	Ν	Υ	V	S	٠V
rel. oomcaa'	100%	95%	100%	100%	84%	100%	91%	81%	980%	31%	96%	910%	%09	960%	9/059	97.0%	%86	100%	7000
pos occupied ⁶	1	3		-				:	:	2	1		:	1	:	: •	:	······································	

Table 5B: Analysis of V lambda subgroup 2

						Fram	iewo	rk II											
amino acid'	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
Α					1	4		40							·				
В																			
C .																·			·
D				1		2									20	1	2	1	
E															20			2	
F	2													7		1			
G						36									2	2		1	
Н			2	34												,		1	
ı							1				1	9	43				1		
K							40			41			•••••				1	21	
L			1	1							38	6							
М												26					1		•••••
N				2							•••••				1		8	12	•
Р					41				43										
Q		41	39							2									
R		1			·		1										2		4:
S					1				•					2			21	3	
T							1										7		
V						1		3			4	2				39			
W			<u> </u>																
X																			
Y	41			5										34				2	
Z										•									
_																			
unknown (?)		1	1																
not sequenced	B																		
sum of seq²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	4:
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	4:
mcaa*	:	:	Q		Р	•	Κ			Κ		М	•	Υ	D	V		K	
rel. oomcaa ^s	%	%	91%	%	%	840%	%	· · · · · · · · · · · · · · · · · · ·	:	95%	• • • • • • • • • • • • • • • • • • • •	%09	_		%			• !	
	1	:	:	:	95	84	93	93	9	95	88	09	2	79	47%	91%	49%	4	Č
pos occupied	2	2	3	5	3	4	4	2	1	. 2	3	4	1	3	4	4	8	8	

Table 5B: Analysis of V lambda subgroup 2

	CDI	R 11																	
amino acid'	52	99	A	മ	ပ	۵	w	57	28	59	09	61	62	63	64	65	99	⋖	<u></u>
А					į										2				
В																			
C			<u> </u>													1			
D											17	<u></u>					<u> </u>		
E											٠								
F												į	42						
G								43	1						41				
Н				,							2								
1									3								<u></u>		
К																	42		
L											1		1						
М																			
N							•				19								
Р	43						•			15									
Q														•					
R									•	,		43					1		
S		43								28	2			43		42			
T							······					İ							
V				••••			·····		39			······							••••
w							·····					·····							
X			•••																•••••
Y								••••			2	•••••	••••		•••••				•••••
Z								•••••				••••••	••••		••••••				
		<u> </u>	43	43	43	43	43									7		43	43
unknown (?)												·····							••••
not sequenced	H				••••••••••••••••••••••••••••••••••••••							<u>:</u>		•••••	• • • • • • • • • • • • • • • • • • • •				•••••
sum of seq ²		43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa,		· · · · · · · · · · · · · · · · · · ·		43	: · · · · · · · · · · ·			•••••				••••••		• • • • • • • • • • • • • • • • • • • •	- <i></i>	:		:	:
mcaa*	Р	:	_	-	-	-	-		٧			R			G	S		-	;
		·	9	.0	0					···········		_	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·					••••••••••••••••••••••••••••••••••••••
rel. oomcaa'	100%	100%	100%	100%	1000	100%	100%	100%	91%	55%	44%	100%	%86	100%	95%	%86	98%	100%	100%
pos occupied ^e		1		.		<u> </u>	1		: :	;					<u></u>	2	1	<u>:</u>	

13/

Table 5B: Analysis of V lambda subgroup 2

•							. 111												
			<u> </u>	·	ame														
amino acid'	29	- 68	69	20	71	72	73	74	75	9/	[77	78	79	80	81	82	83	84	85
Α		3		1	43									36				43	
В																		·	
. C																			
D		1	2												3	42			39
E				٠							1				38		43		
F.								·											
G		39									42				1			`	
Н																			2
									35										
, K			1			•	•											```	
L							43					43							
М																			
N			38												1	1			1
Ρ.														2					
Q													41						
R			•						***************************************				2						
S	42			1		43				42			•••••••						
ī			1	41				43		1				2			•••••		
V						•			8					3		•••••			
W																			
Х																			
Y											********		***************************************						
Z																			*****
-																			
unknown (?)			1						••••••										1
not sequenced	1															,	•••••••••••••••••••••••••••••••••••••••		••••
sum of seq ²	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa			:	:	43				•••••	···········	••••••	-		36		••••••	•••••	43	
mcaa*	S	G	Ν	T	Α	S	L	:	١	S	G	L			Ε	D	Ε	Α	D
rel. oomcaa ^s	100%	91%	98%	95%	.%001	100%	100%		81%	98%	98%	100%	95%	84%	88%	98%	%001	%00	91%
pos occupied ^a	1	3	····· ·		1	:			:	:	2	······ ·		:		:		1	ა 3

Table 5B: Analysis of V lambda subgroup 2

•										CDF	3 111								
amino acid'	98	87	88	83	96	91	92	93	94	95	¥	ထ	ن	0	ш	т	96	97	98
А				2	1		21		1								1	1	·
В																			
С			43	1 1															
D								3	1	2							1		
Е							1	1											
F		3				3				1		1					· 5		42
G							1										1		
Н						1													
.							1	1		1	2						1	7	
K										3									
L												1	1				6	5	
М																	1	1	
N									5	7	5						1		
Р								1				4							,
Q									:	1	:	:							
R								: :	3			1					5		
S .		1		30	41			12	23	14	9						1		
Т							16	4	4	3	21							-	
V			·				1										11	2.8	
W																	5		
Х																			
Y	43	39				39			1	6							4		
Z				-															
-										1	₋ 3	36	42	43	43	43			
unknown (?)							,		2						<u> </u>				
not sequenced					1						1							1	1
sum of seq ⁷	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	42
oomcaa¹	43	39	43	30	41	39	21	21	23	14	21	36	42	43	43	43	11	28	42
mcaa'	Υ	Υ	С	S	S	Υ	Α	G	S	S	T	-	-	-	-	-	V	٧	F
rel. oomcaa ^s	100%	91%	100%	70%	98%	91%	49%	49%	53%	33%	20%	840/0	980%	100%	100%	100%	26%	67%	100%
pos occupied"	1	3	1	3	:	:	:	<u> </u>		11					1	1		:	1

Table 5B: Analysis of V lambda subgroup 2

				Fran	iewo	ork I	V]
amino acid'	66	100	101	102	103	104	105	106	A	107	108	sum
Α		1										280
В												
С											•••••	99
D								<u> </u>				188
E												107
F												113
G	42	33	42						,	19	•••••	567
Н												48
ı							1					184
К					36						•••••	189
L						28			40			264
М												29
N					1							146
Р												238
Q					1						14	250
R		1			2					4		121
S				•			1			2		831
Т		7		41			40					398
V						14		42	1	*******	•••••	327
W												48
X												
Y					1							285
Z												16
-												555
unknown (?)												8
not sequenced	1	1	1	2	2	1	1	1	2	15	28	80
sum of seq²	42	42	42	41	41	42	42	42	41	25	14	
oomcaa³	42	33	42	41	36	28	40	42	40	19	14	
mcaa*	G	G	G	Τ	Κ	L	T	٧	L	G	Q	
rel. oomcaas	100%	79%	100%	100%	0/088	67%	95%	100%	%86	0/92	%00ı	
pos occupied ⁶	1	4	1	1				1	2	3	1	

134

Table 5C: Analysis of V lambda subgroup 3

											Frar	new	ork l						
amino acid'		2	3	4	2	9	7	8	6	10	=	12	13	14	15	16	11	18	19
А					1		1	2	7					20	1				27
В																			
· C																			
D			5				10												
E			20										1			1			
F	1	1							•			1			1				
G			1													37			
Н																			
ı																			
K						••••						·····		1			2		
L				37							4		1		9				••••
М						•••••						<u> </u>							
N		***************************************										<u>-</u>						•••••	
Р		•••••					26	35	1			•••••			27				1
Q	4		4			38			••••••		••••••						36		•••••
R				••••••		•••••					•••••		••••••						
S	13	14			1	••••	1		28			37		18					
Ţ					36	•••••		1				·····	••••••					38	
V			8	1		*********			2		34		36						1(
W						********													
Х						•••••					***************************************								•••••
Y		23									•••••		******						
Z				•••••											••••				
-	20									38									
unknown (?)						••••••					••••			•••••••••••••	•				••••••
not sequenced				•••••		••••••													•••••
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa ³			20								••••••	37		•••••••			36		******
mcaa'	-	Υ	Ε	L	T	Q	Р	. Р	S	-	V	S	٧	Λ	Р	G	Q.		Α
rel. oomcaas	53%	61%	53%	•	92%	%001	%89	95%		,00i	%68	92%	92%	53%	71%	92%	92%	%00	7 10%
pos occupied ⁶	<u>5</u> 4					•••••		:	4						• • • • • • • • • • • • • • • • • • • •			<u>v</u>	

Table 5C: Analysis of V lambda subgroup 3

				-							CE	RI	<u> </u>						
amino acid'	20	21	22	23	24	25	26	27	0	ш	28	29	30	31	⋖	32	33	34	35
Α			1					5					1	1			21	3	
В													·				·		
· C				38														5	
D							30	1					10			3		1	
E							2	2				1	3	6					
F														1		2			
G					9	38		1				23	4						
Н							1									2		9	
i		38									9			1					
К								7					2	13					
Ĺ											28								••••
М	1													1					
N			2				4	9	-		1		2			1		2	
Р			1									3							
Q					10									4					
R	25							2				10	1				1		
S	9		1		19			10					11	2		8		14	
Т	3		33					1				1	4						
V																1	15		
W																			38
X									••••										
Y							1							8		20	1	4	·
Z																			
-									38	38					37				
unknown (?)																			
not sequenced															1	1			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaa,	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa ⁴	R	1	Τ	С	S	G	D	S	-	-	L	G	S	Κ	-	Υ	Α	S	W
rel. oomcaa ^s	999	100%	87%	100%	20 _%	100%	79%	26%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	100%
pos occupied ⁶	: :							9			3					•••••			1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

						F	ram	cwo	rk II											
amino acid'	36	37	38	39	3 9	40	41	42	43	44	45	46	47	48	49	20	51	52	.53	54
Α								,	23								1		1	•••••
В			<u></u>	<u> </u>							ļ		<u>.</u>							•••••
С			<u> </u>	<u> </u>							<u></u>									
D			<u> </u>	<u> </u>												••••••	22			•••••
E			1	<u> </u>												5	3		3	
F	3		<u></u>	<u>.</u>											2			1		
G			<u></u>	<u>.</u>			36									9	2		··	
Н			<u>.</u>	<u>.</u>		<u> </u>		1							1	3			1	
1			<u></u>	<u> </u>		<u></u>					1			28				1		
K			<u> </u>	3	2	<u></u>	<u> </u>									2	6	1	13	
L			2			<u>.</u>					6	3 3	1							
M												1		1						
N ·																	1	19	. 9	
Р						36		1		38										
Q		37	35	5	1			36	·							9			1	<u></u>
R		1	·		4		2						<u></u>		<u></u> į	1	1		1	3
S					1	2			14									10	1	ļ
T																	2	4	<u> </u>	ļ
V				Ī					1		31	4	37	9				<u> </u>	<u> </u>	ļ
W																		<u></u>	<u> </u>	ļ
X			-																<u></u>	ļ
Υ	35														35		· · · · · · · · · · · · · · · · · · ·		<u></u>	
Z						_											<u> </u>		<u> </u>	
																		<u>.</u>	<u>.</u>	
unknown (?)																		<u>.</u>	<u>.</u>	<u> </u>
not sequence	<u></u>			1																
sum of seq ⁷	===	3 3	3	8	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	3
oomcaa ³		•••		··· · ····					:	:		:	37	:	•	:			13	
mcaa*	*******	:	• • • • • • • • • • • • • • • • • • • •		••••••			:	7	Р		2				•	D	N	K	
rel. oomcaas			•••••••			********		• • • • • • • • • • • • •	·	*******			92%	,40%	32%	74%	58%	20%	34%	
pos occupied																				

WO 97/08320

PCT/EP96/03647

Table 5C: Analysis of V lambda subgroup 3

	CE)R II			-	-		<u> L</u>											
amino acid'	52	56	٧	മ	U	٥	ш	57	58	59	09	61	62	63	64	65	99	⋖	8
А		1																	
В	<u> </u>																		
С	<u> </u>																		
D											9					<u> </u>	<u> </u>		
E											27					<u></u>			
F													38						
G								38			······································			······································	38	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••		
Н								-											
l								<u> </u>	37										
К		<u>.</u>												••••••		•			•••••
L		<u> </u>	<u> </u>																
М			<u></u>							·		•							
N																	21		
Р	37	1								36									
Q												********							
R												38		••••••					
S	1	36								1		*********		38		38	12		
Т																	5	•••••••••••••••••••••••••••••••••••••••	,,,
V					,									***					
w																			********
X																			
Y																			
Z																		_	
-			38	38	38	38	38											38	38
unknown (?)										į	1								•••••
not sequenced									1	1	1								
sum of seq'	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	38
oomcaa³	37		38								27		38	:				*********	
mcaa'	Р	S	-	-	-	-	-	G	١	Ρ	Ε	R	F	S		S		-	_
rel. oomcaas	97%	95%	100%	100%	100%	100%	100%	100%	100%	97%	73%	100%	100%	100%	100%	100%	55%	100%	100%
pos occupied ⁶	2	3	1	1	1	1	1	1	••••••	2		1	1	1	1	1	3	1	1

138

Table 5C: Analysis of V lambda subgroup 3

,					· · ·		111												
		~			ımev —	vork	···			·						~	<u> </u>	 _	10
amino acid'	67	89	69	02	7	72	73	74	75	92	77	78	79	8	<u>~</u>	85	83	84	82
А				1	36	1		1				11	1	34				38	
В							<u> </u>							.,					
С																			
D																38			37
E							<u> </u>						10		14		38		1
F																			
G		37									28				10				
Н			1									<u> </u>					·		
1,						1		1	37	1				<u></u>	1				
K			1		<u> </u>		<u> </u>					<u> </u>		<u> </u>					
L							38					<u> </u>			2				
М							<u></u>								10				
N			28							1					•				
Р																			
Q		1											25						
R										1	10		1						
S	37		2			11				23				1					
Т	1		6	37		25		36		12		13		2					
V					2				1			14	1	1	1				
W																			
X																			
Y																			
Z																			
-																			
unknown (?)						••••													
not sequenced												,							
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,	37	37	28	37	36	25	38		37	23	28	14	25	34	14	38	38	38	37
mcaa'	S	G	N	T	Α	Ţ	L	Ţ	1	S	G	V	O	Α	Ε	D	Ε	Α	D
rel. oomcaa ^s	97%	97%	74%	97%	95%	%99	100%	95%	97%	61%	74%	37%	%99	89%	37%	100%	100%	100%	97%
pos occupied ⁶	:	:	:	ŧ	:					- 5						1	1		_

Table 5C: Analysis of V lambda subgroup 3

										CD	R III								
amino acid'	98	87	88	83	90	91	92	93	94	95	⋖	8	ပ	۵	w	ш	96	97	86
Α					13	3	, 2			1	2						4		
В		<u></u>								: :									
· c			38										<u> </u>				<u></u>		
D		<u></u>		<u>.</u>			32	1	1		6		-		-				
E		<u></u>	<u></u>	1	`							2					2		
F		2	: !					2											35
G									3	14	3	•		1			3	1	
Н												12	1						
1 .												**********						4	
K											1								•••••
L				1				1		1		1	1				4	2	
M									1					••••••		•••••	1		
N				10			2	1	2		10	1		••••••					
Р									1		•••••		3	••••••			1		
Q				25						1	1				••••				
R .						10		1	2			2			••••				
S .				1	14	1		28	26	13		1		••••••		1			•••••
T						1	:			7				•••••					
V					11						•••••			•••••			18	28	
W						23			***************************************								1	•••••••••••••••••••••••••••••••••••••••	
Х										<u> </u>									
Y	38	36					1		1		1	3	1				3		
Z																			
-											10	15	31	36	37	36		1	
unknown (?)													********	••••					
not sequenced							1	1	1	1	2	1	1	1	1	1	1	1	3
sum of seq²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	35
oomcaa,	38	36	:	:	:	:						·····		• • • • • • • • • • • • • • • • • • • •	•••••	******		. .	
mcaa'	Υ	Υ	С	Q	:	W	D	S		G	N	-	-	-	-	-	٧	V	F
rel. oomcaa ^s	100%	95%	100%	%99	37%	61%	%98	%92		38%		41%	84%	97%	100%	92%		0/09/	100%
pos occupied ⁶	1	2	1	5		5	4	7		······	9	8	5	2	••••••	2	9	6	1

Table 5C: Analysis of V lambda subgroup 3

•			F	ram	ewo	rk IV	'					
amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
Α												265
В			Ī							<u> </u>		
С			Ī							1		82
D												225
E					2							145
F												90
G	35	31	35							24		461
Н												32
l										<u></u>		160
K					30							110
L ·						28			33	<u> </u>		233
М										-		17
N												126
Р								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1			249
Q											7	27
R					2			<u></u>				154
S										2		50
Ţ		4		35			35					34
V						7		35				30
W	<u> </u>				•							6
X	ļ											
Y		,										21
Z		<u> </u>	<u></u>									
_		<u></u>				<u> </u>						60
unknown (?)	· 	<u> </u>				<u> </u>						
not sequenced	3	3	3	3	4	3	3	3	4	11	28	8
sum of seq²	35	35	35	35	34	35	35	35	34	27	7	
oomcaa ³	35	31	35	35	30	28	35	35	33	24	7	
mcaa*	G	G	G	T	K	L	Т	V	L	G	Ω	
rel. oomcaa'	100%	89%	100%	100%	88%	80%	100%	100%	97%	9,68	100%	
pos occupied	1	2	· · · · · · · · · · · · · · · · · · ·	÷	:	· · · · · · · · · · · · · · · · · · ·		1		<u> </u>	-	

Table 6A: Analysis of V heavy chain subgroup 1A

Ì														Fra	mev	vorl	1			
amino acid'	_	2	c	4	رم	9	7	∞	6	10	=	12	13	4	<u>.</u>	9	17	18	19	20
Α					1	14			60							24	1			
В																<u></u>				
С		<u> </u>																		
D																				
E	1				2	1		2		64										
F																				
G								58	1						64					
Н			2																	
l		2																		
K		2										57	64						60	•••••
L			2	59				<u></u>		<u> </u>	3									
М		1								<u> </u>	<u> </u>									
N		<u></u>							ļ	<u> </u>		6								
Р		<u></u>							ļ	<u></u>	ļ	<u></u>		63						
Q	53	<u></u>	56		2	45	ļ	ļ	ļ	<u> </u>	<u></u>	<u></u>								
R	ļ	<u>.</u>						<u></u>	ļ	<u></u>	<u></u>	1						ļ	3	
S	 	<u> </u>	ļ				60	<u> </u>	3	<u> </u>	<u></u>	<u> </u>		1		40	63	<u></u>		<u></u>
T		<u> </u>	<u> </u>			<u> </u>	ļ	<u></u>	<u> </u>	<u></u>	<u>.</u>	<u> </u>			•••••		<u> </u>	<u> </u>	1	<u> </u>
V	2	55	<u> </u>	1	55		<u>.</u>		<u> </u>	. .	61	<u> </u>					<u> </u>	64	<u></u>	6
W	<u> </u>	<u> </u>	<u> </u>			<u> </u>	ļ		<u>.</u>	. 	<u> </u>	<u>.</u>			•••••		<u></u>	ļ	ļ	
X	 	<u>.</u>	<u> </u>	<u></u>					ļ	<u>.</u>	<u> </u>	<u>.</u>					ļ	<u> </u>	ļ	<u></u>
Y	ļ	ļ	<u>.</u>	<u></u>			ļ		ļ			<u>.</u>			•••••	ļ	ļ	<u> </u>	<u></u>	ļ
Z	3	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-	<u> </u>	<u> </u>		-	_	<u> </u>	<u> </u>	-	<u>!</u>
-	 	. .	<u>.</u>						<u>.</u>	<u>.</u>	ļ	. <u>ļ</u>						<u> </u>	<u>.</u>	<u>.</u>
unknown (?)	.	. .		<u>.</u>	<u></u>				<u>.</u>		<u> </u>	<u> </u>				<u></u>	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>
not sequenced							~				=	5 E				-	: -		 -	÷
sum of seq ²			•••••	· - · · · · · · ·	:	•:••	•••••••	·:		•••	·- -	4 64	:	:	:	;	7			
oomcaa,	÷		··÷·····	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	•••••••		••••			•••••••	1 57			*******	•••••••	• • • • • • • • • • • • • • • • • • • •			
mcaa*	0	V	٠		V									Р	G	S		ب	K	
rel. oomcaa ^s	%U b	92%	93%	%86	92%	75%	100%	92.00	040%	100%	020	%65 80%	100%	98%	100%	63%	980%	100%	94%	
pos occupied	:	i	•	:	•	:	:	:	:	:	:	2	:	:	:	;	:	2	:	3

Table 6A: Analysis of V heavy chain subgroup 1A

WO 97/08320

•			·											CD	RI					
amino acid'	21	22	23	24	25	56	27.	28	29	9	31	⋖	ω	32	33	34	35	36	37	38
Α				62				1							41					
В			į							<u> </u>	<u> </u>									
· C		63							<u> </u>										<u></u>	
D							1											-		
E																				
F .									69					3		3				•••••
G				1		69	41		1		_				23					
Н										1				1			1			
I								1		<u> </u>						61	1		1	
К			63							1	1									
L															1	2				
М																4				
N										2	5						4			
Р										-					1					
Q																				
R		1	1							1	1									70
S	6 3				68		1			40	60			2			60			
Т	1			2				68		25	3				3		4			
V															1				69	
W																		70		
Х																				
Y							27							64						
Z																				
-												70	70							
unknown (?)																	<u> </u>	<u></u>		
not sequenced	6	6	6	5	2	1														
sum of seq²	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa ³		÷	•		•	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	7		:	70	:		:	;	:	:	:	:
mcaa'	S	С	Κ	Α	S	G	G	T	F	S	S	-	-	Υ	Α	1	S	W	٧	R
. rel. oomcaas	30%	%86	3%	3°%	100%	100%	90€	70%	9%	7.0%	900	100%	%0C	91%	9%	87%	%98	100%	%66	%UU1
pos occupied ⁶	:		-	:	•			6	9	5.	5	Ξ,	Ξ,	6		:		Ī		 -

Table 6A: Analysis of V heavy chain subgroup 1A

				Fra	me	work	: 11													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	5	52	⋖	8	ن	23	54	55
Α		70									1				5					
В									<u> </u>											
С																				
D								1												
E								69												
F									,				2					3	39	
G			1	68		69			1		69	39			1					6
Н			1																	
1										<u> </u>			65	38				34		
K ·																	<u></u>			
L				1			68			1		1						2	4	
М										67				2				4		
N														4				3	22	
Р			68				1								44					
Q	69		<u>.</u>	<u></u>	69			<u> </u>										1	1	
R	1			1		1						4						1		
S		<u>.</u>	<u>.</u>	<u> </u>	1		<u></u>		1	1				22					1	<u> </u>
T		<u> </u>	<u></u>	<u> </u>	<u></u>		<u></u>	<u>.</u>	<u> </u>				1	2	4			1	3	<u> </u>
V				<u> </u>		<u> </u>	<u></u>	<u> </u>		1			2	2	16			1		<u> </u>
W		<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u></u>	1	<u>.</u>	67			26							<u>:</u>	<u></u>
X								<u></u>	<u></u>	<u></u>						<u> </u>			<u>.</u>	ļ
Y			<u>.</u>		<u> </u>	<u></u>	<u>.</u>	<u>.</u>	1	<u></u>								20		ļ
Z		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u>!</u>	<u> </u>		<u>. </u>									
-		<u>.</u>		<u>.</u>	<u>.</u>	<u>.</u>		<u>.</u>		<u> </u>	<u></u>	<u></u>				70	70		<u></u>	<u>.</u>
unknown (?)		<u>.</u>	<u> </u>		<u>.</u>				<u>.</u>		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>
not sequence	d				<u>.</u>		<u>·</u>		<u> </u>			<u> </u>					<u> </u>			L
sum of seq ²	70) 7(70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70) 7
oomcaa,	69	70	68	• •••••••	• ••••••		*****			÷	÷	· 	•••••••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	70	70	34	· - · · · · · · ·	• • • • • • •
mcaa ⁴	Q	Α	Р	G	Q	G	L	Ε	W	М	G	G	١	١	Р	-	-	1	F	
rel. oomcaa	⁰ / ₀ 66	100%	97%	97%	%66	%66	%26	%66	%96	%96	%66	26%	93%	54%	63%	100%	100%	49%	56%	
pos occupied					:			:	:	:		:	:	:	:		1	:		

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

		DR	11																	
amino acid	26	57	28	29	99	19	62	83	64	65	99	29	89	69	70	71	72	73	74	75
Α	1	34			6 9											43				••••
В																				•••••
· C																		<u></u>		
D	15		1							2							70	<u></u>		
E									1	<u></u>								33		
F				1				48				3		4						
G	1						3			67										••••
Н			1																	
1	4												1	44				1		
K	1		2	1			47		1		1							8	<u>į</u>	••••
L	1	1						22				2		1		3				
M	ļ													21						••••
N	9		59				18													
Р	1	7																		
Q	1					70			64	:										
R	2	·······					2		1		69							1	••••••	••••
S :		1	:	••••	1										5				70	****
<u>T</u>	34	26	4						3				66		65	24		27		•
V	. .	<u> </u>								1		65	3							••••
W		<u> </u>					· · · · · · · · · · · · · · · · · · ·													
X	. 	<u> </u>	<u> </u>													•••••				
Y	. [<u></u>	1	68			<u></u>									••••				••••
<u>Z</u>		<u>!</u>	<u>!</u>			<u> </u>	<u> </u>								·					_
- (5)		<u> </u>	<u></u>	<u></u>	<u> </u>	ļ		<u></u>	<u></u>	<u> </u>						•	<u></u>			
unknown (?)		<u> </u>	<u></u>	<u> </u>	<u></u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u></u>						•••••	<u> </u>			
not sequenced	===											7.0	7.0	7.0	7.0		-	70	70	_
sum of seq ²	·····	÷	÷	:	÷	· · · · · · · · · · · · · · · · · · ·	·	•	-	-	70				:		:	.		:
oomcaa'	÷ · · · · · · · ·	÷	. 	÷		· · · · · · · · · · · · · · · · · · · 	·:·····	••••••	÷	67 G	69 R		66 T	44	65 T	43 A	••••••	33 E	70 S	(
mcaa'	T	A	N	Y	А	Q		·•••••••••••••••••••••••••••••••••••••	·····	-	÷					; :	<u></u>	.	<u> </u>	····
rel. oomcaa ^s	49%	49%	84%	97%	%66	100%	%29	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	
pos occupied	⁶ 11	6	7	3	2	:	:	:	:	:	:	:	3	4		:	1	5	1	<u>.</u>

Table 6A: Analysis of V heavy chain subgroup 1A

								rk I															_
amino acid¹	9/	77	70	0 (79	8	8	82	⋖	മ	ر	ِ ر	83	84	82	98	87	88		£ 6	S 5	- G	35
Α			ε	64			1							3		•••••	1	7	0				
В										<u> </u>					·····			<u>.</u>			<u>‡</u>		
· C										<u> </u>	<u>.</u>				•••••			 		<u></u>			70
D		ļ	<u></u>				2		<u></u>	<u> </u>	<u>.</u>					70		<u>.</u>			<u> </u>		
E		<u></u>	<u></u>				64	<u></u>	ļ	ļ					44		ļ	<u>.</u>		<u></u>			
F		<u>.</u>						<u></u>		ļ							ļ			1	1	2	••••
G	.	ļ						<u></u>	<u></u>	ļ	1												••••
Н		<u></u>	<u></u>		1				1	ļ						ļ	ļ						
l		<u>.</u>	1	<u></u>				3	1		1					<u> </u>	ļ			2			
K	<u> </u>	<u> </u>		<u> </u>				<u></u>		<u> </u>	<u></u>		3			<u>.</u>	ļ						
L			<u>.</u>	<u> </u>		3		63		<u>.</u>		70				<u></u>	<u></u>			2			
М			<u>.</u>			67	<u></u>	<u></u>								<u>.</u>	ļ	1		1			
N	4	ļ.						<u>.</u>		1 1	6						ļ						
Р							<u></u>	<u>.</u>	<u>.</u>	<u>.</u>	<u></u>				ļ								
Q					1		3	3															
R	3	}						<u>.</u>	2	3	1		62										
S	62	2		1		<u> </u>		<u></u>	4	1 4	19			67				1					
Ţ		1 (69	2			<u></u>			3	2		4	<u> </u>	<u>.</u>		6	7					
V				3		<u> </u>	<u></u>		4	<u></u>			1	<u>.</u>						64			
W			<u> </u>										<u> </u>										
X						<u>.</u>							<u></u>	<u>.</u>									
Y					68								ļ	<u>.</u>							69	68	
Z							<u> </u>									<u> </u>	<u> </u>						_
_					<u> </u>	<u>.</u>							<u> </u>										ļ
unknown (?)					<u>.</u>	<u>.</u>							<u> </u>	<u>.</u>									<u></u>
not sequence	d																						<u> </u>
sum of seq ²					· · - · · · ·									•	:					•	70		
oomcaa¹	6	2	69	64	68	3 6	7 6	4 E	3 4	11	49	70	62	2 6		•					69		
mcaa*		5	T	Α	Υ	٨	1 [L	S	S	L	R	2	5 6	[)	T	Α	V	·Y	Υ	
rel. oomcaa	` }	3970	%66	10%	70%	700	0/06	0h 1 6	90%0	29%	0/00/	100%	%00°		9000	07/0	0/2001	0,096	100%	91%	%66	97%	
pos occupied																		:			1	÷	÷

Table 6A: Analysis of V heavy chain subgroup 1A

j				**						CDR	111									
amino acid'	93	94	95	96	97	86	66	901	⋖	<u> </u>	U	٥	ш	<u>. </u>	9	=		_	×.	10
А	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В		<u></u>																		
. С					1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1	1	14	-			59
E			9				2			1			1			1				
F					1	3	•••••	2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1		1						
1				2	5	2	2		2	2	1	1			1		<u> </u>			
K		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		-2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
Р				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1	ļ	1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
· S		. 1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W			<u> </u>	1	1	3	1	1			2		3				1	5	1	
Х							<u></u>	<u></u>												
Υ		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>												
<u>-</u>				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)			<u> </u>			<u></u>			<u>.</u>	<u> </u>	<u> </u>	<u> </u>	1		1	1		2	3	
not sequenced	1		2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq?	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa ³	66	55	16	20	20) 20) 16	3 21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa*	Α	R	Α	Р	G	·Y	С	S	G	-	-	_	-	-	-	-	-	-	F	D
rel. oomcaa ^s	94%	79%	24%	29%	29%	30%	74%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	910%
pos occupied			·· · · · · · · ·	·· <u>·</u>			;		:	-		:	:	:	:	;	:	;	1	÷

142

Table 6A: Analysis of V heavy chain subgroup 1A

. [Fra	me	wc	ork	IV					
amino acid'	102	103	104	105	106	107	100	00	109	110	Ξ_	112	113	sum
Α				·										67 0
В							<u> </u>							
С							<u> </u>							165
D		1	1		·		ļ							30 8
E	1	1					ļ	<u></u>						297
F	2					ļ								226
G			58		59	1	ļ	1						928
. Н			· • • • • • • • • • • • • • • • • • • •	1			<u>.</u>							14
1	3					ļ	<u> </u>			4				286
K	1			3		1	<u>.</u>							325
L	3			1	<u></u>	ļ		40	1					386
М	1			<u></u>	ļ	ļ		3					·····	189
N				1										176
Р	5			ļ		ļ							1	238
Q				52	•									494
R				1										351
S			<u></u>		<u></u>	-						53		972
T			<u> </u>			5	4			51	:	1	<u></u>	736
V	15		· . ······					1	54		54		1	699
W		59	<u></u>	1	<u> </u>					<u> </u>	<u> </u>	<u></u>		243
X			ļ							<u> </u>	<u></u>	<u></u>		╢
Y	34			l						<u></u>			ļ	542
Z	-		<u> </u>	<u> </u>	<u> </u>	┿	_		<u> </u>		<u> </u>			3
-	1								<u> </u>	<u></u>		<u>.</u>		578
unknown (?)		<u> </u>							<u> </u>					8
not sequenced			÷						: -		16	:	-	=-
sum of seq'	÷	· • · · · · · · · · · · · · · · · · · · ·	•••••••		•••••	•••••		•••••	·	• • • • • • • • • • • • • • • • • • • •	54	;		•
oomcaa,		· *• • • • • • • •	:		••••	*****					54 V	:		
mcaa'	Υ	·					T	. L			v	د	د .	
rel. oomcaa ^s	52%	9.70%	0.00	92%0	0670	0000	%96	71%	%96	93%	100%	98%	9090	0606
pos occupied	٠ <u> </u>)	3	4	7	1	3	ŗ	5	3 2	2	1 :	2	3

Table 6B: Analysis of V heavy chain subgroup 1B

														Fr	ame	wor	k I		-	
amino acid'	-	7	က	4	വ	9	7	ω	6	01	=	12	13	14	15	16	11	18	13	20
А							ı		32							34				
В																				
C																				
D																				
E		1			5	1				35										·
F .																				
G								27							35					
Н			1											1						····
ı																				1
К		3	1									34	33						33	
L			3	26	1															
М				1	1															· · · · · · · · · · · · · · · · · · ·
N																				
Р									1					33			1			
Q	21		20			26														
R	1						·					1	2							
S .							27									1	34			
T									1					1					2	
V	3	21			20						-35							35		34
W												·								
X																				
Y																				
Z																				
-																_				
unknown (?)																				
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	5
sum of seq²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	35
oomcaa ³	21	21	20	26	20	26	27	27	32	35	35	34	33	33	35	34	34	35	33	34
mcaa*	Q	٧	Q	L	V	Q	S	G	Α	Ε	٧	Κ	`K	Р	G	Α	S	V	K	V
rel. oo mc aa ^s	84%	84%	%08	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	92%	97%	100%	94%	97%
pos occupied ⁶		:	:	:	:	:	:	:	:	:				:	-	······································	2	:	1	2

149.

Table 6B: Analysis of V heavy chain subgroup 1B

												_				CDF						
amino acid'	21	22	2, 6	62	74	72	56	27	78	29	30	7	5 <	Κ 0	ر د د	25	33	34	35	36	37	38
Α					30								2				6					
В		<u> </u>		<u></u>	<u></u>						<u> </u>	<u> </u>	<u></u>									
C	<u> </u>	3	5								<u>.</u>	<u>.</u>									•••••	
D		<u> </u>									<u> </u>	<u>.</u>	1				5		1			1
E		<u>.</u>		3						ļ	<u> </u>	<u>.</u>	1									
F		<u>.</u>						2		39	ļ					2	••••••					
G	<u>.</u>				1		40		ļ	ļ		1 1	14				1					1
Н	<u></u>	<u>.</u>							<u></u>	<u>.</u>	ļ	<u>.</u>				3	1		34			<u> </u>
ŀ		<u>.</u>							1	ļ	ļ	1						9			<u></u>	
K		<u>.</u>		28					<u></u>	<u> </u>	<u> </u>	.ļ								<u></u>	<u> </u>	<u> </u>
L		<u>.</u>	<u></u>							1	ļ <u>.</u>	 	1					5	: · · · · · · · · · · · · · · · · · · ·	<u> </u>	2	<u></u>
M								<u></u>	ļ	<u> </u>	<u>.</u>	<u>.</u>						23	·····	<u> </u>	<u> </u>	<u>.</u>
N	300000 							1	<u></u>	<u>.</u>	<u>.</u>	1	3					1	3		<u></u>	<u></u>
Р							ļ	<u></u>	ļ								1	ļ	<u></u>		-	-
Q				2		•••••	ļ						1				1		1	<u></u>	<u>.</u>	
R				2				<u></u>	2	2						1		ļ	<u></u>	<u>.</u>	. <u>.</u>	3
S	. 3	5				40		<u></u>		5	<u>.</u>	2	15			2	1		<u> </u>	<u> </u>	<u> </u>	<u>.</u>
T					3			<u>.</u>	32	2	3	4					1	ļ	<u> </u>	<u>.</u>	-	
V		<u></u>			1	<u></u>	<u></u>		l		<u>.</u>	1	1				2	2	<u> </u>	<u> </u>	3	3
W						<u> </u>						<u></u> .						ļ		4()	
X																		ļ	. 	<u>.</u>	-	
Υ					ļ			3	6				1			32	19)		<u> </u>		
Z				•——		<u> </u>	-				_	_					<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	 -
_				, 	<u></u>									40	·40				<u>.</u>			
unknown (?)				<u> </u>	·											<u></u>		<u>.</u>			
not sequence		5					<u> </u>		_			_					<u> </u>	-	 -	-	+	-
sum of seq	****					••••••		••••				•		40			:	1				:
oomcaa ³	· · ·	٠		*			•••••				····- ·	•••••		40								
mcaa'	ļ	S	С	K	Α	S	. (i Y	<u> </u>	r.	F	T	S	-	-	Y	Y	N	1	1 <u> </u> V	V \	<i>J</i>
rel. oomcaa) ⁵	100%	100%	%08	86%	1000%	9000	200	0000	80% 80%	%86	85%	38%	100%	100%	80%	480%	9001	0,000	0%60	0/00	95%
pos occupie	•				•=									:	:	:	:	•			1	2

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	mev	work	: 11													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	5	52	⋖	മ	ں —	53	54	55
Α		39				1					1				7			1		
В																				
. C										<u>!</u>										
D									<u> </u>					1					1	•••••
E				1				39										1	1	
<u>F</u> .							2						1					1		
G	.			39		28					39	1			1			9	••••••	3
Н																	<u></u>	2		
<u> </u>						•••••				3			34							
<u>K</u>					1														1	
L			1			•••••	37						1				<u>.</u>	<u></u>		
M							•••••			37		2	4	•••••••••••••••••••••••••••••••••••••••						••••
N										<u> </u>				35				20	12	
P			34				1								31					
Q	39				39	*******		1												
R	1					10						4							1	
<u>S</u>	ļ		1			1								2				1	20	
<u> </u>			4		•••••									1					3	
V	ļ													1	1					 .
W	 	<u> </u>					· · · · · · · · · · · · · · · · · · ·		40			33							••••	
<u>X</u>	.	<u> </u>	<u> </u>															a		
Y .					-		<u> </u>						•••••					2		
Ζ						<u> </u>		<u> </u>								40	40			_
		ļ	<u></u>	<u> </u>			<u></u>	<u></u>	<u></u>				••••••••••••••••••••••••••••••••••••••		•••••	40	40		<u>:</u> :	<u></u>
unknown (?)		<u>!</u>	<u> </u>	<u> </u>				<u></u>	<u></u>	<u> </u>							<u></u>		<u> </u>	<u></u>
not sequenced		40	40	40	40	40	40	40	40	40	40	40	۵∩	40	40	۵۵	d۱	4 ∩	40	<u></u>
sum of seq ²		-	÷			:	•••••••	••••••	-	-	:	33		:		:	:	:	:	:
oomcaa,	*******			. 39 G	•	• • • • • • • • • • • • • • • • • • • •	• ;-					W		N 25		40	-	N	S	:
mcaa'		-	-	ļ	<u></u>		•		·····	.						<u></u>		<u>.</u>		
rel. oomcaas	98%	%86	85%	%86	98%	70%	93%	980%	100%	93%	980%	83%	85%	%88	28%	100%	100%	20%	20%	<u>.</u>
pos occupied	. 2	2	4	2	2	4	3	2	1	. 2	2	4	4	5	4	1	1	9	8	}

151

Table 6B: Analysis of V heavy chain subgroup 1B

•	С	DR I	1																	_
amino acid'	99	57	28	29	9	61	62	63	64	65	99	29	89	69	2	17	72	73	74	75
А	1	2			27	2	į			1		1				2				12
В									<u></u>	<u></u>	<u></u>									
C								<u></u>												
D	1	<u></u>								4							35			
Е	2		2			1				1						1				
F	,			4				39						3						
G	15		6		1					34										
Н			1	1													1			
ı		1	1									1	1	13						22
K	2	2	8				36		1							1				
L						1		1	Ī					1						
М									<u> </u>					23				1		1
N	17		18				1										4			
Р																			3	
Q						36			37									ļ		
R			2				1		2		37					34	<u></u>	1		
S	1			2	11		1									1	<u> </u>	<u> </u>	37	
Т		35	2		1		1						39		40	1	<u></u>	38		5
V	1	<u> </u>										38					<u> </u>	<u> </u>		
W											3						<u></u>	<u> </u>		
X																	<u> </u>	<u>.</u>		
Y		<u></u>		33				ļ										<u></u>		
Z									<u> </u>		<u> </u>									
_		<u></u>								<u>.</u>	<u></u>							<u> </u>	<u></u>	<u></u>
unknown (?)			<u> </u>		<u></u>		<u></u>			<u></u>	<u> </u>					ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequenced		<u> </u>										<u> </u>					<u> </u>	<u> </u>	<u> </u>	
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa'	17	35	18	33	27	36	36	39	37	34	37	38	39	•••••		••••••	-	• 🕶 • • • • • • •		22
mcaa*	N	T	N	Υ	Α	Q	K	F	O	G	R	V	T	М	T	R	D	T	S	
rel. oomcaa ^s	43%	%88 88%	45%	83%	9%89	%06	%06	980%	93%	85%	93%	95%	%86	58%	100%	85%	988%	95%	93%	55%
pos occupied		:	:	:	4		1		:	1	1	3		:	:	•	3	3 3	3 2	4

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

•		-		F	ram	ewo	rk II	l												
amino acid'	9/	11	78	79	8	81	82	A	В	ပ	83	84	82	98	87	88	83	8	91	92
А			35									1	2			40				
В										<u> </u>										
C				į																37
D	1					4			<u></u>				19	40			1			
E						35			<u> </u>				19							···
F			1							į		2							2	1
G						1		1	2											
Н									<u> </u>	<u> </u>							į			
1		1														<u></u>	1			
K											1						<u> </u>	<u></u>		
L					2		39			39							2			1
М					37		1							-			2			
N	7							1	2											
Р												1							1	
Q									·											
R	4							2	16		37									
S	27			1				35	20		1	36						1	1	
T	1	39						1			1				40					
V			4		1					1							33			
W																				
Χ																		·		
Υ				39														38	3 5	
Z																				
unknown (?)			•																<u> </u>	
not sequenced			<u> </u>	<u> </u>			<u> </u>										1	1	1	
sum of seq ²		40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	35
oomcaa¹	······	÷	÷	·····	·······	· · · · · · · · · · · · · · · · · · ·	••••••	·········	:	•	37		••••••	:			:	:		-
mcaa'	S	T	Α	Υ	М	E	L	S	S	L	R	S	D	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	9/08	%8	8%	%8	.3%	%8	0/081	9081	· %0:	9081	93%	%0(0/081	%00	%00	100%	85%	97%	90%	95%
pos occupied	9	. 6		<u> </u>	<u> </u>		<u> </u>	œ 5	<u>5</u>	<u> </u>	<u>6</u>	<u>6</u> 4	3	1		1	<u></u>			

Table 6B: Analysis of V heavy chain subgroup 1B

											CDR										
amino acid'	93	94	95	96		6	86	66	<u>8</u>	∢ (<u> </u>	ں	٥	<u> </u>	ш.	<u></u>	I		_	~	101
Α				$\overline{}$	- 7				2					1					5		******
В			<u> </u>	<u>.</u>																	
. C		1	<u> </u>	<u>.</u>			3	••••••			-										
D			7	<u>.</u>		5	2	3	1	5	4		1		2	2	1	2			27
E		·	2	<u>)</u>		1			1	1		2		1		1					
F				<u>.</u>	1	1	3	<u></u> j		2	1	1	1	1					2	15	
G		1	-	7 <u>.</u>	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н	.	<u> </u>						2		<u></u>	1	1									
ı		1			1	1	3	1	1	1	1	1	1					<u> </u>		1	
K		1	1			1				1	1		1		1			1			
L				2	4	4	4	3			1	2	1	1	2		1	<u></u>		2	
М		Ī		Ī	2		1	1								1				4	
N		Ī		1	Ī	1			1		1	1	1			3		1			
P	1		-		6	4				1	1		3	2				1			
Q	1		-			1							1	2	1						
R	1	3	1		5	1	1	3			•••••		1		1				1		
S		1	1	3	3	1	4	3	6	3	2	2	1		1						
Ţ			2	1	1	2	2	1	5	1	1	1		1			1		1	<u> </u>	<u> </u>
V	1	1	<u> </u>	7	1	1		1	3	1	2	-	1			1	2	1			<u> </u>
W	·	1		1		1		2	2		********	1	:				1		4		<u> </u>
Χ						••••••					••••••										
Υ	-	1			5	5	4	2	3		4	3	3	2	1	2	. 5	6	2		
Z		-				••••••					•										
_				1	1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	•
unknown (?)		<u></u>		<u>-</u>	•••••	•••••	<u> </u>			 !										3	
not sequence	··· 🖁 · · · · ·	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	ŀ
sum of seq ²			\Rightarrow	===	=		37	37	37	36	36	36	36	36	36	36	36	36	36	36	3
oomcaa ₁		7 3	····	7	7		······			-		•••••••	20		:	:			:	:	
mcaa'	;	···÷	R 1	.	G	D				-	-	-	-	-	-	-	-	-	-	F	
rel. oomcaa	20%	0.50	0/06/	0/061	%6	40%	40%	740/0	22%	78%	31%	30%	26%	54%	%69	965	9/069	64%	20%	470%	
pos occupied	:	••••	7	•		:		:		;	:		:	:	:				-		5

Table 6B: Analysis of V heavy chain subgroup 1B

amino acid¹ A B C D E F G H I K L M N P	2 1 7		27	105	106	107-	108	109	110	11	112	113	sı 3
B C D E F G H I K L	1		27										3
C D E F G H I K L	1		27										
D E F G H I K L M	1		27									1	
E F G H I K L	1		27					:					
F G H I K L M N	1		27			:	<u>:</u>	<u>i</u>					1
G H I K L M	1		27		:								1
H I K L M N			27										1
K L M					26					1			4
L M N	7												
L M N									3				1
M N				2			Ī						1
N							12			1			2
							2						1
Р	1												1
	1			1									1
Q				23									2
R							1						2
S	3								1		18	18	4
Т						21	6		16		1		3
V	6							21		18			3
w		29		,									1
X									•				!
Υ	11												2
Z													
-	3												3
unknown (?)													
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	4
sum of seq ²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa³	11	29	27	23	26	21	12	21	16	18	18	18	
mcaa'	Υ	W	G	Ω	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	90%	900%	92%	000%	
pos occupied ⁶			: "						ω.	6	ي		

Table 6C: Analysis of V heavy chain subgroup 2

·																Fra	me	woi	kΊ				
amino acid'	_	2	٣	4	ער	۰ د	۵_	7	ω	<u>ნ</u>	. 2	? =		7 .	2 ;	4	15	16	17	<u>—</u>	19	2	?
Α										ļ		3							<u></u>				·
В	<u> </u>	<u> </u>		<u> </u>						ļ		<u>.</u>							<u> </u>				••••
C		<u> </u>								<u>.</u>									<u> </u>				
D	<u> </u>	<u> </u>								<u>.</u>			<u> </u>					<u> </u>	<u> </u>				
E	1	<u> </u>		<u></u>			6		ļ	ļ								2	<u>.</u>			_	••••
F		<u>.</u>							ļ								•••••		ļ				••••
G		<u>.</u>	<u>.</u>						(3								·	<u>.</u>				••••
Н		<u>.</u>	<u></u>						<u>.</u>								·····	ļ					
1		<u>.i</u>	1						<u></u>				<u> </u>						<u>.</u>	<u>ļ</u>			•••
K		<u>.</u>		<u> </u>		3			<u>.</u>						6		1	-	<u> </u>	<u>‡</u>			
L					6								6					ļ	<u>.</u>		6	<u> </u>	
M								<u></u>	<u>.</u>									ļ		<u></u>			
N								1															••••
Р								1			6					6				1			••••
Q		2						ļ											4				
R		<u>.</u>	<u></u>			2														<u>-</u>			•••
S		<u>.</u>	<u></u>						4														
T .			<u> </u>	6		1						2						5		5	<u></u> .,	6	
, V			5	<u> </u>								1		6			<u></u>						•••
W				<u> </u>													<u>.</u>			<u>.</u>			
X				<u> </u>													ļ						
Υ									,														
Z		3								_						<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	_		
-		<u>.</u>	<u></u>																				
unknown (?)	<u></u>					<u></u>													<u>ļ</u>			
not sequenc	- 11	1	1	1	1	1		1	1	1	1	1	1	1	1		1	1	1	1	1	1	_
sum of seq	7	6	6	6	6	6		6	6	6	6	6	6	6	6	(6	6	6	6	6	6	•
oomcaa ³		3	5	6	6	3		6	4	6	6	3	6			-:	6	5	4	5	6	6	
mcaa'		Z	٧	T	L	K	E		S	G	Р	Α	L	V	K	Р		T	0	T	L	Τ.	-
rel. oomcaa	3 ⁵	20%	83%	100%	100%	20%	7000	100%	67%	100%	100%	20%	100%	100%	100%	1000%	200	83%	67%	83%	100%	100%	
pos occupie		3		• • • • • • • • • • • • • • • • • • • •	······			1	3				-		1	1	1		:	2		1	

156

Table 6C: Analysis of V heavy chain subgroup 2

																CD	RI					
amino acid¹	21	22	23	27	t 1	52	56	27	28	29	2	کر -	31	⋖	8	32	33	34	35	36	37	38
Α									. 1					1			1					
В			<u> </u>																			
C		7	<u> </u>	<u>.</u>						<u>.</u>	<u> </u>						2					
D			<u> </u>	<u>.</u>						ļ				1							<u> </u>	
E			<u></u>							ļ										<u></u>	<u> </u>	<u></u>
F					3			6		ļ	1									ļ		
G			<u></u>				7		ļ	<u>.</u>					4		3		3	ļ	<u></u>	<u></u>
Н			<u></u>	<u>.</u>						<u>.</u>		<u>.</u>							<u>.</u>	<u></u>	<u> </u>	<u></u>
1				<u>.</u>						<u>.</u>					1			ļ	<u></u>	<u> </u>	7	<u> </u>
K										<u> </u>	<u>.</u>	<u></u>						<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
L					2			1			6	<u></u>						<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>
M																5		<u></u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>
N													2					<u></u>	<u></u>	<u> </u>	<u>.</u>	<u></u>
Р																		<u></u>	<u></u>	<u>.</u>	<u></u>	
Q			-																<u>.</u>	<u>.</u>		
R	1														2		1		<u>.</u>	<u>.</u>	<u>.</u>	<u> </u>
S				1		6			(6		6	2	4				<u> </u>	4		<u> </u>	<u> </u>
T	6		-	6							<u> </u>	1	3	1				<u></u>	<u></u>	<u>.</u>	<u> </u>	<u>.</u>
٧	1			•	2		•••••									2		7	<u> </u>	<u>.</u>	<u>.</u>	
W		-	1																<u>.</u>	7	,	<u>.</u>
X							•••••												<u>.</u>	<u>.</u>		<u> </u>
Υ						1	•••••	·												<u>.</u>		
Z					•••••	*********															<u> </u>	
																					<u> </u>	
unknown (?)		·	•	····		•••••														<u> </u>		
not sequence	Ħ		<u></u>	- -		•••••															<u> </u>	
sum of seq ²		. :	7	7	7	7	7	,	7	7	7	7	7	7	7	7	,	7	7	7	7	7
oomcaa³	(7	6	3	6	7	7 (6	6	6	6	3	4	4	5		3	7	4	7	7
mcaa*	T	C		T	F	S	G		••••	5	L	S	T	S	G	М	G	V	S	V	V I	
rel. oomcaa ⁵	%OO.	9000	0,001	0/09	30%	0/098	0000	0000	0.50	0/n q s	%98	%98	13%	,7%	57%	,1%	130%	%001	2.00.	0//0	100%	2000
nos occupied	-	-		:		:	:	•	2	2	:		:	:	3				:	:		1
pos occupied	' .L	1		2 :	<u></u>	2	·		<u> </u>	' .i.:			5 ×				ī.l					

/

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

				F	ram	iew	ork	11													
amino acid'	39	40	41	42	43	}	44	45	46	47	48	49	20	5	52	Α	ω	U	53	54	52
Α							6					7									
В																					
С																					
D											: : : : :				2					3	6
E									7		<u>.</u>	<u> </u>									
F											ļ	<u> </u>			2						<u></u>
G		1			7		1				<u>.</u>	<u></u>							<u> </u>		ļ
Н			<u> </u>	<u>.</u>							<u> </u>	<u></u>	2						<u></u>		1
1												<u></u>		6					ļ		<u> </u>
K						6		••••			<u> </u>	<u> </u>							<u> </u>		<u> </u>
L				<u> </u>	<u></u>			7	<u></u>		7		2	1	1				<u> </u>		<u></u>
М			<u> </u>									<u> </u>							<u></u>	<u></u>	<u></u>
N				<u>.</u>						ļ	<u></u>	<u>.</u>	<u> </u>						<u></u>	3	<u>.</u>
Р		5	5	7					<u>.</u>	<u></u>	<u>.</u>	<u> </u>							<u></u>	<u></u>	<u>.</u>
Q	6	<u></u>	<u>.</u>						<u></u>	<u></u>	<u></u>	<u>.</u>	<u>.</u>						<u></u>	<u></u>	<u>.</u>
R	1	<u> </u>	<u>.</u>			1			<u></u>	<u></u>	<u>.</u>	<u>.</u>	2	ļ				<u></u>	<u> </u>	<u>.</u>	ļ
S		1						ļ	<u></u>	ļ	<u> </u>	<u>.</u>	<u>.</u>	<u></u>				<u></u>	2	<u> </u>	ļ
Ţ	<u></u>	<u></u>			<u></u>			<u> </u>	ļ	ļ	. .	. <u>ļ</u>	<u>.</u>			ļ	<u></u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>
V	<u></u>	<u>.</u>						<u></u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>		ļ		<u></u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>
W		<u> </u>	<u>.</u>					ļ	<u></u>	7	, <u> </u>	<u>.</u>	1	ļ				<u>.</u>	4	<u> </u>	<u>.</u>
X		<u>.</u>	<u>.</u>					ļ	<u>.</u>	<u>.</u>	<u> </u>	<u>.</u>			1	ļ		<u> </u>	1	1	<u> </u>
Υ		<u>.</u>						ļ			<u>.</u>				1	1	ļ	<u></u>	ļ		
Z		<u> </u>							<u> </u>		<u>.</u>		<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>
-		<u></u>	<u>.</u>					ļ	ļ	<u>.</u>	.					6	7	7	<u>'</u>	. 	
unknown (?)		<u> </u>						<u></u>	<u>.</u>	<u> </u>		<u>.</u>				ļ	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>	.
not sequence	d	_			_				<u> </u>			<u> </u>	ᆜ_	<u> </u>	<u> </u>		-	<u> </u>	-	-	-
sum of seq ²	7		7	7	7	7	7	7	7	,	7	7	7 7	7	7	7	7	7	7 7	7	7
oomcaa³ -	€		5	7	7	6	ε	5 7	7	7	7	7		? {		: 6	7	7	7 . 4	÷	3 (
mcaa'	0	Р		Ρ (G	K	Α	L	E	V	/ L	Α	Н	1	D	-	-	-	W	D	D
rel. oomcaa ^s	960%	7 10%	0/2-1	100%	100%	.0/098	%98	100%	100%	100%	100%	100%	29%	86%	29%	%98	100%	100%	5.70%	430%	7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
pos occupied	:	:	···· 7 ····	·····			1	1	······		··· <u> </u>	··· - ·····	1 4	:	2 5	;	2	1	1 :	3	3

Table 6C: Analysis of V heavy chain subgroup 2

	C	DR																		
amino acid	26	57	58	59	09	61	62	63	64	65	99	67	89	69	20	7.1	72	73	74	75
Α																				
В									<u> </u>							·				
. C										<u> </u>										
D	5																6	1		
E	1								1											
F		1		1								,								
G																				
Н				1												-				
I														6						
К	1	6							4							6				6
L								7				7								
М																				
N										•							1			
Р						2														
Ω																				
R			2			1			2		7					1				1
S			2		6		7			4			1		5				7	
Т						4				3			6		2			6		
V														1						
W				1																
X					1															
Y			3	4																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	6
mcaa ⁴	D	Κ	Υ	Υ	S	Т	S	L	. K	S	·R	L	T	ı	S	K	D	T	S	Κ
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	. %98	71%	%98	%98	%98	100%	%98
pos occupied ⁶			3	1		:	1		3								2	:	•	

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

_								k II														
amino acid'	9/	22	78	79	C O	8 8	<u>_</u>	85	α	8	ပ	83	6	, u	6 6	80 (87	88	68	96	9	92
Α															1			5			<u>.</u>	
В											<u> </u>	<u>.</u>							•••••	<u></u>	<u> </u>	ļ
· C											<u>.</u>									<u> </u>	<u> </u>	7
D													6			7				<u> </u>	<u> </u>	<u> </u>
Ε											<u>.</u>								<u></u>	<u></u>	<u></u>	ļ
F						1				<u></u>	<u>.</u>									<u></u>	<u>.</u>	<u>.</u>
G										<u></u>	<u>.</u>							2	<u></u>	ļ	<u>.</u>	
Н											<u>.</u>	<u>.</u>							ļ	<u>.</u>	<u>.</u>	
							2		1	<u></u>	<u>.</u>								<u> </u>	<u> </u>	<u>.</u>	
K										<u> </u>	<u>.</u>								<u> </u>	<u>.</u>		<u> </u>
L						6			<u> </u>	<u> </u>	<u> </u>								<u> </u>	<u>.</u>	. 	
M								7		<u>.</u>	<u>.</u>	5							<u> </u>	<u> </u>		
N	5								<u></u>	(3		1						ļ			
Р									ļ	<u>.</u>				7								
Q		7	7							ļ,												
R	<u> </u>	<u> </u>	<u>. į</u>	<u>.</u>						<u>.</u>	<u>.</u>						•••••	ļ				
S .	2	<u>.</u>	<u>.</u>				· · · · · · · · · · · · · · · · · · ·	<u></u>	<u></u>	<u>.</u>	<u>.</u>							<u></u>	<u>.</u>	<u>.</u>		
T		<u> </u>					5		ţ	5	<u>.</u>	<u></u>					7	<u></u>		7		
·V		<u> </u>		7	7							1			6			<u> </u>	<u>.</u>			
W									<u>.</u>	<u>.</u>									<u> </u>	<u>.</u>		
Χ									<u>.</u>													
Y		<u>.</u>						<u></u>	.,	,											7	7
Z		<u> </u>																<u> </u>		<u> </u>	-	<u> </u>
-			<u></u>							1	1	1										
unknown (?)		<u>.</u>										<u></u>							<u>.</u>			
not sequence	₫							<u> </u>			_	_			-		<u> </u>	-	-	-		-
sum of seq ⁷		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa,	!	5	7	7	7	6	ŗ	5	7	5	6	5	6	7	6	·····	7	7	5	7	· -	7
mcaa ⁴	N	()	٧	٧	L	T	N	1 7	Γ Ι	N	М	D	Р	V	D	T	ļ			Υ	Υ
rel. oomcaa ^s	710%	2 6	0,001	100%	100%	969%	710%	1000%	200	0/51/	96%	71%	0/098	100%	%98	100%	100%	2 2	0/01/	100%	100%	100%
pos occunied	r	2	1	1	1	2	1			3	:	3	2	1	2	1	۱ .	1	2	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

									-	CDI	R III									
amino acid'	93	94	95	96	97	86	66	100	A	8	U	۵	ш	ட	9	I	_	_	~	101
А	5							1	2	1		·								
В																			<u> </u>	
C																		<u> </u>		
D																,		<u> </u>		6
E								2			1									
F																			3	
G						1	1		1	2	1	1	1	1						
Н		1		1																
1			3			2											<u> </u>		<u> </u>	
К							1												<u></u>	
L								1		1							<u> </u>		1	
М				·				1									<u> </u>		2	
N				1	2												1			
Р		·		1	1		1		1											•••••
Q			1																	
R		6	1			1			1								<u></u>			
S				1		1	1										<u></u>			
Т				1			1		1	<u> </u>						<u></u>	<u></u>			
V	2		1	1	1		1	1			1						İ			
W						1									1			1		
X-												,								
Υ					2						1	2	1	1	1			2		
Z																				
_										2	2	3	4	4	4	6	5	3		
unknown (?)																	<u></u>	<u> </u>		
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq?	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	5	6	3	1	2	2	١	2	2	2	2	3	4	4	4	6	5	3	3	6
mcaa ⁴	Α	R	١	Н	Ν	١	G	Ε	Α	-	-	-	-	-	-	_	-	-	F	D
rel. oomcaas	71%	96%	50%	17%	33%	33%	17%	33%	33%	33%	33%	50%	9/0/9	67%	%29	100%	83%	20%	20%	100%
pos occupied ^a	2	2	2			5				4	5							:		1

•

Table 6C: Analysis of V heavy chain subgroup 2

		<u> </u>			F	rar	nev	vor	kΝ	′						
amino acid'	102	103	104	105	2	90	107	108	109	110	2	===	112	113	<u> </u>	sum
A											1					35
В		Ī							<u>. i</u>		<u></u>		<u></u>			
C .								<u> </u>					<u></u>			16
D								<u> </u>		<u></u>			<u></u>			43
E		<u></u>						ļ	<u>.</u>				<u>.</u>			21
F		<u>.</u>						<u></u>					ļ			18
G				6		6		ļ					ļ			55
Н	<u>.</u>	<u>.</u>						<u></u>					ļ			6
1		<u>.</u>	<u></u>					ļ								29
K		<u>.</u>	<u> </u>		1			<u> </u>	1	<u></u>						42
L	1	١ [<u> </u>					<u>.</u>	3							78
M								<u>.</u>								20
N		<u>.</u>											<u>.</u>			23
Р		1							1							41
Q					3		<u></u>									23
R					2	••••••	ļ	ļ								41
S		ļ					ļ	<u>.</u>	<u>.</u>	<u>.</u>		<u> </u>		6	3	82
T							<u> </u>	6	1		5					102
V		3					ļ			6		<u> </u>	6			68
W		<u></u>	6				ļ					ļ				29
X												ļ				4
Y		1										ļ				35
Z		_	<u> </u>				╧		_	_		<u> </u>	$\frac{1}{1}$			3
-											 .	ļ				56
unknown (?	В							<u> </u> .								
not sequence			•	1		: -	1	1	1	1			1	1		4
sum of seq	'	6	6	6	••••••	·:·····	6	6	6			5	6	6	3	
oomcaaı		3	6	6		·;		6	3		÷	5	6	6	3 S	3
mcaa'			W	••••••			· -	T	L	V	T		V	S		
rel. oomcaa	a ⁵	20%	100%	100%	50%	1000	2001	100%	50%	100%	%۵۶۵	2	100%	100%	100%	2
pos occupie	d"	4	1	1	3	3	1	1	4	1		2	1	1		1

SUBSTITUTE SHEET (RULE 26)

Table 6D: Analysis of V heavy chain subgroup 3

				. <u>.</u>										Fr	ame
amino acid'		2	3	4	2	9	7	8	6	2	=	12	13	14	15
А					1		1			12		1		3	1
В			1			1							1		
С															
D	1					1				16					
E	110		9		15	166			9				8		2
F											4				
G								181	193	174		1			202
Н			5										4		
												9			
K		5	3										26		
L		1	5	176	43						140			1	
М		12		1											
N					`					1					
Р													1	194	
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
T							1								
V	5	147		1	118						62	195			
W															
Χ											•				
Υ .					•										
Z	8				,										
_															
unknown (?)			·						,		,				
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	
sum of seq ²	165	165	167	179	180	180	180	181	202	205	206	206	206	206	20
oomcaa ¹	110	147	138	176	118	166	178	181	193	174	140	195	162	194	20
mcaa* ,	Е	٧	Q	L	٧	E	S	G	G	G	L	V	Q	Р	G
rel. oomcaas	67%	89%	83%	%86	%99	92%	%66	100%	%96	85%	%89	95%	79%	94%	è
pos occupied	:	•	-				1	.		:		·····	:		:

,63

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	work															
amino acid'	16	17	18	19	22	21	22	23	24	į	7.5	26	27	28		<u> </u>
Α								183	19	2		1				******
В									ļ							
С						1	209									
D																7
E	8							8	<u></u>			3		1	•••••••••••••••••••••••••••••••••••••••	
F		1	1			1			<u>.</u>				201		201	
G	134									2		207				
Н									ļ							•••••
l								2					3	17	1	
K				15												
L			205		201				<u></u>				6		3	
M	1		1											1		<u></u>
N											<u></u> j.			10		1
Р				, , , , , , , , , , , , , , , , , , , ,					١					2	ļ	
Q		``	1													
R	62			191			·					•••••				1
S		206	3			207			4	2	209		<u></u>	15		17
T	4	1	١	2	<u></u>				4	4			1	163		
V	Î				8				7	9				1	6	3
W													<u></u>			
Χ													<u> </u>			
Υ																
Z													<u> </u>	<u> </u>		<u> </u>
_																
unknown (?)															
not sequence	ed					3		3	3	3			÷	_		1
sum of seq					3 209											
oomcaa ³	13	4 20	6 20	5 19	1 20	1 207	20	9 18								1 1
mcaa*	G	S	L	R	L	S	С	ļ	١	A	S	G	F	T	F	
rel. oomcaa)5	0440	9990	93%0	0,550	%66 900		0/2001	98%	92%	100%	9000	0,000	95%	0/02/0	95%
pos occupie							3		7				3		8	4

Table 6D: Analysis of V heavy chain subgroup 3

				CD	RI									F	ram
amino acid'	31	A	8	32	33	34	35	36	37	38	39	40	41	42	43
Α	1			17	80		1			1		187		1	
В															
С												1		1	
D	26			3	7		2				·				
E	1				10									1	
F				5			,								
G	13				31		1					2		209	
Н				4			88								
l	1			1		15			12						
K	7										1				20
L	3					3			2	3	1	2	1		
М						193					`				
N	35			8	3		34								
Р				1			1					4	191		
Q											209		1		
R	7									207		7			
S	103			17	8		72					3	14		
T	9				15		10			`		4	5		
V	2				7	1			197			2			*4*****
W					30			212							
Χ	1														
Y	1			154	19		3								
Z															
-		210	210												
unknown (?)															
not sequenced	2			2	2				1	1	1				
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	21
oomcaa¹	103	210	210	154	80	193	88	212	197	207	209	187	191	209	20
mcaa'	S	-	-	Υ	Α	М	Н	W	V	R	Q	Α	Р	G	Ķ
rel. oomcaas	49%	100%	100%	73%	38%	910%	42%	100%	93%	%86	%66	988%	%06	%66	7010
pos occupied		1	1	9	:			1				:	••••••		

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

:	vork I	l													
amino acid'	44	45	46	47	48	49	20	51	52	⋖	e °	<u>ں</u>	53	54	52
Α	1					77	42		1	2		14		7	
В			3							1					
С													1		•••••
D			1							7			94	8	
E			198						3	2	1		2		
F							7	1	2	1				1	
G	207					33	11		10	46			4	163	8
Н							6			1					
					3		3	191		1					
K								1	37	2	30		3	1	
L		211			5		12	1							
M							1	1							
N							13		7	9	2		13	11	
P		1								1			1		•••••
Q			7				7			10					
R	1						24	1	17	5	1		2		1
S	3			1		102	11	9	118	43		1	74	17	3
T							3	5	4	2		13	12	3	
V			3		204		49	2		1		6			
W				210			1		8	6					
X													4		
Υ				1			22		5	58					
Z															
										14	178	178	2	1	
unknown (?)	I														
not sequence															_
sum of seq ²	212	2 212	212	212	212	212	212	212	212	212	212	212	:	•	
oomcaa ³	207	7 211	198	210	204	102	49	191	118	58	178	178	•••••	163	
mcaa'	G	L	E	W	V	S	V	1	S	Y	-	-	D	G	
rel. oomcaa'	0/086	%001	93%	966	%96	48%	23%	₩U b	26%	27%	84%	84%	44%	77%	
pos occupied		<u> </u>	<u> </u>			• • • • • • • • • • • • • • • • • • • •				1 19	:	· · · · · · · · · · · · · · · · · · ·)

Table 6D: Analysis of V heavy chain subgroup 3

•		DR II				-								· .	
amino acid'	56	57	58	59	09	61	62	63	64	65	99	29	89	69	20
А	9	1	2		174	33		·					1		
В	1	2													
C															
D	11		17			160									
E	8	3	2			1			2						
. F	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
	3	37	2					8					14	208	
К	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			2						
Р	1	1			6	8	18		1						
Ω	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
Т	42	97	5		7								189		1
V		2			10	2		204				1		3	
W			2	Ť											
Х	4		1			1									
Y	9		151	210			1					1	1		
Z															
-															
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa¹	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa'	N	T	Y	Y	Α	D	S	V	K	G	R	F	T	1	S
rel. oomcaa ^r	24%	46%	71%	999%	82%	75%	91%	%96	940%	100%	95%	%86	89%	98%	100%
pos occupied ^a	19	:	······	<u>: </u>		:	:	:	:	1	4	:	5	:	

Table 6D: Analysis of V heavy chain subgroup 3

										Frame	worl	c 111	·		
amino acid'	71	72	73	74	75	9/	77	78	79	8	8	85	⋖	മ	ပ
Α				57			1	8						1	
В											2				
С [
D		199	38		2	2			1				10		·· ···
E		6			4						5				
F							<u></u>		13						
G													1	4	•••••
Н						1			1		2		2		
l			1				2	2				3	1	1	
K					186	6							3		
L								188		209		3	1		212
М	1				2		10	3		2	-	205			•••••
N		5	170		2	188					3		181	10	•••••
Р							1			<u></u>					
Q					7						199				
R	211				1	1							2	8	
S				153	8	10	56		3					186	
Ţ							142				1		4	2	
V				1				11		1		1			
W															
X		2	2			4			<u></u>				1		<u></u>
Υ								``	194	,					<u></u>
Z									<u> </u>						
-														<u></u>	
unknown (?)					ļ										ļ
not sequenced			1										<u> </u>	<u> </u>	<u> </u>
sum of seq ²	**********		211	·····	************	· · · · · · · · · · · · · · · · · · ·	·;·····	**********		• • • • • • • • • • • • • • • • • • • •	:	:	:	:	:
oomcaa,	211	199	170	153	186	188	142	188	194	209	:				21
mcaa*	R	D	N	S	K	N	T	Ŀ	Υ	L	Q	М	N	S	L
rel. oomcaa'	100%	94%	81%	73%	9%8	%68	67%	89%	92%	%66	94%	97%	85%	88%	
pos occupied	2		1 4		3 8	7	' E	. !	5 5	3	:	\$ 4	1 11	1 7	7

Table 6D: Analysis of V heavy chain subgroup 3

amino acid'	83	84	82	86	87	88	83	90	91	92	93	94	95	96	97
Α	 :	149	1			207	===				173	2		9	1
В										•••••••••••••••••••••••••••••••••••••••	•••••				•••••
· C									1	210	•••••	5	2		•••••
D		5	15	209								2	54	7	
E	1	•••••••••••••••••••••••••••••••••••••••	190										11	. 2	1
F .							1		15			1		9	
G	1	1	6			4	. 1				2	8	34	26	3
Н		1							1					3	1
l		8					2						4	15	. 1
К	30											60	4	3	
L							18					1	6	11	
М					2		1							6	
N		1		1								2	20	4	
Р		9									1	3	4	29	1
Q				1								5	3	9	
R	177						·					103	9	3 0	1
S ·		1			1							3	9	8	1
Т	3	28			207		1				25	15	7	6	2
V		9					187				10	1	7	7	1
W										1			3	4	
Χ				1											
Y								211	194				12	9	
Z				-		•									
_													1	3	
unknown (?)															
not sequenced					1	1	1	1	1	1	1	1	7	12	
sum of seq²	212	212	212	212	211	211	211	211	211	211	211	211	205	200	19
oomcaa ³	177	149	190	209	207	207	187	211			*********		•••••		
mcaa*	R	Α	£	D	T	Α	V	Υ	Υ	С	Α	R	D	R	(
rel. oomcaas	83%	70%	· %06	%66	%86	%86	%68	100%	92%	100%	82%	49%	26%	15%	
pos occupied ⁶	<u> </u>	į.	:			:	:	······	:·····································		ω.			20	

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

-					CDR I	11									
amino acid'	86	66	100	Α .	x	، ر	ا د	u.	<u> </u>	ග :	Ι.	_ •	;	× ;	<u> </u>
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	·····
D	11	7	10	4	2	3	10	3	3	1		3	2		146
Ε	6	3	1	13		1	1								1
F	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
·	6	11	4	4	3	1	3	10	3	3	2		1	2	
K	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
M]	1	2								1			32	
N	4	6	4	3	2	2	6				2	5			
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	1					1			·.
R	4	10	9	7	5	5	2	3	1		1		2		
S	16	28	27	25	24	8	11	9	3		2	3	1	1	
Ţ	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1		6	10		
Χ				1											
Y	16	14	17	5	8	18	20	13	20	25	2 8	32	28		
Z															
-	12	21	35	54	73	87	102	110	126	135	134	120	91	71	2
unknown (?)		<u> </u>					3	2	1	1			3		···-···
not sequence	d 14	1 14	14	14	15	19	21	22	23	23	23	25	25	26	2
sum of seq ²	191	3 198	198	197	196	192	190	189	188	188	188	186	186	185	18
oomcaa ₁	3	4 28	35	54	73	87	102	110	126	135	134	120	91	71	·····
mcaa'	G	S	G	-	-	-	-	-	-	-	-	-	-	-	[
rcl. oomcaa	170%	14%	18%	27%	37%	45%	54%	5,80%	67%	72%	71%	65%	49%	38%	
pos occupied			:	:	:	:	•		••••	·· ·	12	1.2	17	8	1

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amew	ork I						
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	•
Α	1		1			2							1
В				1		<u></u>							
С					<u></u>								
D	2						<u></u>						1
E					1								
F	2												
G			140		130		1						2
Н	4								<u></u>				
ı	15	Ī					<u></u>		1	1			
К				13			<u></u>		<u> </u>				
L	10			1			91	<u> </u>				2	1
M							6	<u></u>					
Ν	1	. [1							
Р	17					1	1						
Q				111									
R		·		8									
S	7	1				,					118	110	:
T .	<u> </u>	<u> </u>				123	27		122			1	
V	34	<u> </u>	1			1		125		119			
W		158											
Х													
Y	82											.	
Z						<u></u>							
_	9	2	2	2	2	2	2	2	2	2	1	1	
unknown (?)					<u> </u>								
ot sequenced	27	50	67	75	78	81	83	84	86	89	92	97	
sum of seq ²	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa ³	82	158	140	111	130	123	91	÷	122	····	÷		
mcaa.	Y	W	G	· Q	G	Τ	L	V	T	V	S	S	
rel. oomcaa ^s	45%	%86	97%	82%	980%	95%	71%	98%	0/086	%86	%66	%96	
oos occupied ⁶			·	-		-	:		3		-		

ノブリ

Table 6E: Analysis of V heavy chain subgroup 4

		<u> </u>												Fra	mev	vorl	(I			
amino acid'	_	7	က	4	2	ဖ	7	ω	<u></u> б	2	=	12	13	4	15	16	17	18	19	20
Α									19					1			1		1	
В								<u></u>	<u></u>	<u> </u>										
. С																				
D																				
E						32										44	•••••			
F			,																	
G								54	1	53		-				2				
Н			4		2															<u></u>
1				<u> </u>																<u></u>
K			<u> </u>	<u> </u>	<u>.</u>							1	54					<u> </u>	1	<u></u>
L		7	<u>.</u>	54		<u>.</u>					53	19		1				53		5
M			<u>.</u>	<u> </u>														<u></u>		<u> </u>
N			<u>.</u>													•••••	<u></u>	<u> </u>	<u> </u>	<u>.</u>
Р				<u>.</u>		<u></u>	<u></u>		33					51	1		······	<u></u>	<u></u>	
Q	52	<u></u>	50	<u>.</u>	51	20					ļ					7	<u></u>	ļ	<u></u>	ļ
R	1		<u></u>	<u>.</u>					<u></u>	ļ	<u></u>						<u> </u>	ļ	ļ	ļ
<u>S</u> .		<u>.</u>	<u> </u>	. .	<u>.</u>	<u></u>	33	ļ	<u> </u>	<u> </u>	ļ	<u> </u>			52		<u> </u>	<u> </u>	52	! !
T		<u> </u>	<u> </u>	<u>.</u>		<u></u>	ļ	<u></u>	1	<u> </u>	<u> </u>						52	<u> </u>	<u> </u>	<u> </u>
V	<u> </u>	47	<u>.</u>	<u> </u>	<u>.</u>	1	ļ	<u></u>		<u> </u>	ļ	34					<u></u>	<u> </u>	<u>.</u>	<u>.</u>
W		<u> </u>	<u>.</u>	<u> </u>			20)		<u> </u>	<u>.</u>	<u> </u>					<u></u>	<u> </u>	<u>.</u>	
X		<u> </u>	<u>.</u>	<u>.</u>	<u>.</u>					ļ	<u>.</u>	ļ					<u></u>		<u>.</u>	
Υ		<u>.</u>	<u>.</u>							ļ		<u>.</u>	ļ					<u> </u>		
Z		<u> </u>								<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u>!</u>	<u> </u>	
-		<u>.</u>							<u></u>	<u>.</u>	<u>.</u>	<u>.</u>					ļ			
unknown (?)		<u>.</u>	<u>.</u>						<u>.</u>	<u> </u>	<u> </u>	ļ		ļ	<u></u>	<u>.</u>	<u> </u>			
not sequence			==					1 3	$\dot{-}$		1 4		 -	- -		÷	_	\div		3
sum of seq ²	54	54	1 5	4 54	4 5	3 53		••••	•••••••			54	:	;	:	:		:	:	:
oomcaa'	÷	٠٠٠٠٠٠	··÷·····	54		···•			•-•			3 3 4		-;	• • • • • • • • • • • • • • • • • • • •	••••••		2 5	٠	2 5
mcaa⁴	Q	V	0	L	0	E	S	G	.			V	K	Р	S	E	T	L		
rel. oomcaa ^s	, 96%	870%	930%	100%	96%	20 % 60%	67%	100%	610%	100%	100%	63%	100%	%96	980%	%0°8	9080	100%	%000	20%
pos occupied		3		:	÷		1		1	ì		1 3	3 1	3	3 2	2	3	၁	1	3

Table 6E: Analysis of V heavy chain subgroup 4

														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	4	8	32	33	34	35	36	37	38
A			22											1						
В									<u> </u>			<u> </u>								
C		53													1					
D			1								4	1	1	1			1			
E																				
F	<u> </u>				1				22					1	1				.1	
G	<u> </u>					53	53				21	3	4				8			 .
Н							1							2						
		<u> </u>	1					1	32										51	
K																				
L																			1	
M																				
N										1	1		2	2			1			
Р								3												
Q			<u> </u>								1									
R		<u>.</u>	<u> </u>			1			•	3	2		1							57
S .		<u> </u>	2		-35			51	1	52	25	5	9	1			44		1	
T	53	<u> </u>	29								2	1					3			ļ
V		<u>.</u>		5 5		1			1										3	<u> </u>
W		<u> </u>	<u> </u>					<u></u>				1			2	56		57		<u></u>
Х																				<u></u>
Υ					19		1	<u></u>						48	52			,		<u></u>
Z		<u> </u>						<u> </u>												
_											<u></u>	45	39				<u> </u>		<u>.</u>	
unknown (?)			<u> </u>		<u></u>		<u></u>	<u>.</u>		<u> </u>	<u> </u>	<u></u>				ļ	ļ	<u></u>	<u> </u>	<u></u>
not sequenced	1 4	4	2	2	2	2	2	2	1	1	1			1	1	1			<u> </u>	<u> </u>
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa³	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52	56	44	÷	51	5
mcaa'	T	С	Ţ	V	S	G	G	S	1	S	S.	-	-	Υ	Υ	W	S	W	1	P
rel. oomcaa'	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	9008	70%	969%	93%	100%	77%	100%	89%	1000%
pos occupied	r	•	5	1		;			4		-	:	6	:	······································	<u> </u>	5	1	-	Ţ

Table 6E: Analysis of V heavy chain subgroup 4

٠.					Fra	mev	vork	: 11						\bot									
amino acid'	33	40		, (47	43	44	45	46	47	48	40	?	20	51	52	۷	<u> </u>	o (؛ ر	53	54	52
Α				8	1	·						<u>.</u>	1										
В			<u></u>								<u>.</u>	. <u>ļ</u>					ļ		<u>.</u>				
. С				<u></u>						<u></u>	<u>.</u>	<u>.</u>					<u></u>						
D										<u></u>	<u> </u>	<u>.</u>			· · · · · · · · · · · · · · · · · · ·	1	<u>.</u>	_			1		•••••
E					1				56	<u> </u>	<u>.</u>	<u>.</u>	:	22	•••••		ļ						•••••
F								ļ		ļ				1		1							
G		<u>.</u>			55		5 5						6	1	•••••						1		57
Н		<u>.</u>	2	<u>.</u>						<u></u>		<u>.</u>									24		
1		<u> </u>		<u></u>						<u></u>	5	4		1	54	<u></u>	<u>.</u>						
K						54		<u></u>		<u> </u>	<u>.</u>					<u></u>						<u></u>	<u></u>
L			1				<u> </u>	55		<u>.</u>		2				<u></u>	<u>.</u>						<u></u>
М					,			<u>.</u>	<u></u>						<u> </u>	<u></u>				<u></u>		<u> </u>	<u></u>
N								<u></u>		<u>.</u>						2	1					<u> </u>	
Р		5	50	49				2		<u>.</u>											····		
Q	56	5						<u>.</u>						1								<u></u>	
R						3	2	2	<u></u>	<u>.</u>	<u></u>			9			1					ļ	<u>.</u>
S			3			<u></u>	<u></u>	<u>.</u>	<u> </u>	<u>.</u>				7	<u></u>	<u>.</u>	1					52	<u></u>
T		1	1			<u> </u>						<u>.</u>			<u>.</u>		<u>.</u>				8	5	<u> </u>
V		<u>.</u>										1		<u> </u>		3						<u>.</u>	<u>.</u>
W									<u>.</u>	5	6			<u></u>								. <u>.</u>	
Χ															<u> </u>							<u> </u>	
Y										,	1			15	5	3	2				2:	3	
Z								<u> </u>	<u> </u>					<u>. </u>	<u> </u>			_					<u> </u>
-																		57	57	57	<u></u>		<u>.</u>
unknown (?)														<u>.</u>	<u>.</u>						<u> </u>		
not sequence														<u></u>			- !						_
sum of seq ²	*****			• • • • • • • • • •		-	•••••	7 5		·					•		:	:		:	:		
oomcaa'	******	···· - ·	••••••	• • • • • • • • •	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	5 5	••••			54				4 3	32	57	57	57			
mcaa'	()	Р	Р	G	K	(3 l	_	Ε '	W	1	G	E		l '	Υ	-	-	-	۱ ا	1 5	5 (
rel. oomcaa	, ,	3800	98%	36%	76%	200	0.000	300	9640	0/086	0/086	95%	0/086	3000	0.560	95%	26%	100%	100%	100%	7,00,7	4200	0/2 D
pos occupied	JE	:/.÷	يير			<u></u>	2	 ص	2	2	2		<u>.</u> .		0	2	•••••		:	7		5	

ノチチ

Table 6E: Analysis of V heavy chain subgroup 4

	C	DR	11																	
amino acid'	26	22	28	29	99	61	62	83	64	65	99	29	89	69	70	7.1	72	73	74	75
Α		1									1		1			1				
В																				
· C																				
D			2									1					55			
Е																	1			
F				3														1		••••
G	1									1							ļ			
Н			2															•		
l	1	1										1	1	48		3				
K					1				53									1		5
L						1		55				1				3				
М														7				2		
N	2		40		53								2				<u> </u>			.
Р						54		1							,					
Q		,															1			
R	2								3		56									
S	49		1		2		56			56			1		56			1	57	
Т	1	54	1			1			1				51		1			52		
V	1	1										5 3		2		50				
W																				
X																				····
Y			11	54																•
Z			<u> </u>	·																
-		<u> </u>																		
unknown (?)		<u> </u>	<u> </u>																	
not sequenced			<u> </u>	<u> </u>	1	1	1	1				1	1							_
sum of seq ²	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	5
oomcaa3	49	54	40	54	53	54	56	55	53	56	56	53	51	48	56	50	55	52	57	5
mcaa'	S	T	N	Υ	N	Р	S	L	. K	S	R	٧	T	1	S	٧	D	T	S	k
rel. oomcaa ^s	96%	95%	70%	95%	95%	%96	100%	98%	93%	98%	%86	95%	91%	84%	98%	88%	96%	910/0	100%	7000
pos occupied	•	:	:	:	1	:	:	:	:	:	2	:	5	:	:	:		:	:	

Table 6E: Analysis of V heavy chain subgroup 4

•						mev																	
amino acid'	92	77	78	79	2 6	6 6	0	87	⋖	8	ں ا	83	84	ά α	3 8	9 5	8	88	68	6	-6	9	; =
Α												<u> </u>	5	5 5	7			57			<u>.</u>	<u> </u>	
В				<u>.</u>								<u></u>	<u>.</u>								<u>.</u>		••••
. С				<u>.</u>	<u></u>	<u></u>						<u> </u>									<u>.</u>	5	7
D				<u> </u>		1						<u> </u>				57						<u>.</u>	.
E							1					<u> </u>									-		
F			54	1						1	,	<u>.</u>								·····			
G									1			<u>.</u>								ļ			•
Н												<u>.</u>								<u></u>			 -
				1					1		<u> </u>		3							ļ			
K	3		-	Ī			46		2		<u> </u>	<u>.</u>	<u></u>							<u> </u>			
L		3		1		55		53				2							1	<u></u>			
M							••••••	1				1							1	<u>.</u>			
N	54		Ī	-			3		3	1										<u>.</u>			
P	1		1	•												<u></u>			,	<u>.</u>			
Q		54	ŀ			1	1													<u>.</u>			, .
R	1		1				2	•••••	2					1							<u>į</u>		•••
S .				1	57		2	1	44	55	5	<u></u>	1				2		<u> </u>	<u>.ļ</u>	<u></u>	1	
T				Ī			1		4			!	53				55		<u> </u>	<u>.</u>			•••
V		<u> </u>		1				2			5	4	<u></u>	1					5	5	<u></u>		
W				<u></u>															<u></u>				
Χ							•••••											<u></u>	<u>.</u>				
Υ				1														<u>.</u>	<u>.</u>	ŗ	57	56	
Z							•••••																_
_																		<u>.</u>	<u>.</u>	<u></u>			
unknown (?)							•••••											<u></u>					
not sequence		-		Ī																			_
sum of seq		7 5	7	57	57	57	57	57	7 5	7 5	7 !	57	57	57	57	57	57	5	7 5	7	57	57	
oomcaa																57							
mcaa*	÷	1 (F	5		Κ	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••			Τ	Α	Α	D	T	Α			Υ	Υ	
rel. oomcaa	, 70.1	92%	95%	95%	100%	%96	R10%	930%	20.50	06.77	96%	95%	93%	%96	100%	100%	%96	1000%		96%	100%	980%	
pos occupied	Ī	···· <u> </u>	2	4			:	:			3								1	:	1	2	:

Table 6E: Analysis of V heavy chain subgroup 4

										CDF	R 111				-					
amino acid'	93	94	92	96	97	86	66	100	Υ	8	U	۵	ш	Ľ.	9	工	_	_	~	101
А	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В	<u> </u>		<u> </u>						<u> </u>											
C	<u> </u>	<u></u>	İ		1				1							<u></u>				
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
Е			6	1	1	2	1			1	3	1	2	1						
F			į	4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1		<u> </u>	<u> </u>			1			1				2
1				1		2	4	1	3	2	3		1			<u> </u>	·		1	
К			2	1					<u> </u>	2	2	<u></u>		1			<u></u>	<u> </u>	<u> </u>	
L			2	6	7	3	5	3	2	4	1	5	3	3		1	<u> </u>	<u></u>		
М				1	4		3	1		2	1		_	-					9	
N				3					2	1	1	5	1	1			2			
Р				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Т		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	. 3	1	2	1				<u> </u>			
w			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
Х																				
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
-						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	. 1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa'	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14	31	41
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	%86	5%	50%	10%	.0/08	4%	8%	000	3%	7%	,2%	320′0	0/0/1	909:	%O:	,2%	37%	0,001	37%	%68
pos occupied"		-	-	:	:	:	:	:		:	:			1		:	:	:	:	

Table 6E: Analysis of V heavy chain subgroup 4

									ork]	
amino acid'	102	103	104	105	3	106	107	3	108	109	110	2 ;	_ :	112	113		um
Α								1				1					332
В			<u> </u>													.	
С			<u> </u>				ļ									-{	113
D			<u> </u>													11	210
E			<u>.</u>				-								····	-4	176
F			ļ				ļ			·							135
G			4	1		40	ļ	1		ļ				 .			674
Н	1	<u></u>	<u>.</u>				ļ			<u></u>		1					45
!	9		<u>.</u>				<u></u>	1		ļ							282
K		<u> </u>	<u>.</u>		3		<u> </u>			<u> </u>					ļ		278
L	4	<u> </u>	<u>.</u>				<u>.</u>		19	ļ					<u></u>		540
М		<u> </u>	<u>.</u>						9	1					ļ		43
N		<u>.</u>	_			<u></u>	<u>.</u>	1		<u>.</u>				•	ļ		204
Р	3				2	ļ										2	281
Q	ļ	. .			29												334
R	1	<u>.</u>			4	<u></u>			1	<u> </u>							250
S	1	<u> </u>			1	ļ			<u> </u>					36	3	33	986
T			<u>ļ</u>		1	<u> </u>	-	33		3	÷	34					532
V	12					ļ			<u> </u>		36		36	<u></u>			488
W		4	6				-		<u> </u>					<u></u>			267
X		. <u>.</u>							ļ			···					
Y	1	6							ļ					<u></u>		·	455
Z		<u> </u>	_			<u> </u>			<u> </u>	-			<u> </u>	<u>!</u>	=	_	
-									<u>.ļ</u>				ļ			•••••	460
unknown (?)	- · · · H · · · · ·								-								42
not sequence			$\overline{}$		_								-				1
sum of seq ²	*****	····	•••••		••••••					:		:	36	•			:
oomcaa ¹	÷	••••	*****	******	•		•••••			•		:	36 V			33 S) :
mcaa*					. <u>.</u>		G 	T		L	V	Τ				ر 	
rel. oomcaa	. 6	3470	100%	100%	720%	ر عران	100%	%00a		51%	100%	940%	100%		0/ ₀ 001	940/0	
pos occupied	:	8	1		:	6	1		5	4	1		3	1	1		2

PCT/EP96/03647

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

														Fra	ame	wor	k 1 -			
amino acid'	_	2	ς,	4	5	9	7	8	6	0	=	12	13	14_	15	16	17	28	19	20
Α			Ì		1			1	89		1			1		•				
В									<u> </u>	<u> </u>	<u> </u>					· <u> </u>				
С							1									<u> </u>	<u></u>			
D			•							2							<u> </u>			
E	88	1			2				4	93						92	į			
F																	1			
G	1							92							94					
Н																	į			. .
1									Ī	Ī										9
K			1						••••••			94	94					<u> </u>	77	
L		1	<u> </u>	91		2			1									95		
M											3								1	
N																				
Р				1					1					94						
Q	. 3		92		1	90					••••••				•	3			1	
R			•			1						1	1		1				17	
S							92										94			
Ţ															•••••				-	
V		90			89	•••••	•••••		1	,	91									
					•••••	•••••														
X						•••••							••••							
Υ													••••••							
Z						•••••)	,)				
-																				
unknown (?)	1																			
not sequenced	5	5	5	5	4	4	.4	4	2	2	2	2	2	2	2	2	2	2	1	
sum of seq ²		92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	ζ
oomcaa¹		÷	÷	-	······	:	· · · · · · · · · · · · · · · · · · ·	······	:	.	91				:			95	:	:
mcaa'	Ε	V	Q	L	٧	Q	S	G	Α	Ε	V	Κ	Κ	Р	G	Ε	S	L	K	
	_	_	%										0	.0	0	0	.0	%	٥	
rel. oomcaa ^s	%96	%86	100	%66	%96	970/6	%66	366	94%	₩86	%96	%66	%66	%66	%66	97%	99%	100%	80%	0
pos occupied	:	:	:	}	:	:	1	;	;	÷	:	:		:	:	:	:	7		:

179

SUBSTITUTE SHEET (RULE 26)

Table 6F: Analysis of V heavy chain subgroup 5

														CD	RI					
amino acid'	21	22	23	24	25	56	27	28	53	30	31	⋖	ထ	32	33	34	35	36	37	38
A				3	2					4							8		1	
В		<u> </u>						<u> </u>	<u> </u>	<u> </u>								,		·····
· C		96						1			1					<u></u>				
D								2			2						1			
E						2					1									-
F .					3		6		97					2						
G				92		93					, 1						72			-
H											1			4						
l										4						93				
K			89					1												
L															1				2	
М			1										-	-		1			1	
N			1					2		4	14			2						
Р					1															
Q			4																	
R			1			1		2							1					9
S	94			1	90			84		10	61			2	2		15		<u> </u>	
T	2							5		75	16					2	1			
. V																1			93	<u> </u>
W															93			97		
Χ																				
Υ							90							87						
Z																		<u> </u>	<u>!</u>	
<u>.</u>												97	97						<u>.</u>	
unknown (?)									<u> </u>										<u>.</u>	<u>.</u>
not sequenced	1	1	1	1	1	1	1													
sum of seq'	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	9
oomcaa¹	94	96	89	92	90	93	90	84	97	75	61	97	97	87	93	93	72	97	93	9
mcaa'	S	С	K	G	S	G	Υ	S	F	Ţ	S	-	-	Υ	W	١	G	W	V	F
rel. oomcaa ^s	98%	100%	93%	%96	94%	9/0/6	94%	87%	100%	77%	63%	100%	100%	90%	%96	%96	74%	100%	%96	ò
pos occupied		÷	T.A.		-	:	:	:		:	:	•				:		÷	4	· - · · ·

PCT/EP96/03647

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

				Fra	me	worl	< 11													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	A	8	ں	53	54	55
Α			1			1									1			2	1	
В																				
· C														1				1		
D					••••									14				8	93	
Е					3			97											2	
F												1		2						
G				97	••••	96					95							69	1	
Н														3	1					
<u> </u>										1		75	92							
K		1			94															
L							94			2		2	1							
М		92								89			1							
N																				
Р			96				2							1	9 3					
Q	97				_		1	,												
R		1							,		1	14		•••••				1		
S					••••							1			1			16		ç
T		1			••••							3	1		1					
V		2								5	1	1	2							
W		<u> </u>		•	•••••				94											
Χ				••••																
Y									3					76		••••••				
Z		······································					••••		,							•••••				
-																97	97			
unknown (?)		<u> </u>		••••					•••						••••	••••				
not sequenced		<u> </u>																		
sum of seq'	:=	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	ç
oomcaa¹			96	••••	<u>:</u>	·····	<u>:</u>	÷	····	:	-		·····	•••••		· · · · · · · · · · · · · · · · · · ·	:			ς
mcaa*	÷	÷	Р	G	.		·····	·••••••••	W	÷ • • • • • • • • •	G	ı	ı	Υ	Р	-	-	G	D	••••
rel. oomcaa'	%00 00%	15%	%66	%00	70%	9%	7%	%00	7%	92%	8%	2%	5%	78%	%96	100%	%001	7 1%	%96	
pos occupied ⁶	•	5	•		:	4	:	:	:	:	}	ŧ	:	:	:	:	:	6	:	

18/

PCT/EP96/03647

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

•	·C	DR I																		
amino acid'	26	22	28	23	09	19	62	63	64	65	99	29	89	69	2	7	72	73	74	75
А		6					1									88				
В			<u></u>	<u></u>												<u> </u>				
· C					1					1				•						
D	77					,				2							97			
E	3								2									2		
F				2				91				1		3						
G	1									94										
Н											15									
l		4	1					1				3		88						91
K			2															93		
L						1		4							2					
М		<u>.</u>												3						1
N	2	<u></u>	14	2																
Р	<u> </u>					95	1		1									ļ	1	
Q		ļ							91		81							1	<u></u>	
R	ļ	<u></u>	78						3		1			1			<u></u>	1	ļ	<u> </u>
S	2	2	<u> </u>		95	1	95	1					1		95		<u></u>	<u> </u>	96	1
Т	<u> </u>	85	2	<u> </u>	1		ļ .						96				<u>.</u>	ļ 	<u></u>	4
V	<u> </u>	<u> </u>	<u> </u>	1		ļ	<u></u>		ļ		<u></u>	93		2		9	<u> </u>	<u> </u>	<u> </u>	<u></u>
W	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	ļ	<u></u>		<u></u>	<u></u>	<u> </u>						<u></u>	<u> </u>	<u> </u>	<u> </u>
X			<u> </u>	<u></u>	<u></u>		ļ		ļ	<u> </u>	<u> </u>						ļ	<u> </u>	ļ	
Y	12		ļ	92	ļ	ļ	ļ	ļ	ļ	<u></u>	<u></u>						ļ			
Z		<u>!</u>	<u>!</u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>							<u> </u>	<u> </u>		<u> </u>
-		<u> </u>	<u>.</u>	ļ	<u></u>		ļ				ļ	ļ					ļ	<u> </u>	. .	<u> </u>
unknown (?)		<u>.</u>	<u>.</u>				ļ	<u></u>	ļ	<u></u>	<u> </u>	<u> </u>					<u> </u>	-	<u>.</u>	<u> </u>
not sequence					_		<u> </u>	<u> </u>				-					_	<u> </u>		<u>: </u>
sum of seq ²		·÷·····	97	·····	· 	•;•••••			·	· · · · · · · · · · · · · · · · · · ·	· - · · · · · ·	· ······	······	:		:·····	7	· - · · · · · · ·	:	97
oomcaa [,]	·	. 	78	÷	. 	• • • • • • • • • • • • • • • • • • • •		•••	÷	÷	· - · · · · · · ·	•		88	:		· · · · · · · · · ·	· - · · · · · · ·		91
mcaa'	D	Ţ	R	Υ	S	Р	S	F	Q	G	Ω	V	T	1	S	Α	D	K	S	
rel. oomcaas	79%	88%	%08	95%	%86	%86	%86	94%	94%	97%	84%	%96	%66	91%	98%	91%	100%	%96	9006	94%
nos occupied	٠ (-	:	:	1	:				1			:	:	:		1	;	•	2

182

SUBSTITUTE SHEET (RULE 26)

Table 6F: Analysis of V heavy chain subgroup 5

•				F	ram	ewo	rk II	i						<u> </u>						
amino acid'	9/	11	78	7.9	8	81	82	٧	ω	ပ	83	84	82	98	87	88	68	06	91	85
А		1	91								1	96				93			_	
В		<u></u>	<u> </u>						<u> </u>	<u> </u>										
C							1		<u> </u>									<u> </u>		95
D				1					<u> </u>					96					· [•••
E						1					1									
F				1													<u></u>	2	6	
G								3	1							4				
Н						3											<u></u>	<u></u>		
١															2		9			· • • • • • • • • • • • • • • • • • • •
K											91						1			
L					96					97							2			
M																	84			
N	7							2	2						2					
Р			1																	
Q						93														
R	1					·	1	1	3		3						į			
S -	87	2	1	1				90	91				96		5		<u> </u>			
T	2	94	2					1	·		1	1	1		88		1			
V			2		1									1					-	
W							95													
X																				
Y				94														94	89	
Z																				
-																				
unknown (?)			<u> </u>																	
not sequenced																		1	2	2
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	95
oomcaa¹	87	94	91	94	96	93	95	90	91	97	91	96	96	96	88	93	84	94	89	95
mcaa*	S	T	Α	Υ	L	Q	W	S	S	L	Κ	Α	S	D	T	Α	Μ	Υ	Υ	С
rel. oomcaa ^s	%06	37%	94%	37%	966	%9€	9/086	93%	34%	100%	94%	%66	990%	99%	910%	96%	87%	%86	94%	100%
pos occupied ⁶		3	:	:	-	:	•	:	:	:	5	÷	:	:	:	:		:	;	:

Table 6F: Analysis of V heavy chain subgroup 5

										CDR										
amino acid'	93	94	95	96	97	86	66	100	Α.	<u>~</u>	ں	0	u	<u>.</u> (Ξ ·	-	- :	<u>~</u>	101
А	92	ξ	1	1	2		3	4	3	2		1			1			4		2
В																		<u>.</u>		
C						1	1	1			2		1					.		
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
E			1	1	1	2			1	1				1			1			
F				<u></u>	1		3			3	2		1					·	26	
G			1	9	11	12	12	5	2	4	3	10	2	1				5		
Н			10	1		2			1	1		1					<u>.</u>			
				3		2	2	1	1	4	1	1		1	1		<u>.</u>			
<u></u> К		1	1	1		1	3	1								2				
L _.		Ī	11	2	3	1	1	2	5		1		1		1	<u> </u>	<u> </u>			
M		1		-	2	1	1		1	1	1	1							10	
N		<u> </u>		1		2		1	1	2			1					2		
P		1	5	1	4	3	1	2				1	1	1	1					
Q	1	1	3	2		1	1	4	2	1	2									
R		92	2 7	9	2	2		2	1		2						į			
5		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
. T	1	-	1	3	3 2	1	2	6	3	3	6	1		1						
V	2	2	2	2 4	1 4				7	2			1							
W		1	••		- 	··[·····				••••••	1		2		1		1	1		
X	1	1	· † · · · · ·					•		••••••				•••••						
Υ	-	<u> </u>	··•	1	1 6	3 3	6	9	8	7	2	1	2	6	8	9	9	10		
Z		1								•		(
	╚	T		Ť	İ		1	2	8	10	16	23	30	30	31	32	30	22	7	
unknown (?)		· •											1				1			
not sequence	d :	2	2 5	2 5	2 52	2 52	2 52	2 52	52	52	52	52	52	52	52	52	52	52	53	5
sum of seq?									45		•	•	•					:		:
oomcaa,	·····	··÷····	•••÷••••		••••	••••••••	••••••••		8 (********	7		:		:		• · · · · · · · · · · · · · · · · · · ·	:	:	:
mcaa¹			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	· · · · · · · · · · · ·	;	:		Υ	÷	-	-	-	-	-	-	_	-	F	
rel. oomcaa ^s	270%	370%	240%	0/-+-7	240%	27.00	27.0%	20%	18%	22%	36%	51%	9/0/9	%29	%69	71%	%29	49%	29%	
pos occupied		••••	····		:	••••		••••				-				:		-	-	

184

SUBSTITUTE SHEET (RULE 26)

Table 6F: Analysis of V heavy chain subgroup 5

					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
А			-									1	611
В													
С.													205
D	1	•••••											458
E				1									404
. F	2												256
G			41		41								1065
Н													44
1	9								2				588
К				3									650
L	2						25	1					549
M							8						303
N													64
Р	2					1					1		414
Q				34									612
R				3									351
S	2										40	39	1545
Т	1					40	8		39				604
V	11							40		41			594
w .		43											432
X													
Y	13												738
Z													
_	2												635
unknown (?)													4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq ²	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa ³	13	·····		34	41	40	25	40	39	41	40	39	
mcaa¹	Y	W	G	Q	G	T	L	V	T	V	S	S	
rel. oomcaa ^s	29%	100%	100%	83%	100%	98%	61%	%86	92%	100%	98%	98%	
pos occupied ⁶	10	1	1	4	1	2	3	2	2	1	2	2	

1 85

Table 6G: Analysis of V heavy chain subgroup 6

																Fra	mev	vork				
amino acid'	-	7	۰ ،	γ ·	4	ഹ	9	7	8	6	2	÷	_	12		4 :	<u>-</u>	9		<u> </u>	- 19	70
А				<u></u>							<u>.</u>	. <u>.</u>		1						<u></u>		
В				<u></u>						<u></u>	<u> </u>	<u>.</u>										
С										<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>									
D										<u></u>	<u>.</u>											
E		<u></u>									<u>.</u>											
F		,									ļ											
G	ļ	<u>.</u>							52	ļ	6	7										
Н	 	<u></u>							ļ	ļ		<u>ļ</u>										
1	 	<u> </u>							ļ	ļ												···•
K		ļ						<u></u>	<u> </u>	<u>.</u>					68							
L		<u> </u>	<u></u>		52		-		<u></u>			<u> </u>	68	1						67	1	68
M		<u> </u>										<u> </u>										<u></u>
N		ļ						ļ														<u></u>
Р								<u></u>		6	8					67					1	<u></u>
Q	52) :		52		51	52											68		•••••		
R						1		-	-			1										
<u>S</u>				<u>.</u>				52	2							1	68				66	<u></u>
T		<u>.</u>					<u></u>				<u>!</u>		•••••					•••••	68		<u> </u>	<u> </u>
<u>V</u>			52			<u> </u>						<u> </u>		66					<u></u>	1	<u></u>	<u> </u>
W								-	_												<u>!</u>	<u> </u>
X		. <u>.</u>				<u> </u>				_							•••••		<u></u>	<u></u>	<u> </u>	<u></u>
ΥΥ																	-,		ļ	<u></u>	<u>.</u>	-
Z			_							<u> </u>								<u> </u>	<u> </u>	<u>!</u>	<u>!</u>	<u>! </u>
- (2)					ļ									<u></u>					<u></u>	<u> </u>	<u>.</u>	
unknown (?) not sequence		<u>i</u>	22	22	22	22	2	 2. 2	2 2	2	6	6	6	6	6	6	6	ε	: 6	; ; (3 (6
sum of seq				_								==			68						===	
oomcaa ¹	*****	****		• • • • • • • • •		••••••	•••••••	*******	*****				•	:	68	:	;					
mcaa'	******		V	• • • • • • • • • • • • • • • • • • • •	L		•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••		G		V	:	Р	S	: '	:		S	
rel. oomcaa	5	0/2001	%001	%001	100%	0/086	7000	0,000	0000	100%	100%	0,066	100%	9/0/6	100%	%66	100%	100%	100%	0,000	2,070	0/2/6
pos occupie	46	÷		·	·÷·····						1		<u> </u>	·†···•	3 1	1		· · · · · · · · · · · · · · · · · · ·	1	·	2	:

PCT/EP96/03647

Table 6G: Analysis of V heavy chain subgroup 6

														CD	RI					
amino acid'	21	22	23	24	25	56	27	28	29	8	3	⋖	8	32	33	34	35	36	37	38
Α	1		67											66	67					
В			<u> </u>	<u></u>																
С		68																		•••••
D							68				1						1			
E																				·
F							<u></u>			2				1	1				. 1	
G			1			69							3	1	2					
Н																	1			
l				64								2			,		1		70	
K												3								
L								<u></u>												
М																				
N							1		į		2	66					70			
Р																				
Q																				
R									·		2	1								7
S	1			1	6 9			69		68	66		67		3		1			
Ţ	67										2	1	4		1					<u></u>
V			1	4					70					6					2	ļ
W		1														74		74		<u> </u>
Χ									-											<u></u>
Y												1							1	
Z																				
_																		<u> </u>	<u></u>	
unknown (?)											1							<u> </u>	<u> </u>	<u></u>
not sequenced	5	5	5	5	5	5	5	5	4	4								<u> </u>		-
sum of seq ²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa,	67	68	67	64	69	69	68	69	70	68	66	66	67	66	67	74	70	74	70	7
mcaa*	T	С	Α	١	S	G	D	S	٧	S	S	Ν	S	Α	Α	W	N	W	1	1
rel. oomcaa ^s	%21	9%6)2%	3%	%001	100%	9006	%001	100%	37%	39%	39%	91%	39%	31%	100%	95%	100%	95%	300
pos occupied	:	:	:	:	:	;				:	-		:	:	:	:	:	-	Ţ	

Table 6G: Analysis of V heavy chain subgroup 6

				1	Fran	new	ork	11														
amino acid'	39	40	41	- 5	7 6	£ ;	4 4	45	46	47	48	49	20		<u> </u>	7 <	((י מב	ပ —	23	54	55
Α					1								<u>.</u>		1				<u></u>	-1	•••••	
В													<u>.</u>									
С											,,,,,,,		<u>.</u>									
D													<u>.</u>									
E		<u> </u>							74				<u>.</u>								ļ	<u></u>
F													<u>.</u>			2	1			1	ļ	ļ
G							74					74	!	1							1	
Н		<u> </u>		<u></u>	<u>i</u>							ļ					1				ļ	<u></u>
l		<u>!</u>	<u> </u>	<u>.</u>								ļ	<u>.</u>									<u>.</u>
K	1	<u>.</u>				1						<u> </u>						1			66	<u>.</u>
L	1	<u>.</u>	<u>.</u>					74			74	ļ									<u></u>	<u>.</u>
M		<u>.</u>										<u>.</u>								<u>.</u>	<u>.</u>	.
N												<u>.</u>								<u></u>	1	<u>.</u>
Р		.,	<u></u>	73						·····	<u></u>	<u>.</u>								<u></u>		
Q	72	2									<u></u>	<u>.</u>										-
R		<u>.</u>				73					<u>.</u>	<u>.</u>	7	73				72		<u> </u>	.	<u> </u>
S			74	1	73						<u>.</u>		_					1		72		<u>.</u>
T		<u>.</u>						••••	<u></u>	ļ	<u></u>	<u>.</u>	<u></u>		73					<u> </u>		5
V		<u>.</u>					•••••		ļ	<u> </u>	<u> </u>								<u> </u>	<u> </u>		
W									<u>.</u>	74	<u> </u>								ļ,			
X										-									<u></u>	-		
Y										ļ						72	72		ļ	<u>.</u>		
Z									<u> </u>	<u>!</u>		-		_				<u> </u>	<u> </u>	+	<u> </u>	$\stackrel{dash}{ o}$
-																	•••••		74	1		
unknown (?)					<u> </u>				<u>.</u>	<u>. </u>								<u> </u>			
not sequence	===	4						-	-	_	-	-	-									
sum of seq	1		· · · · · · · · · · ·			74	·•••••	-:		*********			••••	:				:	:	- 1		:
oomcaa¹		• • • • • • • • • • • • • • • • • • • •		•		73	• • • • • • • • • • • • • • • • • • • •	••••••	*********					:				1				
mcaa'	ļ			Р	<u>.</u>		G	L				···-	· - -	R	T	Υ	: :	R	.			
rel. oomcaa) ⁵	0/n/6	100%	%66	99%	%66	100%	100%	100%	100%	0600	0/2001	100%	0,66	0/066	0/0/26	97%	970%	, , ,	0,00	9700	8300
pos occupie				•	1	1	:	:	:	:					:	2	:	3 :	:	1	3	5

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

•	С	DR	11				-							·						
amino acid'	99	22	28	29	8	5	62	3	64	65	99	29	89	69	70	71	72	73	74	75
А					73	1						·	2			6		1		
В																				
С				1										,						
D			68			1									2		73			
E	1		3			7	`		1											2
F	7									Ī								٠		
G			1				1			8										
н	1																1			
ı						1						65	2	71				1		
К		1							67						1					70
L	1					5		2				4						1		
М												1								
N	2	65	1						1						69					
Р					1	1										66				
Q									2		1									
R		1							3		73									
S	2	2	1	1			73			66			1		2	1			73	
Т		4											69	1				71	1	2
V						58		72				4		2		1				
W																				
Х								·												
Y	60	1		72											·					
Z																				
-												,				,				
unknown (?)						••••														
not sequenced																				
sum of seq ²		74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa¹	60	65	68	72	73	58	73	72	67	66	73	65	69	71	69	66	73	71	73	70
mcaa¹	Y	Ν	D	Υ	Α	٧	S	٧	Κ	S	R	ı	Ţ	1	Ν	Ρ	D	T	S	K
rel. oomcaa ^s	81%	988%	95%	92%	%66	78%	%6()7%)1%	39%	99%	9/088	33%	%96	93%	%68	99%	%96	99%	95%
pos occupied"		6		:			_	:			į				:					

1509

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

					Fr	am	ewo	rk II	<u> </u>													
amino acid'	9/	11	78	0 (ર :	8	81	82	⋖	8	ں	83	84	5 0	6	8	84	88	83	90	9	92
Α															1			74				
В				<u>.</u>	<u></u>							<u> </u>	<u>.</u>									
· C			<u>.</u>	<u></u>								<u> </u>	<u>.</u>									73
D			<u> </u>						3		<u></u>	<u> </u>				73						
E			<u>.</u>								<u> </u>	<u>.</u>		7	73							
F		ļ	7	71						1		<u></u>									3	
G		<u></u>					•••••					<u>.</u>				1						<u>.</u>
Н		<u></u>		<u>į</u> .			2	<u></u>	1		ļ	<u>.</u>								<u></u>		<u></u>
1		<u> </u>	<u>.</u>	1				<u></u>			<u></u>	<u>.</u>							2	<u> </u>	ļ	<u> </u>
K		<u> </u>	<u>.</u>	<u>.</u>				<u></u>	4	<u></u>	<u>.</u>	<u> </u>								<u> </u>	ļ	<u></u>
L			1	<u></u>		74		72	<u></u>		<u>.</u>	<u>.</u>							<u>.</u>	<u> </u>	<u> </u>	ļ
M		<u> </u>						1		ļ	1	<u> </u>							2	<u> </u>	<u> </u>	<u></u>
N	74							<u></u>	63	<u></u>	<u>.</u>							·····	<u>.</u>	<u> </u>	1	<u></u>
Р								<u>.</u>	ļ	<u>.</u>	<u>.</u>			70					ļ		ļ	
Q		7	2				71												ļ	<u>.</u>	ļ	<u>.</u>
R	<u></u>	<u></u>	1				1		1		<u>.</u>								ļ	<u>.</u>	<u>.</u>	
S .	<u> </u>	<u> </u>			74		ļ		1	73	3	<u></u>	1	3					<u> </u>	<u>.</u>	ļ	<u></u>
T		<u>.</u>					<u></u>	<u>.</u>	1	<u> </u>		7	3				74		<u> </u>	1	<u> </u>	<u>.</u>
V		<u>.</u>		2			<u></u>	1	<u>.</u>	<u>.</u>	7	3							70)	<u> </u>	<u> </u>
W	<u></u>						<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>						ļ	<u>.</u>	<u>.</u>	<u>.</u>	
Χ										<u>.</u>	<u>.</u>							<u></u>	<u>.</u>	<u>.</u>	<u>.</u>	
Y											<u>.</u>									7:	3 70)
Z						<u> </u>	<u>!</u>													<u> </u>		<u> </u>
-																	<u></u>	ļ				
unknown (?)		<u>.</u>	<u></u>									<u>.</u>				. 	<u></u>	<u></u>				
not sequence	d			_										1				<u> </u>				
sum of seq ²	7	4 7	74	74	74	74	1 7	4 7	4 7	4 7	4 7	4	74	73	74	74	74	7	4 7	4 7	4 7	4 7
oomcaa ³	7	4	72	71	74	74	1 7	1 7	2 6	3 7	3 7	3	73	70	73	73	74	7	4 7	0 7		
mcaa¹	٨	1	Q	F	S	L	C	l l	١	1 5	١ ,	/	T	Р	Ε	D	T	Δ	\ \	Y	Υ	' (
rel. oomcaa ^s	1000%	0/2001	97%	%96	100%	100%	2000	30%0 070%	0//0	0,500	33%	99%	%66	%96	99%	%66	100%	1000%	0000	93%	00	95%
pos occupied	:	:	:		:	:	:	:		:							:				-	÷

Table 6G: Analysis of V heavy chain subgroup 6

	CDR III																			
amino acid'	93	94	95	96	97	86	66	100	٧	ക	U	۵	ш	ட	9	工			×	101
А	69		11	1	3	12	4	3	2	5		8						10	1	
В											·				,					
С					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1		-					62
E			10	4	2	1	2	2	1	· 2							1			
F	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		
1				1	2				:											
K		1	1	1	1	1	1	1				1			,					
L			1	8	4	2	3	2	1					1	5				8	
М				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2					1	1			
Т			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	- 5	1	1					2	
W			1	6	8		3	2	4								4	4		
- X							·													
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
-				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				
not sequenced				1	2	2	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa³	69	69	.19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	·28	38	62
mcaa'	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	_	-	-	-	F	D
rel. oomcaa'	93%	33%	⁷ 6%	14%	21%.	21%	061	32%	35%	0/091	57%	65%	74%	,5%	,9%	0/08/	90%	%6{	53%	%9 <u>{</u>
pos occupied ⁶								:										_	_	

191

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

ſ	Framework IV												
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum
Α							2						494
В													
С		*****				<u>-</u>						.	147
, D	****				Ī	<u>-</u>		1					403
E		****		· -	····· ·								186
F	2				-						2		150
G			49		50								571
Н	2				•••••								18
1	9					3		1					304
·K				1			1						293
L	5						26						632
M							8						31
N													436
Р	4			6								1	387
Q				40									539
R				2									495
S	4		1			1					43	46	1271
T						45	4		45				640
V	21				·		2	46		48			647
W		65					5						398
X						<u>.</u>	<u></u>						
Y	19				<u>.</u>								518
Ζ .				<u> </u>									
-	2			<u></u>	<u> </u>	<u> </u>	<u>.</u>			•			585
unknown (?)				<u> </u>	<u> </u>	<u> </u>		<u>.</u>					13
not sequenced	5	8	23	24	23	24	25	25	28	25	28	26	580
sum of seq²	68	65	50	49	50	49	48	48	45	48	45	47	
oomcaa ³	·····		·÷·····	÷	÷	÷	• • • • • • • • • • • • • • • • • • • •	46	45	;	; - · · · · · · · ·	•	
mcaa ⁴	V	W	G	Ω	G	T	L	V	T	٧	S	S	
rel. oomcaas	%	100%	0%	%	100%	%	%	%96	%0(00%	%9 6	%86	
		· <u>i</u>		·	· -	•	;		:				
pos occupied ⁶	9	1	2	4	1	3	3 7	3	1	1	2	2	

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- 5 Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L, Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- · 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401–1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98–103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989) J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991) Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158–3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
 - Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
 - 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
 - Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249–5263.
 - Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
 - 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
 - 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
 - 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
 - 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
 - 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
 - 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- Klobeck, H.G. Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671–3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur J. Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349–362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl.Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501–1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur. J. Immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

/స్పో

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931–2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-550.

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848–852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301–306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020;
 Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581–597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349–362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

59 Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971) Z.Physiol.Chem., 352, 247-266.

- Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)

 J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol. Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 6 Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas III, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812–823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529-1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727–738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Treia, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 26 Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110–118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991) Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087–2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903–1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1337–1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717–1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994–3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839–2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) BiochemJ., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115–1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.lmmunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25. 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur J. Immunol., 21, 1821-1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495–3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Grodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

212

SUBSTITUTE SHEET (RULE 26)

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843-1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003-2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986) J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047–1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501-2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405–4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter, G. (1992) J.Mol.Biol. 227, 776-798.

2/3

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.lmmunol., 23, 832-839.
- 22 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193–203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- **9**. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14 The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- 41. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, anddeducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- 42. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- 50. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(c) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

 \propto

YWA

0 0 K P G Q P P

A W Y

>-Z

z z

Figure 2A: VL kappa consensus sequences

	C	Ī		1					75		2	R
ļ	8	,		1	>			=	53	S	Z	S
_	\forall	ı	2	S	2			CDR	25	S	S	S
CDR	72	O	0	O	O			ט	ιs	×	9	\forall
	97	\ \	S	S	S				09	A		9
	52	⋖	2	\forall	S				6t	>	>-	>
	74	8	\propto	\propto	\propto				84	-	-	_
	23	ر ا	\mathcal{O}	\mathcal{O}	S				L t			لب
	77		2	2	Z				97			
	12	—	 .	_					St	҈⊻	Ö	\propto
	50	├	2		⊢			< 2	セセ	م	۵_	۵
	6 l	>	\forall	\forall	V			framework	£4	A	S	A
İ	81	~	۵.	\propto	\propto			eW	7Þ	\prec	0	O
	11		ш	ш	щ			am	lt	9	9	G
	91	9	9	9	G			fr	04	Ь	ط	٩
	SI	>	Д	م.	_				38	∡.	\checkmark	$\mathbf{Y}_{\mathbf{y}}$
~	カし	S	—	S	S				38	0	O	O
framework	13	X	>		>				37	0		O
le S	12	S	ط	S	\forall			,	36	λ.	>	≻
am	11	_	لــــا		 J.				35	8	≥	>
± Ψ	Οι	S	2		S		İ		34	A		⋖
ļ.	6	S		\forall					33		لــــ	
	8	م	ط	ط	σ.				35	>	<u>></u>	>
	1	S	S	S	S				30	5	Z	
	9	O	0	0	0			CDRI	30	S	>-	
	S	-			_			၁	57	- 5	9 N	< >
	3	Q	∑ >] · /	∑ >				28	9 -	_	1
	5			_	_				E			1.1
	2		_	_	_				E D	1		1
L_	l			3	4	j .	Į		u .		 	
•		VK1 D (VK2	VK3	VK					VK1	VK2	VK3

											,	
	7 8	A	9	A	A							
	83	ட	>	ட	>							٠.
	85											
	18	ш	ш	ىب	ш							
	08	ط	V	٥	A			,				
	64	0	ر س	ш	0	:		60l		—	—	_
	87		>					108	8	\propto	\propto	R
	LL	S	α	S	2			201	\prec	\checkmark	\checkmark	\prec
	94	S	S	\mathbf{v}	2	'		901	_			_
	SZ	_					4	SOL	ш	L	ш	ш
	77	-	\checkmark				20	70l	>	>	>	>
3	23		ن				framework	103	\prec	\prec	\leq	\prec
	72	⊢	Н	-	-	E .	am	105	—	—	-	_
framework	11	ட	ш	ட	4		fr	ιοι	9	9	G	9
nev	02		0					100	0	0	O	O
ran	69	—	<u> </u>	-				66	9	9	G	9
٠ ٣	89	9	9	G	9			86	4	Ц.	ட	ц_
	Z 9	S	2	S	2			۷6	⊢	 		—
	99	G	9	9	9			96	م	ط	٩	۵_
	99	S	S	S	\sim			96		۵	٥	Ь
	79	9	9	٦	9		_	⊅ 6	 	-	-	
	£9	S	S	2	2		<u></u>	63	-	 	_	
	79	ш	ш	Li.	ட		CDRI	76	 >	· >-	>	>-
	19	2	\propto	α	\propto			16	工	工	I	エ
	09	S		A	0			06	0	O	Q	Q :
	69		4	٩	٥			68	0	0	O	O
	88	>	· >	>	>		x 3	88	0	\mathcal{O}	\mathcal{O}	\mathcal{O}
	129	9	9	9	9		VO.	78	>	>	>-	> -
CDRII	99		S		2		16,4	98	>	>	\ \	/
	92				للا		framework 3	85	<u> </u>	>		<u> </u>
		VK 1	/K2	VK3	VK4		4		VK 1	VK2	VK3	VK4
		>	• >	> >	>							

Figure 2B: VL lambda consensus sequences

	1				,		1			
	28	_	>				Z S	9	9	9
	3	Z		ŧ			99	S	S	2
=	D	S	S	1			99	۵_	ط	ط
CDRI	72	S	S	A		=	75	<u>حر</u>	\propto	\propto
	97	S		0		CDR	53	a	Z	0
	52	9	G	G		ں	25	Z	S	S
	77	2		2	1		lS	Z	>	
	23	C	\mathcal{O}	J	Ĺ		09		0	
	77	S	S	S			67	>	>	>_
	12		—				84	_		
	20		\vdash	\propto			74	-	Σ	>
	6l	>		A			97			
	18	<u>ح</u>	S	—		ļ	St	\times	\checkmark	>
	11	a	0	0		7	77	ط	۵	٥
	9١	ပ	9	9		9	43	A	\forall	A
	SI	م	ط	Д		framework 2	74	⊢	\checkmark	Q
-	tl	⋖	\sim	\forall		an an	lt	9	9	9
ork	13	9	9	>		<u>.</u>	07	مـ	Д	ه .
framework	15	S	S	S			38	_	工	\prec
am	ll	>	>	>			38	0	0	0
fr	01	ı	ı	ı			32	0	0	O
	6	S	S	2			98	>	>	>
·	8	م	A	Д			35	\geq	≥	≥
	L	Q P	Δ.	٥			34	2	S	S
	9		O	0			31 A 32 33	S / / -	>	\forall
	9 5 7 8 7	 -	-			-	35	>	>	>
	Þ				j	CDRI	A		Z	1
	3	>	A	ш		۱ .	15	Z	>	\leq
		S	2	S			30	G S N	9	0
	L	0	0	2	. [57		9	9
		M1 QSVLT	W2 0 S	W3				3	W2 6 G Y N Y	M3 6 D K

Ì	78	>	>	>
	98	>	>	>
	98			
	48	Ø	A	A
	83	ш	w	ш
	85			
	18	ш	ய	щ
	08	2	\forall	\triangleleft
	64	O	0	0
	87			-
	LL	9	9	9
	92	-	2	S
\sim	SZ			-
×	ħ۷	A	-	⊢
ΝOΙ	23	1		
nev	7.5	S	2	├─
framework 3	LL	A	\forall	X
4	02	S		Ė
	69	—	Z	Z
	89	9	9	9
	49	5	2	S
	99	\prec	\checkmark	Z
	99	S	2	S
	79	9	9	9
	£9	2	S	S
	79	F S G	ட	RFSG
	19	8	\propto	\propto
	09		Z	ь П
	69	٦	S	م
	89	>	_>	
		M1 V P D R	W2 V S N R F S	M3

	06 68 88	,1 C 0 0 H	W2 C 0 0 H	M3 C 0 0 H
00	95	<u></u>	>	≻ H
CDRIII	63	 	—	-
	7 6	-	\vdash	—
	96	مـ	ط	ط
	96	مـ	ط	۵.
	۷6	>	>	>
	86	Ц_	ய	ட
	66	9	9	9
Ę	001	9	9	9
ran	lOl	9	9	G G G .T
٦e٧	105	-		-
vor	103	\checkmark	×	\checkmark
framework 4	t01	_		_
	901	⊢	-	-
	901	>	>	>
	\forall	_		
	201	9	9	9

S
$\tilde{\omega}$
nence
2
Sec
Š
2
Š
Ξ
ဗ
y chain consensus
æ.
Ę.
>
≥
heav
ᅩ
\geq
2C: \
7
به
ğ
Figur

											L S	$ <$	├ ─	\leq	⊢	⊢		Z
											99	 	9		S	S		>
	30	S	—	S	S	S	-	S			99	9	9		9	9	S	≥
	56	ட	ட	_	ட		ட	>			79	ш.	S		9	S		\checkmark
	28	-	_	S	—	S	S	S		R	23	_	Z	≥	S	>	9	S
	77	9	>-	ட	ட	9	>			CD	Э	ı	ı	1	1	ŀ	ı	1
	97	9	9	9	9	9	9	9			В		ı	ţ	1	t	ı	\propto
	52	5	S	S	S	S	2	S			\forall		۵	1	9	ı	۵	>-
	74	\forall	A	ш.	A	>	G	_	•		25	-	Z		S	>	>	>
	23	~	\checkmark	-	\forall	-	\checkmark	A			١S	-	_			_	_	-
	77	<u>ر</u>	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	ں			09	9	≥	_	\forall	>	_	\propto
	17	5	S	—	S	-	\sim	-			67	9	9	\forall	S	9	9	9
	50	>	>								84	\geq	\geq	_	>	_	≥	
	6 l	\prec	\checkmark		8	S	\checkmark	S			L t	\geq	≥	\geq	≥	≥	\geq	\leq
	81	>	>	_	_	_		_		2	97	ш	ш	ш	ш	ш	لتا	ш,
논	11	S	2	₩	S	├─	S	—		논	St		_	_	_			
framework	9١	S	A	0	9	ш	ш	O		W 0	.77	9	9	\forall	9	9	9	G
ne	SI	9	9	—	9	\sim	9	S		ne	43	O	0	\prec	\checkmark	\prec	\prec	<u>۳</u>
Ta l	τl	م	٩	Δ_	۵.	٥	Δ_	۵.		frar	77	9	9	9	9	9	9	9
	13	\prec	\checkmark	\prec	0	\prec	\checkmark	\checkmark			lt	Ì		٩				
	15	\prec	\prec	>	>	>	~	>.			07	¥	\forall	ط	A	ط	Σ	S
	11	>	>			_	>				38	0	0	O		O		0
	01	l		A			ш				38	8	\propto	æ	\propto	\propto	W.	R
	6	1				ط					37	>	>	_	>	_	>	_
	8	1				9					36			\geq				i
	7	2	S			2		S		ļ.	32	2	エ	_		_	9	_ 1
	9	0	O	ш	ш	<u> </u>	0	0		_	34		\geq	>	\sum_{i}	_	_	X
	S	>	>	\prec	>	0	>	0		DR	33	A	>	9.	α.	>	>	, A
	ャ						_			00	35	>	>	>	>_	>	>	A
	3	0	O	0	O	0	0	0			·8	"	,	0				∪ 1,
	7	>	>	>	>	>	<i>></i>	>			A	'				1		Z
	1	0	0	0	ш	0	ш_	0		L <u>.</u>	31	S	<u>S</u>		S	2		<i>U</i> 1
		H1A	VH1B	VH2	VH3	VH4	H5	9H,				'H1A	/H1B	VH2	VH3	VH4	/H5	9H,
	•.	>	>	>	>	>	SU	BSTI	TUTE 6	SHE / 20	ET (F.! 4	JLE 2		<i>></i>	>	<i>></i>	<i>></i>	>

PCT/EP96/03647 WO 97/08320

C

AseI

CGCACCCACT GCGTGGGTGA U >ഗ CTGAGCGCGA GACTCGCGCT Ø ഗ Ļ GGGCAGATCG CCCGTCTAGC ഗ ഗ BanI ACTGGGTCTC TGACCCAGAG ഗ Figure 3A: V kappa 1 (Vk1) gene sequence Ø Σ CTATAGGTCT GATATCCAGA Ø ECORV ~ ~ ~ ~ ~ ~ ~

S GGGCATTAGC ഗ S ATTACCTGCA. GAGCGAGCCA Ø ഗ K α, Pst] \mathbf{C} ⊱ TCGTGTGACC ⊱ α

AGCTATCTGG TCGATAGACC CCCGTAATCG CTCGCTCGGT TAATGGACGT AGCACACTGG

П \simeq Д Ø × G SexAI Д 又 Ø Ŏ ~ ~ ~ ~ ~ ~ KpnI . 'S K

AATTTATGCA TTAAATACGT GCTTTGATAA CGAAACTATT CCATTTCGTG GGTAAAGCAC CGTCTTTGGT GCAGAAACCA GCACCATGGT CGTGGTACCA

BamHI G ഗ G ഗ ഥ 1 ഗ Д SanDI > G ഗ Õ Ц S ഗ Q

CGTTTTAGCG GCTCTGGATC TGCAAAGCGG GGTCCCGTCC GCCAGCAGCT

CTTTGGCCAG GAAGACTTTG CTTCTGAAAC CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG MscI H G ~ ~ ~ ~ ~ ~ BbsI بحا Eco57I 딥 GGACGTTGGA CCCCGCCGAC CCTGCAACCT ₽ Д Ø Д Ы E CCATTAGCAG GGTAATCGTC CATTATACCA S ⊱ ഗ 工 Figure 3A: V kappa 1 (Vk1) gene sequence (continued) \vdash CGACCTATTA TTGCCAGCAG TTTACCCTGA AAATGGGACT Ø Ö \vdash \bigcirc L GCCGTGACTA CGGCACTGAT \vdash BamHI \mathfrak{O} C

GAAACCGGTC GGGCGGCTG GTAATATGGT AACGGTCGTC GCTGGATAAT

G T K V E I K R T BsiWI GGTACGAAAG TTGAAATTAA ACGTACG CCATGCTTTC AACTTTAATT TGCATGC

~ ~ ~ ~ ~

Figure 3B: V kappa 2 (Vk2) gene sequence

团	A H		<u></u> ტ		ធ្វ ក្	ĮΤι	Ti. A
	CTCCGGGCGA GAGGCCCGCT	Z	CATAGCAACG GTATCGTTGC	⊘ ,	AAGCCCGCAG	K	~ CGGATCGTTT GCCTAGCAAA
D G	999	S	1907 1007	Д.) 3666	. П Д	ATC FAG
Д	ICC AGG	茁	ATA TAT	W	AGC		GGZ
E		-		~		дн	}
>	TGA	H	CTC	Ol	TCZ YAG	V SanDI	3TC(ZAG(
L P V T	CTGCCAGTGA GACGGTCAČT	S L	AAGCCTGCTG TTCGGACGAC	P G SexAI	AACCAGGTCA	G V SanD	AGTGGGGTCC TCACCCCAGG
_	JGC(W	16C	S P	ACC IGG	ω.	GTG
H							
W	GACCCAGAG CCCACTGAGC CTGGGTCTC GGGTGACTCG	O ⁴	TTAGCTGCA GAAGCAGCCA	I Q K	TACCTTCAAA ATGGAAGTTT	A	CAACCGTGCC GTTGGCACGG
ı	TG.	W	CAG	. 7	rtc AAG	N R A	CGT
<u> </u>	CAC	Ω	AGO		1007 1662	Z	AAC FTG
S BanII	000	K	~~ GP CT	M Y KpnI			
S P BanII	GACCCAGAG CTGGGTCTC	C PstI	ATTAGCTGCA G TAATCGACGT C	Z X	TCTGGATTGG	r G S	ATCTGGGCAG TAGACCCGTC
O '	CAC	S C PstI	~~ CTC GAC	Д	SAT	Ŋ	3GG(
H	ACC TGG		TAG ATC	L D	TGG	ᆸ	CTC
Ţ	TG. AC	H	AT TA		TC	≯	AT TA
X	GA	S) 10 10	>	CTA		rtt Aaa
> > ~	GATATCGTGA	Ø	GCCTGCGAGC CGGACGCTCG	Z	GCTATAACTA CGATATTGAT	L AseI	CTATTAATTT GATAATTAAA
$egin{array}{ccc} egin{array}{ccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{ccccc} egin{array}{cccccccccc} egin{array}{cccccccccccccccccccccccccccccccccccc$	rat ATA	Д	CTG	\succ	TAT ATA	LASE	~~~ ATT TAA
D Ä Š	GA! CT!	• •) (G	Z U	90	Ţ	CT

Д

 \vdash

 \vdash

 \succ

二

Ø

Ø

 \mathcal{O}

 \gt

G

>

 \Box

口

Ø

口

Eco57I

BbsI

Figure 3B: V kappa 2 (Vk2) gene sequence (continued)

	S R V		AGCCGTGTGG TCGGCACACC
	L K I		CCTGAAAATT GGACTTTTAA
igure 3b. V Kappa z (Vnz) gene Sedechee (Commerc)	GSGT DFT LKISRV	BamHI	GGATCCGGCA CCGATTTTAC CCTGAAAATT AGCCGTGTGG CCTAGGCCGT GGCTAAATG GGACTTTTAA TCGGCACACC
igure 35. v kappa z (v nz)	S S		TAGCGGCTCT ATCGCCGAGA

ATGGTGGGGC TACCACCCCG AGCAGCATTA TCGTCGTAAT TATTATTGCC ATAATAACGG CGTGGGCGTG GCACCCGCAC TTCGACTTCT AAGCTGAAGA

BsiWI 2 × 回 × ⊱ Ō Ø MscI Ö щ Е Д

ATTAAACGTA TAATTTGCAT GAAAGTTGAA GCCAGGGTAC CGGTCCCATG CCGACCTTTG GGCTGGAAAC

BamHI

GCGCGTTTTA GCGGCTCTGG

TGGGGTCCCG

GGCGCGAGCA GCCGTGCAAC

AGCAGCTATC TCGTCGATAG TAATTAAATA ഥ CTCCGGGCGA ATTAATTTAT GAGGCCCGCT ഗ G ഗ Ase] ά Д ഗ ഗ ഗ GTGGCGCAGA GAGCGTGAGC CTCGCACTCG CACCGCGTCT CTGAGCCTGT GACTCGGACA ഗ ш Н α > α ഗ Ы ഗ Q 口 Ø GGTCCAGTTC ACTGGGTCTC GGGCCGCTGG CCAGGTCAAG GACTCGACGT CTCGCTCGGT CCCGGCGACC CTGAGCTGCA · GAGCGAGCCA Ø Д ⋿ O SanDI ഗ > Ø G SexAI Ø G Д Д BanI α CCAGCAGAAA GGTCGTCTTT TGACCCAGAG ⊣ ഗ PstI × Ø 0 0 ഗ K E Ŏ S KpnI ACCGCACCAT TGCACGCTGG TGGCGTGGTA GATATCGTGC CTATAGCACG ACGTGCGACC E--4 ഗ > \geq Ø ECORV ~ ~ ~ ~ ~ ~ Ø K α, G 口

SUBSTITUTE SHEET (RULE 26)

Figure 3C: V kappa 3 (Vk3) gene sequence

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGGCACGTTG ACCCCAGGGC CGCGCAAAT C T I S S L E D F T L T I S S L E CTAAAATGGG ACTGGTAATC GTCGGACCTT Y C Q Q H Y T T P P Y C Q Q H Y T P P P X AATAACGTC GTCGTAATATA GGTGGGGGGG BSIWI AAAGTTGAAAT TAAACGTACG A AAGTTGAAAT TAAACGTACG TTCAACTTTA ATTTGCATGC		•				r > 7D		
CGGCACGTTG ACCCCAGGGC CGCGCAAAT C T I S S L E D F T L T I S S L E CTAAAATGGG ACTGGTAATC GTCGGACCTT Y C Q Q H Y T T P P Y C Q Q H Y T P P P Y T Y T P BSIWI A AAGTTGAAAT TAAACGTACG A AAGTTGAAAT TAAACGTACG TTCAACTTTA ATTTGCATGC	GCCGAGACC	P E D Eco57I	BbsI	CCTGAAGACT	[II]	GACCTTTGGC CTGGAAACCG		
	CGGCACGTTG ACCCCAGGGC CGCGCAAAAT	DFTLTISSLE	BamHI	GCACG GATTTTACCC TGACCATTAG CAGCCTGGAA	A V Y Y C Q Q H Y T P	TTATTGCCAG CAGCATTATA CCACCCGGCC AATAACGGTC GTCGTAATAT GGTGGGGGGG	GTKVEIK	GGGTACGA AAGTTGAAAT

Figure 3D: V kappa 4 (Vĸ4) gene sequence

					•	· rh	民	(5 ()
	<u>,</u>	GCCTGGGCGA CGGACCCGCT	Ŋ	TATAGCAGCA ATATCGTCGT	Сı	TCAGCCGCCG AGTCGGCGGC	•	TCCCGGATCG
	Q	300 1000		GCA	Д) () () ()	Ω .	1667 1707
	ü	CTC	ν.	ATA(PAT(. O	CAG	д	GGG TCCC
	S		>			}	V SanDI	}
		CTGGCGGTGA GACCGCCACT	H	GAGCGTGCTG CTCGCACGAC	P G SexAI	AGAAACCAGG I TCTTTGGTCC A	G V SanDI	GAAAGCGGGG
	L A V	7005 3007	>	3TG CAC	Ж Se	~~~ ACC IGG	S	000
	A,	999	Ŋ))))	×	AA.	Ħ	AAA ITT
	ij	CT		GA	O ^l	-	щ	-
	S	AGC ICG	Q	~ GAAGCAGCCA CTTCGTCGGT	o o	TGGTACCAGC ACCATGGTCG	α	ATCCACCCGT TAGGTGGGCA
	Ω.	~~~ CCCGGATAGC GGGCCTATCG	Ω	~ GAAGCAGCCA CTTCGTCGGT	H	√~~ ACC.	Et Et	ACC TGG
	<u>Δ</u> , , ,	~ UUU UUU	W.	AGC	Y KpnI	~~~~~ GGTACC CCATGG	ഗ	יככן אפפי
	S BanII		~	GA CT	W	TG		
	S Bar	TGACCCAGAG CCC ACTGGGTCTC GGG	t T	CTGCA G	Ø	3CG CGC	A	~ TTTATTGGGC AAATAACCCG
	O.	TGACCCAGAG ACTGGGTCTC		ATTAACTGCA TAATTGACGT	Y L A	CTATCTGGCG GATAGACCGC	Μ	rtg
-	٢	ACC TGG	Z	ТАА	≯	ATC	\succ	TAZ
	—	TG.	H	AT TA		CH	Н	}
	Σ	GA	E	00 100	Z	AAA PTT	L AseI	AAACTATTAA TTTGATAATT
L	> >	~~~~~~ GATATCGTGA CTATAGCACT	K	ACGTGCGACC TGCACGCTGG	×	ACAACAAAAA TGTTGTTTTT		~~ TAT ATA
	D I EcoRV	~~~~~ ATATC TATAG	α	GTG	Z	AAC TTG	N L	ACT TG
	ДЁ	GAT CTA	-	AC(TG(Z .	ACTG	×	AA TT
-								

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

F T L T I S S	FT TACCCTGACC ATTTCGTCCC	руа ууу соринутт		rt gccagcagca ttataccacc aa cggtcgtcgt aatatggtgg	/ E I K R T BsiwI	COCCE CT GAAATTAAAC GTACG AA CTTTAATTTG CATGC
T D	GCACTGATTT CGTGACTAAA	Λ		GTGTATTATT CACATAATAA	T K V	TACGAAAGTT ATGCTTTCAA
F S G S G S G BamHI	\mathcal{O}	L Q A E D V A Eco57I	BbsI	TGCAAGCTGA AGACGTGGCG ACGTTCGACT TCTGCACCGC	P P T F G Q G MscI	CCGCCGACCT TTGGCCAGGG GGCGGCTGGA AACCGGTCCC

× GCTGATTTAT CGACTAAATA AGCAACTATG TCGTTGATAC CAGGTCAGCG GTCCAGTCGC 召 BamHI Ø Z O G 口 SexAI S ഗ CGCCGAAACT GCGGCTTTGA Д GTTGTAACCG Ы TCACCGCGTG CAACATTGGC AGTGGCGCAC \mathcal{O} ſщ Ø × HK C Д ~~~~~~ Z ഗ Þ CCCGGGACGG GGGCCCTGCC GCAGCAGCAG CGTCGTCGTC S CGGAAGTCAC GCCTTCAGTG Д > \vdash Eco57I Ŋ > ഗ XmaI \mathcal{Q} S C Д Bsu36 Ö GGTCGTCAAC TCGTGTAGCG CCAGCAGTTG AGCACATCGC ACTGGGTCGG TGACCCAGCC Д Ц Ŋ Д Q Figure 4A: V lambda 1 (VA.1) gene sequence BSSSI \mathcal{O} α \vdash Ø S Ø KpnI TGAGCTGGTA ACTCGACCAT ACACTGGTAG TGTGACCATC CAGAGCGTGC GTCTCGCACG Z 3 Z S S

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

& F		ប្តី ប្ត	υ <u>υ</u>	•	
CCA	E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG		
GAT CTA	田田	~~~ GAA CTT	GTT		•
GCGGATCCAA CGCCTAGGTT	Ω.	AGCGAAGACG TCGCTTCTGC	V TGT ACA		
TA	Q	CAA	ACC CGG		
GATCGTTTTA CTAGCAAAAT	A I T G L Q	GGGCCTGCAA CCCGGACGTT	Q H Y T T P P P CAGCACTATATA CCACCCCGCC GTCGTAATAT GGTGGGGCGG		
TCG	O	3600	T CAC(•
			F 0 0		
) (CG	H	rac atg	r ata rat		
TGC	H	AT.	I VTT/	G MscI	900 000 000
AGGCGTGCCG TCCGCACGGC		TTGCGATTAC AACGCTAATG	Q H Y CAGCATTATA GTCGTAATAT	L G Msc	TCTTGGC AGAACCG
AG	A S L				
CTC	ζΩ.	AGCGCGAGCC	Y C Q TTATTGCCAG AATAACGGTC	L T V Hpai	AGTTAACCGT TCAATTGGCA
AGCGTCCCTC TCGCAGGGAG		CGA(Y C Q ATTGCCA(TAACGGT(F + ~	AAC rtg
CG1 GC2		0000	Y YAT: YTAZ	L T HpaI	TTZ
AG	ഗ				
ACC FGG	\vdash	ACC IGG	Y ITA AAT	T K	CGA GCT
CA/	Ŋ	GGC.	D 3GATT 3CTAA	E-1	SCA
GATAACAACC CTATTGTTGG	S	AAGCGGCACC TTCGCCGTGG	E A D Y -AAGCGGATTA TTCGCCTAAT	<u>ე</u>	GGGGCACGA
GA		AA	E AAG(900

Σ

口

X

Д

Д ഗ C ഗ > S K Д O Figure 48: V lambda 2 (VA2) gene sequence \vdash П Ø S

S

Q

G

SexAI

CAGGTCAGAG GTCCAGTCTC AGCGGCTCAC TCGCCGAGTG AGCTTCAGTG TCGAAGTCAC Eco57I ~ ~ ~ ~ ~ ~ ~ TGACCCAGCC ACTGGGTCGG GTCTCGCGTG CAGAGCGCAC

GGCTATAACT Z Ç CGATGTGGGC GCTACACCCG G О GTACTAGCAG S വ \vdash G TCGTGTACGG AGCACATGCC Е BSSSI S CATTACCATC GTAATGGTAG Н

CCGATATTGA CATGATCGTC

12222 BbeI Ø 幺 O XmaI Д 二 Q Q KpnI 3 S \gt

ACTGATGATT TGACTACTAA AGGCGCCGAA TCCGCGGCTT GTAGGGCCCT CATCCCGGGA GTACCAGCAG CATGGTCGTC ATGTGAGCTG TACACTCGAC

W BamHI ග S ĮΤι α Z S G Bsu36I S Д α Z S > \succ

TTAGCGGATC AATCGCCTAG ~ ~ ~ ~ ~ ~ ~ AGCAACCGTT TCGTTGGCAA CTCAGGCGTG GAGTCCGCAC CGTTGGCAGG GCAACCGTCC TATGATGTGA ATACTACACT

Figure 4B. V lambda 2 (VA.2) gene sequence (continued)

Q A E BbsI	CAAGCGGAAG GTTCGCCTTC	Д >	GCCTGTGTTT CGGACACAAA		
	CAAG	Сų	GCCT		
S S	CTG	<u>с</u>	5555		
CD	900	<u></u> I	CAC		
W	TAGCGGCCTG ATCGCCGGAC	E E	ATACCACCCC TATGGTGGGG		
Н	AT IA	\times	LT AA	\ H \	0 0 0
H	,CC;	H	CAT	L G MscI	TG
H H	GCCTGACCAT CGGACTGGTA	х н о о	CAGCAGCATT GTCGTCGTAA	I >	CGTTCTTGGC GCAAGAACCG
		O'	CA	·	
N T A S	AACACCGCGA TTGTGGCGCT	O	55 50 50	T T T	CGAAGTTAAC GCTTCAATTG
A;	AACACCGCGA TTGTGGCGCT	X X	TTATTATTGC AATAATAACG	K L T HpaI	TT? AAI
⊣	AC	·	ATT.	⋉ ≀	AAG I'TC
Z	AAC TTG		TT <i>I</i> AA1		CG7
Ŋ	U U	Д	GA CT	H	CA GT
) 190(A D	900 000 000	Ŋ	7 7 7 7 7 7 7 7 7
S HI	AAG TTC	ЩΗ	AAC TTC	U .) 199 199
K BamHI	~ CAAAAGCGGC GTTTTCGCCG	D E BbsI	~~ ACGAAGCGGA TGCTTCGCCT	O,	GGCGGCGGCA

Figure 4C: V lambda 3 (Vλ3) gene sequence

E	AAC		TACGCGAGCT ATGCGCTCGA	Ω	TTATGATGAT AATACTACTA
Q	CAC	Ω	GAC	Ω	AT(TA(
<u>ن</u> ک	GT	A) (GC	. .	ATG PAC
XAI	CAGGTCAGAC GTCCAGTCTG	X A	TACGCGAGCT ATGCGCTCGA	>	TTP
P G SexAI			•	Н	
<< <	902 061	対	TA2 ATI	>	TGA AC1
>	TT	G D K	GA	7	1GG
S V A P G Q SexAI	AGCGTTGCAC TCGCAACGTG		GGGCGATAAA CCCGCTATTT	Q A P V L V I Y D Bber	TTCTGGTGAT AAGACCACTA
		D A L		\triangleright	
\triangleright	AGT PCA 7 I	4	7.G.C.	다 _ ~	CCA
W	CTTCAG' GAAGTC Eco57I	7	TGC	A P BbeI))))
T Q P P S V	GCCTTCAGTG CGGAAGTCAC Eco57I	Ω	GCGATGCGCT CGCTACGCGA	Ø ~ ⊘	CAGGCGCCAG GTCCGCGGTC
0		Ö			
Ht.	000	Ŋ	999	a ~~~	000
Q	CA		TCGTGTAGCG	K P G XmaI	GAAACCCGGG CTTTGGGCCC
E	ACC	SSSI	GTC	∀	AAC TTC
7	TG AC	S B	TC AG		GA
口	AC	⊢	IC AG	Ø	CA GT
田	GAZ		TA	ℴ,	AG
×	rat ata	A R	300 300	Y nI ~~~	ACC TGG
W ·	AGCTATGAAC TGACCCAGCC TCGATACTTG ACTGGGTCGG	Ø	CGCGCGTATC TCGTGTAGCG GCGCGCATAG AGCACATCGC	W Y KpnI	GGTACCAGCA GAAACCCGGGG CCATGGTCGT CTTTGGGCCC

SUBSTITUTE SHEET (RULE 26)

20 / 204

Figure 4C: V lambda 3 (VA3) gene sequence (continued)

Ŋ	ָר בַ	500	А		3CC	0 0 0 0 0 0
Ŋ	ر د	AGC	A.		GACGAAGCGG CTGCTTCGCC	G G G TGGCGGCGC ACCGCCGCCG
Z	ر د	FTG	问	,	CGA	0 0 0 0 0
H	ړ <u>د</u> ک	3 6	D F	. ⊢	GA(
SamH	>	AT.	田 7 7	DDST ~~~~~~~	AA TT	F AA
O M	}		~	}	200	V GTG
တ	5	AG	7		16GG	P CCT(
SGIPERFSGSNSG u361	5	AAATCGCCTA GGTTGTCGCC	TLTISGTQAEDEA		TCAGGCGGAA GACGAAGCGG AGTCCGCCTT CTGCTTCGCC	Y T T P P V F TATACCACCC CGCCTGTGTT ATATGGTGGG GCGGACACAA
~:			H			СС ВВ
	Ì	CCCGGAACGC	ტ		TTAGCGGCAC AATCGCCGTG	TAC
ITI	(GGA	Ŋ		מפכ	T JAC(ATG(
Д	(U U U			TTA	$egin{array}{c} Y \ TAT \ ATP \end{array}$
Н			Н			H AT TA
	}	(GC)	\vdash		JAC() 1 1 1 1 1 1 1 1 1 1
S 36I	} }	CAG	Н		CTG	Q Q H CCAGCAGCAT GGTCGTCGTA
S (Bsu36I	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CCTCAGGCAT GGAGTCCGTA	H		ACCCTGACCA TGGGACTGGT	Q Q H CCAGCAGCAT GGTCGTCGTA
Д П						
D R		CGT	7		2000	Y YATY
ρΩ		SAC	N T A		CAC GTG	DYYC ATTATTAG TAATAATAAC
S		TCTGACCGTC AGACTGGCAG	Z		CAACACCGCG GTTGTGGCGC	D Y Y C ATTATTATTG TAATAATAAC

ACGAAGTTAA CCGTTCTTGG (TGCTTCAATT GGCAAGAACC

G

 Ω

 Ξ

3

G Д 又 × \gt 口 K C S Figure 5A: V heavy chain 1A (VH1A) gene sequence Ø MfeI Ø \gt Ø

ഗ

ഗ

CGGCCAGCAG GCCCGTCGTC CACTTTTTG GTGAAAAAAC ACCGCGCCTT TGGCGCGGAA ACCAAGTCAG TGGTTCAGTC CAGGTGCAAT GTCCACGTTA

S ഗ ĹΤ \vdash G BspEI \mathcal{O} S Ø × \mathcal{O} S \gt × >

K

AGCTATGCGA TCGATACGCT CACTTTTAGC GTGAAAATCG GGAGGCCTCC CCTCCGGAGG AGCTGCAAAG TCGACGTTTC CGTGAAAGTG GCACTTTCAC

Q A P G Q G L E BstXI XhoI

K

>

3

ഗ

CTACCCGCCG GATGGGCGGC GTCTCGAGTG CAGAGCTCAC CCTGGGCAGG GGACCCGTCC GCGCCAAGCC CGCGGTTCGG TTAGCTGGGT AATCGACCCA

GCGCAGAAGT TTCAGGGCCG AAGTCCCGGC ෆ CGCGTCTTCA 0 . V GGCGAACTAC CCGCTTGATG Z Ø TTTTGGCAC AAAAACCGTG Н G ᅜ TAATAAGGCT ATTATTCCGA

 \succ Ø Ė ഗ S 口 \Box Ø H BStEII

П

H

Σ

Figure 5A. V heavy chain 1A (VH1A) gene sequence (continued)

AAAGCACCAG CACCGCGTAT ATGGAACTGA TTTCGTGGTC GTGGCGCATA TACCTTGACT	T A V Y Y C A R W G EagI	ACGGCCGTGT ATTATTGCGC GCGTTGGGGC TGCCGGCACA TAATAACGCG CGCAACCCCG	DYWGQGTLVT Styl	GGATTATTGG GGCCAAGGCA CCCTGGTGAC CCTAATAACC CCGGTTCCGT GGGACCACTG		
GGTGACCATT ACCGCGGATG Z	S S L R S E D	GCAGCCTGCG TAGCGAAGAT CGTCGGACGC ATCGCTTCTA	G D G F Y A M	GGCGATGGCT TTTATGCGAT CCGCTACCGA AAATACGCTA	V S S BlpI	GGTTAGCTCA G

Figure 58. V heavy chain 18 (VH18) gene sequence

တ	CGGGCGCGAG GCCCGCGCTC	K .	AGCTATTATA TCGATAATAT	ß	GATGGGCTGG CTACCCGACC	Q G R TTCAGGGCCG AAGTCCCGGC
G B	300	≯	rrz AAJ	O	GC.7 CG.7	990
ဗ	$\mathcal{C}\mathcal{C}\mathcal{C}$	S	TA	M D	ဗီဗီ ဗီဗီ	D P T T
	000 0000	တ	\GC 20G	Σ	BAT	rtc \AG
V K K P				M		됴
¥	AA(TT(₽	AC(TG(ĞŢ(CA(K FG
	AA	T F T	TT	L E XhoI	GTCTCGAGTG CAGAGCTCAC	A Q K F GCGCAGAAGT CGCGTCTTCA
×	SAA	<u></u>	CCI		CTC	SCA CGT
>	GTGAAAAAAC CACTTTTTTG	<u></u>	TACCTTTACC ATGGAAATGG		GT(CA(G G C G
		⋈		9 0 9	ပ္ပ ပ	0 0
臼	GGA	H 1	SAT	Q	CAG	Y CTA SAT
G A	CGGCGCGGAA GCCGCGCCTT	S G BSPEI	CCTCCGGATA GGAGGCCTAT	U	ccrescands	T N Y CACGAACTAC GTGCTTGATG
<u>.</u>	C C C	S E	TC	_	TG AC	T CG
	99	~	000	P	ccaagcc ccrgg ggrrcgg ggacc	C.P.
လ	AG TC	C K	AG TC	A BstXI		ი ი ი
S O A	TGGTTCAGAG ACCAAGTCTC	×	AGCTGCAAAG TCGACGTTTC) A Bst	CCGCCAAGCC	ATAGCGGCGG
F	TC	Ö	16C	Oi .	CCA GGT	S GGG
~ \	3G1 CC2	S	GC.	K .	, , , , , ,	TA
1					0 0	2
44 (AAT TA	>	3TG	<i>></i>	3G1 CC2	P CGA GCJ
OZ \	3C7 CG1	×	AA(TT(M	TG(AC	200
>	GT(CA(⊭	GA CT	H	CAC	N PAA YTT
Q	CAGGTGCAAT GTCCACGTTA	\triangleright	CGTGAAAGTG GCACTTTCAC	Σ	TGCACTGGGT ACGTGACCCA	I N P ATTAACCCGA TAATTGGGCT

Figure 5B: V heavy chain 1B (VH1B) gene sequence (continued)

 Σ K \vdash വ S Н \mathbb{X} \vdash $\mathbf{\Sigma}$ BStEI

Н

回

ATGGAACTGA TACCTTGACT GTGGCGCATA CACCGCGTAT GGTCGTAATC CCAGCATTAG TGGGCACTAT ACCCGTGATA CCACTGGTAC GGTGACCATG

C 3 K BSSHII Ø C \succ \succ > EagI Ø Е 团 വ K Н S

ഗ

CGCAACCCCG GCGTTGGGGC ATTATTGCGC TAATAACGCG ACGCCCGTGT TGCCGGCACA TAGCGAAGAT ATCGCTTCTA GCAGCCTGCG CGTCGGACGC

Н Е C Styl Ö G Z \succ Ω $\mathbf{\Sigma}$ ď H G

CCCTGGTGAC GGGACCACTG GGCCAAGGCA CCGGTTCCGT CCTAATAACC GGATTATTGG TTTATGCGAT AAATACGCTA GGCGATGGCT CCGCTACCGA

V S S BlpI GGTTAGCTCA G

SUBSTITUTE SHEET (RULE 26)

G

 \vdash CGACCCAAAC O ⊱ Д CTGGTGAAAC × \gt 口 2255222552 K Д G TGAAAGAAAG ഗ Figure 5C: V heavy chain 2 (VH2) gene sequence 口 \simeq \Box MfeI Ø

GCTGGGTTTG GACCACTTTG GICCACGITA ACTITICITIC GCCGGGCCGG CAGGTGCAAT

ഗ \vdash S Ц ഗ L S G BspEI Г ⊱ \mathcal{O} \vdash ⊟

G

ACGTCTGGCG TGCAGACCGC TAGCCTGTCC ATCGGACAGG AAAGGCCTAA TTTCCGGATT TGGACATGGA ACCTGTACCT GGACTGGGAC CCTGACCCTG

ഥ XhoI Ø 公 G Д BstX. Д Ø α Н \geq G >

 \geq

GGAAAGCCCT CGAGTGGCTG CCTTTCGGGA GCTCACCGAC GTCGGCGGAC CAGCCGCCTG GACCTAAGCG CTGGATTCGC TTGGCGTGGG AACCGCACCC

MluI Ц ഗ ₽ ഗ 又 3 Щ Ø

CGGACTTTG GCCTGAAAAC TATAGCACCA ATATCGTGGT TGATAAGTAT ACTATTCATA ATTGGGATGA TAACCCTACT GCTCTGATTG CGAGACTAAC

SUBSTITUTE SHEET (RULE 26)

G

>

L T I S K D	GGTCTGACC ATTAGCAAAG ATACTTCGAA AAATCAGGTG GCAGACTGG TAATCGTTTC TATGAAGCTT TTTAGTCCAC T N M D P V D T A T Y Y C	TGACCAACAT GGACCCGGTG GATACGGCCA CCTATTATTG CGCGCGTTGG ACTGGTTGTA CCTGGGCCAC CTATGCCGGT GGATAATAAC GCGCGCAACC	G G D G F Y A M D Y W G Q G T L V Styl	GGCGGCGATG GCTTTTATGC GATGGATTAT TGGGGCCAAG GCACCCTGGT CCGCCGCTAC CGAAAATACG CTACCTAATA ACCCCGGTTC CGTGGGACCA	T V S S BlpI GACGGTTAGC TCAG CTGCCAATCG AGTC
Figure 50 R M J u I	CGCA CGCA T	TGAC	ပ	0000	TGACC

Figure 5D: V heavy chain 3 (VH3) gene sequence

CGGGCGGCAG S G C Д CTGGTGCAAC Q > Ц 255255255 G G G TGGTGGAAAG വ 口 > MfeI GAAGTGCAAT 回

CCCCCCCTC Ø ഗ GACCACGTTG വ ш Н 5005005005 ĮΤΙ ഗ ACCACCTTTC CTTCACGTTA

BSPEI G A K C ഗ K Н

TCGATACGCT AGCTATGCGA ATGGAAATCG TACCTTTAGC GGAGGCCTAA CCTCCGGATT TCGACGCGCC AGCTGCGCGG GGACGCAGAC CCTGCGTCTG

> 3 XhoI 口 G × G Д BstXI Ø O α > 3

K

ഗ

GGTGAGCGCG CCACTCGCGC GTCTCGAGTG CAGAGCTCAC GGACCCTTCC CCTGGGAAGG CGCGGTTCGG GCGCCAAGCC ACTCGACCCA TGAGCTGGGT

TGAAAGGCCG ACTITCCGGC r CGCCTATCGC GCGGATAGCG ഗ Ω K CACCTATTAT GTGGATAATA H GCGGCGGCAG CGCCGCCGTC ഗ G G ഗ TAATCGCCAT ATTAGCGGTA G വ

SUBSTITUTE SHEET (NULE 26)

S

 Ξ

GGGACCACTG

CCGGTTCCGT

CCGCTACCGA AAATACGCTA

 \mathcal{O}

BlpI

S

ഗ

GGTTAGCTCA

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

E FA AL T	H	TTTTACCATT TCACGTGATA ATTCGAAAAA CACCCTGTAT CTGCAAATGA AAAATGGTAA AGTGCACTAT TAAGCTTTTT GTGGGACATA GACGTTTACT	L R A E D T A V Y Y Eagl	ACAGCCTGCG TGCGGAAGAT ACGGCCGTGT ATTATTGCGC GCGTTGGGGC TGTCGGACGC ACGCCTTCTA TGCCGGCACA TAATAACGCG CGCAACCCCG	DGFYAMDYWGQGTLVT	GGCGATGGCT TTTATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC
S S S I I I I I I I I I I I I I I I I I		ACCA1 IGGTA	니	CCTGC		ATGGC
TTT AAA N ACA TGT G	Į.	$ ext{TTTP}$		ACAGO	n D	GGCGA

Figure 5E: V heavy chain 4 (VH4) gene sequence

H GCTCGCTTTG CGAGCGAAAC 口 ഗ Д CTGGTGAAAC GACCACTTTG 又 > Н TGGTCCGGGC ACCAGGCCCG U Д G ACGTTCTTTC TGCAAGAAAG S 口 Q Ц MfeI GTCCACGTTA CAGGTGCAAT Õ

AGCTATTATT CAGCATTAGC TTTCCGGAGG BSPEI 11111 ACCTGCACCG CCTGAGCCTG

S

ഗ

S

G

C

S

Н

 \mathcal{O}

 \vdash

П

ഗ

Н

TCGATAATAA G GTCGTAATCG ⋈ XhoI 团 U AAAGGCCTCC × C Щ TGGACGTGGC Д O 召 GGACTCGGAC 3 വ 3

GATTGGCTAT CTAACCGATA GTCTCGAGTG CAGAGCTCAC GGACCCTTCC CCTGGGAAGG AGCGGTCGGC TCGCCAGCCG GGAGCTGGAT CCTCGACCTA

BStEII 区 ഗ × Ц ഗ Д Z \succ Z \vdash ഗ C ഗ \succ

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGCCAGCAC CGCCGTCGTG ATTTATTATA TAAATAATAT

SUBSTITUTE SHEET (RULE 26)

30 / 204

TAGCTCAG

S S BlpI

ഗ

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

V D T S K N Q F S L K L S N SPV	GTTTAGCCTG AAACTGAGCA CAAATCGGAC TTTGACTCGT	C A R W G G BSSHII	ATTGCGCGCG TTGGGGCGGC TAACGCGCGC AACCCCGCCG	A M D Y W G Q G T L V T V Styl	CAAGGCACCC TGGTGACGGT GTTCCGTGGG ACCACTGCCA
S K N Q Nspv	GTTGATACTT CGAAAAACCA (CAACTATGAA GCTTTTTGGT (A D T A V Y Y EagI	GCCGTGTATT A	5 M A	TTATTGGGGC CAAGGCACCC AATAACCCCG GTTCCGTGGG
		A A D T Es	ဖ် ပ <u>ိ</u>	Y A M D	T ATGCGATGGA
BSTEII	GACCATTAGC	SVT	GCGTGACGGC CGCACTGCCG	D G	GATGGCTTTT CTACCGAAAA

ഗ

Q

ഗ

Д

ഗ

⊣

Ġ 口 G Д 公 \times \gt 口 Ø G Figure 5F: V heavy chain 5 (VH5) gene sequence S Ø MfeI \Box Ø

CGGGCGAAAG GCCCCCTTTC GTGAAAAAAC CACTTTTTG GCCGCGCCTT CGGCGCGGAA ACCAAGTCTC TGGTTCAGAG CTTCACGTTA GAAGTGCAAT

⊣ لتا S \succ BSPEI G ഗ U × \mathcal{O} **က** . \times \vdash

3

ഗ

AGCTATTGGA TCGATAACCT CAAGGCCTAT AAGGAAATGC TTCCTTTACG GTTCCGGATA AGCTGCAAAG TCGACGTTTC GGACTTTTAA CCTGAAAATT

 \sum Z ~ ~ ~ ~ ~ ~ XhoI ᄓ G × U Д BstX Σ Ø α > 3 S

G

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG GGACCCTTCC CCTGGGAAGG GCGCCAGATG CGCGGTCTAC AACCGACCCA TTGGCTGGGT

TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT TCTCCGAGCT ATGGGCAATA TACCCGTTAT CGCTATCGCT GCGATAGCGA ഗ G TAAATAGGCC ATTTATCCGG Д

CTTCAATGGA 3 Ø AAAGCATTAG CACCGCGTAT Ø Е ഗ ഗ Figure 5F: V heavy chain 5 (VH5) gene sequence (continued) \simeq AGCGCGGATA Ø ഗ GGTGACCATT V T BstEII

GAAGTTACCT \mathcal{O} 3 α GTGGCGCATA Ø C TTTCGTAATC Σ Ø ⊱ TCGCGCCTAT \Box S K CCACTGGTAA \simeq 口 ഗ

S

BSSHI

CGCAACCCCG GCGTTGGGGC ATTATTGCGC TAATAACGCG TGCCGGTACA ACGGCCATGT AGCGAGCGAT TCGCTCGCTA GCAGCCTGAA CGTCGGACTT

Н ⊱ G Ø G \geq \succ Σ K لعا \mathcal{O}

GGGACCACTG CCCTGGTGAC GGCCAAGGCA CCGGTTCCGT CCTAATAACC GGATTATTGG TTTATGCGAT AAATACGCTA CCGCTACCGA GGCGATGGCT

Blpl ഗ ഗ \gt

> > > >

G CCAATCGAGT GGTTAGCTCA

5

Figure 5G: V heavy chain 6 (VH6) gene sequence

 \vdash Ø S Д \simeq П G Д G S Ø Ø

GCTCGGTTTG CGAGCCAAAC CTGGTGAAAC GACCACTTTG TGGTCCGGGC ACCAGGCCCG TGCAACAGTC ACGTTGTCAG CAGGTGCAAT GTCCACGTTA

ഗ Z S S > ഗ BSPEI ~~~~~ G ഗ Z \mathcal{O} \vdash 口 ഗ

 \Box

AGCAACAGCG TCGTTGTCGC TAGCGTGAGC ATCGCACTCG TTTCCGGAGA AAAGGCCTCT ACCTGTGCGA TGGACACGCT CTGAGCCTG GGACTCGGAC

 \geq 压 XhoI G \propto G Д ഗ O 召 Н 3 Z 3 Ø

CCGCACCGGA GCTCACCGAC CGAGTGGCTG GGCGTGGCCT GTCAGAGGAC CAGTCTCCTG CTGGATTCGC GACCTAAGCG CGGCGTGGAA GCCGCACCTT

AACGATTATG CGGTGAGCGT GCCACTCGCA > TTGCTAATAC \succ Ω Z GTTTACCATA 3 X CCGCCATGGA TAATAGCATC ATTATCGTAG ഗ ഷ GGCCGTACCT

SUBSTITUTE SHEET (RULE 26)

C

CCTGGTGACG GGACCACTGC

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
 - **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGCC -3'
 - **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
 - **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGGCTAATTTTCAGGG -3'
- **O3K1** 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAACTATCTGGCGTGGTACCAG -3'
- O4K4 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- O1L3 5'- GGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAGCGGCACCAGCGCGAGCCTTGCG -3'

- Figure 6: (continued)
- **O1L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **02L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- **O3L6** 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH2 5'- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- O1AH3 5'- GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAG GGTC -3'
- O1AH45'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCC TGCG -3 '
- O1ABH6 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCA
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O2H2** 5'- GGTACAGGTCAGGGTCAGGGTTTGGGTCGGTTT-CACCAGGGCCGGCCGCTTTCTTTCAATTGCACCTGGGCTTTG-3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGGCTGG -3'

- Figure 6: (continued)
- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **02H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCGCCT-GGTGCAACCGGGCGGCAG -3'
- **O3H2** 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCGC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'.
- **O3H3** 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAAATGAACACACC
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGGCG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

PCT/EP96/03647

- Figure 6: (continued)
- O5H1 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC-3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- O6H4 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- O6H5 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- O6H6 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK15'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCGCCGACCTTTGGCCAGGGTAC -3'

Figure 6: (continued)

- OCLK2 5'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGGTGTGCCTGCTG 3 '
- OCLK4 5 ' CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3 '
- OCLK5 5 ' GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG 3 '
- OCLK7 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG 3 '
- OCLK8 5 ' GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

Õ GCGATGAACA CGCTACTTGT 回 ഗ TTTCCGCCGA AAAGGCGGCT Д Д 머 GCACAAATAA CGTGTTTATT Н ഥ > CTGCTCCGAG GACGAGGCTC S Д Ø D CGTACGGTGG GCATGCCACC BsiWI

AACTTTTATC TTGAAAATAG لتر GGACGACTTG CCTGCTGAAC Z Ы Н CGCACCACAC GCGTGGTGTG C > > ഗ CCGTGCCGCT GGCACGGCGA Ø G TGACTTTTCG ACTGAAAAGC S × Ц

CGTTTCGCCG GCAAAGCGGC ഗ Ö ACAACGCGCT TGTTGCGCGA Ø Z Ä TGGAAAGTAG ACCTTTCATC × 3 GAAAGTTCAG CTTTCAAGTC × CGCGTGAAGC GCGCACTTCG Ø 田 α Д

GCACCTATTC CGTGGATAAG ഗ AGCAAAGATA TCGTTTCTAT Ω × വ CGAACAGGAT GCTTGTCCTA Õ 口 AAAGCGTGAC TTTCGCACTG ഗ 口 AACAGCCAGG TTGTCGGTCC Ö വ

വ

AAACATAAAG TTTGTATTTC CCTAATACTT GGATTATGAA Ω ACTCGTTTCG TGAGCAAAGC × ß TGGGACTGGG ACCCTGACCC Н TCTGAGCAGC AGACTCGTCG ഗ ഗ Ц

Figure 7A: sequence of the synthetic Ck gene segment (continued)

GGTGACTAAA TGAGCAGCCC ഗ ACATACGCAC

FNR GEA*

S

StuI SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA

AGAAAATTAG CACCGCTCCG GACTATTCGT ACC

Figure 7B: sequence of the synthetic CH1 gene segment

ഗ S Ы A Щ Д ĮΤι \gt ഗ Д G × Ø

BlpI Sall

AGGCTCGTCG TCCGAGCAGC AAGGCGACCG TTCCGCTGGC GGTTCGCACA CCAAGCGTGT CGAGTCGCAG CTGGTTTCCA GCTCAGCGTC GACCAAAGGT

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT > C L G CCGACGGGAC GGCTGCCCTG A Z, CGCCGCCGTG AAAAGCACCA GCGGCGCAC ⊱ ტ ტ ഗ TTTCGTGGT [--1 ഗ \searrow

CTGACCAGCG GACTGGTCGC CAGCGGGGCG GTCGCCCGC K G ഗ GGTCAGTGGC ACTCGACCTT CCAGTCACCG TGAGCTGGAA Z Z ഗ > E⊸ > Д AAAGGGCCTT TTTCCCGGAA ſΞÌ Д لتا

GIGCIGCAAA GCAGCGGCCI GIATAGCCIG CGTCGCCGGA CATATCGGAC S ŋ ഗ ഗ CACGACGTTT Ø 口 CTTTCCGGCG GAAAGGCCGC Д CGCACGTATG GCGTGCATAC 工

TTAGGCACTC AGACCTATAT TCTGGATATA Ø AATCCGTGAG ʬ G CTCGTCGTCG GAGCAGCAGC ഗ ഗ ഗ TCGTCGCAAC ACTGGCACGG AGCAGCGTTG TGACCGTGCC ⊱ >

Figure 7B: sequence of the synthetic CH1 gene segment (continued)

 \searrow Z S Д 工 AACGTTGCAC TTGCAACGTG Z

E P K S E F * ECORI

EcoRI HindIII

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

	BbsI	•			
 1	GAAGACGAAG	CGGATTATTA	TTGCCAGCAG	CATTATACCA	CCCCGCCTGT
	CTTCTGCTTC	GCCTAATAAT	AACGGTCGTC	GTAATATGGT	GGGCGGACA
		JH	HpaI	MscI	DrallI
51	GTTTGGCGGC	GGCACGAAGT	<pre>3T TAACCGTTCT</pre>	TGGCCAGCCG	AAAGCCGCAC
	CAAACCGCCG	CCGTGCTTCA	ATTGGCAAGA	ACCGGTCGGC	TTTCGGCGTG
	Dralll				
101	CGAGTGTGAC	GCTGTTTCCG	CCGAGCAGCG	AAGAATTGCA	GGCGAACAAA
	GCTCACACTG	CGACAAAGGC	GGCTCGTCGC	TTCTTAACGT	CCGCTTGTTT
151	GCGACCCTGG	TGTGCCTGAT	TAGCGACTTT	TATCCGGGAG	CCGTGACAGT
	CGCTGGGACC	ACACGGACTA	ATCGCTGAAA	ATAGGCCCTC	GGCACTGTCA
201		ないご 本田 をごれいご	K K CECCOOL		, () () () () ()
T 0 7	000010000	はつりは「はりにつり	SAC TOCOCO	GGCGGGAGIG	GAGACCACCA
	CCGGACCTTC	CGTCTATCGT	CGGGGCAGTT	CCGCCCTCAC	CTCTGGTGGT

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

GATAGACTCG CACCCTCCAA ACAAAGCAAC AACAAGTACG CGGCCAGCAG CTATCTGAGC GCCGGTCGTC TGTTTCGTTG TTGTTCATGC GTGGGAGGTT 251

RleAI

?
?
?
?
?

GTCCCACAGA AGCTACAGCT GCCAGGTCAC CTGACGCCTG AGCAGTGGAA

301

CGGTCCAGTG TCGATGTCGA TCGTCACCTT CAGGGTGTCT GACTGCGGAC

StuI

CTCCGGACTA GAGGCCTGAT GCATGAGGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT ACGCGGCTGA TTTTTGGCA TCGTGGCACC CGTACTCCCC

SphI

AAGCATGC TTCGTACG

401

SUBSTITUTE SHEET (RULE 26)
49 / 204

351

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-

GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: TGTTTGGAGGGTGTGGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Д

₽ Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 بيا. SapI П \Box Д П П Ø П Ø Н H വ Q ×

TCTTCACCCC AGAAGTGGGG AATGGCAACG TTACCGTTGC TGACCGTGAG ACTGGCACTC CGTGATAACG GCACTATTGC ATGAAACAAA TACTTTGTTT

G S 口 > Q L MfeI Н > 回 Д X \succ Ω K × \vdash

GAAAGCGGCG CTTTCGCCGC GCAATTGGTG CGTTAACCAC TTCTACTTCA AAGATGAAGT CGGCTGATGT GCCGACTACA ACAATGGTTT TGTTACCAAA

B \mathbf{C} ഗ П K Н ഗ G C Д Õ \gt Н G

BSPEI

ď

CGCGGCCTCC GCGCCGGAGG GTCTGAGCTG CAGACTCGAC GGCAGCCTGC CCGTCGGACG CGTTGGCCCG GCAACCGGGC GCGGCCTGGT CGCCGGACCA

G Д BstXI Ø O 24 > \geq വ $\mathbf{\Sigma}$ K × ഗ ഗ ш E BSPEI ш C

TGGGTGCGCC AAGCCCCTGG TGCGATGAGC TTAGCAGCTA GGATTTACCT

CCTAAATGGA AATCGTCGAT ACGCTACTCG ACCCACGCGG TTCGGGGACC

SUBSTITUTE SHEET (RULE 26)

G

PCT/EP96/03647

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) \vdash S C C ഗ G ഗ Н Ø S > 3 口 C ×

XhoI

GGCAGCACCT CCGTCGTGGA CGGTAGCGGC GCCATCGCCG GCGCGATTAG CGCGCTAATC CTCACCCACT GAGTGGGTGA CTTCCCAGAG GAAGGGTCTC

K U × > വ A ×

 \succ

Pm]I K ഗ

 \vdash

Ē

NspV

വ

Z

TGATAATTCG CCATTTCACG GGCCGTTTTA TAGCGTGAAA ATCGCACTTT TAATACGCCT ATTATGCGGA

ACTATTAAGC GGTAAAGTGC CCGCCAAAAT

П വ Z Σ

Ö

Ц

×

Н

드

N N

EagI

Ω

口

K

召

TTCTATGCCG AAGATACGGC CTGCGTGCGG GACGCACGCC AATGAACAGC TTACTTGTCG TGTATCTGCA ACATAGACGT

AAAAACACCC

TTTTTGTGGG

G G ⋈ α

BSSHII

EagI

CGTGTATTAT

Ø

C

S

 \succ [I

K

Ω

 $\mathbf{\Sigma}$

GCGATGGATT TGGCTTTTAT GGGCGGCGA TGCGCGCGTT

SUBSTITUTE SHEET (RULE 26) 52 / 204

NspV

Д

团

C

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) CGCTACCTAA ACCGAAAATA Ø BlpI ഗ CCCCCCCCCT ACGCGCGCAA O Styl GCACATAATA Ö G 3

CGAGTCGCCC ACCGCCAAGA GCTCAGCGGG CACTGCCAAT GTGACGGTTA TCCGTGGGAC AGGCACCCTG TAACCCCGGT ATTGGGGCCA

ECORV Ω ഗ C G C C വ C G G G വ G G G C

GTTCCGATAT CAAGGCTATA GGCGGTGGTG CCGCCACCAC CGGTGGTTCT GCCACCAAGA GGAGCGGTGG CCTCGCCACC GGGGGGGTG CCGCCGCCAC

Д > ρι Н വ 口 Д BanII ഗ Ø \vdash Σ ECORV >

GGCGAGCCTG CCGCTCGGAC AGTGACTCCG TCACTGAGGC TGAGCCTGCC ACTCGGACGG GTCTCGGGTG CAGAGCCCAC GCACTACTGG CGTGATGACC

C Z S Ξ П Н ഗ O വ ഗ α PstI C ഗ S D

CAACGGCTAT GTTGCCGATA TGCTGCATAG ACGACGTATC AGCCAAAGCC TCGGTTTCGG CTGCAGAAGC GACGTCTTCG CGAGCATTAG GCTCGTAATC

 \vdash

Д

Е

H

二

O

Õ

C

 \succ

G

>

口

BbsI

ACACCTŢCGA

TTTAATCGGC

AAATGGGACT

GCCGTGGCTA

CGAGACCTAG

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) GCAAAATCGC CGTTTTAGCG CGCAGCTATT AAATTAGCCG TGTGGAAGCT 그 GCGTCGATAA AseI D S П 回 O > K Д CACGGICACC CCAGGGCCTA CCAGTTTCGG GGTCAAAGCC K GGTCCCGGAT Ω ഗ വ Д Ø Eco0109I > G SexAI × TTTACCCTGA AGTTTTTGGT GIGCCAGIGG TCAAAAACCA G 口 ഗ × E K O ſΤι X CCGTCGTTGG TAACCATGGA CGGCACCGAT ATTGGTACCT GGCAGCAACC 口 Ω Z KpnI \succ H ഗ Z G G Ω BamHI GCTCTGGATC TTAAATAGAC AATTTATCTG AACTATCTGG ഗ TTGATAGACC 口 Н Ŋ ⋈ \succ വ Ase. Z G

CCCGGCGAC GGGCGGCTG CATTATACCA GTAATATGGT TTGCCAGCAG AACGGTCGTC GCGTGTATTA CGCACATAAT GAAGACGTGG CTTCTGCACC

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued)	striction n	nap of th	e synthe	tic gene enc	oding the con	ısensus sin	igle-chain fra	gment VH3-	Vk2 (continued)
F G	<u>.</u> 5	<u>.</u>	_ Y	<u>ਜ</u>	C T K V E L A		그	ч	
MscI						Bs	BsiWI E	Ecori	
1 1 1 1 1 1						1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	
CTTTGGCCAG	GGT,	GGTACGAAAG	AAG	TTGAA	TTGAAATTAA	ACGI	ACGTACGGAA	A TTC	
	יאטט מטט	正 し し し し	上上し	AACTT	от выпринить выпринивант провидения выс	TGC A	上してして	T AAG	

SUBSTITUTE SHEET (RULE 26)

56 / 204

EOI	>	≥	≥	>	≥	≥	≥	≥	≥	≥	: ≥	· >	
105	-	>	>	>	>	>	>_	>-	>	>	>-	>	
101									. 🗅				
300 l	_. \S	1	ı	ı	ı	ı	1	ı	i	ı	ŧ	ı	1
000 l	1		1	ι	ı	. 1	ı	ŧ	1	1	ŧ	ı	t
200 l	f	ı	i	. 1	ı	ı	t	ı	ı	ı	ı	ı	ı
100B	\triangleleft	i	ŧ	ı	1	1	ı	ı	1	. 1	ı	ı	٠,
A001	>	1	1	ı	1	1	t	1	ı	1	ı	ı	ı
00 l	ц_	>	I	I	\simeq	>	۵	ı	S	\checkmark	⋖		Σ
66	9	Z	≥	>	⋖	Ś	0	\propto	Z	S	4	>	≥
86		Σ	ш		\leq		⋖	\vdash	\simeq		ட	0	ш
26	Ð	\checkmark	—	ш		<u> </u>	ш	_	Z	9	—	ص	S
96	9	9	\simeq	\simeq	ш.	Z	Z	⋖	>	>	\leq	⋖	0
<i>S6</i>	\geq	ட	工	>	\checkmark	≥		\vdash	≥	S	S	>	Σ
7 6	\simeq	\propto	\propto	\propto	\propto	\simeq	\propto	\propto	\propto	\simeq	\simeq	\simeq	\simeq
86	<u> </u>	4	4	⋖	⋖	⋖	4	⋖	A	⋖	⋖	⋖	⋖
<i>76</i>	\circ	\circ	C	\circ	\cup	S	ပ	ပ	$\overline{\bigcirc}$	$\overline{\bigcirc}$	ပ	ပ	ن
⋖_		8											

Figure 10: Sequence analysis of initial libraries

333333333 $\Sigma \Sigma \sqcap \Sigma \Sigma \sqcap \sqcap \Sigma \Sigma \Sigma \Sigma$ $- \times > \sigma - \text{I} + > - \sigma$ \succ O I Q L I Z R U D Y **」SFEZE>ZJYF** $\top A > \emptyset$ $\otimes A$ A A $I X Z I X Q \geqslant Z II Z \vdash$ \forall Z \forall L \cup Z \times \cup \leq $\Sigma \times \vdash \succ * \ltimes \Sigma \times \circ \succ$ 444444444 000000000000

Figure 11: Expression analysis of initial library

Figure 12: Increase of specificity during the panning rounds

Figure 13. Phage ELISA of clones after the 3rd round of panning

Clone Number

Figure 14: Competition ELISA

- No Inhibition
- Inhibition withBSA
- ☐ Inhibition with Fluorescein

7001 rrrrrzrrrrzrrrrrrrrr $0001 \times \times \times \times \times \times \times - \bigcirc \times \times$ 2001 H K I K Z O A > X O Z O X X X A V $A001 \sigma \times 1 -$ \leq $o \times$ $o \times$ $o \times$ $o \times$ $o \times$ $o \times$ 001 Z R I R \overline{A} $89 \ge Q \times R - > \ge I \ge N R \times I - \times R$ /6 Σ \times Ω Σ \times Π Ω \perp \vdash Γ Γ \perp \rightarrow Γ \vdash Γ $29 \times KKKY \rightarrow TKKKXKXKKX$ 46 KKKKKKKKKKKKKKKKKKKKKK

Figure 16: Purification of fluorescein binding scFv fragments

Figure 17: Enrichment factors after three rounds of panning

Figure 18: EUSA of anti-ESL-1 and anti- β -estradiol antibodies

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies

												• .
Frequency	· C	8	7	-		-	,-	_	·	2	4	-
103	3	3	8	≷	≥	≷	≷	8	≥	3	3	≥
105	>	- -	>	>	>	>	>	>	>	>	>	>
101												
100E	щ	≥	ட	ட	Σ	Σ	1	Σ	Σ	Σ	Σ	ц_
J001	9	\checkmark	\propto	ட	I	Σ	, 1	\propto	>	ц_	ш	z
J001	\checkmark	\simeq	\checkmark	>-	≥	\prec	ŧ	\prec	>	\propto	\checkmark	×
100B	\propto	8	9	ш	S	~	ł	>-	>	\simeq	9	\propto
A001		Z	_		≥	エ	t	ட	O	ட	\propto	Σ
001	A	\checkmark	م		ட	<u>~</u>	مـ	≥	S	\propto	S	\propto
66	O	ட	≥	\propto		ط	ط	工	≥	≥	_	Σ
86	≥	ш	Σ	≥	9	ш	Ø	≶	≥	O	Ø	
∠ 6	ط	≥	≥	_	≥	_	\checkmark	⊢		O	_	\propto
96	\propto	O	~	S	۵.	9	Σ	\checkmark	\checkmark	\checkmark	≥	Σ
<i>9</i> 6	-	Z	\checkmark	>-	>	z	_	\propto	≥	Z	Z	Z
t 6	æ	\approx	\propto	\propto	8	8	\simeq	<u>~</u>	\propto	\propto	\propto	<u>~</u>
83	A	Ø	V.	Ø	Ø	⋖	Ø	\forall	Ø	A	A	X
<i>7</i> 6	C	\cup	U	ن	ن	ر	ں	$\overline{\mathcal{O}}$	ں	ں	ں	ر ا

Figure 21: Sequence analysis of testosterone binders

Frequency	4	က	2		-	—
103	8	≥	≥	3	≥	3
105	>	>	<u>></u>	>	>-	>-
101						
100E	ட	ட	ш	ட	ட	ட
0001	A	O	O	Σ	≥	0
J001		Σ	Σ	-	\prec	Σ
1008	\checkmark	\checkmark	\checkmark	\checkmark	≥	0
A001.	\propto	O	Z	≥	_	\propto
001	\checkmark	≥	8	≥	∝.	S
66	⋖	Ø	⋖	⋖	\propto	A
86	O	工	>	9	_	α
Z 6	\checkmark	~	\checkmark	\propto	<u>م</u>	\checkmark
96	_	Z	>	\prec	\checkmark	\propto
<i>96</i>	>	>	>	>	.∝	>-
<i>t</i> ⁄6	\propto	α	\simeq	8	8	\propto
83	4	A	A	A	A	A
76	ں	Ú	C	ں	\mathcal{O}	C

εοι 33333333333 105 101 100E $\sum \sum \sum \sum T T T T \sum T$ 0001 RQ-QQXXRF100Ca \propto J001 $x \in x \times \neg x \times v \leq x$ 100B -> \sim \sim $T \times A \ge Z \ge L + L \otimes$ A001 **占 S S G R R V V F F X** 001 66 $S \times S \times F \times F$ 86 らりょり FESKTR-E **Z**6 」OTZ> FY> > m 96 96 - 52 4 6 6 7 6 6 6 *t*6 4444444444 63

103 33333 105 101 100E $\Sigma + \Sigma \Sigma \Sigma +$ J001 R C O Y L $\pi > 0 \ge \pm$ J001 100B A001 Z M S d 001 A > Z - J A d $\succ \Sigma Q \kappa \geqslant \times$ 66 86 т > т > с т **Z**6 - т ш с б 96 Q + T + T = Q96 **K K K K K K** *t*6 < < < < < < 63 76

BgIII o lox site hpA Xbal lox site ColEI Ext2 origin p15A module -AatIII Jac p/o cat phoA pCAL system Nhel fl ori lox' site BsrGl gIII ss ECOR! Pacl_lpp-Terminator_ Fsel (His, myc) Hind H tails domains module Figure 25: modular pCAL vector system functions (IL2) lacI effector long SUBSTITUTE SHEET (RULE 26)

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

Lunique restriction site	Isosohizomers
unique restriction site	Isoschizomers
Aatll	DC D T D 100
AfIII	Bfrl, BspTl, Bst98l
Ascl	1
Asel	Vspl, Asnl, PshBl
BamHI	Bstl
Bbel	Ehel, Kasl, Narl
BbsI	BpuAl, Bpil
BgIII	/
Blpl	Bpu1102I,CellI, Blpl
BsaBI	Maml, Bsh1365l, BsrBRl
BsiWI	Pfl23II, Spll, Sunl
BspEl	AccIII, BseAI, BsiMI, Kpn2I, MroI
BsrGI	Bsp1407I, SspBI
BssHII	Paul
BstEII -	BstPl, Eco91l, Eco0651
BstXI	/
Bsu36l	Aocl, Cvnl, Eco811
Dralll	/
DsmAl	
Eagl	BstZl, EclXl, Eco52l, Xmalll
Eco57I	/
EcoO1091	Drall
EcoRI	/
EcoRV	Eco32I
Fsel	/
HindIII	/
Hpal	1
Kpnl	Acc65l, Asp718l
Miul	. 1
Mscl	Ball, MluNl

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Munl	Mfel
Nhel	1
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp1191, BstBl, Csp451, Lsp1, Sful
Pacl	1
Pmel	
PmII	BbrPl, Eco72l, PmaCl
Psp5II	PpuMI
Pstl	1
RsrII	(Rsril), Cpol, Cspl
SanDI	1
Sapl	/
SexAI	. /
Spel	/
Sfil	/
Sphl	Bbul, Pael,Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR7I
Xmal	Aval, Smal, Cfr9l, PspAl

~:
=
=
Õ
0
modu
_
. vector
\sim
7.
\mathcal{L}
ē
>
pCAL
⋖
()
=
•
of
-
2
list
<u>u</u>
7
gure 26:
_
\supset
=
_

WO 97/08320				PCT/EP96/03647
reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287-2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266
template	vector pASK30	(synthetic)	(synthetic)	vector plG10
sites to be inserted	Aatli	lox, BgIII	lox', Sphl	none
sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphl, BamHl
functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	glllp of filamentous phage with N- terminal myctail/amber codon
module/flan-king function sites	AatII-lacp/o- Xbal	BgIII-lox- Aatii	Xbal-lox'- Sphl	EcoRI- gIIIlong- HindIII
No	M	M2	M3	M7-I

Figure 26: list of pCAL vector modules

		•				PC 1/E	.P96/U364
	see M7-1	see M7-I	see M3	see M1	see M1	see M1	see M1
	vector plG10	vector plG10	(synthetic)	(synthetic)	pASK30	pASK30	pASK30
			lox	Pacl, Fsel	Pacl, Fsel, BsrGl	BsrGI, Nhel	BsrGI, Nhel
	Sphl	Sphl, Bbsl	none	none	Vspl, Eco571, BssSI	Dralll (Banll not removed)	Draill, Banll
	truncated glllp of filamentous phage with N-terminal Gly- Ser linker	truncated glllp of filamentous phage with N-terminal myctail/amber codon	Cre/lox recombination site	lpp-terminator	beta-lactamase/bla (ampR)	origin of single- stranded replication	origin of single- stranded replication
ווקשורבט: וופר סי מכייב	EcoRI-gIIIss- HindIII	M7-III EcoRI-gIIIss- HindIII	Sphl-lox- HindIII	HindIII-Ipp- Pacl	PacI/Fsel-bla- BsrGl	M11- BsrGI-f1 ori-	BsrGI-f1 ori- Nhel
1 iguica	M7-11	M7-III	M8	M9-11	M10-	M11-	-M11-

WO.97/08320

Figure 26: list of pCAL vector modules

WO. 97/0832	20			,	PCT/EP96
Rose, R.E. (1988) Nucleic Acids Res. 16, 355	see M3.	Yanisch-Peron, C. (1985) Gene 33,103-119	Cardoso, M. & Schwarz, S. (1992) J. Appl. Bacteriol. 72, 289-293	see M1	Knappik, A & Plückthun, A. (1994) BioTechniques 17, 754-761
Nhel, Bglll pACYC184	(synthetic)	pUC19	pACYC184	(synthetic)	(synthetic)
!	BgIII, lox, Xmnl	BgIII, Nhel			
BssSi, Vspi, NspV	none	Eco571 (BssS1 not removed)	BspEI, MscI, Styl/Ncol	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- BgIII	BgIII-lox- BgIII	BgIII-ColEI- Nhel	Aatll-cat- BgIII	Xbal-phoA- EcoRI	Xbal-phoA- FLAG-EcoRI
M12	M13	M14- Ext2	M17	M19	M20

Figure 26: list of pCAL vector modules

WO 97/0832	0	
Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-
(synthetic)	pASK30	(synthetic)
ble Il signal (synthetic) ce	BstXI, Mlul,BbsI, BanII, BstEII, HpaI, BbeI, VspI	(synthetic)
heat-stable enterotoxin II signal sequence	lac-repressor	poly-histidine tail
Xbal-stll- Sapl	AfIII-laci- Nhel	EcoRI-Histail- HindIII
M21	M41	M42

80 / 204

Figure 27: functional map and sequence of MCS module (continued)

Figure 27	Figure 27: Tunctional map and Sequence of Mics module (continued)	ence of Mics module (conf	(inued)	
	HindIII	II:	Paci	BsrGI
	~ ~ ~	?	<pre>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	? ? ? ? ? ?
	ACATGTAAGC TGTACATTCG	TTCCCCCCCC AAGGGGGGGGG	CCTTAATTAA GGAATTAATT	CCCCCCCCC TGTACACCCCC
	NheI		BglII	Aatii Xbai
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		? ? ? ? ?	?
51	CCCCCGCTA	222222222	CCAGATCTCC	CCCCCCCGA CGTCCCCCCT
	GGGGGGCGAT	5555555555	GGTCTAGAGG	GGGGGGGCT GCAGGGGGGA
	XbaI	SphI		EcoRI Aatii
	?	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
101	CTAGACCCCC	CCCCCCCCCCCCCCCC	ممتحدد	CGAATTCGAC GTC
	GATCTGGGGG	GGGGCGTAC	9999999999	GCTTAAGCTG CAG

Figure 28: functional map and sequence of pMCS cloning vector

Figure 28: functional map and sequence of pMCS cloning vector (continued)

TTGTTTATTT	AACAAATAAA
ATGTGCGCG GAACCCCTAT	CTTGGGGATA
AATGTGCGCG	TTACACGCGC
TTTTCGGGGA	AAAAGCCCCT
CAGGTGGCAC	GTCCACCGTG
↤	

AACCCTGATA TTGGGACTAT ATGAGACAAT TACTCTGTTA GTATCCGCTC CATAGGCGAG ATTCAAATAT TAAGTTTATA AAGATTTATG TTCTAAATAC 51

GTTGTAAAGG CAACATTTCC ATACTCATAA TATGAGTATT AAAGGAAGAG TTTCCTTCTC ATTATAACTT TAATATTGAA TTACGAAGTT AATGCTTCAA 101

TGTTTTGCT ACAAAAACGA AAACGGAAGG TTTGCCTTCC TTTGCGGCAT AAACGCCGTA ATAAGGGAAA TATTCCCTTT GTGTCGCCCT CACAGCGGGA 151

Eco57I

TCAACCCACG AGTTGGGTGC BSSSI CGACTTCTAG GCTGAAGATC TCATTTTCTA AGTAAAAGAT GCGACCACTT CGCTGGTGAA GTGGGTCTTT CACCCAGAAA

ATCCTTGAGA TAGGAACTCT CAGCGGTAAG GTCGCCATTC TGGATCTCAA ACCTAGAGTT ATGTAGCTTG TACATCGAAC ACGAGTGGGT TGCTCACCCA SSSI 251

Figure 28: functional map and sequence of pMCS cloning vector (continued)

(mn I

301	GTTTTCGCCC	CGAAGAACGT	TTTCCAATGA	TGAGCACTTT	TAAAGTTCTG
	CAAAAGCGGG	GCTTCTTGCA	AAAGGTTACT	ACTCGTGAAA	ATTTCAAGAC
351	CTATGTGGCG	CGGTATTATC GCCATAATAG	CCGTATTGAC GGCATAACTG	GCCGGGCAAG	AGCAACTCGG TCGTTGAGCC
401	TCGCCGCATA	CACTATTCTC GTGATÄAGAG	AGAATGACTT TCTTACTGAA	GGTTGAGTAC CCAACTCATG	TCACCAGTCA AGTGGTCAGT
451	CAGAAAAGCA	TCTTACGGAT	GGCATGACAG	TAAGAGAATT	ATGCAGTGCT
	GTCTTTTCGT	AGAATGCCTA	CCGTACTGTC	ATTCTCTTAA	TACGTCACGA
501	GCCATAACCA	TGAGTGATAA	CACTGCGGCC	AACTTACTTC	TGACAÄCGAT
	CGGTATTGGT	ACTCACTATT	GTGACGCCGG	TTGAATGAAG	ACTGTTGCTA
551	CGGAGGACCG	AAGGAGCTAA	CCGCTTTTTT	GCACAACATG	GGGGATCATG
	GCCTCCTGGC	TTCCTCGATT	GGCGAAAAAA	CGTGTTGTAC	CCCCTAGTAC
601	TAACTCGCCT	TGATCGTTGG	GAACCGGAGC	TGAATGAAGC	CATACCAAAC
	ATTGAGCGGA	ACTAGCAACC	CTTGGCCTCG	ACTTACTTCG	GTATGGTTTG
651	GACGAGCGTG	ACACCACGAT	GCCTGTAGCA	ATGGCAACAA	CGTTGCGCAA

Figure 28: functional map and sequence of pMCS cloning vector (continued)

	CTGCTCGCAC	TGTGGTGCTA	CGGACATCGT	TACCGTTGTT	GCAACGCGTT
					AseI
701	ACTATTAACT	GGCGAACTAC	TTACTCTAGC	TTCCCGGCAA	CAATTAATAG
	TGATAATTGA	CCGCTTGATG	AATGAGATCG	AAGGGCCGTT	GTTAATTATC
751	ACTGGATGGA	GGCGGATAAA	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT
	TGACCTACCT	CCGCCTATTT	CAACGTCCTG	GTGAAGACGC	GAGCCGGGAA
801	CCGGCTGGCT	GGTTTATTGC CCAAATAACG	TGATAAATCT ACTATTTAGA	GGAGCCGGTG CCTCGGCCAC	AGCGTGGGTC TCGCACCCAG
851	TCGCGGTATC	ATTGCAGCAC TAACGTCGTG	TGGGGCCAGA ACCCCGGTCT	TGGTAAGCCC	TCCCGTATCG AGGGCATAGC
901	TAGTTATCTA	CACGACGGGG	AGTCAGGCAA	CTATGGATGA	ACGAAATAGA
	ATCAATAGAT	GTGCTGCCCC	TCAGTCCGTT	GATACCTACT	TGCTTTATCT
951	CAGATCGCTG	AGATAGGTGC	CTCACTGATT	AAGCATTGGT	AACTGTCAGA
	GTCTAGCGAC	TCTATCCACG	GAGTGACTAA	TTCGTAACCA	TTGACAGTCT
1001	CCAAGTTTAC	TCATATATAC	TTTAGATTGA	TTTAAAACTT	CATTTTTAAT
	GGTTCAAATG	AGTATATATG	AAATCTAACT	AAATTTTGAA	GTAAAAATTA

Figure 28: functional map and sequence of pMCS cloning vector (continued)

1051	TTAAAAGGAT	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC
	AATTTTCCTA	GATCCACTTC	TAGGAAAAAC	TATTAGAGTA	CTGGTTTTAG
1101	CCTTAACGTG GGAATTGCAC	AGTTTTCGTT TCAAAAGCAA	CCACTGAGCG GGTGACTCGC	TCAGACCCCG	TAGAAAAGAT ATCTTTTCTA
1151	CAAAGGATCT	TCTTGAGATC	CTTTTTTTCT	GCGCGTAATC	TGCTGCTTGC
	GTTTCCTAGA	AGAACTCTAG	GAAAAAAAGA	CGCGCATTAG	ACGACGAACG
1201	AAACAAAAA TTTGTTTTTT	ACCACCGCTA TGGTGGCGAT	CCAGCGGTGG	TTTGTTTGCC AAACAAACGG	GGATCAAGAG CCTAGTTCTC
1251	CTACCAACTC	TTTTTCCGAA AAAAAGGCTT	GGTAACTGGC CCATTGACCG Ec	TTCAGCAGAG AAGTCGTCTC	CGCAGATACC GCGTCTATGG
	1		{ }	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1301	AAATACTGTC	CTTCTAGTGT	AGCCGTAGTT	AGGCCACCAC	TTCAAGAACT
	TTTATGACAG	GAAGATCACA	TCGGCATCAA	TCCGGTGGTG	AAGTTCTTGA
1351	CTGTAGCACC	GCCTACATAC	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT
	GACATCGTGG	CGGATGTATG	GAGCGAGACG	ATTAGGACAA	TGGTCACCGA

Figure 28: fu	inctional map and sequenc	Figure 28: functional map and sequence of pMCS cloning vector (continued)	(continued)		
1401	GCTGCCAGTG CGACGGTCAC		GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA CGCTATTCAG CACAGAATGG CCCAACCTGA GTTCTGCTAT	GGGTTGGACT CCCAACCTGA	CAAGACGATA GTTCTGCTAT
1451	GTTACCGGAT CAATGGCCTA	AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC TTCCGCGTCG CCAGCCCGAC TTGCCCCCCA AGCACGTGTG	GGTCGGGCTG	AACGGGGGGT TCGTGCACAC TTGCCCCCCA AGCACGTGTG	TCGTGCACAC AGCACGTGTG

; (() () () () () () () () () () () () () (かけん かいかい かいかん	
1901	AGC.I.	L GGAGCGAACG ACCIACACCG AACIGAGAIA CCIACAGCG	ACCIACACCG	AAC I GAGA I A	「りつりせつせてつつ
	TCGGGTCGAA	AA CCTCGCTTGC TGGATGTGGC TTGACTCTAT GGATGTCGCA	TGGATGTGGC	TTGACTCTAT	GGATGTCGCA
	! ! !				

CGGACAGGTA GCCTGTCCAT	
GGGAGAAAGG CGGACAGGTA	
GCTTCCCGAA CGAAGGGCTT	
AAAGCGCCAC GCTTCCCGAA TTTCGCGGTG CGAAGGGCTT	
GAGCTATGAG	
1551	

GAGC/I"I'CCAG	CTCGAAGGTC	
GGCAGGGTCG GAACAGGAGA GCGCACGAGG	CGCGTGCTCC CTCGAAGGTC	BssSI
GAACAGGAGA	CCGICCCAGC CITGICCICI (
GGCAGGGTCG	CCGTCCCAGC	
TCCGGTAAGC	AGGCCATTCG	
601		

; CCACCTCTGA	: GGTGGAGACT
TATAGTCCTG TCGGGTTTCG CCACCTCTGA	AGC
TATAGTCCTG	ATATCAGGAC AGCCCAA
CTGGTATCTT	GACCATAGAA
GGGGAAACGC	CCCCTTTGCG
1651	

GGGGGGGGGA GCCTATGGAA	CT CGGATACCTT
GGGGGGCGGA	CCCCCCCCCT
ATGCTCGTCA	TACGAGCAGT CCCCCCGCCT CGGA
GATTTTTGTG	CTAAAAACAC
CTTGAGCGTC	GAACTCGCAG
1701	

TGCTGGCCTT
CCTGGCCTTT
TTTACGGTT
AACGCGGCCT
AAACGCCAGC
1751

(continued)
vector
tional map and sequence of pMCS cloning vector (con
f pMCS
nence o
map and sed
nal map
8. functio
igure 28:

	TTTGCGGTCG	TTGCGCCGGA	TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA	GGACCGGAAA	ACGACCGGAA
		HindIII		PacI	BsrGI
1801	TTGCTCACAT	GTAAGCTTCC	CCCCCCTT AATTAACCC	T AATTAACCCC	CCCCCTGTA
	AACGAGTGTA	CATTCGAAGG	GGGGGGGAA	TTAATTGGGG	GGGGGGACAT
	BsrGI	NheI	Bg	Bglii	AatII
	?	? ? ? ? ?	<i>\ \ \ \</i>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	? ? ? ? ? ?
1851	CACCCCCCC	CCGCTAGCCC	CCCCCCCAG	CCCCCCCAG ATCTCCCCCC	CCCCGACGTC
	GTGGGGGGGG	GGCGATCGGG	GGGGGGGGTC	TAGAGGGGGG	GGGGCTGCAG
					-
	XbaI		Sphi	ECORI	RI
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	? ? ?
1901	CCCCCTCTAG	ACCCCCCCC	CGCATGCCCC	CCCCCCGAA TTCACGT	TTCACGT
	GGGGGAGATC	TGGGGGGGGG	GCGTACGGGG	GGGGGGCTT AAGTGCA	AAGTGCA

89 / 204

Figure 29: functional map and sequence of pCAL module M1

Н	
tΙ	
Aa	
7	

GGCTTTACAC	CCGAAATGTG
CTCACTCATT AGGCACCCCA GGCTTTACAC	ACACTCAATC GAGTGAGTAA TCCGTGGGGT CCGAAAT
CTCACTCATT	GAGTGAGTAA T
TGTGAGTTAG	ACACTCAATC GAC
GACGTCTTAA	CTGCAGAATT
\leftarrow I	

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 51

XbaI

GA LJ ~ ~ ~ ~ ~ ~ ~ ~ CGAATTTCTA GCTTAAAGAT ACCATGATTA TGGTACTAAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SUBSTITUTE SHEET (RULE 26)

1.01

Figure 30: functional map and sequence of pCAL module M7-II (continued)

EcoRI	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

CACCACCGAG GTGGTGGCTC CTAGACATCC GATCTGTAGG CTCTGAGGAG GAGACTCCTC TCTTCGACTA AGAAGCTGAT CTTAAGCTCG GAATTCGAGC

AATAAGGGGG TTATTCCCCC GGCAAACGCT CCGTTTGCGA TACTTTTCTA ATGAAAAGAT GATTTTGATT CTAAAACTAA TGGTTCCGGT ACCAAGGCCA 51

CGCTAAAGGC GCGATTTCCG TACAGTCTGA ATGTCAGACT CTTTTGCGCG AAATGCCGAT GAAAACGCGC TTTACGGCTA CTATGACCGA GATACTGGCT 101

TACCAAAGTA ATGGTTTCAT GCTGCTATCG CGACGATAGC TGATTACGGT ACTAATGCCA GACAGCGATG CTGTCGCTAC TTTGAACTAA AAACTTGATT 51

GGTGATTTTG CCACTAAAAC TGGTGCTACT ACCACGATGA GATTACCATT CTAATGGTAA TCCGGCCTTG AGGCCGGAAC ACCACTGCAA TGGTGACGTT 201

TAATTCACCT ATTAAGTGGA GTGACGGTGA CACTGCCACT GCTCAAGTCG CGAGTTCAGC TTCCCAAATG AAGGGTTTAC CTGGCTCTAA SACCGAGATT 251

XmnI

AATCGGTTGA TTAGCCAACT AGGGAGGGAG TCCCTCCTC TATAAATGGA ATATTTACCT ATTTCCGTCA TAAAGGCAGT TTAATGAATA AATTACTTAT 301

Figure 30: functional map and sequence of pCAL module M7-II (continued)

351	ATGTCGCCCT	TTTGTCTTTG AAACAGAAAC	TITGICITIG GCGCTGGTAA ACCATATGAA TTTTCTATTG AAACAGAAAC CGCGACCATT TGGTATACTT AAAAGATAAC	ACCATATGAA TGGTATACTT	TTTTCTATTG AAAAGATAAC
401		AATAAACTTA TTATTTGAAT	TTCCGTGGTG AAGGCACCAC	TCTTTGCGTT TCTTTTATAT AGAAACGCAA AGAAAATATA	TCTTTTATAT AGAAAATATA
451	GTTGCCACCT CAACGGTGGA	TTATGTATGT AATACATACA	TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT	TTTGCTAACA	TACTGCGTAA ATGACGCATT
		HindIII			
501	TAAGGAGTCT	TGAT ACTA			

94 / 204

Fisure 31: functional map and sequence of pCAL module M9-II (continued)

1	_	4
•	_	•
•	_	•
_		3
	`-	_
_	~	_

AAGCTTGACC TGTGAAGTGA AAAATGGCGC AGATTGTGCG	TTCGAACTGG ACACTTCACT TTTTACCGCG TCTAACACGC
AAAATGGCGC	TTTTACCGCG
TGTGAAGTGA	ACACTTCACT
AAGCTTGACC	TTCGAACTGG
9999999999	ددددددددد

PacI

FseI

GCCGGCCTGG	CGGCCGGACC
T TTAATTAAAG GGGGGGGGG GCCGGCCTGG	ATTAATTTC CCCCCCCCC CGGCCGGACC
TTAATTAAAG	AATTAATTTC
TGTCTGCCGT	ACAGACGGCA
ACATTTTTT	TGTAAAAAA
51	

DSLGL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GGGGGGTGT ACAGGGGGG GGG	
		101	

CCCCCCACA TGTCCCCCCC

SUBSTITUTE SHEET (RULE 26) 96 / 204

ATAGAGCCAG

ATTTCGGCCT ATTGGTTAAA

GATTTTGCCG

ATTTATAGG

TATTCTTTG

351

TATCTCGGTC

CACTCAACCC GTGAGTTGGG

ACTGGAACAA TGACCTTGTT

CTTGTTCCAA

ATAGTGGACT TATCACCTGA

301

GAACAAGGTT

Figure 32: functional map and sequence of pCAL module M11-III (continued)

NheI

SG TGTGGTGGTT	SC CCGCTCCTTT	IT CCCCGTCAAG AA GGGGCAGTTC	SC TTTACGGCAC	TA GTGGGCCATC AT CACCCGGTAG	CC ACGTTCTTTA GG TGCAAGAAAT
2229229292	GCCCTAGCGC	CGCCGGCTTT GCGGCCGAAA	GATTTAGTGC	GGTTCTCGTA CCAAGAGCAT	GTTGGAGTCC CAACCTCAGG
GGCGCATTAA CCGCGTAATT	ACTTGCCAGC TGAACGGTCG	TCGCCACGTT AGCGGTGCAA	TTAGGGTTCC	TTAGGGTGAT AATCCCACTA	GCCCTTTGAC
GCCCTGTAGC	TGACCGCTAC ACTGGCGATG	CCTTCCTTTC GGAAGGAAAG	GGGCATCCCT CCCGTAGGGA	AAAACTTGA TTTTTGAACT	ACGGTTTTTC TGCCAAAAAG
GCTAGCACGC	ACGCGCAGCG TGCGCGTCGC	CGCTTTCTTC GCGAAAGAAG	CTCTAAATCG GAGATTTAGC	CTCGACCCCA	GCCCTGATAG CGGGACTATC
← 4	51	101	121	201	251

97 / 204

l (continued)
111-111
Ξ
module M11
of pCAL mo
o
and sequence
and
map
 functional map and sequence of pCAL module M11-III (
32:
Figure

'I'AACCAA'I"I''I'	AAAATATTAA	THE REPORT OF THE PROPERTY OF
TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT	GAATTTTAAC	
CIAAAACGGC	AATTTAACGC	
TAAATATTCC	ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA	サリカアサラス ペイル
A'l'AAGAAAAC	AAATGAGCTG	
	401	

BsrGI

451

TTCATGTACA AAGTACATGT CGTTTACAAT GCAAATGTTA

Figure 33; functional map and sequence of pCAL module M14-Ext2

99 / 204

ACTCGCAGTC

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

		LTCGTTCCAC	AAGCAAGGTG	
		AACGTGAGTT TTCGTTCCAC	TTGCACTCAA	,
		AAAATCCCTT	TTTTAGGGAA	
RGITI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AGATCTGACC	TCTAGACTGG	
		_		

TTTCTGCGC	CGGTGGTTTG GCCACCAAAC
AAAGATCAAA GGATCTTCTT GAGATCCTTT TTTTCTGCGC	GCTTGCAAAC AAAAAAACCA CCGCTACCAG CGGTGGTTTG
TTTCTAGTTT CCTAGAAGAA CTCTAGGAAA AAAAGACGCG	CGAACGTTTG TTTTTTGGT GGCGATGGTC GCCACCAAAC
GGATCTTCTT	AAAAAAACCA
CCTAGAAGAA	TTTTTTTGGT
AAAGATCAAA	GCTTGCAAAC
TTTCTAGTTT	CGAACGTTTG
ACCCCGTAGA	GTAATCTGCT
TGGGGCATCT	CATTAGACGA
51	101
	SUBS

CAACTCTTTT TCCGAAGGTA ACTGGCTACA	GTTGAGAAAA AGGCTTCCAT TGACCGATGT	
TCCGAAGGTA	AGGCTTCCAT	
CAACTCTTTT	GTTGAGAAAA	
CAAGAGCTAC	GTTCTCGATG	
TTTGCCGGAT	AAACGGCCTA	
151		

GTAGTTAGGC CATCAATCCG

TAGTGTAGCC

ACTGTTCTTC TGACAAGAAG

GATACCAAAT CTATGGTTTA

GCAGAGCGCA

201

ATCACATCGG

CTCTGCTAAT	KEE KUU KUU KUU KUU KUU KUU KUU KUU KUU
AGCACCGCCT ACATACCTCG	ててんているとして
AGCACCGCCT ACATACCTCG CTCTGCTAAT	KEEKOOKOKO OOKOOEKEOE KOOOOOEKOE
AGAACTCTGT	K C K C K C E E C E
CACCACTTCA	
251	

T C 7		T) T) T) T T) T	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		1111)
	GTGGTGAAGT	TCTTGAGACA	TCGTGGCGGA	TCTTGAGACA TCGTGGCGGA TGTATGGAGC	GAGACGATTA
301	CCTGTTACCA	GTGGCTGCTG	CCAGTGGCGA	GIGGCIGCIG CCAGIGGCGA TAAGICGIGT CTIACCGGGT	CTTACCGGGT
	GGACAATGGT	CACCGACGAC	GGTCACCGCT	CACCGACGAC GGTCACCGCT ATTCAGCACA GAATGGCCCA	GAATGGCCCA

GGGCTGAACG
CGCAGCGGTC
CCGGATAAGG
ACGATAGTTA
TGGACTCAAG
351

	GCGTCG
-Ext2 (continued)	P GGCCTATTCC
ce of pCAL module M14	TGCTATCAAT
Figure 33: functional map and sequen	ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCG

ACC	ACCTGAGTTC	TGCTATCAAT	GGCCTATTCC	GCGTCGCCAG	CCCGACTTGC
401	GGGGGTTCGT	GCACACAGCC	CAGCTTGGAG GTCGAACCTC	CGAACGACCT GCTTGCTGGA	ACACCGAACT TGTGGCTTGA
451	GAGATACCTA CTCTATGGAT	CAGCGTGAGC GTCGCACTCG	TATGAGAAAG ATACTCTTTC	CGCCACGCTT GCGGTGCGAA	CCCGAAGGGA GGGCTTCCCT
501	GAAAGGCGGA CTTTCCGCCT	CAGGTATCCG GTCCATAGGC	GTAAGCGGCA CATTCGCCGT	GGGTCGGAAC CCCAGCCTTG	AGGAGAGCGC TCCTCTCGCG BSSSI
. 551.	ACGAGGGAGC TGCTCCCTCG BssSI	TTCCAGGGG	AAACGCCTGG TTTGCGGACC	ТАТСТТТАТА АТАGАААТАТ	GTCCTGTCGG CAGGACAGCC
601	GTTTCGCCAC CAAAGCGGTG	CTCTGACTTG GAGACTGAAC	AGCGTCGATT	TTTGTGATGC AAACACTACG	TCGTCAGGGG AGCAGTCCCC
651	GGCGGAGCCT	ATGGAAAAAC TACCTTTTTG	GCCAGCAACG CGGTCGTTGC	CGGCCTTTTT GCCGGAAAAA	ACGGTTCCTG TGCCAAGGAC

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

TCACATGGCT AGTGTACCGA CGGAAAACGA GCCTTTTGCT 701

Figure 34: functional map and sequence of pCAL module M17 (continued)

AatII

⊢	GGGACGTCGG	GTGAGGTTCC CACTCCAAGG	AACTTTCACC TTGAAAGTGG	АТААТGАААТ ТАТТАСТТТА	AAGATCACTA TTCTAGTGAT
51	CCGGGCGTAT	TTTTTGAGTT AAAAACTCAA	ATCGAGATTT TAGCTCTAAA	TCAGGAGCTA AGTCCTCGAT	AGGAAGCTAA
101	AATGGAGAAA TTACCTCTTT	AAAATCACTG TTTTAGTGAC	GATATACCAC CTATATGGTG	CGTTGATATA GCAACTATAT	TCCCAATGGC AGGGTTACCG
151	ATCGTAAAGA TAGCATTTCT	ACATTTTGAG TGTAAAACTC	GCATTTCAGT CGTAAAGTCA	CAGTTGCTCA GTCAACGAGT	ATGTACCTAT TACATGGATA
201	AACCAGACCG TTGGTCTGGC	TTCAGCTGGA	TATTACGGCC	TTTTTAAAGA AAAAATTTCT	CCGTAAAGAA GGCATTTCTT
251	AAATAAGCAC TTTATTCGTG	AAGTTTTATC TTCAAAATAG	CGGCCTTTAT GCCGGAAATA	TCACATTCTT AGTGTAAGAA	GCCCGCCTGA
301	TGAATGCTCA	CCCGGAGTTC GGGCCTCAAG	CGTATGGCAA GCATACCGTT	TGAAAGACGG ACTTTCTGCC	TGAGCTGGTG ACTCGACCAC
351	ATATGGGATA	GTGTTCACCC	TTGTTACACC	GTTTTCCATG	AGCAAACTGA

(pan
ntin
dule M17 (contin
117
2
te of pCAL module M
р
Ξ
₹
e of pCAL n
o
ہو
E
Š
tional map and sequence of
пd
Э.
Ē
=
E
.≘
Ĕ
2
34∶
ure 34: fu
igur
.;≓`

	TATACCCTAT	CACAAGTGGG	AACAATGTGG	CAAAAGGTAC	TCGTTTGACT
401	AACGTTTTCA TTGCAAAAGT	TCGCTCTGGA	GTGAATACCA CACTTATGGT	CGACGATTTC GCTGCTAAAG	CGGCAGTTTC GCCGTCAAAG
451	TACACATATA ATGTGTATAT	TTCGCAAGAT AAGCGTTCTA	GTGGCGTGTT CACCGCACAA	ACGGTGAAAA TGCCACTTTT	CCTGGCCTAT GGACCGGATA
501	TTCCCTAAAG AAGGGATTTC	GGTTTATTGA CCAAATAACT	GAATATGTTT CTTATACAAA	TTCGTCTCAG AAGCAGAGTC	CCAATCCCTG GGTTAGGGAC
551	GGTGAGTTTC CCACTCAAAG	ACCAGTTTTG TGGTCAAAAC	ATTTAAACGT TAAATTTGCA	AGCCAATATG TCGGTTATAC	GACAACTTCT CTGTTGAAGA
601	TCGCCCCCGT	TTTCACTATG AAAGTGATAC	GGCAAATATT CCGTTTATAA	ATACGCAAGG TATGCGTTCC	CGACAAGGTG GCTGTTCCAC
651	CTGATGCCGC	TGGCGATTCA	GGTTCATCAT CCAAGTAGTA	GCCGTTTGTG CGGCAAACAC	ATGGCTTCCA TACCGAAGGT
701	TGTCGGCAGA ACAGCCGTCT	ATGCTTAATG TACGAATTAC	AATTACAACA TTAATGTTGT	GTACTGCGAT CATGACGCTA	GAGTGGCAGG CTCACCGTCC
751	GCGGGGCGTA	ATTTTTTAA	GGCAGTTATT	GGGTGCCCTT	AAACGCCTGG

Figure 34: functional map and sequence of pCAL module M17 (continued)

CCCACGGGAA TTTGCGGACC TAAAAAATT CCGTCAATAA CGCCCGCAT

BglII

TGCTAGATCT

801

ACGATCTAGA

SUBSTITUTE SHEET (AULE 26) 106 / 204

functional ssori **BsrGI** (612) Hind 111 (515) Fsel (599) gill supershort Pac! (579) Gen11-Nick **Xmn1 (310)** Banli (919) Nhe! (1076) replication start **EcoRI** (1) 2755 bp pCAL4 Sph1 (2749) **BssSI (1254)** Figure 35: functional map and sequence of modular vector pCAL4 Colel Ext2 origin **Kbal (2739)** Hatll (2608) lac p/o Bg111 (1803) cat

AATTCACCTT

TGACGGTGAT

CTCAAGTCGG GAGTTCAGCC

TCCCAAATGG

TGGCTCTAAT ACCGAGATTA

251

ACTGCCACTA

TTAAGTGGAA

ATCGGTTGAA TAGCCAACTT

CCCTCCCTCA

GGGAGGGAGT

TATTTACCTT ATAAATGGAA

TTTCCGTCAA AAAGGCAGTT

TAATGAATAA ATTACTTATT

XmnI

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

ECORI

	₩.	~~~~~ AATTCGAGCA TTAAGCTCGT	GAAGCTGATC CTTCGACTAG	TCTGAGGAGG	ATCTGTAGGG TAGACATCCC	TGGTGGCTCT ACCACCGAGA
,	51	GGTTCCGGTG	ATTTTGATTA TAAAACTAAT	TGAAAAGATG ACTTTTCTAC	GCAAACGCTA CGTTTGCGAT	ATAAGGGGGC TATTCCCCCG
	101	TATGACCGAA ATACTGGCTT	AATGCCGATG TTACGGCTAC	AAAACGCGCT TTTTGCGCGA	ACAGTCTGAC TGTCAGACTG	GCTAAAGGCA CGATTTCCGT
and the second sections and the second	151	AACTTGATTC TTGAACTAAG	TGTCGCTACT ACAGCGATGA	GATTACGGTG CTAATGCCAC	CTGCTATCGA GACGATAGCT	TGGTTTCATT ACCAAAGTAA
	201	GGTGACGTTT CCACTGCAAA	CCGGCCTTGC	TAATGGTAAT ATTACCATTA	GGTGCTACTG CCACGATGAC	GTGATTTTGC CACTAAAACG

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

351	TGTCGCCCTT ACAGCGGGAA	TTGTCTTTGG	CGCTGGTAAA GCGACCATTT	CCATATGAAT GGTATACTTA	TTTCTATTGA AAAGATAACT
401	TTGTGACAAA AACACTGTTT	ATAAACTTAT TATTTGAATA	TCCGTGGTGT AGGCACCACA	CTTTGCGTTT GAAACGCAAA	CTTTTATATG GAAAATATAC
451	TTGCCACCTT AACGGTGGAA	TATGTATGTA ATACATACAT	TTTTCTACGT AAAAGATGCA	TTGCTAACAT AACGATTGTA	ACTGCGTAAT TGACGCATTA
501	AAGGAGTCTT TTCCTCAGAA	HindIII ~~~~~ GATAAGCTTG CTATTCGAAC	ACCTGTGAAG TGGACACTTC	TGAAAAATGG ACTTTTTACC	CGCAGATTGT GCGTCTAACA
			PacI		Н 8 9 1
551	GCGACATTTT CGCTGTAAAA	TTTTGTCTGC AAAACAGACG	CGTTTAATTA GCAAATTAAT	AAGGGGGGGG	9922992222 2299229999
·		BsrGI			
601	TGGGGGGGGG	TGTACATGAA ACATGTACTT	ATTGTAAACG TAACATTTGC	TTAATATTTT AATTATAAAA	GTTAAAATTC CAATTTTAAG

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

651 701 751 801 851	GCGTTAAATT CGCCAATTTAA CGCCAAAATC GCCGTTTTAG AACAAGGTCA GTCAAAGGGC CAGTTTCCCG CAGTTTCCCG	TTTGTTAAAT CCTTATAAAT CCTTATAAAT GGAATATTTA AACCTTGTTC CAAAAACCGT CTTTTTGGCA TCAAGTTTTT AGTTCAAAAA BANII	CAGCTCATTT GTCGAGTAAA GTTTTCTTAT AGTCCACTAT TCAGGTGATA CTATCAGGGC GATAGTCCCG GATAGTCCCG	TTTAACCAAT AAATTGGTTA GACCGAGATA TAAAGAACGT ATTTCTTGCA GATGGCCCCAC CTACCGGGTG GTGCCGTAAA	AGGCCGAAAT TCCGGCTTTA GGGTTGAGTG CCCAACTCAAC CCTGAGGTTG TACGAGAACC ATGCTCTTGG GCACTCAAATC CGTGATTTAG
01 01 21	AACAAGGTCA GTCAAAGGGC CAGTTTCCCG ATCACCCTAA TAGTGGGATT	AACCTTGTTC GAAAAACCGT CTTTTTGGCA TCAAGTTTTT AGTTCAAAAA	TCAGGTGATA CTATCAGGGC GATAGTCCCG TGGGGTCGAG	ATTTCTTGCA GATGGCCCAC CTACCGGGTG GTGCCGTAAA CACGGCATTT	CCTGAGGTTG TACGAGAACC ATGCTCTTGG GCACTAAATC CGTGATTTAG
901	GGAACCCTAA CCTTGGGATT	Banll ~~~~~~ AGGGAGCCCC TCCCTCGGGG	CGATTTAGAG GCTAAATCTC	CTTGACGGGG	AAAGCCGGCG TTTCGGCCGC
951	AACGTGGCGA TTGCACCGCT	GAAAGGAAGG CTTTCCTTCC	GAAGAAAGCG CTTCTTTCGC	AAAGGAGCGG TTTCCTCGCC	GCGCTAGGGC CGCGATCCCG

AACCACCACA CCCGCCGCGC TTGGTGGTGT GGGCGGCGCG	CATGTGAGCA AAAGGCCAGC GTACACTCGT TTTCCGGTCG	TGCTGGCGTT TTTCCATAGG ACGACCGCAA AAAGGTATCC	CGACGCTCAA GTCAGAGGTG GCTGCGAGTT CAGTCTCCAC	GGCGTTTCCC CCTGGAAGCT CCGCAAAGGG GGACCTTCGA	CGCTTACCGG ATACCTGTCC GCGAATGGCC TATGGACAGG	TCTCATAGCT CACGCTGTAG AGAGTATCGA GTGCGACATC
AACC TTGG	CATG	TGCT ACG?	CGAC	0500	0601 0002	TCT(AGA(
f (continued) CGCTGCGCGT GCGACGCGCA	NheI ~~~~~~ GCGTGCTAGC CGCACGATCG	AAGGCCGCGT TTCCGGCGCA	TCACAAAAAT AGTGTTTTTA	AAAGATACCA TTTCTATGGT	CCGACCCTGC	CGTGGCGCTT GCACCGCGAA
of modular vector pCAL4 (continued) GTAGCGGTCA CGCTGC CATCGCCAGT GCGACC	GCTACAGGGC CGATGTCCCG	GAACCGTAAA CTTGGCATTT	CTGACGAGCA GACTGCTCGT	ACAGGACTAT TGTCCTGATA	CTCTCCTGTT GAGAGGACAA	CTTCGGGAAG GAAGCCCTTC
Figure 35: functional map and sequence 1001 GCTGGCAAGT (CGACCGTTCA)	TTAATGCGCC AATTACGCGG	AAAAGGCCAG TTTTCCGGTC	CTCCGCCCCC	GCGAAACCCG CGCTTTGGGC	BssSI ~~~~~ CCCTCGTGCG GGGAGCACGC	GCCTTTCTCC CGGAAAGAGG
Figure 35: fu 1001	1051	1101	1151	1201	1251	1301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

	1351	GTATCTCAGT CATAGAGTCA	TCGGTGTAGG AGCCACATCC	TCGTTCGCTC AGCAAGCGAG	CAAGCTGGGC GTTCGACCCG	TGTGTGCACG ACACACGTGC
	1401	AACCCCCCGT	TCAGCCCGAC AGTCGGGCTG	CGCTGCGCCT	TATCCGGTAA ATAGGCCATT	CTATCGTCTT GATAGCAGAA
	1451	GAGTCCAACC	CGGTAAGACA GCCATTCTGT	CGACTTATCG GCTGAATAGC	CCACTGGCAG GGTGACCGTC	CAGCCACTGG
יייי: יידו דס מו וי	1501	TAACAGGATT ATTGTCCTAA	AGCAGAGCGA TCGTCTCGCT	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA
OUTET (DU)	1551	AGTGGTGGCC TCACCACCGG	TAACTACGGC ATTGATGCCG	TACACTAGAA ATGTGATCTT	GAACAGTATT CTTGTCATAA	TGGTATCTGC ACCATAGACG
E 06\	1601	GCTCTGCTGT	AGCCAGTTAC TCGGTCAATG	CTTCGGAAAA	AGAGTTGGTA TCTCAACCAT	GCTCTTGATC
	1651	CGGCAAACAA GCCGTTTGTT	ACCACCGCTG TGGTGGCGAC	GTAGCGGTGG CATCGCCACC	TTTTTTTGTT AAAAAAACAA	TGCAAGCAGC ACGTTCGTCG
	1701	AGATTACGCG	CAGAAAAAAA	GGATCTCAAG	AAGATCCTTT TTCTAGGAAA	GATCTTTTCT

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

1751	ACGGGGTCTG	ACGĊTCAGTG TGCGAGTCAC	GAACGAAAAC CTTGCTTTTG	TCACGTTAAG AGTGCAATTC	GGATTTTGGT CCTAAAACCA
1801	BglII ~~~~~~ CAGATCTAGC GTCTAGATCG	ACCAGGCGTT	TAAGGGCACC ATTCCCGTGG	AATAACTGCC TTATTGACGG	TTAAAAAAT AATTTTTTA
1851	TACGCCCCGC	CCTGCCACTC GGACGGTGAG	ATCGCAGTAC TAGCGTCATG	TGTTGTAATT ACAACATTAA	CATTAAGCAT GTAATTCGTA
1901	TCTGCCGACA	TGGAAGCCAT ACCTTCGGTA	CACAAACGGC GTGTTTGCCG	ATGATGAACC TACTACTTGG	TGAATCGCCA ACTTAGCGGT
1951	GCGCCATCAG	CACCTTGTCG GTGGAACAGC	CCTTGCGTAT GGAACGCATA	AATATTTGCC TTATAAACGG	CATAGTGAAA GTATCACTTT
2001	ACGGGGGCGA TGCCCCCGCT	AGAAGTTGTC TCTTCAACAG	CATATTGGCT GTATAACCGA	ACGTTTAAAT TGCAAATTTA	CAAAACTGGT GTTTTGACCA
2051	GAAACTCACC CTTTGAGTGG	CAGGGATTGG GTCCCTAACC	CTGAGACGAA GACTCTGCTT	AAACATATTC TTTGTATAAG	TCAATAAACC AGTTATTTGG

AC ATCTTGCGAA	AC TCCAGAGCGA	HA GGGTGAACAC	ACG GAACTCCGGG	SCG GATAAAACTT SGC CTATTTTGAA	ATA TCCAGCTGAA TAT AGGTCGACTT	rgc crcaaaatgt acg gagttttaca	ATC CAGTGATTTT TAG GTCACTAAAA
AACACGCCAC TTGTGCGGTG	TGGTATTCAC ACCATAAGTG	GGTGTAACAA CCACATTGTT	TTGCCATACG AACGGTATGC	ATAAAGGCCG TATTTCCGGC	GGCCGTAATA CCGGCATTAT	ACTGAAATGC TGACTTTACG	GTGGTATATC
4 (continued) TTTTCACCGT AAAAGTGGCA	GAAATCGTCG	CATGGAAAAC GTACCTTTTG	CCGTCTTTCA GGCAGAAAGT	AAGAATGTGA TTCTTACACT	TCTTTAAAAA AGAAATTTTT	TGAGCAACTG ACTCGTTGAC	TATATCAACG ATATAGTTGC
of modular vector pCAL ATAGGCCAGG TATCCGGTCC	GAAACTGCCG	TCAGTTTGCT AGTCAAACGA	CACCAGCTCA GTGGTCGAGT	TCAGGCGGGC AGTCCGCCCG	TTCTTTACGG AAGAAATGCC	ATAGGTACAT TATCCATGTA	GCCATTGGGA
Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2101 CTTTAGGGAA ATAGGCCAGG TTTTC/GAAC	TATATGTGTA ATATACACAT	TGAAAACGTT ACTTTTGCAA	TATCCCATAT ATAGGGTATA	TGAGCATTCA ACTCGTAAGT	GTGCTTATTT CACGAATAAA	CGGTCTGGTT	TCTTTACGAT
Figure 35: fu 2 1 0 1	2151	2201	2251	2301	2351	2401	2451
			SUBSTIT	UTE SHEET	(RULE 26)		

Figure 35: functional	functional map and sequen	al map and sequence of modular vector pCAL4 (continued)	.4 (continued)		
2501	TTTCTCCATT	TTAGCTTCCT	CTCCATT TTAGCTTCCT TAGCTCCTGA AAATCTCGAT AACT	AAATCTCGAT	AACT
	AAAGAGGTAA	AATCGAAGGA	GAGGTAA AATCGAAGGA ATCGAGGACT TTTAGAGCTA TTGA	TTTAGAGCTA	TTGA

	CCTTGGAGTG
GGTGAAAGTT	CCACTTTCAA
ATTTCATTAT	TAAAGTAATA
TAGTGATCTT	ATCACTAGAA
ATACGCCCGG	TATGCGGGCC
2551	

2601		ATGTGAGTTA	A GCTCACTCAT TAGGCACCCC AGGCTTTACA	TAGGCACCCC	AGGCTTTACA
	GGCTGCAGAT	TACACTCAAT	TACACTCAAT CGAGTGAGTA ATCCGTGGG TCCGAAATGT	ATCCGTGGGG	TCCGAAATGT

I SphI	XbaI				
GGATAACAAT CCTATTGTTA	CCGGCTCGTA TGTTGTGTGG AATTGTGAGC GGATAACAAT GGCCGAGCAT ACAACACACC TTAACACTCG CCTATTGTTA	TGTTGTGTGG ACAACACACC	CCGGCTCGTA TGTTGTGTGG GGCCGAGCAT ACAACACACC	CTTTATGCTT GAAATACGAA	2651
TCCGAAATGT	TACACTCAAȚ CGAGTGAGTA ATCCGTGGGG TCCGAAATGT	CGAGTGAGTA	TACACTCAAT	GGCTGCAGAT	

AGAGCATGCG	. TCTCGTACGC
GACCATGATT ACGAATTTCT AGAGCATGCG	TGCTTAAAGA
GACCATGATT	ATA CTGGTACTAA
AAACAGCTAT	TTTGTCGATA
TTCACACAGG	AAGTGTGTCC
2701	
= 28)	

Ecori

:751 GGGGG

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26) 116 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. 7 \mathbf{z} AatII

CCGAAATGTG GGCTTTACAC TCCGTGGGGT AGGCACCCCA CTCACTCATT GAGTGAGTAA ACACTCAATC TGTGAGTTAG CTGCAGAATT GACGTCTTAA

CTATTGTTAA GATAACAATT ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT GCCGAGCATA CGGCTCGTAT TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

GTATAATGTA CATATTACAT CTTATTGAAG GAATAACTTC ACCATGTCTA TGGTACAGAT TTGTCGATAC AACAGCTATG TCACACAGGA AGTGTGTCCT

SphI

 \mathbf{TGC} ACG AGTTATCGCA TCAATAGCGT CGCTATACGA GCGATATGCT

151

SUBSTITUTE SHEET (RULE 26)

101

AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ж Ж Bglii -----AGATCTCATA ACTTCGTATA ATGTA

TGACGTC ACTGCAG TACGAAGTTA ATGCTTCAAT ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-I (long)

Ecori

⊣	CTTAAGCCAC	GTGGTGGATC	TGCGTGCGCT	GAAACGGTTG CTTTGCCAAC	AAAGTTGTTT TTTCAACAAA
51	AGCAAAATCC TCGTTTTÄGG	CATACAGAAA GTATGTCTTT	ATTCATTTAC TAAGTAAATG	TAACGTCTGG ATTGCAGACC	AAAGACGACA TTTCTGCTGT
101	AAACTTTAGA TTTGAAATCT	TCGTTACGCT AGCAATGCGA	AACTATGAGG TTGATACTCC	GCTGTCTGTG	GAATGCTACA CTTACGATGT
151	GGCGTTGTAG	TTTGTACTGG	TGACGAAACT ACTGCTTTGA	CAGTGTTACG GTCACAATGC	GTACATGGGT CATGTACCCA
201	TCCTATTGGG	CTTGCTATCC GAACGATAGG	CTGAAAATGA GACTTTTACT	GGGTGGTGGC	TCTGAGGGTG AGACTCCCAC
251	GCGGTTCTGA CGCCAAGACT	GGGTGGCGGT	TCTGAGGGTG AGACTCCCAC	GCGGTACTAA CGCCATGATT	ACCTCCTGAG TGGAGGACTC
301	TACGGTGATA ATGCCACTAT	CACCTATTCC GTGGATAAGG	GGGCTATACT CCCGATATGA	TATATCAACC ATATAGTTGG	CTCTCGACGG GAGAGCTGCC

SUBSTITUTE SHEET (RULE 26)

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

351	CACTTATCCG	CCTGGTACTG	AGCAAAACCC	CGCTAATCCT	AATCCTTCTC
	GTGAATAGGC	GGACCATGAC	TCGTTTTGGG	GCGATTAGGA	TTAGGAAGAG
401	TTGAGGAGTC	TCAGCCTCTT	AATACTTTCA	TGTTTCAGAA	TAATAGGTTC
	AACTCCTCAG	AGTCGGAGAA	TTATGAAAGT	ACAAAGTCTT	ATTATCCAAG
451	CGAAATAGGC	AGGGGGCATT	AACTGTTTAT	ACGGGCACTG	TTACTCAAGG
	GCTTTATCCG	TCCCCCGTAA	TTGACAAATA	TGCCCGTGAC	AATGAGTTCC
501	CACTGACCCC	GTTAAAACTT CAATTTTGAA	ATTACCAGTA TAATGGTCAT	CACTCCTGTA GTGAGGACAT	TCATCAAAAG AGTAGTTTTC
551	CCATGTATGA	CGCTTACTGG	AACGGTAAAT	TCAGAGACTG	CGCTTTCCAT
	GGTACATACT	GCGAATGACC	TTGCCATTTA	AGTCTCTGAC	GCGAAAGGTA
601	TCTGGCTTTA	ATGAGGATTT TACTCCTAAA	ATTTGTTTGT TAAACAAACA	GAATATCAAG CTTATAGTTC	GCCAATCGTC CGGTTAGCAG
651	TGACCTGCCT	CAACCTCCTG GTTGGAGGAC	TCAATGCTGG AGTTACGACC	CGGCGGCTCT GCCGCGAGA	GGTGGTGGTT CCACCACCAA
701	CTGGTGGCGG	CTCTGAGGGT GAGACTCCCA	GGTGGCTCTG CCACCGAGAC	AGGGTGGCGG	TTCTGAGGGT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

751	GGCGGCTCTG	AGGGAGGCGG TCCCTCCGCC	TTCCGGTGGT AAGGCCACCA	GGCTCTGGTT CCGAGACCAA	CCGGTGATTT GGCCACTAAA	
801	TGATTATGAA ACTAATACTT	AAGATGGCAA TTCTACCGTT	ACGCTAATAA TGCGATTATT	GGGGGCTATG	ACCGAAAATG TGGCTTTTAC	
851	CCGATGAAAA GGCTACTTTT	CGCGCTACAG GCGCGATGTC	TCTGACGCTA AGACTGCGAT	AAGGCAAACT TTCCGTTTGA	TGATTCTGTC ACTAAGACAG	
901	GCTACTGATT CGATGACTAA	ACGGTGCTGC TGCCACGACG	TATCGATGGT ATAGCTACCA	TTCATTGGTG AAGTAACCAC	ACGTTTCCGG TGCAAAGGCC	
951	CCTTGCTAAT GGAACGATTA	GGTAATGGTG CCATTACCAC	CTACTGGTGA	TTTTGCTGGC AAAACGACCG	TCTAATTCCC AGATTAAGGG	•
			·		XmnI	
1001	AAATGGCTCA TTTACCGAGT	AGTCGGTGAA TCAGCCACTT	GGTGATAATT CCACTATTAA	CACCTTTAAT GTGGAAATTA	GAATAATTTC CTTATTAAAG	
1051	CGTCAATATT	TACCTTCCAT	CCCTCAATCG GGGAGTTAGC	GTTGAATGTC	GCCCTTTTGT CGGGAAAACA	

continued)
vectors (
s and pCAL
tor modules a
al pCAL vec
of addition:
sednences.o
I maps and
: Functiona
Figure 35a

H	1101	1101 CTTTGGCGCT GGTAAACC GAAACCGCGA CCATTTGG	CT GA	ATGAATTTTC TACTTAAAAG	TATTGATTGT ATAACTAACA	GACAAAATAA CTGTTTTATT	
\leftarrow	1151	ACTTATTCCG TGAATAAGGC	TGGTGTCTTT ACCACAGAAA	GCGTTTCTTT	TATATGTTGC	CACCTTTATG GTGGAAATAC	
			·			HindIII	
	1201	TATGTATTTT ATACATAAAA	CTACGTTTGC GATGCAAACG	TAACATACTG ATTGTATGAC	CGTAATAAGG GCATTATTCC	AGTCTTGATA TCAGAACTAT	
BSTITUTE		HindI				•	
	1251	AGCTT TCGAA					
ال						•	

JLE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

(ss-TAG) 7-II \mathbf{Z}

ECORI

	11111				
Н	CGGGAATTCG GCCCTTAAGC	GAGGCGGTTC CTCCGCCAAG	GAGGCGGTTC CGGTGGTGGC TCTGGTTCCG CTCCGCCAAG GCCACCACCG AGACCAAGGC	TCTGGTTCCG AGACCAAGGC	GTGATTTTGA
51	TTATGAAAAG	ATGGCAAACG TACCGTTTGC	ATGGCAAACG CTAATAAGGG GGCTATGACC GAAAATGCCG TACCGTTTGC GATTATTCCC CCGATACTGG CTTTTACGGC	GGCTATGACC	GAAAATGCCG

GCAAACTTGA TTCTGTCGCT CGTTTGAACT AAGACAGCGA	ATTGGTGACG TTTCCGGCCT
GACGCTAAAG GCA CTGCGATTTC CG1	CGATGGTTTC ATT
CT GACGC GA CTGCC	AT CGATC
GCTACAGTCT CGATGTCAGA	GTGCTGCTAT
ATGAAAACGC TACTTTTGCG	ACTGATTACG
101	151

	Ą	Ę
	AATTCCCAA	TTAAGGGTTT
	CTGGTGATTT TGCTGGCTCT AATTCCCAAA	ACGACCGAGA
	CTGGTGATTT	GACCACTAAA ACGACCGAGA TTAAGGGTTT
•	AATGGTGCTA	TTACCACGAT GACCACTAAA
	TGCTAATGGT	ACGATTACCA
	201	
_		

TGACTAATGC

				<i>t</i>	~~~~~~~~~~	
251	TGGCTCAAGT	CGGTGACGGT	GATAATTCAC	GGTGACGGT GATAATTCAC CTTTAATGAA TAATTTCCGT	TAATTTCCGT	
	ACCGAGTTCA	GCCACTGCCA	CTATTAAGTG	CCACTGCCA CTATTAAGTG GAAATTACTT ATTAAAGGCA	ATTAAAGGCA	

	<u>آ</u>
ntinued)	とう しょう 日 で 日 で 下 で
ir modules and pCAL vectors (co	THE DESCRIPTION OF THE PROPERTY OF THE PROPERT
Engineer and sequences of additional pCAL vector modules and pCAL vectors (continued)	
S pue sucm [coo; or :]	Figure 35a; Furictional maps and 5

CTTTTGTCTT GAAAACAGAA	AAAATAAACT TTTTATTTGA
GAATGTCGCC CTTACAGCGG	TGATTGTGAC ACTAACACTG
ATCGGTT TAGCCAA	AATTTTCTAT TGATTGTGAC TTAAAAGATA ACTAACACTG
CTTCCCTCCC	AAACCATATG TTTGGTATAC
301 CAATATTTAC CTTCCCTCC TCA GUITAN BOOK CTTCCCTCCC TCA GTT CATATATAAATG GAAGGGAGGG AGT	TGGCGCTGGT
a; Functional 301	351

GAACTATTCG CTTGATAAGC AATAAGGAGT

GAAATACATA

TACAACGGTG ATGTTGCCAC

TTTCTTTAT

TATTCCGTGG TGTCTTTGCG

AAAGAAAATA

ACAGAAACGC

ATAAGGCACC

401

CTTTATGTAT

HindIII

TTATTCCTCA CATACTGCGT GTATGACGCA GCAAACGATT CGTTTGCTAA GTATTTTCTA CATAAAAGAT 451

Ηì 501

HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ∞ Σ SphI

TAAGCTT TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA GCATGCCATA

ATTCGAA TGAAGCATAT

TAAAGTTCTG ATTTCAAGAC

TGAGCACTTT ACTCGTGAAA

TTTCCAATGA AAAGGTTACT

CGAAGAACGT GCTTCTTGCA

GTTTCGCCC

251

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

BsrGI

-	\ \ \ \ \ \	}			
←	GGGGGTGTAC	ATTCAAATAT TAAGTTTATA	GTATCCGCTC CATAGGCGAG	ATGAGACAAT TACTCTGTTA	AACCCTGATA TTGGGACTAT
5 7	AATGCTTCAA TTACGAAGTT	TAATATTGAA ATTATAACTT	AAAGGAAGAG TTTCCTTCTC	TATGAGTATT ATACTCATAA	CAACATTTCC GTTGTAAAGG
101	GTGTCGCCCT	TATTCCCTTT ATAAGGGAAA	TTTGCGGCAT AAACGCCGTA	TTTGCCTTCC	TGTTTTTGCT ACAAAAACGA
151	CACCCAGAAA GTGGGTCTTT	CGCTGGTGAA GCGACCACTT	AGTAAAAGAT TCATTTTCTA	GCTGAGGATC CGACTCCTAG	AGTTGGGTGC TCAACCCACG
201	GCGAGTGGGT	TACATCGAAC ATGTAGCTTG	TGGATCTCAA ACCTAGAGTT	CAGCGGTAAG GTCGCCATTC	ATCCTTGAGA TAGGAACTCT

SUBSTITUTE SHEET (RULE 26)

_
D
٩
=
·Ξ
\equiv
ഉ
$\underline{\underline{\mathcal{C}}}$
Ň
ō
Ę.
2
>
يـــ
⋖
Š
<u> </u>
Ð
۳
dules and pCAL
$\bar{\mathbf{a}}$
Ð
ō
ir modules and p(
Ξ
ō
さ
تو
>
ب
Α.
\sim
_
3
es of additions
of additio
≡
무
ည္က
20
S
بو
2
ē
⊇_
Ď
8
73
≂
В
S
E
≅
onal maps and sequences of a
7
_
.0
7
2
Ē
ш
ಬ
က်
به
_
D.
igu.
Figu

_
ed
_⊒
Ĭ
tors (conti
ors
<u>></u>
CAL vec
_
nodules and
<u>s</u>
줮
Ĕ
ţŏ
Vec
Æ
PCA
lal
<u>ē</u> .
ddi
ق
\$ 0
nce
ji.
Sec
pu
)S
nar
alr
Ö
nct
3
5a:
e 3
ant
Ē

						•	
CTCGGCCCTT GAGCCGGGAA	AGCGTGGGTC TCGCACCCAG	TCCCGTATCG AGGGCATAGC	ACGAAATAGA TGCTTTATCT	TAACTGTCAG ATTGACAGTC	TCATTTTTAA AGTAAAAATT	TGACCAAAAT ACTGGTTTTA	GTAGAAAAGA CATCTTTTCT
CACTTCTGCG GTGAAGACGC	GGAGCCGGTG CCTCGGCCAC	TGGTAAGCCC ACCATTCGGG	CTATGGATGA GATACCTACT	AAGCATTGGG TTCGTAACCC	ATTTAAAACT TAAATTTTGA	GATAATCTCA CTATTAGAGT	GTCAGACCCC
GTTGCAGGAC	TGATAAATCT ACTATTTAGA	TGGGGCCAGA	AGTCAGGCAA TCAGTCCGTT	CTCACTGATT GAGTGACTAA	CTTTAGATTG GAAATCTAAC	GATCCTTTTT CTAGGAAAAA	TCCACTGAGC
GGCGGATAAA CCGCCTATIT	GGTTTATTGC	ATTGCAGCAC TAACGTCGTG	CACGACGGGG GTGCTGCCCC	AGATAGGTGC TCTATCCACG	CTCATATATA GAGTATATAT	TCTAGGTGAA AGATCCACTT	GAGTTTTCGT CTCAAAAGCA
35a: Functional maps and sequences of additional poor except modern and 7 01 ACTGGATGGA GGCGGATAAA GTTGC TGCCCTATTT CAACC	CCGGCTGGCT	TCGCGGTATC AGCGCCATAG	TAGTTATCTA ATCAATAGAT	CAGATCGCTG GTCTAGCGAC	ACCAAGTTTA TGGTTCAAAT	TTTAAAAGGA AAATTTTCCT	CCCTTAACGT
35a: Functional 701	751	801	851	901	951	1001	1051

Paci

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCCCCCCTT	
CCTTTTTGAT AATGGCCGGC CCCCCCTT GGAAAAACTA TTACCGGCCG GGGGGGGGAA	
CCTTTTTGAT AATGGCCGGC GGAAAAACTA TTACCGGCCG	
TTCTTGAGAT	
TCAAAGGATC AGTTTCCTAG	PacI
1101	

AATTAAGGGG (TTAATTCCCC (

1151

SUBSTITUTE SMEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M11-II

NheI

	GCTAGCACGC	GCCCTGTAGC	GGCGCATTAA CCGCGTAATT	ეეემეემემე ემეემემემემემემე	TGTGGTGGTT ACACCACCAA
21	ACGCGCAGCG	TGACCGCTAC	ACTTGCCAGC TGAACGGTCG	GCCCTAGCGC CGGGATCGCG	CCGCTCCTTT GGCGAGGAAA
101	CGCTTTCTTC	CCTTCCTTTC GGAAGGAAAG	TCGCCACGTT AGCGGTGCAA	CGCCGGCTTT	CCCCGTCAAG GGGGCAGTTC
151	CTCTAAATCG GAGATTTAGC	Banll GGGGCTCCCT CCCGAGGGA	TTAGGGTTCC	GATTTAGTGC CTAAATCACG	TTTACGGCAC
201	CTCGACCCCA	AAAAACTTGA TTTTGAACT	TTAGGGTGAT AATCCCACTA	GGTTCTCGTA CCAAGAGCAT	GTGGGCCATC
251	GCCCTGATAG CGGGACTATC	ACGGTTTTTC TGCCAAAAAG	GCCCTTTGAC CGGGAAACTG	GTTGGAGTCC CAACCTCAGG	ACGTTCTTTA TGCAAGAAAT

SUBSTITUTE SHEET (RULE 28)

. 136 / 204

$\overline{}$
0
ਦ
ă
=
Ή.
\Box
ō
ors (cor
$\overline{}$
S
≍
\simeq
vect
ũ
>
=
~.
ري
a
$\overline{}$
\simeq
≍
s a
S
9
=
ō
ត
Ĕ
=
ecto
ت
ç
>
_
یــ
⋖
ت
onal pCAL vector
_
<u></u>
=
$\overline{}$
.≌
.=
0
g
ā
•
o
Š
2
nces
5
- Š
Ž
ga
sedn
J segu
nbas pu
upas bus
and sequ
s and sequ
ups and sequ
aps and sequ
maps and sequ
maps and sequ
-
В
В
В
В
-
В
В
В
: Functional
: Functional
: Functional
35a: Functional
35a: Functional
35a: Functional
35a: Functional
35a: Functional
ure 35a: Functional

301	ATAGTGGACT TATCACCTGA	CTTGTTCCAA GAACAAGGTT	CTTGTTCCAA ACTGGAACAA CACTCAACCC TATCTCGGTC GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG	CACTCAACCC GTGAGTTGGG	CACTCAACCC TATCTCGGTC GTGAGTTGGG ATAGAGCCAG	
351	TATTCTTTTG ATAAGAAAAC	ATTTATAAGG TAAATATTCC	GATTTTGCCG CTAAAACGGC	ATTTCGGCCT ATTGGTTAAA TAAAGCCGGA TAACCAATTT	ATTGGTTAAA TAACCAATTT	
401	AAATGAGCTG TTTACTCGAC	ATTTAACAAA TAAATTGTTT	TTTAACAAA AATTTAACGC AAATTGTTT TTAAATTGCG	GAATTTTAAC AAAATATTAA CTTAAAATTG TTTTATAATT	AAAATATTAA TTTTATAATT	
•		BsrGI			•	
451	CGTTTACAAT GCAAATGTTA	TTCATGTACA AAGTACATGT			•	•

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 12:

 ${ t BglII}$

· —	AGATCTAATA	AGATGATCTT	CTTGAGATCG	TTTTGGTCTG	CGCGTAATCT
	TCTAGATTAT	TCTACTAGAA	GAACTCTAGC	AAAACCAGAC	GCGCATTAGA
51	CTTGCTCTGA	AAACGAAAAA	ACCGCCTTGC	AGGGCGGTTT	TTCGTAGGTT
	GAACGAGACT	TTTGCTTTTT	TGGCGGAACG	TCCCGCCAAA	AAGCATCCAA
101	CTCTGAGCTA	CCAACTCTTT	GAACCGAGGT	AACTGGCTTG	GAGGAGCGCA
	GAGACTCGAT	GGTTGAGAAA	CTTGGCTCCA	TTGACCGAAC	CTCCTCGCGT
151	GTCACTAAAA	CTTGTCCTTT	CAGTTTAGCC	TTAACCGGCG	CATGACTTCA
	CAGTGATTTT	GAACAGGAAA	GTCAAATCGG	AATTGGCCGC	GTACTGAAGT
201	AGACTAACTC	CTCTAAATCA	ATTACCAGTG	GCTGCTGCCA	GTGGTGCTTT
	TCTGATTGAG	GAGATTTAGT	TAATGGTCAC	CGACGACGGT	CACCACGAAA
251	TGCATGTCTT	TCCGGGTTGG	ACTCAAGACG TGAGTTCTGC	ATAGTTACCG TATCAATGGC	GATAAGGCGC CTATTCCGCG
301	AGCGGTCGGA	CTGAACGGGG	GGTTCGTGCA	TACAGTCCAG ATGTCAGGTC	CTTGGAGCGA

SUBSTITUTE SHEET (RULE 26)

TTTGCGCCGG AAACGCGGCC CCTTACTCTG GGAATGAGAC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) TGTCAGGCGT ACAGTCCGCA CGGAACTGAG GCCTTGACTC TGACGGATGG ACTGCCTACC 351

AgeI

		? ? ?	?		
401	ATAACAGCGG TATTGTCGCC	AATGACACCG TTACTGTGGC	GTAAACCGAA CATTTGGCTT	AGGCAGGAAC TCCGTCCTTG	AGGAGAGCGC TCCTCTCGCG
451	AGGAGGGAGC TCCTCCCTCG	CGCCAGGGGG	AAACGCCTGG TTTGCGGACC	ТАТСТТТАТА АТАGАААТАТ	GTCCTGTCGG CAGGACAGCC
501	GTTTCGCCAC	CACTGATTTG GTGACTAAAC	AGCGTCAGAT TCGCAGTCTA	TTCGTGATGC AAGCACTACG	TTGTCAGGGG
551	GGCGGAGCCT	ATGGAAAAAC TACCTTTTTG	GGCTTTGCCG CCGAAACGGC	CGGCCCTCTC	ACTTCCCTGT TGAAGGGACA
601	TAAGTATCTT ATTCATAGAA	CCTGGCATCT GGACCGTAGA	TCCAGGAAAT	CTCCGCCCCG	TTCGTAAGCC
651	ATTTCCGCTC TAAAGGCGAG	GCCGCAGTCG CGGCGTCAGC	AACGACCGAG TTGCTGGCTC	CGTAGCGAGT GCATCGCTCA	CAGTGAGCGA GTCACTCGCT

SUBSTITUTE SHEET (RULE 26)

AgeI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

0,100==	701	GGAAGCGGAA CCTTCGCCTT CCTTTTTTCT GGAAAAAAGA		TATATCCTGT ATCACATATT CTGCTGACGC ATATAGGACA TAGTGTATAA GACGACTGCG XmnI CCTGCCACAT GAAGCACTTC ACTGACACCC GGACGGTGTA CTTCGTGAAG TGACTGTGGG	CTGCTGACGC GACGACTGCG ACTGACACCC TGACTGTGGG	ACCGGTGCAG TGGCCACGTC TCATCAGTGC AGTAGTCACG
	801	801 CAACATAGTA GTTGTATCAT	AGCCAGTATA TCGGTCATAT	CACTCCGCTA GTGAGGCGAT		

SUBSTITUTE SHEAT (RULE 26)

SUBSTITUTE SHEET (AULE 23)

XmnI

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

					•	
r r r ha	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		T.T.CAGAICI	K U K E U E U K K	AAGI CIAGA	
VIIIIT			TACGAAGITIA		ATGULLCARI ARGICIAGA	
			ATGTATGCTA		TACATACGAT	
			A ACTICITATA		TGAAGCATAT	
Baltt	ک ۱ ۱	111111	7 中 2 し 中 し 中 2	71071	上々上じなじなよしも	

SUBSTITUTE SHEET (RULE 26) 143 / 204

SUBSTITUTE SHEET (AULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19

SphI

XbaI

CTATTGCACT GATAACGTGA	EcoRI	GAATTC CTTAAG
		TACCAAAGCC ATGGTTTCGG
GCGTAGGAGA AAATAAAATG AAACAAAGCA CGCATCCTCT TTTATTTTAC TTTGTTTCGT		TCACCCCTGT TACCAAAGCC AGTGGGACA ATGGTTTCGG
GCGTAGGAGA CGCATCCTCT	SapI	CCGTTGCTCT TO GGCAACGAGA A
TCTAGAGCAT AGATCTCGTA		GGCACTCTTA
. 1		51

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)
146 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

20 $\mathbf{\Sigma}$ SphI XbaI

CTATTGCACT GATAACGTGA TTTGTTTCGT AAACAAAGCA AAATAAATG TTTATTTAC CGCATCCTCT GCGTAGGAGA TCTAGAGCAT AGATCTCGTA

SapI

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA GGCACTCTTA CCGTGAGAAT

51

ECORI

MunI

ATTGGAATTC ATGAAGTGCA TACTTCACGT

SUBSTITUTE SHEET (RULE 26)

101

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21 \mathbf{z}

AAGAAGAACG TTCTTCTTGC TTATAGCGTA AATATCGCAT ATACTTTTTC TATGAAAAAG GAGGTGATTT CTCCACTAAA TCTAGAGGTT AGATCTCCAA

11111 11111

ECORI

NsiI

GAATTC

CTTAAG ACGTATGCGA TGCATACGCT AACGATGTTT TTGCTACAAA CAAAAAAGAT GTTTTTTTA

> ATCTATGTTC TAGATACAAG 51

> > SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41

NheI

-	GCTAGCATCG CGATCGTAGC	AATGGCGCAA TTACCGCGTT	AACCTTTCGC TTGGAAAGCG	GGTATGGCAT CCATACCGTA	GATAGCGCCC
51	GGAAGAGAGT CCTTCTCTCA	CAATTCAGGG GTTAAGTCCC	TGGTGAATGT ACCACTTACA	GAAACCAGTA CTTTGGTCAT	ACGTTATACG TGCAATATGC
101	ATGTCGCAGA TACAGCGTCT	GTATGCCGGT CATACGGCCA	GTCTCTTATC CAGAGAATAG	AGACCGTTTC TCTGGCAAAG	CCGCGTGGTG
151	AACCAGGCCA TTGGTCCGGT	GCCACGTTTC CGGTGCAAAG	TGCGAAAACG ACGCTTTTGC	CGGGAAAAAG GCCCTTTTTC	TGGAAGCGGC
201	GATGGCGGAG	CTGAATTACA GACTTAATGT	TTCCTAACCG AAGGATTGGC	CGTGGCACAA GCACCGTGTT	CAACTGGCGG GTTGACCGCC
251	GCAAACAGTC CGTTTGTCAG	GTTGCTGATT CAACGACTAA	GGCGTTGCCA CCGCAACGGT	CCTCCAGTCT GGAGGTCAGA	GGCCCTGCAC
301	GCGCCGTCGC	AAATTGTCGC TTTAACAGCG	GGCGATTAAA CCGCTAATTT	TCTCGCGCCG AGAGCGCGGC	ATCAACTGGG TAGTTGACCC

SUBSTITUTE SHEET (RULE 26)

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

351 TGCCAGCGTG ACGGTCGCAC	401 AAGCGGCGGT TTCGCCGCCA	451 AACTATCCGC TTGATAGGCG	501	S51 GTATT CATAB	601	651 TGTCTCGGCG ACAGAGCCGC	701 ATCAA
GCGTG CGCAC	GCGGT	TCCGC	TAATGTTCCG ATTACAAGGC	GTATTATTTT CATAATAAAA	GTCGCATTGG CAGCGTAACC	TCGGCG	ATCAAATTCA
GTCGTGTCGA	GCACAATCTT CGTGTTAGAA	TGGATGACCA ACCTACTGGT	GCGTTATTTC CGCAATAAAG	CTCCCATGAG GAGGGTACTC	GCCACCAGCA	CGTCTGCGTC GCAGACGCAG	GCCGATAGCG
TGGTAGAACG ACCATCTTGC	CTCGCGCAAC GAGCGCGTTG	GGATGCTATT CCTACGATAA	TTGATGTCTC AACTACAGAG	GACGGTACGC CTGCCATGCG	AATCGCGCTG TTAGCGCGAC	TGGCTGGCTG ACCGACCGAC	GAACGGGAAG
AAGCGGCGTC TTCGCCGCAG	GTGTCAGTGG CACAGTCACC	GCTGTGGAAG CGACACCTTC	TGACCAGACA ACTGGTCTGT	GACTGGGCGT CTGACCCGCA	TTAGCTGGCC AATCGACCGG	GCATAAATAT CGTATTTATA	GCGACTGGAG
GAAGCCTGTA CTTCGGACAT	GCTGATTATT CGACTAATAA	CTGCCTGCAC	CCCATCAACA GGGTAGTTGT	GGAGCATCTG CCTCGTAGAC	CATTAAGTTC GTAATTCAAG	CTCACTCGCA GAGTGAGCGT	TGCCATGTCC

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CG TTCCCACTGC GC AAGGGTGACG	TG CGTGCCATTA	GT GGGATACGAC	CA CCATCAAACA	TG CTGCAACTCT	GT CTCACTGGTG	CT CTCCCCGCGC	rcc cgactggaaa agg gctgaccttt
GAGGGCATCG	GGGCGCAATG CCCGCGTTAC	TCTCGGTAGT AGAGCCATCA	CCGCTGACCA GGCGACTGGT	GGACCGCTTG CCTGGCGAAC	TGTTGCCCGT ACAACGGGCA	CAAACCGCCT GTTTGGCGGA	ACAGGTTTCC TGTCCAAAGG
AATGCTGAAT TTACGACTTA	AGATGGCGCT TCTACCGCGA	GGTGCGGACA CCACGCCTGT	TTATATCCCG AATATAGGGC	AAACCAGCGT TTTGGTCGCA	GGCAATCAGC CCGTTAGTCG	TCCCAATACGAGGGTTATGC	AGCTGGCACG TCGACCGTGC
AAACCATGCA TTTGGTACGT	GCCAACGATC CGGTTGCTAG	GCTGCGCGTT CGACGCGCAA	ACAGCTCATG TGTCGAGTAC	CTGCTGGGGC GACGACCCCG	GGCGGTGAAG CCGCCACTTC	CCACCCTGGC GGTGGGACCG	TCACTGATGC AGTGACTACG
GGTTTTCAAC CCAAAAGTTG	GATGCTGGTT CTACGACCAA	CCGAGTCCGG GGCTCAGGCC	GATACCGAGG	GGATTTTCGC CCTAAAAGCG	CTCAGGGCCA	AAAAGAAAAA TTTTCTTTTT	GTTGGCCGAT CAACCGGCTA
751	801	851	901	951	1001	1051	1101
			SUEDITI	ITE SHEET (F	TULE 20)	•	

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGAGGCCGTT	CCTCCGGCAA
AAAGCGG CTTCCTGACA GGAGGCCGTT	GAAGGACTGT
ATAAAAGCGG	TATTTTCGCC
AGGCTACCCG ATAA	TCCGATGGGC
GCGGCCAGTG	CGCCCGTCAC
1151	

Aflii

GCCCACTTAA CGGGTGAATT TTGTTTTGCA

> SUBSTITUTE SHEET (RULE 26) 154 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 155 / 204

CTTGCGAATA GAACGCTTAT

CACGCCACAT GTGCGGTGTA

TTCACCGTAA AAGTGGCATT

AGGCCAGGTT TCCGGTCCAA

TTAGGGAAAT AATCCCTTTA

301

TGTATAAGAG TTATTTGGGA

TIGAGIGGGI CCCIAACCGA CICIGCIIII

nctional maps and sequences of additional pCAL vector modules and pCAL vectors (-1: SglII CTAGATCGTG GTCCGCAAAT TCCCGTGGTT ATTYCCCCCCCCCCCTGGTT ATTYCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ectors (continued) TAACTGCCTT AAAAAATTA ATTGAAGGAA TTTTTTTTAAT TTGTAATTCA TTAAGCATTC AACATTAAGT AATTCGTAAG CTACTTGGAC TATTTGCCCA TAGTGAAAAC ATAAACGGGT ATCACTTTTG ATTAAATCA AAACTGGTGA CAAATTTAGT AAACTGGTGA CAAATTTAGT TTTGACCACT
PS and PC GC GC GC GC GC GC GC GC GC GC GC GC GC	CAGGCGTTTA AGGGCACCAA GTCCGCAAAT TCCCGTGGTT TGCCCACTCAT CGCAGTACTG ACGGTGAGTA GCGTCATGAC GAAGCCATCA CAAACGGCAT CTTCGGTAGT GTTTGCCGTA AAGTTGTCGC TTGCGTATAA GGAACAGCG AACGCATATT

SUBSTITUTE SHEET (RULE 26)

g
n E
글
දු
\sim
용
چ
S
ದ
s and pCA
es a
픰
ō
Ε
ğ
vecto
pCAI
~
on
昙
ces of additional
of
S
en C
콼
Se
nd
5 3
uap
듄
ouï
Ē
Ë
a: F
Figure 35a
īĒ
Figu
4

	351	351 TATGTGTAGA AACTGCCGGA	AACTGCCGGA TTGACGGCCT	AATCGTCGTG TTAGCAGCAC	GTATTCACTC CATAAGTGAG	CAGAGCGATG
	. 0		なり出りむ山山山じな	SUPPRESTOR	TGTAACAAGG	GTGAACACTA
	4 O T	TTTGCAAAG	TCAAACGAGT	ACCTTTTGCC	ACATTGTTCC	CACTTGTGAT
	151	AUTATAUUT	CCAGCTCACC	GTCTTTCATT	GCCATACGGA	ACTCCGGGTG
	ተ) ዞ	AGGGTATAGT	GGTCGAGTGG	CAGAAAGTAA	CGGTATGCCT	TGAGGCCCAC
S	П С		q q D D D D D D D	ТААПСТСААП	AAAGGCCGGA	TAAAACTTGT
UBSTI	T 0 0	TCGTAAGTAG	TCCGCCCGTT	CTTACACTTA	TTTCGGCCT	ATTTTGAACA
TUT				,		
E SHE	551	GCTTATTTT	CTTTACGGTC	TTTAAAAAGG	GGCATTATAG GGCATTATAG	CAGCTGAACG
ET (TANANT LANDO		1		
RULE	601	GTCTGGTTAT	AGGTACATTG	AGCAACTGAC	TGAAATGCCT	CAAAATGTTC
26)		CAGACCAATA	TCCATGTAAC	TCGTTGACTG	ACTTTACGGA	GTTTTACAAG
	7 					
	651	TTTACGATGC	_	TATICAACGGT	GGTATATCCA	GT.GAT.T.T.T.T. CACACACACACACACACACACACACACACACACACACA
		AAATGCTACG	GIAACCCIAI	AIAGIIGCCA	CCAIAIAGGI	CACIAAAAAA
	701	TCTCCATTTT	AGCTTCCTTA	GCTCCTGAAA	ATCTCGATAA	CTCAAAAAAT
		AGAGGTAAAA	TCGAAGGAAT	CGAGGACTTT	TAGAGCTATT	GAGTTTTTA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	751	751 ACGCCCGGTA TGCGGGCCAT	GTGATCTTAT CACTAGAATA	TTCATTATGG AAGTAATACC	TGAAAGTTGG ACTTTCAACC	AACCTCACCC TTGGAGTGGG
	801	Aatii ~~~~~~ GACGTCTAAT CTGCAGATTA	GTGAGTTAGC	ТСАСТСАТТА АGTGAGTAAT	GGCACCCCAG	GCTTTACACT CGAAATGTGA
SHIP	851	TTATGCTTCC AATACGAAGG	GGCTCGTATG CCGAGCATAC	TTGTGTGGAA	TTGTGAGCGG AACACTCGCC	ATAACAATTT TATTGTTAAA
STITE					Xbal	
SHEET (RI!	. 901	CACACAGGAA GTGTGTCCTT	ACAGCTATGA TGTCGATACT	CCATGATTAC GGTACTAATG	GAATTTCTAG CTTAAAGATC	ACCCCCCCCC
E OS)	951	SphI ~~~~~~ CGCATGCCAT GCGTACGGTA	AACTTCGTAT TTGAAGCATA	AATGTACGCT TTACATGCGA	ATACGAAGTT TATGCTTCAA	HindIII ~~~~~~ ATAAGCTTGA TATTCGAACT
	1001	CCTGTGAAGT GGACACTTCA	GAAAAATGGC CTTTTTACCG	GCAGATTGTG CGTCTAACAC	CGACATTTTT GCTGTAAAAA	TTTGTCTGCC

SUBSTITUTE SHEET (RULE 23)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) FseI

	•					,		
BsrGI	GTACATGAAA CATGTACTTT	TTGTTAAATC AACAATTTAG	CTTATAAATC GAATATTTAG	TGGAACAAGA ACCTTGTTCT	AAAAACCGTC TTTTTGGCAG	CAAGTTTTTT GTTCAAAAAA	BanII	GGGAGCCCCC
	GGGGGGGGT	CGTTAAATTT GCAATTTAAA	GGCAAAATCC CCGTTTTAGG	TGTTCCAGTT ACAAGGTCAA	TCAAAGGGCG AGTTTCCCGC	TCACCCTAAT AGTGGGATTA		GAACCCTAAA CTTGGGATTT
FseI	GGGCCGGCCT	TTAAAATTCG AATTTTAAGC	GGCCGAAATC CCGGCTTTAG	GGTTGAGTGT CCAACTCACA	GACTCCAACG	ACGAGAACCA TGCTCTTGGT		CACTAAATCG GTGATTTAGC
	AGGGGGGGG	TAATATTTTG ATTATAAAAC	TTAACCAATA AATTGGTTAT	ACCGAGATAG TGGCTCTATC	AAAGAACGTG TTTCTTGCAC	ATGGCCCACT TACCGGGTGA		TGCCGTAAAG
PacI	GTTTAATTAA CAAATTAATT	TTGTAAACGT AACATTTGCA	AGCTCATTTT TCGAGTAAAA	AAAAGAATAG TTTTCTTATC	GTCCACTATT CAGGTGATAA	TATCAGGGCG ATAGTCCCGC		GGGGTCGAGG CCCCAGCTCC
	1051	1101	1151	1201	1251	1301		1351
			SUB	STITUTE SH	EET (RULE 2	26)		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	1401	GATTTAGAGC CTAAATCTCG	TTGACGGGGA AACTGCCCCT	AAGCCGGCGA TTCGGCCGCT	ACGTGGCGAG TGCACCGCTC	AAAGGAAGGG TTTCCTTCCC
	1451	AAGAAAGCGA TTCTTTCGCT	AAGGAGCGGG	CGCTAGGGCG GCGATCCCGC	CTGGCAAGTG GACCGTTCAC	TAGCGGTCAC
	1501.	GCTGCGCGTA	ACCACCACAC TGGTGGTGTG	CCGCCGCGCT	TAATGCGCCG ATTACGCGGC	CTACAGGGCG GATGTCCCGC
BUBSTITUTE SHEET	1551	NheI ~~~~~ CGTGCTAGCG GCACGATCGC	GAGTGTATAC	TGGCTTACTA	TGTTGGCACT	GATGAGGGTG
(RULE 2			It		}	AgeI
:6)	1601	TCAGTGAAGT AGTCACTTCA	GCTTCATGTG CGAAGTACAC	GCAGGAGAAA	AAAGGCTGCA TTTCCGACGT	
	1651	AGCAGAATAT TCGTCTTATA	GTGATACAGG	ATATATTCCG TATATAAGGC	CTTCCTCGCT GAAGGAGCGA	CACTGACTCG
	1701	CTACGCTCGG	TCGTTCGACT	GCGGCGAGCG	GAAATGGCTT	ACGAACGGGG

TGCTTGCCCC	GAAGTGAGAG CTTCACTCTC	GACAAGCATC CTGTTCGTAG	AGGACTATAA TCCTGATATT	CTCCTGTTCC GAGGACAAGG		CGTTTGTCTC GCAAACAGAG	CCAAGCTGGA	TTATCCGGTA
tinued) CTTTACCGAA	ACTTAACAGG TGAATTGTCC	CCGCCCCCT	GAAACCCGAC CTTTGGGCTG	CTCCTGCGCT GAGGACGCGA		GTTATGGCCG CAATACCGGC	GCAGTTCGCT CGTCAAGCGA	CCGCTGCGCC
ional pCAL vector modules and pCAL vectors (continued)	CCAGGAAGAT GGTCCTTCTA	TCCATAGGCT AGGTATCCGA	CAGTGGTGGC GTCACCACCG	TGGCGGCTCC ACCGCCGAGG		TCATTCCGCT AGTAAGGCGA	TTCCGGGTAG	TTCAGTCCGA
itional pCAL vector modul AGCAAGCTGA	CTGGAAGATG	AAGCCGTTTT TTCGGCAAAA	ACGCTCAAAT TGCGAGTTTA	CGTTTCCCCC	AgeI	TTTACCGGTG AAATGGCCAC	TGACACTCAG ACTGTGAGTC	GAACCCCCCG
Figure 35a: Functional maps and sequences of additing GATGCGAGCC A	_		ACGAAATCTG TGCTTTAGAC	AGATACCAGG TCTATGGTCC		TGCCTTTCGG	ATTCCACGCC TAAGGTGCGG	CTGTATGCAC GACATACGTG
35a: Functional r	1751	1801	1851	UBSTITUTE S	HEET ((3) 1951	2001	2051
Figure .			51	161 /		1. W. Carrier 1879		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	2101	ACTATCGTCT TGATAGCAGA	TGAGTCCAAC ACTCAGGTTG	CCGGAAAGAC GGCCTTTCTG	ATGCAAAAGC TACGTTTTCG	ACCACTGGCA TGGTGACCGT
	2151	GCAGCCACTG CGTCGGTGAC	GTAATTGATT CATTAACTAA	TAGAGGAGTT ATCTCCTCAA	AGTCTTGAAG TCAGAACTTC	TCATGCGCCG AGTACGCGGC
_	2201	GTTAAGGCTA CAATTCCGAT	AACTGAAAGG TTGACTTTCC	ACAAGTTTTA TGTTCAAAAT	GTGACTGCGC CACTGACGCG	TCCTCCAAGC AGGAGGTTCG
	2251	CAGTTACCTC GTCAATGGAG	GGTTCAAAGA CCAAGTTTCT	GTTGGTAGCT CAACCATCGA	CAGAGAACCT GTCTCTTGGA	ACGAAAAACC TGCTTTTTGG
A115555 /5111	2301	GCCCTGCAAG	GCGGTTTTTT CGCCAAAAAA	CGTTTTCAGA GCAAAAGTCT	GCAAGAGATT CGTTCTCTAA	ACGCGCAGAC TGCGCGTCTG
5.66				BglII		
	2351	CAAAACGATC GTTTTGCTAG	TCAAGAAGAT AGTTCTTCTA	CATCTTATTA		

SUBSTITUTE SHEET (AULE 20) 162 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 163 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2:

BsrGI

CGTTAAATTT GCAATTTAAA AATTTTAAGC TTAAAATTCG ATTATAAAAC TAATATTTG AACATTTGCA TTGTAAACGT CATGTACTTT GTACATGAAA

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA TGTTCCAGTT GGTTGAGTGT CCAACTCACA ACCGAGATAG TGGCTCTATC TTTTCTTATC AAAAGAATAG GAATATTAG CTTATAAATC 101

CTGAGGTTGC GACTCCAACG TTTCTTGCAC AAAGAACGTG CAGGTGATAA GTCCACTATT ACCTTGTTCT TGGAACAAGA

TCAAAGGGCG AGTTTCCCGC

TCACCCTAAT AGTGGGATTA ACGAGAACCA TGCTCTTGGT ATGGCCCACT TACCGGGTGA TATCAGGGCG ATAGTCCCGC AAAAACCGTC TTTTGGCAG 201

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGGCATTTC CAAGTTTTT GGGGTCGAGG CCCCAGCTCC GTTCAAAAAA 251

BanII

? ? ? ?

AAGCCGGCGA ACGTGGCGAG TTGACGGGGA GATTTAGAGC GGGAGCCCCC 301

SUBSTITUTE SHEET (RULE 20)

151

jure 35a	ı: Functional	jure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CCCTCGGGGG CTAAATCTCG AACTGCCCCT TTC	iditional pCAL vector modu CTAAATCTCG	ules and pCAL vectors (cor	ntinued) TTCGGCCGCT	TGCACCGCTC
	351	AAAGGAAGGG TTTCCTTCCC	AAGAAAGCGA TTCTTTCGCT	AAGGAGCGGG TTCCTCGCCC	CGCTAGGGCG GCGATCCCGC	CTGGCAAGTG GACCGTTCAC
	401	TAGCGGTCAC	GCTGCGCGTA CGACGCGCAT	ACCACCACAC TGGTGGTGTG	CCGCCGCGCT	TAATGCGCCG ATTACGCGGC
SUBSTITUTE	451	CTACAGGGCG	Nhel ~~~~~ GGTGCTAGCG GCACGATCGC	GAGTGTATAC CTCACATATG	TGGCTTACTA	TGTTGGCACT
SHEET			Xmr	II		AgeI
(RULE 28)	501	GATGAGGGTG	TCAGTGAAGT AGTCACTTCA	GCTTCATGTG	GCAGGAGAAA CGTCCTCTTT	AAAGGCTGCA TTTCCGACGT
	551	Agel ~~~~~ CCGGTGCGTC GGCCACGCAG	AGCAGAATAT TCGTCTTATA	GTGATACAGG	ATATATTCCG TATATAAGGC	CTTCCTCGCT
,	601	CACTGACTCG	CTACGCTCGG	TCGTTCGACT	GCGCCGAGCG	GAAATGGCTT

	{
ontinued)	
.L vectors (c	
s and sequences of additional pCAL vector modules and pCAL vecte	1
CAL vector modules and	
inal pCAL v	
s of additic	
: Functional maps and sequences of addi	
ıl maps anc	
5a: Functiona	
Figure 35a:	

E. C.		GTGACTGAGC G	GATGCGAGCC	AGCAAGCTGA	CGCCGCTCGC	CTTTACCGAA
	651	ACGAACGGGG TGCTTGCCCC	CGGAGATTTC GCCTCTAAAG	CTGGAAGATG GACCTTCTAC	CCAGGAAGAT GGTCCTTCTA	ACTTAACAGG TGAATTGTCC
	701	GAAGTGAGAG CTTCACTCTC	GGCCGCGGCA	AAGCCGTTTT TTCGGCAAAA	TCCATAGGCT AGGTATCCGA	CCGCCCCCCT
	751	GACAAGCATC CTGTTCGTAG	ACGAAATCTG TGCTTTAGAC	ACGCTCAAAT TGCGAGTTTA	CAGTGGTGGC GTCACCACCG	GAAACCCGAC CTTTGGGCTG
mmure our	801	AGGACTATAA TCCTGATATT	AGATACCAGG TCTATGGTCC	CGTTTCCCCC	TGGCGGCTCC	CTCCTGCGCT
e nt vestill			·	AgeI		
T G2\	851	CTCCTGTTCC	TGCCTTTCGG	TTTACCGGTG AAATGGCCAC	TCATTCCGCT AGTAAGGCGA	GTTATGGCCG CAATACCGGC
	901	CGTTTGTCTC	ATTCCACGCC TAAGGTGCGG	TGACACTCAG ACTGTGAGTC	TTCCGGGTAG AAGGCCCATC	GCAGTTCGCT CGTCAAGCGA
	951	CCAAGCTGGA	CTGTATGCAC GACATACGTG	GAACCCCCCG	TTCAGTCCGA	CCGCTGCGCC

SUBSTITUTE SHEET (RULE 28)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

						•	
ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC CACTGACGCG	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT CGTTCTCTAA	BglII	GATCTAGCAC CTAGATCGTG	555055555555555555555555555555555555555
CCGGAAAGAC GGCCTTTCTG	TAGAGGAGTT ATCTCCTCAA	ACAAGTTTTA TGTTCAAAAT	GTTĞGTAGCT CAACCATCGA	CGTTTTCAGA GCAAAAGTCT		САТСТТАТТА GTAGAATAAT	ААААААТТА ТТТТТТААТ
TGAGTCCAAC ACTCAGGTTG	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAAA		TCAAGAAGAT AGTTCTTCTA	TAACTGCCTT ATTGACGGAA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC		CAAAACGATC	AGGGCACCAA TCCCGTGGTT
TTATCCGGTA	ACCACTGGCA TGGTGACCGT	TCATGCGCCG	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG		ACGCGCAGAC TGCGCGTCTG	CAGGCGTTTA GTCCGCAAAT
1001	1051	1101	1151	1201		1251	1301
			SUBSTITUT	E SHEET (RU	JLE 26)		
			4.0	7 1004			

rectors (continued)
r modules and pCAL
ditional pCAL vecto
and sequences of ad
a: Functional maps
Figure 3

ਉ	
inu	
ont	
ıs (c	
cto	
t ve	
Ş	
l pu	
es a	
Inp	
ош.	
AL vector modules and	
_ ve	
SCAI	
l let	
itio	
add	
maps and sequences of ad	
nces	
ant	
Sec	
anc	
aps	
onal maps	
ion	
ınct	
3: F	
35a: l	
lure	
Figure 3	•

AGCATTCATC TCGTAAGTAG	GCTTATTTTT CGAATAAAAA	GTCTGGTTAT CAGACCAATA	TTTACGATGC AAATGCTACG	TCTCCATTTT AGAGGTAAAA	ACGCCCGGTA TGCGGGCCAT	Aatii	GACGTCTAAT	TTATGCTTCC
ACTCCGGGTG TGAGGCCCAC	TAAAACTTGT ATTTTGAACA	CAGCTGAACG GTCGACTTGC	CAAAATGTTC GTTTTACAAG	GTGATTTTTT CACTAAAAAA	CTCAAAAAAT GAGTTTTTTA		AACCTCACCC	GCTTTACACT
GCCATACGGA CGGTATGCCT	AAAGGCCGGA TTTCCGGCCT	CCGTAATATC GGCATTATAG	TGAAATGCCT ACTTTACGGA	GGTATATCCA CCATATAGGT	ATCTCGATAA TAGAGCTATT		TGAAAGTTGG ACTTTCAACC	GGCACCCCAG
ditional puat vector mou GTCTTTCATT CAGAAAGTAA	GAATGTGAAT CTTACACTTA	TTTAAAÁAGG AAATTTTTCC	AGCAACTGAC TCGTTGACTG	TATCAACGGT	GCTCCTGAAA CGAGGACTTT		TTCATTATGG	TCACTCATTA
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (COLAGE ACT) (1751 CCAGCTCACC GTCTTTCATT GCCATACGGA ACT) (GGTCGAGTGG CAGAAAGTAA CGGTATGCCT TGA)	AGGCGGGCAA TCCGCCCGTT	CTTTACGGTC GAAATGCCAG	AGGTACATTG TCCATGTAAC	CATTGGGATA GTAACCCTAT	AGCTTCCTTA TCGAAGGAAT		GTGATCTTAT	GTGAGTTAGC
5a: Functional 1751	1801	1851	1901	1951	2001		2051	2101
igure 3.	SUBSTITUTE SHEET (RULE 26)							
u.	•	•		169 / 204				

AAGG	GGAA	1	CCAT	AAGT	PacI ~~~~~ AATTAA TTAATT
AATACGAAGG	CACACAGGAA GTGTGTCCTT	Sphi	CGCATGCCAT	CCTGTGAAGT GGACACTTCA	PacI ~~~~~~~ GTTTAATTAA CAAATTAATT
AATGTGA	ATAACAATTT TATTGTTAAA		ACCCCCCCCC	HindIII ~~~~~ ATAAGCTTGA TATTCGAACT	TTTGTCTGCC AAACAGACGG
ules and pCAL vectors (continued) CCGTGGGGTC CGAAATGTGA	TTGTGAGGGG	XbaI	GAATTTCTAG CTTAAAGATC	ATACGAAGTT TATGCTTCAA	CGACATTTTT GCTGTAAAAA
ditional pCAL vector mod AGTGAGTAAT	TTGTGTGGAA AACACACCTT		CCATGATTAC GGTACTAATG	AATGTACGCT TTACATGCGA	GCAGATTGTG CGTCTAACAC
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGA	GGCTCGTATG CCGAGCATAC		ACAGCTATGA TGTCGATACT	AACTTCGTAT TTGAAGCATA	GAAAAATGGC CTTTTTACCG
ia: Functional	2151		2201	2251	2301
igure 35	SUBSTITUTE SHEET (RULE 26)				
ш				170 / 204	

AGGAAACTAG CAAAAAGGAT CGGCCATTAT GCCGGTAATA 2351

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CTTTTAAATT	AACTTGGTCT	GCGATCTGTC	GATAACTACG	TACCGCGAGA	CCAGCCGGAA	CATCCAGTCT
GAAAATTTAA	TTGAACCAGA	CGCTAGACAG	CTATTGATGC	ATGGCGCTCT	GGTCGGCCTT	GTAGGTCAGA
CACCTAGATC	TATATGAGTA	ACCTATCTCA	CCGTCGTGTA	GCTGCAATGA	AATAAACCAG	TATCCGCCTC
	ATATACTCAT	TGGATAGAGT	GGCAGCACAT	CGACGTTACT	TTATTTGGTC	ATAGGCGGAG
AAAGGATCTT	ATCTAAAGTA	TCAGTGAGGC	GCCTGACTCC	TGGCCCCAGT	ATTTATCAGC	CCTGCAACTT
TTTCCTAGAA	TAGATTTCAT	AGTCACTCCG	CGGACTGAGG		TAAATAGTCG	GGACGTTGAA
AGATTATCAA	TTTTAAATCA	CAATGCTTAA	ATCCATAGTT	GCTTACCATC	CCGGCTCCAG	CAGAAGTGGT
TCTAATAGTT	AAAATTTAGT	GTTACGAATT	TAGGTATCAA	CGAATGGTAG	GGCCGAGGTC	
TTTGGTCATG	AAAAATGAAG	GACAGTTACC	TATTTCGTTC	ATACGGGAGG	CCCACGCTCA	GGGCCGAGCG
AAACCAGTAC	TTTTTACTTC	CTGTCAATGG	ATAAAGCAAG	TATGCCCTCC	GGGTGCGAGT	CCCGGCTCGC
2451	2501	S221	2 6 0 1	765 JLE 26)	2701	2751
	TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC	2451 TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC AAACCAGTAC TCTAATAGTT TTTCCTAGAA GTGGATCTAG 2501 AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA TTTTTACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT	2451 TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC AAACCAGTAC TCTAATAGTT TTTCCTAGAA GTGGATCTAG 2501 AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA TTTTTACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT CTGTCAATGC CAATGCTTAA TCAGTGAGGC ACCTATCTCA CTGTCAATGG GTTACGAATT AGTCACTCCG TGGATAGAGT	2451 TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CAAACCAGTAC TCTAATAGTT TTTCCTAGAA GTGGATCTAG GTGTTTTAAATCA ATCTAAAGTA TATATGAGTA TTTTTACTTC AAAATTTAGT TAGATTTTCAT ATATACTCAT ATTTTACTTCC CAATGCTTAA TCAGTGAGGC ACCTATCTCA CTGTCAATGG GTTACGAATT AGTCACTCCG TGGATAGAGT ATAAAGCAAG TAGGTATCAA CGGACTGAGG GCCAGCACAT ATAAAGCAAG TAGGTATCAA CGGACTGAGG GCCAGCACAT	TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC AAAACCAGTAC TCTAATAGTT TTTCCTAGAA GTGGATCTAG GAAAATTTAAATCA ATCTAAAGTA TATATGAGTA TTTTTTACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT GACAGTCACTCC TGGATACGATT AGTCACTCCG TGGATAGAGT ATATACGATT AGTCACTCC CCGTCGTGTAGT ATAAAGCAAG TAGGTATCAA CGGACTGAGG GGCAGCACAT ATAAAGCAAG GCTTACCATC TGGCCCCAGT GCTGCAATGA TATGCCCTCC CGAATGGTAG ACCGGGGTCA CGACGTTACT	2501 AAAATGAAG TTTTAAATCA ATCTAAAGTA GTGGATCTAG C AAAAATGAAG TTTTAAATCA TAGATTTCAT ATATGAGTA TATATGAGTA TTTTTACTTC AAAATTTAGT TAGATTTCAT ATATGAGTA TTTTTACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT TAGATTTCAT ATATACTCAT TAGATTTCAT ATATACTCAT TAGATTTCAT ATATACTCA C GTTACGAATT AGTCACTCC TGGATAGAGT C TGATAGGAGG GTTACGAATTCAA CGGACTGAGG GGCAGCACAT ATAAAGCAAG TAGGTATCAA CGGACTGAGG GGCAGCACAT TATGCCCTCC CGAATGGTAG ACCGGGGTCA CGACGTTACT GGCCCCCAGT GCCCACGT GGCCCCAGT GGCGCTCCAG GGCGCTCCAG GGCGCTCCAG GGCGCTCCAG GGCGCTCCAG GGCGCTCCAG TATTATCGTC GGGTGCGAGT GGCCGAGGTC TAAATAGTCG TTATTTGGTC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	2801	ATTAACTGTT TAATTGACAA	GCCGGGAAGC CGGCCCTTCG	TAGAGTAAGT ATCTCATTCA	AGTTCGCCAG TCAAGCGGTC	TTAATAGTTT AATTATCAAA
•	2851	GCGCAACGTT	GTTGCCATTG CAACGGTAAC	CTACAGGCAT GATGTCCGTA	CGTGGTGTCA GCACCACAGT	CGCTCGTCGT GCGAGCAGCA
	2901	TTGGTATGGC AACCATACCG	TTCATTCAGC AAGTAAGTCG	TCCGGTTCCC	AACGATCAAG TTGCTAGTTC	GGGAGTTACA
HRSTITHTE	2951	TGATCCCCCA	TGTTGTGCAA ACAACACGTT	AAAAGCGGTT TTTTCGCCAA	AGCTCCTTCG TCGAGGAAGC	GTCCTCCGAT
SHEET (RU	3001	CGTTGTCAGA GCAACAGTCT	AGTAAGTTGG TCATTCAACC	CCGCAGTGTT GGCGTCACAA	ATCACTCATG TAGTGAGTAC	GTTATGGCAG CAATACCGTC
.7.00)	3051	CACTGCATAA GTGACGTATT	TTCTCTTACT	GTCATGCCAT	CCGTAAGATG GGCATTCTAC	CTTTTCTGTG GAAAAGACAC
	3101	ACTGGTGAGT TGACCACTCA	ACTCAACCAA TGAGTTGGTT	GTCATTCTGA	GAATAGTGTA CTTATCACAT	TGCGGCGACC
	3151	GAGTTGCTCT	TGCCCGGCGT ACGGGCCGCA	CAATACGGGA GTTATGCCCT	TAATACCGCG ATTATGGCGC	CCACATAGCA

SUBSTITUTE SHEET (RULE 23)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

	TC AG	00 00	AG)) (G	TA
	GCGAAAACTC CGCTTTTGAG	CCACTCGCGC GGTGAGCGCG	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA CTTCGTAAAT
,	GCGA	CCAC	TCT(AGA(
? ? ? ?	GTTCTTCGGG CAAGAAGCCC	TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	CAATATTATT GTTATAATAA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATTGGAAAAC TAACCTTTTG	GAGATCCAGT CTCTAGGTCA	CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT GAAGGAAAAA
	AGTGCTCATC TCACGAGTAG	TACCGCTGTT ATGGCGACAA	TCCTCAGCAT AGGAGTCGTA	AAGGCAAAAT TTCCGTTTTA	TACTCATACT ATGAGTATGA
	GAACTTTAAA AGTGCTCATC CTTGAAATTT TCACGAGTAG	TCAAGGATCT AGTTCCTAGA	ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA TTTACAACTT
	3201	3251	3301	3351	3401
			SUBSTIT	UTE SHEET	(RULE 28)

BsrGI

ATTTGAAT TCAGGGTTAT TGTCTCATGA GCGGATACAT AGTCCCAATA ACAGAGTACT CGCCTATGTA 3451

SUBSTITUTE SHEET (FULE 26)
174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AatII	ACGAAGTTAT TGCTTCAATA	CAG GCTTTACACT TTATGCTTCC GTC CGAAATGTGA AATACGAAGG	CGG ATAACAATTT CACACAGGAA	xbal construction Sphi controlled Acceptage Geographic Tegegegege Geographic Hindili	AT
	A TGTATGCTAT	A GGCACCCCAG	A TTGTGAGCGG F AACACTCGCC	GAATT' CTTAA	I ATACGAAGTT A TATGCTTCAA
	CTTCGTATAA GAAGCATATT	TCACTCATTA	TTGTGTGGAA AACACACCTT	CCATGATTAC	AATGTACGCT TTACATGCGA
0-3: Bglii	CATCTCATAA CTAGAGTATT	GTGAGTTAGC	GGCTCGTATG CCGAGCATAC	ACAGCTATGA TGTCGATACT	AACTTCGTAT TTGAAGCATA
pCALO-3:	. ←	51.	101	151	201

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

							•
GTTTAATTAA CAAATTAATT		TCCTTTGATC AGGAAACTAG	GTTAAGGGAT CAATTCCCTA	CTTTTAAATT GAAAATTTAA	AACTTGGTCT TTGAACCAGA	GCGATCTGTC CGCTAGACAG	GATAACTACG CTATTGATGC
TTTGTCTGCC AAACAGACGG		CTCAAGAAGA GAGTTCTTCT	GAAAACTCAC CTTTTGAGTG	CACCTAGATC GTGGATCTAG	TATATGAGTA ATATACTCAT	ACCTATCTCA TGGATAGAGT	CCGTCGTGTA GGCAGCACAT
CGACATTTTT GCTGTAAAAA		CAAAAAGGAT GTTTTCCTA	TCAGTGGAAC AGTCACCTTG	AAAGGATCTT TTTCCTAGAA	ATCTAAAGTA TAGATTTCAT	TCAGTGAGGC	GCCTGACTCC CGGACTGAGG
GCAGATTGTG	eI	CGGCCATTAT GCCGGTAATA	GGTCTGACGC CCAGACTGCG	AGATTATCAA TCTAATAGTT	TTTTAAATCA AAAATTTAGT	CAATGCTTAA GTTACGAATT	ATCCATAGTT TAGGTATCAA
GAAAAATGGC CTTTTTACCG	, O &	0 500000000000000000000000000000000000	TTTTCTACGG AAAAGATGCC	TTTGGTCATG	AAAAATGAAG TTTTTACTTC	GACAGTTACC	TATTTCGTTC ATAAAGCAAG
251		301	351	401	451	501	551
			SUBSTIT	TUTE SHEET	(RULE 20)		

	•
	(
_	1
<u>g</u>	
.⊒	1
Ĭ	•
ತ	
ors	į
rct Ct	
<u>></u>	,
S	
d b	
au(
cs CS	
Ę	
μÕ	
-	
Ę	
\geq	
S	
<u>d</u>	
ng	
≅	
bg	
5	
S)	
5	
al E	
Sec	
þ	
Sal	
ge	
Ξ	
na	
≘	
Ĕ	
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	
53	
رة ع	
inb	`
Ξ	

CGAGA GCTCT	CGGAA GCCTT	CATCCAGTCT GTAGGTCAGA	ТТААТАGТТТ ААТТАТСААА	CGCTCGTCGT GCGAGCAGCA	GCGAGTTACA CGCTCAATGT	GTCCTCCGAT CAGGAGGCTA	GTTATGGCAG CAATACCGTC
TACCGCGAGA ATGGCGCTCT	CCAGCCGGAA GGTCGGCCTT	CATCCAGTCT GTAGGTCAGA	TTAAT AATTA	CGCTC	GCGAG	GTCCT	GTTAT
GCTGCAATGA CGACGTTACT	AATAAACCAG TTATTTGGTC	TATCCGCCTC ATAGGCGGAG	AGTTCGCCAG TCAAGCGGTC	CGTGGTGTCA GCACCACAGT	AACGATCAAG	AGCTCCTTCG TCGAGGAAGC	ATCACTCATG TAGTGAGTAC
TGGCCCCAGT	ATTTATCAGC TAAATAGTCG	CCTGCAACTT GGACGTTGAA	TAGAGTAAGT ATCTCATTCA	CTACAGGCAT GATGTCCGTA	TCCGGTTCCC	AAAAGCGGTT TTTTCGCCAA	CCGCAGTGTT
3 -	CCGGCTCCAG	CAGAAGTGGT GTCTTCACCA	GCCGGGAAGC CGGCCCTTCG	GTTGCCATTG CAACGGTAAC	TTCATTCAGC AAGTAAGTCG	TGTTGTGCAA ACAACACGTT	AGTAAGTTGG
35a: Functional maps and sequences of auditorial post vector med 601 ATACGGGAGG GCTTACCATC TATGCCCTCC CGAATGGTAG	CCCACGCTCA	GGGCCGAGCG	ATTAACTGTT TAATTGACAA	GCGCAACGTT	TTGGTATGGC	TGATCCCCCA	CGTTGTCAGA
Functional 601	651	701	751	801	851	901	951
35a.			SUBSTITU	JTE SHEET (RULE 26)		

continued)
L vectors (
nd pCA
modules and p
L vector
al pCA
addition
uences of
and seque
il maps
a: Functiona
Figure 35a

BsrGI

ACATGAAATT ATTTGAATGT

TGTACTTTAA TAAACTTACA GTTAAATCAG TTAAATTTTT

> AAAATTCGCG TTTTAAGCGC

> > ATATTTTGTT

GTAAACGTTA CATTTGCAAT

1451

TATAAAACAA

CGCCTATGTA GCGGATACAT

ACAGAGTACT

AGTCCCAATA

TCAGGGTTAT

1401

TGTCTCATGA

CAATTTAGTC AATTTAAAAA

ATATTTAGTT TATAAATCAA CAAAATCCCT

CCGAAATCGG

AACCAATAGG TTGGTTATCC

GAGTAAAAAA

CTCATTTTT

501

GGCTTTAGCC

GTTTTAGGGA

GAACAAGAGT CTTGTTCTCA TTCCAGTTTG

AAGGTCAAAC AACTCACAAC TTGAGTGTTG

GCTCTATCCC

CCACTATTAA AGAACGTGGA

1601

TCTTGCACCT

GGTGATAATT

CGAGATAGGG

AAGAATAGAC

TTCTTATCTG

AAACCGTCTA TTTGGCAGAT AAAGGGCGAA TTTCCCGCTT CTCCAACGTC GAGGTTGCAG

ACCCTAATCA GAGAACCATC

CTCTTGGTAG GGCCCACTAC CCGGGTGATG

AGTCCCGCTA

TCAGGGCGAT

1651

AGTTTTTGG TCAAAAAACC TGGGATTAGT

BanII

179 / 204

1551

ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) TTTACAACTT

GAGCCCCCGA CTCGGGGGCT	AGGAAGGGAA TCCTTCCCTT	GCGGTCACGC CGCCAGTGCG	ACAGGGCGCG TGTCCCGCGC	TGAGGGTGTC ACTCCCACAG	н	~~~ GGTGCGTCAG CCACGCAGTC	CTGACTCGCT GACTGAGCGA
CTAAAGG GATTTCC	GTGGCGAGAA A	GGCAAGTGTA (ATGCGCCGCT I	TTGGCACTGA	AgeI	AGGCTGCACC GG TCCGACGTGG CC	TCCTCGCTCA AGGAGCGAGT
les and pCAL vectors (cont CTAAATCGGA / GATTTAGCCT /	GCCGGCGAAC	CTAGGGCGCT	GCCGCGCTTA	GCTTACTATG CGAATGATAC		AGGAGAAAAA TCCTCTTTTT	ATATTCCGCT TATAAGGCGA
litional pCAL vector modu CCGTAAAGCA GGCATTTCGT	GACGGGGAAA	GGAGCGGGCG CCTCGCCCGC	CACCACACCC GTGGTGTGGG	GTGTATACTG CACATATGAC		~~~ TTCATGTGGC AAGTACACCG	GATACAGGAT
ure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 1701 GGTCGAGGTG CCGTAAAGCA CTAAATCGGA ACC CCAGCTCCAC GGCATTTCGT GATTTAGCCT TGG	TTTAGAGCTT AAATCTCGAA	GAAAGCGAAA CTTTCGCTTT	TGCGCGTAAC ACGCGCATTG	NheI ~~~~~~ TGCTAGCGGA ACGATCGCCT	ImmX	AGTGAAGTGC TCACTTCACG	CAGAATATGT GTCTTATACA
5a: Functional 1701	1751	1801	1851	1901		1951	2001
ure 3			SUBSTITU	JTE SHEET (RULE 26))		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTTGCTAGAG TTCTTCTAGT AGAATAAT

Ŧ.
ية
⋛
Ξ.
<u>_</u>
ors (contin
ت
Ñ
cto
ير
>
پ
8
<u>Б</u>
O
les and pCA
dules
3
b
Ξ
Ξ
ፘ
Š
ਣ
ပ္
_
23
ō
diti
god
ğ
es of addition
nces of
Š
ednence
5
ĭ
ည
Se(
D
æ
S
<u>a</u>
=
_
3
5
Ξ
7
5
sa: Fun
Ę
355
ر د
ure
Figu
ιΞ'

- - - - -	2401	2401 GTATGCACGA CATACGTGCT	ACCCCCCGTT TGGGGGGCAA	CAGTCCGACC	GCTGCGCCTT	ATCCGGTAAC TAGGCCATTG
	2451	TATCGTCTTG ATAGCAGAAC	AGTCCAACCC TCAGGTTGGG	GGAAAGACAT CCTTTCTGTA	GCAAAAGCAC CGTTTTCGTG	CACTGGCAGC GTGACCGTCG
	2501	AGCCACTGGT TCGGTGACCA	AATTGATTTA TTAACTAAAT	GAGGAGTTAG CTCCTCAATC	TCTTGAAGTC AGAACTTCAG	ATGCGCCGGT
	2551	TAAGGCTAAA ATTCCGATTT	CTGAAAGGAC GACTTTCCTG	AAGTTTTAGT TTCAAAATCA	GACTGCGCTC CTGACGCGAG	CTCCAAGCCA GAGGTTCGGT
JTE SHEET (182 / 204	2601	GTTACCTCGG	TTCAAAGAGT AAGTTTCTCA	TGGTAGCTCA ACCATCGAGT	GAGAACCTAC CTCTTGGATG	GAAAAACCGC CTTTTTGGCG
(AULE 26)	2651	CCTGCAAGGC	GGTTTTTTCG CCAAAAAAGC	TTTTCAGAGC AAAAGTCTCG	AAGAGATTAC TTCTCTAATG	GCGCAGACCA CGCGTCTGGT
				BglII		
	2701	AAACGATCTC	AAGAAGATCA	TCTTATTA	•	

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-

TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

<u>M7-I: PCR</u>

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGIGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (AULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

Iox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seg4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 28)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SMEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 20)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGGTGG

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of ß-lactamase-MCS module

SUBSTITUTE SMEET (RULE 28)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

				ъсут	
				 Psn5TT	
. •				1	·
	MluI Bsu	u36I	BstXI	Eco01091	
	.~~~~ HpaI	Bsteil	MscI	≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ =	BsiWI NspV
126	CGCGTTAACC GCGCAATTGG	TCAGGTGACC AGTCCACTGG	AAGCCCCTGG CCA TTCGGGGACC GGI	AGGTCCC	C GTACGTTCGA C CATGCAAGCT
		PmlI			
	NspVBsaBI	BamHI		Fsel	
176	AGATTACCAT TCTAATGGTA	CACGTGGATC GTGCACCTAG	GGATC CGGTACCAGG CCTAG GCCATGGTCC	GG CCGGCCATTA CC GGCCGGTAAT	TCAAAAAGGA AGTTTTTCCT
226	TCTCAAGAAG AGAGTTCTTC	ATCCTTTGAT TAGGAAACTA	CTTTTCTACG	GGGTCTGACG CCCAGACTGC	CTCAGTGGAA GAGTCACCTT
276	CGAAAACTCA GCTTTTGAGT	CGTTAAGGGA	TTTTGGTCAT AAAACCAGTA	GAGATTATCA CTCTAATAGT	AAAAGGATCT TTTTCCTAGA

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

CTACAGGCAT GATGTCCGTA	GTTGCCATTG CAACGGTAAC	GCGCAACGTT CGCGTTGCAA	TTAATAGTTT AATTATCAAA	AGTTCGCCAG	919
TAGAGTAAGT ATCTCATTCA	GCCGGGAAGC CGGCCCTTCG	ATTAACTGTT TAATTGACAA	CATCCAGTCT GTAGGTCAGA	TATCCGCCTC	626
CCTGCAACTT	CAGAAGTGGT	GGGCCGAGCG	CCAGCCGGAA	AATAAACCAG	576
GGACGTTGAA	GTCTTCACCA	CCCGGCTCGC	GGTCGGCCTT	TTATTTGGTC	
ATTTATCAGC TAAATAGTCG	CCGGCTCCAG GGCCGAGGTC	CCCACGCTCA GGGTGCGAGT	TACCGCGAGA	GCTGCAATGA CGACGTTACT	526
TGGCCCCCAGT ACCGGGGTCA	GCTTACCATC CGAATGGTAG	ATACGGGAGG TATGCCCTCC	GATAACTACG CTATTGATGC	CCGTCGTGTA	476
GCCTGACTCC	ATCCATAGTT	TATTTCGTTC	GCGATCTGTC	ACCTATCTCA	426
CGGACTGAGG	TAGGTATCAA	ATAAAGCAAG	CGCTAGACAG	TGGATAGAGT	
TCAGTGAGGC	CAATGCTTAA	TGACAGTTAC	AAACTTGGTC	ATATATGAGT	376
AGTCACTCCG	GTTACGAATT	ACTGTCAATG	TTTGAACCAG	TATATACTCA	
AATCTAAAGT	GTTTTAAATC	ТАААААТGAA	CCTTTTAAAT	TCACCTAGAT	326
TTAGATTTCA	CAAAATTTAG	АТТТТТАСТТ	GGAAAATTTA	AGTGGATCTA	

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

726	CGTGGTGTCA GCACCACAGT	CGCTCGTCGT GCGAGCAGCA	TTGGTATGGC AACCATACCG	TTCATTCAGC AAGTAAGTCG	TCCGGTTCCC AGGCCAAGGG
776	AACGATCAAG TTGCTAGTTC	GCGAGTTACA CGCTCAATGT	TGATCCCCCA ACTAGGGGGT	TGTTGTGCAA ACAACACGTT	AAAAGCGGTT TTTTCGCCAA
826	AGCTCCTTCG TCGAGGAAGC	GTCCTCCGAT	CGTTGTCAGA GCAACAGTCT	AGTAAGTTGG TCATTCAACC	CCGCAGTGTT GGCGTCACAA
876	ATCACTCATG TAGTGAGTAC	GTTATGGCAG CAATACCGTC	CACTGCATAA GTGACGTATT	TTCTCTTACT AAGAGAATGA	GTCATGCCAT CAGTACGGTA
926	CCGTAAGATG	CTTTTCTGTG	ACTGGTGAGT TGACCACTCA	ACTCAACCAA TGAGTTGGTT	GTCATTCTGA CAGTAAGACT
976	GAATAGTGTA CTTATCACAT	TGCGGCGACC ACGCCGCTGG	GAGTTGCTCT CTCAACGAGA	TGCCCGGCGT ACGGGCCGCA	CAATACGGGA GTTATGCCCT
1026	TAATACCGCG	CCACATAGCA GGTGTATCGT	GAACTTTAAA CTTGAAATTT	AGTGCTCATC TCACGAGTAG	ATTGGAAAAC TAACCTTTTG
1076	GTTCTTCGGG CAAGAAGCCC	GCGAAAACTC	TCAAGGATCT AGTTCCTAGA	TACCGCTGTT	GAGATCCAGT CTCTAGGTCA

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

						•	
CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT GAAGGAAAAA	GCGGATACAT CGCCTATGTA	XhoI	BssHI	ATGGCTCGAG TACCGAGCTC	
TCTTCAGCAT AGAAGTCGTA Eco57I	AAGGCAAAAT TTCCGTTTTA	TACTCATACT ATGAGTATGA	TGTCTCATGA ACAGAGTACT	}	BbeI	GGCGCCATTA CCGCGGTAAT	· / / / / / / / / / / / / / / / / / / /
ACCCAACTGA TGGGTTGACT	CAAAAACAGG	AAATGTTGAA TTTACAACTT	TCAGGGTTAT AGTCCCAATA	PstI		~~~~~ ACGAGCTGCA TGCTCGACGT	BspEI BsrGI
CCACTCGTGC GGTGAGCACG BSSSI	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA CTTCGTAAAT	·		ACTCGGCCGC TGAGCCGGCG	
TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	СААТАТТАТТ GTTATAATAA			ATTTGAATGT TAAACTTACA	BssHII
1126	1176	1226	1276	·		1326	
		SUBSTITU	JTE SHEET (RULE 26	5)		

CATGAAATT GTACTTTAA GCGAAACAGA AGGCCTACAT TCCGGATGTA Figure 36: functional map and sequence of 8-lactamase-MCS module (continued) BbsI CGCTTTGTCT GCGCGAAGTC Eco57I CGCGCTTCAG ~~~~~ 1376

> SUBSTITUTE SHEET (RULE 26) 193 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

O_K3L_5 5'- G C C C T G C A A G C G G A A G A C Bbsl

E D

Vk1 & Vk3 5'- G C C C T G C A A G C G G A A G A C

Vk2 5'- G C C C T G C A A G C G G A A G A C E D

Vk4 5'- G C C C T G C A A G C G G A A G A C

PCT/EP96/03647

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

-3, 05 06

F A T/V Y Y C Q
T T T G C G A C T T A T T A T T G C C A

V G V Y Y C
G T G G G C G T G T A T T A T T G C C A

V A V Y Y C
G T G G C G G G T G T A T T A T T G C C A

Α C D E F G H ١ K M N P Q R Ş Y 80% Q

SUBSTITUTE SHEET (RULE 26)
195 / 204

PCT/EP96/03647

Figure 37: Oligo and primer design for Vκ CDR3 libraries

G 3'- G G A

T A C C T

G A C C T

G A C C T

																-	
G	С	T		•					G	С	Τ				G	С	Τ
				••••••	•••••	**********			••••••	••••••							
G	Α	T	G	Α	Τ	G	Α	Τ	G	Α	T				G	Α	T
G	Α	G		•••••		***********			G	Α	G				G	Α	G
	T		•••••••			••••	••••••			T						Τ	
G	G	Τ	G	G	Τ	G	G	T	G	G	T				G	G	T
C	Α	Τ	•••••				•••••		C	Α	Τ				С	Α	T
Α	T	T	•		•••••		•••••		Α	T	T					Τ	Τ
Α	Α	G			•••••		***********		Α	Α	G					Α	G
C	T	T							С	Τ	T				С		T
Α	T	G	••••••••••••••••••••••••••••••••••••••	•••••					Α	T	G				Α		***********
Α	Α	T	A [.]	Α	T	Α	Α	Τ							Α		
		•••••		********	••••••				С	С	Ţ	C	C		С		T
С	Α	G			•••••				<u> </u>	Α					С		G
C	G	T							: -	G					-	G	T
	C		T	C	T	T	С	T				Τ	С	T			Ţ
Α	C	T	-	•••••					Α	С	Τ					C	Ţ
G	T	T						•••••	<u>.i</u>	T		<u> </u>			i	Ţ	Ţ
T	G	G							<u></u>	G			.,	· • • • • • • • • • • • • • • • • • • •	<u></u>		G
T	Α	T	T	Α	T				T	Α	T				<u></u>	Α	T
5	%ں	γ]	••••••	•••••							80	O%C	P			

SUBSTITUTE SHEET (AULE 26) 196 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

SUBSTITUTE SHEET (RULE 26)

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204

PCT/EP96/03647

Figure 38: Oligo and primer design for Vλ CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 199 / 204

PCT/EP96/03647

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 38: Oligo and primer design for Vλ CDR3 libraries

SUBSTITUTE SHEET (RULE 26)
201 / 204

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

oldulos %	X	\mathcal{Z}	Σ	К4	7	73	
70 SOIGOIC	7070	200%	£20%	470%	0/0Ub	61%	i
H1A	0/019	20%0	07.70	17.10			
H18	39%	48%	%99	48%	47%	39%	
G :	470%	5.70%	46%	49%	37%	36%	
7H	0/ /+	0/0/2	760%	61%	80%	71%	
H3	0/200	0/- / 0	2 6	2 2	7 107	2006	
H4	%69	52%	51%	440/0	42%	22%0	
. <u>प</u>	490/0	49%	46%	9/0/9	54%	46%	
C	0006	58%	54%	47%	45%	20%	51%

# 9.5 F						,	-
lotal amount	7	Ø	X3	4 4	7	22	73
compared to H3K2		!	}				1
H1A	289%	94%	166%	272%	20%	150%	
11.Z	7190/0	122%	89%	139%	117%	158%	•
11.0 11.0	1860/	2230%	208%	182%	126%	%09	
7H	7007	1	710/0	54%	59%	130%	
1 II I	37%	5.5%	%09	77%	195%	107%	251%
+ <u>'</u>	%6	201%	167%	83%	93%	128%	
He He	65%	117%	89%	109%	299%	215%	

SUBSTITUTE SHEET (RULE 26) 203 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

Soluble amount		Ç	· ; ;		7.1	7.3	12
compared to H3K2	<u>-</u>	Z .	2	7 4	₹	7	3
H1A	191%	88%	121%	122%	26%	211%	0/09/
H18	124%	95%	83%	107%	29%	142%	29%
H2	126%	204%	139%	130%	%99	20%	0/0/2
H3	63%	ı	81%	49%	%69	143%	61%
H4	40%	47%	49%	54%	95%	55%	125%
H5	%69	158%	116%	80%	72%	84%	84%
9H	85%	122%	87%	77%	162%	162%	212%
	McPC						
soluble	38%					٠	
%H3k2 total	117%						
%H3k2 soluble	%69						

SUBSTITUTE SHEET (RULE 26)
204 / 204

onal Application No PCT/EP 96/03647

*	_			C1/EP 90/	03047
L CLASSIFI	CATION OF SUBJECT MATTER C12N15/13 C12N15/10 C C07K1/04 G01N33/53	:12N15/62	C12N15/70	C12N1	/21
According to i	International Patent Classification (IPC) or to both r	ational classification	and IPC		
B. FIELDS S	EARCHED				
Minimum doc IPC 6	rumentation searched (classification system followed C12N C07K G01N	by classification syr	nbols)	Ÿ	
Documentation	n searched other than minimum documentation to th	ne extent that such do	ocuments are includ	ed in the fields se	arched
Electronic dat	a base consulted during the international search (na	ne of data base and,	where practical, se	arch terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				Relevant to claim No.
Category *	Citation of document, with indication, where approp	onate, of the relevan	passages		Relevant to claim 140.
A	EP 0 368 684 A (MEDICAL R May 1990 cited in the application	ES COUNCIL)	16		1-55
	see the whole document				
A	EUROPEAN J. IMMUNOLOGY, vol. 23, July 1993, VCH		.		1-55
	VERLAGSGESELLSCHAFT MBH, pages 1456-1461, XP000616 S.C. WILLIAMS AND G. WINT sequencing of human immur V-lambda gene segments" cited in the application see the whole document	572 ER: "Clon [:]	ing and		
	• ·	-/-	-		
					·
X Fur	ther documents are listed in the continuation of box	c. X	Patent family n	nembers are listed	in annex.
-	stegories of ated documents:		or property date an	i not in conflict w	ternational filing date which the application but
consi	ment defining the general state of the art which is not dered to be of particular relevance		invention		theory underlying the
filing	document but published on or after the internations date nent which may throw doubts on priority claim(s) or		cannot be consider	ed novel or canno re step when the d	e claimed invention of be considered to ocument is taken alone
which citatio	is cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition o		decument is comb	red to involve an i	e claimed invention inventive step when the more other such docu- ous to a person skilled
other	means nent published prior to the international filing date to than the priority date claimed	uf ·	in the art. document member		
1	e actual completion of the international search		Date of mailing of	the international	search report
	30 January 1997	,	.1	1. 02. 97	
Name and	mailing address of the ISA		Authorized officer		
	European Patent Office, P.B. 5818 Patentlaan NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	4	Hornig	, н	

Form PCT/ISA/218 (second sheet) (July 1992)

tr inonal Application No PCT/EP 96/03647

	auon) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
tegory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevan w claim No.
A	PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document	1-55
	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document	1-55
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document	1-55
A	PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document	1-55
A	ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document	1-55
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document	1-55

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

int ional Application No PCT/EP 96/03647

		PC1/EP 96/	03047
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document		1-55
Α	WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document		1-55
Α	ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4		1-55
	CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column l; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994,		1-55
		•	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

information on patent family members

int onal Application No PCT/EP 96/03647

Patent document cited in search report	Publication date		l family lber(s)	Publication date
EP-A-0368684	16-05-90	AU-B-	634186	18-02-93
		AU-A-	4520189	28-05-90
	•	CA-A-	2002868	11-05-90
	•	DE-D-	68913658	14-04-94
		DE-T-	68913658	08-09-94
		ES-T-	2052027	01-07-94
		WO-A-	9005144	17-05-90
	•	JP-T-	3502801	27-06-91
W0-A-9511998	04-05-95	AU-A-	8091694	22-05-95
		EP-A-	0725838	14-08-96

The second of th

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)