知乎搜索

文本相关性和知识蒸馏

申站@知乎搜索团队

2020-11-21

大口 于

大纲

- 知乎搜索文本相关性的演进
- BERT 的应用和问题
- 知识蒸馏及常用方案
- 知乎搜索在 BERT 蒸馏上的实践

天日 王

文本相关性的演进

定义: 用户 query 意图和 doc 内容的相关程度

相关性两个维度:

- ・字面匹配
- ・语义相关

文本相关性的演进

Before NN

- TF-IDF/BM25
- 词频/权重/覆盖率
- 紧密度/同义词
- Before BERT
- BERT

$\operatorname{score}(D, O) = \sum_{i=1}^{n} \operatorname{IDF}(a_i)$	$f(q_i,D)\cdot (k_1+1)$
$\operatorname{score}(D,Q) = \sum_{i=1}\operatorname{IDF}(q_i) \ .$	$\overline{f(q_i,D) + k_1 \cdot \left(1 - b + b \cdot rac{ D }{ ext{avgdl}} ight)}$,

ID	Feature description	Category
1	$\sum_{q_i \in q \cap d} c(q_i, d)$ in body	Q-D
2	$\sum_{q_i \in q \cap d} c(q_i, d)$ in anchor	Q-D
3	$\sum_{q_i \in q \cap d} c(q_i, d)$ in title	Q-D
4	$\sum_{q_i \in q' \mid d} c(q_i, d)$ in URL	Q-D
5	$\sum_{q_i \in q \cap d} c(q_i, d)$ in whole document	Q-D
6	$\sum_{q_i \in q} idf(q_i)$ in body	Q
7	$\sum_{q_i \in q} idf(q_i)$ in anchor	Q
8	$\sum_{q_i \in q} idf(q_i)$ in title	Q
9	$\sum_{q_i \in q} idf(q_i)$ in URL	Q
10	$\sum_{q_i \in q} idf(q_i)$ in whole document	Q
11	$\sum_{q_i \in q \cap d} c(q_i, d) \cdot idf(q_i)$ in body	Q-D
12	$\sum_{q_i \in q \cap d} c(q_i, d) \cdot idf(q_i)$ in anchor	Q-D
13	$\sum_{q_i \in q \cap d} c(q_i, d) \cdot idf(q_i)$ in title	Q-D
14	$\sum_{q_i \in q \cap d} c(q_i, d) \cdot idf(q_i)$ in URL	Q-D
15	$\sum_{q_i \in q \cap d} c(q_i, d) \cdot idf(q_i)$ in whole document	Q-D
16	Idl of body	D
17	Idl of anchor	D
18	left of title	D
19	ld of URL	D
20	Idl of whole document	D
21	BM25 of body	Q-D
22	BM25 of anchor	Q-D

23	BM25 of title	Q-D	45	Hyperlink based score propagation: uniform out-link	Q-D
24	BM25 of URL	Q-D	46	Hyperlink based propagation: weighted in-link	Q-D
25	BM25 of whole document	Q-D	47	Hyperlink based feature propagation:	Q-D
26	LMIR.ABS of body	Q-D		weighted out-link	11117401100
27	LMIR.ABS of anchor	Q-D	48	Hyperlink based feature propagation:	Q-D
28	LMIR.ABS of title	Q-D		uniform out-link	
29	LMIR.ABS of URL	Q-D	49	HITS authority	Q-D
30	LMIR.ABS of whole document	Q-D	50	HITS hub	Q-D
31	LMIR.DIR of body	Q-D	51	PageRank	D
32	LMIR.DIR of anchor	Q-D	52	HostRank	D
33	LMIR.DIR of title	Q-D	53	Topical PageRank	Q-D
34	LMIR.DIR of URL	Q-D	54	Topical HITS authority	Q-D
35	LMIR.DIR of whole document	Q-D	55	Topical HITS hub	Q-D
36	LMIRJM of body	Q-D	56	Inlink number	D
37	LMIRJM of anchor	Q-D	57	Outlink number	D
38	LMIR.JM of title	Q-D	58	Number of slash in URL	D
39	LMIRJM of URL	Q-D	59	Length of URL	D
40	LMIRJM of whole document	Q-D	60	Number of child page	D
41	Sitemap based term propagation	Q-D	61	BM25 of extracted title	Q-D
42	Sitemap based score propagation	Q-D	62	LMIR.ABS of extracted title	Q-D
43	Hyperlink based score propagation: weighted in-link	Q-D	63	LMIR.DIR of extracted title	Q-D
44	Hyperlink based score propagation: weighted out-link	Q-D	64	LMIR.JM of extracted title	Q-D

文本相关性的演进

- Before NN
- Before BERT
 - Embedding: word/char level
 - 表示模型: (C)DSSM
 - 交互模型: MatchPyramid, (Conv-)KNRM
- BERT

BERT相关性训练: 交互模型 vs 表示模型

交互模型: Score(q, d) = Dense(Bert(q, d))

表示模型: Score(q, d) = Cosine(Bert(q), Bert(d))

搜索业务架构中的BERT

升

BERT表示模型语义召回

- 相关性任务 fine-tune
- BERT as Encoder
- Doc 向量构建语义索引(faiss)
- Query 向量召回

BERT带来的问题

- 交互模型服务 latency 过高
- 交互模型显存占用过大,精排排序 doc 量受限
- 向量查询服务带宽消耗过大、 latency 高
- 语义索引规模过大,latency 过高,离线构建慢
- 在线服务 GPU 机器需求大, 预算压力
- 离线存储 TableStore/TiDB 资源消耗
- 离线训练日志规模过大,日更 LTR 训练慢
- BERT 向量维度太大,无法引入二轮排序特征
- 无法建立全量正文语义索引/正文特征缺失

•

蒸馏前的尝试:

- cuBERT[1] (1.5x faster)
 - ・混合精度 (Nvidia Tensor Core)
- Cache (2x faster)
- ・減小 max_seq_length
- ·直接训练小模型/减少层数fine-tune
- · 直接对 BERT 做维度压缩
- · 规则过滤部分 content 做语义召回/特征
- · Poly-encoder [2]

^{1. &}lt;a href="https://github.com/zhihu/cuBERT">https://github.com/zhihu/cuBERT

^{2.} Humeau S, Shuster K, Lachaux M A, et al. Poly-encoders: Transformer architectures and pre-training strategies for fast and accurate multi-sentence scoring[J]. arXiv preprint arXiv:1905.01969, 2019.

知识蒸馏

知识蒸馏

- Soft target vs Hard target
 - Label Smoothing
 - Label Augmentation
- Temperature

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

Hard target

COW	Dog	cat	Car
0	1	0	0

Soft target

•			
COW	Dog	cat	Car
0.001	0.9	0.009	1E-06
		Zi/T	
COW	Dog	cat	Car
0.05	0.6	0.035	0.005

BERT蒸馏方案

基于任务分类:

- 预训练任务蒸馏
 - DistilBERT
 - MiniLM
 - MobileBERT
- 下游任务蒸馏
 - Patient-KD
 - Bert to Simple NN
 - Pre-train Distill
 - Bert-of-theuseus
- ・两段式
 - TinyBERT

基于技巧分类:

- 迁移知识
 - Predict label
 - Attention score
 - Hidden output
- 模型结构
 - Width & Depth
 - Transformer block alter
 - Loss design
 - Layer initialization
 - Simple NN

蒸馏-MiniLM

- · 引入 Attention values 关系矩阵迁移
- · Last layer Attention Distribution 迁移
- · 使用 assistant 网络

蒸馏-BERT to Simple NN

BERT蒸馏上的实践和收益

- ·蒸馏目标: 离线精度对比线上 BERT 无损
 - · BERT base 直接蒸馏无法避免精度损失
 - ・更大 teacher 模型选择(BERT-large/Robert-large/XLNET)

BERT交互模型蒸馏

- •基于 Patient-KD 方法, 直接蒸馏 24 => 6 (BERT base 隔层初始化)
- •实验助教 24 => 6 => 3 better than 24 => 3
- (助教为 BERT base last 6 层初始化)
- •训练数据:标注数据&随机采样无标注数据
- •迁移知识: hidden layer logits + final logits
- Point-wise loss: RMSE/Cross entropy/Cosine

Teacher	Student	nDCG@10
Robert-large	_	0.914121
_	BERT-base	0.907743
_	BERT-6L	0.903115
BERT-base	BERT-6L	0.905856
Robert-large	BERT-6L	0.911133
Robert-large	BERT-3L	0.904888

蒸馏-PatientKD

- ・策略:
 - ·下游任务蒸馏
 - PKD-skip / PKD-last
 - ·BERT base 初始化
- ·Loss 设计:
 - ·LCE: student 的预测与真实标签的交叉熵
 - ·LDS: student与 teacher 的预测的交叉熵
 - ·LPT: 隐藏层 normalized MSE

$$L_{PKD} = (1 - \alpha)L_{CE}^s + \alpha L_{DS} + \beta L_{PT}$$

BERT表示模型蒸馏

dim	val_acc	ndcg@5
base	0.8516	0.8651
64	0.8749	0.8635
128	0.8910	0.8703
768	0.9011	0.8753

- ·蒸馏的同时维度压缩
- · 交互模型作为 teacher 蒸馏
- ・ Pairwise loss: teacher 差值拟合

$$\sum_{ij}(P(S_i-S_j)-P(T_i-T_j))$$

维度压缩指标趋势图

蒸馏的收益

Online

交互模型

- · 排序相关性特征 P95 减少为 1/2, 搜索入口下降 40ms
- ・ 服务 RTX 2080Ti 8 卡 GPU 机器数减少一半

表示模型

- ・ 语义索引存储规模 title 减少为 1/4、content 较少为 1/6
- ・ 语义索引召回 P99 title 减少为 1/3, content 减少为 1/2
- · 向量查询服务 P95 约降为 1/4, Redis 存储约较少为 1/5
- · 扩充全量 content 数据语义索引和特征服务,次日留存 +0.17%
- · con完全替换掉content KNRM/Pyramid, 节省 GPU 资源

Offline

表示模型

- · 日常语义索引构建时间减少为 1/4
- · TableStore/TiDB 存储变为原来的 1/6
- LTR 训练数据减少为原来的 1/4
- ・ LTR 日常训练时间 10h => 5h
- · 粗排模型引入 32d 向量特征,提高粗排精度
- ・ 精排引入 BERT 向量 End2End 训练,满意点击比 +0.16%

THANKS

持续招人中~ 大家一起来构建更好的知乎搜索~ 欢迎投递: fangkuan@zhihu.com

先日子