2. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Рассмотрим уравнение: f(x) = 0. В дальнейшем мы будем говорить только о вещественных корнях этого уравнения.

Рекомендуемая литература: /2-6, 12-13/.

2.1. Постановка задачи

Пусть уравнение f(x)=0 имеет k вещественных корней $c_1,c_2,...,c_k$. Требуется найти числа $\bar{x}_1,\bar{x}_2,...,\bar{x}_k$, такие, что $|c_i-\bar{x}_i|\leq \varepsilon$, где ε – заданная точность, $1\leq j\leq k$.

Задача нахождения приближенных значений корней разбивается на два этапа:

- 1) отделение корней;
- 2) уточнение корней с заданной точностью.

Этап отделения вещественных корней заключается в отыскании достаточно малых отрезков $[a_j, b_j]$ таких, что каждый из этих отрезков содержит один корень уравнения $(c_j \in [a_i, b_i], 1 \le j \le k)$ и каждый вещественный корень содержится ровно в одном отрезке.

На этапе уточнения корня известен отрезок [a, b], который содержит один корень уравнения $(c \in [a, b])$. Ставится задача вычисления корня с заданной точностью, то есть нахождения $x \in [a, b]$ такого, что $|c - x| \le \varepsilon$, где ε – заданная точность.

2.2. Отделение корней

Рассматривается два способа решения задачи отделения корней – графический и аналитический.

Существует два подхода к графическому отделению корней.

1. Строится график: f(x) = 0 и приблизительно находятся абсциссы точек пересечения графика f(x) = 0 с осью x (рис. 2.1).

Рис. 2.1. Графическое отделение корней

2. Сначала уравнение f(x) = 0 записывается в виде $f_1(x) = f_2(x)$, а затем строятся графики: $y = f_1(x)$ и $y = f_2(x)$ и приблизительно находятся абсциссы точек пересечения этих графиков (рис. 2.2).

Рис. 2.2. Графическое отделение корней

Рис. 2.3. Отделение корня

Пример

Требуется отделить корни уравнения: $x^3 + 3x - 1 = 0$.

Решение. Запишем уравнение в виде: $\mathbf{x}^3 = -3\mathbf{x} + 1$, то есть $\mathbf{f}_1(\mathbf{x}) = \mathbf{x}^3$, $\mathbf{f}_2(\mathbf{x}) = -3\mathbf{x} + 1$, и построим графики: $\mathbf{y} = \mathbf{x}^3$ и $\mathbf{y} = -3\mathbf{x} + 1$ (рис. 2.3). Абсцисса точки пересечения графиков принадлежит отрезку [0, 1].

Отрезок [0, 1] содержит один корень уравнения: $x^3 + 3x - 1 = 0$.

Аналитически корни уравнения f(x) = 0 можно отделить, используя свойства функции, например, опираясь на следующую теорему.

Теорема

Если f(x)=0 является непрерывно дифференцируемой функцией на отрезке [a,b] $(f(x)\in C^1[a,b])$, первая производная f не меняет знак на [a,b] $(f'(x)\neq 0,x\in [a,b])$, и на концах отрезка функция f принимает значения разных знаков $(f(a)\cdot f(b)<0)$, то внутри отрезка [a,b] содержится один корень уравнения f(x)=0.

Отметим, что в дальнейшем мы будем для пространства n раз непрерывно дифференцируемых функций на отрезке [a,b] использовать обозначение: $C^n[a,b]$. Если функция f является непрерывной функцией на отрезке [a,b], то это можно записать так: $f \in C[a,b]$. Если функция f является непрерывно дифференцируемой на отрезке [a,b], то это можно записать следующим образом: $f \in C^1[a,b]$. Если f — дважды непрерывно дифференцируемая функция на отрезке [a,b], то будем использовать обозначение: $f \in C^2[a,b]$ и т.д.

2.3. Уточнение корня

Постановка задачи уточнения корня

Пусть известен отрезок [a, b], который содержит один корень уравнения f(x) = 0. Пусть c — точное значение корня , $c \in [a, b]$. Требуется найти число x, для которого выполняется следующее неравенство: $|x-c| \le \varepsilon$, где ε — заданная точность. Число x называется приближенным значением корня c точностью ε .

В дальнейшем мы будем рассматривать только итерационные методы для решения задачи уточнения корня. Суть этих методов заключается в следующем.

По функции f(x) строится функция $\varphi(x)$ такая, что уравнение $x = \varphi(x)$ равносильно уравнению f(x) = 0 (уравнения f(x) = 0 и $x = \varphi(x)$ имеют одинаковые корни). Затем рассматривается последовательность чисел $\{x_0, x_1, x_2, ..., x_n, ...\}$, $x_0, x_1 = \varphi(x_0)$, $x_2 = \varphi(x_1), ..., x_{n+1} = \varphi(x_n), ...$, где x_0 - начальное приближение корня. Последовательность $\{x_i\}$ при выполнении некоторых условий сходится к корню x = c.

Процесс вычисления $x_n = \varphi(x_{n-1})$ называется итерационным процессом; последовательность $x_0, \varphi(x_0), \varphi(x_1), ..., \varphi(x_n)$... называется последовательностью итераций.

Если последовательность $\{x_n\}$ сходится к корню c, то, начиная с некоторого n, выполняется неравенство: $|x_n - c| \le \varepsilon$. Вычисления на этом прекращается и x_n считается приближенным значением корня, вычисленным с точностью ε .

Отметим, что ε — это погрешность численного метода, при этом не учитывается погрешность вычислений на ЭВМ. Последовательность может сходиться, а может и не сходиться. Если последовательность не сходится, то при реализации численного метода на ЭВМ получаем, как правило, машинное переполнение.

В дальнейшем будем рассматривать итерационные методы уточнения корня по следующей схеме:

- 1) условия на применение метода;
- 2) формула метода;
- 3) выбор начального приближения и сходимость метода;
- 4) условие остановки итерационного процесса.

2.4. Метод простой итерации

- 1. Пусть известен отрезок [a, b], который содержит один корень уравнения f(x) = 0. Функция f является непрерывно дифференцируемой функцией на этом отрезке $(f(x) \in C^1[a, b])$. При выполнении этих условий можно применять метод простой итерации.
- 2. По функции f(x) строится функция $\varphi(x)$, удовлетворяющая трём условиям: она должна быть непрерывно дифференцируемой $(\varphi(x) \in C^1[a, b])$, такая, что уравнение $x = \varphi(x)$ равносильно уравнению f(x)=0; должна также *переводить отрезок* [a,b] \mathfrak{s} *себя*.

Будем говорить, что функция $\varphi(x)$ переводит отрезок [a, b] в себя, если для любого $x \in [a, b], y = \varphi(x)$ также принадлежит [a, b] $(y \in [a, b]).$

На функцию $\varphi(x)$ накладывается третье условие:

$$\max_{a \le x \le b} | \varphi'(x) | = q < 1$$

Формула метода: $x_{n+1} = \varphi(x_n)$.

3. При выполнении этих трех условий для любого начального приближения $x_0 \in [a, b]$ последовательность итераций $x_{n+1} = \varphi(x_n)$ сходится к корню уравнения: $x = \varphi(x)$ на отрезке [a, b] ($\lim_{x \to \infty} x_n = c$).

Как правило, в качестве x_0 выбирается один из концов [a, b].

4. Условие остановки итерационного процесса:

$$\left|x_{n+1}-x_n\right| \leq \frac{\varepsilon(1-q)}{q}$$

где ε — заданная точность

Число x_{n+1} при выполнении условия остановки итерационного процесса является приближенным значением корня уравнения f(x) = 0 на отрезке [a, b], найденным методом простой итерации с точностью ε .

Пример

Построить алгоритм для уточнения корня уравнения: $x^3 + 5x - 1 = 0$ на отрезке [0, 1] методом простой итерации с точностью ε .

Решение

- 1. Функция $f(x) = x^3 + 5x 1$ является непрерывно дифференцируемой на отрезке [0,1], содержащем один корень уравнения.
- 2. Наибольшую трудность в методе простой итерации представляет построение функции $\varphi(x)$, удовлетворяющей всем условиям:

$$x^3 + 5x - 1 = 0$$
, $x^3 = 1 - 5x$, $x = \sqrt[3]{1 - 5x}$.

Рассмотрим: $\phi_1(x) = \sqrt[3]{1-5x}$.

Уравнение $x = \varphi_1(x)$ эквивалентно уравнению f(x) = 0, но функция $\varphi_1(x)$ не является непрерывно дифференцируемой на отрезке [0, 1].

С другой стороны, $x^3 + 5x - 1 = 0$, следовательно, $5x = 1 - x^3$. Отсюда: $\varphi_2(x) = \frac{1 - x^3}{5}$ — непрерывно

дифференцируемая функция. Отметим, что уравнение: $x = \varphi_2(x)$ эквивалентно уравнению f(x) = 0. Из графика (рис. 2.4) видно, что функция $\varphi_2(x)$ переводит отрезок [0, 1] в себя.

Рис. 2.4. График функции $\phi_2(x)$

Условие, что функция $\varphi(x)$ переводит отрезок [a,b] в себя, можно переформулировать следующим образом: пусть [a,b] — область определения функции $\varphi(x)$, а [c,d] — область изменения $\varphi(x)$. Если отрезок [c,d] принадлежит отрезку [a,b], то функция $\varphi(x)$ переводит отрезок [a,b] в себя.

Найдем $q = \max_{q \le x \le b} |\varphi'(x)|$:

$$\varphi_2^{'}(x) = -\frac{3x^2}{5}$$
 $q = \max_{a \le x \le b} |\varphi^{'}(x)| = 0.6 < 1$

Все условия для функции $\varphi(x)$ выполнены.

Формула итерационного процесса: $x_{n+1} = \varphi_2(x_n)$.

- 3. Начальное приближение: $x_0 = 0$.
- 4. Условие остановки итерационного процесса:

$$\left|x_{n+1}-x_n\right| \leq \frac{\varepsilon(1-q)}{q}$$

При выполнении этого условия x_{n+1} – приближенное значение корня на отрезке [0,1], найденное методом простой итерации с точностью ε . На

Рис. 2.5. Геометрический смысл метода простой итерации

рис. 2.5. иллюстрируется применение метода простой итерации.

Теорема о сходимости и оценка погрешности

Пусть отрезок [a, b] содержит один корень уравнения $x = \varphi(x)$, функция $\varphi(x)$ является непрерывно дифференцируемой на отрезке [a, b], переводит отрезок [a, b] в себя, и выполнено условие:

$$q = \max_{a \le x \le b} \left| \varphi'(x) \right| < 1$$

Тогда для любого начального приближения $x_0 \in [a, b]$ последовательность $x_{n+l} = \varphi(x_n)$ сходится к корню уравнения $y = \varphi(x)$ на отрезке [a, b] и справедлива оценка погрешности:

$$|x_{n+1} - c| \le \frac{q}{1-q} |x_{n+1} - x_n|$$

Устойчивость метода простой итерации. При выполнении условий теоремы о сходимости алгоритм метода простой итерации является устойчивым.

Сложность метода простой итерации. Объем памяти ЭВМ, необходимый для реализации метода простой итерации, незначителен. На каждом шаге нужно хранить x_n , x_{n+1} , q и ε .

Оценим число арифметических действий, необходимых для реализации метода простой итерации. Запишем оценку для числа $n_0 = n_0(\varepsilon)$ такого что, для всех $n \ge n_0$ выполняется неравенство: $|x_n - c| \le \varepsilon |x_0 - c|$:

$$n_0(\varepsilon) = \left\lceil \frac{\ln(1/\varepsilon)}{\ln(1/q)} \right\rceil + 1.$$

Из этой оценки вытекает, что чем ближе q к единице, тем медленнее сходится метод.

Замечание. Не существует общего правила построения $\varphi(x)$ по f(x) так, чтобы выполнялись все условия теоремы о сходимости. Часто используется следующий подход: в качестве функции φ выбирается функция $\varphi(x) = x + k \cdot f(x)$, где k – константа.

При программировании метода простой итерации для остановки итерационного процесса часто требуют одновременного выполнения двух условий:

$$|x_{n+1}-x_n| \leq \frac{1-q}{q} \varepsilon \qquad |f(x_{n+1})| \leq \varepsilon$$

Все остальные итерационные методы, которые мы будем рассматривать, являются частными случаями метода простой итерации. Например, при $\varphi(x) = x - \frac{f(x)}{f'(x)}$ метод Ньютона является частным случаем метода простой итерации.

2.5. Метод Ньютона

1. Пусть известен отрезок [a, b], который содержит один корень уравнения f(x) = 0. Функция f(x) является дважды непрерывно дифференцируемой на отрезке [a, b] ($f(x) \in C^2[a, b]$). Функция f принимает на концах отрезка [a, b] значения разных знаков ($f(a) \cdot f(b) < 0$). Первая и вторая производные функции f не обращаются в ноль на отрезке [a, b] ($f' \neq 0, f'' \neq 0$). При выполнении этих условий для уточнения корня можно использовать метод Ньютона

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

2. Формула метода:

3. Точка x_0 — начальное приближение — выбирается из условия: $f(x_0)f''(x) > 0$. В качестве x_0 выбирается, как правило, один из концов отрезка [a, b]:

если
$$f(a) \cdot f''(x) > 0$$
, то $x_0 = a$; если $f(b) \cdot f''(x) > 0$, то $x_0 = b$.

Отметим, что, так как f''(x) не меняет знак на отрезке [a, b] и $f(a) \cdot f(b) < 0$, то на отрезке [a, b] выполнено только одно из предыдущих условий: либо $f(a) \cdot f''(x) > 0$, либо $f(b) \cdot f''(x) > 0$.

При выполнении этих условий последовательность $\{x_n\}$ сходится к точному значению корня на отрезке [a, b].

4. Для метода Ньютона известны несколько условий остановки итерационного процесса. Рассмотрим одно из них: $|f(x_{n+1})| \le m \cdot \varepsilon$, где $m = \min_{a \le x \le b} |f'(x)|$. При выполнении этого условия x_{n+1} является приближенным значением корня уравнения на отрезке [a, b], найденным методом Ньютона с точностью ε . Условие остановки итерационного процесса вытекает из оценки погрешности для метода Ньютона: $|x_{n+1} - c| \le |f(x_{n+1})/m|$.

При программной реализации метода Ньютона, как правило, для остановки итерационного процесса требуется выполнение одновременно двух условий:

$$|x_{n+1}-x_n| \le \varepsilon$$
 $|f(x_{n+1})| \le m \cdot \varepsilon$

Пример

Построить алгоритм для уточнения коря уравнения $x^3 + 3x - 1 = 0$ на отрезке [0,1] методом Ньютона с точностью ε .

Решение

1. Отрезок [0, 1] содержит один корень уравнения f(x) = 0. Функция f(x) является дважды непрерывно дифференцируемой на отрезке [0, 1] ($f(x) \in C^2[0, 1]$). Функция f принимает на концах отрезка [0, 1] значения разных знаков. Первая производная функция f не обращаются в ноль на отрезке. То есть:

$$f(x) = x^3 + 3x - 1;$$
 $f(x) \in C^2[a, b];$
 $f(0) \cdot f(1) < 0;$
 $f' = 3x^2 + 3 \neq 0;$
 $f'' = 6x;$ $f''(0) = 0.$

Вторая производная f обращается в ноль на отрезке [0, 1]. В таких случаях рекомендуется уменьшить отрезок [a, b] таким образом, чтобы уменьшенный отрезок содержал корень уравнения, и для этого отрезка выполнялись все условия.

Рассмотрим отрезок [0.1, 1]. Этот отрезок содержит один корень уравнения f(x) = 0 и для него выполняются все условия для функции f(x).

2. Формула метода:

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$
.

- 3. f(1) f''(x) > 0, начальное приближение $x_0 = 1$.
- 4. Условие остановки итерационного процесса:

Рис. 2.6. Геометрический смысл метода Ньютона

$$|f(x_{n+1})| \le m \cdot \varepsilon$$
, где $m = \min_{a \le x \le b} |f'(x)|$; $m = \min_{0.1 \le x \le 1} |3x^2 + 3| = 3.03$

Число x_{n+1} , для которого выполняется условие остановки, является *приближенным* значением корня уравнения на отрезке [0.1, 1], найденным методом Ньютона c точностью c. На рис. 2.6. иллюстрируется применение метода Ньютона. В рассматриваемом случае начальное приближение $x_0 = b$. Метод Ньютона называют также методом касательных.

2.6. Метод хорд

1. Условия на применение метода хорд те же самые, что и для метода Ньютона.

Пусть известен отрезок [a, b], который содержит один корень уравнения f(x) = 0. Функция f(x) является дважды непрерывно дифференцируемой на [a, b] $(f(x) \in C^2[a,b])$. Функция f принимает на концах отрезка [a, b] значения разных знаков $(f(a) \cdot f(b) < 0)$. Первая производные функции f не обращаются в ноль на отрезке [a, b] $(f' \neq 0, f'' \neq 0)$. При выполнении этих условий для уточнения корня можно использовать метод хорд.

$$x_{n+1} = x_n - f(x_n) \frac{x_n - d}{f(x_n) - f(d)},$$

 $\varphi(x) = x - f(x) \frac{x - d}{f(x) - f(d)},$

2. Формула метода:

$$\varphi(x) = x - f(x) \frac{x - d}{f(x) - f(d)}$$

то есть

где d — неподвижная точка, которая выбирается из условия $f(d) \cdot f''(x) > 0$. То есть условие на начальное приближение в методе Ньютона соответствует условию на неподвижную точку в методе хорд:

если
$$f(a)$$
: $f''(x) > 0$, то $d = a$; если $f(b)$: $f''(x) > 0$, то $d = b$.

3. Если d = a, то начальное приближение $x_0 = b$. Если d = b, то начальное приближение $x_0 = a$.

Таким образом, один из концов отрезка является неподвижной точкой, а другой – точкой начального приближения.

4. Условие остановки итерационного процесса то же самое, что и для метода Ньютона:

$$|f(x_{n+1})| \le m \cdot \varepsilon$$
 $m = \min_{a \le x \le b} |f'(x)|$

При выполнении этого условия x_{n+1} является *приближенным* значением корня уравнения f(x) = 0 на отрезке [a, b], найденным методом хорд с точностью ε . На рис. 2.7. иллюстрируется применение метода хорд, в рассматриваемом случае неподвижная точка d = b.

Пример

Построить алгоритм для уточнения корня уравнения $x^3 + 3x - 1 = 0$ на отрезке [0,1] методом хорд с точностью *є*.

Рис. 2.7. Геометрический смысл метода хорд

Решение

$$f(x) = x^3 + 3x - 1.$$

1. В предыдущем примере мы убедились, что от отрезка [0, 1] нужно перейти к уменьшенному отрезку [0.1, 1]. Этот отрезок содержит один корень уравнения f(x) = 0 и для него выполняются все условия для функции f.

> 2. f(1) f''(x) > 0, следовательно, d = 1. Формула

$$x_{n+1} = x_n - f(x_n) \frac{x_n - d}{f(x_n) - f(d)}.$$

3. Так как d = 1, начальное приближение $x_0 = 0.1$.

4. Условие остановки итерационного процесса:

$$|f(x_n)| \le m \cdot \varepsilon$$
 $m = \min_{a \le x \le b} (f'(x)) = 3.03$

Число x_{n+1} , для которого выполняется условие остановки итерационного процесса, является приближенным значением корня уравнения f(x) = 0 на отрезке [0,1, 1], найденным методом хорд с точностью Е.

2.7. Комбинированный метод хорд и касательных

Метод Ньютона называют также методом касательных. Комбинируя метод хорд и метод Ньютона, можно построить метод отыскания вещественных корней уравнения f(x) = 0, в котором при прежних предположениях относительно f(x) на каждом шаге итерационного процесса мы получаем два приближения к корню x_{n+1} и x_{n+1} , причем $x_{n+1} < c < x_{n+1}$ где $x_{n+1} < c < x_{n+1}$

1. Условия на применение метода те же, что и в методе Ньютона.

Пусть известен отрезок [a, b], который содержит один корень уравнения: f(x) = 0. Функция f(x) является дважды непрерывно дифференцируемой на [a, b] ($f(x) \in C^2[a, b]$). Функция f принимает на концах отрезка [a, b] значения разных знаков ($f(a) \cdot f(b) < 0$). Первая и вторая производные функции f не обращаются в ноль на отрезке [a, b]

$$(f' \neq 0, f'' \neq 0).$$

- 2. Возможны два случая:
- если f(a): f''(x) > 0, то слева применяем метод Ньютона, а справа метод хорд. Формулы метода:

$$x_{n+1} = x_n - f(x_n)/f'(x_n);$$

$$\overline{x_n}_{n+1} = \overline{x_n} - f(\overline{x_n}) \frac{\overline{x_n} - x_n}{f(\overline{x_n}) - f(x_n)};$$

• если f(b): f''(x) > 0, то слева применяем метод хорд, а справа метод Ньютона (метод касательных).

Формулы метода:

$$x_{n+1} = x_n - f(x_n) \frac{\overline{x_n} - x_n}{f(\overline{x_n}) - f(x_n)};$$

$$\overline{x_{n+1}} = \overline{x_n} - f(\overline{x_n}) / f'(\overline{x_n}).$$

В качестве точек начального приближения выбираются: $\boldsymbol{x}_0 = a, \ \overline{\boldsymbol{x}_0} = \boldsymbol{b}$.

4. Условие остановки итерационного процесса: $\overline{x_{n+1}} - x_{n+1} \le \varepsilon$, при выполнении этого условия любая точка из отрезка $[x_{n+1}, \overline{x_{n+1}}]$ приближает корень уравнения с точностью ε Чаще всего принимают: $x_* = \frac{x_{n+1} + \overline{x_{n+1}}}{2}$.

На рис. 2.8. иллюстрируется у применение комбинированного метода хорд и касательных. В рассматриваемом случае справа применяется метод Ньютона, а слева — метод хорд.

Пример

Построить алгоритм для уточнения корня уравнения $x^3 + 3x - 1 = 0$ комбинированным методом хорд и касательных с точностью ε на отрезке [0.1, 1].

Рис. 2.8. Геометрический смысл комбинированного метода хорд и

Решение

1. В предыдущих примерах мы проверили, что отрезок [0.1, 1] содержит один корень уравнения, и выполняются все условия для применения метода Ньютона:

$$f(x \in C^2[a,b]); f(0.1) \cdot f(1) < 0; f'(x) \neq 0; f''(x) \neq 0.$$

2. Определим, какой из методов нужно применять слева, а какой справа:

$$f(0.1)f''(x) < 0$$
, для $x \in [0.1,1]$; $f(1)f''(x) > 0$, для $x \in [0.1,1]$.

Следовательно, слева применяем метод хорд, а справа – метод касательных (Ньютона). Запишем формулы:

$$x_{n+1} = x_n - f(x_n) \frac{\overline{x_n} - x_n}{f(\overline{x_n}) - f(x_n)},$$

$$\overline{x_{n+1}} = \overline{x_n} - f(\overline{x_n}) / f'(\overline{x_n}).$$

3. Точки начального приближения:

$$x_0 = 0.1$$
, $\overline{x_0} = 1$.

4. Условие остановки итерационного процесса:

$$\overline{x_{n+1}} - x_{n+1} \le \varepsilon.$$

Приближенное значение: $x_* = \frac{x_{n+1} + x_{n+1}}{2}$.

При выполнении условия остановки итерационного процесса x_* является приближенным значением корня уравнения, полученным комбинированным методом хорд и касательных с точностью ε .

2.8. Метод итераций

- 1. Пусть известен отрезок [a, b], содержащий один корень уравнения f(x) = 0. Функция f(x) является непрерывно дифференцируемой на [a, b] ($f(x) \in C^1[a, b]$). Первая производная функции f не обращается в ноль на отрезке [a, b] ($f' \neq 0$).
 - 2. Формула метода:

$$x_{n+1} = x_n - f(x_n)/p$$
 , то есть $\varphi(x) = x - f(x)/p$.

Здесь p — константа, которая выбирается следующим образом: знак p — совпадает со знаком f'(x) на [a, b]:

$$sign(p) = sign(f'_{a \le x \le b}(x)),$$

а модуль р выбирается из условия:

$$|p| > R/2$$
 , где $R = \max_{a \le x \le b} |f'(x)|$.

3. Метод итераций сходится для любого начального приближения $x_0 = [a, b]$, если

$$q = \max_{a \le x \le b} |\varphi'(x)| < 1$$

В качестве x_0 выбирается один из концов отрезка [a, b].

4. Условие остановки итерационного процесса:

$$|x_{n+1}-x_n| \leq \frac{1-q}{q} \varepsilon$$
.

Число x_{n+1} , для которого выполняется условие остановки итерационного процесса, является приближенным значением корня уравнения, полученного с помощью метода итераций с точностью ε .

Пример

Построить алгоритм для уточнения корня уравнения $x^3 + 3x - 1 = 0$ методом итераций с точностью ε на отрезке [0,1].

Решение

1. Отрезок содержит один корень уравнения, функция f является непрерывно дифференцируемой на этом отрезке, первая производная функции f не обращается в ноль на этом отрезке:

$$f(x) \in C^1[a,b], f' = 3x^2 + 3 \neq 0.$$

2. Формула метода:

$$x_{n+1} = x_n - f(x_n) / p$$
.

$$f'(x) > 0$$
 на $[0, 1]$, следовательно, $p > 0$.

$$R = \max_{0 \le x \le 1} |3x^2 + 3| = 6, \ p = 4,$$
 следовательно, $x_{n+1} = x_n - f(x_n)/4$.

Сразу проверим, что

$$q = \max_{a \le x \le b} |\varphi'(x)| < 1;$$

$$\varphi(x) = x - \frac{f(x)}{n} = x - \frac{x^3 + 3x - 1}{4};$$

$$\max_{a \le x \le b} |\varphi'(x)| = 0.5 < 1$$
.

- 3. Начальное приближение $x_0 = 0$.
- 4. Условие остановки итерационного процесса:

$$|x_{n+1}-x_n| \leq \frac{1-q}{q} \varepsilon,$$
 $q=0.5$

Число x_{n+1} , для которого выполняется условие остановки итерационного процесса, является приближенным значением корня уравнения, полученного с помощью метода итераций с точностью ε .