# 1. 研究背景

本数据集共有 1048575 条数据,其中包含了 2017 年 11 月 25 日至 2017 年 12 月 3 日之间,随机用户的所有行为数据(行为包括点击、购买、加购、喜欢)。数据集的每一行表示一条用户行为,由用户 ID、商品 ID、商品类目 ID、行为类型和时间戳组成,并以逗号分隔。数据来源:

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1&lang=en-us

# 2. 分析目的

通过对这些数据进行统计、分析,从中发现用户使用产品的规律,并将这些规律与网站的营销策略、产品功能、运营策略相结合,发现营销、产品和运营中可能存在的问题,解决这些问题就能优化用户体验、实现更精细和精准的运营与营销,让产品获得更好的增长。

# 3. 研究思路

(一)常见用户行为分析模型:

行为事件分析、用户留存分析、漏斗分析、用户行为路径分析、用户分群、 点击分析。

(1) 电商数据分析基本指标体系

| 总体运营指标   |                  |  |
|----------|------------------|--|
|          | 独立访客数(UV)        |  |
| 流量指标     | 页面访问数 (PV)       |  |
|          | 人均页面访问数          |  |
| 订单效率指标   | 总订单数量(buy)       |  |
|          | 访问到下单转化率(buy/pv) |  |
|          | 成交额 (GMV)        |  |
| 总体销售业绩指标 | 销售金额             |  |
|          | 客单价(成交额/顾客数)     |  |
| <b>數</b> | 销售毛利(销售额-成本)     |  |
| 整体指标     | 毛利率(毛利/销售额)      |  |

(2) RFM 模型根据客户活跃程度和交易金额的贡献,进行客户价值细分的一种方法。

R(Recency)——最近一次交易时间间隔。基于最近一次交易日期计算的得分,距离当前日期越近,得分越高。如5分制。反映客户交易活跃度。

F(Frequency)——客户在最近一段时间内交易次数。基于交易频率计算的得分,交易频率越高,得分越高。如5分制。反映客户交易活跃度。

M (Monetray)——客户最近一段时间内交易金额。基于交易金额计算的得分,交易金额越高,得分越高。如 5 分制。反映客户价值。

RFM 总分值: RFM=RS\* 100+FS\* 10+MS\* 1

RFM 分析的主要作用:识别优质客户。可以制定个性化的沟通和营销服务,为更多的营销决策提供有力支持。能够衡量客户价值和客户利润创收能力。

(3) 行为事件分析模型:

行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,

已被广泛应用。行为事件分析法一般包含事件定义与选择、下钻分析、解释与结论等环节。事件定义与选择。事件描述的是,一个用户在某个时间点、某个地方、以某种方式完成了某个具体的事情。Who、When、Where、What、How 是定义一个事件的关键因素。

其中: Who 是参与事件的主体,对于未登陆用户,可以是 Cookie、设备 ID 等匿名 ID;对于登录用户,可以使用后台配置的实际用户 ID; When 是事件发生的实际时间,应该记录精确到毫秒的事件发生时间;Where 即事件发生的地点,可以通过 IP 来解析用户所在省市;也可以根据 GPS 定位方式获取地理位置信息。How 即用户从事这个事件的方式。用户使用的设备、浏览器、 APP 版本、渠道来源等等; What 描述用户所做的这个事件的所有具体内容。比如对于"购买"类型的事件,则可能需要记录的字段有:商品名称、商品类型、购买数量、购买金额、付款方式等。

多维度下钻分析。最为高效的行为事件分析要支持任意下钻分析和精细化条件筛选。当行为事件分析合理配置追踪事件和属性,可以激发出事件分析的强大潜能,为企业回答关于变化趋势、维度对比等等各种细分问题。同时,还可以通过添加筛选条件,可以精细化查看符合某些具体条件的事件数据。

解释与结论。此环节要对分析结果进行合理的理论解释,判断数据分析结果是否与预期相符,如判断产品的细节优化是否提升了触发用户数。如果相悖,则应该针对不足的部分进行再分析与实证。

参考电商数据分析基本指标体系、AARRR漏斗模型和RFM模型,结合适用指标进行分析;

#### (4) 用户留存分析:

留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。

留存分析可以帮助回答以下问题:

一个新客户在未来的一段时间内是否完成了您期许用户完成的行为?如支付订单等;

某个社交产品改进了新注册用户的引导流程,期待改善用户注册后的参与程度,如何验证?

想判断某项产品改动是否奏效,如新增了一个邀请好友的功能,观察是否有 人因新增功能而多使用产品几个月?

#### (5) AARRR 漏斗模型:

就是从起点到终点有多个环节,每个环节都会产生用户流失,依次递减,每一步都会有一个转化率。另外衍生出"路径分析方法",包括:关键路径、扩散路径、收敛路径、端点路径,每一条路径,都是一个漏斗。

#### (6) 用户路径分析:

用户在 APP 或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。

以电商为例,买家从登录网站/APP 到支付成功要经过首页浏览、搜索商品、加入购物车、提交订单、支付订单等过程。而在用户真实的选购过程是一个交缠反复的过程,例如提交订单后,用户可能会返回首页继续搜索商品,也可能去取消订单,每一个路径背后都有不同的动机。与其他分析模型配合进行深入分析后,能为找到快速用户动机,从而引领用户走向最优路径或者期望中的路径.

#### (7) 用户分群分析:

由于群体特征不同,行为会有很大差别,因此运营人员或者产品人员希望可以根据历史数据将用户进行划分,将具有一定规律特性的用户群体进行归类,进而再次观察该群体的具体行为。这就是用户分群的原理。

#### (8) 点击分析:

点击图是点击分析方法的效果呈现,在用户行为分析领域,点击分析被应用于显示页面或页面组(结构相同的页面,如商品详情页、官网博客等)区域中不同元素点击密度的图示。包括元素被点击的次数、占比、发生点击的用户列表、按钮的当前与历史内容等因素。

### (二) 本文的研究思路

- (1) 了解网站流量情况;
- (2) 了解该阶段网站用户粘性以及用户行为习惯;
- (3) 了解网站商品销售情况;

#### 分析逻辑如下:



https://hlog.esrln.gat/light\_love\_long

# 4. 分析内容

## 4.1 分析步骤

#### 第一步: 理解数据

| 数据集介绍            |             |                                  |
|------------------|-------------|----------------------------------|
| 文件名              | 说明          | 包含特征                             |
| UserBehavior.csv | 包含所有的用户行为数据 | 用户 ID,商品 ID,商品类目 ID,行为<br>类型,时间戳 |

| 数据集中每列数据的详细描述 |                      |
|---------------|----------------------|
| 列名称           | 说明                   |
| User_Id       | 整数类型,序列化后的用户 ID      |
| Item_Id       | 整数类型,序列化后的商品 ID      |
| Category_Id   | 整数类型,序列化后的商品所属类型 ID  |
| Behavior_type | 字符串、枚举类型,包括          |
|               | (pv, buy, cart, fav) |

| 用户行为类型 | 说明             |
|--------|----------------|
| pv     | 商品详情页 pv,等价于点击 |
| buy    | 商品购买           |
| cart   | 将商品加入购物车       |
| fav    | 收藏商品           |

行为发生的时间戳

#### 第二步: 提出问题

Timestamp

- 1. 期间用户整体行为情况是怎样? 总的点击量,点击人数,购买人数如何?
- 2. 跳失率如何? 用户漏斗分析是怎样的?
- 3. 每天不同时间段的点击量,点击人数,购买人数情况是怎么样的?
- 4. 收藏和加购的转化率是怎样的? 用户的购买路径分析?
- 5. 根据 RFM 模型, 找出不同价值的用户?

## 4.2 数据清洗

数据清洗(尽量不要再数据库对数据进行增改删) 使用 pandas 进行数据清洗

1) 缺失值处理

#时间戳列有1个缺失值, 查看缺失值列

data[data.iloc[:,4].isnull()]

#3835330行数据缺失

#时间戳缺失值列,用户行为为'P',这个数据也是异常。查看数据集中用户行为种类

data.iloc[:,3].unique()

#用户行为每个种类有多少数据

data.iloc[:,3].value\_counts()

#缺失值只有1列,直接删除。并重置索引

data.dropna(axis=0,inplace=True)

data.reset index(drop=True,inplace=True)

#### 2) 重复值处理

由于表为用户行为表,同一个用户可以有多个行为动作,且可以相同,所以数据可以有重复。

#### 3)数据集选择

```
| #时间整列转换为日期、时间整据。并把日期和时间分为例列
| #直接转时间格式失效,需要借助Lambda
| data.loc[:,'Timestamp']-data['Timestamp'].apply(lambda x:x.split(' ')[0]) #日期刊 | data.loc[:,'Date']-data['Timestamp'].apply(lambda x:x.split(' ')[0]) #日期刊 | data.loc[:,'Time']-data['Timestamp'].apply(lambda x:x.split(' ')[1]) #日期刊 | data['Date']-pd.to_datetime(data['Date']) #兒中的 | #別日的 | #別日的 | #別日的 | #別是的 | #別日的 | #別日的 | #別是的 | #別日的 | #別是的 | #別日的 | #別是的 | #別日的 | #別是的 | #別日的 |
```

4.3 构建模型

### (一)总体运营分析

用户整体行为情况是怎样?总的点击量,点击人数,购买人数如何?



(1) pv (总访课数):940007

```
-- 1.计算浏览量: pv
SELECT behavetype,COUNT(*)
FROM USER
WHERE behavetype='pv';
```

(2) uv (用户总数):10207

#### -- 4.计算独立访客数uv SELECT COUNT (DISTINCT user\_id) FROM USER; -- 5.计算有购买行为的访客数

### (3) 购买人数: 7004

```
-- 5.计算有购买行为的访客数
SELECT COUNT(DISTINCT user_id)AS 购买用户量
FROM USER
WHERE behavetype='buy';
```

### (4) 复购率: 66.28%

```
-- 4.复购率:产生两次或两次以上购买的用户占购买用户的比例:66.28%

| SELECT ((SELECT COUNT(DISTINCT user_id) FROM USER
| WHERE user_id IN (SELECT user_id FROM USER WHERE behavetype='buy' GROUP BY user_id HAVING COUNT(user_id)>=2))
| /(SELECT COUNT(DISTINCT user_id)AS 用户数 FROM USER WHERE behavetype='buy'))AS 复购率;
```

#### (5) 日均访问量

#### -- 5.计算日均访客数

SELECT dates, COUNT (DISTINCT user\_id)
FROM USER
WHERE behavetype='pv'
GROUP BY dates
ORDER BY dates;

| dates      | 日均访客数 |
|------------|-------|
| 2017-11-25 | 7099  |
| 2017-11-26 | 7270  |
| 2017-11-27 | 7155  |
| 2017-11-28 | 7127  |
| 2017-11-29 | 7255  |
| 2017-11-30 | 7339  |
| 2017-12-01 | 7403  |
| 2017-12-02 | 9717  |
| 2017-12-03 | 9744  |



分析: 11 月 25 日至 12 月 1 日使用用户数变化幅度小,范围在 7000 到 8000 之间,从 12 月 2 日有较大幅度增加,对比 11 月 25,26 (周末)有较大的提升,可能是周末的双 12 预热营销活动效果。

(6)人均页面访客数: 92.09

-- 6.人均页面访客数
SELECT CAST((SELECT COUNT(\*) FROM USER WHERE behavetype='pv')/COUNT(DISTINCT user\_id)AS DECIMAL(10,2))AS 'pv/uv'
FROM USER;

#### (6) 网站购买转化率(bv/uv)(支付转化率=支付访客数/总访客数)

-- 7.转化率=(产生购买行为的客户人数 / 所有到达店铺的访客人数) \* 100%。
SELECT tl.dates,tl.bv AS 购买用户数,t2.uv AS 访客数 ,CONCAT (ROUND (tl.bv/t2.uv\*100,2),'%') conversion FROM (SELECT dates,COUNT (DISTINCT user\_id) bv FROM USER WHERE behavetype='buy' GROUP BY dates)AS tl LEFT JOIN (SELECT dates,COUNT (DISTINCT user\_id) uv FROM USER GROUP BY dates)AS t2 ON tl.dates=t2.dates ORDER BY dates;

| dates      | 访客数   | 购买用户数 | conversion |
|------------|-------|-------|------------|
| 2017-11-25 | 7304  | 1385  | 18.96%     |
| 2017-11-26 | 7477  | 1389  | 18.58%     |
| 2017-11-27 | 7363  | 1477  | 20.06%     |
| 2017-11-28 | 7359  | 1472  | 20.00%     |
| 2017-11-29 | 7475  | 1537  | 20.56%     |
| 2017-11-30 | 7580  | 1557  | 20.54%     |
| 2017-12-01 | 7627  | 1488  | 19.51%     |
| 2017-12-02 | 10024 | 1812  | 18.08%     |
| 2017-12-03 | 10021 | 1850  | 18.46%     |



访客数在 11 月 25-12 月 1 日基本稳定,保持在 7000-8000 之间,可能由于 双 12 活动的原因,12 月 2 日开始访客数增加到 10000 左右。

11 月 25-12 月 1 日期间访客数基本稳定,保持在 1500 左右,12 月 2 日开始,购买用户数开始增加到了 1800 左右。

转化率在 11 月 30 日达到峰值,之后呈下降趋势,在 12 月 2 日的转化率最低,如何开始又有上升趋势。

- (二) 用户漏斗分析
- (1) 跳失率:5.76%

```
-- 1.计算跳失率

| SELECT CONCAT(ROUND((SELECT COUNT(DISTINCT user_id))
FROM USER
WHERE USEr_id NOT IN(SELECT user_id FROM USER WHERE behavetype='buy')
AND user_id NOT IN(SELECT user_id FROM USER WHERE behavetype='cart')
AND user_id NOT IN(SELECT user_id FROM USER WHERE behavetype='fav'))/(SELECT COUNT(DISTINCT user_id) FROM USER)*100,2),'*)A
```

#### (2) 用户漏斗分析

```
-- 转化漏斗
SELECT behavetype,COUNT(user_id)
FROM USER
GROUP BY behavetype
ORDER BY COUNT(user_id) DESC;
```

| 行为类型 | 点击量    | 转化率    |
|------|--------|--------|
| pv   | 940007 | 100%   |
| cart | 57889  | 6. 16% |
| buy  | 29353  | 3. 12% |
| fav  | 21326  | 2. 27% |

#### 漏斗图



一共有940007的浏览量,其中转化为加购的有57889,转化为购买的有29353条,转化为收藏的有21326条记录。以浏览量为基数,从浏览到加购的转化率为6.16%,从浏览到收藏的转化率为3.12%,从浏览到购买的转化率仅有2.27%。

#### 漏斗图



以加购量为基数,从加购到收藏的转化率为 50.71%,从浏览到收藏的转化率为 36.84%。

## (3) 独立访客转化漏斗

#### -- 独立访客转化 SELECT behavetype,COUNT(DISTINCT user\_id) FROM USER GROUP BY behavetype ORDER BY COUNT(DISTINCT user\_id) DESC;

#### 独立访客转化漏斗图



独立访客从浏览到购买的转化率能达到 40%, 独立访客从浏览到加购的转化率为 75.4%, 独立访客从浏览到收藏的转化率为 68.84%, 若要了解具体环节的转化率, 需要对整个流程接触到的版面进行细化的数据分析。

#### (三) 时间序列分析

每天不同时间段的点击量,点击人数,购买人数情况

```
-- 1.不同时间段的点击量
SELECT tl.hours,tl.浏览量,tl.加购量,tl.收藏量,tl.购买量,t2.用户数,t3.购买用户数
] FROM (SELECT hours, SUM (CASE WHEN behavetype='pv' THEN 1 ELSE 0 END) AS 浏览量,
SUM (CASE WHEN behavetype='cart' THEN 1 ELSE 0 END) AS 加购量,
SUM (CASE WHEN behavetype='fav' THEN 1 ELSE 0 END) AS 收藏量,
SUM (CASE WHEN behavetype='buy' THEN 1 ELSE 0 END) AS 购买量
FROM USER
- GROUP BY hours) AS tl
LEFT JOIN
I (SELECT hours, COUNT (DISTINCT user_id) AS 用户数 FROM USER
GROUP BY hours) AS t2
ON tl.hours=t2.hours
]LEFT JOIN(SELECT hours, COUNT(DISTINCT user_id) AS 购买用户数
FROM USER
WHERE behavetype='buy'
GROUP BY hours) AS t3
ON t1.hours=t3.hours
ORDER BY tl.hours;
```

| hours | 浏览量   | 加购量  | 收藏量  | 购买量  |
|-------|-------|------|------|------|
| 00    | 31671 | 1918 | 1010 | 598  |
| 01    | 14511 | 933  | 458  | 248  |
| 02    | 8306  | 530  | 272  | 152  |
| 03    | 5826  | 389  | 185  | 65   |
| 04    | 5146  | 270  | 170  | 91   |
| 05    | 6316  | 395  | 226  | 79   |
| 06    | 12709 | 887  | 537  | 176  |
| 07    | 23404 | 1551 | 721  | 408  |
| 08    | 31758 | 1953 | 1020 | 678  |
| 09    | 39107 | 2428 | 1305 | 1019 |
| 10    | 45716 | 2811 | 1470 | 1335 |
| 11    | 44877 | 2788 | 1437 | 1349 |
| 12    | 44406 | 2671 | 1401 | 1314 |
| 13    | 49040 | 2784 | 1570 | 1398 |
| 14    | 48280 | 2830 | 1407 | 1232 |
| 15    | 49740 | 2892 | 1448 | 1279 |
| 16    | 49117 | 2984 | 1542 | 1296 |
| 17    | 43275 | 2680 | 1491 | 1126 |
| 18    | 45048 | 2553 | 1355 | 951  |
| 19    | 57536 | 3372 | 1574 | 1237 |
| 20    | 68456 | 4056 | 1965 | 1426 |
| 21    | 78955 | 4857 | 2297 | 1427 |
| 22    | 78246 | 5120 | 2441 | 1426 |
| 23    | 58561 | 4237 | 2051 | 1016 |



从点击量,加购量,收藏量,购买量的时序图来看,四个特质指标的变化趋势相同。从早晨 5 点-10 点用户点击量呈较快增长阶段。到 10 点-16 点,用户点击量在 50000 左右波动。17-18 点,点击量略有下滑。19 点以后点击量进入较快增长阶段,且在 20-21 点达到顶峰,之后点击量开始下降,到凌晨 4 点下降到最低点。

从纵向水平来看,点击量>加购量>收藏量>购买量

网站可以利用这些时间点进行营销活动安排。另外总体来看购买转化率更贴 近于收藏率,可以适当利用来进行销售量预测。

(四)用户分析(数据有限,用户新增及激活不做分析)

(1) 用户的行为分析

## -- 1.各用户的行为

```
SELECT user_id, COUNT (behavetype),
SUM (CASE WHEN behavetype='pv' THEN 1 ELSE 0 END) AS 浏览率,
SUM (CASE WHEN behavetype='cart' THEN 1 ELSE 0 END) AS 加购量,
SUM (CASE WHEN behavetype='fav' THEN 1 ELSE 0 END) AS 收藏量,
SUM (CASE WHEN behavetype='buy' THEN 1 ELSE 0 END) AS 购买量
FROM USER
GROUP BY user_id
ORDER BY COUNT (behavetype) DESC
LIMIT 0,11000;
```

| V | user_id | count (behavetype) | 浏览率 | 加购量 | 收藏量 | 购买量 |
|---|---------|--------------------|-----|-----|-----|-----|
| ~ | 115477  | 781                | 755 | 26  | 0   | C   |
| ~ | 116139  | 724                | 724 | 0   | 0   | C   |
| ~ | 114912  | 689                | 616 | 64  | 6   | 3   |
| ~ | 115906  | 668                | 649 | 18  | 0   | 1   |
| ~ | 1010419 | 665                | 625 | 39  | 1   | C   |
| ~ | 1014799 | 607                | 583 | 7   | 17  | C   |
| ~ | 101249  | 585                | 566 | 10  | 1   | 8   |
| ~ | 121233  | 582                | 564 | 10  | 8   | C   |
| ~ | 119229  | 582                | 552 | 5   | 24  | 1   |
| ~ | 1006307 | 576                | 547 | 13  | 4   | 12  |
| V | 1015600 | 560                | 534 | 6   | 18  | 2   |

可以挖掘重点活跃对象进行分析,或者分析活跃度低的用户产生的原因,从而实现精准营销。

#### (2) 复购分析

```
-- 2.变现—复购分析
SELECT t1.购买次数,COUNT(t1.user_id)用户数
FROM(SELECT user_id,COUNT(*)AS 购买次数 FROM USER WHERE behavetype='buy'
GROUP BY user_id
ORDER BY COUNT(*) DESC)AS t1
GROUP BY t1.购买次数
ORDER BY t1.购买次数;
```



复购次数集中在1-5次,呈长尾分布,该阶段用户消费欲望不大。

(3) 复购率:产生两次或两次以上购买的用户占购买用户的比例:66.28%

```
-- 3.复购率: 产生两次或两次以上购买的用户占购买用户的比例:66.28%
```

|SELECT ((SELECT COUNT(DISTINCT user\_id) FROM USER "WHERE user\_id IN (SELECT user\_id FROM USER WHERE behavetype="buy" GROUP BY user\_id HAVING COUNT(user\_id)>=2))
-/(SELECT COUNT(DISTINCT user\_id)AS 用户数 FROM USER WHERE behavetype="buy"))AS 复购率;

### (五) 用户价值分析

借鉴 RFM 模型,暂时不考虑 M(客户最近一段时间内交易金额)维度,对 R(最近一次购买时间),F(购买频率)进行打分,完成用户分层。

```
-- (五)RMF分析
SELECT allrank.user_id, allrank.recent, allrank.buynum,
CONCAT (CASE WHEN allrank.r_r <= (6382)/4 THEN '4'
WHEN allrank.r_r > (6382)/4 AND allrank.r_r <= (6382)/2 THEN '3'
        WHEN allrank.r_r > (6382)/2 AND allrank.r_r <= (6382)/4*3 THEN '2'
        ELSE '1' END.
        CASE WHEN allrank.f r <= (856) /4 THEN '4'
        WHEN allrank.f r > (856)/4 AND allrank.f r <=(856)/2 THEN '3' WHEN allrank.f r > (856)/2 AND allrank.f r <=(856)/4*3 THEN '2'
        ELSE '1' END) AS user_value
FROM(SELECT rencent_value.user_id,rencent_value.recent,rank()over(ORDER_BY rencent_value.recent) r_r,
      frequency_value.buynum, rank() over(ORDER BY frequency_value.buynum DESC) f_r
FROM
(SELECT user id, DATEDIFF ('2017-12-04', MAX (dates)) AS recent
FROM USER
WHERE behavetype='buy'
GROUP BY user_id) AS rencent_value
LEFT JOIN(SELECT user_id, COUNT(*) AS buynum
FROM HISER
WHERE behavetype='buy'
GROUP BY user_id) AS frequency_value
ON rencent_value.user_id=frequency_value.user_id) allrank
ORDER BY user_value DESC;
```

| $\overline{\mathbf{Z}}$ | user_id | recent | buynum | user_value |
|-------------------------|---------|--------|--------|------------|
| ~                       | 107932  | 1      | 72     | 44         |
| 7                       | 122504  | 1      | 69     | 44         |
| 7                       | 128379  | 1      | 65     | 44         |
| <b>V</b>                | 1003983 | 1      | 43     | 44         |
| ~                       | 128113  | 1      | 32     | 44         |
| ~                       | 114948  | 1      | 31     | 44         |
| 7                       | 102953  | 1      | 29     | 44         |
| 7                       | 100101  | 1      | 28     | 44         |
| 7                       | 1014610 | 1      | 25     | 44         |
| ~                       | 1007071 | 1      | 24     | 44         |
| 7                       | 1006872 | 1      | 23     | 44         |

- 1)哪一类客户是最优质的客户?
- 2)哪一类客户是具有高流失风险的优质客户?
- 3) 哪一类客户是需要进行 Upsell 的客户?
- 4) 哪一类客户是公司的高成本客户(不赚钱客户)?

消费进度、消费频度、消费额度是测算消费者价值最重要也是最容易的方法, 这充分的表现了这三个指标对营销活动的指导意义。但不代表这三个指标牢不可 破,业务方除了消费额度、消费频度以外,在制定补贴策略的时候,还会考虑用 户的跨场景使用,越多的功能业务场景被使用,意味着用户忠诚度越高。

#### (六)商品销售分析

#### (1) 商品销售分布

| 销量 | 用户数   |
|----|-------|
| 1  | 16195 |
| 2  | 1656  |
| 3  | 324   |
| 4  | 106   |
| 5  | 28    |
| 6  | 14    |
| 7  | 15    |
| 8  | 3     |

| 9  | 1 |
|----|---|
| 10 | 1 |
| 11 | 2 |
| 12 | 1 |
| 17 | 1 |



大部分销售来源于销售次数为1的16195个商品,说明该时段销售主要源于长尾部分,而非销售数量较高的畅销品。

(2) 畅销品及其品类分析



查看销量 top20 的商品及品类分布: 销量为前 3 的商品为 3122135 共 17 次, 3237415, 销量为 12, 2964774, 销量为 11, 分属 1516409, 3231625, 1265358 类。

# 商品浏览量top20图



查看浏览 top20 的商品及品类分布:浏览为前 3 的商品为 812879,138964,3845720,分属 4756105,3607361,3607361 类。各品类商品浏览量最高的为 3607361 共浏览次数 849,其次为 4756105,浏览量为 832。1859277,浏览量为 324。

## 商品加购量top20图



查看加购 top20 的商品及品类分布:加购为前 3 的商品为 1535294,2331370,3031354,分属 3848953,3607361,2735466 类。

# 商品收藏量top20图 2922853:<mark>6次</mark> 448625:6次 3330337:11次 812879:6次 2887571:10次 2331370:7次 2783905:9次 1583704:7次 4091349:7次 600756:9次 640975:7次 1517532:9次 2453685:7次 2778083:8次 79:8次 2828948:8次 3159978:8次428:8次 2364679:8次

查看收藏 top20 的商品及品类分布: 收藏为前 3 的商品为 2818406, 3330337, 2308741, 分属 982926, 4756105, 4827153 类

#### (1) 商品购买转化率

```
-- (七) (3) 商品购买转化率
SELECT tl.category_id,tl.item_id,tl.销量,t2.浏览量,CONCAT(ROUND(tl.销量/t2.浏览量*100,2),'%') conversion FROM
](SELECT category_id,item_id,COUNT(*)AS 销量
FROM USER
WHERE behavetype='buy'
-GROUP BY item_id)AS tl
LEFT JOIN
](SELECT category_id,item_id,COUNT(*)AS 浏览量
FROM USER
WHERE behavetype='pv'
-GROUP BY item_id)AS t2
ON tl.item_id=t2.item_id
ORDER BY conversion DESC
LIMIT 200;
```



5. 总结

#### (1) 关于平台流量与转化率:

整体来看从浏览到有购买意愿有 2.27%的转化率,从有购买意愿到有购买行为有 36.84%的转化率,说明大多数用户以浏览页面为主而购买转化较少,低购买意愿转化率可能与刚完成的双 11 大促有关。从 9 天的趋势来看,前 7 天转化率处于稳步上升阶段,说明双 11 之后的消费情况在回升,进入12 月之后,浏览量有稍大幅度的提升,加购转化率有小幅提升,购买转化率大幅下降,可能双 12 活动有关。是否需要提高转化率,可以对比去年同时段转化率情况,使用营收目标判断转化率是否达到目标。

提高加购转化率的建议:

- 一优化搜索引擎,利用用户画像优化商品匹配;
- --优化商品界面加购与收藏按键布局,以便用户触达。
- 2、关于网站用户粘性以及用户消费习惯

提高用户留存建议:

——分析流失用户特征,进行用户流失预测,结合用户画像,通过各种活动进行用户唤醒。

对于用户复购情况,9天内网站有复购现象的用户数接近60%,但是总体上约30%的用户产生了80%的消费次数,复购次数多的用户偏少,可能与双11刚结束,双12未开始的特殊时段有关,建议拉长分析区间分析复购情况。

----提高复购率的建议: 开展营销活动,比如淘宝的达成金主的条件限制,鼓励用户复购。

对于用户消费习惯的分析,通过了解用户消费的集中时段集中实施各种营销活动,提高投入产出比。

#### 3、关于商品销售情况

分析发现商品售卖主要依靠长尾商品的累积效应,而非爆款商品的带动,这也是双 11 之后用户的补充采买的特征,同时发现此时用户购买的品类以及商品的浏览量很低,用户的个人喜好特征表现明显,同时浏览量高的商品购买转化率低。

——针对浏览量高而购买转化率低的商品,建议商家改善商品页面, 详情页以及评论区管理。