Split Neural Network

Vulnerability B

Eve can approximate the X values of Claire;

- Eve chooses X^{\wedge} values which approximately span the domain of X
- Eve recieves the activation signals produced by her **X** values
- Eve can statistically correlate the values of A that she received with the X^ values that she entered. This correlation could perhaps be established using a second learning model with A as its inputs and X^ as its label.
- When it's Claires turn to train, Eve will receive **A** values from Claire.
- Using the model trained in the step before, Eve can make predictions as to the **X** values of Claire.

Key Takeaway;

Data owners should not also be involved in processing the model as this can leak information.

If Eve is the Researcher, Vulnerability A applies.

- Just replace M_0 with B(A(X))

1.
$$\mathcal{A}$$
Alice
Alice
 \mathcal{A}_{1}
 \mathcal{A}_{2}
 \mathcal{A}_{2}
 \mathcal{A}_{3}
 \mathcal{A}_{3}
 \mathcal{A}_{4}
 \mathcal{A}_{4}
 \mathcal{A}_{4}
 \mathcal{A}_{5}
 \mathcal{A}_{4}
 \mathcal{A}_{5}
 \mathcal{A}_{5}
 \mathcal{A}_{5}
 \mathcal{A}_{4}
 \mathcal{A}_{5}
 \mathcal{A}_{5}

3.
$$\mathcal{A}$$
Claire
Alice
Eve
Claire
Claire
 \hat{y}
 \mathcal{A}_{1}
 \mathcal{A}_{1}
 \mathcal{A}_{2}
 \mathcal{A}_{2}
 \mathcal{A}_{3}
 \mathcal{A}_{3}
 \mathcal{A}_{4}
 \mathcal{A}_{4}
 \mathcal{A}_{4}
 \mathcal{A}_{5}
 \mathcal{A}_{4}
 \mathcal{A}_{5}
 \mathcal{A}_{4}
 \mathcal{A}_{5}
 $\mathcal{A}_$