- Deglacial Pulse of Neutralized Carbon from the Pacific Seafloor: Constraints from
- **2 the Radiocarbon Budget**
- 3 R. A. Green¹, M. P. Hain¹, and P. A. Rafter²
- ⁴ Earth and Planetary Science Department, University of Santa Cruz, Santa Cruz, USA
- ⁵ Department of Earth System Science, University of California, Irvine, CA, USA
- 7 Corresponding author: Ryan A. Green (rygreen@ucsc.edu)
- **Key Points:**

6

9

10

11

12

13

1415

- Observed deglacial changes in atmospheric CO₂ and ¹⁴C/C allow for up to 2397 Pg of neutralized geologic carbon (i.e., bicarbonate) release
- Inverse modeling yields two bicarbonate pulses that are insufficient to drive basin-scale ¹⁴C anomalies and have limited CO₂ effect
- The global carbon cycle is essentially "blind" to neutralized carbon release and only constrained by ¹⁴C budget

Abstract

16

28

42

- 17 In the intermediate depth Eastern Tropical Pacific Ocean, multiple deglacial radiocarbon (¹⁴C)
- records show anomalously low ¹⁴C/C values that appear to be best explained by the addition of
- 19 14C-free geologic carbon. We use inverse carbon cycle modeling and data assimilation of
- reconstructed atmospheric CO₂ and Δ^{14} C to develop an upper bound constraint on this speculated
- deglacial geologic carbon release. Our analysis suggests two primary opportunities where large
- bicarbonate pulses (up to 1.3 PgC yr⁻¹) could occur with little effect on atmospheric CO₂ and
- without upsetting ¹⁴C mass-balance constraints. Including the release of ¹⁴C-free permafrost
- carbon and regrowth of the terrestrial biosphere, we obtain a set of permissible scenarios for
- ocean geologic carbon release that ranges from 900-2400 PgC. Based on these results, we
- 26 conclude that geologic carbon release is a plausible interpretation for the spatio-temporal cluster
- of anomalous ¹⁴C data near the East Pacific Rise.

Plain language summary

- 29 Oceanic records indicate that the Eastern Pacific Ocean contained pockets of extremely old water
- after the last ice age. The cause of this phenomenon has been puzzling because the water is too
- old to have been caused by a slowdown of ocean circulation. It was proposed that the old water
- may have instead been caused by geologic carbon addition since the records are located near
- volcanically active spreading centers on the seafloor. However, the scale of possible geologic
- carbon addition is unclear. To help constrain this, we modeled different geologic carbon release
- scenarios and compared the results with observed atmospheric and ocean data. Our findings
- indicate that if the geologic carbon were neutralized with equal amounts of alkalinity, then large
- 37 quantities (up to 6% of the total carbon inventory) could be added to the ocean without causing
- significant changes to the atmosphere or surrounding ocean regions. Based on these findings, it is
- 39 possible that large-scale neutralized carbon release occurred since the last ice age and may
- 40 explain the exceptionally old water in the Eastern North Pacific. This neutralized carbon would
- 41 unlikely cause significant changes to the atmosphere or greater ocean regions.

1 Introduction

- Due to the tight coupling of the carbon cycle and climate (Marcott et al., 2014), we must
- 44 understand how the natural carbon cycle has changed in the past. An unexplained feature of the
- atural carbon cycle is the presence of anomalously low radiocarbon (14C/C) content–relative to
- the contemporaneous atmosphere and most parts of the global ocean—within marine foraminifera
- between 18,000 and 11,500 years before 1950 (18-11.5 thousand years before present or kyr BP,
- 48 Fig. 1). These deglacial records of ¹⁴C depletion (decay-corrected ¹⁴C:¹²C ratio, expressed as
- 49 Δ^{14} C; Stuiver & Polach, 1977) have been uncovered throughout the intermediate-depth
- 50 (<1000m) Pacific Ocean (Lindsay et al., 2016; Marchitto et al., 2007; Rafter et al., 2018, 2019;
- 51 Stott et al., 2009). Occurring roughly at the same time as the deglacial rise in atmospheric CO₂
- and near the weakly ventilated Pacific shadow zone (Gehrie et al., 2006; Holzer et al., 2021),
- these depletions in seawater Δ^{14} C were initially attributed to a release of dissolved inorganic
- carbon (DIC) that had been sequestered for thousands of years in the abyssal ocean, hinting at
- deglacial changes in ocean circulation (Bova et al., 2018; Broecker, 2009; Broecker & Barker,
- 56 2007; Marchitto et al., 2007). However, this ocean release interpretation has two main
- shortcomings (Hain et al., 2011): (a) the LGM deep ocean was not sufficiently ¹⁴C-depleted (Fig.
- 1) to be the source of the mid-depth anomalies, and (b) once the isotopic signature of

anomalously ¹⁴C-depleted carbon is transported to the mid-depth Pacific it would rapidly dissipate into the global carbon cycle via ocean circulation and air/sea gas exchange. This view is further supported by a new compilation showing no appreciable ¹⁴C-depletion at any depth for the basin-scale Pacific during the deglaciation (Fig. 1; Rafter et al., 2022). Additionally, deep-sea coral ¹⁴C records from the Galápagos with excellent age model controls (Fig. 1; Chen et al., 2020) and South Pacific ¹⁴C records bathed in modern Antarctic Intermediate Water (De Pol-Holz et al., 2010; Rose et al., 2010; Siani et al., 2013; Zhao & Keigwin, 2018) show no significant ¹⁴C-depletion. This lack of basin-wide mid-depth Δ^{14} C depletion is an important observational constraint we will consider below.

An alternative set of proposals suggest these anomalously low Δ^{14} C values reflect an addition of 14 C-free carbon from a geologic source (Rafter et al., 2018, 2019; Ronge et al., 2016; Skinner & Bard, 2022; Stott et al., 2009; Stott & Timmermann, 2011). A common objection to this hypothesis is the potential for ocean acidification, which would contradict the evidence supporting enhanced carbonate preservation during the last deglacial (Allen et al., 2015, 2020; Cartapanis et al., 2018; Marchitto et al., 2005; Yu et al., 2013). However, if the geologic carbon addition was neutralized by a commensurate influx of alkalinity (e.g., carbon added as bicarbonate ion instead of CO_2)—there would be muted effects on seawater pH, CaCO₃ burial, and atmospheric CO_2 (Rafter et al., 2019).

Figure 1. Deglacial intermediate-depth (< 1000m) $\Delta^{14}C$ records (red and yellow) compared to atmospheric $\Delta^{14}C$ and CO_2 (gray). Yellow records (foraminifera) show anomalously low $\Delta^{14}C$ values, while red records (foraminifera and coral) broadly track atmospheric $\Delta^{14}C$. The solid red line shows the mean mid-depth $\Delta^{14}C$, and the dashed red line shows the mean deep Pacific $\Delta^{14}C$ for all Pacific sites from Rafter et al. (2022). The red shading indicates the 95% confidence interval error envelope. Locations of individual $\Delta^{14}C$ records are shown in the map, with ocean bathymetry and the East Pacific Rise spreading center (black lines).

This neutralized ¹⁴C-free carbon–likely produced within marine sediments (Rafter et al., 2019; Skinner & Bard, 2022)–would

eventually be transported to the upper water column and atmosphere, diluting the atmospheric 14 C reservoir and lowering atmospheric Δ^{14} C. Although there was a rapid decline in atmospheric Δ^{14} C during the last deglaciation, also known as the 'mystery interval' (Broecker, 2009; Broecker & Barker, 2007), this Δ^{14} C decline can mostly be explained by Southern Ocean CO₂ release, Atlantic circulation changes, and the cosmogenic decline in 14 C production (Hain et al., 2014), leaving limited opportunities in the planetary 14 C budget for the addition of 14 C-free geologic carbon.

- Moreover, terrestrial carbon cycle changes, such as permafrost destabilization (release of ¹⁴C-
- depleted CO₂) and regrowth of the land biosphere (uptake of ¹⁴C-enriched CO₂), are thought to
- have occurred during the last deglaciation (Adams et al., 1990; Behling, 2002; Ciais et al., 2012;
- 105 Crichton et al., 2016; Köhler et al., 2014; Lindgren et al., 2018), and would further influence the
- opportunity for ¹⁴C-free geologic carbon addition. With multiple established mechanisms
- lowering deglacial atmospheric Δ^{14} C, is there room in the 14 C budget for geologic carbon
- release?
- In this study, we incorporate these terrestrial processes alongside submarine geologic carbon
- release into the deglacial model scenario from Hain et al. (2014) to simulate their combined
- effect on atmospheric CO₂ and the planetary ¹⁴C budget. We use a stepwise numerical model
- optimization method that assimilates observed atmospheric CO₂ and Δ^{14} C data into the model to
- find the optimal rate of geologic carbon and alkalinity release. This optimization yields an upper
- bound limit on the amount of geologic carbon that could have been added since the LGM and
- characterizes the chemical speciation (i.e., CO₂, HCO₃-, or CO₃²-) of that geologic carbon
- release. These results provide valuable insight into the sensitivity of the global carbon cycle after
- various open-system carbon perturbations, ultimately allowing us to show that geologic carbon
- addition remains a viable explanation for the deglacial Δ^{14} C anomalies.

119 **2 Materials and Methods**

- We use the CYCLOPS global carbon cycle model (Hain et al., 2010, 2011, 2014; Keir, 1988;
- model configuration described in supplementary material) to simulate four experiments,
- progressively adding optimized and imposed open-system carbon and alkalinity fluxes (Fig. 2):
- (1) we invert for the optimal rates of carbon and alkalinity release to the mid-depth North Pacific
- region of the model (experiment NP), (2) we add the possibility of land carbon uptake to the
- optimization (experiment NP+LC), (3) we include the release of ¹⁴C-free permafrost carbon
- (experiment NP+LC+PF), and (4) we adjust the initial LGM ¹⁴C inventory by +3.5%
- 127 (experiment NP+LC+PF+RC). All experiments include the identical background forcings of the
- control run, based on the deglacial carbon cycle scenario from Hain et al. (2014). More in-depth
- descriptions of the experiments can be found in the supplementary material (SM). The optimized
- fluxes are determined by a numerical algorithm that minimizes the deviation between simulated
- atmospheric CO₂ (CO₂^{model}) and Δ^{14} C (Δ^{14} C^{model}) compared to reconstructed atmospheric CO₂
- (CO₂^{obs}) from the most recent compilation of Antarctic ice core CO₂ data (Bereiter et al., 2015)
- and Δ^{14} C (Δ^{14} C^{obs}) from IntCal20 (Reimer et al., 2020). Details of the algorithm can be found in
- 134 the SM.

135

136

3 Results

3.1 Atmospheric constraints on geologic carbon addition

- All four simulations improve the overall CO₂ and Δ^{14} C model-data misfit compared to the
- control run (blue vs. black line, Fig. 2). This model-data misfit is progressively minimized as
- more open-system carbon and alkalinity fluxes are added to the model, with the NP+LC+PF+RC
- simulating the smallest model-data misfit. Each simulation has two main pulses of geologic
- carbon during the deglaciation and one smaller pulse during the Holocene. These geologic pulses
- occur when Δ^{14} C^{model} rises above Δ^{14} C^{obs}, which we call ¹⁴C opportunities. Majority of the
- geologic carbon is added as bicarbonate ion (61-84%, Table S1), with net ALK-to-DIC ratios

between 1.08 and 1.19 (Table S1) across all four simulations. We note there is a small carbonate ion pulse that occurs only during the Holocene of the NP simulation (Fig. 2i). The algorithm adds carbonate to counteract a CO₂ misfit of ~20 ppm during the Holocene (Fig. 2e) that emerged due to simulated alkalinity loss from ongoing carbonate compensation (raising atmospheric CO₂) in conjunction with the underlying CO₂ rise from Holocene Southern Ocean changes found in our control run (Hain et al., 2014). Only the NP simulation simulates this carbonate pulse because the other models include terrestrial regrowth, thus minimizing the Holocene CO₂ misfit with land carbon uptake instead (Fig. 2j-1).

Figure 2. Visual representation of each experiment and the simulation results. Cartoons in the top row show the progressive addition of optimized and imposed open-system fluxes (colored arrows) for each experimental simulation. The other rows show atmospheric $\Delta^{14}C$ (a-d), atmospheric CO_2 (e-h), and the rate of carbon release or uptake (i-l). In panels i-l, the colored numbers show the amount of CO_2 (red), HCO_3^- (yellow), and CO_3^{2-} (blue) for each pulse of geologic carbon release. Similarly, the amount of terrestrial carbon uptake is shown in green,

- and the amount of terrestrial carbon release is shown in red. All colored numbers are in units of
- 160 *PgC*.

173

- For our first three experiments (NP, NP+LC, NP+LC+PF)—which include no change to the ¹⁴C
- inventory–geologic carbon was added at rates as large as 0.93 PgC yr⁻¹ (Fig 2i-k), totaling
- between 846-929 PgC over the 20-kyr experiment (Table S1). Of those that included terrestrial
- regrowth (NP+LC, NP+LC+PF), between 279-300 PgC (Table S1) of simulated carbon uptake
- occurs, mainly during the Holocene. When we include terrestrial carbon release from permafrost
- thaw (NP+LC+PF), 105 PgC (Fig 2k, Table S1) is released around 16-kyr BP and during the first
- pulse of carbon addition. Our fourth experiment, NP+LC+PF+RC, includes an adjusted ¹⁴C
- inventory at the LGM initial state alongside all the above open-system fluxes. The higher initial
- model Δ^{14} C increases the opportunity for the subsequent addition of 14 C-free carbon, leading to
- higher rates of carbon addition (up to 1.3 PgC yr⁻¹, Fig. 21) and a greater amount of total carbon
- added (2396 PgC, Table S1). Consequently, land carbon uptake increases to 550 PgC (Table S1).
- NP+LC+PF+RC simulates the release of 97 PgC from permafrost thaw around 16-kyr BP.

3.2 Additional constraints on geologic carbon addition

- We also consider local effects–regional Δ^{14} C, CaCO₃ burial, and regional δ^{13} C–to further
- 175 constrain the geologic carbon release hypothesis. For NP+LC+PF+RC (the largest geologic
- carbon addition scenario), only minor Δ^{14} C anomalies are simulated in the intermediate depth
- North Pacific box where the carbon is released (solid turquoise line, Fig. 3a). The Δ^{14} C deviation
- from the control run (dotted turquoise line, Fig. 3a) is shown with turquoise shading (Fig. 3a).
- Although NP+LC+PF+RC is our most extreme geologic carbon addition simulation, the
- simulated intermediate depth North Pacific Δ^{14} C (solid turquoise line) is in broad agreement with
- the mean Δ^{14} C from the mid-depth (neutral density of 27.5–28 kg m⁻³) Pacific, calculated from a
- new proxy ¹⁴C/C compilation (red line-Fig. 3a, Rafter et al., 2022). Furthermore, the lack of
- severe Δ^{14} C depletion found in the NP+LC+PF+RC simulation is supported by a deep-sea coral
- record considered representative of the ¹⁴C content of intermediate waters near the Galápagos
- islands (Chen et al., 2020).
- Figure 3b shows the Atlantic (blue) and Indo-Pacific (yellow) deep ocean [CO₃²⁻] from the
- NP+LC+PF+RC and control simulation. An increase in deep-ocean [CO₃²⁻] would promote the
- preservation and burial of CaCO₃ in sediments. Both simulations show two transient increases in
- 189 [CO₃²-], during and after HS1 and YD in the Indo-Pacific and in the Atlantic (gray shaded areas,
- Fig. 3b), as well as simulating an overall increase in Atlantic [CO₃²⁻] from the LGM to the
- Holocene. After 1509 PgC is added during the first pulse (Skinner & Bard, 2022)e of geologic
- carbon addition (Fig. 21), NP+LC+PF+RC simulates a ~10 µmol kg⁻¹ in Atlantic [CO₃²⁻] and a
- ~5 μmol kg⁻¹ increase in Indo-Pacific CO₃²⁻ for the remainder of the simulation compared to the
- 194 control run (shaded blue and yellow). The simulated increase in Atlantic [CO₃²-] since the LGM

and the transient increase in the Indo-Pacific $[CO_3^{2-}]$ between 11 and 15-kyr BP is supported by the observations shown in Figure 3b (Yu et al., 2008, 2010).

Figure 3. Comparing the NP+LC+PF+RC simulation to observations. Panel a shows NP+LC+PF+RC driving only mild $\Delta^{14}C$ depletion from the control run (shaded turquoise area), in broad agreement with other datasets that show no noticeable $\Delta^{14}C$ depletion, i.e., $\Delta^{14}C$ from deep-sea coral near the Galápagos (red plus sign), the mean $\Delta^{14}C$ from mid-depth and deep Pacific (solid and dashed red line), and atmospheric $\Delta^{14}C$ (solid gray and green, dotted yellow and blue). We note the atmospheric $\Delta^{14}C$ disagreement near the LGM across the last three iterations of IntCal, before converging as tree-ring data becomes available (solid green line). Panel b shows NP+LC+PF+RC driving an increase $[CO_3^{2-}]$, indicative of a CaCO3 preservation event, in the Atlantic (blue) and Indo-Pacific deep ocean basins (yellow) compared to the control run (shaded blue and yellow). These simulated deep ocean $[CO_3^{2-}]$ are in broad agreement with observations from the North Atlantic (blue circle), Indian (yellow triangle), and Equatorial Pacific (yellow square and X). The gray bars show Heinrich Stadial 1 and Younger Dryas.

We have focused on Δ^{14} C rather than δ^{13} C for two reasons. First, Δ^{14} C is corrected for mass and temperature-dependent isotopic fractionation (Stuiver & Polach, 1977). Thus, isotopic gradients in the Δ^{14} C record can be attributed directly to changes in production, transport, and/or decay of 14 C. Second, we know the Δ^{14} C of geologic carbon (14 C-free) but not the δ^{13} C value, which varies depending on the geologic source. To constrain which geologic sources are plausible, we run an additional set of experiments by calculating the bulk ocean δ^{13} C change for two possible neutralized geologic sources (described in SM): bicarbonate from anaerobic oxidation of thermogenic methane (AOM, see Rafter et al. 2019; δ^{13} C = -25‰), and geologic CO₂ neutralized by carbonate dissolution (Skinner & Bard, 2022; δ^{13} C = -2.5‰). While δ^{13} C values could vary within the range of -25 to -2.5‰, the test cases utilized in this study are treated as endmember scenarios. When 2400 PgC (as suggested by our NP+LC+PF+RC experiment) is added, we

- observe bulk δ^{13} C ocean changes of -1.5% for AOM and -0.2% for carbonate dissolution. Given
- that observed oceanic δ^{13} C values have not fluctuated more than ~1% over the last 800-kyrs
- (Hodell et al., 2003), our simulations suggest geologic carbon from a methane source (δ^{13} C <= -
- 25%) is unlikely for our extreme carbon addition scenario of 2400 PgC.

4 Discussion

226

235

- Our results indicate that the atmospheric CO₂ and CaCO₃ burial constraints are effectively blind
- 228 to carbon release neutralized by alkalinity (i.e., carbon added as bicarbonate, HCO₃-). This
- 229 allows for large-scale geologic carbon addition scenarios constrained by only the planetary
- radiocarbon budget. Additionally, these large-scale carbon addition scenarios did not drive
- significant Δ^{14} C depletion across the North Pacific, in agreement with observations
- representative of the North Pacific and Pacific basins. This supports the idea that these enigmatic
- Δ^{14} C anomalies are likely regional or localized phenomena that may still be explained by
- 234 geologic carbon addition.

4.1 Large amounts of bicarbonate allowable

- We optimized our carbon cycle modeling simulations, which include different open-system
- 237 fluxes and changes to the ¹⁴C inventory, with the addition of geologic carbon. The simulations
- show that up to 2397 Pg of geologic carbon, mainly as bicarbonate ion, can be consistent with
- the observed deglacial changes in atmospheric CO₂ and Δ^{14} C. Due to the alkalinity
- 240 accompanying DIC during bicarbonate addition, geologic carbon in this form can be added at
- rates as large as 1.3 PgC yr⁻¹ (Fig. 2l) with limited impacts on atmospheric CO₂ and deep-sea
- 242 $[CO_3^{2-}].$
- 243 Prior work has estimated that deglacial geologic CO₂ emissions from mantle decompression
- 244 could have reached up to 0.2 PgC yr⁻¹ (Cartapanis et al., 2018; Roth & Joos, 2012), much smaller
- than our maximum yearly rates. However, these lower rates were derived assuming the geologic
- carbon came only as CO₂ rather than as bicarbonate ion. When carbon is added without alkalinity
- 247 (i.e., CO₂), atmospheric CO₂ and CaCO₃ burial constraints are highly sensitive to any carbon
- added to the system. However, when adding neutralized carbon (bicarbonate), atmospheric CO₂
- and CaCO₃ burial constraints become effectively blind to the carbon release, no longer
- constraining the carbon release rate or total. During bicarbonate addition, the constraining factor
- 251 shifts to the planetary 14 C mass balance and its reflection in the atmospheric Δ^{14} C record (via
- 252 IntCal20, Reimer et al., 2020), which can indirectly record the dilution of ¹⁴C-enriched
- environmental carbon by 14 C-free geologic carbon. This Δ^{14} Cobs constraint on bicarbonate release
- leads to an upper bound of 800-1000 PgC in all our open-system simulations (NP, NP+LC,
- NP+LC+PF)—a 2-2.5% increase of total ocean carbon inventory. Furthermore, if we take into
- consideration the uncertainty in the planetary ¹⁴C mass balance (Dinauer et al., 2020; Roth &
- Joos, 2013) by increasing the initial LGM ¹⁴C inventory by 3.5%, the opportunity for subsequent
- 258 geologic carbon release increases to ~2500 PgC (6.5% increase of total ocean carbon inventory).
- In other words, a higher initial LGM ¹⁴C/C can substantially increase the opportunity for ¹⁴C-free
- 260 geologic carbon release since the LGM.
- 261 Considering the idealized nature of our experiments and because of biases inherited from our
- 262 control run (Hain et al., 2014), our optimization results should not be taken as estimates of

geologic carbon release or of other simulated open-system carbon fluxes (e.g., LC, PF). Instead, 263 we argue that geologic carbon release greater than 800 -1000 PgC is rendered unlikely, and 264 release of greater than 2400 PgC is implausible in the face of the Δ^{14} Cobs. Further, if indeed there 265 was substantial geologic carbon release since the LGM, it must have been in the neutralized form 266 of bicarbonate ion with a net ALK-to-DIC ratio near 1, as proposed by Rafter et al. (2019), to 267 avoid violating constraints from atmospheric CO₂ and CaCO₃ burial. Therefore, we argue that 268 geologic carbon release played only a minor role in raising CO₂ at the end of the last ice age, 269 even if the total amount of carbon release was substantial. This contrasts with prior deglacial 270 geologic carbon addition research, which attributes glacial/interglacial CO₂ variability to liquid 271 CO₂ release (Stott et al., 2019; Stott & Timmermann, 2011). 272

4.2 Geologic carbon as an explanation for Δ^{14} C anomalies?

273

274275

276

277

278

279

280

281

282 283

284

285

286

287

288

289

290 291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

When first discovered, the Δ^{14} C anomalies in the ETNP were taken to be the signature of carbon release from the deep ocean to the atmosphere (Marchitto et al., 2007). This earlier view of the Δ^{14} C anomalies buttresses the longstanding notion that stagnation of deep ocean circulation during the LGM created an isolated ¹⁴C-deplete reservoir for the sequestration of atmospheric CO₂ (Broecker & Barker, 2007; Skinner et al., 2010)—and this view remains prevalent (e.g., Bova et al., 2018). However, deep ocean carbon storage and its effect on atmospheric CO₂ is more closely tied to the degree of nutrient consumption in the polar ocean regions that form new deep water (Hain et al., 2010, 2014; Ito & Follows, 2005; Marinov et al., 2008a, 2008b; Sigman et al., 2010, 2021; Sigman & Haug, 2003) rather than being a simple function of the rate of deep ocean overturning. Further, a new compilation of global ocean Δ^{14} C records reveals that the LGM ¹⁴C age of the global deep ocean was about ~1000 years greater than today (Rafter et al., 2022), sufficient to explain a large portion of the observed Δ^{14} Cobs decline during the deglacial period (Broecker & Barker, 2007; Hain et al., 2014), but not nearly ¹⁴C-deplete enough to produce the ETNP Δ^{14} C anomalies (Fig. 3a). Rather than becoming a plank in our evolving understanding of coupled glacial/interglacial changes in ocean circulation and the global carbon cycle, the existence of these Δ^{14} C anomalies has become its own vexing problem, defying conventional explanations based on ocean circulation.

There are numerous reasons why a given sample would yield an anomalously low reconstructed 14 C/C, but the spatial-temporal clustering of 14 C anomalies in the upper 1 km of the ETNP water column is remarkable (e.g., Bova et al., 2018; Lindsay et al., 2015; Marchitto et al., 2007; Rafter et al., 2018; Stott et al., 2019), especially when contrasted with nearby records that broadly track atmospheric 14 C change without discernible 14 C anomalies (e.g., Bova et al., 2018; Chen et al., 2020; De Pol-Holz et al., 2010; Rose et al., 2010; Siani et al., 2013; Zhao & Keigwin, 2018). Previous modeling of the problem suggests that any 14 C anomaly in the upper ocean would rapidly dissipate by ocean circulation and air/sea gas exchange (Hain et al., 2011) such that upper ocean Δ^{14} C is expected to track atmospheric Δ^{14} C change since the LGM (Hain et al., 2014), as is observed in independently dated coral 14 C records from the Atlantic and Pacific (e.g., Chen et al., 2020) and other records outside the anomalous ETNP cluster. Our new results advance the argument by demonstrating that even the release of >2000 PgC is insufficient to generate a significant 14 C anomaly on the basin scale resolved in the model (Fig. 3a). That is, the absence of anomalies in most upper ocean 14 C reconstructions are normal and expected even in the case of substantial simulated carbon release. The caveat to the argument is that a small Δ^{14} C

reduction simulated at the basin scale would be consistent with a severe ¹⁴C anomaly concentrated in a small sub-region, such as observed in the ETNP.

If not continuously sourced from a persistently ¹⁴C-depleted upstream water mass signature (e.g., Hain et al., 2011), the ¹⁴C anomalies of the ETNP may instead record carbon release associated with processes linked to spreading centers separating the Cocos, Nazca, and Pacific plates and the very high regional geothermal heat flux (>0.1 W m⁻² throughout the region; Pollack et al., 1993). While we cannot usefully comment on whether these geologic systems are dynamic enough to yield defined pulses of carbon release, our results highlight that only a neutralized form of carbon release would be consistent with the atmospheric CO₂ constraint and observations of good (sometimes improved) seafloor carbonate preservation (Fig. 3b; Yu et al., 2008, 2010, 2013) during the main purported geologic carbon pulses. Indeed, the temporal coincidence of the ¹⁴C anomalies with stadial/interstadial climate change, deglacial ocean heat uptake (Poggemann et al., 2018), and circulation change (e.g., McManus et al., 2004; Rafter et al., 2022) may point to a climatic or environmental trigger of carbon release, rather than a being a purely volcanogenic phenomenon.

However, why would severe 14 C anomalies persist for millennia in the ETNP upper ocean water column if ocean circulation and air/sea gas exchange act to rapidly dissipate the anomalous carbon globally (Hain et al., 2011)? We propose two alternative resolutions that we cannot distinguish based on our current model and existing data: Either the anomalies are localized and reflect geologic carbon diffusion out of the underlying sediment stack rather than bottom water Δ^{14} C, or the anomalies are regional and reflect the accumulation of geologic carbon in the ETNP shadow zone of ocean circulation with a sharp and persistent chemical gradient to the open ocean mid-depth Pacific.

If the anomalies are localized, we might expect each anomalous record to differ in magnitude and timing. Finding individual mid-depth sites in the ETNP where 14 C anomalies are missing (e.g., Bova et al., 2018; Chen et al., 2020) alongside records with 14 C anomalies that are only broadly similar, would tend to support the localized explanation. Conversely, if geologic carbon were added to a dynamically isolated region, such as the upper ocean ETNP (Margolskee et al., 2019), then seawater Δ^{14} C might diverge substantially from the Δ^{14} C of the open Pacific and atmosphere. However, that regional signal would still need to be shared by all radiocarbon records in the hydrodynamic region (cf. Chen et al., 2020). If the anomalies did reflect the restricted regional ocean circulation of the ETNP, it would seem plausible that the carbon release mechanism also operated in regions outside the ETNP but without producing characteristic seawater Δ^{14} C anomalies.

5 Conclusion

- We document a set of carbon cycle model scenarios since the LGM that include substantial (800-
- 2400 PgC) release of geologic carbon that appear broadly consistent with reconstructed
- atmospheric CO₂ rise, Δ^{14} C decline, and deep-sea CaCO₃ burial patterns. In all simulations,
- geologic carbon release is primarily bicarbonate ion, with minimal effect on simulated ocean pH
- and atmospheric CO₂. That is, the global carbon cycle is effectively blind to geologic carbon
- release if neutralized by an equivalent release of alkalinity (ALK-to-DIC ratio near 1). Hence,
- reconstructed CO₂ change does not require geologic carbon release nor constrain how much

- bicarbonate may have been released into the environment. One key outcome of our study is that
- large-scale geologic bicarbonate release since the LGM is possible.
- Geologic carbon release dilutes the planetary inventory of cosmogenic radiocarbon (¹⁴C), with
- 2400 Pg of 14 C-free carbon release reducing the average Δ^{14} C of environmental carbon by about
- ~50%. Therefore, the planetary ¹⁴C budget can be used to rule out the most extreme scenarios
- for geologic carbon release, offering an upper-bound constraint for carbon transfers from
- geologic and terrestrial carbon reservoirs to the ocean/atmosphere carbon cycle. That is, our
- model scenarios are designed to explore the limit of what appears to be possible in the context of
- 360 global constraints from CO₂ and ¹⁴C reconstructions. We find that bicarbonate release was likely
- limited to less than 1000 PgC. When considering uncertainty in the history of cosmogenic ¹⁴C
- production, the limit for bicarbonate release may be as high as 2400 PgC.
- The spatial cluster of severe negative deglacial Δ^{14} C anomalies in the upper water column of the
- ETNP may be evidence for geologic carbon release associated with the seafloor spreading center
- defining the East Pacific Rise (Fig. 1; (Lindsay et al., 2015; Marchitto et al., 2007; Rafter et al.,
- 2018, 2019; Stott et al., 2009). Confirming or rejecting this hypothesis would have several
- implications: Without large-scale carbon release, we lack an adequate explanation for the ETNP
- Δ^{14} C anomalies, suggesting an open gap in our understanding of the 14 C-proxy system used to
- reconstruct ocean circulation changes in response to deglacial climate change. Alternatively,
- with large pulses of geologic carbon release in the ETNP, we lack an adequate explanation for
- 371 how bicarbonate is derived from geologic carbon sources during the deglaciation, suggesting a
- gap in our understanding of glacial/interglacial changes in seafloor spreading and its role in the
- global carbon cycle. Further, if 1000 PgC or more of bicarbonate were released without causing
- ocean acidification or substantial CO₂ effects, the ETNP radiocarbon anomalies may hold lessons
- for mitigating and neutralizing anthropogenic carbon emissions via artificial Ocean Alkalinity
- 376 Enhancement deployments.

Acknowledgments

377

380

385

- 378 This research was funded by the National Science Foundation (Collaborative Research Grants
- 379 OCE-2032340 to MPH and OCE-2032340 to PAR).

Open Research

- Detailed model description and configuration are available in the Supporting Information. The
- plotting code and simulation results are found on GitHub
- 383 (https://github.com/RyanAGreen/Deglacial-Neutralized-Carbon-14C) and Zenodo
- 384 (https://zenodo.org/badge/latestdoi/627637425).

References:

- Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M., & Woodward, F. I. (1990). Increases in terrestrial
- carbon storage from the Last Glacial Maximum to the present. *Nature*, 348(6303), 711–714.
- 388 https://doi.org/10.1038/348711a0

389	Allen, K. A., Sikes, E. L., Anderson, R. F., & Rosenthal, Y. (2020). Rapid Loss of CO2 From the South Pacific
390	Ocean During the Last Glacial Termination. Paleoceanography and Paleoclimatology, 35(2),
391	e2019PA003766. https://doi.org/10.1029/2019PA003766
392	Allen, K. A., Sikes, E. L., Hönisch, B., Elmore, A. C., Guilderson, T. P., Rosenthal, Y., & Anderson, R. F. (2015).
393	Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric
394	CO2 during the Last Glacial Termination. Quaternary Science Reviews, 122, 180–191.
395	https://doi.org/10.1016/j.quascirev.2015.05.007
396	Behling, H. (2002). Carbon storage increases by major forest ecosystems in tropical South America since the Last
397	Glacial Maximum and the early Holocene. Global and Planetary Change, 33(1), 107-116.
398	https://doi.org/10.1016/S0921-8181(02)00065-6
399	Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., & Chappellaz,
400	J. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical
401	Research Letters, 42(2), 542-549. https://doi.org/10.1002/2014GL061957
402	Bova, S. C., Herbert, T. D., & Altabet, M. A. (2018). Ventilation of Northern and Southern Sources of Aged Carbon
403	in the Eastern Equatorial Pacific During the Younger Dryas Rise in Atmospheric CO2. Paleoceanography
404	and Paleoclimatology, 33(11), 1151–1168. https://doi.org/10.1029/2018PA003386
405	Broecker, W. (2009). The Mysterious ¹⁴ C Decline. <i>Radiocarbon</i> , 51(1), 109–119.
406	https://doi.org/10.1017/S0033822200033737
407	Broecker, W., & Barker, S. (2007). A 190‰ drop in atmosphere's Δ14C during the "Mystery Interval" (17.5 to 14.5
408	kyr). Earth and Planetary Science Letters, 256(1–2), 90–99. https://doi.org/10.1016/j.epsl.2007.01.015
409	Cartapanis, O., Galbraith, E. D., Bianchi, D., & Jaccard, S. L. (2018). Carbon burial in deep-sea sediment and
410	implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Climate of the Past,
411	14(11), 1819–1850. https://doi.org/10.5194/cp-14-1819-2018
412	Chen, T., Robinson, L. F., Burke, A., Claxton, L., Hain, M. P., Li, T., Rae, J. W. B., Stewart, J., Knowles, T. D. J.,
413	Fornari, D. J., & Harpp, K. S. (2020). Persistently well-ventilated intermediate-depth ocean through the last
414	deglaciation. Nature Geoscience, 13(11), Article 11. https://doi.org/10.1038/s41561-020-0638-6

415	Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G., Lourantou, A., Harrison, S. P., Prentice, I.
416	C., Kelley, D. I., Koven, C., & Piao, S. L. (2012). Large inert carbon pool in the terrestrial biosphere during
417	the Last Glacial Maximum. Nature Geoscience, 5(1), Article 1. https://doi.org/10.1038/ngeo1324
418	Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J., & Krinner, G. (2016). Permafrost carbon as a missing
419	link to explain CO2 changes during the last deglaciation. Nature Geoscience, 9(9), 683-686.
420	https://doi.org/10.1038/ngeo2793
421	De Pol-Holz, R., Keigwin, L., Southon, J., Hebbeln, D., & Mohtadi, M. (2010). No signature of abyssal carbon in
422	intermediate waters off Chile during deglaciation. Nature Geoscience, 3(3), Article 3.
423	https://doi.org/10.1038/ngeo745
424	Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L., & Ganachaud, A. (2001). Denitrification and N2 fixation in
425	the Pacific Ocean. Global Biogeochemical Cycles, 15(2), 483–506. https://doi.org/10.1029/2000GB001291
426	Dinauer, A., Adolphi, F., & Joos, F. (2020). Mysteriously high $\Delta^{14}C$ of the glacial atmosphere: Influence of ^{14}C
427	production and carbon cycle changes. Climate of the Past, 16(4), 1159–1185. https://doi.org/10.5194/cp-
428	16-1159-2020
429	Fine, R. A., Maillet, K. A., Sullivan, K. F., & Willey, D. (2001). Circulation and ventilation flux of the Pacific
430	Ocean. Journal of Geophysical Research: Oceans, 106(C10), 22159-22178.
431	https://doi.org/10.1029/1999JC000184
432	Gehrie, E., Archer, D., Emerson, S., Stump, C., & Henning, C. (2006). Subsurface ocean argon disequilibrium
433	reveals the equatorial Pacific shadow zone. Geophysical Research Letters, 33(18).
434	https://doi.org/10.1029/2006GL026935
435	Gruber, N., & Sarmiento, J. L. (1997). Global patterns of marine nitrogen fixation and denitrification. Global
436	Biogeochemical Cycles, 11(2), 235–266. https://doi.org/10.1029/97GB00077
437	Hain, M. P., Sigman, D. M., & Haug, G. H. (2010). Carbon dioxide effects of Antarctic stratification, North Atlantic
438	Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: Diagnosis and
439	synthesis in a geochemical box model. Global Biogeochemical Cycles, 24(4), n/a-n/a.
440	https://doi.org/10.1029/2010GB003790

441	Hain, M. P., Sigman, D. M., & Haug, G. H. (2011). Shortcomings of the isolated abyssal reservoir model for
442	deglacial radiocarbon changes in the mid-depth Indo-Pacific Ocean. Geophysical Research Letters, 38(4).
443	https://doi.org/10.1029/2010GL046158
444	Hain, M. P., Sigman, D. M., & Haug, G. H. (2014). Distinct roles of the Southern Ocean and North Atlantic in the
445	deglacial atmospheric radiocarbon decline. Earth and Planetary Science Letters, 394, 198–208.
446	https://doi.org/10.1016/j.epsl.2014.03.020
447	Hodell, D. A., Venz, K. A., Charles, C. D., & Ninnemann, U. S. (2003). Pleistocene vertical carbon isotope and
448	carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochemistry, Geophysics,
449	Geosystems, 4(1), 1–19. https://doi.org/10.1029/2002GC000367
450	Holzer, M., DeVries, T., & de Lavergne, C. (2021). Diffusion controls the ventilation of a Pacific Shadow Zone
451	above abyssal overturning. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-
452	24648-x
453	Huybers, P., & Langmuir, C. (2009). Feedback between deglaciation, volcanism, and atmospheric CO2. Earth and
454	Planetary Science Letters, 286(3), 479–491. https://doi.org/10.1016/j.epsl.2009.07.014
455	Ito, T., & Follows, M. J. (2005). Preformed phosphate, soft tissue pump and atmospheric CO2. <i>Journal of Marine</i>
456	Research, 63(4), 813–839. https://doi.org/10.1357/0022240054663231
457	Keir, R. S. (1988). On the Late Pleistocene ocean geochemistry and circulation. <i>Paleoceanography</i> , 3(4), 413–445.
458	https://doi.org/10.1029/PA003i004p00413
459	Köhler, P., Knorr, G., & Bard, E. (2014). Permafrost thawing as a possible source of abrupt carbon release at the
460	onset of the Bølling/Allerød. <i>Nature Communications</i> , 5(1), Article 1. https://doi.org/10.1038/ncomms6520
461	Lindgren, A., Hugelius, G., & Kuhry, P. (2018). Extensive loss of past permafrost carbon but a net accumulation
462	into present-day soils. Nature, 560(7717), Article 7717. https://doi.org/10.1038/s41586-018-0371-0
463	Lindsay, C. M., Lehman, S. J., Marchitto, T. M., Carriquiry, J. D., & Ortiz, J. D. (2016). New constraints on
464	deglacial marine radiocarbon anomalies from a depth transect near Baja California. Paleoceanography,
465	31(8), 1103–1116. https://doi.org/10.1002/2015PA002878
466	Lindsay, C. M., Lehman, S. J., Marchitto, T. M., & Ortiz, J. D. (2015). The surface expression of radiocarbon
467	anomalies near Baja California during deglaciation. Earth and Planetary Science Letters, 422, 67–74.
468	https://doi.org/10.1016/j.epsl.2015.04.012

409	Marchitto, 1. M., Lenman, S. J., Ortiz, J. D., Fluckiger, J., & van Geen, A. (2007). Marine Radiocarbon Evidence
470	for the Mechanism of Deglacial Atmospheric CO2 Rise. Science, 316(5830), 1456–1459.
471	https://doi.org/10.1126/science.1138679
472	Marchitto, T. M., Lynch-Stieglitz, J., & Hemming, S. R. (2005). Deep Pacific CaCO3 compensation and glacial—
473	interglacial atmospheric CO2. Earth and Planetary Science Letters, 231(3), 317-336.
474	https://doi.org/10.1016/j.epsl.2004.12.024
475	Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., Fudge, T. J., Severinghaus, J. P.,
476	Ahn, J., Kalk, M. L., McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W. C., & Brook, E. J. (2014).
477	Centennial-scale changes in the global carbon cycle during the last deglaciation. <i>Nature</i> , 514(7524), Article
478	7524. https://doi.org/10.1038/nature13799
479	Margolskee, A., Frenzel, H., Emerson, S., & Deutsch, C. (2019). Ventilation Pathways for the North Pacific Oxygen
480	Deficient Zone. Global Biogeochemical Cycles, 33(7), 875–890. https://doi.org/10.1029/2018GB006149
481	Marinov, I., Follows, M., Gnanadesikan, A., Sarmiento, J. L., & Slater, R. D. (2008a). How does ocean biology
482	affect atmospheric pCO2? Theory and models. Journal of Geophysical Research: Oceans, 113(C7).
483	https://doi.org/10.1029/2007JC004598
484	Marinov, I., Gnanadesikan, A., Sarmiento, J. L., Toggweiler, J. R., Follows, M., & Mignone, B. K. (2008b). Impact
485	of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Global
486	Biogeochemical Cycles, 22(3). https://doi.org/10.1029/2007GB002958
487	McManus, J. F., Francois, R., Gherardi, JM., Keigwin, L. D., & Brown-Leger, S. (2004). Collapse and rapid
488	resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985),
489	Article 6985. https://doi.org/10.1038/nature02494
490	Poggemann, DW., Nürnberg, D., Hathorne, E. C., Frank, M., Rath, W., Reißig, S., & Bahr, A. (2018). Deglacial
491	Heat Uptake by the Southern Ocean and Rapid Northward Redistribution Via Antarctic Intermediate
492	Water. Paleoceanography and Paleoclimatology, 33(11), 1292–1305.
493	https://doi.org/10.1029/2017PA003284
494	Pollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the Earth's interior: Analysis of the global data
495	set. Reviews of Geophysics, 31(3), 267–280. https://doi.org/10.1029/93RG01249

196	Rafter, P. A., Carriquiry, J. D., Herguera, J., Hain, M. P., Solomon, E. A., & Southon, J. R. (2019). Anomalous >
197	2000-Year-Old Surface Ocean Radiocarbon Age as Evidence for Deglacial Geologic Carbon Release.
198	Geophysical Research Letters, 46(23), 13950–13960. https://doi.org/10.1029/2019GL085102
199	Rafter, P. A., Gray, W. R., Hines, S. K. V., Burke, A., Costa, K. M., Gottschalk, J., Hain, M. P., Rae, J. W. B.,
500	Southon, J. R., Walczak, M. H., Yu, J., Adkins, J. F., & DeVries, T. (2022). Global reorganization of deep
501	sea circulation and carbon storage after the last ice age. Science Advances, 8(46), eabq5434.
502	https://doi.org/10.1126/sciadv.abq5434
503	Rafter, P. A., Herguera, JC., & Southon, J. R. (2018). Extreme lowering of deglacial seawater radiocarbon
504	recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core. Climate of the
505	Past, 14(12), 1977–1989. https://doi.org/10.5194/cp-14-1977-2018
506	Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H.,
507	Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
808	Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Talamo, S. (2020). The IntCal20 Northern
509	Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757.
510	https://doi.org/10.1017/RDC.2020.41
511	Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E.,
512	Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J.,
513	Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Weyhenmeyer, C. E. (2009). IntCal09 and
514	Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP. Radiocarbon, 51(4), 1111–1150.
515	https://doi.org/10.1017/S0033822200034202
516	Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards
517	R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,
518	Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Plicht, J. van der. (2013). IntCal13 and Marine13
519	Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55(4), 1869–1887.
520	https://doi.org/10.2458/azu_js_rc.55.16947
521	Ronge, T. A., Tiedemann, R., Lamy, F., Köhler, P., Alloway, B. V., De Pol-Holz, R., Pahnke, K., Southon, J., &
522	Wacker, L. (2016). Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon
523	pool Nature Communications 7(1) 11487 https://doi.org/10.1038/ncomms11487

524	Rose, K. A., Sikes, E. L., Guilderson, T. P., Shane, P., Hill, T. M., Zahn, R., & Spero, H. J. (2010). Upper-ocean-to-
525	atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. Nature, 466(7310), Article
526	7310. https://doi.org/10.1038/nature09288
527	Roth, R., & Joos, F. (2012). Model limits on the role of volcanic carbon emissions in regulating glacial-interglacial
528	CO2 variations. Earth and Planetary Science Letters, 329–330, 141–149.
529	https://doi.org/10.1016/j.epsl.2012.02.019
530	Roth, R., & Joos, F. (2013). A reconstruction of radiocarbon production and total solar irradiance from the Holocene
531	¹⁴ C and CO ₂ records: Implications of data and model uncertainties. <i>Climate of the Past</i> , 9(4), 1879–1909.
532	https://doi.org/10.5194/cp-9-1879-2013
533	ScienceDirect Snapshot. (n.d.). Retrieved September 9, 2022, from
534	https://www.sciencedirect.com/science/article/pii/S0277379113002400
535	Siani, G., Michel, E., De Pol-Holz, R., DeVries, T., Lamy, F., Carel, M., Isguder, G., Dewilde, F., & Lourantou, A.
536	(2013). Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last
537	deglaciation. Nature Communications, 4(1), Article 1. https://doi.org/10.1038/ncomms3758
538	Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martínez-García, A., Hain, M. P., Ai, X., Wang, X., Ren,
539	H., & Haug, G. H. (2021). The Southern Ocean during the ice ages: A review of the Antarctic surface
540	isolation hypothesis, with comparison to the North Pacific. Quaternary Science Reviews, 254, 106732.
541	https://doi.org/10.1016/j.quascirev.2020.106732
542	Sigman, D. M., Hain, M. P., & Haug, G. H. (2010). The polar ocean and glacial cycles in atmospheric CO 2
543	concentration. Nature, 466(7302), 47–55. https://doi.org/10.1038/nature09149
544	Sigman, D. M., & Haug, G. H. (2003). 6.18 The Biological Pump in the Past.
545	Skinner, L. C., & Bard, E. (2022). Radiocarbon as a Dating Tool and Tracer in Paleoceanography. Reviews of
546	Geophysics, 60(1), e2020RG000720. https://doi.org/10.1029/2020RG000720
547	Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., & Barker, S. (2010). Ventilation of the Deep Southern Ocean
548	and Deglacial CO2 Rise. Science, 328(5982), 1147-1151. https://doi.org/10.1126/science.1183627
549	Stott, L. D., Harazin, K. M., & Krupinski, N. B. Q. (2019). Hydrothermal carbon release to the ocean and
550	atmosphere from the eastern equatorial Pacific during the last glacial termination. Environmental Research
551	Letters, 14(2), 025007. https://doi.org/10.1088/1748-9326/aafe28

552	Stott, L., Southon, J., Timmermann, A., & Koutavas, A. (2009). Radiocarbon age anomaly at intermediate water
553	depth in the Pacific Ocean during the last deglaciation. Paleoceanography, 24(2), n/a-n/a.
554	https://doi.org/10.1029/2008PA001690
555	Stott, L., & Timmermann, A. (2011). Hypothesized Link Between Glacial/Interglacial Atmospheric CO2 Cycles and
556	Storage/Release of CO2-Rich Fluids From Deep-Sea Sediments. In H. Rashid, L. Polyak, & E. Mosley-
557	Thompson (Eds.), Geophysical Monograph Series (Vol. 193, pp. 123–138). American Geophysical Union.
558	https://doi.org/10.1029/2010GM001052
559	Stuiver, M., & Polach, H. A. (1977). Discussion Reporting of 14C Data. Radiocarbon, 19(3), 355–363.
560	https://doi.org/10.1017/S0033822200003672
561	Yu, J., Anderson, R. F., Jin, Z., Menviel, L., Zhang, F., Ryerson, F. J., & Rohling, E. J. (2014). Deep South Atlantic
562	carbonate chemistry and increased interocean deep water exchange during last deglaciation. Quaternary
563	Science Reviews, 90, 80–89. https://doi.org/10.1016/j.quascirev.2014.02.018
564	Yu, J., Anderson, R. F., Jin, Z., Rae, J. W. B., Opdyke, B. N., & Eggins, S. M. (2013). Responses of the deep ocean
565	carbonate system to carbon reorganization during the Last Glacial-interglacial cycle. Quaternary Science
566	Reviews, 76, 39–52. https://doi.org/10.1016/j.quascirev.2013.06.020
567	Yu, J., Broecker, W. S., Elderfield, H., Jin, Z., McManus, J., & Zhang, F. (2010). Loss of Carbon from the Deep Sea
568	Since the Last Glacial Maximum. Science, 330(6007), 1084–1087. https://doi.org/10.1126/science.1193221
569	Yu, J., Elderfield, H., & Piotrowski, A. M. (2008). Seawater carbonate ion-δ13C systematics and application to
570	glacial-interglacial North Atlantic ocean circulation. Earth and Planetary Science Letters, 271(1), 209-
571	220. https://doi.org/10.1016/j.epsl.2008.04.010
572	Zhao, N., & Keigwin, L. D. (2018). An atmospheric chronology for the glacial-deglacial Eastern Equatorial Pacific.
573	Nature Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-05574-x
574	References From the Supporting Information:
575	Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., & Chappellaz,
576	J. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. <i>Geophysical</i>
577	Research Letters, 42(2), 542–549. https://doi.org/10.1002/2014GL061957

578	Dinauer, A., Adolphi, F., & Joos, F. (2020). Mysteriously high $\Delta^{14}C$ of the glacial atmosphere: Influence of ^{14}C
579	production and carbon cycle changes. Climate of the Past, 16(4), 1159–1185. https://doi.org/10.5194/cp-
580	16-1159-2020
581	Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P., & Sarmiento, J. L. (2015). The impact of atmospheric pCO2
582	on carbon isotope ratios of the atmosphere and ocean. Global Biogeochemical Cycles, 29(3), 307–324.
583	https://doi.org/10.1002/2014GB004929
584	Hain, M. P., Sigman, D. M., & Haug, G. H. (2010). Carbon dioxide effects of Antarctic stratification, North Atlantic
585	Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: Diagnosis and
586	synthesis in a geochemical box model. Global Biogeochemical Cycles, 24(4), n/a-n/a.
587	https://doi.org/10.1029/2010GB003790
588	Hain, M. P., Sigman, D. M., & Haug, G. H. (2014). Distinct roles of the Southern Ocean and North Atlantic in the
589	deglacial atmospheric radiocarbon decline. Earth and Planetary Science Letters, 394, 198-208.
590	https://doi.org/10.1016/j.epsl.2014.03.020
591	Kovaltsov, G. A., Mishev, A., & Usoskin, I. G. (2012). A new model of cosmogenic production of radiocarbon 14C
592	in the atmosphere. Earth and Planetary Science Letters, 337-338, 114-120.
593	https://doi.org/10.1016/j.epsl.2012.05.036
594	Laj, C., Kissel, C., & Beer, J. (2004). High resolution global paleointensity stack since 75 kyr (GLOPIS-75)
595	calibrated to absolute values. Washington DC American Geophysical Union Geophysical Monograph
596	Series, 145, 255–265. https://doi.org/10.1029/145GM19
597	Mackensen, A., & Schmiedl, G. (2019). Stable carbon isotopes in paleoceanography: Atmosphere, oceans, and
598	sediments. Earth-Science Reviews, 197, 102893. https://doi.org/10.1016/j.earscirev.2019.102893
599	Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H.,
600	Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
601	Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Talamo, S. (2020). The IntCal20 Northern
602	Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757.
603	https://doi.org/10.1017/RDC.2020.41
604	Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards,
605	R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,

manuscript submitted to Geophysical Research Letters

606	Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Plicht, J. van der. (2013). IntCal13 and Marine13
607	Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55(4), 1869–1887.
608	https://doi.org/10.2458/azu_js_rc.55.16947
609	Roth, R., & Joos, F. (2013). A reconstruction of radiocarbon production and total solar irradiance from the Holocene
610	¹⁴ C and CO ₂ records: Implications of data and model uncertainties. <i>Climate of the Past</i> , 9(4), 1879–1909.
611	https://doi.org/10.5194/cp-9-1879-2013
612	Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martínez-García, A., Hain, M. P., Ai, X., Wang, X., Ren,
613	H., & Haug, G. H. (2020). The Southern Ocean during the ice ages: A review of the Antarctic surface
614	isolation hypothesis, with comparison to the North Pacific. Quaternary Science Reviews, 106732.
615	https://doi.org/10.1016/j.quascirev.2020.106732
616	Skinner, L. C., & Bard, E. (2022). Radiocarbon as a Dating Tool and Tracer in Paleoceanography. Reviews of
617	Geophysics, 60(1), e2020RG000720. https://doi.org/10.1029/2020RG000720
618	Stott, L., Davy, B., Shao, J., Coffin, R., Pecher, I., Neil, H., Rose, P., & Bialas, J. (2019). CO2 Release From
619	Pockmarks on the Chatham Rise-Bounty Trough at the Glacial Termination. Paleoceanography and
620	Paleoclimatology, 34(11), 1726–1743. https://doi.org/10.1029/2019PA003674
621	