Aplicando un Algoritmo Genético a la tarea de Machine Learning

Adán González Rodríguez Sara Porto Álvarez

Dataset Utilizado

Hemos decidido usar el Dataset: Mall Customer Segmentation

El dataset está diseñado para enseñar conceptos relacionados con la segmentación de clientes, también conocida como análisis de canasta de mercado (market basket analysis)

Lo usaremos para hacer un clustering sobre los atributos del

Código: Código en GitHub

- Imports de las librerías necesarias
- Clase **GeneticAlgorithm**
 - Método __init___
 - Método run(task_ml)
 - Método tournament_selection(population, fitnesses, k)
 - Método plot_clusters(best_solution, ml_task, dim_x=0, dim_y=1)
- Clase MachineLearningTask
 - Método __init___
 - Método create_individual()
 - Método calculate_sse(individual)
 - Método fitness_function(individual)
 - Método crossover(parent1, parent2, crossover_rate)
 - Método mutation(individual, generation, max gens)
- Función auxiliar plot_fitness_evolution(best_fitness_per_generation)
- Bloque main

Cómo representamos al individuo

Como una tupla de k*dim valores flotantes

 Cada valor en la tupla es una coordenada de un centroide en el espacio de características

Creación de un individuo:

Fitness

- Evalúa qué tan buena es la solución en base a la calidad del individuo
- Al tratarse de clustering, nosotros usamos el SSE negativo
 - El SSE es la suma de errores cuadrados.
 - Será mejor cuanto más alto sea su valor

```
def calculate_sse(self, individual):
"""
Función para calcular el error cuadrático medio de un individuo.
"""
centers = np.array(individual).reshape(self.k, self.dim)
dists = np.linalg.norm(self.data[:, None, :] - centers[None, :, :], axis=2)
min_dists = np.min(dists, axis=1)
return np.sum(min_dists***2)
```

Hiperparámetros del GA (Genetic algorithm)

Pop_size: Tamaño de Población (Cantidad de individuos en cada generación)

Generations: Número de Generaciones (Numero máximo de Iteraciones de nuestro programa)

Crossover Rate: Tasa de Cruzamiento (Probabilidad de que dos individuos crucen sus genes)

Mutation_Rate: Tasa de Mutación (Probabilidad de que cada gen de un individuo sufra una mutación/cambio aleatorio)

Patience: Paciencia (Numero de generaciones consecutivas permitidas sin mejora significativamente antes de detener el algoritmo)

Min_Delta: (Minimo de Mejora esperada) Define el umbral mínimo de mejora en el fitness para considerar que ha habido progreso

3 Clusters, Gráfica Annual Income + Spending Scores

2 Clusters, Gráfica Género + Spending Score

Resultados adicionales

Prueba con K-means: Enlace al Código de K-Means

K-Means

Algoritmo Genético

Fin