

TDT4160 Datamaskiner grunnkurs Eksamen

AUGUST, 2008, 09:00-13:00

Kontakt under eksamen:

Marius Grannæs 97005663

Tillatte hjelpemidler:

D

Ingen trykte eller håndskrevne hjelpemiddel er tillat. Enkel godkjent kalkulator er tillat.

Målform:

Bokmål

OPPGAVE 1: DATAMASKINER (30% (A OG B 2.5%, C OG D 10% OG E 5%))

Figur 1 viser en skisse av et system bestående av en mikrokontroller, EPROM, RAM og PIO. Kontroll signalet CS (Chip Select) er aktiv lav (logisk "0"). Data leses fra enhetene ved aktiv lav Read/Write (R/W) og skrives til enhetene ved aktivt høyt R/W-signal.

Figur 1: Adressedekoding.

- a. Hva vil typisk være funksjonen til EPROM, RAM og PIO i det skisserte mikrokontrollersystemet?
- b. Bruker det skisserte systemet dedikert adressebuss og databuss eller en multiplekset adresse/data buss? Begrunn svaret kort.
- c. Finn adresseområde for EPROM, RAM og PIO.
- d. Det er ønskelig å doble antall eksterne PIO-enheter. Er dette mulig uten å endre på adresseringen til EPROM og RAM? Viss mulig, hvordan kan en modifisere systemet for å realisere en slik dobling av antall PIO-enheter?

Figur 2: Von Neumann arkitektur.

e. I Figur 2 er en maskin med såkalt "Von Neumann arkitektur" fra rundt 1945 skissert.

Forklar kort hvordan de forskjellige enhetene i Figur 1 forholder seg til von Neumann sin arkitektur.

OPPGAVE 2: MIKROARKITEKTUR OG MIKROINSTRUKSJONER (30% (A OG B 2.5%, C 5% OG D OG E 10%))

Bruk vedlagte diagram og tabeller for IJVM til å løse oppgavene.

- a. Er det mulig å addere to operander som befinner seg i eksternt minne i en IJVM-mikroinstruksjon? Begrunn svaret kort.
- b. Hva er funksjonen til registrene MAR og MDR?
- c. Lag mikroinstruksjon(er) for følgende IJVM-operasjon: last register "H" med innholdet i register MDR 1.
 - Se bort fra Addr- og J-feltene i mikroinstruksjonsformatet. Angi korrekte bit for ALU, C, Mem og B (se Figur 5).
- d. Lag mikroinstruksjon(er) for følgende IJVM-operasjon: TOS = TOS + (MDR + 1).
 - Se bort fra Addr- og J-feltene i mikroinstruksjonsformatet. Angi korrekte bit for ALU, C, Mem og B (se Figur 5).
- e. Kan resultatet av å utføre mikroinstruksjonene i oppgave c og d medføre at N og/eller Z flagg aktiveres? Begrunn svaret kort.

OPPGAVE 3: FORBEDRE YTELSEN (20%)

- a. Gi en kort oppsummering av fordelene med en-brikke mulitiprosessorer (CMP).
- b. Gi en kort oppsummering av eventuelle utfordringer med en-brikke mulitiprosessorer.
- c. Anta at en prosessor har et samlebånd med tre trinn som vist i Figur 3(a). I Figur 3(b) er et fem trinns samlebånd vist. Hva skjer med ytelsen viss en endrer antall trinn i samlebåndet fra tre til fem? Begrunn svaret kort.

t = 5ns	t = 5ns	t = 10ns	t = 2.5ns	t = 2.5ns	t = 2.5ns	t = 3.5ns	t = 10ns
Stage 1	Stage 2	Stage 3	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5

- (a) Samlebånd med tre
- (b) Samlebånd med fem trinn.

Figur 3: Samlebånd med angitt forsinkelse.

d. Superskalare prosessorer øker ytelsen ved å duplisere CPU-komponenter (økt instruksjonsnivåparallellitet). Det er en dyr løsning. Hva kan gjøres for å redusere kostnaden og samtidig bevare prinsippet bak superskalare prosessorer?

OPPGAVE 4: DIVERSE (20%)

Ta stilling til påstandene. Korrekte svar gir 4% uttelling, feil svar gir -2% og vet ikke (ikke svar) gir 0%.

- a. Hvilken påstand er korrekt for en prosessor som benytter multiplekset adresse/databuss?
 - 1 Krever mindre I/O-pinner enn en løsning med dedikerte busser.
 - 2 Kan adressere mindre data enn en prosessor med dedikerte busser.
 - 3 Kan ikke benytte samlebånd siden instruksjoner og data benytter felles buss for henting av data og instruksjoner
 - 4 Antall bit til adressering er lik antall bit for instruksjoner/data.
- b. Hvilken påstand er korrekt for instruksjoner som benytter "immediate" adressering .
 - 1 Operanden kan kun angi adresse til CPU-en sitt nærmeste ("immediate") lagernivå (register).
 - 2 Operanden kan kun adressere data som ligger i hurtigbufferet.
 - 3 Operanden kan kun brukes til konstanter. Verdien til konstanten er gitt ved kompilering.
 - 4 Immediate adressering er effektivt for globale variabler.
- c. Hvilken påstand hører **ikke** til i nivået for "instruction set architecture" (instruksjonssetarkitektur)?
 - 1 Første nivå tilgjengelig for bruker.
 - 2 Opprinnelig det eneste nivået.
 - 3 Inkluderer støtte for flere program og virtuelt minne.
 - 4 Grense mellom maskinvare og programvare.
- d. Hvilken påstand om parallelle maskiner er ikke korrekt?
 - 1 Forskjellen på SIMD array-maskiner og MIMD multiprosessormaskiner er kun gitt av hvordan minne er organisert.
 - 2 RISC-prosessorer kan være superskalare.
 - 3 CISC-prosessorer kan være superskalare.
 - 4 I en MIMD multiprosessormaskin med delt hovedlager er bussen en flaskehals.

- e. Under følger en rekke påstander om datamaskinkomponenter. Hvilken påstand er **ikke** korrekt?
 - 1 "Three-state buffer" har to tilstander: tilkoplet eller høy impedans.
 - 2 "Three-state buffer" har tre tilstander: logisk "1", logisk "0" eller høy impedans (z).
 - 3 I en EPROM må alt innhold slettes for å kunne oppdatere innholdet.
 - 4 PCI Express benytter punkt-til-punkt kommunikasjon.

IJVM vedlegg

Figur 4: Blokkdiagram (IJVM).

Figur 5: Mikroinstruksjonsformat (IJVM).

F.	F,	ENA	ENB	INVA	INC	Function A	
0	3	3	0	0	0		
0	1	0	1	0	0	В	
0	4.	11	0	310	0	A	
1	0	3		0	0	В	
1	4	4	_1_	0	٥	A+B	
1	1			0	1	A+B+1	
1	1	4	0	0	1	A + 1	
1	1	0	1	0	1	B+1	
1	1	1	-		1	B-A	
1	3	0	d	3	0	B - 1	
1	1	:40	0	218	1	-A	
0	0	55#8	1	0	0	A AND B	
0	313	18/18/	71	O	0	A OR B	
0	1	0	0	0	0	0	
1		0	0	0	_1_	1	
1	94	0	0	1	0	-1	

SLR1 SLL8 Function

- 0 0 No shift
- 0 1 Shift 8 bit left
- 1 0 Shift 1 bit right

Figur 6: Funksjonstabell for ALU (IJVM).

Figur 7: Timingdiagram (IJVM).