The Inner Beauty of Firms

Jacob Kohlhepp

UCLA

December 31, 2022

Questions

- How do firms choose their internal structure?
- What are the implications for markets and government policy?
 - Differences in initial internal structure (heterogeneity)
 - Reorganization in response to policy (endogeneity)

Road Map

- 1. Patterns in Salon Internal Organization
- 2. A Model of Internal Organization
- 3. Theory: What Forces Shape Internal Organization?
- 4. Identification and Estimation
- 5. Policy Experiments

Table of Contents

Data

Stylized Facts

Model

Theory

Identification and Estimation

Estimation Results

Policy Experiments

Data

- Salon management software company founded in 2016
- Clients concentrated in New York City and Los Angeles, but scattered salons throughout US
- Observe 13 million assignments of services to hair stylists across hundreds of salons from 2016 to Q3 2021

A Raw Data Snapshot

Firm	Salon	Арр.	Cust.	Service	Staff	Time Stamp	Price	Duration
1	1A	123	Blake	Advanced Cut	Rosy	3/26/2021 16:15	100	72
1	1A	123	Blake	Full Head - Highlights	Rosy	3/26/2021 16:15	243	127
1	1A	123	Blake	Treatment Add On (Olaplex)	Rosy	3/26/2021 16:15	39	72
2	2A	9982	Grace	Women's Cut	Tyler	3/17/2021 11:00	225	43
2	2A	9982	Grace	Single Process	Ben	3/17/2021 11:00	200	77

Creating A Firm-Quarter Data Set

- 20,560 unique text descriptions of services.
- Hired a certified cosmetologist via UpWork to classify into 6 categories.
- Services are aggregated to form one representative product per firm-quarter.
 - A firm's price is the sum of service prices divided by total customers.
 - A firm's **required labor** is the sum of durations divided by total customers.
 - A firm's task-mix is the fraction of labor classified as each task.

Firm-Quarter Statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Revenue	4,558	213,201.30	248,359.90	5	58,912.5	271,236.5	2,559,703
Price	4,558	199.73	135.16	0.20	111.71	261.88	3,180.44
Employees	4,558	13.38	10.79	1	6	17	92
Customers	4,558	1,159.23	1,098.45	1	397	1,619	16,768
Task Categories	4,558	4.45	0.86	1	4	5	5
Labor per. Customer	4,558	2.15	1.63	0.10	1.52	2.57	61.33

Table of Contents

Data

Stylized Facts

Model

Theory

Identification and Estimation

Estimation Results

Policy Experiments

What is an Organization Structure?

Definition 1

A firm's organization structure (B_j) , is a matrix where element (i, k) is the fraction of labor assigned to worker i and task k.

What is an Organization Structure?

Definition 1

A firm's organization structure (B_j) , is a matrix where element (i, k) is the fraction of labor assigned to worker i and task k.

"Employee" Salon							"Chair Renter" Salon				
Tasks								Tasks			
		Cut	Color	Dry				Cut	Color	Dry	
Employee	Α	1/2	0	0	1/2		Α	1/6	1/12	1/12	1/3
	В	0	1/4	0	1/4		В	1/6	1/12	1/12	1/3
	С	0	0	1/4	1/4		С	1/6	1/12	1/12	1/3
	Tot.	1/2	1/4	1/4			Tot.	1/2	1/4	1/4	

What is Organizational Complexity?

Definition 2

The complexity of an organization structure B_i is:

$$I(B_j) = \sum_{i,k} B_j(i,k) log\left(\frac{B_j(i,k)}{\sum_{k'} B_j(i,k') \sum_{i'} B_j(i',k)}\right)$$

- ► Intuition: the amount of instructions that must be communicated within the firm to implement *B_i*
- ► 1 Measure Many Interpretations: Manager Attention Task-Specialization

Complexity of the Two Structures

		"Employee" Salon							
			Tasks						
		Cut	Color	Dry					
Employee	Α	1/2	0	0	1/2				
	В	0	1/4	0	1/4				
	С	0	0	1/4	1/4				
	Tot.	1/2	1/4	1/4					

"Chair Renter" Salon

Idaka		
Color	Dry	
1/12	1/12	1/3
1/12	1/12	1/3
1/12	1/12	1/3
1/4	1/4	
	1/12 1/12 1/12	Color Dry 1/12 1/12 1/12 1/12 1/12 1/12

Exactly match tasks and workers If cut send "0" assign to A If color send "01" assign to B If dry send "10" assign to C $\frac{1}{2}(1bit) + \frac{1}{4}(2bit) + \frac{1}{4}(2bit) = 1.5$

Randomly match tasks and workers

If cut send nothing roll dice

If color send nothing roll dice

If dry send nothing roll dice $\frac{1}{2}(0bit) + \frac{1}{4}(0bit) + \frac{1}{4}(0bit) = 0$

Fact 1: Complexity varies significantly across firms and varies little across time.

$$\begin{aligned} \textit{Var}(\textit{I}_{j,t} &= \bar{\textit{I}}_j + \bar{\textit{I}}_t + \textit{e}_{j,t} \\ \textit{Var}(\textit{I}_{j,t}) &= \textit{Var}(\bar{\textit{I}}_j) + \textit{Var}(\bar{\textit{I}}_t) + 2\textit{Cov}(\bar{\textit{I}}_j, \bar{\textit{I}}_t) + \textit{Var}(\textit{e}_{j,t}) \\ .0516 & .0464 & .0002 & -.0009 \\ \end{aligned}$$

Takeaway: Evidence of a time-invariant and firm-specific org. cost.

Fact 2: Complex salons have higher revenue and employment

Takeaway: There is an organizational competitive advantage.

Fact 3: Complex salons have higher prices and repeat customers

Takeaway: This advantage operates through quality NOT quantity.

Table of Contents

Data

Stylized Facts

Model

Theory

Identification and Estimation

Estimation Results

Policy Experiments

Model

Firm Task-Mix

$$\alpha_j = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Firm Organization Cost

$$\gamma_j I(B_j)$$

Worker Skills θ

$$\begin{pmatrix} \theta_1(1) & \theta_1(2) & \theta_1(3) \\ \theta_2(1) & \theta_2(2) & \theta_2(3) \\ \theta_3(1) & \theta_3(2) & \theta_3(3) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Worker Wages w

$$\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 25 \\ 20 \\ 15 \end{pmatrix}$$

Model

Firm Task-Mix

$$\alpha_j = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

Organization Costs

$$\gamma_j I(B_j) = \gamma_j \cdot 0$$

$$B_j = \begin{pmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{6} & \frac{1}{12} & \frac{1}{12} \end{pmatrix}$$

Product Quality

$$\xi_j(B_j) = \frac{1}{6} \cdot 1 + \frac{1}{12} \cdot 1 + \frac{1}{12} \cdot 1 = \frac{1}{3}$$

Wage Bill

$$W(B_j) = \frac{1}{3} \cdot 25 + \frac{1}{3} \cdot 20 + \frac{1}{3} \cdot 15 = 20$$

Model

Firm Task-Mix

$$\alpha_j = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$B_j = egin{pmatrix} rac{1}{2} & 0 & 0 \ 0 & rac{1}{4} & 0 \ 0 & 0 & rac{1}{4} \end{pmatrix}$$

Wage Bill
$$W(B_j) = \frac{1}{2} \cdot 25 + \frac{1}{4} \cdot 20 + \frac{1}{4} \cdot 15 = 21.25$$

Organization Costs

 $\gamma_i I(B_i) = \gamma_i \cdot 1.5$

Product Quality
$$\xi_j(B_j) = rac{1}{2} \cdot 1 + rac{1}{4} \cdot 1 + rac{1}{4} \cdot 1 = 1$$

More Model Details

- \triangleright Firms also set their price p_i
- ▶ Consumer demand given price and quality: $D_j(p_j, \xi(B_j))$
- ▶ Price ⇒ quantity produced ⇒ labor demanded
- ► Wages must clear the labor market
- Perfect competition in labor market, oligopoly in product market

The Firm's Profit-Maximization Problem

$$\pi_j = D_j igg[p_j - MC_j igg]$$

The Firm's Profit-Maximization Problem

$$\pi_j = D_j igg[p_j - MC_j igg]$$
 $\pi_j = \max_{p_j, B_j \in \mathbb{B}_j} D_j(p_j, \xi(B_j)) igg[p_j - \gamma_j I(B_j) - W(B_j) igg]$

Summary of the Model

Table of Contents

Data

Stylized Facts

Model

Theory

Identification and Estimation

Estimation Results

Policy Experiments

The Complexity-Wage-Quality Trade-Off

Organization Frontier

$$\min_{B_j \in \mathbb{B}} \underbrace{I(B_j)}_{\text{complexity}} + \gamma_j^{-1} \left[\underbrace{W(B_j) - \rho^{-1} \xi(B_j)}_{\text{quality-adjusted wages}} \right]$$

Definition

The organization frontier is the set of organization structures which minimize complexity for some quality-adjusted wages.

Choosing an Organizational Structure

Table of Contents

Data

Stylized Facts

Model

Theory

Identification and Estimation

Estimation Results

Policy Experiments

Identification Problem

Identification: Organization Costs γ_j

Consider 2 salons:

▶ Tasks performed are the same ($\alpha_1 = \alpha_2$)

Identification: Organization Costs γ_j

Consider 2 salons:

- ▶ Tasks performed are the same ($\alpha_1 = \alpha_2$)
- ▶ In the same labor market (wages and skills are the same)

Identification: Organization Costs γ_j

Consider 2 salons:

- ► Tasks performed are the same ($\alpha_1 = \alpha_2$)
- ▶ In the same labor market (wages and skills are the same)
- ▶ In the same product market (consumer preferences are the same)

Identification: Organization Costs γ_j

Consider 2 salons:

- ► Tasks performed are the same ($\alpha_1 = \alpha_2$)
- ▶ In the same labor market (wages and skills are the same)
- ▶ In the same product market (consumer preferences are the same)
- ▶ But Salon 1 is more complex $(I_1 > I_2)$

Identification: Organization Costs γ_j

Consider 2 salons:

Identification: Firm-Specific Organization Costs γ_j

Identification: Wages and Skills

- We can use I_j (observed) to obtain γ_j (unobserved)
- What about wages and skills?
- We can use the interaction of complexity and task intensity:

$$I_j \cdot \alpha_j(k)$$
 & Quality $\implies \theta_k$

$$I_j \cdot \alpha_j(k)$$
 & Marginal Cost $\implies w_k$

Identification: Wages and Skills

Table of Contents

Data

Stylized Facts

Model

Theory

Identification and Estimation

Estimation Results

Policy Experiments

Task Parameter Estimates

	Associated	l Specialist		
Task	Skill Gap	Wage	Skill Base	Material Cost
Administrative	43.29*	26.99	-16.16	-147.60*
	(21.66)	(63.75)	(14.58)	(13.47)
Blowdry/Etc.	141.69*	20.91	-70.56*	12.39
	(36.67)	(40.22)	(13.57)	(16.65)
Color/Highlight/Wash	60.03*	37.75*	-9.69	56.49*
	(21.24)	(7.00)	(11.97)	(15.79)
Haircut/Shave	32.45*	16.96*		
	(13.07)	(8.32)		
Nail/Spa/Eye/Misc.	66.48	81.16	-252.58*	-1061.12*
	(37.72)	(53.52)	(11.47)	(10.73)

Standard errors from 500 bootstrap replications in parentheses.

^{*} indicates significance at the 0.05 level.

Equilibrium Task Specialization Across Workers

Equilibrium Task Specialization Across Firms

Table of Contents

Data

Stylized Facts

Model

Theory

Identification and Estimation

Estimation Results

Policy Experiments

What is a Counterfactual Policy Experiment?

- ▶ We developed and estimated the model.
- We now use the model to see how the economy responds to policy changes.
- ► A policy experiment involves changing a piece of the model.
- We then solve for a new equilibrium (wages, internal structures, prices, etc.)

Decomposing the Effects of a Policy

Minimum Wage In Other Models

Left is from Gregory and Zierahn (2022), right is stylized example

Minimum Wage Increase from \$15 to \$20

Wages Changes

Туре	Wage Change	Total Wages Gained/Los
Haircut/Shave - UNEMPLOYED	-100.00%	-\$600,240
Haircut/Shave - EMPLOYED	17.95%	\$1,528,205
Color/Highlight/Wash	-0.61%	-\$228,453
Blowdry/Style/Treatment/Extension	3.48%	\$323,374
Administrative	4.17%	\$47,154
Nail/Spa/Eye/Misc.	0.68%	\$19,319

Wage Changes by Initial Wage Percentile

Employment and Wages

Technical Details

The Reallocation Effect

The Reallocation Effect: Wage Spillovers

	Reallocation Change	
Туре	Employment	Wage
Haircut/Shave	-5.85%	17.95%
Color/Highlight/Wash	0%	-1.13%
Blowdry/Style/Treatment/Extension	0%	4.63%

Fraction Haircut Specialists • 0.2 • 0.4 • 0.6 • 0.

The Reorganization Effect

The Reorganization Effect: Wage Spillovers

	Reorganization Change			
Туре	Employment	Task-Spec.	Wage	
Haircut/Shave	-0.73%	0.12%	0%	
Color/Highlight/Wash	0%	-0.33%	0.52%	
Blowdry/Style/Treatment/Extension	0%	0.03%	-1.15%	
Administrative	0%	0.03%	-1.05%	
Nail/Spa/Eye/Misc.	0%	-0.00%	0.10%	

Service Sales Tax Elimination (4.5% to 0%)

Firm Choice	s	Welfare		
Statistic	Total	Source	Change	Percent Change
Avg. Price	8.68%	Salon Profit	\$942,740	0.58%
Avg. Complexity	5.53%	Consumer Welfare	-\$494,199	-0.30%
Avg. Quality	10.03%	Wages	\$11,603,777	7.12%
Task Specialization	1.83%	Tax Revenue	-\$11,739,300	-7.20%
		Total Welfare	\$313,017	0.19%

Effects by Worker Type

Sales Tax Elimination Reallocation Effect

Sales Tax Elimination Reorganization Effect

Table of Contents

Appendix

Model: Salons and Workers

J Salons

- ▶ Salon-specific internal organization cost $\gamma_i \ge 0$
- Leontief task-based production function with task-mix parameter $\alpha \in \mathbb{R}_+^K$
 - Producing 1 unit requires assigning α_k labor to task k. Normalize $\sum_k \alpha_k = 1$
 - ▶ I allow for firm-specific task-mix in structural model

N Worker Types

- Skill set $\theta_i = \{\theta_{i,1}, ...\theta_{i,k}, ...\theta_{i,K}\}$
- lnelastic total labor supply L_i and wage w_i determined in equilibrium

Model: Salon Choices and Consumers

Salon Choices

- ▶ Org. structure $B_j \in \Delta^{N \times K}$ s.t. $\sum_i B_j(i, k) = \alpha_k$
 - ▶ Product Quality: $\xi(B_j) = \sum_{i,k} \theta_{i,k} B_j(i,k)$
 - Per-Unit Wage Bill: $W(B_j) = \sum_{i,k} w_i B_j(i,k)$
 - ▶ Per-Unit Internal Organization Cost: $\gamma_j I(B_j)$ where $I(B_j)$ is complexity
- ▶ Price $p_j \in \mathbb{R}_+$

Mass M Consumers

▶ Utility for good j: $u_{z,j} = \xi(B_j) - \rho p_j + \epsilon_{z,j}$, $\epsilon \sim \text{ i.i.d. Type-1 E.V.}$

Relationship Between Complexity and Customers/Visits

Firm Size and Complexity Regressions

Dependent Variables: Model:	Revenue (1)	Employees (2)	Utilized Labor	Customers (4)	Visits (5)
Org. Complexity	347549.2***	9.75**	26481	334.6	731.7
	(79546.2)	(3.016)	(35653.2)	(259.6)	(450.1)
Fixed-effects					
Quarter-Year	Yes	Yes	Yes	Yes	Yes
County	Yes	Yes	Yes	Yes	Yes
Fit statistics					
Observations	4,558	4,558	4,558	4,558	4,558
R ²	0.32465	0.34319	0.28918	0.34901	0.35004

Standard-errors clustered at the salon level.

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Manhattan Firm Size and Complexity Regressions

Dependent Variables:	Revenue (1)	Employees (2)	Utilized Labor (3)	Customers (4)	Visits (5)
Variables					
Org. Complexity	430406.6*	12.55	-17733.9	277.2	876.9
	(179977.4)	(6.531)	(70765.2)	(600)	(907.1)
Fixed-effects					
Quarter-Year	Yes	Yes	Yes	Yes	Yes
Fit statistics					
Observations	595	595	595	595	595
R ²	0.33485	0.21039	0.20359	0.44164	0.48831

Clustered standard-errors in parentheses

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Fact 2: Complex salons have higher revenue and employment

Fit: Supply Side Relationships

Validation: The Task Content of Jobs

Model generated jobs:

$$b_{j}(i,k) = \alpha_{k} \frac{\exp(-\gamma^{-1}w_{i} + (\rho\gamma)^{-1}\theta_{i,k})}{\sum_{i'} E_{j}(i')\exp(-\gamma^{-1}w_{i'} + (\rho\gamma)^{-1}\theta_{i',k})}$$

	Total Variance		Between Firm Variance	
Task	Model	Observed	Model	Observed
Haircut/Shave	0.1110	0.1268	0.0597	0.0597
Color/Highlight/Wash	0.1127	0.1105	0.0365	0.0365
Blowdry/Style/Treatment/Extension	0.0472	0.0194	0.0111	0.0111
Administrative	0.0098	0.0080	0.0063	0.0063
Nail/Spa/Eye/Misc.	0.0120	0.0171	0.0050	0.0050

Cost of Median Complexity Organization Across Firms

