姓名: 张三

学号: 1234567

一. (20 points) 神经网络基础

给定训练集 $D = \{(\boldsymbol{x}_1, \boldsymbol{y}_1), (\boldsymbol{x}_2, \boldsymbol{y}_2), ..., (\boldsymbol{x}_m, \boldsymbol{y}_m)\}$. 其中 $\boldsymbol{x}_i \in \mathbb{R}^d, \boldsymbol{y}_i \in \mathbb{R}^l$ 表示输入示例由 d 个属性描述,输出 l 维实值向量. 图 ??给出了一个有 d 个输入神经元、l 个输出神经元、q 个隐层神经元的多层神经网络,其中输出层第 j 个神经元的阈值用 θ_j 表示,隐层第 h 个神经元的阈值用 γ_h 表示. 输入层第 i 个神经元与隐层第 h 个神经元之间的连接权为 v_{ih} ,隐层第 h 个神经元与输出层第 j 个神经元之间的连接权为 w_{hj} . 记隐层第 h 个神经元接收到的输入为 $\alpha_h = \sum_{i=1}^d v_{ih} x_i$,输出层第 j 个神经元接收到的输入为 $\beta_i = \sum_{h=1}^q w_{hj} b_h$,其中 b_h 为隐层第 h 个神经元的输出.

Figure 1: 多层神经网络(教材图 5.7)

不同任务中神经网络的输出层往往使用不同的激活函数和损失函数,本题介绍几种常见的激活和损失函数,并对其梯度进行推导.

1. 在二分类问题中(l=1),标记 $y \in \{0,1\}$,一般使用 Sigmoid 函数作为激活函数,使输出值在 [0,1] 范围内,使模型预测结果可直接作为概率输出. Sigmoid 函数的输出一般配合二元交叉熵 (Binary Cross-Entropy) 损失函数使用,对于一个训练样本 (x,y) 有

$$\ell(y, \hat{y}_1) = -\left[y\log(\hat{y}_1) + (1-y)\log(1-\hat{y}_1)\right] \tag{1}$$

记 \hat{y}_1 为模型对样本属于正类的预测结果, 请计算 $\frac{\partial \ell(y,\hat{y}_1)}{\partial \beta_1}$,

2. 当 l > 1,网络的预测结果为 $\hat{\boldsymbol{y}} \in \mathbb{R}^l$,其中 \hat{y}_i 表示输入被预测为第 i 类的概率. 对于第 i 类的样本,其标记 $\boldsymbol{y} \in \{0,1\}^l$,有 $y_i = 1$, $y_j = 0, j \neq i$. 对于一个训练样本 $(\boldsymbol{x}, \boldsymbol{y})$,交叉熵损失函数 $\ell(\boldsymbol{y}, \hat{\boldsymbol{y}})$ 的定义如下

$$\ell(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\sum_{j=1}^{l} y_j \log \hat{y}_j$$
 (2)

在多分类问题中,一般使用 Softmax 层作为输出, Softmax 层的计算 公式如下

$$\hat{y}_j = \frac{e^{\beta_j}}{\sum_{k=1}^l e^{\beta_k}} \tag{3}$$

易见 Softmax 函数输出的 \hat{y} 符合 $\sum_{j=1}^{l} \hat{y}_j = 1$, 所以可以直接作为每个类别的概率. Softmax 输出一般配合交叉熵 (Cross Entropy) 损失函数使用, 请计算 $\frac{\partial \ell(y,\hat{y})}{\partial \beta_i}$,

- 3. 分析在二分类中使用 Softmax 和 Sigmoid 的联系与区别.
- 4. KL 散度 (Kullback-Leibler divergence) 定义了两个分布之间的距离, 对于两个离散分布 Q(x) 和 P(x), 其定义为

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right) \tag{4}$$

其中 \mathcal{X} 为 x 的取值空间. 试分析交叉熵损失函数和 KL 散度的关系.

解:

二. (20 points) 运算的向量化

在编程实践中,一般需要将运算写成向量或者矩阵运算的形式,这叫做运算的向量化 (vectorization). 向量化可以充分利用计算机体系结构对矩阵运算的支持加速计算,大部分数学运算库例如numpy也对矩阵计算有专门的优化. 另一方面,如果一个运算可以写成向量计算的形式,会更容易写出其导数形式并进行优化. 本题中举两个简单的例子

1. 给定示例矩阵 $X \in \mathbb{R}^{m \times d}$, 表示 m 个示例(向量), 每个示例有 d 维, 计算 m 个示例两两之间的距离矩阵 $D \in \mathbb{R}^{m \times m}$, 两个向量之间的欧

式距离定义为 $\|\boldsymbol{x} - \boldsymbol{y}\|_2 = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$. 求距离矩阵可以通过循环的方式,即plain_distance_function中实现的方法;

2. 输入一个矩阵 $X \in \mathbb{R}^{m \times d}$, 表示 m 个向量,每个向量有 d 维,要求对输入矩阵的行按照一个给定的排列 $p = \{p_1, p_2, ..., p_m\}$ 进行重新排列. 即输出一个新的矩阵 X', 其中第 i 行的内容为输入矩阵的第 p_i 行. 假设重排列为一个函数 perm 即 X' = perm(X), 已知梯度 $\frac{\partial \ell}{\partial X'}$, 需要计算 $\frac{\partial \ell}{\partial X}$. 对矩阵的行进行排列可以采用简单的循环实现,例如plain_permutation_function中的实现方法.

```
1 import numpy as np

2

3 def plain_permutation_function(X, p):

4 # 初始化结果矩阵,其中每一行对应一个样本

5 permuted_X = np.zeros_like(X)

6 for i in range(X.shape[0]):

7 # 采用循环的方式对每一个样本进行重排列

8 permuted_X[i] = X[p[i]]

9 return permuted_X
```

请给出上述两种任务的向量化实现方案,并分析上述实现方法和向量化 实现方法之间运行时间的差异。(提示:比如可以针对不同规模的矩阵 大小来尝试分析主要操作的运行时间)

```
解:
```

三. (20 points) 支持向量机

考虑标准的 SVM 优化问题如下 (即教材公式 (6.35)),

$$\min_{\boldsymbol{w},b,\xi_{i}} \quad \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{m} \xi_{i}$$
s.t.
$$y_{i} \left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i} + b\right) \geq 1 - \xi_{i}$$

$$\xi_{i} \geq 0, i \in [m].$$
(5)

注意到,在 (2.1) 中,对于正例和负例,其在目标函数中分类错误的"惩罚"是相同的.在实际场景中,很多时候正例和负例错分的"惩罚"代价是不同的(参考教材 2.3.4 节).比如考虑癌症诊断问题,将一个确实患有癌症的人误分类为健康人,以及将健康人误分类为患有癌症,产生的错误影响以及代价不应该认为是等同的.所以对负例分类错误的样本 (即 false positive) 施加 k > 0 倍于正例中被分错的样本的"惩罚".对于此类场景下

- 1. 请给出相应的 SVM 优化问题.
- 2. 请给出相应的对偶问题, 要求详细的推导步骤, 如 KKT 条件等.

解:

四. (20 points) **核函数**

教材 6.3 节介绍了 Mercer 定理, 说明对于一个二元函数 $k(\cdot, \cdot)$, 当且仅当对任意 m 和 $\{x_1, x_2, \ldots, x_m\}$, 它对应的 Gram 矩阵 (核矩阵) 是半正定的时, 它是一个有效的核函数. 核矩阵 K 中的元素为 $K_{ij} = \kappa(x_i, x_j)$. 请根据 Mercer 定理证明以下核函数是有效的.

- 1. $\kappa_3 = a_1 \kappa_1 + a_2 \kappa_2$, 其中 $a_1, a_2 > 0$.
- 2. $f(\cdot)$ 是任意实值函数, 由 $\kappa_4(\boldsymbol{x}, \boldsymbol{x}') = f(\boldsymbol{x}) f(\boldsymbol{x}')$ 定义的 κ_4 .
- 3. 由 $\kappa_5(\boldsymbol{x}, \boldsymbol{x}') = \kappa_1(\boldsymbol{x}, \boldsymbol{x}') \kappa_2(\boldsymbol{x}, \boldsymbol{x}')$ 定义的 κ_5 .
- 4. 由 $\kappa_6(\boldsymbol{x}, \boldsymbol{x}') = f(\boldsymbol{x})\kappa_1(\boldsymbol{x}, \boldsymbol{x}') f(\boldsymbol{x}')$ 定义的 κ_6

解:

五. (20 points) 主成成分分析

 $x \in \mathbb{R}^d$ 是一个随机向量,其均值和协方差分别是 $\mu = \mathbb{E}(x) \in \mathbb{R}^d$, $\Sigma = \mathbb{E}(x - \mu_x)(x - \mu_x)^{\top} \in \mathbb{R}^{d \times d}$. 定义随机变量 $\{y_i = u_i^{\top}x + a_i \in \mathbb{R}, i = 1, \dots, d' \leq d\}$ 为 x 的主成分,其中 $u_i \in \mathbb{R}^d$ 是单位向量 $(u_i^{\top}u_i = 1)$, $a_i \in \mathbb{R}$, $\{y_i\}_{i=1}^{d'}$ 是互不相关的零均值随机变量,它们的方差满足 $\operatorname{var}(y_1) \geq \operatorname{var}(y_2) \geq \cdots \geq \operatorname{var}(y_{d'})$. 假设 Σ 没有重复的特征值.

1. 请证明 $\{a_i = -\boldsymbol{u}_i^{\mathsf{T}} \boldsymbol{\mu}\}_{i=1}^{d'}$.

- 2. 请证明 u_1 是 Σ 最大的特征值对应的特征向量. (提示: 写出要最大化的目标函数,写出约束条件,使用拉格朗日乘子法)
- 3. 请证明 $\mathbf{u}_{2}^{\mathsf{T}}\mathbf{u}_{1} = 0$,且 \mathbf{u}_{2} 是 Σ 第二大特征值对应的特征向量. (提示: 由 $\{y_{i}\}_{i=1}^{d}$ 是互不相关的零均值随机变量可推出 $\mathbf{u}_{2}^{\mathsf{T}}\mathbf{u}_{1} = 0$,可作为第二小问的约束条件之一)
- 4. 通过 PCA 进行降维,得到的随机变量满足 $var(y_1) \ge var(y_2) \ge \cdots \ge var(y_d)$,也就是降维后的数据在不同维度上有不同的方差,从而导致不同维度的数值范围差异很大,如果想要降维后的样本在不同维度具有大致相同的数值范围,应该怎么做?

HT	
10:2	•
111/15	
/47	