import numpy as np import pandas as pd

df = pd.read_csv("penguins_size.csv")

df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	=
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE	ıl.
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE	
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE	
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE	

from matplotlib import rcParams import seaborn as sns

sns.distplot(df.culmen_length_mm)

<ipython-input-38-24e9b5890c61>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.culmen_length_mm)
<Axes: xlabel='culmen_length_mm', ylabel='Density'>

sns.jointplot(x='culmen_length_mm',y='culmen_depth_mm',data=df)

sns.pairplot(df)

df.describe() culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g 342.000000 342.000000 342.000000 count 342.000000 43.921930 17.151170 200.915205 4201.754386 mean 14.061714 801.954536 std 5,459584 1.974793 min 32,100000 13.100000 172.000000 2700.000000 15.600000 190.000000 3550.000000 25% 39,225000 197.000000 4050.000000 50% 44.450000 17.300000 75% 48.500000 18.700000 213.000000 4750.000000 59.600000 21.500000 231.000000 6300.000000 max df.isnull().sum() species island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g 10 dtype: int64 df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)
df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)
df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True) df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True) df['sex'].fillna(df['sex'].mode().iloc[0],inplace=True) df.isnull().sum() species island
culmen_length_mm
culmen_depth_mm
flipper_length_mm body_mass_g sex dtype: int64 sns.boxplot(df.culmen_length_mm)

sns.boxplot(df.culmen_depth_mm)

sns.boxplot(df.flipper_length_mm)

sns.boxplot(df.body_mass_g)

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

df['sex']=le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit_transform(df['island'])
df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	2	39.10	18.7	181.0	3750.0	2
1	0	2	39.50	17.4	186.0	3800.0	1
2	0	2	40.30	18.0	195.0	3250.0	1
3	0	2	44.45	17.3	197.0	4050.0	2
4	0	2	36.70	19.3	193.0	3450.0	1
4							•

df.corr().species.sort_values(ascending=False)

species flipper_length_mm body_mass_g culmen_length_mm 1.000000 0.850819 0.747547 0.728706 -0.003823 island -0.635659 culmen_depth_mm -0.741282 Name: species, dtype: float64

X=df.drop(columns=['species'],axis=1)

X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	\blacksquare
0	2	39.10	18.7	181,0	3750.0	2	ıl.
1	2	39.50	17.4	186.0	3800.0	1	
2	2	40.30	18.0	195.0	3250.0	1	
3	2	44.45	17.3	197.0	4050.0	2	
4	2	36.70	19.3	193.0	3450.0	1	

Y=df['species']
Y.head()

Name: species, dtype: int64

from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()

X_new=pd.DataFrame(mms.fit_transform(X),columns=X.columns)

X_new.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	\blacksquare
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0	th
1	1.0	0.269091	0.511905	0.237288	0.305556	0.5	
2	1.0	0.298182	0.583333	0.389831	0.152778	0.5	
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0	
1	1.0	0.167273	0.738005	0.355032	0.308333	0.5	

from sklearn.model_selection import train_test_split X_train,X_test,Y_train,Y_test = train_test_split(X_new,Y,test_size=0.2,random_state=42)

X_train.shape

(275, 6)

X_test.shape

(69, 6)

Y_train.shape

(275,) Y_test.shape

(69,)

✓ 0s completed at 6:36 PM