COMP 2711 Discrete Mathematical Tools for Computer Science 2022 Fall Semester – Tutorial 7

Question 1: Find the integer a such that

- (a) $a \equiv -15 \pmod{27}$ and -26 < a < 0.
- (b) $a \equiv 24 \pmod{31}$ and $-15 \le a \le 15$.
- (c) $a \equiv 99 \pmod{41}$ and $100 \le a \le 140$.

Solution: (a) -15.

- (b) 24 31 = -7.
- (c) 99 + 41 = 140.

Question 2: Use the extended Euclidean algorithm to express gcd(26, 91) as a linear combination of 26 and 91.

Solution : First find gcd(26, 91):

$$91 = 26 \cdot 3 + 13$$

$$26 = 13 \cdot 2 + 0$$

So,
$$gcd(26, 91) = 13$$
.

Rewriting:

$$13 = 91 - 26 \cdot 3$$

So,
$$(-3) \cdot 26 + 1 \cdot 91 = 13$$

Question 3: Prove that if $a - c \mid ab + cd$ then $a - c \mid ad + bc$

Solution : We know that $a-c \mid a-c \implies a-c \mid (a-c)(b-d) \implies a-c \mid ab+cd-bc-ad \implies a-c \mid (ab+cd)-(ad+bc)$. Also based on the question we know that $a-c \mid ab+cd$. So we conclude that $a-c \mid ad+bc$

Question 4: assume a, b are non-zero integers. Prove that:

- (a) gcd(a,b) = gcd(a,b+ka) for any $k \in \mathbb{Z}$.
- (b) $gcd(na, nb) = n \cdot gcd(a, b)$ for any $n \in \mathbb{N}$.

Solution : (a) Solution 1: Based on Euclidean algorithm we have gcd(b + ka, a) = gcd(a, b).

Solution 2: Assume d = gcd(a, b) and d' = gcd(a, b + ka). We know $d \mid a$ and $d \mid a + kb$ (why?). So $d \mid d'$. On the other hand $d' \mid a \implies d' \mid ka$. We Also know $d' \mid ka + b$. So this implies that $d' \mid (b + ka) - ka \implies d' \mid b$. Thus $d' \mid d$. So d = d'.

(b) Assume d = gcd(a, b) and d' = gcd(an, bn). This means $d \mid a \implies dn \mid an$ and also $d \mid b \implies dn \mid bn$. These two implies that $dn \mid gcd(an, bn)$. This implies that d' = dnc for some integer c.

We also know that $d' \mid na \implies dnc \mid na \implies dc \mid a$ and similarly we can show $dc \mid b$. This proves $dc \mid gcd(a,b) \implies dc \mid d \implies c = 1$. So $gcd(an,bn) = d' = ndc = nd = n \cdot gcd(a,b)$

Question 5: Prove that the following fraction can not be simplified for any $n \in N$.

$$\frac{21n+4}{14n+3}$$

Solution : Solution 1: Based on Euclidean algorithm we have gcd(21n+4, 14n+3) = gcd(14n+3, 7n+1) = gcd(7n+1, 1) = 1.

Solution 2: Assume d is their gcd. $d \mid 21n + 4 \implies d \mid 42n + 8$. Also $d \mid 14n + 3 \implies d \mid 42n + 9$

So $d \mid (42n+9) - (42n+8) \implies d \mid 1$. The only possible value for d is 1 which means they are co-prime with each other. So this fraction can not be simplified.

- **Question 6:** (a) Prove that gcd(n, n + 1) = 1 for any natural number n
 - (b) Prove that there are infinitely many prime numbers. (Hint: Use part a)
 - **Solution:** (a) Let us assume d = gcd(n, n+1). This means $d \mid n$ and $d \mid n+1$. This implies $d \mid (n+1) n \implies d \mid 1$. which means d = 1.
 - (b) Assume that there are only finitely many prime numbers $p_1, p_2, ..., p_k$. Let $n = p_1 \cdot p_2 \cdot ... \cdot p_k$. Also assume that N = n + 1. We know that gcd(n, n + 1) = 1. If N is prime then this is in contradiction with our assumption. Because N is bigger than the biggest prime number p_k . If N is not prime then it means that it has prime factors which are not in $p_1, p_2, ..., p_k$. Because their gcd is 1. So this also contradicts our assumption because we assumed that $p_1, p_2, ..., p_k$ contains all the possible prime values.