Baltian tie 2009

Trondheim, 7. marraskuuta, 2009

Aikaa: $4\frac{1}{2}$ tuntia.

Kysymyksiä voi esittää ensimmäisten 30 minuutin aikana.

Tehtävä 1. Astetta $n \ge 2$ olevalla polynomilla p(x) on täsmälleen n reaalista juurta, joista osa voi olla moninkertaisia. Tiedämme, että termin x^n kerroin on 1, kaikki juuret ovat yhtä suuria tai pienempiä kuin 1 ja $p(2) = 3^n$. Mitä arvoja voi p(1) saada?

Tehtävä 2. Epänegatiiviset kokonaisluvut $a_1, a_2, \ldots, a_{100}$ toteuttavat epäyhtälön

$$a_1(a_1-1)\cdots(a_1-20) + a_2(a_2-1)\cdots(a_2-20) + \cdots + a_{100}(a_{100}-1)\cdots(a_{100}-20) \le 100\cdot 99\cdot 98\cdots 79.$$

Osoita, että $a_1 + a_2 + \cdots + a_{100} \le 9900$.

Tehtävä 3. Olkoon n annettu positiivinen kokonaisluku. Osoita, että on mahdollista valita kertoimet $c_k \in \{-1,1\}$ $(1 \le k \le n)$ siten, että

$$0 \le \sum_{k=1}^{n} c_k \cdot k^2 \le 4.$$

Tehtävä 4. Määritä kaikki kokonaisluvut n > 1, joilla epäyhtälö

$$x_1^2 + x_2^2 + \dots + x_n^2 \ge (x_1 + x_2 + \dots + x_{n-1}) x_n$$

pätee kaikilla reaaliluvuilla x_1, x_2, \ldots, x_n .

Tehtävä 5. Olkoon $f_0 = f_1 = 1$ ja $f_{i+2} = f_{i+1} + f_i$ $(i \ge 0)$. Ratkaise yhtälö

$$x^{2010} = f_{2009} \cdot x + f_{2008}$$

reaalilukujen joukossa.

Tehtävä 6. Olkoot a ja b sellaisia kokonaislukuja, että yhtälöllä $x^3 - ax^2 - b = 0$ on kolme kokonaislukujuurta. Osoita, että $b = dk^2$, missä d ja k ovat kokonaislukuja ja d jakaa luvun a.

Tehtävä 7. Oletetaan, että alkuluvulla p ja kokonaisluvuilla a, b, c seuraavat ehdot pätevät:

$$6 \mid p+1, p \mid a+b+c, p \mid a^4+b^4+c^4.$$

Osoita, että $p \mid a, b, c$.

Tehtävä 8. Määritä kaikki positiiviset kokonaisluvut n, joilla joukko

$${n, n+1, n+2, \ldots, n+8}$$

voidaan jakaa kahteen osaan niin, että ensimmäisen osan alkioiden tulo on sama kuin toisen osan alkioiden tulo.

Tehtävä 9. Määritä kaikki positiiviset kokonaisluvut n, joilla $2^{n+1} - n^2$ on alkuluku.

Tehtävä 10. Olkoon d(k) positiivisen kokonaisluvun k positiivisten tekijöiden lukumäärä. Osoita, että on olemassa äärettömän paljon positiivisia kokonaislukuja M, joita ei voida esittää muodossa

$$M = \left(\frac{2\sqrt{n}}{d(n)}\right)^2$$

millään positiivisella kokonaisluvulla n.

Tehtävä 11. Olkoon M kolmion ABC sivun AC keskipiste. K on piste puolisuoralla BA eri puolella pistettä A kuin B. Suora KM leikkaa sivun BC pisteessä L. Piste P on janalla BM niin, että PM on kulman LPK puolittaja. Suora ℓ kulkee pisteen A kautta ja on yhdensuuntainen suoran BM kanssa. Osoita, että pisteen M projektio suoralle ℓ on suoralla PK.

Tehtävä 12. Nelikulmiossa ABCD on $AB \parallel CD$ ja AB = 2CD. Suora ℓ on kohtisuora suoralle CD ja sisältää pisteen C. Ympyrä, jonka keskipiste on D ja säde DA leikkaa suoran ℓ pisteissä P ja Q. Osoita, että $AP \perp BQ$.

Tehtävä 13. Piste H on kolmion ABC korkeusjanojen leikkauspiste ja janat AD, BE, CF ovat kolmion korkeusjanat. Pisteet I_1, I_2, I_3 ovat kolmioiden EHF, FHD, DHE sisäänpiirrettyjen ympyröiden keskipisteet tässä järjestyksessä. Osoita, että suorat AI_1, BI_2, CI_3 leikkaavat yhdessä pisteessä.

Tehtävä 14. Millä $n \geq 2$ on mahdollista löytää n pareittain epäyhdenmuotoista kolmiota A_1, A_2, \ldots, A_n niin, että jokainen näistä voidaan jakaa n pareitttain epäyhdenmuotoiseen kolmioon, joista jokainen on yhdenmuotoinen yhden kolmioista A_1, A_2, \ldots, A_n kanssa.

Tehtävä 15. Yksikköneliö on jaettu m nelikulmioon Q_1, \ldots, Q_m . Olkoon S_i nelikulmion Q_i kaikkien sivujen neliöiden summa jokaisella $i = 1, \ldots, m$. Osoita, että

$$S_1 + \ldots + S_m \ge 4$$
.

Tehtävä 16. Trondheimilainen n-hoipertelu on kävely, joka lähtee pisteestä (0,0), ei leikkaa itseään ja päätyy pisteeseen (2n,0). Lisäksi hoipertelija pysyy koordinaatiston ensimmäisessä neljänneksessä ja jokainen askel on yksi vektoreista

(1,1), (1,-1) ja (-1,1). (Kuvassa on esitetty kaikki trondheimilaiset 2-hoipertelut.) Kuinka monta trondheimilaiset n-hoipertelua on olemassa?

Tehtävä 17. Etsi suurin n, jolla on olemassa n erisuurta kokonaislukua, joista yksikään ei ole jaollinen yhdelläkään luvuista 7, 11 ja 13, mutta minkä tahansa kahden luvun summa on jaollinen ainakin yhdellä luvuista 7, 11 ja 13.

Tehtävä 18. Olkoon n > 2 kokonaisluku. Eräässä maassa on n kaupunkia ja jokaisen kahden välissä on suora tie. Jokaisella tiellä on luku joukosta $\{1, 2, ..., m\}$ (kahdella tiellä voi olla sama luku). Kaupungin tärkeysindeksi on sinne johtavien teiden lukujen summa. Etsi pienin m, jolla kaikilla kaupungeilla voi olla eri tärkeysindeksi.

Tehtävä 19. Kahdeksan hengen juhlissa jokainen ihmispari joko tuntee tai ei tunne toisiaan. Jokainen ihminen tuntee täsmälleen kolme muuta. Voivatko seuraavat ehdot toteutua yhtä aikaa:

- missä tahansa kolmen hengen joukossa on ainakin kaksi, jotka eivät tunne toisiaan;
- missä tahansa neljän hengen joukossa on ainakin kaksi, jotka tuntevat toisensa.

Tehtävä 20. Tulevaisuuden Baltian Tie -kaupungissa on 16 sairaalaa. Joka yö täsmälleen neljä niistä päivystää. Onko mahdollista järjestää aikataulu niin, että 20 yön jälkeen mitkä tahansa kaksi sairaalaa olivat samassa päivystysvuorossa täsmälleen kerran?