Regression Vs. ANOVA: Is a main effect really a main effect?

Arthur Capelier-Mourguy

Lancaster University

17th of July 2018

Outline

- Introduction
 - Defining the problem
 - Content of this talk
- 2 Toy Example
 - Using categorical variables only
 - Using continuous variables
- Real Data Example
 - Methods
 - Results
- Conclusion

What you might see

We defined a regression model Score \sim Condition*PrePost.

What you might see We defined a regression model Score ~ Condition + PrePost + Condition: PrePost.

What you might see

We defined a regression model

 ${\tt Score} \sim {\tt Condition} + {\tt PrePost} + {\tt Condition} : {\tt PrePost}.$

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

What you might see

We defined a regression model

Score \sim Condition + PrePost + Condition:PrePost.

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

[Table with parameter estimates and statistics]

What you might see

We defined a regression model

Score \sim Condition + PrePost + Condition:PrePost.

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

[Table with parameter estimates and statistics]

- What does the regression model actually do?
- What do the parameter values in the table mean?
- What does "main effect" mean in the context of a regression?

What you might see

We defined a regression model

 ${\tt Score} \sim {\tt Condition} + {\tt PrePost} + {\tt Condition} : {\tt PrePost}.$

We found a significant main effect of Condition, with higher scores in the group A than in the group B.

[Table with parameter estimates and statistics]

- What does the regression model actually do?
- What do the parameter values in the table mean?
- What does "main effect" mean in the context of a regression?

All stats in R have the same syntax

What to expect from this talk?

What this talk is about

- Demonstrate how ANOVA and regression results differ
- Detail what parameters in a regression model mean and do

What to expect from this talk?

What this talk is about

- Demonstrate how ANOVA and regression results differ
- Detail what parameters in a regression model mean and do

What this talk is not about

- How to use R
- How to build a good mixed-effects model
- The p-value debate

The simulated data

Assessing stress levels after and before a 30 minutes intervention, "mindfulness meditation" or "video games".

The simulated data

Assessing stress levels after and before a 30 minutes intervention, "mindfulness meditation" or "video games".

ANOVA results

aov(StressLevel ~	Intervention*PrePost)			
Parameter	Sum Square	F value	Pr(> F)	
Intervention	114381	164.8	< 2e-16	
PrePost	185059	266.7	$< 2\mathrm{e}{-16}$	
Intervention:PrePost	102808	148.2	$< 2\mathrm{e}{-16}$	

ANOVA results

aov(StressLevel ~	<pre>Intervention*PrePost)</pre>			
Parameter	Sum Square	F value	Pr(>F)	
Intervention	114381	164.8	$< 2e{-16}$	
PrePost	185059	266.7	$< 2\mathrm{e}{-16}$	
Intervention: PrePost	102808	148.2	$<2\mathrm{e}{-16}$	

Regression results

<pre>lm(StressLevel ~ Intervention*PrePost)</pre>				
Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	150.703	3.725	40.453	< 2e-16
Intervention	2.484	5.269	0.472	0.638
PrePost	-106.182	5.269	-20.154	$< 2\mathrm{e}{-16}$
Intervention:PrePost	90.960	7.451	12.172	$< 2\mathrm{e}{-16}$

ANOVA results

aov(StressLevel ~	Intervention*PrePost)			
Parameter	Sum Square	F value	Pr(> F)	
Intervention	114381	164.8	< 2e - 16	
PrePost	185059	266.7	$< 2\mathrm{e}{-16}$	
Intervention: PrePost	102808	148.2	$<2\mathrm{e}{-16}$	

Regression results

<pre>lm(StressLevel ~ Intervention*PrePost)</pre>				
Parameter	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	150.703	3.725	40.453	< 2e-16
InterventionVideo Game	2.484	5.269	0.472	0.638
PrePostPost Intervention	-106.182	5.269	-20.154	$< 2\mathrm{e}{-16}$
Intervention:PrePost	90.960	7.451	12.172	$< 2\mathrm{e}{-16}$

Graphically understanding the regression results

Changes to the simulated data

Regression results

Graphically understanding the regression results

The experiment in a nutshell

Impact of the choice of reference levels

What's the take home message?