Nomenklatur

Su	hc	l ri	nt.
эu	มว	NΠ	υı.

 $\begin{array}{lll} L & \text{W\"{a}rmeleitungsspezifisch} \\ K/Konv. & \text{Konvektionsspezifisch} \\ i & \text{Schichtanzahl} \\ u & \text{Umgebung} \\ U & \text{Umfang} \\ R & \text{Rippenspezifisch} \end{array}$

Q Querschnitt flächenspezifisch

F Am Fuß der Rippe V Volumenspezifisch

Superskript:

flächenbezogenvolumenbezogen

zeitliche Ableitung (Wärmestrom, Massenstrom, Enthalpiestrom etc.)

Stationäre Wärmeleitung:

λ	Wärmeleitfähigkeit	[W/m K]
δ	Wanddicke	[m]
n	Summe der Schichtenanzahl	[-]
T	Temperatur	[K]
Α	Fläche	$[m^2]$
L	Länge	[m]
k	Wärmedurchgangskoeffizient	$[W/m^2K]$
Ċ	Wärmestrom	[W]
ġ"	Wärmestromdichte	$[W/m^2]$
η	Wirkungsgrad	[–]
W	Wärmewiderstand	[W/K]
m	Rippenparameter	[1/m]
heta	Übertemperatur bei Rippen	[K]

Wärmeleitung mit Quellen:

ф

Instationäre Wärmeleitung:

	ŭ	
U	Innere Energie	[J]
\mathcal{C}	Spezifische Wärmekapazität	[J/kg K]
$ heta^*$	Übertemperatur	[K]
Bi	Biot-Zahl	[-]

Wärmequellenstrom

Konvektion:

 α Konvektiver Wärmeübergang [W/m² K]

[W]

V 01: Einführung in das Thema Wärmeleitung

Lernziele:

- Verständnis der stationären und instationären Wärmeleitung
- Wärmeleitung mit Wärmequelle und -senke
- ➤ Berechnung des Wärmeflusses innerhalb eines Objektes
- > Temperaturverteilung innerhalb eines Objektes

Verständnisfragen:

□ Was ist das treibende Potential der Wärmeleitung?
□ Welche drei Einflussgrößen bestimmen einen durch Wärmeleitung übertragenen Wärmestrom gemäß des Fourierschen-Gesetzes?
□ Weshalb muss der Temperaturgradient in einem positiven Koordinatensystem ein negatives Vorzeichen besitzen?
□ Welche Stoffeigenschaft ist für die Wärmeleitung ausschlaggebend?

HQ 02: Fourier-Gesetz

Learning objectives:

- Develop a gut feeling for the heat conduction inside solid bodies
- Relation between temperature gradient and heat flux (Fourier 's law)
- > Ability to draw the temperature distribution inside solid bodies

HQ

Qaus

V 02: Herleitung der Energieerhaltungsgleichung

Lernziele:

- Aufstellen von Energiebilanzen für unterschiedliche Fälle
- Entwicklung einer Differentialgleichung aus der Energiebilanz unter Verwendung der Taylorreihenentwicklung
- Aufstellen notwendiger Randbedingungen
- Lösen der Differentialgleichung für einfache Fälle

- ☐ Welcher Temperaturverlauf stellt sich im stationären Zustand für eine homogene, eindimensionale, ebene Wand ohne Wärmequellen ein?
- ☐ Unter welchen Voraussetzungen wird die Poisson-Gleichung zur Laplace-Gleichung (Wärmeleitung)?

V 03: Wärmeleitung in einer mehrschichtigen ebenen Wand

Lernziele:

- Betrachtung eines beispielhaften Temperaturprofils einer mehrschichtigen Wand unter stationären Bedingungen
- Zusammenfassen der in Reihe geschalteten thermischen Widerstände zur Definition des Gesamtwiderstands

Verständnisfragen:

- ☐ Welches Temperaturprofil stellt sich in einer ebenen Wand ohne Wärmequellen und −senken im stationären Zustand ein?
- ☐ Unter welchen Voraussetzungen kann davon ausgegangen werden, dass der Wärmestrom in allen Schichten konstant bleibt?
- ☐ Wie ist der thermische Widerstand einer ebenen Wand definiert? Wie kann der thermische Widerstand für eine Wand aus n Schichten berechnet werden.

V 04: Wärmeleitung im zylindrischen Koordinatensystem

Lernziele:

- Schematischer Temperatur-, Querschnitts- und Wärmstromverlauf
- Herleitung der DGL über Energiebilanzen
- Mathematische Lösung der DGL
- Erweiterung der Gleichung auf mehrere Widerstände
- Vereinfachung des Problems (ingenieurmäßige Vorgehensweise)

r_{n+1}

Verständnisfragen:

- ☐ Welches Temperaturprofil stellt sich für zylindrische Körper ein?
- ☐ Worin unterscheidet sich der Temperaturverlauf eines zylindrischen Körpers im Vergleich zum Temperaturverlauf in einer ebenen Wand? Was ist der Grund dafür?
- Unter welchen Voraussetzungen kann die Krümmung des Rohres und damit die Änderung der Fläche innerhalb der Rohrwand vernachlässigt werden?

HQ 03: Multi-layer systems

Learning objectives:

- > Temperature kink at the crossover of different materials
- Direction of slope change at the temperature kink

V 05: Einführung in die Konvektion

Lernziele:

- Was ist Konvektion?
- Was ist ein Wärmeübergangskoeffizient und was setzt dieser in Relation?

Verständnisfragen:

- ☐ Was ist Konvektion und wie lässt sich diese empirisch beschreiben?
- ☐ Welche Krümmung weist das Temperaturprofil auf der Fluidseite aufgrund von Konvektion auf?

V 06: Wärmeleitung in einer mehrschichtigen ebenen Wand mit Konvektion

Lernziele:

- ➤ Wie verläuft das Temperaturprofil in einer mehrschichtigen, ebenen Wand unter Berücksichtigung von Konvektionswiderständen?
- ➤ Wie stellt sich der Gesamtwiderstand in einer mehrschichtigen ebenen Wand mit Konvektion dar?
- Wie lässt sich der Wärmestrom in einer mehrschichtigen ebenen Wand mit Konvektion berechnen?

Verständnisfragen:

☐ Welchen Einfluss hat die zusätzliche Berücksichtigung der Konvektion auf den Gesamtwärmeübergang?

V 07: Wärmeleitung in einer mehrschichtigen Rohrwand mit Konvektion

Lernziele:

- Wie ändert sich die Fläche in einer mehrschichtigen Rohrwand?
- Wie sieht das Temperaturprofil in einer mehrschichtigen Rohrwand aus?
- Wie wird der thermische Gesamtwiderstand in einer mehrschichtigen Rohrwand berechnet?
- Wie wird der Wärmestrom in einer mehrschichtigen Rohrwand berechnet?

WK,B

Verständnisfragen:

☐ Wie beeinflusst die gekrümmte Oberfläche eines Rohres den Temperaturgradienten bei konstantem Wärmestrom und konstanter Wärmeleitfähigkeit?

V 08: Beispiel: Rohr im Heizungssystem

Lernziele:

 Erlernen der Vorgehensweise zur Berechnung von Wärmewiderständen und Wärmeströmen in einer Rohrwand

Verständnisfragen:

- ☐ Welche vereinfachende Annahme kann bei der Berechnung des Wärmeflusses durch eine Rohrwand getroffen werden?
- ☐ Welcher Widerstand bestimmt den Wärmedurchgang (-skoeffizienten) ?

V 09: Einführung in das Thema Rippen

Lernziele:

- Was sind Rippen?
- Welche Wärmetransportprozesse finden bei der Berechnung des Wärmeübergangs an Rippen Berücksichtigung?
- Qualitativer Verlauf des Temperaturprofils in einer Rippe.
- > Aufstellen der Energiebilanz für Rippen
- Herleitung der Differentialgleichung für Rippen

Verständnisfragen:

- ☐ Was sind Rippen und wozu werden diese eingesetzt?
- ☐ Welche Wärmeströme werden in der Herleitung der Rippen-DGL berücksichtigt?
- ☐ Wie verläuft das Temperaturprofil in einer Rippe (aus physikalischen Überlegungen)?

V 10: Biot-Zahl

Lernziele:

- Charakterisierung der relevanten thermischen Widerstände durch die Definition einer dimensionslosen Kennzahl.
- Vereinfachen von komplexen mehrdimensionalen Wärmeleitungsproblemen auf Basis der problembestimmenden thermischen Widerstände.

Verständnisfragen:

□ Welche Information liefert die Biot - Zahl?
□ Welche Annahmen dürfen bei Bi≪1 getroffen werden?
□ Ist die Biot-Zahl für ein Rippenproblem hoch oder niedrig?

V 11: Lösung der Rippen DGL

Lernziele:

- Homogenisierung der Rippen DGL
- Allgemeine Lösung der DGL
- Interpretation des Rippenparameters m für verschiedene Rippengeometrien
- Erkennen und Umsetzen unterschiedlicher Randbedingungen für das Rippenproblem

Verständnisfragen:

- ☐ Welcher Ansatz zur Lösung der inhomogenen Rippen-DGL kann verwendet werden?
- ☐ Welche Parameter beeinflussen den Rippenparameter m?
- ☐ Welche gängigen Randbedingungen lassen sich zur Lösung des Temperaturverlaufs in der Rippe verwenden?

V 12: Rippenwirkungsgrad

Lernziele:

- Rippenmaterial
- Rippengeometrie
- Rippenwirkungsgrad-Bedeutung

Verständnisfragen:

- ☐ Welchen Zusammenhang beschreibt der Rippenwirkungsgrad?
- ☐ Was ist die Annahme für die theoretisch maximal übertragbare Wärme einer Rippe?
- ☐ Wie lässt sich der Rippenwirkungsgrad erhöhen?

HQ 04: Fins

Learning objectives:

- Purpose of fins
- Temperature profile in fin-like structures
- > Importance of resistances (Biot number)

V 13: Stationäre Wärmeleitung mit Quelle

Lernziele:

- Wie wird eine Quelle/Senke berücksichtigt?
- Herleitung der DGL über Energiebilanzen
- Definition von Randbedingungen
- Lösung der DGL durch einsetzen der RB.
- Finale DGL
- Berechnung der Maximal- und Minimaltemperatur in einem Körper

Verständnisfragen:

$\ \square$ Welches Temperaturprofil stellt sich für zylindrische Körper mit Quelle	ein?
---	------

- ☐ Welche unterschiedlichen Randbedingungen können an der Zylinderoberfläche existieren?
- ☐ Wie wird die produzierte Wärme über die Zylinderoberfläche abgeführt?
- ☐ Wie lassen sich Minimal- und Maximaltemperatur ermitteln?

HQ 05: Heat sources and sinks

Learning objectives:

- > Temperature profile in bodies with heat sources and heat sinks
- > Influence of symmetry boundary conditions
- Meaning of adiabatic walls

V 14: Einführung in die instationäre Wärmeleitung

Lernziele:

- Verständnis und Abstraktion des Problems
- Problemreduktion und Auswahl der geeigneten Lösungsstrategie
- Ent-Dimensionierung des Problems
- Dimensionslose Kennzahlen
- Mathematisches Lösen der DGL

- ☐ Unter welcher Voraussetzung ist die Temperatur innerhalb eines Körpers als homogen anzunehmen? Welche dimensionslose Kennzahl kann hierfür herangezogen werden?
- ☐ Was beschreibt die Fourier-Zahl?

V 15: Beispiel Fieberthermometer

Lernziele:

Anwendungsbeispiel für Objekte mit sehr hoher Wärmeleitfähigkeit

Verständnisfragen:

- Aus Sicherheitsgründen werden Quecksilber-Thermometer im Handel nicht mehr angeboten. Auch Thermometer mit Alkoholfüllung sind kaum noch gebräuchlich. Weshalb? Welche Nachteile weisen diese Meßgeräte auf?
- ☐ Die derzeit eingesetzten Standardgeräte sind digitale Thermometer. Wie wird damit die Körpertemperatur bestimmt?

V 16a: Halbunendlichen Platten

Lernziele:

- Verständnis der eingesetzten Randbedingungen von halbunendlichem K\u00f6rper mit aufgepr\u00e4gter Wandtemperatur
- Lösung des Problems mittels tabellarischer Fehlerfunktion
- Verständnis der eingesetzten Randbedingungen von halbunendlichem Körper mit nichtvernachlässigbarem Wärmeübergangswiderstand

- ☐ Was ist unter einem halbunendlichen Körper zu verstehen und wie ist dieser definiert?
- ☐ Welche zwei dimensionslosen Kennzahlen beschreiben den instationären Temperaturverlauf innerhalb eines (halbunendlichen) Körpers mit relevantem konvektivem Widerstand?
- ☐ Was ist unter der thermischen Eindringtiefe zu verstehen?

V 16b: Halbunendliche Platten

Lernziele:

Periodische Probleme mit Periodischer Änderung der Randbedingung

Verständnisfragen:

- ☐ Wie ändert sich die Amplitude der Temperaturschwingung innerhalb der Wand?
- ☐ Wie lässt sich die Phasenverschiebung der Temperaturschwingung erklären?

V 17: Dimensionslose Kennzahlen und Heisler Diagramme

Lernziele:

- Bedeutung dimensionsloser Kennzahlen, insbesondere der Fourier- und Biot-Zahl für den instationären Wärmetransport
- Verständnis der Heisler Diagramme zur Bestimmung der Körperkerntemperatur, des örtlichen Temperaturverlaufs und des Wärmestroms.
- > Anwendung der Heisler Diagramme

- ☐ Durch welche beiden Kennzahlen ist das instationäre Wärmeübertragungsproblem eines Körpers mit zusätzlichem äußerem thermischem Widerstand beschrieben?
- ☐ Welches Hilfsmittel erlaubt eine Bestimmung des Temperaturverlaufs oder der übertragenen Wärmemenge für ausgedehnte Platten, lange Zylinder oder Kugeln?

