Exercício Reconhecimento de Padrões - CNN

Lucas Ribeiro da Silva - 2022055564

Universidade Federal de Minas Gerais Belo Horizonte - Minas Gerais - Brasil

lucasrsilvak@ufmg.br

1 Introdução

Neste relatório, implementaremos o método CNN e deve modificaremos a arquitetura e os hiperparâmetros para testar experimentalmente como redes neurais convolucionais funcionam e tentar melhorar sua capacidade de realizar a tarefa de classicação. Experimentaremos outras arquiteturas CNN empilhando camadas convolucionais adicionais ou ajustando a largura, tamanho do kernel e profundidade dos filtros ou realizando outras modificações.

2 CNN original

A CNN original tinha as seguintes camadas implementadas:

E possuía os seguintes resultados:

Métrica	Valor
Acurácia	14,34%
Perda	$2,\!2867$

com os seguintes gráficos de acurácia e loss:

Figura 1: Acurácia e Loss

com os seguintes resultados de filtros:

Figura 2: Filtros

3 CNN modificada

A CNN modificada tem as seguintes camadas implementadas:

Utilizando-se também de um número de épocas maior (25) contra o número da CNN anterior (5). Também foram adicionados mais neurônios em cada passo.

3.1 Resultados

A seguir, os resultados da CNN modificada.

Métrica	Valor
Loss	0.0267
Acurácia	99,42%

Tabela 1: Resultados da CNN otimizada no conjunto de teste.

com os gráficos a seguir de acurácia e perda:

Figura 3: Acurácia e Loss

E com os seguintes filtros:

Filtros da Primeira Camada Convolucional

Figura 4: Filtros

4 Conclusões

A alteração de parâmetros da CNN, como optimizer, número de época e quais camadas foram implementadas permitiu uma melhoria significativa da CNN. O ajuste das informações foi fundamental para um melhor resultado da CNN e para uma maior compreensão dos temas estudados em sala.