

Description

The VSM80N07 uses advanced trench technology and design to provide excellent $R_{\rm DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

General Features

- $V_{DS} = 75V, I_D = 80A$ $R_{DS(ON)} < 8m\Omega @ V_{GS} = 10V (Typ: 6.5m\Omega)$
- Special process technology for high ESD capability
- Special designed for Convertors and power controls
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

TO-247

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N07-T7	VSM80N07	TO-247	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	75	V	
Gate-Source Voltage	Vgs	±25	V	
Drain Current-Continuous	I _D	80	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	60	Α	
Pulsed Drain Current	I _{DM}	320	А	
Maximum Power Dissipation	P _D	180	W	
Peak diode recovery voltage	dv/dt	30	V/ns	
Derating factor		1.2	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	600	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to- Case (Note 2)	R _{θJc}	0.83	°C/W	Ì
--	------------------	------	------	---

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics		•	•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	75	84	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±25V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)		•	•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	2.85	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A	-	6.5	8	mΩ
Forward Transconductance	g Fs	V _{DS} =5V,I _D =30A	-	66	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}		-	4400	-	PF
Output Capacitance	C _{oss}	$V_{DS}=25V,V_{GS}=0V,$	-	340	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	260	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	17.8	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_D =2A, R_L =15 Ω	-	11.8	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	56	-	nS
Turn-Off Fall Time	t _f		-	14.6	-	nS
Total Gate Charge	Qg)/ 04)/ 40A	-	100	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=24V,I_{D}=40A,$ $V_{GS}=10V$	-	20	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	30	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 75A	-	35.6	50	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	-	56	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.3mH, ID=62A

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (curves)

Figure 1. Safe operating area

Figure2. Source-Drain Diode Forward Voltage

Figure 3. Output characteristics

Figure 4. Transfer characteristics

Figure 5. Static drain-source on resistance

Figure 7. BV_{DSS} vs Junction Temperature

Figure 8. $V_{\text{GS(th)}}$ vs Junction Temperature

Figure 9. Gate charge waveforms

Figure 10. Capacitance

Square Wave Pulse Duration (sec)