گزارش کار

تمرین کامپیوتری سوم تهید کنندگان: ملیکه احقاقی، سید علی طباطبایی ، کیمیا شریفی

چکیده

در این پروژه هدف پیاده سازی ساختار داخلی یک نورون عصبی به زبان ۷HDL در فضای Kilinx-Spartan3 و neuron_dp و neuron_dp و neuron_dp و neuron_controller و neuron_controller

در قسمت datapath ساختار زیر بیاده سازی شده است:

توجه شود که در یک نورون دو بردار ورودی به عنوان بردار ورودی ها و وزن ها داده می شود. بعد از ضرب دوبه دوی متناظر از اینها حاصل ضرب ها در یک سیگما جمع شده و پس از عبور از تابع فعال ساز relu خروجی به شکل زیر به دست خواهد آمد:

Activation Function:
$$f(Output) = \begin{cases} Output & Output > 0.5 \\ 0 & Output \leq 0.5 \end{cases}$$

برای پیاده سازی این بخش سه و احد اصلی شامل MAC ،input_selection و activation_function پیاده سازی شده است که جزئیات مربوط به آن ها در ادامه آمده است.

جهت پیاده سازی بخش کنترلر نیز از FSM زیر استفاده شده است و فرآیند عملکرد نورون به state های زیر تقسیم شده است:

تنظيمات ISE:

Family: Spartan 3Device: XC3S400Package: PQ208

 \circ Speed:-4

واحد كنترلر:

تا زمانی که سیگنال start بیاید در state اولیه باقی می ماند و سپس با یک شدن سیگنال start وارد مرحله input خواهد شد که این جا سیگنال خروجی sel فعال می شود و به واحد input_selection در این مرحله غال می انتخاب ورودی جدید می دهد. و بدون شرطی وارد مرحله ی accumulation می گردد و ld در این مرحله فعال می شود. (توجه شود که در این بخش فرض شده عمل ضرب و جمع متوالی در یک کلاک پایان می یابد) در ادامه چک می شود که آیا تمام ورودی ها و وزن ها دیده شده اند یا خیر. بدین جهت یک upcounter در واحد datapath پیاده سازی شده است که با خواندن هر ورودی یکی افزوده می شود. اگر این عدد یعنی x از n که تعداد ورودی ها است بیشتر شود خروجی نهایی وارد activation_function می شود. بدین جهت سیگنال ready را فعال میکند. در نهایت با فرض این که کار بخش activation در یک کلاک به پایان می رسد در state نهایی خروجی done فعال می شود.

واحد datapth:

input_selection-

در این بخش جهت پارامتری کردن کد از روش unconstraint استفاده شده است به این صورت که در صورت نیاز به طول بردار ها از attribute به صورت استفاده شده است. به عنوان ورودی دو std_logic_vector به صورت یک بعدی داده شده است که هر بار که sel فعال شود به اندازه ی طول ورودی و وزن از بردار یک بعدی می خواند و به x یک و احد اضافه می نماید:

sel_in <= inputs(((1 + to_integer(unsigned(count))) * 16 - 1) downto
(to_integer(unsigned(count)) * 16));</pre>

sel_w <= weights(((1 + to_integer(unsigned(count))) * 16 - 1) downto
(to_integer(unsigned(count)) * 16));</pre>

multiplication -

۱۶ بیت اول حاصل ضرب به عنوان خروجی داده خواهد شد. توجه شود که ضرب علامت دار با کمک casting به فرم زیر انجام شده است:

tmp <= signed(a_in) * signed(b_in);</pre>

adder -

در این بخش نیز دو عدد را به صورت علامتدار sign extend می نماییم و حاصل جمع signed را محاسبه می کنیم. توجه شود که بیت شانز دهم overflow است.

tmp <= signed(in1(in1'left) & in1) + signed(in2(in2'left) & in2); add_ov <= tmp(n); add_result <= std_logic_vector(tmp(n-1 downto 0));</pre>

accumulation -

در واقع یک رجیستر است که در لبه ی بالارونده ورودی را روی خروجی می گذارد که ورودی است حاصل سیگما تا کنون است.

activation -

جهت پیاده سازی تابع فعالساز از relu استفاده شده است که در چکیده معرفی شده است. ورودی ها در سیستم ما signed جهت پیاده سازی تابع فعالساز از relu استفاده شده است که در این صورت نمایش 0.5 به فرم زیر خواهد بود:

signal const: signed(15 downto 0) := ("001" & (12 downto 0 => '0'));

نتايج تست

خروَجی ها در دوحالت کوچکتر از 0.5 و بزرگتر از 0.5 بررسی شده است. در حالت اول w=[-0.25,0.125,1]=w و in=[0.5,0.5,0.5] است. خروجی simulator در ادامه قابل مشاهده است:

neuron_dp Project Status (12/01/2018 - 22:24:15)				
Project File:	CA3.xise	Parser Errors:	No Errors	
Module Name:	neuron	Implementation State:	Synthesized	
Target Device:	xc3s400-4pq208	•Errors:	No Errors	
Product Version:	ISE 14.7	• Warnings:	7 Warnings (7 new)	
Design Goal:	Balanced	• Routing Results:		
Design Strategy:	Xilinx Default (unlocked)	• Timing Constraints:		
Environment:	System Settings	• Final Timing Score:		

Device Utilization Summary (estimated values)				
Logic Utilization	Used	Available	Utilization	
Number of Slices	91	3584		2%
Number of Slice Flip Flops	89	7168		1%
Number of 4 input LUTs	165	7168		2%
Number of bonded IOBs	116	141		82%
Number of MULT 18X 18s	1	16		6%
Number of GCLKs	1	8		12%

Detailed Reports [[-]
Report Name	Status	Generated	Errors	Warnings	Infos	
Synthesis Report	Current	Sat Dec 1 22:24:13 2018	0	7 Warnings (7 new)	0	
Translation Report						
Map Report						
Place and Route Report						
Power Report						
Post-PAR Static Timing Report						
Bitgen Report						

Secondary Reports			ы
Report Name	Status	Generated	
Report Name ISIM Simulator Log	Out of Date	Sat Dec 1 22:09:55 2018	
13314 Simulator Edg	Odt Of Date	38t Dec 1 22.05.33 2010	

Date Generated: 12/01/2018 - 22:24:15