

관계 중심의 사고법

쉽게 배우는 알고리즘

3장. 점화식과 알고리즘 복잡도 분석

Recurrence and Asymptotic Complexity Analysis

점화식

- 점화식(recurrence)
 - 어떤 함수를 자신보다 더 작은 변수에 대한 함수와의 관계로 표현한 것
- 예

$$-a_{n} = a_{n-1} + 2$$

$$-f(n) = n f(n-1)$$

$$-f(n) = f(n-1) + f(n-2)$$

$$-f(n) = f(n/2) + n = f\left(\left[\frac{n}{2}\right]\right) + n$$

병합정렬의 수행시간

```
mergeSort(A[], p, r)
   if (p < r) then {
       q ← (p+q)/2; ----- ① ▷ p, q의 중간 지점 계산
       mergeSort(A, p, q); ----- ② ▷ 전반부 정렬
       mergeSort(A, q+1, r); ----- ③ ▷ 후반부 정렬
       merge(A, p, q, r); ------ ④ ▷ 병합
merge(A[], p, q, r)
   정렬되어 있는 두 배열 A[p ... q]와 A[q+1 ... r]을 합하여
   정렬된 하나의 배열 A[p ... r]을 만든다.
}
```

수행시간의 점화식: T(n) = 2T(n/2) + 오버헤드

✓ 크기가 n인 병합정렬 시간은 크기가 n/2인 병합정렬을 2번 하고 나머지 오버헤드를 더한 시간이다

점화식의 점근적 분석 방법

1. 반복대치 (Iteration)

더 작은 문제에 대한 함수로 반복해서 대치해 나가는 해법

2. 추정후 증명 (Guess & Verification)

결론을 추정하고 수학적 귀납법으로 이용하여 증명하는 방법

3. 마스터 정리 (Master Theorem)

- 형식에 맞는 점화식의 복잡도를 바로 알 수 있다

Assumption

- 1. For all T(n), n is positive integers
- 2. All functions are monotonically nondecreasing
 - $T(n) \leq T(m) \ \forall n < m$
- 3. If we need, we can WLOG assume $n = a^k$ for any polynomial asymptotic function

1. 반복대치

$$T(n) = T(n-1) + n$$
$$T(1) = 1$$

$$T(n) = T(n-1) + n$$

$$= (T(n-2) + (n-1)) + n$$

$$= (T(n-3) + (n-2)) + (n-1) + n$$
...
$$= T(1) + 2 + 3 + ... + n$$

$$= 1 + 2 + ... + n$$

$$= n(n+1)/2$$

$$= \Theta(n^2)$$

반복대치

$$T(n) = 2T(n/2) + n$$
$$T(1) = 1$$

Assume
$$n = 2^k$$

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/2^{2}) + n/2) + n = 2^{2}T(n/2^{2}) + 2n$$

$$= 2^{2}(2T(n/2^{3}) + n/2^{2}) + 2n = 2^{3}T(n/2^{3}) + 3n$$
...
$$= 2^{k}T(n/2^{k}) + kn$$

$$= n + n\log n$$

$$= \Theta(n\log n)$$

다른 예: 반복대치

$$T(n) = n + 3T(\frac{n}{4})$$
 Assume $n = 4^k$
 $T(n) = n + 3T(\frac{n}{4})$

$$= n + 3(\frac{n}{4} + 3T(\frac{n}{4^2})) = n + \frac{3}{4}n + 3^2T(\frac{n}{4^2})$$

$$= n + \frac{3}{4}n + 3^2(\frac{n}{4^2} + 3T(\frac{n}{4^3})) = n + \frac{3}{4}n + (\frac{3}{4})^2n + 3^3T(\frac{n}{4^3})$$
...
$$= n + \frac{3}{4}n + (\frac{3}{4})^2n + \cdots + 3^{\log_4 n}T(\frac{n}{4^{\log_4 n}})$$

$$\leq n \sum_{i=0}^{\infty} (\frac{3}{4})^i + n^{\log_4 3}\Theta(1)$$

$$= 4n + o(n) \qquad \text{GIM o(n)} \cong \text{ 집합이 아니고}$$

$$= \Theta(n) \qquad \text{O(n)} \iff \text{O(1)} \iff \text{O(2)} \iff \text{O(2)} \iff \text{O(3)} \iff \text{O(4)} \iff \text{$$

2. 추정후 증명

$$T(n) = 2T(n/2) + n$$

추정:
$$T(n) = O(n \log n)$$
, 즉 $T(n) \le c n \log n$

$$T(n)$$
 = $2T(n/2) + n$ 기납적 대치(inductive substitution)
 $\leq 2c(n/2)\log(n/2) + n$
= $cn\log n - cn\log 2 + n$
= $cn\log n + (-c\log 2 + 1)n$
 $\leq cn\log n$ 이를 만족하는 c 가 존재한다
Choose e.g., $c = 2$, $n_0 = 2$

Reminder: $O(n\log n) = \{f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t. } \forall n \ge n_0, f(n) \le cn\log n \}$

추정후 증명: 다른 예

$$T(n) = 2T(\frac{n}{2} + 17) + n$$

조전 : $T(n) = O(11 - 10)$

추정: $T(n) = O(n \log n)$, 즉 $T(n) \le c n \log n$

<증명>

$$T(n) = 2T(\frac{n}{2} + 17) + n$$

$$\leq 2c(\frac{n}{2} + 17)\log(\frac{n}{2} + 17) + n \qquad \frac{n}{2} + 17 < n, 34 < n$$

$$= c(n+34)\log(\frac{n}{2} + 17) + n$$

$$\leq c(n+34)\log\frac{3n}{4} + n \qquad \frac{n}{2} + 17 \leq \frac{3n}{4}, 68 \leq n$$

$$= cn\log n + cn\log\frac{3}{4} + 34c\log\frac{3n}{4} + n$$

$$= cn\log n + n(\cos\frac{3}{4} + 1) + 34c\log\frac{3n}{4} \qquad \leq 0$$

$$\leq cn\log n \text{ for sufficiently large } n$$
Choose $c = 5$

조심! c 값의 일관성

앞에서 $= c(n+34)\log(\frac{n}{2}+17) + n$ $\le c(n+34)\log n + n$ $= cn\log n + 34c\log n + n$ $\ne dn\log n \text{ (X)} \qquad \qquad \text{새로운 상수 도입!}$

추정후 증명: 직관과 배치되는 예

$$T(n) = 2T(n/2) + 1$$

추정:
$$T(n) = O(n)$$
, 즉 $T(n) \le cn$

<증명>

$$T(n) = 2T(n/2) + 1$$
 $\leq 2\underline{c(n/2)} + 1$ \leftarrow 귀납적 대치 $= cn + 1$ \leftarrow 더 이상 진행 불가!

1차이로 불가능

 $\leq cn - 2$

직관과 배치되지만...

직관에 따르면...

추정:
$$T(n) \le cn+2$$
<증명>
$$T(n) = 2T(n/2) + 1$$

$$\le 2(c(n/2) + 2) + 1 \longrightarrow \text{귀납적 대치}$$

$$= cn + 5$$

$$\le cn + 2$$

We can always verify any claim for a small enough n (e.g., n = 2)

e.g.
$$T(n) = 10T(n/10) + n$$
, $T(1) = 1$

Guess $T(n) \le cn \log n$ \longleftarrow $O()$
 $\ge cn \log n$ \longleftarrow $\Omega()$
 $\rightarrow T(10) = 10T(1) + 10 = 20 \le c10 \log 10$
 $\ge c10 \log 10$

Thus we don't have to explicitly prove the boundary cases in Guess & Verification

3. 마스터 정리

• $T(n) = aT(\frac{n}{b}) + f(n)$ 와 같은 모양을 가진 점화식은 마스터 정리에 의해 바로 결과를 알 수 있다

배경

```
Given a recurrence,

T(1) = 1

T(n) = a T(\frac{n}{b}) + f(n) for n > 1,

where

a, b are positive constants

f(n) = O(g(n)) for some polynomial ft g(n)
```

$$T(n) = f(n) + aT(\frac{n}{b})$$
 Assume $n = b^k$

$$= f(n) + a(f(\frac{n}{b}) + aT(\frac{n}{b^2}))$$

$$= f(n) + a(f(\frac{n}{b}) + a(f(\frac{n}{b^2}) + aT(\frac{n}{b^3}))$$

$$\cdots$$

$$= \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i}) + a^k T(\frac{n}{b^k})$$

$$= \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i}) + n^{\log_b a}$$
 $a^k = a^{\log_b n} = n^{\log_b a}$

- Particular solution
- Cost of all overheads

- Homogeneous solution
- Cost of solving the boundary subproblems of size 1
- Time complexity 분석의 잣대가 됨

마스터 정리

- $T(n) = aT(\frac{n}{b}) + f(n)$
- $n^{\log_b a} = h(n)$ 이라하자
- ① 어떤 양의 상수 ϵ 에 대하여 $\frac{f(n)}{h(n)} = O(\frac{1}{n^{\epsilon}})$ 이면 $T(n) = \Theta(h(n))$
- ② 어떤 양의 상수 ε 에 대하여 $\frac{f(n)}{h(n)} = \Omega(n^{\varepsilon})$ 이고, 충분히 큰모든 n에 대해 $af(\frac{n}{b}) < f(n)$ 이면

$$T(n) = \Theta(f(n))$$

③
$$\frac{f(n)}{h(n)}$$
= $\Theta(1)$ 이면

$$T(n) = \Theta(h(n)\log n)$$

마스터 정리의 직관적 의미

- ① h(n)이 더 무거우면 h(n)이 수행시간을 결정한다.
- ② f(n)이 더 무거우면 f(n)이 수행시간을 결정한다.
- ③ h(n)과 f(n)이 같은 무게이면 h(n)에 $\log n$ 을 곱한 것이 수행시간이 된다.

마스터 정리의 적용 예

•
$$T(n) = 2T(\frac{n}{3}) + c$$

- $a=2, b=3, h(n) = n^{\log_3 2}, f(n) = c$
- $T(n) = \Theta(h(n)) = \Theta(n^{\log_3 2})$

•
$$T(n) = 2T(\frac{n}{4}) + n$$

- $a=2, b=4, h(n) = n^{\log_4 2}, f(n) = n$ and $2f(\frac{n}{4}) = \frac{n}{2} < n = f(n)$
- $T(n) = \Theta(f(n)) = \Theta(n)$

•
$$T(n) = 2T(\frac{n}{2}) + n$$

- $a=2, b=2, h(n) = n^{\log_2 2} = n, f(n) = n$
- $T(n) = \Theta(h(n)\log n) = \Theta(n\log n)$

Matrix multiplication

- Want to multiply two $n \times n$ matrices $A \times B$
- **Strassen Algorithm** C = AB, $c_{ij} = \sum_{i=1}^{n} a_{ik} b_{kj} \rightarrow \Theta(n^3)$

•
$$C = AB$$
, $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \rightarrow \Theta(n^3)$

 \circ Divide the matrices into four $\frac{n}{2} \times \frac{n}{2}$ matrices

Then C = AB can be rewritten as

$$\frac{\binom{r}{t} \binom{s}{u}}{\binom{t}{u}} = \frac{\binom{a}{b} \binom{e}{f}}{\binom{c}{d}} \binom{e}{g} \binom{f}{h}$$

where
$$r = ae + bf$$

 $s = ag + bh$
 $t = ce + df$
 $u = cg + dh$

$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
 by master's theorem $T(n) = \Theta(n^3)$. $n^{\log_2 8} = n^3$

Strassen's algorithm

$$P_i = A_i B_i = (\alpha_{i1}a + \alpha_{i2}b + \alpha_{i3}c + \alpha_{i4}d)(\beta_{i1}e + \beta_{i2}f + \beta_{i3}g + \beta_{i4}h)$$

$$\begin{array}{ll} P_1 = a(g-h) & r = P_5 + P_4 - P_2 + P_6 \\ P_2 = (a+b)h & s = P_1 + P_2 \\ P_3 = (c+d)e & t = P_3 + P_4 \\ P_4 = d(f-e) & u = P_5 + P_1 - P_3 - P_7 \\ P_5 = (a+d)(e+h) & \end{array}$$

$$P_6 = (b-d)(f+h)$$

$$P_7 = (a-c)(e+g)$$

The time
$$T(n) = 7T(\frac{n}{2}) + \Theta(n^2)$$

by master theorem $T(n) = \Theta(n^{\log_2 7})$