B07607001 鄭鈞瀚

Google Colab 線上版本: 🙌 Open in Colab

Excel Data: Google Drive Folder

## 設定亂數種子

```
seed = 0
encode_string = "率慈是我們的偶像,我愛風險管理"

for character in encode_string:
seed += ord(character)
print(f"Seed: {seed}")
```

```
1 | Seed: 452122
```

# **Import Third-Party Packages**

```
1 # 移除無用警告
2 import warnings
3 warnings.filterwarnings('ignore')
5 # Pandas: 資料處理用途
6 import pandas as pd
7 # Matplotlib: 資料視覺化
8 import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "sans-serif"
plt.rcParams["font.sans-serif"] = ["Helvetica"]
plt.rcParams["axes.unicode_minus"] = False
plt.style.use("seaborn")
15 from IPython.display import set_matplotlib_formats
16
17 %matplotlib inline
18 set_matplotlib_formats("svg")
19
20 # Sklearn: 迴歸分析, MSE
21 from sklearn.linear_model import LinearRegression
22 from sklearn.metrics import mean_squared_error
23 # Seaborn: 資料視覺化
24 import seaborn as sns
25 sns.set(rc={'figure.figsize':(11.7,8.27)})
26 # Numpy: 數學計算, 統計亂數
27 import numpy as np
28 # statsmodels: 統計
29 import statsmodels.api as sm
```

```
from google.colab import drive
drive.mount('/content/gdrive')
```

```
1 | Mounted at /content/gdrive
```

Log-normal 轉換

```
 \bullet \quad \mu = \ln(\frac{m}{\sqrt{1 + \frac{v}{m^2}}}) 
 \bullet \quad \sigma = \sqrt{\ln(1 + \frac{v}{m^2})}
```

```
def lognorm_params(mode: float, stddev: float):

"""

Transform mode and std to lognormal's form

Args:
mode(float): 平均數
stddev(float): 標準差
Return:
mu(float): Log-normal 平均數
```

# Step 0

資料來源: USDA ERS - Fruit and Tree Nuts Yearbook Tables

```
content_df =
  pd.read_excel("https://www.ers.usda.gov/webdocs/DataFiles/54499/FruitYearbookCitrusFruit_CTables.xlsx?v=5599.5",
  sheet_name="Content")
content_df = content_df.rename(columns={"Citrus Fruit: Production, bearing acreage, yield per acre, equivalent-on-tree returns, and juice stock, pack, and movement": "Content"})
content_df
```

```
dataframe tbody tr th {
   vertical-align: top;
}

dataframe thead th {
   text-align: right;
}
```

|    | Content                                      |
|----|----------------------------------------------|
| 0  | Table C-1Grapefruit: Bearing acreage and yie |
| 1  | Table C-2Grapefruit: Production by State, 19 |
| 2  | Table C-3Grapefruit: Utilization of producti |
| 3  | Table C-4Grapefruit: Equivalent-on-tree retu |
| 4  | Table C-5All grapefruit: Monthly equivalent  |
| 5  | Table C-6All grapefruit: Monthly equivalent  |
| 6  | Table C-7All grapefruit: Monthly equivalent  |
| 7  | Table C-8All grapefruit: Monthly equivalent  |
| 8  | Table C-9All grapefruit: Monthly equivalent  |
| 9  | Table C-10Processed grapefruit: Florida, 198 |
| 10 | Table C-11Frozen concentrated grapefruit jui |
| 11 | Table C-12Chilled grapefruit juice: Processo |
| 12 | Table C-13Lemons: Acreage, yield per acre, a |
| 13 | Table C-14Lemons: Utilization of production, |
| 14 | Table C-15All lemons: Equivalent-on-tree ret |
| 15 | Table C-16All lemons: Monthly equivalent-on  |
| 16 | Table C-17All lemons: Monthly equivalent-on  |
| 17 | Table C-18All lemons: Monthly equivalent-on  |
| 18 | Table C-19Oranges: Bearing acreage and yield |
| 19 | Table C-20Oranges: Production by State, 1980 |
| 20 | Table C-21Oranges: Utilization of production |
| 21 | Table C-22All oranges: Equivalent-on-tree re |
| 22 | Table C-23All oranges: Monthly equivalent-on |
| 23 | Table C-24All oranges: Monthly equivalent on |
| 24 | Table C-25All oranges: Monthly equivalent on |
| 25 | Table C-26All oranges: Monthly equivalent on |
| 26 | Table C-27All oranges: Monthly equivalent on |
| 27 | Table C-28Processed oranges: Florida, 1980/8 |
| 28 | Table C-29Frozen concentrated orange juice:  |
| 29 | Table C-30Chilled orange juice: Processors'  |

# **Question 1**

Background - What are the varieties in Citrus fruit category? What are the primary production states?

資料中共包含 Grapefruit, Lemon 和 Orange 三種作物作物,以下將分項探討

# Grapefruit

在 Grapefruit 類別中,我們可以觀察到 Florida 是最大的生產州,其佔了77.8%的生產比例

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Production.xlsx", sheet_name="Grapefruit")
df.describe()
```

```
1  .dataframe tbody tr th {
2    vertical-align: top;
3  }
4  
5  .dataframe thead th {
6    text-align: right;
7  }
```

|       | Florida     | California | Texas      | Arizona    | United States |
|-------|-------------|------------|------------|------------|---------------|
| count | 40.000000   | 40.000000  | 38.000000  | 29.000000  | 40.000000     |
| mean  | 1475.393750 | 225.346875 | 206.857895 | 46.333879  | 1923.963750   |
| std   | 734.766114  | 56.410301  | 99.068482  | 36.551684  | 793.000968    |
| min   | 164.900000  | 150.750000 | 2.600000   | 0.837500   | 508.900000    |
| 25%   | 815.468750  | 175.550000 | 177.500000 | 5.360000   | 1224.968750   |
| 50%   | 1738.250000 | 207.700000 | 210.000000 | 46.900000  | 2174.625000   |
| 75%   | 2108.406250 | 268.837500 | 243.000000 | 77.000000  | 2610.000000   |
| max   | 2371.500000 | 329.750000 | 556.000000 | 107.000000 | 2912.000000   |

# Grapefruit Production by State



## Lemon

在 Lemon 類別中,我們可以觀察到僅有 California 和 Arizona 兩州生產,其中以 California 生產較多

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Production.xlsx", sheet_name="Lemon")
df.describe()
```

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|       | California  | Arizona    | United States |
|-------|-------------|------------|---------------|
| count | 40.000000   | 40.000000  | 40.000000     |
| mean  | 761.900000  | 125.200000 | 887.025000    |
| std   | 111.416935  | 58.738971  | 118.492775    |
| min   | 562.000000  | 30.000000  | 619.000000    |
| 25%   | 692.250000  | 83.000000  | 798.000000    |
| 50%   | 783.000000  | 114.000000 | 897.000000    |
| 75%   | 827.000000  | 147.000000 | 963.250000    |
| max   | 1028.000000 | 270.000000 | 1189.000000   |





# Orange

在 Orange 類別中,Florida 仍為最大生產州,占 75.3% 比例

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Production.xlsx", sheet_name="Orange")
2 df.describe()
```

```
1 .dataframe tbody tr th {
2    vertical-align: top;
3  }
4    .dataframe thead th {
6    text-align: right;
7  }
```

|       | Florida      | California  | Texas      | Arizona    | United States |
|-------|--------------|-------------|------------|------------|---------------|
| count | 40.000000    | 40.000000   | 38.000000  | 29.000000  | 40.000000     |
| mean  | 6739.762500  | 2133.965625 | 75.921184  | 54.960345  | 8985.172125   |
| std   | 2319.255266  | 362.916848  | 50.547718  | 33.809086  | 2407.400116   |
| min   | 2027.250000  | 961.000000  | 1.275000   | 9.375000   | 3875.150000   |
| 25%   | 5336.000000  | 1931.812500 | 58.745625  | 22.100000  | 7569.337500   |
| 50%   | 6459.750000  | 2173.500000 | 68.743750  | 59.000000  | 8929.012500   |
| 75%   | 8376.750000  | 2388.750000 | 78.332500  | 71.250000  | 10613.250000  |
| max   | 10980.000000 | 2853.750000 | 252.450000 | 142.000000 | 13670.000000  |

## Orange Production by State



# **Question 2**

Derive returns per acre for each Citrus fruit for each state – Pay attention to the footnotes under Tables, you will be able to derive this value. One Annual Summary is in the Folder, which you can use to double check your answer. Next, divide this returns by usage purpose, fresh and processing, by using the data on utilization (Think how you can do it). Run simple regression of returns per acre on years and states. Concisely explain the potential year and state effects on revenues, albeit it's not the farm level

Hint: What do you need to do in cleaning data given prices across years? Because this is the supply-side information, what's the inflation adjustment base for agricultural commodities compared to the common Consumer Price Index? Use 2015 as the base year. Here we assume fresh fruit is dominant in the marketplace, use category rather than single variety as your reference, and match with the starting year in the production information. Locate data on US Bureau of Labor Statistics: <a href="https://www.bls.gov">https://www.bls.gov</a>. Specify clearly what data you choose to use to COMBINE with the Citrus Fruits production data from Question 1. Argue why we cannot simply draw the data from the same source on ERS, at the Food Prices Outlook section: <a href="https://www.ers.usda.gov/data-products/food-price-outlook/">https://www.ers.usda.gov/data-products/food-price-outlook/</a>

## Return per acre

結果請參見 Excel Data

# **Simple Regression**

## Grapefruit

Import Grapefruit data and adjust data

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Grapefruit")

del df["Dollars / Box"]

del df["PPI (2015 base)"]

del df["Box weight (pounds)"]

del df["Yield per acre (tons)"]

del df["Bearing acre (1000 acre)"]

del df["Total Return"]

# Drop N/A

df=df.dropna()

df.dtypes
```

```
State object
Year int64
Return per acre float64
dtype: object
```

## State and Year as x input

```
1  X = pd.get_dummies(data=df, columns=["State", "Year"], drop_first=True)
2  del X["Return per acre"]
3  X
```

```
1  .dataframe tbody tr th {
2    vertical-align: top;
3  }
4    .dataframe thead th {
6    text-align: right;
7  }
```

|     | State_California | State_Florida | State_Texas | State_United<br>States | Year_1981 | Year_1982 | Year_1983 | Year_1984 | Year_1985 | Year_1986 |
|-----|------------------|---------------|-------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0   | 0                | 1             | 0           | 0                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 1   | 0                | 1             | 0           | 0                      | 1         | 0         | 0         | 0         | 0         | 0         |
| 2   | 0                | 1             | 0           | 0                      | 0         | 1         | 0         | 0         | 0         | 0         |
| 3   | 0                | 1             | 0           | 0                      | 0         | 0         | 1         | 0         | 0         | 0         |
| 4   | 0                | 1             | 0           | 0                      | 0         | 0         | 0         | 1         | 0         | 0         |
|     |                  |               |             |                        |           |           |           |           |           |           |
| 195 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 196 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 197 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 198 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 199 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |

186 rows × 43 columns

## Return per acre as y output

```
1 | Y = df["Return per acre"]
2 | Y
```

```
1 0 3047.627644
2 1 1665.700072
3 2 1284.080973
4 3 1975.512948
5 4 2856.280529
6 ...
7 195 3228.826006
8 196 3019.524219
9 197 2250.321514
10 198 2156.769673
11 199 2734.720986
12 Name: Return per acre, Length: 186, dtype: float64
```

#### Subsets

在這裡我們取 80% 作為訓練樣本,20% 作為測試

```
from sklearn.model_selection import train_test_split

# Random state as seed

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=2021)
```

### **Linear Regression**

**Model Training** 

```
model = LinearRegression()
model.fit(X_train, y_train)
```

```
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

```
1 | print(model.intercept_)
```

```
1 | 1267.5086559183246
```

Model Prediction

```
predictions = model.predict(X_test)
ax = sns.regplot(y_test, predictions)
ax.set(xlabel="Actual Value", ylabel="Predict Value")
```

```
1 [Text(0, 0.5, 'Predict Value'), Text(0.5, 0, 'Actual Value')]
```



## **Model Summary**

- 1 X\_train\_Sm= sm.add\_constant(X\_train)
  2 ls=sm.OLS(y\_train,X\_train\_Sm).fit()
- 3 ls.summary()

## OLS Regression Results

| Dep. Variable:    | Return per acre  | R-squared:          | 0.701    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.577    |
| Method:           | Least Squares    | F-statistic:        | 5.658    |
| Date:             | Sat, 05 Jun 2021 | Prob (F-statistic): | 2.78e-13 |
| Time:             | 05:28:21         | Log-Likelihood:     | -1200.7  |
| No. Observations: | 148              | AIC:                | 2489.    |
| Df Residuals:     | 104              | BIC:                | 2621.    |
| Df Model:         | 43               |                     |          |
| Covariance Type:  | nonrobust        |                     |          |

|                     | coef      | std err | t      | P> t  | [0.025    | 0.975]   |
|---------------------|-----------|---------|--------|-------|-----------|----------|
| const               | 1267.5087 | 581.870 | 2.178  | 0.032 | 113.638   | 2421.379 |
| State_California    | 2483.5988 | 294.748 | 8.426  | 0.000 | 1899.103  | 3068.094 |
| State_Florida       | 703.4064  | 278.897 | 2.522  | 0.013 | 150.344   | 1256.469 |
| State_Texas         | 259.5028  | 285.035 | 0.910  | 0.365 | -305.732  | 824.737  |
| State_United States | 917.4532  | 278.897 | 3.290  | 0.001 | 364.391   | 1470.516 |
| Year_1981           | -937.7082 | 741.102 | -1.265 | 0.209 | -2407.342 | 531.925  |
| Year_1982           | -657.8642 | 741.786 | -0.887 | 0.377 | -2128.854 | 813.126  |
| Year_1983           | -568.8666 | 706.891 | -0.805 | 0.423 | -1970.658 | 832.924  |
| Year_1984           | 1609.9503 | 790.810 | 2.036  | 0.044 | 41.744    | 3178.157 |
| Year_1985           | 645.8796  | 706.891 | 0.914  | 0.363 | -755.911  | 2047.671 |
| Year_1986           | 1250.1952 | 706.891 | 1.769  | 0.080 | -151.596  | 2651.986 |
| Year_1987           | 1278.9353 | 737.708 | 1.734  | 0.086 | -183.968  | 2741.838 |
| Year_1988           | 81.2096   | 792.461 | 0.102  | 0.919 | -1490.270 | 1652.689 |
| Year_1989           | 1615.5066 | 737.708 | 2.190  | 0.031 | 152.603   | 3078.410 |
| Year_1990           | 904.0498  | 737.708 | 1.225  | 0.223 | -558.853  | 2366.953 |
| Year_1991           | 177.1634  | 741.786 | 0.239  | 0.812 | -1293.827 | 1648.153 |
| Year_1992           | 461.3198  | 741.786 | 0.622  | 0.535 | -1009.670 | 1932.310 |
| Year_1993           | 98.8177   | 737.849 | 0.134  | 0.894 | -1364.365 | 1562.001 |
| Year_1994           | -95.8786  | 796.498 | -0.120 | 0.904 | -1675.363 | 1483.606 |
| Year_1995           | -59.9813  | 742.522 | -0.081 | 0.936 | -1532.430 | 1412.467 |
| Year_1996           | -751.0041 | 741.786 | -1.012 | 0.314 | -2221.994 | 719.986  |
| Year_1997           | 46.7989   | 706.891 | 0.066  | 0.947 | -1354.992 | 1448.590 |
| Year_1998           | 546.6585  | 795.757 | 0.687  | 0.494 | -1031.357 | 2124.674 |
| Year_1999           | -84.3096  | 741.786 | -0.114 | 0.910 | -1555.300 | 1386.680 |
| Year_2000           | 534.6181  | 737.708 | 0.725  | 0.470 | -928.285  | 1997.521 |
| Year_2001           | 68.5540   | 796.498 | 0.086  | 0.932 | -1510.931 | 1648.038 |
| Year_2002           | 440.5185  | 737.849 | 0.597  | 0.552 | -1022.665 | 1903.702 |
| Year_2003           | 1269.1318 | 741.102 | 1.712  | 0.090 | -200.502  | 2738.765 |
| Year_2004           | 2289.3526 | 791.716 | 2.892  | 0.005 | 719.350   | 3859.355 |
| Year_2005           | 3247.4979 | 742.522 | 4.374  | 0.000 | 1775.050  | 4719.946 |
| Year_2006           | 715.1553  | 741.786 | 0.964  | 0.337 | -755.835  | 2186.145 |
| Year_2007           | 433.4555  | 742.522 | 0.584  | 0.561 | -1038.993 | 1905.904 |
| Year_2008           | 406.1011  | 792.461 | 0.512  | 0.609 | -1165.378 | 1977.581 |
| Year_2009           | 1131.9168 | 742.522 | 1.524  | 0.130 | -340.531  | 2604.365 |
| Year_2010           | 1693.2032 | 742.522 | 2.280  | 0.025 | 220.755   | 3165.651 |
| Year_2011           | 1819.9429 | 742.522 | 2.451  | 0.016 | 347.495   | 3292.391 |
| Year_2012           | 1022.6745 | 742.522 | 1.377  | 0.171 | -449.774  | 2495.123 |
| Year_2013           | 1099.7945 | 889.682 | 1.236  | 0.219 | -664.478  | 2864.067 |
| Year_2014           | 302.0534  | 797.207 | 0.379  | 0.706 | -1278.837 | 1882.944 |
| Year_2015           | 1417.4139 | 792.218 | 1.789  | 0.076 | -153.584  | 2988.412 |
| Year_2016           | 772.2831  | 797.207 | 0.969  | 0.335 | -808.608  | 2353.174 |
| Year_2017           | 177.6208  | 797.207 | 0.223  | 0.824 | -1403.270 | 1758.512 |
| Year_2018           | -32.6156  | 742.522 | -0.044 | 0.965 | -1505.064 | 1439.833 |
| Year_2019           | 272.8399  | 889.682 | 0.307  | 0.760 | -1491.432 | 2037.112 |

| Omnibus:       | 5.047 | Durbin-Watson:    | 1.955  |
|----------------|-------|-------------------|--------|
| Prob(Omnibus): | 0.080 | Jarque-Bera (JB): | 5.642  |
| Skew:          | 0.231 | Prob(JB):         | 0.0595 |
| Kurtosis:      | 3.838 | Cond. No.         | 49.9   |

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### Lemon

## Import Lemon data and adjust data

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Lemon")

del df["Dollars / Box"]

del df["PPI (2015 base)"]

del df["Box weight (pounds)"]

del df["Yield per acre (tons)"]

del df["Bearing acre (1000 acre)"]

del df["Total Return"]

# Drop N/A

df=df.dropna()

df.dtypes
```

```
State object
Year int64
Return per acre float64
dtype: object
```

## State and Year as x input

```
1  X = pd.get_dummies(data=df, columns=["State", "Year"], drop_first=True)
2  del X["Return per acre"]
3  X
```

```
1  .dataframe tbody tr th {
2    vertical-align: top;
3  }
4  
5  .dataframe thead th {
6    text-align: right;
7  }
```

|     | State_California | State_United<br>States | Year_1981 | Year_1982 | Year_1983 | Year_1984 | Year_1985 | Year_1986 | Year_1987 | Year_1988 | Υŧ |
|-----|------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----|
| 0   | 1                | 0                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |
| 1   | 1                | 0                      | 1         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |
| 2   | 1                | 0                      | 0         | 1         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |
| 3   | 1                | 0                      | 0         | 0         | 1         | 0         | 0         | 0         | 0         | 0         | 0  |
| 4   | 1                | 0                      | 0         | 0         | 0         | 1         | 0         | 0         | 0         | 0         | 0  |
|     |                  |                        |           |           |           |           |           |           |           |           |    |
| 112 | 0                | 1                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |
| 116 | 0                | 1                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |
| 117 | 0                | 1                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |
| 118 | 0                | 1                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |
| 119 | 0                | 1                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0  |

## Return per acre as y output

```
1 | Y = df["Return per acre"]
2 | Y
```

```
1 0 2084.738249
2 1 1185.511308
3 2 1018.211630
4 3 2428.000136
5 4 3619.092143
6 ...
7 112 6297.650897
8 116 9791.412146
9 117 7397.001644
10 118 6604.572912
11 119 7552.463230
12 Name: Return per acre, Length: 111, dtype: float64
```

### Subsets

在這裡我們取 80% 作為訓練樣本,20% 作為測試

```
from sklearn.model_selection import train_test_split

# Random state as seed

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=2021)
```

### **Linear Regression**

**Model Training** 

```
model = LinearRegression()
model.fit(X_train,y_train)
```

```
l LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

```
1 | print(model.intercept_)
```

```
1 -327.7689439490923
```

**Model Prediction** 

```
predictions = model.predict(X_test)
ax = sns.regplot(y_test, predictions)
ax.set(xlabel="Actual Value", ylabel="Predict Value")
```

```
1 [Text(0, 0.5, 'Predict Value'), Text(0.5, 0, 'Actual Value')]
```



## Model Summary

- X\_train\_Sm= sm.add\_constant(X\_train)
  ls=sm.OLS(y\_train,X\_train\_Sm).fit()
- 2 ls=sm.OLS(y\_1 3 ls.summary()

## OLS Regression Results

| Dep. Variable:    | Return per acre  | R-squared:          | 0.887    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.803    |
| Method:           | Least Squares    | F-statistic:        | 10.57    |
| Date:             | Sat, 05 Jun 2021 | Prob (F-statistic): | 1.20e-13 |
| Time:             | 05:28:22         | Log-Likelihood:     | -712.68  |
| No. Observations: | 88               | AIC:                | 1501.    |
| Df Residuals:     | 50               | BIC:                | 1595.    |
| Df Model:         | 37               |                     |          |
| Covariance Type:  | nonrobust        |                     |          |

|                     | coef      |           | std err  |                | t      | P> t  | [0.025    | 0.975]   |  |
|---------------------|-----------|-----------|----------|----------------|--------|-------|-----------|----------|--|
| const               | -327.7689 | )         | 630.870  |                | -0.520 | 0.606 | -1594.909 | 939.371  |  |
| State_California    | 3242.836  | 1         | 278.904  |                | 11.627 | 0.000 | 2682.642  | 3803.030 |  |
| State_United States | 2534.657  | 3         | 296.352  |                | 8.553  | 0.000 | 1939.418  | 3129.897 |  |
| Year_1981           | -817.3184 | ļ         | 862.310  |                | -0.948 | 0.348 | -2549.319 | 914.683  |  |
| Year_1982           | -158.2828 | 3         | 967.808  |                | -0.164 | 0.871 | -2102.183 | 1785.617 |  |
| Year_1983           | 87.0180   |           | 862.310  |                | 0.101  | 0.920 | -1644.983 | 1819.019 |  |
| Year_1984           | 1065.283  | 0         | 967.808  |                | 1.101  | 0.276 | -878.617  | 3009.183 |  |
| Year_1985           | 2930.054  | 1         | 862.310  |                | 3.398  | 0.001 | 1198.053  | 4662.055 |  |
| Year_1986           | 1049.974  | 7         | 968.240  |                | 1.084  | 0.283 | -894.793  | 2994.743 |  |
| Year_1987           | 1949.206  | 8         | 968.240  |                | 2.013  | 0.049 | 4.439     | 3893.975 |  |
| Year_1988           | 5.229e-13 | 3         | 2.23e-13 |                | 2.342  | 0.023 | 7.44e-14  | 9.71e-13 |  |
| Year_1989           | 3462.285  | 2         | 968.240  |                | 3.576  | 0.001 | 1517.517  | 5407.053 |  |
| Year_1990           | 3194.714  | 7         | 968.240  |                | 3.300  | 0.002 | 1249.947  | 5139.483 |  |
| Year_1991           | 1522.932  | 1         | 862.310  |                | 1.766  | 0.083 | -209.069  | 3254.933 |  |
| Year_1992           | 2968.367  | 2         | 862.310  |                | 3.442  | 0.001 | 1236.366  | 4700.368 |  |
| Year_1993           | 4265.615  | 8         | 1230.189 |                | 3.467  | 0.001 | 1794.708  | 6736.524 |  |
| Year_1994           | 3582.5887 |           | 862.310  |                | 4.155  | 0.000 | 1850.588  | 5314.590 |  |
| Year_1995           | 3321.3660 |           | 862.310  |                | 3.852  | 0.000 | 1589.365  | 5053.367 |  |
| Year_1996           | 3294.433  | 1         | 862.310  |                | 3.820  | 0.000 | 1562.432  | 5026.434 |  |
| Year_1997           | 2485.507  | 7         | 862.310  |                | 2.882  | 0.006 | 753.507   | 4217.509 |  |
| Year_1998           | 3671.300  | 4         | 968.240  |                | 3.792  | 0.000 | 1726.533  | 5616.068 |  |
| Year_1999           | 2510.831  | 6         | 862.310  |                | 2.912  | 0.005 | 778.831   | 4242.833 |  |
| Year_2000           | 2126.195  | 2         | 862.310  |                | 2.466  | 0.017 | 394.194   | 3858.196 |  |
| Year_2001           | 3929.742  | 4         | 862.310  |                | 4.557  | 0.000 | 2197.741  | 5661.743 |  |
| Year_2002           | 2187.788  | 6         | 967.808  |                | 2.261  | 0.028 | 243.888   | 4131.689 |  |
| Year_2003           | 3464.682  | 4         | 967.484  |                | 3.581  | 0.001 | 1521.433  | 5407.931 |  |
| Year_2004           | 2075.503  | 0         | 968.240  |                | 2.144  | 0.037 | 130.735   | 4020.271 |  |
| Year_2005           | 3652.528  | 0         | 968.240  |                | 3.772  | 0.000 | 1707.760  | 5597.296 |  |
| Year_2006           | 4441.719  | 2         | 968.240  |                | 4.587  | 0.000 | 2496.951  | 6386.487 |  |
| Year_2007           | 5891.760  | 8         | 862.310  |                | 6.833  | 0.000 | 4159.760  | 7623.762 |  |
| Year_2008           | 2229.619  | 6         | 862.310  |                | 2.586  | 0.013 | 497.619   | 3961.621 |  |
| Year_2009           | 3476.722  | 4         | 862.310  |                | 4.032  | 0.000 | 1744.721  | 5208.723 |  |
| Year_2010           | 3333.795  | 0         | 967.808  |                | 3.445  | 0.001 | 1389.895  | 5277.695 |  |
| Year_2011           | 4532.851  | 1         | 862.310  |                | 5.257  | 0.000 | 2800.850  | 6264.852 |  |
| Year_2012           | 4085.199  | 4085.1993 |          |                | 4.222  | 0.000 | 2141.950  | 6028.448 |  |
| Year_2016           | 6621.811  | 3         | 862.310  |                | 7.679  | 0.000 | 4889.810  | 8353.812 |  |
| Year_2017           | 2988.679  | 4         | 1230.189 |                | 2.429  | 0.019 | 517.772   | 5459.587 |  |
| Year_2018           | 3882.267  | 6         | 967.808  |                | 4.011  | 0.000 | 1938.367  | 5826.168 |  |
| Year_2019           | 4996.194  | 4         | 968.240  |                | 5.160  | 0.000 | 3051.426  | 6940.962 |  |
| Omnibus:            |           | 9.927     |          | Durbin-Watson: |        |       |           | 1.931    |  |

Jarque-Bera (JB):

Prob(JB):

Cond. No.

16.922

0.000212

2.25e+15

Prob(Omnibus):

Skew:

Kurtosis:

0.007

-0.388

5.003

## Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.15e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

## Orange

## Import Orange data and adjust data

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Orange")

del df["Dollars / Box"]

del df["PPI (2015 base)"]

del df["Box weight (pounds)"]

del df["Yield per acre (tons)"]

del df["Bearing acre (1000 acre)"]

del df["Total Return"]

# Drop N/A

df=df.dropna()

df.dtypes
```

```
State object
Year int64
Return per acre float64
dtype: object
```

### State and Year as x input

```
1  X = pd.get_dummies(data=df, columns=["State", "Year"], drop_first=True)
2  del X["Return per acre"]
3  X
```

```
dataframe tbody tr th {
   vertical-align: top;
}

dataframe thead th {
   text-align: right;
}
```

|     | State_California | State_Florida | State_Texas | State_United<br>States | Year_1981 | Year_1982 | Year_1983 | Year_1984 | Year_1985 | Year_1986 |
|-----|------------------|---------------|-------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0   | 0                | 1             | 0           | 0                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 1   | 0                | 1             | 0           | 0                      | 1         | 0         | 0         | 0         | 0         | 0         |
| 2   | 0                | 1             | 0           | 0                      | 0         | 1         | 0         | 0         | 0         | 0         |
| 3   | 0                | 1             | 0           | 0                      | 0         | 0         | 1         | 0         | 0         | 0         |
| 4   | 0                | 1             | 0           | 0                      | 0         | 0         | 0         | 1         | 0         | 0         |
|     |                  |               |             |                        |           |           |           |           |           |           |
| 195 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 196 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 197 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 198 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |
| 199 | 0                | 0             | 0           | 1                      | 0         | 0         | 0         | 0         | 0         | 0         |

187 rows × 43 columns

Return per acre as y output

```
1 Y = df["Return per acre"]
2 Y
```

```
1 0 2567.386245
2 1 2035.498171
3 2 2864.777683
4 3 3006.075006
5 4 3587.829189
6 ...
7 195 2728.517987
8 196 2552.293214
9 197 2102.370287
10 198 1765.674552
11 199 2332.952008
12 Name: Return per acre, Length: 187, dtype: float64
```

#### Subsets

在這裡我們取 80% 作為訓練樣本,20% 作為測試

```
from sklearn.model_selection import train_test_split

# Random state as seed

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=2021)
```

### **Linear Regression**

**Model Training** 

```
1 model = LinearRegression()
2 model.fit(X_train,y_train)
```

```
1 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

```
1 | print(model.intercept_)
```

```
1 840.6136643330105
```

Model Prediction

```
predictions = model.predict(X_test)
ax = sns.regplot(y_test, predictions)
ax.set(xlabel="Actual Value", ylabel="Predict Value")
```

```
1 [Text(0, 0.5, 'Predict Value'), Text(0.5, 0, 'Actual Value')]
```



## **Model Summary**

- X\_train\_Sm= sm.add\_constant(X\_train)
  ls=sm.OLS(y\_train,X\_train\_Sm).fit()
- 2 ls=sm.OLS(y\_1 3 ls.summary()

## OLS Regression Results

| Dep. Variable:    | Return per acre  | R-squared:          | 0.766    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.670    |
| Method:           | Least Squares    | F-statistic:        | 7.979    |
| Date:             | Sat, 05 Jun 2021 | Prob (F-statistic): | 2.69e-18 |
| Time:             | 05:28:23         | Log-Likelihood:     | -1145.1  |
| No. Observations: | 149              | AIC:                | 2378.    |
| Df Residuals:     | 105              | BIC:                | 2510.    |
| Df Model:         | 43               |                     |          |
| Covariance Type:  | nonrobust        |                     |          |

|                     | coef      | std err | t      | P> t  | [0.025    | 0.975]   |
|---------------------|-----------|---------|--------|-------|-----------|----------|
| const               | 840.6137  | 377.445 | 2.227  | 0.028 | 92.210    | 1589.018 |
| State_California    | 1966.6375 | 186.268 | 10.558 | 0.000 | 1597.303  | 2335.972 |
| State_Florida       | 981.3090  | 175.813 | 5.582  | 0.000 | 632.704   | 1329.914 |
| State_Texas         | 58.9841   | 180.015 | 0.328  | 0.744 | -297.952  | 415.920  |
| State_United States | 1246.0397 | 175.485 | 7.101  | 0.000 | 898.085   | 1593.995 |
| Year_1981           | 798.0564  | 482.584 | 1.654  | 0.101 | -158.819  | 1754.932 |
| Year_1982           | 916.6288  | 482.973 | 1.898  | 0.060 | -41.018   | 1874.276 |
| Year_1983           | 808.0932  | 460.243 | 1.756  | 0.082 | -104.484  | 1720.670 |
| Year_1984           | 1992.3485 | 514.945 | 3.869  | 0.000 | 971.307   | 3013.390 |
| Year_1985           | 289.6803  | 460.243 | 0.629  | 0.530 | -622.896  | 1202.257 |
| Year_1986           | 940.1767  | 460.243 | 2.043  | 0.044 | 27.600    | 1852.753 |
| Year_1987           | 1676.4033 | 480.327 | 3.490  | 0.001 | 724.004   | 2628.802 |
| Year_1988           | 422.0983  | 579.238 | 0.729  | 0.468 | -726.424  | 1570.620 |
| Year_1989           | 885.3599  | 480.327 | 1.843  | 0.068 | -67.039   | 1837.759 |
| Year_1990           | 1204.8794 | 480.327 | 2.508  | 0.014 | 252.480   | 2157.279 |
| Year_1991           | -130.2433 | 482.973 | -0.270 | 0.788 | -1087.890 | 827.404  |
| Year_1992           | 678.2736  | 482.973 | 1.404  | 0.163 | -279.373  | 1635.921 |
| Year_1993           | 741.9493  | 480.425 | 1.544  | 0.126 | -210.644  | 1694.543 |
| Year_1994           | 632.0436  | 518.503 | 1.219  | 0.226 | -396.052  | 1660.139 |
| Year_1995           | 951.1856  | 518.503 | 1.834  | 0.069 | -76.910   | 1979.281 |
| Year_1996           | 289.9612  | 482.973 | 0.600  | 0.550 | -667.686  | 1247.608 |
| Year_1997           | 708.5528  | 460.243 | 1.540  | 0.127 | -204.024  | 1621.130 |
| Year_1998           | 1768.0264 | 482.973 | 3.661  | 0.000 | 810.379   | 2725.673 |
| Year_1999           | -50.2961  | 482.973 | -0.104 | 0.917 | -1007.943 | 907.351  |
| Year_2000           | 880.8208  | 480.327 | 1.834  | 0.070 | -71.578   | 1833.220 |
| Year_2001           | 555.3257  | 518.503 | 1.071  | 0.287 | -472.770  | 1583.421 |
| Year_2002           | -232.1472 | 480.425 | -0.483 | 0.630 | -1184.741 | 720.446  |
| Year_2003           | 639.1568  | 482.584 | 1.324  | 0.188 | -317.719  | 1596.032 |
| Year_2004           | 24.1894   | 515.502 | 0.047  | 0.963 | -997.957  | 1046.336 |
| Year_2005           | 567.6734  | 460.243 | 1.233  | 0.220 | -344.903  | 1480.250 |
| Year_2006           | 1159.2493 | 482.973 | 2.400  | 0.018 | 201.602   | 2116.896 |
| Year_2007           | 327.0080  | 460.243 | 0.711  | 0.479 | -585.569  | 1239.585 |
| Year_2008           | 663.8122  | 515.771 | 1.287  | 0.201 | -358.867  | 1686.491 |
| Year_2009           | 1112.0453 | 483.253 | 2.301  | 0.023 | 153.845   | 2070.246 |
| Year_2010           | 1396.2496 | 483.253 | 2.889  | 0.005 | 438.049   | 2354.450 |
| Year_2011           | 2220.3259 | 483.253 | 4.595  | 0.000 | 1262.125  | 3178.526 |
| Year_2012           | 1484.2826 | 483.253 | 3.071  | 0.003 | 526.082   | 2442.483 |
| Year_2013           | 1412.9645 | 579.142 | 2.440  | 0.016 | 264.633   | 2561.296 |
| Year_2014           | 670.1000  | 518.868 | 1.291  | 0.199 | -358.719  | 1698.919 |
| Year_2015           | 787.0836  | 515.610 | 1.527  | 0.130 | -235.276  | 1809.443 |
| Year_2016           | 640.2859  | 518.868 | 1.234  | 0.220 | -388.534  | 1669.105 |
| Year_2017           | 314.4778  | 518.868 | 0.606  | 0.546 | -714.342  | 1343.297 |
| Year_2018           | -96.6592  | 483.253 | -0.200 | 0.842 | -1054.860 | 861.541  |
| Year_2019           | 30.8907   | 579.142 | 0.053  | 0.958 | -1117.441 | 1179.222 |

| Omnibus:       | 29.863 | Durbin-Watson:    | 1.834    |
|----------------|--------|-------------------|----------|
| Prob(Omnibus): | 0.000  | Jarque-Bera (JB): | 75.995   |
| Skew:          | 0.790  | Prob(JB):         | 3.15e-17 |
| Kurtosis:      | 6.121  | Cond. No.         | 49.9     |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

# **Question 3**

Derive utility levels for each Citrus fruit in each producing State, including US as a whole, using functions exhibiting CARA (one function) and CRRA (two functions). First to derive utilities, what might be the first assumption here given the available data at hand? For the CARA function, assume absolute risk aversion coefficient is 0.003, 0.001, 0.005. For CRRA function, assume r=0.1, 0.5, 0.9 for the function with a non-deterministic value for risk aversion coefficient. Use command twoway to compare utilities across different risk aversion levels under same function, and explain the graph if it makes sense. Under what production technologies, can we examine the utility levels with different levels of risk aversion? If functions represent production techniques, can we compare different technologies for the same fruit in one state or across states?

## First assumption

因原本 CARA 和 CRRA 函式中的 w 是指 wealth, 我們並沒有wealth的資料,只能使用 income 代替

## **CARA Utility**

Negative exponential:  $U = 1 - \exp(-cw)$ , c > 0

## Grapefruit

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Grapefruit")
```

#### Florida

```
sub_df = df[df["State"] == "Florida"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"])}
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.005})
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Florida')
```

```
1 Text(0.5, 1.0, 'Florida')
```



## California

```
sub_df = df[df["State"] == "California"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('California')
```

```
1 Text(0.5, 1.0, 'California')
```



#### Texas

```
sub_df = df[df["State"] == "Texas"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003

temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})

plot_df = plot_df.append(temp)

# c: 0.001

temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})

plot_df = plot_df.append(temp)

# c - 0.005

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df[
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Texas')
```

```
1 Text(0.5, 1.0, 'Texas')
```



## Arizona

```
sub_df = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})

plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})

plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```



### **United States**

```
sub_df = df[df["State"] == "United States"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```



## Lemon

1500

2000

2500

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Lemon")
```

3000

3500

4000

4500

## California

```
sub_df = df[df["State"] == "California"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('California')
```

```
1 | Text(0.5, 1.0, 'California')
```



### Arizona

2000

4000

```
sub_df = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"])}
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.005})
plot_df = plot_df.append(temp)
```

6000

8000

10000

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Arizona')
```

```
1 | Text(0.5, 1.0, 'Arizona')
```



### **United States**

```
sub_df = df[df["State"] == "United States"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"])}
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.005})
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```





## Orange

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Orange")
```

## Florida

```
sub_df = df[df["State"] == "Florida"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Florida')
```

```
1 | Text(0.5, 1.0, 'Florida')
```



## California

```
sub_df = df[df["State"] == "California"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003

temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})

plot_df = plot_df.append(temp)

# c: 0.001

temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})

plot_df = plot_df.append(temp)

# c - 0.005

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])

temp_utility = 1 - np.exp(-0.005 * su
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('California')
```

```
1 Text(0.5, 1.0, 'California')
```



#### Texas

```
sub_df = df[df["State"] == "Texas"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})
plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})
plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Texas')
```

```
1 Text(0.5, 1.0, 'Texas')
```



#### Arizona

```
sub_df = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})

plot_df = plot_df.append(temp)

temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})

plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_ pd.DataFrame({"w": sub_df["Return per acre"])}
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.005})

plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```



### **United States**

```
sub_df = df[df["State"] == "United States"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# c: 0.003
temp_utility = 1 - np.exp(-0.003 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.003})

plot_df = plot_df.append(temp)

# c: 0.001
temp_utility = 1 - np.exp(-0.001 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.001})

plot_df = plot_df.append(temp)

# c - 0.005
temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.005})

temp_utility = 1 - np.exp(-0.005 * sub_df["Return per acre"])
temp_epd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.005})

plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```



# **CRRA Utility - Logarithmic**

Logarithmic: \$U = In(w), w > 0\$
 for which \$r\_{a}(w) = w^{-1}\$ and \$r\_{r}(w) = 1.0\$.

## Grapefruit

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Grapefruit")
```

### Florida

```
temp = df[df["State"] == "Florida"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])

1 sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('Florida')
```

```
1 | Text(0.5, 1.0, 'Florida')
```



## California

```
temp = df[df["State"] == "California"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('California')
```

```
1 Text(0.5, 1.0, 'California')
```



## Texas

```
temp = df[df["State"] == "Texas"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('Texas')
```

```
1 Text(0.5, 1.0, 'Texas')
```



# Arizona

```
temp = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame()

plot_df["w"] = temp["Return per acre"]

plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```



## **United States**

```
temp = df[df["State"] == "United States"]
plot_df = pd.DataFrame()

plot_df["w"] = temp["Return per acre"]

plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```



# Lemon

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Lemon")
```

# California

```
temp = df[df["State"] == "California"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('California')
```

```
1 | Text(0.5, 1.0, 'California')
```



## Arizona

```
temp = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```



## **United States**

```
temp = df[df["State"] == "United States"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```



# Orange

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Orange")
```

# Florida

```
temp = df[df["State"] == "Florida"]
plot_df = pd.DataFrame()

plot_df["w"] = temp["Return per acre"]

plot_df["Utility"] = np.log(temp["Return per acre"])
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('Florida')
```

```
1 | Text(0.5, 1.0, 'Florida')
```



## California

```
temp = df[df["State"] == "California"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('California')
```

```
1 Text(0.5, 1.0, 'California')
```



# Texas

```
temp = df[df["State"] == "Texas"]
plot_df = pd.DataFrame()

plot_df["w"] = temp["Return per acre"]

plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('Texas')
```

```
1 Text(0.5, 1.0, 'Texas')
```



## Arizona

```
temp = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame()

plot_df["w"] = temp["Return per acre"]

plot_df["Utility"] = np.log(temp["Return per acre"])

1 sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```



## **United States**

```
temp = df[df["State"] == "United States"]
plot_df = pd.DataFrame()
plot_df["w"] = temp["Return per acre"]
plot_df["Utility"] = np.log(temp["Return per acre"])

sns.scatterplot(data=plot_df, x="w", y="Utility", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```



# **CRRA Utility - Power**

• Power:  $U = \frac{1}{1-r} \ w^{(1-r)}, w > 0$ for which  $r_{r} \ = r \ and \ r_{a} = r/w$ 

## Grapefruit

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Grapefruit")
```

#### Florida

```
sub_df = df[df["State"] == "Florida"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])

# r: 0.1

temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)

temp = pd.DataFrame(("w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})

plot_df = plot_df.append(temp)

# r: 0.5

temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)

temp = pd.DataFrame(("w": sub_df["Return per acre"] ** (1 - 0.5)

temp = pd.DataFrame(("w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})

plot_df = plot_df.append(temp)

# r - 0.9

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp = pd.DataFrame(("w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})

plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Florida')
```

```
1 Text(0.5, 1.0, 'Florida')
```



## California

```
sub_df = df[df["State"] == "California"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1

temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})

plot_df = plot_df.append(temp)

# r: 0.5

temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)

temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)

plot_df = plot_df.append(temp)

# r - 0.9

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('California')
```

```
1 Text(0.5, 1.0, 'California')
```





## Texas

```
sub_df = df[df["State"] == "Texas"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1
temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)
# r: 0.5
temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)}
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})
plot_df = plot_df.append(temp)
# r - 0.9
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Texas')
```

```
1 Text(0.5, 1.0, 'Texas')
```

Texas



#### Arizona

```
sub_df = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1

temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)

# r: 0.5

temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)}

plot_df = plot_df.append(temp)

# r - 0.9

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) *
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```





#### **United States**

```
sub_df = df[df["State"] == "United States"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1

temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})

plot_df = plot_df.append(temp)

# r: 0.5

temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)

temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})

plot_df = plot_df.append(temp)

# r - 0.9

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.9)

temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})

plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```

#### United States



## Lemon

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Lemon")
```

# California

```
sub_df = df[df["State"] == "California"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1
temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)
# r: 0.5
temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})
plot_df = plot_df.append(temp)
# r - 0.9
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('California')
```

```
1 | Text(0.5, 1.0, 'California')
```





#### Arizona

```
sub_df = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1

temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)

# r: 0.5

temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)}

plot_df = plot_df.append(temp)

# r - 0.9

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) ** (1/(1 - 0.9)) *
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```



2000

#### **United States**

1000

```
sub_df = df[df["State"] == "United States"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1
temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)
# r: 0.5
temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)
plot_df = plot_df.append(temp)
# r - 0.9
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)
```

W

3000

4000

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```





## Orange

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Orange")
```

# Florida

```
sub_df = df[df["State"] == "Florida"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1
temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)
# r: 0.5
temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})
plot_df = plot_df.append(temp)
# r - 0.9
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Florida')
```

```
1 | Text(0.5, 1.0, 'Florida')
```



## California

```
sub_df = df[df["State"] == "California"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1
temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)
# r: 0.5
temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)}
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})
plot_df = plot_df.append(temp)
# r - 0.9
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.9)}
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('California')
```

```
1 | Text(0.5, 1.0, 'California')
```



3000

#### Texas

2000

```
sub_df = df[df["State"] == "Texas"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1

temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)
# r: 0.5

temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})
plot_df = plot_df.append(temp)
# r - 0.9
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})
plot_df = plot_df.append(temp)
```

4000

5000

6000

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Texas')
```

```
1 Text(0.5, 1.0, 'Texas')
```

Texas



#### Arizona

```
sub_df = df[df["State"] == "Arizona"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1

temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)

# r: 0.5

temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"] ** (1 - 0.5)}

plot_df = plot_df.append(temp)

# r - 0.9

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0.9)) ** sub_df["Return per acre"] ** (1 - 0.9)

temp_utility = (1/(1 - 0
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('Arizona')
```

```
1 Text(0.5, 1.0, 'Arizona')
```





#### **United States**

```
sub_df = df[df["State"] == "United States"]
plot_df = pd.DataFrame(columns=["w", "Utility", "Risk averse coef."])
# r: 0.1
temp_utility = (1/(1 - 0.1)) * sub_df["Return per acre"] ** (1 - 0.1)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.1})
plot_df = plot_df.append(temp)
# r: 0.5
temp_utility = (1/(1 - 0.5)) * sub_df["Return per acre"] ** (1 - 0.5)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.5})
plot_df = plot_df.append(temp)
# r - 0.9
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp_utility = (1/(1 - 0.9)) * sub_df["Return per acre"] ** (1 - 0.9)
temp = pd.DataFrame({"w": sub_df["Return per acre"], "Utility": temp_utility, "Risk averse coef.": 0.9})
plot_df = plot_df.append(temp)
```

```
sns.scatterplot(data=plot_df, x="w", y="Utility", hue="Risk averse coef.", palette="deep").set_title('United States')
```

```
1 Text(0.5, 1.0, 'United States')
```



3000

# **Explain**

• Q1: CARA 和 CRRA - Power 都可以用來 examine the utility levels with different levels of risk aversion

2500

● Q2: 只有 CRRA - Logarithmic 可以在同一個水果的限制下比較不同的州,因為其 Utility函式中僅包含變數 w ,相較於其他函式中都有一個以上的變動因素,多因素同時在變動時是無法比較的

3500

4000

4500

# **Question 4**

As a thinking practice, if both Junior and Senior have the capital to choose their planting location, to choose which variety of Citrus fruit, and to choose which utilization will give the best economic performance. Suppose now the preferences are unknown and there is no best function to be used to characterize the production phase. What kind of graph will we need to generate to show the comparison across different risky prospects to aim for a stochastic dominance analysis, either it's first- or second-degree? Use command cumul to generate the probabilistic distribution of the outcome variable. Put down your graphs, as accurately as you can, and identify the likely choices facing Junior and Senior. Briefly state your reason, and list out all the possible scenarios that you think most relevant for discussion.

我們可以使用 CDF 圖進行stochastic dominance analysis

2000

## **CDF**

## Grapefruit

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Grapefruit")

# Fill N/A with 0

df = df.fillna(0)

sns.ecdfplot(data=df, x="Return per acre", hue="State")
```

```
1 <matplotlib.axes._subplots.AxesSubplot at 0x7ff4fed5ba90>
```



## Lemon

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Lemon")

# Fill N/A with 0

df = df.fillna(0)

sns.ecdfplot(data=df, x="Return per acre", hue="State")
```

```
1 <matplotlib.axes._subplots.AxesSubplot at 0x7ff4ffe9fa50>
```



# Orange

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Return per acre.xlsx", sheet_name="Orange")

# Fill N/A with 0

df = df.fillna(0)

sns.ecdfplot(data=df, x="Return per acre", hue="State")
```

```
1 <matplotlib.axes._subplots.AxesSubplot at 0x7ff4ff299590>
```



## **Explain**

在上面個作物之CDF圖中,First-degree stochastic dominance (FSD) 僅能在線段不交會的情況下進行比較,換句話說,如 Grapefruit 中 Florida 和 United States 線段有交會到,在FSD下兩者並無法比較得知誰較優;而在 Second-degree stochastic dominance (SSD) 下,SSD 在 FSD 之上更近一步比較兩條線的底下的面積,解決了部分情况在FSD下無法比較的窘境。

當然了, ssp 亦有其限制存在,也有人提出 Tsp 解決方案,但 TSD 的成效並不如 SSD 之於 FSD 般明顯,故我們並未使用 TSD 進行分析。

## **Question 5**

Seasonal prices for fruits is critical - Go to the data on per-box monthly equivalent- on-tree returns: Focus on grapefruit in California, given the fact that the marketing season start from 11/1 in previous year to 10/31 in the next year, what could it imply for fluctuation in prices? Compared with its yield data, which month(s) most accurately depict the classic relationship between supply price and quantity? What are the possible risks facing citrus fruit growers? Could we locate the risk corresponding to the dropping yields at certain point of time?

Set up a simulation program to simulate the price given 100 observations, following a lognormal distribution. Show the summary statistics from your experiment. Can we truly replicate the original price series pattern from September to December by performing the experiment 1000 times? (Play some try-and-error.)

## Fluctuation in prices

從 Annual Summary 的資訊中我們可以得知,**1月底至2月份可能會發生霜害**,進而影響產量,農產 time lag 的特性使得價格到3月份後才顯現在價格上;而**8,9月的颶風** 也會使得價格上漲

```
# PPI
ppi_df = pd.read_excel("gdrive/MyDrive/風險管理/PPI.xlsx", sheet_name="PPI")
ppi = ppi_df["2015 base PPI"]

df = pd.read_excel("gdrive/MyDrive/風險管理/Trend.xlsx", sheet_name="Month Trend")
del df["Year"]
del df["Unnamed: 13"]
del df["Unnamed: 14"]
df = df.iloc[:40]
plot_data = {}
for each in df:
plot_data[each] = (df[each] * ppi).mean()
df[each] *= ppi
pd.DataFrame.from_dict(plot_data, orient='index', columns=["Price"]).plot.line(xlabel="Month", ylabel="Price")
```



# Which month(s) most accurately depict the classic relationship between supply price and quantity?

從資料中我們可以觀察到, June 和 July 和年度價格的 MSE 是最小的 (其中 June: 2.438984 ) 是最小的

故我們選擇使用 June 作為代表月份

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Trend.xlsx", sheet_name="Year Trend")

del df["Year"]

result = pd.DataFrame(columns=["Month", "MSE"])

for each in df.columns[1:]:

# Fill N/A with mean

df[each] = df[each].fillna(df[each].mean())

temp = pd.DataFrame({"Month": each, "MSE": mean_squared_error(df["California"] * ppi[:40], df[each]* ppi[:40])}, index=[0])

result = result.append(temp)

result
```

```
dataframe tbody tr th {
   vertical-align: top;
}

dataframe thead th {
   text-align: right;
}
```

|   | Month | MSE       |
|---|-------|-----------|
| 0 | Nov   | 12.907137 |
| 0 | Dec   | 13.807945 |
| 0 | Jan   | 11.542190 |
| 0 | Feb   | 8.959618  |
| 0 | Mar   | 5.348832  |
| 0 | Apr   | 4.505816  |
| 0 | May   | 3.244188  |
| 0 | June  | 2.438984  |
| 0 | July  | 2.860963  |
| 0 | Aug   | 6.658194  |
| 0 | Sep   | 6.103804  |
| 0 | Oct   | 7.164386  |

# What are the possible risks facing citrus fruit growers? Could we locate the risk corresponding to the dropping yields at certain point of time?

Possible risk:

- 1. 黃龍病
- 2. 霜害
- 3. 颶風

氣候災害如 霜害, 颶風 等會反映在價格上,我們可以從 equivalent-on-tree returns 資料中價格的波動上觀察到;而其他如黃龍病等是並無時間上的規律性,全年皆有可能發生,較難從資料中觀察得知

# Simulation program

```
df = pd.read_excel("gdrive/MyDrive/風險管理/Trend.xlsx", sheet_name="Year Trend")
df = df[["Sep", "Oct", "Nov", "Dec"]]
# Fill N/A with mean
df = df.fillna(df.mean())

df.describe()
```

```
1 .dataframe tbody tr th {
2    vertical-align: top;
3  }
4  
5 .dataframe thead th {
6    text-align: right;
7  }
```

|       | Sep       | Oct       | Nov       | Dec       |
|-------|-----------|-----------|-----------|-----------|
| count | 40.000000 | 40.000000 | 40.000000 | 40.000000 |
| mean  | 7.559474  | 7.285789  | 8.627000  | 8.570750  |
| std   | 3.962710  | 4.801986  | 4.901102  | 4.922928  |
| min   | 1.030000  | 1.100000  | 1.650000  | 1.460000  |
| 25%   | 4.665000  | 4.062500  | 6.027500  | 5.935000  |
| 50%   | 7.490000  | 6.700000  | 7.755000  | 7.340000  |
| 75%   | 9.597500  | 9.175000  | 10.012500 | 9.670000  |
| max   | 16.770000 | 24.120000 | 21.140000 | 21.740000 |

\$\mu=7.559474, \sigma=3.962710\$, 當 \$\mu=5.205, \sigma=4.049\$的時候可以逼近原始資料長相

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|       | mean        | std         |
|-------|-------------|-------------|
| count | 1000.000000 | 1000.000000 |
| mean  | 7.557535    | 3.962626    |
| std   | 0.399414    | 0.529427    |
| min   | 6.505996    | 2.643479    |
| 25%   | 7.274400    | 3.607445    |
| 50%   | 7.541119    | 3.908389    |
| 75%   | 7.806487    | 4.285163    |
| max   | 9.056363    | 6.545958    |

# Oct

\$\mu=7.285789, \sigma=4.801986\$, 當 \$\mu=4.169, \sigma=4.396\$的時候可以逼近原始資料長相

```
dataframe tbody tr th {
   vertical-align: top;
}

dataframe thead th {
   text-align: right;
}
```

|       | mean        | std         |
|-------|-------------|-------------|
| count | 1000.000000 | 1000.000000 |
| mean  | 7.285549    | 4.801161    |
| std   | 0.486261    | 0.789710    |
| min   | 6.009228    | 2.973378    |
| 25%   | 6.938390    | 4.255489    |
| 50%   | 7.255260    | 4.700910    |
| 75%   | 7.595594    | 5.241760    |
| max   | 9.127089    | 9.406896    |

#### Nov

\$\mu=8.627000, \sigma=4.901102\$, 當 \$\mu=5.609, \sigma=5.017\$的時候可以逼近原始資料長相

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|       | mean        | std         |
|-------|-------------|-------------|
| count | 1000.000000 | 1000.000000 |
| mean  | 8.627077    | 4.901085    |
| std   | 0.494697    | 0.701625    |
| min   | 7.324851    | 3.192434    |
| 25%   | 8.278142    | 4.421322    |
| 50%   | 8.601971    | 4.824585    |
| 75%   | 8.933656    | 5.318432    |
| max   | 10.489914   | 8.545283    |

# Dec

\$\mu=8.570750, \sigma=4.922928\$, 當 \$\mu=5.526, \sigma=5.04\$的時候可以逼近原始資料長相

```
1 .dataframe tbody tr th {
2    vertical-align: top;
3  }
4    .dataframe thead th {
6    text-align: right;
7  }
```

|       | mean        | std         |
|-------|-------------|-------------|
| count | 1000.000000 | 1000.000000 |
| mean  | 8.570849    | 4.922224    |
| std   | 0.496935    | 0.711496    |
| min   | 7.262844    | 3.195312    |
| 25%   | 8.218392    | 4.435361    |
| 50%   | 8.545237    | 4.845823    |
| 75%   | 8.878236    | 5.343768    |
| max   | 10.442961   | 8.649125    |

# **Question 6**

**Price ratio** - Go back to production data: First locate the new piece of information on grower price at the same place where you find the data for your Citrus Fruit study. Derive ratio of equivalent-on-tree returns and grower price. Several things to keep in mind: be aware of the difference between these two datasets, and find their common ground to generate this ratio. (You will need to look at the datasets closely to make things go smoothly.) What's the type of ratio that can be derived to achieve the objective here? Refer to the Annual Report in the Folder again, interpret the ratio and its change over time.

Set up a simulation program to simulate the ratio of prices from two datasets, suppose each sample comes from a lognormal distribution. The program requires six arguments as inputs. Set each sample observations of 100, use the mean and variance from actual data on the two price series stated above in your simulation. Simulate three types of ratio: Ratio of 10th percentile, ratio of mean, ratio of 90th percentile, with a 1000-times experiment. Show the summary statistics. Does the result change when we select new values for arguments for mean and variance for these two datasets, 0.7, 0.85, 0.08, 0.09?

# **Price ratio**

從資料我們可以觀察到, equivalent-on-tree returns 和 grower price 間的比例和年份並無很明顯的關係, 起起伏伏並無明顯規律

```
1 df = pd.read_excel("gdrive/MyDrive/風險管理/Ratio.xlsx", sheet_name="Ratio")
2 df
```

```
1  .dataframe tbody tr th {
2    vertical-align: top;
3  }
4  .dataframe thead th {
6    text-align: right;
7  }
```

|    | Year      | Grower Price (Dollars / pounds) | US Fresh Equivalent-on-tree returns (Dollars / box) | Box weight (pounds) |
|----|-----------|---------------------------------|-----------------------------------------------------|---------------------|
| 0  | 1989/90   | 0.14                            | 10.00                                               | 84.154023           |
| 1  | 1990/91   | 0.11                            | 8.74                                                | 85.316420           |
| 2  | 1991/92   | 0.10                            | 8.34                                                | 85.686844           |
| 3  | 1992/93   | 0.07                            | 5.10                                                | 84.928946           |
| 4  | 1993/94   | 0.08                            | 5.61                                                | 85.213107           |
| 5  | 1994/95   | 0.07                            | 4.40                                                | 85.257496           |
| 6  | 1995/96   | 0.07                            | 4.36                                                | 85.541338           |
| 7  | 1996/97   | 0.07                            | 4.25                                                | 84.479476           |
| 8  | 1997/98   | 0.08                            | 4.64                                                | 84.763685           |
| 9  | 1998/99   | 0.10                            | 6.12                                                | 85.829833           |
| 10 | 1999/2000 | 0.08                            | 6.84                                                | 87.253439           |
| 11 | 2000/01   | 0.07                            | 5.10                                                | 84.765136           |
| 12 | 2001/02   | 0.08                            | 5.43                                                | 84.530728           |
| 13 | 2002/03   | 0.10                            | 6.33                                                | 85.292574           |
| 14 | 2003/04   | 0.07                            | 7.23                                                | 84.276352           |
| 15 | 2004/05   | 0.23                            | 18.79                                               | 83.125452           |
| 16 | 2005/06   | 0.19                            | 13.96                                               | 84.320432           |
| 17 | 2006/07   | 0.14                            | 10.03                                               | 86.422482           |
| 18 | 2007/08   | 0.11                            | 9.29                                                | 85.740467           |
| 19 | 2008/09   | 0.09                            | 7.87                                                | 84.977961           |
| 20 | 2009/10   | 0.12                            | 11.41                                               | 84.343189           |
| 21 | 2010/11   | 0.12                            | 10.85                                               | 87.128589           |
| 22 | 2011/12   | 0.14                            | 11.04                                               | 87.108074           |
| 23 | 2012/13   | 0.11                            | 10.15                                               | 86.326285           |
| 24 | 2013/14   | 0.13                            | 11.95                                               | 85.559737           |
| 25 | 2014/15   | 0.14                            | 11.81                                               | 85.815958           |
| 26 | 2015/16   | 0.19                            | 16.63                                               | 85.462378           |
| 27 | 2016/17   | 0.21                            | 18.83                                               | 85.218490           |
| 28 | 2017/18   | 0.28                            | 21.67                                               | 83.487796           |
| 29 | 2018/19   | 0.26                            | 20.68                                               | 83.994329           |
| 30 | 2019/20   | 0.19                            | 18.18                                               | 85.458863           |
|    |           |                                 |                                                     |                     |

## Grower Price 敘述統計

```
1 df["Grower Price (Dollars / pounds)"].describe()
```

```
1 count 31.000000
2 mean 0.127097
3 std 0.058889
4 min 0.070000
5 25% 0.080000
6 50% 0.110000
7 75% 0.140000
8 max 0.280000
9 Name: Grower Price (Dollars / pounds), dtype: float64
```

```
1 (df["US Fresh Equivalent-on-tree returns (Dollars / box)"] / df["Box weight (pounds)"]).describe()
```

```
1 count 31.000000
2 mean 0.119687
3 std 0.061901
4 min 0.050308
5 25% 0.068569
6 50% 0.108350
7 75% 0.138644
8 max 0.259559
9 dtype: float64
```

```
ratio = df["Grower Price (Dollars / pounds)"] / (df["US Fresh Equivalent-on-tree returns (Dollars / box)"] / df["Box weight (pounds)"])
ratio_df = pd.DataFrame({"Year": df["Year"], "Ratio": ratio})
ratio_df
```

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|    | Year      | Ratio    |
|----|-----------|----------|
| 0  | 1989/90   | 1.178156 |
| 1  | 1990/91   | 1.073776 |
| 2  | 1991/92   | 1.027420 |
| 3  | 1992/93   | 1.165691 |
| 4  | 1993/94   | 1.215160 |
| 5  | 1994/95   | 1.356369 |
| 6  | 1995/96   | 1.373370 |
| 7  | 1996/97   | 1.391427 |
| 8  | 1997/98   | 1.461443 |
| 9  | 1998/99   | 1.402448 |
| 10 | 1999/2000 | 1.020508 |
| 11 | 2000/01   | 1.163443 |
| 12 | 2001/02   | 1.245388 |
| 13 | 2002/03   | 1.347434 |
| 14 | 2003/04   | 0.815954 |
| 15 | 2004/05   | 1.017502 |
| 16 | 2005/06   | 1.147628 |
| 17 | 2006/07   | 1.206296 |
| 18 | 2007/08   | 1.015226 |
| 19 | 2008/09   | 0.971794 |
| 20 | 2009/10   | 0.887045 |
| 21 | 2010/11   | 0.963634 |
| 22 | 2011/12   | 1.104631 |
| 23 | 2012/13   | 0.935556 |
| 24 | 2013/14   | 0.930775 |
| 25 | 2014/15   | 1.017293 |
| 26 | 2015/16   | 0.976419 |
| 27 | 2016/17   | 0.950392 |
| 28 | 2017/18   | 1.078753 |
| 29 | 2018/19   | 1.056022 |
| 30 | 2019/20   | 0.893134 |

ratio\_df.plot.line(x="Year", y="Ratio", xlabel="Year", ylabel="Ratio")

1 <matplotlib.axes.\_subplots.AxesSubplot at 0x7ff4ff5b6a10>



## Simulation program

從結果中可以觀察到, $$\mu_1=0.7$ ,\sigma\_1^2=0.08\$ 和  $\mu_2=0.85$ ,\sigma\_2^2=0.09\$ 的模擬結果相較原本的資料,其各個百分位距和平均數的  $\mu_2=0.85$  和  $\mu_2=0.85$  和

## \$\mu\_1=0.127, \sigma\_1^2=0.058\$, \$\mu\_2=0.12, \sigma\_2^2=0.061\$

```
1 # 固定seed
   np.random.seed(seed)
   result = pd.DataFrame(columns=["10th percentile", "mean", "90th percentile"])
    for _ in range(1000):
       # 第一組數據
 8
       mu, sigma = lognorm_params(0.127, 0.058)
       random_one = np.random.lognormal(mean=mu, sigma=sigma, size=100)
       # 第二組數據
       mu, sigma = lognorm_params(0.12, 0.061)
12
       random_two = np.random.lognormal(mean=mu, sigma=sigma, size=100)
13
14
       result = result.append({"10th percentile": np.percentile(random_one, 10) / np.percentile(random_two, 10),
                               "mean": np.mean(random_one) / np.mean(random_two),
16
                               "90th percentile": np.percentile(random_one, 90) / np.percentile(random_two, 90)},
17
                              ignore_index=True)
18
19 pd.DataFrame.from_dict(result).describe()
```

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|       | 10th percentile | mean        | 90th percentile |
|-------|-----------------|-------------|-----------------|
| count | 1000.000000     | 1000.000000 | 1000.000000     |
| mean  | 1.078263        | 1.028802    | 1.007314        |
| std   | 0.096703        | 0.057424    | 0.088951        |
| min   | 0.770488        | 0.861009    | 0.695470        |
| 25%   | 1.015695        | 0.991036    | 0.947840        |
| 50%   | 1.071270        | 1.026426    | 1.004418        |
| 75%   | 1.141484        | 1.064210    | 1.066839        |
| max   | 1.446643        | 1.270942    | 1.317118        |

## histogram

10th percentile

```
1 sns.histplot(data=result["10th percentile"], kde=True)
```

1 | <matplotlib.axes.\_subplots.AxesSubplot at 0x7ff4ff900cd0>



## mean

```
sns.histplot(data=result["mean"], kde=True)
```

1 <matplotlib.axes.\_subplots.AxesSubplot at 0x7ff4fea2a890>



## 90th percentile

sns.histplot(data=result["90th percentile"], kde=True)

1 <matplotlib.axes.\_subplots.AxesSubplot at 0x7ff4fe8d03d0>



# \$\mu\_1=0.7, \sigma\_1^2=0.08\$, \$\mu\_2=0.85, \sigma\_2^2=0.09\$

```
1 # 固定seed
   np.random.seed(seed)
   result = pd.DataFrame(columns=["10th percentile", "mean", "90th percentile"])
   for _ in range(1000):
       # 第一組數據
       mu, sigma = lognorm_params(0.7, np.sqrt(0.08))
 9
       random_one = np.random.lognormal(mean=mu, sigma=sigma, size=100)
       # 第二組數據
10
11
       mu, sigma = lognorm_params(0.85, np.sqrt(0.09))
12
       random_two = np.random.lognormal(mean=mu, sigma=sigma, size=100)
13
14
       result = result.append({"10th percentile": np.percentile(random_one, 10) / np.percentile(random_two, 10),
15
                               "mean": np.mean(random_one) / np.mean(random_two),
16
                               "90th percentile": np.percentile(random_one, 90) / np.percentile(random_two, 90)},
                              ignore_index=True)
18
19 pd.DataFrame.from_dict(result).describe()
```

```
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

|       | 10th percentile | mean        | 90th percentile |
|-------|-----------------|-------------|-----------------|
| count | 1000.000000     | 1000.000000 | 1000.000000     |
| mean  | 0.810661        | 0.849853    | 0.877196        |
| std   | 0.061378        | 0.039661    | 0.065507        |
| min   | 0.611772        | 0.734970    | 0.643090        |
| 25%   | 0.771076        | 0.824798    | 0.833706        |
| 50%   | 0.806426        | 0.848944    | 0.875609        |
| 75%   | 0.851925        | 0.874312    | 0.921566        |
| max   | 1.036868        | 1.020202    | 1.103631        |

## histogram

10th percentile

```
1 sns.histplot(data=result["10th percentile"], kde=True)
```

1 <matplotlib.axes.\_subplots.AxesSubplot at 0x7ff4fea68ed0>



## mean

```
sns.histplot(data=result["mean"], kde=True)
```

1 <matplotlib.axes.\_subplots.AxesSubplot at 0x7ff4fe7ec110>



# 90th percentile

sns.histplot(data=result["90th percentile"], kde=True)

1 <matplotlib.axes.\_subplots.AxesSubplot at 0x7ff4fe696210>

