# 1.2

#### **Programming Task**

A program to implement the three methods can be found on page 10.

### Question 1

From the table, we can see that  $\frac{\log E_n - \log E_{n-1}}{h}$  tends to a number which is approximately 3.12245832. If we assume it to be  $\gamma$ , then  $\frac{\log E_n - \log E_{n-1}}{h} \approx \gamma$  so  $\frac{E_n}{E_{n-1}} \approx e^{\gamma h}$ . Multiplying from 2 to n, we get  $E_n \propto e^{\gamma h n} = e^{\gamma x}$ . So the error grows exponentially with 'growth rate'  $\gamma = 3.12245832$ .

We run the code for h=0.2,0.1 and 0.005 [ i.e for  $n=50,100\ 200$  ]. The table below shows the results at the point x=5 and 10.

We can see that in both cases of x = 5 and 10, the error increases as we take h = 0.2 and 0.1 but decreases when h = 0.05. The growth rate keeps increasing and gets colser to 4.

| $x_n$       | $Y_n$                   | $y(x_n)$   | $E_n$                   | $\frac{\log E_n - \log E_{n-1}}{\log E_n}$ |
|-------------|-------------------------|------------|-------------------------|--------------------------------------------|
|             |                         |            |                         | h                                          |
| 0.40000000  | 1.20000000              | 0.46842353 | 0.73157647              |                                            |
| 0.80000000  | -2.23123189             | 0.40856676 | -2.63979865             | 3.20814042                                 |
| 1.20000000  | 9.41833156              | 0.29296446 | 9.12536710              | 3.10088871                                 |
| 1.60000000  | -31.64702677            | 0.20023496 | -31.84726173            | 3.12473319                                 |
| 2.00000000  | 111.17336888            | 0.13499982 | 111.03836906            | 3.12231101                                 |
| 2.40000000  | -387.07700251           | 0.09065022 | -387.16765274           | 3.12245500                                 |
| 2.80000000  | 1350.03750000           | 0.06079639 | 1349.97670361           | 3.12246201                                 |
| 3.20000000  | -4707.05105837          | 0.04075944 | -4707.09181781          | 3.12245733                                 |
| 3.60000000  | 16412.69871608          | 0.02732317 | 16412.67139291          | 3.12245853                                 |
| 4.00000000  | -57227.62137289         | 0.01831553 | -57227.63968842         | 3.12245828                                 |
| 4.40000000  | 199541.13106686         | 0.01227732 | 199541.11878954         | 3.12245833                                 |
| 4.80000000  | -695759.21132122        | 0.00822974 | -695759.21955096        | 3.12245832                                 |
| 5.20000000  | 2425970.62704616        | 0.00551656 | 2425970.62152959        | 3.12245832                                 |
| 5.60000000  | -8458865.20462916       | 0.00369786 | -8458865.20832703       | 3.12245832                                 |
| 6.00000000  | 29494339.29073435       | 0.00247875 | 29494339.28825560       | 3.12245832                                 |
| 6.40000000  | -102840750.92903011     | 0.00166156 | -102840750.93069166     | 3.12245832                                 |
| 6.80000000  | 358584742.26761848      | 0.00111378 | 358584742.26650470      | 3.12245832                                 |
| 7.20000000  | -1250311926.18273616    | 0.00074659 | -1250311926.18348265    | 3.12245832                                 |
| 7.60000000  | 4359582906.05416679     | 0.00050045 | 4359582906.05366611     | 3.12245832                                 |
| 8.00000000  | -15200977225.55486679   | 0.00033546 | -15200977225.55520248   | 3.12245832                                 |
| 8.40000000  | 53002710027.83055115    | 0.00022487 | 53002710027.83032990    | 3.12245832                                 |
| 8.80000000  | -184809649314.61212158  | 0.00015073 | -184809649314.61227417  | 3.12245832                                 |
| 9.20000000  | 644393587834.58972168   | 0.00010104 | 644393587834.58959961   | 3.12245832                                 |
| 9.60000000  | -2246869130385.29882813 | 0.00006773 | -2246869130385.29882813 | 3.12245832                                 |
| 10.00000000 | 7834374805067.54687500  | 0.00004540 | 7834374805067.54687500  | 3.12245832                                 |

Table 1: LF method with h=0.4 from x=0 to x=10

| $x_n$            | $Y_n$                  | $y(x_n)$   | $E_n$                  | $\frac{\log E_n - \log E_{n-1}}{h}$ |
|------------------|------------------------|------------|------------------------|-------------------------------------|
| x = 5, h = 0.2   | 9188936.9479           | 0.00673794 | 9188936.9412           | 3.66334128                          |
| x = 5, h = 0.1   | -9862748.7013          | 0.00673794 | -9862748.7081          | 3.90035320                          |
| x = 5, h = 0.05  | -3872083.3445          | 0.00673794 | -3872083.3512          | 3.97380221                          |
| x = 10, h = 0.2  | -828151490544095.7500  | 0.00004540 | -828151490544095.7500  | 3.66334128                          |
| x = 10, h = 0.1  | -2907416990859673.0000 | 0.00004540 | -2907416990859673.0000 | 3.90035320                          |
| x = 10, h = 0.05 | -1647959562443503.2500 | 0.00004540 | -1647959562443503.2500 | 3.97380221                          |

Table 2: LF method with h=0.2,0.1,0.005 for x=5,10

(i) We have  $Y_{n+1} = Y_{n-1} + 2h(-4Y_n + 3e^{-hn})$ . It has particular solution

$$p(n) = \frac{6he^{-hn}}{8h + e^{-h} - e^{h}} = p_h e^{-hn} \text{ where } p_h = \frac{6h}{8h + e^{-h} - e^{h}} = \frac{3h}{4h - \sinh h}$$

Let  $z_n$  be the complimentary solution. So  $z_{n+1} + 8hz_n - z_{n-1} = 0$ , which has solution in the form  $z_n = A\lambda^n + B\mu^n$  where A, B are constants and  $\lambda, \mu$  are roots of the equation  $z^2 + 8hz - 1 = 0$ . So  $(\lambda, \mu) = (-4h + \sqrt{16h^2 + 1}, -4h - \sqrt{16h^2 + 1})$ . Now

$$Y_0 = 0 = z_0 + p = A + B + p(o)$$
  
 $Y_1 = 3h = z_1 + p = A\lambda + B\mu + p(1)$ 

Solving them, we get  $(A, B) = \left(\frac{3h + p_h(\mu - e^{-h})}{\lambda - \mu}, -\frac{3h + p(\lambda - e^{-h})}{\lambda - \mu}\right)$ . So  $Y_n = A\lambda^n + B\mu^n + p(n)$  where  $A, B, \lambda, \mu, p$  are specified above.

(ii) We have  $(\lambda, \mu) = (-4h + \sqrt{16h^2 + 1}, -4h - \sqrt{16h^2 + 1})$ , so  $|\lambda| < 1, |\mu| > 1$ . Hence  $|\lambda^n| \to 0$  and  $|\mu^n| \to \infty$  as  $n \to \infty$ . Also  $p(n) = p_h e^{-hn} \to 0$  as  $n \to \infty$ , which implies  $|Y_n| = |A\lambda^n + B\mu^n + p(n)| \to \infty$  as  $n \to \infty$ . But  $y(x) = e^{-x} - e^{-4x} \to \infty$  as  $x \to \infty$ . That's why instability occurs.

Now

$$\lim_{n \to \infty} \left| \frac{E_{n+1}}{E_N} \right| = \lim_{n \to \infty} \left| \frac{A\lambda^{n+1} + B\mu^{n+1} + p - e^{-(n+1)h} + e^{-4(n+1)h}}{A\lambda^n + B\mu^n + p - e^{-nh} + e^{-4nh}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{B\mu^{n+1} + p}{B\mu^n + p} \right|$$

$$= |\mu|$$

$$= 4h + \sqrt{16h^2 + 1}$$

We also know  $\lim_{n\to\infty} \left| \frac{E_{n+1}}{E_N} \right| = e^{\gamma h}$ , hence  $\gamma = \frac{1}{h} \log \left( 4h + \sqrt{16h^2 + 1} \right)$ .

(iii) Suppose x = nh is fixed, so h = x/n. The constants  $A, B, \lambda, \mu$  depends only on h, so instead we will write  $A_h, B_h, \lambda_h, \mu_h$ .

Now

$$\lim_{h \to 0} p_h = \lim_{h \to 0} \frac{3h}{4h - \sinh h} = \lim_{h \to 0} \frac{3}{4 - \cosh h} = 1$$

Also

$$A_h = \frac{3h + p_h(\mu_h - e^{-h})}{\lambda_h - \mu_h} \to \frac{0 + 1(-1 - 1)}{1 - (-1)} = -1 \text{ as } h \to 0$$

As  $A_h + B_h + p_h = 0$ , we have  $B_h \to 0$  as  $h \to 0$ .

Also

$$\frac{1}{1+4h} > \frac{1}{4h + \sqrt{16h^2 + 1}} = \lambda_h = -4h + \sqrt{16h^2 + 1} > 1 - 4h$$
$$\Rightarrow \frac{1}{\left(1 + \frac{4x}{n}\right)^n} > \lambda_h^n > \left(1 - \frac{4x}{n}\right)^n$$

Similarly for  $|\mu_h| = 4h + \sqrt{16h^2 + 1}$ , we can show that

$$\frac{1}{1-4h} > |\mu_h|^n > 1+4h$$

$$\frac{1}{\left(1-\frac{4x}{n}\right)^n} > |\mu_h|^n > \left(1+\frac{4x}{n}\right)^n$$

Now using the fact that  $\left(1+\frac{4x}{n}\right)^n\to e^{4x}$  and  $\left(1-\frac{4x}{n}\right)^n\to e^{-4x}$  as  $n\to\infty$  and applying Sandwitch theorem, we can conclude that  $\lambda_h^n\to e^{-4x}$  and  $|\mu_h^n|\to e^{4x}$  as  $n\to\infty$ .

Hence  $Y_n = A_h \lambda_h^n + B_h \mu_h^n + p_h e^{-hn} \rightarrow (-1) \times e^{-4x} + 0 \times e^{4x} + 1 \times e^{-x} = e^{-x} - e^{-4x} = y(x)$ . So the solution of LF-difference-equation converges to the analytic solution.

Numerical solution of ODE (1), (10) using Euler and RK4 method can be found in Table 3. Figure 1 shows the numerical solutions with the exact solution superimposed.

| $x_n$ | $y(x_n)$   | $Y_n(\text{Euler method})$ | $Y_n(RK4 \text{ method})$ |
|-------|------------|----------------------------|---------------------------|
| 0.40  | 0.46842353 | 1.20000000                 | 0.40585600                |
| 0.80  | 0.40856676 | 0.08438406                 | 0.38179688                |
| 1.20  | 0.29296446 | 0.48856432                 | 0.28560073                |
| 1.60  | 0.20023496 | 0.06829446                 | 0.19946792                |
| 2.00  | 0.13499982 | 0.20129915                 | 0.13587704                |
| 2.40  | 0.09065022 | 0.04162285                 | 0.09166779                |
| 2.80  | 0.06079639 | 0.08388783                 | 0.06160540                |
| 3.20  | 0.04075944 | 0.02263938                 | 0.04133823                |
| 3.60  | 0.02732317 | 0.03533102                 | 0.02772144                |
| 4.00  | 0.01831553 | 0.01158986                 | 0.01858537                |

Table 3: Euler and RK4 method with h=0.4 from x=0 to x=4



Figure 1: Euler and RK4 method with h=0.4 from x=0 to x=4

Table 4 demostrates the global error  $E_n$  of the Euler, LF, RK4 method at  $x_n = 0.4$  against  $h = \frac{0.4}{n}$  for  $n = 2^k$ , k = 0, 1, 2, ..., 15. Figure 2 shows a log-log graph of  $|E_n|$  against h ove this range.

|    | $E_n$      |            |                      |  |  |
|----|------------|------------|----------------------|--|--|
| k  | Euler      | LF         | RK4                  |  |  |
| 0  | 0.73157647 | 0.73157647 | 0.0625675255534157   |  |  |
| 1  | 0.14281492 | 0.44594662 | 0.0019232773566684   |  |  |
| 2  | 0.06371591 | 0.16016334 | 0.0000842011524771   |  |  |
| 3  | 0.03003888 | 0.04479847 | 0.0000044133616700   |  |  |
| 4  | 0.01459857 | 0.01153981 | 0.0000002526839234   |  |  |
| 5  | 0.00719827 | 0.00290699 | 0.0000000151165496   |  |  |
| 6  | 0.00357439 | 0.00072814 | 0.0000000009243527   |  |  |
| 7  | 0.00178107 | 0.00018212 | 0.0000000000571440   |  |  |
| 8  | 0.00088901 | 0.00004554 | 0.0000000000035523   |  |  |
| 9  | 0.00044413 | 0.00001138 | 0.0000000000002225   |  |  |
| 10 | 0.00022197 | 0.00000285 | 0.00000000000000128  |  |  |
| 11 | 0.00011096 | 0.00000071 | 0.000000000000000042 |  |  |
| 12 | 0.00005547 | 0.00000018 | 0.000000000000000041 |  |  |
| 13 | 0.00002774 | 0.00000004 | 0.00000000000000202  |  |  |
| 14 | 0.00001387 | 0.00000001 | 0.00000000000000182  |  |  |
| 15 | 0.00000693 | 0.00000000 | 0.00000000000000746  |  |  |

Table 4: Global error of Euler, LF and RK4 method at  $x_n=0.4$ 



Figure 2: log-log graph of  $|E_n|$  against h

Let  $y_c$  and  $y_p$  be the complimentary and particular solutions. Now  $y_c$  has characteristic equation  $x^2 + \gamma x + \Omega^2 x = 0$ , which has complex roots because  $0 < \gamma < 2\Omega$ . So  $y_c = e^{\rho t}(P\cos\sigma t + Q\sin\sigma t)$  where P,Q are constants and  $(\rho,\sigma) = (-\frac{\gamma}{2},\sqrt{\Omega^2-(\frac{\gamma}{2})^2})$ . Now  $(P\cos\sigma t + Q\sin\sigma t)$  is bounded and  $e^{\rho t} \to 0$  as  $\rho < 0$ . Hence  $y_c \to 0$  as  $t \to \infty$ .

The forced term of the ODE is  $a \sin(\omega t)$ , so the particular solution is in the form

$$y_p = U \sin(\omega t) + V \cos(\omega t)$$

Substituting it in the original ODE, we get

$$(U,V) = \left(\frac{a(\Omega^2 - \omega^2)}{(\Omega^2 - \omega^2)^2 + \gamma^2 \omega^2}, \frac{-a\gamma\omega}{(\Omega^2 - \omega^2)^2 + \gamma^2 \omega^2}\right)$$

Hence the analytics olution is  $y(t) = y_c + y_p = e^{\rho t} (P \cos \sigma t + Q \sin \sigma t) + U \sin (\omega t) + V \cos (\omega t)$  where P, Q, U, V are specified above.

Now  $y = y_c + y_p \rightarrow y_p = U \sin(\omega t) + V \cos(\omega t) = A_s \sin(\omega t - \phi_s)$  as  $t \rightarrow \infty$  where

$$(A_s, \phi_s) = (U^2 + V^2, \arctan \frac{-V}{U}) = (\frac{a}{\sqrt{(\gamma \omega)^2 + (\Omega^2 - \omega^2)^2}}, \arctan (\frac{\gamma \omega}{\Omega^2 - \omega^2}))$$

#### Programming task

A program to solve equation (15) with initial conditions (20) using the RK4 method can be found on page 12.

# Question 6

For equation (21), we have  $\Omega=1, a=1$ . Solving for  $y=\frac{dy}{dt}=0$ , we get  $(P,Q)=(-V,\frac{V\rho-U\omega}{\sigma})$ . Hence the analytic solution is

$$y(t) = e^{\rho t} (P\cos\sigma t + Q\sin\sigma t) + U\sin\omega t + V\cos\omega t$$

$$= \frac{1}{(1-\omega^2)^2 + \gamma^2\omega^2} \left(\gamma\omega\cos\sigma t - \frac{\omega(\gamma\rho + 1 - \omega^2)}{\sigma}\sin\sigma t + (1-\omega^2)\sin\omega t - \gamma\omega\cos\omega t\right)$$

where  $\rho, \sigma$  are specified above. A program to find the analytic solution in terms of  $\gamma$  and  $\omega$  can be found in page 14.

Numerical solution of ODE (15) with  $\gamma = 1, \omega = \sqrt{3}$  and initial conditions (20) for t up to 10 with h = 0.4 can be found in table 5. Table 6 shows some results of the same ODE for h = 0.2 and h = 0.1. Program to generate the tables are in page 14

| t     | $Y_n$       | $y(t_n)$    | $E_n = Y_n - y(t_n)$ |
|-------|-------------|-------------|----------------------|
| 0.00  | 0.00000000  | 0.00000000  | 0.00000000           |
| 0.40  | 0.01629712  | 0.01622784  | 0.00006929           |
| 0.80  | 0.10709631  | 0.10705223  | 0.00004409           |
| 1.20  | 0.27735052  | 0.27735670  | -0.00000619          |
| 1.60  | 0.46317589  | 0.46319336  | -0.00001747          |
| 2.00  | 0.57001842  | 0.56998226  | 0.00003616           |
| 2.40  | 0.52514946  | 0.52501709  | 0.00013237           |
| 2.80  | 0.31906494  | 0.31884920  | 0.00021575           |
| 3.20  | 0.01601561  | 0.01578634  | 0.00022927           |
| 3.60  | -0.27142181 | -0.27156798 | 0.00014617           |
| 4.00  | -0.43191070 | -0.43189732 | -0.00001339          |
| 4.40  | -0.40589676 | -0.40570782 | -0.00018894          |
| 4.80  | -0.21341441 | -0.21310784 | -0.00030658          |
| 5.20  | 0.05408533  | 0.05439858  | -0.00031325          |
| 5.60  | 0.27449342  | 0.27469586  | -0.00020244          |
| 6.00  | 0.34989073  | 0.34990951  | -0.00001878          |
| 6.40  | 0.25039991  | 0.25023906  | 0.00016086           |
| 6.80  | 0.02693791  | 0.02667660  | 0.00026131           |
| 7.20  | -0.21296849 | -0.21321127 | 0.00024278           |
| 7.60  | -0.35516526 | -0.35528375 | 0.00011850           |
| 8.00  | -0.33165293 | -0.33160140 | -0.00005153          |
| 8.40  | -0.15189534 | -0.15170730 | -0.00018804          |
| 8.80  | 0.10171222  | 0.10194097  | -0.00022875          |
| 9.20  | 0.31206394  | 0.31222048  | -0.00015654          |
| 9.60  | 0.38157993  | 0.38158683  | -0.00000689          |
| 10.00 | 0.27741533  | 0.27726642  | 0.00014891           |

Table 5: RK4 method with  $\gamma=1, \omega=\sqrt{3}$  for h=0.4

| t     | $Y_n[h=0.2]$ | $Y_n[h=0.1]$ | $y(t_n)$    | $E_n[h=0.2]$ | $E_n[h=0.1]$ |
|-------|--------------|--------------|-------------|--------------|--------------|
| 2.00  | 0.56998817   | 0.56998274   | 0.56998226  | 0.00000591   | 0.00000048   |
| 4.00  | -0.43190295  | -0.43189781  | -0.43189732 | -0.00000564  | -0.00000049  |
| 6.00  | 0.34991316   | 0.34990987   | 0.34990951  | 0.00000365   | 0.00000036   |
| 8.00  | -0.33160834  | -0.33160193  | -0.33160140 | -0.00000694  | -0.00000053  |
| 10.00 | 0.27727812   | 0.27726720   | 0.27726642  | 0.00001170   | 0.00000078   |

Table 6: RK4 method with  $\gamma=1, \omega=\sqrt{3}$  for h=0.2, 0.1 at x=2,4,6,8,10

Figure 3-6 show numerical solution of (20)-(21) up to t=40 for h=1 and  $(\omega,\gamma)=(1,0.25)$ , (1,1.0), (2,0.5), (2,1.9) respectively. We see that the numerical solutions are very close to the analytic solutions.





Figure 3: RK4 program with  $\omega=1, \gamma=0.25$ 

Figure 4: RK4 program with  $\omega = 1, \gamma = 1.0$ 





Figure 5: RK4 program with  $\omega=2, \gamma=0.25$ 

Figure 6: RK4 program with  $\omega=2, \gamma=1.9$ 

# Program for Euler, LF and RK4 method

```
(i) EulerMethod.m
function [E, Yarray] = EulerMethod (xmax,nmax)
f = 0(x,y) -4*y+3*exp(-x);
y = Q(x) \exp(-x) - \exp(-4*x);
h = xmax/nmax;
x = 0;
Yexact = 0;
Y = 0;
Yarray(1) = 0;
for i = 1:nmax
    Yexact = y(x+h);
    Y = Y + h*f(x,Y);
    E = Y - Yexact;
    x = x + h;
    fprintf('%.8f %.8f %.8f %.8f \n', x, Y, Yexact, E);
    Yarray(i+1) = Y;
end
end
(ii) LFmethod.m
function [E] = LFmethod (xmax,nmax)
f = 0(x,y) -4*y+3*exp(-x);
y = 0(x) \exp(-x) - \exp(-4*x);
h = xmax/nmax;
Yp = 0;
Ep = 0;
Y = Yp + h*f(0,Yp);
Yexact = y(h);
E = Y - Yexact;
x = h;
fprintf('\%.8f \%.8f \%.8f \%.8f \%.8f \%.7 ,x, Y, Yexact, E, (log(abs(E))-log(abs(Ep)))/h );
for i=1:nmax-1
```

```
Yexact = y(x+h);
    storeme = Y;
    Y = Yp + 2*h*f(x,Y);
    Yp = storeme;
    Ep = E;
    E = Y - Yexact;
    x = x + h;
    fprintf('%.8f %.8f %.8f %.8f %.8f \n', x, Y, Yexact, E, (log(abs(E))-log(abs(Ep)))/h );
end
end
(iii) RK4method.m
function [E, Yarray] = RK4method (xmax,nmax)
f = 0(x,y) -4*y+3*exp(-x);
y = 0(x) \exp(-x) - \exp(-4*x);
h = xmax/nmax;
x = 0;
Yexact = 0;
Y = 0;
Yarray(1) = 0;
for i = 1:nmax
    Yexact = y(x+h);
    k1 = h*f(x,Y);
    k2 = h*f(x+h/2,Y+(k1)/2);
    k3 = h*f(x+h/2,Y+(k2)/2);
    k4 = h*f(x+h,Y+k3);
    Y = Y + (k1+2*k2+2*k3+k4)/6;
    E = Y - Yexact;
    x = x + h;
    fprintf('%.8f %.8f %.8f %.8f \n', x, Y, Yexact, E);
    Yarray(i+1) = Y;
end
end
```

### Program to produce figure 1

```
figure
x = linspace(0,4,11);

[E1,Yarray1] = EulerMethod (4,10);
[E2,Yarray2] = RK4method(4,10);

plot(x,Yarray1,x,Yarray2)

hold on
x = linspace(0,4,100);
y3 = exp(-x)-exp(-4*x);
plot(x,y3)
hold off

legend({'Eluer method','RK4 method','$e^{-x}-e^{-4x}$'},'Interpreter','latex')
```

#### Program to produce figure 2

```
q4plot.m

for k=0:15
    E1(k+1) = abs(EulerMethod(0.4,2^k));
    E2(k+1) = abs(LFmethod(0.4,2^k));
    E3(k+1) = abs(RK4method(0.4,2^k));
    h(k+1) = (0.4)/(2^k);

end

figure
loglog(h,E1,h,E2,h,E3)
grid on
legend('Eluer method','LFmethod','RK4 method','Location','southeast')
```

# Program for solving 2nd order ODE using RK4

```
RK4method2.m
function [Y] = RK4method2(gamma,delta,Omega,omega,a,tmax,nmax)
f1 = 0(t,y1,y2) (y2);
f2 = Q(t,y1,y2) - (gamma)*(y2) - (delta)^3*(y1)^2*(y2) - (Omega)^2*(y1) + a*sin((omega)*t);
h = tmax/nmax;
t = 0;
Y1 = 0;
Y2 = 0;
for i=1:nmax
    k1 = h*f1(t,Y1,Y2);
    m1 = h*f2(t,Y1,Y2);
    k2 = h*f1(t+h/2,Y1+(k1)/2,Y2+(m1)/2);
    m2 = h*f2(t+h/2,Y1+(k1)/2,Y2+(m1)/2);
    k3 = h*f1(t+h/2,Y1+(k2)/2,Y2+(m2)/2);
    m3 = h*f2(t+h/2,Y1+(k2)/2,Y2+(m2)/2);
    k4 = h*f1(t+h,Y1+k3,Y2+m3);
    m4 = h*f2(t+h,Y1+k3,Y2+m3);
    Y1 = Y1 + (k1+2*k2+2*k3+k4)/6;
    Y2 = Y2 + (m1+2*m2+2*m3+m4)/6;
    Y(i) = Y1;
    t = t + h;
end
```

end

# Program for finding analytic solution of (21) for general $\gamma$ and $\omega$

```
function [y] = analyticsol (gamma,omega)

delta = 0;
Omega = 1;
a = 1;

rho = -(gamma)/2;
sigma = sqrt((Omega)^2-(rho)^2);
U = (a*(Omega^2-omega^2))/((Omega^2-omega^2)^2+(gamma*omega)^2);
V = (-a*gamma*omega)/((Omega^2-omega^2)^2+(gamma*omega)^2);
P = -V;
Q = (V*rho-U*omega)/(sigma);

y = @(t) exp(t*rho)*(P*cos(t*sigma)+Q*sin(t*sigma)) + U*sin(t*omega) + V*cos(t*omega);
```

#### Program for question 6

```
q6.m
h1 = 0.4;
h2 = 0.2;
h3 = 0.1;
Z1 = RK4method2(1,0,1,sqrt(3),1,10,25);
Z2 = RK4method2(1,0,1,sqrt(3),1,10,50);
Z3 = RK4method2(1,0,1,sqrt(3),1,10,100);
y = analyticsol (1,sqrt(3))
for i=1:25
    E1(i) = Z1(i) - y(i*h1);
    fprintf('%.2f %.8f %.8f %.8f \n', i*h1, Z1(i), y(i*h1), E1(i) );
end
for i=1:50
    E2(i) = Z2(i) - y(i*h2);
    fprintf('%.2f %.8f %.8f %.8f \n', i*h2, Z2(i), y(i*h2), E2(i));
end
for i=1:100
    E3(i) = Z3(i) - y(i*h3);
```

```
fprintf('%.2f %.8f %.8f %.8f \n', i*h3, Z3(i), y(i*h3), E3(i)); end
```

# Program to produce figure 2

```
q7plot.m
y11 = analyticsol (0.25,1);
y13 = analyticsol (1.00,1);
y22 = analyticsol (0.50,2);
y24 = analyticsol (1.90,2);
Y11 = RK4method2(0.25,0,1,1,1,40,40);
Y13 = RK4method2(1.00,0,1,1,1,40,40);
Y22 = RK4method2(0.50,0,1,2,1,40,40);
Y24 = RK4method2(1.90,0,1,2,1,40,40);
x = linspace(1.0,40,40);
figure(11)
plot(x, Y11)
hold on
fplot(@(y) y11(y),[0 40],'r')
hold off
figure(13)
plot(x, Y13)
hold on
fplot(@(y) y13(y),[0 40],'r')
hold off
figure(22)
plot(x, Y22)
hold on
fplot(@(y) y22(y),[0 40],'r')
hold off
figure(24)
```

```
plot(x,Y24)
hold on
fplot(@(y) y24(y),[0 40],'r')
hold off
```