

IIC2213 — Lógica para ciencia de la computación — 1' 2023

TAREA 3

Publicación: Miércoles 12 de abril.

Entrega: Viernes 28 de abril hasta las 23:59 horas.

Indicaciones

- Cada pregunta tiene 6 puntos (+1 base) y la nota de la tarea es el promedio de las preguntas.
- La solución debe estar escrita en LATEX. No se aceptarán tareas escritas de otra forma.
- La tarea es individual, pudiendo discutirla con sus pares. Toda referencia externa debe citarse.

Objetivos

- Demostrar que lenguajes son indecidibles usando máquinas y reducciones.
- Identificar lenguajes R y RE y demostrar propiedades.
- Construir reducciones entre diferentes lenguajes.

Pregunta 1: Lenguajes indecidibles

(a) Considere el siguiente lenguaje

 $A = \{(\mathcal{M}, w) \mid \mathcal{M} \text{ es una TM determinista tal que } \mathcal{M} \text{ acepta } w\}$

Note que este lenguaje es similar, pero no idéntico a H visto en clases, pues A habla de aceptar w y no solo de detenerse como lo hace H. Para demostrar que A es indecidible, supongamos que es decidible y por ende existe una máquina \mathcal{M}_A que lo decide. Usando \mathcal{M}_A , se puede construir una máquina \mathcal{D} que decide H, obteniendo una contradicción. A continuación se presenta la estructura de \mathcal{D} que decide H

(i) Dé una descripción de la máquina que queda codificada en \mathcal{X} y que se alimenta a \mathcal{M}_A . Puede ser un diagrama o una descripción con palabras. Si hace un diagrama, puede hacerlo a mano e incluirlo como foto, no es necesario usar la librería tikz.

- (ii) Demuestre que la máquina $\mathcal D$ decide H.
- (b) Un lenguaje indecidible conocido es

$$L_1 = \{(\mathfrak{M}) \mid \mathfrak{M} \text{ es una TM determinista tal que } L(\mathfrak{M}) = \varnothing\}$$

Mediante reducción desde L_1 , demuestre que el siguiente lenguaje también es indecidible

$$L_2=\{(\mathcal{M}_1,\mathcal{M}_2)\mid \mathcal{M}_1,\mathcal{M}_2 \text{ son TM deterministas tales que } L(\mathcal{M}_1)=L(\mathcal{M}_2)\}$$

Solución P1.

Aquí va mi solución

Pregunta 2: Clases R y RE

 Decida si las siguientes afirmaciones son verdaderas o falsas. Demuestre su respuesta.

- (a) Si $L_1 \cup L_2$ es decidible, entonces L_1 y L_2 son decidibles.
- (b) Sea \mathcal{M}_1 una MT. Si $L_1=L(\mathcal{M}_1),$ entonces existe una MT \mathcal{M}_2 tal que $L(\mathcal{M}_2)=\overline{L_1}.$

Solución P2.

Aquí va mi solución

Pregunta 3: Reducciones polinomiales

- (a) Demuestre que si $L_1 \leq_p L_2$ y $L_2 \leq_p L_3$, entonces $L_1 \leq_p L_3$.
- (b) Dada una matriz de enteros A de $n \times m$ y un vector \vec{b} de n enteros, el problema de programación entera en su versión de problema de decisión consiste en verificar si existe un vector \vec{x} de m enteros tal que $A\vec{x} \leq \vec{b}$. Por ejemplo, el siguiente es un problema de programación entera para el cual el vector $\vec{x} = (1,1)$ es adecuado

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}$$

Como lenguaje, lo definimos por

$$PE = \{(A, \vec{b}) \mid A \text{ de } n \times m, \ \vec{b} \text{ de } n \times 1 \text{ y existe vector } \vec{x} \text{ de } m \times 1 \text{ tal que } A\vec{x} \leq \vec{b} \}$$

Demuestre que 3SAT \leq_p PE.

Solución P3.

Aquí va mi solución