Audio Visual Speech Recognition using Deep Learning

S. Akshay Dinesh M C Karthik M A M

Dr. R S Milton (Supervisor)

SSN College of Engineering, Chennai

April 8, 2017

Problem Statement

 Use the visual information derived from a speaker's lips along with speech signals in order to improve the efficiency of a traditional speech recognition system.

Motivation

- Traditional speech recognition systems rely solely on the audio signals to predict text.
- The performance of such systems could be affected if the signal is corrupted by noise, arising due to diverse factors.
- Using visual information derived from a speakers lip movements, in addition to the audio features, alleviates the effects of noise.
- Moreover, opens up a host of applications: resolving multi-speaker simultaneous speech, dictating instructions over a phone in a noisy environment, improved hearing aids, etc.

Motivation Contd.

Figure: Sample Lip Movements for Letter 'a'

Data Preprocessing

 Need to preprocess the data to convert it into a form suitable for the model.

Dataset

- Dataset used: GRID Corpus.
- Large multi-talker audiovisual sentence corpus.
- Consists of high quality audio and video recordings of 1000 sentences spoken by 34 speakers.
- ► Format: ⟨command⟩ ⟨color⟩ ⟨preposition⟩ ⟨letter⟩ ⟨digit⟩ ⟨adverb⟩.
- Example: put blue at f two now.

Audio

- The audio files are provided as .wav files.
- Mix noise with the audio files to increase generalisation capacity of model.
- ▶ Extract 13 MFCC features for every 25ms window of the audio.
- ► Store them in numpy files.

Video

- ▶ The video frames are first extracted using ffmpeg library.
- ▶ Blur the frames.
- ▶ Apply Haar classifier for the Face Region of Interest.
- Apply Haar classifier for the Mouth Region of Interest.
- Alogrithm for width
 - ★ Compress the image vertically, resulting in a single row.
 - ★ Blur the row of the pixels obtained.
 - Then a density function is applied to this array, whose maximum value is the required width.
- ► For height, transpose the image and apply the above procedure.
- Store the results in a numpy array.

Figure: Haar Features Used

Figure: Sample Feature Application

Figure: Haar Cascade Classifier

Figure: Full Image

Figure: Extracted Face Image

Figure: Extracted Mouth Image

Figure: Actual Mouth Region Filtered

- Labels
 - Transcriptions are provided as .align files.

```
0 23750 sil
23750 29500 bin
29500 34000 blue
34000 35500 at
35500 41000 f
41000 47250 two
47250 53000 now
53000 74500 sil
```

Figure: Sample Align File

- Convert align files to text files after removing segmentation.
- ▶ Map characters to class labels (0 for 'spaces' and 1-26 for a-z) and store them in numpy files.
- ► For example, "abc xyz" is stored as [1, 2, 3, 0, 24, 25, 26].
- Training and Testing set
 - Divide the data into training and testing set to ensure that our model doesn't overfit to the data.
 - Use 80 per cent for training, and the remaining 20 per cent for testing.

Design

- Main component of our model consists of an Artificial Neural Network called a Bi-directional Long Short-Term Memory(LSTM) network.
- Neural Network
 - ▶ Learning structure consisting of a large number of simple neural units designed to mimic the function of a web of biological neurons.
 - ► Although successfully applied in the domain of Speech Recognition, cannot model temporal dependencies very well.

Figure: Typical Neural Network

- Recurrent Neural Networks
 - Solve temporal dependency problem.
 - ▶ Networks with loops in them allowing information to persist.
 - ▶ Output at a timestep depends on the current input as well as the previous inputs, therefore they are ideal for Speech Recognition.
 - ▶ But, suffer from the problem of long term dependencies.

Figure: Recurrent Neural Network

- Long Short-Term Memory Networks
 - ► Special kind of Recurrent Neural Network capable of learning long-term dependencies.
 - Have special structures called gates to store and manipulate information.

Figure: Long Short-Term Memory Cell

- Bi-directional Long Short-Term Memory Networks
 - Bi-directional LSTMs are used because we can exploit future context as well.
 - ▶ Have two separate hidden layers which process data in both directions.

Figure: Bi-directional Network

- Connectionist Temporal Classification
 - Novel method for labelling sequence data with RNNs that removes the need for pre-segmented training data.
 - Basic idea is to interpret the network outputs as a probability distribution over all possible label. sequences, conditioned on a given input sequence.
 - ▶ Has a softmax output layer with one more unit than there are labels.
 - ► The activations of the units are interpreted as the probabilities of observing the corresponding labels at particular times.
 - ► Together, these outputs define the probabilities of all possible ways of aligning all possible label sequences with the input sequence.

Architecture

Figure: Main Architecture

Architecture Contd.

Figure: Model's Data Flow

Performance

• Metric: Edit distance

Туре	Error Rate
Audio Only	0.0456
Noisy Audio	0.4396
Video Only	0.4027
Combined	0.0748

Conclusion

 Our experiments show us that if we combine the audio and video features of the speech signal, it performs much better in a noisy environment than a stand-alone audio model. It also produced better results than a stand-alone video model.

References

- Assael, Y. M., Shillingford, B., Whiteson, S., & de Freitas, N. (2016) 'LipNet: Sentence-level Lipreading', arXiv preprint arXiv:1611.01599.
- Cooke, M., Barker, J., Cunningham, S. and Shao, X. (2006) 'An audio-visual corpus for speech perception and automatic speech recognition', The Journal of the Acoustical Society of America, 120(5), pp.2421-2424.
- Graves, A., Fernndez, S., Gomez, F., & Schmidhuber, J. (2006) 'Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks', In Proceedings of the 23rd international conference on Machine learning, ACM, pp. 369-376.
- Hannun, Awni, et al. (2014) 'Deep speech: Scaling up end-to-end speech recognition.' arXiv preprint arXiv:1412.5567.
 - Viola, Paul, and Michael Jones (2001) 'Rapid object detection using a boosted cascade of simple features.', Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE, pp. I-I.
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs.