

MESSAGE_{ix} Workshop - Session II Building an Energy System Model (Part 1)

Energy Program, International Institute for Applied Systems Analysis (IIASA), Austria

MESSAGEix Workshop (online), 8 Sep 2020

The MESSAGE_{ix} workshop team, Sep 2020

Behnam Zakeri

Paul Kishimoto

Oliver Fricko

Francesco Lovat

Muhammad Awais

Energy Program, International Institute for Applied Systems Analysis (IIASA), Austria

The MESSAGEix Modeling Framework

Recap...

- MESSAGEix is an open, version-controlled systems engineering modeling framework
- ix modeling *platform* (*ixmp*) is a data warehouse for facilitating high-powered modeling work
- python and R are the main interfaces for modelling using MESSAGEix
- MESSAGEix mathematical model is written in GAMS
- Documentation of the MESSAGEix model and tutorials are available online

https://docs.messageix.org

The MESSAGE_{ix} framework: Workflow of modeling

Recap...

MESSAGEix framework: Building an energy system – Part 1

Agenda of this Session

- A note on optimization (if needed)
- MESSAGEix mathematical model and its structure
- Working with MESSAGEix tutorials: building a simple model
- → Voting feature will be used to measure how much time we should spend

After this tutorial

The goal is to...

- Learn about the logic behind the MESSAGEix energy system model
- Be able to work on a MESSAGEix model using Jupyter Notebook
- Be familiar with basic terminology of a MESSAGEix model

Requirements

- MESSAGEix framework installed and running
- Knowledge on energy systems
- Patience, motivation, and curiosity

Energy Systems

Different scales: community, city, country, region, and global

A system of energy resources, conversion/processing, transmission and distribution technologies,

and services

- Technologies (cars, ...)
- Commodities (oil, gas, ...)
- Sectors (industry, transport, ...)
- Demand services (electricity, lighting, heating, ...)
- Agents (consumers, producers,
 Operators, etc.)

Electricity transmission grid

Image: ETH Zurich

Linear programming (LP)

Finding the best (optimal) solution

• The goal is to optimize a linear objective function

Maximize $\mathbf{c}^{\mathrm{T}}\mathbf{x}$

- There are a set of decision variables
- There are some constraints (bounds on or relationship between decision variables)

subject to $A\mathbf{x} \leq \mathbf{b}$

and $\mathbf{x} \geq \mathbf{0}$

Example: the best way to commute to work

- Decision variables: walking, biking, bus, train, taxi, private car, car sharing
- Objective function: cheapest or fastest option (least environmental footprint, least walking option)
- Constraints: maximum 2 hours commute/day, maximum 300 euro/month, no later than 7 PM, ...
- Feasible region: usually there many alternative solutions but not all of them are feasible

Linear programming (LP) (reminder)

Applications of LP

- Production management
- Personnel management
- Marketing management
- Resource/ inventory management
- Blending problem, etc

Principle:

Maximizing the utility (use of resources)

Or Minimizing the cost of meeting a service

MESSAGEix

MESSAGEix: a model for investment and planning

Minimizing total discounted cost of the system

- Objective: The least cost option for meeting certain services (demand) \rightarrow min $cT \cdot x$
- System: a network of technologies (processes), resources, and commodities (products)
- Cost of the system: installing/maintaining capacity, cost of activity (O&M), taxes, emission penalties, land use costs (if any), etc.
- Constraints: maximum use of a technology, growth/decline rates of activity, capacity factor, etc.

 \rightarrow s.t. $A \cdot x \le b$

A note on "capacity" and "activity" (MESSAGEix formulation)

- Capacity: installed units of a technology (e.g. 150 MW power plant)
- Activity: operation of that technology (e.g., 800 GWh)

• Reminder: capacity ≠ activity capacity * capacity factor = activity

The MESSAGE $_{ix}$ framework: Investment planning

From historical activity/capacity to model years

MESSAGEix: a technology-based model

Technologies and resources meet demand

• Example **technologies**: electric car, reactor, pipeline, power plant, building, ship, industrial process

A sample technology: coffee machine

MESSAGEix: a technology-based model (2)

A flexible representation of processes technologies and interlinkages

MESSAGEix: Mathematical notation (GAMS)

Sets:

List of elements for building a model

Example: technology, commodity, node, emission

set

members

technology

Solar PV, pipeline

commodity

gas, heat, steel,

Parameters:

- Defining quantities (specification), e.g., lifetime, efficiency, costs
- Defining relationships between sets, e.g., input and output of technology
- Defining constraints, e.g., bounds and growth rates

Model	SEAM(0-250	SEAW60-260	SEAW(0-27)	SEAW60-280			
Rated Power (Pmpp)	250W	260W	270W	290W			
Rated Current (Impp)	8.24A	8.50A	8.79A	9.08A			
Rated Voltage (Vmpp)	30.35V	30.59V	30.73V	30.87V			
Short Circuit Current (Isc)	8.80A	9.07A	9.83A	10.59A			
Open Circuit Voltage	37.88V	38.24V	38.38V	38.52V			
TEMPERATURE COEF							
Nominal Operating Cell Temp		NOCT		46±2			
Temperature Coefficient of		a		+0.08			
Temperature Coefficient of Voc		β	%/°C	-0.38			ш
Temperature Coefficient of Pmpp		v	5U°C	-0.49			
					- CO	pistered as	E [
		echnical Da			- CO	on some	€ [C SEAM!
	MECH	ANICAL SP	ECIFICATI	ON	ret	pistered as	
n An	T MECH Cell Ty	ANICAL SP	ECIFICATI	ON oly-crystalline	reg	pistered as	
_	Cell Ty	ANICAL SP	ECIFICATI P	ON	Mono-crystal	pistered as	
TOVE I	Cell Ty	ANICAL SP oe mension o Dimension	ECIFICATI P 1	ON oly-crystalline i 56mm x 156r	Mono-crystal	pistered as	
STET	Cell Ty Cell Dir Module	ANICAL SP oe mension o Dimension	ECIFICATI P 1 1	ON oly-crystalline i 56mm x 156m 652mm x 98	Mono-crystal	pistered as	
SIZET	Cell Ty Cell Di Module	ANICAL SP oe mension Dimension	P 1 1 2	ON oly-crystalline 56mm x 156 652mm x 98 0kg	Mono-crystal m (0" > imm x 5m	pistered as	
STET	Cell Tyl Cell Dir Module Weight	ANICAL SP De manaion Dimension Wass	P 1 1 2	ON Oly-crystalline 56mm x 156 652mm x 98 0kg	Mono-crystal m (0" > imm x 5m	pistered as	

EQUATIONS:

- Relationship between sets, parameters, VARIABLES, etc.
- Building the model

VARIABLES:

decision variables to meet the objective and constraints, e.g., ACT, CAP

Working with tutorials

Building an energy system from scratch

- Locate your tutorial folder in your machine
- Then, open a command window and call jupyter notebook
- Navigate to the folder for Westeros tutorials and open the baseline

A stylized reference energy system model for Westeros

This tutorial is based on the country of Westeros from the TV show "Game of Thrones".

Building a MESSAGEix model

Different steps of modeling

- Creating a new scenario (or loading an existing one)
- Declaring required sets (node, technology, commodity, level, etc.)
- Defining required parameters (adding numeric data, relating sets to each other, etc.)
 - demand
 - techno-economic parameters (lifetime, efficiency, investment cost, O&M cost, etc.)
 - bounds and dynamic constraints (growth rates, diffusion rates of technologies)
- Solving the model
- Postprocessing and plotting

Building a MESSAGEix model (2)

Minimum information for building a model

- Sets: technology, node, commodity, level, mode (of operation), year, time (sub-annual timesteps)
- → Some sets have default values in the model (for example, sub-annual timesteps time: 'year')
- Parameters
 - demand
 - output (of technologies)
- → In MESSAGEix efficiency of technologies is defined with two parameters: *input, output* eff = output/input

Working with MESSAGEix scenarios

A short note on model/scenarios

• Loading the ixmp platform (connection to the database):

```
mp = ixmp.Platform()
```

• Creating a new scenario:

Example: model = 'building energy system', scenario = 'baseline' (or 'low efficiency')

Loading an existing scenario:
 my_scen = message_ix.Scenario(mp, model, scenario)
 my_scen = message_ix.Scenario(mp, model, scenario)

The MESSAGE_{ix} framework: Workflow of modeling

Recap...

MESSAGEix Website: main source of information

- Main page:
 - → https://MESSAGE.iiasa.ac.at
- Open-source GitHub repository:
 - → https://github.com/iiasa/message_ix
 (contribution guide)
- Tutorials and examples

Docs » The MESSAGEix framework

View page source

The MESSAGE ix framework

Overview and scope

MESSAGEix is a versatile, open-source, dynamic systems-optimization modelling framework. It was developed for strategic energy planning and integrated assessment of energy-engineering-economy-environment systems (E4). The framework can be applied to analyse scenarios of the energy system transformation under technical-engineering constraints and political-societal considerations. The optimization model can be linked to the general-economy MACRO model to incorporate feedback between prices and demand levels for energy and commodities. The equations are implemented in the mathematical programming system GAMS for numerical solution of a model instance.

The ix modeling platform (source: [1])

Thank you very much for your attention!

Dr. Behnam Zakeri

Research Scholar – Energy Program
International Institute for Applied Systems Analysis (IIASA)
Laxenburg, Austria

zakeri@iiasa.ac.at

