POMDPs in Aerospace and Autonomy

- 1. ACASX
- 2. Autonomous Driving

1. ACASX

TCAS

IF (ITF.A LT G.ZTHR)
THEN IF(ABS
(ITF.VMD) LT
G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR

ACASX POMDP

State variables

- *h*, the altitude of the intruder relative to the own aircraft,
- h_0 , the vertical rate of the own aircraft,
- h_1 , the vertical rate of the intruder aircraft,
- τ , the time to potential collision,
- s_{adv} , the current advisory, and
- s_{res} , whether the pilot is responding to the advisory.

Actions

- do not climb or descend,
- limit climb or descend to 500, 1000, or 2000 ft/min,
- level off,
- climb or descend at 1500 ft/min,
- increase climb or descend to 2500 ft/min, or
- maintain current vertical rate.

Transitions

$$\begin{bmatrix} h \\ \dot{h}_{0} \\ \dot{h}_{1} \\ \tau \\ s_{\text{adv}} \\ s_{\text{res}} \end{bmatrix} \leftarrow \begin{bmatrix} h + \dot{h}_{1}(\Delta t) + \frac{1}{2} \ddot{h}_{1}(\Delta t)^{2} - \dot{h}_{0}(\Delta t) - \frac{1}{2} \ddot{h}_{0}(\Delta t)^{2} \\ \dot{h}_{0} + \ddot{h}_{0}(\Delta t) \\ \dot{h}_{1} + \ddot{h}_{1}(\Delta t) \\ \tau - 1 \\ a \\ s'_{\text{res}} \end{bmatrix} . \tag{10.2}$$

$$P(s'_{\text{res}} = \text{true} \mid s_{\text{adv}}, s_{\text{res}}, a) = \begin{cases} 1 & \text{if } a = \text{COC} \\ 1 & \text{if } s_{\text{res}} = \text{true and } s_{\text{adv}} = a \\ 1/(1+5) & \text{if } s_{\text{adv}} = \text{COC and } a \neq \text{COC} \end{cases} . \tag{10.1}$$

$$1/(1+5) & \text{if } s_{\text{adv}} \text{ and } a \text{ are opposite sense}$$

$$1/(1+3) & \text{if } s_{\text{adv}} \text{ and } a \text{ are same sense}$$

Observations: Noisy and quantized measurements of h, \dot{h}_0 , \dot{h}_1

ACASX POMDP: Reward

Reward	Separation (ft)	Closure (ft/min)	Event
-1	≤ 175		$\tau \leq 0$
-1			Maintain advisory with $\dot{h}_0 < 1500\mathrm{ft/min}$
-1			Prohibited advisory transitions
-1			Preventive crossing advisory
-0.1	> 650	< 2000	Corrective advisory
-3×10^{-2}	> 1000	< 4000	Corrective advisory
-1×10^{-2}	> 650	< 2000	Preventive advisory
-1×10^{-2}	> 500		Crossing advisory
-8×10^{-3}			Reversal
-5×10^{-3}			Strengthening
-1×10^{-3}			Weakening
-1.5×10^{-3}		> 3000	Non-MVS/LOLO
-2.3×10^{-3}		< 3000	Any advisory
-5×10^{-4}		> 3000	MVS/LOLO
$-4 \times 10^{-4} \times \Delta \dot{h}$			Crossing advisory when $ \dot{h}_0 > 500$ ft/min and \dot{h}_0 is in opposite direction of advisory
-4×10^{-4}			Maintain
-1×10^{-4}			MVS/LOLO
$-3 \times 10^{-5} \times \Delta \dot{h}$			Any advisory
-1×10^{-5}			Corrective advisory
1×10^{-9}			COC

ACASX: QMDP Solution

Because the state space is continuous, the local approximation value iteration algorithm (Section 4.5.1) is used to compute U^* . In particular, ACAS X uses multilinear interpolation over a grid-based discretization of the state space. The h variable is discretized into 33 points over the range $\pm 4000\,\mathrm{ft}$ with finer discretization near 0 ft. The vertical rate variables \dot{h}_0 and \dot{h}_1 are discretized into 25 points each between $\pm 10,000\,\mathrm{ft/min}$ with finer discretization near 0 ft/min. The time to potential collision variable τ is discretized at 1 s from 0 to 40 s.

The structure of the problem is such that only a single sweep of Gauss-Seidel value iteration (Section 4.2.6) is required. Because states with $\tau = k$ depend only on the states with $\tau = k-1$, ordering the sweep of the states by increasing τ value results in the optimal value function. Although there are more than 26 million vertices, the process requires only a few minutes on a modern workstation. The state-action values $Q^*(s,a)$ produced through dynamic programming are saved in a lookup table. Recent research has explored methods for reducing the size of the table for use on airborne equipment with limited memory capacity [9].

ACAS X

POMDP Models

Optimization

Specification

Algorithm 11 ProximityEstimation

ACASX

Safer (especially when pilots don't respond) and much fewer advisories.

2. Autonomous Driving

Sadigh, Dorsa, et al. "Information gathering actions over human internal state." *Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on.* IEEE, 2016.

Schmerling, Edward, et al. "Multimodal Probabilistic Model-Based Planning for Human-Robot Interaction." *arXiv preprint arXiv:1710.09483* (2017). Sadigh, Dorsa, et al. "Planning for Autonomous Cars that Leverage Effects on Human Actions." *Robotics: Science and Systems*. 2016.

Tweet by Nitin Gupta 29 April 2018 https://twitter.com/nitguptaa/status/ 990683818825736192

Human Behavior Model: IDM and MOBIL

$$egin{align} \ddot{x}_{ ext{IDM}} &= a \left[1 - \left(rac{\dot{x}}{\dot{x}_0}
ight)^{\delta} - \left(rac{g^*(\dot{x}, \Delta \dot{x})}{g}
ight)^2
ight] \ g^*(\dot{x}, \Delta \dot{x}) &= g_0 + T \dot{x} + rac{\dot{x} \Delta \dot{x}}{2\sqrt{ab}} \end{aligned}$$

IDM Parameter		Timid	Normal	Aggressive
Desired speed (m/s)	\dot{x}_0	27.8	33.3	38.9
Desired time gap (s)	T	2.0	1.5	1.0
Jam distance (m)	g_0	4.0	2.0	0.0
Max acceleration (m/s^2)	a	0.8	1.4	2.0
Desired deceleration (m/s ²)	b	1.0	2.0	3.0
MOBIL Parameter		Timid	Normal	Aggressive
Politeness	\overline{p}	1.0	0.5	0.0
Safe braking (m/s^2)	$b_{ m safe}$	1.0	2.0	3.0
Acceleration threshold (m/s ²)	$a_{ m thr}$	0.2	0.1	0.0

M. Treiber, et al., "Congested traffic states in empirical observations and microscopic simulations," *Physical Review E*, vol. 62, no. 2 (2000).

A. Kesting, et al., "General lane-changing model MOBIL for car-following models," Transportation Research Record, vol. 1999 (2007).

A. Kesting, et al., "Agents for Traffic Simulation." *Multi-Agent Systems: Simulation and Applications*. CRC Press (2009).

POMDP Formulation

Physical states of other cars

Ego physical state Internal states of other cars

$$s = (x, y, \dot{x}, \{(x_c, y_c, \dot{x}_c, l_c, \overline{ heta_c})\}_{c=1}^n)$$

$$o = \left\{(x_c, y_c, \dot{x}_c, l_c)
ight\}_{c=1}^n$$
 Physical states of other cars

$$a=(\ddot{x},\dot{y})$$
, $\ddot{x}\in\{0,\pm1~ ext{m/s}^2\}$, $\dot{y}\in\{0,\pm0.67~ ext{m/s}\}$

- Actions filtered so they can never cause crashes
- Braking action always available

$$R(s,a,s') = ext{in_goal}(s') - \lambda \left(ext{any_hard_brakes}(s,s') + ext{any_too_slow}(s')
ight)$$

Efficiency Safety

t: 0.15 x: 4.87 vel: 32.89 r: 0.00

Simulation results

