Jihočeská univerzita v Českých Budějovicích Fakulta přírodovědecká

Ústav fyziky a biofyziky

Fyzikální praktikum IV

MILLIKANŮV EXPERIMENT

Milan Somora Vedoucí praktika: Mgr. Marcel Fuciman, Ph.D.

> České Budějovice 12. 6. 2017 Hodnocení:

Pracovní úlohy

- 1. Metodou volného pádu změřte náboje olejových kapek
- 2. Vytvořte graf nábojů kapek (q) jakožto funkce poloměrů kapek (r)
- 3. Proveď te korekci náboje pro malé poloměry kapek, utvořte histogram četností nábojů kapek
- 4. Vypočtěte elementární náboj

Seznam pomůcek

Milikanova aparatura (obr. 1), napěťový zdroj LEYBOLD 0-600V, digitální stopky 3B SCIENTIFIC U8533341, digitální meteorologická stanice, propojovací vodiče.

Teoretický úvod

Roku 1897 J.J. Thomson objevil záporně nabité částice s hmotností cca 1840x menší, než je hmotnost atomu vodíku. Jeho výsledky se však stále daly vysvětlit pomocí spojitého elektrického náboje. Robert A. Millikan s Harvey Fletcherem v roce 1909 ukázali, že elektrický náboj je kvantovaný.

Základem experimentu je metoda plovoucí kapky, která spočívá v proměření rychlosti volného pádu olejové kapky (ta je při vstřiknutí do prostoru mezi elektrodami ionizována a nese elektrický náboj), kde její rychlost je díky viskozitě vzduchu konstantní. Poté se pomocí přiloženého napětí na deskové elektrody určí náboj, který kapka nese. Poloměr kapky r lze určit ze vztahu

$$r = \sqrt{\frac{9}{2} \frac{\eta v}{(\rho_{\rm o} - \rho_{\rm v}) g}},\tag{1}$$

kde η je viskozita vzduchu, $v = \Delta x/\Delta t$ rychlost pohybu olejové kapky, $\rho_{\rm o} = 873\,{\rm kg.m^3}$ hustota oleje, $\rho_{\rm v}$ hustota vzduchu a $g = 9.81\,{\rm m.s^{-2}}$ tíhové zrychlení.

Náboj kapičky se určí ze vztahu

$$q = 9\pi \frac{d}{U} \sqrt{\frac{2\eta^3 \nu^3}{(\rho_o - \rho_v) g}},$$
 (2)

kde d je vzdálenost mezi deskami kondenzátoru, U změřené napětí, při němž se kapka zastaví.

Z 1 a 2 je zřejmé, že pro výpočet veličin r a q je zapotřebí určit hustotu a viskozitu vzduchu. Hustota vzduchu je dána vztahem

$$\rho = \frac{p_{\rm d}}{R_{\rm d}T_{\rm K}} + \frac{p_{\rm v}}{R_{\rm v}T_{\rm K}},\tag{3}$$

kde $T_{\rm K}$ [K] je naměřená teplota vzduchu, $p_{\rm v}$ [Pa] je tlak vodních par, $R_{\rm d}=287.058\,\rm J\cdot\,kg^{-1}\cdot K^{-1}$ je měrná plynová konstanta suchého vzduchu, $R_{\rm v}=461.495\,\rm J\cdot\,kg^{-1}\cdot K^{-1}$ měrná plynová konstanta vodních par.

Tlak vodních par $p_{\rm v}$ určíme ze vztahu

$$p_v = \varphi p_{\text{sat}},\tag{4}$$

 $k \mathrm{d} e \varphi$ je relativní vlhkost vzduchu a p_{sat} je tlak saturovaných vodních par, pro který platí

$$p_{\text{sat}} = 6.1078 \cdot 10^{\frac{7.5T_{\text{C}}}{T_{\text{C}} + 237,3}},\tag{5}$$

kde vypočtený tlak je v h Pa a teplotu je nutno zadávat v °C. Parciální tlak suchého vzduch
u $p_{\rm d}$ pak dopočteme ze vztahu

$$p_{\rm d} = p_{\rm L} - p_{\rm v},\tag{6}$$

kde $p_{\rm L}$ je naměřený tlak vzduchu.

Dynamickou viskozitu plynu určíme ze Sutherlandova vztahu

$$\eta = \eta_0 \frac{T_0 + C}{T + C} \left(\frac{T}{T_0}\right)^{3/2},\tag{7}$$

kde $\eta_0=18.27\,\mu\mathrm{Pa·\,s},\,T\,[\mathrm{K}]$ je teplota vzduchu, $T_0=291.15\,\mathrm{K}$ a C = 120 K (látková konstanta).

Postup měření

- 1. Zapojila se sestava podle obrázku 1.
- 2. Zkontroloval se stav oleje v rozprašovači.
- 3. Zdroj napětí byl nastaven na 0 V, spínač¹ přepnut do polohy OFF a poté zdroj zapnut..
- 4. Okulár mikroskopu byl nastaven tak, aby byla jasně vidět mikrometrická škála. Na škále byla vybrána vzdálenost 1 mm, ve které byla měřena rychlost volného pádu sledované kapky.
- 5. Z meteorologické stanice byla zaznamenána teplota, tlak a relativní vlhkost v laboratoři (tabulka 1).
- 6. Gumovým balónkem byl vstříknut olej mezi desky kondenzátoru a vytipována kapka pro sledování.
- 7. Na zdroji byla nastavena taková úroveň napětí, aby kapka přestala padat.
- 8. Po vypnutí zdroje napětí se kapka dala do pohybu. Současně byly spuštěny stopky.
- 9. Čas, za který kapka danou vzdálenost urazila a napětí, které ji udržovalo v rovnovážném stavu, byly zaznamenány do tabulky 2.
- 10. Body 6 9 byly opakovány, dokud nebylo dosaženo požadovaného počtu měření.

Obrázek 1: Sestava pro určení náboje olejové kapky

 $^{^1\}mathrm{použit\acute{y}}$ zdroj napětí byl vybaven spínačem, kterým se aktivovalo nebo deaktivovalo nastavené napětí

Teplota vzduchu $T_{\rm C}$	$24.40^{\circ}\mathrm{C}$
Teplota vzduchu $T_{\rm K}$	$297.55\mathrm{K}$
Tlak vzduchu $p_{\rm L}$	$963.20\mathrm{hPa}$
Relativní vlhkost vzduchu φ	30%

Tabulka 1: Naměřené hodnoty v laboratoři meteorologickou stanicí

Naměřené hodnoty

Část I - určení hustoty a viskozity vzduchu

V této části bude určena hustota vzduchu v laboratoři a jeho dynamická viskozita, včetně chyb jednotlivých měřených veličin. Jelikož se jednalo o nepřímé měření (výsledek byl dán výpočtem), byly do vzorců dosazeny krajní hodnoty určené z chyb měřících přístrojů (tzv. systematické chyby) a z nich pak vypočítán interval chyby měřené veličiny.

Naměřené hodnoty jsou uvedeny v tabulce 1. Fyzikální konstanty byly použity z MFCHT [1].

Tlak saturovaných vodních par

Z rovnice (5) platí²:

$$p_{\text{sat}} = 6.1078 \cdot 10^{\frac{7.5 \cdot 22.4}{22.4 + 237.3}} = 30.56038249 \,\text{hPa}.$$
 (8)

Výpočet chyby:

Do výpočtu byla zahrnuta chyba měření teploty vzduchu v laboratoři $\delta T_{\rm C}=\pm 0.10\,{}^{\circ}{\rm C},$ potom

$$p_{\text{sat}+} = 6.1078 \cdot 10^{\frac{7.5 \cdot 22.5}{22.5 + 237,3}} = 30.74372349 \,\text{hPa},$$

$$p_{\text{sat-}} = 6.1078 \cdot 10^{\frac{7.5 \cdot 22.3}{22.3 + 237.3}} = 30.37799593 \,\text{hPa},$$

výsledná chyba

$$\delta p_{\text{sat}} = [(p_{\text{sat+}}) - (p_{\text{sat-}})]/2 = \pm 0.18286378 \,\text{hPa}.$$
 (9)

Tlak saturovaných vodních par je tedy

$$p_{\rm sat} \doteq (30.56 \pm 0.18) \text{ hPa.}$$

²výsledek v hektopascalech, teplota vzduchu ve stupních Celsia

Tlak vodních par

Byl vypočítán z tlaku saturovaných par p_{sat} (8) na základě rovnice (4):

$$p_{\rm v} = \frac{30\%}{100} \cdot 30.56038249 \,\text{hPa} = 9.168114747 \,\text{hPa}. \tag{10}$$

Výpočet chyby:

Do výpočtu byla zahrnuta chyba určení tlaku saturovaných vodních par $\delta p_{\rm sat}$ (9), potom

$$p_{\text{v+}} = \frac{30\%}{100} \cdot p_{\text{sat+}} = \frac{30\%}{100} \cdot 30.74372349 \,\text{hPa} = 9.223117046 \,\text{hPa},$$

$$p_{\rm v-} = \frac{30\,\%}{100} \cdot p_{\rm sat-} = \frac{30\,\%}{100} \cdot 30.37799593 \, {\rm hPa} = 9.113398779 \, {\rm hPa},$$

výsledná chyba

$$\delta p_{\rm v} = [(p_{\rm v+}) - (p_{\rm v-})]/2 = \pm 0.0548591335 \,\text{hPa}.$$
 (11)

Tlak vodních par je tedy

$$p_{\rm v} \doteq (9.17 \pm 0.06) \text{ hPa.}$$

Parciální tlak suchého vzduchu

Byl vypočítán z tlaku vodních par $p_{\rm v}$ (10) a naměřeného tlaku vzduchu $p_{\rm L}$ v laboratoři (tab. 2). Z rovnice (6) platí:

$$p_{\rm d} = 963.20 \,\text{hPa} - 9.17 \,\text{hPa} = 954.03 \,\text{hPa}.$$
 (12)

Výpočet chyby:

Do výpočtu byla zahrnuta chyba měření tlaku vzduchu v laboratoři $\delta p_{\rm L}=\pm 0.10\,{\rm hPa}$ a chyba určení tlaku vodních par $\delta p_{\rm v}$ (11), potom

$$p_{d+} = 963.30 \,\text{hPa} - 9.23 \,\text{hPa} = 954.07 \,\text{hPa},$$

$$p_{d-} = 963.10 \,\text{hPa} - 9.11 \,\text{hPa} = 953.99 \,\text{hPa},$$

výsledná chyba

$$\delta p_{\rm d} = [(p_{\rm d+}) - (p_{\rm d-})]/2 = \pm 0.04 \,\text{hPa}.$$
 (13)

Parciální tlak suchého vzduchu je tedy

$$p_{\rm d} = (954.03 \pm 0.04) \text{ hPa.}$$

Hustota vzduchu v laboratoři

Pro výpočet hustoty vzduchu byly použity výše vypočtené hodnoty, tedy parciální tlak suchého vzduchu $p_{\rm d}$ (12), tlak vodních par $p_{\rm v}$ (10) a naměřená teplota vzduchu v laboratoři $T_{\rm K}$ (tab. 1). Z rovnice (3) platí: ³

$$\rho_{\rm v} = \frac{95403.000\,\mathrm{Pa}}{287.058\,\mathrm{J\cdot kg^{-1}\cdot K^{-1}\cdot 297.550\,K}} + \frac{916.812\,\mathrm{Pa}}{461.495\,\mathrm{J\cdot kg^{-1}\cdot K^{-1}\cdot 297.550\,K}} = 1.123623199\,\mathrm{kg\cdot m^3}. \tag{14}$$

Výpočet chyby:

Do výpočtu byla zahrnuta chyba měření teploty vzduchu v laboratoři $\delta T_{\rm C} = \pm 0.10\,^{\circ}{\rm C}$ (což je $\delta T_{\rm K} = 3.73\,{\rm K}$), chyba měření tlaku vzduchu $\delta p_{\rm L} = \pm 0.10\,{\rm hPa} = 10\,{\rm Pa}$, chyba určení tlaku vodních par $\delta p_{\rm v}$ (11) a chyba určení parciálního tlaku suchého vzduchu $\delta p_{\rm d}$ (13), potom

$$\rho_{\rm v+} = \frac{p_{\rm d+}}{287.058\,{\rm J\cdot kg^{-1}\cdot K^{-1}\cdot 301.280\,K}} + \frac{p_{\rm v+}}{461.495\,{\rm J\cdot kg^{-1}\cdot K^{-1}\cdot 301.280\,K}} =$$

$$=\frac{95407.000\,\mathrm{Pa}}{287.058\,\mathrm{J}\cdot\mathrm{kg}^{-1}\cdot\mathrm{K}^{-1}\cdot301.280\,\mathrm{K}}+\frac{926.812\,\mathrm{Pa}}{461.495\,\mathrm{J}\cdot\mathrm{kg}^{-1}\cdot\mathrm{K}^{-1}\cdot301.280\,\mathrm{K}}=1.109830344\,\mathrm{kg}\cdot\mathrm{m}^3,$$

$$\rho_{\rm v-} = \frac{p_{\rm d-}}{287.058\,\rm J\cdot kg^{-1}\cdot K^{-1}\cdot 293.82\,K} + \frac{p_{\rm v-}}{461.495\,\rm J\cdot kg^{-1}\cdot K^{-1}\cdot 293.82\,K} =$$

$$=\frac{95399.000\,\mathrm{Pa}}{287.058\,\mathrm{J\cdot kg^{-1}\cdot K^{-1}\cdot 293.820\,K}}+\frac{906.812\,\mathrm{Pa}}{461.495\,\mathrm{J\cdot kg^{-1}\cdot K^{-1}\cdot 293.820\,K}}=1.137766251\,\mathrm{kg\cdot m^3},$$

výsledná chyba

$$\delta \rho_{\rm v} = \left[(\rho_{\rm v-}) - (\rho_{\rm v+}) \right] / 2 = \pm 0,0139679535 \,\mathrm{kg \cdot m^3}. \tag{15}$$

Hustota vzduchu v laboratoři je tedy

$$\rho_{\rm v} \doteq (1.12 \pm 0, 01) \text{ kg} \cdot \text{m}^3.$$

³tlaky dosazovány v Pascalech, teplota vzduchu v Kelvinech

Dynamická viskozita vzduchu v laboratoři

Pro výpočet byl použit Stuherlandův vztah (7), tedy

$$\eta = 18.27 \,\mu\text{Pa} \cdot \text{s} \cdot \frac{291.15 \,\text{K} + 120.00 \,\text{K}}{297.55 \,\text{K} + 120.00 \,\text{K}} \cdot \left(\frac{297.55 \,\text{K}}{291.15 \,\text{K}}\right)^{3/2} = 18.6 \cdot 10^{-6} \,\text{Pa.s.}$$
(16)

Výpočet chyby:

Do výpočtu byla zahrnuta chyba měření teploty vzduchu v laboratoři $\delta T_{\rm C}=\pm 0.10\,^{\circ}{\rm C}$ (což je $\delta T_{\rm K}=3.73\,{\rm K}$), potom

$$\eta_{+} = 18.27 \,\mu\text{Pa} \cdot \text{s} \cdot \frac{291.15 \,\text{K} + 120.00 \,\text{K}}{301.28 \,\text{K} + 120.00 \,\text{K}} \cdot \left(\frac{570.80 \,\text{K}}{291.15 \,\text{K}}\right)^{3/2} = 18.8 \cdot 10^{-6} \,\text{Pa.s},$$

$$\eta_{-} = 18.27 \,\mu\text{Pa} \cdot \text{s} \cdot \frac{291.15 \,\text{K} + 120.00 \,\text{K}}{293.82 \,\text{K} + 120.00 \,\text{K}} \cdot \left(\frac{24.3 \,\text{K}}{291.15 \,\text{K}}\right)^{3/2} = 18.4 \cdot 10^{-6} \,\text{Pa.s},$$

výsledná chyba

$$\delta \eta = [(\eta_+) - (\eta_-)]/2 = \pm 0.20 \,\text{Pa.s.}$$
 (17)

Dynamická viskozita vzduchu v laboratoři je tedy

$$\eta = (18.60 \pm 0.20) \cdot 10^{-6} \, \text{Pa.s.}$$

Část II - výpočet poloměru kapky a jejího náboje

V této části bude určena velikost elementárního náboje změřeného v naší laboratoři. Měřené veličiny byly vypočteny včetně chyb, které se projevily ve výpočtu výsledného elementárního náboje. I zde se jednalo o nepřímé měření, proto byly do vzorců dosazeny krajních hodnoty a z nich pak určen interval chyby měřené veličiny.

Naměřené hodnoty jsou uvedeny v tabulce 2. Jelikož se jedná o větší množství dat, byly výsledky přesunuty do přílohy A.

Rychlosti kapek

Výsledky viz příloha A - obr. 4.

Nejdříve byla spočítána průměrná rychlost v pohybu pro každou olejovou kapku. Volný pád každé kapky byl měřen na dráze $\Delta x = 1$ mm a čas pádu t byl měřen stopkami, tedy

$$v_{\rm i} = \frac{\Delta x}{\Delta t_{\rm i}}.$$

Č. měření	Δt	U	Č.měření	Δt	U
	ms	V		ms	V
1	7873	546	11	24561	154
2	12022	175	12	11994	82
3	21965	37	13	15388	131
4	14075	228	14	6256	172
5	28543	42	15	18651	149
6	18402	57	16	26562	142
7	18831	184	17	11079	98
8	13201	307	18	13307	203
9	6965	133	19	17485	123
10	92446	220	20	23167	108

Tabulka 2: Naměřené hodnoty při určování el. náboje olejových kapek

Výpočet chyby:

Do výpočtu byla zahrnuta chyba čtení z mikrometrické stupnice $\delta x=\pm 0.05\,\mathrm{mm}$ a chyba určení času $\delta t=\pm 0.001\,\mathrm{s},$ potom

$$v_{i+} = \frac{\Delta x + 0.00005 \,\mathrm{m}}{\Delta t_i + 0.001 \,\mathrm{s}},$$

$$v_{\rm i-} = \frac{\Delta x - 0.00005}{\Delta t_{\rm i} - 0.001},$$

výsledná chyba

$$\delta v_{\rm i} = [(v_{\rm i+}) - (v_{\rm i-})]/2.$$
 (18)

Poloměry kapek

Výsledky viz příloha A - obr. 5.

Z vypočtené rychlosti byl na základě vztahu (1) vypočítán poloměr r pro každou kapku, tedy

$$r_{\rm i} = \sqrt{\frac{9}{2} \frac{\eta v_{\rm i+}}{(\rho_{\rm o} - \rho_{\rm v}) g}}.$$

Do vztahu bylo nutné dosadit také dynamickou viskozitu η a hustotu vzduchu $\rho_{\rm v}$ v laboratoři, které byly předem určeny (16, 14).

Výpočet chyby:

Do výpočtu byla zahrnuta chyba určení dynamické viskozity vzduchu $\delta\eta$ (17) a chyba určení rychlosti kapky $\delta v_{\rm i}$ (18), potom

$$r_{i+} = \sqrt{\frac{9}{2} \frac{\eta_+ v_{i+}}{(\rho_o - \rho_{v+}) g}},$$

$$r_{i-} = \sqrt{\frac{9}{2} \frac{\eta_- v_{i-}}{(\rho_0 - \rho_{v-}) q}},$$

výsledná chyba

$$\delta r_{i} = [(r_{i+}) - (r_{i-})]/2. \tag{19}$$

Náboje kapek

Výsledky viz příloha A - obr. 6.

Obdobným způsobem byl ze vztahu (2) vypočítán elektrický náboj q opět pro každou kapku zvlášť, tedy

$$q_{\rm i} = 9\pi \frac{d}{U} \sqrt{\frac{2\eta^3 v_{\rm i}^3}{\left(\rho_{\rm o} - \rho_{\rm v}\right)g}}. \label{eq:qi}$$

Na obrázku 2 je ukázáno, že náboj olejové kapky je závislý i na jejím poloměru.

Výpočet chyby:

Do výpočtu byla zahrnuta chyba vzdálenosti mezi deskami kondenzátoru $\delta d = \pm 0,05 \,\mathrm{mm}$ a přesnost napěťového zdroje $\delta U = \pm 1 \,\mathrm{V}$. Dále byla zahrnuta chyba určení rychlosti kapky δv_{i} (18), chyba určení hustoty vzduchu ρ_{v} (15) a chyba určení jeho dynamické viskozity $\delta \eta$ (17), potom

$$q_{i+} = 9\pi \frac{d+0,00005 \,\mathrm{m}}{U+1 \,\mathrm{V}} \sqrt{\frac{2\eta_+^3 v_{i+}^3}{(\rho_{\mathrm{o}} - \rho_{\mathrm{v+}}) \,g}},$$

$$q_{\rm i-} = 9\pi \frac{d - 0,00005 \,\mathrm{m}}{U - 1 \,\mathrm{V}} \sqrt{\frac{2\eta_-^3 v_{\rm i-}^3}{\left(\rho_{\rm o} - \rho_{\rm v-}\right) g}},$$

výsledná chyba

$$\delta q_{\rm i} = [(q_{\rm i+}) - (q_{\rm i-})]/2.$$
 (20)

Obrázek 2: Náboj olejové kapy qje funkcí jejího poloměru \boldsymbol{r}

Určení elementárního náboje

Výsledky viz příloha A - obr. 8.

Nejprve byla provedena korekce náboje q_i na q_{ci} pro každou kapku pomocí Cunninghamova vztahu⁴, tedy

$$q_{\rm ci} = \frac{q_{\rm i}}{\sqrt{\left(1 + \frac{\rm A}{r_{\rm i}}\right)^3}}.$$

Výpočet chyby:

Do výpočtu byla zahrnuta chyba určení náboje kapky δq_i (20) a chyba určení poloměru kapky δr_i (19), potom

$$q_{\rm ci+} = \frac{q_{\rm i+}}{\sqrt{\left(1 + \frac{\rm A}{r_{\rm i+}}\right)^3}},$$

$$q_{\rm ci-} = \frac{q_{\rm i-}}{\sqrt{\left(1 + \frac{A}{r_{\rm i-}}\right)^3}},$$

výsledná chyba

$$\delta q_{ci} = [(q_{ci+}) - (q_{ci-})]/2.$$
 (21)

Poté byl pro každou kapku vypočítán násobek (četnost) n elementárního náboje, který tvoří celkový náboj olejové kapky⁵. Násobek byl určen ze známého elementárního náboje $e=1.6021892*10^{-19}\,\mathrm{C}$ [1], tedy

$$n_{\rm i} \doteq \frac{q_{\rm ci}}{\rm e}.\tag{22}$$

Histogram četnosti pozorovaných nábojů je na obrázku 3.

Násobky n_i byly zaokrouhleny na celá čísla a z nich na základě vztahu $e_i = q_{\rm ci}/n_i$ vypočítány elementární náboje pro každou kapku zvlášť. Nakonec byl z hodnot e_i určen aritmetický průměr \overline{e} , který v tomto případě vyjadřuje průměrnou hodnotu elementárního náboje změřeného v našich podmínkách, tedy

$$\overline{e} = \frac{1}{20} \sum_{i=1}^{20} e_i = 1.68883 \cdot 10^{-19} \,\mathrm{C}.$$
 (23)

 $^{^4}$ A = 0.07776 μ m je koeficient tření olejové kapky ve vzduchu za standardního tlaku a teploty 25°C ⁵Celkový náboj kapky je násobkem elementárního náboje, tj. $e = 1.6021892 \cdot 10^{-19}$ C.

Figure 3: Histogram četnosti pozorovaných nábojů.

Výpočet chyby:

Do výpočtu byla zahrnuta chyba korekce náboje kapky $\delta q_{\rm ci}$ (21) a chyba určení poloměru kapky $\delta r_{\rm i}$ (19), potom

$$e_{i+} = \frac{q_{ci+}}{n_i},$$

$$e_{\rm i-} = \frac{q_{\rm ci-}}{n_{\rm i}},$$

výsledná chyba

$$\delta e_{\rm i} = \pm \left[(e_{\rm i+}) - (e_{\rm i-}) \right] / 2.$$

Z chyb $\delta e_{\rm i}$ byl spočítán aritmetický průměr

$$\overline{\delta e} = \frac{1}{20} \sum_{i=1}^{20} \delta e_i = 0.89979 \cdot 10^{-19} \,\mathrm{C},$$
 (24)

poté odchylky od aritmetického průměru

$$\overline{\Delta \delta e_i} = \delta e_i - \overline{\delta e} = \delta e_i - 0.89979 \cdot 10^{-19} \,\mathrm{C},$$

a nakonec chyba aritmetického průměru, tj. absolutní chyba, která udává interval, ve kterém se s nejvyšší pravděpodobností vyskytuje skutečná hodnota měřeného elementárního náboje, tedy

$$\overline{\sigma e} = \sqrt{\frac{\sum_{i=1}^{20} (\Delta \delta e_i)^2}{20 (20 - 1)}} = \pm 0.0136256 \cdot 10^{-19} \,\mathrm{C}.$$

Hodnota změřeného elementární náboje leží v intervalu

$$e = (\overline{e} \pm \overline{\sigma e})$$
.

Odhadujeme tedy, že elementární náboj změřený Millikanovou sestavou v naší laboratoři má hodnotu

$$e = (1.69 \pm 0.01) \cdot 10^{-19} \,\mathrm{C}.$$
 (25)

Chyby měření

U následujících přístrojů nebyly výrobcem uvedeny třídy přesnosti. Chyby měření proto byly odhadnuty.

Digitální stopky

Měřící rozsah 1 – 99999 ms, maximální chyba naměřené hodnoty byla odhadnuta podle nejmenšího dílku na stupnici, tedy $\delta t = \pm 0.001 \,\mathrm{s}$.

Napěťový zdroj

Měřící rozsah $0-600\,\mathrm{V}$, maximální chyba naměřené hodnoty byla odhadnuta podle nejmenšího dílku na stupnici, tedy na $\delta U=\pm 1\,\mathrm{V}$.

Mikrometrická stupnice

Chyba čtení byla odhadnuta na $\delta x = \pm 0.05 \,\mathrm{mm}$, tedy na polovinu velikosti jednoho dílku.

Meteorologická stanice

Údaje naměřené meteorologickou stanicí v laboratoři - maximální chyba naměřené hodnoty byla odhadnuta podle nejmenšího dílku na stupnici, tedy teplota $\delta T_{\rm C} = \pm 0.1$ °C ($\delta T_{\rm K} = 3,73~K$), relativní vlhkost $\delta \varphi = \pm 1~\% = \pm 0,01$ a tlak v laboratoři $\delta p_{\rm L} = \pm 0.1$ hPa.

Vzdálenost mezi deskami kondenzátoru

Vzdálenost mezi deskami kondenzátoru byla odhadnuta na $\delta d = \pm 0,05\,\mathrm{mm}$.

Diskuze

Jelikož se jednalo o nepřímé měření (výsledek byl dán výpočtem), byly do vzorců dosazeny krajní hodnoty určené z chyb měřících přístrojů (tzv. systematických chyb) a z nich pak vypočítán interval chyby měřené veličiny (tzv. absolutní chyba):

Tlak saturovaných vodních par $p_{\rm sat} \doteq (30.56 \pm 0.18) \text{ hPa.}$

Tlak vodních par $p_{\rm v} \doteq (9.17 \pm 0.06)~{\rm hPa}.$

Parciální tlak suchého vzduchu $p_{\rm d} = (954.03 \pm 0.04)~{\rm hPa}$.

Hustota vzduchu v laboratoři $\rho_{\rm v} \doteq (1.12 \pm 0, 01) \; {\rm kg \cdot m^3}$.

Dynamická viskozita vzduchu v laboratoři $\eta = (18.60 \pm 0.20) \cdot 10^{-6} \, \mathrm{Pa.s.}$

Rychlosti kapek, jejich poloměry a velikosti jejich nábojů jsou uvedeny v příloze A.

Hodnota elementárního náboje změřeného Millikanovou sestavou v naší laboratoři byla odhadnuta na e = $(1.69\pm0.01)\cdot10^{-19}\,\mathrm{C}$.

Větší přesnosti bychom dosáhli lepšími přístroji, lepšími podmínkami v laboratoři (minimalizováním tzv. náhodných chyb) a větším počtem měření. Během měření nedošlo k hrubým chybám.

Závěr

Hodnota naměřeného elementárního náboje je e = $(1.69 \pm 0.01) \cdot 10^{-19}$ C.

Literatura

[1] MIKULČÁK J., KLIMEŠ, B. a kolektiv. (1989): Matematické, fyzikální a chemické tabulky pro střední školy. Státní pedagogické nakladatelství, Praha, 206 s., ISBN 54-09-12/1b.

Přílohy

Příloha A

Č. měření	vi	vi+	vi-	δνί
C. Illerelli	m/s	m/s	m/s	m/s
1	0.000127016	0.00013335	0.000120681	6.33469E-06
2	8.31808E-05	8.73326E-05	7.90284E-05	4.15212E-06
3	4.5527E-05	4.78011E-05	4.32526E-05	2.27428E-06
4	7.1048E-05	7.45951E-05	6.75004E-05	3.54735E-06
5	3.50349E-05	3.67853E-05	3.32843E-05	1.75052E-06
6	5.43419E-05	5.70559E-05	5.16276E-05	2.71414E-06
7	5.31039E-05	5.57562E-05	5.04514E-05	2.65238E-06
8	7.57518E-05	7.95334E-05	7.19697E-05	3.78185E-06
9	0.000143575	0.000150732	0.000136416	7.15814E-06
10	0.000108155	0.00011355	0.000102758	5.39605E-06
11	4.0715E-05	4.2749E-05	3.86808E-05	2.03409E-06
12	8.3375E-05	8.75365E-05	7.92129E-05	4.1618E-06
13	6.49857E-05	6.82306E-05	6.17404E-05	3.24506E-06
14	0.000159847	0.000167812	0.000151878	7.96678E-06
15	5.36164E-05	5.62942E-05	5.09383E-05	2.67795E-06
16	3.76478E-05	3.95287E-05	3.57667E-05	1.88097E-06
17	9.02609E-05	9.47653E-05	8.57556E-05	4.5049E-06
18	7.51484E-05	7.88999E-05	7.13964E-05	3.75177E-06
19	5.71919E-05	6.0048E-05	5.43354E-05	2.85632E-06
20	4.31648E-05	4.53211E-05	4.10084E-05	2.15638E-06

Obrázek 4: Rychlosti kapek

Č. měření	ri	ri+	ri-	δri
C. Illerelli	m	m	m	m
1	1.0933E-05	1.12664E-05	1.06034E-05	3.31509E-07
2	8.84754E-06	9.11753E-06	8.58059E-06	2.68467E-07
3	6.54554E-06	6.7454E-06	6.34793E-06	1.98739E-07
4	8.17686E-06	8.42643E-06	7.9301E-06	2.48166E-07
5	5.74197E-06	5.91733E-06	5.56859E-06	1.74371E-07
6	7.15119E-06	7.36952E-06	6.93533E-06	2.17097E-07
7	7.06926E-06	7.2851E-06	6.85587E-06	2.14614E-07
8	8.44321E-06	8.70089E-06	8.18843E-06	2.5623E-07
9	1.16239E-05	1.19782E-05	1.12735E-05	3.5236E-07
10	1.00887E-05	1.03964E-05	9.7844E-06	3.06002E-07
11	6.18996E-06	6.37898E-06	6.00307E-06	1.87958E-07
12	8.85786E-06	9.12816E-06	8.5906E-06	2.6878E-07
13	7.82023E-06	8.05895E-06	7.58421E-06	2.37366E-07
14	1.22649E-05	1.26386E-05	1.18953E-05	3.71691E-07
15	7.10329E-06	7.32016E-06	6.88887E-06	2.15645E-07
16	5.95224E-06	6.13402E-06	5.77252E-06	1.80749E-07
17	9.21638E-06	9.49759E-06	8.93834E-06	2.79627E-07
18	8.40951E-06	8.66617E-06	8.15575E-06	2.5521E-07
19	7.33632E-06	7.56029E-06	7.11487E-06	2.22706E-07
20	6.37347E-06	6.56809E-06	6.18105E-06	1.93522E-07

Obrázek 5: Poloměry kapek

×	qi	qi+	qi-	δqi
Č. měření	С	С	С	С
1	5.44987E-19	6.00258E-19	3.41865E-20	2.83036E-19
2	9.01127E-19	9.88749E-19	1.18646E-20	4.88442E-19
3	1.7258E-18	1.85442E-18	2.62942E-21	9.25895E-19
4	5.45986E-19	5.99879E-19	7.99968E-21	2.9594E-19
5	1.02634E-18	1.10631E-18	1.36596E-21	5.52473E-19
6	1.46089E-18	1.58437E-18	4.09286E-21	7.9014E-19
7	4.37181E-19	4.79846E-19	3.86372E-21	2.37991E-19
8	4.46417E-19	4.9103E-19	9.39026E-21	2.4082E-19
9	2.68878E-18	2.94468E-18	4.64415E-20	1.44912E-18
10	1.06276E-18	1.16741E-18	2.28727E-20	5.7227E-19
11	3.50671E-19	3.84495E-19	1.98871E-21	1.91253E-19
12	1.92988E-18	2.10397E-18	1.1934E-20	1.04602E-18
13	8.31275E-19	9.10392E-19	6.40084E-21	4.51996E-19
14	2.44239E-18	2.67931E-18	6.07395E-20	1.30928E-18
15	5.47709E-19	6.00397E-19	3.95762E-21	2.9822E-19
16	3.3815E-19	3.70567E-19	1.63506E-21	1.84466E-19
17	1.81891E-18	1.98689E-18	1.45528E-20	9.86167E-19
18	6.67073E-19	7.32519E-19	9.20437E-21	3.61657E-19
19	7.30947E-19	8.0013E-19	4.65079E-21	3.9774E-19
20	5.45834E-19	5.96841E-19	2.30151E-21	2.9727E-19

Obrázek 6: Náboje kapek

Č. měření	qci	qci+	qci-	δqci
C. Illerelli	С	С	С	С
1	5.44987E-19	5.94096E-19	3.38139E-20	2.80141E-19
2	9.01127E-19	9.76234E-19	1.17052E-20	4.82264E-19
3	1.7258E-18	1.82281E-18	2.58183E-21	9.10114E-19
4	5.45986E-19	5.9167E-19	7.88344E-21	2.91893E-19
5	1.02634E-18	1.08486E-18	1.33784E-21	5.4176E-19
6	1.46089E-18	1.55962E-18	4.02498E-21	7.77799E-19
7	4.37181E-19	4.72264E-19	3.79891E-21	2.34233E-19
8	4.46417E-19	4.8452E-19	9.25807E-21	2.37631E-19
9	2.68878E-18	2.91624E-18	4.59651E-20	1.43514E-18
10	1.06276E-18	1.15444E-18	2.26027E-20	5.65917E-19
11	3.5067E-19	3.7757E-19	1.95069E-21	1.8781E-19
12	1.92988E-18	2.07737E-18	1.17738E-20	1.0328E-18
13	8.31275E-19	8.97373E-19	6.30364E-21	4.45535E-19
14	2.44239E-18	2.65477E-18	6.01487E-20	1.29731E-18
15	5.47709E-19	5.90956E-19	3.89155E-21	2.93532E-19
16	3.3815E-19	3.6363E-19	1.60257E-21	1.81014E-19
17	1.81891E-18	1.96273E-18	1.43649E-20	9.74184E-19
18	6.67072E-19	7.22769E-19	9.07428E-21	3.56847E-19
19	7.30946E-19	7.87943E-19	4.57557E-21	3.91684E-19
20	5.45834E-19	5.86397E-19	2.25875E-21	2.92069E-19

Obrázek 7: Korekce nábojů kapek

č měřoní	qci	četnost n	ei=qci/n	ei÷	ej-	<i>Sei</i>	Δδei	(Aδei)^2
כי וועועו	С		С	С	С	С	С	С
1	5.4499E-19	3	1.8166E-19	1.9803E-19	1.1271E-20	9.338E-20	-3,40051E-21	1.15635E-41
2	9.0113E-19	5	1.8023E-19	1.9525E-19	2.341E-21	9.6453E-20	-6.47295E-21	4.18991E-41
3	1.7258E-18	11	1.5689E-19	1.6571E-19	2.3471E-22	8.2738E-20	7.24229E-21	5.24507E-41
4	5.4599E-19	3	1.82E-19	1.9722E-19	2.6278E-21	9.7298E-20	-7.3179E-21	5.35516E-41
5	1.0263E-18	9	1.7106E-19	1.8081E-19	2.2297E-22	9.0293E-20	-3.13366E-22	9.81983E-44
9	1.4609E-18	6	1.6232E-19	1.7329E-19	4.4722E-22	8.6422E-20	3.55783E-21	1.26581E-41
7	4.3718E-19	3	1.4573E-19	1.5742E-19	1.2663E-21	7.8078E-20	1.19023E-20	1,41665E-40
∞	4.4642E-19	3	1.4881E-19	1.6151E-19	3.086E-21	7.921E-20	1.07696E-20	1.15984E-40
6	2.6888E-18	17	1.5816E-19	1.7154E-19	2.7038E-21	8.442E-20	5.56016E-21	3.09153E-41
10	1.0628E-18	9	1.7713E-19	1.9241E-19	3.7671E-21	9.432E-20	-4.33962E-21	1.88323E-41
11	3.5067E-19	2	1.7534E-19	1.8879E-19	9.7534E-22	9.3905E-20	-3.92498E-21	1.54055E-41
12	1.9299E-18	12	1.6082E-19	1.7311E-19	9.8115E-22	8.6066E-20	3.91342E-21	1.53149E-41
13	8.3127E-19	5	1.6625E-19	1.7947E-19	1.2607E-21	8.9107E-20	8.72967E-22	7.62072E-43
14	2,4424E-18	15	1.6283E-19	1.7698E-19	4.0099E-21	8.6487E-20	3.4925E-21	1.21976E-41
15	5.4771E-19	3	1.8257E-19	1.9699E-19	1.2972E-21	9.7844E-20	-7.86417E-21	6.18452E-41
16	3.3815E-19	2	1.6907E-19	1.8182E-19	8.0129E-22	9.0507E-20	-5.27027E-22	2.77757E-43
17	1.8189E-18	11	1.6536E-19	1.7843E-19	1.3059E-21	8.8562E-20	1,41768E-21	2.00982E-42
18	6.6707E-19	4	1.6677E-19	1.8069E-19	2.2686E-21	8.9212E-20	7.68059E-22	5.89915E-43
19	7.3095E-19	4	1.8274E-19	1.9699E-19	1.1439E-21	9.7921E-20	-7.94099E-21	6.30593E-41
20	5.4583E-19	3	1.8194E-19	1.9547E-19	7.5292E-22	9.7356E-20	-7.37645E-21	5.44119E-41
		Průměr:	1.6888E-19		Průměr:	8.9979E-20	Průměr:	7.05492E-40

Obrázek 8: Výpočet elementárního náboje a absolutní chyby