Add identification!	4
Add examples and complete notes for the last half hour of the class	4
Add all the cotangent bundles!	6
Part of the reminder is missing (she erased it too fast)	6

Introduction

11/3/24

Note All vector spaces are real and finite dimensional unless otherwise stated.

Definition 0.1 A bilinear form $\Omega: V \times V \to \mathbb{R}$ on a vector space V is a linear symplectic form if it is

- (a) skew-symmetric, i.e. $\Omega(v, w) = -\Omega(w, v) \quad \forall \ v, w \in V;$
- (b) non-degenerate, i.e. $\Omega(v, w) = 0 \quad \forall \ v \in V \implies w = 0$.

Example 0.2

- (1) Consider $V = \mathbb{R}^2$, $B = (e_1, e_2)$. Then $[\Omega]_B^B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ represents a linear symplectic form on \mathbb{R}^2 .
- (2) Consider $V = \mathbb{R}^{2n}, B = (e_1, \dots, e_n, f_1, \dots, f_n)$. Then

$$[\Omega]_B^B = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

represents a linear symplectic form on \mathbb{R}^{2n} . Moreover, we have that

$$\Omega(e_1, e_j) = 0,
\Omega(f_i, f_j) = 0,
\Omega(e_i, f_j) = \delta_{ij} = -\Omega(f_j, e_i).$$
(0.1)

Definition 0.3 The pair (V, Ω) is a *(real) symplectic vector space*. If it has a basis $B = (e_1, \dots, e_n, f_1, \dots, f_n)$ satisfying the relations given by the equations in (0.1), we say that B is a *symplectic basis* of (V, Ω) .

Remark 0.4 If B is an ordered basis of V, then $[\Omega]_B^B$ is antisymmetric and invertible.

¹Whenever order is needed for a basis, I write them as ordered bases (i.e. between parenthesis) instead of unordered sets, and this is important to me!

²The notation $[\Gamma]^{\beta}_{\alpha}$ indicates the matrix representation of the bilinear form Γ which takes column vectors $[w]_{\alpha}$ from the right represented, which are with an ordered basis α , and row vectors $([v]_{\beta})^T$ from the left, which are represented with an ordered basis β and transposed, and computes $\Gamma(v, w)$.

Example 0.5 Let W be a vector space with dual W^* and $V = W \oplus W^*$. Note there is an isomorphism of vector spaces $W \oplus W^* \xrightarrow{\sim} W^* \oplus W, (w, f) \mapsto (f, -w)$. Then,

$$\Omega: V \times V \to R,$$

 $((w_1, f_1), (w_2, f_2)) \mapsto f_2(w_1) - f_1(w_2)$

is a linear symplectic form on V.

Lemma 0.6 If (V, Ω) is a symplectic vector space, then $dim(V) \equiv 0 \mod 2$.

Proof. If A represents Ω , then

$$det(A) = det(-A^T)$$

$$= det(-A)$$

$$= (-1)^{\dim(V)} det(A).$$

Definition 0.7 Let (V,Ω) be a symplectic vector space. A linear subspace $U\subseteq V$ is

- (a) symplectic if $\Omega \mid_U$ is a linear symplectic form on U (non-degeneracy is sufficient);
- (b) isotropic if $\Omega \mid_U = 0$;
- (c) coisotropic if $\Omega(u, v) = 0 \quad \forall \ u \in U \implies v \in U$;
- (d) Lagrangian if it is both isotropic and coisotropic.

Example 0.8 Let $V = \mathbb{R}^{2n}, B = (e_1, \dots, e_n, f_1, \dots, f_n).$

- (1) $\langle \{e_1, f_1\} \rangle$ is a symplectic subspace which is neither isotropic nor coisotropic (thus neither Lagrangian).
- (2) $\langle \{e_1, \ldots, e_n\} \rangle$ is a Lagrangian subspace which is not symplectic.
- (3) $\{0\}$ and $\langle \{e_1, \ldots, \hat{e_k}, \ldots, e_n\} \rangle$, where $\hat{e_k}$ indicates the exclusion of the k-th vector of the canonical ordered basis from the set, are isotropic subspaces which are not coisotropic, where the first one is trivially symplectic.
- (4) If $I, J \subseteq \{1, ..., n\}$ and $\langle \{e_i\}_{i \in I} \cup \{f_j\}_{j \in J} \rangle$ is
 - symplectic if, and only if, I = J;
 - isotropic if, and only if, $I \cap J = \emptyset$;
 - coisotropic if, and only if, $I \cup J = \{1, \dots, n\}^3$;
 - Lagrangian if, and only if, $I = J^c$.

³I'm pretty sure of this characterization. But keep this note until we get any kind of confirmation.

12/3/24

Remark 0.9 Let V be a real finite dimensional vector space with dual V^* and $\Omega: V \times V \to \mathbb{R}$ a bilinear form. Then, we have the linear isomorphism⁴

$$\Omega^{\#} = \tilde{\Omega} : V \to V^*,$$

$$v \mapsto \Omega(v, \cdot).$$

 Ω is symplectic if and only if

- (1) $\Omega^{\#}$ is antiselfdual, i.e. $(\Omega^{\#})^* = -\Omega^{\#}$, and
- (2) $\Omega^{\#}$ is injective (or, equivalently, an isomorphism).

Definition 0.10 Let (V, Ω) be a symplectic vector space and $U \subseteq V$ a linear subspace. The *symplectic* orthogonal or symplectic annihilator of U is

$$U^{\Omega} := \{ v \in V \mid \Omega(u, v) = 0 \quad \forall \ u \in U \}.$$

Proposition 0.11 Let (V,Ω) be a symplectic vector space and $U\subseteq V$ a linear subspace. Then,

$$\dim(U) + \dim(U^{\Omega}) = \dim(V)$$
 and $(U^{\Omega})^{\Omega} = U$.

Proof. The first part follows from the fact that $\Omega^{\#}$ is an isomorphism. Moreover, the inclusion $U \subseteq (U^{\Omega})^{\Omega}$ follows from Definition 0.10 and the equality follows by noticing their dimensions are equal. \square

Remark 0.12 Let U be a linear subspace of a symplectic vector space (V,Ω) . Then U is

- symplectic if, and only if $V = U \oplus U^{\Omega}$;
- isotropic if, and only if, $U \subseteq U^{\Omega}$;
- coisotropic if, and only if, $U \supseteq U^{\Omega}$;
- Lagrangian if, and only if, $U = U^{\Omega}$.

Exercise 0.13 Prove that

- (1) U is symplectic if, and only if, U^{Ω} is symplectic;
- (2) U is isotropic if, and only if, U^{Ω} is coisotropic;
- $(3) \ (U \cap W)^{\Omega} = U^{\Omega} + W^{\Omega}.$

Proposition 0.14 A symplectic vector space (V,Ω) with $\dim(V)=2n$ has a symplectic basis.

Proof. We will prove this by induction, taking as basis $\dim(V) = 2$. Let $e_1 \neq 0$. Then there exists $v \in V$ such that $\Omega(e_1, v) \neq 0$. By the Gram-Schmidt orthonormalization process, it follows that $\{e_1, \frac{v}{(e_1, v)}\}$ is a symplectic basis.

Assume the Proposition holds for $\dim(V) = 2n$. Let $v, v' \in V$ be such that $\Omega(v, v') \neq 0$. Then $(S := \langle v, v' \rangle, \Omega \mid_S)$ is a symplectic space of dimension 2. Note that $(S^{\Omega}, \Omega \mid_{S^{\Omega}})$ is a symplectic vector space of dimension 2n. Since $V = S \oplus S^{\Omega}$, where both subspaces have symplectic bases due to the induction hypothesis, it follows that (V, Ω) has a symplectic basis.

⁴I believe we need to ask for $v \neq 0$, although the professor didn't mention it.

Remark 0.15 If L is a Lagrangian subspace of a symplectic vector space (V,Ω) , then $\dim(L) = \frac{\dim(V)}{2}$.

Proposition 0.16 (Lagrangian split) Let (V, Ω) be a symplectic vector space. Then, there exist Lagrangian subspaces L, L' such that $V = L \oplus L'$.

Proof.

Exercise 0.17 Write the proof; the idea is to show that you can find a maximal (with respect to dimension) isotropic subspace.

Remark 0.18 Recall that linear maps $\varphi: V \to V$ induce a map between bilinear forms via

$$\varphi^*(\Omega(v, v')) = \Omega(\varphi(v), \varphi(v')).$$

The Lagrangian split $V = L \oplus L'$ of Proposition 0.16 is canonical in the sense that there exists a canonical isomorphism $\varphi : V \to L \oplus L'$ such that $(\varphi^{-1})^*\Omega$ is the canonical symplectic form on $L \oplus L'$, i.e.

$$\Omega(v_1 + v_1', v_2 + v_2') = \Omega(v_1, v_2') - \Omega(v_2, v_1').$$

Definition 0.19 M is a topological manifold if it is a topological space such that

- $\forall p \in M$, there exists a neighborhood V of p that is homeomorphic to an open set in \mathbb{R}^n ;
- it is Hausdorff, i.e. for any two points we can find a neighbourhood for each such that they are disjoint;
- it satisfies the second countability axiom, i.e. there exists a countable basis.

Example 0.20

(1) The torus $T^2 = S^1 \times S^1$, obtained via the identification

Add identification!

.

- (2) The Klein bottle K^2 , obtained via the identification $(x,y) \sim (x+1,y) \sim (1-x,y+1)$ in $[0,1] \times [0,1] \subseteq \mathbb{R}^2$.
- (3) The projective plane, obtained via the identification $(x,y) \sim (x+1,1-y) \sim (1-x,y+1)$ in $[0,1] \times [0,1] \subseteq \mathbb{R}^2$.

Remark 0.21 Recall that M is a differential manifold if it is a topological manifold of dimension n with an atlas, which is a collection of charts $\{U_{\alpha}, \varphi_{\alpha}\}_{{\alpha} \in A}$ such that

- $(1) \ U_{\alpha \in A} \varphi_{\alpha}(U_{\alpha}) = M,$
- (2) $W = \varphi_{\beta}(U_{\beta}) \cap \varphi_{\alpha}(U_{\alpha}) \neq 0$, where $\varphi_{\beta}^{-1}\varphi_{\alpha}$ and $\varphi_{\alpha}\varphi_{\beta}^{-1}$ are of class C^{∞} ,
- (3) $U_{\alpha \in A} \varphi_{\alpha}(U_{\alpha})$ is maximal.

Example 0.22

Add examples and complete notes for the last half hour of the class.

18/3/24

Remark 0.23 For every symplectic vector space (V, Ω) we already saw that we can build a symplectic basis (0.14). Taking each time two elements of that basis and doing the ortogonal we get the following split of V:

$$V = W_1 \oplus \cdots \oplus W_n$$
,

where W_i are symplectic vector spaces with dimension 2.

Definition 0.24 Given two symplectic vetor spaces (V, Ω) and (V', Ω') we call a *symplectomorphism* a linear isomorphism $\phi: V \to V'$ such that $\phi^*\Omega' = \Omega$, where ϕ^* is the pullback.

We say that V and V' are symplectomorphic.

Proposition 0.25 The only global invariant is the dimension.

Example 0.26

- (1) \mathbb{R}^2 and \mathbb{R}^4 can not be symplectiomorphic because a symplectomorphism is always a liner isomorphism over the vector space,
- (2) Every symplectic vector space (V, Ω) of dimension 2n is symplectomorphic to \mathbb{R}^{2n} with the canonical basis. In fact we can take the symplectic basis of V and than take the ismorphism that sends this basis to the canonical basis of \mathbb{R}^{2n} .

Remark 0.27 Being symplectomorphic is an equivalence relation. It is interesting to see and study the acting group that preserves the structure.

Definition 0.28 We call $Sp(V,\Omega) = Sp(2n,\mathbb{R})$ the group of symplectic automorphisms of (V,Ω) of dimension 2n. It is given by the following subset of $\mathrm{Mat}_{2n\times 2n}, \left\{A: A^T\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} A = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}\right\}$.

In fact if ϕ is a symplectic automorphism of \mathbb{R}^{2n} with the canonical form and A is the associated matrix we get that:

$$v^{T} \begin{pmatrix} 0 & | I_{n} \\ -I_{n} & | 0 \end{pmatrix} u = \Omega_{0}(u, v)$$

$$= \phi^{*} \Omega_{0}(u, v)$$

$$= \Omega_{0}(\phi(u), \phi(v))$$

$$= (Av)^{T} \begin{pmatrix} 0 & | I_{n} \\ -I_{n} & | 0 \end{pmatrix} (Au)$$

$$= v^{T} A^{T} \begin{pmatrix} 0 & | I_{n} \\ -I_{n} & | 0 \end{pmatrix} Au,$$

but this must be true for each u and each v, so A respects the condition that we have imposed.

Proposition 0.29 $Sp(2n, \mathbb{R})$ is a group with standard multiplication and inverse or quadratic matrices. Also the determinant of A is always 1.

Remark 0.30 Both GL and SO are groups of automorphisms, the difference is that SO preserves both the length of the vectors and the areas.

Definition 0.31 Given a differential manifold M we say that a 2-form ω is symplectic if it is

(a) closed, i.e. $d\omega = 0$;

- (b) non-degenerate, i.e. $\omega(u,v)=0 \quad \forall v \in M \implies u=0$.
- (c) for each p we have that ω_p is a symplectic form on T_pM .

We call the couple (M, ω) symplectic manifold.

Proposition 0.32 A symplectic manifold always has even dimension.

Example 0.33 (\mathbb{R}^{2n} , ω_{std}) with coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n$. $\omega = \sum_i dx_i \wedge dy_i$. For each p, ω_p is given by: $\left(\left(\frac{\partial}{\partial x_1}\right)_p, \ldots, \left(\frac{\partial}{\partial x_n}\right)_p, \left(\frac{\partial}{\partial y_1}\right)_p, \ldots, \left(\frac{\partial}{\partial y_n}\right)_p\right)$. It is symplectic on T_pM . We can do the same considering \mathbb{C}^n with $\omega = \frac{1}{2} \sum_i dz_i \wedge d\bar{z}_i$.

Example 0.34 Take now the sphere S^2 as a subset of \mathbb{R}^3 . We know that T_pS^2 is given by $\{p\}^{\perp}$.

Now we define the symplectic form ω in the following way $\omega_p(u,v) = \langle p; v \times u \rangle$. In fact it is closed is because it is a 2-form in a dimension 2 manifold and it is non degenerate because $v \times u$ always has the direction of p as they are in T_pS^2 .

This ω is a volume form for S^2 .

Exercise 0.35 The above definition is an implicit one; we can define the same form in coordinates taking the coordinates θ , z. In this case the form can be expressed as $\omega = d\theta \wedge dz$.

Also how will the form change if we take the sphere of radius R?

Definition 0.36 Given two symplectic manifolds (M_1, ω_1) and (M_2, ω_2) we say that a *symplectomorphism* is a diffeomorphism g such that $g^*\omega_2 = \omega_1$.

As before, the dimension is the only invariant, but now only in a local scope.

Add all the cotangent bundles!

Proposition 0.37 S^2 is the only sphere that can be symplectic, all the others have a trivial second order cohomology group, so they cannot have a symplectic form.

Proposition 0.38 All the symplectomorphisms preserve the areas but the converse is not true nor a banal proof. It was worthy of a Field's medal.

19/03/2024

Last class we considered a manifold X of dimension n and saw that

$$M = T^* := \{(x, \xi^*), x \in X, \xi^* \in T_x^*X\}$$

is a symplectic manifold of dimension 2n. If (x_1, \ldots, x_n) is a coordinate system on X, then $\{(dx_1)_x, \ldots, (d_n)_x\}$ is a basis for T_x^*X . Also, $\xi^* = \sum_{i=1}^n y_i(dx_i)_x$ and $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ are coordinates on T^*X , with

$$\omega_{\text{can}} = \sum_{i=1}^{n} dx_1 \wedge dy_1,$$

$$= \lambda_{\text{can}} = \sum_{i=1}^{n} y_i dx_i,$$

$$= -d\lambda_{\text{can}}.$$

Part of the reminder is missing (she erased it too fast).

Let X_1, X_2 be differentiable manifolds of dimension n,

$$M_1 = (T^*X_1, -d\lambda_1),$$

 $M_2 = (T^*X_2, -d\lambda_2),$

where λ_i is the canonical Liouville term on X_i for $i \in \{1, 2\}$. Let $f: X_1 \to X_2$ be a differomorphism. Then

$$f_{\mathbb{X}}: M_1 \to M_2,$$

 $p_1 \mapsto p_2,$

where $p_1 = (x_1, \xi_1^*)$ and $p_2 = (f(x_1), \xi_2^*)$, where $\xi_2^* \in T_{f(x_1)}^* X_2$. We have that

$$df: TX_1 \to TX_2$$

 $df_{x_1}: T_{x_1}X_1 \to T_{f(x_1)}X_2,$
 $(df_{x_1})^*: T^*_{f(x_1)}X_2 \to T^*_{x_1}X_1.$

Since f is in particular a bijection then, defining $x_2 := f(x_1)$, we have that

$$\begin{split} df_{x_1}^{-1}: T_{x_2}X_2 &\to T_{x_1}X_1, \\ (df_{x_1}^{-1})^*: T_{x_1}^*X_1 &\to T_{x_2}^*X_2, \\ \xi_1^* &\mapsto (df_{x_2}^{-1})^*(\xi_1^*) =: \xi_2^*. \end{split}$$

Moreover, we have the following commutative diagram

$$\begin{array}{ccc}
M_1 & \xrightarrow{f_{\mathbb{X}}} & M_2 \\
\pi_1 \downarrow & & \downarrow \pi_2 \\
X_1 & \xrightarrow{f} & X_2.
\end{array} (0.2)$$

Proposition 0.39 Let $f_{\mathbb{X}}: M_1 \to M_2$ be a diffeomorphism be such that $f_{\mathbb{X}}^*(\lambda_2) = \lambda_1$. Then $f_{\mathbb{X}}^*(-d\lambda_2) = -d\lambda_1$.

Proof. Let
$$p_1 = (x_1, \xi_1^*) \in T^*X_1$$
 and $p_2 = f_{\mathbb{X}}(p_1) = (f(x_1), \xi_2^*)$.

$$(f_{\mathbb{X}})^*((\lambda_2)_{p_2}) = (f_{\mathbb{X}}^*)_{p_1}((d\pi_2)_{p_2}^*\xi_2^*)$$

$$= d(f\pi_1)_{p_1}^*\xi_2^*$$

$$= (d\pi_1)_{p_1}^*f_{\mathbb{X}}^*(\xi_2^*)$$

$$= (d\pi_1)_{p_1}^*\xi_1^*$$

$$= (\lambda_1)_{p_1}.$$

Corollary 0.40 If X_1 and X_2 are diffeomorphic, then T^*X_1 and T^*X_2 are symplectomorphic.

Example 0.41 Let (M_1, ω_1) and (M_2, ω_2) be symplectic manifolds. Then we have a product $M_1 \times M_2$ with projections

Then, $\omega_{a,b} := ap_1^*\omega_1 + bp_2^*\omega_2$ is a symplectic form on $M_1 \times M_2$ for all $a, b \in \mathbb{R}$. In fact,

$$d\omega_{a,b} = d(ap_1^*\omega_1 + bp_2^*\omega_2)$$

$$= ad(p_1^*\omega_1) + bd(p_2^*\omega_2)$$

$$= ap_1^*d\omega_1 + bp_2^*d\omega_2$$

$$= 0,$$

i.e. the closeness of $\omega_{a,b}$ is induced from that of ω_1 and ω_2 . Similarly, the other properties of induced.

Example 0.42 \mathbb{R}^{2n} , \mathbb{C}^{n} , S^{2} . Consider $S^{2} \times \mathbb{R}^{2}$ with the form $\omega = 2p_{1}^{*}\omega_{1} - p_{2}^{*}\omega_{2}$. On S^{2} , $\omega_{p}(u,v) = \langle p, u \times v \rangle$, where $p = (x_{1}, x_{2}, x_{3}) \in S^{2} \subseteq \mathbb{R}^{3}$ is such that $\sum_{i=1}^{3} x_{1}^{2} = 1$, and $u = (u_{1}, u_{2}, u_{3}), v = (v_{1}, v_{2}, v_{3}) \in T_{p}S^{2} \simeq T_{p}^{*}S^{2}$. Explicitly,

$$\omega_p(u,v) = x_1(u_2v_3 - v_2u_3) + x_2(u_3v_1 - u_1v_3) + x_3(u_1v_2 - v_1u_2).$$

On the other hand, we know that $\omega_p = \sum_{i,j} a_{ij} dx_i \wedge dx_j$, where

$$a_{ij} = \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right).$$

In particular, $a_{ii} = 0$ for all i. We can thus calculate

$$\omega_p = x_3 dx_1 \wedge dx_2 - x_2 dx_1 \wedge dx_3 + x_1 dx_2 \wedge dx_3$$