	Lab Course Machine Learning Exercise Sheet 7 December 22th, 2021 Syed Wasif Murtaza Jafri-311226
In [336	<pre>import math from sklearn.preprocessing import PolynomialFeatures import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import cm</pre>
	<pre>from matplotlib.ticker import LinearLocator from sympy import symbols, diff import pandas as pd import math import warnings import itertools import matplotlib.colors as colors from matplotlib.cm import ScalarMappable from scipy.spatial.distance import pdist,cdist warnings.filterwarnings('ignore')</pre>
In [337	<pre>def getNanDatasets(dataDict): nanDatasets = [] for key in dataDict: data = np.array(dataDict.get(key)) is_null = False for i in data: array_sum = np.sum(i)</pre>
	<pre># if sum is null then array as null values array_has_nan = np.isnan(array_sum) if(array_has_nan): is_null = True if(is_null): nanDatasets.append(key) # appending into list of dataset having missing values return nanDatasets</pre> Below functions is used for getting dataframe from archive folders and merging train and test splits and finally creating a dictionary of all datasets.
In [338	<pre>dataFramesDict ={} for dirpath,_, filenames in os.walk(dir): if(len(filenames)>0): train = [f for f in filenames if "TRAIN" in f] # getting train file from folder test = [f for f in filenames if "TEST" in f] # getting test file from folder if(len(train)>0 and len(test)>0):</pre>
	<pre>key = train[0].split('_')[0] # for the name of dataset #Train absPathTrain = os.path.abspath(os.path.join(dirpath, train[0])) # for complete refrence of file dfTrain = pd.read_csv(absPathTrain, sep='\t', header=None) #Test absPathTest = os.path.abspath(os.path.join(dirpath, test[0])) # for complete refrence of filepathTest = pd.read_csv(absPathTest, sep='\t', header=None) df = pd.concat([dfTrain,dfTest],ignore_index=True) # merging train and test dataframes</pre>
	<pre>df = df.rename(columns={0: "Y"}) #nomralizing df.loc[:, df.columns != 'Y'] = (df.loc[:, df.columns != 'Y']-df.loc[:, df.columns != 'Y'].mean dataFramesDict[key] = df return dataFramesDict</pre>
In [339 In [340	dframesDict = getDataframes('Dataset') 2. Preprocess the datasets
In [341 Out[341	Datasets with missing values. nullDatasets ['AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'DodgerLoopDay', 'DodgerLoopGame',
	'DodgerLoopWeekend', 'GestureMidAirD1', 'GestureMidAirD2', 'GesturePebbleZ1', 'GesturePebbleZ2', 'MelbournePedestrian', 'PickupGestureWiimoteZ', 'PLAID', 'ShakeGestureWiimoteZ'] Some timeseries in datasets have not equal lenght and has NAN in the end of rows. for these we have to pad zeros in .So i traveresed each
In [342	<pre>paddDict =dict() for key in datasetDict: dataset = datasetDict.get(key).to_numpy() indRow=0 for row in dataset: for i, v in reversed(list(enumerate(row))): # traversing from last index and replacing NAN with zer if(np.isnan(v)):</pre>
	<pre>else: break # coming out of loop when finding non- null value indRow += 1 paddDict.update({key: dataset}) return paddDict</pre>
In [347 In [344	<pre>Plot interesting statistics: # for cmap values in range def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list('trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n)))</pre>
In [352	<pre>for key in dframesDict: data = dframesDict.get(key) sampleDict.update({key:len(data.columns)}) lists = sorted(sampleDict.items()) # sorted by key, return a list of tuples</pre>
	<pre>x, y = zip(*lists) # unpack a list of pairs into two tuples fig = plt.figure(figsize=(20,8)) ax = plt.axes() # Refrence for colormap :https://moonbooks.org/Articles/How-to-plot-a-bar-chart-with-a-colorbar-using-matplotl: data_hight_normalized = [x / max(y) for x in y] my_cmap = plt.cm.get_cmap('GnBu') new_cmap1 = truncate_colormap(my_cmap.copy(), 0.4, 0.7) colorsMap = new_cmap1(data_hight_normalized) sm = ScalarMappable(cmap=new_cmap1, norm=plt.Normalize(0,max(y))) sm.set_array([]) cbar = plt.colorbar(sm)</pre>
	cbar.set_label('Color', rotation=270,labelpad=25) ax.bar(x, y,color=colorsMap) ax.set_xlabel('Datasets') ax.set_ylabel('Length Of Samples') plt.xticks(rotation=90) plt.show()
	2000 - 1500 - 1500 - 10
	Colorine Conference of the Con
In [353	Number of samples sampleDict ={} for key in dframesDict: data = dframesDict.get (key)
	<pre>sampleDict.update({key:len(data)}) lists = sorted(sampleDict.items()) # sorted by key, return a list of tuples x, y = zip(*lists) # unpack a list of pairs into two tuples fig = plt.figure(figsize=(20,8)) ax = plt.axes() # Refrence for colormap :https://moonbooks.org/Articles/How-to-plot-a-bar-chart-with-a-colorbar-using-matplotl: data_hight_normalized = [x / max(y) for x in y] my_cmap = plt.cm.get_cmap('GnBu')</pre>
	<pre>new_cmap1 = truncate_colormap(my_cmap.copy(), 0.4, 0.7) colorsMap = new_cmap1(data_hight_normalized) sm = ScalarMappable(cmap=new_cmap1, norm=plt.Normalize(0,max(y))) sm.set_array([]) cbar = plt.colorbar(sm) cbar.set_label('Color', rotation=270,labelpad=25) ax.bar(x, y,color=colorsMap) ax.set_xlabel('Datasets') ax.set_ylabel('Length Of Samples') plt.xticks(rotation=90) plt.show()</pre>
	25000 - 20000 - 20000 - 15000 -
	5000 500
	Distance of the property of th
In [354	<pre>Number of classes classDict ={} for key in dframesDict: d = dframesDict.get(key) d = d.rename(columns={0: "Y"}) # renaming classes = (d['Y'].unique()) classDict.update({key:len(classes)}) lists = sorted(classDict.items()) # sorted by key, return a list of tuples</pre>
	<pre>x, y = zip(*lists) # unpack a list of pairs into two tuples fig = plt.figure(figsize=(20,8)) ax = plt.axes() # Refrence for colormap :https://moonbooks.org/Articles/How-to-plot-a-bar-chart-with-a-colorbar-using-matplotls data_hight_normalized = [x / max(y) for x in y] my_cmap = plt.cm.get_cmap('GnBu') new_cmap1 = truncate_colormap(my_cmap.copy(), 0.4, 0.7) colorsMap = new_cmap1(data_hight_normalized) sm = ScalarMappable(cmap=new_cmap1, norm=plt.Normalize(0,max(y))) sm.set_array([])</pre>
	<pre>cbar = plt.colorbar(sm) cbar.set_label('Color', rotation=270,labelpad=25) ax.bar(x, y,color=colorsMap) ax.set_xlabel('Datasets') ax.set_ylabel('Number of Classes') plt.xticks(rotation=90) plt.show()</pre> 60
	Number of Classes 40 - 50 - 40 - 30 Color
	By B
In [355 Out[355	nanDatasets
In [356	2. For each dataset with missing values, and for each feature (timestep) of it that has missing values impute the value by calculating the mean of its nearest K neighbors.
	# https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.nan_euclidean_distances.html # using same logic as sklearn.metrics.pairwise.nan_euclidean_distances for missing values return np.sqrt(s_sum*(len(X)/counter)) kNearestNeighbours() takes a dataset with missing values and impute the missing values. First it calculates n twoDimension index of missing values in orignal matrix. Then it puts all missing columns values for a row in dict with key as row number.Now we iterate through this dict, calculate distance for each key in dictionary which is row and impute each col index which is stored in value of dict. For k nearest neighbours takes values for that column index average them and impute in the missing column for that row. Repeat the process for all
In [357	<pre>def kNearestNeighbours(k, X_null): X=X_null r,c= X.shape # indices of all NAN in array indicesDict = dict() indexNan = np.argwhere(np.isnan(X)) for i in indexNan: if i[0] not in indicesDict:</pre>
	<pre>indList = [] indList.append(i[1]) indicesDict.update({i[0]:indList}) else: indList = indicesDict[i[0]] indList.append(i[1]) indicesDict.update({i[0]:indList}) # for all nan indices for key in indicesDict:</pre>
	<pre>col = indicesDict[key] distInd= [] nanRow = X[key] # calculating k nearest rows for each row for j in range(r): if(key!=j): #to ignore distance from self dist = ecludianDistance(nanRow, X[j]) distInd.append([int(j), dist]) distInd = np.array(distInd) sortedDist = distInd[distInd[:,1].argsort()]</pre>
	<pre># for each missing value in that row, finding average of nearest rows for that timestamp for c in col: sum = 0 for j in range(k): if ~(np.isnan(X[int(sortedDist[j][0])][c])): sum = sum + X[int(sortedDist[j][0])][c] average = sum / k X[key][c] = average</pre>
In [359	<pre>return X def transformNan(dataDic,k): # calling kNearestNeighbours for every dataset with missing value dfDict = dataDic listOfNanDatasets = getNanDatasets(dataDic) for d in listOfNanDatasets: data =dataDic.get(d) listDf = [] array_sum = np.sum(data) array_has_nan = np.isnan(array_sum)</pre>
In [360	<pre>if (array_has_nan): X = kNearestNeighbours(k,data.copy()) dfDict.update({d:X }) return dfDict finalDict = transformNan(paddedDict.copy(),5) After imputaion, we get no dataset with missing values.</pre>
	nanDatasets
In []:	<pre>def splitDataframes(npArray): train, valid, test = 0.7, 0.15, 0.15 d = pd.DataFrame(npArray) d = d.rename(columns={0: "Y"}) data_train = [] data_valid = [] data_test = [] #</pre>
	<pre>for c in classes: rowsWithc = d[d.Y == c] if(len(data_train)>0): data_train = np.concatenate((data_train, rowsWithc[0:math.floor(len(rowsWithc)*0.7)].to_numpy()), a else: data_train = rowsWithc[0:math.floor(len(rowsWithc)*0.7)].to_numpy() if (len(data_valid)>0): data_valid = np.concatenate((data_valid, rowsWithc[math.floor(len(rowsWithc)*0.7):math.floor(len(rowsWithc)*0.7)); else:</pre>
In []:	<pre>data_valid = rowsWithc[math.floor(len(rowsWithc)*0.7):math.floor(len(rowsWithc)*0.85)].to_numpy() if (len(data_test)>0): data_test = np.concatenate((data_test, rowsWithc[math.floor(len(rowsWithc)*0.85):].to_numpy()), axi else: data_test = rowsWithc[math.floor(len(rowsWithc)*0.85):].to_numpy() return np.array(data_train),np.array(data_valid),np.array(data_test) splitDict = dict() for key in finalDict:</pre>
In [378 Out[378	<pre>valueList =[] data_train, data_valid, data_test = splitDataframes(finalDict.get(key).copy()) valueList.append((data_train)) valueList.append((data_valid)) valueList.append((data_test)) splitDict.update({key: valueList}) nanDatasets = getNanDatasets(splitDict) nanDatasets</pre>
	kNearestNeighboursClassifier() takes train data and validation data splits for each dataset. For each validation point calculates its distance for each training points and for k closest training points check with majority prediction for those points and assign it as predicted value and compute accuracy.
	<pre>ind =0 for t in trainData: dist = ecludianDistance(v[1:],t[1:]) distInd.append([int(ind),dist]) ind += 1 distInd = np.array(distInd) sortedDist = distInd[distInd[:,1].argsort()] predList = [] for j in range(k): predList.append(trainData[int(sortedDist[j][0])][0]) vPredict = (max(predList,key=predList.count))</pre>
In [367	<pre>if(vPredict == v[0]): count+=1 accuracy = (count/r)*100 return (accuracy)</pre>
	<pre>bestacc = 0 bestk = kGrid[0] for k in kGrid: accuracy= kNearestNeighboursClassifier(k,data[0],data[1]) if(accuracy>bestacc): bestacc = accuracy bestK = k kDict.update({key:np.array([bestK,bestacc])})</pre> return kDict
In [368 In [370 Out[370	<pre>kNList = list(range(1,6)) kDict = kTuningClassifier(d1,kNList)</pre>
	4. Report the final test accuracy for each dataset by using the optimal K found for imputation and the optimal K found for classification. Please jointly tune the two Ks. tuningTwoK() takes all datasets and then for every dataset it gets klmp value from grid and find missing value with klmp then takes corresponding kN for classifier and get accuracy for the combination. Take record of best combination with best accuracy.
	<pre>optimalHyperDic = dict() for key in datasetDic: dataset = datasetDic.get(key) bestacc = 0 bestkImp = grid[0][0] bestkN = grid[0][1] for kImp,kN in grid: # finding missing values for datasets with kImp array_sum = np.sum(dataset) array_has_nan = np.isnan(array_sum) X = dataset.copy()</pre>
	<pre>if (array_has_nan): X = kNearestNeighbours(kImp,dataset.copy()) # spliting dataset and calling classifier for train and validation data_train,data_valid,data_test = splitDataframes(X.copy()) accuracy= kNearestNeighboursClassifier(kN,data_train,data_valid) #computing best accuracy for each combination in grid if(accuracy>bestacc): bestacc = accuracy bestkImp = kImp bestkN = kN</pre>
In [389	<pre># updating the best hyper params in dictionary of datasets optimalHyperDic.update({key: np.array([bestkImp,bestkN])})</pre>
	<pre>return optimalHyperDic d1 = {} d1.update({'AllGestureWiimoteY':paddedDict.get('AllGestureWiimoteY')}) d1.update({'DodgerLoopDay':paddedDict.get('DodgerLoopDay')}) d1.update({'DodgerLoopWeekend':paddedDict.get('DodgerLoopWeekend')}) #d1 = dict(list(finalDict.items())[:5]) optHypDic = tuningTwoK(d1)</pre>
	<pre>d1 = {} d1.update({'AllGestureWiimoteY':paddedDict.get('AllGestureWiimoteY')}) d1.update({'DodgerLoopDay':paddedDict.get('DodgerLoopDay')}) d1.update({'DodgerLoopWeekend':paddedDict.get('DodgerLoopWeekend')}) #d1 = dict(list(finalDict.items())[:5]) optHypDic = tuningTwoK(d1) optHypDic {'AllGestureWiimoteY': array([1, 3]), 'DodgerLoopDay': array([1, 1]), 'DodgerLoopWeekend': array([1, 1])} Exercise 2: Time Series Classification with Various Distance Measures kNearestNeighboursClassifierDistance() takes train data and validation data splits for each dataset. For each validation point calculates its distance with metric given in meshgrid for each training points and for k closest training points check with majority prediction for those</pre>
Out[390	<pre>d1 = {} d1 = {} d1.update({'AllGestureWiimoteY':paddedDict.get('AllGestureWiimoteY')}) d1.update({'DodgerLoopDay':paddedDict.get('DodgerLoopDay')}) d1.update({'DodgerLoopDay':paddedDict.get('DodgerLoopWeekend')})</pre>
Out[390	<pre>dl = () dl.update(('AllGestureWiimoteY':paddedDict.get('AllGestureWiimoteY'))) dl.update(('DdgerLoopDay':paddedDict.get('DodgerLoopDwekend'))) dl.update(('DdgerLoopDwekend';paddedDict.get('DodgerLoopDwekend'))) ful = dict(Ilst(ImalDict.items()) {:5}) optllypDic ('AllGestureWiimoteY': array{[1, 3]), 'DodgerLoopDay': array{[1, 1]), 'DodgerLoopDay': array{[1, 1], 'DodgerLoopDay': array{[1, 1],</pre>
Out[390	<pre>d1 = {} d1.update{{'AllGestureWiimoteY':paddedDict.get('AllGestureWiimoteY')}} d1.update{{'PodgezDoopDay':paddedDict.get('DodgezDoopWeekend';paddedDict.get('DodgezDoopWeekend')}) sd1 = dict(list(InalDict.ftems()) {:5}) optHypDic = tuningTwoK(d1) optHypDic = tuningTwoK(d1) ptHypDic = tuningTwoK(d1) Exercise 2: Time Series Classification with Various Distance Measures KNearestNeighboursClassifierDistance() takes train data and validation data splits for each dataset. For each validation point calculates its distance with metric given in meshgrid for each training points and for k closest training points check with majority prediction for those points and assign it as predicted value and compute accuracy. tuningKWithDistance() takes all datasets and then for every dataset it takes corresponding kN for classifier and get accuracy for the combination of metric and K.Take record of best combination with best accuracy. def kNearestNeighboursClassifierDistance(k, trainData, validationData, DistanceMetric): r,c= validationData.shape count = 0 for v in validationData: or = None distInd = cdist(v.reshape(1,len(v)), trainData, DistanceMetric, VI=cv)</pre>
Out[390	dt = { dt update ('Al'Goetuves'spotev')paddedbret.gat ('Al'Goetuves'spotev') }
Out[390 In [402	d1 = d2 = d2 = d2 = d2 = d3 = d4 =
Out[390 In [402 Out[404	### ### #### #########################
Out[390 In [402 Out[404	district
In [403 In [404 Out[404	ds = (intercept at the extraction and published to the part for the extraction and the part of the published (intercept published to the part for the published (intercept published to the published to the published (intercept published to the publis
In [403 In [404 Out[404	and = 11 or 10 to Contracted interforper better mought (16 bites cannot be set 17); at the place of the place
Out[390 In [402 In [404 Out[404	The content of the content stand translated in content of the co
Out [390 In [403 In [404 Out [404 In [84]:	Contract (** Product contract of the product of the contract o
Out [390 In [403 In [404 Out [404 In [84]:	## District Secretary Secr
Out [390 In [403 In [404 Out [404 In [84]:	The proposed process of the control
In [404 In [404 In [404 Out [404 Out [114 Out [317 Out [317	Secretary Commission of the second control of the c
In [404 In [404 Out [404 Out [114 Out [114 Out [317 Out [317	de special de la company de la contraction de la
In [404 In [404 Out [404 Out [114 Out [114 Out [317 Out [317	de producti European de production par l'appear de la particular de la par
In [404 In [404 In [404 Out [404 Out [114 Out [316 Out [317 Out [317	design (Control of the Control of th
In [404 In [404 In [404 Out [404 Out [114 Out [316 Out [317 Out [317	Exercises the control of the control