

ps7-1-a-1.png

ps7-1-a-2.png

ps7-1-a-3.png

ps7-1-b-1.png

ps7-1-b-3.png

Ps7 Computer Vision Jake Fund

903138567

text response b: τ was set to 15 in theses picture, but originally it was set to 5 buy gay worse results (That is more motion in the head was shown)

2a text out put: central mean =

1	0	0
0	1	0
0	0	1

scaled version =

1	0	0
0	0.88888888888889	0.1111111111111111
0.111	0	0.8888888888888

note that I used a scaling variant of my own which normalized all the instances values by the maximum of the feature the value pertains to.

2b. text response:

the central limit method was used and found found perfect matches.

```
Subject 1 =
```

1	0	0
0	1	0
0	0	1

1	0	0
0	1	0
0	0	1

Subject 3 =

1	0	0
0	1	0
0	0	1

averaged =

1	0	0
0	1	0
0	0	1

I used the regular Euclidean difference sum but I had to change my τ to get better results. It appeared that the learning algorithm was very sensitive to the τ factor, 15 was just right, any more or less did not give perfect results.