EE 330 Lecture 16

Devices in Semiconductor Processes

- Capacitors
- MOSFETs

Use of Piecewise Models for Nonlinear Devices when Analyzing Electronic Circuits

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Observations:

- Analysis generally simplified dramatically (particularly if piecewise model is linear)
- Approach applicable to wide variety of nonlinear devices
- Closed-form solutions give insight into performance of circuit
- Usually much faster than solving the nonlinear circuit directly
- Wrong guesses in the state of the device do not compromise solution (verification will fail)
- Helps to guess right the first time
- Detailed model is often not necessary with most nonlinear devices
- Particularly useful if piecewise model is PWL (but not necessary)
- o For <u>practical</u> circuits, the simplified approach usually applies

Key Concept For Analyzing Circuits with Nonlinear Devices

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
 - MOSFET
 - BJT

Capacitors

- Types
 - Parallel Plate
 - Fringe
 - Junction

Parallel Plate Capacitors

 $A = area of intersection of A_1 & A_2$

One (top) plate intentionally sized smaller to determine C

$$C = \frac{\in A}{d}$$

Parallel Plate Capacitors

If
$$C_d = \frac{Cap}{unit area}$$

$$\label{eq:continuity} \begin{split} \boldsymbol{C} &= \frac{\epsilon\,\boldsymbol{A}}{d} \\ \boldsymbol{C} &= \boldsymbol{C}_{d}\boldsymbol{A} \end{split}$$

$$C = C^{d}A$$

where

$$\mathbf{C}_{\mathsf{d}} = \frac{\mathbf{\epsilon}}{\mathsf{d}}$$

Fringe Capacitors

$$C = \frac{\epsilon A}{d}$$

A is the area where the two plates are parallel Only a single layer is needed to make fringe capacitors

Fringe Capacitors

Capacitance

∈ is dielectric constant

$$C = \frac{C_{jo}A}{\left(1 - \frac{V_{D}}{\phi_{B}}\right)^{n}} \qquad for \ V_{FB} < \frac{\phi_{B}}{2}$$

$$\phi_{\rm B}\cong 0.6V \quad \mathbf{n}\simeq \mathbf{0.5}$$

Note: d is voltage dependent

- -capacitance is voltage dependent
- -usually parasitic caps
- -varicaps or varactor diodes exploit voltage dep. of C

Capacitance

$$C = \frac{C_{jo}A}{\left(1 - \frac{V_{D}}{\omega_{D}}\right)^{n}} \qquad for \ V_{FB} < \frac{\varphi_{I}}{2}$$

Voltage dependence is substantial

 $\phi_{\rm B} \simeq 0.6 \text{V} \quad \text{n} \simeq 0.5$

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor

BJT

n-Channel MOSFET

n-Channel MOSFET

n-Channel MOSFET

 $Apply \ small \ V_{GS} \\ (V_{DS} \ and \ V_{BS} \ assumed \ to \ be \ small) \\ Depletion \ region \ electrically \ induced \ in \ channel \\ Termed \ "cutoff" \ region \ of \ operation$

Increase V_{GS} (V_{DS} and V_{BS} assumed to be small)

Depletion region in channel becomes larger

$$I_{D}=0$$

$$I_{G}=0$$

$$I_{B}=0$$

Model in Cutoff Region

Increase V_{GS} more

Inversion layer forms in channel
Inversion layer will support current flow from D to S
Channel behaves as thin-film resistor

$$I_DR_{CH}=V_{DS}$$
 $I_G=0$
 $I_B=0$

Triode Region of Operation

For V_{DS} small

$$R_{CH} = \frac{L}{W} \frac{1}{(V_{GS} - V_{T})\mu C_{OX}}$$

$$I_{D} = \mu C_{OX} \frac{W}{L} (V_{GS} - V_{T}) V_{DS}$$

$$I_{G} = I_{B} = 0$$

Behaves as a resistor between drain and source

Model in Deep Triode Region

Triode Region of Operation

For V_{DS} small

$$R_{CH} = \frac{L}{W} \frac{1}{(V_{GS} - V_{T}) \mu C_{OX}}$$

Resistor is controlled by the voltage V_{GS} Termed a "Voltage Controlled Resistor" (VCR)

Increase V_{GS} more

Inversion layer in channel thickens

R_{CH} will decrease

Termed "ohmic" or "triode" region of operation

$$I_DR_{CH}=V_{DS}$$
 $I_G=0$
 $I_B=0$

Increase V_{DS}

Inversion layer thins near drain I_D no longer linearly dependent upon V_{DS} Still termed "ohmic" or "triode" region of operation

$$I_D = ?$$

$$I_G = 0$$

$$I_B = 0$$

Triode Region of Operation

For V_{DS} larger

$$R_{CH} = \frac{L}{W} \frac{1}{(V_{GS} - V_{T})\mu C_{OX}}$$

$$\begin{aligned} \mathbf{I}_{D} &= \mu \mathbf{C}_{OX} \frac{\mathbf{W}}{\mathbf{L}} \left(\mathbf{V}_{GS} - \mathbf{V}_{T} - \frac{\mathbf{V}_{DS}}{2} \right) \mathbf{V}_{DS} \\ \mathbf{I}_{G} &= \mathbf{I}_{B} = \mathbf{0} \end{aligned}$$

Increase V_{DS} even more

Inversion layer disappears near drain Termed "saturation" region of operation Saturation first occurs when $V_{DS}=V_{GS}-V_{T}$

Saturation Region of Operation

For V_{DS} at onset of saturation —

$$I_{D} = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{T} - \frac{V_{DS}}{2} \right) V_{DS}$$

or equivalently

$$\mathbf{I}_{\text{D}} = \mu \mathbf{C}_{\text{OX}} \, \frac{\mathbf{W}}{\mathbf{L}} \bigg(\mathbf{V}_{\text{GS}} - \mathbf{V}_{\text{T}} - \frac{\mathbf{V}_{\text{GS}} - \mathbf{V}_{\text{T}}}{2} \bigg) \! \big(\mathbf{V}_{\text{GS}} - \mathbf{V}_{\text{T}} \, \big)$$

or equivalently

$$\begin{split} & \mathbf{I}_{\text{D}} = \frac{\mu C_{\text{OX}} W}{2L} \big(V_{\text{GS}} - V_{\text{T}} \big)^2 \\ & \mathbf{I}_{\text{G}} = I_{\text{B}} = 0 \end{split}$$

Increase V_{DS} even more (beyond V_{GS} - V_T)

Nothing much changes !!

Termed "saturation" region of operation

Saturation Region of Operation

For V_{DS} in Saturation

$$I_D = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_T)^2$$

$$I_G = I_B = 0$$

Model in Saturation Region

Model Summary

n-channel MOSFET

Cutoff

$$I_{D} = \begin{cases} 0 & V_{GS} \leq V_{T} \\ \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_{T} - \frac{V_{DS}}{2} \right) V_{DS} & V_{GS} \geq V_{T} \quad V_{DS} < V_{GS} - V_{T} \\ \mu C_{OX} \frac{W}{2L} \left(V_{GS} - V_{T} \right)^{2} & V_{GS} \geq V_{T} \quad V_{DS} \geq V_{GS} - V_{T} \\ I_{G} = I_{B} = 0 \end{cases}$$

$$V_{\mathrm{GS}} \geq V_{T} \quad V_{\mathrm{DS}} < V_{\mathrm{GS}} - V_{\mathrm{T}}$$
 Triode

$$I_{G} = I_{B} = 0$$

This is a piecewise model (not piecewise linear though)

Note: This is the third model we have introduced for the MOSFET

 $R_{CH} = \frac{L}{W} \frac{1}{(V_{CO} - V_{-}) / (C_{CO})}$ (Deep triode special case of triode where $V_{\rm DS}$ is small

Model Summary

n-channel MOSFET

Observations about this model (developed for V_{BS}=0):

$$I_{D} = f_{1}(V_{GS}, V_{DS})$$

$$I_{G} = f_{2}(V_{GS}, V_{DS})$$

$$I_{B} = f_{3}(V_{GS}, V_{DS})$$

This is a nonlinear model characterized by the functions f_1 , f_2 , and f_3 where we have assumed that the port voltages V_{GS} and V_{DS} are the independent variables and the drain currents are the dependent variables

General Nonlinear Models

I₁ and I₂ are 3-dimensional relationships which are often difficult to visualize

Two-dimensional representation of 3-dimensional relationships

Graphical Representation of MOS Model

Parabola separated triode and saturation $I_G = I_B = 0$ regions and corresponds to V_{DS}=V_{GS}-V_T

PMOS and **NMOS** Models

- Functional form identical, sign changes and parameter values different
- Will give details about p-channel model later

End of Lecture 16