1. Flours = 19+12 WAGE + 13 EDUC + 13+105L6.
+12. NWIFEINC + e.

1 >0 , B >0 , B >0 , B 20 , B 20 , B 20.

上,罗能集有为生性問題 WAGE 罗能與 Q 相関

见面包含人为资本的遗漏缺差,能为强的人新水高可以到现在实力。

(w(WKT, e) \$0.

3. (oul WAHE, EXPER) to

Cov (WAHE, EXPER) to

炎歴長り新水高、

(ov(EXPLR, e)=0. 須壓是物質WALLERI 重新變散 再來制場How

(ou(EXPER EXPER2) to, ABJ提供非線性資訊

4. B=1,WA6记,奠它不看引發的生性

L=2, EXPER EXPER2 =) 1>B, Over identified.

5. 找出MAGEEEMERAMAMILETERS CHERRE

Ⅱ兩階段估計核心步驟

第一階段:把內生變數用「工具+其他外生變數」來解釋

第二階段:把第一階段預測值代回結構方程,再用普通最小平方法估計係數。

階段	具體作法	產出關鍵物
Step 1. 建 立第一階 段迴歸	以 WAGE 為因變數;自變數放入 EXPER, EXPER ² 以及所有外生控制(EDUC, AGE, KIDSL6, NWIFEINC)。	(a) 迴歸係數與 <i>F</i> -statistic(檢查工具強度) (b) WAGE 的預測值 WAGÊ
Step 2. 檢查弱工 具	檢視第一階段針對 EXPER, EXPER ² 的同時 F -統計量。常用閾值: $F>10$ 。若 F 太小,應尋找更強的工具或修正模型。	強度結論
Step 3. 第二階段 迴歸 (2SLS)	在原供給式中,用 WAGÊ 取代原 WAGE ,與所有外生變數一起放入右手邊,以 OLS 估計 β 係數。為保險起見,使用「heteroskedasticity-robust」標準誤。	2SLS 估計量 β 與其 robust SE
Step 4. 建立信賴 區間 / 假 設檢定	依 β' ± 1.96 · SE 建立 95% CI;或做 t-test 檢定政策效應方向與顯著性。	解釋性顯著結論

$$\beta_z = \frac{\text{Cov}(Z,Y)}{\text{Cov}(Z,X)}$$

$$\theta_1 = \frac{(\alpha(\chi_1 2))}{(\alpha(\chi_2))}$$

$$P_1 = \frac{(\alpha(Z,Y))}{Vav(Z)}$$
,即以取代义之後的科学

$$d. \quad T_1 = \beta_2 \theta_1, \quad \beta_2 = \frac{T_1}{\theta_1}$$

$$l. \quad \hat{b}_{i} = \frac{\sum (x_{i} - \overline{x})(x_{i} - \overline{z})}{\sum (z_{i} - \overline{z})^{2}} \quad \frac{P}{Var(z)} = \theta_{i}$$

$$T_{1} = \frac{\Sigma(J_{1}-J_{2})(Z_{1}-Z_{2})}{\Gamma(Z_{1}-Z_{2})} \xrightarrow{P} \frac{(\alpha l J_{1}Z)}{V_{\alpha l}(Z)} = T_{1}$$

$$P_2 = \frac{\pi_1}{\theta_1}$$
 73 continuous when $\theta_1 \neq 0$

by Continuous Mapping Theorum