ETESP

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Cálculos químicos

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Cálculo

Divide-se por 100 o somatório dos produtos do número de massa pela percentagem de cada isótopo que constitui o elemento

Massa atômica de um elemento

A massa atômica de um elemento resulta da média ponderada dos números de massa dos isótopos deste elemento

Exemplo

Para o elemento cloro, de número atômico 17, existem dois isótopos, um com massa 35 e um com massa 37.

Isótopo 35 do cloro

75% de ocorrência

Isótopo 37 do cloro

25% de ocorrência

$$\mathsf{MA} = \frac{\mathsf{A}_1 \mathsf{a}_{1\%} + \mathsf{A}_2 \mathsf{a}_{2\%} + \mathsf{A}_n \mathsf{a}_{n\%}}{100} \quad \mathsf{MA} = \frac{35.75 + 37.25}{100} = 35,5$$

$$MA = \frac{35.75 + 37.25}{100} = 35$$

Tem unidade?

Não. Podemos colocar u ou u.m.a

12 u.m.a

Não é grama!

unidade Unidade de massa atômica u.m.a M.A Massa Atômica

Exemplos

Carbono C = 12u

Cloro Cl = 35.5u

35,5 u.m.a

Alumínio Al = 27 u 27 u.m.a

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Referencial

A unidade unificada de massa atômica, ou simplesmente, unidade de massa atômica é igual a 1/12 (um doze avos) da massa do isótopo 12C.

1 u (unidade de massa atômica) 1/12 de átomo de carbono 12 dividido em 12 partes

A massa de um átomo de carbono (12C) foi determinada por espectrometria de massas como sendo: 1,99265 x 10-23g

 $1u = 1,66054.10^{-24}g$

Equivale aproximadamente a massa de um próton ou de um nêutron

As massas atômicas dos átomos são normalmente medidas por meio de aparelho chamado um espectrômetro de massa.

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Massa atômica de um elemento

CÁLCULOS QUÍMICOS

O que significa?

É o número que indica quantas vezes esse **átomo** é mais pesado que $\frac{1}{12}$ do isótopo do carbono 12 [12C]

Exemplos

Isto significa que um átomo de cálcio é 40 vezes mais pesado que $\frac{1}{12}$ da massa do 12 C

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Cálculos químicos

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Exercício

Um elemento hipotético "X" é constituído por três isótopos de número de massa 60, 61 e 62.

Sabendo que a percentagem do isótopo 62 é 5%

A massa atômica do elemento é 60,2 u.m.a, quais as percentagens dos outros isótopos?

$$MA = \frac{A_1 a_{1\%} + A_2 a_{2\%} + A_n a_{n\%}}{100}$$

Uma pessoa tem massa de 70kg. Quantas unidades de massa atômica terá no corpo dessa pessoa?

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Cálculos químicos

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Exercício

Exemplo

A massa de um átomo X é $\frac{2}{3}$ da massa de um átomo Y. Qual a massa de X, sabendo que a massa de Y é o quádruplo da massa do isótopo 12C

$$m_x = \frac{2}{3}$$
 my

$$m_x = \frac{2}{3} 4.12$$

 $m_x = 32$

32 u

32 u.m.a

Massa Molecular

Ou Peso Molecular

É o número que indica quantas vezes a **molécula** é mais pesada que $\frac{1}{12}$ do isótopo do carbono 12 [12C]

Como determine a Massa Molecular?

Exemplos

H₂SO₄ H

> 16 **S** 32,1

0

0

Nº de átomos do composto

32 16

Massa Atômica

do elemento

98u

98 u.m.a

Nº de átomos

x MA

2u

32u

64u

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Atenção

Massa Molecular

É utilizada para compostos formados por ligações covalentes

Massa Fórmula

É utilizada para compostos iônicos

O termo "massa molecular" é utilizado tanto para compostos moleculares quanto para compostos iônicos, diz respeito a massa total dos átomos no composto.

Para se determinar a massa molecular ou a massa fórmula de um composto é necessário multiplicar o número de cada átomo presente no composto pela massa atômica de cada elemento, soma-se tudo no final.

Como determine a massa fórmula?

NaCl

Exemplos

Nº de átomos do composto

Massa Atômica do elemento

Nº de átomos x MA

Na Cl 1

23

23u 35,5 35,5u

58,5u

58,5 u.m.a

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Determine a massa molecular dos compostos:

FeSO₄

Ca(OH)₂

HNO₃

12

Massa Atômica do elemento

Nº de átomos x MA

Fe 2 S 3 0

56 32

16

96u

400u

192u

112u

400 u.m.a

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

u.m.a

Massa atômica

A massa de um átomo de carbono (12C) foi determinada por espectrometria de massas como sendo: 1,99265 x 10-23 g

12 u ----- 1.99265 x 10⁻²³

1 u

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

A massa atômica é apenas um número que não é a massa absoluta desse átomo; é a massa tomada em relação ao padrão que é $\frac{1}{12}$ do isótopo 12 C

$$massa atômica = \frac{massa do átomo}{u.m.a}$$

Número de Avogadro (N_A)

Se a massa em gramas de um determinado elemento for numericamente igual à sua massa atômica, o número de átomos existente sempre será o mesmo número de átomos (NA)

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

átomo -grama

procederíamos, alguém pedisse para pesar um átomo-grama de Fluor?

Pegue uma balança real e localize o correspondente número igual à massa atômica. No caso 19 gramas. Coloque Flúor no prato até que tenhamos 19 gramas desse elemento. Essa quantidade é um átomo grama (1atg) de flúor.

CÁLCULOS QUÍMICOS

A vantagem de utilizar atg é que:

Um átomo-grama de qualquer elemento possui o mesmo número de átomos. Esse número é uma constante e foi denominado Número de Avogadro sendo o seu valor 6,02 x10²³

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Número de Avogadro (NA)

Se a massa em gramas de um determinado elemento for numericamente igual à sua massa atômica, o número de átomos existente sempre será o mesmo número de átomos (N_A)

Determine o número de átomos existentes em 12g de Carbono

Exemplos

1 átomo de 12 C -------1,99265 x 10^{-23} g

n átomos de ¹²C ------12g

n átomos 12C = 6,022 x 10²³

12 u ----- 1,99265 x 10⁻²³

 $1u = 1,66054.10^{-24}g$

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

 $massa~atômica = \frac{massa~do~\acute{a}tomo}{}$

 $1 \text{ mol} = 6.022 \times 10^{23}$

 $\mathbf{Massa\,Molar} = \frac{\mathbf{m}}{\mathbf{n}}$

| CÁLCULOS QUÍMICOS

 $M = \frac{m}{n}$

 $MM = \frac{m}{n}$

M = Massa Molar

m = massa de uma substância (em gramas)

n = número de mols de uma substância

1 mol = 6,022 x 10²³

 $\mathbf{MM} = \frac{12}{1}$

Massa Molar do Carbono = 12g/mol

Em uma massa em gramas numericamente igual à massa atômica, para qualquer elemento, existem 6,02 . 1023 átomos

12g de C ----- 6,02 . 10²³ átomos

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Número de Avogadro (NA)

Se a massa em gramas de um determinado elemento for numericamente igual à sua massa atômica, o número de átomos existente sempre será o mesmo número de átomos (N_A)

Determine o número de átomos existentes em 16g de Oxigênio

Exemplos

1 átomo de 16O ------ 16u -----2,656864 x 10⁻²³ g n átomos de 12C -----16g n átomos $^{16}O = 6.022 \times 10^{23}$

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

$$1 \text{ mol} = 6,022 \times 10^{23}$$

| CÁLCULOS QUÍMICOS

$$\textbf{M} \!=\! \frac{m}{n}$$

$$\textbf{MM} {=}\, \frac{m}{n}$$

M = Massa Molar

m = massa de uma substância (em gramas)

n = número de mols de uma substância

$$\mathbf{MM} = \frac{16}{1}$$

Massa Molar do Oxigênio = 16g/mol

Em uma massa em gramas numericamente igual à massa atômica , para qualquer elemento, existem 6,02 . 1023 átomos

16g de O ----- 6,02 . 10²³ átomos

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Número de Avogadro (NA)

Em uma massa em gramas numericamente igual à massa molecular, para qualquer substância, existem 6,02. 1023 moléculas

Determine o número de moléculas existentes em 44g de CO₂

Exemplos

 $1u = 1,66054.10^{-24}g$

1 molécula de CO_2 -----xg 6,0221 x 10²³ u-----1_g 1 molécula de CO₂ = 7,30642 x 10-23 g

1 molécula de CO₂------ 4u ----- 7,30642 x 10⁻²³g n moléculas de CO₂ ----- 44g n moléculas de $CO_2 = 6,022 \times 10^{23}$

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

massa atômica =

massa do átomo

| cálculos químicos

u.m.a

$$\mathbf{Massa\,Molar} = \frac{\mathbf{m}}{\mathbf{n}}$$

$$\textbf{M} {=} \frac{m}{n}$$

$$\textbf{MM} \!=\! \frac{m}{n}$$

1 mol = 6,022 x 10²³

M = Massa Molar

m = massa de uma substância (em gramas)

n = número de mols de uma substância

$$\mathbf{MM} = \frac{44}{1}$$

Massa Molar do CO2 = 44g/mol

Em uma massa em gramas numericamente igual à massa molecular, para qualquer substância, existem 6,02 . 1023 moléculas

44g de CO_2 ----- 6,02 . 10^{23} moléculas

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

É um número que representa a quantidade de matéria de uma substância qualquer.

Porção, monte , quantidade

É dessa palavra que deriva "molécula" (pequena quantidade)

A palavra mol deve estar acompanhada da "entidade elementar" que está sendo quantificada.

Exemplos

1 mol de moléculas

1 mol de íons

1 mol de átomos

1 mol de elétrons

Um mol é definido como quantidade de substância de um sistema que contém um número de "entidades elementares" (átomos, moléculas, íons, elétrons) igual ao número de átomos existentes em 12 gramas de carbono 12 12C

CÁLCULOS QUÍMICOS

a quantidade de um elemento cuja massa expressa em gramas corresponde numericamente ao valor da massa atômica.

1 mol de qualquer substância terá uma quantidade de átomos que, se for "pesada" em gramas, terá o mesmo número de massa atômica.

1mol de átomos de Cloro 35,5 gramas

1 mol de átomos de Cloro possui 35,5gramas

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

QUÍMICA GERAL - PROFESSOR JOTA

Quantos átomos de ¹H são necessários para compor 1g? 1H Resposta: Muitos Mol

Massa Molar do H 1 g/mol

Mol é a quantidade de átomos para compor em gramas o valor da massa atômica

Massa Molar do C 16 g/mol

TEST S

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Massa Molar

A massa molar corresponde a 1 mol de substância

Equivale a massa atômica expressa em gramas.

Como determine a Massa Molar?

Exemplos

2SO ₄		№ de átomos do composto	Massa Atômica do elemento	№ de átomos x MA
н	Н	2	1	2u
1,01	S	1	32	32u
16 S 32,1	0	4	16	64u
8 0 16,0				98u
16,0				98 u.m.a

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

1 u.m.a ou 1u corresponde a 1g

H₂SO₄

Massas Atômicas

H = 1u, S= 32u O=16u

2 átomos de H - 2x1u = 2u → 2g/mol

1 átomo de S - 1x32u = 32u → 32g/mol

4 átomos de O - 4x16u = 64u → 64g/mol

1 mol de qualquer substância terá uma quantidade de átomos que, se for "pesada" em gramas, terá o mesmo número de massa atômica.

Massa Molecular do H₂SO₄

98 u.m.a

Massa Molar do H2SO4

98 g/mol

98g de H2SO4 correspondem a 1 mol

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Exercício Exemplo

Um pedaço de fio de cobre tem a massa de 127,0 gramas (no fio só tem cobre) . Quantos mols de átomos de cobre estão presentes no fio?

127,0g é a massa do fio

29 Cu 63.5

1 átomo de cobre = 63,5u

M.A Cu = 63,5u

[Massa Molar] M.M Cu = 63,5g/mol

1 mol de átomos de Cu corresponde a 63,5g

1 mol de átomos de Cu → 63,5g

X mols de átomos de Cu → 127,0g

 $X = \frac{127}{635} = 2$ mols de átomos de cobre

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Mol de moléculas

É a quantidade de substância tal que, a sua massa expressa em gramas, é numericamente igual à massa molecular.

1 mol de moléculas vai nos indicar quanto "pesa" uma molécula de determinada substância.

Exemplos		
Substância	ММ	Mol de moléculas
H ₂ SO ₄	98g/mol	98g
HNO ₃	63g/mol	63g
HCI	36,5g/mol	36,5g

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Cálculos químicos

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Exercício Exemplo

 H_2O

 $H = 1 \times 2 = 2u$

O= 16u

MMH₂O = 18g/mol

Ao beber uma garrafinha de água (500ml), quantos mols de moléculas de água você está ingerindo?

500g H₂O xmols

 $X = \frac{500}{18} = 27,8$ mols de moléculas de água

1 mol corresponde a 6,02 x10²³ unidades

1 mol de canetas = 6,02 x10²³ canetas

1 mol de átomos = 6,02 x10²³ átomos

1 mol de moléculas = 6,02 x10²³ moléculas

1 mol de íons = $6,02 \times 10^{23}$ íons

1 mol de e- = 6,02 x10²³ e-

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Exercício Exemplo

 H_2O

 $H = 1 \times 2 = 2u$

O= 16u

MMH₂O = 18g/mol

18g H₂O

1mol

500g H₂O

xmols

 $X = \frac{500}{18} = 27,8$ mols de moléculas de água

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Ao beber uma garrafinha de água (500ml), qual a quantidade de moléculas de água você está ingerindo?

CÁLCULOS QUÍMICOS

6,02 x 10²³moléculas 18g H₂O 1mol

500g H₂O Xmols Xmoléculas

6.02 x 10²³moléculas 18g H₂O 1mol

27,8mols Xmoléculas 500g H₂O

 $X = 27.8 \cdot 6.02.10^{23}$

X= 1,67 . 10²⁵ moléculas

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Exercício Faça você mesmo!

Um elemento hipotético "X" é constituído por três isótopos de número de massa 60, 61 e 62.

Sabendo que a percentagem do isótopo 62 é 5%

A massa atômica do elemento é 60,2 u.m.a, quais as percentagens dos outros isótopos?

$$MA = \frac{A_1 a_{1\%} + A_2 a_{2\%} + A_n a_{n\%}}{100}$$

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

ETESP

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

exercícios

- 1] "O nome sal hidratado indica um composto sólido que possui quantidades bem definidas de moléculas de H2O associadas aos íons. Por isso, a massa molecular de um sal hidratado deve sempre englobar moléculas de H2O". Com base nas informações desse texto, qual deverá ser a massa molecular do sal hidratado FeCl₃.H2O? Dados: H = 1u; O = 16 u; Cl = 35,5 u; Fe = 56 u
- 2] Calcule a massa (em grama) existente em 5 mols de uma substância Z, sabendo que uma molécula dessa substância pesa 3,0.10⁻²³ g.
- 3]Qual o número de átomos de Hidrogênio existentes 10,8g de H2O?

RELAÇÕES NUMÉRICAS FUNDAMENTAIS

Faça envie

4] (Enem) O brasileiro consome em média 500 miligramas de cálcio por dia, quando a quantidade recomendada é o dobro. Uma alimentação balanceada é a melhor decisão pra evitar problemas no futuro, como a osteoporose, uma doença que atinge os ossos. Ela se caracteriza pela diminuição substancial de massa óssea, tornando os ossos frágeis e mais suscetíveis a fraturas.

Considerando-se o valor de 6x10²³ para a constante de Avogadro e a massa molar do cálcio igual a 40 g/mol, qual a quantidade mínima diária de átomos de cálcio a ser ingerida para que uma pessoa supra suas necessidades?

5] A massa molecular do composto sulfato de sódio trihidratado (Na2SO4.3 H₂O) é igual a: Dados: H = 1u.; O = 16 u.; Na = 23 u.; S = 32 u.