CHAPTER 4

Dispersion in optical fibers

Dominique PAGNOUX

DEFINITION AND CAUSES OF DISPERSION IN OPTICAL FIBERS

DISPERSION: linear phenomenon resulting in a change (generally an increase) of the duration of a pulse when propagating in a fiber

- intermodal dispersion (in multimode regime) → D₁
- chromatic dispersion → D_c
- polarization mode dispersion → PMD ←

- * In the multimode regime: D₁ >> D_c of each mode >> PMD of each mode
 - → D_c and PMD are neglected
- * In the single mode régime : $D_i = 0$
- → if D_c of the fundamental mode >> PMD (usual case) → D_c only is taken into account and PMD is neglected
 - si D_c of the fundamental mode ~0 → PMD must be taken onto account (for very high bit rate transmissions)

INTERMODALE DISPERSION

- → due to the fact that the each excited mode has its own group velocity, different from that of the others
- → D_I = pulse broadening per unit of length along which light propagates (ns/km)

INTERMODALE DISPERSION

- → due to the fact that the each excited mode has its own group velocity, different from that of the others
- → D_I = pulse broadening per unit of length along which light propagates (ns/km)

group delay:
$$t_g = \frac{L}{V_g}$$

$$v_g \approx \frac{c}{n_1} \sin i$$

$$\frac{\operatorname{ray} 1 \to \sin i = 1 \to v_g \approx \frac{c}{n_1} \to t_{g_1} \approx \frac{L}{c} n_1$$

$$\frac{\operatorname{ray} 2 \to \sin i_{\min} = \frac{n_2}{n_1} \to v_g \approx \frac{c}{n_1} \frac{n_2}{n_1} \to t_{g_2} \approx \frac{L}{c} \frac{n_1^2}{n_2}$$

$$\approx \frac{L}{c}.n_1.$$

$$\approx \frac{L}{c}.n_1.\left(\frac{n_1}{n_2}-1\right) \approx \frac{L}{c}n_1\left(\frac{n_1-n_2}{n_2}\right)$$

With
$$\Delta = \left(\begin{array}{c} \\ \end{array} \right)$$

$$\Delta = \left(\frac{n_1^2 - n_2^2}{2n_1^2}\right) = \frac{(n_1 + n_2)(n_1 - n_2)}{2n_1^2} \approx \frac{2n_1(n_1 - n_2)}{2n_1^2}$$

$$\tau = \frac{L}{c} n_1 \Delta$$

(step index fiber)

INTERMODALE DISPERSION (step index fiber)

Definition:

$$D_I \triangleq \frac{\tau}{L} = \frac{n_1 \cdot \Delta}{c}$$
 (en ns/km)

 $\left(\text{reminder}: \tau = \frac{L}{c} n_1 \Delta\right)$

Modulation bandwidth, for a fiber of length L: $B=1/\tau$ (generally expressed in MHz)

B.L = $B_1 = L/\tau = 1/D_1 = constant$ (generally expressed in MHz.km)

INTERMODALE DISPERSION (step index fiber)

$$D_{L} \triangleq \frac{\tau}{L} = \frac{n_{1}.\Delta}{c}$$
 (en ns/km)

$$\left(\text{reminder}: \tau = \frac{L}{c} n_1 \Delta\right)$$

Modulation bandwidth, for a fiber of length L: $B=1/\tau$ (generally expressed in MHz)

B.L =
$$B_L = L/\tau = 1/D_I = constant$$
 (generally expressed in MHz.km)

Example:

IN 0.8 pm

Step index fiber, length L= 3km with n1 = 1,465 and n2 =1,45

$$\tau = 3 \cdot \frac{1}{3 \cdot 10^5} \cdot 1,465 \cdot \left(\frac{1,465-1,45}{1,45}\right) = 1,52 \cdot 10^{-7} s = 152 \text{ ns}$$

$$B = \frac{1}{\tau} = \frac{1}{152 \cdot 10^{-9}} = 6,58 \cdot 10^{6} \text{Hz} = 6,58 \text{ MHz}$$

$$B_L = \frac{1}{D_I} = \frac{1}{51 \cdot 10^{-9}} \approx 20 \cdot 10^6 \text{Hz.km} \approx 20 \text{ MHz.km}$$

Optimized graded index fiber

$$\tau' = \tau/100$$

$$B_{L}' = 100.B_{L}$$

CHROMATIC DISPERSION

 $\Delta \lambda = \lambda^2$. $\Delta M/c$ where $\Delta M =$ spectral bandwidth of the pulse with Δt . $\Delta t =$ cte

if
$$\Delta t$$
=10ps with $\lambda_0 = 1 \mu m$

$$\Delta \lambda = \frac{\left(10^{-6}\right)^2}{3.10^8} \times \frac{1}{10.10^{-12}} = 3.10^{-10} m = 0.3nm \quad \text{(with } \Delta t. \Delta = 1\text{)}$$

causes of chromatic dispersion:

- dispersive material \rightarrow n=f(λ) \rightarrow v_{ϕ}=c/n=f(λ) \rightarrow v_g=f(λ) \rightarrow material dispersion (D_{mat})

- when the wave is guided, $\beta = f(V) = f(\omega) \rightarrow v_g = d\omega/d\beta = f(\lambda) \rightarrow guide dispersion (D_{gui})$

In first approximation : D_c ≈ D_{mat} + D_{qui}

CHROMATIC DISPERSION

CHROMATIC DISPERSION

<u>Definition</u>:

expressed in ps/(nm.km)

$$\mathbf{D_c} = \frac{\mathbf{t_{gR} - t_{gB}}}{\mathbf{T} (\lambda - \lambda)} \quad \text{en ps/(nm.km)}$$

CHROMATIC DISPERSION: remarks

$$D_{c} = \frac{1}{L} \frac{dt_{g}}{d\lambda} = \frac{1}{L} \frac{d}{d\lambda} \left(\frac{\mathcal{L}}{\mathbf{V}_{g}} \right) = \underbrace{\frac{d}{d\lambda}} \left(\frac{d\beta}{d\omega} \right) = \underbrace{\frac{d}{d\omega}} \left(\frac{d\beta}{d\omega} \right) \cdot \frac{d\omega}{d\lambda} = -\underbrace{\frac{2\pi c}{\lambda^{2}}} \underbrace{\frac{d^{2}\beta}{d\omega^{2}}}_{\lambda}$$

 \rightarrow the dispersion curve β =f(ω) allows to calculate the chromatic dispersion (taking into account the actual values $n_1(\lambda)$ and $n_2(\lambda)$ at each wavelength)

CHROMATIC DISPERSION: remarks

$$\Rightarrow D_{c} = \frac{1}{L} \frac{dt_{g}}{d\lambda} = \frac{1}{L} \frac{d}{d\lambda} \left(\frac{L}{v_{g}} \right) = \frac{d}{d\lambda} \left(\frac{d\beta}{d\omega} \right) = \frac{d}{d\omega} \left(\frac{d\beta}{d\omega} \right) \cdot \frac{d\omega}{d\lambda} = -\frac{2\pi c}{\lambda^{2}} \frac{d^{2}\beta}{d\omega^{2}}$$

 \rightarrow the dispersion curve β =f(ω) allows calculating the chromatic dispersion (taking into account the actual values $n_1(\lambda)$ and $n_2(\lambda)$ at each wavelength)

Taylor expansion of the spectral phase of the guided wave:

$$\varphi(\omega) = \beta L = \beta(\omega_0) \cdot L + L \cdot \frac{d\beta}{d\omega} (\omega - \omega_0) + \frac{L}{2} \frac{d^2 \beta}{d\omega^2} (\omega - \omega_0)^2 + \dots$$

out of the "guided optics" community,

 $\frac{d^2\beta}{d\omega^2}$ is often called "group velocity dispersion"

→ inappropriate denomination and risk of confusion with D_c

in fact $\frac{d^2\beta}{d^2}$ is proportional to the dispersion of group delay

CALCULATION OF THE MATERIAL DISPERSION

- → plane wave (= propagating wave NOT GUIDED)
- \rightarrow dispersive propagation medium : $n_1 = f(\lambda)$

$$t_{g} = t_{mat} = \frac{L}{\mathbf{V}_{g}} = \frac{L}{c} N_{g} = \frac{L}{c} \left(n_{1} - \lambda \frac{dn_{1}}{d\lambda} \right)$$

CALCULATION OF THE MATERIAL DISPERSION

- → plane wave (= propagating wave NOT GUIDED)
- \rightarrow dispersive propagation medium : $n_1 = f(\lambda)$

$$t_{g} = t_{mat} = \frac{L}{v_{g}} = \frac{L}{c} N_{g} = \frac{L}{c} \left(n_{1} - \lambda \frac{dn_{1}}{d\lambda} \right)$$

$$\tau_{mat} = \Delta t_{g} = \frac{dt_{mat}}{d\lambda} \Delta \lambda = \frac{L\Delta\lambda}{c} \frac{d}{d\lambda} \left(n_{1} - \lambda \frac{dn_{1}}{d\lambda} \right)$$

$$= \frac{L}{c} \Delta \lambda \cdot \left(\frac{dn_{1}}{d\lambda} - \left(1x \frac{dn_{1}}{d\lambda} + \lambda \frac{d^{2}n_{1}}{d\lambda^{2}} \right) \right)$$

$$= -\frac{\lambda L}{c} \Delta \lambda \cdot \frac{d^{2}n_{1}}{d\lambda^{2}}$$

CALCULATION OF THE MATERIAL DISPERSION

- → plane wave (= propagating wave NOT GUIDED)
- \rightarrow dispersive propagation medium : $n_1 = f(\lambda)$

$$t_g = t_{mat} = \frac{L}{v_g} = \frac{L}{c} N_g = \frac{L}{c} \left(n_1 - \lambda \frac{dn_1}{d\lambda} \right)$$

$$\begin{split} \tau_{mat} &= \Delta t_g = \frac{dt_{mat}}{d\lambda} \Delta \lambda = \frac{L\Delta\lambda}{c} \frac{d}{d\lambda} \left(n_1 - \lambda \frac{dn_1}{d\lambda} \right) \\ &= \frac{L}{c} \Delta \lambda . \left(\frac{dn_1}{d\lambda} - \left(1x \frac{dn_1}{d\lambda} + \lambda \frac{d^2n_1}{d\lambda^2} \right) \right) \\ &= -\frac{\lambda L}{c} \Delta \lambda . \frac{d^2n_1}{d\lambda^2} \end{split}$$

$$D_{mat} = \frac{\tau_{mat}}{L.\Delta\lambda} = -\frac{\lambda}{c} \frac{d^2 n_1}{d\lambda^2}$$

$$D_{mat} = -\frac{\lambda}{c} \frac{d^2 n_1}{d\lambda^2}$$

For pure silica:

 $B_1 = 0.696166300$ $B_2 = 0.407942600$

 $B_3 = 0.897479400$ $C_1 = 4.67914826x10^{-3} \mu m^2$

 $C_2 = 1.35120631x10^{-2} \mu m^2$

 $C_3 = 97.9340025 \, \mu m^2$

$$n(SiO_2) = f(\lambda)$$

1.2

0.4

0.6

0.8

1.4

longueur d'onde (microns)

1.6

1.8

2

2.2

2.4

<u>example</u> let us consider a beam from a laser diode emitting at 850nm, with $\Delta\lambda$ = 40nm, launched in a fiber with a length L= 2km

 $D_{mat} = -75ps/(nm.km)$

$$\tau_{mat} = L.\Delta \lambda. |D_{mat}|$$
$$= 2x40x75 = 6000 ps = 6ns$$

$$\frac{dn_1}{d\lambda} = 0 \; ; \; \frac{dn_2}{d\lambda} = 0 \; ; \; \frac{d\Delta}{d\lambda} = 0$$

$$\mathbf{V}_{g} = \frac{d\omega}{d\beta} \quad \text{et} \quad \mathbf{t}_{g} = \frac{L}{\mathbf{V}_{g}} = L \frac{d\beta}{d\omega} = \frac{L}{c} \frac{d\beta}{dk_{0}}$$
 (car $\omega = \mathbf{k}_{0}.c$)

 \underline{Goal} : express t_g as a function of B and V (\Longrightarrow allowing to exploit the dispersion curves B=f(V))

One easily shows that :
$$\beta = k_0 \left[n_2 + n_1 \Delta B \right]$$

$$k_0 = \frac{V}{a n \sqrt{2 \Delta}}$$

$$t_{g} = t_{gui} = \frac{L}{c} \left[n_{2} + n_{1} \Delta \frac{d(VB)}{dV} \right]$$

see the development of the calculations in pdf pages 10 et 11

 $\Rightarrow t_{gui} = \frac{L}{c} \left| n_2 + n_1 \Delta \frac{d(VB)}{dV} \right|$

temporal broadening:

$$\rightarrow \tau_{gui} = \Delta t_{gui} =$$

(see slide number 9)

Dispersion due to guiding effect : $D_{gui} = \frac{ au_{gui}}{L.\Delta\lambda}$

resulting in : $D_{gui} = -\frac{n_1 \Delta}{c \lambda} V \frac{d^2 (VB)}{dV^2}$

(see the development of the calculations in pdf page 12)

$$D_{gui} = \frac{n\Delta V}{c\lambda} \frac{d^2(VB)}{dV^2}$$

Example: case of a fiber with

$$a = 4.5 \mu m$$
 = 0,105 $n1 = 1.46$

- à λ = 1,55 μ m

$$\Rightarrow \Delta = \frac{2 n_1^2}{2n_1^2} = 2,83.10^{-3}$$

→
$$V = \frac{2\pi}{\lambda} a(V) = 1.91$$

$$\rightarrow V \frac{d^2(VB)}{dV^2} \simeq 0.6$$

$$D_{gui} = -\frac{1,46 \times 2,83.10^{-3}}{3.10^{8} \times 1,55.10^{-6}} \times 0.6 = -5.10^{-6} \text{s/(m.m)} = -5 \text{ps/(nm.km)}$$

CURVES OF THE CHROMATIC DISPERSION versus WAVELENGTH

Example with a step index fiber: $n_1 = 1.46$ $n_2 = 1.455$ $a = 4 \mu m$

$$n_2 = 1.455$$

$$a = 4 \mu m$$

CURVES OF THE CHROMATIC DISPERSION versus WAVELENGTH

Example with a step index fiber: $n_1 = 1.46$ $n_2 = 1.455$ $a = 4 \mu m$

$$n_2 = 1.455$$
 a

CURVES OF THE CHROMATIC DISPERSION versus WAVELENGTH

Example with a step index fiber: $n_1 = 1.46$ $n_2 = 1.455$ $a = 4 \mu m$

CURVES OF THE CHROMATIC DISPERSION VERSUS WAVELENGTH

How can we change the chromatic dispersion of an optical fiber ?

- \rightarrow By changing the material dispersion ???? \rightarrow no
- → By changing the dispersion of the guide !!!
 - **⇒** Working with higher order modes
 - **⇒** Working in the single mod regime, but with a fiber having a modified index profile
 - multiclad fibers ("DS fibers", "DF fibers...)
 - Air silica microstructured optical fibers (MOFs so called "PCFs")
 - Bragg fibers or photonic bandgap fibers

HOW CAN WE CHANGE THE DISPERSION OF THE GUIDE?

$$D_{g} = -\frac{1}{\pi^{2} n_{2} c} \frac{\lambda}{w_{0}^{2}} \left(\frac{\lambda}{w_{0}} \frac{dw_{0}}{d\lambda} - \frac{1}{2} \right)$$

Pierre Sansonetti, Elect. Letters, vol 18, n°15, pp 647-648 (1982)

 $\lambda_1 < \lambda_2 < \lambda_3$

DISPERSION SHIFTED FIBERS: MULTICLAD FIBERS

DISPERSION SHIFTED FIBERS: A LARGE VARIETY OF INDEX PROFILES

DISPERSION SHIFTED OR FLATTENED FIBERS

DISPERSION SHIFTED OR FLATTENED FIBERS

Optical Fiber communications, 3rd ed., G. Keiser, McGraw Hill, 2000

OTHER KINDS OF FIBERS FOR THE MANAGEMENT OF THE DISPERSION (1)

* fibers with Dg << 0 (compensating fibers)

Linear propagation in optical fibers

JL Auguste et al. Optical fiber technology Vol. 24, issue 1, pp. 442- (2006)

index profile

Distribution of the field versus wavelength

measured chromatic dispersion

OTHER KINDS OF FIBERS FOR THE MANAGEMENT OF THE DISPERSION (2)

* fibers with Dg > 0 at short wavelengths

OTHER KINDS OF FIBERS FOR THE MANAGEMENT OF THE DISPERSION (3)

* fibers with Dg specially managed for particular applications

→ Air silica microstructured optical fibers :

diameter of holes :d pitch : Λ

d= 0,6 μ m_ Λ =2,6 μ m

flattened dispersion 1100 nm – 1600 nm d= 1,9 μ m Λ =2,3 μ m

core diameter = 1,5 μ m Λ =2 μ m

End of chapter 4

