On définit une suite de polynômes (P_n) de $\mathbb{R}[X]$ par :

$$\begin{cases} \bullet & P_0 = 1; \\ \bullet & P_1 = X; \\ \bullet & \forall n \in \mathbb{N}: \quad P_{n+2} = 2XP_{n+1} - P_n. \end{cases}$$

 P_n s'appelle le n-ième polynôme de Chebychev.

Partie I

- 1. Montrer que $deg(P_n) = n$. Calculer le coefficient dominant de P_n .
- 2. Montrer que P_n est pair si n est pair et impair si n est impair
- 3. Calculer $P_n(1), P_n(-1)$ et $P_n(0)$
- 4. Montrer que

$$\forall n \in \mathbb{N}, \forall \alpha \in \mathbb{R}, \quad P_n(\cos(\alpha)) = \cos(n\alpha)$$
 (1)

- 5. Montrer que P_n est l'unique polynôme de $\mathbb{R}[X]$ vérifiant la relation (1)
- 6. Déterminer toutes les racines de P_n .
- 7. Déterminer toutes les racines de P'_n

Indication: Dériver (1)

Partie II

Soit $n \in \mathbb{N}^*$ et soit $P \in \mathbb{R}_n[X]$ vérifiant :

- $\circ\,$ Le coefficient de X^n est 2^{n-1}
- $\circ\ P([-1,1])\subset [-1,1]\ .$

On note
$$Q = P_n - P$$
, et pour $0 \le k \le n$, on pose $x_k = \cos\left(\frac{k\pi}{n}\right)$

- 8. Calculer $P_n(x_k)$
- 9. Soit $k \in [0, n]$. Comparer les signes de $Q(x_k)$ et de $Q(x_{k+1})$.
- 10. (a) Montrer que:

$$\forall k \in [1, n-1], \quad Q(x_k) = 0 \Rightarrow Q'(x_k) = 0$$

- (b) Montrer par récurrence sur $k \in [1, n]$ la proposition suivante
 - $\begin{cases} \bullet & \text{Si } Q(x_k) = 0 \text{, alors } Q \text{ admet au moins } k+1 \text{ racines comptées avec multiplicité dans } [x_k, 1]; \\ \bullet & \text{Si } Q(x_k) \neq 0 \text{, alors } Q \text{ admet au moins } k \text{ racines comptées avec multiplicité dans } [x_k, 1] \end{cases}$
- (c) En déduire que Q possède au moins n racines (comptées avec leur ordre de multiplicité)dans [-1,1], puis que Q=0

Partie III

Soit $n \in \mathbb{N}^*$ et soit $P \in \mathbb{R}_n[X]$ unitaire quelconque

11. Démontrer que inf
$$\{|P(x)|/x \in [-1,1]\} \geqslant \frac{1}{2^{n-1}}$$

 $\underline{Indication}: Raisonner\ par\ l'absurde: Poser\ k = \deg\left(P\right)\ et\ considérer\ le\ polynôme\ Q = 2^{n-1}X^{n-k}P$

12. Á quelle condition y-a-t-il égalité?

Partie I

- 1. P₀ est de degré 0 et de coefficient dominant 1. Montrons par une récurrence double sur $n \ge 1$ que le monôme de plus haut degré de P_n est $2^{n-1}X^n$.
 - Pour n=1 ou n=2 la propriété est vérifiée, vu que $P_2=2XP_1-P_0=2X^2-1$
 - Soit $n \ge 1$. On suppose que les monômes du plus haut degré de P_n et P_{n+1} sont respectivement $2^{n-1}X^n$ et 2^nX^{n-1} . Par définition de $P_{n+2} = 2XP_{n+1} P_n$ et vu que $\deg(2XP_{n+1}) = n+2$ et $\deg(P_n) = n$, alors on en déduit que le terme dominant de P_{n+2} est celui de $2P_{n+1}$, c'est-à-dire $2^{n+1}X^{n+2}$.
- 2. Par récurrence sur n on montre que P_{2n} est pair et P_{2n+1} est impair
 - P_0 est pair et P_1 est impair.
 - Soit $n \ge 0$. Supposons que P_{2n} est pair et que P_{2n+1} est impair. Il vient alors :

$$P_{2n+2}(-X) = -2P_{2n+1}(-X) - P_{2n}(-X) = 2XP_{2n+1}(X) - P_{2n}(X) = P_{2n+2}(X)$$

Cela prouve que P_{2n+2} est pair. Sachant que P_{2n+1} est impair et P_{2n+2} est pair on démontre de la même façon que P_{2n+3} est impair.

Remarque : On peut démontrer par récurrence double que $P_n(-X) = (-1)^n P_n(X)$

- 3. Par un récurrence double sur n on montre que : $P_n(1) = 1$ et $P_n(-1) = (-1)^n$
 - $P_0 = 1$ et $P_1 = X$ donc $P_0(1) = P_0(-1) = 1, P_1(1) = 1$ et $P_1(-1) = -1$
 - Soit $n \ge 0$. Supposons que $P_n(1) = 1$, $P_n(-1) = (-1)^n$, $P_{n+1}(1) = 1$ et $P_{n+1}(-1) = (-1)^{n+1}$. Par définition de P_{n+2} , il vient que

$$P_{n+2}(1) = 2P_{n+1}(1) - P_n(1) = 1$$

et

$$P_{n+1}(-1) = 2(-1)P_{n+1}(1) - P_n(1) = 2(-1)^{n+2} - (-1)^n = (-1)^{n+2}$$

Montrons cette fois par une récurrence simple sur n que $P_{2n}(0) = (-1)^n$ et $P_{2n+1}(0) = 0$

- $-P_0(0) = 1 \text{ et } P_1(0) = 0$
- Soit $n \ge 0$. Supposons que $P_{2n}(0) = (-1)^n$ et $P_{2n+1}(0) = 0$. Il vient alors :

$$P_{2n+2}(0) = -P_{2n}(0) = 0$$
 et $P_{2n+3}(0) = -P_{2n+1}(0) = -(-1)^n = (-1)^{n+1}$

- 4. Par une récurrence double
 - Pour n = 0 et n = 1: $P_n(\cos(\alpha)) = \cos(n\alpha)$.
 - Soit $n \ge 0$. Supposons $P_n(\cos(\alpha)) = \cos(n\alpha)$ et $P_{n+1}(\cos(\alpha)) = \cos((n+1)\alpha)$. On écrit :

$$P_{n+2}(\cos(\alpha)) = 2\cos(\alpha)P_{n+1}(\cos(\alpha)) - P_n(\cos(\alpha))$$
$$= 2\cos(\alpha)\cos((n+1)\alpha) - \cos(n\alpha)$$
$$= \cos((n+2)\alpha)$$

5. Soit Q un élément de $\mathbb{R}[X]$ vérifiant la propriété (1). On a alors :

$$\forall \alpha \in \mathbb{R}, \ (P_n - Q)(\cos(\alpha)) = 0$$
. On en déduit, $\forall t \in [-1, 1], (P_n - Q)(t) = 0$.

Cela signifie que le polynôme $P_n - Q$ a une infinité de racines ,c'est donc le polynôme nul. Ainsi P_n est bien l'unique élément de $\mathbb{R}[X]$ vérifiant (1).

6. Soit $n \ge 1$.

$$\cos(n\alpha) = 0 \iff \exists k \in \mathbb{Z}, \quad \alpha = \frac{\pi}{2n} + \frac{k\pi}{n}$$

On en déduit que tous les réels de la forme $\cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right)$ sont des racines de P_n .

Si $k \in [0, n-1]$ les réels $\frac{\pi}{2n} + \frac{k\pi}{n}$ sont deux à deux distincts et tous dans l'intervalle $[0, \pi]$. Or la fonction cosinus est injective sur cet intervalle .

On en déduit n racines distincts du polynôme P_n , à savoir les réels : $\cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right)$ avec $0 \le k \le n-1$. Le polynôme P_n est de degré n, cela constitue toutes ses racines.

7. $P_0' = 0$, $P_1' = 1$ n'ont pas de racines .On suppose maintenant $n \ge 2$. En dérivant la formule (1) on obtient :- $\sin(\alpha)P_n'(\cos(\alpha)) = -n\sin(n\alpha)$. $\sin(n\alpha) = 0$ si et seulement, si $\alpha = \frac{k\pi}{n}$, $k \in \mathbb{Z}$. Si k n'est pas un multiple de n alors $\sin\left(\frac{k\pi}{n}\right) \ne 0$ et $\cos\left(\frac{k\pi}{n}\right)$ est une racine de P_n' . Les réels $\frac{k\pi}{n}$, $1 \le k \le n-1$, sont deux à deux distincts et tous dans l'intervalle $]0,\pi[$. On en déduit comme précédemment que les nombres $\cos\left(\frac{k\pi}{n}\right)$, avec $1 \le k \le n-1$, constituent toutes les racines de P_n' .

Partie II

8. En utilisant la relation (1) on a :

$$P_n(x_k) = P_n(\cos(\frac{k\pi}{n})) = \cos(k\pi) = (-1)^k$$

9. Si k est pair, alors $Q(x_k) = 1 - P(x_k)$ et donc $Q(x_k) \ge 0$. De même si k est impair $Q(x_k) = -1 - P(x_k)$, par conséquent $Q(x_k) \le 0$. On en déduit :

$$\forall k \in [0, n-1], \quad Q(x_k)Q(x_{k+1}) \leq 0$$

- 10. (a) Soit $k \in [1, n-1]$ et si $Q(x_k) = 0$, alors $P(x_k) = \mp 1$, donc P admet est un extremum local en x_k , et par conséquent, $P'(x_k) = 0$. Comme $P'_n(x_k) = 0$, on a donc $Q(x_k) = 0 \Rightarrow Q'(x_k) = 0$
 - (b) Pour k = 1. On sait que $Q(x_0)Q(x_1) \le 0$. Le théorème des valeurs intermediaires montre alors qu'il y a au moins une racine de Q dans l'intervalle $[x_1, x_0]$. Supposons $Q(x_1) = 0$. On a donc également $Q'(x_1) = 0$ et par conséquent, il y a au moins deux racines (comptées avec leur ordre de multiplicité) de Q supérieures ou égales à x_1 .
 - Supposons la propriété vraie pour $1 \le k < n-1$.
 - o Si $Q(x_{k+1}) = 0$ en appliquant le raisonnement précédent x_{k+1} est une racine double de Q et l'on a bien k+2 racines supérieures à x_{k+1} .
 - o Si $Q(x_{k+1}) \neq 0$ et si $Q(x_k) \neq 0$ alors l'hypothèse de récurrence et le théorème des valeurs intermédiaires montrent que Q admet au moins k+1 racines dans $[x_{k+1},1]$
 - o Enfin si $Q(x_{k+1}) \neq 0$ et $Q(x_k) = 0$ alors l'hypothèse de récurrence montre qu'il y a déjà k+1 racines dans $[x_k, 1] \subset [x_{k+1}, 1]$
 - (c) Si $Q(x_{n-1}) = 0$, alors Q admet au moins n racines dans $[x_{n-1}, 1] \subset [-1, 1]$ et si $Q(x_{n-1}) \neq 0$, alors Q admet au moins n-1 racines $[x_{n-1}, 1]$, et au moins une racine dans $[x_n, x_{n-1}]$ par le théorème des valeurs intermédiaires. Finalement Q possède au moins n racines dans [-1, 1]. Or P et P_n ont le même terme dominant : $2^{n-1}X^n$. Ainsi $\deg(Q) \leq n-1$. Comme il a au moins n racines, on en déduit qu'il est nul.

Partie III

11. Supposons qu'il existe $P \in \mathbb{R}_n[X]$ polynôme unitaire tel que $\sup_{-1 \leqslant x \leqslant 1} (|P(x)|) < \frac{1}{2^{n-1}}$.

Soit $k = \deg(P)$ et $Q = 2^{n-1}X^{n-k}P$. On a alors :

$$\sup_{-1\leqslant x\leqslant 1}(|Q(x)|)=2^{n-1}\sup_{-1\leqslant x\leqslant 1}(\left|x^{n-k}P(x)\right|)\leqslant 2^{n-1}\sup_{-1\leqslant x\leqslant 1}(|P(x)|)<1.$$

Le polynôme Q est de degré n, de coefficient dominant 2^{n-1} et vérifie $\forall x \in [-1,1]$, $Q(x) \in]-1,1[\subset [-1,1]$. Donc, d'après la question 10, $Q = P_n$, ce qui est impossible car $\sup_{-1 \leqslant x \leqslant 1} (|P(x)|) = 1$

- 12. Soit $P \in \mathbb{R}_n[X]$ unitaire tel que $\sup_{-1 \leqslant x \leqslant 1} (|P(x)|) = \frac{1}{2^{n-1}}$
 - Si n=1, on vérifie que seul le polynôme P_1 convient.
 - Si $n \geqslant 2$. Si $\deg(P) \neq n$, alors $P \in \mathbb{R}_{n-1}[X]$, et on sait que dans ce cas $\sup_{-1 \leqslant x \leqslant 1} (|P(x)|) \geqslant \frac{1}{2^{n-2}} > \frac{1}{2^{n-1}}$. On en déduit $\deg(P) = n$, puis $2^{n-1}P = P_n$

Bref il y a donc égalité si, et seulement, si $P=\frac{1}{2^{n-1}}P_n$