

DATS 6450 CLOUD COMPUTING

Airbnb Rental Price Prediction with AWS

Team

Aakash Hariharan Neeraj Magadum Trisha Singh

TABLE OF CONTENTS

- O1 Scope Of The Project
- O2 Features Implemented
- O3 Data Sources Used
- O4 <u>Expected Outcomes</u>
- O5 Architecture
- 06 References

SCOPE OF THE PROJECT

This project aims to develop a machine learning model using AWS SageMaker to analyze Airbnb listings and generate key insights. The model will predict:

OBJECTIVES

- Develop an automated pipeline for Airbnb price prediction.
- Identify key factors influencing listing prices.
- Deploy the model for real-time and batch predictions.

METHODOLOGY

- Store and preprocess data using Amazon S3 & AWS Glue.
- Train a model using AWS SageMaker.
- Deploy the model for predictions.
- Visualize insights using Amazon QuickSight.

TOOLS AND TECHNOLOGIES

- AWS Services: S3, Glue,
 SageMaker, QuickSight
- Machine Learning:
 XGBoost, Linear Learner

STEP 1

Data Collection & Storage

The project will utilize **Amazon S3** as a central storage location for both raw and processed Airbnb data

STEP 2

Data Preprocessing & Feature Engineering

AWS Glue will be used to clean and transform the dataset before training. This includes removing inconsistencies, handling missing values, and standardizing features.

STEP 3

Model Training Using AWS SageMaker

The core of this project is training a regression model that can predict listing prices based on historical data.

STEP 4

Model Evaluation & Optimization

After training, the model's performance will be evaluated using Root Mean Squared Error (RMSE) and other regression metrics to assess accuracy.

STEP 5

Data Visualization & Insights

Once the predictions are generated, Amazon QuickSight will be used to create a dashboard and visualize the results.

DATA SOURCES

Dataset Overview

- Source : **Kaggle**
- (https://www.kaggle.com/datasets/arianazmoudeh/airbnbopendata/data)
- Contains 102,599 Airbnb listings with details on location, price, availability, and 23 such columns.
- The dataset also includes Airbnb listings from multiple neighborhoods and regions, allowing for location-based insights.
- There are some missing values and standardized text which needs to be preprocessed

Access In AWS

- In AWS Cloud, Amazon S3 storage service is used for it's scalability and cost-efficiency.
- Directly integrates with AWS SageMaker for ML training.
- Supports QuickSight for BI visualization without needing databases.

EXPECTED OUTCOMES

- Predicting fair and competitive prices can enhance customer satisfaction by balancing affordability and profitability.
- Insights into which variables (e.g., location, room type, availability) have the most significant impact on price.
- A fully automated workflow using AWS services, ensuring efficient data processing, model training, and batch predictions.
- O4 Dashboards in Amazon QuickSight will display pricing trends
- Using AWS services like SageMaker and Glue to ensure seamless processing and analysis of the Airbnb dataset.

ARCHITECTURE

PART II Implementation

S3 Buckets

Image 1

Contains the project crawler

Image 2

Dataset stored in S3 Bucket

AWS Glue

Results → S3

AWS Sagemaker Al-Canvas

Add more text

Resits of Model Trained

Select Model

Build Model

Model Evaluation & Insights

Predict Model

AWS Quicksight Visualizations

Impact of Cancellation Policies on Review Ratings

Distribution of Property Availability by Neighborhood Group

Average Review Rating by Neighborhood Group

REFERENCES

O1	https://www.kaggle.com/datasets/arianazmoudeh/airbnb opendata/code
02	Prajapati Pradip, & Prof. Monali Suthar. (2022). A Survey On Price Prediction Model for Airbnb listing using Machine Learning. International Journal of Scientific Research in Science, Engineering and Technology, 167– 171.
03	Case Study of Airbnb using AWS Cloud. (n.d.). Www.linkedin.com. https://www.linkedin.com/pulse/case-study-airbnb- using-aws-cloud-prashant-singh/
04	AWS. (2019). Airbnb Case Study – Amazon Web Services (AWS). Amazon Web Services, Inc. https://aws.amazon.com/solutions/case-studies/airbnb-case-study/
05	Amazon. (2024). ML on AWS – Maximize Outcomes with Machine Learning and AI – AWS. Amazon Web Services, Inc. https://aws.amazon.com/ai/machine-learning/
06	Pouya Rezazadeh Kalehbasti, Liubov Nikolenko, & Rezaei, H. (2019, July 29). Airbnb Price Prediction Using Machine Learning and Sentiment Analysis. https://doi.org/10.48550/arXiv.1907.12665

GITHUB REPO

https://github.com/Aakash2112/Airbnb-Rental-Price-Prediction-with-AWS.git