UNIVERSIDAD DE MARGARITA

CARRERA: INGIENERIA. ASIGNATURA MATEMATICA V CODIGO MAV0604380

PROFESOR: RAUL A ORTUÑO A

GUÍA DE MATEMATICA V TRIMESTRE

REPASO: Coordenadas polares

Formula: $x = r \cos \theta$, $y = r \sin \theta$, $r^2 = x^2 + y^2$, $t = \frac{y}{2}$

PARTE 1:

A.) Convertir en coordenada polar las siguientes coordenadas rectangulares:

- 1.) (-2,5)

- 2.) $\left(-3, -7\right)$ 3.) (5,8) 4.) (6,9) 5.) $\left(-\frac{2}{3}, \frac{4}{5}\right)$ 6.) $\left(\frac{5}{2}, -\frac{6}{8}\right)$ 7.) 1.) $\left(2, \frac{5}{7}\right)$
- B.) Convertir en coordenadas rectangulares las siguientes coordenadas polares:

- 1.) $(2,35^{\circ})$ 2.) $(7,128^{\circ})$ 3.) $(\sqrt{5},230^{\circ})$ 5.) $(\sqrt{2},\frac{3\pi}{4})$ 6.) $(-1,\frac{2\pi}{3})$ 7.) $(-7,-\frac{\pi}{3})$

PARTE 2:

A.) Determine una ecuación polar cuya gráfica sea igual a la de la ecuación cartesiana indicada:

- 1.) y = 5 2.) x + 1 = 0 3.) y = 7x 4.) 3x + 8y + 6 = 0 5.) $y^2 = -4x + 4$ 6.) $x^2 12y 36 = 0$ 7.) $x^2 + y^2 = 36$ 8.) $x^2 y^2 = 25$

9.) $x^2 + y^2 + x = \sqrt{x^2 + y^2}$

 $10 \odot x^3 + y^3 - xy = 0$

B.) Determine una ecuación cartesiana cuya gráfica sea igual a la de la ecuación polar indicada:

- 1.) $r = \sec \theta$ 2.) $r \cos \theta = -4$ 3.) $r = 6 \sec 2\theta$ 4.) $2r = \frac{1}{12}\theta$ 5.) $r^2 = 4 \sec 2\theta$ 6.) $r^2 \cos \theta = 16$ 7.) $r + 5 \sec \theta = 0$ 8.) $r = 2 \cos \theta$
- C.) Trace la gráfica de la ecuación polar indicada:

- 1.) $r = \theta$ 2.) $r = 3 3 \operatorname{sen} \theta$ 3.) $r = 3 + 2 \operatorname{sen} \theta$ 4.) $2r = 1 \cos \theta$ 5.) $r = 6 \cos \theta$ 6.) $r = 4 \cos \theta$ 7.) $r = -2 \cos \theta$ 8.) $r = 5 \operatorname{sen} \theta$

REPASO: Números complejos

Si a + bi y c + di son números complejos, entonces se cumple:

- 1.) a + bi + c + di = (a+b) + (c + d)i 2.) (a+bi)(c+di) = (ac-bd)+(ad+bc)i
- 3.) $\frac{a+bi}{c+di} = \frac{(a+bi)}{(c+di)} \cdot \frac{(c-di)}{(c-di)}$

4.) $a + bi = r(\cos \theta + i \operatorname{sen} \theta) = r \operatorname{cis} \theta = r e^{i\theta}$

Si $z_1 = r_1 cis \propto y z_2 = r_2 cis \beta$, entonces:

- 1.) $z_1.z_2 = r_1.r_2 cis(+)$
- 2.) $\frac{z_1}{z_2} = \frac{r_1}{r_2} = cis(\alpha \beta)$
- 3.) $z_1^n = r_1^n cis(n. \infty)$ (Moivre) 4.) $\sqrt[n]{z_1} = \sqrt[n]{r_1} cis(\frac{\alpha + 2\pi k}{n})$, donde k es 0,1,, (n-1)

PARTE 3:

A.) Sean los números complejos $z_1 = 4 - 3i$, $z_2 = 5 + 2i$, $z_3 = -1 - 2i$ y $z_4 = -5 + 3i$. Determinar:

1.)
$$z_1 + z_2$$

2.)
$$z_3 + z_4$$

3.)
$$2z_2 - 3z_3$$

1.)
$$z_1 + z_2$$
 2.) $z_3 + z_4$ 3.) $2z_2 - 3z_3$ 4.) $5z_1 - 4z_4$ 5.) $z_1 \cdot z_3$

5.)
$$z_1.z_3$$

6.)
$$z_2$$
. z_4

7.)
$$(z_1 + 2z_3).z_4$$

8.)
$$\frac{z_3}{z_2}$$

9.)
$$\frac{z_4}{z_1}$$

6.)
$$z_2. z_4$$
 7.) $(z_1 + 2z_3). z_4$ 8.) $\frac{z_3}{z_2}$ 9.) $\frac{z_4}{z_1}$ 10.) $\frac{z_2 + 3z_1}{3z_4 - z_3}$

B.) Expresar los números complejos de la parte A.) en forma polar y determinar:

1.
$$z_1^{4}$$

2.)
$$z_2^3$$

3.)
$$z_3^{5}$$

$$4.) Z_{i}$$

5.
$$z_1$$
. z_2)

1.
$$z_1^{4}$$
) 2.) z_2^{3} 3.) z_3^{5} 4.) z_4^{3} 5. $z_1.z_2$) 6.) $z_3.z_4$ 7.) $z_1.(2z_3)(-z_4)$ 8.) $\frac{z_2}{z_3}$ 9.) $\frac{z_4}{z_1}$ 10.) $\sqrt[5]{z_3}$ 11.) $\sqrt[7]{z_1}$

8.)
$$\frac{z_2}{z_3}$$

9.)
$$\frac{z_4}{z_1}$$

10.)
$$\sqrt[5]{z_3}$$

11.)
$$\sqrt[7]{z_1}$$

C.) Determinar las derivadas de las siguientes funciones complejas:

1.)
$$w = (1+4i)z^2 - 3z -$$

1.)
$$w = (1+4i)z^2 - 3z - 2$$
 2.) $w = (2z+3i)(z-i)$ 3.) $w = \frac{(2z-i)}{(2+2i)}$

3.)
$$w = \frac{(2z-i)}{(2+2i)}$$

4.)
$$w = (2iz + 1)^2$$

5.)
$$w = \frac{1}{(iz-1)^3}$$

6.)
$$w = (1+4i)z^2 - 3z - 2$$

PARTE 4:

De las siguientes funciones de variables complejas determine las derivadas: A.) $\frac{\delta w}{\delta r}$ B.) $\frac{\delta w}{\delta r}$

C.)
$$\frac{\delta^2 w}{\delta x^2}$$
 D.) $\frac{\delta^2 w}{\delta y^2}$ E.) $\frac{\delta^2 w}{\delta x \delta y}$ F.) C.) $\frac{\delta^2 w}{\delta y \delta x}$

$$1.) w = e^{xy}[\cos(xy) + ixy]$$

1.)
$$w = e^{xy} [\cos(xy) + ixy]$$
 2.) $w = e^{xy} [\cos(x^2 + 3y - 5) + i\sin(x^2 + y^2)]$ 3.- $w = e^{(xy + xy^2)}$ 4.) $w = e^{(xy + xy^2)}$ 5.) $w = e^{z}$ 6.) $w = e^{z^2}$ 7.) $w = e^{z^3}$

$$3.- w = e^{(xy-xi)}$$

4.)
$$w = e^{(xy+xy^2i)}$$

$$5.) w = e^z$$

6.)
$$w = e^{z^2}$$
 7.) $w = e^{z^3}$

NOTA: Ecuación Cauchy – Reimann: $\frac{\delta u}{\delta x} = \frac{\delta v}{\delta y}$, $\frac{\delta u}{\delta y} = -\frac{\delta v}{\delta x}$.

Si las derivadas parciales son continuas en R, entonces la función es analítica si cumple con la ecuación de Cauchy - Reimann.

Una función es armónica si se cumple: $\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0$; $\frac{\delta^2 v}{\delta x^2} + \frac{\delta^2 v}{\delta y^2} = 0$

PARTE 4:

A.) Determinar si la siguientes funciones complejas son analítica

1.)
$$w = e^z$$

2.)
$$w = sen(z)$$

3.)
$$w = 3z^2 + 5z + 3 - i$$
 4.) $w = \sqrt{z}$

4.)
$$w = \sqrt{z}$$

5.)
$$w = e^{z^2}$$

$$6.) w = \cos(2z)$$

5.)
$$w = e^{z^2}$$
 6.) $w = \cos(2z)$ 7.) $w = sen(2z)$

8.)
$$w = z^2$$

B.) Determine si las siguientes funciones son armónicas

1.)
$$u = x^2 - y^2 - 2xy - 2x + 3y$$

1.)
$$u = x^2 - y^2 - 2xy - 2x + 3y$$
 2.) $u = 3x^2y + 2x^2 - y^3 - 2y^2$ 3.) $u = 2xy + 3y^2 - 2y^3$ 4.) $u = xe^x cosy - ye^z seny$ 5.) $u = e^{-2xy} sen(x^2 - y^2)$

4.)
$$u = xe^x cosy - ye^z seny$$

5.)
$$u = e^{-2xy} sen(x^2 - y^2)$$

7.)
$$w = [z + (z^2 + 1)^2]^3$$

8.)
$$w = 3sen^2(\frac{z}{2})$$

9.)
$$w = tg^3(z^2 - 3z + 4i)$$

PARTE 5:

1: Determinar el orden de la ecuación diferencia y determine si es lineal o no lineal:

1.)
$$(1-x)y'' - 4xy + 5y = \cos x$$

2.)
$$x \frac{d^3y}{dx^3} - \left(\frac{dy}{dx}\right)^4 + y = 0$$

3.)
$$t^5 y^{(4)} - t^3 y^{!!} + 6y = 0$$

4.)
$$\frac{d^2u}{dr^2} + \frac{du}{dr} + u = \cos(r + u)$$

$$5.) \frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

6.)
$$\frac{d^2R}{dr^2} = -\frac{k}{R^2}$$

7.)
$$(sen\theta)y^{\parallel} - (\cos\theta)y^{\parallel} = 2$$

8.)
$$x''' - \left(1 - \frac{(x')^2}{3}\right) + x = 0$$

PARTE 6:

Compruebe que la ecuación indicada es una solución de la ecuación diferencial dada. Suponga un intervalo I de definición adecuada para cada solución

1.)
$$2y^! + y = 0$$
; $y = e^{-x/2}$

2.)
$$\frac{dy}{dt} + 20y = 0$$
; $y = \frac{6}{5} - \frac{6}{5}e^{-20t}$

3.)
$$y'' + y = 0$$
; $y = 6 sen \alpha x$;

4.)
$$x^2y^{!!} + 4xy^{!} + 2y = 0$$
; $y = x^a$

5.)
$$y'' + y' - 2y = 6x$$
; $y = ax + b$

6,)
$$y'' - 3y' + 2y = 0$$
; $y = ae^x + be^{2x}$

7.)
$$y! = \sqrt{\frac{y}{x}}; \quad y = (\sqrt{x} - 3)^2 en (9, \infty)$$

8.)
$$y! - \frac{1}{x}y = 1$$
; $y = x Lnx en(0, \infty)$

9.)
$$xy^{!!} + 2y^{!} = 0$$
; $y = c_1 + c_2 x^{-1} \text{ si } x \neq \neq 0$

10.)
$$y - xy! - \frac{(y!)^2}{2} = 0$$
; $y = 2x + 2$

11.)
$$y - xy! - \frac{(y!)^2}{2} = 0; \quad y = -\frac{x^2}{2}$$

12.)
$$y! = \frac{x}{y}$$
; $x^2 + y^2 = c_1$

13.)
$$y'' - 6y' + 13y = 0$$
; $y = e^{2x} \cos 2x$

14.)
$$y'' + y = tgx$$
; $y = -(cosx)Ln(secx + tgx)$

15.)
$$(y-x)y^! = y-x+8; \ y=x+4\sqrt{x+2}$$

16.)
$$y^! = 25 + y^2$$
; $y = 5tg5x$

17.)
$$y' = 2xy$$
; $y = \frac{1}{(4-x^2)}$

18.)
$$2y! = y^3 cosx$$
; $y = (1 - senx)^{-1/2}$

19.)
$$\frac{dx}{dt} = (x-1)(1-2x); Ln\left(\frac{2x-1}{x-1}\right) = t$$

20.)
$$2xydx + (x^2 - y)dy = 0$$
: $2x^2y + y^2 = 1$

21.)
$$\frac{dp}{dt} = p(1-p); \ p = \frac{c_1 e^t}{1+c_1 e^t}$$

$$22\frac{dy}{dx} + 2xy = 1; \ y = e^{-x^2} \int e^{t^2} dt + c_1 e^{-x^2}$$

23.)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$$
; $y = c_1e^{2x} + c_2xe^{2x}$

25.)
$$x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 12x^2$$

 $y = c_1 x^{-1} + c_2 x + c_3 Lnx + 4x^2$

PARTE 7: Determine el valor de m para que la función y sea una solución de la ecuación diferencial dada.

1.)
$$y^! + 2y = 0$$
; $y = e^{mx}$

2.)
$$5y^! = 2y$$
; $y = e^{mx}$

3.)
$$y'' - 5y' + 6y = 0$$
; $y = e^{mx}$

4.)
$$2y'' + 7y' - 4y = 0$$
; $y = e^{mx}$

Pag.3

5.)
$$xy^{!!} + 2y^{!}$$
; $y = x^m$

7.)
$$3xy^! + 5y = 0$$
; $y = m$

9.)
$$(y-1)y! = 1$$
; $y = m$

6.)
$$x^2y^{\parallel} - 7xy^{\parallel} + 15y = 0$$
; $y = x^m$

8.)
$$y' = y^2 + 2y - 3$$
; $y = m$

10.)
$$y'' + 4y' + 6y = 10$$
; $y = m$

PARTE 8: Compruebe que el par de funciones son soluciones de la ecuaciones diferenciales:

$$x = e^{-2t} + 3e^{6t}; y = -e^{-2t} + 5e^{6t}$$
. $x = cos2t + sen2t + \frac{1}{5}e^{t}; y = -cos2t - sen2t - \frac{1}{5}e^{t}$

1.)
$$\frac{dy}{dt} = x + 3y$$

2.)
$$\frac{dy}{dt} = 5x + 3y$$

1.)
$$\frac{dy}{dt} = x + 3y$$
 2.) $\frac{dy}{dt} = 5x + 3y$ 3.) $\frac{d^{x2}}{dt^2} = 4y + e^t$ 4.) $\frac{d^2y}{dt^2} = 4y - e^t$

$$4.) \, \frac{d^2 y}{dt^2} = 4y - e^t$$

NOTA: Ecuación separable:

Una ecuación diferencial de primer orden de la forma $\frac{\delta y}{\delta x} = g(x) \cdot h(y)$ se dice que es separable que tiene variable separable.

PARTE 9: Resolver la ecuación diferencial dada por separación de variable:

1.)
$$2xdx + ydy = 0$$
 2.) $x^3dx + ydy = 0$ 3.) $x^2dx + \sqrt[3]{y^2} dy$

4.)
$$ydx + xdy = 0$$
 5.) $(y + 1)dx - x^3dy = 0$

6.)
$$(1-2y)dx + (4-x^2)dy = 0$$
 7.) $(y^2-2)dx + (2x^2-x-3)dy = 0$

8.)
$$(y^2 - 2)dx + (2x^2 - x - 3)dy = 0$$

9.) $y^2dx - x^2dy = 0$

10.)
$$ctg \propto dp + pd \propto 0$$
 11.) $tg ydx + (1 - x^2)dy = 0$ 12.) $ctgydx + (1 + e^{-x})y = 0$

13.)
$$\frac{dy}{dx} = sen(5x)$$
 14.) $\frac{dy}{dx} = (x+1)^2$ 15.) $dx + e^{3x}dy = 0$

16.)
$$dy - (y-1)^2 dx = 0$$
 17.) $x \frac{dy}{dx} = 4y$ 18.) $\frac{dy}{dx} + 2xy^2 = 0$ 19.) $(1+y^2)dx - (x+x^2)dy = 0$ 20.) $\sec^2 x dy + \csc y dx = 0$

19.)
$$(1 + y^2)dx - (x + x^2)dy = 0$$
 20.) $\sec^2 x dy + \csc y dx = 0$

21.)
$$(e^{y} + 1)^{2}e^{-y}dx + (e^{x} + 1)^{3}e^{-x}dy = 0$$
 22.) $(y + \sqrt{y})dx - (x\sqrt{x})dy = 0$

23.)
$$dx - 4(x^2 + 1)dy = 0$$
 23.)
$$24.) \frac{1}{x^2 - 5x + 6} dx + e^{(y+5)} dy = 0$$

25.)
$$\frac{dy}{dx} = e^{(3x+2)}$$
 26.) $e^x y \frac{dy}{dx} = e^{-y} + e^{(-2x-y)}$ 27.) $y Ln x \frac{dy}{dx} = \left(\frac{y+1}{x}\right)^2$

$$2829 \frac{dy}{dx} = \left(\frac{2y+3}{4x+5}\right)^2$$
 11.) $\csc y \, dx + \sec^2 x \, dy = 30$.) $\sec 3x \, dx + 2y \cos^3 3x \, dy = 0$

31.)
$$(e^y + 1)^2 e^{-y} dx + (e^x + 1)^3 e^{-y} dy = 0$$
 32.) $x\sqrt{(1+y^2)} dx = y\sqrt{(1+x^2)} dy$

33.)
$$\frac{dS}{dt} = KS$$
 34.) $\frac{dQ}{dt} = K(Q - 70)$ 35.) $\frac{dP}{dt} = P - P^2$

33.)
$$\frac{dS}{dr} = KS$$
 34.) $\frac{dQ}{dt} = K(Q - 70)$ 35.) $\frac{dP}{dt} = P - P^2$ 36.) $\frac{dN}{dt} + N = Nte^{(t+2)}$ 37.) $\frac{dy}{dx} = \frac{xy + 3x - y - 3}{xy - 2x + 4y - 8}$ 38.) $\frac{dy}{dx} = \frac{xy + 2y - x - 2}{xy - 3y + x - 3}$

39.)
$$xy^4dx + (y^2 + 2)e^{-3x}dy = 0$$

40.) $e^y sen(2x)dx + (e^{2y} - y)cosxdy = 0$
41.) $(4y + yx^2)dx - (2x - xy^2)dy = 0$
42.) $(2y + x^2)dy + (3x + xy^2)dy = 0$

41.)
$$(4y + yx^2)dx - (2x - xy^2)dy = 0$$
 42.) $(2y + x^2)dy + (3x + xy^2)dy = 0$

43.)
$$ydx + (x^3y^2 + x^3)dy = 0$$
 44.) $dx - (8xy + 3y)dy = 0$

45.)
$$e^{r}(3 + \cos 2\theta)dr - \sin \theta(1 + e^{2r})d\theta$$
 46.) $x^{2}(y+1)dx + y^{2}(x-1)dy = 0$

47.)
$$xydx + (1 + x^2)dy = 0$$
 48.) $(2xy^4 + 2xy^2)dx + (x^2y^3 + x^2y)dy = 0$

49.)
$$(1 + x^2 + y^2 + x^2y^2)dy - y^2dx = 0$$
 50.) $(x - y + xy - 1)dx + xydy = 0$

$$51.)(xy + 3x - y - 3)dx - (xy - 2x + 4y - 8)dy = 0$$

PARTE 10: Determine una solución explicita de las ecuaciones diferenciales con valores iniciales.

1.)
$$\frac{dy}{dx} = e^{-x}$$
 $y(3) = 5$

$$2.)\frac{dy}{dx} = x\sqrt{y} \qquad y(0) = 0$$

3.)
$$\frac{dx}{dt} = 4(x^2 + 1)$$
 $x(\frac{\pi}{4}) = 1$

4.)
$$\frac{dy}{dx} = \frac{y^2 - 1}{x^2 - 1}$$
 $y(2) = 2$

5.)
$$x^2 \frac{dy}{dx} = y - xy$$
 $y(-1) = -1$

6.)
$$\frac{dy}{dx} + 2y = 1$$
 $y(0) = \frac{5}{2}$

NOTA: Ecuación lineal:

Una ecuación diferencial de primer orden de la forma $a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$ se dice que es una ecuación lineal en la variable y.

La ecuación diferencial lineal en la variable y es homogénea cuando g(x) = 0

Forma estándar de una ecuación lineal de variable "y" $\frac{dy}{dx} + P(x)y = f(x)$ de donde P(x) =

$$\frac{a_0(x)}{a_1(x)}$$
 y $f(x) = \frac{g(x)}{a_1(x)}$

NOTA: Solución de una ecuación lineal de primer orden

- 1.) Ponga la ecuación lineal de la forma estándar
- 2.) Identifique de la identidad de la forma estánda P(x) y después determine el factor de integrante $e^{\int P(x)dx}$
- 3.) Multiplique la forma estándar de la ecuación por el factor integrante. El lado izquierdo de la ecuación resultante es automáticamente la derivada del factor integrante "y" 👡
- 4.) Integre ambos lados de esta última ecuación.

PARTE 11: Determine la solución general de las siguientes ecuaciones diferenciales:

1.)
$$\frac{dy}{dx} - 3y = 0$$
 2.) $\frac{dy}{dx} = 5y$

$$2.)\,\frac{dy}{dx} = 5y$$

3.)
$$\frac{dy}{dx} + 2y = 0$$

4.)
$$y^! + 100y = 0$$
 5.) $x^! - 10x = 0$

$$5.) x^! - 10x = 0$$

6.)
$$2z^! - xz = 0$$

$$7.) 4y^{4} - 10y = 0$$

7.)
$$4y! - 10y = 0$$
 8.) $(50 - t)s! + 4s = 0$

9.)
$$(10 + 3x)y^! + 4y = 0$$

10.)
$$x^{!} + 2xy = y$$
 11.) $\frac{dy}{dx} = \frac{1}{e^{y} - x}$

$$(11.) \frac{1}{dx} = \frac{1}{e^y - x}$$

$$12.)\frac{dy}{dx} + y = e^x$$

13.)
$$4\frac{dy}{dx} + 12y = 4$$
 14.) $y! + 3x^2y = x^2$

$$14.) y + 3x y - x$$

15.)
$$y^! + 2xy = x^3$$

16.)
$$x^2y^! + xy = 1$$

17.)
$$y^! = 2y + x^2 + 5$$

18.)
$$x \frac{dy}{dx} - 4y = x^6 e^x$$

19.)
$$x^2y^! + 3xy = \frac{senx}{x}$$

20.)
$$cosx y^! + ysenx = xcosxsen2x$$

$$21.) (x^2 + 1) \frac{dy}{dx} + 3xy = 6x$$

24.)
$$(y-1)x^! - x = y(y-1)^2$$

 $(22.)xy^{!} + (2x - 3y) = 4x^{4}$

23.)
$$y^{1}cosx + ysenx - 1 = 0$$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = 0$$

25.)
$$(x^2 - 9)\frac{dy}{dx} + xy = 0$$
 26.) $x\frac{dy}{dx} - y = x^2 senx$

$$27.) \ x \frac{dy}{dx} + 2y = 3$$

28.)
$$x \frac{dy}{dx} + 4y = x^3 - x$$
 29.) $(1+x) \frac{dy}{dx} - xy = x + x^2$ 30.) $x^2 y^! + xy = x + x^2$ 31.) $xe^x y^! + (x+1)e^x y = 1$ 32.) $y^2 dx + (3xy - 4y^3) dy = 0$ 33.) $xy^! + (1+x)y = e^{-x} sen 2x$ 34.) $ydx - 4(x+y^6) dy = 0$ Pag. 5 35.) $ydx = (y e^y - 2x) dy$ 36.) $\cos x \frac{dy}{dx} + (sen x)y = 1$ 37.) $\cos^2 x sen x \frac{dy}{dx} + (cos^3 x)y = 1$ 38.) $(x+1) \frac{dy}{dx} + (x+2)y = 2xe^{-x}$ 39.) $(x+2)^2 \frac{dy}{dx} = 5 - 8y - 4xy$ 40.) $\frac{dr}{d\theta} + r sec\theta = cos\theta$ 41.) $\frac{dP}{dt} + 2tP = P + 4t - 2$ 42.) $x \frac{dy}{dx} + (3x+1)y = e^{-3x}$

PARTE 12: Resolver las siguiente ecuaciones diferenciales con valores iniciales.

NOTA: Se puede utilizar la identidad básica $b^{\log_b N} = N, N > 0$

NOTA: Ecuación exacta: Una expresión diferencial $M_{(x,y)}dx + N_{(x,y)}dy$ es una diferencial exacta en una región R del plano xy si ésta corresponde a la diferencial de alguna función $f_{(x,y)}$ en RUna ecuación diferencial del primer orden de la forma $M_{(x,y)}dx + N_{(x,y)}dy = 0$ Se dice que es una ecuación exacta si la expresión del lado izquierdo es una diferencial exacta.

TEOREMA: Sea $M_{(x,y)}$ y $N_{(x,y)}$ continuas y que tienen primera derivadas parciales continuasen una región rectangular R definida a<x
b , c<y<d . Entonces la condición necesaria y suficiente para que $M_{(x,y)}dx+N_{(x,y)}dy$ sea una diferencial exacta es $\frac{\delta M}{\delta y}=\frac{\delta N}{\delta x}$

NOTA: Tomado del libro Zill, Dennis - Culler Michael. "Ecuaciones diferenciales. Editorial CENGACE Learning. México Séptima Edición.

PARTE 13: Determinar si las siguientes ecuaciones diferencial son exacta, en caso afirmativo, determinar la solución

1.)
$$ydx + xdy = 0$$

2.) $(x - y)dx + (y - x)dy = 0$
3.) $(2x - 1)dx + (3y + 7)dy = 0$
4.) $(2x + y)dx - (x + 6y)dy = 0$

5.)
$$(5x + 4y) dx + (4x - 8y^3) dy = 0$$
6.) $(5x + 4y) dx + (2x - 8y^3) dy = 0$
7.) $x^2y^3 dx + x^3y^2 dy = 0$
8.) $(3x^2 - 3xy^4) dx + (y^2 - 6x^2y^3) dy = 0$
9.) $2xydx + (x^2 - 1) dy = 0$
10.) $(1 + \cos(x + y)] dx + [\cos(x + y)] dy = 0$
11.) $(2xy^2 - 3) dx + (2xy - \frac{x^2}{2} + seny) dy = 0$
12.) $(2xy^2 - 3) dx + (2xy - \frac{x^2}{2} + seny) dy = 0$
13.) $(x^2 - y^2) dx + (x^2 - 2xy) dy = 0$
14.) $(x^2 + x) dx + (2xy - \frac{x^2}{2} + seny) dy = 0$
15.) $(e^x - 2xy) dx + y(e^x - y) dy = 0$
16.) $(2y - \frac{1}{y} + \cos 3x) \frac{dy}{dx} + \frac{y}{x^2} - 4x^3 + 3y sen 3x = 0$
17.) $(1 + \ln x + \frac{y}{x}) dx = (1 - \ln x) dy$
18.) $(x^3 + y^2) dx + 3xy^2 dy = 0$
19.) $(x - y^3 + y^2 senx) dx = (3xy^2 + 2y cosx) dy$
20.) $(y \ln y - e^{-xy}) dx + (\frac{1}{y} + x \ln y) dy = 0$
21.) $(3x^2 + e^y) dx + (x^3 + xe^y - 2y) dy$
22.) $x \frac{dy}{dx} = 2xe^{-x} - y + 6x^2$
23.) $(1 - \frac{3}{y} + x) \frac{dy}{dx} + y = \frac{3}{x} - 1$
24.) $(x^2y^3 - \frac{1}{1 + 9x^2}) \frac{dy}{dx} + x^3y^2 = 0$
25.) $(5y - 2x)y^4 - 2y = 0$
26.) $(\frac{1}{t} + \frac{1}{t^2} - \frac{y}{t^2 + y^2}) dx + (ye^y + \frac{t}{t^2 + y^2}) dy$
28.) $(4t^3y - 15t^2 - y) dt + (t^4 + 3y^2 - t) dy = 0$
29.) $(tg x - sen x sen y) dx + \cos x \cos y dy = 0$
30.) $(x + y)^2 dx + (2xy + x^2 - 1) dy = 0$, $y(1) = 1$
31.) $(e^x + y) dx + (2xy + x^2 - 1) dy = 0$, $y(1) = 1$
32.) $(4y \pm 2t - 5) dt + (6y + 4t - 1) dy = 0$, $y(1) = 2$
33.) $(\frac{3y^2 - t^2}{y^5}) \frac{dy}{dt} + \frac{1}{2y^4} = 0$, $y(1) = 1$
34.) $(y^2 \cos x - 2x^2y - 2x) dx + (2y sen x - x^3 + \ln y) dy = 0$, $y(0) = e$
35.) $(\frac{1}{1+y^2} + \cos x - 2xy) \frac{dy}{dx} = y(y + sen x)$, $y(0) = 1$

PARTE 14: En los siguientes problemas determine el valor de k para el que la ecuación diferencial es exacta.

1.)
$$(y^3 + kxy^4 - 2x)dx + (3xy^2 + 20x^2y^3)dy = 0$$

2.) $(6xy^3 + \cos y)dx + (2kx^2y^2 - x \sin y)dy = 0$

PARTE15: Compruebe que la ecuación diferencial dada no es exacta. Multiplique la ecuación diferencial dada por el factor integrante indicado $\mu(x,y)$ y compruebe que la nueva ecuación es exacta y resuelva.

1.)
$$(-xy \operatorname{sen} x + 2y \cos x) dx + 2x \cos x dy = 0$$
, $\mu(x, y) = xy$
2.) $(x^2 + 2xy - y^2) dx + (y^2 + 2xy - x^2) dy = 0$, $\mu(x, y) = \frac{1}{(x+y)^2}$

PARTE16: Resuelva las siguientes ecuaciones diferenciales con un factor integrante adecuado

1.)
$$(2y^2 + 3x)dx + 2xydy = 0$$

2.)
$$y(x + y + 1)dx + (x + 2y)dy = 0$$

3.)
$$6xydx + (4y + 9x^2)dy = 0$$

4.)
$$\cos x dx + \left(1 + \frac{2}{y}\right) senx dy = 0$$

5.)
$$(y^2 + xy^3)dx + (5y^2 - xy + y^3seny)dy = 0$$
 6.) $(10 - 6y + e^{-3x})dx - 2ydy = 0$

7.)
$$(x^2 + y^2 - 5)dx = (y + xy)dy$$
, $y(0) = 1$
8.) $xdx + (x^2y + 4y)dy = 0$, $y(4) = 0$

8.)
$$xdx + (x^2y + 4y)dy = 0$$
, $y(4) = 0$

PARTE 17: Resuelva las siguientes ecuaciones diferenciales homogéneas usando las sustituciones adecuadas.

$$1.) (x - y)dx + xdy = 0$$

$$2.) (x + y)dx + xdy = 0$$

3.)
$$xdx + (y - 2x)dy = 0$$

$$4.) ydx = 2(x + y)dy$$

5.)
$$(y^2 + xy)dx - x^2dy = 0$$

1.)
$$(x - y)dx + xdy = 0$$
 2.) $(x + y)dx + xdy = 0$ 3.) $xdx + (y - 2x)dy = 0$ 4.) $ydx = 2(x + y)dy$ 5.) $(y^2 + xy)dx - x^2dy = 0$ 6.) $(y^2 + xy)dx + x^2dy = 0$

$$7.) \frac{dy}{dx} = \frac{y-x}{y+x}$$

$$8.) \frac{dy}{dx} = \frac{y+3y}{3x+y}$$

$$9.) -ydx + \left(x + \sqrt{xy} \, dy = 0\right)$$

10.)
$$x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}$$

11.)
$$xy^2 \frac{dy}{dx} = y^3 - x^3, y(1) = 2$$

12.)
$$(x^2 + 2y^2) \frac{dy}{dx} = xy, y(-1) = 1$$

12.)
$$(x^2 + 2y^2) \frac{dy}{dx} = xy, y(-1) = 1$$

13.) $(x + ye^{y/x}) dx - xe^{y/x} dy = 0, y(1) = 1$

14.)
$$ydx + x(Lnx - Lny - 1)dy = 0$$
, $y(1) = e$ 15.)

PARTE 18: Resuelva las siguientes ecuaciones diferenciales de Bernoulli usando una sustitución adecuada.

1.)
$$x \frac{dy}{dx} + y = \frac{1}{y^2}$$

$$2.)\frac{dy}{dx} - y = e^x y^2$$

1.)
$$x \frac{dy}{dx} + y = \frac{1}{y^2}$$
 2.) $\frac{dy}{dx} - y = e^x y^2$ 3.) $\frac{dy}{dx} = y(xy^3 - 1)$

4.)
$$x \frac{dy}{dx} - (1+x)y = xy^2$$

5.)
$$t^2 \frac{dy}{dt} + y^2 = ty$$

4.)
$$x \frac{dy}{dx} - (1+x)y = xy^2$$
 5.) $t^2 \frac{dy}{dt} + y^2 = ty$ 6.) $3(1+t^2) \frac{dy}{dt} = 2ty(y^3 - 1)$

7.)
$$x^2 \frac{dy}{dx} - 2xy = 3y^4, y(1) = \frac{1}{2}$$

8.)
$$\sqrt{y} \frac{dy}{dx} + \sqrt{y^3 = 1}$$
, $y(0) = 4$

PARTE 19: Resuelva las siguientes ecuaciones diferenciales usando una sustitución adecuada reduciéndola a separación de variables

1.)
$$\frac{dy}{dx} = (x + y + 1)^2$$
 2.) $\frac{dy}{dx} = \frac{1 - x - y}{x + y}$

$$2.) \frac{dy}{dx} = \frac{1-x-y}{x+y}$$

$$3.) \frac{dy}{dx} = tg^2(x+y)$$

4.)
$$\frac{dy}{dx} = sen(x + y)$$
 5.) $\frac{dy}{dx} = 1 + e^{y-x+5}$

5.)
$$\frac{dy}{dx} = 1 + e^{y-x+5}$$

6.)
$$\frac{dy}{dx} = \cos(x + y), \ y(0) = \frac{\pi}{4}$$

7.)
$$\frac{dy}{dx} = \frac{3x+2y}{3x+2y+2}$$
, $y(-1) = -1$

Transformada de Laplace: Definición

Sea f una función definida para t \geq 0. Entonces se dice que la integral $L\{f(t)\}=\int_0^\infty e^{-st}f(t)dt$ es la transformada de Laplace de f, siempre que la integral converja.

PARTE 20: Determinar $L\{f(t)\}$ transformada de Laplace aplicando la definición

1.)
$$f(t) = 1$$
 2.) $f(t) = t$ 3.) $f(t) = e^{-3t}$ 4.) $f(t) = sen(2t)$ 5.) $f(t) = e^{t+7}$ 6.) $f(t) = e^{-2t+5}$ 7.) $f(t) = te^{4t}$ 8.) $f(t) = t^2e^{-2t}$ 9.) $f(t) = e^{-t}sent$ Pag.8

10.) $f(t) = e^t cost$ 13.) $f(t) = 2t^4$ 16.) $f(t) = t^5$ 17.) $f(t) = 4t - 10$ 18.) $f(t) = 7t + 3$ 19.) $f(t) = t^2 + 6t - 3$ 20.) $f(t) = -4t^2 + 16t + 9$ 21.) $f(t) = (t + 1)^2$ 22.) $f(t) = (2t - 1)^3$ 23.) $f(t) = (1 + e^{2t})^2$ 24.) $f(t) = (e^t - e^{-t})^2$ 25.) $f(t) = t^2 - e^{-9t} + 5$ 26.) $f(t) = sen(4t + 5)$ 30.) $f(t) = \begin{cases} -1, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}$ 31.) $f(t) = \begin{cases} 4, & 0 \le t < 2 \\ 1, & t \ge 2 \end{cases}$ 32.) $f(t) = \begin{cases} sent, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}$ 33.) $f(t) = \begin{cases} 2t + 1, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}$ 34.) $f(t) = \begin{cases} sent, & 0 \le t < \pi \\ 1, & t \ge \pi \end{cases}$ 35.) $f(t) = \begin{cases} 0, & 0 \le t < \frac{\pi}{2} \\ cost, & t \ge \frac{\pi}{2} \end{cases}$

Transformadas inversas:

Si F(s) representa la transformada de Laplace de una función f(t), es decir $L\{f(t)\} = F(s)$, se dice entonces que f(t) es la transformada de Laplace inversa de F(s) y se escribe f(t) = $L^{-1}\{F(s)\}$

Algunas transformadas inversas

1.)
$$1 = L^{-1}\left\{\frac{1}{s}\right\}$$
 2.) $t^{n} = L^{-1}\left\{\frac{n!}{s^{n+1}}\right\}$, $n=1,2,3,...$ 3.) $e^{at} = L^{-1}\left\{\frac{1}{s-a}\right\}$ 4.) $sen kt = L^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}$ 5.) $cos kt = L^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}$ 6.) $sen kt = L^{-1}\left\{\frac{k}{s^{2}-k^{2}}\right\}$

PARTE 2: Evalué

PARTE 2: Evalué

1.)
$$L^{-1}\left\{\frac{1}{s^2}\right\}$$
2.) $L^{-1}\left\{\frac{1}{s^3}\right\}$
3.) $L^{-1}\left\{\frac{1}{s^2+7}\right\}$
4.) $L^{-1}\left\{\frac{1}{s^2}-\frac{48}{s^5}\right\}$
5.) $L^{-1}\left\{\left(\frac{2}{s}-\frac{1}{s^3}\right)^2\right\}$
6.) $L^{-1}\left\{\frac{(s+1)^3}{s^4}\right\}$
7.) $L^{-1}\left\{\frac{(s+2)^3}{s^3}\right\}$
8.) $L^{-1}\left\{\frac{1}{s^2}-\frac{1}{s}+\frac{1}{s-2}\right\}$
9.) $L^{-1}\left\{\frac{1}{4s+1}\right\}$
10.) $L^{-1}\left\{\frac{1}{45s-2}\right\}$
11.) $L^{-1}\left\{\frac{4s}{4s^2+1}\right\}$
12.) $L^{-1}\left\{\frac{1}{4s^2+1}\right\}$
13.) $L^{-1}\left\{\frac{2s-6}{s^2+9}\right\}$
14.) $L^{-1}\left\{\frac{s+1}{s^2+2}\right\}$
15.) $L^{-1}\left\{\frac{1}{s^2+3s}\right\}$
16.) $L^{-1}\left\{\frac{s+1}{s^2-4s}\right\}$
17.) $L^{-1}\left\{\frac{s}{s^2+2s-3}\right\}$
18.) $L^{-1}\left\{\frac{1}{s^2+s-20}\right\}$
19.) $L^{-1}\left\{\frac{0.9s}{(s-0.1)(s+0.2)}\right\}$
20.) $L^{-1}\left\{\frac{s-3}{(s-\sqrt{3})(s+\sqrt{3})}\right\}$
21.) $L^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\}$
22.) $L^{-1}\left\{\frac{s^2+1}{s(s-1)(s+1)(s-2)}\right\}$
23.) $L^{-1}\left\{\frac{s^2+6s+9}{(s-1)(s-2)(s+4)}\right\}$
24.) $L^{-1}\left\{\frac{s}{(s+2)(s^2+4)}\right\}$
25.) $L^{-1}\left\{\frac{2s-4}{(s^2+s)(s^2+1)}\right\}$
26.) $L^{-1}\left\{\frac{6s+3}{(s^4+5s^2+4)}\right\}$

Transformada de una derivada:

Si $f, f', \dots, f^{(n-1)}$ son continuas en $[0, \infty)$ y son de orden exponencial y si $f^{(n)}(t)$ es continua por tramos en $[0, \infty)$, entonces

$$\mbox{Pag. 9} \label{eq:pag.9} L\{f^n(t)\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f(0) - \cdots f^{(n-1)}(0) \ \ \mbox{donde F(s)} = L\{f^n(t)\}$$

PARTE 21: Resolver los siguientes ejercicios de transformadas de derivadas usando la transformada de Laplace

1.)
$$\frac{dy}{dx} - y = 1$$
, $y(0) = 0$
2.) $\frac{dy}{dx} + 3y = 13sen2t$, $y(0) = 6$
3.) $2\frac{dy}{dx} + y = 1$, $y(0) = -3$
4.) $y' + 6y = e^{4t}$, $y(0) = 2$
5.) $y' - y = 2cos5t$, $y(0) = 0$
6.) $y'' + 5y' + 4y = 0$, $y(0) = 1$, $y'(0) = 0$
7.) $y'' + 9y = e^t$, $y(0) = 0$, $y'(0) = 0$
8.) $y'' - 4y' = 6e^{3t} - 3e^{-t}$, $y(0) = 1$, $y'(0) = 0$

NOTA: Tomado del libro Ecuaciones diferenciales de Dennis G. Zill y Michael R Cullen, Editorial CENGAGE Learning. Séptima Edición. Y Ecuaciones diferenciales ordinarias de Ana M de Viola-Prioli, Jorge E Viola- Prioli. Editorial Equinoccio. Primera Edición.