Supplementary Materials of Lecture 15

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Reduce Variance Without Increasing Bias

Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$
 (when predictions are independent)

Average models to reduce model variance One problem:

only one training set where do multiple models come from?

Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging:
 - Create k bootstrap samples $D_1 \dots D_k$.
 - Train distinct classifier on each D_i .
 - Classify new instance by majority vote / average.

General Idea

Bagging

Sampling with replacement

Data ID		Training Data									
Original Data	1	2	3	4	5	6	7	8	9	10	
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9	
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2	
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7	

- Build classifier on each bootstrap sample
- Each data point has probability (1 1/n)ⁿ
 of being selected as test data
- Training data = 1- (1 1/n)ⁿ of the original data

The 0.632 bootstrap

- This method is also called the 0.632 bootstrap
 - A particular training data has a probability of 1-1/n of not being picked
 - Thus its probability of ending up in the test data (not selected) is:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

 This means the training data will contain approximately 63.2% of the instances

Comparison on Decision Boundaries

Bagging produces smoother decision boundary

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness:
 "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes

Random Forests

Figure 5.40. Random forests.

Reduce Bias² and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average and reduce bias?
- Yes:

Boosting

In general, Boosting > Bagging > Base learner

Bagging versus Boosting

