Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSc: Compiled on 2020-09-13 05h31m26s UTC

Prof. C. Naaktgeboren, PhD

C.02.01.A2 - Combustão e Equilíbrio Químico

Modelos de Misturas Reagentes

Modelo de Vapor de Combustível

Modelo de Combustível

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$

• $\varepsilon/(1+\psi)$ é a razão combustível-ar estequiométrica.

Modelos de Misturas Reagentes

Modelo de Ar Modelo de Vapor de Combustível

Modelo de Ar

- Ar é modelado apenas como uma mistura de Oxigênio, O2, e Nitrogênio, N2;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;
- Todos os demais gases inertes são modelados como sendo N₂;
- Valor típico para ψ é de $79/21 \approx 3,76$.

Prof. C. Naaktgeboren, PhI

C.02.01.A2 - Combustão e Equilíbrio Químico

Modelos de Misturas Reagentes

Modelo de Ar Modelo de Vapor de Combustível

Razão de Equivalência:

Seja φ a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)}, \qquad \text{assim},$$

- $\bullet \ \phi < 1$ modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\bullet \ \, \phi > 1 \; \text{modela misturas combustível-ar com excesso de combustível (pobre em ar); e }$
- $\bullet \phi = 1$ modela misturas combustível-ar estequiométricas.

Modelos de Misturas Reagentes

Modelo de Ar Modelo de Vapor de Combustível

Mistura Ar-Combustível:

- ullet Quantidades químicas reais de ar e combustível são $n_{
 m air}$ e $n_{
 m f}$...
- ullet ... na câmara de combustão fechada ao final da admissão, assumindo (P_0,V_0,T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\varphi \varepsilon}{1 + \psi + \varphi \varepsilon},$$

$$n_{\rm air} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{1 + \psi}{1 + \psi + \phi \varepsilon}.$$

Prof. C. Naaktgeboren, PhD C.02.01.A2 – Combustão e Equilíbrio Químico