DR Sense: Automated and Scalable Assessment of Demand Response for Green Building Portfolios

Ram Rajagopal, Abbas El Gamal and Amit Narayan

Dept. of Civil and Environmental Engineering

Dept. of Electrical Engineering

DR Sense

Low-cost automated self assessment tool for building managers to evaluate DR potential and DR strategies for their building portfolio, to achieve greening goals.

It enables scalable, data driven, real-time evaluation and management of facilities in DR.

Who are we?

- Prof. Ram Rajagopal specializes in sensing and operation of built environment systems relying on massive data driven models. He currently directs the Stanford Sustainable Systems lab.
- Prof. Abbas El Gamal's is a world leader in sensing and communication systems and infrastructure. He has authored or coauthored over 200 papers and holds 30 patents in these areas.
- Dr. Amit Narayan is a leader in developing systems simulation and evaluation tools for very large scale systems. He currently directs the Stanford Smart Grid Simulation efforts.

Demand Response

 Greening a building requires measures at different time scales

 Demand response is profitable greening due to utility incentives and peak pricing of energy

Utilities offer programs and infrastructure

DR Option	Data Source(s)	Eligible Customers (peak demand)
Optional hourly pricing	Central and Southwest (CSW) Utilities' (now American Electric Power) two-part RTP rate	<1500 kW
Default hourly pricing	Niagara Mohawk Power Corporation (NMPC), a National Grid Company, SC-3A tariff	> 2000 kW
Short-notice emergency program	NYISO Emergency Demand Response Program (EDRP)	> 100 kW
	ISO-NE Real-Time Demand Response (RTDR) Program	> 100 kW
Price-response event program	ISO-NE Real-Time Price Response (RTPR) Program	> 100 kW
Critical-peak pricing	California Utilities ¹ Critical Peak Pricing Program	> 200 kW; > 100 kW for SDG&E

Pacific Gas & Electric (PG&E), Southern California Edison (SCE) and San Diego Gas & Electric (SDG&E)

Various programs

PG&E Auto-DR program

CIFE TAC 2011

Building manager needs to know

- · How much **DR** is available for a building?
- · How much **DR** is available for a portfolio?
- What DR strategies are best suited for each building? What strategy to use when?
- For which buildings is it profitable to incorporate DR? Which program should it be enrolled in?
- How to maximize DR potential for entire portfolio given cost/benefit analysis?

Assessing DR today

- Requires expensive audit: not profitable nor feasible for most buildings
- One-time only and does not account for realtime changes in building use and operations: it is not continuous commissioning
- Dynamic sensing available in buildings is not exploited: does not benefit from dynamic BIM
- Building portfolio is not considered simultaneously: failure to exploit complementarity

Project Goal

- Develop DR Sense a low-cost automated self assessment tool for building managers to evaluate DR potential and DR strategies for their building portfolio:
 - Integrates existing audit information by using building simulators
 - Uses sensors to self-calibrate data-driven DR assessment models
 - Clusters and compares multiple buildings in a portfolio to assess joint potential
 - Forecasts Virtual Generation characteristics of each building and of portfolio in real-time
- DR Sense can turn energy consumption flexibility into profit

DR Sense

- DR Model includes data-driven DR models and building simulators
- Model is executed in a high performance data mining cloud system
- Information is aggregated from a building using energy management systems

Building Portfolio is a Virtual Generation Asset

 Information technology and smart grid advances turn buildings from passive energy consumers to active (virtual) generators

CIFE TAC 2011

DR Strategies: what are they?

■ Fully-Automated ■ Manual or Semi-Automated

- Strategies are parameterized building system settings and procedures that result in changes in energy consumption
- Forecasting effect of a strategy consists in evaluating energy increase/reduction profiles when parameters are chosen

Strategies matter and **what if** matters even more

- · Wrong strategy fails to achieve any response
- · Strategy works now but not tomorrow
- Forecasting is key to provide VGP for a building

Existing approach does not scale

- Models are complex and evaluate all internal building dynamics requiring extensive audit and manual calibration: need an approach that scales
- Forecast actual energy consumptionactually only need energy difference for DR strategies
- Massive data is available: leverage across buildings

Existing approach does not scale

- Models are complex and evaluate all internal building dynamics requiring extensive audit and manual calibration: need an approach that scales
- Forecast actual energy consumptionactually only need energy difference for DR strategies
- Massive data is available: leverage across buildings

ssessment of DR

l "Seven Step" Calibration ⁻Vpical

One time calibration accuracy is not great in real-time

- · Actually modeling all building dynamics
- · Some DR benefits are of the order of 1-3%...

DR Sense Forecaster

- · Ensemble data-driven forecast algorithms
- · Each algorithm focuses on one strategy alone

- Advantages: can perform sensor variable selection, can leverage data across buildings
- (1) Use simplified technical models for each system: time-series approach
- (2) Use high performance data mining algorithms: SVM, Bayesian Nets, Ensemble Kalman Filters

DR Sense Cluster

- Evaluate the DR potential in real-time using DR Sense Forecaster
- Cluster buildings by response profiles to one or more strategies
- · Identify individual best response building

Platform challenges

- Massive data being generated by buildings: Y2E2 alone, 1Gb per year => easily grow to TB in large portfolios
- Communication and data collection setup is usually adhoc and very difficult for building managers that manage large portfolios
- Scalable evaluation requires processing enormous amounts of data (even larger if you are an utility!)

DRSense Platform

- Cisco Building Mediator for interfacing building systems and data stores
- Massively parallel and distributed data computing using Hadoop and Map-Reduce
- Scalable low cost storage using cloud computers
- · We leverage technologies that have enabled large scale web-data analysis to buildings.

Data availability and industry

- Extensive high resolution data collected from Y2E2 building systems with calibrated EnergyPlus model and other buildings on campus
- DR data provided by PG&E and LBNL for thousands of commercial buildings in Auto-DR program
- Building Mediator data for selected deployments provided by Cisco
- · Palo Alto Utility data from commercial buildings for their DR rollout in 2011/2012

Project plan

- Milestone 1: Use EnergyPlus model for Y2E2 to rank multiple DR strategies and evaluate DR savings prediction (First 4 months)
- Milestone 2: DR Forecaster model for Y2E2 for HVAC control and/or lighting control strategies using time-series analysis (First 4 months)
- Milestone 3: Change building set points according to simple strategies and validate the models above (First 6 months)
- Milestone 4: Advanced DR Forecaster model for HVAC using simplified heat dynamics. Compare to previous model. Only partially achievable in year 1. (Second 6 months)
- Milestone 5: Build software tool incorporating DR Forecaster and a DR Cluster to group and analyze multiple buildings (Second 6 months) to deliver a prototype of our research

Project Risks

- EnergyPlus model for Y2E2 is not well calibrated
- Sensors in Y2E2 do not provide adequate coverage for desired problems
- · Models do not translate across buildings

Future steps

- Continued development of software tool for real-time DR assessment and provide it as an open source tool
- Add additional DR strategies
- Add interfacing with building energy management systems (including Building Mediator) to enable continuous commissioning
- Build a Virtual Generation model for each building based on DR Forecaster characterizing capacity, cost, ramp-rates, etc
- Use VG models for buildings to perform full grid scale simulation using GridSpice

Seek DOE and NSF funding

Questions?

Thank you!