Automated Reasoning

Cynthia Kop & Sebastian Junges Fall 2024

Lecture 6:

SMT for Linear Arithmetic

Slides inspired by: Erika Abraham, RWTH, Ashutosh Gupta, IITB, Kroening & Strichman, Decision Procedures

1

Today's Lecture

- SMT with linear arithmetic & linear programming
- Generalized Simplex
- SMT-compliant Simplex
- Branch & Bound
- Difference logic

Goal:

Learn methods for automated reasoning about linear constraints in SMT

Linear Programming

An optimization problem

Classic example with integer valued variables

A factory makes two products: Doors (D) and Frames (F).

- Constructing a D yields 70 euro profit
- Constructing a F yields 50 euro profit
- Building a D requires 2 units of wood, a F requires 1 unit of wood
- Building a D requires 4 hours, a F requires 3 hours
- We have 240 hours and 100 units of wood
- How to maximize profit?

Linear Programming

An optimization problem

Classic example with real-valued variables

A factory makes two products: Beer (B) and Soda (S).

- Brewing B yields 70 euro profit
- Brewing HL of S yields 50 euro profit
- Brewing B requires 2 units of water, S requires 1 unit of water
- Brewing B requires 4 hours, S requires 3 hours
- We have 240 hours and 100 units of water
- How to maximize profit?

$$4 \cdot b + 3 \cdot s \le 240$$

 $2 \cdot b + 1 \cdot s \le 100$
 $b \ge 0$
 $s \ge 0$

$$4 \cdot b + 3 \cdot s \le 240$$

 $2 \cdot b + 1 \cdot s \le 100$
 $b \ge 0$
 $s \ge 0$

$$4 \cdot b + 3 \cdot s \le 240$$

 $2 \cdot b + 1 \cdot s \le 100$
 $b \ge 0$
 $s \ge 0$

$$4 \cdot b + 3 \cdot s \le 240$$

 $2 \cdot b + 1 \cdot s \le 100$
 $b \ge 0$
 $s \ge 0$

$$4 \cdot b + 3 \cdot s \le 240$$

 $2 \cdot b + 1 \cdot s \le 100$
 $b \ge 0$
 $s \ge 0$

$$4 \cdot b + 3 \cdot s \le 240$$

 $2 \cdot b + 1 \cdot s \le 100$
 $b \ge 0$
 $s \ge 0$

$$4 \cdot b + 3 \cdot s \le 240$$

 $2 \cdot b + 1 \cdot s \le 100$
 $b \ge 0$
 $s \ge 0$

Matrix Normal Form

$$-4 \cdot b - 3 \cdot s \ge -240$$

 $-2 \cdot b - 1 \cdot s \ge -100$
 $b \ge 0$
 $s \ge 0$

Matrix Normal Form

$$-4 \cdot b - 3 \cdot s \ge -240$$

$$-2 \cdot b - 1 \cdot s \ge -100$$

$$b \ge 0$$

$$s \ge 0$$

$$\begin{bmatrix} -4 & -3 \\ -2 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b \\ s \end{bmatrix} \ge \begin{bmatrix} -240 \\ -100 \\ 0 \\ 0 \end{bmatrix}$$

Real valued variables, Constants

- Real valued variables, Constants
- Addition between them

- Real valued variables, Constants
- Addition between them
- Inequalities (focus on \leq , \geq)

- Real valued variables, Constants
- Addition between them
- Inequalities (focus on \leq , \geq)
- and their Boolean combination

- Real valued variables, Constants
- Addition between them
- Inequalities (focus on \leq , \geq)
- and their Boolean combination

Multiplication only with constants as syntactic sugar for addition...

- Real valued variables, Constants
- Addition between them
- Inequalities (focus on \leq , \geq)
- and their Boolean combination

Multiplication only with constants as syntactic sugar for addition...

Adds arbitrary Boolean combination of constraints to linear programming, but removes the objective (requires a constant objective)

DPLL(T) for QF_LRA

Using an off-the-shelf LP solver:
 GLPK, GLOP, LPsolve, Soplex, Gurobi, Mosek, CPlex, Cardinal Opt,

• Simplex algorithm (1920s); worst-case exponential runtime

- Simplex algorithm (1920s); worst-case exponential runtime
- Interior point or barrier methods (1979); polynomial runtime

- Simplex algorithm (1920s); worst-case exponential runtime
- Interior point or barrier methods (1979); polynomial runtime
- (Variations of) simplex still practically superior in many cases

- Simplex algorithm (1920s); worst-case exponential runtime
- Interior point or barrier methods (1979); polynomial runtime
- (Variations of) simplex still practically superior in many cases
- For precise arithmetic and SMT-compliant theory solving, simplex is standard

Summary

- Linear programming & QF_LRA
- Generalized Simplex
- Incrementality & Backtracking for Generalized Simplex
- Branch & Bound for QF_LIA
- Difference logic

Generalized Simplex

• Consider the feasibility of linear equations of the following form

$$A \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ s_1 \\ \vdots \\ s_m \end{bmatrix} = 0, \quad \bigwedge_{1 \le i \le m} l_i \le s_i \le u_i$$

i.e., variables $x_1, ..., x_n$, unbounded, and additional variables $s_1, ..., s_m$ bounded

Generalized Simplex

Consider the feasibility of linear equations of the following form

$$A \cdot \begin{bmatrix} x_1 \\ x_n \\ s_1 \\ \dots \\ s_m \end{bmatrix} = 0, \ \bigwedge_{1 \leq i \leq m} l_i \leq s_i \leq u_i$$
 Simplex for optimization starts with a feasible point while our goal is to find a feasible point (but is similar in almost all other aspects) i.e.,

i.e., variables x_1, \ldots, x_n , unbounded, and additional variables s_1, \ldots, s_m bounded

Quiztime

Quiztime

Bring $x + y \ge 2$ into generalized form

Example

$$x_1 + x_2 \ge 2$$

$$2x_1 - x_2 \ge 0$$

$$-x_1 - 2x_2 \ge 1$$

Example

Example

Example

$$\begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$\begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$\begin{bmatrix} 1 & 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$\begin{bmatrix} 1 & 1 & s_1 & s_2 & s_3 \\ 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix}$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$\begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{bmatrix}$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$\begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{bmatrix}$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

Basic variables ${\mathscr B}$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

Basic variables ${\mathcal B}$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

Basic variables ${\mathcal B}$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

The tableaux represents the following system of linear equations:

$$\bigwedge_{x_i \in \mathscr{B}} \left(x_i = \sum_{x_i \in \mathscr{N}} a_{ij} x_j \right)$$

We call them the Tableaux-Equations

The Simplex Algorithm

- Search for a satisfying assignment
- Series of pivot operations guide towards that assignment
- Pivots preserve inequalities

• The bounds on the variables remain constant

$$\forall x \in \mathcal{B} \cup \mathcal{N} : l_i \leq x_i \leq u_i$$

• The bounds on the variables remain constant

$$\forall x \in \mathcal{B} \cup \mathcal{N} : l_i \leq x_i \leq u_i$$

Initially, only bounds on basic variables but we'll make basic variables nonbasic

• The bounds on the variables remain constant

$$\forall x \in \mathcal{B} \cup \mathcal{N} : l_i \leq x_i \leq u_i$$

- Maintain a tableaux
- Maintain an assignment $\alpha : x \to \mathbb{Q}$

Initially, only bounds on basic variables but we'll make basic variables nonbasic

Simplex Datastructures Initialization

 $s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$

Simplex Datastructures

Initialization

• The bounds on the variables remain constant

$$\forall x \in \mathcal{B} \cup \mathcal{N} : l_i \leq x_i \leq u_i$$

Simplex Datastructures $\begin{bmatrix} s_1 & 1 \\ s_2 & -1 \\ s_3 & s_4 \end{bmatrix}$ Initialization

$$\begin{array}{ccc}
s_1 & 1 & 1 \\
s_2 & 2 & -1 \\
s_3 & -1 & 2
\end{array}$$

$$s_1 \ge 2 \land s_2 \ge 0 \land s_3 \ge 1$$

The bounds on the variables remain constant

$$\forall x \in \mathcal{B} \cup \mathcal{N} : l_i \leq x_i \leq u_i$$

- Construct a tableaux as outlined before:
 - The basic variables are the additional variables
 - The nonbasic variables are the problem variables

Simplex Datastructures $\begin{bmatrix} s_1 & 1 \\ s_2 & -1 \\ s_3 & s_3 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{bmatrix}$ $\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

$$\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The bounds on the variables remain constant

$$\forall x \in \mathcal{B} \cup \mathcal{N} : l_i \leq x_i \leq u_i$$

- Construct a tableaux as outlined before:
 - The basic variables are the additional variables
 - The nonbasic variables are the problem variables
- Construct an assignment $\alpha : x \to \mathbb{Q}$ with $\alpha(x) = 0$

Simplex maintains two invariants

- 1. $A\vec{x} = \vec{0}$ (i.e., the tableaux equalities do hold)
- 2. For each nonbasic variable $x_j \in \mathcal{N}$, it holds that $l_j \leq \alpha(x_j) \leq u_j$

Simplex maintains two invariants

- 1. $A\vec{x} = \vec{0}$ (i.e., the tableaux equalities do hold)
- 2. For each nonbasic variable $x_j \in \mathcal{N}$, it holds that $l_j \leq \alpha(x_j) \leq u_j$

The bounds on the basic variables may be violated

Simplex maintains two invariants

- 1. $A\vec{x} = \vec{0}$ (i.e., the tableaux equalities do hold)
- 2. For each nonbasic variable $x_j \in \mathcal{N}$, it holds that $l_j \leq \alpha(x_j) \leq u_j$

The bounds on the basic variables may be violated

Initially, simplex satisfies its invariants!

Simplex maintains two invariants

- 1. $A\vec{x} = \vec{0}$ (i.e., the tableaux equalities do hold)
- 2. For each nonbasic variable $x_j \in \mathcal{N}$, it holds that $l_j \leq \alpha(x_j) \leq u_j$

The bounds on the basic variables may be violated

If simplex finds an assignment lpha that respects the bounds on the basic variables, lpha is a satisfying solution to the LP

With a violated bound

• Let x_i violate it's lower bound (the upper bound case is symmetrical)

- Let x_i violate it's lower bound (the upper bound case is symmetrical)
- Thus, $\alpha(x_i) < l_i$

- Let x_i violate it's lower bound (the upper bound case is symmetrical)
- Thus, $\alpha(x_i) < l_i$
- Recall that x_i must be basic (why?)

- Let x_i violate it's lower bound (the upper bound case is symmetrical)
- Thus, $\alpha(x_i) < l_i$
- Recall that x_i must be basic (why?)

Thus, use the tableaux equality
$$x_i = \sum_{x_i \in \mathcal{N}} a_{ij} x_j$$
 is satisfied by $\alpha(x_i) = \sum_{i \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

With a violated bound

- Let x_i violate it's lower bound (the upper bound case is symmetrical)
- Thus, $\alpha(x_i) < l_i$
- Recall that x_i must be basic (why?)

Thus, use the tableaux equality
$$x_i = \sum_{x_i \in \mathcal{N}} a_{ij} x_j$$
 is satisfied by $\alpha(x_i) = \sum_{i \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

• To increase $\alpha(x_i)$ we must either:

- Let x_i violate it's lower bound (the upper bound case is symmetrical)
- Thus, $\alpha(x_i) < l_i$
- Recall that x_i must be basic (why?)

Thus, use the tableaux equality
$$x_i = \sum_{x_i \in \mathcal{N}} a_{ij} x_j$$
 is satisfied by $\alpha(x_i) = \sum_{i \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

- To increase $\alpha(x_i)$ we must either:
 - increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$

- Let x_i violate it's lower bound (the upper bound case is symmetrical)
- Thus, $\alpha(x_i) < l_i$
- Recall that x_i must be basic (why?)

Thus, use the tableaux equality
$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$
 is satisfied by $\alpha(x_i) = \sum_{i \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

- To increase $\alpha(x_i)$ we must either:
 - increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$
 - decrease some x_j with $a_{i,j} < 0$ and $\alpha(x_j) > l_j$

With a violated bound

- Let x_i violate it's lower bound (the upper bound case is symmetrical)
- Thus, $\alpha(x_i) < l_i$
- Recall that x_i must be basic (why?)

Thus, use the tableaux equality
$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$
 is satisfied by $\alpha(x_i) = \sum_{i \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

- To increase $\alpha(x_i)$ we must either:
 - increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$
 - decrease some x_j with $a_{i,j} < 0$ and $\alpha(x_j) > l_j$

Such x_i is suitable

SimplexUpdate with a violated bound

Thus,
$$\alpha(x_i) < l_i$$
 and $x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$

Update with a violated bound

Thus,
$$\alpha(x_i) < l_i$$
 and $x_i = \sum_{x_i \in \mathcal{N}} a_{ij} x_j$

• To increase x_i we increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$ (decreasing is symmetric)

Thus,
$$\alpha(x_i) < l_i$$
 and $x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$

- To increase x_i we increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$ (decreasing is symmetric)
- How much: Just enough to ensure the bound

Thus,
$$\alpha(x_i) < l_i$$
 and $x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$

- To increase x_i we increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$ (decreasing is symmetric)
- How much: Just enough to ensure the bound

. We increase
$$\alpha(x_j)$$
 by $\theta = \frac{l_i - \alpha(x_i)}{a_{ij}}$

Thus,
$$\alpha(x_i) < l_i$$
 and $x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$

- To increase x_i we increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$ (decreasing is symmetric)
- How much: Just enough to ensure the bound x_i will now satisfy the bound

. We increase
$$\alpha(x_j)$$
 by $\theta = \frac{l_i - \alpha(x_i)}{a_{ij}}$

Update with a violated bound

Thus,
$$\alpha(x_i) < l_i$$
 and $x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$

- To increase x_i we increase some x_j with $a_{i,j} > 0$ and $\alpha(x_j) < u_j$ (decreasing is symmetric)
- How much: Just enough to ensure the bound
- . We increase $\alpha(x_j)$ by $\theta = \frac{l_i \alpha(x_i)}{a_{ij}}$

 x_i will now satisfy the bound

 x_i may now violate the bound

Pivot Operation Intuition to preserve invariants

Pivot Operation Intuition to preserve invariants

• If nonbasic variable x_i now violates its bound, make it basic

Pivot Operation Intuition to preserve invariants

- If nonbasic variable x_i now violates its bound, make it basic
- Every basic variable is a sum of nonbasic variables...

Intuition to preserve invariants

- If nonbasic variable x_i now violates its bound, make it basic
- Every basic variable is a sum of nonbasic variables...
- So basic variable x_i must become nonbasic ok: it satisfies its bound

Intuition to preserve invariants

- If nonbasic variable x_i now violates its bound, make it basic
- Every basic variable is a sum of nonbasic variables...
- So basic variable x_i must become nonbasic ok: it satisfies its bound
- This leads to the pivot operation:

Intuition to preserve invariants

- If nonbasic variable x_i now violates its bound, make it basic
- Every basic variable is a sum of nonbasic variables...
- So basic variable x_i must become nonbasic ok: it satisfies its bound
- This leads to the pivot operation:

Rewrite
$$x_i = a_{ij}x_j + \sum_{j \neq k, k \in \mathcal{N}} a_{ik}x_k$$
 to $x_j = \frac{x_i - \sum \dots}{a_{ij}}$

Intuition to preserve invariants

- If nonbasic variable x_i now violates its bound, make it basic
- Every basic variable is a sum of nonbasic variables...
- So basic variable x_i must become nonbasic ok: it satisfies its bound
- This leads to the pivot operation:

Rewrite
$$x_i = a_{ij}x_j + \sum_{j \neq k, k \in \mathcal{N}} a_{ik}x_k$$
 to $x_j = \frac{x_i - \sum \dots}{a_{ij}}$

• Use this to substitute all occurrences of x_j in the tableaux

• s_1 violates its bound, x_1 is suitable.

- s_1 violates its bound, x_1 is suitable.
- Rewrite $s_1 = x_1 + x_2$ into $x_1 = s_1 x_2$, use as a substitution rule

- s_1 violates its bound, x_1 is suitable.
- Rewrite $s_1 = x_1 + x_2$ into $x_1 = s_1 x_2$, use as a substitution rule
- $s_2 = 2x_1 1x_2$ becomes $s_2 = 2s_1 3x_2$ and $s_3 = -1x_1 + 2x_2$ becomes $s_3 = -s_1 + 3x_2$

- s_1 violates its bound, x_1 is suitable.
- Rewrite $s_1 = x_1 + x_2$ into $x_1 = s_1 x_2$, use as a substitution rule
- $s_2 = 2x_1 1x_2$ becomes $s_2 = 2s_1 3x_2$ and $s_3 = -1x_1 + 2x_2$ becomes $s_3 = -s_1 + 3x_2$

By example

• s_1 violates its bound, x_1 is suitable.

$$\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- s_1 violates its bound, x_1 is suitable.
- We must increase s_1 by two, we do this by increasing x_1 by two

$$\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 2 & 0 & 2 & 0 & 0 \end{pmatrix}$$

- s_1 violates its bound, x_1 is suitable.
- We must increase s_1 by two, we do this by increasing x_1 by two
- And update all other assignments accordingly

$$\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 2 & 0 & 2 & 0 & 0 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} x_1 & x_2 & s_1 & s_2 & s_3 \\ 2 & 0 & 2 & 4 & -2 \end{pmatrix}$$

- s_3 violates its bound, s_2 is suitable.
- Rewrite $s_3 = -s_1 + 3s_2$ into $s_2 = \frac{s_3 + s_1}{3}$, use as a substitution rule

Pivots are equivalence transformations, describe the same system

- Pivots are equivalence transformations, describe the same system
- They just steer us towards updates that make the system satisfiable

- Pivots are equivalence transformations, describe the same system
- They just steer us towards updates that make the system satisfiable
- We do not cycle...

- Pivots are equivalence transformations, describe the same system
- They just steer us towards updates that make the system satisfiable
- We do not cycle...
 - Assuming we pick variables satisfying the bounds and suitable variables from a global order, we are guaranteed to terminate (Bland's Rule).

1. Bring system in standard form, initialize

- 1. Bring system in standard form, initialize
- 2. Fix a order on all variables

- 1. Bring system in standard form, initialize
- 2. Fix a order on all variables
- 3. While there is a basic variable violating its bounds

- 1. Bring system in standard form, initialize
- 2. Fix a order on all variables
- 3. While there is a basic variable violating its bounds
 - A. Find the smallest suitable nonbasic variable or return UNSAT

- 1. Bring system in standard form, initialize
- 2. Fix a order on all variables
- 3. While there is a basic variable violating its bounds
 - A. Find the smallest suitable nonbasic variable or return UNSAT
 - B. Pivot and update assignment

- 1. Bring system in standard form, initialize
- 2. Fix a order on all variables
- 3. While there is a basic variable violating its bounds
 - A. Find the smallest suitable nonbasic variable or return UNSAT
 - B. Pivot and update assignment
- 4. return SAT

Beyond Generalized Simplex

- Use some heuristic to pick variables, if we do not terminate, fall back to Bland's Rule.
- Select variables to minimize sum of violations / slack
- Handle strict inequalities using an infinitesimal small constant
- Lots of preprocessing

Summary

- Linear programming & QF_LRA
- Generalized Simplex
- Incrementality & Backtracking for Generalized Simplex
- Branch & Bound for QF_LIA
- Difference logic

Iterative Simplex Focus on essential aspects

- How to generate unfeasible subsets?
- How to ensure incrementality?

• Goal: Find a (sub)set of constraints that are together unsatisfiable.

- Goal: Find a (sub)set of constraints that are together unsatisfiable.
- Find unsatisfiability -> some basic variable x_i violates its bound

- Goal: Find a (sub)set of constraints that are together unsatisfiable.
- Find unsatisfiability -> some basic variable x_i violates its bound
- W.I.o.g., assume it exceeds upper bound

- Goal: Find a (sub)set of constraints that are together unsatisfiable.
- Find unsatisfiability -> some basic variable x_i violates its bound
- W.I.o.g., assume it exceeds upper bound

Let
$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$
 thus $u_i < \alpha(x_i) = \sum_{x_j \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

- Goal: Find a (sub)set of constraints that are together unsatisfiable.
- Find unsatisfiability -> some basic variable x_i violates its bound
- W.l.o.g., assume it exceeds upper bound

Let
$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$
 thus $u_i < \alpha(x_i) = \sum_{x_j \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

• UNSAT, so no x_j suitable. Bounds for x_i and all x_j with $a_{ij} \neq 0$ are explanation

- Goal: Find a (sub)set of constraints that are together unsatisfiable.
- Find unsatisfiability -> some basic variable x_i violates its bound
- W.I.o.g., assume it exceeds upper bound

Let
$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$
 thus $u_i < \alpha(x_i) = \sum_{x_j \in \mathcal{N}} a_{ij} \cdot \alpha(x_j)$

- UNSAT, so no x_j suitable. Bounds for x_i and all x_j with $a_{ij} \neq 0$ are explanation
- Only additional variables have bounds -> these encode constraints.

• Assume an LP with constraints C has been checked and now you want to check $C \cup \{c\}$?

- Assume an LP with constraints C has been checked and now you want to check $C \cup \{c\}$?
- Just adding a row can be difficult as the nonbasic variables may not coincide with the original variables

- Assume an LP with constraints C has been checked and now you want to check $C \cup \{c\}$?
- Just adding a row can be difficult as the nonbasic variables may not coincide with the original variables
- (Assume that all constraints are part of an a-priori known system)

- Assume an LP with constraints C has been checked and now you want to check $C \cup \{c\}$?
- Just adding a row can be difficult as the nonbasic variables may not coincide with the original variables
- (Assume that all constraints are part of an a-priori known system)
- Create a tableaux with all constraints, but only enforce bounds for active constraints

- Assume an LP with constraints C has been checked and now you want to check $C \cup \{c\}$?
- Just adding a row can be difficult as the nonbasic variables may not coincide with the original variables
- (Assume that all constraints are part of an a-priori known system)
- Create a tableaux with all constraints, but only enforce bounds for active constraints
- Adding a constraint: Enforcing the bound.
 Removing a constraint: Restore assignment to last known satisfying assignment

Example

Initialize the Simplex tableau with all equalities but without any bounds.

	$p_1(0)$	$p_2(0)$	p ₃ (0)
$s_1(0)$	1	0	0
$s_2(0)$	0	1	0
<i>s</i> ₃ (0)	0	0	1
<i>s</i> ₄ (0)	1	1	1
$s_5(0)$	1	0	0
$s_6(0)$	0	1	0
$s_7(0)$	0	0	1
<i>s</i> ₈ (0)	1	2	5
$s_9(0)$	3	2	1

DPLL(T) Example

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9 Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

Example

Variable order: $s_1 < \ldots < s_9 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

	$p_1(0)$	$p_2(0)$	$p_3(0)$
$s_1(0)$	1	0	0
$s_2(0)$	0	1	0
s ₃ (0)	0	0	1
$s_4(0)$	1	1	1
<i>s</i> ₅ (0)	1	0	0
<i>s</i> ₆ (0)	0	1	0
s ₇ (0)	0	0	1
s ₈ (0)	1	2	5
$s_9(0)$	3	2	1

Example

Variable order: $s_1 < \ldots < s_9 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

	$p_1(0)$	p ₂ (0)	$p_3(0)$		s ₄ (100)	$p_2(0)$	$p_3(0)$
$s_1(0)$	1	0	0	$s_1(100)$	1	-1	-1
$s_2(0)$	0	1	0	$s_2(0)$	0	1	0
$s_3(0)$	0	0	1	$s_3(0)$	0	0	1
$s_4(0)$	1	1	1	$\rho_1(100)$	1	-1	-1
s ₅ (0)	1	0	0	$s_5(100)$	1	-1	-1
$s_6(0)$	0	1	0	$s_6(0)$	0	1	0
s ₇ (0)	0	0	1	$s_7(0)$	0	0	1
s ₈ (0)	1	2	5	$s_8(100)$	1	1	4
$s_9(0)$	3	2	1	$s_9(300)$	3	-1	-2

Example

Variable order: $s_1 < \ldots < s_9 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

	$p_1(0)$	$p_2(0)$	$p_3(0)$		s ₄ (100)	$p_2(0)$	$p_3(0)$		s ₄ (100)	$p_2(0)$	s ₇ (10)
$s_1(0)$	1	0	0	$s_1(100)$	1	-1	-1	$s_1(90)$	1	-1	-1
$ s_2(0) $	0	1	0	$s_2(0)$	0	1	0	$s_2(0)$	0	1	0
$s_3(0)$	0	0	1	$s_3(0)$	0	0	1	$s_3(10)$	0	0	1
$s_4(0)$	1	1	1	$p_1(100)$	1	-1	-1	$p_1(90)$	1	-1	-1
s ₅ (0)	1	0	0	$s_5(100)$	1	-1	-1	<i>s</i> ₅ (90)	1	-1	-1
s ₆ (0)	0	1	0	$s_6(0)$	0	1	0	$s_6(0)$	0	1	0
s ₇ (0)	0	0	1	$s_7(0)$	0	0	1	$p_3(10)$	0	0	1
s ₈ (0)	1	2	5	$s_8(100)$	1	1	4	$s_8(140)$	1	1	4
$s_9(0)$	3	2	1	$s_9(300)$	3	-1	-2	$s_9(280)$	3	-1	-2

Example

Variable order: $s_1 < \ldots < s_9 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

	$p_1(0)$	$p_2(0)$	$p_3(0)$		s ₄ (100)	$p_2(0)$	$p_3(0)$		s ₄ (100)	$p_2(0)$	s ₇ (10)
$s_1(0)$	1	0	0	$s_1(100)$	1	-1	-1	$s_1(90)$	1	-1	-1
$s_2(0)$	0	1	0	$s_2(0)$	0	1	0	$s_2(0)$	0	1	0
$s_3(0)$	0	0	1	$s_3(0)$	0	0	1	$s_3(10)$	0	0	1
$s_4(0)$	1	1	1	$p_1(100)$	1	-1	-1	$p_1(90)$	1	-1	-1
$s_5(0)$	1	0	0	$s_5(100)$	1	-1	-1	<i>s</i> ₅ (90)	1	-1	-1
$s_6(0)$	0	1	0	$s_6(0)$	0	1	0	$s_6(0)$	0	1	0
s ₇ (0)	0	0	1	$s_7(0)$	0	0	1	$p_3(10)$	0	0	1
$s_8(0)$	1	2	5	$s_8(100)$	1	1 1	4	$s_8(140)$	1	1	4
$s_9(0)$	3	2	1	$s_9(300)$	3	-1	-2	$s_9(280)$	3	-1	-2

Return partial SAT.

DPLL(T) Example

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1: a_1: 0$

 $DL2: a_2: 0, a_3: 1$

Example

Example

	$s_4(100)$	$p_2(0)$	$s_7(10)$
$s_1(90)$	1	-1	-1
$s_2(0)$	0	1	0
$s_3(10)$	0	0	1
$p_1(90)$	1	-1	-1
$s_5(90)$	1	-1	-1
$s_6(0)$	0	1	0
$p_3(10)$	0	0	1
$s_8(140)$	1	1	4
<i>s</i> ₉ (280)	3	-1	_2

Example

	$s_4(100)$	$p_2(0)$	<i>s</i> ₇ (10)
$s_1(90)$	1	-1	-1
$s_2(0)$	0	1	0
$s_3(10)$	0	0	1
$p_1(90)$	1	-1	-1
$s_5(90)$	1	-1	-1
$s_6(0)$	0	1	0
$p_3(10)$	0	0	1
$s_8(140)$	1	1	4
$s_9(280)$	3	-1	-2

Conflict: $p_3 = 0 \land p_3 \ge 10$ is not satisfiable.

Example

Current assignment:

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1
DL1: a_1: 0
DL2: a_2: 0, a_3: 1
Add clause (\neg a_3 \lor \neg a_7):
(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)
```

No conflict resolution needed, since the new clause is already asserting. Backtracking removes DL1 and DL2 first, then propagation is applied.

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0
DL1: a_1: 0, a_2: 1
```

Backtracking: remove bound $s_3 = 0$, add bound $s_2 = 0$

DPLL(T)

Example

	s ₄ (100)	$p_2(0)$	s ₇ (10)
$s_1(90)$	1	-1	-1
$s_2(0)$	0	1	0
$s_3(10)$	0	0	1
$p_1(90)$	1	-1	-1
$s_5(90)$	1	-1	-1
$s_6(0)$	0	1	0
$p_3(10)$	0	0	1
$s_8(140)$	1	1	4
<i>s</i> ₉ (280)	3	-1	-2

Return partial SAT.

DPLL(T) Example

And so forth...

• Full example on https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung-satchecking/ws14-15/06c-simplex-in-smt_handout.pdf

• Consider quantifier-free linear integer arithmetic (QF_LIA) which is like (QF_LRA) but over the integers.

- Consider quantifier-free linear integer arithmetic (QF_LIA)
 which is like (QF_LRA) but over the integers.
- The relaxed problem instance contains the same constraints, but assumes that variables are real-valued.

- Consider quantifier-free linear integer arithmetic (QF_LIA) which is like (QF_LRA) but over the integers.
- The relaxed problem instance contains the same constraints, but assumes that variables are real-valued.
- Solve using simplex.

- Consider quantifier-free linear integer arithmetic (QF_LIA)
 which is like (QF_LRA) but over the integers.
- The relaxed problem instance contains the same constraints, but assumes that variables are real-valued.
- Solve using simplex.
 - UNSAT implies original problem is UNSAT.

- Consider quantifier-free linear integer arithmetic (QF_LIA) which is like (QF_LRA) but over the integers.
- The relaxed problem instance contains the same constraints, but assumes that variables are real-valued.
- Solve using simplex.
 - UNSAT implies original problem is UNSAT.
 - SAT implies...

- Consider quantifier-free linear integer arithmetic (QF_LIA)
 which is like (QF_LRA) but over the integers.
- The relaxed problem instance contains the same constraints, but assumes that variables are real-valued.
- Solve using simplex.
 - UNSAT implies original problem is UNSAT.
 - SAT implies...
 - Either all variables are assigned with an integer -> SAT

- Consider quantifier-free linear integer arithmetic (QF_LIA)
 which is like (QF_LRA) but over the integers.
- The relaxed problem instance contains the same constraints, but assumes that variables are real-valued.
- Solve using simplex.
 - UNSAT implies original problem is UNSAT.
 - SAT implies...
 - Either all variables are assigned with an integer -> SAT
 - At least one variable is assigned a real, non-integer value

Summary

- Linear programming & QF_LRA
- Generalized Simplex
- Incrementality & Backtracking for Generalized Simplex
- Branch & Bound for QF_LIA
- Difference logic

Branch-And-Bound Illustrated

Solve the relaxed problem,

Find a real-valued solution

Branch-And-Bound Illustrated

Exclude the solution

No longer conjunction of linear constraints

Branch-And-Bound Illustrated

Guess one side, repeat

Branch-And-Bound Illustrated

Until we find an integer solution

Recursive algorithm

Branch-And-Bound Recursive algorithm

Branch-And-Bound Recursive algorithm

Branch-and-bound (constraints C)

1. Solve relaxed version using Simplex

Branch-And-Bound Recursive algorithm

- 1. Solve relaxed version using Simplex
- 2. If assignment α found

Recursive algorithm

- 1. Solve relaxed version using Simplex
- 2. If assignment α found
 - A. If $\alpha(x)$ integral for all variables return SAT

Recursive algorithm

- 1. Solve relaxed version using Simplex
- 2. If assignment α found
 - A. If $\alpha(x)$ integral for all variables return SAT
 - B. Pick variable x with $\alpha(x)$ not integral, $\alpha(x) = d$. mmmm

Recursive algorithm

- 1. Solve relaxed version using Simplex
- 2. If assignment α found
 - A. If $\alpha(x)$ integral for all variables return SAT
 - B. Pick variable x with $\alpha(x)$ not integral, $\alpha(x) = d$. mmmm
 - C. If Branch-and-bound ($C \cup \{x \leq d\}$) == SAT return SAT

Recursive algorithm

- 1. Solve relaxed version using Simplex
- 2. If assignment α found
 - A. If $\alpha(x)$ integral for all variables return SAT
 - B. Pick variable x with $\alpha(x)$ not integral, $\alpha(x) = d$. mmmm
 - C. If Branch-and-bound ($C \cup \{x \leq d\}$) == SAT return SAT
 - D. If Branch-and-bound ($C \cup \{x \ge d+1\}$) == SAT return SAT

Recursive algorithm

- 1. Solve relaxed version using Simplex
- 2. If assignment α found
 - A. If $\alpha(x)$ integral for all variables return SAT
 - B. Pick variable x with $\alpha(x)$ not integral, $\alpha(x) = d$. mmmm
 - C. If Branch-and-bound ($C \cup \{x \leq d\}$) == SAT return SAT
 - D. If Branch-and-bound ($C \cup \{x \ge d+1\}$) == SAT return SAT
- 3. return UNSAT

Branch-And-Bound Illustrated

Branch-And-Bound Illustrated

May diverge Need small-model property to bound all integers

QF_LIA

- Many more ways to cut away integer-problems
- Even for a conjunction (feasiblity of Integer LP) the problem is NP-complete
- In less-lazy SMT, solve relaxed version unless it is a complete assignment

Summary

- Linear programming & QF_LRA
- Generalized Simplex
- Incrementality & Backtracking for Generalized Simplex
- Branch & Bound for QF_LIA
- Difference logic

Job-Shop Scheduling

Example

- Finite N jobs consist of a chain of ordered operations
- Finite M machines that execute an operation
- Each operation consists of a machine and a duration; must be executed on machine for duration time without interruption
- Order of operations must be respected

Quiztime

Encoding?!

- Finite N jobs consist of a chain of ordered operations
- Finite M machines that execute an operation
- Each operation consists of a machine and a duration; must be executed on machine for duration time without interruption
- Order of operations must be respected

Solution

- x_p start time of operation
- $x_p \geq 0$
- $\forall p, p'$ s.t. p' in same job and after $p: x_{p'} x_p \ge \operatorname{duration}(p)$
- $\forall p, p'$ with $\mathsf{machine}(p) = \mathsf{machine}(p')$: $x_{p'} + \mathsf{duration}(p') \le x_p \lor x_p + \mathsf{duration}(p) \le x_{p'}$

Difference Logic QF_DL

- Real (or integer) variables x_i , constants c
- $x_i x_j \leq c$
- Boolean combinations

• Use x_0 special variable for 0 (and add implicit constraints $x_0 \le x_i$)

Quiztime

•
$$x_1 - x_2 \le 1 \land x_2 - x_3 \le -1 \land x_3 - x_1 \le -3$$

Satisfiable?

Inequality Graph

- Edges = Variables including the x_0 variable
- Constraints: For every $x y \le c$ an edge from x to y with weight c

Inequality Graph

- Edges = Variables including the x_0 variable
- Constraints: For every $x y \le c$ an edge from x to y with weight c

There is a negative cycle in the inequality graph iff the conjunction of constraints together is unsatisfiable

Inequality Graph

- Edges = Variables including the x_0 variable
- Constraints: For every $x y \le c$ an edge from x to y with weight c

There is a negative cycle in the inequality graph iff the conjunction of constraints together is unsatisfiable

Bellman-Ford (source = x_0) detects negative cycles or finds a satisfying assignment

DPLL/CDCL

- DPLL/CDCL
- Resolution for proofs of unsatisfiability and for clause learning

- DPLL/CDCL
- Resolution for proofs of unsatisfiability and for clause learning
- Eager encodings

- DPLL/CDCL
- Resolution for proofs of unsatisfiability and for clause learning
- Eager encodings
- DPLL(T)

- DPLL/CDCL
- Resolution for proofs of unsatisfiability and for clause learning
- Eager encodings
- DPLL(T)
- Linear arithmetic & Simplex

- DPLL/CDCL
- Resolution for proofs of unsatisfiability and for clause learning
- Eager encodings
- DPLL(T)
- Linear arithmetic & Simplex
- Many, many more logics & theory solvers....

- DPLL/CDCL
- Resolution for proofs of unsatisfiability and for clause learning
- Eager encodings
- DPLL(T)
- Linear arithmetic & Simplex
- Many, many more logics & theory solvers....
- But automated reasoning is more than reasoning about satisfiability....

Summary

- Linear programming & QF_LRA
- Generalized Simplex
- Incrementality & Backtracking
- Branch & Bound for QF_LIA
- Difference logic

Learning goals

You are able to:

- Describe the integration of theory solvers in a (less) lazy DPLL(T) loop
- Explain main ingredients of simplex, execute pivot steps and deduce satisfiability
- Explain and execute branch & bound for integers
- Create inequality graphs to show (un)satisfiability of difference logic

Questions

Make sure you can answer the following questions!

- A. What is a linear program? What is an LRA formula?
- B. Which data structures does simplex maintain?
- C. How does simplex update an variable with a violated bound?
- D. What is branch and bound? What problems can it solve?
- E. What is difference logic and how can we solve conjunctions?

Be able to construct LRA formulas for problem statements

See you next week!