

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on EGRVT models

- Maximum supply voltage is 1.5 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 100nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): egvnfet_acc, egvpfet_acc
 - ✓ Gm_ana: Drain transconductance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Sv@1hz: Gate noise voltage spectral density at 1Hz, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Gds_ana: Drain conductance at Ids = iana*M*W/L, Vds = Vdd/4, f = 100k
 - ✓ Vgs_ana: Vgs value for which drain current is iana*M*shrink_iana*W/(shrink_iana*L+dlshrink_iana+plashrink_iana*p_la) at Vds=Vdd/4V.
 - ✓ Id_sv: Drain current at Vgs = Vgs_ana and Vds = Vdd/4V for which noise voltage and current spectral densities Sv, Si are extracted.
 - ✓ Cbd_off: Bulk-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Cdg_ana: Drain-to-Gate transcapacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Ft_ana: Transition frequency at Ids = iana*M*W/L, Vds = Vdd/4V
 - ✓ Sv@th: Gate thermal noise voltage spectral density, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Rg : Total gate resistance at Vgs = 1.5V, Vds = 0V, f = 1GHz
 - ✓ Cdd_ana: Total drain capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Gdc_ana: Voltage gain at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgg_ana: Total gate capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgd_0v: Gate-to-Drain capacitance at Vgs = 0V, Vds = vds_cggV, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

egvnfet_acc Electrical characteristics per geometry

egvnfet_acc@ w=2e-6, l=0.10e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	556.6 0.0mV	482.7 0.0mV	409.4 0.0mV
Vgs_ana [mV]	785.7 0.0mV	683.6 0.0mV	-9337 0.0mV
GDC_ana []	25.39 0.0%	29.61 0.0%	0.92 0.0%
GBW_QS [GHz]	150 0.0%	164.1 0.0%	350.7 0.0%
Ft_ana [GHz]	61.5 0.0%	66.55 0.0%	7.59e-05 0.0%
Gm_ana [μS]	729 0.0%	801.5 0.0%	-3.14 -0.0%
Gds_ana [μS]	28.71 0.0%	27.07 0.0%	26.76 0.0%
Cgg_ana [fF]	1.89 0.0%	1.92 0.0%	0.94 0.0%
Cdg_ana [fF]	1.14 0.0%	1.13 0.0%	0.37 0.0%
Cdd_ana [aF]	768.9 0.0%	774.3 0.0%	620 0.0%
Sv@1Hz [V/√Hz]	1.05e-05 0.0%	3.93e-05 0.0%	nan nan%
Sv@th [V/√Hz]	4.89e-09 0.0%	4.59e-09 0.0%	2.04e-08 0.0%

egvnfet_acc@ w=2e-6, l=2.0e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	608.5 0.0mV	540.1 0.0mV	470.8 0.0mV
Vgs_ana [mV]	775.3 0.0mV	699.1 0.0mV	-7300 0.0mV
GDC_ana []	921 0.0%	882.4 0.0%	0.76 0.0%
GBW_QS [GHz]	12.71 0.0%	12.76 0.0%	2018 0.0%
Ft_ana [GHz]	0.42 0.0%	0.43 0.0%	8.55e-05 0.0%
Gm_ana [μS]	48.2 0.0%	49.81 0.0%	-1.22 -0.0%
Gds_ana [μS]	5.23e-02 0.0%	5.64e-02 0.0%	5.08 0.0%
Cgg_ana [fF]	18.11 0.0%	18.42 0.0%	4.3 0.0%
Cdg_ana [fF]	6.98 0.0%	7.11 0.0%	0.43 0.0%
Cdd_ana [aF]	603.8 0.0%	621.2 0.0%	566.2 0.0%
Sv@1Hz [V/√Hz]	4.06e-06 0.0%	7.16e-06 0.0%	nan nan%
Sv@th [V/√Hz]	1.62e-08 0.0%	1.58e-08 0.0%	1.05e-07 0.0%

egvpfet_acc Electrical characteristics per geometry

dormieub

egvpfet_acc@ w=2e-6, l=0.10e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	639.1 0.0mV	516 0.0mV	403.3 0.0mV
Vgs_ana [mV]	-5.362e+04 0.0mV	724.4 0.0mV	607.2 0.0mV
GDC_ana []	3.17e-02 0.0%	9.89 0.0%	9.77 0.0%
GBW_QS [GHz]	515.3 0.0%	46 0.0%	44.48 0.0%
Ft_ana [GHz]	8.43e-05 0.0%	19.5 0.0%	18.34 0.0%
Gm_ana [μS]	-3.06 -0.0%	254.3 0.0%	249.6 0.0%
Gds_ana [μS]	102.8 0.0%	25.72 0.0%	25.55 0.0%
Cgg_ana [fF]	1.1 0.0%	2.08 0.0%	2.17 0.0%
Cdg_ana [fF]	0.46 0.0%	1.1 0.0%	1.14 0.0%
Cdd_ana [aF]	696.6 0.0%	878.2 0.0%	891.7 0.0%
Sv@1Hz [V/√Hz]	nan nan%	2.52e-05 0.0%	7.15e-05 0.0%
Sv@th [V/√Hz]	1.1e-06 0.0%	7.12e-09 0.0%	7.26e-09 0.0%

egvpfet_acc@ w=2e-6, l=2.0e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	701.7 0.0mV	579.2 0.0mV	466 0.0mV
Vgs_ana [mV]	-1.556e+04 0.0mV	7164 0.0mV	656.8 0.0mV
GDC_ana []	7.10e-02 0.0%	0.86 0.0%	131.2 0.0%
GBW_QS [GHz]	1306 0.0%	1600 0.0%	2.42 0.0%
Ft_ana [GHz]	1.39e-02 0.0%	1.25e-05 0.0%	0.11 0.0%
Gm_ana [μS]	-0.39 -0.0%	-5.38 -0.0%	13.56 0.0%
Gds_ana [μS]	5.56 0.0%	54.23 0.0%	0.1 0.0%
Cgg_ana [fF]	4.52 0.0%	30.49 0.0%	20.28 0.0%
Cdg_ana [fF]	0.47 0.0%	15.93 0.0%	7.77 0.0%
Cdd_ana [fF]	0.62 0.0%	11.97 0.0%	0.89 0.0%
Sv@1Hz [V/√Hz]	nan nan%	2.23e-06 0.0%	1.02e-05 0.0%
Sv@th [V/√Hz]	2.03e-06 0.0%	1.35e-08 0.0%	2.83e-08 0.0%

egvnfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C)

egvnfet_acc, VtGmmax [mV] vs l [m]

egvnfet_acc, Vgs_ana [mV] vs l [m]

egvnfet_acc, GDC_ana [] vs l [m]

egvnfet_acc, GBW_QS [GHz] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvnfet_acc, Ft_ana [GHz] vs l [m]

egvnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egvnfet_acc, Gm_ana/w [S/um] vs l [m]

egvnfet_acc, Gds_ana/w [S/um] vs l [m]

egvnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egvnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

dormieub

egvnfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvnfet_acc, Cgg_ana/l [fF/um] vs l [m]

egvnfet_acc, Cdg_ana/w [fF/um] vs l [m]

egvnfet_acc, Cdd_ana/w [fF/um] vs l [m]

egvnfet_acc, Cgd_0V/w [fF/um] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvnfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C)

egvnfet_acc, VtGmmax [mV] vs w [m]

egvnfet_acc, Vgs_ana [mV] vs w [m]

egvnfet_acc, GDC_ana [] vs w [m]

egvnfet_acc, GBW_QS [GHz] vs w [m]

egvnfet_acc, Ft_ana [GHz] vs w [m]

egvnfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

egvnfet_acc, Gm_ana/w [S/um] vs w [m]

egvnfet_acc, Gds_ana/w [S/um] vs w [m]

egvnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

egvnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

egvnfet_acc, Sv@th [V/sqrt(Hz)] vs w [m]

egvnfet_acc, Cgg_ana/l [fF/um] vs w [m]

L==0.10e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

dormieub

egvnfet_acc, Cdg_ana/w [fF/um] vs w [m]

egvnfet_acc, Cdd_ana/w [fF/um] vs w [m]

egvnfet_acc, Cgd_0V/w [fF/um] vs w [m]

egvnfet_acc, Cbd_off/w [fF/um] vs w [m]

Scaling versus Length @ W/L=10&&W/nf<5um

egvnfet_acc, VtGmmax [mV] vs l [m]

egvnfet_acc, Vgs_ana [mV] vs l [m]

egvnfet_acc, GDC_ana [] vs l [m]

egvnfet_acc, GBW_QS [GHz] vs l [m]

egvnfet_acc, Ft_ana [GHz] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

ST Confidential

egvnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egvnfet_acc, Gm_ana/w [S/um] vs l [m]

egvnfet_acc, Gds_ana/w [S/um] vs l [m]

egvnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egvnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egvnfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

egvnfet_acc, Cgg_ana/l [fF/um] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

ST Confidential

egvnfet_acc, Cdg_ana/w [fF/um] vs l [m]

egvnfet_acc, Cdd_ana/w [fF/um] vs l [m]

egvnfet_acc, Cgd_0V/w [fF/um] vs l [m]

egvnfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus gate finger width L=100nm

egvnfet_acc, 1e9*Cgd_0V/W vs "W/NF [m]"

L==100e-9 and NF==1 and devType=="PCELLwoWPE"

dormieub

egvnfet_acc, Rg*NF vs "W/NF [m]"

L==100e-9 and NF==1 and devType=="PCELLwoWPE"

egvpfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C)

dormieub

egvpfet_acc, VtGmmax [mV] vs l [m]

egvpfet_acc, Vgs_ana [mV] vs l [m]

egvpfet_acc, GDC_ana [] vs l [m]

egvpfet_acc, GBW_QS [GHz] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvpfet_acc, Ft_ana [GHz] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egvpfet_acc, Gm_ana/w [S/um] vs l [m]

egvpfet_acc, Gds_ana/w [S/um] vs l [m]

egvpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egvpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egvpfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvpfet_acc, Cgg_ana/l [fF/um] vs l [m]

egvpfet_acc, Cdg_ana/w [fF/um] vs l [m]

egvpfet_acc, Cdd_ana/w [fF/um] vs l [m]

egvpfet_acc, Cgd_0V/w [fF/um] vs l [m]

egvpfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C)

dormieub

egvpfet_acc, VtGmmax [mV] vs w [m]

egvpfet_acc, Vgs_ana [mV] vs w [m]

egvpfet_acc, GDC_ana [] vs w [m]

L==0.10e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvpfet_acc, GBW_QS [GHz] vs w [m]

egvpfet_acc, Ft_ana [GHz] vs w [m]

egvpfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

egvpfet_acc, Gm_ana/w [S/um] vs w [m]

egvpfet_acc, Gds_ana/w [S/um] vs w [m]

L==0.10e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egvpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

egvpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

egvpfet_acc, Sv@th [V/sqrt(Hz)] vs w [m]

egvpfet_acc, Cgg_ana/l [fF/um] vs w [m]

egvpfet_acc, Cdg_ana/w [fF/um] vs w [m]

L==0.10e-6 and nf==2 and devType=="PCELLwoWPE"

dormieub

egvpfet_acc, Cdd_ana/w [fF/um] vs w [m]

egvpfet_acc, Cgd_0V/w [fF/um] vs w [m]

egvpfet_acc, Cbd_off/w [fF/um] vs w [m]

Scaling versus Length @ W/L=10&&W/nf<5um

egvpfet_acc, VtGmmax [mV] vs l [m]

egvpfet_acc, Vgs_ana [mV] vs l [m]

egvpfet_acc, GDC_ana [] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

ST Confidential

egvpfet_acc, GBW_QS [GHz] vs l [m]

egvpfet_acc, Ft_ana [GHz] vs l [m]

egvpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egvpfet_acc, Gm_ana/w [S/um] vs l [m]

egvpfet_acc, Gds_ana/w [S/um] vs l [m]

egvpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egvpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egvpfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

egvpfet_acc, Cgg_ana/l [fF/um] vs l [m]

egvpfet_acc, Cdg_ana/w [fF/um] vs l [m]

egvpfet_acc, Cdd_ana/w [fF/um] vs l [m]

egvpfet_acc, Cgd_0V/w [fF/um] vs l [m]

egvpfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus gate finger width L=100nm

dormieub

egvpfet_acc, 1e9*Cgd_0V/W vs "W/NF [m]"

L==100e-9 and NF==1 and devType=="PCELLwoWPE"

egvpfet_acc, Rg*NF vs "W/NF [m]"

L==100e-9 and NF==1 and devType=="PCELLwoWPE"

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model egvnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - $x f_{ext_rg} = 1G Hz$
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model_version = 1.2.c
 - **x** vds_off = vds_sat V
 - **x** iana = 5e-6 A
 - \mathbf{x} ams_release = 2018.3
 - \mathbf{X} vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V

- **x** mc_nsigma = 3
- \times shrink ivt = 1
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \mathbf{X} vds ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- **x** mc_runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \times eg_dev = 1
 - \mathbf{x} eglvt_dev = 1
- Model egvpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - $x f_{ext_rg} = 1G Hz$
 - \times mc_sens = 0

- \times vds_lin = 0.05 V
- **X** ivt = 70e-9 A
- **x** model_version = 1.2.c
- **x** vds_off = vds_sat V
- \mathbf{X} iana = 2e-6 A
- **x** ams_release = 2018.3
- \times vgs_stop = vdd V
- X dlshrink ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- \mathbf{x} vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times mc runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V

ST Confidential

- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 1
 - **x** eglvt_dev = 1
- Model egvnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - \times f_ext_rg = 1G Hz
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.b
 - **x** vds_off = vds_sat V
 - \mathbf{X} iana = 5e-6 A
 - \mathbf{X} ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - \times vgs_start = 0 V
 - **x** plashrink_ivt = 1
 - \star ithslwi = 10e-9 A

ST Confidential

- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- **x** mc_runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \angle eg_dev = 1
 - \times eglvt_dev = 1
- Model egvpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - \star f_ext_rg = 1G Hz
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **✗** model_version = 1.2.b
 - **x** vds_off = vds_sat V
 - **x** iana = 2e-6 A

- \mathbf{X} ams release = 2018.3
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \times vddmax = vdd
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** eg_dev = 1
 - **x** eglvt_dev = 1

