EPITA / InfoS3		Décembre 2016
·	. Prénom :	Groupe :

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème (sur 20,5) est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Redresseur douoble alternance (6 points) D_1 Soit le montage ci-contre dans lequel v(t) est un signal périodique triangulaire, représenté questions e et f. Pour les premières questions, on utilise le modèle idéal pour les diodes. a) Durant l'alternance positive ($0 \le t \le \frac{T}{2}$), quelles diodes sont conductrices? Justifiez votre réponse. b) Quelle est alors l'expression de u? c) Durant l'alternance négative $(\frac{T}{2} \le t \le T)$, quelles diodes sont conductrice? Justifiez votre réponse. d) Quelle est alors l'expression de u?

e) Tracer alors u(t).

f) On remplace désormais les diodes par leur modèle à seuil. Tracer l'allure de u(t), en justifiant votre réponse. On notera V_0 , la tension de seuil de chacune des diodes et on prendra $V_0 = 0.7 V$.

Exercice 2. Diode Zéner (4 points)

On considère le schéma suivant. $V \in \mathbb{R}$

Tracez la caractéristique de transfert c'est-à-dire U = f(V) en substituant la diode par son modèle réel.

diode par son modèle réel.	
Vous préciserez les équations de chaque portion de caractéristique. On not direct, r_D , la résistance interne de la diode en direct, V_Z , la tension de seuil Zéne la diode en inverse.	era V_0 la tension de seuil en r et r_Z , la résistance interne de

Exercice 3. Polarisation du transistor (6 points)

On considère le montage ci-contre, où :

- $R_B = 200k\Omega$, $R_C = 500\Omega$, $R_E = 1k\Omega$, $V_{CC} = 10V$
- <u>Caractéristiques du transistor</u>: $\beta=100,\ V_{BE}=0.7V$ quand la jonction Base-Emetteur est passante et $V_{CE_{SAT}}=0.2V$

L'hypothèse de départ (transistor polarisé dans sa zone de fonctionnement linéaire) est-elle bien vérifiée ?

2. Quelle est l'expression du courant de saturation $I_{C_{Sat}}$ de ce transistor ?
Exercice 4. Montage Darligton (2 points)
On considère le montage ci-contre. I_{C2}
eta_1 étant le coefficient de transfert du courant de base (aussi appelé Gain en courant) du transistor de droite et eta_2 celui du transistor de eta_2 gauche, déterminer le gain en courant eta du transistor équivalent, en fonction de eta_1 et eta_2 . On supposera les deux transistors polarisés dans leur zone de fonctionnement linéaire. Rq: Commencez par exprimer I_C en fonction de I_B .

Exercice 5. QCM (2, 5 points - Pas de point négatif)

1. Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle réel de la diode :

- 2. En polarisation inverse, on peut représenter la diode Zéner à l'aide de l'un des 2 modèles : à seuil ou linéaire le modèle idéal n'existant pas pour cette diode.
 - a- VRAI

b- FAUX

3. L'effet transistor :

- a- Permet de faire passer un grand courant entre l'émetteur et le collecteur.
- b- Permet de faire passer un grand courant entre la base et le collecteur.
- c- Permet de faire passer un grand courant entre l'émetteur et la base.
- 4. Lorsque l'on fait fonctionner le transistor comme un interrupteur :
 - a- Le transistor est équivalent à un interrupteur fermé lorsqu'un courant passe dans la base.
 - b- Le transistor est équivalent à un interrupteur fermé lorsqu'aucun courant ne passe dans la base.
 - c- Le transistor est équivalent à un interrupteur ouvert lorsqu'un courant passe dans la base.
 - d- Le transistor est équivalent à un interrupteur ouvert lorsqu'aucun courant ne passe dans la base.