Departamento de Ciência de Computadores Modelos de Computação (CC1004)

FCUP 2020/21

duração: 2h

Exame (8.07.2021)

N.º		Nome	
1.	Seja $\mathcal A$ o AFD repres	sentado e seja	a L a lingugem que ${\mathcal A}$ reconhece.
		$\begin{pmatrix} s_1 \\ 1 \\ s_2 \end{pmatrix}$ 1	a) Averigue se se trata do AFD mínimo para L. Justifique.
	Por aplicação do mé creva <i>L</i> . Deve apres		inação de estados, determine uma expressão regular (abreviada) que os passos.
c)]	Descreva informalme	nte a linguag	$\operatorname{em} L.$

N.º	Nome	
l		

2. Considere a gramática $\mathcal{G} = (\{A, B, S\}, \Sigma, P, S)$ com $\Sigma = \{0, 1\}$ e P dado por:

$$A \rightarrow 11A \mid 11$$

$$A \rightarrow 11A \mid 11$$
 $B \rightarrow 0B0 \mid 0A0$ $S \rightarrow B \mid SS$

$$S \rightarrow B \mid SS$$

a) Para cada uma das condições, indique a forma geral das palavras w que a satisfazem:

• $A \Rightarrow_{\mathcal{G}}^{n} w$, para $n \ge 1$ fixo, e $w \in \{0, 1, A, B, S\}^{\star}$.

 $\bullet \quad B \Rightarrow_{\mathcal{G}}^n w, \, \text{para} \, n \geq 1 \, \text{fixo, e} \, w \in \{\mathtt{0},\mathtt{1},A,B,S\}^{\star}.$

b) Prove que a gramática \mathcal{G} é ambígua.

c) Escreva uma gramática GIC \mathcal{G}' equivalente a \mathcal{G} mas não ambígua. Justifique sucintamente.

N T 0	3.7	
N.º	Nome	

3. Aplicando o a construção baseada em subconjuntos, determine o diagrama de transição de um AFD, com $\Sigma = \{0, 1\}$, equivalente ao seguinte.

- **4.** Seja r a expressão regular $((01) + ((11)^*))$ sobre $\Sigma = \{0, 1\}$.
- a) Desenhe o diagrama de transição do AFND- ε que se obtém por aplicação do método de Thompson a r.

b) Descreva $\mathcal{L}(r)$ por uma gramática independente de contexto.

5. Porque que é que, na aplicação do algoritmo CYK, quando estamos a preencher a entrada correspondente à subpalavra $w=x_1x_2x_3\dots x_k$, consideramos as k-1 partições de w em dois: $x_1|x_2x_3\dots x_k$, $x_1x_2|x_3\dots x_k$, etc?

DCC/FCUP	-Modelos de Computação (CC1004) – Exame	25.06.2021
N.º	Nome	
Responda	a apenas a uma das alíneas da questão 6	
6. Seja $L = \{0\}$	$n^{n}10^{k}10^{m} \mid k > n + m \ge 0$, com alfabeto $\{0, 1\}$.	
a) Apresente un	n autómato de pilha que reconheça L , com aceitação por pilha vazia . Incodo que seja possível compreender a correção do autómato.	lique a interpretação
	ão teorema de Myhill-Nerode , averigue se existe um AFD que recon D mínimo para L . Na justificação da resposta, deve usar a relação R_L .	hece L e, se existir,
do lema ou que	tamente o lema da repetição para linguagens regulares, prove que L não L satisfaz a condição do lema. Diga ainda se L não satisfaz a condição o independentes de contexto (justificando sucintamente).	
		Fin
	na versão 2 do enunciado em vez de 4b), por gralha corrigida na prova)) Luctificant and 00
	$x \mid x \in \{0,1\}^*$ e x tem 00 como subpalavra ou tem mais 1's do que 0's à mesma classe de equivalência de R_L (relação definida para o teorema	