Problem 1 (3.1.3).

Proof. Let $a, b \in G$. Then $Inn(ab) = \phi_{ab}$. For any $g \in G$ we have

$$\phi_{ab}(g) = abgb^{-1}a^{-1} = a\phi_b(g)a^{-1} = \phi_a \circ \phi_b(g)$$

Which implies that $\phi_{ab} = \phi_a \circ \phi_b = \text{Inn}(a) \circ \text{Inn}(b)$ completing the proof that Inn is a group homomorphism.

Next, for an element $a \in G$ to be in the kernel of Inn it is required to have $\phi_a(g) = g$. Then $gag^{-1} = a$ which by cancellation we get ga = ag for all $g \in G$. Therefore the kernel of Inn is Z(G).

Finally let $\phi_a \in \text{Inn}(G)$ and $\varphi \in \text{Aut}(G)$. Then the function $\varphi \circ \phi_a \circ \varphi^{-1}$ for an element $g \in G$ is

$$\varphi \circ \phi_a \circ \varphi^{-1}(g) = \varphi(a\varphi^{-1}(g)a^{-1}) = \varphi(a)\varphi \circ \varphi^{-1}(g) \circ \varphi(a^{-1}) = \varphi(a)g\varphi(a)^{-1} = \phi_{\varphi(a)}(g)$$

which shows that Inn(G) is closed under conjugation and is therefore a normal subgroup of Aut(G).

Elaborate on why this is the case. The Automorphism group for D_8 is isomorphic to D_8 The Inner Automorphism group for D_8 is isomorphic to \mathcal{K}_4

Problem 2 (3.4).

Proof. Let $\phi: G \to \bar{G}$ be an epimorphism with $N := \ker \phi$ and H a subgroup of G containing N. Then we will show that H is normal in G if and only if $\phi(H)$ is normal in \bar{G} . For the forward direction suppose that H is normal in G. Let $g' \in \bar{G}$ and $h' \in \phi(H)$. Since ϕ is an epimorphism there exist $g \in G$ and $h \in H$ such that $\phi(g) = g'$ and $\phi(h) = h'$. Then

$$q'h'q'^{-1} = \phi(q)\phi(h)\phi(q^{-1}) = \phi(qhq^{-1})$$

which is in $\phi(H)$ since H is normal. Therefore $\phi(H)$ is normal.

Now suppose that $\phi(H)$ is normal in \bar{G} . Let $g \in G$ and $h \in H$. Then $\phi(ghg^{-1}) = \phi(g)\phi(h)\phi(g^{-1}) \in \phi(H)$ and since $\phi(ghg^{-1})$ lies in the image $\phi(H)$ this implies that $ghg^{-1} \in H$ and therefore H is normal.

Next consider the map $\varphi: H \mapsto \phi(H)$ on the lattice of subgroups containing N. We will show that it is a bijection by proving that it is surjective and injective. For surjectivity let $K \leq \bar{G}$. Then $\phi(K) \leq G$. Note that $\phi^{-1}(\bar{e}) \leq \phi^{-1}(K)$ which implies that $N \leq \phi^{-1}(K)$. Therefore $\phi(\phi^{-1}(K)) = K$.

For injectivity let $\phi(H) = \phi(K)$ for $H, K \leq G$ where H, K contain N. Without loss of generality let $h \in H$. Then $\phi(h) \in \phi(K)$ and $\phi(h) = \phi(k)$ for some $k \in K$. This implies that $\phi(k^{-1}h) = \bar{e}$ and it follows that $k^{-1}h \in N \leq K$. However since $k \in K$ we have that $h \in K$. Therefore $H \subset K$ and via the same reasoning $K \subset H$ and therefore H = K.

Therefore the map φ is a bijection.

Finally let $B \subset A$ be subgroups of G that contain N. Then define a map $C: A/B \to \phi(A)/\phi(B)$ via $C(aB) = \phi(a)\phi(B)$. To show that the map is well defined let aB = a'B. Then a = a'b for some $b \in B$. So

$$\phi(a)\phi(B) = \phi(a'b)\phi(B) = \phi(a')\phi(b)\phi(B) = \phi(a')\phi(B)$$

which shows that the map C is well defined.

To show surjectivity let $a'\phi(B) \in \phi(A)/\phi(B)$. Then because ϕ is surjective there exists an $a \in A$ such that $\phi(a) = a'$. Then $C(aB) = a'\phi(B)$ which shows is surjective.

Finally to show injectivity let C(aB) = C(a'B). Then we have

$$\phi(a)\phi(B) = \phi(a')\phi(B)$$

which implies that

$$\phi(B) = \phi(a^{-1})\phi(a')\phi(B)$$

and thus $\phi(a^{-1}a') \in N \leq B$ which implies that aB = a'B.

Therefore there is a bijection between A/B and $\phi(A)/\phi(B)$ and as such $|A:B|=|\phi(A):\phi(B)|$.

Problem 3 (3.5).

Proof. Let H be a normal subgroup of G where |G:H|=p. Let $K\leq G$ then there are two cases. If $K\leq H$ then $K\leq H$ and we are done. Otherwise suppose that $K\nleq H$. We know that |G/H|=p which implies that G/H is cyclic. There exists a $k\in K\setminus H$ such that $\langle kH\rangle=G/H$. However this means that for any $g\in G$ we have $g\in k^iH$ and therefore $g=k^ih$ where $h\in H$. Therefore $g\in HK$ and as such G=HK.

By the second isomorphsim theorem we have $G/H \cong HK/H \cong K/(H \cap K)$ which implies that $|K:K\cap H|=p$.

Problem 4 (3.6).

Proof. 1. Let G, G' be groups. Then we will show that $G \times G'$ is a group under pointwise multiplication.

associativity: Consider elements $(a, a'), (b, b'), (c, c') \in G \times G'$. Then we have

$$\begin{split} ((a,a')\cdot (b,b'))\cdot (c,c') &= (ab,a'b')\cdot (c,c') \\ &= ((ab)c,(a'b')c') \\ &= (a(bc),a'(b'c')) \\ &= (a,a')\cdot (bc,b'c') \\ &= (a,a')\cdot ((b,b')\cdot (c,c')) \end{split}$$

Which shows that the group operation is associative.

identity: Consider (e, e') made up of the identity elements of G and G' respectively. Then for $(g, g') \in G \times G'$ we have

$$(e, e') \cdot (g, g') = (eg, e'g') = (g, g') = (ge, g'e') = (g, g')(e, e')$$

which shows the existence of an identity.

inverse: Let $(g, g') \in G$. Then

$$(g,g') \cdot (g^{-1},g'^{-1}) = (gg^{-1},g'g'^{-1})$$

$$= (e,e')$$

$$= (g^{-1}g,g'^{-1}g')$$

$$= (g^{-1},g'^{-1})(g,g')$$

Which shows that for any element we have a two sided inverse.

Therefore the Cartesian product of groups $G \times G'$ is a group under pointwise multiplication.

2. Let $M, N \subseteq G$ such that $G = MN$.	
Problem 5 (3.1.17). <i>Proof.</i>	
Problem 6 (3.1.32). <i>Proof.</i>	