Math 6140 NOTES: ALGEBRA 2

COLTON GRAINGER APRIL 17, 2019

These notes were taken in University of Colorado's Math 6140 (Algebra 2) class in Spring 2019, taught by Prof. R. M. Green. I live-TeXed them with vim, so there may be typos and failures of understanding. Any mistakes are my own. Please send questions, comments, complaints, and corrections to colton.grainger@colorado.edu. Thanks to adebray for the LATeX template, which I have forked from https://github.com/adebray/latex_style_files.

Contents

1. 2019-04-15

Lecture 1.

2019-04-15

"The end of Dummit and Foote trailing off into nonsense and pet topics."

Definition 1.1 (Normal basis). A normal basis for a Galois extension K/F is an orbit of some element $\alpha \in K$ under the action of $G = \operatorname{Gal}(F/K)$ such that $G(\alpha)$ is a basis for F as a K-vector space.

We'll soon give an existence proof along the lines of "each Galois extension has a normal basis" by producing an such an element α .

Example 1.2. Show that a finite, separable, Galois extension K/F has an element α whose orbit forms a normal basis.

Today we'll jump around a bit, covering odds and ends of 14.2–14.3.

Lemma 1.3. The natural numbers $d, n \in \mathbb{N}$ satisfy $d \mid n$ if and only if the polynomials $x^d - 1$ and $x^n - 1$ in $\mathbb{Z}[x]$ satisfy $x^d - 1 \mid x^n - 1$.

Proof. Suppose $d \mid n$. Then let $r = \frac{n}{d}$. Since $x - 1 \mid x^r - 1$, changing variables $x^d \mapsto x$ produces $x^d - 1 \mid x^n - 1$ in $\mathbb{Z}[x]$. Conversely, if $x^d + 1 \mid x^n - 1$, divide out x - 1. Then examine

$$1 + x + \dots + x^{d-1} | 1 + x + \dots + x^{n-1}$$
 and evaluate at $x = 1$.

Lemma 1.4 (Divisors of 24). Suppose $a, n \in \mathbb{N}$ are coprime (positive?) integers and $n \mid 24$ and (a, n) = 1. Then $a^2 \equiv 1 \pmod{n}$. In particular, 1, 3, 5, 7 all square to 1 modulo 8.

Example 1.5 $(x^4 + 1)$ is irreducible over \mathbb{Z} but reduces modulo every prime.). Recall that the polynomial $x^4 + 1$ reduces into quadratic factors over \mathbb{R} , but is irreducible over \mathbb{Q} . (We are guaranteed a root for any cubic polynomial over \mathbb{R} by the intermediate value theorem.) We'll consider $x^4 + 1$ over the finite fields for all odd primes p.

I claim (see 1.4 and 1.3) that

$$x^4 + 1 \mid x^8 - 1 \mid x^{p^2 - 1} - 1 \mid x^{p^2 - 1} - x.$$

Therefore, for K the splitting field of x^4+1 , we deduce that any root $\alpha \in K$ of x^4+1 is fixed by Φ^2 where Φ is the Froebenius automorphism. But Φ generates the automorphism group $\langle \Phi \rangle = \operatorname{Aut}()!$ Therefore, the degree of [K:F] is at most 2. We conclude that x^4+1 reduces in [x].

Example 1.6. Here's an alternative argument for 1.5 in the algebraic closure a of .

1

- How is one to determine the fixed points of Φ in ^a?
- Maybe argue that a a perfect field (which occurs if and only if the Froebenius map Φ is an isomorphism).
- With each element of a is a pth root, consider $x^{p^2} x$, and deduce that $x^4 + 1$ reduces modulo p.

Proposition 1.7. The following are equivalent.

- K/F is Galois.
- K/F is separable and has the "one out all out" property.

Proof. In one direction, recall the we've shown that the minimal polynomial of an element β in a Galois extension K/F is the product of linear factors with constant terms given by the distinct conjugates of β . In the other, TODO.

Remark 1.8 (Sketch of proof for the fundmental theorem of Galois theory.). Let K/F be a (separable, finite) Galois extension, with G = Gal(K/F). Let's chat a bit: how are the subfields of K/F and the subgroups of G in Galois correspondence? As an exercise:

(1) Show that there's an injective functor from Grp into Vect taking subgroups to their fixed subfields.

- (2) Verify [K:E]=H and [K:F]=G, which imply $[E:F]=\frac{|G|}{|H|}=[G:H]$.
- (3) Suppose H is the fixing group of the field E. For $\sigma \in \operatorname{Gal}(K/F)$, verify¹ that the fixing group of $\sigma(E)$ is " $\sigma H \sigma^{-1}$ ".
- (4) Exhibit a set bijection $\operatorname{Emb}(E/F) \iff \{ \operatorname{cosets} \text{ of } H \leq G \}, \text{ with the cosets of } H \text{ in } G \text{ indexed by } \tau \in \operatorname{Gal}(K/F) \text{ (require that } \tau \text{ restricts to } \sigma \text{ on } E \text{)}.$
- (5) Then

 $\tau^{-1}\sigma$ is the identity on E, so $\sigma H = \tau H$.

(6) Here's a sketch.

Proposition 1.9 (Second isomorphism theorem). Let K/F be a Galois field extension, with F'/F any other field extension. There's a correspondence $N \leadsto K/F$ and $H \leadsto F'/F$. Then with $H \cap N$ corresponding to KF'/F and HN to $K \cap F'$, we deduce TODO.

Proposition 1.10 (Intersections of Galois extensions). Say that K_1/F and K_2/F are Galois over F. Then

$$\frac{(K_1\cap K_2)}{F}$$
 and $\frac{(K_1K_2)}{F}$ are Galois .

Corollary 1.11 (Elements that agree on the intersection of Galois groups). There's a means to lift $\frac{K_1K_2}{F}$. How?

How to embed $\mathbb{Q}(\sqrt[3]{2})$ in a Galois extension? There are gross counter examples here, e.g., $x^p - t \in \mathbb{Z}[t][x]$.

¹If we want to fix the image of E under automorphisms $\sigma(E) = E$ for all σ , then we need " $\sigma H \sigma^{-1} = H$ " for all σ , i.e., $H \triangleleft G$.

Definition 1.12 (Galois closure). Say $K \ge E \ge F$ is a tower of field extensions (assume finite and separable). Suppose K/F is maybe not Galois.

The analogy for groups is the following: we want to find N normal in G, such that $N \leq H$, and N is as large as possible in H. One can take

$$N := \cap_{g \in G} gHg^{-1}$$

to satisfy these requirements.

For fields, then, take the composite of the images of the splitting field Λ for F in K under the action of $\operatorname{Gal}(K/F)$. The composite of all fields in this orbit form the smallest field extension E such that E/F is Galois:

$$E := \cup_{\alpha \in \operatorname{Gal}(K/F)} \alpha^{-1} \Lambda \alpha.$$

Lecture 2.

2019-04-17