T.D. VI - Espaces vectoriels

I - Systèmes linéaires

Exercice 1. Résoudre les systèmes suivants.

1.
$$(\mathscr{S}_1)$$

$$\begin{cases} x + 2y - z &= 1\\ 3x + 4y - z &= 2\\ x + 3y + z &= 10 \end{cases}$$

3.
$$(\mathscr{S}_3)$$

$$\begin{cases} 2x - y + 4z &= 2\\ x + 2y - 3z &= 6\\ 4x + 3y - 2z &= 14 \end{cases}$$

4.
$$(\mathscr{S}_4) \left\{ x + y + z = 5 \right.$$
 2. $((8,4,1,-2),(1,3,0,5)).$

5.
$$(\mathscr{S}_5)$$

$$\begin{cases} x + 2y - 3z & = -1 \\ 3x - y + 2z & = 7 \\ 5x + 3y - 4z & = 2 \end{cases}$$

6.
$$(\mathscr{S}_6)$$

$$\begin{cases} 2x - 3y + 5z &= 8 \\ -x + 2y + 4z &= -11 \end{cases}.$$

Exercice 2. Identifier les réels λ pour lesquels le système d'équations suivant possède une solution.

$$(\mathscr{S}) \begin{cases} 2x_1 - x_2 + x_3 + x_4 &= 1\\ x_1 + 2x_2 - x_3 + 4x_4 &= 2\\ x_1 + 7x_2 - 4x_3 + 11x_4 &= \lambda \end{cases}$$

II - Familles de vecteurs

Exercice 3. Soit $n \ge 3$. Les ensembles suivants sont-ils des espaces vectoriels?

1.
$$E_1 = \{(x_1, \dots, x_n) \in \mathbb{R}^n \; ; \; x_1 = 0 \text{ ET } x_2 = 0\}$$

2.
$$E_2 = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 + x_2 = 0\}$$

3.
$$E_3 = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 \neq 0\}$$

4.
$$E_4 = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 = x_2\}$$

5.
$$E_5 = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 x_2 = 0\}$$

Exercice 4. (Familles libres) Montrer que les familles suivantes sont libres:

1.
$$((-1,-1,1,2),(1,-1,1,5))$$
.

2.
$$((8,4,1,-2),(1,3,0,5)).$$

3.
$$((1,1,3,2),(1,-1,1,3),(0,1,5,2))$$

4.
$$((1,2,3,4),(-1,3,2,1),(2,1,-1,1))$$

Exercice 5. (Familles génératrices) Déterminer une famille génératrice

1.
$$F_1 = \{(2\lambda, -\lambda, -3\lambda), \lambda \in \mathbb{R}\}$$

2.
$$F_2 = \{(2\lambda, 0, -3\lambda), \lambda \in \mathbb{R}\}.$$

3.
$$F_3 = \{(2\lambda + \mu, 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}.$$

4.
$$F_4 = \{(2\lambda + \mu, 5\lambda + 2\mu, 3\lambda - \mu), \lambda, \mu \in \mathbb{R}\}$$

Exercice 6. (Bases) Déterminer une base des sous-espaces vectoriels suivants:

1.
$$F_1 = \{(x, y, z) \in \mathbb{R}^3 : 2x - 3y + z = 0\}.$$

2.
$$F_2 = \{(x, y, z) \in \mathbb{R}^3 ; 4x + y + z = 0 \text{ ET } 3x + z = 0\}.$$

3.
$$F_3 = \left\{ (x, y, z) \in \mathbb{R}^3 ; \begin{cases} x - y - z &= 0 \\ 2x + 3y + z &= 0 \\ 5x + 5y + z &= 0 \end{cases} \right\}.$$

4.
$$F_4 = \left\{ (x, y, z, t) \in \mathbb{R}^4 \; ; \; \begin{cases} x + 2y + 3z + t &= 0 \\ x + y - t &= 0 \\ 2x + 3y + 2z &= 0 \end{cases} \right\}.$$

Exercice 7. (Équations cartésiennes) Pour chacune des questions suivantes, déterminer une équation cartésienne de l'espace vectoriel

1.
$$F_1 = \text{Vect}\{(1,1,2),(1,0,1)\}.$$

3.
$$F_3 = \text{Vect}\{(1,0,1),(2,3,1)\}.$$

2.
$$F_2 = \text{Vect}\{(1,2), (4,6)\}.$$
 4. $F_4 = \text{Vect}\{(1,1,1)\}.$

4.
$$F_4 = \text{Vect}\{(1,1,1)\}$$

T.D. VI - Espaces vectoriels

Exercice 8. (Coordonnées)

1. Montrer que $\mathcal{B}_1 = ((-1,1,1),(1,-1,1),(1,1,-1))$ est une base de \mathbb{R}^3 et déterminer les coordonnées du vecteur (8,4,2) dans cette base.

2. Montrer que $\mathscr{B}_2 = ((-1, -1, 1), (1, -1, 1), (2, 2, -1))$ est une base de \mathbb{R}^3 et déterminer les coordonnées du vecteur (8, 4, 2) dans cette base.

3. Soit $\mathscr{B}=((-1,-1,1),(2,2,-1))$ et $F=\mathrm{Vect}\,\mathscr{B}.$ Déterminer les coordonnées de (3,3,-1) dans la base $\mathscr{B}.$

III - Questions plus théoriques

Exercice 9. Soit F, G deux sous-espaces vectoriels de \mathbb{R}^n .

- **1.** Montrer que $F \cap G$ est un sous-espace vectoriel de \mathbb{R}^n .
- **2.** On note $F + G = \{f + g, (f, g) \in F \times G\}$. Montrer que F + G est un sous-espace vectoriel de \mathbb{R}^n .
- **3.** Montrer que, en général, $F \cup G$ n'est pas un sous-espace vectoriel de \mathbb{R}^n .

Indication: Exhiber un contre-exemple lorsque n = 2.

Exercice 10. Soit $F = \{(x_1, \dots, x_n) \in \mathbb{R}^n ; x_1 + \dots + x_n = 0\}$. Déterminer la dimension et une base de F.

IV - Calcul matriciel

Exercice 11. Soit
$$a, b \in \mathbb{R}$$
, $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,

B = A - bJ et $n \in \mathbb{N}$.

- **1.** Déterminer J^n .
- **2.** À l'aide de la formule du binôme de Newton, calculer A^n .

Exercice 12. Soit
$$\alpha, \beta, \gamma \in \mathbb{R}$$
, $A = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$, $B = A - I_3$ et $n \in \mathbb{N}$.

- **1.** Cacluler B^n .
- **2.** À l'aide de la formule du binôme de Newton, calculer A^n .

V - Matrices & Espaces vectoriels

Exercice 13. Soit $A \in \mathscr{M}_n(\mathbb{R})$ et $\mathscr{C}(A) = \{M \in \mathscr{M}_n(\mathbb{R}) ; AM = MA\}$ l'ensemble des matrices qui commutent avec A.

- 1. Donner des exemples de matrices appartenant à $\mathscr{C}(A)$.
- **2.** Montrer que $\mathscr{C}(A)$ est un espace vectoriel.

Exercice 14. Soit
$$A = \begin{pmatrix} 1 & 4 \\ -3 & 2 \end{pmatrix}$$
.

- **1.** Montrer que la famille (I_2, A) est libre.
- **2.** Exprimer A^2 en fonction de I_2 et de A.
- **3.** En déduire la dimension de l'espace vectoriel $F = \text{Vect}\{I_2, A, A^2\}$.

Exercice 15. Soit
$$A = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
 et $F = \text{Vect } \{I_3, A, A^2\}$.

- 1. Montrer que (I_3, A, A^2) est une famille libre et en déduire la dimension de F.
- **2.** Calculer $A^3 3A^2 4A + 3I_3$.
- **3.** Montrer que A est inversible et montrer que $A^{-1} \in F$.
- **4.** Montrer que, pour tout n entier naturel, $A^n \in F$.
- **5.** En déduire la dimension de Vect $\{A^k, k \in \mathbb{N}\}$.

Exercice 16. (\mathscr{P}) On note $\mathscr{S}_3(\mathbb{R})$ l'ensemble des matrices symétriques de taille 3.

- 1. Montrer que $\mathscr{S}_3(\mathbb{R})$ est un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{R})$.
- **2.** Déterminer une base de $\mathscr{S}_3(\mathbb{R})$.
- **3.** En déduire la dimension de $\mathscr{S}_3(\mathbb{R})$.
- **4.** Généraliser les questions précédentes à l'ensemble $\mathscr{S}_n(\mathbb{R})$ des matrices symétriques de taille n.

Exercice 17. (**) Soit
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 2 & 1 \\ -10 & 0 & 5 \end{pmatrix}$$
. Montrer que la famille $(I_3, A, A^2, A^3, \dots, A^9)$ est liée.