Задача Коши для уравнения теплопроводности. Формула Пуассона

Рассмотрим в $\Pi_{[0,T]}$ задачу

$$u_t = u_{xx}, \qquad (t, x) \in \Pi_{(0,T]},$$
 (0.1)

$$u(0,x) = \varphi(x), \qquad x \in E_1. \tag{0.2}$$

Всюду ниже предполагается, что выполняется условие

$$|\varphi(x)| \le Me^{\alpha|x|}, \qquad x \in E_1, \qquad M, a - const > 0.$$
 (0.3)

Условие (0.3) - условие на рост функции $\varphi(x)$ при $x \to \infty$. Функция $\varphi(x)$ растет не быстрее, чем $e^{\alpha|x|}$. Ниже мы докажем, что решение задачи (0.1), (0.2) дается формулой Пуассона [?]

$$u(t,x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} \varphi(\xi) d\xi.$$
 (0.4)

Лемма 3. При выполнении условия (0.3) интеграл (0.4) сходится при $(t,x)\in\Pi_{(0,+\infty)}$ и

$$|u(t,x)| \le 2Me^{a^2t}e^{a|x|}. (0.5)$$

Сходимость равномерная по $t,x\in G$, где G - произвольная ограниченная область из $\Pi_{(0,T]}$.

Доказательство леммы 3 следует из соотношений

$$|u(t,x)| = \left| \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi - x)^2}{4t}} \varphi(\xi) d\xi \right| \le$$

$$\frac{1}{2\sqrt{\pi t}} \int\limits_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} |\varphi(\xi)| \, d\xi \leq \{ \frac{\xi-x}{2\sqrt{t}} = \eta \} = \frac{M}{\sqrt{\pi}} e^{a|x|} \int\limits_{-\infty}^{+\infty} e^{-\eta^2 + a|\eta| 2\sqrt{t}} \, d\eta = \frac{M}{2\sqrt{t}} e^{-\eta^2 + a|\eta| 2\sqrt{t}} \, d\eta = \frac{M}{2\sqrt{t}}$$

(в силу четности подынтегральной функции) =

$$\frac{2M}{\sqrt{\pi}} e^{a|x|} \int_{-\infty}^{+\infty} e^{-\eta^2 + a|\eta| 2\sqrt{t} - a^2 t} e^{a^2 t} d\eta = \frac{2M}{\sqrt{\pi}} e^{a|x|} e^{a^2 t} \int_{-\infty}^{+\infty} e^{-(\eta - a\sqrt{t})^2} d\eta < \frac{2M}{\sqrt{t}} e^{a|x|} e^{a|x$$

$$<\{\eta - a\sqrt{t} = z, -a\sqrt{t} < z < +\infty\} < \frac{2Me^{a|x|}e^{a^2t}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} dz = 0$$

(из анализа известно, что интеграл Пуассона
$$\int\limits_{-\infty}^{+\infty}e^{-z^2}\,dz=\sqrt{\pi})=$$

$$=2Me^{a|x|}e^{a^2t}.$$

Сходимость равномерная в любой ограниченной области G переменных t,x, принадлежащей $\Pi_{(0,T]}.$

Лемма 3 доказана.

Лемма 4. При выполнении условия (0.3) функция u(t,x) имеет производные по t,x любого порядка при t>0 и

$$\frac{\partial^{n+m} u(t,x)}{\partial t^m \partial x^n} = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{\partial^{n+m}}{\partial t^m \partial x^n} \left[e^{-\frac{(\xi-x)^2}{4t}} \frac{1}{\sqrt{t}} \right] \varphi(\xi) d\xi. \tag{0.6}$$

При этом интеграл в правой части (0.6) сходится равномерно в любом прямоугольнике $R_{[t_0,T,r]}=\{(t,x)|0< t_0\leq t\leq T, |x|< r\}.$

Доказательство. Рассмотрим подынтегральное выражение при $(t,x) \in R_{[t_0,T,r]}$.

$$\frac{\partial^{n+m}}{\partial t^m \partial x^n} \left[e^{-\frac{(\xi-x)^2}{4t}} \frac{1}{\sqrt{t}} \right] = \left[\sum_{\text{KOHeYHAS}} \frac{(\xi-x)^{\text{СТЕПЕНЬ}}}{t^{\text{СТЕПЕНЬ}}} \right] e^{-\frac{(\xi-x)^2}{4t}} =$$

(выражение $\sum_{\text{конечная}} \frac{(\xi-x)^{\text{степень}}}{t^{\text{степень}}}$ можно записать как некоторый полином $P(t,x,\xi)$ от неизвестной переменной ξ при фиксированных $t,\,x$)= $P(t,x,\xi)e^{-\frac{(\xi-x)^2}{4t}}$. Здесь $P(t,x,\xi)$ - многочлен степени k, где k зависит от $m,\,n$.

Имеет место неравенство

$$|P(t, x, \xi)| \le C(t_0, T, r)(1 + |\xi|^k).$$

Здесь постоянная c зависит лишь от t_0, T, r и не зависит от ξ . Так как $e^{|\xi|} = 1 + |\xi| + \frac{|\xi|^2}{2!} + \dots + \frac{|\xi|^k}{k!} + \dots$ и $(1 + |\xi|^k) \le e^{|\xi|} k!$, то $|P(t, x, \xi)| \le N e^{|\xi|}$, где $N = k! C(t_0, T, r)$, и $|\varphi(\xi)P(t, x, \xi)| \le \widetilde{M} < e^{(a+1)|\xi|}$, $\widetilde{M} = NM$.

В силу леммы 3 интеграл (0.6) сходится. Здесь вместо φ , M, a берутся φP , \widetilde{M} , a+1. Сходимость равномерная по $(t,x) \in R(t_0,T,r)$. По теореме о дифференцируемости несобственных интегралов [?] функция u(t,x) имеет непрерывные производные $\frac{\partial^{n+m}}{\partial t^m \partial x^n}$ и выполняется равенство (0.6).

Лемма 5. Функция u(t,x), заданная соотношением (0.4), является решением уравнения (0.1) при $t>0, x\in (-\infty,+\infty)$.

Доказательство. Из (0.6) следует, что

$$u_t(t,x) - u_{xx}(t,x) = \int_{-\infty}^{+\infty} \left\{ \frac{\partial}{\partial t} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi - x)^2}{4t}} - \frac{\partial^2}{\partial x^2} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi - x)^2}{4t}} \right\} \varphi(\xi) d\xi.$$

Прямым вычислением легко проверить, что $\frac{\partial}{\partial t} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi-x)^2}{4t}} - \frac{\partial^2}{\partial x^2} \frac{1}{2\sqrt{\pi t}} e^{-\frac{(\xi-x)^2}{4t}} = 0$ при $(t,x) \in \Pi_{(0,T]}$. Таким образом, в $\Pi_{(0,T]}$ выполняется $u_t - u_{xx} = 0$ и лемма 5 доказана.

Лемма 6. Пусть x^0 - точка непрерывности функции $\varphi(x)$. Тогда $\lim_{t\to +0} u(t,x)=\varphi(x^0)$. $x\to x^0$

Доказательство. Так как
$$\frac{1}{2\sqrt{\pi t}}\int\limits_{-\infty}^{+\infty}e^{-\frac{(\xi-x)^2}{4t}}\varphi(x^0)\,d\xi =$$
 (замена $\eta=$

$$\frac{\xi - x}{2\sqrt{t}}) = \frac{\varphi(x^0)}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\eta^2} d\eta = \varphi(x^0), \text{ To}$$

$$|u(t, x) - \varphi(x^0)| = \left| \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi - x)^2}{4t}} (\varphi(\xi) - \varphi(x^0)) d\xi \right| \le \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi - x)^2}{4t}} |\varphi(\xi) - \varphi(x^0)| d\xi = \left(\text{замена } \zeta = \frac{\xi - x}{2\sqrt{t}} \right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta = \frac{1}{\sqrt{\pi}} \left\{ \int_{-\infty}^{-N} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta + \int_{N}^{+\infty} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta + \int_{N}^{+\infty} e^{-\zeta^2} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| d\zeta \right\} = I_1 + I_2 + I_3.$$

Подынтегральная функция в I_1 (и в I_2) удовлетворяет тому же условию роста, что и функция $\varphi(x)$. Пусть G - ограниченная область в $\Pi_{(0,T]}$ и $(t,x^0)\in G$. По лемме 3 интеграл $\int\limits_{-\infty}^{+\infty}e^{-\zeta^2}|\varphi(x+2\sqrt{t}\zeta)-\varphi(x^0)|\,d\zeta$ сходится равномерно по t и x в G, в силу чего при выборе достаточно большого N: $I_1<\frac{\varepsilon}{3},\ I_2<\frac{\varepsilon}{3}$ при любых $(t,x)\in G$. Зафиксируем это N. Рассмотрим I_3 . Пусть задано $\varepsilon>0$. Выберем $\delta=\delta(\varepsilon)$ такое, что при всех y таких, что $|x^0-y|<\delta$, выполняется неравенство

$$|\varphi(y) - \varphi(x^0)| < \frac{\varepsilon}{6N}. \tag{0.7}$$

Последнее имеет место в силу непрерывности функции $\varphi(x)$ в точке x^0 .

Пусть
$$(t,x) \in G = \{(t,x) | 0 < t < t_0, |x-x^0| < \delta\}$$
 и

$$2\sqrt{t}N + |x - x^0| < \delta. \tag{0.8}$$

Тогда

$$I_3 \le \int_{-N}^{N} |\varphi(x + 2\sqrt{t}\zeta) - \varphi(x^0)| \, d\zeta \le \int_{-N}^{N} \frac{\varepsilon}{6N} \, d\xi = \frac{\varepsilon}{3}.$$

Доказано, что при всех (t,x), удовлетворяющих (0.8), выполняется $|u(t,x)-\varphi(x^0)|<\varepsilon$. Лемма 6 доказана.

Из лемм 3-6 следует

Теорема. При условии (0.3) функция u(t,x), заданная равенством (0.4) (интеграл Пуассона) есть решение задачи Коши (0.1), (0.2), $u \in C_{(0,T]}^{\infty}$.

Свойства решения.

Свойство 1. Если $|\varphi(x)| < N, x \in E_1$, то $|u(t,x)| < N, (t,x) \in \Pi_{(0,+\infty)}$. Доказательство.

$$|u(t,x)| \le \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} |\varphi(\xi)| \, d\xi \le \frac{N}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} \, d\xi =$$

$$= \left(\frac{\xi - x}{2\sqrt{t}} = z\right) = \frac{N}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2} \, dz = N.$$

Свойство 2. Если $\varphi(x)$ - нечетная функция, то u(t,0)=0.

Доказательство. Действительно,

$$u(t,0) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{\xi^2}{4t}} \varphi(\xi) d\xi = 0,$$

что следует из нечетности подынтегрального выражения.

Рассмотрим задачу о распространении тепла в полуограниченном стержне, боковая поверхность которого теплоизолирована:

$$u_t = u_{xx}, t > 0, x > 0,$$
 (0.9)

$$u(0,x) = u_0(x), x > 0,$$
 (0.10)

$$u(t,0) = 0, t \ge 0. (0.11)$$

Продолжим функцию $u_0(x)$ нечетно на всю действительную ось, обозначив продолжение $U_0(x)$:

$$U_0(x) = \begin{cases} u_0(x), & x \ge 0 \\ -u_0(x), & x < 0. \end{cases}$$

Функция

$$U(t,x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(\xi-x)^2}{4t}} U_0(\xi) d\xi$$
 (0.12)

есть решение задачи (0.1), (0.2) при $u_o(x) = U_0(x)$. Обозначим через u(t,x) сужение U(t,x) на множество $\Pi_1 = \{(t,x)|t\geq 0, x\geq 0\}$. Так как U(t,0) = 0 в силу свойства 2, то u(t,x) есть решение задачи (0.9) - (0.11).

Замечание. Считаем, что функция $U_0(x)$ удовлетворяет условию (0.3).