Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liv.ac.uk

v.selis@liv.ac.uk

Digital 4: Introduction to sequential logic

Outline

- Sequential circuits
- Propagation / gate delay
- Timing diagrams
- Latches
- Flip flops

Use VITAL!:

- Stream lectures
- Handouts
- Notes and Q&A each week
- Discussion Board
- Exam resources

www.liv.ac.uk/vital

Learning Resources

Previous material

Basic gates ✓

Combinational and sequential logic ✓

Course textbook – please borrow and use it!

Sequential logic – revision

Sequential switching circuits have the property that the output depends not only on the present input but also on the **past sequence** of inputs.

So the "state" becomes significant to determining the output.

Latches and flip-flops are commonly used as memory devices in sequential circuits.

In order to construct a switching circuit that has memory, such as a latch or flip-flop, we must introduce feedback into the system.

Gate delays and timing diagrams

The output of a logic gate does not change instantaneously.

 The output change is going to be delayed with respect to the input change.

This delay is called propagation delay

Propagation delay from 0 to 1, €₁.

Propagation delay from 1 to 0, €₂.

In practice $\epsilon 1$ and $\epsilon 2$ can be different

Feedback loop with two Inverters

Consider a feedback loop circuit with two inverters.

This circuit has two stable states:

Ring Oscillator – timing diagram

Total period of oscillation = 6ϵ (assumes propagation delay is identical for each of the three gates)

??

Question

The inverter in the figure has a propagation delay of 4 ns and the AND gate of 8 ns. Draw a timing diagram for the circuit showing a, b, c. a and c are initially equal to 0, b is initially one. After 20 ns a becomes 1 for 90 ns and then 0 again.

Latches – two stable states

https://www.flickr.com/photos/58026849@N03/7134296191/

Set-Reset Latch

The S-R latch can be put into one of two stable output states.

These are triggered by an input pulse at input S (to **set** to one stable state, P=0, Q=1) or at R (to **reset** to the other stable state, P=1, Q=0)

Initial state: S=R=0, P=Q'=1

Set-Reset Latch

The S-R latch can be put into one of two stable output states.

These are triggered by an input pulse at input S (to **set** to one stable state, P=0, Q=1) or at R (to **reset** to the other stable state, P=1, Q=0)

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Pulse at S: S=1, R=0, P=Q'=0

Pulse at R: S=0, R=1, P=Q'=1

Initial state: S=R=0, P=Q'=1

Pulse at S removed: S=0, R=0, P=Q'=0

S-R latch timing

S-R Latch table

The circuit is said to have "memory" because output depends not just on present inputs, but also on the previous sequence of inputs

S-R latch table

S(t)	R(t)	Q(t)	Q(t+ε)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

Q is usually referred to as the output of the S-R latch

Q = 1 is a 'set' state Q = 0 is a 'reset' state

Inputs not allowed *Cross-coupled* form emphasises the gates' symmetry:

ε is the propagation delay

The set-reset latch is *asynchronous*: output changes shortly after the input, rather than according to an external clock signal

Switch Debouncing with an S-R Latch

When a mechanical switch is opened or closed, the switch contacts vibrate or bounce open & closed several times.

The pull-down resistors assure that when the switch is between a and b, the latch inputs S and R are at logic 0.

Latch shorthand

SR Latch

We won't often include the "L"

Ga	ted	D	La	tc	h

G	Q ⁺	
0	mem	
1	D	

Gated D Latch

Gated D-Latch or Transparent Latch

A gated D-latch has two inputs, a data input (D) and a gate input (G).

This is a level-sensitive latch with an enabling input (G)

'Transparent' because **if G=1**: output (Q) = D (data) input

G=0
$$\rightarrow$$
 S=R=0 \rightarrow no change (memory)
G=1, D=0 \rightarrow S=0, R=1 \rightarrow RESET (Q⁺ becomes or stays 0)
G=1, D=1 \rightarrow S=1, R=0 \rightarrow SET (Q⁺ becomes or stays 1)

Gated D-Latch or Transparent Latch

D

Q

mem

Flip-flops

Flip-flops:

• We define the flip-flop as being a memory device (e.g. latch) that changes its output state in response to a clock input. Clocked circuits prevent response to 'glitches'.

Don't be confused...:

- SR latches are sometimes referred to by other sources as "SR flip-flops"
- In that case, our 'SR flip-flop' is referred to as a 'gated' or 'clocked' SR flip-flop

Why use flip-flops not latches?

- Timing avoids the effect of "glitches"
- Example of a glitch:

Logical outcome: X = TRUE for any A

Example of actual outcome:

A \rightarrow 0, during inverter propagation delay, A' still 0 so X = FALSE temporarily. This is a **glitch**.

A glitch at D might trigger an unwanted change (latch), but this can be avoided if the clock is in control (flip-flop)

D)	Action at D change		D	Action at next clock pulse
0	١	"RESET", Q+= 0	VS	0	"RESET", Q+= 0
1		"SET", Q+= 1		1	"SET", Q+= 1

S-R flip-flop

Operation summary:

$$S = R = 0$$
 No state change

$$S = 1, R = 0$$
 Set Q to 1 (after active Ck edge)

$$S = 0, R = 1$$
 Reset Q to 0 (after active Ck edge)

$$S = R = 1$$
 Not allowed

This flip-flop changes state after the rising edge of the clock.

S-R flip-flop timing analysis

S-R flip-flop implemented with two latches

Timing analysis

Edge-Triggered D-type Flip-Flop

The **flip-flop** output changes only in response to the clock (CLK), not to a change in D.

(It is still affected by D, but does not respond directly to the change in D.)

Arrowhead > identifies the clock input

Rising-edge: 0 to 1 clock transition

rising-edge-trigger

falling-edge trigger

An inversion bubble on the clock input indicates a falling-edge trigger.

The "active edge" refers to the clock edge that triggers the change (i.e. rising or falling)

Edge-Triggered D-type Flip-Flop

A falling-edge triggered D flip-flop can be constructed from two gated D latches and an inverter – Master/Slave.

CLK $1 \rightarrow 0$:

 $G_1 \rightarrow 0$ so $D_2 = Q_1 = mem$ Before the edge, $G_1 = 1$ so Q_1 was D. So now Q_1 and D_2 store this.

 $G_2 \rightarrow 1$ so $Q = Q_2 = D_2 = mem$ so: $Q^+ = D$, meaning $Q^+ = whatever D$ was AT THE TIME OF the clock edge.

A rising-edge-triggered D flip-flop

CLK $0 \rightarrow 1$:

Same applies: Q+ = D

Q⁺ = **D** is the 'characteristic equation'

Edge-Triggered D-type Flip-Flop

The operation can be summarised in an action table.

D	Action at next clock pulse
0	"RESET", Q+= 0
	"SET", Q+= 1

The output after the clock pulse, Q⁺, is equal to the D input at the time of the clock pulse.

Setup and Hold Times for an Edge-Triggered D Flip-Flop

The **propagation delay** of a flip-flop (t_p) is the time between the active edge of the clock and the resulting change in the output. 'Flip-flop delay'.

The D input also creates timing issues:

Amount of time that D must be stable **before** the active edge, is called the **setup time** (t_{su}) .

The amount of time that D must hold the same value after the active edge, is called the hold time (t_h) .

If D changes in the prohibited time interval, i.e. 'at or too close to the time of the active edge', the output is unpredictable.

Setup and Hold Times for a Rising-Edge-Triggered D Flip-Flop

D only allowed to change in the shaded regions (not during t_{su} or t_h)

Determination of Minimum Clock Period

Suppose the inverter propagation delay is 2 ns the FF propagation delay is 5 ns, and its setup time is 3 ns. (The hold time does not affect this calculation)

D is not in its new state long enough before the next rising edge (3ns setup time required)

9 ns is not enough for the clock period

Determination of Minimum Clock Period

15 ns is more than enough for the clock period.

Determination of Minimum Clock Period

10 ns is just enough for the clock period.

Min. Clock Period in 2 Flip-flop System

Set-up time and hold time are **not delays**. They are just timing constraints for the correct operation of flip-flops. The minimum clock period in a system does not depend on the hold time of flip flops.

Min. Clock Period in a complex circuit

In a circuit with one clock & many flip-flops & combinational circuits, the longest propagation delay of the combinational circuits determines the minimum required clock period.

Clock frequency and gate delay

From Intel presentation, 2004.

T or Toggle Flip-Flop

(Edge-triggered D flip-flop:) Action at next clock pulse

 $Q^{+} = 0$ $Q^{+}=1$

When T=1 the flip-flop changes state after the active edge of the clock.

When T=0 no state change occurs.

From the truth table:

$$Q^{+} = D = \overline{T}Q + T\overline{Q} = T \oplus Q$$

T	Q	$Q^{\scriptscriptstyle +}$
0	0	0
0	1	1
1	0	1
1	1	0

T or Toggle Flip-Flop

T	Q	Q^+
0	0	0
0	1	1
1	0	1
1	1	0

- T | Action at next clock pulse
- No change, $Q^+=Q$ 1 Toggle (change), $Q^+=Q$

J-K Flip-Flop

J	K	Q	Q^+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J		Action at next clock pulse
0	0	No change, $Q^+ = Q$
0	1	Reset, $Q^+=0$
1	0	Set, $Q^{+}=1$
1	1	No change, $Q^+=Q$ Reset, $Q^+=0$ Set, $Q^+=1$ Toggle, $Q^+=Q$

Summary and suggested reading

Gate delays, timing diagrams (Section 8.3)

Set-Reset latch (Section 11.2)

Gated D-latch (Section 11.3)

Edge-triggered D flip-flop (Section 11.4)

S-R, JK and T flip-flops (Sections 11.5-7)

Roth and Kinney Fundamentals of Logic Design

