Curso: Econometría 1

Profesor: Luis García (<u>lgarcia@pucp.edu.pe</u>)
Jefa de práctica: Yasmeen Destre (<u>y.destre@pucp.pe</u>)

PRÁCTICA CALIFICADA 4

I. TEORÍA Y DEMOSTRACIONES [14 PUNTOS]

- Defina formalmente convergencia en probabilidad y convergencia en media cuadrática.
 (2 puntos)
 - Convergencia en probabilidad: se dice que una variable aleatoria X_n converge en probabilidad a una constante c si $\lim_{n\to\infty} \Pr(|X_n-c|>\varepsilon)=0$ para cualquier $\varepsilon>0$ y $P\lim X_n=c$.
 - Convergencia en media cuadrática: se dice que una variable aleatoria X_n converge en media cuadrática a una constante c si $\lim_{n\to\infty} E[(X_n-c)^2]=0$. Equivalentemente, se cumple que si $\lim_{n\to\infty} E[X_n]=c$ y $\lim_{n\to\infty} Var[X_n]=0$. Entonces, X_n converge en media cuadrática a la constante c.
- 2. Muestre las consecuencias sobre la media y la varianza del estimador MCO cuando tenemos perturbaciones no esféricas. (2 puntos)

Se asume lo siguiente $Var(u|X) = V \neq \sigma^2 I$

La matriz V puede contener elementos distintos en su diagonal principal y elementos diferentes de cero fuera de esa diagonal.

Veamos que sucede con el esperado de $\hat{\beta}$:

$$E[\hat{\beta}_{mco}] = \beta + (X'X)^{-1}X'E[u] = \beta$$

Ahora bien, calculemos la matriz de varianzas y covarianzas:

$$Var (\hat{\beta}_{mco}) = E[(\hat{\beta} - E[\hat{\beta}])(\hat{\beta} - E[\hat{\beta}])']$$

$$= E[(X'X)^{-1}X'uu'X(X'X)^{-1}]$$

$$= (X'X)^{-1}X'E[uu']X(X'X)^{-1}$$

$$= (X'X)^{-1}X'VX(X'X)^{-1}$$

3. Se sabe que $\lim_{n\to\infty} \frac{1}{n}X'X = Q$, donde Q es una matriz definida positiva y finita. Muestre que el vector de estimadores de MCO en el modelo de regresión lineal clásico multivariado es consistente. Intuitivamente, ¿qué implica que dicho estimador sea consistente? (2 puntos)

$$\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + u) = \beta + (X'X)^{-1}X'u$$

$$\hat{\beta} = \beta + \left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'u\right)$$

$$\operatorname{Plim}\hat{\beta} = \beta + \left(\operatorname{Plim}\frac{1}{n}X'X\right)^{-1}\operatorname{Plim}\left(\frac{1}{n}X'u\right)$$

Como X es fija, el Plim de $\frac{1}{n}X'X$ es lo mismo que su límite cuando n tiende a infinito: $\lim_{n\to\infty}\frac{1}{n}X'X=Q$. Entonces:

$$\operatorname{Plim}\hat{\beta} = \beta + Q^{-1}\operatorname{Plim}\left(\frac{1}{n}X'u\right)$$

Para mostrar que $\hat{\beta}$ es consistente (Plim $\hat{\beta} = \beta$), debemos probar que Plim $\left(\frac{1}{n}X'u\right) = 0$. Para esto, usaremos la convergencia medio-cuadrática:

$$E\left[\frac{1}{n}X'u\right] = \frac{1}{n}X'E[u] = 0$$

$$Var\left(\frac{1}{n}X'u\right) = E\left[\frac{1}{n}X'uu'X\frac{1}{n}\right] = \frac{1}{n}X'E[uu']X\frac{1}{n} = \frac{1}{n}X'\sigma^2IX\frac{1}{n} = \frac{\sigma^2}{n}\left(\frac{1}{n}X'X\right)$$

Tomamos el límite:

$$\lim_{n\to\infty} Var\left(\frac{1}{n}X'u\right) = \lim_{n\to\infty} \frac{\sigma^2}{n} \times \lim_{n\to\infty} \left(\frac{1}{n}X'X\right) = 0 \times Q = 0$$

Con esto, queda demostrado que $\frac{1}{n}X'u$ converge medio cuadráticamente a 0, lo que implica que Plim $\left(\frac{1}{n}X'u\right)=0$. Con esto, queda demostrado que el estimador MCO es consistente:

$$Plim\hat{\beta} = \beta$$

Intuitivamente, esto quiere decir que la sucesión de estimadores generados al aumentar el número de observaciones converge en probabilidad al parámetro poblacional.

- 4. Se tiene una muestra aleatoria con la siguiente distribución: $f(x) = \left(\frac{1}{\theta}\right)e^{-x/\theta}$, donde $x \ge 0$, $\theta > 0$.
 - a. Plantee la función de verosimilitud y su logaritmo. (2 puntos)

$$L = \Pi\left[\left(\frac{1}{\theta}\right)e^{-\frac{x}{\theta}}\right]$$

Log - likelihood = lnL:

$$lnL = -nln\theta - \left(\frac{1}{\theta}\right) \sum_{i=1}^{n} x_i$$

¹ Greene, W. H. (2003). Econometric analysis. Pearson Education India.

b. Encuentra el estimador $\hat{\theta}$ de máxima verosimilitud. (2 puntos)

$$\frac{\partial lnL}{\partial \theta} = -\frac{n}{\theta} + \left(\frac{1}{\theta^2}\right) \sum_{i=1}^n x_i = 0$$

$$\hat{\theta}_{MV} = \left(\frac{1}{n}\right) \sum_{i=1}^n x_i = \bar{x}$$

c. Obtenga la distribución asintótica del estimador. (2 puntos)

$$\{-E[\frac{\partial^{2} lnL}{\partial \theta^{2}}]\}^{-1} = \{-E[\frac{n}{\theta^{2}} - (\frac{2}{\theta^{3}}) \sum_{i=1}^{n} x_{i}]\}^{-1}$$

$$Si E[x_{i}] = \theta$$

La varianza asintótica es $\frac{\theta^2}{n}$

$$\hat{\theta}_{MV} \sim N(\theta, \frac{\theta^2}{n})$$

d. Plantee la hipótesis y los estadísticos de Razón de Verosimilitud y Wald para la hipótesis $\theta = 1$. (2 puntos)

i. Test de Razón de Verosimilitud

Sea θ un vector de K parámetros. Deseamos comprobar la hipótesis H_0 : $C(\theta) = 1$, donde C(.) Es una función continua $R^k \to R^q$. Sea $\hat{\theta}$ el estimador MV y sea $\tilde{\theta}$ el estimador MV maximiza $lnL(\theta)$, pero sujeta a la restricción $C(\theta) = 1$ (estimadores restringidos).

$$RV = -2[lnL(\tilde{\theta}) - lnL(\hat{\theta})]$$

Conocemos lnL lo evaluamos en $\theta=1$ para obtener $lnL(\tilde{\theta})$ y $\hat{\theta}_{MV}$ para obtener $lnL(\hat{\theta})$, luego comparamos con $X_{1-\alpha}^2$ (1), donde $\alpha\%$ de significancia.

En este caso,
$$\tilde{\theta}=1$$
 por lo tanto $lnL(\tilde{\theta})=-nln(1)-\left(\frac{1}{1}\right)\sum_{i=1}^{n}x_{i}=-\sum_{i=1}^{n}x_{i}=-n\bar{x}$

También,
$$lnL(\hat{\theta}) = -nln\hat{\theta} - \left(\frac{1}{\hat{\theta}}\right)\sum_{i=1}^{n} x_i = -nln\bar{x} - n$$

Luego,

$$RV = -2[-n\bar{x} + nln\bar{x} + n] = -2n[-\bar{x} + ln\bar{x} + 1] = 2n[\bar{x} - ln\bar{x} - 1]$$

ii. Test de Wald

Tenemos H_0 : $\theta = 1$ basándose en estimadores de MV.

El estadístico W de Wald sería:

$$W = (\hat{\theta} - 1)' [Var(\hat{\theta} - 1)]^{-1} (\hat{\theta} - 1)$$

> El cual se distribuye asintóticamente como un $X^2(q)$ bajo la hipótesis nula. Luego comparamos $W > X_{1-\alpha}^2(q)$, para ver si se rechaza la hipótesis nula con α % de significancia.

Reemplazando según lo calculado, y notando que $Var(\hat{\theta} - 1) = Var(\hat{\theta})$,

$$W = (\bar{x} - 1)' \left[\frac{\bar{x}^2}{n} \right]^{-1} (\bar{x} - 1) = \frac{n(\bar{x} - 1)^2}{\bar{x}^2}$$

II. PROGRAMACIÓN [6 PUNTOS]

5. Utilizando la base de datos "salarios.dta" y el modelo:

$$w_{earnings_i} = \beta_1 + \beta_2 y_{exp} erience_i + \beta_3 y_{exp} = schooling_i + \beta_4 sex_i + u_i,$$
 (*)

a. Enuncia cada paso del test de White. (2 puntos)
 Se parte de la idea que la heterocedasticidad está relacionada con las variables explicativas del modelo, mediante una relación funcional:

$$\sigma_i^2 = f(X_2, X_3, \dots, X_k)$$

Donde f(.) es una función polinómica. Los pasos del test son:

- i. Estimar por MCO el modelo $y = X\beta + u$, calcular los residuos e_i y e_i^2 .
- ii. Estimar un modelo tomando a e_i^2 como endógena contra las explicativas, sus cuadrados y productos cruzados. Por ejemplo, si es un modelo donde las explicativas son X_{2i} , X_{3i} y la constante, la regresión auxiliar es :

$$e_i^2 = \alpha_0 + \alpha_1 X_{2i} + \alpha_2 X_{3i} + \alpha_3 X_{2i}^2 + \alpha_4 X_{3i}^2 + \alpha_5 X_{2i} X_{3i} + \varepsilon_i$$

- iii. La hipótesis nula de homocedasticidad es H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$. Bajo esta hipótesis, es estadístico $n \times R_{aux}^2 \sim X^2(q)$ donde q es igual a 5 en este ejemplo y R_{aux}^2 es el R-cuadrado de la regresión del paso 2. Si $n \times R_{aux}^2$ es mayor que el valor critico definido por el percentil $X_{1-\alpha}^2(q)$, se rechaza la hipótesis nula de homocedasticidad con $\alpha\%$ de significancia.
- **b.** Implemente el test de White (PASO A PASO). Comente los resultados encontramos detalladamente de cada etapa. (2.5 puntos)
- i. Regresión del modelo original:

$$w_earnings_i = \beta_1 + \beta_2 y_\exp erience_i + \beta_3 y_schooling_i + \beta_4 sex_i + u_i,$$

. reg W_EARNINGS Y_EXPERIENCE Y_SCHOOLING SEX

Number of obs =	
- (-)	
Prob > F = 0	0.0000
R-squared = 0	0.2789
Adj R-squared = 0	0.2749
Root MSE = 5	535.22
t [95% Conf. Inte	nterval)
00 15.245 37.	37.69273
00 91.30677 128	128.6521
00 257.0413 440	440.4552
00 -1669.198 -942	942.6615
F(3, 536) - Prob > F - (R-squared - (Adj R-squared - (Root MSE = 5 [95% Conf. Into 15.245 37. 91.30677 128 257.0413 446	0 0 5 nte 37.

Capturar los residuos: $predict\ e, residuals$ Generar los residuos al cuadrado: $gen\ e2 = e^2$

ii. Regresión auxiliar

$$\begin{array}{ll} e_i^2 & = & \alpha_1 + \alpha_2 y_ \exp erience_i + \alpha_3 y_ schooling_i + \alpha_4 sex_i \\ & + \alpha_5 y_ \exp erience_i^2 + \alpha_6 y_ schooling_i^2 + \alpha_7 sex_i^2 + \\ & + \alpha_8 y_ \exp erience_i.y_ schooling_i + \alpha_9 y_ \exp erience_i.sex_i \\ & + \alpha_{10} y_ schooling_i.sex_i. + u_i. \end{array}$$

. reg e2 Y_EXPERIENCE Y_SCHOOLING SEX c.(Y_EXPERIENCE Y_SCHOOLING SEX)#c.(Y_EXPERIENCE Y_SCHOOLING SEX)
note: c.SEX#c.SEX omitted because of collinearity

	Source	SS	df	MS	Number of obs =	540
-					F(8, 531) =	6.08
	Model	4.8068c+13	В	6.0085c+12	Prob > F -	0.0000
	Residual	5.2468e+14	531	9.8810e+11	R-squared =	0.0839
-					Adj R-squared =	0.0701
	Total	5.7275e+14	539	1.0626e+12	Root MSE =	9.9 e+ 05

e2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Y_EXPERIENCE Y_SCHOOLING SEX	-87813.66 -305834.3 -1460263	98936.05 191099.5 733431.3	-0.89 -1.60 -1.99	0.375 0.110 0.047	-282167.7 -681238.1 -2901046	106540.4 69569.55 -19479.9
c.Y_EXPERIENCE#c.Y_EXPERIENCE	1797.655	1974.92	0.91	0.363	-2081.961	5677.271
c.Y_EXPERIENCE#c.Y_SCHOOLING	3528.886	4554.693	0.77	0.439	-5418.542	12476.31
c.Y_EXPERIENCE#c.SEX	18755.39	22016.19	0.85	0.395	-24494.14	62004.91
c.Y_SCHOOLING#c.Y_SCHOOLING	10020.29	5538.131	1.81	0.071	-859.047	20899.62
c.Y_SCHOOLING#c.SEX	101643.7	37070.77	2.74	0.006	28820.35	174467.1
c.SEX#c.SEX	0	(omitted)				
_cons	2527417	1732009	1.46	0.145	-875013.4	5929847

El test de White es $n.R_{aux} = (540).(0.0839) = 45.306$. Se conoce que $X_{0.95}^2(9) = 16.919$. Por lo tanto, el Test de White es mayor que 16.919. Se rechaza la H_0 de homocedasticidad al 5% de significancia.

- **c.** Ahora, emplee el test de Breush-Pagan. Utilice las mismas variables explicativas del modelo (*) ¿Obtiene los mismos resultados que en (a), comente? (1.5 puntos)
- i. Regresión del modelo original:

$$w_earnings_i = \beta_1 + \beta_2 y_\exp erience_i + \beta_3 y_schooling_i + \beta_4 sex_i + u_i,$$

. reg W_EARNINGS Y_EXPERIENCE Y_SCHOOLING SEX

Source	55	df		MS		Number of obs		540
Model Residual	59389313.1 153541348	3 536		19796437.7 286457.739		F(3, 536) Prob > F R-squared	-	69.11 0.0000 0.2789
Total	212930661	539	3950	47.609		Adj R-squared Root MSE	=	0.2749 535.22
W_EARNINGS	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
Y_EXPERIENCE	26.46887	5.713	637	4.63	0.000	15.245	3	7.69273
Y_SCHOOLING	109.9794	9.505	529	11.57	0.000	91.30677	1	28.6521
SEX	348.7483	46.68	446	7.47	0.000	257.0413	4	40.4552
_cons	-1305.93	184.9	257	-7.06	0.000	-1669.198	-9	42.6615

Capturar los residuos: predict e, residuals

Generar los residuos al cuadrado: $gen e2 = e^2$

Generar los residuos al cuadrado entre $\frac{SCR}{N}$: $gen \ w_i = e2 * e(N)/e(rss)$

ii. Regresión auxiliar:

$$w_i = \beta_1 + \beta_2 y_\exp{erience_i} + \beta_3 y_schooling_i + \beta_4 sex_i + u_i$$

. reg w Y_EXPERIENCE Y_SCHOOLING SEX

Source	SS	df		MS		Number of obs	=	540
						F(3, 536)	=	11.39
Model	424.630189	3	141.	543396		Prob > F	=	0.0000
Residual	6659.71738	536	12.4	248459		R-squared	=	0.0599
						Adj R-squared	=	0.0547
Total	7084.34757	539	13.	143502		Root MSE	=	3.5249
W	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
Y_EXPERIENCE	.0504852	.0376	295	1.34	0.180	0234341		1244044
Y_SCHOOLING	.29283	.0626	025	4.68	0.000	.1698537		4158063
SEX	.9735865	.3074	1592	3.17	0.002	.3696137	1	.577559
_cons	-4.347931	1.217	7903	-3.57	0.000	-6.740379	-1	.955484

El test de Breusch –Pagan es $\frac{SCE}{2}=\frac{424.630189}{2}=212.3150945$. Contamos con el $X_{0.95}^2(3)=7.815$. Por lo tanto, el test Breush-Pagan es mayor que 7.815. Se rechaza la H_o de homocedasticidad al 5% de significancia.

Con el test de Breusch –Pagan se obtienen los mismos resultados que con el Test de White, en ambos se rechaza la hipótesis nula de homocedasticidad al 5% de significancia.