Grouped plots

Group plots

The plots for the paper need to be grouped into larger figures. The roughly planned grouping so far can be seen in the file figure_group_planning.md.

Load dependencies

ggplotify function

The facet packages (patchwork and cowplot facet_grid etc) dont seem to work with non-ggplot plots. So this function is here to convert the plots to ggplot format

Figure 1 - Explanatory and introductory plots

```
# APP Homepage screenshot
app_home = ggloadImage("figures/EWCE_home.png")

# Interactive app screenshot
app_interactive = ggloadImage("figures/interactive_cell_celect_acinar_demo.png")

# Print friendly network plot
cell = "Acinar cells"
printable_networkPlot <- one_cell_ontology_plot_heatmap(all_results_merged,cell=cell, heatmapped_value)</pre>
```

Here is an example of Figure 1

```
adhd_ancestors <- ggplotify(adhd_ancestors)
printable_networkPlot <- ggplotify(printable_networkPlot)

(adhd_ancestors | app_home) /(printable_networkPlot | app_interactive)</pre>
```

Figure 2 - Overview results

These figrues are meant to give a general idea of how many results there are, and show that they make sense.

Here is Fig 2

Figure 1: **Explanatory and Introductory plots.** These plots were mostly used in the introduction of my report.

```
AACCCCCCCC
##CCCCCCCCC
print(
  (plot_npc + theme(legend.position = "top", legend.justification = "top", axis.text.y = element_text(s
  (main_branch_plt + theme(axis.text.y = element_text(size = 15))) +
         ( facet_branch_plt + theme(axis.title.y =element_text(margin = margin(1 = -15, b = -10))) ) +
        plot_layout(design = layout) + plot_annotation(tag_levels = LETTERS) )
namer = function(term){
  return (hpo$name[term])
}
terms = ontologyIndex::get_term_property(hpo,property="children",term = hpo$id[which(hpo$name == "Phen
terms = append(terms,hpo$id[which(hpo$name == "Phenotypic abnormality")])
terms <- data.frame("terms" = terms, "colour" = "gray")</pre>
plot_branches = c("Abnormality of the nervous system", "Abnormality of the cardiovascular system", "Abnormality of the cardiovascular system",
named_colours <- c()</pre>
for (i in seq(length(plot_branches))) {
  named_colours[plot_branches[i]] <- palette_branch[i]</pre>
}
term_colours <- c()</pre>
term_names <- c()</pre>
term_labels <- c()</pre>
for (t in terms$terms) {
  cur_name <- hpo$name[t]</pre>
term_names <- append(term_names, cur_name)</pre>
```

```
if( cur_name == "Phenotypic abnormality") {
    term_labels <- append(term_labels, cur_name)</pre>
    term_colours <- append(term_colours, "lightblue")</pre>
  } else if (cur_name %in% plot_branches) {
    term_labels <- append(term_labels, "")</pre>
    term_colours <- append(term_colours, named_colours[cur_name])</pre>
  } else {
    term_labels <- append(term_labels, " ")</pre>
    term_colours <- append(term_colours, "gray")</pre>
  }
}
terms$colour <- term_colours</pre>
terms$name <- term_names</pre>
terms$labels <- term_labels</pre>
phenotypic_abnormality_children <- ontologyPlot::onto_plot(hpo, terms= terms$terms,label = terms$labels</pre>
           shape="circle",fontsize = 80,fillcolor = terms$colour ,edge_attributes = list(color="grey"))
layout <- "
AA###BBBBB##
AA###BBBBB##
AACCCCCCCC
AACCCCCCCCC
AADDDDDDDDDD
AADDDDDDDDDD
AADDDDDDDDDD
```

Testing ggnetwork plot

```
## adjacency_matrix
## ggnetwork_plot
## Saving 6.5 x 4.5 in image
```

Test with ggnetwork

```
layout <- "

AA####BBBBB

AA#CCCCBBBBB

AA#CCCCBBBBBB

AA#CCCCBBBBBB
```


Figure 2: **Overview results** plots describing the number of significant results.

Not sure if this looks good here, but could be useful somewhere for showing the network structure and highlighting certain phenotypes by colour?

Figure 3 HPO Patterns and relationships

These show common patterns seen in HPO, related to ongology level, n genes etc.

Here is Fig 3

```
blank_x_axis <- theme(x.axis.title = element_blank(), axis.text.x = element_blank())
print(
   ( ontlvl_ncells_plt /
      ontlvl_fold_plt /
      ontlvl_ngenes_plt)
   ( proportion_plots[[1]]/
      proportion_plots[[2]]/
      proportion_plots[[3]])
)</pre>
```


Figure 3: **ontology level plots** Plots describing relationships between expected cell types, significance, and ontology level.

Figure 4 infections

Figure - social interactions

```
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Scale for 'x' is already present. Adding another scale for 'x', which will
```

replace the existing scale.

Here is Fig ??

print(plt1/ (social_ancestors | plt2))

Figure 4: **Social interactions** Enrichments in cell types for impaired social interactions.