TTT4275 Basic Statistics and Linear Algebra Spring 2019

Lecturer: Magne Hallstein Johnsen,

IES, NTNU

Basic statistics 1

- Joint and conditional densities/probabilites and Bayes law
 - Definitions
 - * Prior probability $P(\omega_i)$
 - * A posteriori probability $P(\omega_i/x)$
 - * Class-independent density p(x)
 - * Class-dependent density $p(x/\omega_i)$
 - Bayes law:

$$p(\omega_i, x) = P(\omega_i/x)p(x) = p(x/\omega_i)P(\omega_i) \Rightarrow$$

$$P(\omega_i/x) = p(x/\omega_i)P(\omega_i)/p(x)$$

$$- p(x) = \sum_{i} p(\omega_i, x)$$

$$-P(\omega_i) = \int_{-\infty}^{\infty} p(\omega_i, x) dx$$

Basic statistics 2 - moments

- Mean of a variable : $m_x = E[x] = \int_{-\infty}^{\infty} x p(x) dx$
- Mean of a sequence : $m_x = E[x(n)] = \lim_{N \to \infty} \frac{!}{2N+1} \sum_{n=-N}^{N} x(n)$
- Correlation between two sequences :

$$\gamma_{xy}(l) = \sum_{-\infty}^{\infty} x(n)y(n+l) \quad l = -\infty, \infty$$

- Autocorrelation : $\gamma_{xx}(l)$
- Covariance matrix : $C_x \Leftrightarrow C[m,k] = \gamma_{xx}(m-k) m_x^2$

Linear Algebra

- Matrix vector equation : y = Ax
- If A is quadratic the inverse may exits $\Rightarrow x = A^{-1}y$
- ullet A general matrix A is rectangular with dimension [M,N]
 - The transposed A^T is defined by $A^T[m,k] = A[k,m]$ i.e. has dimension [N,M]
 - We define two quadric matrixes as follows:

$$B = A^T A$$
 with dimension $[N, N]$
 $C = AA^T$ with dimension $[M, M]$

— The inverse of a rectangular matrix A does not exist. However the matrix with least square error (also called pseudo-inverse) \widehat{A}^{-1} have dimension [N,M] and is given by either

$$\hat{A}^{-1} = \begin{cases} A^T C^{-1} & \text{for } M < N \\ B^{-1} A^T, & \text{for } N < M \end{cases}$$

