Preliminary Statements

Theorem (Definition of Countability). *A set S is countable if and only if there exists an injection* $f: S \hookrightarrow \mathbb{N}$.

Proof. Let S be countable.

Case 1: We have S is finite if and only if there is a map $f: S \to \{1, 2, ..., n\}$, where f is a bijection. Letting $\iota: \{1, 2, ..., n\} \to \mathbb{N}$ be defined by $\iota(n) = n$, it is clear that ι is an injection.

Considering the map $\iota \circ f : S \to \mathbb{N}$, since ι is injective and f is injective, so too is $\iota \circ f$, meaning our desired injection is $\iota \circ f$.

Case 2: By definition, a set S is countably infinite if and only if there exists a bijection $g: S \to \mathbb{N}$, which is our desired injection.

Theorem (Injection into a Finite Set). Let S be a nonempty set. If there exists an injection $S \hookrightarrow \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$, then S is finite.

Proof. We begin by showing the reverse direction.

Let $\sigma: S \hookrightarrow \{1, 2, ..., n\}$ be an injection for some $n \in \mathbb{N}$. Define s_i by $\sigma(s_i) = i$ for $i \in \text{im}(\sigma)$.

Notice that $\sigma': S \to \sigma(S)$ is a bijection, since σ is injective and any map of the form $f: A \to f(A)$ is surjective by definition.

We define $r: \sigma(S) \hookrightarrow \mathbb{N}$ selecting i_1 to be the least element in $\sigma(S)$ (which exists by the well-ordering principle since $\{1,2,\ldots,n\}\subseteq \mathbb{N}$ is nonempty), and mapping $r(i_1)=1$. Similarly, we inductively select i_k to be the least element in $\sigma(S)\setminus\{i_1,i_2,\ldots,i_{k-1}\}$, and map $r(i_k)=k$. From this construction, it is clear that r is injective.

Then, defining $r': \sigma(S) \to r(\sigma(S))$, we can see that r' is a bijection, with $r(\sigma(S)) = \{1, 2, ..., j\}$ for some $j \le n$ (since, by definition, σ is an injection, meaning $\sigma(s_i) \le n$ for all n).

Taking $r' \circ \sigma' : S \to \{1, 2, ..., j\}$, we see that this is a composition of bijections, meaning it is a bijection. Thus, S is finite.

In the forward direction, we can see that if S is finite, then the bijection $h : S \to \{1, 2, ..., n\}$ is an injection, and we are done.

1.1

Problem. Show that the function $f : \mathbb{N} \to \mathbb{Z}$ given by

$$f(n) = (-1)^{n+1} \left\lfloor \frac{n+1}{2} \right\rfloor$$

is a bijection.

Solution. We begin by showing that f is injective. Let $f(n_1) = f(n_2)$. Then, we have two cases: one if $f(n_1)$ and $f(n_2)$ are positive, and one if $f(n_1)$ and $f(n_2)$ are negative. In the either case, we have

$$f(n_1) = (-1)^{n_1+1} \left\lfloor \frac{n_1+1}{2} \right\rfloor,$$

$$f(n_2) = (-1)^{n_2+1} \left\lfloor \frac{n_2+1}{2} \right\rfloor,$$

meaning

$$\left|\frac{n_1+1}{2}\right|=\left|\frac{n_2+1}{2}\right|.$$

If $f(n_1)$ and $f(n_2)$ are positive, this implies that n_1 and n_2 are odd (so that $n_1 + 1$, $n_2 + 1$ are even). Since $n_1 + 1$ and $n_2 + 1$ are even, this implies

$$\left[\frac{n_1 + 1}{2} \right] = \frac{n_1 + 1}{2}$$
$$\left| \frac{n_2 + 1}{2} \right| = \frac{n_2 + 1}{2},$$

meaning $n_1 = n_2$.

If $f(n_1)$ and $f(n_2)$ are odd, this implies that n_1 and n_2 are even, so

$$\left\lfloor \frac{n_1+1}{2} \right\rfloor = \frac{n_1}{2}$$
$$\left\lfloor \frac{n_2+1}{2} \right\rfloor = \frac{n_2}{2},$$

once again implying that $n_1 = n_2$.

To show surjectivity, let $z \in \mathbb{Z}$. Suppose z < 0. Then, we find $n \in \mathbb{N}$ by taking n = -2z. If z > 0, we take n = 2z - 1, and if z = 0, we take n = 0.

1.2

Problem. Given bijections $f : \mathbb{N} \to \mathbb{Z}$ and $P : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, show that the function $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ defined by $h(x, y) = P(f^{-1}(x), f^{-1}(y))$ is bijective.

Solution. We begin by showing injectivity. Since f is bijective, so too is f^{-1} , meaning that for

$$h(x,y) = h(x',y'),$$

we have

$$P(f^{-1}(x), f^{-1}(y)) = P(f^{-1}(x'), f^{-1}(y'))$$
$$f^{-1}(x) = f^{-1}(x')$$

$$f^{-1}(y) = f^{-1}(y')$$

since P is bijective

meaning

$$x = x'$$

 $y = y'$ since f^{-1} is bijective.

Thus, h is injective.

Let $n \in \mathbb{N}$. Since P is surjective, there exist a, b such that P(a,b) = n. Since f^{-1} is surjective, there exists $x,y \in \mathbb{Z}$ such that $f^{-1}(x) = a$ and $f^{-1}(y) = b$. Thus, there exist $x,y \in \mathbb{Z}$ such that h(x,y) = n.

1.3

Problem. If A and B are countably infinite, show that $A \times B$ is countably infinite.

Solution. By the definition of countably infinite sets, there exist bijections $\alpha:A\to\mathbb{N}$ and $\beta:B\to\mathbb{N}$. Additionally, we know that there exists a bijection $P:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$.

Define $h : A \times B \to \mathbb{N}$ by $h(a, b) = P(\alpha(a), \beta(b))$. Then, since h is a composition of bijections, h is a bijection between $A \times B$ and \mathbb{N} .

1.5

Problem. If $A_1, A_2, ...$ is an infinite sequence of (pairwise) disjoint finite sets, show that the union $\bigcup_{n=1}^{\infty} A_n$ is countably infinite.

Solution. For all $i \in \mathbb{N}$, there exists $f_i : A_i \to \{1, 2, ..., n_i\}$ such that f_i is a bijection, by the definition of finitude.

Let $x \in \bigcup_{i=1}^{\infty} A_i$. Then, $x \in A_i$ for exactly one value of i, since the sets A_i are pairwise disjoint.

Define

$$p(x) = f_i(x) - 1 + \sum_{j=1}^{i-1} n_j.$$

Then, p is a bijection, meaning $\bigcup_{i=1}^{\infty} A_i$ is denumerable.

1.6

Problem. If $A_1, A_2, ...$ is an infinite sequence of disjoint countably infinite sets, show that the union $\bigcup_{n=1}^{\infty} A_n$ is countably infinite.

Solution. We define $\chi_n: A_n \to \mathbb{N}$ to be bijections that define the cardinality of A_n , and let $a_{i,n} \in A_n$ be defined by $\chi_n(a_{i,n}) = i$. We let p_n denote the nth prime number.

The function $h:\bigcup_{n=1}^\infty A_n\to \mathbb{N}$ defined by $h(\mathfrak{a}_{i,k})=\mathfrak{p}_k^{\chi_k(\mathfrak{a}_{i,k})}$ is an injection, as each A_k is disjoint and prime numbers do not divide each other. Thus, we know that $\bigcup_{n=1}^\infty A_n$ is countable.

1.7

Problem. Construct an explicit polynomial bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and \mathbb{N} .

Solution. Let $Q: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by Q(x,y,z) = P(P(x,y),z), where $P(x,y) = \frac{(x+y)(x+y+1)}{2} + x$ is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} .

We know that Q is a bijection since it is a composition of bijections. I do not want to expand this expression.

Extra Problem 1

Problem. Prove that if A and B are finite sets, then $A \cup B$ is finite.

Solution. We know $A \setminus B \subseteq A$; since A is finite, so too is $A \setminus B$ (by Extra Problem 3).

Since $A \cup B = (A \setminus B) \cup B$ is a disjoint union of finite sets, $A \cup B$ is finite.

Remark (Disjoint Union of Finite Sets is Finite): Let A, B be disjoint finite sets. Then, $A \cup B$ is finite.

To prove this, by the definition of finitude, there exist $\alpha: A \to \{1, 2, ..., m\}$ and $\beta: B \to \{1, 2, ..., n\}$ bijections for some $m, n \in \mathbb{N}$.

We can create a new function $f : A \cup B \rightarrow \{1, 2, ..., m + n\}$ by

$$h(x) = \begin{cases} f(x) & x \in A \\ g(x) + m & x \in B \end{cases}.$$

We can see that h is a well-defined bijection since $A \cap B = \emptyset$.

Extra Problem 2

Problem. Prove that for every $n \in \mathbb{N}$, every subset of $\{0, 1, ..., n\}$ is finite.

Solution. For any subset $P \subseteq \{0,1,\ldots,n\}$, the inclusion map is an injection into $\{0,1,\ldots,n\}$; composing the inclusion map with the bijection $\alpha:\{0,1,\ldots,n\}\to\{1,2,\ldots,n+1\}$ defined by $\alpha(m)=m+1$, we see that there is an injection $\alpha\circ id:P\hookrightarrow\{1,2,\ldots,n+1\}$, meaning P is finite by the theorem above.

Extra Problem 3

Problem. Prove that every subset of a finite set is finite.

Solution. Since every empty set is finite, so too is every subset of the empty set. Similarly, any empty subset of a given finite set is also finite.

Let A be a nonempty finite set. Then, there exists a bijection $\alpha : A \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Let $B \subseteq A$ be nonempty. The inclusion map $\iota : B \hookrightarrow A$ defined by $\iota(x) = x$ is an injection.

Thus, $\alpha \circ id : B \hookrightarrow \{1,2,\ldots,n\}$ is an injection, as it is a composition of injections. By the established theorem above, this means B is finite.

Extra Problem 4

Problem. Prove that every infinite subset of \mathbb{N} is denumerable.

Solution. Let $A \subseteq \mathbb{N}$ be infinite.

Since A is nonempty, by the well-ordering principle, there must exist a least element of A, which we label as a_0 .

Consider $A \setminus \{a_0\}$. Since A is infinite, $A \setminus \{a_0\}$ must also be infinite, meaning there is a least element of $A \setminus \{a_0\}$ by the well-ordering principle. We label this element as $\{a_1\}$.

Now, we consider $A \setminus \{a_0, a_1\}$, and use the well-ordering principle to extract a_2 , and inductively extract a_i by using the well ordering principle on $A \setminus \{a_0, a_1, \dots, a_{i-1}\}$.

The function $f: A \to \mathbb{N}$ defined by $f(a_i) = i$ is a bijection, since $f(a_i) = f(a_i)$ if and only if i = j.

Thus, f is a denumeration of A.