João Miguel Clemente de Sena Esteves
Circuitos de Corrente Contínua
e de Corrente Alternada
Exercícios
Outubro de 2021

1. Preencha os quadros anexos às figuras.

 $\begin{array}{c|c} \mathbf{U_A} = & & \mathbf{U_F} = \\ \mathbf{U_B} = & & \mathbf{U_G} = \\ \mathbf{U_C} = & & \mathbf{U_H} = \\ \mathbf{U_D} = & & \mathbf{U} = \\ \end{array}$

2. Relativamente ao circuito da figura:

- 2.1 Com o interruptor **K** aberto, determine:
 - 2.1.1 o sentido e o valor da corrente **I**;
 - 2.1.2 a tensão e a potência em jogo em cada componente do circuito.
- 2.2 Com o interruptor **K fechado**, determine:
 - 2.2.1 o sentido e o valor da corrente I;
 - 2.2.2 a tensão e a potência em jogo em cada componente do circuito.

- 3. Relativamente ao circuito da figura:
 - 3.1 Com o interruptor **K** aberto, determine:
 - 3.1.1 o sentido e o valor da corrente I;
 - 3.1.2 a tensão e a potência em jogo em cada componente do circuito.
 - 3.2 Com o interruptor **K fechado**, determine:
 - 3.2.1 o sentido e o valor da corrente I;
 - 3.2.2 a tensão e a potência em jogo em cada componente do circuito.

- 4. Relativamente ao circuito da figura:
 - 4.1 Determine o número de correntes que existem neste circuito.
 - 4.2 Determine o número de tensões que existem neste circuito.
 - 4.3 Determine a tensão, a corrente e a potência em jogo em cada componente do circuito.
 - 4.4 Verifique quais são os componentes que absorvem energia ao circuito e quais são os componentes que lhe fornecem energia.

- 5. Determine o valor da potência em jogo numa resistência de $47k\Omega$ percorrida por uma corrente constante de 5A.
- 6. Determine o valor da potência em jogo numa fonte ideal de tensão de 120V que alimenta uma resistência de 100Ω .
- 7. Determine o valor da energia absorvida durante duas horas por uma resistência de $22k\Omega$ sujeita a uma tensão constante de 54V.
- 8. Admitindo que o preço da energia eléctrica é de 0,15€/kWh, determine o custo mensal devido ao funcionamento de uma lâmpada de 60W que está ligada 8 horas por dia, 5 dias por semana.
- 9. Determine o valor da energia fornecida a um circuito, durante cinco horas, por uma fonte ideal de corrente de 30A que se encontra curto-circuitada com um condutor ideal.
- 10. Determine o valor da energia absorvida durante 90s por um condutor ideal percorrido por uma corrente constante de 200A.

11. Preencha os quadros anexos às figuras.

A fonte ideal de tensão de 8V recebe energia do circuito ou fornece-lhe energia?

A fonte ideal de corrente recebe energia do circuito ou fornece-lhe energia?

Medidas com multímetro ideal a funcionar como voltímetro no modo DC:

Ponta vermelha	Ponta preta	Leitura
A	C	
В	D	
C	В	

Indique os pontos onde ligar os terminais das pontas de prova de um osciloscópio (a funcionar no modo DC) para medir as tensões referidas, nos casos em que tal medição é possível. Indicar também o estado (ON ou OFF) dos botões INV e ADD (marcar com um X a opção correcta).

Nota: a massa do osciloscópio encontra-se ligada ao terminal C da fonte de 2V.

U_2 e U_3	simulta	neamer	ıte	U ₁ e U ₄	sim
	Não é p	ossível			Nã
	P1	Ponto]
Canal 1	GND1	Ponto		Canal 1	GI
	INV	ON	OFF		I
	P2	Ponto]
Canal 2	GND2	Ponto		Canal 2	GI
	INV	ON	OFF		Π
ADD ON OFF				A	
			_		

U ₁ e U ₄ simultaneamente							
Não é possível							
	P1	Ponto					
Canal 1	GND1	Ponto					
	INV	ON OF					
	P2	Ponto					
Canal 2	GND2	Ponto					
	INV	ON	OFF				
ADD ON OFF							
	·	·					

U ₃ e U ₄ simultaneamente							
	Não é possível						
	Ponto						
Canal 1	GND1	Ponto					
	INV	ON	OFF				
	P2	Ponto					
Canal 2	GND2	Ponto					
	INV	ON	OFF				
	ADD	ON	OFF				

Medidas obtidas com um multímetro ideal a funcionar como voltímetro no modo DC:

Ponta vermelha	Ponta preta	Leitura
A	В	
В	D	
F	В	

Indique os pontos onde ligar os terminais das pontas de prova de um osciloscópio (a funcionar no modo DC) para medir as tensões referidas, nos casos em que tal medição é possível. Indicar também o estado (ON ou OFF) dos botões INV e ADD (marcar com um X a opção correcta). (Nota: a massa do osciloscópio encontra-se ligada ao terminal B do circuito)

Medidas obtidas com um multímetro ideal a funcionar como voltímetro no modo DC:

Ponta vermelha	Ponta preta	Leitura
A	В	
E	F	
G	Н	

$U_A =$	$\mathbf{E}_1 =$
$U_B =$	I=
U _C =	U ₁ =
$\mathbf{U_D} =$	$U_2 =$

12. A tensão U_2 é medida recorrendo a um voltímetro de resistência interna R_V .

$$U = 50V$$
 (cons tan te)
 $R_1 = 100kΩ$
 $R_2 = 100kΩ$

Calcule o valor de U₂ quando

12.1
$$R_V = 1\Omega$$

$$12.2 R_V = 1k\Omega$$

$$12.3 R_V = 10k\Omega$$

12.4
$$R_V = 100k\Omega$$

$$12.5 R_V = 1M\Omega$$

13. A corrente I₂ é medida recorrendo a um amperímetro de resistência interna R_A.

$$I = 10$$
A (constante)
 $R_1 = 10$ Ω
 $R_2 = 10$ Ω

Calcule o valor de I₂ quando

13.1
$$R_A = 0.1\Omega$$

$$13.2 R_A = 1\Omega$$

$$13.3 R_A = 10\Omega$$

$$13.4 R_A = 100\Omega$$

$$13.5 R_A = 1k\Omega$$

14. Calcule os valores das resistências indicadas junto de cada figura.

 $R_{AB} =$

 $R_{AC} =$

 $R_{AB} =$

 $R_{\mathrm{BD}} =$

 $R_{AC} =$

- 15. Relativamente ao circuito da figura:
 - 15.1 Determine quais são os componentes que fornecem energia ao circuito.
 - 15.2 Determine quais são os componentes que recebem energia do circuito.
 - 15.3 Calcule o valor da potência em jogo em cada componente do circuito.

16. Identifique todos os ramos, nós e malhas do circuito.

17. Recorrendo às Leis de Kirchhoff, determine as correntes nos ramos do circuito.

- 18. Recorrendo ao Princípio da Sobreposição:
 - 18.1 Verifique se a fonte de 5V recebe energia do circuito ou lhe fornece energia. Calcule o valor da potência em jogo nessa fonte.
 - 18.2 Justifique todas as afirmações, cálculos e eventuais simplificações que efectuar.

19. Recorrendo ao Teorema de Thévenin, determinar o valor da tensão presente nos terminais da resistência de 2Ω .

20. Recorrendo ao Teorema de Thévenin, determine o valor da potência em jogo na fonte de 2A. Essa fonte recebe energia do circuito ou fornece-lhe energia?

21. Recorrendo ao Teorema de Norton, determine o valor da potência em jogo na resistência de 2Ω .

22. Recorrendo ao Teorema de Norton, determine o valor da potência em jogo na fonte de 5V. Essa fonte recebe energia do circuito ou fornece-lhe energia?

23. Determine os equivalentes de Thévenin e de Norton do circuito que alimenta a resistência de 1Ω .

24. Determine os equivalentes de Thévenin e de Norton, relativamente aos pontos A e B, de cada um dos circuitos apresentados.

- 25. Verifique se a fonte ideal de corrente recebe energia do circuito ou lhe fornece energia. Calcule o valor da potência em jogo nessa fonte.
 - 25.1 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar.

- 26. Determine, para a tensão e a corrente representadas:
 - 26.1 O período;
 - 26.2 A frequência;
 - 26.3 O valor máximo;
 - 26.4 O valor mínimo;
 - 26.5 O valor médio.

- 27. Determine, para a corrente e a tensão representadas:
 - 27.1 O período;
 - 27.2 A frequência;
 - 27.3 O valor máximo;
 - 27.4 O valor mínimo;
 - 27.5 O valor médio;
 - 27.6 O valor eficaz.

- 28. Determine o valor eficaz da tensão u(t) tal que $u(t) = U_{M\acute{a}x}$ sen ωt .
- 29. Determine o valor eficaz da tensão u(t) tal que $u(t) = U_{Máx} sen(\omega t + \theta)$.
- 30. Relativamente à tensão $u(t) = 325 \cdot sen(314t + 0.524)$ (V), calcule:
 - 30.1 O período;
 - 30.2 A frequência;
 - 30.3 O valor no instante t = 0;
 - 30.4 O valor máximo;
 - 30.5 O valor mínimo;
 - 30.6 O valor médio;
 - 30.7 O valor eficaz.

31. Complete o quadro com o valor da impedância de cada receptor monofásico, para as frequências e os valores de R, L e C que estão indicados.

Ū			R=10Ω]	L=1,59mH	I	C=15,9μF	
Ī	$Z = \frac{U}{I}$	1Hz	10Hz	100Hz	1kHz	10kHz	100kHz	1MHz
	Z = R							
	$Z = \omega L$							
€ 	$Z = \frac{1}{\omega C}$							
R L	$Z = \sqrt{R^2 + (\omega L)^2}$							
R C	$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$							
	$Z = \left \omega L - \frac{1}{\omega C} \right $							

32. Uma rede monofásica é alimentada por uma tensão alternada sinusoidal u(t) de frequência f.

32.1 Complete o quadro.

$\mathbf{u}(\mathbf{t})$ $\mathbf{v}(\mathbf{t})$		Valor eficaz de $\mathbf{u}(\mathbf{t})$: $\mathbf{U}=\mathbf{100V}$ $\mathbf{R}=\mathbf{10k}\mathbf{\Omega}$ $\mathbf{C}=\mathbf{8nF}$			
$ \begin{array}{c c} R & C \\ \hline u_R(t) & u_C(t) \end{array} $	f=200Hz	f=2kHz	f=20kHz		
Valor eficaz de $\mathbf{u}_{\mathbf{R}}(\mathbf{t})$	$\mathbf{U}_{\mathbf{R}}$				
Valor eficaz de $\mathbf{u}_{\mathrm{C}}(\mathbf{t})$	$\mathbf{U}_{\mathbf{C}}$				
Valor eficaz de i(t)	I				
Desfasamento angular entre $\mathbf{u}(\mathbf{t})$ e $\mathbf{u}_{\mathrm{C}}(\mathbf{t})$	$\Delta heta_{ m C}$				
Desfasamento temporal entre $\mathbf{u}(\mathbf{t})$ e $\mathbf{u}_{\mathrm{C}}(\mathbf{t})$	$\Delta t_{ m C}$				
Desfasamento angular entre $\mathbf{u}(t)$ e $\mathbf{u}_{R}(t)$	$\Delta heta_{ m R}$				
Desfasamento temporal entre $\mathbf{u}(\mathbf{t})$ e $\mathbf{u}_{\mathbf{R}}(\mathbf{t})$	$\Delta t_{ m R}$				

33. Uma rede monofásica é alimentada por uma tensão alternada sinusoidal de frequência f.

33.1 Complete o quadro.

Ī			U=230V	
$\overline{\overline{U}}$ ($\overline{\overline{I}}_R$ $\overline{\overline{I}}_L$ $\overline{\overline{I}}_C$	_	R=10Ω	L=31,8mH	C=318μF
$\begin{array}{c c} R & L & C \\ \hline \overline{I}_R & \overline{\overline{I}}_L & \overline{\overline{I}}_C \end{array}$	-	f=5Hz	f=50Hz	f=500Hz
Valor da corrente na resistência	I_R			
Valor da corrente na bobina	I_{L}			
Valor da corrente no condensador	I_C			
Valor da corrente debitada pela fonte	I			
Valor da impedância da resistência	Z _R			
Valor da impedância da bobina	\mathbf{Z}_{L}			
Valor da impedância do condensador	Z _C			
Valor da impedância equivalente do conjunto	Z			
Potência activa em jogo na resistência	P _R			
Potência reactiva em jogo na resistência	Q_R			
Potência aparente em jogo na resistência	S_R			
Potência activa em jogo na bobina	P _L			
Potência reactiva em jogo na bobina	\mathbf{Q}_{L}			
Potência aparente em jogo na bobina	S_{L}			
Potência activa em jogo no condensador	P _C			
Potência reactiva em jogo no condensador	Qc			
Potência aparente em jogo no condensador	$\mathbf{S}_{\mathbf{C}}$			
Potência activa total	P			
Potência reactiva total	Q			
Potência aparente total	S			

- 34. O receptor representado na figura é alimentado por uma tensão alternada sinusoidal u(t), que tem um valor eficaz igual a 5V e uma frequência de 1kHz. Determine:
 - 34.1 a reactância indutiva da bobina.
 - 34.2 o valor da impedância do receptor.
 - 34.3 o valor eficaz de i(t).
 - 34.4 o valor eficaz de $u_L(t)$.
 - 34.5 a potência activa em jogo no receptor.
 - 34.6 o desfasamento temporal entre u(t) e $u_L(t)$.

- 35. O receptor representado na figura é percorrido por uma corrente alternada sinusoidal i(t), que tem um valor eficaz igual a 2A e uma frequência de 2kHz. Determine:
 - 35.1 a reactância indutiva da bobina.
 - 35.2 a reactância capacitiva do condensador.
 - 35.3 o valor da impedância do receptor.
 - 35.4 o valor eficaz de $u_C(t)$.
 - 35.5 a potência activa em jogo no receptor.
 - 35.6 o desfasamento temporal entre u(t) e $u_C(t)$.

36. Os quatro receptores representados estão ligados a uma rede monofásica de 230V / 50Hz.

Rede monofásica de 230V / 50 Hz

Preencha o quadro:

$I_1 =$ Desfasamento angular entre a tensão da rede e a corrente que alimenta a instalação Desfasamento temporal entre a tensão da rede e a corrente que alimenta a instalação Potência activa da instalação Potência reactiva da instalação Potência aparente da instalação Factor de potência da instalação Potência reactiva do componente que, uma vez acrescentado à instalação, permite eliminar o consumo de energia reactiva da mesma

Complete o diagrama fasorial da instalação.

- 37. Uma oficina é alimentada por uma rede monofásica de 230V / 50Hz e dispõe dos seguintes receptores monofásicos:
 - Um motor de $1750W / 230V / 50Hz / \eta = 0.951 / \cos\varphi = 0.8$ (i)
 - 10 lâmpadas de incandescência de 230V / 60W

O motor funciona 8 horas por dia e as lâmpadas funcionam – todas em simultâneo – 16 horas por dia.

A energia activa e a energia reactiva consumidas pela oficina são cobradas às taxas apresentadas na tabela.

Energia activa	Energia reactiva	
	Fornecida pela rede (indutiva)	Fornecida à rede (capacitiva)
0,15€/kWh	0,1€/kVArh	0,08€/kVArh

- 37.1 Determine o valor nominal da impedância do motor.
- 37.2 Calcule o valor da corrente fornecida pela rede à oficina quando todos os receptores estão ligados.
- 37.3 Determine o factor de potência da oficina quando todos os receptores estão ligados.
- 37.4 Calcule o custo mensal da energia eléctrica consumida pela oficina.
- 38. Na chapa de características de um receptor monofásico constam os seguintes dados:

38.1 Determine a corrente absorvida e a potência em jogo no receptor quando este é alimentado a uma tensão de 230V, 50Hz.

39. Oito receptores de uma instalação funcionam nos respectivos valores estipulados, sempre em conjunto, 16 horas por dia.

39.1 Complete o quadro.

Os receptores funcio	onam nos respectivos valores estipulados,	, sempre em conjunto, 16 horas por dia.	
	Potência activa en receptor		
Receptor 1 (puramente resistiv	o): $7kVA$ $P_1 =$	$Q_1 =$	
Receptor 2: 11kW, 15kVAr	$P_2 =$	$Q_2 =$	
Receptor 3 (bobina): 15kVA	$P_3 =$	$Q_3 =$	
Receptor 4: 8kW, -4kVAr	$P_4 =$	$Q_4 =$	
Receptor 5: 5kW	P ₅ =	$Q_5 =$	
Receptor 6 (indutivo): 4kW, 5	\mathbf{kVA} $P_6 =$	$Q_6 =$	
Receptor 7: 10kVA, -6kVAr	$P_7 =$	$Q_7 =$	
Receptor 8 (condensador): 1kV	$P_8 =$	$Q_8 =$	
	Potência activa em jogo no conjunto do	os receptores: $P_{conj} =$	
Potência reactiva em jogo no conjunto dos receptores: Q _{conj} =			
Ti	po de receptor formado pelo conjunto do	os receptores:	
Potência aparente em jogo no conjunto dos receptores: S _{conj} =			
Factor de potência da instalação: fp _{conj} =			
Energia activ	va consumida pelo conjunto dos receptor	es em 7 dias: W _{a conj} =	
Energia reactiv	va consumida pelo conjunto dos receptor	es em 7 dias: $W_{r \text{ conj}} =$	
Custo da energia eléctric	ca consumida pelo conjunto dos receptor	es em 7 dias: C _{conj} =	
Energia activa	Energia reactiva		
	Fornecida pela rede (indutiva)	Fornecida à rede (capacitiva)	
0,15€/kWh	0,1€/kVArh	0,08€/kVArh	