Pour ce travail vous devez déposer un <u>unique</u> fichier au format .ipynb, dont le nom est tp_note_hmla310_group_?_prenom_nom.ipynb, le tout en minuscule. Vous remplirez votre nom, prénom et le groupe qui vous concerne (?=A,B ou C), en suivant l'affectation des groupes donnée sur Moodle.

Vous devez téléverser votre fichier avant le **vendredi 25/10/2019, 23h59**, sur Moodle, dans la rubrique "TP noté - Python". Vous pouvez effectuer un premier téléversement pour vérifier que tout marche bien et écraser ensuite à chaque fois jusqu'à la version définitive (pratique pour ne pas avoir un fichier vierge à la date limite).

La note totale est sur 20 points répartis comme suit :

- qualité des réponses aux questions : 14 pts,
- qualité de rédaction et d'orthographe : 1 pts,
- qualité des graphiques (légendes, couleurs) : 1 pt
- style PEP8 valide: 2 pts,
- qualité d'écriture du code (noms de variable clairs, commentaires, code synthétique, etc.) : 1 pt
- Notebook reproductible (i.e., "Restart & Run all" marche correctement sur la machine du correcteur) et absence de bug : 1 pt

Les personnes qui n'auront pas soumis leur devoir sur Moodle avant la limite obtiendront zéro.

Rappel: aucun travail par mail ne sera accepté!

EXERCICE 1. (algèbre linéaire / chaîne de Markov)

1) Créer la matrice

$$M = \left(\begin{array}{ccc} 0.448 & 0.054 & 0.011 \\ 0.484 & 0.699 & 0.503 \\ 0.068 & 0.247 & 0.486 \end{array}\right) .$$

2) Donner la valeur de la somme de chaque colonne.

On définit la suite de vecteurs $X_{n+1}=M\cdot X_n$ où $X_n=\begin{pmatrix}u_n\\v_n\\w_n\end{pmatrix}$. La suite est initialisée par un

vecteur
$$X_0 = \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}$$
.

- 3) Créer une fonction qui prend en argument :
 - ullet un entier : n
 - un vecteur initial : X_0

et qui retourne

• X, la matrice des itérés, c'est-à-dire la matrice dont les lignes sont les vecteurs X_0^{\top} , $X_1^{\top}, \ldots, X_n^{\top}$. Noter que cette matrice a (n+1) lignes et 3 colonnes, et donc X peut s'écrire :

$$X = \begin{pmatrix} X_0^\top \\ X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} .$$

- 4) On donne $X_0 = \begin{pmatrix} 20 \\ 70 \\ 10 \end{pmatrix}$ et n = 20. Afficher pour ce X_0 et ce n la matrice des itérés de la question précédente.
- 5) Calculer la somme de chaque ligne de la matrice X (avec les même X_0 et n que ci-dessus).

Interprétation en sociologie

On suppose pour simplifier que la société est divisée en 3 classes : 1) favorisée, 2) moyenne, 3) défavorisée. Les coefficients de la matrice $M=(m_{i,j})$ représentent les pourcentages de passage d'une classe à l'autre en une unité de temps fixe, correspondant en gros à une génération. Ainsi,

- $m_{1,1} = 0.448$ signifie que 44.8% d'une classe favorisée reste favorisée au bout d'une unité de temps,
- $m_{2,1} = 0.484$ signifie que 48.4% d'une classe favorisée passera dans la classe moyenne au bout d'une unité de temps,
- $m_{3,1}=0.068$ signifie que 6.8% d'une classe favorisée passera dans la classe défavorisée au bout d'une unité de temps.
- $m_{1,3} = 0.011$ signifie que 1.1% d'une classe défavorisée passera dans la classe favorisée au bout d'une unité de temps.
- $m_{1,2} = 0.054$ signifie que 5.4% d'une classe moyenne passera dans la classe favorisée au bout d'une unité de temps...

Le vecteur X_0 représente la répartition initiale de la population. $X_0 = \begin{pmatrix} 20 \\ 70 \\ 10 \end{pmatrix}$, signifie qu'au début la

population compte 20 personnes favorisées, 70 personnes de classe moyenne et 10 personnes défavorisées.

$$X_{n+1} = M \cdot X_n$$

modélise l'évolution de la population au fur et à mesure des générations, cela se comprend bien en regardant par exemple la première composante

$$u_{n+1} = 0.448 \cdot u_n + 0.054 \cdot v_n + 0.011 \cdot w_n$$

NB : les chiffres sont arbitraires, bien qu'issus d'un livre de sociologie (Glass and Hall, $Social \ mobility \ in \ UK$)

FIGURE 1 – Illustration du graphe illustrant l'évolution sociologique.

- 6) Tracer sur une même figure l'évolution des trois classes jusqu'à la n^e génération, c'est-à-dire afficher les trois suites u_0, \ldots, u_{10} ; v_0, \ldots, v_{10} et w_0, \ldots, w_{10} . Construisez un graphique qui reproduit la Figure 2, en utilisant la fonction fill_between (comme vu au TP3).
- 7) Calculer M^{25} et obtenir directement X_{25} , la population à la $25^{\rm e}$ génération.
- 8) Obtenir la population à la 25° génération en prenant comme condition initiale $X_0 = \begin{pmatrix} 0 \\ 0 \\ 100 \end{pmatrix}$ puis

$$X_0 = \begin{pmatrix} 0 \\ 100 \\ 0 \end{pmatrix}$$
. Que constatez vous?

FIGURE 2 – Figure à reproduire

- 9) Diagonaliser la matrice M avec numpy. Expliquer pourquoi M^n converge quand $n \to +\infty$.
- 10) <u>Facultatif</u>: Comment expliquer le fait que la répartition limite ne dépende pas de la condition initiale?

EXERCICE 2. (Génération de nombre aléatoires)

On s'intéresse ici aux générateurs congruentiels linéaires, une des méthodes permettant de générer des nombres pseudo-aléatoires par un ordinateur.

Un générateur congruentiel linéaire forme une suite de nombres, définie par la récurrence suivante :

$$X_{n+1} = (aX_n + c) \mod m \tag{1}$$

où:

- $a \in \mathbb{N}$ est le multiplicateur,
- $c \in \mathbb{N}$ est l'incrément,
- $m \in \mathbb{N}$ le module.

L'initialisation X_0 est souvent appelé la **graine**, et permet de générer la suite.

On peut à l'aide d'un tel générateur de nombre aléatoire, générer une suite de nombres dans [0,1[en considérant simplement :

$$\overline{X}_n = \frac{X_n}{m} . (2)$$

- 1) Écrire une fonction module, permettant de coder la relation de récurrence précédente, qui prend en entrée x, et les trois arguments optionnels a=14, c=11, et m=95, et qui renvoie en sortie : $(ax+c) \mod m$. Vérifier votre fonction retourne la valeur 87 pour a=14, c=11, m=95 et x=19.
- 2) Écrire une fonction suite qui prend en entrée un nombre x_0 , un entier n, et des paramètres optionnels a=14, c=11, m=95, et qui renvoie la liste $[x_0, \ldots, x_n]$ obtenue pour la suite de nombres aléatoires associés. Pour n=38, quelle particularité à la liste produite par cette fonction?

Observez ce que produite la commande suivante :

```
x0 = 0
n = 57
print(suite(x0, n, a=14, c=11, m=2000))
```

Sur cette liste, on observe que la suite se répète à partir d'un certain rang. En fait, dès qu'un nombre réapparaît, la séquence se répète à l'identique. Le nombre d'itération avant que la suite ne se répète se nomme la **période** et un "bon" générateur de nombre aléatoire (c'est-à-dire un bon choix de a, c et m) doit produire une période élevée.

- 3) Écrire une fonction qui prend en entrée une liste, et renvoie deux nombres : 1) l'indice du premier nombre qui se répète 2) la période associée (pour le cas sans répétition on sortira 0 pour l'indice, et 0 pour la période). Vérifiez que la période est 50 pour la liste obtenue par la commande précédente. Aide : utiliser deux boucles imbriquées.
- 4) Créer une fonction extract_periode qui prend en entrée une liste et renvoie une liste contenant le premier cycle complet, sans l'extrémité à droite (par exemple dans l'exemple précédent on renverra la liste [505, 1081, 1145, 41, 585, 201, 825, 1561, 1865, 121, 1705, 1881, 345, 841, 1785, 1001, 25, 361, 1065, 921, 905, 681, 1545, 1641, 985, 1801, 1225, 1161, 265, 1721, 105, 1481, 745, 441, 185, 601, 425, 1961, 1465, 521, 1305, 281, 1945, 1241, 1385, 1401, 1625, 761, 665, 1321]).
- 5) Sur l'exemple précédent, tracer l'histogramme des nombres contenus dans une période et normaliser comme dans l'équation (2), en divisant par m (pour obtenir des tirages sur l'intervalle [0,1]). Visualiser et commenter l'impact d'augmenter n et m.

EXERCICE 3. (Racine ne de l'unité / graphisme)

Dans cette exercice on va s'intéresser aux racines de l'unité. Pour un enter $n \in \mathbb{N}^*$, on appelle racine n^{e} de l'unité les nombres

$$z_k = e^{2\pi i k/n} = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad \text{pour } k \in \{0, 1, \dots, n-1\}$$
.

- En utilisant le module cmath, créer une fonction racines qui prend n en entrée et renvoie la liste des n racines n° de l'unité.
- 2) Afficher le chemin $[z_0, z_1], \ldots, [z_{n-1}, z_n], [z_n, z_0]$, avec matplotlib.lines.line2D: cf. https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.lines.Line2D.html, en utilisant parties réelles et parties imaginaires pour l'affichage en 2D.
- 3) Créer une fonction compute_midpoints qui prend en entrée une liste de complexes points $(i.e., \text{ points} = [x_0, \dots, x_{n-1}])$ et un nombre réel $t \in [0,1]$ et qui renvoie une liste de la même taille $[t \cdot x_0 + (1-t) \cdot x_1, \dots, t \cdot x_{n-2} + (1-t) \cdot x_{n-1}, t \cdot x_{n-1} + (1-t) \cdot x_0]$.
- 4) On reprend le cas des racines 6° de l'unité et d'un paramètre t=0.2. Afficher sur un même graphique le chemin $[z_0, z_1], \ldots, [z_{n-1}, z_n], [z_n, z_0]$, puis le chemin obtenus par compute_midpoints. Refaire récursivement cette construction pour afficher 12 chemins sur la même figure et obtenir un graphique similaire à la Figure3.

FIGURE 3 – Exemple avec les racines 6° de l'unité.

5)	Proposer un widget qui contrôle n (le nombre de racines de l'unité / le polygone de départ), t (le coefficient de convexité, introduit dans la question précédente), m le nombre de niveaux de récursion
	de la figure.