CS101 Algorithms and Data Structures

Topological Sort Textbook Ch 22.4

Topological Sort

In this topic, we will discuss:

- Motivations
- Review the definition of a directed acyclic graph (DAG)
- Describe a topological sort and applications
- Prove the existence of topological sorts on DAGs
- Describe an abstract algorithm for a topological sort
- Do a run-time and memory analysis of the algorithm
- Describe a concrete algorithm
- Define critical times and critical paths

Outline

- Topological sorting
 - Definitions
 - Algorithm
- Finding the critical path

Motivation

Dependency between tasks: one task is required to be done before the other task can be done

Dependencies form a partial ordering

 A partial ordering on a finite number of objects can be represented as a directed acyclic graph (DAG)

排循环

trel

SIST course curriculum

Motivation

Cycles in dependencies can cause issues...

http://xkcd.com/754/

Topological sorting

Given a set of tasks with dependencies, is there an order in which we can complete the tasks?

A topological sorting of the vertices in a DAG is an ordering

$$v_1, v_2, v_3, ..., v_{|V|}$$

such that v_j appears before v_k if there is a path from v_j to v_k

$$\frac{2}{2}$$

directed/

Given this DAG, a topological sort is

H, C, I, D, J, A, F, B, G, K, E, L

For example, there are paths from H, C, I, D and J to F, so all these must come before F in a topological sort

H, C, I, D, J, A, F, B, G, K, E, L

Taking courses

Taking courses

— The courses must be taken in an order such that the prerequisites of a course are taken before that course

Consider you getting ready for a dinner out

You must wear the following:

- jacket, shirt, briefs, socks, tie, etc.

There are certain constraints:

- the pants really should go on after the briefs,
- socks are put on before shoes

The following is a task graph for getting dressed:

Many people would go like this (a possible topological sort): briefs, shirt, socks, pants, belt, tie, jacket, wallet, keys, iPod, watch, shoes

Another topological sort is:

briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod, watch

C++ header and source files have #include statements

- A change to an included file requires a recompilation of the current file
- On a large project, it is desirable to recompile only those source files that depended on those files which changed
- For large software projects, full compilations may take hours

Tree: andirected

Tree: andirected

Lineated Tree

/ UHO

Topological Sort

Theorem:

directed a cyclic graph.

A graph is a DAG if and only if it has a topological sorting

Proof strategy:

Such a statement is of the form $a \leftrightarrow b$ and this is equivalent to:

$$a \rightarrow b$$
 and $b \rightarrow a$

First, we need a two lemmas:

- A DAG always has at least one vertex with in-degree zero
 - That is, it has at least one source

Proof by contradiction:

- If we cannot find a vertex with in-degree zero, we will show there must be a cycle
- Start with any vertex and define a list D = (v)
- Then iterate this loop |V| times:
 - The first vertex ℓ_1 in the list L does not have in-degree zero
 - So we can find a vertex w such that (w, ℓ_1) is an edge
 - Add w to the list: $L = (w, \ell_1, ..., \ell_k)$
- By the pigeon-hole principle, at least one vertex must appear twice
 - This forms a cycle; hence a contradiction, as this is a DAG

into m, muit

112/8 - WITH 2.

Topological Sort

First, we need a two lemmas:

Any sub-graph of a DAG is a DAG

Proof:

- If a sub-graph has a cycle, that same cycle must appear in the supergraph
- We assumed the super-graph was a DAG
- This is a contradiction
- : the sub-graph must be a DAG

Topological Sort

We will start with showing $a \rightarrow b$:

If a graph is a DAG, it has a topological sort

Proof by induction:

A graph with one vertex is a DAG and it has a topological sort

Assume a DAG with *n* vertices has a topological sort

A DAG with n + 1 vertices must have at least one vertex v of in-degree zero Removing the vertex v and consider the vertex-induced sub-graph with the remaining n vertices

- If this sub-graph has a cycle, so would the original graph—contradiction
- Thus, the graph with n vertices is also a DAG, therefore it has a topological sort Add the vertex v to the start of the topological sort to get one for the graph of size n+1

1 2 DAC

Topological Sort

Next, we will show that $b \rightarrow a$:

If a graph has a topological ordering, it must be a DAG

We will show this by showing the contrapositive: $\neg a \rightarrow \neg b$:

If a graph is not a DAG, it does not have a topological sort

By definition, it has a cycle: $(v_1, v_2, v_3, ..., v_k, v_1)$

- In any topological sort, v_1 must appear before v_2 , because (v_1, v_2) is a path
- However, there is also a path from v_2 to v_1 : $(v_2, v_3, ..., v_k, v_1)$
- Therefore, v_2 must appear in the topological sort before v_1

This is a contradiction, therefore the graph cannot have a topological sort

 $a \leftrightarrow b$: A graph is a DAG if and only if it has a topological sorting

Outline

- Topological sorting
 - Definitions
 - Algorithm
- Finding the critical path

Topological Sort

Idea:

- Given a DAG V, iterate:
 - Find a vertex *v* in *V* with in-degree zero
 - Let v be the next vertex in the topological sort
 - Continue iterating with the vertex-induced sub-graph V \ {v}

Example vertex time

On this graph, iterate the following |V| = 12 times

- Choose a vertex v that has in-degree zero
- Let v be the next vertex in our topological sort
- Remove v and all edges connected to it

Let's step through this algorithm with this example

– Which task can we start with?

Of Tasks C or H, choose Task C legree A B F G K L

Having completed Task C, which vertices have in-degree zero?

C

Only Task H can be completed, so we choose it

C

Having removed H, what is next?

C, H

Both Tasks D and I have in-degree zero

Let us choose Task D

We remove Task D, and now?

C, H, D

Both Tasks A and I have in-degree zero

Let's choose Task A

C, H, D

Having removed A, what now?

C, H, D, A

Both Tasks B and I have in-degree zero

Choose Task B

C, H, D, A

Removing Task B, we note that Task E still has an in-degree of two

- Next?

C, H, D, A, B

As only Task I has in-degree zero, we choose it

C, H, D, A, B

Having completed Task I, what now?

C, H, D, A, B, I

Only Task J has in-degree zero: choose it

C, H, D, A, B, I

Having completed Task J, what now?

C, H, D, A, B, I, J

Only Task F can be completed, so choose it

C, H, D, A, B, I, J

What choices do we have now?

C, H, D, A, B, I, J, F

We can perform Tasks G or K

Choose Task G

C, H, D, A, B, I, J, F

Having removed Task G from the graph, what next?

C, H, D, A, B, I, J, F, G

Choosing between Tasks E and K, choose Task E

C, H, D, A, B, I, J, F, G

At this point, Task K is the only one that can be run

C, H, D, A, B, I, J, F, G, E

And now that both Tasks G and K are complete, we can complete Task L

C, H, D, A, B, I, J, F, G, E, K

There are no more vertices left

C, H, D, A, B, I, J, F, G, E, K, L

Thus, one possible topological sort would be:

C, H, D, A, B, I, J, F, G, E, K, L

Note that topological sorts need not be unique:

C, H, D, A, B, I, J, F, G, E, K, L H, I, J, C, D, F, G, K, L, A, B, E

What are the tools necessary for a topological sort?

- We must know and be able to update the in-degrees of each of the vertices
- We could do this with a table of the in-degrees of each of the vertices
- This requires $\Theta(|V|)$ memory

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

We must terate at least |V| times, so the run-time must be $\Omega(|V|)$

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

We need to find vertices with in-degree zero

- We could loop through the table with each iteration
- The run time would be $O(|V|^2)$

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

A better approach

- Use a queue (or other container) to temporarily store those vertices with in-degree zero
- Each time the in-degree of a vertex is decremented to zero, push it onto the queue

Α	1
В	1
С	0
D	2
Ε	4
F	2
G	1
Н	0
ı	1
J	1
K	1
L	2

What are the run times associated with the queue?

- Initially, we must scan through each of the vertices: $\Theta(|V|)$
- For each vertex, we will have to push onto and pop off the queue once, also $\Theta(|V|)$

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Finally, every time we remove a vertex v, all its edges shall also be removed and the in-degree table be updated

- The run time of these operations is $\Omega(|E|)$
- If we are using an adjacency matrix: $\Theta(|V|^2)$
- If we are using an adjacency list: $\Theta(|E|)$

Here, |E| = 16

Α	1
В	1
С	0
D	2
E	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	+ 2

16

Time

Analysis

Therefore, the run time of a topological sort is:

 $\Theta(|V| + |E|)$ if we use an adjacency list

 $\Theta(|\mathcal{V}|^2)$ if we use an adjacency matrix

and the memory requirements is $\Theta(|V|)$

Α	1
В	1
С	0
D	2
E	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

O(UTE) determine it cycle Analysis

What happens if at some step, all remaining vertices have an in-degree greater than zero?

There must be at least one cycle within that sub-set of vertices

Consequence: we now have an $\Theta(|V| + |E|)$ algorithm for determining if a graph has a cycle

Α	1
В	1
С	0
D	2
E	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

cycle no cycle

Implementation

Thus, to implement a topological sort:

- Allocate memory for and initialize an array of in-degrees
- Create a queue and initialize it with all vertices that have in-degree zero

While the queue is not empty:

- Decrement the in-degree of each neighbor
- Those neighbors whose in-degree was decremented to zero are pushed onto the queue

Implementation

We will use an array implementation of our queue

Because we place each vertex into the queue exactly once

- We must never resize the array
- We do not have to worry about the queue cycling

Most importantly, however, because of the properties of a queue

When we finish, the underlying array stores the topological sort

Implementation

The operations with our queue

```
    Initialization

    Type array[vertex size()];
    int ihead = 0, itail = -1;
– Testing if empty:
    ihead == itail + 1
For push
    ++itail;
    array[itail] = next vertex;
For pop
    Type current_top = array[ihead];
    ++ihead;
```

With the previous example, we initialize:

- The array of in-degrees
- The queue

Α	1
В	1
С	0
D	2
E	2
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

		_
The o	queue is empty	

Queue:

(I tend

Example

Stepping through the array, push all source vertices into the queue

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

The queue is empty

Stepping through the table, push all source vertices into the queue

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

Queue:

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

- C has one neighbor: D

Queue:

В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Pop the front of the queue

- C has one neighbor: D
- Decrement its in-degree

Queue:	С	Н					
		11					

Α	1
В	1
С	0
D	1
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Pop the front of the queue

Queue:

1
1
0
1
4
2
1
0
1
1
1
2

Pop the front of the queue

Queue:

- H has two neighbors: D and I

Е	3	1
)	0
)	1
Е		4
F	=	2
(3	1
F	ł	0
		1
	J	1
k		1
L	-	2

Pop the front of the queue

- H has two neighbors: D and I
- Decrement their in-degrees

				(H) ,	.(<i>></i> .	ľ		K-	
Queue:	С	Н									
		1	1		•						

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

Queue:

- H has two neighbors: D and I
- Decrement their in-degrees
 - · Both are decremented to zero, so push them onto the queue

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

H has two neighbors: D and I

一个在我的对方

Pop the front of the queue

D

Queue:

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

- D has three neighbors: A, E and F

	1.1					
Queue:		l				
		11				

A	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
	0
J	1
K	1
L	2

Pop the front of the queue

- D has three neighbors: A, E and F
- Decrement their in-degrees

Queue:	С	Н	D	I				
				1				

A	0					
В	1					
С	0					
D	0					
Е	3					
F	1					
G	1					
Н	0					
	0					
J	1					
K	1					
L	2					

Pop the front of the queue

- D has three neighbors: A, E and F
- Decrement their in-degrees
 - · A is decremented to zero, so push it onto the queue

Queue:	С	Н	D	I	Α				
				1	1				

Α	0					
В	1					
С	0					
D	0					
Е	3					
F	1					
G	1					
Н	0					
	0					
J	1					
K	1					
L	2					

Pop the front of the queue

Α

Queue:

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

- I has one neighbor: J

Queue:

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	1
K	1
L	2

- I has one neighbor: J
- Decrement its in-degree

				Η̈́)-(J)		K-	\rightarrow
Queue:	С	Н	D	Α					
				11					

A	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	0
K	1
L	2

- I has one neighbor: J
- Decrement its in-degree
 - J is decremented to zero, so push it onto the queue

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
1	0
J	0
K	1
L	2

rup, li

Example

Pop the front of the queue

Queue:

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

- A has one neighbor: B

Queue:	С	Н	D	A	J			
					11			

A	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

- A has one neighbor: B
- Decrement its in-degree

Queue:	С	Н	D	A	J			
					11			

A	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

- A has one neighbor: B
- Decrement its in-degree
 - B is decremented to zero, so push it onto the queue

Queue:	C	Н	D	Α	J	В						
				 	1 /	1)			,		
					•	(',	/ ,		1 C		4	
								ノレ	化 る	V[/ l	

A	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
	2

Pop the front of the queue

Queue:

Pop the front of the queue

- J has one neighbor: F

Queue:

0
0
0
0
3
1
1
0
0
0
1
2

Pop the front of the queue

J has one neighbor: F

Queue:

Decrement its in-degree

Α	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
	0
J	0
K	1
Ĺ	2

- J has one neighbor: F
- Decrement its in-degree
 - · F is decremented to zero, so push it onto the queue

Queue:	С	Н	D	A	J	В	F		
						1	1		

A	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Queue:	С	Н	D	A	J	В	F		
						1	1		

Α	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

- B has one neighbor: E

Queue:	С	Н	D	A	J	В	F		
							11		

Α	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

- B has one neighbor: E
- Decrement its in-degree

Queue:	С	Н	D	A	J	В	F		
							11		

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Pop the front of the queue

Queue:

F

В

В	0
С	0
D	0
E	2
F	0
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

- F has three neighbors: E, G and K

Queue:	С	Н	D	A	J	В	F			
							1	1		

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
	0
J	0
K	1
	2

- F has three neighbors: E, G and K
- Decrement their in-degrees

Queue:	С	Н	D	A	J	В	F			
							1	1		

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
G H	0
	0
Н	0

- F has three neighbors: E, G and K
- Decrement their in-degrees
 - G and K are decremented to zero, so push them onto the queue

Queue:	С	Н	D	A	J	В	F	G	K	
								1	1	

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
Н	0
	0
J	0
K	0
	2

Queue:	С	Н	D	A	J	В	F	G	K	
								1	1	

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
Н	0
I	0
J	0
K	0
L	2

Pop the front of the queue

– G has two neighbors: E and L

Queue:	С	Н	D	A	J	В	F	G	K	
									11	

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
Н	0
	0
J	0
K	0
L	2

- G has two neighbors: E and L
- Decrement their in-degrees

Queue:	С	Н	D	A	J	В	F	G	K	
									11	

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

- G has two neighbors: E and L
- Decrement their in-degrees
 - E is decremented to zero, so push it onto the queue

Queue:	С	Н	D	A	J	В	F	G	K	E	
									1	1	

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

							,			1 \	
Queue:	С	Н	D	A	J	В	F	G	K	E	
									1	1	

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	1

Pop the front of the queue

K has one neighbors: L

Queue:	С	Н	D	A	J	В	F	G	K	Е	
										11	

Α	0
\vdash	U
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

- K has one neighbors: L
- Decrement its in-degree

Queue:	С	Н	D	A	J	В	F	G	K	Е	
										11	

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

- K has one neighbors: L
- Decrement its in-degree
 - L is decremented to zero, so push it onto the queue

Queue:	С	Н	D	А	J	В	F	G	K	Е	L
										†	1

L	0
K	0
J	0
	0
Н	0
G	0
F	0
Е	0
D	0
С	0
В	0
A	0

Pop the front of the queue

Queue:

Ε

Α	0
В	0
С	0
D	0
E	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	0

Sink

Pop the front of the queue

E has no neighbors—it is a sink

В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Queue	•
Yucuc	•

Pop the front of the queue

Queue:

В

_ / ` _	
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	0

Pop the front of the queue

L has no neighbors—it is also a sink

Queue:	С	Н	D	А	J	В	F	G	K	Е	L	
											1	

A	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

The queue is empty, so we are done

Queue:	С	Н	D	A	J	В	F	G	K	Е	L
											1

Α	0
В	0
С	0
D	0
E	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	0

The array used for the queue stores the topological sort

D

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

The array used for the queue stores the topological sort

– Note the difference in order from our previous sort?

C, H, D, A, B, I, J, F, G, E, K, L

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Outline

- Topological sorting
 - Definitions
 - Algorithm
- Finding the critical path

Critical path

Suppose each task has a performance time associated with it

 If the tasks are performed serially, the time required to complete the last task equals to the sum of the individual task times

- These tasks require 0.3 + 0.7 + 0.5 + 0.4 + 0.1 = 2.0 s to execute serially

In many cases, however, we could perform tasks in parallel

- Computer tasks can be executed in parallel (multi-processing)
- Different tasks can be completed by different teams in a company

Suppose Task A completes

We can now execute Tasks B and D in parallel

Note that, Task E cannot execute until Task C completes, and Task C cannot execute until Task B completes

- The least time in which these five tasks can be completed is 0.3 + 0.5 + 0.4 + 0.1 = 1.3 s
- This is called the critical time of all tasks
- The path (A, B, C, E) is said to be the critical path

The *critical time* of each task is the earliest time that it could be completed after the start of execution

The *critical path* is the sequence of tasks determining the minimum time needed to complete the project

- If a task on the critical path is delayed, the entire project will be delayed

Tasks that have no prerequisites have a critical time equal to the time it takes to complete that task

For tasks that depend on others, the critical time will be:

- The maximum critical time that it takes to complete a prerequisite
- Plus the time it takes to complete this task

In this example, the critical times are:

- Task A completes in 0.3 s
- Task B must wait for A and completes after 0.8 s
- Task D must wait for A and completes after 1.0 s
- Task C must wait for B and completes after 1.2 s
- Task E must wait for both C and D, and completes after max(1.0, 1.2) + 0.1 = 1.3 s

To find the critical time/path, we run topological sorting and require the following additional information:

- We must know the execution time of each task
- We will have to record the critical time for each task
 - Initialize these to zero
- We will need to know the previous task with the longest critical time to determine the critical path
 - Set these to null

Topo sort > critical

Suppose we have the following times for the tasks

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	0.0	Ø
В	1	6.1	0.0	Ø
С	3	4.7	0.0	Ø
D	3	8.1	0.0	Ø
Е	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

Each time we pop a vertex v, in addition to what we already do:

- For v, add the task time onto the critical time for that vertex:
 - That is the critical time for v
- For each <u>adjacent</u> vertex w:
 - If the critical time for v is greater than the currently stored critical time for w
 - Update the critical time with the critical time for v
 - Set the previous pointer to the vertex v

So we initialize the queue with those vertices with in-degree zero

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	0.0	Ø
В	1	6.1	0.0	Ø
С	3	4.7	0.0	Ø
D	3	8.1	0.0	Ø
Е	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

Pop Task A and update its critical time 0.0 + 5.2 = 5.2

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	0.0	Ø
В	1	6.1	0.0	Ø
С	3	4.7	0.0	Ø
D	3	8.1	0.0	Ø
Е	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

Pop Task A and update its critical time 0.0 + 5.2 = 5.2

Queue						
F						

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	1	6.1	0.0	Ø
С	3	4.7	0.0	Ø
D	3	8.1	0.0	Ø
E	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

For each neighbor of Task A:

Decrement the in-degree, push if necessary, and check if we must

Queue	5	
F		

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	1	6.1	0.0	Ø
С	3	4.7	0.0	Ø
D	3	8.1	0.0	Ø
E	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

For each neighbor of Task A:

Decrement the in-degree, push if necessary, and check if we must

Queue	,

FB		
----	--	--

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	5.2	>OA
С	3	4.7	0.0	Ø
D	2	8.1	5.2	A
Е	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

Pop Task F and update its critical time 0.0 + 17.1 = 17.1

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	5.2	Α
С	3	4.7	0.0	Ø
D	2	8.1	5.2	Α
Е	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

Pop Task F and update its critical time 0.0 + 17.1 = 17.1

Task (In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	5.2	Α
С	3	4.7	0.0	Ø
D	2	8.1	5.2	Α
E	2	9.5	0.0	Ø
F	0	17.1	17.1	Ø

For each neighbor of Task F:

Decrement the in-degree, push if necessary, and check if we must

Queu	ıe
------	----

В		

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	5.2	Α
С	3	4.7	0.0	Ø
D	2	8.1	5.2	Α
Е	2	9.5	0.0	Ø
F	0	17.1	17.1	Ø

For each neighbor of Task F:

Decrement the in-degree, push if necessary, and check if we must

Queue)	
В		

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	5.2	Α
С	2	4.7	17.1	F
D	2	8.1	5.2	Α
Е	1	9.5	17.1	F
F	0	17.1	17.1	Ø

Pop Task B and update its critical time 5.2 + 6.1 = 11.3

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	5.2	Α
С	2	4.7	17.1	F
D	2	8.1	5.2	Α
Е	1	9.5	17.1	F
F	0	17.1	17.1	Ø

Pop Task B and update its critical time 5.2 + 6.1 = 11.36 $\sqrt{+ \text{ J} \cdot \text{ }}$

			· ·	
Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	A
С	2	4.7	17.1	F
D	2	8.1	5.2	Α
Е	1	9.5	17.1	F
F	0	17.1	17.1	Ø

For each neighbor of Task B:

Decrement the in-degree, push if necessary, and check if we must

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	2	4.7	17.1	F
D	2	8.1	5.2	Α
Е	1	9.5	17.1	F
F	0	17.1	17.1	Ø

For each neighbor of Task F:

Decrement the in-degree, push if necessary, and check if we must

update the critical time

Both C and E are waiting on F

Queue

|--|

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	1	4.7	17.1	F
D	1	8.1	11.3	В
Е	0	9.5	17.1	F
F	0	17.1	17.1	Ø

Pop Task E and update its critical time 17.1 + 9.5 = 26.6

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	1	4.7	17.1	F
D	1	8.1	11.3	В
Е	0	9.5	17.1	F
F	0	17.1	17.1	Ø

Pop Task E and update its critical time 17.1 + 9.5 = 26.6

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	1	4.7	17.1	F
D	1	8.1	11.3	В
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

For each neighbor of Task E:

Decrement the in-degree, push if necessary, and check if we must

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	1	4.7	17.1	F
D	1	8.1	11.3	В
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

For each neighbor of Task E:

Decrement the in-degree, push if necessary, and check if we must

Queue

С		

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	26.6	E
D	1	8.1	11.3	В
Е	0	9.5	26.6	J F
F	0	17.1	17.1	Ø

1

Finding the critical path

Pop Task C and update its critical time 26.6 + 4.7 = 31.3

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	26.6	Е
D	1	8.1	11.3	В
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

Pop Task C and update its critical time 26.6 + 4.7 = 31.3

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	31.3	Е
D	1	8.1	11.3	В
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

For each neighbor of Task C:

Decrement the in-degree, push if necessary, and check if we must

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	31.3	Е
D	1	8.1	11.3	В
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

For each neighbor of Task C:

Decrement the in-degree, push if necessary, and check if we must

Q	П	e	П	e
×	u	\smile	u	$\mathbf{\circ}$

D		

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	31.3	E
D	0 (8.1	31.3	C
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

Pop Task D and update its critical time 31.3 + 8.1 = 39.4

Task	In- degree	Task Time	C	ritical Γime	Previous Task
Α	0	5.2		5.2	Ø
В	0	6.1	•	11.3	Α
С	0	4.7	,	31.3	Е
D	0	8.1		31.3	С
E	0	9.5	V	26.6	F
F	0	17.1		7.1	Ø

Pop Task D and update its critical time 31.3 + 8.1 = 39.4

	<u> </u>			
Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	9/	4.7	31.3	E
D	0	8.1	39.4	С
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

Task D has no neighbors and the queue is empty

We are done

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	31.3	Е
D	0	8.1	39.4	С
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	31.3	Е
D	0	8.1	39.4	С
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

We can also plot the completing of the tasks in time

Task	In- degree	Task Time	Critical Time	Previous Task
Α	0	5.2	5.2	Ø
В	0	6.1	11.3	Α
С	0	4.7	31.3	Е
D	0	8.1	39.4	С
Е	0	9.5	26.6	F
F	0	17.1	17.1	Ø

Incidentally, the task and previous task defines a forest using the parental tree data structure

Task	Previous Task
Α	Ø
В	Α
С	Е
D	С
Е	F
F	Ø

Summary

In this topic, we have discussed topological sorts

- Sorting of elements in a DAG
- Implementation
 - A table of in-degrees
 - Select that vertex which has current in-degree zero
- We defined critical paths
 - The implementation requires only a few more table entries