PROBLEM STATEMENT

The aim of the project is to design a traffic controller for a T-intersection.

Let's understand the problem statement through the image given below.

The six cases present here eventually turn to the six states.

This is the state diagram:

From the state diagram we for the state table:

resent Itale A 6 c	Inque	N S At Btct		MI RYG	M 2 T RY 9 RY			371
	1						164	-
001	TMG	001	1	001	001 10	0 100		
001	TMG	010	J					
010	Ty	010	3	001	010	00 10	6	
011	TT4 TT4	011	3	001	100	001 10	00	
100	TY	100	}	010	001	010	100	
101	TS 4	10 1	}	100	100	100	001	V
	TSG	110	3	100	100	100	010	100
110	17	001)		1	-		
	TY	001	34397	000	000	000	000	

VERILOG CODE

```
'timescale 1ns / 1ps
// Company:
// Engineer:
//
// Create Date: 26.06.2024 11:43:25
// Design Name:
// Module Name: Traffic Light Controller
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module Traffic_Light_Controller(
 input clk,rst,
 output reg [2:0]light_M1,
 output reg [2:0]light_S,
 output reg [2:0]light_MT,
```

```
output reg [2:0]light_M2
);
parameter S1=0, S2=1, S3=2, S4=3, S5=4,S6=5;
reg [3:0]count;
reg[2:0] ps;
parameter sec7=7,sec5=5,sec2=2,sec3=3;
always@(posedge clk or posedge rst)
  begin
  if(rst==1)
  begin
  ps \le S1;
  count<=0;
  end
  else
    case(ps)
       S1: if(count<sec7)
           begin
           ps<=S1;
            count<=count+1;</pre>
            end
         else
           begin
```

```
ps \le S2;
     count \le 0;
     end
S2: if(count<sec2)
     begin
     ps<=S2;
     count<=count+1;</pre>
     end
  else
     begin
     ps<=S3;
     count \le 0;
     end
S3: if(count<sec5)
     begin
     ps<=S3;
     count<=count+1;</pre>
     end
  else
     begin
     ps \le S4;
     count \le 0;
     end
S4:if(count<sec2)
     begin
     ps<=S4;
     count<=count+1;</pre>
     end
```

```
else
     begin
     ps \le S5;
     count<=0;
     end
S5:if(count<sec3)
     begin
     ps<=S5;
     count<=count+1;</pre>
     end
  else
     begin
     ps \le S6;
     count<=0;
     end
S6:if(count<sec2)
     begin
     ps<=S6;
     count<=count+1;</pre>
     end
  else
     begin
     ps \le S1;
     count<=0;
     end
default: ps<=S1;</pre>
```

```
endcase
end
always@(ps)
begin
  case(ps)
    S1:
    begin
      light_M1<=3'b001;
      light_M2<=3'b001;
      light_MT<=3'b100;
      light_S<=3'b100;
    end
    S2:
    begin
      light_M1<=3'b001;
      light_M2<=3'b010;
      light_MT<=3'b100;
      light_S<=3'b100;
    end
    S3:
    begin
      light_M1<=3'b001;
      light_M2<=3'b100;
      light_MT<=3'b001;
      light S<=3'b100;
    end
    S4:
    begin
```

```
light_M1<=3'b010;
 light_M2<=3'b100;
 light_MT<=3'b010;
 light S<=3'b100;
end
S5:
begin
 light_M1<=3'b100;
 light_M2<=3'b100;
 light_MT<=3'b100;
 light_S<=3'b001;
end
S6:
begin
 light_M1<=3'b100;
 light M2<=3'b100;
 light_MT<=3'b100;
 light_S<=3'b100;
end
default:
begin
 light_M1<=3'b000;
 light_M2<=3'b000;
 light_MT<=3'b000;
 light S<=3'b010;
end
endcase
```

endmodule

end

RTL-SCHEMATIC

TESTBENCH

'timescale 1ns / 1ps // Company: // Engineer: // // Create Date: 26.06.2024 20:08:25 // Design Name: // Module Name: Traffic_Light_Controller_TB // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision:

```
// Revision 0.01 - File Created
// Additional Comments:
//
module Traffic_Light_Controller_TB;
reg clk,rst;
wire [2:0]light_M1;
wire [2:0]light_S;
wire [2:0]light_MT;
wire [2:0]light_M2;
Traffic_Light_Controller dut(.clk(clk), .rst(rst), .light_M1(light_M1), .light_S(light_S)
,.light_M2(light_M2),.light_MT(light_MT) );
initial
begin
  clk=1'b0;
  forever #(100000000/2) clk=~clk;
end
initial
begin
  rst=0;
  #100000000;
  rst=1;
  #100000000;
  rst=0;
  #(1000000000*200);
  $finish;
  end
endmodule
```

SIMULATED WAVEFORM

Upon analysing the waveform we can clearly see that the FSM works perfectly.

IO PORT ASSIGNMENT

The ports are assigned from the ucf file.

SCHEMATIC AFTER SYNTHESIS

REPORTS AFTER SYNTHESIS

TIMING REPORT

NOISE REPORT

UTILIZATION REPORT

POWER REPORT

SCHEMATIC AFTER IMPLEMENTATION

DEVICE LAYOUT AFTER IMPLEMENTATION

ZOOM IN VIEW

REPORTS AFTER IMPLEMENTATION

TIMING REPORT

NOISE REPORT

UTILIZATION REPORT

POWER REPORT

.