MAP562 Optimal design of structures

by Samuel Amstutz, Beniamin Bogosel

École Polytechnique

Homework Sheet 3, Jan 22nd, 2020

Instructions The exercise is due on January 28th, 2020. Upload your solutions as separate FreeFEM files, including detailed comments, to the course Moodle.

Important. Comments regarding your numerical experiments should be present either in a separate pdf file either in the FreeFEM codes. Students submitting codes without pertinent comments can only get grades lower than B.

Exercise 1

We denote by (x_1, x_2) the coordinates of a point $x \in \mathbb{R}^2$ and by B(c, r) the ball centered at $c \in \mathbb{R}^2$ of radius $r \in \mathbb{R}$.

1. For a constant heat source $v \in \mathbb{R}$, using a gradient method, implement in FreeFem++ the minimization of the functional:

$$J(v) = \int_{\Omega} |T - T_0|^2 dx$$

where

$$\begin{cases}
-\Delta T + u \cdot \nabla T &= 1_{\omega} v & \text{in } \Omega \\
T &= 0 & \text{on } \partial \Omega.
\end{cases}$$

in which the desired temperature is the constant function $T_0 = 10$. The following geometries and velocity fields will be considered:

•
$$\Omega = B((0,0),1), u(x) = (-x_2,x_1)^{\top}$$

$$-\omega = B((0,0), 0.1),$$

 $-\omega$ is a *slice* of Ω with angle $\pi/6$ (see the drawing below).

• Ω is the L shaped domain (see the drawing below), $u = \nabla \Phi$ where Φ is a solution of

$$\Delta \Phi = 0 \text{ in } \Omega, \text{ and } \frac{\partial \Phi}{\partial n} = \begin{cases} -1 & \text{if } x_1 = 0 \text{ and } 0.5 < x_2 < 1; \\ 1 & \text{if } x_1 = 10; \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

$$-\omega = B((2,2),1)$$

– vary the position of ω and observe the behavior of the solution.

2.	Compare comment	your result on the influ	to the case ence of the	without conve velocity field.	ection $(u =$	[0,0]): r	run the s	\sin ulation ϵ	and writ	te a short