#### **Data Mining**

# Lecture 8 Clustering and Selforganizing Networks



http://www.informatik.uni-hamburg.de/WTM/



#### What is Cluster Analysis?



- Cluster: A group of data objects
  - similar (or related) to one another within the same group
  - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis
  - Finding similarities between data according to their characteristics and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
  - As a stand-alone tool to get insight into data distribution
  - As a preprocessing step for other algorithms

# Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: class, family, genus and species
- Information retrieval: document clustering
- Marketing: help marketers discover distinct customer groups, and develop targeted marketing programs
- Land use: similar land use in an earth observation database
- City-planning: identifying groups of houses according to their house type, value (and geographical location)
- Climate: understanding earth climate, find patterns of atmospheric similiarities
- Earth-quake studies: observed earth quake epicenters should be clustered along continent faults

# Spatiotemporal Clustering of Earthquakes in Greece



### Quality: What Is Good Clustering?

- High quality clusters
  - high intra-class similarity: cohesive within clusters
  - low inter-class similarity: distinctive between clusters
- The quality of a clustering method depends on
  - the similarity measure used by the method
  - its implementation, and
  - its ability to discover the hidden patterns

### Measure the Quality of Clustering

- Dissimilarity/Similarity metric
  - Similarity is expressed in terms of a distance function, e.g. a metric d(i, j)
  - The definitions of distance functions are usually different for interval-scaled, boolean, categorical, or vector variables
  - Different variables may be assigned different weights based on applications and data semantics
- Quality functions ("Clustering Indices")
  - The "goodness" of a clustering process can be quantified,
     e.g. by relating intra-class vs. inter-class similarities
  - It is hard to set thresholds for "similar enough" for data points or "good enough" for the clustering

### **Typical Requirements**

- Scalability
- Incremental clustering and insensitivity to input order
- High dimensionality
- Ability to deal with different types of attributes
- Ability to deal with noisy data
- Discovery of clusters with arbitrary shape
- Constraint-based clustering
- Domain knowledge to determine input parameters
- Interpretability and usability

### Major Clustering Approaches (1)

#### Partitioning approach

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of squared errors
- Typical methods: k-means, k-medoids, CLARANS

#### Hierarchical approach

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

#### Density-based approach

- Based on connectivity and density functions above threshold
- Typical methods: DBSCAN, OPTICS, DenClue

## Major Clustering Approaches (2)

#### Grid-based approach

- multiple-level granularity structure, finite number of cells
- Typical methods: STING, WaveCluster, CLIQUE

#### Model-based

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical: Gaussian Mixture Models, EM, SOM, COBWEB

#### Frequent pattern-based

- Based on the analysis of frequent patterns
- Typical methods: p-Cluster

#### Instance-based

 Typical: K-nearest neighbors (kNN) — classify a data point by the majority vote of its K closest neighbour points

### Data Matrix and Dissimilarity Matrix

#### Data matrix

 n data points with p dimensions

$$\begin{bmatrix} x & 11 & \cdots & x & 1f & \cdots & x & 1p \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ x & i1 & \cdots & x & if & \cdots & x & ip \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ x & n1 & \cdots & x & nf & \cdots & x & np \end{bmatrix}$$

#### Dissimilarity matrix

- Registers the distances between the n data points
- A triangular matrix

$$\begin{bmatrix}
0 \\
d(2,1) & 0 \\
d(3,1) & d(3,2) & 0 \\
\vdots & \vdots & \vdots \\
d(n,1) & d(n,2) & \dots & \dots & 0
\end{bmatrix}$$

#### Reminder: Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

#### where

 $i = (x_{i1}, x_{i2}, ..., x_{ip})$  and  $j = (x_{j1}, x_{j2}, ..., x_{jp})$  are two p-dimensional data objects,

h = order (the distance so defined is also called L-h norm)

- Properties
  - d(i, j) > 0 if  $i \neq j$ , and d(i, i) = 0 (Positive definiteness)
  - d(i, j) = d(j, i) (Symmetry)
  - $d(i, j) \le d(i, k) + d(k, j)$  (Triangle Inequality)
- A distance that satisfies these properties is a metric

# Reminder: Special Cases of Minkowski Distance

• h = 1: (L<sub>1</sub> norm) **Manhattan distance** 

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

- E.g., the Hamming distance between two binary vectors: the number of bits that are different
- h = 2: (L<sub>2</sub> norm) **Euclidean distance**

$$d(i, j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2}$$

#### Distance between Clusters





- Single link: smallest distance between any element (p) in one cluster (i) and any element (q) in the other (j), i.e.,  $dist(K_i, K_j) = min_{p,q} d(x_{ip}, x_{jq})$
- **Complete link:** largest distance between any element in one cluster and any element in the other, i.e.,  $dist(K_i, K_j) = max_{p,q} d(x_{ip}, x_{jq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e.,  $dist(K_i, K_i) = avg_{p,q} d(x_{ip}, x_{iq})$
- **Centroid:** distance between the centroids of two clusters, i.e.,  $dist(K_i, K_i) = d(C_i, C_i)$
- Medoid: distance between the medoids of two clusters, i.e.,  $dist(K_i, K_i) = d(M_i, M_i)$ 
  - Medoid: a chosen, centrally located object in the cluster (whose dissimilarity to all other objects in the cluster is minimal)

# Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "center of mass" of a cluster
 (N<sub>i</sub> = # points in the cluster i)
 ← has minimal average Euclidean distance

 $C_{i} = \frac{\sum_{p=1}^{N} x_{ip}}{N_{i}}$ 

- Radius: ~ average Euclidean distance from any point of the cluster to its centroid
- $R_{i} = \sqrt{\frac{\sum_{p=1}^{N_{i}} (x_{ip} C_{i})^{2}}{N_{i}}}$

Diameter: average Euclidean distance
 between all pairs of points in the cluster

$$D_{i} = \sqrt{\frac{\sum_{p=1}^{N_{i}} \sum_{q=1}^{N_{i}} (x_{ip} - x_{iq})^{2}}{N_{i}(N_{i} - 1)}}$$

### Partitioning Algorithms: Basic Concept

• Partitioning method: partition a database D of objects  $x_p$  into a set of k clusters, minimising sum of squared distances to means  $m_i$ 

$$E = \sum_{j=1}^{k} \sum_{p \in C_i}^{N_i} (x_p - m_i)^2$$
 # points assigned to cluster  $i$  sum over each point  $p$  is assigned to exactly one cluster  $i$ 

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
  - Find global optimum: exhaustively enumerate all possible partitions
  - Find a local optimum by heuristic methods:
    - k-means (MacQueen'67): Each cluster is represented by its center
    - k-medoids or Partition around medoids (PAM, Kaufman&Rousseeuw'87):
       Each cluster is represented by one of the objects in the cluster

## The K-Means Clustering Method

- Given k, the k-means algorithm is as:
  - 1. Partition objects into *k* non-empty subsets
  - Compute the centroids (center of mass / mean) of the clusters of the current partitioning
  - Assign each object to the cluster with the nearest centroid
  - Go to Step 2; Stop when none of the assignments changed

## The k-Means Algorithm

- Initialization
  - Set a value for k
  - Place the k cluster centres  $\mu_i$  at random positions in input space
- Learning: Repeat ...
  - For each data point  $x_p$ 
    - Compute distance to each cluster centre
    - Assign data point to nearest cluster centre with distance  $d_p = \min_i d(x_p, \mu_i)$
  - For each cluster centre
    - Move position of centre to mean of points in cluster

$$\mu_j = \frac{1}{N_j} \sum_{i=1}^{N_j} x_i \qquad N_j = \text{number of points in cluster } j$$

- until the assignments don't change (then, cluster centres stop moving)
- On-line version: move cluster center only a bit for each data point

## The K-Means Clustering Method

#### Example



K=2

Arbitrarily choose K objects, or K locations, as initial cluster centers





cluster

means

reassign

### Why k-Means Converges

 Change of assignments reduces the sum squared distances of the datapoints to their assigned cluster centers.

 Moving a cluster center reduces the sum squared distances of the datapoints to their assigned cluster centers.

 If the assignments do not change in the assignment step, we have converged.

# Clustering: 4-means



# Clustering: Local Minima (1)



# Clustering: Local Minima (2)



# Clustering: Overfitting



# Clustering: Underfitting



#### Comments on the *K-Means* Method

Strength: Relatively efficient: O(tkn). Typically, k, t << n. (n = #objects, k = #clusters, t = #iterations)

#### Weaknesses

- Need to specify k, the number of clusters, in advance
- Sensitive to noisy data and outliers
- Terminates at a local optimum
- Not suitable to discover clusters with non-convex shapes
- Applicable only when mean is defined not for categorical data

#### Comments on the *K-Means* Method



k-means: choose the result that has minimal error E

# Example: Object Hypotheses in Natural Scenes using k-Means

- In a stereo image pair of a scene, pixels can be clustered based on position, disparity, hue and saturation.
- For object segmentation, if two objects are in close proximity, they are likely to be encapsulated by the same segment.
- If we give the information that a segment covers two objects, k-means (k=2) can find a likely split of that segment.
- Then the object modeling loop is resumed with the new hypotheses.

#### Object Hypotheses Example

# Generating Object Hypotheses in Natural Scenes through Human-Robot Interaction

Niklas Bergström, Mårten Björkman, Danica Kragic CSC/KTH Stockholm, Sweden IROS 'I I

### Handling Outliers: the K-Medoids Method

- The k-means algorithm is sensitive to outliers!
  - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the objects in a cluster as a reference point, medoids are used, which is the most centrally located object in a cluster.



## Other Typical Partitioning Clustering Methods

- K-Medoids finds representative objects (medoids) in clusters
  - PAM (Partitioning Around Medoids, 1987)
    - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
    - does not scale well for large data sets (computational complexity)
  - CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples
  - CLARANS (Ng & Han, 1994): Randomized sampling

### Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition



## AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster



#### Dendrogram Shows how Clusters are Merged

 Decompose data objects into several levels of nested partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.



### **DIANA** (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES: top down
- Eventually each node forms a cluster on its own



#### **Model-Based Clustering**

- What is model-based clustering?
  - Assumption: a cluster is generated by a model such as a probability distribution
  - A model (e.g., Gaussian distribution) is determined by a set of parameters
  - Task: optimize the fit between the given data and some mathematical model by learning the parameters of the model
- Typical statistical methods
  - Gaussian Mixture Models, EM (Expectation maximization), AutoClass
- Typical neural network methods
  - SOM (Self-Organizing Feature Map)

#### **Neural Network Approaches**

- Neural network approaches
  - Represent each cluster with an exemplar (a neuron), acting as a "prototype" of the cluster
  - New objects are assigned to the cluster whose exemplar is the most similar according to some distance measure
- Typical methods
  - SOM (Self-Organizing feature Map)
  - Competitive learning
    - Neurons compete in a "winner-takes-all" fashion for the object currently being presented

### Feature Maps



# Feature Maps: How are Signals Mapped into the Auditory Cortex?



Different sound signals

**Activated Neurons** 

### Feature Maps

- Sounds that are similar ('nearby in input space') excite neurons that are near to each other (in `output space')
- Sounds that are very different excite neurons that are a long way off

This is known as topology preservation

- The ordering of the inputs is preserved
  - If possible (perfectly topology-preserving)

### Mapping of visual Field to Cortex

 Neighboring visual fields processed by neighboring cortex regions; fovea is large



### **Topology Preservation in 2D**

Network topology





Network representation of input space





## The Self-Organising Map



#### Mexican hat function

- The Mexican hat function represents the relationship between the distance from the winning neuron and the strength of "connections" within the Kohonen layer
- Near neighbourhood short range lateral excitation area has strong positive effect
- Remote neighbourhood has a weak negative inhibitory effect
- → WTA-like behaviour (competitive network!)



excitatory effect

### **Neuron Connections?**

- We do not actually need the inhibitory connections
  - Just use a neighbourhood of positive connections
- How large should this neighbourhood be?
  - At the beginning of learning, the network is unordered
    - Large neighbourhood: each input vector excites many neurons
    - Nearby neurons will learn similarly
    - Their weights will be ordered in input space!
  - Later on, fine-tuning
    - Small neighbourhood: an input vector excites only neurons closeby
    - Neurons can specialize on small regions in input space

### Self-Organizing Map (SOM)

- SOMs, also called topological ordered maps, or Kohonen Self-Organizing Feature Map
- It maps the points in a high-dimensional source space into a 1D,
   2D (most typical) or 3D target space; distances and proximity relationships (i.e., topology) are preserved as much as possible
- Similar to k-means: cluster centers tend to lie in a lowdimensional manifold in the feature space
- Clustering is performed by having several units competing for the current object
  - The unit whose weight vector is closest to the current object wins
  - The winner and its neighbors learn by having their weights adjusted
- SOMs mimic some aspects of competitive processing in the brain
- Useful for visualizing high-dimensional data

### Self organizing maps

- The activation of the neuron is spread in its direct neighborhood
  - neighbors become sensitive to the same input patterns
- The size of the neighborhood is initially large but reduced over time during training as the network neurons become more specialized



### Adaptation

- During training, the "winner" neuron and its neighborhood adapts to make their weight vector more similar to the input pattern that caused the activation
- The neurons are moved closer to the input pattern
- The magnitude of the adaptation is controlled via a learning parameter which decays over time



### SOM 'Cost Function'

K-means:

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (x_p - m_i)^2$$

SOM:

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} \sum_{j}^{k} h(|i-j|) (x_p - m_j)^2$$

neighbourhood activation function h

### **SOM Algorithm**



### The Self-Organising Map Algorithm

- The weight vectors are randomly initialised
- Input vectors are presented to the network
  - Determine **best matching neuron**  $n_b$  with the minimal Euclidean distance between input x and weight vector w

$$n_b = \min_{j} \left\| x - w_j^T \right\|$$

• The winning node and neighbours have weight vector moved closer to the input (with learning rate  $\eta(t)$ )

$$w_{j}^{T} \leftarrow w_{j}^{T} + \eta(t) \qquad \cdot (x - w_{j}^{T})$$

 Over time, the network self-organises so that the input topology is preserved

### The Self-Organising Map Algorithm

- The weight vectors are randomly initialised
- Input vectors are presented to the network
  - Determine **best matching neuron**  $n_b$  with the minimal Euclidean distance between input x and weight vector w

$$n_b = \min_{j} \left\| x - w_j^T \right\|$$

• The winning node and neighbours have weight vector moved closer to the input (with learning rate  $\eta(t)$ )

$$w_{j}^{T} \leftarrow w_{j}^{T} + \eta(t) \cdot h(n_{b}, t) \cdot (x - w_{j}^{T})$$

 Over time, the network self-organises so that the input topology is preserved

### Neighborhood Function Preserves Topology

• The neighborhood function  $h(n_b,t)$  determines the degree of weight vector change of the neighbors

$$w_{j}^{T} \leftarrow w_{j}^{T} + \eta(t) \cdot h(n_{b}, t) \cdot (x - w_{j}^{T})$$

- Mostly: Gaussian function; rarely: Mexican Hat function
- Width decreases during training
   (→ implicit decrease of learning rate)
- May decrease to zero (→ k-means)







Mexican Hat (Difference of Gaussian)

### **Self-Organization**

- Global ordering from local interactions
  - Each neuron sees its neighbors
  - The whole network becomes ordered

Understanding self-organization is part of complexity science

### K-means vs. SOM

- "Clusters"
- Clusters independent of each other
  - Clusters indices can be exchanged
- # clusters typically small
- Used for clustering

- "Neurons"
- Neurons co-excited by neighbourhood function
  - Neurons arranged on a map in 1D, 2D, ...
- # neurons typically large
- Used for mapping

### The Self-Organizing Map

Begin of training (large neighbourhood)



End of training (small neighbourhood)



If neighbourhood reduced to zero size: → k-means

### Boundary Conditions: No Neurons at the End of the Map



#### **Network Size**

- We have to predetermine the network size
- Small network
  - Too much generalization
    - → no differentiation
- Large network
  - Each neuron can represent exact features
    - → little generalisation
  - Large neighbourhood interaction keeps network "small", since the parameters are tied to each other
    - → this "regularization" allows SOMs to be kept large

## Examples: One-dimensional Lattice of Kohonen Elements

- Units are arranged in sequence
- Each unit learns to specialize for a different region in input space



### SOM Demo – 2D lattice in 2D / 3D input space



[http://www.borgelt.net/somd.html]

### 1D Lattice Mapping a 2D Triangular Region

 Triangular input domain is mapped to a small number of one-dimensional representative units



Unit with strongest excitation for shaded region

### Example of SOM Neighborhood



The input vector is represented as X.
Units in neighbourhood 1 are more active than those in neighbourhood 2.

## Good Fit of dimensions: Mapping a Square with a 2-dimensional Lattice



- Upper right with some overlapped learning iterations
- Results for 100, 1000, 5000, 10000 iterations (Kohonen 1984)

### Influence by Pre-Defined Topology



- The winner B and its neighbors such as A, C, D and E move towards the input vector X
- Modified units are shown as dark circles

### Unfolding of a 2-D Map in a 2-D Data Space



### Planar Network with a Knot



State difficult to correct

## Unfolding of a 2-D Map in a 3-D Data Space



### Example Application: V1 Maps

#### ocular dominance



orientation preference

Obermayer, Blasdel. .. Orientation and Ocular Dominance Columns in Monkey .. Jneurosci, 1993

Goodhill . Theoretical Modelling to .. Neural Map Development. Neuron, 2007

### Learning Simple Inverse Kinematics

- Mapping the configuration space of a robot arm using 2dimensional network
- For one point only one parameter combination; many paths from A to B







### Learning Simple Inverse Kinematics





### Learning Obstacles in Work Area

- Kohonen network charts configuration space avoiding the obstacles
- Moving the arm from A to B avoids the obstacle







### Semantic Map – Input data

|       |                | dove | hen | duck | goose    | owl | hawk | eagle | <b>f</b> ox | dog | wolf | cat | tiger | lion | horse | zebra | COW |
|-------|----------------|------|-----|------|----------|-----|------|-------|-------------|-----|------|-----|-------|------|-------|-------|-----|
|       | small          | 1    | 1   | 1    | 1        | 1   | 1    | 0     | 0           | 0   | 0    | 1   | 0     | 0    | 0     | 0     | 0   |
| is :  | medium         | 0    | 0   | 0    | 0        | 0   | 0    | 1     | 1           | 1   | 1    | 0   | 0     | 0    | 0     | 0     | 0   |
|       | big            | 0    | 0   | 0    | 0        | 0   | 0    | 0     | 0           | 0   | 0    | 0   | 1     | 1    | 1     | 1     | 1   |
|       | 2 legs         | 1    | 1   | 1    | 1        | 1   | 1    | 1     | 0           | 0   | 0    | 0   | 0     | 0    | 0     | 0     | 0   |
|       | 4 legs         | 0    | 0   | 0    | 0        | 0   | 0    | 0     | 1           | 1   | 1    | 1   | 1     | 1    | 1     | 1     | 1   |
| has   | hair           | 0    | 0   | 0    | 0        | 0   | 0    | 0     | 1           | 1   | 1    | 1   | 1     | 1    | 1     | 1     | 1   |
| nas   | hooves         | 0    | 0   | 0    | <b>0</b> | 0   | 0    | 0     | 0           | 0   | 0    | 0   | 0     | 0    | 1     | 1     | 1   |
|       | mane           | 0    | 0   | 0    | 0        | 0   | 0    | 0     | 0           | 0   | 1    | 0   | 0     | 1    | 1     | 1     | 0   |
|       | feathers       | 1    | 1   | 1    | 1        | 1   | 1    | 1     | 0           | 0   | 0    | 0   | 0     | 0    | 0     | 0     | 0   |
|       | hunt           | 0    | 0   | 0    | 0        | 1   | 1    | 1     | 1           | 0   | 1    | 1   | 1     | 1    | 0     | 0     | 0   |
| likes | run            | 0    | 0   | 0    | 0        | 0   | 0    | 0     | 0           | 1   | 1    | 0   | 1     | 1    | 1     | 1     | 0   |
| to    | $\mathbf{fly}$ | 1    | 0   | 0    | 1        | 1   | 1    | 1     | 0           | 0   | 0    | 0   | 0     | 0    | 0     | 0     | 0   |
|       | swim           | 0    | 0   | 1    | 1        | 0   | 0    | 0     | 0           | 0   | 0    | 0   | 0     | 0    | 0     | 0     | 0   |

attributes of the inputs

### Semantic Map - Results



### Semantic Map - Results

| duck  | duck  | horse | horse | zebra | zebra | cow            | cow  | cow   | cow   |
|-------|-------|-------|-------|-------|-------|----------------|------|-------|-------|
| duck  | duck  | horse | zebra | zebra | zebra | cow            | cow  | tiger | tiger |
| goose | goose | goose | zebra | zebra | zebra | wolf           | wolf | tiger | tiger |
| goose | goose | hawk  | hawk  | hawk  | wolf  | wolf           | wolf | tiger | tiger |
| goose | owl   | hawk  | hawk  | hawk  | wolf  | wolf           | wolf | lion  | lion  |
| dove  | owl   | owl   | hawk  | hawk  | dog   | dog            | dog  | lion  | lion  |
| dove  | dove  | owl   | owl   | owl   | dog   | dog            | dog  | dog   | lion  |
| dove  | dove  | eagle | eagle | eagle | dog   | $\mathbf{dog}$ | dog  | dog   | cat   |
| hen   | hen   | eagle | eagle | eagle | fox   | fox            | fox  | cat   | cat   |
| hen   | hen   | eagle | eagle | eagle | fox   | fox            | fox  | cat   | cat   |

### Existing Neural Clustering models

- Static Models (fixed number of units): Competitive Learning (CL), Self-Organizing Map (SOM), Neural Gas (NG), ....
  - Hierarchical: Multilayered Self-Organising Feature Maps (M-SOM), etc.

There are shortcomings for static models in a non-stationary environment.

- Dynamic Models (variable number of units): Growing Grid (GG), Growing Cell Structure (GCS), Growing Neural Gas (GNG), Grow When Required (GWR), etc.
  - Hierarchical: Growing Hierarchical Self-Organizing Map (GHSOM), etc.

## Growing Neural Gas – GNG (Fritzke)



- GNG adds unit after every predefined period.
- Units are represented as circles.
- Circle A indicates unit with biggest error
- Circle B indicates neighbor with biggest error for Circle A.
- The grey circle is the *new unit* at each stage.

### Growing When Required – GWR

(Marsland et al., 2002)

- GNG: network grows with time
- GWR: network grows when required
- → strong neurogenesis at early stages
- Each neuron has a firing counter (how often is it the winner)
  - Many counts → lower learning rate to help convergence
  - Few counts → novelty detected
- Each edge has an age (refreshed when linking winner and 2<sup>nd</sup> winner)
  - Old edge → cut it (and remove units when isolated)



# Dynamical SOM for Dynamical Knowledge Acquisition Over Time



# Shortcomings of Static Models in a Non-stationary Environment

- Pre-defined number of units
- Pre-defined topology (mostly a grid)
- Pre-defined training length
- A decaying learning rate (e.g. SOM, CL, NG, GG, GSOM, Snet-SOM, M-SOM, GHSOM)

## Room Mapping via GNG (KT Lab)











### Room Mapping via GNG (KT Lab)

- Map the topological structure of a room using growing neural gas for robot navigation
- Since the person's movement can show the free space in the room, we use the detected position of a person as the network input



### Room Mapping via GNG (KT Lab)



- Blue dots are particles for person detection
- Red bounding box shows the estimated position of the target person
- Yellow dots are the neurons of the growing neural gas and the green lines are the connections

### Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
- There are still lots of research issues on cluster analysis