Merceded_Benz

July 13, 2023

```
[1]: # Importing the required libraries
     import numpy as np
     import pandas as pd
     from sklearn.decomposition import PCA
[3]: # Importing the data
     train = pd.read_csv('trainMB.csv')
     test = pd.read_csv('testMB.csv')
[4]: train.head()
[4]:
         ID
                      XO X1
                              X2 X3 X4 X5 X6 X8
                                                       X375
                                                              X376
                                                                    X377
                                                                           X378
                                                                                  X379
     0
          0
             130.81
                       k
                              at
                                      d
                                                          0
                                                                 0
                                                                        1
                                                                               0
                                                                                     0
              88.53
                                                                 0
                                                                        0
     1
          6
                       k
                                      d
                                         у
                                             1
                                                          1
                                                                               0
                                                                                     0
                          t
                              av
                                  е
                                                0
     2
              76.26
                                                                 0
                                                                        0
                                                                               0
                                                                                     0
                                      d
                                         х
                                                          0
                      az
                               n
     3
              80.62
                                  f
                                                                 0
                                                                        0
                                                                               0
          9
                      az
                          t
                               n
                                      d
                                         X
                                             1
                                                е
                                                          0
                                                                                     0
                                  f
                                                                 0
                                                                                     0
        13
              78.02
                                      d
                                         h
                                             d
                                                          0
                      az
                               n
        X380
               X382
                             X384
                      X383
                                   X385
     0
            0
                   0
                         0
                                0
                                       0
     1
            0
                   0
                         0
                                0
                                       0
     2
            0
                   1
                         0
                                0
                                       0
     3
            0
                   0
                         0
                                0
                                       0
     4
            0
                   0
                         0
                                0
                                       0
     [5 rows x 378 columns]
[5]: test.head()
[5]:
                     X2 X3 X4 X5 X6 X8
                                          X10
                                                   X375
                                                          X376
                                                                 X377
                                                                        X378
                                                                               X379
                                                                                     X380
             X0 X1
                                                       0
                                                              0
                                                                    0
     0
          1
             az
                      n
                         f
                             d
                                t
                                             0
                                                                           1
                                                                                  0
                                                                                         0
     1
          2
                                                       0
                                                              0
                                                                     1
                                                                           0
                                                                                  0
              t
                 b
                             d
                                             0
                                                                                         0
                     ai
                         a
                                b
                                    g
                                       У
     2
          3
                         f
                                                       0
                                                              0
                                                                    0
                                                                           1
                                                                                  0
             az v
                     as
                             d
                                             0
                                                                                         0
                                    j
                                       j
     3
                         f
                             d
                                    1
                                             0
                                                       0
                                                              0
                                                                    0
                                                                                  0
                                                                                         0
                      n
                                       n
                                                       1
                                                                    0
                         С
                             d
                                             0
                                                              0
                                                                                         0
              W
                 s
                     as
                                У
                                    i
```

```
0
            0
                  0
                        0
                              0
      1
            0
                  0
                        0
                              0
      2
            0
                  0
                        0
                              0
      3
            0
                        0
                              0
            0
                  0
                        0
                              0
      [5 rows x 377 columns]
 [6]: print('Size of training set: {} rows and {} columns'.format(*train.shape))
      print('Size of testing set: {} rows and {} columns'.format(*test.shape))
     Size of training set: 4209 rows and 378 columns
     Size of testing set: 4209 rows and 377 columns
 [7]: # Collect the Y values into an array
      y_train = train['y'].values
 [8]: y_train
 [8]: array([130.81, 88.53, 76.26, ..., 109.22, 87.48, 110.85])
 [9]: # Understand the data types
      cols = [c for c in train.columns if 'X' in c]
      print('Number of features: {}'.format(len(cols)))
      print('Feature types:')
      train[cols].dtypes.value_counts()
     Number of features: 376
     Feature types:
 [9]: int64
                368
      object
      dtype: int64
[10]: # Count the data in each of the columns
      counts = [[], [], []]
      for c in cols:
          typ = train[c].dtype
          uniq = len(np.unique(train[c]))
          if uniq == 1:
              counts[0].append(c)
          elif uniq == 2 and typ == np.int64:
              counts[1].append(c)
          else:
              counts[2].append(c)
```

X382 X383 X384

X385

```
print('Constant features: {} Binary features: {} Categorical features: {}\n'
    .format(*[len(c) for c in counts]))
print('Constant features:', counts[0])
print('Categorical features:', counts[2])
```

Constant features: 12 Binary features: 356 Categorical features: 8

Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293', 'X297', 'X330', 'X347']
Categorical features: ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']

```
[11]: # Splitting the data
usable_columns = list(set(train.columns) - set(['ID', 'y']))
y_train = train['y'].values
id_test = test['ID'].values
x_train = train[usable_columns]
x_test = test[usable_columns]
```

Check for null values and unique values for train & test data

```
[12]: def check_missing_values(df):
    if df.isnull().any().any():
        print('There are missing values in the dataframe')
    else:
        print('There are no missing values in the dataframe')
```

```
[13]: check_missing_values(x_train) check_missing_values(x_test)
```

There are no missing values in the dataframe There are no missing values in the dataframe

Label Encoding the categorical values

```
for column in usable_columns:
    cardinality = len(np.unique(x_train[column]))
    if cardinality == 1:
        x_train.drop(column, axis=1) # Column with only one
        # value is useless so we drop it
        x_test.drop(column, axis=1)
    if cardinality > 2: # Column is categorical
        mapper = lambda x: sum([ord(digit) for digit in x])
        x_train[column] = x_train[column].apply(mapper)
        x_test[column] = x_test[column].apply(mapper)
        x_train.head()
```

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:9:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy if name == ' main ':

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

[14]:		X42	X50	X246	X379	X155	X118	X294	X143	X101	X22	•••	X124	X233	\
	0	0	0	0	0	0	1	0	0	0	0		0	0	
	1	0	0	0	0	0	1	0	0	1	0		0	0	
	2	0	0	1	0	0	0	0	0	1	0		0	0	
	3	0	0	1	0	0	0	0	0	1	0		0	0	
	4	0	0	1	0	0	0	0	0	1	0	•••	0	0	
		X225	X27	0 X32	3 X27	7 X275	5 X20!	5 X80	X67						
	0	0	(0	0 (0 1	l (0 0	0						

0	0	0	0	0	1	0	0	0
1	0	0	0	0	1	1	1	0
2	0	0	0	0	0	1	1	0
3	0	0	0	0	0	1	1	0
4	0	0	0	0	0	1	1	0

[5 rows x 376 columns]

```
[15]: # Make sure the data is changed into numerical values

print('Feature types:')
   x_train[cols].dtypes.value_counts()
```

Feature types:

[15]: int64 376 dtype: int64

Perform Dimensionality reduction

```
[16]: n_comp = 12
pca = PCA(n_components = n_comp,random_state = 420)
pca2_results_train = pca.fit_transform(x_train)
pca2_results_test = pca.transform(x_test)
```

Training using XGBoost

```
[17]: # Training using XGBoost
      import xgboost as xgb
      from sklearn.metrics import r2_score
      from sklearn.model_selection import train_test_split
[18]: x_train,x_val,y_train,y_val = train_test_split(pca2_results_train, y_train,__
       →test_size=0.2, random_state=4242)
[19]: d_train = xgb.DMatrix(x_train, label = y_train)
      d_val = xgb.DMatrix(x_val,label = y_val)
      # dtest = xqb.DMatrix(x test)
      d test = xgb.DMatrix(pca2 results test)
[20]: params = {}
      params['objective'] = 'reg:linear'
      params['eta'] = 0.02
      params['max_depth'] = 4
      def xgb_r2_score(preds, dtrain):
          labels = dtrain.get_label()
          return 'r2', r2 score(labels, preds)
      watchlist = [(d_train, 'train'), (d_val, 'valid')]
      clf = xgb.train(params, d_train, 1000, watchlist, early_stopping_rounds=50,
       feval=xgb_r2_score, maximize=True, verbose_eval=10)
     [12:48:41] WARNING: /workspace/src/objective/regression_obj.cu:167: reg:linear
     is now deprecated in favor of reg:squarederror.
     [0]
             train-rmse:99.14835
                                     valid-rmse:98.26297
                                                             train-r2:-58.35295
     valid-r2:-67.63754
     Multiple eval metrics have been passed: 'valid-r2' will be used for early
     stopping.
     Will train until valid-r2 hasn't improved in 50 rounds.
     [10]
             train-rmse:81.27653
                                     valid-rmse:80.36433
                                                             train-r2:-38.88428
     valid-r2:-44.91014
     [20]
             train-rmse:66.71610
                                     valid-rmse:65.77334
                                                             train-r2:-25.87403
     valid-r2:-29.75260
             train-rmse:54.86915
                                     valid-rmse:53.89120
                                                             train-r2:-17.17724
     [30]
     valid-r2:-19.64513
     Γ40]
            train-rmse:45.24564
                                     valid-rmse:44.22231
                                                             train-r2:-11.36018
     valid-r2:-12.90160
     [50]
            train-rmse:37.44742
                                     valid-rmse:36.37758
                                                             train-r2:-7.46672
     valid-r2:-8.40697
     [60]
            train-rmse:31.15106
                                     valid-rmse:30.01765
                                                             train-r2:-4.85891
```

	-0. F 40F04							
	r2:-5.40524 train-rmse:26.08771	valid-rmse:24.90846	train-r2:-3.10907					
		valid-rmse:24.90846	train-r2:-3.10907					
	r2:-3.41038	3 : 1	0 4 00500					
	train-rmse:22.04900	valid-rmse:20.82502	train-r2:-1.93528					
	r2:-2.08285							
	train-rmse:18.84765	valid-rmse:17.60010	train-r2:-1.14480					
	r2:-1.20198							
	train-rmse:16.33699	valid-rmse:15.08526	train-r2:-0.61145					
	r2:-0.61766							
	train-rmse:14.39788	valid-rmse:13.15610	train-r2:-0.25161					
	r2:-0.23037							
[120]	train-rmse:12.93041	valid-rmse:11.69388	train-r2:-0.00948					
valid-	r2:0.02793							
[130]	train-rmse:11.81665	valid-rmse:10.62117	train-r2:0.15694					
valid-	r2:0.19809							
[140]	train-rmse:10.98570	valid-rmse:9.85576	train-r2:0.27134					
valid-	r2:0.30950							
[150]	train-rmse:10.37823	valid-rmse:9.32776	train-r2:0.34969					
valid-	r2:0.38150							
[160]	train-rmse:9.92529	valid-rmse:8.96124	train-r2:0.40522					
valid-	r2:0.42916							
[170]	train-rmse:9.59273	valid-rmse:8.71470	train-r2:0.44441					
valid-	r2:0.46013							
[180]	train-rmse:9.34136	valid-rmse:8.55182	train-r2:0.47314					
valid-	r2:0.48013							
[190]	train-rmse:9.16018	valid-rmse:8.44863	train-r2:0.49338					
valid-	r2:0.49260							
[200]	train-rmse:9.01539	valid-rmse:8.38342	train-r2:0.50927					
	r2:0.50040							
[210]	train-rmse:8.91053	valid-rmse:8.34375	train-r2:0.52062					
	r2:0.50511							
	train-rmse:8.83439	valid-rmse:8.31880	train-r2:0.52878					
	r2:0.50807		014111 1110101010					
[230]	train-rmse:8.76692	valid-rmse:8.30589	train-r2:0.53595					
	r2:0.50960	varia imbo.o.oooo	014111 12:0:00000					
	train-rmse:8.71890	valid-rmse:8.30186	train-r2:0.54102					
	r2:0.51007	valid imse.o.soioo	0141H 12.0.04102					
[250]		valid-rmse:8.29627	train-r2:0.54528					
	r2:0.51073	Valid-1mse.0.29027	train-12.0.54526					
	train-rmse:8.63351	valid-rmse:8.29345	train-r2:0.54997					
	r2:0.51106	Valid-Imse.0.29345	train-12.0.54997					
		1 - 1 0 00025	+					
	train-rmse:8.59840	valid-rmse:8.28935	train-r2:0.55362					
	r2:0.51155	3:1 0.00050	0 0 55007					
	train-rmse:8.57183	valid-rmse:8.28958	train-r2:0.55637					
valid-r2:0.51152								
[290]		valid-rmse:8.28931	train-r2:0.55897					
	r2:0.51155	1.1						
[300]	train-rmse:8.51790	valid-rmse:8.28741	train-r2:0.56194					

valid-r2:0.51177		
[310] train-rmse:8.48728	valid-rmse:8.28676	train-r2:0.56508
valid-r2:0.51185		
[320] train-rmse:8.45935	valid-rmse:8.28654	train-r2:0.56794
valid-r2:0.51188		
[330] train-rmse:8.43960	valid-rmse:8.28397	train-r2:0.56995
valid-r2:0.51218		
[340] train-rmse:8.41649	valid-rmse:8.28167	train-r2:0.57231
valid-r2:0.51245		
[350] train-rmse:8.39454	valid-rmse:8.27978	train-r2:0.57453
valid-r2:0.51267		
[360] train-rmse:8.37122	valid-rmse:8.28102	train-r2:0.57689
valid-r2:0.51253		
[370] train-rmse:8.34339	valid-rmse:8.27881	train-r2:0.57970
valid-r2:0.51279		
[380] train-rmse:8.31823	valid-rmse:8.27762	train-r2:0.58223
valid-r2:0.51293		
[390] train-rmse:8.29572	valid-rmse:8.27565	train-r2:0.58449
valid-r2:0.51316		
[400] train-rmse:8.27208	valid-rmse:8.27303	train-r2:0.58686
valid-r2:0.51347		
[410] train-rmse:8.24628	valid-rmse:8.26927	train-r2:0.58943
valid-r2:0.51391		
[420] train-rmse:8.22016	valid-rmse:8.26749	train-r2:0.59203
valid-r2:0.51412		
[430] train-rmse:8.18886	valid-rmse:8.26454	train-r2:0.59513
valid-r2:0.51447		
[440] train-rmse:8.16603	valid-rmse:8.26397	train-r2:0.59738
valid-r2:0.51453	2.1	
[450] train-rmse:8.13853	valid-rmse:8.26562	train-r2:0.60009
valid-r2:0.51434	2	
[460] train-rmse:8.11520	valid-rmse:8.26616	train-r2:0.60238
valid-r2:0.51428	1.1	
[470] train-rmse:8.09094	valid-rmse:8.26538	train-r2:0.60475
valid-r2:0.51437	3 : 1	
[480] train-rmse:8.06924	valid-rmse:8.26371	train-r2:0.60687
valid-r2:0.51456	1.1	
[490] train-rmse:8.04953	valid-rmse:8.26259	train-r2:0.60879
valid-r2:0.51470	1:1 0 00400	±
[500] train-rmse:8.02556	valid-rmse:8.26429	train-r2:0.61111
valid-r2:0.51450	1.1	
[510] train-rmse:8.00515	valid-rmse:8.26562	train-r2:0.61309
valid-r2:0.51434	1:1 0.00075	
[520] train-rmse:7.98177	valid-rmse:8.26275	train-r2:0.61535
valid-r2:0.51468	1:-1	t
[530] train-rmse:7.96485	valid-rmse:8.26534	train-r2:0.61698
valid-r2:0.51437		
Stopping. Best iteration:		

[489] train-rmse:8.05238 valid-rmse:8.26128 train-r2:0.60851 valid-r2:0.51485

```
Predict\ test\_df\ using\ XGBoost
[21]: p_test = clf.predict(d_test)
[22]: sub = pd.DataFrame()
     sub['ID'] = id_test
     sub['y'] = p_test
     sub.to_csv('test_df.csv', index = False)
      sub.head()
[22]:
        ID
     0
         1
             82.865776
        2 97.628395
      1
      2
        3 83.197395
        4 77.039124
         5 112.527901
 []:
```