

IJCB2014

Face Recognition: Beyond the Limit of Accuracy

NEC Corporation
Information and Media Processing Laboratories
Hitoshi Imaoka

h-imaoka@cb.jp.nec.com

What is the hurdle in face recognition?

Motivation of my research

"Accuracy" is the most important

Question: Which of these three pictures is me?

Motivation of my research

Even in this sample, a lot of problems include

- long term aging change
- facial view, expression, similar face etc.

Why is face recognition so difficult?

Outline

- Face recognition algorithm
- Evaluation results by NIST and LFW
- **Experimental results**
 - Fusion of Human and Automatic Recognition
- Application examples
 - Is face recognition useful tool in our real life?
- Summary

Progress of Face Recognition Algorithm

Processing flow of face recognition algorithm

Query **Feature** image **Extraction Similarity Feature Score Matching** Mate **Target Feature** or Distance image **Extraction** Non-mate Cosine etc.

Processing flow of face recognition algorithm

Progress of Face Recognition Algorithm

Linear method

Generative model

Simple features

Non Linear method

Discriminative model

Complex features

Progress of Face Recognition Algorithm

Linear method

Generative model

Simple features

Non Linear method

Discriminative model

Complex features

1st generation: Eigenface

Turk, M. A. and Pentland, Alex P. "Face recognition using eigenfaces". Computer Vision and Pattern Recognition, 1991.

Based on Principal Component Analysis (PCA)

Projection vector is a set of eigenvector of training samples

Top 4 eigenface

PCA projection is optimal for reconstruction of face, but may not be optimal for discrimination

1st generation: Fisherface

P. Belhumeur, J. Hespanha, and D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection", PAMI, 19(7):711--720, 1997.

- Based on Linear Discriminant Analysis (LDA)
 - Optimal subspace is obtained by maximizing the ratio of between and within class scatter matrix:

$$r = \left\| \Phi^T S_b \Phi \right\| / \left\| \Phi^T S_w \Phi \right\|$$

 S_h : between class scatter matrix

 S_w : within class scatter matrix

http://www.scholarpedia.org/article/Fisherfaces

Four top fisherfaces

Limitation

It is difficult to discriminate faces near the individual boundaries

Progress of Face Recognition Algorithm

Linear method

Generative model

Simple features

Non Linear method

Discriminative model

Complex features

2nd generation: Sparse Representation

Allen Y. Yang, Arvind Ganesh and Yi Ma, "The basic idea is to cast **recognition** as a **sparse representation** problem, utilizing new mathematical tools from compressed sensing and L1 minimization", PAMI 2009.

- Train sparse matrix under L1 minimization constraint
- Decomposed as sparse components and remaining elements
- By sparse representation, robust against occluding facial parts

Metric Learning Approach

Distance metric between feature xi and xj

$$d(x_i, x_j) = (x_i - x_j)^T M(x_i - x_j)$$

M is a symmetric positive definite matrix

design matrix M to discriminate Mate and Non-mate class

 J. Davis, B. Kulis, P. Jain, S. Sra, and I.
 Dhillon. "Information theoretic metric learning". In ICML, 2007.

Objective function: Kullbach-Leibler divergence criterion

$$\min_{A} KL(p(x; A_0) \parallel p(x; A))$$

constraints

$$d_A(x_i, x_j) \le u$$
 $(i, j) \in mate\ pair$ $d_A(x_i, x_j) \ge l$ $(i, j) \in nonmate\ pair$

YANIV TAIGMAN, LIOR WOLF, AND TAL HASSNER.

MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION.

BRITISH MACHINE VISION CONFERENCE (BMVC), 2009.

Algorithm using Information theoretic metric learning

LFW DATABASE 1-EER= 89%

Chang Huang, Shenghuo Zhu, and Kai Yu."Large Scale Strongly Supervised Ensemble Metric Learning, with Applications to Face Verification and Retrieval." NEC Technical Report TR115, 2011.

Distance metrics learning is difficult to use in a high dimensional feature space

Joint metric learning: two step approach

- select effective feature groups from feature pool
- train optimal subspace by distance metric learning

LFW DATABASE 1-EER= 92%

Progress of Face Recognition Algorithm

Linear method

Generative model

Simple features

Non Linear method

Discriminative model

Complex features

3rd generation: Deep Learning (DeepFace)

- Align face by 2D and 3D affine transformation
- Extract feature vector by deep neural network
 - Training data: 4.4million images/ 4030 subjects
- Compare features by distance metric

Matthias Hullin, Qionghai Dai; DeepFace: Closing the Gap to Human-Level Performance in Face Verification

LFW DATABASE 1-EER= 97%

3rd generation: Deep Learning (DeepID)

YI SUN, XIAOGANG WANG, AND XIAOOU TANG.

DEEP LEARNING FACE REPRESENTATION BY JOINT IDENTIFICATION-VERIFICATION.

- Extract facial image dividing several face patches
- Fusion of multiple convolutional neural networks

LFW DATABASE 1-EER= 99%

Direction of face recognition algorithm

By above 3 elements, computer face recognition accuracy will overtake human recognition ability

Evaluation Result of Face Recognition

NIST benchmark and LFW database evaluation

NIST benchmark

- Controlled images (Criminal operational data)
- Closed data (it is difficult to tune algorithm)
- Algorithm is closed. Only evaluation results is reported.
- Useful to know accuracy in large scale dataset (over 1 million)

- Uncontrolled images (Web data)
- Open data (it is easy to tune algorithm)
- Most algorithms are open to the public
- Useful to know effectiveness of algorithm in medium size of dataset (16,000 images)

Technical Report, 8009, National Institute of Standards and Technology, May 21 2014

http://vis-www.cs.umass.edu/lfw/

NIST benchmark result

NIST's Face Recognition Evaluation Program

- NIST benchmark test started in 1993
- Purpose
 - Independent government evaluations of commercial and academic algorithms
 - Identify future research directions for research community

Multiple Biometric Grand Challenge in 2009

Multiple Biometrics Evaluation in 2010

Face Recognition Vendor Test
in 2013

Overview of the Face Recognition Vendor Test 2013 (FRVT)

- Final report published in May 2014
- Target applications
 - criminal investigations and immigration control
- 16 participating vendors and universities worldwide
- Large scale face database : over 1 million

Low-quality image **Surveillance application**

Patrick Grother and Mei Ngan, "Face Recognition Vendor Test (FRVT) Performance of Face Identification Algorithms", Technical Report, National Institute of Standards and Technology, May 21, 2014

Rank-1 miss identification rates in High-quality image

(number of enrolled subject N=160,000) Mugshot

Technical Report, 8009, National Institute of Standards and Technology, May 21 2014

Rank-1 miss rates in Low-quality image (Webcam)

(number of enrolled subject N=160,000)

Accuracy dependence on subject age

Group	Group	Age	Search	Mated Time	Mated
No.	Label	Range	Age Mean	Lapse Mean	Count
1	baby	[0, 3)	2.3	1.6	57
2	kid	[3, 8)	5.7	2.8	340
3	pre	[8, 13)	10.7	3.7	533
4	teen	[13, 19)	17.0	2.5	1447
5	young	[19, 30)	25.4	2.0	5930
6	parents	[30, 55)	40.5	2.1	8293
7	older	[55, 101)	63.6	2.2	2709

Technical Report, 8009, National Institute of Standards and Technology, May 21 2014

Progress of NIST evaluation result

Remarkable advance in these 20 years

False non-match rate(FNMR) at false match rate(FMR) 0.1%

Report on the Evaluation of 2D Still-Image Face Recognition Algorithms NIST Interagency Report 7709

LFW database Result

LFW database

Aaron Patterson

AJ Cook (1)

AJ Lamas (1)

Aaron Eckhart (1) Aaron Guiel (1)

Aaron Sorkin (2) Aaron Tippin (1) Abba Eban (1)

Aaron Peirsol (4) Aaron Pena (1)

Abdoulaye Wade

Abbas Kiarostami

Abdel Aziz Al-Hakim (1)

Abdullah Ahmad

Abdul Majeed Shobokshi (1)

Abdul Rahman (1) Abdulaziz Kamilov Abdullah (4)

Assidi (2)

Badawi (1)

Uncontrolled dataset

- facial expression
- facial view
- illumination change
- Occlusion (hand etc.)

Resolution is not low

Intra-ocular distance is about 90 pixels.

http://vis-www.cs.umass.edu/lfw/

LFW database result (Image-Restricted, No Outside Data)

Restricted training data: compare accuracy of algorithms

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Nowak², original 0.7245 ± 0.0040 Nowak², funneled³ 0.7393 ± 0.0049 Hybrid descriptor-based⁵, funneled 0.7847 ± 0.0051 3x3 Multi-Region Histograms (1024)⁶ 0.7295 ± 0.0055 Pixels/MKL, funneled¹ 0.6822 ± 0.0041 V1-like/MKL, funneled¹ 0.7935 ± 0.0055 APEM (fusion), funneled²⁵ 0.8408 ± 0.0120 MRF-MLBP³⁰ 0.7908 ± 0.0014		û ± S _E	
Nowak², funneled³ 0.7393 ± 0.0049 Hybrid descriptor-based⁵, funneled 0.7847 ± 0.0051 3x3 Multi-Region Histograms (1024)⁶ 0.7295 ± 0.0055 Pixels/MKL, funneled¹ 0.6822 ± 0.0041 V1-like/MKL, funneled¹ 0.7935 ± 0.0055 APEM (fusion), funneled²⁵ 0.8408 ± 0.0120 MRF-MLBP³⁰ 0.7908 ± 0.0014	Eigenfaces¹, original	0.6002 ± 0.0079	
Hybrid descriptor-based5, funneled 0.7847 ± 0.0051 $3x3$ Multi-Region Histograms $(1024)^6$ 0.7295 ± 0.0055 Pixels/MKL, funneled7 0.6822 ± 0.0041 V1-like/MKL, funneled7 0.7935 ± 0.0055 APEM (fusion), funneled25 0.8408 ± 0.0120 MRF-MLBP30 0.7908 ± 0.0014	Nowak², original	0.7245 ± 0.0040	
based⁵, funneled 0.7847 ± 0.0051 3x3 Multi-Region Histograms (1024)⁶ 0.7295 ± 0.0055 Pixels/MKL, funneled⁻ 0.6822 ± 0.0041 V1-like/MKL, funneled⁻ 0.7935 ± 0.0055 APEM (fusion), funneled⁻⁵ 0.8408 ± 0.0120 MRF-MLBP³⁰ 0.7908 ± 0.0014	Nowak², funneled³	0.7393 ± 0.0049	
Histograms (1024) ⁶ 0.7295 ± 0.0055 Pixels/MKL, funneled ^T 0.6822 ± 0.0041 V1-like/MKL, funneled ^T 0.7935 ± 0.0055 APEM (fusion), funneled ²⁵ 0.8408 ± 0.0120 MRF-MLBP ³⁰ 0.7908 ± 0.0014	'	0.7847 ± 0.0051	
V1-like/MKL, funneled 7 0.7935 ± 0.0055 APEM (fusion), funneled 25 0.8408 ± 0.0120 MRF-MLBP 30 0.7908 ± 0.0014	. •	0.7295 ± 0.0055	
APEM (fusion), 0.8408 ± 0.0120 MRF-MLBP ³⁰ 0.7908 ± 0.0014	Pixels/MKL, funneled ⁷	0.6822 ± 0.0041	
funneled ²⁵ 0.8408 ± 0.0120 MRF-MLBP ³⁰ 0.7908 ± 0.0014	V1-like/MKL, funneled ⁷	0.7935 ± 0.0055	
	·	0.8408 ± 0.0120	
Fisher vector faces ³² 0.8747 ± 0.0149	MRF-MLBP ³⁰	0.7908 ± 0.0014	
	Fisher vector faces ³²	0.8747 ± 0.0149	

Best performance: 1-EER=87%

In case that training data size is small, accuracy is not good

LFW database result (Unrestricted, Labeled Outside Data)

Unrestricted training data: limit of accuracy

Recent result

DeepFace-ensemble41	0.9735 ± 0.0025
ConvNet-RBM42	0.9252 ± 0.0038
POOF-gradhist ⁴⁴	0.9313 ± 0.0040
POOF-HOG44	0.9280 ± 0.0047
FR+FCN ⁴⁵	0.9645 ± 0.0025
DeepID46	0.9745 ± 0.0026
GaussianFace ⁴⁷	0.9852 ± 0.0066
DeepID2 ⁴⁸	0.9915 ± 0.0013

Best performance : 1-EER=over 99%

If we can use numerous training data, almost 100% accuracy may be achieved

Summary of evaluation result

- In the last 20 years, accuracy has improved rapidly
- However some obstacles still remain

Obstacle factor	Easy	Possible	Difficult	
pose (tilt)	frontal	~30 degree	profile	
Illumination	normal	severe change		
expression	slight	drastic change	inge	
aging change	within 1 year	~10 years	over decades	
subject's age	over 20 years old	teenager	baby	
resolution (intraocular distance)	over 60 pixel	20-30 pixel	under 10 pixel	
Occlusion	no	glasses/beard makeup	dark sunglass	
other factors	-	ethnicity plastic surgery	Identical twins	

Human vision accuracy: Fusion of machine recognition and human recognition

Question

• In the verification task, can the human brain assist the machine generated recognition result?

Machine recognition

Human recognition

Experimental procedure

Calculate matching score by machine recognition

Randomly select same number of mate and nonmate pairs near the threshold

Judge mate or nonmate pair using human brain

- Number of subjects is 20
- Subject knows that mate and non-mate pair is mixed as the same number

Experimental condition

Test Set	Face Database	Threshold	Num. of mate pair	Num. of non- mate pair	EER by machine recognition
1	Adult - over 20 years old - aging change over decades	FAR 0.1% similarity is low	10	10	4.0%
2	Child - under 10 years old	FAR 0.1% similarity is low	10	10	11.9%
3	Adult - over 20 years old - aging change over decades	FAR 0.001% similarity is very high	10	10	4.0%
4	Child - under 10 years old	FAR 0.001% similarity is very high	10	10	11.9%

Experimental result by human recognition

Human brain may assist to discriminate mate or non-mate pair, but reliability is low

Experimental result by human

Among mate and nonmate pairs, which pair is easy or difficult to discriminate?

Accuracy in the application system of face recognition

Advantage of Face Recognition System

- Face can be recognized at a distance
 - Hands-free recognition surveillance application

- 2 No need for special devices
 - uses tablets, smartphones, and other mobile devices

- Matched face images can be confirmed by human
 - human can check the result in case of failure to match

Accuracy is relatively low compared with other types of biometrics "Improving recognition accuracy" is a key point of face recognition

Introduction of application examples

- Government sector application
- 1) Hong Kong Immigration System(2004)
- 2) Boston Marathon Bombings Suspects
- Privatized sector application
- 3) Terracotta Army
- 4) Great East Japan Earthquake

Application example (1) Hong Kong Immigration System

'FACE Recognition System (FACES)' to verify the identity of suspects, started operation in 2004

Application Category of the 7th IT Excellence Awards (ImmD) Judge's Comment

- **♦**Over 75% similarity from over 200,000 suspect records in just one second
- **♦**Over 100 suspects have been successfully detected.

Identification performance, Aging change, Ethnicity

Application example(1) Hong Kong Immigration System

- Automated border control system
 - Drive-through face and fingerprint recognition system
 - Checkpoints on the Hong Kong China border, started in 2007

When the driver is recognized, gate opens

Illumination change

Device moves up and down according to truck seat height

Application example (2)

Facial Recognition Using the Boston Marathon Bombings Suspects

Klontz and Jain, "A Case Study on Unconstrained Facial Recognition Using the Boston Marathon" Technical Report MSU-CSE-13-4 (2013/5/29)

FBI released images of 2 suspects

2b

2a

Verify identification performance

16

The Boston Marathon Bombings - Investigation Timeline

April 15th 2:49 p.m. Explosions near Boston Marathon finish line.

April 18th 5:00 p.m. Two suspects revealed.

April 18th 10:48 p.m. Manhunt begins after shooting and carjacking.

April 19th 6:45 a.m. Suspects positively identified.

April 19th 8:42 p.m. Dzhokhar Tsarnaev captured.

Opportunity for Facial Recognition

Suspects arrested in 88 hours

Facial Recognition Using the Boston Marathon Bombings Suspects

Query Images

Enrolled Images

Search Result (NEC): ranking (database size =1 million)

Query Image	No filtering	Filterd by age and gender
2a	213	19
2b	260	30
2c	1	1
1a	12,446	1746
1b	236,343	42,827

- ◆Face recognition is useful tool for criminal application
 - Difficult to identify wearing sunglasses

Application example (4)

Terra-cotta soldier's face recognition

- Sculptures of the first emperor of China's army
- Buried over 8,000 soldier sculptures
- Analyzed sculpture faces using face recognition software

http://en.wikipedia.org/wiki/Terracotta Army http://www.youtube.com/watch?v=LoCr9AEYpCo

Application example (4)

Terra-cotta soldier's face recognition (TV program)

Input feature points manually: eyes, nose, mouth

http://www.youtube.com/watch?v=LoCr9AEYpCo

Application example (4)

Terra-cotta soldier's face recognition (TV program)

Examples of similar pairs

All of them are unique

http://www.youtube.com/watch?v=LoCr9AEYpCo

Application example (5)

Save the memory project in the Great East Japan Earthquake

- Great East Japan Earthquake
 - 11th March 2011
 - Magnitude 9.0
 - 20,000 dead and missing people

Tsunami and Nuclear accidents

Application example (7)

Save the memory project in the Great East Japan Earthquake

- "Save the Memory Project" (collaboration of Ricoh and NEC)
 - Earthquake disaster reconstruction project
 - Rescue team collect albums and photographs
 - Volunteer washed and digitized photographs
 - Return photographs to the owner

http://www.ricoh.co.jp/release/2012/0808_1.html

Application example (5)

Save the memory project in the Great East Japan Earthquake

Face recognition is used to search among 150,000 photographs

Face recognition system assisted in returning 12% of the photographs to the owner

Summary

- Introduced face recognition technology: 1) algorithms, 2) evaluation results and 3) applications
- Face recognition accuracy has improved rapidly in these 20 years
- Next 10 years, accuracy will improve more and more beyond limit of human face recognition ability

VS

Uncontrolled environment

Total judgment using other clue

Summary

- Introduced face recognition technology: 1) algorithms, 2) evaluation results and 3) applications
- Face recognition accuracy has improved rapidly in these 20 years
- Next 10 years, accuracy will be more and more improved beyond limit of human ability

Uncontrolled environment

Total judgment using other clue

Thank you for your attention