Z TRANSFORMS

1. Introduction

Z transform is a very powerful mathematical tool for solving difference equations, just as Laplace transforms and Fourier transforms are useful tools for solving differential equations. For example, a continuous-time system is described by a system of differential equations, whereas, a discrete-time system is governed by a set of difference equations.

It is used extensively today in the areas of applied mathematics, digital signal processing, control theory, population science, economics.

Definition of the Z transform

(a) One-sided or Unilateral Z transform of a sequence :

If $\{f(n)\}$ is a sequence defined for n=0,1,2,..., then the series $\sum_{n=0}^{\infty} f(n)z^{-n}$ is called the unilateral Z transform of the sequence $\{f(n)\}$ and is denoted by $Z\{f(n)\}$ or $\overline{f}(z)$, where z is a complex variable in general.

The series $\sum_{n=-\infty}^{\infty} f(n)z^{-n}$ will be convergent only for those values of z in a certain region of the Z-plane. This region in the Z-Plane is called the Region Of Convergence (R.O.C.) of the Z transform and it depends on the sequence $\{f(n)\}$.

(b) One-sided or Unilateral Z transform of a function:

If a continuous function f(t) is defined by means of a sequence of its sampled values at t=0,T,2T,..., then the Z transform of the function f(t) is given by

$$\bar{f}(z) = Z\{f(t)\} = \sum_{n=0}^{\infty} f(nT)z^{-n}$$
, where T is the sampling period.

3. RELATION BETWEEN Z AND LAPLACE TRANSFORMS

The transform variables z and s in the Z transform and Laplace transform are related by $z = e^{sT}$, where T is the sampling period of the discrete function.

4. Definition of the Inverse Z transform

If $\bar{f}(z) = Z\{f(n)\}$, then the Inverse Z transform of $\bar{f}(z)$, denoted by $Z^{-1}\{\bar{f}(z)\}$, is defined as $Z^{-1}\left[\bar{f}(z)\right] = \{f(n)\} = \frac{1}{2\pi i} \iint_C z^{n-1} \bar{f}(z) dz$, where C is the circle whose centre is origin and radius is sufficiently large to include all isolated singularities of transform function $\bar{f}(z)$.

5. <u>Definition of Convolution of two sequences</u>

The convolution of two sequences $\{f(n)\}$ and $\{g(n)\}$, denoted by $\{f(n)*g(n)\}$, is defined as $\{f(n)*g(n)\} = \sum_{r=0}^n f(r)g(n-r)$.

Properties of Z transforms

(P1) Linearity Property: Z transform operator is linear. That is,
$$Z\{af(n) + bg(n)\} = aZ\{f(n)\} + bZ\{g(n)\}$$

(P2) Scaling Property: If
$$Z\{f(n)\} = \overline{f}(z)$$
, then $Z\{a^n f(n)\} = \overline{f}\left(\frac{z}{a}\right)$

(P3) Shifting Property: If
$$Z\{f(n)\} = \overline{f}(z)$$
, then

$$\frac{\text{Diffting Floperty}}{\text{Diffting Floperty}}. \text{ If } Z_{\{1,1\}} = I(Z), \text{ then}$$

(i)
$$Z\{f(n-k)\} = z^{-k}\overline{f}(z)$$

4) Differentiation in the Z domain: If
$$Z\{f(n)\} = \overline{f}(z)$$
, then $Z\{nf(n)\} = -z \frac{d}{dz} \left[\overline{f}(z)\right]$

(ii)
$$Z\{f(n+k)\} = z^k \left[\bar{f}(z) - f(0) - \frac{f(1)}{z} - \frac{f(2)}{z^2} - \dots - \frac{f(k-1)}{z^{k-1}}\right]$$
 (shifting to the left)
(P4) Differentiation in the Z domain : If $Z\{f(n)\} = \bar{f}(z)$, then $Z\{nf(n)\} = -z \frac{d}{dz} \left[\bar{f}(z)\right]$

(shifting to the right)

(P5) Initial Value Theorem: If
$$Z\{f(n)\} = \overline{f}(z)$$
, then $f(0) = \underset{z \to \infty}{\text{Lim}} \overline{f}(z)$.

Carollary • If
$$f(0)$$
 is known than the values of $f(1)$ $f(2)$ can be for

Corollary: If
$$f(0)$$
 is known, then the values of $f(1), f(2), ...$, can be found as follows:
$$f(1) = \lim_{z \to \infty} [z(\overline{f}(z) - f(0))], \ f(2) = \lim_{z \to \infty} [z^2(\overline{f}(z) - f(0) - \frac{f(1)}{z})], \text{ and so on.}$$

(P6) Final Value Theorem: If
$$Z\{f(n)\} = \overline{f}(z)$$
, then $f(\infty) = \lim_{z \to 1} \left[(z-1)\overline{f}(z) \right]$.

If $Z\{f(n)\} = \bar{f}(z)$ and $Z\{g(n)\} = \bar{g}(z)$, then $Z\{f(n)*g(n)\} = \bar{f}(z)\bar{g}(z)$, where the symbol * denotes the convolution operation.

Final Value Theorem: If
$$Z\{f(n)\} = \overline{f}(z)$$
, then $f(\infty) = \underset{z \to 1}{\text{Lim}} \left[(z-1)\overline{f}(z) \right]$

Proof: By the definition of Z transform, we have

$$Z\{f(n+1) - f(n)\} = \sum_{n=0}^{\infty} [f(n+1) - f(n)]z^{-n}$$

$$= \lim_{k \to \infty} \sum_{n=0}^{k} [f(n+1) - f(n)] z^{-n}$$

$$= \lim_{k \to \infty} \sum_{n=0} [f(n+1) - f(n)] z^{-r}$$

Taking the limit of both sides as
$$z \rightarrow 1$$
, we get

$$\lim_{z \to 1} Z\{f(n+1) - f(n)\} = -f(0) + \lim_{k \to \infty} f(k+1)$$
 [1]

 $= \lim_{k \to \infty} \left[-f(0) + f(1) \left\{ 1 - \frac{1}{2} \right\} + f(2) \left\{ \frac{1}{2} - \frac{1}{2^2} \right\} + f(3) \left\{ \frac{1}{2^2} - \frac{1}{2^3} \right\} + \dots + f(k+1) z^{-k} \right]$

By shifting property, we have $Z\{f(n+1)\} = z(\bar{f}(z) - f(0))$

i.e, $\lim_{z\to 1} [(z-1)\bar{f}(z)] = \lim_{k\to\infty} f(k+1)$ or $\lim_{k\to\infty} f(k+1) = \lim_{z\to 1} [(z-1)\bar{f}(z)]$

[2]

Using [2] in [1], we get

$$\omega(x) = 0$$

 $\therefore Z\{f(n+1) - f(n)\} = (z-1)\bar{f}(z) - zf(0)$

$$\lim_{z \to 1} \left[(z - 1)\bar{f}(z) - zf(0) \right] = -f(0) + \lim_{k \to \infty} f(k + 1)$$

$$\rightarrow$$
1 $^{-}$ \sim $\kappa \rightarrow \infty$

$$\Rightarrow f(\infty) = \lim_{n \to \infty} \int_{-\infty}^{\infty} (z - 1) \bar{f}(z)$$

$$\Rightarrow f(\infty) = \lim_{z \to 1} [(z - 1)\overline{f}(z)].$$

PROPERTIES OF Z TRANSFORMS [TABULAR FORM]

S. No.	Name of the Property	f(n)	$\bar{\mathbf{f}}(\mathbf{z}) = \mathbf{Z}\{\mathbf{f}(\mathbf{n})\}$	
1	Linearity	af(n)+bg(n)	$a\bar{f}(z) + b\bar{g}(z)$	
2	Change of Scale	a ⁿ f(n)	$\bar{\mathbf{f}}(\mathbf{z}/\mathbf{a})$	
3	Shifting	f(n-k)	$\mathbf{z}^{-\mathbf{k}}\mathbf{\bar{f}}(\mathbf{z})$	
		f(n+k)	$z^{k} \left[\bar{f}(z) - f(0) - \frac{f(1)}{z} - \frac{f(2)}{z^{2}} - \dots - \frac{f(k-1)}{z^{k-1}} \right]$	
4	Derivative of the transform	nf(n)	$-z\frac{d}{dz}[\bar{f}(z)]$	
5	Convolution	f (n)* g (n)	$\bar{f}(z)\bar{g}(z)$	
6	Initial Value Theorem	$f(0) = \underset{z \to \infty}{\text{Lt}} \left[\bar{f}(z) \right]$		
7	Final Value Theorem	$f(\infty) = \underset{z \to 1}{\text{Lt}}[(z-1)\overline{f}(z)]$		

7. Methods for obtaining Inverse Z Transforms

- (i) Partial Fractions method: When $\bar{f}(z)$ is a rational function of the form $\bar{f}(z) = \frac{g(z)}{h(z)}$ in which the denominator can be factorized, $\bar{f}(z)$ is resolved into partial fractions and then $Z^{-1}\{\bar{f}(z)\}$ is derived as the sum of the inverse Z transforms of the partial fractions.
- (ii) Convolution theorem : $Z^{-1} \left[\overline{f}(z) \overline{g}(z) \right] = Z^{-1} \left[\overline{f}(z) \right] * Z^{-1} \left[\overline{g}(z) \right]$

8. Z TRANSFORMS TO SOLVE DIFFERENCE EQUATIONS

If $Z{y(n)} = \overline{y(z)}$, then it can be shown that

(i)
$$Z{y(n+1)} = z(y(z) - y(0))$$
,

(ii)
$$Z{y(n+2)} = z^2(y(z) - y(0)) - zy(1)$$
,

(iii)
$$Z{y(n+3)} = z^3(y(z) - y(0)) - z^2y(1) - zy(2)$$
, and so on.

We can use Z transforms to solve finite difference equation with constant coefficients.

Consider a second order difference equation with constant coefficients, of the form ay(n+2)+by(n+1)+cy(n)=R(n), given y(0) and y(1). Applying Z transform, we get y(z). Then $y(z)=z^{-1}(y(z))$.

PROBLEMS UNDER Z TRANSFORMS

1. Find the Z transform of the following sequences:

i) Unit impulse sequence,
$$\delta(n-k) = \begin{cases} 1 & \text{for } n=k \\ 0 & \text{for } n \neq k \end{cases}$$
 Ans : $\frac{1}{z^k}$

ii) Unit step sequence,
$$U(n-k) = \begin{cases} 1 & \text{for } n = k, k+1, k+2, ... \\ 0 & \text{for } n < k \end{cases}$$

Ans :
$$\frac{1}{z^{k-1}(z-1)}$$
; R.O.C.: $|z| > 1$

iii) Constant sequence, k Ans :
$$\frac{kz}{z-1}$$
; R.O.C. : $|z|>1$

iv)
$$a^n$$
 Ans : $\frac{z}{z-a}$; R.O.C. : $|z| > a$

v)
$$\frac{1}{n}$$
 Ans : $\log\left(\frac{z}{z-1}\right)$; R.O.C. : $|z| > 1$

vi)
$$\frac{a^n}{n!}$$
 Ans : $e^{a/z}$

- 2. Find the Z transform of the following functions:

$$\begin{bmatrix} 1 & \text{for } t = 0 \end{bmatrix}$$

i) Unit impulse function, $\delta(t) = \begin{cases} 1 & \text{for} \quad t = 0 \\ 0 & \text{for} \quad t = T, \ 2T, \ 3T, ... \end{cases}$ Ans : 1

ii) Unit step sequence, $U(t) = \begin{cases} 1 & \text{for } t = 0, T, 2T, \dots \\ 0 & \text{for } t < 0 \end{cases}$ Ans $: \frac{z}{z-1} ; \text{R.O.C.} : |z| > 1$

Using the properties, find the Z transform of the following functions / sequences :

i)
$$n, n^2, n^p, na^n, \frac{1}{n+1}, \frac{1}{n-1}$$

iii)
$$n(n-1)$$
, $\frac{1}{2}(n+1)(n+2)$, $an^2 + bn + c$, where a, b and c are constants

iv)
$$\frac{1}{n(n-1)}$$
, $\frac{2n+3}{(n+1)(n+2)}$

$$v) \quad e^{an} \,,\; r^n e^{in\theta} \,,\; r^n \cos(n\theta) \,,\; r^n \sin(n\theta) \,,\; \cos\!\left(\frac{n\pi}{2}\right) \!,\; \sin\!\left(\frac{n\pi}{2}\right) \!,\; \cos\!\left(\frac{n\pi}{2} + \frac{\pi}{4}\right) \!,\; \sin^2\!\left(\frac{n\pi}{4}\right) \!$$

vi)
$$a^n \cosh(bn)$$
, $a^n \sinh(bn)$

vii)
$$n \cos(n\theta)$$
, $a^n \sin(a\theta)$

viii) Find
$$f(0)$$
 and $f(\infty)$, if $\bar{f}(z) = \frac{0.4z^2}{(z-1)(z^2-0.736z+0.136)}$ Ans : 0, 1

ix) Find f(2) and f(3), if
$$\bar{f}(z) = \frac{2z^2 + 3z + 12}{(z-1)^4}$$
 Ans : 2, 11

4. Find the Z transform of f(n)*g(n), where

i)
$$f(n) = U(n)$$
 and $g(n) = \delta(n) + \left(\frac{1}{2}\right)^n U(n)$

ii)
$$f(n) = \left(\frac{1}{2}\right)^n$$
 and $g(n) = \cos(n\pi)$

5. Given that
$$\overline{f}(z) = \log\left(1 + \frac{a}{z}\right)$$
 for $|z| > |a|$, find $f(n)$ and $Z\{nf(n)\}$.

6. Find $Z^{-1}\lceil \overline{f}(z)\rceil$ by partial fractions method, when $\overline{f}(z)$ is given as

i)
$$\frac{3z^2-18z+26}{(z-2)(z-3)(z-4)}$$

ii)
$$\frac{z^2 + 2z}{z^2 + 2z + 4}$$

iii)
$$\frac{4z^3}{(2z-1)^2(z-1)}$$

iv)
$$\frac{z^2}{(z+2)(z^2+4)}$$

v)
$$\frac{4-8z^{-1}+6z^{-2}}{(1+z^{-1})(1-2z^{-1})^2}$$

7. Find $Z^{-1}\lceil \overline{f}(z)\rceil$ by convolution theorem, when $\overline{f}(z)$ is given as

i)
$$\frac{z^2}{(z-a)(z-b)}$$

iv)
$$\frac{8z^2}{(4z+1)(2z-1)}$$

ii)
$$\frac{az}{(z-a)^2}$$

$$v) \frac{1}{z^2 + a^2}$$

iii)
$$\frac{z}{(z-a)^2}$$

$$vi) \quad \frac{z^2}{z^2 + a^2}$$

8. Solve the following difference equations, using Z transforms:

i)
$$y(n+3)-3y(n+1)+2y(n) = 0$$
 given that $y(0) = y(1) = 0$ and $y(2) = 8$

ii)
$$f(n)+3f(n-1)-4f(n-2)=0$$
 given that $f(0)=3$ and $f(1)=-2$

iii)
$$y_{n+2} - 7y_{n+1} + 12y_n = 2^n$$
 given that $y_0 = y_1 = 0$

iv)
$$x_{n+2} - 5x_{n+1} + 6x_n = 36$$
 given that $x_0 = x_1 = 0$

v)
$$y(x+2)+4y(x+1)=4y(x)=x$$
 given that $y(0)=0$ and $y(1)=1$

vi)
$$y_{n+2} + y_n = n2^n$$

vii)
$$4u_n - u_{n+2} = 0$$
 given that $u_0 = 0$ and $u_1 = 2$

LIST OF IMPORTANT FORMULAS

(i)
$$(1-x)^{-1} = 1 + x + x^2 + ...$$
 if $|x| < 1$

(ii)
$$(1+x)^{-1} = 1-x+x^2-x^3+...$$
 if $|x|<1$

(iii)
$$(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + ...$$
 if $|x| < 1$

(iv)
$$(1+x)^{-2} = 1-2x+3x^2-4x^3+...$$
 if $|x|<1$

(v)
$$1+x+x^2+...+x^n=\frac{1-x^{n+1}}{1-x}$$
 if $|x|<1$

(vi)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \log(1+x)$$
 if $|x| < 1$

(vii)
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -\log(1-x)$$
 if $|x| < 1$

(viii)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+....=e^x$$

Summation	Definite sum
~ L	n(n + 1)
Z_K	2
2,2	n(n+1)(2n+1)
$\sum_{k=0}^{k-1} k$ $\sum_{k=0}^{n} k^2$	6
81	$\left[\frac{n(n+1)}{2}\right]^2$
$\sum_{k=0}^{K^3}$	2
$\sum_{k=0}^{n} k^3$ $\sum_{n=0}^{n} k^4$	$n(6n^4 + 15n^3 + 10n^2 - 1)$
$\sum_{k=0}^{K}$	30
$\sum_{k=1}^{n} a^{k}$	$\begin{cases} (a^{n+1} - 1)/a - 1 & \text{if } a \neq 1 \\ n+1 & \text{if } a = 1 \end{cases}$
<u>k-0</u>	
$\sum_{k=0}^{n} ka^{k}, a \neq 1$	$(a-1)(n+1)a^{n+1}-a^{n+2}+a$
$\sum ka^{-}, a \neq 1$	$(a-1)^2$

TABLE OF Z TRANSFORM PAIRS

S. No.	f(n)	$\bar{f}(z) = Z\{f(n)\}$	Region of convergence
1	$\delta(\mathbf{n}) = \begin{cases} 1 & \text{for } \mathbf{n} = 0 \\ 0 & \text{for } \mathbf{n} \neq 0 \end{cases}$	1	
2	$\delta(n-k) = \begin{cases} 1 & \text{for } n=k \\ 0 & \text{for } n \neq k \end{cases}$	$\frac{1}{z^k}$	
3	$u(n) = \begin{cases} 1 & \text{for } n = 0, 1, 2, \\ 0 & \text{for } n < 1 \end{cases}$	$\frac{z}{z-1}$	z > 1
4	$u(n-k) = \begin{cases} 1 & \text{for } n = k, k+1, \dots \\ 0 & \text{for } n < k \end{cases}$	$\frac{1}{z^{k-1}(z-1)}$	
5	k	$\frac{kz}{z-1}$	z > 1
6	1	$\frac{z}{z-1}$	
7	a ⁿ	$\frac{z}{z-a}$	z > a
8	$\frac{a^n}{n!}$	$e^{a/z}$	
9	$\frac{1}{n}$	$\log \left[\frac{z}{z-1} \right]$	z > 1
10	a^{n-1}	$\frac{1}{z-a}$	
11	$(n-1)a^{n-2}$	$\frac{1}{\left(z-a\right)^2}$	
12	$a^n \sin\left(\frac{n\pi}{2}\right)$	$\frac{az}{z^2 + a^2}$	
13	$a^n \cos\left(\frac{n\pi}{2}\right)$	$\frac{z^2}{z^2 + a^2}$	
14	$-a^{n-2}\cos\left(\frac{n\pi}{2}\right)$	$\frac{1}{z^2 + a^2}$	
15	na ⁿ	$\frac{az}{(z-a)^2}$	

RELATIONSHIP BETWEEN LAPLACE TRANSFORM AND Z TRANSFORM

Let $x_d(t)$ denote the discrete-time signal obtained from a continuous-time signal $x_c(t)$ with sampling period T.

In terms of the Dirac-delta function, we can write the discrete-time signal as

$$x_d(t) = \sum_{n=0}^{\infty} x_c(nT)\delta(t - nT)$$

Applying Z transform to the discrete signal $x_d(t)$, we get

$$Z[x_d(t)] = \sum_{n=0}^{\infty} x_d(nT) z^{-n} , \qquad [1]$$

where z is the transform variable in the Z transform domain.

Applying Laplace Transform to the discrete signal $x_{i}(t)$, we get

$$L[x_d(t)] = \int_{0}^{\infty} e^{-st} \left[\sum_{n=0}^{\infty} x_c(nT) \delta(t - nT) \right] dt = \sum_{n=0}^{\infty} x_c(nT) \int_{0}^{\infty} e^{-st} \delta(t - nT) dt = \sum_{n=0}^{\infty} x_d(nT) e^{-snT} , \qquad [2]$$

where s is the transform variable in the Laplace transform domain.

By substituting $z = e^{sT}$ and comparing with [1], we get

$$L[x_{d}(t)] = Z\{x_{d}(t)\}$$
 [3]

Applying Laplace Transform to the continuous signal $x_c(t)$ and using [2], we get

$$L[x_c(t)] = \int_0^\infty e^{-st} x_c(t) dt \approx \sum_{n=0}^\infty e^{-st_n} x_c(t_n) T$$
$$\approx \sum_{n=0}^\infty e^{-snT} x_d(nT) T = TL[x_d(t)]$$

By using [3], we get
$$L[x_c(t)] \approx TZ[x_d(t)]$$
 [4]

Note(s):

- \triangleright Z transform is the discrete analogue of the Laplace transform. The transform variables in both transform domains are related by $z = e^{sT}$.
- \triangleright The Laplace transform of a discrete-time signal can be obtained from the corresponding **Z** transform of the signal, by substituting the transform variable z in the **Z** transform domain with e^{sT} .
- ightharpoonup As T o 0, $x_d(t) o x_c(t)$ and $T.Z\{x_d(t)\} o L[x_c(t)]$.