Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

17 Febbraio 2022 - 09:00 PROVA D'ESAME

-1	α.	. 1 .	1	c	•
	S1	consideri	I۹	†11	n710n0
_	L • DI	COHSIGUI	10	тu	HZIOHU

$$f(x) = e^{x+1} + 3x, \qquad x \in [-1, 2].$$

a)	Scrivere la function corde che implementa il metodo delle corde per calcolare lo zero di f . Si introdu-
	cano come argomenti di input la funzione f , l'approssimazione iniziale (detta anche valore di innesco)
	$x^{(0)}$, il parametro m del metodo, le tolleranze $tolx$, $tolf$ sui due criteri di arresto e il numero massimo
	nmax di iterazioni. Si restituiscano in output la soluzione sol dell'equazione non lineare, il numero di
	iterazioni compiute <i>iter</i> e il vettore delle approssimazioni $[x^{(1)}, \ldots, x^{(iter)}]$.

Punti: 4

- b) Scrivere lo script Matlab/Python esercizio1 in cui:
 - b.1) si plotta il grafico della f nell'intervallo [-1, 2];

Punti: 1

- b.2) dopo aver inizializzato $tolx = tolf = 10^{-12}$ e nmax = 500, si chiama la function corde con le seguenti scelte di $x^{(0)}$ e m:
 - $x^{(0)} = 0, m \in \{2.5, 3, 3.5, 4\};$
 - $x^{(0)} \in \{0, 0.5, 1\}, m = 5;$
 - $x^{(0)} \in \{-1, -0.5, 0, 0.5, 1\}, m = f'(x^{(0)});$

e per ciascun caso si calcolano la soluzione sol, il vettore delle approssimazioni $[x^{(1)}, \ldots, x^{(iter)}]$ e il numero di iterazioni compiute iter;

Punti: 5

b.3) per ciascuna scelta di $x^{(0)}$ e m considerata al punto b.2) si plotta in un grafico, in scala semilogaritmica sulle ordinate, il vettore $[|x^{(1)}|, \ldots, |x^{(iter)}|]$ verso il vettore $[1, \ldots, iter]$;

Punti: 3

b.4) per ciascuna scelta di $x^{(0)}$ e m considerata al punto b.2) si determina l'ordine di convergenza del metodo delle corde che ne risulta.

Punti: 3

Totale: 16