UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CARLOS EDUARDO BENEVIDES BEZERRA

Um modelo de suporte distribuído para jogos MMOG em cenários com recursos computacionais limitados (Título Provisório)

Plano de Curso para Doutorado

Prof. Dr. Cláudio Fernando Resin Geyer Orientador

SUMÁRIO

KE	SUMO	3
1 1.1 1.2	INTRODUÇÃO	
2	MOTIVAÇÃO E ESTADO DA ARTE	6
2.1	Requisitos dos jogos MMOG	
2.2	Trabalhos relacionados	7
2.3	Questões de pesquisa	10
3 3.1 3.2	OBJETIVO	
4 4.1 4.2	PLANO DE TRABALHO	14 14 14
4.3	Planejamento dos créditos	15
5 5.1 5.2	INFORMAÇÕES DO CANDIDATO	
RE	FERÊNCIAS	17
AS	SINATURAS	19

RESUMO

Este plano de curso de doutorado propõe um modelo de suporte a jogos online maciçamente multijogador fazendo uso de sistemas de compartilhamento em larga escala de recursos computacionais, tais como redes P2P. Seguindo este modelo, sobre uma rede P2P seria formado um sistema que atuaria como servidor de um jogo MMOG. A cada nodo deste sistema seria designado uma porção da carga de comunicação e processamento do jogo - mais especificamente, seria designada a cada nodo uma região do ambiente virtual do jogo. Tal sistema seria percebido como um servidor central pelos jogadores, que conectar-se-iam a ele através de um Gateway, sendo cada um redirecionado para o nodo servidor adequado. Para que esse sistema servidor funcione como esperado, será necessário tratar algumas questões, tais como manter consistente o andamento do jogo nos diferentes nodos servidores, de forma que cada jogador tenha a mesma visão; gerenciamento da carga atribuída a cada servidor, sendo que maior parte dela recai sobre a rede e, por se tratar de um jogo, é bastante variável; o que fazer quando um nodo servidor sai da rede ou entra em colapso e, por fim, como difundir e armazenar os estados dos jogadores de maneira distribuída, de forma que sempre se possa recuperar o estado mais recente.

Palavras-chave: Jogos online maciçamente multijogador, MMOG, simulação interativa distribuída.

1 INTRODUÇÃO

Jogos online maciçamente multijogador – ou MMOGs, *massively multiplayer online games* – são o tema central deste plano de doutorado. Geralmente, utiliza-se uma infraestrutura cliente-servidor para dar suporte a este tipo de jogo. Neste plano será proposto um modelo de distribuição do lado servidor, de maneira a reduzir ou eliminar seu custo de manutenção. Nas próximas seções será apresentado o contexto referente a jogos multijogador e MMOGs.

1.1 Jogos Multijogador

Nas últimas décadas, desde o surgimento do computador pessoal, jogos de computador tem se popularizado de maneira crescente. Mais ainda, após o surgimento da Internet aliado ao fato de as conexões domésticas estarem cada vez mais baratas e mais rápidas, jogos online multijogador têm merecido atenção especial. Estes jogos se caracterizam por haver vários participantes interagindo uns com os outros, utilizando uma conexão através da Internet entre seus dispositivos computacionais, que são geralmente computadores pessoais ou consoles (dispositivos computacionais específicos para jogos). Este tipo de jogo pode ser dividido em vários gêneros, como por exemplo:

- FPS: *first-person shooting*, ou jogos de tiro com visão em primeira-pessoa, em que cada jogador controla um personagem que dispõe de diferentes armas, com as quais enfrenta monstros ou personagens de outros jogadores. São caracterizados por ação rápida, incluindo atirar, mover-se, esquivar-se etc.;
- RTS: real-time strategy, ou jogos de estratégia em tempo-real, onde cada jogador controla um exército, mas suas ações são executadas simultaneamente às ações dos outros jogadores, ao invés de serem separadas em turnos. A ação é mais lenta que em jogos FPS;
- RPG: *role-playing game*, ou jogo de interpretação de papéis, no qual cada jogador tem um personagem que evolui com o tempo, adquirindo mais poder e acumulando tesouros. Jogos deste tipo são caracterizados por não terem um início ou fim de partida definidos, constituindo um mundo virtual de estado persistente. Os jogadores então podem evoluir seus personagens, desconectarem-se e reconectarem-se mais tarde para continuarem jogando a partir do ponto onde pararam, pois seu estado estará armazenado.

Como exemplos de jogos multijogador online conhecidos, podem ser citados *Quake* (?), um jogo do gênero FPS lançado em meados da década de 90; *Starcraft: Brood War*

(BLIZZARD, 1998), da mesma época, porém consistindo de um jogo RTS, Counter-Strike (VALVE, 2000), FPS lançado em 2000 e Diablo II (?), RPG lançado no mesmo ano.

1.2 Jogos Online Maciçamente Multijogador (MMOGs)

Da mesma forma que jogos de computador evoluíram para jogos multijogador on-line após a popularização da Internet, evoluiu-se em seguida para jogos online maciçamente multijogador (ou MMOG, *massively multiplayer online games*), graças ao barateamento das conexões à Internet e o aumento da sua velocidade. Jogos deste tipo têm se popularizado bastante nos últimos tempos. Além de poderem ser jogados on-line, permitem a interação simultânea de um grande número de participantes. Nos casos de maior sucesso, como World of Warcraft (BLIZZARD, 2004) e Lineage II (NCSOFT, 2003), por exemplo, é dado suporte a uma base de dezenas a centenas de milhares de jogadores simultâneos (CHEN; MUNTZ, 2006). Estes jogadores podem, então, interagir entre si e com o ambiente virtual do jogo.

Cada jogador controla uma entidade chamada de *avatar*, que nada mais é que sua representação no ambiente virtual - um personagem que executa as ações determinadas pelo jogador, que dessa forma passa a interferir na história e no encaminhamento do jogo. Para que a partida se mantenha consistente para os diferentes participantes, cada ação executada por cada avatar deve ser processada pelo servidor, que calculará o estado resultante dessa ação no jogo. Esse novo estado é então difundido para os outros jogadores. Outras alterações no mundo do jogo, como destruição ou criação de objetos no ambiente, e eventos, como ações de personagens controlados pelo servidor, devem também ser transmitidos aos jogadores envolvidos. É então através deste envios de comandos do jogador e recebimento do novo estado do servidor que o jogadores conseguem interagir entre si e com o mundo simulado no jogo.

No entanto, percebe-se que tal mecanismo pode facilmente saturar a banda e sobrecarregar o(s) processador(es) do servidor. Geralmente o que se faz é montar uma infraestrutura que dispõe de um grande servidor central, geralmente um cluster com seus nodos ligados por uma rede local de alta velocidade e baixo atraso, com conexão à Internet de algumas centenas ou milhares de MBps. O maior peso reside na manutenção desta conexão, que visa a enviar para cada jogador o estado mais recente do jogo sempre que este mudar, dentro de um limite estabelecido de atraso, que irá depender do gênero do jogo.

2 MOTIVAÇÃO E ESTADO DA ARTE

Já foi dito que MMOGs se caracterizam por uma grande quantidade de jogadores. Para dar suporte a essa grande quantidade de participantes, geralmente é usado o paradigma cliente-servidor, sendo que toda interação é feita através da máquina servidora. Neste paradigma, o computador servidor possui a cópia oficial do estado do jogo e é responsável pela computação sobre a mesma, enquanto o cliente atua na apresentação do estado para o usuário. O servidor é responsável, também, por atualizar os clientes, em tempo real, sobre as alterações que ocorrem no ambiente virtual do jogo. A centralização nesse computador servidor, devido ao grande número de participantes, faz com que seu custo de manutenção seja bastante elevado. Geralmente, é necessária uma capacidade de comunicação com a Internet de alguns GBps e poder de processamento suficiente para executar toda a simulação. Torna-se inviável, por exemplo, a manutenção de jogos online maciçamente multijogador por empresas pequenas ou grupos independentes com orçamento limitado.

Em razão deste custo elevado, tem-se buscado soluções alternativas, distribuindo-se de alguma maneira as cargas de processamento e de comunicação decorrentes do jogo. Geralmente, é proposto o uso de redes P2P (ref) ou, em alguns casos GRIDs. Porém, um MMOG é uma simulação de um ambiente virtual dinâmico, com limite máximos de atraso entre o envio das ações do jogador e recebimento do estado resultante. Além disso, possui outros requisitos, que precisam ser observados com atenção de maneira que os jogadores tenham uma experiência adequada de jogo. Distribuir toda esta estrutura entre diferentes máquinas ligadas através de conexões através da Internet – como no caso das redes P2P – e ao mesmo tempo satisfazer os requisitos de um MMOG torna-se uma tarefa desafiadora, que tem motivado diversos trabalhos de pesquisa nos últimos anos.

Nas seções a seguir, serão apresentados alguns requisitos dos jogos MMOG, além do estado da arte no que se refere a distribuição da infra-estrutura de suporte a este tipo de jogo. Por fim, serão apresentadas questões de pesquisa que ainda estão em aberto, e que podem ser tratadas em um trabalho de doutorado.

2.1 Requisitos dos jogos MMOG

Durante o desenvolvimento de trabalhos anteriores (BEZERRA; CECIN; GEYER, 2008; VILANOVA et al., 2008) e deste plano de curso de doutorado, além de consulta à literatura da área (DARLAGIANNIS; HECKMANN; STEINMETZ, 2006; SCHIELE et al., 2007) foram identificados alguns requisitos dos jogos MMOG, que são os mais importantes do ponto de vista da infra-estrutura de suporte:

• Persistência - Jogos MMOG, em geral, consistem em um mundo virtual onde os

jogadores interagem entre si e com o mundo virtual, alterando o estado do mesmo e de seus avatares (representação virtual do jogador no jogo). Espera-se que cada jogador possa deixar o jogo e voltar algum tempo depois sem que essas mudanças tenham sido desfeitas. Por este motivo, é necessário suporte a persistência dos estados de cada avatar e do mundo virtual como um todo;

- **Disponibilidade** Em geral, jogos MMOG são pagos tais como World of Warcraft (BLIZZARD, 2004) e, por causa disso, seus usuários costumam ser exigentes quanto ao quesito de disponibilidade. Assim, deseja-se que, a qualquer momento, o sistema esteja disponível;
- Consistência Jogos multijogador consistem de um ambiente virtual compartilhado entre os jogadores, que disputam a mesma partida. Sendo assim, é necessário
 que aquele ambiente seja representado da mesma maneira nas máquinas dos diferentes jogadores para que estes possam interagir entre si e com o mundo de maneira
 adequada;
- Segurança Em um sistema onde há dezenas de milhares de participantes, não é razoável confiar em todos eles, o que torna necessário algum mecanismo que proveja segurança. Segurança aqui se refere não somente a autenticação de usuários cadastrados, como também verificar se os estados/ações que os diferentes jogadores enviam são válidos. Jogadores trapaceiros, por exemplo, podem alterar o software executado em suas máquinas de forma que sejam enviados estados/ações que lhes dêem alguma vantagem no jogo;
- Escalabilidade Levando-se em conta o número de participantes em um jogo MMOG, é necessário que o sistema que lhe dá suporte seja capaz de manter a qualidade do serviço a despeito da carga crescente de processamento e comunicação exigida para isso.

2.2 Trabalhos relacionados

A arquitetura cliente-servidor supre diversos aspectos necessários para a execução satisfatória de jogos do tipo MMOG, o que inclui um alto nível de controle sobre o sistema como um todo, o que facilita autenticação, persistência e segurança. Porém isso custa caro, como já foi dito, além de ser um possível gargalo. Objetivando minimizar este problema, foram propostas algumas alternativas. Uma delas é a de usar computação agregada, onde um cluster, ao invés de um computador único, faz o papel de servidor. Tal abordagem tem um ganho expressivo de poder de processamento, mas não resolve todos os problemas dos jogos online maciçamente multijogador. Deve-se prover também a largura de banda necessária para dar suporte ao tráfego intenso entre o servidor e os jogadores.

Outra abordagem possível é a **arquitetura par-a-par**, ou P2P, onde se divide a simulação entre os computadores envolvidos. Pode-se ter um sistema sem qualquer servidor, onde os pares (antes clientes), que são as máquinas dos jogadores, entram em algum tipo de acordo para os diversos passos da simulação. No que se refere à escalabilidade, tal abordagem não é ótima, pois garantir esse "acordo" é custoso em termos de troca de mensagens (LAMPORT; SHOSTAK; PEASE, 1982). Ainda que seja eleito um dos pares para decidir o andamento da simulação, ainda haverá o problema de que todos os pares precisarão trocar mensagens com todos. Tendo-se n pares, há uma complexidade de $O(n^2)$

trocas de mensagem para cada passo da simulação. É evidente que tal abordagem não é tão escalável quanto se possa querer para um sistema onde se pretende executar um jogo online maciçamente multijogador. Além disso, seria necessário prover armazenamento distribuído e recuperação dos estados do jogo.

Alguns trabalhos já foram realizados no sentido de tornar jogos em redes P2P mais escaláveis, como (SCHIELE et al., 2007; RIECHE et al., 2007; HAMPEL; BOPP; HINN, 2006; EL RHALIBI; MERABTI, 2005; IIMURA; HAZEYAMA; KADOBAYASHI, 2004; KNUTSSON et al., 2004). Por exemplo, para reduzir o tráfego entre os pares, cada par pode enviar atualizações de estado apenas àqueles que tiverem interesse nas mesmas. Para atingir este objetivo, (SCHIELE et al., 2007) sugere que o ambiente virtual seja dividido em regiões. O objetivo disto é que cada região funcione como se fosse um jogo independente, de menor escala. Os jogadores cujos avatares estivessem em determinada região poderiam formar uma pequena rede par-a-par, e decidirem entre eles o andamento do jogo naquela área do mundo do jogo. Quando um avatar se movesse de uma região para outra, deixaria o grupo da primeira e se uniria ao grupo da sua nova região. Para que o ambiente seja contíguo, ou seja, para que avatares possam mover-se livremente entre regiões adjacentes, alguns dos pares mantêm conexões com pares das regiões vizinhas, e é através destes pares que se consegue as informações necessárias para que haja essa transferência de grupo.

Ainda na proposta de (SCHIELE et al., 2007), cada região tem um coordenador. O coordenador é eleito entre os pares ali presentes e se encarrega, apenas, de decidir para quem cada atualização de estado interessa - ele não intermedia as trocas de mensagens entre os pares, que se comunicam diretamente entre si. No entanto, tal abordagem se baseia no fato de que o coordenador é confiável, o que não pode ser garantido, já que o software utilizado pelo jogador pode ter sido alterado de forma a se comportar de maneira incorreta a fim de beneficiá-lo. Outra abordagem seria a de eleger múltiplos coordenadores por região, mas isso implicaria na implementação de algum mecanismo de votação, além de depender da disponibilidade de pares para gerenciarem. Além disso, não seria eliminada a necessidade de cada par enviar atualizações de estado a diversos outros pares.

Existem também as propostas de arquiteturas híbridas (VILANOVA et al., 2008; CHEN; MUNTZ, 2006), que utilizam servidores ao mesmo tempo em que fazem uso de infra-estrutura P2P. Nestas propostas, pares e servidor dividem a simulação do jogo. Em (VILANOVA et al., 2008), o mundo do jogo é divido em espaço social e espaços de ação. O primeiro é voltado para interações sociais, como conversar, trocar objetos do mundo do jogo, formar grupos etc., que são ações que não impõem grande peso sobre o servidor. No entanto, se os jogadores quiserem, por exemplo, lutar – que é o principal objetivo na maioria dos jogos MMOG –, eles têm de requisitar ao servidor a criação de um espaço de ação, dentro do qual a interação é mais rápida e com pouca tolerância a atrasos de comunicação. Este espaço é uma instância do jogo, isolada do resto do mundo, dentro da qual um um número limitado de jogadores formam uma pequena rede P2P, sendo eles próprios responsáveis por simular o jogo e atualizar seus companheiros daquele espaço de ação. Para resolver inconsistências da simulação devido a falta de ordenação das mensagens, um dos jogadores é eleito como super-peer, sendo responsável por ordenar eventos que sejam "fortemente acoplados", cuja ordem interfere de maneira significativa no andamento do jogo. Essa abordagem apresenta alguns problemas, como o fato de não poder haver interações de luta, por exemplo, entre um grande número de jogadores. Além disso, nada garante que o par escolhido para ser o super-peer é confiável. Se pertencer a um jogador desonesto, ele pode ordenar os eventos de maneira a beneficiar aquele jogador.

No mais, o problema de sobrecarregar a banda dos pares é contornado simplesmente estabelecendo um limite para o número de participantes em cada grupo de ação, quando é desejável que nos MMOGs haja um grande número de jogadores interagindo entre si, não apenas em situações sociais, mas também em situações mais dinâmicas.

Já na proposta de (CHEN; MUNTZ, 2006), o ambiente virtual é dividido em regiões, cada uma gerenciada por um dos pares, que atua como um sub-servidor. É para ele que cada um dos outros participantes naquela região envia cada atualização de estado, que de lá é encaminhada aos outros pares interessados na mesma. Isto pode gerar problemas de segurança e disponibilidade, já que não há garantias de que aquele par é confiável para servir aquela região, ou que ele irá permanecer no sistema enquanto for necessário. Para prover tolerância a falhas, os autores sugerem o uso dos agregados de pares - que consistem no gerenciador de região, mais pares "reserva" - eles recebem do gerenciador da região as ações recebidas de jogadores, que são processadas por estes "reservas", que mantêm uma réplica do estado do jogo contido no gerenciador daquela região. Além de prover robustez ao sistema, no caso do gerenciador sofrer colapso, estes nodos reserva podem detectar falhas na simulação e executar procedimentos de recuperação. Porém, tal abordagem não resolve o problema do par eleito para ser o gerenciadores da região não ser confiável, pois não há qualquer tipo de acordo entre ele e seus reservas em relação ao andamento do jogo. Por fim, se um nodo gerenciador estiver sobrecarregado, ele simplesmente devolve ao servidor parte da carga que lhe foi atribuída, mantendo a dependência de uma infra-estrutura centralizada.

Outra arquitetura híbrida é a do FreeMMG (CECIN et al., 2004). Nela, os pares se organizam de maneira P2P em cada região do ambiente virtual e o servidor intermedia a comunicação entre diferentes regiões. Novamente, tem-se o problema da segurança: os pares dentro de uma região controlam a simulação que ocorre ali, podendo subvertê-la. É feita uma abordagem probabilística, utilizando um par selecionado aleatoriamente de outro ponto do ambiente para verificar a simulação naquela região. Espera-se que, caso os pares ali desejem entrar em conluio para subverter o jogo, pelo menos o nodo inserido ali detecte as ações inválidas e reporte ao servidor. No entanto, além de não garantir completamente segurança, persiste o problema de poder haver muitos pares se comunicando com muitos, o que pode comprometer a qualidade do jogo.

Já foram propostos alguns modelos que sugerem o uso de clientes conectados a um servidor distribuído. Em (ASSIOTIS; TZANOV, 2006), por exemplo, é proposta a divisão do mundo virtual em regiões menores, cada uma atribuída a um diferente nodo do sistema servidor. Os autores tratam a questão da consistência utilizando um mecanismo de travas – a cada entidade presente no jogo é associada uma trava, que precisa ser obtida antes de algum dos servidores fazer quaisquer alterações. Além disso, tentou-se atacar o problema dos *hotspots* (aglomerados de jogadores em uma área relativamente pequena do ambiente virtual) através do particionamento recursivo da área sobrecarregada, até que esta sobrecarga seja eliminada ou não houver mais servidores disponíveis. No entanto, há um limite para este reparticionamento, pois áreas muito pequenas implicam em avatares migrando entre regiões com maior freqüência e, conseqüentemente, em mais tráfego entre servidores.

Por fim, os autores desse trabalho, assim como em vários outros com propostas semelhantes (NG et al., 2002; CHERTOV; FAHMY, 2006; LEE; LEE, 2003), consideram que os nodos servidores estão conectados através de uma rede de alta velocidade e pouco atraso, sendo que suas soluções são apenas parcialmente aplicáveis em um cenário com recursos altamente dinâmicos e voláteis, como são as redes P2P montadas com recursos

de voluntários. Tais redes têm como problemas inerentes: baixa disponibilidade e dependabilidade, largura de banda escassa e baixo poder de processamento, quando comparada com servidores dedicados mantidos por empresas fabricantes de MMOGs.

2.3 Questões de pesquisa

Em um MMOG montado sobre uma arquitetura P2P completamente descentralizada, cada par é responsável por decidir o resultado das ações de seu jogador. Apesar disto tornar o sistema menos dependente de cada um deles – se um jogador se desconectar do jogo, apenas o estado referente a seu avatar será perdido – e de tornar o jogo independente de servidores centrais, tal abordagem se mostrou muito vulnerável a trapaça, justamente por cada par executar parte da simulação, além de ser propícia à saturação da banda de upload dos participantes, que tem que enviar atualizações de estado da simulação para seus companheiros de jogo.

O que se pretende investigar é o uso de um sistema servidor composto de nodos voluntários distribuídos geograficamente. Esse sistema seria heterogêneo, onde cada nodo poderia ser desde um computador doméstico até um cluster pertencente a alguma empresa que tivesse interesse em servir o jogo. Seria exigida uma capacidade de processamento e link de comunicação mínimos para poder fazer parte do sistema servidor, além de ser necessário garantir de alguma forma que cada um desses nodos seria confiável. Porém, levando-se em consideração que o número de nodos servidores seria muito menor que o de jogadores, seria muito mais viável garantir a sua confiabilidade em relação à possibilidade de haver trapaça do que em uma rede P2P completamenet descentralizada, onde essa tarefa é praticamente impossível. Além do que os nodos servidores não pertenceriam necessariamente a jogadores. Poderiam ser pequenos provedores locais de serviço de Internet, por exemplo, que lucrariam ao disponibilizarem recursos para um jogo. Isso seria interessante para essas empresas, pois os recursos – pelo menos banda de comunicação – do provedor seriam utilizados de qualquer forma pelos jogos, pois todo o tráfego de jogadores que também fossem seus assinantes passaria por lá, independente de a qual servidor cada jogador estivesse conectado.

De qualquer forma, como a simulação seria distribuída entre os nodos servidores, não seria necessário que cada um destes tivesse a mesma capacidade de processamento ou comunicação possuída pelos grandes servidores centrais usados comumente para jogos MMOG. Para fazer essa distribuição, o mundo do jogo poderia ser dividido em regiões, cada uma gerenciada por, pelo menos, um destes nodos. Mais de um nodo servidor deverá ser usado por região, de maneira que a simulação seria distribuída em dois níveis: primeiro em regiões, depois dentro de cada uma delas, entre os nodos que a estivessem gerenciando-a. Dessa forma, cada jogador enviaria suas ações a um destes nodos, que as processaria, em seguida se sincronizaria com os outros nodos da mesma região, e por fim, persistiria de maneira distribuída o novo estado do jogo e enviaria para os jogadores a ele conectados. Assim, também seria provida melhor disponibilidade, pois cada região do mundo virtual estaria sendo servida por um conjunto de servidores com estado do jogo sincronizado. Caso algum destes falhasse, o(s) outro(s) poderia(m) tomar para si os jogadores que estavam conectados ao servidor que não está mais disponível.

Para atingir o objetivo de distribuir um servidor de MMOG sobre uma rede dinâmica, com recursos voláteis, mais escassos, e com menor dependabilidade, como são as redes P2P formadas por nodos voluntários, surgem algumas questões que ou tem sido objeto de pesquisa nos últimos anos, ou que ainda estão por resolver. Algumas delas são:

- Encontrar uma maneira de particionar o espaço virtual, mapeando cada região a um conjunto de nodos servidores, de forma que nodos com boa comunicação entre si estejam próximos na topologia lógica da rede;
- Balancear dinamicamente a carga da simulação entre os nodos servidores, de forma que seja mantida uma qualidade mínima de serviço em cada uma das diferentes regiões do ambiente virtual, além de tratar a questão dos *hotspots* (aglomerados de avatares em uma área relativamente pequena);
- Manter consistente a simulação nas diferentes regiões, entre servidores da mesma região, e de servidores em regiões adjacentes;
- Coordenar a entrada, a saída e a detecção de colapso de nodos do sistema, provendo tolerância a falhas;
- Distribuir e armazenar de maneira persistente o estado do mundo e dos jogadores, de forma a poder recuperá-lo sempre que necessário;
- Otimizar a comunicação entre clientes e servidores, de forma a economizar o máximo possível de largura de banda, sem que isso seja perceptível pelos jogadores;
- Como cada nodo tem recursos mais limitados que os de um grande servidor central, deve-se buscar algoritmos adaptativos que tornem a simulação (atualizações de estado e sincronização da simulação entre os clientes) coerente com os recursos disponíveis no momento.

Pretende-se, durante o curso de doutorado, atacar cada um destes problemas, buscando a melhor solução possível em um contexto de jogos online maciçamente multijogador. Com tais questões resolvidas, poderão ser providos a MMOGs disponibilidade e tolerância a falhas – devido a replicação de nodos servidores em uma mesma região – e escalabilidade, mantendo o atraso de comunicação dentro de um limite aceitável para o jogo, tudo isso por um baixo custo.

3 OBJETIVO

3.1 Objetivo geral

O objetivo é criar um modelo arquitetural de suporte a jogos online maciçamente multijogador. Seguindo este modelo, deverá ser possível formar um sistema geograficamente distribuído de nodos servidores, utilizando a Internet como meio de ligação entre os mesmos. Do ponto de vista dos jogadores, tal sistema será visto como um servidor de MMOGs que consegue manter o mundo do jogo consistente, disponível e com boa qualidade de serviço, além de não permitir trapaça.

3.2 Objetivos específicos

Para atingir este objetivo geral, algumas metas foram traçadas:

- Desenvolver um mecanismo que gerencie a distribuição do mundo do jogo entre os diferentes nodos servidores, lidando com entrada, saída e colapso destes, provendo tolerância a falhas, ao mesmo tempo em que busca manter próximos na rede overlay nodos servidores que estejam próximos geograficamente;
- 2. Criar um algoritmo de balanceamento da carga do MMOG, que ao mesmo tempo em que mantém a carga em cada servidor proporcional à sua capacidade, leva em consideração a existência de *hotspots*, evitando que algum destes seja particionado entre regiões diferentes, dado que isto causaria forte dependência entre elas;
- 3. Definir um esquema de sincronização do estado da simulação entre os diferentes nodos servidores designados para a mesma região do mundo do jogo, assim como sincronizar periodicamente, ou quando necessário, os estados das diferentes regiões, de forma a manter consistência global;
- 4. Definir um mecanismo de persistência distribuída dos estados dos jogadores e do mundo virtual do jogo como um todo, de maneira que estejam sempre disponíveis para qualquer nodo servidor, ainda que alguns destes inesperadamente se tornem indisponíveis;
- 5. Pesquisar e desenvolver técnicas e algoritmos que visem a reduzir o tráfego entre clientes e servidores e entre servidores, de maneira a economizar recursos, diminuir atraso na comunicação entre eles e ampliar o público do jogo, além de reduzir os requisitos para que um computador possa fazer parte do sistema servidor, porém sem prejudicar a experiência do jogo.

- 6. Analisar a aplicabilidade destas técnicas em cenários em que cada nodo do sistema tem recursos mais limitados;
- 7. Propor integração das mesmas, com otimizações focadas no contexto definido (disponibilidade de super-nodos, ao invés de servidores poderosos);
- 8. Implementar um protótipo que integre as técnicas estudadas e/ou desenvolvidas no trabalho;
- 9. Efetuar simulações que demonstrem o resultado obtido do trabalho e avaliar seus resultados.

4 PLANO DE TRABALHO

4.1 Metodologia

Para atingir o objetivo definido na seção anterior, deverão ser cumpridas algumas etapas, que são as seguintes:

- 1. Revisar as técnicas utilizadas para dar suporte distribuído a jogos MMOG;
 - Será dada continuidade à investigação bibliográfica que já foi iniciada para elaboração deste plano de estudos e pesquisa, além de buscar separá-las em categorias segundo: contexto considerado e problemas que buscam solucionar.
- 2. Analisar a aplicabilidade destas técnicas em cenários em que cada nodo do sistema tem recursos mais limitados;
 - Técnicas utilizadas para dar suporte distribuído a jogos MMOG costumam se basear em cenários onde há grande disponibilidade de recursos, com grandes servidores ligados através de rede local com capacidade de comunicação super-dimensionada. Será analisada a viabilidade de serem utilizadas em um contexto onde os nodos têm recursos mais limitados.
- 3. Propor integração das mesmas, com otimizações focadas no contexto definido (disponibilidade de super-nodos, ao invés de servidores poderosos);
 - Buscar-se-á fazer aperfeiçoamento de algumas destas técnicas, tendo como ênfase o contexto de super-nodos distribuídos geograficamente e, posteriormente, será proposta uma integração das mesmas.
- 4. Implementar um protótipo que integre as técnicas estudadas e/ou desenvolvidas nas etapas anteriores;
- 5. Efetuar simulações que demonstrem o resultado obtido do trabalho e avaliar seus resultados.

4.2 Cronograma

A Tabela 4.1 apresenta o cronograma de atividades a serem desenvolvidas, conforme citadas abaixo

1. Levantamento bibliográfico do estado-da-arte das técnicas de distribuição do suporte a MMOG;

- 2. Levantamento bibliográfico de técnicas de distribuição em geral, que possam ser aplicadas a jogos MMOG;
- 3. Análise e categorização destas técnicas;
- 4. Elaboração de um modelo arquitetural de suporte distribuído a jogos MMOG;
- 5. Integração das técnicas no modelo proposto;
- 6. Implementação de um protótipo com o fim de testes;
- 7. Levantamento dos simuladores mais indicados para efetuar tais testes;
- 8. Execução dos testes em um dos simuladores pesquisados;
- 9. Análise dos resultados;
- 10. Apresentação do seminário de andamento na semana acadêmica;
- 11. Escrita da dissertação;
- 12. Escrita de artigos;
- 13. Entrega da dissertação;
- 14. Defesa da dissertação;

Tabela 4.1: Cronograma

Etapa	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Jan	Fev
1	X	X	X											
2	X	X	X											
3		X	X	X										
4			X	X	X									
5				X	X									
6					X	X	X	X						
7							X	X						
8									X					
9										X	X			
10					X									
11					X	X	X	X	X	X	X	X		
12									X	X	X	X	X	
13												X		
14														X

4.3 Planejamento dos créditos

5 INFORMAÇÕES DO CANDIDATO

- 5.1 Dados de identificação
- 5.2 Experiência com pesquisa

REFERÊNCIAS

ASSIOTIS, M.; TZANOV, V. A distributed architecture for MMORPG. **Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games**, [S.l.], 2006.

BEZERRA, C. E. B.; CECIN, F. R.; GEYER, C. F. R. A3: a novel interest management algorithm for distributed simulations of mmogs. **Proceedings of the 12th IEEE International Symposium on Distributed Simulation and Real Time Applications, 2008, Vancouver, BC, Canada**, [S.l.], p.35–42, 2008.

BLIZZARD. Starcraft: brood war. http://www.blizzard.com/broodwar/.

BLIZZARD. World of Warcraft. http://www.worldofwarcraft.com/.

CECIN, F.; REAL, R.; OLIVEIRA JANNONE, R. de; GEYER, C.; MARTINS, M.; BARBOSA, J. FreeMMG: a scalable and cheat-resistant distribution model for internet games. **IEEE Int. Sym. on Distributed Simulation and Real-Time Applications**, [S.l.], p.83–90, 2004.

CHEN, A.; MUNTZ, R. Peer clustering: a hybrid approach to distributed virtual environments. **Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games**, [S.l.], 2006.

CHERTOV, R.; FAHMY, S. Optimistic Load Balancing in a Distributed Virtual Environment. **Proceedings of the 16th ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV)**, [S.1.], 2006.

DARLAGIANNIS, V.; HECKMANN, O.; STEINMETZ, R. Peer-to-peer applications beyond file sharing: overlay network requirements and solutions. **e & i Elektrotechnik und Informationstechnik**, [S.l.], v.123, n.6, p.242–250, 2006.

EL RHALIBI, A.; MERABTI, M. Agents-based modeling for a peer-to-peer MMOG architecture. **Computers in Entertainment (CIE)**, [S.l.], v.3, n.2, p.3–3, 2005.

HAMPEL, T.; BOPP, T.; HINN, R. A peer-to-peer architecture for massive multiplayer online games. **Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games**, [S.1.], 2006.

IIMURA, T.; HAZEYAMA, H.; KADOBAYASHI, Y. Zoned federation of game servers: a peer-to-peer approach to scalable multi-player online games. **Proceedings of ACM SIGCOMM 2004 workshops on NetGames' 04: Network and system support for games**, [S.l.], p.116–120, 2004.

KNUTSSON, B.; LU, H.; XU, W.; HOPKINS, B. Peer-to-peer support for massively multiplayer games. **IEEE Infocom**, [S.l.], 2004.

LAMPORT, L.; SHOSTAK, R.; PEASE, M. The Byzantine Generals Problem. **ACM Transactions on Programming Languages and Systems (TOPLAS)**, [S.1.], v.4, n.3, p.382–401, 1982.

LEE, K.; LEE, D. A scalable dynamic load distribution scheme for multi-server distributed virtual environment systems with highly-skewed user distribution. **Proceedings of the ACM symposium on Virtual reality software and technology**, [S.l.], p.160–168, 2003.

NCSOFT. Lineage II. http://www.lineage2.com/.

NG, B.; SI, A.; LAU, R.; LI, F. A multi-server architecture for distributed virtual walk-through. **Proceedings of the ACM symposium on Virtual reality software and technology**, [S.1.], p.163–170, 2002.

RIECHE, S.; FOUQUET, M.; NIEDERMAYER, H.; PETRAK, L.; WEHRLE, K.; CARLE, G. Peer-to-Peer-based Infrastructure Support for Massively Multiplayer Online Games. Consumer Communications and Networking Conference, 2007. CCNC 2007. 2007 4th IEEE, [S.1.], p.763–767, 2007.

SCHIELE, G.; SUSELBECK, R.; WACKER, A.; HAHNER, J.; BECKER, C.; WEIS, T. Requirements of Peer-to-Peer-based Massively Multiplayer Online Gaming. **Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid**, [S.1.], p.773–782, 2007.

VALVE. Counter-Strike. http://www.counter-strike.net/.

VILANOVA, F. J.; BEZERRA, C. E. B.; CRIPPA, M. R.; CECIN, F. R.; GEYER, C. F. R. P2PSE - A Peer-to-Peer Support for Multiplayer Games. **VII Brazilian Symposium on Computer Games and Digital Entertainment - Computing Track, 2008, Belo Horizonte, MG, Brazil**, [S.1.], p.47–53, 2008.

ASSINATURAS

Carlos Eduardo Benevides Bezerra

Prof. Dr. Cláudio Fernando Resin Geyer