

INSTITUTO TECNOLÓGICO DE COMITAN

Alumnos:

Pedro Eduardo Ruedas Velasco:

Levi Magdiel Hernandez Mendez: 19700039

Adriel David Molina Cifuentes: 19700061

Sergio Ismael Panti Ordeñes: 19700065

Docente: Jose Flavio Guillen Vera

Materia: Métodos Numéricos

Semestre: Cuarto Semestre Grupo: "A" Equipo: 5

Actividad: "PA5. Tabla de características y su uso"

Comitán de Domínguez Chiapas, a 23 de marzo de 2021.

Métodos	Ventajas	Desventajas	Características	Uso
Eliminación Gaussiana	 Cuando se va a resolver solamente un pequeño número de ecuaciones, el error por redondeo es pequeño generalmente no se afecta sustancialmente la precisión de los resultados 	 Durante el proceso en las fases de eliminación y sustitución es posible que ocurra una división entre cero. La computadora maneja las fracciones en forma decimal con cierto número limitado de cifras decimales si se van a resolver simultáneamente muchas ecuaciones, el efecto acumulativo del error por redondeo puede 	 Consiste en transformar un sistema de ecuaciones en otro equivalente de forma que éste sea escalonado se aplica para resolver sistemas lineales de la forma: A*X = B. En forma general este método propone la eliminación progresiva de variables en el sistema de ecuaciones. Finaliza hasta tener sólo una ecuación con una incógnita. Procede por sustitución regresiva hasta obtener los 	Su uso es para reducir una matriz. Es decir, para llevar la matriz a la forma escalonada reducida por renglones. El método consta de dos fases: -La primera cuyo fin es escalonar la matriz: esto lo hace de izquierda a derecha y de arriba hacia abajo, y -La segunda donde reduce: esto lo hace de abajo hacia arriba y de derecha a izquierda.

		introducir errores relativamente grandes en la solución	valores de todas las variables.	
Método de Gauss Jordan	 El método abarca simples operaciones de suma, resta y multiplicación Con este método la solución se obtiene directamente sin la necesidad de la sustitución inversa que utiliza el método de Gauss. Con este procedimiento de normalización y eliminación se puede obtener, 	 cada operación que se realice se aplicara a toda la fila o a toda la columna en su caso. eliminación gaussiana se aplican también al método de Gauss-Jordan. 	 Ir a la columna no cero extrema izquierda operaciones con matrices para resolver sistemas de ecuaciones de n número de variables. Si el primer renglón tiene un cero en esta columna, intercambiarlo con otro que no lo tenga Obtener ceros debajo de este elemento delantero, sumando múltiplos adecuados del renglón superior a los renglones debajo de el 	1. El uso que se le da es para resolver un sistema de ecuaciones y obtener las soluciones por medio de la reducción del sistema dado a otro que sea equivalente en el cual cada una de las ecuaciones tendrá una incógnita menos que la anterior.

	además la matriz inversa de la matriz de coeficientes • Si a la matriz aumentada se le adhiere o aumenta la matriz unidad o identidad y se le aplica el método de Gauss-Jordan.		 5. Cubrir el renglón superior y repartir el proceso anterior con la submatriz restante. Repetir con el resto de los renglones. 6. Comenzando con el ultimo renglón no cero, avanzar hacia arriba para cada renglón renglones correspondientes 	
Método de Gauss Seindel	 reemplaza las variables que fueron calculadas en la iteración. reduce el número de iteraciones. necesita menos memoria para aplicar el método 	 hay que obtener la solución del sistema completo no se puede obtener cualquier incógnita por separado 	 Hace iteraciones A partir de un vector inicial, encuentra los valores de las incógnitas hasta llegar a una tolerancia deseada La diferencia radica en que cada vez que se desee encontrar un nuevo valor de una xi, 	Su uso se le da para encontrar la solución de un sistema de "n" ecuaciones con "n" incógnitas para resolver ecuaciones simultáneas suministra soluciones suficientemente precisas hasta para 15 o 20 ecuaciones.

			 además de usar los valores anteriores de las x 4. también utiliza valores actuales de las x encontradas antes (desde x0 hasta xi-1). 	
Método de Jacobi	 Si la matriz de coeficientes original del sistema es diagonalmente dominante el método converge. Si el radio espectral de la matriz original es menor a uno, el método converge. Se puede obtener cualquier 	El método no siempre converge y calcular el radio espectral de la matriz puede ser muy extenso.	 La solución del sistema de ecuaciones es un conjunto de n valores x₁, x₂, x₃,, x_n que satisfacen simultáneamente todas las ecuaciones. genera una sucesión de vectores x(k) que convergen a la solución x. método iterativo con el cual se resuelve el sistema lineal 	1. Es usado para resolver sistemas de ecuaciones lineales del tipo simple y consiste en usar fórmulas como iteración de punto fijo y se aplica solo a sistemas cuadrados, es decir a sistemas con tantas incógnitas como ecuaciones.

incógnita por separado		

Bibliografía

BRIONES CORDOVA ALEXANDER, DE LA CRUZ PIMENTEL RAQUEL EDITH, VIVANCO CAMERAS SERVANDO. (31 de Enero de 2012). INSTITUTO TECNOLÓGICO DE TUXTLA GUTIÉRREZ. Obtenido de INSTITUTO TECNOLÓGICO DE TUXTLA GUTIÉRREZ: https://sites.google.com/site/metalnumericos/home/unidad-3-1/3-2-metodo-de-gauss-jordan

- Gutiérrez, I. T. (02 de Junio de 2012). *Métodos Numéricos*. Obtenido de Métodos Numéricos:
 - https://sites.google.com/site/metalmetnumericos/home/unidad-3/metodo-de-eliminacion-gaussiana
- laboratoriomatematicas. (1 de febrero de 2025).

 laboratoriomatematicas. Obtenido de laboratoriomatematicas:

 https://laboratoriomatematicas.uniandes.edu.co/semarquitec/sist
 emli.html
- Numéricos, M. (02 de mayo de 2019). *Métodos Numéricos*. Obtenido de Métodos Numéricos:

 https://sites.google.com/site/metodosnumericosmecanica/home/unidad-iii/mtodo-de-gauss-jordan
- Rosario, E. D. (4 de Marzo de 2015). *MÉTODOS NUMÉRICOS*. Obtenido de MÉTODOS NUMÉRICOS:

 http://blog.espol.edu.ec/analisisnumerico/3-4-gauss-jordan-metodo/