Transformer Review

By Dequan Er

Outline

- Introduction
- Model architecture
- Result
- Derived models
- Applications

Introduction

- From Sequence Modeling to Attention
 - RNN, LSTM, GRU
 - From recurrent language models to encoder-decoder model
 - H_{t-1} to h_t
 - Hard to parallelize
 - Long sequence memory lose, large H_t
 - Attention used from encoder to decoder
- Derivatives of Transformers
 - BERT (2018), GPT3 (2020)
 - ChatGPT(2022)
- From NLP to audio, video, etc.

• Structure of encoder-decoder

Transformer

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡
illia.polosukhin@gmail.com

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

 Attention layer: mapping a query and a set of key-value pairs to an output in vector form.

Scaled dot-product attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Scaled Dot-Product Attention

Position-wise Feed-Forward Networks

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- Positional Encoding
 - Ensure sequence of tokens