28th April 2023 Confidence Interval Interpretation of the CI 100 (1-a) % CI of 0 based on the random sample My, Xn is [T, T2] If we repeatedly draw samples from the underlying distributions, then the random Interval [7, 12] contains the true value of approximately 100 (1-d) 7 cases: the same of the sa a = 0.05 Then 100 (a1-a) 7 = 95% The random wderval [T, To] contains the true value of approximately 95% of the times when random sample are repeatedly from the underlying distribution.

1) Testing for a when 52 12 known composition on Here the concernal test statestic is $T = \sqrt{n(x-\mu)} - 2 = N(0,1)$ To get 95% CI, we have [0=0.05] significance level Pr (-242 < T < 2002) = 0.95 = (1-02) $Px\left(-\frac{7}{6}q_{2}<\frac{\sqrt{n}(x-\mu)}{5}\angle 2q_{2}\right)=0.95$ =) Inderval is - Za/2 = × (x-1) > Za/2 = > X- 2012 TR < 14 < X + 201/2 TR : [T, ,T2] serves as the (1-01) 100 % confidence

interval for m.

2> Testing for u when or is unknown Comparison value be il' there the concerned test statistic is $T > \sqrt{n(\tilde{x} - \mu)}$ where $s^2 > \frac{1}{h-1} \sum_{P_1}^{\infty} (x_i - \tilde{x})$ and $\hat{x} = \frac{1}{n} \sum x_i$ So T~ the To get 95% CI, we have Pn (- tn., as < \\\ \frac{\sqrt{n(x-u)}}{s} \times \tau_{n-1}, as \(\frac{1}{s} = 1 - \alpha \) = x - this age. \frac{s}{\sqrt{n}} < \u < \u < \u + this age. \frac{s}{\sqrt{n}} T1 < M < T2 Then [T, T2] serves as the (1-a) \$7. confidence Interval for u

The second of th

•	Population with low variation lands to similar simple with lower voision leads to narrow et.
3)	Testong for 5° when un ic known = (10)
	X~N(40,00). Comparison value par 10 (5")2
	Define 22 = 1 2 (Xi - Mg)
	we know inse $\sim 2^2$
	Suppose our CI is 1-a, ocacl
	$\frac{\ln \left\{ \frac{\chi_{n_{1}}^{2}}{2} + \frac{\chi_{n_{2}}^{2}}{(\sigma^{0})^{2}} < \frac{\chi_{n_{2}}^{2}}{(\sigma^{0})^{2}} < \frac{\chi_{n_{2}}^{2}}{(\sigma^{0})^{2}} \right\} = 1 - \alpha$
	$\Rightarrow \frac{ns^2}{\chi_n^2; \omega_{12}} \left((50)^2 \left(\frac{ns^2}{\chi_n^2; \omega_{1-\omega_{12}}} \right) \right) = \frac{ns^2}{\chi_n^2; \omega_{1-\omega_{12}}}$
	CI interval for 62
	Let $T_1 = \frac{ns^2}{2}$ $T_2 = \frac{ns^2}{2}$
-#	Schiare 2 2n; 1-de
	(TI, T2) is CI for 52 when us known.

4) Testing for or when u is unknown. XNN(4,52) whore us unknown let X..., Xn be n , and samples $\overline{X} := \frac{1}{N} \sum_{P_1} X_1$ Define $S^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} \left(x_i - x_i\right)^2$ consider the test statistic To (n-1)s2 ~ 2/2 Consider the confidence coefficient to be $(1-\alpha)$. ozaL1. then Pn $\{ \chi_{n+j+1-q_2}^2 < T < \chi_{n+j+q_2}^2 \} \sim (1-\alpha)$ $\Rightarrow \text{ The interval is } \frac{(n-1)S^2}{\chi_{n-1}^2; \quad q_2} \angle \emptyset S^2 \angle \frac{(n-1)S^2}{\chi_{n-1}^2; \quad 1-q_2}$ is the of for 52

5> Testing for difference of py-42 X X~N(M, 0,2) T., ..., Yn2 12 Y (a) when G_1^+ and G_2^+ are known G_0^- , $G_2^ G_2^ G_2^$ test statistic $T = \frac{(x-x) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1 t}{\sigma_1 t} + \frac{\sigma_2 t}{\sigma_2}}} = 0$ u = N(0.1)Tobs uses (μ_1, μ_2') the comparison values. Suppose the confidence coefficient be 1-a, (oxac) Then, → The internal is - Tagell - ((7) - M1 - Met < 4 Tage => (x-x) - u Zay < m-me < (x-x) + u Zay Hence tr = (x.7) - n Tag 12 = (x-7) + uToy Thus (T, Tz) is the Tuderval serves 100 (1-a)? (b) When σ_1^2 σ_2^2 are unknown

By assumption of homoccedasticity, assume $\sigma_1^2 - \sigma_2^2 = \sigma_2$ though $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_2} (X_i)^2$ and $\overline{Y} > \frac{1}{n_2} \left(\sum_{i=1}^{n_2} Y_i^2\right)$. 32 = == \(\frac{\tilde{\tilde{X}}}{\tilde{X}_{1}} = \frac{\tilde{X}}{\tilde{X}_{1}} = \frac{\tilde{X}}{\tild let $S^2 = \frac{(n_1-1) S_n^2 + (n_2-1) S_n^2}{n_1+n_2-2}$. Let $S_n \sqrt{\frac{1}{n_1}} + \frac{1}{n_2} = S'$ Consider the test statistic To (x-x)-[14702] ~ tuity-2 Consider the antidence coefficient to be (-a) , and I

5>	Testing from difference of ay-ne)
<i>3</i> 7.1.3	Testing from difference of My-Me) X ~ N(M, 012) X ~ N(M, 022) X ~ N(M, 022)
	X~N(14,02)
	(1902).
	(a) when G_i^+ and G_i^+ are known G_i^- , G_i^- , G_i^- , $G_i^ X_i^-$ and X_i^- and $X_i^ X_i^-$ and $X_i^ X_i^-$
	$\overline{X} = \frac{1}{2} \left(\frac{\Sigma}{\Sigma} \times i \right)$ and $\overline{Y} = \frac{1}{2} \left(\frac{\Sigma}{\Sigma} \times i \right)$
7.7.	(X-X) - (u-u)
	test statistic $T = (x-x) - (\mu_1 - \mu_2)$ $\alpha Z = N(0.1)$
	Tobs uses (μ'_1, μ'_2) the comparison values.
-	Tobs uses (4, 42) the comparison values.
	Suppose the confidence coefficient be 1-a, (ocar)
	Then
	Then Por { - Tay < T < Tay } = 1-a
	> The interval is
	- Tayle (x-7)-141-145 < 4 Tag
5	= (x-x) - u Zay < M-1/2 < (x-x) + u Zay
	Hence $t_1 = (x-y) - u \tau_{qq}$
420	72 = (x-7) + u7ay
	Thus (T, Tz) is the Tuterval serves 100 (1-a)?
	CInstanton (47-42)
1 - 5	(1) And (1) The control of the contr
7	(b) when σ_1^2 σ_2^2 are unknown By assumption of homoscedarticity, assume $\sigma_1^2 = \sigma_2^2 = \sigma_2$ though $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_2} \langle X_i \rangle$ and $\overline{Y} > \frac{1}{n_2} \sum_{i=1}^{n_2} \langle Y_i \rangle$
	X = 1 Z (x) and T > 1 (> Y)
	F2 (3)
	$S_{x}^{2} = \frac{1}{m_{1}-1} \sum_{i=1}^{\infty} (x_{i} - \overline{x})^{2}$ and $S_{y}^{2} = \frac{1}{m_{2}-1} \sum_{i=1}^{\infty} (x_{i} - \overline{y})^{2}$
	let 52 = (n-1) 5x + (n-1) 5x . let \$\sqrt{1}_{n_1} + \frac{1}{n_2} = 2
	1,412-2
	consider the test statistic To (x-x)-[1470] ~ tuity-2
	3 / ++1
	consider the antidence coefficient to be (-a) $\propto \alpha < L$
	Then The
- 11	

52 Testing for 6,/62 $X_1, \dots, X_N, \stackrel{\text{lib}}{\sim} X$ where $X \sim N(\mu_1, \sigma_1^2)$ $Y_1, \dots, Y_N \stackrel{\text{lib}}{\sim} Y$ where $Y \sim N(\mu_2, \sigma_2^2)$ (a) When M, M2 is known. When μ_1 , μ_2 is known let $\sigma_1 = \sigma_x$ and $\sigma_2 = \sigma_y$ Let $\bar{X} = \frac{1}{n_1} \left(\sum_{i=1}^{N} x_i \right)$ and $\bar{Y} > \frac{1}{n_2} \left(\sum_{i=1}^{N} Y_i \right)$ and $S_x^2 > \frac{1}{n_1} \sum_{i=1}^{n_1} (x_i - x_i)^2$ and $S_y^2 > \frac{1}{n_2} \sum_{i=1}^{n_2} (x_i - x_{i+2})^2$ consider the test statistic $T = \frac{5\pi/6\pi^2}{5\pi/6\pi^2} = \frac{(h_1 \bullet) S_x^2/6\pi^2}{(h_2 \bullet) S_x^2/6\pi^2} / (n_1 \bullet) \times \sim F_{n_1, 1, n_2}$.. Consider the confidence coefficient as (1-d), ocals then Par (Fn, 242) 1 4 T (Fn, 242) > 1-d => the interval is interval is strong of the strong of $\Rightarrow \frac{5x^{2}/5y^{2}}{F_{n_{1}n_{2}, 1}} \times \frac{5x^{2}}{5y^{2}} \times \frac{5x^{2}/5y^{2}}{F_{n_{1}n_{2}, 1}} \times \frac{5x^{2}$ Then the internal [T1, T2] serves 100[1-a)7.

(b) when μ , μ_2 is unknown.

Let $\overline{X} = \frac{1}{n_1} \sum_{j=1}^{n_2} X_j$ Let $\overline{X} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j$ Date: / / n_2 and $S_{x}^{2} = \frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}} (x_{i}-x)$ and $S_{x}^{2} = \frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}} (x_{i}-x)$ Now consider the test statistic, $T = \frac{5x^2}{5x^2} \cdot \frac{6x^2}{5x^2}$ where T~ Fn,-1, n2-1 Consider the confidence coefficient (1-01) 02021 Per { Fn,-1, n2-1; 1-0/2 < T < Fn-1; n2-1; 0/2 } = 1-d interval is, $\frac{(3 \frac{1}{3} \frac{1}{3})}{F_{n_{r-1}, n_{2}-1, \alpha_{2}}} < \frac{6 \frac{1}{3} \frac{1}{3}}{F_{n_{r-1}, n_{2}-1, \alpha_{2}}} < \frac{6 \frac{1}{3} \frac{1}{3}}{F_{n_{r-1}, n_{2}-1, \alpha_{2}}}$ Then the interval [Ti, T2] as a serves 100 (1-0)% confidence for out