Multilayer perceptron

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Architecture
- Sufficient number of layers
- 3 Activation functions
- 4 Outputs and loss functions
- Optimization
- Overfitting and regularization

History

 Neural networks originally appeared as an attempt to model human brain

- Human brain consists of multiple interconnected neuron cells
 - cerebral cortex (the largest part) is estimated to contain 15–33 billion neurons
 - communication is performed by sending electrical and electro-chemical signals
 - signals are transmitted through axons long thin parts of neurons.

Simple model of a neuron

- Neuron get's activated in the half-space, defined by $w_0 + w_1 x^1 + w_2 x^2 + ... + w_D x^D \le 0$.
- Each node is called a neuron
- Each edge is associated a weight
- w_0 stands for bias

Multilayer perceptron architecture

- Hierarchically nested set of neurons.
- Each node has its own weights.

This is structure of multilayer perceptron - acyclic directed graph.

Layers

- Structure of neural network:
 - 1-input layer
 - 2-hidden layers
 - 3-output layer

Table of Contents

- Architecture
- Sufficient number of layers
- 3 Activation functions
- Outputs and loss functions
- Optimization
- Overfitting and regularization

Regression

• 1-dimensional regression:

$$f(x) = \sum_{i} f(b_i) \mathbb{I}[x \in [a_i, b_i]] = \sum_{i} f(b_i) \left(\mathbb{I}[x \le b_i] - \mathbb{I}[x \le a_i] \right)$$
$$= \sum_{i} f(b_i) \mathbb{I}[x \le b_i] - \sum_{i} f(b_i) \mathbb{I}[x \le a_i] \quad \text{2 layer perceptron}$$

Regression

• AND/OR function for $x_1, x_2 \in \{0, 1\}$ made with 1 layer perceptron¹:

AND function
$$\mathbb{I}[x_1 + x_2 \ge 2] = \mathbb{I}[-x_1 - x_2 \le -2]$$

OR function $\mathbb{I}[x_1 + x_2 \ge 1] = \mathbb{I}[-x_1 - x_2 \le -1]$

- D-dimensional regression:
 - single layer can approximate arbitrary linear function
 - 2-layer network can model indicator function of arbitrary convex polyhedron
 - 3-layer network can uniformly approximate arbitrary continuous function (as weighted sum of indicators of convex polyhedra)
- So 3 layered NN can approximate all regular dependencies!

How to make XOR (exclusive OR) function?

Classification

- Consider indicator activations.
- # layers selection for classification:
 - single layer network selects arbitrary half-spaces
 - 2-layer network selects arbitrary convex polyhedron (by intersection of 1-layer outputs)
 - therefore it can approximate arbitrary convex sets
 - 3-layer network selects (by union of 2-layer outputs) arbitrary finite sets of polyhedra
- So 3 layered NN can approximate all regular sets!

Number of layers selection

- Why use more than 3 layers?
- 3 layered net can approximate any regular dependency, but may require too many neurons.
- Deeper neurons model more complicated dependencies.
- Using such neurons we can model the function with fewer total neurons.
 - less parameters=>less overfitting.

Table of Contents

- Architecture
- Sufficient number of layers
- Activation functions
- 4 Outputs and loss functions
- Optimization
- 6 Overfitting and regularization

Continuous activations

- $\mathbb{I}[w^T x w_0 \le 0]$ piecewise constant, derivative=0, cannot optimize weights.
- Replace $\mathbb{I}[w^T x w_0 \le 0]$ with smooth activation $\phi(w^T x w_0)$.

Typical activation functions

- sigmoid: $\sigma(x) = \frac{1}{1+e^{-x}}$
 - 1-layer neural network with sigmoidal activation is equivalent to logistic regression
- hyperbolic tangent: $tangh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) 1$
 - if $\mathbb{E}x = 0$, then $\mathbb{E} \operatorname{tangh}(x) = 0$.

• Problem $\phi'(x) \approx 0$ outside (-3,3).

Activation functions

- Rectified linear unit (ReLU): φ(x) = max(0, x)
 analog with smooth derivative (SoftPlus): φ(x) = ln(1 + e^x)
- Leaky ReLU: $\phi(x) = \begin{cases} x, & x \ge 0 \\ 0.01x, & x < 0 \end{cases}$
- Parametric ReLU (α is estimated): $\phi(x|\alpha) = \begin{cases} x, & x \geq 0 \\ \alpha x, & x < 0 \end{cases}$
- Exponential LU (α is fixed): $\phi(x) = \begin{cases} x, & x \ge 0 \\ \alpha(e^x 1), & x < 0 \end{cases}$

Table of Contents

- Architecture
- Sufficient number of layers
- 3 Activation functions
- Outputs and loss functions
- Optimization
- 6 Overfitting and regularization

Output layer and loss: regression

- Regression: $\phi(I) = I$
- Scalar regression $y \in \mathbb{R}$:

$$MSE(x, y) = (\widehat{y}(\mathbf{x}) - y)^2$$

• Vector regression $\mathbf{y} \in \mathbb{R}^K$:

$$MSE(x, y) = \|\widehat{\mathbf{y}}(\mathbf{x}) - \mathbf{y}\|_2^2$$

Output layer and loss: classification, probabilities

• Binary classification: $y \in \{0, 1\}$

$$p(y = +1|x) = \frac{1}{1 + e^{-I}}$$

$$\mathcal{L}(x,y) = -\ln p(y|x) = -\ln p(y=1|x)^y [1 - p(y=1|x)]^{1-y}$$

• Multiclass classification: $y \in 1, 2, ... C$

$$\{SoftMax(I_1,...I_C)\}_j = p(y=j|x) = \frac{e^{I_j}}{\sum_{k=1}^C e^{I_k}}, j=1,2,...C$$

$$\mathcal{L}(x,y) = -\ln p(y|x) = -\ln \prod_{c}^{C} p(y=c|x)^{y_c}, \qquad y_c = \mathbb{I}[y=c]$$

Output layer and loss: classification, scores

• Binary classification: $y \in \{0,1\}, \mu > 0$ - parameter

$$O(x)$$
 = preference to positive class vs. zero class

$$hinge(x, y) = [\mu - yO(x)]_{+}$$

• Multiclass classification: $y \in 1, 2, ... C$, $\mu > 0$ - parameter:

$$\{O_1(x),...O_C(x)\}$$
 - scores of classes $1,...C$ $hinge_1(x,y) = \left[\max_{c \neq y} O_c + \mu - O_y\right]_+$ $hinge_2(x,y) = \sum_{c \neq y} \left[O_c + \mu - O_y\right]_+$

Special applications

Neural nets may be trained to predict not points, but probability densities:

- predict K values for K bins of the histogram (+SoftMax)
- predict parameters of a probability distribution, e.g. μ , Σ for $y|x \sim \mathcal{N}(\mu(x), \Sigma(x))$.

Autoencoder allows reproducing the input. Possible applications:

- extract informative features, dimensionality reduction
- construct initialization for first layers of deep network.
- outlier extraction²

²how7

Table of Contents

- Architecture
- 2 Sufficient number of layers
- 3 Activation functions
- Outputs and loss functions
- Optimization
- Overfitting and regularization

Neural network optimization

- Denote $\mathcal{L}(\hat{y}, y)$ the loss function, W = #[weights in the network], ε step size.
- We may optimize neural network using SGD:

```
initialize randomly w # small values for sigmoid and tangh while not (stop condition): sample random object (x_i, y_i) w := w - \varepsilon \nabla_w \mathcal{L}(w, x_i, y_i)
```

• Standardization of features makes GD & SGD converge faster

Learning rate selection is important

- Learning rate should gradually decrease for SGD.
- ullet Often take const arepsilon and decrease it after reaching plato region.

SGD with momentum

```
initialize randomly w # small values for sigmoid and tangh while not (stop condition): sample random object (x_i, y_i) \Delta w := \alpha \Delta w + (1 - \alpha) \nabla_w \mathcal{L}(w, x_i, y_i) \text{ # alpha is typically 0.9.} w := w - \varepsilon \Delta w
```

- Converges faster, because
 - gradient is based on several observations instead of one
 - gradient directions aggregation averages ininformative trembling:

Gradient calculation

• Direct $\nabla \mathcal{L}(w)$ calculation, using

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\mathcal{L}(w + \varepsilon_i) - \mathcal{L}(w)}{\varepsilon} + O(\varepsilon) \tag{1}$$

or better

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\mathcal{L}(w + \varepsilon_i) - \mathcal{L}(w - \varepsilon_i)}{2\varepsilon} + O(\varepsilon^2)$$
 (2)

has complexity $O(W^2)$

- need to calculate W derivatives
- complexity for each derivative: 2W

Backpropagation algorithm needs only O(W) to evaluate all derivatives.

Gradient calculation example

• Consider binary classification $y \in \{+1, -1\}$, network predicts p(y = +1|x):

$$p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$$

Quality is evaluated with score

$$S = p(y|x) = \mathbb{I}[y = +1]p(y = +1|x) + \mathbb{I}[y = -1](1 - p(y = +1|x))$$

• Suppose y = -1 and we want to adjust w, so that 1 - p(y = +1|x) is higher:

$$w := w + \varepsilon \frac{\partial S}{\partial w} = w + \varepsilon \frac{\partial [1 - p(y = +1|x)]}{\partial w}$$

Backpropagation

$$\frac{\partial [1 - p(y = +1|x)]}{\partial w} = \frac{\partial}{\partial w} \left[1 - \frac{1}{1 + e^{-w^T x}} \right] - ?$$

Represent computations with computational graph:

 Calculate all intermediate variables left to right, then derivatives right to left:

$$\begin{split} \frac{\partial S}{\partial d} &= -1, \ \frac{\partial S}{\partial c} = \frac{\partial S(d(c))}{\partial c} = \frac{\partial S}{\partial d} \frac{\partial d}{\partial c} = \frac{\partial S}{\partial d} \left(-\frac{1}{c^2} \right); \ \frac{\partial S}{\partial b} = \\ \frac{\partial S(c(b))}{\partial b} &= \frac{\partial S}{\partial c} \frac{\partial c}{\partial b} = \frac{\partial S}{\partial b} \cdot 1; \ \frac{\partial S}{\partial a} = \frac{\partial S(b(a))}{\partial a} = \frac{\partial S}{\partial b} \frac{\partial b}{\partial a} = -\frac{\partial S}{\partial b} e^{-a} \\ \frac{\partial S}{\partial w} &= \frac{\partial S(a(w))}{\partial w} = \frac{\partial S}{\partial a} \frac{\partial a}{\partial w} = \frac{\partial S}{\partial a} \times \end{split}$$

Features of neural network optimization

- Dependency $\hat{y}(x)$ is non-convex in general.
- $\mathcal{L}(\hat{y}, y)$ non-convex => many local optima.
- Found local optimum is affected by:
 - initialization (see Xavier initialization and other)
 - objects sampled at minibatches
 - optimization method and ε_t dynamics
- Can fit the model using different methods and then
 - select best solution on the validation set
 - average several solutions

Table of Contents

- Architecture
- 2 Sufficient number of layers
- 3 Activation functions
- Outputs and loss functions
- Optimization
- 6 Overfitting and regularization

Deep learning motivation

- Machine learning algorithms rely on good features
- Deep learning=neural nets with many layers.
- Neurons at deep layers can automatically learn complex features.
 - important in such domains as image, sound.
 - images: extract borders, than primitive figures, than more complex figures (eyes, tails, ...)
 - works better than predefined features

Deep learning complexity

- Deep learning models have much more parameters. Solutions to this:
 - pretrain initial layers from large available datasets with similar task
 - e.g. ImageNet (>1 mln. of labeled images) for image classification
 - use data augmentation:

$$(x,y) \rightarrow \{(\phi_1(x),y),(\phi_2(x),y),(\phi_3(x),y),...\}$$

- $\phi_1, \phi_2, \phi_3, \dots$ some target invariant transformations
- e.g. changes of brightness/contrast of images.

Complexity of MLP

- In MLP consider adjacent layers with N and M neurons.
 - $N \times M$ connections, so $N \times M$ weights to estimate!
- Solutions to overparametrization:
 - use fewer neurons
 - apply constraints on weights (e.g. weight sharing)
 - e.g. in convolutions
 - leave only most important connections, drop other
 - e.g. in convolutions
 - use regularization to reduce model flexibility
 - \bullet L_1, L_2
 - early stopping
 - DropOut
 - BatchNorm

DropOut: training

- For each minibatch every neuron, except output neurons, is dropped with probability (1-p) and retained with probability p.
 - independently from other neurons
- This reduces ovefitting:
 - prevents co-adaptation of neurons (overfitting)
 - we train an ensemble of thinned (more simple) neural nets.
- Next neuron receives $\sum_{i} (pw_i x_i + (1-p)w_i 0) = \sum_{i} pw_i x_i$.

DropOut: inference

- every neuron produces something reasonable, so every neuron is left
- to compensate for change in architecture output of every neuron is multiplied by p
 - need to perform extra multiplications at inference, to omit them:
 - training: output x_i/p when x_i is retained
 - inference: output every neuron x_i as is.

BatchNorm: motivation

- SGD $w := w \varepsilon \nabla_w \mathcal{L}(x, y)$ updates all weights on all layers simultaneously.
- Distribution of outputs changes and later layers have to relearn from scratch.
- Also input can shift to saturation region of non-linearity.

BatchNorm: intro

Idea: standardize outputs at intermediate layers

$$\tilde{x}_k = \frac{x_k - \mu_k}{\sigma_k}, \quad \mu_k = \mathbb{E} x_k, \sigma_k = \sqrt{Var(x_k)}$$

- guarantees $\mathbb{E}\tilde{x}_k=0$, $\operatorname{Var}\tilde{x}_k=1$ after weight updates on previous layers.
 - training is faster for later layers
- Training:
 - problem: don't know μ_k, σ_k
 - they change dynamically with weight updates
 - solution: estimate them on current minibatch (should be large enough)
- Inference:
 - since now distribution of x_k is fixed, can estimate μ_k, σ_k from the whole training set.
 - more efficient: average estimates of μ_k , σ_k from final minibatches of training.

BatchNorm: actual version

$$ilde{x}_k = lpha_k rac{x_k - \mu_k}{\sqrt{\sigma_k^2 + arepsilon}} + eta_k, \quad \mu_k = ar{x}_k, \; \sigma_k = \sqrt{ extsf{Var}(x_k)}, \; arepsilon = 10^{-6}.$$

Training:

- μ_k, σ_k estimated from the minibatch
- α_k, β_k output std.dev. and mean.
 - learned during backpropagation
- motivation:
 - may cancel normalization effect (e.g. in image->time prediction)
 - flexibility to adjust better to non-linearity

Inference:

- μ_k, σ_k estimated fixed to be mean, std.dev. from a wide set of objects.
- α_k, β_k fixed.

Reducing computational complexity

To reduce computational complexity train a large network, and then thin it out:

- drop connections with low weight
- discard neurons with low input weights
- discard neurons with weak activations

Pruning of neurons and connections

Optimal brain damage

$$L(w) - L(w^*) =$$

$$= \nabla L(w^*)^T (w - w^*) + \frac{1}{2} (w - w^*)^T \nabla^2 L(w^*) (w - w^*) + O(\|w - w^*\|^3)$$

$$\approx \frac{1}{2} (w - w^*)^T \nabla^2 L(w^*) (w - w^*) \approx \frac{1}{2} \sum_i \frac{\partial L(w^*)}{\partial w_i^2} (w_i - w_i^*)^2$$

Approximations:

- $O\left(\|w-w^*\|^3\right)\approx 0$
- we converged to exact optimum, so $\nabla L(w^*) = 0$
- $\nabla^2 L(w^*)$ is diagonal (ignore mixed derivatives effect)

Optimal brain damage algorithm:

- repeat:
 - train network
 - drop by $\frac{\partial L(w^*)}{\partial w^2}(w_i w_i^*)^2 < threshold$

Conclusion

Properties of neural networks:

- Universal approximator: can model complex non-linear relationships.
- Deep nets can automatically construct intelligent features.
 - work better than hand-made
- Loss function is highly non-linear and non-convex.
- Everything in optimization affects final result:
 - starting conditions, optimization algorithm, learning rate size, its decrease schedule, minibatch size.
- Have much more parameters than traditional ML models.
 - drop neurons/connections
 - impose constraints on weights (e.g. weight sharing)
 - use regularization: early stopping, L1/L2, DropOut, BatchNorm.