Todays <u>Content</u>:

Modular Arthmetics
Basic And lon principle
Intro to Subsets vs Subsequence
Subsequence with given sum

Modular Arthimetics

any
$$1/2$$
 $1/2$

And/OR Principle

Q1. 5 girs q 4 boys, how many pair: 5 *4 = 20 pairs

O3: 3 T/F, how many ways we can answer au of Them.

Subaways vs Subsequence vs Subsets

Subarray: Continous part of an anay.

Subsequence: Sequence obtained by deleting [none or more] ele from arri

1. Data should be arranged based on Inc order of inden 2. Emply Subsequence es also valld.

 $ar(6) = \begin{cases} 0 & 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 9 & 6 & 8 \end{cases}$ En: {1683 <u>Subser</u> = { * * 1 * 68} {963} order miss = {3 * * 9 6 * 3 1 3 5 Subsec = 1 2 7 9 + 8)

Subarr Vs Subsequence

$$ar(6) = \begin{cases} 0 & 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 9 & 6 & 8 \end{cases}$$

	Subarray:	Subsequenu		
{3 2 13	Yes	Yes obs:	cs	
119683	4es	Yes 1. All subarrays are Subsequences 4. 2. All subsequen are Subarrays N	Jo	
{316 8}	No	Yes	0	
12193	Yes	Yes		

man 8	Sum =	All Subseque	nus	AI	Subsequen	<u>us</u>	Sum =	man
_	D	{ }	4	_ >	૧ 3		O	_
3	3	{ 3 }	•	.)	{33		3	3
ſ	ι	{()	•	.	4 13		l	ſ
8	8	{8}	-	و	{8}		8	8
3	4	[3 1]	Order diff but data San	e,	11 33		٩	3
Ç	Ц	{38}		-	{3 8}		ll	Ç
8	9	{ 1 8}		.	{l 8}		9	8
8	ાર	23 183	Order diff but data San	و	[1-3 8]		ાર	8

obs: If we sort ami

- 1. Order before a after sorting change Butdata remains same.
- A. Sum of Subsequences

 Man of Subsequences

 Min of Subsequence

 Subsequence

Subsets: Subsets obtained by deleting [none or more ele from arr[] 1. Emply Subset is also valid.

All Subsets	All Subsets
₹ 3 ₹	⊸ ર્વ
233 {13 {8} ·	+ fiz (37 187
{31] Order: Not Matter Data: San	<u>e</u> , (133
{18}	· (18)
{38}	→ {3 8}
13 183 Order: Not Matter Dara · Sa	ng 11383

Count of Subsets & Subsequenus

{ 3 {63 {43 {47 {47 {643 {464} } 464} }

$$\alpha r(y) = 27$$
 2 9 53 =
Sea/Set = 2 2 2 2 2 2 = 24 = 16

$$ar(n) = \{a_1, a_2, a_3, ..., a_n\}$$

$$\begin{cases} seq/sub = \{2 + 2 + 2 + ..., 2\} = 2 \end{cases}$$

Of Given an artn), check if There entsts a subsequence with sum=k

$$\frac{g_{1}}{g_{2}} = \frac{1}{2} = \frac{1}{$$

Idea: For au subsequence get sum q compare == k.

If There enists such sequence: Return True

of No such sequence: Falk

Generate au Subseq:

Un Subseq:

O 1 2 select an eu : 0

$$A = [7 5 3]$$

$$\theta = \begin{bmatrix} 2 & 6 & 4 & 5 \end{bmatrix}$$

dectmal			3	λ	i	0	subseq	
=	0		_	0	0	O	O	4 3
	1			O	O	O	ı	£ 23
	2			0	0	1	0	િ 6 કે
	•			0	0	ı	1	{263
	v			O	1	D	0	147
				O	1	0	1	{ 2 97
				0	1	1	0	£ 6 43
				0	1	ı	1	{ 2 6 4 3
				1	0	O	0	{ 53
				1	0	0	l	£2 53
	lo			3	ar[3] 0	1	ar(i) 0	9653
				1	O	ι	1	2653
				1	1	0	0	£ 4 53
				١	l	O	1	{245)
	15		-	1	·	l	\	1 2645y

D N=3: We have 8 Sub = (0,7), check 3 bits D N=4: We have 16 Sub = [0, 15), check 4 bits

```
boolean subseq (intaxi), int N, int K) { TC: O(2N*N) = O(N*2N) SC:O()
    for (num = 0; num x (KKN); num te) { // CKKN) = 2N
        1nt sum = 0;
         Il For a num get required subsequence.
         Parci=0112N; Perofl 1 is indicating bit pos
             if ( (num 77 i) 21 == Tru) & /1 im bit pos in num is 1 or 0.
                sum = sum + ar(i)
     return Fala;
         1 2 5 3]: num = \{0, 2^3 - 1\} = \{0, 7\}, \{1 = \{0, 2\}\}
 num:
          S = 0
   0
                                    1 17
         S = 7
   1
                            1 153
  2
         S = 5
                     0
  3
                            153
                                    1 {73
         S = 12
                    0
  4
                    1 { 3}
         S = 3
                              0
                                       D
  5
                                       1973
                              0
         5 = 10
                     (8)
  6
         5=8
                     1 (3)
                             1 (5)
                                       D
  7
         S= 15
                               1953 1873
                      137
```