Prof. Dr. Florian Künzner

Exercise sheet 9 – Memory

Goals:

- MMU
- Virtual memory

Exercise 9.1: Intel x86/32 bit 1 level page table

Consider an Intel x86/32 bit architecture with a 1 level page table, similar to the 1 level page table in the lecture.

Given are:

- 32 bit architecture
- 4 KiB page/frame size
- 1 level page table
- Virtual address: 0x1202F494
- Real address: 0x00014494

The virtual address is mapped to the real address.

(a) State the *offset* part of the given addresses.

Proposal for solution: Offset: 0x494

32 bits for the whole address, 20 bits for page/frame and 12 bits for the offset.

(b) State the page number and the page base address.

Proposal for solution: Page: virtual memory

Page number: 0x1202F

Page base address: 0x1202F000

(c) State the *frame number* and the frame base address.

Proposal for solution: Frame: real memory

Frame number: 0x00014

Frame base address: 0x00014000

(d) State the entry and its position in the page table for the given situation. *Hint: You may want to draw a scheme, similar to the lecture. Specify as much details as possible with explicit numbers.*

Proposal for solution:

SoSe 2022

Prof. Dr. Florian Künzner

(e) How many pages are possible for the given 32 bit architecture?

Proposal for solution: $2^{20} = 1048576$ pages

(f) Estimate the size in bytes for the page table. Hint: You may simplify the address calculation by only considering to use a full word (address word) for each entry.

Proposal for solution: Each entry needs 4 byte, so the whole page table consumes about $2^{20} * 4$ bytes = 4194304 bytes (4 MiB)

Exercise 9.2: Intel x86/32 bit 2 level page table

Now consider an Intel x86/32 bit architecture with a 2 level page table (without segmentation). Use the same addresses as given in exercise 9.1.

- (a) Have a look on CA_exercises/sheet_09_memory_mmu/AMD64 Architecture Programmer's Manual.pdf file page 135 (PDF: 195).
- (b) Draw a scheme with the situation. Use as much details as possible with explicit numbers (you may calculate them and make certain assumptions).

Proposal for solution:

SoSe 2022

Prof. Dr. Florian Künzner

Exercise 9.3: Intel x86/64 bit architecture with 3 level page table

Hint: Use the »AMD64 Architecture Programmer's Manual Volume 2: System Programming« to answer that question.

Given is:

- Virtual address: 0x0000 FF00 1232 F494
- Real address: 0x0000 0078 0012 F494
- Long-Mode Page Translation
- Page size: 2 MiB
- Bytes used for sign extension: 2
- Maximum bits for real memory addresses: 48 bits
- 3 level page table: Page-Map, Page-Directory-Pointer, Page-Directory
- (a) Have a look on
 - CA_exercises/sheet_09_memory_mmu/AMD64 Architecture Programmer's Manual.pdf file page 146 (PDF: 206).
- (b) How many bits are used for the offset? Show the offset in the given addresses.

Proposal for solution: The right 21 bits are used for the offset: 0x12F494

(c) How many bits are used for each page table level?

Proposal for solution: For each page table level, 9 bits are used. Bits 21 - 29 for *Page-Directory Offset*, bits 30 - 38 for *Page-Directory-Pointer Offset*, and bits 39 - 47 for Page Map.

(d) Draw a scheme for the page table situation. Use as much details as possible with explicit numbers (you may calculate them and make certain assumptions).

Prof. Dr. Florian Künzner

(e) Calculate the maximum addressable real memory.

Proposal for solution: $2^{48} = 2,814749767 \times 10^{14} \text{ bytes} = 256 \text{ TiB}$