

## ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

## ФОТОЭЛЕМЕНТЫ ИЗМЕРИТЕЛЬНЫЕ

ОСНОВНЫЕ ПАРАМЕТРЫ МЕТОДЫ ИЗМЕРЕНИЙ ОСНОВНЫХ ПАРАМЕТРОВ

**FOCT 25369-82** 

Издание официальное





## РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ

Б. М. Степанов (руководитель темы), Л. И. Андреева, М. М. Егеров, И. Н. Гусева, С. А. Кайдалов, А. Ф. Котюк, В. й. Сачков, З. М. Семичастнова, А. П. Ромашков, В. А. Яковлев

## ВНЕСЕН Государственным комитетом СССР по стандартам

Член Госстандаюта Л. К. Исаев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30 июля 1982 г. № 2990

Редактор В. П. Огурцов Технический редактор А. Г. Каширин Корректор Н. Н. Жуховцева

#### ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

#### фотоэлементы измерительные

### Основные параметры. Методы измерений основных параметров

Measuring photocells. Basic parameters, measuring methods of basic parameters

ΓΟCT 25369-82

Постановлением Государственного комитета СССР по стандартам от 30 июля 1982 г. № 2990 срок введения установлен

c 01,07.83

#### Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на фотоэлементы измерительные (далее фотоэлементы), предназначенные для использования в качестве средств измерений мощности и динамических характеристик оптического излучения, и устанавливает перечень основных параметров и методы их измерений.

Стандарт не распространяется на фотоэлементы, поставляе-

мые как комплектующие изделия для средств измерений.

#### 1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Все измерения проводятся при нормальных условиях в соответствии с ГОСТ 24469—80.
- 1.2. В помещении, где проводятся измерения, не должно быть конвекционных потоков (в том числе активной вентиляции), источников пыли, посторонних тепловых возмущений, внешних магнитных полей.
  - 1.3. Аппаратура
- 1.3.1. Все параметры фотоэлементов измеряют в защитной камере. Защитная камера должна обеспечивать защиту фотоэлементов от внешних источников излучения, а также от воздействия магнитных и электрических полей.

Защитная камера должна иметь электрическое соединение с общей точкой измерительной схемы испытательной установки. Не

Издание официальное

Перепечатка воспрещена

допускается использовать материалы с высокой люминесценцией в качестве конструктивных элементов, находящихся вблизи фотокатода. Предпочтительным материалом для этих целей является органическое стекло.

Конструкция камеры должна исключить появление побочных отражений от стенок камеры и деталей, расположенных в камере.

1.3.2. Для ослабления потока оптического излучения используют измерительные ослабители. Для ослабителей излучения должны быть указаны следующие технические и метрологические характеристики: коэффициент ослабления как функция длины волны, погрешность коэффициента ослабления как функция коэффициента ослабления и длины волны; стабильность коэффициента ослабления во времени.

1.3.3. Источники питания

В качестве источников питания фотоэлементов должны применяться источники постоянного напряжения с нестабильностью выходного напряжения не более 0.1~% при изменении напряжения питающей сети на  $\pm 10~\%$  и нестабильностью в течение времени, необходимого для проведения измерений, не более 0.1~%.

Напряжение на выходе источника питания должно регулироваться в пределах, необходимых для измерения конкретного па-

раметра фотоэлемента.

1.3.4. Источники питания источника излучения

В качестве источников питания источника излучения применяют источники постоянного или переменного напряжения.

Нестабильность выходного напряжения источников питания при изменении напряжения питающей сети на  $\pm 10~\%$  и в течение времени, необходимого для проведения измерения, должна быть не более — 0.2~%.

1.3.5. Измерительные приборы

Предел допускаемой относительной погрешности приборов, контролирующих напряжение питания фотоэлементов, должен соответствовать требуемой точности измерений, указанной в нормативно-технической документации на фотоэлементы конкретных типов.

1.4. Требования безопасности

- 1.4.1. При подготовке к измерениям и при проведении измерений параметров фотоэлементов следует руководствоваться общими правилами безопасности в соответствии с ГОСТ 12.2.003—74 и ГОСТ 24469—80.
- 1.4.2. Защитная камера с фотоэлементом должна быть оборудована блокировкой, исключающей возможность прикосновения оператора к- токопроводящим частям, а также сигнализацией о включении высокого напряжения.
- 1.4.3. Металлические корпуса измерительных приборов, в том числе переносных, необходимо заземлить.

1.4.4. Включение и отключение оборудования должно производиться с помощью выключателей, размещенных на пультах и панелях управления.

1.4.5. Приборы переносного типа размещают на рабочем сто-

ле, полках или выдвижных столиках оборудования.

Осциллографы и другие аналогичные приборы размещают на специальных тележках, рабочем столе, стеллажах.

1.5. Подготовка к измерениям

1.5.1. Все средства измерений перед началом работы должны быть установлены в рабочее положение, заземлены, включены в сеть и прогреты в течение времени, указанного в эксплуатацион-

ной документации.

1.5.2. При измерении параметров фотоэлементов необходимо облучать рабочую поверхность фотокатода в соответствии с требованиями нормативно-технической документации на фотоэлементы конкретных типов.

#### 2. ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ

2.1. Основные параметры и характеристики фотоэлементов, а также диапазоны значений параметров, на которые распространяются методы измерения, приведены в табл. 1.

Таблипа 1

| Параметры (характеристики) фотоэлемента<br>`                                           | Значения параметров, на которые распространяются методы, приведенные в настоящем стандарте | Номера пунк-<br>тов стандарта |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------|
| Область спектральной чувствительности, мкм                                             | 0,22—1,3                                                                                   | 3.1                           |
| Спектральная чувствительность А/Вт, на фиксированных длинах волн: 0,265; 0,530; 0,694; | 10-6-10-2                                                                                  | 0.0                           |
| 1,06 мкм                                                                               | $10^{-6} - 10^{-2}$ $10^{-6}$                                                              | 3.2                           |
| Темновой ток, А, не более                                                              | 10-6                                                                                       | 3.3                           |
| Предел линейности характеристики преобразования в импульсном режиме, А                 | 0,5—50                                                                                     | 3.4                           |
| Длительность импульсной характеристики по уровню 0,5, с, не более                      | 10-7                                                                                       | 3.5                           |
| Основная относительная погрешность измерения мощности, %, не более                     | 20                                                                                         |                               |
|                                                                                        |                                                                                            |                               |
|                                                                                        | ]                                                                                          |                               |

#### 3. МЕТОДЫ ИЗМЕРЕНИЙ

- 3.1. Область спектральной чувствительности фотоэлемента определяют по измерениям относительной спектральной чувствительности фотокатода. При этом за границы области принимают длины волн, на которых относительная спектральная чувствительность составляет 0.01 от максимального значения.
  - 3.1.1. Принцип измерений
- 3.1.1.1. Метод измерений основан на сравнении спектральной чувствительности исследуемого фотокатода со спектральной чувствительностью контрольного приемника.
  - 3.1.2. Аппаратура

3.1.2.1. Схема расположения средств измерений и вспомогательных устройств должна соответствовать приведенной на черт. 1.



1-блок питания и

излучения:

излуче-

8---

контроля режима ис-

2—источник излучения: 3—освети-

тельная система: 4-спектральный при-

ния; 6-исследуемый фотоэлемент: 7-

устройство для изме- / рения выходного сиг-

5-контрольный

исследуемого

выходного

контрольно-

точника

приемник

нала

мерения

сигнала

- 3.1.2.2. Перечень рекомендуемых средств измерений и вспомогательных устройств приведен в рекомендуемом приложении 1.
  - 3.1.3. Подготовка и проведение измерений
- 3.1.3.1. Фотоэлемент в защитной камере устанавливают у выходной щели монохроматора таким образом, чтобы поток излучения не выходил за пределы фотокатода.
- 3.1.3.2. За выходной щелью монохроматора в защитной камере устанавливают поочередно контрольный приемник излучения и исследуемый фотоэлемент и регистрируют показания соответствующего прибора, поочередно заменяя контрольный приемник фотоэлементом либо на каждой длине волны, либо после прохождения всего спектрального диапазона.
- 3.1.3.3. В зависимости от вида кривой определяемой спектральной характеристики чувствительности измерения проводят с интервалом 5—20 нм в ультрафиолетовой области спектра и 10—30 нм в видимой и инфракрасной областях спектра.
- 3.1.3.4. Полуширина спектрального интервала, выделяемого монохроматором, не должна превышать интервала, указанного в п. 3.1.3.3.
- Черт. 1

фотоэлемента;

устройство для

го приемника: 9-блок питания фото-

элемента.

- 3.1.4. Обработка результатов
- 3.1.4.1. При использовании в качестве контрольных неселективных приемников относительную спектральную характеристику чувствительности исследуемого фотокатода  $S_{\text{отн}(\lambda)}$  определяют по формуле

$$S_{\text{OTH}(\lambda)} = \left\lceil \frac{n(\lambda)}{n_{\text{K}}(\lambda)} \right\rceil : \frac{[n(\lambda)]_{\text{max}}}{n_{\text{K}}(\lambda)} = \frac{n(\lambda)}{[(n(\lambda)]_{\text{max}}}, \qquad (1)$$

где  $n(\lambda)$  — выходной сигнал исследуемого фотокатода;

 $n_{\kappa}(\lambda)$  — выходной сигнал контрольного приемника.

3.1.4.2. При использовании в качестве контрольных селективных приемников с известной относительной спектральной характеристикой чувствительности относительную спектральную характеристику чувствительности исследуемого фотокатода определяют по формуле

$$S_{\text{отн}(\lambda)} = \left[ \frac{n(\lambda)}{n_{\text{K}}(\lambda)} \cdot S_{\text{K отн}(\lambda)} \right] : \left[ \frac{n(\lambda)}{n_{\text{K}}(\lambda)} \cdot S_{\text{K отн}(\lambda)} \right]_{\text{max}}, \tag{2}$$

где  $S_{\kappa \text{ отн}(\lambda)}$  — относительная спектральная характеристика чувствительности контрольного приемника.

3.1.4.3. Основная относительная погрешность измерения спектральной характеристики чувствительности фотоэлементов при принятой доверительной вероятности P=0.95 для видимой области спектра (380-780 нм) не должна превышать 12~%, для ближней инфракрасной области (780-1200 нм) — 15~%, для ближней ультрафиолетовой области (220-380 нм) — 25~%.

3.2. Метод измерений спектральной чувстви-

тельности на фиксированных длинах волн

3.2.1. Принцип измерений

3.2.1.1. Спектральную чувствительность на фиксированных длинах волн определяют методом сравнения с аттестованным (поверенным) средством измерений максимальной мощности (далее СИ ММ).

3.2.2. Аппаратура

3.2.2.1. Схема расположения средств измерений и вспомогательных устройств должна соответствовать приведенной на черт. 2.

3.2.2.2. Перечень рекомендуемых средств измерений и вспомогательных устройств приведен в рекомендуемом приложении 1.

3.2.3. Подготовка и проведение

измерений

3.2.3.1. При подготовке к измерениям напряжение питания фотоэлемента устанавливают в соответствии с нормативно-технической документацией на фотоэлементы конкретных типов.

3.2.3.2. Оптическую плотность измерительных ослабителей подбирают таким образом, чтобы обе-



1—источник импульсов оптического излучения на основе лазера; 2—делительная пластина; 3, 6—измерительные ослабители; 4—СИ ММ с известными параметрами; 5—контрольное средство измерений; 7—камера с исследуемым фотоэлементом; 8—источник питания фотоэлемента; 9—импульсный вольтметр или осциллограф

Черт. 2

спечить работу исследуемого фотоэлемента на уровне не более  $(0.5 \div 0.7)$   $I_{\rm лин}$  (где  $I_{\rm лин}$ — значение предела линейности фототока, указанное в нормативно-технической документации на фотоэлементы конкретных типов) и чтобы обеспечить работу контрольного средства измерений в линейном режиме.

3.2.3.3. Коэффициент деления делительной пластины определяют, подавая одиночный импульс излучения и снимая показания СИ ММ и контрольного средства измерений. Коэффициент деле-

ния  $K_{i}$  рассчитывают по формуле

$$K_i = \frac{N_i}{P_{\text{max}, i}^0} \,, \tag{3}$$

где  $K_i$  — результат единичного наблюдения коэффициента деления делительной пластины;

 $N_i$  — показание контрольного средства измерений — максимальное значение мощности излучения, отраженного от делительной пластины;

 $P_{\max,t}^0$  — максимальное значение мощности излучения, прошед-

шего через делительную пластину.

Проводят серию из n наблюдений  $K_i$  (n > 5). Среднее значение коэффициента деления делительной пластины  $\overline{K}$  определяют по формуле

$$\overline{K} = \frac{1}{n} \sum_{i=1}^{n} K_i \tag{4}$$

и принимают его за результат измерений.

3.2.3.4. Средство измерений максимальной мощности с извест-

ными параметрами заменяют исследуемым фотоэлементом.

Спектральную чувствительность определяют путем измерений фототока  $I_i$  в цепи или напряжения на выходе фотоэлементов и вычисляют по формуле

$$A_{\lambda t} = \overline{K} \frac{I_t}{N_t} , \qquad (5)$$

где  $A_{\lambda i}$  — результат единичного наблюдения спектральной чувствительности;

 $I_i$  — фототок (напряжение) в цепи (на выходе) фотоэлемента:

 $\overline{K}$  — коэффициент деления делительной пластины.

3.2.3.5. Проводят серию из n наблюдений  $A_{\lambda t}$  ( $n \gg 5$ ). Среднее значение спектральной чувствительности фотоэлемента  $A_{\lambda}$  определяют по формуле

$$\overline{A}_{\lambda} = \frac{1}{n} \sum_{i=1}^{n} A_{\lambda i} \tag{6}$$

и принимают его за результат измерений.

3.2.4. Обработка результатов

3.2.4.1. Расчет погрешности измерений приведен в справочном

приложении 4.

При использовании указанной измерительной аппаратуры и оборудования основная относительная погрешность измерения при принятой доверительной вероятности  $P\!=\!0,95$  не должна превышать 15 %:

3.3. Метод измерений темнового тока

3.3.1. Принцип измерений

3.3.1.1. При измерении темнового тока фотоэлемента измеряют ток в цепи фотоэлемента полностью защищенного от действия оптического излучения.

3.3.2. Аппаратура

- 3.3.2.1. Схема расположения средств измерений и вспомогательных устройств должна соответствовать схеме приведенной начерт. 3.
- 3.3.2.2. Перечень рекомендуемых средств измерений и вспомогательных устройств приведен в рекомендуемом приложении 1.
- 3.3.2.3. Металлические заземленные детали защитной камеры не должны касаться баллона фотоэлемента на участке анод—охранное кольцо.
- 3.3.2.4. При измерении темнового тока фотоэлемента без охранного кольца допускается включение микроамперметра как в цепь анода, так и в цепь катода фотоэлемента. При этом заземляют либо положительный, либо отрицательный полюс источника питания.
- 3.3.2.5. Ток утечки в измерительной цепи не должен превышать 0,1 от ожидаемого темнового тока фотоэлемента.
  - 3.3.3. Подготовка и проведение измерений
- 3.3.3.1. Фотоэлемент помещают в защитную камеру и соединяют его электроды с источником питания и измерительными приборами по схеме, приведенной на черт. 3.

3.3.3.2. На фотоэлемент подают напряжение питания в соответствии с нормативно-технической документацией на-фотоэлементы конкретных ти-

пов.

3.3.3.3. Измеряют ток в цепи фотоэлемента. Значение темнового тока  $I_{T,t}$  отсчитывают непосредственно по шкале прибора.



1—охранное кольцо фотоэлемента; 2—исследуемый фотоэлемент; 3—источник питания фотоэлемента; 4—вольметр; 5—микроамперметр

Черт. 3

3.3.3.4. Проводят серию из n наблюдений  $I_{T,i}$  ( $n \gg 5$ ). Среднее значение темнового тока  $I_{\rm T}$  определяют по формуле

$$\overline{I_{\rm T}} = \frac{1}{n} \sum_{i=1}^{n} I_{T,i} \tag{7}$$

и принимают его за результат измерений.

3.3.4. Обработка результатов

3.3.4.1. Расчет погрешности измерений приведен в справочном

приложении 4.

При использовании указанной измерительной аппаратуры и оборудования основная относительная погрешность при принятой доверительной вероятности P = 0.95 не должна превышать 1 %.

3.4. Метод измерений соответствия характеристики преобразования заданному пределу

линейности в импульсном режимс

3.4.1. Принцип измерений

3.4.1.1. Метод заключается в определении соответствия между изменениями амплитуды импульса фототока в цепи фотоэлемента

и изменениями амплитуды импульса потока излучения.

3.4.1.2. Параметры импульсов оптического излучения, частота их следования, значение предела линейности в амперах должны быть указаны в нормативно-технической документации на фото-элементы конкретных типов.

3.4.2. Annapatypa

3.4.2.1. Схема расположения средств измерений и вспомогательных устройств должна соответствовать указанной на черт. 4 или 5.

3.4.2.2. Вид схемы включения должен быть указан в нормативно-технической документации на фотоэлементы конкретных типов.

3.4.2.3. Перечень рекомендуемых средств измерений и вспомогательных устройств приведен в рекомендуемом приложении 1.

3.4.3. Подготовка и проведение измерений

3.4.3.1. Устанавливают напряжение питания фотоэлемента в соответствии с нормативно-технической документацией на фотоэлементы конкретных типов.



Черт. 4

1-источник импульсов оптического излучения; 2-измерительный ослабитель; 3-днафрагмы; 4-исследуемый фотовлемент; 5-резистор развязки; 6-накопительный разделительный кондепсатор; 7-вольтметр; 8-источник питания фотоэлемента; 9-резистор нагрузки; 10-импульсный вольтметр или осциллограф.

3.4,3.2. Перед началом измерений фотоэлемент выдерживают включенным в течение времени и в условиях, указанных в нормативно-технической документации на фотоэлементы конкретных типов.



1—источник импульсов оптического излучения; 2—измерительный ослабитель; 3—диафрагмы; 4—исследуемый ороголемент; 5—импульсный вольтметр или осциллограф; 6—резистор нагрузки; 7—накопительный конденсатор; 8—источник питания фотоэлемента; 9—вольтметр

Черт. 5

3.4.3.3. С помощью измерительных ослабителей регулируют амплитуду импульса оптического излучения таким образом, чтобы значение фототока в цепи фотоэлемента соответствовало пределу линейности, указанному в нормативно-технической документации на фотоэлементы конкретных типов. Фототок расчитывается по формуле

 $I_{\kappa,t} = \frac{U}{R} , \qquad (8)$ 

где U — напряжение на резисторе нагрузки, В;

R — сопротивление нагрузки, Ом.

3.4.3.4. Ослабляют импульс оптического излучения от 2 до 10 раз и измеряют фототок по формуле (8).

3.4.4. Обработка результатов

3.4.4.1. Отклонение от линейности  $\varkappa_i$  в % определяют по формуле

$$x_i = \frac{P - P'}{P} \cdot 100 \,, \tag{9}$$

где P — кратность изменения амплитуды импульсов потока излучения;

P' — кратность изменения амплитуды импульсов фототока. 3.4.4.2. Проводят серию из n наблюдений  $\varkappa_i$   $(n \gg 5)$  опреде-

ляют среднее значение и по формуле

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{N} \mathbf{x}_i \tag{10}$$

и принимают его за результат измерений.

3,4.4.3. Расчет погрешности измерений приведен в справочном приложении 4. При использовании указанной измерительной аппаратуры и оборудования основная относительная погрешность измерений при принятой доверительной вероятности  $P\!=\!0,95$  не должна превышать 10~%.

3.5. Метод измерений длительности импульсной характеристики по уровню 0,5

3.5.1. Принцип измерений

3.5.1.1. Измерения производят путем обработки осциллограммы сигнала на выходе исследуемого фотоэлемента.

3.5.2. Аппаратура

3.5.2.1. Схема расположения средств измерений и вспомогательных устройств должна соответствовать приведенной на черт. 6.



1—источник импульсов оптического излучения; 2—ослабитель потока излучения; 3-камера с исследуемым фотоэлементом; 4-источник питания фотоэлемента; 5-стробоскопический осциллоговф

Черт. 6

3.5.2.2. Перечень рекомендуемых средств измерений и вспомогательных устройств приведен в рекомендуемом приложении 1.

3.5.3. Подготовка и проведение измерений

3.5.3.1. Устанавливают напряжение питания фотоэлемента в соответствии с нормативно-технической документацией на фотоэлементы конкретных типов.

3.5.3.2. С помощью ослабителя регулируют амплитуду импульса оптического излучения таким образом, чтобы амплитуда импульса фототока не превышала предела линейности, указанного в нормативно-технической документации на фотоэлементы конкретных типов.

3.5.3.3. Получают на экране осциллографа изображение выход-

ного сигнала фотоэлемента.

3.5.3.4. Измеряют длительность импульсной характеристики на уровне 0.5 от максимального значения выходного сигнала исследуемого фотоэлемента  $\tau_{0.5i}$ .

3.5.3.5. Проводят серию из n наблюдений  $\tau_{0,5i}$   $(n \ge 5)$ . Среднее значение длительности импульсной характеристики  $\tau_{0,5}$  определяют по формуле

$$\overline{\tau}_{0,5} = \frac{1}{n} \sum_{l=1}^{n} \tau_{0,5 \, l} \tag{11}$$

и принимают его за результат измерений.

3.5.4. Обработка результатов

3.5.4.1. Расчет погрешности измерений приведен в справочном

приложении 4.

При использовании указанной измерительной аппаратуры и оборудования основная относительная погрешность измерений при принятой доверительной вероятности  $P\!=\!0.95$  не должна превышать 15 %.

# ПРИЛОЖЕНИЕ 1 Рекомендуемое

| ИЗМЕРИТЕЛЬНАЯ АППАРАТУРА И ОБОРУДОВАНИЕ                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              | /ДОВАНИЕ   |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Измерительная аппарату⊷<br>ра, оборудование                                                              | Типы и основные параметры                                                                                                                                                                                                                                                                                                                                                                                                    | Примечание |
| Спектральный прибор                                                                                      | Двойной монохроматор типа ДМР-4. Рассеянный свет в измеряемом диапазоне спектра не должен превышать 1%. Погрешность измерения 4%                                                                                                                                                                                                                                                                                             | •          |
| Контрольный прием-<br>ник излучения при измо-<br>рении относительной<br>чувствительности фото-<br>катода | лучения термоэлемента типа РТН с отклонением от                                                                                                                                                                                                                                                                                                                                                                              |            |
| Защитная камера  Источник питания ис- следуемого фотоэлемен- та                                          | По п. 2.3.1 настоящего стандарта По п. 2.3.3 настоящего стандарта                                                                                                                                                                                                                                                                                                                                                            |            |
| Источники излучения                                                                                      | Для работы в ультрафи- олетовой части спектра (110—340 нм) применяют газоразрядные лампы с во- дородным наполнением — водородная лампа типов ВЛФ-25, ВЛФ-40 или газо- разрядные лампы с дейте- риевым наполнением типов ДДС-30, ДДС-400 с увио- левыми, кварцевыми, сап- фировыми или фтористо- магниевыми окнами в зави- симости от исследуемого спектрального диапазона. Для работы в длинно-вол- новом участке ультрафию- |            |
|                                                                                                          | летового спектра (300—<br>—380 нм), а также в вида-<br>мой и ближней ИК-облас-<br>ти (360—1500 нм) следует                                                                                                                                                                                                                                                                                                                   | ·          |

Измерительная аппарату-Примечание Типы и основные параметры ра, оборудование применять ленточную лампν накаливания СИ-10—300v. имеюшую увиолевое, сапфировое или кварцевое окно При измерении Источник импульсов В качестве источника опимпульсной оптического излучения тельности тического излучения могут использоваться: источник характеристики необходимо выполнение LOCTизлучения 8.198-76 и другие метроловия: (3—5) т<sub>и</sub><т<sub>о-5</sub> где ти — длительность гические аттестованные лаимпульса источника изработающие в имлучения; пульсно-модулированном  $\tau_{0.5}$  — длительность имрежиме с аналогичными параметрами и с т<sub>и</sub> <10-8 с . пульсной характеристики по уровню 0,5 ис-Составляющая основследуемого фотоэленой погрешности. обусловмента ленная нестабильностью источников излучения, должна превышать погрешность остальных средств измерений за время измерений параметров фотоэлементов 2.3 Пο п. настоящего Ълок питания и контстандарта, а также роля режима источника мендуется применять источизлучения ники постоянного тока типа СИП-30. МКТС-35. Для контроля режима источниприменять излучения амперметр класса точности не ниже 0.2 для ламп накаливания и класса точности не ниже 0,5 для газоразрядных ламп По п. 2.3.5 настоящего Измерительные UD4стандарта боры Класс точности 1.0 Вольтметр постоян-Диапазон 1—1000 В ного тока Класс точности 1,0 Микроамперметр по-Диапазон 0,1-100 мкA стоянного тока

Продолжение

| Измерительная аппаратура, оборудование                                                                                                                     | Типы и основные параметры                                                                                                                                                                | Примечание       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Регистратор осцилло-<br>графический                                                                                                                        | Типа 6ЛОР-04 Погрешность измерений по оси процесса 5% Погрешность измерений по оси времени 5%                                                                                            |                  |
| Импульсный вольт-<br>метр                                                                                                                                  | Типа В-4—17  Для измерений амплитудных эначений электрических сигналов с погрешностью не более 4%  Динамический диапазон 10-3—100 В  Длительность электрических импульсов 10-10—10-6 с   |                  |
| Стробоскопический осциллограф                                                                                                                              | Типа С7—12<br>Полоса частот 5 ГГц,<br>чувствительность 5 мВ/ем.<br>Погрешность амплитуд-<br>ных измерений не более<br>5%, погрешность времен-<br>ных измерений не более<br>5%            |                  |
| Средство измерения максимальной мощности однократного импульса оптического излучения, аттестованное или прошедшее поверку (СИ ММ с известными параметрами) | Динамический диапазон 103—105 Вт Рабочая длина волны в диапазоне 0,53—1,06 мкм Основная погрешность не более 15%                                                                         |                  |
| Контрольное средство измерений                                                                                                                             | К СИ ММ, используемому в качестве контрольного, предъявляется требование к стабильности спектральной чувствительности за время измерений, определяемой допустимой погрешностью измерений |                  |
| Диафрагма из асбо-<br>цемента                                                                                                                              |                                                                                                                                                                                          | См. приложение 2 |
| Делительная пластина из стекла БСЗ                                                                                                                         | ГОСТ 941/1—81<br>Толщина 5 мм                                                                                                                                                            | См. приложение 3 |

| Измерительная аппарату-<br>ра, обор <b>уд</b> ование |
|------------------------------------------------------|
| Измерительные осла-<br>ители                         |

Для измерений могут применялься другие средства измерений с аналогичными или лучшими характеристиками.

ПРИЛОЖЕНИЕ 2 Справочное

#### Диафрагма



Материал — доска асбестоцементная по ГОСТ 4248—78 необработанная. Применяются диафрагмы с размером d, равным 2, 4, 7, 10 и 12 мм.

ПРИЛОЖЕНИЕ 3 Справочное

#### Делительная пластина



Материал — стекло БС 3 по ГОСТ 9411—81.

ПРИЛОЖЕНИЕ 4 Справочное

#### PACHET ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ОСНОВНЫХ ПАРАМЕТРОВ ФОТОЭЛЕМЕНТОВ

1. Основную относительную погрешность измерений параметров фотоэлементов  $\Delta$  в % определяют согласно ГОСТ 8.207—76 по формуле

$$\Delta = K \sqrt{S^2 + \frac{1}{3} \sum_{j=1}^m \Theta_j^2}, \qquad (1)$$

где K — коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешнести и принятой доверительной вероятности, определяется по ГОСТ 8.207—76;

 S — оценка относительного среднего квадратического отклонения результата измерений, %;

0 граница ј-й составляющей неисключенной систематической погрешно-

1.1. Для основной относительной погрешности измерений спектральной чувствительности на фиксированных длинах волн составляющие основной относительной погрешности определяют по формулам

$$S^{2} = S_{\overline{\Lambda}_{\lambda}}^{2}; \qquad (2)$$

$$\Theta^{2} = \Theta_{1}^{2} + \Theta_{2}^{2} + \Theta_{3}^{2} + \Theta_{4}^{2}, \qquad (3)$$

где  $S_{\overline{A}_{\lambda}}$  — относительное среднее квадратическое отклонение результата измерений среднего значения спектральной чувствительности, %, оценивают по результатам измерений, полученным в п. 3.2 настоящего стандарта по формуле

$$S_{\overline{A}_{\lambda}} = \frac{1}{\overline{A}_{\lambda}} \sqrt{\frac{\sum_{i=1}^{n} (\overline{A_{\lambda}} - A_{\lambda i})^{2}}{n(n-1)}} \cdot 100, \tag{4}$$

где

n — число измерений;

Θ<sub>1</sub>, Θ<sub>2</sub>, Θ<sub>3</sub>, Θ<sub>4</sub>, — основные относительные погрешности средств измерений — контрольного 4, с известными параметрами 5, регистрирующего устройства 9 на выходе исследуемого фотоэлемента и источника импульсов оптического излучения 1, соответственно, черт. 2.

1.2. Основная относительная погрешность измерения темнового тока. Осносительное среднее квадратическое отклонение S результата измерений темнового тока оценивают по результатам измерений, полученным в п. 3.3 настоящего ставдарта по формуле (4), заменив в ней  $\overline{A}_{\lambda}$  на  $\overline{I}_{T}$ , а  $A_{\lambda t}$  на  $I_{Tt}$ .

В качестве неисключенной систематической погрешности результата измерений  $\theta$  учитывают основную относительную погрешность средства измерений 5, черт. 3.

1.3. Основная относительная погрешность измерений предела линейности

характеристики преобразования в импульсном режиме.

Относительное среднее квадратическое отклонение S результата измерений предела линейности в импульсном режиме оценивают по результатам измерений, полученным в п. 3.4 настоящего стандарта по формуле (4), заменив в ней  $\overline{A}_{\lambda}$  на  $\mathbf{x}_{1}$  а  $A_{\lambda 1}$  на  $\mathbf{x}_{2}$ .

Неисключенную систематическую погрешность в определяют по формуле

$$\Theta^2 = \Theta_1^2 + \Theta_2^2 + \Theta_3^2, \tag{5}$$

где  $\Theta_1$ ,  $\Theta_2$ ,  $\Theta_3$  — основная относительная погрешность источника импульсов оптического излучения, измерительного ослабителя и средств измерений 10 (черт. 4) или 9 (черт. 5) соответственно.

1.4. Основная относительная погрешность измерений длительности импульс-

ной характеристики по уровню 0,5.

Относительное среднее квадратическое отклонение S результата измерений длительности импульсной характеристики по уровню 0,5 вычисляют по результатам, полученным в п. 3.5 настоящего стандарта по формуле (4), заменив в ней  $\overline{A}_{\lambda}$  на  $\overline{\tau}_{0.5}$ , а  $A_{\lambda t}$  на  $\overline{\tau}_{0.5t}$ .

Неисключенную систематическую погрешность  $\theta$  определяют по формуле

$$\Theta^2 = \Theta_1^2 + \Theta_2^2, \tag{6}$$

где  $\Theta_1$  и  $\Theta_2$ — основная относительная погрешность источника импульсов оптического излучения 1 и средства измерений 5 (черт. 6).