Éléments de réponses

Exercice 1.

- 1. X suit la loi binomiale de paramètres n=80 et p=0,05 et $E(X)=80\times0,05=4$.
- 2. On veut $\mathbb{P}(X \ge 1)$. Or $\mathbb{P}(X \ge 1) = 1 \mathbb{P}(X = 0) = 1 \binom{80}{0}0,05^0 \times (1 0,05)^{80} \simeq 0,983$.
- 3. À la calculatrice a=1 et b=8 donc $I=\left[\frac{1}{80}\,;\,\frac{8}{80}\right]=[0,0125\,;\,0,1].$
- 4. $f = \frac{2}{80} = 0,025$ donc $f \in I$ donc il n'y a pas à dire au seuil de 95 % que le vendeur a menti.

Exercice 2.

1. On reconnaît une répétition d'épreuves de Bernoulli indépendantes avec comme succès « tomber sur $1 \gg X$ suit donc la loi binomiale de paramètres $n=4\,000$ et $p=\frac{1}{4}$.

On en déduit que $E(X) = np = 4\,000 \times \frac{1}{4} = 1\,000$ et $V(X) = np(1-p) = 4\,000 \times \frac{1}{4} \times \frac{3}{4} = 750$.

$$\forall \delta \in]0; +\infty[, p(|X - \mu| \geqslant \delta) \leqslant \frac{V}{\delta^2} \text{ donc } p(|X - 1000| \geqslant \delta) \leqslant \frac{750}{\delta^2}.$$

2.
$$p(920 < X < 1080) = p(|X - 1000| < 80) \ge 1 - \frac{750}{80^2} \operatorname{donc} p(|X - 1000| < 80) \ge \frac{113}{128}$$

Exercice 3.

- 1. Z = X + Y désigne la somme des variables aléatoires X et Y soit la durée totale des tâches en semaines.
- 2. E(X+Y)=E(X)+E(Y) d'après la linéarité de l'espérance. Donc E(Z)=22+25=47. On a $\sigma(X+Y)=\sqrt{V(X+Y)}=\sqrt{V(X)+V(Y)}$ car les variables X et Y sont indépendantes. Or $\sigma(X)=\sqrt{V(X)}$ donc $V(X)=\sigma(X)^2$ ainsi $\sigma(X+Y)=\sqrt{\sigma(X)^2+\sigma(Y)^2}$ soit $\sigma(X+Y)=\sqrt{3^2+4^2}=5$.

Attention: l'écart-type n'est pas linéaire!!!

Exercice 4.

- 1. (a) Z = X + Y désigne la somme des variables aléatoires X et Y soit le nombre total de clients qui rentrent dans le magasin entre 18h et 19h.
 - (b) E(Z)=E(X+Y) donc E(Z)=E(X)+E(Y) d'après la linéarité de l'espérance soit E(Z)=20+15=35.

V(Z) = V(X + Y) = V(X) + V(Y) car X et Y sont supposées indépendantes. Ainsi $V(Z) = \sigma(X)^2 + \sigma(Y)^2 = 2^2 + 1^1 = 5$.

2. On veut que p(30 < Z < 40). Or p(30 < Z < 40) = p(|X - 35| < 5).

Or $\mu=35$ donc on utilise l'inégalité de Bienaymé-Tvhébychev, il vient avec $\delta=5$ et V(Z)=5:

$$p(|Z - 35| < 5) \ge 1 - \frac{5}{5^2}$$
 soit $p(|Z - 35| < 5) \ge 0, 8$.