CIS IEEE UNB

GNNS Graph Neural Networks

Grupo: Lucas, Thalita, Pedro Henrique

Sumário

- Introdução às Redes Neurais Gráficas (GNNS)
- Arquitetura das GNNs
- Graphic Convulational Network (GCN)
- Exemplo de GNN

Introdução às Redes Neurais Gráficas (GNNs)

O que são as GNNs?

- São uma classe de modelos de aprendizado profundo projetados para operar em dados estruturados em grafos.
- As GNNs são uma extensão das redes neurais convolucionais
 tradicionais
 Diferença entre dados estruturados e dados em grafos

	Dados Estruturados	Dados em Grafos
Estrutura	Regular (linhas/colunas)	Irregular (nós/arestas)
Relações entre dados	Implícitas ou ausentes	Explícitas e complexas
Exemplo	Tabela, imagem, sequência	Rede social, molécula, mapa
Modelos típicos	MLP, CNN, RNN	GNN

Noções básicas de Grafos

Conceitos Básicos:: Nós (vértices), arestas, vizinhos, graus.

Notação: G=(V,A)

G: Grafo. V: é o conjunto de vértices (ou nós) A: é o conjunto de arestas.

Tipos de grafos

Vantagens das GNNs

Mantém bom desempenho mesmo quando o tamanho do grafo cresce significativamente.

- O número de parâmetros aprendíveis não depende do número de nós do grafo.
- A arquitetura da GNN compartilha pesos entre os nós, permitindo generalização eficiente mesmo em grafos grandes.

Aplicações das GNNs

Aplicações Típicas de GNNs em Grafos

Algumas aplicações:

- Rede social: usuários conectados por amizades.
- Moléculas: átomos conectados por ligações químicas.
- Mapas: locais conectados por estradas.

Arquitetura das GNNS

Arquitetura das GNNs

Representação do Grafo como Entrada

Entrada de uma GNN é composta por:

- Matriz de adjacência (estrutura do grafo)
- Matriz de atributos dos nós
- Exemplo: com atributos em cada nó

Estratégias de Amostragem

• GraphSAGE, neighbor sampling, cluster sampling, e

Propagação de Mensagens (Message Passing)

- Cada vetor do nó é atualizado com base em seus próprios atributos e nas mensagens agregadas dos vizinhos:
- Duas etapas principais:
 - Agregação: soma/média/máximo das features dos vizinhos
 - Combinação: atualiza o vetor do nó alvo

Arquitetura das GNNs

Camadas da GNN

- Cada camada de uma GNN atualiza o embedding dos nós, incorporando informações cada vez mais distantes da estrutura do grafo:
- A primeira camada considera os vizinhos imediatos de cada nó. As camadas seguintes integram informações de vizinhos mais distantes (2ª ordem, 3ª ordem, etc.)

Função de Ativação

• Após a combinação, aplica-se uma função não linear (ReLU, tanh etc.)

Arquitetura das GNNs

Pooling

- Para tarefas globais (ex: classificação de grafos), é preciso gerar um embedding geral:
- Pooling: média, soma ou max global dos embeddings dos nós.

6

Treinamento da GNN

- Perda computada conforme a tarefa (cross-entropy, MSE etc.)
- Otimização por backpropagation
- Algoritmos: SGD, Adam, etc.

Graphic Convulational Network (GCN)

GCN - Graph Convolutional Networks

Ideia principal

 Propagar as "características" (embeddings) dos nós vizinhos por camadas

Operação de Convolução

Teste de Weisfeiler-Lehman (WL) como Limite

Teste 1-WL (Discreto)

$$l_v^{(k+1)} = \mathrm{HASH}(l_v^{(k)}, \{\{l_u^{(k)}\}_{u \in \mathcal{N}(v)}\})$$

- 2 k-GNNs (Contínuo)
 - Custo Operacional: O(n ^ k)

$$h_s^{(k+1)} = \text{UPDATE}(h_s^{(k)}, \text{AGGREGATE}(\{h_{s'}^{(k)}\}_{s' \in \mathcal{N}(s)}))$$

Exemplo de GNN

Graph Neural Network to detect fake news messages using the dataset

'User Preference-aware Fake News Detection'.

lucasdbr05/gnn-fakenews-detection

Graph Neural Network to detect fake news messages using the dataset 'User Preference-aware Fake News Detection'.

용 1 ⓒ 0 ☆ 0 약 0 Contributor Issues Stars Forks

lucasdbr05/gnn-fake-news-detection: Graph Neural Network to detect fake news messages using the datas...

Graph Neural Network to detect fake news messages using the dataset 'User Preference-aware Fake News Detection'. - lucasdbr05/gnn-fakenews-detection

Referências

