INTEGRACIÓN NUMÉRICA

Fórmula de Newton-Cotes

Nombradas así por *Isaac Newton* y *Roger Cotes*, en las cuales se evalúa la función en puntos equidistantes, para así hallar un valor aproximado de la integral. Cuantos más intervalos se divida la función más preciso será el resultado.

Regla del Trapecio Simple y Compuesto

La regla del trapecio es la primera regla cerrada del Newton-Cotes.

Gráficamente:

Donde: $p_1(a, f(a))$ y $p_2(b, f(b))$.

Si utilizamos un polinomio p(x) de primer grado como una aproximación de la función, es decir, $p(x) = f(a) \frac{x-b}{a-b} + f(b) \frac{x-a}{b-a}$.

El cual equivale a
$$p(x) = f(a) \frac{f(b) - f(a)}{b - a} (x - a)$$
, $f(x) = mx + b$.

El área bajo esta línea recta es una aproximación del área bajo la curva entre los límites **a** y **b**.

$$\int_a^b f(x)d_x \approx \int_a^b (f(a)\frac{f(b)-f(a)}{b-a}(x-a))d_x$$

$$\approx \left[f(a) + \frac{f(b) - f(a)}{b - a} \frac{(x - a)^2}{2} \right]_a^b$$

$$\approx (b-a)\frac{f(a)+f(b)}{2}$$

Método de Simpson

También llamada *Regla de Kepler*, es un método de integración numérica que se utiliza para obtener la aproximación de la integral:

$$\int_{a}^{b} f(x)d_{x} \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Consideremos el polinomio interpolante de **orden 2** $p_2(x)$, que aproxima la función integrando f(x) entre los nodos $x_0 = a$, $x_1 = b$ y $m = \left(\frac{a+b}{2}\right)$.

La expresión de ese polinomio interpolante, espesado a través de la interpolación polinómica de *Lagrange* es:

$$p_2(x) = f(a)\frac{(x-m)(x-b)}{(a-m)(a-b)} + f(m)\frac{(x-a)(x-b)}{(m-a)(m-b)} + f(b)\frac{(x-a)(x-a)}{(b-a)(b-a)}$$

Así la integral buscada $I = \int_a^b f(x) d_x$

Es equivalente a $I = \int_a^b p_2(x) d_x + T$ érmino de $Error = \frac{b-a}{6} [f(a) + 4f(m) + f(b)] + \varepsilon(f)$.

Donde $\varepsilon(f)$ es el *Termino de Error*, por lo tanto se puede aproximar a como:

$$\int_{a}^{b} f(x)d_{x} \approx \frac{b-a}{6} 6[f(a) + 4f(m) + f(b)]$$

Tipos de Formulas de *Newton-Cotes

ABIERTAS:

Se usan los nodos $x = x_0 + ih$ para cada i = 0,1,2,...,n,

donde
$$h = \frac{b-a}{n+2} \wedge x_0 = a+h$$

Esto implica que $x_n = b - h$

Si marcamos los puntos extremos tomando $x_{-1} = a$ y $x_{n+1} = b$

Las formulas se transforman en:

$$\int_{i=0}^{3} f(x)d_x \approx \int_{-1}^{x_{n+1}} f(x)d_x \approx \sum_{i=0}^{n} a_i f(x_i)$$

Donde $a_i = \int_a^b L_i(x) d_x$

$$\sum_{i=0}^{3} a_i f(x_i) = a_0 f(x_0) + a_1 f(x_1) + a_2 f(x_2) + a_3 f(x_3)$$

CERRADAS:

- Regla del Trapecio para N=1

$$\int_{x_0}^{x_1} f(x)d_x \approx \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f''(\xi), x_0 < \xi < x_1$$

- Regla de Simpson para N=2

$$\int_{x_0}^{x_2} f(x) d_x \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^3}{90} f^{(4)}(\xi), x_0 < \xi < x_2$$

- Regla de Simpson Tres Octavos

$$\int_{x_0}^{x_3} f(x)d_x \approx \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] - \frac{3h^3}{80} f^{(4)}(\xi), x_0 < \xi < x_3$$

$$\int_{x_0}^{x_4} f(x)d_x \approx \frac{2h}{45} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right] - \frac{8h^7}{945} f^{(6)}(\xi),$$

$$x_0 < \xi < x_4$$