Università di Padova - Dipartimento Fisica e Astronomia

Corso: Laboratorio di Fisica - Canale M-Z.

Anno accademico: 2022-23.

Docenti: A. Garfagnini, M. Lunardon

Gruppo 10

Marchesini Davide - Matricola 2009840 - Email davide.marchesini@studenti.unipd.it

Travali Davide - Matricola 2008630 - Email davide.travali@studenti.unipd.it

ANALISI CIRCUITI CON AMPLIFICATORI OPERAZIONALI

Per l'esperienza sono stati studiati cinque circuiti differenti con un integrato del tipo TL082C con due amplificatori operazionali come riportato in figura 1 e con un sistema di alimentazione rappresentato in fihura 2. I valori da noi misurati degli elementi sono per le capacità $C = 0.92 \pm 0.02 \mu F$ e le alimentazioni $V_{+} = (15.17 \pm 0.04)V$ e $V_{-} = (-15.08 \pm 0.04)V$. Inoltre per il generatore di funzioni abbiamo fissato la resistenza interna a 50Ω .

Figura 1: Schema del nostro operazionale, per tutte le esperienze tranne l'ultima abbiamo usato solo un operazionale.

Figura 2: Schema dell'alimentazione del nostro operazionale.

CIRCUITO 1, AMPLIFICATORE INVERTENTE

Il primo circuito analizzato è schematizzabile come in figura 3.

Figura 3: Schema circuito 1

Con questo circuito si è studiata la curva di trasferimento VTC con un amplificatore invertente.

I valori delle componenti utilizzate sono riportate in tabella 1:

	Valore	σ_R	fs
R1	$9.863(k\Omega)$	$0.006(k\Omega)$	$100(k\Omega)$
Rf	$55.35(k\Omega)$	$0.02(k\Omega)$	$100(k\Omega)$
R50	$46.07(\Omega)$	$0.02(\Omega)$	$1000(\Omega)$

Tabella 1: Misure componenti resistive, fondo scala e incertezze

Con frequenza f=1kHz si è impostata in ingresso un'onda sinusoidale, per poi agire sulla tensione e misurare con oscilloscopio V_{inpp} e V_{outpp} , ottenendo i dati di tabella 2.

$V_{inpp} (\mathrm{mV})$	mV/div	σV_{inpp}	V_{outpp} (mV)	mV/div	σV_{outpp}
196	50	4	1100	200	18
294	50	5	1660	500	30
388	100	7	2180	500	40
488	100	8	2780	500	50
584	100	10	3260	500	50
684	100	10	3800	500	60
792	200	10	4360	1000	80
880	200	20	4960	1000	80
984	200	20	5440	1000	90
1080	200	20	6000	1000	100
1170	200	20	6520	1000	100
1270	200	20	7080	1000	100
1370	200	20	7600	1000	100

Tabella 2: V_{inpp}, V_{outpp} , relativi V/div oscilloscopio ed incertezza

L'amplificazione teorica prevista A_t , in valore assoluto, risulta essere:

$$A_t = \frac{Rf}{R1} \tag{1}$$

Ottenendo dalle nostre misure delle due resistenze:

$$A_t = 5.611 \pm 0.004 \tag{2}$$

Dai nostri dati si può ottenere il seguente grafico (figura 4) con V_{out} su y e V_{in} su x , con fit lineare y=mx+q .

Figura 4: fit lineare y=mx+q

Ottenendo dal fit:

$$m = 5.53 \pm 0.02 \tag{3}$$

$$q = (0.03 \pm 0.02)V\tag{4}$$

Da questo risulta che A=m e dunque abbiamo una stima sperimentale. La compatibilità tra i due guadagni risulta 2.6

Figura 5: Residui fit lineare, in particolare tre dati risultano discostati dal fit entro la loro incertezza. Tuttavia il discostamento è minimo ed i restanti dati risultano in accordo. Si può ipotizzare che il valore letto sull'oscilloscopio non fosse il valore stabilizzato

Figura 6: Foto oscilloscopio V_{in} e V_{out}

CIRCUITO 2, DERIVATORE

Il secondo circuito analizzato è schematizzato come in figura 7.

Figura 7: Schema circuito 2

La capacità aggiunta risulta essere:

$$C1 = (0.92 \pm 0.02)nF\tag{5}$$

Si è effettuata una verifica della proprietà di derivatore del circuito, ottenendo la figura 8.

Figura 8: Foto oscilloscopio, onda triangolare in ingresso e sua derivata, onda quadrata in uscita. (Si ha uno sfasamento tra le due curve che però non influisce sulla nostra verifica.)

Successivamente in ingresso si è impostata un'onda sinusoidale di ampiezza $1V_{pp}$ e, modificandone la frequenza, tramite oscilloscopio con sonde, si sono presi i valori di V_{inpp} e V_{outpp} , stimando A(dB), ottenendo i valori di tabella 3.

f(Khz)	V_{inpp} (mV)	V/div	σV_{inpp}	$V_{outpp}(mV)$	$V/\mathrm{div}(\mathrm{mv})$	σV_{inpp}	$A(dB) \pm 0.5$
1	968	200	17	310	50	5	-9.89
3	984	200	17	912	200	16	-0.66
6	992	200	17	1740	500	33	4.88
10	992	200	17	2680	500	44	8.63
13	992	200	17	3220	500	52	10.23
15	992	200	17	3520	500	60	11.00
17	992	200	17	3760	500	61	11.57
17.5	992	200	17	3840	500	60	11.76
18	992	200	17	3880	500	70	11.85
18.5	992	200	17	3960	1000	90	12.02
50	976	200	17	5200	1000	90	14.53
100	968	200	17	5360	1000	90	14.87
250	960	200	17	4800	1000	80	13.98
70	976	200	17	5360	1000	90	14.79
20	1020	200	17	4240	1000	80	12.38
21	992	200	17	4200	1000	70	12.53
22	992	200	17	4280	1000	80	12.70

Tabella 3: $V_{inpp},\,V_{outpp}$, relativi V/div e incertezze. A(dB)

La stima della frequenza di taglio teorica (f_{tt}) ricavata dalle misure delle componenti risulta: $f_{tt}=(17.46\pm0.03)kHz$ grazie a

$$f_{tt} = \frac{1}{2\pi C 1 R_1} \tag{6}$$

Tramite i valori presi in formato decibel si è ottenuto il grafico in figura 9. Invece con

Figura 9: Grafico ampiezza in dB in funzione della frequenza

le ampiezze in formato numerico standard si è potuto eseguire il fit con la curva

$$A(f) = \frac{H}{\sqrt{1 + (\frac{f}{f_t})^2}} \tag{7}$$

con H l'amplificazione del circuito e f_t la frequenza di taglio. Allora si sono ottenuti i risultati:

$$H = 5.47 \pm 0.08 \tag{8}$$

$$f_t = (17.4 \pm 0.6)kHz \tag{9}$$

Figura 10: Grafico ampiezza in funzione della frequenza

Figura 11: Grafico dei residui dell'interpolazione della curva delle ampiezze, come si nota gli ultimi quattro dati si discostano molto e questo è dovuto al fatto che la nostra legge non vale per frequenze molto alte rispetto alla frequenza di taglio.

CIRCUITO 3, SOMMATORE INVERTENTE

Lo schema del sistema è quello in figura 12.

Figura 12: Schema circuito 3

Le nuove componenti ed i valori impostati risultano essere quelle riportate in tabella 4.

Inizialmente si sono generate due onde sinusoidali di ampiezza uguale ma di frequenza diversa, osservando il segnale di uscita: $f_1 = 1kHz$ e $f_2 = 2kHz$ con $V_{1pp} = (1.00 \pm 0.01)Vpp(200mV/div)$ e $V_{2pp} = (1.00 \pm 0.01)Vpp(200mV/div)$. Si sono presi alcuni punti di Vout in tabella 5. I dati confrontati con la simulazione sono in figura 13.

	Valore	σ_R	fs
R1b	$9.874(k\Omega)$	$0.006(k\Omega)$	$100(k\Omega)$
Rfsum	$9.885(k\Omega)$	$0.006(k\Omega)$	$100(k\Omega)$
R50b	$45.89(\Omega)$	$0.03(\Omega)$	$1000(\Omega)$

Tabella 4: Misure componenti resistive, fondo scala e incertezze

$t(\mu s) \pm 10\mu s 250\mu s/div$	$V_{out}(\mathrm{mV})~200\mathrm{mV/div}$	$\sigma V_{out} (mV)$
-830	712	10
-690	240	9
-640	8	8
-510	-280	9
-370	-232	9
-170	-456	10
-20	0	8

Tabella 5: Valori V_{out} nel tempo tramite cursori oscilloscopio, incertezze

Figura 13: Dati Vout confrontati con i dati simulati con software

Tramite un'analisi visiva si può osservare come i dati raccolti siano in accordo con quelli simulati.

Successivamente si sono osservati i battimenti, modificando $f_2=1.02kHz$ e stimando il periodo dell'onda inviluppo a priori $T_{teo}=0.1s$ calcolato tramite equazione:

$$T_{teo} = \frac{T1 - T2}{2} \tag{10}$$

tramite oscilloscopio studiando la figura 16 risulta $T_{sp}=(0.1020~\pm0.0006)$,
simile alla stima a priori ma non confrontabile numericamente senza le incertezze su T_{teo} .

Figura 14: Foto oscilloscopio, V1 e V2

Figura 15: Foto oscilloscopio, V1 e V_{out} , sommatore

Figura 16: Foto oscilloscopio, V_{inpp} e $V_{out},$ battimenti

CIRCUITO 4, AMPLIFICATORE ALLE DIFFERENZE E NON INVERTENTE

Lo schema del circuito è in figura 17.

Figura 17: Schema circuito 4

Le resistenze risultano essere quelle riportate in tabella 6.

	Valore	σ_R	fs
R3	$9.870(k\Omega)$	$0.006(k\Omega)$	$100(k\Omega)$
R4	$55.38(\Omega)$	$0.02(\Omega)$	$1000(\Omega)$
R50b	$45.85(\Omega)$	$0.02(\Omega)$	$1000(\Omega)$

Tabella 6: Misure componenti resistive, fondo scala e incertezze

Inizialmente, come nello schema 17, V_1 è stato posto a massa, creando di fatto un amplificatore non invertente. In ingresso si è impostata un'onda sinusoidale di frequenza fissata f = 1kHz ma con ampiezza modificabile, analizzando tramite oscilloscopio V_{out} si ha la tabella 7.

$V_2(\mathrm{mV})~\mathrm{mV/div}$	$\sigma_{V2}(\text{mV})$	$V_{out}({ m mV})~{ m mV/div}$	$\sigma_{Vout}(mV)$
192 50	2	1080 200	10
296 50	3	1630 200	10
392 50	4	2180 400	20
484 100	5	2720 400	30
588 100	6	3260 400	30
676 100	6	3720 400	40
772 100	7	4320 400	40

Tabella 7: Valori V_2 e V_{out} tramite cursori oscilloscopio, incertezze

Si è quindi effettuato un fit come nel circuito (1), ottenendo:

$$m = 5.67 \pm 0.04 \tag{11}$$

$$q = (-0.03 \pm 0.02)V \tag{12}$$

e quindi una stima dell'amplificazione A coincidente con il valore di m $A=5.646\pm0.04$.

Figura 18: Fit lineare V_{in} V_{out}

Figura 19: Residui fit lineare, tutti i dati risultano in accordo con il fit entro la loro incertezza

In questa configurazione, il guadagno A teorico coincide con il guadagno stimato nel circuito (1): $A_1 = 5.53 \pm 0.02$ e $A_4 = 5.646 \pm 0.04$. Con compatibilità tra di loro di 2.5. Successivamente si è verificato l'effetto di amplificatore alle differenze, impostando in ingresso su V_2 un'onda sinusoidale e su V_1 un'onda quadrata, confrontando i dati raccolti con la simulazione tramite software:

	Valore		
V_{1pp}	$(1.94 \pm 0.02)V (0.5 \text{ V/div})$		
V_{2pp}	$(0.98 \pm 0.01)V (0.2 \text{ V/div})$		
f_1	$50 \mathrm{Hz}$		
f_2	200Hz		

Tabella 8: Misure voltaggi con oscilloscopio e frequenza impostata

$t\pm0.1 ms \ 2.5 ms/div$	$V_1 \pm 20 \text{mV} 500 \text{ mV/div}$	$V_2 \pm 20 \mathrm{mV} 500 \mathrm{mV/div}$	$V_{out} \pm 0.2 \text{V } 5 \text{V/div}$
-10.1	980	200	-3
-9	-960	0	5.8
-7	-960	-160	2.6
-5.8	-960	-280	-1.8
-2.7	-960	-40	2.6
-1.6	-960	-480	4.4
2.3	980	-40	-8.4
3.5	980	-480	-3

Tabella 9: Valori V1, V2 e ${\cal V}_{out}$ tramite cursori oscilloscopio, incertezze

Tramite confronto si è ottenuto:

Figura 20: Segnale di uscita V_{out} confrontato con Software, presenza di leggero sfasamento temporale ma accordo tra i valori del voltaggio raggiunti

Figura 21: Foto oscilloscopio, V_{in} e V_{out} con V_2 a massa

Figura 22: Foto oscilloscopio, V_1 e V_2

Figura 23: Foto oscilloscopio, V_1 e V_{out} con onda quadra su V_1

CIRCUITO 5, RADDRIZZATORE DI PRECISIONE Lo schema è in figura 24.

Figura 24: Schema circuito 5

Le componenti misurate sono date dalla tabella 10

Nome	Valore $(k\Omega)$ (fs:100 $k\Omega$)	$\sigma R (k\Omega)$
R1a	67.28	0.03
R1b	67.60	0.03
R1c	67.31	0.03
R1d	67.85	0.03
R2	32.80	0.01

Tabella 10: Valori componenti resistive, incertezze

Il segnale di ingresso impostato era un'onda sinusoidale con frequenza 1kHze $V_{inpp}\,=\,$

 $(10.1 \pm 0, 2)V$. Tramite oscilloscopio si sono presi valori significativi del segnale in diversi punti del circuito in funzione di V_{in} riportati in tabella 11.

	se V_{in} max	se V_{in} min
$V_{out}(V)$ 2V/div	5.4 ± 0.1	5.1 ± 0.1
V2(V) 2V/div	-5.1 ± 0.1	0 ± 0.08
$V_{o'}(V)2V/div$	-5.6 ± 0.1	$0.56 {\pm} 0.08$

Tabella 11: Valori tensione nei vari punti del circuito in funzione di V_{in} , incertezze

I grafici risultanti sono 3 per i vari punti nel quale è stato misurato il voltaggio e sono riportati nelle figure 25, 26 e 27.

Figura 25: Segnale di uscita V_0 confrontato con Software

Figura 26: Segnale in V_2 confrontato con Software

Figura 27: Segnale di uscita ${\cal V}_{out}$ confrontato con Software

Come si può osservare, i dati simulati sono in accordo con i dati raccolti, perciò si può affermare che la presa dati è stata effettuata accuratamente.

Figura 28: Foto oscilloscopio, V_{in} e V_{2}

Figura 29: Foto oscilloscopio, V_{in} e V_{out}

Figura 30: Foto oscilloscopio, V_{in} e Vo'

CONCLUSIONI

Per l'esperienza si sono analizzati 5 circuiti contenenti un integrato del tipo TL082C con due amplificatori operazionali. Dal primo circuito si è trovata una stima dell'amplificazione A tramite fit lineare e tramite formula teorica:

$$A_t = 5.611 \pm 0.004 \tag{13}$$

$$A_{fit} = 5.53 \pm 0.03 \tag{14}$$

Con compatibilità di 2.6 che risulta piuttosto alta essendo un semplice fit lineare ma analizzando i residui si nota che non ci sono gravi errori così come con il test del chiquadro. Il sistema quindi deve essere lineare e ci possono essere stati dei problemi riguardo la stima della pendenza.

Dal circuito 2 si è studiato la risposta in frequenza , determinando la stima della frequenza di taglio del circuito teorica

$$ftt = (17.46 \pm 0.03)kHz \tag{15}$$

e quella raccolta dal fit

$$f_t = (17.4 \pm 0.6)kHz \tag{16}$$

La compatibilità tra i due valori è ottima forse a causa anche della elevata incertezza della nostra stima del fit. Per l'ampiezza H stimata sempre dal fit si ha lo stesso problema che nel circuito 1 ma in questo caso le due stime sperimentali sono compatibili tra loro. Dal terzo circuito si è inizialmente verificato l'effetto somma inserendo in ingresso due segnali sinusoidali con frequenze diverse ma con stessa ampiezza. Dalla nostra simulazione di Ltspice si nota che i dati seguano effettivamente l'andamento teorico e anche quello di somma invertente alla perfezione. Successivamente, si è osservato il fenomeno dei battimenti, avvicinando i valori delle due frequenze, ricavando così una stima del periodo dell'onda inviluppo e confrontando la formula teorica con l'analisi qualitativa dall'oscilloscopio:

$$T_t = 0.1s \tag{17}$$

$$T_{sp} = (0.102 \pm 0.0006)s \tag{18}$$

riportando due valori simili. Nel quarto circuito inizialmente si è calcolata l'amplificazione, sia tramite formula teorica che tramite fit lineare, come eseguito precedentemente nel circuito 1. Si ha allora che la stima teorica risulta

$$A_t = 5.611 \pm 0.004 \tag{19}$$

mentre la nostra stima sperimentale

$$A_{fit} = 5.64 \pm 0.04 \tag{20}$$

Con compatibilità di 2.5 dovuta principalmente alla grande differenza tra le due incertezze. Infine si è inserito un secondo segnale in ingresso e si sono confrontati i valori ottenuti con i valori simulati tramite LTSpice. In questo caso si nota che la sovrapposizione tra i nostri dati e la simulazione non sia perfetta, forse a causa di qualche fenomeno di traslazione, dovuto ad un'errata raccolta dati. Nell'ultimo circuito, si sono inseriti due diodi e si è effettuata una presa dati della tensione in alcuni punti di interesse. Dal confronto con LTSpice, è risultato l'accordo tra valori simulati e dati raccolti.