Quiz-2 Solutions

Question 1

	x = 0	x = 1	x=2	x = 3	x = 4	x = 5	x = 6	x = 7
y = 0	10	20	30	40	50	0	70	80
y=1	40	50	60	30	50	0	60	70
y=2	70	80	90	20	50	0	50	60
y=3	100	110	120	10	50	0	40	50
y=4	130	140	150	0	50	0	30	40
y = 5	160	170	180	0	50	0	20	30
y = 6	190	200	210	0	50	0	10	20

The above picture is transformed by a geometric transformation. The (forward) description of this transformation is:

The pixel at coordinate (x, y) in the original picture moves to the location (x + 2, y) in the new picture.

Inverse transformation:

$$\alpha'(x,y) = x - 2$$
 $\beta'(x,y) = y$

Where each pixel is coming from:

$$\begin{array}{c|cccc} & x = 3 & x = 4 \\ \hline y = 3 & (1,3) & (2,3) \\ \end{array}$$

A.

Compute the transformed image using Nearest-Neighbor interpolation over the window specified below

$$\begin{array}{c|cccc} & x = 3 & x = 4 \\ \hline y = 3 & 110 & 120 \end{array}$$

В.

Compute the transformed image using Bilinear interpolation over the window specified below

$$\begin{array}{c|ccccc} & x = 3 & x = 4 \\ \hline y = 3 & 110 & 120 \\ \end{array}$$