```
import zipfile
import os

# Define the path to the uploaded zip file and the extraction path
zip_path = "/mnt/data/card_transdata.csv.zip"
extract_path = "/mnt/data/card_transdata"

# Extract the contents of the zip file
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
    zip_ref.extractall(extract_path)

# List the extracted files to confirm successful extraction
extracted_files = os.listdir(extract_path)
extracted_files
```

Task

Tell me about this dataset.

Here is all the data you need: "card_transdata.csv"

Data loading

Subtask:

Load the dataset "card_transdata.csv" into a pandas DataFrame.

Reasoning: Load the dataset "card_transdata.csv" into a pandas DataFrame and display the first 5 rows and the shape of the DataFrame.

```
import pandas as pd
try:
    df = pd.read csv('card transdata.csv')
    display(df.head())
    print(df.shape)
except FileNotFoundError:
    print("Error: 'card transdata.csv' not found. Please ensure the
file exists in the current directory.")
except Exception as e:
    print(f"An error occurred: {e}")
{"summary":"{\n \"name\": \" print(f\\\"An error occurred:
{e}\\\")\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\":
\"distance_from_home\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 25.295938089937156,\n \"min\":
2.2475643282963613,\n\\"max\": 57.87785658389723,\n
\"num unique values\": 5,\n
                                   \"samples\": [\n
```

```
\"distance from last transaction\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 2.3093136405276646,\n
\"min\": 0.1755915022816658,\n\\"num_unique_values\": 5,\n\\"samples\": [\n
0.1755915022816658,\n
                             0.5664862680583477,\n
0.8051525945853258\n
                           ],\n \"semantic type\": \"\",\n
\"description\": \"\"\n }\n
                                   },\n {\n \"column\":
\"ratio_to_median_purchase_price\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 0.8508940639568686,\n
\"min\": 0.3626625780570958,\n\\"num_unique_values\": 5,\n\\"samples\": [\n
1.294218810619857,\n
                             2.2227672978404707,\n
0.4277145611942758\n
                           ],\n \"semantic type\": \"\",\n
                           \"description\": \"\"\n
\"repeat_retailer\",\n
\"number\",\n \"std\": 0.0,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n
\"used_chip\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5477225575051662,\n \"min\":
0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n {\n
\"column\": \"used_pin_number\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n
                        \"description\": \"\"\n
\"online_order\",\n \"properties\": {\n
                                                   \"dtype\":
\mbox{"number},\n \ \"std\": 0.5477225575051662,\n \ \"min\":
0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n
\"samples\": [\n 1.0\n ],\n \"semantic_type\":
\"\",\n \"description\": \"\"\n }\n {\n
(1000000, 8)
```

Data exploration

Subtask:

Explore the loaded dataset to understand its characteristics.

Reasoning: Examine data types, missing values, distributions, potential outliers, and correlations within the DataFrame.

```
# Data Types
print("Data Types:")
print(df.dtypes)
# Missing Values
print("\nMissing Values:")
print(df.isnull().sum())
print("\nPercentage of Missing Values:")
print(df.isnull().sum() / len(df) * 100)
# Descriptive Statistics for Numerical Features
print("\nDescriptive Statistics for Numerical Features:")
print(df.describe())
# Frequency of Categories for Categorical Features
for col in df.select dtypes(include=['object', 'category']):
    print(f"\nFrequency of Categories for {col}:")
    print(df[col].value counts())
# Potential Outliers (using box plots)
import matplotlib.pyplot as plt
import seaborn as sns
numerical_cols = df.select_dtypes(include=['number'])
plt.figure(figsize=(15, 10))
for i, col in enumerate(numerical_cols.columns):
    plt.subplot(2, 4, i+1)
    sns.boxplot(y=df[col])
    plt.title(col)
plt.tight layout()
plt.show()
# Correlation between Numerical Features
print("\nCorrelation Matrix:")
correlation matrix = df.corr()
display(correlation matrix)
plt.figure(figsize=(10, 8))
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm',
fmt=".2f")
plt.title("Correlation Matrix Heatmap")
plt.show()
```

```
# Summarize Findings
print("\nData Exploration Summary:")
print(f"Shape of the data: {df.shape}")
print("Data Types:", df.dtypes)
print("Missing values", df.isnull().sum())
print("Descriptive Statistics:", df.describe())
Data Types:
distance_from home
                                   float64
distance from last transaction
                                   float64
ratio to median purchase price
                                   float64
repeat retailer
                                   float64
used chip
                                   float64
used_pin number
                                   float64
online order
                                   float64
fraud
                                   float64
dtype: object
Missing Values:
distance from home
                                   0
distance from last transaction
                                   0
ratio to median purchase price
                                   0
repeat retailer
                                   0
                                   0
used chip
used_pin_number
                                   0
                                   0
online order
fraud
                                   0
dtype: int64
Percentage of Missing Values:
distance from home
                                   0.0
distance from last transaction
                                   0.0
ratio_to_median_purchase_price
                                   0.0
repeat retailer
                                   0.0
                                   0.0
used chip
used_pin_number
                                   0.0
online order
                                   0.0
fraud
                                   0.0
dtype: float64
Descriptive Statistics for Numerical Features:
       distance from home
                            distance from last transaction \
           1000000.000000
                                             1000000.000000
count
                26.628792
                                                   5.036519
mean
std
                65.390784
                                                  25.843093
                                                   0.000118
min
                 0.004874
25%
                 3.878008
                                                   0.296671
                 9.967760
50%
                                                   0.998650
75%
                25.743985
                                                   3.355748
```

max	10632.723672		11851.104565	
	ratio_to_median_	purchase_price	repeat_retailer	used_chip
count		1000000.000000	1000000.000000	1000000.000000
mean		1.824182	0.881536	0.350399
std		2.799589	0.323157	0.477095
min		0.004399	0.000000	0.000000
25%		0.475673	1.000000	0.000000
50%		0.997717	1.000000	0.000000
75%		2.096370	1.000000	1.000000
max		267.802942	1.000000	1.000000
count mean std min 25% 50% 75% max	used_pin_number 1000000.0000000 0.100608 0.300809 0.000000 0.000000 0.000000 0.000000 1.000000	online_order 1000000.000000 0.650552 0.476796 0.000000 1.000000 1.000000 1.000000	fraud 1000000.000000 0.087403 0.282425 0.000000 0.000000 0.000000 0.000000	

Correlation Matrix:

```
{"summary":"{\n \"name\": \"correlation matrix\",\n \"rows\": 8,\n
                   {\n \"column\": \"distance_from_home\",\n
\"fields\": [\n
\"properties\": {\n
                           \"dtype\": \"number\",\n
                              \"min\": -0.0016221861576749834,\n
0.34556887975568934,\n
\mbox{"max}": 1.0,\n \mbox{"num unique values}": 8,\n
                                                         \"samples\":
             0.00019282833478577007,\n
0.0016221861576749834,\n
                                               ],\n
                                  \"description\": \"\"\n
\"semantic_type\": \"\",\n
                     \"column\": \"distance_from_last_transaction\",\
     },\n {\n
       \"properties\": {\n
                                  \"dtype\": \"number\",\n
                                       \"min\": -
\"std\": 0.35030401769976316,\n
                                \mbox{"max}: 1.0,\n
0.0009282324968326096,\n
\"num unique values\": 8,\n
                                   \"samples\": [\n
                                                              1.0, n
-0.00\overline{0}898643\overline{5}7621851,\n
                                 0.00019282833478577007\n
                                                                 ],\n
\"semantic type\": \"\",\n
                                  \"description\": \"\"\n
     },\n {\n
                      \"column\": \"ratio to median purchase price\",\
      \"properties\": {\n
                                  \"dtype\": \"number\",\n
\"std\": 0.367546102070151,\n
                                     \"min\": -0.0013741791839747338,\
        \"max\": 1.0,\n
                                \"num unique values\": 8,\n
                          0.001012525580466434,\n
\"samples\": [\n
0.0009422045539908643,\n
                                  -0.0013741791839747338\n
                                                                   ],\n
\"semantic type\": \"\",\n
                                  \"description\": \"\"\n
```

```
n },\n {\n \"column\": \"repeat_retailer\",\n
\"properties\": {\n \"dtype\": \"number\",\n
                        \"dtype\": \"number\",\n
                                                    \"std\":
0.3501152430026467,\n\\"min\": -0.0013574501055808445,\n
                    \"num unique values\": 8,\n \"samples\":
\"max\": 1.0,\n
[\n -0.0009282324968326096,\n
],\n
                                                         }\
n },\n {\n \"column\": \"used_chip\",\n \"properties\": {\n \"dtype\": \"number\",\n \"stc 0.35732002459557266,\n \"min\": -0.060974597607915876,\n
                                                    \"std\":
\"max\": 1.0,\n \"num unique values\": 8,\n \"samples\":
[\n
           0.0020548557631115136,\n
-0.0006970671243648926\n
                                                            ],\n
n },\n {\n \"column\": \"used_pin_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"s 0.3604970798882171,\n \"min\": -0.10029253729161221,\n
                                                     \"std\":
\"max\": 1.0,\n \"num_unique_values\": 8,\n \"samples\":
      -0.00089864357621851,\n
221861576749834\n ],\n \'
                                         1.0, n
                                      \"semantic_type\": \"\",\n
0.0016221861576749834\n
\"description\": \"\"\n
                         }\n },\n {\n \"column\":
\"online_order\",\n \"properties\": {\n \"number\",\n \"std\": 0.350511792292526,\n
                                               \"dtype\":
                   \"std\": 0.350511792292526,\n \"min\": -
n \"max\": 1.0,\n \"num unique values\": 8,\n
],\n
                                                        }\
    }\n ]\
n}","type":"dataframe","variable name":"correlation matrix"}
```


Data Exploration Summary: Shape of the data: (1000000, 8)			
Data Types: distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud dtype: object	float64 float64 float64 float64 float64 float64	float64	
Missing values distance_from_home		0	
<pre>distance_from_last_transaction ratio_to_median_purchase_price</pre>	0		

used_c	•	0 0							
online	in_number	9 9							
fraud	_oruer	0							
	dtype: int64								
Descri	ptive Statistics:		ce_from_home						
	distance_from_last_transaction \								
count									
mean std	26.628792 65.200784		5.036519 25.843093						
min	65.390784 25.843093 0.004874 0.000118								
25%	3.878008 0.296671								
50%	9.9677		0.9986						
75%	25.7439			3.355748					
max	10632.7236	0/2	11851.1045	005					
	ratio_to_median_	_purchase_price	repeat_retailer	used_chip					
\									
count		1000000.000000	1000000.000000	1000000.000000					
mean		1.824182	0.881536	0.350399					
std		2.799589	0.323157	0.477095					
min		0.004399	0.000000	0.000000					
25%		0.475673	1.000000	0.00000					
50%		0.997717	1.000000	0.000000					
75%		2.096370	1.000000	1.000000					
max		267.802942	1.000000	1.000000					
	used pin number	online order	fraud						
count	$100\overline{0}000.000000$	$1000000.\overline{0}00000$							
mean	0.100608	0.650552							
std	0.300809	0.476796							
min 25%	0.000000 0.000000	0.000000 0.00000							
50%	0.00000	1.000000							
75%	0.000000	1.000000							
max	1.000000	1.000000							

Data visualization

Subtask:

Create visualizations to complement the initial data exploration.

Reasoning: Generate histograms, box plots, scatter plots, and count plots to visualize the data distributions, potential outliers, correlations, and categorical feature distributions.

```
import matplotlib.pyplot as plt
import seaborn as sns
# Histograms for numerical features
plt.figure(figsize=(15, 10))
for i, col in enumerate(df.select dtypes(include=['number']).columns):
    plt.subplot(2, 4, i + 1)
    sns.histplot(df[col], kde=True)
    plt.title(f'Distribution of {col}')
plt.tight layout()
plt.show()
# Box plots for numerical features
plt.figure(figsize=(15, 10))
for i, col in enumerate(df.select dtypes(include=['number']).columns):
    plt.subplot(2, 4, i + 1)
    sns.boxplot(y=df[col])
    plt.title(f'Box Plot of {col}')
plt.tight_layout()
plt.show()
# Scatter plot for 'ratio_to_median_purchase_price' vs. 'fraud'
plt.figure(figsize=(8, 6))
sns.scatterplot(x='ratio to median purchase price', y='fraud',
hue='fraud', data=df)
plt.title('Scatter Plot of ratio to median purchase price vs. fraud')
plt.show()
# Count plots for categorical features (if any)
categorical cols = df.select dtypes(include=['object',
'category']).columns
if len(categorical cols) > 0:
    plt.figure(figsize=(10, 5))
    for i, col in enumerate(categorical cols):
        plt.subplot(1, len(categorical_cols), i + 1)
        sns.countplot(x=col, data=df)
        plt.title(f'Count Plot of {col}')
    plt.tight layout()
    plt.show()
else:
    print("No categorical features found in the dataset.")
```


/usr/local/lib/python3.11/dist-packages/IPython/core/
pylabtools.py:151: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
 fig.canvas.print_figure(bytes_io, **kw)

No categorical features found in the dataset.

Summary:

Q&A

No questions were asked in the provided text.

Data Analysis Key Findings

- **No Missing Data:** The dataset contains 1,000,000 rows and 8 columns, with no missing values across all features.
- **Numeric Features Only:** All features are numeric (float64). No categorical features were identified.

- **Potential Outliers:** Several numerical features, including distance_from_home, distance_from_last_transaction, and ratio_to_median_purchase_price, exhibit potential outliers as indicated by box plots (not shown in the output).
- Moderate Correlation: The ratio_to_median_purchase_price feature shows a moderate positive correlation (0.46) with the fraud indicator, suggesting that higher ratios might be associated with a greater likelihood of fraudulent transactions.

Insights or Next Steps

- Investigate Outliers: Further analyze the outliers in key features like distance_from_home and ratio_to_median_purchase_price to determine if they represent genuine anomalies or data errors.
- **Feature Engineering:** Explore feature engineering possibilities based on the existing numerical features. For instance, creating interaction terms or polynomial features from the existing variables might improve model performance in a later predictive modeling stage.