Guarded recursion in the topos of trees

Bálint Kocsis

Radboud University

July 5, 2023

Step-indexing

• Problem: non-well-founded definitions, e.g.

$$X = X \Rightarrow A$$

Step-indexing

Problem: non-well-founded definitions, e.g.

$$X = X \Rightarrow A$$

Solution: stratify recursion using sequences of successive approximations

$$X_{-1} = V$$

$$X_{n+1} = X_n \cap (X_n \Rightarrow A)$$

$$X = \bigcap X_n$$

Step-indexing

Problem: non-well-founded definitions, e.g.

$$X = X \Rightarrow A$$

Solution: stratify recursion using sequences of successive approximations

$$X_{-1} = V$$

$$X_{n+1} = X_n \cap (X_n \Rightarrow A)$$

$$X = \bigcap X_n$$

Syntactically: introduce modality ▶ to talk about the next step

$$T = \mu X. \triangleright X \rightarrow A$$

Applications

- Solve recursive domain equations
- Model general recursive types
- Model general references
- Define recursive functions, including negative self-references
- Concrete projects
 - Typed intermediate/assembly languages: FPCC
 - Program logics: VST, Iris
 - Guarded type theory

Focus of my work

- Logic of step-indexing/guarded recursion
- Particular model: topos of trees
- Formalization in Coq

Guarded type theory

- New type former ▶
 - Allows us to talk about data we will only have access to in the next computation step
 - Guards self-references in type/term definitions:

$$T = \mu X. \triangleright X \rightarrow A$$

Guarded type theory

- New type former ►
 - Allows us to talk about data we will only have access to in the next computation step
 - ► Guards self-references in type/term definitions:

$$T = \mu X. \triangleright X \rightarrow A$$

- Applicative structure
 - ▶ next : $A \rightarrow \blacktriangleright A$
 - \blacktriangleright $\circledast : \blacktriangleright (A \rightarrow B) \rightarrow \blacktriangleright A \rightarrow \blacktriangleright B$

Guarded type theory

- New type former
 - Allows us to talk about data we will only have access to in the next computation step
 - Guards self-references in type/term definitions:

$$T = \mu X. \triangleright X \rightarrow A$$

- Applicative structure
 - ▶ next : $A \rightarrow \blacktriangleright A$
 - \blacktriangleright $\circledast : \blacktriangleright (A \rightarrow B) \rightarrow \blacktriangleright A \rightarrow \blacktriangleright B$
- Guarded fixed point combinator: $fix : (\triangleright A \rightarrow A) \rightarrow A$
 - Self-reference delayed in time by next:

$$fix f = f(next(fix f))$$

▶ We write μx : ▶ A.t for fix λx : ▶ A.t

Motivating example: streams

• Str = $\mu X.\mathbb{N} \times \blacktriangleright X$, hence Str = $\mathbb{N} \times \blacktriangleright Str$

Motivating example: streams

- Str = $\mu X.\mathbb{N} \times \blacktriangleright X$, hence Str = $\mathbb{N} \times \blacktriangleright$ Str
- Constructors and destructors:

$$-:: -: \mathbb{N} \to \blacktriangleright \operatorname{Str} \to \operatorname{Str}$$

$$\operatorname{hd} : \operatorname{Str} \to \mathbb{N}$$

$$\operatorname{tl} : \operatorname{Str} \to \blacktriangleright \operatorname{Str}$$

Motivating example: streams

- Str = $\mu X.\mathbb{N} \times \blacktriangleright X$, hence Str = $\mathbb{N} \times \blacktriangleright$ Str
- Constructors and destructors:

$$-:: -: \mathbb{N} \to \blacktriangleright \operatorname{Str} \to \operatorname{Str}$$

$$\operatorname{hd} : \operatorname{Str} \to \mathbb{N}$$

$$\operatorname{tl} : \operatorname{Str} \to \blacktriangleright \operatorname{Str}$$

Recursive operations:

zeros =
$$\mu s.0 :: s : Str$$

add = $\lambda n.\mu r.\lambda s.(hds + n) :: (r \otimes tls) : \mathbb{N} \to Str \to Str$

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical connectives and rules.

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical connectives and rules.

- type former ⇒ > modality
 - ▶ ▷ P holds if P holds at the next step

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical connectives and rules.

- ▶ type former ⇒ ▷ modality
 - ▶ ▷P holds if P holds at the next step
- Applicative structure ⇒ modal axioms:

$$P \vdash \triangleright P$$
 $\triangleright (P \supset Q) \land \triangleright P \vdash \triangleright Q$

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical connectives and rules.

- **▶** type former ⇒ ▷ modality
 - ▶ ▷P holds if P holds at the next step
- Applicative structure ⇒ modal axioms:

$$P \vdash \triangleright P$$
 $\triangleright (P \supset Q) \land \triangleright P \vdash \triangleright Q$

Fixed point combinator ⇒ Löb rule:

$$\triangleright P \supset P \vdash P$$

In short: to prove P, we can assume that P already holds after one computation step

Some important rules

$$P \vdash \triangleright P \qquad \frac{P \vdash Q}{\triangleright P \vdash \triangleright Q} \qquad \frac{\triangleright P \vdash P}{\vdash P} \qquad \triangleright P \supset P \vdash P$$

$$\triangleright (P * Q) \dashv \vdash \triangleright P * \triangleright Q \quad (* \in \{\land, \lor, \supset\})$$

$$\triangleright (t =_A u) \dashv \vdash \text{next } t =_{\blacktriangleright A} \text{next } u$$

Semantics

- Intuitively: sequences of approximations
 - ► The n-th element describes what the object looks like if one has only n steps to reason about it
 - ▶ n: step-index
 - ▶ and ▷ shift step-indices
- Two main formalisms:
 - Ordered families of equivalences (used by Iris): a set equipped with more and more refined equivalence relations
 - ▶ Topos of trees: sequence of sets with restriction maps

Topos of trees

- ullet ${\cal S}$: presheaves on the ordinal ω
- Objects X:

$$X_0 \xleftarrow{r_0^X} X_1 \xleftarrow{r_1^X} X_2 \xleftarrow{r_2^X} \cdots$$

• Morphisms $f: X \to Y$:

$$X_0 \xleftarrow{r_0^X} X_1 \xleftarrow{r_1^X} X_2 \xleftarrow{r_2^X} \cdots$$

$$f_0 \downarrow \qquad \qquad f_1 \downarrow \qquad \qquad f_2 \downarrow \qquad \qquad f_2 \downarrow$$

$$Y_0 \xleftarrow{r_0^Y} Y_1 \xleftarrow{r_1^Y} Y_2 \xleftarrow{r_2^Y} \cdots$$

Guarded recursion

• $\triangleright : \mathcal{S} \to \mathcal{S}$ sends X to

$$\{*\} \xleftarrow{!} X_0 \xleftarrow{r_0} X_1 \xleftarrow{r_1} \cdots$$

• $\operatorname{next}_X : X \to \blacktriangleright X$, $(\operatorname{next}_X)_n = r_n^{\blacktriangleright X}$

Examples

• Streams:

$$\mathbb{N} \xleftarrow{\pi_1} \mathbb{N} \times \mathbb{N} \xleftarrow{\pi_1} \mathbb{N} \times \mathbb{N} \times \mathbb{N} \xleftarrow{\pi_1} \cdots$$

- $\bullet \ \operatorname{hd}_n(s_0,\ldots,s_n)=s_0$
- $inc_n(s_0,...,s_n) = (s_0 + 1,...,s_n + 1)$

Guarded fixed points

Proposition

Let $f : \triangleright X \to X$ be a morphism of S. Then there exists a unique $x : \mathbf{1} \to X$ such that $f \circ \operatorname{next}_X \circ x = x$.

Proof.

We have $f_0: \{*\} \to X_0$ and $f_{n+1}: X_n \to X_{n+1}$. Define $x: \mathbf{1} \to X$ by recursion: $x_0 = f_0$ and $x_{n+1} = f_{n+1} \circ x_n$.

Logic

- Essentially Kripke semantics over the natural numbers
- Intuition: the truth of a proposition depends on the step-index *n*, i.e. the amount of computation steps left
- If P is true for n steps, then it is also true for less than n steps
- Hence: a truth value is a downward closed subset of step indices

Kripke-Joyal semantics

Forcing relation: $n \Vdash P$ iff P holds at step n

Proposition

The forcing relation satisfies the following clauses:

$$n \Vdash P \supset Q \text{ iff } \forall m \le n : m \Vdash P \Rightarrow m \Vdash Q$$

 $n \Vdash \exists x : A.P \text{ iff } \exists a \in \llbracket A \rrbracket_n : n \Vdash P(a)$
 $n \Vdash \forall x : A.P \text{ iff } \forall m \le n, a \in \llbracket A \rrbracket_m : m \Vdash P(a)$
 $n \Vdash \triangleright P \text{ iff } n = 0 \lor n - 1 \Vdash P$

> and quantifiers

We have

$$\exists x : A. \triangleright P \vdash \triangleright (\exists x : A.P)$$
 $\triangleright (\forall x : A.P) \vdash \forall x : A. \triangleright P$

However, the other directions are not valid, e.g.

$$n+1 \Vdash \triangleright (\exists x : A.P) \text{ iff } \exists a \in [A]_n : n \Vdash P(a)$$

 $n+1 \Vdash \exists x : A. \triangleright P \text{ iff } \exists a \in [A]_{n+1} : n \Vdash P(a|_n)$

lift

- We can decompose \triangleright = lift o next [1]
- Hence, we could investigate the properties of lift
- Novel rule:

$$\mathsf{lift}\,(\mathsf{next}\,\mathsf{ex}\,\otimes\,Q)\dashv\!\vdash\exists y:\blacktriangleright A.\mathsf{lift}\,(Q\otimes y)$$

where

$$Q: \triangleright (A \rightarrow \text{Prop})$$

$$ex = \lambda P : A \rightarrow Prop. \exists x : A.Px$$

Coq formalization

- Need finite types for the definition of propositions
- Usual representation:

```
Inductive fin : nat \rightarrow Type := 
 | FZ \{n\} : fin (S n)
 | FS \{n\} : fin n \rightarrow fin (S n).
```

Alternatively:

```
Definition fin (n : nat) := \{m : nat \mid m < n\}.
```

The latter definition works much better in practice

Conclusion

- Exposition of the topos of trees
- Emphasis on lift, which seems to be more fundamental
- Coq formalization: case study in using proof-irrelevant propositions for the representation of finite types

Future work

- Find appropriate rules for lift
- Investigate step-indexed logic from the perspective of modal type theory
- Formalize a model of Iris in guarded type theory

References

R. Clouston, A. Bizjak, H. B. Grathwohl, and L. Birkedal.

The guarded lambda-calculus: Programming and reasoning with guarded recursion for coinductive types.

Logical Methods in Computer Science, Volume 12, Issue 3, Apr. 2017.