PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 95/30010 (51) International Patent Classification 6: (11) International Publication Number: C12N 15/57, C11D 3/386, C12N 9/54 (43) International Publication Date: 9 November 1995 (09.11.95) (81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, PCT/US95/03176 (21) International Application Number: EE, FI, GE, HU, JP, KG, KP, KR, KZ, LK, LR, LT, LV, (22) International Filing Date: 16 March 1995 (16.03.95)

(30) Priority Data: 08/237,939 2 May 1994 (02.05.94) US US 08/287,461 11 August 1994 (11.08.94) 08/394,011

US 3 March 1995 (03.03.95)

(71) Applicant: THE PROCTER & GAMBLE COMPANY [US/US]; One Procter & Gamble Plaza, Cincinnati, OH 45202 (US).

(72) Inventors: BRODE, Philip, Frederick, III; 5780 Squirrelsnest Lane, Cincinnati, OH 45252 (US). BARNETT, Bobby, Lee; 12175 Elkwood Drive, Cincinnati, OH 45240 (US). RUBINGH, Donn, Nelton; 8224 Sheed Road, Cincinnati, OH 45247 (US). GHOSH, Chanchal, Kumar, 7005 Pinehill Drive, West Chester, OH 45069 (US).

(74) Agents: REED, T., David et al.; The Procter & Gamble Company, 5299 Spring Grove Avenue, Cincinnati, OH 45217 (US).

MD, MG, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: SUBTILISIN BPN' VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS

(57) Abstract

The present invention relates to subtilisin BPN' variants having a modified amino acid sequence of wild-type BPN' amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region and a fifth loop region; wherein the modified amino acid sequence comprises different amino acids than that occurring in wild-type subtilisin BPN' (i.e., substitution) at specifically identified positions in one or more of the loop regions whereby the BPN' variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type subtilisin BPN'. The present invention also relates to the genes encoding such subtilisin BPN' variants. The present invention also relates to compositions comprising such subtilisin BPN' variants for cleaning a variety of surfaces.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					> #
AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	rt	Italy	PL.	Poland
BR	Brazil ·	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechnenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	, La	Luxenbourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobego
DK	Denroark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
n N	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
FA.	Caban	11214			

Subtilisin BPN' variants having decreased adsorption and increased hydrolysis

5

10

20

25

35

TECHNICAL FIELD

The present invention relates to novel enzyme variants useful in a variety of cleaning compositions, and the genes encoding such enzyme variants.

BACKGROUND

Enzymes make up the largest class of naturally occurring proteins. Each class of enzyme generally catalyzes (accelerates a reaction without being consumed) a different kind of chemical reaction. One class of enzymes known as proteases, are known for their ability to hydrolyze (break down a compound into two or more simpler compounds with the uptake of the H and OH parts of a water molecule on either side of the chemical bond cleaved) other proteins. This ability to hydrolyze proteins has been taken advantage of by incorporating naturally occurring and protein engineered proteases as an additive to laundry detergent preparations. Many stains on clothes are proteinaceous and wide-specificity proteases can substantially improve removal of such stains.

Unfortunately, the efficacy level of these proteins in their natural, bacterial environment, frequently does not translate into the relatively unnatural wash environment. Specifically, protease characteristics such as thermal stability, pH stability, oxidative stability and substrate specificity are not necessarily optimized for utilization outside the natural environment of the enzyme.

The amino acid sequence of the protease determines the characteristics of the protease. A change of the amino acid sequence of the protease may alter the properties of the enzyme to varying degrees, or may even inactivate the enzyme, depending upon the location, nature and/or magnitude of the change in the amino acid sequence. Several approaches have been taken to alter the wild-type amino acid sequence of proteases in an attempt to improve their properties, with the goal of increasing the efficacy of the protease in the wash environment. These approaches include altering the amino acid sequence to

WO 95/30010

enhance thermal stability and to improve oxidation stability under quite diverse conditions.

2

Despite the variety of approaches described in the art, there is a continuing need for new effective variants of proteases useful for cleaning a variety of surfaces.

Objects of the Present Invention

It is an object of the present invention to provide subtilisin enzyme variants having improved hydrolysis versus the wild-type of the enzyme.

It is also an object of the present invention to provide cleaning compositions comprising these subtilisin enzyme variants.

SUMMARY

The present invention relates to subtilisin BPN' variants having a modified amino acid sequence of wild-type BPN' amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region and a fifth loop region; wherein the modified amino acid sequence comprises different amino acids than that occurring in wild-type subtilisin BPN' (i.e., substitution) at specifically identified positions in one or more of the loop regions whereby the BPN' variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type subtilisin BPN'. The present invention also relates to the genes encoding such subtilisin BPN' variants. The present invention also relates to compositions comprising such subtilisin BPN' variants for cleaning a variety of surfaces.

DESCRIPTION

L Subtilisin Variants 25

10

20

35

This invention pertains to subtilisin enzymes, in particular BPN', that have been modified by mutating the various nucleotide sequences that code for the enzyme, thereby modifying the amino acid sequence of the enzyme. The modified subtilisin enzymes (hereinafter, "BPN" variants") of the present invention have decreased adsorption to and increased hydrolysis of an insoluble substrate as compared to the wild-type subtilisin. The present invention also pertains to the mutant genes encoding for such BPN' variants.

The subtilisin enzymes of this invention belong to a class of enzymes known as proteases. A protease is a catalyst for the cleavage of peptide bonds. One type of protease is a serine protease. A serine protease is distinguished by WO 95/30010 PCT/US95/03176

3

the fact that there is an essential serine residue at the active site.

10

15

20

25

30

35

The observation that an enzyme's rate of hydrolysis of soluble substrates increases with enzyme concentration is well documented. It would therefore seem plausible that for surface bound substrates, such as is encountered in many cleaning applications, the rate of hydrolysis would increase with increasing surface concentration. This has been shown to be the case. (Brode, P.F. III and D. S. Rauch, LANGMUR, "Subtilisin BPN": Activity on an Immobilized Substrate". Vol. 8, pp. 1325-1329 (1992)). In fact, a linear dependence of rate upon surface concentration was found for insoluble substrates when the surface concentration of the enzyme was varied. (Rubingh, D. N. and M. D. Bauer, "Catalysis of Hydrolysis by Proteases at the Protein-Solution Interface," in POLYMER SOLUTIONS, BLENDS AND INTERFACES, Ed. by I. Noda and D. N. Rubingh, Elsevier, p. 464 (1992)). Surprisingly, when seeking to apply this principle in the search for variant proteases which give better cleaning performance, we did not find that enzymes which adsorb more give better performance. In fact, we surprisingly determined the opposite to be the case: decreased adsorption by an enzyme to a substrate resulted in increased hydrolysis of the substrate (i.e., better cleaning performance).

While not wishing to be bound by theory, it is believed that improved performance, when comparing one variant to another, is a result of the fact that enzymes which adsorb less are also less tightly bound and therefore more highly mobile on the surface from which the insoluble protein substrate is to be removed. At comparable enzyme solution concentrations, this increased mobility is sufficient to outweigh any advantage that is conferred by delivering a higher concentration of enzyme to the surface.

The mutations described herein are designed to change (i.e., decrease) the adsorption of the enzyme to surface-bound soils. In BPN', certain amino acids form exterior loops on the enzyme molecule. For purposes of discussion, these loops shall be referred to as first, second, third, fourth and fifth loop regions. Specifically, positions 59-66 form the first loop region; positions 95-107 form the second loop region; positions 126-133 form the third loop region; positions 154-167 form the fourth loop region; positions 187-191 form the fifth loop region; and positions 199-220 form the sixth loop region (position numbering analagous to positions in the amino acid sequence for wild-type subtilisin BPN' (SEQ ID NO:1)).

WO 95/30010 PCT/US95/03176

4

It believed that these loop regions play a significant role in the adsorption of the enzyme molecule to a surface-bound peptide, and specific mutations in one or more of these loop regions will have a significant effect on this adsorption. While not wishing to be bound by theory, it is believed that the loop regions are important to the adsorption of the BPN' molecule for at least two reasons. First, the amino acids which comprise the loop regions can make close contacts with any surfaces to which the molecule is exposed. Second, the proximity of the loop regions to the active-site and binding pocket of the BPN' molecule gives them a role in the catalytically productive adsorption of the enzyme to surface-bound substrates (peptides/protein soils).

As used herein, "variant" means an enzyme having an amino acid sequence which differs from that of wild-type.

As used herein, "mutant BPN' gene" means a gene coding for a BPN' variant.

15

20

25

30

As used herein, "wild-type subtilisin BPN" refers to a subtilisin enzyme represented by SEQ ID NO:1. The amino acid sequence for subtilisin BPN' is further described by Wells, J. A., E. Ferrari, D. J. Henner, D. A. Estell and E. Y. Chen, Nucleic Acids Research, Vol. II, 7911-7925 (1983), incorporated herein by reference.

As used herein, the term "wild-type amino acid sequence" encompasses SEQ ID NO:1 as well as SEQ ID NO:1 having modifications to the amino acid sequence other than at any of positions 59-66, 95-107, 126-133, 154-167, 187-191 and 199-220.

As used herein, "more hydrophilic amino acid" refers to any other amino acid having greater hydrophilicity than a subject amino acid with reference to the hydrophilicity table below. The following hydrophilicity table (Table 1) lists amino acids in descending order of increasing hydrophilicity (see Hopp, T.P., and Woods, K.R., "Prediction of Protein Antigenic Determinants from Amino Acid Sequences", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE USA, Vol. 78, pp. 3824-3828, 1981, incorporated herein by reference).

TABLE 1

Amino Acid	Hydrophilicity Value
Trp	-3.4
Phe	-2.5
Tyr	-2.3
Leu, lle	-1.8
Val	-1.5
Met	-1.3
Cys	-1.0
Ala, His	-0.5
Thr	-0.4
Pro, Gly	-0.0
Gln, Asn	0.2
Ser	0.3
Arg ⁺ , Lys ⁺ , Glu ⁻ , Asp ⁻	3.0

Table 1 also indicates which amino acids carry a charge (this characteristic being based on a pH of from about 8-9). The positively charged amino acids are Arg and Lys, the negatively charged amino acids are Glu and Asp, and the remaining amino acids are neutral. In a preferred embodiment of the present invention, the substituting amino acid is either neutral or negatively charged, more preferably negatively charged (i.e., Glu or Asp).

Therefore, for example, the statement "substitute Gln with an equally or more hydrophilic amino acid which is neutral or has a negative charge" means Gln would be substituted with Asn (which is equally hydrophilic to Gln), or Ser, Glu or Asp (which are more hydrophilic than Gln); each of which are neutral or have a negative charge, and have a greater hydrophilicity value as compared to Gln. Likewise, the statement "substitute Pro with a more hydrophilic amino acid which is neutral or has a negative charge" means Pro would be substituted with Gln, Asn, Ser, Glu or Asp.

In one embodiment of the present invention, the BPN' variant has a modified amino acid sequence of wild-type amino acid sequence, wherein the modified amino acid sequence comprises a substitution at one or more positions in one or more of the first, second, third, fourth or fifth loop regions; whereby the BPN' variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type subtilisin BPN'.

In another embodiment of the present invention, the BPN' variant further comprises one or more substitutions to the sixth loop region.

15

20

25

30

35

In a preferred embodiment of the present invention, the substituting amino acid for one or more of the positions in one or more of the loop regions is, with reference to Table 1, neutral or negatively charged and equally or more hydrophylic, preferably more hydrophylic, than the amino acid at the subject position in the wild-type amino acid sequence.

A. Substitutions in the First Loop Region

When a substitution occurs in the first loop region, the substitution occurs at one or more of positions 59, 60, 61, 62, 63, 65 or 66.

When a substitution occurs at position 59, the substituting amino acid is Asn, Asp, Glu or Ser.

When a substitution occurs at position 60, the substituting amino acid is Glu.

When a substitution occurs at position 61, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 62, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 63, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 65, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 66, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

B. <u>Substitutions in the Second Loop Region</u>

When a substitution occurs in the second loop region, the substitution occurs at one or more of positions 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106 or 107.

When a substitution occurs at position 95, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr.

When a substitution occurs at position 96, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 97, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 98, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr.

When a substitution occurs at position 99, the substituting amino acid is

Glu.

5

10

15

20

25

30

35

When a substitution occurs at position 100, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 101, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 102, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 103, the substituting amino acid is Asn, Asp, Glu or Ser.

When a substitution occurs at position 104, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 105, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 106, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr or Val.

When a substitution occurs at position 107, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val.

C. Substitutions in the Third Loop Region

When a substitution occurs in the third loop region, the substitution occurs at one or more of positions 126, 127, 128, 129, 130, 131, 132 or 133.

When a substitution occurs at position 126, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 127, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 128, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser.

When a substitution occurs at position 129, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser.

When a substitution occurs at position 130, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 131, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser.

When a substitution occurs at position 132, the substituting amino acid is Asp or Glu.

15

25

When a substitution occurs at position 133, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr.

D. Substitutions in the Fourth Loop Region

When a substitution occurs in the fourth loop region, the substitution occurs at one or more of positions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166 or 167.

When a substitution occurs at position 154, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 155, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 156, the substituting amino acid is Asp.

When a substitution occurs at position 157, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 158, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

When a substitution occurs at position 159, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 160, the substituting amino acid is 20 Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 161, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 162, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 163, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 164, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

When a substitution occurs at position 165, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr.

When a substitution occurs at position 166, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 167, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val.

15

20

25

30

35

E. Substitutions in the Fifth Loop Region

When a substitution occurs in the fifth loop region, the substitution occurs at one or more of positions 187, 188, 189, 190 or 191.

When a substitution occurs at position 187, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser and Thr.

When a substitution occurs at position 188, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 189, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Tyr or Val.

When a substitution occurs at position 190, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 191, the substituting amino acid is Asp or Glu.

F. Substitutions in the Sixth Loop Region

When a substitution occurs in the sixth loop region, the substitution occurs at one or more of positions 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 or 220.

When a substitution occurs at position 199, the substituting amino acid for position 199 is Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 200, the substituting amino acid for position 200 is His, Thr. Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 201, the substituting amino acid for position 201 is Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 202, the substituting amino acid for position 202 is Pro, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 203, the substituting amino acid for position 203 is Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 204, the substituting amino acid for position 204 is Asp, or Glu.

When a substitution occurs at position 205, the substituting amino acid for position 205 is Leu, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 206, the substituting amino acid for position 206 is Pro, Asn, Ser, Asp, or Glu.

When a substitution occurs at position 207, the substituting amino acid for

15

20

25

30

35

position 207 is Asp or Glu.

When a substitution occurs at position 208, the substituting amino acid for position 208 is Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 209, the substituting amino acid for position 209 is Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 210, the substituting amino acid for position 210 is Ala, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 211, the substituting amino acid for position 211 is Ala, Pro, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 212, the substituting amino acid for position 212 is Gln, Ser, Asp or Glu.

When a substitution occurs at position 213, the substituting amino acid for position 213 is Trp, Phe, Tyr, Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 214, the substituting amino acid for position 214 is Phe, Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 215, the substituting amino acid for position 215 is Thr, Pro, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 216, the substituting amino acid for position 216 is His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 217, the substituting amino acid for position 217 is Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 218, the substituting amino acid for position 218 is Gln, Ser, Asp or Glu.

When a substitution occurs at position 219, the substituting amino acid for position 219 is Pro, Gln, Asn, Ser, Asp or Glu.

When a substitution occurs at position 220, the substituting amino acid for position 220 is Pro, Gly, Gln, Asn, Ser Asp or Glu.

G. Preparation of enzyme variants

Example 1

Mutant BPN' Genes

A phagemid (pSS-5) containing the wild type subtilisin BPN' gene

(Mitchinson, C. and J. A. Wells, (1989), "Protein Engineering of Disulfide Bonds in Subtilisin BPN', BIOCHEMISTRY, Vol. 28, pp. 4807-4815) is transformed into Escherichia coli ung-strain CJ236 and a single stranded uracil-containing DNA template is produced using the VCSM13 helper phage (Kunkel, T.A., J.D. Roberts and R.A. Zakour, "Rapid and efficient site-specific mutagenesis without phenotypic selection", METHODS IN ENZYMOLOGY, Vol. 154, pp. 367-382, (1987); as modified by Yuckenberg, P.D., F. Witney, J. Geisselsoder and J. McClary, "Site-directed in vitro mutagenesis using uracil-containing DNA and phagemid vectors", DIRECTED MUTAGENESIS - A PRACTICAL APPROACH, ed. M.J. McPherson, pp. 27-48, (1991); both of which are incorporated herein by reference). A single primer site-directed mutagenesis modification of the method of Zoller and Smith (Zoller, M.J., and M. Smith, "Oligonucleotide-directed mutagenesis using M13derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA", Nucleic Acids Research, Vol. 10, pp. 6487-6500, (1982), incorporated herein by reference) is used to produce all mutants 15 (basically as presented by Yuckenberg, et al., 1991, above). Oligonucleotides are made using an Applied Biosystem Inc. 380B DNA synthesizer. Mutagenesis reaction products are transformed into Escherichia coli strain MM294 (American Type Culture Collection E. Coli. 33625). All mutants are confirmed by DNA sequencing and the isolated DNA is transformed into the Bacillus subtilis 20 expression strain BG2036 (Yang, M. Y., E. Ferrari and D. J. Henner, (1984), "Cloning of the Neutral Protease Gene of Bacillus subtillis and the Use of the Cloned Gene to Create an In Vitro-derived Deletion Mutation", JOURNAL OF BACTERIOLOGY, Vol. 160, pp. 15-21). For some of the mutants a modified pSS-5 with a frameshift-stop codon mutation at amino acid 217 is used to produce the uracil template. Oligonucleotides are designed to restore the proper reading frame at position 217 and also encoded for random substitutions at positions 59, 60, 61, 62, 63, 64, 65, 66; 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107; 126, 127, 128, 129, 130, 131, 132, 133; 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167; 187, 188, 189, 190, 191; 199, 200, 201, 202, 30 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 and 220 (equimolar and/or variable mixtures of all four nucleotides for all three bases at these codons). Mutations that correct for the frameshift-stop and produce a functional enzyme are identified by their ability to digest casein. The random substitutions are determined by DNA sequencing. 35

15

20

25

35

12

Example 2

Fermentation

The Bacillus subtilis cells (BE2036) containing a subtilisin mutant of interest are grown to mid-log phase in a one liter culture of LB-glucose broth and inoculated into a Biostat ED fermenter (B. Braun Biotech, Inc., Allentown, Pennsylvania) in a total volume of 10 liters. The fermentation media contains Yeast Extract, starch, antifoam, buffers and trace minerals (see FERMENTATION: A PRACTICAL APPROACH, Ed. B. McNeil and L. M. Harvey, 1990). The broth is kept at a constant pH of 7.0 during the fermentation run. Chloramphenical is added for antibiotic selection of mutagenized plasmid. The cells are grown overnight at 37°C to an A600 of about 60 and harvested.

Example 3

Purification

The fermentation broth is taken through the following steps to obtain pure enzyme. The broth is cleared of *Bacillus subtilis* cells by centrifugation, and clarified by removing fine particulates with a 100K cutoff membrane. This is followed by concentration on a 10K cutoff membrane, and flow dialysis to reduce the ionic strength and adjust the pH to 5.5 using 0.025M MES buffer (2-(*N*-morpholino)ethanesulfonic acid). The enzyme is further purified by loading it onto either a cation exchange chromatography column or an affinity adsorption chromatography column and eluting it from the column with a NaCl or a propylene glycol gradient (see Scopes, R. K., PROTEIN PURIFICATION PRINCIPLES AND PRACTICE, Springer-Verlag, New York (1984), incorporated herein by reference).

The pNA assay (DelMar, E.G., C. Largman, J.W. Brodrick and M.C. Geokas, ANAL. BIOCHEM., Vol. 99, pp. 316-320, (1979), incorporated herein by reference) is used to determine the active enzyme concentration for fractions collected during gradient elution. This assay measures the rate at which p-nitroaniline is released as the enzyme hydrolyzes the soluble synthetic substrate, succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide (sAAPF-pNA). The rate of production of yellow color from the hydrolysis reaction is measured at 410 nm on a spectrophotometer and is proportional to the active enzyme concentration. In addition, absorbance measurements at 280 nm are used to determine the total protein concentration. The active enzyme/total-protein ratio gives the enzyme purity, and is used to identify fractions to be

25

35

pooled for the stock solution.

To avoid autolysis of the enzyme during storage, an equal weight of propylene glycol is added to the pooled fractions obtained from the chromatography column. Upon completion of the purification procedure the purity of the stock enzyme solution is checked with SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and the absolute enzyme concentration is determined via an active site titration method using trypsin inhibitor type II-T: turkey egg white purchased from Sigma Chemical Company (St. Louis, Missouri). The measured conversion factors will show which changes made in the enzyme molecule at the various positions result in the enzyme variant having increased activity over the wild-type, against the soluble substrate pNA.

In preparation for use, the enzyme stock solution is eluted through a Sephadex-G25 (Pharmacia, Piscataway, New Jersey) size exclusion column to remove the propylene glycol and exchange the buffer. The MES buffer in the enzyme stock solution is exchanged for 0.1 M Tris buffer (Tris(hydroxymethylaminomethane) containing 0.01M CaCl₂ and pH adjusted to 8.6 with HCl. All experiments are carried out at pH 8.6 in Tris buffer thermostated at 25°C.

H. Characterization of enzyme variants

Example 4

Model Surface Preparation

Aminopropyl controlled pore glass (CPG) purchased from CPG Inc. (Fairfield, New Jersey) is used as a support for covalently attaching the sAAPF-pNA substrate purchased from Bachem, Inc. (Torrence, California). The reaction is carried out in dimethyl sulfoxide and (1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride) (EDC) is used as a coupling agent. Upon completion (monitored by pNA assay), the excess solvent is removed, and the CPG:sAAPF-pNA is rinsed with dimethyl sulfoxide (DMSO) and doubly-distilled water. This is followed by oven drying with a N2 purge at about 70°C. The reaction scheme and preparation of the immobilized substrate are conducted as described by Brode, P.F. III, and D.S. Rauch, "Subtilisin BPN": Activity on an Immobilized Substrate," LANGMUR, Vol. 8, p. 1325-1329, (1992), incorporated herein by reference.

The CPG surface will have $62,000 \pm 7,000$ pNA molecules/ μ m². The surface area will remain unchanged from the value of 50.0m²/g reported by CPG

10

15

20

25

30

35

14

Inc. for the CPG as received. This suggests that the procedure used to add sAAPF-pNA to CPG does not damage the porous structure (mean diameter is 486 Å).

Example 5

Surface Hydrolysis Assay

Using CPG:sAAPF-pNA, adsorption of an enzyme variant and hydrolysis of a CPG-bound peptide can be measured in a single experiment. A small volume of enzyme variant stock solution is added to a flask containing Tris buffer and CPG:sAAPF-pNA which has been degassed. The flask is shaken on a wrist-action shaker for a period of 90 minutes during which the shaker is stopped at various time intervals (for example, every 2 minutes during the early stages of adsorption hydrolysis - e.g., the first 20 minutes - and every 10 minutes towards the end of the experiment). The CPG:sAAPF-pNA is allowed to settle and the solution is sampled. Both the experimental procedure and the calculation of the adsorption and hydrolysis are conducted as described by Brode et al., 1992, above.

All enzymes are monitored for stability against autolysis and should show no appreciable autolytic loss over the time course of this experiment. Therefore, enzyme adsorption can be determined by measuring solution depletion. The difference between the initial enzyme variant concentration and the concentration measured at each individual time point gives the amount of enzyme variant adsorbed. The amount of ρ NA hydrolyzed from the surface is measured by taking an absorbance reading on an aliquot of the sample at 410 nm. The total amount of ρ NA hydrolyzed is calculated by adding the amount sampled and the amount remaining in the flask. This value is corrected by subtracting the amount of ρ NA that is hydrolyzed by Tris buffer at pH 8.6 when no enzyme is present. This base-hydrolysis ranges from 7-29% of the total hydrolysis depending on the efficiency of the enzyme.

Example 6

Soluble Substrate Kinetic Analysis

The rates of hydrolysis of the soluble substrate sAAPF-pNA are monitored by measuring the adsorbance increase as a function of time at 410 nm on a DU-70 spectrophotometer. The enzyme concentration is held constant and is prepared to be in the range of 6-10 nanomolar while the substrate concentration is varied from 90-700 µM sAAPF-pNA for each kinetic determination. An

adsorbance data point is taken each second over a period of 900 seconds and the data are transferred to a Lotus $^{\text{TM}}$ spreadsheet (Lotus Development Corporation, Cambridge, Massachusetts). Analysis for kinetic parameters is conducted by the standard Lineweaver Burk analysis in which the data in the initial part of the run (generally the first minute) are fit to a linear regression curve to give v_0 . The v_0 and s_0 data are plotted in the standard inverse fashion to give k_M and k_{cat} .

1. Example BPN' variants

BPN' variants of the present invention which have decreased adsorption to and increased hydrolysis of surface bound substrates are exemplified in Tables 2-25, below. In describing the specific mutations, the original amino acid occurring in wild-type is given first, the position number second, and the substituted amino acid third.

	TABLE 2	
15	Loop 1 - Single Mutation Variants	
	Gln59Asn	
	Gln59Asp	
	Gln59Glu	
	Gln59Ser	
20	Asp60Glu	
	Asn61Asp	
	Asn61Gln	
	Asn61Glu	
	Asn61Ser	
25	Asn62Asp	
	Asn62Gln	
	Asn62Glu	
	Asn62Ser	
	Ser63Asp	
30	Ser63Glu	
	Gly65Asn	
	Gly65Asp	
	Gly65Gln	
	Gly65Glu	
35	Gly65Pro	
	Gly65Ser	
	Thr66Asn	
	Thr66Asp	
	Thr66Gln	
40	Thr66Glu	
	Thr66Gly	
	Thr66Pro	
	Thr66Ser	

TABLE 3

	Loop 1 - Double Mutation Variants
	Gln59Ser + Asn62Glu
5	Asp60Glu + Asn61Ser
	Asn61Glu + Asn62Ser
	Gln59Ser + Gly65Gln
	Asn61Gln + Gly65Asn
	Asn61Ser + Asn62Asp
10	Gln59Glu + Asn61Gln
	Asp60Glu + Gly65Gln
	Gln59Asp + Gly65Pro
	Asn61Asp + Gly65Asn
	Gln59Ser + Asn62Asp
15	Gln59Asn + Gly65Gln
	Asn62Asp + Thr66Gly
	Gln59Asn + Asn62Glu
	Asn61Ser + Ser63Glu
	Gln59Ser + Asp60Glu
20	Asp60Glu + Thr66Gln
	Asn61Glu + Thr66Gly
	Asp60Glu + Asn62Gln
	Asn62Gln + Gly65Pro
	Asn61Ser + Thr66Ser
25	Asp60Glu + Gly65Pro
	Ser63Glu + Gly65Pro
	Asp60Glu + Thr66Ser
	Gln59Ser + Asn61Glu
	Asn62Asp + Gly65Gln
30	Asn61Gln + Ser63Asp
	Gln59Asp + Gly65Asn
	Ser63Asp + Thr66Pro
	Ser63Glu + Thr66Asn
	Asn62Glu + Thr66Asn
35	Asn61Asp + Gly65Ser
	Gly65Pro + Thr66Ser
	Gln59Ser + Asn62Ser
	Asp60Glu + Gly65Ser
	Ser63Asp + Gly65Ser Asn61Gln + Ser63Glu
40	
	Asn61Asp + Asn62Ser
	Gln59Glu + Gly65Pro
	Gln59Ser + Asn61Asp
	Gln59Asp + Asn62Ser
45	Gln59Asn + Gly65Ser
	Ser63Glu + Thr66Ser
	Asn61Ser + Ser63Asp
	Asn62Ser + Gly65Pro

TABLE 4

	Loop 1 - Triple Mutation Variants
	Gln59Ser + Ser63Asp + Gly65Pro
5	Asn62Gln + Gly65Ser + Thr66Asp
	Gln59Ser + Asp60Glu + Thr66Gln
•	Gln59Asn + Ser63Glu + Thr66Pro
	Asn61Ser + Gly65Asn + Thr66Glu
•	Ser63Glu + Gly65Ser + Thr66Asn
10	Asn62Asp + Gly65Ser + Thr66Gly
	Gln59Ser + Asn62Asp + Thr66Pro
	Gln59Ser + Asp60Glu + Asn61Gln
	Asn61Gln + Ser63Asp + Gly65Ser
	Asn62Glu + Gly65Asn + Thr66Gln
15	Asp60Glu + Gly65Asn + Thr66Ser
•	Asn62Ser + Ser63Asp + Thr66Gln
	Gln59Asp + Asn62Gln + Gly65Pro
	Asn62Ser + Ser63Glu + Thr66Gly
	Asn61Asp + Asn62Ser + Gly65Asn
20	Asp60Glu + Asn61Gln + Asn62Ser
	Asp60Glu + Asn61Gln + Gly65Ser
	Asp60Glu + Gly65Pro + Thr66Asn
	Gln59Ser + Asn61Glu + Asn62Asp
	Asn61Asp + Asn62Asp + Gly65Pro
25	Asn61Glu + Asn62Glu + Thr66Gln
	Gln59Asp + Asp60Glu + Thr66Gln
	Gln59Asp + Asp60Glu + Thr66Pro
	Asn62Asp + Ser63Asp + Gly65Asn
	Asn62Glu + Ser63Glu + Gly65Asn
30	Asn62Asp + Ser63Glu + Gly65Gln
	Gln59Ser + Asn62Asp + Ser63Glu
	Asn62Glu + Ser63Asp + Gly65Ser
	Asn61Asp + Asn62Asp + Ser63Glu
	Gln59Glu + Asp60Glu + Asn61Glu
35	Asp60Glu + Asn62Glu + Ser63Asp
	Asp60Glu + Asn61Glu + Ser63Glu
	Gln59Ser + Asp60Glu + Asn62Glu

TABLE 5

40	Loop 1 - Quadruple Mutation Variants		
	Gln59Ser + Asp60Glu + Gly65Gln + Thr66Gln		
	Gln59Ser + Asn62Ser + Ser63Asp + Gly65Gln		
	Asp60Glu + Asn62Ser + Gly65Pro + Thr66Gln		
	Asn62Gln + Ser63Glu + Gly65Pro + Thr66Gln		
45	Asn61Gln + Asn62Gln + Ser63Asp + Gly65Pro		
	Gln59Asn + Asp60Glu + Asn61Gln + Gly65Asn		
	Gln59Glu + Asn62Ser + Gly65Pro + Thr66Ser		

	•				
	Gln59Asn + As	n61Asp +	Asn62Asp	+	Thr66Asn
	Gln59Asp + As	p60Glu +	Asn62Ser	+	Gly65Ser
	Asn61Gln + As	n62Asp +	Ser63Glu	+	Thr66Gln
	Asp60Glu + As	n61Asp +	Asn62Glu	+	Gly65Ser
5	Asn61Asp + As	n62Glu +	Ser63Glu	+	Thr66Ser
_	Asn61Asp + As	n62Glu +	Ser63Asp	+	Gly65Ser
	Gln59Glu + As	p60Glu +	Asn61Asp	+	Gly65Ser
	. Asp60Glu + As	n62Asp +	Ser63Glu	+	Thr66Pro
	Asp60Glu + As	n62Glu +	Ser63Glu	+	Thr66Asn
10	Asp60Glu + As	n62Glu +	Ser63Asp	+	Gly65Ser
	Asp60Glu + As	n61Asp +	Ser63Glu	+	Thr66Asn
	Gln59Ser + As	p60Glu +	Asn61Asp	+	Ser63Asp
	Asp60Glu + As	n61Asp +	Ser63Asp	+	Gly65Pro
	Asp60Glu + As	n61Asp +	Ser63Asp	+	Thr66Gly
15	Asp60Glu + As	n61Asp +	Ser63Glu	+	Gly65Asn
	Gln59Ser + As	p60Glu +	Asn62Asp	+	Thr66Gly
	Asp60Glu + As	:n62Asp +	Gly65Ser	+	Thr66Pro
	Asp60Glu + As	m61Gln +	Asn62Glu	+	Gly65Ser
	Gln59Ser + As	p60Glu +	Asn62Asp	+	Gly65Gln
20	Asp60Glu + As	m61Ser +	Asn62Gln	+	Ser63Glu
	Asp60Glu + As	:n61Ser +	Ser63Asp	+	Thr66Pro
	Gln59Ser + As	sp60Glu +	Asn61Gln	+	Ser63Glu
	Asp60Glu + Se	er63Glu +	Gly65Ser	+	Thr66Asn
	Gln59Asn + As	sp60Glu +	Ser63Asp	+	Gly65Gln
25	Asp60Glu + Se	er63Glu +	Gly65Pro	+	Thr66Ser

TABLE 6

Loop 2 - Single Mutation Variants Val95Ala Val95Asn 30 Val95Asp Val95Cys Val95Gln Val95Glu Val95Gly 35 Val95His Val95Met Val95Pro Val95Ser Val95Thr 40 Leu96Ala Leu96Asn Leu96Asp Leu96Cys Leu96Gln 45 Leu96Glu Leu96Gly Leu96His Leu96Ile

PCT/US95/03176

19

			Leu96Met
			Leu96Pro
	•		Leu96Ser
			Leu96Thr
5			Leu96Val
			Gly97Asn
			Gly97Asp
			Gly97Gln
			Gly97Glu
10			Gly97Pro
10			Gly97Ser
			Ala98Asn
	·		Ala98Asp
			Ala98Gln
15			Ala98Glu
13			Ala98Gly
			Ala98His
			Ala98Pro
			Ala98Ser
20			Ala98Thr
20			Asp99Glu
			Gly100Asn
		•	Gly100Asp
			Gly100Gln
25 .			Gly100Glu
			Gly100Pro
			Gly100Ser
			Ser101Asp
			Ser101Glu
30			Gly102Asn
	•		Gly102Asp
			Gly102Gln
			Gly102Glu
			Gly102Pro
35			Gly102Ser
			Gln103Asn
			Gln103Asp
			Gln103Glu
			Gln103Ser
40			Tyr104Ala
			Tyr104Asn
			Tyr104Asp
			Tyr104Cys
			Tyr104Gln
45			Tyr104Glu
			Tyr104Gly
			Tyr104His
			Tyr104Ile
			Tyr104Leu
50			Tyr104Met

PCT/US95/03176 WO 95/30010

•
·
-

TABLE 7

40	Loop 2 - Double Mutation Variants
	Val 95Gln + Ser101Glu
	Gly 97Ser + Gly100Gln
	Ser105Glu + Trp106Gly
	Asp 99Glu + Gln103Asn
45	Ala 98Gln + Trp106Thr
	Gly 97Asp + Ile107Thr
	Gly100Ser + Gly102Gln
	Leu 96Ser + Ser101Glu
	Asp 99Glu + Ile107Ala

PCT/US95/03176

WO 95/30010

21

Leu 96Asn + Asp 99Glu Gly102Gln + Trp106Asp Tyr104Leu + Trp106Glu Tyr104Pro + Ile107Asp Gly 97Ser + Ser101Asp 5 Gly100Pro + Ser101Glu Val 95Asn + Ala 98Asp Val 95Met + Ile107Gly Asp 99Glu + Trp106Cys Gly100Asn + Trp106Thr 10 Gln103Ser + Trp106Pro Gly102Asp + Gln103Ser Gly102Ser + Trp106Gln Ser101Asp + Gly102Pro Leu 96Cys + Trp106Asp 15 Asp 99Glu + Gly102Ser Gly102Asp + Trp106Val Gly 97Ser + Trp106Phe Gln103Asp + Tyr104Thr 20 Ala 98His + Gly100Gln Ser105Glu + Trp106Leu Leu 96His + Tyr104Thr Gly 97Pro + Ser101Glu Val 95Thr + Trp106Ile Gly100Asp + Tyr104Ile 25 Val 95Pro + Gln103Asn Gln103Asn + Trp106Ile Ala 98His + Gly102Pro Trp106Asn + Ile107His Val 95Gln + Leu 96Asp 30 Gly 97Asp + Ala 98Gln Gly100Ser + Ser101Glu Val 95Asp + Tyr104Gly Tyr104Ala + Ser105Asp Gly100Pro + Ser105Glu 35 Leu 96Cys + Tyr104Leu Val 95Gly + Gly100Ser Gly102Gln + Tyr104Ser Ala 98Gly + Trp106Phe Gly100Asp + Trp106Phe 40 Val 95Glu + Ala 98Gln Ser101Glu + Tyr104Asn Leu 96Val + Ser101Asp Gly102Glu + Gln103Asn Gly102Glu + Trp106Gly 45 Ala 98Gln + Gly100Asp Gly100Gln + Gln103Ser Gly 97Glu + Tyr104Leu Ser101Asp + Gly102Ser Ala 98His + Ser101Asp 50

Gly 97Asp + Gln103Asn

TABLE 8

	IABLE 8
	Loop 2 - Triple Mutation Variants
5	Val 95Gln + Leu 96Thr + Ser101Glu
	Ala 98His + Gln103Glu + Trp106Cys
	Ala 98Gln + Ser101Glu + Tyr104Met
	Ser101Asp + Gln103Ser + Ile107Cys
	Ala 98Pro + Asp 99Glu + Gly102Pro
10	Val 95Pro + Gly 97Glu + Gly100Gln
	Ser101Glu + Gly102Pro + Ile107His
	Leu 96Pro + Gly100Pro + Gly102Asn
	Gly100Glu + Gly102Asn + Trp106Tyr
	Ala 98Asn + Gln103Glu + Ile107Ser
15	Gly 97Pro + Gly100Asp + Trp106Met
	Gln103Asn + Tyr104Leu + Ser105Asp
	Gly 97Pro + Ala 98Gln + Tyr104Cys
	Ala 98Gly + Gly100Glu + Gln103Ser
	Leu 96Ile + Gly 97Pro + Ser105Asp
20	Ala 98Pro + Gly100Pro + Ile107Ala
	Val 95Pro + Gln103Asp + Ile107Met
	Val 95Gln + Ser101Glu + Trp106Phe
	Leu 96Val + Ser101Glu + Ile107Pro
	Leu 96Gly + Gly 97Glu + Trp106Thr
25	Gly 97Asp + Tyr104Ser + Trp106His
	Gly 97Ser + Gly100Pro + Tyr104Cys
	Gln103Ser + Ser105Asp + Ile107His
	Ala 98Glu + Tyr104Cys + Trp106Phe
	Val 95Gln + Gly100Pro + Gly102Ser
30	Val 95Ala + Gly102Asp + Tyr104Ser
	Val 95Ala + Leu 96Met + Ser105Asp
	Gly102Gln + Trp106Leu + Ile107Gly
	Leu 96Asn + Gly 97Glu + Ile107Pro
	Gly100Pro + Gly102Gln + Gln103Glu
35	Gly 97Asp + Ala 98Asn + Trp106Leu
	Ala 98Gln + Gly100Pro + Trp106His
	Leu 96Thr + Gly100Asn + Ser105Glu
	Val 95Ser + Leu 96Asn + Gly 97Pro
	Gly100Gln + Ser105Glu + Trp106Gln
40	Gly 97Glu + Tyr104Thr + Trp106Val
	Leu 96Ala + Ala 98Gln + Gly100Glu
	Val 95His + Gly 97Gln + Ser101Glu
	Val 95Pro + Gly102Asn + Gln103Glu
	Gln103Asn + Trp106Ile + Ile107Ala
45	Gly 97Ser + Ala 98Glu + Tyr104Gln
	Val 95Glu + Leu 96Ile + Ile107Gln
	Leu 96Gln + Ala 98Ser + Asp 99Glu
	Leu 96Pro + Ser101Glu + Gly102Pro
	Gly 97Asn + Ala 98Pro + Gly100Pro
	· · · · · · · · · · · · · · · · · · ·

	•					
	Gly 97Ası	1 +	Ala	98Glu	+	Gly100Asn
	Gly102Pro) +	Trp!	106Ala	+	Ile107Pro
•	Gly100Sex	-	Gly	l02Glu	+	Trp106Cys
	Leu 96Th	+ 2	Gly!	102Glu	+	Ile107Val
5	Leu 96Cys	5 +	Trp!	l06Leu	+	Ile107Pro
	Leu 96Th	c +	Ser!	105G1u	+	Trp106Tyr
	Leu 96Ala	a +	Gly!	QzA001	+	Ser101Asp
: ·	Gly 97Ası	1 +	Ser:	l01Glu	+	Gly102Asp
						Gly102Asp
10	Asp 99Glu	+ ג	Gly:	L00Asp	+	Trp106Phe
						Ile107Asp
						Trp106Val
						Ile107Asp
						Trp106Pro
15	Val 95Ala	a +	Gly	97Asp	+	Asp 99Glu

TABLE 9

Loop 2 - Quadruple Mutation Variants Leu 96Gln + Gly 97Ser + Ser101Glu + Trp106Val Val 95Ala + Ala 98Gln + Gly100Asn + Gln103Asp 20 Val 95Gln + Tyr104Ile + Trp106Gly + Ile107Pro Val 95Met + Leu 96Gly + Gly100Pro + Trp106Gly Ala 98Gln + Gly100Pro + Tyr104Thr + Trp106His Gly 97Pro + Ala 98His + Gly100Pro + Ile107Asp Ala 98Pro + Gly100Glu + Trp106Ser + Ile107Met 25 Leu 96Gln + Gly 97Ser + Ser105Asp + Ile107Val Ala 98Gly + Ser101Asp + Trp106Ala + Ile107Gln Val 95Ser + Gly 97Ser + Asp 99Glu + Gln103Ser Leu 96Thr + Gly 97Ser + Asp 99Glu + Tyr104Asn Val 95Thr + Leu 96Gln + Ala 98Pro + Ser105Glu 30 Val 95Gly + Gly 97Ser + Tyr104Asn + Trp106Glu Leu 96Gln + Gly 97Ser + Tyr104Thr + Ile107Glu Val 95Ser + Leu 96Pro + Gly100Gln + Ser101Asp Leu 96Met + Gly100Ser + Ser101Asp + Trp106Asn Leu 96Ile + Ala 98Ser + Gly100Pro + Gly102Glu 35 Val 95Asn + Ala 98Gly + Gln103Ser + Tyr104Val Gly 97Asn + Asp 99Glu + Gly102Asn + Trp106His Gly 97Ser + Gly102Asp + Gln103Asp + Ile107His Val 95Pro + Gly100Glu + Ser101Glu + Tyr104Gly Ala 98Pro + Gly100Asp + Ser101Asp + Ile107Cys 40 Leu 96Gly + Ser101Asp + Gly102Asp + Ile107Gly Val 95His + Tyr104Asp + Ser105Asp + Trp106Ala Gly102Pro + Ser105Asp + Trp106Asp + Ile107Thr Leu 96Glu + Ala 98Gln + Gly102Asp + Tyr104Pro Ala 98Thr + Asp 99Glu + Gly100Glu + Ser101Glu 45 Gly 97Ser + Ala 98Glu + Asp 99Glu + Gly100Glu Leu 96Asp + Gly 97Glu + Gly100Glu + Ile107Asn Leu 96Asn + Gly100Asp + Ser101Asp + Gly102Glu Val 95Gly + Ser101Glu + Gly102Asp + Gln103Asp

	•
	Val 95His + Leu 96Glu + Gly100Gln + Ser101Glu
	Leu 96Glu + Gly100Gln + Ser101Asp + Gly102Ser
	Gly 97Asp + Gly100Asp + Gly102Pro + Ile107Gly
	Gly 97Glu + Asp 99Glu + Gly100Pro + Tyr104Ser
5	Leu 96Ile + Gly 97Gln + Gln103Glu + Ser105Glu
	Gln103Asp + Ser105Asp + Trp106Asn + Ile107His
	Val 95Pro + Ala 98Pro + Gln103Glu + Ser105Asp
	Val 95His + Asp 99Glu + Ser101Glu + Gly102Pro
	Leu 96Asn + Asp 99Glu + Gly100Asn + Ser101Glu
)	Ala 98Asp + Asp 99Glu + Ser101Asp + Ile107Pro
	Leu 96Thr + Gly 97Glu + Gly100Glu + Gly102Asp
	Val 95Glu + Gly102Asp + Tyr104Ser + Ile107Glu
	Leu 96Gly + Gly102Asp + Gln103Asp + Ser105Glu
	Gly102Glu + Gln103Glu + Ser105Glu + Trp106Cys
;	Asp 99Glu + Ser101Glu + Gly102Glu + Gln103Asn
	Asp 99Glu + Ser101Glu + Gly102Glu + Trp106Gly
	Gly102Glu + Gln103Asn + Tyr104Asp + Ile107Thr
	Val 95His + Leu 96Val + Gln103Glu + Ile107Glu
	Gly 97Ser + Gly102Ser + Gln103Glu + Ile107Glu
)	Val 95Glu + Leu 96Asp + Gln103Asp + Ile107Asn
	Val 95Thr + Gly102Glu + Trp106Tyr + Ile107Asp
	Val 95Glu + Gly 97Glu + Ala 98Gly + Gly100Asp
	Leu 96Ala + Gly 97Pro + Ala 98Asp + Ser101Asp
	Val 95Asp + Leu 96Asp + Tyr104Glu + Ile107Ser
5 .	Val 95Pro + Gly102Glu + Tyr104Pro + Ser105Asp
	Leu 96Asn + Gly102Asp + Gln103Asn + Ser105Glu
	Leu 96Asn + Gly102Asp + Tyr104Ala + Ser105Glu
	Leu 96Ser + Gly 97Gln + Gly102Glu + Ser105Asp
	Leu 96Thr + Asp 99Glu + Gly102Asp + Ile107Gly

TABLE 10

Loop 3 - Single Mutation Variants Leu126Ala Leu126Asn 35 Leu126Asp Leu126Cys Leu126Gln Leu126Glu Leu126Gly Leu126His 40 Leu126Ile Leu126Met Leu126Pro Leu126Ser 45 Leu126Thr Leu126Val Gly127Asn Gly127Asp Gly127Gln

WO 95/30010 PCT/US95/03176

25

	•
	Gly127Glu
	Gly127Pro
	Gly127Ser
	Gly128Asn
5	Gly128Asp
	Gly128Gln
	Gly128Glu
	Gly128Pro
	Gly128Ser
10	Pro129Asn
	Pro129Asp
	Pro129Gln
	Pro129Glu
	Pro129Gly
15	Pro129Ser
	Ser130Asp
	Ser130Glu
	Gly131Asn
-	Gly131Asp
20	Gly131Gln
	Gly131Glu
	Gly131Pro
	Gly131Ser
	Ser132Asp
25	Ser132Glu
	Ala133Asn
	Ala133Asp
	Ala133Gln
	Ala133Glu
30	Ala133Gly
	Ala133His
	Ala133Pro
	Ala133Ser
	Ala133Thr
25	
35	
	TABLE 11
	Loop 3 - Double Mutation Variants
	Leu126Gln + Ser130Glu
	Gly131Gln + Ala133Asn
40	Pro129Asp + Gly131Gln
	Gly128Ser + Ser130Glu
•	Leu126Pro + Ala133Gly
	Gly127Asp + Ala133Gly
	Leu126Asp + Pro129Gln
45	Gly131Asn + Ala133Gln
-	Gly127Pro + Gly131Glu
	Gly128Asn + Gly131Asp
	Pro129Gln + Ser130Glu
	Gly128Pro + Ser130Asp

	•
	Gly128Gln + Pro129Ser
	Gly128Asn + Pro129Gly
	Leu126Val + Ser130Asp
	Leu126Val + Pro129Ser
5	Leu126Cys + Pro129Glu
•	Gly127Asp + Ala133Thr
	Gly128Pro + Pro129Glu
	Gly127Ser + Gly131Asp
•	Leul26His + Prol29Asp
10	Gly131Pro + Ala133Glu
10	Gly127Ser + Gly128Ser
	Pro129Asn + Gly131Glu
	Leu126Val + Pro129Asp
	Pro129Gly + Ala133Asp
45	
15	Leu126Val + Ser130Glu
	Pro129Glu + Ala133Pro
	Pro129Gly + Ser130Asp
	Leu126His + Gly128Glu
••	Gly128Asn + Ser132Glu
20	Gly127Pro + Ser132Asp
	Gly127Gln + Pro129Gln
	Gly128Pro + Pro129Asp
	Gly128Asn + Ser130Glu
or :	Leu126Cys + Pro129Asn
25	Pro129Asn + Ser132Glu
	Leu126Ser + Ser132Asp
	Gly128Glu + Gly131Ser Pro129Asn + Ser130Asp
	Leul26Ser + Serl32Glu
20	Pro129Gln + Gly131Pro
30	Gly127Asp + Gly128Gln
	Glyl28Gln + Prol29Glu
•	
	Gly127Pro + Pro129Gly Pro129Gln + Ala133Gln
25	
35 .	Leu126Val + Gly128Asp Gly128Ser + Ser132Glu
	Leu126Asn + Pro129Gly Leu126Ile + Ala133Gly
	Gly128Ser + Gly131Gln
40	Gly127Ser + Ser130Asp Leu126Cys + Ser132Asp
	Gly127Pro + Ser130Glu
	Leu126His + Ala133Asp
	Gly131Ser + Ala133Glu
45	Gly131Pro + Ala133Gln
	Gly131Asp + Ala133Ser
	Leu126Asp + Ala133Asn
	Leu126Glu + Pro129Gln

TABLE 12

	17.000 12
	Loop 3 - Triple Mutation Variants
	Leu126His + Pro129Glu + Ala133Asn
5	Leu126Asp + Gly128Ser + Gly131Gln
	Pro129Asn + Gly131Ser + Ser132Glu
	Gly128Pro + Pro129Asn + Ser130Glu
	Gly128Gln + Ser130Glu + Ala133Ser
	Gly131Gln + Ser132Glu + Ala133Gln
10	Gly128Asp + Gly131Ser + Ala133Asn
	Gly131Ser + Ser132Asp + Ala133Pro
	Pro129Ser + Gly131Gln + Ala133Glu
	Gly128Asn + Ser130Glu + Gly131Gln
	Leu126Gly + Gly127Gln + Gly131Pro
15	Leu126Pro + Gly127Glu + Gly128Pro
	Leu126Ser + Pro129Ser + Ser132Asp
	Gly128Ser + Ser132Glu + Ala133Asn
	Leu126Val + Ser132Glu + Ala133Gln
	Pro129Gly + Ser130Glu + Gly131Pro
20	Leu126Thr + Gly127Pro + Ala133Asn
	Leu126His + Ser130Asp + Ala133Pro
	Leu126Cys + Gly127Ser + Pro129Ser
	Leu126Gly + Ser132Asp + Ala133Ser
	Gly128Gln + Pro129Gln + Gly131Asn
25	Gly128Asp + Gly131Asn + Ala133His
	Leu126Cys + Ser130Glu + Ala133Gly
	Gly127Ser + Ser130Asp + Ala133Gly
	Leul26His + Prol29Asn + Ser130Asp
	Leu126Asn + Gly131Asp + Ala133Gln
30	Leu126Met + Gly128Asn + Ser132Asp
	Leu126Glu + Gly127Gln + Ala133His
	Leul26Met + Ser132Asp + Ala133His
	Ser130Glu + Gly131Gln + Ala133Gln
	Gly127Pro + Gly128Ser + Ala133Ser
35	Leu126Ala + Pro129Gly + Ser132Glu
	Gly131Asn + Ser132Asp + Ala133Asn
	Leu126Val + Gly131Asp + Ala133Ser
	Leu126Ser + Gly127Asn + Ala133Gln
	Pro129Gln + Ser130Glu + Ala133His
40	Leu126Met + Gly127Ser + Ser130Asp
	Leu126Cys + Pro129Asn + Gly131Asp
	Pro129Ser + Ser130Asp + Ala133Asn
	Leu126Ser + Pro129Gly + Ser132Glu
	Gly127Ser + Pro129Gln + Ser132Asp
45	Gly127Pro + Gly128Asn + Pro129Gln
	Leu126His + Ser132Asp + Ala133Asn
	Gly128Pro + Pro129Glu + Ala133Thr
	Prol29Ser + Gly131Glu + Ala133Pro
	Leu126His + Gly128Pro + Pro129Gln

	•
	Leu126Met + Gly127Asp + Gly128Asp
	Gly128Pro + Gly131Glu + Ser132Asp
	Gly131Asp + Ser132Glu + Ala133Pro
	Gly128Glu + Pro129Glu + Ala133Asn
5	Pro129Ser + Ser132Glu + Ala133Glu
	Leu126Asn + Ser130Glu + Gly131Asp
	Pro129Asn + Ser130Glu + Gly131Asp
	Leu126His + Ser130Glu + Gly131Glu
	Pro129Glu + Ser130Asp + Gly131Asn
10	Gly127Ser + Pro129Asp + Ser130Asp
	Serl30Asp + Gly131Asp + Serl32Asp
	Gly128Asp + Ser130Glu + Gly131Asn
	Leu126Met + Gly128Glu + Ser130Asp
	Gly128Asp + Pro129Asn + Ser130Glu
-	

15

TABLE 13

Loop 3 - Quadruple Mutation Variants Leu126Ser + Pro129Asn + Ser130Asp + Ala133His Leu126Met + Pro129Ser + Ser132Glu + Ala133Asn Gly127Ser + Gly131Gln + Ser132Glu + Ala133Gln 20 Leu126Asn + Gly127Pro + Gly128Glu + Pro129Gly Leu126Asn + Pro129Gly + Gly131Asp + Ala133Gly Leu126Gly + Pro129Gly + Ser132Glu + Ala133Pro Leu126Gly + Gly127Asp + Pro129Gly + Gly131Pro Gly127Asn + Pro129Gln + Gly131Asp + Ala133Gly 25 Leu126Pro + Gly127Ser + Gly128Gln + Ser130Glu Leu126Ala + Gly127Gln + Pro129Asn + Ser130Glu Leu126Asn + Gly127Ser + Ser130Glu + Ala133Thr Gly128Gln + Pro129Gln + Ser130Asp + Gly131Ser Leu126His + Gly128Ser + Gly131Ser + Ser132Asp 30 Leu126Gln + Pro129Ser + Ser130Asp + Ala133His Leu126Val + Gly128Pro + Pro129Asn + Ala133Asp Leu126Val + Pro129Gly + Ser130Glu + Ala133Thr Leu126Thr + Gly127Pro + Ser132Glu + Ala133Thr Gly128Asp + Pro129Gly + Gly131Pro + Ala133Ser 35 Leul26Asn + Gly128Glu + Pro129Gln + Gly131Pro Leu126Pro + Gly127Pro + Pro129Ser + Ser130Asp Gly127Pro + Gly128Gln + Gly131Glu + Ser132Glu Leu126Ile + Gly127Gln + Gly131Asp + Ser132Glu Leu126Val + Gly131Asp + Ser132Asp + Ala133Pro 40 Gly128Asp + Pro129Asp + Gly131Asn + Ala133Pro Pro129Asn + Gly131Ser + Ser132Asp + Ala133Asp Leu126Gln + Gly131Pro + Ser132Asp + Ala133Asp Gly127Pro + Ser130Glu + Gly131Glu + Ala133His Leu126Gln + Pro129Gln + Ser130Asp + Gly131Glu 45 Gly127Ser + Ser130Asp + Gly131Glu + Ala133Gln Leul26Ser + Gly127Pro + Pro129Glu + Ser130Glu Ser130Glu + Gly131Glu + Ser132Glu + Ala133Ser Gly127Gln + Ser130Glu + Gly131Asp + Ser132Asp

			•				
	Gly128Gln	+	Ser130Glu	+	Gly131Asp	+	Ser132Asp
	Gly127Asn	+	Ser130Glu	+	Gly131Asp	+	Ser132Asp
	Gly127Ser	+	Pro129Asp	+	Ser130Glu	+	Gly131Glu
	Gly127Asn	+	Pro129Asp	+	Ser130Asp	+	Gly131Asp
5							Gly131Asp
	Leu126Ser	+	Gly128Asp	+	Ser130Glu	+	Ala133Pro
	Gly127Asn	+	Gly128Asp	+	Ser130Glu	+	Ala133Pro
	. Gly128Glu	+	Ser130Glu	+	Gly131Pro	+	Ala133His
	Leu126Val	+	Ser130Asp	+	Ser132Asp	+	Ala133Asn
10	Pro129Ser	+	Ser130Glu	+	Ser132Asp	+	Ala133Gly
	Leul26His	+	Ser130Glu	+	Ser132Asp	+	Ala133His
	Leu126Ala	+	Ser130Glu	+	Ser132Glu	+	Ala133Asn
	Gly127Pro	+	Gly128Gln	+	Ser130Asp	+	Ser132Glu
	Leu126Ser	+	Ser130Asp	+	Gly131Pro	+	Ser132Asp
15	Ser130Glu	+	Gly131Pro	+	Ser132Glu	+	Ala133Ser
	Gly128Gln	+	Ser130Asp	+	Gly131Ser	+	Ser132Glu
							Ser132Glu
	Gly127Gln	+	Gly128Pro	+	Pro129Glu	+	Gly131Asp
	Gly128Gln	+	Pro129Asp	+	Gly131Glu	+	Ala133Asn
20	Leu126Asn	+	Pro129Glu	+	Gly131Asp	+	Ala133Ser
	Leu126Met	+	Pro129Glu	+	Gly131Glu	+	Ala133Thr
	Gly127Asp	+	Gly128Gln	+	Pro129Asp	+	Ala133Gln
	Leu126His	+	Pro129Gly	+	Gly131Glu	+	Ala133Glu
							Ala133Asn
25							Ala133Glu
							Ala133Glu
							Ser132Glu
	Pro129Asp	+	Ser130Glu	+	Gly131Ser	+	Ser132Asp

TABLE 14

	Loop 4 - Single Mutation Variants
	Gly154Asn
	Gly154Asp
	Gly154Gln
35	Gly154Glu
	Gly154Pro
	Gly154Ser
	Asn155Asp
	Asn155Gln
40	Asn155Glu
	Asn155Ser
	Glu156Asp
	Gly157Asn
	Gly157Asp
45	Gly157Gln
	Gly157Glu
	Gly157Pro
	Gly157Ser
	Thr158Asn

PCT/US95/03176 **WO 95/30010**

30

	•
	Thr158Asp
	Thr158Gln
	Thr158Glu
	Thr158Gly
5	Thr158Pro
	Thr158Ser
	Ser159Asp
	Ser159Glu
	Gly160Asn
10	Gly160Asp
	Gly160Gln
	Gly160Glu
	Gly160Pro
	Gly160Ser
15	Ser161Asp
13	Ser161Glu
	Ser162Asp
	Ser162Glu
	Ser163Asp
20	Ser163Glu
20	Thr164Asn
	Thr164Asp
	Thr164Gln
•	Thr164Glu
25	Thr164Gly
	Thr164Pro
	Thr164Ser
	Val165Ala
	Val165Asn
30	Val165Asp
	Val165Cys
	Val165Gln
	Val165Glu
	Val165Gly
35	Val165His
	Val165Met
	Val165Pro
	Val165Ser
	Vall65Thr
40	Gly166Asn
	Gly166Asp
	Gly166Gln
	Gly166Glu
•	Gly166Pro
45	Gly166Ser
	Tyr167Ala
	Tyr167Asn
	Tyr167Asp
	Tyr167Cys
50	Tyr167Gln
	Tyllo/Gin

	•	
	Tyr167Glu	
	Tyr167Gly	
•	Tyr167His	
	Tyr167Ile	
5	Tyr167Leu	
_	Tyr167Met	·
	Tyr167Pro	
:	Tyr167Ser	
	Tyr167Thr	
10	Tyr167Val	

TABLE 15

	Loop 4 - Double Mutation Variants
•	Asn155Ser + Glu156Asp
15	Gly154Ser + Tyr167Gln
	Gly154Glu + Val165Ala
	Asn155Glu + Thr164Pro
	Gly157Pro + Ser159Asp
	Gly154Ser + Ser161Asp
20	Ser161Glu + Val165Pro
	Gly154Gln + Ser161Glu
	Asn155Asp + Thr158Pro
	Thr164Asn + Gly166Gln
	Asn155Glu + Tyr167His
25	Glu156Asp + Thr158Gly
	Gly154Pro + Gly157Glu
	Asn155Ser + Tyr167Asp
	Thr158Pro + Gly166Asp
	Thr164Gln + Tyr167Glu
30	Gly157Gln + Thr158Glu
	Thr158Asn + Ser162Asp
	Gly154Asn + Tyr167Glu
	Gly157Gln + Ser161Asp
	Thr164Asp + Tyr167Ala
35	Gly160Asp + Val165His Gly154Glu + Gly157Ser
	Glul56Asp + Tyr167Ile
	Asn155Ser + Thr158Asp
•	Gly157Gln + Thr164Pro
40	Thr164Ser + Tyr167Ile
40	Ser159Glu + Tyr167Thr
	Thr164Glu + Vall65Gln
	Thr158Gly + Gly160Ser
	Ser161Asp + Gly166Pro
45	Gly154Glu + Gly166Ser
45	Gly160Asp + Val165Asn
	Ser162Glu + Vall65Gln
	Gly157Asn + Ser159Glu
	Ser161Asp + Val165Asn

WO 95/30010 PCT/US95/03176

32

	Asn155Asp + Val165Pro
	Glu156Asp + Gly166Ser
	Gly154Pro + Ser159Asp
	Gly154Ser + Tyr167Cys
5	Gly160Pro + Thr164Asp
	Ser161Glu + Val165Gly
	Ser162Glu + Tyr167Asn
	Gly154Asn + Gly166Glu
	Ser161Glu + Tyr167Ala
· 10	Gly160Gln + Val165Pro
	Gly154Glu + Val165Gly
	Gly160Ser + Ser163Asp
	Gly157Glu + Thr158Asn
	Gly160Asp + Val165Pro
15	Gly160Asn + Ser162Asp
	Thr164Gln + Gly166Gln
	Asn155Ser + Thr158Gln
	Ser161Glu + Tyr167Gly
	Ser162Asp + Gly166Ser
20	Gly154Glu + Thr158Gly
	Gly154Ser + Thr158Ser
	Gly157Asp + Gly160Pro
	Ser163Glu + Val165His
	Gly154Pro + Gly166Asp
25	
	TADIE 16
	TABLE 16
	Loop 4 - Triple Mutation Variants
_	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp
	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln
30	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro
	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser
	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr
	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn
30	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln
	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser
30	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln
30	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln Thr158Gln + Ser162Asp + Tyr167Val
30	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln Thr158Gln + Ser162Asp + Tyr167Val Gly157Gln + Ser162Glu + Tyr167Leu
35	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln Thr158Gln + Ser162Asp + Tyr167Val Gly157Gln + Ser162Glu + Tyr167Leu Ser162Glu + Thr164Gln + Val165Cys
30	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln Thr158Gln + Ser162Asp + Tyr167Val Gly157Gln + Ser162Glu + Tyr167Leu Ser162Glu + Thr164Gln + Val165Cys Gly157Ser + Val165Met + Gly166Glu
35	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln Thr158Gln + Ser162Asp + Tyr167Val Gly157Gln + Ser162Glu + Tyr167Leu Ser162Glu + Thr164Gln + Val165Cys Gly157Ser + Val165Met + Gly166Glu Gly154Ser + Glu156Asp + Gly166Pro
35	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln Thr158Gln + Ser162Asp + Tyr167Val Gly157Gln + Ser162Glu + Tyr167Leu Ser162Glu + Thr164Gln + Val165Cys Gly157Ser + Val165Met + Gly166Glu Gly154Ser + Glu156Asp + Gly166Pro Thr158Ser + Ser161Asp + Thr164Gly
35	Loop 4 - Triple Mutation Variants
35	Loop 4 - Triple Mutation Variants Gly154Gln + Asn155Ser + Glu156Asp Gly154Ser + Gly160Asp + Tyr167Gln Asn155Glu + Gly157Ser + Thr164Pro Gly157Asn + Ser159Asp + Gly160Ser Glu156Asp + Gly160Ser + Val165Thr Gly160Pro + Ser162Glu + Thr164Asn Gly154Ser + Glu156Asp + Thr158Gln Gly160Asn + Ser162Glu + Gly166Ser Gly160Ser + Val165Gly + Gly166Gln Thr158Gln + Ser162Asp + Tyr167Val Gly157Gln + Ser162Glu + Tyr167Val Gly157Gln + Ser162Glu + Tyr167Leu Ser162Glu + Thr164Gln + Val165Cys Gly157Ser + Val165Met + Gly166Glu Gly154Ser + Glu156Asp + Gly166Pro Thr158Ser + Ser161Asp + Thr164Gly Glu156Asp + Gly157Ser + Gly160Asn Gly154Gln + Asn155Asp + Gly166Ser
35	Loop 4 - Triple Mutation Variants
35	Loop 4 - Triple Mutation Variants
35	Loop 4 - Triple Mutation Variants
35	Loop 4 - Triple Mutation Variants

PCT/US95/03176 WO 95/30010

33

	Glu156Asp + Thr158Asn + Val165Cys
	Thr158Asn + Gly160Glu + Thr164Pro
	Gly154Asn + Gly157Pro + Thr158Gln
	Asn155Glu + Gly157Ser + Thr158Gln
5	Thr158Glu + Gly160Ser + Tyr167Val
	Asn155Gln + Glu156Asp + Thr164Ser
	Asn155Ser + Ser162Glu + Val165Met
	Gly154Gln + Thr158Gly + Gly166Asp
	Ser163Glu + Val165Ala + Gly166Asn
0	Asn155Ser + Gly160Glu + Thr164Gln
	Gly157Asp + Thr164Ser + Gly166Pro
	Ser163Asp + Thr164Glu + Tyr167Met
	Ser163Asp + Thr164Asp + Val165Met
	Glu156Asp + Gly157Asp + Thr164Gln
15	Gly157Gln + Gly166Asp + Tyr167Glu
	Ser161Asp + Ser162Glu + Tyr167His
	Gly154Asn + Ser159Glu + Ser162Glu
	Ser159Asp + Ser162Glu + Val165Cys
	Ser159Glu + Gly160Ser + Ser161Asp
20	Thr158Asp + Ser161Glu + Ser162Glu
	Ser161Glu + Ser163Asp + Thr164Ser
	Ser161Glu + Ser163Glu + Val165His
	Asn155Glu + Glu156Asp + Thr158Glu
	Gly157Glu + Thr164Glu + Val165Gly
25	Ser161Asp + Ser163Glu + Thr164Glu
	Gly157Glu + Thr158Gln + Ser159Glu
	Gly157Glu + Ser159Asp + Tyr167Cys
	Gly157Asp + Ser163Glu + Thr164Glu
	Ser159Glu + Ser163Asp + Thr164Gly
30	Ser159Asp + Ser163Asp + Thr164Asn
	Thr158Asp + Ser161Asp + Ser163Glu
	Thr158Glu + Ser162Asp + Thr164Asn
	Thr158Glu + Ser162Asp + Val165Thr
	Gly157Ser + Thr158Asp + Ser162Glu
35	Thr158Asp + Ser163Glu + Thr164Asn
	Thr158Glu + Ser163Asp + Tyr167Gly
-	Glu156Asp + Gly166Glu + Tyr167Ile
	Asn155Glu + Gly157Pro + Thr164Asp

TABLE 17

```
Loop 4 - Quadruple Mutation Variants
Ser159Glu + Thr164Ser + Val165Thr + Gly166Pro
```

Asn155Ser + Gly157Pro + Val165Ser + Gly166Glu Gly157Asn + Val165Pro + Gly166Glu + Tyr167Val Thr158Ser + Gly160Gln + Val165His + Gly166Asp 45 Gly154Ser + Gly157Pro + Ser163Glu + Thr164Ser Gly157Gln + Gly160Asp + Thr164Ser + Val165Asn Gly157Asn + Gly160Asp + Val165Cys + Tyr167Leu Glu156Asp + Thr158Ser + Val165Asn + Gly166Pro

WO 95/30010

34

```
Glu156Asp + Thr158Pro + Thr164Gln + Val165Pro
           Asn155Gln + Glu156Asp + Thr164Gly + Val165Thr
           Thr158Gly + Gly160Ser + Ser163Asp + Tyr167Asn
           Ser159Asp + Gly160Gln + Gly166Ser + Tyr167Pro
           Gly154Pro + Thr164Gln + Val165Gly + Gly166Asp
5
           Gly154Asn + Gly160Pro + Ser161Glu + Gly166Pro
           Asn155Ser + Gly157Asn + Thr164Gln + Tyr167Asp
           Gly157Asn + Thr158Asn + Ser163Glu + Val165Gln
           Glv160Glu + Ser161Asp + Val165Met + Tyr167Pro
           Asn155Glu + Glu156Asp + Thr158Gln + Gly166Pro
10
           Asn155Asp + Glu156Asp + Val165Asn + Gly166Asn
           Asn155Asp + Glu156Asp + Gly160Ser + Thr164Asn
           Gly154Ser + Thr158Gln + Ser162Glu + Ser163Glu
           Gly154Asn + Asn155Gln + Ser163Glu + Thr164Glu
           Glu156Asp + Gly157Glu + Gly160Gln + Thr164Gly
15
           Glu156Asp + Gly157Glu + Thr158Ser + Val165Cys
           Gly154Pro + Gly157Pro + Thr158Asp + Ser159Asp
           Gly154Ser + Gly157Asn + Thr158Glu + Ser159Glu
           Gly157Pro + Gly160Pro + Gly166Asp + Tyr167Glu
           Gly154Asn + Ser161Glu + Ser162Glu + Tyr167Asn
20
           Gly154Asp + Asn155Asp + Thr164Gln + Gly166Asn
           Gly154Gln + Ser159Glu + Gly160Glu + Ser161Asp
           Thr158Ser + Ser159Asp + Gly160Asp + Ser161Asp
           Asn155Ser + Glu156Asp + Gly157Asp + Thr158Glu
           Gly157Asn + Ser159Asp + Ser161Glu + Ser162Glu
25
           Gly154Asn + Glu156Asp + Gly157Glu + Thr164Glu
           Gly157Gln + Gly160Asp + Ser162Asp + Val165Thr
           Gly160Glu + Ser162Asp + Thr164Asn + Gly166Gln
           Gly154Asp + Asn155Ser + Glu156Asp + Thr164Ser
           Gly154Asp + Glu156Asp + Gly157Glu + Thr158Gly
30
           Gly154Gln + Gly157Pro + Ser159Asp + Ser161Asp
           Ser159Glu + Ser161Asp + Gly166Ser + Tyr167His
           Ser159Asp + Ser161Asp + Gly166Pro + Tyr167Ser
           Glu156Asp + Thr158Glu + Val165Ala + Gly166Gln
           Glu156Asp + Thr158Asp + Gly166Pro + Tyr167Ala
35
           Asn155Gln + Thr158Asp + Thr164Asp + Tyr167Val
           Ser163Glu + Thr164Asp + Val165Met + Gly166Glu
           Ser161Asp + Ser163Asp + Val165Thr + Tyr167His
           Ser161Asp + Ser163Glu + Thr164Gln + Gly166Asn
           Gly157Pro + Ser159Glu + Ser161Asp + Ser163Glu
40
           Gly154Pro + Glu156Asp + Ser163Asp + Thr164Glu
           Asn155Asp + Glu156Asp + Thr158Asp + Thr164Asn
           Glu156Asp + Ser159Asp + Thr164Asp + Val165Ala
           Thr158Gln + Ser159Asp + Ser163Glu + Val165Cys
           Gly154Gln + Ser159Asp + Ser163Asp + Gly166Pro
45
           Asn155Ser + Gly160Asp + Ser162Glu + Thr164Asp
           Gly154Gln + Gly160Asp + Ser162Glu + Thr164Glu
           Glu156Asp + Gly160Pro + Val165Pro + Gly166Glu
```

Gly160Glu + Ser163Asp + Thr164Gly + Tyr167Leu Gly160Glu + Ser163Glu + Thr164Pro + Gly166Gln

50

Asn155Asp + Thr158Pro + Ser163Glu + Thr164Asp Asn155Ser + Glu156Asp + Ser163Asp + Gly166Glu

TABLE 18 **Loop 5 - Single Mutation Variants** Ala187Asn Ala187Asp Ala187Gln Ala187Glu 10 Ala187Gly Ala187His Ala187Pro Ala187Ser Ala187Thr 15 Ser188Asp Ser188Glu Phe189Ala Phe189Asn Phe189Asp 20 Phe189Cys Phe189Gln Phe189Glu Phe189Gly Phe189His 25 Phe189Ile Phe189Leu Phe189Met Phe189Pro Phe189Ser 30 Phe189Thr Phe189Tyr Phe189Val Ser190Asp Ser190Glu 35 Ser191Asp Ser191Glu TABLE 19 **Loop 5 - Double Mutation Variants** Ala187Asp + Phe189Gln 40 Ala187Ser + Ser188Asp Ser188Glu + Phe189Pro Ala187Asp + Phe189His Ala187Asn + Ser191Glu Ala187Gln + Ser191Asp 45 Ala187Glu + Phe189Pro

Ala187Pro + Phe189Asp

	•		
	Ser188Asp	+	Phe189Cys
	Phe189His	+	Ser191Asp
•	Ser188Glu	+	Phe189Ala
	Ala187His		
5	Ala187Asn		
	Ser188Glu		
	Ala187Asp	+	Phe189Ser
	Ser188Asp	+	Phe189Val
	Ala187Gln	+	Ser188Glu
10	Ala187Ser	+	Ser188Glu
10	Ala187Pro		
	Ser188Glu	+	Phe189Val
	Phe189Ser		
	Ala187Gly		
15	Ala187Asn		
13	Ala187Thr		
	Ala187His		
	Ser188Glu		
	Ala187Ser		
	Ser188Glu		
20	Phe189Asn		
	Ala187Gln		
	Ala187Gln		
	Ala187Ser		
0F :			Ser191Asp
25			-
			Phe189Leu
	Ala187Pro		
			Ser191Glu
			Ser191Asp
30			Phe189Met
			Ser191Glu
			Phe189Tyr
			Phe189Val
			Phe189Gln
35			Phe189Tyr
			Phe189Asp
			Ser191Glu
			Ser191Asp
			Ser188Glu
40			Ser188Asp
			Ser188Asp
			Phe189Cys
			Ser191Glu
	-		Phe189Gly
45			Phe189Leu
	_		Phe189Gly
			Phe189Asp
			Ser191Glu
			Ser191Asp
50	Ala187Thr	+	Ser188Asp

Phe189Ala + Ser191Glu Phe189Leu + Ser191Glu

TABLE 20 Loop 5 - Triple Mutation Variants 5 Ala187Pro + Phe189Cys + Ser191Glu Ala187Thr + Phe189Tyr + Ser191Glu Ala187Ser + Ser188Glu + Phe189Ser Ala187Gln + Phe189Asn + Ser191Glu Ala187Gln + Ser188Asp + Phe189His Ala187Gln + Ser188Glu + Phe189His 10 Ala187Gly + Ser188Asp + Phe189Met Ala187Gly + Ser188Asp + Phe189Cys Ala187Pro + Phe189His + Ser191Glu Ala187Pro + Phe189Gln + Ser191Glu 15 Ala187Asn + Ser188Asp + Phe189Asn Ala187Gly + Ser188Glu + Phe189Ser Ala187Gln + Phe189Met + Ser191Asp Ala187Gly + Ser188Asp + Phe189Pro Ala187Thr + Phe189His + Ser191Asp Ala187Asn + Ser188Glu + Phe189Cys 20 Ala187Gln + Phe189Val + Ser191Glu Ala187Pro + Phe189Met + Ser191Glu Ala187Ser + Ser188Glu + Phe189His Ala187Ser + Phe189Gln + Ser191Asp 25 Ala187Gln + Ser188Asp + Phe189Pro Ala187Gly + Ser188Asp + Phe189Gly Ala187His + Phel89Gln + Ser191Glu Ala187Thr + Ser188Glu + Phe189Ile Ala187Pro + Phe189Gly + Ser191Glu Ala187Thr + Phe189Met + Ser191Glu 30 Ala187Gly + Phe189Thr + Ser191Glu Ala187Gln + Phe189Leu + Ser191Glu Ala187Thr + Phe189Thr + Ser191Asp Ala187Gln + Ser188Asp + Phe189Met Ala187Pro + Phel89Ser + Ser191Glu 35 Ala187Asp + Ser188Glu + Phe189Val Ala187Glu + Ser188Glu + Phe189Ser Ala187Asp + Ser188Glu + Phe189Met Ala187Asp + Ser188Asp + Phe189Gln Ala187Asp + Ser188Glu + Phe189Cys 40 Ala187Asp + Ser188Glu + Phe189Tyr Ala187Glu + Ser188Glu + Phe189Tyr Ala187Asp + Ser188Asp + Phe189Gly Ala187Glu + Ser188Glu + Phe189Leu Ala187Asp + Ser188Glu + Phe189Ser 45 Ala187Glu + Ser188Asp + Phe189Gly Ala187Asp + Ser188Asp + Phe189Pro Ala187Asp + Ser188Glu + Phe189His Ala187Glu + Ser188Glu + Phe189Thr

	•
	Ala187Glu + Ser188Asp + Phe189Ile
	Ala187Glu + Ser188Asp + Phe189Asn
	Ala187Ser + Ser188Glu + Phe189Glu
	Ala187Gly + Ser188Asp + Phe189Glu
5	Ala187Gly + Ser188Glu + Phe189Asp
	Ala187Pro + Ser188Glu + Phe189Asp
	Ala187Asp + Ser188Glu + Phe189Glu
	Ala187Glu + Ser188Asp + Phe189Asp
	Ala187Asp + Ser188Glu + Phe189Asp
10	Ala187Glu + Ser188Glu + Phe189Glu
	Ala187Gly + Phe189Glu + Ser191Asp
	Ala187Gly + Phe189Glu + Ser191Glu
	Ala187Thr + Phe189Glu + Ser191Glu
	Ser188Glu + Phe189Glu + Ser191Glu
15	Ser188Glu + Phe189Glu + Ser191Asp

TABLE 21

```
Loop 5 - Quadruple Mutation Variants
           Ala187Ser + Ser188Glu + Phe189Asp + Ser191Asp
           Ala187Pro + Ser188Glu + Phe189Glu + Ser191Glu
20
           Ala187His + Ser188Glu + Phe189Asp + Ser191Glu
           Ala187Gly + Ser188Asp + Phe189Asp + Ser191Glu
           Ala187His + Ser188Glu + Phe189Glu + Ser191Asp
           Ala187Thr + Ser188Asp + Phel89Asp + Ser191Glu
           Ala187Asn + Ser188Glu + Phe189Glu + Ser191Glu
25
           Ala187Pro + Ser188Asp + Phe189Glu + Ser191Glu
           Ala187Pro + Ser188Asp + Phel89Asp + Ser191Asp
           Ala187Ser + Ser188Glu + Phe189Asp + Ser191Glu
           Ala187His + Ser188Asp + Phe189Glu + Ser191Asp
           Ala187Thr + Ser188Glu + Phe189Asp + Ser191Asp
30
           Ala187Asn + Ser188Asp + Phe189Glu + Ser191Glu
           Ala187Gln + Ser188Glu + Phe189Asp + Ser191Glu
           Ala187Gly + Ser188Asp + Phe189Glu + Ser191Glu
           Ala187Glu + Ser188Asp + Phe189Gly + Ser191Asp
           Ala187Glu + Ser188Glu + Phe189Met + Ser191Asp
35
           Ala187Asp + Ser188Asp + Phe189Ile + Ser191Glu
           Ala187Asp + Ser188Glu + Phe189Leu + Ser191Asp
           Ala187Asp + Ser188Glu + Phe189Thr + Ser191Asp
           Ala187Glu + Ser188Glu + Phe189Leu + Ser191Asp
           Ala187Glu + Ser188Asp + Phe189Tyr + Ser191Asp
40
           Ala187Glu + Ser188Glu + Phe189Gln + Ser191Asp
           Ala187Glu + Ser188Glu + Phe189Cys + Ser191Glu
           Ala187Glu + Ser188Glu + Phe189Gln + Ser191Glu
           Ala187Glu + Ser188Glu + Phe189Pro + Ser191Glu
           Ala187Asp + Ser188Glu + Phe189Ser + Ser191Glu
45
           Ala187Glu + Ser188Glu + Phe189Cys + Ser191Asp
           Ala187Asp + Ser188Asp + Phe189Leu + Ser191Asp
           Ala187Glu + Ser188Asp + Phe189Ile + Ser191Asp
           Ala187Asp + Ser188Asp + Phe189His + Ser191Glu
```

	Ala187Glu + Ser188	Asp +	Phe189His	+	Ser191Asp
	Ala187Glu + Ser188	Asp +	Phe189Val	+	Ser191Asp
	Ala187Asp + Ser188	Glu +	Phe189Gly	+	Ser191G1u
	Ala187Asp + Ser188	Asp +	Phe189Cys	+	Ser191Asp
5	Ala187Glu + Ser188	Glu +	Phe189Asn	+	Ser191Glu
	Ala187Asp + Ser188	Asp +	Phe189Thr	+	Ser191Glu
	Ala187Asp + Ser188	Asp +	Phe189Ile	+	Ser191Asp
	Ala187Asp + Ser188	Asp +	Phe189Ala	+	Ser191Glu
	Ala187Asp + Ser188	BAsp +	Phe189Val	+	Ser191Glu
10	Ala187Glu + Ser188	3Glu +	Phe189Ala	+	Ser191Glu
	Ala187Asp + Ser188	BAsp +	Phe189Ser	+	Ser191Asp
	Ala187Glu + Ser188	BAsp +	Phe189Asn	+	Ser191Asp
	Ala187Asp + Ser188	BAsp +	Phe189Cys	+	Ser191Glu
	Ala187Asp + Ser188	3Glu +	Phe189Cys	+	Ser191Asp
15	Ala187Glu + Ser188	BAsp +	Phe189Ser	+	Ser191Glu
	Ala187Asp + Ser188	BGlu +	Phe189Tyr	+	Ser191Glu
	Ala187Asp + Ser188	BGlu +	Phe189Ala	+	Ser191Asp
	Ala187Glv + Ser188	BGlu +	Phe189Thr	+	Ser191Asp
	Ala187His + Ser18	BAsp +	Phe189Met	+	Ser191Glu
20	Ala187Thr + Ser18	BAsp +	Phe189Ser	+	Ser191Asp
	Ala187Ser + Ser18	BGlu +	Phe189Met	+	Ser191Asp
	Ala187Ser + Ser18	8Asp +	Phe189Ser	+	Ser191Asp
	Ala187Thr + Ser18	8Asp +	Phe189Tyr	+	Ser191Glu
	Ala187Ser + Ser18	8Glu +	Phe189Ala	+	Ser191Asp
25	Ala187Asn + Ser18	8Glu +	Phe189Gly	+	Ser191Asp
	Ala187Gln + Ser18	8Asp +	Phe189Asn	+	Ser191Glu
	Ala187Asn + Ser18	8Asp +	Phe189His	+	Ser191Glu
	Ala187Glv + Ser18	8Asp +	Phe189Ser	+	Ser191Glu
	Ala187His + Ser18	8Asp +	Phe189Val	+	Ser191Asp

TABLE 22

Multi-loop Double Mutation Variants Leu 96Gly + Ser204Glu Gln 59Ser + Asn 62Ser Val 95Gln + Asn218Asp 35 Tyr104Cys + Lys213Glu Gly127Gln + Ala216Pro Ser188Glu + Gly215Asn Gly 97Gln + Ile107Ala Gln206Asp + Tyr217Thr 40 Asp 60Glu + Gln206Asn Thr158Asp + Gln206Ser Pro210Gln + Gly215Asn Tyr104Glu + Ile107Leu Tyr167Pro + Gly211Glu 45 Ile107Leu + Ala187Asp Gly 97Glu + Thr164Pro Thr 66Pro + Val203Cys Ala133Gly + Tyr217Ser

	•
	Ser105Glu + Phe189Val
	Tyr167Asp + Ala187Thr
	Ser161Glu + Ala216Thr
	Ser 63Asp + Gln103Ser
5	Leu 96Gln + Pro129Glu
	Ala 98Gly + Tyr214Glu
	Leu 96Asn + Asn212Ser
	Ser 63Asp + Phel89Leu
	Thr158Gln + Lys213Glu
10	Leu126Gln + Gly160Asp
	Ser159Asp + Tyr217Gln
	Ser101Asp + Val203Ala
	Gly100Asn + Gly215Glu
	Gln 59Asp + Gly131Gln
15	Gly157Glu + Leu209Pro
	Trp106Pro + Tyr217Ile
	Ala216Ser + Gly219Asp
	Thr 66Gln + Leu126Asn
	Gly102Gln + Gly219Asp
20	Asn212Ser + Lys213Asp
	Gln206Ser + Lys213Glu
	Tyr104Glu + Asn155Gln
	Val 95Asp + Leu126Ser
	Tyr104Asp + Gly166Gln
25	Thr 66Pro + Ser204Glu Asn 61Glu + Phe189Pro
	Ash bigin + Pherospio
	Asp 60Glu + Tyr167Ala Pro129Gln + Gln206Asp
	Gly160Asp + Ala216Asn
	Ser161Glu + Gly166Asn
30	Leu 96Pro + Gly100Asp
	Trp106Asn + Val203Asn
	Ser101Asp + Gly127Ser
	Ala133Gln + Val203Asp
25	Ser101Asp + Gly202Ser
35	Ile107Ala + Gly160Asn
	Ala133Thr + Tyr214Ile
	Phe189Ser + Ser204Asp
	Gly 97Asp + Trp106Phe
	Gln 59Asn + Glu156Asp
40	Pro201Ser + Lys213Glu
	Ser162Glu + Gly202Gln
	Gly 65Ser + Gln206Asp
•	Lys213Asp + Ala216Pro
45	Val203Ala + Lys213Asp
72	Ala216Thr + Tyr217Pro
	Gly131Asn + Asn218Glu
	Tyr104Glu + Gly131Pro
	Gly127Ser + Thr158Asp
50	Trp106Gly + Ser132Asp
•	

WO 95/30010

41

Asn 62Ser + Ala187Ser Ser163Asp + Phe189Ser Pro201Gln + Gly215Glu Gly100Gln + Tyr217Thr Ser130Glu + Gly154Asn 5 Asp 60Glu + Tyr214Thr Asn155Glu + Tyr217Gln Ala 98Gln + Gly102Asn Pro201Asn + Gly219Asp Thr 66Ser + Gly127Gln 10 Leu126Glu + Ala216Thr Asn 61Ser + Asn155Glu Thr 66Ser + Gly157Asp Pro129Ser + Thr164Gln Ala216Asp + Tyr217Val 15 Ser130Glu + Tyr217Leu Asn 62Asp + Tyr214Leu Val 95Ser + Phe189Val Gly100Pro + Ser159Asp Asn155Gln + Ser204Glu 20 Pro129Asp + Val203Ser Ser101Glu + Thr158Asn Ala187Pro + Asn218Asp Val 95Gly + Ser161Asp Gly202Pro + Ala216Gln 25 Gly 97Ser + Gly215Asp Tyr167Asp + Gln206Ser Thr 66Ser + Asn212Glu Ala216Thr + Tyr217Gln Ala200Asn + Tyr217Ala 30 Asp 60Glu + Val203Pro Val 95Thr + Tyr217Met Val203Asn + Lys213Glu Gly102Asp + Val203Gly Ser130Asp + Ala133Thr 35 Tyr104Ala + Gly166Ser Leu 96Met + Tyr217Asp Ser101Asp + Gly102Pro Ser101Asp + Thr220Pro Val 95Asn + Ala216Pro 40 Tyr104Asn + Pro129Asp Gly202Asn + Gln206Asp Gln 59Glu + Ile107Cys Thr 66Glu + Tyr104Pro Val 95Met + Asp 99Glu 45 Ser204Glu + Gly211Pro Pro210Glu + Gly219Ser Leu126Pro + Ser204Glu Pro129Asp + Ala200His Ile107Gly + Gly215Pro 50

	Thr 66Glu + Gln206Asn
	Asn155Asp + Leu209His
•	Gly211Asp + Tyr217Val
	Ala216Asp + Thr220Gln
5	Thr158Gly + Ser204Asp
	Gly100Glu + Ile107Ser
	Ala 98Ser + Gly154Asn
	Gln103Asn + Ala216Glu
•	Gly154Gln + Pro210Gln
10	Leu126Pro + Ala216His
10	Ala216His + Tyr217Leu
	Gly154Glu + Tyr217Ser
	Gly 97Ser + Tyr167Thr
	Trp106Ile + Ala216Gly
15	Gly102Ser + Phe189Gly
13	Gly154Glu + Gly219Asn
	Lys213Glu + Ala216Pro
	Asn 62Asp + Leu126Ser
	Thr 66Gly + Gln206Glu
20	Gly157Pro + Val203Cys
20	Gln 59Asp + Tyr214Ser
	Leu 96Met + Gly100Ser
	Ala 98Gly + Lys213Asp
	Asn 62Gln + Leu 96Asp
25	Gly127Asn + Gln206Glu
2	Gly160Pro + Gly219Asn
	Leu 96Thr + Tyr217Ala
	Trp106Phe + Tyr217Thr
	Gly131Pro + Lys213Glu
30	Gly 65Gln + Asp 99Glu
30	Gly127Asn + Gly128Gln
	Ala133Asn + Gly154Asn
	Ser204Glu + Gly215Ser
	Glu156Asp + Pro210Ser
35	Asp 60Glu + Gln206Ser
33	Asn 61Gln + Ala216Asn
	Pro210Asn + Asn212Asp
	Ala133Asp + Val203Asn
	Gly219Ser + Thr220Gly
40	Ser191Asp + Val203Thr
	Gly160Glu + Ala216Thr
	Ser162Glu + Ala216Gln
	Ala 98Gln + Tyr217Asn
•	Val 95Asp + Gln206Asn
45	Tyr104Ser + Ser204Asp
	Gly100Pro + Phe189Gln
	Gly 97Asp + Tyr217His
	Gln206Ser + Gly211Asn
	Ala187Asn + Ser188Asp
50	Ala 98Gly + Asp 99Glu
50	

PCT/US95/03176 WO 95/30010

43

Thr164Asn + Phe189Cys Val203Gln + Gln206Ser Trp106Cys + Gly157Ser Thr158Ser + Gly160Ser 5 Ser188Asp + Tyr217Gly Gly157Asn + Phe189Met Ser188Asp + Ala216Asn Gly128Asn + Gly166Ser Leu126Asn + Ala216Ser . 10 Gly127Asp + Gln206Asn Gln 59Glu + Leu 96His Ser132Asp + Tyr217Ala Gly166Ser + Gly219Glu Ser163Glu + Val203Met 15 Ala 98His + Tyr217Met Ala 98Pro + Ser130Asp Gly160Asn + Ser204Glu Gln206Asn + Gly215Asp Gln103Ser + Ser130Asp 20 Ala133Gly + Thr220Gly Ser132Glu + Ala216Gln Asn 61Gln + Ile107His Leu126Ala + Gly131Glu Gln206Asp + Thr220Gly 25 Gln206Glu + Tyr217Cys Gly157Ser + Pro210Asp Gly166Glu + Tyr214Gln Ser188Glu + Ala216His Thr 66Glu + Gly166Gln 30 Gly102Pro + Gly166Glu Val 95Gln + Tyr104Ile Ser191Glu + Gly219Ser Asp 99Glu + Asn218Gln Gly100Asn + Ser105Glu 35 . Gly166Pro + Pro210Asn Gln 59Asn + Thr164Ser Leul26His + Tyr214Ala Thr 66Pro + Lys213Asp Trp106His + Gly211Ser 40 Tyr167Leu + Ser204Glu Val 95Thr + Ala133Gly Ile107Ser + Gln206Glu Phe189Tyr + Lys213Asp Gly 65Asn + Asn218Asp45 Tyr167Val + Lys213Glu Gly 97Gln + Ser132Glu Asp 99Glu + Gly102Pro Leu126Cys + Ala216Asp Leu126Cys + Gly127Ser 50 Ser191Asp + Ala216Asn

WO 95/30010

•	Gly100Gln + Gly154Asp
	Asn 61Asp + Gly211Ser
	Ser161Asp + Phe189Leu
	Ile205Gln + Ala216Glu
5	Asn 62Gln + Tyr217Leu
	Ile107Met + Ser161Asp
	Leu126Ile + Tyr217Ser
:	Ala 98His + Ser162Asp
	Asn 61Asp + Gly128Ser
10	Asn155Glu + Gly215Gln
10	Asn155Gln + Ser204Asp
	Asn155Glu + Thr220Gln
	Lys213Asp + Tyr217His
	Gly127Pro + Ser204Glu
15	Ser204Asp + Tyr217Ala
15	Glu156Asp + Val203Gly
	Gly127Glu + Ala133His
	Gly100Asn + Gly131Ser
	Gly211Gln + Lys213Asp
20	
20	Ala187Asp + Phe189Leu
	Ala216Glu + Tyr217Cys Ser204Asp + Ala216Thr
	Gly131Ser + Thr158Asp
•	Gly100Asn + Gln206Asn
05	
25	Ser105Asp + Gly131Gln
	Ser204Asp + Tyr214Val
	Tyr214Met + Tyr217Ile
	Ser 63Glu + Thr164Asn
	Ile107Cys + Ala216Pro
30	Trp106Gly + Gln206Asp
	Gly102Asp + Thr164Pro
	Asp 99Glu + Ala216Gln
	Lys213Glu + Ala216Gln
0.5	Ala133Ser + Pro210Glu Asp 60Glu + Tyr104Asn
35	<u>-</u>
	Asn 62Gln + Ile107Cys
	Tyr167Ala + Gly211Asp
	Glu156Asp + Tyr217Ile
	Gly131Pro + Leu209Pro
40 -	Lys213Glu + Asn218Gln
	Gly160Ser + Val203Glu
	Asn155Ser + Tyr167Ala
	Asp 60Glu + Phe189Gly
	Thr164Gln + Gly219Ser
45	Ser162Asp + Gln206Asn
	Gly100Glu + Tyr104Asn
	Gly160Pro + Gln206Ser
	Thr 66Gly + Ala216Gly
	Tyr104Ile + Gly215Pro
50	Pro201Gln + Ala216Thr

WO 95/30010

•	,
	Gln103Glu + Ala133Asn
	Ser163Glu + Phe189His
	Gly127Ser + Tyr217Ser
	Gln206Asn + Leu209His
5	Pro210Glu + Ala216Gln
	Asn 62Ser + Gln206Asn
	Ser161Glu + Gly219Asn
	Val203Gly + Asn212Glu
·	Ala 98Glu + Leu126Met
10	Vall65Gln + Ser204Asp
10	Gly154Ser + Ala216His
	Pro201Gly + Gly211Glu
	Ser161Asp + Gly219Gln
	Asn155Glu + Thr220Asn
15	Leu 96Glu + Ile107Leu
	Thr158Ser + Gly215Ser
	Ser 63Glu + Pro129Ser
	Val 95Asn + Ser163Glu
	Gly102Asn + Leu126Glu
20	Thr 66Gly + Ala216Pro
	Gly157Ser + Thr158Glu
	Ala 98Asp + Ala187Ser
	Asp 99Glu + Thr164Gln
	Thr 66Ser + Ser105Glu
25	Gln103Asp + Gly154Pro
	Thr 66Glu + Tyr217His
	Gly127Gln + Ser204Glu
:	Phe189Ile + Tyr217Thr
	Ala133Gln + Lys213Asp
30	Ser130Asp + Tyr217Thr
	Leu126Ile + Asn212Ser
	Gly154Asn + Gln206Asp
	Thr 66Pro + Glu156Asp
	Gln103Asn + Lys213Asp
35	Phe189Met + Gln206Asp
33	Leu126Asn + Gly154Gln
	Pro210Gly + Gly215Glu
	Leu126Val + Ala216Pro
	Gln206Ser + Tyr217His
	Leu 96Asn + Lys213Asp
40	Leu126Pro + Ala216Ser
	Val203His + Gly211Asp
	Tyr167Ala + Tyr217Asp
45	Trp106Asn + Gln206Asn
45	Gly127Ser + Ser161Glu
	Lys213Glu + Gly219Asn
	Val 95Thr + Thr208Gly
	Thr158Gly + Ser204Glu
	Gly 97Pro + Trp106Tyr
50	Phe189Ile + Val203His

	,
	Leu 96Gln + Lys213Glu
	Gln206Glu + Ala216Thr
	Gly154Ser + Asn155Glu
	Ser132Asp + Tyr214Asn
5	Pro129Gln + Ala133Pro
	Ala 98Asn + Gly127Asp
	Gly211Gln + Asn218Asp
•	Trp106Cys + Ser163Asp
	Leu 96His + Ala216Gly
10	Gly 97Asn + Ser204Asp
	Asn 61Ser + Gly157Asp
	Pro210Asn + Tyr217His
	Asp 60Glu + Tyr104Ala
	Thr164Asn + Ala200Gly
15	Tyr214Val + Ala216Asp
	Leu126His + Ala216Ser
	Gly128Gln + Asn212Asp
	Ser162Glu + Gln206Ser
	Gln206Glu + Ala216Ser
20	Thr164Pro + Thr220Asp
	Val203Ser + Gly219Asp
	Gln206Asn + Gly219Asp
	Ser 63Asp + Ile107Gln
	Gly102Gln + Val203Ala
25	Ser101Glu + Val165Gln
	Gln 59Ser + Gly166Glu
	Ser101Glu + Tyr217Ser
	Glyl31Asn + Ala187Glu
	Gly102Ser + Tyr214Gly
30	Thr158Ser + Thr220Glu
	Asp 99Glu + Gly215Gln
	Val 95Gly + Thr220Asp
	Ala200Ser + Tyr214Val
	Ser188Glu + Ala216Asn
35	Tyr214His + Ala216Asp
	Thr158Glu + Phe189Asn
	Asn155Gln + Ser191Asp
	Thr 66Ser + Leu126Ser
٠	Thr 66Gly + Gln206Asp
40	Ser105Asp + Tyr214Thr
	Gly102Pro + Thr164Gln
	Trp106Gly + Pro210Gly
	Asn155Asp + Thr220Gln

TABLE 23

Multi-loop Triple Mutation Variants

Gln 59Ser + Leu 96Gly + Ser204Glu Asn 62Ser + Val 95Gln + Asn218Asp Tyr104Cys + Gly127Gln + Lys213Glu

	•				
					Ala216Pro
	Gly 97Glr	+	Ile107Ala	+	Gly157Glu
•	Ser162Glu	+	Pro210Gln	+	Gly215Asn
	Thr 66Pro	+	Val203Cvs	+	Tyr217Ser
5	Ser105Glu	ı +	Ala133Glv	+	Phe189Val
	Leu 96Asr	+	Asn212Ser	+	Tyr214Glu
	Gin 59Asr	. +	G1v131G1n	+	Leu209Pro
	Trn106Pro		Glv157Glu	+	Tyr217Ile
•	Thr 6661r		Leu126Asn	+	Ser188Glu
10	Acn212Cox		Luc 21 3 Ach	i	Gly219Gln
10	Mal DENCY		Louises	<u> </u>	Asn155Gln
					Phe189Pro
					Ala216Asn
					Val203Asn
15					Gly202Ser
					Tyr214Ile
	Gln 59Asr	1 +	Gly 97Asp	+	Trp106Phe
	Gly157Pro) +	Pro210Gly	+	Ala216Glu
	Gly160Se	: +	Asn212Ser	+	Tyr217Thr
20	Asn 62Glr	1 +	Gln206Asn	+	Ala216Ser
					Tyr217Pro
	Ala 98Ası	1 +	Tyr217His	+	Thr220Gly
	Val203Gly	, +	Gly211Glu	+	Ala216Asn
					Ala216His
25 ·					Gln206Asp
_					Tyr217Cys
					Gly219Gln
					Gly157Pro
					Tyr214Pro
30	Tro1064s	, +	Gly128Pro	+	Val203Met
30					Ala187His
					Tyr217His
					Ala216Ser
					Gly219Pro
35					Tyr217Ile
					Thr158Gly
					Pro210Gln
					Ala216His
•	Lys213Gl	ı +	Ala216His	+	Tyr217Leu
40	Gly154Gl	1 +	Tyrl67Thr	+	Tyr217Ser
•					Ala216Gly
					Gly219Asn
					Val203Cys
					Gly100Ser
45	Gly127Ası	n +	Gly160Pro	+	Gln206Glu
					Gly219Asn
					Tyr217Thr
					Gly128Gln
					Ser161Asp
50					Ala216Asn
<i>5</i> 0	AUT OLGI	•	3211200061	•	

	•				
	Ser204Asp	+	Gly219Ser	+	Thr220Gly
	Ala 98Gln	+	Ser159Glu	+	Tyr217Asn
•	Gly 97Asp	+	Gly100Pro	+	Phe189Gln
	Gln206Ser	+	Gly211Asn	+	Tyr217His
5	Ala 98Gly	+	Ala187Asn	+	Ser188Asp
	Asp 99Glu	+	Thr164Asn	+	Phe189Cys
	Trp106Cys	+	Gly157Ser	+	Gln206Ser
•	Gly157Asn	+	Ser188Asp	+	Tyr217Gly
	Gly166Ser	+	Ser188Asp	+	Ala216Asn
10	Leu126Asn	+	Gly128Asn	+	Ala216Ser
	Leu 96His	+	Ser132Asp	+	Tyr217Ala
	Ala 98His	+	Lys213Glu	+	Tyr217Met
			Ser130Asp		
			Ala133Gly		
15			Ile107His		
	Gln206Glu	+	Tyr217Cys	+	Thr220Glv
	Glv157Ser	+	Pro210Asp	+	Tvr214Gln
	Val 9561n	+	Gly102Pro	+	G1v166G1u
			Ser191Glu		
20			Gly100Asn		
20			Gly166Pro		
			Thr164Ser		
			Gly211Ser		
	Trologic		Tyr167Leu	<u> </u>	Ser204Glu
25			Ala133Gly		
25	Cly 97Cln	T	Gly102Pro	T	Ser13261u
			Ser191Asp		
			Gly154Asp		
			Ala216Glu		
30			Ser161Asp		
30			Asn155Gln		
			Ala133His		
			Gly211Gln		
			Thr158Asp		
35			Ser105Asp		
35					
			Gly160Gln Lys213Asp		
-			Gln206Asp		
40			Lys213Glu		
40			Ile107Cys		
			Leu209Pro		
			Tyr167Ala		
			Thr164Gln		
			Ser204Glu		
45			Gly100Asp		
			Gly215Pro		
•	•		Lys213Asp		-
			Gln206Asn		
			Gln206Asn		
50	Ala 98Glu	+	Leu126Met	+	Val203Gly
•					

	•				
	Gly154Ser	+	Ser161Glu	+	Ala216His
			Gly211Glu		
			Gly219Gln		
	Asn 62Glu	+	Thr158Ser	+	Glv215Ser
5	Glv102Asn	+	Leu126Glu	+	Ala216Pro
	Glv127Gln	+	Ser204Glu	+	Tvr217Thr
			Phe189Ile		
:			Asn212Ser		
			Gly154Asn		
10			Gln103Asn		
			Gly154Gln		
			Gly215Glu		
	Gln206Ser	·	Lys213Asp	÷	Tur217Hic
	Len 96Asn	<u>.</u>	Leu126Pro	÷	1)1217H13
15			Trp106Asn		
15	Gly127gor	т _	Ser161Glu	T	Cluzionen
			Thr208Gly		
	Toy Office	•	Trp106Tyr Phe189Ile	•	ASIIZIOGIU
20					
20			Ala133Pro		
			Gly127Asp		
			Gly 97Asn		
			Gly215Glu		
05	Asp 60Glu	+	Trp106Tyr	+	Prol29Gln
25	Gly15/Asn	+	Phe189Val	+	Asn218Asp
	G1y100Asp	+	Thr164Asn	+	Ala200Gly
			Gln206Asp		
			Ile107Gln		
			Gly102Gln		
30			Thr158Ser		
			Ser204Glu		
	Asn155Gln	+	Thr158Glu	+	Phe189Asn
	Thr 66Gly	+	Ser105Asp Thr164Gln	+	Tyr214Thr
	Gly102Pro	+	Thr164Gln	+	Pro210Gly
35			Asn155Asp		
			Ala187Gln		
	Gly154Gln	+	Tyr167Cys	+	Ser204Glu
	Asp 60Glu	+	Ala 98His	+	Gly102Pro
			Ile205Val		
40			Val165Cys		
	Gly 97Asn	+	Ile107Gln	+	Gly166Gln
	Gly160Asp	+	Gly166Pro	+	Tyr214Ile
	Gln 59Asp	+	Gly154Ser	+	Asn218Gln
			Vall65His		
45	Ser 63Glu	+	Pro129Ser	+	Tyr217Gly
	Gly157Pro	+	Thr158Ser	+	Lvs213Glu
	Thr164Glu	+	Gly215Ser	+	Ala216Asn
			Asp 99Glu		
			Ala187Ser		
50			Glu156Asp		
			F		

	•				
	Leu126Pro	+	Gly131Asn	+	Tyr217Leu
	Tyr167His	+	Gly219Pro	+	Thr220Glu
•	Val 95Pro	+	Trp106Ile	+	Tyr217Gly
	Val 95His	+	Gln206Asn	+	Lys213Glu
5			Ala187Ser		
			Asn 62Gln		
			Ala187Gly		
•			Trp106His		
			Ser188Glu		
10			Gly202Gln		
	Ser105Glu	+	Ile107Thr	+	Glv131Pro
			Gly131Asp		
			Ala187Ser		
			Thr164Pro		
15			Asn212Ser		
			Gly166Gln		
			Gly160Gln		
			Tyr167Ala		
			Asn155Ser		
20			Leu126Ala		
20	Gly100Ser		Gly131Gln	+	Phe189611
			Ala187Pro		
			Gln206Asn		
			Ile107Asn		
25			Pro129Asn		
۵			Trp106Ala		
			Gly 65Asn		
			Gly157Asn		
			Ile205Thr		
30			Gly 65Pro		
30			Gly102Ser		
			Tyr217Pro		
			Gly127Ser		
			Gly154Gln		
35			Trp106Val		
33					
			Ile107Gln		
			Lys213Glu Gln206Glu		
			Pro210Asn		
40			Ile205Asn		
			Gln206Ser		
			Ser188Asp		
			Gly131Pro		
			Ser188Asp		
45			Gln206Ser		
			Ser161Glu		
	Gly127Glu	+	Thr158Pro	+	Pro201Gly
•			Lys213Glu		
			Leu126His		
50	Asn 62Ser	+	Gly160Glu	+	Ala216His

	•				
	Leu 96Cys	+	Thr164Ser	+	Ser204Asp
	Gly131Gln	+	Phe189Ile	+	Val203Asp
·	Asp 60Glu	+	Gly 65Gln	+	Thr 66Asn
	Gly102Glu	+	Gly128Ser	+	Ala216Gln
5	Asn 62Gln	+	Val 95Gly	+	Gln206Asn
	Gly 97Pro	+	Gly154Asp	+	Asn218Gln
	Thr 66Pro	+	Leu 96Val	+	Ala216Pro
. •	Gly 97Asn	+	Asn155Glu	+	Tyr214Val
	Tyr104Ala	+	Tyr167Glu	+	Ala216Pro
10			Asn218Glu		
	Ala133His	+	Thr164Gln	+	Gly166Ser
	Leu126Gln	+	Ser159Glu	+	Gly160Asp
	Asn 61Asp	+	Asn 62Asp	+	Gly128Ser
			Gly100Glu		
15			Ile205Gln		
			Ala216Glu		
			Ala216Asp		
			Ser204Glu		
			Ser204Glu		
20			Gln206Asp		
	Ser204Asr		Gln206Glu		Ala216Asp
			Ser204Asp		
•			Lys213Glu		
			Lys213Glu		
25			Gly211Asp		
			Asn 62Asp		
			Ser162Glu		
			Gln206Asp		
			Gln206Glu		
30			Ser204Glu		
30	Sor204Gly	, T	Gln206Glu	т _	Clu215Acn
			Ser163Asp		
			Gln206Glu		
			Gln206Asn		
35			Tyr104Asn		
			Val203Glu		
			Gly166Glu		
			Ser162Glu		
			Val203Ser		
40			Ser191Asp		
	ASP BUGIL	1 +	Gly 97Glu	+	ASP 99G1u
	Thribapro) 	Ser204Glu	+	GIYZIYGIU
			Gly102Asp		
			Gln206Asn		
45			Gln206Asp		
			Gly211Glu		
			Leu126Glu		
			Leu 96Glu		
			Leu 96Glu		
50	Serioigi	1 +	Gly127Glu	+	ATAI8/GID

	Ser 6	3Glu	+	Gly131Asn	+	Lys213Glu
	Ser 6	3Asp	+	Phe189Leu	+	Lys213Glu
	Ser10)5Glu	+	Ser132Glu	+	Tyr167Gly
	Ser20	4Asp	+	Ala216Glu	+	Thr220Glu
5	Ser20)4Glu	+	Lys213Asp	+	Gly215Asp
3	Asp 9	9Glu	+	Ser101Asp	+	Tyr104Asp
	Ser 6	3Asp	+	Pro210Glu	+	Tyr217Glu
	Thr15	8Gln	+	Gln206Asp	+	Lys213Asp
	Gln20)6Glu	+	Lvs213Glu	+	Ala216His
10	Glv15	57Asp	+	Tyr214Gly	+	Thr220Asp
	Ser 6	53Glu	+	Gly100Ser	+	Tyr217Asp
	Gly10	00Glu	+	Gln103Asp	+	Gln206Asn
	Glv15	54Glu	+	Ser163Asp	+	Val203Met
	Val 9	95Glv	+	Lys213Asp	+	Ala216Glu
15	Gln 5	59Asn	+	Leu126Glu	+	Pro129Glu
10	Ser20	04Glu	+	Gln206Asp	+	Lys213Glu
	Alala	37Asp	+	Ser204Glu	+	Gln206Glu
	Ser (63Glu	+	Ser204Glu	+	Ala216Asp
	Asn (61 Asp	+	Ser 63Asp	+	Ala216Glu
20	Pro12	296111	+	Asn155Glu	+	Ser163Asp
20	Ser (63Asp	+	Ile107Leu	+	Asn212Asp
	G1n2	06Asp	+	Pro210Asp	+	Asn212Asp
	Glul	56Asp	+	Ser163Glu	+	Glv219Asp
	Tlel	07Glu	+	Gly131Ser	+	Ser132Asp
25	GIVI	00Asn	+	Glv211Asp	+	Gly215Glu
2	Gln1	03Asp	+	Glv127Glu	+	Ala216Gln
	Ser1	30Asp	+	Glv131Asp	+	Lys213Glu
	G1 v1	00Asp	+	Ser101Glu	+	Ser163Asp
	Pro1	29Asp	+	Ser130Asp	+	Tyr217Glu
30	Val2	qzAE0	+	Ser204Glu	+	Lys213Glu
30	Ser1	32Asp	+	Ala216Glu	+	Tyr217Glu
	Serl	01Glu	+	Ala187Glu	+	Ser188Glu
	Ala	98Asp	+	Asp 99Glu	+	Ser204Asp
	Ser2	04Asp	+	Gln206Asp	+	Asn212Asp
35	Gln1	03Asp	+	Glu156Asp	+	Ser191Glu
33	Ser1	32Asp	+	Ser204Glu	+	Ala216Asp
	Ala	98Glu	+	Ser204Glu	+	Ala216Glu
						Asn218Glu
						Tyr217Asp
40	Ser1	62Asp	+	Glv166Asp	+	Asn212Ser
						Gln206Glu
	Asn	60G] 11	+	Asn 62Glu	+	Ser204Asp
•	Asn	996111	+	Ser101Asp	+	Gly154Glu
	Gln1	03Ser	+	Gln206Glu	+	Gly219Asp
45						Lys213Glu
43	Acn	61Asn	+	Ser101Glu	+	Gly128Asp
	ጥኮኮ	666111	+	G1v166G1n	+	Ala216Glu
	Spr1	01611	4	Ser204Glu	+	Gln206Asp
						Gln206Glu
50	Den	996111	+	Ser204Asn	+	Gln206Glu
50	ЧЭР	JJ614	•	octroamp	•	J 0 - 0 - 1

		•				
	Gly	97Glu	+	Ser204Glu	+	Gln206Asp
				Gly102Ser		
•				Ser163Asp		
	Ser1	30Asp	+	Ser132Glu	+	Asn212Glu
5				Ser132Glu		
	Pro1	29Glu	+	Gly131Glu	+	Glv215Glu
	Asn	62Gln	+	Thr158Asp	+	Glv166Glu
				Gln206Glu		
				Phe189His		
10				Lys213Asp		
				Ser163Glu		
				Ser162Asp		
				Ser132Glu		
				Glu156Asp		
15				Ser188Asp		
				Ser191Glu		
	Gln	59Glu	+	Ser188Asp	+	Ser191Asp
	Ser2	04Gl11	+	Lys213Glu	+	Glv219Glu
				Ser204Asp		
20	T.eu1	26Asn	+	Gly166Asp	+	Ser204Asp
20	Thr1	64G111	+	Ser188Glu	+	Gln206Ser
				Gln206Glu		
				Leu126Glu		
				Glu156Asp		
25				Asn 62Asp		
2				Val203Asp		
				Ala187Glu		
				Ser204Glu		
	Ser	63Asp	+	Ser188Glu	+	Asn218Glu
30				Ser105Asp		
				Ser132Glu		
				Gly 97Asp		
				Ser101Asp		
				Gln206Glu		
35				Gln206Asp		
	Gly1	31Glu	+	Gln206Asp	+	Lys213Asp
	Ser	63Asp	+	Trp106Asp	+	Tyr217Glu
	Gly1	.60Glu	+	Lys213Glu	+	Ala216Glu
	Ala1	.33Glu	+	Lys213Asp	+	Ala216Asp
40				Gln206Asp		
•				Ala216Asn		
				Ala187Asp		
				Ser188Glu		
•				Ser188Glu		
45				Ser204Glu		
	Gly1	27Asp	+	Ser191Glu	+	Lys213Asp
	Thr	66Glu	+	Gly 97Glu	+	Tyr217Cys
	Gl v1	54Asp	+	Ala187Glu	+	Gly215Asp
	Gly1	.02Asp	+	Gly154Glu	+	Ser188Glu
50	Gln1	.03Asp	+	Ser132Asp	+	Gln206Glu
		•		-		

Tyr167His + Ser191Glu + Asn218Asp
Asp 60Glu + Glu156Asp + Gly160Glu
Gln103Glu + Gly154Glu + Asn218Asp
Asp 60Glu + Asn155Glu + Ser159Asp
Gln103Glu + Ser161Glu + Ser191Asp
Ala 98Asp + Ser132Asp + Gly166Glu
Ser188Asp + Ser204Asp + Tyr214Val

TABLE 24

```
Multi-loop Quadruple Mutation Variants
10
           Gln 59Ser + Asn 62Ser + Leu 96Gly + Ser204Glu
           Gly127Gln + Ser188Glu + Gly215Asn + Ala216Pro
           Asn 62Gln + Ile107Ala + Gln206Asp + Tyr217Thr
           Asn 61Ser + Leu 96His + Gly157Pro + Ala216Gly
           Leu 96Gln + Gly127Gln + Glu156Asp + Thr220Asn
15
           Thr158Glu + Gly202Ser + Gln206Ser + Thr220Ser
           Gly 97Asn + Ser105Asp + Gly215Ser + Ala216Ser
           Leu126Thr + Gly211Gln + Lys213Asp + Ala216Ser
           Gly100Asp + Trp106Asn + Gly127Ser + Val203Asn
           Ile107Ala + Gly160Asn + Gly166Asp + Gly202Ser
20
           Ala133Thr + Phel89Ser + Tyr214Ile + Ala216Glu
           Asn 62Ser + Ser163Asp + Phe189Ser + Pro201Gln
           Ala 98Gln + Gly102Asn + Pro201Asn + Gly219Asp
           Thr 66Ser + Leul26Glu + Gly127Gln + Ala216Thr
           Pro129Ser + Thr164Gln + Ala216Asp + Tyr217Val
25
           Gly128Gln + Thr158Gln + Gln206Asn + Asn212Asp
           Gly157Ser + Gln206Glu + Tyr217Cys + Thr220Gly
           Val 95Gln + Tyr104Ile + Ser191Glu + Gly219Ser
           Gln 59Asn + Gly 97Asn + Gly154Pro + Asn218Ser
           Pro129Gly + Thr158Asn + Gln206Asn + Gly211Pro
30
           Ala 98His + Trp106His + Gln206Asn + Lys213Asp
           Leu126Ile + Ser204Glu + Gln206Asn + Tyr217Thr
           Gln 59Glu + Asn 62Gln + Phe189Leu + Val203Ala
           Pro129Gln + Gly154Pro + Ala187Thr + Lys213Glu
           Ser 63Glu + Thr164Asn + Gln206Ser + Pro210Asn
35
           Leu 96Met + Gln103Asn + Ala133Ser + Ser204Glu
           Trp106Ala + Gly154Pro + Ala187Asn + Gly219Pro
           Asn 62Glu + Gly102Pro + Gly160Asn + Asn218Ser
           Thr 66Gly + Gly100Asp + Tyr104Ile + Ala216Gly
           Gly102Asp + Pro201Gln + Gly215Pro + Ala216Thr
40
           Leu126Met + Val203Gly + Asn212Glu + Gly219Asn
           Leu 96Glu + Ile107Leu + Thr158Ser + Gly215Ser
           Ser130Asp + Ala133Gln + Asn212Ser + Tyr217Thr
           Thr 66Gly + Gly100Ser + Leu126Gly + Ala216Glu
           Gln103Asp + Tyr104Ile + Gly128Gln + Tyr217Cys
45
           Leu126Pro + Ser204Asp + Gln206Asn + Thr208Asn
           Pro129Ser + Gly157Asn + Thr164Glu + Ala200Ser
           Gly128Gln + Val165Cys + Gly211Gln + Lys213Glu
           Gly160Asp + Gly166Pro + Gly211Ser + Tyr214Ile
```

```
Gln103Ser + Gly166Asn + Tyr214Ile + Gly215Pro
           Asn 61Asp + Tyr104Ser + Leu126His + Tyr214His
           Gly 65Gln + Gly131Gln + Phe189Ile + Val203Asp
           Asn 62Gln + Thr 66Asp + Val 95Gly + Gln206Asn
           Thr 66Pro + Gly 97Pro + Gly154Asp + Ala216Pro
5
           Val 95Pro + Tyr104Gly + Gly127Ser + Gly215Asp
           Asp 99Glu + Trp106Ala + Pro201Gln + Ala216Gly
           Asn 61Gln + Val 95Asp + Gly102Asn + Ala187Asn
           Ile107Gln + Val203Ser + Ser204Asp + Gly215Ser
10
           Val 95Thr + Gly202Gln + Ser204Asp + Ala216Asn
           Thr158Pro + Val203Gly + Lys213Glu + Tyr217Ser
           Trp106Pro + Asn155Asp + Gln206Ser + Tyr214Ala
           Gly102Asn + Gly157Ser + Tyr167Ala + Ala216Asn
           Gly160Asn + Val203Thr + Pro210Glu + Asn218Gln
15
           Ile107Ser + Gly128Asn + Asn155Glu + Ala216Gly
           Gln103Asn + Pro129Gly + Gly166Gln + Thr220Gly
           Asn 61Ser + Ser 63Asp + Thr 66Gly + Gly154Ser
           Tyr104Gly + Pro129Ser + Gln206Ser + Gly219Ser
           Gly102Pro + Gly131Asp + Asn155Ser + Tyr217His
20
           Asn 61Ser + Val 95Gln + Ser204Asp + Ala216Gln
           Thr158Asn + Ala187Gly + Tyr217Ala + Gly219Asp
           Gly 65Gln + Gly 97Pro + Ser130Glu + Pro210Asn
           Gly128Asn + Ser159Glu + Pro201Ser + Tyr217Val
           Leu126Asn + Asn155Gln + Gly202Gln + Asn212Ser
25
           Thr 66Ser + Tyr104Val + Gly154Glu + Gly215Asn
           Gly102Asn + Gly128Gln + Ser161Glu + Tyr217Met
           Ser132Glu + Thr158Gln + Thr164Asn + Gln206Asn
           Asn 62Glu + Leu 96Ile + Gly211Ser + Gly219Ser
           Thr208Pro + Pro210Gly + Ala216Thr + Tyr217Met
30
           Gly100Gln + Gly160Asn + Pro201Gly + Asn212Asp
           Tyr104Asp + Gly154Pro + Ala187Asn + Val203Ser
           Leu 96Gln + Leu126Thr + Ser162Glu + Tyr217Val
           Glyl28Asn + Ala187Pro + Pro201Gly + Ser204Glu
           Gln103Ser + Gly157Glu + Thr158Gln + Ala216Gln
35
           Leu126Ser + Thr164Glu + Val203Pro + Gly211Gln
           Thr164Gly + Val203Met + Ala216Asp + Tyr217Gln
           Ser159Asp + Val203Asn + Ile205Asn + Pro210Ser
           Gly 65Asn + Gln206Asp + Ala216Gly + Tyr217His
           Gln103Asn + Ile107Cys + Thr164Asp + Val203Thr
40
           Gly128Glu + Asn155Gln + Thr158Ser + Gly160Ser
           Ala 98His + Ser162Glu + Gln206Asn + Tyr217Gly
           Gly128Ser + Thr164Asn + Ser204Glu + Tyr217Gly
           Gly127Gln + Gly157Ser + Ser159Asp + Tyr217Val
           Gly157Asn + Gln206Asn + Tyr217Val + Gly219Pro
45
           Thr 66Ser + Ala133Thr + Ser163Asp + Thr208Gln
           Leu 96Thr + Gly131Asp + Gln206Asn + Ala216Gly
           Asn 61Ser + Ser132Glu + Gly211Ser + Asn218Gln
           Gly100Ser + Tyr104Ala + Ser204Asp + Gly211Gln
           Leu 96His + Ala 98Glu + Pro129Gln + Ala133Asn
50
           Asn 62Glu + Gly128Gln + Ala187Asn + Gly215Ser
```

PCT/US95/03176 WO 95/30010

```
Leu 96Ile + Gly157Ser + Val203Ala + Ala216Ser
           Asn 61Gln + Val 95Thr + Gly160Asp + Ala216His
           Leu 96Cys + Gly128Pro + Ser191Glu + Thr208Asn
           Trp106Ala + Gly131Gln + Val203Ala + Tyr214Gln
5
           Asn 61Ser + Ala216Gln + Tyr217Leu + Gly219Asn
           Tyr104Gly + Ser105Glu + Thr158Ser + Leu209Thr
           Ala133Ser + Phe189Thr + Asn212Glu + Tyr217Thr
           Tyr104Ser + Thr158Gly + Thr164Glu + Ala216Pro
           Gln 59Asn + Thr 66Asn + Thr164Gly + Ala187Pro
10
           Ile107His + Gly157Ser + Lys213Glu + Tyr217Asn
           Gly127Ser + Gln206Asp + Gly215Gln + Tyr217Leu
           Leu126Gly + Gly131Glu + Tyr167Met + Thr220Gln
           Thr158Gln + Lys213Glu + Gly215Ser + Tyr217Gly
           Asn 61Gln + Leu126Gly + Thr164Ser + Asn218Asp
15
           Asn 62Asp + Pro129Gly + Gln206Ser + Ala216His
           Asp 60Glu + Val 95Gln + Leu126Pro + Val203Thr
           Gln103Glu + Ile107Val + Phe189Asn + Ala216Thr
           Ile107Thr + Pro129Gln + Lys213Glu + Tyr217Thr
           Tyr104His + Gly154Gln + Gly157Asp + Tyr217Ser
20
           Gln 59Asn + Trp106Cys + Ala200Thr + Ala216Gln
           Thr 66Gln + Gly 97Ser + Gly127Pro + Tyr217Asp
           Gly100Asn + Ser204Asp + Pro210Ser + Tyr214Gly
           Asn 62Ser + Ile107Gly + Leu126Cys + Thr220Gly
           Leu126His + Gly154Asp + Asn218Gln + Thr220Asn
           Ser101Glu + Gly157Gln + Tyr214Pro + Ala216His
25
           Asn 62Gln + Ser162Glu + Val203Ser + Ala216Thr
           Tyr104Gln + Trp106Gly + Leu126Asp + Asn212Gln
           Gln 59Ser + Val 95Pro + Gly202Asn + Tyr217Ser
           Leu 96Pro + Gly160Asp + Ser161Glu + Gly166Asn
           Ser159Glu + Gly160Asp + Tyr167Gly + Phe189Val
30
           Asn212Glu + Lys213Glu + Ala216Ser + Tyr217Gln
           Thr158Asp + Ser159Asp + Gly215Asn + Ala216Thr
           Ala 98Asp + Asp 99Glu + Thr164Gln + Ala187Ser
           Gly 97Pro + Gly131Pro + Gly154Asp + Asn155Asp
           Gly102Ser + Trp106Gln + Gly157Glu + Phe189Asp
35
           Gly100Gln + Ser204Glu + Tyr214Ile + Ala216Glu
           Val 95Pro + Ser204Glu + Ala216Gly + Asn218Glu
           Ser204Glu + Ile205Gln + Pro210Gly + Asn218Asp
           Gly 97Ser + Gly154Asn + Gln206Asp + Gly215Asp
40
           Gly 97Asp + Ala 98Gln + Asp 99Glu + Gly154Ser
           Thr158Gln + Val165Met + Gly211Glu + Lys213Glu
           Gly160Glu + Ser162Asp + Tyr167Ile + Gly219Ser
           Asn 61Ser + Thr 66Ser + Asn155Glu + Gly157Asp
           Thr158Asp + Ser159Asp + Thr164Asp + Gly211Asn
           Val 95Asp + Gly102Glu + Ala187Pro + Tyr217Pro
45
           Asn 62Glu + Gly100Asp + Thr208Asn + Tyr217His
           Ser204Asp + Gln206Glu + Gly211Gln + Ala216His
           Gly154Asn + Ser204Glu + Gln206Asp + Tyr217Thr
           Thr 66Gln + Ser130Glu + Ser132Asp + Thr158Pro
           Asp 60Glu + Gly 65Asn + Thr 66Glu + Tyr214Ser
50
```

			*				
	Asp 60Glu	+	Gln206Ser	+	Pro210Glu	+	Gly219Ser
	Thr158Asp	+	Ser163Glu	+	Ser191Glu	+	Ile205Gly
•	Ser204Asp	+	Glv215Gln	+	Ala216Glu	+	Glv219Asp
	Thr158Asp	+	Ala187Asp	+	Phe189Glu	+	Tvr217Met
5					Val203Asp		
					Ser204Glu		
					Ser204Asp		
					Ser130Asp		
					Asn155Glu		
10					Phe189Asn		
10					Gln206Asp		
					Pro210Asp		
	Val 95Asp	+	Tyr104Asp	+	Leu126Ser	+	Asn155Gln
					Lys213Glu		
15	G171001511	<u>.</u>	Lve213Aen		Ala216Glu	<u>.</u>	Tur217Asp
13					Val203Glu		
					Gly102Pro		
					Ser163Asp		
					Ala216Asp		
20					Gly131Asn		
20							
					Ser191Asp		
	TICLOUASP	T	GIYIOUASII		Gly127Ser	7	TASSISGIA
	Tiero/var	+	Pherosasp	*	Val203Glu		Alaziogin
05					Lys213Asp Tyr214Glu		
25							
					Trp106Gly		
,					Pro210Glu		
					Tyr217Thr		
					Lys213Glu		
30					Gln206Glu		
					Gln206Glu		
•					Ser163Asp		
	Val203His	+	GIn206GIu	+	Gly211Glu	+	Lys213Asp
					Gln206Asp		
35					Val203His		
					Ser105Glu		
					Ala216Glu		
					Pro210Glu		
					Gly154Asp		
40					Asn212Glu		
	Gln206Glu	+	Lys213Glu	+	Tyr217Ala	+	Asn218Glu
					Ala216Asn		
					Ser204Glu		
					Gly100Gln		
45					Gln206Glu		
					Gly215Asp		
					Gln206Asp		
					Gln206Glu		
					Tyr217Glu		
50	Asn155Glu	+	Glu156Asp	+	Ser204Glu	+	Tyr214Thr

```
Gln 59Asp + Ser162Asp + Ser163Glu + Ala216Thr
           Leu126Pro + Ser162Glu + Ser163Glu + Tyr217Glu
           Gly100Glu + Val203Cys + Asn212Asp + Lys213Glu
           Ser105Glu + Ala187Ser + Val203Glu + Ser204Asp
 5
           Gln103Asp + Ser163Glu + Thr164Glu + Pro201Gln
           Val 95Gln + Glu156Asp + Gly157Asp + Lys213Glu
           Ser162Glu + Thr164Gln + Ala216Asp + Tyr217Glu
           Asp 99Glu + Gly100Glu + Ser159Glu + Ala216Thr
           Ala 98Glu + Asp 99Glu + Trp106Gly + Gly154Asp
           Asn 62Glu + Ser 63Glu + Pro129Ser + Asn155Asp
10
           Asn 61Glu + Gln206Glu + Ala216Glu + Tyr217Cys
           Thr 66Pro + Gln103Asp + Glu156Asp + Ser191Asp
           Asp 60Glu + Ser204Asp + Ala216Asp + Tyr217Ile
           Ser105Asp + Ser204Asp + Gln206Ser + Ala216Glu
15
           Thr158Asn + Ser162Asp + Ser204Asp + Asn218Asp
           Gln 59Asp + Gly157Ser + Ser204Asp + Asn218Asp
           Gly 97Ser + Gly128Glu + Gln206Glu + Gly215Asp
           Trp106Asp + Val203Cys + Ser204Glu + Tyr217Glu
           Ser105Glu + Ala187Thr + Ser204Glu + Tyr217Glu
20
           Gly 97Asn + Asn155Glu + Ser163Glu + Tyr214Val
           Val 95Asp + Trp106Glu + Ala187Pro + Val203Asp
           Gln103Asp + Trp106Glu + Gly128Asn + Ser162Asp
           Gly128Glu + Ser130Asp + Ser188Glu + Ala216Gln
           Gln103Asp + Ser105Glu + Gly154Glu + Ala216Thr
25
           Ser159Glu + Gly211Glu + Lys213Asp + Tyr217Gly
           Gln 59Asn + Ser188Asp + Gly211Glu + Lys213Glu
           Ile107Glu + Gly211Glu + Lys213Asp + Tyr217Gln
           Ser159Asp + Ser162Glu + Pro210Glu + Ala216Asn
           Asp 60Glu + Asn 62Asp + Ser191Asp + Tyr217Leu
30
           Asp 60Glu + Ser 63Asp + Ile107Asn + Phe189Glu
           Leu 96Cys + Gly166Asp + Pro210Asp + Lys213Asp
           Val 95Glu + Ala 98Asn + Gly102Glu + Ser162Glu
           Ser 63Asp + Tyr167His + Ala216Glu + Gly219Glu
           Tyr104Asp + Thr158Asp + Ser191Glu + Asn218Ser
35
           Gly154Pro + Ser159Glu + Ser204Asp + Gln206Asp
           Gly102Glu + Ser204Asp + Gln206Glu + Tyr217His
           Asn155Gln + Ser163Asp + Ser204Glu + Gln206Glu
           Gly131Asp + Thr158Gln + Ser204Asp + Gln206Asp
           Tyr167Asp + Ser204Glu + Gln206Glu + Tyr217Asn
40
           Gly 97Asp + Ala133Gly + Ser204Asp + Gln206Asp
           Gly127Asp + Ser204Glu + Gln206Glu + Tyr214Asn
           Gly102Glu + Gly127Gln + Asn155Asp + Thr220Asp
           Gly 97Glu + Ser130Glu + Tyr167Asp + Tyr217Val
           Asn 62Glu + Ala187Gly + Pro210Asp + Ala216Glu
45
           Ser101Asp + Ser105Asp + Ala216His + Tyr217His
           Ser130Asp + Ser132Glu + Asn212Glu + Ala216Gln
           Ser130Glu + Ser132Glu + Gly160Asp + Thr220Gly
           Gly100Glu + Tyr104Thr + Ser130Asp + Ser132Asp
           Gln 59Ser + Gly160Asp + Gln206Glu + Tyr217Asp
           Gly127Asp + Pro129Glu + Ser188Asp + Gln206Asn
50
```

			•				
	Ser159Asp	+	Thr164Glu	+	Phe189His	+	Lys213Glu
	Asn 61Asp	+	Gly 97Asp	+	Ser159Glu	+	Thr220Ser
•	Ser159Glu	+	Ser163Glu	+	Ser204Glu	+	Tyr217Ser
	Thr158Asp	+	Ser162Glu	+	Ala187Pro	+	Ala216Glu
5	Leu 96Val	+	Thr158Glu	+	Ser162Asp	+	Glv219Asp
J	Asp 99Glu	+	Thr158Asp	+	Ser162Asp	+	Val203Met
	Val 95Asn	·	Gl v131Asn	<u>.</u>	Ser163Asp	+	Ser191Glu
	Acn 61Glu	i	Jen 996111	<u>.</u>	Ser204Asp	+	Tvr217G1v
•	yen egyen	<u>.</u>	Clu16660x	i	Ser204Asp	ì	Gl v215Gl v
10	Cluinon	T	GIYIOOSEI	T	Tyr167Ala	i	Gly211Gly
10	GIYIUZASP	T	Seriosasp	T	Ala216Gly	T	Tur217Clu
	Seriousp	+	Serigidiu	+	Trp106Asn	T	1 y 1 Z 1 / G 1 u
	ASP BUGIU	+	GIY 9/ASP	*	TIPIUUASII	•	Serragera
					Phe189Gly		
					Tyr104Pro		
15					Asn155Asp		
					Ser130Glu		
	Asp 60Glu	+	Leul26Asn	+	Gln206Glu	+	Lys213Asp
	Ala 98Glu	+	Gly154Pro	+	Glu156Asp	+	Ser188G1u
					Ala187Glu		
20	Ser101Glu	+	Gly154Asn	+	Gly211Glu	+	Tyr214Glu
					Thr158Glu		
					Ala187Asp		
	Gln103Glu	+	Gly160Asn	+	Gln206Glu	+	Asn218Glu
	Gln 59Glu	+	Gly100Glu	+	Thr164Pro	+	Gly211Asp
25					Gly131Ser		
	Gln 59Asp	+	Thr 66Asp	+	Tyr104Val	+	Ala133Asp
•	Ser 63Glu	+	Ser101Glu	+	Ala133His	+	Ala216Glu
	Asp 60Glu	+	Val 95Ala	+	Lys213Glu	+	Tvr217Ala
	Trp106Met	+	Ser191Glu	+	Lys213Glu	+	Glv219Glu
30	Ser 63Asp	+	Glv160Asp	+	Lys213Asp	+	Ala216His
					Ser162Glu		
					Ser162Asp		
					Ser191Glu		
					Ser132Asp		
35					Glu156Asp		
33					Pro210Gln		
	Gly128ASp	+	Gly15/ASI	+	Lys213Glu	T	1111220G1U
	Asp 99G1u	+	Gly15/Pro	+	Gln206Asp	+	Lys213G1u
	Seribaasp	+	GinzubAsp	+	Lys213Glu	+	Tyrzi/Ala
40					Pro210Gln		
					Ser163Asp		
					Lys213Glu		
					Lys213Asp		
	Ser101Glu	+	Gly154Pro	+	Lys213Asp	+	Ala216Glu
45					Ala216Asp		
•	Asn 62Ser	+	Thr158Glu	+	Ser204Asp	+	Thr220Asp
-	Thr 66Asn	+	Ile107Val	+	Lys213Asp	+	Tyr217Asp
	Glv157Asn	+	Pro201Gln	+	Lys213Glu	+	Tyr217Asp
	Glv127Glu	+	Thr158Pro	+	Ala187Asp	+	Ser204Glu
50	Asp 99Glu	+	Ala133Glv	+	Ser188Glu	+	Thr220Glu
	-wp 5501u	•		٠		-	

			•				
	Asp 60Glu	+	Ser188Glu	+	Gln206Ser	+	Asn218Glu
	Gln 59Asp	+	Leu 96Glu	+	Gly131Gln	+	Ser132Asp
	Ser101Glu	+	Pro129Asp	+	Thr158Asn	+	Val203Ser
	Ser 63Glu	+	Ser163Asp	+	Ala216Asp	+	Tyr217Gln
5	Glv102Gln	+	Gly160Glu	+	Ser191Glu	+	Lvs213Glu
J			Asp 99Glu				
	Ser105Glu	÷	Ala133Glu	<u>.</u>	Val 203Glu	+	Asn218Gln
	Cln1030rd	÷	Ser132Glu	·	Ser162Glu	+	G1n206Ser
·			Ser101Asp				
10			Asp 99Glu				
10	Jan 6001	•	Ser159Asp	T	Tim167I ou	<u>.</u>	Sar107110
	Asp cogru		Ser163Glu		Clubiación Cluben	T	NI-216Uis
	ASH 62G1u		Seriosgiu	+	GIYZIIGIU	.	Alazionis
			Ser132Asp				
			Ser162Asp				
15			Ser204Asp				
			Gly166Gln				
			Gly131Glu				
			Phe189His				
			Gly215Glu				
20	Gly102Asn	+	Leu126Glu	+	Serl30Glu	+	Lys213Asp
			Gly166Glu				
	Asn 62Glu	+	Asn155Ser	+	Lys213Asp	+	Tyr217Leu
			Ser105Glu				
			Gln206Ser				
25			Gly 97Gln				
	Ser 63Glu	+	Val 95Ala	+	Ser130Asp	+	Gln206Asp
	Ser 63Asp	+	Ile107Met	+	Ser191Asp	٠+	Gln206Asp
	Pro129Asn	+	Ser130Asp	+	Lys213Glu	+	Tyr217Glu
			Ser191Glu				
30	Gly 97Glm	+	Gly102Asp	+	Pro129Glu	+	Phe189Gln
			Ser162Glu				
			Gly128Glu				
			Ser105Asp				
			Ser191Glu				
35			Thr158Gln				
			Gly157Asp				
			Ser163Glu				
			Ser130Asp				
			Ser188Asp				
40			Ala216Gly				
40	G1v102G1v		Leu126Cys	<u>.</u>	Ser1306111	+	Tur214Asn
			Gly160Asp				
			Trp106Met				
45			Gly102Glu				
45			Gln206Ser				
			Ser159Asp				
			Ser159Glu				
			Trp106Leu				
			Ala133Gln				
50	Ser 63Glu	+	Ser130Asp	+	Tyr217Gln	+	Gly219Asp

WO 95/30010 PCT/US95/03176

61

	Gly131Asp	+	Ser163Asp	+	Gly166Asn	+	Ser204Asp	
	Ile107Asp	+	Gln206Ser	+	Asn212Glu	+	Ala216Asp	-
	Leu126Gly	+	Ser130Asp	+	Gly154Asn	+	Asn218Asp	
	Gln 59Asp	+	Ser105Asp	+	Gly166Gln	+	Ser204Asp	
5	Asn 61Asp	+	Ser105Glu	+	Ala187Gln	+	Ala216Gly	
	Ser105Asp	+	Phe189Ile	+	Lys213Glu	+	Gly219Gln	
	Ser 63Glu	+	Gly131Gln	+	Ser204Glu	+	Gly219Asn	
	Gly157Pro	+	Thr164Glu	+	Gln206Asn	+	Lys213Asp	
	Leu 96Ile	+	Ser101Asp	+	Gln206Glu	+	Tyr214Ala	-
10	Thr 66Gln	+	Leu 96Met	+	Tyr167Glu	+	Ser188Glu	
	Tyr104Cys	+	Gly160Asp	+	Ile205Pro	+	Ala216Glu	
							Ala216Gly	
	Ile107Asp	+	Ser191Asp	+	Gln206Asp	+	Ala216Thr	
					Ser101Glu			
15							Asn218Asp	
					Ala 98Ser			
					Gln206Asn			
							Tyr217Thr	
							Asn218Glu	
20	Gly100Glu	+	Gly160Ser	+	Gly166Glu	+	Ala216Thr	
	Gln103Asn	+	Ser132Asp	+	Ser163Glu	+	Ser188Asp	

TABLE 25

Multi-loop Quintuple Mutation Variants Val 95Gln + Tyr104Cys + Gly127Gln + Lys213Glu + Ala216Pro 25 Asn 61Ser + Leu 96His + Gly157Pro + Val203Asp + Ala216Gly Leu 96Gln + Gly127Gln + Glu156Asp + Tyr214Ala + Thr220Asn Gly100Gln + Tyr167Cys + Ser188Glu + Val203Gln + Ala216His Asn 62Ser + Trp106Gly + Ser132Asp + Ala187Ser + Phe189Ser Thr 66Ser + Gly127Gln + Pro201Asn + Ala216Thr + Gly219Asp 30 Gly 97Asn + Gly154Pro + Gln206Asn + Pro210Glu + Gly211Pro Pro129Gly + Ser132Glu + Thr158Asn + Vall65Thr + Gln206Asn Gly 65Ser + Gly 97Gln + Gly128Ser + Lys213Asp + Gly219Gln Leu 96Met + Gln103Asn + Ala133Ser + Gly154Pro + Gly219Pro 35 Asn 61Gln + Trp106Ala + Gly211Pro + Asn218Asp + Gly219Asn Thr 66Gly + Tyr104Ile + Gly211Glu + Gly215Pro + Ala216Gly Leu126Ile + Ser130Asp + Gly154Asn + Asn212Ser + Tyr217Thr Leul26Val + Gln206Ser + Pro210Gly + Gly215Glu + Ala216Pro Leu 96Asn + Leu126Pro + Lys213Asp + Ala216Ser + Tyr217His 40 Trp106Asn + Gly127Ser + Ser161Glu + Gln206Asn + Gly219Asn Ser101Glu + Gly102Gln + Ile107Gln + Val165Gln + Val203Ala Asp 60Glu + Ala 98Gly + Ile107Ser + Gly157Ser + Thr164Ser Pro129Glu + Gly160Pro + Gly166Asn + Ala187Pro + Gly202Ser Leu 96Ile + Tyr167Thr + Ser188Asp + Val203His + Gln206Ser 45 Asn 61Gln + Val 95Asp + Gly102Asn + Gly131Asn + Ala187Asn Gly160Asn + Val203Thr + Pro210Glu + Asn218Gln + Thr220Gln Gly128Asn + Asn155Glu + Gly166Gln + Ala216Gly + Thr220Gly Gly 65Ser + Val 95Met + Gly100Asn + Gly131Asp + Tyr214Gly Tyr104Gly + Pro129Ser + Ser163Glu + Gln206Ser + Gly219Ser

```
Asn 61Ser + Val 95Gln + Ser204Asp + Pro210Gly + Ala216Gln
     Gly 65Gln + Gly 97Pro + Ser130Glu + Gly154Ser + Pro210Asn
     Trp106Ser + Gly128Asn + Ser159Glu + Pro201Ser + Tyr217Val
     Leu 96Met + Leu126Asn + Asn155Gln + Ser188Glu + Gly202Gln
     Gly100Glu + Thr158Gln + Thr164Asn + Gln206Asn + Ala216Thr
5
     Asn 62Glu + Leu 96Ile + Gly 97Ser + Gly211Ser + Gly219Ser
     Gly102Asp + Tyr167Ala + Pro210Gly + Ala216Thr + Tyr217Met
     Ser132Glu + Thr158Pro + Phe189Thr + Ala200Gln + Tyr214Ala
     Ala 98Pro + Trp106Pro + Gly160Pro + Ala216Asn + Tyr217Asp
     Gly127Pro + Ala133Asn + Thr164Glu + Gly211Gln + Tyr214Thr
10
     Gly100Asn + Trp106Pro + Gly127Ser + Lys213Glu + Tyr214Ala
     Gly157Asn + Ser204Asp + Gln206Asn + Tyr217Val + Gly219Pro
     Leu 96Thr + Gly131Asp + Ala133Thr + Gln206Asn + Ala216Gly
     Gly100Ser + Tyr104Ala + Thr164Asp + Gly211Gln + Thr220Ser
     Ser101Asp + Pro129Ser + Phe189Val + Pro201Asn + Ala216Ser
15
     Thr 66Gly + Gly102Asn + Tyr104His + Trp106Thr + Ala187Asn
     Thr 66Asn + Gly102Glu + Trp106Gly + Gly166Ser + Ala216Thr
     Gly128Gln + Gly154Asn + Tyr167Gly + Tyr217Leu + Asn218Glu
     Ala133Ser + Gly157Ser + Phe189Thr + Gly202Asn + Asn212Glu
     Tyr104Ser + Thr158Gly + Thr164Glu + Gln206Asn + Ala216Pro
20
     Gln 59Asn + Gln103Asn + Thr164Gly + Ala187Pro + Thr220Asp
     Gly 97Gln + Gly102Asp + Gly127Ser + Phe189Gln + Tyr217Leu
     Thr 66Asn + Gln206Glu + Tyr214Ile + Ala216Thr + Tyr217Cys
     Asp 60Glu + Thr 66Gly + Leu 96Gly + Ala216His + Tyr217Asn
     Ile107Asp + Gly160Asn + Val203Pro + Gly211Pro + Gly219Asn
25
     Val 95Ser + Trp106Cys + Val165Gln + Pro210Gln + Tyr217Glu
     Trp106Thr + Thr158Ser + Thr164Pro + Ser204Glu + Thr220Pro
     Gly128Pro + Ala187Ser + Gln206Asn + Asn212Ser + Gly215Asp
     Trp106Gln + Leu126Gly + Thr164Ser + Val203Gln + Asn218Asp
     Asp 60Glu + Val 95Gln + Leu126Pro + Gly157Asn + Val203Thr
30
     Gln 59Asn + Trp106Cys + Ala200Thr + Gly211Gln + Ala216Gln
     Asn 62Ser + Ile107Gly + Leu126Cys + Pro210Glu + Thr220Gly
     Asn 62Gln + Thr158Glu + Val203Ser + Gly215Ser + Ala216Thr
     Gln 59Asn + Asp 60Glu + Trp106Phe + Gly154Gln + Thr208Pro
35
     Thr 66Ser + Asn155Gln + Val203Gln + Gln206Glu + Tyr217His
     Gly128Pro + Phe189Met + Val203Gly + Ser204Glu + Ala216Glu
     Gln 59Ser + Asn 62Ser + Leu 96Gly + Ser204Glu + Asn218Asp
     Gln103Ser + Gly128Gln + Ser204Glu + Gly211Asn + Asn218Glu
     Gly 97Pro + Pro129Gln + Gly157Asn + Ser204Asp + Asn218Glu
     Leu126Asn + Thr158Gln + Val165Met + Gly211Glu + Lys213Glu
40
     Gly157Ser + Ser204Glu + Gln206Asp + Tyr217Cys + Thr220Gly
     Ala133Thr + Phe189Ser + Ser204Asp + Gln206Asp + Tyr214Ile
     Gly100Gln + Gly154Asn + Ser204Glu + Gln206Asp + Tyr217Thr
     Gly127Asp + Gly128Glu + Gly154Glu + Gly157Asn + Phe189Ser
     Gly100Gln + Trp106Thr + Ser130Asp + Tyr167Glu + Tyr217Thr
45
     Glu156Asp + Thr158Asp + Tyr167Gly + Pro201Gln + Gly215Ser
     Gly157Gln + Val203Asp + Ser204Asp + Ala216Pro + Gly219Asp
     Leu126Gly + Pro129Glu + Gly131Glu + Tyr167Met + Thr220Gln
     Leu 96Ser + Serl30Asp + Gly166Glu + Ala216Gln + Tyr217Ile
     Asn155Glu + Gly160Asn + Gly166Glu + Tyr217Cys + Thr220Asp
50
```

PCT/US95/03176 WO 95/30010

```
Asn 62Asp + Gly 97Gln + Trp106Gly + Pro210Asp + Asn212Gln
     Val 95Asp + Tyr104Glu + Leu126Ser + Asn155Gln + Gln206Ser
     Gly154Glu + Thr158Asp + Phe189Glu + Gly215Asn + Tyr217Met
     Ile107Leu + Gly154Asp + Gly157Glu + Val203His + Gly219Glu
     Trp106Ile + Asn155Ser + Ser159Asp + Ser191Glu + Ala216Thr
     Gly100Asp + Leu126Asp + Gly127Ser + Pro129Gln + Thr220Ser
     Ala133Pro + Gln206Glu + Tyr214Ala + Asn218Glu + Gly219Ser
     Thr. 66Gly + Ser101Glu + Gly102Asn + Leu126Glu + Ala216Pro
     Gly100Glu + Gly102Glu + Tyr104Glu + Asn155Gln + Val203Ala
10
     Leu126His + Ala187Glu + Val203Glu + Gln206Asp + Asn218Glu
     Asp 60Glu + Leu 96Asn + Pro129Gln + Gly211Glu + Tyr217Met
     Leu 96Cys + Ile107Ala + Ala133Pro + Gly157Asp + Gly160Asp
     Ser 63Asp + Thr158Gly + Gln206Asp + Tyr214Asp + Tyr217Asp
     Gln 59Asp + Asn 62Asp + Gly100Glu + Phe189Tyr + Tyr214Met
     Ser101Glu + Gly127Glu + Ala187Gln + Gln206Asn + Tyr217Ile
15
     Asn 62Asp + Ser 63Glu + Gly100Asp + Gly131Asn + Lys213Glu
     Asp 60Glu + Gly 97Asp + Ala 98Glu + Phe189His + Gly211Glu
     Asp 60Glu + Val 95Glu + Asp 99Glu + Ser101Asp + Val165Thr
     Gly102Gln + Gly154Glu + Asn155Glu + Ser191Asp + Gln206Asp
20
     Asn 61Ser + Thr 66Ser + Leu126Glu + Asn155Glu + Gly157Asp
     Prol29Asn + Ala133Gln + Phe189Ile + Gln206Glu + Lys213Glu
     Asn 61Ser + Gln206Asp + Lys213Glu + Tyr217Ala + Gly219Asn
     Gln 59Asn + Gly128Asn + Ala200Thr + Gln206Glu + Lys213Glu
     Phe189Gln + Val203Gly + Gln206Asp + Lys213Asp + Tyr217Pro
     Ala 98His + Gly154Glu + Ser163Asp + Val203Met + Tyr217Met
25
     Leu 96Met + Pro129Gly + Gly154Glu + Ser163Glu + Tyr217Ser
     Gly 97Pro + Ser204Glu + Lys213Asp + Ala216Glu + Gly219Ser
     Vall65Ser + Lys213Glu + Tyr214Cys + Ala216Glu + Tyr217Pro
     Ser191Glu + Ser204Glu + Gln206Asp + Tyr214His + Ala216Asp
30
     Gly102Pro + Asn155Asp + Ala216Glu + Tyr217His + Asn218Glu
     Asn155Asp + Gly215Pro + Ala216Glu + Tyr217Ser + Asn218Glu
     Glyl60Ser + Ser204Glu + Gln206Glu + Lys213Glu + Ala216Ser
     Ala 98Thr + Ala187Ser + Ser204Glu + Gln206Glu + Lys213Asp
     Gly127Pro + Ser204Glu + Gln206Glu + Lys213Glu + Tyr217Ala
     Leu126Met + Pro129Glu + Ser163Glu + Phe189Thr + Asn218Ser
35
     Ser101Asp + Ser204Asp + Gln206Glu + Ala216Asn + Tyr217Glu
     Val 95Ala + Tyr167Asp + Ser204Glu + Gln206Glu + Tyr217Glu
     Asn155Glu + Glu156Asp + Thr164Asp + Ser204Glu + Tyr214Thr
     Trp106Pro + Gly127Asp + Ser130Asp + Asn155Asp + Gly219Gln
     Prol29Ser + Ser204Asp + Gln206Glu + Pro210Asp + Asn218Glu
40
     Tyr104Val + Leu126Asp + Gly157Asp + Ser163Asp + Thr164Asp
     Leu 96Asp + Gly 97Asp + Gln103Asp + Tyr217Cys + Gly219Asp
     Ser159Glu + Asn212Gln + Lys213Glu + Gly215Asp + Ala216Glu
     Gln 59Asp + Asn 62Glu + Ser 63Glu + Pro129Ser + Asn155Asp
     Gln103Ser + Tyr104Ala + Val203Asp + Gln206Asp + Lys213Glu
45
     Val 95Glu + Glu156Asp + Gly157Asp + Tyr214Gly + Thr220Asp
     Val 95Glu + Gly215Glu + Ala216Glu + Tyr217Leu + Gly219Ser
     Ser 63Asp + Gly160Asp + Ser161Glu + Val203Ser + Tyr217Cys
     Gly160Asp + Ser161Asp + Tyr167Met + Ser204Asp + Tyr217Ala
     Leu 96His + Trp106Asp + Gln206Asn + Asn218Asp + Gly219Asp
50
```

```
Gly100Glu + Ser101Asp + Trp106Met + Ser162Asp + Thr164Pro
     Ser105Glu + Ala187Ser + Val203Glu + Ser204Asp + Ala216Gly
     Asp 60Glu + Trp106Asn + Val203Glu + Ser204Glu + Ala216Gln
     Gln103Asp + Ser163Glu + Thr164Glu + Pro201Gln + Ala216Pro
     Val 95Gln + Gly100Asn + Glu156Asp + Gly157Asp + Lys213Glu
5
     Thr158Asp + Ser159Asp + Ser204Glu + Gly215Asn + Tyr217Cys
     Ser105Asp + Trp106Glu + Thr164Asn + Ala216Asp + Gly219Ser
     Gln 59Glu + Asp 60Glu + Tyr104Asn + Ser191Glu + Pro201Gln
     Gln103Asp + Ser161Glu + Ser162Asp + Gln206Ser + Tyr217His
     Ala 98Asp + Asp 99Glu + Ser105Glu + Thr164Gln + Ala187Ser
10
     Gly154Asp + Asn155Asp + Ser204Glu + Ala216Gln + Tyr217Ala
     Asn 61Glu + Tyr104Ser + Gln206Glu + Ala216Glu + Tyr217Cys
     Gly157Ser + Thr158Glu + Gln206Asp + Lys213Asp + Ala216Asp
     Val 95Thr + Gly157Glu + Ser188Glu + Ser204Glu + Ala216Asp
     Tyr104His + Asn155Glu + Gly157Asn + Tyr167Glu + Gly202Ser
15
     Gly128Asp + Gly157Asn + Pro210Gln + Asn218Glu + Thr220Glu
     Asn 62Glu + Val 95Ala + Gly100Asp + Lys213Glu + Tyr217His
     Gly166Asp + Gln206Ser + Gly215Pro + Tyr217Asp + Gly219Asp
     Ser130Asp + Ser163Asp + Tyr167Ser + Ser191Asp + Tyr217Met
     Gly 97Pro + Ser132Asp + Thr158Gly + Ser204Glu + Ala216Asp
20
     Gly154Asp + Ser191Asp + Lys213Asp + Tyr214Ala + Tyr217Asn
     Asn 61Gln + Ile107His + Ser204Glu + Lys213Glu + Asn218Glu
     Gln 59Asp + Ala 98Glu + Gly102Asp + Ser105Glu + Leu209Thr
     Ala133Gly + Gly154Asp + Gln206Glu + Gly215Glu + Thr220Gln
     Gly154Asn + Gly160Ser + Gly166Glu + Gln206Asp + Gly215Asp
25 ·
     Leu 96Glu + Ala 98Asn + Tyr167Asn + Gln206Glu + Gly215Glu
     Ser162Glu + Thr164Glu + Thr208Gln + Ala216Asp + Tyr217Glu
     Val 95Asp + Ile107Asp + Tyr167His + Ser188Glu + Thr220Asn
     Gly154Glu + Gly166Asp + Lys213Asp + Ala216Ser + Tyr217Cys
     Gly 97Glu + Asp 99Glu + Glu156Asp + Tyr167Ala + Ala216Pro
30
     Thr 66Gly + Gln103Asp + Trp106Glu + Gly128Asn + Ser162Asp
     Gln103Glu + Ser105Glu + Thr158Ser + Leu209Thr + Lys213Glu
     Thr 66Gln + Thr164Asp + Val203His + Gly211Glu + Lys213Glu
Pro129Asn + Gly131Gln + Thr164Glu + Gly211Glu + Lys213Asp
     Ser159Asp + Ser162Glu + Gln206Ser + Pro210Glu + Tyr214Ala
35
     Asp 99Glu + Ser101Asp + Gly131Asn + Lys213Glu + Gly215Ser
     Gln103Glu + Tyr104Gly + Thr164Pro + Pro210Asp + Asn212Glu
     Asn 62Ser + Ser132Asp + Gly160Glu + Ser162Glu + Ala216His
     Gly160Glu + Ser162Asp + Tyr167Ile + Ser204Glu + Gly219Ser
     Asp 60Glu + Ser 63Asp + Ser130Glu + Gly202Gln + Gly215Ser
40
     Gly154Glu + Glu156Asp + Pro210Glu + Lys213Asp + Asn218Gln
     Ser105Asp + Trp106Gly + Gly127Asp + Gly154Asp + Val165Gln
     Asn 62Glu + Gly100Glu + Gly157Asn + Gly166Glu + Tyr217Leu
     Asn 62Asp + Pro129Gly + Ala133Gly + Ser204Asp + Gln206Asp
     Asp 60Glu + Gly100Asn + Ser204Asp + Gln206Glu + Pro210Ser
45
     Ser162Glu + Thr164Glu + Val203Thr + Ser204Asp + Asn212Ser
     Gly 97Glu + Ser130Glu + Tyr167Asp + Tyr217Val + Gly219Ser
     Gly128Glu + Ser163Glu + Gly166Glu + Gln206Glu + Ala216Ser
     Asp 60Glu + Asn 61Glu + Ala187Gly + Lys213Glu + Ala216Glu
     Gly 97Asp + Ser101Asp + Tyr104Glu + Ser161Glu + Tyr217Val
50
```

WO 95/30010 PCT/US95/03176

```
Ser 63Glu + Ile107Gln + Gln206Asp + Ala216Asp + Thr220Glu
     Ser130Glu + Ser132Glu + Gly160Asp + Ala216Gln + Thr220Gly
     Val 95Glu + Ser130Asp + Ser132Glu + Ala200Gly + Tyr217His
     Thr 66Gly + Gly100Glu + Gln103Asp + Ser132Asp + Tyr217Asn
5
     Asp 60Glu + Gly128Glu + Gln206Asn + Pro210Glu + Ala216Gln
     Leu126Val + Thr158Glu + Val203Met + Lys213Asp + Gly215Glu
     Asp 99Glu + Ser159Glu + Thr164Glu + Tyr167Leu + Gln206Ser
     Val 95Asp + Pro129Asn + Thr164Gln + Ala216Glu + Asn218Glu
     Gly154Asp + Ala187Gly + Gly215Asp + Tyr217Thr + Asn218Glu
10
     Asn 62Glu + Gly 97Asp + Gly100Asn + Ser204Glu + Tyr217Cys
     Asn 62Glu + Gly 97Asp + Glu156Asp + Val203Cys + Ala216Gly
     Asn 62Asp + Gly 97Asp + Ser204Asp + Tyr214Leu + Tyr217Leu
     Glu156Asp + Ser163Asp + Gln206Ser + Gly215Asp + Ala216Asp
     Ser159Glu + Ser163Glu + Phe189His + Ser204Glu + Tyr217Ser
15
     Gly100Pro + Asn155Gln + Ser159Asp + Ser163Asp + Ser204Glu
     Gly102Asp + Ala187Asp + Ser188Asp + Val203His + Ser204Asp
     Asp 99Glu + Thr158Asp + Ser162Asp + Val203Met + Ala216Thr
     Val 95Cys + Gly 97Pro + Ser163Glu + Ser191Asp + Ser204Asp
     Leu 96Glu + Asp 99Glu + Ser159Glu + Gln206Asn + Ala216Thr
20
     Gly127Pro + Ser162Glu + Ser191Glu + Gly211Glu + Asn212Asp
     Ser 63Glu + Ser191Asp + Gln206Asp + Ala216Asp + Tyr217Gln
     Ser 63Glu + Phe189Ile + Val203Met + Gln206Asp + Gly211Glu
     Trp106Tyr + Phe189Asp + Pro210Asp + Lys213Glu + Asn218Glu
     Ser191Glu + Gln206Glu + Ala216Gly + Tyr217Leu + Thr220Asp
25
     Val 95Gly + Thr158Asp + Ser161Asp + Ala187Pro + Asn218Asp
     Thr 66Glu + Gly166Glu + Phe189Val + Ser191Glu + Gly219Ser
     Asp 60Glu + Asp 99Glu + Gln206Glu + Gly211Pro + Ala216Glu
     Asn 61Asp + Ser 63Asp + Gln103Glu + Lys213Asp + Tyr217Pro
     Tyr104Glu + Gly128Gln + Ser132Glu + Asn212Asp + Ala216Ser
     Asn 62Asp + Ser204Asp + Gly215Glu + Ala216Gln + Tyr217Leu
30
     Asn 61Asp + Gly100Asp + Trp106Ala + Asn212Gln + Lys213Asp
     Gly127Glu + Gly157Gln + Ser204Asp + Lys213Asp + Ala216Glu
     Leu 96Glu + Gly 97Ser + Gly100Glu + Gln206Asp + Lys213Asp
     Asp 60Glu + Leu 96Cys + Gly 97Glu + Ser204Glu + Gly215Asn
35
     Tyr167Pro + Ser204Asp + Lys213Glu + Ala216His + Gly219Glu
     Gly 97Ser + Ser105Asp + Asn155Glu + Gly166Asp + Val203Asn
     Gly102Asn + Gly160Asn + Thr164Glu + Gln206Asn + Thr220Asp
     Asn 61Ser + Ala 98Asp + Asn155Asp + Ser188Glu + Val203Ser
     Glu156Asp + Ser204Asp + Gln206Glu + Lys213Glu + Ala216Pro
40
     Asp 99Glu + Gly157Pro + Ser204Glu + Gln206Asp + Lys213Glu
     Ser130Asp + Gly160Asn + Ser204Glu + Gln206Asn + Gly215Asp
     Gly127Glu + Glu156Asp + Ser204Glu + Gln206Asp + Tyr214Pro
     Ala 98Glu + Asp 99Glu + Trp106Gly + Gly154Asp + Asn218Glu
     Gln 59Ser + Val 95Glu + Ala 98Asn + Ser105Glu + Gln206Glu
     Gly 97Pro + Gly128Glu + Lys213Asp + Ala216Glu + Asn218Glu
45
     Gln103Asp + Ile107Asp + Gly157Pro + Tyr167Glu + Ala216Glu
     Asp 60Glu + Gln206Glu + Lys213Asp + Gly215Pro + Asn218Glu
     Ser130Glu + Thr164Glu + Val203Met + Ser204Asp + Gln206Asp
     Asp 60Glu + Ser 63Glu + Gly154Asp + Gly166Ser + Ser188Asp
50
     Leu 96His + Ser130Glu + Glu156Asp + Tyr167Glu + Lys213Glu
```

Gln 59Ser + Glu156Asp + Gly160Glu + Gly211Glu + Lys213Glu Gly127Glu + Asn155Asp + Ala187His + Ala216Glu + Tyr217His Gln103Glu + Gly160Asn + Gln206Glu + Tyr214Gly + Asn218Glu Ser 63Asp + Gly202Pro + Lys213Asp + Gly215Gln + Asn218Asp Asp 60Glu + Leu 96Glu + Thr158Gln + Gly166Pro + Gln206Asp 5 Gly 97Asp + Gln103Asp + Phe189Ala + Gln206Ser + Lys213Asp Asn 62Asp + Thr 66Glu + Tyr104Pro + Ser132Asp + Asn212Asp Ala 98Pro + Pro129Asp + Ser130Asp + Lys213Glu + Tyr217Glu Ser 63Asp + Glu156Asp + Gln206Glu + Lys213Glu + Ala216Pro 10 Asp 60Glu + Gly102Gln + Ser105Glu + Thr164Gln + Gly211Glu Asp 60Glu + Thr158Gln + Lys213Glu + Ala216Gln + Tyr217Val Ile107Asp + Gly131Asp + Ala216Asp + Tyr217His + Asn218Asp Ser 63Asp + Gly100Glu + Gln103Asp + Gln206Asn + Gly219Asp Asn155Glu + Gly157Glu + Gln206Asn + Pro210Asp + Ala216Glu Ser 63Asp + Ile107Met + Pro129Asn + Ser191Asp + Gly219Glu 15 Ser 63Asp + Val 95Ala + Asp 99Glu + Leu126Thr + Ser163Asp Thr 66Glu + Gly100Gln + Gln103Asp + Lys213Asp + Ala216Asn Thr158Asp + Ser161Asp + Gln206Asp + Tyr217Cys + Gly219Asp Ser 63Glu + Ser162Asp + Ala187Gln + Gly211Asn + Lys213Asp Gly 97Ser + Ser101Asp + Val203Cys + Tyr214Glu + Tyr217Asp 20 Val 95Glu + Asp 99Glu + Ser204Asp + Gly215Glu + Asn218Gln Gln 59Glu + Thr 66Asp + Ser163Asp + Pro201Gln + Gly215Glu Ala 98His + Ser101Glu + Gly166Gln + Ser188Asp + Val203Asp Ser 63Asp + Gly160Asp + Val203Ala + Ser204Asp + Gln206Glu 25 Gly127Glu + Ser162Glu + Ser163Glu + Lys213Asp + Ala216His Ser162Asp + Ala187Glu + Pro201Gln + Gln206Asp + Tyr217Glu Gly157Glu + Phe189Tyr + Val203Glu + Ser204Glu + Lys213Glu Gly160Glu + Ser161Asp + Tyr167Glu + Gly202Asn + Gln206Glu Asp 60Glu + Ser159Asp + Thr164Glu + Phe189His + Lys213Glu 30 Tyr104Cys + Ser162Glu + Lys213Glu + Asn218Asp + Gly219Glu Tyr104Asp + Gly128Asn + Ser130Asp + Gly157Ser + Ser204Glu Ser132Glu + Gly157Ser + Ser163Asp + Asn212Asp + Lys213Glu Gly 97Asp + Ala 98Asp + Pro129Glu + Tyr167Leu + Gln206Asp Ser101Glu + Thr158Gln + Ala187Glu + Ser188Glu + Gln206Glu 35 Asp 99Glu + Gly100Asp + Asn155Asp + Gly166Gln + Ser204Glu Ser130Glu + Ser161Glu + Ser162Asp + Thr164Asn + Gly211Asp Gln 59Asn + Tyr104Asp + Thr158Asp + Ser191Glu + Asn218Glu Asp 60Glu + Ser101Glu + Ser204Glu + Gln206Ser + Pro210Asp Ser130Asp + Ser159Asp + Ser163Glu + Pro210Gln + Tyr217Asp Asn 61Asp + Gly100Asp + Trp106Pro + Gly128Glu + Tyr217Asp · 40 Gly102Pro + Gly131Asp + Ser188Asp + Ser204Glu + Gln206Glu Glu156Asp + Ser204Asp + Gln206Asp + Asn212Asp + Ala216His Thr 66Pro + Gln103Asp + Glu156Asp + Ser191Glu + Gln206Asp Gly131Pro + Phe189Leu + Ser191Glu + Gln206Glu + Lys213Glu Ala 98Glu + Gly157Ser + Gln206Asp + Lys213Asp + Gly215Gln 45 Tyr104Leu + Thr158Glu + Gly202Ser + Gln206Glu + Lys213Glu Ser 63Glu + Ala 98Gln + Gly102Asn + Ser130Asp + Tyr217Glu Thr158Glu + Gly166Asn + Pro210Glu + Lys213Glu + Thr220Glu Trp106Thr + Gly154Ser + Gly157Asp + Lys213Glu + Ala216Glu Ala 98Ser + Ala187Glu + Lys213Asp + Gly215Gln + Ala216Asp 50

WQ 95/30010 PCT/US95/03176

```
Tyr104Pro + Ser159Asp + Gly202Asn + Lys213Glu + Ala216Asp
     Leul26Asn + Asn155Glu + Thr164Asn + Lys213Asp + Ala216Glu
     Ser161Asp + Val203His + Ser204Asp + Gly211Asp + Tyr217Asp
     Asn 61Asp + Ser163Asp + Val203His + Ser204Glu + Tyr217Asp
 5
     Val 95Asp + Trp106Glu + Ser161Glu + Ala187Pro + Ser204Asp
     Leu 96Glu + Gly100Asp + Trp106Cys + Ser188Glu + Gln206Asp
     Ser101Glu + Ser204Asp + Gly211Glu + Lys213Asp + Gly215Asn
     Asp 99Glu + Ser159Glu + Ser162Glu + Ser204Asp + Gly219Asn
     Leu 96Ala + Gln103Asp + Leu126Val + Gly128Asp + Ser204Asp
10
     Ala 98Glu + Ser105Glu + Gly154Glu + Glu156Asp + Phe189Pro
     Asn 61Glu + Ser159Glu + Gln206Ser + Pro210Glu + Ala216Glu
     Gly 97Asp + Ser101Asp + Ala133Glu + Gln206Glu + Gly219Pro
     Leu126Ala + Gly131Glu + Ser204Glu + Pro210Asp + Lys213Glu
     Val 95Glu + Ala 98Asn + Gly102Glu + Ser162Asp + Ser204Glu
15
     Asn 61Glu + Gly100Asn + Pro129Asp + Ser163Glu + Asn218Ser
     Gly102Asp + Gly127Ser + Thr158Asp + Gly160Glu + Lys213Glu
     Ser130Asp + Asn155Gln + Thr158Glu + Ser191Asp + Gly215Glu
     Ala133Asp + Ser159Glu + Ser161Asp + Ser204Asp + Ala216Gln
     Ser132Glu + Thr164Asp + Ser204Asp + Gln206Glu + Tyr217Pro
20
     Gly157Glu + Tyr167Asp + Ser204Glu + Gln206Glu + Ala216Asn
     Thr 66Ser + Ser130Glu + Thr158Glu + Ser204Glu + Gln206Glu
     Asp 99Glu + Ser159Glu + Ser204Glu + Gln206Glu + Tyr217Pro
     Thr 66Ser + Ser105Asp + Ser159Glu + Ser204Glu + Gln206Asp
     Asp 60Glu + Gly127Asp + Ser204Glu + Gln206Glu + Tyr214Asn
25
     Ser 63Glu + Ser130Asp + Gln206Asp + Ala216Gly + Asn218Asp
     Pro129Gly + Ser159Glu + Ser188Glu + Phe189Cys + Ser204Asp
     Gly131Asp + Glu156Asp + Ser162Glu + Ala187Pro + Tyr214Gly
     Gly102Asp + Trp106Glu + Ser159Glu + Pro210Gln + Thr220Asp
     Gly131Asp + Ser161Asp + Ser163Asp + Gly166Asn + Ser204Asp
30
     Gln 59Asn + Ser188Asp + Gln206Asp + Gly211Glu + Tyr217Glu
     Ala 98Glu + Gly157Asp + Thr164Asp + Phe189Thr + Lys213Asp
     Gln103Asp + Trp106Tyr + Gly160Asp + Lys213Glu + Gly215Asp
     Val 95Asp + Gly131Gln + Ser159Asp + Ala216Asp + Asn218Asp
     Ser101Asp + Gln103Glu + Ser161Glu + Gln206Glu + Ala216His
35
     Thr 66Glu + Gly128Pro + Gly154Asp + Thr164Asp + Ser204Glu
     Val 95Asp + Gly131Glu + Ser163Asp + Ser191Glu + Gln206Asn
     Val 95Ser + Ala 98Glu + Ser101Asp + Gly131Asp + Phe189Asp
     Asn 62Asp + Leul26His + Glyl31Pro + Lys213Glu + Tyr217Asp
     Ser 63Asp + Ser130Glu + Thr158Pro + Ala216Glu + Tyr217Ile
40
     Gln 59Asp + Gly157Asp + Gln206Glu + Tyr214Val + Asn218Asp
     Val 95Glu + Asp 99Glu + Gly215Asp + Ala216Asn + Tyr217Ile
     Ser132Glu + Gly154Gln + Gly157Glu + Ser161Asp + Tyr214Ser
     Ser101Asp + Gly131Pro + Ser188Asp + Ser191Glu + Gln206Glu
     Thr 66Asp + Leu 96Glu + Glu156Asp + Val203His + Gly215Asp
     Asn 62Glu + Gly166Gln + Ser188Glu + Gly211Glu + Ala216His
45
     Ile107Asp + Ala187Asp + Ser191Asp + Gln206Asp + Ala216Thr
     Ser105Asp + Ser159Glu + Ser191Asp + Lys213Asp + Ala216Thr
     Asn155Asp + Ser163Asp + Val165Asn + Gln206Ser + Lys213Glu
     Ser101Glu + Gly131Asn + Asn155Glu + Ala187Glu + Lys213Asp
     Gln 59Glu + Gly160Asp + Ser188Asp + Val203Glu + Tyr217Ile
50
```

Ala133Asp + Ser161Glu + Thr164Asp + Ser204Asp + Asn218Ser Gln103Glu + Tyr104Cys + Ser161Glu + Thr164Asp + Lys213Glu Ser 63Glu + Gly160Asp + Tyr167Met + Lys213Asp + Asn218Asp SerlOlGlu + Leul26Glu + Serl88Glu + Lys2l3Asp + Ala216Asn Asp 60Glu + Leu 96Glu + Gly128Asn + Ser130Glu + Gln206Glu 5 Gln103Ser + Ser130Asp + Ala133Gly + Gln206Glu + Gly219Asp Gly102Asn + Ser162Asp + Gln206Asp + Tyr217Gly + Gly219Asp Thr 66Gln + Asp 99Glu + Gln103Glu + Val203Ser + Tyr217Asp Asp 99Glu + Gln103Asp + Gly157Asn + Lys213Asp + Ala216Gln Thr 66Asp + Pro129Asp + Ser159Glu + Lys213Asp + Tyr217His 10 Ser 63Asp + Gly 97Asp + Tyr167Ala + Ser188Asp + Ser204Glu Gly102Pro + Tyr104Ala + Glu156Asp + Tyr167Glu + Ser204Glu Gln 59Glu + Asn 62Gln + Gln103Glu + Gly131Glu + Phe189Leu Asp 60Glu + Ser162Glu + Ala200Gln + Val203Glu + Gly211Asp 15 Asp 60Glu + Ile107Glu + Gly157Asp + Gly160Glu + Phe189Ser Ser101Asp + Gly102Ser + Tyr104Glu + Phe189Asp + Lys213Glu Ser101Asp + Ser105Asp + Val203Asp + Ala216His + Tyr217His Ser132Asp + Asn155Glu + Gly211Pro + Lys213Glu + Asn218Asp Gln103Asp + Gly128Asp + Ser163Asp + Ala187Glu + Tyr217Ile Leu 96Ile + Gly128Asp + Ser191Glu + Gly202Asn + Gln206Glu 20 Thr 66Glu + Gln103Asp + Ser204Glu + Lys213Asp + Gly219Ser Ala 98Asp + Ser132Asp + Gly166Glu + Pro210Asp + Tyr214Gln Ser 63Glu + Pro129Glu + Val203Met + Lys213Glu + Gly219Asp Gln 59Glu + Gly 97Asp + Gly128Asp + Ser159Glu + Ala216Ser 25 Ser 63Glu + Gln103Glu + Ile107Ser + Glu156Asp + Lys213Asp Gly102Asp + Gly157Asn + Ser162Glu + Ser191Glu + Ser204Glu Ser105Asp + Ser162Asp + Ser191Asp + Pro210Gly + Gly211Glu Asp 60Glu + Val 95Glu + Trp106Gly + Pro129Glu + Ser159Asp Ser101Glu + Trp106Asp + Thr164Glu + Ser204Asp + Pro210Ser Gln 59Glu + Gly100Gln + Gly157Asp + Gly211Asp + Tyr217Glu 30 Gly 97Asp + Ser130Asp + Gln206Asp + Lys213Asp + Ala216Asn Tyr104Asp + Gly154Asp + Gly160Asn + Ser163Asp + Ser204Glu Ser132Glu + Gly154Glu + Ser163Glu + Pro210Gly + Asn212Asp Leu 96Thr + Ala133Glu + Asn155Glu + Lys213Asp + Ala216Asp Asp 60Glu + Asp 99Glu + Leu126Gly + Ser130Asp + Ser162Glu 35

II. Cleaning Compositions

40

In another embodiment of the present invention, an effective amount of one or more of the enzyme variants are included in compositions useful for cleaning a variety of surfaces in need of proteinaceous stain removal. Such cleaning compositions include detergent compositions for cleaning hard surfaces, unlimited in form (e.g., liquid and granular); detergent compositions for cleaning fabrics, unlimited in form (e.g., granular, liquid and bar formulations); dishwashing compositions (unlimited in form); oral cleaning compositions, unlimited in form (e.g., dentifrice, toothpaste and mouthwash formulations); denture cleaning compositions, unlimited in form (e.g., liquid, tablet); and contact

lens cleaning compositions, unlimited in form (e.g., liquid, tablet).

10

15

25

30

35

The cleaning compositions also comprise, in additin to the BPN' variants described hereinbefore, one or more cleaning composition materials compatible with the protease enzyme. the term "cleaning composition material", as used herein, means any liquid, solid or gaseous material selected for the particular type of cleaning composition desired and the form of the product (e.g., liquid, granule, bar, spray, stick, paste, gel), which materials are also compatible with the BPN' variant used in the composition. the specific selection of cleaning composition materials are readily made by considering the surface material to be cleaned, the desired form of the composition for the cleaning condition during use (e.g., through the wash detergent use). The term "compatible", as used herein, means the cleaning composition materials do not reduce the proteolytic activity of the BPN' variant to such an extent that the protease is not effective as desired during normal use situations. Specific cleaning composition materials are exemplified in detail hereinafter.

As used herein, "effective amount of enzyme variant" refers to the quantity of enzyme variant necessary to achieve the enzymatic activity necessary in the specific cleaning composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and is based on many factors, such as the particular enzyme variant used, the cleaning application, the specific composition of the cleaning composition, and whether a liquid or dry (e.g., granular, bar) composition is required, and the like. Preferably the cleaning compositions comprise from about 0.0001% to about 10% of one or more enzyme variants of the present invention, more preferably from about 0.001% to about 1%, more preferably still from about 0.01% to about 0.1%. Several examples of various cleaning compositions wherein the enzyme variants may be employed are discussed in further detail below. All parts, percentages and ratios used herein are by weight unless otherwise specified.

As used herein, "non-fabric cleaning compositions" include hard surface cleaning compositions, dishwashing compositions, oral cleaning compositions, denture cleaning compositions and contact lens cleaning compositions.

A. <u>Cleaning Compositions for Hard Surfaces, Dishes and Fabrics</u>

The enzyme variants of the present invention can be used in a variety of detergent compositions where high sudsing and good insoluble substrate removal are desired. Thus the enzyme variants can be used with various

15

25

30

conventional ingredients to provide fully-formulated hard-surface cleaners, dishwashing compositions, fabric laundering compositions and the like. Such compositions can be in the form of liquids, granules, bars and the like. Such compositions can be formulated as modern "concentrated" detergents which contain as much as 30%-60% by weight of surfactants.

The cleaning compositions herein can optionally, and preferably, contain various anionic, nonionic, zwitterionic, etc., surfactants. Such surfactants are typically present at levels of from about 5% to about 35% of the compositions.

Nonlimiting examples of surfactants useful herein include the conventional C₁₁-C₁₈ alkyl benzene sulfonates and primary and random alkyl sulfates, the C₁₀-C₁₈ secondary (2,3) alkyl sulfates of the formulas $CH_3(CH_2)y(CHOSO_3^-M^+)$ CH₃(CH₂)x(CHOSO₃)⁻M⁺)CH₃ and wherein x and (y+1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, the C₁₀-C₁₈ alkyl alkoxy sulfates (especially EO 1-5 ethoxy sulfates), C10-C18 alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C10-C18 alkyl polyglycosides, and their corresponding sulfated polyglycosides, C12-C18 alpha-sulfonated fatty acid esters, C12-C18 alkyl and alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C₁₂-C₁₈ betaines and sulfobetaines ("sultaines"), C₁₀-C₁₈ amine oxides, and the like. The alkyl alkoxy sulfates (AES) and alkyl alkoxy carboxylates (AEC) are preferred herein. (Use of such surfactants in combination with the aforesaid amine oxide and/or betaine or sultaine surfactants is also preferred, depending on the desires of the formulator.) Other conventional useful surfactants are listed in standard texts. Particularly useful surfactants include the C10-C18 N-methyl glucamides disclosed in US Patent 5, 194,639, Connor et al., issued March 16, 1993, incorporated herein by reference.

A wide variety of other ingredients useful in detergent cleaning compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, etc. If an additional increment of sudsing is desired, suds boosters such as the C₁₀-C₁₆ alkolamides can be incorporated into the compositions, typically at about 1% to about 10% levels. The C₁₀-C₁₄ monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing adjunct surfactants such

15

20

25

35

as the amine oxides, betaines and sultaines noted above is also advantageous. If desired, soluble magnesium salts such as MgCl₂, MgSO₄, and the like, can be added at levels of, typically, from about 0.1% to about 2%, to provide additionally sudsing.

The liquid detergent compositions herein can contain water and other solvents as carriers. Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable. Monohydric alcohols are preferred for solubilizing surfactants, but polyols such as those containing from about 2 to about 6 carbon atoms and from about 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used. The compositions may contain from about 5% to about 90%, typically from about 10% to about 50% of such carriers.

The detergent compositions herein will preferably be formulated such that during use in aqueous cleaning operations, the wash water will have a pH between about 6.8 and about 11.0. Finished products thus are typically formulated at this range. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.

When formulating the hard surface cleaning compositions and fabric cleaning compositions of the present invention, the formulator may wish to employ various builders at levels from about 5% to about 50% by weight. Typical builders include the 1-10 micron zeolites, polycarboxylates such as citrate and oxydisuccinates, layered silicates, phosphates, and the like. Other conventional builders are listed in standard formularies.

Likewise, the formulator may wish to employ various additional enzymes, such as cellulases, lipases, amylases and proteases in such compositions, typically at levels of from about 0.001% to about 1% by weight. Various detersive and fabric care enzymes are well-known in the laundry detergent art.

Various bleaching compounds, such as the percarbonates, perborates and the like, can be used in such compositions, typically at levels from about 1% to about 15% by weight. If desired, such compositions can also contain bleach activators such as tetraacetyl ethylenediamine, nonanoyloxybenzene sulfonate, and the like, which are also known in the art. Usage levels typically range from about 1% to about 10% by weight.

Various soil release agents, especially of the anionic oligoester type,

15

20

25

30

35

various chelating agents, especially the aminophosphonates and ethylenediaminedisuccinates, various clay soil removal agents, especially ethoxylated tetraethylene pentamine, various dispersing agents, especially polyacrylates and polyasparatates, various brighteners, especially anionic brighteners, various suds suppressors, especially silicones and secondary alcohols, various fabric softeners, especially smectite clays, and the like can all be used in such compositions at levels ranging from about 1% to about 35% by weight. Standard formularies and published patents contain multiple, detailed descriptions of such conventional materials.

Enzyme stabilizers may also be used in the cleaning compositions. Such enzyme stabilizers include propylene glycol (preferably from about 1% to about 10%), sodium formate (preferably from about 0.1% to about 1%) and calcium formate (preferably from about 0.1% to about 1%).

1. Hard surface cleaning compositions

As used herein "hard surface cleaning composition" refers to liquid and granular detergent compositions for cleaning hard surfaces such as floors, walls, bathroom tile, and the like. Hard surface cleaning compositions of the present invention comprise an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about .01% to about 5%, more preferably still from about .05% to about 1% by weight of active enzyme of the composition. In addition to comprising one or more of the enzyme variants, such hard surface cleaning compositions typically comprise a surfactant and a water-soluble sequestering builder. In certain specialized products such as spray window cleaners, however, the surfactants are sometimes not used since they may produce a filmy/streaky residue on the glass surface.

The surfactant component, when present, may comprise as little as 0.1% of the compositions herein, but typically the compositions will contain from about 0.25% to about 10%, more preferably from about 1% to about 5% of surfactant.

Typically the compositions will contain from about 0.5% to about 50% of a detergency builder, preferably from about 1% to about 10%.

Preferably the pH should be in the range of about 8 to 12. Conventional pH adjustment agents such as sodium hydroxide, sodium carbonate or hydrochloric acid can be used if adjustment is necessary.

Solvents may be included in the compositions. Useful solvents include,

35

but are not limited to, glycol ethers such as diethyleneglycol monohexyl ether, monobutyl ethyleneglycol diethyleneglycol ether. monobutyl ether. ethyleneglycol monohexvi ether. propyleneglycol monobutyl ether. dipropyleneglycol monobutyl ether, and diols such as 2,2,4-trimethyl-1,3pentanediol and 2-ethyl-1,3-hexanediol. When used, such solvents are typically present at levels of from about 0.5% to about 15%, preferably from about 3% to about 11%.

Additionally, highly volatile solvents such as isopropanol or ethanol can be used in the present compositions to facilitate faster evaporation of the composition from surfaces when the surface is not rinsed after "full strength" application of the composition to the surface. When used, volatile solvents are typically present at levels of from about 2% to about 12% in the compositions.

The hard surface cleaning composition embodiment of the present invention is illustrated by the following examples.

15 Examples 7-12 **Liquid Hard Surface Cleaning Compositions** Example No. Component 7 8 9 10 12 11 Ser105Glu 0.05 0.50 0.02 0.03 0.10 0.03 Gly127Gln + Ala216Pro 0.20 0.02 20 Na₂DIDA* EDTA** 2.90 2.90 Na Citrate 2.90 2.90 NaC₁₂ Alkyl-benzene 1.95 1.95 -1.95 sulfonate 25 NaC₁₂ Alkylsulfate 2.20 2.20 2.20 NaC₁₂(ethoxy)*** 2.20 2.20 2.20 sulfate C₁₂ Dimethylamine 0.50 0.50 0.50 oxide 30 Na Cumene sulfonate 1.30 1.30 1.30 Hexyl Carbitol*** 6.30 6.30 6.30 6.30 6.30 6.30 Water*** balance to 100%

^{*}Disodium N-diethyleneglycol-N,N-iminodiacetate

^{**}Na₄ ethylenediamine diacetic acid

15

20

25

***Diethyleneglycol monohexyl ether

****All formulas adjusted to pH 7

In Examples 7-10, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser105Glu, with substantially similar results.

In Examples 11-12, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Gly127Gln + Ala216Pro, with substantially similar results.

Examples 13-18
Spray Compositions for Cleaning Hard Surfaces
and Removing Household Mildew

	Example No.					
Component	13	14	15	16	17	18
Tyr104lle + Gly215Pro	0.50	0.05	0.60	0.30	0.20	0.30
Asp99Glu	-	-	-	-	0.30	0.10
Sodium octyl sulfate	2.00	2.00	2.00	2.00	2.00	2.00
Sodium dodecyl sulfate	4.00	4.00	4.00	4.00	4.00	4.00
Sodium hydroxide	0.80	0.80	0.80	0.80	0.80	0.80
Silicate (Na)	0.04	0.04	0.04	0.04	0.04	0.04
Perfume	0.35	0.35	0.35	0.35	0.35	0.35
Water			balance	to 100%		

Product pH is about 7.

In Examples 13-16, the BPN' variants recited in Tables 2-25, among others, are substituted for Tyr104lle + Gly215Pro, with substantially similar results.

In Examples 17-18, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Tyr104lle + Gly215Pro and Asp99Glu, with substantially similar results.

2. <u>Dishwashing Compositions</u>

In another embodiment of the present invention, dishwashing compositions comprise one or more enzyme variants of the present invention. As used herein, "dishwashing composition" refers to all forms for compositions for cleaning dishes, including but not limited to, granular and liquid forms. The dishwashing composition embodiment of the present invention is illustrated by the following examples.

Examples 19-24
Dishwashing Composition

			Exam	nple No.		
Component	19	20	21	22	23	24
Glu59Ser + Leu96Gly						
+ Ser204Glu	0.05	0.50	0.02	0.40	0.10	0.03
Lys96Gly + Ser204Glu	-	-	-	-	0.40	0.02
C ₁₂ -C ₁₄ N-methyl-						
glucamide	0.90	0.90	0.90	0.90	0.90	0.90
C ₁₂ ethoxy (1) sulfate	12.00	12.00	12.00	12.00	12.00	12.00
2-methyl undecanoic aci	d 4.50	4.50	4.50	4.50	4.50	4.50
C ₁₂ ethoxy (2) carboxyla	ate 4.50	4.50	4.50	4.50	4.50	4.50
C ₁₂ alcohol ethoxylate (4) 3.00	3.00	3.00	3.00	3.00	3.00
C ₁₂ amine oxide	3.00	3.00	3.00	3.00	3.00	3.00
Sodium cumene sulfona	te 2.00	2.00	2.00	2.00	2.00	2.00
Ethanol	4.00	4.00	4.00	4.00	4.00	4.00
Mg ⁺⁺ (as MgCl ₂)	0.20	0.20	0.20	0.20	0.20	0.20
Ca ⁺⁺ (as CaCl ₂)	0.40	0.40	0.40	0.40	0.40	0.40
Water			balanc	e to 100°	%	

Product pH is adjusted to 7.

In Examples 19-22, the BPN' variants recited in Tables 2-25, among others, are substituted for Gln59SSer + Leu96Gly + Ser204Glu, with substantially similar results.

In Examples 23-24, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Gln59SSer + Leu96Gly + Ser204Glu and Lys96Gly + Ser204Glu, with substantially similar results.

3. Fabric cleaning compositions

In another embodiment of the present invention, fabric cleaning compositions comprise one or more enzyme variants of the present invention. As used herein, "fabric cleaning composition" refers to all forms for detergent compositions for cleaning fabrics, including but not limited to, granular, liquid and bar forms. Preferred fabric cleaning compositions are those in the liquid form.

a. Granular fabric cleaning compositions

The granular fabric cleaning compositions of the present invention contain

30

20

25

an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about 0.005% to about 5%, more preferably from about 0.01% to about 1% by weight of active enzyme of the composition. In addition to one or more enzyme variants, the granular fabric cleaning compositions typically comprise at least one surfactant, one or more builders, and, in some cases, a bleaching agent.

The granular fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 25-28
Granular Fabric Cleaning Composition

10	Granular Fabric Cleaning Composition					
			Exam	ple N o.		
	Component	25	26	27	28	
	Ser101Asp	0.10	0.20	0.03	0.05	
	Thr66Glu	-	-	0.02	0.05	
15	C ₁₃ linear alkyl benzene sulfonate	22.00	22.00	22.00	22.00	
	Phosphate (as sodium tripolyphosphates)	23.00	23.00	23.00	23.00	•
	Sodium carbonate	23.00	23.00	23.00	23.00	
	Sodium silicate	14.00	14.00	14.00	14.00	
20	Zeolite	8.20	8.20	8.20	8.20	
	Chelant (diethylaenetriamine- pentaacetic acid)	0.40	0.40	0.40	0.40	
	Sodium sulfate	5.50	5.50	5.50	5.50	
	Water balance to 100%					

In Examples 25-26, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser101Asp, with substantially similar results.

In Examples 27-28, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Ser101Asp and Thr66Glu, with substantially similar results.

Examples 29-32
Granular Fabric Cleaning Composition

	Example No.			
Component	29	30	31	32
Val95Asp + Leu126Ser + Asn155Gin	0.10	0.20	0.03	0.05
Gly65Ser + Gly102Asn + Val203Glu	-	-	0.02	0.05
C ₁₂ alkyl benzene sulfonate	12.00	12.00	12.00	12.00
Zeolite A (1-10 micrometer)	26.00	26.00	26.00	26.00
2-butyl octanoic acid	4.00	4.00	4.00	4.00
C ₁₂ -C ₁₄ secondary (2,3) alkyl sulfate, Na salt	5.00	5.00	5.00	5.00
Sodium citrate	5.00	5.00	5.00	5.00
Optical brightener	0.10	0.10	0.10	0.10
Sodium sulfate Water and minors	17.00	17.00 balanc	17.00 e to 100	17.00 %

In Examples 29-30, the BPN' variants recited in Tables 2-25, among others, are substituted for Val95Asp + Leu126Ser + Asn155Gln, with substantially similar results.

In Examples 31-32, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Val95Asp + Leu126Ser + Asn155Gln and Gly65Ser + Gly102Asn + Val203Glu, with substantially similar results.

Examples 33-36
Granular Fabric Cleaning Composition

		Exam	ple No.	
Component	33	34	35	36
s Ser63Glu	0.10	0.20	0.03	0.05
Leu96Asn + Lys213Asp	-	-	0.02	0.05
C ₁₃ linear alkyl benzene sulfonate	22.00	22.00	22.00	22.00
Phosphate (as sodium tripolyphosphates)	23.00	23.00	23.00	23.00
Sodium carbonate	23.00	23.00	23.00	23.00
Sodium silicate	14.00	14.00	14.00	14.00
Zeolite	8.20	8.20	8.20	8.20
Chelant (diethylaenetriamine- pentaacetic acid)	0.40	0.40	0.40	0.40
Sodium sulfate	5.50	5.50	5.50	5.50
Water		balanc	e to 100°	%

In Examples 33-34, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser63Glu, with substantially similar results.

In Examples 35-36, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Ser63Glu and Leu96Asn + Lys213Asp, with substantially similar results.

Examples 37-40
Granular Fabric Cleaning Composition

		Example No.				
	Component	37	38	39	40	
5	Asn62Ser +Ser163Asp + Phe189Ser + Ala216Glu	0.10	0.20	0.03	0.05	
	Gly97Ser + Trp106lle + Tyr217Leu	-	-	0.02	0.05	
	C ₁₂ alkyl benzene sulfonate	12.00	12.00	12.00	12.00	
	Zeolite A (1-10 micrometer)	26.00	26.00	26.00	26.00	
10	2-butyl octanoic acid	4.00	4.00	4.00	4.00	
	C ₁₂ -C ₁₄ secondary (2,3) alkyl sulfate, Na salt	5.00	5.00	5.00	5.00	
	Sodium citrate	5.00	5.00	5.00	5.00	
	Optical brightener	0.10	0.10	0.10	0.10	
15	Sodium sulfate Water and minors	17.00	17.00 balanc	17.00 e to 100	17.00 %	

In Examples 37-38, the BPN' variants recited in Tables 2-25, among others, are substituted for Asn62Ser + Ser163Asp + Phe189Ser + Ala216Glu, with substantially similar results.

In Examples 39-40, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Asn62Ser + Ser163Asp + Phe189Ser + Ala216Glu and Gly97Ser + Trp106lle + Tyr217Leu, with substantially similar results.

Examples 41-42
Granular Fabric Cleaning Composition

	Examp	Example No.			
Component	41	42			
Linear alkyl benzene sulphonate	11.4	10.70			
Tallow alkyl sulphate	1.80	2.40			
C ₁₄₋₁₅ alkyl sulphate	3.00	3.10			
C ₁₄₋₁₅ alcohol 7 times ethoxylated	4.00	4.00			
Tallow alcohol 11 times ethoxylated	1.80	1.80			
Dispersant	0.07	0.1			
Silicone fluid	0.80	0.80			
Trisodium citrate	14.00	15.00			
Citric acid	3.00	2.50			
Zeolite	32.50	32.10			
Maleic acid acrylic acid copolymer	5.00	5.00			
Diethylene triamine penta methylene phosphonic acid	1.00	0.20			
Ala98Asp + Ala187Ser	0.30	0.30			
Lipase	0.36	0.40			
Amylase	0.30	0.30			
Sodium silicate	2.00	2.50			
Sodium sulphate	3.50	5.20			
Polyvinyl pyrrolidone	0.30	0.50			
Perborate	0.5	1			
Phenol sulphonate	0.1	0.2			
Peroxidase	0.1	0.1			
Minors	Up to 100	Up to 100			

Examples 43-44
Granular Fabric Cleaning Composition

	Examp	le No.
Component	43	44
Sodium linear C ₁₂ alkyl benzene-sulfonate	6.5	8.0
Sodium sulfate	15.0	18.0
Zeolite A	26.0	22.0
Sodium nitrilotriacetate	5.0	5.0
Polyvinyl pyrrolidone	0.5	0.7
Tetraacetylethylene diamine	3.0	3.0
Boric acid	4.0	- .
Perborate	0.5	1
Phenol sulphonate	0.1	0.2
GIn59Ser + Asn62Ser + Leu96Gly + Ser204Gln	0.4	0.4
Fillers (e.g., silicates; carbonates; perfumes; water)	Up to 100	Up to 100

Example 45

Compact Granular Fabric Cleaning Composition

Component	Weight %	
Alkyl Sulphate	8.0	
Alkyl Ethoxy Sulphate	2.0	
Mixture of C25 and C45 alcohol 3 and 7 times ethox	ylated 6.0	
Polyhydroxy fatty acid amide	2.5	
Zeolite	17.0	
Layered silicate/citrate	16.0	
Carbonate	7.0	
Maleic acid acrylic acid copolymer	5.0	
Soil release polymer	0.4	
Carboxymethyl cellulose	0.4	
Poly (4-vinylpyridine) -N-oxide	0.1	
Copolymer of vinylimidazole and vinylpyrrolidone	0.1	
PEG2000	0.2	
Val95Gln + Tyr104Glu + Gly127Gln + Lys213Glu + Ala216Asp	0.5	
Lipase	0.2	

Cellulase	0.2
Tetracetylethylene diamine	6.0
Percarbonate	22.0
Ethylene diamine disuccinic acid	0.3
Suds suppressor	3.5
Disodium-4,4'-bis (2-morpholino -4-anilino-s-triazin-6-ylamino) stilbene-2,2'-disulphonate	0.25
Disodium-4,4'-bis (2-sulfostyril) biphenyl	0.05
Water, Perfume and Minors	Up to 100

Example 46
Granular Fabric Cleaning Composition

Component	Weight %
Linear alkyl benzene sulphonate	7.6
C ₁₆ -C ₁₈ alkyl sulfate	1.3
C ₁₄₋₁₅ alcohol 7 times ethoxylated	4.0
Coco-alkyl-dimethyl hydroxyethyl ammonium chloride	1.4
Dispersant	0.07
Silicone fluid	0.8
Trisodium citrate	5.0
Zeolite 4A	15.0
Maleic acid acrylic acid copolymer	4.0
Diethylene triamine penta methylene phosphonic acid	0.4
Perborate	15.0
Tetraacetylethylene diamine	5.0
Smectite clay	10.0
Poly (oxy ethylene) (MW 300,000)	0.3
Ser63Glu + Thr104Asn + Gln206Ser + Tyr217Thr	0.4
Lipase	0.2
Amylase	0.3
Cellulase	0.2
Sodium silicate	3.0
Sodium carbonate	10.0
Carboxymethyl cellulose	0.2
Brighteners	0.2
Water, perfume and minors	Up to 100

Example 47
Granular Fabric Cleaning Composition

Component	Weight %	
Linear alkyl benzene sulfonate	6.92	
Tallow alkyl sulfate	2.05	
C ₁₄ -15 alcohol 7 times ethoxylated	4.4	
C ₁₂₋₁₅ alkyl ethoxy sulfate - 3 times ethoxylated	0.16	
Zeolite	20.2	
Citrate	5.5	
Carbonate	15.4	
Silicate	3.0	
Maleic acid acrylic acid copolymer	4.0	
Carboxymethyl cellulase	0.31	
Soil release polymer	0.30	
Asn62Ser + Trp106Gly + Ser132Asp + Ala187Ser + Phe189Ser	0.2	
Lipase	0.36	
Cellulase	0.13	
Perborate tetrahydrate	11.64	
Perborate monohydrate	8.7	
Tetraacetylethylene diamine	5.0	
Diethylene tramine penta methyl phosphonic acid	0.38	
Magnesium sulfate	0.40	
Brightener	0.19	
Perfume, silicone, suds suppressors	0.85	
Minors	Up to 100	

b. <u>Liquid fabric cleaning compositions</u>

5

10

Liquid fabric cleaning compositions of the present invention comprise an effective amount of one or more enzyme variants of the present invention, preferably from about 0.005% to about 5%, more preferably from about 0.01% to about 1%, by weight of active enzyme of the composition. Such liquid fabric cleaning compositions typically additionally comprise an anionic surfactant, a fatty acid, a water-soluble detergency builder and water.

The liquid fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

20

35

Examples 48-52
Liquid Fabric Cleaning Compositions

		E	Example	No.	
Component	48	49	50	51	52
Ser161Glu + Gly219Asn	0.05	0.03	0.30	0.03	0.10
Asn62Ser + Ile107Ala + Glu20 + Tyr217Thr)6Asp -	-	-	0.01	0.20
C ₁₂ - C ₁₄ alkyl sulfate, Na	20.00	20.00	20.00	20.00	20.00
2-butyl octanoic acid	5.00	5.00	5.00	5.00	5.00
Sodium citrate	1.00	1.00	1.00	1.00	1.00
C ₁₀ alcohol ethoxylate (3)	13.00	13.00	13.00	13.00	13.00
Monethanolamine	2.50	2.50	2.50	2.50	2.50
Water/propylene glycol/ethano	ol (100:1:1)	b	alance t	o 100%	

In Examples 48-50 the BPN' variants recited in Tables 2-25, among others, are substituted for Ser161Glu + Gly219Asn, with substantially similar results.

In Examples 51-52, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Ser161Glu + Gly219Asn and Asn62Ser + Ile107Ala + Glu206Asp + Tyr217Thr, with substantially similar results.

Examples 53-57
Liquid Fabric Cleaning Compositions

			Example	No.	
Component	53	54	5 5	56	57
Ser101Asp + Ile 107Ala + Gly202Ser	0.05	0.03	0.30	0.03	0.10
Val95Thr + Thr208Gly	_	_	_	0.01	0.20
C ₁₂ - C ₁₄ alkyl sulfate, Na	20.00	20.00	20.00	20.00	20.00
2-butyl octanoic acid	5.00	5.00	5.00	5.00	5.00
Sodium citrate	1.00	1.00	1.00	1.00	1.00
C ₁₀ alcohol ethoxylate (3)	13.00	13.00	13.00	13.00	13.00
Monethanolamine	2.50	2.50	2.50	2.50	2.50
Water/propylene glycol/ethano	oi (100:1:1)	b	alance to	o 100%	

In Examples 53-55 the BPN' variants recited in Tables 2-25, among others, are substituted for Ser101Asp + Ile 107Ala + Gly202Ser, with

substantially similar results.

In Examples 56-57, any combination of the BPN' variants recited in Tables 212, among others, are substituted for Ser101Asp + Ile 107Ala + Gly202Ser and Val95Thr + Thr208Gly, with substantially similar results.

Examples 58-59

	Example No.	
Component	. 58	59
C ₁₂₋₁₄ alkenyl succinic acid	3.0	8.0
Citric acid monohydrate	10.0	15.0
Sodium C ₁₂₋₁₅ alkyl sulphate	8.0	8.0
Sodium sulfate of C ₁₂₋₁₅ alcohol 2 tim	es ethoxylated -	3.0
C ₁₂₋₁₅ alcohol 7 times ethoxylated	-	8.0
C ₁₂₋₁₅ alcohol 5 times ethoxylated	8.0	-
Diethylene triamine penta (methylene p	phosphonic acid)0.2	-
Oleic acid	1.8	-
Ethanol	4.0	4.0
Propanediol	2.0	2.0
Asp60Glu + Gin206Asn	0.2	0.2
Polyvinyl pyrrolidone	1.0	2.0
Suds suppressor	0.15	0.15
NaOH	up to	pH 7.5
Perborate	0.5	1
Phenol sulphonate	0.1	0.2
Peroxidase	0.4	0.1
Waters and minors	up to 10	0 parts

In each of Examples 58 and 59 herein, the BPN' variants recited in Tables 2-25, among others, are substituted for Asp60Glu + Gln206Asn, with substantially similar results.

Examples 60-62
Liquid Fabric Cleaning Composition

Eiquid i abito otoci.ii	Example No.					
Company	Exan	npie No. 61	62			
Component Citrio Acid	7.10	3.00	3.00			
Citric Acid			2.00			
Fatty Acid	2.00	3.20	3.20			
Ethanol	1.93					
Boric Acid	2.22	3.50	3.50			
Monoethanolamine	0.71	1.09	1.09			
1,2 Propanediol	7.89	8.00	8.00			
NaCumene Sulfonate	1.80	3.00	3.00			
NaFormate	0.08	0.08	0.08			
NaOH	6.70	3.80	3.80			
Silicon anti-foam agent	1.16	1.18	1.18			
Asn61Glu	0.0145	-	-			
Gly97Glu + Thr164Pro		0.0145	-			
Asn62Glu + Thr158Ser + Gly215Ser	- '	-	0.0145			
Lipase	0.200	0.200	0.200			
Cellulase	-	7.50	7.50			
Soil release polymer	0.29	0.15	0.15			
Anti-foaming agents	0.06	0.085	0.085			
Brightener 36	0.095	-	-			
Brightener 3	-	0.05	0.05			
C ₁₂ alkyl benzenesulfonic acid	9.86	-	-			
C ₁₂₋₁₅ alkyl polyethoxylate (2.5) sulfate	13.80	18.00	18.00			
C ₁₂ glucose amide	-	5.00	5.00			
C ₁₂₋₁₃ alkyl polyethoxylate (9)	2.00	2.00	2.00			
Water, perfume and minors	b	alance to	100%			

c. Bar fabric cleaning compositions

30

Bar fabric cleaning compositions of the present invention suitable for hand-washing soiled fabrics contain an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about 0.01% to about 1% by weight of the composition.

The bar fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 63-66
Bar Fabric Cleaning Compositions

		Exam	ple No.	
Component	63	64_	65	66
Gly97Glu + Thr164Pro	0.3	-	0.1	0.02
Ala98Ser + Gly154Asn	-	-	0.4	0.03
C ₁₂ -C ₁₆ alkyl sulfate, Na	20.0	20.0	20.0	20.00
C ₁₂ -C ₁₄ N-methyl glucamide	5.0	5.0	5.0	5.00
C ₁₁ -C ₁₃ alkyl benzene sulfonate, Na	10.0	10.0	10.0	10.00
Sodium carbonate	25.0	25.0	25.0	25.00
Sodium pyrophosphate	7.0	7.0	7.0	7.00
Sodium tripolyphosphate	7.0	7.0	7.0	7.00
Zeolite A (0.110μ)	5.0	5.0	5.0	5.00
Carboxymethylcellulose	0.2	0.2	0.2	0.20
Polyacrylate (MW 1400)	0.2	0.2	0.2	0.20
Coconut monethanolamide	5.0	5.0	5.0	5.00
Brightener, perfume	0.2	0.2	0.2	0.20
CaSO ₄	1.0	1.0	1.0	1.00
MgSO ₄	1.0	1.0	1.0	1.00
Water	4.0	4.0	4.0	4.00
Filler*		balar	ice to 10	0%

^{*}Can be selected from convenient materials such as CaCO₃, talc, clay, silicates, and the like.

In Examples 63-64 the BPN' variants recited in Tables 2-25, among others, are substituted for Gly97Glu + Thr164Pro, with substantially similar results.

In Examples 65-66, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Gly97Glu + Ghr164Pro and Ala98Ser + Gly154Asn, with substantially similar results.

Examples 67-70
Bar Fabric Cleaning Compositions

		·	Exam	ple No.		
	Component	67	68	69	70	
5	Val203Glu	0.3	_	0.1	0.02	
	Gly100Glu + Ile107Ser	-	0.3	0.4	0.03	
	C ₁₂ -C ₁₆ alkyl sulfate, Na	20.0	20.0	20.0	20.00	
	C ₁₂ -C ₁₄ N-methyl glucamide	5.0	5.0	5.0	5.00	
	C ₁₁ -C ₁₃ alkyl benzene sulfonate, Na	10.0	10.0	10.0	10.00	
10	Sodium carbonate	25.0	25.0	25.0	25.00	
	Sodium pyrophosphate	7.0	7.0	7.0	7.00	
	Sodium tripolyphosphate	7.0	7.0	7.0	7.00	
	Zeolite A (0.110μ)	5.0	5.0	5.0	5.00	
	Carboxymethylcellulose	0.2	0.2	0.2	0.20	
15	Polyacrylate (MW 1400)	0.2	0.2	0.2	0.20	
	Coconut monethanolamide	5.0	5.0	5.0	5.00	
	Brightener, perfume	0.2	0.2	0.2	0.20	
	CaSO ₄	1.0	1.0	1.0	1.00	
	MgSO ₄	1.0	1.0	1.0	1.00	
20	Water	4.0	4.0	4.0	4.00	
	Filler*		balar	ce to 10	0%	

*Can be selected from convenient materials such as CaCO₃, talc, clay, silicates, and the like.

In Example 67, the BPN' variants recited in Tables 2-25, among others, are substituted for Val203Glu, with substantially similar results.

In Example 68, the BPN' variants recited in Tables 2-25, among others, are substituted for Gly100Glu + Ile107Ser, with substantially similar results.

In Examples 69-70, any combination of the BPN' variants recited in Tables 2-25, among others, are substituted for Val203Glu and Gly100Glu + Ile107Ser, with substantially similar results.

B. Additional Cleaning Compositions

In addition to the hard surface cleaning, dishwashing and fabric cleaning compositions discussed above, one or more enzyme variants of the present invention may be incorporated into a variety of other cleaning compositions where hydrolysis of an insoluble substrate is desired. Such additional cleaning

25

compositions include but are not limited to, oral cleaning compositions, denture cleaning compositions, and contact lens cleaning compositions.

1. <u>Oral cleaning compositions</u>

In another embodiment of the present invention, a pharmaceutically-acceptable amount of one or more enzyme variants of the present invention are included in compositions useful for removing proteinaceous stains from teeth or dentures. As used herein, "oral cleaning compositions" refers to dentifrices, toothpastes, toothpowders, mouthwashes, mouth sprays, mouth gels, chewing gums, lozenges, sachets, tablets, biogels, prophylaxis pastes, dental treatment solutions, and the like. Preferably, the oral cleaning compositions comprise from about 0.0001% to about 20% of one or more enzyme variants of the present invention, more preferably from about 0.001% to about 10%, more preferably still from about 0.01% to about 5%, by weight of the composition, and a pharmaceutically-acceptable carrier. As used herein, "pharmaceutically-acceptable" means that drugs, medicaments or inert ingredients which the term describes are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, incompatibility, instability, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio.

Typically, the pharmaceutically-acceptable oral cleaning carrier components of the oral cleaning components of the oral cleaning compositions will generally comprise from about 50% to about 99.99%, preferably from about 65% to about 99.99%, more preferably from about 65% to about 99%, by weight of the composition.

The pharmaceutically-acceptable carrier components and optional components which may be included in the oral cleaning compositions of the present invention are well known to those skilled in the art. A wide variety of composition types, carrier components and optional components useful in the oral cleaning compositions are disclosed in U.S. Patent 5,096,700, Seibel, issued March 17, 1992; U.S. Patent 5,028,414, Sampathkumar, issued July 2, 1991; and U.S. Patent 5,028,415, Benedict, Bush and Sunberg, issued July 2, 1991; all of which are incorporated herein by reference.

The oral cleaning composition embodiment of the present invention is illustrated by the following examples.

25

Examples 71-74

Dentifrice Composition

		Exa	mple No	
Component	71	72	73	74
Gln59Asp + Ala98Glu + Gly102Asp +Ser105Glu + Leu109Thr	2.000	3.500	1.500	2.000
Sorbitol (70% aqueous solution)	35.000	35.000	35.000	35.000
PEG-6*	1.000	1.000	1.000	1.000
Silica dental abrasive**	20.000	20.000	20.000	20.000
Sodium fluoride	0.243	0.243	0.243	0.243
Titanium dioxide	0.500	0.500	0.500	0.500
Sodium saccharin	0.286	0.286	0.286	0.286
Sodium alkyl sulfate (27.9% aqueous solution)	4.000	4.000	4.000	4.000
Flavor	1.040	1.040	1.040	1.040
Carboxyvinyl Polymer***	0.300	0.300	0.300	0.300
Carrageenan****	0.800	0.800	0.800	0.800
Water		balan	ce to 100	0%

^{*}PEG-6 = Polyethylene glycol having a molecular weight of 600.

In Examples 71-74 the BPN' variants recited in Tables 2-25, among others, are substituted for Gln59Asp + Ala98Glu + Gly102Asp + Ser105Glu + Leu209Thr, with substantially similar results.

^{**}Precipitated silica identified as Zeodent 119 offered by J.M. Huber.

^{***}Carbopol offered by B.F. Goodrich Chemical Company.

^{****}lota Carrageenan offered by Hercules Chemical Company.

35

Examples 75-78

Mouthwash Composition

	Example No.					
Component	75_	76	77	78		
Leu96Thr + Gly128Asp + Ala133Glu + Asn155Glu + Lys213Asp + Ala216Asp	3.00	7.50	1.00	5.00		
SDA 40 Alcohol	8.00	8.00	8.00	8.00		
Flavor	0.08	0.08	0.08	0.08		
Emulsifier	0.08	0.08	0.08	0.08		
Sodium Fluoride	0.05	0.05	0.05	0.05		
Glycerin	10.00	10.00	10.00	10.00		
Sweetener	0.02	0.02	0.02	0.02		
Benzoic acid	0.05	0.05	0.05	0.05		
Sodium hydroxide	0.20	0.20	0.20	0.20		
Dye	0.04	0.04	0.04	0.04		
Water		ba	lance to	100%		

In Examples 75-78, the BPN' variants recited in Tables 2-25, among others, are substituted for Leu96Thr + Gly128Asp + Ala133Glu+ Asn155Glu + Lys213Asp+ Ala216Asp, with substantially similar results.

Examples 79-82 Lozenge Composition

	<u> </u>	Example No.					
Component	79	80	81_	82			
Ser132Asp + Tyr217Leu	0.01	0.03	0.10	0.02			
Sorbitol	17.50	17.50	17.50	17.50			
Mannitol	17.50	17.50	17.50	17.50			
Starch	13.60	13.60	13.60	13.60			
Sweetener	1.20	1.20	1.20	1.20			
Flavor	11.70	11.70	11.70	11.70			
Color	0.10	0.10	0.10	0.10			
Com Syrup		balance	to 100%	6			

In Examples 79-82, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser132Asp + Tyr217Leu, with substantially similar results.

10

30

Examples 83-86
Chewing Gum Composition

	Example No.					
Component	83	84	85	86		
Thr66Pro + Gln103Asn + Lys213Asp	0.03	0.02	0.10	0.05		
Sorbitol crystals	38.44	38.40	38.40	38.40		
Paloja-T gum base*	20.00	20.00	20.00	20.00		
Sorbitol (70% aqueous solution)	22.00	22.00	22.00	22.00		
Mannitol	10.00	10.00	10.00	10.00		
Glycerine	7.56	7.56	7.56	7.56		
Flavor	1.00	1.00	1.00	1.00		

^{*}Supplied by L.A. Dreyfus Company.

In Examples 83-86, the BPN' variants recited in Tables 2-25, among others, are substituted for Thr66Pro + Gln103Asn + Lys213Asp, with substantially similar results.

2. Denture cleaning compositions

In another embodiment of the present invention, denture cleaning compositions for cleaning dentures outside of the oral cavity comprise one or more enzyme variants of the present invention. Such denture cleaning compositions comprise an effective amount of one or more of the enzyme variants, preferably from about 0.0001% to about 50% of one or more of the enzyme variants, more preferably from about 0.001% to about 35%, more preferably still from about 0.01% to about 20%, by weight of the composition, and a denture cleansing carrier. Various denture cleansing composition formats such as effervescent tablets and the like are well known in the art (see for example U.S. Patent 5,055,305, Young, incorporated herein by reference), and are generally appropriate for incorporation of one or more of the enzyme variants for removing proteinaceous stains from dentures.

The denture cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 87-90 Two-layer Effervescent Denture Cleansing Tablet

Two-layer Effet vescellit Defiture Cleansing Tablet							
		Exa	nple No.				
Component	87	88	89	90			
Acidic Layer							
Gin59Glu + Ser63Glu + Val95Met + Gly97Pro + Tyr217Ala	1.0	1.5	0.01	0.05			
Tartaric acid	24.0	24.0	24.00	24.00			
Sodium carbonate	4.0	4.0	4.00	4.00			
Sulphamic acid	10.0	10.0	10.00	10.00			
PEG 20,000	4.0	4.0	4.00	4.00			
Sodium bicarbonate	24.5	24.5	24.50	24.50			
Potassium persulfate	15.0	15.0	15.00	15.00			
Sodium acid pyrophosphate	7.0	7.0	7.00	7.00			
Pyrogenic silica	2.0	2.0	2.00	2.00			
TAED*	7.0	7.0	7.00	7.00			
RicinoleyIsulfosuccinate	0.5	0.5	0.50	0.50			
Flavor	1.0	1.0	1.00	1.00			
Alkaline Layer							
Sodium perborate monohydrate	32.0	32.0	32.00	32.00			
Sodium bicarbonate	19.0	19.0	19.00	19.00			
EDTA	3.0	3.0	3.00	3.00			
Sodium tripolyphosphate	12.0	12.0	12.00	12.00			
PEG 20,000	2.0	2.0	2.00	2.00			
Potassium persulfate	26.0	26.0	26.00	26.00			
Sodium carbonate	2.0	2.0	2.00	2.00			
Pyrogenic silica	2.0	2.0	2.00	2.00			
Dye/flavor	2.0	2.0	2.00	2.00			

^{*}Tetraacetylethylene diamine

35

In Examples 87-90, the BPN' variants recited in Tables 2-25, among others, are substituted for Gln59Glu + Ser63Glu + Val95Met + Gly97Pro + Tyr217Ala, with substantially similar results.

Contact Lens Cleaning Compositions

In another embodiment of the present invention, contact lens cleaning compositions comprise one or more enzyme variants of the present invention.

35

Such contact lens cleaning compositions comprise an effective amount of one or more of the enzyme variants, preferably from about 0.01% to about 50% of one or more of the enzyme variants, more preferably from about 0.01% to about 20%, more preferably still from about 1% to about 5%, by weight of the composition, and a contact lens cleaning carrier. Various contact lens cleaning composition formats such as tablets, liquids and the like are well known in the art (see for example U.S. Patent 4,863,627, Davies, Meaken and Rees, issued September 5, 1989; U.S. Patent Re. 32,672, Huth, Lam and Kirai, reissued May 24, 1988; U.S. Patent 4,609,493, Schäfer, issued September 2, 1986; U.S. Patent, 4,690,793, Ogunbiyi and Smith, issued September 1, 1987; U.S. Patent 4,614,549, Ogunbiyi, Riedhammer and Smith, issued September 30, 1986; and U.S. Patent 4,285,738, Ogata, issued August 25, 1981; each of which are incorporated herein by reference), and are generally appropriate for incorporation of one or more enzyme variants of the present invention for removing proteinaceous stains from contact lens.

The contact lens cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 91-94
Enzymatic Contact Lens Cleaning Solution

		Exa	mple No.		
Component	91	92	93	94	
Ser191Glu + Gly219Ser	0.01	0.5	0.1	2.0	
Glucose	50.00	50.0	50.0	50.0	
Nonionic surfactant (polyoxyethlene- polyoxypropylene copolymer)	2.00	2.0	2.0	2.0	
Anionic surfactant (polyoxyethylene- alkylphenylether sodium sulfricester	·1.00	1.0	1.0	1.0	
Sodium chloride	1.00	1.0	1.0	1.0	
Borax	0.30	0.3	0.3	0.3	
Water		baland	e to 100	1%	

In Examples 91-94, the BPN' variants recited in Tables 2-25, among others, are substituted for Ser191Glu + Gly219Ser, with substantially similar results.

While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and

modifications of the subject invention can be made without departing from the spirit and scope of the invention. It is intended to cover, in the appended claims, all such modifications that are within the scope of the invention.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
J	(i) APPLICANT: BRODE, PHILIP F. et al.
10	(ii) TITLE OF INVENTION: BPN' VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS WHEREIN ONE OR MORE LOOP REGIONS ARE SUBSTITUTED
	(iii) NUMBER OF SEQUENCES: 1
15	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: THE PROCTER & GAMBLE COMPANY (B) STREET: 11810 EAST MIAMI RIVER ROAD (C) CITY: ROSS (D) STATE: OH (E) COUNTRY: USA
20	(F) ZIP: 45061
25	(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release \$1.0, Version \$1.25
30	(vi) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER:(B) FILING DATE:(C) CLASSIPICATION:
35	(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: CORSTANJE, BRAHM J. (B) REGISTRATION NUMBER: 34,804 (C) ATTORNEY DOCKET NO. 5597
40	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 513-627-2858 (B) TELEFAX: 513-627-0260
	(2) INFORMATION FOR SEQ ID NO:1:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 275 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: protein
	•
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
	Ala Gln Ser Val Pro Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Let 1 5 10 15
60	His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp 20 25 30
	Ser Gly Ile Asp Ser Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala

WO 95/30010 PCT/US95/03176

	Ser	Met 50	Val	Pro	Ser	Glu	Thr 55	Asn	Pro	Phe	Gln	Авр 60	Asn	Asn	Ser	His
5	Gly 65	Thr	His	Val	Ala	Gly 70	Thr	Val	Ala	Ala	Leu 75	Asn	Asn	Ser	Ile	Gly 80
	Val	Leu	Gly	Val	Ala 85	Pro	Ser	Ala	Ser	Leu 90	Tyr	Ala	Val	Lys	Val 95	Leu
10	Gly	Ala	Авр	Gly 100	Ser	Gly	Gln	Tyr	Ser 105	Trp	Ile	Ile	Asn	Gly 110	Ile	Glu
15	Trp	Ala	Ile 115	Ala	Asn	Asn	Met	Авр 120	Val	Ile	Asn	Met	Ser 125	Leu	Gly	Gly
15	Pro	Ser 130	Gly	Ser	Ala	Ala	Leu 135	Lys	Ala	Ala	Val	Asp 140	Lys	Ala	Val	Ala
20	Ser 145	Gly	Val	Val	Val	Val 150	Ala	Ala	Ala	Gly	Asn 155	Glu	Gly	Thr	Ser	Gly 160
	Ser	Ser	Ser	Thr	Val 165	Gly	Tyr	Pro	Gly	Lys 170	Tyr	Pro	Ser	Val	Ile 175	Ala
25	Val	Gly	Ala	Val 180	Asp	Ser	Ser	Asn	Gln 185	Arg	Ala	Ser	Phe	Ser 190	Ser	Val
30	Gly	Pro	Glu 195	Leu	Asp	Val	Met	Ala 200	Pro	Gly	Val	Ser	Ile 205	Gln	Ser	Thr
3 0	Leu	Pro 210	Gly	Asn	Lys	Tyr	Gly 215	Ala	Tyr	Asn	Gly	Thr 220	Ser	Met	Ala	Ser
35	Pro 225	His	Val	Ala	Gly	Ala 230	Ala	Ala	Leu	Ile	Leu 235	Ser	Lys	His	Pro	Asn 240
	Trp	Thr	Asn	Thr	Gln 245	Val	Arg	Ser	Ser	Leu 250	Glu	Asn	Thr	Thr	Thr 255	Lys
40	Leu	Gly	Asp	Ser 260	Phe	Tyr	Tyr	Gly	Lys 265	Gly	Leu	Ile	Asn	Val 270	Gln	Ala
	Ala	Ala	Gln 275							•						

What is claimed is:

- 1. A BPN' variant having a modified amino acid sequence of wild-type amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region and a fifth loop region; characterized in that the modified amino acid sequence comprises a substitution at one or more positions in one or more of the loop regions; wherein
 - A. when a substitution occurs in the first loop region, the substitution occurs at one or more of positions 59, 60, 61, 62, 63, 65 or 66; wherein
 - a. when a substitution occurs at position 59, the substituting amino acid is Asn, Asp, Glu or Ser,
 - b. when a substitution occurs at position 60, the substituting amino acid is Glu:
 - c. when a substitution occurs at position 61, the substituting amino acid is Asp, Gln, Glu or Ser;
 - d. when a substitution occurs at position 62, the substituting amino acid is Asp, Gln, Glu or Ser;
 - e. when a substitution occurs at position 63, the substituting amino acid is Asp or Glu;
 - f. when a substitution occurs at position 65, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser, and
 - g. when a substitution occurs at position 66, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser,
 - B. when a substitution occurs in the second loop region, the substitution occurs at one or more of positions 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106 or 107; wherein
 - a. when a substitution occurs at position 95, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr;
 - b. when a substitution occurs at position 96, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val;
 - c. when a substitution occurs at position 97, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;

WO 95/30010

PCT/US95/03176

- d. when a substitution occurs at position 98, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr;
- e. when a substitution occurs at position 99, the substituting amino acid is Glu:
- f. when a substitution occurs at position 100, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
- g. when a substitution occurs at position 101, the substituting amino acid is Asp or Glu;
- h. when a substitution occurs at position 102, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser,
- i. when a substitution occurs at position 103, the substituting amino acid is Asn, Asp, Glu or Ser;
- j. when a substitution occurs at position 104, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val;
- k. when a substitution occurs at position 105, the substituting amino acid is Asp or Glu;
- I. when a substitution occurs at position 106, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr or Val; and
- m. when a substitution occurs at position 107, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met. Pro. Ser. Thr or Val;
- C. when a substitution occurs in the third loop region, the substitution occurs at one or more of positions 126, 127, 128, 129, 130, 131, 132 or 133; wherein
 - a. when a substitution occurs at position 126, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val;
 - b. when a substitution occurs at position 127, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser,
 - c. when a substitution occurs at position 128, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser,
 - d. when a substitution occurs at position 129, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser,
 - e. when a substitution occurs at position 130, the substituting amino acid is Asp or Glu;

WO 95/30010 PCT/US95/03176

- f. when a substitution occurs at position 131, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser;
- g. when a substitution occurs at position 132, the substituting amino acid is Asp or Glu; and
- h. when a substitution occurs at position 133, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr;
- D. when a substitution occurs in the fourth loop region, the substitution occurs at one or more of positions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166 or 167; wherein
 - when a substitution occurs at position 154, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - b. when a substitution occurs at position 155, the substituting amino acid is Asp, Gln, Glu or Ser,
 - when a substitution occurs at position 156, the substituting amino acid is Asp;
 - d. when a substitution occurs at position 157, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - e. when a substitution occurs at position 158, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser;
 - f. when a substitution occurs at position 159, the substituting amino acid is Asp or Glu;
 - g. when a substitution occurs at position 160, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - h. when a substitution occurs at position 161, the substituting amino acid is Asp or Glu;
 - when a substitution occurs at position 162, the substituting amino acid is Asp or Glu;
 - j. when a substitution occurs at position 163, the substituting amino acid is Asp or Glu:
 - k. when a substitution occurs at position 164, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser,
 - I. when a substitution occurs at position 165, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr;
 - m. when a substitution occurs at position 166, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser, and

- n. when a substitution occurs at position 167, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val; and
- E. when a substitution occurs in the fifth loop region, the substitution occurs at one or more of positions 187, 188, 189, 190 or 191; wherein
 - a. when a substitution occurs at position 187, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser and Thr;
 - b. when a substitution occurs at position 188, the substituting amino acid is Asp or Glu;
 - c. when a substitution occurs at position 189, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Tyr or Val;
 - d. when a substitution occurs at position 190, the substituting amino acid is Asp or Glu; and
 - e. when a substitution occurs at position 191, the substituting amino acid is Asp or Glu;

whereby the BPN' variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to wild-type subtilisin BPN'.

- 2. The BPN' variant of Claim 1, wherein one or more substitutions occur in the first loop region.
- 3. The BPN' variant of Claim 1, wherein one or more substitutions occur in the second loop region.
- 4. The BPN' variant of Claim 1, wherein one or more substitutions occur in the third loop region.
- 5. The BPN' variant of Claim 1, wherein one or more substitutions occur in the fourth loop region.
- 6. The BPN' variant of Claim 1, wherein one or more substitutions occur in the fifth loop region.
- 7. The BPN' variant of any of Claims 1-6, wherein the wild-type amino acid sequence further comprises a sixth loop region, characterized in that the

modified amino acid sequence further comprises one or more substitutions in the sixth loop region; wherein the substitution(s) in the sixth loop region occurs at one or more of positions 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219 or 220; wherein

- a. when a substitution occurs at position 199, the substituting amino acid for position 199 is Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- b. when a substitution occurs at position 200, the substituting amino acid for position 200 is His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- c. when a substitution occurs at position 201, the substituting amino acid for position 201 is Gly, Gln, Asn, Ser, Asp or Glu;
- d. when a substitution occurs at position 202, the substituting amino acid for position 202 is Pro, Gln, Asn, Ser, Asp or Glu;
- e. when a substitution occurs at position 203, the substituting amino acid for position 203 is Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- f. when a substitution occurs at position 204, the substituting amino acid for position 204 is Asp, or Glu;
- g. when a substitution occurs at position 205, the substituting amino acid for position 205 is Leu, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- h. when a substitution occurs at position 206, the substituting amino acid for position 206 is Pro, Asn, Ser, Asp, or Glu;
- i. when a substitution occurs at position 207, the substituting amino acid for position 207 is Asp or Glu;
- j. when a substitution occurs at position 208, the substituting amino acid for position 208 is Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 209, the substituting amino acid for position 209 is Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- when a substitution occurs at position 210, the substituting amino acid for position 210 is Ala, Gly, Gln, Asn, Ser, Asp or Glu;
- m. when a substitution occurs at position 211, the substituting amino acid for position 211 is Ala, Pro, Gln, Asn, Ser, Asp or Glu;
- n. when a substitution occurs at position 212, the substituting amino acid for position 212 is Gln, Ser, Asp or Glu;

- o. when a substitution occurs at position 213, the substituting amino acid for position 213 is Trp, Phe, Tyr, Leu, IIe, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- p. when a substitution occurs at position 214, the substituting amino acid for position 214 is Phe, Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- q. when a substitution occurs at position 215, the substituting amino acid for position 215 is Thr. Pro, Gln, Asn, Ser, Asp or Glu;
- r. when a substitution occurs at position 216, the substituting amino acid for position 216 is His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- s. when a substitution occurs at position 217, the substituting amino acid for position 217 is Leu, Ile, Val, Met, Cys, Ala, His, Thr, Pro, Gly, Gln, Asn, Ser, Asp or Glu;
- t. when a substitution occurs at position 218, the substituting amino acid for position 218 is Gln, Ser, Asp or Glu;
- u. when a substitution occurs at position 219, the substituting amino acid for position 219 is Pro. Gln, Asn, Ser, Asp or Glu; and
- v. when a substitution occurs at position 220, the substituting amino acid for position 220 is Pro, Gly, Gln, Asn, Ser Asp or Glu.
- 8. A cleaning composition selected from the group consisting of a hard surface cleaning composition, a dishwashing composition, an oral cleaning composition, a denture cleansing composition, a contact lens cleaning composition and a fabric cleaning composition, characterized in that the cleaning composition comprises the BPN' variant of any of Claims 1-7 and a cleaning composition carrier.
- 9. The cleaning composition of Claim 8, wherein the cleaning composition is a hard surface cleaning composition.
- 10. The cleaning composition of Claim 8, wherein the cleaning composition is a fabric cleaning composition.
- 11. A mutant BPN' gene encoding the BPN' variant of any of Claims 1-7.

INTERNATIONAL SEARCH REPORT

Enter. Anal Application No PCT/US 95/03176

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/57 C11D3/386 C12N9/54 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C11D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-5,7-11 EP-A-0 405 901 (UNILEVER PLC ;UNILEVER NV X (NL)) 2 January 1991 see claims 1,3-5, WO-A-94 02618 (GIST BROCADES NV ; MULLENERS X 7-11 LEDNARDUS JOHANNES S (NL); MISSET ONNO) 3 February 1994 see tables II , III WO-A-89 09830 (GENEX CORP) 19 October 1989 1,3,7-11 X see claims: table 2 WO-A-87 05050 (GENEX CORP) 27 August 1987 1,4,5, see page 18; claims Patent family members are listed in annex. Purther documents are listed in the continuation of box C. X Special entegories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the set." "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 16.08.95 27 July 1995 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2220 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016 Van der Schaal, C

INTERNATIONAL SEARCH REPORT

Ints. .comi Application No PCT/US 95/03176

Continue	DOCUMENTS CONSIDERED TO BE RELEVANT		
egory *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	EP-A-0 328 229 (GIST BROCADES NV) 16 August 1989 see example 12		1,5,7-11
	CHEMICAL ABSTRACTS, vol. 116, no. 23, 8 June 1992 Columbus, Ohio, US; abstract no. 230623, P. BRODE AND D. RAUCH 'Subtilisin BPN' activity on an immobilized substrate' cited in the application see abstract & LANGMUIR, vol. 8, no. 5, 1992 pages 1325-1329,		
•			
		• [. •

3

INTERNATIONAL SEARCH REPORT

anformation on patent family members

Inte. .mai Application No PCT/US 95/03176

Patent document cited in search report	Publication date	Patent mem	Publication date	
EP-A-0405901	02-01-91	WO-A-	9100334	10-01-91
		JP-T-	4500385	23-01-92
	•	EP-A-	0405902	02-01-91
		MO-Y-	9100335	10-01-91
		JP-T-	4500384	23-01-92
WO-A-9402618	03-02-94	AU-B-	4700693	14-02-94
		CA-A-	2139928	03-02-94
		FI-A-	950168	10-03-95
WO-A-8909830	19-10-89	US-A-	5013657	07-05-91
#C 11 CDCCCCC	20 20 00	EP-A-	0409878	30-01-91
		JP-T-	3503602	15-08-91
		US-A-	4990452	05-02 - 91
		US-A-	5246849	21-09-93
WO-A-8705050	27-08-87	EP-A-	0260299	23-03-88
	3 . 33 3.	JP-T-	63502959	02-11-88
		US-A-	4980288	25-12-90
		US-A-	4990452	05-02-91
EP-A-0328229	16-08-89	AU-B-	629814	15-10 -9 2
	20 00	AU-A-	3050189	06-09-89
		DE-D-	68912359	03-03-94
		DE-T-	68912359	09-06-94
		EP-A-	0571049	24-11 -9 3
	•	ES-T-	2061929	16-12-94
		JP-T-	2503986	22-11-90
		WO-A-	8907642	24-08-89
		PT-B-	89702	29-04-94
		US-A-	5336611	09-08-94
		US-A~	5324653	28-06-94