Locality defeats the curse of dimensionality in convolutional teacher-student scenarios

Alessandro Favero, Francesco Cagnetta, Matthieu Wyart

Learning in high dimensions

• Supervised learning: learn a target function $f^*(x)$ from P observations

$$egin{align} \{(oldsymbol{x}^{\mu},y^{\mu})\}_{\mu=1}^P \ oldsymbol{x}^{\mu} \in \mathbb{R}^d, \quad y^{\mu} = f^*(oldsymbol{x}^{\mu}) \end{align}$$

• How many observations? If one only assumes f^* is Lipschitz continuous, one needs $\mathcal{O}(\epsilon^{-d})$ observations to learn f^* up to error ϵ : curse of dimensionality

$$\epsilon = \mathcal{O}(P^{-1/d})$$

Learning seems impossibile!

Learning in high dimensions

• How many observations in practice? For ResNets on ImageNet ($d=6.2 imes10^4$)

 $\epsilon \sim P^{-0.3}$ [Hestness 1712.00409]

Images are physically structured

- If deep learning works in high dimensions, data must be very structured
- Several ideas:
 - Data live on a **manifold** ${\cal M}$ of lower dimensionality $d_{\cal M} \ll d$
 - Presence of invariants, as shift-invariance or deformation stability
 - The task is **local** and **compositional**

[Poggio 1611.00740, 2006.13915] [Bietti 2102.10032]

Does a local compositional structure affect the learning curve?

Good architectures have good priors

Convolutional neural networks have shared filter weights with local support

 Numerical experiments suggest that local connectivity is key to performance [Neyshabur 2007.13657]

Can we quantify the respective advantages of weight sharing and local connectivity?

Learning scenario: the teacher

• **Inputs** are *d*-dimensional random sequences

$$oldsymbol{x} = (x_1,...,\underbrace{x_i,...,x_{i+t-1}}_{oldsymbol{x}_i},...,x_d)$$

• The **target function** is either

$$lackbox{lackbox{local}} \; f^{*LC} = \sum_{i=1}^d g_i(oldsymbol{x}_i)$$
 , e.g. $f^{*LC}(x_1,x_2,x_3) = g_1(x_1,x_2) + g_2(x_2,x_3) + g_3(x_3,x_1)$

$$lacksquare ext{or convolutional } f^{*CN} = \sum_{i=1}^d g(oldsymbol{x}_i)$$

 $g_i:\mathbb{R}^t o\mathbb{R}$ is a Gaussian random function with controlled smoothness $lpha_t$

Learning scenario: the student

• Kernel method with a **local** or **convolutional** kernel with s-dimensional patches and smoothness α_s learns from P examples

$$K^{LC}(oldsymbol{x},oldsymbol{x}') = rac{1}{d} \sum_{i=1}^d C(oldsymbol{x}_i,oldsymbol{x}_i')$$

Learning scenario: the student

• Kernel method with a **local** or **convolutional** kernel with s-dimensional patches and smoothness α_s learns from P examples

$$K^{LC}(oldsymbol{x},oldsymbol{x}') = rac{1}{d}\sum_{i=1}^d C(oldsymbol{x}_i,oldsymbol{x}_i') \hspace{1cm} K^{CN}(oldsymbol{x},oldsymbol{x}') = rac{1}{d^2}\sum_{i,j=1}^d C(oldsymbol{x}_i,oldsymbol{x}_j')$$

Learning scenario: the student

• Kernel method with a **local** or **convolutional** kernel with s-dimensional patches and smoothness α_s learns from P examples

$$K^{LC}(oldsymbol{x},oldsymbol{x}') = rac{1}{d}\sum_{i=1}^d C(oldsymbol{x}_i,oldsymbol{x}_i') \hspace{1cm} K^{CN}(oldsymbol{x},oldsymbol{x}') = rac{1}{d^2}\sum_{i,j=1}^d C(oldsymbol{x}_i,oldsymbol{x}_j')$$

- Including the kernels of simple CNNs as special cases! [Jacot 1806.07572]
- ullet Generalization error $\epsilon = \mathbb{E}_{m{x},f^*}[(f(m{x}) f^*(m{x}))^2] \sim P^{-eta}$

Generalization in kernel regression

- Mercer's theorem: spectral decomposition $K({m x},{m x}')=\sum_{
 ho}\lambda_{
 ho}\phi_{
 ho}({m x})\phi_{
 ho}({m x}')$
- ullet We can expand f^* in the (student) kernel basis: $f^*(oldsymbol{x}) = \sum_
 ho c_
 ho \phi_
 ho(oldsymbol{x})$

From statistical physics, kernel regression learns the first P projections
 [Bordelon 2002.02561] [Spigler 1905.10843]

$$\epsilon(P) \sim \sum_{
ho>P} \mathbb{E}[c_
ho^{*2}]$$

Asymptotic learning curves

- ullet K_T conv. with t-dimensional constituents (filter size) and smoothness $oldsymbol{lpha_t}$
- K_S conv./loc. with s-dimensional constituents, $s \geq t$, and smoothness $lpha_s$ with $lpha_s \geq lpha_t/2-s$

conv. student
$$\epsilon(P) \sim P^{-lpha_t/s}$$
 loc. student $\epsilon(P) \sim \left(rac{P}{d}
ight)^{-lpha_t/s}$

Asymptotic learning curves

- K_T conv. with t-dimensional constituents (filter size) and smoothness α_t
- K_S conv./loc. with s-dimensional constituents, $s \geq t$, and smoothness $lpha_s$ with $lpha_s \geq lpha_t/2-s$

conv. student
$$\epsilon(P) \sim P^{-lpha_t/s}$$
 loc. student $\epsilon(P) \sim \left(rac{P}{d}
ight)^{-lpha_t/s}$

- The exponent is independent of d: no curse of dimensionality!
 - Locality changes the error's decay
 - Shift-invariance just affects the prefactor

Asymptotic learning curves

• These predictions are **confirmed numerically** for several kernels and data distributions

Conclusions and perspectives

• Local kernels beat the curse of dimensionality when learning local functions

• This effect can be appreciated for **real data** also, e.g. regression on CIFAR-10

• What's missing? Exploring the **benefits of depth** by considering more complex compositional tasks as **hierarchical target** functions