Lecture 8: The Monte Carlo method for estimating expectations

Professor Ilias Bilionis

The curse of dimensionality

The curse of dimensionality

$$X = (X_1, ..., X_n)$$
, $X_i \sim U([0,1])$ independent $\rho(x_1) = \prod_{i=1}^{n} \rho(x_i) = \prod_{i=1}^{n} \int_{[0,1]} (x_i) = \int_{[0,1]} (x_i)$

- Take the d-dimensional uniform: $X \sim U([0,1]^d)$.
- Take a function g(x).
- We would like to estimate:

$$\mathbb{E}[g(X)] = \int g(x)p(x)dx$$

Example: Evaluating integral in 1D

Example: Evaluating integral in 1D

Example: Evaluating integral in 2D

The curse of dimensionality

- Use *n* equidistant points per dimension.
- You will have n^d boxes each with volume n^{-d} .
- You can evaluate the integral by:

$$\mathbb{E}[g(X)] \approx n^{-d} \sum_{j=1}^{n^d} g(x_{c,j})$$

The Curse of dimensionality

• Assume it takes a millisecond to evaluate the function.

N

- Take n = 10 points per dimension.
- d=2, needs 0.1 seconds.
- d=3, needs 1 second.
- d=5, needs 100 seconds.
- d=6, needs, 1000 seconds or 16 minutes.
- d=10, needs 115 days...
- d=20, needs 3.17 billion years