Bayesian Analysis

Dr Niamh Cahill

Beta Prior Distribution

Quick Recap

Recall:

$$P(\theta|Y) \propto P(Y|\theta)P(\theta)$$
 posterior likelihood prior

For the Happiness example:

- ▶ Data: n = 20 women, y = 14 women reported being happy
- $ightharpoonup y \sim Binomial(n = 20, \theta)$

$$p(y|\theta) = c\theta^{y}(1-\theta)^{n-y}$$
 with $c = \binom{n}{y}$

lacktriangle We want to find the posterior distribution for heta

Now we will consider defining the prior, $p(\theta)$, with a known probability distribution, such that

$$\theta \sim Beta(a, b)$$

The Beta Prior

A Beta distribution is defined on the interval [0,1] and has two parameters, a and b. The density function is defined as

$$p(\theta|a,b) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$$

where B(a,b) is a normalising constant that insures a valid probability density function.

If
$$heta \sim \textit{Be}(a,b)$$
 then $E(heta) = rac{a}{a+b}$ and $\textit{Var}(heta) = rac{ab}{(a+b)^2(a+b+1)}$

Note B(a, b) is not a function of θ , so we can write

$$p(\theta|a,b) \propto \theta^{a-1} (1-\theta)^{b-1}$$

This will become useful later.

The Beta Prior with a=1 and b=1

Let's use Bayes' theorem now to find the form of the posterior distribution for θ assuming $\theta \sim Beta(a=1,b=1)$

This means we've assumed a prior mean and variance for θ of $\frac{1}{2}$ and $\frac{1}{12}$ respectively.

So the posterior is

$$p(heta|y) \propto heta^y (1- heta)^{n-y} heta^{s-1} (1- heta)^{b-1}$$
 posterior likelihood prior

and given a = 1 and b = 1

$$p(\theta|y) \propto \theta^y (1-\theta)^{n-y}$$

This posterior actually takes the form of another Beta distribution with parameters y + 1 and n - y + 1. So,

$$\theta | y \sim Beta(y+1, n-y+1)$$

What does this look like for the Happiness example?

More on the Binomial Likelihood and the Beta Prior

It turns out anytime you use a Binomial likelihood and a Beta prior, such that

$$\theta \sim Be(a, b)$$

$$y \sim Binomal(n, \theta)$$

then you get a posterior distribution which is also Beta, where

$$\theta | y \sim Beta(y + a, n - y + b)$$

When the posterior is the same form as the prior, the prior is said to be a **conjugate prior**. The Beta prior is a conjugate prior for the Binomial likelihood.

The Posterior is a Compromise of Prior and Likelihood

The posterior distribution is always a compromise between the prior distribution and the likelihood function.

We can illustrate this easily with the Beta-Binomial example.

We've seen that for a Be(a,b) prior and a $Binomial(n,\theta)$ likelihood that the posterior will be of the form

$$\theta|y \sim Beta(y+a,n-y+b)$$

and so the posterior mean is $E(\theta|y) = \frac{y+a}{n+a+b}$.

This can be written as a weighted sum of the prior mean $(\frac{a}{a+b})$ and the data proportion $(\frac{y}{p})$, as follows:

$$E(\theta|y) = \underbrace{\frac{y}{n}}_{data} \underbrace{\frac{n}{n+a+b}}_{weight} + \underbrace{\frac{a}{a+b}}_{prior} \underbrace{\frac{a+b}{n+a+b}}_{weight}$$

Expressing prior knowledge as a Beta distribution

Suppose for the Happiness example, you want to express your underlying belief about θ - the probability a woman age 65+ is happy.

Your beliefs may be based on previous studies or perhaps expert opinion.

So for example, supppose you want your prior to reflect beliefs that the proportion is 0.6 \pm 0.1.

How do we express this belief in the Beta distribution?

We will use something called moment matching.

Moment Matching

Recall if
$$\theta \sim Be(a,b)$$
 then $E(\theta) = \frac{a}{a+b}$ and $Var(\theta) = \frac{ab}{(a+b)^2(a+b+1)}$

Based on our prior beliefs we want:

$$E(\theta) = \frac{a}{a+b} = 0.6$$

$$Var(\theta) = \frac{ab}{(a+b)^2(a+b+1)} = 0.1^2$$

We can use these equations to solve for a and b, the parameters of the Beta prior.