Econometrics

Preliminaries: Matrix Algebra

by Vanessa Berenguer-Rico

University of Oxford

Michaelmas Term 2016

What is a Matrix?

- There are many books on Matrix Algebra
- ► The material in this pdf is based on: Econometric Analysis by Greene (Appendix A)
- A matrix is a rectangular array of numbers

$$A = [a_{ik}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ & & \cdots & \\ a_{n1} & a_{n2} & \cdots & a_{nK} \end{bmatrix}$$

- ▶ a_{ik} stands for $a_{\text{row,col}}$ so that i = 1, ..., n and j = 1, ..., K
- ightharpoonup A is an $n \times K$ matrix
- ▶ If K = 1, A becomes a column vector
- ▶ If n = 1, A becomes a row vector

Some special matrices

▶ **Symmetric matrix**: a matrix that has $a_{ik} = a_{ki}$ for all i and k; e.g.,

$$A = \left[\begin{array}{rrr} 3 & 2 & 9 \\ 2 & 1 & 6 \\ 9 & 6 & 5 \end{array} \right]$$

▶ **Diagonal matrix**: a square matrix that has only nonzero entries on the main diagonal; e.g.,

$$A = \left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{array} \right]$$

Some special matrices

 Scalar matrix: a diagonal matrix with the same value in all diagonal elements; e.g.,

$$A = \left[\begin{array}{ccc} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{array} \right]$$

Identity matrix: a scalar matrix with ones on the diagonal; e.g.,

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

► **Transposition**: The transpose of $A = [a_{ij}]$ is $A' = [a_{ji}]$; e.g.,

if
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 then $A' = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$

Note if *A* is symmetric then A = A'

► Addition:

$$A + B = [a_{ij} + b_{ij}] \text{ or } A - B = [a_{ij} - b_{ij}]$$

- Adding the zero (or null) matrix: A + 0 = A
- ▶ Commutative: A + B = B + A
- ► Associative: (A + B) + C = A + (B + C)

▶ **Scalar Multiplication**: Let $c \in \mathbb{R}$, then $cA = [ca_{ji}]$; e.g.,

if
$$A = \begin{bmatrix} 3 & 2 & 9 \\ 2 & 1 & 6 \\ 9 & 6 & 5 \end{bmatrix}$$
 then $2A = \begin{bmatrix} 6 & 4 & 18 \\ 4 & 2 & 12 \\ 18 & 12 & 10 \end{bmatrix}$

▶ **Matrix Multiplication**: Let *A* and *B* be $n \times K$ and $K \times m$, respectively. (Note the dimensions!) Then,

$$C = AB = [c_{ij}] = [\sum_{k=1}^{K} a_{ik} b_{kj}]$$

Example

if
$$A = \begin{bmatrix} 3 & 2 & 9 \\ 2 & 1 & 6 \\ 9 & 6 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 & 5 \\ 3 & 2 & 7 \\ 1 & 2 & 9 \end{bmatrix}$

then

$$AB = \left[\begin{array}{ccc} 21 & 25 & 110 \\ 13 & 16 & 71 \\ 41 & 31 & 132 \end{array} \right]$$

▶ **Matrix Multiplication**: Let *A* and *B* be $n \times K$ and $K \times m$, respectively. Then,

$$C = AB = [c_{ij}] = [\sum_{k=1}^{K} a_{ik} b_{kj}]$$

- Some properties
 - ▶ Important: $AB \neq BA$
 - ▶ Associative: (AB)C = A(BC)
 - ▶ Distributive: A(B+C) = AB + AC
 - ► Transpose of a product: (AB)' = B'A'
 - ▶ Transpose of an extended product: (ABC)' = C'B'A'
 - ▶ Identity: $AI_K = I_n A = A$

▶ **Inverse of a square Matrix**: Let A be a square matrix $(n \times n)$. The inverse matrix, denoted A^{-1} , is defined such that

$$A^{-1}A = AA^{-1} = I$$

▶ Example: Let *A* be a 2×2 matrix

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right],$$

then

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

where

$$|A| = a_{11}a_{22} - a_{12}a_{21}$$

is the determinant of A. So if |A| = 0, then A is not invertible

▶ **Determinant of a square Matrix**: A practical definition (Laplace): Let A be a $K \times K$ matrix. For any row i,

$$|A| = \sum_{k=1}^{K} a_{ik} (-1)^{i+k} |A_{ik}|$$

where $|A_{ik}|$ is a **minor** of A, i.e., the determinant of A_{ik} where A_{ik} is the matrix obtained after deleting row i and column k

- $C_{ik} = (-1)^{i+k} |A_{ik}|$ is known as a **cofactor**
- Example: If

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 then $|A| = a_{11}a_{22} - a_{12}a_{21}$

► Example: If

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right]$$

then

$$|A| = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{12}a_{23}a_{31} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{21}a_{12}a_{33}$$

▶ **Inverse of a matrix**. General Case:

$$A^{-1} = \frac{1}{|A|}C'$$

where

$$C = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1K} \\ C_{21} & C_{22} & \cdots & C_{2K} \\ & & \cdots & & \\ C_{n1} & C_{n2} & \cdots & C_{nK} \end{bmatrix}$$

is the matrix of cofactors

▶ Equivalently: The ik—th element of A^{-1} , say a^{ik} , is

$$a^{ik} = \frac{|C_{ki}|}{|A|}.$$

► Example:

if
$$A = \begin{bmatrix} 3 & 2 & 9 \\ 2 & 1 & 6 \\ 9 & 6 & 5 \end{bmatrix}$$
 then $A^{-1} = \frac{1}{22} \begin{bmatrix} -31 & 44 & 3 \\ 44 & -66 & 0 \\ 3 & 0 & -1 \end{bmatrix}$

- ► Rank of a Matrix: The rank of a matrix, denoted rank(A), is the maximum number of linearly independent rows or columns
- ► $rank(A) = rank(A') \le min(\#rows, \#cols)$
- ▶ A matrix *A* is full rank if its rank is equal to the number of columns it contains
- ▶ $rank(AB) \le min(rank(A), rank(B))$
- ▶ If A is $M \times n$ and B is a square matrix with rank(B) = n, then rank(AB) = rank(A)
- ► Important: rank(A) = rank(A'A) = rank(AA')
- ▶ **Proposition**: $|A| \neq 0$ if and only if it has full rank

► Rank of a Matrix: Example: Let

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

- if $|A| = a_{11}a_{22} a_{12}a_{21} \neq 0$, then rank(A) = 2
- if |A| = 0 because A = 0, then rank(A) = 0
- otherwise (that is if $A \neq 0$ and |A| = 0), then rank(A) = 1

- Quadratic forms and Definite Matrices
- ▶ A quadratic form: q = x'Ax where A is a symmetric matrix
- ▶ **Positive Definite**: *A* is positive definite if x'Ax > 0 for all nonzero *x*
- ▶ **Negative Definite**: *A* is positive definite if x'Ax < 0 for all nonzero x
- ▶ **Positive Semidefinite**: *A* is positive semidefinite if $x'Ax \ge 0$ for all nonzero *x* (var-cov matrices)
- ▶ **Negative Semidefinite**: *A* is negative semidefinite if x'Ax < 0 for all nonzero x

- ► Calculus and Matrix Algebra
- ► <u>First rule</u>:

$$\frac{\partial(Ax)}{\partial x} = A'$$

► <u>Second rule</u>:

$$\frac{\partial(x'Ax)}{\partial x} = (A + A')x$$

► Calculus and Matrix Algebra

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

► Example: First rule

$$\frac{\partial(Ax)}{\partial x} = \frac{\partial \begin{bmatrix} x_1 + 3x_2 \\ 2x_1 + 4x_2 \end{bmatrix}}{\partial x} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = A'$$

► <u>Second rule</u>:

$$\frac{\partial(x_1^2 + 5x_1x_2 + 4x_2^2)}{\partial x} = \begin{bmatrix} 2x_1 + 5x_2 \\ 5x_1 + 8x_2 \end{bmatrix}$$

$$= \left(\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= (A + A')x$$