Networking Introduction

OSI vs TCP/IP

OSI		TCP/IP		
Application				
Presentation	Application Protocols	Application		
Session				
Transport	UDP TCP	Transport		
Network	IP	Internet		
Data Link	MAC	Network Access		
Physical		Network Access		

Encapsulation

Decapsulation

Addressing

- Physical Media Access Control (MAC Address) of NIC
- Logical IP Address of NIC
- Network Services Port numbers

Physical Address (MAC Address)

- MAC Address basically made up of two parts
 - Vendor Address
 - Random Address
- 013E1FBB23A1
 - 013E1FBB23A1 First part is the Vendor Address
 - 013E1FBB23A1 Last part is the Random Address
- How computers communicate with each other

Binary

- Consists of 0 or 1 (off / on)
- Binary number can be converted to decimal
- 00000000 bin = 0 dec
- 11111111 bin = 255 dec
- 00000001 bin = 1 dec
- 00000010 bin = 2 dec
- 00000011 bin = 3 dec
- 00000100 bin = 4 dec

For each 1 in binary add the corresponding decimal values:

Binary to Decimal conversion								
1	1	1	1	1	1	1	1	
128	64	32	16	8	4	2	1	
1111111 bin => 128+64+32+16+8+4+2+1 = 255 dec								

Binary to Decimal conversion								
1 0 1 0 1 1								
128	64	32	16	8	4	2	1	
10101011 bin => 128+32+8+2+1 = 171 dec								

Binary to Decimal conversion								
0	0	0	1	0	0	1	0	
128	64	32	16	8	4	2	1	
10010 bin => 16+2 = 18 dec								

Binary and IP Addresses

- 131.107.1.4
 - Dotted decimal notation
 - Each number is an octet (represents 8 binary digits)
 - 0 = 00000000 (Minimum value)
 - 255 = 11111111 (Maximum value)
- 131 = 10000011
- 107 = 01101011
- 1 = 00000001
- 4 = 00000100
- 131.107.1.4 = 10000011 01101011 00000001 00000100

Logical Address (IP Address)

- IP Addresses describe two things Network section & Host section
 - Network section: is like the name of a street
 - Host section is like the house number
- Examples:
 - 192.168.0.1
 - 192.168.0.1 Network section, 192.168.0.1 Host section
 - 131.107.1.4
 - 131.107.1.4 Network section, 131.107.1.4 Host section
 - 10.34.2.1
 - 10.34.2.1 Network section, 10.34.2.1 Host section

Original IP Classes (assignable addresses)

Class A

- First octet 1-126 (Binary 00000000 01111111) [0 & 127 by convention are not used)
- First octet is the network section
- Last three octets are the Host section

Class B

- First octet 128-191 (Binary 10000000 10111111)
- First two octets are the network section
- Last two octets are the Host section

Class C

- First octet 191-223 (Binary 11000000 11011111)
- First three octets are the network section
- Last octet is the Host section

Subnet Mask

- Shows which part of the IP address is the:
 - Network section
 - Host section
- Determines whether a destination is on:
 - Local subnet
 - Remote subnet
- Traditional Class Subnet masks
 - Class A = 255.0.0.0 = 11111111 00000000 00000000 00000000

 - Class C = 255.255.255.0 = 111111111 11111111 1111111 00000000
- Traditional masks wasted a lot of address
 - Solution = Classless inter-domain routing (CIDR)

ARP – Address Resolution Protocol

- ARP resolves an IP address into its corresponding MAC address
- ARP request is sent as a broadcast packet
- Asks who owns an IP address
 - IP owner answers with its MAC address with a unicast packet
 - ARP resolution information is cached in memory for about 10 minutes max.
- Routers do not pass broadcasts
 - Cannot ARP for an IP on a remote subnet
 - To communicate with a remote host, route packet through a router
 - Set Default Gateway IP so hosts can be used to find the default router
- Use arp -a to show the contents of the ARP cache
- Use arp -d to delete the contents of the ARP Cache

Determine how to route traffic

- Each time a network transmission happens
 - Sender need to determine if destination is local or remote
- If the destination IP address is on the local network
 - ARP for the destination IP address
- If the destination IP address is on a remote network
 - ARP for the IP address of the Default Gateway

Determine if destination is local or remote

- AND source IP address with subnet mask
- AND destination IP address with subnet mask
- Compare both results
 - if same then local (Computers A & B)
 - if different then remote (Computers A & C)

Boolean AND calculation

BOOLEAN AND							
0	AND	0	=	0			
0	AND	1	=	0			
1	AND	0	=	0			
1	AND	1	=	1			

Determining if hosts are local or remote

- A -> B (Local)
 - 131.107.0.4 AND 255.255.0.0 = 131.107.0.0
 - 131.107.0.6 AND 255.255.0.0 = 131.107.0.0
- A -> C (Remote)
 - 131.107.0.4 AND 255.255.0.0 = 131.107.0.0
 - 131.109.0.3 AND 255.255.0.0 = **131.109.0.0**

AND calculation (A -> B)

- 131.107.0.4 AND 255.255.0.0
 - 10000011 01101011 00000000 00000100 (131.107.0.4)
 - 11111111 1111111 00000000 00000000 (255.255.0.0)
 - 10000011 01101011 00000000 00000000 (131.107.0.0 AND Result)
- 131.107.0.6 AND 255.255.0.0
 - 10000011 01101011 00000000 00000110 (131.107.0.6)
 - 11111111 1111111 00000000 00000000 (255.255.0.0)
 - 10000011 01101011 00000000 00000000 (131.107.0.0 AND Result)

AND calculation (A -> C)

- 131.107.0.4 AND 255.255.0.0
 - 10000011 01101011 00000000 00000100 (131.107.0.4)
 - 11111111 1111111 00000000 00000000 (255.255.0.0)
 - 10000011 01101011 00000000 00000000 (131.107.0.0 AND Result)
- 131.109.0.3 AND 255.255.0.0
 - 10000011 01101101 00000000 00000011 (131.109.0.3)
 - 11111111 1111111 00000000 00000000 (255.255.0.0)
 - 10000011 01101101 00000000 00000000 (131.109.0.0 AND Result)

ARP Requests

- A -> B (Local)
 - From A, ARP for destination IP B
 - Reply with MAC address from B
- B -> C (Remote)
 - From B, ARP for the router RG IP address
 - Reply with MAC address from RG
 - From Router, ARP for destination C IP address
 - Reply with MAC address from C

Routing local (A -> B [Webserver])

Routing remote (B -> C [Webserver])

Routing and NAT (B -> C [Webserver])

Subnetting Introduction

Why do we subnet

- To convert a single network into smaller networks
- To reduce wasting of IP addresses
- To control network traffic congestion
- To manage the growth of a network
- To make network security more granular

How do we subnet

- You need to answer several questions before you are ready to subnet
 - What network address are we starting with
 - How many smaller networks do we need (Subnets)
 - How many IP addresses do we need on each subnet (minimum: 1 per NIC)
 - What growth do we expect to happen within the subnets
 - Is it possible to achieve the result with the given conditions

What network are we starting with

- Class A, B, C each have default subnet masks /8, /16, /24
- Some IP addresses on each network have special purposes
- For example:
 - Network ID: 131.12.0.0/16
 - Broadcast ID: 131.12.255.255/16
 - The first address in each subnet is its Network ID
 - The last address in each subnet is its Broadcast ID
 - These two addresses are not used for addressing hosts

Subnetting 131.12.0.0/16

- How many subnets are required
 - 28
- How many IP addresses are required per subnet
 - 1300
- What growth do we expect on these subnets
 - 5% growth in the number of subnets
 - 10% growth in IP addresses
- Max subnets: 28 + 5% = 28 + 1.4 (~ 2) = 30
- Max IP addresses: 1300 + 10% = 1300 + 130 = 1430

Calculate subnets

- Subnets Required: 30
- IP addresses / subnet required : 1430
- Starting Network ID: 131.12.0.0/16
- /16 means
 - That the first 16 bits are network
 - This leaves the last 16 bits for us to slice up into smaller subnets
- How many bits are required to make 32 subnets
- 5 Bits
 - 00000 -> 11111 = is 32 possible numbers (we need 30)
- That leaves 11 bits for hosts
 - 0000000000 -> 1111111111 = 2048 possible numbers 2 (for Net ID and BC ID)
 - 2046 IP addresses on each of the 32 subnets
- The subnetting is possible!

How is the subnetting performed

- The new subnet mask is the old mask + the network bit required
 - Old mask = 16 bits
 - Subnet bits required for subnetting = 5 bits
 - New subnetting mask = 21 bits
- Old 131.12.0.0/16 in binary looks like this:
 - 10000011 00001100 00000000 00000000
 - 11111111 1111111 00000000 00000000 (16 bits)
- New 131.12.0.0/21 in binary looks like this:
 - 10000011 00001100 00000000000000000 (Subnet portion Host portion)
 - 11111111 1111111 11111000 00000000 (21 bits)

How to create the first subnet

- 10000011 00001100 <mark>00000</mark>000 00000000
- The first subnet would look like this in binary:
 - 10000011 00001100 00000 000 00000000 Subnet ID

 - 10000011 00001100 00000111 11111110 Last valid address
 - 10000011 00001100 00000111 11111111 Broadcast ID
- In Decimal
 - 131.12.0.0 Subnet ID
 - 131.12.0.1 First valid address
 - 131.12.7.254 Last valid address
 - 131.12.7.255 Broadcast ID

How to create the second subnet

- 10000011 00001100 <mark>00001</mark>000 00000000
- The first subnet would look like this in binary:
 - 10000011 00001100 00001 000 00000000 Subnet ID
 - 10000011 00001100 00001000 00000001 First valid address
 - 10000011 00001100 00001111 11111110 Last valid address
 - 10000011 00001100 00001111 11111111 Broadcast ID
- In Decimal
 - 131.12.8.0 Subnet ID
 - 131.12.8.1 First valid address
 - 131.12.15.254 Last valid address
 - 131.12.15.255 Broadcast ID

How to create the second subnet

- 10000011 00001100 <mark>00010</mark>000 00000000
- The first subnet would look like this in binary:
 - 10000011 00001100 00010 000 00000000 Subnet ID
 - 10000011 00001100 00010000 00000001 First valid address
 - 10000011 00001100 00010111 111111110 Last valid address
 - 10000011 00001100 00010 111 1111111 Broadcast ID
- In Decimal
 - 131.12.16.0 Subnet ID
 - 131.12.16.1 First valid address
 - 131.12.23.254 Last valid address
 - 131.12.23.255 Broadcast ID

How to create the fourth subnet

- 10000011 00001100 <mark>00011</mark>000 00000000
- The first subnet would look like this in binary:
 - 10000011 00001100 00011 000 00000000 Subnet ID
 - 10000011 00001100 00011000 00000001 First valid address
 - 10000011 00001100 00011111 111111110 Last valid address
 - 10000011 00001100 00011111 11111111 Broadcast ID
- In Decimal
 - 131.12.24.0 Subnet ID
 - 131.12.24.1 First valid address
 - 131.12.31.254 Last valid address
 - 131.12.31.255 Broadcast ID