一类生物模型的定性分析

1. 背景

成人的肠胃微生物种群是一个生态系统,一般来说是相对稳定的. [1] 但是一些外部的干扰, 如饮食的急剧变化,或抗生素的使用,会让微生物种群失调. 从而影响肠胃功能,或诱发疾病. 例 如,长期使用抗生素,尤其是克林霉素,容易引起菌群失调,使耐药的艰难梭菌(Clostridium difficile)被药物选择出后大量繁殖而致病,导致抗生素相关性腹泻,这就是艰难梭菌感染 (CDI). 艰难梭菌是一种厌氧的革兰染色体阳性芽苞杆菌, 广泛分布于自然环境及动物和人的粪便中. 由于广谱抗生素的大量使用以及高毒力株 027/NAPI/BI (核酸分型为 027, 脉冲场凝胶电泳分 型为 NAPI, 限制性内切酶分型为 BI) 的出现和流行, 全球特别是欧洲和北美 CDI 的流行爆 发迅速增多, 每年约有 300 万患者感染 CD, 其发病率和 CDI 相关死亡率也在每年增加. [2,6] 艰难梭菌可存在于正常人的消化道,患者接受抗菌药物治疗后耐药的艰难梭菌异常增殖而发 病,故属内源性感染.但该菌亦可存在于医院环境中或医务人员手部,因此通过粪-口途径,以 接触传播方式而发病,造成外源感染或交叉感染. [7] 建立了 CDI 的随机区室模型,并发现在 入院时,CDI 的感染率小于出院时的感染率,并运用敏感性分析,得出 CDI 的传播和流行对平 均住院时间和病原菌的传播率最为敏感, 从而可以说明 CDI 是一种医院相关传染病. [3] 提出 了新的 CDI 的随机区室模型 (stochastic compartmental model), 并将它运用到 CDI 的大数 据集 (牛津三家医院 2.5 年时间内 CDI 的数据集包括 858 例经确认的 CDI 病例的遗传信息 和 750000 例患者记录的数据库). 通过蒙特卡洛马尔可夫方法(MCMC)对模型进行贝叶斯分 析,提供了病房污染作为一种重要传播方式的证据,并可以推断特定个体、病房或医院对细菌 传播的贡献. 关于 CDI 的治疗, 其原则是先停用相关抗生素, 给予液体和补充电解质等支持 治疗. 如使用抗艰难梭菌的抗生素, 口服甲硝唑及万古霉霉素. 其次, 用单克隆抗体可直接抗 艰难梭菌毒素 A 或 B 从而治疗其所致腹泻. 动物实验结果显示 CDAI 具有直接抗艰难梭菌毒 素 A 的作用,MDX-1388 具有直接抗毒素 B 的作用. 另外,还有人从微生物系统的角度出发, 来研究 CDI 的发病和治疗. 合适的益生菌应用可以预防抗生素相关性腹泻和治疗艰难梭菌感 染,且安全性较好. 通过应用非致病性酵母菌和多重乳酸发酵菌,可以显著降低抗生素相关性 腹泻危险,具有很好的预防效果.非致病性酵母菌具有治疗作用,主要用于儿童.另外,还有 人认为阑尾保护结肠免受艰难梭菌的感染 [4], 这是因为, 一方面, 将细菌引入肠道, 与艰难梭 菌进行竞争. 另一方面, 阑尾可以激发 CDI 免疫来抵抗 CDI. 但目前, 尚没有可靠的科学依据, 需要进一步的观察研究. 文章 [5] 从一个新的角度(微生物的群落的角度)来考虑这个问题, 提 出阑尾和肠道微生物群的生态模型来描述阑尾和 CDI 之间的关系.

1

[5] 忽略炎症动力学,并考虑阑尾仅通过迁移作用于结肠微生物组的系统. 阑尾细菌 (A) 被视为促进结肠 "好"细菌 (G) 生长的单一的类别. 这些共生细菌与艰难梭菌 (C) 竞争资源. 这些变量的时间演变由以下三个耦合微分方程组给出:

图 1. 阑尾细菌迁移模型

(1)
$$\frac{\frac{dA}{dt} = \xi A \left(1 - \frac{A}{k}\right) - mA,}{\frac{dG}{dt} = vG\left(1 - \frac{C + dC}{l}\right) + mA,}$$
$$\frac{dC}{dt} = \zeta C \left(1 - \frac{C + fG}{l}\right),$$

参数	描述	取值
ξ	阑尾细菌的最大增长率	0-1
v	结肠细菌的最大增长率	0-1
ζ	艰难杆菌的最大增长率	0-1
m	细菌从阑尾到结场的迁移率	0-1
k	阑尾容纳量	0-10
l	结肠容纳量	$10^3 - 10^5$
d	竞争效应对结肠细菌的影响	0-10
f	竞争效应对阑尾细菌的影响	0-10

文章 [5] 求出它的极限方程. 因为系统 (1) 的第一部分是一个自治的微分方程, 分离变量就有

$$\left(\xi A\left(1-\frac{A}{k}\right)-mA\right)\,dA=dt,$$

两边同时积分就有,

$$-\frac{\ln{(A)}}{m-\xi} + \frac{\ln{(\xi A + mk - \xi k)}}{m-\xi} + C_1 = t + C_2,$$

$$-\frac{\ln(A)}{m-\xi} + \frac{\ln(\xi A + mk - \xi k)}{m-\xi} = t - kj,$$

然后再由上式解出 A, 就有

$$A = \frac{k(m-\xi)}{e^{[(m-\xi)(t-kj)]} - \xi},$$

$$A(t) \to \bar{A} := \begin{cases} \frac{k(x-m)}{x}, & \text{如果} m < x, \\ 0, & \text{其他,} \end{cases}$$

此时系统 (1) 变为

(2)
$$\frac{\frac{\mathrm{d}G}{\mathrm{d}t} = vG\left(1 - \frac{G + dC}{l}\right) + m\bar{A},\\ \frac{\mathrm{d}C}{\mathrm{d}t} = \zeta C\left(1 - \frac{C + fG}{l}\right).$$

文章 [5] 求出了(2)的平衡点,存在条件及其稳定性(如下表所示):

平衡点	表达式 (C,G)	非负条件	稳定条件
E1	$\left(0, \frac{l}{2} - \frac{\sqrt{l}\sqrt{4m\overline{A} + lv}}{2\sqrt{v}}\right)$	$m\bar{A}=0$	总是不稳定
E2	$\left(0, \frac{l}{2} + \frac{\sqrt{l}\sqrt{4m\overline{A} + lv}}{2\sqrt{v}}\right)$	总是存在	$f \geqslant 1$ 或 $f < 1$ 且 $v < \frac{fm\overline{A}}{(1-f)l^2}$
E3	(C_3,G_3)	-	-
E4	(C_4,G_4)	-	-

其中, $C_3 = \frac{l\sqrt{v}(df+f-2)+fH}{2\sqrt{y}(cf-1)}$, $G_3 = \frac{(d-1)l\sqrt{v}-H}{2\sqrt{y}(cf-1)}$, $C_4 = \frac{l\sqrt{v}(df+f-2)-fH}{2\sqrt{y}(cf-1)}$, $G_4 = \frac{(d-1)l\sqrt{v}+H}{2\sqrt{y}(cf-1)}$,其中, $H = \sqrt{l}\sqrt{mA(4-4df)+(d-1)^2lv}2\sqrt{v}(df-1)$.

本文将避开极限方程,直接考虑三维的模型(1),并求出它的平衡点,分析平衡点的存在性,平衡点的共存,平衡点的稳定性,极限环的不存在性.

2. 双曲平衡点

我们用变量代换 $A = xkv/\xi$, G = yl, C = zl, $t = t'v^{-1}$, $a = \frac{k}{\xi}(\xi - m)$, $b = \frac{\xi}{k}$, $s = \frac{\zeta}{v}$, $r = \frac{m}{lv}$, 那么 (1) 就变为

(3)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = bx(x-a), \\ \frac{\mathrm{d}y}{\mathrm{d}t} = y - y^2 - dyz + rx, \\ \frac{\mathrm{d}z}{\mathrm{d}t} = s(z - z^2 - fyz). \end{cases}$$

新的参数范围为

参数	a	b	d	f	r	s
取值范围	$(-\infty,\infty)$	$(0,\infty)$	(0,10)	$(0,\infty)$	$(0,\infty)$	$(0,\infty)$

2.1. 平衡点的存在性.

命题 2.1. 系统(3)的平衡点 E_6, E_7, E_8 的分布如下表所示.

	f	ar	平衡点的分布
		$\frac{(c-1)^2}{4(fc-1)} < ar < 0$	E ₆ 存在 E ₇ E ₈ 存在
	$0 < f < \frac{1}{c}$	ar > 0	E_6 存在 E_7E_8 只有一个存在
0 < c < 1		$ar < \frac{(c-1)^2}{4(fc-1)}$	E ₆ 存在 E ₇ E ₈ 不存在
	$f > \frac{1}{c}$	ar < 0	E_6 存在 E_7E_8 只有一个存在
		ar > 0	E ₆ 存在 E ₇ E ₈ 不存在
c = 1	0 < f < 1	ar > 0	E ₆ 存在 E ₇ 存在
C-1	f > 1	ar < 0	E ₆ 存在 E ₇ 存在
		$0 < ar < \frac{(c-1)^2}{4(fc-1)}$	E ₆ 存在 E ₇ E ₈ 存在
	$f > \frac{1}{c}$	ar < 0	E_6 存在 E_7E_8 只有一个存在
1 < c < 10		$ar > \frac{(c-1)^2}{4(fc-1)}$	E ₆ 存在 E ₇ E ₈ 不存在
	$0 < f < \frac{1}{c}$	ar > 0	E ₆ 存在 E ₇ E ₈ 只有一个存在
		ar < 0	E ₆ 存在 E ₇ E ₈ 不存在

证明. 为了得到系统平衡点的存在性, 我们采用如下的方法化简. 由系统 (3) 的第一个方程和第三个方程解得: x=0, z=0, 或 x=a, z=0, 或 x=0, z=1-fy, 或 x=a, z=1-fy. 将这四个解分别带入第二项, 得到四个二次方程:

- (1). $f_1(y) = -(y-1) y$,
- (2). $f_2(y) = -y^2 + y + a r$,
- (3). $f_3(y) = y (c f y y c + 1),$
- (4). $f_4(y) = (cf 1) y^2 + (1 c) y + ar$. 因为系统的平衡点与二次方程的正数解——对应,则
- (1). $f_1(y)$ 总是有两个解, 对应着总是存在两个平衡点 E_1 和 E_2 .
- (2). 将 $f_2(y)$ 化成标准形式,则有

$$g_2(y) = y^2 - y - ar,$$

当 b < 0, c < 0, 那么他在 $(0, \infty)$ 上只有一个实根, 对应着平衡点 E_3 . 另外, 当 c = 0 时,0 也是它的一个根, 对应着平衡点 E_4 .

(3). $f_3(y)$ 一定有一个根为 0, 对应着平衡点 E_5 , 还有一个解为 $y = \frac{c-1}{cf-1}$, 对应着平衡点 E_6 , 它的存在条件是, $\frac{c-1}{cf-1} \ge 0$, 既 $(c-1)(cf-1) \ge 0$.

 $(4). f_4(y)$ 化成标准形式为

$$g_4(y) = y^2 + \frac{1-c}{cf-1}y + \frac{ar}{cf-1},$$

- 其中, $b = -\frac{c-1}{cf-1}$, $c = \frac{ar}{cf-1}$, $b^2 4c = -\frac{4acfr-4ar-c^2+2c-1}{(cf-1)^2}$.

 (a). 则当 $b = -\frac{c-1}{cf-1} < 0$, $c = \frac{ar}{cf-1} > 0$, $b^2 4c = -\frac{4acfr-4ar-c^2+2c-1}{(cf-1)^2} > 0$ 时, 有两个实 根, 对应着平衡点 E_7 和 E_8
- (b). 当 $c = \frac{ar}{cf-1} < 0$ 时,有一个实根,对应着平衡点 E_7 . (c). 当 $c = \frac{ar}{cf-1} > 0, b = -\frac{c-1}{cf-1} > 0$,或 $c = \frac{ar}{cf-1} > 0, b = -\frac{c-1}{cf-1} < 0, b^2 4c = -\frac{4acfr-4ar-c^2+2c-1}{(cf-1)^2} < 0$ 时,没有实根,对应平衡点 E_7 和 E_8 不存在.

我们用 Maple 的包 SolveTools 中的函数 SemiAlgebraic 计算就可以得出上表.

2.2. 双曲平衡点的稳定性.

定理 2.2. 平衡点 E_1 当 f < 1 时是不稳定的, 当 f > 1 时是稳定的. 平衡点 E_5 当 df-1>0 且 $-d^2f+(f^2s-f-s+1)d-2fs+2s+1>0$ 时是不稳定的. 平衡点 E_6 , 当 d > 1 时是稳定的, 当 0 < d < 1 时是不稳定的. 平衡点 E_2, E_3, E_4, E_7, E_8 是不稳定的.

证明. 平衡点 E_1 处的向量场的线性部分矩阵为

$$\begin{pmatrix} -ab & 0 & 0 \\ r & -1 & -d \\ 0 & 0 & (1-f) s \end{pmatrix},$$

容易计算特征值为 $\lambda_{11}=(1-f)s, \lambda_{12}=-ab, \lambda_{13}=-1,$ 所以,当 f<1 时不稳定,当 f>1时稳定. 平衡点 E2 处的向量场线性部分矩阵为

$$\begin{pmatrix} -a \, b & 0 & 0 \\ r & 1 & 0 \\ 0 & 0 & s \end{pmatrix},$$

特征值为 $\lambda_{21} = s$, $\lambda_{22} = -ab$, $\lambda_{23} = 1$, 所以 E_2 不稳定.

平衡点 E₅ 处向量场的线性部分矩阵为

$$\begin{pmatrix} -a\,b & 0 & 0 \\ r & -\frac{d\,(f-1)}{d\,f-1} - \frac{2\,(d-1)}{d\,f-1} + 1 & -\frac{(d-1)\,d}{d\,f-1} \\ 0 & -\frac{(f-1)\,f\,s}{d\,f-1} & \left(-\frac{(d-1)\,f}{d\,f-1} - \frac{2\,(f-1)}{d\,f-1} + 1 \right)\,s \end{pmatrix},$$

特征多项式为

(4)
$$P_{1}(\lambda) = -\frac{(\lambda + ab) (d f \lambda^{2} - \lambda^{2} + f s \lambda - s \lambda + d \lambda - \lambda - d f s + f s + d s - s)}{d f - 1}$$
$$= -\frac{\lambda + ab}{d f - 1} (A\lambda^{2} + B\lambda + C),$$

其中,

$$A = df - 1,$$

$$B = fs - s + d - 1,$$

$$C = -dfs + fs + ds - s,$$

则 $\Delta_1 = df - 1$, $\Delta_2 = \begin{vmatrix} A & 1 \\ C & B \end{vmatrix} = (df^2 - 2f - d + 2s + (-d^2 - d)f + d + 1 = -d^2f + (f^2s - f - s + 1)d - 2fs + 2s + 1$, 根据 Routh-Hurwitz 定理 ([11] 第六章定理 6.4), 当 $\Delta_1 > 0$, $\Delta_2 > 0$ 时是不稳定的.

平衡点 E₆ 处的向量场的线性部分矩阵为

$$\begin{pmatrix} -ab & 0 & 0 \\ r & 1-d & 0 \\ 0 & -fs & -s \end{pmatrix},$$

特征值为 $\lambda_{61} = -s$, $\lambda_{62} = 1 - d$, $\lambda_{63} = -ab$, 所以当 d > 1 时是稳定的. 当 0 < d < 1 时是不稳定的. 当平衡点为 E_3 , E_4 , E_7 或 E_8 时, x = a, 此时线性部分矩阵为

$$\begin{pmatrix} ab & 0 & 0 \\ r & -dz - 2y + 1 & -dy \\ 0 & -fsz & s(-2z - fy + 1) \end{pmatrix},$$

线性部分矩阵的特征多项式为

(5)
$$P_2(\lambda) = -(\lambda - a b) (\lambda^2 + 2 s z \lambda + d z \lambda + f s y \lambda + 2 y \lambda - s \lambda - \lambda + 2 d s z^2 + 4 s y z - d s z - 2 s z + 2 f s y^2 - f s y - 2 s y + s).$$

有一个特征值 $\lambda_0 = ab$, 所以是不稳定的.

2.3. 双曲平衡点的类型.

Theorem 2.1. 系统 E_1, E_2, E_5, E_6 类型如下表所示.

f	d	s	E1	E2	E5	E6
	0< d< 1	0 < s < 1 - d	鞍点	结点	鞍点	结点
		s < 1 - d	鞍点	结点	鞍点	结点
		$1 - d < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
	d=1	$0 < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点

$$0 < f < \frac{1}{10}$$

	1	1	#b> 1=	#b> .F-	4+ H	4+ .H
		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
		$0 < s < \frac{1-d}{f-1}$	鞍点	结点	鞍点	鞍点
	1 < d < 2	$\frac{1-d}{f-1} < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
	d=2	$0 < s < -\frac{1}{f-1}$	鞍点	结点	鞍点	鞍点
	u — 2	$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
		$0 < s < -\frac{1}{f-1} < s < \frac{1-d}{f-1}$	鞍点	结点	鞍点	鞍点
	2 < d < 10	$-\frac{1}{f-1} < s < \frac{1-d}{f-1}$	鞍点	鞍点	结点	鞍点
		$\left \frac{1-d}{f-1} < s \right $	鞍点	鞍点	结点	结点
	0< d< 1	0 < s < 1 - d	鞍点	结点	鞍点	结点
	0< u< 1	$1 - d < s < \frac{10}{9}$	鞍点	结点	结点	结点
	d = 1	$0 < s < \frac{10}{9}$	鞍点	结点	结点	结点
	1 - 1 - 9	$0 < s < \frac{10d}{9} - \frac{10}{9}$	鞍点	结点	鞍点	鞍点
r 1	1 < d < 2	$\frac{10d}{9} - \frac{10}{9} < s < \frac{10}{9}$	鞍点	结点	结点	结点
$f = \frac{1}{10}$	$0 < d \leqslant 2$	$\frac{10}{9} < s$	鞍点	鞍点	结点	结点
	d=2	$0 < s < \frac{10}{9}$	鞍点	结点	鞍点	鞍点
	2< d< 10	$0 < s < \frac{10}{9}$	鞍点	结点	鞍点	鞍点
		$\frac{10}{9} < s < \frac{10d}{9} - \frac{10}{9}$	鞍点	鞍点	结点	鞍点
		$\frac{10d}{9} - \frac{10}{9} < s$	鞍点	鞍点	结点	结点
		0 < s < 1 - d	鞍点	结点	鞍点	结点
	0< d< 1	$1 - d < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
	J 1	$0 < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
	d=1	$0 < s < -\frac{1}{f-1}$ $-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
		$0 < s < \frac{1-d}{f-1}$	鞍点	结点	鞍点	鞍点
	1< d< 2	$\frac{1-d}{f-1} < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
$\frac{1}{10} < f < \frac{1}{2}$		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
_	d=2	$0 < s < -\frac{1}{f-1}$	鞍点	结点	鞍点	鞍点
		$0 < s < -\frac{1}{f-1}$ $0 < s < -\frac{1}{f-1}$ $-\frac{1}{f-1} < s < \frac{1-d}{f-1}$	鞍点	结点	鞍点	鞍点
	$2 < d < \frac{1}{f}$	$-\frac{1}{f-1} < s < \frac{1-d}{f-1}$	鞍点	鞍点	结点	鞍点
	J J	$\frac{1-d}{f-1} < s$	鞍点	鞍点	结点	结点
		$\frac{\frac{1-d}{f-1} < s}{0 < s < -\frac{1}{f-1}}$ $-\frac{1}{f-1} < s < \frac{1-d}{f-1}$	鞍点	结点	结点	结点
	$\frac{1}{f} < d < 10$	$-\frac{1}{f-1} < s < \frac{1-d}{f-1}$	鞍点	鞍点	结点	结点
	1 4		1	1		1

		$\frac{1-d}{f-1} < s$	鞍点	鞍点	结点	鞍点
	d=2	$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
	0 1 1 1	0< s< 1 - d	鞍点	结点	鞍点	结点
	0< d< 1	1 - d < s < 2	鞍点	结点	结点	结点
	d = 1	0< s< 2	鞍点	结点	结点	结点
r _ 1	1 / 1 / 9	0 < s < 2d - 2	鞍点	结点	鞍点	鞍点
$f = \frac{1}{2}$	1 < d < 2	2d - 2 < s < 2	鞍点	结点	结点	结点
	0< d< 2	2< s	鞍点	鞍点	结点	结点
		0< s< 2	鞍点	结点	结点	结点
	2< d< 10	2 < s < 2d - 2	鞍点	鞍点	结点	结点
		2d - 2 < s	鞍点	鞍点	结点	鞍点
	0< d< 1	$1 - d < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
	0< a< 1	$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
	d = 1	$0 < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
	$1 < d < \frac{1}{f}$	$0 < s < \frac{1-d}{f-1}$	鞍点	结点	鞍点	鞍点
		$\frac{1-d}{f-1} < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	结点
$\frac{1}{2} < f < 1$		$0 < s < \frac{1-d}{f-1}$	鞍点	结点	结点	结点
	$\frac{1}{f} < d < 2$	$\frac{1-d}{f-1} < s < -\frac{1}{f-1}$	鞍点	结点	鞍点	鞍点
		$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	鞍点
	d=2	$0 < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
	a - z	$-\frac{1}{f-1} < s$	鞍点	鞍点	结点	鞍点
		$0 < s < -\frac{1}{f-1}$	鞍点	结点	结点	结点
	2 < d < 10	$-\frac{1}{f-1} < s < \frac{1-d}{f-1}$	鞍点	鞍点	结点	结点
		$\frac{1-d}{f-1} < s$	鞍点	鞍点	结点	鞍点
	0< d< 1	0 < s < 1 - d	鞍点	结点	鞍点	结点
f=1	0 \ u \ 1	1 - d < s	鞍点	结点	结点	结点
	1< d< 10	0< s	鞍点	结点	结点	结点
		0 < s < 1 - d	鞍点	结点	鞍点	结点
	$0 < d < \frac{1}{f}$	$1 - d < s < \frac{1 - d}{f - 1}$	鞍点	结点	结点	结点
		$\frac{1-d}{f-1} < s$	鞍点	结点	鞍点	鞍点
$1 < f < \frac{10}{9}$		0 < s < 1 - d	鞍点	结点	鞍点	鞍点
	$\frac{1}{f} < d < 1$					

		$1 - d < s < \frac{1 - d}{f - 1}$	鞍点	结点	鞍点	鞍点
		$\frac{1-d}{f-1} < s$	鞍点	结点	结点	结点
	1 ≤ d < 10	s > 0	鞍点	结点	结点	结点
		0 < s < 1 - d	鞍点	结点	鞍点	结点
	$0 < d < \frac{9}{10}$	1 - d < s < 9 - 9d	鞍点	结点	结点	结点
		9-9d < s	鞍点	结点	鞍点	鞍点
$f = \frac{10}{9}$		0 < s < 1 - d	鞍点	结点	鞍点	鞍点
	$\frac{9}{10} < d < 1$	1 - d < s < 9 - 9d	鞍点	结点	鞍点	鞍点
		9 - 9d < s	鞍点	结点	结点	结点
	$1 \leqslant d < 10$	s > 0	鞍点	结点	结点	结点
		0 < s < 1 - d	鞍点	结点	鞍点	结点
	$0 < d < \frac{1}{f}$	$1 - d < s < \frac{1 - d}{f - 1}$	鞍点	结点	结点	结点
	J	$\frac{1-d}{f-1} < s$	鞍点	结点	鞍点	鞍点
	$\frac{1}{f} < d < 1$	0 < s, < 1 - d	鞍点	结点	鞍点	鞍点
$\frac{10}{9} < f < 2$		$1 - d < s < \frac{1 - d}{f - 1}$	鞍点	结点	鞍点	鞍点
$\frac{1}{9} < j < 2$		$\frac{1-d}{f-1} < s$	鞍点	结点	结点	结点
	$1 \leqslant d \leqslant 2$	0 < s	鞍点	结点	结点	结点
	$2 < d < \frac{f}{f-1}$ $d = \frac{f}{f-1}$	0 < s	鞍点	结点	结点	结点
	$d = \frac{f}{f-1}$	0 < s	鞍点	结点	结点	结点
	$\frac{f}{f-1} < d < 10$	0< s	鞍点	结点	结点	结点
	$0 < d < \frac{1}{2}$	0 < s < 1 - d	鞍点	结点	鞍点	结点
	$0 < a < \frac{1}{2}$	1 - d < s	鞍点	结点	鞍点	鞍点
f=2	$\frac{1}{2} < d < 1$	0 < s < 1 - d	鞍点	结点	鞍点	鞍点
$\int -2$	2 < 4 < 1	1 - d < s	鞍点	结点	结点	结点
	$1 \le d \leqslant 2$	0< s	鞍点	结点	结点	结点
	2 < d < 10	0< s	鞍点	结点	结点	结点
		$0 < s < \frac{1-d}{f-1}$	鞍点	结点	鞍点	结点
	$0 < d < \frac{1}{f}$	$\frac{1-d}{f-1} < s < 1-d$	鞍点	结点	鞍点	鞍点
		1 - d < s	鞍点	结点	鞍点	鞍点
		$0 < s < \frac{1-d}{f-1}$	鞍点	结点	鞍点	鞍点
	$\frac{1}{f} < d < 1$	$\frac{1-d}{f-1} < s < 1-d$	鞍点	结点	鞍点	结点
2 < f		1 - d < s	鞍点	结点	结点	结点
²	d = 1	0< s	鞍点	结点	结点	结点

$1 < d < \frac{f}{f-1}$	0 < s	鞍点	结点	结点	结点
$d = \frac{f}{f-1}$	0< s	鞍点	结点	结点	结点
$\frac{f}{f-1} < d < 2$	0< s	鞍点	结点	结点	结点
d=2	0< s	鞍点	结点	结点	结点
2< d< 10	0 <s< th=""><th>鞍点</th><th>结点</th><th>结点</th><th>结点</th></s<>	鞍点	结点	结点	结点

证明. 系统 (3) 当 x = 0 时, 行列式为

$$\begin{pmatrix} -ab & 0 & 0 \\ r & -dz - 2y + 1 & -dy \\ 0 & -fsz & s(-2z - fy + 1) \end{pmatrix}$$

所以沿着 x 轴方向是稳定的, 所以 (6) 的鞍点是 (3) 的鞍点, (6) 的结点是 (3) 的结点. 又因为 (3) 降到 2 维平面后得到的约化方程为

(6)
$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = y - y^2 - dyz, \\ \frac{\mathrm{d}z}{\mathrm{d}t} = s(z - z^2 - fyz), \end{cases}$$

对于方程 (6),我们记 E_1, E_2, E_5, E_6 对应的 (6) 的平衡点为 E_1', E_2', E_3', E_6' 对应的秩和行列式的值分别记为 p_i, q_i ,我们可以计算出 $p_1 = -(s+1), q_1 = s, p_1^2 - 4q_1 = (s-1)^2 > 0$, $p_2 = f s - s + 1, q_2 = (f-1) s, p_2^2 - 4q_2 = (f s - s - 1)^2 > 0, p_5 = s + c - 1, q_5 = (c-1) s, p_5^2 - 4q_5 = (s-c+1)^2 > 0, p_6 = \frac{f s - s + c - 1}{c f - 1}, q_6 = -\frac{(c-1)(f-1)s}{c f - 1},$ $p_6^2 - 4q_6 = \frac{f^2 s^2 - 2f s^2 + s^2 + 4c^2 f^2 s - 4c f^2 s + 2c f s + 2c f s + 2c s - 2s + c^2 - 2c + 1}{(c f - 1)^2} > 0,$

用计算机代数系统 Maple 我们可以计算出上表

3. 极限环的不存在性

3.1. **极限环的不存在性.** 当 x=0 或 x=a 时, $\frac{dx}{dt}=0$, 也就是在 x=0 平面上的轨线不会跑到 x=0 平面外, x=a 平面上的轨线不会跑到 x=a 平面外. 所以 x=0 和 x=a 是系统 (3) 的两个不变平面. 当 x=0 时, 系统退化为 (6), 当 x=a 时, 系统退化为如下方程

(7)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y - y^2 - dyz + ra, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = s(s - z^2 - fyz). \end{cases}$$

引理 3.1. 系统 (6)在下面情况下,在半平面 y>0, z>0 上没有闭轨. (1). $A\neq 0$,

(2). $B_1 < 0$.

其中

$$A = 2 (f s^{2} + df s - 3s + d),$$

$$B_{1} = (f^{2} - 4f + 4) s^{4} + (2d f^{2} + (-8d - 4) f + 8d) s^{3} + (d^{2} f^{2} + (-4d^{2} - 4d) f + 4d^{2} - 8d + 12) s^{2} + (8d - 8d^{2}) s,$$

证明. 我们选 Dulac 函数为

$$B(y,z) = z^{-1},$$

首先, 我们计算出向量场 $(P_1B(y,z), Q_1B(y,z))$ 的散度,

$$\begin{split} &\frac{\partial}{\partial y} P_1(y,z) + \frac{\partial}{\partial z} Q_1(y,z) \\ &= \frac{\partial}{\partial y} \left(y - y^2 - dyz \right) + \frac{\partial}{\partial z} \left(sz(1 - z - fy) \right) \\ &= -\frac{\left(s + d \right)z + 2y - 1}{z}, \end{split}$$

我们考虑直线 Γ:

$$z = -\frac{2y - 1}{s + d},$$

在 Γ 上,向量场的散度为 0,并且这条直线将向量场分成三个部分,并且在 Γ 两边,向量场都保持定号. 根据 Dulac 判据,如果系统有闭轨 γ_1 ,那么就有

$$\gamma_1 \cap \Gamma = \{A_1, B_1\} \neq \emptyset$$

成立, 并且向量场 (P_1,Q_1) 在 A_1,B_1 两点分别指向直线 Γ 的两侧,根据函数的连续性,线段 A_1,B_1 上必存在一点 E_1 , 满足

$$\left. \frac{Q(y,z)}{P_1(y,z)} \right|_{E_1} = \left. \frac{dz}{dy} \right|_{E_1},$$

也就是

$$\frac{s\left(-\frac{(2y-1)^2}{(s+d)^2} + \frac{fy(2y-1)}{s+d} - \frac{2y-1}{s+d}\right)}{-y^2 + \frac{dy(2y-1)}{s+d} + y} = -\frac{2y-1}{s+d},$$

化简得

(8)
$$(2f s^2 + (2df - 6) s + 2d) y^2 + ((-f - 2) s^2 + (-df - 2d + 6) s) y + s^2 + (d - 1) = 0,$$
 这是一个关于 y 的二次方程,我们计算出它的判别式为

$$s \left(f^2 s^3 - 4 f s^3 + 4 s^3 + 2 d f^2 s^2 - 8 d f s^2 - 4 f s^2 + 8 d s^2 + d^2 f^2 s - 4 d^2 f s - 4 d f s + 4 d^2 s - 8 d s + 12 s - 8 d^2 + 8 d \right).$$

根据定理的条件, 我们知道 $A \neq 0$, 且 $\Delta < 0$, 故(8)恒不为 0, 得出矛盾.

引理 3.2. 系统 (7)在下面情况下,在半平面 y > 0, z > 0 上没有闭轨.

- (1). $A \neq 0$,
- (2). $B_2 < 0$.

其中

$$B_2 = (f^2 - 4f + 4) s^4 + (2d f^2 + (-8d - 16ar - 4) f + 8d) s^3 + (d^2 f^2 + ((-32ar - 4) d - 4d^2) f + 4d^2 - 8d + 48ar + 12) s^2 + (-16ar d^2 f - 8d^2 + (32ar + 8) d) s - 16ar d^2,$$

证明. 同样, 我们选 Dulac 函数为

$$B(y,z) = z^{-1},$$

首先, 我们计算出向量场 $(P_2B(y,z),Q_2B(y,z))$ 的散度,

$$\frac{\partial}{\partial y} P_2(y, z) + \frac{\partial}{\partial z} Q_2(y, z)
= \frac{\partial}{\partial y} (y - y^2 - dyz + a) + \frac{\partial}{\partial z} (sz(1 - z - fy))
= -\frac{(s+d)z + 2y - 1}{z},$$

我们考虑直线 Γ:

$$z = -\frac{2y - 1}{s + d},$$

在 Γ 上,向量场的散度为 0,并且这条直线将向量场分成三个部分,并且在 Γ 两边,向量场都保持定号. 根据 Dulac 判据,如果系统有闭轨 γ_2 ,那么就有

$$\gamma_2 \cap \Gamma = \{A_2, B_2\} \neq \emptyset$$

成立, 并且向量场 (P_2 , Q_2 在 A_2 , B_2 两点分别指向直线 Γ_2 的两侧,根据函数的连续性,线段 A_2 , B_2 上必存在一点 E_2 , 满足

$$\left. \frac{Q(y,z)}{P(y,z)} \right|_{E_2} = \left. \frac{dz}{dy} \right|_{E_2},$$

也就是

$$\frac{s\left(-\frac{(2y-1)^2}{(s+d)^2} + \frac{fy(2y-1)}{s+d} - \frac{2y-1}{s+d}\right)}{-y^2 + \frac{dy(2y-1)}{s+d} + y + ar} = -\frac{2}{s+d},$$

化简得

(9)

$$(2f s^2 + (2df - 6) s + 2d) y^2 + ((-f - 2) s^2 + (-df - 2d + 6) s) y + s^2 + (d + 2ar - 1) s + 2ard = 0.$$

这是一个关于 y 的二次方程, 我们计算它的判别式, 为

$$\Delta_2 = (f^2 - 4f + 4) s^4 + (2d f^2 + (-8d - 16ar - 4) f + 8d) s^3 + (d^2 f^2 + ((-32ar - 4) d - 4d^2) f + 4d^2 - 8d + 48ar + 12) s^2 + (-16ar d^2 f - 8d^2 + (32ar + 8) d) s - 16ar d^2.$$

根据定理的条件,我们知道 $A \neq 0$,且 $\Delta < 0$,故(9)恒不为 0,得出矛盾.

定理 3.3. 当 $A \neq 0$ 且 $B_1 < 0, B_2 < 0$ 时, 系统没有极限环.

证明. 我们把整个空间分成五个部分, x > a, x = a, 0 < x < a, x = 0, x < 0(不在定义域内). 我们不难发现, 系统的所有平衡点都落在 x = 0 和 x = a 上, 所以在区域 x > a, 0 < x < a, x < 0 上, 没有平衡点, 也就没有闭轨. 当 x = 0 时, 系统退化为 (6), 当 x = a 时, 系统退化为 (7). 则由引理3.1, 我们知道, 系统 (6) 没有闭轨, 由引理3.2, 我们知道, 系统 (7) 没有闭轨. 综上, 系统在 x > 0 上没有极限环.

References

- Bucci, V., Bradde, S., Biroli, G., Xavier, J.B., 2012. Social interaction, noise and antibi- otic-mediated switches in the intestinal microbiota. PLoS Comput. Biol. 8 (4),e1002497.
- Burckhardt F, Friedrich A, Beier D, Eckmanns T (2008) Clostridium difficile surveillance trends, Saxonz, Germany.
 Emerg Infect Dis 14(4):691–692.
- [3] Cule, Madeleine; Donnelly, Peter. Stochastic modelling and inference in electronic hospital databases for the spread of infections: Clostridium difficile transmission in Oxfordshire hospitals 2007–2010. Ann. Appl. Stat. 11 (2017), no. 2, 655–679.
- [4] Im, G.Y., Modayil, R.J., Lin, C.T., Geier, S.J., Katz, D.S., Feuerman, M., Grendell, J.H., 2011. The appendix may protect against Clostridium difficile recurrence. Clin. Gastroenter. Hepatology 9 (12), 1072–1077.
- [5] Joshi T, Elderd B D, Abbott K C. No appendix necessary: fecal transplants and antibiotics can resolve Clostridium difficile infection[J]. J. Theor. Biol, 2018, 442: 139-148.
- [6] Lessa, F.C., Mu, Y., Bamberg, W.M., Beldavs, Z.G., Dumyati, G.K., Dunn, J.R., Far-ley, M.M., Holzbauer, S.M., Meek, J.I., Phipps, E.C., et al., 2015. Burden of Clostrid-ium difficile infection in the United States. N. Engl. J. Med. 372 (9), 825–834.
- [7] Mclure A , Clements A C A , Kirk M , et al. Healthcare-Associated Clostridium difficile Infections are Sustained by Disease from the Community[J]. Bull. Math .Biol, 2017, 79(10):2242-2257.
- $[8]\,$ Q.Ye, Limit cycle theory . 1984.
- [9] Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, volume 101, American Mathematical Society, Providence, 1992.
- [10] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
- [11] 张伟年, 杜正东, 徐冰. (2006). 高等学校教材, 常微分方程.