PSI* - MP

Sciences

TD 03

Assistance pour le maniement de charges dans l'industrie

Concours Centrale Supelec TSI 2017

Savoirs et compétences :

Mise en situation

L'exosquelette est un appareil qui apporte à un être humain des capacités qu'il ne possède pas ou qu'il a perdues à cause d'un accident. Ce type d'appareil peut permettre à une personne de soulever des charges lourdes et diminuer considérablement les efforts à fournir sans la moindre fatigue. Après avoir revêtu un exosquelette adapté à sa morphologie et à sa taille, l'utilisateur peut faire ses mouvements en bénéficiant d'une grande fluidité.

On donne dans la figure ci-dessous, la modélisation cinématique retenue dans le but de simuler le comportement de l'exosquelette.

Gestion du mouvement vertical

Objectif Déterminer les réglages de la commande asservie des moteurs genou droit et gauche permettant d'assurer un mouvement vertical ne déséquilibrant pas le porteur de l'exosquelette puis valider les performances attendues listées par le cahier des charges.

La demande de mouvement de l'utilisateur de l'exosquelette se traduit par une consigne de vitesse de type trapézoïdal pour le mouvement vertical. À l'aide du modèle articulaire inverse cette demande se traduit finalement en consigne de position des axes moteur genou gauche et droit. Cette consigne de position du moteur représentée à la figure suivante montre des parties qui peuvent être approchées par des constantes, des rampes et des paraboles.

Le premier modèle défini figure suivante est adopté pour chaque axe.

Notations:

- $\theta_{mC}(p)$ consigne de position de l'axe moteur (variable temporelle : $\theta_{mC}(t)$ en rad);
- $\theta_m(p)$ position de l'axe moteur (variable temporelle : $\theta_m(t)$ en rad);
- $C_{mC}(p)$ consigne de couple moteur (variable temporelle : $c_{mC}(t)$ en Nm);
- $C_m(p)$ couple moteur (variable temporelle : $c_m(t)$ en Nm):
- $C_r(p)$ couple résistant perturbateur (variable temporelle : $c_r(t)$ en Nm);
- K₁ gain proportionnel du correcteur de l'asservissement de position (en s⁻¹);

- $\Omega_{mC}(p)$ consigne de vitesse de l'axe moteur (variable temporelle : $\Omega_{mC}(t)$ en rad s⁻¹);
- $\Omega_m(p)$ vitesse de l'axe moteur (variable temporelle : $\Omega_m(t)$ en rad s⁻¹);
- $C_{\Omega}(p)$ correcteur de l'asservissement de vitesse;
- $M_C(p)$ modélise la boucle d'asservissement en couple de la machine électrique, considérée parfaite au vu de sa dynamique par rapport aux autres boucles: $M_C(p) = 1$;
- I moment d'inertie de l'ensemble en mouvement, rapporté au niveau de l'axe moteur;
- f coefficient de frottements visqueux équivalent pour l'ensemble en mouvement.

Le correcteur est de la forme : $C_{\Omega}(p) = K_2 \left(\frac{Jp+f}{Jp} \right)$. En utilisant le schéma-blocs précédent, on peut

constater que:

- l'écart est défini par la variable $\varepsilon(t) = \theta_{mC}(t) -$
- l'erreur entre l'entrée et la sortie est définie par la variable $\mu(t) = \theta_{mC}(t) - \theta_m(t)$.

Étant donné que le modèle utilisé est à retour unitaire, l'écart $\varepsilon(t)$ est égal à l'erreur $\mu(t)$.

Hypothèse(s) Le couple résistant évolue lentement au regard de la dynamique de l'asservissement, ce qui permet de considérer pour la suite de l'étude $C_r(p) = 0$.

Question 1 Déterminer la grandeur physique de la consigne et la grandeur physique asservie à partir du modèle multiphysique présenté plus bas et préciser leurs unités de base dans le système international d'unités (SI).

Question 2 Exprimer $H_{\Omega}(p) = \frac{\Omega_m(p)}{\Omega_{mC}(p)}$ en fonction de J, K_2 et p.

Question 3 *Exprimer* $\varepsilon(p)$ *en fonction de* $\theta_{mC}(p)$, $H_{\Omega}(p)$, K_1 et p.

Méthode On peut définir l'erreur de position ε_p par $\varepsilon_p = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) \text{ avec } \theta_{mC}(p) = \frac{1}{n} \text{ (entrée)}$ échelon).

Question 4 Déterminer l'erreur de position ε_n puis l'erreur de traînage ε_v . Conclure sur la valeur de K_1 pour satisfaire à l'exigence d'erreur en traînage.

Question 5 Déterminer l'erreur en accélération et conclure quant au respect du cahier des charges.

Pour satisfaire l'exigence d'une erreur en accélération inférieure à 1%, le second modèle avec anticipation de la vitesse est adopté avec $H_{\Omega}(p) = \frac{1}{1 + Tp}$ et T = 33 ms.

Question 6 *Exprimer* $\varepsilon(p)$ *en fonction de* $\theta_{mC}(p)$, T, K_1 , K_3 et p.

Le second modèle avec anticipation de la figure précédente n'a pas d'incidence sur la valeur de l'erreur de position.

Question 7 Exprimer l'erreur de traînage et déterminer la valeur de K_3 permettant l'annuler cette erreur.

Question 8 Exprimer et déterminer l'erreur d'accélération en prenant les valeurs de K_3 et de K_1 déterminées précédemment. Conclure quant au respect du cahier des charges.

Synthèse

Question 9 En utilisant la figure ci-dessous, conclure sur les actions qui ont mené à une validation du cahier des charges.

Colle 01

Micromanipulateur compact pour la chirurgie endoscopique

Mines Ponts 2016

Savoirs et compétences :

Micromanipulateur compact pour la chirurgie endoscopique (MC²E)

Présentation générale

L'objet de cette étude est un robot appelé MC²E utilisé en chirurgie endoscopique. Ce type de robots médicochirurgicaux est équipé de capteurs (caméra, capteur d'efforts...) permettant de maîtriser les interactions avec des environnements souvent déformables et difficilement modélisables comme le corps humain.

La figure suivante décrit les principales exigences auxquelles est soumis le MC²E.

Validation des performances de l'asservissement

Modèle de connaissance de l'asservissement

Objectif Modéliser l'asservissement en effort.

L'équation de mouvement est définie par l'équation différentielle suivante : $J \frac{\mathrm{d}^2 \theta_m(t)}{\mathrm{d}t^2} = C_m(t) - C_e(t)$ avec :

• *J*, inertie équivalente à l'ensemble en mouvement, ramenée sur l'arbre moteur;

• $C_e(t)$, couple regroupant l'ensemble des couples extérieurs ramenés à l'arbre moteur, notamment fonction de la raideur du ressort.

On notera $\theta_m(p)$, $\Omega_m(p)$, $C_m(p)$ et $C_e(p)$ les transformées de Laplace des grandeurs de l'équation de mouvement. On pose $C_e(t) = K_{C\theta}\theta_m(t)$ où $K_{C\theta}$ est une constante positive. On a de plus $\frac{d\theta_m(t)}{dt} = \omega_m(t)$. La régulation se met alors sous la forme du schéma-blocs à retour unitaire simplifié que l'on admettra :

Modèle simplifié du montage du capteur d'effort.

Avec:

- $C_e(p)$, couple de sortie mesuré par le capteur d'effort situé sur le MC²E;
- $C_c(p)$, couple de consigne;
- $C_m(p)$, couple moteur;
- $H_{cor}(p)$, fonction de transfert du correcteur.

Dans un premier temps, on prendra $H_{cor}(p) = 1$.

Question 1 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

Question 2 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Question 3 *Quel sera le comportement de cet as*servissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Pour remédier au problème ainsi mis en évidence, le concepteur a choisi de mettre en place une boucle interne numérique, dite tachymétrique, de gain B. On s'intéresse ici à la définition analytique de B. Le schéma-blocs modifié est donné figure suivante.

Régulation avec retour tachymétrique

On règle B de telle façon que, pour $H_{\rm cor}(p)=1$, la fonction de transfert en boucle ouverte, notée $H_{\rm BO}(p)$, puisse être mise sous la forme suivante : $H_{\rm BO}(p)=\frac{1}{\left(1+\tau\,p\right)^2}$.

Question 4 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Les exigences du cahier des charges sont données plus haut (exigences 1.2.2.1, 1.2.2.3 et 1.2.2.4).

Afin de répondre à ces exigences, on choisit un correcteur proportionnel-intégral de gain K_i et de constante de temps T_i . Le schéma-blocs de la régulation se met sous la forme de la figure qui suit.

Régulation avec correcteur PI.

Question 5 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

On souhaite régler le correcteur pour que le système asservi ait une fonction de transfert en boucle fermée d'ordre 2 de la forme : $\frac{K_{\rm BF}}{1+\frac{2\xi_{\rm BF}}{\omega_{\rm OBF}}p+\frac{p^2}{\omega_{\rm OBF}^2}}.$

Question 6 Proposer une expression simple pour la constante de temps T_i .

Question 7 À partir des courbes suivantes, proposer une valeur de coefficient d'amortissement et de pulsation propre.

On donne $K_i = 1$.

Question 8 Les critères de performance du cahier des chartes sont-ils respectés? Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Diagrammes de Bode

On prend $K_i = 0, 4$, $T_i = 0.01$ s et $\tau = 0.5$ s.

Question 9 Tracer le diagrame de Bode de la fonction

de transfert
$$G(p) = \frac{K_i(1 + T_i p)}{T_i p(1 + \tau p^2)}$$
.

Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Chapitre 2 – Révisions SLCI

Sciences
Industrielles de
l'Ingénieur

Synthèse 01

Bateau support de ROV

Concours Centrale Supelec - MP 2019

Savoirs et compétences :

 \Box .

Introduction

On s'intéresse à une grue permettant la dépose sur fond marin d'un robot dont l'objectif est d'enfouir des câbles.

FIGURE 1 – ROV suspendu à la grue portique

Objectif Vérifier si le bateau support est capable de limiter suffisamment les effets de la houle.

La société TravOcéan souhaite pouvoir travailler dans des conditions de mer difficiles pour limiter au maximum les périodes d'arrêt des chantiers. Pour cela, elle souhaite disposer d'un système de treuillage de ses ROV certifié pour une houle d'amplitude verticale de 5 m. Le tableau suivant présente un extrait du cahier des charges correspondant.

Exigence	Critère	Niveau	
Id 1.1 Compensation des mouvements du ROV pour une houle d'amplitude de 5 m et de pulsations comprises entre 0,5 rad·s ⁻¹ à 1,7 rad·s ⁻¹	Amplitude verticale du ROV maximale	< 1 m pour 5 m d'amplitude de houle	
Id 1.2 Mise en tension du câble	Temps de réponse, $t_{r5\%}$	<3 s	

Extrait du cahier des charges

Une étude expérimentale en bassin de carène a permis d'obtenir un modèle de comportement de l'ensemble $S = \{\text{bateau} + \text{portique} + \text{ROV}\}$ suivant l'axe vertical, sous l'effet de la houle, au point d'ancrage du ROV sur la grue portique.

La fonction de transfert de l'ensemble S est $B(p) = \frac{Y_S(p)}{Y_{\text{vague}}(p)}$ avec $Y_S(p)$ la transformée de Laplace de la variation du déplacement vertical du point d'ancrage du ROV et $Y_{\text{vague}}(p)$ la transformée de Laplace de la variation du déplacement de la surface de l'eau à la verticale du point d'ancrage du ROV.

Question 1 Rappeler la définition du gain en décibel. En déduire la valeur en décibel traduisant l'exigenceld 1.1.

Le tracé du gain de B(p) dans la figure suivante.

Question 2 En faisant apparaître le domaine d'utilisation, montrer que le système ne répond pas à l'exigence d'atténuation d'une houle de 5 m.

Étude du système de compensation de houle PHC (Passiv Heave Compensator)

Objectif Dimensionner un système passif de compensation de la houle et tester sa conformité aux exigences du cahier des charges.

Pour compenser les effets de la houle, une solution hydropneumatique est alors envisagée. Ce système est un compensateur de houle passif noté PHC (Figure 2).

FIGURE 2 – Schéma d'implantation du PHV (non à l'échelle)

Les petites variations de pression $\Delta p_E(t)$ et $\Delta p_G(t)$ autour du point d'équilibre peuvent être définies par $\Delta p_E(t) = p_E(t) - P_{E0}$ et $\Delta p_G(t) = p_G(t) - P_{G0}$. Une étude de mécanique des fluides a permis d'obtenir les relations (1) et (2).

$$\frac{\mathrm{d}\Delta p_E(t)}{\mathrm{d}t} = \frac{K}{V_E} A \left(\frac{\mathrm{d}y_h(t)}{\mathrm{d}t} - \frac{\mathrm{d}y_{\mathrm{ROV}}(t)}{\mathrm{d}t} \right) + \frac{K}{V_E} C_{qR} \left(\Delta p_G(t) - \Delta p_E(t) \right) (1)$$

$$\frac{\mathrm{d}\Delta p_G(t)}{\mathrm{d}t} = \frac{r P_{G0} C_{qR}}{V_{G0}} \left(\Delta p_E(t) - \Delta p_G(t) \right) (2).$$

À l'équilibre, le principe fondamental de la statique se traduit par $-Mg + A(P_{E0} - P_{atm}) = 0$..

Le théorème de la résultante dynamique appliqué à Σ se traduit par $S\Delta p_E(t) = M \ddot{y}_{ROV}(t) + c(\dot{y}_{ROV}(t) - \dot{y}_h(t))$.

L'hypothèse du fluide incompressible se traduit par $\frac{\mathrm{d}\Delta p_E(t)}{\mathrm{d}t} = 0.$

Question 3 Réécrire l'équation (1) en tenant compte de cette hypothèse. Après avoir appliqué les transformées de Laplace aux équations (1) et (2) et en considérant les conditions initiales nulles aux équations précédentes, déterminer l'équation, notée (3), sous la forme : $\Delta P_E(p) = K_1(1+\tau_1 p)(Y_h(p)-Y_{ROV}(p)). \ Exprimer \ K_1 \ et \ \tau_1 \ en fonction de A, V_{G0}, r, C_{qR} \ et P_{G0}.$

Question 4 Appliquer les transformées de Laplace, en considérant les conditions initiales nulles à l'équation (3) et à l'équation (4). Donner la fonction de transfert : $Y_{ROV}(p)$ $1+\tau p$

$$H(p) = \frac{Y_{ROV}(p)}{Y_h(p)} = \frac{1 + \tau p}{1 + \frac{2\zeta}{\omega_0} p + \frac{p^2}{\omega_0^2}}. Exprimer \omega_0, \zeta \text{ et } \tau \text{ en}$$

fonction des constantes définies précédemment.

On utilisera dans toute la suite la relation $\tau \omega_0 = 2\zeta$.

Question 5 Tracer en vert le diagramme asymptotique du gain de la fonction de transfert du compensateur PHC, $H(p) = \frac{Y_{ROV}(p)}{Y_h(p)}$, en faisant apparaître ses caractéristiques. Tracer en bleu, sur la même figure, l'allure du gain réel du compensateur. Préciser la valeur du gain maximal.

Question 6 Exprimer la fonction de transfert de l'ensemble {bateau support + ROV + PHC}, $G(p) = \frac{Y_{ROV}(p)}{Y_{vague}(p)}$ en fonction de H(p) et B(p). Tracer en rouge l'allure du gain du diagramme de Bode de G(p).

Des réglages pour différentes valeurs de pulsation de la houle ω_c et de gain maximal acceptable du compensateur ont été effectués. La Figure 3 donne les diagrammes du gain de la fonction G(p) de l'ensemble {bateau support + ROV + PHC} pour quatre réglages. Les volumes du gaz V_{G0} correspondant à chaque réglage sont donnés dans le tableau ci-après.

FIGURE 3 – Courbes de gain G(p) pour différents réglages du PHC

Réglage	PHC 1	PHC 2	PHC 3	PHC 4	
V_{G0} (m ³)	96	1	52	2	
Volumes V _{CO} pour différents réglages du PHC					

Pour respecter l'exigence Id 1.1, le gain de la fonction de transfert de l'ensemble doit toujours être inférieur à $-14\,\mathrm{dB}$.

Question 7 Choisir, en justifiant la réponse, le réglage du compensateur adapté à l'exigence Id 1.1.