sine basis 09

p-values adjusted for search volume

Statistics:

set-	level	cluster-level				peak-level					mm mm mm	
р	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	p _{uncorr}	p_{FWE-c}	g corrFDR-co	T orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$	1111111	
		1.000 1.000 1.000 1.000	0.841 0.841 0.841 0.841	1 6 4 7 4	0.841 0.564 0.646 0.531 0.646	1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995	2.58 2.58 2.57 2.57 2.56	2.57 2.57 2.56 2.56 2.55	0.005 0.005 0.005 0.005	40 -56 -20 -22 -4	58 16 -6 -24 40 -8 38 46 -12 8
		1.000 1.000 1.000 1.000 1.000	0.841 0.841 0.841 0.841 0.841	9 2 5 1 1 3	0.473 0.760 0.603 0.841 0.841	1.000 1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995 0.995	2.55 2.54 2.53 2.53 2.52 2.52	2.54 2.53 2.52 2.52 2.51 2.51	0.005 0.006 0.006 0.006 0.006	0 -36 20 46 20 24	14 48 -96 -4 56 36 8 -36 62 30 30 14
		1.000 1.000 1.000 1.000 1.000	0.841 0.841 0.841 0.841 0.841	3 4 2 2	0.646 0.697 0.646 0.760 0.760 0.841	1.000 1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995	2.52 2.52 2.51 2.51 2.51 2.51	2.51 2.51 2.51 2.50 2.50 2.50	0.006 0.006 0.006 0.006 0.006	30 48 54 -2 46 -34	-64 50 -34 14 -42 -12 -28 18 -72 -28 -54 52
		1.000 1.000 1.000 1.000 1.000	0.841 0.841 0.841 0.841 0.841	2 4 2 2 1	0.760 0.760 0.760 0.760 0.841	1.000 1.000 1.000 1.000 1.000	0.995 0.995 0.995 0.995 0.995	2.51 2.50 2.49 2.48 2.48	2.50 2.49 2.49 2.48 2.47	0.006 0.006 0.006 0.007 0.007	26 26 -56 34	-12 -22 -14 70 -4 -32 -22 -12 -22 66