Álgebra II. Hoja de ejercicios 9: Cuerpos (continuación) Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 1. Sea n un número entero. Encuentre el polinomio mínimo sobre $\mathbb Q$ para $n+\sqrt{-1}\in\mathbb C$.

Ejercicio 2. Para una extensión L/K y un elemento algebraico $\alpha \in L$ asumamos que el grado $[K(\alpha) : K]$ es impar. Demuestre que $K(\alpha) = K(\alpha^2)$.

Ejercicio 3. Para p=2,3 demuestre que el polinomio X^3-p es irreducible en K[X] donde $K=\mathbb{Q}(\sqrt{-1})$. Sugerencia: considere la extensión $\mathbb{Q}(\sqrt{-1},\sqrt[3]{p})/\mathbb{Q}$.

Ejercicio 4. Sean $m, n \in \mathbb{Z}$ dos números enteros tales que $\sqrt{m}, \sqrt{n} \notin \mathbb{Q}$. Consideremos $\alpha := \sqrt{m} + \sqrt{n} \in \mathbb{C}$.

- 1) Demuestre que $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{m}, \sqrt{n})$.
- 2) Para

$$\alpha_1 := \alpha$$
, $\alpha_2 := -\sqrt{m} + \sqrt{n}$, $\alpha_3 := -\alpha_1$, $\alpha_4 := -\alpha_2$,

demuestre que el polinomio $f := (X - \alpha_1)(X - \alpha_2)(X - \alpha_3)(X - \alpha_4)$ tiene coeficientes enteros.

- 3) Demuestre que si $\sqrt{mn} \notin \mathbb{Q}$, entonces f es el polinomio mínimo de α sobre \mathbb{Q} .
- 4) Demuestre que si $\sqrt{mn} \in \mathbb{Q}$, entonces $\mathbb{Q}(\sqrt{m}) = \mathbb{Q}(\sqrt{n})$.

Cuerpos ciclotómicos

Ejercicio 5. Demuestre que si m > 1 es impar, entonces $\Phi_{2m} = \Phi_m(-X)$. Sugerencia: compare las expresiones

$$\prod_{d \mid 2m} \Phi_d = X^{2m} - 1 = (X^m - 1)(X^m + 1) = -(X^m - 1)((-X)^m - 1) = -\prod_{d \mid m} \Phi_d(X) \Phi_d(-X)$$

usando inducción sobre m.

Ejercicio 6. Encuentre un par de cuerpos ciclotómicos $\mathbb{Q}(\zeta_m)$ y $\mathbb{Q}(\zeta_n)$ tales que $[\mathbb{Q}(\zeta_m):\mathbb{Q}]=[\mathbb{Q}(\zeta_n):\mathbb{Q}]$ pero $\mathbb{Q}(\zeta_m)\not\cong\mathbb{Q}(\zeta_n)$.

Ejercicio 7. Demuestre que toda extensión finita K/\mathbb{Q} contiene un número finito de raíces de la unidad.

Ejercicio 8. Denotemos por $\mathbb{Q}(\zeta_{\infty}) = \mathbb{Q}(\zeta_3, \zeta_4, \zeta_5, \zeta_6, \ldots)$ la extensión de \mathbb{Q} generada por todas las raíces de la unidad. Demuestre que $\mathbb{Q}(\zeta_{\infty}) = \bigcup_{n>1} \mathbb{Q}(\zeta_n)$.

Derivadas formales

Ejercicio 9. Sea R un anillo commutativo. Para una serie de potencias $f = \sum_{n \geq 0} a_n X^n \in R[X]$ definamos su derivada formal como la serie

$$f' := \sum_{n>1} n \, a_n \, X^{n-1}.$$

Demuestre que para cualesquiera $f,g \in R[X]$ se cumple

$$(f+g)' = f'+g', \quad (fg)' = f'g+fg'.$$

La traza, norma y el polinomio característico

Ejercicio 15. Consideremos la extensión ciclotómica $\mathbb{Q}(\zeta_3)/\mathbb{Q}$.

- 1) Usando la base $1, \zeta_3$, calcule el polinomio característico para un elemento $\alpha := a + b \zeta_3$, donde $a, b \in \mathbb{Q}$.
- 2) Note que $\mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3})$. Verifique que el resultado de 1) coincide con el cálculo para las extensiones cuadráticas que hicimos en clase.

Ejercicio 16. Demuestre que $1 + \sqrt[3]{2}$ no es una n-ésima potencia en $\mathbb{Q}(\sqrt[3]{2})$ para ningún $n = 2, 3, 4, \dots$

Ejercicio 17. Consideremos $\alpha := \zeta_5 + \zeta_5^2$, donde $\zeta_5 := e^{2\pi\sqrt{-1}/5}$.

- 1) Calcule el polinomio característico de α respecto a la extensión ciclotómica $\mathbb{Q}(\zeta_5)/\mathbb{Q}$.
- 2) Demuestre que $\mathbb{Q}(\zeta_5)=\mathbb{Q}(\alpha)$ y el polinomio obtenido es el polinomio mínimo de α .