

planetmath.org

Math for the people, by the people.

proof of Poincaré recurrence theorem 2

Canonical name ProofOfPoincareRecurrenceTheorem2

Date of creation 2013-03-22 14:29:58 Last modified on 2013-03-22 14:29:58

Owner Koro (127) Last modified by Koro (127)

Numerical id 5

Author Koro (127) Entry type Proof

Classification msc 37A05 Classification msc 37B20 Let $\{U_n : n \in \mathbb{N}\}$ be a basis of open sets for X, and for each n define

$$U'_n = \{ x \in U_n : \forall n \ge 1, \ f^n(x) \notin U_n \}.$$

From theorem 1 we know that $\mu(U'_n)=0$. Let $N=\bigcup_{n\in\mathbb{N}}U'_n$. Then $\mu(N)=0$. We assert that if $x\in X-N$ then x is recurrent. In fact, given a neighborhood U of x, there is a basic neighborhood U_n such that $x\subset U_n\subset U$, and since $x\notin N$ we have that $x\in U_n-U'_n$ which by definition of U'_n means that there exists $n\geq 1$ such that $f^n(x)\in U_n\subset U$; thus x is recurrent. \square