CSP554—Big Data Technologies

Assignment #7

Worth: 12 points (2 points for each problem)

Exercise 1)

Step B

Use the TestDataGen program from previous assignments to generate new data files.

Copy the files to the directory "/user/hadoop" in HDFS

```
[hadoop@ip-172-31-4-238 ~]$ ls
TestDataGen.class
[hadoop@ip-172-31-4-238 ~]$ java TestDataGen
Magic Number = 3531
[hadoop@ip-172-31-4-238 ~]$ ls
foodplaces3531.txt foodratings3531.txt TestDataGen.class
```

```
[hadoop@ip-172-31-4-238 ~]$ hadoop fs -copyFromLocal *.txt /user/hadoop

[hadoop@ip-172-31-4-238 ~]$
[hadoop@ip-172-31-4-238 ~]$ hadoop fs -ls /user/hadoop

Found 2 items
-rw-r--r-- 1 hadoop hadoop 59 2021-03-10 03:01 /user/hadoop/foodplaces3531.txt
-rw-r--r-- 1 hadoop hadoop 17513 2021-03-10 03:01 /user/hadoop/foodratings3531.txt
```

Magic Number = 3531

Step C

Load the 'foodratings' file as a 'csv' file into a DataFrame called foodratings. When doing so specify a schema having fields of the following names and types:

Field Name	Field Type	
Name	String	
food1	Integer	
food2	Integer	
food3	Integer	
food4	Integer	
Placeid	Integer	

As the results of this exercise provide the magic number, the code you execute and screen shots of the following commands:

foodratings.printSchema()

foodratings.show(5)

```
>> structl = StructType().add("name", StringType(), True).add("food1", IntegerType(), True).add("food2", IntegerType(), True).add("food3", IntegerType(), True).add("food4", IntegerType(), True).add("food4", IntegerType(), True).add("food4", IntegerType(), True).add("food4", IntegerType(), True).add("food4", IntegerType(), True).add("food4", IntegerType(), True).add("food3", IntegerType(), True).add("food4", IntegerType(), True).add("food4", IntegerType(), True).add("food3", IntegerType(), True).add("food4", Int
```

Exercise 2)

Load the 'foodplaces' file as a 'csv' file into a DataFrame called foodplaces. When doing so specify a schema having fields of the following names and types:

Field Nampee	Field Type
placeid	Integer
placename	String

As the results of this exercise provide *the code you execute* and screen shots of the following commands:

foodratings.printSchema()

foodratings.show(5)

Magic Number = 3531

```
>>> from pyspark.sql.types import *
>>> struct2 = StructType().add("placeid", IntegerType(), True).add("placename", StringType(), True)
   foodplaces = spark.read.schema(struct2).csv('hdfs:///user/hadoop/foodplaces3531.txt')
>>> foodplaces.printSchema()
root
 |-- placeid: integer (nullable = true)
 |-- placename: string (nullable = true)
>>> foodplaces.show(5)
placeid
            placename
      1|China Bistro
      2
             Atlantic
      3
            Food Town
      4
               Jake's
            Soup Bowl
```

Exercise 3)

Magic Number = 3531

Step A

Register the DataFrames created in exercise 1 and 2 as tables called "foodratingsT" and "foodplacesT"

>>> foodratings.registerTempTable("foodratingsT") >>> foodplaces.registerTempTable("foodplacesT")

Step B

Use a SQL query on the table "foodratingsT" to create a new DataFrame called foodratings_ex3a holding records which meet the following condition: food2 < 25 and food4 > 40. Remember, when defining conditions in your code use maximum parentheses.

As the results of this step provide the code you execute and screen shots of the following commands:

foodratings ex3a.printSchema()

foodratings_ex3a.show(5)

```
>>> foodratings_ex3a.printSchema()
root
 |-- name: string (nullable = true)
  -- food1: integer (nullable = true)
-- food2: integer (nullable = true)
-- food3: integer (nullable = true)
  -- food4: integer (nullable = true)
 |-- placeid: integer (nullable = true)
>>> foodratings_ex3a.show(5)
|name|food1|food2|food3|food4|placeid|
                    51
                           291
                                  45
                                              5|
           21|
  Joy
                    5
                           42
                                  42
            2
                                              1|
  Sam
                                              5|
           27
                   20 l
                           33
                                  49
  Sam
            91
                           451
                                  42
                                              3 I
                   15 l
  Joy
  Sam
           431
                           50 l
                                   461
                                              2|
only showing top 5 rows
```

>>> foodratings_ex3a = sqlContext.sql("select * from foodratingsT where food2 < 25 and food4 > 40")

Step C

Use a SQL query on the table "foodplacesT" to create a new DataFrame called foodplaces_ex3b holding records which meet the following condition: placeid > 3

As the results of this step provide the code you execute and screen shots of the following commands:

```
foodplaces_ex3b.printSchema()
foodplaces ex3b.show(5)
```

Exercise 4)

Use a transformation (not a SparkSQL query) on the DataFrame 'foodratings' created in exercise 1 to create a new DataFrame called foodratings_ex4 that includes only those records (rows) where the 'name' field is "Mel" and food3 < 25.

As the results of this step provide the code you execute and screen shots of the following commands:

```
foodratings_ex4.printSchema()
foodratings_ex4.show(5)
```

Magic Number = 3531

```
>>> foodratings_ex4 = foodratings.filter( (foodratings.name == "Mel") & (foodratings.food3 < 25) )
>>> foodratings_ex4.printSchema()
root
  -- name: string (nullable = true)
  -- food1: integer (nullable = true)
  -- food2: integer (nullable = true)
  -- food3: integer (nullable = true)
-- food4: integer (nullable = true)
 |-- placeid: integer (nullable = true)
>>> foodratings_ex4.show(5)
name|food1|food2|food3|food4|placeid|
                47
                                        5|
 Mell
                       21
                              24
           5
                 1
                              17 |
                                        4
 Mell
                       13|
                               2
  Mell
          32
                12
                                        4
  Mel
          39
                27
                       23
                              23
                                        3
          34 |
                              21
                                        5
                36|
                       21|
 Mel
only showing top 5 rows
```

Exercise 5)

Use a transformation (not a SparkSQL query) on the DataFrame 'foodratings' created in exercise 1 to create a new DataFrame called foodratings_ex5 that includes only the columns (fields) 'name' and 'placeid'

As the results of this step provide the code you execute and screen shots of the following commands:

```
foodratings_ex5.printSchema()
foodratings_ex5.show(5)
```

Magic Number = 3531

Exercise 6)

Use a transformation (not a SparkSQL query) to create a new DataFrame called ex6 which is the inner join, on placeid, of the DataFrames 'foodratings; and 'foodplaces' created in exercises 1 and 2

As the results of this step provide the code you execute and screen shots of the following commands:

```
ex6.printSchema()
ex6.show(5)
```

Magic Number = 3531

```
>>> ex6 = foodratings.join(foodplaces, foodratings.placeid == foodplaces.placeid, "inner")
>>> ex6.printSchema()
root
 |-- name: string (nullable = true)
 |-- food1: integer (nullable = true)
|-- food2: integer (nullable = true)
  -- food3: integer (nullable = true)
-- food4: integer (nullable = true)
 |-- placeid: integer (nullable = true)
|-- placeid: integer (nullable = true)
 |-- placename: string (nullable = true)
>>> ex6.show(5)
|name|food1|food2|food3|food4|placeid|placeid|
                                                            placename|
 Mel
            2
                  37
                          36
                                  6
                                                              Atlantic|
                                            3
 Jill|
          44
                  29
                          8 |
                                 16
                                                      31
                                                             Food Town
                                            5|
           11
                  16
                          19
                                 28
                                                             Soup Bowl
 Joy
 Me1
           17
                  37
                          32
                                  5 |
                                            1|
                                                      1|China Bistro|
           22
                  28
                          42
                                 35|
                                             3|
                                                             Food Town
 Joe
only showing top 5 rows
```