Sistemas Electrónicos Programables

Práctica 2:

Control Climático en Invernaderos Curso 2021-2022

Grado en Ingeniería Mecatrónica

Profesor Dr. Diego Antolín Cañada

dantolin@unizar.es

Profesor Dr. David Asiain Ansorena

dasiain@unizar.es

Problema

 Programación Control Climático de un Invernadero Multizona (2 Zonas):

Refrigeración bi-zona y seleccionable

Control de humedad bi-zona y seleccionable

- Temporización de las medidas y actuaciones

Gestión de la máquina mediante comandosShell()

Descripción del diseño

- Monitorizar la temperatura a la que se encuentra el cultivo en cada zona y activar o desactivar el calefactor o ventilador según corresponda.
- El invernadero va a tener dos zonas y diferentes cultivos. En esta práctica se trabajará con las dos Zonas.
- Hay que controlar la humedad de las zonas para controlar el riego.

Descripción del diseño

 Sistema de supervisión de alimentación, que al bajar de 10V durante más 500 ms activa una señal de error en el invernadero, pone a cero todas las señales de activación de las salidas, es decir, deshabilita el riego.

Diagrama Conceptual del Control de Invernaderos

- Este diagrama sólo es una representación conceptual del funcionamiento, y no tiene porque ceñirse 100% a la realidad. Pueden ser necesarios más parámetros.
- Intenta ser una representación que ayude a comprender mejor la práctica.

Hitos a Desarrollar (I)

- Diagrama de actividad del programa.
- Desarrollo unidades funcionales:
 - Programación RTC Software mediante Timer 1 y uso de estructuras.
 - Implementación estructuras y tipos de datos.
 - Lectura, calibración y filtrado de los sensores.
 - Implementación de terminal de comandos serie.
 - Salvado y recuperación de datos en la EEPROM.

Hitos a Desarrollar (II)

- Aplicación (Control de climatización).
 - Las medidas de los sensores deben realizarse de forma ininterrumpida.
 - Cada zona de cultivo tendrá un control de temperatura individual. La activación de las zonas se hará de forma individual.
 - Del mismo modo ocurrirá con el riego, cada zona tendrá su medida y control de riego independiente.
 - Si la temperatura de cualquiera de las zonas alcanza la temperatura máxima se activará una señal de error y se parará el funcionamiento de la máquina.
 - El sistema tendrá un horario para la programación del riego. Si esta activado el riego solo podrá producirse durante ese intervalo de tiempo.
 - Todo el sistema será configurable mediante la consola de comandos Shell.
 - La temperatura, humedad, así como la habilitación y control de horario de riego serán configurables desde la consola de comandos Shell.
 - Los parámetros y rangos de los sensores analógicos son configurables mediante comandos Shell (ganancia, offset, histéresis).

Hitos a Desarrollar (III)

- Aplicación (Detección de fallos).
 - Si la temperatura de cualquiera de las zonas alcanza la temperatura máxima se activará una señal de error.
 - Se monitorizará la humedad de las zonas y se detectará error cuando superé el valor especificado tal como se describe más adelante.
 - Se supervisará la alimentación del sistema tal y como se indica en las trasparencias siguientes. Un fallo en la alimentación generará una señal luminosa de error.
 - Si la puerta permanece abierta durante más de 10 segundos se activará la señal de error que se indica más adelante.
 - El mal funcionamiento, producido por cualquiera de los tres errores anteriores, llevará al sistema al paro y enviará un mensaje de error específico por la consola. Además, de la indicación luminosa pertinente.

Hitos a Desarrollar (IV)

- Aplicación (Salvado de Datos en Memoria no Volátil).
 - Todos los parámetros de configuración se almacenaran en la EEPROM.
 - El botón de Reset configurará el sistema con unos parámetros por defecto almacenados en la EEPROM.
 - Los parámetros de funcionamiento y los parámetros por defecto no tendrán porqué ser coincidentes por lo que se almacenarán de forma independiente en le EEPROM.

Diagrama de Bloques

Diagrama de Bloques (Simulación Sistema)

Entradas Salidas

Sensor / Entrada	Parámetros	Entrada
Sistema Supervisión de Alimentación (UPS)	Según lo establecido	A0
Temperatura Zona 1	Según lo establecido	A1 ()
Temperatura Zona 2	Según lo establecido	A3
Humedad Zona 1	Según sensor	A2
Humedad Zona 2	Según sensor	A4 D

Entradas Digitales	40	Número	Entrada
Botón Encendido		11 00	D13
Apertura de puerta	13	4153	D5

Entradas Salidas

Actuadores	Número	Salidas
Devolución Cambio	1	D12
Activación Ventiladores	2	D11, D12
Activación Calefactor	2	D4, D5
Activación Electroválvulas Riego	2	D2,D3
Señal de Error		D10

- Encendido del Sistema
 - El sistema comenzará a funcionar tras una pulsación del botón de encendido de 2 s. Se apagará con una pulsación de 5 s.
 - Si el sistema está apagado quedará suspendido el control del invernadero.

- Supervisión del sistema de alimentación (UPS)
 - Suponiendo que la electrónica se encuentra alimentada a partir de una fuente de 12V de continua se debe monitorizar de forma constante el correcto funcionamiento de la misma
 - Un tiempo mayor a 500ms por debajo de 10V significará que hay un problema grave y la máquina debe detenerse

Tensión de la fuente	Tensión de entrada al ADC
12V	4,5V
0V	0V

Universitaria

- Interfaz del control de errores por zona
 - Error de temperatura demasiado alta
 - Error de tiempo de apertura de puerta excedido
 - Error en la alimentación del sistema

TIPO DE ERROR	LED ROJO	(PIN D10)
TEMPERATURA	ON	OFF
TEIVIPERATURA	1 s	1 s
APERTURA PUERTA	ON	OFF
	5 s	1 s
ALIMENTACIÓN	ON	OFF
	1 s	5 s

- Lectura temperatura
 - Función que lea la temperatura con su correspondiente calibración.
 - Debe realizarse de forma ininterrumpida.
 - Función bascula de Schmitt, ajustada a las directrices, control de temperatura a 5°C)

Recta de Calibración del Sensor de Temperatura

Control Temperatura Invernadero

- La monitorización debe realizarse de forma continua.
- Activación del Calefactor
 - El calefactor se activará cuando la temperatura sea inferior a la temperatura objetivo. Teniendo en cuenta el valor de histéresis.

Temperatura Objetivo	Histéresis
5 °C	1°C

Monitorización Temperatura

 Ejemplo de Histéresis en la monitorización de temperatura (ajustar al problema propuesto):

Control Temperatura Invernadero

- Activación del Ventilador
 - El ventilador se activará cuando la temperatura sea superior a 25 ° C. Teniendo en cuenta el valor de histéresis.
 - El funcionamiento es similar al del calefactor, pero invirtiendo la activación en lo que a temperatura se refiere.
- Si el invernadero alcanza una temperatura de 30°C durante 6s o más se activará la señal de error (D10)

- Lectura humedad
 - Función que lea la temperatura con su correspondiente calibración.
 - Debe realizarse de forma ininterrumpida.
- Activación de la Electroválvula humedad
 - La electroválvula se activa con un pulso de 1 s y se apaga con un pulso del mismo tiempo.
 - Las condiciones de activación y paro de la electroválvula se indican en la siguiente diapositiva.

Monitorización Humedad

Ininterrumpida

Rango de Humedad	Activación/desactivación
<35%	Activar electroválvula de riego
>50%	Desactivar electroválvula de riego

Relación Humedad Relativa Tensión

Relación Humedad Relativa Tensión

Tensión (V)	Humedad (%)
1	0
5	100

Monitorización Humedad

• Histéresis en la monitorización:

Restricciones de Funcionamiento

- En ningún caso podrán activarse de forma simultanea las siguientes funciones:
 - No pueden activarse de forma simultanea el calefactor y el control de humedad.
 - No puede activarse el calefactor y el ventilador al mismo tiempo.
 - Si se activa la apertura de puerta no puede activarse ni el calefactor, ni los ventiladores.

Estructuras Y Tipos de Datos

```
typedef struct t time {
    unsigned short int hour;
    unsigned short int minuts;
    unsigned short int seconds;
};
typedef struct t_humidity_sensor {
    float hysteresis;
    float gain;
    float offset;
typedef struct t_temperature_sensor {
    float hysteresis;
    float gain;
};
```

```
typedef struct t control zones {
    t temperature sensor temperature;
   t humidity sensor humidity;
   float targetTemperature;
    bool heaterActuator;
    bool fanActuator;
    bool irrigation;
typedef struct t greenhouse controller {
    t time real time clock;
    t_control_zones control_zones[2];
   float supply_voltage;
    unsigned int error_incicator;
```

Parámetros Predefinidos

Elemento	Valor
Ganancia Sensores Temperatura	10
Offset Sensores Temperatura	-10°C
Histéresis Temperatura	1°C
Temperatura Zona 1 y Zona 2	5°C
Humedad Zona 1 y Zona 2	50%
Hora Inicio Control Temperatura/Riego	06:30:00
Hora Fin Control Temperatura	21:30:00
Temperatura Límite/Máxima Zonas	26°C

Hitos Opcionales

- LCD 16x2
- Cambio de hora verano/invierno automático.
- Sistema de backup de energía.
- Control remoto desde internet (IoT).

