Resumos numéricos - medidas de posição

Prof. Me. Lineu Alberto Cavazani de Freitas

Departamento de Estatística Laboratório de Estatística e Geoinformação



- Parte primordial de qualquer análise estatística é chamada análise descritiva ou exploratória.
- Consiste basicamente de tabelas, resumos numéricos e análises gráficas das variáveis disponíveis em um conjunto de dados.
- ► Trata-se de uma etapa de extrema importância e deve preceder qualquer análise mais sofisticada.
- As técnicas de análise exploratória visam resumir e apresentar as informações de um conjunto de dados brutos.

- A análise exploratória de dados é uma área relativamente nova.
- Nasceu do clássico livro Exploratory
  Data Analysis de John Tukey em 1977.
- Algo curioso é que Tukey tinha uma relação próxima com a Ciência da Computação e definiu os termos bit e software.



Figura 1. Capa do livro Exploratory Data Analysis de John Tukey.

- Como quase tudo em análise de dados, o avanço computacional permitiu com que a análise exploratória evoluísse substancialmente.
- ► Por exemplo: historicamente o processo de criação de um gráfico era reservado a pessoas qualificadas pois a produção de uma visualização era difícil.
- ▶ Hoje qualquer pessoa pode inserir dados em um aplicativo e gerar um gráfico.
- ► Este tipo de facilidade é importante para dissemeninação e democratização dos métodos, porém abre margem para certas práticas inadequadas.

- Tentar compreender um conjunto de dados sem algum método que permita resumir as informações é inviável.
- A análise exploratória é a primeira forma de tentarmos enteder o que acontece nos nossos dados.
- Uma das tarefas é a etapa de consistência dos dados, isto é, verificar se os dados coletados são condizentes com a realidade.



Figura 2. Extraído de pixabay.com.

- O conjunto de técnicas aplicáveis está diretamente associado ao tipo das variáveis de interesse (quantitativas x qualitativas) e suas ramificações.
- Podemos conduzir análises focadas nas variáveis uma a uma (análises univariadas).
- Também podemos conduzir análises focadas em avaliar a relação entre as variáveis (análises multivariadas).



Figura 3. Extraído de pixabay.com.

#### Podemos fazer uso diversas técnicas, tais como

- ► Tabelas de frequência absolutas.
- ► Tabelas de frequência relativas.
- ► Tabelas de frequência acumuladas.
- ► Tabelas para múltiplas variáveis.
- Gráficos.

- Medidas de posição central.
- Medidas de posição relativa.
- Medidas de forma.
- Medidas de dispersão.
- Medidas de associação.



#### Resumos numéricos

- Uma forma de resumir a informação contida em um conjunto de dados é por meio dos resumos numéricos.
- ► Resumos numéricos são basicamente **números que resumem números**.
- Os dois principais grupos são as medidas de posição (central e relativa) e dispersão.
- Existem outros conjuntos de medidas, como as medidas de forma e também as de relação/associação.



# Medidas de posição central

- ▶ Um passo fundamental na exploração dos dados é definir um valor típico (uma estimativa onde a major parte dos dados está localizada).
- ► Considerando um conjunto de valores qualquer, como definir um valor central? A resposta é: depende do critério.

- As medidas de posição central buscam expressar o centro de uma variável por meio de ideias como:
  - Centro de massa.
  - ► Valor que divide a amostra em partes iguais.
  - ▶ Valores de maior frequência ou densidade

- Algumas possiblidades são
  - Média.
  - Mediana.
  - Moda.
  - Média geométrica.
  - Média harmônica.
  - ► Média aparada.

### Média aritmética

- ▶ Soma de todos os valores dividida pela quantidade de elementos.
- ► Interpretação física de centro de gravidade.
- ► Medida influenciada por valores extremos.

### Expressão

Sejam  $y_1, y_2,...,y_n$  os n valores de uma variável Y, a média é dada por:

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{y_1 + y_2 + \dots + y_n}{n}.$$

### Média aritmética

#### **Exemplo**

- ► Considere que uma turma possui 10 alunos.
- ► Estes alunos realizaram uma avaliação.
- Considere que as notas obtidas foram:

Qual foi a nota média da turma?

Y: Notas obtidas.

$$\overline{y} = \frac{60 + 65 + 77 + 95 + 56 + 94 + 97 + 81 + 80 + 48}{10} = \frac{753}{10} = 75.3$$

- ▶ Indicada para dados agrupados em tabelas de frequência ou situações em que existe motivo para unidades receberem um peso maior.
- ▶ Obtêm-se os produtos entre frequências absolutas (ou pesos) e os valores que a variável assume
- ▶ Somam-se os produtos e divide-se pela soma das frequências (quantidade de elementos).
- ▶ No caso de faixas de valores, usa-se o centro da faixa.

$$\overline{y} = \frac{\sum_{i=1}^{k} f_i \cdot y_i}{\sum_{i=1}^{k} f_i}.$$

- ▶ f<sub>i</sub> representa a frequência da classe i.
- k representa o número de classes (k < n).

#### **Exemplo 1**

- ► Considere que uma prova com 10 questões de múltipla escolha foi aplicada em uma turma com 100 alunos.
- ► Só temos acesso à uma tabela de frequências do número de questões corretas.
- Qual é o número médio de questões corretas?

Tabela 1. Tabela de frequências do número de questões acertadas.

| Acertos    | 0 | 1 2 | 3 4 | 5 6   | 7  | 8 | 9 | 10 |
|------------|---|-----|-----|-------|----|---|---|----|
| Frequência | 1 | 0 0 | 5 2 | 30 21 | 29 | 8 | 3 | 1  |

#### Exemplo 1

Y : Número de acertos.

$$\overline{y} = \frac{(0 \times 1) + (1 \times 0) + (2 \times 0) + (3 \times 5) + \dots + (7 \times 29) + (8 \times 8) + (9 \times 3) + (10 \times 1)}{100}$$

$$\overline{y} = \frac{0+0+0+15+8+150+126+203+64+27+10}{100} = 6,03$$

#### Exemplo 2

- Considere a seguinte tabela de frequências da idade dos funcionários de uma empresa.
- ► Qual é a idade média dos funcionários?

Tabela 2. Tabela de frequências das notas obtidas pelos alunos.

| Faixas  | [20,25] | (25,30] | (30,35] | (35,40] | (40,45] | (45,50] | (50,55] | (55,60] | (60,65] | (65,70] |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Frequên | cia 3   | 45      | 191     | 310     | 248     | 140     | 54      | 7       | 0       | 2       |

#### Exemplo 2

Y: Idade do funcionário.

$$\overline{y} = \frac{(22,5 \times 3) + (27,5 \times 45) + (32,5 \times 191)... + (57,5 \times 7) + (62,5 \times 0) + (67,5 \times 2)}{1000}$$

$$\overline{y} = \frac{67,5 + 1237,5 + 6207,5 + 11625 + \dots + 2835 + 402,5 + 0 + 135}{1000} = 39,7$$

# Outros tipos de média

- Média aritmética e ponderada são os tipos de média mais comuns.
- Contudo existem outras possibilidades como
  - Média geométrica.
  - Média harmônica.
  - Média aparada.

#### Mediana

- Valor que ocupa a posição intermediária dos valores ordenados.
- ▶ Divide o vetor de valores em 2 partes de mesmo tamanho.
- ▶ Metade dos valores é menor que a mediana e a outra metade maior que a mediana.
- Existem diferentes métodos para se obter a mediana, um deles é o chamado **método** de Tukev.
- No método de Tukey basta **ordenar o conjunto de valores** e verificar qual é o valor central.
- Se o número de observações for impar, a mediana é o valor central.
- ▶ Se o número de observações for par, a mediana é a média dos dois valores centrais.

# Mediana (pelo método de Tukey)

► Passo 1: ordenar.

$$y_{(1)} \leq y_{(2)} \leq \cdots \leq y_{(n-1)} \leq y_{(n)}$$

▶ Passo 2: obter a mediana de acordo com o número de elementos.

$$md = \begin{cases} y_{((n+1)/2)}, & \text{se } n \text{ for impar.} \\ (y_{(n/2)} + y_{(n/2+1)})/2, & \text{se } n \text{ for par.} \end{cases}$$

# Mediana (pelo método de Tukey)

#### **Exemplo**

- ▶ Uma concessionária está fazendo o levantamento anual de vendas.
- Considere que as vendas por mês do ano anterior estão dadas na tabela.
- Qual é o número mediano de vendas?

Tabela 3. Tabela de frequências das vendas mensais.

| Mês    | Jan | Fev | Mar | Abr | Mai | Jun | Jul | Ago | Set | Out | Nov | Dez |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Vendas | 93  | 113 | 112 | 104 | 84  | 104 | 107 | 105 | 96  | 92  | 93  | 97  |

# Mediana (pelo método de Tukey)

#### **Exemplo**

▶ Passo 1: ordenar os valores.

| Tabela 4. Vendas ordena | das. |
|-------------------------|------|
|-------------------------|------|

| (i)    | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  |
|--------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| Vendas | 84 | 92 | 93 | 93 | 96 | 97 | 104 | 104 | 105 | 107 | 112 | 113 |

- ▶ Passo 2: obter a mediana de acordo com o número de elementos.
  - ▶ O número de elementos é par, portanto a mediana será a média dos dois valores centrais.
  - $\blacktriangleright$  Mediana: (97 + 104)/2 = 100,5

### Moda

- Valor ou classe que apresenta maior frequência ou densidade.
- ► Valor mais **típico**, aquele que mais se repete.
- Quando todos os valores são distintos, não existe moda.
- Quando a maior frequência está associada a mais de um valor, existe mais de uma moda.

### **Exemplo**

 Considere que os valores a seguir dizem respeito ao número de filhos por pessoa em um grupo.

- ▶ Qual é a moda?
  - O valor mais frequente é 1, que aparece 6 vezes.

### Média, mediana e moda

- ► Na prática, estas medidas possuem vantagens e desvantagens.
- Caso haja valores discrepantes a média é uma medida altamente influenciada, o que não acontece com a moda e a mediana.
- Já a mediana é difícil de ser obtida quando existem muitos dados, dado que o processo de ordenação é custoso.
- ▶ A dificuldade com a **moda** surge quando trabalha-se com **distribuições multimodais**, isto é diversos valores tem a mesma frequência de ocorrência.

### Média, mediana e moda

- ► A **média** tende a ser uma boa alternativa quando a distribuição é **unimodal, simétrica** e sem valores extremos.
- ► A mediana tende a ser uma boa alternativa para distribuições assimétricas ou com presença de valores extremos.
- ► A moda tende a ser uma boa alternativa quando valores se repetem, estão agrupados em classes ou trata-se de uma variável qualitativa.
- Média, moda e mediana aproximam-se em distribuições unimodais simétricas.

### Média, mediana, moda e assimetria

- ▶ Vimos anteriormente como avaliar assimetria por meio de recursos gráficos.
- Podemos utilizar as medidas de posição central
  - ► Assimetria à direita: moda < mediana < média.
  - ► **Assimetria à esquerda**: média < mediana < moda.
  - ► Simetria: média = mediana = moda.



Figura 4. Relação medidas descritivas e assimetria



# Medidas de posição relativa

- As medidas de posição relativa ou separatrizes buscam representar pontos do domínio em que a variável apresenta porções com frequências conhecidas.
- Visam encontrar valores que representam alguma parcela dos dados.

- Algumas possiblidades são
  - Quartis.
  - Decis.
  - Percentis.
  - Máximo.
  - Mínimo.

### Quartis

- Dividem a amostra em 4 partes de mesmo tamanho.
- ▶ A ideia para obtenção é similar à da **mediana**.
- Na verdade, a mediana é um dos quartis: o segundo.
- O primeiro e terceiro quartil são as **medianas** das duas partes divididas pela mediana (método de Tukey).

### Quartis

- ▶ O **primeiro quartil**  $(Q_1)$  é o valor que marca 1/4 das observações, isto é, 25%.
- ▶ O **segundo quartil** ( $Q_2$ ) é o valor que marca 2/4 = 1/2 das observações, isto é, 50% (a mediana).
- ▶ O **terceiro quartil**  $(Q_3)$  é o valor que marca 3/4 das observações, isto é, 75%.
- A diferença entre primeiro e terceiro quartil é chamada de **amplitude interquartílica**  $(A/Q = Q_3 Q_1)$ .
- ► Estas quantidades são usadas para criação de um poderoso gráfico: o **box-plot**.

### Quartis

#### **Exemplo**

Considere os seguintes valores:

- ▶ Obtenha os quartis e a amplitude interquartílica.
- Passo 1: ordenar.

Tabela 5. Valores ordenados.

| Posição | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| Valor   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |

### **Ouartis**

#### **Exemplo**

- Passo 2: obter o segundo quartil (mediana).
  - Número de elementos: 15.
  - Posição do segundo quartil: 8.
  - ▶ Valor do segundo quartil: 6.
- ► Passo 3: obter a mediana dos valores da primeira parcela.
  - Número de elementos: 8 (da posição 1 até 8).
  - Posição da mediana da primeira parcela: 4,5.
  - ▶ Valor do segundo quartil: (4 + 4)/2 = 4.

- Passo 4: obter a mediana dos valores da segunda parcela.
  - Número de elementos: 8 (da posição 8 até 15).
  - Posição da mediana da segunda parcela: 4,5.
  - ► Valor do segundo quartil: (11 + 11)/2 = 11.
- $O_1 = 4$ ,  $O_2 = 6$ ,  $O_3 = 11$
- Amplitude interquartílica.

$$AIQ = Q_3 - Q_1 = 11 - 4 = 7$$

- ➤ O box-plot faz uso dos quartis para obtenção de um gráfico.
- ► Com ele é possível analisar a distribuição dos dados: **posição**, **variabilidade**, **assimetria**, **valores atípicos** (outliers).



Figura 5. Ilustração box-plot completo.

- ▶ O Box-plot é construído a partir de 5 pontos que resumem a distribuição dos dados observados: o limite inferior, o 1º quartil, a mediana, o 3º quartil e o limite superior.
- ► Os **limites inferior** e **superior** são utilizados para detectar observações que estão longe da massa central localizada entre o primeiro e o terceiro quartis.
- ► Entre o primeiro e terceiro quartil está a **mediana**. Não necessariamente a mediana estará no centro da caixa.



Figura 6. Ilustração box-plot completo.

► A construção de um box-plot inicia-se com um retângulo em que a aresta inferior coincide com o **primeiro quartil** e a superior com o **terceiro quartil**.



Figura 7. Arestas de um box-plot.

- ▶ A **mediana** é representada por um traço entre as duas arestas.
- ▶ De  $Q_1$  até  $Q_3$  estão 50% das observações centrais, o que dá uma ideia a respeito de quão dispersos são os valores.



Figura 8. Arestas e mediana emum box-plot.

- ▶ Para obtenção da **amplitude do box-plot** além do retângulo faz-se [Q1 1,5AIQ; Q3 + 1,5AIQ].
- Desenha-se então uma linha até estes valores.
  - Se estes valores excedem o mínimo e o máximo da variável, então a linha para no mínimo e no máximo da variável.



Figura 9. Inclusão dos limites de um box-plot.

► Valores além destes extremos são marcados como um ponto ou asterisco e são os candidatos a **valores atípicos**.



Figura 10. Box-plot completo.

- ▶ Os limitantes inferior e superior de um box-plot também são conhecidos como valores adjacentes ou também como mínimo e máximo típicos.
- Existem outras formas de obtenção de um box-plot, como por exemplo o box-plot em que não são calculados o mínimo e máximo típicos.
- ▶ Podem-se usar também outros quantis e outros pontos de corte, ou seja, existem outras formas para detectar pontos distantes da massa de dados.
- A interpretação do gráfico vai depender de como ele foi construído.
- Quanto mais observações, mais confiável será o box-plot.
- ► Contudo, quanto mais observações é natural que surjam mais pontos além dos limites do gráfico.

- Os pontos fora dos limites do box-plot costumam ser chamados de valores atípicos ou outliers.
- ▶ A definição exata de outlier é bastante **subjetiva** e vai além dos box-plots.
- Qualquer valor que seja muito distante dos outros valores em um conjunto de dados pode ser considerado outlier. Podemos usar o z-escore para verificar quais são os candidatos a outliers.
- Ser um outlier não torna um valor inválido ou errado, mas é um indicativo de um comportamento atípico (que pode ser causado por um erro de medida por exemplo).

# Quartis para dados agrupados

Para calcular os quartis quando os dados estão agrupados, considere:

- ▶ n é o número total de observações;
- $Q_i(i = 1,2,3)$  é o quartil que desejamos obter;
- $\blacktriangleright$   $(i \cdot n/4)$  é a posição na qual se encontra o quartil  $Q_i$ :
- ▶ l é o limite inferior da classe que contem Q<sub>i</sub>;
- ▶ f é a frequência na classe que contem Q;
- $\blacktriangleright$  h é a amplitude na classe que contem  $Q_i$ :
- $ightharpoonup F_{ant}$  é a frequência acumulada até a classe anterior à que contem  $Q_i$ .

O quartil Qi é obtido aplicando-se a seguinte formula:

$$Q_i = l + \frac{(i \cdot n/4 - F_{ant})}{f} \cdot h$$

#### Outras medidas

- ▶ O mínimo e o máximo também são medidas de posição relativa e fornecem informação quanto ao domínio da variável.
- Quartis são a forma mais famosa de particionamento dos dados, porém qualquer outro percentual pode ser obtido.
- ▶ Se temos um conjunto de n valores, organizados de forma crescente, o P-ésimo percentil é um número tal que P% dos valores estejam à sua esquerda e (100 - P)% à sua direita
- ▶ Por exemplo, se obtivermos os valores que separam a amostra em 10 partes com frequência 1/10, temos os decis.
- ► Estas separatrizes podem ser obtidas por meio do gráfico de densidade empírica.

#### O que foi visto:

- ► Resumos numéricos.
- ► Medidas de posição central.
- ► Medidas de posição relativa.

#### **Próximos assuntos:**

Medidas de dispersão.