Are existing pre-trained LLMs really effective on African languages? SANGKAK-CHALLENGE-IA

Agenda

Introduction

Proposal

Results

Demo

Introduction

Challenge's description POS Tagging

- NLP for African languages is still a difficult task
- Masakhane NLP group finetuned LLM to achieve POS tagging for 20 African languages
- Can we do better?

MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages

Cheikh M. Bamba Dione^{1,†,*}, David Ifeoluwa Adelani^{2,†,*}, Peter Nabende^{3,†}, Jesujoba O. Alabi^{4,†}, Thapelo Sindane⁵, Happy Buzaaba^{6†}, Shamsuddeen Hassan Muhammad^{7,8†}, Chris Chinenye Emezue^{9,10†}, Perez Ogayo^{11†}, Anuoluwapo Aremu[†], Catherine Gitau[†], Derguene Mbaye^{12†}, Jonathan Mukiibi^{3†}, Blessing Sibanda[†], Bonaventure F. P. Dossou^{10,13,14†}, Andiswa Bukula¹⁵, Rooweither Mabuya¹⁵, Allahsera Auguste Tapo^{16†}, Edwin Munkoh-Buabeng^{17†}, Victoire Memdjokam Koagne[†], Fatoumata Ouoba Kabore^{18†}, Amelia Taylor¹⁹, Godson Kalipe[†], Tebogo Macucwa⁵, Vukosi Marivate^{5,13†}, Tajuddeen Gwadabe[†], Elvis Tchiaze Mboning[†], Ikechukwu Onyenwe²⁰, Gratien Atindogbe²¹, Tolulope Anu Adelani[†], Idris Akinade²², Olanrewaju Samuel[†], Marien Nahimana, Théogène Musabeyezu, Emile Niyomutabazi, Ester Chimhenga, Kudzai Gotosa, Patrick Mizha, Apelete Agbolo²³, Seydou Traore²⁴, Chinedu Uchechukwu²⁰, Aliyu Yusuf⁸, Muhammad Abdullahi⁸, Dietrich Klakow⁴

[†]Masakhane NLP, ¹Université Gaston Berger, Senegal, ²University College London, UK, ³Makerere University, Uganda, ⁴Saarland University, Germany, ⁵University of Pretoria, South Africa, ⁶ RIKEN Center for AIP, Japan, ⁷Bayero University Kano, Nigeria. ⁸University of Porto, Portugal, ⁹Technical University of Munich, Germany, ¹⁰Lanfrica, ¹¹Carnegie Mellon University, USA, ¹²Baamtu, Senegal, ¹³Lelapa AI, ¹⁴Mila Quebec AI Institute, Canada, ¹⁵SADiLaR, South Africa, ¹⁶Rochester Institute of Technology, USA, ¹⁷TU Clausthal, Germany, ¹⁸Uppsala University, Sweden ¹⁹Malawi University of Business and Applied Science, Malawi, ²⁰Nnamdi Azikiwe University, Nigeria, ²¹University of Buea, Cameroon, ²²University of Ibadan, Nigeria, ²³Ewegbe Akademi, Togo, ²⁴AMALAN, Mali.

¹⁹Malawi University of Business and Applied Science, Malawi, ²⁰Nnamdi Azikiwe University, Nigeria, ²¹University of Buea, Cameroon, ²²University of Ibadan, Nigeria, ²³Ewegbe Akademi, Togo, ²⁴AMALAN, Mali.

Proposal

Proposal

Check if 550M parameters are really needed for the task

- Why
 - LLM are very expensive (fine-tuning, inference)
 - The dataset is quite small
 - LLM are pre-trained on tasks that are much more complex than POS tagging
- How
 - Solve the problem using smaller models trained from scratch

Model's architecture

- BERT architecture
- 4 attention heads
- Dropout
 - Attention: 0.1
 - BERT Layer: 0.2
 - Classifier: 0.1
- 16 354 605 parameters

Training and evaluation scheme

Results

Metrics

Number of samples per tag for three languages

- The dataset is unbalanced
- Accuracy is not a good metric
- We report: Precision, Recall and F1-score in addition to Accuracy

Refer to Dione et al. (2023) for the description of the dataset

Masakhane reported the accuracy only

Accuracy

Mono-lingual models

bam bbj ewe fon hau ibo kin lug mos nya pcm sna twi wol xho yor zul mean std f1-score 0.86 0.68 0.83 0.82 0.82 0.82 0.75 0.83 0.75 0.8 0.76 0.8 0.76 0.8 0.76 0.8 0.8 0.6 0.77 0.08 recall 0.86 0.68 0.83 0.83 0.83 0.83 0.76 0.83 0.76 0.8 0.76 0.8 0.76																					
precision 0.86 0.69 0.83 0.83 0.83 0.81 0.84 0.75 0.83 0.63 0.8 0.76 0.8 0.76 0.85 0.63 0.83 0.67 0.78 0.08 recall 0.86 0.68 0.83 0.82 0.83 0.80 0.83 0.76 0.83 0.63 0.83 0.76 0.8 0.76 0.8 0.76 0.8 0.76 0.85 0.61 0.83 0.66 0.77 0.08		bam	bbj	ewe	fon	hau	ibo	kin	lug	mos	nya	pcm	sna	swa	twi	wol	xho	yor	zul	mean	std
recall 0.86 0.68 0.83 0.82 0.83 0.80 0.83 0.76 0.83 0.63 0.8 0.76 0.8 0.76 0.85 0.61 0.83 0.66 0.77 0.08	f1-score	0.86	0.68	0.83	0.82	0.82	0.80	0.82	0.75	0.83	0.62	8.0	0.75	8.0	0.75	0.85	0.60	0.83	0.64	0.77	0.08
	precision	0.86	0.69	0.83	0.83	0.83	0.81	0.84	0.75	0.83	0.63	8.0	0.76	8.0	0.76	0.85	0.63	0.83	0.67	0.78	0.08
accuracy 0.86 0.68 0.83 0.82 0.83 0.80 0.83 0.76 0.83 0.63 0.8 0.76 0.8 0.76 0.85 0.61 0.83 0.66 0.77 0.08	recall	0.86	0.68	0.83	0.82	0.83	0.80	0.83	0.76	0.83	0.63	8.0	0.76	8.0	0.76	0.85	0.61	0.83	0.66	0.77	0.08
	accuracy	0.86	0.68	0.83	0.82	0.83	0.80	0.83	0.76	0.83	0.63	0.8	0.76	8.0	0.76	0.85	0.61	0.83	0.66	0.77	0.08

Multi-lingual model

	bam	bbj	ewe	fon	hau	ibo	kin	lug	mos	nya	pcm	sna	swa	twi	wol	xho	yor	zul	mean	std
f1-score	0.84	0.68	0.81	0.82	0.81	0.74	0.87	0.77	0.8	0.70	0.79	0.79	0.81	0.74	0.83	0.69	0.81	0.73	0.78	0.06
precision	0.84	0.68	0.82	0.82	0.81	0.77	0.87	0.77	0.8	0.69	0.79	0.79	0.82	0.74	0.84	0.69	0.81	0.74	0.78	0.05
recall	0.84	0.67	0.81	0.82	0.81	0.74	0.87	0.77	8.0	0.70	0.79	0.80	0.82	0.74	0.84	0.69	0.81	0.74	0.78	0.06
accuracy	0.84	0.67	0.81	0.82	0.81	0.74	0.87	0.77	0.8	0.70	0.79	0.80	0.82	0.74	0.84	0.69	0.81	0.74	0.78	0.06

Comparison to Masakhane

Assuming that Masakhane followed the same training and evaluation scheme

	bam	bbj	ewe	fon	hau	ibo	kin	lug	mos	nya	pcm	sna	swa	twi	wol	xho	yor	zul	mean	std
AfroXLMR-large (550M)	0.90	0.85	0.89	0.90	0.93	0.79	0.98	0.92	0.91	0.83	0.91	0.90	0.93	0.85	0.93	0.89	0.95	0.90	0.90	0.05
Ours - monolingual (16M)	0.86	0.68	0.83	0.82	0.83	0.80	0.83	0.76	0.83	0.63	0.80	0.76	0.80	0.76	0.85	0.61	0.83	0.66	0.77	0.08
Ours - multilingual (16M)	0.84	0.67	0.81	0.82	0.81	0.74	0.87	0.77	0.80	0.70	0.79	0.80	0.82	0.74	0.84	0.69	0.81	0.74	0.78	0.06

34x less parameters

A lost of only 0.12 in accuracy

AfroXLM 550M parameters

Vs

What is good? What need improvement?

Demo