Fourier Transform(sup)

Hyunwoo Gu

Ideas of Derivation

Suppose f(x): a periodic of 2π

$$\hat{f}(n) = \int_{-\infty}^{\infty} f(y) exp(-iny)$$

Properties

Prancherel's theorem.

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 d\omega$$

Proof. Note that

=

Theorem. For $f: 2\pi$ -periodic with $f^{(r)}$ being absolutely continuous,

$$|\hat{f}(k)| = \mathcal{O}\left(\frac{1}{|k|^{r+1}}\right)$$

Proof. Note that

=

Examples

Let $f(t) := e^{-at} \mathbf{1}_{t>0}$ for a > 0. Then

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-ax} e^{-i\omega t} dt$$

since $e^{-at-i\omega t} = e^{-at} \left(\cos(-\omega t) + i\sin(-\omega t) \right)$

DFT and FFT

We have the following of DFT.

Circular shift property. For some $0 \le m \le N-1$, define the shift by m as follows:

$$y_m[n] = \begin{cases} x[n - m + N] & 0 \le n < m \\ x[n - m] & m \le n \le N - 1 \end{cases}$$

Then we have the DFT of the circular shift $y_m[n]$ of x[n] by m is given by

$$Y_m[k] = X[k]e^{-i\frac{2\pi km}{N}}$$

Theorem. Assume that $N = N_1 N_2$ and the data $x[n], n = 0, \dots, N-1$, are of N_1 -periodic. Suppose that $Y[l], l = 0, \dots, N_1 - 1$ are the DFTs of N_1 data $x[n], n = 0, \dots, N_1 - 1$. Then the DFT of x[n] is given by

$$X[k] = \begin{cases} N_2 Y[l] & k = 1N_2, l = 0, \dots, N_1 - 1 \\ 0 & o.w. \end{cases}$$

Assume that $N=N_1N_2$ and the data $x[n], n=0,1,\cdots,N-1$ are of N_1 -periodic. We then have the following decomposition of DFT $X[k], k=0,\cdots,N$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-i\frac{2\pi kn}{N}}$$

$$= \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_2N_1 + n_1]e^{-i\frac{2\pi k(n_2N_1+n)1}{N}}$$

$$=$$

where for each n_1 ,

$$\sum_{n_2=0}^{N_2-1} x[n_2N_1 + n_1]e^{-i\frac{2\pi k n_2}{N_2}}$$

is a Fourier transform of N_2 data

$$x[n_2N_1+n_1], n_2=0,\cdots,N_2-1$$

Since x[n] is N_1 -periodic, we have

$$x[n_2N_1 + n_1] = x[]$$

thus,

$$X[k] = N_2 \sum_{n_1=0}^{N_1-1} x[n_1] e^{-i\frac{2\pi k n_1}{N}}$$
$$= N_2 \sum_{n_1=0}^{N_1-1} x[n_1] e^{-i\frac{2\pi k n_1}{N_1}}$$
$$= N_2 Y[l]$$

where Y[l] is the DFT of N_1 data $x[n], n = 0, \dots, N_1 - 1$.

Note that from $\beta_j := \frac{1}{N} \sum_{k=0}^{N-1}$

$$\beta_j = \frac{1}{N} \left(f_0 + f_1 e^{-ijx_1} + \dots + f_{N-1} e^{-i(N-1)x_1} \right)$$

where

Start with m=1. Let $M:=2^{m-1}$, $R:=2^{n-1}$, for $m=1,2,\cdots$. From $2R(m)=2^n$ phase polynomial $P_r^{(0)}(x)$, which are constant functions for $m=1,r=0,1,\cdots,2R-1$, find R(m) phase polynomials $P_r^{(1)},r=0,1,2,\cdots,R-1$ by

$$P_r^{(1)} = \beta_{r,0}^{(1)} + \beta_{r,1}^{(1)} e^{ix}$$

using the fact that

$$P_r^{(1)}$$

From the $2R(m)=2^{n-1}$ phase polynomials $P_r^{(1)}(x)$ for $r=0,1,2,\cdots,2R-1,$ find $R(m)=2^{n-1}$ phase

As the following algorithm:

Examples

The Fourier series of $f(x) := \sin^5(x)$ is as follows: