Lemadel Bombeo para LIC

Herramienta para demostrar que ciertos languajes no sau LLC.

Sea L un LLC, entonces existe una constante n tal que 5: 3 es cual quier cadena de L de longitud mayor o ignal an (131 = n) podemos escribir 3 = uvwxy con las signientes condiciones:

- 1) | vwx | & w

 - 2) vx x x E 3) Y i ≥0 uviw x jy esta en L

No se sabe donde cae x y w por tanto se debe demostrar que + m y x. los wy x'deben estar en L o no estar en L. Incluyendo IvI ó | x = & v = & y x = &

Si una cadena de L es suficientemente larga, sienjone, pueden ser bombeadas el mismo mínuro de veces.

5 => UAy => UWAxy => UWWXy => 3 A > w A × y A => w tenences que A => vAx => v2Ax2 => viAxi=> viwxi y S=>unviwxy. para 1 ≥ 0

D- UAY A -> vAy W

- · Es importante seleccioner un 3 adequado. Se puede esco. ger un z que no funcione al aplicar el lemou.
- · Es importante cerciorarse de que los casos cubren todas las posibilidades y que en realidad se estenza una contradicción en cada caso.
- 3 L = { ww | wew (a+b)*} Asumo Leono LLC y aplico el lema del bombo. Escogenos 3 = anbranto, lux/>0 luwx/ in
- 4) L={aibick|i<j<k} {L={aibick|i<j} sies LLC Linez
 Lz={aibick|j<k} sies LLC noes Luc (5) L = { an b²nan | n≥0} { L1={ab, n≥0} = es lec L1.L2 L2={ ba, n≥0} = es lec = LLC
- 6 L = { xcx / x ew (a+b)*}
- (7) L={a'b'c* | K=min(i,j)}
- @ L = { a' b' c k | k = i + j}
- 9 L={a"b" | n>0}
- 10 L = { a b + k a k | k + i }

Con el lena del bombeo resultan muelos casos generalmente y es "dificil" ubicar las subcadenar a bombear au 3. Existe una variante del lema del Bombeo denoncionado el Lomas de Ogden que permites distinguir las posiciones y reducir el numero de casos.

Jena de Ogden:

Sea L un LLC entonces hay una constante n, tal que si 3 en L, 13/2 n y marcan n o mas posiciones como "distinguibles" podemos escribir 3 = uwwxy tal que:

- 1) wy x tienew at menos una posicioni distinguible.
- 2) vwx tiene a lo sumo zu posiciones distinguibles
- 3) un'wxiy. ew L +i20.

Nota: No hay restricción de la lorgitud de la cadena ux, sino que deben tener al menos un símbolo distinguible.

Ejemplo:

0 L = {a b c k d l | i = 0 6 j = K = l} Asumo que L es LLC y aplico L. Ofden

Para i=0 3= b"c"d" y ya demostrancos por el lema del bombeo que no es LLC.

Para i to Sea 3 = a b c d y b distinguibles

at bronda 0 ~ × UX

w × v ×

Entodos los casos 1 2 1349 al bombear el 3 sale del conjunto L por tanto es una contradicción y No es un LLC.

- 2 L= {a'b'ck | i #j., j # K, i # K} 3 = an bn+n! cn + 2n! a distinguibles
- 3 L= {a' b' c' | i, j = 0 x j = i} 3 = a" b" c"+n! a distinguibles

Asumo a L como LLC, aplico Ima de Ogden

3 = an bnch+n!
Cases posibles

an bnch+n!

1 vx en a+ 2 v x

@ v en at y x en b* & v x

3 ven at y x en c*

3 = Uniwxiy, i≥0, hay que consequir on valor de je

para sacar a 3 del lenguaje L.

i = |n|, 1≤i ≤ n (ya que noux tiene a lo somo n posiciones
clistingue bles)

i divide a n!

Sea q tal que iq = n!

Consideranos unq+1 wxq+1 y

Al bombear un(que); wxq+1 y => Unique wxq+1 y

El #a es (q+1)i + (n-i) => qi+i+n-i=qi+n

n! +n → #a = #c.

1 P= 12x1

2 P= 12-1

Para demostrar que un lenguaje no es LLC, se supone que L es LLC y se aplicam propiedades cerradas en los LLC, si se llega a algo que no es un LLC entences no se puede haber partido de un LLC.

teoremo: Los LLC son corrodos bajo la unión, concatenación, clausura de Kleene, sustitución, homomorfismo inverso teorema: Los LLC no son cerrados bajo intersección y complemento. teorema: Si Les vu LLC y Res un conjunto

regular, entrices LAR es un LLC.

Algoritmos de Decisión de Los LLC

Los Problemas son decidibles si tienen algoritmos.

En los lenguajes Regulares se podía decidir "todo". En los LLC solo se puede decidir:

1) Si el lenguaje es vacio 2) Si L es finito o infinito 3) Si una cadema w esta en L

1) Si d'Enquaje es vecio G=(V,T,P,S) L=L(G)

Dada una GLC se aplica el algoritmo para determinar las variables generadoras o derivadoras de cadenas w ew T* (para eliminar simbolos invitiles). Cuando termina el algoritmo se obtiene un conjunto V'y P' con las variables generadores y las producciones sinsimbelos inútiles. Si Sestá en el conjunto final de variables y', entonces L es no vacio.

2 si Les finito o infinito.

Dada una GLC G = (V, T, P, S) tal que L = L(G).

- · Convertinces Gala FNC (sin E-producciones, producciones unitarias, ni sínubolos inútiles, con produc. ciones de la forma A→BCyA→a).
- · Si construye un grafo con un vértice o nodo por cada variable en V. Se agnega un arco entre A y B ≤i A → BC O A-OCB esta en P. Nota: Es un digrafo (grafo dirigido)
- · Si el grafo contiene ciclos L es infinito

Sino Les finito.

también prede harerse a partir del AP a través de su diagrama de estados?? B Agregando C → AB

Ejemplo:

(A) S -> AB A -> BC/a B -> CC/6 Ca

(S) Hay un ciclo A → B → C es infinito

3 Pertenencia Dada G=(V,T,P,S) y went +, iw en L(G)?

Obtenencos Gew FNG. S: W es de tancaño n (w)=n, se necesitar n derivaciones para generar w (si westa en L(G)).

Si hay a lo sumo k producciones por variable entonces tenemos como máximo KIWI posibilidades de derivar w. Es muy costoso computacionalmente.

w = a 1 a 2 a 3 - - - an KKK K= KIWI

Existe un algoritmo menos costoso, basado en la idea de "programación dinámica" que se conoce tandrien como algoritmo de vellero de tablas" o "tabulación". El algoritmo se conoce por las 3 personas que la des cubrieron de marcra independiente (Cocke, Younger, Kasami) y tiene sus iniciales CYK (O(n3))

Algoritmo CYK · Dada G = (V, +, P, S) una GLC y wew T*

. Obtenencos a G en FNC.

. Se construye una tabla, con el eje honizantal = positiones de la cadena w = ai az ... an

N
$$X_{2N}$$
 X_{2N} X_{3N} X_{1n} X_{2n} X_{2n}

A => ai ai +1 ··· ai C⇒akiakiz···ai } Kcj

BASE
$$i=j$$
 $(A \rightarrow a)$
 $Xii = \{A \mid A \rightarrow ai\}$

· Para A este Xij debennos encartrear By C y K tal que:

1) 15445

2) Besta en Xik

3) C esta en XXXI

4) A -> BC estar and P.

. Si S pertenece al conjunto Xin entonces S => w, es [2] decir westa ew L.

Nota:

Para rellenar la tabla, trabajamos fila x fila hacia avriba (comenzamos X el caso base y luego aplicamos el paso inductivo). En otras palabras la fila 1 es para cadenas de longitud I, la fila z para cadenas de longi. tud 2, asi sucesivamente hasta llegar a la fila n que corresponde a la cadena w (IWI=n).

teorema: El algoritmo CYK calcula correctamente Xij para todo i, j, por lo tanto, w está en L(6) si y solo si Sesta en XIn. El tiempo de ejecución del algorithmo es $O(n^3)$.

$$E(\text{emplo} G = (V, T, P, S) V = \{A, B, C, S\} T = \{0, 1\}$$

$$E(\text{emplo} G = (V, T, P, S) V = \{A, B, C, S\} T = \{0, 1\}$$

$$P = \begin{cases} S \rightarrow AB \mid BC & \text{Composition for lapper fenencial de} \\ A \rightarrow BA \mid 0 & \text{la cadena} W = 10010 \end{cases}$$

$$P = \begin{cases} A \rightarrow BA \mid 0 & \text{la cadena} W = 10010 \\ P \rightarrow CC \mid 1 & \text{la cadena} W = 10010 \end{cases}$$

$$P = \begin{cases} A \rightarrow BA \mid 0 & \text{la cadena} W = 10010 \\ P \rightarrow CC \mid 1 & \text{la cadena} W = 10010 \end{cases}$$

$$P = \begin{cases} A \rightarrow BA \mid 0 & \text{la cadena} W = 10010 \\ P \rightarrow CC \mid 1 & \text{la cadena} W = 10010 \end{cases}$$

$$P = \begin{cases} A \rightarrow BA \mid 0 & \text{la cadena} W = 10010 \\ P \rightarrow CC \mid 1 & \text{la cadena} W = 10010 \end{cases}$$

$$P = \begin{cases} A \rightarrow BA \mid 0 & \text{la cadena} W = 10010 \\ P \rightarrow CC \mid 1 & \text{la cadena} W = 10010 \end{cases}$$

$$P = \begin{cases} A \rightarrow BC \mid 0 & \text{la cadena} W = 10010 \\ P \rightarrow CC \mid 1 & \text{la cadena} W = 100$$

X45 = 10 (BA, BC)={A,S}

fila 3 = Xij caso inductivo (103 = 100 → {X11, X23} U {X12, X22} = 1B}, {B} U {A,S}, {A,C} = ₫ X24=001-0{X22.X24} U {X23 X44} = {A,C] {5,C} U {B}.{B}= {B} X35 = 010 - { X33. X45} U { X34. X55} = {A,C}. {A,S} U { S,C}. {A,C} = { B}

1 < K < j 55 KC4 XiK, XK+1

16K6

= 1 BJ. (B) U (A,S]. (S,C) U D. (B) = 0 X25 = 0010 {X22. X35} U {X23. X45} U { X24. X55} = {A, C} {B} v {B} {A, s} v {B} {A, c} = {s, c, A}

file 5 = Xij caso inductivo

K=2

K=1

X15 = 10010 = {X11. X25} U {X12. X35} U {X13. X45} U {X14. X55} = 183, 15, c, A) U {A,S}. {B} U \$. {A,S} U \$. {A,C} = {S,A,C}

Como X15 contiene a S entonces westa en L(G).

Problemas indecidibles sobre LLC Los Problemas sobre los LLC que no tienen ninguin algoritmio son problemas "indecidibles". Algunos de ellos Son, dada una G=(V,T,P,S) G&C:, donde L es LLC y' L = L(G):

- a ¿G es ambiguar?
- 6 ¿L es inherentemente ambiguo?
- Cò da intersección de 2 LIC es vacio?
- d à Dos LLC sau : quales ?
- @ & Dos GLC son equivalentes?
- (d Es un LLC i qual a Zi* ?