引文格式: 白穆 涨勤 吴晓春. 资源三号影像质量及测图应用评价[J].测绘通报 2014(12):82-85.DOI:10.13474/j.cnki.11-2246.2014.0404

资源三号影像质量及测图应用评价

白 穆 张 勤 吴晓春

(国家测绘地理信息局 陕西基础地理信息中心,陕西 西安 710054)

ZY-3 Image Quality and Mapping Application Evaluation

BAI Mu, ZHANG Qin, WU Xiaochun

摘要: 从影像辐射质量和影像实际应用两个方面 对资源三号卫星影像数据的质量进行了评价与分析。影像辐射质量评价从辐射 精度、信息量、清晰度、信噪比和纹理特征等方面进行,通过对比相近时相的 ALOS 卫星数据,结果显示资源三号卫星数据优于 ALOS 卫星数据; 影像实际应用评价则通过秦岭地区 1:25 000 和 1:50 000 测图成果精度分析来进行,结果显示 DEM 高程精度、 DOM 平面精度和 DLG 采集精度均符合现行成果标准要求,可以满足国家基础比例尺测图要求。

关键词:资源三号; ALOS; 图像; 质量评价; 纹理特征 中图分类号: P237 文献标识码: B

文章编号: 0494-0911(2014) 12-0082-04

一、引言

2012年1月9日 我国首颗民用测绘卫星资源 三号发射升空。该卫星搭载了4台高分辨率光学相 机(正视、前视、后视和正视多光谱),不仅可用于常 规的资源调查、农情监测、防灾减灾、城市规划、海域 环境监测和重大工程监测等领域 其具备的三线阵 立体成像功能还可生成立体影像产品,填补了我国 在立体测图卫星应用领域的空白,在服务国民经济 建设和国防建设方面具有重要意义。

遥感影像质量及应用评价是遥感影像数据使用 的一项基础性工作,它是连接卫星传感器研制与遥 感数据应用的重要纽带[1]。张霞等[2]在对中巴地 球资源一号卫星红外多光谱扫描仪(IRMSS) 4 个波 段零级图像进行预处理的基础上,从图像信噪比、地 面分解力、清晰度、辐射精度、反差等 5 个指标对图 像进行了全面的质量评价; 杨忠东等[3] 对中巴地球 资源一号卫星的 CCD 数据的图像质量开展评价,并 结合 ETM + (enhanced thematic mapper plus) 数据开 展交叉定标研究; 孙中平等[4] 从图像工程质量评价 和影像应用质量评价两个方面,对环境一号卫星 CCD 影像与同时相 Landsat TM 影像进行对比评价; Engel-Cox 等[5] 对 MODIS 在区域尺度空气质量评估 中的应用做了充分说明。总体而言,一方面从传感 器光谱响应能力和辐射量角度对在轨卫星的影像辐 射质量进行评测; 另一方面是从影像数据的实际应 用角度对影像数据进行分析。

因此 本文分别从上述两个角度对资源三号卫

星影像进行质量评价、利用辐射精度、信息量、清晰 度、信噪比、纹理特征分析卫星的影像辐射质量。影 像实际应用评价则通过将该卫星影像应用于测图工 作而进行,即从 DEM 高程精度、DOM 位置精度和 DLG 采集精度等方面进行分析。

二、研究区和数据源说明

本文研究区位于陕西省秦岭山地区中部,地形 类别为高山地 如图 1 所示。研究区内地物类型无 显著变化。

图 1 研究区影像分布图

资源三号卫星轨道为太阳同步圆轨道 轨道高 度 505.984 km ,回归周期为 59 d ,卫星具有侧摆功 能 重访周期可为 5 d [6]。该卫星的前视相机和后视 相机的波长范围为 0.5~0.8 µm ,空间分辨率 3.5 m , 幅宽 52 km; 正视相机的波长范围为 0.5~0.8 µm ,空

收稿日期: 2013-11-07

级调日奶,2013年199, 基金编号: 国家科技支撑计划(2011BAB01B06-03) 作者简介: 白 穆(1982—) ,男 ,河北无极人 ,博士 ,工程师 ,主要从事地理国情监测项目实施和研究工作。

间分辨率 2.1 m ,幅宽 51 km; 正视多光谱相机的波长范围为蓝色($0.45\sim0.52~\mu m$)、绿色($0.52\sim0.59~\mu m$)、红色($0.63\sim0.69~\mu m$) 和近红外($0.77\sim0.89~\mu m$) ,空间分辨率 6 m 幅宽 $51~km^{[7]}$ 。

资源三号卫星数据由测绘卫星应用中心提供,产品级别为 SC ,包括正视影像、前视影像、后视影像和正视多光谱影像 ,如表 1 所示。正视影像和多光谱影像主要用于影像质量评价和 DOM 以及 DLG 生产评价 ,前视和后视影像主要用于 DEM 生产评价。其他辅助资料包括 ALOS ,全野外实测 GPS 控制点。

表 1 影像数据信息表

	37 13.7		
卫星景号	传感器	时相	用途
ZY03-12120630216	正视	2012-12-03	
ZY03-12120630295	多光谱	2012-12-03	图像辐射
ALPSMW208312935	正视	2009-12-22	质量评价
ALAV2A257762930	多光谱	2010-11-26	
ZY03-1206280005	前视		
ZY03-1206110595	正视		
ZY03-1206280003	后视		
ZY03-1206110676	多光谱	2012-05-30	高山区测图
ZY03-1206280006	前视	2012-03-30	应用评价
ZY03-1206280007	正视		
ZY03-1206280004	后视		
ZY03-1206110677	多光谱		

三、卫星影像辐射质量评价

本文选择 ALOS 卫星与资源三号卫星同一地区影像数据,用于卫星影像辐射质量评价对比。ALOS 卫星是由日本国家空间发展局于 2006 年发射升空的 其在测图、区域性观测、灾害监测、资源调查、技术发展等领域有较广泛的应用。

1. 辐射质量评价指标

- 1) 辐射精度包括均值、方差、偏斜度、陡度、边缘辐射畸变和增益调整畸变 6 项参数 ,是表达单幅图像辐射状态的信息。辐射精度的具体计算公式可见文献 [1] 和文献 [8]。
- 2) 信息量是反映图像包含地物信息详细程度的指标,一般用熵来表示^[9]。信息熵与遥感影像的灰度变化程度直接相关 是影像无序程度的度量 能很好地反映遥感影像所表达的信息范围与不确定性 通常采用 shannon 信息熵表示。shannon 信息熵的具体计算公式可见文献 [1]和文献 [8]。
- 3) 清晰度反映了图像细节边缘变化的敏锐程度,可度量图像对微小细节的方差表达能力。本文采用由边缘锐度方法改进得到的点锐度算法计算清晰度指标。清晰度的具体计算公式可见文献[1]和文献[8]。
- 4) 信噪比表达影像受干扰的程度。本文假设图像噪声为高斯噪声分布,采用方差法估算进行计算。 信噪比的具体计算公式可见文献[1]和文献[8]。
- 5) 纹理特征分析是对图像解译的重要信息——纹理特征进行衡量的重要环节。影像纹理特征一般采用灰度共生矩阵方式进行。灰度共生矩阵含有影像灰度中关于方向、相邻间隔、变化幅度的综合信息,能很好地反映影像纹理细节、边缘突变的情况,可以用来检测影像的条带噪声和掉线情况^[4]。本研究选择同质性、对比度和角二阶矩 3 种纹理特征参数,具体的计算公式见文献 [10]。

2. 评价结果分析

资源三号的辐射质量评价分析研究是根据上述评价指标进行,通过资源三号和 ALOS 卫星数据计算结果对比分析,评价资源三号数据的辐射质量,见表2和表3。

表 2 资源三号和 ALOS 卫星辐射精度评价结果表

辐射质量评价指标		均值 方差	冷公束	7+ c=	边缘辐射畸变		增益调整畸变		
			力左	偏斜度	陡度	均值	方差	均值	方差
资源三号	全色	225.48	12 371.60	1.19E-05	6.24E-05	225.48	1 417.54	225.48	87.74
	蓝色波段	208.30	398.75	1.41E-04	4.13E-05	208.30	11.20	208.30	42.12
	绿色波段	207.53	1 466.01	1.59E-05	2.05E-06	207.53	40.97	207.53	118.52
	红色波段	180.67	1 913.36	8.82E-06	9.95E-07	180.67	50.11	180.67	65.68
	近红外波段	363.25	16 596.21	5.14E-08	7.00E-09	363.25	496.44	363.25	198.89
	全色	44.79	116.11	2.85E-04	2.45E-04	44.79	15.02	44.79	2.64
ALOS	蓝色波段	69.36	35.81	3.01E-03	3.41E-03	69.36	1.56	69.36	7.27
	绿色波段	48.84	101.05	6.50E-04	3.65E-04	48.84	3.10	48.84	9.22
	红色波段	41.91	178.86	3.07E-04	1.15E-04	41.91	4.96	41.91	9.16
	近红外波段	30.53	189.92	-3.21E-06	4.98E-05	30.53	5.61	30.53	2.02

表 3 资源三号和 ALOS 信息量、清晰度、信噪比和纹理特征评价结果表

辐射质量评价指标		信息量	` + W.#	信噪比	纹理特征(均值)		
			清晰度		同质性	对比度	角二阶矩
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	全色	8.58	230.57	2.04	0.09	1 456.40	0.13
	蓝色波段	6.20	246.38	10.43	0.31	43.19	0.14
资源	绿色波段	7.09	258.33	5.43	0.22	141.40	0.13
三号	红色波段	7.30	244.03	4.13	0.20	195.74	0.12
	近红外波段	8.76	517.47	2.82	0.08	1 353.62	0.11
	全色	5.38	44.64	4.17	0.45	6.94	0.17
	蓝色波段	4.58	80.18	11.59	0.50	4.84	0.18
ALOS	绿色波段	5.29	66.91	4.86	0.40	15.71	0.16
	红色波段	5.64	66.67	3.13	0.34	30.08	0.15
	近红外波段	5.56	54.32	2.22	0.33	27.46	0.16

(1) 辐射精度对比分析

从表 2 可以看出 在均值和方差方面 资源三号卫星的全色波段、蓝色波段、绿色波段、红色波段和近红外波段均高于 ALOS 卫星 ,这是由于资源三号采用无符号整型(0~65 535) 存储数据 ,而 ALOS 卫星采用的是字节型(0~255)。这就说明资源三号卫星所接收的光能更多 ,更有利于看清楚图像中的目标地物 ,而且图像灰度层次较 ALOS 丰富。影像的偏斜度和陡度方面 ,资源三号卫星的值均比 ALOS卫星的值偏小 ,而且相差至少一个数量级 ,反映在直方图分布上较为均匀。综合对比边缘辐射畸变和增益调整畸变 ,资源三号卫星数据也均优于 ALOS 卫星数据。

(2) 信息量对比分析

图像信息量对比如表 3 所示。资源三号卫星的全色波段、蓝色波段、绿色波段、红色波段和近红外波段所包含信息量分别是 ALOS 卫星相应波段所含信息量的 159.48%、135.37%、134.03%、129.43%和157.55%。因此,利用资源三号卫星数据生产传统真彩色模式的 DOM 将获得比 ALOS 卫星的 DOM 结果更多的信息量,如果采用标准假彩色合成方案,资源三号影像数据的信息量将更为丰富。

(3) 清晰度对比分析

在清晰度方面,资源三号卫星数据各波段均高于 ALOS 卫星数据 3~10 倍。图像清晰度影响着人眼的主观感觉,资源三号卫星数据在高反差地物的细节、轮廓等可辨识能力方面明显超过了 ALOS 卫星数据。采用字段长度更长的数据类型存储数据是资源三号卫星数据优于 ALOS 卫星数据的主要原因。

(4) 信噪比对比分析

资源三号卫星的全色数据与 ALOS 全色数据信

噪比间存在着一定的差距。然而资源三号响应蓝色 波段、绿色波段、红色波段和近红外波段的多光谱传 感器与 ALOS 卫星多光谱传感器在信噪比方面并无 明显差距 质量相当。

(5) 纹理特征对比分析

纹理特征是遥感影像目视解译和机助解译的重要信息。从表 3 的计算结果上看 ,资源三号卫星数据的同质性低于 ALOS 卫星数据 ,反映了相邻像素灰度值差异相同的灰度在数量方面 ,资源三号卫星少于 ALOS 卫星。资源三号卫星的不同区域间变化较大 ,纹理特征更为复杂。

在对比度结果上,资源三号卫星数据高于ALOS 卫星数据。由于对比度越大说明图像纹理的纹沟越深,图像越清晰,图像效果越好^[11]。因此,资源三号卫星数据在对比度方面也优于 ALOS 卫星。

角二阶矩是图像分布均匀性的度量 ,角二阶矩值越大 ,纹理就越粗糙。从角二阶矩的计算结果上看 ,资源三号卫星数据的纹理表征比 ALOS 卫星更加精细。

四、高山地测图应用评价

满足测图工作需要是测绘卫星数据应用的首要目的。为了便于评价资源三号卫星在测图方面的效果 按照 1:25 000 和 1:50 000 两个成图规格 ,遵循现行的基础地理信息数字成果相关技术标准 ,在秦岭地区内分别生产 DEM、DOM、DLG 3 种测图成果 利用外业采集的 GPS 点评价分析资源三号卫星在测图工作方面的应用潜力。

从表 4 中可以看出,资源三号卫星数据在1:25 000和1:50 000 成图规格获得的 DEM、DOM和 DLG 产品的精度结果均在误差范围内。在 DEM高程精度方面 检测结果显示利用资源三号卫星的

1:25 000 DEM 产品的中误差和最大误差低于成果 技术指标 2 倍以上; 在 DOM 平面精度方面,资源三 号卫星的 1:25 000 DOM 产品的中误差和最大误差 分别是成果技术指标的 33.26%和 25.45%; 在 DLG 采集精度方面,资源三号卫星数据的1:25000 DLG 产品平面精度中误差和最大误差均远低于成果技术 指标 而高程精度中误差和最大误差也只达到成果 技术指标的一半。由于1:50 000 测图产品采用相 同的影像数据和作业工艺 因此不再作进一步分析。 综上,资源三号卫星数据能满足1:25 000 和 1:50 000测图生产的需要 ,其成果技术指标和精度 符合规范要求。

		
= 1	高山区测图成果精度对照表	
<i>7</i> ▽ 4	同川人测览加未相反为毁衣	

表 4	高山区测图成果精度对照表				
成图规格(国	家基本比例尺)	1:25 000	1:50 000		
	允许中误差	9.5	19.0		
DEM	检测中误差	3.32	5.19		
高程精度	允许最大误差	19.0	38.0		
	检测最大误差	7.35	11.07		
	允许中误差	19.0	37.5		
DOM	检测中误差	6.32	5.27		
平面精度	允许最大误差	38.0	75.0		
	检测最大误差	9.67	8.95		
DLG 采集精度	允许中误差	19.0/7.0	37.5/14.0		
(平面精度/	检测中误差	6.32/3.32	5.27/5.19		
, , , , , , , , , , , , , , , , , , , ,	允许最大误差	38.0/14.0	75.0/28.0		
高程精度)	检测最大误差	9.67/7.35	8.95/10.85		

五、结束语

本研究以秦岭地区为试验区,分别从影像辐射 质量和影像实际应用质量两个角度对资源三号卫星 数据进行了评价和分析,在影像辐射质量评价时采 用 ALOS 卫星数据进行对比分析 ,主要结论如下:

- 1) 在影像辐射质量方面 资源三号卫星数据总 体优于 ALOS 卫星数据。资源三号卫星在辐射精度 和清晰度方面远超 ALOS 卫星; 信息量和纹理特征 比 ALOS 卫星具有较大优势; 信噪比与 ALOS 卫星 数据相当。
- 2) 在影像实际应用质量方面 资源三号卫星可 以满足多种国家基本比例尺测图要求。基于资源三 号卫星数据进行了秦岭地区 1:25 000 和 1:50 000 DEM 生产的高程精度最大误差分别为 7.35 m 和 11.07 m; 1:25 000 和 1:50 000 DOM 生产的平面

精度最大误差分别为 9.67 m 和 8.95 m; 1:25 000 DLG 生产的采集精度的平面和高程中误差分别为 6.32 m 和 3.32 m ,而 1:50 000 DLG 生产的采集精 度的平面和高程中误差分别为 5.27 m 和 5.19 m。

综上所述 我国首颗测绘卫星资源三号卫星的 影像质量相比 ALOS 卫星具有较大优势 ,拥有很好 的应用前景 不仅可以满足常规测绘生产的数据需 求 而且在国土资源调查、能源、环保、城市规划、应 急减灾方面均可以发挥重大作用。

参考文献:

- [1] 刘睿 孙九林 ,王卷乐 ,等:环境与灾害监测预报小卫 星 CCD 数据质量评价 [J]. 地球科学进展, 2011, 26(9):971-979.
- [2] 张霞 张兵 赵永超 等.中巴地球资源一号卫星多光 谱扫描图象质量评价[J].中国图象图形学报,2002, 7(6):581–586.
- [3] 杨忠东,谷松岩,邱红,等.中巴地球资源一号卫星 CCD 图像质量评价和交叉定标研究 [J]. 遥感学报, 2004 &(2):113-120.
- [4] 孙中平 熊文成 魏斌 海.环境一号卫星 CCD 影像质 量评价研究[J].红外 2010 31(9):30-36.
- [5] ENGEL-COX J A , HOLLOMAN C H , COUTANT B W , et al. Qualitative and Quantitative Evaluation of MODIS Satellite Sensor Data for Regional and Urban Scale Air Quality [J]. Atmospheric Environment , 2004 , 38(16): 2495-2509.
- [6] 国家测绘局卫星测绘应用中心.卫星载荷[EB/OL]. (2009–12–17) . http://sasmac.sbsm.gov.cn/article// wxzh/200912/20091200059258.shtm.
- [7] 中国资源卫星应用中心.资源三号卫星介绍[EB/ OL]. (2012-07-25). http://www.cresda.com/n16/ n1130/n175290/175676.html.
- [8] 周雨霁,田庆久. EO-1 Hyperion 高光谱数据的质量 评价[J].地球信息科学 2008 ,10(5):678-683.
- [9] 王钦军,田庆久.IRS-P6 卫星 LISS3 图像数据质量评 价[J].地理与地理信息科学 2007 23(3):11-14.
- [10] SU Wei LI Jing CHEN Yunhao et al. Textural and Local Spatial Statistics for the Object-oriented Classification of Urban Areas Using High Resolution Imagery [J]. International Journal of Remote Sensing, 2008, 29(11):3105-3117.
- [11] 李石华,角媛梅.环境与灾害监测预报小卫星A星 CCD 影像质量评价[J].红外技术 2009, 31(3):167-172.