1.10 第十二周作业

习题 1.70 (第六章第 5 题)

证明: \mathbb{R}^2 上的可逆线性变换可以分解为关于坐标轴的伸缩、反射及旋转变换的复合。

证明 显然关于坐标轴的伸缩、反射及旋转变换都是可逆的,且其逆变换仍为关于坐标轴的伸缩、反射及旋转变换。且 \mathbb{R}^2 上任意线性变换都与一个二阶方阵对应。因此我们任取一个可逆线性变换 \mathscr{A} 满足 $\mathscr{A} x = Ax$,其中 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 为可逆方阵,那么我们只需要证明可以通过将 A 与关于坐标轴的伸缩、反射、旋转变换对应的矩阵相乘来得到单位阵即可,我们先通过伸缩来使矩阵两列向量长度相等:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda \\ & \mu \end{pmatrix} = \begin{pmatrix} \lambda a & \mu b \\ \lambda c & \mu d \end{pmatrix} \triangleq \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

由于 A 可逆, a,c 不同时为 0, b,d 不同时为 0, 则必存在 $\lambda,\mu>0$, 满足 $\lambda^2(a^2+c^2)=\mu^2(b^2+d^2)$, 这也就是 $a_1^2+c_1^2=b_1^2+d_1^2$, 并且由齐次性不妨设其为 1, 再通过旋转来使两列向量关于 y 轴对称:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} = \begin{pmatrix} a_1 \cos \theta - c_1 \sin \theta & b_1 \cos \theta - d_1 \sin \theta \\ a_1 \sin \theta + c_1 \cos \theta & b_1 \sin \theta + d_1 \cos \theta \end{pmatrix} \triangleq \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$$

设 $a_1 = \cos \alpha, c_1 = \sin \alpha, b_1 = \cos \beta, d_1 = \sin \beta$, 那么我们有:

$$a_2 = \cos(\theta + \alpha), b_2 = \cos(\theta + \beta), c_2 = \sin(\theta + \alpha), d_2 = \sin(\theta + \beta)$$

取 $\theta = \frac{\pi - \alpha - \beta}{2}$, 就有 $a_2 + b_2 = 0$, $c_2 = d_2$, 再通过一次伸缩使两个列向量正交且均化为单位向量:

$$\begin{pmatrix} p \\ q \end{pmatrix} \begin{pmatrix} a_2 & -a_2 \\ c_2 & c_2 \end{pmatrix} = \begin{pmatrix} pa_2 & -pa_2 \\ qc_2 & qc_2 \end{pmatrix} \triangleq \begin{pmatrix} a_3 & -a_3 \\ c_3 & c_3 \end{pmatrix}$$

那么必存在 p,q>0,满足 $q^2c_2^2-p^2a_2^2=0$,且由齐次性不妨设 $q^2c_2^2=p^2a_2^2=\frac{1}{2}$,此时矩阵两列向量互相正交,且关于 y 轴对称,均为单位向量,与坐标轴夹角都是 $\frac{\pi}{4}$,所以若两列向量是正定向,只需再做一次旋转便可得到单位阵,若为负定向,则先做一次反射再旋转,也可得到单位阵,至此我们便完成了命题的证明。

习题 1.71 (第六章第 6 题)

在三维几何空间的直角坐标系中,求关于平面x+2y+3z=0的对称变换。

解 记所求变换为 T, 所给平面为 S, 任取 $a=(x,y,z)^T\in\mathbb{R}^3$, 设其关于 S 的对称点为 $T(a)=(u,v,w)^T\triangleq b$,则 a,b 中点落在 S 上,且 a,b 之间的向量与 S 垂直,S 法向量为 $\overrightarrow{n}=(1,2,3)^T$,从而有:

$$x + u + 2(y + v) + 3(z + w) = 0, \ x - u = \frac{y - v}{2} = \frac{z - w}{3}$$

解得
$$T(x,y,z)^T = (u,v,w)^T = \left(\frac{6}{7}x - \frac{2}{7}y - \frac{3}{7}z, -\frac{2}{7}x + \frac{3}{7}y - \frac{6}{7}z, -\frac{3}{7}x - \frac{6}{7}y - \frac{2}{7}z\right)^T$$
.

习题 1.72 (第六章第 7 题)

在三维几何空间的直角坐标系中,求关于直线 z=2y=3x 的对称变换。

解 记所求变换为 T, 所给直线为 l, 任取 $a=(x,y,z)^T\in\mathbb{R}^3$, 设其关于 l 的对称点为 $T(a)=(u,v,w)^T\triangleq b$, 则 a,b 中点落在 l 上,且 a,b 之间的向量与 l 垂直,l 的方向向量为 $\overrightarrow{u}=(\frac{1}{2},\frac{1}{2},1)^T$,从而有:

$$3(x+u) = 2(y+v) = z+w, \ \frac{x-u}{3} + \frac{y-v}{2} + z-w = 0$$

解得 $T(x,y,z)^T = (u,v,w)^T = \left(-\frac{41}{49}x + \frac{12}{49}y + \frac{24}{49}z, \frac{12}{49}x - \frac{31}{49}y + \frac{36}{49}z, \frac{24}{49}x + \frac{36}{49}y + \frac{23}{49}z\right)^T$.

习题 1.73 (第六章第 8 题)

在三维几何空间的直角坐标系中, 求绕向量 $e = (1, -1, 1)^T$ 逆时针旋转 30° 角的变换。

解 记所求变换为 T, 任取 $A = (a, b, c)^T \in \mathbb{R}^3$, 设 e 所在直线为 l, 则过点 A 且与 l 垂直的平面 S 的方程为:

$$(x-a) - (y-b) + (z-c) = 0$$

设 l = S 交于点 $O' = (\lambda, -\lambda, \lambda)^T$, 代入 S 方程得到 $\lambda = \frac{a-b+c}{2}$, 所求的 T(A) 即为在平面 S 上, 将点 A 绕 O' 逆时针旋转 (从 e 的正方向看) 30° 角得到的点,记为 B,接下来我们以 O' 为原点取一组正交基,不妨取 $\overrightarrow{u_1} = \overrightarrow{O'A}, \overrightarrow{u_3} = \overrightarrow{O'O}, \overrightarrow{u_2} = \overrightarrow{u_3} \times \overrightarrow{u_1}$ (向量外积), 这样得到的 $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ 构成右手系。再对 $\overrightarrow{u_2}$ 做伸缩使其模长 与 $\overrightarrow{u_1}$ 相同,即 $\overrightarrow{u_2}' = \frac{\overrightarrow{u_2}}{|\overrightarrow{u_2}|}|\overrightarrow{u_1}|$,那么 $\overrightarrow{O'B} = \frac{\sqrt{3}}{2}\overrightarrow{u_1} \pm \frac{1}{2}\overrightarrow{u_2}'$ ($\overrightarrow{OA} \cdot e < 0$ 时为+,>0时为-),上述过程中各个向量

$$\overrightarrow{u_1} = (a - \lambda, b + \lambda, c - \lambda)^T, \overrightarrow{u_2} = \lambda(b + c, c - a, -a - b)^T, \overrightarrow{u_3} = (-\lambda, \lambda, -\lambda)^T$$

而显然 T 是一个线性变换, 那么我们只需要计算标准正交基 e_1, e_2, e_3 的像即可, 利用上述过程计算得到:

$$T(\boldsymbol{e}_1) = \left(\frac{\sqrt{3}+1}{3}, \frac{\sqrt{3}-1}{3}, \frac{1}{3}\right)^T, T(\boldsymbol{e}_2) = \left(-\frac{1}{3}, \frac{\sqrt{3}+1}{3}, \frac{\sqrt{3}-1}{3}\right)^T, T(\boldsymbol{e}_3) = \left(\frac{-\sqrt{3}+1}{3}, -\frac{1}{3}, \frac{\sqrt{3}+1}{3}\right)^T$$

据此我们便可得到所有点在该旋转变换下的像点,即 $T(x,y,z)^T = xT(e_1) + yT(e_2) + zT(e_3)$.

 $\stackrel{ extstyle imes}{ extstyle ext$ 为 u_3 轴的方向,就可以避免讨论正负。

习题 1.74 (第六章第 36 题)

求下列线性变换在所指定的基下的矩阵

- (1) $\not \in F_n[x] + \mathcal{A}(P(x)) = P'(x), \quad \not \in E_0 = 1, e_1 = x, \cdots, e_{n-1} = \frac{x^{n-1}}{(n-1)!} + \vdots$
- (2) 以四个线性无关的函数

$$\alpha_1 = e^{ax} \cos bx$$
 $\alpha_2 = e^{ax} \sin bx$ $\alpha_3 = x e^{ax} \cos bx$ $\alpha_4 = x e^{ax} \sin bx$

为基的四维空间中,线性变换为微分变换;

(3) 给定 2 阶实方阵 A, 求 2 阶实方阵构成的线性空间上的线性变换 $\mathcal{A}(x) = Ax - xA$ 在基

$$e_1=\begin{pmatrix}1&0\\0&0\end{pmatrix}, e_2=\begin{pmatrix}0&1\\0&0\end{pmatrix}, e_3=\begin{pmatrix}0&0\\1&0\end{pmatrix}, e_4=\begin{pmatrix}0&0\\0&1\end{pmatrix}$$
下的矩阵。

解 (1) 由題
$$\mathscr{A}(e_0,e_1,\cdots,e_{n-1})=(0,e_0,e_1,\cdots,e_{n-2})=(e_0,e_1,\cdots,e_{n-1})$$

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ & 0 & 1 & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}.$$

(2) 由题可知 ৶与(1) 中相同, 那么有:

$$\mathscr{A}(\alpha_1) = (e^{ax}\cos bx)' = e^{ax}(a\cos bx - b\sin bx) = a\alpha_1 - b\alpha_2,$$

$$\mathscr{A}(\alpha_2) = (e^{ax}\sin bx)' = e^{ax}(a\sin bx + b\cos bx) = b\alpha_1 + a\alpha_2,$$

$$\mathscr{A}(\alpha_3) = (xe^{ax}\cos bx)' = e^{ax}(\cos bx + ax\cos bx - bx\sin bx) = \alpha_1 + a\alpha_3 - b\alpha_4,$$

$$\mathscr{A}(\alpha_4) = (xe^{ax}\sin bx)' = e^{ax}(\sin bx + ax\sin bx - bx\cos bx) = \alpha_2 + b\alpha_3 + a\alpha_4.$$

$$\mathscr{A}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} a & b & 1 & 0 \\ -b & a & 0 & 1 \\ 0 & 0 & a & b \\ 0 & 0 & -b & a \end{pmatrix}.$$

(3) if
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $\mathbb{N} \mathscr{A} e_1 = \begin{pmatrix} 0 & -b \\ c & 0 \end{pmatrix} = -be_2 + ce_3$, $\mathscr{A} e_2 = \begin{pmatrix} -c & a - d \\ 0 & c \end{pmatrix} = -ce_1 + (a - d)e_2 + ce_4$, $\mathscr{A} e_3 = \begin{pmatrix} b & 0 \\ d - a & -b \end{pmatrix} = be_1 + (d - a)e_3 - be_4$, $\mathscr{A} e_4 = \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix} = be_2 - ce_3$, $f \not\in \mathbb{R}$:

$$\mathscr{A}(e_1, e_2, e_3, e_4) = (e_1, e_2, e_3, e_4) \begin{pmatrix} 0 & -c & b & 0 \\ -b & a - d & 0 & b \\ c & 0 & d - a & -c \\ 0 & c & -b & 0 \end{pmatrix}.$$

习题 1.75 (第六章第 37 题)

在 ℝ3 中定义线性变换

$$\mathscr{A}(x, y, z)^T = (x + 2y, x - 3z, 2y - z)^T.$$

求 \mathscr{A} 在基 $e_1 = (1,0,0)^T, e_2 = (0,1,0)^T, e_3 = (0,0,1)^T$ 下的矩阵。

解 $\mathscr{A}e_1 = (1,1,0) = e_1 + e_2$, $\mathscr{A}e_2 = (2,0,2) = 2e_1 + 2e_3$, $\mathscr{A}e_3 = (0,-3,-1) = -3e_2 - e_3$, 则有:

$$\mathscr{A}(\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3) = (\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3) \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -3 \\ 0 & 2 & -1 \end{pmatrix} \triangleq (\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3) A$$

则 A 即为 \mathscr{A} 在基 $e_1 = (1,0,0)^T, e_2 = (0,1,0)^T, e_3 = (0,0,1)^T$ 下的矩阵。

习题 1.76 (第六章第 38 题)

设 ℝ3 中的线性变换 ৶ 将

$$\alpha_1 = (0,0,1)^T$$
, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,1,1)^T$

变换到

$$\beta_1 = (2,3,5)^T$$
, $\beta_2 = (1,0,0)^T$, $\beta_3 = (0,1,-1)^T$.

求 \varnothing 在自然基和 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵。

解 容易看出 $e_1 = \alpha_3 - \alpha_2, e_2 = \alpha_2 - \alpha_1, e_3 = \alpha_3$,则 $\mathcal{A}e_1 = \beta_3 - \beta_2 = -e_1 + e_2 - e_3, \mathcal{A}e_2 = \beta_2 - \beta_1 = -e_1 - 3e_2 - 5e_3, \mathcal{A}e_3 = \beta_1 = 2e_1 + 3e_2 + 5e_3$,则有:

$$\mathscr{A}(\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3) = (\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3) \begin{pmatrix} -1 & -1 & 2 \\ 1 & -3 & 3 \\ -1 & -5 & 5 \end{pmatrix} \triangleq (\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3) A$$

则 A 即为 \mathcal{A} 在自然基 e_1, e_2, e_3 下的矩阵。

而 $\mathscr{A}\alpha_1=\beta_1=2\alpha_1+\alpha_2+2\alpha_3, \mathscr{A}\alpha_2=\beta_2=-\alpha_2+\alpha_3, \mathscr{A}\alpha_3=\beta_3=-2\alpha_1+\alpha_2$,则有:

$$\mathscr{A}(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 0 & -2 \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{pmatrix} \triangleq (\alpha_1, \alpha_2, \alpha_3) B$$

则 B 即为 \mathcal{A} 在 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵。

习题 1.77 (第六章第 41 题)

在 ℝ3 中给定两组基:

$$\alpha_1 = (1,0,1)^T, \alpha_2 = (2,1,0)^T, \alpha_3 = (1,1,1)^T; \quad \beta_1 = (2,3,1)^T, \quad \beta_2 = (7,9,5)^T, \quad \beta_3 = (3,4,3)^T.$$

定义线性变换 $\mathcal{A}(\alpha_i) = \beta_i (i = 1, 2, 3)$.

- (1) 求 \mathscr{A} 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵;
- (2) 求 \mathscr{A} 在基 $\beta_1, \beta_2, \beta_3$ 下的矩阵。

解 (1) 计算得 $\mathscr{A}\alpha_1=\beta_1=-\frac{3}{2}\alpha_1+\frac{1}{2}\alpha_2+\frac{5}{2}\alpha_3, \mathscr{A}\alpha_2=\beta_2=-3\alpha_1+\alpha_2+8\alpha_3, \mathscr{A}\alpha_3=\beta_3=-\alpha_1+4\alpha_3$,则有:

$$\mathscr{A}(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -\frac{3}{2} & -3 & -1\\ \frac{1}{2} & 1 & 0\\ \frac{5}{2} & 8 & 4 \end{pmatrix} \triangleq (\alpha_1, \alpha_2, \alpha_3) A$$

则 A 即为 \mathscr{A} 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵。

(2) 由前一问 $\mathscr{A}(\beta_1,\beta_2,\beta_3)=\mathscr{A}(\mathscr{A}(\alpha_1,\alpha_2,\alpha_3))=\mathscr{A}^2(\alpha_1,\alpha_2,\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)A^2=(\beta_1,\beta_2,\beta_3)A.$ 从而 \mathscr{A} 在基 β_1,β_2,β_3 下的矩阵也为 A.

习题 1.78 (第六章第 42 题)

设 V 为 n 维线性空间, $\mathscr{A}:V\to V$ 为线性变换. 若存在 $\alpha\in V$, 使得 $\mathscr{A}^{n-1}\alpha\neq 0$, 但是 $\mathscr{A}^n\alpha=0$, 证明: \mathscr{A} 在某组基下的矩阵为

$$\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
& \ddots & \ddots & 0 \\
& & 0 & 1 \\
& & & 0
\end{pmatrix}$$

证明 先证 $\alpha, \mathcal{A}\alpha, \dots, \mathcal{A}^{n-1}\alpha \to V$ 的一组基,只需证它们线性无关即可。设 $\lambda_1\alpha + \lambda_2 \mathcal{A}\alpha + \dots + \lambda_n \mathcal{A}^{n-1}\alpha = 0$,由题 $k \ge n$ 时, $\mathcal{A}^k\alpha = 0$,则等式两边同时作用 \mathcal{A}^{n-1} 可得 $\lambda_1 \mathcal{A}^{n-1}\alpha = 0$,由于 $\mathcal{A}^{n-1}\alpha \ne 0$,则 $\lambda_1 = 0$,同理将等式两边同时作用 \mathcal{A}^{n-m} 可得 $\lambda_m = 0, m = 1, \dots, n$,从而 $\alpha, \mathcal{A}\alpha, \dots, \mathcal{A}^{n-1}\alpha \to V$ 的一组基,于是:

$$\mathscr{A}(\mathscr{A}^{n-1}\alpha, \cdots, \mathscr{A}\alpha, \alpha) = (0, \mathscr{A}^{n-1}\alpha, \cdots, \mathscr{A}\alpha) = (\mathscr{A}^{n-1}\alpha, \cdots, \mathscr{A}\alpha, \alpha) \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ & 0 & 1 & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}$$

故题中所给矩阵为 \mathscr{A} 在基 $(\mathscr{A}^{n-1}\alpha, \cdots, \mathscr{A}\alpha, \alpha)$ 下的矩阵。

Ŷ 笔记 这是个很常见的取法,以后也可能会多次见到,建议记住并掌握证明方法。

习题 1.79 (第六章第 43 题)

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为线性空间 V 的一组基,证明: 对于任意 $\beta_1,\beta_2,\cdots,\beta_n\in V$, 存在线性变换 \mathscr{A} , 使得 $\mathscr{A}(\alpha_i)=\beta_i\,(i=1,2,\cdots,n)$.

证明 由于 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 V 的一组基,那么 $\forall \beta_k, k = 1, \dots, n$,存在唯一的一组常数 $\lambda_{1k}, \dots, \lambda_{nk}$ 使得 $\beta_k = \lambda_{1k}\alpha_1 + \dots + \lambda_{nk}\alpha_n$,取方阵 A 满足 $(A)_{ij} = \lambda_{ij}$,由于线性变换与矩阵之间存在着一一对应,那么必存在一个线性变换 \mathscr{A} ,其在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的矩阵为 A,于是有:

$$\mathscr{A}(\alpha_1, \alpha_2, \cdots, \alpha_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n) A = (\beta_1, \beta_2, \cdots, \beta_n)$$

从而 $\mathscr{A}(\alpha_i) = \beta_i, i = 1, \dots, n$, 于是 \mathscr{A} 即为所求的线性变换。

笔记 或者也可以直接定义映射 \mathscr{A} : $\lambda_1\alpha_1 + \cdots + \lambda_n\alpha_n \mapsto \lambda_1\beta_1 + \cdots + \lambda_n\beta_n$, 容易验证线性性。这是因为 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为 V 的一组基,所以 V 中任意元素都能写成它们的线性组合,我们把组合系数"迁移"到 $\beta_1,\beta_2,\cdots,\beta_n$ 上,便得到了要求的线性变换。并且我们其实可以把这个结论推广到线性映射,即 $\beta_1,\beta_2,\cdots,\beta_n \in U$ 为另一个线性空间,以同样的方式定义映射,验证线性性即可。