Contraintes continues

Marie Pelleau marie.pelleau@unice.fr

Problèmes continus

- Les variables sont réelles
 - On ne peut pas représenter les réels ⇒ nombres flottants
 - Approxime les réels par un intervalle à bornes flottantes

• Il peut y avoir des problèmes de précision

Opérations arithmétiques

•
$$[a,b] + [c,d] =$$

Opérations arithmétiques

•
$$[a,b] + [c,d] = [a+c,b+d]$$

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a, b] [c, d] =

- [-2,3] [2,4] =

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b] [c,d] = [a-d,b-c]

Exemple

- [-2,3] [2,4] = [-6,1]

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b] [c,d] = [a-d,b-c]
- $[a, b] \times [c, d] =$

- [-2,3] + [2,4] = [0,7]
- $\bullet \ [-2,3] [2,4] = [-6,1]$
- $[-2,3] \times [2,4] =$

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a, b] [c, d] = [a d, b c]
- $\bullet \ [a,b] \times [c,d] = [\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)]$

Exemple

- [-2,3] + [2,4] = [0,7]
- [-2,3] [2,4] = [-6,1]
- $[-2,3] \times [2,4] = [-8,12]$

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a, b] [c, d] = [a d, b c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- $[a, b] \div [c, d] =$

- [-2,3] + [2,4] = [0,7]
- [-2,3] [2,4] = [-6,1]
- $[-2,3] \times [2,4] = [-8,12]$
- $[-2,3] \div [2,4] =$

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a, b] [c, d] = [a d, b c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right] \text{ si } 0 \notin [c,d]$

- [-2,3] + [2,4] = [0,7]
- [-2,3] [2,4] = [-6,1]
- $[-2,3] \times [2,4] = [-8,12]$
- $[-2,3] \div [2,4] = [-1,1.5]$

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b]-[c,d]=[a-d,b-c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right]$ si $0 \notin [c,d]$

Exercice

- \bullet [-5,5] + [2,4] =
- \bullet [-2,5] × [-2,4] =
- \bullet [1,3] × [-2,5] [2,4] =
- \bullet [-10,9] + [-2,3] × [-5,3] [-1,6] =

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b]-[c,d]=[a-d,b-c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right] \text{ si } 0 \notin [c,d]$

Exercice

- [-5,5] + [2,4] = [-3,9]
- $\bullet \ [-2,5] \times [-2,4] = [-10,20]$
- \bullet [1,3] × [-2,5] [2,4] =
- $[-10,9] + [-2,3] \times [-5,3] [-1,6] =$

4 D > 4 A > 4 B > 4 B > B 9 Q (

3/13

Opérations arithmétiques

- \bullet [a, b] + [c, d] = [a + c, b + d]
- [a, b] [c, d] = [a d, b c]
- $[a, b] \times [c, d] = [\min(ac, ad, bc, bd), \max(ac, ad, bc, bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right] \text{ si } 0 \notin [c,d]$

Exercice

- \bullet [-5,5] + [2,4] = [-3,9]
- $[-2,5] \times [-2,4] = [-10,20]$
- $[1,3] \times [-2,5] [2,4] = [-6,15] [2,4] =$
- \bullet [-10, 9] + [-2, 3] × [-5, 3] [-1, 6] =

4 D > 4 A > 4 B > 4 B >

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b]-[c,d]=[a-d,b-c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right]$ si $0 \notin [c,d]$

Exercice

- [-5,5] + [2,4] = [-3,9]
- $\bullet \ [-2,5] \times [-2,4] = [-10,20]$
- $[1,3] \times [-2,5] [2,4] = [-6,15] [2,4] = [-10,13]$
- $[-10,9] + [-2,3] \times [-5,3] [-1,6] =$

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b]-[c,d]=[a-d,b-c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right]$ si $0 \notin [c,d]$

Exercice

- [-5,5] + [2,4] = [-3,9]
- $\bullet \ [-2,5] \times [-2,4] = [-10,20]$
- $[1,3] \times [-2,5] [2,4] = [-6,15] [2,4] = [-10,13]$
- $[-10,9] + [-2,3] \times [-5,3] [-1,6] =$ [-10,9] + [-15,10] - [-1,6] =

4 D > 4 B > 4 E > 4 E > 9 Q O

Marie Pelleau Problèmes continus 3 / 13

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b]-[c,d]=[a-d,b-c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right] \text{ si } 0 \notin [c,d]$

Exercice

- [-5,5] + [2,4] = [-3,9]
- $[-2,5] \times [-2,4] = [-10,20]$
- $\bullet \ [1,3] \times [-2,5] [2,4] = [-6,15] [2,4] = [-10,13]$
- $[-10,9] + [-2,3] \times [-5,3] [-1,6] =$ [-10,9] + [-15,10] - [-1,6] = [-25,19] - [-1,6] =

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a,b]-[c,d]=[a-d,b-c]
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)]$
- $[a,b] \div [c,d] = \left[\min\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right),\max\left(\frac{a}{c},\frac{a}{d},\frac{b}{c},\frac{b}{d}\right)\right] \text{ si } 0 \notin [c,d]$

Exercice

- [-5,5] + [2,4] = [-3,9]
- $[-2,5] \times [-2,4] = [-10,20]$
- $\bullet \ [1,3] \times [-2,5] [2,4] = [-6,15] [2,4] = [-10,13]$
- $[-10,9] + [-2,3] \times [-5,3] [-1,6] =$ [-10,9] + [-15,10] - [-1,6] = [-25,19] - [-1,6] = [-31,20]

$$x \in [-2, 5]$$

 $y \in [-3, 7]$

$$2x - y = 0$$

$$y \in [-3, 7]$$

 $2x - y = 0$
 $2 \times [-2, 5] - [-3, 7] = 0$

 $x \in [-2, 5]$

$$x \in [-2, 5]$$

 $y \in [-3, 7]$

$$2x - y = 0$$

$$2 \times [-2, 5] - [-3, 7] = 0$$

$$[-4, 10] - [-3, 7] = 0$$

$$x \in [-2,5]$$

 $y \in [-3,7]$
 $2x - y = 0$
 $2 \times [-2,5] - [-3,7] = 0$
 $[-4,10] - [-3,7] = 0$
 $[-11,13] = 0$

$$x \in [-2,5]$$

 $y \in [-3,7]$

$$2x - y = 0$$

$$2 \times [-2,5] - [-3,7] = 0$$

$$[-4,10] - [-3,7] = 0$$

$$[-11,13] = 0$$

 $0 \in \grave{a}$ l'intervalle résultat \Rightarrow II existe peut-être une solution

$$y \in [-3, 7]$$

 $2x - y = 0$
 $2 \times [-2, 5] - [-3, 7] = 0$
 $[-4, 10] - [-3, 7] = 0$
 $[-11, 13] = 0$

 $x \in [-2, 5]$

 $0 \in \grave{a}$ l'intervalle résultat \Rightarrow Il existe peut-être une solution $0 \notin \grave{a}$ l'intervalle résultat \Rightarrow Pas de solution

Exercice

$$x \in [-2, 5]$$

$$y \in [-3, 7]$$

 $z \in [4,9]$

Les contraintes suivantes ont-elles des solutions?

- x + y z = 5
- 3z ≤ 10
- $x + y + z \ge 10$
- $x \times y + y \times z \neq 0$

Exercice

- $x \in [-2, 5]$
- $y \in [-3, 7]$

 $z \in [4, 9]$

Les contraintes suivantes ont-elles des solutions?

- $x + y z = 5 \rightarrow 5 \in [-14, 8] \Rightarrow$ peut-être une solution
- $3z \le 10 \rightarrow 10 < [12, 27] \Rightarrow$ pas de solution
- $x + y + z \ge 10 \rightarrow 10 \in [-1, 21] \Rightarrow$ peut-être une solution
- $x \times y + y \times z \neq 0 \rightarrow [0,0] \neq [-42,98] \Rightarrow$ peut-être une solution

$$x \in [-2, 5]$$

 $x \times x =$

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$

5/13

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$

5/13

Marie Pelleau Pro

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$

$$X - X =$$

5/13

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$

5/13

Marie Pelleau Problèmes continus

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$

= [-7, 7]

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$
 $= [-7,7]$

Plus de corrélation entre les différentes occurrences d'une variable

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$

= [-7, 7]

Plus de corrélation entre les différentes occurrences d'une variable

$$x^2 - x =$$

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$

= [-7, 7]

Plus de corrélation entre les différentes occurrences d'une variable

$$x^2 - x = [0, 25] - [-2, 5]$$

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$

= [-7, 7]

Plus de corrélation entre les différentes occurrences d'une variable

$$x^2 - x = [0, 25] - [-2, 5]$$

= $[-5, 27]$

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$

= [-7, 7]

Plus de corrélation entre les différentes occurrences d'une variable

$$x^2 - x = [0, 25] - [-2, 5]$$

= $[-5, 27]$
 $x(x - 1) =$

Limites

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$

= [-7, 7]

Plus de corrélation entre les différentes occurrences d'une variable

$$x^2 - x = [0, 25] - [-2, 5]$$

= $[-5, 27]$
 $x(x - 1) = [-2, 5] \times [-3, 4]$

Marie Pelleau

Limites

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$
 $= [-7,7]$

Plus de corrélation entre les différentes occurrences d'une variable

$$x^2 - x = [0, 25] - [-2, 5]$$

= $[-5, 27]$
 $x(x - 1) = [-2, 5] \times [-3, 4]$
= $[-15, 20]$

Marie Pelleau

Limites

$$x \in [-2,5]$$

 $x \times x = [-2,5] \times [-2,5]$
 $= [-10,25]$
 $x - x = [-2,5] - [-2,5]$
 $= [-7,7]$

Plus de corrélation entre les différentes occurrences d'une variable

$$x^2 - x = [0, 25] - [-2, 5]$$

= $[-5, 27]$
 $x(x - 1) = [-2, 5] \times [-3, 4]$
= $[-15, 20]$

Dépend de l'écriture (valeur réelle [-0.25, 20])

Consistance

Opérateurs ensemblistes

- $\bullet \ [a,b]\cap [c,d]=[\max(a,c),\min(b,d)]$
- $\bullet \ [a,b] \cup [c,d] = [\min(a,c),\max(b,d)]$

Opérateurs inverses

On considère 3 intervalles u, v et r

$$u + v = r$$

$$\Rightarrow u = u \cap r - v$$

$$\Rightarrow V = V \cap r - U$$

$$\circ$$
 $u-v=r$

$$\Rightarrow u = u \cap r + v$$

$$\Rightarrow v = v \cap u - r$$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$

$$2y + x \le 2$$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$

 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 5]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

 $y \in [-2, 2]$
 $2y + x \le 2$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$

$$2y + x \le 2$$

Pour une contrainte

Exercice

$$x \in [-2, 5]$$

$$y \in [-3, 7]$$

$$z \in [4, 9]$$

Quel est le résultat de la consistance pour chacune des contraintes?

- x + y z = 5
- $y + z \ge 10$
- $x + 2y \le 5$

Pour une contrainte

Exercice

$$x \in [-2, 5]$$

$$y \in [-3, 7]$$

$$z \in [4, 9]$$

Quel est le résultat de la consistance pour chacune des contraintes?

- $x + y z = 5 \rightarrow x \in [2, 5], y \in [4, 7], z \in [4, 7]$
- $y + z \ge 10 \rightarrow x \in [-2, 5], y \in [1, 7], z \in [4, 9]$
- $x + 2y \le 5 \rightarrow x \in [-2, 5], y \in [-3, 3.5], z \in [4, 9]$

Pour plusieurs contraintes

HC4 est généralement rapide mais ne donne pas forcément la plus petite boîte

Exercice

- $V = \{x, y\}$
- $D_x = [-2, 5]$ $D_y = [-3, 3]$
- $C_1: x-2y \le 2$ $C_2: x+2y \le 2$

Exercice

- $D_x = [-2, 5]$ $D_y = [-3, 3]$
- $C_1: x-2y \le 2$ $C_2: x+2y \le 2$

Solution

• $C_1: x - 2y \le 2$ $\Rightarrow D_x = [-2, 5], D_y = [-2, 3]$

Exercice

- $D_x = [-2, 5]$ $D_y = [-3, 3]$
- $C_1: x-2y \le 2$ $C_2: x+2y \le 2$

- $C_1: x-2y \le 2$ $\Rightarrow D_x = [-2,5], D_y = [-2,3]$
- $C_2: x + 2y \le 2$ $\Rightarrow D_x = [-2, 5], D_y = [-2, 2]$

Exercice

- $V = \{x, y\}$
- $D_x = [-2, 5]$ $D_y = [-3, 3]$
- $C_1: x-2y \le 2$ $C_2: x+2y \le 2$

- $C_1: x-2y \le 2$ $\Rightarrow D_x = [-2,5], D_y = [-2,3]$
- $C_2: x + 2y \le 2$ $\Rightarrow D_x = [-2, 5], D_y = [-2, 2]$
- $C_1: x-2y \le 2$ $\Rightarrow D_x = [-2,5], D_y = [-2,2]$

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

•
$$C_1: x + 4y = 8$$

 $\Rightarrow D_x = [0, 8], D_y = [0, 2]$

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [2, 6], D_y = [0.5, 1.5]$

Exercice

- $\mathcal{V} = \{x, y\}$
- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [2, 6], D_y = [0.5, 1.5]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3, 5], D_y = [0.5, 1.5]$

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

Solution

• $C_1: x + 4y = 8$ $\Rightarrow D_x = [3, 5], D_y = [0.75, 1.25]$

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [2, 6], D_y = [0.5, 1.5]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3, 5], D_y = [0.5, 1.5]$

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

Solution

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [3, 5], D_y = [0.75, 1.25]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3.5, 4.5], D_y = [0.75, 1.25]$

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [2, 6], D_y = [0.5, 1.5]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3, 5], D_y = [0.5, 1.5]$

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

Solution

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [2, 6], D_y = [0.5, 1.5]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3, 5], D_y = [0.5, 1.5]$

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [3, 5], D_y = [0.75, 1.25]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3.5, 4.5], D_y = [0.75, 1.25]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [3.5, 4.5], D_y = [0.875, 1.125]$

HC4

Exercice

- $D_x = [0, 8]$ $D_y = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

Solution

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [2, 6], D_y = [0.5, 1.5]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3, 5], D_y = [0.5, 1.5]$

Solution

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [3, 5], D_y = [0.75, 1.25]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3.5, 4.5], D_y = [0.75, 1.25]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [3.5, 4.5], D_y = [0.875, 1.125]$

Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F. (1999).

Revisiting hull and box consistency.

In Proceedings of the 16th International Conference on Logic Programming, pages 230–244.

Lhomme, O. (1993).

Consistency techniques for numeric csps.

In Proceedings of the 12th International Joint Conference on Artificial intelligence (IJCAl'93), pages 232–238.

