Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 9

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.

Mark:

Determine if
$$\begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix}$$
 can be written as a linear combination of the vectors $\begin{bmatrix} 5 \\ 2 \\ -3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$.

Solution: Since the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}$ is invertible (see above), the columns are linearly independent, so no column can be written as a linear set of the second seco

dent, so no column can be written as a linear combination of the other three. Alternatively, compute

RREF
$$\begin{pmatrix} \begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The system has no solution, so $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ is not a linear combination of the three other vectors.