Multiple linear regression Labor Economics

Instructor: Haoran LEI

Hunan University

Multiple linear regression

Model:

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon$$

We interpret β_j as the average effect of a unit increase in X_j on Y, holding all other predictors fixed ("ceteris paribus").

Multiple linear regression

Model:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

We interpret β_j as the average effect of a unit increase in X_j on Y, holding all other predictors fixed ("ceteris paribus").

In the advertising example:

$$exttt{sales} = eta_0 + eta_1 \cdot exttt{TV} + eta_2 \cdot exttt{radio} + eta_3 \cdot exttt{newspaper} + \epsilon$$

Interpreting regression coefficients

The ideal scenario is when all predictors are uncorrelated:

- ullet An increase in the value of X_1 does not affect the value of X_2
- A trial/experiment design is called a **balanced design** in that case, and each coefficient can be estimated and tested separately

Interpretations such as "a unit change in X_j is associated with a β_j change in Y, while all the other variables stay fixed", are possible.

Interpreting regression coefficients

- Correlations amongst predictors cause problems:
 - 1. The variance of all coefficients tends to increase, sometimes dramatically
 - 2. Interpretations become hazardous when X_j changes, everything else changes.
- Claims of causality should be avoided for observational data
 - Indentifying causality is a big topic in economics.
 We'll touch on that topic later in this course.

The woes of (interpreting) regression coefficients

- The regression coefficient β_j estimates the expected change in Y per unit change in X_j , with all other predictors held fixed.
- When predictors are correlated, they change together!

Two Examples

1. Y= total amount of paper money in your pocket; $X_1=$ # of papers; $X_2=$ # of 10- and 20- RMB papers. By itself, regression coefficients of Y on X_2 will be >0. But how about with X_1 in the model?

Two Examples

- 1. Y= total amount of paper money in your pocket; $X_1=$ # of papers; $X_2=$ # of 10- and 20- RMB papers. By itself, regression coefficients of Y on X_2 will be >0. But how about with X_1 in the model?
- 2. Y= number of tackles by a football player in a season; W and H are his weight and height. Fitted regression model is $\hat{Y}=b_0+0.5W-0.10H.$ How do we interpret $\hat{eta}_2<0$?

Interpreting regression coefficients

"The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively." -- Fred Mosteller and John Tukey

• These are said by statisticians. What can we (economists) do to deal with correlations between X_i 's?

Interpreting regression coefficients

"The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively." -- Fred Mosteller and John Tukey

Economists Esther and Banerjee won Nobel Prize in 2019 for their usage of 'randomised control trials' (RCT) in economics.

Estimation and Prediction for Multiple Regression

• Given estimates $\hat{\beta}_0$, $\hat{\beta}_1$,..., $\hat{\beta}_p$, we can make predictions using:

$$\hat{y}=\hat{eta}_0+\hat{eta}_1x_1+\cdots+\hat{eta}_px_p$$

• LS estimators are obtained by minimizing the RSS:

$$\min_{\hat{eta}_0,\dots,\hat{eta}_p} \mathsf{RSS} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Example: p=2.

Results for advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Correlations:

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Some important questions

- 1. Is at least one of the predictors X_1 , X_2 , ..., X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y , or only part of the predictors useful?
- 3. How well does the linear model fit the data?

Q1: Is at least one of the predictors useful in predicting Y?

We can use the F-statistic:

$$F = rac{(TSS-RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

Quantity	Value
Residual Standard Error	1.69
R^2	0.897
F-statistic	570

Q2: Do all the predictors help to explain Y, or only part of the predictors useful?

- Essentially, this is to decide on the important variables.
- The most direct approach is called all subsets or best subsets regression:
 - we compute the least squares fit for all possible subsets;
 - then choose between them based on some criterion that balances training error with model size.
- ullet However, usually we cannot examine all possible models. For example, when p=40, there are $2^p\geq$ a billion models!

Forward selection

- Begin with the *null model* a model that contains an intercept but no predictors.
- Fit p simple linear regressions and add to the null model the variable that results in the **lowest RSS**.
- Add to that model the variable that results in the **lowest RSS** amongst all two-variable models.
- Continue until some stopping rule is satisfied, for example when all remaining variables have a p-value above some threshold

Backward selection

- Start with all variables in the model.
- Remove the variable with the **largest p-value** that is, the variable that is the least statistically significant.
- The new (p-1)-variable model is fit, and the variable with the largest p-value is removed.
- Continue until a **stopping rule** is reached. For instance, we may stop when all remaining variables have a **significant p-value** defined by some significance threshold.

Model selection

- Forward and Backward selections are two specialized cases of model selection.
- There are more systematic criteria for choosing an "optimal" member in the path of models produced by forward or backward stepwise selection.
 - Especially for time-series data.
- These include Mallow's C_p , Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted \mathbb{R}^2 and Crossvalidation (CV).

Q3. How well does the model fit the data?

- R^2 fails to be a good judge: adding more predictor variables always increases $R^2!$
- We need to have **some punishments** for those high R^2 cases with high p.

Q3. How well does the model fit the data?

- R^2 fails to be a good judge: adding more predictor variables always increases R^2 !
- We need to have **some punishments** for those high R^2 cases with high p.

$$R_{adj}^2 = 1 - rac{(1 - R^2)(n - 1)}{n - p}$$

ullet where n is # of observations and p is # of predictors.

Other Considerations in the Regression Model

- Some predictors are not quantitative but are qualitative.
- Also called *categorical/factor* predictors: gender, student/martial status, ethnicity,

Motivating example: a credit card company (say Bank of China) has the following data about its clients:

• Balance, Age, Cards, Education, Income, Limit, Rating

Qualitative Predictors — continued

Example: investigate differences in credit card balance between males and females, ignoring the other variables.

A dummy variable for gender:

$$x_i = egin{cases} 1 & ext{if i-th person is female} \ 0 & ext{if i-th person is male} \end{cases}$$

Model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$.

Interpretation?

Results for gender model:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	509.80	33.13	15.389	<0.0001
gender[Female]	19.73	46.05	0.429	0.6690

Qualitative predictors with more than two levels

- With more than two levels, we create additional dummy variables.
- For example, for the ethnicity variable (Asian/African/American) we create two dummy variables:
 - $\circ x_{i1} = 1$ if i-th persion is Asian, or 0 otherwise;
 - $\circ x_{i2} = 1$ if i-th persion is African, or 0 otherwise;
- There will always be one fewer dummy variable than the number of levels. The level with no dummy variable —American in this example — is known as the baseline.

Results for ethnicity

	Coefficient	Std. Error	t-stat.	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[African]	-12.50	56.68	-0.221	0.8260

Extensions of the Linear Model

Extensions of the Linear Model

- In the ads example, we have assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media. (No Interactions)
- However, suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.
 - In econ (marketing), this is known as a complementary (synergy) effect
 - in statistics it is referred to as an interaction effect.

Modelling interactions — Advertising data

$$exttt{sales} = eta_0 + eta_1 imes exttt{TV} + eta_2 imes exttt{radio} + eta_3 imes exttt{(radio} imes exttt{TV}) + \epsilon \ = eta_0 + (eta_1 + eta_3 imes exttt{radio}) imes exttt{TV} + eta_2 imes exttt{radio} + \epsilon$$

• Implications: when the expenses on radio ads get higher, the marginal benefit of expenses on TV ads get higher!

Modelling interactions — Advertising data

Results as below. Interpretation?

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	<0.0001
TV	0.0191	0.002	12.70	<0.0001
radio	0.0289	0.009	3.24	0.0014
TV×radio	0.0011	0.000	20.73	<0.0001

Interpretation

Interactions are important:

- The p-value for the interaction term TV×radio is extremely low, indicating that there is strong evidence for $H_A: \beta_3 \neq 0$.
- The \mathbb{R}^2 for the interaction model is 96.8%, compared to only 89.7% for the model that predicts sales using TV and radio without an interaction term.

Interpretation — continued

- This means that (96.8 89.7)/(100 89.7) = 69% of the variability in sales that remains after fitting the additive model has been explained by the interaction term.
- The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of $(\hat{\beta}_1 + \hat{\beta}_3 \times {\tt radio}) \times 1000 = 19 + 1.1 \times {\tt radio}$ units.
- An increase in radio advertising of \$1,000 will be associated with an increase in sales of $(\hat{\beta}_2+\hat{\beta}_3 imes {\tt TV}) imes 1000=29+1.1 imes {\tt TV}$ units.

Hierarchy

- Sometimes it is the case that an interaction term has a very small p-value, but the associated main effects (in this case, TV and radio) do not.
- The hierarchy principle:

If we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant.

Hierarchy

- The rationale for this principle is that interactions are hard to interpret in a model without main effects — their meaning is changed.
- Specifically, the interaction terms also contain main effects, if the model has no main effect terms.

Another extension: Incorporating non-linear effects

The figure suggests that

• mpg = β_0 + β_1 × horsepower + β_2 × horsepower + ϵ may provide a better fit.

The figure suggests that

• mpg = β_0 + β_1 × horsepower + β_2 × horsepower² + ϵ may provide a better fit.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	<0.0001
horsepower	-0.4662	0.0311	-15.0	<0.0001
horsepower ²	0.0012	0.0001	10.1	<0.0001

Generalizations of the Linear Model

- Classification problems: logistic regression, support vector machines
- Non-linearity: kernel smoothing, splines and generalized additive models, nearest neighbor methods.
- Interactions: Tree-based methods, bagging, random forests and boosting (these also capture non-linearities)
- Regularized fitting: Ridge regression and lasso