atrik aussou $exp:\mathbb{R}$ $\rightarrow \mathbb{R}_{>0}$ $--e^0 = 1$ exp = 0 $--e^{a+b}=e^ae^b$ exp (a+b) = exp a * exp b

Patrik Jausson Homomorphisms Types $exp: \mathbb{R} \longrightarrow \mathbb{R}_{>0}$ Example: $exp \ 0 = 1$ $--e^0 = 1$ -- $e^{a+b} = e^a e^b$ -exp (a+b) = exp a * exp b (A, \oplus, z) \longrightarrow (B, \otimes, u) $H_2: (A \rightarrow B) \times (A \rightarrow A \rightarrow A) \times (B \rightarrow B \rightarrow B) \longrightarrow Prop$ $H_2(h, \oplus, \otimes) \stackrel{\text{def.}}{=} V_{x,y}: A. h(x \oplus y) == (hx) \otimes (hy)$ We know $H_2(exp, +, *)$ & $H_o(exp, 0, 1)$ $H_o(h, z, u) = hz == u$ DSL -> Sox

Homomorphisms

Patrik Jausson

Example:

$$exp: \mathbb{R} \longrightarrow \mathbb{R}_{>0}$$

exp 0 = 1

$$exp(a+b) = exp(a * exp(b) -- e^{a+b}) = e^a e^b$$

From (R, (+), 0)

$$\frac{\exp}{\left(\mathbb{R}_{>0}, (*), 1\right)}$$

 $-e^0 = 1$

 $log: \mathbb{R}_{>0} \longrightarrow \mathbb{R}$

$$log 1 = 0 \qquad --\log 1 = 0$$

$$log (a*b) = log a + log b -- log(ab) = log a + log b$$

Patrik Jausson Homomorphisms Types H2: (A->B) x (A->A->A) x (B->B->B) -> Prop $H_2(h, \oplus, \varnothing) \stackrel{\text{det.}}{=} \forall x, y : A. h(x \oplus y) == (hx) \otimes (hy)$ H: (A->B)x (A->A)x (B->B)-> Prop H, (h, fa, fb) = \(\frac{1}{1} \text{x:A. h (fax) == fb(hx)}\) Ho: (A->B) x A x B -> Prop Ho(h,a,b)= ha==b

 $DSL \rightarrow \delta \sigma \lambda$

Patrik Jausson Homomorphisms Predicales H2 (h, opa, opb) = tx: A. ty: A. h (opa x y) == opb (hx) (hg) Vx:A. h (fax) == fb(hx) H, (h, fa, fb) = h a == b Ho(h,a,b)= n: A>B

 $DSL \rightarrow \delta\sigma\lambda$

Patrik Jausson tomomorphisms $_{
m DSL}$ ightarrow $\delta\sigma^{\lambda}$

Patrik Jausson tomomorphisms odd: N-B +: N>N->N 8: B->B->B $DSL \rightarrow \delta \sigma \lambda$

tomomorphisms Patrik Jausson Jo. Ho (odd, + odd: N-B +: N>N>N 8: B->B->B Ja. Vx,y:N. odd (x+y) == $DSL \rightarrow \delta\sigma\lambda$ odd (1+1)=F

atrik aussou momorphisms 0 odd: N-B 8: B-7B-7B Ja. Vx,y:N. odd (x+y) == Ø $DSL \rightarrow \delta \sigma \lambda$ $DSL^{sol}Math$

atrik aussou tomomorphisms Jo. Ho (odd, + odd: N->B +: N>N->N 8: B->B->B odd X & Ja. Vx,y:N. Jodd (x+y) odd $DSL \rightarrow \delta \sigma \lambda$ $DSL_{SO}Math$

Proof Patrik Jausson Homomorphisms odd (x+y) = odd x & odd g 10. H2 (odd, +, 8) Proof: We know \\ \(u \cdot N \cdot A k \cdot N \cdot A b \cdot Z_2 \cdot n = 2 \cdot k + b Thus $x = 2 \cdot k_x + b_x$ $A = 2 \cdot k_y + b_y$ odd x = odd bx A odd u = odd by $x+y=2\cdot(k_x+k_y)+(b_x+b_y)$ $odcl(x+y)=odcl(b_x+b_y)$ OFF==FCheck the four cases: $b_x=7$ T==T $b_{y} = 1$ 1 == 7 $\mathcal{F} = = \mathcal{F} \left(\text{DSL} \rightarrow \delta \sigma \lambda \right)$ $\text{DSL} \rightarrow \delta \sigma \lambda$ $\text{DSL} \rightarrow \delta \sigma \lambda$ Jø. H2 (is Prime, +, 0)

70. H2 (isPrime, +, 0) Proof by contradiction: Assume @: B->B->B exists. Hx,y:N. isP(x+y) == isPx & isPy $x=2, y=2 \Rightarrow x+y=4$ isP(4)=E $\frac{1}{37}x = T \quad x = 2 + 7 T$ $\frac{1}{37}x = T \quad y = 3 + 7 T$ $\frac{1}{37}y = T \quad y = 3 + 7 T$ $\frac{1}{37}y = T \quad y = 7 \quad y = 7$ $\frac{1}{37}y = T \quad y = 7$ $\frac{1}{37}y = T \quad y = 7$ $\frac{1}{37}y = T \quad y = 7$

To. H2 (is Prime, +, 0) Proof by contradiction: Assume @: B > B exists. $2+2=41 \mapsto T \otimes T = F$ $2+3=51 \mapsto T \otimes T = T$ is Prime 2 = T is Prime 3 = T is Prine 4 = F Contradiction is Prime 5 = T Thus no such & can exist.