This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

#2

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

PCT/CZ00/00067 11.09.00

ČESKÁ REPUBLIKA

REC'D 17 OCT 2000

WIPO PCT

ÚŘAD PRŮMYSLOVÉHO VLASTNICTVÍ

4

potvrzuje, že SELLIER & BELLOT, A. S., Vlašim, CZ

podal(i) dne 17.09.1999

přihlášku vynálezu značky spisu PV 1999 - 3305

a že připojený popis a 0 výkres(y) se shodují úplně s původně podanými přílohami této přihlášky.

OVÉHO DANGALA PROMINICAL

Za předsedu: Ing. Hošková Marta

V Praze dne 11.10.2000

Netoxická a nekorozivní zážehová slož.

Oblast techniky

Vynález se týká oblasti muniční výroby, zejména výroby zápalkových složí pro zápalky loveckého a sportovního střeliva.

Dosavadní stav techniky

Všechny druhy známých zápalkových složí, které jsou v současné době používány, a třaskavé rtuti, chlorečnanu to jak již zastaralé slože na bázi draselného a sirníku antimonitého, tak novější nekorozivní slože na bázi tetrazenu, tricinátu olovnatého, kysličníku olovičitého, kalciumsilicidu a sirníku antimonitého, emitují při výstřelu velké množství toxických těžkých kovů a neodpovídají nárokům na čistotu životního prostředí. Proto byl v posledních deseti letech proveden rozsáhlý výzkum s cílem vytvořit slož, která by neobsahovala sloučeniny těžkých kovů, jako je olovo, baryum, rtuť, antimon a současně si uchovala nekorozivnost tricinátových složí. Výsledkem byla slož, kde funkci primární třaskaviny plní aromatická diazosloučenina bez obsahu kovu, dinol a senzibilizátorem zůstává tetrazen. Pyrotechnický systém se v daném případě skládá z nového oxidovadla, peroxidu zinku a práškového titanu. Slož může obsahovat ještě další složky, jako jsou frikcionátory, nejčastěji mleté sklo a aktivní paliva, jako jsou různé druhy nc a ng prachů.

Známé jsou také slože na bázi dinolu, kde se prakticky pouze obměňuje pyrotechnický systém. Jako oxidovadla jsou používány různé kysličníky kovů, dusičnan draselný, strontnatý, zásadité dusičnany mědi a dusičnan měďnato-amonný a sloučeniny cínu. Ani tyto slože nejsou konečným řešením. Zásadním problémem je zde vlastní primární třaskavina - dinol. Je to karcinogenní sloučenina s velmi nepříjemnými fyziologickými účinky.

Proto byly zaznamenány snahy dinol ze složí zcela vyloučit. Takové řešení nabízí EP 0656332 A1, kde slož je založena pouze na pyrotechnickém systému a neobsahuje vůbec žádnou třaskavinu. Palivem je zde hyperaktivní práškový zirkon, oxidovadlem je směs dusičnanu draselného s kysličníkem manganičitým a funkci energetické složky plní pentrit. Není pochyb o tom, že tato slož je dle údajů původců vynálezu plně funkční, ačkoliv i zde může vyvstat závažný problém. Tím může být právě zirkon. Jak sami původci uvádějí, zažehuje se aktivní forma zirkonu vlivem nepatrného energetického impulzu, a to jak mechanicky, tak termicky. Je obecně známo, že vysoce aktivní práškové kovy, a to především zirkon, jsou pyroforické a extrémně reaktivní. Reagují jak se vzdušným kyslíkem za vzniku oxidů, tak se vzdušným dusíkem za vzniku nitridů a i s vodní parou za vzniku hydridů. Při dopravě a skladování musí být uchovávány pod vodou a při výrobě

složí musí být voda vytěsněna organickým rozpouštědlem s vodou mísitelným. Podle údajů původců je nejvýhodnější izopropylalkohol. Technologie je pak založena na klasickém vtírání pastovité slože do kalíšků, avšak s tím rozdílem, že pojivem zde není vodný roztok příslušné organické sloučeniny, ale roztok aerosilu v izopropylalkoholu. Při výrobě a laboraci takových složí pak mohou nastat závažné problémy, jako je práce s extrémně reaktivním zirkonem a dále i problémy technologické při použití velkého množství organických rozpouštědel ve výrobě.

Podstata vynálezu

Uvedené nevýhody řeší a zcela odstraňuje netoxická a nekorozivní zážehová slož, jejíž podstata spočívá v tom, že primární třaskavina typu dinol je nahrazena brizantní trhavinou, která je aktivována senzibilizátorem typu tetrazen nebo solemi a deriváty tetrazolů. Jako brizantní trhaviny je možno použít nitroestery, jako je pentrit a hexanitromanit, ale také nejjemnější formy nitrocelulozy i nitraminy, jako je hexogen, oktogen a tetryl. Slože tohoto typu jsou velmi výkonné a jsou vhodné pro použití do zápalek nejmenších rozměrů s nejkratšími reakčními časy, nejlépe pro revolverové a pistolové střelivo. Pro širší použití je nutno slož doplnit vhodným pyrotechnickým systémem. Jako nejvhodnější se ukázaly směsi s práškovým bórem, zejména s hnědým - tzv.amorfním se specifickým povrchem, který u běžně dostupných preparátů může dosáhnout 5 - 25m²/g. Rozsáhlé zkoušky prokázaly, že amorfní bór je vynikajícím palivem a je schopen vytvořit dokonalý redox-systém s jakýmkoliv kovovým oxidem, nezávisle na mocenství, dále s peroxidy kovů a všemi známými solemi anorganických kyslíkatých kyselin.

Do pyrotechnického systému s bórem je možno zvolit oxidovadla ze skupiny sloučenin, jako jsou oxidy kovů dvojmocných: měďnatý - CuO, zinečnatý - ZnO, oxidy kovů vícemocných: vizmutitý - Bi₂O₃ , vizmutičitý - BiO₂ i vizmutičný - Bi₂O₅ , železitý Fe₂O₃ , manganičitý - MnO₂, cíničitý - SnO₂, vanadičný V₂O₅ a molybdenový MoO₃, peroxidy zinku - ZnO₂ a vápníku - CaO₂ , dusičnan draselný - KNO₃ a některé speciální sol_i, jako jsou zásadité dusičnany vizmutu - 4BiNO₃(OH)₂.BiO(OH) a BiONO₃.H₂O, zásaditý dusičnan mědi - Cu(NO₃)₂.3Cu(OH)₂, dusičnan diamoměďnatý - Cu(NH₃)₂(NO₃)₂ , zásaditý dusičnan cínu - Sn₂O(NO₃)₂.

Nejrychleji hořící systém vytváří bór se sloučeninami vizmutu. Systémy s nejvyšší výhřevností vznikají při použití dusičnanu draselného, oxidu měďnatého, železitého a manganičitého. Produkty hoření mohou být jak nízkotavitelný kysličník boritý - B_2O_3 , tak těkavý kysličník bornatý - BO, stabilnější za vyšších teplot, případně i nitrid bóru - BN. Přítomnost těchto sloučenin v produktech hoření je velmi žádoucí z hlediska dokonalého zážehu prachových náplní nábojů. Přes svou výjimečnou reaktivnost je

bór chemicky stabilní a není manipulačně nebezpečný. Náklady na bór jsou vyváženy jeho minimálním obsahem ve stechiometrických směsích, který nepřesahuje 20 %.

Vzhledem k velmi vysokému specifickému povrchu bóru musí být i oxidovadlo v co nejjemnější formě.

Pro zvýšení citlivosti k nápichu je možno slož doplnit vhodným frikcionátorem.

Vzhledem k tomu, že takto vytvořené zážehové slože jsou ve velmi- jemné formě, jeví se jako nejvhodnější technologie laborace za mokra, a proto slož může obsahovat ještě jisté množství pojiva rozpustného ve vodě. Nejvhodnější jsou obecně známá pojiva, jako arabská guma, dextrin, polyvinylalkohol, kaboxymetylceluloza a jiné. Pokud by bylo nutno laborovat slož za sucha, je třeba ji předem zgranulovat. Granulaci je možno provést jak za použití výše jmenovaných pojiv ve vodném roztoku, tak i za použití pojiv rozpustných v organických rozpouštědlech, např. nitrocelulozy v acetonu.

Pyrotechnický systém je možno rovněž po vylisování nazrnit a zrněný produkt pak použít do složí. Slož pak nemusí již obsahovat pojivo, protože za sucha je dobře dávkovatelná.

Slože s pyrotechnickým systémem vyjadřuje následující schema.

Údaje jsou uvedeny v % hmotnostních.

brizantní trhavina
senzibilizátor
oxidovadlo
5 - 40 %
5 - 40 %
5 - 50 %

- bór 1 - 20 % -

- frikcionátor 5 - 30 %

- pojivo 0,1 - 5 %

Příklady provedení

Složení složí je uvedeno v % hmotnostních.

Příklad 1 - slož bez pojiva, vhodná pro suchou laboraci

GNGT 25 % PETN 25 %

4BiNO₃(OH)₂.BiO(OH) 34 %

B 6%

mleté sklo 10 %

Příklad 2 - obdobná slož s vyšší citlivos

a) suchá varianta - bez pojiv	a	b) mokrá varianta	
GNGT	35 %	GNGT	35 %
PETN	15 %	PETN	15 %
4BiNO ₃ (OH) ₂ .BiO(OH)	34 %	4BiNO ₃ (OH) ₂ .BiO(OH)	34 %
В	6 %	В	5,5 %
sklo	10 %	arabská guma	0,5 %
		klo	10 %

Příklad :	3	-	obd	lot	oná	si	lož	S	pojiven
-----------	---	---	-----	-----	-----	----	-----	---	---------

a) suchá varianta		b) mokrá varianta	
GNGT	25 %	GNGT	25 %
PETN	25 %	PETN	25 %
BiONO ₃ .H ₂ O	34 %	BiONO ₃ .H ₂ O	34 %
В	5,5 %	В	5,5 %
sklo	10 %	arabská guma	0,5 %
nc	0,5 %	sklo	10 %

Příklad 4 - slož s vyšší výhřevností

a) suchá vari	anta - bez pojiva	b) mokrá variar	nta
GNGT	35 %	GNGT	25 %
PETN	15 %	PETN	25 %
CuO	34 %	CuO	34 %
В	6 %	В	5,5 %
sklo	10 %	PVA	0,5 %
		sklo	10 %

Příklad 5

i) suchá varianta		b) mokrá varian	ta
GNGT	25 %	GNGT	25 %
PETN	25 %	PETN	25 %
Bi ₂ O ₃	36 %	Bi ₂ O ₃	36 %
В	3,5 %	В	3,5 %
nitroceluloza	0,5 %	PVA	0,5 %
sklo	10 %	sklo	10 %

Příklad 6

a) suchá varianta		b) mokrá varianta	
GNGT	35 %	GNGT	25 %
PETN	15 %	PETN	25 %
MnO_2	31,5 %	MnO_2	31,5 %
В	8 %	В	8 %
nitroceluloza	0,5 %	arabská guma	0,5 %
sklo	10 %	sklo	10 %

Příklad 7

a) suchá varianta	1	b) mokrá varianta	
GNGT	25 %	GNGT	25 %
PETN	25 %	PETN	25 %
ZnO	34 %	Zn⊙-	34 %
В	5,5 %	В	5,5 %
nitroceluloza	0,5 %	arabská guma	0,5 %
sklo	10 %	sklo	10 %
Příklad 8			

pouze suchá varianta

GNGT	25 %·
PETN	25 %
Fe ₂ O ₃	34 %
В	5,5 %
nitroceluloza	0,5 %
sklo	10 %

Příklad 9

a) suchá varianta		b) mokrá varianta	
GNGT	25 %	GNGT	25 %
PETN	25 % 🦠	PETN	25 %
V_2O_5	30 %	V_2O_5	30 %
В	9,5 %	В	9,5 %
nitroceluloza	0,5 %	arabská guma	0,5 %
sklo	10 %	sklo	10 %

Příklad 10

a) suchá varianta		b) mokrá varianta		
GNGT	35 %	GNGT	25 %	
PETN	15 %	PETN	25 %	
SnO_2	34 %	SnO_2	34 %	
В	5,5 %	В	5,5 %	
nitroceluloza	0,5 %	arabská guma	0,5 %	
sklo	10 %	sklo	10 %	

Příklad 11

a) suchá varianta		b) mokrá varianta	
GNGT	25 %	GNGT	25 %
PETN	25 %	PETN	25 %
MoO ₃	30 %	MoO ₃	30 %
В	9,5 %	В	9,5 %
nitroceluloza	0,5 %	arabská guma	0,5 %
sklo	10 %	sklo	10 %

Příklad 12

a) suchá varianta		b) mokrá variant	a
GNGT	25 %	GNGT	25 %
PETN	25 %	PETN	25 %
ZnO ₂	30 %	ZnO_2	30 %
В	9,5 %	В	9,5 %
nitroceluloza	0,5 %	PVA	0,5 %
sklo	10 %	sklo	10 %

Příklad 13

DOUZE	suchá	varianta
Douze	Sucha	variania

GNGT	25 %
PETN	25 %
CaO ₂	30 %
В	9,5 %
nitroceluloza	0,5 %
sklo	10 %

Příklad 14

pouze suchá varianta - slož s nejvyšší výhřevností

GNGT

25 %

PETN

25 %

KNO₃

17,5 %

В

12 %

nitroceluloza

0,5 %

sklo

10 %

Příklad 15

a)	sucha	varianta	

b) mokrá varianta

35 %

GNGT

PETN

15 %

PETN

25 % 25 %

 $Cu(NO_3)_2.3Cu(OH)_2$

31,5 %

 $Cu(NO_3)_2.3Cu(OH)_2$

31,5 %

В

sklo

8 %

В

8 %

nitroceluloza :

0,5 % - . 10 % 0,5 % 10 %

Příklad 16

a) suchá varianta

b) mokrá varianta

GNGT

35 %

GNGT

25 %

PETN

15 %

PETN

В

sklo

25 %

Cu(NH₃)₂(NO₃)₂

27,5 %

Cu(NH₃)₂(NO₃)₂

27,5 %

В

12 %

b) mokrá varianta

12 % 0,5 %

nitroceluloza sklo 0,5 % 10 % arabská guma

10 %

Příklad 17 - slož s vysoce reaktivním oxidovadlem

a) suchá varianta

25 %

GNGT

25 %

GNGT PETN BiO₂

25 %

PETN BiO₂ 25 % 33,5 %

В

33,5 % 6 %

В

6 %

nitroceluloza

0,5 %

arabská guma

sklo

10 %

araoska guili

0,5 %

sklo

10 %

Příklad 18 - slož obdobná

a) suchá varianta		b) mokrá varianta	
GNGT	25 %	GNGT	25 %
PETN	25 %	PETN	25 %
Bi ₂ O ₅	33 %	Bi ₂ O ₅	33 %
В	6,5 %	В	6,5 %
nitroceluloza	0,5 %	arabská guma	0,5 %
sklo	10 %	sklo	10 %

Příklad 19 - specifický případ, kdy oxidovadlo plní funkci přídavné třaskaviny

a) suchá varianta		b) mokrá varianta	
GNGT	25 %	GNGT	25 %
PETN	25 %	PETN	25 %
$Sn_2O(NO_3)_2$	32 %	Sn ₂ O(NO ₃) ₂	31,5 %
В	8 %	В	8 %
sklo	10 %	arabská guma	0,5 %
		sklo	10 %

Průmyslová využitelnost

Slože v souladu s technickým řešením jsou využitelné v oblasti muniční výroby při výrobě zápalek s centrálním zápalem, určených pro sportovní, lovecké a cvičné střelivo, případně při výrobě nábojnic a nábojek s okrajovým zápalem, určených pro sportovní střelivo nebo pro vstřelovací nábojky.

PATENTOVÉ NÁROKY

- 1. Netoxická a nekorozivní zážehová slož, vytvořená spojením energetického systému se systémem pyrotechnickým, v y z n a č u j í c í s e t í m , že slož sestává z energetického sytému, obsahujícího 5 až 40 % hmotn. brizantní trhaviny, vybrané ze skupiny nitroesteřů a nitraminů a 5 až 40 % hmotn. senzibilizítoru k její aktivaci, z pyrotechnického systému, obsahujícího 5 až 50 % hmotn. oxidovadla, vybraného ze skupiny oxidů kovů, ze skupiny peroxidů a ze skupiny solí anorganických kyslíkatých kyselin a 1 20 % hmotn. paliva, kterým je amorfní bór a 5 30 % hmotn. frikcionátoru.
- 2. Slož podle nároku 1, v y z n a č u j í c í s e t í m, že brizantní trhavina je vybrána ze skupiny nitroesterů pentrit, hexanitromanit, nitroceluloza nebo ze skupiny nitraminů hexogen, oktogen, tetryl.
- 3. Slož podle nároku 1, v y z n a č u j í c í s e t í m, že palivem je amorfní bór,se specifickým povrchem 5 až 25 m²/g.
- 4. Slož podle nároku 1, v y z n a č u j í c í s e t í m, že oxidovadlo je vybráno ze skupiny oxidů kovů, ze skupiny peroxidů zinku a vápníku, dále ze skupiny solí anorganických kyslíkatých kyselin, jako je dusičnan draselný; zásadité dusičnany vizmutu, cínu a mědi a dále ze skupiny komplexních solí, jako je dusičnan diamoměď natý.
- 5. Slož podle nároku 1, v y z n a č u j í c í s e t í m, že senzibilizátorem je tetrazen nebo deriváty tetrazolů.
- 6. Slož podle nároku 1, v y z n a č u jící se tím, že frikcionátorem je mleté sklo.
- 7. Slož podle nároku 1, v y z n a č u jícíse tím, že pojivy jsou nitroceluloza, polyvinylalkohol, arabská guma.