

TQFP, BGA Commercial Temp Industrial Temp

256K x 18 Sync Cache Tag

180 MHz-100 MHz 3.3 V V_{DD} 3.3 V and 2.5 V I/O

Features

- 3.3 V +10%/–5% core power supply, 2.5 V or 3.3 V I/O supply
- Dual Cycle Deselect (DCD)
- Intergrated data comparator for Tag RAM application
- FT mode pin for flow through or pipeline operation
- \bullet \overline{LBO} pin for Linear or Interleave (Pentium TM and X86) Burst mode
- Synchronous address, data I/O, and control inputs
- Synchronous Data Enable (DE)
- Asynchronous Output Enable (OE)
- Asynchronous Match Output Enable (MOE)
- Byte Write (\overline{BWE}) and Global Write (\overline{GW}) operation
- Three chip enable signals for easy depth expansion
- Internal self-timed write cycle
- JTAG Test mode conforms to IEEE standard 1149.1
- JEDEC-standard 100-lead TQFP package and 119-BGA
- Pb-Free 100-lead TQFP package available

Functional Description

The GS841E18A is a 256K x 18 high performance synchronous DCD SRAM with integrated Tag RAM comparator. A 2-bit burst counter is included to provide burst interface with Pentium TM and other high performance CPUs. It is designed to be used as a Cache Tag SRAM, as well as data SRAM. Addresses, data IOs, match output, chip enables ($\overline{CE1}$, CE2, $\overline{CE3}$), address control inputs (\overline{ADSP} , \overline{ADSC} , \overline{ADV}), and write control inputs ($\overline{BW1}$, $\overline{BW2}$, \overline{BWE} , \overline{GW} , \overline{DE}) are synchronous and are controlled by a positive-edge-triggered clock (CLK).

Output Enable (\overline{OE}), Match Output Enable, and power down control (ZZ) are asynchronous. Burst can be initiated with either \overline{ADSP} or \overline{ADSC} inputs. Subsequent burst addresses are generated internally and are controlled by \overline{ADV} . The burst sequence is either interleave order (Pentium \overline{DM} or x86) or linear order, and is controlled by \overline{LBO} .

Output registers and the Match output register are provided and controlled by the \overline{FT} mode pin (Pin 14). Through use of the \overline{FT} mode pin, I/O registers can be programmed to perform pipeline or flow through operation. Flow Through mode reduces latency.

Byte write operation is performed by using Byte Write Enable (\overline{BWE}) input combined with two individual byte write signals $\overline{BW}1-2$. In addition, Global Write (\overline{GW}) is available for writing all bytes at one time.

Compare cycles begin as a read cycle with output disabled so that compare data can be loaded into the data input register. The comparator compares the read data with the registered input data and a match signal is generated. The match output can be either in Pipeline or Flow Through modes controlled by the \overline{FT} signal.

Low power (Standby mode) is attained through the assertion of the ZZ signal, or by stopping the clock (CLK). Memory data is retained during Standby mode.

JTAG boundary scan interface is provided using IEEE standard 1149.1 protocol. Four pins—Test Data In (TDI), Test Data Out (TDO), Test Clock (TCK) and Test Mode Select (TMS)—are used to perform JTAG function.

The GS841E18A operates on a 3.3 V power supply and all inputs/outputs are 3.3 V- or 2.5 V-LVTTL-compatible. Separate output (V_{DDO}) pins are used to allow both 3.3 V or 2.5 V IO interface.

Dual Cycle Deselect (DCD)

The GS841E18A is a DCD pipelines synchronous SRAM. DCD SRAMs pipeline disable commands to the same degree as read commands. DCD SRAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of the clock.

Parameter Synopsis

		-180	-166	-150	-133	-100
Pipeline 3-1-1-1	t _{cycle} t _{KQ} I _{DD}	5.5 ns 3.2 ns 335 mA	6.0 ns 3.5 ns 310 mA	6.6 ns 3.8 ns 275 mA	7.5 ns 4.0 ns 250 mA	10 ns 4.5 ns 190 mA
Flow Through 2-1-1-1	t _{KQ} t _{cycle} I _{DD}	8 ns 9.1 ns 210 mA	8.5 ns 10 ns 190 mA	10 ns 10 ns 190 mA	11 ns 15 ns 140 mA	12 ns 15 ns 140 mA

Pin Configuration (Package T)

GS841E18A PadOut—119-Bump BGA—Top View (Package B)

i	1	2	3	4	5	6	7
A	V_{DDQ}	А	Α	ADSP	Α	Α	V_{DDQ}
В	NC	E2	Α	ADSC	Α	E ₃	NC
С	NC	Α	Α	V_{DD}	Α	Α	NC
D	DQB	NC	V_{SS}	NC	V_{SS}	DQp	NC
E	NC	DQB	V_{SS}	E ₁	V_{SS}	NC	DQa
F	V_{DDQ}	NC	V_{SS}	G	V_{SS}	DQA	V_{DDQ}
G	NC	DQB	<u>—</u> Вв	ADV	NC	NC	DQa
Н	DQB	NC	V_{SS}	GW	V_{SS}	DQa	NC
J	V_{DDQ}	V_{DD}	NC	V_{DD}	NC	V_{DD}	V_{DDQ}
K	NC	DQB	V_{SS}	СК	V_{SS}	NC	DQA
L	DQB	NC	NC	NC	BA	DQa	NC
M	V_{DDQ}	DQB	V_{SS}	BW	V_{SS}	MATCH	V_{DDQ}
N	DQB	NC	V_{SS}	A 1	V_{SS}	DQA	DE
P	NC	DQp	V_{SS}	Ao	V_{SS}	MOE	DQA
R	NC	А	LBO	V_{DD}	FT	Α	NC
T	NC	Α	Α	NC	Α	Α	ZZ
U	V_{DDQ}	TMS	TDI	TCK	TDO	NC	V_{DDQ}

TQFP Pin Description

Symbol	Description
An	Address Input Signals—Inputs are registered and must meet setup and hold times, as specified on page 11.
CLK	Clock Input Signal
BWE	Byte Write Enable Signal—The byte write enable signal needs to be combined with one of the four byte write signals for a write operation to occur.
BW1	Byte Write signal for data outputs 1 thru 8
BW2	Byte Write signal for data outputs 9 thru 16
GW	Global Write Enable
CE1,CE2, CE3	Chip Enables
ŌĒ	Output Enable
ADV	Burst address advance
ADSP, ADSC	Address status signals
DQ	Data Input and Output pins
DQP	Parity Input and Output pins
MATCH	Match Output
MOE	Match Output Enable
DE	Data Enable—Data input registers are updated only when DE is active.
ZZ	Power down control—Application of ZZ will result in a low standby power consumption.
FT	Flow Through or Pipeline mode
LBO	Linear Order Burst mode
TMS	Test Mode Select
TDI	Test Data In
TDO	Test Data Out
TCK	Test Clock
V _{DD}	3.3 V power supply
V _{SS}	Ground
V_{DDQ}	2.5 V/3.3 V output power supply
NC	No Connect

PBGA Pin Description

Symbol	Description
An	Address Input Signals—Inputs are registered and must meet setup and hold times, as specified on page 11.
CLK	Clock Input Signal
BWE	Byte Write Enable Signal—The byte write enable signal needs to be combined with one of the four byte write signals for a write operation to occur.
BW1	Byte Write signal for data outputs 1 thru 8
BW2	Byte Write signal for data outputs 9 thru 16
GW	Global Write Enable
CE1,CE2, CE3	Chip Enables
ŌĒ	Output Enable
ADV	Burst address advance
ADSP, ADSC	Address status signals
DQ	Data Input and Output pins
DQP	Parity Input and Output pins
MATCH	Match Output
MOE	Match Output Enable
DE	Data Enable—Data input registers are updated only when DE is active.
ZZ	Power down control—Application of ZZ will result in a low standby power consumption.
FT	Flow Through or Pipeline mode
LBO	Linear Order Burst mode
TMS	Test Mode Select
TDI	Test Data In
TDO	Test Data Out
TCK	Test Clock
V _{DD}	3.3 V power supply
V _{SS}	Ground
V_{DDQ}	2.5 V/3.3 V output power supply
NC	No Connect

Functional Block Diagram

Mode Pin Function

LBO	Function
L	Linear Burst
H or NC	Interleaved Burst

FT	Function
L	Flow Through
H or NC	Pipeline

Power Down Control

ZZ	Function
L or NC	Active
Н	Standby, IDD = ISB

Note

There are pull up devices on \overline{LBO} and \overline{FT} pins and pull down device on ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.

Linear Burst Sequence

	A[1:0]	A[1:0]	A[1:0]	A[1:0]
1st address	00	01	10	11
2nd address	01	10	11	00
3rd address	10	11	00	01
4th address	11	00	01	10

Interleaved Burst Sequence

	A[1:0]	A[1:0]	A[1:0]	A[1:0]
1st address	00	01	10	11
2nd address	01	00	11	10
3rd address	10	11	00	01
4th address	11	10	01	00

Byte Write Function

Function	GW	BWE	BW1	BW2
Read	Н	Н	Х	Х
Read	Н	L	Н	Н
Write all bytes	L	Х	Х	Х
Write all bytes	Н	L	L	L
Write byte 1	Н	L	L	Н
Write byte 2	Н	L	Н	L

Note: H = logic high, L = logic low, NC = no connect

Synchronous Truth Table

Operation	Address Used	CE1	CE2	CE3	ADSP	ADSC	ADV	Write	OE	CLK	DQ
Deselect Cycle, Power Down	none	Н	Х	Х	Χ	L	Χ	Χ	Χ	L-H	High-Z
Deselect Cycle, Power Down	none	L	L	Х	L	Х	Х	Х	Χ	L-H	High-Z
Deselect Cycle, Power Down	none	L	Х	Н	L	Х	Х	Х	Χ	L-H	High-Z
Deselect Cycle, Power Down	none	L	L	Х	Н	L	Х	Х	Χ	L-H	High-Z
Deselect Cycle, Power Down	none	L	Χ	Н	Н	L	Х	Х	Χ	L-H	High-Z
Read Cycle, Begin Burst	external	L	Н	L	L	Х	Х	Х	L	L-H	Q
Read Cycle, Begin Burst	external	L	Н	L	L	Х	Х	Х	Н	L-H	High-Z
Read Cycle, Begin Burst	external	L	Н	L	Н	L	Х	Н	L	L-H	Q
Read Cycle, Begin Burst	external	L	Н	L	Н	L	Х	Н	Н	L-H	High-Z
Write Cycle, Begin Burst	external	L	Н	L	Н	L	Х	L	Χ	L-H	D
Read Cycle, Continue Burst	next	Х	Χ	Х	Н	Н	L	Н	L	L-H	Q
Read Cycle, Continue Burst	next	Х	Χ	Х	Н	Н	L	Н	Н	L-H	High-Z
Read Cycle, Continue Burst	next	Н	Χ	Х	Х	Н	L	Н	L	L-H	Q
Read Cycle, Continue Burst	next	Н	Χ	Х	Х	Н	L	Н	Н	L-H	High-Z
Write Cycle, Continue Burst	next	Х	Χ	Х	Н	Н	L	L	Χ	L-H	D
Write Cycle, Continue Burst	next	Н	Χ	Х	Х	Н	L	L	Χ	L-H	D
Read Cycle, Suspend Burst	current	Х	Χ	Х	Н	Н	Н	Н	L	L-H	Q
Read Cycle, Suspend Burst	current	Х	Χ	Х	Н	Н	Н	Н	Н	L-H	High-Z
Read Cycle, Suspend Burst	current	Н	Х	Х	Х	Н	Н	Н	L	L-H	Q
Read Cycle, Suspend Burst	current	Н	Χ	Χ	Χ	Н	Н	Н	Н	L-H	High-Z
Write Cycle, Suspend Burst	current	Х	Χ	Χ	Н	Н	Н	L	Χ	L-H	D
Write Cycle, Suspend Burst	current	Н	Χ	Χ	Х	Н	Н	L	Χ	L-H	D

Notes:

- 1. X means "don't care," H means "logic high," L means "logic low."
- 2. Write is the logic function of $\overline{\text{GW}}$, $\overline{\text{BWE}}$, $\overline{\text{BW1}}$, $\overline{\text{BW2}}$. See Byte Write Function table for detail.
- 3. All inputs, except \overline{OE} , must meet setup and hold on rising edge of CLK.
- 4. Suspending busrt generates a wait cycle.
- 5. ADSP LOW along with SRAM being selected always initiates a Read cycle at the L-H edge of the clock (CLK).
- 6. A Write cycle can only be performed by setting Write low for the clock L-H edge of the subsequent wait cycle. Refer to **page 12** for the Write timing diagram.

Truth Table For Read/Write/Compare/Fill Write Operation

	CE	Write	DE	MOE	OE	Match	DQ
Read	L	Н	Х	Х	L	_	Q
Write	L	L	L	Х	Н	_	D
Compare	L	Н	L	L	Н	Data Out	D
Fill Write	L	L	Н	Х	Х	_	Х
Match Deselect	Н	Х	Х	L	Х	High	High Z
Deselect	Н	Х	Х	Н	Х	High Z	High Z

Notes:

)

- 1. X means "don't care," H means "logic high," L means "logic low."
- 2. Write is the logic function of GW, BWE, BW1, BW2. See Byte Write Function table for detail.
- 3. $\overline{\text{CE}}$ is defined as $\overline{\text{CE1}}$ =L, CE2=H and $\overline{\text{CE3}}$ =L
- 4. All signals are synchronous and are sampled by CLK except \overline{OE} and \overline{MOE} . \overline{OE} and \overline{MOE} are asynchronous and drive the bus immediately.

Absolute Maximum Ratings (Voltage reference to $V_{SS} = 0 \text{ V}$)

Symbol	Description	Commerical	Unit
V _{DD}	Supply Voltage	-0.5 to 4.6	V
V_{DDQ}	Output Supply Voltage	–0.5 to V _{DD}	V
V _{CLK}	CLK Input Voltage	-0.5 to 6	V
V _{in}	Input Voltage	-0.5 to V _{DD} + 0.5 (\leq 4.6 V max.)	V
V _{out}	Output Voltage	-0.5 to V _{DD} + 0.5 (\leq 4.6 V max.)	V
l _{out}	Output Current per I/O	+/-20	mA
P _D	Power Dissipation	1.5	W
T _{OPR}	Operating Temperature	0 to 70	°C
T _{STG}	Storage Temperature	-55 to 125	°C

Note:

Permanent damage to the device may occur if the Absolute Maximun Ratings are exceeded. Functional operation should be restricted to the recommended operation conditions. Exposure to higher than recommended voltages, for an extended period of time, could effect the performance and reliability of this component.

Rev: 1.03 4/2005 9/21 © 2001, GSI Technology

Package Thermal Characteristics

Rating	Layer Board	Symbol	TQFP max	PBGA max	Unit	Notes
Junction to Ambient (at 200 lfm)	single	R_{\ThetaJA}	32	28	°C/W	1,2
Junction to Ambient (at 200 lfm)	four	$R_{\Theta JA}$	20	18	°C/W	1,2
Junction to Case (TOP)	_	$R_{\Theta JC}$	7	4	°C/W	3

Notes:

- Junction temperature is a function of SRAM power dissapation, package thermal resistance, mounting board temperature, ambient.
 Temperature air flow, board density, and PCB thermal resistance.
- 2. SCMI G-38-87.
- 3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1.

AC Test Conditions

(VDD = 3.135 V - 3.6 V, Ta = 0 - 70 °C)

Parameter	Conditions
Input high level	V _{IH} = 2.3 V
Input low level	V _{IL} = 0.2 V
Input slew rate	TR = 1 V/ns
Input reference level	1.25 V
Output reference level	1.25 V
Output load	Fig. 1& 2

Notes:

- 1. Include scope and jig capacitance.
- Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.
- 3. Output load 2 for t_{LZ} , t_{HZ} , t_{OLZ} and t_{OHZ} .
- 4. Device is deselected as defined by the Truth Table.

DC Characteristics and Supply Currents (Voltage reference to $V_{SS} = 0 \text{ V}$)

(VDD = 3.135 V–3.6 V, Ta = 0–70°C for Commercial Temperature Offering)

Parameter	Symbol	mbol Test Conditions		Max
Input Leak <u>age Curr</u> ent (except ZZ, FT, LBO pins)	I _{IL}	V _{IN} = 0 to V _{DD}	–1 uA	1 uA
ZZ Input Current	lin _{ZZ}	$V_{DD} \ge V_{IN} \ge V_{IH}$ $0 \ V \le V_{IN} \le V_{IH}$	–1 uA –1 uA	1 uA 300 uA
Mode Input Current (FT & LBO pins)	lin _M	$V_{DD} \ge V_{IN} \ge V_{IL}$ $0 \ V \le V_{IN} \le V_{IL}$	-30 0uA -1 uA	1 uA 1 uA
Output Leakage Current I _{ol}		Output Disable, V _{OUT} = 0 to V _{DD}	–1 uA	1 uA
Output High Voltage V _{OH}		$I_{OH} = -4 \text{ mA}, V_{DDQ} = 2.375 \text{ V}$	1.7 V	
Output High Voltage	V _{OH}	$I_{OH} = -4 \text{ mA}, V_{DDQ} = 3.135 \text{ V}$	2.4 V	
Output Low Voltage	V _{OL}	I _{OL} = +4 mA		0.4 V

Operating Currents

	Parameter Test Conditions Symbol		-1	80	-1	66	-1	50	-1	33	-1	00	
Parameter			0 to 70°C	–40 to 85°C	0 to 70°C	-40 to +85°C	0 to 70°C	-40 to +85°C	0 to 70°C	-40 to +85°C	0 to 70°C	-40 to +85°C	Unit
Operating	Device Selected; All other inputs	I _{DD} Pipeline	335	345	310	320	275	285	250	260	190	200	mA
Current	≥ V _{IH} or ≤ V _{IL} Output open	I _{DD} Flow Through	210	220	190	200	190	200	140	150	140	150	mA
Standby		I _{SB} Pipeline	20	30	30	40	30	40	30	40	30	40	mA
Current	$ZZ \ge V_{DD} - 0.2 V$	I _{SB} Flow Through	20	30	30	40	30	40	30	40	30	40	mA
Deselect	eselect oly Current Device Deselected; All other inputs $\geq V_{IH} \text{ OR } \leq V_{IL}$	I _{DD} Pipeline	55	65	110	120	105	115	100	110	80	90	mA
Supply Current		I _{DD} Flow Through	40	50	80	90	80	90	65	75	65	75	mA

AC Electrical Characteristics

	Davamatar	Complete	-180		-166		-150		-133		-100		1114
	Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	Clock Cycle Time	tKC	5.5	_	6.0	_	6.7	_	7.5	_	10	_	ns
	Clock to Output Valid	tKQ	_	3.2	_	3.5	_	3.8	_	4	_	4.5	ns
	Clock to Output Invalid	tKQX	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
Pipeline	Clock to Output in Low-Z	tLZ ¹	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
	Clock to Match Valid	tKM	_	3.2	_	3.5	_	3.8	_	4	_	4.5	ns
	Clock to Match Invalid	tKMX	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
	Clock to Match in Low-Z	tMLZ ¹	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
	Clock Cycle Time	tKC	9.1	_	10.0	_	10.0	_	15.0	_	15.0	_	ns
	Clock to Output Valid	tKQ	_	8.0	_	8.5	_	10.0	_	11.0	_	12.0	ns
	Clock to Output Invalid	tKQX	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns
Flow Through	Clock to Output in Low-Z	tLZ ¹	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns
illough	Clock to Match Valid	tKM	_	8.5	_	8.5	_	10.0	_	11.0	_	12.0	ns
	Clock to Match Invalid	tKMX	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns
	Clock to Match in Low-Z	tMLZ ¹	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns
	Clock HIGH Time	tKH	1.3	_	1.3	_	1.5	_	1.7	_	2	_	ns
	Clock LOW Time	tKL	1.5	_	1.5	_	1.7	_	1.9	_	2.2	_	ns
	Clock to Output in High-Z	tHZ ¹	1.5	3.2	1.5	3.5	1.5	3.8	1.5	4	1.5	5	ns
	OE to Output Valid	tOE	_	3.2	_	3.5	_	3.8	_	4	_	5	ns
	OE to output in Low-Z	tOLZ ¹	0	_	0	_	0	_	0	_	0	_	ns
	OE to output in High-Z	tOHZ ¹	_	3.2	_	3.5	_	3.8	_	4	_	5	ns
	MOE to Match Valid	tMOE	_	3.2	_	3.5	_	3.8	_	4	_	5	ns
	MOE to Match in Low-Z	tMOLZ ¹	0	_	0	_	0	_	0	_	0	_	ns
	MOE to Match in High-Z	tMOHZ ¹	_	3.2	_	3.5	_	3.8	_	4	_	5	ns
	Setup time	tS	1.5	_	1.5	_	1.5	_	2.0	_	2.0	_	ns
	Hold time	tH	0.5	_	0.5	_	0.5	_	0.5	_	0.5	_	ns
	ZZ setup time	tZZS ²	5	_	5	_	5	_	5	_	5	_	ns
	ZZ hold time	tZZH ²	1	_	1	_	1	_	1	_	1	_	ns
	ZZ recovery	tZZR	20	_	20	_	20	_	20	_	20	_	ns
	,	1		1				1		1			

Notes:

- 1. These parameters are sampled and are not 100% tested
- 2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold times as specified above.

Rev: 1.03 4/2005 13/21 © 2001, GSI Technology

Pipeline Mode Timing

Flow Through Mode Timing

Pipeline Compare Fill Write Cycle

Flow Through Compare Fill Write Cycle

TQFP Package Drawing (Package T)

Symbol	Description	Min.	Nom.	Max
A1	Standoff	0.05	0.10	0.15
A2	Body Thickness	1.35	1.40	1.45
b	Lead Width	0.20	0.30	0.40
С	Lead Thickness	0.09	_	0.20
D	Terminal Dimension	21.9	22.0	22.1
D1	Package Body	19.9	20.0	20.1
Е	Terminal Dimension	15.9	16.0	16.1
E1	Package Body	13.9	14.0	14.1
е	Lead Pitch	_	0.65	_
L	Foot Length	0.45	0.60	0.75
L1	Lead Length	_	1.00	_
Y	Coplanarity			0.10
θ	Lead Angle	0°	_	7°

Notes:

- 1. All dimensions are in millimeters (mm).
- 2. Package width and length do not include mold protrusion.

Package Dimensions—119-Bump FPBGA (Package B, Variation 2)

Ordering Information

Org	Part Number ¹	Туре	Package	Speed ² (MHz/ns)	T _A	Status
256K x 18	GS841E18AT-180	DCD Pipeline/Flow Through	TQFP	180/8	С	
256K x 18	GS841E18AT-166	DCD Pipeline/Flow Through	TQFP	166/8.5	С	
256K x 18	GS841E18AT-150	DCD Pipeline/Flow Through	TQFP	150/10	С	
256K x 18	GS841E18AT-133	DCD Pipeline/Flow Through	TQFP	133/11	С	
256K x 18	GS841E18AT-100	DCD Pipeline/Flow Through	TQFP	100/12	С	
256K x 18	GS841E18AT-180I	DCD Pipeline/Flow Through	TQFP	180/8	I	
256K x 18	GS841E18AT-166I	DCD Pipeline/Flow Through	TQFP	166/8.5	- 1	
256K x 18	GS841E18AT-150I	DCD Pipeline/Flow Through	TQFP	150/10	I	
256K x 18	GS841E18AT-133I	DCD Pipeline/Flow Through	TQFP	133/11	I	
256K x 18	GS841E18AT-100I	DCD Pipeline/Flow Through	TQFP	100/12	I	
256K x 18	GS841E18AGT-180	DCD Pipeline/Flow Through	Pb-Free TQFP	180/8	С	
256K x 18	GS841E18AGT-166	DCD Pipeline/Flow Through	Pb-Free TQFP	166/8.5	С	
256K x 18	GS841E18AGT-150	DCD Pipeline/Flow Through	Pb-Free TQFP	150/10	С	
256K x 18	GS841E18AGT-133	DCD Pipeline/Flow Through	Pb-Free TQFP	133/11	С	
256K x 18	GS841E18AGT-100	DCD Pipeline/Flow Through	Pb-Free TQFP	100/12	С	
256K x 18	GS841E18AGT-180I	DCD Pipeline/Flow Through	Pb-Free TQFP	180/8	I	
256K x 18	GS841E18AGT-166I	DCD Pipeline/Flow Through	Pb-Free TQFP	166/8.5	- 1	
256K x 18	GS841E18AGT-150I	DCD Pipeline/Flow Through	Pb-Free TQFP	150/10	I	
256K x 18	GS841E18AGT-133I	DCD Pipeline/Flow Through	Pb-Free TQFP	133/11	I	
256K x 18	GS841E18AGT-100I	DCD Pipeline/Flow Through	Pb-Free TQFP	100/12	- 1	
256K x 18	GS841E18AB-180	DCD Pipeline/Flow Through	119 BGA (var. 2)	180/8	С	
256K x 18	GS841E18AB-166	DCD Pipeline/Flow Through	119 BGA (var. 2)	166/8.5	С	
256K x 18	GS841E18AB-150	DCD Pipeline/Flow Through	119 BGA (var. 2)	150/10	С	
256K x 18	GS841E18AB-133	DCD Pipeline/Flow Through	119 BGA (var. 2)	133/11	С	
256K x 18	GS841E18AB-100	DCD Pipeline/Flow Through	119 BGA (var. 2)	100/12	С	
256K x 18	GS841E18AB-180I	DCD Pipeline/Flow Through	119 BGA (var. 2)	180/8	I	
256K x 18	GS841E18AB-166I	DCD Pipeline/Flow Through	119 BGA (var. 2)	166/8.5	I	
256K x 18	GS841E18AB-150I	DCD Pipeline/Flow Through	119 BGA (var. 2)	150/10	I	
256K x 18	GS841E18AI-133I	DCD Pipeline/Flow Through	119 BGA (var. 2)	133/11	I	
256K x 18	GS841E18AB-100I	DCD Pipeline/Flow Through	119 BGA (var. 2)	100/12	- [

Notes:

- 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS841E18AT-166T.
- 2. The speed column indicates the cycle frequency (Mhz) of the device in Pipelined mode and the latency (ns) in Flow Through mode. Each device is Pipeline / Flow through mode selectable by the user.
- 3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
- 4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site for a complete listing of current offerings.

4Mb Synchronous Tag RAM Datasheet Revision History

Rev. Code: Old;New	Types of Changes Format or Content	Page /Revisions;Reason
GS841E18A_r1		Creation of new datasheet
GS841E18A_r1; GS841E18A_r1_01	Content	Moved TCK from U6 (incorrect placement) to U4 (correct placement) on BGA Changed U6 to NC
GS841E18A_r1_01; GS841E18A_r1_02	Format/Content	Updated format Added 180 MHz speed bin Updated timing diagrams Updated mechanical drawings Added Pb-Free info for TQFP
GS841E18A_r1_02; GS841E18A_r1_03	Content	Added Pipeline Compare Fill Write Cycle and Flow Through Compare Fill Write Cycle timing diagrams