Wykład 1 Oznaczenia zbiorów

 $\mathbb N$ - zbiór liczb naturalnych

 $\mathbb Z$ - zbiór liczb całkowitych

 \mathbb{Q} - zbiór liczb wymiernych

 \mathbb{R} - zbiór liczb rzeczywistych

Ciała liczbowe

Definicja 1 Zbiór K, zawierający co najmniej dwa elementy, nazywamy ciałem, jeśli

1. zadane są odwzorowania:

$$+: \mathbb{K} \times \mathbb{K} \to \mathbb{K}, (a,b) \mapsto a+b \ (dodawanie),$$

 $:: \mathbb{K} \times \mathbb{K} \to \mathbb{K}, (a,b) \mapsto a \cdot b \ (mnożenie);$

- 2. wyróżnione są dwa elementy zbioru K: element zerowy, ozn. 0 i element jedynkowy, ozn. 1;
- 3. spełnione są następujące warunki (aksjomaty ciała):
 - (a) $\forall a, b, c \in \mathbb{K}$ a + (b + c) = (a + b) + c laction downing;
 - (b) $\forall a, b \in \mathbb{K}$ a + b = b + a przemienność dodawania;
 - (c) $\forall a \in \mathbb{K} \ a + 0 = a 0 \ jest \ elementem \ neutralnym \ dodawania;$
 - (d) $\forall a \in \mathbb{K} \exists p \in \mathbb{K} \ a + p = 0$ istnienie elementu odwrotnego w dodawaniu;
 - (e) $\forall a, b, c \in \mathbb{K}$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c laczność mnożenia;$
 - (f) $\forall a, b \in \mathbb{K}$ $a \cdot b = b \cdot a$ przemienność mnożenia;
 - (g) $\forall a \in \mathbb{K} \ a \cdot 1 = a 1 \ jest \ elementem \ neutralnym \ mnożenia;$
 - (h) $\forall a, b, c \in \mathbb{K}$ $a \cdot (b+c) = a \cdot b + a \cdot c$ rozdzielność mnożenia względem dodawania;
 - (i) $\forall a \in \mathbb{K} \{0\} \ \exists q \in \mathbb{K} \ a \cdot q = 1$ istnienie elementu odwrotnego w mnożeniu;

Uwaga. W ciele \mathbb{K} istnieje tylko jeden element $p \in \mathbb{K}$ spełniający a+p=0, ozn. -a. Podobnie, dla $a \neq 0$ istnieje tylko jeden $q \in \mathbb{K}$ taki, że $a \cdot q = 1$, ozn. a^{-1} . Ponadto przyjmiemy następujące oznaczenia: a-b=a+(-b) oraz $ab=a \cdot b$.

Przykłady. NIE: $(\mathbb{N}, +, \cdot)$, $(\mathbb{Z}, +, \cdot)$, $(\mathbb{R} - \mathbb{Q}, +, \cdot)$; **TAK**: $(\mathbb{R}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{Z}_p, +_p, \cdot_p)$ dla p - liczby pierwszej.

Ciało liczb zespolonych

Niech $\mathbb{C} := \{(x,y): x,y \in \mathbb{R}\}$. Definiujemy w tym zbiorze następujące działania: **dodawanie**:

$$(x_1,y_1) \oplus (x_2,y_2) := (x_1 + x_2, y_1 + y_2)$$

mnożenie:

$$(x_1, y_1) \odot (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

Wtedy $(\mathbb{C}, \oplus, \odot)$ jest **ciałem**. Nazywamy je ciałem **liczb zespolonych**.

Działania \oplus i \odot są przemienne i łączne.

Liczba (0,0) jest elementem neutralnym działania \oplus .

Liczba (1,0) jest elementem neutralnym działania \odot .

Uwaga. Przyporządkowanie $a \mapsto (a,0)$ zadaje utożsamienie zbioru \mathbb{R} ze zbiorem $\{(r,0) \colon r \in \mathbb{R}\} \subseteq \mathbb{C}$. Przy tym utożsamieniu działania na liczbach rzeczywistych odpowiadają działaniom na ich zespolonych odpowiednikach.

Oznaczenia. (r,0) = r, w szczególności: (0,0) = 0, (1,0) = 1.

$$(x,y) = ((x,0) \odot (1,0)) \oplus ((y,0) \odot (0,1))$$

$$(0,1)^2 = (0,1) \odot (0,1) = -(1,0)$$

Dodatkowo oznaczamy: (0,1) = j, gdzie $j^2 = -1$, j nazywamy **jednostką urojoną**

Postać kanoniczna liczby zespolonej

$$z = x + j \cdot y$$

x - część rzeczywista liczby zespolonej z,ozn. $x={\rm Re}~z$ y - część urojona liczby zespolonej z,ozn. $y={\rm Im}~z$

Uwaga. Dla liczby zespolonej z, Re z i Im z są liczbami **rzeczywistymi**.

Uwaga. Liczby zespolone z_1 i z_2 są równe wtedy i tylko wtedy, gdy (Re z_1 =Re z_2 i Im z_1 =Im z_2).

Uwaga. Niech $z_1 = x_1 + jy_1$, $z_2 = x_2 + jy_2$. Wtedy

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1)$$

Definicja 2 *Liczbą sprzężoną* z liczbą zespoloną z = x + jy nazywamy liczbę $\overline{z} = x - jy$.

Uwaga.
$$\frac{\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}}{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

Dzielenie liczb zespolonych: $\frac{z_1}{z_2}=\frac{z_1\cdot\overline{z_2}}{z_2\cdot\overline{z_2}}$, dla $z_2\neq 0.$

Interpretacja geometryczna liczby zespolonej

Definicja 3 Liczbę rzeczywistą $\sqrt{x^2 + y^2}$ nazywamy **modułem** liczby zespolonej z = x + jy i oznaczamy przez |z|.

Uwaga. Na płaszczyźnie zespolonej:

|z| - odległość punktu z od początku układu O

 $|z_1-z_2|$ - odległość punktów z_1 i z_2

Własności modułu

1.
$$|z| = 0 \Leftrightarrow z = 0$$

2.
$$|z_1 + z_2| \leq |z_1| + |z_2|$$
 (nierówność trójkąta)

3.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

4.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, dla $z_2 \neq 0$

5.
$$|z|^2 = z \cdot \overline{z}$$

6.
$$|z| = |\overline{z}|$$

Postać trygonometryczna liczby zespolonej

Twierdzenie 1 Dla każdej liczby zespolonej $z=x+jy,\ z\neq 0$, istnieje dokładnie jedna liczba $\phi\in (-\pi;\pi)$, taka że $\cos\phi=\frac{x}{|z|}$ i $\sin\phi=\frac{y}{|z|}$.

Liczbę ϕ nazywamy **argumentem głównym** liczby zespolonej z, ozn. $\phi = \arg z$.

Każdą liczbę zespoloną $z \neq 0$ można przedstawić w **postaci trygonometrycznej**:

$$z = |z|(\cos \beta + j \sin \beta)$$
, gdzie $\beta \in \mathbb{R}$.

Jeśli $\phi = \arg z$, to $\beta = \phi + 2k\pi$, gdzie $k \in \mathbb{Z}$. Liczbę β nazywamy **argumentem** liczby z. Zbiór wszystkich argumentów liczby z ozn. Argz.

Uwaga. Liczba z = 0 nie posiada argumentu.

Uwaga. $\arg \overline{z} = -\arg z$.

Uwaga. Jeśli $z_1 = |z_1| \cdot (\cos \phi_1 + j \sin \phi_1), z_2 = |z_2| \cdot (\cos \phi_2 + j \sin \phi_2),$ to:

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot (\cos(\phi_1 + \phi_2) + j\sin(\phi_1 + \phi_2))$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot (\cos(\phi_1 - \phi_2) + j\sin(\phi_1 - \phi_2)).$$

Wzór Moivre'a: $z^n = |z|^n \cdot (\cos n\phi + j \sin n\phi)$

W szczególności: $(\cos\phi + j\sin\phi)^n = \cos n\phi + j\sin n\phi$.

Postać wykładnicza liczby zespolonej

$$z = |z| \cdot e^{j\phi},$$

gdzie $\phi \in \text{Arg}z$.