Appl. No. 09/672,753 Amdt. dated 16 February 2005 Reply to Office Action of 16 November 2004

Amendments to the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the application: Listing of Claims:

1. (Currently Amended) Apparatus for a communication system having a sending station for sending data upon a communication channel, the communication channel susceptible to fading, said apparatus for the sending station for converting the data into a form to facilitate communication thereof upon the communication channel, said apparatus comprising:

a multi-dimensional trellis-coded modulator <u>having a signal constellation</u> partitioned into subsets of increasing minimum squared distances, and coupled to receive indications of the data to be sent by the sending station, said multi-dimensional trellis-coded modulator for convolutionally encoding the data according to a rule of correspondence comprising defining intrasubset transitions to correspond to longer-than-average length transitions, and defining intersubset transitions to correspond to shorter length transitions, and for mapping the data, once encoded, to <u>a the</u> signal constellation, the signal constellation positioned into subsets of selected minimum squared distances, and forming N-dimensional, trellis-encoded sequences therefrom, the N-dimensional, trellis-encoded sequences of dimensional values greater than two;

a first transmit antenna and at least a second transmit antenna coupled to said multi-dimensional, trellis-coded modulator, a first N-dimensional sequence of the N-dimensional, trellis-encoded sequences transduced by said first transmit antenna and a second N-dimensional sequence of the N-dimensional, trellis-encoded sequences transduced by said second transmit antenna, the first and second N-dimensional sequences exhibiting orthogonal transmit diversity.

2-6. (Canceled)

Appl. No. 09/672,753 Amdt. dated 16 February 2005 Reply to Office Action of 16 November 2004

- 7. (Original) The apparatus of claim 1 wherein the multi-dimensional trelliscoded modulator utilizes a Wei construction.
- 8. (Original) The apparatus of claim 1 wherein the first and second N-dimensional sequences applied to said first and second transmit antennas, respectively, comprise Radon-Hurwitz transforms.
- 9. (Previously Presented) The apparatus of claim 1 further comprising a mapper coupled between said multi-dimensional trellis coded modulator and said first and at least second transmit antennas, said mapper for mapping OFDM (Orthogonal Frequency Division Multiplexer) symbols to said first and second transmit antennas.

10. (Canceled)

- 11. (Original) The apparatus of claim 1 wherein the communication system forms a WLAN (Wireless Local Area Network) having an access point and wherein said multi-dimensional trellis-coded modulator and said first and second transmit antennas form portions of the access point.
- 12. (Previously Presented) The apparatus of claim 11 wherein the data communicated by said first and second transmit antennas is communicated at a rate specified by an IEEE 802.11(a) standard.
- 13. (Currently Amended) A method for communicating in a communication system having a sending station for sending data upon a communication channel, the communication channel susceptible to fading, said method for converting the data into a

form to facilitate communication thereof upon the communication channel, said method comprising:

convolutionally encoding the data according to a rule of correspondence comprising defining intrasubset transitions to correspond to longer-than-average length transitions and defining intersubset transitions to shorter length transitions;

mapping the data, once encoded during said operation of convolutionally encoding, to a signal constellation, the signal constellation positioned into subsets of selected <u>increasing</u> minimum squared distances;

modulating the data to be communicated upon the communication channel to form N-dimensional, trellis-encoded sequences therefrom, the N-dimensional, trellisencoded sequences of dimensional values greater than two; and

applying a first N-dimensional trellis-encoded sequence formed during said operation of modulating to a first transmit antenna and at least a second N-dimensional trellis-encoded sequence formed during said operation of modulating to at least a second transmit antenna, the first and second N-dimensional trellis-encoded sequences exhibiting orthogonal transmit diversity.

14-17. (Canceled)

- 18. (Previously Presented) The method of claim 13 wherein the first and second N-dimensional sequences applied to the first and second transmit antennas, respectively, comprise Radon-Hurwitz transforms.
- 19. (Original) The method of claim 13 wherein the communication system comprises a WLAN (Wireless Local Area Network) having an access point and wherein said operations of modulating and applying are performed at the access point.

Appl. No. 09/672,753 Amdt. dated 16 February 2005 Reply to Office Action of 16 November 2004

- 20. (Previously Presented) The method of claim 19 wherein the first and second N-dimensional trellis-encoded sequences are applied during said operation of applying at rates specified pursuant to an IEEE 802.11(a) standard.
 - 21. (Canceled)