Q1) You are hired as a data engineer for ShopSmart, a national retail chain that operates 100+ stores and an online e-commerce platform. ShopSmart wants to build a central analytics warehouse to analyze sales performance, customer behavior, and inventory trends across multiple channels.

1 Identify Fact and Dimension Tables

Fact Tables

Fact Table	Measures / Metrics
Sales_Fact	<pre>sales_amount, quantity_sold, discount_applied, profit</pre>
Inventory_Fact	stock_on_hand, reorder_level, units_sold
Promotion_Fact	<pre>promotion_discount, promotion_revenue, product_count</pre>

Dimension Tables

Dimension Table	Attributes
Customer_Dim	<pre>customer_id, first_name, last_name, gender, birth_date, loyalty_level, city, state, region</pre>
Product_Dim	<pre>product_id, product_name, category, subcategory, brand, supplier_id, price</pre>
Store_Dim	store_id, store_name, city, state, region, store_manager
Time_Dim	date_key, date, day, week, month, quarter, year, holiday_flag
Promotion_Dim	<pre>promotion_id, promotion_name, start_date, end_date, discount_percent</pre>

2 Star Schema Design

Star Schema: Fact tables in the center, directly connected to dimension tables.

```
Customer_Dim

|
Product_Dim - Sales_Fact - Time_Dim
|
|
Store_Dim
```

- Fact table: Sales_Fact
- Dimensions: Customer Dim, Product Dim, Store Dim, Time Dim
- Advantages:
 - Simple structure for fast querying
 - o Denormalized dimensions reduce joins

3 Snowflake Schema Design

Snowflake Schema: Dimension tables normalized into sub-dimensions.

```
Customer_Dim

|
|
|
| Sales_Fact
| | \
|
| Product_Dim Store_Dim Time_Dim
|
| Category_Dim
```

- Product Dim normalized to Category Dim
- Store Dim could normalize city/state/region
- Advantages:
 - o Reduces data redundancy
 - Smaller storage footprint
- Disadvantages:
 - \circ More joins \rightarrow slower query performance

Slowly Changing Dimensions (SCD)

- Customer Dim: Address or loyalty level may change → Type 2 SCD
- Product Dim: Product category updates → Type 2 SCD
- This ensures **historical analytics** are accurate.

5 Example Queries

Total Sales per Region per Month

```
t.year,
    t.month,
    s.region,
    SUM(f.sales_amount) AS total_sales
FROM Sales_Fact f
JOIN Time_Dim t ON f.time_key = t.date_key
JOIN Store_Dim s ON f.store_key = s.store_id
GROUP BY t.year, t.month, s.region
ORDER BY t.year, t.month, s.region;
```

Top 5 Products by Revenue

```
SELECT
    p.product_name,
    SUM(f.sales_amount) AS revenue
FROM Sales_Fact f
JOIN Product_Dim p ON f.product_key = p.product_id
GROUP BY p.product_name
ORDER BY revenue DESC
LIMIT 5;
```

Customer Retention Analysis

```
SELECT
     c.loyalty_level,
     COUNT(DISTINCT f.customer_key) AS active_customers
FROM Sales_Fact f
JOIN Customer_Dim c ON f.customer_key = c.customer_id
WHERE f.time_key BETWEEN '2025-01-01' AND '2025-12-31'
GROUP BY c.loyalty_level;
```

6 Justification of Schema Choice

Schema	Use Case	Pros	Cons
Star	Fast reporting, dashboards	Simple queries, good for BI	Slight data redundancy
Snowflake	Normalized data warehouse	Saves storage, reduces redundancy	Complex queries, slower joins

Q2 You are a data engineer for QuickEats, an online food delivery platform operating in multiple cities. QuickEats collects and processes data from multiple sources. Currently, the system struggles with scalability, real-time processing, and analytics performance. Suggest a suitable model.

1 Identify Fact and Dimension Tables

✓ Fact Tables

Fact Table Measures / Metrics

Orders Fact: order_amount, delivery_fee, discount_amount, total_payment

delivery_time, order_status

Delivery Fact: delivery_time, distance_traveled, pickup_time, drop_time,

delivery rating

Payment Fact: payment amount, tax amount, commission, payment status

App_Events_Fact: click_count, session_duration, device_type, action_type

Dimension Tables

Dimension Table Attributes

Customer Dim: customer id, name, phone, email, signup date, city, loyalty level

Restaurant Dim: restaurant_id, restaurant_name, cuisine_type, city, rating,

partner_since

DeliveryAgent Dim: agent id, agent name, vehicle type, city, experience level

Time Dim: time id, date, day, week, month, quarter, year

Location Dim: location id, city, state, region

PaymentMethod Dim: payment method id, method name, provider

2 Star Schema Design (Recommended for BI Dashboards)

✓ Advantages:

- Fast performance for reporting.
- Simple joins.
- Best for dashboards (Power BI, Tableau, Looker).

3 Snowflake Schema Design (Normalized)

```
Customer_Dim

|
Restaurant_Dim - Orders_Fact - Time_Dim
|
DeliveryAgent_Dim
|
Location_Dim
|
Region_Dim
```

V Features:

- Normalized dimensions like Location → Region → Country.
- Reduces duplicate data.

Slowly Changing Dimensions (SCD)

Dimension	Attribute Change Example	SCD Type
Customer_Dim	Loyalty level upgrade from Silver → Gold	Type 2
Restaurant_Dim	Updated rating or menu expansion	Type 2
DeliveryAgent_Dim	Vehicle type change	Type 2
Location_Dim	City name correction	Type 1

5 Example Queries

✓ Total Revenue by City

```
SELECT 1.city, SUM(o.total_payment) AS revenue
FROM Orders_Fact o
JOIN Location_Dim 1 ON o.location_key = 1.location_id
GROUP BY 1.city
ORDER BY revenue DESC;
```

✓ Top 5 Restaurants by Orders

SELECT r.restaurant_name, COUNT(o.order_id) AS total_orders FROM Orders_Fact o
JOIN Restaurant_Dim r ON o.restaurant_key = r.restaurant_id
GROUP BY r.restaurant_name
ORDER BY total_orders DESC
LIMIT 5;

Average Delivery Time by Agent

SELECT d.agent_name, AVG(f.delivery_time) AS avg_delivery_time
FROM Delivery_Fact f
JOIN DeliveryAgent_Dim d ON f.agent_key = d.agent_id
GROUP BY d.agent_name
ORDER BY avg_delivery_time;

6 Suggested Modern Architecture for QuickEats

Layer Technology

Data Ingestion Kafka / AWS Kinesis (Real-time), Airbyte/Fivetran

(Batch)

Data Storage Data Lake (S3/Google Cloud), Warehouse

(Snowflake/BigQuery)

Processing Apache Spark, Flink (Real-time stream processing)

ETL/ELT dbt + Airflow

BI Dashboard Power BI, Tableau, Looker

Orchestration Apache Airflow

7 Justification of Data Model Choice

Schema	Use Case	Advantages	Disadvantages
Star	Sales dashboards, business reporting	Fast queries, easy to maintain	Some redundancy
Snowflake	Large dimensional data	Saves space, normalized	More joins
Data Lakehouse (Recommended)	Real-time + Analytics	Supports batch + streaming, scalable	Slightly complex setup

Q3) You are a data engineer for StreamFlix, a global video streaming platform (like Netflix). StreamFlix collects millions of events per day. The company wants to build a high-performance analytics warehouse to support:

- Real-time viewer engagement analytics
- Top trending videos per region
- Al models for recommendation engines

1 Identify Fact and Dimension Tables

✓ Fact Tables

Fact Table Measures / Metrics

Viewership Fact: watch_duration, progress_percent, buffering_time,

resolution played, watch status

StreamingSession_Fact: session_duration, device_time_spent, data_consumed_mb

Subscription_Fact: subscription_amount, discount, renewal_status
Search Fact: total searches, click throughs, search time

Recommendation Fact: recommendation clicks, recommendation impressions

Dimension Tables

Dimension Table Attributes

User Dim: user_id, name, gender, age_group, country, subscription_type,

join date

Video Dim: video_id, title, genre, sub_genre, language, release_year,

maturity_rating

Device_Dim: device_id, device_type, os, app_version

Time Dim: time id, date, hour, day, week, month, quarter, year

Location Dim: location id, country, region, city

SubscriptionPlan Dim: plan id, plan name, price, resolution limit, screens allowed

2 Star Schema Design (For Fast BI Reporting)

Advantages

- Optimized for query performance
- Simple structure for dashboards
- Ideal for daily analytics

3 Snowflake Schema Design (Normalized Model)

```
User_Dim

|
Video_Dim - Viewership_Fact - Time_Dim
|
Genre_Dim
|
Device_Dim
|
Location_Dim
|
Region_Dim
```

- ✓ Advantages: Reduces redundancy
- X More joins → Slight slower performance

Handling Slowly Changing Dimensions (SCD)

Dimension	Change Example	SCD Type
User_Dim	Subscription changes from Basic → Premium	Type 2
Video_Dim	Video updated from SD \rightarrow HD version	Type 2
Device_Dim	App version updates	Type 1
SubscriptionPlan_Dim	Plan pricing updates	Type 2

5 Example Analytical Queries

Top Trending Videos Per Region

```
SELECT l.region, v.title, COUNT(f.video_id) AS total_views
FROM Viewership_Fact f

JOIN Video_Dim v ON f.video_key = v.video_id

JOIN Location_Dim l ON f.location_key = l.location_id

GROUP BY l.region, v.title

ORDER BY total_views DESC

LIMIT 10;
```

Average Watch Time by Subscription Type

SELECT u.subscription_type, AVG(f.watch_duration) AS avg_watch_time
FROM Viewership_Fact f
JOIN User_Dim u ON f.user_key = u.user_id
GROUP BY u.subscription type;

Device Usage Analysis

SELECT d.device_type, COUNT(f.session_id) AS sessions
FROM StreamingSession_Fact f
JOIN Device_Dim d ON f.device_key = d.device_id
GROUP BY d.device type;

6 Recommended Modern Architecture (Streaming + Batch)

Layer **Technology** Kafka / AWS Kinesis / **Event Ingestion** Pub/Sub Apache Spark Streaming / **Real-Time Processing** Flink Batch ETL Airflow + dbt Data Lake (S3/GCS) + Delta Storage Lake Snowflake / BigQuery / Warehouse Redshift Feast (for ML Feature Store Recommendations) Tableau / Power BI / Looker BI Layer

7 Justification of Schema Choice

Model	Use Case	Pros	Cons
Star Schema	Viewer reports, dashboards	Fast query, simple	Some redundancy
Snowflake	Large metadata handling	Efficient storage	Complex joins
Lakehouse (🔽	Real-time + ML use	Supports streaming +	Setup
Recommended)	cases	batch + AI	complexity