

Bac Maths Classe:

Série: Similitudes et primitives

Nom du Prof: Mohamed Hedi

Ghomriani

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(\$\)35 min

6 pts

Le plan est orienté dans la figure 1 de l'annexe jointe.

- **ABC** est un triangle équilatéral directe tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3} [2\pi]$.
- C_1 est le cercle circonscrit au triangle **ABC** et O son centre.
- *I* est le milieu du segment [*BC*] .
- AICD est un rectangle direct.
- 1) Soit f le déplacement tel que f(A) = C et f(B) = A.

Montrer que f est une rotation dont on précisera son centre et une mesure de son angle.

- 2) Soit g l'antidéplacement tel que g(A) = C et g(B) = A.
 - a) Justifier que g est une symétrique glissante.
 - b) Montrer que $\mathbf{g} = \mathbf{t}_{\mathbf{B}\mathbf{I}} \mathbf{o} \mathbf{S}_{\Delta}$, où Δ est la médiatrice du segment $[\mathbf{A}\mathbf{I}]$.
- 3) Soit h l'homothétie de centre A et telle que $\mathbf{h}(\mathbf{O}) = \mathbf{I}$. On pose $\mathbf{\varphi} = \mathbf{g} \mathbf{o} \mathbf{h} \mathbf{o} \mathbf{f}$.
 - a) Montrer que φ est une similitude indirecte de rapport $\frac{3}{2}$.
 - b) Montrer que $\varphi(\mathbf{B}) = \mathbf{C}$ et $\varphi(\mathbf{O}) = \mathbf{D}$.
- 4) Soit $\mathbf{E} = \varphi(\mathbf{C})$.
 - a) Montrer que le triangle DCE est isocèle en D.
 - b) Justifier que $(\overrightarrow{DC}, \overrightarrow{DE}) = \frac{2\pi}{3} [2\pi]$.
 - c) Construire alors le point E.
 - d) Soit Ω le centre de φ .

Montrer que $\overrightarrow{\Omega \mathbf{B}} = \frac{4}{5} \overrightarrow{\mathbf{B} \mathbf{E}}$. Construire le point Ω .

5) On pose $\mathbf{C}_2 = \boldsymbol{\varphi}(\mathbf{C}_1)$.

Le cercle C_2 coupe le cercle C_1 au point C et en un autre point M . On pose :

 $N = \phi(M)$.

Montrer que les points Ω , \mathbf{B} et \mathbf{M} sont alignés. Construire alors le point \mathbf{N} .

Exercice 2

(5) 15 min

3 pts

Soit la fonction \mathbf{h} définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ par } : \mathbf{h}(\mathbf{x}) = \frac{1}{1 - \sin(\mathbf{x})}$.

- 1) Montrer que : $\forall \mathbf{x} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\mathbf{h}(\mathbf{x}) = \frac{1 + \sin(\mathbf{x})}{\cos^2(\mathbf{x})}$.
- 2)Déterminer la primitive de **h** sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ qui s'annule en 0.

Exercice 3

(S) 25 min

5 pts

La courbe $\mathbf{C_f}$ ci-dessous est la représentation graphique, dans un repère orthonormé d'une fonction \mathbf{f} définie et dérivable sur $\left[-5,5\right]$.

F est la primitive de f sur [-5,5] qui s'annule en 5

- 1) Déterminer le sens de variation de F
- 2) Montrer que $\mathbf{F}(\mathbf{x}) \le 0 \quad \forall \mathbf{x} \in [-5, 5]$
- 3)Montrer que la tangente à $\mathbf{C_F}$ au point d'abscisse 0 est parallèle à $\Delta: \mathbf{y} = \mathbf{x}$
- 4) Montrer que : $0 \le \mathbf{F}(2) \mathbf{F}(-2) \le 4$
- 5) Montrer que le point A(0,F(0)) est un point d'inflexion pour C_F

Exercice 4

(S) 25 min

5 pts

La

courbe (C) tracée ci-dessous représente une fonction f dérivable sur $[-2,+\infty[$.

- $y = \sqrt{2}$ est la tangente à C au point d'abscisse2
- 1) Justifier qu'il existe une **unique** primitive F de f sur $[-2,+\infty[$ dont la

représentation graphique C_F admet au point d'abscisse 3 une tangente d'équation : y = x + 1

- 2) Déterminer le sens de variation de F
- 3) C_F admet au point d'abscisse 2 une tangente d'équation : $\mathbf{y} = \sqrt{2} \ \mathbf{x} + 2 2\sqrt{2}$

Montrer que le point $\mathbf{A}(2,2)$ est un point d'inflexion à C_F

4)

Soit la fonction g définie sur $\left[\frac{1}{9}, +\infty\right]$ par $\mathbf{g}(\mathbf{x}) = \mathbf{F}\left(\frac{1}{\sqrt{\mathbf{x}}} - 1\right)$

- a) Montrer que g est dérivable sur $\left| \frac{1}{9}, +\infty \right|$
- b) Déterminer le sens de variation de g sur $\left]\frac{1}{9}, +\infty\right[$