المادة: رياضيات – لغة فرنسية الشهادة:الثانوية العامة الفرع: الاقتصاد والاجتماع نموذج رقم: 1/ 2019 المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- [4 points]

Une usine fabrique un article. Le tableau suivant donne l'offre y de ce produit, en milliers des articles, en fonction du prix unitaire x en milliers de LL.

Prix x _i en milliers de LL	2	3	5	7	10
Offre y _i en milliers des articles	5	7	8	9	11

Le modèle reste valable pour un prix de 20 000 LL

- 1) Déterminer une équation de la droite de régression $(D_{y/x})$.
- 2) Estimer l'offre des articles pour un prix unitaire de 15 000 LL.
- 3) La demande est modalisée par la droite ($D_{z/x}$) d'équation z = -0.567x + 8.266.

Les deux droites $(D_{y/x})$ et $(D_{z/x})$ se coupent en un point I(3,158;6,474).

- Donner une interprétation économique aux coordonnées de ce point. 4) Calculer, en LL, le revenu assuré sous le prix unitaire de 7000 L.L.
- 5) Soit e(x) l'élasticité de la demande par rapport au prix unitaire x.
 - a) Montrer que l'élasticité de la demande est donnée par $e(x) = \frac{-567x}{-567x + 8266}$
 - b) Calculer e(4). Interpréter économiquement la valeur ainsi obtenue.

II- [4 points]

Partie A

Nisrine dépose 4 000 000 L.L dans une banque à un taux d'intérêt annuel de 0,5% capitalisé annuellement. Après la capitalisation des intérêts, Nisrine ajoute, annuellement, une somme de 200 000 LL à son compte.

Soit V_n le compte de Nisrine, en millions de L.L, après n années (n est un entier naturel). Ainsi $V_0 = 4$.

- 1) Justifier, pour tout entier naturel n, que $V_{n+1} = 1,005V_n + 0,2$.
- 2) Soit (W_n) la suite définie, pour tout entier naturel n, par $W_n = V_n + \alpha$.
 - a) Calculer α si (W_n) est une suite géométrique de raison 1,005.
 - b) Prends $\alpha = 40$. Exprimer W_n en fonction de n et déduire que $V_n = 44(1,005)^n 40$.
- 3) a) Calculer le compte de Nisrine après dix ans.
 - b) Calculer le montant d'intérêt gagné par Nisrine durant ces dix années.
- 4) Montrer que (V_n) est une suite strictement croissante.

Partie B

À la même date où Nisrine a déposé la somme de 4 000 000 LL, Nadia a investi 8 000 000 LL dans la même banque suivant la règle : $U_{n+1} = 1,005U_n$, où U_n est le compte de Nadia, en millions de L.L, après n années (n est un entier naturel). Alors $U_0 = 8$.

- 1) Montrer que (U_n) est une suite géométrique et que $U_n = 8(1,005)^n$.
- 2) On admet que (Un) est encore une suite strictement croissante. Après combien d'années le compte de Nisrine dépassera celui de Nadia pour la première fois ?

III- [4 points]

Une urne U contient 4 boules blanches, 5 boules rouges et 3 boules vertes.

Partie A

On tire successivement et sans remise 3 boules de l'urne U.

- 1) Calculer la probabilité de tirer trois boules de même couleur.
- 2) Montrer que la probabilité de tirer au moins une boule verte et au moins une boule rouge parmi

les trois boules tirées est
$$\frac{21}{44}$$
.

Partie B

Un joueur paie une somme de 10 000 LL pour participer dans un jeu.

Le jeu se déroule comme le suivant:

Le joueur tire au hasard et simultanément deux boules de l'urne U.

- ➤ Si au plus l'une des deux boules tirées est vertes, le joueur reçoit une somme de 5 000 LL et le jeu s'arrête.
- ➤ Si les deux boules tirées sont vertes, elles sont remises à l'extérieur de l'urne U et le joueur reçoit une somme de 8 000 LL.

Après-ça, deux boules sont tirées simultanément et au hasard parmi les 10 boules restantes dans l'urne II

- Si ces deux boules tirées sont de même couleur, le joueur reçoit une somme de 12 000 LL et le jeu s'arrête ;
- Si non, le joueur recoit une somme de 2 000 LL et le jeu s'arrête.

Soit X la variable aléatoire égal au gain algébrique du joueur (Le gain algébrique peut-être nul, positif ou négatif).

- 1) Justifier que les valeurs de X sont : -5 000 ; 0 et 10 000.
- 2) Montrer que $P(X = 0) = \frac{29}{990}$.
- 3) Déterminer la loi de probabilité de X.
- 4) Attendez-vous que ce joueur va gagner ? Justifier.

IV- [8 points]

Soit f la fonction définie sur $[0;+\infty[$ par $f(x)=(-2x-1)e^{-x}+2$ et l'on désigne par (C) sa courbe représentative dans un repère orthonormé (O,i,j).

Partie A

- 1) Déterminer $\lim_{x\to +\infty} f(x)$. Déduire une équation d'une asymptote a (C).
- 2) Montrer que $f'(x) = (2x 1)e^{-x}$ et construire le tableau de variations de f.
- 3) Tracer (C) et son asymptote.
- 4) La droite (d) d'équation $y = \frac{x}{2}$ coupe la courbe (C) en un seul point d'abscisse α . Vérifier que 3.5 < α < 3.6.
- 5) Soit F la fonction définie sur $[0;+\infty[$ par $F(x) = (2x+3)e^{-x} + 2x$.
 - a) Montrer que F est une primitive de f.
 - b) Déduire l'aire du domaine limité par la courbe (C), l'axe des abscisses et les droites d'équations x = 0 et x = 1.

Partie B

Dans ce qui suit on suppose que $\alpha = 3.55$

Une usine fabrique de souvenirs. Le coût total de production de souvenirs C_T , en millions de LL, est modalisé par $C_T(x) = f(x)$ **seulement** pour tout x dans [0,5;4], où x, en milliers représente le nombre de souvenirs produits. $(0,5 \le x \le 4)$.

- 1) Calculer, en L.L, le coût de production de 3 000 souvenirs. En déduire, dans ce cas, le coût moyen de production d'un souvenir.
- 2) Le tableau ci-contre est le tableau de variations de la fonction du profit P de cette usine, en millions LL, sur [0,5; 4].

- c) La fonction de profit P est définie sur [0,5;4] par $P(x) = x 2 + (2x + 1)e^{-x}$. Montrer que la fonction de revenu R, en millions LL, est modalisée par R(x) = x sachant que toute la production est vendue.
- d) Calculer le nombre des souvenirs à vendre pour que le revenu soit le double du coût total de production.

المادة: رياضيات – لغة فرنسية الشهادة: الثانوية العامة الفرع: الاقتصاد والاجتماع نموذج رقم: 1/ 2019 المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح

QI	Réponses	Notes
1	$(D_{y/x})$: y = 0,679x + 4,330	0,5
2	Offre = 0,679(15) + 4,330 = 14, 515 en milliers des articles alors c'est 14515 articles	1,5
3	Le prix d'équilibre est 3158 L.L et la quantité d'équilibre est 6474 articles.	0,75
		0,75
4	Revenu = (7)(-0,567(7) + 8,266)(1000) = 30079 L.L	1,5
5a	$e(x) = x. \frac{z'}{z} = \frac{-567x}{-567x + 8266}$	1
	e(4) = -0,378	0,25
5b	A partir de 4000 LL si le prix augmente de 1% la demande diminue de 0,378%	0,75

QII	Réponses	Notes
A1	$V_{n+1} = (1+0.5/100)V_n + 200000/1000000 = 1,005V_n + 0.2$	0,5
A2a	$W_{n+1} = 1,005W_n$; $\alpha = 40$	1
4.2h	$W_n = 44(1,005)^n$;	0,25
A2b	$V_n = 44(1,005)^n - 40$	0,25
A3a	$V_{10} = 6.250165 \text{ donc c'est } 6250165 \text{L.L}$	1
A3b	I = 6 250 165 – (4 000 000+200 000x10)= 250 165 LL	0,5
A4	$V_{n+1} - V_n = 44(1,005)^{n+1} - 44(1,005)^n = 44(1,005)^n(1,005-1)$	1,5
	= $0.22(1.005)^n > 0$ alors (V_n) est une suite strictement croissante	
	La raison commune est 1,005 ;	0,25
B1	$U_n = U_0 \times q^n = 8(1.005)^n$	0,25
B2	$V_n > U_n$ donne n > 21,12 alors n = 22.	1,5
	Donc c'est après 22 ans.	,-

QIII	Réponses	Notes
A1	P(BBBouRRR ouVVV) = $\frac{A_4^3 + A_5^3 + A_3^3}{A_{12}^3} = \frac{3}{44}$	1
A2	$(2V \text{ et 1R}) \text{ ou } (1V \text{ et 2R}) \text{ ou } (1V, 1R \text{ et 1B}) \text{ avec } (2V \text{ et 1R}) \text{ peut-être écrit comme } \frac{3!}{2!} = 3$ façons: VVR, VRV, RVV et de même pour (2R et 1V), en plus comme (1V, 1R et 1B) peut-être écrit en 3! façons, alors : $P = \frac{A_3^2 \times A_5^1 \times 3 + A_3^1 \times A_5^2 \times 3 + A_3^1 \times A_5^1 \times A_4^1 \times 3!}{A_{12}^3} = \frac{21}{44}$	1,5
B1	5000 – 10000 = -5000; toutes les deux premières boules tirées ne sont pas vertes et le jeu s'arrête. 8000 + 2000 – 10000 = 0; les 2 premières boules tirées sont vertes et les 2 deuxièmes boules tirées sont des couleurs différents. 8000 + 12000 – 10000 = 10000 ; les 2 premières boules tirées sont vertes et les 2 deuxièmes boules tirées sont de même couleur.	1
В2	$P(X=0) = \frac{C_3^2}{C_{12}^2} \times \left(1 - \frac{C_4^2 + C_5^2}{C_{10}^2}\right) = \frac{29}{990}. \text{ Les 2 premières boules tirées sont vertes } \frac{C_3^2}{C_{12}^2} \text{ et les}$ $2 \text{ deuxièmes boules tirées des 10 sont des couleurs différents (RV, RB, BV)}$ $\frac{C_5^1 C_1^1 + C_5^1 C_4^1 + C_4^1 C_1^1}{C_{10}^2} = \left(1 - \frac{C_4^2 + C_5^2}{C_{10}^2}\right) \text{"opposé des 2 boules de même couleur"}$	1
В3	$P(X = -5000) = 1 - \frac{C_3^2}{C_{12}^2} = \frac{21}{22}$ $P(X = 10000) = \frac{C_3^2}{C_{12}^2} \times \frac{C_4^2 + C_5^2}{C_{10}^2} = \frac{8}{495} \text{ et } P(X = 0) = \frac{29}{990}$	2
B4	EX = 0 + (-5000)(21/22) + (10000)(8/495) = -4611,11 < 0 On s'attend donc à ce que le joueur de perde.	0,5

QIV	Réponses	Notes
A1	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-2xe^{-x} - e^{-x} + 2) = 2 \text{ ; y = 2 AH}$	
A2	$f'(x) = (-2 + 2x + 1)e^{-x} = (2x - 1)e^{-x}$ $\frac{x}{f'(x)} - 0 + \frac{1}{2}$ $f(x)$ $\frac{1}{0,786}$	2

