Machine Learning in Python: Regression Analysis

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you should be able to:

- Define what regression is
- Explain the difference between regression and classification
- Name some applications of regression

Classification Review

Classification:
Given input variables,
predict category

Regression

Regression:
Given input variables,
predict numeric value

Regression Examples

- Forecast high temperature for next day
- Estimate average house price for a region
- Determine demand for a new product
- Predict power usage

Jata Science

Target is provided

	Today's High	Today's Low	Month	Tomorrow's High
\ \	79	64	July	81
	60	45	October	58
	68	49	May	65
	57	47	January	54

Training vs. Testing Phases

Datasets

Training Data

Adjust model parameters

Validation Data

Determine when to stop training (avoid overfitting)

Estimate generalization performance

Test Data

Evaluate performance on new data

- Predict number from input variables
- Regression is a supervised task
- Target variable is numerical

Machine Learning in Python: Linear Regression

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you should be able to:

- Describe how linear regression works
- Discuss how least squares is used in linear regression
- Define simple and multiple linear regression

Linear Regression

- Captures relationship between numerical output and input variables
- Relationship is modeled as linear

Regression Task:

Given petal width, predict petal length.

Regression Task:

Given petal width, predict petal length.

Least Squares Algorithm

Training linear regression model adjusts model parameters to fit samples

b: y-intercept

Least Squares Method

sample

Goal: Find regression line that makes sum of residuals as small as possible

Applying model: Given petal width =1.5, prediction is petal length = 4.5

Types of Linear Regression

Simple Linear Regression

Multiple Linear Regression

Input has one variable

Input has >1 variables

Linear Regression Summary

 Captures linear relationship between numerical output and input variables

Model can be fitted using least squares