Erasmus School of Economics

# **MOOC** Econometrics

Lecture 4.2 on Endogeneity: Consequences

Dennis Fok

**Erasmus University Rotterdam** 

# Ezafus

# Simulated example, $y = 1 + 2x^* + u$



# **Endogeneity**

- Common problem in economics
  - Omitted variables
  - Strategic behavior
  - Measurement errors
  - $\rightarrow X$  is correlated with  $\varepsilon$
- Endogeneity violates the basic assumptions
- $\rightarrow$  How bad is this?

Ezafus,

Lecture 4.2, Slide 2 of 12, Erasmus School of Economics

## Measurement error example

Under measurement error (and endogeneity in general):

• we obtain the wrong coefficients!

#### Test

Can we say anything about the direction of the bias?

Erafus

#### Direction of bias in the measurement error case

OLS is "biased towards zero"

ightarrow OLS underestimates true effect

#### Intuitively:

- x-values on the *left* likely have negative measurement errors
- x-values on the *right* likely have positive measurement errors

Measurement errors "stretch" the scatter in the horizontal direction  $\rightarrow$  a flatter regression line

(Zafing

Lecture 4.2, Slide 5 of 12, Erasmus School of Economics

#### Consistency: formal argumentation

If X is endogenous:

- If *n* grows the OLS estimator converges to the wrong value.
  - $\rightarrow$  OLS is inconsistent

Consider the standard model  $y = X\beta + \varepsilon$  and the OLS estimator

$$b = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + \varepsilon)$$
$$= (X'X)^{-1}X'X\beta + (X'X)^{-1}X'\varepsilon$$
$$= \beta + (X'X)^{-1}X'\varepsilon$$

So, b can be split into

- **1** True parameter value  $\beta$
- 2 Random deviation  $(X'X)^{-1}X'\varepsilon$

# Lahm

### Distribution of estimator for different n, true value= 2



Lecture 4.2, Slide 6 of 12, Erasmus School of Economics

## Asymptotic properties

What happens to *b* as  $n \to \infty$ ?

Recall:  $b = \beta + (X'X)^{-1}X'\varepsilon$ 

- ullet  $\beta$  is constant
- Elements of (X'X) and  $X'\varepsilon$  are sums over observations:

$$X'X = \begin{pmatrix} \sum_{i=1}^{n} x_{1i}^{2} & \sum_{i=1}^{n} x_{1i}x_{2i} & \dots & \sum_{i=1}^{n} x_{1i}x_{ki} \\ \sum_{i=1}^{n} x_{1i}x_{2i} & \sum_{i=1}^{n} x_{2i}^{2} & \dots & \sum_{i=1}^{n} x_{2i}x_{ki} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{ki}x_{1i} & \sum_{i=1}^{n} x_{ki}x_{2i} & \dots & \sum_{i=1}^{n} x_{ki}^{2} \end{pmatrix}, X'\varepsilon = \begin{pmatrix} \sum_{i=1}^{n} x_{1i}\varepsilon_{i} \\ \sum_{i=1}^{n} x_{2i}\varepsilon_{i} \\ \vdots \\ \sum_{i=1}^{n} x_{ki}\varepsilon_{i} \end{pmatrix}$$

 $\rightarrow$  these diverge as  $n \rightarrow \infty$ 

## Asymptotic properties

Rewrite  $b = \beta + (\frac{1}{n}X'X)^{-1}(\frac{1}{n}X'\varepsilon)$ 

- $(\frac{1}{n}X'X)$  is an average  $\rightarrow$  in general converges to, say, Q
- $(\frac{1}{n}X'\varepsilon)$  also converges in general

#### Consistency result:

*b* converges to  $\beta$  as  $n \to \infty$  if

- $\bullet$   $\frac{1}{n}X'X$  converges to Q, and
- $Q^{-1}$  exists, and
- **3**  $\frac{1}{n}X'\varepsilon$  converges to 0
  - ▶ No correlation between X and  $\varepsilon$  (for large n)
  - ► *X* is exogenous

X endogenous: b does not converge to  $\beta$ !

- Eafins

Lecture 4.2, Slide 9 of 12, Erasmus School of Economics

# OLS in presence of endogeneity

#### If X endogenous

- X correlated with  $\varepsilon$
- ullet OLS estimator for eta is not consistent
- Even with in infinite amount of data: OLS does not give useful estimates

## Small sample properties

So far we discussed what happens for  $n \to \infty$ 

#### Test

Why can't we derive the bias?

To obtain the bias

need to evaluate

$$E[b] = E[(X'X)^{-1}X'y] = E[(X'X)^{-1}X'(X\beta + \varepsilon)]$$
$$= E[\beta + (X'X)^{-1}X'\varepsilon] = \beta + \underbrace{E[(X'X)^{-1}X'\varepsilon]}_{=?}.$$

- X is stochastic
- cannot simplify final expectation (without further assumptions)

( Zafus

Lecture 4.2, Slide 10 of 12, Erasmus School of Economics

### **TRAINING EXERCISE 4.2**

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

( zafus