МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 43

ОТЧЕТ	ъй		
	7/1		
	<u>тель</u>		Фоменкова А.А.
ВАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ Старший преподаватель Ассистент должность, уч. степень, звание ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 7 «Оценка количества информации в сообщении и эффективное кодировани по курсу: ИНФОРМАТИКА РАБОТУ ВЫПОЛНИЛ СТУДЕНТ ГР. № 4134К Иванов И.В.	Величко М.В.		
должность, уч. степень, з	ввание	подпись, дата	инициалы, фамилия
O	ТЧЕТ О ЛАІ	БОРАТОРНОЙ РАБ	OTE № 7
«Оценка количест	ва информац	ии в сообщении и э	ффективное кодирование»
АЩИЩЕН С ОЦЕНКОЙ РЕПОДАВАТЕЛЬ Старший преподаватель Ассистент должность, уч. степень, звание ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 7 «Оценка количества информации в сообщении и эффективное кодировани по курсу: ИНФОРМАТИКА АБОТУ ВЫПОЛНИЛ СТУДЕНТ ГР. № 4134К Иванов И.В.	A		
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. №	4134K		
		подпись, дата	инициалы, фамилия

Цель работы:

Получение практических навыков численного определения количества информации, содержащегося в сообщении. Освоение методов построения кодов дискретного источника информации используя конструктивный метод, предложенный К.Шенноном и Н.Фано, и метод Хаффмана. На примере показать однозначность раскодирования имеющегося сообщения.

<u>ЧАСТЬ 1.</u>

«Определение количества информации, содержащейся в сообщении» Порядок выполнения части 1 лабораторной работы

1. Создать таблицу (50 рабочих строк) в Excel аналогичную рис.1.

№ n/n	Символ	Код символа	Число вхождений символа в текст	Вероятность вхождения символа (р _і)	I_i
1	0				
2	1				
	•••				
50	Я				
	•	Всего символов в тексте (К)			

Полная вероятность(Р)	(должна получиться «1»)	
	Энтропия источника (I_{cp})	

Рис.1.

- 2 Заполнить столбец Символ следующими значениями:
 - ¬ 33 буквы русского алфавита;
 - $\neg 10$ цифр (0 9);
 - ¬ Знаки препинания «.», «,», «:», «;», «-», « », «(».
- 3. Заполнить столбец Код символа используя функцию «КОДСИМВ(...)», находящуюся в категории «Текстовые».
- 4. Открыв каскадом текст по варианту и таблицу и используя в Word «Правка ⇒ Заменить» заполнить столбец Число вхождений символа в текст. (Предполагается, что других символов в тексте НЕТ.) Сосчитать общее число символов.
- 5. По формулам заполнить столбцы «рі» и «Іі». Сосчитать полную вероятность и энтропию источника.
- 6. Создать таблицу, аналогичную рис. 2 и заполнить ее по формулам.

	Неопределенность	Разрядность кода	Абсолютная избыточность	Относительная избыточность
Стандартная кодовая таблица ASCII				
Мера Хартли				

Рис.2.

7. Выписать применяемые формулы с расшифровкой используемых символов

Ход выполнения: Таблица №1

	1 a031mqa 5 (21									
		кодировка	число вхождений	p = k _i /K ,		$I_i = log_2(1/p_i) = -log_2 p$				
1	0	48	35	0,017676768	5,822001698	0,102914171				
2	1	49	36	0,018181818	5,781359714	0,105115631				
3	2	50	39	0,01969697	5,665882496	0,111600716				
4	3	51	49	0,024747475	5,336574871	0,132066752				
5	4	52	39	0,01969697	5,665882496	0,111600716				
6	5	53	36	0,018181818	5,781359714	0,105115631				
7	6	54	36	0,018181818	5,781359714	0,105115631				
8	7	55	37	0,018686869	5,741831349	0,107296848				
9	8	56	34	0,017171717	5,863821874	0,100691891				
10	9	57	38	0,019191919	5,703357202	0,109458371				
11		46	34	0,017171717	5,863821874	0,100691891				
12	,	44	39	0,01969697	5,665882496	0,111600716				
13	:	58	34	0,017171717	5,863821874	0,100691891				
14	;	59	48	0,024242424	5,366322214	0,13009266				
15	-	45	39	0,01969697	5,665882496	0,111600716				
16		32	37	0,018686869	5,741831349	0,107296848				
17	(40	44	0,022222222	5,491853096	0,12204118				
18	a	224	31	0,015656566	5,997088405	0,093893808				
19	б	225	46	0,023232323	5,427722759	0,12609861				
20	В	226	37	0,018686869	5,741831349	0,107296848				
21	г	227	43	0,021717172	5,52501996	0,119987807				
22	д	228	45	0,022727273	5,459431619	0,124077991				
23	e	229	39	0,01969697	5,665882496	0,111600716				
24	ë	222	46	0,023232323	5,427722759	0,12609861				
25	ж	230	38	0,019191919	5,703357202	0,109458371				
26	3	231	38	0,019191919	5,703357202	0,109458371				
27	и	232	39	0,01969697	5,665882496	0,111600716				
28	й	233	45	0,022727273	5,459431619	0,124077991				
29	к	234	41	0,020707071	5,59373271	0,115829819				
30	л	235	35	0,017676768	5,822001698	0,102914171				
						0.400450074				

			1			
31	M	236	38	0,019191919	5,703357202	0,109458371
32	н	237	44	0,02222222	5,491853096	0,12204118
33	0	238	46	0,023232323	5,427722759	0,12609861
34	п	239	37	0,018686869	5,741831349	0,107296848
35	р	240	38	0,019191919	5,703357202	0,109458371
36	С	241	43	0,021717172	5,52501996	0,119987807
37	т	242	40	0,02020202	5,62935662	0,113724376
38	у	243	47	0,023737374	5,396695863	0,128103387
39	ф	244	36	0,018181818	5,781359714	0,105115631
40	x	245	27	0,013636364	6,196397213	0,084496326
41	ц	246	49	0,024747475	5,336574871	0,132066752
42	ч	247	46	0,023232323	5,427722759	0,12609861
43	ш	248	38	0,019191919	5,703357202	0,109458371
44	ш	249	34	0,017171717	5,863821874	0,100691891
45	ъ	250	32	0,016161616	5,951284715	0,096182379
46	ы	251	40	0,02020202	5,62935662	0,113724376
47	ь	252	48	0,024242424	5,366322214	0,13009266
48	э	253	44	0,02222222	5,491853096	0,12204118
49	ю	254	33	0,016666667	5,906890596	0,098448177
50		223	43	0,021717172	5,52501996	0,119987807
				-,	2,2222330	
	всего символов			1 энтро	пия:	5,631959196
	1980					

Таблица №2

		Неопределенность	Разрядность кода	Абсолютная избыточност	Относительная избыточность
•	Стандартная кодовая таблица ASCII	8	8	2,368040804	3,378320164
	Мера Хартли	5,64385619	6	0,011896994	504,3290657

Формулы, примененные в работе:

p(i) = k/n

Где: 1) k – количество вхождения символа в текст

2) п – Количество символов в тексте

I(i) = p(i)*log2(1/p(i)) - 3начение энтропии отдельного элемента

Где: 1) p(i) – вероятность вхождение символа

2) i – символ

Если сообщение — число, понятие глубины числа будет трансформировано в понятие основания системы счисления. При заданных глубине и длине числа количество чисел, которое можно представить, $N=A^n$. Очевидно, что N однозначно характеризует степень исходной неопределенности. Исходная неопределенность по Хартли определяется

$$H_1 = log_a N. (4)$$

Неопределенность после получения сообщения, остаточная неопределенность,

$$H_2 = \log_a N^*, \tag{5}$$

где N^* — число возможных значений принятого слова после получения сообщения.

Количество информации по Хартли:

$$I=H_1-H_2=\log_a N-\log_a N^* n=\log_a N/N^*$$
.

средняя информация, доставляемая одним опытом,

$$I_{cp} = (k_1 I_1 + k_2 I_2 + ... + k_A I_A)/K.$$

К - кол-во символов алфавита.

А - количество исходов опыта.

ki - количество появления символа в тексте.

Ii - количество вносимой этим символом информации.

Вывод:

В ходе выполнения первой части лабораторной работы были изучены метода определения информации по Шеннону и Хартли, метод Хаффмана

Мера Хартли и неопределенность по Шеннону совпадают, так как все символы в таблице ascii имеют одинаковую вероятность нахождения. В таком случае результаты будут аналогичными. Абсолютная избыточность равна нулю так как предполагается передача без потерь.

<u>Часть 2.</u>

«Кодирование дискретных источников информации методом Шеннона-Фано»

Порядок выполнения части 2 лабораторной работы

Исходными данными для данной лабораторной работы являются результаты статистической обработки текста, выполненной в предыдущей лабораторной работе. Из лабораторной работы «Определение количества информации, содержащегося в сообщении» для данной работы необходимо взять: 1) список символов данного текста; 2) оценку вероятностей появления символов в тексте; 3) значение энтропии источника. Расчеты рекомендуется выполнять в табличной форме, используя MSExcel. 1. Отсортировать символы в порядке убывания их вероятности появления в тексте. 2. Построить один из возможных вариантов по правилу Шеннона-Фано для посимвольного кодирования заданного текста. 3. Определить энтропию и среднее количество двоичных разрядов, необходимых для передачи текста при использовании эффективных кодов. 4. Проверить возможность однозначного декодирования полученных кодов, рассмотрев пример передачи слова, состоящего из не менее 10 символов.

Таблица для 50-ти символов, содержащая список символов, значения вероятностей, кодовые комбинации, ступени.

			-										-
				$L = log_2(1/p_i) = -log_2p_i$									_
1 3			0,0247475		0,0247475	1 0,0247475	1 0,0247475	1 0,0247475	1 0,0247475	1		11111	4
2 ц	246		0,0247475		0,0247475	1 0,0247475	1 0,0247475	1 0,0247475	1 0,0247475	0		11110	_4
3 ;	59		0,0242424		0,0242424	1 0,0242424	1 0,0242424	1 0,0242424	0 0,0242424	1		11101	_ ;
4 ь	252		0,0242424		0,0242424	1 0,0242424	1 0,0242424	1 0,0242424	0 0,0242424	0		11100	ь
5 y	243	47	0,0237374		0,0237374	1 0,0237374	1 0,0237374	0 0,0237374	1 0,0237374	1		11011	у
6 6	225	46	0,0232323	0,12609861	0,0232323	1 0,0232323	1 0,0232323	0 0,0232323	1 0,0232323	0		11010	- 6
7 ë	222	46	0,0232323	0,12609861	0,0232323	1 0,0232323	1 0,0232323	0 0,0232323	0 0,0232323	1		11001	ë
8 o	238	46	0,0232323		0,0232323	1 0,0232323	1 0,0232323	0 0,0232323	0 0,0232323	0 0,0232323	1	110001	
9 4	247	46	0,0232323	0,12609861	0,0232323	1 0,0232323	1 0,0232323	0 0,0232323	0 0,0232323	0 0,0232323	0	1 1100001	- 4
10 д	228	45	0,0227273	0,124077991	0,0227273	1 0,0227273	1 0,0227273	0 0,0227273	0 0,0227273	0 0,0227273	0	0 1100000	A
11 й	233	45	0,0227273	0,124077991	0,0227273	1 0,0227273	0 0,0227273	1 0,0227273	1 0,0227273	1		10110	й
12 (40	44	0,0222222	0,12204118	0,0222222	1 0,0222222	0 0,0222222	1 0,0222222	1 0,0222222	0		10110	_(
13 н	237	44	0,0222222	0,12204118	0,0222222	1 0,0222222	0 0,0222222	1 0,0222222	0 0,0222222	1		10101	н
14 >	253	44	0,0222222	0,12204118	0,0222222	1 0,0222222	0 0,0222222	1 0,0222222	0 0,0222222	0 0,0222222	1	101001	
15 r	227	43	0,0217172	0,119987807	0,0217172	1 0,0217172	0 0,0217172	1 0,0217172	0 0,0217172	0 0,0217172	0	101000	7
16 c	241		0,0217172		0,0217172	1 0,0217172	0 0,0217172	0 0,0217172	1 0,0217172	1		10011	\Box_{c}
17 a	223		0,0217172	0,119987807	0,0217172	1 0,0217172	0 0,0217172	0 0,0217172	1 0,0217172	0 0,0217172	1	100101	٦,
18 K	234		0,0207071	0,115829819	0,0207071	1 0,0207071	0 0,0207071	0 0,0207071	1 0,0207071	0 0,0207071	0	100100	- K
19 т	242	40	0,020202	0,113724376	0,020202	1 0,020202	0 0,020202	0 0,020202	0 0,020202	1		10001	٦,
20 ы	251	40			0,020202	1 0,020202	0 0,020202	0 0,020202	0 0,020202	0 0,020202	1	100001	٦,
21 2		39		0,111600716	0,019697	1 0,019697	0 0,019697	0 0,019697	0 0,019697	0 0,019697	0	1 1000001	٦
22 4		39		0,111600716	0,019697	1 0,019697	0 0,019697	0 0,019697	0 0,019697	0 0,019697	0	0 1000000	7
23 .	44	39		0,111600716	0,019697	0 0,019697	1 0,019697	1 0,019697	1 0,019697	1		01111	T
24 -	45	39		0,111600716	0.019697	0 0.019697	1 0,019697	1 0.019697	1 0.019697	0		01110	T.
25 e	229	39		0,111600716	0,019697	0 0,019697	1 0,019697	1 0,019697	0 0,019697	1		01101	٦,
26 и	232	39		0,111600716	0,019697	0 0,019697	1 0,019697	1 0,019697	0 0,019697	0 0,019697	1	011001	Π.
27 9	57		0,0191919		0,0191919	0 0,0191919	1 0,0191919	1 0,0191919	0 0,0191919	0 0,0191919	0	1 0110001	Τ΄
28 ×	230		0,0191919	0.109458371	0,0191919	0 0,0191919	1 0,0191919	1 0,0191919	0 0,0191919	0 0,0191919	0	0 0110000	٦.
29 1	231		0,0191919		0,0191919	0 0,0191919	1 0,0191919	0 0,0191919	1 0,0191919	1		01011	٣.
30 M	236		0,0191919		0,0191919	0 0,0191919	1 0,0191919	0 0,0191919	1 0,0191919	0 0,0191919	1	010101	۲.
31 p	240		0,0191919		0,0191919	0 0,0191919	1 0,0191919	0 0,0191919	1 0,0191919	0 0,0191919	0	010101	- 1"
32 m	248		0,0191919	0,109458371	0,0191919	0 0,0191919	1 0,0191919	0 0,0191919	0 0,0191919	1	0	010100	٣,
33 7			0,0191919	0,107296848	0,0186869	0 0,0186869	1 0,0186869	0 0,0191919	0 0,0191919	0 0,0186869	1	010001	٦,
34	32		0,0186869	0,107296848	0,0186869	0 0,0186869	1 0,0186869	0 0,0186869	0 0,0186869	0 0,0186869	0	1 0100001	+
35 B	226		0,0186869		0,0186869				0 0,0186869	0 0,0186869	0	0 0100000	+
36 n	239		0,0186869	0,107296848	0,0186869	0 0,0186869	1 0,0186869 0 0,0186869	0 0,0186869	1 0,0186869	1	U	00111	ď
					0,0186869		0 0,0186869	1 0,0186869	1 0,0186869	0		00111	۲
			0,0181818			0 0,0181818				1			+
38 5			0,0181818		0,0181818	0 0,0181818	0 0,0181818	1 0,0181818	0 0,0181818	_	1	00101	+
			0,0181818		0,0181818	0 0,0181818	0 0,0181818	1 0,0181818	0 0,0181818	0 0,0181818		001001	÷.
40 ф	244		0,0181818		0,0181818	0 0,0181818	0 0,0181818	1 0,0181818	0 0,0181818	0 0,0181818	0	1 0010001	Φ
41 (0,0176768		0,0176768	0 0,0176768	0 0,0176768	1 0,0176768	0 0,0176768	0 0,0176768	0	0 0010000	+
42 n	235		0,0176768		0,0176768	0 0,0176768	0 0,0176768	0 0,0176768	1 0,0176768	1		00011	л
43 8	8 56		0,0171717		0,0171717	0 0,0171717	0 0,0171717	0 0,0171717	1 0,0171717	0 0,0171717	1	000101	4
44 .	46	34	0,0171717		0,0171717	0 0,0171717	0 0,0171717	0 0,0171717	1 0,0171717	0 0,0171717	0	1 0001001	
45 :	58	34	0,0171717		0,0171717	0 0,0171717	0 0,0171717	0 0,0171717	1 0,0171717	0 0,0171717	0	0 0001000	:
46 щ	249	34	0,0171717		0,0171717	0 0,0171717	0 0,0171717	0 0,0171717	0 0,0171717	1 0,0171717	1	000011	щ
47 ю	254		0,01666667		0,0166667	0 0,0166667	0 0,0166667	0 0,0166667	0 0,0166667	1 0,0166667	0	000010	ю
48 ъ	250		0,0161616		0,0161616	0 0,0161616	0 0,0161616	0 0,0161616	0 0,0161616	0 0,0161616	1	000001	ъ
49 a	224		0,0156566		0,0156566	0 0,0156566	0 0,0156566	0 0,0156566	0 0,0156566	0 0,0156566	0	1 0000001	a
50 x	245	27	0,0136364	0,084496326	0,0136364	0 0,0136364	0 0,0136364	0 0,0136364	0 0,0136364	0 0,0136364	0	0 0000000	x
00000	0.000											E 621050100	_
всего симво 1980			1									5,631959196 0,112639184	
150												.,	

Значение средней информации в битах = 5,86

Применялись формулы подсчета вероятности и энтропии каждого элемента.

Закодированное сообщение:

10101	A 1100000	a	000010	0100001	Л	0000001	0	у
0101	1100000	0000001	000010	0100001	00011	0000001	11010	11011
Номер с	Кол-во разрд.	Символ	код					
1	3	CMMBO/I	101					
2	4	-	1010					
3	5	C	10101					
1	3		110					
2	4	-						
3	5	-	1100 11000					
	6							
4	_	-	110000					
5	7	А	1100000					
1	3	-	000					
2	4	-	0000					
3	5	-	00000					
4	6	-	000000					
5	7	a	0000001					
1	3	-	000					
2	4	-	0000					
3	5	-	00001					
5	6	ю	000010					
1	3	-	010					
2	4	-	0100					
3	5	-	01000					
4	6	-	010000					
5	7		0100001					
1	3	-	000					
2	4	-	0001					
3	5	л	00011					
1	3	-	1110110					
1	3	-	000					
2	4	-	0000					
3	5	-	00000					
4	6	-	000000					
5	7	а	0000001					
1	3	-	110					
2	4		1101					
3	5	6	11010					
1	3	-	110					
2	4		1101					
3	5	v	1101					

Вывод:

За вторую часть работы я воспользовался методом Шеннона-Фано, собрав все двоичные коды для каждого символа. Проверил на корректность и составил таблицу ступеней.

<u>Часть 3.</u>

«Кодирование дискретных источников информации по методике Хаффмана»

Порядок выполнения части 3 лабораторной работы

Из лабораторной работы «Кодирование дискретных источников информации методом Шеннона-Фано» необходимо взять вычисленное значение средней информации. Расчеты рекомендуется выполнять в табличной форме, используя MSExcel. 1. Отсортировать символы в порядке убывания их вероятности появления в тексте. 2. Построить таблицу по правилу Д. Хаффмана для посимвольного кодирования заданного текста (См. Табл.3.1). 3. Определить энтропию и среднее количество двоичных разрядов, необходимых для передачи текста при использовании эффективных кодов. 4. Построить кодовое дерево (См.рис.3.1). 5. Создать таблицу кодов. 6. Проверить возможность однозначного декодирования полученных кодов, рассмотрев пример передачи слова, состоящего из не менее 10 символов.

символ	вхождения	вероятность	
3	49	0,024747475	
ц	49	0,024747475	01101
;	48	0,024242424	01010
ь	48	0,024242424	01011
у	47	0,023737374	
б	46	0,023232323	
ë	46	0,023232323	00100
0	46	0,023232323	
ч	46	0,023232323	
д	45	0,022727273	00010
й	45	0,022727273	
(44	0,022222222	
Н	44	0,022222222	
3	44	0,022222222	00000
Г	43	0,021717172	111110
c	43	0,021717172	
Я	43	0,021717172	
к	41	0,020707071	
Т	40	0,02020202	111001
ы	40	0,02020202	111001
2		0,01969697	
4		0,01969697	
	39	0,01969697	
,	39	0,01969697	
-		0,01969697	
е	39 39	0,01969697	
И		0,019191919	
9		0,019191919	
ж	38	0,019191919	110000
3	38	0,019191919	110001
M	38		
p	38	0,019191919	
Ш	38	0,019191919	
7		0,018686869	101001
	37	0,018686869	
В	37	0,018686869	
П	37	0,018686869	
1		0,018181818	
5		0,018181818	
6		0,018181818	•
ф	36	0,018181818	
0		0,017676768	
Л	35	0,017676768	
8		0,017171717	
	34	0,017171717	
:	34	0,017171717	
Щ	34	0,017171717	
ю	33	0,016666667	
ъ	32	0,016161616	011101
a	31	0,015656566	
x	27	0,013636364	010001

Зчение средней информации в битах = 5,72

Были применены формулы:

p(i) = k/n

Где: 1) k – количество вхождения символа в текст

2) п – Количество символов в тексте

I(i) = p(i)*log2(1/p(i)) - 3начение энтропии отдельного элемента

Где: 1) p(i) – вероятность вхождение символа

2) i – символ

Если сообщение — число, понятие глубины числа будет трансформировано в понятие основания системы счисления. При заданных глубине и длине числа количество чисел, которое можно представить, $N = A^n$. Очевидно, что N однозначно характеризует степень исходной неопределенности. Исходная неопределенность по Хартли определяется

$$H_1 = log_a N. (4)$$

Неопределенность после получения сообщения, остаточная неопределенность,

$$H_2 = log_a N^*, (5)$$

где N^* — число возможных значений принятого слова после получения сообщения.

Количество информации по Хартли:

$$I=H_1-H_2=\log_a N-\log_a N^* n=\log_a N/N^*$$
.

средняя информация, доставляемая одним опытом,

$$I_{cp} = (k_1 I_1 + k_2 I_2 + ... + k_A I_A)/K.$$

К - кол-во символов алфавита.

А - количество исходов опыта.

ki - количество появления символа в тексте.

Ii - количество вносимой этим символом информации.

Закодированное сообщение:

00111	010100	011001	010101	011001	10001	01101	0100001	00111	010100	110001	01001	1101
1	р	И	M	И	т	e		п	р	0	ш	у
				Номер с		Символ	код					
				1	3	-	001					
				2	4	-	0011					
				3	5	п	00111					
				1	3	-	010					
				2	4	-	0101					
				3	5	-	01010					
				4	6	р	010100					
				1	3	-	011					
				2	4	-	0110					
				3	5	-	01100					
				4	6	И	011001					
				1	3	-	010					
				2	4	-	0101					
				3	5	-	01010					
				4	6	M	010101					
				1	3	-	011					
				2	4	-	0110					
				3	5	-	01100					
				4	6	И	011001					
				1	3	-	100					
				2	4	-	1000					
				3	5	т	10001					
				1	3	-	011					
				2	4	-	0110					
				3	5	e	01101					
				1	3	-	010					
				2	4	-	0100					
				3	5		01000					
				4	6		010000					
						-	0100001					
				5	7		_					
						-	001					
				2	4	-	0011					
				3	5	п	00111					
				1	3	-	010					
				2	4	-	0101					
				3	5	-	01010				-	
				4	6	р	010100					
				1	3	-	110					
				2	4	-	1100					
				3	5	-	11000					
				4	6	0	110001					
	1	3	-									
	2	4	-	010	0							
	3	5	ш	0100	01							
	1	3	-	110)							
	2	4	-	110	1							
	3	5	у	1101	11							

Вывол:

Кодировка методом Хаффмана оказалась труднее, но более эффективной. Средняя длинна бит стремиться к энтропии с большим успехом. В ходе третьей части я научился строить дерево Хаффмана, проверил наличие условия единственной раскодировки сообщения.

Текст (lorem)

(lorem)
н918оч36ицинвиэе3ю7иу-дфджбцйэ:(ч9(:щиксит4з8(3д;е-9дж;зёюл(бтбц7жняу42бпэ-зл:ёятфр80ё54ь8д;нпк53л
,ёп8у...,п8 рээцд,8оэ;ыч19пгяцэ5жпыншя7ё9;(а16ул;в7:;рагэабс901йбтн9я,щ сбщ1ом9ея7,юс77;,(щд(ш4кьнык
55 э 45(к,64ц;шёэ8чирэуз7йи5йцкх3;07дю:йъ;лкочзлзеьчнбьыь5йгкггёш.-цяё,32рщкв3м79япашь3а8ммг3эи:зьч
тс-учэп5чкщ(брчбн0ю5лт3еечьг1ёф;з1ряжткчнсь.ив(ж3мь,:иязэб-жмоу,йкэ4рлц3явгие0еаордюб64тёьнфё4рыюю7
ж-6фекьбцуньш9от,йфоь4ы яыягц8ш.жб2вичтшчж4
ёьужикй;0ж1йдс3ыжъыа30хжэлрпсш1пнйящшгемщъшуцсж9пи(п9ирф;9уэммбяф2лнщп-;2с8,ё;аа в (ф332лгагурфб2р1.зрбм-щм71:лэёйрч;хишшпуд1м24тдаё4ю8г0л9 фкь-лк;дйл:(7ц гкфх9ньё1в:дллыяу8апщюп0б9ыбщ6::т00ёщм8чёбым(унш4928(у4ха.2ь8д7б2ё(5звкъёж1(уд7ымйяпк2хех7ж-ьсх67;

л6мхобибу3п2ч,чгймг3йя35й-9ч-жкь(йэ,вэяюувр(:;ц црне6006нд7жм36ъо.2ёпвфа386о,. в4тсщвш.к1ы79в-.ъэ;;

оо.:бдъ-вюцю1фрж89л1юу.щгс8,лоркзкд:тёпж(йщу9щ;щмцйн-юярцт-ыд-

м662р0н;359цж10яиэт2жтрд.;-эмхшя45 ле

ы;0у;ххюм9м044сэ9и жёмх ьучь4е эщ30вдч(дъхн5ед8:ё46н.м3цв(сявсд:аль-5чз ыцнгткноыхяшжэ(хуж6т33(фшй.

феубёж3цбм3елр1нл6тп.обыхх;шцяиящт3мбр6к4б;3а5о-.вмс(9мчэс91:06.ън7аеы пиощ20н(бъщпнвляьзодем1(я(-

2яу,к;е3с-

дёт.ж,иёыт:уьисйелфвеб34эищшщ;ф2а,60ш;7дтр8юкьияъуъ4чкъ7з;цс3зк:юцъы,ъц;х5ьй-5(о3п3иёа9э,

сь5;и3ё,й;бцзв4,ч.е;9къче2букёгф(в5 улмешг-ф3чм-ьж1ащ44ьцр1ъ.гч286;фс-.пчяфьаш2-ству1йчюбафть42ботж

о:(2а-7м .г-37-7шз6хп6ач7эё7д0.у,бъъжвьееёцм вфци,кеач

:уо41ээйтчш9ън8:,гььгк(,яй:йтпу1ьеь.ядзч6шч

убтэп9еэк1й8цыб::9щю,;зю:5ол(зо-ррюк0оорю йуо-,еаг2я734фс,.ч0щ2о5очк2хык;5д ёл0ъныщ2с;67чгь2лыд3.жг

фян(яюуфьййцлпслц5цёй9д9:шшйдозисьшьу6яфн

4оыбг,ъ2хй8кс(ёечгё2ов7ш;ш,г;ф8э31ъгб5лгйю:э:йьошщ4,а75 ъ

хдниофц5з7яэ-кыо

Зпггжнн(2уыву03ыяьйзшрмннй0т4фы:0кйлб1цьнё.ё(ъшв89опя3б1йвдъб5

з33зёп1яецою0ыф,ер2

(б8ва82иш4сз;теё(ынсгю7с8эцп720н1ё-9(ссобхтщхшб78,йжф5048чнифы9у;вшт :дсщпзогцуёгтщс.(5сжг4ююжщнж5

,чэрюч5-юуъв в2.асди-

6эп12ьа7йг.гю.;чрорсшеыъй7ьызтл4и5сд1и3э2трёгч,чф:44ягц5дцаыцисцхзёизкйъз 6мр. пвд 21ёбюьнс3дршэ8оы50ц(8цу0эо;(-э;ецб,дзьо:уи

зт(ф9т,ов39ььыиехмдёпздмгбцбоызястбч1е0ббъну0ж6эзцу