Write out the numerator and denominator in Lekkala2013 θ_l separately.

$$Sinh[\theta 1] Sinh[\theta 2] + \alpha Cosh[\theta 1] Sinh[\theta 2] - \lambda Cosh[\theta 1] Cosh[\theta 2] + 2\lambda - \lambda^{2} \frac{Sinh[\theta 1]}{Sinh[\theta 2]}$$

 $\mathsf{Out}[\theta] = 2 \ \lambda - \lambda \ \mathsf{Cosh}[\theta 1] \ \mathsf{Cosh}[\theta 2] - \lambda^2 \ \mathsf{Csch}[\theta 2] \ \mathsf{Sinh}[\theta 1] + \alpha \ \mathsf{Cosh}[\theta 1] \ \mathsf{Sinh}[\theta 2] + \mathsf{Sinh}[\theta 1] \ \mathsf{Sinh}[\theta 2]$

$$ln[7]:=$$
 denominator = Cosh[θ 1] Sinh[θ 2] + α Sinh[θ 1] Sinh[θ 2] - λ Sinh[θ 1] Cosh[θ 2]

$$Out[7] = -\lambda Cosh[\theta 2] Sinh[\theta 1] + Cosh[\theta 1] Sinh[\theta 2] + \alpha Sinh[\theta 1] Sinh[\theta 2]$$

Divide the denominator by $Cosh[\theta]$ to see if that tames the $\theta 1$ divergence.

$$ln[8]:=$$
 $\frac{denominator}{Cosh[\theta 1]}$ // Simplify

 $\texttt{Out[8]= Sinh[$\theta 2$] } - \lambda \; \texttt{Cosh[$\theta 2$] } \; \texttt{Tanh[$\theta 1$]} \; + \alpha \; \texttt{Sinh[$\theta 2$] } \; \texttt{Tanh[$\theta 1$]}$

It does ...

$$ln[9]:= Plot[{Tanh[\theta 1]}, {\theta 1, -5, 5}]$$

... but the θ 2 functions in the denominator still diverge.

$ln[10]:= Plot[{Sinh[\theta], Cosh[\theta2]}, {\theta2, -5, 5}]$

Try dividing the denominator by $Cosh[\theta 1]Cosh[\theta 2]$.

$$In[11]:= \frac{\text{denominator}}{\text{Cosh}[\Theta 1] \text{ Cosh}[\Theta 2]} \text{ // Simplify}$$

$$Out[11]:= \text{Tanh}[\Theta 2] + \text{Tanh}[\Theta 1] \text{ } (-\lambda + \alpha \text{ Tanh}[\Theta 2])$$

$$In[12]:= \text{Plot}[\text{Tanh}[\Theta 2], \{\Theta 2, -5, 5\}]$$

$$0.5$$

$$Out[12]:= \frac{-4}{-4} \frac{-2}{-2} \frac{2}{4} \frac{4}{-1.0}$$

Now, by inspection, both the $\theta 1$ and $\theta 2$ functions in the denominator are well-behaved. What about the numerator?

$$\frac{\ln[13]:=}{\text{Cosh}[\theta 1] \text{ Cosh}[\theta 2]} \text{ // Simplify}$$

$$\text{Out}[13]:= -\lambda + 2 \lambda \text{ Sech}[\theta 1] \text{ Sech}[\theta 2] - \lambda^2 \text{ Csch}[\theta 2] \text{ Sech}[\theta 2] \text{ Tanh}[\theta 1] + \alpha \text{ Tanh}[\theta 2] + \text{Tanh}[\theta 1] \text{ Tanh}[\theta 2]$$

All three θ 2 functions in the numerator are ok at large θ 2. But one of them diverges at small θ 2, which is a problem.

log[14]:= Plot[{Sech[θ 2], Csch[θ 2] Sech[θ 2], Tanh[θ 2]}, { θ 2, -5, 5}]

This function is the culprit.

numerator

The argument $\theta 2 = \eta h_s$ in the paper, and η does not go to zero. So, in practice, I think the function $Csch[\theta 2]$ Sech[$\theta 2$] should be ok.

In summary, write the big fraction θ_l as follows

$$\frac{-\lambda + 2 \lambda \operatorname{Sech}[\theta 1] \operatorname{Sech}[\theta 2] - \lambda^2 \operatorname{Csch}[\theta 2] \operatorname{Sech}[\theta 2] \operatorname{Tanh}[\theta 1] + \alpha \operatorname{Tanh}[\theta 2] + \operatorname{Tanh}[\theta 1] \operatorname{Tanh}[\theta 2]}{\operatorname{Tanh}[\theta 2] + \operatorname{Tanh}[\theta 1] (-\lambda + \alpha \operatorname{Tanh}[\theta 2])};$$

 $ln[17] = Plot[{Tanh[\theta 2], Sech[\theta 2]}, {\theta 2, -5, 5}]$

Python does not have Sech and Csch function. However, note that

In[18]:= **1 / Sech**[*θ***1**]

Out[18]= $Cosh[\theta 1]$

In[19]:= 1 / Csch[θ2]

Out[19]= $Sinh[\theta 2]$

So let us implement θ_l as (we are leaving out the $\epsilon_s/\epsilon_{eff}$ prefactor here)

$$\ln[20] = \theta \mathbf{I} = -\lambda \operatorname{Coth}[\theta 2] + \left(\operatorname{Tanh}[\theta 1] \operatorname{Tanh}[\theta 2] + \alpha \operatorname{Tanh}[\theta 2] - \lambda + 2\lambda / \left(\operatorname{Cosh}[\theta 1] \operatorname{Cosh}[\theta 2] \right) - \lambda^2 \operatorname{Tanh}[\theta 1] / \left(\operatorname{Cosh}[\theta 2] \operatorname{Sinh}[\theta 2] \right) \right) / \left(\operatorname{Tanh}[\theta 2] + \operatorname{Tanh}[\theta 1] \left(-\lambda + \alpha \operatorname{Tanh}[\theta 2] \right) \right) ;$$

Check that this expression agrees with what we started with.

$$In[22]:=\Theta I - \left(-\lambda Coth[\Theta 2] + \frac{numerator}{denominator}\right)$$
 // FullSimplify

Out[22]= 0

This form is well behaved because $\theta 2$ does not go to zero. Check the large h_s limit, where $\theta 1$ and $\theta 2$ go to infinity.

$$ln[24]:=$$
 Limit[Θ I, $\{\Theta$ I \rightarrow Infinity, Θ 2 \rightarrow Infinity $\}$]
$$Out[24]:=$$
 1 - λ