Section 1: LLN, CLT, Slutsky

Valentine Gilbert

September 10, 2021

Overview

- Introduction
- 2 Preliminaries
- Bias and Consistency
- 4 Jensen's Inequality
- 5 The LLN, CLT, and Slutsky

Your TF

- G5 in Public Policy
- Fields are labor and public economics
- Research is on urban residential sorting
- Third year TFing Econ 2110 and 2115
- Dog dad

Figure: Lily

Section and General Advice

Section Goals:

- Build intuition around material covered in class
- Review concepts needed for problem sets
- Answer questions
- I think office hours are a better venue for discussing coding

Advice:

- Don't worry if the material feels difficult it's supposed to
- Don't hesitate to ask questions! Use Slack, email me, come to office hours
- Review problem set solutions, even if you didn't lose points
- Review lecture notes

The Big Picture

In class we:

- Learned about the LLN, which says the sample mean is a consistent estimator of the expected value
- Learned about the CLT, which says sample mean is asymptotically normal
- Learned about Slutsky's Theorem

Why?

- The LLN, CLT, and Slutsky's Theorem are building block tools
- We'll use them to show when other estimators (e.g. regression coefficients) are consistent
- We'll use them to understand how much we learn from our estimates

Estimands, Estimators, and Estimates

An **estimand** is the thing you're trying to estimate

- In class, our estimands were E[Y] and var[Y]
- Later in this class and in your own research, estimands will be causal effects

An **estimator** is a function that maps the observed data $Y_1, Y_2, ..., Y_N$ to a number (usually)

• E.g. $\bar{Y} = f(Y_1, Y_2, ..., Y_N) = \frac{1}{N} \sum_i Y_i$

An **estimate** is one realization of the estimator (using the data we actually observe)

- ⇒ An estimate is a random variable! It has a distribution
 - E.g. an estimate has a standard deviation, which we call its standard error

Sampling distribution of share of heads from 10 flips of a biased coin

Independence of random variables comes up often in this class. What does independence mean?

- Two random variables X and Y are independent if $f_{X|Y}(x|y) = f_X(x)$ and $f_{Y|X}(y|x) = f_Y(y)$
 - \implies Knowing Y = y tells you nothing about the probability that X = x; knowing X = x tells you nothing about the probability that Y = y
- An equivalent definition of independence is that the joint density is equal to the product of the marginal densities: $f_{XY}(x, y) = f_X(x) f_Y(y)$
- E.g. a coin toss and the roll of a die are independent events
- E.g. the number of heads after two coin flips and the outcome of the first coin flip are not independent

Question: Suppose you observe the i.i.d. data $Y_1, Y_2, ..., Y_N$ and calculate the sample mean, \bar{Y} . Are observations of $Y_i - \bar{Y}$ independent?

Bias and Consistency: Convergence in Probability

We're going to use **asymptotics** to understand different properties of our estimators. That is, we're going to ask what happens as our sample size gets large.

- Consider a sequence of sample statistics, T_1 , T_2 , ..., T_N , where the subscript indexes the sample size used to estimate the statistic
 - e.g. T_{10} is calculated using a sample of size 10
- T_N converges in probability to a constant c if and only if

$$\Pr(|T_N - c| \ge \delta) \to 0 \text{ as } N \to \infty \text{ for all } \delta > 0$$

• We can write this either as $T_N \stackrel{p}{\to} c$ or plim $T_N = c$

In words, a sample statistic converges in probability to a constant if you are less and less likely to calculate a sample statistic that is very far from the constant as you get more and more data. I.e., its sampling distribution becomes more and more concentrated around c.

Bias and Consistency

We are now ready to define consistency and unbiasedness:

- T_N is a **consistent** estimator of the population parameter θ if $T_N \stackrel{p}{\to} \theta$
- T_N is an **unbiased** estimator of the population parameter if $E[T_N] = \theta$

Note that consistency is an asymptotic property whereas unbiasedness can hold in finite samples

• We saw in class that \bar{Y}_N is an unbiased estimator of E[Y] regardless of sample size

Bias and Consistency

It is possible for an estimator to be consistent but biased or unbiased but inconsistent

Consider
$$\hat{\mu} \equiv \bar{X}_N + \frac{1}{N}$$

- $E[\hat{\mu}] = E[\bar{X}_N] + \frac{1}{N} = E[X] + \frac{1}{N} \neq E[X]$ $\implies \hat{\mu}$ is biased for any sample size
- But what happens as $N \to \infty$? The sample mean converges in probability to E[X] and the term $\frac{1}{N} \to 0$
 - $\implies \hat{\mu}$ is consistent

Now consider $\tilde{\mu} \equiv X_1$, where X_1 is the first observation in the data

- $E[\tilde{\mu}] = E[X_1] = E[X]$ $\implies \tilde{\mu}$ is unbiased
- ullet But the variance of our estimate doesn't decrease as ${\it N}
 ightarrow \infty$
 - $\implies \tilde{\mu}$ is inconsistent

Jensen's Inequality: Definition

- Jensen's Inequality is a useful result that you'll need to apply on this week's homework
- It also appears in other areas of economics, such as choice under uncertainty and optimal taxation theory
- It states

$$E[h(Y_i)] \le h(E[Y_i])$$
 for concave h

In words, the expectation of a concave function of a random variable is less than or equal to the function evaluated at the expectation of the random variable.

This inequality holds strictly for strictly concave h and is flipped for convex h.

Jensen's Inequality: Graphical Intuition

Figure: Jensen's Inequality for a binary random variable

The LLN

The **Law of Large Numbers** says that under certain conditions, the sample average is a consistent estimator of the the expected value. More formally,

- Suppose $Y_1, ..., Y_N$ are i.i.d., $E[Y_i] = a$, and $var(Y_i) < \infty$
- Then $\bar{Y}_N \stackrel{p}{\rightarrow} a$

This holds for more complicated looking random variables, too:

- Suppose X_i and Y_i are random variables and $W_i \equiv X_i Y_i$ is i.i.d. and meets our other conditions for the LLN
- Then $\frac{1}{N} \sum_i X_i Y_i \stackrel{p}{\to} E[X_i Y_i]$

- The Central Limit Theorem tells us about the shape of the sample mean's distribution as the sample grows large
- Question: Why do we care about the shape of the distribution?
- The CLT says that if $Y_1, ..., Y_N$ are i.i.d. and if $\sigma_Y^2 < \infty$, then

$$\sqrt{N}(\bar{Y}_N - \mu)/\sigma \stackrel{d}{\to} N(0,1)$$

• Question: Why do we have to multiply by \sqrt{N} ?

Slutsky's Theorem

Slutsky's Theorem lets us apply the LLN and the CLT to functions of random variables. It has 4 parts:

- ① If $T_N \stackrel{P}{\to} c$ and $h(T_N)$ is a continuous function, then $h(T_N) \stackrel{P}{\to} h(c)$. Another way of writing this is plim $h(T_N) = h(\text{plim } T_N)$.
- ② If $V_N \stackrel{p}{\to} c_1$, $W_N \stackrel{p}{\to} c_2$, and $h(V_N, W_N)$ is a continuous function, then $h(V_N, W_N) \stackrel{p}{\to} h(c_1, c_2)$. Another way of writing this is plim $h(V_N, W_N) = h(\text{plim } V_N, \text{plim } W_N)$.
- If $V_N \stackrel{P}{\to} c$ and W_N has a limiting distribution, then the limiting distribution of $V_N + W_N$ is equal to the limiting distribution of $c + W_N$
- 4 If $V_N \stackrel{P}{\to} c$ and W_N has a limiting distribution, then the limiting distribution of $V_N W_N$ is equal to the limiting distribution of cW_N

Application: Consistency of the Sample Variance

Let's review how we can apply the LLN and Slutsky to show that the sample variance $\widehat{var(Y_i)} = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$ is consistent. With some algebra, we can rewrite this as

$$\frac{1}{N} \sum_{i=1}^{N} \left((Y_i - E[Y_i])^2 \right) - (\bar{Y} - E[Y_i])^2$$

Our strategy for proving consistency is to:

- Show that the second term converges in probability to 0
- Show that the first term converges in probability to the population variance
- Ombine those results to show that the sample variance converges in probability to the population variance

Application: Consistency of Sample Variance

$$\frac{1}{N} \sum_{i=1}^{N} \left((Y_i - E[Y_i])^2 \right) - (\bar{Y} - E[Y_i])^2$$

Let's begin with the second term: $(\bar{Y} - E[Y_i])^2$

- By the LLN, $\bar{Y} \stackrel{p}{\rightarrow} E[Y_i]$
- Applying Slutsky 1 to the function $f(a) = (a E[Y_i])^2$, we know that $f(\bar{Y}) \stackrel{P}{\to} f(E[Y_i])$
- That is, $(\bar{Y} E[Y_i])^2 \stackrel{p}{\to} (E[Y_i] E[Y_i])^2 = 0$
 - → This term converges in probability to 0!

Application: Consistency of Sample Variance

$$\frac{1}{N} \sum_{i=1}^{N} \left((Y_i - E[Y_i])^2 \right) - (\bar{Y} - E[Y_i])^2$$

Now let's turn to the first term: $\frac{1}{N} \sum_{i=1}^{N} \left((Y_i - E[Y_i])^2 \right)$

- Define $W_i \equiv (Y_i E[Y_i])^2$
- The random variables $W_1, ..., W_N$ are i.i.d., so we can apply the LLN

$$\implies \frac{1}{N} \sum_{i=1}^{N} W_i \stackrel{p}{\rightarrow} E[W_i] = E[(Y_i - E[Y_i])^2] = var(Y_i).$$

Application: Consistency of Sample Variance

$$\frac{1}{N} \sum_{i=1}^{N} \left((Y_i - E[Y_i])^2 \right) - (\bar{Y} - E[Y_i])^2$$

Now we just have to use Slutsky 2 to combine these results:

- Let g(a, b) = a b
- By Slutsky 2, the probability limit of our entire expression is just the difference between the probability limits of our two terms

$$\implies \widehat{var(Y_i)} \equiv \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$
 is a consistent estimator of σ_Y^2 !

Question: Why couldn't we have defined $V_i \equiv (Y_i - \bar{Y})^2$ and applied the law of large numbers directly to the sample variance?