

How many functions $f_{n,k}: P([k]) - \emptyset \to 0, 1, 2, \dots, n$ exist between nonempty subsets of [k] and nonnegative integers less than or equal to n such that there exists a sequence of finite sets (A_1, A_2, \dots, A_k) satisfying

$$f(S) = \# \bigcap_{i \in S} A_i$$

for all $S \in P([k]) - \emptyset$?

	#A	#B	#C	$\#(A\cap B)$	$\#(A\cap C)$	$\#(B\cap C)$	$\#(A \cap B \cap C)$
1	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0
3	0	1	0	0	0	0	0
4	1	0	0	0	0	0	0
5	0	1	1	0	0	0	0
6	0	1	1	0	0	1	0
7	1	0	1	0	0	0	0
8	1	0	1	0	1	0	0
9	1	0	1	0	0	0	0
10	1	1	0	1	0	0	0
11	1	1	1	0	0	0	0
12	1	1	1	1	0	0	0
13	1	1	1	0	1	0	0
14	1	1	1	0	0	1	0
15	1	1	1	1	1	1	1

Figure 1: For n = 1, k = 3, there are fifteen such functions.

Question. How many such functions exist? Equivalently, how many ways to fill in a k-"base set" Venn diagram with integers such that no base set has more than n elements?

Related.

- 1. What if $\#A_i = \#A_j$ for all i, j < n?
- 2. What if $A_i \not\subset A_j$ for all $i \neq j$?
- 3. What if this is done with unordered sets? (e.g. the second, third, and fourth functions in the example are all considered equivalent.)
- 4. What if the corresponding diagrams need to be realizable as grid rectangles with areas corresponding to the values in the table?
- 5. What if this is done with set union instead of set intersection?

References.

OEIS Sequence A000330 handles the case where k=2.

OEIS Sequence A319777 handles the case where k = 3.