Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica

ME 607 SÉRIES TEMPORAIS Prova 1

Professor: Mauricio Zevallos

1. Interessa analisar a série de precipitações mensais de chuva em Lavras. Para isto serão a justados vários modelos de séries temporais com base nas observações do periodo Janeiro 1966 a Dezembro 1996, isto é n=372 observações. Na Tabela 1 são mostrados os dados correspondentes aos anos 1995 e 1996 e na Figura 1 é mostrado o gráfico da série.

Tabela 1:

Ano 1005	Jan	Fev	Mar	Abr	Mai	Inn	7.1					
Ano 1995 1996	200.0	339.5 310.3	124.8	64.6 54.1	65.6	12	1.0	Ago 0.0	Set 38.6	Out 116.0	Nov 192.0	Dez 442 1
				<u> </u>	O-F-D	TITE	0.2	18.1	149.0	90.5	363.2	252.7

- (a) (0,6 ptos) Baseado na Figura 1 um pesquisador considera que não há tendência na série e calcula o periodograma da série (sem a média). O gráfico do periodograma é mostrado na Figura 2. O ponto máximo ocorre na frequência 32/372 = 0,0860215. Temos evidência de sazonalidade mensal? Há evidência de outro tipo de periodicidade?
- (b) (0,6 ptos) A série temporal é denotada por y₁,..., y_n. O pesquisador sugere ajustar o seguinte modelo, chamado de Modelo-I,

$$y_t = \beta_0 + \beta_1 \sin(2\pi t/12) + \beta_2 \cos(2\pi t/12) + \varepsilon_t, \quad t = 1,...,n$$
 (1)

onde ε_t é uma sequência IID, $N(0, \sigma^2)$. Os estimadores de quadrados minimos assim como as respectivos erros padrões (entre paréntesis) são: $\beta_0 = 127,944(4,138), \beta_1 =$ 43, 280(5, 852), $\beta_2 = 124,082(5,852)$. Discuta acerca da significância dos coeficientes estimados.

- (c) (0,8 ptos) Com base nas estimativas de (b), na Figura 3 é mostrado o ajuste (linha tracejada) para os últimos 10 anos da série (linha cheia). O ajuste é satisfatório?
- (d) (1,0 ptos) Fazendo uso do método de médias móveis, calcule as estimativas de precipitação para Julho e Agosto de 1996. Compare estes valores com os obtidos através do Modelo-I. Qual método fornece melhores resultados?

o perio dogramo.

o médias movies.

(e) $(1,0 \ ptos)$ Agora o pesquisador usa o modelo de Holt-Winters aditivo com periodo p=12, chamado de Modelo-II, e encontra as estimativas ótimas segundo o critério de menor erro quadrático médio de ajustamento: $\hat{\alpha}=0,00520,\ \hat{\beta}=0,\ \hat{\gamma}=0,1270.$ Na Tabela 2 são mostrados os resultados deste ajuste para o periodo Outubro 1995 a Novembro 1996. Encontre o valor estimado da precipitação de Dezembro de 1996.

Tabela 2:

Mes	μ̂ŧ	ŝŧ	Mes	μ̂t	ŝŧ
Oct 1995	141.4037	-25.4606637	May 1996	141.8371	-76.3828992
Nov 1995	141.4040	27.7979239	Jun 1996	141.9367	-122.6322921
Dec 1995	141.5225	123.8136185	Jul 1996	141.9247	-127.0163898
Jan 1996	142.4413	168.7825085	Aug 1996	141.8482	-126.3306625
Feb 1996	141.7280	82.1456654	Sep 1996	141.8616	-74.6628351
Mar 1996	142.1773	39.3150517	Oct 1996	142.2869	-25.4534231
Apr 1996	141.9049	-74.7641137	Nov 1996	142.1500	30.6939737

- (f) (1,0 ptos) Usando o Modelo-II encontre as previsões de precipitação para janeiro, fevereiro e março de 1997. Se os valores observados das precipitações nesses meses são: 383.3 (janeiro), 114.5 (fevereiro) e 96.5 (março), comente o desempenho do Modelo-II em termos de previsão.
- 2. $(0,6 \ ptos)$ Seja $y_t = y_{t-1} + \delta + \varepsilon_t$ para $t = 1, 2, ..., y_0 = 2$, onde $\{\varepsilon_t\}$ é uma sequência de variáveis aleatórias IID $N(0, \sigma^2)$ e δ é uma constante. Verifique se o processo $\{y_t\}$ é estritamente estacionário.
- 3. Para cada uma das seguintes situações verifique se o processo {y_t} é estacionário. Se for esse o caso calcule a função de autocorrelação.
 - (a) $(1,2 \ ptos) \ y_t = \varepsilon_t Cos(\phi t) + \varepsilon_{t-1} Sen(\phi t)$, onde $\{\varepsilon_t\}$ é uma sequência de variáveis aleatórias IID $N(0,\sigma^2)$ e ϕ é uma constante.
 - (b) (1,8 ptos) $y_t = \varepsilon_t \varepsilon_{t-1}$ onde $\{\varepsilon_t\}$ é uma sequência de variáveis aleatórias IID com $E(\varepsilon_t) = \mu$ e $Var(\varepsilon_t) = \sigma^2$.
- 4. $(1,4 \ ptos)$ Seja X_t um processo AR(1) estacionário, isto é, $X_t = \phi X_{t-1} + Z_t$, onde $Z_t \sim RB(0,\sigma_z^2)$, $|\phi| < 1$ e $Cov(Z_t,X_{t-k}) = 0$ para k>0. Seja o processo $W_t \sim RB(0,\sigma_w^2)$ com $E(W_sZ_t) = 0$ para todo s e t. Demonstre que o processo Y_t definido como $Y_t = X_t + W_t$ é estacionário e encontre sua função de autocovariancia.

Figura 1: Precipitações em Lavras

Ano

1965

1970

1975

Figura 2: Periodograma

Figura 3: Ajuste