Quadrilateral learning experiments: Baseline

January 22, 2016

```
library(langcog)
##
## Attaching package: 'langcog'
## The following object is masked from 'package:base':
##
##
       scale
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(tidyr)
library(binom)
library(lme4)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
##
##
       expand
library(bootstrap)
library(magrittr)
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:tidyr':
##
##
       extract
```

```
library(stringr)
theme_set(theme_classic())
```

Load data.

```
## Warning in eval(substitute(expr), envir, enclos): NAs introduced by
## coercion
```

Get the block each ss reached criterion

```
d1 %<>%
   filter(trial_type == "training") %>%
   group_by(subids) %>%
   summarise(block_reached_crit = max(block_num)) %>%
   left_join(., d1) %>%
   mutate(
     reached_crit = ifelse(block_reached_crit < 15, "yes", "no"),
     blocks_to_go = block_reached_crit - block_num + 1
   )</pre>
```

```
## Joining by: "subids"
```

Descriptives

How many participants?

```
d1 %>%
    select(subids, reached_crit) %>%
    unique() %>%
    group_by(reached_crit) %>%
    summarise(n_subs = n()) %>%
    knitr::kable()
```

reached_crit	n_subs
no	26
yes	13

How long did experiment take?

reached_crit	$m_train_time_sec$	$m_{exp_time_min}$
no	1.548119	13.993036
yes	2.024719	8.234531

How many blocks did it take to reach criterion?

```
ss <- d1 %>%
   filter(trial_type == "training") %>%
   group_by(subids) %>%
   summarise(block_reached_crit = max(as.numeric(block)))

ggplot(data = ss, aes(x = block_reached_crit)) +
   geom_histogram() +
   xlab("Block Reached Criterion") +
   theme(text = element_text(size = 20))
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Comments

```
d1 %>%
    distinct(subids) %>%
    select(subids:exp_improve) %>%
    knitr::kable()
```

subids	block_reached_crit	age	gender	comments
1	15	43	m	none
2	2	33	f	no
3	15	26	female	no
4	15	52	f	no

subids	block reached crit	age	gender	comments
-				
5	15	24	$_{\mathrm{male}}$	great hit
6	2	48	m	no
7	15	34	F	NO THANK YOU
8	15	40	female	no
9	15	42	m	Thank you for letting me participate.
10	9	32	m	_
11	15	36	m c	No
12	15	30	f	
13	3	39	f	none, good survey/game
14	10	38	f	,
15	15	64	f	!
16	15	24	f	Thanks.
17	8	27	f	,
18	15	24	$_{ m c}^{ m male}$	no
19	15	27	f	Nope.
20	15	33	m	No.
21	2	39	m c 1	no comments
22	15	58	female	that was on the difficult side
23	15	31	m c	no
24	4	33	f	no
25	15	39	M	Nope, thanks!
26	4	20	m	
27	6	26	m c	No, thanks.
28	12	54	f	None
29	15	49	f	no
30	15	27	m	na N
31	15	40	m c	None
32	7	35	f	
33	4	56	f	Not really, other than it was actually pretty useful and that I learned someth
34	15	33	$_{c}^{\mathrm{F}}$	Fun & interesting study
35	15	42	f	none
36	15	32	f	na
37	15	25	f	None.
38	15	29	M	
39	15	23	m	N/A

Visualization

Training performance across blocks for all Ss aggregate

```
ms <- d1 %>%
  filter(trial_type == "training") %>%
  group_by(blocks_to_go) %>%
  multi_boot_standard("correct") %>%
  mutate(
    p_error = 1 - mean,
    ci_lower = 1 - ci_lower,
    ci_upper = 1 - ci_upper)
```

```
## Joining by: "blocks_to_go"
```

```
ggplot(data = ms, aes(x=as.numeric(blocks_to_go), y=p_error)) +
  geom_pointrange(aes(ymin=ci_lower, ymax=ci_upper)) +
  geom_line() +
  geom_hline(aes(yintercept = 0.5), linetype = "dashed") +
  ylim(0, .6) +
  xlim(15,0) +
  scale_color_solarized() +
  ylab("Probability of error") +
  xlab("Blocks to go") +
  theme(text = element_text(size = 20))
```

0.6-

Training performance across blocks for all Ss by reached crit

```
ms <- d1 %>%
  filter(trial_type == "training") %>%
  group_by(blocks_to_go, reached_crit) %>%
  multi_boot_standard("correct") %>%
  mutate(
    p_error = 1 - mean,
    ci_lower = 1 - ci_lower,
    ci_upper = 1 - ci_upper)
```

Joining by: c("blocks_to_go", "reached_crit")

```
ggplot(data = ms, aes(x=as.numeric(blocks_to_go), y=p_error, color=reached_crit)) +
  geom_pointrange(aes(ymin=ci_lower, ymax=ci_upper)) +
  geom_line() +
  geom_hline(aes(yintercept = 0.5), linetype = "dashed") +
```

```
ylim(0, .6) +
xlim(15,0) +
scale_color_solarized() +
ylab("Probability of error") +
xlab("Blocks to go") +
theme(text = element_text(size = 20))
```

0.6 -

Training performance across blocks for all Ss by shape

```
ms <- d1 %>%
  filter(trial_type == "training") %>%
  group_by(blocks_to_go, question) %>%
  multi_boot_standard("correct") %>%
  mutate(
    p_error = 1 - mean,
    ci_lower = 1 - ci_lower,
    ci_upper = 1 - ci_upper)
```

Joining by: c("blocks_to_go", "question")

```
ggplot(data = ms, aes(x=blocks_to_go, y=p_error, color=c(question))) +
  geom_pointrange(aes(ymin=ci_lower, ymax=ci_upper)) +
  geom_line() +
  geom_hline(aes(yintercept = 0.5), linetype = "dashed") +
  ylim(0, .6) +
  xlim(15,0) +
  scale_color_solarized() +
```

```
ylab("Probability of error") +
xlab("Blocks to go") +
theme(text = element_text(size = 20))
```

Warning: Removed 1 rows containing missing values (geom_pointrange).

Training performance across blocks for all Ss by shape for those who reached criterion

```
ms <- d1 %>%
  filter(trial_type == "training", reached_crit=="yes") %>%
  group_by(blocks_to_go, question) %>%
  multi_boot_standard("correct") %>%
  mutate(
    p_error = 1 - mean,
    ci_lower = 1 - ci_lower,
    ci_upper = 1 - ci_upper)
```

Joining by: c("blocks_to_go", "question")

```
ggplot(data = ms, aes(x=blocks_to_go, y=p_error, color=c(question))) +
  geom_pointrange(aes(ymin=ci_lower, ymax=ci_upper)) +
  geom_line() +
  geom_hline(aes(yintercept = 0.5), linetype = "dashed") +
  ylim(0, .6) +
  xlim(15,0) +
  scale_color_solarized() +
```

```
ylab("Probability of error") +
xlab("Blocks to go") +
ggtitle("Shapes for reached crit") +
theme(text = element_text(size = 20))
```

Warning: Removed 8 rows containing missing values (geom_pointrange).

Shapes for reached crit

Training performance across blocks for all Ss by shape for those who did not reach criterion

```
ms <- d1 %>%
  filter(trial_type == "training", reached_crit=="no") %>%
  group_by(blocks_to_go, question) %>%
  multi_boot_standard("correct") %>%
  mutate(
   p_error = 1 - mean,
   ci_lower = 1 - ci_lower,
   ci_upper = 1 - ci_upper)
```

Joining by: c("blocks_to_go", "question")

```
ggplot(data = ms, aes(x=blocks_to_go, y=p_error, color=c(question))) +
  geom_pointrange(aes(ymin=ci_lower, ymax=ci_upper)) +
  geom_line() +
  geom_hline(aes(yintercept = 0.5), linetype = "dashed") +
  ylim(0, .6) +
  xlim(15,0) +
```

```
scale_color_solarized() +
ylab("Probability of error") +
xlab("Blocks to go") +
ggtitle("Shapes for did not reach crit") +
theme(text = element_text(size = 20))
```

Warning: Removed 1 rows containing missing values (geom_pointrange).

Shapes for did not reach crit

Training performance across blocks split by ss who reached training criterion

```
ms <- d1 %>%
  filter(trial_type == "training") %>%
  group_by(block, reached_crit) %>%
  multi_boot_standard(column = "correct") %>%
  mutate(prob_error = 1 - mean)
```

Joining by: c("block", "reached_crit")

```
ggplot(data = ms, aes(x = as.numeric(block), y = mean, color = reached_crit)) +
    geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +
    geom_line() +
    geom_hline(aes(yintercept = 0.5), linetype = "dashed") +
    ylim(0.2, 1) +
    scale_color_solarized() +
    xlab("Block") +
    theme(text = element_text(size = 20))
```


Average blocks to criterion

```
d1 %>%
    filter(trial_type == "training") %>%
    mutate(condition = "baseline") %>%
    group_by(subids, condition) %>%
    summarise(block_reached_crit = max(as.numeric(block))) %>%
    filter(block_reached_crit != 15) %>% # remove ss who didn't reach criterion
    group_by(condition) %>%
    multi_boot_standard(column = "block_reached_crit") %>%
    knitr::kable()
```

Joining by: "condition"

condition	mean	ci_lower	ci_upper
baseline	5.615385	4	7.384615

Relational test broken down by question and block

```
ms <- d1 %>%
    filter(trial_type %in% c("relational")) %>%
    group_by(question_and_shape, question, block = as.factor(block), reached_crit) %>%
    multi_boot_standard(column = "correct") %>%
    ungroup() %>%
    mutate(block = relevel(block, "pretest"))
```

```
## Joining by: c("question_and_shape", "question", "block", "reached_crit")
```


Overall accuracy analysis for relational test across blocks

```
ms <- d1 %>%
   filter(trial_type %in% c("relational")) %>%
   group_by(trial_type, block = as.factor(block)) %>%
   multi_boot_standard(column = "correct")
```

```
## Joining by: c("trial_type", "block")
ms %<>% mutate(chance_line = ifelse(trial_type == "relational", 0.5, 0.5),
               block = relevel(block, "pretest"))
ggplot(aes(x = block, y = mean), data = ms) +
    geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +
    geom_line(aes(group=1)) +
    geom_hline(aes(yintercept = chance_line), linetype = "dashed") +
    ylim(0,1.0) +
    scale_color_solarized()
  1.00 -
  0.75 -
  0.25 -
  0.00 -
                                                                  posttest
                           pretest
                                               block
```

Within subjects change scores for all shapes

```
ss_acc <- d1 %>%
   filter(trial_type %in% c("relational")) %>%
   group_by(subids, block, trial_type, reached_crit) %>%
   summarise(m_acc = mean(correct)) %>%
   spread(key = block, value = m_acc) %>%
   mutate(m_diff_score = posttest - pretest)

ms_change <- ss_acc %>%
   group_by(trial_type) %>%
   multi_boot_standard(column = "m_diff_score")
```

Joining by: "trial_type"

Analysis splitting by ss who reached criterion

Overall accuracy analysis

```
ms <- d1 %>%
    filter(trial_type %in% c("relational")) %>%
    group_by(trial_type, block = as.factor(block), reached_crit) %>%
    multi_boot_standard(column = "correct")

## Joining by: c("trial_type", "block", "reached_crit")

ms %<>% ungroup() %>% mutate(block = relevel(block, "pretest"))

ggplot(aes(x = block, y = mean), data = ms) +
    geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +
    geom_line(aes(group=1)) +
    geom_hline(aes(yintercept = 0.5), linetype = "dashed") +
    ylim(0,1.0) +
    facet_grid(.~reached_crit) +
```

```
scale_color_solarized() +
theme_bw() +
theme(text = element_text(size = 20))
```


Within subjects change scores

Distribution of change scores split by if ss reached criterion.

```
ggplot(data = ss_acc, aes(x = m_diff_score, fill = reached_crit)) +
    geom_density(alpha = 0.5) +
    scale_fill_solarized()
```


Joining by: c("trial_type", "reached_crit")

