Pattern Recognition

Programming Assignment #1

Professor : Neha Sah (CS18M033)

C. Chandra Sekhar Avani Shukla(CS18M052)

Aarti Tapdiya(CS18M055)

Task 1: Eigen analysis

Perform eigen analysis on the covariance matrix for pixel representations of images in Dataset 1. Use eigenvectors corresponding to significant eigen values for reconstruction of images .

In this task we are reconstructing the images (64x64 gray scale images) using covariance matrix and eigen values.

1.Theory:

- Calculate the Covarience Matrix as $Cov(X, Y) = \sum (X_i X) (Y_i Y) / N$; where N is number of elements in the dataset.
- From this matrix calculate the eigen values and eigen vectors.
- Sort these eigen values in descending order as well as the vectors in the matrix. Take some of the most significant eigen values.
- Reconstruct the image .

2. Comparison of the original images and reconstructed images

Figure 1 Original and Reconstructed image with Eigen values 1, 10, 20, 40, 80, 160, 320, 640 respectively

Figure 2 Original and Reconstructed image with Eigen values 1, 10, 20, 40, 80, 160, 320, 640 respectively

Figure 3 Original and Reconstructed image with Eigen values 1, 10, 20, 40, 80, 160, 320, 640 respectively

Figure 4 Original and Reconstructed image with Eigen values 1, 10, 20, 40, 80, 160, 320, 640 respectively

Figure 5 Original and Reconstructed image with Eigen values 1, 10, 20, 40, 80, 160, 320, 640 respectively

Observation:

Last three reconstructed images are same for significant values 160,320,640 and there is no change because for these values the eigen vectors are dependent.

Task 2: Regression Models

- ➤ Model 1. Polynomial curve fitting for Dataset 2
- In this task we are using $cos(2\Pi x) + tanh(2\Pi x)$ this function by generating 100 random values for X and calculating values of Y by adding Gaussian noise with zero mean. So, Y = $cos(2\Pi x) + tanh(2\Pi x) + Gaussian Noise$.
- We have divided the dataset into test, train and validation in the ratio (70:20:10).

fig. 2.1.1 Curve Fitting of xn vs yn with M=1 ,L=0.000007 for training data set

fig. 2.1.2 Curve Fitting of xn vs yn with M= 2, L=0.000007 for training data set

fig. 2.1.3 Curve Fitting of xn vs yn with M=3, I=0.01 for training data set

fig. 2.1.4 Curve Fitting of xn vs y(x,w) with M=8 , L=0.000007 for training data set

fig. 2.1.5 Scatter plot of tn vs y(x,w) for test data set with M=8, L=0.000007

fig 2.1.8: Scatter plot with overfitting for training data with M=10 , L=0

Observation from fig.2.1.8:

1. For test data set , error = 1.1682 For training data set , error = 0.0397

fig 2.1.9: Scatter plot with overfitting reduced for training data with M=10,L=0.000007

Observation from fig.2.1.9:

1. For test data set , error = 0.1521 For training data set , error = 0.0924

			Train			
M\L		0	0.000007	0.007	0.7	1
	2	0.2466	0.247	0.6108	2.1117	1.9322
	3	0.2441	0.2443	0.26971	0.3999	2.6062
	5	0.0986	0.1261	0.5734	2.2768	2.4737
	8	0.0981	0.1196	0.5123	1.8703	2.0185

Table 2.1.1 : Observations of errors with given degree of polynomial with given lambda for traning data

M\L	0	0.000007	0.007	0.7	1
2	0.2358	0.2362	0.6046	2.1125	1.9314
3	0.2468	0.247	0.4113	2.6879	2.593
5	0.1033	0.1344	0.5641	2.2704	2.4591
8	0.1039	0.124	0.4824	1.873	2.0147

Table 2.1.2 Observations of errors with given degree of polynomial with given lambda for validation data

M\L	0	0.000007	0.007	0.7	1
2	0.2672	0.2676	0.6321	2.0963	1.9131
3	0.2596	0.2598	0.4134	2.6926	2.5926
5	0.124	0.1542	0.5904	2.2892	2.4792
8	0.1253	0.1441	0.5368	1.8876	2.0319

Table 2.1.3 Observations of error with given degree of polynomial with given lambda for test data

➤ Model 2 : Linear model for regression using polynomial basis functions for Dataset 3.

Ans:

fig.2.2.1: 3-D plot of Bivariate data using Polynomial basis functions for train20

fig.2.2.2 : Scatter plot of tn vs y(x,w) for dataset train20

fig.2.2.3 : Scatter plot of tn vs y(x,w) for test data

fig: 3-D plot of Bivariate data using Polynomial basis functions for train20 , Overfitting case of data with M=4 , L=0 for train 20

M\L	0	0.0001	0.1
2	4.2199	4.2203	4.5589
3	3.9648	3.9652	4.3299
4	3.664	3.6647	4.2912
5	10.671	0.0024	2.1711

Table 2.2.1: observations of errors with different M and L for dataset train20

M\L	0	0.0001	0.1
2	8.4236	8.4239	8.7508
3	8.2581	8.2585	8.6124
4	12.0389	12.0396	12.748
5	640.5423	502.2222	514.0345

Table 2.2.2: observations of errors with different M and L for test data

M\L	0	0.0001	0.1
2	8.2724	8.2727	8.6024
3	7.8719	7.8724	8.2301
4	11.7436	11.7443	12.4447
5	612.2612	478.5347	489.749

Table 2.2.3: observations of errors for validation with different M and L for train 20

fig.2.2.4: 3-D plot of Bivariate data using Polynomial basis functions for train100

fig.2.2.5 : Scatter plot of tn vs y(x,w) for train100 test data

fig.2.2.6 : Scatter plot of tn vs y(x,w) for test data for dataset train100

M\L	0	0.0001	10
2	5.4076	5.4077	15.1802
3	5.3348	5.3349	16.5195
4	5.2559	5.2561	16.6752
5	5.1178	5.1181	8.837
10	3.106	3.1069	34.363

Table 2.2.4: observations of errors with different M and L for dataset train100 data

M\L	0	0.0001	10
2	5.6291	5.6292	15.4005
3	5.7515	5.7516	16.9226
4	5.988	5.9881	17.3892
5	5.9548	5.955	10.0226
10	600.8491	600.8485	579.6039

Table 2.2.5: observations of errors for test data with different M and L for dataset train100 data

M\L	0	0.0001	10
2	5.784	5.7841	15.5603
3	5.9066	5.9069	17.09
4	6.1079	6.108	17.5151
5	6.4661	6.4663	15.6972
10	664.26	664.26	646.9021

Table 2.2.6: observations of errors for validation data with different M and L for dataset train100 data

fig: 3-D plot of Bivariate data using Polynomial basis functions , Overfitting case of data with M=10 , L=0 for train 100

M\L	0	0.0001	10
2	5.1693	5.1694	16.7894
3	5.1617	5.1618	15.8475
4	5.1542	5.4544	15.2847
5	5.1509	5.151	15.5057
20	4,4621	4.4621	11.8413

Table 2.2.7: observations of errors with different M and L for dataset train1000

M\L	0	0.0001	10
2	5.0802	5.0803	16.6996
3	5.0791	5.0792	15.7642
4	5.11	5.1101	15.2399
5	5.0954	5.0955	15.45
20	7.3267	7.3267	14.6853

Table 2.2.8: observations of errors for test data with different M and L for dataset train1000

M\L	0	0.0001	10
2	5.3769	5.377	16.9979
3	5.3892	5.3894	16.0761
4	5.3997	5.3998	15.5304
5	5.4101	5.4102	15.7647
20	10.7516	10.7516	18.1861

Table 2.2.9 : observations of errors for validation data with different M and L for dataset train1000

Observations:

- 1 . For training with 20 datasets , overfitting is observed at M=5 , and there is no significant difference in error values for test data when regularization was applied.
- 2 . When the dataset size is increased from 20 to 100, overfitting at M=5 was removed ,but later on at M=10 , overfitting is observed , with no significant change in errors after regularization is applied.
- 3 . Again when dataset size is increased from 100 to 1000, overfitting at M=10 is removed.
- 4.Overfitting gets removed when the dataset size is increased for that value of M for which it was observed before.

➤ Model 3: Linear model for regression using Gaussian basis functions for Datasets 3 and 4

Case 1: Regression of Bivariate data using quadratic regularization

- Performed for different values of k, where k is number of clusters.
- Performed for different values of sigma, where sigma is variance.
- Performed for different values of lambda, where lambda is regularization factor.

fig.2.3.1.1: 3D plot for bivariate data using quadratic regularization for 20 training dataset

Predicted Model Actual output(t_{train})

-5

x1

x2

fig .2.3.1.2: 3D plot for overfitting case for bivariate data using quadratic regularization for 20 training dataset

fig.2.3.1.3 : scatter plot for bivariate data using quadratic regularization for 20 training dataset

fig.2.3.1.4 : scatter plot for bivariate test data using quadratic regularization for model train using 20 training dataset

fig.2.3.1.5 : Scatter plot for bivariate data using quadratic regularization for 20 training dataset - Overfitting case

fig.2.3.1.6 : 3D plot for bivariate data using quadratic regularization for 100 training dataset

fig.2.3.1.7 : scatter plot for bivariate data using quadratic regularization for 100 training dataset

fig.2.3.1.8: scatter plot for bivariate test data using quadratic regularization for model train using 100 training dataset

Observation:

for 20 training dataset we see that when no of cluster becomes closer to 20 there is significant rise in test error . At k=18 overfitting occurs, and on adding L, we see error in test data gets reduced.

K\L	0	9.00E-05	0.1
2	26.3388	26.6197	27.32801
5	20.0441	29.6881	26.9052
12	8.4264	10.2653	1454.27
18	5.9099	8.44307	608.27
20	0	0.6656	611.63

Table 2.3.1: observations of errors with different M and L for dataset train20 for quadratic regularization for bivariate data

K\L	0	9E-05	0.1
2	37.7792	37.5693	38.27774
5	31.7458	40.64454	37.8547
12	22.489	25.1967	1469.51
18	169.3804	41.0609	642.933
20	38.0033	38.666	647.155

Table 2.3.2: observations of errors for test data with different M and L for dataset train20 for quadratic regularization for bivariate data

K\L		0	9E-05	0.1
	2	38.5592	38.3303	39.03762
	5	32.9926	41.4047	38.6152
	12	23.6175	25.895	1470.51
	18	194.3411	41.3887	643.244
	20	38.3142	38.9977	647.466

Table 2.3.3: observations of errors for validation data with different M and L for dataset train20 for quadratic regularization for bivariate data

K\L		0	9.00E-05	0.1
	2	27.7621	27.9501	28.17755
	5	24.8436	32.4705	28.041
	12	12.0511	6801.7	56.617
	18	8.226	2588.78	1182.62
	20	7.79	478.341	2733.92

Table 2.3.4 : observations of errors with different M and L for dataset train100 for quadratic regularization for bivariate data

K\L	0	9E-05	0.1
2	37.639	37.6664	37.892
5	33.537	42.187	37.757
12	17.662	6810.5	66.335
18	11.165	2593.79	1192.29
20	10.69	481.28	2743.42

Table 2.3.5 : observations of errors for test data with different M and L for dataset train100for quadratic regularization for bivariate data

K\L		0	9E-05	0.1
	2	38.1521	38.2315	38.4569
	5	34.441	42.7525	38.3228
	12	18.218	6811.3	66.9
	18	11.58	2594.21	1192.92
	20	11.124	481.73	2744.125

Table 2.3.6: observations of errors for validation data with different M and L for dataset train100 for quadratic regularization for bivariate data

Plot of (x,y) vs f(x,y,w) for k = 12 L = 3e-08Predicted Model Actual output(t_{train}) 20 0 y(x1,x2) -20 -40 -60 5 10 5 0 -5 x2 x1

fig.2.3.2.1 : 3D plot for bivariate data using Tikhonov regularization for 20 training dataset

fig.2.3.2.2 : 3D plot for bivariate data using Tikhonov regularization for 20 training dataset - Overfitting case

fig.2.3.2.3 : scatter plot for bivariate data using Tikhonov regularization for 20 training dataset

fig.2.3.2.4: scatter plot for bivariate data using Tikhonov regularization for 20 training dataset: Overfitting case

fig.2.3.2.5 : scatter plot for bivariate test data using Tikhonov regularization for model 20 training dataset

fig: fig.2.3.2.6: 3D plot for bivariate data using Tikhonov regularization for 100 training dataset

fig.2.3.2.7 : scatter plot for bivariate data using Tikhonov regularization for 100 training dataset

fig.2.3.2.8 : Scatter plot for bivariate test data using Tikhonov regularization for model 20 training dataset

Case 2: Guassian Regression of multivariate data with Quadratic and Tikhonov regularization

fig 2.3.3.1 : scatter plot for multivariate data without regularization for training dataset

fig 2.3.3.2: scatter plot for multivariate data without regularization for test model

Observation:

Even if size of cluster is changed, there is no significant change in error.

		Quadratic	Tikhonov	
K S		L=0	L=0.000001	L = 0.00000001
7	15	7.6628	7.6067	7.6836
9	80	7.5413	9.7971	7.6156
17	60	7.1983	14.7864	7.4095
30	100	6.3456	188.2932	12.2614

Table 2.3.7 : observations of errors with different M and L for dataset train100 with quadratic regularization for multivariate data

K S			Quadratic L=0.000001	Tikhonov L = 0.00000001
	S	L=0		
7	15	6.2204	5.8633	5.7878
9	80	5.1845	7.2492	4.9942
17	60	4.6751	12.4396	6.346
30	100	5.5521	187.0699	10.8156

Table 2.3.8: observations of errors for test data with different M and L for dataset train100 with quadratic regularization for multivariate data

K S		L=0	Quadratic L=0.000001	Tikhonov L = 0.00000001
	S			
7	15	13.0742	12.8628	12.816
9	80	12.6596	14.6814	12.3963
17	60	12.027	19.6268	13.0986
30	100	12.2153	194.0197	17.9307

Table 2.3.9: observations of errors for validation data with different M and L for dataset train100 with quadratic regularization for multivariate data