Probability & Statistics. Assignment 7

- 1. Random vector $(\xi;\eta)^T$ is uniformly distributed inside ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$.
 - (a) Find marginal distributions of ξ and η ;
 - (b) Determine if ξ and η are independent;
 - (c) Find covariation matrix of this random vector;
 - (d) Find conditional expectations $E(\xi|\eta)$ and $E(\eta|\xi)$.

Answer:

(a)
$$f_\xi(x)=rac{2}{\pi a}\sqrt{1-rac{x^2}{a^2}}\cdot I_{x\in[-a,a]}$$
 , $f_\eta(y)=rac{2}{\pi b}\sqrt{1-rac{y^2}{b^2}}\cdot I_{y\in[-b,b]}$;

(b) dependent. Hint: $P(0 < x < \epsilon, 0 < y < \epsilon)$;

(c)
$$K=rac{1}{4}igg(egin{array}{cc} a^2 & 0 \ 0 & b^2 \end{array}igg)$$
;

(d)
$$H(x) = E(\eta | \xi = x) = 0$$
, $G(y) = E(\xi | \eta = y) = 0$.

- 2. Random vector $(\xi; \eta)^T$ is uniformly distributed in a triangle with vertices (-5; 0), (5; 0) and (0; 4).
 - (a) Find $E(\eta|\xi=2)$, $\mathrm{Var}(\eta|\xi=2)$;
 - (b) Find $E(\xi|\eta=2)$, $Var(\xi|\eta=2)$.

Answer: (a) $\frac{6}{5}$, $\frac{12}{25}$; (b) 0, $\frac{25}{12}$.

3. Random vector $(\xi; \eta)^T$ is given by its cumulative distribution function:

$$F_{\xi,\eta}(x;y) = \left(1 - e^{-\lambda x} - e^{-\mu y} + e^{-\lambda x - \mu y}\right) I_{x>0} I_{y>0}.$$

- (a) Find marginal distributions of ξ and η ;
- (b) Determine if ξ and η are independent;
- (c) Find covariation matrix of this random vector;
- (d) Find conditional expectations $E(\xi|\eta)$ and $E(\eta|\xi)$.

Answer:

(a)
$$f_{\xi}(x)=(1-e^{-\lambda x})\cdot I_{x>0}$$
 , $f_{\eta}(y)=(1-e^{-\mu y})\cdot I_{y>0}$;

(b) independent;

(c)
$$K=\left(egin{array}{cc} rac{1}{\lambda^2} & 0 \ 0 & rac{1}{\mu^2} \end{array}
ight)$$
;

(d)
$$H(x)=E(\eta|\xi=x)=rac{1}{\mu}$$
, $G(y)=E(\xi|\eta=y)=rac{1}{\lambda}$.

4. Probability density of random vector $(\xi;\eta)^T$ is given by $f(x;y)=\frac{a}{1+x^2+y^2+x^2y^2}$. Find a and marginal densities of ξ and η . Determine whether ξ and η are independent and correlated.

Answer:
$$a=rac{1}{\pi^2}$$
, $f_\xi(x)=rac{1}{\pi}rac{1}{1+x^2}$, $f_\eta(y)=rac{1}{\pi}rac{1}{1+y^2}$, independent.

5. Let $\xi \sim N(0;1)$ and $\eta = \xi^2$. Determine if ξ and η are (a) independent, (b) correlated.

Answer: (a) dependent; (b) uncorrelated.

6. The covariance matrix of random vector $(\xi; \eta)^T$ is equal to $\begin{pmatrix} 2 & -3 \\ -3 & 6 \end{pmatrix}$. Find $\operatorname{Var}(-\xi - 2\eta)$ and $\operatorname{Var}(3\xi - \eta + 2)$.

Answer: 14, 42.

7. Let a,b,c,d be constants, and $ac \neq 0$. Show that $\rho(a\xi+b,c\eta+d)=\pm\rho(\xi,\eta)$. How do we determine the sign at the right side of the equality?

8. Let $\zeta \sim \operatorname{Exp}(\lambda)$. Find the correlation coefficient between

(a)
$$2\zeta + 3$$
 and $3\zeta - 1$;

(b)
$$\zeta^2$$
 and $\zeta^2-\zeta$.

Answer: (a) 1; (b)
$$\frac{10-2\lambda}{\sqrt{5(\lambda^2-8\lambda+20)}}$$
.

- 9. Let $\zeta \sim N(0;1)$. Find the correlation coefficient between
 - (a) 2ζ and ζ^3 ;

(b)
$$3\zeta^2-2$$
 and $2\zeta^2+3$

Answer: (a)
$$\frac{3}{\sqrt{15}}$$
; (b) 1.

10. Let ξ and η be independent random variables with N(0;1) distribution. Find the probability that a point with coordinates $(\xi;\eta)$ is situated within a rectangle centered at the origin whose sides are equal to 2a and 2b. (Note that the sides of a rectangle do not have to be parallel to coordinate axes.)

Answer:
$$(2\Phi(\frac{a}{2})-1)(2\Phi(\frac{b}{2})-1)$$
.

- 11. Let ξ and η be independent random variables with N(0;1) distribution. Find the probability that a point with coordinates $(\xi;\eta)$
 - (a) is situated within figure $\{|x| \leq 1, |y| \leq 1\}$;
 - (b) is situated within figure $\{|x|+|y|\leqslant 1\}$.

Answer: (a)
$$(2\Phi(1)-1)^2$$
; (b) $(2\Phi(\frac{\sqrt{2}}{2})-1)^2$.

12. Random variables ξ_1 and ξ_2 are independent and uniformly distributed on [0;1]. Find the distributions of $\eta=\xi_1\xi_2$ and $\zeta=\frac{\xi_2}{\xi_1}$.

Answer:
$$f_{\xi_1\xi_2}(x)=-ln(x)$$
, $f_{rac{\xi_2}{\xi_1}}(x)=egin{cases} rac{1}{2},&x\in(0,1)\ rac{1}{2x^2},&x\geq1 \end{cases}$.

13. Random variables ξ_1 and ξ_2 are independent and exponentially distributed with parameter λ . Find the distributions of $\zeta=\frac{\xi_2}{\xi_1}$ and $\zeta=\frac{\xi_2}{\xi_1+\xi_2}$.

Answer:
$$f_{rac{\xi_2}{\xi_1}}(x)=rac{1}{(1+y)^2}$$
; $f_{rac{\xi_2}{\xi_1}}(x)=1\cdot I_{x\in(0,1)}$.

14. Random variables ξ_1 and ξ_2 are independent and have a standard normal distribution. Find the distributions of $\zeta=\frac{\xi_2}{\xi_1}$, $\eta=\frac{|\xi_2|}{\xi_1}$ and $\gamma=\frac{\xi_2}{|\xi_1|}$.

Answer:
$$f_\zeta(x)=rac{1}{\pi}rac{1}{1+x^2}$$
, $f_\eta(x)=rac{1}{\pi}rac{1}{1+x^2}$, $f_\gamma(x)=rac{1}{\pi}rac{1}{1+x^2}$.

15. Random vector $(\xi;\eta)^T$ is uniformly distributed within a circle given by $x^2+y^2\leqslant 25$. Find the distribution of $\zeta=\frac{\xi}{n}$.

Answer:
$$f_{\zeta}(x)=rac{1}{\pi}rac{1}{1+x^2}.$$

16. Probability density of random vector $(\xi;\eta)$ is given by $f_{\xi,\eta}(x;y)=rac{C\cdot I_{x>0}I_{y>0}}{(1+x+y)^3}$. Find probability density of $\zeta=\xi+\eta$.

Answer:
$$f_{\zeta}(x)=rac{2x}{\left(1+x
ight)^{3}}\cdot I_{x>0}.$$

17. Find probability density of $\xi + \eta$ where ξ and η are independent random variables uniformly distributed on (0; 1).

Answer:
$$f_{\xi+\eta}(x) = egin{cases} x, & 0 < x \leq 1 \ 2-x, & 1 < x < 2 \ 0, & otherwise \end{cases}$$

18. The altitude of a cylinder η and the radius of its base ξ are independent random variables whose distributions are U[a;b] and $\mathrm{Exp}(\lambda)$ respectively. Find expectation and variance of a volume of such a cylinder.

Answer:
$$\frac{\pi}{\lambda^2}(a+b)$$
; $\frac{\pi^2}{\lambda^4}(7a^2+6ab+7b^2)$.

19. Prove that $\operatorname{Var}(\xi \eta) = \operatorname{Var} \xi \cdot \operatorname{Var} \eta + \operatorname{Var} \xi \cdot (E\eta)^2 + \operatorname{Var} \eta \cdot (E\xi)^2$ for arbitrary independent random variables ξ and η .