Actividad 3 - Análisis del proceso de ML no supervisado de agrupación, K-MEANS & DBSCAN

Inteligencia Artificial

Unidad 2

Nombre de la materia

Nombre del alumno

Nombre del Profesor

Fecha

Aprendizaje Automático - MIAR0525

David Alejandro Narváez Mejía

Gladys Villegas R. PhD(C)

16/05/2024

Introducción

Temas

Tema 1

Generalidades del Proyecto

Tema 2

Estadística Descriptiva y EDA

Tema 3

Metodología y técnicas aplicadas

Tema 4

Conclusiones y Caso de Estudio

Referencias:

- [1] https://www.kaggle.com/datasets/hrhuynguyen/2d-spatial-dataset/data
- [2] Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (3rd ed.). O'Reilly Media.
- [3] https://github.com/DAVOALEJO1987/CLUSTERING-K-MEANS-DBSCAN.git

Objetivo

Analizar el proceso de ML no supervisado de clasificación, K-MEANS & DBSCAN del dataset meteorológicos de la ciudad de Basilea.

Tema 1: Dataset

Tema 2: Estadística Descriptiva y EDA

1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

Tema 2: Estadística Descriptiva y EDA

	global_radiation	precipitation	sunshine	temp_mean	humidity
count	3654.000000	3654.000000	3654.000000	3654.000000	3654.000000
mean	1.693919	0.541475	4.891078	-4.626327	0.853952
std	0.898277	0.771348	4.470904	6.987080	0.174900
min	0.170000	0.000000	0.000000	-26.600000	0.100000
25%	0.930000	0.000000	0.000000	-9.400000	0.800000
50%	1.600000	0.180000	4.300000	-4.400000	0.930000
75%	2.300000	0.840000	8.700000	0.700000	0.970000
max	4.420000	5.950000	15.600000	13.800000	1.000000

Método	Tipo	Ventajas	Desventajas	Aplicación en el código
K-Means	Clustering	 Rápido y eficiente en grandes volúmenes de datos Fácil de interpretar Genera clusters bien definidos si son esféricos 	 Sensible a valores atípicos Necesita definir el número de clusters (k) No detecta formas no lineales 	Segmentación de condiciones climáticas
DBSCAN	Clustering basado en densidad	 Detecta clusters de cualquier forma No requiere definir k Detecta outliers automáticamente 	 Sensible a los parámetros eps y min_samples Difícil con densidades variadas 	Identificación de eventos extremos y ruido
PCA	Reducción dimensional	 Reduce dimensiones preservando varianza Mejora visualización Facilita modelado posterior 	- Supone relaciones lineales - Puede perder interpretabilidad	Proyección de datos a 2D para graficar clusters
t-SNE	Reducción dimensional (no lineal)	- Excelente para visualizar estructuras complejas - Captura relaciones no lineales locales	 Computacionalmente costoso No útil para modelado predictivo No conserva escalas 	Visualización clara de separación entre clusters

0.85857

0.77250

6.350000

1.680804

3.165000

1.102500

10.825000

0.152463 10.688435

0.061726 8.517258

-10.013469 0.948625

1.329388 0.804585

-8.165323 0.565726

1.004649

2.924340

1.356258

Probando el ML

K-Means (0.25) ofrece mejor definición de grupos y es más confiable para interpretar y clasificar condiciones climáticas.

Caso de estudio WATERGEN

¿Cómo puede WATERGEN aprovechar la IA?

- 1. Optimización de generación de agua.
- 2. Geolocalización inteligente.
- 3. Modelos de predicción climática.
- 4. Gestión eficiente de energía.

