UNIVERSIDADE FEDERAL DE SANTA CATARINA – UFSC- CTC DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO PROJETO E ANÁLISE DE ALGORITMO

Prof. Alexandre Gonçalves Silva Aluno: Osmar de Oliveira Braz Junior

Questão 2

- 2. Em relação a crescimento de funções, pede-se:
- (a) Para cada função f(n) e tempo t na tabela seguinte, determine o maior tamanho n de um problema que pode ser resolvido no tempo t, assumindo que o algoritmo para resolver o problema leve tempo f(n) nanosegundos (10⁻⁹ segundos).

Tempo t							
f(n)							
nanosegundos= 10 ⁻⁹	4.6	4 84:	4 11	4 Dia	4 842-	4 4	4.64
10-	1 Segundo	1 Minuto	1 Hora	1 Dia	1 Mês	1 Ano	1 Século
lg n *							
\sqrt{n}							
n							
n lg n							
n²							
n³							
2 ⁿ							
n!							

R.:

Note que todos os tempos da coluna f(n) estão expressos em nanossegundos, ou seja, na ordem de 10^{-9} .

Reescrevendo os tempos a serem calculados em função de segundos:

1 minuto = 60 segundos

1 hora = 60 minutos = 60 * 60 segundos = 3.600 segundos

1 dia = 24 horas = 24 * 3600 segundos = 86.400 segundos

Suponha 1 mês = 30 dias = 30 * 86.400 segundos = 2.592.000 segundos

Suponha 1 ano = 365 dias = 365 * 86.400 segundos = 31.536.000 segundos

1 século = 100 anos = 100 * 31.536.000 segundos = 3.153.600.000 segundos

Dados do Problema:

f(n) Expressa o tempo de execução de um algoritmo em nanossegundos (10-9);

Tempo Representa o intervalo da iteração de f(n);

O que se pede:

Calcular o número de vezes que a função f(n) pode ser executada para cada unidade de tempo sugerida.

Cálculo:

Para encontrar o valor pedido, é necessário testar n a partir de 1, incrementando n (valores inteiros) em uma unidade até que f(n) iguale ou supere o Tempo em questão.

Cálculos para as funções no tempo

```
=> \lg n
Se \log n * 10^{-9} segundo é \leq = ...
1 segundo:
\frac{\log_2 n}{10^9} \le 1 //Muda o sinal de -9 para positivo e multiplica por 10^9
\log_2 n \le 10^9 // Mudar a base do log n de 2 para 10
\frac{\log_{10} n}{\log_{10} 2} \le 10^9 //\text{Multiplicar log } 10 * 10^9
\log_{10} n \le \log_{10} 2 * 10^9 // \text{ Definição} \log_b a = x \text{ equivale } a = b^x
n \le 10^{\log_{10}2*10^9} //Eleve 2 ao expoente 10^9
n \leq 10^{\log_{10}2^{10^9}} //Funções exponencial e logarítmica são inversas
n \le 2^{10^9}
Logo, n = 2^{10^9}
1 segundo: 2<sup>10</sup>9
1 minuto: 2^{60*10^9} = 2^{6*10^{10}}
1 hora: 2^{3600*10^9} = 2^{3,600*10^{12}}
1 dia: 2^{86400 \times 10^9} = 2^{8,6400 \times 10^{13}}
1 mês:2^{2592000 *10^9} = 2^{2,592000 *10^{15}}
1 ano: 2^{31536000*10^9} = 2^{3,1536000*10^{16}}
1 século: 2^{31536000000*10^9} = 2^{3,1536000000*10^{18}}
Se \sqrt{n} * 10^{-9} segundo é <= ...
```

1 segundo:

$$\begin{array}{l} \frac{\sqrt{n}}{10^9} \leq 1\\ \sqrt{n} \leq 10^9 \text{//Eleva a ^2}\\ (\sqrt{n})^2 \leq (10^9)^2 \text{//Elimina a raiz quadrada}\\ n \leq 10^{18}\\ \text{Logo, n} = 10^{18} \end{array}$$

1 minuto:

$$\begin{array}{l} \frac{\sqrt{n}}{10^9} \leq 60 \\ \sqrt{n} \leq 60*10^9 \text{//Eleva a ^2} \\ (\sqrt{n})^2 \leq (6*10^{10})^2 \text{//Adequa as potências} \\ (\sqrt{n})^2 \leq (6*10^{10})^2 \text{//Elimina a raiz quadrada} \\ n \leq 3.6*10^{21} \\ \text{Logo, n} = 3.6*10^{21} \end{array}$$

1 hora:

$$\frac{\sqrt{n}}{10^9} \le 3600$$
 $\sqrt{n} \le 3600 * 10^9$ //Eleva a ^2
 $(\sqrt{n})^2 \le (3600 * 10^9)^2$ //Adequa as potências
 $(\sqrt{n})^2 \le (3.6 * 10^{12})^2$ //Elimina a raiz quadrada
 $n \le 12.96 * 10^{24}$
 $n \le 1,296 * 10^{25}$
Logo, $n = 1,296 * 10^{25}$

1 dia:

 $\frac{\sqrt{n}}{10^9} \le 86400$ $\sqrt{n} \le 86400 * 10^9$ //Eleva a ^2 $(\sqrt{n})^2 \le (86400 * 10^9)^2$ //Adequa as potências $(\sqrt{n})^2 \le (8.64 * 10^{13})^2$ //Elimina a raiz quadrada $n \le 74,6496 * 10^{26}$ $n \le 7,46496 * 10^{27}$ Logo, n = 7,46496 * 10²⁷

1 mês:

 $\begin{array}{l} \frac{\sqrt{n}}{10^9} \leq 2592000 \\ \sqrt{n} \leq 2592000 * 10^9 \text{//Eleva a ^2} \\ (\sqrt{n})^2 \leq (2592000 * 10^9)^2 \text{//Adequa as potências} \\ (\sqrt{n})^2 \leq (2,592 * 10^{15})^2 \text{//Elimina a raiz quadrada} \\ n \leq 6,718464 * 10^{30} \\ \text{Logo, n} = 6,718464 * 10^{30} \end{array}$

1 ano:

 $\begin{array}{l} \frac{\sqrt{n}}{10^9} \leq 31536000 \\ \sqrt{n} \leq 31536000*10^9 \text{//Eleva a ^2} \\ (\sqrt{n})^2 \leq (31536000*10^9)^2 \text{//Adequa as potências} \\ (\sqrt{n})^2 \leq (3,1536*10^{16})^2 \text{//Elimina a raiz quadrada} \\ n \leq 9,94519296*10^{32} \\ \text{Logo, n} = 9,94519296*10^{32} \end{array}$

1 século: 3.153.600.000

 $\begin{array}{l} \frac{\sqrt{n}}{10^9} \leq 3153600000 \\ \sqrt{n} \leq 3153600000*10^9 \text{//Eleva a ^2} \\ (\sqrt{n})^2 \leq (3153600000*10^9)^2 \text{//Adequa as potências} \\ (\sqrt{n})^2 \leq (3,1536*10^{18})^2 \text{//Elimina a raiz quadrada} \\ n \leq 9,94519296*10^{36} \\ \text{Logo, n} = 9,94519296*10^{36} \end{array}$

1 segundo: 10¹⁸ 1 minuto: 3.6 * 10²¹ 1 hora: 1,296 * 10²⁵ 1 dia: 7,46496 * 10²⁷ 1 mês: 6,718464 * 10³⁰ 1 ano: 9,94519296 * 10³² 1 século: 9,94519296 * 10³⁸

=>n

Se n = 10^{-9} segundo é <= ... 1 segundo: $n = 10^9 *1$ Logo, n = 10^9

1 segundo: 10⁹

1 minuto: $60 * 10^9 = 6 * 10^{10}$

```
1 hora: 3600 * 10^9 = 3.6 * 10^{12}
1 dia: 86400 * 10^9 = 8,64 * 10^{13}
1 mês: 2.592.000 * 10^9 = 2,592 * 10^{15}
1 ano: 31.536.000 * 10^9 = 3.1536 * 10^{16}
1 século: 3.153.600.000 * 10^9 = 3.1536 * 10^{18}
=> n \lg n
n=10^9
n \log n * 10^{-9} \le 1
\frac{n\log_2 n}{10^9} \le 1
n \log_2 n \le 10^9
Testar os valores até o valor máximo de n que atenda a condição
Logo, n = 3.9620077 * 10^3 \le 10^9
Desenvolvido o programa abaixo para calcular os valores para os tempos
public class NLogN{
       //Realiza a mudanca de base de valor pela base
       public static double log(double valor, double base) {
               //Math.log logaritmo natural na base e
          return Math.log(valor) / Math.log(base);
     }
       public static void main(String args[]){
               //Tempo a serem verificados
               double
                                                                                  tempo[]=
{1,60,3600,86400,2592000,31536000,3153600000.0};
               //Percorre os tempos
               for(int i = 0;i<tempo.length;i++) {</pre>
                       //Para n lg n
                       double n = 1;
                       long passo = 1;
                       while ((n * log(n, 2)) \le Math.pow(10, 9)*tempo[i]){
                              n = n + passo;
                              //Acelerar o passo
                              if (n>10000000) {
                                      passo = passo + 10;
                              }
                      System.out.println("O valor de n para o
                                                                                    tempo
"+tempo[i]+": "+(n-1));
              }
Resultados da execução do algoritmo:
O valor de n para o tempo 1.0: 3.
  valor de n para o tempo 60.0: 1.944659487E9
valor de n para o tempo 3600.0: 9.8576016639
valor de n para o tempo 86400.0: 2.110374986
valor de n para o tempo 2592000: 5.611306
  valor de n para o tempo
O valor de n para o tempo
1 segundo: 3,962000 * 10^7
1 minuto: 1,944659*10<sup>9</sup>
1 hora: 9,857601*10<sup>10</sup>
1 dia: 2,110374*10<sup>12</sup>
1 mês: 5,673115*10<sup>13</sup>
1 ano: 6.41136932*10<sup>14</sup>
```

1 século: 5,666509*10¹⁶

Se $n^2 * 10^{-9}$ segundo é $\leq = ...$

1 segundo:

 $\frac{n^2}{10^9} \le 1$ //Muda o sinal de -9 para positivo $n^2 \le 1 * 10^9$ //Multiplica por 10^9

 $\sqrt{n^2} \le \sqrt{10^9}$ //Raiz quadrada para os termos

 $n \le \sqrt{10^9}$ //Isole 10^4 da raiz quadrada

 $n \le \sqrt{10 * 10^4}$

 $n \le 3,162277 * 10^4$

Logo, $n = 3,162277 * 10^4$

Logo, $n = 2,449489 * 10^5$

1 minuto:

 $\frac{n^2}{10^9} \leq 60$ //Muda o sinal de -9 para positivo $n^2 \leq 60*10^9$ //Multiplica por 10^9 $\sqrt{n^2} \leq \sqrt{60*10^9}$ //Raiz quadrada para os termos $n \leq \sqrt{6*10^{10}}$ //Isole 10^5 da raiz quadrada $n \leq \sqrt{6}*10^5$ $n \leq 2,449489*10^5$

1 hora:

 $\begin{array}{l} \frac{n^2}{10^9} \leq 3600 \, / \text{Muda o sinal de -9 para positivo} \\ n^2 \leq 3600 * 10^9 \, / \text{Multiplica por 10^9} \\ \sqrt{n^2} \leq \sqrt{3600 * 10^9} / \text{Raiz quadrada para os termos} \\ n \leq \sqrt{3,6 * 10^{12}} \, / \text{Isole 10^6 da raiz quadrada} \\ n \leq \sqrt{6} * 10^6 \\ n \leq 1,897366 * 10^6 \\ \text{Logo, n = 1,897366} * 10^6 \\ \end{array}$

1 dia:

 $\begin{array}{l} \frac{n^2}{10^9} \leq 86.400 /\!/ \text{Muda o sinal de -9 para positivo} \\ n^2 \leq 86.400*10^9 /\!/ \text{Multiplica por 10^9} \\ \sqrt{n^2} \leq \sqrt{86.400*10^9} /\!/ \text{Raiz quadrada para os termos} \\ n \leq \sqrt{86.4*10^{12}} /\!/ \text{Isole 10^6} \\ n \leq 9.295160*10^6 \\ \text{Logo, n = 9.295160} *10^6 \\ \end{array}$

1 mês:

 $\begin{array}{l} \frac{n^2}{10^9} \leq 2.592.000 /\!/ \text{Muda o sinal de -9 para positivo} \\ n^2 \leq 2.592.000*10^9 /\!/ \text{Multiplica por 10^9} \\ \sqrt{n^2} \leq \sqrt{2.592.000*10^9} /\!/ \text{Raiz quadrada para os termos} \\ n \leq \sqrt{25.92*10^{14}} /\!/ \text{Isole 10^7} \\ n \leq 5.091168*10^7 \\ \text{Logo, n = 5.091168}*10^7 \\ \end{array}$

1 ano:

 $\frac{n^2}{10^9} \leq 31.536.000//\text{Muda o sinal de -9 para positivo} \\ n^2 \leq 31.536.000*10^9 //\text{Multiplica por 10^9} \\ \sqrt{n^2} \leq \sqrt{31.536.000}*10^9 //\text{Raiz quadrada para os termos} \\ n \leq \sqrt{3,1536*10^{16}} //\text{Isole 10^8 da raiz quadrada} \\ n \leq \sqrt{3,1536*10^8} \\ n \leq 1,775837*10^8 \\ \text{Logo, n = 1,775837}*10^8 \\ }$

1 século:

 $\begin{array}{l} \frac{n^2}{10^9} \leq 31.536.000.000 \ //\text{Muda o sinal de -9 para positivo} \\ n^2 \leq 31.536.000.000*10^9 \ //\text{Multiplica por 10^9} \\ \sqrt{n^2} \leq \sqrt{31.536.000.000*10^9} //\text{Raiz quadrada para os termos} \\ n \leq \sqrt{31,536*10^{18}} \ //\text{Isole 10^9} \ \text{da raiz quadrada} \\ n \leq \sqrt{31,536*10^9} \\ n \leq 5,615692*10^9 \\ \text{Logo, n = 5,615692}*10^9 \end{array}$

1 segundo:3,162277 * 10⁴ 1 minuto: 2,449489 * 10⁵ 1 hora1,897366 * 10⁶ 1 dia: 9,295160 * 10⁶ 1 mês: 5,091168 * 10⁷ 1 ano: 1,775837 * 10⁸ 1 século: 5,615692 * 10⁹

=> n³

Se $n^{3} * 10^{-9}$ segundo é <= ...

1 segundo:

 $\frac{n^3}{10^9} \le 1$ //Muda o sinal de -9 para positivo $n^3 \le 1*10^9$ //Multiplica por 10^9 $\sqrt[3]{n^3} \le \sqrt[3]{10^9}$ //Raiz cúbica para os termos $n \le \sqrt[3]{10^9}$ //Calcule a raiz cúbica $n \le 10^3$ Logo, $n = 10^3$

1 minuto:

 $\frac{n^3}{10^9} \le 60$ //Muda o sinal de -9 para positivo $n^3 \le 60*10^9$ //Multiplica por 10^9 $\sqrt[3]{n^3} \le \sqrt[3]{60*10^9}$ //Raiz cúbica para os termos $n \le \sqrt[3]{60*10^9}$ //Isole 10^3 da raiz cúbica $n \le \sqrt[3]{60}*10^3$ //Calcule a raiz cúbica $n \le 3,914867*10^3$ Logo, $n = 3,914867*10^3$

1 hora:

 $\frac{n^3}{10^9} \le 3600$ //Muda o sinal de -9 para positivo

```
n^3 \leq 3600*10^9 //Multiplica por 10^9 \sqrt[3]{n^3} \leq \sqrt[3]{3600*10^9} //Raiz cúbica para os termos n \leq \sqrt[3]{3660*10^9} //Isole 10^3 da raiz cúbica n \leq \sqrt[3]{3600}*10^3 //Calcule a raiz cúbica n \leq 15,326188*10^3 n \leq 1,5326188*10^4 Logo, n = 1,5326188*10^4
```

1 dia:

 $\begin{array}{l} \frac{n^3}{10^9} \leq 86.400 /\!/ \text{Muda o sinal de -9 para positivo} \\ n^3 \leq 86.400*10^9 /\!/ \text{Multiplica por 10^9} \\ \sqrt[3]{n^3} \leq \sqrt[3]{86.400*10^9} /\!/ \text{Raiz cúbica para os termos} \\ n \leq \sqrt[3]{86.400*10^9} /\!/ \text{Isole 10^3 da raiz cúbica} \\ n \leq \sqrt[3]{86.400*10^3} /\!/ \text{Calcule a raiz cúbica} \\ n \leq 44.208377*10^3 \\ n \leq 4.4208377*10^4 \\ \text{Logo, n = 4,4208377*} & 10^4 \\ \end{array}$

1 mês:

 $\begin{array}{l} \frac{n^3}{10^9} \leq 2.592.000 / \text{Muda o sinal de -9 para positivo} \\ n^3 \leq 2.592.000*10^9 \ / \text{Multiplica por 10^9} \\ \sqrt[3]{n^3} \leq \sqrt[3]{2.592.000*10^9} / \text{Raiz cúbica para os termos} \\ n \leq \sqrt[3]{2.592.000*10^9} / \text{Organize as potências} \\ n \leq \sqrt[3]{2.592*10^{15}} / \text{Isole 10^5 da raiz cúbica} \\ n \leq \sqrt[3]{2,592*10^5} / \text{Calcule a raiz cúbica} \\ n \leq 1,373657*10^5 \\ \text{Logo, n = 1,373657*} \\ \end{array}$

1 ano:

 $\begin{array}{l} \frac{n^3}{10^9} \leq 31.536.000 / \text{Muda o sinal de -9 para positivo} \\ n^3 \leq 31.536.000*10^9 / \text{Multiplica por } 10^{\circ}9 \\ \sqrt[3]{n^3} \leq \sqrt[3]{31.536.000*10^9} / \text{Raiz cúbica para os termos} \\ n \leq \sqrt[3]{31.536.000*10^9} / \text{Organize as potências} \\ n \leq \sqrt[3]{31,536*10^{15}} / \text{Isole } 10^{\circ}5 \text{ da raiz cúbica} \\ n \leq \sqrt[3]{31,536*10^{15}} / \text{Calcule a raiz cúbica} \\ n \leq \sqrt[3]{31,536*10^5} / \text{Calcule a raiz cúbi$

1 século:

 $\begin{array}{l} \frac{n^3}{10^9} \leq 31.536.000.000 / \text{Muda o sinal de -9 para positivo} \\ n^3 \leq 31.536.000.000*10^9 / \text{Multiplica por } 10^{^9} \\ \sqrt[3]{n^3} \leq \sqrt[3]{31.536.000.000*10^9} / \text{Raiz cúbica para os termos} \\ n \leq \sqrt[3]{31.536.000.000*10^9} / \text{Organize as potências} \\ n \leq \sqrt[3]{31,536*10^{18}} / \text{Isole } 10^{^6} \text{da raiz cúbica} \\ n \leq \sqrt[3]{31,536*10^6} / \text{Calcule a raiz cúbica} \\ n \leq 3,159382*10^6 \\ \text{Logo, n} = 3,159382*10^6 \\ \end{array}$

```
1 segundo: 10^3
1 minuto: 3,914867 * 10^3
1 hora: 1,5326188 * 10<sup>4</sup>
1 dia: 4,4208377 * 10<sup>4</sup>
1 mês: 1,373657 * 10^5
1 ano: 3,159382 * 10^5
1 século: 3.159382 * 10^6
=> 2^{n}
Se 2^{n} * 10^{-9} segundo é <= ...
1 segundo:
\frac{2^n}{10^9} \le 1 //Muda o sinal de -9 para positivo
2^n \le 10^9 // Definição b^x = a equivale x = \log_b a
n \leq \log_2 10^9//Mudar a base do log para 10
    \frac{\log_{10} 10^9}{\log_{10} 2} / / \log_{10} 2 = 0.3010299957
     \frac{9}{\log_{10} 2} / / \log_{10} 2 = 0.3010299957
n \le \frac{1}{0,3010299957}
n \le 29,89735285
Logo, n = 29,89735285
1 segundo: 29,89735285
1 minuto: (\log_{10}60 * 10^9)/0,301029995 = 35,80424345
1 hora: (\log_{10} 3.600 * 10^9)/0.301029995 = 41.71113405
1 dia: (\log_{10}86.400 * 10^9)/0,301029995 = 46,29609655
1 mês: (\log_{10} 2.592.000 * 10^9)/0,301029995 = 51,20298714
1 ano: (\log_{10} 31.536.000 * 10^9)/0.301029995 = 54.8078492
1 século: (\log_{10} 31.536.000.000 * 10^9)/0.301029995 = 61,45170539
=> n!
Não existe função inversa de n!. Existe a aproximação de Stirling
Desenvolvido o programa abaixo para calcular os valores para os tempos
public class FatorialN{
        //Calcula o fatorial de valor
       public static double fatorial(double valor) {
               double fat=1;
               for(double i=1;i<=valor;i++) {</pre>
                       fat = fat * i;
          return fat;
     }
       public static void main(String args[]) {
               //Tempo a serem verificados
               double
                                                                                 tempo[]=
{1,60,3600,86400,2592000,31536000,3153600000.0};
               //Percorre os tempos
               for(int i = 0;i<tempo.length;i++) {</pre>
                       //Para n lg n
                       double n = 1;
                       while (fatorial(n) <= Math.pow(10,9)*tempo[i]){</pre>
                              n = n + 1;
                       }
```

Resultados da execução do algoritmo:

```
0 valor de n para o tempo 1.0: 12.0
0 valor de n para o tempo 60.0: 13.0
0 valor de n para o tempo 3600.0: 15.0
0 valor de n para o tempo 86400.0: 16.0
0 valor de n para o tempo 2592000.0: 17.0
0 valor de n para o tempo 3.1536E7: 18.0
0 valor de n para o tempo 3.1536E9: 20.0
```

Tabela com os valores preenchido

Tempo t	US VAIOTE	3 precilei	iido				
f(n)=10 ⁹ ns	1 Segundo	1 Minuto * 60	1 Hora *3600	1 Dia *86400	1 Mês *2592000	1 Ano *31104000	1 Século *3110400000
10 ¹⁸	2 ¹⁰⁹	2 ^{6*10¹⁰}	2 ^{3,600*10¹²}	2 ^{8,6400} *10 ¹³	2 ^{2,592000} *10 ¹⁵	2 ^{3,1536000*10¹⁶}	23,1536000000*1018
\sqrt{n}	10 ¹⁸	$3.6*10^{21}$	1,296 * 10 ²⁵	7,46496 * 10 ²⁷	6,718464 * 10 ³⁰	9,94519296 * 10 ³²	9,94519296 * 10 ³⁸
n	10 ⁹	$6*10^{10}$	3,6 * 10 ¹²	8,64 * 10 ¹³	2,592 * 10 ¹⁵	3,1536 * 10 ¹⁶	$3,1536 * 10^{18}$
n lg n	3,962000 * 10 ⁷	1,944659 *10 ⁹	9,857601 *10 ¹⁰	2,110374 *10 ¹²	5,673115 *10 ¹³	6,411369 *10 ¹⁴	5,666509 *10 ¹⁶
n ²	3,162277 * 10 ⁴	2,449489 * 10 ⁵	1,897366 * 10 ⁶	9,295160 * 10 ⁶	5,091168 * 10 ⁷	1,775837 * 10 ⁸	5,615692 * 10 ⁹
n^3	10^{3}	3,914867 * 10 ³	1,5326188 * 10 ⁴	4,4208377 * 10 ⁴	1,373657 * 10 ⁵	3,159382 * 10 ⁵	3,159382 * 10 ⁶
2 ⁿ	29,89735285	35,80424345	41,71113405	46,29609655	51,20298714	54,78794964	61,43180583
n!	12	13	15	16	17	18	20

(b) Considerando a seguinte lista de funções, ordene-as (da menor para a maior) em relação a taxa de crescimento, de modo que, se a função g(n) segue imediatamente a função f(n) em sua lista, então deveria ser o caso de f(n) \in O(g(n)).

$$f(n)=n^{2,5}$$

$$f(n)=\sqrt{2n}$$

$$f(n)=n+10$$

$$f(n)=10^{n}$$

$$f(n)=100^{n}$$

$$f(n)=n^{2} \log n$$

R.:

As funções foram colocadas em ordem crescente levando em consideração a sua taxa de crescimento em relação a n.

10-
$$f(n)=\sqrt{2n}$$

20- $f(n)=n+10$
30- $f(n)=n^2 \log n$
40- $f(n)=n^{2,5}$
50- $f(n)=10^n$
60- $f(n)=100^n$

N	f1(n) = n2,5	f2(n) = √2n	f3(n) = n + 10	f4(n) = 10n	f5(n) = 100n	f6(n) = n2 log2 n
1	1,00	1,41	11,00	1,00E+01	1,00E+02	0,00
2	5,66	2,00	12,00	1,00E+02	1,00E+04	4,00
3	15,59	2,45	13,00	1,00E+03	1,00E+06	14,26
4	32,00	2,83	14,00	1,00E+04	1,00E+08	32,00
5	55,90	3,16	15,00	1,00E+05	1,00E+10	58,05
6	88,18	3,46	16,00	1,00E+06	1,00E+12	93,06
7	129,64	3,74	17,00	1,00E+07	1,00E+14	137,56
8	181,02	4,00	18,00	1,00E+08	1,00E+16	192,00
9	243,00	4,24	19,00	1,00E+09	1,00E+18	256,76
10	316,23	4,47	20,00	1,00E+10	1,00E+20	332,19
11	401,31	4,69	21,00	1,00E+11	1,00E+22	418,59
12	498,83	4,90	22,00	1,00E+12	1,00E+24	516,23
13	609,34	5,10	23,00	1,00E+13	1,00E+26	625,37
14	733,36	5,29	24,00	1,00E+14	1,00E+28	746,24
15	871,42	5,48	25,00	1,00E+15	1,00E+30	879,05
16	1024,00	5,66	26,00	1,00E+16	1,00E+32	1024,00
17	1191,58	5,83	27,00	1,00E+17	1,00E+34	1181,28
18	1374,62	6,00	28,00	1,00E+18	1,00E+36	1351,06
19	1573,56	6,16	29,00	1,00E+19	1,00E+38	1533,50
20	1788,85	6,32	30,00	1,00E+20	1,00E+40	1728,77

21	2020,92	6,48	31,00	1,00E+21	1,00E+42	1937,01
22	2270,16	6,63	32,00	1,00E+22	1,00E+44	2158,36
23	2536,99	6,78	33,00	1,00E+23	1,00E+46	2392,96
24	2821,81	6,93	34,00	1,00E+24	1,00E+48	2640,94
25	3125,00	7,07	35,00	1,00E+25	1,00E+50	2902,41
26	3446,94	7,21	36,00	1,00E+26	1,00E+52	3177,50
27	3788,00	7,35	37,00	1,00E+27	1,00E+54	3466,31
28	4148,54	7,48	38,00	1,00E+28	1,00E+56	3768,97
29	4528,92	7,62	39,00	1,00E+29	1,00E+58	4085,56
30	4929,50	7,75	40,00	1,00E+30	1,00E+60	4416,20
31	5350,62	7,87	41,00	1,00E+31	1,00E+62	4760,98
32	5792,62	8,00	42,00	1,00E+32	1,00E+64	5120,00
33	6255,83	8,12	43,00	1,00E+33	1,00E+66	5493,35
34	6740,58	8,25	44,00	1,00E+34	1,00E+68	5881,11
35	7247,20	8,37	45,00	1,00E+35	1,00E+70	6283,37
36	7776,00	8,49	46,00	1,00E+36	1,00E+72	6700,22
37	8327,30	8,60	47,00	1,00E+37	1,00E+74	7131,74
38	8901,41	8,72	48,00	1,00E+38	1,00E+76	7578,01
39	9498,64	8,83	49,00	1,00E+39	1,00E+78	8039,10
40	10119,29	8,94	50,00	1,00E+40	1,00E+80	8515,08
41	10763,65	9,06	51,00	1,00E+41	1,00E+82	9006,04
42	11432,03	9,17	52,00	1,00E+42	1,00E+84	9512,05
43	12124,70	9,27	53,00	1,00E+43	1,00E+86	10033,16
44	12841,97	9,38	54,00	1,00E+44	1,00E+88	10569,46
45	13584,11	9,49	55,00	1,00E+45	1,00E+90	11121,00
46	14351,41	9,59	56,00	1,00E+46	1,00E+92	11687,86
47	15144,14	9,70	57,00	1,00E+47	1,00E+94	12270,09
48	15962,58	9,80	58,00	1,00E+48	1,00E+96	12867,75
49	16807,00	9,90	59,00	1,00E+49	1,00E+98	13480,92
50	17677,67	10,00	60,00	1,00E+50	1,00E+100	14109,64

As funções f1, f2, f3 e f6 agrupadas para a comparação pois pela tabela possuem comportamento assintótico em uma mesma escala.

As funções f4 e f5 foram coladas separadas pois possuem um comportamento assintótico muito maior que as outras funções. Neste caso f5 tem crescimento maior.

(c) Em cada um	dos itens abaixo	, indique se f($f(x) \in O(g(n))$	ou $f(n) \in$	$\Theta(g(n))$ ou $f(n) \in$
$\Omega(g(n))$.					

	f(n)	g(n)	Resultado
(a)	n - 100	n - 200	$f(n) \in \Theta(g(n))$
(b)	$n^{\frac{1}{2}}$	$n^{\frac{2}{3}}$	$f(n) \in O(g(n))$
(c)	$100n + \log n$	$n + (\log n)^2$	$f(n) \in \Theta(g(n))$
(d)	$n \log n$	$10n \log 10n$	$f(n) \in \Theta(g(n))$
(e)	$\log 2n$	$\log 3n$	$f(n) \in \Theta(g(n))$
(f)	$10 \log n$	$\log(n)^2$	$f(n) \in \Theta(g(n))$
(g)	n^2	$n (\log n)^2$	$f(n) \in O(g(n))$
	$\overline{\log n}$		
(h)	$n^{_{0,1}}$	$\frac{(\log n)^{10}}{n}$	$f(n) \in O(g(n))$
(i)	$(\log n)^{\log n}$	<u>n</u>	$f(n) \in O(g(n))$
		$\log n$	
(j)	\sqrt{n}	$(\log n)^3$	$f(n) \in \Omega(g(n))$
(k)	$n^{rac{1}{2}}$	$5^{\log n}$	$f(n) \in O(g(n))$
(l)	$n2^n$	3 ⁿ	$f(n) \in O(g(n))$
(m)	2^n	2^{n+1}	$f(n) \in O(g(n))$
(n)	n!	2^n	$f(n) \in \Omega(g(n))$
(0)	$(\log n)^{\log n}$	$2^{(\log n)^2}$	$f(n) \in \Omega(g(n))$

Para resolvermos esta questão, é necessário se ater às seguintes regras enunciadas no Cormen (3ª Edição) e resumidas abaixo:

$$\begin{array}{l} \text{Se } 0 \leq cg(n) \leq f(n), \exists \, n_o, \, \forall n \geq n_o, \, \text{ent\~ao} \, f(n) \in \Omega(g(n)) \\ \text{Se } 0 \leq f(n) \leq cg(n), \exists \, n_o, \, \forall n \geq n_o, \, \text{ent\~ao} \, f(n) \in O(g(n)) \\ \text{Se } f(n) \in \, O(g(n)) \, \Lambda \, f(n) \in \Omega(g(n)), \, \, \text{ent\~ao} \, f(n) \in O(g(n)) \end{array}$$

Onde n é uma entrada positiva.

Note que a base para o cálculo de c, tanto para Ω (g(n)), quanto para O(g(n)), parte do cálculo de $\frac{f(n)}{g(n)}$. Diferindo apenas o teste a ser feito, conforme a seguir:

Se
$$0 < c \le \frac{f(n)}{g(n)}$$
, logo $f(n) \in \Omega(g(n))$;
Se $0 < c \land c \ge \frac{f(n)}{g(n)}$, logo $f(n) \in O(g(n))$

A fim de simplificarmos os cálculos, procederemos inicialmente com a razão entre as funções, respeitando a limitação de c em comum em ambos os casos, ou seja, c>0 e então iniciaremos a análise específica de caso.

Observe que, para c maior do que zero, numerador e denominador de $\frac{f(n)}{g(n)}$ necessariamente deverão possuir o mesmo sinal, conforme tabela:

Produto	+	-
+	+	-
-	-	+

Note, portanto, que, se o grau de n na razão $\frac{f(n)}{g(n)}$ for:

- Positivo, então Ω(g(n));pois f(n)>cg(n), ainda que para um c positivo gigantesco;
- Negativo, então O(g(n));pois f(n)<cg(n), ainda que para um c positivo mínimo;
- Nulo, então Θ(g(n)),pois f(n)>cg(n), ainda que para um c positivo gigantesco, E f(n)<cg(n), ainda que para um c positivo mínimo.

(a) f(n)=n-100; g(n)=n-200

Calculando o grau da razão $\frac{f(n)}{g(n)}$

$$\frac{f(n)}{g(n)} = \frac{n - 100}{n - 200}$$

A diferença entre os termos de maior grau na razão é 0, logo $f(n) \in \Omega$ $(g(n)) \land f(n) \in O$ (g(n)) portanto $f(n) \in O$ (g(n))

No gráfico é apresentado o comportamento da razão, que é negativo (e descontínuo em n=200) para valores de n<200. Para que c seja positivo, a razão também deverá ser positiva, logo, n >200.

Então c >0 ∀n > 200

$f(n) \in \Omega(g(n))$?

supondo c=2, logo n₀ ...

c
$$\leq \frac{f(n)}{g(n)}$$

 $c \leq \frac{n-100}{n-200}$
 $2 \leq \frac{n-100}{n-200}$
 $2(n-200) \leq n-100$
 $2n-400 \leq n-100$
 $2n-n \leq -100+400$
 $n_o \leq 300$
 $n_o = 300 \ \Lambda \ c = 2$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=2 e n=300

$$0 \le 2^*(300-200) \le 300-100$$

 $0 \le 2^*(100) \le 200$
 $0 \le 200 \le 200 = Verdadeiro$

Logo, $f(n) \in \Omega(g(n))$

$f(n) \in O(g(n))$?

supondo c=2, logo n₀ ...

c
$$\geq \frac{f(n)}{g(n)}$$

c $\geq \frac{n-100}{n-200}$
 $2 \geq \frac{n-100}{n-200}$
 $2(n-200) \geq n-100$
 $2n-400 \geq n-100$
 $2n-n \geq -100+400$
 $n_o \geq 300$
 $n_o = 300 \ \Lambda \ c = 2$

f(n) ϵ O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=2 e n=300

$$0 \le 300-100 \le 2*(300-200)$$

 $0 \le 200 \le 2*(100)$
 $0 \le 200 \le 200 = Verdadeiro$

Logo, $f(n) \in O(g(n))$

$f(n) \in \Theta(g(n))$?

Como $f(n) \in \Omega(g(n))$ e $f(n) \in O(g(n))$ então $f(n) \in \Theta(g(n))$

Por exemplo, existem c_1 e c_2 ($c_1=c_2=2$, $n_0=300$) de modo que a inequação $0 \le c_1(g(n)) \le f(n) \le c_2(g(n))$ é verdadeira

(b)
$$f(n)=n^{\frac{1}{2}}; g(n)=n^{\frac{2}{3}}$$

$$\frac{f(n)}{g(n)} = \frac{n^{\frac{1}{2}}}{n^{\frac{2}{3}}} / \text{Fatore } n^{\frac{2}{3}}$$

$$\frac{f(n)}{g(n)} = \frac{n^{\frac{2}{3}} + n^{\frac{1}{2} + \frac{2}{3}}}{n^{\frac{2}{3} + 1}} / / \text{MMC de 2 e 3}$$

$$\frac{f(n)}{g(n)} = \frac{n^{\frac{2}{3} + n^{\frac{1+3}{6} - (2+2)}}}{n^{\frac{2}{3} + 1}}$$

$$\frac{f(n)}{g(n)} = \frac{n^{\frac{2}{3} + n^{\frac{1}{6}}}}{n^{\frac{2}{3} + 1}} / / \text{Cancele o fator comum}$$

$$\frac{f(n)}{g(n)} = n^{\frac{-1}{6}}$$

Comparando graficamente as funções f(n) e g(n) identificamos que g(n) possui um comportamento assintótico muito superior ao de f(n), de forma que a ordem de g(n) é superior.

No gráfico é apresentado o comportamento da razão, contínua e positiva, para todo n positivo. Para que c seja positivo, a razão também deverá ser positiva, logo, n >1. c >0 \forall n > 1

$f(n) \in \Omega(g(n))$?

 $supondo\ c{=}1,\ logo\ n_0\ ...$

$$c \le \frac{f(n)}{g(n)}$$

$$c \leq = n^{\frac{-1}{6}}$$

$$1 \le n^{\frac{-1}{6}}$$

$$1 \le \frac{1}{n^{\frac{1}{6}}}$$

 $1*n^{\frac{1}{6}} \le 1$ // Eleve cada lado da equação a potência 6/1

 $n \le 1^{\frac{6}{1}}$ //Um elevado a qualquer potência é um

$$n \leq 1$$

$$n_0 = 1 \wedge c = 1$$

 $f(n) \notin \Omega$ (g(n)) porque não existe um c>1 e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) não está em Ω (g) pois f(n) sempre será menor que g(n).

c=2 e n=1

$$0 \le 2^*1^{\frac{2}{3}} \le 1^{\frac{1}{2}}$$

$$0 \le 2 \le 1 = Falso$$

Logo, $f(n) \notin \Omega(g(n))$

$f(n) \in O(g(n))$?

supondo c=1, logo n₀ ...

$$c \ge \frac{f(n)}{g(n)}$$

$$c \ge n^{\frac{-1}{6}}$$

$$1 \ge n^{\frac{-1}{6}}$$

$$1 \ge \frac{1}{n^{\frac{1}{6}}}$$

 $n^{\frac{1}{6}} \geq 1$ // Eleve cada lado da equação a potência 6/1

$$(n^{\frac{1}{6}})^{\frac{6}{1}} \ge 1^{\frac{6}{1}}$$

 $n \geq 1^{\frac{6}{1}}$ //Um elevado a qualquer potência é um

$$n \ge 2$$

$$n_0 = 1 \land c = 1$$

c=2

$$c \ge \frac{f(n)}{g(n)}$$

$$c \ge n^{\frac{-1}{6}}$$

 $2 \geq n^{\frac{-1}{6}} /\!/$ Eleve cada lado da equação a potência -6/1

$$2^{\frac{-6}{1}} \ge (n^{-\frac{1}{6}})^{-\frac{6}{1}}$$

$$n \le \frac{1}{64}$$

$$n_0 = \frac{1}{64} \Lambda c = 2$$

f(n) \in O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=1 e n=1

$$0 <= 1^{\frac{1}{2}} <= 1 \cdot 1^{\frac{2}{3}}$$

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin \Omega(g(n))$ então $f(n) \notin \Theta(g(n))$

c)
$$f(n) = 100n + \log_2 n$$
; $g(n) = n + (\log_2 n)^2$

$$\frac{f(n)}{g(n)} = \frac{100n + \log_2 n}{n + (\log_2 n)^2}$$

A diferença entre os termos de maior grau na razão é 0, logo $f(n) \in \Omega$ $(g(n)) \land f(n) \in O$ (g(n)) então $f(n) \in \Theta$ (g(n)).

Comparando graficamente as funções f(n) e g(n) observamos que o comportamento de f(n) é assintoticamente superior, porém, ambos encontram-se na mesma ordem, de modo que, se aplicássemos um fator a g(n), superaríamos f(n). Logo, $f(n) \in \Theta(g(n))$.

No gráfico é apresentado o comportamento da razão, que é positiva para todo n positivo.

$f(n) \in \Omega(g(n))$?

supondo c=1, logo n₀=2...

$$c \le \frac{f(n)}{g(n)}$$

$$1 \le \frac{100n + \log_2 n}{n + (\log_2 n)^2}$$

$$1 \le \frac{100 (2) + \log_2 2}{2 + (\log_2 2)^2}$$

$$2 + (\log_2 2)^2 \le 100(2) + \log_2 2$$

$$2 + 1 \le 100(2) + 1$$

$$3 \le 201$$

$$n_0 = 2 \land c = 1$$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=1 e n=2

```
f(n) \in O(g(n))?
```

supondo c=128, logo n₀=2...

Supplied C=120, logo 110=2...
$$c \ge \frac{f(n)}{g(n)}$$

$$c \ge \frac{100n + \log_2 n}{n + (\log_2 n)^2}$$

$$128 \ge \frac{100(2) + \log_2 2}{2 + (\log_2 2)^2}$$

$$128 (2 + (\log_2 2)^2) \ge 100(2) + \log_2 2$$

$$128 (2 + 1) \ge 100(2) + 1$$

$$128 (3) \ge 200 + 1$$

$$348 \ge 201$$

$$n_0 = 2 \land c = 128$$

f(n) $\in O(g(n))$ porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=128 e n_o=2

Logo, $f(n) \in O(g(n))$

 $f(n) \in \Theta(g(n))$?

Como $f(n) \in \Omega$ (g(n)) e $f(n) \in O$ (g(n)) então $f(n) \in \Theta$ (g(n))

Por exemplo, existem c_1 e c_2 (c_1 =1, c_2 =128, n_0 =2) de modo que a inequação $0 \le c_1(g(n)) \le f(n) \le c_2(g(n))$ é verdadeira

(d) $f(n)=n \log_2 n$; $g(n)=10n \log_2 10n$

Calculando o grau da razão $\frac{f(n)}{g(n)}$

$$\frac{f(n)}{g(n)} = \frac{n \log_2 n}{10n \log_2 10n}$$

Note que f(n) tem ordem maior que g(n), logo $f(n) \in \Theta(g(n))$

$f(n) \in \Omega(g(n))$?

supondo c=0,01, logo n₀=8...

$$c \leq \frac{n \log n}{10n \log_2 10n}$$

$$c \leq \frac{n \log_2 n}{10n + \log_2 n + \log_2 10}$$

$$0,01 \leq \frac{8 \log_2 8}{10(8) * \log_2 2 + \log_2 10}$$

$$0,01 \leq \frac{24}{80*1 + 3,32192809}$$

$$0,01 \leq 0,28462347$$

$$n_o = 8 \land c = 0,01$$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=0,01 e n=8

$f(n) \in O(g(n))$?

supondo c=1, logo n₀=8...

$$c \ge \frac{n \log n}{10n + \log_2 10n}$$

$$1 \ge \frac{n \log_2 n}{10n + \log_2 n + \log_2 10}$$

$$1 \ge \frac{8 \log_2 8}{10(8) + \log_2 2 + \log_2 10}$$

$$1 \ge \frac{24}{80 + 1 + 3,32192809}$$

$$1 \ge 0,28462347$$

$$n_o = 8 \land c = 1$$

f(n) ϵ O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=1 e n_o>=8

$f(n) \in \Theta(g(n))$?

Como $f(n) \in \Omega$ (g(n)) e $f(n) \in O$ (g(n)) então $f(n) \in \Theta$ (g(n))

Por exemplo, existem c_1 e c_2 (c_1 =0,01, c_2 =1, n_0 =8) de modo que a inequação $0 \le c_1(g(n)) \le f(n) \le c_2(g(n))$ é verdadeira

(e) $f(n)=log_22n$; $g(n)=log_23n$

Calculando o grau da razão $\frac{f(n)}{g(n)}$

$$\begin{split} \frac{f(n)}{g(n)} &= \frac{\log_2 2n}{\log_2 3n} \\ \frac{f(n)}{g(n)} &= \frac{\log_2 2 + \log_2 n}{\log_2 3 + \log_2 n} \\ \frac{f(n)}{g(n)} &= \frac{1 + \log_2 n}{1,58496250 + \log_2 n} \end{split}$$

Após manipularmos as funções originais, percebe-se claramente que estamos diante da mesma função, apenas variando a constante, que não interfere no comportamento da função para n suficientemente grande, $f(n) \in \Theta(g(n))$.

$f(n) \in \Omega(g(n))$?

supondo c=0.8, logo n_0 =4...

$$c \le \frac{\log_2 2n}{\log_2 3n}$$

$$0.8 \le \frac{\log_2 2 + \log_2 n}{\log_2 3 + \log_2 n}$$

$$0.8 \le \frac{1 + \log_2 n}{\log_2 3 + \log_2 n}$$

$$n_0 \le 3$$

$$n_0 = 3 \land c = 0.8$$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=0.8 e n=3

$f(n) \in O(g(n))$?

supondo c=1, logo n₀=4...

$$c \ge \frac{\log_2 2n}{\log_2 3n}$$

$$0.8 \ge \frac{\log_2 2 + \log_2 n}{\log_2 3 + \log_2 n}$$

$$0.8 \ge \frac{1 + \log_2 n}{\log_2 3 + \log_2 n}$$

$$n_0 = 4 \land c = 1$$

f(n) $\in O(g(n))$ porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=1 e n_o=4

$$f(n) \in \Theta(g(n))$$
?

Como $f(n) \in \Omega$ (g(n)) e $f(n) \in O$ (g(n)) então $f(n) \in \Theta$ (g(n))

(f) $f(n)=10 \log_2 n$; $g(n)=\log_2(n)^2$

Calculando o grau da razão $\frac{f(n)}{g(n)}$

$$\frac{f(n)}{g(n)} = \frac{10 \log_2 n}{\log_2(n)^2}$$

$$\frac{f(n)}{g(n)} = \frac{10 \log_2 n}{2\log_2(n)}$$

$$\frac{f(n)}{g(n)} = 5$$

A diferença entre os termos de maior grau na razão é 0, logo $f(n) \in \Omega$ $(g(n)) \land f(n) \in O$ (g(n)) então $f(n) \in O$ (g(n)) é verdadeira

Logo $f(n) \in \Theta(g(n))$

$f(n) \in \Omega(g(n))$?

supondo c=1, logo n₀=16

$$c \le \frac{10 \log_2 n}{\log_2(n)^2}$$

$$1 \le \frac{10 \log_2 n}{\log_2(16)^2}$$

$$1 \le 5$$

$$n_0 = 16 \land c = 1$$

 $f(n) \in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=1 e n=16

$f(n) \in O(g(n))$?

supondo c=10, logo n₀=16...

suportion C=10, in
$$c \ge \frac{10 \log_2 n}{\log_2(n)^2}$$

$$10 \ge \frac{10 \log_2 n}{\log_2(n)^2}$$

$$10 \ge \frac{10 \log_2 16}{2\log_2(n)}$$

$$10 \ge 5$$

$$n_o = 16 \land c = 10$$

f(n) \in O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=10 e n=16

$f(n) \in \Theta(g(n))$?

Como $f(n) \in \Omega(g(n))$ e $f(n) \in O(g(n))$ então $f(n) \in \Theta(g(n))$

Por exemplo, existem c_1 e c_2 (c_1 =1, c_2 =10, n_0 =16) de modo que a inequação $0 \le c_1(g(n)) \le f(n) \le c_2(g(n))$ é verdadeira

(g)
$$f(n) = \frac{n^2}{\log_2 n}$$
; $g(n) = n (\log_2 n)^2 f(n) \in \Omega(g(n))$

$$\frac{f(n)}{g(n)} = \frac{\frac{n^2}{\log_2 n}}{n (\log_2 n)^2}$$

$$\frac{f(n)}{g(n)} = \frac{n^2}{\log_2 n} * \frac{1}{n (\log_2 n)^2}$$

$$\frac{f(n)}{g(n)} = \frac{n}{(\log_2 n)^3}$$

Comparando graficamente as funções, identificamos que f(n) possui um comportamento assintótico muito superior ao de g(n), de forma que a ordem de f(n) é superior.

$f(n) \in \Omega(g(n))$?

A função f(n) possui ordem superior a g(n), portanto $f(n) \notin \Omega$ (g(n))

$$f(n) \notin \Omega (g(n))$$

$f(n) \in O(g(n))$?

supondo c=0.3 logo $n_0 = 16$, ... $c > \frac{n}{n}$

$$c \ge \frac{n}{(\log_2 n)^3}$$
$$0.3 \ge \frac{16}{(\log_2 16)^3}$$

$$0.3 \ge \frac{16}{4^3} \\
0.3 \ge \frac{1}{4} \\
0.3 \ge 0.25$$

$$n_0 = 16 \,\Lambda\,c = 0.3$$

f(n) \in O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=0.3 e n_0 =16

Logo, $f(n) \in O(g(n))$

 $f(n) \in \Theta (g(n))$?

Como $f(n) \notin \Omega(g(n))$ então $f(n) \notin \Theta(g(n))$

(h)
$$f(n)=n^{0,1}$$
; $g(n)=(\log_2 n)^{10}$

$$\frac{f(n)}{g(n)} = \frac{n^{0,1}}{(\log_2 n)^{10}}$$

Comparando graficamente as funções, identificamos que g(n)possui um comportamento assintótico muito superior ao de f(n), de forma que a ordem de g(n) é superior.

Portanto, $f(n) \in O(g(n))$

$f(n) \in \Omega(g(n))$?

A função f(n) possui ordem superior a g(n), portanto $f(n) \notin \Omega$ (g(n))

$f(n) \in O(g(n))$?

supondo c=1 logo $n_0 = 4, ...$

$$c \ge \frac{n^{0,1}}{(\log_2 n)^{10}}$$

$$c \ge \frac{4^{0,1}}{(\log_2 4)^{10}}$$

$$c \ge \frac{10\sqrt{4}}{2^{10}}$$

f(n) $\in O(g(n))$ porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=1 e n=4

Logo, $f(n) \in O(g(n))$

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin \Omega (g(n))$ então $f(n) \notin \Theta (g(n))$

(i)
$$f(n) = (log_2 n)^{log_2 n}$$
; $g(n) = \frac{n}{log_2 n}$

$$\frac{f(n)}{g(n)} = \frac{(\log_2 n)^{\log_2 n}}{\frac{n}{\log_2 n}}$$

Comparando graficamente as funções $f(n)=(\log_2 n)^{\log_2 n}$ e $g(n)=\frac{n}{\log_2 n}$ identificamos que f(n) possui um comportamento assintótico muito superior ao de g(n), de forma que a ordem de f(n) é superior.

Portanto, $f(n) \in O(g(n))$

$f(n) \in \Omega(g(n))$?

A função g(n) tem ordem maior que f(n).

Portanto $f(n) \notin \Omega(g(n))$

$f(n) \in O(g(n))$?

supondo c=1 logo n₀ =2

$$c \ge \frac{(\log_2 n)^{\log_2 n}}{\frac{n}{\log_2 n}}$$

$$c \ge \frac{(\log_2 2)^{\log_2 2}}{\frac{2}{\log_2 2}}$$

$$c \ge \frac{1}{\frac{2}{1}}$$

$$c \ge \frac{1}{2}$$

$$n_0 = 2 \land c = 1$$

f(n) ϵ O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c =1 e n=2

Logo, $f(n) \in O(g(n))$

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin \Omega(g(n))$ então $f(n) \notin \Theta(g(n))$

(j)
$$f(n) = \sqrt{n}$$
; $g(n) = (\log_2 n)^3$

$$\frac{f(n)}{g(n)} = \frac{\sqrt{n}}{\left(\log_2 n\right)^3}$$

Comparando graficamente as funções f(n) e g(n) identificamos que f(n)possui um comportamento assintótico muito superior ao de g(n), de forma que a ordem de f(n) é superior.

Portanto, $f(n) \in \Omega (g(n))$

$f(n) \in \Omega(g(n))$?

supondo c=0.1 logo n₀ =4...

$$c \le \frac{\sqrt{n}}{(\log_2 n)^3}$$

$$0.1 \le \frac{\sqrt{4}}{(\log_2 4)^3}$$

$$0.1 \le \frac{2}{2^3}$$

$$0.1 \le 0.25$$

$$n_0 = 4 \land c = 0.1$$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=0.1 e n=4

$f(n) \in O(g(n))$?

Como $f(n) \notin O(g(n))$ e $f(n) \in \Omega(g(n))$ então $f(n) \in \Omega(g(n))$

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin O(g(n))$ então $f(n) \notin O(g(n))$

Logo, $f(n) \in \Omega(g(n))$

(k)
$$f(n)=n^{\frac{1}{2}}; g(n)=5^{\log n}$$

$$\frac{f(n)}{g(n)} = \frac{n^{\frac{1}{2}}}{5^{\log_2 n}}$$

Comparando graficamente as funções f(n) e g(n) identificamos que g(n)possui um comportamento assintótico muito superior ao de f(n), de forma que a ordem de g(n) é superior.

Portanto, g(n) tem ordem maior $f(n) \in O(g(n))$

$f(n) \in \Omega(g(n))$?

A função g(n) tem ordem maior que f(n).

Portanto $f(n) \notin \Omega(g(n))$

$f(n) \in O(g(n))$?

supondo c=0.05 logo n_0 =16...

$$c \ge \frac{\sqrt{n}}{5^{\log_2 n}}$$

$$0.05 \ge \frac{\sqrt{16}}{5^{\log_2 16}}$$

$$0.05 \ge \frac{4}{5^4}$$

$$0.05 \ge 0,0064$$

$$n_0 = 16 \land c = 0.05$$

f(n) \in O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para =0.05 e n=16

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin \Omega (g(n))$ então $f(n) \notin \Theta (g(n))$

Logo, $f(n) \in \mathcal{O}(g(n))$

(I) $f(n)=n2^n$; $g(n)=3^n$

Calculando o grau da razão $\frac{f(n)}{g(n)}$

$$\frac{f(n)}{g(n)} = \frac{n2^n}{3^n}$$

Comparando graficamente as funções f(n) e g(n) identificamos que g(n) possui um comportamento assintótico muito superior ao de f(n), de forma que a ordem de g(n) é superior.

estando algumas constantes w/wf(n), na tentativa de superar g(n), provou-se infrutífera para n suficientemente grande. Observe a comparação entre 10f(n) e g(n).

Com isto f(n) foi superado.

Através de uma pequena manipulação algébrica, podemos reescrever 3^n como um binômio a fim de melhor estimar o crescimento para n suficientemente grande em relação a 2^n , ou seja, $(2+1)^n$.

$$\frac{n2^n}{(1+2)^n}$$

O Triângulo de Pascal enuncia que os coeficientes de expansões binomiais podem ser calculados conforme triângulo abaixo.

Existe uma regra de formação onde os coeficientes da linha L determinam os coeficientes da linha L+1.

Exemplo:

$$(x+y)^2 = x^2 + 2xy + y^2 = 1x^2y^0 + 2x^1y^1 + 1x^0y^2$$

Note que os coeficientes correspondem à segunda linha do Triângulo: 1, 2, 1.

Quando um binômio é da forma
$$(x + y)$$
, elevado a uma potência, temos: $(x + y)^n = a_0 x^n + a_1 x^{n-1} y + a_2 x^{n-2} y^2 + \dots + a_{n-1} x y^{n-1} + a_n y^n$

onde a_i corresponde aos coeficientes da n-ésima linha.

Portanto, g(n) tem ordem maior que $f(n) \in O(g(n))$

$f(n) \in \Omega(q(n))$?

A função g(n) tem ordem maior que f(n).

Portanto $f(n) \notin \Omega(g(n))$

$f(n) \in O(g(n))$?

supondo c=0.8 logo n₀=4...

$$c \ge \frac{f(n)}{g(n)}$$

$$c \ge \frac{n2^n}{3^n}$$

$$0.8 > \frac{4*}{3^n}$$

$$0.8 \ge \frac{4 \times 2^4}{3^4}$$
$$0.8 \ge \frac{64}{81}$$

$$0.8 \ge 0.790123$$

$$n_0 = 4 \Lambda c = 0.8$$

 $f(n) \in O(g(n))$ porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=0.8 e n=14

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin \Omega(g(n))$ então $f(n) \notin \Theta(g(n))$

Logo, $f(n) \in \mathcal{O}(g(n))$

(m) $f(n)=2^n$; $g(n)=2^{n+1} f(n) \in \Theta(g(n))$

Calculando o grau da razão $\frac{f(n)}{g(n)}$

$$\begin{split} \frac{f(n)}{g(n)} &= \frac{2^n}{2^{n+1}} \\ \frac{f(n)}{g(n)} &= \frac{2^n}{2^{n}*2^1} \\ \frac{f(n)}{g(n)} &= \frac{2^n}{2^{n}*2^1} /\!/ \text{Cancela 2^n} \\ \frac{f(n)}{g(n)} &= \frac{1}{2} \end{split}$$

Existe uma proporção na razão, portanto $f(n) \in \Theta(g(n))$.

$f(n) \in \Omega(g(n))$?

supondo c=0.1, logo n₀=4...

corporate c=0.1,
$$c \le \frac{2^n}{2^{n+1}}$$

$$0.1 \le \frac{2^4}{2^{4+1}}$$

$$0.1 \le \frac{16}{32}$$

$$n_0 \le 0.5$$

$$n_o = 4 \land c = 0.1$$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=0.1 e n=4

$f(n) \in O(g(n))$?

supondo c=1, logo n_0 =4...

$$c \ge \frac{2^n}{2^{n+1}}$$
 $1 \ge \frac{2^4}{2^{4+1}}$
 $1 \ge \frac{16}{32}$
 $1 \ge 0.5$
 $n_0 = 4 \land c = 1$

f(n) \in O (g(n)) porque existe um c e n que satisfaz a condição $0 \le f(n) \le cg(n)$ Ou seja: f(n) está em O(g) para c=1 e n_o=4

$f(n) \in \Theta(g(n))$?

Como $f(n) \in \Omega$ (g(n)) e $f(n) \in O$ (g(n)) então $f(n) \in \Theta$ (g(n))

Por exemplo, existem c_1 e c_2 (c_1 =0.1, c_2 =1, n_0 =4) de modo que a inequação $0 \le c_1(g(n)) \le f(n) \le c_2(g(n))$ é verdadeira

(n) f(n)=n!; $g(n)=2^n f(n) \in \Omega (g(n))$

Calculando o grau da razão $\frac{f(n)}{g(n)}$

$$\frac{f(n)}{g(n)} = \frac{n!}{2^n}$$

Comparando graficamente f(n)=n!(verde) e g(n)=2n(vermelho) conclui-se que g(n)terá um crescimento muito superior para n suficientemente grande.

De fato, não é difícil concluir que o crescimento de f(n)é muito maior, ainda que multipliquemos qualquer constante pois g(n)sempre dobrará seu valor enquanto a cada incremento de n, enquanto f(n) será n vezes maior.

$f(n) \in \Omega(g(n))$?

supondo c=1 logo n₀ =4...

$$c \leq \frac{n!}{2^n}$$

$$1 \le \frac{\frac{2}{4!}}{2^4}$$

$$1 \le \frac{4*3*2*1}{16}$$

$$1 \le \frac{24}{16}$$

$$n_0 = 4 \Lambda c = 1$$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=1 e n=4

$f(n) \in O(g(n))$?

Como $f(n) \notin O(g(n))$ e $f(n) \in \Omega(g(n))$ então $f(n) \in \Omega(g(n))$

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin O(g(n))$ então $f(n) \notin \Theta(g(n))$

Logo, $f(n) \in \Omega(g(n))$

(o)
$$f(n)=(\log_2 n)^{\log_2 n}$$
; $g(n)=2^{(\log_2 n)^2}$

Calculando o grau da razão
$$\frac{f(n)}{g(n)}$$

$$\frac{f(n)}{g(n)} = \frac{(\log_2 n)^{\log_2 n}}{2^{(\log_2 n)^2}}$$

Suponha
$$log_2 n = x$$

$$\frac{f(n)}{g(n)} = \frac{x^x}{2^{x^2}}$$

$$\frac{f(n)}{g(n)} = \frac{(2 + (x - 2))^x}{2^x \cdot 2^x}$$

Comparando graficamente f(n) e g(n) conclui-se que g(n)terá um crescimento mais acentuado superior para n suficientemente grande.

Além de g(n) apresenta um crescimento mais acentuado, também é notório que seu grau de crescimento é maior em função do expoente 2. Logo, $f(n) \in \Omega$ (g(n)).

Existe uma proporção na razão, portanto $f(n) \in \Theta(g(n))$.

$$f(n) \in \Omega(g(n))$$
?

supondo c=1, logo n₀=8...

$$c \leq \frac{(\log_2 n)^{\log_2 n}}{2^{(\log_2 n)^2}}$$

$$1 \le \frac{2^{(\log_2 n)}}{2^{(\log_2 8)^{\log_2 8}}}$$
$$1 \le \frac{3^3}{2^{3^2}}$$
$$1 \le \frac{3^3}{2^{3^2}}$$

$$1 \le \frac{3^3}{2^{3^2}}$$

$$1 \le \frac{\frac{2}{3^3}}{2^{3^2}}$$

$$1 \le 0.05273437$$

 $n_o = 8 \land c = 1$

f(n) $\in \Omega$ (g(n)) porque existe um c e n que satisfaz a condição $0 \le cg(n) \le f(n)$. Ou seja: f(n) está em Ω (g) para c=1 e n=8

$f(n) \in O(g(n))$?

Como $f(n) \notin O(g(n))$ e $f(n) \in \Omega(g(n))$ então $f(n) \in \Omega(g(n))$

$f(n) \in \Theta(g(n))$?

Como $f(n) \notin O(g(n))$ então $f(n) \notin \Theta(g(n))$

Logo, $f(n) \in \Omega(g(n))$