The Application of Zero-Knowledge Proofs: Proof of Solvency

Youwei (Barry) Deng, Jeremy Clark

April 27, 2025

Concordia University

Table of Contents

- 1. Introduction
- 1.1 What is ZKP
- 1.2 Commitment Scheme
- 2. Proof of Solvency
- 2.1 Proof of Liabilities
- 2.2 Proof of Assets
- 2.3 Proof of Solvency
- 2.4 Performance Evaluation
- 3. Outro
- 3.1 Conclusion
- 3.2 State of the Art in ZKP

What is ZKP

Goal: Prove a statement is true without revealing additional information, only the fact itself.

What is ZKP

Goal: Prove a statement is true without revealing additional information, only the fact itself.

- Compared to classic proofs
 - Classic proofs (pythagorean theorem, Euler's theorem, etc.): verifier passively reads the proof
 - ZKP: two new ingredients, interaction and randomness

What is ZKP

Goal: Prove a statement is true without revealing additional information, only the fact itself.

- Compared to classic proofs
 - Classic proofs (pythagorean theorem, Euler's theorem, etc.):
 verifier passively reads the proof
 - ZKP: two new ingredients, interaction and randomness

2

Zk-SNARKs

Succinctness: small proof size and short verifier time

Non-interactive: Fiat-Shamir transformation

Zk-SNARKs

Succinctness: small proof size and short verifier time

Non-interactive: Fiat-Shamir transformation

Building a zk-SNARK

 $commitment \ scheme + interactive \ oracle \ proof \Rightarrow zk\text{-SNARK}$

Zk-SNARKs

Succinctness: small proof size and short verifier time

Non-interactive: Fiat-Shamir transformation

Building a zk-SNARK

commitment scheme + interactive oracle proof \Rightarrow zk-SNARK

- Commitment scheme: commit to a value and later reveal it
 - Binding: cannot open one commitment to two different values
 - Hiding: cannot learn the committed value from the commitment
- Random oracle: a black box that randomly uniformly outputs the same bits with the same input and different bits with different input

Important Commitment Schemes

- Polynomial commitments: univariate polynomial f(X)
- Multilinear commitments: multivariate polynomial $f(X_1, X_2, ..., X_n)$
- Vector commitments: vector $\overrightarrow{V} = (v_1, v_2, \dots, v_n)$

• ..

Polynomial Commitment Scheme (PCS)

Given $\operatorname{srs} = \{g, g^{\tau}, g^{\tau^2}, g^{\tau^3}, \dots\}$, the PCS allows $\mathcal P$ to commit to a polynomial f(X); denote the commitment to f(X) by $\mathcal C_f$

$$C_f = g^{f_0 + f_1 \tau + f_2 \tau^2 + f_3 \tau^3 + f_4 \tau^4 \dots}$$

where f_i is the coefficient of X^i in f(X).

Polynomial Commitment Scheme (PCS)

Given $\operatorname{srs} = \{g, g^{\tau}, g^{\tau^2}, g^{\tau^3}, \dots\}$, the PCS allows $\mathcal P$ to commit to a polynomial f(X); denote the commitment to f(X) by $\mathcal C_f$

$$C_f = g^{f_0 + f_1 \tau + f_2 \tau^2 + f_3 \tau^3 + f_4 \tau^4 \dots}$$

where f_i is the coefficient of X^i in f(X).

Example

Prove the evaluation of f(a) is b

Polynomial Commitment Scheme (PCS)

Given $\operatorname{srs} = \{g, g^{\tau}, g^{\tau^2}, g^{\tau^3}, \dots\}$, the PCS allows $\mathcal P$ to commit to a polynomial f(X); denote the commitment to f(X) by $\mathcal C_f$

$$C_f = g^{f_0 + f_1 \tau + f_2 \tau^2 + f_3 \tau^3 + f_4 \tau^4 \cdots}$$

where f_i is the coefficient of X^i in f(X).

Example

Prove the evaluation of f(a) is b

A useful observation:

$$f(a) = b \iff q(X) \text{ exists s.t. } q(X) = \frac{f(X) - b}{X - a}$$

5

Application of PCS

$$\mathcal{F}$$

$$\mathcal{V}$$

check

 $e(C_f/g^b, [1]_2) \stackrel{?}{=} e(C_q, [X-a]_2)$

$$q(X) = \frac{f(X) - b}{X - a}$$
commit (f, q)

 $\mathcal{C}_f, \mathcal{C}_q$

Application of PCS

$$\mathcal{P}$$

$$\mathcal{V}$$

$$q(X) = \frac{f(X) - b}{X - a}$$

commit(f, q)

check $e(C_f/g^b, [1]_2) \stackrel{?}{=} e(C_q, [X-a]_2)$

Schwartz-Zippel Lemma

Given a polynomial $f \in \mathbb{F}_{\leq d}[X]$. Let S be a finite subset of \mathbb{F} and $X \in S$ be chosen uniformly at random. Then

$$\Pr[f(X) = 0] \le \frac{d}{|S|}$$

where d is the degree of f.

6

Polynomial Interactive Oracle Proof (Poly-IOP)

Polynomial Constraints: a set of polynomial relations among polynomials $f_1(X), f_2(X), \ldots, f_n(X)$.

Polynomial Interactive Oracle Proof (Poly-IOP)

Example

Prove
$$f(X) = g(X)$$
 when $X = a$

Polynomial Interactive Oracle Proof (Poly-IOP)

Example

Prove f(X) = g(X) when X = a

 \mathcal{P}

 \mathcal{V}

$$q(X) = (f(X) - g(X))/(X - a)$$

commit(f, g, q)

$$\frac{C_f, C_g, C_q}{\gamma \stackrel{\$}{\leftarrow} \mathbb{F}_p} \\
\alpha_1 = f(\gamma), \alpha_2 = g(\gamma), \beta = q(\gamma)$$

$$\xrightarrow{\text{check}} \\
(i) \alpha_1 - \alpha_2 \stackrel{?}{=} \beta \cdot (\gamma - a) \\
(ii) \alpha_1 \stackrel{?}{=} f(\gamma), \alpha_2 \stackrel{?}{=} g(\gamma), \\
\beta \stackrel{?}{=} q(\gamma)$$

Table of Contents

- 1. Introduction
- 1.1 What is ZKP
- 1.2 Commitment Scheme
- 2. Proof of Solvency
- 2.1 Proof of Liabilities
- 2.2 Proof of Assets
- 2.3 Proof of Solvency
- 2.4 Performance Evaluation
- 3. Outro
- 3.1 Conclusion
- 3.2 State of the Art in ZKP

What is PoS

Proof of Solvency

How can a centralized exchange prove that it has enough assets to cover all the liabilities of its customers?

- Reveal the assets directly?
- Trust third-party auditors?

What is PoS

Proof of Solvency

How can a centralized exchange prove that it has enough assets to cover all the liabilities of its customers?

- Reveal the assets directly?
- Trust third-party auditors?

Numerous incidents

- Mt. Gox, 2014
- QuadrigaCX, 2019
- FTX, 2022
- ..

What is PoS

Proof of Solvency

How can a centralized exchange prove that it has enough assets to cover all the liabilities of its customers?

- Reveal the assets directly?
- Trust third-party auditors?

Numerous incidents

- Mt. Gox. 2014
- QuadrigaCX, 2019
- FTX, 2022
- ...

Proof of Solvency (PoS)

- Proof of Liabilities (PoL)
- Proof of Assets (PoA)

Limitations

PoS is not a silver bullet

- It may rely on a trusted setup (depending on the proof system)
- It requires honest verifier and user check
- It is not helpful to prevent hacks, scams, etc

Limitations

PoS is not a silver bullet

- It may rely on a trusted setup (depending on the proof system)
- It requires honest verifier and user check
- It is not helpful to prevent hacks, scams, etc

It raises the bar for exchanges to cheat

Comparison with Previous Works

- Most of the previous works focus on only one side
- This work aims for a full end-to-end solution

Recall the problem

- Each user's balance is included in the proof
- The summation of all balances (total liability) is correct
- Each balance is in a specified range (range proof)

Recall the problem

- Each user's balance is included in the proof
- The summation of all balances (total liability) is correct
- Each balance is in a specified range (range proof)

Intuition

Interpolate a polynomial with balances

p(X): bal₁ bal₂ ... bal_{n-1} bal_n

Recall the problem

- Each user's balance is included in the proof
- The summation of all balances (total liability) is correct
- Each balance is in a specified range (range proof)

Intuition

- Interpolate a polynomial with balances
- Construct an accumulative polynomial

$$f_{\text{liab}}(X)$$
: r_1 r_2 ... r_{n-1} r_n $p(X)$: bal_1 bal_2 ... bal_{n-1} bal_n

Recall the problem

- Each user's balance is included in the proof
- The summation of all balances (total liability) is correct
- Each balance is in a specified range (range proof)

Intuition

- Interpolate a polynomial with balances
- Construct an accumulative polynomial
- Open the evaluation point for each user

```
f_{\text{liab}}(X): r_1 r_2 ... r_{n-1} r_n p(X): \text{bal}_1 \text{bal}_2 ... \text{bal}_{n-1} \text{bal}_n
```

User	Alice	Bob	Charlie	David
Balance	10	12	9	7

Table 1: User Balances

User	Alice	Bob	Charlie	David
Balance	10	12	9	7

Table 1: User Balances

X Poly	0	1	2	3
$f_{\text{liab}}(X)$	38	28	16	7
p(X)	10	12	9	7

Table 2: Polynomials

User	Alice	Bob	Charlie	David
Balance	10	12	9	7

Table 1: User Balances

X Poly	0	1	2	3
$f_{\text{liab}}(X)$	38	28	16	7
p(X)	10	12	9	7

Table 2: Polynomials

•
$$f(X) = p(X), X = n - 1$$

•
$$f(X) = p(X) + f(X+1), \forall X \in [0, n-1)$$

User	Alice	Bob	Charlie	David
Balance	10	12	9	7

Table 1: User Balances

X Poly	0	1	2	3
$f_{\text{liab}}(X)$	38	28	16	7
p(X)	10	12	9	7

Table 2: Polynomials

•
$$f(X) = p(X), X = n - 1 \Rightarrow \frac{f(X) - p(X)}{X - (n - 1)} = q_1(X)$$

•
$$f(X) = p(X), X = n - 1 \Rightarrow \frac{f(X) - p(X)}{X - (n - 1)} = q_1(X)$$

• $f(X) = p(X) + f(X + 1), \forall X \in [0, n - 1)$
 $\Rightarrow \frac{f(X) - p(X) - f(X + 1)}{X(X - 1)(X - 2) \cdots [X - (n - 2)]} = q_2(X)$

Range Proof

- Prove a value $x \in [0, 2^k)$
- Prevent attacks by overflowing the liabilities and inserting negative values
- Binary decomposition¹

•
$$\overline{z} = \{z_1, z_2, \dots, z_k\}, x = 2^0 \cdot z_1 + 2^1 \cdot z_2 + \dots + 2^{k-1} \cdot z_k$$

•
$$x = z_1 + 2 \cdot (z_2 + 2 \cdot (z_3 + 2 \cdot (z_4 + \dots)))$$

	20	2 ¹	2 ²	2 ³	 2^{k-2}	2^{k-1}
Z	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	Z4	 z_{k-1}	z_k
λ	$z_1 + 2(z_2 +)$	$z_2 + 2(z_3 +)$	$z_3 + 2(z_4 +)$	$z_4 + 2(z_5 + \dots)$	 $z_{k-1} + 2z_k$	Z _k

https://hackmd.io/@dabo/B1U4kx8XI

Range Proof

- Prove a value $x \in [0, 2^k)$
- Prevent attacks by overflowing the liabilities and inserting negative values
- Binary decomposition¹

Example

	2 ⁰	2 ¹	2 ²	2 ³
x = 13	$\lambda_0 = 1$	$\lambda_1 = 0$	$\lambda_2 = 1$	$\lambda_3 = 1$
$f_{\text{range}}(X)$	13	6	3	1
	$f_{\text{range}}(0)$	$f_{\rm range}(1)$	$f_{\text{range}}(2)$	$f_{\text{range}}(3)$

- $f_{\text{range}}(X) \in \{0,1\}, X = k-1$
- $f_{\text{range}}(X) 2 \cdot f_{\text{range}}(X+1) \in \{0,1\}, X \in [0,k)$

¹https://hackmd.io/@dabo/B1U4kx8XI

Proof of Liability + Range Proof

X Poly	0	1	2	3
$f_{liab}(X)$	38	28	16	7
p(X)	10	12	9	7
	5	6	4	3
	2	3	2	1
	1	1	1	0

Proof of Liability + Range Proof

X Poly	0	1	2	3
$f_{liab}(X)$	38	28	16	7
p(X)	10	12	9	7
	5	6	4	3
	2	3	2	1
	1	1	1	0

The degree of p(X) is proportional to the size of the range proof

- The largest set of the roots we can use is 2³²
- One million $\approx 2^{20}$
- We can only prove values in $[0, 2^{12})$

Proof of Liability + Range Proof

X Poly	0	1	2	3
$f_{liab}(X)$	38	28	16	7
p(X)	10	12	9	7
	5	6	4	3
	2	3	2	1
	1	1	1	0

The degree of p(X) is proportional to the size of the range proof

- The largest set of the roots we can use is 2³²
- One million $\approx 2^{20}$
- We can only prove values in $[0, 2^{12})$

Solution

• Break the range polynomial

Proof of Liability + Range Proof

X Poly	0	1	2	3
$f_{liab}(X)$	38	28	16	7
$p_1(X)$	10	12	9	7
$p_2(X)$	5	6	4	3
$p_3(X)$	2	3	2	1
$p_4(X)$	1	1	1	0

•
$$f_{\text{liab}}(n-1) = p_1(n-1)$$

•
$$f_{\text{liab}}(X) = f_{\text{liab}}(X+1) + p_1(X), X \in [0, n-1)$$

•
$$p_k(X) \in \{0,1\}$$

•
$$p_i(X) - 2p_{i+1}(X) \in \{0, 1\}$$

Proof of Liability + Range Proof

X Poly	0	1	2	3
$f_{liab}(X)$	38	28	16	7
$p_1(X)$	10	12	9	7
$p_2(X)$	5	6	4	3
$p_3(X)$	2	3	2	1
$p_4(X)$	1	1	1	0

•
$$f_{\text{liab}}(n-1) = p_1(n-1)$$

•
$$f_{\text{liab}}(X) = f_{\text{liab}}(X+1) + p_1(X), X \in [0, n-1)$$

•
$$p_k(X) \in \{0,1\}$$

•
$$p_i(X) - 2p_{i+1}(X) \in \{0, 1\}$$

Clash attack: count the same amount only once

Clash Attack

X Poly	0	1	2	3
$f_{liab}(X)$	38	28	16	7
$p_1(X)$	10	12	9	7
$p_2(X)$	5	6	4	3
$p_3(X)$	2	3	2	1
$p_4(X)$ $u(X)$	1	1	1	0
u(X)	А	В	С	D

- $p_k(X) \in \{0,1\}$
- $p_i(X) 2p_{i+1}(X) \in \{0, 1\}$
- $f_{\text{liab}}(n-1) = p_1(n-1)$
- $f_{\mathsf{liab}}(X) = f_{\mathsf{liab}}(X+1) + p_1(X), X \in [0, n-1)$
- For each user t, $p_1(t) = bal_t$, $u(t) = uid_t$

Recall the problem

- The exchange proves the ownership of some wallet accounts
- The total asset is the sum of these accounts

Recall the problem

- The exchange proves the ownership of some wallet accounts
- The total asset is the sum of these accounts

Preliminaries

- Wallet address = Hash(pk)
- pk = g^{sk} , where g is a generator of an elliptic curve group (for Bitcoin and Ethereum, the curve is secp256k1; for the PCS, the curve is bls12-381)
- Secured by the discrete logarithm assumption

Intuition

ullet Publish some public keys as an anonymity set $\{pk_i\}$

Intuition

- ullet Publish some public keys as an anonymity set $\{pk_i\}$
- Construct a selector polynomial s(X) where each evaluation is in $\{0,1\}$

Intuition

- Publish some public keys as an anonymity set $\{pk_i\}$
- Construct a selector polynomial s(X) where each evaluation is in $\{0,1\}$
- Construct an accumulative polynomial

Intuition

- Publish some public keys as an anonymity set {pk_i}
- Construct a selector polynomial s(X) where each evaluation is in $\{0,1\}$
- Construct an accumulative polynomial

How to construct such a selector polynomial in ZK?

Disjunctive Σ -Protocol (OR Proof)

OR Proof

Prove the claiming statement is R_1 or R_2 without telling which case it is.

A useful observation: the previous proof of assets has composite statements:

- 1. The selector s_i is 1 and prove the knowledge of the corresponding private key
 - $g_{\text{bls}}^{s_i} = g_{\text{bls}}^1$ (in bls12-381)
 - the knowledge of sk_i (in secp256k1)
- 2. the selector s_i is 0
 - $g_{\text{bls}}^{s_i} = g_{\text{bls}}^0$ (in bls12-381)

²See Section B of the paper.

A useful observation: the previous proof of assets has composite statements:

- 1. The selector s_i is 1 and prove the knowledge of the corresponding private key
 - $g_{\text{bls}}^{s_i} = g_{\text{bls}}^1$ (in bls12-381)
 - the knowledge of sk_i (in secp256k1)
- 2. the selector s_i is 0
 - $g_{\text{bls}}^{s_i} = g_{\text{bls}}^0$ (in bls12-381)

Can we open the commitment to the evaluation without revealing the evaluation itself?

²See Section B of the paper.

A useful observation: the previous proof of assets has composite statements:

- 1. The selector s_i is 1 and prove the knowledge of the corresponding private key
 - $g_{\text{bls}}^{s_i} = g_{\text{bls}}^1$ (in bls12-381)
 - the knowledge of sk_i (in secp256k1)
- 2. the selector s_i is 0
 - $g_{\text{bls}}^{s_i} = g_{\text{bls}}^0$ (in bls12-381)

PCS Extension

Open the committed evaluation g_{bls}^{x} ².

²See Section B of the paper.

Full Protocol of Proof of Assets

- 1. Bootstrapping (pre-computing)
 - 1.1 Interpolate selector polynomial s(X)
 - 1.2 Open the evaluations of s(X)
 - 1.3 Prove each evaluation is valid (the OR proof)
- 2. Interpolate the balance polynomial b(X)
- 3. Construct the accumulative polynomial $f_{assets}(X)$
- 4. Prove the polynomial constraints (accumulate assets) are correct

Proof of Solvency

- Run the Proof of Liabilities to output $f_{liab}(X)$
- Run the Proof of Assets to output $f_{assets}(X)$
- Open the evaluations of $f_{\text{liab}}(0)$ and $f_{\text{assets}}(0)$ and compute $\Delta = f_{\text{assets}}(0) f_{\text{liab}}(0)$
- ullet Prove $\Delta \geq 0$ using the range proof

Benchmark Performance

Proof of assets

Proof of liability

Table of Contents

- 1. Introduction
- 1.1 What is ZKP
- 1.2 Commitment Scheme
- 2. Proof of Solvency
- 2.1 Proof of Liabilities
- 2.2 Proof of Assets
- 2.3 Proof of Solvency
- 2.4 Performance Evaluation
- 3. Outro
- 3.1 Conclusion
- 3.2 State of the Art in ZKP

Conclusion

- This work is an almost succinct proof of solvency
- It is practical to be deployed for the real-world exchanges, implemented in Rust (https://github.com/Shvier/proof-of-solvency)
- Future work
 - Multivariate polynomial for better performance
 - Incremental update (folding schemes)
 - Shorter range proof (lookup arguments)

State of the Art in ZKP

- Applications
 - In blockchain: zkRollup, zkBridge, zkEVM
 - In other fields: fight disinformation ³
- Limitations
 - Cost
 - Performance
 - Complexity
- Further reading
 - ZK MOOC
 - Vitalik's Blog
 - A Graduate Course in Applied Cryptography

³https://rdi.berkeley.edu/zk-learning/assets/Lecture2-2023.pdf