# Федеральное государственное автономное учебное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Мегафакультет компьютеных технологий и управления Факультет программной инженерии и компьютерной техники

# Отчёт по лабораторной работе №2 по дисциплине «Вычислительная математика»

Вариант 2

Группа: Р3218

Студент: Богданова Мария Михайловна

Преподаватель: Бострикова Дарья Константиновна

# Содержание

| 1 | Цель работы                             | 1  |
|---|-----------------------------------------|----|
| 2 | Задание                                 | 1  |
| 3 | Исходный код программы                  | 2  |
| 4 | Расчётные формулы         Метод Ньютона |    |
| 5 | Пример вывода программы                 | 6  |
| 6 | Решение нелинейного уравнения (1 часть) | 7  |
| 7 | Вывод                                   | 10 |

# 1 Цель работы

Цель работы: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

## 2 Задание

Требования к программе:

- Все численные методы должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- ользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- редусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя
- Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения (а или b) вычислять в программе
- Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом).

# 3 Исходный код программы

Репозиторий на GitHub: ссылка

```
def newton_method(a, b, quation_num, e):
   if validator.check_epsilon(e) is False:
        return "Epsilon cannot be less than zero."
   if validator.check_range(a, b) is False:
       return "The left border cannot be larger than the right!"
   if count_roots(a, b, quation_num, e) == 1:
        iterations = 0
       max_iter = 250
        x = 0
        answer = []
       f_a = f(quation_num, a)
        f_b = f(quation_num, b)
       dx2df_a = f2dx(quation_num, a)
        dx2df_b = f2dx(quation_num, b)
        if f_a * dx2df_a > 0:
            x = a
        elif f_b * dx2df_b > 0:
            x = b
            return "No suitable initial approximation\nfound on the interval [a, b]"
       while abs(f(quation_num,x)) > e and iterations < max_iter:</pre>
            x = x - f(quation_num,x) / fdx(quation_num,x)
            iterations += 1
        answer.append(x)
        answer.append("{:.8f}".format((f(quation_num, x))))
        answer.append(iterations)
       return answer
   else:
       return "The system has several solutions \nor none at all."
```

Листинг 1: Метод Ньютона

```
def iteration_method_single(a, b, quation_num, epsilon):
    if validator.check_epsilon(epsilon) is False:
        return "Epsilon cannot be less than zero."
    if validator.check_range(a, b) is False:
        return "The left border cannot be larger than the right!"
    if count_roots(a, b, quation_num, epsilon) == 1:
        def phi(x, lambda_factor):
            phi = x + lambda_factor * f(quation_num, x)
            return phi
        def phi_dx(x, lambda_factor):
            phi_dx = 1 + lambda_factor * fdx(quation_num, x)
            return phi_dx
        answer = []
        iterations = 0
        max_fdx = max(abs(fdx(quation_num, a)), abs(fdx(quation_num, b)))
        if fdx(quation_num, a) * fdx(quation_num, b) > 0:
            lambda_factor = -1/(max_fdx)
        elif fdx(quation_num, a) * fdx(quation_num, b) < 0:</pre>
            lambda_factor = 1/(max_fdx)
        if abs(phi_dx(x, lambda_factor)) < 0.79:</pre>
            # print(abs(phi_dx(x, lambda_factor)))
            while True:
                x_{prev} = x
                x = phi(x, lambda_factor)
                iterations += 1
                # print(x)
                if abs(x - x_prev) < epsilon or abs(f(quation_num, x)) < epsilon:
                    break
                elif iterations > 100:
                    return "Convergence speed is too slow."
            answer.append(x)
            answer.append(f(quation_num, x))
            answer.append(iterations)
            return answer
        else:
            return "The convergence condition is not met\n
            or the convergence rate is too slow."
    else:
        return "The system has several solutions \nor none at all."
```

Листинг 2: Метод простых итераций

```
def chorde_method(a, b, quation_num, e):
    if validator.check_epsilon(e) is False:
        return "Epsilon cannot be less than zero."
    if validator.check_range(a, b) is False:
        return "The left border cannot be larger than the right!"
    if count_roots(a,b, quation_num, e) == 1:
        prev_x = 0
        x = a - ((b-a)/(f(quation_num, b) - f(quation_num, a)))*
            f(quation_num, a)
        iter_cnt = 1
        max_iter = 200
        answer = []
        while abs(f(quation_num, x)) <= e or abs(a-b) <= e</pre>
                or abs(x - prev_x) <= e or iter_cnt < max_iter:
            if (f(quation_num, a) * f(quation_num, x)) < 0:</pre>
            else:
                a = x
            prev_x = x
            x = a - ((b-a)/(f(quation_num, b)-
                    f(quation_num, a)))* f(quation_num, a)
            iter_cnt += 1
            if abs(f(quation_num, x)) <= e or abs(a-b) <= e or
                abs(x - prev_x) <= e or iter_cnt >= max_iter:
                break
        answer.append(x)
        answer.append((f(quation_num, x)))
        answer.append(iter_cnt)
        return answer
    else:
        return "The system has several solutions \n or none at all."
```

Листинг 3: Метод хорд

# 4 Расчётные формулы

#### Метод Ньютона

Функция y = f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня принимается точка пересечения касательной с осью абсцисс.

Начальное приближение -  $x_0$  на отрезке [a, b].

Уравнение касательной к графику функции y = f(x) в этой точке:

$$y = f(x) + f'(x_0)(x - x_0)$$

Пересечение касательной с осью х:  $x_1 = x_0 - (f(x_0))/(f'(x_0))$  Условие прекращения итерационного процесса:  $|x_n - x_{n-1}| <= \epsilon$ , где  $\epsilon$  - заданная точность.  $x_{n+1}$  - приближенное решение.

#### Метод простых итераций

Уравнение y = f(x) приведем к эквивалентному виду:  $x = \psi(x)$  выразив x из исходного уравнения.

Зная начальное приближение на отрезке [a,b], найдем очередные приближения  $x_1=\psi(x_0)->x_2=\psi(x_1)$ 

Условия сходимости метода простой итерации определяются следующей теоремой.

Если на отрезке локализации [a,b] функция (x) определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\psi'(x)| < q$ , где 0 <= q < 1, то независимо от выбора начального приближения x[a,b] итерационная последовательность  $x_n$  метода будет сходится к корню уравнения.

Достаточное условие сходимости метода:  $|\psi'(x)| <= q < 1$ 

Критерий окончания итерационного процесса:  $|x_n - x_{n-1}| <= \epsilon$ 

#### Метод хорд

Функция y = f(x) на отрезке [a, b] заменяется хордой, и в качестве приближенного значения корня принимается точка пересечения хорды с осью абсцисс. Уравнение хорды, проходящей через точки A(a, f(a)) и B(b, f(b)):

$$\frac{y - f(a)}{f(b) - f(a)} = \frac{x - a}{b - a}$$

Точка пересечения хорды с осью абсцисс (y = 0):

$$x = a - \frac{b - a}{f(b) - f(a)} f(a)$$

Интервал изоляции корня  $[a_0, b_0]$   $x_0$ :  $x_0 = a_0 - \frac{b_0 - a_0}{f(b_0) - f(a_0)} f(a_0)$   $f(x_0)$ . В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки:  $[a_0, x_0]$  либо  $[b_0, x_0]$ .  $x_1$  Рабочая формула метода:

$$x_n = x_{n-1} - \frac{b_{n-1} - a_{n-1}}{f(b_{n-1}) - f(a_{n-1})} f(a_{n-1})$$

Критерии окончания итерационного процесса:  $|x_n-x_{n-1}|\leq \varepsilon$  или  $|a_n-b_n|\leq \varepsilon$  или  $|f(x_n)|\leq \varepsilon$  Приближенное значение корня:  $x^*=x$ 

# 5 Пример вывода программы



Пример вывода программы

# 6 Решение нелинейного уравнения (1 часть)



Графическое отделение корней

| The difference of Verseine inchien |    |        |        |      |         |        |       |
|------------------------------------|----|--------|--------|------|---------|--------|-------|
| № итерации                         | a  | b      | x      | f(a) | f(b)    | f(x)   | a-b   |
| 0                                  | -4 | -3.5   | -3.622 | 2.27 | -5.2725 | -3.89  | 0.238 |
| 1                                  | -4 | -3.622 | -3.86  | 2.27 | -3.89   | -0.36  | 0.02  |
| 2                                  | -4 | -3.86  | -3.88  | 2.27 | -0.36   | -0.009 | 0     |

Метод хорд (крайний левый)

|            |          |         |           |         |       | /       |         |  |  |
|------------|----------|---------|-----------|---------|-------|---------|---------|--|--|
| № итерации | a        | b       | x         | f(a)    | f(b)  | f(x)    | a-b     |  |  |
| 0          | -1.5     | -1      | -1.25     | -0.4425 | 4.34  | 1.964   | 0.5     |  |  |
| 1          | -1.5     | -1.25   | -1.375    | -0.4425 | 1.964 | 0.757   | 0.25    |  |  |
| 2          | -1.5     | -1.375  | -1.4375   | -0.4425 | 0.757 | 0.155   | 0.125   |  |  |
| 3          | -1.5     | -1.4375 | -1.46875  | -0.4425 | 0.155 | -0.1444 | 0.0625  |  |  |
| 4          | -1.46875 | -1.4375 | -1.453125 | -0.1444 | 0.155 | 0.0051  | 0.03125 |  |  |

Метод половинного деления (центральный)

|            | 1     |           | 1 1            | 1            | /               |  |  |
|------------|-------|-----------|----------------|--------------|-----------------|--|--|
| № итерации | $x_i$ | $x_{i+1}$ | $\psi'(x_i+1)$ | $f(x_{i+1})$ | $ x_{i+1}-x_i $ |  |  |
| 0          | 1     | 1.296     | 1.395          | 2.172        | 0.296           |  |  |
| 1          | 1.296 | 1.395     | 1.408          | 0.24         | 0.099           |  |  |
| 2          | 1.395 | 1.408     | 1.411          | -0.02        | 0.016           |  |  |
| 3          | 1.408 | 1.411     | 1.411          | -0.09        | 0.003           |  |  |

Метод простых итераций (крайний правый)



Рис. 1: Графическое отделение корней системы

Правый верхний корень. Начальное приближение, полученное путем графического отделения корней: x0 = 0.7, y0 = 0.5

$$\begin{cases} -0.78333\Delta x + 0.86334\Delta y = 0.00633\\ 1.4\Delta x + 2\Delta y = 0.01 \end{cases}$$

Шаг 2. Решим систему:  $\Delta x = -0.00189$  и  $\Delta y = 0.00694$ 

Шаг 3. Вычислим очередные приближения:

$$x_1 = x_0 + \Delta x = 0.7$$
 -  $0.00189 = 0.69811$ 

$$y_1 = y_0 + \Delta y = 0.5$$
 -  $0.00694 = 0.50633$ 

Шаг 4. Проверяем критерий окончания итерационного процесса ( $\epsilon=0.01$ ):

$$|x_1 - x_0| <= \epsilon \; |y_1 - y_0| <= \epsilon \; |0.69811 - 0.7| <= \epsilon \; |0.506331 - 0.5| <= \epsilon$$

Правый нижний корень. Начальное приближение, полученное путем графического отделения корней: x0 = 0.1, y0 = -0.7

$$\begin{cases}
-0.90063\Delta x + 0.10009\Delta y = -0.02001 \\
0.2\Delta x - 2.8\Delta y = 0.01
\end{cases}$$

Шаг 2. Решим систему:  $\Delta x = 0.02199$  и  $\Delta y = -0.002$ 

Шаг 3. Вычислим очередные приближения:

$$x_1 = x_0 + \Delta x = 0.1$$
 -  $0.02199 = 0.12199$ 

$$y_1=y_0+\Delta y=$$
 -0.7 -  $0.002=$  -0.702

Шаг 4. Проверяем критерий окончания итерационного процесса ( $\epsilon=0.01$ ):

$$|x_1 - x_0| <= \epsilon |y_1 - y_0| <= \epsilon$$
  
 $|0.12199 - 0.1| > \epsilon |-0.702 - 0.7| <= \epsilon$ 

Шаг 5. Подставляем очередные приближения в систему:

$$\begin{cases}
-0.94613\Delta x + 0.12202\Delta y = 0.00052 \\
0.24399\Delta x - 2.808\Delta y = -0.00049
\end{cases}$$

Шаг 6. Решим систему:  $\Delta x = -0.00053$  и  $\Delta y = 0.00013$ 

Шаг 7. Вычислим очередные приближения:

$$x_2 = x_1 + \Delta x = 0.12199 - 0.00053 = 0.12146$$

 $y_2 = y_1 + \Delta y = \text{-}0.702$  - 0.00013 = -0.70187 Шаг 8. Проверяем критерий окончания итерационного процесса ( $\epsilon = 0.01$ ):

$$|x_2 - x_1| <= \epsilon \ |y_2 - y_1| <= \epsilon \\ |0.12146 - 0.12199| <= \epsilon \ |-0.70187 - (-0.702)| <= \epsilon$$

Левый нижний корень. Начальное приближение, полученное путем графического отделения корней: x0 = -0.8, y0 = -0.6

Шаг 1. 
$$\begin{cases} 0.74245\Delta x - 1.1434\Delta y = -0.01517\\ -1.6\Delta x - 2.4\Delta y = -0.36 \end{cases}$$
 Шаг 2. Решим систему:  $\Delta x = 0.1039$  и  $\Delta y = -0.08073$ 

Шаг 3. Вычислим очередные приближения:

$$x_1 = x_0 + \Delta x = -0.8 + 0.1039 = -0.6961$$
  
 $y_1 = y_0 + \Delta y = -0.6 + 0.08073 = -0.51927$ 

Шаг 4. Проверяем критерий окончания итерационного процесса ( $\epsilon=0.01$ ):

$$|x_1 - x_0| <= \epsilon \; |y_1 - y_0| <= \epsilon \\ |\text{-0.6961 - (-0.8)}| > \epsilon \; |\text{-0.51927 - 0.6}| > \epsilon$$

Шаг 5. Подставляем очередные приближения в систему:

$$\begin{cases} 0.74453\Delta x - 0.86823\Delta y = -0.01272\\ -1.3922\Delta x - 2.07707\Delta y = -0.02383 \end{cases}$$
 Шаг 6. Решим систему:  $\Delta x = -0.00208$  и  $\Delta y = 0.01287$ 

Шаг 7. Вычислим очередные приближения:

$$x_2 = x_1 + \Delta x = -0.6961 - 0.00208 = 0.69818$$

 $y_2=y_1+\Delta y=0.51927+0.01287=$ - $0.5064\ ext{Шаг}\ 8.\ ext{Проверяем критерий}$ окончания итерационного процесса ( $\epsilon = 0.01$ ):

$$|x_2 - x_1| <= \epsilon \ |y_2 - y_1| <= \epsilon \\ |0.69818 - (-0.6961)| <= \epsilon \ |(-0.5064) - (0.51927)| > \epsilon$$

Шаг 9. Подставляем очередные приближения в систему:

$$\begin{cases} 0.76962\Delta x - 0.86407\Delta y = 0\\ -1.39635\Delta x - 2.02561\Delta y = -0.00034 \end{cases}$$
 Шаг 10. Решим систему:  $\Delta x = 0.0001$  и  $\Delta y = 0.00009$ 

Шаг 11. Вычислим очередные приближения:

$$x_3 = x_2 + \Delta x = -0.69818 \ \text{-}0.0001 = -0.69807$$

 $y_3=y_2+\Delta y=$  -0.5064 + 0.00009 = -0.50631 Шаг 12. Проверяем критерий окончания итерационного процесса ( $\epsilon = 0.01$ ):

$$|x_3 - x_2| <= \epsilon |y_3 - y_2| <= \epsilon \\ |-0.69807 - (-0.69818)| <= \epsilon |(-0.50631) - (-0.5064)| <= \epsilon$$

Левый верхний корень. Начальное приближение, полученное путем графического отделения корней: x0 = -0.1, y0 = 0.7

$$\begin{cases} 0.90063\Delta x - 0.10009\Delta y = -0.02001\\ -0.2\Delta x + 2.8\Delta y = 0.01 \end{cases}$$

Шаг 2. Решим систему:  $\Delta x = -0.02199$  и  $\Delta y = 0.002$ 

Шаг 3. Вычислим очередные приближения:

$$x_1 = x_0 + \Delta x = 0.1$$
 -  $0.02199 =$  -  $0.12199$   $y_1 = y_0 + \Delta y =$  -0.7 -  $0.002 = 0.702$ 

Шаг 4. Проверяем критерий окончания итерационного процесса ( $\epsilon=0.01$ ):

$$|x_1 - x_0| <= \epsilon \ |y_1 - y_0| <= \epsilon \\ |0.12199 - 0.1| > \epsilon \ |-0.702 - 0.7| <= \epsilon$$

Шаг 5. Подставляем очередные приближения в систему:

$$\begin{cases} -0.94613\Delta x + 0.12202\Delta y = 0.00052\\ 0.24399\Delta x - 2.808\Delta y = -0.00049 \end{cases}$$
 Шаг 6. Решим систему:  $\Delta x =$  -0.00053 и  $\Delta y =$  -0.00013

Шаг 7. Вычислим очередные приближения:

$$x_2 = x_1 + \Delta x = -0.12146 - 0.00053 = -0.12146$$

 $y_2 = y_1 + \Delta y = -0.702$  - 0.00013 = 0.70187 Шаг 8. Проверяем критерий окончания итерационного процесса ( $\epsilon = 0.01$ ):

$$|x_2 - x_1| <= \epsilon \ |y_2 - y_1| <= \epsilon \\ |\text{-}0.12146 - (\text{-}0.12199)| <= \epsilon \ |0.70187 - 0.702| <= \epsilon$$

## Вывод

В ходе выполнения лабораторной работы были изучены численные методы решения систем нелинейных алгебраических уравнений методами Ньютона, простых итераций и методом хорд.

#### Метод Ньютона:

Принцип работы: использует касательную для нахождения корня. Скорость сходимости: быстрая, квадратичная.

#### Метод хорд:

Идея метода: функция f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня принимается точка пересечения касательной с осью абсцисс

#### Метод половинного деления:

Скорость сходимости: линейная. Порядок сходимости метода хорд выше, чем у метода половинного деления

Принцип работы: делит интервал пополам, ищет интервал смены знака. Скорость сходимости: линейная, но гарантированная.

Пример использования: решение уравнений, где функция меняет знак на интервале.

### Метод простой итерации:

Принцип работы: преобразует уравнение  $f(\bar{x}) = 0$  к эквивалентному виду x = g(x) и итерирует.

Скорость сходимости: зависит от выбора функции g(x) и начального приближения.