- heat kernel	nd self-tuned kernel on manifold Laplacian to manifold Laplacian
<i>T</i>	tion to graph-based geometric data analysis
	- graph Laplacian - manifold learning, ISOMAP - spectral convergence demo
	- spectral convergence demo
	pardwidth (self-tuned kernel)
1	$\{\chi_i\}_{i=1}^n$ in \mathbb{R}^n , $\chi_i \sim \rho$ ind.
afr	of matrix $W_{ij} = e^{-\frac{ X_i - X_S ^2}{\sigma^2}}, \sigma > 0$
Profile	m. at xi which is further away from other xj's, the nurversal or may make i isolate.
	adaptively set to for each node xi
	neavers neighbor (KNN) of zi in $X = \frac{n}{x_j} = \frac{n}{y_{-1}}$.
	- $\hat{\phi}_i = \ \alpha_i - \alpha_{j(i)}, k \ $, where $\alpha_{j(i)}, k \in \mathcal{K}$ k -NN of α_i in X , $1 < k < n$
- S	If funed kernel [Zelnik-Manor and Perona 2005]
	$W: j = k \left(\frac{\ x_i - x_j\ ^2}{\oint_{C} \oint_{C}} \right), k(\cdot): R \rightarrow R$ $e_{j}. k(z) = e^{-z}$
	$\hat{\sigma}_{i} = \hat{R}(x_{i})$ $\hat{R}(\cdot)$ a funtion in IR^{2} ,
	equivalent définition of KWN
	* * * * * * * * * * * * * * * * * * *
* x	$\begin{array}{c c} x \\ \hline \\ x \\ \hline \\ x_j \end{array} \qquad \begin{array}{c c} x \\ \hline \\ \hline \\ x_j \end{array} \qquad \begin{array}{c c} x \\ \hline \\$
×	× × ×
- Cons	ergence of knn distance [NNDE, 60s-90s]
	ove Ris small
	$\int_{\mathbb{R}^{(2)}} p(u) du \approx p(x) \cdot v_{a} \hat{\mathbb{R}}^{d} \approx \frac{k}{N}$ $\delta_{\mathbb{R}^{(2)}}$
	extinate of pla) by kNN
	Rizi~ (k)" >oit koo.
	ior nanifold data, pon Md in (R),
7	$(2c) := R(2c) \left(\frac{1}{V_1} + \frac{1}{N}\right)^{-1/d} \rightarrow \frac{1}{P(2c)} = \beta(2c)$
_	Thm [C-Wu 2020] Manifold data assumption, as n 1, lyn << le << n, then for large u, whop
	$\frac{\left \widehat{\varphi}(x) - \widehat{\varphi}(x)\right }{\overline{\varphi}(x)} = O_{\varphi}\left(\frac{ k ^{2/d}}{n}\right) + O\left(\frac{ k ^{2/d}}{k}\right)$
	$\frac{1}{p(n)}$ $\frac{1}{p(n)}$
	for x EM uniformly.
This ad	s provides the C' convergence of (scaled) KNN phie bandwidth function to the limit $\overline{f} = f^{-1}d$
	cernel on manifold
40	a spentral convergence shows the honvergence of the apple Laplacian operator $L_{\mu\nu} = I - D^{\dagger}W$
q	to the manifold Laplacian Dal
M. i beat	kernel on M is the Green's function of the kernel on M: $u(t,x)$, $t>0$, $x \in M$,
bea	
	$\begin{cases} \exists \notin \mathcal{U} = \Delta_{\mathcal{M}} \mathcal{U} \\ \mathcal{U}(0, \lambda) = f(\lambda) \end{cases} \text{ while } \Delta_{\mathcal{M}} \text{ as } \Delta$
Th	e diffusion semi-group $Q_t := e^{t\Delta}$
	$n(t, 2) = Q_t f(2) = \int_M H_t(2, y) f(y) d V(y)$
	(M, dV) the measure space * Rimenovian volume form
Ei ge	or-functions of Δ : M smooth (connected) compart, $\{\mu_k, \psi_k\}_{k=1}^{\infty}$ eigen-pairs of $-\Delta$
	$-\Delta \sqrt{k} = M_{k} \sqrt{k},$
	$0 = M_1 < M_2 \leq M_3 \leq \cdots, \forall_k \in C^{\infty}(M),$
<	$4k$, $4e > = \int_{M} 4k(2) 4k(2) dV(2) = Jkl$,
	the is also the eigenfunction of the integral operator of the heat knowl
	operator of the heat kernel $Q_{t} t_{k} = e^{-tM_{k}} t_{k}, k=1,2,$
	Eg $4(2) = \text{constant}$.
1.	612 $\int_{\mathcal{M}} H_{t}(x,y) dV(y) = 1$, $\forall x \in \mathcal{M}$.
U.	der generic conditions, H. (24) - 5 P + 1/2 A. (4) + 2.46M
	$\mathcal{H}_{l}(z,y) = \sum_{k=1}^{\infty} e^{-t/k} \mathcal{H}_{k}(z) \mathcal{H}_{k}(y), \forall z, y \in M$
R.L.	Locally, Hy (2, y) can be approximated by
	Locally, $H_{\xi}(z,y)$ can be approximated by $G_{\xi}(z,y) = \frac{1}{(4\pi t)^2 k} e^{-\frac{k}{4\pi t}} \int_{z}^{z} d\mu(y,z) d\mu(y,z) d\mu(y,z) d\mu(y,z) d\mu(y,z) dx$
	$d\mu(y,z) < J_0$
	Heat Revnel parametria on manifold. Steven Rosenberg. The Laplacian on a Riemannian manifold: an introduction to analysis on manifolds. Number 31. Cambridge University Press, 1997
	Globally, Hycxiy) & (4(x,y) for Oll) time, but Hy(x,y) can have sub-ganisian decay wiret. du(x,y).
	-convergence of graph Laplacian
V	Ln is now graph Laplacian. Lun or Low
	$L_n \mathcal{U}_k = \lambda_k \mathcal{U}_k, k=1,2,\cdots$
	eigen-Lowergen:
١	For $f \in C(M)$, $f_X f = \begin{cases} f(x_i) \\ f(x_n) \end{cases} \in IR^n$ under manifold data setting, for $k=1,,k$,
	$ \lambda \kappa - \mu \kappa = \mathcal{O}(\eta - \frac{1}{d_2 + 2})$
	$(N_{k} - T_{k} \gamma_{k}) = () (N \alpha^{+})$
	$\ \mathcal{N}_{k} - \mathcal{P}_{k} \mathcal{T}_{k} \ _{2} = \mathcal{O}(n^{-\frac{1}{d+4}})$ $\in \sim \mathcal{G}(n^{-\frac{1}{d_{2}+2}})$