In [1]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Comment this if the data visualisations doesn't work on your side
%matplotlib inline

plt.style.use('bmh')
```

In [2]:

```
df = pd.read_csv("train.csv")
df.head()
```

Out[2]:

	ld	MSSubClass	ubClass MSZoning LotFro		LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	1
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	,
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	,
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	,

5 rows × 81 columns

→

In [3]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data #	columns (total Column	81 columns): Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	-
12	Neighborhood		object
13	Condition1	1460 non-null	object
	Condition2	1460 non-null	object
14 15		1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64

```
1460 non-null
                                   int64
 51 BedroomAbvGr
    KitchenAbvGr
                   1460 non-null
                                   int64
53
    KitchenQual
                   1460 non-null
                                   object
    TotRmsAbvGrd
                   1460 non-null
                                   int64
55 Functional
                   1460 non-null
                                   object
56 Fireplaces
                   1460 non-null
                                   int64
57
    FireplaceQu
                   770 non-null
                                   object
58 GarageType
                   1379 non-null
                                   object
59 GarageYrBlt
                   1379 non-null
                                   float64
60 GarageFinish
                   1379 non-null
                                   object
                   1460 non-null
                                   int64
61 GarageCars
62 GarageArea
                   1460 non-null
                                   int64
63 GarageQual
                   1379 non-null
                                   object
64 GarageCond
                                   object
                   1379 non-null
65
    PavedDrive
                   1460 non-null
                                   object
    WoodDeckSF
                   1460 non-null
                                   int64
    OpenPorchSF
67
                   1460 non-null
                                   int64
    EnclosedPorch 1460 non-null
                                   int64
69
    3SsnPorch
                   1460 non-null
                                   int64
70 ScreenPorch
                   1460 non-null
                                   int64
71 PoolArea
                   1460 non-null
                                   int64
                                   object
    Pool0C
                   7 non-null
                   281 non-null
73
    Fence
                                   object
74 MiscFeature
                   54 non-null
                                   object
75
    MiscVal
                   1460 non-null
                                   int64
76 MoSold
                   1460 non-null
                                   int64
77
    YrSold
                   1460 non-null
                                   int64
78 SaleType
                   1460 non-null
                                   object
79
    SaleCondition 1460 non-null
                                   object
                   1460 non-null
                                    int64
80 SalePrice
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
```

In [4]:

```
# df.count() does not include NaN values
df2 = df[[column for column in df if df[column].count() / len(df) >= 0.3]]
del df2['Id']
print("List of dropped columns:", end=" ")
for c in df.columns:
    if c not in df2.columns:
        print(c, end=", ")
print('\n')
df = df2
```

List of dropped columns: Id, Alley, PoolQC, Fence, MiscFeature,

In [5]:

```
print(df['SalePrice'].describe())
plt.figure(figsize=(9, 8))
sns.distplot(df['SalePrice'], color='g', bins=100, hist_kws={'alpha': 0.4});
```

1460.000000 count 180921.195890 mean std 79442.502883 34900.000000 min 25% 129975.000000 50% 163000.000000 75% 214000.000000 755000.000000 max

Name: SalePrice, dtype: float64

C:\Users\hp\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Futur eWarning: `distplot` is a deprecated function and will be removed in a futur e version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for h istograms).

warnings.warn(msg, FutureWarning)

In [8]:

```
list(set(df.dtypes.tolist()))
```

Out[8]:

[dtype('0'), dtype('float64'), dtype('int64')]

In [9]:

```
df_num = df.select_dtypes(include = ['float64', 'int64'])
df_num.head()
```

Out[9]:

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	Ма
0	60	65.0	8450	7	5	2003	2003	
1	20	80.0	9600	6	8	1976	1976	
2	60	68.0	11250	7	5	2001	2002	
3	70	60.0	9550	7	5	1915	1970	
4	60	84.0	14260	8	5	2000	2000	

5 rows × 37 columns

In [10]:

df_num.hist(figsize=(16, 20), bins=50, xlabelsize=8, ylabelsize=8);

In [11]:

df_num_corr = df_num.corr()['SalePrice'][:-1] # -1 because the latest row is SalePrice
golden_features_list = df_num_corr[abs(df_num_corr) > 0.5].sort_values(ascending=False)
print("There is {} strongly correlated values with SalePrice:\n{}".format(len(golden_featur))

There is 10 strongly correlated values with SalePrice:

OverallQual 0.790982 GrLivArea 0.708624 GarageCars 0.640409 GarageArea 0.623431 TotalBsmtSF 0.613581 1stFlrSF 0.605852 FullBath 0.560664 TotRmsAbvGrd 0.533723 YearBuilt 0.522897 YearRemodAdd 0.507101

Name: SalePrice, dtype: float64

In [12]:


```
In [13]:
import operator
individual_features_df = []
for i in range(0, len(df_num.columns) - 1): # -1 because the last column is SalePrice
    tmpDf = df_num[[df_num.columns[i], 'SalePrice']]
   tmpDf = tmpDf[tmpDf[df_num.columns[i]] != 0]
    individual_features_df.append(tmpDf)
all_correlations = {feature.columns[0]: feature.corr()['SalePrice'][0] for feature in indiv
all correlations = sorted(all correlations.items(), key=operator.itemgetter(1))
for (key, value) in all_correlations:
    print("{:>15}: {:>15}".format(key, value))
   KitchenAbvGr: -0.1392006921778576
       HalfBath: -0.08439171127179902
     MSSubClass: -0.08428413512659509
   OverallCond: -0.07785589404867797
         YrSold: -0.028922585168736813
   BsmtHalfBath: -0.02883456718548182
       PoolArea: -0.014091521506356765
   BsmtFullBath: 0.011439163340408606
         MoSold: 0.046432245223819446
      3SsnPorch: 0.06393243256889088
   OpenPorchSF: 0.08645298857147718
```

MiscVal: 0.08896338917298921 Fireplaces: 0.12166058421363891 BsmtUnfSF: 0.16926100049514173 BedroomAbvGr: 0.18093669310848806 WoodDeckSF: 0.1937060123752066 BsmtFinSF2: 0.19895609430836594 EnclosedPorch: 0.24127883630117497 ScreenPorch: 0.2554300795487841 LotArea: 0.2638433538714051 LowQualFinSF: 0.30007501655501323 LotFrontage: 0.35179909657067737 MasVnrArea: 0.43409021975689227 BsmtFinSF1: 0.47169042652357296 GarageYrBlt: 0.4863616774878596 YearRemodAdd: 0.5071009671113866 YearBuilt: 0.5228973328794967 TotRmsAbvGrd: 0.5337231555820284 FullBath: 0.5745626737760822 1stFlrSF: 0.6058521846919153 GarageArea: 0.6084052829168346 TotalBsmtSF: 0.6096808188074374 GarageCars: 0.6370954062078923 2ndFlrSF: 0.6733048324568376 GrLivArea: 0.7086244776126515 OverallQual: 0.7909816005838053

In [14]:

```
golden_features_list = [key for key, value in all_correlations if abs(value) >= 0.5]
print("There is {} strongly correlated values with SalePrice:\n{}".format(len(golden_featur))
```

There is 11 strongly correlated values with SalePrice: ['YearRemodAdd', 'YearBuilt', 'TotRmsAbvGrd', 'FullBath', '1stFlrSF', 'GarageArea', 'TotalBsmtSF', 'GarageCars', '2ndFlrSF', 'GrLivArea', 'OverallQual']

In [15]:

In [16]:

Out[16]:

	LotFrontage	LotArea	MasVnrArea	BsmtFinSF1	BsmtFinSF2	TotalBsmtSF	1stFlrSF	2ndFlr
0	65.0	8450	196.0	706	0	856	856	3
1	80.0	9600	0.0	978	0	1262	1262	
2	68.0	11250	162.0	486	0	920	920	8
3	60.0	9550	0.0	216	0	756	961	7
4	84.0	14260	350.0	655	0	1145	1145	10

5 rows × 28 columns

```
→
```

In [17]:

```
features_to_analyse = [x for x in quantitative_features_list if x in golden_features_list]
features_to_analyse.append('SalePrice')
features_to_analyse
```

Out[17]:

```
['TotalBsmtSF',
'1stFlrSF',
'2ndFlrSF',
'GrLivArea',
'FullBath',
'TotRmsAbvGrd',
'GarageCars',
'GarageArea',
'SalePrice']
```

In [18]:

```
fig, ax = plt.subplots(round(len(features_to_analyse) / 3), 3, figsize = (18, 12))

for i, ax in enumerate(fig.axes):
    if i < len(features_to_analyse) - 1:
        sns.regplot(x=features_to_analyse[i],y='SalePrice', data=df[features_to_analyse], a</pre>
```


In [19]:

```
# quantitative_features_list[:-1] as the last column is SalePrice and we want to keep it
categorical_features = [a for a in quantitative_features_list[:-1] + df.columns.tolist() if
df_categ = df[categorical_features]
df_categ.head()
```

Out[19]:

	MSSubClass	MSZoning	Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	Nei
0	60	RL	Pave	Reg	Lvl	AllPub	Inside	Gtl	
1	20	RL	Pave	Reg	LvI	AllPub	FR2	GtI	
2	60	RL	Pave	IR1	LvI	AllPub	Inside	GtI	
3	70	RL	Pave	IR1	LvI	AllPub	Corner	GtI	
4	60	RL	Pave	IR1	Lvl	AllPub	FR2	Gtl	

5 rows × 49 columns

→

In [20]:

```
df_not_num = df_categ.select_dtypes(include = ['0'])
print('There is {} non numerical features including:\n{}'.format(len(df_not_num.columns), d
```

There is 39 non numerical features including:
['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseS
tyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposur
e', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'E
lectrical', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageType', 'Garag
eFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'SaleType', 'SaleConditi
on']

In [21]:

```
plt.figure(figsize = (10, 6))
ax = sns.boxplot(x='BsmtExposure', y='SalePrice', data=df_categ)
plt.setp(ax.artists, alpha=.5, linewidth=2, edgecolor="k")
plt.xticks(rotation=45)
```

Out[21]:

```
(array([0, 1, 2, 3]),

[Text(0, 0, 'No'), Text(1, 0, 'Gd'), Text(2, 0, 'Mn'), Text(3, 0, 'Av')])
```


In [22]:

```
plt.figure(figsize = (12, 6))
ax = sns.boxplot(x='SaleCondition', y='SalePrice', data=df_categ)
plt.setp(ax.artists, alpha=.5, linewidth=2, edgecolor="k")
plt.xticks(rotation=45)
```

Out[22]:

```
(array([0, 1, 2, 3, 4, 5]),
  [Text(0, 0, 'Normal'),
  Text(1, 0, 'Abnorml'),
  Text(2, 0, 'Partial'),
  Text(3, 0, 'AdjLand'),
  Text(4, 0, 'Alloca'),
  Text(5, 0, 'Family')])
```


In [23]:

```
fig, axes = plt.subplots(round(len(df_not_num.columns) / 3), 3, figsize=(12, 30))
for i, ax in enumerate(fig.axes):
     if i < len(df_not_num.columns):</pre>
          ax.set_xticklabels(ax.xaxis.get_majorticklabels(), rotation=45)
          sns.countplot(x=df_not_num.columns[i], alpha=0.7, data=df_not_num, ax=ax)
fig.tight_layout()
 ਰੁ 500
                                 COL
                                   500
                Clall
                                                                                     PZ
                                                                              R)
                                                                               LotShape
                                                Street
               MSZoning
                                                                   1000
  1000
                                  1000
 count
                                 count
                                                                 count
                                                                   500
   500
                                   500
        'n
                    04
             LandContour
                                                Utilities
                                                                               LotConfig
                                    200
                                                                   1000
tho 500
                                 00 too
                                                                 count
                 mod
         G<sup>1</sup>
              LandSlope
                                                                               Condition1
                                             Neighborhood
  1500
                                   1000
In [ ]:
```