For Reference

NOT TO BE TAKEN FROM THIS ROOM

Ex uibris universitates albertaeasis

The University of Alberta
Printing Department
Edmonton, Alberta

Digitized by the Internet Archive in 2023 with funding from University of Alberta Library

https://archive.org/details/Lo1972

THE UNIVERSITY OF ALBERTA

AN AUTOMATIC OPTIMUM ITERATIVE FEEDBACK DOCUMENT RETRIEVAL SYSTEM

by

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTING SCIENCE
EDMONTON, ALBERTA
FALL, 1972

RESERVE AND RESERVE THE PROPERTY OF THE PARTY OF THE PART

113 m l 109 A

CONTRACTOR OF THE PROPERTY OF THE PARTY OF T

THE RESIDENCE OF THE PARTY OF T

ETTI, 1972

THE UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled AN AUTOMATIC OPTIMUM ITERATIVE FEEDBACK DOCUMENT RETRIEVAL SYSTEM, submitted by Adrian K. Lo in partial fulfillment of the requirements for the degree of Master of Science.

basic design problems of a document retrieval system are reviewed. A simple optimum iterative feedback system is proposed that makes use of two interrelated sets of parameters supplied respectively by the user and the system. The set of user parameters is designed to reflect the user's own point of view on the search subject matter; while the set of system parameters is designed to reveal some data base characteristics. A set of index terms and their corresponding significance values are abstracted from the Computing Science data base by an automatic indexing algorithm based on some statistical association measures. In order to eliminate storage shortage problems created by large matrices such as the document-term matrix, a least-storage scheme and a subscript-matching algorithm are developed to assist manipulations of these large matrices. Some relevance judgment criteria are defined and a relevance measure is derived. The optimum iterative feedback algorithm is first described for search on document title terms only; and is then generalized to include search on other relevant items such as author names and so on. Finally, the convergence of the algorithm is verified for both cases.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Professor H.S. Heaps for his constant advice, guidance, encouragement, and financial support at all stages of the research. I am also indebted to Dr. K.V. Leung for many of his valuable comments and suggestions.

TABLE OF CONTENTS

			Page
CHAPTER	I:	INTRODUCTION	
	1.1	The Basic Problems	1
	1.2	Optimization Methods	3
	1.3	The Model	5
CHAPTER	II:	AN AUTOMATIC INDEXING ALGORITHM	
	2.1	The Data Base	7
	2.2	The Automatic Indexing Algorithm	9
	2.3	Storage Problems	15
	2.4	Programming Considerations	24
	2.5	The Index Term List	34
CHAPTER	III:	DEFINITIONS OF SYSTEM FUNCTIONS	
	3.1	The Query Language	38
	3.2	Revelance Criteria	44
	3.3	A Revelance Measure	47
CHAPTER	IV:	THE OPTIMUM ITERATIVE FLECBACK ALGORITHM	
	4.1	Optimum Feedback Parameters	52
	4.2	The Optimum Iterative Feedback Algorithm	59
	4.3	Convergence of the Algorithm	65

 $(A_{ij}, A_{ij}, A_{$

	4.4	Generalization of the Algorithm	67
CHAPTER	₹:	GENERAL DISCUSSIONS	
	5.1	A System Evaluation Measure	69
	5.2	Analysis of Search Output	73
	5.3	Conclusions	83

BIBLICGRAPHY

APPENDIX A: LIST OF ASTM CODENS

APPENDIX B: LIST OF STATISTICAL ASSOCIATION MEASURES

APPENDIX C: INDEX TERM LISTS

APPENDIX D: FINAL INDEX TERM LIST

APPENDIX E: FURTHER SEARCH EXAMPLES

LIST OF FIGURES

			Page
Fig.	1.1	The Model	6
Fig.	2.1	Format of a Logical Record	8
Fig.	2.2	Flowchart for the Automatic Indexing Algorithm.	16
Fig.	2.3	The Least-storage Scheme	17
Fig.	2.4	Comparing Storage Requirements for the	
		Conventional Storage Scheme and the Least-	
		storage Scheme for Ordinary Matrices	20
Fig.	2.5	Comparing Storage Requirements for the	
		Conventional Storage Scheme and the Least-	
		storage Scheme for Symmetric Matrices	23
Fig.	2.6	Record Format of Data File	24
Fig.	2.7	Record Format of Frequency File	25
Fig.	2.8	Record Format of Term-directory File	25
Fig.	2.9	Record Format of Term-pair File	26
Fig.	2.10	Record Format of Co-occurrence Frequency File .	26
Fig.	2.11	Record Format of Term-term Association File	27
Fig.	2.12	Record Format of Weighted Document-term File	2 7
Fig.	2.13	Record Format of Matching Mechanism (case I)	29
Fig.	2.14	Record Format of Matching Mechanism (case II)	3 0
Fig.	2.15	Record Format of Matching Mechanism (case III).	3 1
Fig.	2.16	Flowchart for the Subscript-matching Algorithm.	33
Fig.	2.17	Graph of Distribution of Terms in Documents	36
Fig.	2.18	Graph of Term Usage	37
Fig.	3.1	Search Request Input Format	

	(a) Type I: QUEstion Statement	42
	(b) Type II: Comment Statement	42
	(c) Type III: Logic Statement	42
	(d) Type IV: END Statement	42
Fig. 4.1	Graphs of T versus r.p	55
Fig. 4.2	Graphs of T' versus r.p	58
Fig. 4.3	Flowchart for the Optimum Iterative Feedback	
	Algorithm	64

LIST OF TABLES

		Page
Table 3.1	Interpretation of BNF Symbols	38
Table 4.1	Values of T for Given r and p	54
Table 4.2	Values of T' for Given r and p	57
Table 5.1	2-by-2 Contingency Table of	
	Retrieval and Relevance	70

to a constant

The second second second

CHAPTER I

INTRODUCTION

1.1 The Basic Problems

The design of an automatic information retrieval system includes basically the organization of data; the manipulation of information; the formulation of search logic; the definition of query language; the implementation of search strategy; the presentation of output; the evaluation of system performance; and, finally, the optimization of system effectiveness. Since information retrieval systems are user-oriented in nature, the prime objective of system design is to achieve the retrieval of all relevant, and only relevant, information in response to any user's query. An ideal system can thus be regarded as one that retrieves from a given data base all the relevant information while at the same time rejecting all information that is irrelevant to any given search request. However, such an ideal system never occurs in practice.

Indeed, there are numerous factors that govern retrieval performance. Human errors and system incompatibilities are the major sources of discrepancy. Human errors may be further subdivided into designer errors and user errors. Examples of designer errors are inaccurate representation of information, such as through spelling errors; poor search strategy; and ambiguities in formal query language definition. Common user errors arise from poor request formulation and poor concepts of

system capabilities. Examples of system incompatibilities are bugs in programming; poor decision-making such as in determining a threshold value at a certain stage of the search process; and inconsistency between search logic and search functions resulting in misinterpretation of query. Fortunately, these deficiencies are normally controllable by means of careful planning and management. In many systems, some form of optimization process may be employed in order to reduce the noise in the search output so as to ensure satisfactory responses to the search requests.

This leads to the remaining, and yet the most controversial problem, which is the judgment of relevance of the final search output. Obviously, relevance assessment is totally subjective to the individual's viewpoint. The user, for instance, is primarily in obtaining information that satisfies his particular need; and not in whether the retrieved information does, in fact, match his search request. The system designer, on the other hand, has to make sure that the retrieved information matches the logic of the query. Thus, relevance judgment in this context is rather unreliable. An alternative is to employ a few judges or groups of judges at one time. However, experimental results indicate that under different conditions even the same judge may give different relevance judgment to the same query and the same corresponding set of output. It is not until some specific guidelines are followed that a substantial gain of stability in relevance judgment is observed [1,2]. Consequently, it may be hypothesized that a set of well-defined relevance

judgment criteria is absolutely essential for any retrieval system whose performance depends heavily on some relevance measures. Thence, the optimization of search output can be carried out without ambiguity.

1.2 Optimization Methods

Most retrieval systems that optimize search output make use of iterative search techniques. A fairly straightforward semiautomatic approach is to present the user with the search output together with a set of machine-generated index terms derived on the basis of their association within the system. The user then makes a relevance judgment according to some predefined criteria. If the search output is not satisfactory, he may reformulate his initial query by selecting more significant terms from the index list and resubmit a modified query for another search run. It is expected that the revised query will lead to better search results because it reflects the system parameters as well as the user's own point of view. He may repeat the same precedures until a fully satisfactory output is obtained [3]. However, this method of search optimization is rather inefficient in that it is too time-consuming and costly. In some cases, the users may soon become very frustrated in the process of waiting and repeating the same routine over and over again.

A more sophisticated approach that has been widely experimented with is the use of real-time, man-machine interaction [4 to 6]. The basic principles behind this method

are exactly the same as in the one just described. The system makes a finite number of searches interspersed with user reformulation of search request with the aid of additional index terms displayed on the terminal. The user may find terminal use to be amusing for the first few times. After a while he will probably become bored at having to wait for response and make As a result of all the inconvenience he may sometimes lose track of his original information. Furthermore, as most computer systems give terminal jobs the highest priority for execution, the cost for on-line iterative searches is far more expensive than for other searches. Finally, the most serious drawback of on-line searches is that terminals are then often unnecessarily denied for use for other purposes. From these observations, it can be concluded that a more economical and effective system is to be preferred.

In a recent study by Heaps and Ko [7 to 9] a method known as the "automatic adaptive processing of questions" is examined. Four criteria are derived and tested separately. The users need only specify an estimate of relevance to their search requests. The system then modifies the requests automatically according to one of the four criteria and obtains an optimum set of weights for internal use. Search results show that the final output may contain some relevant information that the requesters neglected to mention in their queries. The non-iterative and completely automatic nature of this model has successfully eliminated the painstaking and time-consuming efforts normally required by the users of other systems. However, the system is not without

shortcomings. The main one is the requirement of more computer time because large matrices, and a lot of computations, are involved.

1.3 The Model

alternative approach can be represented by a simple model as shown in Fig. 1.1. The model may be called an automatic optimum iterative feedback document retrieval system because it makes use of automatic iterative feedback control to optimize search outputs. The method consists of three phases, namely, the pre-search phase, the search-phase, and the post-search phase. In the pre-search phase, the user formulates his search requests with the aid of a set of index terms and their significance values automatically abstracted from the data base according to some attribute measures based on statistical associations. He then submits his requests coded in conformity with the query language described in Backus Normal Form. In this manner, ambiguous requests can readily be detected and then rejected. As a result, the acceptable requests will be assumed to contain all relevant information needed for search purposes as well as search optimization purposes.

Fig. 1.1 The Model

The search phase is responsible for deciding the degree of relevance that a document has in relation to the requests. A document is classed as provisionally relevant only if its relevance value is greater than, or equal to, a pre-determined cutoff value. Members of the set of provisionally relevant documents, if not null, will be arranged in descending order of relevance. The post-search phase then examines this set to determine if some pre-defined relevance criteria are met. Whenever it is not met, control is passed back to the search phase after modifying the initial (or previously modified) search requests. Such examination and modification is repeated a finite number of times until the relevance criteria are met.

CHAPTER IT

AN AUTOMATIC INDEXING ALGORITHM

2.1 The Data Base

The data base used is the CSDATA tape prepared for experimental use for Course CS560 within the Department of Computing Science at the University of Alberta. It is made up of approximately 7,000 journal articles taken from various current computing science journals. Each journal name is represented by an ASTM (American Society for Testing and Materials) coden. A list of ASTM codens and journal names used in CSDATA is included in Appendix A.

To facilitate editing and updating of data, the tape is blocked into logical records of 80 bytes according to the format as shown in Fig. 2.1. All author names (excluding initials) and title words are truncated to five letters of each. The former is followed by a slash (/), and the latter by a blank. Words of less than five letters are left-justified and followed by the appropriate number of blanks. Hyphenated title words are coded as separate words, while all insignificant words such as prepositions are eliminated. In the case when more than one logical record is required, the letter 'C' is specified in column 80 to indicate continuation of data to columns 14-79 of the next logical record. The data in columns 1-13 are repeated for the purpose of article identification. Finally, the data base is sorted alphanumerically in ascending order on columns 1-

13, and with a secondary sort in descending order on column 80.

1 5	6 7	8 9	10 13	14	79 80
Coden	Y e a r	v o l u m	Starting Page Number	{Author Name}, {Title Word}	C o n t

Fig. 2.1 Format of a Logical Record

The following is a typical example of a logical record belong to the data base:

JACOA66130317KRISH/WOOD /TIME SHARE OPERA INTER SERVI TIMES EXPON

which is the code for an article appearing in Vol. 13, 1966, of the Journal of the Association for Computing Machinery, starting on page 317 written by B. Krishnamoorthi and R. C. Wood entitled "Time-Shared Operations with Both Interarrival and Service Times Exponential". It has been claimed by Heaps [10] that the effect of truncation actually outweighs most of the disadvantages. Most important, the use of truncation allows a save in storage and search time.

Perhaps it is worthwhile to note at this point that the effectiveness of a document retrieval system depends very much

on the selection of the data base. The suitability of CSDATA to fit the present system has been carefully studied. First of all, CSDATA is homogeneous in the sense that all its keywords are related to the field of computing science. Therefore, the occurrence of homonyms is very unlikely to happen. Since the system deals with semantic information, the exclusion of homonyms considerably simplifies the search process. Secondly, the terminologies of CSDATA are reasonably stable and not too specialized. Hence, the amount of keywords that may be ambiguously interpretated due to truncation is kept to a minimum. At the same time, no special treatment is required for any subset of keywords. Lastly, the collection is believed to be large enough to allow abstraction of significant data characteristics.

2.2 The Automatic Indexing Algorithm

As the system places greater emphasis on the output than the input, it is not necessary to develop a thesaurus. Instead, effort is devoted to generation of a comprehensive list of index terms. This is achieved by an automatic indexing algorithm based on the statistical association of terms within the document collection. It has been shown that terms which co-occur in document titles more frequently than the average are semantically, as well as statistically, related [11 to 17]. The set of index terms should satisfy the general goal of automatic indexing which is to provide a compact representation of the information content of the given data base.

statistical association techniques, it is necessary to make use of the co-occurrence frequency data, together with the total frequency data, in order to define some statistical association measures that reflect the degree of relatedness of the term with others. Before applying any association measure, it is desirable to exclude very high frequency terms (common terms) as well as very low frequency terms from the data base since such terms are semantically insignificant. Usually, a stop-list will serve this purpose.

Statistical association measures are generally expressed in terms of one or more of the following elements:

 f_{i} = the frequency of occurrence of term_i,

otherwise.

f = the frequency of co-occurrence of term and term, and
ij
n = the total number of documents in the data base.

Then, by definition,

$$f_{j} = \sum_{i=1}^{n} w_{i,j}, \qquad (2.1)$$

and,
$$\mathbf{f}_{ij} = \sum_{k=1}^{n} \mathbf{w}_{ik} \mathbf{w}_{kj}$$
 (2.2)

Suppose m is the total number of distinct terms in the data base, the matrix $W = (W_{i,j})_{n \times m}$ is often called the document-term matrix. Hence, f_i is equal to the j-th column sum of W, and $f_{i,j}$ is equal to the dot product of the transpose of the i-th column and the j-th column of W. Also, by definition, $f_{i,j} = f_{i,j}$ for all $i, j = 1, 2, \ldots, m$.

There are numerous statistical association measures that have been introduced into the literature of information storage and retrieval. A list of some of the most frequently used measures is given in Appendix B. Not surprisingly, each measure has been found to have its own merits and demerits. In fact, some measures are similar to one another in that they give equivalent rankings to the same set of terms [12]. Now, suppose that, according to some appropriate measure,

c_{ij} = the extent to which term_i is associated with term_j
in the data base.

The matrix $C = (C_{ij})_{mxm}$ is often called a term-term association matrix. In the experiments to follow, three of the most common association measures are tested. They are :

(1)
$$c_{ij} = f_{ij} / (f_i + f_j - f_{ij}).$$
 (2.3a)

(2)
$$c_{ij} = f_{ij} / f_{i} = f_{j}$$
 (2.3b)

(3)
$$c_{ij} = [f_{ij} - f_i f_j / n]^2 / [f_i - f_i^2 / n] [f_j - f_j^2 / n].$$
 (2.3c)

It is convenient to define $f_{ii} = f_i$, so that $c_{ii} = 1$ for each of the above measures. It is obvious that each association measure gives rise to a symmetric term-term association matrix such that $c_{ij} = c_{ji}$ for all i, $j = 1, 2, \ldots, m$.

Now, the extent to which a term is associated with a document may be considered as the extent to which the term is associated with the terms in the document title. As a result, a term may bear a certain degree of relatedness to a document even though it does not appear in the document title. This peculiar feature can be interpreted as arising from the fact that different terms can have similar contexts and hence may be used as substitutes for others. In practice, these relations are used to aid indexing of new documents [17]. Let

 g_{ij} = the extent to which term, is associated with document,

= weighing factor for term, in relation to document.

In accordance with the above view we may define

$$g_{ij} = \sum_{k=1}^{m} w_{ik} c_{kj} / \sqrt{\sum_{k=1}^{m} w_{ik}^{2}} \sum_{k=1}^{m} c_{kj}^{2}.$$
 (2.4)

Note that
$$\sum_{k=1}^{m} w_{ik} = \sum_{k=1}^{m} w_{ik}^{2}$$

Now, let $\mathbf{W} = (\underline{\mathbf{W}}_1, \underline{\mathbf{W}}_2, \dots, \underline{\mathbf{W}}_n)^T$ where $\underline{\mathbf{W}}_1$, $\mathbf{i} = 1, 2, \dots$, n represents the i-th row of W, and (.)^T denotes the transpose of (.). Similarly, let $\mathbf{C} = (\underline{\mathbf{C}}_1, \underline{\mathbf{C}}_2, \dots, \underline{\mathbf{C}}_m)$ where $\underline{\mathbf{C}}_j$, $j = 1, 2, \dots$, m represents the j-th column of C. Then, equation (2.4) can be written in a more compact form as:

$$g_{ij} = \underline{W}_{i} \cdot \underline{C}_{j} / \underline{W}_{i} | \underline{W}_{i} | \underline{U}_{j} | \underline{U}_{i} |$$

where ||.|| is the Euclidean norm. The matrix $G = (g_{ij})_{n \times m}$ is called the weighted document-term matrix. In matrix notation, equation (2.5) becomes:

$$G = \mu WC, \qquad (2.6)$$

where $\mu(i, j) = 1 / || W_{i} || || C_{j} || .$

Suppose $G = (g_1, g_2, \dots, g_m)$ where g_j , $j = 1, 2, \dots, m$ represents the j-th column of G. Then, according to the above assumption, the elements of G represent the extent to which a term is related to a document in the data base. The measure of the extent to which a term is related to all documents can be defined as:

$$y_{j} = 11 g_{j} 11.$$

$$= \sum_{i=1}^{n} g_{ij}^{2} 11.$$
(2.7)

= the significance value of term, in the data base.

In order to determine the set of index terms that carries significant information content, an arbitrary cut-off value K is imposed. The average of all y_j , $j=1,2,\ldots$, m seems to be a reasonable cut-off value. Hence, by definition,

$$K = (1/n) \sum_{j=1}^{p} y_{j}.$$
(2.8)

Consequently, every term t_j such that $y_j \ge K$ will be regarded as an index term. Suppose there are m' number of such terms which constitute the set of index terms I, then, in set notation,

I = {Set of index term}.
=
$$\{t_i : y_i \ge K \text{ for all } i = 1, 2, ..., m^*\}$$
. (2.9)

The automatic indexing algorithm is summarized in the following statements:

- 1. Create document-term matrix W.
- 2. Generate term-term association matrix C using an appropriate statistical association measure.
- 3. Calculate $G = \mu WC$ to form the weighted document-term matrix.
- 4. Calculate $y_j = ||g_j||$ for all $j = 1, 2, \dots, m$.
- 5. Calculate K and determine the set of index terms I.

2.3 Storage Problems

A subset of 5150 journal articles is taken from CSDATA for testing the automatic indexing algorithm. It can be seen from the flowchart of Fig. 2.2 that the procedures are rather straightforward. Nevertheless, a complication arises as very large matrices are involved in computations at various stages of the algorithm. There are altogether 1801 distinct terms in the test data. Thus, a document-term matrix alone will require approximately 37 million bytes of storage. Obviously, the conventional method of storage and matrix multiplication cannot be used. It is therefore necessary to develop an appropriate technique to cope with the problems created by such matrices.

Fig. 2.2 Flowchart for the Automatic Indexing Algorithm

The simplest approach is to store the elements of these matrices in the most economical storage format; then matrix multiplication can be carried out by applying a fairly simple subscript-matching algorithm [18]. Consider the matrices W, C, and G. Since they are very sparse matrices, only non-zero elements need be stored. In order that the original matrix can be restored efficiently, the row number, the number of non-zero elements in the row, the column number and the corresponding value for each non-zero element are stored. The storage format is shown in Fig. 2.3. It is known as the least-storage scheme.

Fig. 2.3 The Least-storage Scheme

The example in Fig. 2.3 records p_i number of non-zero elements in row i. For a matrix of dimension nxm, we have the following interpretation of symbols:

 $i = i + th row indicator, 1 \le i \le n$,

 p_i = number of non-zero elements in row i, $0 \le p \le m$,

 $j_{\alpha}=\alpha$ -th column indicator, which points to the column in the original matrix, $\alpha=1$, 2, ..., $p_{\underline{i}}$; $1\leq i\leq n$; $1\leq j_{\alpha}\leq m$,

 v_{ij} = value of the element of the i-th row and the j-th column

of the original matrix.

The number of icu-zero elements in a row, p is included to facilitate the retrieval of all the row elements. This can be achieved by the following FORTRAN statement:

PEAD [13, NF) I, PI, ((JPI(J),
$$\nabla$$
(I, J)), J=1, PI)

viere IC is the input device number, NF is the format number and FL is an integer variable. An example is given below to illustrate now the least-storage scheme actually works. Suppose a natrix A is given by:

$$\begin{bmatrix} - & 5 & 1 & 0 & 4 & 0 & 0 \\ 1 & 7 & 6 & 3 & 0 & 9 & 0 \\ 2 & 1 & 1 & 0 & 0 & 0 \\ 6 & 1 & 1 & 0 & 0 & 2 & 3 \\ 7 & 1 & 7 & 3 & 0 & 3 & 0 \end{bmatrix}$$

Tien, the entire matrix will be stored in a sequential file as:

1 3 1	4 2	5	5 4	2	(4)	2	7	3	6	6	9	3	1	4	1	. 44	3	1	8	6	2	7	3	,5	1	3	7

Times, to represent now 2, for example,

- 1 = 1-tn row = 2,
- p = zz in of non-zero elements in row 2 = 3,

 \mathbf{j}_1 = first non-zero element in row 2 occurs under column 2, $\mathbf{v}_{\mathbf{i}\mathbf{j}_1}$ = \mathbf{a}_{22} = 7, \mathbf{j}_2 = second non-zero element in row 2 occurs under column 3, $\mathbf{v}_{\mathbf{i}\mathbf{j}_2}$ = \mathbf{a}_{23} = 6,

j₃ = third (last) non-zero element in row 2 occurs under column 6,

 $v_{ij_3} = a_{26} = 9.$

It is fairly easy to show that the least-storage scheme requires much less storage than the conventional method which stores every single element of the matrix. Given an nxm sparse matrix, suppose

S = the total number of words required to store the given matrix by the conventional method, and

S = the total number of words required to store the given matrix by the least-storage scheme.

Assuming that at least one non-zero element appears in each row or column of the matrix, then, by definition,

$$S_{c} = nm, \qquad (2.10)$$

and, $S_{\ell} = 2n + 2 \sum_{i=1}^{n} p_{i}$

$$= 2n (1+h),$$
 (2.11)

where h = the average number of non-zero elements in each row of the matrix. It can be shown that for a given n, $S_c > S_l$ for every m > 2(1+h). Graphically, this is shown in Fig. 2.4.

Fig. 2.4 Comparing Storage Requirements for the Conventional Storage Scheme and the Least-storage Scheme for Ordinary Matrices

In CSDATA, the average number of terms per document is approximately six. Hence, to store the document-term matrix by using the least-storage scheme requires about 1/150 of the storage required by the conventional method. It may also be noted that for a sparse symmetric matrix such as the term-term association matrix, the storage requirement can further be reduced by storing only the diagonal and upper (or lower) triangular non-zero elements. When using the least-storage scheme, care must be taken to note that for certain rows (columns) the diagonal and the upper (or lower) triangular elements may all be equal to zero, then the record for this row (column) will not appear in the storage file. In this case, such

a row (column) is said to be null with respect to the storage file.

As an illustration, consider the sparse symmetric matrix A given by:

$$A = \begin{bmatrix} 3 & 0 & 0 & 0 & 5 & 0 & 0 \\ 0 & 7 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 6 & 8 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 6 & 0 & 9 \\ 0 & 4 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 & 5 \end{bmatrix}$$

Then, the entire matrix will be stored in a sequential file as:

1 2 1 3 5 5 2	2 2 7 6 4	3 2 3 6 4 8 5 2 5 6 7	9 6 1 6 1 7 1 7 5
---------------	-----------	-----------------------	-------------------

Note that the fourth row (column) of A is null w.r.t. The storage file.

Consider a general mxm sparse symmetric matrix. Let

- S_c = the total number of words required to store the diagonal and upper triangular elements of the given matrix by the conventional method.
- S = the total number of words required to store the diagonal and upper triangular elements of the given matrix by the least-storage scheme.

Then, by definition,

$$S_{c}^{*} = m(m+1)/2,$$
 (2.12)

and,
$$S_{\ell} = 2m^{\ell} + 2\sum_{i=1}^{m^{\ell}} p_{i}$$
,
 $i=1$

$$= 2m^{\ell} (1+h^{\ell}), \qquad (2.13)$$

where m' = number of rows with $p_1 > 0$, i = 1, 2, ..., m; $m' \le m$,

 h^{\bullet} = the average number of non-zero elements in each row of the matrix for which $p_i > 0$, $i = 1, 2, \dots, m$.

Therefore,

$$S_{\varrho} \leq 2m (1+h^{\varrho}).$$
 (2.14)

It can be seen that $S_{\rm c}$ > $S_{\rm l}$ for every m > 3+4h. Graphically, this is shown in Fig. 2.5.

Fig. 2.5 <u>Comparing Storage Requirements for the Conventional Storage Scheme and the Least-storage Scheme for Symmetric Matrices</u>

Thus the least-storage scheme allows a saving of a tremendous amount of storage space. In many instances, the matrix stored in this format can be loaded in core, thereby eliminating costly and time-consuming I/O access times that would be required if the matrix were stored on an auxiliary storage device. A very simple subscript-matching algorithm has been devised in conjunction with the least-storage scheme in order that matrix multiplications can be carried out effectively and efficiently.

2.4 Programming Considerations

In this section, some programming details for generating the set of index terms will be discussed briefly. Several intermediate files are essential for the entire process.

(i) Data File:

The data base is read sequentially. Each document is assigned a document number and each title term a position number according to its sequence of occurrence. For each term of each document, a record is written in the format as shown in Fig. 2.6.

Fig. 2.6 Record Format of Data File

The set of sequential records constitutes the data file. Note that this file preserves the original information of the data base.

(ii) Document-term File:

The document-term file is the data file arranged in alphabetical order according to terms. This file is also called the inverted-index file.

(iii) Frequency File:

The frequency file consists of the frequency f_1 for all distinct terms in the data base. This is easily created by counting the number of records that contain the term. A record of the frequency file is shown in Fig. 2.7.

Fig. 2.7 Record Format of Frequency File

(iv) Term-directory File:

The frequency file is sorted in descending order of frequency. High and low frequency terms are eliminated. Each term is then assigned a rank number according to its sequence in the sorted frequency file. In the case when several terms have the same frequency of occurrence, consecutive numbers are assigned arbitrarily. A record of the term-directory file is shown in Fig. 2.8.

Rank No.i	Term _i	Frequency;

Fig. 2.8 Record Format of Term-directory File

(v) Term-pair File:

From the data file, all possible term pairs are abstracted from each record to create the term-pair file. A record of the term-pair file is shown in Fig. 2.9.

Rank No. of Term _i	Rank No. of Termj	1erm _i	Termj
----------------------------------	----------------------	-------------------	-------

Fig. 2.9 Record Format of Term-pair File

(vi) Co-occurrence Frequency File:

The term-pair file is modified by interchanging the terms in any term pair whose second term has lower alphanumeric value than its first term. The file is then sorted alphabetically according to the term pairs. The frequency of co-occurrence of each term pair is then counted. A record of the co-occurrence frequency file is shown in Fig. 2.10.

Rank No. of Term	Rank No. of Termj	Term _i	Termj	f _{ij}
---------------------	----------------------	-------------------	-------	-----------------

Fig. 2.10 Record Format of Co-occurrence Frequency File

(vii) Term-term Association File:

Three different term-term association measures are used. Note that since C is symmetric, only diagonal and upper diagonal non-zero elements are stored. A record of the term-term association file is shown in Fig. 2.11 where $c_{ij}^{(k)}$, k = 1, 2, 3 refers to the equations of (2.3a), (2.3b), and (2.3c).

of Term j 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Rank No. of Term		Term.	Termj	c _{ij} (1)	c (2)	c (3)
---	--	---------------------	--	-------	-------	---------------------	-------	-------

Fig. 2.11 Record Format of Term-term Association File

(viii) Weighted Document-term File:

The document-term file and the term-term association file are used to form the weighted document-term file. Rank numbers are used to represent subscripts of the elements of the various matrices. A record of the weighted document-term file is shown in Fig. 2.12 where $g_{ij}^{(k)}$, k = 1, 2, 3 corresponds to the respective measures of $c_{ij}^{(k)}$, k = 1, 2, 3.

Rank No. of Termi		Termi	Termj	g _{ij} (1)	g _{ij} (2)	g _{ij} (3)
	J					

Fig. 2.12 Record Format of Weighted Document-term File

(ix) Index-term File:

For each weighted document-term file, the respective cutoff value according to (2.8) is calculated and an index-term file is determined.

The generation of all these files are quite simple except for the weighted document-term file. The document-term file and the term-term association file are transformed into the least-storage format so that the subscript-matching algorithm can be applied. The algorithm is discussed in general below.

Consider an mxn large general sparse matrix $B = (b_{ij})$ and an nxn large symmetric sparse matrix $C = (c_{ij})$. Let B and C be stored according to the least-storage algorithm as two separate files, respectively called File B and File C. It is required to calculate the product of B and C. Let $A = (a_{ij})$, $i = 1, 2, \ldots$, m and $j = 1, 2, \ldots$, n. Then $A = B \times C$ is given by

$$\mathbf{a}_{ij} = \sum_{k=1}^{n} \mathbf{b}_{ik} \mathbf{c}_{kj}, \qquad (2.15a)$$

$$\begin{array}{ccc}
 & n \\
 & \Sigma & b_{ik} c_{jk} \\
 & k=1
\end{array}$$
(2.15b)

Suppose the elements of the i-th row of B constitute a record in File B as denoted by the symbols (i, p_i , $\{(r_\alpha, b_{ir_\alpha}), \alpha = 1, 2, \dots, p_i\}$); and the elements of the j-th column of C constitute a record in File C as denoted by the symbols (j, q_j , $\{(s_\beta, c_{js_\beta}), \beta = 1, 2, \dots, q_j\}$). Then, a_{ij}

is the sum of the product of all $b_{ir_{\alpha}}$ and $c_{js_{\beta}}$ in which $r_{\alpha}=s_{\beta}$. There are three possible cases.

Case I:

If the j-th column of C is not null with respect to File C and $r_1 \ge s_1$, then for each match such that $r_t = s_v$ where t ϵ { α }, v ϵ { β }, calculate the product $b_{1r} c_{js}$. The sum of all these products yields a_{ij} . Diagrammatically, the matching mechanism is as shown in Fig. 2.13.

Fig. 2.13 Matching Mechanism (Case I)

Cas∈ II:

If the j-th column of C is not null with respect to File C and $r_1 < s_1$, then for each r_t , $t=1,2,\ldots,p_f$ where $p_f \le p_i$ and $r_t < s_1$, match the subscripts of the elements of the r_t -th column of C (ignore if null with respect to File C). For each

 $s_{v}=j$, v=1, 2, ..., $q_{r_{t}}$, calculate the product $b_{ir_{t}}c_{r_{t}}s_{v}$. Now, for all r_{δ} , $\delta=p_{f}+1$, $p_{f}+2$, ..., p_{i} ; $r_{\delta}\geq s_{v}$, $\gamma=1$, 2, ..., q_{j} . Hence, the matching and calculating processes are the same as Case I. The sum of all these products yields a_{ij} . Diagrammatically, the matching mechanism is as shown in Fig. 2.14.

Fig. 2.14 Matching Mechanism (Case II)

Case III:

If the j-th column of C is null with respect to File C, then for each r_t , $t=1,2,\ldots,p_g$, $p_g \leq j-1$, match the subscripts of the elements of each r_t -th column of C (ignore if null with respect to File C). For each $s_v = j$, $v=1,2,\ldots,q_r$, calculate the product $b_{ir_t}c_{r_t}s_v$. The sum of all these products yeilds a piagrammatically, the matching mechanism is as shown in Fig. 2.15.

Fig. 2.15 Matching Mechanism (Case III)

Finally, the subscript-matching algorithm is presented formally in the following manner:

STEP 1: For each i, i = 1, 2, ..., m, obtain from File B (i, p_i , {(r_{α} , $b_{ir_{\alpha}}$), α = 1, 2, ..., p_i }). At end, go to Step 7.

STEP 2: For each j, j = 1, 2, ..., n, obtain from File C (j, q_j , $\{(s_\beta, c_{js_\beta}), \beta = 1, 2, ..., q_j\}$). At end, go to Step 1.

STEP 3: If the j-th column of C is null with respect to File C, go to Step 6. If $r_1 < s_1$, go to Step 5. Otherwise, go to Step 4.

STEP 4: (Case I) For each $r_t = s_V$, $t = 1, 2, \dots, p_1$; $v = 1, 2, \dots, q_j$, calculate the product $b_{ir_t} c_{r_t} s_V$. Then

 $a_{ij} = \sum_{\substack{t \\ r_t = s_v}} b_{ir_t} c_{js_v}$ Go to Step 2.

STEP 5: (Case II) For each $r_t < s_1$, $t = 1, 2, \ldots, p_i$, $p_f \le p_i$, get the r_t -th column of C (ignore if null with respect to File C). For each $s_v = j$, $v = 1, 2, \ldots, q_{r_t}$, calculate the product $b_{ir_t}c_{r_t}s_v$. Then, for each $r_\delta \ge s_\gamma$, $\delta = p_f + 1$, $p_f + 2$, ..., p_i : $\gamma = 1, 2, \ldots, q_j$, calculate the product $k_{ir_\delta}c_{js_\gamma}$ for each $r_\delta = s_\gamma$. Then, $a_{ij} = \sum_{s_v = j} b_{ir_t}c_{r_t}s_v + \sum_{s_v = j} b_{ir_\delta}c_{js_\gamma}$. Go to Step 2. $s_v = j$

STEP 6: (Case III) For each r_t , $t = 1, 2, \ldots$, p_g , $p_g \le j-1$, get each r_t -th column of C (ignore if null with respect to File C). For each $s_v = j$, $v = 1, 2, \ldots$, q_{r_t} , calculate the product $b_{ir_t}c_{r_t}s_v$. Then, $a_{ij} = \sum_{s_v=j} b_{ir_t}c_{r_t}s_v$. Go to Step 2.

STEP 7: STOP.

The flowchart as shown in Fig. 2.16 describes the subscript-matching algorithm.

Fig. 2.16 Flowchart for the Subscript-matching Algorithm

2.5 The Index Term List

There are a total of 29,677 terms in the test data of 5,150 documents but there are a total of only 3,787 distinct terms. The distribution of terms in documents is shown in the graph of Fig. 2.17. It is found that the average number of terms per document is approximately 5.76. The distribution of the number of documents that contain a given term is shown in the graph of Fig. 2.18. The average number of documents per term is approximately 32.65. After eliminating non-significant terms by a stop-list and excluding terms of low frequency (frequency = 1), a total of 1,801 distinct terms are left to be processed. Similarly, there are 84,450 possible term pairs but only 11,038 pairs are used.

It is realized that since the matrices are very large, the calculation of $G = \mu WC$ will require a tremendous amount of computing time. Therefore, several random samples of different sample sizes are tested by calling the IBM Pseudo Random Number Generator subroutine CS003A which is written in FORTRAN IV. Each document has been assigned a document number, and uniformly distributed pseudo random numbers in the closed interval $\{0,5150\}$ are generated by the following calling sequence:

CALL CS003A (INIT)
DO 1 I=1,J
1 CALL CS003C (A,B,SIZE,N)

where INIT is a positive odd integer input value to initialize the algorithm,

J is the sample size,

[A, B] = [0, 5150] are real input parameters for the lower and upper limits of interval,

SIZE is the random number returned by CS003C,

N is the sequence number.

Three samples of size 50, 100 and 200 were tested. As the sample size increased, the sets of index terms resulting from the samples were found to converge to the same limiting set of index terms. The index term lists that result by using measures (2.3a), (2.3b) and (2.3c) respectively contain 815, 816 and 823 different index terms: all the index terms that appear in the first list also appear in the other two, and they share approximately the same rank in each case. It can thus be concluded that the set of index terms common to all lists is representative of the significant terms of the data base. The final set of index terms is then chosen to be the intersection of the sets resulted from the three different index term lists using a sample size of 200. The corresponding significance values are taken to be the mean of the corresponding three significance values. The set of significance values are further into the interval [0, 1], and will eventually normalized constitute a subset of the feedback control parameters. The three different sets of index terms and the final set of index together with the significance values are given in terms Appendix C and Appendix D, respectively.

Fig. 2.17 Graph of Distribution of Terms in Documents

CHAPTER III

DEFINITIONS OF SYSTEM FUNCTIONS

3.1 The Query Language

For any document retrieval system, it is essential to formulate a query language designed to convey exactly the user's information need to the search processor. The transformation process is based on some logic operations implicitly contained in the query language. In fact, what constitutes the core of the search logic and the query language is the set of logic operators used to formulate the search requests. Hence, it is extremely important that the syntax of the query language be well-defined. Conventionally, the Backus Normal Form (BNF) is used. Table 3.1 gives a brief explanation of the BNF symbols.

Symbol	Meaning
< >	variable name or expression is defined to be
{ } b a	repeat m number of times, where m $_{\epsilon}$ [a ,b], a, b being integers.
1	exclusive OR
<i>j</i> y	blank

Table 3.1 Interpretation of BNF Symbols


```
The following specifications in BNF represent the syntax of the
query language connected to the present system:
<search request> :: = <question statement>{<parameter>}*
         <end statement>
<question statement> :: = QUEb<remark><relevance estimate> |
         QUEb<relevance estimate> | <comment statement>
          <question statement>
<parameter> :: = <leading statement>{<subsequent statement>} 9
<leading statement> :: = <comment statement><leading statement> |
          <primary logic operator>b<search particulars><weight>
<search particulars> :: = <search type>b<<search item>
<search type> :: = <author> | <coden> | <title term> | <year>
<author> :: = A
\langle coden \rangle :: = C
<title term> :: = T
<vear> :: = Y
<search item> :: = item to be searched.
<weight> :: = {<decimal digit>} *
<decimal digit> :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<comment statement> :: = bbb<remark>
<remark> :: = a string of symbols.
<subsequent statement> :: = <secondary logic operator>b<search</pre>
          particulars><weight> / <comment statement>
          <subsequent statement>
<secondary logic operator> :: = DOR | NOR
<relevance estimate> :: = <recall estimate><precision estimate>
<recall estimate> :: = <weight> | <recall estimate>
cison estimate> :: = <weight> | cision estimate>
```


<end statement> :: = END | ENDb<<remark>

The search processor may be so implemented so that it is capable of perferming a search for either a single search request or a batch of search requests. This is enabled by the definition:

 :: = {}
$$_{1}^{n}$$
,

where n is the maximum number of search requests the system can handle. Since a sequential search technique is used, the advantage of batching is obviously a considerable reduction of search time. In order that no error in a search request may affect other members in the batch, those incorrect search requests are treated as if they do not belong to the batch. Upon output, appropriate error messages are issued.

In a batch of search requests, the QUEstion statement and the END statement of each request serve as delimiters. Each request allows up to eight parameters. Each parameter is led by a statement using one of the primary logic operators AND or NOT. It is then followed by not more than nine other statements in any combination of the secondary logic operators MOR and NOR.

Four search types can be used. They are author name, journal coden name, title term and year of publication, respectively denoted by A, C, T, and Y. Each search request item may be given an artitrary term weight, all up to four digits. In the absence of assignment of weight, the default value of one is automatically assigned. At the same time, the user may specify on each QUEstion statement his anticipated recall and precision values as defined in Section 5.1 which have a default of one

hundred percent. The term weights and the estimated recall and precision values will eventually constitute a subset of the feedback control parameters. It is noted that any number of comment statements may appear anywhere in a search request. They do not contribute to the search operations, but are merely designed for the users to make remarks.

A user may submit his batch of search requests either in the form of a deck of cards or via a terminal. In any case, the appropriate input format must be used for the different kinds of statements. The input formats can be generally classified into four types as shown in Fig. 3.1 (a) to (d).

,	1 3	4	5	65	68	69	72	73	80
	QUE	b 1 a n k	Comment		ecall stimate		cision imate		

(a) Type I: QUEstion Statement

1 3	4	80
***	Comment	

(b) Type II: Comment Statement

1 3	4	5	6	7		 69	72	 80
Logic	b 1 a n k	Search Type	b l a n k	Search	Item	Term Weight		

(c) Type III: Logic Statement

(d) Type IV: END Statement

Fig. 3.1 Search Request Input Format

90 85

Note that columns 73-80 of any input format type can be used freely by the user. Sometimes, sequence numbers or identifiers may prove to be useful. The content of these columns are ignored by the search processor.

The following is an example of a batch of two search requests.

ZOU STULTE REZUEST " (90 05
SUBMITTED BY USER ALO.	
AND A AEDALI SK	120
OR A LEVIALDI S	
TOPIC OF INTEREST IS PICTURE PROCESSING.	
AND T PICTURE	50
AND T PROCESSING	
NOT LIKELY TO APPEAR IN THE YEARS 68 TO 70.	
NOT Y 68	
NOT Y 69	
OR Y 70	
CODEN NAME OF JOURNAL IS CACMA OR PAT.	
AND C CACMA	30
OR C PAT	40
END	

SAMPLE REQUEST #2.

OUE SAMPLE REQUEST #1

OUE

REQUIRE ALL ARTICLES BY G. SALTON, APPEAR IN THE JOURNAL IFSRA IN 1971.

AND A SALTON G AND C IFSRA AND Y 71

ALSO REQUIRE A PAPER BY A. ROSENFELD, APPEAR IN THE JOURNAL JACOA IN 1966.

AND A RCSENFELD A

AND Y 66

END OF SAMPLE REQUEST #2.

END OF BATCH OF TWO SEARCH REQUESTS.

The first example requests a weighted search for any document written by ABDALI SK or LEVIADI S on the subject matter of PICTURE PROCESSING and appearing in the journal called the Communications of the Association for Computing Machinery (CACMA) or the journal called Pattern Recognition (PAT), not from 1968 to 1970. The second example specifically requests all the articles written by SALTON G and appearing in the journal called Information Storage and Retrieval, in 1971. It also requests a paper written by ROSENFELD A appearing in the Journal of the Association for Computing Machinery, 1966.

3.2 Relevance Criteria

As stated in the formal query language definition, the user may assign weights to the terms that comprise his queries. These weights are designed to reflect the user's own point of view about the term usage or subject matter. A weak point in this approach is that the user often does not have the slightest idea how much weight he needs to assign to a term and how relative the weights should be in order that the system will interpret his viewpoints correctly. In some instances, a term considered to be important to the user may be very insignificant to the system. To remedy this, the list of index terms and their significance values are presented to the user to assist his preliminary judgment of the importance of terms. However, relevance judgment of the set of retrieved documents depends also on some system parameters. The set of relevance judgment criteria that takes into account both the user's viewpoint and

the system parameters may be developed in general as follows.

Let $D = \{\underline{d}_1, \underline{d}_2, \dots, \underline{d}_n\}$ be a set of n documents that constitutes the data base. Suppose m is the number of distinct terms used to index all the documents. Then, these index terms can be regarded as defining an m-dimensional term space denoted by T^m . Each document \underline{d}_1 , $i = 1, 2, \ldots, n$ is then represented by a vector or an m-tuple $(\underline{d}_1(i), \underline{d}_2(i), \ldots, \underline{d}_m(i))$ in T^m in which each $\underline{d}_j(i)$, $\underline{j} = 1, 2, \ldots$, m is the significance value of the j-th term in the i-th document. Furthermore, the significance value of a term is bounded on [a, b] where b > a > 0 are real numbers.

Suppose a query is denoted by $g = (g_1, g_2, \dots, g_m)$ where each g_j , $j = 1, 2, \dots$, m is the weight attached to the j-th term corresponding to T^m and is bounded on [a, b]. These weights may be assigned manually or may be a result of automatic adjustment. Again, g may be regarded as a vector or m-tuple in T^m . It is then possible to define some criteria to determine whether any given document \underline{d}_i is relevant to g. This set of criteria is known as the relevance judgment criteria or simply the relevance criteria. These criteria are given in Definition 3.1.

Definition 3.1

Suppose ω , σ , ξ , δ are arbitrarily small, positive, real numbers, then a document \underline{d}_{i} is said to be relevant to a given query g if and only if one of the following conditions is

satisfied:

1.
$$\underline{\mathbf{d}}_{\dot{\mathbf{1}}} = \underline{\mathbf{q}}. \tag{3.1}$$

2.
$$|d_j(i) - q_j| \le \omega$$
, for all $j = 1, 2, ..., m$. (3.2)

3.
$$11 \underline{d}_1 - \underline{q} 11 \leq \sigma$$
. (3.3)

4.
$$\beta_{1}(1-\underline{d}_{1}\cdot\underline{q}/11\ \underline{d}_{1}\ 11\ 11\ \underline{q}\ 11) + \beta_{2}|11\ \underline{d}_{1}\ 11 - 11\ \underline{q}\ 11| \leq \xi$$
, where β_{1} , β_{2} $\epsilon[0, 1]$ are real constants. (3.4)

5. $1 - \tau(n_1/n_2) \leq \delta,$

where n_1 = number of common terms used to index \underline{d}_1 and \underline{g}_1 , n_2 = number of different terms used to index \underline{d}_1 and \underline{g}_1 , \underline{q}_2 = a real constant. (3.5)

Obviously, condition one is the most desirable relevance criterion of all since the document \underline{d}_i is exactly specified by the query \underline{q} and perfect matching occurs in that \underline{d}_j (i) = \underline{q}_j for all \underline{j} = 1, 2, ..., m. However, in general, this condition is too restrictive for practical considerations. Therefore, some tolerance values are introduced to allow more flexible judgment of relevance. Condition two implies that if each absolute value of the difference of the significance value of \underline{d}_i and the corresponding weight of \underline{q} is less than or equal to a given tolerance value ω , then the document \underline{d}_i is taken to be relevant to the query \underline{q} . In the case when all these absolute values are

equal to zero, condition one is maintained. Similarly, condition three promises that if the length of the vector difference of $\underline{\mathbf{d}}_{i}$ and $\underline{\mathbf{g}}$ is less than or equal to a given tolerance value σ , then the document $\underline{\mathbf{d}}_{i}$ will be regarded as relevant to the query $\underline{\mathbf{q}}$. If the value of $\|\cdot\|_{\underline{\mathbf{d}}_{i}} - \underline{\mathbf{g}}\|$ is zero, condition one is again maintained.

The inclusion of β_1 and β_2 in condition four allows varying stress of importance upon either the angle between \underline{d}_1 and \underline{q} or the absolute value of the difference in lengths of the two vectors. The usefulness of β_1 and β_2 will be seen in section 3.3. Lastly, condition five merely states that if the number of common terms used to index \underline{d}_1 and \underline{q} is to some degree close to the number of different terms used to index \underline{d}_1 and \underline{q} , then the document \underline{d}_1 can be regarded as relevant to the query \underline{q} . This criterion, as well as criteria two, three and four, may result in judging the document \underline{d}_1 relevant even though some of the terms used in \underline{d}_1 do not appear in the guery \underline{q} but are actually related in context to it.

3.3 A Relevance Measure

According to the set of relevance criteria of Definition 3.1, it is possible to have several documents judged as relevant to a given query. Hence, it is desirable to have some kind of

relevance measure which can distinguish the more relevant documents from the less relevant ones. Recall that (3.4) provides an option for emphasis on either the angle between \underline{d}_1 and \underline{q} or the absolute value of the difference in lengths of the two vectors. In one case, $\underline{\beta}_1$ and $\underline{\beta}_2$ can both be set equal to one-half to indicate that the two quantities are equally important. It is, of course, possible to have any combination of values for $\underline{\beta}_1$ and $\underline{\beta}_2$. The determination of $\underline{\beta}_1$ and $\underline{\beta}_2$ depends, for example, on the definition of \underline{d}_1 and \underline{g}_1 , the relationship between the two sets of weights, and so forth. For instance, under the above definition of \underline{d}_1 and \underline{q}_1 , one may set $(\underline{\beta}_1$, $\underline{\beta}_2)$ to be (0, 1) since if the coordinates of the two vectors are close together, then the angle between the two vectors must tend to be zero.

Now, we can simplify and generalize Definition 3.1 by redefining \underline{d}_i and \underline{g} in the following manner. Suppose \underline{d}_j (i) = \underline{y}_j for all \underline{i} = 1, 2, ..., \underline{n} and \underline{j} = 1, 2, ..., \underline{m} with the \underline{y}_j bounded on $[\underline{a}, \underline{b}]$, where \underline{b} > \underline{a} > 0 are real constants. Let \underline{g} = $(\underline{g}_1, \underline{q}_2, \ldots, \underline{q}_m)$ such that all \underline{q}_j , \underline{j} = 1, 2, ..., \underline{m} are bounded on $[\underline{a}^i, \underline{b}^i]$ where \underline{b}^i > \underline{a}^i > 0 are real constants and \underline{b}^i and \underline{a}^i are some multiple of \underline{b} and a respectively. Recall that the derivation of the significance values of terms is based on some statistical association measures which are in turn a function of frequencies of occurrence and co-occurrence of terms. Hence, the significance value of a term is a measure of its relative importance with others, and it is not a measure of absolute importance. As a result, the vectors \underline{d}_i and \underline{g} are

closely related if the angle between them is close to zero. Hence, we can assign (β_1 , β_2) to be (1,0). Consequently, we can define a simplified and generalized relevance criterion for the present system as given in Definition 3.2.

Definition 3.2

A document \underline{d}_1 is said to be relevant to a given query \underline{q} if and only if

$$T \leq R(\underline{d}_{\hat{1}}, \underline{q}) \leq 1, \tag{3.6}$$

where
$$R(\underline{d}_i, \underline{q}) = \underline{d}_i \cdot \underline{q} / || \underline{d}_i || || \underline{q} ||$$
, (3.7)
= relevance measure of \underline{d}_i to \underline{q} ,
and, $\underline{T} = a$ pre-determined cutoff value.

The correspondence between (3.6) and (3.4) is easy to derive. According to the above arguments, $(\beta_1, \beta_2) = (1, 0)$. Therefore, from (3.4), we have

$$1 - R(\underline{d}_{i}, \underline{q}) \leq \xi.$$

Then, $\Upsilon = 1 - \xi \le R(\underline{d}_i, \underline{q})$. Since $R(\underline{d}_i, \underline{q})$ is a measure of the cosine of the angle between \underline{d}_i and \underline{q} , it is naturally less than or equal to one. The derivation of (3.6) is thus completed.

There are a few interesting properties associated with the relevance measure $R(\underline{d}_i,\underline{q})$. They are as follows:

- (1) When $R(\underline{d}_i, \underline{q}) = 1$, condition one of Definition 3.1 is maintained.
- (2) $\theta = \arccos\{R(\underline{d}_i, \underline{q})\}$ is the angular distance between \underline{d}_i and \underline{q} , $|\theta| \leq \pi$.
- (3) The function $\rho(\underline{d}_{i}, \underline{q}) = 1 R(\underline{d}_{i}, \underline{q})$, in which $R(\underline{d}_{i}, \underline{q})$ satisfies the condition of (3.6), is a metric which satisfies the following axicms:
 - (i) $\rho(\underline{d}_{i}, \underline{q}) \geq 0$ and $\rho(\underline{d}_{i}, \underline{d}_{i}) = 0$.
 - (ii) $\rho(\underline{\mathbf{d}}_{\mathsf{j}}, \underline{\mathbf{g}}) = \rho(\underline{\mathbf{q}}, \underline{\mathbf{d}}_{\mathsf{j}}).$
 - (iii) $\rho(\underline{d}_{\underline{i}}, \underline{d}_{\underline{j}}) \leq \rho(\underline{d}_{\underline{i}}, \underline{q}) + \rho(\underline{q}, \underline{d}_{\underline{j}}).$
 - (iv) If $\underline{d}_{i} \neq \underline{q}$, then $\rho(\underline{d}_{i}, \underline{q}) > 0$.
- (4) When $R(\underline{d}_{i}, \underline{q}) = 0$, $\underline{d}_{i} \cdot \underline{q} = 0$ implies that the two vectors do not have a single term in common.

Having defined the relevance measure, it is then possible to define the degree of relevance of a document in relation to a given query. This is given in Definition 3.3.

Definition 3.3

Let $D_R = \{\underline{d}_i, i = 1, 2, \dots, k\}$ be the set of k documents judged relevant to a given query g by Definition 3.2. Suppose $R^* = \{r_i, i = 1, 2, \dots, k\}$ is the corresponding set of relevance values determined by (3.7). Then the degree of

relevance of any document $\underline{d}_i \in D_R$ to \underline{q} may be defined to be the relevance value \underline{r}_i . Furthermore, a document $\underline{d}_i \in D_R$ is said to be more relevant to \underline{q} than any other document $\underline{d}_j \in D_R$ to \underline{q} if and only if the relevance value of \underline{d}_i is greater than that of \underline{d}_j , i.e. $\underline{r}_i > \underline{r}_j$.

According to this definition, the set of provisionally relevant documents can be arranged in descending order of their relevance values thus showing the relative degree of relevance of the documents to the given query. This arrangement enables the system to decide which members of this set are indeed relevant. It also plays an important role in the query modification in the optimum itertaive feedback algorithm to follow.

CHAPTER IV

THE OPTIMUM ITERATIVE FEELBACK ALGORITHM

4.1 Optimum Feedback Parameters

Before discussing the development of the optimum feedback algorithm, it is necessary to give a general description of the parameters involved. There are two interrelated sets of parameters. They are respectively called the set of user parameters and the set of system parameters.

It is observed from the formal query language definition given in section 3.1 that the user may specify the kind of output he anticipates in terms of recall and precision. Suppose E(r) is the expected recall value and E(p) is the expected precision value both belong to the interval [0, 100]. Now, let

r = normalized expected recall value.

$$= E(r)/100,$$
 (4.1)

and, p = normalized expected precison value.

$$= E(p)/100.$$
 (4.2)

Suppose a set of $m' \le m$ number of title terms are used in the query. Then the set of term weights assigned by the user $Q = \{q_i, i = 1, 2, \ldots, m'\}$, together with r and p form the set of user parameters U which is denoted in set notation as

$$U = \{r, p, Q\}.$$
 (4.3)

Recall from Definition 3.2 that some document \underline{d}_{i} regarded as relevant to the query g if and only if $T \leq R(\underline{d}, \underline{q}) \leq 1$. Note that the system transforms the set of weights, Q, into a vector $g = (q_1, q_2, \dots, q_m)$ rearranging the subscripts according to the order of the index terms. For any q & Q, the value of zero is inserted. From the system's point of view, the value of T should be bounded that the validity of the relevance measure and the effectiveness of system performance are maintained. Since the closer the value of $R(\underline{d}, \underline{q})$ is to one, the higher is the degree of relevance of the retrieved document \underline{d}_i . Hence, it is natural to think that T should be assigned as close to one as possible. However, having T too close to one will most likely result in high precision but low recall. Conversely, having T too far away from one will most likely result in high recall and low precision. In order to compromise this, let us define a threshold value T in terms of r and p as

$$T = \max\{0.7, 1 - |\log r/(1+r^2)| + |\log p/(1+p^2)|\},$$
 (4.4)

where log is the common logarithm. Alternatively, (4.4) may be represented approximately by

$$1 - |\log r/(1+r^2)| - |\log p/(1+p^2)|, \text{ if } r.p \ge .4.$$

$$1 \sim \{$$
.7, if r.p < .4. (4.5a)

The effect of (4.4) results in bounding T in the interval [0.7, 1.0], which is a reasonable range to maintain effective selection of relevant documents. The values of T as given by (4.5a) for the values of r and p between 0.5 and 1.0 in steps of 0.1 are given in Table 4.1. The graphs of T versus r.p as defined by (4.5a) and (4.5b) are given in Fig. 4.1.

rTp	0.5	0.6	0.7	0.8	0.9	1.0
0.5	0.518	0.596	0.655	0.700	0.734	0.759
0.6	0.596	0.674	0.733	0.778	0.812	0.837
0.7	0.655	0.733	0.792	0.837	0.871	0.896
0.8	0.700	0.778	0.837	0.882	0.916	0.941
0.9	0.734	0.812	0.871	0.916	0.949	0.975
1.0	0.759	0.837	0.896	0.941	0.975	1.000

Table 4.1 Values of T for Given r and p

Fig. 4.1 Graphs of T vs 1xp

Consider the case when no document is judged relevant to a request by the relevance criterion of (3.6). Suppose there are some documents whose relevance values are short of the value of T but are, to a certain extent, close to it. The possible source of discrepancy may come from the set of term weights, Q, assigned by the user. Then, it is quite possible that by modifying the original search request, some of these documents or some other related documents in the data base may be judged as relevant to the request. It is therefore necessary to define another threshold value T' in which T > T', so that any provisionally relevant document whose relevance value falls into the interval [T', T] may be considered as capable of being improved. The expression for T' may be defined as:

$$T' = 2T - 1,$$
 (4.6a)

$$= \max\{0.4, 1 - 2|\log r/(1+r^2)| - 2|\log p/(1+p^2)|\}. \tag{4.6b}$$

As before, T' may be represented approximately by the following relations:

1 - 2|log r/(1+r²)| - 2|log p/(1+p²)|, if r.p
$$\ge$$
 .4. (4.7a)
T' \cong {
 .4, if r.p < .4. (4.7b)

The effect of (4.6) results in bounding T' in the interval [0.4, 1.0]. The values of T' as given by (4.7a) for the values of r and p between 0.5 and 1.0 in steps of 0.1 are given in Table 4.2. The graphs of T' versus r.p as defined by (4.7a) and

(4.7b) are given in Fig. 4.2.

r T p	0.5	0.6	0.7	0.8	0.9	1.0
0.5	0.037	0.192	0.310	0.400	0.468	0.518
0.6	0.192	0.348	0.466	0.556	0.623	0.674
0.7	0.310	0.466	0.584	0.674	0.742	0.792
0.8	0.400	0.556	0.674	0.764	0.831	0.882
0.9	0.468	0.623	0.742	0.831	0.899	0.950
1.0	0.518	0.674	0 .7 92	0.882	0.950	1.000

Table 4.2 Values of T' for Given r and p

It is worthwhile to note that the definitions of the threshold values as given by (4.4) and (4.6a) are obtained empirically. A system operator is therefore free to modify these values according to need. Alternatively, the two threshold values may appear in the form of parameters to be supplied by the users. In the present system we define the cutoff value T to be in the interval [T', T]. Then, according to Definition 3.2, a document is relevant to a given query if and only if its relevance value lies in the closed interval [T, 1].

Fig. 4.2 Graphs of T'vs rxp

Consequently, a query \underline{q} is considered to be capable of being improved if there exists at least one document \underline{d} such that

$$T^{\bullet} \leq R(\underline{d}_{1}, \underline{q}) < T.$$
 (4.8)

The set of significance values of index terms $Y = \{Y_j, j = 1, 2, ..., m\}$ obtained by the automatic indexing algorithm, together with T, T and T' form the set of system parameters S which is denoted in set notation as

$$S = \{ T, T, T^{\bullet}, Y \}.$$
 (4.9)

4.2 The Optimum Iterative Feedback Algorithm

In document retrieval systems, the optimization of retrieval output is to find a set of documents which satisfy some pre-determined criteria utilizing some known parameters. In the present system, the two sets of parameters U and S play an important role in the optimization process. Consider a given query $\mathbf{g} = (\mathbf{q}_1, \, \mathbf{q}_2, \, \dots, \, \mathbf{q}_m)$. Let $\mathbf{D}_R = \{\underline{\mathbf{d}}_1, \, \mathbf{i} = 1, \, 2, \, \dots, \, \mathbf{h}\}$ be the set of h documents which satisfy the relevance criterion $\mathbf{T} \leq \mathbf{R}(\underline{\mathbf{d}}_1, \, \mathbf{g}) \leq 1$. Similarly, let $\mathbf{D}_R^* = \{\underline{\mathbf{d}}_j, \, \mathbf{j} = 1, \, 2, \, \dots, \, \mathbf{h}^*\}$ be the set of h documents which satisfy the condition of (4.8).

Let ϕ represent a null set. Suppose D $_{\rm R}$ # ϕ , then the set of documents that satisfy condition (3.6) will be considered as

relevant hits, and presented to the user in descending order of their degree of relevance. Now, suppose D = ϕ and D ϕ ϕ , it is then possible to modify the original (or previously modified) search request and pass control back to the search phase to reexamine if indeed any of the documents ϵ D ϕ may now be judged as relevant hits by the relevance criterion of (3.6). Define the most satisfactory document ϕ ϕ D ϕ for improvement as the one such that

$$R(\underline{d}_{\ell}, \underline{q}) = \max_{\underline{d}_{\underline{i}} \in D_{\underline{R}}^{\ell}} \{R(\underline{d}_{\underline{i}}, \underline{q})\}. \tag{4.10}$$

A set of new symbols are introduced to facilitate the explanation of the algorithm. Let $g^{(k)}$ be the query in conjunction to the k-th iteration, for some $k=0,1,2,\ldots$, such that $g^{(0)}=g$ and $g^{(k)}=(g_1^{(k)},g_2^{(k)},\ldots,g_n^{(k)})$. Suppose $D_R^{(k)}=\{\underline{d}_1^{(k)},i=1,2,\ldots,h^{(k)}\}$ is the set of $h^{(k)}$ documents judged relevant to g by the relevance criterion $T\leq R(\underline{d}_1^{(k)},g^{(k)})\leq 1$ in conjunction to the k-th iteration. Similarly, suppose $D_R^{(k)}=\{\underline{d}_j^{(k)},j=1,2,\ldots,h^{(k)}\}$ is the set of $h^{(k)}$ documents judged relevant to g by the condition of (4.8) in conjunction to the k-th iteration. Also, $D_R^{(0)}=D_R$ and $D_R^{(0)}=D_R^{(k)}$. Suppose $D_R^{(k)}=\emptyset$ and $D_R^{(k)}\neq\emptyset$ for some k, then the (k+1)-st modified query $g^{(k+1)}$ can be defined as:

$$g^{(k+1)} = g^{(k)} + \alpha \Omega (k),$$
 (4.11)

in which,

$$\alpha_{k} = \underline{d}_{\ell}(k) \cdot \underline{q}(k) / || \underline{d}_{\ell}(k) ||_{2}, \qquad (4.12)$$

$$\Omega_{\underline{1}}^{\zeta} k^{\gamma} = \lambda_{\underline{1}}^{\zeta} k^{\gamma} d_{\underline{1}}^{\zeta} k^{\gamma}, \qquad (4.13)$$

$$\lambda(k) = \begin{cases} +1, & \text{if } q(k) < d(k), \\ -1, & \text{if } q(k) > d(k), \\ 0, & \text{if } q(k) = d(k), \end{cases}$$
(4.14a)
$$(4.14b)$$

$$(4.14c)$$

such that $d_{\hat{i}}^{(k)}$ is the i-th element of $\underline{d}_{\hat{k}}^{(k)}$, and $\underline{q}_{\hat{i}}^{(k)}$ is the i-th element of $\underline{q}_{\hat{i}}^{(k)}$, $\Omega(k) \in \underline{\Omega(k)}$, $\underline{i} = 1, 2, \ldots, m$; and, $\underline{d}_{\hat{k}}^{(k)} \in \underline{D}_{R}^{(k)}$ such that,

$$R(\underline{d}(k), \underline{g}(k)) = \max_{\underline{d}(k) \in D_{R}^{(k)}} \{R(\underline{d}(k), \underline{g}(k))\}. \tag{4.15}$$

If $D_R^{(k)} = \phi$ and $D_R^{(k)} = \phi$ for some k, then the query \underline{q} will be considered as having no hits. The sequence of queries $\{\underline{q}^{(0)}, \underline{q}^{(1)}, \ldots, \underline{q}^{(k)}, \ldots\}$ performs the necessary iterative control over the decision of an optimum set of retrieved documents. This sequence can be proved to be convergent and the proof is given in the next section. In summary, the optimum iterative feedback algorithm is given as follows:

STEP 1: Set k = 0. Receive $q^{(0)} = (q^{(0)}, q^{(0)}, \dots, q^{(0)})$ and scale each $q^{(0)}$, $i = 1, 2, \dots, m$ in the interval defined by $[\min_{j} y_{j}, \max_{j} y_{j}]$.

 $\underline{\mathtt{STEP}}$ 2: Determine T and T.

STEP 3: Retrieve $\underline{d}^{(k)}$, j = 1, 2, ..., n; at end, go to Step 5.

STEP 4: (i) If $T \le R(\underline{d}^{(k)}, \underline{q}^{(k)}) \le 1$, form $\underline{D}^{(k)}$. Go to Step 3. (ii) If $T' \le R(\underline{d}^{(k)}, \underline{q}^{(k)}) < T$, form $\underline{D}^{(k)}$. Go to Step 3.

(iii) Otherwise, go to Step 3.

STEP 5: (i) If $D_R^{(k)} \neq \phi$, go to Step 6. (ii) If $D_R^{(k)} = \phi$ and $D_R^{(k)} = \phi$, go to Step 7. (iii) Otherwise, determine $\underline{d}_{\ell}^{(k)}$ such that $\underline{d}_{\ell}^{(k)} \in D_R^{(k)}$ and $R(\underline{d}_{\ell}^{(k)}, \underline{q}_{\ell}^{(k)}) = \max_{\ell \in \mathcal{L}} \{R(\underline{d}_{\ell}^{(k)}, \underline{q}_{\ell}^{(k)})\}$, and set: $\underline{\underline{d}_{\ell}^{(k)}} \in D_R^{(k)}$

 $g^{(k+1)} = g^{(k)} + \alpha_k \underline{\Omega}^{(k)},$

where α_k is as defined by (4.12) and $\Omega^{(k)}$ is defined by (4.13); and $\lambda^{(k)}$ is defined by (4.14a), (4.14b) and (4.14c); $d^{(k)} \in \underline{d}^{(k)}$, $i=1,2,\ldots,m$. Then increment k by one and go to Step 3.

STEP 6: Arrange $R(\underline{d}_{1}^{(k)}, \underline{q}^{(k)})$, for all $\underline{d}_{1}^{(k)}$ such that $T \leq R(\underline{d}_{1}^{(k)}, \underline{q}^{(k)}) \leq 1$, into descending order of relevance value

and output documents as relevant hits. Then go to Step 8.

STEP 7: Display "no hits" message.

STEP 8: STOP.

Finally, the flowchart for the optimum iterative feedback algorithm is given in Fig. 4.3.

Fig. 4.3 Flowchart for the Optimum Iterative Feedback Algorithm

4.3 Convergence of the Algorithm

The above algorithm is convergent if there exists a document $\underline{d}^* \in D$ such that after n finite number of iterations, $\underline{T} \leq R(\underline{d}^*, \underline{q}^{(n)}) \leq 1$. In other words, if the set $\underline{D}_R^{(n)}$ becomes non-empty after n iterations, n must have a lower bound and an upper bound. The proof is trivial and is given as follows:

Proof

Suppose after n iterations, there exists a document $\underline{d}^* \in D$ such that $T \leq R(\underline{d}^*, \underline{q}^{(n)}) \leq 1$. Then, by definition,

$$R(\underline{d}^*, \underline{q}^{(n)}) = \underline{d}^*.\underline{q}^{(n)}/||\underline{d}^*||||\underline{q}^{(n)}||.$$
 (4.16)

We have, from (4.11),

$$\underline{\mathbf{d}}_{\ell}^{(k)}.\underline{\mathbf{g}}_{\ell}^{(k+1)} = \underline{\mathbf{d}}_{\ell}^{(k)}.\underline{\mathbf{g}}_{\ell}^{(k)} + \alpha_{k}(\underline{\mathbf{d}}_{\ell}^{(k)}.\underline{\Omega}_{\ell}^{(k)}). \tag{4.17}$$

From (4.13), it is obvious that,

$$\underline{\Omega}(k) \leq \underline{d}(k). \tag{4.18}$$

Then (4.17) becomes

$$\underline{\underline{d}}_{\ell}^{(k)}.\underline{\underline{q}}_{(k+1)} \geq \underline{\underline{d}}_{\ell}^{(k)}.\underline{\underline{q}}_{(k)} + \alpha \| \underline{\underline{\Omega}}_{\ell}^{(k)} \|_{2}^{12}. \tag{4.19}$$

Suppose $\omega = \min_{k} || \Omega^{(k)}||$. Then, after n iterations,

$$\underline{d}^{*} \cdot \underline{q}^{(n)} \geq n_{\alpha_{n}\omega^{2}}. \tag{4.20}$$

Similarly, we have

$$||g^{(k+1)}||^2 \le ||g^{(k)}||^{2+2} \alpha_k (\underline{d}^{(k)} \cdot \underline{g}^{(k)}) + \alpha_k^2 ||\underline{d}^{(k)}||^{2}.$$
 (4.21)

=
$$|| g(k) ||^2 + 3(\underline{d}(k), g(k)) || \underline{d}(k) || || 2.$$
 (4.22)

Suppose $\delta = \max_{k} || \underline{d}^{(k)}||$. Then, after n iterations,

$$|| \underline{q}(n) || \leq \sqrt{3n} \alpha_n \delta. \tag{4.23}$$

Finally, combining (4.20) and (4.23), we obtain,

$$3T2\sigma \le n \le 3\sigma, \tag{4.24}$$

where $\sigma = \delta^2/\omega^4$. Since δ and ω are finite, therefore n is bounded.

(Q.E.D.)

4.4 Generalization of the Algorithm

It is noted that the algorithm described above takes into account of document title terms only. In general, it is desirable to include search on other items such as author names, journal coden names, year of publication and so forth. Suppose there are t different search items other than document title terms, we may let the modified (or augmented) document vector dibe such that

$$\underline{\mathbf{d}}_{\mathbf{i}}^{\bullet} = (\underline{\mathbf{d}}_{\mathbf{i}} : \underline{\mathbf{a}}_{\mathbf{i}} : \underline{\mathbf{a}}_{\mathbf{i}} : \dots : \underline{\mathbf{a}}_{\mathbf{f}}), \tag{4.25}$$

and the modified (or augmented) query vector gt be such that

$$\underline{\mathbf{g}}^* = (\underline{\mathbf{g}} : \underline{\mathbf{b}}_1 : \underline{\mathbf{b}}_2 : \dots : \underline{\mathbf{b}}_{\mathsf{t}}), \tag{4.26}$$

where \underline{a}_h and \underline{b}_h , $h = 1, 2, \ldots$, t are the subvectors associated with each search item; \underline{d}_i and \underline{q} being the usual document vector and query vector respectively. Furthermore, each \underline{a}_h and \underline{b}_h has the same dimension so that \underline{d}_i^* and \underline{q}^* are also of equal dimensions.

Without further knowledge of how much weight should be assigned to the elements of the subvectors \underline{a}_h and \underline{b}_h , $h=1,2,\ldots,t$, we may assign a value to the j-th element of the h-th subvector denoted by $a_h^{(j)}$ such that

1, if
$$a(j) \in \underline{d}(0)$$
. (4.27a)
 $a(j) = \{$
h 0, otherwise. (4.27b)

Similarly, we may assign a value to the j-th element of the h-th subvector denoted by $b^{(j)}$ such that

$$b_h^{(j)} = \{ \begin{cases} 1, & \text{if } b_h^{(j)} \in g^{*}. \\ 0, & \text{otherwise.} \end{cases}$$
 (4.28a)

We may further assume that the values of a(j) and b(j), for all h and j, are invariate under query modifications. In other words, query modifications apply only to the subvector g in the new (or generalized) system, where all document vectors and query vectors are replaced by \underline{d}_{i} and \underline{q} respectively. The (k+1)-st modified query \underline{q} (k+1) is therefore symbolically represented by

$$\underline{\mathbf{g}}^{(k+1)} = (\underline{\mathbf{g}}^{(k)} + \alpha_{\underline{k}} \underline{\Omega}^{(k)} : \underline{\mathbf{b}}_{1} : \underline{\mathbf{b}}_{2} : \dots : \underline{\mathbf{b}}_{t}). \quad (4.29)$$

Consequently, the generalized system can be proved to be convergent in that

$$T2\sigma' \leq n \leq \sigma', \tag{4.30}$$

where
$$\sigma = (3\alpha_n^2 \delta^2 + \gamma)/(\alpha_n^{\omega^2 + \beta})^2$$
; $\gamma = \Sigma (\underline{a}_i \cdot \underline{b}_i)$; and $i = 1$

$$i = 1$$

CHAPTER V

GENERAL DISCUSSIONS

5.1 A System Evaluation Measure

conventionally, the standard evaluation measure of system effectiveness is defined in terms of recall and precision. Recall is the proportion of relevant documents actually retrieved; while precision is the proportion of retrieved documents actually relevant. Let

- N = the total number of documents in D,
- x = the number of documents retrieved and relevant,
- y = the number of documents retrieved and not relevant, and
- z = the number of documents not retrieved and relevant.

Then the number of documents not retrieved and not relevant is N-x-y-z. We may construct a two-by-two contingency table as shown in Table 5.1 to represent the above situation.

	Retrieved	Not-Retrieved	Total	
Relevant	X	Z	x+z	
Not-Relevant	У	N-x-y-z	N-x-z	
Total	x + y	N-x-y	N	

Table 5.1 2-by-2 Contingency Table of Retrieval and Relevance

Then, by definition,

$$Recall = x/(x+z), (5.1)$$

and, Precision =
$$x/(x+y)$$
. (5.2)

It can be observed that for systems in which retrieval is not based on relevance, the determination of recall and precision values according to (5.1) and (5.2) requires a tremendous amount of manual work. While this method of system evaluation may be all right for a small data base, it is absolutely impractical in normal situations where very large

collections of data are involved. Consequently, system evaluation in terms of recall and precision may be treated as a theoretical entity.

As mentioned earlier, the prime objective of a document retrieval system is to achieve the retrieval of all relevant, and only relevant, documents in response to any user's query. Hence, we would want to define a system evaluation measure in terms of relevance instead of recall and precision. Note that in either case, the meaning of relevance must be well-defined. In the present system, the meaning of relevance is given in Definition 3.2. Now, let

D = {Set of documents retrieved}, and
D = {Set of documents not retrieved}.
Then, by definition,

$$D = D \cdot U D \cdot \cdot . \tag{5.3}$$

where U represents the union of sets.

Suppose, as usual, \underline{g} represents a query vector, and $\underline{d}_{\underline{i}}$, \underline{i} = 1, 2, ..., N represents a document vector in D. It can be pointed out from Table 5.1 that there can be four cases:

- I. \underline{d} , ϵ D° and relevant;
- II. \underline{d} , ϵ D' and not relevant;
- III. $\underline{d}_{i} \in D^{\bullet \bullet}$ and relevant; and
- IV. $\underline{\underline{d}}_{i} \in D^{\bullet \bullet}$ and not relevant.

Obviously, we would like to have all \underline{d} retrieved in response to \underline{q} to satisfy only case I \underline{and} all \underline{d} not retrieved in response to \underline{q} to satisfy only case IV. In general, we may define a system evaluation measure E to be

$$E = \delta_{1} \sum_{\underline{d}_{1}} \sum_{\underline{d$$

Note that the value of z is an unknown. However, there are different techniques such as statistical sampling methods that may be applied to determine z. Since relevance values are actually part of the calculations of the search process in the present system, the evaluation of E is quite simple and straightforward. Hence, it can be concluded that the definition of L in terms of relevance is far more practical than in terms of recall and precision.

In any given document retrieval system, system performance is considered to be optimum if the value of a given system evaluation measure is a minimum or a maximum. For example, a system whose performance is based on recall and precision will

require either the recall or the precision be a maximum in order to achieve optimum system performance. According to the definition of E, to optimize the system performance of any given system would mean the minimization of E. As for the present iterative feedback system, it can be observed that the value of E tends to be a minimum and therefore the set of retrieved documents can be regarded as optimum in terms of system performance.

5.2 Analysis of Search Output

The optimum iterative feedback algorithm and the generalized optimum iterative feedback algorithm are tested on an IBM 360/67 under the Michigan Terminal System (MTS). The programming language used is FORTRAN IV level G. In the paragraphs to follow, two sample search requests are given to illustrate the performance of the algorithms. Searches are performed on the first four hundred documents of CSDATA.

(I) The Optimum Iterative Feedback Algorithm

Sample search request one is given as follows:

QU E	60 70
TEST OF THE OPTIMUM ITERATIVE FEEDBACK ALGORITH	H M
AND T DOCUMENT	800
OR T INFORMATION	500
OR T STORAGE	600
OR T RETRIEVAL	400

The threshold values are calculated to be (T', T) = (0.466, 0.733) and the request vector after normalization becomes (0.674, 0.421, 0.505, 0.337) which corresponds to the terms in brackets as (document, information, storage, retrieval). The following list of documents and their relevance values is a result of the search process:

Relevance				Docume	ent			
0.715	AMDOA6819007	1VENEZ/STORA	RETRI	EDITI	INFOR	DICTI		
0.677	AMDOA6819038	10CONN/RETRI	ANSWE	PROVI	DOCUM			
0.674	AMDOA6718024	9DRABH/DOCUM	THAIL					
0.674	AMDOA6617014	1SAVAG/USERS	VERSU	DOCUM				
0.657	AMDOA6819017.	3STARK/WHALE,	/CARSO/	THOMP/	'GAF	DOCUM	SIORA	
		RETRI SYSTE						
0.510	AMDOA6516000	SDALE /DALE /	CLUMP	EXPER	ASSOC	DOCUM	RETRI	
0.505	AMDOA6819036	3BAKER/NANCE,	/USE	SIMUL	STUDY	INFOR	STORA	
		RETRI SYSTE						
0.501	AM DO A6415015	OKENT /HEURI	INFOR	RETRI	GAME			
0.491	AMDOA6920031	10CONN/INDEP	AGREE	RESOL	DISAG	ANSWE	PROVI	
		DOCUM						
0.486	AM DO A 6 7 180 0 1	OLIBBE/USE	SECON	ORDER	DESCR	DOCUM	RETRI	
0.475	AM DO A 70 2 10 2 3	7KEITH/GENER	EVALU	INFOR	STORA	RETRI	SYSTE	

Since the highest relevance value of this set of documents is 0.715 which is greater than 0.466 but less than 0.733, query

modification will take place. The new request vector now becomes $(0.674,\ 0.882,\ 0.851,\ 0.761,\ 0.0,\ 0.0)$ which corresponds to the terms in brackets as (document, information, storage, retrieval, editing, dictionary). As the terms 'editing' and 'dictionary' are insignificant in CSDATA, their significance values are negligible. The value of α_1 is found to be 0.516. Consequently, the output of the second search is given as follows:

Relevanc Value	Doc	ument	
0.898	AM DOA 68 190 C 7 1 V E NEZ / STORA RETRI EDI	II INFOR	DICTI
0.643	AMDOA68190173STARK/WHALE/CARSO/THO	MP/GAF	DOCUM STORA
	RETRI SYSTE		
0.637	AMDOA681903810CONN/RETRI ANSWE PRO	VI DOCUM	
0.634	AMDOA68190363BAKER/NANCE/USE SIM	UL STUDY	INFOR STORA
	RETRI SYSTE		
0.631	AM DO A 65160163 HEILP/GOOD M/ANALO BET	WE INFOR	RETRI EDUCA
0.596	AMDOA70210237KEITH/GENER EVALU INF	OR STORA	RETRI SYSTE
0.554	AMDOA702100890TTEN/DEBON/METAS INF	OR	
0.549	AMDOA64150210KLEMF/METHO CCMFA ANA	LY INFOR	STORA RETRI
	SYSTE CRITI REVIE		
0.542	AMDOA69200072SWETS/EFFEC INFOR RET	RI METHO	
0.521	AMDOA68190090SMITH/LEVY /PHYSI ORI	EN METHO	CLINI INFOR
	RETRI		
0.517	AMDOA68190387POLLO/MEASU COMPA INF	FOR RETRI	SYSTE
0.513	AMDOA70210154WININ/DATA STRUC INF	OR RETRI	
0.509	AMDOA70210004HUMPH/INFOR PEACE		
0.483	AMDOA65140014VERHO/BELZE/USE MET	A LANGU	UNFOR RETRI

SYSTE

- 0.480 AMDOA68190375COTTR/FVALU COMPU SCIEN TECHN INFOR NUC E SAFET INFOR CENTE
- c.479 AMEUROS 160 to SDALE / DALE / CLUMP EXPTA ASSOC LOCUM RETER
- 0.478 AMDOA68190404TREU /BROWS RETRI GAME
- 0.478 AMDOA65160291GARVI/INFOR SURVE MODER LINGU
- 0.474 AMDOA681902000CONN/QUEST CONCE INFOR NEED

The highest value of relevance of this search is, which is greater than 7.733. Therefore, this set of focuments will be reparded as the final search output to the given search request using a cutoff value of 0.466. It is noted that the documents in this set are all related one way or another to the subject of document/information storage and retrieval. In practice, if the estimated recall and precision values are varied, the number of hits will also be changed. For instance, if a higher demand for recall and precision is imposed, fewer number of documents will likely be considered as relevant hits.

It is important to realize that the search process depends a great deal on the term weights assigned by the user. Suppose, in the above search request, the weights are changed to (892, 822, 669, 630) in correspondence with the terms in barckets as (document, information, storage, retrieval). These weights are obtained from the set of index terms and their significance values. By using the same estimated recall and precision values, it is found that no iterative search is required. The search output is given as follows:

Relevanc	e	Dogwa			
Value		Docume	ent		
0.910	AMDOA68190071VENEZ/STORA RETRI	EDITI	INFOR	DICTI	
0.742	AMDOA64150150KENT /HEURI INFOR	RETRI	GAME		
0.688	AM DO A 65 160 163 HEILP/GOODM/ANALO	BETWE	INFOR	RETRI	EDUCA
0.681	AMDOA681903810CONN/RETRI ANSWE	PROVI	DOCUM		
0.643	AMDOA68190363BAKER/NANCE/USE	SIMUL	STUDY	INFOR	STORA
	RETRI SYSTE				
0.631	AMDOA68190173STARK/WHALE/CARSO,	/THOMP,	/GAF	DOCUM	STORA
	RETRI SYSTE				
0.604	AMDOA70210237KEITH/GENER EVALU	INFOR	STORA	RETRI	SYSTE
0.591	AMDOA69200072SWETS/EFFEC INFOR	RETRI	МЕТНО		
0.586	AMDOA68190286MILLE/PSYCH INFOR				
0.586	AMDOA702100890TTEN/DEBON/METAS	INFOR			
0.568	AMDOA68190090SMITH/LEVY /PHYSI	ORIEN	METHO	CLINI	INFOR
	RETRI				
0.564	AMDOA68190387POLLO/MEASU COMPA	INFOR	RETRI	SYSTE	
0.559	AMDOA70210145WININ/DATA STRUC	INFOR	RETRI		
0.556	AMDOA64150210KLEMP/METHO COMPA	ANALY	INFOR	STORA	RETRI
	SYSTE CRITI REVIE				
0.540	AMDOA68190404TREU /BROWS RETRI	GAME			
0.538	AMDOA70210004HUMPH/INFOR PEACE				
0.527	AMDOA64150014VERHO/BELZE/USE	META	LANGU	INFOR	RETRI
	SYSTE				
0.512	AMDOA65160005DALE /DALE /CLUMP	EXPER	ASSOC	DOCUM	RETRI
0.509	AMDOA68190375COTTR/EVALU COMPR	SCIEN	TECHN	INFOR	NUCLE
	SAFET INFOR CENTE				
0.506	AMDOA65160291GARVI/INFOR SURVE	MODER	LINGU		

0.503	AMDOA67180235BUCHA/HUTTO	/ANALY	AUTOM	HANDL	TECHN	INFOR	
	NUCLE SAFET	INFOR					
0.502	AMDOA681902000CONN/QUEST	CONCE	INFOR	NEED			
0.492	AMDOA70210095BROMB/ECONO	INFOR					
0.488	AMDOA67180010LIBBE/USE	SECON	ORDER	DESCR	DOCUM	RETRI	
0.484	AM DOA 70210385COOPE/DERIV	DESIG	EQUAT	INFOR	RETRI	SYSTE	
0.479	AMDOA69200169FLANI/OPEN	ENDED	INFOR	RETRI	SYSTE	INCLU	
	SELEC DATA	COLLE					
0.470	AMDOA69200039LUNIN/ACADE	INFOR	CENTE				
0.468	AMDOA68190305THOMP/ORGAN	INFOR					

It is interesting to note that the previous set of search output is a subset of this set of search output which is heavily dependent on the system parameters and therefore may contain some information unexpected by the user. Therefore, in order that the user will receive the most satisfactory search output, he needs to make a good judgment of the use of term weights.

(II) The Generalized Optimum Iterative Feedback Algorithm

By modifying sample search request one we obtain sample search request two which is given as follows:

OUE

60 70

TEST OF THE GENERALIZED OPTIMUM ITERATIVE FEEDBACK ALGORITHM

AND A BAKER

OR C AMDOA

OR Y 68

OR T DOCUMENT

OR T INFORMATION 500

OR T STORAGE

OR T RETRIEVAL 400

END

The threshold values and the weights assigned to terms are unchanged. It is found that only one document has relevance value above the threshold value 0.466 and is given as follows:

Relevance

Document

Value

0.534 AMDOA68190363BAKER/NANCE/USE SIMUL STUDY INFOR STORA

RETRI SYSTE

As before, since the relevance value of the retrieved document lies in the interval [0.466, 0.733], the original query vector is modified. The new query vector includes the terms enclosed in brackets as (information, retrieval, storage, document, use, simulation, study, system) with the corresponding new set of weights as (0.534, 0.441, 0.590, 0.674, 0.0, 0.767, 0.598, 0.992). Since the term 'use' is insignificant in CSDATA,

its significance value is zero. The value of α_1 is found to be 0.126. The following list of documents and their relevance values are the result of the second search:

Relevance Value	9		Document			
0.739	AMDOA68190363BAKER/NANCE	/USE	SIMUL	STUDY	INFOR	STORA
	RETRI SYSTE					
0.503	AM DOA69200203BAKER/OPTIM	USER	SEARC	SEQUE	IMPLI	INFOR
	SYSTE OPERA					
0.483	AMDOA69200027LESK /WORD	WORD	ASSOC	DOCUM	RETRI	SYSTE
0.483	AMDOA70210330CAGAN/HIGHL	ASSCC	DOCUM	REIRI	SYSTE	
0.477	AMDOA67180216FLOOD/ANALY	QUEST	ASKED	MEDIC	REFER	RETRI
	SYSTE COMPA	QUEST	SYSTE	TERMI		
0.476	AM DO A 70 2 10 2 37 KEITH/GENER	EVALU	INFOR	STORA	RETRI	SYSTE
0.474	AMDOA68190120CARAS/COMPU	SIMUL	SMALL	INFOR	SYSTE	
0.469	AMDOA67180055BAKER/HAEFE	/RECKH,	/FILM	SYSTE	DUPLI	TERMA
	CARDS					

The highest relevance value of this search is 0.739 which is greater than the threshold value 0.733. Therefore, this set of documents is regarded as the final search output to the given sample search request.

Sample search request two is now modified so that the weights corresponding to (document, information, storage, retrieval) become (892, 822, 669, 630). As before, these weights are obtained from the set of index terms and their significance

values. Unlike the case as given in (I), two searches are required to bring forth an optimum set of search output. The first set of documents is given as follows:

Relevance			Docume	ent		
0.582	USE	SIMUL	STUDY	INFOR	STORA	
	RETRI SYSTE					
0.510	AM DO A 68190071VENEZ/STORA	RETRI	EDITI	INFOR	DICTI	

After query modification, the new request vector now includes the terms shown in brackets as (information, retrieval, storage, document, use, simulation, study, system) which corresponds to the weights given as (0.729, 0.672, 0.547, 0.414, 0.0, 0.767, 0.598, 0.992). The value of α_1 is found to be 0.161. Consequently, the final search output is:

Relevance Value			Docume	ent		
0.777	AMDOA68190363BAKER/NANCE,	/USE	SIMUL	STUDY	INFOR	STORA
	RETRI SYSTE					
0.521	AMDOA69200203BAKER/OPTIM	USER	SEARC	SEQUE	IMPLI	INFOR
	SYSTE OPERA					
0.519	AMDOA70210237KEITH/GENER	EVALU	INFOR	STORA	RETRI	SYSTE
0.517	AMDOA68190387POLLO/MEASU	CCMPA	INFOR	RETRI	SYSTE	
0.498	AMDOA67180216FLOOD/ANALY	QUEST	ASKED	MEDIC	REFER	RETRI
	SYSTE CCMPA	QUEST	SYSTE	TERMI		
0.494	AM DOA68190120CARAS/COMPU	SIMUI	SMALL	INFOR	SYSTE	

0.493 AMDOA64150210KLEMP/METHO COMPA ANALY INFOR STORA RETRI SYSTE CRITI REVIE AMDOA69200027LESK /WORD WORD ASSOC DOCUM RETRI SYSTE 0.481 0.481 AMDOA70210330CAGAN/HIGHL ASSOC DOCUM RETRI SYSTE 0.477 AMDOA66170026PARKE/USERS PLACE INFOR SYSTE 0.477 AMDOA70210385COOPE/DERIV DESIG EQUAT INFOR RETRI SYSTE 0.474 AMDOA69200169FLANI/OPEN ENDED INFOR RETRI SYSTE INCLU SELEC DATA COLLE 0.466 AMDOA70210274BURCH/ROLE FEDER GOVER INFOR SYSTE EDUCA

By comparing the two sets of search outputs corresponding to the two search requests that use different sets of term weights, one can easily draw the same conclusions as discussed in (I). Besides being very dependent on the term weights assigned by the user, the search process also depends to certain extent on the estimated recall and precision values supplied by the user. The major difference between the performance of the two algorithms may be summarized by stating that the more specific the search request, the more selective the search output will tend to be.

Note that the examples given above are one-parameter questions. In the case when more than one parameter is specified in one question, the parameters are treated as mutually exclusive; that is, each parameter is considered as one query vector. The final search output then consists of all the hits from the different query vectors. Further search examples are

included in Appendix E for reference.

5.3 Conclusions

It has been shown that both the optimum iterative feedback algorithm and the generalized optimum iterative feedback algorithm are capable of performing the retrieval of an optimum set of search output. One attraction of the algorithms is that no iterative search is necessary if the user's search request is already good enough. The only drawback is the additional search time required for iterative searches when a poor search request is encountered. However, in many cases, a maximum of two searches is probably sufficient. Therefore, the payoff of a poor search request in return for an optimum set of search output is after all not too discouraging.

It is worthwhile to note that the automatic indexing algorithm developed in this thesis may be further investigated for the possibility of an automatic generation of a thesaurus which plays an important role in modern information storage and retrieval. By converting the index term list and the significance values into a property vector, an algorithm can be developed for automatic recognition of synonyms. Lastly, the automatic indexing algorithm may prove to be very useful in the many applications of information handling systems.

BIBLIOGRAPHY

- Cuadra, C. A. and Katter, R. V.: Opening the Black Box of Relevance, Journal of Documentation, 1967, Vol. 23, No. 4.
- 2. Lesk, M. E. and Salton, G.: Relevance Assessments and Retrieval System Evaluation, Information Storage and Retrieval, December 1968, Vol.4, No.2.
- 3. Salton, G.: Automatic Information Organization and Retrieval, McGraw Hill, New York, 1968.
- 4. Curtice, R. M. and Rosenberg, V.: Optimizing Retrieval Results with Man-Machine Interaction, Centre for the Information Sciences, Lehigh University, Bethlehem, Pa., 1965.
- 5. Rocchio, J. J. Jr.: Documentation Retrieval Systems Cptimization and Evaluation, Doctoral Thesis, Harvard
 University; Report ISR-10 to National Science
 Foundation, Harvard Computation Laboratory, March,
 1966.
- 6. Salton, G.: Evaluation Problems in Interactive Information Retrieval, Information Storage and Retrieval, 1970, Vol.6, No.1, 29-44.
- 7. Heaps, H, S. and Ko, C. C.: Automatic Adaptive Processing of Questions in Documentation Retrieval, Proceedings of the American Society for Information Science, 1970, Vol.7, 319 321.
- 8. Ko, W. C. C.: Some Optimum Criteria for Information Retrieval, M.Sc. Thesis, University of Alberta, 1970.
- 9. Heaps, H. S.: Criteria for Optimum Effectiveness of Information Retrieval Systems, Information and Control, 1971, Vol.18, No.2, 156-167.
- 10. Heaps, H. S.: Boolean, Fractional, and Associative Searches on Truncated Title Words, Proceedings of the American Society for Information Science, Columbus,

- Ohio, October 1968, Vol.5, 179-184.
- 11. Cagan, C.: A Highly Associative Document Retrieval System, Journal of the American Society for Information Science, Sept-Oct, 1970.
- 12. Jones, P. E. and Curtice, R. M.: A Framework for Comparing Term Association Measures, American Documentation, July, 1967.
- 13. Lesk, M. E.: Word-word Associations in Document Retrieval Systems, American Documentation, January, 1969.
- 14. Rosenberg, V.: A Study of Statistical Measures for Predicting Terms Used to Index Documents, Journal of the American Society for Information Science, Jan-Feb, 1971.
- 15. Salton, G. and Lesk, M. E.: Computer Evaluation of Indexing and Text Processing, Journal of the Association for Computing Machinery, Jan. 1968, Vol.5, No.1, 8-36.
- 16. Stiles, H. E.: The Association Factor in Information Retrieval, Journal of the ACM,, January 1961, Vol. 8, No. 2.
- 17. Rosenberg, V.: A Statistical Technique Fcr Computer-Aided Indexing, Ph.D. Thesis, The University of Chicago, March, 1970.
- 18. Lo, A.: An Algorithm for Calculating the Product of a Large General Sparse Matrix and A Large Symmetric Sparse Matrix Using A Least Storage Scheme, University of Alberta Computing Review, 1972, 30-37.
- 19. Minsky, M. and Papert, S.: Perceptrons, The MIT Press, Massachusetts, 1969.
- 20. Nilsson, N.J.: Learning Machines, McGraw-Hill, New York, 1965.

APPENDIX A

CCMPUTING SCIENCE DATA BASE OF JOURNAL ARTICLES APPROXIMATELY 7,000 ARTICLES ON FILE, FEBRUARY 1972

AUTHOR NAMES AND TITLE WORDS TRUNCATED TO FIVE CHARACTERS AUTHOR NAMES ARE FOLLOWED BY / JOURNAL NAMES ARE REPRESENTED BY ASTM CODENS

CODEN Journal Name (and period covered)

JLAUA

PAT

```
Australian Computer Journal (1967-70). No ASTM coden.
ACJ
AMDOA
       American Documentation (1964-70).
       Assoc. of Special Libraries and Informn. Bureau, Aslib
ASLPA
       Proc (1964-70)
ATCAA Automatica (1964-69)
AURCA
      Automation and Remote Control (1968-69).
BIT
      Bit (1964-70). No ASTM coden.
CACMA Communications of the ACM (1964-70).
CBMRB Computers and Biomedical Research (1968-70).
CMPJA Computer Journal (1964-70).
COBUA Computer Bulletin (1965-70).
COMTB Computing (1967-69).
DATMN Datamation (1970). Non-ASTM coden used in error.
DIMNA Datamation (1967-69).
       Economics Comp. and Econ. Cybernatics Studies and
ECECA
       Research (1968-70).
       Engineering Cybernatics (1969-70).
ENCYA
       IBM Journal of Research and Development (1969-70).
IBMJA
       International Business Machines, Systems Journal
IBMSA
       (1962-63).
ICCBA
       ICC Bulletin (1964-67).
       IEEE Transactions on Information Theory (1969-70).
IETTA
IFCNA Information and Control (1964-70).
       Information Storage and Retrieval (1966-69).
IFSRA
       Informational Journal of Computer Mathematics (1968).
IJCMA
       International Journal of Control (1969-70).
IJCOA .
       Information Processing in Japan (1966-69).
INPJB
       IEFE Transactions on Computers (1969-70).
ITCOB
       Journal of the Association for Computing Machinery (1964
JACOA
       -70).
       Journal of Chemical Documentation (1961-69).
JCHDA
      Journal of Computer and Systems Sciences (1969).
JCSSB
       Journal of Documentation (1963, 1965-68).
JDOCA
JIMBA SIAM Journal, Series B, Numerical Analysis (1969-70).
      Journal of Library Automation (1968-70).
```

Pattern Recognition (1968-70). No ASTM coden.

PRITA Problems of Information Transmission (1965-67).

APPENDIX B

The following statistical association measures are commonly used. The individual source is included in square brackets to the right. The interpretation of symbols is as follows:

 c_{ij} = the extent to which term; is associated with term;

 f_{ij} = the frequency of co-occurrence of term, and term,

f; = the frequency of occurrence of term;

n = the total number of documents in the collection.

1.
$$c_{ij} = f_{ij}/(f_i + f_j - f_{ij})$$
. [12]

2.
$$c_{ij} = log \{ n (lnf_{ij} - f_{i}f_{j} | -n/2)^{2} / f_{i}f_{j} (n - f_{i}) (n - f_{j}) \}.$$
 [16]

3.
$$c_{ij} = f_{ij}/f_{i}^{1/2}f_{i}^{1/2}$$
. [12]

4.
$$c_{ij} = f_{ij} / \min(f_{i}, f_{j}) - k[1/2 - \min(f_{i}, f_{j}) / (f_{i} + f_{j})].$$
 [11]

5.
$$c_{ij} = [f_{ij} - f_i f_j / n]^2 / [f_i - f_i^2 / n] [f_j - f_j^2 / n].$$
 [14]

6.
$$c_{ij} = f_{ij} - f_i f_j / n$$
. [12]

7.
$$c_{ij} = (f_{ij} - f_{i}f_{j}/n)/(f_{i}f_{j}/n)^{1/2}$$
. [12]

8.
$$c_{ij} = f_{ij}/f_j^k$$
, $0 \le k \le 1$. [12]

9.
$$c_{ij} = (f_{ij} - f_i f_j/n) / [1 - f_{ij} / (f_i + f_j)] [f_i + f_j - f_i f_j/n].$$
 [14]

10.
$$c_{i,j} = \alpha f_{i,j} + f_{j}, \alpha > \max f_{j}$$
 [14]

APPENDIX C

INDEX TERM LISTS

1. <u>Index Term List Number One:</u>

bу	using		c ij	= f / (:	f +f -f ij	•		
	SYSTE	1.000	COMPU	0.994	PROCE	0.980	TECHN	0.941
	CONTR	0.939	GENER	0.931	TRANS	0.931	METHO	0.929
	PROBL	0.921	INFOR	0.904	DATA	0.904	INTER	0.899
	AUTOM	0.899	ANALY	0.897	OPTIM	0.891	FUNCT	0.890
	LINEA	0.889	LANGU	0.887	STRUC	0.872	PROGR	0.866
	ALGOR	0.861	TIME	0.859	CHEMI	0.858	INDEX	0.856
	MULTI	0.853	RETRI	0.848	APPLI	0.846	ERROR	0.841
	THEOR	0.839	MACHI	0.837	OPERA	0.833	CLASS	0.832
	CODES	0.821	SOLUT	0.816	APPRO	0.809	CORRE	0.802
	SEQUE	0.801	EVALU	0.801	EQUAT	0.795	DIGIT	0.795
	VARIA	0.793	CONST	0.789	MATRI	0.787	LITER	0.786
	INTEG	0.786	CONVE	0.784	SIMUL	0.784	DIFFE	0.781
	EXPER	0.777	DESIG	0.775	STABI	0.768	STATE	0.756
	NONLI	0.754	RANDO	0.749	AMERI	0.749	SIGNA	0.736
	RECOG	0.735	REAL	0.728	PROBA	0.727	NUMER	0.723
	LIBRA	0.722	LINE	0.722	NUMBE	0.720	FINIT	0.719
	STAND	0.715	SCIEN	0.715	ESTIM	0.713	STATI	0.707
	COMPA	0.706	COMMU	0.704	LOGIC	0.703	DYNAM	0.703
	MODEL	0.703	GRAPH	0.702	PROPO	0.700	FORTR	0.697
	ALGCL	0.695	ELEME	0.694	ORDER	0.693	ORGAN	0.693
	CHANN	0.690	SEARC	0.689	PROPE	0.686	DETER	0.686
	ITERA	0.686	CALCU	0.686	RELAT	0.685	MEMOR	0.684
	UNIVE	0.681	SAMPL	0.680	DISTR	0.680	NOISE	0.679
	FORMA	0.679	MICRO	0.678	FILTE	0.677	BOOLE	0.675
	CIRCU	0.674	EFFIC	0.674	REGUL	0.673	MINIM	0.673
	STORA	0.671	COORD	0.669	STOCH	0.668	FREE	0.665
	BINAR	0.664	NOTAT	0.664	ALGEB	0.663	INPUT	0.662
	SERVI	0.661	DISCR	0.659	NETWO	0.658	CODE	0.658
	FEEDB	0.655	RESEA	0.654	LARGE	0.648	SCHEM	0.647
	PARAM	0.644	CONDI	0.639	ABSTR	0.637	DEVEL	0.637
	DEFIN	0.636	SIMPL	0.636	MAGNE	0.636	COMPL	0.635
	SYNTA	0.634	SHARI	0.633	MEDIC	0.632	POLYN	0.632
	SUBJE	0.632	CERTA	0.632	DIMEN	0.631	FORMU	0.629
		0.628	DIREC		DOCUM	0.626	SYNTH	0.626
		0.623	CURRE	0.622	POINT	0.620	BOUND	0.620
	EFFEC	0.619	ORDIN	0.618	DISPL	0.617	COMPI	0.617
	SELEC	0.616	MANAG	0.615	CHARA	0.614	SINGL	0.614
	PRODU	0.613	INVES	0.611	IBM	0.611	TABLE	0.609
	LIMIT	0.608	SPECI	0.606	ARITH	0.605	INVER	0.605
	DECIS	0.603	BIT	0.602	CONTI	0.601	TAPE VALUE	0.597
	REDUC	0.596	SOURC	0.595	FORM	0.594		0.590
	DERIV	0.592	STUDY	0.591	PERFO	0.591	ADAPT	0.585
	SERIA	0.589	FREQU	0.587	PLATE	0.585	MODUL PATTE	0.583
	ORIEN	0.583	MECHA	0.583	OUTPU	0.583	PALLE	0.00

TESTI	0.583	EIGEN	0.582	PRINT	0.582	HYBRI	0.582
BUSIN	0.582	PHASE	0.581	ENGIN	0.577	PRACT	0.577
SWITC	0.576	ECONO	0.572	BASED	0.572		
SOCIA	0.570	ACTIV	0.568			FILE	0.571
DESCR	0.566			PRESE	0.567	SQUAR	0.567
		ASYMP	0.564	SPECT	0.564	ACCES	0.563
NORMA	0.563	ABSOL	0.562	COLLE	0.561	PATEN	0.561
REPRE	0.560	MATHE	0.560	COMPO	0.560	TEST	0.560
FACTO	0.558	SERIE	0.556	THRES	0.554	CENTR	0.552
CATAL	0.551	SMALL	0.551	BLOCK	0.549	ASPEC	0.548
NON	0.546	SPACE	0.546	CONCE	0.546	IMPRO	0.545
USER	0.545	TYPE	0.544	ANALO			
IDENT	0.542	EQUIV	0.542		0.543	AMPLI	0.542
MANIP	0.541			SOFTW	0.542	CRITE	0.542
		INDUS	0.540	REPOR	0.538	GRAMM	0.538
SYMPO	0.538	SYNCH	0.538	CYCLI	0.538	NOTE	0.537
CENTE	0.531	PAPER	0.530	GROUP	0.530	CONFE	0.528
SYMME	0.528	RAPID	0.528	RESUL	0.527	SEPAR	0.526
SURVE	0.525	STUDI	0.525	RUNGE	0.524	NATIO	0.523
PHYSI	0.523	FIELD	0.522	DEVIC	0.521	ALPHA	0.520
BASE	0.519	QUADR	0.518	DEPAR	0.518	FILM	0.518
HARMO	0.518	PARSE	0.518	RECTA	0.518		
PREFI	0.515					BRIEF	0.515
		REDUN	0.515	FACT	0.515	ARGUM	0.515
COLLA	0.515	FREDH	0.515	INSUR	0.515	DEVIA	0.515
PL1	0.515	KONVE	0.515	CARD	0.514	LAW	0.514
CARDS	0.514	PARAL	0.514	COMME	0.514	VIEW	0.512
REFER	0.512	TERMI	0.512	DETEC	0.510	PUNCH	0.509
MONIT	0.506	CITAT	0.505	ADMIN	0.505	TEACH	0.504
EDUCA	0.501	SET	0.501	PURPO	0.500	AWARE	0.497
REMOT	0.496	CNLIN	0.496	QUANT	0.495	MARKE	0.494
PLANN	0.489	PERIO	0.488	PACKA	0.487	COMPR	0.485
LOCAL	0.485		0.482		0.482		0.480
		RESPO		EXTRA		SECON	
ASSIG	0.480	QUEUE	0.480	CODIN	0.478	HAND	0.478
PUBLI	0.478	PIECE	0.478	ASSOC	0.477	SETS	0.477
SENSI	0.476	REGIS	0.474	CONSI	0.473	RECUR	0.472
SOLVI	0.470	ROOTS	0.469	HEURI	0.469	GAMES	0.469
NATUR	0.468	LOOP	0.466	SPEED	0.466	GAUSS	0.465
PULSE	0.464	ASLIB	0.464	HANDL	0.463	PICTU	0.461
PRINC	0.460	PERMU	0.458	COEFF	0.456	FOURI	0.456
HIGH	0.456	CAPAC	0.454	DIVIS	0.454	QUASI	0.454
SELF	0.453	DIAGN	0.453	SUCCE	0.451	ALTER	0.451
			0.451	TERM	0.451	PROFE	0.450
FACIL	0.451	IMPLE			0.447		0.444
ALLOC	0.450	RELEV	0.448	INVAR		STEP	
CASE	0.444	FAST	0.443	POSIT	0.442	UTILI	0.442
INDEP	0.442	LINKS	0.442	DECOD	0.439	INTRO	0.439
QUALI	0.438	MARKO	0.436	PRECI	0.436	STRAT	0.434
FLOWC	0.434	CHART	0.433	TOWAR	0.433	RELAY	0.432
ADDIT	0.432	FUNDA	0.432	REQUI	0.431	EXPAN	0.431
REALI	0.430	ASA	0.430	BOOKS	0.428	EQUIP	0.428
	0.430	PREDI	0.428	DUAL	0.426	JOURN	0.426
WRITI			0.423	DEPEN	0.418	SHIFT	0.418
360	0.422	NETS			0.415	CHEBY	0.414
RESOU	0.417	DECOM	0.417	PREPA			
REGIO	0.413	CONDU	0.412	WEIGH	0.411	TITLE	0.411
PSEUD	0.411	REVIE	0.410	VECTO	0.408	ACCOU	0.408
DELAY	0.407	RIGHT	0.405	RANK	0.405	PASS	0.405
DOMAI	0.405	FINDI	0.405	CURRI	0.404	LIST	0.404
COBOL	0.403	BIBLI	0.401	ARTIC	0.401	SCHOO	0.399
20202	04 100						

EXTEN	0.399	MOTIO	0.398	COST	0.398	PERSO	0.398
DIAGR	0.398	LEVEL	0.398	PLANE	0.396	INQUI	0.396
DISCO	0.395	MAJOR	0.395	SORT	0.395	SUM	0.395
WATER	0.395	JAPAN	0.395	ACADE			
NONPA	0.395	KDF9	0.395		0.395	SERVO	0.395
ANNOU	0.395	EXECU		KEYWO	0.395	TUTOR	0.395
PAGED	0.395		0.395	BOARD	0.395	DISTO	0.395
		FIXED	0.395	GROWT	0.395	SCHED	0.395
EXTRE	0.394	PHRAS	0.394	SYMBO	0.393	SUBRE	0.392
SCALE	0.392	STIBI	0.388	REMAR	0.387	MEETI	0.387
ORTHO	0.386	CHOIC	0.385	ELIMI	0.385	PRIOR	0.384
LENGT	0.383	SUBMI	0.378	BELL	0.378	BACKW	0.378
PROBS	0.378	COURT	0.378	BORDE	0.378	POLLU	0.378
CEP	0.378	RECEP	0.378	PROMO	0.378	MONOI	0.378
PUFFI	0.378	CALL	0.378	JORDA	0.378	DREDG	0.378
RIGID	0.378	POLES	0.378	ALLIE	0.378	CULTU	0.378
CHOMS	0.378	POLIT	0.378	ERRAT	0.378	BIVAR	0.378
UNSTE	0.378	PREFE	0.378	BOND	0.378		
STEPP	0.378	LOCUS	0.378			POSTA	0.378
				AERON	0.378	TANK	0.378
BIRTH	0.378	RCA	0.378	SHOCK	0.378	DECOC	0.378
SIMON	0.378	PROLE	0.378	JACKS	0.378	CDS	0.378
APPRA	0.378	RAY	0.378	TRI	0.378	RACHF	0.378
REPLA	0.378	MARK	0.378	HOBBS	0.378	DEMON	0.378
HOT		RC 400	0.378	STEPS	0.378	DISCI	0.378
GAIN	0.378	PREVI	0.378	HELIC	0.378	DOMIN	0.378
FIRM	0.378	PRICI	0.378	SESSI	0.378	REGEL	0.378
TROUB	0.378	DORN	0.378	POSTI	0.378	SLT	0.378
LATEN	0.378	PEACE	0.378	RENAM	0.378	ECMA	0.378
UNSUP	0.378	PAGE	0.378	PLAN	0.378	CANAD	0.378
ORANI	0.378	ONTAR	0.378	SYNAP	0.378	PEEKA	0.378
TRIAN	0.378	ELLIO	0.378	MAGNU	0.378	SIZED	0.378
SUBOP	0.378	PARIT	0.378	TELEC	0.378	ENDED	0.378
SYLLA	0.378	PROCR	0.378	NONCO	0.378	BANDS	0.378
	0.378		0.378	PARTY	0.378	CORNE	0.378
SIZE		TRACK				SHEFF	0.378
MARKU	0.378	ACOUT	0.378	STAR	0.378		
OCCUR	0.378	ACMCP	0.378	EXCLU	0.378	MEANI	0.378
ORBIT	0.378	AGENT	0.378	BIIS	0.378	ROMAN	
PACKE	0.378	PANTA	0.378	OHIO	0.378	PROGA	0.378
MERGI	0.378	ANTIC	0.378	CANCE	0.378	ORDNU	0.378
SCHOL	0.378	FIT	0.378	TRIAL	0.378	I/O	0.378
AMEND	0.378	FCC	0.378	VIROL	0.378	OPTIO	0.378
MERCU	0.378	PANEL	0.378	ATTEM	0.378	DIGES	0.378
CHICA	0.378	SHOP	0.378	TREAT	0.378	LOCI	0.378
COLCU	0.378	CONFR	0.378	LOAD	0.378	CARTO	0.378
APPRE	0.378	UNSTA	0.378	LONDO	0.378	LOSSE	0.378
BROMB	0.378	LANCZ	0.378	APL	0.378	SHELL	0.378
SPATI	0.378	MARKS	0.378	BASSA	0.378	JUMP	0.378
	0.378	MASTE	0.378	VOYSE	0.378	BAIRS	0.378
BINDI			0.378	WILSO	0.378	ROSEN	0.378
VISIO	0.378	MANUS	0.378	2314	0.378	KOSHE	0.378
DUPLE	0.378	SIDES			0.378	UNCON	0.378
INCOR	0.378	GIER	0.378	LABS	0.378	BROWN	0.378
ATTEN	0.378	LANGE	0.378	IOVNU			0.378
DISAG	0.378	AUTON	0.378	AUDIO	0.378	LAYOU	
TOWER	0.378	HOUSI	0.378	ANCMA	0.378	FIDEL	0.378
RESIS	0.378	HILL	0.378	ROBIN	0.378	KNUTH	0.378
SARDI	0.378	LENSE	0.378	DUALI	0.378	SEMIG	0.378

ROYAL	0.378	STOPP	0.378	SIDE	0.378	GROSS	0.378
FERRI	0.378	NORMS	0.378	SUBSE	0.378	BANKI	0.378
TANDE	0.378	NETHE	0.378	SLCW	0.378	NET	0.378
STAT1	0.378	META	0.378	CLENS	0.378	NONSI	0.378
HAMMI	0.378	BALL	0.378	NONDE	0.378	NONRE	0.378
ICL	0.378	REWRI	0.378	MILNE	0.378	FLUX	0.378
MODAL	0.378	BEREC	0.378	MORPH	0.378	MODES	0.378
IMPRE	0.378	BLIND	0.378	METAB	0.378	MATEM	0.378
DECAD	0.378	GE	0.378	MERGE	0.378		0.378
IONIN	0.378	INTEN	0.378	INTEL	0.378	MERSE	0.378
JENKI	0.378	EXPOR	0.378	IRRED	0.378	PREVE	
INDIR	0.378	GIRO	0.378	KEIO	0.378	IONES	0.378
LAGS	0.378	ENZYM	0.378	ISSUE		POLYP	0.378
HARD	0.378	ELEKT	0.378		0.378	JONES	0.378
HIRSC	0.378	DAVIE	0.378	INACC	0.378	RAPHS	0.378
HADAM	0.378			ILL	0.378	ICT	0.378
	0.378	RETAI	0.378	HIGHE	0.378	REED	0.378
REGIM		HOLLA	0.378	HOHER	0.378	EASTM	0.378
LONGE	0.378	GIVEN	0.378	PAREN	0.378	ESSO	0.378
FREED	0.378	FIXAT	0.378	RISK	0.378	HASH	0.378
PERT	0.378	METNO	0.378	HIDDE	0.378	HABIT	0.378
HETER	0.378	DIODE	0.378	PENTO	0.378	FRANK	0.378
DOUGL	0.378	ISOMC	0.378	FLOWS	0.378	FRANC	0.378
DEEP	0.378	IMAGE	0.378	FLCWR	0.378	GAAS	0.378
MINER	0.378	OVERD	0.378	GLYCO	0.378	FLORE	0.378
DRUGS	0.378	BIGEL	0.378	EINSC	0.378	LOADI	0.378
EMPHA	0.378	ESTAB	0.378	EDELM	0.378	EXCHA	0.378
BETA	0.378	FABRI	0.378	MAPS	0.378	FLEXI	0.378
FEASI	0.378	ESSAY	0.378	DEFLE	0.378	AREA	0.378
DECID	0.378	KNIGH	0.378	DISSI	0.378	PRACN	0.378
DRIFT	0.378	PURSU	0.378	DATAN	0.378	LAYMA	0.378
DATAF	0.378	LIBER	0.378	DEFER	0.378	FIGUR	0.378
CLARI	0.378	MUSIC	0.378	MOORE	0.378	DEPOS	0.378
SIGNE	0.378	NICHO	0.378	NORM	0.378	DONNE	0.378
CBAC	0.378	MOD	0.378	MAEHL	0.378	DATAM	0.378
LAGRA	0.378	CREDI	0.378	MICHI	0.378	COSMI	0.378
SINGU	0.377	MODIF	0.377	FLCW	0.375	GUIDA	0.374
WORKI	0.374	IMPUL	0.370	CAVIT	0.367	RESER	0.367
RACHE	0.367	STORE	0.367	MOVIN	0.367	ASYMM	0.367
KORZH	0.367	GRAHA	0.367	IMPED	0.367	DEMOD	0.367
EVIDE	0.367	TAU	0.367	BRAIN	0.367	CONFO	0.367
CHURC	0.367	BENDI	0.367	BLEND	0.367	AUTO	0.367
AREAS	0.367	UNFOR	0.367	TOLER	0.367	TELEM	0.367
SIMSC	0.367	WESCO	0.367	VERIE	0.367	VIEWP	0.367
STAGE	0.367	SUBCO	0.367	RETRC	0.367	SORTE	0.367
SCALI	0.367	ROTAT	0.367	DISSE	0.367	THESA	0.367
TREE	0.367	FURTH	0.361	ENCOD	0.361	LAPLA	0.360
POSSI	0.356	ATLAS	0.356	TIMET	0.355	EXPRE	0.355
KUTTA	0.355	SENSE	0.351	EVENT	0.345	NUCLE	0.345
REGAR	0.343	POLE	0.343	PEOPL	0.343	DECEN	0.343
FILLI	0.343	UNIFO	0.342	INSTR	0.339		
4 4 11 11	04040	011.22.0					

2. Index Term List Number Two:

by using		С	ii = f	j/f 1/2 f 1/2.			
SYSTE	1.000						
METHO	0.906	COMPU	0.988	PROCE	0.950	CONTR	0.908
PROBL	0.888	TECHN INFOR	0.903	GENER	0.897	TRANS	0.894
ANALY	0.864	INTER	0.880	MOTUA	0.870	DATA	0.868
LINEA	0.852	LANGU	0.857	OPTIM	0.856	FUNCT	0.854
TIME	0.826	CHEMI	0.846	PROGR	0.838	STRUC	0.835
MULTI	0.814	RETRI	0.824	ALGOR	0.823	INDEX	0.815
ERROR	0.802	MACHI	0.798	APPLI	0.806	THEOR	0.805
CODES	0.786	SOLUT	0.785	OPERA	0.795	CLASS	0.790
EVALU	0.766	EQUAT	0.765	APPRO SEQUE	0.772	CORRE	0.769
MATRI	0.756	VARIA	0.754	SIMUL	0.765	DIGIT	0.756
CONST	0.749	DIFFE	0.748	INTEG	0.748	LITER	0.750
EXPER	0.742	DESIG	0.733	STABI	0.732	NONLI	0.725
AMERI	0.724	STATE	0.721	RANDO	0.719	SIGNA	0.710
RECOG	0.703	PROBA	0.698	LINE	0.696	REAL	0.695
FINIT	0.693	LIBRA	0.691	NUMBE	0.691	STAND	0.689
SCIEN	0.687	NUMER	0.687	STATI	0.681	COMMU	0.680
LOGIC	0.679	PROPO	0.679	DYNAM	0.678	ESTIM	0.678
FORTR	0.677	COMPA	0.677	ELEME	0.672	ALGOL	0.670
GRAPH	0.669	ORDER	0.667	SEARC	0.665	MODEL	0.664
ITERA	0.663	ORGAN	0.663	DETER	0.662	MEMOR	0.662
CHANN	0.661	CALCU	0.661	PROPE	0.660	RELAT	0.658
NOISE	0.658	FILTE	0.657	SAMPL	0.657	DISTR	0.655
UNIVE	0.652	FORMA	0.652	REGUL	0.652	BOOLE	0.652
MICRO	0.651	MINIM	0.650	STORA	0.650	CIRCU	0.649
EFFIC	0.647	FREE	0.644	COCRD	0.644	NOTAT	0.643
STOCH	0.643	SERVI	0.639	ALGEB	0.639	INPUT	0.638
DISCR	0.636	BINAR	0.631	RESEA	0.630	NETWO	0.627
SCHEM	0.626	CODE	0.625	FEEDB	0.625	LARGE	0.624
CONDI	0.621	PARAM	0.619	DEFIN	0.618	MAGNE	0.616
DEVEL	0.615	CERTA	0.615	COMPL	0.614	DIMEN	0.614
SYNTA	0.613	POLYN	0.613	SIMPL	0.613	SUBJE	0.611
MEDIC	0.611	ABSTR	0.611	CONTE	0.609	SHARI	0.605
DOCUM	0.604	FLECT	0.603	EFFEC	0.602	POINT	0.602
DIREC	0.601	FORMU	0.601	CURRE	0.600	ORDIN	0.599
BOUND	0.596	DISPL	0.596	SELEC	0.595	PRODU	0.594
COMPI	0.594	SYNTH	0.593	SINGL	0.593	INVES	0.589
BIT	0.591	TABLE	0.591	CHARA	0.590	MANAG ARITH	0.583
LIMIT	0.587	IBM	0.586	INVER	0.580	FORM	0.579
SPECI	0.581	REDUC	0.581	CONTI	0.576	STUDY	0.576
PERFO	0.577	VALUE	0.576	TAPE DECIS	0.573	BUSIN	0.571
SOURC	0.575	DERIV	0.573	ADAPT	0.569	SERIA	0.569
PRINT	0.571	HYBRI	0.567	OUTPU	0.565	ORIEN	0.563
FREQU	0.568	MODUL EIGEN	0.562	PATTE	0.562	PLATE	0.562
MECHA TESTI	0.560	PRACT	0.560	ENGIN	0.559	PHASE	0.556
SQUAR	0.554	FILE	0.554	SWITC	0.553	SPECT	0.552
ACTIV	0.551	SOCIA	0.549	TEST	0.549	ECONO	0.548
VCITA	0.001	DOCTU	0 0 0 1 7				

BASED	0.547	DESCR	0.546	NOFMA	0.546	PRESE	0.546
PATEN	0.545	COMPO	0.544	ASYMP	0.543	ABSOL	0.542
FACTO	0.542	COLLE	0.542	SMALL	0.541	REPRE	0.541
ACCES	0.541	THRES	0.537	SERIE	0.536		
IMPRO	0.535	CENTR	0.533	NON		MATHE	0.536
TYPE	0.530	USER	0.530		0.532	SPACE	0.530
EQUIV	0.529	IDENT		AMPLI	0.529	CATAL	0.529
CYCLI			0.529	ASPEC	0.529	CONCE	0.528
	0.527	BLOCK	0.527	ANALO	0.527	SYMPO	0.524
MANIP	0.524	SOFTW	0.521	CRITE	0.521	INDUS	0.521
PAPER	0.519	REPOR	0.519	NOTE	0.519	SYNCH	0.518
SEPAR	0.516	GRAMM	0.516	RAPID	0.511	CENTE	0.511
CONFE	0.510	STUDI	0.509	PHYSI	0.509	GROUP	0.508
SYMME	0.508	RESUL	0.507	RUNGE	0.506	DEVIC	0.506
SURVE	0.505	ALPHA	0.503	BASE	0.502	NATIO	0.500
COMME	0.499	FIELD	0.499	QUADR	0.498	LAW	0.498
CARD	0.498	CARDS	0.498	ARGUM	0.497	PREFI	0.497
FACT	0.497	FREDH	0.497	INSUR	0.497		
REDUN	0.497	PL1	0.497			DEVIA	0.497
COLLA	0.497			BRIEF	0.497	KONVE	0.497
		DEPAR	0.497	FILM	0.497	HARMO	0.497
PARSE	0.497	RECTA	0.497	REFER	0.495	TERMI	0.495
VIEW	0.495	PARAL	0.493	MONIT	0.491	DETEC	0.490
TEACH	0.489	PUNCH	0.489	EDUCA	0.488	ADMIN	0.487
CITAT	0.487	PURPO	0.484	SET	0.482	QUANT	0.482
AWARE	0.481	REMOT	0.479	MARKE	0.477	PERIO	0.475
ONLIN	0.474	PLANN	0.473	COMPR	0.472	LOCAL	0.472
PACKA	0.471	PIECE	0.467	REGIS	0.465	EXTRA	0.465
RESPO	0.465	ASSIG	0.464	QUEUE	0.464	ASSOC	0.464
SENSI	0.463	SECON	0.462	HAND	0.459	SETS	0.459
PUBLI	0.458	CODIN	0.458	LOOP	0.458	GAMES	0.457
ROOIS	0.456	HEURI	0.456	RECUR	0.455	CONSI	0.455
HANDL	0.454	SOLVI	0.453	PRINC	0.453	SPEED	0.452
NATUR	0.450	ASLIB	0.449	GAUSS	0.448	PULSE	0.447
SELF	0.445	CAPAC	0.445	FACIL	0.444	PICTU	0.443
PERMU	0.441	HIGH	0.440	DIAGN	0.439	TERM	0.438
DIVIS	0.438	QUASI	0.438	FOURI	0.438	COEFF	0.438
IMPLE	0.434	ALTER	0.434	SUCCE	0.434	ALLOC	0.433
RELEV	0.433	PROFE	0.432	INVAR	0.430	STEP	0.429
FAST	0.428	CASE	0.426	POSIT	0.425	INTRO	0.425
INDEP	0.425	UTILI	0.424	LINKS	0.424	QUALI	0.423
MARKO	0.422	STRAT	0.422	PRECI	0.421	DECOD	0.421
PREDI	0.418	FLOWC	0.417	RELAY	0.417	ADDIT	0.417
FUNDA	0.417	TOWAR	0.417	CHART	0.417	ASA	0.416
REQUI	0.416	EXPAN	0.416	REALI	0.412	BOOKS	0.412
EQUIP	0.412	WRITI	0.412	JOURN	0.411	DUAL	0.408
			0.406	360	0.406	DEPEN	0.405
NETS	0.407	RESOU		CHEBY	0.400	REGIO	0.399
SHIFT	0.405	DECOM	0.403		0.396	VECTO	0.396
PREPA	0.399	WEIGH	0.399	CONDU		PSEUD	0.392
TITLE	0.396	DELAY	0.393	REVIE	0.392		0.392
ACCOU	0.390	RANK	0.389	RIGHT	0.389	PASS	
DOMAI	0.389	CURRI	0.389	FINDI	0.389	LIST	0.388
ARTIC	0.388	LEVEL	0.386	DIAGR	0.386	BIBLI	0.386
COBOL	0.386	EXTEN	0.385	SCHOO	0.385	MOTIO	0.381
COST	0.381	PERSO	0.381	PLANE	0.381	INQUI	0.381
SCHED	0.380	SCALE	0.380	MAJOR	0.380	DISCO	0.380
SORT	0.380	SUM	0.380	WATER	0.380	JAPAN	0.380
DOLL	3.200	5013					

ACADE	0.380	SERVO	0.380	NONPA	0.380	KDF9	0.380
KEYWO	0.380	TUTOR	0.380	ANNOU	0.380	EXECU	
BOARD	0.380	DISTO	0.380	PAGED	0.380		0.380
GROWT	0.380	PHRAS	0.380			FIXED	0.380
SYMBO	0.376	STIBI	0.371	EXTRE	0.380	SUBRE	0.378
CHOIC	0.370			REMAR	0.371	MEETI	0.371
		FLIMI	0.370	PRIOR	0.370	ORTHO	0.369
LENGI	0.368	MODIF	0.365	SUBMI	0.361	BELL	0.361
BACKW	0.361	FROBS	0.361	COURI	0.361	BORDE	0.361
POLLU	0.361	CEP	0.361	RECEP	0.361	PROMO	0.361
MONOI	0.361	PUFFT	0.361	CALL	0.361	JORDA	0.361
DREDG	0.361	RIGID	0.361	POLES	0.361	ALLIE	0.361
CULTU	0.361	CHOMS	0.361	POLIT	0.361	ERRAT	0.361
BIVAR	0.361	UNSTE	0.361	PREFE	0.361	BOND	0.361
POSTA	0.361	STEPP	0.361	LOCUS	0.361	AERON	0.361
TANK	0.361	BIRTH	0.361	RCA	0.361	SHOCK	0.361
DECOC	0.361	SIMON	0.361	PROLE	0.361	JACKS	0.361
CDS	0.361	APPRA	0.361	RAY	0.361	TRI	0.361
RACHF	0.361	REPLA	0.361	MARK	0.361		
DEMON	0.361	HOT	0.361			HOBBS	0.361
DISCI	0.361	GAIN		RC400	0.361	STEPS	0.361
			0.361	PREVI	0.361	HELIC	0.361
DOMIN	0.361	FIRM		PRICI	0.361	SESSI	0.361
REGEL	0.361	TROUB	0.361	DORN	0.361	POSTI	0.361
SLT	0.361	LATEN	0.361	PEACE	0.361	RENAM	0.361
ECMA	0.361	UNSUP	0.361	PAGE	0.361	PLAN	0.361
CANAD	0.361	ORANI	0.361	ONTAR	0.361	SYNAP	0.361
PEEKA	0.361	TRIAN	0.361	ELLIC	0.361	MAGNU	0.361
SIZED	0.361	SUBOP	0.361	PARIT	0.361	TELEC	0.361
ENDED	0.361	SYLLA	0.361	PROCR	0.361	NONCO	0.361
BANDS	0.361	SIZE	0.361	TRACK	0.361	PARTY	0.361
CORNE	0.361	MARKU	0.361	ACOUT	0.361	STAR	0.361
SHEFF	0.361	OCCUR	0.361	ACMCP	0.361	EXCLU	0.361
MEANI	0.361	ORBIT	0.361	AGENT	0.361	BITS	0.361
ROMAN	0.361	PACKE	0.361	PANTA	0.361	OHIO	0.361
PROGA	0.361	MERGI	0.361	ANTIC	0.361	CANCE	0.361
ORDNU	0.361	SCHOL	0.361	FIT	0.361	TRIAL	0.361
I/0	0.361	AMEND	0.361	FCC	0.361	VIROL	0.361
OPTIO	0.361	MERCU	0.361	PANEL	0.361	ATTEM	0.361
DIGES	0.361	CHICA	0.361	SHOP	0.361	TREAT	0.361
LOCI	0.361	COLOU	0.361	CONFR	0.361	LOAD	0.361
CARTO	0.361	APPRE	0.361	UNSTA	0.361	LONDO	0.361
LOSSE	0.361	BROMB	0.361	LANCZ	0.361	APL	0.361
SHELL	0.361	SPATI	0.361	MARKS	0.361	BASSA	0.361
JUMP	0.361	BINDI	0.361	MASTE	0.361	VOYSE	0.361
BAIRS	0.361	VISIO	0.361	MANUS	0.361	WILSO	0.361
ROSEN	0.361	DUPLE	0.361	SIDES	0.361	2314	0.361
KOSEN	0.361	INCOR	0.361	GIER	0.361	LABS	0.361
	0.361	ATTEN	0.361	LANGE	0.361	UNVOI	0.361
UNCON		DISAG	0.361	AUTON	0.361	AUDIO	0.361
BROWN	0.361		0.361	HOUSI	0.361	ANOMA	0.361
LAYOU	0.361	TOWER	0.361	HILL	0.361	ROBIN	0.361
FIDEL	0.361	RESIS		LENSE	0.361	DUALI	0.361
KNUTH	0.361	SARDI	0.361	STOPP	0.361	SIDE	0,361
SEMIG	0.361	ROYAL	0.361	NOFMS	0.361		0.361
GROSS	0.361	FERRI	0.361		0.361		0.361
BANKI	0.361	TANDE	0.361	NETHE META	0.361	CLENS	0.361
NET	0.361	STAT1	0.361	HEIA	0.501	CHIMO	0.001

NONSI 0.361 HAMMI 0.361 BALL 0.361 NONDE	0.361
NONRE 0.361 ICL 0.361 REWRI 0.361 MILNE	0.361
FLUX 0.361 MODAL 0.361 BEREC 0.361 MORPH	0.361
MODES 0.361 IMPRE 0.361 BLIND 0.361 METAB	0.361
MATEM 0.361 DECAD 0.361 GE 0.361 MERGE	0.361
MERSE 0.361 IONIN 0.361 INTEL	0.361
PREVE 0.361 JENKI 0.361 EXPOR 0.361 IRRED	0.361
IONES 0.361 INDIR 0.361 GIRO 0.361 KEIO	0.361
POLYP 0.361 LAGS 0.361 ENZYM 0.361 ISSUE	0.361
JONES 0.361 HARD 0.361 ELEKT 0.361 INACC	0.361
RAPHS 0.361 HIRSC 0.361 DAVIE 0.361 ILL	0.361
ICT 0.361 HADAM 0.361 RETAI 0.361 HIGHE	0.361
REED 0.361 REGIM 0.361 HOLLA 0.361 HOHER	0.361
EASTM 0.361 LONGE 0.361 GIVEN 0.361 PAREN	0.361
7.77	0.361
ESSO 0.361 FREED 0.361 FIXAT 0.361 RISK HASH 0.361 PERT 0.361 METNO 0.361 HIDDE	
	0.361
HABIT 0.361 HETER 0.361 DIODE 0.361 PENTO FRANK 0.361 DOUGL 0.361 ISCMO 0.361 FLOWS	0.361
	0.361
	0.361
	0.361
	0.361
	0.361
FLEXI 0.361 FEASI 0.361 ESSAY 0.361 DEFLE	0.361
AREA 0.361 DECID 0.361 KNIGH 0.361 DISSI	0.361
PRACN 0.361	0.361
LAYMA 0.361 DATAF 0.361 LIBER 0.361 DEFER	0.361
FIGUR 0.361 CLARI 0.361 MUSIC 0.361 MOORE	0.361
DEPOS 0.361 SIGNE 0.361 NICHO 0.361 NORM	0.361
DCNNE 0.361 CBAC 0.361 MOD 0.361 MAEHL	0.361
DATAM 0.361 LAGRA 0.361 CREDI 0.361 MICHI	0.361
COSMI 0.361 FLOW 0.360 GUIDA 0.360 WORKI	0.360
SINGU 0.359 IMPUL 0.357 CAVIT 0.351 RESER	0.351
RACHE 0.351 STORE 0.351 MOVIN 0.351 ASYMM	0.351
KORZH 0.351 GRAHA 0.351 IMPED 0.351 DEMOD	0.351
EVIDE 0.351 TAU 0.351 BRAIN 0.351 CONFO	0.351
CHURC 0.351 BENDI 0.351 BLEND 0.351 AUTO	0.351
AREAS 0.351 UNFOR 0.351 TOLER 0.351 TELEM	0.351
SIMSC 0.351 WESCO 0.351 VERIE 0.351 VIEWP	0.351
STAGE 0.351 SUBCO 0.351 RETRO 0.351 SORTE	0.351
SCALI 0.351 ROTAT 0.351 DISSE 0.351 THESA	0.351
TREE 0.351 FURTH 0.348 ENCCD 0.348 LAPLA	0.347
POSSI 0.341 ATLAS 0.341 EXPRE 0.341 KUTTA	0.341
TIMET 0.341 SENSE 0.338 EVENT 0.331 REGAR	0.330
POLE 0.330 PEOPL 0.330 DECEN 0.330 FILLI	0.330
NUCLE C.330 UNIFO 0.329 INSTR 0.327 ANSWE	0.324

IOTAL = 816

3. Index Term List Number Three:

```
by using
                        f f /n ]^2/[f -f^2/n][f -f^2/n].
  COMPU
           1.000
                     SYSTE
                              0.976
                                        PROCE
                                                 0.974
                                                                    0.946
                                                           CONTR
          0.936
  TECHN
                     TRANS
                              0.928
                                        METHO
                                                 0.905
                                                                    0.904
                                                           DATA
  OPTIM
          0.899
                     GENER
                              0.897
                                                 0.893
                                        INFOR
                                                                    0.891
                                                           PROBL
  LANGU
          0.889
                     FUNCT
                              0.888
                                                 0.879
                                        MOTUA
                                                           LINEA
                                                                    0.873
  INTER
          0.867
                     ALGOR
                              0.849
                                        CHEMI
                                                 0.849
                                                                    0.847
                                                           STRUC
  ANALY
          0.843
                     PROGR
                              0.840
                                                 0.838
                                        INDEX
                                                                    0.834
                                                           MULTI
          0.821
  CODES
                     OPERA
                              0.820
                                        CLASS
                                                 0.811
                                                                    0.811
                                                           RETRI
          0.805
  ERROR
                     APPRO
                              0.804
                                                 0.802
                                                                    0.802
                                        EVALU
                                                           TIME
  DIGIT
          0.802
                     THEOR
                              0.801
                                        EOUAT
                                                 0.798
                                                           DIFFE
                                                                    0.797
  APPLI
          0.794
                     SEOUE
                              0.791
                                                 0.788
                                                                    0.785
                                        SOLUT
                                                           INTEG
          0.784
                              0.783
  CONVE
                     LITER
                                        VARIA
                                                 0.780
                                                                    0.780
                                                           MATRI
          0.779
  AMERI
                     CONST
                              0.779
                                                 0.779
                                                                    0.778
                                        CORRE
                                                           EXPER
                              0.767
          0.778
  STABI
                     SIMUL
                                        MACHI
                                                 0.767
                                                           RANDO
                                                                    0.761
          0.757
                              0.745
                                                 0.745
  SIGNA
                     LINE
                                        RECOG
                                                           NONLI
                                                                    0.745
          0.742
  REAL
                     DESIG
                              0.736
                                                 0.735
                                                                    0.735
                                        FINIT
                                                           SCIEN
          0.730
                              0.730
  ALGCL
                     STATI
                                                 0.728
                                                                    0.727
                                        LIBRA
                                                           LOGIC
          0.726
  PROBA
                     STAND
                              0.724
                                        STATE
                                                 0.722
                                                           NUMER
                                                                    0.717
          0.716
                              0.715
  NUMBE
                     RELAT
                                                 0.715
                                                                    0.715
                                        FORTR
                                                           PROPO
          0.714
                              0.712
                                                 0.712
                                                                    0.712
  SEARC
                     DETER
                                        COMPA
                                                           MEMOR
          0.711
                              0.711
                                                 0.711
                                                                    0.710
  ELEME
                     UNIVE
                                        SAMPL
                                                           COMMU
          0.710
                              0.709
                                                 0.709
  GRAPH
                     REGUL
                                        INPUT
                                                           MICRO
                                                                    0.709
          0.709
                              0.706
                                                 0.706
                                                                    0.705
  DYNAM
                     ESTIM
                                        BOOLE
                                                           EFFIC
          0.700
                              0.698
                                                 0.697
                                                                    0.697
  CALCU
                     ORDER
                                        FORMA
                                                           MODEL
                                                                    0.693
          0.695
                              0.694
                                                 0.694
  PROPE
                     COORD
                                        DISCR
                                                           CONDI
  FILTE
          0.691
                              0.691
                                        DISTR
                                                 0.691
                                                           STORA
                                                                    0.686
                     LARGE
                              0.685
                                                 0.684
                                                                    0.682
          0.686
                                                           SERVI
  MINIM
                     NOISE
                                        CERTA
                                                 0.679
                                                                    0.679
          0.681
                              0.680
                                        STOCH
                                                           MAGNE
  CHANN
                     NOTAT
                              0.677
                                                 0.675
                                                                    0.675
  FREE
          0.678
                     BINAR
                                        SUBJE
                                                           MEDIC
          0.675
                     DIREC
                              0.673
                                        ELECT
                                                 0.672
                                                           ABSTR
                                                                    0.666
  CIRCU
                                                                    0.661
                              0.663
                                                 0.662
                                                           RESEA
  POLYN
          0.665
                     NETWO
                                        ITERA
                                                 0.659
                                                                    0.657
                              0.660
                                                           POINT
          0.661
                     DOCUM
                                        FORMU
  ORGAN
                                                 0.654
                                                                    0.654
                              0.655
                                                           COMPI
  DIMEN
          0.656
                     ALGEB
                                        CURRE
          0.653
                              0.651
                                        SPECI
                                                 0.649
                                                           SINGL
                                                                    0.648
                     DEVEL
  CODE
                                                 0.647
                                                                    0.647
                              0.648
                                        ORDIN
                                                           DISPL
          0.648
                     INVER
  COMPL
                                                 0.645
                                                                    0.644
                                                           REDUC
          0.646
                     DEFIN
                              0.646
                                        FEEDB
  PARAM
                                                 0.641
                                                           TABLE
                                                                    0.640
          0.643
                     SERIA
                              0.641
                                        BIT
  SCHEM
                              0.639
                                                 0.639
                                                           ADAPT
                                                                    0.639
                                        INVES
          0.639
                     BOUND
  SIMPL
                              0.639
                                                 0.638
                                                           IBM
                                                                    0.637
                                        PLATE
          0.639
                     SHARI
  LIMIT
                                        TAPE
                                                 0.631
                                                           CONTI
                                                                    0.630
                              0.631
          0.634
                     MECHA
  DERIV
                                                 0.627
                                                                    0.627
                              0.627
                                        ARITH
                                                           ORIEN
          0.629
                     CONTE
  PATTE
                                                 0.625
                                                           SYNTA
                                                                    0.625
                              0.626
                                        VALUE
          0.627
                     CHARA
  STUDY
                                                 0.624
                                                           FORM
                                                                    0.621
                              0.624
                                        SYNTH
  MANAG
          0.625
                     TESTI
                                                 0.619
                                                                    0.618
                              0.619
                                        MODUL
                                                           HYBRI
          0.620
                     PERFO
  SOCIA
                                                                    0.616
                              0.618
                                        SWIIC
                                                 0.618
                                                           EIGEN
                     BUSIN
          0.618
  PRINT
                                                 0.613
                                                                    0.613
                              0.614
                                        PHASE
                                                           ECONO
          0.615
                     ASYMP
  OUTPU
                                                                    0.609
                                                 0.611
                              0.611
                                        EFFEC
                                                           DECIS
          0.611
                     COLLE
  ABSOL
                                                                    0.607
                                                 0.607
                                                           PRODU
          0.609
                     FREQU
                              0.608
                                        ACCES
  BASED
                                                                    0.600
                              0.604
                                        CENTR
                                                 0.602
                                                           REPRE
          0.607
                     FILE
  PRACT
```


ENGIN	0.597	SOURC	0.597	THRES	0.595	COMPO	0.595
BLOCK	0.594	SQUAR	0.591	DESCR	0.591	PRESE	
CRITE	0.590	CATAL	0.590				0.590
TEST	0.587			ACTIV	0.588	MATHE	0.587
		SERIE	0.586	SPECT	0.584	SOFTW	0.582
NORMA	0.582	FACTO	0.580	ASPEC	0.580	USER	0.578
GRAMM	0.576	MANIP	0.575	PATEN	0.573	SMALL	0.572
IMPRO	0.571	SYNCH	0.571	NOIE	0.571	RAPID	0.570
INDUS	0.569	SEPAR	0.569	SELEC	0.568	SYMME	0.567
RUNGE	0.567	SPACE	0.567	FIELD	0.565	AMPLI	0.565
IDENT	0.564	EQUIV	0.564	RECTA	0.564	FILM	0.564
DEPAR	0.564	HARMO	0.564	PARSE	0.564	CONFE	0.563
RESUL	0.563	INSUR	0.562	FREDH	0.562	REDUN	0.562
PREFI	0.562	BRIEF	0.562	DEVIA	0.562	FACT	0.562
PL1	0.562	ARGUM	0.562	KONVE	0.562	COLLA	0.562
ALPHA	0.561	CYCLI	0.560	GROUP	0.560		
BASE	0.559	SYMPO	0.558			TYPE	0.559
REPOR	0.553			TERMI	0.554	REFER	0.554
	0.549	PUNCH	0.553	NATIO	0.549	ADMIN	0.549
LAW		CARD	0.549	CARDS	0.549	NON	0.549
CITAT	0.548	VIEW	0.548	CENTE	0.544	DEVIC	0.543
SET	0.543	AWARE	0.543	PARAL	0.542	QUADR	0.541
	0.540	SURVE	0.539	TEACH	0.538	REMOT	0.537
COMME	0.537	CONCE	0.536	QUANT	0.536	PURPO	0.535
ONLIN	0.533	ANALO	0.532	DETEC	0.531	MARKE	0.529
PIECE	0.527	MONIT	0.526	PACKA	0.524	PLANN	0.523
HAND	0.522	QUEUE	0.521	ASSIG	0.521	COMPR	0.521
RESPO	0.520	EXTRA	0.520	SEIS	0.519	CODIN	0.516
SENSI	0.513	LOCAL	0.513	ASSOC	0.513	CONSI	0.512
ASLIB	0.506	PUBLI	0.505	RECUR	0.505	NATUR	0.502
GAMES	0.502	PULSE	0.501	REGIS	0.501	PICTU	0.500
ROOTS	0.499	EEURI	0.499	GAUSS	0.498	PERMU	0.496
LOOP	0.493	IMPLE	0.492	PROFE	0.491	ALTER	0.490
SUCCE	0.490	HANDL	0.490	QUASI	0.488	DIVIS	0.488
HIGH	0.488	PERIO	0.488	RELEV	0.487	ALLOC	0.486
INVAR	0.486	DIAGN	0.486	SPEED	0.482	POSIT	0.482
INTRO	0.482	CASE	0.482	TERM	0.482	CAPAC	0.482
			0.480	LINKS		INDEP	0.480
	0.480		0.477	PRINC		STEP	
	0.479				0.473		
			0.473			PRECI	
	0.470		0.470		0.470	RELAY	0.469
	0.469		0.468		0.468	ASA	0.468
	0.466		0.466		0.466	FACIL	0.464
	0.464		0.461		0.459	BOOKS	
			0.457		0.457	DEPEN	0.457
	0.457	REALI	0.456	PREDI	0.453	JOURN	0.452
DECCM	0.451	PREPA	0.450	REGIO	0.448	COEFF	0.448
FOURI	0.448	RESOU	0.447		0.445	CONDU	0.445
ACCOU	0.445	CHEBY	0.443	RANK	0.442	PASS	0.442
DOMAI	0.442	VECTO	0.442	RIGHT	0.441	TITLE	0.441
	0.441	PHYSI	0.441		0.440	FINDI	0.439
	0.437	COBOL	0.437	ARTIC	0.436	MOTIO	0.434
PSEUD	0.433	PERSO	0.432	COSI	0.432	PLANE	0.432
	0.432		0.431	MAJOR	0.430	SORT	0.430
	0.430		0.430		0.430	ACADE	0.430
SERVO			0.430		0.430	KEYWO	
TUTOR	0.430	ANNOU	0.430		0.430	BOARD	
10101	0. 400	11111100					

DISTO	0.430	PAGED	0.430	FIXED	0.430	GROWT	0.430
DISCO	0.430	BIBLI	0.429	DIAGR	0.428	SCHOO	0.428
PHRAS	0.428	EXTRE	0.428	SCALE	0.428	SUBRE	0.427
REVIE	0.426	SYMBO	0.424	STIBI	0.423		
MEETI	0.421	EXTEN				REMAR	0.422
			0.429	LEVEL	0.428	CHOIC	0.419
ELIMI	0.419	PRIOR	0.417	ORTHO	0.417	EDUCA	0.415
LENGI	0.413	SUBMI	0.412	BELL	0.412	BACKW	0.412
PROBS	0.412	COURT	0.412	BORDE	0.412	POLLU	0.412
CEP	0.412	RECEP	0.412	PRCMO	0.412	MONOI	0.412
PUFFT	0.412	CALL	0.412	JORDA	0.412	DREDG	0.412
RIGID	0.412	POLES	0.412	ALLIE	0.412		
CHOMS	0.412					CULTU	0.412
		POLIT	0.412	ERRAT	0.412	BIVAR	0.412
UNSTE	0.412	PREFE	0.412	BOND	0.412	POSTA	0.412
STEPP	0.412	LOCUS	0.412	AERON	0.412	TANK	0.412
BIRTH	0.412	RCA	0.412	SHOCK	0.412	DECOC	0.412
SIMON	0.412	PROLE	0.412	JACKS	0.412	CDS	0.412
APPRA	0.412	RAY	0.412	TRI	0.412	RACHF	0.412
REPLA	0.412	MARK	0.412	HOBBS	0.412	DEMON	0.412
HOT	0.412	RC400	0.412	STEPS	0.412	DISCI	0.412
GAIN	0.412	PREVI	0.412		0.412		
				HELIC		DOMIN	0.412
FIRM	0.412	PRICI	0.412	SESSI	0.412	REGEL	0.412
TROUB	0.412	DORN	0.412	POSTI	0.412	SLT	0.412
LATEN	0.412	PEACE	0.412	RENAM	0.412	ECMA	0.412
UNSUP	0.412	PAGE	0.412	PLAN	0.412	CANAD	0.412
ORANI	0.412	CNTAR	0.412	SYNAP	0.412	PEEKA	0.412
TRIAN	0.412	ELLIO	0.412	MAGNU	0.412	SIZED	0.412
SUBOP	0.412	PARIT	0.412	TELEC	0.412	ENDED	0.412
SYLLA	0.412	PROCR	0.412	NONCO	0.412	BANDS	0.412
	0.412		0.412	PARTY	0.412		0.412
SIZE		TRACK				CORNE	
MARKU	0.412	ACOUT	0.412	STAR	0.412	SHEFF	0.412
OCCUR	0.412	ACMCP	0.412	EXCLU	0.412	MEANI	0.412
ORBIT	0.412	AGENT	0.412	BITS	0.412	ROMAN	0.412
PACKE	0.412	PANTA	0.412	OHIO	0.412	PROGA	0.412
MERGI	0.412	ANTIC	0.412	CANCE	0.412	ORDNU	0.412
SCHCL	0.412	FIT	0.412	TRIAL	0.412	I/0	0.412
AMEND	0.412	FCC	0.412	VIRCL	0.412	OPTIO	0.412
MERCU	0.412	PANEL	0.412	ATTEM	0.412	DIGES	0.412
CHICA	0.412	SHOP	0.412	TREAT	0.412	LOCI	0.412
COLOU	0.412	CONFR	0.412	LOAD	0.412	CARTO	0.412
				LONDO	0.412	LOSSE	0.412
APPRE	0.412	UNSTA	0.412				0.412
BROMB	0.412	LANCZ	0.412	APL	0.412	SHELL	
SPATI	0.412	MARKS	0.412	BASSA	0.412	JUMP	0.412
BINDI	0.412	MASTE	0.412	VOYSE	0.412	BAIRS	0.412
VISIO	0.412	MANUS	0.412	WILSC	0.412	ROSEN	0.412
DUPLE	0.412	SIDES	0.412	2314	0.412	KOSHE	0.412
INCOR	0.412	GIER	0.412	LABS	0.412	UNCON	0.412
ATTEN	0.412	IANGE	0.412	UNVOI	0.412	BROWN	0.412
	0.412	AUTON	0.412	AUDIO	0.412	LAYOU	0.412
DISAG			0.412	ANCMA	0.412	FIDEL	0.412
TOWER	0.412	HOUSI			0.412	KNUTH	0.412
RESIS	0.412	HILL	0.412	ROBIN			
SARDI	0.412	LENSE	0.412	DUALI	0.412	SEMIG	0.412
ROYAL	0.412	STOPP	0.412	SIDE	0.412	GROSS	0.412
FERRI	0.412	NORMS	0.412	SUBSE	0.412	BANKI	0.412
TANDE	0.412	NETHE	0.412	SLOW	0.412	NET	0.412
STAT1	0.412	META	0.412	CLENS	0.412	NONSI	0.412
-							

HAMMI	0.412	BALL	0.412	NONDE	0.412	NONRE	0.412
ICL	0.412	REWRI	0.412	MILNE	0.412	FLUX	0.412
MODAL	0.412	BEREC	0.412	MORPH	0.412	MODES	0.412
IMPRE	0.412	BLIND	0.412	METAB	0.412	MATEM	0.412
DECAD	0.412	GE	0.412	MERGE	0.412	MERSE	0.412
IONIN	0.412	INTEN	0.412	INTEL	0.412		0.412
JENKI	0.412	EXPOR	0.412	IRRED	0.412	PREVE	
INDIR	0.412	GIRO	0.412			IONES	0.412
LAGS	0.412	ENZYM		KEIO	0.412	POLYP	0.412
HARD	0.412		0.412	ISSUE	0.412	JONES	0.412
		ELEKT	0.412	INACC	0.412	RAPHS	0.412
HIRSC	0.412	DAVIE	0.412	ILL	0.412	ICT	0.412
HADAM	0.412	RETAI	0.412	HIGHE	0.412	REED	0.412
REGIM	0.412	HOLLA	0.412	HOHER	0.412	EASTM	0.412
LONGE	0.412	GIVEN	0.412	PAREN	0.412	ESSO	0.412
FREED	0.412	FIXAT	0.412	RISK	0.412	HASH	0.412
PERT	0.412	METNO	0.412	HIDDE	0.412	HABIT	0.412
HETER	0.412	DIODE	0.412	PENIO	0.412	FRANK	0.412
DOUGL	0.412	ISCMO	0.412	FLOWS	0.412	FRANC	0.412
DEEP	0.412	IMAGE	0.412	FLOWR	0.412	GAAS	0.412
MINER	0.412	OVERD	0.412	GLYCO	0.412	FLORE	0.412
DRUGS	0.412	BIGEL	0.412	EINSC	0.412	LOADI	0.412
EMPHA	0.412	ESTAB	0.412	EDELM	0.412	EXCHA	0.412
BETA	0.412	FABRI	0.412	MAPS	0.412	FLEXI	0.412
FEASI	0.412	ESSAY	0.412	DEFLE	0.412	AREA	0.412
DECID	0.412	KNIGH	0.412	DISSI	0.412	PRACN	0.412
DRIFT	0.412	PURSU	0.412	DATAN	0.412	LAYMA	0.412
DATAF	0.412	LIBER	0.412	DEFER	0.412	FIGUR	0.412
CLARI	0.412	MUSIC	0.412	MOORE	0.412	DEPOS	0.412
SIGNE	0.412	NICHO	0.412	NORM	0.412	DONNE	0.412
CBAC	0.412	MOD	0.412	MAEHL	0.412	DATAM	0.412
LAGRA	0.412	CREDI	0.412	MICHI	0.412	COSMI	0.412
FLOW	0.408	GUIDA	0.407	WORKI	0.407	CAVIT	0.401
STORE	0.401	RACHE	0.401	RESER	0.401	MOVIN	0.401
ASYMM	0.401	KORZH	0.401	GRAHA	0.401	IMPED	0.401
DEMOD	0.401	EVIDE	0.401	TAU	0.401	BRAIN	0.401
CONFO	0.401	CHURC	0.401	BENDI	0.401	BLEND	0.401
			0.401	UNFOR	0.401	TOLER	0.401
AUTO	0.401	AREAS	0.401	WESCO	0.401	VERTE	0.401
TELEM	0.401	SIMSC			0.401		0.401
VIEWP	0.401	STAGE	0.401	SUBCO	0.401	RETRO	0.398
SORTE	0.401	SCALI	0.401	ROTAT		TREE	
THESA	0.398	DISSE	0.398	MODIF	0.395	IMPUL	0.393
SINGU	0.390	ATLAS	0.389	POSSI	0.389	LAPLA	0.387
TIMET	0.386	FURTH	0.385	ENCOD	0.385	EXPRE	0.384
KUTTA	0.384	SENSE	0.381	EVENT	0.377	REGAR	0.374
POLE	0.374	PEOPL	0.374	DECEN	0.374	FILLI	0.374
NUCLE	0.373	UNIFO	0.372	INSTR	0.366	UNION	0.365
ANSWE	0.362	COMBI	0.362	HARDW	0.361	COMMA	0.361
HEAT	0.360	IFAC	0.360	MEAN	0.360		

APPENDIX D

FINAL INDEX TERM LIST

~~							
COMPU	0.994	SYSTE	0.992	PRCCE	0.968	CONTR	0.931
TECHN	0.927	TRANS	0.918	METHO	0.913	GENER	0.909
PROBL	0.900	DATA	0.892	INFOR	0.892	AUTOM	0.882
OPTIM	0.882	FUNCT	0.877	LANGU	0.874	INTER	0.874
LINEA	0.871	ANALY	0.868	STRUC	0.852	PROGR	0.848
ALGOR	0.844	CHEMI	0.844				
TIME	0.829			INDEX	0.836	MULTI	0.833
		RETRI	0.822	OPERA	0.816	ERROR	0.816
APPLI	0.815	THEOR	0.815	CLASS	0.811	CODES	0.809
MACHI	0.801	SOLUT	0.796	APPRO	0.795	EVALU	0.790
EQUAT	0.786	SEQUE	0.786	DIGIT	0.784	CORRE	0.783
VARIA	0.776	DIFFE	0.775	MATRI	0.774	LITER	0.773
INTEG	0.773	CONVE	0.772	CONST	0.772	SIMUL	0.767
EXPER	0.766	STABI	0.759	AMERI	0.751	DESIG	0.748
RANDO	0.743	NONLI	0.741	SIGNA	0.734	STATE	0.733
RECOG	0.728	REAL	0.722	LINE	0.721	PROBA	0.717
FINIT	0.716	LIBRA	0.714	SCIEN	0.713	NUMBE	0.709
NUMER	0.709	STAND	0.709	STATI	0.706	LOGIC	0.703
ESTIM	0.699	PROPO	0.698	COMMU	0.698	ALGOL	0.698
COMPA	0.698	FORTR	0.696	DYNAM	0.696	GRAPH	0.694
ELEME	0.693	SEARC	0.689	MODEL	0.688	DETER	0.687
RELAT	0.686	MEMOR	0.686	ORDER	0.686	SAMPL	0.683
CALCU	0.682	UNIVE	0.681	MICRO	0.680	PROPE	0.680
	0.678						
REGUL		BOOLE	0.678	CHANN	0.677	FORMA	0.676
EFFIC	0.675	FILTE	0.675	DISTR	0.675	NOISE	0.674
ORGAN	0.672	ITERA	0.670	MINIM	0.670	COORD	0.669
INPUT	0.669	STORA	0.669	CIRCU	0.666	STOCH	0.663
DISCR	0.663	NOTAT	0.662	FREE	0.662	SERVI	0.661
BINAR	0.657	LARGE	0.654	ALGEB	0.652	CONDI	0.651
NETWO	0.649	RESEA	0.648	CODE	0.645	CERTA	0.644
MAGNE	0.643	FEEDB	0.642	MEDIC	0.640	SUBJE	0.640
SCHEM	0.639	ABSTR	0.638	POLYN	0.637	PARAM	0.637
DIMEN	0.634	DEVEL	0.634	DIREC	0.634	DEFIN	0.633
COMPL	0.633	ELECT	0.632	DOCUM	0.630	FORMU	0.630
SIMPL	0.629	SHARI	0.626	POINT	0.626	CURRE	0.625
SYNTA	0.624	ORDIN	0.622	COMPI	0.621	CONTE	0.621
DISPL	0.620	BOUND	0.618	SINGL	0.618	SYNTH	0.614
INVES	0.614	TABLE	0.613	INVER	0.613	SPECI	0.612
BIT	0.611	IBM	0.611	EFFEC	0.611	LIMIT	0.611
	0.610	MANAG	0.610	REDUC	0.607	PRODU	0.605
CHARA			0.604	TAPE	0.601	SERIA	0.600
ARITH	0.605	CONTI	0.599	VALUE	0.598	FORM	0.598
DERIV	0.600	ADAPT			0.595	DECIS	0.595
STUDY	0.598	PERFO	0.596	PLATE			
SELEC	0.593	MECHA	0.592	ORIEN	0.591	PATTE	0.591
HYBRI	0.590	MODUL	0.590	PRINT	0.590	BUSIN	0.590
SOURC	0.589	TESTI	0.589	OUIPU	0.588	FREQU	0.588
EIGEN	0.587	PHASE	0.583	SWITC	0.582	PRACT	0.581
SOCIA	0.580	ECONO	0.578	ENGIN	0.578	BASED	0.576
FILE	0.576	ASYMP	0.574	ABSOL	0.572	COLLE	0.571

SQUAR	0.571	ACCES	0.570	ACTIV	0.569	PRESE	0.568
DESCR	0.567	REPRE	0.567	SPECT	0.567	COMPO	
TEST	0.565	CENTR	0.563				0.566
MATHE	0.561			NORMA	0.563	THRES	0.562
		FACTO	0.560	PATEN	0.560	SERIE	0.559
BLOCK	0.557	CATAL	0.557	SMALL	0.555	ASPEC	0.552
USER	0.551	CRITE	0.551	IMFRO	0.550	SOFTW	0.548
SPACE	0.548	MANIP	0.547	AMPLI	0.545	IDENT	0.545
EQUIV	0.545	TYPE	0.544	GRAMM	0.543	INDUS	0.543
NON	0.542	CYCLI	0.542	NOTE	0.542	SYNCH	0.542
SYMPO	0.540	SEPAR	0.537	REPOR	0.537	CONCE	0.537
RAPID	0.536	ANALO	0.534				
GROUP	0.533			SYMME	0.534	CONFE	0.534
		RUNGE	0.532	RESUL	0.532	FIELD	0.529
CENTE	0.529	ALPHA	0.528		0.527	DEPAR	0.526
FILM	0.526	HARMO	0.526		0.526	RECTA	0.526
STUDI	0.525	INSUR	0.525	BRIEF	0.525	KONVE	0.525
COLLA	0.525	PREFI	0.525	ARGUM	0.525	PL1	0.525
REDUN	0.525	FREDH	0.525	FACT	0.525	DEVIA	0.525
NATIO	0.524	DEVIC	0.524		0.523	LAW	0.520
TERMI	0.520	CARDS	0.520		0.520	REFER	0.520
QUADR	0.519	VIEW	0.518		0.517	COMME	0.517
PARAL	0.517	ADMIN	0.514				
				CITAT	0.513	TEACH	0.511
DETEC	0.510	SET	0.509	PAPER	0.509	MONIT	0.508
PURPO	0.507	AWARE	0.507	QUANT	0.504	REMOT	0.504
ONLIN	0.501	MARKE	0.500	PLANN	0.495	PACKA	0.494
COMPR	0.493	PHYSI	0.491	PIECE	0.491	LOCAL	0.490
RESPO	0.489	EXTRA	0.489	ASSIG	0.488	QUEUE	0.488
HAND	0.486	ASSOC	0.485	SEIS	0.485	PERIO	0.484
SENSI	0.484	CODIN	0.484	REGIS	0.480	PUBLI	0.480
CONSI	0.480	RECUR	0.477	GAMES	0.476	HEURI	0.475
ROOIS	0.475	NATUR	0.474	ASLIB	0.473	LOOP	0.472
	0.471		0.470				
PULSE		GAUSS		HANDL	0.469	SOLVI	0.468
PICTU	0.468	EDUCA	0.468	SPEED	0.467	SECON	0.466
PERMU	0.465	PRINC	0.462	HIGH	0.461	DIVIS	0.460
CAPAC	0.460	SELF	0.460	QUASI	0.460	IMPLE	0.459
ALTER	0.459	DIAGN	0.459	SUCCE	0.459	PROFE	0.458
ALLOC	0.457	TERM	0.457	RELEV	0.456	INVAR	0.454
FACIL	0.453	CASE	0.451	POSIT	0.450	INTRO	0.449
STEP	0.449	INDEP	0.449	UTILI	0.449	LINKS	0.448
COEFF	0.447	FOURI	0.447	FAST	0.447	QUALI	0.444
MARKO	0.444	PRECI	0.443	DECOD	0.442	FLOWC	0.441
STRAT	0.441	TOWAR	0.440	RELAY	0.440	CHART	0.440
ADDIT	0.439	FUNDA	0.439	ASA	0.438	EXPAN	0.438
REQUI	0.438	PREDI	0.433	DUAL	0.433	REALI	0.433
EQUIP	0.432	BOOKS	0.432	WRITI	0.432	360	0.430
JOURN	0.430	NETS	0.429	DEPEN	0.427	SHIFT	0.427
DECCM	0.424	RESOU	0.423	PREPA	0.421	REGIO	0.420
CHEBY	0.419	WEIGH	0.418	CONDU	0.418	TITLE	0.416
VECTO	0.415	DELAY	0.414	ACCOU	0.414	RANK	0.412
PSEUD	0.412	RIGHT	0.412	PASS	0.412	DOMAI	0.412
	0.412	CURRI	0.410	LIST	0.410	REVIE	0.409
FINDI			0.408	BIBLI	0.406	EXTEN	0.404
ARTIC	0.408	COBOL			0.404	COST	0.404
PERSO	0.404	LEVEL	0.404	SCHOO			
DIAGR	0.404	MOTIO	0.404	PLANE	0.403	INQUI	0.403
SCHED	0.402	PAGED	0.402	KDF9	0.402	NONPA	0.402
DISCO	0.402	GROWT	0.402	KEYWO	0.402	BOARD	0.402

MAJOR	0.402	ACADE	0.402	JAPAN	0.402	SERVO	0.402
SUM	0.402	SORT	0.402	DISTO	0.402	TUTOR	0.402
FIXED	0.402	WATER	0.402	EXECU	0.402	ANNOU	0.402
EXTRE	0.401	PHRAS	0.401	SCALE	0.400	SUBRE	0.399
SYMBO	0.398	STIBI	0.394	REMAR	0.393		
ORTHO	0.391	CHOIC	0.391	ELIMI	0.393	MEETI	0.393
LENGT	0.388	BACKW	0.384			PRIOR	0.390
STEPS	0.384	EXCLU	0.384	SHCCK	0.384	DOUGL	0.384
ROBIN	0.384	TANK	0.384	BELL	0.384	LOCUS	0.384
AGENI	0.384	PARIT		TRI	0.384	JORDA	0.384
SYNAP	0.384	CHOMS	0.384	ALLIE	0.384	DORN	0.384
JACKS	0.384		0.384	MONOI	0.384	METNO	0.384
TELEC	0.384	POSTA	0.384	BOND	0.384	MARKU	0.384
		ATTEN	0.384	SIDE	0.384	MARK	0.384
MERCU	0.384	NONDE	0.384	POSTI	0.384	DIGES	0.384
HOBBS	0.384	UNSTE	0.384	CARTO	0.384		0.384
ANOMA	0.384	GAAS	0.384	APL	0.384		0.384
AERCN	0.384	RETAI	0.384	STAT1	0.384		0.384
BINDI	0.384	ONTAR	0.384	ACOUT	0.384		
COLOU	0.384	STEPP	0.384	PLAN	0.384	DECAD	0.384
GIER	0.384	LOCI	0.384	SEMIG	0.384	ICL	0.384
SPATI	0.384	LIBER	0.384	TOWER	0.384	MERGI	0.384
TRACK	0.384	NORMS	0.384	CHICA	0.384	PREVI	
SCHCL	0.384	RIGID	0.384	HELIC	0.384	LANCZ	0.384
SESSI	0.384	PERT	0.384	ERRAT	0.384	I/0	0.384
PANTA	0.384	GIRO	0.384	VISIO	0.384	DISAG	0.384
RENAM	0.384	ORDNU	0.384	VOYSE	0.384	FIDEL	0.384
AUDIO	0.384	CALL	0.384	SARDI	0.384	META	0.384
2314	0.384	HOHER	0.384	ANTIC	0.384	MINER	0.384
ROSEN	0.384	BAIRS	0.384	NONCO	0.384	IMPRE	0.384
STOPP	0.384	MERGE	0.384	UNCON	0.384	BIRTH	0.384
FERRI	0.384	NET	0.384	TANDE	0.384	EXPOR	0.384
LENSE	0.384	FLOWS	0.384	SLCW	0.384	SUBMI	0.384
BROWN	0.384	EXCHA	0.384	DREDG	0.384	ECMA	0.384
RESIS	0.384	MODAL	0.384	UNVOI	0.384	RECEP	0.384
MAGNU	0.384	POLYP	0.384	BASSA	0.384	STAR	0.384
SUBSE	0.384	RC400	0.384	AMEND	0.384	APPRA	0.384
WILSO	0.384	HETER	0.384	ACMCP	0.384	BEREC	0.384
KNUTH	0.384		0.384	IONES	0.384	IMAGE	0.384
ILL	0.384	REPLA	0.384	DEFLE	0.384	MICHI	0.384
LABS	0.384		0.384	REED	0.384	RISK	0.384
PROMO	0.384		0.384	MERSE	0.384	NORM	0.384
LOAD	0.384		0.384	OHIO	0.384	BANKI	0.384
ISSUE	0.384		0.384	POLES	0.384	DECOC	0.384
	0.384	SHEFF	0.384	MOD	0.384	SIDES	0.384
	0.384	FIRM		ESSAY	0.384	BITS	0.384
PRICI	0.384	HOT	0.384	CREDI	0.384	PURSU	
DECID	0.384		0.384	PEACE	0.384		
PROLE	0.384	TREAT	0.384	NICHO	0.384	BETA	0.384
METAB	0.384	GAIN		PANEL	0.384		
POLLU	0.384	SHOP	0.384	RACHF	0.384		
DATAN	0.384		0.384	FRANK	0.384		0.384
POLIT	0.384	TRIAN	0.384	MAPS	0.384		
			0.384	DONNE	0.384	BIVAR	
LAYOU	0.384		0.384	EDELM	0.384	LAGRA	
OPTIO	0.384	ROYAL	0.384	INACC	0.384	PREVE	
FABRI	0.384	SIZE	0.304	THACC	0.304	TIUVI	0.504

ORBIT LONDO PAGE ESTAB PROCR HASH DRIFT	0.384 0.384 0.384 0.384 0.384 0.384	CORNE SYLLA INTEN ROMAN PROGA MEANI LONGE	0.384 0.384 0.384 0.384 0.384 0.384	LAYMA PROBS MODES MARKS FLUX JONES MATEM	0.384 0.384 0.384 0.384 0.384 0.384	SIGNE REGIM CDS INCOR ELEKT PRACN	0.384 0.384 0.384 0.384 0.384
NETHE	0.384	VIROL	0.384	DRUGS	0.384	AUTON FCC	0.384
DIODE	0.384	ATTEM	0.384	HAMMI	0.384	SHELL	0.384
FLOWR	0.384	TRIAL	0.384	FIGUR	0.384	BANDS	0.384
DEFER	0.384	BIGEL	0.384	DEPOS	0.384	APPRE	0.384
MORPH	0.384	UNSTA	0.384	OCCUR	0.384	PAREN	0.384
DEEP HIGHE	0.384	EROMB	0.384	JUMP	0.384	PENTO	0.384
FEASI	0.384	CONFR	0.384	NONRE	0.384	MAEHL	0.384
LANGE	0.384	CLARI	0.384	LOSSE RCA	0.384	BLIND	0.384
FIXAT	0.384	DOMIN	0.384	HOUSI	0.384	CLENS	0.384
IRRED	0.384	RAPHS	0.384	COSMI	0.384	MOORE AREA	0.384
EASTM	0.384	ISOMO	0.384	FRANC	0.384	CANCE	0.384
MANUS	0.384	GE	0.384	KEIO	0.384	SIZED	0.384
ESSO	0.384	BALL		CULTU	0.384	FREED	0.384
DISSI	0.384	MUSIC		PARTY	0.384	CBAC	0.384
HOLLA	0.384	ENZYM	0.384	PUFFT	0.384	CEP	0.384
RAY	0.384	LOADI	0.384	GIVEN	0.384	DEMON	0.384
INDIR	0.384	EILL	0.384	DISCI	0.384	DAVIE	0.384
DATAF	0.384	KNIGH	0.384	FLORE	0.384	IONIN	0.384
ICT	0.384	PREFE	0.384	MILNE	0.384	JENKI	0.384
ENDED	0.384	FLEXI	0.384	REGEL	0.384	GLYCO	0.384
PEEKA	0.384	PACKE	0.384	KOSHE	0.384	HADAM	0.384
FIT	0.384	EINSC	0.384	INTEL	0.384	HARD	0.384
DATAM	0.384	HABIT	0.384	EMPHA	0.384	HIRSC	0.384
FLOW	0.381	GUIDA	0.380	WORKI	0.380	MODIF	0.379
SINGU	0.375	IMPUL STORE	0.374	STAGE SUBCO	0.373	CAVIT	0.373
ROTAT	0.373	SIMSC	0.373	RETRO	0.373	RESER ASYMM	0.373
VIEWP	0.373	GRAHA	0.373	SCALI	0.373	TOLER	0.373
EVIDE	0.373	TAU	0.373	VERTE	0.373	MOVIN	0.373
AREAS	0.373	BENDI	0.373	WESCO	0.373	CONFO	0.373
UNFOR	0.373	TELEM	0.373	DEMOD	0.373	IMPED	0.373
RACHE	0.373	KORZH	0.373	AUTO	0.373	BLEND	0.373
BRAIN	0.373	CHURC	0.373	DISSE	0.372	THESA	0.372
TREE	0.372	LAPLA	0.365	FURTH	0.364	ENCOD	0.364
POSSI	0.362	ATLAS	0.362	TIMET	0.361	KUTTA	0.360
EXPRE	0.360	SENSE	0.357	EVENT	0.351	REGAR	0.349
NUCLE	0.349	PEOPL	0.349	DECEN	0.349	FILLI	0.349
POLE	0.349	UNIFC	0.347	INSTR	0.344		

TOTAL = 815

APPENDIX E

FURTHER SEARCH EXAMPLES

(I) Multi-parameter Search Example One

QUE			60	70
	MI	ULTI-PARAMETER SEARCH EXAMPLE ONE		
AND	T	MANAGEMENT		300
OR	T	INFORMATION		100
OR	T	SYSTEMS		100
AND	T	BUSINESS		300
OR	T	INFORMATION		100
OR	T	SYSTEMS		100
END				

The value of T' and T are respectively 0.466 and 0.733.

After normalization, the first request vector becomes (management, information, systems) which has the corresponding set of weights (0.905, 0.302, 0.302). The set of search output for parameter one is given as follows:

Relevance Value			Docume	ent		
0.655	AMDOA70210204MATHE/USING	TIP	SYSTE	ASSIS	FILE	MANAG
	EXERC					
0.598	AMDOA70210209HIGGE/MAYS	/SALUT	ASIS	MANAG	SYSTE	EXERC

USING PL1 USING GENER PURPO SYSTE

- AMDOA69200111HELMK/MANAG COST ACCOU TECHN INFOR CENTE 0.505 AM DOA 70210163COCKR/SMITH/DOUGL/BENDE/APPLI MANAG COST 0.502 ACCOU SCIEN INFOR 0.477
- AMDOA702102140LLE /GAGNO/SOLUT ASIS FILE MANAG EXERC USING KCA UL1
- 0.472 AMDOA70210219BLOOM/APPLI CAPRI ASIS FILE MANAG EXERC

Since the highest relevance value of this set of documents is 0.655 which is in the interval [0.466, 0.733], iterative search is required. The new query vector is (management, information, systems, using, tip, assistance, file, exercise) which has the corresponding set of weights (0.597, 0.302, 0.802, 0.0, 0.0, 0.0, 0.576, 0.0). Note that the new request vector for parameter one now includes FILE as a significant term. The value of α_1 is 0.504. By using a cutoff value of 0.550, the final set of search output for parameter one is given as follows:

Relevance Value	9					Docume	ent		
0.963	AM DO A	7021020	4MATHE/	USING	TIP	SYSTE	ASSIS	FILE	MANAG
			EXERC						
0.852	AM DO A	70210209	HIGGE/	MAYS ,	SALUT	ASIS	MANAG	SYSTE	EXERC
			USING	PL1	USING	GENER	PURPO	SYSTE	
0.699	AMDOA	166170026	SPARKE/	USERS	PLACE	INFOR	SYSTE		
0.670	AM DO A	70210040)HOLER/	THREA	FILE	RETRI	SYSTE		
0.631	AMDOA	7021027	4BURCH/	ROLE	FEDER	GOVER	INFOR	SYSTE	EDUCA
0.572	AM DO A	69200279	9SWANS/	USER	ORIEN	INFOR	SYSTE		
0.566	ACJ	6901020	AUSTI/	HOLDE,	RECEN	DEVEL	DAD	SYSTE	

0.565 AMDOA68190181WALL / POSSI ARTIC INFOR SYSTE NETWO

0.550 AMDOA68190221JORDA/FRAME COMPA SDI SYSTE

0.550 AMDOA70210160RICHM/COMPA SYSTE LABOR

After normalization, the second request vector becomes (business, information, systems) which has the corresponding set of weights (0.905, 0.302, 0.302). The set of search output for parameter two is given as follows:

Relevance Value Document

0.674 AMDOA68190265CUETO/USING INFOR LIFE INSUR BUSIN WORLD

Since the only relevance value is 0.674 which is in the interval [0.466, 0.733], iterative search is required. The new query vector is (business, information, systems, using, life, insurance, world) which has the corresponding set of weights (0.571, 0.806, 0.302, 0.0, 0.0, 0.525, 0.0). Note that the new request vector for parameter two now includes INSURANCE as a significant term. The value of α_1 is 0.565. By using a cutoff value of 0.550, the final set of search output for parameter two is given as follows:

Relevance Value Document

0.965 AMDOA68190265CUETO/USING INFOR LIFE INSUR BUSIN WORLD

0.696 AMDOA68190286MILLE/PSYCH INFOR

0.696	AMDOA702100890TTEN/DEBCN/	METAS	INFOR			
0.659	AMDOA66170026PARKE/USERS	PLACE	INFOR	SYSTE		
0.639	AMDOA70210004HUMPH/INFOR	PEACE				
0.622	AMDOA70210274BURCH/ROLE	FEDER	GCVER	INFOR	SYSTE	EDUCA
0.604	AMDOA68190375COTTR/EVALU	COMPR	SCIEN	TECHN	INFOR	NUCLE
	SAFET INFOR	CENTE				
0.600	AMDOA65160291GARVI/INFOR	SURVE	MODER	LINGU		
0.597	AMDOA67180235BUCHA/HUTTO,	ANALY	AUTOM	HANDL	TECHN	INFOR
	NUCLE SAFET	INFOR				
0.596	AMDOA681902000CONN/QUEST	CONCE	INFOR	NEED		
0.584	AM DO A 702 10095 BROMB/ECONO	INFOR				
0.563	AMDOA69200279SWANS/USER	ORIEN	INFOR	SYSTE		
0.558	AMDOA69200039LUNIN/ACADE	INFOR	CENTE			
0.556	AMDOA68190181WALL /POSSI	ARTIC	INFOR	SYSTE	NETWO	
0.556	AMDOA68190305THOMP/ORGAN	INFOR				

(II) Multi-parameter Search Example Two

QUE			60	70	
	MU	ULTI-PARAMETER SEARCH EXAMPLE TWO			
AND	T	COMPUTER		300	
OR	T	SIMULATION		500	
OR	T	SMALL		100	
OR	T	INFORMATION		300	
OR	T	SYSTEM		200	
AND	T	COMPUTER		300	
OR	T	SIMULATION		500	
OR	T	SMALL		100	
OR	T	INFORMATION		300	
OR	T	NETWORK		200	
END					

After normalization, the first request vector becomes (computer, simulation, small, information, system) which has the corresponding set of weights (0.433, 0.722, 0.144, 0.433, 0.289). The value of T and T are respectively 0.466 and 0.733. The set of search output for parameter one is given as follows:

Relevance Value		Docu	nent		
0.907	AMDOA68190120CARAS/COMPU SI	IMUL SMAL	INFOR	SYSTE	
0.625	AMDOA68190363BAKER/NANCE/US	SE SIMU	STUDY	INFOR	STORA
	RETRI SYSTE				

0.552	AMDOA70210285JERMA/PROMI	DEVEL	COMPU	ASSIS	INFOR	
0.534	AMDOA64150142BOURN/FORD	/COSI	ANALY	SIMUL	PROCE	EVALU
	LARGE INFOR	SYSTE				
0.504	AMDOA66170026PARKE/USERS	PLACE	INFOR	SYSTE		
0.489	AMDOA68190278MCCON/COMPU	GRAPH	ASSEM	LINE	INFOR	
0.476	AMDOA70210274BURCH/ROLE	FEDER	GCVER	INFOR	SYSTE	EDUCA

After normalization, the second request vector becomes (computer, simulation, small, information, network) which has the corresponding set of weights (0.433, 0.722, 0.144, 0.433, 0.289). The set of search output for parameter two is given as follows:

Relevance Value			Docume	ent		
0.758	AMDOA68190120CARAS/COMPU	SIMUL	SMALL	INFOR	SYSTE	
0.552	AMDOA70210285JERMA/PRCMI	DEVEL	COMPU	ASSIS	INFOR	
0.489	AMDOA68190278MCCON/CCMPU	GRAPH	ASSEM	LINE	INFOR	
0.479	AMDOA68190363BAKER/NANCE	/USE	SIMUL	STUDY	INFOR	STORA
	RETRI SYSTE					

Since the highest relevance values of the two sets of documents are greater than 0.733, this search request does not require iterative searches. The final set of search output to be presented to the user in both examples will be the set of documents common to the two sets of output in respond to the two parameters.

B30030