Basic Electrical Technology

CHAPTER 3 – PARALLEL AC CIRCUITS

Impedance in parallel

Let
$$Z_1 = R_1 + jX_1$$
 $Z_2 = R_2 + jX_2$

$$\frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2}$$
 $I_1 = I * \frac{Z_2}{Z_1 + Z_2}$ $I_2 = I * \frac{Z_1}{Z_1 + Z_2}$

$$Y_{eq} = Y_1 + Y_2$$
 Y: Admittance

$$Y_1 = \frac{1}{Z_1} = \frac{1}{R_1 + jX_1} = \frac{1}{(R_1 + jX_1)} * \frac{(R_1 - jX_1)}{(R_1 - jX_1)} = \frac{R_1}{(R_1^2 + X_1^2)} - j\frac{X_1}{(R_1^2 + X_1^2)} = G_1 - jB_1$$

$$Y_2 = \frac{1}{Z_2} = \frac{1}{R_2 + jX_2} = \frac{1}{(R_2 + jX_2)} * \frac{(R_2 - jX_2)}{(R_2 - jX_2)} = \frac{R_2}{(R_2^2 + X_2^2)} - j\frac{X_2}{(R_2^2 + X_2^2)} = G_2 - jB_2$$

G: Conductance B: Susceptance

$$Y_{eq} = (G_1 + G_2) - j(B_1 + B_2) = G_{eq} - jB_{eq}$$

Impedance in parallel

For 'N' impedances connected in parallel,

$$\frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \dots + \frac{1}{Z_N}$$

$$Y_{eq} = Y_1 + Y_2 + Y_3 + \dots + Y_N$$

$$\mathbf{Y_{eq}} = \mathbf{G_{eq}} \pm \mathbf{j} \mathbf{B_{eq}}$$

$$I_1 = VY_1; I_2 = VY_2; I_3 = VY_3; \dots I_N = VY_N$$

$$I = I_1 + I_2 + I_3 + \dots + I_N = VY_{eq}$$

Network equations for AC circuits

$$\begin{bmatrix} V_1 \\ \vdots \\ V_N \end{bmatrix} = \begin{bmatrix} Z_{11} & \cdots & Z_{1N} \\ \vdots & \ddots & \vdots \\ Z_{N1} & \cdots & Z_{NN} \end{bmatrix} \begin{bmatrix} I_1 \\ \vdots \\ I_N \end{bmatrix}$$
$$[V] = [Z][I]$$

$$\begin{bmatrix} I_1 \\ \vdots \\ I_N \end{bmatrix} = \begin{bmatrix} Y_{11} & \cdots & Y_{1N} \\ \vdots & \ddots & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{bmatrix} \begin{bmatrix} V_1 \\ \vdots \\ V_N \end{bmatrix}$$
$$[I] = [Y][V]$$

All the other theorems are applicable to the AC circuits

Crammers rule

$$\begin{bmatrix} V_1 \\ \vdots \\ V_N \end{bmatrix} = \begin{bmatrix} Z_{11} & \cdots & Z_{1N} \\ \vdots & \ddots & \vdots \\ Z_{N1} & \cdots & Z_{NN} \end{bmatrix} \begin{bmatrix} I_1 \\ \vdots \\ I_N \end{bmatrix}$$

Solution for the linear simultaneous equations above is as follows $\underline{Step\ l}$: finding the determinant

$$\Delta = \begin{vmatrix} Z_{11} & \cdots & Z_{1N} \\ \vdots & \ddots & \vdots \\ Z_{N1} & \cdots & Z_{NN} \end{vmatrix}$$

<u>Step 2</u>: finding the determinant after substituting first column with RHS column matrix

$$\Delta_1 = \begin{vmatrix} \boldsymbol{V}_1 & \cdots & \boldsymbol{Z}_{1N} \\ \vdots & \ddots & \vdots \\ \boldsymbol{V}_N & \cdots & \boldsymbol{Z}_{NN} \end{vmatrix}$$

Step 3 : Solution for
$$I_1$$
 $I_1 = \frac{\Delta_1}{\Delta}$

Illustration I

Assigning two mesh currents, find the voltage V across the capacitor in the following circuit

Ans:
$$V = 22.36 \angle -10.30^{\circ}V$$

Illustration 2

Use node voltage method to obtain the current I in the network

Ans:
$$I = 12.38 \angle - 17.75^{\circ} A$$

Maximum power transfer theorem

	Type of load	Condition of maximum power transfer
Case I	Load is purely resistive	$R_L = \sqrt{R_{th}^2 + X_{th}^2}$
Case 2	Both R _L & X _L are variable	$Z_L = Z_{TH}^*$
Case 3	X_L is fixed & R_L is variable	$R_L = \sqrt{R_{th}^2 + (X_{th} + X_L)^2}$

Thank You!