FIS01-09496 Obrigatória

Universidade do Estado do Rio de Janeiro

Instituto de Física Departamento de Física Teórica

Física I

Prof. Rafael F. Aranha

Exame de	Reposi	ição
21 de setem	bro de 2	2022

I	NOTA:	
ı		
ı		
ı		

Nome: _____

Questão 01 (2,5 pontos)

Um corpo em queda percorre 65, 1m durante o último segundo do seu movimento. Admitindo que o corpo tenha partido do repouso, determine (a) a altura da qual caiu e (b) o tempo que demorou a chegar ao solo.

Questão 02 (2,5 pontos)

As coordenadas de uma partícula em movimento são dadas por

$$x = t^2$$
, $y = (t-1)^2$.

(a) Encontre as componentes retangulares da sua velocidade e da sua aceleração médias no intervalo de tempo compreendido entre t e $t+\Delta t$. (b) Aplique o resultado ao caso em que t=2s e $\Delta t=1s$. (c) Compare o resultado de (b) com os valores das componentes retangulares da velocidade e da aceleração para t=2s.

Questão 03 (2,5 pontos)

Um corpo que possui massa de 45 kg é lançado verticalmente com uma velocidade inicial de 60 m/s. O corpo enfrenta uma força de resistência do ar $\vec{F} = -(3v/100)\hat{j}$ N, onde v é a norma da velocidade do corpo em m/s. Calcule o tempo desde o lançamento até a máxima altitude. Qual é a altitude máxima?

UERJ-IF-DFT 2022-1

FIS01-09496 Obrigatória

Questão 04 (2,5 pontos)

Um corpo o qual está inicialmente em repouso, na posição $\vec{r}=x_0\hat{i}$, move-se em uma linha reta sob a ação de uma força $\vec{F}=-(K/x^2)\hat{i}$, onde K é uma constante. Mostre que o quadrado da velocidade associada a esta força, como função de x, é dada por $\vec{v}^2=2(K/m)(1/x-1/x_0)$.

Boa prova!

UERJ-IF-DFT 2022-1