Particle spectrograph

Wave operator and propagator

cdb		
		-
$0 = +^{0}$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$+2ik \sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	е
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	ĸ
$^3 + ik \ \sigma_1^{\#2} \alpha \beta == 0$	$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	Э
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\alpha \sigma^{\delta\epsilon}{}_\delta +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta\delta\epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta\epsilon}_{\ \ \delta} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha \delta \epsilon} +$	
	$3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\beta \delta}{}_{\delta}$	
$\tau_{2^+}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} +$	
	$3\partial_{\delta}\partial_{\lambda}\partial_{\lambda}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\lambda}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$	
$\sigma_2^{\#1}\alpha\beta == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge generators:	ge generators:	26

Quadratic (free) action	$S == \iiint (\frac{1}{6} \left(-4 t_3 \ \omega^{\alpha}_{\alpha} \ \omega^{\kappa}_{i \ \kappa} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 8 t_3 \ \omega^{\kappa}_{\alpha \ \kappa} \ \partial_i f^{\alpha\prime} - \right)$	$8t_3\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$2t_2\partial_{lpha}f_{,eta}\partial^{eta}f^{lpha\prime}$ - $t_2\partial_{lpha}f_{eta\prime}$ - $t_2\partial_{\imath}f_{lphaeta}\partial^{eta}f^{lpha\prime}$ +	$t_2 \partial_{\theta} f_{\alpha \prime} \partial^{\theta} f^{\alpha \prime} - t_2 \partial_{\theta} f_{\prime \alpha} \partial^{\theta} f^{\alpha \prime} - 4 t_2 \omega_{\alpha \theta \prime} (\omega^{\alpha \prime \theta} + \partial^{\theta} f^{\alpha \prime}) +$	$2t_2\omega_{lpha_I heta}(\omega^{lpha_I heta}+2\partial^ heta f^{lpha_I})+8r_2\partial_eta\omega_{lpha_I heta}\partial^ heta\omega_{lpha_I}$ -	$4r_2\partial_eta\omega_{lphaeta_1}\partial^eta\omega^{lphaeta_1}+4r_2\partial_eta\omega_{_Ietalpha}\partial^eta\omega_{_{lpha}}$ -	$2r_2\partial_{\scriptscriptstyle 1}\omega_{lphaeta heta}\partial^{ heta}\omega^{lphaeta_{\scriptscriptstyle 1}} + 2r_2\partial_{ heta}\omega_{lphaeta_{\scriptscriptstyle 1}}\partial^{ heta}\omega^{lphaeta_{\scriptscriptstyle 1}} - 4r_2\partial_{ heta}\omega_{lpha{\scriptscriptstyle 1}eta}$	$\partial^{\theta}\omega^{lphaeta\prime} + 6r_{5}\partial_{\prime}\omega^{\kappa}_{-6r_{5}\partial_{\theta}\omega^{\kappa}_{+$	$4t_3\partial_{\scriptscriptstyle j} f^{\alpha\prime}\partial_{\scriptscriptstyle k} f_{}^{k} - 8t_3\partial^{\prime} f^{\alpha}_{\alpha}\partial_{\scriptscriptstyle k} f_{\prime}^{k} - 6r_5\partial_{\alpha}\omega^{\alpha\prime\theta}\partial_{\scriptscriptstyle k}\omega_{\prime}^{k} +$	$12 r_5 \partial^{\theta} \omega^{\alpha_{l}} \partial_{\kappa} \omega^{\kappa}_{l} \partial_{\rho} + 6 r_5 \partial_{\alpha} \omega^{\alpha_{l}\theta} \partial_{\kappa} \omega^{\kappa}_{\theta} -$	$12r_5\partial^{ heta}\omega^{lpha_I}_{lpha}\partial_{\kappa}\omega^{}_{I}))[t,\kappa,y,z]d\!\!/\!zd\!\!/\!yd\!\!/\!xd\!\!/\!t$	f#1 f#2 f#1 f#2 f#1 f#1
Quadratic (fr	$S == \iiint \left(\frac{1}{6} \right) (-1)^{-1}$											# ₁

0

0

0

0

0

0 0

0

 $\sigma_{1}^{#1} + \alpha$ $\sigma_{1}^{#2} + \alpha$ $\tau_{1}^{#2} + \alpha$ $\tau_{1}^{#2} + \alpha$

0

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	$t_2^{\#1}$	0	0	0			
${r_0^{\#2}}$	0	0	0	0						$\sigma_2^{\#1}{}_+ \alpha \beta$	0	0	0			
${f r}_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	$f_{0}^{#1}$ $f_{0}^{#2}$	$i\sqrt{2}kt_3$ 0	$2 k^2 t_3 \qquad 0$	0 0	0 0		$\sigma_{2}^{\#1} + ^{lphaeta}$		$\sigma_{2}^{\#1} + \alpha \beta \chi$. #1	$_3~\omega_2^{\#1}_{~lphaeta\chi}$	
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0	$\omega_{0}^{\#1}$		$i\sqrt{2}kt_3$	0	0		$\frac{1}{+} + \frac{\alpha\beta}{+}$	0	αβ	2 ⁺ αμ 0	$\begin{array}{c c} 3 & \omega_2^{-1} & \alpha \beta \chi \\ \hline & 0 \\ \hline & 0 \end{array}$	
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0^-}^{\#1}$ †		$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1}$ \dagger	_	$+^{\alpha\beta\chi}$			0	0	
		$\omega_1^{\#}$	1 ⁺ αβ	$\omega_1^{\!\scriptscriptstyle \#}$	‡2 . ⁺ αβ	f_1^{\sharp}	‡1 .+ αβ		$\omega_1^{\#}$	1 α	ω	#2 1 α	f_1^{\sharp}	‡1 - α	$f_{1-\alpha}^{\#2}$	
$\omega_{1}^{\#1} + \alpha^{\beta} k^{2} r_{5} + \frac{2t_{2}}{3}$			<u>2</u>	$\frac{\overline{2} t_2}{3}$	$\frac{1}{3}$ \bar{l} \uparrow	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$		0			0		0	0		
$\omega_1^{\!\scriptscriptstyle \#}$	$\omega_{1+}^{\#2} \uparrow^{\alpha\beta}$ $\frac{\sqrt{2} t_2}{3}$			<u>t2</u> 3	<u>i k t 2</u> 3			0		0			0	0		
$f_1^{\#}$	$^{\dagger 1}_{+}$ † $^{\alpha \beta}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$		$\frac{1}{2} - \frac{1}{3}$	ikt2	$\frac{k^2 t_2}{3}$			0		0		(0	0	
μ	$p_{1}^{\#1} + \alpha$	0			0	0		k	$k^2 r_5 + \frac{2t_3}{3}$		$-\frac{\sqrt{2}\ t_3}{3}$			0	$-\frac{2}{3}l\!\!/kt_3$	
ω	$\frac{^{#2}}{1}$ † $^{\alpha}$	0			0) 0				$\frac{\sqrt{2} t_3}{3}$		<u>t3</u> 3		0	$\frac{1}{3}$ \bar{i} $\sqrt{2}$ kt	<u>,</u> 3
f_1^{3}	$^{\sharp 1}_{L}^{\dagger}$	\uparrow^{α} 0			0	0			0		0			0	0	
$f^{\frac{1}{2}}$	$f_{1}^{#2} \uparrow^{\alpha}$ 0			0	0			2 <i>ikt</i> 3 3		$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$		t_3	0	$\frac{2k^2t_3}{3}$		
,]										,					3	

0 0 0

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$