LDPRED2: BETTER, FASTER, STRONGER

PRIVÉ, ARBEL, VILHJÁLMSSON; BIORXIV 2020

DISCUSSION LED BY: BÁRBARA BITARELLO

02 - 07 - 2020

BACKGROUND: LDPRED

Important background

1 |

WHAT DOES LDPRED DO?

Published in 2015: \sim 435 citations (less than PRSice from same year)

matrix of correlation between genetic variants (LD matrix), summary statistics from GWAS (β , p-value), genotype and phenotype files from test and validation sets

Infinitesimal:

- All markers are causal
- Effect sizes drawn from Gaussian
- Computationally efficient
- Not very plausible

Non-infinitesimal

- Assumes p of variants are causal - more plausible
- Analytical solution hard
 approximate MCMC
 Gibbs sampler (not efficient nor robust)

WHAT DOES LDPRED DO?

But actually also requires:

- big LD reference panel, correct model specifications not trivial
- Steps:
 - Coordinating summary stats, LD reference genotypes, validation or test genotypes
 - Estimating weights for variants which requires additional parameters.
 - ► Calculating PRS
 - ► User needs to calculate partial-R² on their own (e.g. in R)

LDPRED MODEL - OVERVIEW

LDpred uses a Bayesian framework to assing effect sizes from provided summary statistics and LD information

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)} \tag{1}$$

LDPRED MODEL - OVERVIEW

Unlinked markers and non-infinitesimal architecture Effects are drawn from a mixture distribution:

$$\beta_j \sim \begin{cases} N(O, \frac{h^2}{Mp}), & \text{with probability } p. \\ O, & \text{otherwise.} \end{cases}$$
 (2)

- -LDpred1: h^2 estimated with constrained LD score regression (fixed intercpept=1)
- -Gibbs sampler algorithm:

GIBBS SAMPLER ALGORITHM: MAIN STEPS

- 1. residualized effect sizes for each variant $j: \tilde{\beta}_j$
- 2. probability that variant j is causal: $\bar{p_i}$
- 3. β_i is sampled according to:

$$\beta_{j}|\tilde{\beta}_{j} \sim \begin{cases} N(\frac{1}{1+\frac{Mp}{nh^{2}}}\tilde{\beta}_{j}, \frac{1}{1+\frac{Mp}{nh^{2}}}\frac{1}{n}), & \text{with probability } p. \\ O, & \text{otherwise.} \end{cases}$$
(3)

4. posterior mean of $\beta_j | \tilde{\beta}_j$: ω_j

GIBBS SAMPLER ALGORITHM: MAIN STEPS

Algorithm 1 LDpred, with hyper-parameters p and h^2 , LD matrix R and summary statistics $\hat{\gamma}$, se($\hat{\gamma}$) as

1:
$$\hat{\boldsymbol{\beta}} \leftarrow \frac{\hat{\boldsymbol{\gamma}}}{\operatorname{se}(\hat{\boldsymbol{\gamma}}) \cdot \sqrt{n}}$$

▶ Initialization of scaled marginal effects (see previous se

3: for $k = 1, \ldots, N_{\text{burn-in}} + N_{\text{iter}}$ do

▷ Initialization of posterior

⊳ All v

- for each variant i do 4:
- Compute $\tilde{\beta}_i$ according to (3) 5:
- Compute \bar{p}_i according to (4) 6:
- Sample β_i according to (5) 7:
- 8: Compute ω_i according to (6)
- end for 9:
- if $k > N_{\text{burn-in}}$ then 10:
- 11. $\Omega \leftarrow \Omega + \omega$
- end if 12:
- 13: end for
- 14: $\Omega \leftarrow \Omega/N_{\text{iter}}$

 \triangleright Average of all ω after b

15: Return $\Omega \cdot \operatorname{se}(\hat{\gamma}) \cdot \sqrt{n}$

▶ Return posterior means, scaled back (see previous se

LDPRED: PROS AND CONS OVERVIEW

PROS:

- elegant modelling of genetic architecture
- assigns weights to variants instead of arbitrary P+T
- also offers P+T in the same framework
- mostly runs PLINK in the background, and Python scripts

CONS:

- Errors messages are cryptic
- Slow
- Gibbs sampler extremely sensitive to model parameters
- particularly bad for long-range LD regions (e.g HLA)
- MCMC setup might or not improve things and makes it it much slower

16

■ No manual available.

NEW METHOD: LDPRED2

LDPRED2: WHAT'S NEW?

- Runs in bigsnpr package in R.
- LDpred-auto: learns parameters from the data. Stronger
- More accurate PRS: simulation and real data benchmarking
- Compares favorably to LDpred 1 and other methods [sort of]
- parallelization in C++ FASTER
- has tutorial!! Better https://privefl.github.io/ bigsnpr/articles/LDpred2.html

SIMULATIONS: METHODS

Binary phenotypes; each set 10X (average AUC is reported)

- UKBB data
- unrelated individuals 360K
 - ▶ 10,000 for validation, LD reference
 - ► 300,000 for GWAS
 - ightharpoonup \sim 52,000 as test set
- HapMap3 variants 1.1 Million
- $h^2 = 0.4 \text{ or } h^2 = 0.3, \text{ prevalence 15}\%$
- \blacksquare $M = \{300, 3000, 30000, 300000\}$
- Variance of genetic liability=h²
- HLA region
- Implemented in bigsnpr

REAL DATA: METHODS

- Unrelated individuals 360K
- All case-control phenotypes
- 10,000 for validation, LD reference
- lacksquare \sim 352,000 as test set
- Compare LDpred1, LDpred2, C+T, SCT, lassosum, PRS-CS
- summary statistics:

Trait	GWAS citation	GWAS sample size	GWAS #variants
Breast cancer (BRCA)	Michailidou et al. (2017)	137,045 / 119,078	11,792,542
Rheumatoid arthritis (RA)	Okada <i>et al.</i> (2014)	29,880 / 73,758	9,739,303
Type 1 diabetes (T1D)	Censin et al. (2017)	5913 / 8828	8,996,866
Type 2 diabetes (T2D)	Scott et al. (2017)	26,676 / 132,532	12,056,346
Prostate cancer (PRCA)	Schumacher et al. (2018)	79,148 / 61,106	20,370,946
Depression (MDD)	Wray et al. (2018)	59,851 / 113,154	13,554,550
Coronary artery disease (CAD)	Nikpay et al. (2015)	60,801 / 123,504	9,455,778
Asthma	Demenais et al. (2018)	19,954 / 107,715	2,001,280

Table 1: Summary of external GWAS summary statistics used. The GWAS sample size is the number of cases / controls in the GWAS.

METHODS: PERFORMANCE COMPARISONS

$$TPR = \frac{TP}{TP+FN}$$

$$Specificity = \frac{TN}{TN+FP}$$

$$FPR = 1 - Specifcity$$

Image: https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

SIMULATIONS: RESULTS

REAL DATA: RESULTS

ŧ.

REAL DATA: RESULTS

CONCLUSIONS

- Strengths: long-range LD and less polygenic traits, does not require validation step
- solves gibbs sampler inconsistencies
- higher prediction accuracy then LDpred1
- Use HapMap3 variants

- Not really better than lassosum?
- Still kinda slow

QC FOR LDPRED2-AUTO

Figure S2: Standard deviations derived from summary statistics of breast cancer based on equation (\overline{SI}) versus the standard deviations of genotypes of individuals in the validation set. Coloring shows the quality control applied in this paper.