Problem: Given a polygonal path $p_0,...,p_{m-1}$ and triangles $t_0,...,t_{n-1}$, what is the minimum length of an interval $[b,e)\subseteq[0,n)$ s.t. each leg p_ip_{i+1} of the path is contained in at least one of $t_b,...,t_{e-1}$?

Best covering is t_1, t_2, t_3 answer is 3.

Twist: Each triangle t is given as $(v_0,v_1,v_2,v_3,v_4,v_5)$, where every pair (v_0,v_1) , (v_2,v_3) , and (v_4,v_5) lies in the relative interior of a different side/edge of t.

Q: How to test whether a triangle contains a leg?

Q: How to test whether a triangle contains a leg?

⇔ the triangle contains both endpoints (by convexity)

Q: How to test whether a triangle contains a point?

Q: How to test whether a triangle contains a point?

Idea #1: Construct the vertices w₀,w₁,w₂ of t, feed them into a CGAL::Triangle_2 t, and use !t.has on unbounded side (p). (or CGAL::do_intersect(t,p))

Idea #1: Construct the vertices w₀,w₁,w₂ of t, feed them into a CGAL::Triangle_2 t, and use !t.has_on_unbounded_side(p). (or CGAL::do_intersect(t,p))

Q: What's the problem with constructions?

Coordinates of constructed objects may be much larger than those of the input objects.

Idea #2: Use $(v_0,v_1,v_2,v_3,v_4,v_5)$ directly to test whether a triangle t contains a point p.

Obs: $p \in t \Leftrightarrow \text{none of } (v_1, v_0, p), (v_2, v_3, p), \text{ and } (v_5, v_4, p)$ form a right-turn. This is not only more efficient than Idea#1 but also less work to code.

Problem: Given a polygonal path p₀,...,p_{m-1} and triangles t₀,...,t_{n-1}, what is the minimum length of an interval [b,e) \subseteq [0,n) s.t. each leg p_ip_{i+1} of the path is contained in at least one of t_b,...,t_{e-1}?

Q: How to find a minimum length interval [b,e)?

Idea #1: Try all of them.

There are $\binom{\mathfrak{n}}{2} = \Theta(\mathfrak{n}^2)$ possible intervals and testing whether an interval is a cover can be done in O(mn).

an O(mn³) algorithm

That is a lot! Can we do better?

Problem: Given a polygonal path $p_0,...,p_{m-1}$ and triangles $t_0,...,t_{n-1}$, what is the minimum length of an interval $[b,e)\subseteq[0,n)$ s.t. each leg p_ip_{i+1} of the path is contained in at least one of $t_b,...,t_{e-1}$?

Q: How to find a minimum length interval [b,e)?

Idea #2: Similar intervals cover a similar set of legs.

Update covering information rather than recompute it.

