Sensor and Data Fusion

A Tool for Information Assessment and Decision Making

Sensor and Data Fusion

A Tool for Information Assessment and Decision Making

Lawrence A. Klein

SPIE PRESS

A Publication of SPIE—The International Society for Optical Engineering Bellingham, Washington USA

Library of Congress Cataloging-in-Publication Data

Klein, Lawrence A.

Sensor and data fusion : a tool for information assessment and decision making / by Lawrence A. Klein.

p. cm

Includes bibliographical references and index.

ISBN 0-8194-5435-4

1. Signal processing—Digital techniques. 2. Multisensor data fusion. I. Title.

TK5102.9.K53 2004 681'.2—dc22

2004003963

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: +1 360 676 3290

Fax: +1 360 6/6 328 Fax: +1 360 647 1445 Email: spie@spie.org Web: http://spie.org

Copyright © 2004 The Society of Photo-Optical Instrumentation Engineers

Third printing 2010.

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

To Jonathan, Amy, and Gregory

Contents

List of Figu	res		xiii
List of Tab	les		xvii
Preface	•••••		.xxi
Chapter 1		uction	
Chapter 2	Multip	le Sensor System Applications, Benefits, and Design	n
		erations	
2.1		sion applications to multiple sensor systems	
2.2		on of sensors	
2.3		s of multiple sensor systems	
2.4		ce of wavelength on atmospheric attenuation	
2.5	\mathcal{C}	aracterization	
2.6		of operating frequency on MMW sensor performance	
2.7		tion of MMW energy in rain and fog	
2.8		atter of MMW energy from rain	
2.9		of operating wavelength on IR sensor performance	
2.1		ity metrics	
		Visibility	
	2.10.2	Meteorological range	
2.1		ation of IR energy by rain	
2.1	12 Extinct	ion coefficient values (typical)	32
2.1		rry of attributes of electromagnetic sensors	
2.1	l4 Atmosp	oheric and sensor system computer simulation models.	38
	2.14.1	LOWTRAN attenuation model	38
	2.14.2	FASCODE and MODTRAN attenuation models	40
	2.14.3	EOSAEL sensor performance model	41
2.1	15 Summa	ıry	43
Re	eferences		46
Chapter 3	Data F	usion Algorithms and Architectures	51
3.1	Definit	ion of data fusion	51
3.2		processing	
5.2	3.2.1	Detection, classification, and identification algorithm	
	5.2.1	for data fusion	
	3.2.2	State estimation and tracking algorithms for	
	٠.٠.٢	data fusion	71
		www INDIVII	/ 1

viii Contents

	3.3	Level 2, 3, and	d 4 processing	78
	3.4		rocessor functions	
	3.5		an architecture	
	3.6		chitectures	
			or-level fusion	
			ral-level fusion	
			rid fusion	
		•	I-level fusion	
			ure-level fusion	
			sion-level fusion	
	3 7		int registration and size considerations	
	3.8			
Chapter	4	Classical Infe	erence	101
•	4.1		e statistics of a population	
	4.2		ne confidence interval	
	4.3		terval for a population mean	
	4.4		ests for hypotheses	
	4.5		the population mean	
	4.6		ed significance level	
	4.7		a population mean	
	4.8	Caution in use	e of significance tests	117
	4.9		decision	
	4.10			
Chapter	. 5	Bayesian Info	erence	127
ompre.	5.1			
	5.2		terms of odds probability and likelihood ratio	
	5.3		tion of Bayes' rule to cancer screening test	
				132
	5.4		of Bayesian inference with classical inference	
	5.5		f Bayesian inference to fusing information from	
	0.0		ces	
	5.6		ultiple sensor information using the odds	
	0.0		rm of Bayes' rule	136
	5.7		yesian updating	
	5.8		ulation using multivalued hypotheses and	
			ating	139
	5.9		derground mine detection using two sensors	
	5.7		lata generated by uncorrelated phenomena	142
	5.10			
		-		

CONTENTS

Chapter	6	Dempster-Shafer Evidential Theory	.149
_	6.1	Overview of the process	.149
	6.2	Implementation of the method	
	6.3	Support, plausibility, and uncertainty interval	.151
	6.4	Dempster's rule for combination of multiple sensor data	.156
		6.4.1 Dempster's rule with empty set elements	
		6.4.2 Dempster's rule when only singleton propositions ar	
		reported	
	6.5	Comparison of Dempster-Shafer with Bayesian decision	
		theory	.161
		6.5.1 Dempster-Shafer–Bayesian equivalence example	.162
		6.5.2 Dempster-Shafer–Bayesian computation time	
		comparisons	.163
	6.6	Probabilistic models for transformation of Dempster-Shafer	
		belief functions for decision making	.163
		6.6.1 Pignistic transferable belief model	
		6.6.2 Plausibility transformation function	.166
		6.6.3 Modified Dempster-Shafer rule of combination	.171
	6.7	Summary	
	Refere	ences	
Chapter	7	Artificial Neural Networks	
	7.1	Applications of artificial neural networks	
	7.2	Adaptive linear combiner	
	7.3	Linear classifiers	.185
	7.4	Capacity of linear classifiers	
	7.5	Nonlinear classifiers	
		7.5.1 Madaline	
		7.5.2 Feedforward network	
	7.6	Capacity of nonlinear classifiers	
	7.7	Supervised and unsupervised learning	
	7.8	Supervised learning rules	
		7.8.1 µ-LMS steepest descent algorithm	.196
		7.8.2 α-LMS error correction algorithm	.196
		7.8.3 Comparison of the μ -LMS and α -LMS	
		algorithms	.197
		7.8.4 Madaline I and II error correction rules	
		7.8.5 Perceptron rule	.198
		7.8.6 Backpropagation algorithm	.200
		7.8.7 Madaline III steepest descent rule	
		7.8.8 Dead zone algorithms	.203
	7.9	Generalization	.204
	7.10	Other artificial neural networks and processing	
		techniques	.205
	7.11	Summary	.207

CONTENTS

References		213	
Chapter	8	Voting Logic Fusion	.215
•	8.1	Sensor target reports	
	8.2	Sensor detection space	
		8.2.1 Venn diagram representation of detection space	.218
		8.2.2 Confidence levels	
		8.2.3 Detection modes	.219
	8.3	System detection probability	.221
		8.3.1 Derivation of system detection and false alarm	
		probability for nonnested confidence levels	.221
		8.3.2 Relation of confidence levels to detection and false	
		alarm probabilities	.223
		8.3.3 Evaluation of conditional probability	.224
		8.3.4 Establishing false alarm probability	.225
		8.3.5 Calculating system detection probability	.226
		8.3.6 Summary of detection probability computation	
		model	.226
	8.4	Application example without singleton sensor detection	
		modes	.227
		8.4.1 Satisfying the false alarm probability requirement	
		8.4.2 Satisfying the detection probability requirement	
		8.4.3 Observations	
	8.5	Hardware implementation of voting logic sensor fusion	
	8.6	Application example with singleton sensor detection modes.	.231
	8.7	Comparison of voting logic fusion with Dempster-Shafer	
		evidential theory	
	8.8	Summary	
	Refer	ences	.235
Chapter	9	Fuzzy Logic and Fuzzy Neural Networks	.237
•	9.1	Conditions under which fuzzy logic provides an appropriate	
		solution	.237
	9.2	Illustration of fuzzy logic in an automobile antilock	
		braking system	.238
	9.3	Basic elements of a fuzzy system	
	9.4	Fuzzy logic processing	
	9.5	Fuzzy centroid calculation	.241
	9.6	Balancing an inverted pendulum with fuzzy logic control	
		9.6.1 Conventional mathematical solution	
		9.6.2 Fuzzy logic solution	
	9.7	Fuzzy logic applied to multitarget tracking	.248
		9.7.1 Conventional Kalman filter approach	
		9.7.2 Fuzzy Kalman filter approach	
	9.8	Fuzzy neural networks	

CONTENTS xi

	9.9	Fusion of fuzzy-valued information from multiple	
		sources	258
	9.10	Summary	259
	Refer	rences	261
Chapter	10	Passive Data Association Techniques for Unambiguous	
•		Location of Targets	263
	10.1	Data fusion options	263
	10.2	Received-signal fusion	
		10.2.1 Coherent processing technique	267
		10.2.2 System design issues	269
	10.3	Angle data fusion	271
		10.3.1 Solution space for emitter locations	272
		10.3.2 Zero-one integer programming algorithm	
		development	275
		10.3.3 Relaxation algorithm development	280
	10.4	Decentralized fusion architecture	282
		10.4.1 Local optimization of direction angle track	
		association	283
		10.4.2 Global optimization of direction angle track	
		association	285
	10.5	Passive computation of range using tracks from a single sen	sor
		site	287
	10.6	Summary	288
	Refer	ences	290
Chapter	11	Retrospective Comments	293
Appendi	is A	Planck Radiation Law and Radiative Transfer	200
Appenu	A.1		
	A.1 A.2		
		erences	
	KCI	JULICOS	502
Appendi	ix B	Bayesian Inference Applied to Freeway Incident	
		Detection	307
		Problem statement and development	307
	B.2	Numerical Examples	311
Appendi	ix C	Plausible and Paradoxical Reasoning	313
PP cman	C.1	· · · · · · · · · · · · · · · · · · ·	
	0.1	information sources	313
	C 2	Plausible and paradoxical reasoning	
		Resolution of medical diagnosis dilemma.	

xii Contents

Appendix D	Summary of Results from Alternative Dempster-Shafe	r
	Models Applied to Godfather-Mr. Jones Saga	319
D.	1 Coin toss (\hat{E}_1) only evidence	319
	2 Coin toss (E_1) and Peter's alibi (E_2) evidence	
Appendix E	Training-Set Size for Valid Generalization	321
Appendix F	Voting Fusion with Nested Confidence Levels	323
Appendix G	Fuzzy-Set Boundaries, Fuzzy-Set Widths, and	
	Defuzzification Methods	325
G.	1 Fuzzy-set boundaries	325
	2 Effects of fuzzy-set widths on control	
	3 Defuzzification methods	
Index		320

List of Figures

Figure 2.1	Signature-generation phenomena in the electromagnetic	
	spectrum	10
Figure 2.2	Bistatic radar geometry	12
Figure 2.3	Active and passive sensors operating in different regions of the	
	electromagnetic spectrum produce target signatures generated by	
	independent phenomena	
Figure 2.4	Sensor resolution versus wavelength	14
Figure 2.5	Sensor fusion concept for ATR using multiple sensor data	15
Figure 2.6	Multiple sensor versus single sensor performance with	
	suppressed target signatures	16
Figure 2.7	Target discrimination with MMW radar and radiometer data	17
Figure 2.8	Atmospheric attenuation spectrum from 0.3 µm to 3 cm	
Figure 2.9	Absorption coefficient in rain and fog as a function	
	of operating frequency and rain rate or water concentration	24
Figure 2.10	Rain backscatter coefficient as a function of frequency	
	and rain rate	27
Figure 2.11	Rain backscatter coefficient reduction by circular polarization	
Figure 2.12	IR transmittance of the atmosphere	28
Figure 2.13	Atmospheric transmittance in rain	33
Figure 2.14	Typical 94-GHz radar backscatter from test area in absence of	
_	obscurants	36
Figure 2.15	Visible, mid-IR, and 94-GHz sensor imagery obtained during	
	dispersal of water fog	36
Figure 2.16	Visible, mid- and far-IR, and 94-GHz sensor imagery obtained	
	during dispersal of graphite dust along road	37
Figure 3.1	Data fusion model showing processing levels 0, 1, 2, 3, and 4	53
Figure 3.2	Data fusion processing levels 1, 2, and 3	53
Figure 3.3	Taxonomy of detection, classification, and identification	
	algorithms	55
Figure 3.4	Physical model concept	57
Figure 3.5	Laser radar imagery showing shapes of man-made and natural	
	objects	58
Figure 3.6	Classical inference concept	59
Figure 3.7	Parametric templating concept based on measured emitter	
	signal characteristics	64
Figure 3.8	Parametric templating using measured multispectral	
	radiance values	65

xiv List of Figures

Figure 3.9	Cluster analysis concept	66
Figure 3.10	Knowledge-based expert system concept	70
Figure 3.11	Taxonomy of state estimation and tracking algorithms	71
Figure 3.12	Military command and control system architecture showing fusi	on
C	of information from multiple sources at multiple locations	
Figure 3.13	Sensor-level fusion	
Figure 3.14	Central-level fusion	
Figure 3.15	Hybrid fusion	
Figure 3.16	Distributed fusion architecture	
Figure 3.17		
Figure 3.18	Feature-level fusion in an artificial neural network classifier	
Figure 4.1	Interpretation of the standard deviation of the sample mean for a normal distribution	
Figure 4.2	Central area of normal distribution included in a confidence level <i>C</i>	. 104
Figure 4.3	Interpretation of confidence interval with repeated sampling	
Figure 4.4	Confidence intervals of 90 and 99 percent for specimen analysis example	S
Figure 4.5	Confidence intervals of 90, 95, and 99 percent for roadway sens spacing example	or
Figure 4.6	Interpretation of two-sided <i>P</i> -value for metal sheet thickness example when sample mean = 2.98 mm	
Figure 4.7	Upper critical value z^* used in fixed significance level test	
Figure 4.8	Upper and lower $\alpha/2$ areas that appear in two-sided significance test	•
Figure 4.9	Comparison of <i>t</i> distribution with four degrees of freedom with standardized normal distribution	
Figure 4.10	Hypothesis rejection regions for single-sided power of a test	
	example	. 121
Figure 4.11	Hypothesis rejection regions for double-sided power of a test example	. 122
Figure 5.1	Venn diagram illustrating intersection of events E (person chose random is left-handed) and H (person chosen at random is female)	
Figure 5.2	Bayesian fusion process	
Figure 5.3	Influence diagram for two-sensor mine detection	
Figure 6.1	Dempster-Shafer data fusion process	
Figure 6.2	Dempster-Shafer uncertainty interval for a proposition	
Figure 7.1	Adaptive linear combiner	
Figure 7.2	Linearly and nonlinearly separable pattern pairs	
Figure 7.3	Adaptive linear element (Adaline)	. 186

LIST OF FIGURES xv

Figure 7.4 Probability of training pattern separation by an Adaline	
Figure 7.5 Madaline constructed of two Adalines with an AND threshold	
logic output	. 188
Figure 7.6 Threshold functions used in artificial neural networks	. 189
Figure 7.7 Fixed-weight Adaline implementations of AND, OR, and	
MAJORITY threshold logic functions	. 190
Figure 7.8 Three-layer fully connected feedforward neural network	. 191
Figure 7.9 Effect of number of hidden elements on feedforward neural net	work
training time and output accuracy for a specific problem	. 194
Figure 7.10 Learning rules for artificial neural networks that incorporate	
adaptive linear elements	. 195
Figure 7.11 Rosenblatt's perceptron	. 199
Figure 7.12 Adaptive threshold element of perceptron	
Figure 8.1 Attributes of series and parallel sensor output combinations	. 216
Figure 8.2 Detection modes for a three-sensor system	
Figure 8.3 Nonnested sensor confidence levels	
Figure 8.4 Detection modes formed by combinations of allowed	
sensor outputs	. 222
Figure 8.5 Sensor system detection probability computation model	
Figure 8.6 Hardware implementation for three-sensor voting logic fusion	
with multiple sensor detection modes	. 231
Figure 8.7 Hardware implementation for three-sensor voting logic fusion	
with single sensor detection modes	. 233
Figure 9.1 Fuzzy logic computation process	. 240
Figure 9.2 Shape of consequent membership functions for	
correlation-minimum and correlation-product inferencing	. 241
Figure 9.3 Model for balancing an inverted pendulum	
Figure 9.4 Triangle-shaped membership functions for the inverted pendulu	
example	
Figure 9.5 Fuzzy logic inferencing and defuzzification process for balancing	
an inverted pendulum	_
Figure 9.6 Validity membership function.	
Figure 9.7 Size-difference and intensity-difference membership functions.	
Figure 9.8 Similarity membership functions	
Figure 9.9 Innovation vector and the differential error antecedent members	
functions	
Figure 9.10 Correction vector consequent membership functions	. 256
Figure 9.11 Improving performance of the fuzzy tracker by applying gains	
to the crisp inputs and outputs	. 256
Figure 9.12 Yamakawa's fuzzy neuron	
Figure 9.13 Nakamura's and Tokunaga's fuzzy neuron	

xvi List of Figures

Figure 1	10.1	Passive sensor data association and fusion techniques	
		for estimating location of emitters	. 264
Figure 1	10.2	Coherent processing of passive signals	. 267
Figure 1	10.3	Cross-correlation processing of the received passive signals	. 269
Figure 1		Law of sines calculation of emitter location	
Figure 1	10.5	Unacceptable emitter locations	. 272
Figure 1	10.6	Ambiguities in passive localization of three emitter sources	
		with two receivers	. 273
Figure 1	10.7	Ambiguities in passive localization of <i>N</i> emitter sources	
		with three receivers	. 274
Figure 1	10.8	Passive localization of 10 emitters using zero-one integer	
C		programming	. 279
Figure 1	10.9	All subsets of possible emitter positions before prefiltering	
C		and cost constraints are applied.	. 279
Figure 1	10.10	Potential emitter positions that remain after prefiltering input	
		to zero-one integer programming algorithm	. 280
Figure 1	10.11		
		over 15 scans	. 284
Figure 1	10.12	Varad hinge angle	. 287
Figure A	Λ 1	Radiative transfer in an Earth-looking radiometer sensor	301
•			
Figure 1	A .2	Definition of incidence angle θ	302
Figure 1	B.1	Influence diagram for freeway event detection using data from	three
8		uncorrelated information sources	
Figure 1	F.1.	Nested sensor confidence levels	323
Eigung (C 1	Chart madism and tall sate as denisted in consentional and t	c
Figure (J.I	Short, medium, and tall sets as depicted in conventional and f	
Eigens 4	\sim 3	set theory	
Figure (Influence of fuzzy set widths on fuzzy set overlap	<i>32</i> 6
rionre (т 1	Lietuzzitication methods	1/h

List of Tables

Table 2.1	Common sensor functions and their implementations in precision	
	guided weapons applications	
Table 2.2	Radar spectrum letter designations	
Table 2.3	Extinction coefficient model for snow	
Table 2.4	Influence of MMW frequency on sensor design parameters	22
Table 2.5	Approximate ranges of extinction coefficients of atmospheric	
	obscurants (Np/km)	34
Table 2.6	Electromagnetic sensor performance for object discrimination	
	and track estimation	
Table 2.7	LOWTRAN 7 input card information	
Table 2.8	LOWTRAN aerosol profiles	
Table 2.9	EOSAEL 87 modules and their functions	. 43
Table 3.1	Object discrimination categories	
Table 3.2	Feature categories and representative features used in developing	
	physical models	
Table 3.3	Keno payoff amounts as a function of number of correct choices	
Table 3.4	Comparison of statistical, syntactic, and neural pattern recognition	
	(PR) approaches	
Table 3.5	Distance measures	
Table 3.6	Suggested data and track association techniques for different level	
	of tracking complexity	
Table 3.7	Signature-generation phenomena	
Table 3.8	Sensor, target, and background attributes that contribute to object	
	signature characterization	
Table 3.9	Comparative attributes of sensor-level and central-level fusion	. 88
Table 3.10	Advantages and issues associated with a distributed fusion	
	architecture	. 90
Table 4.1	Standard normal probabilities showing z^* for various confidence	
	levels	
Table 4.2	Relation of upper p critical value and C to z^*	113
Table 4.3	Values of t^* for several confidence levels and degrees of	
	freedom	
Table 4.4	Comparison of <i>z</i> -test and <i>t</i> -test confidence intervals	
Table 4.5	Type 1 and Type 2 errors in decision making	
Table 4.6	Characteristics of the classical inference method	124
Table 5.1	Comparison of classical and Bayesian inference	134

xviii List of Tables

$P(E^k H_i)$: Likelihood functions corresponding to evidence produc	
by k^{th} sensor with 3 output states in support of 4 hypotheses	134
Interpretation of uncertainty intervals for proposition a_i	154
Uncertainty interval calculation for propositions	
$a_1, \ \overline{a}_1, a_1 \cup a_2, \Theta$	155
Subjective and evidential vocabulary	155
· · · · · · · · · · · · · · · · · · ·	
Application of Dempster's rule with an empty set	
Probability masses of nonempty set elements increased by <i>K</i>	159
Application of Dempster's rule with singleton events	160
Redistribution of probability mass to nonempty set elements	160
Probability masses resulting from conditioning coin toss	
	166
	168
Normalized ordinary Dempster's rule result for $B \oplus B_1$	
$(K^{-1} = 0.76)$	173
Application of modified Dempster's rule to $B \oplus B_1$	173
Normalized modified Dempster's rule result for $B \oplus B_1$	
	174
	175
	17/5
	17/
	1/6
	176
	1//
	177
	1//
of evidence from R R .	177
	by k^{th} sensor with 3 output states in support of 4 hypotheses

LIST OF FIGURES xix

Table 7.1	Comparison of artificial neural network and von Neumann	102
Table 7.2	architectures.	
Table 7.2	Truth table after training by 1-taught and 0-taught sets	. 204
Table 7.3	Truth table after neuron generalization with a Hamming	. 205
T-1-1-74	distance firing rule	
Table 7.4	Properties of other artificial neural networks	. 209
Table 8.1	Multiple sensor detection modes that incorporate confidence	
	levels in a three-sensor system	. 220
Table 8.2	Distribution of detections and signal-to-noise ratios among	
	sensor confidence levels	. 228
Table 8.3	Inherent and conditional false alarm probabilities at the	
	confidence levels and detection modes of the three-sensor	
	system	. 229
Table 8.4	Detection probabilities for the confidence levels and detection	. ==>
14010 0.1	modes of the three-sensor system	. 230
Table 8.5	Detection modes that incorporate single sensor outputs and	. 230
1 4010 0.3	multiple confidence levels in a three-sensor system	232
	mattiple confidence levels in a tiffee-sensor system	. 232
Table 9.1	Production rules for balancing an inverted pendulum	246
Table 9.1	Outputs for the inverted pendulum example	
	Fuzzy associative memory rules for degree of similarity	
Table 9.3		
Table 9.4	Fuzzy associative memory rules for the fuzzy state correlator	. 233
Table 10.1	Fusion techniques for associating passively acquired data	
14010 10.1	to locate and track multiple targets	. 266
Table 10.2	Major issues influencing the design of the coherent receiver	. 200
14010 10.2	fusion architecture	. 270
Table 10.3	Speedup of relaxation algorithm over a branch-and-bound	. 270
14010 10.5	algorithm (averaged over 20 runs)	. 282
	argorithm (averaged over 20 runs)	. 202
Table 11.1	Information needed to apply classical inference, Bayesian	
Table 11.1	inference, Dempster-Shafer decision theory, artificial neural	
	networks, voting logic, and fuzzy logic data fusion algorithms	20.4
	to a target detection, classification, or identification application	. 294
Table A.1	Effect of quadratic correction term on emitted energy calculated	d
Table A.1	1	u 300
Table A 2		.300
Table A.2	Downwelling atmospheric temperature T_D and atmospheric	20/
	attenuation A for a zenith-looking radiometer	.304
Table B.1	Likelihaad functions for road concern callular talankanas	
Taule D.I	Likelihood functions for road sensors, cellular telephones, and radios for the three-hypothesis freeway incident	
		211
	detection problem	311

xx List of Tables

Table C.1	Orthogonal sum calculation for conflicting medical diagnosis	2.1
	example (step 1)	31.
Table C.2	Normalization of non-empty set matrix element for conflicting medical diagnosis example (step 2)	
Table C.3	Two-information source, two-hypothesis application of plausib	
Table C.5	and paradoxical theory	
Table C.4	Resolution of medical diagnosis example through plausible and	
	paradoxical reasoning	
Table D.1	Probability summary using evidence set E_1 only	319
Table D.2	Probability summary using evidence sets E_1 and E_2	

Preface

Sensor and Data Fusion: A Tool for Information Assessment and Decision Making is the latest version of Sensor and Data Fusion Concepts and Applications, which last appeared as Tutorial Text 35 from SPIE. The information in this edition has been substantially expanded and updated to incorporate recent approaches to data and sensor fusion.

The book serves as a companion text to courses taught by the author on multisensor, multitarget data fusion techniques for tracking and identification of potential targets. Material regarding the benefits of multisensor systems and data fusion originally developed for courses on advanced sensor design for defense applications was utilized in preparing the original edition. Those topics that deal with applications of multiple sensor systems; target, background, and atmospheric signature-generation phenomena and modeling; and methods of combining multiple sensor data in target identity and tracking data fusion architectures were expanded for this book. Chapter 6 on Dempster-Shafer theory now incorporates discussions about several proposed modifications to the original theory, which provide alternate methods for assigning probability mass to compatible and conflicting propositions. Revisions and additions were also made to all subsequent chapters that appeared in previous editions of this book. Most signature phenomena and data fusion techniques are explained with a minimum of mathematics or use relatively simple mathematical operations to convey the underlying principles. Understanding of concepts is aided by the nonmathematical explanations provided in each chapter.

Multisensor systems are frequently designed to overcome space limitations associated with smart weapons applications or to combine and assess information from non-collated or dissimilar sources. Packaging volume restrictions associated with the construction of fire-and-forget missile systems often constrain sensor selection to those operating at infrared and millimeter-wave frequencies. In addition to having relatively short wavelengths and hence occupying small volumes, these sensors provide high resolution and complementary information as they respond to different signature-generation phenomena. The result is a large degree of immunity to inclement weather, clutter, and signature masking produced by countermeasures. Sensor and data fusion architectures are utilized in these multisensor systems to combine information from the individual sensors and other sources in an efficient and effective manner.

This book discusses the benefits of infrared and millimeter-wave sensor operation including atmospheric effects; multiple sensor system applications;

xxii Preface

definitions and examples of data fusion architectures and algorithms; classical inference, which forms a foundation for the more general Bayesian inference and Dempster-Shafer evidential theory that follow in succeeding chapters; artificial neural networks; voting logic as derived form Boolean algebra expressions; fuzzy logic; detecting and tracking objects using only passively acquired data; and a summary of the information required to implement each of the data fusion methods discussed.

Weather forecasting, Earth resource surveys that use remote sensing, vehicular traffic management, target classification and tracking, and battlefield assessment are some of the applications that will benefit from the discussions provided of signature-generation phenomena, sensor fusion architectures, and data fusion algorithms. There continues to be high interest in military and homeland defense usage of data fusion to assist in the identification of missile threats, suicide bombers, strategic and tactical targets, assessment of information, evaluation of potential responses to a threat, and allocation of resources. The signature-generation phenomena and fusion architectures and algorithms presented in this book continue to be applicable to these areas as well as the growing number of nondefense applications.

Several people have made valuable suggestions that were incorporated into this work. Henry Heidary, in addition to his major contributions to Chapter 10, reviewed other sections of the original manuscript. Sam Blackman reviewed the original text and provided several references for new material that was subsequently incorporated. Pat Williams reviewed sections on tracking and provided data concerning tracking algorithm execution times. Martin Dana, with whom I teach the multisensor, multitarget data fusion course, reviewed several of the newer sections. His insightful suggestions have improved upon the text. Merry Schnell, Sharon Streams, Eric Pepper, and the rest of the SPIE staff provided, as usual, technical and editorial assistance that improved the quality of the material in the text. That the book has many strengths, I am indebted to these and so many other colleagues. Its faults, of course, are mine.

Lawrence A. Klein June 2004

Sensor and Data Fusion

A Tool for Information Assessment and Decision Making