

EXERCISE 11.2

Question 1:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = 12x$

Ans

The given equation is $y^2 = 12x$.

Here, the coefficient of x is positive. Hence, the parabola opens towards the right.

On comparing this equation with $y^2 = 4ax$, we obtain

Coordinates of the focus = (a, 0) = (3, 0)

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix, x = -a i.e., x = -3 i.e., x + 3 = 0

Length of latus rectum = $4a = 4 \times 3 = 12$

Question 2:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = 6y$

Ans:

The given equation is $x^2 = 6y$.

Here, the coefficient of y is positive. Hence, the parabola opens upwards.

On comparing this equation with $x^2 = 4ay$, we obtain

$$4a = 6 \Rightarrow a = \frac{3}{2}$$

Coordinates of the focus = $(0, a) = \left(0, \frac{3}{2}\right)$

Since the given equation involves x^2 , the axis of the parabola is the y-axis.

Equation of directrix,
$$y = -a$$
 i.e., $y = -\frac{3}{2}$

Length of latus rectum = 4a = 6

Question 3:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = -8x$

Ans:

The given equation is $y^2 = -8x$.

Here, the coefficient of x is negative. Hence, the parabola opens towards the left.

On comparing this equation with $y^2 = -4ax$, we obtain

 \square Coordinates of the focus = (-a, 0) = (-2, 0)

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix, x = a i.e., x = 2

Length of latus rectum = 4a = 8

Ouestion 4:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = -16y$

Ans:

The given equation is $x^2 = -16y$.

Here, the coefficient of y is negative. Hence, the parabola opens downwards.

On comparing this equation with $x^2 = -4ay$, we obtain

 \square Coordinates of the focus = (0, -a) = (0, -4)

Since the given equation involves x^2 , the axis of the parabola is the y-axis.

Equation of directrix, y = a i.e., y = 4

Length of latus rectum = 4a = 16

Question 5:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = 10x$

Ans:

The given equation is $y^2 = 10x$.

Here, the coefficient of x is positive. Hence, the parabola opens towards the right.

On comparing this equation with $y^2 = 4ax$, we obtain

$$4a = 10 \Rightarrow a = \frac{5}{2}$$

 \square Coordinates of the focus = (a, 0) = $\left(\frac{5}{2}, 0\right)$

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix,
$$x = -a$$
, i.e., $x = -\frac{5}{2}$

Length of latus rectum = 4a = 10

Question 6:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = -9y$

Ans:

The given equation is $x^2 = -9y$.

Here, the coefficient of y is negative. Hence, the parabola opens downwards.

On comparing this equation with $x^2 = -4ay$, we obtain

$$-4a = -9 \Rightarrow b = \frac{9}{4}$$

Coordinates of the focus $=(0,-a)=\left(0,-\frac{9}{4}\right)$

Since the given equation involves x^2 , the axis of the parabola is the y-axis.

Equation of directrix, y = a, i.e., $y = \frac{9}{4}$

Length of latus rectum = 4a = 9

Question 7:

Find the equation of the parabola that satisfies the following conditions: Focus (6, 0); directrix x = -6

Ans:

Focus (6, 0); directrix, x = -6

Since the focus lies on the x-axis, the x-axis is the axis of the parabola.

Therefore, the equation of the parabola is either of the form $y^2 = 4ax$ or

$$y^2 = -4ax$$

It is also seen that the directrix, x=-6 is to the left of the y-axis, while the focus (6,0) is to the right of the y-axis. Hence, the parabola is of the form $y^2=4ax$.

Here, a = 6

Thus, the equation of the parabola is $y^2 = 24x$.

Question 8:

Find the equation of the parabola that satisfies the following conditions: Focus (0, -3); directrix y = 3

Ans:

Focus = (0, -3); directrix y = 3

Since the focus lies on the y-axis, the y-axis is the axis of the parabola.

Therefore, the equation of the parabola is either of the form x^2 = 4ay or

$$x^2 = -4ay.$$

It is also seen that the directrix, y = 3 is above the x-axis, while the focus

(0, -3) is below the x-axis. Hence, the parabola is of the form $x^2 = -4ay$.

Here, a = 3

Thus, the equation of the parabola is $x^2 = -12y$.

Question 9:

Find the equation of the parabola that satisfies the following conditions: Vertex (0, 0); focus (3, 0)

Ans:

Vertex (0, 0); focus (3, 0)

Since the vertex of the parabola is (0,0) and the focus lies on the positive x-axis, x-axis is the axis of the parabola, while the equation of the parabola is of the form $y^2 = 4ax$.

Since the focus is (3, 0), a = 3.

Thus, the equation of the parabola is $y^2 = 4 \times 3 \times x$, i.e., $y^2 = 12x$

Question 10:

Find the equation of the parabola that satisfies the following conditions: Vertex (0,0) focus (-2,0)

Ans:

Vertex (0, 0) focus (-2, 0)

Since the vertex of the parabola is (0,0) and the focus lies on the negative x-axis, x-axis is the axis of the parabola, while the equation of the parabola is of the form $y^2 = -4ax$.

Since the focus is (-2, 0), a = 2.

Thus, the equation of the parabola is $y^2 = -4(2)x$, i.e., $y^2 = -8x$

Question 11:

Find the equation of the parabola that satisfies the following conditions: Vertex (0, 0) passing through (2, 3) and axis is along x-axis

Δns

Since the vertex is (0,0) and the axis of the parabola is the x-axis, the equation of the parabola is either of the form $y^2 = 4 \partial x$ or $y^2 = -4 \partial x$.

The parabola passes through point (2, 3), which lies in the first quadrant.

Therefore, the equation of the parabola is of the form $y^2 = 4ax$, while point

(2, 3) must satisfy the equation $y^2 = 4ax$.

$$\therefore 3^2 = 4a(2) \Rightarrow a = \frac{9}{8}$$

Thus, the equation of the parabola is

$$y^{2} = 4\left(\frac{9}{8}\right)x$$
$$y^{2} = \frac{9}{2}x$$
$$2y^{2} = 9x$$

Question 12:

Find the equation of the parabola that satisfies the following conditions: Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis

Ans

Since the vertex is (0,0) and the parabola is symmetric about the y-axis, the equation of the parabola is either of the form $x^2 = 4$ ay or $x^2 = -4$ ay.

The parabola passes through point (5, 2), which lies in the first quadrant.

Therefore, the equation of the parabola is of the form $x^2 = 4ay$, while point

(5, 2) must satisfy the equation $x^2 = 4ay$.

$$\therefore (5)^2 = 4 \times a \times 2 \Rightarrow 25 = 8a \Rightarrow a = \frac{25}{8}$$

Thus, the equation of the parabola is

$$x^2 = 4\left(\frac{25}{8}\right)y$$
$$2x^2 = 25y$$

********* FND *******