CS 32 - Discussion 1B
Week 7 Algorian Analysis / Big 6" notation
Runtime analysis: Quality effectiney
Deteranistic Given input X algorithm: A runs for some fixed, predetermed # steps on X A
Iden: musure internir efficiency of the algorithm.
Q: How very "steps" does an alg. podern w.r.t gime input.
Typically: analyze # steps compared to size
e.g: Container class: Side is (list/array) # elements

Example: Contains (A,X):

for i=1,--,n:

if A[i]==x: return true;

veturn false;

Best case: 1 step Worst coe: n steps always & n

Worst care onalyes:

Given alg. A & f: N -> 1R +

"A runs on the f(n)" if

for every mput x of size on (for all ne M+)

A runs on at most f(n) steps.

Big O notation: compane asymptotic growth (Le of Linethers.

(as $n \rightarrow \infty$)

Gim $f,g: \mathbb{N}^+ \to \mathbb{R}^+, \quad f = O(g)$ if three exists constants $C_{n} = 0$ Such that

for every $n = n_0$, $f(n) = c_n g(n)$

$$f = O(g)$$
 \iff $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ converges

Example: $(\log n)^2$ vs. \sqrt{n} . $(\log n)^2 = O(\sqrt{n})$

$$\lim_{n\to\infty} \frac{(\log n)^2}{n^{2}n} = \lim_{n\to\infty} \frac{2\log n \cdot n}{\frac{1}{2} \cdot n^{-1/2}}$$

$$= \lim_{n\to\infty} \frac{4\log n}{n} = \lim_{n\to\infty} \frac{4}{n \cdot \frac{1}{2}n^{-1/2}}$$

$$= \lim_{n\to\infty} \frac{8}{n} = 0$$

Sorting: O(n2)
Bubble sort, months sort, selection sort

O(alogn)

Mege sort, gricksort

Selection-Sort (A)

Selection-Sort (A)

For $i=1,-...,n: 1/A[i]_{s-...,A[i-1]}$ is sorted as expectly
niteration find ith min = n-i steps

Simp with A[i] = 3 steps

$$\sum_{i=1}^{n} ((n-i)+3) = 3n + \sum_{i=1}^{n} (n-i)$$

$$= 3n + (n)$$

$$= 3n + \frac{n(n-i)}{2}$$

$$= \frac{1}{2} \cdot n^{2} + (3n - \frac{1}{2}n)$$

$$= 0 \cdot (n^{2})$$

 $\frac{10n}{2i} = \sum_{i=0}^{\log n} 10n = |0n \cdot (\log n + i)|$ work der by a