

GPU Teaching Kit

Accelerated Computing

Module 8.4 – Parallel Computation Patterns (Stencil)

Analyzing Data Reuse in Tiled Convolution

Objective

- To learn to analyze the cost and benefit of tiled parallel convolution algorithms
 - More complex reuse pattern than matrix multiplication
 - Less uniform access patterns

An 8-element Convolution Tile

For Mask_Width=5, we load 8+5-1=12 elements (12 memory loads)

Each output P element uses 5 N elements

P[8] uses N[6], N[7], N[8], N[9], N[10] P[9] uses N[7], N[8], N[9], N[10], N[11] P[10] use N[8], N[9], N[10], N[11], N[12]

. . .

P[14] uses N[12], N[13], N[14], N[15], N[16] P[15] uses N[13], N[14], N[15], N[16], N[17]

A simple way to calculate tiling benefit

- -(8+5-1)=12 elements loaded
- 8*5 global memory accesses replaced by shared memory accesses
- This gives a bandwidth reduction of 40/12=3.3

In General, for 1D TILED CONVOLUTION

- O_TILE_WIDTH+MASK_WIDTH -1 elements loaded for each input tile
- O_TILE_WIDTH*MASK_WIDTH global memory accesses replaced by shared memory accesses
- This gives a reduction factor of

```
(O_TILE_WIDTH*MASK_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)
```

This ignores ghost elements in edge tiles.

Another Way to Look at Reuse

N_ds


```
N[6] is used by P[8] (1X)
N[7] is used by P[8], P[9] (2X)
N[8] is used by P[8], P[9], P[10] (3X)
N[9] is used by P[8], P[9], P[10], P[11] (4X)
N10 is used by P[8], P[9], P[10], P[11], P[12] (5X)
... (5X)
N[14] is used by P[12], P[13], P[14], P[15] (4X)
N[15] is used by P[13], P[14], P[15] (3X)
```

Another Way to Look at Reuse

The total number of global memory accesses (to the (8+5-1)=12 N elements) replaced by shared memory accesses is:

$$1+2+3+4+5*(8-5+1)+4+3+2+1$$

= $10+20+10$
= 40

So the reduction is:

In General, for 1D

 The total number of global memory accesses to the input tile can be calculated as

```
1 + 2+...+ MASK_WIDTH-1 + MASK_WIDTH*(O_TILE_WIDTH-
MASK_WIDTH+1) + MASK_WIDTH-1 + ...+ 2 + 1

= MASK_WIDTH * (MASK_WIDTH-1) + MASK_WIDTH *

(O_TILE_WIDTH-MASK_WIDTH+1)

= MASK_WIDTH * O_TILE_WIDTH
```

For a total of O_TILE_WIDTH + MASK_WIDTH -1 input tile elements

Examples of Bandwidth Reduction for 1D

The reduction ratio is:

MASK_WIDTH * (O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH	16	32	64	128	256
MASK_WIDTH= 5	4.0	4.4	4.7	4.9	4.9
MASK_WIDTH = 9	6.0	7.2	8.0	8.5	8.7

For 2D Convolution Tiles

- (O_TILE_WIDTH+MASK_WIDTH-1)² input elements need to be loaded into shared memory
- The calculation of each output element needs to access MASK_WIDTH² input elements
- O_TILE_WIDTH² * MASK_WIDTH² global memory accesses are converted into shared memory accesses
- The reduction ratio is

O_TILE_WIDTH2 * MASK_WIDTH2 / (O_TILE_WIDTH+MASK_WIDTH-1)2

Bandwidth Reduction for 2D

The reduction ratio is:

O_TILE_WIDTH² * MASK_WIDTH² / (O_TILE_WIDTH+MASK_WIDTH-1)²

O_TILE_WIDTH	8	16	32	64
MASK_WIDTH = 5	11.1	16	19.7	22.1
MASK_WIDTH = 9	20.3	36	51.8	64

Tile size has significant effect on of the memory bandwidth reduction ratio.

This often argues for larger shared memory size.

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>