```
Lengual services Tx, Rx => signal sources usuallons

signal services Tx, Rx => signal sources usuallons

signal services returned actually established established
```

BANDWIDTH UTILIZATION:

MULTIPLEXING AND SPREADING

HOW CAN WE USE TRANSMISSION BANDWIDTH

EFFICIENTLY?

ใน Channel ที่มี Bandwidth จำกัด เราจะแบ่งใช้ งานจาก multiple devices ได้อย่างไร

MULTIPLEXING IS THE KEY ANSWER FOR BANDWIDTH SHARING

FREQUENCY DIVISION MULTIPLEXING

FDM: FREQUENCY DIVISION MULTIPLEXING

EXAMPLE 6.2

- Five channels, each with a 100-KHz bandwidth, are to be multiplexed together.
- What is the minimum bandwidth of the link if there is a need for a guard band of 10 KHz between the channels to prevent interference?

Solution

For five channels, we need at least four guard bands. This means that the required bandwidth is at least $(5 \times 100) + (4 \times 10) = 540 \text{ KHz}$,

- •Each digital channel of 1 Mbps is modulated such that each r = 4 bits are modulated to 1 baud.
- One solution is 16-QAM modulation.

- •The satellite channel is analog.
- We divide it into four channels, each channel having a 250-KHz bandwidth.

ACTIVITY # 12.1

HIERARCHICAL FDM

WAVE DIVISION MULTIPLEXING

NONLINEAR ATTENUATION

(LOSS / DISTANCE)

WDM

- ช่วง wavelength ที่ใช้งำน 1550 nm
- Channel space:
 - SDH/SONET -> 50 GHz/ channel, 32 channels -> 2.5 Gbps x 32 = 80 Gbps
 - (1999)Bell LAB: 10 GHz/ channel, 1022 channels -> 2.5 Gbps x 1022 = 2.555
 Tbps
 - (2002) NEC: 10 GHz/ channel, 273 channels -> 40 Gbps x 273 = 10.9 Tbps
 - (2011) NEC: 10 GHz/ channel, 370 channels -> 274 Gbps x 370 = 101.7 Tbps

TIME DIVISION MULTIPLEXING

SYNCHRONOUS TDM STATISTICAL TDM

SYNCHRONOUS TDM VS STATISTICAL TDM

Synchronous TDM

a. Synchronous TDM

Statistical TDM

b. Statistical TDM

Fixed Time Slot Allocation

Flexible Time Slot Allocation

TDM: INTERLEAVING UNIT / TIME SLOT

Framing bits

TS:Time Slot

Interleaving Unit / Time slot -> 2 bits / timeslot

Interleaving Unit / Time slot -> 8 bits / timeslot

With Synchronization Bit

TDM: 2bits/slot

Interleaving Unit = 2 bits

Frame duration = $1/50,000 \text{ s} = 20 \mu \text{s}$

Bit rate = 4 x 100 kbps = 50,000 frame/s x 8 bits/frame = 400 kbps

=400000 bps

Frame rate = 8000 frames / s

ACTIVITY # 12.2

♀ ● 54% ■ 22:56 Tue 3 Dec X Activity12-13 รวม.pdf a 61011483 15Mbp, 180M SMHZ $r = \frac{15}{(29)} = 3 \text{ bit}$ FDM 15Mbp. SQAM SMAZ (5V 90°) (श्रमाम्याम्याम्या १५ १५) moe res 4thing mod user user bandwidth son gom /1User = 5Mbps 9.1 4 USEr 9.2 wer data rate = 5 Mbps = bit duration 2.3 bit duration = 1 = 200 ns bit Almestot = 8 2.4 bit/Almoslot = 8 framerate = $\frac{5M}{c}$ = 65 left 2.5 Franciate = $\frac{5M}{8}$ = 625/e frame 9.6 Fran duration 1 = 1.625 ก็ถุงชาน ทั่รูแขด bit/threstol = 8x4 → 32 , emigu framerale => 32 -> 1 tram = 6256 Frame/s grade Live 3 5000

MULTILEVEL MULTIPLEXING

DS-1 (T1): 24x64 kbps = 1536 kbps = 1.536 Mbps

usage data rate sisannis channel and (s) chame (sizurly) 5 Mbps Four low-speed lines One high-One high-5 Mbps speed line speed line Inverse Inverse 5 Mbps MUX **DEMUX** 20 Mbps 20 Mbps 5 Mbps

INVERSE TDM

CDMA

CODE DIVISION

MULTIPLE ACCESS Landination rate?

NON CUTION SE LONGINOS LOSTES

FREQUENCY HOPPING SPREAD SPECTRUM
DIRECT SEQUENCE SPREAD SPECTRUM

FREQUENCY HOPPING VS DIRECT SEQUENCE

Frequency Hopping

Janga Zalen an 1967

PN: Pseudo Random Number

each user has his own code

FREQUENCY HOPPING VS DIRECT SEQUENCE

FREQUENCY HOPPING VS DIRECT SEQUENCE

WALSH CODE FOR PN (PSEUDO RANDOM NUMBER)

