(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 August 2002 (01.08.2002)

PCT

(10) International Publication Number WO 02/059271 A2

(51) International Patent Classification7:

C12N

- (21) International Application Number: PCT/US02/02176
- (22) International Filing Date: 25 January 2002 (25.01.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/263,757 25 January 2001 (25.01.2001) US 60/286,090 25 April 2001 (25.04.2001) US 60/292,517 23 May 2001 (23.05.2001) US

- (71) Applicant (for all designated States except US): GENE LOGIC, INC. [US/US]; 708 Quince Orchard Road, Gaithersburg, MD 20878 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ORR, Michael, S. [US/US]; c/o GENE LOGIC, INC., 708 Quince Orchard Road, Gaithersburg, MD 20878 (US). NATION, Michele

[US/US]; c/o GENE LOGIC. INC., 708 Quince Orchard Road, Gaithersburg, MID 20878 (US). DIGGANS, James, C. [US/US]; c/o GENE LOGIC, INC., 708 Quince Orchard Road, Gaithersburg, MID 20878 (US). ZENG, Wen [CN/US]; c/o GENE LOGIC, INC., 708 Quince Orchard Road, Gaithersburg, MID 20878 (US).

- (74) Agent: MORGAN, LEWIS & BOCKIUS LLP; TUS-CAN, Michael S., WEIMAR, Elizabeth C. et al., 1111 Pennsylvania Avenue, N.W., Washington, DC 20004 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States *(regional)*: ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

[Continued on next page]

(54) Title: GENE EXPRESSION PROFILES IN BREAST TISSUE

- 33 Tissue Samples

2/059271 A

(57) Abstract: The present invention results from the examination of tissue from breast carcinomas to identify genes differentially expressed between tumor biopsies and normal tissue. The invention includes diagnostic and screening methods using these genes as well as solid supports comprising oligonucleotide arrays that are complementary to or hybridize to the differentially expressed genes.

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

 with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

GENE EXPRESSION PROFILES IN BREAST TISSUE

INVENTORS: Michael S. Orr, Michele Nation, J.C. Diggans and Wen Zeng

5 RELATED APPLICATIONS

15

20

25

30

This application claims the priority of U.S. Provisional Application Nos. 60/263,757, filed January 25, 2001, 60/286,090, filed April 25, 2001, and 60/292,517, filed May 23, 2001, all of which are herein incorporated by reference in their entirety.

10 BACKGROUND OF THE INVENTION

One of the most pressing health issues today is breast cancer. In the industrial world, about one woman in every nine can expect to develop breast cancer in her lifetime. In the United States, it is the most common cancer amongst women, with an annual incidence of about 175,000 new cases and nearly 50,000 deaths. Despite an ongoing improvement in our understanding of the disease, breast cancer has remained resistant to medical intervention. Most clinical initiatives are focused on early diagnosis, followed by conventional forms of intervention, particularly surgery and chemotherapy. Such interventions are of limited success, particularly in patients where the tumor has undergone metastasis. There is a pressing need to improve the arsenal of therapies available to provide more precise and more effective treatment in a less invasive way. A promising area for the development of new modalities has emerged from recent understanding of the genetics of cancer.

One model used to characterize breast carcinogenesis asserts that normal cells undergo a multi-step process that broadly includes the steps of hyperplasia, pre-malignant change and in situ carcinoma. Multiple factors lead to atypical cell proliferation followed by carcinoma in situ. Carcinoma in situ is characterized as either ductal or lobular in form with the majority of invasive carcinomas being classified as ductal (85-95%). Among the ductal carcinomas, 15-20% encompass tubular, medullary, mucinous, papillary, adenoid, cystic, metaplastic, apocrine, squamous, secretory, lipid-rich, and cystic hypersecretory while the remaining ductal carcinomas are not specified.

To date, researchers have been able to identify a few genetic alterations believed to underlie tumor development. These genetic alterations include amplification of oncogenes and mutations that result in the loss of tumor suppressor genes. Tumor suppressor genes are genes that, in their wild-type alleles, express proteins that suppress abnormal cellular

2

proliferation. When the gene coding for a tumor suppressor protein is mutated or deleted, the resulting mutant protein or the complete lack of tumor suppressor protein expression may fail to correctly regulate cellular proliferation, and abnormal proliferation may take place, particularly if there is already existing damage to the cellular regulatory mechanism.

5

10

15

20

25

30

A number of well-studied human tumors and tumor cell lines have missing or non-functional tumor suppressor genes. Examples of tumor suppressor genes include, but are not limited to, the retinoblastoma susceptibility gene or RB gene, the p53 gene, the deletion in colon carcinoma (DCC) gene and the neurofibromatosis type 1 (NF-1) tumor suppressor gene (Weinberg, *Science* 254,1138-1146 (1991)). Loss of function or inactivation of tumor suppressor genes may play a central role in the initiation and/or progression of a significant number of human cancers.

Classification of heterogeneous populations of tumor types is a daunting task; yet, studies utilizing gene expression patterns to identify subtypes of cancer have produced initial results (see Perou, C. M. et al., Proc Natl Acad Sci USA 96, 9212-9217 (1999), Golub, T. R. et al., Science 286, 531-7 (1999), Alizadeh, A. A. et al., Nature 403, 503-11 (2000), Alon, U. et al. Proc Natl Acad Sci USA 96, 6745-50 (1999) and Bittner, M. et al., Nature 406, 536-40 (2000)). For example, molecular classification of B-cell lymphoma by gene expression profiling elucidated clinically distinct diffuse large-B-cell lymphoma subgroups (see Alizadeh supra). Stratification of patients based on their distinctive gene expression profiles may allow researchers to precisely group similar patient populations for evaluating chemotherapeutic agents. The more homogenous population of patients decreases the variability of patient-to-patient responses leading to the development of agents capable of eradicating specific subtypes of cancers previously unknown using standard classification techniques.

A study by Martin et al. (Cancer Res 60, 2232-8 (2000)) used a custom microarray composed of 124 genes discovered by differential display associated with either normal breast epithelial cells or from the MDA-MB-435 malignant breast tumor cell line. Using the custom microarray, researchers examined the relationship between expression patterns discovered by clustering a number of genes with clinical stages of breast cancer, indicating that gene expression patterns were capable of grouping breast tumors into distinct categories (Martin et al., supra).

The utilization of gene expression profiles to classify tumors, to identify drug targets, to identify diagnostic markers and/or to gain further insights into the consequences of chemotherapeutic treatments could facilitate the design of more efficacious patient—

specific stratagems for treating a variety of cancers. In breast cancer, studies utilizing limited numbers of genes have classified tumors into subtypes based on gene expression profiles, and this study indicated a diversity of molecular phenotypes associated with breast tumors (Perou, C. M. et al., Nature 406, 747-52 (2000).

Although these studies have demonstrated that expression profiling may be used to produce improvements in diagnosis of breast cancer as well as the development of improved therapeutic strategies, further studies are needed as only a small portion of the genome was studied and analyses containing greater numbers of genes will advance our understanding of breast tumors even further. Accordingly, there remains a need in the art for materials and methods that permit a more accurate diagnosis of breast cancer and, in particular, ductal carcinoma. In addition, there remains a need in the art for methods to treat and methods to identify agents that can effectively treat breast cancer. The present invention meets these and other needs.

15 SUMMARY OF THE INVENTION

5

10

20

25

30

The present invention is based on the discovery of the genes and their expression profiles associated with various types and stages of breast cancer.

The invention includes methods of diagnosing breast cancer in a patient comprising the step of detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of breast cancer.

The invention also includes methods of detecting the progression of breast cancer. For instance, methods of the invention include detecting the progression of breast cancer in a patient comprising the step of detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of breast cancer progression. In some preferred embodiments, PCA (Principal Component Analysis) based on all or a portion of the group of 50 genes identified in Table 1 may be used to differentiate between the different stages of breast cancer such as normal versus DCIS (ductal carcinoma *in-situ*) or DCIS versus microinvasive tissue samples. In some preferred embodiments, one or more genes may be selected from Tables 1, 3, 4 and/or 5.

In some aspects, the present invention provides a method of monitoring the treatment of a patient with breast cancer, comprising administering a pharmaceutical composition to the patient and preparing a gene expression profile from a cell or tissue

sample from the patient and comparing the patient gene expression profile to a gene expression from a cell population comprising normal breast cells or to a gene expression profile from a cell population comprising breast cancer cells or to both. In some preferred embodiments, the gene profile will include the expression level of one or more genes in Tables 1-5.

5

10

15

20

25

30

Another aspect of the present invention includes a method of treating a patient with breast cancer, comprising administering to the patient a pharmaceutical composition, wherein the composition alters the expression of at least one gene in Tables 1-5, preparing a gene expression profile from a cell or tissue sample from the patient comprising tumor cells and comparing the patient expression profile to a gene expression profile from an untreated cell population comprising breast cancer cells.

In another aspect, the present invention provides a method of identifying ductal carcinoma in a patient, comprising detecting the level of expression in a tissue sample of two or more genes from Tables 1-5, wherein differential expression of the genes in Tables 1-5 is indicative of ductal carcinoma. In addition, by determining the expression level of two or more genes in the group of genes listed in Tables 1-5, one skilled in the art can differentiate between DCIS and a cribiform type of DCIS that is more prone to microinvasion.

In another aspect, the present invention provides a method of detecting the progression of carcinogenesis in a patient, comprising detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of breast carcinogenesis. Figures 6 and 7 are a graphical representation of how the genes listed in Table 5 cluster with disease stages in breast cancer.

The invention further includes methods of screening for an agent capable of modulating the onset or progression of breast cancer, comprising the steps of exposing a cell to the agent; and detecting the expression level of two or more genes from Tables 1-5. In some embodiments, the breast cancer may be a ductal carcinoma. In some preferred embodiments, one or more genes may be selected from a group consisting of those listed in Tables 1, 3, 4 and/or 5. In some preferred methods, it may be desirable to detect all or nearly all of the genes in the tables.

The invention further includes compositions comprising at least two oligonucleotides, wherein each of the oligonucleotides comprises a sequence that specifically hybridizes to a gene in Tables 1-5 as well as solid supports comprising at least two probes, wherein each of the probes comprises a sequence that specifically hybridizes to

5

a gene in Tables 1-5. In some preferred embodiments, one or more genes may be selected from a group consisting of those listed in Tables 1, 3, 4 and/or 5.

The invention further includes computer systems comprising a database containing information identifying the expression level in breast tissue of a set of genes comprising at least two genes in Tables 1-5 and a user interface to view the information. In some preferred embodiments, one or more genes may be selected from a group consisting of those listed in Tables 1, 3, 4 and/or 5. The database may further include sequence information for the genes, information identifying the expression level for the set of genes in normal breast tissue and cancerous tissue and may contain links to external databases such as GenBank.

Lastly, the invention includes methods of using the databases, such as methods of using the disclosed computer systems to present information identifying the expression level in a tissue or cell of at least one gene in Tables 1-5, comprising the step of comparing the expression level of at least one gene in Tables 1-5 in the tissue or cell to the level of expression of the gene in the database. In some preferred embodiments, two or more genes may be selected from a group consisting of those listed in Tables 1, 3, 4 and/or 5.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an E- northern showing the expression of topoisomerase II alpha in various tissue types.

Figure 2 is an E-northern showing the expression of ICBP90 in various tissue types.

Figure 3 is an E-northern showing the expression of MCT4 gene.

Figure 4 is an E-northern showing the expression of the frizzled related protein.

Figure 5 is an E-northern showing the expression of an EST Affy ID AI668620.

Figure 6 is a PCA of the set of 28 samples using the top 50 genes identified by p-

25 values.

10

15

20

30

Figure 7 is a PCA of the set of 33 samples using the top 50 genes and ESTs identified by p-values.

Figure 8 is a PCA of the set of 91 samples using the top 31 myo-lamina genes and ESTs.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Many biological functions are accomplished by altering the expression of various genes through transcriptional (e.g., through control of initiation, provision of RNA precursors, RNA processing, etc.) and/or translational control. For example, fundamental

biological processes such as cell cycle, cell differentiation and cell death, are often characterized by the variations in the expression levels of groups of genes.

Changes in gene expression also are associated with pathogenesis. For example, the lack of sufficient expression of functional tumor suppressor genes and/or the over expression of oncogene/protooncogenes could lead to tumorgenesis or hyperplastic growth of cells (Marshall, *Cell* 64, 313-326 (1991); Weinberg, *Science*, 254, 1138-1146 (1991)). Thus, changes in the expression levels of particular genes (*e.g.*, oncogenes or tumor suppressors) serve as signposts for the presence and progression of various diseases.

Monitoring changes in gene expression may also provide certain advantages during drug screening and development. Often drugs are pre-screened for the ability to interact with a major target without regard to other effects the drugs have on cells. Often such other effects cause toxicity in the whole animal, which prevent the development and use of the potential drug.

10

15

20

25

30

Applicants have examined samples from normal breast tissue and from cancerous breast tissue to identify global changes in gene expression between tumor biopsies and normal tissue. These global changes in gene expression, also referred to as expression profiles, provide useful markers for diagnostic uses as well as markers that can be used to monitor disease states, disease progression, drug toxicity, drug efficacy and drug metabolism.

The gene expression profiles described herein were derived from normal and tumor samples from female patients between the ages of 39 and 52 years old, and were from three different ethnic origins (Caucasian, African-American and Asian). Infiltrating Ductal Carcinoma (IDC) patient samples were studied for cancer-related expression, as 85% of the breast cancer patients were afflicted with this form of the disease.

Histological analysis of each tissue sample was performed and samples were segregated into either normal or malignant categories. The normal tissue samples were acquired from neighboring tissue of patients suffering from one of the following disorders: macromastia, mild fibrosis, infiltrating lobular carcinoma, or infiltrating ducal carcinoma, however; each tissue was diagnosed as normal by histological analysis. Samples were also characterized by the type and grade of IDC for each patient sample utilized in the study.

The present invention provides compositions and methods to detect the level of expression of genes that may be differentially expressed dependent upon the state of the cell, i.e., normal versus cancerous. These expression profiles of genes provide molecular tools for evaluating toxicity, drug efficacy, drug metabolism, development, and disease

7

monitoring. Changes in the expression profile from a baseline profile can be used as an indication of such effects. Those skilled in the art can use any of a variety of known techniques to evaluate the expression of one or more of the genes and/or gene fragments identified in the instant application in order to observe changes in the expression profile in a tissue or sample of interest.

Definitions

5

10

15

20

25

30

In the description that follows, numerous terms and phrases known to those skilled in the art are used. In the interest of clarity and consistency of interpretation, the definitions of certain terms and phrases are provided.

As used herein, the phrase "detecting the level of expression" includes methods that quantify expression levels as well as methods that determine whether a gene of interest is expressed at all. Thus, an assay which provides a yes or no result without necessarily providing quantification of an amount of expression is an assay that requires "detecting the level of expression" as that phrase is used herein.

As used herein, oligonucleotide sequences that are complementary to one or more of the genes described herein, refers to oligonucleotides that are capable of hybridizing under stringent conditions to at least part of the nucleotide sequence of said genes. Such hybridizable oligonucleotides will typically exhibit at least about 75% sequence identity at the nucleotide level to said genes, preferably about 80% or 85% sequence identity or more preferably about 90% or 95% or more nucleotide sequence identity to said genes.

"Bind(s) substantially" refers to complementary hybridization between a probe nucleic acid and a target nucleic acid and embraces minor mismatches that can be accommodated by reducing the stringency of the hybridization media to achieve the desired detection of the target polynucleotide sequence.

The terms "background" or "background signal intensity" refer to hybridization signals resulting from non-specific binding, or other interactions, between the labeled target nucleic acids and components of the oligonucleotide array (e.g., the oligonucleotide probes, control probes, the array substrate, etc.). Background signals may also be produced by intrinsic fluorescence of the array components themselves. A single background signal can be calculated for the entire array, or a different background signal may be calculated for each target nucleic acid. In a preferred embodiment, background is calculated as the average hybridization signal intensity for the lowest 5% to 10% of the probes in the array, or, where a different background signal is calculated for each target gene, for the lowest 5%

to 10% of the probes for each gene. Of course, one of skill in the art will appreciate that where the probes to a particular gene hybridize well and thus appear to be specifically binding to a target sequence, they should not be used in a background signal calculation. Alternatively, background may be calculated as the average hybridization signal intensity produced by hybridization to probes that are not complementary to any sequence found in the sample (e.g., probes directed to nucleic acids of the opposite sense or to genes not found in the sample such as bacterial genes where the sample is mammalian nucleic acids). Background can also be calculated as the average signal intensity produced by regions of the array that lack any probes at all.

The phrase "hybridizing specifically to" refers to the binding, duplexing or hybridizing of a molecule substantially to or only to a particular nucleotide sequence or sequences under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA.

10

15

20

25

30

Assays and methods of the invention may utilize available formats to simultaneously screen at least about 100, preferably about 1000, more preferably about 10,000 and most preferably about 1,000,000 or more different nucleic acid hybridizations.

The terms "mismatch control" or "mismatch probe" refer to a probe whose sequence is deliberately selected not to be perfectly complementary to a particular target sequence. For each mismatch (MM) control in a high-density array there typically exists a corresponding perfect match (PM) probe that is perfectly complementary to the same particular target sequence. The mismatch may comprise one or more bases that are not complementary to the corresponding bases of the target sequence.

While the mismatch(s) may be located anywhere in the mismatch probe, terminal mismatches are less desirable as a terminal mismatch is less likely to prevent hybridization of the target sequence. In a particularly preferred embodiment, the mismatch is located at or near the center of the probe such that the mismatch is most likely to destabilize the duplex with the target sequence under the test hybridization conditions.

The term "perfect match probe" refers to a probe that has a sequence that is perfectly complementary to a particular target sequence. The test probe is typically perfectly complementary to a portion (subsequence) of the target sequence. The perfect match (PM) probe can be a "test probe", a "normalization control" probe, an expression level control probe and the like. A perfect match control or perfect match probe is, however, distinguished from a "mismatch control" or "mismatch probe."

As used herein a "probe" is defined as a nucleic acid, preferably an oligonucleotide, capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, U, C or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in probes may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages.

The term "stringent conditions" refers to conditions under which a probe will hybridize to its target subsequence, but with only insubstantial hybridization to other sequences or to other sequences such that the difference may be identified. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH.

10

15

20

25

30

Typically, stringent conditions will be those in which the salt concentration is at least about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotide). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

The "percentage of sequence identity" or "sequence identity" is determined by comparing two optimally aligned sequences or subsequences over a comparison window or span, wherein the portion of the polynucleotide sequence in the comparison window may optionally comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical subunit (e.g., nucleic acid base or amino acid residue) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. Percentage sequence identity when calculated using the programs GAP or BESTFIT (see below) is calculated using default gap weights.

Homology or identity may be determined by BLAST (Basic Local Alignment Search Tool) analysis using the algorithm employed by the programs blastp, blastn, blastx,

tblastn and tblastx (Karlin et al., Proc Natl Acad Sci USA 87, 2264-2268 (1990) and Altschul, J Mol Evol 36, 290-300 (1993), fully incorporated by reference) which are tailored for sequence similarity searching. The approach used by the BLAST program is to first consider similar segments between a query sequence and a database sequence, then to evaluate the statistical significance of all matches that are identified and finally to summarize only those matches which satisfy a preselected threshold of significance. For a discussion of basic issues in similarity searching of sequence databases, see Altschul et al., (Nature Genet 6, 119-129 (1994)) which is fully incorporated by reference. The search parameters for histogram, descriptions, alignments, expect (i.e., the statistical significance threshold for reporting matches against database sequences), cutoff, matrix and filter are at the default settings. The default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al., Proc Natl Acad Sci USA 89, 10915-10919, (1992) fully incorporated by reference). Four blastn parameters were adjusted as follows: Q=10 (gap creation penalty); R=10 (gap extension penalty); wink=1 (generates word hits at every winkth position along the query); and gapw=16 (sets the window width within which gapped alignments are generated). The equivalent Blastp parameter settings were Q=9; R=2; wink=1; and gapw=32. A Bestfit comparison between sequences, available in the GCG package version 10.0, uses DNA parameters GAP=50 (gap creation penalty) and LEN=3 (gap extension penalty) and the equivalent settings in protein comparisons are GAP=8 and LEN=2.

Uses of Differentially Expressed Genes

5

10

15

20

25

30

The present invention identifies those genes differentially expressed between normal breast tissue and cancerous breast tissue. One of skill in the art can select one or more of the genes identified as being differentially expressed in Tables 1-5 and use the information and methods provided herein to interrogate or test a particular sample. For a particular interrogation of two conditions or sources, it may be desirable to select those genes which display a great deal of difference in the expression pattern between the two conditions or sources. At least a two-fold difference may be desirable, but a three-fold, five-fold or ten-fold difference may be preferred in some instances. Interrogations of the genes or proteins can be performed to yield different information.

Diagnostic Uses for the Breast Cancer Markers

As described herein, the genes and gene expression information provided in Tables 1-5 may be used as diagnostic markers for the prediction or identification of the malignant state of breast tissue. For instance, a breast tissue sample or other sample from a patient may be assayed by any of the methods known to those skilled in the art, and the expression levels from one or more genes from Tables 1-5, may be compared to the expression levels found in normal breast tissue, tissue from breast carcinoma or both. Expression profiles generated from the tissue or other samples that substantially resemble an expression profile from normal or diseased breast tissue may be used, for instance, to aid in disease diagnosis. Comparison of the expression data, as well as available sequence or other information may be done by researcher or diagnostician or may be done with the aid of a computer and databases as described herein.

10

15

20

25

30

For example, genes over-expressed by 3-fold or greater, as well as having the smallest p-values from a t-test, were discovered by comparing 13 normal tissue samples and 15 infiltrating ductal carcinoma tissue samples composed of mostly stage II and III tissue samples. This analysis provided a set of genes (listed in Table 1) capable of distinguishing between the 13 normal and 15 tumor samples by PCA (Principal Component Analysis). In order to evaluate the ability of the genes to distinguish between normal and tumor tissue samples, a group of 33 tissues was selected from an existing gene expression database composed of normal, benign, DCIS (ductal carcinoma *in-situ*), microinvasive, stage II, and stage III breast cancer samples. PCA of the 33 tissue samples indicated that the genes selected based on the smallest p-values classified 32 out of 33 tissue samples correctly, while one stage I tissue sample was misclassified as a normal sample. Accordingly, these genes can be used diagnostically to differentiate normal/benign samples from tissue samples containing intraductal or infiltrating ductal carcinoma of the breast.

In another study, the PCA based on this group of genes indicates that these genes may be used to differentiate between the different stages of breast cancer such as normal versus DCIS or DCIS versus microinvasive tissue samples as graphically shown in Figures 6 and 7. The DCIS sample that contained focal microinvasions was grouped with the Stage I and II tumor samples. This group of genes may be used to determine if a DCIS sample contains microinvasions.

Use of the Breast Cancer Markers for Monitoring Disease Progression

Molecular expression markers for breast cancer can be used to confirm the type and progression of cancer made on the basis of morphological criteria. For example, normal

breast tissue could be distinguished from invasive carcinoma based on the level and type of genes expressed in a tissue sample. In some situations, identifications of cell type or source is ambiguous based on classical criteria. In these situations, the molecular expression markers of the present invention are useful.

5

10

15

20

25

30

12

In addition, progression of ductal carcinoma in situ to microinvasive carcinoma can be monitored by following the expression patterns of the involved genes using the molecular expression markers of the present invention. Monitoring of the efficacy of certain drug regimens can also be accomplished by following the expression patterns of the molecular expression markers.

In addition to the different disease progression stages which have been shown in Figures 6-7, as shown in the examples below, other developmental stages can be identified using these same molecular expression markers. While the importance of these markers in development has been shown here, variations in their expression may occur at other times. For example, variation in the expression level of one or more of the marker genes identified herein may be use to distinguish benign stages of breast cancer from malignant states.

As described above, the genes and gene expression information provided in Tables 1-5 may also be used as markers for the direct monitoring of disease progression, for instance, the development of breast cancer. For instance, a breast tissue sample or other sample from a patient may be assayed by any of the methods known to those of skill in the art, and the expression levels in the sample from a gene or genes from Tables 1-5 may be compared to the expression levels found in normal breast tissue, tissue from breast cancer or both. Comparison of the expression data, as well as available sequence or other information may be done by researcher or diagnostician or may be done with the aid of a computer and databases as described herein.

For instance, methods of this invention may use the 35 gene group (profile) composed of genes expressed in myoepithelial cells and basal lamina components in Table 3. The absence of both myoepithelial cells or basement membrane components usually indicates that the intraductal carcinoma is invasive. This group of 35 genes listed in Table 3 may be used to determine if myoepithelial and/or basal lamina components are present in a tissue sample. It includes 23 genes exhibiting a fold change of 3 fold or higher and 12 genes displaying a change of less than 3 fold. This group of 23 genes was used to distinguish between normal and tumor samples for a group of 33 tissue samples. In this study, the 23 genes were able to classify 32 out of 33 samples correctly and 26 out of 28 samples used to isolate this subgroup of genes. This group of genes can be used to identify

the various stages of ductal carcinoma tissues more discretely than the 50-gene set. The study also demonstrates that this group of genes can differentiate between DCIS and a cribiform type of DCIS that is more prone to microinvasion. Clinically, the ability to discern DCIS with microinvasions or phenotypes prone to microinvasions such as the cribiform type would allow subgrouping of the samples containing microinvasions as a type of patient that should be treated more aggressively than DCIS patients lacking this gene expression fingerprint. A subclass of DCIS (cribiform type) based on the gene expression fingerprint may be subgrouped as a micro invasive sample based on the gene expression pattern associated with this sample.

13

PCT/US02/02176

10

WO 02/059271

Use of the Breast Cancer Markers for Drug Screening

According to the present invention, potential drugs can be screened to determine if application of the drug alters the expression of one or more of the genes identified herein. This may be useful, for example, in determining whether a particular drug is effective in treating a particular patient with breast cancer. In the case where a gene's expression is affected by the potential drug such that its level of expression returns to normal, the drug is indicated in the treatment of breast cancer. Similarly, a drug which causes expression of a gene which is not normally expressed by epithelial cells in the breast, may be contraindicated in the treatment of breast cancer.

20

15

According to the present invention, the genes identified in Tables 1-5 may also be used as markers to evaluate the effects of a candidate drug or agent on a cell, particularly a cell undergoing malignant transformation, for instance, a breast cancer cell or tissue sample. A candidate drug or agent can be screened for the ability to stimulate the transcription or expression of a given marker or markers (drug targets) or to down-regulate or inhibit the transcription or expression of a marker or markers. According to the present invention, one can also compare the specificity of a drug's effects by looking at the number of markers affected by the drug and comparing them to the number of markers affected by a different drug. A more specific drug will affect fewer transcriptional targets. Similar sets of markers identified for two drugs indicates a similarity of effects.

30

25

Assays to monitor the expression of a marker or markers as defined in Tables 1-5 may utilize any available means of monitoring for changes in the expression level of the nucleic acids of the invention. As used herein, an agent is said to modulate the expression of a nucleic acid of the invention if it is capable of up- or down-regulating expression of the nucleic acid in a cell.

Agents that are assayed in the above methods can be randomly selected or rationally selected or designed. As used herein, an agent is said to be randomly selected when the agent is chosen randomly without considering the specific sequences involved in the association of the a protein of the invention alone or with its associated substrates, binding partners, etc. An example of randomly selected agents is the use a chemical library or a peptide combinatorial library, or a growth broth of an organism.

As used herein, an agent is said to be rationally selected or designed when the agent is chosen on a nonrandom basis which takes into account the sequence of the target site and/or its conformation in connection with the agents action. Agents can be selected or designed by utilizing the peptide sequences that make up these sites. For example, a rationally selected peptide agent can be a peptide whose amino acid sequence is identical to or a derivative of any functional consensus site.

The agents of the present invention can be, as examples, peptides, small chemical molecules, vitamin derivatives, as well as carbohydrates, lipids, oligonucleotides and covalent and non-covalent combinations thereof. Dominant negative proteins, DNA encoding these proteins, antibodies to these proteins, peptide fragments of these proteins or mimics of these proteins may be introduced into cells to affect function. "Mimic" as used herein refers to the modification of a region or several regions of a peptide molecule to provide a structure chemically different from the parent peptide but topographically and functionally similar to the parent peptide (see Grant in Molecular Biology and Biotechnology, Meyers, ed., VCH Publishers (1995)). A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents of the present invention.

25 Assay Formats

10

15

20

30

The genes identified as being differentially expressed in breast cancer may be used in a variety of nucleic acid detection assays to detect or quantify the expression level of a gene or multiple genes in a given sample. For example, traditional Northern blotting, nuclease protection, RT-PCR and differential display methods may be used for detecting gene expression levels.

The protein products of the genes identified herein can also be assayed to determine the amount of expression. Methods for assaying for a protein include Western blot, immunoprecipitation, radioimmunoassay. It is preferred, however, that the mRNA be assayed as an indication of expression. Methods for assaying for mRNA include Northern

15

blots, slot blots, dot blots, and hybridization to an ordered array of oligonucleotides. Any method for specifically and quantitatively measuring a specific protein or mRNA or DNA product can be used. However, methods and assays of the invention are most efficiently designed with PCR or array or chip hybridization-based methods for detecting the expression of a large number of genes.

Any hybridization assay format may be used, including solution-based and solid support-based assay formats. A preferred solid support is a high density array also known as a DNA chip or a gene chip. One variation of the DNA chip contains hundreds of thousands of discrete microscopic channels that pass completely through it. Probe molecules are attached to the inner surface of these channels, and molecules from the samples to be tested flow through the channels, coming into close proximity with the probes for hybridization. In one assay format, gene chips containing probes to at least two genes from Tables 1-5 may be used to directly monitor or detect changes in gene expression in the treated or exposed cell as described herein. Assays of the invention may measure the expression levels of about one, two, three, five, seven, ten, 15, 20, 25, 50, 100 or more genes in the Tables.

10

15

20

25

30

The genes and ESTs of the present invention may be assayed in any convenient sample form. For example, samples may be assayed in the form mRNA or reverse transcribed mRNA. Samples may be cloned or not and the samples or individual genes may be amplified or not. The cloning itself does not appear to bias the representation of genes within a population. However, it may be preferable to use polyA+RNA as a source, as it can be used with less processing steps. In some embodiments, it may be preferable to assay the protein or peptide expressed by the gene.

The sequences of the expression marker genes of Tables 1-5 are available in the public databases. Tables 1-5 provide the Accession numbers and name for each of the sequences. The sequences of the genes in GenBank are herein expressly incorporated by reference in their entirety as of the filing date of this application. (see www.ncbi.nim.nih.gov).

Additional assay formats may be used to monitor the ability of the agent to modulate the expression of a gene identified in Tables 1-5. For instance, as described above, mRNA expression may be monitored directly by hybridization of probes to the nucleic acids of the invention. Cell lines are exposed to an agent to be tested under appropriate conditions and time and total RNA or mRNA is isolated by standard procedures such those disclosed in Sambrook *et al.*, Molecular Cloning - A Laboratory Manual, Cold Spring Harbor

16

Laboratory Press, Cold Spring Harbor, NY (1989)). In some embodiments, it may be desirable to amplify one or more of the RNA molecules isolated prior to application of the RNA to the gene chip. Using techniques well known in the art, the RNA may be reverse transcribed and amplified in the form of DNA or may be reverse transcribed into DNA and the DNA used as a template for transcription to generate recombinant RNA. Any method that results in the production of a sufficient quantity of nucleic acid to be hybridized effectively to the gene chip may be used.

5

10

15

20

25

30

In another format, cell lines that contain reporter gene fusions between the open reading frame and or the 3' or 5' regulatory regions of a gene in Tables 1-5 and any assayable fusion partner may be prepared. Numerous assayable fusion partners are known and readily available including the firefly luciferase gene and the gene encoding chloramphenical acetyltransferase (Alam et al., Anal Biochem 188, 245-254 (1990)). Cell lines containing the reporter gene fusions are then exposed to the agent to be tested under appropriate conditions and time. Differential expression of the reporter gene between samples exposed to the agent and control samples identifies agents which modulate the expression of the nucleic acid.

In another assay format, cells or cell lines are first identified which express one or more of the gene products of the invention physiologically. Cells and/or cell lines so identified would preferably comprise the necessary cellular machinery to ensure that the transcriptional and/or translational apparatus of the cells would faithfully mimic the response of normal or cancerous breast tissue to an exogenous agent. Such machinery would likely include appropriate surface transduction mechanisms and/or cytosolic factors. Such cell lines may be, but are not required to be, derived from breast tissue. The cells and/or cell lines may then be contacted with an agent and the expression of one or more of the genes of interest may then be assayed. The genes may be assayed at the mRNA level and/or at the protein level.

In some embodiments, such cells or cell lines may be transduced or transfected with an expression vehicle (e.g., a plasmid or viral vector) containing an expression construct comprising an operable 5'-promoter containing end of a gene of interest identified in Tables 1-5 fused to one or more nucleic acid sequences encoding one or more antigenic fragments. The construct may comprise all or a portion of the coding sequence of the gene of interest which may be positioned 5'- or 3'- to a sequence encoding an antigenic fragment. The coding sequence of the gene of interest may be translated or un-translated after transcription of the gene fusion. At least one antigenic fragment may be translated. The antigenic

17

fragments are selected so that the fragments are under the transcriptional control of the promoter of the gene of interest and are expressed in a fashion substantially similar to the expression pattern of the gene of interest. The antigenic fragments may be expressed as polypeptides whose molecular weight can be distinguished from the naturally occurring polypeptides. In some embodiments, gene products of the invention may further comprise an immunologically distinct tag. Such a process is well known in the art (see Sambrook et al., supra).

Cells or cell lines transduced or transfected as outlined above are then contacted with agents under appropriate conditions; for example, the agent comprises a pharmaceutically acceptable excipient and is contacted with cells comprised in an aqueous physiological buffer such as phosphate buffered saline (PBS) at physiological pH, Eagles balanced salt solution (BSS) at physiological pH, PBS or BSS comprising serum or conditioned media comprising PBS or BSS and serum incubated at 37°C. Said conditions may be modulated as deemed necessary by one of skill in the art. Subsequent to contacting the cells with the agent, said cells will be disrupted and the polypeptides of the lysate are fractionated such that a polypeptide fraction is pooled and contacted with an antibody to be further processed by immunological assay (e.g., ELISA, immunoprecipitation or Western blot). The pool of proteins isolated from the "agent-contacted" sample will be compared with a control sample where only the excipient is contacted with the cells and an increase or decrease in the immunologically generated signal from the "agent-contacted" sample compared to the control will be used to distinguish the effectiveness of the agent.

10

15

20

25

30

Another embodiment of the present invention provides methods for identifying agents that modulate the levels, concentration or at least one activity of a protein(s) encoded by the genes in Tables 1-5. Such methods or assays may utilize any means of monitoring or detecting the desired activity.

In one format, the relative amounts of a protein of the invention produced in a cell population that has been exposed to the agent to be tested may be compared to the amount produced in an un-exposed control cell population. In this format, probes such as specific antibodies are used to monitor the differential expression of the protein in the different cell populations. Cell lines or populations are exposed to the agent to be tested under appropriate conditions and time. Cellular lysates may be prepared from the exposed cell line or population and a control, unexposed cell line or population. The cellular lysates are then analyzed with the probe, such as a specific antibody.

PCT/US02/02176

Probe Design

10

15

20

25

30

Probes based on the sequences of the genes described herein may be prepared by any commonly available method. Oligonucleotide probes for assaying the tissue or cell sample are preferably of sufficient length to specifically hybridize only to appropriate, complementary genes or transcripts. Typically the oligonucleotide probes will be at least 10, 12, 14, 16, 18, 20 or 25 nucleotides in length. In some cases longer probes of at least 30, 40, or 50 nucleotides will be desirable.

One of skill in the art will appreciate that an enormous number of array designs are suitable for the practice of this invention. The high density array will typically include a number of probes that specifically hybridize to the sequences of interest. See WO 99/32660 for methods of producing probes for a given gene or genes. In addition, in a preferred embodiment, the array will include one or more control probes.

High density array chips of the invention include "test probes." Test probes may be oligonucleotides that range from about 5 to about 500 or about 5 to about 50 nucleotides, more preferably from about 10 to about 40 nucleotides and most preferably from about 15 to about 40 nucleotides in length. In other particularly preferred embodiments, the probes are about 20 or 25 nucleotides in length. In another preferred embodiment, test probes are double or single strand DNA sequences. DNA sequences may be isolated or cloned from natural sources or amplified from natural sources using natural nucleic acid as templates. These probes have sequences complementary to particular subsequences of the genes whose expression they are designed to detect. Thus, the test probes are capable of specifically hybridizing to the target nucleic acid they are to detect.

In addition to test probes that bind the target nucleic acid(s) of interest, the high density array can contain a number of control probes. The control probes fall into three categories referred to herein as (1) normalization controls; (2) expression level controls; and (3) mismatch controls.

Normalization controls are oligonucleotide or other nucleic acid probes that are complementary to labeled reference oligonucleotides or other nucleic acid sequences that are added to the nucleic acid sample. The signals obtained from the normalization controls after hybridization provide a control for variations in hybridization conditions, label intensity, "reading" efficiency and other factors that may cause the signal of a perfect hybridization to vary between arrays. In a preferred embodiment, signals (e.g., fluorescence

intensity) read from all other probes in the array are divided by the signal (e.g., fluorescence intensity) from the control probes thereby normalizing the measurements.

19

Virtually any probe may serve as a normalization control. However, it is recognized that hybridization efficiency varies with base composition and probe length. Preferred normalization probes are selected to reflect the average length of the other probes present in the array, however, they can be selected to cover a range of lengths. The normalization control(s) can also be selected to reflect the (average) base composition of the other probes in the array, however in a preferred embodiment, only one or a few probes are used and they are selected such that they hybridize well (i.e., no secondary structure) and do not match any target-specific probes.

5

10

15

20

25

30

Expression level controls are probes that hybridize specifically with constitutively expressed genes in the biological sample. Virtually any constitutively expressed gene provides a suitable target for expression level controls. Typical expression level control probes have sequences complementary to subsequences of constitutively expressed "housekeeping genes" including, but not limited to the β -actin gene, the transferrin receptor gene, the GAPDH gene, and the like.

Mismatch controls may also be provided for the probes to the target genes, for expression level controls or for normalization controls. Mismatch controls are oligonucleotide probes or other nucleic acid probes identical to their corresponding test or control probes except for the presence of one or more mismatched bases. A mismatched base is a base selected so that it is not complementary to the corresponding base in the target sequence to which the probe would otherwise specifically hybridize. One or more mismatches are selected such that under appropriate hybridization conditions (e.g., stringent conditions) the test or control probe would be expected to hybridize with its target sequence, but the mismatch probe would not hybridize (or would hybridize to a significantly lesser extent). Preferred mismatch probes contain a central mismatch. Thus, for example, where a probe is a twenty-mer, a corresponding mismatch probe may have the identical sequence except for a single base mismatch (e.g., substituting a G, a C or a T for an A) at any of positions 6 through 14 (the central mismatch).

Mismatch probes thus provide a control for non-specific binding or cross hybridization to a nucleic acid in the sample other than the target to which the probe is directed. Mismatch probes also indicate whether a hybridization is specific or not. For example, if the target is present the perfect match probes should be consistently brighter

20

than the mismatch probes. In addition, if all central mismatches are present, the mismatch probes can be used to detect a mutation. The difference in intensity between the perfect match and the mismatch probe (I(PM) - I(MM)) provides a good measure of the concentration of the hybridized material.

5

10

15

20

25

30

Nucleic Acid Samples

As is apparent to one of ordinary skill in the art, nucleic acid samples used in the methods and assays of the invention may be prepared by any available method or process. Methods of isolating total mRNA are also well known to those of skill in the art. For example, methods of isolation and purification of nucleic acids are described in detail in Chapter 3 of Laboratory Techniques in Biochemistry and Molecular Biology. Vol. 24, Hybridization With Nucleic Acid Probes: Theory and Nucleic Acid Probes, P. Tijssen, ed., Elsevier Press, New York (1993). Such samples include RNA samples, but also include cDNA synthesized from a mRNA sample isolated from a cell or tissue of interest. Such samples also include DNA amplified from the cDNA, and an RNA transcribed from the amplified DNA. One of skill in the art would appreciate that it may be desirable to inhibit or destroy RNase present in homogenates before homogenates can be used.

Biological samples may be of any biological tissue or fluid or cells from any organism as well as cells raised *in vitro*, such as cell lines and tissue culture cells. Frequently the sample will be a "clinical sample" which is a sample derived from a patient. Typical clinical samples include, but are not limited to, breast tissue biopsy, sputum, blood, blood-cells (*e.g.*, white cells), tissue or fine needle biopsy samples, urine, peritoneal fluid, and pleural fluid, or cells therefrom.

Biological samples may also include sections of tissues, such as frozen sections or formalin fixed sections taken for histological purposes.

Solid Supports

Solid supports containing oligonucleotide probes for differentially expressed genes can be any solid or semisolid support material known to those skilled in the art. Suitable examples include, but are not limited to, membranes, filters, tissue culture dishes, polyvinyl chloride dishes, beads, test strips, silicon or glass based chips and the like. Suitable glass wafers and hybridization methods are widely available, for example, those disclosed by Beattie (WO 95/11755). Any solid surface to which oligonucleotides can be bound, either directly or indirectly, either covalently or non-covalently, can be used. In some

21

embodiments, it may be desirable to attach some oligonucleotides covalently and others non-covalently to the same solid support.

A preferred solid support is a high density array or DNA chip. These contain a particular oligonucleotide probe in a predetermined location on the array. Each predetermined location may contain more than one molecule of the probe, but each molecule within the predetermined location has an identical sequence. Such predetermined locations are termed features. There may be, for example, from 2, 10, 100, 1000 to 10,000, 100,000 or 400,000 of such features on a single solid support. The solid support, or the area within which the probes are attached may be on the order of a square centimeter.

5

10

15

20

25

30

Oligonucleotide probe arrays for expression monitoring can be made and used according to any techniques known in the art (see for example, Lockhart *et al.*, *Nat Biotechnol* 14, 1675-1680 (1996); McGall *et al.*, *Proc Nat Acad Sci USA* 93, 13555-13460 (1996)). Such probe arrays may contain at least two or more oligonucleotides that are complementary to or hybridize to two or more of the genes described herein. Such arrays my also contain oligonucleotides that are complementary or hybridize to at least 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 50, 70 or more the genes described herein.

Methods of forming high density arrays of oligonucleotides with a minimal number of synthetic steps are known. The oligonucleotide analogue array can be synthesized on a solid substrate by a variety of methods, including, but not limited to, light-directed chemical coupling, and mechanically directed coupling (see Pirrung *et al.*, (1992) U.S. Patent No. 5,143, 854; Fodor *et al.*, (1998) U.S. Patent No. 5,800,992; Chee *et al.*, (1998) U.S. Patent No. 5,837,832).

In brief, the light-directed combinatorial synthesis of oligonucleotide arrays on a glass surface proceeds using automated phosphoramidite chemistry and chip masking techniques. In one specific implementation, a glass surface is derivatized with a silane reagent containing a functional group, e.g., a hydroxyl or amine group blocked by a photolabile protecting group. Photolysis through a photolithogaphic mask is used selectively to expose functional groups which are then ready to react with incoming 5' photoprotected nucleoside phosphoramidites. The phosphoramidites react only with those sites which are illuminated (and thus exposed by removal of the photolabile blocking group). Thus, the phosphoramidites only add to those areas selectively exposed from the preceding step. These steps are repeated until the desired array of sequences have been synthesized on the solid surface. Combinatorial synthesis of different oligonucleotide

22

analogues at different locations on the array is determined by the pattern of illumination during synthesis and the order of addition of coupling reagents.

In addition to the foregoing, additional methods which can be used to generate an array of oligonucleotides on a single substrate are described in Fodor *et al.*, WO 93/09668. High density nucleic acid arrays can also be fabricated by depositing pre-made or natural nucleic acids in predetermined positions. Synthesized or natural nucleic acids are deposited on specific locations of a substrate by light directed targeting and oligonucleotide directed targeting. Another embodiment uses a dispenser that moves from region to region to deposit nucleic acids in specific spots.

10

15

20

25

30

5

Hybridization

Nucleic acid hybridization simply involves contacting a probe and target nucleic acid under conditions where the probe and its complementary target can form stable hybrid duplexes through complementary base pairing (see Lockhart et al., WO 99/32660). The nucleic acids that do not form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. It is generally recognized that nucleic acids are denatured by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under low stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA-DNA, RNA-RNA or RNA-DNA) will form even where the annealed sequences are not perfectly complementary. Thus, specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature or lower salt) successful hybridization requires fewer mismatches. One of skill in the art will appreciate that hybridization conditions may be selected to provide any degree of stringency. In a preferred embodiment, hybridization is performed at low stringency, in this case in 6x SSPE-T at 37°C (0.005% Triton x-100) to ensure hybridization and then subsequent washes are performed at higher stringency (e.g., 1× SSPE-T at 37°C) to eliminate mismatched hybrid duplexes. Successive washes may be performed at increasingly higher stringency (e.g., down to as low as 0.25× SSPET at 37°C to 50°C) until a desired level of hybridization specificity is obtained. Stringency can also be increased by addition of agents such as formamide. Hybridization specificity may be evaluated by comparison of hybridization to the test probes with hybridization to the various controls that can be present (e.g., expression level control, normalization control, mismatch controls, etc.).

23

In general, there is a tradeoff between hybridization specificity (stringency) and signal intensity. Thus, in a preferred embodiment, the wash is performed at the highest stringency that produces consistent results and that provides a signal intensity greater than approximately 10% of the background intensity. Thus, in a preferred embodiment, the hybridized array may be washed at successively higher stringency solutions and read between each wash. Analysis of the data sets thus produced will reveal a wash stringency above which the hybridization pattern is not appreciably altered and which provides adequate signal for the particular oligonucleotide probes of interest.

10 Signal Detection

The hybridized nucleic acids are typically detected by detecting one or more labels attached to the sample nucleic acids. The labels may be incorporated by any of a number of means well known to those of skill in the art (see Lockhart *et al.*, WO 99/32660).

15 Databases

20

25

30

The present invention includes relational databases containing sequence information, for instance for one or more of the genes of Tables 1-5, as well as gene expression information in various breast tissue samples. Databases may also contain information associated with a given sequence or tissue sample such as descriptive information about the gene associated with the sequence information, descriptive information concerning the clinical status of the tissue sample, or information concerning the patient from which the sample was derived. The database may be designed to include different parts, for instance a sequence database and a gene expression database. Methods for the configuration and construction of such databases are widely available, for instance, see Akerblom *et al.*, (1999) U.S. Patent No. 5,953,727, which is specifically incorporated herein by reference in its entirety.

The databases of the invention may be linked to an outside or external database. In a preferred embodiment, as described in Tables 1-5, the external database is GenBank and the associated databases maintained by the National Center for Biotechnology Information (NCBI).

Any appropriate computer platform may be used to perform the necessary comparisons between sequence information, gene expression information and any other information in the database or provided as an input. For example, a large number of computer workstations are available from a variety of manufacturers, such has those

24

available from Silicon Graphics. Client-server environments, database servers and networks are also widely available and appropriate platforms for the databases of the invention.

The databases of the invention may be used to produce, among other things, electronic Northern blots (E-Northerns) to allow the user to determine the cell type or tissue in which a given gene is expressed and to allow determination of the abundance or expression level of a given gene in a particular tissue or cell. The E-northern analysis can be used as a tool to discover tissue specific candidate therapeutic targets that are not over-expressed in tissues such as the liver, kidney, or heart. These tissue types often lead to detrimental side effects once drugs are developed and a first-pass screen to eliminate these targets early in the target discovery and validation process would be beneficial.

The databases of the invention may also be used to present information identifying the expression level in a tissue or cell of a set of genes comprising at least one gene in Tables 1-5 comprising the step of comparing the expression level of at least one gene in Tables 1-5 in the tissue to the level of expression of the gene in the database. Such methods may be used to predict the physiological state of a given tissue by comparing the level of expression of a gene or genes in Tables 1-5 from a sample to the expression levels found in tissue from normal breast tissue, tissue from breast carcinoma or both. Such methods may also be used in the drug or agent screening assays as described herein.

20

25

30

10

15

Kits

The invention further includes kits combining, in different combinations, high-density oligonucleotide arrays, reagents for use with the arrays, signal detection and array-processing instruments, gene expression databases and analysis and database management software described above. The kits may be used, for example, to monitor the progression of breast cancer, to identify genes that show promise as new drug targets and to screen known and newly designed drugs as discussed above.

The databases packaged with the kits are a typically a compilation of expression patterns from human breast cancer tissue or cell lines and for gene and gene fragments as described herein (corresponding to the genes of Tables 1-5). In particular, the database software and packaged information include the expression results of Tables 1-5 that can be used to predict the cancerous state of a tissue sample by comparing the expression levels of the genes in the tissue or cell sample to the expression levels presented in Tables 1-5.

The kits may used in the pharmaceutical industry, where the need for early drug testing is strong due to the high costs associated with drug development, but where bioinformatics, in particular gene expression informatics, is still lacking. These kits will reduce the costs, time and risks associated with traditional new drug screening using cell cultures and laboratory animals. The results of large-scale drug screening of pre-grouped patient populations, pharmacogenomics testing, can also be applied to select drugs with greater efficacy and fewer side-effects. The kits may also be used by smaller biotechnology companies and research institutes who do not have the facilities for performing such large-scale testing themselves.

Databases and software designed for use with use with microarrays is discussed in Balaban et al., (2001) U.S. Patent Nos. 6,229,911, a computer-implemented method for managing information, stored as indexed tables, collected from small or large numbers of microarrays, and 6,185,561, a computer-based method with data mining capability for collecting gene expression level data, adding additional attributes and reformatting the data to produce answers to various queries. Chee et al., (1999) U.S. Patent No. 5,974,164, disclose a software-based method for identifying mutations in a nucleic acid sequence based on differences in probe fluorescence intensities between wild type and mutant sequences that hybridize to reference sequences. The object of the method is to predict regions or positions of mutation.

20

25

30

5

10

15

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The preceding working examples therefore, are illustrative only and should not be construed as limiting in any way the scope of the invention.

Examples

Example 1: Preparation of Breast Cancer Profiles

Tissue Sample Acquisition and Preparation

The patient tissue samples were derived from female patients; the average age for the normal and tumor samples was 39 and 52 years respectively. They stem from three different ethnic origins (Caucasian, African-American, and Asian). Furthermore, all tissue samples from Infiltrating Ductal Carcinoa (IDC) patient samples were studied for cancer-related expression, as 85% of the breast cancer patients were afflicted with this form of the

26

disease. The samples are composed of normal, benign, DCIS (ductal carcinoma *in-situ*), microinvasive, stage I, stage II, and stage III breast cancer samples.

Histological analysis of each of the tissue samples was performed and samples were segregated into either normal or malignant categories. The normal tissue samples were acquired from neighboring tissue of patients suffering from one of the following disorders: macromastia, mild fibrosis, infiltrating lobular carcinoma, or infiltrating ducal carcinoma, however; each tissue was diagnosed as normal by histological analysis.

5

10

15

20

25

30

With minor modifications, the sample preparation protocol followed the Affymetrix GeneChip Expression Analysis Manual. Frozen tissue was first ground to powder using the Spex Certiprep 6800 Freezer Mill. Total RNA was then extracted using Trizol (Life Technologies). The total RNA yield for each sample (average tissue weight of 300 mg) was 200-500 μg. Next, mRNA was isolated using the Oligotex mRNA Midi kit (Qiagen). Since the mRNA was eluted in a final volume of 400 μl, an ethanol precipitation step was required to bring the concentration to 1 μg/μl. Using 1-5 μg of mRNA, double stranded cDNA was created using the SuperScript Choice system (Gibco-BRL). First strand cDNA synthesis was primed with a T7-(dT₂₄) oligonucleotide. The cDNA was then phenol-chloroform extracted and ethanol precipitated to a final concentration of 1 μg/μl.

From 2 µg of cDNA, cRNA was synthesized according to standard procedures. To biotin label the cRNA, nucleotides Bio-11-CTP and Bio-16-UTP (Enzo Diagnostics) were added to the reaction. After a 37°C incubation for six hours, the labeled cRNA was cleaned up according to the Rneasy Mini kit protocol (Qiagen). The cRNA was then fragmented (5× fragmentation buffer: 200 mM Tris-Acetate (pH 8.1), 500 mM KOAc, 150 mM MgOAc) for thirty-five minutes at 94°C.

55 μg of fragmented cRNA was hybridized on the human and the Human Genome U95 set of arrays for twenty-four hours at 60 rpm in a 45°C hybridization oven. The chips were washed and stained with Streptavidin Phycoerythrin (SAPE) (Molecular Probes) in Affymetrix fluidics stations. To amplify staining, SAPE solution was added twice with an anti-streptavidin biotinylated antibody (Vector Laboratories) staining step in between. Hybridization to the probe arrays was detected by fluorometric scanning (Hewlett Packard Gene Array Scanner). Following hybridization and scanning, the microarray images were analyzed for quality control, looking for major chip defects or abnormalities in hybridization signal. After all chips passed QC, the data was analyzed using Affymetrix GeneChip software (v3.0), and Experimental Data Mining Tool (EDMT) software (v1.0).

Gene Expression Analysis

5

10

15

20

25

30

All samples were prepared as described and hybridized onto the Affymetrix Human Genome U95 array. Each chip contains 16-20 oligonucleotide probe pairs per gene or cDNA clone. These probe pairs include perfectly matched sets and mismatched sets, both of which are necessary for the calculation of the average difference. The average difference is a measure of the intensity difference for each probe pair, calculated by subtracting the intensity of the mismatch from the intensity of the perfect match. This takes into consideration variability in hybridization among probe pairs and other hybridization artifacts that could affect the fluorescence intensities. Using the average difference value that has been calculated, an absolute call for each gene or EST is made.

The absolute call of present, absent or marginal is used to generate a Gene Signature, a tool used to identify those genes that are commonly present or commonly absent in a given sample set, according to the absolute call. For each set of samples, a median average difference was calculated using the average differences of each individual sample within the set. The median average difference typically must be greater than 20 to assure that the expression level is at least two standard deviations above the background noise of the hybridization. For the purposes of this study, only the genes and gene fragments with a median average difference greater than 20 were further studied in detail.

The Gene Signature for one set of samples is compared to the Gene Signature of another set of samples to determine the Gene Signature Differential. This comparison identifies the genes that are consistently present in one set of samples and consistently absent in the second set of samples.

The Gene Signature Curve is a graphic view of the number of genes consistently present in a given set of samples as the sample size increases, taking into account the genes commonly expressed among a particular set of samples, and discounting those genes whose expression is variable among those samples. The curve is also indicative of the number of samples necessary to generate an accurate Gene Signature. As the sample number increases, the number of genes common to the sample set decreases. The curve is generated using the positive Gene Signatures of the samples in question, determined by adding one sample at a time to the Gene Signature, beginning with the sample with the smallest number of present genes and adding samples in ascending order. The curve displays the sample size required for the most consistency and the least amount of expression variability from sample to sample. The point where this curve begins to level off represents the minimum

28

number of samples required for the Gene Signature. Graphed on the x-axis is the number of samples in the set, and on the y-axis is the number of genes in the positive Gene Signature. As a general rule, the acceptable percent of variability in the number of positive genes between two sample sets should be less than 5%.

5

10

15

20

25

30

Fold Change analysis

The data was first filtered to exclude all genes that showed no expression in any of the samples. The ratio (tumor/normal) was calculated by comparing the mean expression value for each gene in the breast cancer sample set against the mean expression value of that gene in the normal breast sample set. For Table 2, genes were included in the analysis if they had a fold change ≥ 3 in either direction, and a p-value < 0.05 as determined by a two-tail unequal variance t-test. Out of the $\sim 60,000$ genes surveyed by the Human Genome U95 set, 802 genes were present in the overall fold change analysis

Expression Profiles of Genes Differentially Expressed in Breast Cancer

Using the above described methods, genes that were predominantly over-expressed in breast cancer, or predominantly under-expressed in breast cancer were identified. Genes with consistent differential expression patterns provide potential targets for broad range diagnostics and therapeutics. For simplicity, applicants examined known genes by hierarchical cluster analysis developed by Eisen and colleagues to determine if functionally related genes would cluster together (see Eisen, et al. Proc Natl Acad Sci USA 95, 14863-14868 (1998)).

Table 2 lists the genes determined to be differentially expressed in cancerous breast tissues compared to normal breast tissue, with the fold change value for each gene. These genes or subsets of these genes comprise an overall breast cancer gene expression profile.

The well-characterized proliferation marker for breast cancer KI-67 had an average-fold change value of 2.8, which was calculated from 15 IDC tissue samples analyzed (see Gerdes, Semin Cancer Biol 1, 199-206 (1990)). As the fold change was below the present 3 fold criteria, the fold change value was not presented in Table 2. Some genes previously shown to be over or under expressed in breast cancer as indicated from the literature such as cytokeratins 5, 14, 15, 17, maspin, MMP 9 and 11, fibronectin, and pituitary tumor transforming 1, etc. are displayed in Table 2 as well as some genes such as p57(kip2), p63/p51/KET, mitosin, and pCDC55 whose expression levels were not previously known to vary in breast cancer.

The pituitary-tumor transforming 1 gene has been shown to produce *in vitro* and *in vivo* tumor-inducing activity (see Zhang *et al. Mol Endocrinol* 13, 156-66 (1999). In a recent publication, pituitary-tumor transforming 1 has been shown to be over-expressed in mammary adenocarcinomas (see Saez *et al. Oncogene* 18, 5473-6 (1999)). Also, another study discovered that all 48 colon carcinomas examined over-expressed PTTG1 as compared to normal colorectal tissue, and invasion of the surrounding tissue was associated with higher PTTG1 expression levels (see Heaney *et al.* Expression of pituitary-tumour transforming gene in colorectal tumours [see comments] *Lancet* 355, 716-9 (2000)).

5

10

15

20

25

30

Genes listed in Table 2, not reported in the literature to be over-expressed in human breast cancer tissues, include RAD2, FLS353, CKS2, cyclin-selective ubiquitin carrier protein E2-C, ZWINT, Lamin B1 and H2A.X. Although FLS353 has been recently found to be over-expressed in colorectal cancer (see Hufton *et al. FEBS Lett* 463, 77-82 (1999)), differential expression of FLS353 in breast tumor cells had not been previously demonstrated.

Cyclin-ubiquitin carrier protein E2-C is another gene over-expressed in breast cancer, which was discovered in this study. Previous studies have shown that when a dominant-negative form of the protein is over-expressed, the mammalian cells arrested in M phase and evidence was provided indicating that this mutant form of cyclin-ubiquitin carrier protein E2-C blocked the destruction of both cyclin A and B (see Townsley *et al.*, *Proc Natl Acad Sci U S A* 94, 2362-7 (1997)).

The expression levels of the genes in Tables 4 and 5 are associated with various stages of infiltrating ductal carcinoma (Table 4) or infiltrating lobular carcinoma (Table 5). The Tables present the fold change value of expression in the particular disease state compared to normal breast tissue. The genes in these tables may be used alone, or in combination with those listed in Tables 1-3 in the methods, compositions, databases and computer systems of the invention.

Example 2: Diagnostic Subset of Breast Cancer Associated Genes

Table 1 lists the members of a diagnostic subset of genes selected by p-value. This group of genes can be used to differentiate between normal/benign and breast tumor tissue samples including two DCIS samples. Assays using these genes are capable of distinguishing between normal and tumor samples with near 100% efficiency (see Figure 6). Only 1 of the 33 samples shown was misclassified as a normal sample based on the gene

expression profile when this set of genes was used to analyze the 33 sample set (see Figure 7).

Figures 6 and 7 are three-dimensional plots displaying the relationship of variance derived from gene expression data obtained from patient samples. In Figure 6, normal tissue samples are displayed as darker spheres and the infiltrating ductal carcinoma tissue samples are the lighter spheres. The x-axis represents the first principal component that contains the greatest variance in data of 80%. The y-axis represents the second principal component of 4%. The z-axis represents the third principal component of 3%. Figure 7 displays the results obtained from a separate 33 sample set which is composed of new samples that have no relation to the 28 sample set utilized to discover the gene set of Table 1. Again, the x, y, and z-axes represent the first (63%), second (10%), and third principal components (6%), respectively.

The gene set of Table 1 can thus be used to distinguish normal from cancerous breast tissue.

15

20

25

30

10

5

Example 3: Myoepithelial and Luminal Cell Marker Genes Examined on a Global Scale

Previous studies have indicated that myoepithelial cells express both epithelial and smooth muscle gene expression markers while luminal epithelial cells fail to express these genes (see Lazard et al., Proc Natl Acad Sci USA 90, 999-1003 (1993)). Cluster analysis identified a group 35 fragments representing 31 genes into one highly correlative cluster and the combination of genes and ESTs are listed in Table 3.

Previous studies have indicated that calponin and myosin heavy chain are expressed in smooth muscle cells and myoepithelial cells while luminal epithelium lack the expression of these genes. Furthermore, the proteins are usually not expressed in invasive ductal carcinoma of the breast (Lazard, et al., supra). Both calponin (fold change –11) and myosin heavy chain (fold change –10.8) were under-expressed in IDC. As indicated in Table 3, other genes associated with smooth muscle that were under-expressed such as smooth muscle gamma-actin, myosin light chain kinase, myosin, heavy polypeptide 11, and Leiomodin 1 and both mysoin polypeptide 11 and leiomodin 1 have not been previously reported to be under-expressed in breast cancer as compared to normal tissue samples.

The expression pattern represented in this particular cluster indicates that a preponderance of tissue samples diagnosed as infiltrating ductal carcinoma exhibit a luminal phenotype while myoepithelial cells were absent. More evidence to support this finding includes the under-expression of cytokeratins 5, 14, 15, and 17 in the tumor samples as

5

10

15

20

25

30

shown in Table 3. Normal myoepithelial cells express cytokeratins 5, 14, 15, and 17 and breast carcinoma cells do not (Trask *et al. Proc Natl Acad Sci USA* 87, 2319-2323 (1990)). A previous study has indicated that myoepithelial cells are present in normal, benign lesions, grade I infiltrating ductal carcinoma but are absent in carcinomas of grades II and III (Gusterson *et al. Cancer Res* 42, 4763-4770 (1982)).

In addition, components of the basal lamina such as laminin were under-expressed in the infiltrating ductal carcinoma relative to normal tissue samples (Table 3). Both laminin S B3 and laminin-related protein were under-expressed as indicated in Table 3. It has been reported that myoepithelial and basal lamina markers are useful in differentiating microinvasive from ductal carcinomas of the breast (Damiani *et al. Virchows Arch* 434, 227-234 (1999)).

The set of 35 fragments representing 31 genes as shown in Table 3 could distinguish between intraductal carcinoma and microinvasive DCIS tissue samples based on the disappearance of genes expressed in either basal lamina or myoepithelial cells. There is evidence in the literature that the collapse of the basement membrane as well as the disappearance of an intact myoepithelial cell layer occurs during the invasion process. A multi-gene screen utilizing either of these sets of genes can be used to differentiate between benign and invasive breast neoplasm based on the gene expression fingerprint elucidated in this study.

Figure 8 shows the results of PCA of the 91 sample set with all 35 fragments (representing 31 genes and ESTs) in Table 3. These results demonstrate that PCA using the genes in Table 3 is able to distinguish between non-invasive and invasive breast tissue samples. Figure 8 provides evidence that this group of genes is diagnostically useful for differentiating DCIS samples that are intraductal (non-invasive) from those containing microinvasion. As shown in Figure 8, this group of genes and ESTs is capable of differentiating between two subtypes of DCIS and may constitute a set that is a more sensitive predictor of a microinvasion phenotype.

Example 4: Discovery of Breast Tissue Specific Genes in IDC

Electronic northern (E-northern) analysis determines if a gene of interest is present in a tissue from a database of gene expression information, and if it is present, then at what levels. Expression levels were determined using a GeneChip set that evaluated the expression levels of 60,000 genes in each type of tissue from 28 different normal human tissues. Similar to multi-tissue northern blot analysis, E-northern analysis quickly

32

determines if a gene of interest is expressed in a particular tissue type and also at what level. E-northern analysis of multiple tissue samples can be evaluated and the determination of exactly how many samples of a particular group that express the gene of interest is tabulated and statistical analysis can be implemented. Multiple samples from the same tissue are not available at this time using conventional multi-tissue northern blot analysis.

5

10

15

20

25

30

The E-northern analysis can be used as a tool to discover tissue specific candidate therapeutic targets that are not over-expressed in tissues such as the liver, kidney, or heart. These tissue types often lead to detrimental side effects once drugs are developed and a first-pass screen to eliminate these targets early in the target discovery and validation process would be beneficial. Furthermore, different tissues have very unique gene expression profiles related to parameters such as proliferation, differentiation, or cell types contained in the tissue that can provide interesting clues into the biological roles of the ESTs.

E-northern analysis was performed for many of the genes clustered in Table 2. Analysis of the E-northerns revealed that most of the genes were expressed at elevated levels in the thymus. There is high rate of mitosis present in the thymus during T-lymphocyte maturation and many proliferation-associated genes are expressed at elevated levels such as CDC2, cyclin B1, and topoisomerase II alpha. Figure 1 displays the E-northern analysis for topoisomerase II alpha indicating elevated levels of expression in the thymus as compare to the other tissue types detected. Figure 2 shows the results of an E-Northern analysis of transcription factor ICBP90, implicated to be involved with topoisomearse II alpha expression. ICBP90 was also expressed at high levels relative to the other tissue types in the thymus (Figure 2). A study by Hopfner et al. indicated that adult thymus and fetal thymus contained the highest levels of ICBP90 using a 50-tissue RNA dot blot protocol (Hopfner et al. Cancer Res 60, 121-128 (2000)). Most of the genes contained in this cluster contained the highest levels of expression in the thymus.

Figure 3 shows the results of an E-Northern analysis of the monocarboxylate transporter 4 (MCT4; formerly known as MCT3) which was grouped with genes associated with proliferation. MCT4 is most evident in cells with a high glycolytic rate such as muscle, white blood cells, and tumor cells (Halestrap et al., Biochem J 343 (Pt 2), 281-299 (1999)). A group of multi-tissue northern blots from a recent publication indicate that MCT4 is expressed at high levels in leukocytes but also other tissue types as well (Price et al., Biochem J 329, 321-328 (1998)). Furthermore, electronic-northern analysis indicated high levels of MCT4 were expressed in blood and white blood cells (Figure 3).

33

A previously uncharacterized gene only expressed in breast tissue was identified from this study and an E-Northern analysis of the expression pattern of this gene is shown in Figure 4. The distribution pattern of the expression of the gene shows it be used as a marker for breast cancer. The E-northern analysis only displays tissues where the gene of interest is present at detectable levels and breast tissue was the only tissue that this particular gene was under-expressed by –4.2 fold in IDC making it particularly useful as a diagnostic marker.

Another gene that may be used as a diagnostic marker that was not present in a particular cluster is the secreted frizzled-related protein 1. This gene was under-expressed in IDC by -17.7 fold, and the E-northern analysis shown in Figure 5 indicates that it was expressed at greatest levels in breast tissue as well as in the cervix. Using the combination of clustering, fold-change analysis, and E-northern analysis on microarray data one skilled in the art can readily select additional therapeutic and diagnostic markers.

15

20

10

Although the present invention has been described in detail with reference to examples above, it is understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims. All cited patents and publications referred to in this application are herein incorporated by reference in their entirety.

Table	1: Top 50	Table 1: Top 50 by p-value		ì		
##	SeqID	Affx	Genbank	Description	Fold Change	p-values
-	1006	37892_at	J04177	Cluster Incl J04177: Human alpha-1 type XI collagen (COL11A1) mRNA, complete cds /cds=(161,5581) /db=J04177 /qi=179729 /uq=Hs.82772 /len=6158	10.18941323	1.24E-12
Ø	278	35832_at	AB029000	Cluster Incl AB029000:Homo sapiens mRNA for KIAA1077 protein, partial cds /cds=(0,2456) /gb=AB029000 /gi=5689490 /ug=Hs.70823 /len=4834	4.243716901	2.469E-12
ო	1227	38566_at	X60382	Cluster Incl X60382:H.sapiens COL10A1 gene for collagen (alpha-1 type X) /cds=(0,2042) /gb=X60382 /gi=30094 /uq=Hs.179729 /len=3198	9.164231149	4.719E-12
4	1226	38181_at	X57766	Cluster Incl X57766:Human stromelysin-3 mRNA /cds=(9,1475)/gb=X57766/gi=456256 /ua=Hs. 155324 /len=2247	13.96572736	5.309E-12
ω 	1159	1651_at	U73379	U73379 /FEATURE= /DEFINITION=HSU73379 Human cyclin-selective ubiquitin carrier protein mRNA_complete_cds	4.802394237	5.8315E-11
9	1161	33143_s_at	_at U81800	Cluster Incl U81800:Homo sapiens monocarboxylate transporter (MCT3) mRNA, complete cds /cds=(62,1459) /gb=U81800 /gi=2463633 /lon=1982	0.07793742	6.2406E-11
_	296	34342_s_at	_at AF052124	Cluster Incl AF052124:Homo sapiens clone 23810 osteopontin mRNA, complete cds /cds=(87,989) /db=AF052124 /qi=3360431 /uq=Hs.313 /len=1504	8.862541971	1.1789E-10
ω	1008	31859_at	J05070	Cluster Incl J05070:Human type IV collagenase mRNA, complete cds /cds=(19,2142) /gb=J05070 /ai=177204 /ua=Hs.151738 /len=2334	4.66285568	1.68E-10
6	961	38116_at	D14657	Cluster Incl D14657: Human mRNA for KIAA0101 gene, complete cds /cds=(61,396) /gb=D14657 /ai=285938 /ua=Hs, 81892 /len=836	0.17	2.1736E-10
10	1007	2092_s_at	J04765	J04765 /FEATURE= /DEFINITION=HUMOSTRO Human osteopontin mRNA, complete cds	4.119810176	3,9853E-10
7	277	39109_at	AB024704	Cluster Incl AB024704:Homo sapiens mRNA for fis353, complete cds /cds=(471,2714) /gb=AB024704 /gi=4589928 /ug=Hs.9329 /len=3403	0.228960682	6.59E-10

1	7.4333E-10	7.7763E-10	9.3518E-10	1.10E-09	1.5685E-09	1.5906E-09	1.7499E-09	2.013E-09	2.0933E-09	2.11E-09
	9.431588747	10.43	5.975488989	6.152409861	0.068952382	0.139391318	0.047728145	7.363245733	8.54	0.233878866
	Lescription	Cluster Incl Y15915:Homo sapiens mRNA for chimaeric transcript of collagen type 1 alpha 1 and platelet derived growth factor beta, 1068 bp /cds=(0,1067) /gb=Y15915 /gi=3288486 /ug=Hs.172928 /len=1068	Cluster Incl AA203213:zx57e04.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-446622 /clone_end=5" /gb=AA203213 /gj=1798923 /ug=Hs.833 /len=879"	Cluster Incl M97936:Human transcription factor ISGF- 6.152409861 3 mRNA sequence /cds=UNKNOWN /gb=M97936 /gi=475254 /ug=Hs.21486 /len=2607	Cluster Incl L32137:Human germline oligomeric matrix protein (COMP) mRNA, complete cds /cds=(25,2298) /gb=L32137 /gi=602449 /ug=Hs.1584 /len=2439	Cluster Incl AL050118:Homo sapiens mRNA; cDNA DKFZp586C201 (from clone DKFZp586C201) /cds=(0,936) /gb=AL050118 /gi=4884143 /ug=Hs.184641 /len=2621	Cluster Incl AA418080:zv97h07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-767773 /clone_end=3" /qb=AA418080 /qi=2079881 /ug=Hs.3972 /len=543"	Cluster Incl M91670:Human ubiquitin carrier protein (E2-EPF) mRNA, complete cds /cds=(59,736) /qb=M91670 /qi=181915 /uq=Hs.174070 /len=890	Cluster Incl AA203476:zx55e01.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-446424 /clone_end≐5" /gb=AA203476 /gi=1799203 /ug=Hs.159626 /len=828"	Cluster Incl L37747:Homo sapiens lamin B1 gene /cds=(340,2100) /gb=L37747 /gi=576839 /ug=Hs.89497 /len=2849
-	Genbank M10905	74_s_at Y15915	AA203213	M97936	L32137	AL050118	AA418080	M91670	AA203476	L37747
	Any 31720_s_at	35474_s_at	38432_at	33338_at	40161_at	32190_at	34778_at	40619_at	40412_at	37985_at
•	1030	1240	85	1059	1021	892	105	1057	83	1025
*	# C	13	4	15	9	17	8	9	20	21

p-values 2.35E-09	2.42E-09	2.6578E-09	2.8399E-09	3.1699E-09	3,56E-09	4.0319E-09	4.2586E-09	5.41E-09
<u>Fold Change</u> 7.935291557	4.329038319	0.233804467	0.16	0.284181885	6.816530863	10.36	0.103783146	4.690939862
<u>Description</u> M13755 /FEATURE=mRNA /DEFINITION=HUMIFN15K Human interferon- induced 17-kDa/15-kDa protein mRNA, complete cds	Cluster Incl X14850:Human H2A.X mRNA encoding histone H2A.X /cds=(73,504) /gb=X14850 /gi=31972 /in=Hs 147097 /len=1585	Cluster Incl X54942:H.sapiens ckshs2 mRNA for Cks1 protein homologue /cds=(95,334) /gb=X54942 /ni=29978 /ng=Hs R3758 /len=612	M91670 /FEATURE= /DEFINITION=HUME2EPI Human ubiquitin carrier protein (E2-EPF) mRNA,	Cluster Incl K02581:Human thymidine kinase mRNA, complete cds /cds=(57,761) /gb=K02581 /gi=339708	Cluster Incl Al375913:tc14c08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2063822 /clone_end=3" /gb=Al375913 /gi=4175903 /ug=Hs.156346 /len=916"	Cluster Incl AF067656:Homo sapiens ZW10 interactor Zwint mRNA, complete cds /cds=(24,857) /gb=AF067656 /gi=3901271 /ug=Hs.42650 /len=1639	Cluster Incl AA704137:ag47g01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1119984 /clone_end=3" /gb=AA704137 /gi=2714055 /ug=Hs.125359 /len=923"	L47276 /FEATURE=UTR#1 /DEFINITION=HUMTOPATR Homo sapiens (cell line HL-60) alpha topoisomerase truncated-form mRNA, 3"UTR
<u>Genbank</u> M13755	X14850	X54942	M91670	K02581	AI375913	AF067656	AA704137	L47276
Affy. 1107_s_at	40195_at	40690_at	893_at	41400_at	40145_at	35995_at	39395_at	904_s_at
SeqID 1034	1221	1224	1057	1010	444	303	205	1027
22 ##	23	24	25	56	27	28	53	30

									_
<u>p-values</u> 5.4948E-09	5.77E-09	5.79E , 09	5.93E-09	5.98E-09	6.70E-09	6.7E-09	7.063E-09	7.3252E-09	8.5667E-09
<u>Fold Change</u> 0.222082398	0.0564074	0.145966282	0.075355998	7.624017858	7.973012437	0.273622601	0.139924253	12.37	0.184984291
<u>Description</u> Cluster Incl AA255502:zr85b06.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-682451 /clone_end=5" /gb=AA255502 /gi=1892406 /ug=Hs.46423 /len=348"	Cluster Incl U05340:Human p55CDC mRNA, complete cds /cds=(110,1609) /gb=U05340 /ni=468031 /uo=Hs 82906 /len=1686	Cluster Incl X02761:Human mRNA for fibronectin (FN precursor) /cds=(0,6987) /gb=X02761 /gi=31396 /ug=Hs.118162 /len=7680	Cluster Incl U74612:Human hepatocyte nuclear factor 3/fork head homolog 11A (HFH-11A) mRNA complete cds /cds=(114,2519) /gb=U74612 /gi=1842252 /loa=Hs.239 /len=3474	Cluster Incl M25753:Human cyclin B mRNA, 3 end /cds=UNKNOWN /gb=M25753 /gi=181243 /uo=Hs. 23960 /len=1452"	Cluster Incl J03464:Human collagen alpha-2 type I mRNA, complete cds, clone pHCOL2A1 /cds=(469,4569) /gb=J03464 /gi=179595 /ug=Hs.179573 /len=5416	Cluster Incl X15998:H.sapiens mRNA for the chondroitin sulphate proteoglycan versican, V1 splice variant; precursor peptide /cds=(266,7495) /db=X15998 /qi=37662 /uq=Hs.81800 /len=8224	Cluster Incl AC003107:Human DNA from chromosome 19-specific cosmid R30064 containing the COMP gene, genomic sequence /cds=(0,2453) /db=AC003107 /qi=2623749 /uq=Hs.1584 /len=2454	M23263 /FEATURE= /DEFINITION=HUMARB Human androgen receptor mRNA, complete cds	Cluster Incl AB020713:Homo sapiens mRNA for KIAA0906 protein, partial cds /cds=(0,2772) /gb=AB020713 /gi=4240300 /ug=Hs.56966 /len=4217
Genbank AA255502	U05340	X02761	U74612	M25753	J03464	_g_at_X15998	s_at AC003107	M23263	_s_at_AB020713
Affy 39969_at	38414_at	31719_at	34715_at	34736_at	32305_at	38112 <u>_g_</u> at	40162_s_at	1577_at	41812_s_at
SeqID 91	1136	1216	1160	1043	1002	1222	279	1041	276
# ∑	32	33	8	. 35	9g 	37	38	39	40

			~	~	m	m	m
p-values	8.99E-09	9.64E-09	1.0442E-08	1.1081E-08	1.1279E-08	1.2153E-08	1.4629E-08
Fold Change	4.165483399	0.216723881	0.292506358	3.425226104	8.270850261	0.054106026	0.17504844
<u>Description</u>	Cluster Incl U59877:Human low-Mr GTP-binding protein (RAB31) mRNA, complete cds /cds=(60,644) /gb=U59877 /gi=1388194 /ug=Hs.223025 /len=907	Cluster Incl AF095448:Homo sapiens putative G protein-coupled receptor (RAIG1) mRNA, complete cds /cds=(99,1172) /gb=AF095448 /gl=4063889 /ug=Hs.194691 /len=2288	Cluster Incl AI885852:wl62d08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2429487 /clone_end=3"/gb=AI885852 /gi=5591016 /ug=Hs.795 /len=580"	M29874 /FEATURE= /DEFINITION=HUMCYP2BB Human cytochrome P450-IIB (hIIB1) mRNA, complete cds	M15205 /FEATURE=cds /DEFINITION=HUMTKRA Human thymidine kinase gene, complete cds, with clustered Alu repeats in the introns	Cluster Incl AC004770:Homo sapiens chromosome 11, BAC CIT-HSP-311e8 (BC269730) containing the hFEN1 gene /cds=(2644,3786) /gb=AC004770 /gi=3212836 /ug=Hs.4756 /len=4522	Cluster Incl X70940:H.sapiens mRNA for elongation factor 1 alpha-2 /cds=(83,1474) /gb=X70940 /di=38455 /ua=Hs.2642 /len=1755
Genbank	U59877	AF095448	AI885852	M29874	M15205	AC004770	X70940
Affy	33371_s_at U59877	33730_at	32609_at	1371_s_at	910_at	41583_at	35174_i_at X70940
SedID	1155	307	756	1044	1036	281	1233
#1	41	45	43	4	. 45	94	47

					J	3		
	p-values	9.03E-07	6.70E-09	2.35E-08	2.35E-09	5.98E-09	1.32E-04	1.33E-06
	Fold Change	12.80130327	7.973012437	7.957396249	7.935291557	7.624017858	7.205250917	6.987016934
	Cluster Description	Cluster Incl J04177:Human alpha-1 type XI collagen (COL11A1) mRNA, complete cds /cds=(161,5581) /gb=J04177 /gi=179729 /ug=Hs.82772 /len=6158	Cluster incl X60382:H.sapiens COL10A1 gene for collagen (alpha-1 type X) /cds=(0,2042) /gb=X60382 /gi=30094 /ug=Hs.179729 /len=3198		U73379 /FEATURE= /DEFINITION=HSU73379 Human cyclin-selective ubiquitin carrier protein mRNA, complete cds	Cluster Incl U81800:Homo sapiens monocarboxylate transporter (MCT3) mRNA, complete cds /cds=(62,1459) /gb=U81800 /gi=2463633 /ug=Hs.85838 /len=1982	Cluster Incl AF052124:Homo sapiens clone 23810 osteopontin mRNA, complete cds /cds=(87,989) /gb=AF052124 /gi=3360431 /ug=Hs.313 /len=1504	Cluster Incl J05070:Human type IV collagenase mRNA, complete cds //cds=(19,2142) /gb=J05070 /gi=177204 /ug=Hs.151738 /len=2334
-	Cluster#	Hs.82772	Hs.179729	Hs.155324	Hs.93002	Hs.85838	Hs.313	Hs.151738
	Gene Name	collagen, type XI, alpha 1	collagen, type X, alpha 1 (Schmid metaphyseal chondrodysplasia)	matrix metalloproteinase 11 (stromelysin 3)	ubiquitin carrier protein E2-C	solute carrier family 16 (monocarboxylic acid transporters), member 3	secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T- lymphocyte activation 1)	matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase)
3-C-D-E	Genbank	J04177	X60382	X57766	U73379	U81800 .	AF052124	J05070
Table 2: Final Chip A-B-C-D-E	Affy	37892_at	38566_at	38181 <u>_</u> at	1651_at	33143_s_at	34342_s_at	31859_at
Table 2: I	SedID	1006	1227	1226	1159	1161	296	1008
	7 H	-	8	ო	4	ທ	ဖ	^

p-values	1.20E-04	1.10E-09	1.72E-04	1.76E-02	1.69E-07	6.09E-06	2.18E-06
Fold Change	6.188665921	6.152409861	6.01925663	5.903615342	5.34214829	5.267240726	4.694613277
Cluster Description	J04765 /FEATURE= /DEFINITION=HUMOSTRO Human osteopontin mRNA, complete cds	Cluster Incl AB024704:Homo sapiens mRNA for fls353, complete cds /cds=(471,2714) /gb=AB024704 /gi=4589928 /ug=Hs.9329 /len=3403	Cluster Incl M10905:Human cellular fibronectin mRNA /cds=(0,2383) /gb=M10905 /gi=182696 /ug=Hs.118162 /len=2384	Cluster Incl Y15915: Homo sapiens mRNA for chimaeric transcript of collagen type 1 alpha 1 and platelet derived growth factor beta, 1068 bp /cds=(0,1067) /gb=Y15915 /gi=3288486 /ug=Hs.172928 /len=1068	Cluster Incl M97936:Human transcription factor ISGF-3 mRNA sequence /cds=UNKNOWN /gb=M97936 /gi=475254 /ug=Hs.21486 /len=2607	Cluster Incl L32137:Human germline oligomeric matrix protein (COMP) mRNA, complete cds /cds=(25,2298) /gb=L32137 /gi=602449 /ug=Hs.1584 /len=2439	Hs.174070 Cluster Incl M91670:Human ubiquitin carrier protein (E2-EPF) mRNA, complete cds /cds=(59,736) /gb=M91670 /gi=181915 /ug=Hs.174070 /len=890
Cluster #	Hs.313	Hs.9329	Hs.118162	Hs.172928	Hs.21486	Hs.1584	Hs.174070
Gene Name	secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T- lymphocyte activation	chromosome 20 open reading frame 1	fibronectin 1	collagen, type I, alpha 1	signal transducer and activator of transcription 1, 91kD	cartilage oligomeric matrix protein (pseudoachondroplasi a, epiphyseal dysplasia 1, multiple)	ubiquitin carrier protein
Genbank	J04765	AB024704	M10905	Y15915	M97936	L32137	M91670
Affy	2092_s_at	39109_at	31720_s_at	35474_s_at	33338_at	40161_at	40619_at
SegID	1007	277	1030	1240	1059	1021	1057
#1	©	თ	01	Ξ	12	5	4

	110 02/03/	, , , ,			41.			1 € 17 € 50 27	J2170
p-values	5.41E-09	1.68E-10	1.97E-06	3.67E-07	1.59E-08	9.67E-08	8.99E-09	0.00077416	1.88E-07
Fold Change	4.690939862	4.66285568	4.621425831	4.485125913	4.465375169	4.357390421	4.165483399	4.09	4.002408289
Cluster Description	Cluster Incl AA203476:zx55e01.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-446424 /clone_end=5" /gb=AA203476 /gi=1799203 /ug=Hs.159626 /len=828"	Cluster Incl L37747:Homo sapiens lamin B1 gene /cds=(340,2100) /gb=L37747 /gi=576839 /ug=Hs.89497 /len=2849	M13755 /FEATURE=mRNA /DEFINITION=HUMIFN15K Human interferon-induced 17-kDa/15-kDa protein mRNA, complete cds	Cluster Incl X14850:Human H2A.X mRNA encoding histone H2A.X /cds=(73,504) /gb=X14850 /gi=31972 /ug=Hs.147097 /len=1585	Cluster Incl X54942:H.sapiens ckshs2 mRNA for Cks1 protein homologue /cds=(95,334) /gb=X54942 /gi=29978 /ug=Hs.83758 /len=612	Cluster Incl K02581:Human thymidine kinase mRNA, complete cds /cds=(57,761) /gb=K02581 /gi=339708 /ug=Hs.105097 /len=1421	Cluster Incl AF067656:Homo sapiens ZW10 interactor Zwint mRNA, complete cds /cds=(24,857) /gb=AF067656 /gi=3901271 /ug=Hs.42650 /len=1639	M97935 Homo sapiens transcription factor ISGF-3 mRNA, complete cds (_5,_MA, MB,_3 represent transcript regions 5 prime, MiddleA, MiddleB, and 3 prime respectively)	L47276 /FEATURE=UTR#1 /DEFINITION=HUMTOPATR Homo sapiens (cell line HL-60) alpha topoisomerase truncated form mRNA, 3"UTR
Cluster#	Hs.252587	Hs.89497	Hs.833	Hs.147097	Hs.83758	Hs.105097	Hs.42650	Hs.21486	
Gene Name	pituitary tumor- transforming 1	lamin B1	interferon-stimulated protein, 15 kDa	H2A histone family, member X	CDC28 protein kinase 2	thymidine kinase 1, soluble	ZW10 interactor	signal transducer and activator of transcription 1, 91kD	
Genbank	AA203476	L37747	M13755	X14850	X54942	K02581	AF067656	M97935 V	L47276
Affx	40412_at	37985_at	1107_s_at	40195_at	40690_at	41400_at	35995_at	AFFX- HUMISGF3A/ M97935_MA	904_s_at
SealD	83	1025	1034	1221	1224	1010	303	1058	1027
##	15	16		18	. 19	50	21	22	23

42

					42		
p-values	1.06E-06	2.48E-06	2.95E-07	2.60E-08	4.11E-03	1.28E-05	3.71E-04
Fold Change	3.870563686	3.855167487	3.813256493	3.80895841	3.800908625	3.796503387	3.781923678
Cluster Description	Cluster Incl U05340:Human p55CDC mRNA, complete cds /cds=(110,1609) /gb=U05340 /gi=468031 /ug=Hs.82906 /len=1686	Cluster Incl X02761:Human mRNA for fibronectin (FN precursor) /cds=(0,6987) /gb=X02761 /gi=31396 /ug=Hs.118162 /len=7680	Cluster Incl U74612:Human hepatocyte nuclear factor-3/fork head homolog 11A (HFH-11A) mRNA complete cds /cds=(114,2519) /gb=U74612 /gi=1842252 /ug=Hs.239 /len=3474	Cluster Incl M25753:Human cyclin B mRNA, 3 end /cds=UNKNOWN /gb=M25753 /gi=181243 /ug=Hs.23960 /len=1452"	Cluster Incl J03464:Human collagen alpha-2 type I mRNA, complete cds, clone pHCOL2A1 /cds=(469,4569) /gb=J03464 /gi=179595 /ug=Hs.179573 /len=5416	Cluster Incl X15998:H.sapiens mRNA for the chondroitin sulphate proteoglycan versican, V1 splice-variant; precursor peptide /cds=(266,7495) /gb=X15998 /gi=37662 /ug=Hs.81800 /len=8224	Cluster Incl AC003107:Human DNA from chromosome 19-specific cosmid R30064 containing the COMP gene, genomic sequence /cds=(0,2453) /gb=AC003107 /gi=2623749 /ug=Hs.1584 /len=2454
Cluster #	Hs.82906	Hs.118162	Hs.239	Hs.23960	Hs.179573	Hs.81800	Hs.1584
Gene Name	CDC20 (cell division cycle 20, S. cerevislae, homolog)	fibronectin 1	forkhead box M1	cyclin B1	collagen, type I, alpha 2	chondroitin sulfate proteoglycan 2 (versican)	cartilage oligomeric matrix protein (pseudoachondroplasi a, epiphyseal dysplasia 1, multiple)
Genbank	U05340	X02761	U74612	M25753	J03464	X15998	AC003107
Affy	38414_at	31719_at	34715_at	34736_at	32305_at	38112_g_at	40162_s_at AC003107
SeqID	1136	1216	1160	1043	1002	1222	279
#11	24	25	56	27	28	29	30

			•	.3				
Souley-u	9.37E-05	1.57E-07	1.35E-04	5.17E-03	1.67E-05	9.47E-08	3.03E-03	1.22E-03
Fold Change	3.74871763	3.620640004	3.607432569	3.556183255	3.539960818	3.437302377	3.435786237	3.427509519
acitairese Description	M23263 /FEATURE= /DEFINITION=HUMARB Human androgen receptor mRNA, complete cds	Cluster Incl U59877:Human low-Mr GTP-binding protein (RAB31) mRNA, complete cds /cds=(60,644) /gb=U59877 /gi=1388194 /ug=Hs.223025 /len=907	Cluster Incl AF095448:Homo sapiens putative G protein-coupled receptor (RAIG1) mRNA, complete cds /cds=(99,1172) /gb=AF095448 /gi=4063889 /ug=Hs.194691 /len=2288	M29874 /FEATURE= /DEFINITION=HUMCYP2BB Human cytochrome P450-IIB (hIIB1) mRNA, complete cds	M15205 /FEATURE=cds /DEFINITION=HUMTKRA Human thymidine kinase gene, complete cds, with clustered Alu repeats in the introns	Cluster Incl AC004770:Homo sapiens chromosome 11, BAC CIT-HSP-311e8 (BC269730) containing the hFEN1 gene /cds=(2644,3786) /gb=AC004770 /gi=3212836 /ug=Hs.4756 /len=4522	Cluster Incl X70940:H.sapiens mRNA for elongation factor 1 alpha-2 /cds=(83,1474) /gb=X70940 /gi=38455 /ug=Hs.2642 /len=1755	Hs.278613 X67325 /FEATURE=cds /DEFINITION=HSP27 H.sapiens p27 mRNA
11104011	Hs.99915	Hs.223025	Hs.194691	Hs.1360	Hs.105097		Hs.2642	Hs.278613
Ome N	androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal and bulbar muscular atrophy; Kennedy disease)	RAB31, member RAS oncogene family	retinoic acid induced 3	cytochrome P450, subfamily IIB (phenobarbital- inducible)	thymidine kinase 1, soluble		eukaryotic translation elongation factor 1 alpha 2	interferon, alpha- inducible protein 27
	<u>Vendalin</u> M23263	U59877	AF095448	M29874	M15205	AC004770	X70940	X67325
A £5.	1577_at	33371_s_at	33730_at	1371_s_at	910_at	41583_at	35174_i_at	1231 425_at
מושפט	1041	1155	307	1044	1036	281	1233	1231
7	3.7 #	32	33	34	35	36	37	38

Si	,	83	894	4	90	4	05	80	05
p-values	4.57E-07	1.19E-03	0.00448894	9.83E-04	2.37E-06	5.97E-04	5.87E-05	5.63E-08	9.38 E -05
Fold Change	3.42481014	3.411920822	3.381535863	3.370961478	3.349219771	3.329472506	3.328306522	3.295678907	3.289545724
Cluster Description	Cluster Incl U30872:Human mitosin mRNA, complete cds /cds=(72,9413) /gb=U30872 /gi=1000093 /ug=Hs.77204 /len=10189	Cluster Incl M55153:Human transglutaminase (TGase) mRNA, complete cds /cds=(135,2198) /gb=M55153 /gi=339520 /ug=Hs.8265 /len=3257	X00351 Human mRNA for beta-actin (_5, _M, _3 represent transcript regions 5 prime, Middle, and 3 prime respectively)	Cluster Incl M13509:Human skin collagenase mRNA, complete cds /cds=(68,1477) /gb=M13509 /gi=180664 /ug=Hs.83169 /len=1970		Cluster Incl X72755:H.sapiens Humig mRNA /cds=(39,416) /gb=X72755 /gi=311375 /ug=Hs.77367 /len=2545	Cluster Incl D80008:Human mRNA for KIAA0186 gene, complete cds /cds=(94,684) /gb=D80008 /gi=1136431 /ug=Hs.36232 /len=3248	M25753 /FEATURE=mRNA /DEFINITION=HUMCYCB Human cyclin B mRNA, 3" end	-
Cluster#	Hs.77204	Hs.8265	Hs.180952	Hs.83169	Hs.176663	Hs.77367	Hs.36232	Hs.23960	Hs.184601
Gene Name	centromere protein F (350/400kD, mitosin)	transglutaminase 2 (C polypeptide, protein- glutamine-gamma- 'glutamyltransferase)	actin, beta	matrix metalloproteinase 1 (interstitial collagenase)	Fc fragment of IgG, low affinity IIIa, receptor for (CD16)	monokine induced by gamma interferon	KIAA0186 gene product	cyclin B1	solute carrier family 7 (cationic amino acid transporter, y+ system), member 5
Genbank	U30872	M55153	X00351 0	M13509	J04162	X72755	D80008	M25753	M80244
Affy	37302_at	38404_at	AFFX- HSAC07/X00 351 M st	38428_at	37200_at	37219_at	39677_at	1945_at	32186_at
SegiD	1144	1046	1215	1033	1005	1234	972	1043	1054
##	38	40	14	45	43	44	45	46	47

##	SegID	Affy	Genbank	Gene Name	Cluster#	Cluster Description	Fold Change	p-values
48	1053	37741_at	M77836	pyrroline-5-	Hs.79217	Cluster Incl M77836:Human pyrroline 5-	3.247818871	2.25E-05
				carboxylate reductase 1		carboxylate reductase mRNA, complete cds /cds=(11,970) /gb=M77836 /gi=189497 /ug=Hs.79217 /len=1792		
49	1049	36879_at	M63193	endothelial cell	Hs.73946	Cluster Incl M63193:Human platelet-derived	3.190855222	4.06E-07
				growth factor 1 (platelet-derived)		endothelial cell growth factor mRNA, complete cds /cds=(123,1571) /gb=M63193 /gi=189700		
						/ug=Hs.73946 /len=1587		
20	1158	37920_at	U70370	paired-like	Hs.84136	Cluster Incl U70370:Human hindlimb	3.147501909	6.11E-04
				homeodomain		expressed homeobox protein backfoot (Bft)		
				transcription factor 1		mRNA, complete cds /cds=(111,1055) /gb=U70370 /gi=1870670 /ug=Hs.84136		
						//en=2049		
51	1149	37141_at	U39840	hepatocyte nuclear	Hs.105440	Cluster Incl U39840:Human hepatocyte nuclear	3.044487778	5.33E-04
				factor 3, alpha		factor-3 alpha (HNF-3 alpha) mRNA, complete cds /cds=(87,1508) /gb=U39840 /gi=1066121		
						/ug=Hs.105440 /len=2872		
52	1020	38763_at	L29254	sorbitol	Hs.878	Cluster Incl L29254:Human (clone P1-5) L-	3.044067136	1.78E-04
				dehydrogenase		iditol-2 dehydrogenase gene /cds=(137,1210) /gb=L29254 /gi=808013 /ug=Hs.878 /len=2519		
53	1219	1803 at	X05360	cell division cycle 2,	Hs.184572	X05360 /FEATURE=cds	3.036676875	7.75E-07
		I		G1 to S and G2 to M		_		
						involved in cell cycle control		
54	285	39690_at	AF002282	alpha-actinin-2-	Hs.135281	Cluster Incl AF002282:Homo sapiens alpha-	0.327422466	0.000054
				associated LIM		actinin-2 associated LIM protein mRNA,		
				protein		alternatively spliced product, complete cds		
						/cds=(46,996) /gb=AF002282 /gi=3138923		
						/ug=Hs.135281 /len=1347		
22	1153	1153 1527_s_at	U50527		Hs.22174	U50527 /FEATURE= /DEFINITION=HSU50527	0.326731583	0.00000608
						Human BRCA2 region, mRNA sequence		
						CGO18		

	, ai O	_		m	01	22	က္	
	<u>p-values</u> 0.0000229	0.000191	0.0001	2.84E-08	0.000642	0.000000552	0.0000133	0.000834
								Ö
	19388	31324	36748	72690	37581	78779	19387	7207
	Fold Change 0.326719388	0.326431324	0.323566748	0.323306977	0.323187581	0.323178779	0.321819387	0.3197207
	•		6		0		0	
	195 kC omple	SU842	RNA fo 66,111 48	llycine 1356) en=21	olate 13	32539 keletal	ha ames 908	thelial
	2n piens RNA, c 891 =6227	ON=H rsor, n ds	ens mf cds=(5 ls.8024	e for g =(145, .102 //	ental f cds =1824	ON=S	TS alp ding fr gi=475	ast epi cds :13811
•	criptions and sar m.F. F.	FINITI precu slete c	sapie cds / ug=H	an gen n /cds: ug=Hs	ın plac mplete 376 /gi	FINIT Thur	iens r en rea 7098 /	an brea pplete 16 /gi=
1	Cluster Description F001691:Homo sapie slope precursor mRN 5360) /gb=AF001691 'ug=Hs.74304 /len=6	:= /DEi nokine I, comp	:Home mplete 59552	Hum: proteil 4760 //	:Huma NA, co >=J028 :1211	= /DEl strate 28 nt]	:H.sap our ope jb=X6 =1817	3. Hums A, con =U585 934
	Clust F0016 elope (5360) /ug=H	TURE C chen spliced	08411(3.4, co /gi=16	1468€ tem T- /gi=99	02876 in mRI 29) /gt 4 /len=	TURE or sub	67098 ining fo WN /c 33 /len)58516 mRN 3) /gb: /len=1
	Incl A ed envi s=(90 s8845	7 /FEA 1 CX3C tively t	Incl	' Incl D ge sys 4686	Incl J prote 262, 10 2419,	9 /FEA recept mRN	contai NKNC 1804:	Incl U BA46 30,122
	Cluster Description Cluster Incl AF001691:Homo sapiens 195 kDa cornified envelope precursor mRNA, complete cds /cds=(90,5360) /gb=AF001691 /gi=3168845 /ug=Hs.74304 /len=6227	U84487 /FEATURE= /DEFINITION=HSU84487 Human CX3C chemokine precursor, mRNA, alternatively spliced, complete cds	Cluster Incl D84110:Homo sapiens mRNA for RBP-MS/type 4, complete cds /cds=(566,1156) /gb=D84110 /gi=1669552 /ug=Hs.80248 /len=1594	Cluster Incl D14686:Human gene for glycine cleavage system T-protein /cds=(145,1356) /gb=D14686 /gi=994760 /ug=Hs.102 /len=2119	Cluster Incl J02876:Human placental folate binding protein mRNA, complete cds /cds=(262,1029) /gb=J02876 /gi=182413 /ug=Hs.24194 /len=1211	S62539 /FEATURE= /DEFINITION=S62539 insulin receptor substrate-1 [human, skeletal muscle, mRNA, 5828 nt]	Cluster Incl X67098:H.sapiens rTS alpha mRNA containing four open reading frames /cds=UNKNOWN /gb=X67098 /gi=475908 /ug=Hs.180433 /len=1817	Cluster Incl U58516:Human breast epithelial antigen BA46 mRNA, complete cds /cds=(60,1223) /gb=U58516 /gi=1381161 /ug=Hs.3745 /len=1934
	!	-						
į	<u>Cluster #</u> Hs.74304	Hs.80420	Hs.80248	Hs.102	Hs.24194	Hs.96063	Hs.180433	Hs.3745
	a nd	Jy D	e ein	sfera age)				A F
	Gene Name lakin	small inducible cytokine subfamily D (Cys-X3-Cys), member 1 (fractalkine, neurotactin)	RNA-binding protein gene with multiple splicing	aminomethyltransfera se (glycine cleavage system protein T)	ptor 2	eptor	rotein	milk fat globule-EGF factor 8 protein
,	<u>Gene</u> periplakin	small inducible cytokine subfar (Cys-X3-Cys), member 1 (fractalkine, neurotactin)	-bindii with i ing	nometh glycine em pro	folate receptor 2 (fetal)	insulin receptor substrate 1	beta protein	milk fat globule factor 8 protein
	periț	small cytok (Cys- mem (fract	RNA-bir gene wil splicing	amir se (ç syste	folate (fetal	insul	гТSb	facto
	<u>Genbank</u> -001691	21	0	9	9	တ္တ	<u>ω</u>	ဖ
•	<u>Genban</u> AF001691	U84487	D84110	D14686	J02876	S62539	X67098	U58516
	at K≤		g_at	at .	s at		at at	
•	Affy 36890_at	823_at	38049_g_at	41120_at	33871_s_at	851_s_at	33263_at	34403_at
!	<u>SeqID</u> 284 3	1164 8	973 3	963 4	1001	1120 8	1230 3	
(N N	-	თ	ō .	7		77	£ .
:	£ 20 E	57	28	29	09	61	62	63

##	SegID	Affx	Genbank	Gene Name	Cluster #	Cluster Description	Fold Change	p-values
64	1169	37724_at	V00568	v-myc avian myelocytomatosis viral oncogene	Hs.79070	Cluster Incl V00568:Human mRNA encoding the c-myc oncogene /cds=(558,1877) /gb=V00568 /gi=34815 /ug=Hs.79070	0.319370936	0.000387
				homolog		/len=2121		
65	1040	39385_at	M22324	alanyl (membrane) aminopeptidase (aminopeptidase N, aminopeptidase M,	Hs.1239	Cluster Incl M22324:Human aminopeptidase N/CD13 mRNA encoding aminopeptidase N, complete cds /cds=(120,3023) /gb=M22324 /gi=178535 /ug=Hs.1239 /len=3477	0.317801655	0.00529
				microsonnal aminopeptidase, CD13, p150)			-	
99	292	41470_at	AF027208	prominin (mouse)-like 1	Hs.112360	Hs.112360 Cluster Incl AF027208:Homo sapiens AC133 antigen mRNA, complete cds /cds=(37,2634) /gb=AF027208 /gi=2688948 /ug=Hs.112360 /len=3794	0.314829644	0.00523
29	958	770_at	D00632	glutathione peroxidase 3 (plasma)	Hs.172153	D00632 /FEATURE= /DEFINITION=HUMGSHPXA Homo sapiens mRNA for glutathione peroxidase, complete cds	0.313476219	0.000012
89	1018	668_s_at	L22524	matrix metalloproteinase 7 (matrilysin, uterine)	Hs.2256	L22524 /FEATURE=expanded_cds /DEFINITION=HUMMATRY06 Human matrilysin gene, exon 6 and complete cds	0.313295747	0.0224
69	1244	36917_at	Z26653	laminin, alpha 2 (merosin, congenital muscular dystrophy)	Hs.75279	Cluster Incl Z26653:H.sapiens mRNA for laminin M chain (merosin) /cds=(49,9381) /gb=Z26653 /gi=438055 /ug=Hs.75279 /len=9534	0.312357015	0.0000881
. 02	1016	279_at	L13740	nuclear receptor subfamily 4, group A, member 1	Hs.1119	L13740 /FEATURE= /DEFINITION=HUMTR3A Human TR3 orphan receptor mRNA, complete cds	0.31152273	0.000764

					40				
	p-values	0.0000193	0.00000415	0.000274	0.000239	0.0000802	1.85E-07	7.42E-08	0.00149
	Fold Change	0.310894189	0.308897008	0.306961223	0.303827048	0.303503697	0.300299695	0.297519832	0.296769339
***	Cluster Description	Cluster Incl AF082868:Homo sapiens gamma . butyrobetaine hydroxylase (BBH) mRNA, complete cds /cds=(66,1229) /gb=AF082868 /gi=3746804 /ug=Hs.9667 /len=1584	Cluster Incl AF016004:Homo sapiens m6b1 mRNA, complete cds /cds=(254,1051) /gb=AF016004 /gi=3387766 /ug=Hs.78361 /len=1616	Cluster Incl Y11306:Homo sapiens mRNA for hTCF-4 /cds=(307,2097) /gb=Y11306 /gi=4469251 /ug=Hs.154485 /len=2444	U04313 /FEATURE= /DEFINITION=HSU04313 Human maspin mRNA, complete cds	Cluster Incl Z19574:H.sapiens gene for cytokeratin 17 /cds=(64,1362) /gb=Z19574 /gi=30378 /ug=Hs.2785 /len=1518	Cluster Incl U22398:Human Cdk-inhibitor p57KIP2 (KIP2) mRNA, complete cds /cds=(260,1210) /gb=U22398 /gi=790247 /ug=Hs.106070 /len=1511	Cluster Incl M15036:Human vitamin K-dependent plasma protein S mRNA, complete cds /cds=(146,2176) /gb=M15036 /gi=190288 /uq=Hs.64016 /len=3309	
i	Cluster#	Hs.9667	Hs.5422	Hs.285857	Hs.55279	Hs.2785	Hs.106070	Hs.64016	Hs.155376
	Gene Name	butyrobetaine (gamma), 2- oxoglutarate dioxygenase (gamma- butyrobetaine hydroxylase)	glycoprotein M6B	transcription factor 7- like 2 (T-cell specific, HMG-box)	protease inhibitor 5 (maspin)	keratin 17	cyclin-dependent kinase inhibitor 1C (p57, Kip2)	protein S (alpha)	hemoglobin, beta
	Genbank	AF082868	AF016004	Y11306	U04313	219574	U22398	M15036	L48215
	Affx	38339_at	37251_s_at	32025_at	863_g_at	34301_r_at	39545_at	35752_s_at	32052_at
	SegiD	305	290	1239	1135	1242	1143	1035	1028
	##	2		73	74	75	92	23	78

WO 02/059271		PCT/US02/02176
	49	

		4	9			
p-values 0.0000556	0.00000184	0.00999	9660000000	0.00688	8.07E-07	0.000483
Fold Change 0.295641772	0.29509428	0.29444252	0.292877726	0.29048531	0.2896161	0.288749983
Cluster Description Cluster Incl AF052389:Homo sapiens LIM domain binding protein (LDB1) mRNA, complete cds /cds=(254,1297) /gb=AF052389 /gi=3044065 /ug=Hs.4980 /len=2398	Cluster Incl AJ000388:Homo sapiens mRNA for calpain-like protease CANPX /cds=(182,2107) /gb=AJ000388 /gi=2274961 /ua=Hs, 169172 /len=3615	Cluster Incl M12272:Homo sapiens alcohol dehydrogenase class I gamma subunit (ADH3) mRNA, complete cds /cds=(80,1207) /gb=M12272 /gi=178147 /ug=Hs.2523 /len=1466	Hs.184222 Cluster Incl U85267:Homo sapiens down syndrome candidate region 1 (DSCR1) gene, alternative exon 1, complete cds /cds=(84,677) /gb=U85267 /gi=2612867 /ug=Hs.184222 /len=2272		Cluster Incl AL021977:bK447C4.1 (novel MAFF (v-maf musculoaponeurotic fibrosarcoma (avian) oncogene family, protein F) LIKE protein) /cds=(0,494) /gb=AL021977 /ai=4914526 /ua=Hs 51305 /len=2128	Cluster Incl Z22865:H.sapiens dermatopontin mRNA, complete CDS /cds=(12,617) /gb=Z22865 /gi=311613 /ug=Hs.80552 /len=729
Cluster# Hs.4980	Hs.169172	Hs.2523	Hs.184222	Hs.155223	Hs.51305	Hs.80552
Gene Name LIM domain binding 2,polymyositis/sclerod erma autoantigen 2 (100kD)	calpain-like protease	alcohol dehydrogenase 1 (class I), alpha polypeptide,alcohol dehydrogenase 3 (class I), gamma	Down syndrome critical region gene 1	stanniocalcin 2	v-maf musculoaponeurotic fibrosarcoma (avian) oncogene family,	dermatopontin
<u>Genbank</u> AF052389	AJ000388	M12272	U85267	AF098462	AL021977	Z 22865
Affy 36065_at	40475_at	36247_f_at	32168_s_at	32043_at	36711_at	38059_g_at
SeqID 298	848	1031	1165	308	. 851	1243
## 6	80		83	83	8	82

50

PCT/US02/02176

/ug=Hs.211582 /len=5926

WO 02/059271

PCT/US02/02176

WO 02/059271

					52			
p-values	4.12E-07	0.0000904	0.0000232	0.0025	0.00000113	0.000041	0.00041	0.00105
Fold Change	0.260055335	0.259339901	0.259264106	0.258780062	0.258230155	0.257792937	0.256900234	0.256815942
Cluster Description	Cluster Incl U17760:Human laminin S B3 chain (LAMB3) gene /cds=(399,3917) /gb=U17760 /gi=2182192 /ug=Hs.75517 /len=4213	M98539 /FEATURE=exon /DEFINITION=HUMPDS03 Human prostaglandin D2 synthase gene, exon 7	Cluster Incl W61005:zd29a11.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-342044 /clone_end=3" /gb=W61005 /gi=1367764 /ug=Hs. 14896 /len=786"	Cluster Incl J00153:Human alpha globin gene cluster on chromosome 16- zeta gene /cds=(0,428) /gb=J00153 /gi=183794 /ug=Hs, 182374 /len=429	Cluster Incl U61374:Human novel protein with short consensus repeats of six cysteines mRNA, complete cds /cds=(41,1426) /gb=U61374 /gi=1778409 /ug=Hs.15154 /len=1800	Cluster Incl X57025:Human IGF-I mRNA for insulin-like growth factor I /cds=(166,627) /gb=X57025 /gi=33007 /ug=Hs.85112 /len=7236	Cluster Incl M15856:Human lipoprotein lipase mRNA, complete cds /cds=UNKNOWN /gb=M15856 /gi=187209 /ug=Hs.180878 /len=3549	Cluster Incl X00129:Human mRNA for retinol binding protein (RBP) /cds=(51,650) /gb=X00129 /gi=35896 /ug=Hs.76461 /len=882
Cluster#	Hs.75517	Hs.8272	Hs.14896	Hs.251577	Hs.15154	Hs.85112	Hs.180878	Hs.76461
Gene Name	laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD))	prostaglandin D2 synthase (21kD, brain)	DHHC1 protein	hemoglobin, alpha 1	sushi-repeat- containing protein, X chromosome	insulin-like growth factor 1 (somatomedia C)	lipoprotein lipase	retinol-binding protein 4, interstitial
Genbank	U17760	M98539	W61005	J00153	U61374	X57025	M15856	X00129
Affy	36929_at	216_at	39750_at	31525_s_at	31855_at	38737_at	41209_at	32552_at
SegiD	1141	1060	1191	666	1156	1225	1037	1214
##	103	104	105	106	107	108	109	110

p-values 0.000837	0.0321	0.000106	0.000998	0.000037	0.0000523	0.0000179	0.000763
Fold Change 0.256739005	0.251627664	0.251471671	0.251434843	0.250173978	0.249382262	0.248516754	0.242494771
Cluster Incl U41518: Human channel-like integral membrane protein (AQP-1) mRNA, clone AQP-1-2344, partial cds /cds=(0,460) /gb=U41518 /gi=1314305 /ug=Hs.74602	Cluster Incl Y10179:H.sapiens mRNA for prolactin-inducible protein /cds=(36,476) /gb=Y10179 /gi=2292895 /ug=Hs.99949	Cluster Incl K03000:Human aldehyde dehydrogenase 1 mRNA /cds=(0,1022) /gb=K03000 /gi=178399 /ug=Hs.76392	Cluster Incl M25079:Human sickle cell beta- globin mRNA, complete cds /cds=(0,443) /gb=M25079 /gi=179408 /ug=Hs.234764	Cluster Incl U39447:Human placenta copper monamine oxidase mRNA, complete cds /cds=(160,2451)/gb=U39447/gi=1399031	X57025 /FEATURE=mRNA /DEFINITION=HSIGFACI Human IGF-I mRNA for insulin-like growth factor I	L07594 /FEATURE= //DEFINITION=HUMTGFB3C Human transforming growth factor-beta type III	Cluster Incl U05861:Human hepatic dihydrodiol dehydrogenase gene /cds=(26,997) /gb=U05861 /gi=487134 /ug=Hs.201967 /len=1222
Cluster# Hs.74602	Hs.99949	Hs.76392	Hs.155376	Hs.198241	Hs.85112	Hs.79059	Hs.275374
Gene Name aquaporin 1 (channel- forming integral protein, 28kD)	prolactin-induced protein	aldehyde dehydrogenase 1, soluble	hemoglobin, beta	amine oxidase, copper containing 3 (vascular adhesion	insulin-like growth factor 1 (somatomedia C)	transforming growth factor, beta receptor III (betaglycan, 300kD)	addo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 20- alpha (3-alpha)- hydroxysteroid dehydrogenase)
<u>Genbank</u> U41518	Y10179	K03000	M25079	U39447	X57025	L07594	U05861
Affy 36156_at	41094_at	37015_at	31687_f_at	33 7 56_at	1501_at	1897_at	32805_at
SegID 1150	1238	1011	1042	1148	1225	1012	1137
# [112	113	114	115	116	117	118

SeqID	Affy	Genbank	Gene Name	Cluster#	Cluster Description	Fold Change	p-values
36943_r_at	ä	U81992	pleiomorphic adenoma gene-like 1	Hs.75825	Cluster Incl U81992:Homo sapiens CZHZ zinc finger protein PLAGL1 (PLAGL1) mRNA, complete cds /cds=(176,1411) /gb=U81992 /gi=3513452 /ug=Hs.75825 /len=2561	0.2338788808	Z.11E-09
32610_at		X93510	LIM domain protein	Hs.79691	Cluster Incl X93510:H.sapiens mRNA for 37 kDa LIM domain protein /cds=(41,1027) /gb=X93510 /gi=1085021 /ug=Hs.79691 /len=1130	0.233549169	0.0000034
33700_at		AF039843	sprouty (Drosophila) homolog 2	Hs.18676	Cluster Incl AF039843:Homo sapiens Sprouty 2 (SPRY2) mRNA, complete cds /cds=(390,1337) /gb=AF039843 /gi=2809399 /ug=Hs.18676 /len=2117	0.231782987	3.37E-08
38408_at	ä	L10373	transmembrane 4 superfamily member 2	Hs.82749	Cluster Incl L10373:Human (clone CCG-B7) mRNA sequence /cds=UNKNOWN /gb=L10373 /gi=307287 /ug=Hs.82749 /len=1792	0.228960682	6.59E-10
774_g_at	æ'	D10667			D10667 /FEATURE= /DEFINITION=HUMMHCAAA Homo sapiens mRNA for smooth muscle myosin heavy chain, partial cds	0.228917694	0.000415
1146 36329_at	, #g	U33147	mammaglobin 1	Hs.46452	Cluster Incl U33147:Human mammaglobin mRNA, complete cds /cds=(60,341) /gb=U33147 /gi=1199595 /ug=Hs.46452 /len=503	0.226749627	0.031
37863_at	₩.	J04076	early growth response 2 (Krox-20 (Drosophila) homolog)	Hs.1395	Cluster Incl J04076:Human early growth response 2 protein (EGR2) mRNA, complete cds /cds=(203,1423) /gb=J04076 /gi=181986 /ug=Hs.1395 /len=2700	0.225166891	3.52E-07
31791_at	ig,	Y16961	tumor protein 63 kDa with strong homology to p53	Hs.137569		0.222238905	0.00000788
39350_at	ig'	U50410	glypican 3	Hs.119651		0.220336613	0.0000975

				22				
p-values	0.00000138	9.64E-09	0.0000527	0.0000209	0.00000443	0.000166	0.0000371	4.51E-07
Fold Change	0.218509986	0.216723881	0.216083178	0.207358276	0.206077576	0.202234909	0.19705452	0.196869236
Cluster Description	Cluster Incl X54162:Human mRNA for a 64 Kd autoantigen expressed in thyroid and extraocular muscle /cds=(212,1930) /gb=X54162 /gi=28968 /ug=Hs.79386 /len=3849	Cluster Incl U69263:Human matrilin-2 precursor mRNA, partial cds /cds=(0,941) /gb=U69263 /gi=2072789 /ug=Hs.19368 /len=1033	_	Cluster Incl M36820:Human cytokine (GRO- beta) mRNA, complete cds /cds=(74,397) /gb=M36820 /gi≈183628 /ug≈Hs.75765 /len=1110				Cluster Incl L13463:Human helix-loop-helix basic phosphoprotein (G0S8) mRNA, complete cds /cds=(32,667) /gb=L13463 /gi=292054 /ug=Hs.78944 /len=1345
Cluster #	Hs.79386	Hs.19368	Hs.118223	Hs.75765	Hs.237356	Hs.251754	Hs.110903	Hs.78944
Gene Name	leiomodin 1 (smooth muscle)	matrilin 2	microfibrillar- associated protein 4	GRO2 oncogene	stromal cell-derived factor 1	secretory leukocyte protease inhibitor (antileukoproteinase)	claudin 5 (transmembrane protein deleted in velocardiofacial svndrome)	regulator of G-protein signalling 2, 24kD
Genbank	X54162	U69263	L38486	M36820	U19495	X04470	AF000959	L13463
Affx	37765_at	32239_at	39066_at	37187_at	32666_at	32275_at	38995_at	37701_at
SegID	1223	1157	1026	1045	1142	1218	282	1015
##	128	129	130	131	132	133	134	135

p-values	0.0108	2.64E-10	0.000818	4.71E-08	0.00058	9.21E-08
Fold Change	0.195015273	0.191432122	0.19139473	0.187743879	0.187570884	0.186647173
Cluster Description	Cluster Incl U95626:Homo sapiens ccr2b (ccr2), ccr2a (ccr2), ccr5 (ccr5) and ccr6 (ccr6) genes, complete cds, and lactoferrin (lactoferrin) gene, partial cds /cds=(2,1429) /gb=U95626 /gi=2104517 /ug=Hs.105938 /len=1607	Cluster Incl M18533:Homo sapiens dystrophin (DMD) mRNA, complete cds /cds=UNKNOWN /gb=M18533 /gi=181856 /ug=Hs.169470 /len=13957	Hs.63236 Cluster Incl AF044311:Homo sapiens gamma-synuclein gene, complete cds /cds=(52,435) /gb=AF044311 /gi=3347841 /ug=Hs.63236 /len=708	Cluster Incl L34155:Homo sapiens laminin- related protein (LamA3) mRNA, complete cds /cds=(0,5141) /gb=L34155 /gi=551596 /ug=Hs.83450 /len=5433	Cluster Incl M69199:Human G0S2 protein gene, complete cds /cds=(160,471) /gb=M69199 /gi=609453 /ug=Hs.95910 /len=863	
Cluster #	Hs.347	Hs.169470	Hs.63236	Hs.83450	Hs.95910	Hs.174185
Gene Name	lactotransferrin	dystrophin (muscular dystrophy, Duchenne and Becker types), includes DXS142, DXS164, DXS206, DXS230, DXS239, DXS269, DXS270, DXS272	synuclein, gamma (breast cancer- specific protein 1)	laminin, alpha 3 (nicein (150kD), kalinin (165kD), BM600 (150kD), epilegrin)	putative lymphocyte G0/G1 switch gene	ectonucleotide pyrophosphatase/pho sphodiesterase 2 (autotaxin)
Genbank	U95626	M18533	AF044311	L34155	M69199	L35594
Affy	3714	1038 40488_at	36555_at	37909_at	38326_at	41124_r_at
SeqID	1168	1038	295	1023	1051	1024
##	136	137	138	139	140	141

					′ က္	ဖ	_	92	6
p-values	0.00041	1.65E-07	9.59E-07	6.44E-07	0.00000343	0.0000486	0.000161	0.00000205	0.00000359
Fold Change	0.186645351	0.185170181	0.185137314	0.176679484	0.173326424	0.173040601	0.172026427	0.168054499	0.163077134
Cluster Description	Cluster Incl J02611:Human apolipoprotein D mRNA, complete cds /cds=(61,630) /gb=J02611 /gi=178840 /ug=Hs.75736 /len=809	Cluster Incl M91669:Human Bullous pemphigoid autoantigen BP180 gene, 3 end /cds=(0,4598) /gb=M91669 /gi=179516 /ug=Hs,117938 /len=4669"	Cluster Incl X75958:H.sapiens trkB mRNA for protein-tyrosine kinase /cds=(97,1530) /gb=X75958 /gi=473007 /ug=Hs.47860 /len=2224	_	Cluster Incl L34041:Homo sapiens L-glycerol-3 phosphate-NAD oxidoreductase mRNA, complete cds /cds=(29,1078) /gb=L34041 /qi=508486 /ug=Hs.25478 /len=1413	L13740 /FEATURE= /DEFINITION=HUMTR3A Human TR3 orphan receptor mRNA, complete cds	Cluster Incl D45371:Human apM1 mRNA for GS3109 (novel adipose specific collagen-like factor), complete cds /cds=(26,760) /gb=D45371 /gi=871886 /ug=Hs.80485 /len=4517		Cluster Incl X63741:H.sapiens pilot mRNA /cds=(353,1516) /gb=X63741 /gi=35472 /ug=Hs.74088 /len=4272
Cluster #	Hs.75736	Hs.117938	Hs.47860	Hs.174185	Hs.286116	Hs.1119	Hs.80485	Hs.239069	Hs.74088
Gene Name	apolipoprotein D	collagen, type XVII, alpha 1	neurotrophic tyrosine kinase, receptor, type 2	ectonucleotide pyrophosphatase/pho sphodiesterase 2 (autotaxin)	glycerol-3-phosphate dehydrogenase 1 (soluble)	nuclear receptor subfamily 4, group A, member 1	adipose most abundant gene transcript 1	four and a half LIM domains 1	early growth response 3
Genbank	J02611	M91669	X75958	L35594	L34041	L13740	D45371	AF063002	X63741
Affy	36681_at	41618_at	36042_at	41123_s_at	33902_at	280 <u>. g</u> at	40658_r_at	32542_at	40375_at
SeqID	1000	1056	1235	1024	1022	1016	996	301	1228
#1	142	143	144	145	146	147	148	149	150

					58				
senjev-u	0.00506	0.00282	0.0000162	5.79E-09	0.00000648	0.0000201	0.00000235	0.000768	0.0000385
Fold Change	0.161923599	0.161859881	0.155156674	0.145966282	0.143559713	0.138540058	0.137509192	0.137096706	0.136296847
Description	Cluster Incl U complete cds	K00650 /FEATURE=cds //DEFINITION=HUMFOS Human fos proto-oncodene (c-fos), complete cds	Cluster Incl X03350:Human mRNA for alcohol dehydrogenase beta-1-subunit (ADH1-2 allele) /cds=(72,1199) /gb=X03350 /gi=28415 /ug=Hs.4 /len=2532	Cluster Incl X64559:H.sapiens mRNA for tetranectin /cds=(93,701) /gb=X64559 /gi=37408 /ug=Hs.65424 /len=848	Cluster Incl AF032108:Homo sapiens integrin alpha-7 mRNA, complete cds /cds=(161,3574) /gb=AF032108 /gi=2897115 /ug=Hs.74369 /len=4061	M57399 /FEATURE= /DEFINITION=HUMHBNF1 Human nerve growth factor (HBNF-1) mRNA, complete cds	M62402 /FEATURE= /DEFINITION=HUMIGFBP4 Human insulin-like growth factor binding protein 6 (IGFBP6) mRNA, complete cds	Cluster Incl M12963:Human class I alcohol dehydrogenase (ADH1) alpha subunit mRNA, complete cds /cds=(72,1199) /gb=M12963 /gi=178089 /ug=Hs.73843 /len=1450	
# rotorio	Hs.169228	Hs.25647	Hs.4	Hs.65424	Hs.74369	Hs.44	Hs.274313	Hs.73843	Hs.103253
	delta-like homolog (Drosophila)	v-fos FBJ murine osteosarcoma viral	alcohol dehydrogenase 2 (class I), beta polypeptide	tetranectin (plasminogen-binding protein)	integrin, alpha 7	pleiotrophin (heparin binding growth factor 8, neurite growth-	insulin-like growth factor binding protein 6	alcohol dehydrogenase 1 (class I), alpha polynentide	perilipin
711111	U15979	K00650	X03350	X64559	AF032108	M57399	M62402	M12963	AB005293
	32648_at	2094_s_at	35730_at	36569_at	36892_at	234_s_at	1736_at	34637_f_at	37122_at
	1140	1009	1217	1229	293	1047	1048	1032	271
1	151 #	152	153	154	155	156	157	158	159

e p-values	2 0.000082		.5 .9.26E-08	9.15E-08	29 0.000222	32 0.000439
<u>Fold Change</u> 0.13521119	0.124249102	0.121953593	0.118530255	0.118243196	0.116969229	0.108941232
	/len=2547 Cluster Incl L49169:Human G0S3 mRNA, complete cds /cds=(593,1609) /gb=L49169 /gi=1082037 /ug=Hs.75678 /len=3775	AF001548 /FEATURE=mRNA /DEFINITION=HUAF001548 Human Chromosome 16 BAC clone CIT987SK-A- 815A9, complete sequence			tenascin X (tenascin-X) genes, complete cus /cds=(0,12869) /gb=U89337 /gi=1841544 /ug=Hs.169886 /len=12870) M21389 /FEATURE=mRNA /DEFINITION=HUMKER2A Human keratin type II (58 kD) mRNA, complete cds	Hs.83213 · Cluster Incl AA128249:zl29d09.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-503345 /clone_end=5" /gb=AA128249 /gi=1688343 /ug=Hs.83213 /len=648"
Cluster # -	Hs.75678	Hs.78344	Hs.155597	Hs.283750	Hs.195850	
Gene Name SRY (sex determining region Y)-box 10	FBJ murine osteosarcoma viral oncogene homolog B	myosin, heavy polypeptide 11, smooth muscle	D component of complement (adipsin)	tenascin XA	keratin 5 (epidermolysis bullosa simplex, Dowling-	Meara/Kobner/Weber- Cockayne types) fatty acid binding protein 4, adipocyte
Genbank AJ001183	L49169	AF001548	M84526	U89337	M21389	AA128249
Affy 36018_at	36669_at	767_at	40282_s_at	38508_s_at	613_at	38430_at
SeqID 849	1029	283	1055	1166	1039	45
# 160	161	162	163	164	165	166

p-values Cluster Incl J00124:Homo sapiens 50 kDa type 0.070781449 Fold Change pemphigoid antigen (BPAG1) mRNA, complete cds /cds=UNKNOWN /gb=M69225 /gi=179522 Cluster Incl U95367: Human GABA-A receptor Cluster Incl AF013570: Homo sapiens smooth alternatively spliced, partial cds /cds=(0,1767) Cluster Incl D17408:Homo sapiens mRNA for gene for enteric smooth muscle gamma-actin, (DEFINITION=HUMACTSG7 Homo sapiens cytokeratin 15 /cds=(61,1431) /gb=X07696 /gb=AF013570 /gi=2352944 /ug=Hs.78344 /cds=(156,1478) /gb=U95367 /gi=2197000 Cluster Incl M57399:Human nerve growth muscle myosin heavy chain SM2 mRNA, /cds=(395,901) /gb=M57399 /gi=292072 /gb=D17408 /gi=1783204 /ug=Hs.21223 /cds=(61,1479) /gb=J00124 /gi=186704 epidermal keratin gene, complete cds factor (HBNF-1) mRNA, complete cds Cluster Incl X07696: Human mRNA for calponin, complete cds /cds=(92,985) Cluster Incl M69225:Human bullous /gi=34070 /ug=Hs.80342 /len=1709 Cluster Description pi subunit mRNA, complete cds 'ug=Hs.117729 /len=1634 D00654 /FEATURE=cds /ug=Hs.70725 /len=3264 /ug=Hs.620 /len=8930 exon9, complete cds /ug=Hs.44 /len=1029 /len=2580 /len=1517 Cluster # Hs.117729 Hs.70725 Hs.77443 Hs.78344 Hs.21223 Hs.80342 Hs.620 Hs.44 gamma-aminobutyric binding growth factor pleiotrophin (heparin bullous pemphigoid promoting factor 1) keratin 15 8, neurite growthcalponin 1, basic, Gene Name actin, gamma 2, smooth muscle, bullosa simplex, Dowling-Meara, smooth muscle polypeptide 11, smooth muscle epidermolysis acid (GABA) A myosin, heavy (230/240kD) receptor, pi seratin 14 antigen 1 enteric Genbank AF013570 D17408 96920X M69225 M57399 **D00654 U95367** J00124 37407_s_at 34820_at 40304_at 34203 at 39052 at Aff 37582_at 40339 at 1197_at SeqID 1052 1047 1220 1167 288 998 964 929 172 173 174 170 171 168 69 167

Koebner)

protease 25

<u>1</u>9

AI283888

91419 at

411

8

ptide N-

homolog 1

A1589804

48513_at

525

181

v-myb avian

A1990026

80675_at

843

177

like 2

AA614135

64695 at

183

178

AL118633

59253_at

901

179

in mouse

AW007442

74989 at

923

176

Genbank

Affy

SeqID

AF056087

32521_at

				63	2			
p-values	0.00017707	1.0421E-05	3.9817E-06	1.5585E-05	7.4333E-10	0.00109754	0.00022486	6.75E-04
Fold Change	6.818460543	4.363660627	4.2443289	4.256819836	9.431588747	5.50	0.149624624	4.122293677
Cluster Description	Cluster Incl. AW003626:wx34e02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2545562 /clone_end=3' /gb=AW003626 /gi=5850542 /ug=Hs.234018 /len=707'	Cluster Incl. Al973225:wr53c11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2491412 /clone_end=3' /gb=Al973225 /gi=5770051 /ug=Hs.233704 /len=399'				Cluster Incl. AA707213:zj32h06.s1 Homo sapiens cDNA, 3 end /clone=452027 /clone_end=3' /gb=AA707213 /gi=2717131 /ug=Hs. 14319 /len=527'	Cluster Incl. Al480357:tm51d08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2161647 /clone_end=3' /gb=Al480357 /gi=4373525 /ug=Hs.91877 /len=830'	
Cluster#	Hs.159154	Hs.169840	Hs.104019	Hs.108106	Hs.270810	Hs.317	Hs.91877	Hs.125359
Gene Name	tubulin, beta, 4	TTK protein kinase	transforming, acidic colled-coil containing protein 3	transcription factor	topoisomerase (DNA) Hs.270810 II alpha (170kD)	topoisomerase (DNA) I	thyroid hormone responsive SPOT14 (rat) homolog	Thy-1 cell surface antigen
Genbank	AW003626	AI973225	Al990642	AA026429	AW003286	AA707213	Al480357	AA704137
Affy	57034_at	74593_at	52238_s_at	63346_at	74096_at	90442_at	57778_at	39395_at
SegiD	913	833	847	10	911	208	488	205
##	182	183	184	185	186	187	188	189

	_	_	_	03		Φ.	m	
p-values	0.00065669	3.1699E-09	0.00058351	3.4432E-06	2.6069E-05	0.00051209	0.00133643	0.0000138
Fold Change	3.418467862	0.284181885	99.9	0.31	4.206790316	3.273076721	0.325281828	0.277326129
Cluster Description	Cluster Incl. AA527151:ni07b08.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-967287 /clone_end=3' /gb=AA527151 /gi=2269220 /uq=Hs.108977 /len=559'	Cluster Incl. AI675177:tm80g05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2164472 /clone_end=3' /gb=AI675177 /gi=4875657 /uq=Hs.229620 /len=548'	Cluster Incl. AL036753:DKFZp564I0663_r1 Homo sapiens cDNA, 5 end /clone=DKFZp564I0663 /clone_end=5' /gb=AL036753 /gi=5927893 /ug=Hs.133482 /len=617'	Cluster Incl. Al949433:wq11e08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2470982 /clone_end=3' /gb=Al949433 /gi=5741831 /uq=Hs.13562 /len=561'		Cluster Incl. H10816:ym04e12.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-46664 /clone_end=5' /gb=H10816 /gi=875636 /ug=Hs.22065 /len=660'	Cluster Incl. N45415:yw97h06.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-260219 /clone_end=5' /gb=N45415 /gi=1186581 /ug=Hs.24395 /len=647'	Cluster Incl Al720438:as81g04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2335158 /clone_end=3"/gb=Al720438 /gi=5037694 /ug=Hs.20144 /len=550"
Cluster #	Hs.184242	Hs.243678	Hs.32964	Hs.129872	Hs.106260	Hs.22065	Hs.24395	Hs.20144
Gene Name	sterol-C5-desaturase (fungal ERG3, delta-5 desaturase)-like	SRY (sex determining region Y)-box 8	SRY (sex determining region Y)-box 11	sperm surface protein Hs.129872	sorting nexin 10	small protein effector 1 of Cdc42	small inducible cytokine subfamily B (Cys-X-Cys), member 14 (BRAK)	small inducible cytokine subfamily A (Cys-Cys), member 14
Genbank	AA527151	AI675177	AL036753	Al949433	Al285531	H10816	N45415	AI720438
Affx	48101_at	43039_at	91880_at	78444_at	63335_at	49498_at	65823_at	33790_at
SegiD	152	585	854	800	412	086	1077	616
#1	190	191	192	193	194	195	196	197

PCT/US02/02176

WO 02/059271

65

WO 02/059271

207

##

PCT/US02/02176

'ug=Hs.5101 /len=635'

												0	0																
1.0797E-05		5.5208E-05			0.03570463				0.00261362				7.8961E-05				0.00044405					9.7327E-07				6.0939E-06			
0.31		0.181794989			3.638706185				0.158415546				0.062026919				0.19				,	0.14				5.25			
Cluster Incl. AI828396:wk84e07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2422116	/clone_end=3'/gb=A\828396 /gi=544906/ /ug=Hs.201574 /len=465'	Cluster Incl. AI741776:wg22g10.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2365890	/clone_end=3'/gb=AI741776/gl=5110064 /ug=Hs.8944/len=641'	-	sapiens cDNA, 3 end /clone=IMAGE-1084125	/clone_end=3' /gb=AA593830 /gi=2408508	/ug=Hs.163833 /len=405'	_	sapiens cDNA, 3 end /clone=IMAGE-2406615	/clone_end=3' /gb=AI863965 /gi=5527996	/ug=Hs.15285 /len=601'		sapiens cDNA, 3 end /clone=IMAGE-2208241	/clone_end=3' /gb=Al697470 /gi=4985370	/ug=Hs.205126 /len=494'	Cluster Incl. AL044906:DKFZp434K183_r1	Homo sapiens cDNA, 5 end	/clone=DKFZp434K183 /clone_end=5'	/gb=AL044906/gi=5433103/ug=Hs.211647			sapiens cDNA, 3 end /clone=IMAGE-2131699	/clone_end=3' /gb=AI492388 /gi=4393391	/ug=Hs.145011 /len=477'	Cluster Incl. AA535819:nj79e01.s1 Homo	sapiens cDNA /clone=IMAGE-998712	/gb=AA535819 /gi=2280072 /ug=Hs.238355	/len=522
Hs.75323		Hs.8944			Hs.163833				Hs.279898				Hs.205126				Hs.75813					Hs.117176				Hs.83883			
prohibitin		procollagen C-	endopeptidase	enhancer 2	PRO0611 protein	•			PRO0529 protein				polymeric	immunoglobulin	receptor		polycystic kidney	disease 1 (autosomal	dominant)			poly(A)-binding	protein, nuclear 1			PMEPA1 protein	•		
A1828396		AI741776			AA593830				AI863965				AI697470				AL044906					AI492388				AA535819			
86573_at		55569_at	•	-	84574 r at	 			65700_at	ļ			45294_at	I			71106_i_at					90494_at				91095 s_at			
726		625			173				745				209				874					492				161			
214		215			216				217				218				219					220				221			
	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3' /gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=465'	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3' /gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=465' 0.181794989 625 55569_at Al741776 procollagen C- Hs.8944 Cluster Incl. Al741776:wg22g10.x1 Homo 0.181794989	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3' /gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=465' endopeptidase sapiens cDNA, 3 end /clone=IMAGE-2365890	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3'/gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=465' 625 55569_at Al741776 procollagen C- Hs.8944 Cluster Incl. Al741776:wg22g10.x1 Homo 0.181794989 endopeptidase sapiens cDNA, 3 end /clone=IMAGE-2365890 enhancer 2 /clone_end=3'/gb=Al741776 /gi=5110064 /ug=Hs.8944 /len=641'	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3 /gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=465 endopeptidase sapiens cDNA, 3 end /clone=IMAGE-2365890 enhancer 2 /clone_end=3 /gb=Al741776 /gi=5110064 /clone=IMAGE-2365890 /clone_end=3 /gb=Al741776 /gi=5110064 /ug=Hs.8944 /len=641 /ug=Hs.8944 /len=641 3:638706185	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3' /gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=465' endopeptidase endopeptidase cDNA, 3 end /clone=IMAGE-2365890 /clone_end=3' /gb=Al741776 /gi=5110064 /ug=Hs.8944 /len=641' 3.6387061185 /ug=Hs.893830:nn17b11.s1 Homo 3.638706185 sapiens cDNA, 3 end /clone=IMAGE-1084125	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31	726 86573_at Al828396 prohibitin Hs.75323 Cluster Ind. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3 /gb=Al828396 /gj=5449067 /ug=Hs.201574 /len=465 endopeptidase sapiens cDNA, 3 end /clone=IMAGE-2365890 endopeptidase closer Inc. Al741776 /gl=5110064 /ug=Hs.8944 /len=641	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3'/gb=Al828396 /gj=5449067 /ug=Hs.201574 /len=465' endopeptidase endopeptidase sapiens cDNA, 3 end /clone=IMAGE-2365890 enhancer 2 /clone_end=3'/gb=Al741776 /gj=5110064 /ug=Hs.8944 /len=641' enhancer 2 /clone_end=3'/gb=Al741776 /gj=5110064 /ug=Hs.8944 /len=641' and /clone=IMAGE-1084125 /clone_end=3'/gb=A4593830 /gj=2408508 /ug=Hs.163833 /len=405' /gb=A4593830 /gj=2408508 /ug=Hs.163833 /len=405' /ug=Hs.163833 /ug=Hs.16383 /ug=Hs.16383 /ug=Hs.16383 /ug=Hs.16383 /ug=Hs.16383 /ug=Hs.16383 /ug=Hs.1	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo o.31 sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3' /gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=465' endopeptidase endopeptidase companies cDNA, 3 end /clone=IMAGE-2365890 /clone_end=3' /gb=Al741776 /gi=5110064 /ug=Hs.8944 /len=641' 173 84574_r_at AA593830 PRO0611 protein Hs.163833 Cluster Incl. AA593830 /gi=2408508 /clone_end=3' /gb=AA593830 /clone_end=3' /gb=AA593830 /clone_end=3' /gb=AA59383	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo o.31	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396.wk84e07.x1 Homo 0.31 1.0797E-05 sapiens cDNA, 3 end /clone=IMAGE-242216 / lone_end=3′ /gb=Al828396 /gj=5449067 / lone_end=3′ /gb=Al828393 /gj=2408508 / lone_end=3′ /gb=Al828393 /gj=2408508 / lone_end=3′ /gb=Al828396 /gj=2408508 / lone_end=3′ /gb=Al828396 /gj=2408508 / lone_end=3′ /gb=Al883965 /gj=557996 / lone_end=3′ /gb=Al883965 /gj=5527996 / lone_end=3′ /gb=Al863965 /gj=5527996 / lone_end=3′ /gb=Al863960 / lone_end=	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2422116 /clone_end=3'/gb=Al828396 /gi=5449067 /ug=Hs.201574 /len=4657 endopeptidase endopeptidase sapiens cDNA, 3 end /clone=IMAGE-2365890 endopeptidase chancer 2 /ug=Hs.8944 /len=641' endopeptidase endopeptidase chancer 2 /ug=Hs.8944 /len=641' endopeptidase endopeptidase endopeptidase chancer 2 /ug=Hs.8944 /len=641' endopeptidase endopeptidase endopeptidase endopeptidase /ug=Hs.153833 /len=601' endopeptidase endopeptidase endopeptidase endopeptidase endopeptidase /ug=Hs.153833 /len=601' endopeptidase e	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo (0.31 pt.) 0.31 pt. 1.0797E-05 825 55569_at Al741776 procollagen C- Hs.8944 pt. Hs.8944 pt. 201574 / Ilen=4687 0.181794989 pt. 5.5208E-05 625 55569_at Al741776 pt. ocollagen C- end-accollagen C- end-accollagen C- end-accollagen collagen spile in the collagen collagen collagen spile in the collagen co	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396;wk84e07.x1 Homo 0.31 1.0797E-05 625 55569_at Al741776 procollegen C- Hs.8944 Luser Incl. Al41776;wg22g10.x1 Homo 0.181794989 5.5208E-05 625 55569_at Al741776 procollegen C- Hs.8944 Cluster Incl. Al41776;wg22g10.x1 Homo 0.181794989 5.5208E-05 625 65569_at Al741776 procollegen C- Hs.8944 Cluster Incl. Al41776;wg22g10.x1 Homo 0.181794989 5.5208E-05 600 endopeptidase Incluser Incl. Al863930;m17b11.s1 Homo 0.181794989 5.5208E-05 173 84574_r_a AA593830 PRO0611 protein Hs.163833 Cluster Incl. AA593830;m17b11.s1 Homo 0.158415546 0.00261362 1745 65700_at Al863965 PRO0529 protein Hs.279998 Cluster Incl. Al863965;wje527996 0.158415546 0.00261362 160ne_end=3 /gb=Al863965 /gj=527996 Inmunoglobulin Hs.205126 Incluse_end=3 /gb=Al863965 1.8961E-05 160ne_end=3 /gb=Al863965 /gj=5278924 Inmunoglobulin Inmunoglobulin Inmunoglobu	726 86573_at Al828396 prohibitin Hs.75323 Cluster Ind. Al828396:wk84e07.x1 Homo 0.31 1.0797E-05 sapiens cDNA, 3 end /clone=IMAGE-242216	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.x1 Homo 0.31 1.0797E-05 sapiens cDNA, 3 end cloine=IMAGE-2422116	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396:wk84e07.xx Homo 0.31 1.0797E-05 sapiens cDNA, 3 end clone=iMAGE-242116 (1.0797E-05 clone=imAGE-242116)	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396/wk84e07.x1 Homo	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396.wk84e07.x1 Homo 0.31 1.0797E-05 625 55569_at Al741776 procollagen C- Hs.8944 Cluster Incl. Al741776.wg22g10.x1 Homo 0.181794989 5.5208E-05 625 55569_at Al741776 procollagen C- Hs.8944 Cluster Incl. Al741776.wg22g10.x1 Homo 0.181794989 5.5208E-05 625 endopoptidase clone and-3* (pb=Al476.pg182) to x1 Homo 0.181794989 5.5208E-05 667 endopoptidase clone and-3* (pb=Al476.pg182) to x1 Homo 0.181794989 5.5208E-05 667 endopoptidase clone and-3* (pb=Al859830) (pl=2408508) 3.638706185 0.03570463 745 65700_at Al863965 PRO0611 protein Hs.163833 Ilen=601* 0.158415546 0.00281382 807 45294_at Al863965 PRO0529 protein Hs.279888 Cluster Incl. Al893805 (gl=5527996 0.158415546 0.00281382 607 45294_at Al697470 polymeric Hs.205126 Cluster Incl. Al893405 (gl=4085270) 0.158415546 0.002026319 7.8961	726 86573_at AI828396 prohibitin Hs.75323 Cluster Incl. AI828396:wk84e07 x1 Homo on 1.31 0.31 1.0797E-05 625 55569_at AI741776 procollagen C- and-3*1 /gp-AI828396 /gi=5449067 Hs.8944 Cluster Incl. AI741776 /gg=5449067 1.0797E-05 625 55569_at AI741776 procollagen C- and-3*1 /gp-AI828396 /gi=5449067 Hs.8944 /gp-Ai828396 /gi=5449067 1.0797E-05 173 84574_Lat AA593830 PRO0611 protein Hs.8944 /gp-Ai83930 /gi=2408508 0.181794989 5.5208E-05 745 65700_at AI8633965 PRO0529 protein Hs.163833 /gp-AA593830 /gj=2408508 0.158415546 0.00261362 607 45294_at AI863965 /gj=557996 Hs.20998 /gj=527996 Hs.20998 /gj=4083985 /gj=527996 1.8891E-05 607 45294_at AI697470 polymeric Hs.205126 /gj=408060.Nx1 Homo 0.062026919 7.8861E-05 874 71106_j_at AL0449006 polymeric Hs.205126 /gj=40800.Nx3 and /cjone=IMAGE-2208241 1.9861E-05 874 71106_j_at AL0449006 polycysitc kidney Hs.75813 Cluster Incl. AL044906	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396-wk84e07.x1 Homo 0.31 1.0797E-05 625 55669_at AI741776 procallagen C- Hs.8944 Cluster Incl. Al741776-wg2apt of clone=IMAGE-22465890 0.181794989 5.5208E-05 625 55669_at AI741776 procallagen C- Hs.8944 Cluster Incl. Al741776-wg2apt of clone=IMAGE-2365890 0.181794989 5.5208E-05 173 84574_r_at AA593830 PROD611 protein Hs.163833 Cluster Incl. AA593830 (pl=2408508) 3.638706185 5.2208E-05 745 65700_at Al863965 PROD629 protein Hs.163833 Ilen=405 0.158415546 0.00261362 607 45284_at Al687470 polymeric Hs.20516 Cluster Incl. AL693965 (pl=5227996 0.158415546 0.00261362 874 71106_i_at AL044906 polycystic kidney Hs.20518 (len=601* 0.062026919 7.8961E-05 874 Algesabe 1 Algesabe 1 Algesabe 2 Alge	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396-wk84e07 x1 Homo 0.31 1.0797E-05 625 55569_at AI741776 procollagen C- Hs.8944 (Lam-455) Cluster Incl. Al741778-wg2g10x1 Homo 0.181794989 5.5208E-05 625 55569_at AI7417776 procollagen C- Hs.8944 (Iam-457) 0.181794989 5.5208E-05 173 84574_r_at AA5893830 PRO0611 protein Hs.163883 (Iam-464) 3.638706185 0.03570463 745 65700_at Al863965 PRO0529 protein Hs.279898 (Lame-37 (Ipa-AR583830 (Ipa-AR583830)) 0.158415546 0.00361382 607 45294_at Al863965 PRO0529 protein Hs.279898 (Lame-37 (Ipa-AR583830)) 0.158415546 0.00261382 607 45294_at Al863965 PRO0529 protein Hs.279898 (Lame-37 (Ipa-AR693830)) 0.158415546 0.00261382 607 45294_at Al863965 PRO0529 protein Hs.279898 (Lame-37 (Ipa-AR693830)) 0.158415546 0.00261382 607 45294_at Al863944 (Iaa-1248) Al863965-widehan	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396 wk84e07 x1 Homo sapiens CDNA, 3 end clone=liMAGE-2422116 0.31 1.0797E-05 625 55569_at Al741776 procollagen C. Hs.8944 Cluster Incl. Al741776 (a)=5410064 0.181794989 5.5208E-05 173 84574_r_at AA593830 PROO611 protein Hs.8944 Incleded Lobne=liMAGE-2365890 0.181794989 5.5208E-05 745 65700_at Al8639830 PROO511 protein Hs.153833 Inclused Incl. Al8639305 xij240680x1 Homo sapiens cDNA, 3 end clone=liMAGE-136880 0.181794989 5.5208E-05 745 65700_at Al863985 PROO529 protein Hs.279898 Cluster Incl. Al863965 xij34080x1 Homo sapiens cDNA, 3 end clone=liMAGE-220896 0.158415546 0.00261362 807 45294_at Al687470 polymeric Hs.205136 Incleased	1,000	726 86573_at Al828396 prohibitin Hs.75923 Cluster Ind. Al828396 wkd4e07x1 Homo 0.31 1.0797E-05 spelnes CDNA, 3 end-closne=MAGE-2422116 0.31 1.0797E-05 (done_gat_of	726 86573_st Al828396 prohibitin Hs 75323 Cluster Ind. Al828396 (gi=449067 and lodine=IMAGE-242116 clone=IMAGE-242116 clone=IMAGE-242116 clone=IMAGE-242116 clone=IMAGE-242116 clone=IMAGE-2449067 clone=IMAGE-2449077 clone=IMAGE-2449077 clone=IMAGE-2449077 clone=IMAGE-2449077 clone=IMAGE	726 86573_at Al828396 prohibitin Hs.75323 Cluster Incl. Al828396 (gl=448007) 625 55569_at Al741776 procollegen C- included and and and and and and and and and an

<u>p-values</u> 5.9471E-05	0.00024055	5.6196E-05	0.00023065	0.00627388	1.9181E-06	2.4915E-05	2.4435E-05
Fold Change 0.325587729	0.224464715	0.285584964	0.257023901	0.28	0.133294383	0.25	0.29
Cluster Description Cluster Incl. Al971679:wq88b01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2479081 /clone_end=3'/gb=Al971679/gi=5768505 /ua=Hs_233974/len=573'	Cluster Incl. AI815028:wk70b07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2420725 /clone_end=3' /gb=AI815028 /gi=5426243 /ug=Hs.5285 /len=492'		Cluster Incl. AA521373:aa77g02.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-826994 /clone_end=3' /gb=AA521373 /gi=2261916 /ua=Hs,9469 /len=525'	Cluster Incl. AW007566:wt02e03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2506300 /clone_end=3' /gb=AW007566 /gi=5856429 /ua=Hs. 239193 /len=624'			•
Cluster# Hs.75825	Hs.82101	Hs.182538	Hs.9469	Hs.1872	Hs.154437	Hs.173560	Hs.144630
Gene Name pleiomorphic adenoma gene-like 1	pleckstrin homology- like domain, family A, member 1	phospholipid scramblase 4	phosphoinositol 3- phosphate binding protein-1	phosphoenolpyruvate carboxykinase 1 (soluble)	phosphodiesterase 2A, cGMP-stimulated	odd Oz/ten-m homolog 2 (Drosophila, mouse)	nuclear receptor subfamily 2, group F, member 1
<u>Genbank</u> Al971679	AI815028	AI818248	AA521373	AW007566	T66157	AI859144	Al951185
Affy 57266_r_at	62196_at	59010_at	63017_at	80604_at	90033_at	77546_at	78518_at
SeqID 824	869	705	143	924	1128	738	804
222	223	224	225	226	227	228	229

	68									
p-values	0.00020188	0.00307749	6.6167E-05	0.000479	1.4629E-08	6.7348E-06	4.93E-06	5.3066E-07		
Fold Change	0.199980315	3.316200333	4.64	0.117240353	0.17504844	0.262530591	4.698983711	3.809930405		
Cluster Description	Cluster Incl. Al355848:qu02d09.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1963601 /clone_end=3' /gb=Al355848 /gi=4096001 /ug=Hs.239464 /len=715'	Cluster Incl. Al935353:wo82d12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2461847 /clone_end=3' /gb=Al935353 /gi=5674223 /ug=Hs.234669 /len=532'	Cluster Incl. AI479933:tm73b08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2163735 /clone_end=3' /gb=AI479933 /gi=4373101 /ug=Hs.223933 /len=465'	Cluster Incl. W48800.zc44f03.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-325181 /clone_end=5' /gb=W48800 /gi=1336949 /ug=Hs.167297 /len=451'	Cluster Incl. AA427578;zw54b07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-773845 /clone_end=3' /gb=AA427578 /gi=2112006 /ug=Hs.220975 /len=525'	Cluster Incl. AI052524:oz27f07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1676581 /clone_end=3' /gb=AI052524 /gi=3308515 /ug=Hs.4799 /len=537'	Cluster Incl AA418080:zv97h07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-767773 /clone_end=3" /gb=AA418080 /gi=2079881 /ug=Hs.3972 /len=543"	Cluster Incl. AI742260:wg39g10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2367522 /clone_end=3' /gb=AI742260 /gi=5110548 /ug=Hs.93847 /len=789'		
Cluster#	Hs.35841	Hs.243886	Hs.159623	Hs.44054	Hs.266902	Hs.3821	Hs.3972	Hs.93847		
Gene Name	nuclear factor I/X (CCAAT-binding transcription factor)	nuclear autoantigenic sperm protein (histone-binding)	NK-2 (Drosophila) homolog B	ninein	neurotrophin 5 (neurotrophin 4/5)	neurobeachin	NeuAc-alpha-2,3-Gal- beta-1,3-GalNAc- alpha-2, 6- sialyltransferase alpha2,6- sialyltransferase	NADPH oxidase 4		
Genbank	Al355848	Al935353	Al479933	W48800	AA427578	A1052524	AA418080	AI742260		
Affx	63877_r_at	49666_s_at	72236_at	82657_f_at	72026_g_at	56809_at	34778_at	55457_at		
SealD	435	790	486	1188	411	328	105	630		
#1	230	231	232	233	234	235	236	237		

				69							
sanjex-d	4.4362E-07	0.0000139	0.00225117	0.00151003	1.1301E-05	0.0000045	0.00267462	0.0000502			
Fold Change	0.32670528	0.168769332	0.288946314	4.848524211	3.068295724	0.23811529	0.23	0.246437105			
Cluster Description	Cluster Incl. AA526844:ni92d10.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-984307 /clone_end=3'/gb=AA526844 /gi=2268913 /ug=Hs.77310 /len=669'	Cluster Incl AF001548:Human Chromosome 16 BAC clone CIT987SK-A-815A9 /cds=(0,5573) /gb=AF001548 /gi=2104552 /ug=Hs.78344 /len=6428	Cluster Incl. AI814178:wk63e10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2420106 /clone_end=3'/gb=AI814178 /gi=5425393 /ug=Hs.234582 /len=408'	Cluster Incl. N78139:yv73d07.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-248365 /clone_end=5' /gb=N78139 /gi=1240840 /ug=Hs.239825 /len=656'	Cluster Incl. N27428:yx81h09.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-268193 /clone_end=3' /gb=N27428 /gi=1141909 /ug=Hs.221178 /len=407'	Cluster Incl AA420624:nc61c12.r1 Homo sapiens cDNA /clone=IMAGE-745750 /gb=AA420624 /gi=2094502 /ug=Hs.183109 /len=533		Cluster Incl AA461365:zx70e07.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-796836 /clone_end=5" /gb=AA461365 /gi=2186485 /ug=Hs.237742 /len=591"			
Cluster #	Hs.211582	Hs.78344	Hs.239663	Hs.42346	Hs.240	Hs.183109	Hs.177536	Hs.279771			
Gene Name	myosin, light polypeptide kinase	myosin, heavy polypeptide 11, smooth muscle	myeloid/lymphoid or mixed-lineage leukemia (trithorax (Drosophila) homolog); translocated to, 7	muscle-specific protein	M-phase phosphoprotein 1	monoamine oxidase A	metallocarboxypeptid ase CPX-1	melanoma inhibitory activity,ras-related GTP-binding protein 4b			
Genbank	AA526844	AF001548	Al814178	N78139	N27428	AA420624	AA776393	AA461365			
Affy	46276_at	32582_at	46743_s_at	58494 <u>r</u> at	59624 <u>g</u> at	41771_g_at AA420624	84934_at	39271_at			
SegID	150	283	269	1093	1069	1	222	127			
##	. 538	239	240	241	242	243	244	245			

					70			
p-values	6.1415E-06	1.9615E-06	0.00253759	0.00110724	0.0005914	0.00014885	8.7304E-05	6.1228E-07
Fold Change	0.196704294	0.12	0.307354772	4.366999247	0.247555921	0.214230439	0.322163154	3.542386026
Cluster Description	Cluster Incl. A sapiens cDN//clone_end=3/ug=Hs.23787	Cluster Incl. Al459139:tj65e05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2146400 /clone_end=3' /gb=Al459139 /gi=4311718 /ug=Hs.235590 /len=519'	Cluster Incl. Al969879:wq76f05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2477217 /clone_end=3' /gb=Al969879 /gi=5766697 /ug=Hs.233610 /len=329'	Cluster Incl. W22091:61F10 Homo sapiens cDNA /clone=(not-directional) /gb≂W22091 /gi=1298924 /ug=Hs.234460 /len=637	Cluster Incl. F36908:HSPD34832 Homo sapiens cDNA /clone=sH5-000021-0/A10 /gb=F36908 /gi=4822534 /ug=Hs.97044 /len=408	Cluster Incl. AI815057:wk70e06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2420770 /clone_end=3' /gb=AI815057 /gi=5426272 /ug=Hs.86559 /len=484'		
Cluster #_	Hs.19368	Hs.56729	Hs.89137	Hs.1770	Hs.97044	Hs.84728	Hs.182965	Hs.279766
Gene Name	matrilin 2	lymphocyte-specific protein 1	low density lipoprotein related protein 1 (alpha-2-macroglobulin receptor)	ligase I, DNA, ATP- dependent	Kv channel- interacting protein 2	Kruppel-like factor 5 (intestinal)	Kruppel-like factor 4 (gut)	kinesin family member 4A
Genbank	Al972357	Al459139	Al969879	W22091	F36908	AI815057	AI290876	AA004208
Affv	75254_at	78644_at	74541_at	74835_r_at	48950_at	47113_at	48587_at	51160_at
SealD	829	480	819	1176	976	669	416	8
*	246	247	248	249	250	251	252	253

					7	ı			
p-values	3.2252E-06		0.00090706	0.00048007	0.00894957	9.936 E- 05	4.1926E-05	1.24E-12	1.69E-06
Fold Change	0.189411148		0.317853152	0.28929478	3.778012983	0.231260722	0.20	10.18941323	3.635450964
Cluster Description	Cluster Incl. W68504:zd36b01.r1 Homo	sapiens cDNA, 5 end /clone=IMAGE-342697 /clone_end=5'/gb=W68504/gi=1377374 /ug=Hs.21288 /len=613'	Cluster Incl. AA912409:oi23a07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1524276 /clone_end=3' /gb=AA912409 /gi=3051801 /ug=Hs.192271 /len=379'		Cluster Incl. AI073544:ov45e02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1640282 /clone_end=3' /gb=AI073544 /gi=3400188 /ug=Hs.120703 /len=481'	Cluster Incl. AI097463:qb90a04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1707342 /clone_end=3' /gb=AI097463 /gi=3447045 /ug=Hs.21035 /len=464'	Cluster Incl. H19400:ym46g07.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-51511 /clone_end=5' /gb=H19400 /gi=888095 /ug=Hs.21035 /len=488'	Cluster Incl AB029000:Homo sapiens mRNA for KIAA1077 protein, partial cds /cds=(0,2456) /gb=AB029000 /gi=5689490 /ug=Hs.70823 /len=4834	Cluster Incl AB020713:Homo sapiens mRNA for KIAA0906 protein, partial cds /cds=(0,2772) /gb=AB020713 /gi=4240300 /ug=Hs.56966 /len=4217
Cluster.#	Hs.191098		Hs.230188	Hs.263395	Hs.62576	Hs.21035	Hs.21035	Hs.70823	Hs.56966
Gene Name	KIAA1479 protein		KIAA1396 protein	KIAA1368 protein	KIAA1240 protein	KIÀA1130 protein	KIAA1130 protein	KIAA1077 protein	KIAA0906 protein
Genbank	W68504		AA912409	AF063500	AI073544	A1097463	H19400	AB029000	AB020713
Affx	49599_at		88138_at	63393_at	76253_at	52793_at	90920_at	35832_at	41812_s_at
SedID	1194		250	302	334	350	986	278	276
##	254		255	256	257	258	259	260	261

WO 02/059	271			72		PC	T/US02/02176
p-values 9.6801E-06	0.04190137	2.62E-08	5.93E-09	5.5307E-05	3.56E-09	0.0000146	0.01054263
Fold Change 0.247630859	0.33	0.226047115	0.075355998	0.22	6.816530863	0.325833287	0.3274967
Cluster Incl. AA142956:zl43g02.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-504722 /clone_end=3'/gb=AA142956 /gi=1712334 /ug=Hs.239142 /len=640'	Cluster Incl. AA701619:zi41f11.s1 Homo sapiens cDNA, 3 end /clone=433389 /clone_end=3'/gb=AA701619/gi=2704784	Cluster Incl AB011089:Homo sapiens mRNA for KIAA0517 protein, partial cds /cds=(0,2380) /gb=AB011089 /gi=3043557 /ug=Hs.12372	Cluster Incl AB002351:Human mRNA for Cluster Incl AB002351:Human mRNA for KIAA0353 gene, partial cds /cds=(0,4125) /gb=AB002351 /gi=2224646 /ug=Hs.10587		Cluster Incl D14657: Human mRNA for KIAA0101 gene, complete cds /cds=(61,396) /gb=D14657 /gi=285938 /ug=Hs.81892	Cluster Incl D14664:Human mRNA for KIAA0022 gene, complete cds /cds=(184,696) /gb=D14664 /gi=285952 /ug=Hs.2441	
Cluster# Hs.42676 C	Hs.7314	Hs.12372	Hs.10587	Hs.115740	Hs.81892	Hs.2441	Hs.111758
Gene Name KIAA0781 protein	KIAA0614 protein	KIAA0517 protein	KIAA0353 protein	KIAA0210 gene product	KIAA0101 gene product	KIAA0022 gene product	keratin 6B

AA706612

207 91405_at

266

AB002351

269 39544_at

265

AI831452

62998_at

731

269

D14664

34760_at

962

268

D14657

38116_at

961

267

!

Genbank AA142956

Αffγ 65593_at

SedID

262

68283_r_at AA701619

203

263

AB011089

39382_at

273

AI971748

73285_i_at

826

274

40775_at

850

275

64305_s_at

942

276

56338_at

4

277

AI566193

79663 at

Aff

SealD

AI655781

63628 at

557

271

89921_at

928

272

38432_at

82

WO 02/059271

PCT/US02/02176

(0)	20	02	60	7: 8		48	90-	60
p-values	2.1399E-07	4.8443E-05	1.7499E-09	5.2039E-08	0.00014333	0.00241384	1.8721E-05	0.00187809
Fold Change	0.297383187	3.983397486	0.047728145	0.289179561	3.336721416	0.32	3.188106939	4.36
Cluster Description	Cluster Incl. AA651733:ns67b07.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-1188661 /clone_end=5' /gb=AA651733 /gi=2583385 /ug=Hs.21861 /len=515'	Cluster Incl. N21131;yx52g04.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-265398 /clone_end=3' /gb=N21131 /gi=1126301 /ug=Hs.233612 /len=571'		Cluster Incl. AA521440:aa69c11.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-826196 /clone_end=3' /gb=AA521440 /gi=2261983 /ug=Hs.169764 /len=583'				
Cluster#	Hs.21861	Hs.42949	Hs.271277	Hs.169764	Hs.118552	Hs.267368	Hs.133260	Hs.263081
Gene Name	hypothetical protein MPMGp800C04260Q 003	hypothetical protein HES6	hypothetical protein from EUROIMAGE 363668	hypothetical protein FLJ20701	hypothetical protein FLJ20539	hypothetical protein FLJ20489	hypothetical protein FLJ20354	hypothetical protein FLJ20320
Genbank	AA651733	N21131	AA020743	AA521440	AI276023	AA563601	AA813827	AI149537
Affy	60810_at	49633_at	50223_at	54742_at	47427_at	91394 <u>a</u> t	56634_at	70129_r_at
SeqID	195	1063	တ	44	406	167	231	371
#11	284	285	286	287	288	588	290	291

WO 02/059	9271			76			PCT/US02/	02176
<u>p-values</u> 0.00010396	0.00090349	6.097E-08	3.4283E-07	1.2408E-05	0.00013093	9.6896E-05	1.4039E-06	0.00250076
<u>Fold Change</u> 3.437531315	4.739571659	3.646875259	0.299454892	0.263536613	0.223334551	0.142325635	3.915587607	0.33
Cluster Incl. AA181060:zp66h06.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-625211 /clone_end=3 /gb=AA181060 /gi=1764543 /ug=Hs.239302 /len=607	Cluster Incl. AI766666:wi02e05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2389088 /clone_end=3'/gb=AI766666 /gi=5233175 /ua=Hs.233608 /len=518'	Cluster Incl. AA741298:oc86a07.s1 Homo sapiens cDNA /clone=IMAGE-1356564 /gb=AA741298 /gi=2779890 /ug=Hs.23495 /len=530	Cluster Incl. Al376944:tc34b06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2066483 /clone_end=3' /gb=Al376944 /gi=4186797 /lua=Hs.6166 /len=492'	Cluster Incl. W27376:28b7 Homo sapiens cDNA /gb=W27376 /gi=1307036 /ug=Hs.8395 /len=596	Cluster Incl. Al971695:wq88e01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2479128 /clone_end=3' /gb=Al971695 /gi=5768521 /ug=Hs.237607 /len=573'	Cluster Incl. AA708740:zl57g12.s1 Homo sapiens cDNA, 3 end /clone=506086 /clone_end=3' /gb=AA708740 /gi=2718658 /ug=Hs.23467 /len=475'	Cluster Incl. AA195220:zr34g09.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-665344 /clone_end=5' /gb=AA195220 /gi=1784932 /ua=Hs.26516 /len=637'	Cluster Incl. Al811688:tw44g10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2262594 /clone_end=3' /gb=Al811688 /gi=5398254 /ug=Hs.128766 /len=455'
Cluster # Hs.92254	Hs.161554	Hs.23495	Hs.6166	Hs.8395	Hs.107882	Hs.23467	Hs.26516	Hs.128766
Gene Name hypothetical protein FLJ20163	hypothetical protein FLJ20159	hypothetical protein FLJ11252	hypothetical protein FLJ11196	hypothetical protein FLJ10781	hypothetical protein FLJ10659	hypothetical protein FLJ10633	hypothetical protein FLJ10604	hypothetical protein FLJ10600
Genbank AA181060	AI766666	AA741298	Al376944	W27376	Al971695	AA708740	AA195220	AI811688
Affy 50280_at	74539_g_at	43439_at	53962_at	55074_at	44855_s_at	44057_at	51130_at	74343_at
SealD 76	656	213	445	1179	825	210	79	695

#

				,	1			
p-values	0.0022939	4.719E-12	1.3006E-07	9.0609E-08	1.8056E-05	7.6457E-06	0.00028995	5.3484E-07
Fold Change	3.07	9.164231149	3.058813358	4.806177129	3.509937557	0.21534971	3.782457573	0.18625739
Cluster Description	Cluster Incl. AI016073:ov26f11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1638477 /clone_end=3' /gb=AI016073 /gi=3230409 /uq=Hs.131840 /len=561'	Cluster Incl. AI674163:wc09a11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2314652 /clone_end=3' /gb=AI674163 /gi=4874643 /ug=Hs.14559 /len=553'	Cluster Incl. AA134589:zn90b04.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-565423 /clone_end=5' /gb=AA134589 /gi=1695586 /ug=Hs.48855 /len=608'	Cluster Incl. AI823992:wj29c06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2404234 /clone_end=3' /gb=AI823992 /gi=5444663 /ug=Hs.122579 /len=564'	Cluster Incl. AI037879:oy02g12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1664710 /clone_end=3' /gb=AI037879 /gi=3277073 /ug=Hs.104650 /len=654'	Cluster Incl. Al651535:wb06h08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2304927 /clone_end=3' /gb=Al651535 /gi=4735514 /ug=Hs.43102 /len=587'	Cluster Incl. Ai949698:wq13h04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2471191 /clone_end=3' /gb=Ai949698 /gi=5742008 /ug=Hs.42309 /len=553'	Cluster Incl. AL040063:DKFZp434P0712_r1 Homo sapiens cDNA, 5 end /clone=DKFZp434P0712 /clone_end=5' /gb=AL040063 /gi=5409033 /ug=Hs.22505 /len=557'
Cluster#	Hs.131840	Hs.14559	Hs.48855	Hs.122579	Hs.104650	Hs.106283	Hs.53913	Hs.22505
Gene Name	hypothetical protein FLJ10578	hypothetical protein FLJ10540	hypothetical protein FLJ10468	hypothetical protein FLJ10461	hypothetical protein FLJ10292	hypothetical protein FLJ10262	hypothetical protein FLJ10252	hypothetical protein FLJ10159
Genbank	AI016073	AI674163	AA134589	AI823992	AI037879	AI651535	Al949698	AL040063
Affy	74690_at	58235_at	52966_at	59461_at	54889_at	64666_at	52617_at	49523_at
SegID	313	582	53	715	323	549	801	863
##	301	302	303	304	305	306	307	308

					7	8			
	p-values	5.8315E-11	0.00017758	0.00279468	1.5285E-06	5.019E-05	5.4416E-07	0.00026772	1.2153E-08
	Fold Change	4.802394237	0.27	0.26	0.262634843	0.269743016	0.275006365	0.291337727	0.054106026
		Cluster Incl. AA779101:zj42h12.s1 Homo sapiens cDNA, 3 end /clone=452999 /clone_end=3' /gb=AA779101 /gi=2838432 /ug=Hs.104859 /len=528'	Cluster Incl. Al613455:ty37b03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2281229 /clone_end=3' /gb=Al613455 /gi=4622622 /ug=Hs.181658 /len=418'	Cluster Incl. Al394248:tf78b06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2105363 /clone_end=3' /gb=Al394248 /gi=4223795 /ug=Hs.235588 /len=590'	Cluster Incl. Z78379:HSZ78379 Homo sapiens CDNA /clone=3.18-(CEPH) /gb=Z78379 /gi=1495152 /ug=Hs.224337 /len=1958	Cluster Incl. AL039400:DKFZp434K1210_s1 Homo sapiens cDNA, 3 end /clone=DKFZp434K1210 /clone_end=3' /gb=AL039400 /gi=5928554 /ug=Hs.32352 /len=703'		Cluster Incl. AA625897;zu87b02.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-744939 /clone_end=3' /gb=AA625897 /gi=2538284 /ug=Hs.222095 /len=252'	
. •	Cluster #	Hs.104859	Hs.49933	Hs.284280	Hs.279023	Hs.32352	Hs.144633	Hs.24583	Hs.278975
;	Gene Name	hypothetical protein DKFZp762E1312	hypothetical protein DKFZp762D1011	hypothetical protein DKFZp547H236	hypothetical protein DKFZp434N1928	hypothetical protein DKFZp434K1210	hypothetical protein DKFZp434F2322	hypothetical protein DKFZp434C0328	hyaluronic acid receptor,lymphatic vessel endothelial hyaluronan receptor 1
	Genbank	AA779101	AI613455	Al394248	278379	AL039400	A1632223	AA625897	AA046671
	Affy	48045_at	77581_at	87842_at	63581_at	44682_at	53831_at	72538_at	65731_at
	SedID	225	533	460	1245	859	539	186	26
	##	309	310	31	312	313	314	315	316

318

##

319

320

321

322

324

p-values	1.24E-04	1.5236E-07	3.9853E-10	2.305E-06	8.5076E-08	3.05E-08	2.6578E-09	1.3623E-06	1.8509E-07
Fold Change	3.590913916	0.226916444	4.119810176	0.172426013	12.40	0.259661725	0.233804467	0.17	5.46370987
Cluster Description	Cluster Incl AI885852:wl62d08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2429487 /clone_end=3" /gb=AI885852 /gi=5591016 /ug=Hs.795 /len=580"	Cluster Incl. AA115300:zl09d12.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-501431 /clone_end=3 /gb=AA115300 /gi=1670497 /ug=Hs.103720 /len=588'	Cluster Incl. U82984;U82984 Homo sapiens cDNA /clone=163g24 /gb=U82984 /gi=2731436 /ug=Hs.23900 /len=1771		Cluster Incl. AA613715:nq25b01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1144873 /clone_end=3' /gb=AA613715 /gi=2463685 /ug=Hs.81795 /len=607'		Cluster Incl. AA524029:ng32f02.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-936507 /clone_end=3' /gb=AA524029 /gi=2264957 /ug=Hs.77889 /len=721'		
Cluster #	Hs.795	Hs.23767	Hs.23900	Hs.58589	Hs.5566	Hs.160318	Hs.77889	Hs.239069	Hs.118162
Gene Name	H2A histone family, member O	guanine nucleotide binding protein (G protein), gamma 2	GTPase activating protein	glycogenin 2	gap junction protein, beta 2, 26kD (connexin 26)	FXYD domain- containing ion transport regulator 1 (phosoholemman)	Friedreich ataxia region gene X123	four and a half LIM domains 1	fibronectin 1
Genbank	AI885852	AA115300	U82984	D60584	AA613715	AA524547	AA524029	AW024276	AW021977
Affx	32609_at	58445_at	50271_at	55630_f_at	91306_s_at	32109_at	54581_at	80572_at	45557_r_at
SealD	756	40	1163	696	182		145	944	940
##	325	326	327	328	329	330	331	332	333

	_	ın	ത	,		_	m	ဖ
p-values	5.0303E-07	2.9946E-05	0.00020319	0.00010017	6.067E-07	0.00101117	6.263E-08	7.8076E-06
Fold Change	0.097550234	3.294370164	0.276576877	0.31	0.08111725	0.311274497	0.108158864	0.22460642
Cluster Description	Cluster Incl. AA156998:zl19e05.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-502400 /clone_end=3' /gb=AA156998 /gi=1728613 /ug=Hs.239679 /len=562'	Cluster Incl. Al146465:qb93c06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1707658 /clone_end=3' /gb=Al146465 /gi=3674147 /ug=Hs.193053 /len=633'	Cluster Incl. AA224344:zr16d12.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-663575 /clone_end=3' /gb=AA224344 /gi=1844967 /ug=Hs.237937 /len=420'	Cluster Incl. AI138998:qd83f09.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1736105 /clone_end=3' /gb=AI138998 /gi=3644970 /ug=Hs.234468 /len=570'	Cluster Incl. Al912678:we12e04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2340894 /clone_end=3' /gb=Al912678 /gi=5632533 /ug=Hs.11713 /len=587'.	Cluster Incl. AA557237:nI75d07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1056493 /clone_end=3' /gb=AA557237 /gi=2327714 /ug=Hs.168776 /len=605'		•
Cluster #	Hs.211568	Hs.193053	Hs.43697	Hs.79095	Hs.11713	Hs.21595	Hs.109439	Hs.108924
Gene Name	eukaryotic translation initiation factor 4 gamma, 1	eukaryotic translation initiation factor 2C, 2	ets variant gene 5 (ets-related molecule)	epidermal growth factor receptor pathway substrate 15	E74-like factor 5 (ets domain transcription factor)	DNA segment on chromosome X and Y (unique) 155 expressed sequence	DKFZP586P2421 protein	DKFZP586P1422 protein
Genbank	AA156998	Al146465	AA224344	AI138998	Al912678	AA557237	AW020116	W72194
Affy	63893_f_at	56223_at	75258_f_at	78641_at	59390_at	60058_at	43506_at	56409_at
SegID	70	369	87	363	768	166	937	1197
##	334	335	336	337	338	339	340	34:1

					8	2			
p-values	7.5151E-06		6.4105E-05	0.00232454	0.00000163	6.3581E-06	0.00455471	0.000426	4.57E-06
Fold Change	0.185480277		0.308559272	0.306209896	0.296976926	3.405694621	0.222139001	0.215553985	5.17065685
Cluster Description	Cluster Incl. W78050:zd78c04.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-346758 /clone_end=3' /gb=W78050 /gi=1388613 /ug=Hs.235916 /len=446'	Cluster Incl. AW026659:wv15c11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-991047 /clone_end=3' /gb=AW026659 /gi=5880112 /ug=Hs.26358 /len=551'	Cluster Incl. Al984087:wz56d08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2562063 /clone_end=3' /gb=Al984087 /gi=5811306 /uq=Hs.235102 /len=479'	Cluster Incl AL050024:Homo sapiens mRNA; cDNA DKFZp564D206 (from clone DKFZp564D206) /cds=(0,404) /gb=AL050024 /gi=4884093 /ug=Hs.25956 /len=1409	Cluster Incl. AW007289:wt54f03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2511293 /clone_end=3' /gb=AW007289 /gi=5856067 /ug=Hs.16441 /len=552'	Cluster Incl. Al961431:wt22e08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2508230 /clone_end=3' /gb=Al961431 /gi≍5754144 /ug=Hs.9029 /len=696'	Cluster Incl AL049798:Human DNA sequence from clone 797M17 on chromosome 1q22-24.3. Contains the DPT gene for Dermatopontin, ESTs, an STS and GSSs /cds=(9,614) /gb=AL049798 /gi=4995638 /ug=Hs.80552 /len=1705	Cluster Incl AL050118:Homo sapiens mRNA; cDNA DKFZp586C201 (from clone DKFZp586C201) /cds=(0,936) /gb=AL050118 /gi=4884143 /ug=Hs.184641 /len=2621
Cluster#	Hs.58419		Hs.26358	Hs.3447	Hs.25956	Hs.16441	Hs.9029	Hs.80552	Hs.184641
Gene Name	DKFZP586L2024	protein	DKFZP566K1924 protein	DKFZP564K1964 protein	DKFZP564D206 protein	DKFZP434H204 protein	DKFZP434G032 protein	dermatopontin	delta-6 fatty acid desaturase
Genbank	W78050		AW026659	AI984087	AL050024	AW007289	Al961431	AL049798	AL050118
Affy	44813 s at	l I	64180_at	45501_s_at	39577_at	60038_at	48684_at	38057_at	32190_at
SegID	1208		951	839	891	922	118	886	892
##	342		343	344	345	346	347	348	349

	83						
p-values	1.3941E-05	0.00379696	0.00136947	1.9E-08	0.00679779	0.00061484	5.3744E-06
Fold Change	0.23	4.29	0.24	0.121682021	3.01095294	3.125264866	0.297772176
Cluster Description	Cluster Incl. Al459140:tj65e06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2146402 /clone_end=3' /gb=Al459140 /gi=4311719 /ug=Hs.129109 /len=499'	Cluster Incl. AA909181:o112b04.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1523215 /clone_end=3' /gb=AA909181 /gi=3048586 /ug=Hs.234830 /len=526'		Cluster Incl AL038340:DKFZp566K192_s1 Homo sapiens cDNA, 3 end /clone=DKFZp566K192 /clone_end=3" /gb=AL038340 /gi=5407591 /ug=Hs.1940 /len=746"	Cluster Incl. AA127736:zk88c12.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-489910 /clone_end=5' /gb=AA127736 /gi=1687099 /ug=Hs.237523 /len=616'		Cluster Incl. Al382415:ta72b04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2049583 /clone_end=3' /gb=Al382415 /gi=4195196 /ug=Hs.239510 /len=418'
Cluster#	Hs.74649	Hs.1174	Hs.164866	Hs.1940	Hs.82985	Hs.179573	Hs.75106
Gene Name	cytochrome c oxidase subunit VIc	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	cyclin K	crystallin, alpha B	collagen, type V, alpha 2	collagen, type I, alpha Hs.179573 2	clusterin (complement lysis inhibitor, SP- 40,40, sulfated glycoprotein 2, testosterone- repressed prostate message 2, apolipoprotein J)
Genbank	Al459140	AA909181	X84721 ·	NM_001885	AA127736	Al610692	Al382415
Affy	74406_at	73132 <u>r</u> at	90629_at	32242_at	65797_at	49162_f_at	75384_f_at
SealD	481	247	1236	1100	44	531	457
##	350	351	352	353	354	355	356

	84							
p-values	2.3579E-06	2.5648E-07	0.000347	1.1789E-10	0.00000214	2.8896E-05		
Fold Change	0.262336411	4.805037919	0.212939754	8.862541971	0.155185151	3.067793027		
Cluster Description	Cluster Incl. AI382415:ta72b04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2049583 /clone_end=3' /gb=AI382415 /gi=4195196 /ug=Hs.239510 /len=418'	Hs.279905 Cluster Incl. AA143745:zo31a01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-588456 /clone_end=3' /gb=AA143745 /gi=1713158 /ug=Hs.62273 /len=649'	Cluster Incl AL049977:Homo sapiens mRNA, cDNA DKFZp564C122 (from clone DKFZp564C122) /cds=UNKNOWN /gb=AL049977 /gi=4884227 /ug=Hs.162209 /len=1071	Cluster Incl. AA534688:nf75c01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-925728 /clone_end=3' /gb=AA534688 /gi=2278941 /ug=Hs.238349 /len=467'	Cluster Incl AL049176:Human DNA sequence from clone 141H5 on chromosome Xq22.1-23. Contains parts of a novel Chordin LIKE protein with von Willebrand factor type C domains. Contains ESTs, STSs and GSSs /cds=(0,767) /gb=AL049176 /gi=4808226 /ug=Hs.82223 /len=3143	Cluster Incl. AA426499:zw02b06.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-768083 /clone_end=5'/gb=AA426499 /gi=2106744 /ug=Hs.239900 /len=553'		
Cluster#	Hs.75106	Hs.279905	Hs.162209	Hs.9329	Hs.82223	Hs.81800		
Gene Name	clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosteronerepressed prostate message 2, apolipoprotein J)	clone HQ0310 PRO0310p1	claudin 8	chromosome 20 open reading frame 1	chordin-like	chondroitin sulfate proteoglycan 2 (versican)		
Genbank	Al382415	AA143745	AL049977	AA534688	AL049176	AA426499		
Affy	75382_i_at	64489_at	33611 <u>g</u> at	45574_g_at	37630_at	45718_at		
SegID	457	09	888	158	882	113		
##	357	358	359	360	361	362		

			-				
<u>p-values</u> 7.4702E-06	8.7397E-08	1.4906E-07	7.4051E-05	0.03811473	1.16E-07	0.00000833	3.194E-05
Fold Change 3.05	0.174212976	5.21	0.221161273	3.355023106	0.231001071	0.292109229	0.23945116
Cluster Incl. AA766775:oa35d08.s1 Homo sapiens cDNA /clone=IMAGE-1306959 /gb=AA766775 /gi=2818013 /ug=Hs.163195 /len=440	Cluster Incl. AA545730:HBMSF2G12-REV Homo sapiens cDNA, 5 end /clone=HBMSF2G12 /clone_end=5' /gb=AA545730 /gi=2307100 /ug=Hs.31198 /len=507'	Cluster Incl. AF154332:AF154332 Homo sapiens cDNA /clone=CILCA3 /gb=AF154332 /gi=5055942 /ug=Hs.239736 /len=714	Cluster Incl. AI972237:wr333c02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2489474 /clone_end=3' /gb=AI972237 /gi=5769063 /uq=Hs.233663 /len=354'	Cluster Incl. AI675178:tm80g06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2164474 /clone_end=3' /gb=AI675178 /gi=4875658 /uq=Hs.90207 /len=462'	Cluster Incl AB020629:Homo sapiens mRNA for KIAA0822 protein, complete cds /cds=(138,4883) /gb=AB020629 /gi=4240129 /ug=Hs.38095 /len=5677	Cluster Incl Al651024:wa96h06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2304059 /clone_end=3" /gb=Al651024 /gi=4735003 /ug=Hs. 15780 /len=657"	Cluster Incl. AA628405:af26b09.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1032761 /clone_end=3' /gb=AA628405 /gi=2540792 /ug=Hs.50107 /len=548'
Cluster# Hs.240443	Hs.117582	Hs.184572	Hs.82129	Hs.90207	Hs.38095	Hs.15780	Hs.153961
Gene Name chondroitin 4- sulfotransferase,chon droitin-4- sulfotransferase	CGI-43 protein	cell division cycle 2, G1 to S and G2 to M	carbonic anhydrase III, muscle specific	calcium channel, voltage-dependent, gamma subunit 4	ATP-binding cassette, sub-family A (ABC1), member 8	ATP-binding cassette, sub-family A (ABC1), member 6	ARP1 (actin-related protein 1, yeast) homolog A (centractin alpha)
<u>Genbank</u> AA766775	AA545730	AF154332	Al972237	AI675178	AB020629	AI651024	AA628405
Affy 75722_at	50177_at	91194_at	74571_s_at	62987_r_at	35717_at	35390_at	64423_s_at
SegID 217	164	310	828	586	275	547	188
363 363	364	365		367	368	369	370

			8	6			
<u>p-values</u> 3.3556E-06	1.4825E-06	·2.0018E-05	0.000333	0.0000909	2.9261E-05	0.0000126	0.00059716
<u>Fold Change</u> 0.212140139	3.58350616	0.263359832	0.215928239	0.129092155	0.135508105	0.308528713	0.33
Cluster Description Cluster Incl. Al804914:tu43d04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2253799 /clone_end=3'/gb=Al804914 /gi=5391504 /ug=Hs.55565 /len=535'	Cluster Incl. Al341261:qx85a07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2009268 /clone_end=3 /gb=Al341261 /gi=4078188 /ug=Hs.62180 /len=538'		Cluster Incl Al381790:te41h10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2089315 /clone_end=3"/gb=Al381790 /gi=4194571 /uq=Hs.74120 /len=544"	Cluster Incl H15814:yl28b07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-159541 /clone_end=3" /gb=H15814 /gi=880634 /ug=Hs.80485 /len=453"	Cluster Incl. AA393277:zt74d08.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-728079 /clone_end=5'/gb=AA393277 /gi=2046245 /ug=Hs.238152 /len=455'		Cluster Incl. F37480:HSPD36277 Homo sapiens cDNA /clone=sH1-000003-0/G06 /gb=F37480 /gj=4823106 /ug=Hs.221714 /len=408
Cluster # Ths.55565	Hs.62180	Hs.203299	Hs.74120	Hs.80485	Hs.18268	Hs.158203	Hs.58324
Gene Name ankyrin repeat domain 3	anillin	amylase, alpha 2A; pancreatic	adipose specific 2	adipose most abundant gene transcript 1	adenylate kinase 5	actin binding LIM protein 1	a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 5 (aggrecanase-2)
<u>Genbank</u> Al804914	Al341261	AI218026	Al381790	H15814	AA393277	D31883	F37480
Affy 46108_at	46194_at	89031_at	32527_at	40657_r_at	58927_at	40155_at	80160_at
SeqID 685	426	392	455	982	101	965	978
37.1	372	373	374	375	376	377	378

	•••	0 02,000			8	37			
p-values	0.00028766		7.756E-06	0.00049057	1.5774E-06	2.3135E-06	3.4955E-06	2.2368E-07	3.8401E-05
Fold Change	3.46460752		0.14023914	0.288607766	0.310758648	4.823648195	0.241006046	0.156366951	6.80
Cluster Description	Cluster Incl. AA135525:zl09e04.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-501438 /clone_end=3' /gb=AA135525 /gi=1696573 /ug=Hs.56009 /len=609'	Cluster Incl. Al088609:qb14e04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1696254 /clone_end=3 /gb=Al088609 /gi=3427668 /ug=Hs.98558 /len=749'	Cluster Incl. AW007983:wv47f07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-991064 /clone_end=3 /gb=AW007983 /gi=5856761 /ug=Hs.236090 /len=211'	Cluster Incl. W37770:zc12g12.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-322150 /clone_end=5' /gb=W37770 /gi=1319383 /ug=Hs.9851 /len=573'	Cluster Incl. AA147884:zI50b04.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-505327 /clone_end=3'/gb=AA147884 /gi=1717300 /ug=Hs.9812 /len=652'	Cluster Incl. Al970823:wr20c05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2488232 /clone_end=3' /gb=Al970823 /gi=5767649 /ug=Hs.97876 /len=452'	Cluster Incl. AW016780:UI-H-BI0p-abm-f-08-0- UI.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-2712350 /clone_end=3' /gb=AW016780 /gi=5865537 /ug=Hs.238149 /len=327'	Cluster Incl. Al935915:wo07g11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2454692 /clone_end=3'/gb=Al935915/gi=5674785 /ug=Hs.188741 /len=405'
Cluster#	Hs.56009		Hs.98558	Hs.98518	Hs.9851	Hs.9812	Hs.97876	Hs.97876	Hs.97837
Gene Name	2'-5'oligoadenylate	synthetase 3							
Genbank	AA135525		Al088609	AW007983	W37770	AA147884	AI970823	AW016780	Al935915
Affx	64450 at	I	58361_at	75011_at	55720_at	49052_at	63041_i_at	45353_s_at	85521_at
SealD	54		344	927	1184	63	820	936	792
##	379		380	381	382	383	384	385	386

				88	,			
p-values	1.4682E-05	5.524E-07	8.975E-06	4.8195E-06	0.00058791	0.00034656	0.00068973	2.6139E-08
Fold Change	0.161954139	0.281787455	0.302684307	0.12598837	0.248393008	3.039821602	3.308493975	0.282705156
Cluster Description	Cluster Incl. AI659076:tt97d08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2249487 /clone_end=3' /gb=AI659076 /gi=4762646 /ug=Hs.239118 /len=412'		Cluster Incl. D55886:HUM405B01B Homo sapiens cDNA, 5 end /clone=GEN-405B01 /clone_end=5' /gb=D55886 /gi=970293 /ug=Hs.9572 /len=553'	Cluster Incl. R54660:yj74b11.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-154461 /clone_end=3'/gb=R54660/gi=819118 /ug=Hs.95511/len=427'				Cluster Incl. Al972873:wr44f08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2490567 /clone_end=3' /gb=Al972873 /gi=5769699 /ug=Hs.9167 /len=594'
Cluster #	Hs.97031	Hs.96996	Hs.9572	Hs.95511	Hs.94789	Hs.92679	Hs.92127	Hs.9167
Gene Name								
Genbank	Al659076	AI672356	D55886	R54660	AI743671	AA292431	AI669212	AI972873
Affy	51785_s_at	63035_at	47579_at	55484_r_at	47566_at	46737_s_at	55436_at	65976_g_at
SeqID	564	577	968	1112	635	93	572	832
##	387	388	389	390	391	392	393	394
	SeqID Affy Genhank Gene Name Cluster # Cluster Description Fold Change	SeqID Affy Gene Name Cluster # Cluster Description Fold Change 564 51785_s_at Al659076 0.161954139 1 sapiens cDNA, 3 end /clone=iMAGE-2249487 /clone_end=3'/gb=Al659076 /gi=4762646 /ug=Hs.239118 /len=412'	SeqID Affy Gene Name Cluster # Cluster Description Fold Change 564 51785_s_at Al659076 Hs.97031 Cluster Incl. Al659076:tt97d08.x1 Homo 0.161954139 564 51785_s_at Al659076 Hs.96907 Cluster Incl. Al679076 Cluster Incl. Al679076 Cluster Incl. Al672356:ty64c02.x1 Homo 0.281787455 577 63035_at Al672356 Hs.96996 Cluster Incl. Al672356:ty64c02.x1 Homo 0.281787455 577 63035_at Al672356 Clone_end=3' /gb=Al672356 /gi=4852087 /log=Hs.96996 /lon=495'	SeqID Affy Gene Name Cluster Professor Cluster Description Fold Change 564 51785_s_at Al659076 Hs.97031 Cluster Incl. Al659076:tt97d08.x1 Homo 0.161954139 564 51785_s_at Al659076 Homo 0.161954139 0.161954139 577 63035_at Al672356 Hs.96996 Cluster Incl. Al672356:ty64c02.x1 Homo 0.281787455 577 63035_at Al672356 Hs.96996 Cluster Incl. Al672356:ty64c02.x1 Homo 0.281787455 588 47579_at D55886 Hs.96996 /Ien=495' Cluster Incl. D55886:HUM405B01B Homo 0.302684307 968 47579_at D55886 Hs.9572 Cluster Incl. D55886:HUM405B01B Homo 0.302684307 968 47579_at D55886 Hs.9572 Cluster Incl. D55886 /gi=970293 0.302684307 100ne_end=57 Alg=Hs.9572 /Ien=553' Hg=Hs.9572 /Ien=553' Hg=Hs.9572 /Ien=553'	SeqID Affy Gene Name Cluster Incl. Al659076:tt97do8.x1 Homo Fold Change P-vallues 564 51785_s_at Al659076 Hs.97031 Cluster Incl. Al659076:tt97do8.x1 Homo 0.161954139 1.4682E-05 564 51785_s_at Al659076 Hs.97031 Cluster Incl. Al659076 (gi=4762646) 1.4682E-05 577 63035_at Al672356 Hs.96996 Cluster Incl. Al672356 (gi=4852087) 0.281787455 5.524E-07 588 47579_at D55886 Hs.9672 Cluster Incl. D55886.HUM405B01B Homo 0.302684307 8.975E-06 5968 47579_at D55886 Hs.9572 Cluster Incl. D55886 (gi=970293 4.8195E-06 1112 55484_r_at R54660 Hs.95511 Cluster Incl. R54660 (gi=910283 4.8195E-06 1112 55484_r_at R54660 Hs.95511 Cluster Incl. R54660 (gi=910283 4.8195E-06 1112 55484_r_at R54660 Hs.95511 Alone_area-3' (gb=07686) (gi=819118 4.8195E-06	SeqID Affy Genbank Gene Name Cluster Incl. Al659076:tt97 d08 x1 Homo Fold Change p-values 564 51785_s_at Al659076 Hs.97031 Cluster Incl. Al659076:tt97 d08 x1 Homo 0.161954139 1.4682E-05 564 51785_s_at Al659076 Hs.969076 Cluster Incl. Al659076:tt97 d08 x1 Homo 0.161954139 1.4682E-05 577 63035_at Al672356 Hs.96996 Cluster Incl. Al672356:ty64c02.x1 Homo 0.281787455 5.524E-07 968 47579_at D55886 Cluster Incl. Al672356:ty64c02.x1 Homo 0.302684307 8.975E-06 1112 55484_r_at R54660 Hs.9572 Cluster Incl. Al67397.then=553 1.114000 0.302684307 4.8195E-06 1112 55484_r_at R54660 Hs.9551 Inn=427 Inn=427 Inne-427 Inne-427	SeqID Affy Gene Name Cluster The. Al659076 strained in Al6590	SeqID Affy Genbank GLuster Tar Cluster Description Fold Change p-values 564 51785_s_at Al659076 HS.97031 Cluster Incl. Al659076 (ple-4762646) 0.161954139 1.4862E-05 577 63035_at Al672356 HS.96996 Cluster Incl. Al672364 (ble-4762646) 0.281787455 5.524E-07 968 47579_at D55866 HS.96996 (cluster Incl. Al672364)/46/02.x1 Homo 0.281787455 5.524E-07 968 47579_at D55866 HS.96996 (cluster Incl. Al672364)/46/02.x1 Homo 0.281787455 5.524E-07 1112 55484_L_at R54660 HS.9672 Cluster Incl. D55886 (pl-9822087) 0.302684307 8.975E-06 5484_L_at R54660 HS.9571 Cluster Incl. B54600/j74b11.s1 Homo spalens 0.1258837 4.8195E-06 635 47566_at AI743671 HS.9571 Cluster Incl. R54600/j74b11.s1 Homo clusters 0.12588330 4.8195E-06 635 46737_s_at AA292431 HS.94780 Cluster Incl. Al42871 (pl-511959 4.8195E-06 635 46737_s_at AA6822431

				8	9			
p-values	3.1056E-07	0.00185863	0.00208182	0.00000576	5.7165E-07	0.00000349	2.6349E-05	0.00010051
Fold Change	0.146420991	3.433762656	0.293369996	0.290791559	0.159849377	0.316621071	0.20131865	0.306142564
Cluster Description	Cluster Incl. Al972873:wr44f08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2490567 /clone_end=3' /gb=Al972873 /gi=5769699 /ug=Hs.9167 /len=594'	Cluster Incl. AI742239:wg39e09.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2367496 /clone_end=3' /gb=AI742239 /gi=5110527 /ug=Hs.91109 /len=493'	Cluster Incl. Al150491:qf36b04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1752079 /clone_end=3' /gb=Al150491 /gi=3678960 /ug=Hs.126635 /len=485'	Cluster Incl AF052142:Homo sapiens clone 24665 mRNA sequence /cds=UNKNOWN /gb=AF052142 /gi=3360451 /ug=Hs.90063 /len=1486	Cluster Incl. AA351076:EST58700 Homo sapiens cDNA, 3 end /clone=ATCC-104314 /clone_end=3' /gb=AA351076 /gi=2003416 /ug=Hs.237155 /len=529'	Cluster Incl AL079279:Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 248114 /cds=UNKNOWN /gb=AL079279 /gi=5102585 /ug=Hs.8963 /len=2428	Cluster Incl. AW006898:ws15g04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2497302 /clone_end=3' /gb=AW006898 /gi=5855676 /ug=Hs.234094 /len=228'	Cluster Incl. AA481493:aa34a10.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-815130 /clone_end=3'/gb=AA481493 /gi=2211045 /ug=Hs.88537 /len=406'
Cluster#	Hs.9167	Hs.91109	Hs.90756	Hs.90063	Hs.90063	Hs.8963	Hs.88827	Hs.88537
Gene Name								
Genbank	Al972873	AI742239	AI150491	AF052142	AA351076	AL079279	AW006898	AA481493
Affy	65975_at	55610_at	77001_at	38803_at	52294_s_at	38786_at	63994 <u>i</u> at	64813_at
SeqID	832	629	374	297	86	894	919	132
#1	395	396	397	398	399	400	401	402

				. 9	1			
p-values	1.8411E-07	5.4545E-06	2.739E-06	0.00000603	0.00000139	6.8391E-05	7.2051E-06	5.4948E-09
Fold Change	0.29962365	0.280798539	3.262260583	0.27595812	0.277326235	3.506341539	0.29408728	0.222082398
Cluster Description	Cluster Incl. W73230:zd56c09.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-344656 /clone_end=3' /gb=W73230 /gi=1383364 /ug=Hs.7913 /len=570'			Cluster Incl AL031846:dJ742C19.5 (novel Chromobox protein) /cds=(89,844) /gb=AL031846 /gi=4164368 /ug=Hs.7442 /len=3964	 Cluster Incl AF070648:Homo sapiens clone 24651 mRNA sequence /cds=UNKNOWN /gb=AF070648 /gi=3283922 /ug=Hs.74034 /len=1313 			
Cluster#	Hs.7913	Hs.76605	Hs.76550	Hs.7442	Hs.74034	Hs.73452	Hs.7212	Hs.72089
Gene Name								·
Genbank	W73230	AI692878	AA046853	AL031846	AF070648	AW003215	N95620	AA775711
Affy	54992_at	64747_at	46274_at	36894_at	36119_at	55986_at	57214_at	52844_at
SealD	1203	601	27	853	304	910	1099	221
#1	114	412	413	414	415	416	417	418

					9	2			
p-values	0.00059258		0.00037428	5.5293E-06	2.0222E-07	2.0661E-06	3.7787E-05	1.4531E-07	0.00033754
Fold Change	0.272334447		3.317504451	0.313288626	0.311833232	3.820099432	0.307655933	0.20785966	0.321089692
Cluster Description	Cluster Incl. AA142875:zl49b06.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-505235 /clone_end=3' /gb=AA142875 /gi=1712261 /ug=Hs.71719 /len=450'	Cluster Incl. AI742057:wg38d12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2367383 /clone_end=3' /gb=AI742057 /gi=5110345	/ug=Hs.7155 /len=603' Cluster Incl. R51371:yg76f03.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-39107 /clone_end=3'/gb=R51371 /gi=813273 /uo=Hs.7107 /len=542'	Cluster Incl. Al694389:wd83b11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2338173 /clone_end=3 /gb=Al694389 /gi=4971729 /ua=Hs. 71058 /len=514	Cluster Incl. AA056180:zk70f09.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-488201 /clone_end=5 /gb=AA056180 /gi=1548518 /ug=Hs.70704 /len=653'	Cluster Incl. AI791751;0q53g10.y5 Homo sapiens cDNA, 5 end /clone=IMAGE-1590114 /clone_end=5 /gb=AI791751 /gi=5339562 /uq=Hs,68505 /len=516'	Cluster Incl. AL039870:DKFZp434F1012_s1 Homo sapiens cDNA, 3 end /clone=DKFZp434F1012 /clone_end=3' /gb=AL039870 /gi=5408867 /ug=Hs.6750	Cluster Incl. Al948551:wp91c07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2469132 /clone_end=3' /gb=Al948551 /gi=5740861 /ug=Hs.67317 /len=434'
Cluster#	Hs.71719		Hs.7155	Hs.7107	Hs.71058	Hs.70704	Hs.68505	Hs.6750	Hs.67317
Gene Name									
Genbank	AA142875		AI742057	R51371	. AI694389	AA056180	AI791751	AL039870	Al948551
Affy	53762 at	I	46659_at	64913_at	46649_at	65999_at	53733_at	46622_at	53724_at
SealD	26		628	1110	605	28	999	861	799
##	419		420	. 421	422	423	424	425	426

				73				
p-values	2.84E-04	6.5166E-08	0.00238804	1.7127E-07	1.3008E-05	0.00046176	0.00039039	7.743E-06
Fold Change	0.327537441	0.215531153	3.179888739	0.262677342	0.09523078	0.311206678	0.309546056	0.305213649
Cluster Description	Cluster Incl AL050367:Homo sapiens mRNA; cDNA DKFZp564A026 (from clone DKFZp564A026) /cds=UNKNOWN /gb=AL050367 /gi=4914600 /ug=Hs.66762 /len=3938	Cluster Incl. AW026241:wv10d12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-990954 /clone_end=3' /gb=AW026241 /gi=5879771 /ug=Hs. 65239 /len=520'	Cluster Incl. Al092936:qa81b05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1693137 /clone_end=3' /gb=Al092936 /gi=3431912 /ug=Hs.6459 /len=516'	Cluster Incl. Al640524:wa29b02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2299467 /clone_end=3' /gb=Al640524 /gi=4703633 /ug=Hs.6382 /len=471'	Cluster Incl. AA742697;nx30g04.s1 Homo sapiens cDNA /clone=IMAGE-1257654 /gb=AA742697 /gi=2782203 /ug=Hs.62492 /len=526	Cluster Incl. W68034:zd39e02.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-343034 /clone_end=5' /gb=W68034 /gi=1376903 /ug=Hs.6052 /len=593'	Cluster Incl. AA723692:ah85c11.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1325876 /clone_end=3' /gb=AA723692 /gi=2741399 /ug=Hs.5889 /len=491'	Cluster Incl. Al149693:qf42g05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1752728 /clone_end=3' /gb=Al149693 /gi=3678162 /ug=Hs.58606 /len=505'
Cluster#	Hs.66762	Hs.65239	Hs.6459	Hs.6382	Hs.62492	Hs.6052	Hs.5889	Hs.58606
Gene Name								
Genbank	AL050367	AW026241	A1092936	AI640524	AA742697	W68034	AA723692	AI149693
Affy	36821_at	53687_at	54001_at	46583_at	46200_at	62493_at	53200_at	64720_at
SedID	893	949	346	544	214	1193	212	373
##	427	428	429	430	431	432	433	434

WO 02/059271

PCT/US02/02176

/ug=Hs.4283 /len=609'

				9	96			05,17,02170
p-values	0.00148036	0.00152421	1.1279E-08	1.5134E-05	3.4237E-06	1.848E-05	6.9772E-05	3.554E-07
Fold Change	0.317296872	3.149001267	8.270850261	3.94	0.276493253	5.223054257	3.048509737	4.526523002
Cluster Description	Cluster Incl. Al934361:wp04g11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2463908 /clone_end=3' /gb=Al934361 /gi=5673231 /ug=Hs.42586 /len=588'	Cluster Incl. Al990483:ws40b12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2499647 /clone_end=3' /gb=Al990483 /gi=5837364 /ug=Hs.4243 /len=541'	Cluster Incl. Al557210:PT2.1_14_H10.r Homo sapiens cDNA, 3 end /clone_end=3' /gb=Al557210 /gi=4489573 /ug=Hs.41271 /len=867'	Cluster Incl. AI751438:cn10a03.y1 Homo sapiens cDNA /clone=NHTBC_cn10a03- (random) /gb=AI751438 /gi=5129702 /ug=Hs.182827 /len=513	Cluster Incl. AL079707:DKFZp434F1430_r1 Homo sapiens cDNA, 5 end /clone=DKFZp434F1430 /clone_end=5' /gb=AL079707 /gi=5435283 /ug=Hs.41067 /len=608'		Ciuster Incl. W89022:zh72e09.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-417640 /clone_end=3' /gb=W89022 /gi=1403908 /ug=Hs.39421 /len=515'	
Cluster#	Hs.42586	Hs.4243	Hs.41271	Hs.41271	Hs.41067	Hs.40479	Hs.39421	Hs.38178
Gene Name								
Genbank	Al934361	AI990483	AI557210	AI751438	AL079707	N25267	W89022	AA921830
Affy	45779_at	45203_at	52019_at	85126_at	45179_at	46372_at	46365_at	51970_at
SeqID	787	846	512	641	968	1068	1212	254
# #	451	452	453	454	455	456	457	458

	WO 02/0592	271		9'	7		PC	Γ/US02/02176
p-values	2.3349E-06	5.5911E-06	2.893E-08	0.01073513	0.00164325	1.2131E-05	3.3983E-05	0.00080689
Fold Change	0.25714791	0.279922681	4.913802444	3.065154029	0.306446993	0.33	3.165598561	0.310421016
<u>Cluster Description</u>	Cluster Incl. AI799976:wc46f03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2321693 /clone_end=3' /gb=AI799976 /gi=5365448 /ug=Hs.38163 /len=540'	Cluster Incl. Al806221:wf26e09.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2356744 /clone_end=3' /gb=Al806221 /gi=5392787 /ug=Hs.38022 /len=574'	Cluster Incl. W02608:za51g08.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-296126 /clone_end=5'/gb=W02608 /gi=1274586 /ug=Hs.36830 /len=618'	Cluster Incl. H71532:ys11909.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-214528 /clone_end=3'/gb=H71532 /gi=1043348 /ug=Hs.36823 /len=422'	Cluster Incl. AI479633:tm32d12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2158295 /clone_end=3' /gb=AI479633 /gi=4372801 /ug=Hs.33716 /len=488	Cluster Incl. AA830307:oc49h02.s1 Homo sapiens cDNA /clone=IMAGE-1353075 /gb=AA830307 /gi=2903406 /ug=Hs.32615 /len=416	Cluster Incl. Al808983:wf67d02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2360643 /clone_end=3 /gb=Al808983 /gi=5395549 /ug=Hs.32458 /len=510	Cluster Incl. W73855:zd52f10.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-344299 /clone_end=5 /gb=W73855 /gi=1384028 /ug=Hs.32343 /len=677'
Cluster#	Hs.38163	Hs.38022	Hs.36830	Hs.36823	Hs.33716	Hs.32615	Hs.32458	Hs.32343
Gene Name								
Genbank	AI799976	AI806221	W02608	H71532	AI479633	AA830307	AI808983	W73855 .
Affx	65094_at	49825_at	61727_at	60143_r_at	64252_at	88308_at	45896_at	45757_at
SegID	679	989	1170	995	485	234	689	1206
##	459	460	461	462	463	464	465	466

'ug=Hs.169169 /len=358'

WO 02/059	271		9	9		PC	T/US02/02176
5.309E-12	7.704E-05	0.0041327	0.00030044	2.469E-12	0.00021707	1.3716E-06	4.6046E-08
13.96572736	0.274066497	0.321891202	0.20	4.243716901	0.259103459	0.211477764	0.131870144
 S792 Cluster Incl. AA059458:zl96g05.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-512504 /clone_end=5 /gb=AA059458 /gi=1553317 /ug=Hs.28792 /len=572' 	3625 Cluster Incl. Al806324:wf07e07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2349924 /clone_end=3 /gb=Al806324 /gi=5392890 /ug=Hs.28625 /len=559'						Hs.285966 Cluster Incl. AI680541:tw82c09.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2266192 /clone_end=3'/gb=AI680541 /gi=4890723 /ug=Hs.25173 /len=1072'
Hs.28	Hs.28	Hs.280	Hs.28	Hs.28	Hs.28	Hs.28	Hs.28
AA059458	AI806324	Al439628	H54254	AA705188	AA126704	AA131648	AI680541
65626_at	44025_at	91773_at	78617_at	53490_at	52999_at	56211_at	50408_at
33	687	474	992	206	4	49	588
475	476	477	478	479	480	481	482
	33 65626_at AA059458 Hs.28792 Cluster Incl. AA059458:zl96g05.r1 Homo 13.96572736 5.309E-12 sapiens cDNA, 5 end /clone=IMAGE-512504 /clone_end=5' /gb=AA059458 /gi=1553317 /ug=Hs.28792 /len=572'	33 65626_at AA059458 Hs.28792 Cluster Incl. AA059458:zl96g05.r1 Homo 13.96572736 5.309E-12 saplens cDNA, 5 end /clone=IMAGE-512504 /clone_end=5' /gb=AA059458 /gi=1553317 /ug=Hs.28792 /len=572' Homo 0.274066497 7.704E-05 saplens cDNA, 3 end /clone=IMAGE-2349924 /clone_end=3' /gb=AI806324 /gi=5392890 /ug=Hs.28625 /len=559'	33 65626_at AA059458	33 65626_at AA059458	Hs.28792 Cluster Incl. AA059458:r2l96g05.r1 Homo 13.96572736 5.309E-12 saplens cDNA, 5 end folone=IMAGE-512504 folone=IMAGE-512504 folone=IMAGE-512504 folone=IMAGE-512504 folone=IMAGE-213504 folone=IMAGE-213504 folone=IMAGE-2349924 folone=IMAGE-2073516 folone=IMAGE-2073516 folone=IMAGE-2073516 folone=IMAGE-2073516 folone=IMAGE-2073516 folone=IMAGE-2073516 folone=IMAGE-2073516 folone=IMAGE-2073516 folone=IMAGE-202985 folone=IMAGE-2	33 65626_at AA059458	## S8792 Cluster Incl. AA059458 Hs. 28792 Cluster Incl. AA059458 Grant Sapiens CDNA, 5 end clone=IMAGE-512504 (Adone-sid-3702) (Adone-sid-3702

WO 02/059271		PCT/US02/02176
	. 100	

				. 1	00			
į	p-values 0.00017459	0.00011017	0.00024096	0.0008652	6.1606E-11	0.00027317	5.8287E-05	5.0013E-05
; ;	Fold Change 0.30	0.262417057	3.603536057	0.327647494	11.21387388	0.18	0.326231649	0.22
	Cluster Incl. Al656062:tt43b04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2243503 /clone_end=3' /gb=Al656062 /gi=4740041 /ug=Hs.239724 /len=525'	Cluster Incl. W02823.za05h04.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-291703 /clone_end=5' /gb=W02823 /gi=1274868 /ug=Hs.234963 /len=461'	Cluster Incl. Al458306:tk07c10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2150322 /clone_end=3' /gb=Al458306 /gi=4310885 /ug=Hs.184777 /len=585'	Cluster Incl. W19285:zb90g08.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-310910 /clone_end=3' /gb=W19285 /gi=1294973 /ug=Hs.202731 /len=460'	Cluster Incl. AA669106:aa81g05.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-827384 /clone_end=3' /gb=AA669106 /gi=2630605 /ug=Hs.108106 /len=537'	Cluster Incl. A!983045:wz30c01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2559552 /clone_end=3' /gb=A!983045 /gi=5810264 /ug=Hs.237789 /len=566'	Cluster Incl. A!963873:wt86b08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2514327 /clone_end=3'/gb=A!963873 /gi=5756586 /ug=Hs.227032 /len=704'	
!	<u>Cluster.#</u> Hs.285834	Hs.285785	Hs.285590	Hs.285570	Hs.285473	Hs.285414	Hs.285247	Hs.285233
•	Gene Name							
	<u>Genbank</u> Al656062	W02823	Al458306	W19285	AA669106	Al983045	Al963873	Al557450
	Affy 88239_i_at	50990_at	59070_at	65988_at	. 48083_at	87998_at	60842_at	78103_at
!	SeqID 558	1171	478	1175	198	838	815	413
	483 483	484	485	486	487	488	489	490

WO 02/059271		PCT/US02/02176
	101	
	L	

.

				L 10)1					
p-values	1.8665E-06	0.00150517	8.0203E-05	3.4232E-05	8.7733E-05	0.00121855	2.5913E-05	0.00082565		
Fold Change	4,466366979	0.31	0.254762986	4.911742129	0.27	0.23	0.30	4.06		
Cluster Description	Cluster Incl. AI869951:wl63a07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2429556 /clone_end=3' /gb=AI869951 /gi=5543919 /ug=Hs.20854 /len=752'					Cluster Incl. AA143491:zo31a09.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-588472 /clone_end=5' /gb=AA143491 /gi=1712862 /ug=Hs.239308 /len=552'			•	
Cluster#"	Hs.285220	Hs.285009	Hs.284269	Hs.283713	Hs.276860	Hs.274252	Hs.271594	Hs.271530		
Gene Name										
Genbank	Al869951	N31046	AA824349	AA584310	Al435443	AA143491	AI188749	.Al46168		
Affix	63460_at	83506_at	51999_at	48774_at	83118_at	78658_at	67167_at	84893_at		
SeqD	749	1070	232	171	470	29	379	476		
##	491	492	493	494	495	496	497	498		

			10	2			
<u>p-values</u> 0.00710567	0.01228173	5.7601E-05	9.3673E-05	0.00017276	0.00654385	0.01366367	0.00854584
<u>Fold Change</u> 0.315940639	3.07	0.18	4.593843245	0.250833383	0.247069023	4.683322065	0.28
Cluster #	Hs.271157 Cluster Incl. AA677864:zi13d12.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-430679 /clone_end=3' /gb=AA677864 /gi=2658386 /ug=Hs.222705 /len=384'	Hs.270549 Cluster Incl. W72407:zd67c03.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-345700 /clone_end=3' /gb=W72407 /gi=1382424 /ug=Hs.118607 /len=651'	Hs.270524 Cluster Incl. AI743516:wf72b10.x2 Homo sapiens cDNA, 3 end /clone=IMAGE-2361115 /clone_end=3' /gb=AI743516 /gi=5111804 /ug=Hs.205320 /len=663'	Hs.270235 Cluster Incl. AI418596:tg37d02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2110947 /clone_end=3' /gb=AI418596 /gi=4264527 /ug=Hs.187926 /len=431'	Hs.270027 Cluster Incl. AI683911:tw54f08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2263527 /clone_end=3' /gb=AI683911 /gi=4894093 /ug=Hs.145791 /len=497'	Hs.269628 Cluster Incl. AA773348:ab65g04.s1 Homo sapiens cDNA, 3 end /clone=845718 /clone_end=3' /gb=AA773348 /gi=2824919 /ug=Hs.193254 /len=508'	Hs.269392 Cluster Incl. R69584:yi40e04.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-141726 /clone_end=3'/gb=R69584 /gi=843101 /ug=Hs.183359 /len=379'
Gene Name C	T			I	I	I	I
Genbank R17937	AA677864	W72407	Al743516	Al418596	Al683911	AA773348	R69584
Affy 60202_i_at	72092 <u>f_</u> at	76208_at	69687_at	87016_at	91206_at	88243_r_at	78883_at
SeqID 1103	199	1200	633	466	591	219	1115
## 4 4 9 9	200	501	502	503	504	505	206

			103				
<u>p-values</u> 9.1918E-06	3.1637E-07	7.5535E-05	0.00045064	6.5167E-06	0.00715494	0.00127676	0.01815078
Fold Change 0.142950221	0.27	0.092486133	0.194270285	0.27933205	3.052533662	3.03	0.310940166
Cluster Incl. R20784:yh18b08.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-130071 /clone_end=3' /gb=R20784 /gi=775565			Cluster Incl. Al524085:th01e09.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2117032 /clone_end=3' /gb=Al524085 /gi=4438220 /in=Hs 25391 /len=509'	Cluster Incl. Al659533:tu12a12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2250814 /clone_end=3' /gb=Al659533 /gi=4763103 /ua=Hs 25248 /len=654'	•		Cluster Incl. R67627:yj69c11.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-154004 /clone_end=3' /gb=R67627 /gi=840265 /ug=Hs.24898 /len=474'
Cluster # Hs.268286	Hs.265499	Hs.260164	Hs.25391	Hs.25248	Hs.250879	Hs.250594	Hs.24898
Gene Name							
<u>Genbank</u> R20784	AW014647	R53594	AI524085	AI659533	AI742002	AI672389	R67627
Affy 49549_at	80401_at	42913 <u>f</u> at	64057_at	50411_at	61333_at	78487_at	51886_at
SegID 1104	932	1 17 17 17 17 17 17 17 17 17 17 17 17 17	200	566	627	578	1114
207	208	509	510	. 21	512	513	514

	WO 02/059	271		10	4		PC	Γ/US02/02176
sanlex-d	0.00047742	1.293E-05	2.1691E-05	7.4615E-08	1.1547E-07	3.2473E-05	4.0505E-06	0.00326112
Fold Change	0.247364362	0.280733599	0.324185103	3.482682058	0.227760861	0.264360188	0.221960648	0.30
Cluster Description	Cluster Incl. AA045145:zf11d12.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-376631 /clone_end=5 /gb=AA045145 /gi=1523485 /ug=Hs.24872 /len=588'	Cluster Incl. AI769199:wg35b03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2367053 /clone_end=3 /gb=AI769199 /gi=5235708 /ug=Hs.24790 /len=585'	Cluster Incl. AA127727:zk92d07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-490285 /clone_end=3' /gb=AA127727 /gi=1687016 /ug=Hs.24715 /len=611'	Cluster Incl. AA224205:zr15f03.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-663485 /clone_end=3' /gb=AA224205 /gi=1844747 /ug=Hs.24529 /len=547'	Cluster Incl. Al583530:ts12c08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2228366 /clone_end=3' /gb=Al583530 /gi=4569427 /ug=Hs.192516 /len=490'	•	Cluster Incl. AA034289:zk18e07.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-470916 /clone_end=5' /gb=AA034289 /gi=1506098 /ug=Hs.200499 /len=588'	
Cluster #	Hs.24872	Hs.24790	Hs.24715	Hs.24529	Hs.243010	Hs.24192	Hs.24192	Hs.241797
Gene Name				·			·	·
Genbank	AA045145	AI769199	AA127727	AA224205	Al583530	AI658662	AA034289	AA909818
Affy	43919_at	43554_at	50385_at	50018_at	65523_at	50361_at	60532_at	77970_at
SealD	24	099	43	98.	522	561	17	248
##	515	516	517	518	519	520	521	522

WO 02/059271		PCT/US02/02176
	105	

			1	05				
p-values 4.329E-05	1.5567E-06	2.5531E-05	9.8105E-06	4.0549E-05	1.9829E-05	0.00035218	0.00788877	1.7239E-06
Fold Change 0.313634138	0.232069434	0.31162811	4.191125642	0.325095547	0.24	3.938205017	0.20	0.290657123
Cluster Description Cluster Incl. C16443:C16443 Homo sapiens cDNA, 5 end /clone=GEN-321F12 /clone_end=5 / gb=C16443 /gi=1571150 /ug=Hs.24144 /len=456	Cluster Incl. AI797276:we86f09.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2348009 /clone_end=3 /gb=AI797276 /gi=5362748 /ug=Hs.23912 /len=516'	Cluster Incl. AI421837:tf55c10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2103186 /clone_end=3 /gb=AI421837 /gi=4267768 /ua=Hs.23869 /len=573		Cluster Incl. N57539:yy81c07.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-279948 /clone_end=3' /gb=N57539 /gi=1201429 /ug=Hs.23630 /len=481'	-			
Cluster # Hs.24144	Hs.23912	Hs.23869	Hs.237809	Hs.23630	Hs.235920	Hs.235758	Hs.235390	Hs.234898
Gene Name			·					
<u>Genbank</u> C16443	AI797276	A1421837	AA948319	N57539	AA629715	Al362288	W26589	Al970898
Affy 50001_at	43502_at	56624_at	52615_at	56574_at	73233_at	66131_at	78622 <u>r</u> at	43427_at
SeqID 956	674	468	262	1086	190	438	1178	822
# 523								

WO 02/059271		PCT/US02/02176
	106	

.

.

				11	106			
	p-values 1.2854E-06	8.7469E-08	1.2339E-07	6.6059E-07	4.4094E-06	0.00181461	0.01016812	2.4083E-06
·	Fold Change 0.268475458	4.250714876	3.197888571	3.85742898	3.322756779	3.320734927	0.233986843	0.280053615
	Cluster # Cluster Description Hs.234898 Cluster Incl. AI057637:oy31h06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1667483 /clone_end=3' /gb=AI057637 /gi=3331503 /ug=Hs.21305 /len=599'	ı95e06.x1 Homo one=IMAGE-1635586 3982 /gi=3230318	EST97358 Homo one=ATCC-188064 33718 /gi=2036227 I'	Hs.23448 Cluster Incl. AA133979:zn88b09.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-565241 /clone_end=5' /gb=AA133979 /gi=1691065 /ug=Hs.23448 /len=593'	3317	57g08.x1 Homo ne=IMAGE-2491838 550 /gi=5803680	56b04.x1 Homo ne=IMAGE-1839151 391 /gi=3770633	Hs.23202 Cluster Incl. Al419030:tf53b01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2102953 /clone_end=3' /gb=Al419030 /gi=4264961 /ug=Hs.23202 /len=473'
· .	Gene Name	.:						
	Genbank Al057637	AI015982	AA383718	AA133979	Al970896	Al978650	AI208691	Al419030
	Affy 49452_at	55504_at	64282_at	44055_at	44974_at	74340_at	74162_r_at	43046_at
	SeqID 332	312	100	. 52	821	834	390	467
	532	533	534	535	536	537	538	539

	WO 02/0592	271		10)7		PC1/US02/0217		
p-values	7.5905E-05	8.6161E-05	1.3565E-05	5.2137E-05	0.00152718	9.4414E-05	0.00160759	0.00069879	
Fold Change	0.257584715	0.174616059	4.00	0.32	69.30 69.30	0.308687757	3.18	3.480820479	
Cluster # Cluster Description	Hs.23133 Cluster Incl. W45581:zc26c02.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-323426 /clone_end=5' /gb=W45581 /gi=1329681 /ug=Hs.23133 /len=587'	Hs.22971 Cluster Incl. N91161:zb12b05.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-301809 /clone_end=3' /gb=N91161 /gi=1444488 /ug=Hs.237594 /len=558'	Hs.227513 Cluster Incl. AI829520:w/19c06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2425354 /clone_end=3' /gb=AI829520 /gi=5450191 /ug=Hs.227513 /len=491'	Hs.225779 Cluster Incl. AI956095:wt34h04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2509399 /clone_end=3' /gb=AI956095 /gi=5748405 /ug=Hs.225779 /len=502'	Hs.224902 Cluster Incl. AI499240:to08h02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2178483 /clone_end=3' /gb=AI499240 /gi=4391222 /ug=Hs.224902 /len=699'	Hs.222326 Cluster Incl. AI816835:wj34f12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2404751 /clone_end=3' /gb=AI816835 /gi=5435914 /uq=Hs.222326 /len=525'	Hs.222088 Cluster Incl. AA451665:zx43f11.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-789261 /clone_end=5'/gb=AA451665/gi=2165334 /ug=Hs.222088 /len=464'	Hs.220756 Cluster Incl. Al339240:qt06h07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1946845 /clone_end=3' /gb=Al339240 /gi=4076154 /ug=Hs.220756 /len=365'	
Gene Name									
Genbank	W45581	N91161	AI829520	A1956095	A1499240	AI816835	AA451665	Al339240	
Affy	57119_s_at	59769_s_at	87583_at	72501_at	72363_f_at	72674_at	87339_at	71899_at	
SeqID	1187	1097	730	808	497	701	123	425	
#1	540	541	542	543	544	545	546	547	

PCT/US02/02176

			10	8			
p .values 0.012637	7.7241E-05	0.00071317	1.0609E-07	2.5827E-06	3.9564E-05	0.00147634	0.00020743
<u>Fold Change</u> 3.51886622	3.531852021	0.306661245	0.085100991	0.2674744	0.286772796	0.22	0.30
Cluster Incl. AA251131:zs03b12.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-684095 /clone_end=3' /gb=AA251131 /gi=1886093 /ug=Hs.220697 /len=365'							
Cluster# Hs.220697 (Hs.22011	Hs.21914	Hs.218707	Hs.218037	Hs.214906	Hs.21415	Hs.213923
Gene Name							
Genbank AA251131	Al344312	Al949833	N63913	Al911149	AI610837	AI935522	AI917447
Affy 71839_at	42988_at	60813_at	44210_at	71668_at	71524_at	91345_at	87161_s_at
SeqID 90	430	802	1090	765	532	791	774
£# 248	549	550	551	552	553	554	555

	WO 02/059	271		10	09		PC	T/US02/0217
p-values	0.00795029	7.8969E-05	0.03460633	0.00010506	0.00648177	1.3875E-05	1.5821E-06	0.00062149
Fold Change	0.292836533	3.74	0.302753776	3.62	3.047280178	0.23	6.957639593	3.289367551
Cluster Description	Cluster Incl. AI888493:wn32e02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2447162 /clone_end=3 /gb=AI888493 /gi=5593657 /ug=Hs.212709 /len=473'							
Cluster #	Hs.212709	Hs.211535	Hs.211129	Hs.210467	Hs.209235	Hs.209078	Hs.208912	Hs.208854
Gene Name		•						
Genbank	AI888493	AI823649	AI825341	Al989871	AI800529	Al351653	Al381686	H68822
Affy	71153 <u>i</u> at	87102_at	70733 <u>r_</u> at	80045_at	70350_at	70704_i_at	64145_at	70219_at
SealD	759	714	717	842	980	433	454	994

PCT/US02/02176

/ug=Hs.203879 /len=521'

													11	1															
p-values	7.7642E-05		0.00187143			0.00030428				0.00090022				0.01216522				2.9782E-06	•			0.00527403				0.00084162			
Fold Change	4.96		3.17			3.64				0.29				4.11		•		0.263799925				0.300766236				0.322154385			
Cluster # Cluster Description	Hs.202259 Cluster Incl. AI700646:we38h07.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2343421 /clone_end=3'/gb=AI700646 /gi=4988546 . /ua=Hs.202259 /len=466'	Hs.202040 Cluster Incl. Al937060:wp72f01.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2467321	/ug=Hs.202040 /len=522'	Hs.201875 Cluster Incl. Al825713:wb75g02.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2311538	/clone_end=3' /gb=AI825713 /gi=5446384	/ug=Hs.201875 /len=445	Hs.199996 Cluster Incl. AI804054:tc60g03.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2069044	/clone_end=3' /gb=AI804054 /gi=5369526	/ug=Hs.199996 /len=459'	Hs.199713 Cluster Incl. Al921685:wo28g10.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2456706	/clone_end=3' /gb=Al921685 /gi=5657649	/ug=Hs.199713 /len=427'	Hs.19827 Cluster Incl. W72511:zd64f08.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-345447	/clone_end=3' /gb=W72511 /gi=1382168	/ug=Hs.19827 /len=601'	Hs.197676 Cluster Incl. AI653487:tq94h03.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2216501	/clone_end=3'/gb=Al653487 /gi=4737466	/ug=Hs.197676 /len=306'	Hs.197643 Cluster Incl. AI962986:wt25g06.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2508538	/clone_end=3' /gb=Al962986 /gi=5755699	/ug=Hs.197643 /len=391′
Gene Name																													
Genbank	AI700646		A1937060			AI825713				AI804054				Al921685				W72511				AI653487				Al962986			
Affx	75961_at		86612 at	I		69876 at	l			69600 at	l			79751 at		,		59623 at	!			68663_at	l			88622_at	l		
SegiD	611		795			718				684				176				1201				554				813			
##	572		573			574				575				929				211				578				579			

					-			
p-values	5.3291E-06	8.2878E-07	0.00678174	1.1628E-06	0.00380632	0.00223833	5.2381E-08	3.5251E-06
Fold Change	0.26	0.08	4.74	5.05	0.318361618	0.32	3.13	0.19
Cluster # Cluster Description	Hs.194274 Cluster Incl. AI860484;wl03b06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2423795 /clone_end=3' /gb=AI860484 /gi=5514100 /ug=Hs.194274 /len=485'	Hs.194093 Cluster Incl. Al968379:wu02d12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2515799 /clone_end=3'/gb=Al968379/gi=5765197 /uq=Hs.194093 /len=577'	Hs.193745 Cluster Incl. AA419260:zv35c03.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-755620 /clone_end=3'/gb=AA419260 /gi=2078973 /ug=Hs.185665 /len=456'	Hs.193602 Cluster Incl. AI761782:wi62c08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2394830 /clone_end=3' /gb=AI761782 /gi=5177373 /ug=Hs.124852 /len=576'	Hs.193491 Cluster Incl. AA701600:zi34h09.s1 Homo sapiens cDNA, 3 end /clone=432737 /clone_end=3' /gb=AA701600 /gi=2704765 /ug=Hs.193491 /len=445'	Hs.193142 Cluster Incl. AI825806:td18g01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2076048 /clone_end=3' /gb=AI825806 /gi=5446477 /ug=Hs.193142 /len=707'	Hs.192872 Cluster Incl. AA719022:ah46b08.s1 Homo sapiens cDNA, 3 end /clone=1292535 /clone_end=3' /gb=AA719022 /gi=2732121 /ug=Hs.192872 /len=463'	Hs.192671 Cluster Incl. AI678986:tu60e05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2255456 /clone_end=3'/gb=AI678986 /gi=4889168 /ug=Hs.192671 /len=499'
Gene Name				·				
Genbank	AI860484	Al968379	AA419260	AI761782	AA701600	AI825806	AA719022	. Al678986
Affy	69069_at	86154_at	67440_r_at	88814_at	88268_at	85986_at	85943_at	68671_at
SealD	741	817	108	651	202	719	211	587
##	280	581	582	583	584	585	586	287

595

594

593

592

591

589

± 288

/ug=Hs.182809 /len=765'

608

609

605

604

#1

909

607

/ug=Hs.179673 /len=386'

610

	WO 02/0592	271		11	6		PCT/US02/02176		
p-values	1.1081E-08	4.4311E-05	0.01037591		0.0264336£	6.8498E-05	5.1322E-05	0.00098285	
Fold Change	3.425226104	0.32	4.628098672	0.325908734	3.33211943	0.268895973	0.326395709	4.67	
Cluster Description	Cluster Incl. AA292789:zt56409.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-726353 /clone_end=3' /gb=AA292789 /gi=1941611 /ug=Hs.179222 /len=510'	Cluster Incl. N39104:yy45g06.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-276538 /clone_end=3' /gb=N39104 /gi=1162311 /ug=Hs.179153 /len=428'	Cluster Incl. AI206063:qg16g01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1759728 /clone_end=3' /gb=AI206063 /gi=3764735 /ug=Hs.176067 /len=504'	Cluster Incl. AI218358:qh21g07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1845372 /clone_end=3'/gb=AI218358 /gi=3798173 /ug=Hs.175048 /len=411'	Cluster Incl. AI215667:qm39e01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1884216 /clone_end=3' /gb=AI215667 /gi=3784708 /ug=Hs.175044 /len=461'	Cluster Incl. Al472331:tj87d02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2148483 /clone_end=3' /gb=Al472331 /gi=4334421 /ug=Hs.173975 /len=574'	Cluster Incl. AI522299:ti76e07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2137956 /clone_end=3' /gb=AI522299 /gi=4436434 /ug=Hs.173369 /len=490'	Cluster Incl. AA007367:zh98b03.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-429293 /clone_end=3 /gb=AA007367 /gi=1463371 /ug=Hs.173088 /len=462	
Cluster #	Hs.179222	Hs.179153	Hs.176067	Hs.175048	Hs.175044	Hs.173975	Hs.173369	Hs.173088	
Gene Name									
Genbank	AA292789	N39104	AI206063	AI218358	AI215667	AI472331	AI522299	AA007367	
Affy	62643_at	78821_at	92131_at	85706_at	85702_at	85591_at	92091_at	77540_at	
SealD	94	1073	389	393	391	483	499	4	
##	612	613	614	615	616	617	618	619	

Hs.171205

AI039722

84627_at

325

624

Hs.171939

AI693178

58428_at

602

623

Hs.170935

AI540204

92007_at

508

625

Hs.170861

AI498957

85341_at

495

626

AA480009

47972_r_at

130

627

Cluster#

Gene Name

Genbank

Affy 58916 at

SealD

粓

AI672101

Hs.17296

Hs.172548

AI458858

83000_at

479

621

Hs.171959

A1499334

85486_at

498

/gb=AL044366 /gi=5432588 /ug=Hs.165805

			1	19			
<u>p-values</u> 2.4112E-05	0.00054065	1.2564E-07	7.3767E-05	0.00288569	0.00073954	0.01192547	0.00162269
<u>Fold Change</u> 0.280524611	0.278599395	3.548116214	3.26	5.533470597	0.298063122	3.258423603	3.012339056
Cluster Description Cluster Incl. N21031:yx46f05.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-264801 /clone_end=3' /gb=N21031 /gi=1126201 /ug=Hs.164779 /len=554'	Cluster Incl. AI039005:0x24g05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1657304 /clone_end=3' /gb=AI039005 /gi=3278199 /uq=Hs.164680 /len=483'	Cluster Incl. AI436670:th91b04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2125999 /clone_end=3'/gb=AI436670 /gi=4283458 /ug=Hs.164369 /len=393'	Cluster Incl. Al436297:th81c10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2125074 /clone_end=3' /gb=Al436297 /gi=4309200 /uq=Hs.164226 /len=435'	Cluster Incl. AA610522:np93h10.s1 Homo sapiens cDNA /clone=IMAGE-1133923 /gb=AA610522 /gi=2458950 /ug=Hs.162697 /len=364	Cluster Incl. N46855:yy73e01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-279192 /clone_end=3' /gb=N46855 /gi=1188021 /ug=Hs.16262 /len=524'		
Cluster #"	Hs.164680	Hs.164369	Hs.164226	Hs.162697	Hs.16262	Hs.162130	Hs.159983
Gene Name	·						·
<u>Genbank</u> N21031	AI039005	AI436670	AI436297	AA610522	N46855	AA565654	AA993566
Affy. 62707_at	62259_at	84701_at	75740_at	84323_at	62701_at	84264_at	81810_at
SeqID 1062	324	473	472	180	1078	168	268
636 636	637	638	639	640	641	642	643

			12	20			
p-values 2.8623E-06	0.0140631	4.5784E-06	2.7534E-07	0.00027572	0.00025369	0.00039332	0.02404954
Fold Change 0.15	3.577532367	0.275099238	0.220904269	0.198202182	3.99	0.305190872	3.01
Cluster Incl. T64637:yc12h06.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-80507 /clone_end=5' /gb=T64637 /gi=673682 /ug=Hs.159367 /len=546'							
<u>Cluster #</u> Hs.159367	Hs.158992	Hs.158984	Hs.158832	Hs.158741	Hs.158549	Hs.158258	Hs.158113
Gene.Name					•		
Genbank T64637	Al631850	Al380583	Al928037	AW026553	Al916544	Al924465	H15868
Affy 83908_at	91596_at	83727_at	81659_at	81648_at	90603_at	81591_r_at	77316_at
<u>SeqiD</u> 1127	538	451	783	950	772	780	983
## 644	645	646	647	648	649	650	651

	WO 02/059	271		. 12	PC	T/US02/02176		
p-values	0.00152635	0.00440287	9.9516E-05	0.00216978	0.00692003	0.00015176	0.00013054	0.03882532
Fold Change	0.317481383	3.524053838	0.13	4.780974242	0.32	3.120542677	0.323852128	3.55
Cluster Description	Cluster Incl. Al367580:qv99h11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1989765 /clone_end=3' /gb=Al367580 /gi=4137325 /ug=Hs.157437 /len=348'	Cluster Incl. Al367020:qz23h04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2027767 /clone_end=3' /gb=Al367020 /gi=4136765 /ug=Hs.157344 /len=469'	Cluster Incl. W32480:zc67e03.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-327388 /clone_end=5' /gb=W32480 /gi=1313470 /ug=Hs.157099 /len=479'	Cluster Incl. AA884688:am39c01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1471104 /clone_end=3' /gb=AA884688 /gi=2994218 /ug=Hs.156974 /len=409'	Cluster Incl. AA903473:ok58h08.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1518207 /clone_end=3' /gb=AA903473 /gi=3038596 /ug=Hs.153717 /len=441'		Cluster Incl. T83654;yd67b10.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-113275 /clone_end=3' /gb=T83654 /gi=711942 /ug=Hs.15329 /len=505'	Cluster Incl. Al341602:qx92g05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2010008 /clone_end=3' /gb=Al341602 /gi=4078529 /ug=Hs.152932 /len=461'
Cluster #	Hs.157437	Hs.157344	Hs.157099	Hs.156974	Hs.153717	Hs.153385	Hs.15329	Hs.152932
Gene Name		·						
Genbank	Al367580	Al367020	W32480	AA884688	AA903473	AW001002	T83654	Al341602
Affy	81459_at	67164_at	89206_at	81383_at	77237_at	89891_s_at	61965_at	83365_at
SealD	440	439	1183	242	243	906	1131	427
#11	652	653	654	655	656	657	658	659

	WO 02/059	271		1	22		PC	T/US02/02
p-values	4.5188E-06	0.02012519	1.6074E-06	0.00075917	0.00012996	1.5906E-09	2.4725E-06	1.7654E-05
Fold Change	5.38	3.248857169	0.237445013	3.60	3.090999056	0.139391318	0.296813014	0.323630776
Cluster Description	Cluster Incl. AI740516:wg16a11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2365244 /clone_end=3'/gb≈AI740516 /gi=5108804 //m=Hs 152812 /len=591'	Cluster Incl. AA603097:np37a08.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1118486 /clone_end=3'/gb=AA603097 /gi=2436958	Cluster Incl. R73518:yj93h12.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-156359 /clone_end=3'/gb=R73518 /gi=847550 /ua=Hs.151079 /len=490'	Cluster Incl. Al660245:we68h05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2346297 /clone_end=3' /gb=Al660245 /gi=4763815 /un=Hs. 150833 /len=497'	Cluster Incl. Al640222:wa30f03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2299613 /clone_end=3'/gb=Al640222 /gi=4703331 /un=Hs 149993 /len=451'		Cluster Incl. AI808768:wf57h12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2359751 /clone_end=3' /gb=AI808768 /gi=5395334 /un=Hs 148867 /len=481'	Cluster Incl. AI858012:wj69c06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2408074 /clone_end=3' /gb=AI858012 /gi=5511628
Cluster #	Hs.152812	Hs.152016	Hs.151079	Hs.150833	Hs.149993	Hs.149425	Hs.148867	Hs.147562

.

Gene Name

Genbank AI740516

Affy 77225_at

SeqID 622

##

AA603097

80845_at

177

661

AI660245

83226_at

569

663

R73518

1117 80771_at

662

80623_s_at AI640222

543

664

A1692813

91331_at

009

665

80487_r_at AI808768

688

999

AI858012

80322_at

736

PCT/US02/02176

/ug=Hs.146042 /len=492'

WO 02	/059271						PCT/US02/02	176
				124				
09424	80957	7E-06	3E-05	00029	55E-05	44029	40144	

				12	:4			
p-values	0.00209424	0.01380957	1.7637E-06	6.6343E-05	0.04200059	9.1255E-05	0.00044029	0.00040144
Fold Change	0.26	0.15	0.30	0.309293968	0.24	0.23	0.231031663	0.28
Cluster# Cluster Description	Hs.145989 Cluster Incl. AW006499:wt05d12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2506583 /clone_end=3' /gb=AW006499 /gi=5855277 /ug=Hs.145989 /len=513'	Hs.145068 Cluster Incl. AI821472:nj04c07.x5 Homo sapiens cDNA, 3 end /clone=IMAGE-985356 /clone_end=3' /gb=AI821472 /gi=5440551 /ug=Hs.145068 /len=500'	Hs.144871 Cluster Incl. AI686114;tt92c02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2248994 /clone_end=3' /gb=AI686114 /gi=4897408 /ug=Hs.144871 /len=495'	Hs.144864 Cluster Incl. AW052142:wx26d08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2544783 /clone_end=3' /gb=AW052142 /gi=5914501 /ug=Hs.144864 /len=549'	Hs.144151 Cluster Incl. AI668620:yo53h06.x5 Homo sapiens cDNA, 3 end /clone=IMAGE-181691 /clone_end=3' /gb=AI668620 /gi=4827928 /ug=Hs.144151 /len=617'	Hs.143995 Cluster Incl. AI570222:to76e03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2184220 /clone_end=3' /gb=AI570222 /gi=4533596 /ug=Hš.143995 /len=458'	Hs.143873 Cluster Incl. AI740621:wg23e12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2365966 /clone_end=3'/gb=AI740621 /gi=5108909 /uq=Hs.143873 /len=457'	Hs.143789 Cluster Incl. AI694059:wd67c10.x1 Homo sapiens cDNA, 3 end /clone=iMAGE-2336658 /clone_end=3'/gb=AI694059 /gi=4971399 /ug=Hs.143789 /len=540'
	Hs.14	. Hs.14	Hs.14	Hs.14	Hs. 1	Hs.1	Hs.14	Hs. 7
Gene Name								
Genbank	AW006499	AI821472	AI686114	AW052142	AI668620	AI570222	AI740621	AI694059
Affy	82860_at	89087_at	77106_at	79803_at	77077_at	82595_at	79618_at	77053_at
SegiD	918	712	593	954	571	519	623	604
##	676	677	678	629	680	681	682	683

/ug=Hs.137447 /len=942'

ဖ

9

691

689

688

687

WO 02/059271

685

684 ##

	WO 02/059	271		12	26	PCT/US02/02176		
p-values	1.3855E-05	0.00011435	0.00068507	0.00145442	0.00038716	0.02123852	0.03600705	8.8297E-05
Fold Change	0.31404932	0.25	0.24	5.00	0.127900019	3.05	4.015935457	0.260125725
Cluster# Cluster Description	Hs.137262 Cluster Incl. N49591:yy58d01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-277729 /clone_end=3' /gb=N49591 /gi=1190757 /ug=Hs.137262 /len=459'	Hs. 137003 Cluster Incl. AI242023:qh81a04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1851054 /clone_end=3' /gb=AI242023 /gi=3837420 /ug=Hs. 137003 /len=445'	Hs.135657 Cluster Incl. AA534591:nf81b04.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-926287 /clone_end=3' /gb=AA534591 /gi=2278844 /ug=Hs.135657 /len=492'	Hs.13561 Cluster Incl. Al819340:wg61a01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2369544 /clone_end=3' /gb=Al819340 /gi=5438419 /ug=Hs.13561 /len=539'	Hs.135405 Cluster Incl. AI057450:ow80c03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1653124 /clone_end=3' /gb=AI057450 /gi=3331316 /ug=Hs.135405 /len=379'	Hs.135056 Cluster Incl. H06350:yl79g02.r1 Homo saplens cDNA, 5 end /clone=IMAGE-44306 /clone_end=5' /gb=H06350 /gi=869902 /ug=Hs.201607 /len=551'	Hs.134665 Cluster Incl. AI673818:to73f12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2183951 /clone_end=3' /gb=AI673818 /gi=4853549 /ug=Hs.134665 /len=201'	Hs.134110 Cluster Incl. AI078121:oz24d01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1676257 /clone_end=3' /gb=AI078121 /gi=3412529 /ug=Hs.134110 /len=456'
Gene Name	<i>,</i> —		·					
Genbank	N49591	Ai242023	AA534591	Al819340	A1057450	H06350	AI673818	AI078121
Affy	79133_at	82436_at	82385_at	78442 <u>_</u> at	78844_at	86587_at	78668_r_at	78555_at
SealD	1080	396	157	708	331	979	581	337
##	692	693	694	695	969	269	869	669

			17	27			
0.00810637	1.664E-06	0.00198223	4.0319E-09	0.00197051	0.03333431	0.00161436	0.00059354
Fold Change 4.039586551	0.07	3.87	10.36	3.15	0.305626072	0.280881931	3.140512538
Cluster Description Cluster Incl. AI023295:ow95b12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1654559 /clone_end=3' /gb=AI023295 /gi=3239701 /ug=Hs.134053 /len=566'		Cluster Incl. AI276259:ql65f03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1877213 /clone_end=3' /gb=AI276259 /gi=3898533 /ug=Hs.13337 /len=505'					
Cluster# Hs.134053	Hs.133471	Hs.13337	Hs.133294	Hs.133294	Hs.133226	Hs.13299	Hs.132586
Gene Name							
Genbank Al023295	AI758223	AI276259	Al053741	Al690773	AI499220	H92987	Al031771
Affy 78538_at	76769_at	90224_at	91875_s_at Al053741	91873_s_at	78391_at	65173_at	78231_at
SeqID 318	643	407	329	596	496	966	321
±# 200	701	702	703	704	705	206	707

	W 0 02/03/2			12	28				
p-values	6.3592E-07	0.00126632	0.00124922	1.7752E-05	2.9214E-05	0.00029449	4.2586E-09	0.01303714	
Fold Change	0.16	3.09	0.271854365	0.30	0.080787812	7.28	0.103783146	3.015818659	
Cluster # Cluster Description	Cluster Incl. A sapiens cDN//clone_end=3//ug=Hs.13198	Hs.131886 Cluster Incl. AW003102:wr03e03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2480476 /clone_end=3' /gb=AW003102 /gi=5849940 /uq=Hs.131886 /len=512'	Hs.131170 Cluster Incl. Al937390:wp76f01.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2467705 /clone_end=3' /gb=Al937390 /gi=5676260 /ug=Hs.131170 /len=483'	Hs.131044 Cluster Incl. Al631301:tz82f05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2295105 /clone_end=3' /gb=Al631301 /gi=4682631 /ug=Hs.131044 /len=462'	Hs.130893 Cluster Incl. Al124631;am59f08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1539879 /clone_end=3'/gb=Al124631 /gi=3593145 /uq=Hs.130893 /len=416'	Hs.130853 Cluster Incl. AI810266:wb86h07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2312605 /clone_end=3' /gb=AI810266 /gi=5396832 /uq=Hs.130853 /len=553'	Hs.130699 Cluster Incl. AA621478:af92e12.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1055278 /clone_end=3 /gb=AA621478 /gi=2525417 /ug=Hs.130699 /len=398'	Hs.130316 Cluster Incl. AI572156:te37d05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2088873 /clone_end=3' /gb=AI572156 /gi=4535530 /ug=Hs.130316 /len=344'	
Gene Name									
Genbank	AI890418	AW003102	Al937390	Al631301	AI124631	Al810266	AA621478	AI572156	
Affv	76703_at	74698_at	77926_at	82120_at	59911_f_at	82094_i_at	47481_at	90691_at	
Cloak	763	606	797	537	353	693	184	521	
#	708	502	710	711	712	713	714	715	

WO 02/059271		. 1	29		PC	T/US02/02176
p.values 0.00155658 0.00247835	0.00011441	7.7763E-10	1.9965E-06	2.399E-05	5.2644E-08	0.00037957
Fold Change 3.808419817 4.615880703	0.29	10.43	0.25	4.421237061	0.054094404	3.09
Cluster # Cluster Incl. AA905874:0j82c12.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1504822 /clone_end=3' /gb=AA905874 /gi=3040997 /ug=Hs.130123 /len=359' Hs.129873 Cluster Incl. AI820661:0s32f04.x5 Homo sapiens cDNA, 3 end /clone=IMAGE-1607071	/clone_end=3'/gb=Al820661 /gi=5439740 /ug=Hs.129873 /len=487' Hs.129327 Cluster Incl. Al492154:tg12f12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2108591 /clone_end=3'/gb=Al492154 /gi=4393157	Hs.128022 Cluster Incl. Al859620:wm14d08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2435919 /clone_end=3' /gb=Al859620 /gi=5513236 /un=Hs.128022 /len=689'	Hs.127630 Cluster Incl. AA928776:on98d10.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1564723 /clone_end=3' /gb=AA928776 /gi=3078133 /un=Hs.127630 /len=503'	Hs.127307 Cluster Incl. Al263819:qi09g08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1856030 /clone_end=3' /gb=Al263819 /gi=3872022 /ua=Hs.127307 /len=482'	Hs.127229 Cluster Incl. Al300876:qn63e05.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1902944 /clone_end=3' /gb=Al300876 /gi=3960222 /un=Hs.197299 /len=434'	Hs.126798 Cluster Incl. AA975530:on30g06.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1558234 /clone_end=3' /gb=AA975530 /gi=3151322 /ug=Hs.126798 /len=485'

AA928776

91844_at

258

720

AI263819

90541_at

400

721

AI859620

82009_at

739

719

AI492154

74462_at

491

718

AI820661

61908_at

209

717

AA975530

74051_at

265

723

AI300876

77135_at

417

722

Gene Name

Genbank AA905874

SeqID Affy 245 77715_at

	W 0 (12)			13		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
p-values	1.2217E-06	2.3169E-05	0.00040139	7.0947E-06	4.2446E-06	4.7816E-06	1.6889E-06	4.0015E-05
Fold Change	0.19	3.31847909	5.050317981	3.297301166	0.26	0.169055931	0.25	0.32
Cluster Description	Cluster Incl. AI589858:tm81b11.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2164509 /clone_end=3' /gb=AI589858 /gi=4598906 /ug=Hs.126768 /len=495'				Cluster Incl. Al934342:wp04e12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2463886 /clone_end=3' /gb=Al934342 /gi=5673212 /ug=Hs.125780 /len=521'			
Cluster #	Hs.126768	Hs.126733	Hs.126672	Hs.126390	Hs.125780	Hs.125376	Hs.124436	Hs.124250
Gene Name								
Genbank	AI589858	AA913703	AI792817	AA905481	Al934342	AA584403	AA844007	AA848010
Affv	90069_at	46538_at	77013_at	90479_at	73933_at	76770_at	73801_at	73794_at
SealD	526	252	699	244	786	172	238	240
72	724	725	726	727	728	729	730	731

PCT/US02/02176

				13	31			
p-values	4.4423E-07	1.5522E-06	4.2459E-08	1.9577E-06	2.1736E-10	0.00094679	7.1425E-07	0.00166257
Fold Change	0.09	5.302996355	0.100992647	0.21246828	0.17	3.60100109	0.24	0.29523189
Gluster Description	Cluster Incl. AI458003:tj66c07.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2146476 /clone_end=3' /gb=AI458003 /gi=4312021 /ug=Hs.124141 /len=531'							
Cluster#	Hs.124141	Hs.124015	Hs.123933	Hs.12369	Hs.122593	Hs.121532	Hs.121518	Hs.120959
Gene Name								
Genbank	Al458003	Al953838	AI809953	AA707308	AL037998	AA033764	H41870	A1278074
Affy	90009_at	59471_at	57605_at	65155_at	81670_at	90316_at	81589_at	74760_s_at
SegID	477	807	691	209	858	16	686	409
##	732	733	734	735	736	737	738	739

				13	52			
p-values	3.0941E-06	1.5413E-05	2.9798E-06	0.00104631	4.3863E-08	0.00159704	1.3663E-05	1.5912E-05
Fold Change	0.22	0.285003866	0.239883875	0.24	0.198179833	3.768700804	0.204140593	0.240592502
Cluster Description	Cluster Incl. Al201982:qs79e02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1944314 /clone_end=3'/gb=Al201982 /gi=3754588 /ug=Hs.123318 /len=480'							
Cluster#	Hs.12082	Hs.120785	Hs.120568	Hs.120388	Hs.12024	Hs.118599	Hs.118513	Hs.118502
Gene Name				·				
Genbank	AI201982	W73890	Al302387	AI742521	R42914	AI821005	AI161367	AW052186
Affx	76326_at	57550_at	66390_at	88669_at	61879_at	90251_at	52946_at	76076_at
SedID	387	1207	419	632	1107	710	377	955
##	740	741	742	743	744	745	746	747

				13	3			
p-values	3.2934E-06	3.2676E-06	0.00404612	0.00013207	0.00138841	0.00090085	0.00320729	1.5411E-07
Fold Change	0.223181865	3.141681584	0.314306045	0.305498776 · 0.00013207	0.325353873	0.26	0.322106515	0.090939502
Cluster Description	Cluster Incl. Al824037:wj29h02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2404275 /clone_end=3' /gb=Al824037 /gi=5444708 /ug=Hs.118392 /len=603'			Cluster Incl. AI124882:am57f08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1539687 /clone_end=3' /gb=AI124882 /gi=3593396 /ug=Hs.118121 /len=406'	Cluster Incl. Al823572:wh55g06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2384698 /clone_end=3' /gb=Al823572 /gi=5444243 /ug=Hs,11782 /len=538'			
Cluster.#	Hs.118392	Hs.118338	Hs.118262	Hs.118121	Hs.11782	Hs.117687	Hs.117474	Hs.116123
Gene Name								
Genbank	AI824037	N24987	Al698243	Al124882 ⁻	AI823572	Al766029	R49146	Al016755
Affy	57528_at	47434_at	76029_at	76015_at	57517_at	76163_at	66305_at	66240_s_at
SegID	716	1066	609	354	713	655	1108	315.
#1	748	749	750	751	752	753	754	755

					13	14			
p-values	7.063E-09		2.0933E-09	0.00377036	6.3947E-05	5.4104E-05	5.4138E-06	0.00036834	0.00069299
Fold Change	0.139924253		8.54	4.52	0.21	0.30	0.25	0.18	0.262512195
Cluster# Cluster Description	Hs.116110 Cluster Incl. Al916626:wa28h02.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2299443 /clone_end=3' /gb=Al916626 /gi=5636481 /ug=Hs.116110 /len=487'	Hs.116104 Cluster Incl. AI275140:qI70h02.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1877715 /clone_end=3' /gb=AI275140 /gi=3897414 /ua=Hs.116104 /len=444'	Hs.115838 Cluster Incl. Al344053:tc01h08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2062623 /clone_end=3' /gb=Al344053 /gi=4081259 /ug=Hs.115838 /len=449'	Hs.115497 Cluster Incl. AI498375:tm43e10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2160906 /clone_end=3' /gb=AI498375 /gi=4390357 /ug=Hs.115497 /len=487'	Hs.115315 Cluster Incl. AI978710:wr58f06.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2491907 /clone_end=3' /gb=AI978710 /gi=5803740 /ua=Hs.115315 /len=498'	Hs.115173 Cluster Incl. AI418405:tg36e10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2110890 /clone_end=3' /gb=AI418405 /gi=4264336 /uq=Hs.115173 /len=472'	Hs.114889 Cluster Incl. AI797063:we26e03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2342236 /clone_end=3' /gb=AI797063 /gi=5362535 /ug=Hs.114889 /len=506'	Hs.11455 Cluster Incl. T64447;yc10g02.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-80306 /clone_end=3' /gb=T64447 /gi=668312 /ug=Hs.11455 /len=563'
Gene Name									
Genbank	AI916626		AI275140	Al344053	Al498375	Al978710	Al418405	Al797063	T64447
Affy	90168 at	ı	88580_at	88567_s_at	76118_at	81061_at	89807_at	81039_at	54983_at
SeqID	773		405	429	494	835	464	673	1126
##	756		757	758	759	760	761	762	763

		•••		13		.,		
p-values	1.6712E-08	5.1114E-07	1.9391E-08	2.882E-07	6.2396E-05	0.00068815	2.0122E-05	0.00718188
Fold Change	0.093652816	0.200282848	0.20	0.202348411	0.084843922	3.166594901	0.116868505	0.269236792
Cluster # Cluster Description	Hs.113750 Cluster Incl. Al091154:0018a08.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1566518 /clone_end=3' /gb=Al091154 /gi=3430213 /ug=Hs.113750 /len=437'	Hs.112885 Cluster Incl. AI742490:wg43e10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2367882 /clone_end=3' /gb=AI742490 /gi=5110778 /ug=Hs.112885 /len=550'	Hs.112572 Cluster Incl. AA628467:af27a01.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1032840 /clone_end=3'/gb=AA628467 /gi=2540854 /ug=Hs.112572 /len=520'	Hs.110406 Cluster Incl. AA452295:zx30c10.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-787986 /clone_end=5' /gb=AA452295 /gi=2165964 /ug=Hs.110406 /len=528'	Hs.11006 Cluster Incl. AI732274:yj68b10.x5 Homo sapiens cDNA, 3 end /clone=IMAGE-153883 /clone_end=3' /gb=AI732274 /gi=5053387 /uq=Hs.11006 /len=538'	Hs.109653 Cluster Incl. N91175:zb12c10.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-301842 /clone_end=3' /gb=N91175 /gi=1444502 /ug=Hs.109653 /len=489'	Hs.109525 Cluster Incl. AI871044:wl78h03.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2431061 /clone_end=3' /gb=AI871044 /gi=5545012 /uq=Hs.109525 /len=486'	Hs.107253 Cluster Incl. AA059401:zl96c05.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-512456 /clone_end=5'/gb=AA059401 /gi=1553304 /ug=Hs.107253 /len=607'
Gene Name			·					
Genbank	Al091154	AI742490	AA628467	AA452295	AI732274	N91175	AI871044	AA059401
Affx	75585_at	57022_at	80917_at	56941_at	48115_at	42353_at	56910_at	63344_at
SegID	345	631	189	124	618	1098	750	32
7##	764	765	766	767	768	769	770	771

	WO 02/0592	271		. 13		PC 170502/021		
p-values	0.00333978	3.0927E-05	3.2707E-05	2.4582E-06	0.04026278	6.4561E-05	4.2545E-05	7.7541E-05
Fold Change	0.289956429	0.212581687	0.25026049	3.113529847	0.31991901	0.194470029	0.147540619	0.29
Cluster Description	Cluster Incl. AA173572:zp04e02.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-595418 /clone_end=3' /gb=AA173572 /gi=1753704 /ug=Hs.10683 /len=595'							
Cluster	Hs.10683	Hs.106771	Hs.103395	Hs.103305	Hs.102793	Hs.102541	Hs.102367	Hs.10198
Gene Name						·		
Genbank	AA173572	AA806965	AA147751	AI885164	AI707589	AI752682	W72347	AI201965
Affx	48063_at	58174_at	48040_at	56190_at	58429_at	63315_at	48032_at	87970_at
SealD	75	229	62	753	615	642	1199	386
##	772	773	774	775	776	777	778	779

PCT/US02/02176

	137																									
p-values	6.125E-07		2.9689E-05		1.6462E-05			0.00415608				0.00016062			•	4.0981E-05				0.00451133				0.00170328		
Fold Change	0.244166495		0.275558723		13.54323165			8.54				8.025997484				5.726391287				3.734521363				3.65368217		
Cluster # Cluster Description	Hs.10198 Cluster Incl. AA418636;zv93e10,r1 Homo	sapiens cDNA, 5 end /clone=IMAGE-767370 /clone_end=5' /gb=AA418636 /gi=2080455 /ug=Hs.10198 /len=550'	Hs.101689 Cluster Incl. AI379723:tc41b10.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2067163	/clone_end=3' /gb=Al379723 /gi=4189576 /ug=Hs.101689 /len=558'	Cluster Incl. AA019424:ze54d10.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-362803 /clone_end=3' /cb=AA019424 /ci=1482062	/ug=Hs.174370 /len=341'	Cluster Incl. AA663786:ae72f07.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-969733	/clone_end=3' /gb=AA663786 /gi=2617777	/ug=Hs.231804 /len=395'	Cluster Incl. AA968657:0q76c03.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-1592260	/clone_end=3' /gb=AA968657 /gi=3143837	/ug=Hs.159927 /len=524'	Cluster Incl. AI829169:wk76b02.x1 Homo	sapiens cDNA, 3 end /clone=IMAGE-2421291	/clone_end=3' /gb=AI829169 /gi=5449840	/ug=Hs.226392 /len=456'	Cluster Incl. AA701188:zj80a04.s1 Homo	sapiens cDNA, 3 end /clone=461166	/clone_end=3'/gb=AA701188 /gi=2704353	/ug=Hs.190357 /len=310'	Cluster Incl. D63177:HUM501F10B Homo sapiens cDNA, 5 end /clone=GEN-501F10	/clone_end=5'/gb=D63177 /gi=966846	/ug=Hs.16/015/len=44/1
Gene Name																										
Genbank	AA418636		AI379723		AA019424			AA663786				AA968657				AI829169				AA701188				D63177		
Affy	63313_at	l	64958_at		85621_at			91033_at				83836_at				73388_at				87667_at				82685_at		
SealD	106		448		œ	-		197				263				728				201				970		
##	780		781		782			783				784				785				786				787		

PCT/US02/02176

/ug=Hs.12927 /len=578'

p-values	6.1089E-05				2.7057E-06			
Fold Change	0.14				0.110161171			
Cluster# Cluster Description	Cluster Incl. N50065;yz10h03.s1 Homo	sapiens cDNA, 3 end /clone=IMAGE-282677	/clone_end=3' /gb=N50065 /gi=1191231	/ug=Hs.169732 /len=550'	Cluster Incl. R70255:yj81f06.s1 Homo sapiens 0.110161171 2.7057E-06	cDNA, 3 end /clone=IMAGE-155171	/clone_end=3' /gb=R70255 /gi=843772	/ug=Hs.25150 /len=367'
Gene Name								
Genbank	N50065				R70255			
Affx	84535_at	l			52449 at	I		
SedID	1081				1116			
##	962				797			

	<u>p-value</u>	5 020000E-05	2.540000E 07	210000E-07	2.660000E-08		2.360000E-05		7.124464E-06		1.340000E-05		6.210594E-06		4.710000E-08	1.380000E-06	4.050474E-06	7.807645E-06	4.150000E-04	1.318202E-04	•	4.120000E-07	3.247311E-05	1.610000E-04	1.518608E-06	3.900000E-07	2.613853E-08	7.205058E-06	1.770803E-06	4.329042E-05		1.000000E-04	4.436191E-07	2.373819E-06	1.093627E-04	1.086072E-05	
	Fold Change (ratio)	0.246437105 5.0			0.091111614 2.0		0.092826583 2.3		0.110855696 7.		0.121953593 1.3		0.168279383 6.3		0.187743879 4.	0.218509986 1.3	0.221960648 4.	0.22460642 7.8	0.228917694 4.	0.237704503 1.		0.260055335 4.	0.264360188 3.	0.279338963 1.	0.279947233 1.	0.281207961 3.	0.282705156 2.	0.29408728 7.	0.297990459 1.	0.313634138 4.		0.323566748 1.	0.32670528 4.	0.36717276 2.	0.415471413 1.	0.407999585	
	Fold Change Fold	90 17			-10.98		-10.77		-9.02		-8.20		-5.94		-5.33	-4.58	-4.51	-4.45		-4.21		-3.85				-3.56	-3.54	-3.40	-3.36	-3.19		-3.09	-3.06	-2.72	-2.41	-2.45	
:	Gene Name	melanoma innibitory activity, ras-related		actin, gamma 2, smooth muscle, enteric	calponin 1, basic, smooth muscle	myosin, heavy polypeptide 11, smooth	muscle	eukaryotic translation initiation factor 4	gamma, 1	myosin, heavy polypeptide 11, smooth	muscle	eukaryotic translation initiation factor 4	gamma, 1	laminin, alpha 3 (nicein (150kD), kalinin	(165kD), BM600 (150kD), epilegrin)	leiomodin 1 (smooth muscle)		DKFZP586P1422 protein			laminin, beta 3 (nicein (125kD), kalinin	(140kD), BM600 (125kD))		myosin, light polypeptide kinase	-	inositol polyphosphate-1-phosphatase	•				RNA-binding protein gene with multiple	splicing	myosin, light polypeptide kinase		phosphatidic acid phosphatase type 2A	RNA-binding protein gene with muitiple splicing	
er node 2761X	Genbank	2000	AA401303	D00654	D17408		AF013570		AI380979		AF001548		AA156998		L34155	X54162	AA034289	W72194	D10667	AA541622		U17760	A1658662	U48959	AI768516	L08488	AI972873	N95620	AI 043089	C16443		D84110	AA526844	AB007972	AF014402	D84111	-
35 Genes from HCA cluster node 2761X	Affy	17	392/1_at	1197_at	34203_at	ľ	37407_s_at	!	58774 at	I	767 at	I	63893 f at]	37909 at	37765 at	60532 at	56409_at	773 at	64407 at	•	36929 at	50361 at	32847 at	62136 at	41524 at	65975 at	57214 at	65867 at	50001_at	ı	38048 at	46276 at	41137 at	34797_at	34162 at	04104_at
		,	171	929	964		288		453		283		70) ,	1023	1223	17	1197	960	162		1141	7.67	137	658	1013	832	1099	869	956	1	973	150	272	289	974	t
Table 3:	#:1	•	-	7	က		4		S		ဖ		7		00	. 0	9	=======================================	. 5	<u> </u>)	14	<u>, 1</u>	<u>5</u> 6	2 _	. œ	0.00	2 2	2 1	55		23	24	25	79 78	7,0	7

Fold Change Fold Change (ratio) p-value 2.57 0.389097343 2.789025E-04	-2.62 0.381989673 5.432773E-06	0.473538178	0.47055836	0.458611832	-2.87 0.348051542 4.653880E-06	-2.72 0.367062886 4.038920E-05	0 400000749 2 EE4690E 04
Gene Name				CGI-43 protein	DKFZP564B0769 protein		
Genbank AA843926	AI379892	AI571525	AI744109	AI912571	W72919	W87690	10700747
Affy 66529 at	49540 at	49300 at	65734 at	46653 at	49349 at	47076 at	1 0000
SeqID 237	449	520	638	767	1202	1210	7
#⊧ 89 1#	59	30	31	32	33	34	

#	# Sed ID Genbank No	Genbank	Normal vs All Nor	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
-	-	<					340.76+/-99.54
							175.47+/-67.36
			×	×	×	×	N1=40, N2=10
_							Fold Change: 2.01
							F-value: .00096
7	7	AA017070	218.33+/-195.52			218.33+/-195.52	218.33+/-195.52
			75.87+/-104.51		•	49.83+/-71.53	28.53+/-33.27
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.8			Fold Change: 3.67	Fold Change: 5.14
			· P-value: 0			P-value: 0	P-value: 0
3	11	AA027103	252.16+/-278.17		252.16+/-278.17	252.16+/-278.17	252.16+/-278.17
			53.89+/-220.22		47.94+/-61.86	14.48+/-36.79	15.58+/-46.81
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	NI=39, N2=6
			Fold Change: 3.64		Fold Change: 3.3	Fold Change: 4.51	Fold Change: 4.88
			P-value: 0		P-value: .01164	P-value: 0	P-value: 0
4	12	AA029437	221.16+/-280.96			221.4+/-284.63	
			57.63+/-138.17			86.7+/-207.7	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 3.25			Fold Change: 2.95	
			P-value: 0			P-value: .00006	
2	13	AA029735					581.98+/-218.36
							246.82+/-189
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.76
							P-value: .00174
9	15	AA031790					336.45+/-181.35
		•					122.36+/-61.84
		•	×	×	×	×	N1=40, N2=10
							Fold Change: 2.82
							P-value: .0009
7	17	AA034289	203.74+/-150.5		203.74+/-150.5	203.74+/-150.5	203.74+/-150.5
			30.48+/-63.02		56.05+/-43.37	41.75+/-90.59	-7.27+/-28.68
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 4.19		Fold Change: 2.69	Fold Change: 3.95	Fold Change: 6.91
			P-value: 0		P-value: .00466	P-value: 0	P-value: 0

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
×	18	AA034418	370.77+/-175.09			367.92+/-176.43	367.92+/-176.43
>	2		171.84+/-132.49			145.41+/-92.73	148.75+/-103.92
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.41			Fold Change: 2.76	Fold Change: 2.55
			P-value: 0			P-value: 0	P-value: .00125
6	20	AA037766				217.99+/-102.27	
					;	98.41+/-70	;
_			×	×	×	N1=39, N2=31	×
						Fold Change: 2.21	
						F-value: 0	
10	22	AA044828	228.22+/-120.36			228.25+/-121.93	228.25+/-121.93
			81.18+/-75.97			68.84+/-62.87	30.55+/-34.05
	•		NI=40. N2=168	×	×	NI=40, N2=31	N1=40, N2=10
			Fold Change: 2.87			Fold Change: 3.18	Fold Change: 5.8
			P-value: 0			P-value: 0	P-value: 0
Ξ	23	AA044830	384.63+/-189.59			387.92+/-190.91	387.92+/-190.91
<u> </u>	}		195.74+/-112.66			142.87+/-73.75	148.94+/-75.02
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.09			Fold Change: 2.81	Fold Change: 2.65
			P-value: 0			P-value: 0	P-value: .00182
12	24	AA045145	261.46+/-178.02			262.21+/-180.28	262.21+/-180.28
			83.44+/-183.41			63.71+/-149.37	8.27+/-106.8
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.35			Fold Change: 4	Fold Change: 5.08
			P-value: 0			P-value: 0	P-value: .00018
13	25	AA046457			254.96+/-154.86		254.96+/-154.86
					91.58+/-30.86		99.01+/-89.62
			×	×	N1=40, N2=6	×	N1=40, N2=10
					Fold Change: 2.4		Fold Change: 2.75
					P-value: .00032		P-value: .00204
14	27	AA046853	200.27+/-196.52		201.69+/-198.89	201.69+/-198.89	201.69+/-198.89
			385.33+/-229.71		406.89+/-152.52	428.46+/-216.88	370.09+/-174.14
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.07		Fold Change: 2.42	Fold Change: 2.44	Fold Change: 2.06
			P-value: 0		P-value: .0008	P-value: 0	P-value: .00306

Seg ID Genbank Normal	Norm	Normal	al vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
A A DEK 180							80 83+/-48 85
78 AAU30180	AA030180						254.08+/-148.48
X			×		×	×	N1=40, N2=10
							Fold Change: 3.07 P-value: .00013
29 AA056755	AA056755				243+/-190.55	243+/-190.55	
					413,4+/-148.7	476.92+/-268.57	
X			×		NI=40, N2=6	N1=40, N2=31	×
					Fold Change: 2.12	Fold Change: 2.22	
30 A A 0 58 578	A A 0 58 578					282,9+/-254.52	282.9+/-254.52
						100.56+/-94.65	62.96+/-63.59
×			×		×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.24	Fold Change: 3.01
						P-value: .00272	P-value: .00335
31 AA059396 383.9+/-126.38		383.9+/-126.38				383.25+/-127.97	383.25+/-127.97
184.18+/-88.67	184.18+/-88.67	184.18+/-88.67				195.3+/-91.8	164.81+/-71.68
N1=40, N2=168 X			×		×	N1=40, N2=31	N1=40, N2=10
Fold Change: 2.2	Fold Change: 2.2	Fold Change: 2.2				Fold Change: 2.03	Fold Change: 2.37
P-value: 0	P-value: 0	P-value: 0				P-value: 0	P-value: .00006
32 AA059401 444.15+/-409.74		444.15+/-409.74			450.12+/-413.33	450.12+/-413.33	450.12+/-413.33
108.09+/-137.58		108.09+/-137.58			84.82+/-108.93	78.85+/-105.76	4.41+/-98.3
N1=40, N2=168 X			×		N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
Fold Change: 3.84	Fold Change: 3.84	Fold Change: 3.84			Fold Change: 4.32	Fold Change: 5.13	Fold Change: 7.56
P-value: 0	P-value: 0	P-value: 0			P-value: .01621	P-value: 0	P-value: 0
33 AA059458 73.64+/-89.7		73.64+/-89.7			74.76+/-90.6	74.76+/-90.6	74.76+/-90.6
421.17+/-253.37	421,17+/-253.37	421.17+/-253.37			328.32+/-224.02	373.99+/-269.57	399.15+/-254.81
N1≔40, N2=168 X			×		N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
Fold Change: 6.85	Fold Change: 6.85	Fold Change: 6.85			Fold Change: 4.88	Fold Change: 5.56	Fold Change: 5.85
P-value: 0	P-value: 0	P-value: 0			P-value: .00774	P-value: 0	P-value: .00035
34 AA075632	AA075632					331.71+/-236.88	331.71+/-236.88
						176.14+/-256.71	125.73+/-212.88
X			×		×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.48	Fold Change: 4.1
						1 -vaiuc0012	Topoo: contra

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
22	35	AA079839				399.21+/-217.44	399.21+/-217.44
<u> </u>)					178.24+/-173.52	173.1+/-209.18
			×	×	×	NI=39, N2=31	N1=39, N2=6
						Fold Change: 2.2	Fold Change: 2.61
						P-value: .00001	P-value: .00239
23	37	AA082546	272,4+/-223,42			275.39+/-225.53	275.39+/-225.53
			105,34+/-63.79			93.91+/-47.44	74.83+/-36.32
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.35			Fold Change: 2.55	Fold Change: 3.23
			P-value: 0			P-value: 0	P-value: .00005
24	38	AA101125				670.66+/-337.66	670.66+/-337.66.
	;					325+/-154.53	292.03+/-126.99
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.01	Fold Change: 2.27
						P-value: 0	P-value: .00091
25	14	AA126704	314,32+/-135,99			312.64+/-137.34	312.64+/-137.34
			107.92+/-81.49			77.02+/-71.72	78.95+/-75.5
			N1=40, N2=168	×	×	NI=40, N2=31	N1=40, N2=10
			Fold Change: 3.17			Fold Change: 4.14	Fold Change: 3.75
			P-value: 0			P-value: 0	P-value: .00032
56	42	AA127718	238.22+/-357.2			240.21+/-361.64	
			82.46+/-76.05			87.69+/-80.58	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.53			Fold Change: 2.39	
			P-value: 0			P-value: .00006	
27	43	AA127727	214.24+/-122.15		212.97+/-123.48	212.97+/-123.48	212.97+/-123.48
			81.63+/-51.81		89.92+/-52.2	66.11+/-40.88	51.85+/-29.44
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.72		Fold Change: 2.29	Fold Change: 3.29	Fold Change: 3.99
			P-value: 0		P-value: .00795	P-value: 0	P-value: .00001
28	47	AA131456	642.53+/-392.68			650.36+/-394.64	
			325.78+/-211.65			340.69+/-188.84	•
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.13			Fold Change: 2.01.	
			P-value: 0			P-value: 0	

Sea ID	12	Genhank	Normal vs All	Normal vs Malionant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
&		AA131632	×	×	×	376.43+/-162.83 185.82+/-88.41 NI=40, N2=31 Fold Change: 2.11 P-value: 0	×
29		AA131894	×	×	×	×	125.64+/-46.19 310.35+/-183.98 N1=40, N2=10 Fold Change: 2.19 P-value: .00585
51		AA133248	401.89+/-133.14 193.81+/-109.33 N1=40, N2=168 Fold Change: 2.26 P-value: 0	×	×	×	400.91+/-134.73 182.12+/-50.15 N1=40, N2=10 Fold Change: 2.15 P-value: 0
82		AA137038	×	X	×	122.53+/-86.86 266.01+/-205.87 N1=40, N2=31 Fold Change: 2.11 P-value: .00008	×
52		AA142913	302.75+/-219.97 88.13+/-60.53 N1=40, N2=168 Fold Change: 3.49 P-value: 0	×	302.34+/-222.83 104.62+/-49.26 N1=40, N2=6 Fold Change: 2.6 P-value: .00174	302.34+/-222.83 84.31+/-62.54 N1=40, N2=31 Fold Change: 3.74 P-value: 0	302.34+/-222.83 83.75+/-83.82 N1=40, N2=10 Fold Change: 4.01 P-value: .00014
65		AA143491	491.76+/-382.75 278.14+/-268.9 N1=40, N2=168 Fold Change: 2.1 P-value: .00012	X	X	×	485.72+/-385.82 206.94+/-269.35 N1=40, N2=10 Fold Change: 3.02 P-value: .02186
62		AA147751	480.16+/-205.12 247.19+/-214.23 N1=40, N2=168 Fold Change: 2.38 P-value: 0	X	X	478.2+/-207.42 284.09+/-237.65 N1=40, N2=31 Fold Change: 2.21 P-value: .00015	×

3	Coo III	Conhonly	Normal we All	Normal vs Malianant	Normal ve Stage I	Normal vs Stage II	Normal vs Stage III
36	63	AA147884	46.57+/-54.48 235.82+/-200.06 N1=40, N2=168 Fold Change: 4.33	X	×	×	×
37	64	AA149312	193.77+/-99.25 N1=40, N2=168 Fold Change: 2.04 P-value: 0	×	×	374+/-139.43 170.47+/-78.83 N1=40, N2=31 Fold Change: 2.29 P-value: 0	374+/-139.43 140.83+/-37.98 N1=40, N2=10 Fold Change: 2.57 P-value: 0
38 38	S 9	AA150501	213.29+/-103.88 89.09+/-51.7 N1=40, N2=168 Fold Change: 2.45 P-value: 0	X	215.8+/-104 97.8+/-28.03 N1=40, N2=6 Fold Change: 2.01 P-value: .00034	215.8+/-104 74.57+/-38.51 N1=40, N2=31 Fold Change: 2.85 P-value: 0	215.8+/-104 41.35+/-30.37 N1=40, N2=10 Fold Change: 4.75 P-value: 0
39	99	AA151346	×	×	×	180.8+/-85.07 392.04+/-178.92 N1=39, N2=31 Fold Change: 2.13 P-value: 0	×
40	89	AA155914	400.19+/-405.95 143.7+/-119.6 N1=40, N2=168 Fold Change: 2.56 P-value: 0	· ×	×	407.07+/-408.89 135.07+/-104.23 N1=40, N2=31 Fold Change: 2.69 P-value: .00009	X
41	69	AA155952	×	. ×	X	343.72+/-239.12 136.91+/-62.46 N1=40, N2=31 Fold Change: 2.23 P-value: 0	343.72+/-239.12 111.1+/-55.68 N1=40, N2=10 Fold Change: 2.77 P-value: .00005
24	11	AA158731	288.7+/-238.19 93.33+/-144.72 N1=40, N2=168 Fold Change: 3.48 P-value: 0	×	x	287.72+/-241.22 95.77+/-117.6 N1=40, N2=31 Fold Change: 3.08 P-value: .00001	287.724/-241.22 183.13+/-413.53 N1=40, N2=10 Fold Change: 3.9 P-value: .01612

1

						M. Carolina	Mormol ve Stone III
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage 11	Ivol Iliai vs Stage Ala
43	73	AA165701	176.56+/-116.87		176.56+/-116.87	176.56+/-116.87	176.56+/-116.87
?	<u>}</u>		335.74+/-147.31		322.48+/-173.1	299.01+/-131.22	309.98+/-142.67
			N1=40 N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.21		Fold Change: 2.14	Fold Change: 2.01	Fold Change: 2.05
			P-value: 0		P-value: .0095	P-value: .00002	P-value: .00163
44	74	AA166620	227.06+/-165.92		227.06+/-165.92	227.06+/-165.92	227.06+/-165.92
	•		100.03+/-194.31		88.27+/-25.59	85.25+/-119.41	38.81+/-22.68
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.58		Fold Change: 2.06	Fold Change: 2.98	Fold Change: 4.89
			P-value: 0		P-value: .00143	P-value: 0	P-value: 0
45	75	A A 1 73572	368.06+/-171.39			368.73+/-173.58	368.73+/-173.58
2	5		132.7+/-121.15			105.87+/-79.3	162.1+/-222.38
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.31			Fold Change: 3.94	Fold Change: 3.72
			P-value: 0			P-value: 0	P-value: .0091
46	77	A A 188763	109 78+/-67 46				109.94+/-68.33
}	:		223 51+/-105 81				210.03+/-82.61
			N1=40 N2=168	×	×	×	N1=40, N2=10
			Fold Change: 2.13				Fold Change: 2.06
			P-value: 0				P-value: .00159
47	78	AA193340				338.82+/-318.56	338.82+/-318.56
-	2					135.54+/-138.52	65.09+/-44.54
			×	×	×	NI=40, N2=31	N1=40, N2=10
						Fold Change: 2.47	Fold Change: 4.45
						P-value: .00001	P-value: .00006
48	252	AA211369					495.8+/-374.32
?	}			•			166.56+/-142.09
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.75
							P-value: .00161
64	88	AA227778	250.35+/-164.31			254.32+/-164.5	254.32+/-164.5
١			103.23+/-228.68			157.31+/-463.97	92.7+/-116.55
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.07			Fold Change: 3.09	Fold Change: 2.93
			P-value: 0			P-value: .00002	F-value: .00000

7	OL TO	Jan Paris	Mountain All	Mountain Maliana	Mountain State I	Mormal we Stone II	Normal us Stage III
20	95	AA295451		TOTAL STREET		428.38+/-345.54 191.85+/-157.04	9
			×	×	× .	N1=40, N2=31 Fold Change: 2.05 P-value: .0027	X
51	96	AA310786	>	*	*	242.07+/-109.49 509.52+/-191.41 N1=40 N2=31	242.07+/-109.49 578.59+/-173.41 N1=40. N2=10
			<	<	<	Fold Change: 2.19 P-value: 0	Fold Change: 2.55 P-value: 0
25	26	AA312905				270.53+/-105.99 554.04+/-183.58	
			×	×	×	N1=40, N2=31 Fold Change: 2.06 P-value: 0	X
23	66	AA369887					326.24+/-259.48 88.98+/-90.46
			×	×	×	×	N1=40, N2=10 Fold Change: 4.05 P-value: .00073
\$	102	AA400080				89.66+/-112.79	
			×	×	×	N1=40, N2=31 Fold Change: 2.21 P-value: .0043	×
55	104	AA417813	846.09+/-411.44 570.86+/-624.96			849.01+/-416.4 499.89+/-596.68	
			N1=40, N2=168 Fold Change: 2.01 P-value: 0	×	×	N1=40, N2=31 Fold Change: 2.44 P-value: .00007	×
99	106	AA418636	244.96+/-112.2 85.16+/-53.2		244.96+/-112.2 107.39+/-80.98	244.96+/-112.2 62.82+/-36.83	244.96+/-112.2 .57.15+/-13.69
			N1=39, N2=168 Fold Change: 2.92 P-value: 0	×	N1=39, N2=10 Fold Change: 2.43 P-value: .02032	N1=39, N2=31 Fold Change: 3.75 P-value: 0	N1=39, N2=6 Fold Change: 3.86 P-value: 0

#	Sed ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
57	107	AA418995					276.52+/-180.68 89.94+/-34.01
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.64
							P-value: 0
28	109	AA419263					547.83+/-148.39
							268.37+/-114.78
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.12
							P-value: .00021
59	112	AA424160	72.76+/-123.26			73.82+/-124.68	73.82+/-124.68
			241.99+/-260.32			344.26+/-347.34	405.04+/-245.91
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.39			Fold Change: 5.08	Fold Change: 7.49
			P-value: 0			P-value: 0	P-value: 0
8	115	AA429308	242.38+/-144.29			237.83+/-143.23	237.83+/-143.23
			124.83+/-150.06			88.15+/-43.75	65.39+/-41.56
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.04			Fold Change: 2.47	Fold Change: 3.5
			P-value: 0			P-value: 0	P-value: .00009
61	116	AA430300					511.45+/-201.77
							242.83+/-223.58
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.55
							P-value: .00275
79	117	AA430314	265.86+/-187.91			259.57+/-186.05	259.57+/-186.05
			65.06+/-109.36			59.77+/-101.82	-4.03+/-59
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.88			Fold Change: 4.16	Fold Change: 6.66
			P-value: 0			P-value: 0	P-value: 0
63	118	AA436185		į		253.53+/-335.89	
			×	×	×	NI=40, N2=31	×
						Fold Change: 2.38	
						r-value: .00009	

-

					: !		
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
64	119	AA436250				213.31+/-226.04 84.53+/-80.67	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.05 P-value: .00323	
65	120	AA447015	227.33+/-171.55			226.67+/-173.74	
			82.62+/-74.49	>	>	66.02 + 7.51.23	*
			Fold Change: 2.51	<	<	Fold Change: 2.87	•
			P-value: 0	•		P-value: 0	
99	122	AA450090	285.47+/-226.15			285.47+/-226.15	
			133.85+/-131.49			. 125.82+/-152.5	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.57			Fold Change: 2.88	
			P-value: 0			P-value: 0	
19	124	AA452295	227.07+/-122.52		220.36+/-116.43	220.36+/-116.43	220.36+/-116.43
			44.21+/-53.65		97.66+/-165.2	39.86+/-35.12	45.22+/-26.99
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 5.1		Fold Change: 3.73	Fold Change: 5.14	Fold Change: 4.25
			P-value: 0		P-value: .03669	P-value: 0	P-value: 0
89	125	AA455877				295.74+/-130.76	295.74+/-130.76
1						131.5+/-76.16	102.29+/-56
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.4	Fold Change: 3.08
						P-value: 0	P-value: .0007
69	126	AA456099					375.25+/-161.56
							163.63+/-115.97
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.5
							P-value: .00094
70	128	AA464792					244.42+/-163.62
					;	;	77.5+/-57.57
			×	×	×	× .	NI=40, NZ=10
							Fold Change: 2.92
							P-value: .00105

Į#	Coo III	Conbonk	Normal ve All	Normal ve Malionant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
12	129	AA479033	104.1+/-260.94 492.38+/-952.15 N1=40, N2=168 Fold Change: 2.62 P-value: 00001	×	×	×	×
72	131	AA480075	331.51+/-157.28 155.12+/-117.94 N1=40, N2=168 Fold Change: 2.34 P-value: 0	×	X	331.5+/-159.34 119.29+/-99.73 N1=40, N2=31 Fold Change: 3.04 P-value: 0	331.5+/-159.34 97.24+/-36.96 N1=40, N2=10 Fold Change: 3.11 P-value: 0
73	133	AA486366	237.55+/-149.6 115.8+/-122.37 N1=39, N2=168 Fold Change: 2.09 P-value: 0	×	×	237.55+/-149.6 102.26+/-105.5 N1=39, N2=31 Fold Change: 2.18 P-value: .0001	237.55+/-149.6 20.97+/-35.35 N1=39, N2=6 Fold Change: 4.64 P-value: 0
74	135	AA488889	298.27+/-192.46 99.12+/-55.38 N1=40, N2=168 Fold Change: 2.64 P-value: 0	×	×	298.86+/-194.94 90.94+/-37.43 N1=40, N2=31 Fold Change: 2.8 P-value: 0	298.86+/-194.94 118.43+/-135.55 N1=40, N2=10 Fold Change: 2.62 P-value: .00133
75	136	AA496142	×	×	×	223+/-72.35 113.96+/-51.66 N1=39, N2=31 Fold Change: 2.03 P-value: 0	×
76	137	AA501987	202.15+/-87.72 123.46+/-65.5 N1=39, N2=168 Fold Change: 1.68 P-value: 0	×	×	×	×
7.	138	AA502943	438.99+/-109.54 262.83+/-186.3 N1=40, N2=168 Fold Change: 2.11 P-value: 0	×	×	439.24+/-110.96 250.93+/-145.84 N1=40, N2=31 Fold Change: 2.17 P-value: .00002	×

Ε	Conhank	Normal ve All	Normal vs Malionant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
ı	Gembalin	TAGE HIGH AS CALL	TOT THE 13 THE PROPERTY			204 2011 105 44
	AA504253	•			٠	151.15+/-69.52
		×	×	×	×	N1=40, N2=10
		:				Fold Change: 2.81
						P-value: .00011
i	AA508196	475.57+/-315.6			475.57+/-315.6	475.57+/-315.6
		223.41+/-148.84			207.81+/-174.35	184.11+/-120.65
		N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
		Fold Change: 2.02			Fold Change: 2.39	Fold Change: 2.51
		P-value: 0			P-value: .00002	P-value: .00343
1	AA513002	156.4+/-98.44			156.4+/-98.44	
		285.99+/-134.83			282.09+/-129.91	
		N1=39, $N2=168$	×	×	N1=39, N2=31	×
		Fold Change: 2.05			Fold Change: 2.03	
		P-value: 0			P-value: .00001	
1	AA524095					1037.85+/-287.66
						517.53+/-221.07
		×	×	×	×	NI=40, N2=10
						Fold Change: 2.08
						P-value: .00018
1	AA524250	337.9+/-133.73			340.18+/-134.68	340.18+/-134.68
		180.07+/-116.79			149.6+/-62.5	98.23+/-47.07
		N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
		Fold Change: 2.02			Fold Change: 2.28	Fold Change: 3.58
		P-value: 0		,	P-value: 0	P-value: .00001
1	AA524536	304.34+/-210.76		298.68+/-210.41	298.68+/-210.41	
		116.11+/-126.7		87.05+/-113.19	113.27+/-115.65	
		N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	×
		Fold Change: 2.64		Fold Change: 3	Fold Change: 2.42	
		P-value: .00001		P-value: .03651	P-value: .00101	
1	AA526961	415.49+/-234.41			417.14+/-237.24	417.14+/-237.24
		178.69+/-118.79	•		163.41+/-149.82	119.79+/-62.48
		N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
		Fold Change: 2.31			Fold Change: 2.62	Fold Change: 3.37
		P-value: 0			P-value: 0	P-value: .00007

	E C	7	Mercel and All	Mosmool vie Medianont	Normal ve Stone I	Normal ve Stage II	Normal vs Stage III
ı.	Sed ID	Сепрапк	Normal Vs All	NOUNTIL VS IVIAIIBLIAIIL	IVOI IIIAI VS STABE I	Morning 13 Stage II	To so, it is the source of
82	153	AA527180					336.44+/-180.05 159.84+/-85.84
			×	×	×	×	N1=40, N2=10
			:				Fold Change: 2.03
						•	P-value: .00507
98	154	AA527298	121.15+/-82.59				
			287.83+/-242.33				
			N1=39, N2=168	×	×	×	×
			Fold Change: 1.92	-			
87	155	AA533272				345.7+/-116.17	
) }					171.66+/-72	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.1	
						P-value: 0	
88	159	AA534724				143.93+/-57.72	143.93+/-57.72
ı						325.98+/-117.74	353.03+/-109.1
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.31	Fold Change: 2.56
						P-value: 0	P-value: 0
68	160	AA535218	323.08+/-135.81		-	322.09+/-137.43	
			155.95+/-97.92		٠	178.24+/-126.11	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.27		•	Fold Change: 2.06	
			P-value: 0			P-value: .00002	
6	163	AA543076				109.8+/-95.15	
						365.31+/-441.38	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.58	
						P-value: .00003	
91	165	AA555312					215.48+/-192.29
l							40.38+/-31.93
			×	×	×	×	N1=40, N2=10
							Fold Change: 3.68
							P-value: .00006

:	8	-	N 1	Normal and Maliana	Mountain Stone I	Normal ve Stage II	Normal vs Stage III
*	Sed ID	Genbank	Normal vs All	NOTHIAL VS INTARIGUALIT	Ivor mar vs Stage 1	IVOLUNAL VS STABE II	Ivol Iliai 13 Stage are
92	169	AA568397	243.4+/-227.66		243.4+/-227.66	243.4+/-227.66	243.4+/-227.66
			92.45+/-68.55		86.44+/-37.31	74.95+/-70.23	52.06+/-33.54
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.27		Fold Change: 2.12	Fold Change: 2.77	Fold Change: 3.85
			P-value: 0		P-value: .00208	P-value: 0	P-value: .00005
93	170	AA570519	200.18+/-172.78				200.18+/-172.78
			77.04+/-65.26				48.77+/-33
			N1=40, N2=168	×	×	×	N1=40, N2=10
			Fold Change: 2.26				Fold Change: 3.04
			P-value: 0				P-value: .00005
94	171	AA584310	398.21+/-320.55			402.55+/-323.55	402.55+/-323.55
	! •		1296.13+/-716.97			1058.09+/-583.59	1089.78+/-475.55
			NI=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.84			Fold Change: 3.12	Fold Change: 3.31
			P-value: 0			P-value: 0	P-value: .00032
25	172	AA584403	593.26+/-1291.79			593.26+/-1291.79	593.26+/-1291.79
.	1		85.5+/-209.13			113.63+/-199.33	77.07+/-76.22
			N1=40, N2=168	×	*	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.61			Fold Change: 2.7	Fold Change: 3.14
			P-value: 0			P-value: .00077	P-value: .00412
96	174	AA595800				405.39+/-344.1	
						167.2+/-159.75	
	•		×	×	×	N1=40, N2=31	×
						Fold Change: 2.2	
07	176	A A 602521				Total Control	258.64+/-109.45
) •						92.33+/-57.89
			×	×	×	×	N1=39, N2=6
							Fold Change: 3.01
							P-value: .00015
86	178	AA609310	289.22+/-160.55			285.39+/-160.8	285.39+/-160.8
			106,23+/-108.02			81.33+/-54.9	139.85+/-180.52
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.16			Fold Change: 3.57	Fold Change: 2.65
			P-value: 0			F-value: 0	F-value: .00931

*	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
66	180	AA610522	803+/-768.74		803+/-768.74	803+/-768.74	-
			252/.25+/-2163.34	•	1/30.2+/-869.55	18/8.88+/-10/0.23	,
			N1=40, N2=168	×	NI=40, N2=6	N1=40, N2=31	×
			Fold Change: 3.75		Fold Change: 3.78	Fold Change: 2.57	_
			P-value: 0		P-value: .00045	P-value: .00552	
100	181	AA612864			!	228.36+/-116.88	228.36+/-116.88
						495.29+/-290.05	440.68+/-155.22
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.03	Fold Change: 2.03
						P-value: 0	P-value: .00004
191	184	AA621478	394.08+/-322.25		398.69+/-325.12	398.69+/-325.12	398.69+/-325.12
			60.41+/-84.83		79.9+/-118.32	53.41+/-82.79	18+/-20.91
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 6.59		Fold Change: 5.51	Fold Change: 7.48	Fold Change: 11.4
			P-value: 0		P-value: .00526	P-value: 0	P-value: 0
102	185	AA625387			-	92.36+/-35.34	92.36+/-35.34
	٠					208.73+/-105.36	231.14+/-178.29
			×	×	×	N1=39, N2=31	NI=39, N2=6
						Fold Change: 2.15	Fold Change: 2.24
						P-value: 0	P-value: .00162
103	189	AA628467	1150.97+/-497.25			1145.06+/-502.33	1145.06+/-502.33
,			290.19+/-235.1			274.87+/-259.13	122.9+/-92.36.
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.65			Fold Change: 4.99	Fold Change: 9.81
			P-value: 0			P-value: 0	P-value: 0
104	192	AA631215				190,98+/-126.92	
				;	>	341.334/-896.12 N11-40 N2-21	>
			*	<	<	NI=40, NZ=31	<
						Fold Change: 2.05 P-value: .00057	
105	193	AA633203	127.67+/-220.56			130.61+/-222.66	130.61+/-222.66
			389.82+/-388.38			451.59+/-365.56	413.97+/-273.89
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.74			Fold Change: 5.08	Fold Change: 4.59
			P-value: 0			P-value: 0	P-value: .00196

	8	-	N 1	NI Man	Moumol to Chara I	Normal ve Stage II	Normal ve Stage III
#	Sed ID	Genbank	Normal VS All	Normal vs Manguani	Itolinal vs Stage 1	TOT III I S STARE II	To San Comment
106	194	AA634799	763.44+/-619.75			739.38+/-608.62	
			367.84+7-431.55	1	i	440./41/-050.61	2.5
			N1=40, N2=168	×	×	N1=40, N2=31	<u> </u>
			Fold Change: 2.41			Fold Change: 2.26	
			P-value: .00001			P-value: .00284	
107	196	AA658561					238.89+/-114.83
	; (110.57+/-54.76
			×	×	×	×	N1=40, N2=10
			•				Fold Change: 2.02
							P-value: .00612
200	198	AA669106	82.72+/-129.9			84.29+/-131.22	84.29+/-131.22
3	2		292.67+/-186.26		-	383.96+/-227.86	381.34+/-202.47
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.65			Fold Change: 6.02	Fold Change: 6.04
			P-value: 0			P-value: 0	P-value: 0
100	200	AA700621	467.51+/-455.09		467.51+/-455.09	467.51+/-455.09	467.51+/-455.09
})) 1-		66.85+/-123.51		87.68+/-141.47	36.61+/-66.8	26.41+/-35.67
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 6.01		Fold Change: 4.72	Fold Change: 7.35	Fold Change: 8.68
			P-value: 0		P-value: .02358	P-value: 0	P-value: 0
120	204	AA703262				1213.89+/-750.28	1213.89+/-750.28
; •					•	519.38+/-282.83	361.77+/-193.77
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.09	Fold Change: 3.02
						P-value: .00044	P-value: .00125
111	214	AA742697	1009.7+/-1062.61			1026.03+/-1071.41	1026.03+/-1071.41
			222.47+/-326.55	٠		238.53+/-383.92	142.42+/-134
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.19			Fold Change: 4.18	Fold Change: 5.09
			P-value: 0			P-value: .00001	P-value: .00012
112	215	AA747315				448.86+/-190.26	448.86+/-190.26
						258.21+/-198.98	135.53+/-84.89
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.02	Fold Change: 3.66
						P-value: .00001	P-value: .0001

Sea ID Genhank	Genhar	=	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	100 224/ 92 10	C	0	101 93+/-83.58	101.93+/-83.58
		7 %	100.234/-63.19			273.79+/-236.49	388.04+/-242.5
	[Z	[Z	N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
CH.	Fol	Fol	Fold Change: 2.06	i.		Fold Change: 2.59	Fold Change: 3.64
		•	P-value: 0			P-value: .00001	P-value: .00384
218 AA772278	AA772278						137.98+/-96.56
			>	>	>	· *	N1=40, N2=10
			<	<	:	1	Fold Change: 2.42
							P-value: .00585
220 AA775180	AA775180						264.55+/-193.81
			>	*	×	×	84.64+/-55.48 N1=40, N2=10
			;	!			Fold Change: 2.66 P-value: .00029
223 AA777369	AA777369					104.24+/-57.98	
			×	×	×	N1=40, N2=31	×
			:			Fold Change: 2.02 P-value: 0	
226 AA779795	AA779795						493.39+/-168.5
							227.18+/-95.72
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.25 P-value: .00072
227 AA788946 568.		568.	568.73+/-336.98				
1313	1313	1313	.01+/-867.03				;
-IN	=IN	N1=	N1=39, N2=168	×	×	×	×
Fold	Fold	Fold	Fold Change: 2.15				
			P-value: 0	,			
228 AA789332 13		12	120.94+/-61.86			120.94+/-61.86	
	22	22	221.57+/-96.99			228.17+/-103.03	;
Z	Z	Z	N1=39, N2=168	×	×	N1=39, N2=31	×
Fo	Fo	Fo	Fold Change: 1.91		•	Fold Change: 1.94	
			P-value: 0			P-value: .00007	

						M C4	Manual and Change
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage 1	Normal vs Stage 11	Normal vs Stage LLL
120	230	AA807154	271.93+/-107.94			273.39+/-108.95	273.39+/-108.95
			150.18+/-94.12			115.85+/-82.09	137.82+/-101.26
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=1:0
			Fold Change: 2.01			Fold Change: 2.55	Fold Change: 2.3
			P-value: 0			P-value: 0	P-value: .00953
121	235	AA830844	93.3+/-120.3			94.7+/-121.54	94.7+/-121.54
			272.03+/-321.32			320.78+/-455.06	361.79+/-369.37
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.64	J	£.	Fold Change: 2.9	Fold Change: 3.88
			P-value: 0			P-value: .00003	P-value: .00167
122	236	AA838843					1133.4+/-889.08
					•		503.96+/-209.26
			×	×	×	×	N1=40, N2=10
		,					Fold Change: 2 P-value: .00069
123	239	AA846091	83.83+/-80.09		84.12+/-81.11	84.12+/-81.11	
	•		254.24+/-227.12		271.23+/-192.47	226.57+/-179.06	
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	×
			Fold Change: 2.88		Fold Change: 3.44	Fold Change: 2.75	
			P-value: 0		P-value: .01151	P-value: 0	
124	241	AA875998					144.49+/-132.98
	!						225.7+/-97.08
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.02
							P-value: .00162
125	246	AA909042				166.1+/-92.52	166.1+/-92.52
						345.62+/-200.16	375.51+/-207.38
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.07	Fold Change: 2.2
						P-value: 0	P-value: .00481
126	249	AA909958				304.09+/-148.66	
						159.71+/-101.37	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.04	
						P-value: .00003	

					,		H
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal VS Stage I	Normal vs Stage II	Normal vs Stage III
127	251	AA913079					379.55+/-192
							819.72+/-391.8
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.18
							P-value: .00102
128	254	AA921830	91.7+/-113.88			92.93+/-115.1	92,93+/-115.1
) 			226.43+/-153.69			257.36+/-191.81	324.58+/-186.68
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.9			Fold Change: 3.24	Fold Change: 4
			P-value: 0			P-value: 0	P-value: .0002
129	255	AA921922	312.62+/-288.86			312.44+/-292.63	312.44+/-292.63
) 		76.08+/-72.69			75.75+/-54.61	36.4+/-15.92
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.16			Fold Change: 3.86	Fold Change: 6.83
			P-value: 0			P-value: 0	P-value: 0
130	257	AA928698					979.86+/-357.7
	· }						383.02+/-284.05
			×	×	×	×	N1=40, N2=10
							Fold Change: 3.22
							P-value: .00199
131	258	AA928776	334,78+/-156.59			334.78+/-156.59	334.78+/-156.59
	<u> </u>		126.01+/-82.79			129.6+/-115.01	91.05+/-43.12
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.72			Fold Change: 2.74	Fold Change: 3.62
			P-value: 0			P-value: 0	P-value: .00002
132	259	AA928876				279.93+/-242.15	
			>	*	*	N1=40 N2=31	×
			<	<	•	Fold Change: 2.37	
						P-value: .00023	
133	260	AA936632	124.77+/-125.66			125.03+/-127.3	125.03+/-127.3
			335.73+/-304.1		•	307.81+/-176.76	325.44+/-181.42
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.65			Fold Change: 2.68	Fold Change: 3
			P-value: 0			P-value: 0	P-value: .00001

1

1	Sea 10	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
1	261	AA947123	288.72+/-99.04			287.11+/-99.81	287.11+/-99.81
	! •		135.96+/-76.03			108.39+/-64.68	106.79+/-57.35
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.34			Fold Change: 2.88	Fold Change: 3.03
			P-value: 0	•		P-value: 0	P-value: .00116
135	263	AA968657	120.64+/-123.71				
			221.47+/-188.53				
			N1=40, N2=168	×	×	×	×
			Fold Change: 2.02				
- 1			P-value: .00055				
136	264	AA969863					154.92+/-62.69
					i	;	5557/-156.01
			×	×	×	×	NI=40, NZ=10
							Fold Change: 2.11 P-value: .00058
1	266	AA976064	363.92+/-151.16				
	3		183.7+/-101.29				
			N1=40, N2=168	×	×	×	×
			Fold Change: 2.17				
1		700000	I -value: 0				150 244/-78 21
138	797	AA977204					300.74+/-74.19
			×	*	×	×	N1=40, N2=10
				:			Fold Change: 2.02
							P-value: 0
139	272	AB007972	317.37+/-102.68			317.37+/-102.68	317.37+/-102.68
	1		141.41+/-56.37			127.42+/-50.63	110.2+/-25.69
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.26			Fold Change: 2.49	Fold Change: 2.75
			P-value: 0			P-value: 0	P-value: 0
140	280	AC004010				237.41+/-101.03	
						119.13+/-50.91	
			×	×	×	N1=39, N2=31	×
						Fold Change: 2.01	
						P-value: 0	

AC004770 116.544-76.22 116.544-76.22 288.024-45.73 AC004770 116.544-76.22 288.024-45.73 AF007150	V	Con III	Conhank	Normal ve All	Normal vs Malionant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
231.24-112.79 231.24-112.79 NI=40, N2=168 X X X X X X X X X X X X X	[2		A C004770	116 54+1-76 22			116.54+/-76.22	116.54+/-76.22
Ni=40, N2=168	107			231.2+/-112.79			258,92+/-95.73	353.08+/-90.31
Fold Change: 2.03 Fold Change: 2.41 P-value: 0				N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
P-value: 0 P-value: 0 P-value: 0 280.81+/-113.17 138.34+/-66.55 N1=40, N2=168 X X X X X X X X X				Fold Change: 2.03			Fold Change: 2.41	Fold Change: 3.44
AF007150 X X X X X X X X X X X X I<				P-value: 0			P-value: 0	P-value: 0
X X X X X X X X X X X X X X X X X X X	286		AF007150					560.67+/-252.85
X X X X X X X X X X X X X X X X X X X								244.22+/-118.81
280.81+/-113.17 138.34+/-66.55 Ni=40, N2=168 Fold Change: 2.04 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 2307.17+/-169.55 134.05+/-84.74 N1=40, N2=168 X X X X X X X X X X X X X				×	×	×	×	N1=40, N2=10
280.81+/-113.17 138.34+/-66.55 N1-40, N2=168 X Fold Change: 2.04 P-value: 0 307.17+/-169.55 136.07+/-86.42 N1-40, N2=16 X X X X X X X X X X X X X								Fold Change: 2.3
280.81+/-113.17 280.81+/-113.17 138.34+/-66.55 N1=40, N2=168 X			i					P-value: .00021
138.344-66.55 N1=40, N2=168 N1=40, N2=168 P-value: 0 N=40, N2=168 N1=40, N2=168 N1=39, N2=168 N1=39, N2=168 N1=39, N2=168 N1=39, N2=168 N1=39, N2=168 P-value: 0 D-value:	287		AF009314	280.81+/-113.17		•		280.81+/-113.17
Ni=40, N2=168				138,34+/-66.55				90.09+/-43.95
Fold Change: 2.04 P-value: 0 AF052142				N1=40. N2=168	×	×	×	N1=40, N2=10
AF052142 307.17+/-169.55 136.07+/-86.42 307.17+/-169.55 136.07+/-86.42 X N1=40, N2=31 Ni=40, N2=168 X N1=40, N2=31 P-value: 0 P-value: 0 P-value: 0 AF058075 X X X AF070648 1031.52+/-429.52 357.01+/-152.1 NI=40, N2=168 X X X P-value: 0 P-value: 0 P-value: 0 P-value: 0 AF150174 211.02+/-104.05 86.52+/-429.52 86.92+/-51.98 Rei Gan-/-6.76 X NI=40, N2=31 Rold Change: 2.82 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 X NI=39, N2=31 Rold Change: 2.26 P-value: 0 P-value: 0 P-value: 0 P-value: 0				Fold Change: 2.04				Fold Change: 3.18
AF052142 307.17+/-169.55 307.17+/-169.55 136.07+/-86.42 X X 134.05+/-84.74 N1=40, N2=168 X N1=40, N2=31 Fold Change: 2.28 P-value: 0 P-value: 0 AF058075 X X X X X X X AF070648 1031.52+/429.52 357.01+-152.1 AF070648 1031.52+/429.52 357.01+-152.1 N1=40, N2=34 X X Fold Change: 2.41 X N1=40, N2=31 P-value: 0 P-value: 0 211.02+/-104.05 86.33+/-46.76 X N1=39, N2=31 Fold Change: 2.26 P-value: 0 P-value: 0 P-value: 0 P-value: 0 211.02+/-104.05 Rold Change: 2.26 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0				P-value: 0			,	P-value: .00003
136.07+/-86.42	297		AF052142	307.17+/-169.55			307.17+/-169.55	307.17+/-169.55
N1=40, N2=168				136.07+/-86.42			134.05+/-84.74	131.75+/-87.96
Fold Change: 2.28 P-value: 0 AF058075 X X X X X X X X X X X X X				N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
AF058075 X X X X X X X X X X X X X				Fold Change: 2.28			Fold Change: 2.25	Fold Change: 2.44
AF058075 X<				P-value: 0			P-value: 0	P-value: .00309
AF070648 1031.52+/429.52 X X X X X X X X X X X X N1=40, N2=31 357.01+/-152.1 X N1=40, N2=31 X N1=40, N2=31 X N1=40, N2=31 X N1=40, N2=31 P-value: 0 P-value: 0 P-value: 0 211.02+/-104.05 86.92+/-51.98 X N1=39, N2=31 Fold Change: 2.26 P-value: 0 P-value: 0 P-value: 0 P-value: 0	300		AF058075					-15.62+/-107.9
AF070648 1031.52+/429.52 X))							355.75+/-489.88
AF070648 1031.52+/429.52 1031.52+/429.52 432.03+/-213.34 X N1=40, N2=31 N1=40, N2=168 X N1=40, N2=31 Fold Change: 2.41 Fold Change: 2.82 P-value: 0 P-value: 0 AF150174 211.02+/-104.05 86.63+/-46.76 X N1=39, N2=31 Fold Change: 2.26 Fold Change: 2.26 P-value: 0 P-value: 0				×	×	×	×	N1=40, N2=10
AF070648 1031.52+/429.52 1031.52+/429.52 432.03+/-213.34 X 1031.52+/429.52 N1=40, N2=168 X N1=40, N2=31 Fold Change: 2.41 Fold Change: 2.82 P-value: 0 P-value: 0 86.63+/-46.76 X N1=39, N2=168 X Fold Change: 2.26 P-value: 0 P-value: 0 P-value: 0								Fold Change: 3.73
AF070648 1031.52+/429.52 1031.52+/429.52 432.03+/-213.34 X 1031.52+/429.52 AF150174 X N1=40, N2=31 P-value: 0 P-value: 0 AF150174 211.02+/-104.05 86.63+/-46.76 X N1=39, N2=168 X P-value: 0 P-value: 0 P-value: 0 P-value: 0								P-value: .0394
432.03+/-213.34 N1=40, N2=168 Told Change: 2.41 Fold Change: 2.42 P-value: 0 AF150174 211.02+/-104.05 86.63+/-46.76 N1=39, N2=168 X X N1=40, N2=31 Fold Change: 2.82 P-value: 0 211.02+/-104.05 86.92+/-51.98 N1=39, N2=168 Y Fold Change: 2.26 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0	304		AF070648	1031.52+/-429.52			1031.52+/-429.52	1031.52+/-429.52
N1=40, N2=168				432.03+/-213.34			357.01+/-152.1	292.72+/-163.49
Fold Change: 2.41 P-value: 0 AF150174 211.02+/-104.05 86.63+/-46.76 N1=39, N2=168 N1=39, N2=168 P-value: 0 211.02+/-104.05 86.92+/-51.98 N1=39, N2=31 Fold Change: 2.26 P-value: 0 P-value: 0 P-value: 0				N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
AF150174 211.02+/-104.05 86.63+/-46.76 X N1=39, N2=168 X X N1=39, N2=31 Fold Change: 2.26 P-value: 0				Fold Change: 2.41			Fold Change: 2.82	Fold Change: 3.62
AF150174 211.02+/-104.05 86.63+/-46.76 86.92+/-51.98 86.92+/-51.98 N1=39, N2=168 X N1=39, N2=31 Fold Change: 2.26 P-value: 0 P-value: 0				P-value: 0			P-value: 0	P-value: .00002
86.92+/-51.98 N1=39, N2=168 X N1=39, N2=31 Fold Change: 2.26 P-value: 0	309		AF150174	211.02+/-104.05			211.02+/-104.05	211.02+/-104.05
X N1=39, N2=31 Fold Change: 2.26 P-value: 0				86.63+/-46.76			86.92+/-51.98	78.32+/-31.52
Fold Change: 2.26 P-value: 0				N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
				Fold Change: 2.26			Fold Change: 2.26	Fold Change: 2.38
				P-value: 0			P-value: 0	P-value: 0

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
148	311	AI002238					254.67+/-91.81
							105.29+/-71.62
			×	×	×	×	N1=40, N2=10
•							Fold Change: 2.72
							P-value: .00083
149	314	AI016604				502.7+/-255.95	502.7+/-255.95
<u>`</u>						262.05+/-145.41	.226.05+/-112.74
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.02	Fold Change: 2.18
						P-value: .00002	P-value: .00111
150	317	AI018523	422.08+/-187.64			422.08+/-187.64	422.08+/-187.64
}	! }		94.36+/-123.53			77.78+/-105.86	44.08+/-59.8
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 5.56			Fold Change: 6.54	Fold Change: 9.77
			P-value: 0			P-value: 0	P-value: 0
151	321	AI031771	85.9+/-105.07			85.9+/-105.07	
!	!		257.24+/-405.17			298.84+/-697.75	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.53			Fold Change: 2.33	
			P-value: 0			P-value: .00142	
152	324	AI039005	201.84+/-130.44			203.54+/-131.69	203.54+/-131.69
) }			77.34+/-61.5			61.56+/-42.38	44.43+/-54.48
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.58			Fold Change: 3.03	Fold Change: 3.97
			P-value: 0			P-value: 0	P-value: .0001
153	325	AI039722	990.63+/-1152.38			1007.24+/-1162.59	1007.24+/-1162.59
			438.37+/-1004.04			232.49+/-466.94	207.73+/-245.94
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.87			Fold Change: 6.17	Fold Change: 5.76
			P-value: 0			P-value: 0	P-value: .00392
154	326	AI049549	653.84+/-535.62			653.84+/-535.62	653.84+/-535.62
			267.97+/-227.53			226.29+/-141.74	155.78+/-116.9
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.36			Fold Change: 2.5	Fold Change: 3.66
			P-value: 0			P-value: .00001	P-value: .00006

							100
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
155	327	AI049973					391.85+/-108.68
}	;						199.36+/-52.62
			×	×	×	×	N1=39, N2=6
							Fold Change: 1.95
							P-value: .00002
35	330	AI056241	241.39+/-152.04		241.39+/-152.04	241.39+/-152.04	241.39+/-152.04
			67.68+/-55.35		93.33+/-104.89	49.94+/-43.13	45.49+/-48.07
			N1=39 N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.88		Fold Change: 2.9	Fold Change: 3.33	Fold Change: 4.03
			P-value: 0		P-value: .03101	P-value: 0	P-value: .00003
157	331	A1057450	381.32+/-1572.07			381,32+/-1572.07	381.32+/-1572.07
}	1		20.72+/-180.68			27.5+/-176.72	10.16+/-47.15
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.92			Fold Change: 2.87	Fold Change: 2.99
			P-value: .00006			P-value: .00026	P-value: .00095
15.8	332	AT057637	568.22+/-502.47		573.52+/-507.9	573.52+/-507.9	573.52+/-507.9
2	3		153,6+/-81.89		163,69+/-59.04	129.31+/-59.91	124.36+/-39.47
			N1=40 N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.29		Fold Change: 2.9	Fold Change: 3.79	Fold Change: 3.81
			P-value: 0		P-value: .0001	P-value: 0	P-value: 0
159	336	A1078033	454.77+/-280.5			454.77+/-280.5	454.77+/-280.5
ì	3		203 08+/-158 36			183,47+/-128.31	129.56+/-78.11
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.27			Fold Change: 2.42	Fold Change: 3.22
			P-value: 0		•	P-value: 0	P-value: .00008
160	337	AI078121	267,92+/-121.01				267.92+/-121.01
			129.6+/-75.04				124.52+/-39.11
			N1=39, $N2=168$	×	×	×	N1=39, N2=6
			Fold Change: 2.01				Fold Change: 2.05
			P-value: 0		!		P-value: .00004
191	338	AI079545			248.94+/-138.38		
			×	×	N1=40, N2=6	×	×
					Fold Change: 2.14		
					P-value: .00004		

:

:	Ş		11 7 2 2 25	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Mountain Charl	Normal we Stage II	Normal ve Stage III
*	Seq ID	Genbank	Normal vs All	Normal vs Manghant	Ivorinal vs Stage 1	Itolinal vs Stage II	Tarabana a militari
162	339	AI079558				115.76+/-141.71 214.96+/-122.84	-
			×	×	×	N1=40, N2=31	×
						rold Change: 2.3 P-value: .00001	
163	341	AI083598	344.81+/-287.52			339.56+/-289.33	339.56+/-289.33
3			151.49+/-429.97			210.77+/-736.98	31.3+/-28.36
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.75			Fold Change: 4.41	Fold Change: 6.76
			P-value: 0			P-value: 0	P-value: 0
164	342	A1086614	300.02+/-151.08			301.2+/-152.86	301.2+/-152.86
·	!		127 26+/-88 54			96.79+/-68.03	68.08+/-44.9
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.5			Fold Change: 3.25	Fold Change: 3.7
			P-value: 0			P-value: 0	P-value: 0
165	343	AI087975	137.52+/-92.28				
			277.44+/-204.79				
			N1=39, N2=168	×	×	×	×
			Fold Change: 1.96				
			P-value: 0				
166	344	AI088609	711.92+/-592.71			709.25+/-600.21	709.25+/-600.21
}	:		327.21+/-706.4			163.7+/-218.98	78.97+/-52.81
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.75			Fold Change: 4.73	Fold Change: 6.93
			P-value: 0			P-value: 0	P-value: 0
167	345	AI091154	351.29+/-406.17		351,29+/-406.17	351.29+/-406.17	351.29+/-406.17
			73.95+/-133.05		87.21+/-103.53	86.99+/-153.12	62.86+/-69.84
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.29		Fold Change: 3.04	Fold Change: 3.61	Fold Change: 3.91
			P-value: 0		P-value: .0365	P-value: 0	P-value: .00107
168	346	AI092936	185.51+/-150.9			186.98+/-152.58	
			417.08+/-227.5		;	425.95+/-204.95	;
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.2			Fold Change: 2.35	
			P-value: 0			r-value: .00001	

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
169	348	AI094535	204.98+/-121.07 348.38+/-182.49 N1=39, N2=168 Fold Change: 1.75 P-value: .00003	×	X	×	×
170	349	AI096389	×	×	×	×	354.78+/-131.25 184.82+/-126.35 N1=40, N2=10 Fold Change: 2.08 P-value: .00216
171	351	Al123555	300.32+/-162.49 75.22+/-66.82 N1=40, N2=168 Fold Change: 4.19 P-value: 0	×	300+/-164.6 91.12+/-67 N1=40, N2=6 Fold Change: 3.22 P-value: .00482	300+/-164.6 67.15+/-70.68 N1=40, N2=31 Fold Change: 4.66 P-value: 0	300+/-164.6 55.08+/-36.39 N1=40, N2=10 Fold Change: 4.97 P-value: .00001
172	352	AI123738	297.76+/-110.04 156.35+/-127.73 N1=39, N2=168 Fold Change: 2.06 P-value: 0	×	×	297.76+/-110.04 152.58+/-82.32 N1=39, N2=31 Fold Change: 2.04 P-value: 0	297.76+/-110.04 120.8+/-50.92 N1=39, N2=6 Fold Change: 2.46 P-value: .00002
173	355	AI125252	69.28+/-126.42 217.42+/-192.92 N1=39, N2=168 Fold Change: 2.31 P-value: 0	×	×	69.28+/-126.42 215.91+/-164.16 N1=39, N2=31 Fold Change: 2.27 P-value: .00023	×
174	357	AI126237	×	×	×	X	220.92+/-142.18 366.48+/-123.56 N1=40, N2=10 Fold Change: 2.01 P-value: .00008
175	358	AI127289	×	×	×	230.52+/-149.31 872.58+/-881.67 N1=40, N2=31 Fold Change: 2.85 P-value: .00002	×

ıge III	. 96.	=10	2.85	800	2 18	21.7	7.11	7.11 =10	7.11 =10 : 2.23	7.11 =10 2.23 458	7.11 7.11 =10 7.2.23 458 3.81	7.11 =10 2.23 458 3.81	7.11 =10 2.23 4458 3.81 7.7	7.11 2.23 4458 3.81 7.7 =10	7.11 2.23 4458 3.81 7.7 ==10 : 2.48	7.11 2.23 4458 3.81 7.7 =10 : 2.48	7.11 1.2.23 1458 3.81 7.7 ==10 12.48 0001 2.7	7.11 1.2.23 1458 3.81 7.7 ==10 12.48 0001 2.27 3.86	7.11 2.23 4458 3.81 7.7 7.7 =10 : 2.48 : 0001 : 2.7 3.86 :=6	7.11 =10 12.23 4458 3.81 7.7 7.7 =10 0001 2.27 8.86 9=6 1.2.11	7.11 =10 12.23 4458 3.81 7.7 7.7 =10 0001 2.27 8.86 9=6 1.2.11 0026	7.11 =10 4458 3.81 7.7 7.7 7.7 =10 0001 5.27 8.86 9.66 9.49	7.11 =10 1.2.23 44.58 3.81 7.7 7.7 7.7 6001 6001 6001 6001 6001 60026 7.2.1 60026 9.39	7.11 =10 4458 3.81 7.7 7.7 7.7 6001 6001 6001 6001 6001 6001 60000001 600001 60000000 60001 600000000	7.11 7.11 1.2.23 44.58 3.81 7.7 1.7 1.7 1.7 1.0001 1.2.7 2.2.7 2.3.86 2.6 3.86 3.86 3.86 3.86 3.86 3.86 3.91 3.	7.11 7.11 1.2.23 44.58 3.81 7.7 7.7 1.7 1.00 1.2.7 2.3.86 2.66 2.66 2.60 2.11 0.026 0.39 9.39 9.39	7.11 7.11 1.2.23 44.58 3.81 7.7 1.7 1.7 1.0 1.2.48 1.0001 1.2.7 2.3.86 2.6 3.86 3.86 3.86 3.86 3.86 3.86 3.89 3.81 1.0001 1.0001 1.0001 1.0001 1.0002 1.000	7.11 7.11 1.2.23 44.58 3.81 7.7 1.7 1.7 1.7 1.0 1.2.48 1.0001 1.2.7 1.2.48 1.2.48 1.3.86 1.3.8	7.11 7.11 1.2.23 44.58 3.81 7.7 1.7 1.7 1.0001 1.2.7 2.3.86 2.66 2.60 2.10 2.2.11 0.026 3.3.9 3.3.9 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.7 3.8.7 3.8.7 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.6 3.8.7 3.8.7 3.8.7 3.8.8 3.8.9 3.9.9 3.9 3	7.11 7.11 1.2.23 44.58 3.81 7.7 1.7 1.2.7 1.2.7 1.2.7 1.2.7 1.2.7 1.2.7 1.2.7 1.2.7 1.2.7 1.2.7 1.2.7 1.3.86	7.11 7.11 1.2.23 4458 3.81 7.7 1.7 1.7 1.0001 1.2.7 8.86 9.39 9.39 9.39	7.11 7.11 4458 3.81 7.7 1.7 1.7 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	7.11 7.11 4458 3.81 7.7 1.7 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	7.11 7.11 1.2.23 4458 3.81 7.7 1.7 1.2.7 8.86 9.39 9.39 9.39 9.39 9.39 9.39 9.39 9.39 9.39
Normal vs Stage III	224.42+/-90.96 82.27+/-38.37	N1=40, N2=10	Fold Change: 2.85	P-value: .0008	462.06+/-252.18		242.37+/-237.11	242.37+/-237.1 N1=40, N2=10	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.23	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.48+/-223.81	242.37+/-23 N1=40, N2 Fold Change P-value: .00 299.48+/-22 99.18+/-3	242.37+/-237.1 N1=40, N2=1 Fold Change: 2. P-value: .0045 299.48+/-223.5 99.18+/-37.7 N1=40, N2=1	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.48+/-223.8] 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.4	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.23 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.48 P-value: .00001	242.37+/-237.1 N1=40, N2=10 Fold Change: 2. P-value: .0045: 299.48+/-223.8 99.18+/-37.7 N1=40, N2=10 Fold Change: 2. P-value: .0000 241.9+/-66.27	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.18+/-37.7 N1=40, N2=10 Fold Change: 2.4 P-value: .00001 241.9+/-66.27 119.16+/-48.86	242.37+/-23 N1=40, N2 Fold Change P-value: .00 299,48+/-22 99.18+/-32 N1=40, N2 Fold Change P-value: .00 241.9+/-66 119.16+/-44 N1=39, N2	242.37+/-237.1 N1=40, N2=10 Fold Change: 2.7 P-value: .00458 299.48+/-223.8 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.9 P-value: .0000 241.9+/-66.27 119.16+/-48.86 N1=39, N2=6	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2. P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.4 P-value: .00001 241.9+/-48.86 N1=39, N2=6 Fold Change: 2.1 P-value: .00026	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.4 P-value: .00001 241.94-48.86 N1=39, N2=6 Fold Change: 2.1 P-value: .00026 P-value: .00026	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.4 P-value: .00001 241.94-48.86 N1=39, N2=6 Fold Change: 2.1 P-value: .00026 297.58+/-90.49 101.69+/-39.39	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.4 P-value: .00001 241.9+/-66.27 119.16+/-48.86 N1=39, N2=6 Fold Change: 2.1 P-value: .00026 297.58+/-90.49 101.69+/-39.39 N1=40, N2=10	242.374/-23 N1=40, N2 Fold Change P-value: .00 299.48+/-22 99.18+/-32 99.18+/-32 N1=40, N2 Fold Change P-value: .00 241.94/-66 119.16+/-44 N1=39, NZ Fold Change P-value: .00 297.58+/-9 101.69+/-3 N1=40, NZ Fold Change	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.23 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.48 P-value: .00001 241.94/-66.27 119.16+/-48.86 N1=39, N2=6 Fold Change: 2.11 P-value: .00026 297.58+/-90.49 101.69+/-39.39 N1=40, N2=10 Fold Change: 2.97	242.374/-23 N1=40, N2 Fold Change P-value: .00 299.48+/-22 99.18+/-3 N1=40, N2 Fold Change P-value: .00 241.94/-66 119.16+/-44 N1=39, NZ Fold Change P-value: .00 297.58+/-9 101.69+/-3 N1=40, N2 Fold Change P-value: .00 297.58+/-9 Fold Change	242.374/-23 N1=40, N2 Fold Change P-value: .00 299.48+/-22 99.18+/-37 N1=40, N2 Fold Change P-value: .00 241.94/-66 119.16+/-44 N1=39, N2 Fold Change P-value: .00 297.58+/-9 101.69+/-3 N1=40, N2 Fold Change P-value: .00	242.374/-23 N1=40, N2 Fold Change P-value: .00 299.48+/-22 99.18+/-3 N1=40, N2 Fold Change P-value: .00 241.94/-66 119.16+/-44 N1=39, N2 Fold Change P-value: .00 297.58+/-9 101.69+/-3 N1=40, N2 Fold Change P-value: .07	242.374/-23 N1=40, N2 Fold Change P-value: .00 299.48+/-22 99.18+/-3 N1=40, N2 Fold Change P-value: .00 241.94/-66 119.16+/-44 N1=39, N2 Fold Change P-value: .00 297.58+/-9 101.69+/-3 N1=40, N2 Fold Change P-value: .07	242.374/-23 N1=40, N2 Fold Change P-value: .00 299.48+/-22 99.18+/-3 N1=40, N2 Fold Change P-value: .00 241.94/-66 119.16+/-44 N1=39, N2 Fold Change P-value: .00 297.58+/-9 101.69+/-3 N1=40, N2 Fold Change P-value: .07	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.4 P-value: .00001 241.9+/-66.27 119.16+/-48.86 N1=39, N2=6 Fold Change: 2.1 P-value: .00026 297.58+/-90.49 101.69+/-39.39 N1=40, N2=10 Fold Change: 2.5 P-value: .00026 297.58+/-90.49 X X	242.37+/-237.1 N1=40, N2=10 Fold Change: 2.5 P-value: .00458 299.48+/-223.8 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.9 P-value: .00020 241.9+/-48.86 N1=39, N2=6 Fold Change: 2.1 P-value: .0020 297.58+/-90.49 101.69+/-39.39 N1=40, N2=10 Fold Change: 2.1 P-value: 0 P-value: 0 P-value: 0 X	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.2 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.4 P-value: .00001 241.9+/-48.86 N1=39, N2=6 Fold Change: 2.1 19.16+/-48.86 N1=39, N2=6 Fold Change: 2.9 P-value: .00026 297.58+/-90.49 N1=40, N2=10 Fold Change: 2.9 N1=40, N2=10 Fold Change: 2.9 N1=40, N2=10 N1=40, N2=10 N1=40, N2=10	242.37+/-237.11 N1=40, N2=10 Fold Change: 2.23 P-value: .00458 299.48+/-223.81 99.18+/-37.7 N1=40, N2=10 Fold Change: 2.48 P-value: .00001 241.9+/-66.27 119.16+/-48.86 N1=39, N2=6 Fold Change: 2.11 P-value: .00026 297.58+/-90.49 101.69+/-39.39 N1=40, N2=10 Fold Change: 2.97 P-value: 0 Fold Change: 2.97 Rold Change: 2.97 N1=40, N2=10 Fold Change: 2.97 P-value: 0
	/-90.96 /-39.89	N2=31	nge: 2.29	ne: 0	-252.18	′-156.49	N2=31	mge: 2.3	P-value: 0		/-223.81	-223.81 +/-57.3	'-223.81 +/-57.3 N2=31	'-223.81 V-57.3 N2=31 nnge: 2.6	-223.81 N-57.3 N2=31 mge: 2.6 ue: 0	-223.81 N-57.3 N2=31 unge: 2.6 ue: 0	-223.81 N-57.3 N2=31 nge: 2.6 ue: 0	-223.81 4/-57.3 N2=31 mge: 2.6 ue: 0	-223.81 +/-57.3 N2=31 nnge: 2.6 ue: 0	-223.81 F/-57.3 N2=31 inge: 2.6 ue: 0	-223.81 +/-57.3 N2=31 nge: 2.6 ue: 0	-223.81 +/-57.3 N2=31 nge: 2.6 ue: 0	-223.81 +/-57.3 N2=31 mge: 2.6 ue: 0	-223.81 H-57.3 N2=31 inge: 2.6 ue: 0	-223.81 W-57.3 N2=31 mge: 2.6 ue: 0	-223.81 H-57.3 N2=31 inge: 2.6 ue: 0	-223.81 H-57.3 N2=31 Inge: 2.6 ue: 0 K	-223.81 H-57.3 N2=31 inge: 2.6 ue: 0 (c k k k k 1-252.35 1-275.56 N2=31	-223.81 H-57.3 N2=31 inge: 2.6 ue: 0 (c c 7-252.35 -275.56 N2=31 inge: 2.04	-223.81 H-57.3 N2=31 Inge: 2.6 ue: 0 (((((((((((((L-223.81 H-57.3 N2=31 Inge: 2.6 UE: 0 K K K K N2=31 N2=31 Inge: 2.04 I. 00003 F-193.5	-223.81 H-57.3 N2=31 mge: 2.6 ue: 0 L-252.35 -275.56 N2=31 mge: 2.04 :.00003 F-193.5 -67.91	L-223.81 H-57.3 N2=31 Inge: 2.6 UE: 0 K K K K K N2=31 Inge: 2.04 I. 00003 H-193.5 H-193.5 H-193.5 H-193.5	299.48+/-223.81 102.41+/-57.3 N1=40, N2=31 Fold Change: 2.6 P-value: 0 X X X X X X X X X X X X X
	224.42+/-90.96 96.42+/-39.89	N1=40, N2=31	Fold Change: 2.29	P-value: 0	462.06+/-252.18	218.45+/-156.49	N1=40, N2=31	Fold Change: 2.3	•	r-vall	F-value: 0 299.48+/-223.8	P-value: 0 299.48+/-223.8 102.41+/-57.3	299.48+/ 102.41+ N1=40,	P-value: 0 299.48+/-223.81 102.41+/-57.3 N1=40, N2=31 Fold Change: 2.6	P-vaue: 0 299.48+/-223 102.41+/-57 N1=40, N2≕ Fold Change: P-value: 0	P-vall 299.48+/ 102.41+ N1=40, Fold Cha P-vall	P-vall 299.48+/ 102.41+ N1=40, Fold Cha P-vall	F-vau 299.48+1- 102.41+ N1=40, I Fold Chau P-valu	P-vau 299.48+/ 102.41+ N1=40, Fold Cha P-valu	F-vau 299.48+/ 102.41+ N1=40, Fold Cha P-valu X	F-vau 299.48+/ 102.41+ N1=40, Fold Cha P-valu	F-vau 299.48+/ 102.41+ N1=40, Fold Cha P-valu X	F-vau 299.48+/- 102.41+ N1=40, Fold Char P-valu X	F-vau 299.48+/ 102.41+ N1=40, Fold Cha P-val X	F-vau 299.48+/ 102.41+ N1=40, Fold Cha P-val X	F-vaue: 0 299.48+/-223.81 102.41+/-57.3 N1=40, N2=31 Fold Change: 2.6 P-value: 0 X X X X X X	F-vaue: 0 299.48+/-223.81 102.41+/-57.3 N1=40, N2=31 Fold Change: 2.6 P-value: 0 X X X X X 332.2+/-252.35 332.2+/-255.56	F-vall 102.48+/ 102.41+/ N1=40, Fold Cha P-vall X X X X X X X X N1=40,	F-value: 0 299.48+/-223.8 102.41+/-57.3 N1=40, N2=31 Fold Change: 2. X X X X X X X X X X X X X X Fold Seq. 89+/-252.3 332.2+/-275.56 N1=40, N2=31 Fold Change: 2.(F-value: 0 299.48+/-223.81 102.41+/-57.3 N1=40, N2=31 Fold Change: 2.6 P-value: 0 X X X X X X X X X X X X Fold Change: 2.64.89+/-252.35 332.2+/-275.56 N1=40, N2=31 Fold Change: 2.04 P-value: .00003	X X X X X X X X X X X X X	F-value: 0 299.48+/-223.8 102.41+/-57.3 N1=40, N2=3 Fold Change: 0 P-value: 0 X X X X X X X X X X X X Y Y	F-vall 102.41+ 102.41+ N1=40, Fold Cha P-vall X X X X X X X X X N1=40, Fold Chan P-value: 241.17+ 51.87+/ N1=40,	F-value: 0 299.48+/-223.8 102.41+/-57.3 N1=40, N2=31 Fold Change: 2. P-value: 0 X X X X X X X X X X X X X
Normal vs Stage A		×					×						×	×	×	×	×	× ×	× ×	× ×	× ×	× ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × × ×		\times \times \times \times	× × × ×	\times \times \times		× × × × ×
Normal				•																			,											
Normal vs Malignant																																		
Normal vs		×					×							×	*	×	*	* *	× ×	* *			× × ×					×						
nal vs All	90.11	2=168	te: 2.29	0 ;;	248.98	111.28	2=168	te: 2.08	_	•	223.81	223.81 -56.6	223.81 -56.6 2=168	223.81 -56.6 2=168	223.81 -56.6 2=168 ge: 2.51	223.81 -56.6 2=168 9e: 2.51 :: 0	223.81 223.81 2=168 2=168 3:: 0 3:: 0 57.54	223.81 223.81 -56.6 2=168 ge: 2.51 :: 0 56.27 57.54	223.81 -56.6 2=168 9e: 2.51 :: 0 56.27 57.54 57.54	223.81 -56.6 -56.6 se: 2.51 s: 0 56.27 57.54 2=168 se: 2.03	223.81 -56.6 -56.6 5e: 2.51 5: 0 56.27 57.54 2=168 5e: 2.03	223.81 -56.6 -56.6 se: 2.51 s: 0 56.27 57.54 2=168 se: 2.03	223.81 -56.6 -56.6 :: 0 :: 0 56.27 57.54 2=168 ge: 2.03	223.81 -56.6 -56.6 -56.6 :: 0 :: 0 56.27 57.54 2=168 ge: 2.03	223.81 -56.6 -56.6 -56.6 :: 0 :: 0 56.27 57.54 2=168 ge: 2.03	223.81 -56.6 -56.6 -56.6 :: 0 :: 0 56.27 57.54 2=168 ge: 2.03 :: 0	223.81 -56.6 -56.6 -56.6 :: 0 :: 0 56.27 57.54 2=168 ge: 2.03 :: 0	223.81 -56.6 -56.6 -56.6 :: 0 :: 0 56.27 57.54 2=168 ge: 2.03 :: 0	223.81 -56.6 -56.6 -56.6 :: 0 :: 0 56.27 57.54 2=168 ye: 2.03 :: 0 :: 0	223.81 -56.6 -56.6 -56.6 -56.6 -56.27 -57.54 -27.54 -27.54 -27.03	223.81 -56.6 -56.6 -56.6 -56.6 -56.27 -57.54 -27.54 -27.54 -27.54 -27.54 -27.68 -21.8 -22.18 -22.18 -22.18 -22.18 -22.18	223.81 -56.6 -56.6 -56.6 -56.6 :: 0 :: 0 56.27 -57.54 -2=168 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::	223.81 -56.6 -56.6 -56.6 -56.6 -56.27 -57.54 -2=168	223.81 -56.6 -56.6 -56.6 -56.6 -56.7 -57.54 -27.54 -27.54 -27.54 -27.54 -27.68 -27.8
Normal	225.63+/-90.11	N1=40, N2=168	Fold Change: 2.29	P-value: 0	462.88+/-248.98	223.69+/-111.28	N1=40, N2=168	Fold Change: 2.08	P-value: 0		299.48+/-2	299.48+/-223.81 105.31+/-56.6	299.48+/-223.8 105.31+/-56.6 N1=40. N2=168	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.5	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.51 P-value: 0	299.48+/-2 105.31+/- N1=40, N Fold Chang P-value 241.9+/-4	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.5 P-value: 0 241.9+/-66.27	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.5 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39. N2=168	299.48+/-2 105.31+/ N1=40, N Fold Chang P-value 241.9+/-(127.44+/- N1=39, N Fold Chang	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.51 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=168 Fold Change: 2.03 P-value: 0	299.48+/-223 105.31+/-56 N1=40, N2=1 Fold Change: 2 P-value: 0 241.9+/-65.2 127.44+/-57. N1=39, N2=1 Fold Change: 2 P-value: 0	299.48+/-2 105.31+/ N1=40, N Fold Chang P-value 241.9+/-4 127.44+/- N1=39, N Fold Chang P-value	299.48+/-2 105.31+/ N1=40, N Fold Chang P-value 241.9+/-4 127.44+/- N1=39, N Fold Chang P-value X	299.48+/-2 105.31+/ N1=40, N Fold Chang P-value 241.9+/-6 127.44+/- N1=39, N Fold Chang P-value R-value	299.48+/-2 105.31+/ N1=40, N Fold Chang P-value 241.9+/-4 127.44+/- N1=39, N Fold Chang P-value X	299.48+/-2 105.31+/ N1=40, N Fold Chang P-value 241.9+/-(127.44+/ N1=39, N Fold Chang P-value X X	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.51 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=168 Fold Change: 2.07 P-value: 0 X	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.5 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=168 Fold Change: 2.0 P-value: 0 P-value: 0 X X X X 250.95+/-250.34 N1=40, N2=168 N1=40, N2=168	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.5 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=168 Fold Change: 2.0 P-value: 0 P-value: 0 P-value: 0 Rold Change: 2.0 X X X S60.95+/-250.34 250.34-192.18 N1=40, N2=168 Fold Change: 2.6	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.51 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=168 Fold Change: 2.03 P-value: 0 X X X X 250.3+/-192.18 N1=40, N2=168 Fold Change: 2.61 P-value: 0	299.48+/-223. 105.31+/-56. N1=40, N2=1, P-value: 0 241.9+/-66.2 127.44+/-57.* N1=39, N2=1 Fold Change: 2 P-value: 0 P-value: 0 X X X X X X Fold Change: 250.3+/-192. N1=40, N2=1 Fold Change: 270.3+/-192. N1=40, N2=1 Fold Change: 270.3+/-192.	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.5 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=168 Fold Change: 2.0 P-value: 0 S60.95+/-250.34 250.34/-192.18 N1=40, N2=168 Fold Change: 2.6 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0	299.48+/-223.8] 105.31+/-56.6 N1=40, N2=166 Fold Change: 2.5 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=166 Fold Change: 2.0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 P-value: 0 240.3+/-192.18 N1=40, N2=166 Fold Change: 2.6 P-value: 0 84.05+/-191.0 84.05+/-116.71	299.48+/-223.81 105.31+/-56.6 N1=40, N2=168 Fold Change: 2.51 P-value: 0 241.9+/-66.27 127.44+/-57.54 N1=39, N2=168 Fold Change: 2.03 P-value: 0 P-value: 0 250.3+/-192.18 N1=40, N2=168 Fold Change: 2.61 P-value: 0 241.32+/-191.01 84.05+/-116.71 N1=40, N2=168 Fold Change: 2.61
Genbank	AI128820				AI129320						131078	AI131078	131078	131078	131078	131078	AI131078 AI140764	131078	131078	131078	131078	AI131078 AI140764 AI141556	131078	131078	131078	AI131078 AI140764 AI141556 AI144477	131078	131078	131078	131078	AI131078 AI140764 AI141556 AI144477	131078 140764 1141556 1144477	131078 140764 141556 1144477	131078 140764 1141556 1144477
Seq ID	359 AI				360 AI							362 AI			•																			
S #	176 3				177 3							178 3	1																					

•	:									_						<u>.</u>										•									
Normal vs Stage III	223.18+/-91.72	113.09+/-116.05	N1=39, N2=6	Fold Change: 2.37	P-value: .00396	243+/-112,73	111.62+/-39.76	N1=40, N2=10	Fold Change: 2.04	P-value: .00009	301.58+/-452.1	76.68+/-82.57	N1=40, N2=10	Fold Change: 2.77	P-value: .00751			×			. 284.7+/-101.6	127.96+/-60.39	N1=40, N2=10	Fold Change: 2.41	P-value: .00278	205.71+4'81.06	101.78+/-59.91	N1=40, N2=10	Fold Change: 2.2	P-value: .00676	.290.63+/-103.17	100.98+/-38.82	N1=40, N2=10	Fold Change: 2.9	P-value: .00001
Normal vs Stage II	223.18+/-91.72	107.58+/-66.58	N1=39, N2=31	Fold Change: 2.25	P-value: 0			×			301.58+/-452.1	76.69+/-52.21	N1=40, N2=31	Fold Change: 2.46	P-value: .00013			×			i i		×		-			×			290.63+/-103.17	141.14+/-64.83	N1=40, N2=31	Fold Change: 2.13	P-value: 0
Normal vs Stage I			×					×			-		×		:			×					×	•				×	,				×		
Normal vs Malignant	D		×					×					×					×		!			×					×		!			×		
Normal vs All	223.18+/-91.72	95.74+/-62.93	N1=39, N2=168	Fold Change: 2.5	P-value: 0			×			301.58+/-452.1	77.97+/-71.53	N1=40, N2=168	Fold Change: 2.61	P-value: .00001	356.99+/-119.9	188.39+/-84.68	N1=39. N2=168	Fold Change: 1.94	P-value: 0			×					×					×		!
Genbank	AI149693					AI160811					AI161049					AI168057	-				AI189011					AI189255					AI190755				
Sea ID	373					375					376					378					380					381					382				
#	183					184					185		_			186					187					188					189				

1	8	1.00	Mountain All	Normal ve Malianant	Normal ve Stage I	Normal vs Stage II	Normal vs Stage III
×	~	Genbank	Normal vs All	MOLINAL VS IVIAIIGHAILL	Ivol Iliai vs Stage A	Tol mai 19 Stage	70 01 min 101
190	384	AI200954	529.23+/-316.46			524.84+/-319.36	524.84+/-319.36
			256.1+/-158.56			219.57+/-119.93	165.98+/-93.19
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.07			Fold Change: 2.28	Fold Change: 3.18
			P-value: 0			P-value: .00001	P-value: .00195
100	385	AT201273	535.25+/-296.2			533.25+/-299.79	533.25+/-299.79
:			238.85+/-188.24			203.14+/-125.12	125.11+/-95.45
		•	N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.5			Fold Change: 2.61	Fold Change: 4.56
			P-value: 0			P-value: 0	P-value: .0001
192	386	AI201965	237.22+/-148.65			234.24+/-149.37	234.24+/-149.37
•	}		107.53+/-70.7			100.47+/-56.35	65.63+/-51.87
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.18			Fold Change: 2.19	Fold Change: 3.63
			P-value: 0			P-value: .00001	P-value: .00031
103	387	A1201982	279 97+/-146 77			279.97+/-146.77	279.97+/-146.77
}			114.06+/-74.45			121.58+/-55.99	121.2+/-81.62
			N1=39 N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.45			Fold Change: 2.14	Fold Change: 2.51
			P-value: 0			P-value: 0	P-value: .00327
194	388	A1206014	213.72+/-107.69			211.4+/-108.08	211.4+/-108.08
`))		81.38+/-54.34			80.55+/-42.41	60.05+/-31.32
			NI=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.63			Fold Change: 2.54	Fold Change: 3.36
			P-value: 0			P-value: 0	P-value: .00001
195	389	AI206063	133.1+/-160.7			133.1+/-160.7	
			339.26+/-339.95			353.59+/-366.06	;
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.57			Fold Change: 2.7	
			P-value: .00002			P-value: .00061	
196	393	AI218358	210.74+/-117.83		210.74+/-117.83	210.74+/-117.83	210.74+/-117.83
	i		87.3+/-105.07		82.51+/-91.18	76.3+/-97.56	74.44+/-133.85
			N1=39, $N2=168$	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.43		Fold Change: 2.74	Fold Change: 2.64	Fold Change: 3.62
			P-value: 0		P-value: .0333	P-value: 0	P-value: .00101

ì

#	Sea 10	Genhank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
197	394	AI222594	431.73+/-162.38 169.82+/-117.43 N1=40, N2=168 Fold Change: 2.81 P-value: 0	×	×	431.73+/-162.38 143.7+/-81.33 N1=40, N2=31 Fold Change: 3.23 P-value: 0	×
198	397	AI242160	320.5+/-159.05 170.68+/-74.58 N1=39, N2=168 Fold Change: 1.73 P-value: 0	×	×	×	×
199	398	AI244908	×	×	X	×	425.47+/-356.02 148.1+/-83.25 N1=40, N2=10 Fold Change: 2.51 P-value: .00165
200	399	AJ247837	250.33+/-314.52 40.01+/-55.99 N1=40, N2=168 Fold Change: 3.88 P-value: 0	×	×	250.33+/-314.52 34.79+/-48.59 N1=40, N2=31 Fold Change: 4.13 P-value: 0	250.33+/-314.52 20.13+/-36.3 N1=40, N2=10 Fold Change: 4.49 P-value: 0
201	401	AI264135	×	×	×	×	246.38+/-130.33 97.95+/-69.13 N1=40, N2=10 Fold Change: 2.68 P-value: .00126
202	403	A1266650	×	×	X	×	657.85+/-222.05 309.8+/-83.6 N1=40, N2=10 Fold Change: 2.09 P-value: .00001
203	405	AI275140	×	· ×	×	26.4+/-47.96 232.81+/-210.09 N1=40, N2=31 Fold Change: 6.41 P-value: 0	×

: |-. |

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
204	407	AI276259	121.2+/-221.34 238.08+/-274.65			121.51+/-224.22 245.37+/-268.39	
			N1=40, N2=168	×	×	N1=40, N2=31	×
_			Fold Change: 2.02 P-value: .00019			Fold Change: 2.09 P-value: .00466	
205	408	AI277612	1009.49+/-899.38		1022.91+/-907.07	1022.91+/-907.07	1022.91+/-907.07
			93.86+/-163.03		163.73+/-156.36	82.75+/-117.04	40.07+/-27.26
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 9.23		Fold Change: 5.12	Fold Change: 10.43	Fold Change: 16.08
306	413	A1285970	I -value. 0		1,000.	269.01+/-274.71	
3	2					88.12+/-54.51	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2	
100	414	70200014				313 32+/-139 2	313 32+/-139.2
107	<u> </u>	A1400300				113 39+/-56 77	107.36+/-49.96
			×	×	×	N1=39, N2=31	N1=39, N2=6
						Fold Change: 2.6	Fold Change: 2.94
					•	P-value: 0	P-value: .00028
208	415	AI288745	276.49+/-146.02			276.49+/-146.02	276.49+/-146.02
)			108.9+/-73.82			104.75+/-63.19	67.42+/-24.06
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.51			Fold Change: 2.5	Fold Change: 3.69
			P-value: 0			P-value: 0	P-value: 0
500	417	A1300876	601.83+/-985.51			601.83+/-985.51	601.83+/-985.51
			74.02+/-258.41			54.33+/-149.24	13.6+/-22.13
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 6.47			Fold Change: 6.66	Fold Change: 8.67
			P-value: 0			P-value: 0	P-value: 0
210	422	AI333767					201.68+/-104.32
			×	×	×	×	N1=40, N2=10
					:		Fold Change: 2
							P-value: .00805

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N. S.	Mosmol ve Ctore II	Normal ve Stage III
#	Seq ID	Genbank	Normal vs All	Normal vs Mangnant	Normal vs Stage I	Ivor ilitar vs Stage II	Mol mar vs Orage axx
211	423	AI333987	. ×	×	×	208.53+/-320.79 57.06+/-100.56 N1=40, N2=31 Fold Change: 2.4 P-value: .00125	×
212	424	AI338536	×	×	×	×	548.6+/-192.05 227.52+/-68.12 N1=40, N2=10 Fold Change: 2.31 P-value: 0
213	427	AI341602	135.16+/-276.86 593.58+/-944.91 N1=40, N2=168 Fold Change: 4.46 P-value: 0	×	137.44+/-280.1 438.85+/-447.12 N1=40, N2=6 Fold Change: 3.86 P-value: .03152	137.44+/-280.1 723.06+/-652.3 N1=40, N2=31 Fold Change: 6.28 P-value: 0	137.44+/-280.1 580.91+/-380.87 N1=40, N2=10 Fold Change: 6.09 P-value: .00062
214	428	AI342169	×	×	×	×	496.19+/-393.99 1347.53+/-986.09 N1=40, N2=10 Fold Change: 2.64 P-value: .0043
215	430	AI344312	84.72+/-57.63 209.71+/-134.29 N1=40, N2=168 Fold Change: 2.33 P-value: 0	X	×	×	×
216	431	AI346341	640.59+/-422.41 155.96+/-203.21 N1=40, N2=168 Fold Change: 4.26 P-value: 0	Х	×	635.18+/-426.52 120.31+/-143.98 N1=40, N2=31 Fold Change: 4.92 P-value: 0	635.18+/-426.52 104.05+/-133.87 N1=40, N2=10 Fold Change: 5.89 P-value: .00006
217	432	AI351043	236.73+/-93.44 109.27+/-56.02 N1=40, N2=168 Fold Change: 2.23 P-value: 0	×	×	236.3+/-94.62 98.05+/-50.78 N1=40, N2=31 Fold Change: 2.47 P-value: 0	236.3+/-94.62 73.16+/-38.18 N1=40, N2=10 Fold Change: 3.35 P-value: .00009

Seq ID Genbank Norma		Nor	mal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
434 AI352171	AI352171					222.69+/-144.28	222.69+/-144.28
						77.49+/-85.14	51.96+/-/1.13
×	×	×		×	×	N1=39, N2=31	N1=39, N2=6
						Fold Change: 2.28	Fold Change: 2.86
						P-value: 0	P-value: .00032
436 AI357639	AI357639			-			103.44+/-82.21
				!	;	,	C7.01-1107.677
×	×	×		×	×	×	NI=40, N2=10
							Fold Change: 2.51 P-value: 0
437 AI361002	AI361002					226,33+/-66,64	209.31+/-66.11
						131.77+/-56.91	116.1+/-36.28
×	×	×		×	×	N1=39, N2=31	N1=39, N2=6
						Fold Change: 1.8	Fold Change: 1.82
						P-value: 0	P-value: .00118
441 AI369275 412.08+/-182.64		412.08+/-182.64				404.52+/-178.58	404.52+/-178.58
		160.8+/-88.56				156.69+/-71.33	124.99+/-48.08
N1=40, N2=168	N1=40, N2=168	N1=40, N2=168		×	×	N1=40, N2=31	N1=40, N2=10
Fold Change: 2.56	Fold Change: 2.56	Fold Change: 2.56				Fold Change: 2.52	Fold Change: 3.09
P-value: 0	P-value: 0	P-value: 0				P-value: 0	P-value: 0
443 AI375115 215.71+/-84.93		215.71+/-84.93				211.26+/-81.18	211.26+/-81.18
107.21+/-43.49	107.21+/-43.49	107.21+/-43.49				101.07+/-42.95	95.25+/-21.17
N1=40, N2=168	N1=40, N2=168	N1=40, N2=168		×	×	N1=40, N2=31	N1=40, N2=10
Fold Change: 2.02	Fold Change: 2.02	Fold Change: 2.02				Fold Change: 2.07	Fold Change: 2.08
P-value: 0	P-value: 0	P-value: 0				P-value: 0	P-value: 0
446 AI377937	AI377937					360.06+/-360.99	360.06+/-360.99
						150.11+/-76.77	160.98+/-94.5
×	×	×		×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.07	Fold Change: 2
						P-value: .00001	P-value: .0091
447 . AI378584 837.48+/-393.22		837.48+/-393.22				815.22+/-371.96	815.22+/-371.96
		288.6+/-150.82				263.18+/-114.79	231+/-80.99
N1=40, N2=168	N1=40, N2=168	N1=40, N2=168		×	×	N1=40, N2=31	N1=40, N2=10
Fold Change: 2.77	Fold Change: 2.77	Fold Change: 2.77		•		Fold Change: 2.89	Fold Change: 3.19
P-value: 0	P-value: 0	P-value: 0	ſ			P-value: 0	P-value: 0

1

F	Cod III	Conhank	Normal we All	Normal ve Malianant	Normal ve Stage I	Normal vs Stage II	Normal vs Stage III
٤	77 730	Celinalin	Morning 13 cm	TO WELL STANKEN	Togato of land total	Today /	77 227 7 700 000
225	448	AI379723	386.86+/-176.47		380.22+/-173.64	380.22+/-173.64	380.22+/-173.64
			126.18+/-143.63		136.6+/-134.47	87.51+/-60.3	68.16+/-48.01
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.46		Fold Change: 3.5	Fold Change: 4.24	Fold Change: 5.51
			P-value: 0		P-value: .03454	P-value: 0	P-value: 0
226	450	AI380204				194.43+/-169.86 361.5+/-246.51	
		·	×	×	×	N1=40, N2=31	×
						Fold Change: 2.15	
22.7	452	A1380932					191.48+/-96.27
į	•						387.31+/-138.62
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.16 P-value: .00071
228	456	AI381930	269.91+/-245.06		269.91+/-245.06	269.91+/-245.06	269.91+/-245.06
<u>}</u>	}		44.47+/-65.54		63,86+/-29,55	34.22+/-46.82	62.78+/-171.44
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 3.7		Fold Change: 3.2	Fold Change: 3.85	Fold Change: 3.91
			P-value: 0		P-value: .00133	P-value: 0	P-value: .0021
229	458	AI393356				74.44+/-64.03	
						339,43+/-658.29	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.18	
						P-value: .00164	
230	461	AI401832				72.16+/-151.56	
			×	×	×	N1=40, N2=31	×
			ľ			Fold Change: 2.63	
						P-value: .00745	
231	462	AI417267	927.3+/-482.64		933.35+/-487.41	933.35+/-487.41	933.35+/-487.41
		•	259.61+/-119.48		387.97+/-131.13	238.15+/-85.44	240.55+/-123.45
		•	N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.36		Fold Change: 2.11	Fold Change: 3.54	Fold Change: 3.74
			P-value: 0		P-value: .0003	P-value: 0	P-value: .00001

				M	M. C. C. C.	Manage of the Change	Normal an Stone III
*	Sed III	Gendank	Normal VS All	Normal vs Manghant	Normal vs Stage 1	IVOLUIAI VS Stage II	1101 Illiai va Stage III
232	463	AI417917	564.39+/-315.14			567.47+/-318.65	567.47+/-318.65
			271.17+/-167.23			218.33+/-110.93	115.26+/-82.27
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.25			Fold Change: 2.61	Fold Change: 5.16
			P-value: 0			P-value: 0	P-value: .00005
233	465	AI418481				77.52+/-60.1	
						257.35+/-253.01	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.83	
						P-value: 0	
234	466	AI418596					229.67+/-120.12
							43.69+/-43.08
			×	×	×	×	N1=39, N2=6
							Fold Change: 3.79
					-		P-value: 0
235	467	AI419030	446.12+/-255.78			445.97+/-259.12	445.97+/-259.12
			158.41+/-132.36			133,67+/-123.4	81.99+/-31.49
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.03			Fold Change: 3.56	Fold Change: 4.69
			P-value: 0			P-value: 0	P-value: 0
236	468	AI421837	294.7+/-145.9			293.96+/-147.73	293.96+/-147.73
			111.04+/-64.19			102.42+/-57.12	109.78+/-55.53
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.62			Fold Change: 2.8	Fold Change: 2.62
			P-value: 0			P-value: 0	P-value: .00166
237	469	AI431799			463.05+/-382.43		
					658.8+/-240.03		
			×	×	N1=40, N2=6	×	×
					Fold Change: 2		
					P-value: .00993		
738	471	AI435828				587.69+/-414.14	587.69+/-414.14
			1		i	299.14+/-555.14	119.5/+/-42.61
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.52	Fold Change: 3.9
						P-value: .00061	P-value: .00001

3	Co. T	Conhant	Normal vs All	Normal ve Malionant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
ا.	Oct 110	Genoalin	IVOI IIIAI VS FIII	TOT MAI 13 MAILEMAN	Tagma a min ion	To Superior to the superior to	0.
239	475	AI446030	383.04+/-264.2			383.04+/-264.2 987.66+/-795.06	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.29			Fold Change: 2.53	
240	476	A1446168	216 67+/-584 58			220,39+/-591.75	220.39+/-591.75
7	2		561.08+/-695.63			606.41+/-908.81	603.11+/-527.41
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.28			Fold Change: 3.51	Fold Change: 3.91
			P-value: 0			P-value: 0	P-value: .00476
241	477	AI458003	276.51+/-201.47		280.16+/-202.76	280.16+/-202.76	280.16+/-202.76
!	•		38.41+/-97.2		81.96+/-89.4	43.42+/-152.26	4.43+/-42.79
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 5.07		Fold Change: 3.22	Fold Change: 4.35	Fold Change: 7.36
			P-value: 0		P-value: .03405	P-value: 0	P-value: 0
247	482	A1468491					256.57+/-264.41
	•						84.09+/-113.95
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.68
				-			F-value: .00/90
243	487	AI480215	122,23+/-104.86			125.66+/-103.93	
			295.22+/-297.68			321.02+/-262.5	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.15			Fold Change: 2.49	
			P-value: .00005			P-value: .0002	
244	489	AI492051	384.45+/-175.99			382.34+/-177.78	382.34+/-177.78
			157.89+/-176.84			91.96+/-44.92	154.08+/-202.28
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.12			Fold Change: 4.08	Fold Change: 3.91
			P-value: 0			P-value: 0	P-value: .0032
245	490	AI492091					146.39+/-59.05
			×	*	*	×	321.61+/-116.38 N1=40. N2=10
			;	:	<u> </u>		Fold Change: 2.22 P-value: .00005

#	Sea ID	Genhank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
	9	0200071	214 22 1 / CEO 46		710 47±7 650 17	210 42±7,658 12	219 42±/-658 12
740	493	AL4928/9	214.23+/-030.40		213.424/-030.12	662 744/ 488 43	21.000-7-21.2
			465.24+/-396.65		76.007-/+00.//7	003./47/-400.43	0.100-111111
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 6.22		Fold Change: 3.72	Fold Change: 9.89	Fold Change: 14.12
			P-value: 0		P-value: .01903	P-value: 0	P-value: 0
247	494	AI498375	244.41+/-203.11		244.41+/-203.11	244.41+/-203.11	244.41+/-203.11
:	!		46+/-55.84		47,6+/-45.95	43.16+/-57.68	48.55+/-41.9
			N1=39, $N2=168$	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 3.62		Fold Change: 3.32	Fold Change: 3.62	Fold Change: 3.45
			P-value: 0		P-value: .00134	P-value: 0	P-value: .00002
248	498	AI499334	236.34+/-181.29		236.34+/-181.29		236.34+/-181.29
)) }		117.03+/-221.42		83.26+/-88.81		16.68+/-51.22
			N1=39, $N2=168$	×	NI=39, N2=10	×	N1=39, N2=6
			Fold Change: 2.28		Fold Change: 2.68		Fold Change: 4.22
			P-value: 0		P-value: .0244		P-value: 0
249	200	A1524085	380.84+/-525.16		388.89+/-529.52	388.89+/-529.52	388.89+/-529.52
))			54.03+/-109.2		35.06+/-63.65	36.84+/-79.16	8.33+/-48.11
			N1=40, N2=168	×	N1=40, N2=6	NI=40, N2=31	N1=40, N2=10
			Fold Change: 4.48		Fold Change: 4.76	Fold Change: 5.39	Fold Change: 7
			P-value: 0		P-value: .00065	P-value: 0	P-value: 0
250	501	AI525044	319.4+/-142.13			316,89+/-143.08	316.89+/-143.08
	!		131.06+/-178.35			121.55+/-76.85	65.73+/-20.84
			N1=40, $N2=168$	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.93			Fold Change: 2.83	Fold Change: 4.61
			P-value: 0			P-value: 0	P-value: 0
251	502	AI525601			•		223.25+/-101.98
							605.18+/-406.21
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.43
							P-value: .00221
252	504	AI535997	526.38+/-278.8			527.18+/-282.39	527.18+/-282.39
			203.43+/-127.91			182.64+/-99.43	177.05+/-109.73
			. N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.55			Fold Change: 2.76	Fold Change: 2.81
			P-value: 0			F-value: 0	r-value: .00003

*	Seg ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
253	506	AI539386	1911.09+/-2400.57 4189.96+/-4852.35 N1=40, N2=168 Fold Change: 2.2 P-value: .00002	×	×	1924.9+/-2430.34 4667.18+/-4736.01 N1=40, N2=31 Fold Change: 2.62 P-value: .00005	×
254	507	AI539443	105.57+/-75.36 244.51+/-212.14 N1=39, N2=168 Fold Change: 2.05 P-value: 0	×	×	105.57+/-75.36 235.02+/-188.35 N1=39, N2=31 Fold Change: 2.11 P-value: .00011	×
255	509	AI546943	×	×	×	×	310.79+/-204.98 120.98+/-130.81 N1=40, N2=10 Fold Change: 3.17 P-value: .01143
256	510	AI553918	831.82+/-279.85 384.25+/-176.84 N1=40, N2=168 Fold Change: 2.22 P-value: 0	×	×	821.96+/-276.38 364.75+/-169.81 N1=40, N2=31 Fold Change: 2.31 P-value: 0	821.96+/-276.38 378.99+/-216.53 N1=40, N2=10 Fold Change: 2.43 P-value: .00313
257	511	AISS4514	×	×	90.74+/-52.8 232.59+/-162.79 N1=40, N2=6 Fold Change: 2.54 P-value: .00734	×	×
258	512	AI557210	126.32+/-140.31 534.58+/-397.4 N1=40, N2=168 Fold Change: 4.98 P-value: 0	×	×	129.15+/-140.98 364.46+/-223.6 N1=40, N2=31 Fold Change: 3.55 P-value: 0	129.15+/-140.98 306.19+/-192.07 N1=40, N2=10 Fold Change: 2.84 P-value: .00915
	515	AIS60064	X	Χ .	×	885.2+/-306.13 473.3+/-341.89 N1=40, N2=31 Fold Change: 2.17 P-value: 0	885.2+/-306.13 284.56+/-117.13 N1=40, N2=10 Fold Change: 3.2 P-value: .00002

		,		7	Manage of the Stone of	Normal ve Stone II	Normal ve Stage III
#	Seq ID	Genbank	Normal vs All	Normal vs Mangnant	Mormal vs Stage 1	Ivol Illal vs Stage II	Ivoluidi va comporti
260	516	AI560159				249.15+/-159.54	249.15+/-159.54
) 	! !					475.18+/-183.53	849.92+/-667.24
			×	×	×	N1=40, N2=31	N1=40, N2=10
			4	ţ		Fold Change: 2.08	Fold Change: 3.13
						P-value: 0	P-value: .00061
197	517	AI566038	257.62+/-109.32			436.1+/-150.59	
			154 67+/-104 12			302.74+/-153.34	
			N1=39. N2=168	×	×	N1=39, N2=31	×
			Fold Change: 1.94			Fold Change: 1.57	
			P-value: 0			P-value: .00104	
292	523	AT583942	231.62+/-1223.34			237.55+/-1238.75	
			574.26+/-2305.76			1788.59+/-4779.29	
			N1=40 N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.18			Fold Change: 4.69	
			P-value: .00076		!	P-value: .00099	
263	524	A1587178					222.78+/-143.35
3							88.43+/-75.43
			×	×	×	×	N1=40, N2=10
			1				Fold Change: 2.64
					٠		P-value: .00579
264	576	A1580858	296 87+/-162 49			296.87+/-162.49	296.87+/-162.49
5	2		138 95+/-123			143.85+/-108.99	121.61+/-47.86
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.17	٠		Fold Change: 2.1	Fold Change: 2.31
			P-value: 0			P-value: .00002	P-value: .00132
265	527	A1590093	316.95+/-171.55			314.33+/-172.98	314.33+/-172.98
}	j		167.02+/-141.99			149.67+/-84.85	121.07+/-88.54
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.1			Fold Change: 2.08	Fold Change: 2.91
			P-value: 0			P-value: .00003	P-value: .00504
992	529	AI598252				417.54+/-196.25	
				;	;	833.814/-317.10	>
			×	×	×	NI=39, NZ=31	<
						Fold Change: 2.00	
						r-value.	

!

#	Sea ID	Genhank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
267	530	AI601149	270.5+/-122.37			267.15+/-122.1	267.15+/-122.1
			115.84+/-107.17			101.95+/-53.86	55.7+/-20.35
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.62			Fold Change: 2.69	Fold Change: 4.57
			P-value: 0			P-value: 0	P-value: 0
268	532	AI610837	2072.69+/-1692.17			2072.69+/-1692.17	2072.69+/-1692.17
			724.59+/-659.17			544+/-358.27	319.79+/-159.71
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.65			Fold Change: 3.17	Fold Change: 4.66
			P-value: 0			P-value: 0	P-value: 0
569	534	AI620381					610.77+/-316.3
							1217.36+/-274.04
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.16
							P-value: 0
270	535	AI624103	289.59+/-159.89		289.59+/-159.89	289.59+/-159.89	289.59+/-159.89
			123.14+/-143.73		116.4+/-81.91	82.42+/-59.19	71.19+/-34.34
			N1=39, $N2=168$	×	N1=39, N2=10	N1=39, N2=31	NI=39, N2=6
			Fold Change: 2.74		Fold Change: 2.65	Fold Change: 3.4	Fold Change: 3.74
			P-value: 0		P-value: .03426	P-value: 0	P-value: 0
271	537	AI631301	328.42+/-165.41			328.42+/-165.41	328.42+/-165.41
! :			126.68+/-74.53			111+/-70.99	58.7+/-32.01
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.52			Fold Change: 2.8	Fold Change: 5.02
			P-value: 0			P-value: 0	P-value: 0
272	538	AI631850				26.13+/-35.18	
					;	224.44+/-595.61	;
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.14	
						F-value: .00/64	
273	240	AI634852				2/8.0/+/-162.92	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2,18	
				•		r-value: .0011	

7#	Sea m	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
	120	Commun	in the initial contract of the			040 22 1/ 02 74	77 00 / 100 010
274	541	AI635774	212.33+/-93.64			212.33+/-93.64	212.33+/-93.64
			92.03+/-51.47			93.14+/-01.28	89.03+/-20.09
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.39			Fold Change: 2.5	Fold Change: 2.62
			P-value: 0			P-value: 0	P-value: .00169
275	546	AI650514	108.33+/-162.01		110.57+/-163.5	110.57+/-163.5	110.57+/-163.5
			321.96+/-278.48		306.38+/-174.2	495.16+/-349.41	380.44+/-266.81
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.14		Fold Change: 3.3	Fold Change: 5.31	Fold Change: 3.44
			P-value: 0		P-value: .02515	P-value: 0	P-value: .01035
276	550	AJ651732					200.01+/-105.06
	·						67.38+/-39.88
			×	×	×	×	N1=40, N2=10
							Fold Change: 3.01
							P-value: .00028
277	551	AI652058					182.73+/-51.39
							384.98+/-89.44
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.14
							P-value: 0
278	552	AI652459					724.8+/-344.86
							274.16+/-175.44
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.8
		٠					P-value: .00159
279	554	AI653487	251.37+/-223.37		251.37+/-223.37	251.37+/-223.37	251.37+/-223.37
			44.78+/-81.85		41.71+/-73.61	30.69+/-76.04	4.44+/-69.04
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 3.04		Fold Change: 3.36	Fold Change: 3.36	Fold Change: 4.16
			P-value: 0	,	P-value: .00441	P-value: 0	P-value: .00002
280	555	AI654035	227.06+/-388.81			227.06+/-388.81	
			65.4+/-275.63			56.3+/-242.23	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.9			Fold Change: 3.21	
i			P-value: .00003			P-value: .0001	

1	4	1	N	Menney I am Mallan	Mountain Chang	Normal ve Stone II	Normal ve Stane III
#	Sed III	Сепрапк	Normal vs Ali	Normal vs Manghant	Normal vs Stage 1	1101 Iliai vs Stage AL	Months of Stage Line
281	929	AI655499	46.97+/-125.7			47.75+/-127.24	
			313.1+/-881.21			453.25+/-957.09	-
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.28			Fold Change: 2.89	
287	560	A1656836	I -value. o				496.58+/-144.86
•	3						242.93+/-91.56
			×	×	×	×	N1=40, N2=10
			:				Fold Change: 2.07
							P-value: .00005
283	562	AI658925	545.69+/-343.76			542.56+/-347.67	542.56+/-347.67
?	<u>.</u>		259.08+/-213.04			233.63+/-187.46	164.54+/-115.15
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.3			Fold Change: 2.42	Fold Change: 3.62
			P-value: 0			P-value: .00001	P-value: .00181
284	563	AI658928	230.91+/-89.43			230.91+/-89.43	230.91+/-89.43
			89.62+/-64.08			75.71+/-63.86	130.21+/-102.4
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
•			Fold Change: 2.76			Fold Change: 3.17	Fold Change: 2.16
			P-value: 0			P-value: 0	P-value: .02073
285	565	AI659418					261.02+/-116.11
				•			125.48+/-61.12
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.05
							P-value: .00057
286	566	AI659533	566.04+/-199.44			563.4+/-201.34	563.4+/-201.34
			260.59+/-219.32			289.88+/-264.96	161.05+/-65.87
			NI=40, $N2=168$	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.68			Fold Change: 2.58	Fold Change: 3.49
			P-value: 0			P-value: 0	P-value: 0
287	568	AI659927					427.88+/-182.76
							161.17+/-86.36
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.71
							P-value: .00004

*#±	Sea ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
288	569	AI660245	119.06+/-130.86 277.49+/-246.97 N1=39, N2=168 Fold Change: 2.1 P-value: 0	×	×	×	119.06+/-130.86 357.85+/-302.39 N1=39, N2=6 Fold Change: 2.63 P-value: .01212
289	571	AI668620	×	×	×	1443.34+/-1731.78 1028.64+/-1669.79 N1=40, N2=31 Fold Change: 2.82 P-value: .01542	×
290	574	AI671836	×	X	×	X	112+/-77.42 229.83+/-111.91 N1=40, N2=10 Fold Change: 2.3 P-value: .00034
291	575	AI671984	×	×	×	×	172.75+/-104.93 326.06+/-163.08 N1=40, N2=10 Fold Change: 2.1 P-value: .00523
292	579	AI673539	×	×	×	285.7+/-185.25 643.27+/-468.95 N1=40, N2=31 Fold Change: 2.17 P-value: .00012	X
293	280	AI673735	×	X	X	281.86+/-139.36 128.43+/-98.38 N1=40, N2=31 Fold Change: 2.34 P-value: .00001	X
294	583	AI674603	×	×	×	278.54+/-168.6 119.84+/-49.46 N1=40, N2=31 Fold Change: 2.13 P-value: 0	×

# Seq ID Genbank Normal vs All 1295 584 Al675106 353.92+4-130.58 188.82+4-101.44 N1=39, N2=165 Fold Change: 2.6 Fold Change: 2.7 590 Al683036 106.33+4-110.7.5 N1=39, N2=166 Fold Change: 2.8 S91 Al683911 241.46+4-200.8 328.16+4-257.3 N1=39, N2=166 Fold Change: 4.6 Fold Change: 2.8 N1=40, N2=16 Fold Change: 2.8 N1=40, N2=16 Fold Change: 2.9 P-value: 0.000 P-value: 0.				I oboth on lower	
584 AI675106 588 AI680541 590 AI683036 591 AI683911 592 AI684457 593 AI686114	۱	NOTIFIED VS INTAILEDADL	Normal vs Stage 1	MOI III A SIABE TI	Not man vs Stage Litt
590 AI683036 591 AI683911 592 AI684457 593 AI686114 594 AI686316	353.92+/-130.58				
590 AI683036 591 AI683911 592 AI684457 593 AI686114 594 AI686316	188.82+/-101.49				
590 AI683931 591 AI683911 592 AI684457 593 AI686114 594 AI686316	N1=39, N2=168	×	×	×	×
590 AI683036 591 AI683911 592 AI684457 593 AI686114 594 AI686316	Fold Change: 2.02				
590 AI683036 591 AI683911 592 AI684457 593 AI686114 594 AI686316	P-value: 0				
590 AI683036 591 AI683911 592 AI684457 593 AI686114	516.15+/-202.37			510.08+/-201.29	510.08+/-201.29
590 AI683036 591 AI683911 592 AI684457 593 AI686114	138.66+/-107.52	•		149.24+/-129.55	101.96+/-86.37
590 AI683036 591 AI683911 592 AI684457 593 AI686114	N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
590 AI683036 591 AI683911 592 AI684457 593 AI686114 594 AI686316	Fold Change: 4.19			Fold Change: 3.77	Fold Change: 5.63
590 AI683036 591 AI683911 592 AI684457 593 AI686114 594 AI686316	P-value: 0			P-value: 0	P-value: .00001
591 AI683911 592 AI684457 593 AI686114 594 AI686316	106.33+/-110.74			106.33+/-110.74	
591 AI683911 592 AI684457 593 AI686114 594 AI686316	328.16+/-267.3	•		296.92+/-224.37	
591 AI683911 592 AI684457 593 AI686114 594 AI686316	N1=39, N2=168	×	×	N1=39, N2=31	×
591 AI683911 592 AI684457 593 AI686114 594 AI686316	Fold Change: 2.81			Fold Change: 2.63	
591 AI683911 592 AI684457 593 AI686114 594 AI686316	P-value: 0			P-value: 0	
592 AI684457 593 AI686114 594 AI686316	241.46+/-200.89			241.46+/-200.89	241.46+/-200.89
592 AI684457 593 AI686114 594 AI686316	35.47+/-57.1			28.41+/-33.49	29.45+/-35.37
592 AI684457 593 AI686114 594 AI686316	N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
592 AI684457 593 AI686114 594 AI686316	Fold Change: 4.64			Fold Change: 5.05	Fold Change: 5.29
592 AI684457 593 AI686114 594 AI686316	P-value: 0			P-value: 0	P-value: 0
593 AI686114 594 AI686316	96.99+/-74.31				
593 AI686114 594 AI686316	233.36+/-405.3				
593 AI686114 594 AI686316	N1=40, N2=168	×	×	×	×
593 AI686114 594 AI686316	Fold Change: 2				
593 AI686114 594 AI686316	P-value: .00001				
594 AI686316	375.54+/-271.13			374.48+/-274.59	
594 AI686316	158.93+/-158.15			155.96+/-124.29	
594 AI686316	N1=40, N2=168	×	×	N1=40, N2=31	×
594 AI686316	Fold Change: 2.67			Fold Change: 2.4	
594 AI686316	P-value: 0			P-value: .00006	
	255.25+/-97.58		255.25+/-97.58	255.25+/-97.58	255.25+/-97.58
N1=30	102.19+/-93.67		120.04+/-93.28	79.78+/-67.6	51.42+/-78.59
	N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
Fold Cha	Fold Change: 2.55		Fold Change: 2.52	Fold Change: 2.99	Fold Change: 3.34
P-val	P-value: 0		P-value: .0397	P-value: 0	P-value: .00001

7	Con TD	Conhonly	Normal ve All	Normal we Malianant	Normal ve Stage I	Normal ve Stage II	Normal vs Stage III
ŧ	nac hac	Genualik	IVOI III AI VS AIII	IVOI III AI TATAILEITAILE	TOT THE 13 CIERS	Tolum is sure	- August Harriston
302	595	AI689747	229.57+/-81.34			229.57+/-81.34	229.57+/-81.34
			113.53+/-98.71			120.42+/-76.86	74.4+/-34.38
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2,2			Fold Change: 2.07	Fold Change: 2.9
			P-value: 0			P-value: 0	P-value: 0
303	597	AI691077	201.9+/-110.51				
			84.62+/-106.12				
			N1=40, N2=168	×	×	×	×
			Fold Change: 2.35 P-value: 0				•
304	599	AI692687					215.65+/-82.22
	} .						106.33+/-67.45
			×	×	×	×	N1=39, N2=6
			<u> </u>				Fold Change: 2.27
							P-value: .00376
305	603	AI693690					187.55+/-153.71
:							419.84+/-166.89
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.84
			•			•	P-value: .00002
306	604	AI694059	256.63+/-189.71			256.63+/-189.71	256.63+/-189.71
			63.49+/-68.69			45.9+/-74.24	24.83+/-23.88
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 3.4			Fold Change: 3.8	Fold Change: 5.35
			P-value: 0			P-value: 0	P-value: 0
307	909	A1695684					284.08+/-85.43
							138.19+/-31.83
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.01
							P-value: 0
308	809	AI698134	801.15+/-394.52		803.86+/-399.3	803.86+/-399.3	803.86+/-399.3
			295.3+/-157.04		305.4+/-156.08	238.5+/-98.66	290.26+/-225.95
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.66		Fold Change: 2.52	Fold Change: 3.16	Fold Change: 3.23
			P-value: 0		P-value: .00483	P-value: 0	P-value: .00182

726	Generalia	TACHINIT OF	Tormar 13 maniguant	Todano de iniliador	70 + 00 / 10 + 00 +	70 400 / 104 404
	AI700484	404,49+/-304.86		404.49+/-304.86	404.49+/-304.86	404.49+/-304.86
		149.98+/-93.82		151.52+/-60.91	139.3+/-55.78	132.26+/-50.46
		N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
		Fold Change: 2.59		Fold Change: 2.49	Fold Change: 2.66	Fold Change: 2.75
		P-value: 0		P-value: .00796	P-value: 0	P-value: 0
	AI701034					215.78+/-96.65
						101.91+/-38.36
		×	×	×	×	N1=40, N2=10
						Fold Change: 2.03
						P-value: .00018
613	AI703441				166.32+/-110.39	166.32+/-110.39
					348.27+/-255.22	332.43+/-137.78
		×	×	×	N1=40, N2=31	N1=40, N2=10
					Fold Change: 2	Fold Change: 2.31
					P-value: .00052	P-value: .00003
614	AI703451				58.72+/-154.11	
					479.31+/-977.92	
		×	×	×	N1=40, N2=31	×
					Fold Change: 3.05	
					P-value: .00313	
615	AI707589	446.78+/-668.95			414.9+/-646.18	414.9+/-646.18
		359.77+/-1435.2			236.79+/-693.96	-8.82+/-71.63
		N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
		Fold Change: 2.73			Fold Change: 2.49	Fold Change: 4.36
		P-value: .00099			P-value: .01893	P-value: .00006
617	AI720763					216.2+/-123.53
						94,49+/-39.1
		×	×	×	×	N1=40, N2=10
						Fold Change: 2.05
						P-value: .00026
618	AI732274	926.55+/-985.51		947.08+/-989.69	69.686-/-80.046	947.08+/-989.69
		133.4+/-273.85		92.83+/-139.88	17.45+/-85.58	25.59+/-138.38
		N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
		Fold Change: 7.17		Fold Change: 8.37	Fold Change: 13.2	Fold Change: 14.18
		D.value. 0		P-value: .00451	P-value: 0	P-value: 0

.

#	Sea ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
		30000	0 002 7 122 000		225 110 200	275 01/ 505 22	275 04/ 506 22
316	619	AI733679	319.55+/-589.9		373.9+/-390.22	525.94/-590.22	27.05.1-1-22.05
			41.3+/-61.11		26.3+/-20.79	23.3+/-13.87	22.92+/-14.21
			N1=40. N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3 96		Fold Change: 4.56	Fold Change: 5.05	Fold Change: 5.39
			P-value: 0		P-value: .00001	P-value: 0	P-value: 0
317	621	A1740483					519.7+/-165.79
;	<u>;</u>						245.74+/-94.64
			×	×	×	×	N1=39, N2=6
							Fold Change: 2.11
							P-value: .00011
318	622	AI740516	23.68+/-49.95			24.14+/-50.52	
			230.26+/-254.07			211.05+/-266.38	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 5.25			Fold Change: 4.63	
			P-value: 0		,	P-value: 0	
319	623	AI740621	231.84+/-247.13			231.84+/-247.13	. 231.84+/-247.13
ì)		51.4+/-63.67			55.89+/-78.15	58.59+/-71.76
			N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.99			Fold Change: 2.92	Fold Change: 2.89
			P-value: 0			P-value: .00006	P-value: .00645
320	624	AI741026	324.97+/-140.14			321.67+/-140.4	
			152.41+/-75.46			156.42+/-93.26	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.1			Fold Change: 2.06	
			P-value: 0			r-value: 0	C7 CC+ / - OH +++
321	627	AI742002	109.12+/-131.8		111.78+/-132.43	111.78+/-132.43	111.78+/-132.43
			356.63+/-240.05		392.25+/-219.22	395.11+/-2/8.86	430.05+/-230.92
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.82		Fold Change: 4.18	Fold Change: 3.97	Fold Change: 4.87
			P-value: 0		P-value: .00524	P-value: 0	P-value: 0
322	628	AI742057	200.43+/-229.58			203.47+/-231.77	203.47+/-231.77
			445.89+/-295.68			460.52+/-275.2	448.38+/-232.46
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.37			Fold Change: 2.6	Fold Change: 2.46
			P-value: 0			P-value: 0	P-value: .00303

i

#	Sea 1D	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
323	629	AI742239	160.34+/-196.79			159.76+/-199.32	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.24			Fold Change: 3.17	
27.4	631	A1742490	608 25+/-253 14			601 57+/-252 84	601 57+/-252 84
•			244.8+/-205.92			202.34+/-107.23	135.78+/-110.24
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.99			Fold Change: 3.01	Fold Change: 5.03
			P-value: 0			P-value: 0	P-value: .00005
325	632	AI742521	213.11+/-232.57		215.93+/-234.91	215.93+/-234.91	215.93+/-234.91
			35.67+/-56.27		60.9+/-90.73	35.9+/-49	21.54+/-22.52
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.92		Fold Change: 3.31	Fold Change: 3.94	Fold Change: 4.49
			P-value: 0		P-value: .02617	P-value: 0	P-value: 0
326	635	AI743671	578.21+/-315.16			582.82+/-317.91	582.82+/-317.91
			225.87+/-183.42			172.55+/-151.01	150.6+/-109.83
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.79			Fold Change: 3.82	Fold Change: 3.98
			P-value: 0			P-value: 0	P-value: .0009
327	636	AI743715	320.58+/-241.61			312.02+/-238.55	312.02+/-238.55
			99.04+/-151.07			78.92+/-130.98	17.92+/-64.11
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.54			Fold Change: 4.04	Fold Change: 6.18
			P-value: 0			P-value: 0	P-value: .00001
.328	637	A1743925	665.72+/-305.69				
			344.09+/-309.12				!
			N1=40, N2=168	×	×	×	×
			Fold Change: 2.33				
_	ļ		P-value: 0				
329	639	AI745624				210.12+/-81.11 116.93+/-65.22	
			×	×	×	N1=39, N2=31	×
				•		Fold Change: 1.89	
						A . A de dans .	

# Seq D Cenbank Normal vs Malignant Normal vs Stage 1 (1911-1973) 43 (1911-1973) 44 (1911-1973) 43 (1911-1973)						T C4 T	Mountain Stone II	Normal vs Stage III
March Marc	*	Sed ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage 1	TOT III 19 Ouge	N N 20 / 1 30 E03
12.71+/328.09	525	640	A1750575	702 71+/-253 03			697.86+/-254.44	697.80+/-254.44
Miled, M2=18	25	•		412 71+/-328 09			377.83+/-298.25	275.21+/-286.22
Fold Change: 2.14 Fold Change: 4.71 466.36+4.71.12 466.36+4				2007C-111771+	*	×	N1=40, N2=31	N1=40, N2=10
Fold Change: 2.14 Fold Change: 4.14 Fold Change: 4.17 Fold Change: 4.17 Fold Change: 4.17 Fold Change: 4.71 Fold Change: 3.11 Fold Change: 3.12 Fold Change: 3.13 Fold Change: 3.13 Fold Change: 9.32 Fold Change: 2.07				To 14 Office 2 14		•	Fold Change: 2.36	Fold Change: 3.89
641 Al751438 141.87.15 642 Al751438 141.87.15 643 Al752682 1636 X X X 10.24.71.11 Fold Change: 4.71 Fold Change: 4.71 Fold Change: 3.51 Fold Change: 3.61 Fold Change: 3.62 Fold Change: 3.63 Fold Change: 3.64 Fold Change: 3.64 Fold Change: 3.65 Fold Change: 3.67 Fold Change: 3.67 Fold Change: 0.2 Fold Change: 0.3 Fold Change: 2.07 Fold Change: 2.				rold Change: 2.14 D-value: 0			P-value: .00005	P-value: .00699
Miled, N2=168	;	153	A 1751 430	141 85±/-187 15			144.67+/-188.73	144.67+/-188.73
No. of Change: 4.71 P-value: 0 P	121	0 4 1	AL/31430	65. ACT /+CO 959			466.36+/-471.12	306.05+/-201.86
Fold Change: 3.51				N1=40 N2=168	×	×	N1=40, N2=31	N1=40, N2=10
Alt				Fold Change: 4.71	.		Fold Change: 3.51	Fold Change: 2.79
642 AI752682 375.264-189.17 369.824-189.17 642 AI752682 375.264-189.87 X 148.94+1-124.57 1 (60.22+-155.84) X X N1-40, N2-31 Fold Change: 3.01 P-value: 0.0001 P-value: 0.0001 P-value: 0 833.52+1-665.83 833.52+1-665.83 Fold Change: 9.32 N1-40, N2-81.67 N1-40, N2-81.67 N1-40, N2-81.68 N N1-40, N2-81.67 Fold Change: 9.32 P-value: 0.02859 P-value: 0.09 Fold Change: 0.285 P-value: 0 P-value: 0.02859 A1758408 X X X X X X X X X X X X X X X Fold Change: 2.02 Fold Change: 2.07 Fold Change: 0.2859 P-value: 0 Fold Change: 0.2859 P-value: 0 Fold Change: 2.02 Fold Change: 2.02 Fold Change: 2.02 Fold Change: 2.03 Fold Change: 2.02 Fold Change: 2.03 Fold Change: 2.02				D-value: 0			P-value: 0	P-value: .00492
643 AI758123 SB 644-L124.57 AI 148.94+-124.57 643 AI758223 SB 6024-L155.84 X N1=40, N2=31 Fold Change: 3.01 P-value: 0.00001 P-value: 0.00001 P AI75823 R36.074-L657.44 R33.524-L665.83 R33.524-L665.83 643 AI75823 R36.074-L657.44 X N1=40, N2=31 Fold Change: 9.32 P-value: 0 P-value: 0 P-value: 0 Fold Change: 9.32 X X X 644 AI758408 X X X x X X X X x X X X X x X X X X x X X X X x X X X X x X X X X x X X X X x X X X X x X X	3	(4)	(0)(3114	275 26±/-180 87			369.82+/-189.17	369.82+/-189.17
Fold Change: 3.01	337	740	AJ /32002	160 224/1588/			148.94+/-124.57	76.67+/-82.11
Fold Change: 2.85 Fold Change: 2.81				100.22.7-155.84 NI-40 M2-168	*	×	N1=40, N2=31	N1=40, N2=10
P-value: 00001				E-14 Change: 2 01	<i>d</i>		Fold Change: 2.85	Fold Change: 5.81
643 AI758223 836.074-665.83 833.524-65.34 833.524-65.34				rold Change, 5.01			P-value: .00001	P-value: .00014
643 AI758243 6350/7/-057.444 215.947-314.77 164.7647-581.67 N1=40, N2=168				P-Value: U		833 57+/-685 83	833.52+/-665.83	833.52+/-665.83
153.81+7-430.44	333	643	A1758223	836.0/+/-03/.44		215 0+/-314 77	164 76+/-581.67	52.12+/-64.89
N1=40, N2=168				153.81+/-456.44	,	7	N1=40 N2=31	N1=40, N2=10
Fold Change: 9.32 Fold Change: 9.32 P-value: 0 P-value: 0.2859 P-value: 0.2859 P-value: 0 P-value: 0.2859 P-value: 0 P-value: 0.2859 P-value: 0 P-value: 0.2859 P-value: 0 P-value: 01579 P-value: 0272 P-value: 00272 P-value: 00272				N1=40, N2=168	×	NI=40, NZ=0	16-2N (9H IN	E-14 Change 14 24
644 AJ758408 X X X X X X X X X X X X X				Fold Change: 9.32		Fold Change: 6.2	Fold Change: 10.39	rold Change, 14.24
644 AI758408 X X X X X X X X X In 208.69+/-65.34 102.62+/-62.32 In 2.48+-38.82 In 39, N2=31 Fold Change: 2 P-value: 0 P-value: 0.1579 P-value: 0.1579 P-value: 0.1579 Rold Change: 2.3 Fold Change: 2.3 Fold Change: 2.3 Fold Change: 2.07 P-value: 0.0579 P-value: 0.0572				P-value: 0		P-value: .02859	P-value: 0	P-value: 0
645 AI760319 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-65.34 102.68+/-38.82 N1=39, N2=10 N1=39, N2=31 P-value: 0 D-value:	1	133	A1750400					383.82+/-126.82
645 AI760319 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 102.68+/-38.82 102.68+/	334	044	A1/36400					188.25+/-213.28
645 AI760319 208.69+/-65.34 208.69+/				>	>	×	× ×	N1=40, N2=10
645 AI760319 208.69+/-65.34 208.69+/				<	*			Fold Change: 3.58
645 AI760319 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.69+/-65.34 208.82 209.N2=10 N1=39, N2=31 N2=31 P-value: 0 691.21+/-512.28 259.02+/-226.94 N1=40, N2=31 N1=40, N2=31 P-value: .0372 P-value: .0372 P-value: .0372								P-value: .01039
646 AI760319 105.79+/-40.89 X 102.62+/-62.32 102.48+/-38.82	200		41760210	PE 59-/+09 8UC		208.69+/-65.34	208.69+/-65.34	208.69+/-65.34
N1=39, N2=10 N1=39, N2=31 N1=39, N2=16 Fold Change: 2.07 Fold Change: 2.07 Fold Change: 2.07 P-value: 0.1579 P-value: 0.1579 Fold Change: 2.07 P-value: 0.1579 P-value: 0.1579 Fold Change: 2.07 Fold Change: 2.07 Fold Change: 2.07 Fold Change: 2.07 Fold Change: 2.3 Fold	333		AL/00319	105 70+/ 40 80		102.62+/-62.32	102.48+/-38.82	104.41+/-52.84
Fold Change: 2.07 X X X X Fold Change: 2.07 Fol				M1=20 M2=168	*	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
646 AI760370 P-value: 0 P-value: .01579 P-value: 0 P-value: .01579 P-value: 0 691.21+/-512.28 259.02+/-226.94 X X X N1=40, N2=31 Fold Change: 2.3 P-value: .00272				Eold Change: 2		Fold Change: 2.02	Fold Change: 2.07	Fold Change: 2.13
646 AI760370 691.21+/-512.28 546 AI760370 259.02+/-212.28 X X N1=40, N2=31 Fold Change: 2.3 P-value: .00272				Fold Change, 2		P-value: .01579	P-value: 0	P-value: .00136
259.02+/-226.94 X	Ş	ı	417/02/70	r-vainc. o			691.21+/-512.28	691.21+/-512.28
X N1=40, N2=31 Fold Change: 2.3 P-value: .00272	330		AL/003/0				259.02+/-226.94	142.47+/-133.11
Fold Change: 2.3 P-value: .00272				>	×	×	N1=40, N2=31	N1=40, N2=10
							Fold Change: 2.3	Fold Change: 4.03
							P-value: .00272	P-value: .00082

#	Sea D	Genhank	Normal vs All	Normal vs Malionant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
337	648	AI760589	×	×	×	81.29+/-140.48 214.53+/-216.44 N1=40, N2=31 Fold Change: 3.26	×
338	649	AI761241	891.41+/-331.82 417.19+/-273.72 N1=40, N2=168 Fold Change: 2.32 P-value: 0	×	×	883.3+/-332.12 352.83+/-245.83 N1=40, N2=31 Fold Change: 2.7 P-value: 0	883.3+/-332.12 238.36+/-101.2 N1=40, N2=10 Fold Change: 3.83 P-value: .00005
339	650	AI761274	346.01+/-181.77 114.5+/-91.9 N1=40, N2=168 Fold Change: 3.44 P-value: 0	×	×	342.36+/-182.65 121.75+/-92.05 N1=40, N2=31 Fold Change: 3.23 P-value: 0	342.36+/-182.65 77.48+/-76.11 N1=40, N2=10 Fold Change: 4.73 P-value: .00028
340	651	AI761782	×	X	×	×	41.02+/-103.08 282.44+/-98.22 N1=39, N2=6 Fold Change: 6.26 P-value: 0
341	652	AI761844	284.64+/-141.48 117.61+/-150.43 N1=40, N2=168 Fold Change: 2.8 P-value: 0	×	X	278.83+/-138.41 132.4+/-302.8 N1=40, N2=31 Fold Change: 3.35 P-value: 0	278.83+/-138.41 94.71+/-60.55 N1=40, N2=10 Fold Change: 3.05 P-value: .0007
342	654	AI763298	247.25+/-99.93 113.86+/-100.53 N1=40, N2=168 Fold Change: 2.6 P-value: 0	X	×	242.06+/-95.62 148.77+/-173.93 N1=40, N2=31 Fold Change: 2.29 P-value: .00002	242.06+/-95.62 84.64+/-67.22 N1=40, N2=10 Fold Change: 3.32 P-value: .00045
343	655	AI766029	265.74+/-522.75 15.92+/-35.83 N1=40, N2=168 Fold Change: 3.94 P-value: 0	×	271.74+/-528.19 11.19+/-13.38 N1=40, N2=6 Fold Change: 4.33 P-value: 0	271.74+/-528.19 4.73+/-8.61 N1=40, N2=31 Fold Change: 4.64 P-value: 0	271.74+/-528.19 8.83+/-25.01 N1=40, N2=10 Fold Change: 4.09 P-value: 0

X X X 213.16+1-92.6 101.34+1-76.51 X N1=39, N2=31 Fold Change: 2.13 P-value: 0 453.96+1-339.09 129.2+1-107.13 X N1=40, N2=31 Fold Change: 3.2 P-value: 0 X X X X X X X X X X X X X X X X X X	ID Genbank	Genbank		Normal vs All	Normal vs Malienant	Normal ve Stage I	NT	
213.164/-92.6 101.344/-76.51 X	659 AI768777 X		×		×	X	Normal vs Stage II	Normal vs Stage III 263.99+/-143.63 686.1+/-326.01 N1=40, N2=10 Fold Change: 2,67
X	661 AI769559 X	,	×	1	×	×	213.16+/-92.6 101.34+/-76.51 N1=39, N2=31 Fold Chance: 2.13	P-value: .00011
X X X X X X X X X X X X X 93.82+/-112.78 202.01+/-224.89 X N1=40, N2=31 Fold Change: 2.02 P-value: .00448 112.38+/-143.52 510.79+/-557.67 X N1=40, N2=31 Fold Change: 3.97 Fold Change: 3.97 Fold Change: 3.97 Fold Change: 3.97 Fold Change: 3.97	662 AI770080 450.33+/-335.5 166.16+/-190.29 N1=40, N2=168 Fold Change: 2.79		450.33+/-335.5 166.16+/-190.29 N1=40, N2=168 Fold Change: 2.79		×	×	P-value: 0 453.96+/-339.09 129.2+/-107.13 N1=40, N2=31 Fold Chance: 3.2	453.96+/-339.09 94.56+/-93.08 N1=40, N2=10
X X 93.82+/-112.78 202.01+/-224.89 X N1=40, N2=31 Fold Change: 2.02 P-value: .00448 112.38+/-143.52 510.79+/-557.67 X N1=40, N2=31 Fold Change: 3.97			767.15+/-947.17 1513.38+/-2167.1 N1=40, N2=168 Fold Change: 2.14 P-value: .00537		×	×	P-value: 0 X	P-value: .00046
93.82+/-112.78 202.01+/-224.89 X N1=40, N2=31 Fold Change: 2.02 P-value: .00448 112.38+/-143.52 510.79+/-557.67 X N1=40, N2=31 Fold Change: 3.97	005 AI791632 255.06+/-150.68 122.84+/-86.83 N1=40, N2=168 Fold Change: 2.22 P-value: 0		255.06+/-150.68 122.84+/-86.83 N1=40, N2=168 Fold Change: 2.22 P-value: 0		· ×	×	×	255.06+/-150.68 96.82+/-63.86 N1=40, N2=10 Fold Change: 2.58
112.384/-143.52 510.794/-557.67 X N1=40, N2=31 Fold Change: 3.97	A170201A		×	1	×	×	93.82+/-112.78 202.01+/-224.89 N1=40, N2=31 Fold Change: 2.02 P-value: 00448	r-value: .00084
	112.38+/-143.52 558.02+/-937.45 N1=40, N2=168 Fold Change: 3.33 P-value: 0		112.38+/-143.52 558.02+/-937.45 N1=40, N2=168 Fold Change: 3.33 P-value: 0		×	×	112.38+/-143.52 510.79+/-557.67 N1=40, N2=31 Fold Change: 3.97	112.38+/-143.52 849.79+/-711.76 N1=40, N2=10 Fold Change: 7.3

7	Co. TO	Conhonit	Mountaine All	Normal we Melianent	Normal we Stone I	Normal ve Stage II	Normal ve Stage III
<u> </u>	oed tro	Gennalik	INOCHIEN VS AND	1101 mai vo iviangmani	Ivol mai vs Stage I	Ivolulial vs Stage 11	Tablinal vs Suge
351	670	AI795953	407.3+/-278.56		407.3+/-278.56	407.3+/-278.56	407.3+/-278.56
			146.44+/-111.32		173.14+/-117.81	122.61+/-57.78	137.64+/-123.78
			NI=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.62		Fold Change: 2.32	Fold Change: 2.89	Fold Change: 3.16
			P-value: 0		P-value: .03224	P-value: 0	P-value: .00069
352	671	AI796083			114.7+/-66.6		
					207.1+/-77.72		•
			×	×	N1=40, N2=6	×	×
					Fold Change: 2.06		
					P-value: .00108		
353	672	AI796210	300.25+/-171.19			300.25+/-171.19	300.25+/-171.19
			136.42+/-160.54			142.27+/-164.88	68.23+/-32.91
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.45			Fold Change: 2.36	Fold Change: 3.93
			P-value: 0			P-value: 0	P-value: 0
354	673	AI797063	217.39+/-201.68			220.19+/-203.53	220.19+/-203.53
			181.18+/-462.43			161.62+/-454.65	58.77+/-92.21
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.2			Fold Change: 3.09	Fold Change: 3.3
			P-value: .00014			P-value: .00028	P-value: .00535
355	674	AI797276	270.66+/-135.07		271.48+/-136.73	271.48+/-136.73	271.48+/-136.73
			91.42+/-65.13		110.91+/-50.09	84.22+/-53.14	51.53+/-37.65
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.1		Fold Change: 2.28	Fold Change: 3.2	Fold Change: 5.08
			P-value: 0		P-value: .00368	P-value: 0	P-value: 0
356	675	AI797788					268.73+/-161.42
			×	×	×	×	NI=40, N2=10
			•	•	!		Fold Change: 2.27
							P-value: .00827
357	929	AI798144	74.39+/-112.61				
			243.81+/-208.55	;	;	;	,
			N1=39, N2=168	×	≺.	×	~
			Fold Change: 2.13				
			r-value: 0				

	1	1	M. A.II	NT	70 1		70
ŧ	Sed III	Сепрапк	Normai vs Ali	Normal Vs Mangnant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
358	829	AI799784	599.82+/-379.39		603.99+/-383.42	603.99+/-383.42	603.99+/-383.42
			67.15+/-81.53		148.43+/-186.96	63.08+/-91.29	38.2+/-47.49
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 9.18		Fold Change: 5.77	Fold Change: 10.41	Fold Change: 14.19
			P-value: 0		P-value: .01759	P-value: 0	P-value: 0
359	681	AI801545	-				107.72+/-63.11
							240.16+/-135.66
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.33
							P-value: .00036
360	682	AI803208					358.64+/-152.22
							196.65+/-140.61
			×	×	×	×	N1=39, N2=6
							Fold Change: 2.05
192	203	A 1002640	107 02±/ 100 0				r-value: .01440
1	000	ALOUSU46	6, 105, 11, 105,				
		•	295.41+/-304.62				
			NI=39, N2=168	×	×	×	×
			Fold Change: 2.31				
			P-value: 0				
362	684	AI804054	307.23+/-232.94			302.97+/-234.41	302.97+/-234.41
			92.54+/-103.69			73.14+/-50.57	43.17+/-28.15
			N1=40, N2=168	×	×	N1=40, N2=31	NI=40, N2=10
			Fold Change: 3.71			Fold Change: 3.81	Fold Change: 5.95
			P-value: 0	•		P-value: 0	P-value: 0
363	989	AI806221	206.98+/-125.27		206.98+/-125.27	206.98+/-125.27	206.98+/-125.27
			57.8+/-39.92		64.87+/-57.18	49.38+/-39.25	31.17+/-27.12
		,	N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
		٠	Fold Change: 3.4		Fold Change: 2.98	Fold Change: 3.82	Fold Change: 5.54
			P-value: 0		P-value: .00675	P-value: 0	P-value: 0
364	687	AI806324	214.04+/-130.5			211.46+/-131.17	211.46+/-131.17
			64.16+/-76.08			48.58+/-64.25	21.48+/-26.9
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.61 P-value: 0			Fold Change: 4.36	Fold Change: 6.44
			0 :000			o contra	- inino:

:

	8		N. T. L.	A	Money of the Change	Normal via Stone II	Normal ve Stone III
ŧ	Sed III	Genbank	Normal vs All	Normal vs Manghant	Normal vs Stage I	Normal vs Stage II	Ivol mai vs Stage Litt
365	069	AI809925				283.79+/-467.54	283.79+/-467.54
						92.99+/-60.68	72.84+/-38.61
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.37	Fold Change: 3.03
						P-value: .00001	P-value: .00019
366	169	AI809953	383.3+/-186.88			383.43+/-189.32	383.43+/-189.32
			78.06+/-108.22			59.3+/-98.99	19.05+/-40.62
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 5.91			Fold Change: 7.01	Fold Change: 10.5
			P-value: 0			P-value: 0	P-value: 0
367	692	AI810042					494.45+/-173.8
				•			211.09+/-46.06
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.24
							P-value: 0
368	693	AI810266	68.69+/-105.28		68.88+/-106.64	68.88+/-106.64	68.88+/-106.64
			955.73+/-1984.55		1044.03+/-865.49	1634.45+/-2196.2	521.04+/-362.47
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 6.41		Fold Change: 16.18	Fold Change: 13.8	Fold Change: 9.22
	-		P-value: 0		P-value: .00033	P-value: 0	P-value: 0
369	694	AI810764			-	202.16+/-159.83	
						408.84+/-303.87	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.01	
				,		P-value: .00293	
370	700	AI816806	551.09+/-313.71			560.99+/-311.41	560.99+/-311.41
			267.19+/-176.02			242.91+/-135.88	221.89+/-110.66
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.1			Fold Change: 2.3	Fold Change: 2.4
			P-value: 0	•		P-value: 0	P-value: .00018
371	701	AI816835	360.85+/-289.77			360.85+/-289.77	360.85+/-289.77
			146.43+/-155.9			158.38+/-181.37	80.71+/-87.22
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.82			Fold Change: 2.55	Fold Change: 4.99
			P-value: 0			r-value: .00002	r-value: .00040

**	Sea ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
372	702	AI817448	×	×	×	×	241.5+/-87.57 116.59+/-51.83 N1=40, N2=10 Fold Change: 2.2 P-value: .003
373	703	AI817698	×	×	×	879.11+/-582.6 519.31+/-493.58 N1=40, N2=31 Fold Change: 2.38 P-value: .0048	×
374	706	AI818579	396.29+/-225.56 181.53+/-192.42 N1=40, N2=168 Fold Change: 2.49 P-value: 0	X	×	394,08+/-228,07 173,3+/-120.25 N1=40, N2=31 Fold Change: 2.39 P-value: .00004	×
375	707	AI819198	×	×	×	24.28+/-46.39 341.95+/-719 N1=40, N2=31 Fold Change: 2.75 P-value: .00243	×
376	708	AI819340	60.25+/-126.35 301.57+/-342.95 N1=40, N2=168 Fold Change: 3.51 P-value: 0	×	63.25+/-126.56 247.5+/-201.27 N1=40, N2=6 Fold Change: 3.53 P-value: .04505	63.25+/-126.56 468.97+/-447.94 N1=40, N2=31 Fold Change: 5.82 P-value: 0	63.25+/-126.56 450.47+/-509.91 N1=40, N2=10 Fold Change: 4.85 P-value: .00541
377	709	AI820661	-117.72+/-96.27 255.76+/-788.64 N1=40, N2=168 Fold Change: 2.95 P-value: 0	X	×	×	×
378	711	AI821432	X	X	×	349.15+/-245.88 114.84+/-86.63 N1=40, N2=31 Fold Change: 2.66 P-value: .00004	349.15+/-245.88 55.83+/-64.32 N1=40, N2=10 Fold Change: 5.96 P-value: .00004

#	Sed ID	Genbank	Normal vs All	Normal vs Malignant	Normal ve Stage I	Normal ve Ctore II	Mountain Character
270	71.2	A TO31 473	201021100	The West of the House	Louinal vs Stage I	Ivol mai vs Stage II	Normal vs Stage III
616	77,	A10214/2	324.32+/-685.96		519.11+/-694.13	519.11+/-694.13	
			77.79.71		10.64+/-179.34	83.31+/-629.25	
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	×
			Fold Change: 5.78		Fold Change: 4.41	Fold Change: 5.76	
1			P-value: 0		P-value: .02894	P-value: 0	
380	713	A1823572	231.34+/-193.19			232.21+/-195.63	
			124.55+/-179.13			80.48+/-58.66	
			N1=40, N2=168	×	×	N1=40. N2=31	×
			Fold Change: 2.37			Fold Change: 2.82	
			P-value: 0			P-value: 0	
381	714	AI823649	88.12+/-78.99			88.12+/-78.99	88.12+/-78.99
			225.47+/-213.09			223.88+/-174.27	239.23+/-237.92
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.16			Fold Change: 2.31	Fold Change: 2.2
			P-value: 0			P-value: 0	P-value: .01309
382	720	AI825877				418.53+/-162.52	418.53+/-162.52
			i			174.35+/-58.42	183.59+/-84.31
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.28	Fold Change: 2.23
						P-value: 0	P-value: .00011
383	722	A1826437	44.87+/-117.62			45.86+/-118.99	
			241.17+/-525.8			347.56+/-551.29	
			N1=40, N2=168	×	×	NI=40, N2=31	×
			Fold Change: 2.29			Fold Change: 3.07	
1			P-value: 0			P-value: .00134	
384	57/	A1827230	711.88+/-268			708.38+/-270.57	708.38+/-270.57
			323.09#/-167.35	;		266.08+/-114.65	273.56+/-97.64
			N1=40, N2=168	×	×	NI=40, N2=31	N1=40, N2=10
			Fold Change: 2.22			Fold Change: 2.67	Fold Change: 2.5
			P-value: 0			P-value: 0	P-value: 0
385	724	AI827248					1009.54+/-892.35
				. ;	,		424.88+/-561.45
			<	×	×	×	N1=40, N2=10
							Fold Change: 3.8
							P-value: .0309

	6		MT 1 A 11		F	11 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	N
±	Sed 110	Genoank	Normal Vs All	Normal vs Mangnant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
386	725	AI828075					55.74+/-25.88 208.73+/-146.52
			×	×	×	×	N1=40, N2=10
							Fold Change: 3.44 P-value: .0001
387	730	AI829520	78.95+/-63.55				
			221./5+/-308.11 N1=39, N2=168	×	×	×	×
			Fold Change: 2.05 P-value: 0				
388	733	AI833102					152.23+/-73.43
			;	:		;	301.22+/-134.13
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.05
389	734	A1857788					201.77+/-88.15
							79.71+/-43.65
			× .	×	×	×	N1=40, N2=10
							Fold Change: 2.61
							P-value: .00082
390	735	AI857856				157.81+/-89.37	157.81+/-89.37
						341.48+/-151.28	329.17+/-128.25
			×	×	×	N1=39, N2=31	N1=39, N2=6
						Fold Change: 2.22	Fold Change: 2.15
						P-value: 0	P-value: .00013
391	739	AI859620	47.7+/-100.9			47.7+/-100.9	47.7+/-100.9
	•		335.29+/-308.39			292.66+/-218.11	289.43+/-181.71
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 4.1			Fold Change: 4.09	Fold Change: 3.84
			P-value: 0			P-value: 0	P-value: .00203
392	740	A1860012				91,22+/-72,75	91.22+/-72.75
						226.82+/-105.84	232.58+/-120.25
			×	×	×	N1=39, N2=31	N1=39, N2=6
						Fold Change: 2.64 P-value: 0	Fold Change: 2.58 P-value: .00185

-

3	Coo III	Conbonk	Normal we All	Normal ve Malianant	Normal ve Stane I	Normal ve Stage II	Normal ve Stage III
393	742	AI860651				183.59+/-123.14	d
			×	×	×	N1=40, N2=31	×
						roid Change: 2.2 P-value: 0	
394	743	AI863166			225.98+/-111.31 101.21+/-69.32		
			×	×	N1=39, N2=10	×	×
					Fold Change: 2.4		
305	747	A1864898	406.1+/-256.59		r-value: .04/3	401.86+/-258.51	401.86+/-258.51
	•		54.76+/-81.97			39.21+/-56.87	31.77+/-56.32
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 8.17			Fold Change: 9.5	Fold Change: 10.87
			P-value: 0			P-value: 0	P-value: 0
396	748	A1868289				386.08+/-242.58	386.08+/-242.58
						184.36+/-111.4	156.1+/-103.22
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.22	Fold Change: 2.54
						P-value: .00003	P-value: .00207
397	750	AI871044	777.08+/-499.12			766.39+/-500.99	766.39+/-500.99
			185.08+/-242.68			180.1+/-276.48	112.03+/-106.51
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.86			Fold Change: 5.2	Fold Change: 6.31
			P-value: 0			P-value: 0	P-value: 0
398	751	AI872267	267.23+/-203.1			267.23+/-203.1	267.23+/-203.1
			574.94+/-319.02			557.03+/-278.09	504.87+/-295.04
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.41			Fold Change: 2.36	Fold Change: 2.17
			P-value: 0			P-value: .00001	P-value: .00277
399	753	AI885164					99.32+/-89.64
							276.5+/-111.42
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.94
							P-value: .00002

!

1

	5		, , ,				
*	Sed ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
400	754	AI885498	220.94+/-153.32 574.07+/-702.09				
			N1=40, N2=168 Fold Change: 2.02	×	×	×	×
104	755	A1885781	20000:000			210 35+/-100 40	210 35+/-100 40
2)					555 0511 207.45	2 COV 1 - CV COS
			ļ	,	;	0.000,000	202.434/-403.3
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.14	Fold Change: 2.47
						P-value: .00015	P-value: .00109
402	757	AI887362				817.12+/-289.64	817.12+/-289.64
						355.42+/-140.94	243.89+/-105.11
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.26	Fold Change: 3.29
						P-value: 0	P-value: 0
403	758	AI888322				319.22+/-320.74	319.22+/-320.74
						161.88+/-221.65	108.01+/-133
			×	×	×	NI=40, N2=31	N1=40, N2=10
						Fold Change: 2.73	Fold Change: 3.9
						P-value: .00024	P-value: .00657
404	761	AI889178			372.23+/-146.77	372.23+/-146.77	372.23+/-146.77
					183.45+/-70.01	196.21+/-126.54	194.59+/-97.59
			×	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
					Fold Change: 2.03	Fold Change: 2.04	Fold Change: 2.03
					P-value: .00518	P-value: 0	P-value: .00236
405	762	AI889959				140.79+/-151.42	140.79+/-151.42
						298.84+/-296.55	319.25+/-177.44
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.11	Fold Change: 2.62
						P-value: .00028	P-value: .00302
406	763	AI890418	218.25+/-140.58		218.25+/-140.58	218.25+/-140.58	218.25+/-140.58
			37.18+/-39.2		76.35+/-66.16	35.49+/-32.04	26.22+/-48
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
	-		Fold Change: 3.82		Fold Change: 3.02	Fold Change: 3.92	Fold Change: 4.12
			P-value: 0		P-value: .02078	P-value: 0	P-value: 0

:

##	Sea 10	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
	22	Companie		A		D	70 504 7 7 0 5 0 0 7
407	764	AI890488					498.18+/-1/3.20
							235.59+/-100.47
			*	×	×	×	N1=40, N2=10
			•				Fold Change: 2.19
							P-value: .00095
408	769	A1912772					124.98+/-38.73
•	i						344.88+/-151.12
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.65
							P-value: .00005
409	772	AI916544	150.68+/-161.18			151.27+/-163.24	151.27+/-163.24
			440.12+/-478.52			548.66+/-436.19	636.35+/-560.17
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.97			Fold Change: 3.81	Fold Change: 3.69
			P-value: 0			P-value: 0	P-value: .01086
410	775	AI917901	591.38+/-804.54		601.53+/-812.45	601.53+/-812.45	601.53+/-812.45
			76.3+/-209.26		57.95+/-67.95	32.64+/-44.74	15.05+/-18.69
			N1=40. N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 5.07		Fold Change: 4.77	Fold Change: 6.97	Fold Change: 9.62
			P-value: 0		P-value: .00228	P-value: 0	P-value: 0
411	176	AI921685	102.15+/-191.42			104.01+/-193.56	
			374.73+/-772.23			633.55+/-1087.03	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.03			Fold Change: 3.3	
			P-value: .0025			P-value: .00274	
412	777	AI922892				203.33+/-90.32	203.33+/-90.32
						481.16+/-300.69	498.39+/-402.89
			×	×	×	N1=39, N2=31	N1=39, N2=6
						Fold Change: 2.13	Fold Change: 2.02
						P-value: 0	P-value: .02385
413	778	AI923108				245.08+/-135.84	
						576.66+/-441.15	!
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.16	
						P-value: 0	

:

					,	TA	N
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
414	779	AI924028		1			426.33+/-126.02
							190+/-63.01
			×	×	×	×	N1=40, N2=10
			٠				Fold Change: 2.25
				•			P-value: .00002
415	780	A1924465	448.27+/-478.27		448.27+/-478.27	448.27+/-478.27	448.27+/-478.27
			123.26+/-122.11		110.32+/-53.45	104.34+/-104.06	46.51+/-27.28
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.18		Fold Change: 2.73	Fold Change: 3.88	Fold Change: 6.5
		•	P-value: 0		P-value: .00317	P-value: 0	P-value: 0
416	781	AI924794				132.27+/-116.84	132.27+/-116.84
						324.59+/-170.2	321.46+/-186.7
			×	×	×	N1=39, N2=31	N1=39, N2=6
						Fold Change: 2.6	Fold Change: 2.5
						P-value: 0	P-value: .0029
417	782	A1927695					624.33+/-219.53
							287.2+/-131.6
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.22
							P-value: .00029
418	784	AI928296					146.02+/-113.56
							281.82+/-97.95
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.05
							P-value: .00016
419	785	AI928393	302.49+/-122.77			297.26+/-119.77	297.26+/-119.77
			166.83+/-119.33			142.57+/-77.64	130.31+/-96.66
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.03			Fold Change: 2.17	Fold Change: 2.67
			P-value: 0			P-value: 0	P-value: .0034
420	787	AI934361	215.99+/-241.37		220.01+/-243.16	220.01+/-243.16	220.01+/-243.16
			49.3+/-62.57		47.28+/-26.36	33.19+/-18.11	32.04+/-24.58
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.48		Fold Change: 3.18	Fold Change: 4.31	Fold Change: 4.29
			P-value: 0		P-value: .00079	P-value: 0	P-value: 0

3	m cos	Conhonit	Moumol ue All	Normal we Malianant	Normal ve Stage I	Normal ve Stage II	Normal vs Stage III
#	oed 110	Gendank	NOFILIAL VS AM	INDI IIIAI VS IVIAIIBIIAIIL	TOTTINI 13 STARE T	TAGINAN AS DIABLE	Total in Sampa ma
421	788	AI934407					168.61+/-198.83 377.54+/-147.2
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.61
							P-value: .00001
422	792	AI935915	26.52+/-106.71			28.01+/-107.68	28.01+/-107.68
			267.11+/-334.72			364.49+/-370.15	510.1+/-498.57
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.41			Fold Change: 6.74	Fold Change: 8.29
			P-value: 0			P-value: 0	P-value: .00153
423	793	AI936699				769.05+/-392.56	769.05+/-392.56
	!					344.85+/-187.03	208.46+/-65.42
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.04	Fold Change: 3.07
						P-value: .00007	P-value: 0
424	794	AI936823					109.06+/-86.01
	·						210.69+/-119.04
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.33
							P-value: .00059
425	795	AI937060	73.53+/-63.87			73.53+/-63.87	73.53+/-63.87
!	1		221.63+/-200.57			275.58+/-253.28	293.86+/-212.3
			N1=39, N2=168	×	×	NI=39, N2=31	N1=39, N2=6
			Fold Change: 2.37			Fold Change: 2.86	Fold Change: 3.17
			P-value: 0			P-value: 0	P-value: .00776
426	962	AI937365	458.68+/-248.47		461.09+/-251.24	461.09+/-251.24	
			1357.16+/-1303.29		2636.53+/-3163.86	1444.29+/-1485.46	
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	×
			Fold Change: 2.31		Fold Change: 3.81	Fold Change: 2.32	
			P-value: 0		P-value: .03322	P-value: .00007	
427	798	AI939507					67.26+/-38.98
			*	×	×	×	N1=40, N2=10
		•	;	· {	!		Fold Change: 2.91
							F-value: .00102

	5						
•	oed III	Genoank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
428	803	AI950023				335 50+/-201 5	335 50+/-201 5
						129.73+/-80.19	94.45+/-69.77
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.04	Fold Change: 2.9
						P-value: .00084	P-value: .00112
429	805	AI952965				161.89+/-108.6	161.89+/-108.6
						347.01+/-159.99	461.65+/-262.27
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.38	Fold Change: 2.78
						P-value: 0	P-value: .00455
430	908	AI953053					96.66+/-61.58
							403.41+/-323.73
			×	×	×	×	N1=40, N2=10
							Fold Change: 3.33 P-value: .00265
431	808	AI954874			209.46+/-107.86		
					96.19+/-23.42	•	
			×	×	N1=40, N2=6	×	×
					Fold Change: 2.01		
					P-value: .00017		
432	810	AI961206				46.06+/-77.63	46.06+/-77.63
						204.28+/-102.33	225.27+/-103.4
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 3.96	Fold Change: 4.13
						P-value: 0	P-value: .00043
433	817	AI968379	296.71+/-383.1			295.46+/-388.02	295.46+/-388.02
			45.24+/-243.3			104.96+/-424.91	-12.25+/-22.65
			NI=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.99			Fold Change: 4.47	Fold Change: 6.3
			P-value: 0			P-value: .00001	P-value: 0
434	818	AI968904	744.48+/-291.11			738.79+/-292.65	
			370.58+/-143.78			373.44+/-151.46	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2			Fold Change: 2.01	
			r-value: 0			P-value: 0	

#	Seg ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
435	822	AI970898	505.69+/-422.11		500 53-1/ 475 03	250 50 / 100 00	Trading to minion
			142.34+/-84.59		309.334/-420.92 155 46±/ 70 61	116.001/20.92	509.53+/-426.92
			N1=40 N2-169	۶	10:0/=/104:001	110.394/-00.55	11/.04+/-03.48
			T-13 CT - 100	<	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.33		Fold Change: 2.81	Fold Change: 3.87	Fold Change: 3.88
436	333	*********	r-vaine: 0		P-value: .00097	P-value: 0	P-value: 0
430	678	A19/1441			224.36+/-258.15	224.36+/-258.15	224.36+/-258.15
			;		25.49+/-91	44.4+/-132.79	-63.46+/-142.66
			×	×	N1≂40, N2=6	N1=40, N2=31	N1=40, N2=10
					Fold Change: 3.79	Fold Change: 2.75	Fold Change: 4.45
15.	200				P-value: .01447	P-value: .0003	P-value: .0004
43/	178	AI971914					121.63+/-64.27
			,	į			329.2+/-298.85
			≺	×	×	×	N1=40, N2=10
							Fold Change: 2.25
420	030	4 1042 400	-0.557.00.000				P-value: .00832
430	000	AJ9/2498	/2.111-/+28.682		•	286.51+/-112.64	286.51+/-112.64
		٠	134.28+/-/1.62			124.7+/-61.16	109.37+/-47.71
			NI=40, NZ=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.22			Fold Change: 2.3	Fold Change: 2.7
.	,,,		P-value: 0			P-value: 0	P-value: .00057
439	831	A1972661				482.12+/-600.67	
			;			177.9+/-209.56	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.24	
440	832	AI972873	437.97+/-212.54		436.16+/-215	436 16+/-215	136 164/ 216
			117.56+/-101.2		164.58+/-155.74	126 68+/-109 81	75 01+/-128 01
•			N1=40, N2=168	×	N1=40 N2=6	N1=40 N2=31	N1=40 N2=10
			Fold Change: 4.55		Fold Change: 3-37	Fold Change: 4.14	Eold Change: 0 70
			P-value: 0		P-value: .021	P-value: 0	P-value: 00006
441	836	AI979261				145.88+/-125.11	20000: :2000
			×	×	×	301.16+/-194.23 N1=40 N2=31	×
						Fold Change: 2.17	÷
						P-value: .00002	

#	Sed ID	Genhank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
	1 200	Condana		9		75 73±/ 154 77	352 73±/-154 77
442	837	AI982669	•			322.734.77	830 63+/-451 04
			ř	*	>	15-03 1/-150:03	N=2N 05=1N
			× .	×	<	NI=59, N2=51	0-7N (-7N N N N N N N N N N N N N N N N N N N
						Fold Change: 2.11	Fold Change: 2.2
						P-value: 0	P-value: .00452
443	838	AI983045	282.14+/-333.79		281.02+/-338.08	281.02+/-338.08	281.02+/-338.08
!	,		-2.89+/-61.5		6.46+/-26.18	-12.28+/-33.2	-25.74+/-23.32
			N1=40 N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 6.23		Fold Change: 6.38	Fold Change: 6.91	Fold Change: 7.49
			P-value: 0		P-value: 0	P-value: 0	P-value: 0
444	840	A1985653				243.4+/-112.77	243.4+/-112.77
	2	,				111.29+/-55.01	81.33+/-38.99
			×	×	×	N1=39, N2=31	N1=39, N2=6
			•			Fold Change: 2.12	Fold Change: 2.93.
						P-value: 0	P-value: 0
445	841	AI989588			160.57+/-119.71		
			•		240.25+/-78.81		
			×	×	N1=40, N2=6	×	×
					Fold Change: 2.01 P-value: .00445		
446	846	A 1000483				35.21+/-34.58	
?	5	2010//14				207.82+/-290.06	
			>	>	×	N1=40 N2=31	×
			<	({	Fold Change: 2.5	
						P-value: .00091	
447	853	AL031846	446.58+/-157.69			446.58+/-157.69	446.58+/-157.69
			203.55+/-90.87			182.45+/-74.24	148.67+/-68.99
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.21			Fold Change: 2.41	Fold Change: 3.01
			P-value: 0			P-value: 0	P-value: .00002
448	855	AL037368					576.75+/-132.07
							296.15+/-132.55
		•	×	×	×	×	N1=40, N2=10
							Fold Change: 2.12 P-value: 0014
							1 - TOO :

#	Co. III	Conhonly	Mean land	N	3		
<u>.</u>	Than	CENTRAIN	NOTHER VS AII	Normal vs Mangnant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
449	857	AL037805	624.14+/-319.31			614.2+/-317.15	614.2+/-317.15
			281.94+/-168.3			258.58+/-142.99	168.59+/-62.09
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.29			Fold Change: 2.38	Fold Change: 3.3
			P-value: 0			P-value: 0	P-value: 0
420	980	AL039445					103.65+/-39.97
							204.36+/-54.58
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.03
				•			P-value: 0
451	861	AL039870	229.33+/-119.68			226.4+/-119.79	226.4+/-119.79
			104.08+/-62.24			95.07+/-69.54	85.61+/-45.98
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.19			Fold Change: 2.41	Fold Change: 2.58
			P-value: 0			P-value: 0	P-value: .0005
452	862	AL039917					190.41+/-139.22
•			ł				427.64+/-204.38
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.48
							P-value: .00467
453	864	AL040178	277.18+/-128.12		277.18+/-128.12	277.18+/-128.12	277.18+/-128.12
			73.94+/-56.64		106.38+/-90.67	59.11+/-47.84	44.44+/-29.67
		•	N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 3.48		Fold Change: 2.79	Fold Change: 3.76	Fold Change: 4.57
			P-value: 0		P-value: .01209	P-value: 0	P-value: 0
454	865	AL040912	311.14+/-137.52			304.56+/-132.78	304.56+/-132.78
			86.94+/-86.46			69.8+/-53.68	52.07+/-61.09
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.08			Fold Change: 4.66	Fold Change: 6.69
			P-value: 0			P-value: 0	P-value: .00001
455	998	AL041815	257.28+/-104.74			257.35+/-106.11	
			129.57+/-68.69	;	;	124.69+/-56.27	
			NI=40, NZ=168	×	×	N1=40, N2=31	×
			Fold Change: 2.04			Fold Change: 2	
			r-value: 0			P-value: 0	

i

#	Coo II	Conhonk	Normal ve All	Normal and Molingan	Mountain Stone I	Mountain State	Westernal and Steam VIII
١	200	4 F 042403	1112 CA 10111 1011	TOTHING 13 MAINEMAIN	1101 mai vs Stage a	Ivol Iliai vs Stage II	Moi mai vs Stage LL
420	867	AL042492	801.96+/-843.5		809.69+/-853.09	809.69+/-853.09	809.69+/-853.09
			56.95+/-101.91		101.65+/-170.57	40.59+/-106.87	11.79+/-18.8
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 12.71		Fold Change: 8.78	Fold Change: 15	Fold Change: 20.99
			P-value: 0		P-value: .00362	P-value: 0	P-value: 0
457	898	AL042923					3125.4+/-1239.9
			;	;	;	1	1575.01+/-724.4
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.07
	ů.						F-value: .0020/
458	870	AL043980				498.96+/-198.25	498.96+/-198.25
						248.27+/-101.89	206.45+/-96.76
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.06	Fold Change: 2.43
						P-value: 0	P-value: .00002
459	871	AL044366	137.98+/-186.9				
			313.36+/-363.79				
			N1=40 N2=168	>	>	>	>
			Fold Change: 2.23	₹ .	<	<	<
	:		P-value: .00018				
460	872	AL044613					304+/-112.89
							102.49+/-79.71
			×	×	×	×	N1=40 N2=10
				·)	:	Fold Change: 3 15
							P-value: .00076
461	9/8	AL046941	425.75+/-236.48			428.58+/-238.89	428.58+/-238.89
			53.79+/-102.7			34.11+/-80.54	-23.64+/-33.24
			N1=40, N2=168	×	×	N1=40, N2=31	NI=40, N2=10
			Fold Change: 8.01			Fold Change: 9.66	Fold Change: 16.81
ļ			P-value: 0			P-value: 0	P-value: 0
462	877	AL046946					713.56+/-217.52
							287.87+/-116
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.57
							P-value: .00006

;

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
463	878	AL048304					308.79+/-74.62
			×	×	×	×	N1=40, N2=10
							Fold Change: 3.99
ŀ							F-value: .00402
464	879	AL048386	233.2+/-107.71			232.52+/-109.03	232.52+/-109.03
			118.45+/-83.53			94.13+/-59.17	73.94+/-51.55
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.19			Fold Change: 2.63	Fold Change: 3.32
			P-value: 0			P-value: 0	P-value: .00019
465	880	AL048399				768.94+/-280.35	768.94+/-280.35
						336.8+/-159.66	378.81+/-201.68
			×	×	×	NI = 40, N2 = 31	N1=40, N2=10
						Fold Change: 2.37	Fold Change: 2.22
						P-value: 0	P-value: .00292
466	881	AL048962	951.97+/-353.33			944+/-354.29	944+/-354.29
			498.61+/-346.17			469.14+/-334.1	400.6+/-283.17
			N1=40, N2=168	×	×	NI=40, N2=31	N1=40, N2=10
			Fold Change: 2.03			Fold Change: 2.17	Fold Change: 2.45
			P-value: 0			P-value: 0	P-value: .00012
467	883	AL049257				258.77+/-104.32	258.77+/-104.32
						110.97+/-53.29	104.27+/-37.82
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.35	Fold Change: 2.34
						P-value: 0	P-value: 0
468	884	AL049423				385.45+/-146.45	385.45+/-146.45
						176,43+/-82.21	131.88+/-33.79
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.19	Fold Change: 2.73
						P-value: 0	P-value: 0
469	885	AL049471				585.55+/-164.83	585.55+/-164.83
						312.66+/-134.95	304.04+/-127.09
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.01	Fold Change: 2.01
						P-value: 0	P-value: .00064

				,			
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal ve Stage I	Normal ve Ctone	No.
470	887	AL049949			Tage 1 and the stage I	roffilal vs Stage II	Normal vs Stage III
						525.51+/-234.08	525.51+/-234.08
				;		218.01+/-118.84	184.51+/-151.36
			<	×	×	N1=40, N2=31	NI=40, N2=10
						Fold Change: 2.27	Fold Change: 3.21
471	888	AT 040057				P-value: 0	P-value: ,00178
:	8	15664074				664.06+/-250.51	
			,			339.26+/-164.3	
			×	×	×	N1=39, N2=31	×
						Fold Change: 1 98	}
						P-value: 0	
472	890	AL050002				o canina.	200051111000
					,		320.33+/-114.90
			*	>		!	152.33+/-60.11
			<	<	×	×	NI=40, N2=10
							Fold Change: 2.08
472	003	AT 0000 TA					P-value: .00017
2	673	ALUSUS6/	257.59+/-77.75			257 50+/-77 75	
			155+/-120.63			117 164/ 76 86	
			N1=40, $N2=168$	>	>	11/.104/-/0.60	i
			Fold Change: 2	<	<	NI=40, NZ=31	×
			P-value: 0			Fold Change: 2.49	
474	894	AT.070279	313 40+/ 180 75			P-value: 0	
		\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100 20 / 100 301		313.49+/-189.76	313.49+/-189.76	313.49+/-189.76
			108.29+/-83.88		114+/-76.08	86.73+/-51.4	49.04+/-28.4
			NI=40, NZ=168	×	N1=40, N2=6	N1=40, N2=31	N1=40 N2=10
			rold Change: 2.87		Fold Change: 2.51	Fold Change: 3.29	Fold Change: 5.69
177	200		P-value: 0		P-value: .00823	P-value: 0	P-value: 0
Ü	920	ALU79707	258.01+/-224.37		261.69+/-226.08	261.69+/-226.08	261 69+/-226 08
			07.86+/-48.3		82.89+/-41.99	48.17+/-30.27	78.83+/-21.26
	•		NI=40, NZ=168	×	N1=40, N2=6	N1=40. N2=31	N1=40 N2=10
			Fold Change: 3.55		Fold Change: 2.73	Fold Change: 4.63	Fold Change: 2.7
727	000	0.000011	P-value: 0		P-value: .0013	P-value: 0	P-value: 0
2	160	ALU /9/69	198.26+/-265.48			201.74+/-268.02	201.74+/-268.02
			337.38+/-218.01	1		451.36+/-269.91	415.85+/-142.87
			101=10, INZ=108	×	×	N1=40, N2=31	N1=40, N2=10
			roid Change: 2.00			Fold Change: 2.73	Fold Change: 2.88
			r-value: 0			P-value: 0	P-value: 0

\$	E 253	1 - 1					
إ	Oct 110	Genoank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
411	868	AL079949	ļ			382.36+/-135.98 172.14+/-65.04	382.36+/-135.98 160.74+/-65.7
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.21	Fold Change: 2.34
478	668	AL080192				103.54+/-69.27	r-value: .00001
			;			242.17+/-111.66	
			×	×	×	N1=40, N2=31	×
	•					Fold Change: 2.54	
470	003	AT 120446	204 54 1 705 70			P-value: 0	
7 / 7	500	AL120440	504.54+/-95.79			302.81+/-96.4	302.81+/-96.4
			151.01+/-51.13			143.68+/-46.25	137.13+/-46.57
			NI=40, NZ=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2			Fold Change: 2.07	Fold Change: 2.16
907	700	000000111	P-value: 0			P-value: 0	P-value: .00001
480	904	AW000899	255.52+/-122.34			255.52+/-122.34	
			125.26+/-107.3			136.12+/-122.63	
			N1=39, N2=168	×	×	N1=39, N2=31	×
			Fold Change: 2.23			Fold Change: 2.06	
	100		P-value: 0			P-value: .00003	
481	907	AW002846	282.39+/-199.06				283 14+/-201 6
			139.23+/-115.04				97.8+/-63.96
			NI=40, N2=168	×	×	×	N1=40, N2=10
			Fold Change: 2.15				Fold Change: 2.7
107	610	A 15 C C C C C C C C C C C C C C C C C C	r-value: 0				P-value: .00045
705	716	AW003362			211.57+/-81.24		
			;		89.06+/-83.95		_
			×	×	N1=39, N2=10	×	×
	•				Fold Change: 2.32		
١					P-value: .02046		
483	914	AW005418			•	205.57+/-234.3	205.57+/-234.3
			>	÷	;	67.1+/-110.71	10.33+/-83.48
			≺	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.41	Fold Change: 3.7
						P-value: .00083	P-value: .00052

.

*	Sed ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
484	915	AW005814			146.08+/-90.43 310.43+/-106.68		
			×	×	N1=40, N2=6 Fold Change: 24	×	×
					P-value: .00072		
485	916	AW006235	344.79+/-207.97		346.9+/-210.26	346.9+/-210.26	346.9+/-210.26
			103.81+/-60.65		126.57+/-35.39	95.72+/-56.93	99.92+/-23.08
			NI=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.17		Fold Change: 2.35	Fold Change: 3.43	Fold Change: 2.94
			P-value: 0		P-value: .00014	P-value: 0	P-value: 0
486	919	AW006898	841.88+/-394.55			835.42+/-397.56	835.42+/-397.56
			331.12+/-203.65			305.25+/-163.97	305.65+/-212.32
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.68			Fold Change: 2.7	Fold Change: 2.91
			P-value: 0			P-value: 0	P-value: .00883
487	920	AW006998				79.75+/-104.09	
						221.43+/-283.12	•
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.76	
						P-value: .00002	
488	921	AW007080	226.13+/-116.85			223.2+/-116.87	223.2+/-116.87
			62.58+/-55.91			55.48+/-39.27	48.27+/-49.28
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.65			Fold Change: 3.79	Fold Change: 4.6
			P-value: 0			P-value: 0	P-value: .00008
489	925	AW007586	552.57+/-493.88			552.57+/-493.88	
			N1=40 N2=168	>	>	1388.39+/-/9/.63	>
			11.040, 142-108	<	<	IV-7NI (04-1NI	<
			Fold Change: 2.04			Fold Change: 2.99	
490	927	AW007983	308.57+/-180.09		308.57+/-180.09	308.57+/-180.09	308.57+/-180.09
			124.89+/-104.9		120.02+/-133.67	98.43+/-60.3	57.05+/-49.19
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.45		Fold Change: 3.11	Fold Change: 2.82	Fold Change: 4.11
			r-value: 0		F-value: .02642	F-value: 0	F-value: 0

	E 253	Conhonit	Moumol ve All	Normal we Molianant	Normal ve Stage I	Normal ve Stage II	Normal ve Stage III
<u>.</u>	350	GEIDAUR	IVOI IIIIGI AS EXII	to mary stranguant	TAGENIER OF THE TAGEN	The state of the s	210 48+/-63 01
491	676	AW009505					452.13+/-225.92
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.06
							P-value: .00023
492	930	AW013949			228.98+/-140.11		
					526.51+/-241.81		
			×	×	N1=40, N2=6	×	×
					Fold Change: 2.49		
					P-value: .00743		
493	932	AW014647	222.93+/-95.23			222.93+/-95.23	222.93+/-95.23
<u>}</u>	1		93.53+/-66.06			87.53+/-67.66	103.61+/-77.88
			N1=39. N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.35			Fold Change: 2.48	Fold Change: 2.1
			P-value: 0			P-value: 0	P-value: .00171
494	933	AW014764	299.88+/-160.3			299.88+/-160.3	
			148.29+/-123.67			143.2+/-104.38	
	•		N1=39, N2=168	×	×	N1=39, N2=31	×
			Fold Change: 2.02			Fold Change: 2.02	
			P-value: 0			P-value: 0	
495	934	AW015571					648.86+/-400.58
!	, -						174.43+/-228.74
		•	×	×	×	×	N1=40, N2=10
							Fold Change: 6.15
							P-value: .00262
496	938	AW021108	220.45+/-143.17			220.45+/-143.17	220.45+/-143.17
			97.68+/-75.55			87.82+/-65.1	76.42+/-41.74
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.37			Fold Change: 2.67	Fold Change: 2.68
			P-value: 0			P-value: 0	P-value: .00045
497	939	AW021169	256.18+/-141.26				254.1+/-142.48
			128.88+/-175.65				131+/-172.12
			N1=40, N2=168	×	×	×	N1=40, N2=10
			Fold Change: 2.2				Fold Change: 2.58
			P-value: 0				P-value: .00997

	5		NI	MI	Mountain Ctorn I	Normal we Stone II	Normal ve Stage III
#	Sed ID	Genbank	Normal Vs All	Normal vs Mangnant	Normal vs Stage I	INDITION IN STARE II	Mol Iliai 13 Stage III
498	941	AW022607				820.58+/-231.5	820.58+/-231.5
						436.42+/-247.61	384.68+/-242.39
			×	×	×	N1=40, N2=31	N1=40, N2=10
			•			Fold Change: 2.16	Fold Change: 2.39
				,		P-value: 0	P-value: .00116
499	943	AW023188				290.36+/-132.68	
						130.36+/-49.53	
			×	×	×	N1=39, N2=31	×
			-			Fold Change: 2.07	
						P-value: 0	
200	945	AW024285					250.28+/-98.87
)						572.73+/-295.31
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.27
							P-value: .00009
501	946	AW024434	790.91+/-331.85			789.9+/-336.13	
			432.05+/-300.27			, 365.21+/-203.57	
			N1=40. N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.03	:		Fold Change: 2.21	
	!		P-value: 0			P-value: 0	
502	948	AW024795					194.61+/-162.76
							374.26+/-130.52
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.22
							P-value: .00004
503	952	AW044663					216.92+/-78.22
							104,46+/-39.86
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.01
							P-value: .00001
504	953	AW051492	440.5+/-328.97			442.65+/-332.99	442.65+/-332.99
			200.34+/-109.37	•		174,66+/-95.13	133.38+/-80.06
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.03			Fold Change: 2.4	Fold Change: 3.04
			P-value: 0			P-value: 0	P-value: .00008

.

1	Sea ID	Genhank	Normal ve All	Normal ve Malianant	Normal ve Stone I	Normal ve Stone II	Normal we Stone III
		A TATOCOLOGY	ing sa initiati	TOT III VS IVAIIBIIAII	Ivolulial vs Stage I	Molinal vs Stage Li	TI age to solution
	ςς, ()	AW052180	68 25+/-119.43		200.32+/-119.43	200.32+/-119.43	200.32+/-119.43
			06.20-7-02.00	;	65.054-56.17	02.34+/-42.9	45.0/+/-44.89
			NI=39, NZ=168	×	NI=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 2.47		Fold Change: 2.54	Fold Change: 2.68	Fold Change: 3.64
			P-value: 0		P-value: .0089	P-value: 0	P-value: .00001
	926	C16443	470.61+/-305.63		470.75+/-309.62	470.75+/-309.62	470.75+/-309.62
			179.69+/-105		197.91+/-113.36	144.75+/-66.63	143.41+/-109.79
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.63		Fold Change: 2.24	Fold Change: 3.13	Fold Change: 3.49
			P-value: 0		P-value: .00778	P-value: 0	P-value: .00031
	957	C17781	233.51+/-142.32				
			116.34+/-81.47				
			N1=40 N2=168	*	*	>	>
			Fold Change: 2.05	<	<	<	<
			P-value: 0				
	196	D55884				231.13+/-145.06	
						105.18+/-64.42	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.13	
	070	DC2177	73 66 5 1 4 66			1 -value, ,00004	
	2/2	//1600	225.06+/-178.61				
			N1=40, N2=168	×	×	×	×
			Fold Change: 3.08				
	971	D79487					215,9+/-67.18
							84.24+/-31.19
			×	×	×	×	N1=39, N2=6
							Fold Change: 2.6
							P-value: .00001
	981	H11724				321.52+/-187.56	321.52+/-187.56
						158.38+/-76	124.97+/-54.73
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2	Fold Change: 2.5
- 1						P-value: 0	P-value: .00011

3	E 20	Conhonly	Normal ve All	Normal ve Malignant	Normal ve Stage I	Normal ve Stage II	Normal vs Stage III
512	. 983 	H15868	347.4+/-390.17 933.09+/-1186.46 N1=40, N2=168 Fold Change: 2.13 P-value: .00049	X	344,41+/-394,81 967.69+/-1057.17 N1=40, N2=6 Fold Change: 3.28 P-value: .02477	×	×
513	984	H16294	×	×	×	×	812.95+/-387.97 295.8+/-82.15 N1=40, N2=10 Fold Change: 2.51 P-value: 0
514	586	H16568	293.47+/-211.85 64.62+/-58.27 N1=40, N2=168 Fold Change: 3.74 P-value: 0	X	×	288.53+/-212.27 46.38+/-45.45 N1=40, N2=31 Fold Change: 4.69 P-value: 0	288.53+/-212.27 38.38+/-26.86 N1=40, N2=10 Fold Change: 5.41 P-value: 0
515		H27948	221.34+/-117.87 86.49+/-44.22 N1=39, N2=168 Fold Change: 2.46 P-value: 0	×	×	221.34+/-117.87 80.01+/-37.66 N1=39, N2=31 Fold Change: 2.42 P-value: 0	221.34+/-117.87 76.82+/-36.99 N1=39, N2=6 Fold Change: 2.75 P-value: .00004
516	066	H42085	X	X	X	×	405.54+/-244.99 174.03+/-102.69 N1=40, N2=10 Fold Change: 2.17 P-value: .00064
517	166	H43374	×	Х	X	×	588.83+/-221.87 314.31+/-230.39 N1=40, N2=10 Fold Change: 2.1 P-value: .00493
518	266	H54254	370.85+/-679.27 33.63+/-58.23 N1=40, N2=168 Fold Change: 5.23 P-value: 0	×	377.04+/-687.01 31.69+/-34.95 N1=40, N2=6 Fold Change: 4.88 P-value: .00045	377.04+/-687.01 21.83+/-62.85 N1=40, N2=31 Fold Change: 6.53 P-value: 0	377.04+/-687.01 12.93+/-28.05 N1=40, N2=10 Fold Change: 6.25 P-value: 0

#	Sea III	Conhank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
	135	Companie	TANK TON THE TANK		0	67 001 7 1 80 100	201 120 100
519	993	H28608	202.11+/-137.98			201.08+/-139.62	201.08+/-139.02
			82.39+/-48.64			64.47+/-33.26	53.32+/-25
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Hold Change: 2 25			Fold Change: 2.77	Fold Change: 3.21
			P-value: 0			P-value: 0	P-value: 0
520	1061	N21030				822.97+/-445.6	
1						356.31+/-294.65	
			×	×	×	N1=40, N2=31	×
			-			Fold Change: 2.5	
						P-value: .00002	
521	1064	N21424					344.38+/-141.72
							134.11+/-57.31
			×	×	×	×	NI=40, N2=10
							Fold Change: 2.56
							P-value: .00005
522	1066	N24987				92.04+/-95.24	92.04+/-95.24
) 	· •				206.91+/-82.99	210.74+/-113.1
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.71	Fold Change: 2.65
						P-value: 0	P-value: .00009
523	1067	N25096					308.47+/-138.2
							118.5+/-63.44
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.77
							P-value: .00098
524	1068	N25267	26.22+/-51.01				
			217.96+/-178.06			1	
			N1=40, N2=168	×	×	×	×
			Fold Change: 5.07				
202	1071	N31046	r-value. 0				156.39+/-61.76
240		OFCICAL					332.92+/-151.29
			×	×	×	×	N1=40, N2=10
			:	4	•		Fold Change: 2.11
							P-value: .00022

.

[1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N. C. C. C.	Mountain Stone II	Normal ve Ctone III
*	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal VS Stage 1	Normal vs Stage II	Not illat vs Stage III
226	1072	N32254					116.51+/-51.56 249.15+/-168.21
			×	×	×	×	N1=40, N2=10
			!				Fold Change: 2.03
							P-value: .0051
527	1074	N42752	63.26+/-47.52		-	63.77+/-48.02	
			203.51+/-259.92			251.31+/-284.54	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.23			Fold Change: 2.74	
538	1075	N45224	1 -vaiue. o				574.83+/-196.53
260	2/01	177C1X1				•	208.47+/-108.26
			×	×	×	×	N1=40, N2=10
			1				Fold Change: 2.79
							P-value: .00004
529	1076	N45320	365.77+/-123.03			359.46+/-117.88	359.46+/-117.88
			164.05+/-84.04			163.46+/-78.87	150.13+/-52.84
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.35			Fold Change: 2.36	Fold Change: 2.34
			P-value: 0			P-value: 0	P-value: .00001
530	1079	N48809			130.33+/-82.96		130.33+/-82.96
	• • •				233.51+/-111.27		249.11+/-95.4
			×	×	N1=40, N2=6	×	N1=40, N2=10
					Fold Change: 2.03		Fold Change: 2.14
					P-value: .00829		P-value: .00153
531	1082	N51335				108.78+/-93.56	
						222.06+/-201.45	!
			×	×	×	N1=40, N2=31	×
						Fold Change: 2	
						P-value: .00003	
532	1083	N52086	289.83+/-310.5			289.83+/-310.5	289.83+/-310.5
			106.77+/-102.27			95.72+/-73.59	77.86+/-63.6
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.07			Fold Change: 2.16	Fold Change: 2.55
			P-value: .00114			P-value: .00247	P-value: .0038

1	8		N	Nousel ne Melianent	Normal ve Stone I	Normal ve Stage II	Normal vs Stage III
±	Sed ID	сепрапк	Normal Vs All	MOTHER VS WEATINGHAILL	IVOI IIIAI VS STABE I	IVOI III AI SI SI ABC II	TAGINIAN SOURCE TO
533	1084	N52352					268.01+/-82.24
							136.43+/-64.33
			×	×	×	×	N1=40, N2=10
			•				Fold Change: 2.09
							P-value: .0074
534	1085	N56877	109.5+/-80.79			109.5+/-80.79	109.5+/-80.79
)		309.93+/-270.27			327.79+/-348.66	306.18+/-259.39
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.45			Fold Change: 2.15	Fold Change: 2.68
			P-value: 0	•		P-value: .00281	P-value: .00382
535	1086	NS7539	225.43+/-101.42			225.43+/-101.42	225.43+/-101.42
1	: •		103.31+/-100.1			106.35+/-190.86	96.95+/-76.68
			N1=39. N2=168	×	×	N1=39, $N2=31$	N1=39, N2=6
		•	Fold Change: 2.37			Fold Change: 2.94	Fold Change: 2.43
			P-value: 0			P-value: 0	P-value: .00273
536	1087	N59432			237.95+/-107.53	237.95+/-107.53	237.95+/-107.53
;					71.26+/-38.6	105.02+/-65.3	110.93+/-111.49
			×	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			!		Fold Change: 3.32	Fold Change: 2.39	Fold Change: 2.61
		•			P-value: .00159	P-value: 0	P-value: .00543
537	1088	N62126					280.04+/-181.07
) !						109.11+/-74.94
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.59
							P-value: .00734
538	1089	N63237	217.51+/-156.97		217.51+/-156.97	217.51+/-156.97	217.51+/-156.97
			63.12+/-54.35		52.65+/-34.21	52.57+/-33.35	24.34+/-38.62
			N1=39, $N2=168$	×	N1=39, N2=10	NI=39, N2=31	N1=39, N2=6
			Fold Change: 2.55		Fold Change: 3.16	Fold Change: 2.9	Fold Change: 3.83
			P-value: 0		P-value: .00096	P-value: 0	P-value: .00001
539	1090	N63913	463.66+/-314.65			458.01+/-316.71	458.01+/-316.71
			88.17+/-134.91			87.05+/-105.81	65.18+/-127.89
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 5.84			Fold Change: 5.25	Fold Change: 7.57
			P-value: 0			P-value: 0	F-value: .00008

--

					A 70 1	N	Normal an Chan III
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Molillat vs Stage III
540	1091	N64648				262.87+/-87.71	262.87+/-87.71
: :						129.76+/-54.11	114.48+/-29.26
			×	×	×	N1=40, N2=31	N1=40, N2=10
			•	}		Fold Change: 2.09	Fold Change: 2.21
						P-value: 0	P-value: 0
541	1092	N76867				210.78+/-96.34	
			Þ	>	>	100.16 + 7.0	×
			<	<	<	10-29, INT-191	<
						Fold Change: 1.97 P-value: 0	
542	1094	N79004	-				93.29+/-75.16
!							273.05+/-182.9
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.79
							P-value: .00222
543	1095	N80935	266.86+/-83.21				266.66+/-84.29
			143,94+/-87.39				130.9+/-68.88
			N1=40. N2=168	×	×	×	N1=40, N2=10
			Fold Change: 2.01				Fold Change: 2.17
			P-value: 0	;			P-value: .00097
544	1096	N90525	117.6+/-226.89			118.22+/-229.82	
			226.51+/-203.72			255.32+/-119.15	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 2.23			Fold Change: 2.98	
			P-value: .00001			r-value: 0	
545	1101	R08000	501.45+/-685.59		502.76+/-694.51	502.76+/-694.51	502.76+/-694.51
			78.58+/-101		79.82+/-77.61	57.68+/-127.95	65.51+/-107.84
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.96		Fold Change: 4.45	Fold Change: 7.21	Fold Change: 6.92
			P-value: 0		P-value: .0049	P-value: 0	P-value: .00004
546	1102	R11248				114.31+/-112.68	114.31+/-112.68
		•				295.22+/-374.37	538.23+/-597.4
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.09	Fold Change: 3.42
						P-value: .00187	P-value: .01362

		- 0	M	N	Moumol vn Ctore I	Normal ve Chane II	Normal vs Stage III
±	Sed III	Genoank	NOTHIAI VS ALI	TOURING AS INTRIBUTE	Tolimar va Brage I	Traffinal value of the	20 00 7 00 0111
547	1104	R20784	1107.23+/-833.81		1112.78+/-843.96	1112.78+/-843.96	1112.78+/-843.96
			264.46+/-256.11		257.86+/-243.05	168.78+/-236.94	123.27+/-153.07
			N1=40. N2=168	*	NI=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.88		Fold Change: 4.54	Fold Change: 7.78	Fold Change: 10.71
			P-value: 0		P-value; .00794	P-value: 0	P-value: .00001
548	1109	R49392				267.35+/-98.92	267.35+/-98.92
<u>}</u>						156.98+/-110.51	143.02+/-95.35
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.05	Fold Change: 2.14
			•			P-value: .00002	P-value: .0067
549	1112	R54660			200.26+/-133.86	200.26+/-133.86	200.26+/-133.86
))	1				49.74+/-62.98	16.03+/-23.1	6.98+/-15.78
			×	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
					Fold Change: 4.34	Fold Change: 5.96	Fold Change: 6.74
					P-value: .00827	P-value: 0	P-value: 0
550	1113	R62346	92.55+/-48.64			92.55+/-48.64	
) ! !		218.35+/-108.48			218.34+/-122.05	
		•	N1=39, $N2=168$	×	×	N1=39, N2=31	×
			Fold Change: 2.17			Fold Change: 2.14	
			P-value: 0			P-value: 0	
551	1114	R67627				703.42+/-425.8	
						319.29+/-199.18	
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.32	
						P-value: 0	
552	1115	R69584	211.19+/-227.25		214.32+/-229.35	214.32+/-229.35	214.32+/-229.35
			53.06+/-91.11		30.89+/-23.04	37.79+/-84.48	6.84+/-26.67
			N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.91		Fold Change: 3.38	Fold Change: 3.62	Fold Change: 4.76
			P-value: .00001		P-value: .0002	P-value: 0	P-value: 0
553	1116	R70255	241.03+/-179.01			241.29+/-181.34	241.29+/-181.34
			33.3+/-86.44			25.72+/-39.39	17.97+/-75.13
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 5.3			Fold Change: 5.24	Fold Change: 5.55
			P-value: 0			P-value: 0	P-value: .00003

_ i =	Sea ID Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
ı	×	397.68+/-234.48			397.68+/-234.48	397.68+/-234.48
		142.17+/-86.32			129.97+/-75.3	130.92+/-91.05
		N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
		Fold Change: 2.61		·	Fold Change: 2.92	Fold Change: 2.93
- 1		P-value: 0			P-value: 0	P-value: .00003
	R74561				425.23+/-350.96	
					871.35+/-705.04	
		×	×	×	N1=40, N2=31	×
					Fold Change: 2.06	
		-			P-value: .00036	
ı	R83604	294.9+/-858.81		304.76+/-867.74	304.76+/-867.74	304.76+/-867.74
		-49.34+/-85.75		-70.76+/-37.34	-62.65+/-38.9	-42.74+/-57.17
		N1=40, N2=168	×	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
		Fold Change: 3.18		Fold Change: 3.74	Fold Change: 3.74	Fold Change: 3.25
		P-value: .00005		P-value: .00001	P-value: .00001	P-value: .0002
1	T16144				67.72+/-60.08	67.72+/-60.08
					. 246.32+/-239.25	213.1+/-108.52
		×	×	×	N1=40, N2=31	N1=40, N2=10
					Fold Change: 3.16	Fold Change: 3.43
					P-value: 0	P-value: .00004
ı	T57042				286.11+/-193.74	286.11+/-193.74
					, 114.39+/-69.74	125.4+/-63.01
		×	×	×	N1=40, N2=31	N1=40, N2=10
					Fold Change: 2.34	Fold Change: 2.01
					P-value: 0	P-value: .00122
ı	T57670			-	404.19+/-128.46	404.19+/-128.46
					212.97+/-107.98	186+/-108.03
		×	×	×	N1=40, N2=31	N1=40, N2=10
					Fold Change: 2.03	Fold Change: 2.39
					P-value: 0	P-value: .00117
1124	T57773					214.22+/-119.35
		ř	>	>	>	76.17 + 7.27
		<	<	<	<	OI-ZVI OH-IVI
						Fold Change: 3.27
						r-value002

					,		N
#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
561	1125	T61106	164.66+/-104.9			164.66+/-104.9	164.66+/-104.9
			345.33+/-209.56			339.88+/-198.04	341.68+/-227.02
			N1=39, N2=168	×	×	N1=39, N2=31	N1=39, N2=6
•			Fold Change: 2.21			Fold Change: 2.11	Fold Change: 2.17
			P-value: .00001			P-value: .00077	P-value: .01513
562	1126	T64447	216.31+/-152.39		216.31+/-152.39	216.31+/-152.39	216.31+/-152.39
			41.01+/-92.12		39.2+/-138.62	17.71+/-47.39	-19.08+/-58.11
			N1=39, N2=168	×	N1=39, N2=10	N1=39, N2=31	N1=39, N2=6
			Fold Change: 3.99		Fold Change: 3.8	Fold Change: 5.18	Fold Change: 7.39
			P-value: 0		P-value: .01694	P-value: 0	P-value: 0
563	1130	T79945	266.46+/-143.28				
			196.1+/-275.3				
			N1=40, N2=168	×	×	×	×
			Fold Change: 2.04				
			P-value: 0				
564	1133	T92947	370.07+/-299.38			359.82+/-296.09	359.82+/-296.09
			173.72+/-164.88			134.2+/-88.77	113.03+/-41.6
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.08			Fold Change: 2.39	Fold Change: 2.36
			P-value: .00004			P-value: .00007	P-value: .00008
565	1134	T93570				344.83+/-197.39	344.83+/-197.39
						156.26+/-76.45	137.27+/-55.02
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.12	Fold Change: 2.27
				•		P-value: 0	P-value: .0001
266	1170	W02608	83.49+/-56.33			82.66+/-56.82	82.66+/-56.82
			238.33+/-117.55			216.35+/-112.51	206.9+/-95.19
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.06			Fold Change: 2.77	Fold Change: 2.61
			P-value: 0			P-value: 0	P-value: .00124
267	1171	W02823	220.34+/-88.04			217.4+/-87.18	217.4+/-87.18
			83.44+/-86.86			71.46+/-47.57	107.28+/-72.66
			NI=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.96			Fold Change: 3.16	Fold Change: 2.32
			r-value: 0			r-value; 0	r-value00507

! i

	111 25	.12		10	5.11		4.58	.25	10	5.29	946	84	.68	:10	2.22	117											68.	55		-10	10 7.71	7.71	17.71	110 7.71 1.17 61
N	Normal vs Stage LL	299.21+/-164.12	49.9/+/-36.93	N1=40, N2=10	Fold Change: 5.1	P-value: 0	1139.71+/-444.58	291.49+/-262.25	N1=40, N2=10	Fold Change: 5.29	P-value: .00046	172.41+/-85.84	443.37+/-353.68	N1=40, N2=10	Fold Change: 2.22	P-value: .00917			×					×			720.17+/-951.89	39.22+/-65.55	01=CM 01-1M	17 L 10, 172	Fold Change:	Fold Change: 7.77 P-value: 0	Fold Change: 7.7 P-value: 0 100.04+/-68.17	Fold Change: 7.7 Fold Change: 7.7 P-value: 0 100.04+/-68.17 213+/-119.61
XX 710 1 1M	Normai vs Stage II	299.21+/-164.12	56.2+/-41.66	N1=40, N2=31	Fold Change: 4.81	P-value: 0	1139.71+/-444.58	244.74+/-245.86	N1=40, N2=31	Fold Change: 5.59	P-value: 0			×			314.68+/-111.87	147.05+/-53.04	N1=39, N2=31	Fold Change: 2.14	P-value: 0	67.04+/-84.41	322.95+/-770.03	N1=40, N2=31	Fold Change: 2.05	P-value: .00441	720.17+/-951.89	169.52+/-503.24	N1=40, N2=31		Fold Change: 4.62	Fold Change: 4.62 P-value: 0	Fold Change: 4.62 P-value: 0	Fold Change: 4.62 P-value: 0
	Normal vs Stage 1	299.21+/-164.12	108.65+/-140.45	N1=40, N2=6	Fold Change: 3.51	P-value: .03256			×					×					×					×					×					:
	Normal vs Mangnant			×					×					×					×					×					×					
	Normal vs All	301.61+/-162.72	67.74+/-52.69	N1=40, N2=168	Fold Change: 4.19	P-value: 0	1144.81+/-440.02	379.83+/-343.79	N1=40. N2=168	Fold Change: 3.79	P-value: 0			×					×					×			707.63+/-942.95	144.29+/-433.7	N1=40, N2=168	Fold Change: 5.42		P-value: 0	P-value: 0	P-value: 0
,	Genbank	W07043					W07304					W22264					W28281					W31919					W32480						W55924	W55924
	Sed ID	1173					1174					1177					1181					1182					1183						1189	1189
	#	268					569					570					571					572					573				_		574	574

7	Coo III	Conhonly	Normal ve All	Normal we Malignant	Normal ve Stage I	Normal vs Stage II	Normal vs Stage III
ŧ	och m	Gennam	INDITION IS WILL	TAGING AS INTRICE	Tooling to Single	Constant in the second	9 27 1 27 200
575	1195	W72062	381.86+/-163.16			380.68+/-165.12	380.68+/-165.12
			182,13+/-62.01			175.84+/-50.18	176.3+/-66.81
			N1=40. N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.03			Fold Change: 2.04	Fold Change: 2.07
			· P-value: 0			P-value: 0	P-value: .00001
576	1196	W72182		•			83.09+/-49
					-		231.34+/-134.05
			×	×	×	×	N1=40, N2=10
							Fold Change: 2.71
							P-value: .00094
577	1199	W72347	367.98+/-155.29			368.08+/-157.32	368.08+/-157.32
			146.12+/-193.47			94.65+/-155.82	261.92+/-468.76
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 3.46			Fold Change: 5.14	Fold Change: 3.22
			P-value: 0			P-value: 0	P-value: .03608
578	1200	W72407	235.27+/-157.67			234.77+/-159.7	
			63.55+/-76.04			85.52+/-101.27	
			N1=40, N2=168	×	×	N1=40, N2=31	×
			Fold Change: 3.77			Fold Change: 3.02	
			P-value: 0			P-value: .00001	
579	1201	W72511	995.7+/-434.28			988.5+/-437.53	988.5+/-437.53
			430.04+/-283.24			418.47+/-331.96	250.59+/-208.45
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.53			Fold Change: 2.63	Fold Change: 4.54
			P-value: 0			P-value: 0	P-value: .00008
280	1203	W73230	526.33+/-307.22			524.48+/-311.01	524.48+/-311.01
			205.2+/-108.64			185.59+/-79.06	164.36+/-67.2
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.58			Fold Change: 2.72	Fold Change: 3
			P-value: 0			P-value: 0	P-value: 0
581	1204	W73386	242.96+/-399.57	469.37+/-905.14	248.29+/-403.35	248.29+/-403.35	248.29+/-403.35
			16,99+/-76.53	95.29+/-88.61	3.09+/-55.26	-16.75+/-32.9	-2.29+/-42.09
			N1=40, N2=168	N1=17, N2=49	N1=40, N2=6	N1=40, N2=31	N1=40, N2=10
			Fold Change: 4.25	Fold Change: 3.43	Fold Change: 4.79	Fold Change: 5.86	Fold Change: 4.92
			r-value: 0	r-value: .00019	r-value: .00079	r-value. U	r-value. 0

#	Sea m	Genhank	Normal vs All	Normal vs Malignant	Normal vs Stage I	Normal vs Stage II	Normal vs Stage III
				9	.9	01 307 / 03 000 .	01 307 / 03 000
282	1205	W73819				993.58+/-625.18	993.28+/-023.18
						399.14+/-205.47	277.46+/-140.58
			×	×	×	N1=40, N2=31	N1=40, N2=10
						Fold Change: 2.23	Fold Change: 3.36
					•	P-value: 0	P-value: .00039
583	1206	W73855				201.45+/-105.43	
						87.02+/-86.49	- 74
			×	×	×	N1=40, N2=31	×
						Fold Change: 2.72	
						P-value: 0	
584	1207	W73890	223.3+/-129.09		•	223.01+/-130.77	223.01+/-130.77
			73.33+/-44.79			65.62+/-33.81	62.68+/-63.75
			NI=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.96			Fold Change: 3.14	Fold Change: 3.85
			P-value: 0			P-value: 0	P-value: .00019
585	1209	W80496	221.23+/-140.42			214.3+/-135.15	214.3+/-135.15
			105.98+/-75.28			95.94+/-55.75	53.76+/-58.28
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.11			Fold Change: 2.13	Fold Change: 3.87
			P-value: 0			P-value: .00004	P-value: .00029
985	1211	W88427	669.14+/-243.38			661.21+/-241.27	661.21+/-241.27
			316.73+/-233.88			304.22+/-202.92	187.14+/-59.43
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.35			Fold Change: 2.35	Fold Change: 3.45
			P-value: 0			P-value: 0	P-value: 0
587	1246	Z99386	615.03+/-208.26			611.71+/-209.91	611.71+/-209.91
			262.6+/-122.89			245.54+/-120.4	231.83+/-120.93
			N1=40, N2=168	×	×	N1=40, N2=31	N1=40, N2=10
			Fold Change: 2.48			Fold Change: 2.66	Fold Change: 3.04
			P-value: 0			P-value: 0	P-value: .00124

226
Table 5: BREAST / INFILTRATING LOBULAR CARCINOMA

	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
1 '	7	AA017070	218.33+/-195.52		·
			77.15+/-79.13	•	
			N1=40, N2=17	x	X
			Fold Change: 2.53		
			P-value: .00187		
2	15	AA031790	336.45+/-181.35		-
			156.08+/-81.33		
			N1=40, N2=17	X	X
			Fold Change: 2.16		
			P-value: .00003		
3	23	AA044830	387.92+/-190.91	-	
			188.55+/-88.55		
			N1=40, N2=17	X	X
			Fold Change: 2.14	•	
			P-value: .00023		
4	24	AA045145	262.21+/-180.28		
•			76.07+/-123.14		
			N1=40, N2=17	X	X
			Fold Change: 3.26		
		·	P-value: .00038		
5	25	AA046457	254.96+/-154.86		
			128.89+/-118.57		
			N1=40, N2=17	X	X
			Fold Change: 2.3		
			P-value: .00176		
6	31	AA059396	383.25+/-127.97		383.25+/-127.97
			170.7+/-70.05		120.28+/-48.53
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.32		Fold Change: 3.22
			P-value: 0		P-value: .01218
7	33	AA059458	74.76+/-90.6		74.76+/-90.6 344.29+/-46.75
			314.12+/-111.83	х	N1=40, N2=17
			N1=40, N2=17	^	Fold Change: 6.82
			Fold Change: 5.79		P-value: 0
	41	A A 10/704	P-value: 0		r-value. 0
8	41	AA126704	312.64+/-137.34 130.96+/-82.96		
			N1=40, N2=17	х	X
			Fold Change: 2.5	Λ	A
			P-value: .00009		
9	42	AA127718	240.21+/-361.64		
7	76	AMI#1110	75,73+/-121.03		
			N1=40, N2=17	Х	x
			Fold Change: 3.09	41	
			P-value: .00005		
10	43	AA127727	212.97+/-123.48		
10		. 22 22 27 7 7 2 1	100.07+/-53.82		
			N1=40, N2=17	X	x
			Fold Change: 2.1		
			P-value: .00014		
11	51	AA133248	400.91+/-134.73		
			201.52+/-119.8		
ì			N1=40, N2=17	X	X
			Fold Change: 2.24		

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
12	57	AA142913	302.34+/-222.83		302.34+/-222.83
			104.53+/-62.4		68.29+/-31.77
	•		N1=40, N2=17	X	N1=40, N2=17
		•	Fold Change: 2.84		Fold Change: 4.03
			P-value: 0		P-value: .00871
13	62	AA147751	478.2+/-207.42		
13	UZ.	AAITIOI	245.52+/-144.78		
			N1=40, N2=17	X	x
			Fold Change: 2.03		
	-		P-value: .00015		
14	63	AA147884	46.86+/-55.16		
14	03	AA14/004	212.3+/-151.24		
			N1=40, N2=17	Х	Х
				X	^
			Fold Change: 3.93		
		1 1 1 10010	P-value: .00001		
15	64	AA149312	374+/-139.43		
			179.7+/-77.1	37	v
			N1=40, N2=17	X	Х
			Fold Change: 2.18	•	
			P-value: .00003		
16	65	AA150501	215.8+/-104		
			97.75+/-48.53		
}			N1=40, N2=17	X	X
			Fold Change: 2.27		
			P-value: .00006		<u> </u>
17	71	AA158731	287.72+/-241.22		
ļ ·			94.76+/-99		
			N1=40, N2=17	X	X
			Fold Change: 3.29		
Ì			P-value: .00036		
18	72	AA160156	630.23+/-274.77		
			297.85+/-166.73		
			N1=40, N2=17	X	X
			Fold Change: 2.39	•	
			P-value: .00076		
19	75	AA173572	368.73+/-173.58		368.73+/-173.58
			140.6+/-66.1		101.84+/-30.25
1			N1=40, N2=17	X	N1=40, N2=17
1			Fold Change: 2.52		Fold Change: 3.17
			P-value: .00001		P-value: .00053
20	84	AA203663	288.39+/-92.75		
~ "	٠.		151.54+/-90.12	·	
1			N1=40, N2=17	X	· X
}			Fold Change: 2.19		
		•	P-value: .00062		
21	88	AA227778	254.32+/-164.5		
"1	00	FEERMAITIO	129.32+/-121.52		
			N1=40, N2=17	X	x
			Fold Change: 2.21	23	
			P-value: .00551		
122	00	AA369887	326.24+/-259.48		
22	99	AA30988/			
			1569.71+/-1564.61	X	X
			N1=40, N2=17	^	^
			Fold Change: 3.13		
L			P-value: .00723		

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
23	117	AA430314	259.57+/-186.05		259.57+/-186.05
			94.12+/-84.62		51.43+/-32.49
			N1=40, N2=17	Χ .	N1=40, N2=17
			Fold Change: 2.81		Fold Change: 4.33
			P-value: .00057		P-value: .0109
24	120	AA447015	226.67+/-173.74		226.67+/-173.74
			86.47+/-87.06		49.75+/-49
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.44		Fold Change: 3.69
			P-value: .00239		P-value: .04932
25	121	AA448195	82.22+/-92.11		
			252.38+/-226.28		
			N1=40, N2=17	X	X
			Fold Change: 2.56		
			P-value: .00561		
26	122	AA450090	285.47+/-226.15		285.47+/-226.15
			121.51+/-105.64		80.74+/-67.6
			N1=40, N2=17	x	N1=40, N2=17
			Fold Change: 2.56		Fold Change: 3.67
			P-value: .00017		P-value: .04277
27	124	AA452295	220.36+/-116.43		220.36+/-116.43
			43.55+/-34.23		27.93+/-7.95
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 4.8		Fold Change: 6.64
			P-value: 0		P-value: 0
28	129	AA479033	105.96+/-264.08		
			699.96+/-1244.37		
			N1=40, N2=17	X	X
			Fold Change: 3.25		
			P-value: .01862		
29	131	AA480075	331.5+/-159.34		
			170.51+/-174.22		
			N1=40, N2=17	X	X
			Fold Change: 2.36		
			P-value: .00065		
30	134	AA486731	417.18+/-216.76		
			258.38+/-279.38		
			N1=40, N2=17	X	X
			Fold Change: 2.26		
			P-value: .0077		
31	135	AA488889	298.86+/-194.94		
			114.61+/-41.42		
			N1=40, N2=17	X	X
			Fold Change: 2.16		
			P-value: .00001		
32	138	AA502943	439.24+/-110.96		
			200.97+/-110.89		
			N1=40, N2=17	X	X
			Fold Change: 2.41		
			P-value: 0		
33	140	AA508196	475.57+/-315.6		
			208.59+/-128.6		
			N1=40, N2=17	X	X
			Fold Change: 2.29		
			P-value: .0014		

73.69+/-113.44 N1=40, N2=17 Fold Change: 3.63	x x x
N1=40, N2=17	x x
Fold Change: 2.83 P-value: .00199 35	x x
P-value: .00199 35	X .
35 151 AA526961 417.14+/-237.24 139.33+/-66.58 N1=40, N2=17 Fold Change: 2.89 P-value: 0 36 156 AA534456 1130.9+/-759.82 504.53+/-276.17 N1=40, N2=17 Fold Change: 2.23 P-value: .00282 37 160 AA535218 322.09+/-137.43 130.51+/-83.58 N1=40, N2=17 Fold Change: 2.69 P-value: .00001 38 171 AA584310 402.55+/-323.55 1185.08+/-725.81 N1=40, N2=17 Fold Change: 3.27 P-value: .00003 39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	X .
139.33+/-66.58 N1=40, N2=17 Fold Change: 2.89 P-value: 0 36 156	X .
N1=40, N2=17 X Fold Change: 2.89 P-value: 0 36 156	X .
Fold Change: 2.89 P-value: 0 36	X .
P-value: 0 36 156	
P-value: 0 36 156	
36 156 AA534456 1130.9+/-759.82 504.53+/-276.17 N1=40, N2=17 Fold Change: 2.23 P-value: .00282 37 160 AA535218 322.09+/-137.43 130.51+/-83.58 N1=40, N2=17 X Fold Change: 2.69 P-value: .00001 38 171 AA584310 402.55+/-323.55 1185.08+/-725.81 N1=40, N2=17 X Fold Change: 3.27 P-value: .00003 39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	
N1=40, N2=17 X Fold Change: 2.23 P-value: .00282 37 160 AA535218 322.09+/-137.43	
Fold Change: 2.23 P-value: .00282 37	
Fold Change: 2.23 P-value: .00282 37 160 AA535218 322.09+/-137.43	x
P-value: .00282 37 160	x
37 160 AA535218 322.09+/-137.43 130.51+/-83.58 N1=40, N2=17 Fold Change: 2.69 P-value: .00001 38 171 AA584310 402.55+/-323.55 1185.08+/-725.81 N1=40, N2=17 Fold Change: 3.27 P-value: .00003 39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	X
130.51+/-83.58 N1=40, N2=17 X Fold Change: 2.69 P-value: .00001 38 171	х
N1=40, N2=17 X Fold Change: 2.69 P-value: .00001 38 171	X
Fold Change: 2.69 P-value: .00001 38 171	
P-value: .00001 38 171	
38 171 AA584310 402.55+/-323.55 1185.08+/-725.81 N1=40, N2=17 X Fold Change: 3.27 P-value: .00003 39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	
1185.08+/-725.81 N1=40, N2=17 X Fold Change: 3.27 P-value: .00003 39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	
N1=40, N2=17 X Fold Change: 3.27 P-value: .00003 39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	
Fold Change: 3.27 P-value: .00003 39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	X
P-value: .00003 39	
39 172 AA584403 593.26+/-1291.79 73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	
73.69+/-113.44 N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	593.26+/-1291.79
N1=40, N2=17 X Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	46.94+/-41.5
Fold Change: 3.63 P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	N1=40, N2=17
P-value: .0001 40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	Fold Change: 4.08
40 175 AA601511 2941.11+/-4823.41 8196.8+/-10494.86	P-value: .01967
8196.8+/-10494.86	
N1-4U, NZ=1/ A	X
Fold Change: 3.59	
P-value: .04627	
41 178 AA609310 285.39+/-160.8	
103.37+/-63.8	
N1=40, N2=17 X	X
Fold Change: 2.73	
P-value: .00003	
42 180 AA610522 803+/-768.74	803+/-768.74
	1948.9+/-1536.5
N1=40, N2=17 X	N1=40, N2=17
	Fold Change: 3.65
P-value: .00504	P-value: .04632
43 184 AA621478 398.69+/-325.12	r-valueu-tusz
105.85+/-99.55	1-value04052
N1=40, N2=17 X	1-value. 104032
Fold Change: 3.76	
P-value: .00002	X
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	х
N1=40, N2=17 X	X 1145.06+/-502.33
	X 1145.06+/-502.33 263.82+/-233.17
P-value: .00016	X 1145.06+/-502.33

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
45	191	AA631047	615.9+/-364.24		
			335.52+/-248.64		
			N1=40, N2=17	X	х
			Fold Change: 2.12		
			P-value: .00214		
46	194	AA634799	739.38+/-608.62		
			265.99+/-273.02		
			N1=40, N2=17	X	x
			Fold Change: 3.37		
			P-value: .00153		
47	198	AA669106	84.29+/-131.22		
			224.41+/-230.31		77
			N1=40, N2=17	X	Х
•			Fold Change: 3.18		1
		<u>.</u>	P-value: .00001	<u> </u>	455 51 1/455 00
48	200	AA700621	467.51+/-455.09		467.51+/-455.09
			127.5+/-198.7	***	65.41+/-73.63
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 3.36		Fold Change: 4.6
40	014	A A 7 40 COR	P-value: .00047		P-value: .03306 1026.03+/-1071.41
49	214	AA742697	1026.03+/-1071.41		72.76+/-23.65
			497.89+/-1362.07	x	N1=40, N2=17
			N1=40, N2=17 Fold Change: 3.28	Λ	Fold Change: 7.24
			P-value: .00238		P-value: 0
50	253	AA921809	459.15+/-1266.29		1 74140. 0
30	255	AA921009	1144.77+/-1121.05		
			N1=40, N2=17	X	' x
			Fold Change: 2.76		
			P-value: .00483		·
51	254	AA921830	92.93+/-115.1		92.93+/-115.1
			214.98+/-154.53		328.17+/-235.36
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.53		Fold Change: 4.07
			P-value: .00048		P-value: .03148
52	255	AA921922	312.44+/-292.63	-	312.44+/-292.63
			101.23+/-57.27		79.08+/-33.3
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.73		Fold Change: 3.21
			P-value: .00001		P-value: .00566
53	260	AA936632			125.03+/-127.3
					341.96+/-182.6
			X	X	N1=40, N2=17
1					Fold Change: 3.13
			262 01/152 1/		P-value: .02208
54	266	AA976064	363.9+/-153.14		
			150.7+/-67.67	v	x
			N1=40, N2=17 Fold Change: 2.48	Х	^
			P-value: 0	•	
==	201	A C00 4770	r-value: U		222.34+/-159.84
55	281	AC004770			51.7+/-14.58
			x	x	N1=40, N2=17
			Λ	Λ	Fold Change: 3.51
				·	P-value: .00008

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
56	297	AF052142	307.17+/-169.55		
		-,	101.76+/-54.87		
			N1=40, N2=17	X	X
			Fold Change: 2.92		
			P-value: 0		
57	317	AI018523	422.08+/-187.64		
			137.17+/-133.59		
			N1=40, N2=17	X	X
			Fold Change: 3.55		
			P-value: .00002		
58	321	AI031771	85.9+/-105.07		
			273.11+/-256.97		
			N1=40, N2=17	X	X
			Fold Change: 2.82		
			P-value: .00563		
59	324	AI039005	203.54+/-131.69		
			79.78+/-68.07		37
			N1=40, N2=17	X	X
			Fold Change: 2.7		
			P-value: .00048		1007.041/11/0.50
60	325	AI039722			1007.24+/-1162.59 71.46+/-83.95
			V	V	
			X	X	N1=40, N2=17 Fold Change: 11.94
					P-value: .00965
	221	A TO 57 450	201 221 / 1572 07		381.32+/-1572.07
61	331	AI057450	381.32+/-1572.07 -3.82+/-29.02		-11.17+/-8.38
			N1=40, N2=17	X	N1=40, N2=17
1			Fold Change: 3.3	X	Fold Change: 3.63
			P-value: .00001		P-value: 0
62	333	AI073394	124.23+/-101.36		
""	555	ANO 7557 .	255.64+/-158.11		
1			N1=40, N2=17	X	X
1			Fold Change: 2.2		
Ì			P-value: .00025		
63	335	A1073992	110.23+/-145.3		
			533.62+/-785.24		
			N1=40, N2=17	X	X
1			Fold Change: 3.22		•
			P-value: .00574		
64	338	AI079545	248.94+/-138.38		
		•	465.02+/-171.05		
			N1=40, N2=17	X	X
			Fold Change: 2.01	•	
			P-value: .00007		
65	341	AI083598	339.56+/-289.33		339.56+/-289.33
			75.11+/-72.52	4 5	38.38+/-30.41
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 3.79		Fold Change: 5.72
<u></u>			P-value: .00003		P-value: .00274
66	342	AI086614	301.2+/-152.86	•	
			128.33+/-84.7	· · · · · · ·	v
			N1=40, N2=17	X	X
			Fold Change: 2.51		
			P-value: .00041	<u>-</u>	

2	า	า
L	J	L

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
67	343	A1087975	68.87+/-58.02		ļ
			211.46+/-250.57		
			N1=40, N2=17	X	x
			Fold Change: 2.28		
			P-value: .00976		
68	344	A1088609	709.25+/-600.21		
			265.96+/-356.75		
			N1=40, N2=17	X	. X
			Fold Change: 3.21		1
			P-value: .00094		
69	345	AI091154	351.29+/-406.17		351.29+/-406.17
			74.97+/-110.43		12.49+/-5.56
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 4.1		Fold Change: 8.99
			P-value: .00011		P-value: 0
70	351	AI123555	300+/-164.6		300+/-164.6
			65.25+/-46.06		48.57+/-47.56
		•	N1=40, N2=17	, X	N1=40, N2=17
			Fold Change: 4.55		Fold Change: 6
			P-value: 0		P-value: .01993
71	359	AI128820	224.42+/-90.96		
			108.28+/-86.45		
			N1=40, N2=17	X	X
			Fold Change: 2.34		
			P-value: .00033		
. 72	361	AI129626	278.92+/-134.16		
			134.17+/-77.75	32	v
ŀ			N1=40, N2=17	X	X
			Fold Change: 2.13		
	2/2	AT121070	P-value: .00023		299.48+/-223.81
73	362	AI131078	299.48+/-223.81 111.16+/-71.9		67.7+/-89.93
			N1=40, N2=17	· X	N1=40, N2=17
1			Fold Change: 2.6	А	Fold Change: 5.06
			P-value: .0002		P-value: .04594
74	370	AI148006	241.17+/-193.5		1 72140. 10 10 1
′*	370	A1140000	77.61+/-92.82		
			N1=40, N2=17	X	X
ļ			Fold Change: 2.93		•
			P-value: .00043		
75	372	AJ149637	212.6+/-241.64		212.6+/-241.64
١.٠			39.92+/-27.3		39.29+/-41.66
1			N1=40, N2=17	X	N1=40, N2=17
Ì			Fold Change: 3.37		Fold Change: 3.31
			P-value: 0	•	P-value: .04204
76	380	AI189011	284.7+/-101.6		
			126.14+/-81.81		·
1			N1=40, N2=17	X	X
			Fold Change: 2.75		
L			P-value: .00017		
77	384	AI200954	524.84+/-319.36	· · · · · · · · · · · · · · · · · · ·	
			253.81+/-173.45		
ļ			N1=40, N2=17	X	X
			Fold Change: 2.17		
1			P-value: .00291		

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
78	386	AI201965			234.24+/-149.37
					59.16+/-44.89
			X	X	N1=40, N2=17
				•	Fold Change: 3.61
					P-value: .03602
79	394	AJ222594	431.73+/-162.38		
			196.71+/-138.58		77
			N1=40, N2=17	X	X
			Fold Change: 2.48		•
	·		P-value: .00005	· · · · · · · · · · · · · · · · · · ·	
80	395	AJ223817	221.5+/-204.3		
			686.72+/-465.96		72
			N1=40, N2=17	X	Х
ļ			Fold Change: 3.28		
			P-value: .00041		
81	399	A1247837	250.33+/-314.52		250.33+/-314.52
1			53.27+/-43.26	37	28.03+/-28.56
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.95		Fold Change: 4.49
			P-value: .00014		P-value: .00427
82	408	AI277612	1022.91+/-907.07		387.19+/-203.85
			101.24+/-106.96	37	584.56+/-51.28
			N1=40, N2=17	X	N1=40, N2=17
į			Fold Change: 8.06		Fold Change: 2.01 P-value: .00012
-		17000056	P-value: 0		
83	417	AI300876	601.83+/-985.51		601.83+/-985.51 28.36+/-46.5
			26.36+/-32.43	X	N1=40, N2=17
			N1=40, N2=17	^	Fold Change: 6.7
			Fold Change: 7.1 P-value: 0		P-value: .00688
84	418	AI301060	1095.7+/-461.79		1-value00000
04	410	A1301000	3285.81+/-2230.69		•
l			N1=40, N2=17	X	X
			Fold Change: 2.58	X	
ļ			P-value: .00018		•
85	422	AI333767	201.68+/-104.32		
03	722	ALGGG 101	94.33+/-75		
			N1=40, N2=17	X	X
1			Fold Change: 2.32		- -
Ì			P-value: .00023		
86	423	AI333987			208.53+/-320.79
""					-12.06+/-45.78
			X	X	N1=40, N2=17
					Fold Change: 4.29
				·	P-value: .00037
87	427	AI341602	137.44+/-280.1		137.44+/-280.1
			473.63+/-503.04		1084.1+/-558.85
			N1=40, N2=17	X	N1=40, N2=17
}			Fold Change: 3.72		Fold Change: 14.07
			P-value: .00123		P-value: .00013
88	430	AI344312	85.72+/-58.03		
]			241.24+/-132.01		
1			N1=40, N2=17	X	X
			Fold Change: 2.77		
1			P-value: .00003		

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
89	431	AI346341	635.18+/-426.52		
0,			192.7+/-146.21		
			N1=40, N2=17	X	x
			Fold Change: 2.74		
			P-value: .00095		<u> </u>
90	442	AI369840	239.87+/-167.43		-
			91.16+/-73.21		l
			N1=40, N2=17	X	X
			Fold Change: 2.54		
			P-value: .00091		
91	447	AI378584	815.22+/-371.96		815.22+/-371.96
			289.2+/-132.28		225.35+/-105.83
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.65		Fold Change: 3.53
		··	P-value: 0		P-value: .02945
92	448	AI379723	380.22+/-173.64		
			171.75+/-85.82		١,
			N1=40, N2=17	X	Х
			Fold Change: 2.11		j
			P-value: .00049		01 (51/ 57.00
93	459	AI394013			81.65+/-57.28
				V	206.8+/-28.72 N1=40, N2=17
			X	X	Fold Change: 3.01
					P-value: 0
	460	AT4172/7	022 251/ 497 41		933.35+/-487.41
94	462	AI417267	933.35+/-487.41 367.83+/-178.5		232.02+/-44.3
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.35	7.	Fold Change: 3.44
			P-value: 0		P-value: 0
95	467	AI419030	445.97+/-259.12		445.97+/-259.12
75	407	74117000	141.54+/-110.04		100.89+/-50.85
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 3.4		Fold Change: 3.94
			P-value: .00002		P-value: .00968
96	468	AI421837	293.96+/-147.73		
			122.58+/-60.8		
			N1=40, N2=17	X	X
			Fold Change: 2.25		
			P-value: .00003		
97	477	AI458003	280.16+/-202.76		280.16+/-202.76
			58.35+/-64.44		29.02+/-54.63
			N1=40, N2=17	X ·	N1=40, N2=17
			Fold Change: 4.09		Fold Change: 6.1
			P-value: 0		P-value: .01261
98	484	AI479262	56.35+/-67.19		
			253.01+/-258.86	v	v
			N1=40, N2=17	X	X
			Fold Change: 3.34		
00	400	A T 402074	P-value: .00113	-	382.34+/-177.78
99	489	AI492051	382.34+/-177.78		84.79+/-58.36
			99,97+/-58.1	х	N1=40, N2=17
ĺ			N1=40, N2=17 Fold Change: 3.83	Λ	Fold Change: 4.59
					P-value: .01274
			P-value: 0		1 - Value012/7

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
100	493	AI492879	219.42+/-658.12		l
			360.39+/-664.73		
			N1=40, N2=17	X	X
			Fold Change: 3.18		
			P-value: .00218		
101	500	AI524085	388.89+/-529.52	•	
			77.76+/-117.23		
			N1=40, N2=17	X	· x
			Fold Change: 3.83		
			P-value: .00013		
102	501	AI525044	316.89+/-143.08		
			163.75+/-85.16		37
			N1=40, N2=17	X	Х
			Fold Change: 2.13		
			P-value: .00114		
103	505	AI537407	278.8+/-204.74		
			783.29+/-533.91	v	х
			N1=40, N2=17	X	^
			Fold Change: 2.81		
101	<u> </u>	AT520207	P-value: .00083 1924.9+/-2430.34		
104	506	AI539386	6121.55+/-7013.05	•	
		•	N1=40, N2=17	X	Х
			Fold Change: 3.2	A	A
			P-value: .00044		
105	511	AI554514	90.74+/-52.8	·	
103	311	MISSASIA	201.02+/-166.43		<u>.</u>
	•		N1=40, N2=17	\mathbf{x}	X
İ			Fold Change: 2.08		
1			P-value: .00026		
106	512	AI557210	129.15+/-140.98		129.15+/-140.98
			491.52+/-264.84		573+/-162.6
1			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 5.08		Fold Change: 6.68
			P-value: 0		P-value: .00001
107	517	AI566038	257.62+/-109.32		
•			124.43+/-63.25		
			N1=40, N2=17	X	X
			Fold Change: 2.16		
<u> </u>			P-value: .00015		
108	520	AI571525	265.11+/-78.71		
			141.93+/-62.73	37	v
ŀ			N1=40, N2=17	X	Х
			Fold Change: 2.04		
100	526	ATC24052	P-value: .00015		
109	536	AI624853	373.05+/-166.36 180.19+/-106.47		
			N1=40, N2=17	Х	X
			Fold Change: 2.21	Λ	
			P-value: .00004		
110	540	AI634852	278.07+/-162.92		
110	270	P11024022	122.35+/-122.97		
			N1=40, N2=17	X	X
			Fold Change: 2.6		
1					

# Seq ID Genbank Normal vs All Normal vs Malignant Normal vs Sl1 and 111 542 Al638295 X X X X N1=40, N2=17 Fold Change: 3. P-value: 0 112 545 Al650341 123.6+/-154.23 209.61+/-97.49 N1=40, N2=17 X X Fold Change: 2.41 P-value: .00028 113 546 Al650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 Al658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 Al659418 261.02+/-116.11 133.75+/-108.49 N1=40, N2=17 X X	7
X X N1=40, N2=17 Fold Change: 3. P-value: 0 112 545 AI650341 123.6+/-154.23 209.61+/-97.49 N1=40, N2=17 X X Fold Change: 2.41 P-value: .00028 113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
Fold Change: 3. P-value: 0 112 545 AI650341 123.6+/-154.23 209.61+/-97.49 N1=40, N2=17 X X Fold Change: 2.41 P-value: .00028 113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
Fold Change: 3. P-value: 0 112 545 AI650341 123.6+/-154.23 209.61+/-97.49 N1=40, N2=17 X X Fold Change: 2.41 P-value: .00028 113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	16
112 545 AI650341 123.6+/-154.23 209.61+/-97.49 N1=40, N2=17 X Fold Change: 2.41 P-value: .00028 113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
209.61+/-97.49 N1=40, N2=17 Fold Change: 2.41 P-value: .00028 113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
N1=40, N2=17 X X Fold Change: 2.41 P-value: .00028 113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
Fold Change: 2.41 P-value: .00028 113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
P-value: .00028 113 546 AI650514 110.57+/-163.5	
113 546 AI650514 110.57+/-163.5 295.11+/-242 N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
295.11+/-242 N1=40, N2=17 X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
N1=40, N2=17 X X Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
Fold Change: 2.56 P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
P-value: .00744 114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
114 562 AI658925 542.56+/-347.67 259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
259.65+/-161.58 N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
N1=40, N2=17 X X Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
Fold Change: 2.07 P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
P-value: .00351 115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
115 565 AI659418 261.02+/-116.11 133.75+/-108.49	
133.75+/-108.49	
λ_{11-40} λ_{12-12} λ_{13}	
111 10,112 17	
Fold Change: 2.41	
P-value: .00088	
116 566 AI659533 563.4+/-201.34	
291.04+/-136.51	
N1=40, N2=17 X X	
Fold Change: 2.1	
P-value: .00023	20
117 588 AI680541 510.08+/-201.29 510.08+/-201.2 186.08+/-102.82 106.49+/-44.7	
100,000	
1	
118 591 AI683911 241.46+/-200.89 241.46+/-200.89 27.24+/-52.93 32.69+/-57.65	
N1=40, N2=17 X N1=40, N2=1	_
Fold Change: 4.58 Fold Change: 3	
P-value: 0 P-value: .0161	
119 592 AI684457 96.99+/-74.31	
119 592 A1084457 90.59+7-74.51 253.71+/-245.09	
N1=40, N2=17 X X	
Fold Change: 2.25	
P-value: .00425	
120 593 AI686114 374.48+/-274.59 374.48+/-274.	59
120.83+/-92.86 76.06+/-83.4/	
N1=40, N2=17 X N1=40, N2=1	
Fold Change: 3.03 Fold Change: 4	
P-value: .0001 P-value: .0469	
121 612 AI701034 215.78+/-96.65	
111.85+/-71.77	
N1=40, N2=17 X X	
Fold Change: 2.11	
P-value: .00036	

	eq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
122 61	8	AI732274	947.08+/-989.69		
			285.99+/-458.46		
			N1=40, N2=17	X	X
			Fold Change: 3.94		
			P-value: .00251		
123 61	9	AI733679	325.9+/-596.22		
			48.5+/-33.81		
			N1=40, N2=17	X	Х
Ì			. Fold Change: 3.21		
			P-value: .00002		
124 62	23	AI740621	231.84+/-247.13		
			77.35+/-124.9		
}			N1=40, N2=17	X	X
			Fold Change: 2.62		
			P-value: .00315		
125 62	27	AI742002	111.78+/-132.43		111.78+/-132.43
<u> </u>			379.6+/-168.26		388+/-292.79
		•	N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 4.61		Fold Change: 4.32
			P-value: 0		P-value: .0111
126 62	29	AI742239	159.76+/-199.32		
			419.47+/-377.4		37
			N1=40, N2=17	X	X
			Fold Change: 3.29		
			P-value: .00013		
127 63	31	A1742490	601.57+/-252.84		
			285.13+/-140.07	¥	X
			N1=40, N2=17	X	Λ.
			Fold Change: 2.05		
100 (0		ATE 40501	P-value: .00003 215.93+/-234.91		215.93+/-234.91
128 63	32	AI742521	23.91+/-22.33		23.3+/-12.66
			N1=40, N2=17	Х	N1=40, N2=17
			Fold Change: 4.4	A	Fold Change: 4.76
}			P-value: 0		P-value: .00002
129 63	35	AI743671	582.82+/-317.91		
129 03	33	A1743071	281.49+/-185.49		
			N1=40, N2=17	Х	X
			Fold Change: 2.26		
			P-value: .00964		•
130 63	36	AI743715	312.02+/-238.55		
			99.48+/-141.4		
		•	N1=40, N2=17	X	X
			Fold Change: 3.47		
			P-value: .0005		
131 63	37	AI743925	663.58+/-309.38		
		-	221.31+/-142.28		
		•	N1=40, N2=17	X	X
[Fold Change: 3.13		
1			P-value: 0		
132 64	41	AI751438	144.67+/-188.73		144.67+/-188.73
			551.05+/-364.64		612.92+/-347.94
			N1=40, N2=17	· X	N1=40, N2=17
			Fold Change: 4.85		Fold Change: 5.61
1			P-value: 0		P-value: .02877

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
133	643	AI758223	833.52+/-665.83		833.52+/-665.83
			89.52+/-74.43		98.81+/-90.66
			N1=40, N2=17	X	N1=40, N2=17
1			Fold Change: 8.3		Fold Change: 8
Ì		•	P-value: 0		P-value: .02464
134	649	AI761241	883.3+/-332.12		
İ			415.64+/-208.2		
			N1=40, N2=17	X	X
			Fold Change: 2.21		
			P-value: .00005		
135	650	AI761274	342.36+/-182.65		342.36+/-182.65
			121.18+/-64.61	•	75.25+/-39.87
			N1=40, N2=17	X	N1=40, N2=17
1			Fold Change: 2.86		Fold Change: 4.5
			P-value: .00001		P-value: .01949
136	652	AI761844	278.83+/-138.41		278.83+/-138.41
			99.54+/-56.16	· 	87.16+/-56.51
			N1=40, N2=17	X	N1=40, N2=17
1			Fold Change: 2.79		Fold Change: 3.1
			P-value: .00001		P-value: .02791
137	653	. AI763136	282.1+/-149.81		
1			118.7+/-131.83		37
]			N1=40, N2=17	X	\mathbf{X}
1			Fold Change: 2.53		
<u> </u>			P-value: .00163		071 741 / 500 10
138	655	A1766029	271.74+/-528.19		271.74+/-528.19
1			22.11+/-18.39	X	30.31+/-29.22 N1=40, N2=17
1			N1=40, N2=17	A	Fold Change: 3.07
1			Fold Change: 3.71 P-value: 0		P-value: .01978
139	657	AI768325	114.7+/-66.43		1-value01570
139	057	A1700323	257.51+/-172.22		
[N1=40, N2=17	X	X
			Fold Change: 2.12	•	
·			P-value: .00044		
140	664	AI791182	286.48+/-162.61		
1			621.07+/-388.18		
1			N1=40, N2=17	X	x
l			Fold Change: 2.07		
			P-value: .00052		
141	668	AI792635			800.24+/-717.81
					1968.88+/-866
-			X	X	N1=40, N2=17
					Fold Change: 4.27
					P-value: .0038
142	674	AI797276	271.48+/-136.73		271.48+/-136.73
			106.25+/-58.1		76.49+/-46.61
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.56		Fold Change: 3.58
L			P-value: .00001		P-value: .02759
143	678	AI799784	603.99+/-383.42		603.99+/-383.42
			93.05+/-88.68	37	82.71+/-78.29
			N1=40, N2=17	Х	N1=40, N2=17
			Fold Change: 6.66		Fold Change: 7.34
L			P-value: 0		P-value: .01379

#	Seq ID	Genbank	Normal vs Ali	Normal vs Malignant	Normal vs SII and SIII
144	684	A1804054	302.97+/-234.41		302.97+/-234.41
			108.18+/-91.04		77.58+/-36.68
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.83		Fold Change: 3.3
			P-value: .00011	· ·	P-value: .01862
145	687	A1806324	211.46+/-131.17		
			108.84+/-79.43		
			N1=40, N2=17	X .	X
			Fold Change: 2.03		·
			P-value: .00874		
146	691	AI809953	383.43+/-189.32		
			120.52+/-100.18		
			N1=40, N2=17	X	X
			Fold Change: 3.27		
			P-value: .00013		
147	693	AI810266	68.88+/-106.64		
			761.49+/-1126.65		
			N1=40, N2=17	X	X
			Fold Change: 6.3		
			P-value: .00013		
148	694	AI810764	202.16+/-159.83		
			1084.09+/-1401.59		
			N1=40, N2=17	X	X
			Fold Change: 4.41		
			P-value: .00007		
149	701	A1816835	360.85+/-289.77		
			171.05+/-158.66		
			N1=40, N2=17	X	X
			Fold Change: 2.13		
4.70			P-value: .00229		110 711/110 11
150	704	AI817967			112.71+/-118.41
			V	v	308.86+/-160.78
		•	X	X	N1=40, N2=17
					Fold Change: 3.45 P-value: .00951
151	704	A 101 0570	204 09-1/ 229 07		r-value00931
151	706	AI818579	394.08+/-228.07 204.91+/-197.94		
		*	N1=40, N2=17	X	x
			Fold Change: 2.13	Λ	Λ
			P-value: .00391		· ·
152	712	AI821472	519.11+/-694.13		519.11+/-694.13
132	114	111041414	-5.59+/-218.89	· ,	-49.74+/-70.96
			N1=40, N2=17	X .	N1=40, N2=17
			Fold Change: 5.69	**	Fold Change: 9.33
			P-value: .00005		P-value: 0
153	713	AI823572	232.21+/-195.63		
			91.57+/-60.62		
			N1=40, N2=17	· X	x
			Fold Change: 2.43	-	
			P-value: .00008		
154	721	AI825936	229.86+/-148.12		
			98.58+/-81.47		
			70.J0T/-01.4 <i>f</i>		
			N1=40, N2=17	X	Х
				х	х

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
155	722	AI826437	45.86+/-118.99		
			281.35+/-448.25		į
			N1=40, N2=17	X	X
			Fold Change: 3.03		
			P-value: .0122		
156	744	AI863167	183.76+/-73.48		
			406.96+/-190.24	·	
			N1=40, N2=17	X	X
			Fold Change: 2.16		
			P-value: 0		·
157	747	AI864898	401.86+/-258.51		
			75.46+/-68.5		
			N1=40, N2=17	X	x
			Fold Change: 5.61		
			P-value: 0		
158	750	AI871044	766.39+/-500.99		766.39+/-500.99
			189.5+/-179.55		84.85+/-70.19
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 4.03		Fold Change: 8.12
			P-value: .00001		P-value: .00884
159	751	AI872267	267.23+/-203.1		
			627.26+/-368.25		
j			N1=40, N2=17	X .	X
			Fold Change: 2.55		
			P-value: .00015		
160	752	AI879337	431.51+/-184.18		
			215.5+/-115.86	37	v
			N1=40, N2=17	X	X
			Fold Change: 2.18		
		1.7000000	P-value: .00062		319.22+/-320.74
161	758	AI888322			71.54+/-51.15
			X	х	N1=40, N2=17
ĺ			Λ	A	Fold Change: 3.78
ŀ			•		P-value: .03277
162	772	AI916544	151.27+/-163.24		1-varde03211
102	772	A1710344	373.43+/-334.2		
			N1=40, N2=17	х	X
			Fold Change: 2.45	7.	••
			P-value: .00524		
163	775	A1917901	601.53+/-812.45		601.53+/-812.45
103	113	ALD 1 / 701	76.98+/-131.25	•	26.66+/-20.01
			N1=40, N2=17	Х	N1=40, N2=17
			Fold Change: 4.95	4 b	Fold Change: 7.3
			P-value: .00005		P-value: .00001
164	780	AI924465	448.27+/-478.27		
107	,00	111/2/100	149.48+/-115.97		
			N1=40, N2=17	X	X
			Fold Change: 2.43	- -	
			P-value: .00214		
165	787	AI934361	220.01+/-243.16		220.01+/-243.16
~~			54.43+/-44.52		52.02+/-37.1
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 3.1		Fold Change: 3.01
			P-value: .00001		P-value: .03711

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
166	789	A1934881	316.72+/-226.37		
			659.59+/-486.96		į
			N1=40, N2=17	X	X
			Fold Change: 2.01		
			P-value: .00378		
167	816	AI968151	127.39+/-61.78		
			376.92+/-292.97		
			N1=40, N2=17	X	X
			Fold Change: 2.53		
			P-value: .00031		
168	817	AI968379	295.46+/-388.02		295.46+/-388.02
100	01.	122,000.7	-8.49+/-25.52		.59+/-34.6
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 6.27		Fold Change: 5.43
			P-value: 0		P-value: .00032
169	818	A1968904	738.79+/-292.65		
103	010	A1700704	307.62+/-119.37		
			N1=40, N2=17	Х	Х
			Fold Change: 2.35	••	
Ì			P-value: 0		
170	830	AI972498	286.51+/-112.64		
1/0	030	A1512430	135.46+/-66.44		
			N1=40, N2=17	х	X
			Fold Change: 2.18	Ÿ	3.
			P-value: .00003		
101	022	A T073072	436.16+/-215		
171	832	AI972873	132.01+/-99.1		
				Х	X
\ ·			N1=40, N2=17	А	A
			Fold Change: 3.85		
150		A T002045	P-value: 0		281.02+/-338.08
172	838	AI983045	281.02+/-338.08		-9.19+/-15.96
			40.45+/-125.75	x	N1=40, N2=17
			N1=40, N2=17	A	Fold Change: 7.52
			Fold Change: 4.78		P-value: 0
170	0.55	1 T 005005	P-value: 0		614.2+/-317.15
173	857	AL037805			183.89+/-87.99
			37	v	N1=40, N2=17
1			X	X	Fold Change: 3.13
1					P-value: .01435
15:	065	17.040040	204 561 / 120 70		1 - value01433
174	865	AL040912	304.56+/-132.78		
			112.19+/-70.33	v	X
1			N1=40, N2=17	Х	^
1			Fold Change: 2.8		
<u></u>			P-value: .00006		1022.01 / 007.07
175	867	AL042492	809.69+/-853.09		1022.91+/-907.07
1			72.75+/-93.44	. 47	85.76+/-67.41
		•	N1=40, N2=17	· · X	N1=40, N2=17
			Fold Change: 9.48		Fold Change: 8.09
<u></u>			P-value: 0		P-value: .00176
176	876	AL046941	428.58+/-238.89		428.58+/-238.89
			146.79+/-176.57		55.32+/-48.1
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 4.06		Fold Change: 7.58
1			P-value: .00007		P-value: .01267

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
177	881	AL048962	944+/-354.29		944+/-354.29
			399.3+/-211.63		289.62+/-184.81
			N1=40, N2=17	x	N1=40, N2=17
			Fold Change: 2.5		Fold Change: 3.52
			P-value: .00001		P-value: .03411
178	893	AL050367	257.59+/-77.75		257.59+/-77.75
-/-			111.77+/-59.21		76.12+/-36.74
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.47		Fold Change: 3.45
			P-value: 0		P-value: .01201
179	894	AL079279	313.49+/-189.76		
			127.56+/-77.14		
			N1=40, N2=17	X	X
			Fold Change: 2.4		
i			P-value: .00036		
180	896	AL079707	261.69+/-226.08		
			73.98+/-35.27		
			N1=40, N2=17	X	X
			Fold Change: 3.16		
ľ			P-value: 0		
181	902	AL118746	234.63+/-113.05		234.63+/-113.05
			84.77+/-47.29		46.19+/-34.43
l			N1=40, N2=17	X	N1=40, N2=17
	•		Fold Change: 2.86		Fold Change: 5.14
			P-value: .00001		P-value: .0179
182	905	AW000952	98.9+/-72.25		
}	•		204.67+/-105.21		
1			N1=40, N2=17	X	X
			Fold Change: 2.16		
			P-value: .00011		
183	907	AW002846	283.14+/-201.6		
l			119.62+/-87.38		
1			N1=40, N2=17	X	X
			Fold Change: 2.43		
			P-value: .00065		
184	908	AW002941	959.64+/-342.08		
			493.25+/-243.21		37
1			N1=40, N2=17	X	X
1			Fold Change: 2.13		
			P-value: .0001		
185	916	AW006235	346.9+/-210.26		
			121.01+/-58.03	7.7	v
			N1=40, N2=17	X	X
			Fold Change: 2.69		
			P-value: 0		
186	917	AW006352	235.29+/-179.11		
			534.97+/-420.56	v	X
İ			N1=40, N2=17	X	^
			Fold Change: 2.17		
<u> </u>			P-value: .00953		223.2+/-116.87
187	921	AW007080	223.2+/-116.87		36.39+/-14.01
			69.24+/-50.48	v	30.3947-14.01 N1=40, N2=17
			N1=40, N2=17	X	Fold Change: 5.16
1			Fold Change: 3.27		P-value: .0001
L			P-value: .00001		1-441060001

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
188	926	AW007803	153.39+/-142.06		
			442.5+/-397.54		
			N1=40, N2=17	X	x
			Fold Change: 2.55		
			P-value: .00867		
189	931	AW014155	214.48+/-209.56		
			624.36+/-372.34		
			N1=40, N2=17	X	X
			Fold Change: 3.15	,	
		·	P-value: .00005	·	
190	953	AW051492	442.65+/-332.99		·
			203.39+/-140.38		
			N1=40, N2=17	X	x
			Fold Change: 2.22		
			P-value: .00151		
191	957	C17781	229.36+/-141.71		
			84.23+/-69.19		
			N1=40, N2=17	X	X
			Fold Change: 2.59		
			P-value: .00012		
192	975	F22640	416.82+/-153.5		
		٠	204.94+/-169.19		37
			N1=40, N2=17	X	Х
ļ			Fold Change: 2.37		
		774 (776)	P-value: .00007		200 521/212 27
193	985	Н16568	288.53+/-212.27		288.53+/-212.27 32.47+/-46.57
			74.99+/-76.74	х	N1=40, N2=17
ł			N1=40, N2=17 Fold Change: 3.32	^	Fold Change: 5.01
			P-value: .00019		P-value: .01332
194	988	H30384	194.93+/-133.51		1-vaido01332
134	700	1130304	479.18+/-480.95		
			N1=40, N2=17	х ,	х
į.			Fold Change: 2.18	,	
		•	P-value: .00329		•
195	992	H54254	377.04+/-687.01		377.04+/-687.01
~~~		·	38.27+/-23.01		36.82+/-32.95
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 4.25		Fold Change: 4.51
[		·	P-value: 0		P-value: .00966
196	997	Н92988	390.91+/-149.13		
			205.04+/-140.06		
	`		N1=40, N2=17	X	X
			Fold Change: 2.33		
			P-value: .00168		
197	1074	N42752	63.77+/-48.02		
			291.54+/-224.99	v ::	
			N1=40, N2=17	X	X
[			Fold Change: 3.86		İ
			P-value: .00006		
198	1085	N56877	109.5+/-80.79		
			402.12+/-388.61		7.
			N1=40, N2=17	X	Х
İ			Fold Change: 3		
L			P-value: .00087		

7	A	A

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
199	1090	N63913	458.01+/-316.71		458.01+/-316.71
			67.39+/-79.5		8.79+/-40.55
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 6.57	•	Fold Change: 11.59
			P-value: 0		P-value: .00004
200	1101	R08000	502.76+/-694.51		502.76+/-694.51
			82.03+/-53.39		90.53+/-93.25
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 3.78		Fold Change: 4.05
			P-value: 0		P-value: .04964
201	1104	R20784	1112.78+/-843.96		
			359.34+/-233.36		
			N1=40, N2=17	X	. <b>X</b>
			Fold Change: 2.91		
			P-value: .00005		
202	1105	R39938	111.89+/-67.41		
			222.22+/-111.16		
			N1=40, N2=17	X	<b>X</b> .
			Fold Change: 2.12		•
			P-value: .00002		
203	1106	R42575	90.17+/-38.15		
			215.36+/-156.29		
			N1=40, N2=17	X	X
			Fold Change: 2.01		
			P-value: .00211	<u> </u>	
204	1112	R54660	200.26+/-133.86		200.26+/-133.86
			48.69+/-33.36		29.39+/-27.33
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 3.43		Fold Change: 4.69
	<u> </u>		P-value: 0		P-value: .0025
205	1116	R70255	241.29+/-181.34		241.29+/-181.34
			14.29+/-38.71		-8.34+/-15.47
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 5.79		Fold Change: 7.98
			P-value: 0		P-value: 0
206	1118	R74561	425.23+/-350.96		
			879.43+/-654.71	77	v
			N1=40, N2=17	<b>X</b>	X
			Fold Change: 2.16		
		700604	P-value: .0019		
207	1119	R83604	304.76+/-867.74		
			-32.63+/-64.18	v	X
			N1=40, N2=17	X	<b>A</b>
			Fold Change: 3.15		
200	1105	T(110)	P-value: .00017		
208	1125	T61106	180.38+/-114.3 349.03+/-164.74		
			N1=40, N2=17	X	X
			Fold Change: 2.35	Λ	A
			P-value: .00001		
200	1132	T05214	r-value, .00001	<del> </del>	166.2+/-116.99
209	1134	T85314			644.58+/-401.95
			x	X	N1=40, N2=17
			А	41	Fold Change: 4.09
					P-value: .03546

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
210	1171	W02823	217.4+/-87.18		217.4+/-87.18
			81.39+/-47.18		53.69+/-25.71
			N1=40, N2=17	x	N1=40, N2=17
		k	Fold Change: 2.83		Fold Change: 3.92
			P-value: .00001		P-value: .00806
211	1173	W07043	299.21+/-164.12		299.21+/-164.12
711			105.66+/-83.76		59.94+/-40.54
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.82		Fold Change: 4.46
			P-value: .00008		P-value: .01951
212	1174	W07304	1139.71+/-444.58		1139.71+/-444.58
			502.93+/-458.99		349.93+/-213.71
		•	N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 2.64		Fold Change: 3.49
			P-value: .00012		P-value: .04978
213	1180	W27541			486.94+/-189.31
213	1100	VI 275-11			113.57+/-41.71
}			X .	x	N1=40, N2=17
			24	7.	Fold Change: 4.17
			•		P-value: .0025
214	1183	W32480	720.17+/-951.89		720.17+/-951.89
217	1105	1132400	76.05+/-158.18		18.91+/-12.14
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 7.94		Fold Change: 12.97
			P-value: 0		P-value: 0
215	1184	W37770	208.87+/-62		
	1101	***************************************	108.93+/-55.29		•
	•		N1=40, N2=17	X	х
ì			Fold Change: 2.1		
		•	P-value: .00006		
216	1185	W37896	499.73+/-192.2		
-10	1100		1636.96+/-1336.48		
			N1=40, N2=17	X	· X
			Fold Change: 2.49		
			P-value: .00074		
217	1198	W72338	464.08+/-121.49		
			964.48+/-427.69		
			N1=40, N2=17	X	Х
			Fold Change: 2	<del></del>	
			P-value: 0		
218	1199	W72347	368.08+/-157.32		
			134.9+/-113.13		
			N1=40, N2=17	X	х
			Fold Change: 3.01		
			P-value: .00008	•	
219	1200	W72407	234.77+/-159.7	······································	234.77+/-159.7
2.7	1200		50.76+/-52.77	•	44.31+/-63.03
			N1=40, N2=17	X	N1=40, N2=17
			Fold Change: 4.25		Fold Change: 5.12
			P-value: 0		P-value: .03464
220	1201	W72511	988.5+/-437.53		1-7414005101
220	1201	W 14311	477.34+/-271.59		
			N1=40, N2=17	x	Χ
				^	A
			Fold Change: 2.11		
			P-value: .00006		

#	Seq ID	Genbank	Normal vs All	Normal vs Malignant	Normal vs SII and SIII
221	1204	W73386	248.29+/-403.35	469.37+/-905.14	
			35.26+/-68.97	101.34+/-51.41	
			N1=40, N2=17	N1=17, N2=7	Х
			Fold Change: 3.18	Fold Change: 2.82	
			P-value: .0001	P-value: .01061	
222	1207	W73890	223.01+/-130.77		
			84.82+/-49.32		
			N1=40, N2=17	X	X
			Fold Change: 2.49		
			P-value: 0		
223	1246	Z99386	611.71+/-209.91		
			288.23+/-106.96		
			N1=40, N2=17	X	X
			Fold Change: 2.19		
			P-value: .00001		

What is claimed is:

- 1. A method of diagnosing breast cancer in a patient, comprising:
- (a) detecting the level of expression in a tissue sample of two or more genes from
   Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of breast cancer.
  - 2. A method of detecting the progression of breast cancer in a patient, comprising:
- (a) detecting the level of expression in a tissue sample of two or more genes from
   Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of breast cancer progression.
  - 3. A method of monitoring the treatment of a patient with breast cancer, comprising:
    - (a) administering a pharmaceutical composition to the patient;
- 15 (b) preparing a gene expression profile from a cell or tissue sample from the patient; and
  - (c) comparing the patient gene expression profile to a gene expression from a cell population selected from the group consisting of normal breast cells and cancerous breast cells.

20

- 4. A method of treating a patient with breast cancer, comprising:
- (a) administering to the patient a pharmaceutical composition, wherein the composition alters the expression of at least one gene in Tables 1-5;
- (b) preparing a gene expression profile from a cell or tissue sample from the patient comprising tumor cells; and
  - (c) comparing the patient expression profile to a gene expression profile selected from the group consisting of normal breast cells and cancerous breast cells.
  - 5. A method of typing breast cancer in a patient, comprising:
- (a) detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of a type of breast cancer selected from a group consisting of infiltrating ductal carcinoma, microinvasive carcinoma, cribiform carcinoma, stage I carcinoma, stage II carcinoma or lobular carcinoma.

248

- 6. A method of detecting the presence or progression of infiltrating ductal carcinoma in a patient, comprising:
- (a) detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of infiltrating ductal carcinoma progression.

5

10

15

20

- 7. A method of monitoring the treatment of a patient with infiltrating ductal carcinoma, comprising:
  - (a) administering a pharmaceutical composition to the patient;
- (b) preparing a gene expression profile from a cell or tissue sample from the patient; and
- (c) comparing the patient gene expression profile to a gene expression from a cell population comprising normal breast cells or to a gene expression profile from a cell population comprising infiltrating ductal carcinoma cells or to both.
- 8. A method of treating a patient with infiltrating ductal carcinoma, comprising:
- (a) administering to the patient a pharmaceutical composition, wherein the composition alters the expression of at least one gene in Tables 1-5;
- (b) preparing a gene expression profile from a cell or tissue sample from the patient comprising infiltrating ductal carcinoma cells; and
- (c) comparing the patient expression profile to a gene expression profile from an untreated cell population comprising infiltrating ductal carcinoma cells.
- 9. A method of diagnosing a microinvasive form of breast tumor in a patient, comprising:
  - (a) detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of a microinvasive form of breast cancer.
  - 10. A method of detecting the progression of a microinvasive for of breast cancer in a patient, comprising:

WO 02/059271 PCT/US02/02176

- (a) detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of the progression of a microinvasive form of breast cancer.
- 5 11. A method of monitoring the treatment of a patient with a microinvasive form of breast cancer, comprising:
  - (a) administering a pharmaceutical composition to the patient;
  - (b) preparing a gene expression profile from a cell or tissue sample from the patient; and
- 10 (c) comparing the patient gene expression profile to a gene expression from a cell population comprising normal breast cells or to a gene expression profile from a cell population comprising microinvasive breast cancer cells or to both.
- 12. A method of treating a patient with a microinvasive form of breast cancer,comprising:
  - (a) administering to the patient a pharmaceutical composition, wherein the composition alters the expression of at least one gene in Tables 1-5;
  - (b) preparing a gene expression profile from a cell or tissue sample from the patient comprising microinvasive breast cancer cells; and
  - (c) comparing the patient expression profile to a gene expression profile from an untreated cell population comprising microinvasive breast cancer cells.
  - 13. A method of differentiating microinvasive breast cancer from a benign growth in a patient, comprising:
  - (a) detecting the level of expression in a tissue sample of two or more genes from Tables 1-5; wherein differential expression of the genes in Tables 1-5 is indicative of microinvasive breast cancer rather than benign growth.
  - 14. A method of screening for an agent capable of modulating the onset or progression of breast cancer, comprising:
  - (a) preparing a first gene expression profile of a cell population comprising breast cancer cells, wherein the expression profile determines the expression level of one or more genes from Tables 1-5;
    - (b) exposing the cell population to the agent;

20

25

250

- (c) preparing second gene expression profile of the agent-exposed cell population; and
  - (d) comparing the first and second gene expression profiles.
- 5 15. The method of claim 14, wherein the breast cancer is a infiltrating ductal carcinoma.
  - 16. The method of claim 14, wherein the breast cancer is a microinvasive breast cancer.
- 17. A composition comprising at least two oligonucleotides, wherein each of the oligonucleotides comprises a sequence that specifically hybridizes to a gene in Tables 1-5.
  - 18. A composition according to claim 17, wherein the composition comprises at least 3 oligonucleotides.
- 15 19. A composition according to claim 17, wherein the composition comprises at least 5 oligonucleotides.

20

- 20. A composition according to claim 17, wherein the composition comprises at least 7 oligonucleotides.
- 21. A composition according to claim 17, wherein the composition comprises at least 10 oligonucleotides.
- 22. A composition according to any one of claims 17-21, wherein the oligonucleotides are attached to a solid support.
  - 23. A composition according to claim 22, wherein the solid support is selected from a group consisting of a membrane, a glass support, a filter, a tissue culture dish, a polymeric material, a bead and a silica support.
  - 24. A solid support comprising at least two oligonucleotides, wherein each of the oligonucleotides comprises a sequence that specifically hybridizes to a gene in Tables 1-5.

WO 02/059271 PCT/US02/02176

- 25. A solid support according to claim 24, wherein the oligonucleotides are covalently attached to the solid support.
- 26. A solid support according to claim 24, wherein the oligonucleotides are noncovalently attached to the solid support.
  - 27. A solid support according to claim 24, wherein the support comprises at least about 10 different oligonucleotides in discrete locations per square centimeter.
- 10 28. A solid support according to claim 24, wherein the support comprises at least about 100 different oligonucleotides in discrete locations per square centimeter.
  - 29. A solid support according to claim 24, wherein the support comprises at least about 1000 different oligonucleotides in discrete locations per square centimeter.
  - 30. A solid support according to claim 24, wherein the support comprises at least about 10,000 different oligonucleotides in discrete locations per square centimeter.
  - 31. A computer system comprising:

- 20 (a) a database containing information identifying the expression level in breast tissue of a set of genes comprising at least two genes in Tables 1-5; and
  - (b) a user interface to view the information.
- 32. A computer system of claim 31, wherein the database further comprises sequence information for the genes.
  - 33. A computer system of claim 31, wherein the database further comprises information identifying the expression level for the genes in normal breast tissue.
- 34. A computer system of claim 31, wherein the database further comprises information identifying the expression level for the genes in breast cancer tissue.
  - 35. A computer system of claim 34, wherein the breast cancer tissue comprises infiltrating ductal carcinoma cells.

- 36. A computer system of claim 34, wherein the breast cancer tissue comprises microinvasive breast cancer cells.
- 5 37. A computer system of any of claims 31-36, further comprising records including descriptive information from an external database, which information correlates said genes to records in the external database.
  - 38. A computer system of claim 37, wherein the external database is GenBank.

10

- 39. A method of using a computer system of any one of claims 31-36 to present information identifying the expression level in a tissue or cell of at least one gene in Tables 1-5, comprising:
- (a) comparing the expression level of at least one gene in Tables 1-5 in the tissue orcell to the level of expression of the gene in the database.
  - 40. A method of claim 39, wherein the expression level of at least two genes are compared.
- 20 41. A method of claim 39, wherein the expression level of at least five genes are compared.
  - 42. A method of claim 39, wherein the expression level of at least ten genes are compared.

- 43. A method of claim 39, further comprising displaying the level of expression of at least one gene in the tissue or cell sample compared to the expression level in breast cancer.
- 44. A kit comprising at least one solid support of any one of claims 24-30 packaged with gene expression information for said genes.
  - 45. A kit of claim 44, wherein the gene expression information comprises gene expression levels in a breast cancer tissue or cell sample.

253

46. A kit of claim 45, wherein the gene expression information is in an electronic format.



Atty Ref 44921-5070-WO/1737678



2/5





3/5



Atty Ref 44921-5070-WO/1737678

