- 3.1 Электростатическое поле создается положительно заряженной с постоянной поверхностной плотностью $\sigma=10$ нКл/м² бесконечной плотностью. Какую работу надо совершить для того, чтобы перенести электрон вдоль линии напряженности с расстояния $r_1=2$ см до $r_2=1$ см?
- 3.2 Электростатическое поле создается положительно заряженной бесконечной нитью с постоянной линейной плотностью $\tau=1$ нКл/см. Какую скорость приобретет электрон, приблизившись под действием поля к нити вдоль линии напряженности с расстояния $\mathbf{r}_1=2$ см до $\mathbf{r}_2=1$ см?
- 3.3 Одинаковые заряды Q = 100 нКл расположены в вершинах квадрата со стороной a = 10 см. Определить потенциальную энергию этой системы.
- 3.4 Шарик массой m = 40 мг, имеющий положительный заряд q = 1 нКл, движется со скоростью v = 10 см/с. На какое расстояние r может приблизиться шарик κ положительному точечному заряду $q_0 = 1,33$ нКл.
- 3.5 В боровской модели атома водорода электрон движется по круговой орбите радиусом r = 52,8 пм, в центре которой находится протон. Определить: 1) скорость электрона на орбите; 2) потенциальную энергию электрона в поле ядра, выразив её в электрон-вольтах.
- 3.6 Два шарика с зарядами $q_1 = 6,66$ нКл и $q_2 = 13.33$ нКл находятся на расстоянии $r_1 = 40$ см. Какую работу А надо совершить, чтобы сблизить их до расстояния $r_2 = 25$ см?
- 3.7 Найти потенциал ϕ точки поля, находящейся на расстоянии r=10 см от центра заряженного шара радиусом R=1 см. Задачу решить, если: а) задана поверхностная плотность заряда на шаре $\sigma=0,1$ мкКл/м²; б) задай потенциал шара $\phi=300$ В.
- 3.8 Кольцо радиусом r = 5 см из тонкой проволоки несет равномерно распределенный заряд $Q = 10\,$ нКл. Определить потенциал ϕ электростатического поля: 1) в центре кольца; 2) на оси, проходящей через центр кольца, в точке, удаленной на расстояние $a = 10\,$ см от центра кольца.
- 3.9 Металлический шар радиусом 5 см несет заряд Q=10 нКл. Оп потенциал ϕ электростатического поля: 1) на поверхно шара; 2) на расстоянии a=2 см от его поверхности. Постройте график зависимости $\phi(r)$.
- 3.10 Какая работа A совершается при перенесении точечного заряда q=20 нКл из бесконечности в точку, находящуюся на расстоянии r=1 см от поверхности шара радиусом R=1 см с поверхностной плотностью заряда $\sigma=10$ мкКл/м²?
- 3.11 Шарик с массой m=1 г и зарядом q=10 нКл перемещается из точки 1, потенциал которой $\phi_1=600$ В, в точку 2, потенциал которой $\phi_2=0$. Найти его скорость v_1 в точке 1, если в точке 2 она стала равной $v_2=20$ см/с.
- 3.12 Полый шар несет на себе равномерно распределенный заряд. Определить радиус шара, если потенциал в центре шара равен $\phi_1 = 200~B$, а в точке, лежащей от его центра на расстоянии r = 50~cm, $\phi_2 = 40~B$.

- 3.13 Определить линейную плотность бесконечно длинной заряженной нити, если работа сил поля по перемещению заряда Q=1 нКл с расстояния $r_1=5$ см и $r_2=2$ см в направлении, перпендикулярном нити, равна 50 мк Δ ж.
- 3.14 На расстоянии $r_1 = 4$ см от бесконечно длинной заряженной нити находится точечный заряд q = 0,66 нКл. Под действием поля заряд приближается к нити до расстояния $r_2 = 2$ см; при этом совершается работа A = 50 мкДж. Найти линейную плотность заряда τ на нити.
- 3.15 Электрическое поле образовано положительно заряженной бесконечно длинной нитью. Двигаясь под действием этого поля от точки, находящейся на расстоянии $r_1=1$ см от нити, до точки $r_2=4$ см, а частица изменила свою скорость от $v_1=2\cdot 10^5$ м/с до $v_2=3\cdot 10^6$ м/с. Найти линейную плотность заряда τ на нити.
- 3.16 Разность потенциалов между пластинами плоского конденсатора U = 90 В. Площадь каждой пластины S = 60 см 2 , ее заряд q = 1 нКл. На каком расстоянии d друг от друга находятся пластины?
- 3.17~B плоском горизонтально расположенном конденсаторе, расстояние между пластинами которого d=1~cm, находится заряженная капелька массой $m=5\cdot 10^{-11}~r$. В отсутствие электрического поля капелька вследствие сопротивления воздуха падает с некоторой постоянной скоростью. Если к пластинам конденсатора приложена разность потенциалов U=600~B, то капелька падает вдвое медленнее. Найти заряд q капельки.
- 3.18 Между двумя вертикальными пластинами на одинаковом расстоянии от них падает пылинка. Вследствие сопротивления воздуха пылинка падает с постоянной скоростью $v_1=2$ см/с. Через какое время t после подачи на пластины разности потенциалов U=3 кВ пылинка достигнет одной из пластин? Какое расстояние l по вертикали пылинка пролетит до попадания па пластину? Расстояние между пластинами d=2 см, масса пылинки $m=2\cdot 10^{-9}$ г, ее заряд $q=6,5\cdot 10^{-17}$ Кл.
- 3.19 Дайте определения потенциала дайной точки электростатического поля и разности потенциалов двух точек поля. Каковы их единицы?
- 3.20 Какова связь между напряженностью и потенциалом электростатического поля? Выведите ее и объясните. Каков физический смысл этих понятий?