Product of P-polynomial association schemes

Ziqing Xiang

Shanghai Jiao Tong University

Nov 19, 2013

P-polynomial association scheme

Definition 1

P-polynomial association scheme $A = (X, \{A_i\}_{0 \le i < d+1}).$

- ▶ A_i is X-by-X symmetric (0,1) matrix.
- $\triangleright \sum_i A_i = J.$
- $A_i = p_i(A_1)$, polynomials $p_i(x) = t_i x^i + o(x^i)$, $t_i > 0$.

P-polynomial association scheme

Definition 1

P-polynomial association scheme $A = (X, \{A_i\}_{0 \le i < d+1}).$

- ▶ A_i is X-by-X symmetric (0,1) matrix.
- $\triangleright \sum_i A_i = J.$
- ▶ $A_i = p_i(A_1)$, polynomials $p_i(x) = t_i x^i + o(x^i)$, $t_i > 0$.

Distance-regular graph G.

- V(G) = X.
- ▶ dist(x, y) = i, $A_i(x, y) = 1$.

Layers

$$x_0 \in X$$

i-th layer $X_i = \{x \mid \operatorname{dist}(x_0, x) = i\}$.
i-th valency $k_i = |X_i|$.

Shells form a partition of the ground set X.

Hamming scheme

Binary Hamming scheme \mathcal{H}_{v}

- Ground set $X = \mathbf{F}_2^{\nu}$.
- ▶ dist(x, y) is Hamming distance between x and y.
- $t_i = \frac{1}{i!}, \ p_i(x) = \frac{1}{i!}x^i + o(x^i).$

Layer X_i consists of elements with exactly i ones.

Johnson scheme

Johnson scheme $\mathcal{J}_{v,k}$

- Ground set $X = X_{k}^{\mathcal{H}_{v}}$.
- $ightharpoonup \operatorname{dist}(x,y)$ is half of Hamming distance between x and y.
- $t_i = \frac{1}{(i!)^2}, \ p_i(x) = \frac{1}{(i!)^2} x^i + o(x^i).$

Design

Definition 2

 (X,μ) is a measure space. V is a vector space consisting of measurable functions on X. $Y\subset X$ is a V-design if there exists a measure ν on Y satisfying:

$$\int_{X} f \mathrm{d}\mu = \int_{Y} f \mathrm{d}\nu$$

for every $f \in V$.

Some assumptions on measures are omitted.

A block matrix

 ${\cal A}$ is a P-polynomial association scheme.

$$A(X_{i}, X_{j}) = A_{j-i}(X_{i}, X_{j})$$

$$\begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\$$

7 / 20

Relative design

 \mathcal{A} is a P-polynomial association scheme. $\operatorname{Pol}_t(X_S)$ is the row space of $\mathcal{A}(\bigcup_{i < t} X_i, X_S)$.

Definition 3

A relative *t*-design on layers $X_S = \bigcup_{s \in S} X_s$ is a subset Y of X_S such that

$$\sum_{x \in X_S} f(x) w_0(x) = \sum_{y \in Y} f(y) w_1(y)$$

for every $f \in \operatorname{Pol}_t(X_S)$.

Some assumptions on weights w_0 and w_1 are omitted.

Key property

 $\ensuremath{\mathcal{A}}$ is a P-polynomial association scheme.

Let
$$\widetilde{A}(X_i, X_j) = t_{j-i}^{-1} A(X_i, X_j)$$
.

Lemma 4

$$\widetilde{A}(X_i, X_j)\widetilde{A}(X_j, X_k) = \widetilde{A}(X_i, X_k)$$

Proof.

$$\widetilde{A}(X_i, X_j)\widetilde{A}(X_j, X_k)$$

$$= A_1^{j-i}(X_i, X_j)A_1^{k-j}(X_j, X_k)$$

$$= A_1^{j-i}(X_i, X)A_1^{k-j}(X, X_k)$$

$$= A_1^{k-i}(X_i, X_k)$$

$$= \widetilde{A}(X_i, X_k)$$

Figure: From http://dwenujang.blogspot.com

Cake

Definition 5

A cake C consists of:

- ▶ sets X_i , $0 \le i < d + 1$, which are called layers,
- ightharpoonup a block (0,1) matrix C,
- a positive sequence t_i,
- ▶ a modified block matrix $\widetilde{C}(X_i, X_j) = t_{j-i}^{-1} C(X_i, X_j)$,

and
$$\widetilde{C}(X_i, X_j)\widetilde{C}(X_j, X_k) = \widetilde{C}(X_i, X_k)$$
.

All P-polynomial association schemes are cakes.

Product cake

 \mathcal{A} , \mathcal{B} are cakes.

Definition 6

The product cake C = A * B is constructed as follow.

- $X_i^{\mathcal{C}} = X_i^{\mathcal{A}} \times X_i^{\mathcal{B}}.$
- $ightharpoonup C(X_i,X_i)=A(X_i,X_i)\otimes B(X_i,X_i)$, namely C=A*B.
- $\qquad \qquad \quad \boldsymbol{t}_{i}^{\mathcal{C}} = \boldsymbol{t}_{i}^{\mathcal{A}}\boldsymbol{t}_{i}^{\mathcal{B}}$

*: Khatri-Rao product of two block matrices.

Product cake

 \mathcal{A} , \mathcal{B} are cakes.

Definition 6

The product cake C = A * B is constructed as follow.

- $X_i^{\mathcal{C}} = X_i^{\mathcal{A}} \times X_i^{\mathcal{B}}.$
- $ightharpoonup C(X_i,X_i)=A(X_i,X_i)\otimes B(X_i,X_i)$, namely C=A*B.
- *: Khatri-Rao product of two block matrices.

Lemma 7

Johnson cake $\mathcal{J}_{v,k}$ is the product of Hamming cakes \mathcal{H}_k and \mathcal{H}_{v-k} .

The product cake may not be an association scheme.

Cake design

C is a cake. $\operatorname{Pol}_t(X_S)$ is the row space of $C(\bigcup_{i < t} X_i, X_S)$.

Definition 8

A cake *t*-design on layers $X_S = \bigcup_{s \in S} X_s$ is a subset Y of X_S such that

$$\sum_{x \in X_S} f(x) w_0(x) = \sum_{y \in Y} f(y) w_1(y)$$

for every $f \in \operatorname{Pol}_t(X_S)$.

Some assumptions on weights w_0 and w_1 are omitted.

Lower bound of sizes of cake designs

One possible approach to establish the lower bound consists of three steps.

- Step 1: Cheesecake.
- ▶ Step 2: $\operatorname{Pol}_i(X_S)\operatorname{Pol}_j(X_S) \subseteq \operatorname{Pol}_k(X_S)$.
- ▶ Step 3: $C(X_i, X_{i+1})$ has full row rank.

Theorem 9

Y is a relative t-design of Johnson scheme on layers $X_S = \bigcup_{s \in S} X_s$, then under some assumption on elements in S, it holds

$$|Y| \ge \sum_{0 \le i < |S|} k_{a-i},$$

where $2a \le t - |S| + 1$.

Step 1: Cheesecake

A matrix is almost strictly totally positive if every minor is nonnegative and the determinant of square submatrices with positive main diagonal is positive.

Definition 10

A cake is a cheesecake if the Toeplitz matrix $T_{i,j} = t_{j-i}$ is almost strictly totally positive.

Step 1: Cheesecake

A matrix is almost strictly totally positive if every minor is nonnegative and the determinant of square submatrices with positive main diagonal is positive.

Definition 10

A cake is a cheesecake if the Toeplitz matrix $T_{i,j} = t_{j-i}$ is almost strictly totally positive.

Lemma 11

Under some assumption, a cake is a cheesecake if and only if the generating function

$$f(z) = \sum_i t_i z^i$$

has only real zeros.

Step 1: Cheesecake

Lemma 11

Under some assumption, a cake is a cheesecake if and only if the generating function

$$f(z) = \sum_{i} t_{i} z^{i}$$

has only real zeros.

Corollary 12

Hamming cakes and Johnson cakes are cheesecakes.

Problem 13

Classify P-polynomial association schemes which are cheesecakes.

Step 2: $Pol_i(X_S)$

 \mathcal{A} , \mathcal{B} are cakes, and $\mathcal{C} = \mathcal{A} * \mathcal{B}$.

Lemma 14

If C is a cheesecake,

$$\operatorname{Pol}_{i}^{\mathcal{A}}(X_{\mathcal{S}})\operatorname{Pol}_{j}^{\mathcal{A}}(X_{\mathcal{S}})\subseteq \operatorname{Pol}_{k}^{\mathcal{A}}(X_{\mathcal{S}}),$$

and

$$\operatorname{Pol}_{i}^{\mathcal{B}}(X_{S})\operatorname{Pol}_{j}^{\mathcal{B}}(X_{S})\subseteq \operatorname{Pol}_{k}^{\mathcal{B}}(X_{S}),$$

then under some assumption on elements in S,

$$\operatorname{Pol}_i^{\mathcal{C}}(X_S) \operatorname{Pol}_j^{\mathcal{C}}(X_S) \subseteq \operatorname{Pol}_{k+|S|-1}^{\mathcal{C}}(X_S).$$

The bound k + |S| - 1 is sharp.

Step 2: $Pol_i(X_S)$

Lemma 15

For Hamming cake, it holds

$$\operatorname{Pol}_{i}(X)\operatorname{Pol}_{j}(X)\subseteq \operatorname{Pol}_{i+j}(X).$$

Corollary 16

For Johnson cake, under some assumption on elements in S, it holds

$$\operatorname{Pol}_i(X_S)\operatorname{Pol}_j(X_S)\subseteq \operatorname{Pol}_{i+j+|S|-1}(X_S).$$

Step 3: $C(X_i, X_{i+1})$

Lemma 17

If $A(X_i, X_{i+1}) = |X_i|$ and $B(X_i, X_{i+1}) = |X_i|$, then for C = A * B, $C(X_i, X_{i+1}) = |X_i|$.

Lemma 18

For Hamming cake \mathcal{H}_{v} , it holds $H(X_{i}, X_{i+1}) = |X_{i}|$ for $2i \leq v$.

Corollary 19

For Johnson cake $\mathcal{J}_{v,k}$, it holds $J(X_i, X_{i+1}) = |X_i|$ for $2i \leq \min\{k, v - k\}$.

Thanks for your attention.

Figure: From http://www.moevenpick-icecream.com/

Ziqing Xiang

Email: ZiqingXiang@gmail.com

Personal Homepage: http://ZiqingXiang.blogspot.com