

Statistical Sequence Analysis

- Example: CpG islands indicate important regions
 - CG (denoted CpG) is typically transformed by methylation into TG
 - Promoter/start regions of gene suppress methylation
 - This leads to higher CpG density
 - How do we find CpG islands?
- Example: active protein regions are statistically similar
 - Evolution conserves structural motifs but varies sequences
- Simple comparison techniques are insufficient
 - Global/local alignment
 - Consensus sequence
- The challenge: analyzing statistical features of regions

5

Review of Markovian Modeling

- Recall: a Markov chain is described by transition probabilities
 - $\pi(n+1)=A\pi(n)$ where $\pi(i,n)=Prob\{S(n)=i\}$ is the state probability
 - A(i,j)=Prob[S(n+1)=j|S(n)=i] is the transition probability
- Markov chains describe statistical evolution
 - In time: evolutionary change depends on previous state only
 - In space: change depends on neighboring sites only

_

From Markov To Hidden Markov Models (HMM)

- Nature uses different statistics for evolving different regions
 - Gene regions: CpG, promoters, introns/exons...
 - Protein regions: active, interfaces, hydrophobic/philic...
- How can we tell regions?
 - Sample sequences have different statistics
 - Model regions as Markovian states emitting observed sequences...
- Example: CpG islands
 - Model: two connected MCs one for CpG one for normal
 - The MC is hidden; only sample sequences are seen
 - Detect transition to/from CpG MC
 - Similar to a dishonest casino: transition from fair to biased dice

HMM Basics • A Markov Chain: states & transition probabilities A=[a(i,j)] • Observable symbols for each state O(i) • A probability e(i,X) of emitting the symbol X at state i .6 (F,H)=0.5 (B,H)=0.9 (B,H)=0.9 (B,H)=0.1 F B

Computing Probabilities on HMM

- Path = a sequence of states
 - E.g., X=FFBBBF
 - Path probability: 0.5 (0.6)² 0.4(0.2)³ 0.8 =4.608 *10⁻⁴
- Probability of a sequence emitted by a path: p(S|X)
 - E.g., p(HHHHHH|FFBBBF)=p(H|F)p(H|F)p(H|B)p(H|B)p(H|B)p(H|F) =(0.5)³(0.9)³ =0.09
- Note: usually one avoids multiplications and computes logarithms to minimize error propagation

The Three Computational Problems of HMM

- Decoding: what is its most likely sequence of transitions & emissions that generated a given observed sequence?
- Likelihood: how likely is an observed sequence to have been generated by a given HMM?
- Learning: how should transition and emission probabilities be learned from observed sequences?

Computational Note

- Computing probability products propagates errors
- Instead of multiplying probabilities add log-likelihood
- Define f(i,k)=log F(i,k)

$$f(i,k+1) = log e(i,S_{k+1}) + max_i \{f(j,k) + log a(i,j)\}$$

■Or, define the weight $w(i,j,k)=\log e(i,S_{k+1})+\log a(i,j)$ To get the following standard DP formulation

$$f(i,k+1)=\max_{i}\{f(j,k)+w(i,j,k)\}$$

Concluding Notes

- Viterbi decoding: hidden pathway of an observed sequence
- Hidden pathway explains the underlying structure
 - E.g., identify CpG islands
 - E.g., align a sequence against a profile
 - E.g., determine gene structure

•

- This leaves the two other HMM computational problems
 - How do we extract an HMM model, from observed sequences?
 - How do we compute the likelihood of a given sequence?