Distributing the Heat Equation

Tom Cornebize

Yassine Hamoudi

Sunday, December 7th

1 Question 1

Lemma 1. N^2 applications of function δ are necessary to compute X^t from X^{t-1} .

Proof. Each cell $X_{i,j}^t$ needs one application of δ to be computed from $X_{i,j}^{t-1}$. There are N^2 cells, so N^2 applications of δ are needed.

Property 2. tN^2 applications of function δ are necessary to compute X^t on $[0, N-1]^2$.

Proof. X^t is obtained after t applications of δ^{\dagger} on X^0 . Each application needs N^2 calls to δ according to lemma 1. The whole computation needs tN^2 applications of δ .

2 Question 2

We associate one processor per cell (N^2 processors are needed). Each processor $p_{i,j}$ stores at time t the value of cell $X_{i,j}^t$.

At time t, each processor sends its value to its 8 neighbours and receives their values in parallel. Then each processor updates $X_{i,j}^t$ to $X_{i,j}^{t+1}$.

 \longrightarrow à changer :(, le nombre de processeurs est un paramètre donné en entrée ($< N^2$ à priori)