

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Uncertainty-aware Audiovisual Activity Recognition using Deep Bayesian Variational Inference

Mahesh Subedar*, Ranganath Krishnan*, Paulo Lopez Meyer, Omesh Tickoo, Jonathan Huang {mahesh.subedar, ranganath.krishnan, paulo.lopez.meyer, omesh.tickoo, jonathan.huang}@intel.com
Intel Labs

Activity Recognition

Activity Recognition using Deep Bayesian Variational Inference

Uncertainty-aware Audiovisual Activity Recognition using Deep Bayesian Variational Inference

Original dataset: 339 classes

This paper: 54 + 54 classes

Likelihood : Multinomial(NeuralNet(x, w))

Likelihood : Multinomial(NeuralNet(x, w))

SVI: Let
$$p(w|D) = \prod_i q(w_i|D) = \prod_i Gaussian(\mu_i, \sigma_i)$$

Flipout: different noise-masks within batch

Problem:

SVI => Multiply with Gaussian Noise

Mask shared within batch => high variance

Solution:

Flipout yields lower variance estimates

Predictive distribution is obtained through multiple stochastic forward passes through the network during the prediction phase while sampling from the posterior distribution of network parameters through Monte Carlo estimators. Equation 3 shows the predictive distribution of the output y^* given new input x^* :

$$p(y^*|x^*, D) = \int p(y^*|x^*, w) \, q_{\theta}(w) dw$$

$$p(y^*|x^*, D) \approx \frac{1}{T} \sum_{i=1}^{T} p(y^*|x^*, w_i) \,, \quad w_i \sim q_{\theta}(w)$$
(3)

- 1. Sample a **w**, from distribution
- y_i = forward pass with w_i
- 3. Repeat **T** times and average

In [12, 26], modeling aleatoric and epistemic uncertainty is described. We evaluate the epistemic uncertainty using Bayesian active learning by disagreement (BALD) [21] for the activity recognition task. BALD quantifies mutual information between parameter posterior distribution and predictive distribution, as shown in Equation 4.

$$BALD := \underbrace{H(y^*|x^*, D) - \mathbb{E}_{p(w|D)}[H(y^*|x^*, w)]}_{(4)}$$

Entropy of prediction Entropy of sample **w**

Figure 4: Accuracy vs Uncertainty confusion matrix

Results: Out-of-distribution detection

Dataset: Moments-in-Time (54 classes) in-distribution data Moments-in-Time (54 classes) out-of-distribution data

Results: Confidence measures

Dataset: Moments-in-Time (54 classes) in-distribution data

Model	Top1 (%)	Top5 (%)
Vision		
DNN	52.65	79.79
Bayesian DNN (MC Dropout)	52.88	80.10
Bayesian DNN (Stochastic VI)	53.3	81.20
Audio		
DNN	34.13	61.68
Bayesian DNN (MC Dropout)	32.46	60.97
Bayesian DNN (Stochastic VI)	35.80	63.40
Audiovisual		
DNN	56.61	79.39
Bayesian DNN (MC-Dropout)	55.04	80.34
Bayesian DNN (Stochastic VI)	58.2	83.8

Table 1: Comparison of accuracies for DNN, Bayesian DNN MC Dropout and Stochastic Variational Inference (Stochastic VI) models applied to subset of MiT dataset (indistribution classes).