

Proposed System

Fig. shows the proposed SC nine-level inverter topology. The proposed inverter consists of a single DC source, two SC cells connected in parallel with the H-bridge circuit and a load. The first SC cell is a combination of one capacitor, one diode, and two switches $(C_1-D-S_{11}-S_{12})$, and the second SC cell includes one capacitor, and three switches $(C_2-S_{21}-S_{22}-S_{23})$.

Working

- Capacitor C_1 is charged while connected in parallel with the input source through S_{12} .
- It is discharged in series with the input source through S_{11} .
- Capacitor C_2 is charged in parallel from the input source and capacitor C_1 through S_{22} and S_{23} .
- It is discharged in series with capacitor C_1 and the input source through S_{21} .
- C₁ is thus charged to V_{in} and C₂ is charged to 2V_{in}.

Four Levels of voltage (in addition to a zero level) are therefore obtained by the following combinations:-

- V_{in} Source and C₁ in parallel.
- 2V_{in} Source and C₁ in series which is then parallel with C₂.
- 3V_{in} Source and C₁ in parallel which is then series with C₂.
- 4V_{in} Source, C₁ and C₂ all in series.

These four levels of voltage can be reversed in polarity at the output by the H-Bridge. Therefore there are 9 different voltage levels (4*2 + 1) available at the output of the inverter. The switching states are controlled by Phase disposition PWM (PD-PWM).