

### Horn Minimization

An overview of some existing algorithms

Simon Vilmin

HSE - ISIMA

3 juin 2018



## Introduction 0.0 -



- Correlation relations (implications)
  Ex: film genres, cyber-punk → science fiction
- minimization without loss of knowledge

# Outline



#### I - Horn theories

Closure and implications Minimization task

II - Algorithms for minimization

## Closure operator and systems

1.1 - Closure and implications



Set  $\Sigma$  of attributes. A map  $\varphi: 2^{\Sigma} \longrightarrow 2^{\Sigma}$  is a *closure operator* if,  $\forall X, Y \subseteq \Sigma$ :

- $ightharpoonup X \subseteq \varphi(X)$  (increasing)

#### Some details:

- ightharpoonup X is *closed* if  $X = \varphi(X)$ ,
- $ightharpoonup \Sigma^{\varphi}$  set of closed sets : *closure system*.
- $\triangleright$  Σ<sup> $\varphi$ </sup> is closed under *intersection*, contains Σ.



## Closure Example

#### 1.1 - Closure and implications



- ▶ Directed graph G = (V, E).
- ► Closure  $\varphi(X)$  of  $X \subseteq V$ : every vertices reachable from X.
- $ightharpoonup \varphi(\{A, B\}) = \{A, B, C, D\}.$
- $\varphi(\{F\}) = \{F\}, \{F\}$  is *closed*.



FIGURE – Closure of a vertex in a directed graph

## **Implications**

#### 1.1 - Closure and implications



#### $A, B \subseteq \Sigma$ . An *implication* is :

- $ightharpoonup A \longrightarrow B$ , A premise, B conclusion.
- ▶ relation : "If we have A, we have B". (different from causality)
- ▶  $M \subseteq \Sigma$  *model* of  $A \longrightarrow B$  if

$$B \subseteq M \lor A \nsubseteq M$$

denoted  $M \models A \longrightarrow B$ ,  $A \longrightarrow B$  follows from M.

Set of implications  $\mathcal{L}$ : *implication system*.

- $ightharpoonup M \models \mathcal{L}$  if each element of  $\mathcal{L}$  follows from M,
- $\triangleright$   $\mathcal{L} \models A \longrightarrow B$ : all models of  $\mathcal{L}$  are models of  $A \longrightarrow B$ .



## Implications and closure

1.1 - Closure and implications



#### Given ${\cal L}$ an implication system :

- ▶ closure operator  $\mathcal{L}(X)$  : *smallest model* (inclusion wise) of  $\mathcal{L}$  containing  $X, X \subseteq \Sigma$ .
- ightharpoonup Models of  $\mathcal L$  form a *closure system* :

$$\Sigma^{\mathcal{L}} = \{ M \subseteq \Sigma \ | \ M = \mathcal{L}(M) \}$$

### Important property:

$$\blacktriangleright \ \mathcal{L} \models A \longrightarrow B \text{ iff } B \subseteq \mathcal{L}(A)$$



## Small Example

#### 1.1 - Closure and implications



#### Let $\mathcal L$ be an implication system :

- $\triangleright \Sigma = \{a, b, c, d, e\},\$
- $\blacktriangleright \ \mathcal{L} = \{ab \longrightarrow c, \ bd \longrightarrow a, ce \longrightarrow abd\}$

#### We have :

- $\triangleright$   $\mathcal{L}(b) = b$ , b is closed, hence a model of  $\mathcal{L}$ ,
- $\triangleright$   $\mathcal{L}(bd) = abcd$ , bd is not a model (abcd is).
- ▶ ∅ is also a model.



## **Applications**

1.1 - Closure and implications



- ► Relational Databases,
- Formal Concept analysis,
- Conceptual exploration,
- Linguistics?

## Redundancy, equivalence

1.2 - Minimization task



### Minimum basis

1.2 - Minimization task



# Pouet 2.0 -



# **Pouf** 2.0 -

