# STOCHASTIC PROCESSES

STAT 150

Instructor: Benson Au

KELVIN LEE

# **Contents**

| 1 | Probability Review |                                               |  |  |  |
|---|--------------------|-----------------------------------------------|--|--|--|
|   | 1.1                | Basic Definitions                             |  |  |  |
|   | 1.2                | Overview                                      |  |  |  |
|   | 1.3                | Useful Properties                             |  |  |  |
|   | 1.4                | Conditional Probability                       |  |  |  |
|   | 1.5                | Random Variables                              |  |  |  |
|   |                    | 1.5.1 Discrete Random Variables               |  |  |  |
|   |                    | 1.5.2 Indicator Random Variable               |  |  |  |
|   |                    | 1.5.3 Continuous Random Variables             |  |  |  |
|   |                    | 1.5.4 Cumulative Distribution Function (CDF)  |  |  |  |
|   |                    | 1.5.5 Expectation                             |  |  |  |
|   |                    | 1.5.6 Variance                                |  |  |  |
|   |                    | 1.5.7 Moments                                 |  |  |  |
|   |                    | 1.5.8 Joint Distribution                      |  |  |  |
|   |                    | 1.5.9 Independence                            |  |  |  |
|   |                    | 1.5.10 Linearity of Expectation               |  |  |  |
|   |                    | 1.5.11 Convolution                            |  |  |  |
|   |                    | 1.5.12 Gamma Distribution                     |  |  |  |
|   |                    | 1.5.13 Moment Generating Function             |  |  |  |
|   | 1.6                | Conditional Probability (Cont'd)              |  |  |  |
|   |                    | 1.6.1 Conditional Expectation                 |  |  |  |
| 2 | Ran                | dom Sums                                      |  |  |  |
| _ | 2.1                | Mean and Variance of Random Sums              |  |  |  |
| 2 | Markov Chains 16   |                                               |  |  |  |
| 3 | 3.1                | Discrete-time Markov Chains                   |  |  |  |
|   | 5.1                | 3.1.1 <i>n</i> -step transition probabilities |  |  |  |
|   | 3.2                | First Step Analysis                           |  |  |  |
|   | 3.2                | 3.2.1 The General Absorbing Markov Chain      |  |  |  |
|   | 3.3                | Random Walk                                   |  |  |  |
|   |                    |                                               |  |  |  |
|   | 3.4                | Branching Process                             |  |  |  |
|   |                    | 5.4.1 Generating Functions                    |  |  |  |
| 4 | The                | Long Run Behavior of Markov Chains 23         |  |  |  |
|   | 4.1                | Regular Transition Probability Matrices       |  |  |  |
|   | 4.2                | Doubly Stochastic Matrices                    |  |  |  |
|   | 4.3                | Interpretation of $\pi$                       |  |  |  |
|   | 4.4                | Irreducible Markov Chains                     |  |  |  |
|   |                    | 4.4.1 Recurrent and Transient States          |  |  |  |
|   | 4.5                | Periodicity                                   |  |  |  |

| 5 | Poisson Process |                                 |    |  |
|---|-----------------|---------------------------------|----|--|
|   | 5.1             | The Law of Rare Events          | 28 |  |
|   | 5.2             | Poisson Process                 | 28 |  |
|   | 5.3             | Nonhomogeneous Poisson Process  | 29 |  |
|   |                 | 5.3.1 Time change               | 29 |  |
|   | 5.4             | The Law of Rare Events (cont'd) | 31 |  |
|   | 5.5             | Waiting time distribution       | 32 |  |

# 1 Probability Review

#### 1.1 Basic Definitions

**Definition 1.1.1** (Probability Space). A probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  is a triple consisting of a set  $\Omega$  called the *sample space*, a set  $\mathcal{F} \subseteq \Omega$  satisfying certain closure properties, and a function  $\mathbb{P}: \mathcal{F} \to [0,1]$  that assigns probabilities to events in a coherent way.

Requirements for  $\mathcal{F}$ :

- (i)  $\Omega \in \mathcal{F}$ .
- (ii) If  $E \in \mathcal{F}$ , then  $E^c \in \mathcal{F}$ .
- (iii) If  $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ , then

$$\bigcap_{i=1}^{\infty} E_i \in \mathcal{F}.$$

Requirements for  $\mathbb{P}$ :

- (i)  $\mathbb{P}(\Omega) = 1$ .
- (ii) If  $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$  are pairwise disjoint (meaning  $E_i \cap E_j = \emptyset$  for  $i \neq j$ , then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(E_i\right)$$

**Definition 1.1.2** (Random Variable). A random variable is a function  $X: \Omega \to \mathbb{R}$  such that  $X^{-1}(B) \in \mathcal{F}$  whenever B is a "nice" subset of  $\mathbb{R}$ .

**Example 1.1.3.**  $\Omega = \{H, T\}, \quad \mathcal{F} = 2^{\Omega}, \quad \mathbb{P}(\{H\}) = \frac{1}{2}. \ X(H) = 1, \quad X(T) = 0.$ 

$$\mathbb{P}(X=1) = \mathbb{P}(\{H\}) = \frac{1}{2}, \quad \mathbb{P}(X=0) = \mathbb{P}(\{T\}) = \frac{1}{2}.$$

#### 1.2 Overview

**Definition 1.2.1** (Stochastic Process). A stochastic process is a collection  $\{X_t : t \in T\}$  of random variables  $X_t : \Omega \to S \subseteq \mathbb{R}$  all defined on the some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Here T is some index set (typically representing time) and S is the state space. One write this as

 $X: \Omega \times T \to S$ ,  $(w,t) \mapsto X_t(\omega)$ . For a given outcome  $\omega \in \Omega$ , we get a sample path trajectory  $X(\omega): T \to S, t \mapsto X_t(\omega)$ . A stochastic process can then be thought of as a random function.

The theme of this course is what can we say about the distribution of trajectories?

**Example 1.2.2** (Branching Process (DTDS)).  $X_0 = 1$ , one individual in the 0th generation individuals produce a random number of offspring, i.i.d.  $(\xi_i^{(n)})_{i \in \mathbb{N}, n \in \mathbb{N}_0}$ .

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}.$$

One interesting question would be what is  $\mathbb{P}(X_n = 0 \text{ eventually})$ , the probability of dying out?

**Example 1.2.3** (Poisson Process (CTDS)). Recall that the Poisson distribution is used to model the number of occurrences of a rare event in some fixed period of time. The Poisson process  $(N_t)_{t\geq 0}$  models the number of occurrences throughout time.  $N_t = \#$  of occurrences by time t.

### 1.3 Useful Properties

(i) (DeMorgan)  $(E \cup F)^c = E^c \cap F^c, \quad (E \cap F)^c = E^c \cup F^c.$ 

(ii) (Complementation)  $\mathbb{P}(E) = 1 - \mathbb{P}(E^c).$ 

(iii) (Inclusion-exclusion)  $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) - \mathbb{P}(E \cap F)$   $\mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{j=1}^{n} (-1)^{j-1} \sum_{S \in [n]: |S| = j} \mathbb{P}\left(\bigcap_{i \in S} E_i\right).$ 

(iv) (Partitioning) If  $\bigsqcup_{i=1}^{\infty} E_i = \Omega$ , then

$$\mathbb{P}(F) = \mathbb{P}\left(\bigsqcup_{i=1}^{\infty} (F \cap E_i)\right) = \sum_{i=1}^{\infty} \mathbb{P}(F \cap E_i)$$

# 1.4 Conditional Probability

Conditioning: For  $\mathbb{P}(F) > 0$ ,

$$\mathbb{P}(E \mid F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}.$$

 $\mathbb{P}(\cdot \mid F)$  defines a new probability measure on  $(\Omega, \mathcal{F})$ .

Multiplication rule:

$$\mathbb{P}(E \cap F) = \mathbb{P}(F)\mathbb{P}(E \mid F).$$

If  $\bigsqcup_{i=1}^{\infty} F_i = \Omega$ , then

$$\mathbb{P}(E) = \sum_{i=1}^{\infty} \mathbb{P}(E \cap F_i) = \sum_{i=1}^{\infty} \mathbb{P}(F_i) \mathbb{P}(E \mid F_i).$$

Bayes' rule:

$$\mathbb{P}(F_j \mid E) = \frac{\mathbb{P}(F_j)\mathbb{P}(E \mid F_j)}{\sum_{i=1}^{\infty} \mathbb{P}(F_i)\mathbb{P}(E \mid F_i)}$$

### 1.5 Random Variables

#### 1.5.1 Discrete Random Variables

If  $X:\Omega\to S\subseteq\mathbb{R}$  is discrete,

$$\mathbb{P}(X \in E) = \sum_{x \in E} \mathbb{P}(X = x) = \sum_{x \in E \cap S} \mathbb{P}(X = x).$$

#### 1.5.2 Indicator Random Variable

$$X(\omega) = \mathbb{I}_E(\omega) = \begin{cases} 1 & \omega \in E \\ 0 & \omega \notin E. \end{cases}$$

#### 1.5.2.1 Binomial Random Variable

$$X = \sum_{i=1}^{n} \mathbb{I}_{E_i}, \quad \mathbb{P}(E_i) = p.$$
 
$$p_X(x) = \mathbb{P}(X = x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

#### 1.5.3 Continuous Random Variables

If X continuous,

$$\mathbb{P}(X \in E) = \int_{E} f_{X}(x)dx.$$

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_{X}(x)dx.$$

#### 1.5.3.1 Exponential Random Variable

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{I}_{x \ge 0}.$$

#### 1.5.3.2 Gaussian Random Variable

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}.$$

### 1.5.4 Cumulative Distribution Function (CDF)

 $F_X: \mathbb{R} \to [0,1],$ 

$$F_X(r) = \mathbb{P}(X \le r) = \mathbb{P}(X \in (-\infty, r]).$$

If X is discrete,

$$F_X(r) = \sum_{x_i \le r} p_X(x_i).$$

If X is continuous,

$$F_X(r) = \int_{-\infty}^r f_X(x) dx.$$

$$\frac{d}{dr}F_X(r) = f_X(r).$$

#### 1.5.5 Expectation

#### 1.5.5.1 Discrete case

$$\mathbb{E}[X] = \sum_{x_i \in S} x_i \mathbb{P}(X = x_i).$$

$$\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$$

$$\mathbb{E}[g(X)] = \sum_{x_i \in S} g(x_i) \mathbb{P}(X = x_i).$$

#### 1.5.5.2 Continuous case

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \mathbb{P}(X \ge x) dx.$$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

#### 1.5.6 Variance

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

#### 1.5.7 Moments

$$\mathbb{E}[X^m] = \int_0^\infty mx^{m-1} \mathbb{P}(X \ge x) dx.$$

#### 1.5.8 Joint Distribution

#### 1.5.8.1 Discrete

$$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

#### 1.5.8.2 Continuous

$$\mathbb{P}((X,Y) \in E) = \int \int_{E} f_{X,Y}(x,y) dx dy$$

#### 1.5.8.3 Marginal Distribution

$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y).$$
  
$$f_X(x) = \int_{y \in S_Y} f_{X,Y}(x,y)dy$$

#### 1.5.9 Independence

$$p_{X,Y}(x,y) = p_X(x)p_Y(y).$$
 
$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$
 
$$\mathbb{P}(X \le x, Y \le y) = F_X(x)F_Y(y).$$

#### 1.5.10 Linearity of Expectation

$$\mathbb{E}\left[\sum_{i=1}^{n} c_i X_i\right] = \sum_{i=1}^{n} c_i \mathbb{E}[X_i]$$

If  $(X_i)_{i=1}^n$  independent,

$$\left(g\left(X_{i}\right)\right)_{i=1}^{n}$$

independent.

$$\mathbb{E}\left[\prod_{i=1}^{n} g(X_i)\right] = \prod_{i=1}^{n} \mathbb{E}\left[g\left(x_i\right)\right]$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} \operatorname{Var}\left(x_i\right)$$

In general,

$$\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right) = \sum_{i,j=1}^{n} \operatorname{Cov}\left(x_{i}, x_{j}\right)$$

#### 1.5.11 Convolution

Discrete case: X, Y discrete  $X \perp \!\!\! \perp Y$ 

$$\begin{split} \mathbb{P}(X+Y=z) &= \sum_{Y} \mathbb{P}(X+Y=z,Y=y) \\ &= \sum_{y} \mathbb{P}(X=z-y,Y=y) \\ &= \sum_{y} \mathbb{P}(X=z-y) \mathbb{P}(Y=y) \quad (= \sum_{x} \mathbb{P}(X=x) \mathbb{P}(Y=z-x)). \end{split}$$

If X, Y are  $\mathbb{Z}$ -valued, this becomes

$$\mathbb{P}(X+Y=n) = \sum_{k=-\infty}^{\infty} \mathbb{P}(X=n-k)\mathbb{P}(Y=y)$$
$$= \sum_{k=-\infty}^{\infty} \mathbb{P}(X=k)\mathbb{P}(Y=n-k)$$
$$= (\mathbb{P}_X * \mathbb{P}_Y)(n)$$

**Example 1.5.1** (Poisson).  $X \sim \text{Poisson } (\lambda), \quad Y \sim \text{Poisson } (\mu), \quad X + Y \sim \text{Poisson } (\lambda + \mu)$ 

$$\mathbb{P}(X+Y=n) = \sum_{h=0}^{n} \mathbb{P}(X=k)P(Y=n-k)$$

$$= \sum_{k=0}^{n} e^{-\lambda} \frac{\lambda^{k}}{\mu!} e^{-\mu} \frac{\mu^{n-\mu}}{n-k!}$$

$$= e^{-(\lambda+\mu)} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda^{k} \mu^{n-k}$$

$$= \frac{e^{-(\lambda+\mu)}}{n!} (\lambda+\mu)^{n}$$

$$= \mathbb{P}(Z=n)$$

where  $Z \sim \text{Poisson}(\lambda + \mu)$ .

Continuous case: X, Y continuous

$$\mathbb{P}(X+Y\leqslant z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_X(x) f_Y(y) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_X(x) f_Y(y-x) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_X(x) f_Y(y-x) dx dy$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx = \int_{-\infty}^{\infty} f_Y(y) f_X(z-y) dy = f_X * f_Y.$$

**Example 1.5.2** (Convolution in uniform distributions).  $X, Y \sim U[0, 1], X \perp\!\!\!\perp Y.$ 

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx.$$
  
$$f_X(x) = \mathbb{I}_{[0,1]}(x) \qquad f_Y(y) = \mathbb{I}_{[0,1]}(y)$$

SO

$$f_{X+Y}(z) = \int_{x \in [0,1], z-x \in [0,1]} 1 dx$$

$$= \int_{x \in [0,1], x \in [-1+z,z]} 1 dx$$

$$= \int_{\max(0,-1+z)}^{\min(1,z)} 1 dx$$

$$= \min(1,z) - \max(0,-1+z).$$

#### 1.5.12 Gamma Distribution

**Definition 1.5.3** (Gamma function). Let  $\alpha > 0$ . The gamma function  $\Gamma : (0, \infty) \to (0, \infty)$  is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx = \mathbb{E}[X^{\alpha - 1}]$$

where  $X \sim \text{Exp}(1)$  Let  $\alpha, \lambda > 0$ . The Gamma $(\alpha, \lambda)$  distribution is defined by

$$f(x) = \frac{\lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda x} \mathbb{I}_{x \ge 0}.$$

**Exercise 1.5.4.**  $\Gamma(n) = (n-1)!$  for  $n \in \mathbb{N}$ . (Hint: use induction)

#### 1.5.13 Moment Generating Function

**Definition 1.5.5** (MGF). For a random variable X, the moment generating function (MGF) is the function  $M_X : \mathbb{R} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ ,

$$M_X(t) = \mathbb{E}[e^{tX}].$$

If  $M_X(t) < +\infty$  for  $t \in (-\epsilon, \epsilon)$ , then

$$M_x(t) = \sum_{k=0}^{\infty} \frac{t^k \mathbb{E}[x^k]}{k!} \text{ for } |t| < \epsilon$$

For independent RVs  $(X_i)_{i=1}^n$ ,

$$M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

**Exercise 1.5.6.** If  $X \sim \text{Exp}(\lambda)$ , then  $M_x(t) = \frac{\lambda}{\lambda - t}$  if  $t < \lambda, +\infty$  otherwise. If  $X \sim \text{Gamma}(n, \lambda)$ , then

$$M_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^n.$$

If  $X \sim \text{Gamma}(\alpha, \lambda)$ , then

$$M_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}.$$

## 1.6 Conditional Probability (Cont'd)

**Exercise 1.6.1** (Generalization).  $(X_i)_{i=1}^n$ ,  $(Y_j)_{j=1}^m$ 

$$p_{X_1,...,X_n|Y_1,...,Y_m}(x_1,...,x_n \mid y_1,...,y_m) =?$$

**Example 1.6.2.** Let  $M \in \mathbb{N}$  and  $p, q \in (0, 1)$ . Consider  $N \sim \text{Bin}(M, q)$  and  $X \sim \text{Bin}(N, p)$ . What is the distribution of X?

$$\begin{split} \mathbb{P}(X=k) &= \sum_{n=0}^{M} \mathbb{P}(N=n) \mathbb{P}(X=k \mid N=n) \\ &= \sum_{n=0}^{M} \binom{M}{n} q^{n} (1-n)^{M-n} \binom{n}{k} p^{k} (1-p)^{n-k} \\ &= \frac{p^{k}}{k!} \sum_{n=k}^{M} \frac{M!}{(M-n)!(n-k)!} q^{n} (1-q)^{M-n} (1-p)^{n-k} \\ &= \frac{p^{k}}{k!(M-k)!} \sum_{n=k}^{M} \frac{M!(M-k)!}{(M-n)!(n-k)!} q^{n} (1-q)^{M-n} (1-p)^{n-k} \\ &= \binom{M}{k} p^{k} q^{k} \sum_{n=k}^{M} \binom{M-k}{n-k} q^{n-k} (1-q)^{M-j} (1-p)^{n-k} \\ &= \binom{M}{k} p^{k} q^{k} \sum_{t=0}^{M-k} \binom{M-k}{t} (q(1-p))^{t} (1-q)^{M-k-t} \\ &= \binom{M}{k} (pq)^{k} (q(1-p) + (1-q))^{M-k} \\ &= \binom{M}{k} (pq)^{k} (1-pq)^{M-k}. \end{split}$$

Thus,  $X \sim \text{Bin}(M, pq)$ .

**Remark.** What if k > n in  $\mathbb{P}(X = k \mid N = n)$  above in the first line? The probability is simply 0.

**Question.** Why does this answer make sense?

**Answer.** Think about retesting whenever we succeeded for the first M trials. Then X is simply the number of trials with double successes, thus we have the pq parameter.

**Exercise 1.6.3.** Consider  $N \sim \text{Poisson}(\lambda), X \sim \text{Bin}(N, p)$ . What is the distribution of X?

**Answer.**  $X \sim \text{Poisson}(\lambda p)$ .

**Question.** How can we interpret this?

**Answer.** We can interpret X as the number of customers visiting a store who purchase something.

#### 1.6.1 Conditional Expectation

For X, Y discrete,  $g: \mathbb{R} \to \mathbb{R}$ . Assume  $\mathbb{E}[|g(X)|] = \sum_{x} |g(x)p_X(x)| < \infty$ .

**Definition 1.6.4** (Conditional expectation). The *conditional expectation* is defined as

$$\mathbb{E}[g(X) = y] = \sum_{x} g(x) p_{X|Y}(x|y)$$

if  $p_Y(y) \neq 0$ .

**Remark.** Note that  $\mathbb{E}[g(X) \mid Y = y]$  is a real number, whereas  $\mathbb{E}[g(X) \mid Y]$  is a random variable.

#### 1.6.1.1 Tower Property

$$\mathbb{E}[\mathbb{E}[g(X) \mid Y]] = \mathbb{E}\left[\sum_{y} \mathbb{E}[g(X) \mid Y = y]\right]$$

$$= \sum_{y} \mathbb{E}[g(X) \mid Y = y]p_{Y}(y)$$

$$= \sum_{y} \sum_{x} g(x)p_{X|Y}(x|y)p_{Y}(y)$$

$$= \sum_{x} g(x) \sum_{y} p_{X|Y}(x|y)p_{Y}(y)$$

$$= \sum_{x} g(x)p_{X}(x)$$

$$= \mathbb{E}[g(X)].$$

**Remark.** One intuitive example would be considering the averages of heights of students from a classroom. We divide it into several groups and let Y denote the whichever group we select and let  $\mathbb{E}[g(X) \mid Y]$  be the average of those from group Y. Then the average height of the entire classroom  $\mathbb{E}[g(X)]$  is equivalent to the average of the average of heights of each group, which is  $\mathbb{E}[\mathbb{E}[g(X) \mid Y]]$ .

#### Properties of conditional expectations:

1. 
$$\mathbb{E}\left[c_{1}g\left(x_{1}\right)+c_{2}h\left(x_{2}\right)\mid Y=y\right]=c_{1}E\left[g\left(X_{1}\right)\mid Y=y\right]+c_{2}E\left[h\left(X_{2}\right)\mid Y=y\right]$$

- 2. If  $g \ge 0$ , then  $E[g(x) | Y = y] \ge 0$ .
- 3.  $\mathbb{E}[f(X,Y) \mid Y = y] = \mathbb{E}[f(X,y) \mid Y = y].$
- 4. If  $X \perp \!\!\!\perp Y, \mathbb{E}[g(X) \mid Y = y] = \mathbb{E}[g(X)]$
- 5.  $\mathbb{E}[g(x)h(y) | Y = y] = h(y)\mathbb{E}[g(x) | Y = y]$
- 6.  $\mathbb{E}[g(x)h(y)] = \sum_{y} h(y)E[g(x) \mid Y = y]p_y(y) = \mathbb{E}[h(Y)\mathbb{E}[g(X) \mid Y]]$

Proof of 3.

$$\mathbb{E}[f(X,Y) \mid Y = y] = \sum_{x,z} f(x,z) p_{X,Y|Y}(x,z|y)$$

$$= \sum_{x,z} f(x,z) \frac{p_{X,Y,Y}(x,z,y)}{p_{Y}(y)}$$

$$= \sum_{x} f(x,y) \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

$$= \mathbb{E}[f(X,y) \mid Y = y].$$

Remark.  $\mathbb{E}[f(X,y)] \neq \mathbb{E}[f(X,y) \mid Y=y].$ 

# 2 Random Sums

**Definition 2.0.1.** Let  $(\xi_i)_{i=1}^{\infty}$  be i.i.d random variables, N be a  $\mathbb{N}_0$ -valued random variable,  $N \perp \!\!\! \perp (\xi_i)_{i=1}^{\infty}$ . The random sum is defined as

$$X = \sum_{i=1}^{N} \xi_i = \sum_{n=0}^{\infty} \left( \sum_{i=1}^{n} \xi_i \right) \mathbf{1}_{N=n} = \begin{cases} \sum_{i=1}^{n} \xi_i & \text{if } N = n \ge 1\\ 0 & \text{if } N = 0. \end{cases}$$

**Question.** What is the distribution of X?

Let X, N be random variables. N is  $\mathbb{N}_0$ -valued. The condition CDF is

$$F_{X|N}(x|n) = \mathbb{P}(X \le x \mid N = n)$$

if  $\mathbb{P}(N=n) \neq 0$ . The is an actual CDF, but for the random variable  $X \mid N=n$ .

Suppose that X is continuous and  $F_{X|N}(x|n)$  is a differentiable function of x for each n such that  $p_N(n) > 0$ . The conditional PDF is

$$f_{X|N}(x|n) = \frac{d}{dx} F_{X|N}(x|n).$$

$$\int_{a}^{b} f_{X|N}(x|n) dx = F_{X|N}(b|n) - F_{X|N}(a|n)$$
$$= \mathbb{P}(X \in [a, b] \mid N = n).$$

Answer.

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{n=0}^{\infty} \mathbb{P}(N=n)\mathbb{P}(X \le x \mid N=n).$$

$$f_X(x) = \sum_{n=0}^{\infty} \mathbb{P}(N=n) f_{X|N}(x|n).$$

# 2.1 Mean and Variance of Random Sums

Assume 
$$\mathbb{E}[N] = \nu$$
 and  $\mathbb{E}[\xi_i] = \mu$ . Then 
$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid N]]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^N \xi_i \mid N\right]\right]$$

$$= \mathbb{E}[N\mathbb{E}[\xi_1]]$$

$$= \mathbb{E}[N\mu]$$

$$= \mu\nu.$$

# 3 Markov Chains

#### 3.1 Discrete-time Markov Chains

**Definition 3.1.1** (Markov process). A is a stochastic process  $(X_t)_{t\in T}$  such that the future, given the present, is independent of the past.

**Definition 3.1.2** (Markov property). The *Markov property* for a DTDS stochastic process is

$$\mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \mathbb{P}(X_{n+1} = j \mid X_n = i)$$

**Example 3.1.3** (Gambler's ruin).  $(X_n)_{n=0}^{\infty}, X_n = \text{your wealth after } n \text{ turns.}$  Stop if  $X_n = 0$  or 5. Each play, you win \$1 with probability p and lose \$1 with probability 1-p independently of all previous plays. This process satisfies the markov property.

**Example 3.1.4** (Ehrenfest model). Box of N particles.  $X_n$  = number of particles on the left side at time n.  $N - X_n$  be the number of particles on the other side.

$$\mathbb{P}(X_{n+1} = i + 1 \mid X_n = i) = \frac{N - i}{N}$$

$$\mathbb{P}(X_{n+1} = i - 1 \mid X_n = i) = \frac{i}{N}.$$

#### **Theorem 3.1.5.**

Joint PMF of the Markov Chain is determined by initial distribution and  $P = (p_{i,j})_{i,j \in S}$ .

Proof.

$$\mathbb{P}(X_n = i_n, \dots, X_0 = i_0) = \mathbb{P}(X_n = i_n \mid X_{n-1} = i_{n-1}, \dots, X_0 = i_0) \mathbb{P}(X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$
$$= p_{i_{n-1}, i_n} p_{i_{n-2}, i_{n-1}} \cdots p_{i_0, i_1} \mathbb{P}(X_0 = i_0).$$

#### 3.1.1 *n*-step transition probabilities

$$p_{i,j} = \mathbb{P}(X_{n+1} = j \mid X_n = i).$$

Theorem 3.1.6.

$$p_{i,j}^{(m)} = \mathbb{P}(X_{n+m} = j \mid X_n = i) = (P^m)_{i,j}.$$

Proof.

$$\mathbb{P}(X_{n+m+1} = j \mid X_n = i) = \sum_{k \in S} \mathbb{P}(X_{n+m+1} = j, X_{n+m} = k \mid X_n = i)$$
$$= \sum_{k \in S} \mathbb{P}(X_{n+m+1} = j \mid X_{n+m} = k) \mathbb{P}(X_{n+m} = k \mid X_n = i).$$

**Example 3.1.7.** 

$$\begin{aligned} p_{i,j}^{(2)} &= \mathbb{P}(X_2 = j \mid X_0 = i) \\ &= \sum_{k \in S} \mathbb{P}(X_2 = j, X_1 = k \mid X_0 = i) \\ &= \sum_{k \in S} \mathbb{P}(X_2 = j \mid X_1 = k, X_0 = i) \mathbb{P}(X_1 = k \mid X_0 = i) \\ &= \sum_{k \in S} P_{i,k} P_{k,j} \\ &= (P^2)_{i,j} \end{aligned}$$

**Example 3.1.8** (Inventory model).  $X_n$  = inventory that you have of this product after the nth business day. If  $X_n \leq s$ , place an order that brings inventory back to S by next morning.  $\xi_n$  = demand on nth day and  $(\xi_n)$  are i.i.d..

$$\mathbb{P}(X_{n+1} = j \mid X_n = i) = \begin{cases} \mathbb{P}(\xi_{n+1} = S - j) & \text{if } i \le s \\ \mathbb{P}(\xi_{n+1} = i - j) & \text{if } i > s. \end{cases}$$

 $\lim_{n\to\infty} \mathbb{P}(X_n < 0) = \text{chance of excess demand.}$ 

# 3.2 First Step Analysis

Consider  $(X_n)_{n\geq 0}$  Markov chain on  $\{1,\ldots,r\}\cup\{r+1,\ldots,N\}$  where  $\{1,\ldots,r\}$  are the transient states and  $\{r+1,\ldots,N\}$  are the absorbing states such that

$$\lim_{n \to \infty} p_{i,j}^{(n)} = 0 \qquad \forall i, j \in \{1, \dots, r\}$$
$$\lim_{n \to \infty} p_{i,i}^{(n)} = 1 \qquad \forall i \in \{r + 1, \dots, N\}$$

Then we can express the transition matrix P as

$$P = \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix},$$

where Q and R is some transition matrices for the corresponding partitioned states and 0 is the zero matrix and I is the identity matrix.

Let  $T = \min\{n \geq 0 : X_n \geq r+1\}$  be the time of absorption and  $X_T$  be the state we get absorbed into. Define  $u_{i,k} = \mathbb{P}(X_T = k \mid X_0 = i)$ . Then we have

$$u_{i,k} = \sum_{j=1}^{N} \mathbb{P}(X_T = k, X_1 = j \mid X_0 = i)$$

$$= \sum_{j=1}^{N} \mathbb{P}(X_T = k \mid X_1 = j, X_0 = i) \mathbb{P}(X_1 = j \mid X_0 = i)$$

$$= \sum_{j=1}^{N} p_{i,j} \mathbb{P}(X_T = k \mid X_1 = j)$$

$$= \sum_{j=1}^{N} \mathbb{P}(X_T = k \mid X_0 = j)$$

$$= \sum_{j=1}^{r} p_{i,j} u_{j,k} + \sum_{j=r+1, j \neq k}^{N} p_{i,j} u_{j,k} + p_{i,k} u_{k,k}.$$

Thus,

$$u_{i,k} = \sum_{j=1}^{r} P_{i,j} u_{j,k} + p_{i,k}$$

Hence, we have

$$U = QU + R \implies (I - Q)U = R \implies U = (I - Q)^{-1}R$$

where U contains all the  $(u_{i,k})_{i\in\{1,\dots,r\},k\in\{r+1,\dots,N\}}$ .

#### 3.2.1 The General Absorbing Markov Chain

Let's suppose that associated with each transient state i is a rate g(i) and that we wish to determine the mean total rate that is accumulated up to absorption. Let  $v_i$  be this mean total amount, where the subscript i denotes the starting position  $X_0 = i$ , i.e.,

$$v_i = \mathbb{E}\left[\sum_{n=0}^{T-1} g(X_n) \mid X_0 = i\right]$$

The choice g = 1 will give  $v_i = \mathbb{E}[T \mid X_0 = i]$ . We can also write for  $i \in \{1, \dots, r\}$  that

$$v_{i} = g(i) + \mathbb{E}\left[\sum_{n=1}^{T-1} g(X_{n}) \mid X_{0} = i\right]$$
$$= g(i) + \sum_{j=1}^{N} p_{i,j}v_{j} \qquad (= \sum_{j=1}^{N} p_{i,j}(g(i) + v_{i})).$$

Then we can condense this into the following form

$$v = g + Qv \implies v = (I - Q)^{-1}g.$$

where  $v = (v_i)_{i \in \{1,\dots,r\}}$  and  $g = (g(i))_{i \in \{1,\dots,r\}}$ .

### 3.3 Random Walk

 $(\xi_n)_{n=1}^{\infty}$  i.i.d and  $\mathbb{Z}$ -valued. Then

$$X_n = \sum_{i=0}^n \xi_i.$$

$$\mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_1 = i_1) = \mathbb{P}(\xi_{n+1} = j - i \mid \xi_n = i - i_{n-1}, \dots, \xi_1 = i_1)$$

$$= \mathbb{P}(\xi_{n+1} = j - i)$$

$$= \mathbb{P}(\xi_{n+1} = j - i \mid X_n = i).$$

**Example 3.3.1** (Gambler's Ruin). Win 1 dollar with probability p and lose 1 dollar with probability q = 1 - p. Stop when we lose all money or make N dollars. We are interested in  $u_k = \mathbb{P}(X_T = 0 \mid X_0 = k)$  and  $v_k = \mathbb{E}[T \mid X_0 = k]$ . Clearly  $u_0 = 1, u_N = 0$ . For  $k = 1, \ldots, N-1$ , we have

$$u_k = pu_{k+1} + qu_{k-1} \implies q(u_k - u_{k-1}) = p(u_{k+1} - u_k)$$

Let  $\Delta_{k+1} = u_{k+1} - u_k$ . Then we have

$$q\Delta_k = p\Delta_{k+1}$$

$$\Delta_{k+1} = \frac{q}{p}\Delta_k = \dots = \left(\frac{q}{p}\right)^k \Delta_1.$$

$$\sum_{i=1}^m \Delta_i = \Delta_1 \sum_{i=1}^m \left(\frac{q}{p}\right)^{i-1} = \sum_{i=1}^n u_i - u_{i-1} = u_m - u_0 = u_m - 1$$

Thus,

$$u_m = 1 + \Delta_1 \frac{1 - \left(\frac{q}{p}\right)^m}{1 - \frac{q}{p}} \qquad m = 1, \dots, N$$

When m = N,

$$0 = 1 + \Delta_1 \frac{1 - \left(\frac{q}{p}\right)^N}{1 - \frac{q}{p}} \implies \Delta_1 = -\frac{1 - \frac{q}{p}}{1 - \left(\frac{q}{p}\right)^N}.$$

Substituting the expression for  $\Delta_1$  gives

$$u_{m} = 1 + \left(-\frac{1 - \frac{q}{p}}{1 - \left(\frac{q}{p}\right)^{N}}\right) \left(\frac{1 - \left(\frac{q}{p}\right)^{m}}{1 - \frac{q}{p}}\right) = 1 - \frac{1 - \left(\frac{q}{p}\right)^{m}}{1 - \left(\frac{q}{p}\right)^{N}} = \frac{\left(\frac{q}{p}\right)^{m} - \left(\frac{q}{p}\right)^{N}}{1 - \left(\frac{q}{p}\right)^{N}}.$$

Note that  $p \neq q$ . If p = q, then

$$\sum_{i=1}^{m} \Delta_i = \Delta_1 m = u_m - 1 \implies u_m = \frac{N - m}{N}.$$

If we take limit as  $N \to \infty$  for  $p \le q$ , then

$$\lim_{N \to \infty} u_m = 1,$$

which implies that we will be broke at the end no matter how much money we started with. If p > q, then

$$\lim_{N \to \infty} u_m = \left(\frac{q}{p}\right)^m.$$

If m is large, then this quantity becomes small. This implies that if p > q and we started with a lot of money, then the chance of us being broke ultimately becomes smaller.

Now lets compute  $v_k$  when  $p=q=\frac{1}{2}$ . Clearly,  $v_0=0$  and  $v_N=0$ . For  $k=1,\ldots,N-1$ , we have

$$v_k = 1 + \frac{1}{2}v_{k+1} + \frac{1}{2}v_{k-1}.$$

Let  $\Delta_k = v_k - v_{k-1}$ . Then we have

$$0 = 1 + \frac{1}{2}(\Delta_{k+1} - \Delta_k).$$

Summing both sides gives

$$\sum_{k=1}^{m} 0 = m + \sum_{k=1}^{m} \frac{1}{2} (\Delta_{k+1} - \Delta_k) \implies \Delta_1 = 2m + \Delta_{m+1} \qquad m = 0, \dots, N-1.$$

Then

$$\sum_{m=0}^{k} \Delta_1 = \sum_{m=0}^{k} (2m + \Delta_{m+1})$$

$$(k+1)\Delta_1 = (k+1)v_1 = \sum_{m=0}^{k} 2m + \sum_{m=0}^{k} \Delta_{m+1}$$

$$(k+1)v_1 = k(k+1) + (v_{k+1} - v_0) \implies (k+1)v_1 = k(k+1) + v_{k+1}.$$

Take k = N - 1 gives

$$Nv_1 = (N-1)N + 0 \implies v_1 = N-1.$$

Then

$$v_{k+1} = (k+1)(v_1 - k) = (k+1)(N-1-k).$$

Hence,

$$v_k = k(N - k).$$

# 3.4 Branching Process

 $\left(\xi_i^{(n)}\right)_{i=1,n=0}^{\infty,\infty}$  i.i.d.  $\mathbb{N}_0$ -valued random variables where  $\xi_i^{(n)}$  is the number of offspring of ith individual in nth generation.  $X_0 = 1$ .  $\mathbb{E}[\xi_i] = \mu$  and  $\operatorname{Var}(\xi_i) = \sigma^2$ . The population of at time n+1 is

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}$$

Our goal is to compute  $\mathbb{P}(X_n = 0 \text{ eventually } | X_0 = 1)$ . But let's first compute  $\mathbb{E}[X_{n+1}]$  and  $\operatorname{Var}(X_{n+1})$ . Recall that

$$\mathbb{E}\left[\sum_{i=1}^{N} \xi_{i}\right] = \mathbb{E}[N]\mathbb{E}[\xi_{i}]$$
$$\operatorname{Var}\left(\sum_{i=1}^{N} \xi_{i}\right) = \operatorname{Var}(N)\mathbb{E}[\xi_{i}]^{2} + \operatorname{Var}(\xi_{i})\mathbb{E}[N].$$

Then we have

$$\mathbb{E}[X_{n+1}] = \mu \mathbb{E}[X_n] = \mu^{n+1}$$

$$\operatorname{Var}(X_{n+1}) = \mu^2 \operatorname{Var}(X_n) + \mu^n \sigma^2.$$

$$c_0 = \operatorname{Var}(X_0) = 0$$

$$c_n = \operatorname{Var}(X_n)$$

$$c_{n+1} = \mu^2 c_n + \mu^n \sigma^2.$$

Define the generating function f(x) as

$$f(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_{n+1} x^{n+1} = \mu^2 x \sum_{n=0}^{\infty} c_n x^n + \sigma^2 x \sum_{n=0}^{\infty} \mu^n x^n$$
$$= \mu^2 x f(x) + \frac{\sigma^2 x}{1 - \mu x}.$$

Then

$$f(x) = \frac{\sigma^2 x}{(1 - \mu x)(1 - \mu^2 x)} = \sigma^2 x \frac{1}{1 - \mu x} \frac{1}{1 - \mu^2 x}.$$

Since

$$\sum_{j=1}^{\infty} c_j x^j = \sigma^2 x \sum_{n=0}^{\infty} \mu^n x^n \cdot \sum_{m=0}^{\infty} \mu^{2m} x^m,$$

the coefficient of  $x^{j-1} = \sum_{k=0}^{j-1} x^k x^{j-1-k}$  is

$$c_j = \sum_{k=0}^{j-1} \mu^k \mu^{2(j-1-k)}.$$

Thus

$$\operatorname{Var}(X_n) = \sigma^2 \mu^{n-1} \cdot \begin{cases} n & \text{if } \mu = 1\\ \frac{1-\mu^{n-1}}{1-\mu} & \text{if } u \neq 1. \end{cases}$$

**Remark.** When  $\mu = 1$ , expectation is constant, variance is growing linearly. When  $\mu \neq 1$ , expectation is increasing/decreasing geometrically, same with variance.

Now let  $T = \min \{n \geq 0 : X_n\}$  be the time the population dies out and let  $u_n = \mathbb{P}(T \leq n) = \mathbb{P}(X_n = 0)$ . Then  $\lim_{n \to \infty} u_n$  is the probability of extinction.

$$u_{n+1} = \sum_{k=0}^{\infty} p_k u_n^k$$

where  $p_k = \mathbb{P}(\xi = k)$ . We have  $u_0 = 0, u_1 = p_0$ .

Let  $\phi_{\xi}:[0,1]\to[0,1]$  be the generating function of  $\xi$  defined by

$$\phi_{\xi}(s) = \mathbb{E}[s^{\xi}] = \sum_{k=0}^{\infty} p_k s^k.$$

Then we have

$$u_{n+1} = \phi(u_n) \implies u_{\infty} = \lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} \phi(u_n) \implies u_{\infty} = \phi(\lim_{n \to \infty} u_n) = \phi(u_{\infty}).$$

Thus,  $u_{\infty}$  is a fixed point for  $\phi$ .

#### 3.4.1 Generating Functions

Given any  $\mathbb{N}_0$ -valued random variable  $\xi$  with  $p_k = \mathbb{P}(\xi = k)$ . Then the generating function is given by

$$\phi_{\xi}(s) = \mathbb{E}[s^{\xi}] = \sum_{k=0}^{\infty} p_k s^k.$$

 $\phi_{\xi}$  completely recovers the distribution of  $\xi$ . We have  $\phi_{\xi}(0) = p_0 \phi_{\xi}(1) = 1$ . We can recover  $p_k$  via

$$p_k = \frac{\phi^{(k)}(0)}{k!}.$$

Then

$$\mathbb{E}[X] = \phi'(1) = \sum_{k=1}^{\infty} k p_k.$$

In fact, one can check that

$$\phi''(1) = \mathbb{E}[X(X-1)]$$

$$\phi^{(k)}(1) = \mathbb{E}[X(X-1)\cdots(X-k+1)].$$

Suppose  $\xi_1, \ldots, \xi_n$  i.i.d has generating function  $\phi$ . Then  $Z = \sum_{i=1}^n \xi_i$  has the following generating function:

$$\phi_Z(s) = \mathbb{E}[s^Z] = \mathbb{E}[s^{\sum_{i=1}^n \xi_i}] = \prod_{i=1}^n \mathbb{E}[s^{\xi_i}] = \phi^n(s).$$

But if instead we have  $Z = \sum_{i=1}^{N} \xi_i$  where N is a random variable and N has gnerating function  $g_N$ . Then the generating function would be

$$\mathbb{E}[s^{\sum_{i=1}^{N} \xi_i}] = \sum_{n=0}^{\infty} \mathbb{P}(N=n)\phi^n(s)$$
$$= g_N(\phi(s)).$$

Now suppose  $\phi_n(s)$  is the generating function of  $X_n$  defined by

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}.$$

Then applying the result from above, we have

$$\phi_{n+1}(s) = \phi_n(\phi(s)) = \phi^{(n+1)}(s).$$

# 4 The Long Run Behavior of Markov Chains

## 4.1 Regular Transition Probability Matrices

Suppose  $(X_n)_{n=0}^{\infty}$  is a Markov Chain on  $\{1, \ldots, N\}$ .

**Definition 4.1.1** (Regular).  $(X_n)_{n=0}^{\infty}$  is regular if  $\exists m \geq 1$  such that  $P^m$  has all positive entries.

#### Theorem 4.1.2.

If  $(X_n)_{n=0}^{\infty}$  is regular, there exists a limiting distribution  $\hat{\pi} = (\pi_1, \dots, \pi_N)$ , where  $\pi_i > 0$  and  $\sum_{i=1}^{N} \pi_i = 1$  such that

$$\lim_{n \to \infty} \mathbb{P}(X_n = j \mid X_0 = i) = \pi_j, \quad \forall i, j \in \{1, \dots, N\}.$$

This limiting distribution does not depend on initial distribution.

Corollay 4.1.3. Suppose  $\mathbb{P}(X_0 = i) = \alpha_i$ . Then

$$\lim_{n \to \infty} \mathbb{P}(X_n = j) = \pi_j > 0.$$

**Question.** How do we find  $\pi$ ?

#### **Theorem 4.1.4.**

 $\pi$  is the unique solution to  $\pi P = \pi$  satisfying  $\langle \hat{\pi}, \hat{1} \rangle = \sum_{i=1}^{N} \pi_i = 1$  and  $\pi_i \geq 0$  for all i.

*Proof.* We first check that  $\pi$  is a solution.

$$\begin{split} \pi &= \lim_{n \to \infty} \pi P^n \\ \pi P &= \lim_{n \to \infty} \pi P^{n+1} = \lim_{m \to \infty} \pi P^m = \pi. \end{split}$$

Now we check for uniqueness. Let  $\tau$  be any distribution that satisfies  $\tau P = \tau$ . Then

$$\lim_{n \to \infty} \tau P^n = \pi$$

$$\lim_{n \to \infty} \tau = \pi$$

$$\tau = \pi$$

## 4.2 Doubly Stochastic Matrices

**Definition 4.2.1** (Doubly stochastic). A matrix is *doubly stochastic* if every row and column sums to 1.

**Proposition 4.2.2.** If  $(X_n)$  is doubly stochastic, then

$$\pi = \left(\frac{1}{N}, \cdots, \frac{1}{N}\right).$$

Proof.

$$\left(\frac{1}{N}, \dots, \frac{1}{N}\right) P = \left(\frac{1}{N}, \dots, \frac{1}{N}\right) \begin{pmatrix} P_{1,1} & \dots & \vdots \\ P_{2,1} & \dots & \vdots \\ \vdots & \ddots & \vdots \\ P_{N,1} & \dots & \vdots \end{pmatrix}$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} P_{i,1}, \dots, \frac{1}{N} \sum_{i=1}^{N} P_{i,m}\right)$$

$$= \left(\frac{1}{N}, \dots, \frac{1}{N}\right).$$

# **4.3** Interpretation of $\pi$

- $\pi_j = \lim_{n \to \infty} \mathbb{P}(X_n = j \mid X_0 = i) = \lim_{n \to \infty} P_{i,j}^n$ .
- $\pi_j$  is the mean fraction of time the process spends in state j.

$$\pi_j = \lim_{n \to \infty} \mathbb{E}\left[\frac{1}{n+1} \sum_{m=0}^n \mathbf{1}\{X_m = j\} \mid X_0 = i\right]$$
$$= \lim_{n \to \infty} \frac{1}{n+1} \sum_{m=0}^n P_{i,j}^m$$
$$= \pi_j.$$

#### 4.4 Irreducible Markov Chains

**Definition 4.4.1** (Accessible). State j is accessible from state i if there exists n such that  $P_{i,j}^{(n)} > 0$ .

**Definition 4.4.2** (Irreducible). If  $\forall i, j \in S$ , and  $i \leftrightarrow j$  (i and j communicate with each other), we say that  $(X_n)_{n\geq 0}$  is irreducible.

### 4.4.1 Recurrent and Transient States

Let  $f_{i,i}^{(n)}$  be the probability of first return to i at step n given that we started at i at step 0, i.e.,

$$f_{i,i}^{(n)} = \mathbb{P}(X_n = i, X_{n-1} \neq i, \dots, X_1 \neq i \mid X_0 = i).$$

We have  $f_{i,i}^{(0)} = 0$ .

Claim. For  $n \ge 1$ ,

$$P_{i,i}^{(n)} = \sum_{k=0}^{n} f_{i,i}^{(k)} P_{i,i}^{(n-k)} = \sum_{k=1}^{n} f_{i,i}^{(k)} P_{i,i}^{(n-k)}.$$

*Proof.* Let  $E_k$  be the event that the first return to i is at time k. Then

$$\begin{split} P_{i,i}^{(n)} &= \mathbb{P}(X_n = i \mid X_0 = i) \\ &= \sum_{k=1}^n \mathbb{P}(X_n = i, E_k \mid X_0 = i) \\ &= \sum_{k=1}^n \mathbb{P}(X_n = i \mid E_k, X_0 = i) \mathbb{P}(E_k \mid X_0 = i) \\ &= \sum_{k=1}^n \mathbb{P}(X_n = i \mid X_k = i) f_{i,i}^{(k)} \\ &= \sum_{k=1}^n P_{i,i}^{(n-k)} f_{i,i}^{(k)}. \end{split}$$

**Question.** What is the chance of returning to i eventually?

Answer.  $\sum_{n=0}^{\infty} f_{i,i}^{(n)}$ .

**Definition 4.4.3** (Recurrent). State *i* is recurrent if and only if  $f_{i,i} := \sum_{n=0}^{\infty} f_{i,i}^{(n)} = 1$ .

**Definition 4.4.4** (Transient). State i is transient if and only if  $f_{i,i} < 1$ .

Let  $M = \sum_{n=1}^{\infty} \mathbf{1}\{X_n = i\}$  be the number of returns to i. If i is recurrent, then

$$\mathbb{E}[M \mid X_0 = i] = \infty.$$

If i is transient, then

$$\mathbb{E}[M \mid X_0 = i] = \sum_{m=1}^{\infty} \mathbb{P}(M \ge m \mid X_0 = i)$$

$$= \sum_{m=1}^{\infty} f_{i,i}^{(m)}$$

$$= \frac{f_{i,i}}{1 - f_{i,i}}.$$

#### Theorem 4.4.5.

A state i is recurrent if and only if

$$\sum_{n=1}^{\infty} P_{i,i}^{(n)} = \infty.$$

Equivalently, i is transient if and only if

$$\sum_{n=1}^{\infty} P_{i,i}^{(n)} < \infty.$$

*Proof.* i is transient  $\iff \mathbb{E}[M \mid X_0 = i] < \infty \iff \sum_{n=1}^{\infty} P_{i,i}^{(n)} < \infty.$ 

**Proposition 4.4.6.** If  $i \leftrightarrow j$ , then i recurrent  $\iff j$  recurrent.

*Proof.* We know that  $P_{ij}^{(n)} > 0$  and  $P_{ji}^{(m)} > 0$ . Note that

$$\begin{split} P_{j,j}^{(m+k+n)} &\geq P_{j,i}^{(m)} P_{i,i}^{(k)} P_{i,j}^{(n)} \\ &\sum_{k} P_{j,j}^{(m+k+n)} \geq \sum_{k} P_{j,i}^{(m)} P_{i,i}^{(k)} P_{i,j}^{(n)} = P_{j,i}^{(m)} \left(\sum_{k} P_{i,i}^{(k)}\right) P_{i,j}^{(n)} \geq \infty. \end{split}$$

4.5 Periodicity

**Definition 4.5.1** (Period). For  $i \in S$ ,

$$d(i) = \gcd\{n : P_{i,i}^{(n)} > 0\}$$

is the period of i.

**Remark.**  $d(i) \neq \min_{n} \{n : P_{i,i}^{(n)} > 0\}.$ 

Fact.

1.  $i \leftrightarrow j \implies d(i) = d(j)$ .

2. 
$$\exists N, \forall n \geq N, P_{i,i}^{(nd(i))} > 0.$$

3.  $P_{j,i}^{(m)} > 0 \implies P_{j,i}^{(m+nd(i))} > 0 \text{ for } n \ge N.$ 

**Definition 4.5.2** (Aperiodic). Assume a MC is irreducible. If d(i) = 1 for some  $i \in S$ , then the MC is *aperiodic*.

#### Theorem 4.5.3.

 $(X_n)_{n=0}^{\infty}$  regular  $\iff$   $(X_n)_{n=0}^{\infty}$  irreducible and aperiodic.

Let  $R_i = \min \{ n \ge 1 : X_n = i \}$ . Then

$$\mathbb{P}(R_i = k \mid X_0 = i) = f_{i,i}^{(k)}.$$

If i is recurrent,

$$\mathbb{P}(R_i < \infty) = \sum_k f_{i,i}^{(k)} = 1.$$

#### Theorem 4.5.4.

Assume  $(X_n)$  aperiodic, irreducible, and recurrent, define

$$\mathbb{E}[R_i \mid X_0 = i] = m_i,$$

which is the mean time of first return. Then

$$\lim_{n \to \infty} P_{i,i}^{(n)} = \lim_{n \to \infty} P_{j,i}^{(n)} = \frac{1}{m_i}.$$

**Definition 4.5.5** (Positive/null recurrent). If  $m_i < \infty$ , the MC is *positive recurrent*. Otherwise, it is *null recurrent*.

#### Proposition 4.5.6.

$$\prod_{i=0}^{\infty} (1 - p_i) = 0 \iff \sum_{i=0}^{\infty} p_i = \infty.$$

### **Theorem 4.5.7.**

If  $(X_n)_{n=0}^{\infty}$  is positive recurrent, aperiodic, and irreducible, then  $\pi$  is a limiting distribution that is the unique solution to

$$\pi = \pi P, \qquad \sum_i \pi_i = 1, \quad \pi_i \geq 0.$$

# 5 Poisson Process

Recall that Poisson counts the number of occurrences of a rare event.

#### 5.1 The Law of Rare Events

Consider

$$\operatorname{Bin}\left(n, \frac{\lambda}{n}\right) \stackrel{D}{=} X_n.$$

$$\mathbb{E}[X_n] = \lambda$$

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

### 5.2 Poisson Process

**Idea:** count the number of occurrences up to a certain time.

**Definition 5.2.1** (Poisson Process). The  $\mathbb{N}_0$ -valued process  $(N_t)_{t\geq 0}$  is a  $PP(\lambda)$  if

- (i)  $N_0 = 0$ ,
- (ii) Increments are independent: for any  $t_0 < t_1 < \cdots < t_n$ ,

$$N_{t_n} - N_{t_{n-1}}, \cdots, N_{t_1} - N_{t_0}$$

are independent,

(iii)  $N_{t+h} - N_t \sim \text{Poisson}(\lambda h)$ .

**Example 5.2.2.** Customers arriving to a store with rate  $\lambda = 10/\text{hour}$ . Store opens at 8am. What is the probability that 4 customers arrived by noon and 10 by 4pm?

$$\mathbb{P}(N_4 = 4, N_8 = 10) = \mathbb{P}(N_8 - N_4 = 6, N_4 = 4) = \mathbb{P}(\text{Poisson}(4\lambda) = 6)\mathbb{P}(\text{Poisson}(4\lambda) = 4)$$

**Question.** Why the  $PP(\lambda)$ ?

**Answer.** Strong uniqueness and computationally tractable.

$$\mathbb{P}(N_{t+h} - N_t = 1) = e^{-\lambda h} \lambda h.$$

$$\lim_{h \to \infty} \frac{\mathbb{P}(N_{t+h} - N_t = 1)}{h} = \lim_{h \to \infty} \lambda e^{-\lambda h} = \lambda.$$

$$\frac{\mathbb{P}(N_{t+h} - N_t \ge 2)}{h} = \lambda e^{-\lambda h} \sum_{k=2}^{\infty} \frac{(\lambda h)^{k-1}}{k!}$$

$$= \lambda e^{-\lambda h} \sum_{k=1}^{\infty} \frac{(\lambda h)^k}{(k+1)!}$$

$$\leq \lambda e^{-\lambda h} \sum_{k=1}^{\infty} \frac{(\lambda h)^k}{k!}$$

$$= \lambda e^{-\lambda h} (e^{\lambda h} - 1) \to 0.$$

**Remark.** This shows that it is impossible to have more than two arrivals at the exact same time.

**Question.** What if

$$\lim_{h \to 0} \frac{\mathbb{P}(N_{t+h} - N_t = 1)}{h} = \lambda(t) \neq \lambda?$$

Answer. This can be done by reducing to a time shift of homogenenous Poisson Process.

# 5.3 Nonhomogeneous Poisson Process

**Definition 5.3.1** (Nonhomogeneous Poisson Process). Same assumptions with homogeneous Poisson Process except that we have a rate function  $\lambda(t)$  and that

$$N_{t+h} - N_t \sim \text{Poisson}\left(\int_t^{t+h} \lambda(u) du\right).$$

In fact when  $\lambda(u)$  is constant, we can recover a homogeneous Poisson Process.

#### 5.3.1 Time change

Suppose we have a continuous Poisson Process  $(N_t)_{t\geq 0}$  with  $\lambda(t)>0$ . Define

$$\Lambda(t) = \int_0^t \lambda(u) du.$$

Let  $Y_s = X_{\Lambda^{-1}(s)}$ . Let's check that this PP is homogeneous.

$$\begin{split} Y_{s+h} - Y_s &= X_{\Lambda^{-1}(s+h)} - X_{\Lambda^{-1}(s)} \\ &\stackrel{D}{=} PP \left( \int_{\Lambda^{-1}(s)}^{\Lambda^{-1}(s+h)} \lambda(u) du \right) \\ &= PP \left( \int_{0}^{\Lambda^{-1}(s+h)} \lambda(u) du - \int_{0}^{\Lambda^{-1}(s)} \lambda(u) du \right) \\ &= PP \left( \Lambda(\Lambda^{-1}(s+h)) - \Lambda(\Lambda^{-1}(s)) \right) \\ &= PP(s+h-s) \\ &= PP(h). \end{split}$$

#### Theorem 5.3.2.

Let  $(N_t)_{t\geq 0}$   $\mathbb{N}_0$ -valued be a stochastic process such that

- (ii) increments are independent,

(iii) 
$$\mathbb{P}(N_{t+h} - N_t = 1) = \lambda h + o(h)$$
 as  $h \downarrow 0$ ,  
(iv)  $\mathbb{P}(N_{t+h} - N_t \ge 2) = o(h)$  as  $h \downarrow 0$ .

(iv) 
$$\mathbb{P}(N_{t+h} - N_t \ge 2) = o(h)$$
 as  $h \downarrow 0$ .

Then  $(N_t)_{t\geq 0}$  is  $PP(\lambda)$ .

**Lemma 5.3.3.** If  $\epsilon \sim \text{Ber}(p_i)$ ,  $\mu = \sum_{i=1}^n p_i$ ,  $S_n = \sum_{i=1}^n \epsilon_i$ ,  $X_n \sim \text{Poisson}(\mu)$ , then

$$|\mathbb{P}(S_n = k) - \mathbb{P}(X_n = k)| \le \sum_{i=1}^n p_i^2$$

Proof.

$$X_n = \sum_{i=1}^n Y_i$$
  $Y_i \sim \text{Poisson}(p_i).$ 

Define  $C = \{\epsilon_i = Y_i \text{ for all } i\}$ . Then

$$|\mathbb{P}(S_n = k, C) - \mathbb{P}(X_n = k, C) + \mathbb{P}(S_n = k, C^c) - \mathbb{P}(X_n = k, C^c)| = |\mathbb{P}(S_n = k, C^c) - \mathbb{P}(X_n = k, C^c)|$$

$$\leq \mathbb{P}(C^c)$$

$$\leq \sum_{i=1}^n \mathbb{P}(\epsilon_i \neq Y_i)$$

$$\leq \sum_{i=1}^n p_i^2.$$

The last line follows because  $\mathbb{P}(\epsilon \neq Y) \leq p^2 \implies \mathbb{P}(\epsilon = Y) \geq 1 - p^2$ .

# 5.4 The Law of Rare Events (cont'd)

$$\operatorname{Bin}\left(n, \frac{\lambda}{n}\right) \stackrel{D}{\to} \operatorname{Poisson}(\lambda)$$
 as  $n \to \infty$ .

What about the error?

Consider  $\epsilon_i \sim \text{Ber}(p_i)$ . Then

$$\mathbb{P}\left(\sum_{i=1}^{n} \epsilon_i = k\right) = \sum_{\substack{x_1 + \dots + x_n = k, x_i \in \{0,1\}}} \prod_{i=1}^{n} p_i^{x_i} (1 - p_i)^{1 - x_i}.$$

#### Theorem 5.4.1.

Suppose  $(M_t)_{t\geq 0}$  is a counting process such that

- (i)  $M_0 = 0$ ,
- (ii) independent increments,
- (iii) distribution of  $M_s M_t$  only depends on s t,
- (iv)  $\mathbb{P}(M_{t+h} M_t = 1) = \lambda h + o(h),$
- (v)  $\mathbb{P}(M_{t+h} M_t \ge 2) = o(h)$ .

Then  $(M_t)_{t>0}$  is a  $PP(\lambda)$ .

*Proof.* It suffices to show  $\mathbb{P}(M_t = k) - \mathbb{P}(\text{Poisson}(\lambda t) = k) = 0$ . **Idea:** 

$$M_{t} = \sum_{i=1}^{n} M_{ti/n} - M_{t(i-1)/n}$$

$$\approx \sum_{i=1}^{n} \mathbf{1}_{M_{ti/n} - M_{t(i-1)/n} = 1} \qquad \text{(by (v))}$$

$$\approx \text{Poisson}(\lambda t + o(t)) \qquad \text{(by (iv))}$$

$$\to \text{Poisson}(\lambda t).$$

$$\left| \mathbb{P}\left( \sum_{i=1}^{n} M_{ti/n} - M_{t(i-1)/n} = k \right) - \mathbb{P}\left( \sum_{i=1}^{n} \mathbf{1}_{M_{ti/n} - M_{t(i-1)/n} = k} \right) \right| \leq \sum_{i=1}^{n} \mathbb{P}(M_{ti/n} - M_{t(i-1)/n} \neq \mathbf{1}_{M_{ti/n} - M_{t(i-1)/n} = 1})$$

$$= \sum_{i=1}^{n} o\left(\frac{t}{n}\right)$$

$$= o(t) \quad \text{as } n \to \infty.$$

## 5.5 Waiting time distribution

Let  $W_n$  be the waiting time for the *n*th arrival. Then

$$\mathbb{P}(W_n \ge t) = \mathbb{P}(N_t \le n - 1)$$
$$= \sum_{k=0}^{n-1} \mathbb{P}(N_t = k)$$
$$= \sum_{k=0}^{n-1} e^{-\lambda t} \frac{(\lambda t)^k}{k!}.$$

Then taking derivative gives

$$-\lambda e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} + \lambda e^{-\lambda t} \sum_{k=1}^{n-1} \frac{(\lambda t)^{k-1}}{(k-1)!} = -\lambda e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} + \lambda e^{-\lambda t} \sum_{k=0}^{n-2} \frac{(\lambda t)^k}{k!}$$
$$= \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, \qquad t \ge 0,$$

which is exactly the density of  $Gamma(n, \lambda)$ .

Consider n = 1. We have  $W_1 \sim \text{Exp}(\lambda)$ .

#### Theorem 5.5.1.

Let  $S_n = W_{n+1} - W_n$  be the *n*th interarrival time. Then  $S_n \sim \text{Exp}(\lambda)$ .

*Proof.* Let  $\xi_i$  be i.i.d.  $\text{Exp}(\lambda)$  and let

$$T_n = \sum_{i=1}^n \xi_i, \qquad M_t = \max\{n : \sum_{i=1}^n \xi_i \le t\}.$$

Claim.  $(M_t)_{t\geq 0}$  is  $PP(\lambda)$ .

*Proof.* We need to show the following:

•  $M_0 = 0$ .

*Proof.* Trivial.  $\Box$ 

•  $M_u \sim \text{Poisson}(\lambda u)$ .

*Proof.*  $M_h \stackrel{D}{=} M_{t+h} - M_t \stackrel{D}{=} \text{Poisson}(\lambda h).$ 

$$\mathbb{P}(T_n \le u < T_{n+1}) = \mathbb{P}(T_n \le u < T_n + \xi_{n+1}) 
= \int_0^u \int_{u-T}^\infty \lambda e^{-\lambda \xi} \lambda e^{-\lambda T} \frac{(\lambda T)^{n-1}}{(n-1)!} d\xi dT 
= \int_0^u \lambda e^{-\lambda T} \frac{(\lambda T)^{n-1}}{(n-1)!} \int_{u-T}^\infty \lambda e^{-\lambda \xi} d\xi dT 
= \int_0^u \lambda e^{-\lambda T} \frac{(\lambda T)^{n-1}}{(n-1)!} e^{-\lambda (u-T)} dT 
= \int_0^u \lambda e^{-\lambda u} \frac{(\lambda T)^{n-1}}{(n-1)!} dT 
= e^{-\lambda u} \frac{(\lambda u)^n}{n!} 
= \mathbb{P}(\text{Poisson}(\lambda u) = n).$$

•  $(M_{t+s}-M_s)_{t\geq 0}$  is independent of  $(M_r)_{0\leq r\leq s}$  and has the same distribution as  $(M_t)_{t\geq 0}$ .