

(1) JP, 54-90218, A

⑩日本国特許庁(JP)

⑪特許出願公開

⑫公開特許公報(A)

昭54-90218

⑬Int. Cl.²

C 03 C 3/30
C 03 C 3/08
C 03 C 3/12

識別記号 101
日本分類 21 A 22

厅内整理番号 7417-4G
7417-4G
7417-4G
⑭公開 昭和54年(1979)7月17日
発明の数 1
審査請求 未請求

(全 4 頁)

⑮光学ガラス

⑯特 願 昭52-157362

⑰出 願 昭52(1977)12月28日

⑱發明者 高橋敏朗

大阪市東区安土町2丁目30番地

大阪国際ビル ミノルタカメラ株式会社内

⑲出願人 ミノルタカメラ株式会社
大阪市東区安土町2丁目30番地
大阪国際ビル

⑳代理人 弁理士 遠山光正

明細書

1. 発明の名称

光学ガラス

2. 特許請求の範囲

重量%で下記の組成より成る高屈折率低分散の光学ガラス

B₂O₃ 4乃至10%

B₂O₃ 5乃至20%

La₂O₃ 20乃至50%

W₀3 2乃至25%

Ta₂O₅ 1.5乃至3.0%

ZrO₂ 5乃至10%

Gd₂O₃ 5乃至30%

Y₂O₃ 0乃至10%

GeO₂ 0乃至30%

Al₂O₃ 0乃至3%

TiO₂ 0乃至10%

Li₂O 0乃至1%

} 但し W₀3+Ta₂O₅+ZrO₂ は
2.2乃至5.5%の範囲に限る

} 但し Gd₂O₃+Y₂O₃ は8乃至
30%の範囲に限る

3. 発明の詳細な説明

本発明は、屈折率n_dが1.84乃至1.95、アベ数v_dが30乃至45である高屈折率低分散の光学性能範囲にあり、且つ人体に有害な ThO₂を全く含有しない光学ガラスに関する。

従来上記した如き光学性能を有する光学ガラスは、B₂O₃-La₂O₃-ThO₂-Ta₂O₅を主成分として作成されてきた。上記成分の ThO₂は、高屈折率低分散成分であり、ガラス形成成分の極めて少ないガラスに、その耐失透性を損うことなく、多量に含有させることができ、この種光学性能の光学ガラスを得る上において極めて有用な成分である。しかしながらよく知られる如く ThO₂は、人体に有害であり、これを用いないことも要望されている。

ThO₂成分を全く含有せしめずに、本発明が目的とする上記光学性能範囲に達するためには、ガラスに La₂O₃、或るいは Y₂O₃を多量に含有せしめる必要があるが、これ等の成分は、 ThO₂と

比べて、ガラス形成成分の少ないところでは失透傾向が大きく、多量に含有せしめることはできない。

このような失透傾向を改善するため、種々の発明がなされ、その特許が出願公告されている。その1つとして、例えば特公昭47-16811号公報記載の発明においては、成分中の SiO_2 を増量し、ガラス融液の粘度を高くし、これに依つて失透傾向を抑え、 La_2O_3 を多量に含有せしめ得る組成とかしているが、この組成のものは、極めて難熔性であり、その量産を可能ならしめる程度まで耐失透性を改善することには成功していない。更に別例としては、英國特許第1299879号明細書に示されるものは、 SiO_2 の増量と共に Gd_2O_3 、 Ga_2O_3 等を導入せしめて、耐失透性を改善せんとしているが、この発明によつてもまた量産可能な程度のものとは言い難い。

本発明は、これらの欠点を改善した TbO_2 を含有しない高屈折率、低分散ガラスを得ることを

3

が少なくとも La_2O_3 を多量に含有することができること、及び WO_3 と Ta_2O_5 及び ZrO_2 を同時に所定の範囲内で導入することにより、 La_2O_3 の成分の多いガラスにおいて、その防失剤として有效地に作用せしめること、更に Gd_2O_3 及び（あるいは） Y_2O_3 を導入すると、 SiO_2 との適合性が良く、ガラスの難熔性及び失透析出温度の上昇を改善するのに有效地に作用するのを見出した結果、難熔性ともならず、また極めて耐失透性に優れた量産可能な高屈折率、低分散のガラスを得ることに成功したものである。

前記した如く各成分の重量比を限定した理由は、下記のとおりである。

SiO_2 は、ガラス融液の粘度を増加し、失透析出速度を抑えて La_2O_3 を多量に含有させ易くなるが、 SiO_2 が4%より少ないとその効果は殆んどなくなり、且つ10%を超えるとガラスが難熔性となると共に、失透析出温度が上昇するので量産が困難となる。

5

特開昭54-90218(2)
目的としたもので、本発明による光学ガラスは、重量%で下記の組成より成る光学ガラスに係る。

即ち、	SiO_2	4乃至10%
	B_2O_3	5乃至20%
	La_2O_3	20乃至50%
	WO_3	2乃至25%
	Ta_2O_5	15乃至30%
	ZrO_2	5乃至10%
	Gd_2O_3	5乃至30%
	Y_2O_3	0乃至10%
	Ga_2O_3	0乃至30%
	Al_2O_3	0乃至3%
	TiO_2	0乃至10%
	Li_2O	0乃至1%

の組成より成るものである。

本発明のガラスの特徴は、上記の如く SiO_2 と B_2O_3 とを併用し、しかもこれらの含有量を特定範囲内に限定することにより、ガラス形成成分

4

B_2O_3 は、周知の如く、 La_2O_3 、 Ta_2O_5 、 ZrO_2 、 Gd_2O_3 及び Y_2O_3 等を容易に熔解せしめる成分であるが、5%より少ないと難熔性となると共に失透析出温度が上昇する。また20%より多くなると、本発明が目的とする光学性能範囲に達することができなくなる。

La_2O_3 は、これが2%より少ないと、本発明の目的とする光学性能範囲に達することができず、これが50%より多くなると失透傾向が著しく増すので不適当となる。

WO_3 と Ta_2O_5 及び ZrO_2 は、これがそれ自体高屈折率成分であると共に、ガラス形成成分が少なくとも La_2O_3 を多量に含有するガラスにおいて、その防失剤として作用するが、これ等を個々に導入するだけでは、その作用は不十分であり、これらを同時に導入することによつて極めて有效地に作用するものである。従つて、 WO_3 と Ta_2O_5 と ZrO_2 は夫々2%、1.5%、5%以上を同時に含有せしめ、その計合量が22%以上と

特開昭54-90218(3)

Al_2O_3 は、 SiO_2 同様の作用を有するが、 3 % よりこれが多くなると失透傾向を増すので不適当である。

TiO_2 は、 本発明が目的とする光学性能範囲の高屈折率、低分散ガラスを得るために使用することができるが、これが 10 % より多量となると、着色を著しく生じるので光学ガラスとして不適当である。

Li_2O は、 SiO_2 の融剤として作用し、ガラスを比較的低温で熔解させるために添加することができるが、これは 1 % 以下で十分であり、これ以上增量しても利点はない。

なお CaO とか ZnO とか PbO の 2 倍金属酸化物成分も、光学性能を調整するために添加することができるが、これらの添加量は、1 成分あるいは重量で 7 % 以下で使用することが可能である。

本発明による実施例の各成分及び配合重量 % と、その屈折率 n_d 並びにアッペ数 v_d を下表に示す。

8

上記各実施例における SiO_2 は珪砂を使用し、 B_2O_3 は硼酸を、 Li_2O 及び CaO は炭酸塩を、 PbO はリサイクルを使用することができます。 La_2O_3 、 WO_3 、 Ta_2O_5 、 ZrO_2 、 Ga_2O_3 、 Y_2O_3 、 GeO_2 、 Al_2O_3 、 TiO_2 は、夫々の金属酸化物を原料として使用し得るもので、これらの上記した如き重量 % の混合物を 1300°C 乃至 1400°C の温度に通例のような白金容器で熔解し、均質操作及び泡切り操作を行つた後、適当な焼込み温度まで温度を下げ、予熱された金型に焼込んで、徐冷してでき上るもので、でき上つたガラスは、所望の光学性能範囲において、気泡、失透、脈理、着色のない良質な光学ガラスとなるものである。

以上

出願人 ミノルタカメラ株式会社

代理人 速山光正

%	1	2	3	4	5	6	7	8	9	10
SiO_2	6.0	4.5	7.0	5.0	4.5	10.0	5.0	4.0	6.0	4.5
B_2O_3	10.0	15.5	9.0	10.0	15.0	14.0	12.0	5.0	14.0	11.5
La_2O_3	35.0	35.0	46.0	20.0	35.5	45.0	32.0	25.0	25.0	32.0
WO_3	2.0	5.0	2.0	25.0	5.0	3.0	9.0	4.0	5.0	4.0
Ta_2O_5	19.0	25.0	19.0	20.0	21.2	15.0	15.0	29.0	15.0	23.0
ZrO_2	7.0	5.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Ga_2O_3	18.0	10.0	5.0	8.0	8.0	5.0	8.0	5.0	30.0	8.0
Y_2O_3	3.0		3.0	2.0		3.0	5.0	3.0		5.0
GeO_2			2.0				20.0			
Al_2O_3					1.0					
TiO_2						8.0				7.0
Li_2O	0.1		0.3		0.2	0.4	0.2		0.2	0.1
CaO			1.0							
ZnO				5.0	1.8					
PbO					4.0					
n_d	1.8959	1.8670	1.8851	1.9016	1.8738	1.8401	1.9278	1.9081	1.8575	1.9401
v_d	40.2	38.7	40.3	32.5	38.1	43.2	30.1	33.3	41.3	30.1

手 続 補 正 書

昭和 53 年 2 月 3 日

特許庁長官 鹤谷 善二 殿

1. 事件の表示

昭和 52 年 特許願第 157362 号

2. 発明の名称

光学ガラス

3. 補正をする者

事件との関係 特許出願人

住所 大阪府大阪市東区安土町 2 丁目 30 番地 大阪国際ビル
氏名(名称) (607) ミノルタカメラ株式会社

4. 代理人

住所 千102 東京都千代田区麹町 3 丁目 3 番地
ニッセイベルモーフ・ビル 603 号 電話 (03) 0563 (281) 0561

氏名 (6849) 弁理士 遠山光正

5. 補正命令の日付

自発補正

6. 補正により増加する発明の数

不変

7. 補正の対象

明細書の「特許請求の範囲」の欄、「発明の詳細な説明」の欄

1

(3) 明細書第 7 頁第 4 行目の「現割」は、これを「規制」と補正する。

(4) 明細書第 8 頁第 5 行目の「低分散」は、これを「中分散」と補正する。

以上

出願人 ミノルタカメラ株式会社

代理人 遠山光正

3

特開昭54-90218(4)

8. 補正の内容

(1) 特許請求の範囲全文を別添のとおり補正する。

(2) 明細書第 4 頁第 4 行目乃至第 15 行目の

「 SiO_2 4 乃至 10 % … … … …

Li_2O 0 乃至 1 %」は、これを下記

のとおり補正する。

「 SiO_2 4 乃至 10 %

B_2O_3 5 乃至 20 %

La_2O_3 20 乃至 50 %

W_2O_3 2 乃至 25 % } 但し、 $\text{W}_2\text{O}_3 + \text{Ta}_2\text{O}_5 + \text{Zr}_2\text{O}_2$

Ta_2O_5 15 乃至 30 % } の総量は、22 乃至 55 %

Zr_2O_2 5 乃至 10 % }

Gd_2O_3 5 乃至 30 % } 但し、 $\text{Gd}_2\text{O}_3 + \text{Y}_2\text{O}_3$ の総

Y_2O_3 0 乃至 10 % } 量は、8 乃至 30 %

GeO_2 0 乃至 30 %

Al_2O_3 0 乃至 3 %

TiO_2 0 乃至 10 %

Li_2O 0 乃至 1 %

2

別添

「2. 特許請求の範囲

重量 % で下記の組成より成る高屈折率低分散の光学ガラス

SiO_2 4 乃至 10 %

B_2O_3 5 乃至 20 %

La_2O_3 20 乃至 50 %

W_2O_3 2 乃至 25 % } 但し、 $\text{W}_2\text{O}_3 + \text{Ta}_2\text{O}_5 + \text{Zr}_2\text{O}_2$

Ta_2O_5 15 乃至 30 % } の総量は 22 乃至 55 %

Zr_2O_2 5 乃至 10 % }

Gd_2O_3 5 乃至 30 % } 但し、 $\text{Gd}_2\text{O}_3 + \text{Y}_2\text{O}_3$ の総

Y_2O_3 0 乃至 10 % } 量は 8 乃至 30 %

GeO_2 0 乃至 30 %

Al_2O_3 0 乃至 3 %

TiO_2 0 乃至 10 %

Li_2O 0 乃至 1 %

」

以上

出願人 ミノルタカメラ株式会社

代理人 遠山光正

(Translation)

Japanese Laid-open Patent Publication No. JP-A-54-90218

Laid-open Publication date: July 17, 1979

Application No. 52-157362

Filing date: December 28, 1977

Inventor: TAKAHASHI Toshio

Applicant: Minolta Camera K.K.

1. Title of the Invention

Optical Glass

2. Claim

A high-refractivity low-dispersion optical glass comprising the following composition by weight %,

BiO ₂	4 to 10 %
B ₂ O ₃	5 to 20 %
La ₂ O ₃	20 to 50 %
WO ₃	2 to 25 %
Ta ₂ O ₅	15 to 30 %
ZrO ₂	5 to 10 %
Gd ₂ O ₃	5 to 30 %
Y ₂ O ₃	0 to 10 %
GeO ₂	0 to 30 %
Al ₂ O ₃	0 to 3 %
TiO ₂	0 to 10 %
Li ₂ O	0 to 1 %

provided that the content of WO₃ + Ta₂O₅ + ZrO₂ is limited to the range of from 22 to 55 % and further provided that the content of Gd₂O₃ + Y₂O₃ is limited to the range of from 8 to 30 %.