CS 558: COMPUTER SYSTEMS (OS)

TUTORIAL

Dr. Samit Bhattacharya Dept. of Comp. Sc. & Engg., IIT Guwahati, Assam, India

Processes & Scheduling

PROCESS

PROGRAM DURING EXECUTION

>PROGRAM = STATIC FILE (IMAGE)

▶PROCESS = EXECUTING PROGRAM =
PROGRAM + EXECUTION STATE

BASIC UNIT OF EXECUTION IN AN OS

PROGRAM TO PROCESS

Consider the following program

```
void X (int b) {
   if(b == 1) {
   ...
   int main() {
    int a = 2;
    X(a);
}
```

CREATING A PROCESS

PROCESS IN MEMORY

```
main; a = 2
                 Stack
X; b = 2
            Heap
    void X (int b) {
      if(b == 1) {
    int main() {
      int a = 2;
      X(a);
                     Code
```

PROCESS LIFE CYCLE

• PROCESSES ARE ALWAYS EITHER EXECUTING, WAITING TO EXECUTE OR WAITING FOR AN EVENT TO OCCUR

PROCESS LIFE CYCLE

- A preemptive scheduler will force a transition from running to ready
- A non-preemptive scheduler waits

ALTERNATING CPU AND I/O BURSTS

TWO OS MODULES

- SCHEDULER
- DISPATCHER

SCHEDULER

- SELECTS FROM THE READY PROCESSES
- SCHEDULING DECISIONS OCCUR WHEN PROCESS
 - 1. SWITCHES FROM RUNNING TO WAITING STATE
 - 2. SWITCHES FROM RUNNING TO READY STATE
 - 3. SWITCHES FROM WAITING TO READY
 - 4. TERMINATES

DISPATCHER

- GIVES CONTROL OF THE CPU TO THE PROCESS SELECTED BY THE SCHEDULER
- INVOLVES
 - >SWITCHING CONTEXT
 - >SWITCHING TO USER MODE
 - PROGRAM TO RESTART THAT PROGRAM
- DISPATCH LATENCY TIME IT TAKES FOR THE DISPATCHER TO STOP ONE PROCESS AND START ANOTHER RUNNING

FIRST-COME, FIRST-SERVED (FCFS)

<u>PROCESS</u>	BURST TIME
P_{1}	24
P_2	3
P_3	3

• ASSUME PROCESSES ARRIVE AS: P_1 , P_2 , P_3 THE GANTT CHART FOR THE SCHEDULE IS:

- WAITING TIME FOR $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- AVERAGE WAITING TIME: (0 + 24 + 27)/3 = 17

FCFS SCHEDULING (CONT.)

NOW CONSIDER AN ALTERNATIVE SEQUENCE OF PROCESS ARRIVAL

- WAITING TIME FOR $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- AVERAGE WAITING TIME: (6 + 0 + 3)/3 = 3
- MUCH BETTER THAN PREVIOUS CASE
- CONVOY EFFECT OR HEAD-OF-LINE BLOCKING
 - > SHORT PROCESS BEHIND LONG PROCESS

SHORTEST-JOB-FIRST (SJR) SCHEDULING

- PROCESS DECLARES ITS CPU BURST LENGTH
- TWO SCHEMES
 - > NON-PREEMPTIVE ONCE CPU ASSIGNED, PROCESS NOT PREEMPTED UNTIL ITS CPU BURST COMPLETES
 - ➤ PREEMPTIVE IF A NEW PROCESS WITH CPU BURST LESS THAN REMAINING TIME OF CURRENT, PREEMPT SHORTEST-REMAINING-TIME-FIRST (SRTF)
- SJF IS OPTIMAL GIVES MINIMUM AVERAGE WAITING
 TIME FOR A GIVEN SET OF PROCESSES

EXAMPLE - NON-PREEMPTIVE SJF

PROCESS	ARRIVAL TIME	BURST TIME
P_{1}	0.0	7
P_2	2.0	4
P_3	4.0	1
P	5.0	4

• SJF (NON-PREEMPTIVE) - GANTT CHART

AVERAGE WAITING TIME

$$= (0 + 6 + 3 + 7)/4 = 4$$

EXAMPLE OF PREEMPTIVE SJF

PROCESS	ARRIVAL TIME	BURST TIME
P_1	0.0	7
P_2	2.0	4
P_3^2	4.0	1
P_{A}°	5.0	4

• SJF (PREEMPTIVE) - GANTT CHART

AVERAGE WAITING TIME

$$= (9 + 1 + 0 + 2)/4 = 3$$

ROUND ROBIN (RR)

- EACH PROCESS ASSIGNED A TIME QUANTUM, USUALLY 10-100 MILLISECONDS
 - > AFTER THIS, PROCESS MOVED TO END OF READY Q
- N PROCESSES IN READY QUEUE, TIME QUANTUM = Q, THEN EACH PROCESS GETS 1/N OF THE CPU TIME IN CHUNKS OF AT MOST Q TIME UNITS AT ONCE
 - > NO PROCESS WAITS MORE THAN (N-1)Q TIME UNITS
- PERFORMANCE
 - Q LARGE ⇒ FIFO
 - Q SMALL \Rightarrow Q MUST BE LARGE WITH RESPECT TO CONTEXT SWITCH, OTHERWISE OVERHEAD TOO HIGH

EXAMPLE: RR, QUANTUM = 20

PROCESS BURST TIME

P_1	53
P_2	1 <i>7</i>
P_3	68
P_4	24

TYPICALLY, HIGHER AVERAGE TURNAROUND THAN SJF, BUT BETTER *RESPONSE*

VIRTUAL MEMORY AND ADDRESS TRANSLATION

VIRTUAL MEMORY

CONCEPT

- KEY PROBLEM: HOW CAN ONE SUPPORT PROGRAMS THAT REQUIRE MORE MEMORY THAN IS PHYSICALLY AVAILABLE?
 - HIDE PHYSICAL SIZE OF MEMORY FROM USERS
 - MEMORY IS A "LARGE" VIRTUAL ADDRESS SPACE OF 2^N BYTES
 - ➤ ONLY PORTIONS OF VAS ARE IN PHYSICAL MEMORY AT ANY ONE TIME (INCREASE MEMORY UTILIZATION)

REALIZING VIRTUAL MEMORY

PAGING

$$(f_{MAX}-1, o_{MAX}-1)$$

- PHYSICAL MEMORY PARTITIONED
 INTO EQUAL SIZED PAGE FRAMES
 - > PAGE FRAMES AVOID EXTERNAL FRAGMENTATION

A memory address is a pair (f, o) f — frame number $(f_{max} \text{ frames})$ o — frame offset $(o_{max} \text{ bytes/frames})$ Physical address = $o_{max} \times f + o$ (f, o)

0

Physica

Memory

(0 0

PAGING

VIRTUAL ADDRESS TRANSLATION

VIRTUAL MEMORY (PAGING)

THE BIGGER PICTURE

- A PROCESS'S VAS IS ITS CONTEXT
 - CONTAINS ITS CODE, DATA, AND STACK
- CODE PAGES ARE STORED IN A USER'S FILE ON DISK
 - > SOME ARE CURRENTLY RESIDING IN MEMORY; MOST ARE NOT
- DATA AND STACK PAGES ARE ALSO STORED IN A FILE
 - > ALTHOUGH THIS FILE IS TYPICALLY NOT VISIBLE TO USERS
 - > FILE ONLY EXISTS WHILE A PROGRAM IS EXECUTING

OS DETERMINES WHICH PORTIONS OF A PROCESS'S VAS ARE MAPPED IN MEMORY AT ANY ONE TIME

VIRTUAL MEMORY

PAGE FAULT HANDLING

REFERENCES TO NON-MAPPED
 PAGES GENERATE A PAGE FAULT

Page fault handling steps:

Processor runs the interrupt handler

OS blocks the running process

OS reads in the unmapped page

OS resumes/initiates some other process

OS maps the missing page into memory

OS restart the faulting process

Physical Memory

PAGE REPLACEMENT ALGORITHMS

PAGE REPLACEMENT ALGORITHMS

CONCEPT

- Local replacement Replace a page of the faulting process
- Global replacement Possibly replace the page of another process

OPTIMAL PAGE REPLACEMENT

• REPLACE THE PAGE THAT WON'T BE NEEDED FOR THE LONGEST TIME IN THE FUTURE

Time	,	0	1	2	3	4	5	6	7	8	9	10
Requ	ests		c	a	d	b	e	b	a	b	C	d
	0	a										
age ames	1	b										
$\frac{P_2}{Fra}$	2	c										
	3	d										

Faults

Time page needed next

OPTIMAL PAGE REPLACEMENT

• REPLACE THE PAGE THAT WON'T BE NEEDED FOR THE LONGEST TIME IN THE FUTURE

_													
	Time	2	0	1	2	3	4	5	6	7	8	9	10
	Requ	iests		c	а	d	b	e	b	а	b	\mathcal{C}	d
		0	а	a	а	а	а	а	а	а	а	а	\overline{d}
	age ames	1	b	b	b	b	b	b	b	b	b	b	$\stackrel{oldsymbol{\cup}}{b}$
	Pag Fram	2	c	c	\boldsymbol{c}	$\boldsymbol{\mathcal{C}}$	c	\boldsymbol{c}	c	$\boldsymbol{\mathcal{C}}$	$\boldsymbol{\mathcal{C}}$	$\boldsymbol{\mathcal{C}}$	c
		3	d	d	d	d	d	e	e	e	e	e	e
	Fault	ts						•					•
	Time	nage	7				a = 7 $b = 6$					a = 1 $b = 1$	
	need	ed ne	xt				c = 9					c = 1	3
							d=1	()				d=1	4

LEAST RECENTLY USED PAGE REPLACEMENT

REPLACE THE PAGE THAT HASN'T BEEN REFERENCED
 FOR THE LONGEST TIME

				and the Miller of the Control of the					virgin Millery and			
Time)	0	1	2	3	4	5	6	7	8	9	10
Requ	iests		С	а	d	b	e	b	а	b	С	d
S	0	а										
age	1	b										
Pe Fra	2	С										
	3	d										
Faul	ts											

Time page last used

LEAST RECENTLY USED PAGE REPLACEMENT

REPLACE THE PAGE THAT HASN'T BEEN REFERENCED
 FOR THE LONGEST TIME

	0	1	2	3	4	5	6	7	8	9	10	
ests		С	a	d	b	e	b	a	b	\boldsymbol{c}	d	
0	а	а	a	а	a	a	а	а	а	a	a	
1	b	b	b	b	b	b	b	b	b	b	b	
2	c	c	$\boldsymbol{\mathcal{C}}$	$\boldsymbol{\mathcal{C}}$	\mathcal{C}	$\overline{\boldsymbol{e}}$	e	e	e	e	d	
3	d	d	d	d	d	d	d	d	d	\overline{c}	c	
S						•				•	•	
page	;									a = 7 $b = 8$		
sed				c = 1					e = 5 $e = 5$			
	ests 0 1 2 3 s	ests 0 a 1 b 2 c 3 d s	ests $\begin{array}{c cccc} c & \hline c & \hline c & \hline \\ 0 & a & a \\ 1 & b & b \\ 2 & c & c \\ 3 & d & d \\ \hline \\ \text{s} & \\ \\ \text{page} & \\ \end{array}$	ests $\begin{array}{c cccc} c & a \\ \hline 0 & a & a & a \\ 1 & b & b & b \\ 2 & c & c & c \\ 3 & d & d & d \\ \hline \end{array}$ page	ests $\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

LEAST RECENTLY USED PAGE REPLACEMENT

IMPLEMENTATION

MAINTAIN A "STACK" OF RECENTLY USED PAGES

Time	0	1	2	3	4	5	6	7	8	9	10
Requests		С	a	d	b	e	b	а	b	С	d
S 0	а	a	а	а	а	а	а	а	а	а	a
age ame	b	b	b	b	b	$\stackrel{b}{\frown}$	b	b	b	b	b
Fra 2	c	С	\mathcal{C}	\mathcal{C}	\mathcal{C}	(e)	e	e	e	$\stackrel{e}{\frown}$	(d)
3	d	d	d	d	d	d	d	d	d	(c)	\overline{c}
Faults						•				•	•

LEAST RECENTLY USED PAGE REPLACEMENT

IMPLEMENTATION

MAINTAIN A "STACK" OF RECENTLY USED PAGES

Time	0	1	2	3	4	5	6	7	8	9	10
Requests		c	a	d	b	e	b	a	b	c	d
Page Frames	а b с	а b с	а b с	а b с	а b с	a b e	а b е	a b e	а b е	а b е	$\begin{pmatrix} a \\ b \\ d \end{pmatrix}$
3	d	d	d	d	d	d	d	d	d	(c)	c
Faults						•				•	•

PAGE REPLACEMENT ALGORITHMS

PERFORMANCE

- LOCAL PAGE REPLACEMENT
 - > LRU AGES PAGES BASED ON WHEN THEY WERE LAST USED
 - > FIFO AGES PAGES BASED ON WHEN THEY'RE BROUGHT INTO MEMORY
 - TOWARDS GLOBAL PAGE REPLACEMENT ... WITH VARIABLE NUMBER OF PAGE FRAMES ALLOCATED TO PROCESSES

The principle of locality

- 90% of the execution of a program is sequential
- Most iterative constructs consist of a relatively small number of instructions
- When processing large data structures, the dominant cost is sequential processing on individual structure elements
- Temporal vs. physical locality

EXPLICITLY USING LOCALITY

THE WORKING SET MODEL OF PAGE REPLACEMENT

- ASSUME RECENTLY REFERENCED PAGES ARE LIKELY TO BE REFERENCED AGAIN SOON...
- ... AND ONLY KEEP THOSE PAGES RECENTLY
 REFERENCED IN MEMORY (CALLED THE WORKING SET)
 - > THUS PAGES MAY BE REMOVED EVEN WHEN NO PAGE FAULT OCCURS
 - > THE NUMBER OF FRAMES ALLOCATED TO A PROCESS WILL VARY OVER TIME
- A PROCESS IS ALLOWED TO EXECUTE ONLY IF ITS WORKING SET FITS INTO MEMORY
 - > THE WORKING SET MODEL PERFORMS IMPLICIT LOAD CONTROL

WORKING SET PAGE REPLACEMENT

IMPLEMENTATION

• KEEP TRACK OF THE LAST au REFERENCES

- ightharpoonup The pages referenced during the last au memory accesses are the working set
- \succ τ IS CALLED THE WINDOW SIZE

PAGE-FAULT-FREQUENCY PAGE REPLACEMENT

AN ALTERNATE WORKING SET COMPUTATION

• EXPLICITLY ATTEMPT TO MINIMIZE PAGE FAULTS

- > WHEN PAGE FAULT FREQUENCY IS HIGH INCREASE WORKING SET
- > WHEN PAGE FAULT FREQUENCY IS LOW DECREASE WORKING SET

Algorithm:

Keep track of the rate at which faults occur

When a fault occurs, compute the time since the last page fault

Record the time, t_{last} , of the last page fault

If the time between page faults is "large" then reduce the working set

If $t_{current}$ - t_{last} > τ , then remove from memory all pages not referenced in $[t_{last}, t_{current}]$

If the time between page faults is "small" then increase working set If $t_{current} - t_{last} \le \tau$, then add faulting page to the working set

DISK MANAGEMENT

DISK TYPES

- ADVANCED TECHNOLOGY ATTACHMENT (ATA)
 - ALSO CALLED IDE (INTEGRATED DRIVE ELECTRONICS), ATAPI, AND UDMA
- SMALL COMPUTER SYSTEM INTERFACE (SCSI)
- MICRODRIVE
- SATA (SERIAL ATA)
- SSD (SOLID STATE DEVICES) NOT TRADITIONAL DISKS?

ANATOMY OF A DISK

BASIC COMPONENTS

EXAMPLE

SEAGATE 73.4 GB FIBRE CHANNEL ULTRA 160 SCSI DISK

• SPECS:

- ➤ 12 PLATTERS
- ➤ 12 ARMS
- ➤ 24 HEADS
- > 14,100 TRACKS
- ➤ VARIABLE # OF SECTORS/TRACK
- ➤ 512 BYTES/SECTOR

DISK OPERATIONS

READ/WRITE OPERATIONS

- PRESENT DISK WITH A SECTOR ADDRESS
 - > DA = (DRIVE, SURFACE, TRACK, SECTOR)
 - HEADS MOVED TO APPROPRIATE TRACK
 - > SEEK TIME
 - > SETTLE TIME
 - THE APPROPRIATE HEAD IS ENABLED
 - WAIT FOR THE SECTOR TO APPEAR UNDER THE HEAD
 - > "ROTATIONAL LATENCY"
 - READ/WRITE THE SECTOR
 "TRANSFER TIME"

DISK HEAD SCHEDULING

MAXIMIZING DISK THROUGHPUT

• IN A MULTIPROGRAMMING/TIMESHARING ENVIRONMENT, A QUEUE OF DISK I/O REQUESTS CAN FORM

The OS maximizes disk I/O throughput by minimizing head movement through *disk head scheduling*

FCFS

• ASSUME A QUEUE OF REQUESTS EXISTS TO READ/WRITE TRACKS 83 72 14 147 16 150

> HEAD IS ON TRACK 65

FCFS scheduling results in the head moving 550 tracks
Can we do better?

SHORTEST SEEK TIME FIRST (SSTF)

REARRANGE QUEUE FROM:

TO:

83	72	14	147	16	150
14	16	150	147	83	72

SSTF scheduling results in the head moving 221 tracks Can we do better?

SCAN SCHEDULING

REARRANGE QUEUE FROM:

83 72 14 147 16 150

TO:

150 147 83 72 14 16

"SCAN" (elevator) scheduling: Move the head in one direction until all requests have been serviced and then reverse

Moves the head 187 tracks

NOTE ON ASSIGNMENT

- PROCESS SCHEDULING
- RAGE REPLACEMENT LOCAL AND/OR
 GLOBAL
- DISK SCHEDULING

- WILL BE UPLOADED SOON
- QUESTIONS?