* الدوال الأصلية و الحساب التكاملي *

① الدوال الأصلية

الجواب	السؤال	
I الشرط أن تكون الدالة f مستمرة على المجال	I ما هو شرط وجود دالة أصلية F للدالة f على المجال	0
الدالة f تقبل عدد غير منتهي من الدوال الأصلية $k\in\mathbb{R}$ حيث $F\left(x ight)+k$ و هي	I عدد الدوال الأصلية للدالة f على المجال	2
$F'(x) = f(x) : x \in I$ يكفي إثبات من أجل كل	I أثبت أن الدالة F أصلية للدالة f على المجال	6
$F'(x) = G'(x)$: $x \in I$ يكفي إثبات من أجل كل	I بين أن الدالتان F و G أصليتان لنفس الدالة على المجال	4

② الدوال الأصلية لدوال مألوفة

f(x)=	F(x)=	<i>I</i> =
(عدد حقیقي a) a	a x + c	${\mathbb R}$
x	$\frac{1}{2}x^2+c$	$\mathbb R$
$(n \in \mathbb{N}^*) x^n$	$\frac{1}{n+1} x^{n+1} + c$	$\mathbb R$
$\frac{1}{x^2}$	$-\frac{1}{x}+c$]0;+∞[أو]0;+∞[
$(n \ge 2 \ \widehat{y} \ n \in \mathbb{N}) \ \frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}}+c$]0;+∞[أو]0;+∞[
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}+c$]0;+∞[
e^x	$e^x + c$	$\mathbb R$
e^{ax+b} $(a \in \mathbb{R}^* \ \mathbf{\hat{g}} \ b \in \mathbb{R})$	$\frac{1}{a}e^{ax+b}+c$	$\mathbb R$
$\frac{1}{x}$	ln <i>x</i> + <i>c</i>]0;+∞[
ln x	$x \ln x - x + c$]0;+∞[
$(a \in \mathbb{R}) \ln(x-a)$	$(x-a)\ln(x-a)-x+c$] <i>a</i> ;+∞[

③ الدوال الأصلية و العمليات على الدوال

f الدالة	Iالدوال الأصلية للدالة f على	شروط على الدالة u
u'u	$\frac{1}{2}u^2+c$	
$(n \in \mathbb{N}^*) u'u^n$	$\frac{1}{n+1}u^{n+1}+c$	
$\frac{u'}{u^2}$	$-\frac{1}{u} + c$	$u(x)\! eq\!0$ ، I من أجل كل x من أجل
$(n \ge 2 \le n \in \mathbb{N}) \frac{u'}{u^n}$	$-\frac{1}{\left(n-1\right)u^{n-1}}+c$	$u(x) \neq 0$ ، I من أجل كل x من أجل
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}+c$	u(x) > 0 ، I من أجل كل x من أجل
u'e ^u	$e^u + c$	
$\frac{u'}{u}$	$\ln u + c$	$u(x)\neq 0$

العادلات التفاضلية

حلول المعادلة	المعادلة التفاضلية
$y = C e^{a x}$	y' = a y
$y = C e^{ax} - \frac{b}{a}$	$y' = a \ y + b$
y = F(x) + c	$y'=f\left(x\right)$
$y = F(x) + c_1 x + c_2$	y''=f'(x)
$y = c_1 \cos \omega \ x + c_2 \sin \omega \ x$	$y'' = -\omega^2 y$

5 الحساب التكاملي

, h	
$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a)$	التكامل المحدود
$\int f(x) dx = F(x) + k$	التكامل الغير محدود
$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$	علاقة شال
$\int_a^b u(x)v'(x) dx = \left[u(x)v(x)\right]_a^b - \int_a^b u'(x)v(x) dx$	المكاملة بالتجزئة
$m = \frac{1}{b-a} \int_{a}^{b} f(x) dx$	القيمة المتوسطة على مجال

6 حساب المساحات و الحجوم

التمثيل البياني لها	S المساحات
y (C_i) a b x	$S = \int_{a}^{b} f(x) dx$
$ \begin{array}{c} & x \\ $	$S = \int_{a}^{b} -f(x) dx$
$ \begin{array}{c} y \\ C_I \end{array} $	$S = \int_{a}^{c} f(x) dx + \int_{c}^{b} -f(x) dx$
$ \begin{array}{c} y \\ \downarrow \\ a \\ (C_s) \end{array} $	$S = \int_{a}^{b} \left[f(x) - g(x) \right] dx$
$ \begin{array}{c} y \\ \downarrow \\ a \\ \downarrow \\ c \\ \downarrow \\ c \\ c$	$S = \int_{a}^{c} \left[f(x) - g(x) \right] dx + \int_{c}^{b} \left[g(x) - f(x) \right] dx$
التمثيل البياني لها	Vالحجوم
<i>y O O O O O O O O O O</i>	$ig(Cig)$ حجم مجسم مولد بالدوران حول المحور $ig(x'xig)$ لمنحن $V=\int\limits_a^b\piig[fig(xig)ig]^2dx$
$ua=\left\ ec{i} ight\ imes \left\ ec{j} ight\ $ ملاحظة هامة : كل المساحات يجب أن تضرب في الوحد $ua=\left\ ec{i} ight\ imes \left\ ec{j} ight\ $	