Extract from:

Bradley Efron and Trevor Hastie

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science

Cambridge University Press, 2016

 $https://web.stanford.edu/{\sim}hastie/CASI_files/PDF/casi.pdf$

Modern Bayesian practice uses various strategies to construct an appropriate "prior" $g(\mu)$ in the absence of prior experience, leaving many statisticians unconvinced by the resulting Bayesian inferences. Our second example illustrates the difficulty.

Table 3.1 Scores from two tests taken by 22 students, mechanics and vectors.

	1	2	3	4	5	6	7	8	9	10	11
mechanics	7	44	49	59	34	46	0	32	49	52	44
vectors	51	69	41	71	42	40	40	45	57	64	61

	11	12	13	14	15	16	17	18	19	20	21	22
mechanics	44	36	42	5	22	18	41	48	31	42	46	63
vectors	61	59	60	30	58	51	63	38	42	69	49	63

Table 3.1 shows the scores on two tests, mechanics and vectors, achieved by n=22 students. The sample correlation coefficient between the two scores is $\hat{\theta}=0.498$,

$$\hat{\theta} = \sum_{i=1}^{22} (m_i - \overline{m})(v_i - \overline{v}) / [\sum_{i=1}^{22} (m_i - \overline{m})^2 \sum_{i=1}^{22} (v_i - \overline{v})^2]^{1/2}$$

with m and v short for mechanics and vectors, \overline{m} and \overline{v} their averages.