Emoji Prediction: A Survey of Classification Algorithms

Alexandra Gamez

Background

- Twitter is a place where valuable information such as sentiments, popularity, and opinions of various topics are located
- A perfect place for Natural Language Processing
- Emoji prediction is a classification problem

Problem & General Approach

- O Task
 - Emoji prediction
- Approach
 - O Get data
 - Prepare data
 - Train data
 - O Test

Dataset Example

Tweet content

PS I U @ Beaver Stadium Get ready for a bunch of annoying pictures of Dallas @ Dallas, Texas @user aww love ya laura!!! Hoes never get cold @ Downtown Los Angeles National Siblings Day #WeAreFamily #HappyNationalSiblingsDay #SistersLikeUs @ Time Square... "Don't you hate working holidays?"... they asked. #roseparade2016 #ilovemyjob #colorfulfloats... #taromilkteaboba for this hot LA day. @ McDonald's at 2810 South... S N ~ They're saying it's the hottest day of the year today. So we're hiding in a cabana by the... Our fierce party crew! @ Blarney Stone Pub Got to visit my grandpa K today:) @ Greenwood, South Carolina "what's in the ice box, if you don't mind me asking sir?".....Our Hearts ...

Emoji Label

8
5
0
7
9
0
4
12
6
3
8

Emoji Mapping

```
red heart
_smiling_face_with_hearteyes_
face with tears of joy
two hearts
fire
smiling face with smiling eyes
smiling face with sunglasses
 sparkles
blue heart
face blowing a kiss
camera
 United States
sun
 purple heart
winking face
 _hundred_points_
beaming face with smiling eyes
Christmas tree
camera with flash
winking face with_tongue_
```

Algorithms Used

- Naïve Bayes (Multinomial Naïve Bayes)
- Stochastic Gradient Descent
- Support Vector Machines
- Compare the com
- K Nearest Neighbors
- O Decision Tree
- Neural Networks
- My Naïve Bayes ***

Naive Bayes

- Fast training
- Fast classification
- Terrible results

Naïve Bayes	Documents						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	0.31	0.27	0.24	0.22	0.21	0.21	0.23
100-200	0.37	0.27	0.26	0.25	0.23	0.25	0.25
200-300	0.23	0.2	0.19	0.2	0.18	0.2	0.2
300-400	0.44	0.32	0.32	0.31	0.31	0.31	0.31
400-500	0.38	0.27	0.26	0.23	0.24	0.25	0.25
500-600	0.31	0.27	0.25	0.22	0.23	0.24	0.25
600-700	0.45	0.29	0.27	0.26	0.27	0.28	0.28
700-800	0.26	0.21	0.21	0.2	0.21	0.2	0.2
800-900	0.27	0.15	0.15	0.14	0.14	0.13	0.15
900-100	0.41	0.35	0.33	0.31	0.3	0.3	0.31
Training Time	0.015	0.046	0.071	0.125	0.266	0.33	0.224
Elaspsed time	0.171	0.171	0.188	0.205	0.161	0.63	0.268

Stochastic Gradient Descent

 Trained by assigning weights and then updating iteratively until convergence at a maximum

- Fast training
- Fast classification
- Sufficiently accurate

	Accura cy						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	0.99	0.96	0.92	0.84	0.85	0.81	0.79
100-200	1	1	0.9	0.84	0.79	0.77	0.8
200-300	1	0.96	0.91	0.84	0.76	0.75	0.8
300-400	1	0.98	0.91	0.84	0.75	0.76	0.72
400-500	1	0.98	0.91	0.79	0.73	0.72	0.68
500-600	1	0.95	0.92	0.88	0.83	0.86	0.8
600-700	1	0.95	0.92	0.82	0.82	0.81	0.76
700-800	0.98	0.98	0.93	0.9	0.83	0.83	0.8
800-900	0.99	0.97	0.86	0.77	0.74	0.71	0.72
900-100	1	0.98	0.92	0.84	0.82	0.81	0.81
Training Time	0.032	0.141	0.328	0.702	1.105	1.569	1.827
Elaspsed time	0.017	0.174	0.213	0.233	0.253	0.266	0.296

Support Vector Machines

 Points in space where categories are separated by gaps

- Slow training
- Slow classification
- Miserable results

Vector Machines	Accura cy						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	0.19	0.19	0.19	0.19	0.19	0.19	0.19
100-200	0.21	0.21	0.21	0.21	0.21	0.21	0.21
200-300	0.15	0.15	0.15	0.15	0.15	0.15	0.15
300-400	0.25	0.25	0.25	0.25	0.25	0.25	0.25
400-500	0.19	0.19	0.19	0.19	0.19	0.19	0.19
500-600	0.15	0.15	0.15	0.15	0.15	0.15	0.15
600-700	0.23	0.23	0.23	0.23	0.23	0.23	0.23
700-800	0.18	0.18	0.18	0.18	0.18	0.18	0.18
800-900	0.1	0.1	0.1	0.1	0.1	0.1	0.1
900-100	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Training Time	0.674	14.68	58.409	253.598	572.56	1041.821	1344.291
Elaspsed time	0.673	2.44	5.304	9.736	18	19.182	21.89

Logistic Regression

- Multinomial logistic regression also known as MaxEnt
- Features, scores, weights

- Fast training
- Fast classification
- Subpar results

Logistic Regression	Accuracy						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	0.38	0.36	0.37	0.38	0.43	0.41	0.4
100-200	0.46	0.39	0.39	0.4	0.4	0.42	0.39
200-300	0.38	0.38	0.39	0.38	0.35	0.34	0.33
300-400	0.55	0.52	0.53	0.53	0.52	0.52	0.51
400-500	0.46	0.45	0.4	0.42	0.42	0.39	0.4
500-600	0.42	0.41	0.43	0.42	0.41	0.39	0.37
600-700	0.58	0.46	0.42	0.39	0.42	0.38	0.4
700-800	0.39	0.38	0.41	0.41	0.42	0.43	0.43
800-900	0.43	0.39	0.36	0.35	0.35	0.36	0.35
900-100	0.51	0.46	0.46	0.44	0.44	0.43	0.42
Training Time	0.212	1.12	2.4	6.08	13.339	18.722	20.227
Elaspsed time	0.085	0.078	0.078	0.094	0.309	0.107	0.082

K Nearest Neighbors

 Classified by a majority vote of its neighbors n nearest neighbors

- Really fast training
- Relatively fast classification
- Pretty bad results

K Nearsest	Accura						
Neighbors	СУ						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	0.32	0.31	0.31	0.36	0.36	0.35	0.33
100-200	0.35	0.38	0.41	0.42	0.42	0.48	0.47
200-300	0.31	0.31	0.36	0.35	0.36	0.4	0.4
300-400	0.44	0.44	0.46	0.49	0.54	0.48	0.51
400-500	0.37	0.44	0.33	0.29	0.32	0.4	0.4
500-600	0.35	0.39	0.35	0.38	0.39	0.41	0.32
600-700	0.43	0.41	0.43	0.42	0.41	0.39	0.39
700-800	0.37	0.34	0.35	0.41	0.46	0.39	0.35
800-900	0.43	0.37	0.39	0.35	0.32	0.32	0.3
900-100	0.33	0.47	0.4	0.44	0.45	0.45	0.5
Training Time	0	0	0	0.016	0.019	0.031	0.031
Elaspsed time	0.155	0.625	1.078	1.983	3.31	4.045	4.59

Decision Tree

- Data into subsets
- O Decision nodes

- Slowish training
- Fast classification
- Really good results

	Accura						
Decision Tree	СУ						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	1	1	1	1	1	1	1
100-200	1	1	1	1	1	1	1
200-300	1	1	1	1	1	1	1
300-400	1	1	1	0.99	0.99	0.99	0.98
400-500	1	1	1	1	1	1	1
500-600	1	0.99	0.99	0.99	0.99	0.99	0.99
600-700	1	1	1	1	1	1	1
700-800	0.99	0.99	0.99	0.99	0.99	0.99	0.99
800-900	0.99	0.99	0.99	0.99	0.99	0.99	0.99
900-100	1	1	1	1	1	1	1
Training Time	0.806	7.974	23.993	56.48	99.828	159.71	198.07
Elaspsed time	0.075	0.092	0.154	0.078	0.102	0.094	0.0899

Neural Networks

- Process samples one by one
- Compare result to actual label
- Errors are from classification are used to make modifications
- Backwards prorogation, tuning

- Slowest training I ever did see
- Fast classification
- O Great results

	Accura						
Neural Networks	СУ						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	1	1	1	1			
100-200	1	1	1	1			
200-300	1	1	1	1			
300-400	1	1	1	0.99			
400-500	1	1	1	1			
500-600	1	0.99	0.99	0.99			
600-700	1	1	1	1			
700-800	0.99	0.99	0.99	0.98			
800-900	0.99	0.99	1	1			
900-100	1	1	1	1			
Training Time	56.315	435.316	1506.819	10349.03			
Elaspsed time	0.026	0.105	0.25	0.15			

My Naive Bayes

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

- Made by me
- Bag of words method

- Fast training
- SLOW classification
- O Good then terrible results

	Accura					4 4 4 4 4 4 4	
A 4 A ID	Accura						
MyNB	СУ						
Training Set Size	1k	5k	10k	20k	30k	40k	50k
0-100	0.94	0.71	0.64	0.56	0.48		
100-200	0.87	0.72	0.67	0.62	0.59		
200-300	0.94	0.7	0.62	0.56	0.54		
300-400	0.88	0.72	0.69	0.66	0.6		
400-500	0.88	0.71	0.62	0.54	0.53		
500-600	0.91	0.75	0.67	0.57	0.6		
600-700	0.84	0.7	0.6	0.56	0.51		
700-800	0.84	0.7	0.64	0.61	0.55		
800-900	0.93	0.72	0.63	0.56	0.5		
900-100	0.87	0.78	0.72	0.67	0.63		
Training Time	0.16	0.944	2.713	14.99	24.331		
Elaspsed time	132.059	877.13	2418.075	3427.908	41635.77		

Algorithm Comparison

My NB In Action

```
merry christmans ==> (u'17', 1.6138699208126408e-09)
hapy 4th of july ==> (u'11', 2.848003624086619e-18)
i hate you ==> (u'2', 1.1685893961947471e-14)
i love you ==> (u'0', 7.436597389420465e-13)
```


Emoji Mapping

```
_red_heart_
      _smiling_face_with_hearteyes_
   face with tears of joy
   two_hearts_
   fire
   smiling face with smiling_eyes_
   smiling face with sunglasses
      sparkles
      blue heart
      _face_blowing_a_kiss_
      camera
       United States
      sun_
      purple heart
      _winking_face_
       hundred points
   beaming face with smiling eyes
      Christmas tree
   amera with flash
19  winking face with tongue
```