COMP 737011 - Memory Safety and Programming Language Design

Lecture 11: Alias Analysis

Hui Xu xuh@fudan.edu.cn

Outline

- 1. Alias Analysis Problem
- 2. Flow-insensitive Alias Analysis
- 3. Flow-sensitive Alias Analysis

1. Alias Analysis Problem

Alias Analysis

- To determine whether two pointers or references refer to the same memory location at some point during program execution.
- Alias information is useful for:
 - Compiler optimizations.
 - Program verification and bug detection.

Recall The Bug

Whether s and v point to the same memory location?

```
fn genvec()->Vec<u8>{
    let mut s = String::from("a tmp string");
    let ptr = s.as mut ptr();
    unsafe{
        let v = Vec::from raw parts(ptr,s.len(),s.len());
        v.push(123);
        return v;
fn main(){
    let v = genvec(); //v is dangling
    println!("{:?}",v); //illegal memory access
```

Real-world Programs are More Complicated

```
let a = Box::new("alice");
let b = Box::new("bob");
let p1 = Box::into_raw(alice);
let p2 = Box::into_raw(bob);
let c = unsafe {
    Box::from raw(p1)
};
while cond1 {
    let mut p3 = p1;
    if cond2 {
        p3 = p2;
    let d = unsafe {
        Box::from_raw(p3)
    };
}
```


Common Choices for Alias Analysis

- Flow sensitivity: whether an algorithm considers the order of statements?
- Path sensitivity: whether an algorithm considers the control flow?
- Context sensitivity: whether an algorithm considers how a function is called?

2. Flow-insensitive Alias Analysis

Andersen-style Analysis Steensgaard-style Analysis

Andersen-style Alias Analysis

- Flow/path/context-insensitive
 - May analysis: it should not miss any alias; false positives are acceptable.
- Represent aliases as equivalence sets
 - *e.g.*, {p, q} {x, y, z} are two alias sets
- How statements affect the alias sets?
 - Subset-based constraints

Form	Constraint	Meaning
a = &b	$a \supseteq \{b\}$	$loc(b) \in pts(a)$
a = b	$a \supseteq b$	$pts(a) \supseteq pts(b)$
a = *b	$a \supseteq * b$	$\forall v \in pts(b), pts(a) \supseteq pts(v)$
*a = b	$*a \supseteq b$	$\forall v \in pts(a), pts(v) \supseteq pts(b)$

Procedures of Andersen-style Analysis

- Step 1. Extract the subset constraints for each statement
- Step 2. Init the constraint graph
- Step 3. Update the graph with a worklist algorithm

Step 1. Constraint Extraction

Statements

Form	Constraint	
a = &b	$a \supseteq \{b\}$	
a = b	$a \supseteq b$	
a = *b	$a \supseteq * b$	
*a = b	$*a \supseteq b$	

Constraints

$$p \supseteq \{a\}$$

$$q \supseteq \{b\}$$

$$r \supseteq \{c\}$$

Step 2. Init The Constraint Graph

- Each node represents a variable and its point-to relationship.
- Each edge represents a subset relationship.


```
1: Worklist: \{p, r, q\} \Longrightarrow Result Worklist: \{p, r, q, s\}

p \supseteq \{a\}
q \supseteq \{b\}
\{a\}
\{a\}
p \Longrightarrow s
\{a\}
\{a\}
p \Longrightarrow s
\{a\}
\{a\}
\{a\}
\{a\}
\{c\}
\{c\}
\{c\}
\{c\}
\{c\}
\{c\}
\{c\}
\{c\}
```

```
Let W = { v | pts(v) ≠Ø }
While W not empty
  v ← select from W
  for each edge v→q do
    pts(q) = pts(q) U pts(v), and add q to W if pts(q) changed
    ...
```

```
Let W = { v | pts(v) ≠Ø }
While W not empty
  v ← select from W
  for each a ∈ pts(v) do
    for each constraint p ⊇*v
      add edge a→p, and add a to W if edge is new
    for each constraint *v ⊇ q
      add edge q→a, and add q to W if edge is new
  for each edge v→q do
    pts(q) = pts(q) ∪ pts(v), and add q to W if pts(q) changed
```

```
1: Worklist: \{p, r, q\} \longrightarrow Result Worklist: \{p, r, q, s\}

p \supseteq \{a\}
q \supseteq \{b\}
\{a\}
\{a\}
p \supseteq q
```

```
Let W = { v | pts(v) ≠Ø }
While W not empty
  v ← select from W
  for each a ∈ pts(v) do
    for each constraint p ⊇*v
      add edge a→p, and add a to W if edge is new
    for each constraint *v ⊇ q
      add edge q→a, and add q to W if edge is new
  for each edge v→q do
    pts(q) = pts(q) ∪ pts(v), and add q to W if pts(q) changed
```

```
1: Worklist: \{p, r, q\} Result Worklist: \{p, r, q, s, a, t\}
p \supseteq \{a\}
                     {a}
                                {a}
q \supseteq \{b\}
*p ⊇ q
                      r
r \supseteq \{c\}
                     {c}
                                   {b}
s \supseteq p
t ⊇ *p
                                 b
                      q
*s ⊇ r
                     {b}
```

```
Let W = { v | pts(v) ≠Ø }
While W not empty
  v ← select from W
  for each a ∈ pts(v) do
    for each constraint p ⊇*v
      add edge a→p, and add a to W if edge is new
    for each constraint *v ⊇ q
      add edge q→a, and add q to W if edge is new
  for each edge v→q do
    pts(q) = pts(q) ∪ pts(v), and add q to W if pts(q) changed
```

```
2: Worklist:: \{p, r, q, s, a, t\} \longrightarrow 4: Worklist:: \{p, r, q, s, a, t\}

p \supseteq \{a\}
q \supseteq \{b\}
*p \supseteq q
r \supseteq \{c\}
s \supseteq p
t \supseteq *p
*s \supseteq r
\{b\}
```

```
Let W = { v | pts(v) ≠Ø }
While W not empty
  v ← select from W
  for each a ∈ pts(v) do
    for each constraint p ⊇*v
      add edge a⇒p, and add a to W if edge is new
    for each constraint *v ⊇ q
      add edge q⇒a, and add q to W if edge is new
  for each edge v→q do
    pts(q) = pts(q) ∪ pts(v), and add q to W if pts(q) changed
```

Precision

Flow-sensitive point-to analysis

Andersen analysis

False positive: *t and c should not be alias

Steensgaard-Style Analysis

- Further restrict each node points to only one abstract location
 - e.g., if *x and *y are alias, x and y point to the same location.

Due to flow-insensitivity, if a = &b and a = &c, b and c are recorded as alias.

Steensgaard-Style Analysis

- Use equality constraints instead of subset
- Based on union-find algorithm

Form	Constraint	Meaning	Notes
a = &b	$a \supseteq \{b\}$	$loc(b) \in pts(a)$	Steensgaard
	$a = \{b\}$	loc(b) = pts(a)	Simplified Version
a = b	a = b	pts(a) = pts(b)	
a = *b	a = *b	$\forall v \in pts(b), pts(a) = pts(v)$	
*a = b	*a = b	$\forall v \in pts(a), pts(v) = pts(b)$	

Union-Find

- Maintain disjoint alias sets
 - Find(x): return the set with x
 - Union(x, y): merge the sets that contains x or y.
- Almost linear complexity

```
while(getPair()!=NULL){
   [p,q] = readPair(p,q);
   pset = find(p);
   qset = find(q);
   if(pset == qset)
        continue;
   else
        union(p,q);
}
```

Comparison

Andersen-style

Steensgaard-style

Simplified Version (union-find)

&z

p

3. Flow-sensitive Alias Analysis

Path Sensitivity: State Duplication or Merging?

```
let a = Box::new("alice");
let b = Box::new("bob");
let p1 = Box::into_raw(alice);
let p2 = Box::into_raw(bob);
let c = unsafe {
    Box::from raw(p1)
};
while cond1 {
    let mut p3 = p1;
    if cond2 {
        p3 = p2;
    let d = unsafe {
        Box::from_raw(p3)
    };
```


Idea: Lattice-based Approach (Merge)

- Traverse the CFG and update at each program point.
- Transfer function: effect of the statements.
- For each split point:
 - Fork the abstraction states (alias sets)
- For each merge point:
 - Join: combining state from all predecessors.
 - It could also be Meet for other analysis problems, such as must alias analysis (no false positive).
- Traverse the CFG until the state at each program point stops changing.
 - Called "saturated" or "fixed point"

Operations

Transfer Function

$$OUT(n) = (IN(n) - KILL(n)) \cup Gen(n)$$

n:
$$KILL(n) \Rightarrow S_x - x$$

 $Gen(n) \Rightarrow S_a = S_a \cup x$

more...

Join

$$IN(n) = OUT(n1) \cup OUT(n2)$$

$$IN(n) = \bigcup_{n' \in predecessor(n)} OUT(n')$$

Overall Algorithm: Chaotic Iteration

```
For (each node n): IN[n] = OUT[n] = \{disjoint sets of all pointers\} Repeat: For(each node n): \\ IN(n) = \bigcup_{n' \in predecessor(n)} OUT(n') \\ OUT(n) = (IN(n) - KILL(n)) \cup Gen(n) Until IN[n] and OUT[n] stops changing for all n
```

- Does the chaotic iteration algorithm always terminate?
 - Yes, because the number of disjoint alias sets shrinks monotonically
 - In an extreme case, all variables could be alias
 - IN and OUT will stop changing after some iteration

Path-sensitive Analysis (Duplicate)

How to Handle Loops?

- Detect strongly-connected components
 - e.g., with Tarjan algorithm

```
DFSVisit(v)
{
    N[v] = c; //first reaching time of node v
    L[v] = c; //first reaching time of the next hop
    C++;
    push v onto the stack;
    for each w in OUT(v) {
        if N[w] == UNDEFINED {
            DFSVisit(w);
            L[v] = min(L[v], L[w]);
        } else if w is on the stack {
            L[v] = min(L[v], N[w]);
    if L[v] == N[v] { //scc found}
        pop vertices off stack down to v;
    }
```

Demonstration of Tarjan

Demonstration of Tarjan

Stack:	scc:
V5[6,6] V6[5,5] V4[4,2] V3[3,1] V2[2,2] V1[1,1]	{V5}
V6[5,5] V4[4,2] V3[3,1] V2[2,2] V1[1,1]	{V5} {V6}
min(L[v], L[w]); <mark>V2[2,1]</mark> V1[1,1]	{V5} {V6} {4,3,2,1}

Another Example of SCC Analysis

```
for i in 0..2 {
    let x = 1;
    loop {
        match x {
            MyTy::I(v) \Rightarrow \{
                 let v1 = unsafe {Vec::from_raw_parts(ptr, len, cap)};
                 println!{"match MyTy:I(v)..."};
                 break; },
             _ => { x+=1; },
        if x == i {
            break;
    if x == i {
        break;
```

Control Sensitivity: Condition Satisfiability

The path (v, v1, v2)is unreachable