

Kubeflow Pipelines on Vertex Al

Level 0: All in the notebook

Level 1: Containerized Training

Level 2: ML Pipelines

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Compile, Upload, and Run
- Pre-built Components
- Lightweight Python Components
- AutoML Vertex Pipelines

Perception: ML products are mostly about ML

Reality: ML Requires lots of DevOps

Source: Sculley et al.: Hidden Technical Debt in Machine Learning Systems

The ML process

Machine learning is all about experimentation!

Kubeflow provides a standardized platform for building ML pipelines

- Leverage containers and Kubernetes so that in ML pipelines can be run on a cloud or on-premises with Anthos on GKE.
- Kubeflow is a cloud-native, multi-cloud solution for ML.
- Kubeflow provides a platform for composable, portable, and scalable ML pipelines.
- If you have a Kubernetes-conformant cluster, you can run Kubeflow.

Kubeflow pipelines enable:

ML workflow orchestration

Share, re-use, and compose

Rapid, reliable experimentation

What constitutes a Kubeflow pipeline?

Containerized implementations of ML tasks

- Example of ML tasks: Data import, training, serving, model evaluation
- Containers provide portability, repeatability, and encapsulation.
- A containerized task can invoke other services, such as Vertex Al, Dataflow, or Dataproc.

Specification of the sequence of steps

Specified via Python SDK

Input parameters

 A "Job" is a pipeline invoked w/specific parameters

Visual depiction of pipeline topology

Rich visualization of metrics

View all configs, inputs, and outputs

Author pipelines with an intuitive Python SDK

Package and share pipelines as zip files

- Upload and execute pipelines via UI (in addition to API/SDK).
- Pipeline steps can be authored as reusable components.

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Compile, Upload, and Run
- Pre-built Components
- Lightweight Python Components
- AutoML Vertex Pipelines

Kubeflow offers a Domain Specific Language (DSL) in Python that allows you to use Python code to describe Kubeflow tasks as they organize themselves in a Directed Acyclic Graph (DAG).

We describe this DSL next...

```
import kfp
@kfp.dsl.pipeline(
    name="covertype-kfp-pipeline",
    description="The Covertype Classifier KFP Pipeline",
    pipeline root=PIPELINE ROOT,
def covertype train(
    training_container_uri: str = TRAINING_CONTAINER_IMAGE_URI,
    serving container uri: str = SERVING CONTAINER IMAGE URI,
    training file path: str = TRAINING FILE PATH,
    validation file path: str = VALIDATION FILE PATH,
    accuracy deployment threshold: float = THRESHOLD,
    max trial count: int = MAX TRIAL COUNT,
    parallel_trial_count: int = PARALLEL_TRIAL COUNT,
    pipeline root: str = PIPELINE ROOT,
```

Pipeline Decorator

Pipeline Run Parameters

Clone pipeline run

Complete the following steps to create a clone of this run

2 Parameters

SUBMIT

CANCEL

```
Specify the parameters you want to use for this pipeline run
training_file_path * _
 gs://qwiklabs-gcp-04-14242c0aa6a7-vertex/data/training/dataset.csv
 pipeline_root *
 gs://qwiklabs-gcp-04-14242c0aa6a7-vertex/pipeline
 training_container_uri *
 gcr.io/qwiklabs-gcp-04-14242c0aa6a7/trainer_image_covertype_vertex:
 max_trial_count *
 parallel_trial_count *
 validation_file_path *
 gs://qwiklabs-gcp-04-14242c0aa6a7-vertex/data/validation/dataset.csv
 serving_container_uri *
 us-docker.pkg.dev/vertex-ai/prediction/sklearn-cpu.0-20:latest
 accuracy_deployment_threshold *
 0.6
```

```
def covertype_train(
    training_container_uri: str = TRAINING_CONTAINER_IMAGE_URI,
    serving_container_uri: str = SERVING_CONTAINER_IMAGE_URI,
    training_file_path: str = TRAINING_FILE_PATH,
    validation_file_path: str = VALIDATION_FILE_PATH,
    accuracy_deployment_threshold: float = THRESHOLD,
    max_trial_count: int = MAX_TRIAL_COUNT,
    parallel_trial_count: int = PARALLEL_TRIAL_COUNT,
    pipeline_root: str = PIPELINE_ROOT,
):
```

The Run Parameters are supplied at run time.

Define the task DAG within the pipeline function body

```
@kfp.dsl.pipeline(...)
def covertype_train(...):
    # Task DAG defined here

1. Create the "ops."
2. Compose them into a DAG.
(OPs = components)
```


Creation and composition of ops

```
tuning_op = tune_hyperparameters_component(
    project=PROJECT_ID,
    location=REGION,
    container_uri=training_container_uri,
   # etc.
train_and_deploy_op = train_and_deploy_component(
    project=PROJECT_ID,
    location=REGION,
    alpha=tuning_op.outputs['best_alpha'],
    max_iter=tuning_op.outputs['best_max_iter'],
   # etc.
```

- 1. Ops creation
- 2. Ops composition

Some ops can be triggered conditionally to other ops output

```
# Deploy the model if the primary metric is higher than a given threshold
accuracy = tuning op.outputs['best accuracy']
with dsl.Condition(accuracy >= accuracy_deployment_threshold, name="deploy_decision"):
    train_and_deploy_op = train_and_deploy_component(
        project=PROJECT ID,
        location=REGION,
        container_uri=training_container_uri,
        serving_container_uri=serving_container_uri,
        training_file_path=training_file_path,
        validation_file_path=validation_file_path,
        staging_bucket=staging_bucket,
        alpha=tuning_op.outputs['best_alpha'],
        max_iter=tuning_op.outputs['best_max_iter'],
```

3 main types of Kubeflow components

- O1 Pre-built components
 - Just load the component from its description and compose.
- O2 Lightweight Python components
 - Implement the component code.
- O3 Custom components
 - Implement the component code.
 - Package it into a Docker container.
 - Write the component description.

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Compile, Upload, and Run
- Pre-built Components
- Lightweight Python Components
- AutoML Vertex Pipelines

Step 1: Build and push the trainer container

trainer image/Dockerfile

Required by Vertex Al Training

```
FROM gcr.io/deeplearning-platform-release/base-cpu
RUN pip install -U fire cloudml-hypertune scikit-learn==0.20.4 pandas==0.24.2

WORKDIR /app

COPY train.py .

ENTRYPOINT ["python", "train.py"]
```

```
TRAINER_IMAGE='gcr.io/PROJECT_ID/TRAINER_IMAGE_NAME:TAG'
gcloud builds submit --timeout 15m --tag $TRAINER_IMAGE trainer_image
```

Step 2: Compile the Kubeflow pipeline

dsl-compile-v2 --py pipeline_vertex/pipeline.py --output PIPELINE_JSON

- The compilation produces a JSON description of the pipeline
- This JSON version will ultimately be converted by Vertex into a Kubeflow YAML argo file after upload to Vertex

Step 3: Upload and run on Vertex Al Pipeline

```
from google.cloud import aiplatform

aiplatform.init(project=PROJECT_ID, location=REGION)

pipeline = aiplatform.PipelineJob(
    display_name='covertype_kfp_pipeline',
    template_path=PIPELINE_JSON,
    enable_caching=False,
)
```

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Compile, Upload, and Run
- Pre-built Components
- Lightweight Python Components
- AutoML Vertex Pipelines

Importing Kubeflow pre-built components

```
Standard package
from google_cloud_pipeline_components.aiplatform
                                                                                             Experimental Package
import (
    AutoMLTabularTrainingJobRunOp
    AutoMLImageTrainingJobRunOp
    AutoMLForecastingTrainingJobRunOp
    # etc.
    CustomContainerTrainingJobRunOp
    EndpointCreateOp,
    ModelDeployOp,
                                from google_cloud_pipeline_components.experimental.hyperparameter_tuning_job
    ModelUploadOp,
                                import (
                                    HyperparameterTuningJobRunOp,
                                from google_cloud_pipeline_components.experimental.custom_job import (
                                    CustomTrainingJobOp,
```

Using pre-built components for TUNING

```
hp_tuning_task = HyperparameterTuningJobRunOp(
    display_name=f"{PIPELINE_NAME}-kfp-tuning-job",
    project=PROJECT_ID,
    location=REGION,
    worker_pool_specs=worker_pool_specs,
    study_spec_metrics=metric_spec,
    study_spec_parameters=parameter_spec,
    max_trial_count=MAX_TRIAL_COUNT,
    parallel_trial_count=PARALLEL_TRIAL_COUNT,
    base_output_directory=PIPELINE_ROOT,
)
```

```
worker_pool_specs = [
        "container_spec": {
            "image_uri": TRAINING_CONTAINER_IMAGE_URI,
            "args": [
                f"--training_dataset_path={TRAINING_FILE_PATH}",
                f"--validation dataset_path={VALIDATION_FILE_PATH}",
                "--hptune",
        },
metric_spec = hyperparameter_tuning_job.serialize_metrics(
    {"accuracy": "maximize"}
parameter_spec = hyperparameter_tuning_job.serialize_parameters(
        "alpha": hpt.DoubleParameterSpec(
            min=1.0e-4, max=1.0e-1, scale="linear"
        "max_iter": hpt.DiscreteParameterSpec(
            values=[1, 2], scale="linear"
```

Using pre-built components for TRAINING

train.py

AIP_MODEL_DIR = os.environ["AIP_MODEL_DIR"]

MODEL FILENAME = "model.pkl"

```
worker_pool_specs_task = GetWorkerPoolSpecsOp(
                                                                           best hyperparameters=best_hyperparameters_task.output,
                                                                           worker pool specs=[
  training_task = CustomTrainingJobOp(
        project=PROJECT_ID,
                                                                                   "machine_spec": {"machine_type": "n1-standard-4"},
                                                                                   "replica_count": 1,
        location=REGION,
                                                                                    "container spec": {
       display_name=f"{PIPELINE_NAME}-kfp-training-job",
                                                                                        "image_uri": TRAINING_CONTAINER_IMAGE_URI,
       worker_pool_specs=worker_pool_specs_task.output, 
                                                                                        "args": [
        base output directory=BASE OUTPUT DIR,
                                                                                           f"--training_dataset_path={TRAINING_FILE_PATH}",
                                                                                           f"--validation_dataset_path={VALIDATION_FILE_PATH}",
                                                                                            "--nohptune",
When the container is run the environment variable
                                          BASE OUTPUT DIR/model
              AIP MODEL DIR
                             will be set to
It is then used in train.py to save the model:
```

Using pre-built components for SERVING

```
model_upload_task = ModelUploadOp(
    project=PROJECT ID,
    display_name=f"{PIPELINE_NAME}-kfp-model-upload-job",
    artifact_uri=f"{BASE_OUTPUT_DIR}/model",
    serving_container_image_uri=SERVING_CONTAINER_IMAGE_URI,
endpoint_create_task = EndpointCreateOp(
    project=PROJECT ID,
    display name=f"{PIPELINE NAME}-kfp-create-endpoint-job",
model deploy op = ModelDeployOp(
    model=model_upload_task.outputs["model"],
    endpoint=endpoint_create_task.outputs["endpoint"],
    deployed_model_display_name=MODEL_DISPLAY_NAME,
    dedicated_resources_machine_type=SERVING_MACHINE_TYPE,
    dedicated resources min replica count=1,
    dedicated resources max replica count=1,
```

Lab

Kubeflow Pipelines on Vertex Al

In this lab, you will learn how to use Vertex AI Pipelines to build a Kubeflow pipeline to train, tune, and serve a model using Google pre-built components.

kubeflow_pipelines/pipelines/labs/kfp_pipeline_vertex_prebuilt.ipynb

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Compile, Upload, and Run
- Pre-built Components
- Lightweight Python Components
- AutoML Vertex Pipelines

Wrap Python functions into KF components

training_lightweight_component.py

```
@component(base_image="python:3.8",
    output_component_file="covertype_kfp_train_and_deploy.yaml",
    packages to install=["google-cloud-aiplatform"])
def train_and_deploy(
        project: str,
        location: str,
        container uri: str,
        serving container uri: str,
        training file path: str,
        validation_file_path: str,
        staging_bucket: str,
        alpha: float,
        max iter: int,
```

Wrap Python functions into KF components

tuning_lightweight_component.py

```
from kfp.v2.dsl import component
@component(...)
def tune_hyperparameters(
        container uri: str,
        # etc.
) -> NamedTuple("Outputs", [
    ("best_accuracy", float),
    ("best_alpha", float),
    ("best_max_iter", int)
]):
# etc.
return best_accuracy, best_alpha, best_max_iter
```

Use and compose the lightweight components as usual

```
tuning_op = tune_hyperparameters(
    project=PROJECT_ID,
    location=REGION,
    container_uri=training_container_uri,
    training_file_path=training_file_path,
    validation_file_path=validation_file_path,
    staging_bucket=staging_bucket,
    max_trial_count=max_trial_count,
    parallel_trial_count=parallel_trial_count,
)
```

Lab (Optional)

Kubeflow Pipelines on Vertex Al

In this lab, you will learn how to use Vertex Al Pipelines to build a Kubeflow pipeline to train, tune, and serve a model using your implementing Python lightweight components.

kubeflow_pipelines/pipelines/labs/kfp_pipeline_vertex_light
weight.ipynb

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Compile, Upload, and Run
- Pre-built Components
- Lightweight Python Components
- AutoML Vertex Pipelines

It can take days to months to create an ML model

Using AutoML within a Vertex Pipeline can speed up things!

AutoML can be launched using pre-built components

```
from google_cloud_pipeline_components.aiplatform import (
    TabularDatasetCreateOp,
    AutoMLTabularTrainingJobRunOp
    AutoMLImageTrainingJobRunOp
    AutoMLForecastingTrainingJobRunOp
    EndpointCreateOp,
    ModelDeployOp,

# etc.
)
```

AutoML Vertex components exists for many input sources and ML problems

How to implement a AutoML Vertex Pipeline

Step 1: Create a Vertex Dataset for your data source

Step 2: Launch the AutoML training from the Vertex Dataset

Step 3: Upload and deploy the model as before

Step 1: Create a Vertex Dataset

```
dataset_create_task = TabularDatasetCreateOp(
    display_name=DISPLAY_NAME,
    bq_source=DATASET_SOURCE,
    project=PROJECT,
)
```

bq://project.dataset.table"

Step 2: Launch AutoML training

```
automl_training_task = AutoMLTabularTrainingJobRunOp(
    project=PROJECT,
    display_name=DISPLAY_NAME,
    optimization_prediction_type="classification",
    dataset=dataset_create_task.outputs["dataset"],
    target_column=TARGET_COLUMN,
)
```

The output dataset_create_task.outputs["dataset"] is an <u>AutoML dataset</u>

By setting the dataset argument as a dataset_create_task.outputs["dataset"] we are implicitly ordering the pipeline.

Step 3: Deploy the trained model as before

```
endpoint create task = EndpointCreateOp(
    project=PROJECT,
    display name=DISPLAY NAME,
model deploy task = ModelDeployOp(
    model=automl_training_task.outputs["model"],
    endpoint=endpoint_create_task.outputs["endpoint"],
    deployed model display name=DISPLAY NAME,
    dedicated_resources_machine_type=SERVING_MACHINE_TYPE,
    dedicated resources min replica count=1,
    dedicated resources max replica count=1,
```

Lab (Optional)

AutoML Pipelines on Vertex Al

In this lab, you will learn how to use Vertex AI Pipelines to build a **Vertex AutoML pipeline** to train, tune, and serve a model.

<u>notebooks/kubeflow_pipelines/pipelines/solutions/kfp_pipeline_vertex_automl_online_predictions.ipynb</u>

cloud.google.com