Chapter 10

Triple Integrals

10.1 Triple Integrals in Cylindrical Coordinates

FRY Defn III.3.6.1, Cylindrical coordinates

Definition 10.1. The cylindrical coordinates of a point (x, y, z) in three-dimensional space are denoted by r, θ , and z, where

- (i) r is the distance from (x, y, 0) to (0, 0, 0) or, equivalently, the distance from (x, y, z) to the z-axis;
- (ii) θ is the (counterclockwise) angle from the positive x-axis to the line segment joining (x, y, 0) to (0, 0, 0); and
- (iii) z is the signed distance from (x, y, z) to the xy-plane.

The equations

- $r = r_0$ describes a cylinder (of constant radius r_0);
- $\theta = \theta_0$ describes a plane that contains (passes through) the z-axis and makes an angle of θ_0 with the positive x-axis; and
- $z = z_0$ describes a plane parallel to the xy-plane that is steady at a height of z_0 ; and
- z = r describes a cone.

If
$$r=2$$
 $(0 \le \Theta \le 2\pi, -\infty < z < \infty)$
then $\int x^2 + y^2 = 2$ and $x^2 + y^2 = 2^2$

If
$$\Theta = \Theta_0$$
, Say $\Theta_0 = \frac{\pi}{4}$, (Here $-\infty < i < \infty$, $-\infty < z < \infty$.)

If
$$z=z_0$$
, $z=z_0$

$$Z = \Gamma = \int x^2 + y^2 = \frac{\text{distance}_{x,y,0}}{\text{ord}_{x,y,0}}$$

In the yz-plane, xiso and $z = \sqrt{x^2 + y^2} = \sqrt{0^2 + y^2} = |y|$

Note that we need to add π to $\arctan(y/x)$ to get the correct value for θ if the x-and y-coordinates are such that (x, y, 0) lies in the second or third quadrant of the xy-plane.

If **g** denotes the change of variable transformation from (x, y, z)-coordinates into (r, θ, z) -coordinates, then

$$D\mathbf{g}(r,\theta,z) = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The determinant of the derivative matrix of the change of variables transformation **g**, through cofactor expansion along the third row, is

$$\det D\mathbf{g}(\rho, \theta, \phi) = r\cos^2\theta - (-r\sin^2\theta) = r(\cos^2\theta + \sin^2\theta) = r.$$

Thus,

$$|\det D\mathbf{g}(r, \theta, z)| = |r| = r.$$

We use this information to adjust the volume element dV when changing from Cartesian to spherical coordinates:

$$\iiint_{\mathcal{R}} f(x, y, z) \ dV = \iiint_{\mathcal{R}} f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta,$$

though we may use a different order of integration depending on the domain of integration \mathcal{R} .

$$|V_0| = \int_{-2}^{2} \frac{|y-x^2|}{|y-x^2|} \frac{|y-$$

What is this region?

Example 10.2. Evaluate the volume described by the triple integral

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{-x^2+y^2}^{2} dz \, dy \, dx$$

$$- \int 4 - x^{2} \le y \le \sqrt{4 - x^{2}}$$

$$y = \int 4 - x^{2}$$

$$y^{2} = 4 - x^{2}$$

$$x^{2} + y^{2} = 2$$
Circle

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \left(2\pi - r^{2}\right) d\theta dr$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \left(2\pi - r^{2}\right) d\theta dr$$

$$= \int_{0}^{2} (\partial r - r^{2}) dr \left(\int_{0}^{2\pi} d\Theta \right)$$

$$= \left(\int_{0}^{2} (\partial r - r^{2}) dr \right) \left(\int_{0}^{2\pi} d\Theta \right)$$

when we integrate 1 $= \left(\int_{0}^{2} (2r - r^{2}) dr \right) \left(\int_{0}^{2\pi} d\Theta \right)$ when we integrate 1

(over a single variable)

we get the length of the interval that we are integrating over. $= \left[r^{2} - \frac{1}{3} r^{3} \right]_{0}^{2} (2\pi)$

$$= (4 - \frac{8}{3})(2\pi) = \frac{8}{3}\pi$$

$$y = -\sqrt{4-x^{2}}$$

$$y = -\sqrt{4-y^{2}}$$

$$y = -\sqrt{4-y^{2}}$$

$$y = -\sqrt{4-y^{2}}$$

$$x = -\sqrt{4-y^{2}}$$

$$x = -\sqrt{4-y^{2}}$$

Example 10.3. A body $\mathcal B$ occupies the region

$$\left\{ (x,y,z): \ 0 \leq y \leq \sqrt{2}, \ 0 \leq x \leq \sqrt{2-y^2}, \ 0 \leq z \leq 2 \right\}.$$

If the density of the body is described by the function $\rho(x, y, z) = e^{-x^2 - y^2}$, calculate the mass of \mathcal{B} .

$$B = \left\{ (x,y,z) : 0 \le y \le 12, 0 \le x \le \sqrt{2-y^2}, 0 \le z \le z \right\}$$

$$x = \sqrt{2-y^2}$$

$$x^2 = 2-y^2$$

$$x^2 + y^2 = 2$$

$$x = \sqrt{2}$$

$$x =$$

Example 10.4. (FRY Exercise III.3.7.5.16)

Let B denote the region inside the sphere $x^2 + y^2 + z^2 = 4$ and above the cone $x^2 + y^2 = z^2$. Compute $\iiint_B z^2 dV$.

$$x^{2}+y^{2}=z^{2} \quad (cone) \quad Z=\sqrt{x^{2}+y^{2}}=Y$$

$$x^{2}+y^{2}+z^{2}=4 \quad (sphere)$$

$$x^{2}+y^{2}+z^{2}=4 \quad (sphere)$$

$$x^{2}+y^{2}+z^{2}=4 \quad (sphere)$$

$$x^{2}+y^{2}+z^{2}=4 \quad (sphere)$$

When the cone and sphere intersect,
$$\begin{cases} x^2+y^2=z^2 & -e941 \\ x^2+y^2+z^2=4 & -e942 \end{cases}$$

$$z^{2}+z^{2}=4$$
 $2z^{2}=4$
 $z^{2}=2$
 $z=\sqrt{2}$ or $z=\sqrt{2}$

$$\chi^2 + y^2 = (\sqrt{2})^2 = 2$$

So
$$0 \le i \le \sqrt{2}$$

 $0 \le 0 \le 2\pi$
 $1 \le 2 \le \sqrt{4-i^2}$

Sphere:
$$x^{2}+y^{2}+z^{2}=4$$

$$z^{2}+y^{2}+z^{2}=4$$

$$z^{2}=4-r^{2}$$

10.2 Triple Integrals in Spherical Coordinates

FRY Defn III.3.7.1, Spherical coordinates

Definition 10.5. The spherical coordinates of a point in three-dimensional space are denoted by ρ , θ , and ϕ , where

- (i) ρ represent the distance from the origin (0,0,0) to the point,
- (ii) θ is the angle between the positive x-axis and the line segment from the origin to the projection of the point onto the xy-plane, and
- (iii) ϕ is the angle between the z-axis and the line segment from the origin to the point.

The equations

- $\rho = \rho_0$, where ρ_0 is a constant, describes a sphere;
- $\theta = \theta_0$, where θ_0 is a constant, describes a plane; and
- $\phi = \phi_0$, where ϕ_0 is a constant, describes a cone.

Given (ρ, θ, ϕ) ,

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$.

Given (x, y, z),

$$\rho = \sqrt{x^2 + y^2 + z^2}, \quad \theta = \arctan\left(\frac{y}{x}\right), \quad \phi = \arctan\left(\frac{\sqrt{x^2 + y^2}}{z}\right).$$

Notes:

(= [2+4]

Z= 0 cos 6

= psinpcool

y=rsino =Psinosino

tan = 4

1. If the x- and y-coordinates are such that (x, y, 0) lies in the second or third quadrant of the xy-plane, then we add π to $\arctan\left(\frac{y}{x}\right)$ to get the correct value for θ .

4. Given the cylindrical coordinates (r, θ, z) , the corresponding spherical coordinates are nates are $\rho = \sqrt{r^2 + z^2}, \quad \theta = \theta, \quad \phi = \arctan\left(\frac{r}{z}\right),$ with the adjustment referred to above made to the arctan computation when z < 0.

If **g** denotes the change of variable transformation from (x,y,z)-coordinates into (ρ,θ,ϕ) -coordinates, then

$$D\mathbf{g}(\rho,\phi,\theta) = \begin{bmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{bmatrix} = \begin{bmatrix} \sin\phi\cos\theta & -\rho\sin\phi\sin\theta & \rho\cos\phi\cos\theta \\ \sin\phi\sin\theta & \rho\sin\phi\cos\theta & \rho\cos\phi\sin\theta \\ \cos\phi & 0 & -\rho\sin\phi \end{bmatrix}.$$

$$= psin\phi cos\Theta$$

The determinant of the derivative matrix of the change of variables transformation **g**, through cofactor expansion along the third row, is

$$\det D\mathbf{g}(\rho, \theta, \phi)$$

$$= \cos \phi \left(-\rho^2 \sin \phi \cos \phi \sin^2 \theta - \rho^2 \sin \phi \cos \phi \cos^2 \theta + \right)$$

$$- \rho \sin \phi \left(\rho \sin^2 \phi \cos^2 \theta + \rho \sin^2 \phi \sin^2 \theta \right)$$

$$= \cos \phi \left(-\rho^2 \sin \phi \cos \phi \right) - \rho \sin \phi \left(\rho \sin^2 \phi \right)$$

$$= -\rho^2 \sin \phi \cos^2 \phi - \rho^2 \sin \phi \sin^2 \phi$$

$$= -\rho^2 \sin \phi.$$

Thus,

$$\left| - e^2 \sin \phi \right|$$

$$\left| \det D\mathbf{g}(\rho, \theta, \phi) \right| = \left| - \frac{e^2 \sin \phi}{e^2 \sin \phi} \right| = \rho^2 \sin \phi,$$

where we have dropped the absolute sign because both ρ^2 and $\sin \phi$ are nonnegative, the latter since $\phi \in [0, \pi]$. We use this information to adjust the volume element dV when changing from Cartesian to spherical coordinates:

$$\iiint_{\mathcal{R}} f(x, y, z) \ dV = \iiint_{\mathcal{R}} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \ \rho^2 \sin \phi \ d\rho \ d\theta \ d\phi,$$

though we may use a different order of integration depending on the domain of integration \mathcal{R} .

$$\frac{dxdydz}{dV} \qquad (x,y,z) \xrightarrow{\vec{g}} (9,0,\phi)$$
volume element
$$\left| \det D\vec{g} \right| = e^2 \sin \phi$$

$$Q = \int_{2}^{2} + y^{2} + z^{2}$$

$$\Theta = \operatorname{ox} \operatorname{lan} \left(\frac{y}{x} \right)$$

$$\phi = \arctan\left(\frac{\sqrt{x^2+y^2}}{z}\right)$$

Example 10.6. Convert from the Cartesian coordinates $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -\sqrt{3}\right)$

$$e = \sqrt{\frac{1}{2} + \frac{1}{2} + 3} = 2$$

$$\theta = \operatorname{andon}\left(\frac{1}{\sqrt{2}}\right) = -\frac{11}{4} + \pi = \frac{3\pi}{4}$$

$$\Theta = \operatorname{auton}\left(\frac{\sqrt{1}}{\sqrt{1}}\right) = -\frac{1}{4}T + T = \frac{3\pi}{4}$$

$$\Phi = \arctan\left(\frac{\sqrt{1}+\frac{1}{2}}{-\sqrt{3}}\right) = -\frac{1}{6}T + T = \frac{5\pi}{6}$$