数字图像处理第一次作业

摘要:

通过实践了解数字图像基本存储格式,掌握图形基本操作, 将图像灰度级逐级递减8-1,生成新的图像进行显示,掌握计算图 像方差与均值的指令。对小图像进行近邻、双线性和双三次插值成 更大图像。利用工具实现图像缩放,旋转,平移等多种变化。

姓名: 赵毅

班级:自动化64

学号: 2160504108

提交日期: 2019/3/4

1-1 Bmp 图像格式简介,以 7.bmp 为例说明

BMP是 Windows 操作系统中的标准图像文件格式。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。BMP文件的图像深度可选 lbit、4bit、8bit 及 24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。

典型的 BMP 图像文件由四部分组成:

- 1: 位图头文件数据结构,它包含 BMP 图像文件的类型、显示内容等信息;
- 2: 位图信息数据结构,它包含有 BMP 图像的宽、高、压缩方法,以及定义颜色等信息;
- 3: 调色板,这个部分是可选的,有些位图需要调色板,有些位图,比如真彩色图(24位的BMP)就不需要调色板;
- 4: 位图数据,这部分的内容根据 BMP 位图使用的位数不同而不同,在 24 位图中直接使用 RGB,而其他的小于 24 位的使用调色板中颜色索引值。

以 7.bmp 为例

使用 matlab 调取该图像

7×7 uint8 矩阵

82	82	73	59	55	80	90
97	89	90	95	71	40	69

104	71	63	105	93	76	42
88	75	85	101	90	91	70
97	92	91	99	72	71	82
98	101	102	86	69	71	95
103	99	100	84	86	98	98

文件头信息

Filename: 'C:\Users\lenovo\Desktop\第一次作业\7.bmp'

FileModDate: '03-Jun-2011 11:17:32'

FileSize: 1134

Format: 'bmp'

FormatVersion: 'Version 3 (Microsoft Windows

3.x)'

Width: 7

Height: 7

BitDepth: 8

ColorType: 'indexed'

FormatSignature: 'BM'

NumColormapEntries: 256

Colormap: [256×3 double]

RedMask: []

GreenMask: []

BlueMask: []

ImageDataOffset: 1078

BitmapHeaderSize: 40

NumPlanes: 1

CompressionType: 'none'

BitmapSize: 56

HorzResolution: 0

VertResolution: 0

NumColorsUsed: 0

NumImportantColors: 0

1-2 把 lena 512*512 图像灰度级逐级递减 8-1 显示;

将图像进行灰度递减并显示图像

图像如下所示按照递减排列

结果分析: 随着灰度级的缩小, 图像中所包含的信息逐渐减少, 并且图像质量下降明显, 轮廓逐渐消失, 图像平滑度减少

高频分量增多。

1-3 计算 lena 图像的均值方差 图像数据为一个矩阵 调用函数 mean2() std2() 分别求均值 与 方差 结果为均值 99.0512 方差为 52.8775

1-4 把 lena 图像用近邻、双线性和双三次插值法 zoom 到 2048*2048

使用函数 imresize 可实现插值扩大图像原图像:

由于图像过大 详见文件 t4_A1.bmp t4_A2.bmp t4_A3.bmp

结果分析: 经过插值图像大小增大, 但是细节上并不十分理想 近邻法插值效果最不好, 其余两种较好。插值是图像缩放的重 要手段。差值并不能凭空产生信息。

1-5 把 lena 和 elain 图像分别进行水平 shear(参数可设置为 1.5,或者自行选择)和旋转 30 度,并采用用近邻、双线性和双三次插值法 zoom 到 2048*2048;

首先创建仿射矩阵

经过参数为 shear 变化图像变成如下所示,经过插值变化成 2048*2048 后能够清晰地观察细节。

经过旋转 30 度后图像如下图所示:

附录:

代码

1-1

A=imread ('7.bmp') $\hat{\delta}$ 0ØÈëÊý¾Ý% imfinfo('7.bmp')%¶ÁÈ;ÎļþÍ·%

1-2

```
A=imread ('lena.bmp') %ÔØÈëÊý¾Ý%

for i=1:512

        A1(i,j)=floor(A(i,j)/2);
        A2(i,j)=floor(A1(i,j)/2);
        A3(i,j)=floor(A2(i,j)/2);
        A4(i,j)=floor(A3(i,j)/2);
        A5(i,j)=floor(A4(i,j)/2);
        A6(i,j)=floor(A5(i,j)/2);
        A7(i,j)=floor(A6(i,j)/2);
        A8(i,j)=floor(A7(i,j)/2);
```

```
end
end
figure(1)
imshow(A, [0, 255]);
imwrite(A1,'t2 A1.bmp');
figure(2)
imshow(A1, [0, 127]);
imwrite(A2,'t2 A2.bmp');
figure(3)
imshow(A2, [0, 63]);
imwrite(A3,'t2 A3.bmp')
figure (4)
imshow(A3,[0,31]);
imwrite(A4,'t2 A4.bmp');
figure (5)
imshow(A4, [0, 15]);
imwrite(A5,'t2 A5.bmp');
figure (6)
imshow(A5, [0, 7]);
imwrite(A6,'t2 A6.bmp');
figure(7)
imshow(A6, [0,3]);
imwrite(A7,'t2 A7.bmp');
figure(8)
imshow(A7, [0, 2]);
    1-3
A=imread ('lena.bmp') %ÔØÈëÊý¾Ý%
j=mean2(A) %¼ÆËãÆ½¾ùÖμ%
f=std2(A) %4ÆËã·½2î%
    1-4
A=imread ('lena.bmp') %ÔØÈëÊý¾Ý%
A1=imresize(A, [2048, 2048], 'nearest');
A2=imresize(A,[2048,2048],'bilinear');
A3=imresize(A,[2048,2048],'bicubic');
figure(1)
```

```
imshow(A)
figure(2)
imshow(A1)
figure(3)
imshow(A2)
figure (4)
imshow(A3)
imwrite(A1,'t4 A1.bmp');
imwrite(A2,'t4 A2.bmp');
imwrite(A3,'t4 A3.bmp');
clc; clear;
A=imread ('lena.bmp') %ÔØÈëÊý¾Ý%
B=imread ('elain1.bmp') %ÔØÈëÊý¾Ý%
T1=[1,1.5,0;0,1,0;0,0,1]; %ÉèÖÃshear²ÎÊý1.5
tform=affine2d(T1);
A1=imwarp(A, tform, 'nearest');
A2=imwarp(A,tform,'bilinear');
A3=imwarp(A,tform,'bicubic');
A1=imresize(A1,[2048,2048],'nearest');
A2=imresize(A2,[2048,2048],'bilinear');
A3=imresize(A3,[2048,2048],'bicubic');
B1=imwarp(B, tform, 'nearest');
B2=imwarp(B,tform,'bilinear');
B3=imwarp(B,tform,'bicubic');
B1=imresize(B1,[2048,2048],'nearest');
B2=imresize(B2,[2048,2048],'bilinear');
B3=imresize(B3,[2048,2048],'bicubic');figure(1)
imshow(A)
figure(2)
imshow(A1)
figure(3)
imshow(A2)
figure (4)
imshow(A3)
figure (5)
imshow(B)
figure (6)
```

```
imshow(B1)
figure(7)
imshow(B2)
figure(8)
imshow(B3)
    1-51
clc; clear;
A=imread ('lena.bmp') %ÔØÈëÊý¾Ý%
B=imread ('elain1.bmp') %ÔØÈëÊý¾Ý%
rhte=30;
T1=[cosd(rhte) sind(rhte) 0;-sind(rhte) cosd(rhte)
0;0 0 1]; %ÉèÖÃĐýת
tform=affine2d(T1);
A1=imwarp(A, tform, 'nearest');
A2=imwarp(A, tform, 'bilinear');
A3=imwarp(A, tform, 'bicubic');
A1=imresize(A1,[2048,2048],'nearest');
A2=imresize(A2,[2048,2048],'bilinear');
A3=imresize(A3,[2048,2048],'bicubic');
B1=imwarp(B, tform, 'nearest');
B2=imwarp(B, tform, 'bilinear');
B3=imwarp(B,tform,'bicubic');
B1=imresize(B1,[2048,2048],'nearest');
B2=imresize(B2,[2048,2048],'bilinear');
B3=imresize(B3,[2048,2048],'bicubic');
figure(1)
imshow(A)
figure(2)
imshow(A1)
figure(3)
imshow(A2)
figure (4)
imshow(A3)
figure (5)
imshow(B)
figure (6)
```

imshow(B1)

figure(7)

imshow(B2)

figure(8)

imshow(B3)