Вариант 5.13.

Все консольные приложения Ruby следует реализовывать в виде трех отдельных файлов:

- 1. основная программа;
- 2. программа для взаимодействия с пользователем через консоль;
- 3. программа для автоматического тестирования на основе MiniTest::Unit или RSpec. Везде, где это возможно, данные для проверки должны формироваться автоматически по правилам, указанным в задании.

Все тексты программ должны быть проверены на соответствие стилю программирования Ruby при помощи *rubocop* и *reek*.

$\Pi P 5$

Часть 1

Вычислить:
$$y = \frac{\sin(a) - b}{|b| + \cos(b^2)}$$
.

Часть 2

Дана последовательность строк. Каждая строка состоит из слов, разделенных пробелами. Написать программу, обеспечивающую ввод строк и их корректировку. Корректировка заключается в следующем. В каждой строке вычеркнуть все слова, не содержащие гласных букв и подсчитать количество таких слов. Если среди слов строки нет таких слов, то вывести сообщение. Вывести на печать исходную и скорректированную последовательности строк и полученное количество искомых слов.

Автоматический тест программы обязательно должен генерировать случайные строки в соответствии с правилами, перечисленными в задании.

ЛР 6

Часть 1

МГТУ им. Н.Э. Баумана. Каф. ИУ-6. 2021г. Языки Интернет-программирования. Задания по теме Ruby.

Решить задачу, организовав итерационный цикл с точностью $\xi = 10^{-4}, 10^{-5}$.

Вычислить сумму ряда: $S = \sum_{k=1}^{\infty} \frac{1}{k(k+1)}$, точное значение равно 1. Определить, как изменяется число итераций при изменении точности.

Часть 2

Решить предыдущее задание с помощью Enumerable или Enumerator.

Часть 3

Составить метод гоот отыскания минимального положительного корня уравнения f(x)=0 с точностью 0.0001 методом деления пополам отрезка, содержащего корень. В основной программе использовать метод для решения уравнений $x^2+\sin\frac{x}{2}=0$ и arctg(x)+x=1.

Реализовать вызов метода двумя способами: в виде передаваемого lambda-выражения и в виде блока.

$_{\rm JIP}$ 7

Часть 1

Организовать программным способом символьные файлы \mathbf{F} и \mathbf{G} . Определить совпадают ли компоненты этих файлов. Если нет, то получить номер первой компоненты, с которой начинаются различия. В случае, когда один из файлов имеет N компонент N >= 0 и повторяет начало другого (более длинного) файла, ответом должно быть число N+1.

Автоматический тест программы обязательно должен проверять работу с файлами.

Часть 2

Разработать и реализовать иерархию классов для описанных объектов предметной области, используя механизмы наследования. Проверить ее на тестовом примере, с демонстрацией всех возможностей разработанных классов на конкретных данных.

Объект — Прямоугольник, характеризующийся размерами. Объект умеет выводить на экран значения своих полей и отвечать на запрос о типе: квадрат или нет.

Объект — Прямоугольный параллелепипед, характеризующийся размерами. Объект умеет выводить на экран содержимое своих полей, возвращать по запросу их содержимое и определять тип параллелепипеда.

В тестирующей программе обеспечить автоматическую проверку того, что созданные объекты действительно соответствют заданной иерархии классов.

ЛР 8. Ruby on Rails

Разработать веб-приложение, имеющее HTML-страницу с формой ввода данных и HTML-страницу для представления результатов. Результат расчёта должен быть представлен в форме таблицы, оформленной с помощью элемента table или отдельными ячейками div и имеющей не менее двух колонок. Если по условию задания результат может быть представлен только в виде одной строки таблицы, необходимо реализовать вывод промежуточных результатов расчёта в качестве дополнительных строк. В этом случае первой колонкой таблицы будет порядковый номер итерации.

Под вводом с клавиатуры в тексте заданий следует понимать ввод в поле ввода данных формы на HTML-странице.

Текст задания:

Метод Ньютона – Рафсона основывается на утверждении, что квадратный корень числа A можно найти с помощью рекурентной формулы:

$$x_{i+1} = \frac{1}{2} \left(x_i + \frac{A}{x_i} \right)$$
, где — положительное число, x_i — текущее при-

ближение квадратного корня , x_{i+1} — очередное приближенное значение квадратного корня из числа . Написать программу, определяющую квадратный корень заданных чисел, используя приведенную формулу. Прекращение процесса вычисления предусмотреть при выполнении условия $\frac{x_{i+1}^2-A}{A}<0.001.$

Вывести промежуточные итерации и полученный результат.