

Ⅳ 分子軌道法による結合と構造 2. 等核二原子分子の分子軌道

(1) 酸素分子の分子軌道

O₂分子

 $1s^22s^22p^4 \times 2$

価電子12個

1slは結合に関与しない (と考えて良い。)

B, C, Nとの比較

2s軌道と2p軌道のエネルギー差大 相互作用無

p軌道に4電子: s軌道電子との静電反発

- ① 2s間, 2p_z間の_の型の結合
- ② 2p_x, 2p_y間のπ型の結合
- ③ 各結合に対する反結合性MO

 $\sigma^*(s), \ \sigma^*(z), \ \pi^*(x,y)$

合計8個の分子軌道を形成

2. 等核二原子分子の分子軌道

(1) 酸素分子の分子軌道

分子軌道エネルギーの安定性

σ軌道エネルギー<π軌道エネルギー

(重なりの大きさ)

空軌道

σ*(z): 最低空軌道, LUMO (Lowest Unoccupied Molecular Orbital)

1個ずつスピンを平行にして入る

π*(x,y):最高被占軌道,HOMO (Highest Occupied Molecular Orbital)

不対電子が2個存在

17:55 / 39:33

23 13

Ⅳ 分子軌道法による結合と構造 2. 等核二原子分子の分子軌道

(1) 酸素分子の分子軌道

演習問題1

酸素分子の構造を原子価結合法で考えて、分子軌道法との電子状態の相違点を説明してみよう。

8O 1s22s22p4

1s²2p¹(sp²混成)⁵

の結合×1+π結合×1:二重結合

孤立電子対 (lp) × 4

不対電子が存在しない

実験事実と一致

不対電子が2個存在

π*(x, y)軌道: HOMQ

(sp²混成)

図3.13 O₂の混成と構造 (pp. 70, 抜粋)

2. 等核二原子分子の分子軌道

(2) 結合の次数, n (bond order)

結合の多重性を表す尺度

n=1/2(結合性MO電子数-反結合性MO電子数)

結合性MOに2電子: +1の寄与

反結合性MOに2電子: - 1の寄与

0₂分子 ➡

π^b(x, y) に4電子収容 σ^b(z) に2電子収容 π^{*}(x, y) に2電子収容

二重結合

IV 分子軌道法による結合と構造 2. 等核二原子分子の分子軌道

(2) 結合の次数, n (bond order)

演習問題2

O2+イオンとO2-イオンの結合次数を求め、これらのイオンと 酸素分子の酸素原子間の結合距離の違いを説明してみよう。

① O₂+イオン **→** π*(x,y)に1電子収容 ② O₂-イオン **→** π*(x,y)に3電子収容

不対電子1、結合次数2.5

不対電子1、結合次数1.5

表4.1 O2および関連物質の結合次数と結合距離 (pp. 86, 一部改変)

化学種	O ₂ +	O ₂	O ₂ -	O ₂ 2-	но-он
結合次数	2.5	2.0	1.5	1.0	1.0
結合距離 (nm)	0.116	0.1207	0.126	0.149	0.147
結合E (kJ/mol)	625	495	395	204	213

窒素分子の分子軌道

1sは結合に関与しない

 $1s^{2}2s^{2}2p^{3}\times 2$

価電子10個

B, C, N: 2p軌道の電子数≤3 (異なるp軌道に配置)

2s軌道と2p軌道のエネルギー差小)

➡ 相互作用あり

同じ分子軸上

- 2s間のo型の結合
- 2pμ間のσ型の結合
- ③ 2p_x, 2p_v間のπ型の結合 I

σ^b(s), σ (s) エネルギー低下

σ^b(z), σ^{*}(z) エネルギー増加

 $\pi^b(x,y), \pi^*(x,y)$

相互作用しない

反結合性σ*(s)軌道→非結合性σn(s)軌道 結合性σ^b(z)軌道 →非結合性σⁿ(z) 軌道

Ⅳ 分子軌道法による結合と構造 2. 等核二原子分子の分子軌道

(3) 窒素分子の分子軌道

B, C, N: 等核二原子分子の分子軌道エネルギー準位

IV 分子軌道法による結合と構造 2. 等核二原子分子の分子軌道

窒素分子の分子軌道

窒素分子の原子価結合法での説明

図3.10 (c) N₂の混成と構造 (pp. 67, 抜粋)

2. 等核二原子分子の分子軌道

N(1s²2s²2p³)

1s²2p²sp_z混成³

 $sp_z(s)$ および $sp_z(p)$, $sp_z(s) < sp_z(p)$

sp_z(s)軌道 → 結合性σ^b₁軌道+ 反結合性σ^{*}₂軌道

spz(p)軌道 | 結合性σ゚₃軌道+反結合性σ゚₄軌道

px, p,軌道 | 結合性π^b軌道 + 反結合性π^{*}軌道

結合性の軌道+結合性の軌道間の相互作用

結合性σ⁰,軌道→エネルギー低下:強い結合性

結合性σ⁰₃軌道→エネルギー増加:非結合性σ⁰₃軌道

反結合性σ*・軌道+反結合性σ*・軌道の相互作用

- 反結合性σ゚₂軌道→エネルギー低下:非結合性σਾ₂軌道
- 反結合性σ⁴軌道→エネルギー増加:強い反結合性

本日のまとめ

分子軌道法

分子軌道の記述では、電子は全原子上に広がって原子を結び付ける (⇄VB法では孤立原子が軌道を組み替えた(混成の概念))

分子軌道法では、各原子の原子軌道(波動関数)の線形結合により、分子と しての新しい波動関数を与えるため、波としての電子の性質が色濃く現れる。

$$\varphi_1 = \psi_A(1s) + \psi_B(1s)$$

$$\varphi_2 = \psi_A(1s) - \psi_B(1s)$$

分子軌道法による等核二原子分子結合

結合の次数