```
import numpy as np
 In [1]:
          import pandas as pd
          import matplotlib.pyplot as plt
 In [2]:
          from sklearn.datasets import load boston
 In [3]: boston=load_boston()
 In [9]: bos=pd.DataFrame(boston.data)
In [13]: bos.columns=boston.feature names
In [15]: bos['Price']=boston.target
In [43]:
          bos.head()
Out[43]:
               CRIM
                       ZN INDUS CHAS
                                         NOX
                                                RM
                                                    AGE
                                                             DIS RAD
                                                                        TAX PTRATIO
                                                                                          B LSTAT Price
                      18.0
           0 0.00632
                             2.31
                                        0.538 6.575
                                                     65.2 4.0900
                                                                  1.0 296.0
                                                                                 15.3 396.90
                                                                                               4.98
                                                                                                     24.0
             0.02731
                      0.0
                             7.07
                                        0.469 6.421
                                                     78.9
                                                          4.9671
                                                                  2.0 242.0
                                                                                 17.8
                                                                                      396.90
                                                                                               9.14
                                                                                                    21.6
           2 0.02729
                      0.0
                             7.07
                                        0.469 7.185
                                                    61.1 4.9671
                                                                  2.0 242.0
                                                                                 17.8
                                                                                      392.83
                                                                                               4.03
                                                                                                     34.7
           3 0.03237
                                                                                      394.63
                      0.0
                             2.18
                                        0.458 6.998
                                                     45.8 6.0622
                                                                  3.0 222.0
                                                                                 18.7
                                                                                               2.94
                                                                                                     33.4
           4 0.06905
                      0.0
                             2.18
                                    0.0 0.458 7.147 54.2 6.0622
                                                                  3.0 222.0
                                                                                 18.7 396.90
                                                                                               5.33
                                                                                                     36.2
In [21]: Feature_Columns=bos.columns.drop('Price')
In [25]: X=bos[Feature_Columns.tolist()]
In [26]: | Y=bos.Price
```

```
In [27]: from sklearn.model_selection import train_test_split
         from sklearn.linear model import LinearRegression
In [69]: X Train,X Test,Y Train,Y Test=train test split(X,Y,test size=.30,random state=43)
In [70]: lm=LinearRegression()
In [71]: | lm.fit(X Train, Y Train)
Out[71]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [72]: lm.intercept
Out[72]: 35.850361646380556
In [73]: | lm.coef
Out[73]: array([-3.23260120e-02, 4.35771384e-02, 3.72914568e-02, 2.59136498e+00,
                -1.76693690e+01, 3.77994491e+00, 2.21348220e-02, -1.24169174e+00,
                 3.46294130e-01, -1.42116459e-02, -1.00581111e+00, 1.13185782e-02,
                -6.48146062e-01])
In [74]: Sum Of Squared Errors=np.sum((lm.predict(X Train)-Y Train)**2)
         Sum Of Squared Errors
Out[74]: 7584.984478127653
In [75]: Mean_Of_Squared_Errors=Sum_Of_Squared_Errors/506
         Mean Of Squared Errors
Out[75]: 14.99008790143805
```

```
In [89]: plt.xlabel('Sales-Train Data')
    plt.ylabel('Sales-Predicted Data')
    plt.scatter(Y_Train,lm.predict(X_Train))
```

Out[89]: <matplotlib.collections.PathCollection at 0x7fd096424c50>

We see this is not a good model for linear regression as Sum Of Squared Errors is Too high.

```
In [111]: import statsmodels.formula.api as smf
```

In [121]: | lm=smf.ols(formula='Price~CRIM+ZN+INDUS+CHAS+NOX+RM+AGE+DIS+RAD+TAX+PTRATIO+B+LSTAT',data=bos).fit()

▶ In [122]: lm.summary()

Out[122]:

OLS Regression Results

Dep. Variable: Price **R-squared:** 0.741

Model: OLS Adj. R-squared: 0.734

Method: Least Squares F-statistic: 108.1

Date: Sun, 21 Oct 2018 **Prob (F-statistic):** 6.95e-135

Time: 20:44:26 **Log-Likelihood:** -1498.8

No. Observations: 506 AIC: 3026.

Df Residuals: 492 **BIC:** 3085.

Df Model: 13

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	36.4911	5.104	7.149	0.000	26.462	46.520	
CRIM	-0.1072	0.033	-3.276	0.001	-0.171	-0.043	
ZN	0.0464	0.014	3.380	0.001	0.019	0.073	
INDUS	0.0209	0.061	0.339	0.735	-0.100	0.142	
CHAS	2.6886	0.862	3.120	0.002	0.996	4.381	
NOX	-17.7958	3.821	-4.658	0.000	-25.302	-10.289	
RM	3.8048	0.418	9.102	0.000	2.983	4.626	
AGE	0.0008	0.013	0.057	0.955	-0.025	0.027	
DIS	-1.4758	0.199	-7.398	0.000	-1.868	-1.084	
RAD	0.3057	0.066	4.608	0.000	0.175	0.436	
TAX	-0.0123	0.004	-3.278	0.001	-0.020	-0.005	
PTRATIO	-0.9535	0.131	-7.287	0.000	-1.211	-0.696	
В	0.0094	0.003	3.500	0.001	0.004	0.015	
LSTAT	-0.5255	0.051	-10.366	0.000	-0.625	-0.426	

Omnibus: 178.029 **Durbin-Watson:** 1.078

Prob(Omnibus): 0.000 Jarque-Bera (JB): 782.015

Skew: 1.521 **Prob(JB):** 1.54e-170

Kurtosis: 8.276 **Cond. No.** 1.51e+04

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

This is not a good model for linear regression as Adj. R-squared is low with high AIC.It also has high values of P > [t] for AGE and INDUS features.