COMS21202: Symbols, Patterns and Signals

Problem Sheet 2: Outliers and Deterministic Models

1. You collected a four dimensional dataset of values $\mathbf{x} = (x_1, x_2, x_3, x_4)$ and calculated the mean to be (3, 2.6, -0.4, 2.6), and the covariance matrix to be

$$\begin{bmatrix} 4 & 0.1 & -4 & -0.1 \\ 0.1 & 0.01 & -0.1 & 0 \\ -4 & -0.1 & 4 & 0.1 \\ -0.1 & 0 & 0.1 & 9 \end{bmatrix}$$

- (a) You are asked to only select two variables, x_1 and another variable, to take forward for a machine learning algorithm that predicts future values of the variable \mathbf{x} . Which other variable would you pick: x_2 , x_3 or x_4 and why?
- (b) Calculate the eigen values and eigen vectors for your chosen covariance matrix
- (c) Using the probability density function of the normal distribution in two dimensions, calculate the probability that the following new data (3, 2.61, 0, 3) belongs to the dataset \mathbf{x} [Note: only use the two variables you picked in (a)]

Answer:

- (a) x_2 has a very small variance 0.01 and mean close to x_1 , so its probably not very informative (note that high variance often means that there is more information). However, by normalising the data you might get a different for x_2 result, but you would need to re-evaluate the covariance matrix. x_3 has mean different from x_1 , but also significantly high negative correlation (-4; i.e. inversely proportional) thus it is more dependent on x_1 . x_4 has low covariance with x_1 and large variance, thus would be a good choice as it seems to encode variability not explained by x_1 . Therefore x_4 is the variable that should be selected because it provides "information" not provided by x_1 .
- (b) Lets use x_1 and x_4 for our covariance matrix. Recall from Lecture 2 that to calculate the eigenvalues you need to solve $|A-\lambda \mathbf{I}|=0$ where \mathbf{I} is the identity matrix and |A| is the determinant of matrix A, with |A|=(ad-bc) for a matrix $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

$$\begin{vmatrix} \begin{bmatrix} 4 & -0.1 \\ -0.1 & 9 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} | = 0$$
 (1)

$$\begin{vmatrix} 4 - \lambda & -0.1 \\ -0.1 & 9 - \lambda \end{vmatrix} = 0$$
 (2)

$$(4 - \lambda)(9 - \lambda) - 0.01 = 0 \tag{3}$$

$$36 - 13\lambda + \lambda^2 = 0 \tag{4}$$

$$\lambda = \frac{13 \, \pm \sqrt{169 - 144}}{2} \tag{5}$$

$$\lambda_1 = 4, \ \lambda_2 = 9 \tag{6}$$

The first eigenvector v_1 is given by $Av = \lambda v$ (with $\lambda = 4$)

$$\begin{bmatrix} 4 & -0.1 \\ -0.1 & 9 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = 4 \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix}$$
 (7)

$$\begin{bmatrix} 4v_{11} - 0.1v_{12} \\ -0.1v_{11} + 9v_{12} \end{bmatrix} = \begin{bmatrix} 4v_{11} \\ 4v_{12} \end{bmatrix}$$
 (8)

We now want to find a solution with vector length of I (i.e. $||v_1|| = 1$) ¹

$$-0.1v_{11} + 9v_{12} = 4v_{12} (9)$$

$$v_{11} = 50v_{12} \tag{10}$$

using the vector norm 2 we get

$$v_{11} = \frac{50}{\sqrt{2501}} \sim 1 \tag{11}$$

$$v_{12} = \frac{1}{\sqrt{2501}} \sim 0 \tag{12}$$

which leads to the following eigenvectors (similarly for $\lambda = 9$)

for
$$\lambda = 4: v_1 \sim \begin{bmatrix} 1\\0 \end{bmatrix}$$
 (13)

for
$$\lambda = 9: v_2 \sim \begin{bmatrix} 0\\1 \end{bmatrix}$$
 (14)

Because v_2 has a larger eigenvalue ($\lambda = 9$) it represents the axes with the most variance, which in turn indicates that x_4 contains the most variance (note that $v_{22} = 1$ and that it represents x_4), consistent with the large variance in x_4 ($\sigma^2 = 9$).

(c)

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^2 |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$
(15)

$$= \frac{1}{2\pi\sqrt{35.99}} e^{-\frac{1}{2}\left(\begin{bmatrix} 3\\3 \end{bmatrix} - \begin{bmatrix} 3\\2.6 \end{bmatrix}\right)^{T} \frac{1}{35.99}} \begin{bmatrix} 9 & 0.1\\0.1 & 4 \end{bmatrix} \left(\begin{bmatrix} 3\\3 \end{bmatrix} - \begin{bmatrix} 3\\2.6 \end{bmatrix}\right)$$
(16)

$$=0.0263$$
 (17)

2. For the following 2-D data points:

$$(1,1)$$
 $(3,2)$ $(5,2)$ $(6,4)$ $(7,4)$ $(8,3)$ $(9,4)$ $(10,5)$

- (a) Using the **matrix form** for least squares, determine the best fitting line
- (b) Using the **algebric form** for least squares, determine the best fitting line
- (c) Confirm your answers using Matlab or IPython
- (d) Using the **matrix form** for least squares, determine the best fitting polynomial $y=a_0+a_1x+a_2x^2$ Use an online calculator to invert the matrix

Answer:

¹Here we use the second equation, because the first one leads to a trivial solution (0,0) in which $||v_1|| \neq 1$.

²Note that the vector norm is given by $\sqrt{v^2 + v^2} = 1$, $\sqrt{2500v^2 + v^2} = 1$, $\sqrt{2501}v_0 = 1$, $v_0 = 1$.

²Note that the vector norm is given by $\sqrt{v_{11}^2 + v_{12}^2} = 1$, $\sqrt{2500v_{12}^2 + v_{12}^2} = 1$, $\sqrt{2501}v_{12} = 1$, $v_{12} = \frac{1}{\sqrt{2501}}$. We use the norm to obtain vectors of length 1.

(a) Using the matrix formula

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 5 & 1 \\ 1 & 6 & 1 & 7 \\ 1 & 8 & 3 \\ 1 & 1 & 9 & 4 \\ 1 & 10 & 4 & 5 \end{bmatrix}$$

$$\mathbf{a_{LS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 8 & 49 \\ 49 & 365 \end{bmatrix} = \mathbf{H}$$

$$\mathbf{H}^{-1} = \frac{1}{519} \begin{bmatrix} 365 & -49 \\ -49 & 8 \end{bmatrix} = \begin{bmatrix} 0.703 & -0.094 \\ -0.094 & 0.015 \end{bmatrix}$$

$$\mathbf{H}^{-1} \mathbf{X}^T \mathbf{Y} = \begin{bmatrix} 0.6089 & 0.4200 & 0.2312 & 0.1368 & 0.0424 & -0.0520 & -0.1464 & -0.2408 \\ -0.0790 & -0.0482 & -0.0173 & -0.0019 & 0.0135 & 0.0289 & 0.0443 & 0.0597 \end{bmatrix}$$

$$\mathbf{H}^{-1} \mathbf{X}^T \mathbf{Y} = \begin{bmatrix} 0.682 \\ 0.398 \end{bmatrix}$$

$$(b) \ \bar{x} = 6.125$$

$$\bar{y} = 3.125$$

$$b_{LS} = \frac{\sum_{2} x_{2} y_{-N} y_{2}}{\sum_{2} x_{2}^{2} - N y_{2}^{2}}$$

$$b_{LS} = \frac{170 - 8 \times 6.125 \times 3.125}{305 - 8 \times (6.125)^{2}} = 0.398$$

$$a_{LS} = \bar{y} - b\bar{x}$$

$$a_{LS} = 3.125 - 0.398 \times 6.125 = 0.682$$

$$> \times \mathbf{x} = \begin{bmatrix} 1; & 3; & 5; & 6; & 7; & 8; & 9; & 10]; \\ > \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times]; \\ > & \mathbf{x} = \mathsf{inv}(\mathbf{x}_{-}\mathbf{f}^{+*}\mathbf{x}_{-}\mathbf{f}^{+*}\mathbf{y})$$

$$\mathbf{a} = \begin{bmatrix} 0.6821 \\ 0.3988 \end{bmatrix}$$

$$(c)$$

$$> \times \mathbf{x} = \begin{bmatrix} 1; & 3; & 5; & 6; & 7; & 8; & 9; & 10]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{y} = [1; & 2; & 2; & 4; & 4; & 3; & 4; & 5]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{y} = [\mathsf{f} = 2; & 2; & 2; & 4; & 4; & 3; & 4; & 5]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{y} = [\mathsf{f} = 2; & 2; & 2; & 4; & 4; & 3; & 4; & 5]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{y} = [\mathsf{f} = 2; & 2; & 2; & 4; & 4; & 3; & 4; & 5]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{y} = [\mathsf{f} = 2; & 2; & 2; & 4; & 4; & 3; & 4; & 5]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{y} = [\mathsf{f} = 2; & 2; & 2; & 4; & 4; & 3; & 4; & 5]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{y} = [\mathsf{f} = 2; & 2; & 2; & 4; & 4; & 3; & 4; & 5]; \\ > & \times \mathbf{x} = \mathbf{f} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{x} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{x} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{x} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{x} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{x} = [\mathsf{ones}(8,1), & \times, & \times 2]; \\ > & \times \mathbf{x} =$$

(*d*)

3. One method to avoid the effect of outliers on means and variances is to use "random sampling". Random sampling selects a sample of points, and estimates the error along with the number of 'outliers'.

0.6009 0.4395 -0.0037 For the set $A = \{-3, 2, 0, 4, -9, 3, 2, 3, 3, 1, -12, 2\}$

Follow this algorithm to estimate the correct mean of this sample (without the effect of outliers)

- Step 1: Take 75% of the points at random
- Step 2: Calculate the mean of the sampled points
- Step 3: Estimate the inliers from the set A (i.e. the number of points with Euclidean distance less than ϵ from the mean) [use $\epsilon = 5$ for your tests]. The points with $\epsilon \geq 5$ are outliers.
- Step 4: Recalculate the mean and standard deviation from all inliers
- Step 5: Repeat for N times [use N = 5 for your tests]

Can you decide on the best mean given your algorithm?

Assume that the outliers in the data were {-9, -12}. Were you able to find the correct mean (i.e. the mean without the outliers)?

What are the advantages and disadvantages of random sampling?

Answer:

Before random sampling, the mean is affected by the outliers $\mu = -0.33$

Step 1: Take 9 out of the 12 points at random. There is a random element in this algorithm so your results might be different

$$sample = \{2, 0, -9, 3, 2, 3, 3, 1, 2\}$$

Step 2: mean of sample = 0.78

Step 3: Calculate the distances of all points in A from the mean 0.78

Thus inliers = $\{-3, 2, 0, 4, 3, 2, 3, 3, 1, 2\}$

Step 4: Calculate the mean and std of inliers

$$\mu = 1.70$$

sigma=2.00

Step 5: Repeat for N iterations

iteration	μ	σ	number of outliers	
{-3, 2, 0, -9, 3, 3, 3, 1, -12}	1.44	1.94	3	As you can see
{2, 0, 4, -9, 3, 3, 1, -12, 2}	1.70	2.00	2	
{-3, 2, 0, -0, 3, 2, 3, -12, 2}	1.44	1.94	3	
{-3, 0, -9, 3, 2, 3, 1, -12, 2}	1.44	1.94	3	
{2, 0, -9, 3, 2, 3, 3, 1, 2}	1.70	2.00	2	
{2, 0, -9, 3, 2, 3, 3, 1, 2}	1.70	2.00	2	
{-3, 0, -9, 3, 2, 3, 1, -12, 2}	1.44	1.94	3	

from

the example above, whether we can identify the outliers depends on how many iterations we do, but also crucially on the ϵ chosen.

4. {Extra}: Study the algorithm of RANSAC (Random Sampling Consensus) and see how line fitting can be correctly estimated in the presence of outliers