Architecture de Protocoles: Modèle en Couche

A. S. Hafid

E-mail: ahafid@iro.umontreal.ca

Phone: (514) 343-2446

Plan

- Principes du modèle à couche
- Fonctionnalités
- Types de primitives utilisées
- Service sans connexion Vs. Service orienté connexion
- Service fiable Vs. Service non fiable
- Modèle de référence OSI
- Modèle de référence TCP/IP
- Conclusion

Principes du Modèle?

Principes du Modèle

- Un niveau du modèle par niveau d'abstraction
- A chaque niveau correspond une fonction bien définie
- La fonction de chaque niveau est choisie en ayant en tête la définition de standards internationaux
- Les frontières entre niveaux sont choisies pour minimiser les flux d'informations entre niveaux
- Le nombre de niveaux est choisi pour correspondre aux différentes fonctions mais ne doit pas être trop grand parce que le système serait trop lourd

Interactions entre Couches Voisines

Relations Entre Entités

Relation entre entitées

Entités: £lements actifs (processus)

Entités patre; les entitées de la même couche sur différentes machines (peer entities)

Protocolo: gégles de communication entre entités paires

Communication logique ou virtuelle: gommunication aux couches supérieures de la couche ghysique

Une Couche

PDUs de Différentes Couches

Fonctions?

Fonctions

- Encapsulation
- Segmentation et assemblage
- Contrôle de connexion
- livraison Ordonnée
- Contrôle de flux
- Contrôle d'erreur
- Adressage
- Multiplexage
- Services de Transmission

Encapsulation

- Ajout d'information de contrôle
 - Adresses
 - Code de détection d'erreurs
 - Etc.

Grand paquet vs. petit paquet?

Segmentation (Fragmentation)

- Les blocs de données sont d'une taille déterminée
- Les messages de la couche application peuvent grands
- Les paquets réseaux peuvent être petits
- Segmentation consiste à couper des blocs de données qui sont grands en plus petits blocs
 - Fragmentation dans le modèle TCP/IP
 - Les trames Ethernet ne peuvent pas dépasser 1526 octets

Segmentation (Fragmentation): Exemple

Protocole de liaison de données	MTU (octets)
Ethernet	1500
IEEE 802.3	1492
Bus à jeton	8191
Anneau à jeton	5000 (typique)
FDDI	4500
PPP	1500 par défault (négociable)

Segmentation (Fragmentation): Example

Encapsulation, Fragmentation, et Assemblage: Exemple

Contrôle de Connexion

- Établissement de connexion
- Transfert de données
- Terminaison de connexion

Livraison Ordonnée

- PDUs peuvent traverser des chemins différents de la source à la destination
- PDUs peuvent ne pas arriver en ordre
- Comment?

Livraison Ordonnée

• Numéroter les PDUs pour permettre la livraison ordonnée

Contrôle de flux

- Fait par le receveur
- Limiter la quantité ou le taux de données
- Exemples de techniques?

Contrôle de flux

- Techniques
 - Arrêter et attendre (stop and wait)
 - Systèmes à crédit
 - » E.g., Fenêtres coulissantes

Contrôle d'erreur

- Protéger contre les pertes et les dommages
- Détection d'erreur?
- Détection de pertes?
- Exemples de solutions?

Contrôle d'erreur

- Détection d'erreur
 - La source insert des bits de détection d'erreur
 - La destination vérifie ces bits
 - Si OK, confirme
 - Sinon, détruire le paquet
- Retransmission
- Fait à différents niveaux

Adressage

- Une adresse unique pour chaque machine et chaque routeur (par interface)
- Adresse niveau réseau
 - Adresse IP (TCP/IP)
 - NSAP: Network Service Access Point (OSI)
- Processus dans la machine
 - Numéro de port (TCP/IP)
 - Service Access Point (OSI)

Adressage (Cont.)

Combien de modes d'adressage?

Mode d'adressage

- En général une adresse identifie une seule machine
 - Adresse unicast
- Peut adresser toutes les machines dans un domaine
 - Adresse broadcast
- Peut adresser un sous ensemble de machines dans un domaine
 - Adresse multicast

Multiplexage

- Correspondre plusieurs connexions dans un niveau à une seule connexion dans un autre niveau
 - Plusieurs faisceaux lumineux (lightpaths) dans une seule fibre optique
 - Plusieurs connexions voix sur un câble
 - Etc.

Service de Transmission

- Priorité
 - P.ex., messages de contrôle
- Qualité de Service
 - délai minimal, maximiser le débit (*throughput*), maximiser la fiabilité
 - Diffserv vs. intserv
- Etc.

Types de Primitives

Primitive

- représentation abstraite d'une interaction entre un utilisateur et son fournisseur de service
- peut contenir des paramètres tels que
 - source
 - destination
 - message transmis (SDU ou Service Data Unit)

Types de Primitives (Cont.)

X.request

requête d'un utilisateur au fournisseur du service

X.indication

primitive générée par le fournisseur du service à destination d'un utilisateur (souvent liée à une primitive X.request distante)

X.response

primitive de réponse optionnelle à une primitive X.indication

X.confirm

primitive générée par le fournisseur du service à destination d'un utilisateur suite à une primitive X.response distante

Service sans Connexion

Objectif

 permettre à un émetteur d'envoyer rapidement un message à un (ou plusieurs) receveur

Principe

- L'émetteur confie son message au fournisseur du service via une primitive DATA.req
- Le fournisseur du service achemine le message jusqu'au receveur et le délivre via une primitive DATA.ind

Utilisation

- utile pour envoyer de petits messages
- exemple : service postal

- Primitives
 - DATA.request(source, destination, SDU)
 - DATA.indication(source, destination, SDU)

Caractéristiques du service?

- Caractéristiques principales du service
 - respect de la séquence
 - aucune garantie
 - Pas d'établissement /terminaison de connexion
- Service confirmé
 - Envoyer data.confirm

Exemple de service confirmé

Service Orienté Connexion

Objectif

 établir une association logique (connexion) entre deux utilisateurs afin de permettre l'échange bidirectionnel de messages entre les deux utilisateurs

Principe

- Ouverture de la connexion
- Les deux utilisateurs peuvent envoyer des messages en profitant de cette connexion
- Fermeture de la connexion

Utilisation

- utile pour envoyer de nombreux messages ou lorsqu'un dialogue complexe est nécessaire
- exemple : service téléphonique

Service Orienté Connexion (Cont.)

- Ouverture d'une connexion
 - Primitives
 - CONNECT.request
 - CONNECT.indication
 - CONNECT.response
 - CONNECT.confirm

Service Orienté Connexion (Cont.)

Refus d'ouverture d'une connexion

Transfert des Données Mode Message

 Le fournisseur de service délivre un DATA.ind pour chaque DATA.req

Transfert des Données Mode Stream

 Pas de contraintes sur la façon dont les DATA.ind seront délivrées par le fournisseur du service

Fermeture de Connexion

- Déconnexion abrupte
 - perte de données possible
- Une telle déconnexion peut être provoquée par un utilisateur ou (plus souvent) par le fournisseur

Fermeture de Connexion (Cont.)

- Fermeture ordonnée
 - fermeture d'une direction à la fois
 - pas de perte de données

Caractéristiques du Service Orienté Connexion

Caractéristiques générales?

Caractéristiques du Service Orienté Connexion

- Caractéristiques générales
 - transmission bidirectionnelle
 - une fois la connexion ouverte, les deux utilisateurs peuvent l'exploiter
 - respect de la séquence
 - garantie
 - fermeture de la connexion
 - abrupte lorsqu'elle est provoquée par le fournisseur
 - ordonnée (souvent) ou abrupte (parfois) lorsqu'elle est initiée par un utilisateur

Service Fiable Vs. Service non Fiable

- Service fiable
 - Il n'y a jamais de données perdues
 - Le récepteur acquitte la réception de chaque message
- Service non fiable
 - Il n'y a aucune garantie de réception de données transmises

Le modèle de référence OSI

Couches OSI (1)

- Physique
 - Signaux
- Liaison
 - Détection et correction des erreurs
 - Contrôle de flux
- Réseau
 - Routage
- Transport
 - Communication de bout en bout
 - Fiabilité et ordonnancement des paquets

Couches OSI (2)

- Session
 - Contrôle de session
- Présentation
 - Codage et Compression
 - Encryptage
- Application
 - Applications qui ont besoin de communiquer

Utilisation de relais

Contrôle d'erreur

- Couche liaison et couche transport?
 - Redondance?

Le Modèle de Référence TCP/IP

Application

Présentation

Session

Transport

Réseau

Data link

Physique

Application

Telnet - FTP - SMTP - DNS - RTP - ...

Transport

Internet

Host-tonetwork TCP - UDP

IP

Ethernet, WLAN, Token Ring, etc.

Service Fourni par IP

- Caractéristiques
 - service sans connexion non fiable
 - taille des messages : maximum 64 Kbytes
 - perte possible de messages
 - non respect de la séquence
 - erreurs de transmission possibles et non détectées

Addresse IP: 192.28.240.1

adresse IP: 192.28.240.100

TCP - UDP

• Trasmission Control Protocol:

 Se base sur IP, est un protocole fiable, orienté connexion, permet la transmission sans erreur d'un flux de bytes d'une machine à une autre machine, découpe les messages et réassemble les paquets, contrôle de flux.

• User Datagram Protocol:

 Se base sur IP, est un protocole non fiable, sans établissement d'une connexion.

TCP-UDP

- Zoom
- Whatsapp
- Netflix
- Jeux videos

TCP-UDP

- TCP convient aux applications où la fiabilité est cruciale
 - Possibles retards dus aux retransmissions.
- UDP est mieux adapté aux applications en temps réel
 - la rapidité et la faible latence sont plus importantes que la fiabilité des données.
 - Une légère perte de paquets n'a pas d'impact significatif sur l'expérience utilisateur dans ces scénarios.

Service TCP

- Identification d'une application
 - adresse IP + TCP + numéro de port
- Caractéristiques du service TCP
 - service orienté connexion
 - bidirectionnel
 - fiable
 - mode stream
 - fermeture de la connexion: abrupte par le fournisseur, ordonnée ou abrupte par les utilisateurs

adresse IP: 192.28.240.100

Protocole: TCP

Port: 6550

Service UDP

- Identification d'un utilisation
 - adresse IP + UDP + numéro de port
- Caractéristiques du service
 - service sans connexion
 - non fiable
 - pertes de messages possibles
 - détection mais pas correction des erreurs de transmission
 - non respect de la séquence

adresse IP: 192.28.240.100

Protocole: UDP

Port: 6550

58

TCP/IP: PDU

TCP/IP: Quelques Protocoles

MIME = Multi-Purpose Internet Mail Extension

Conclusion

- Principes suivis pour définir un modèle en couches
- Protocoles Vs. Services
 - Protocole est exécuté entre entités paires
 - Ensemble de règles de communication
 - Couche N fournit un service à couche N+1
 - Ensemble de primitives
- Fonctionnalités du modèle en couches
 - Encapsulation
 - Fragmentation et assemblage
 - Contrôle de connexion
 - Livraison en ordre
 - Contrôle de flux/flot
 - Contrôle d'erreurs

Conclusion (Cont.)

- Adressage
- Multiplexage
- Service de transmission
- Types de primitives utilisées
 - X.request, X.indication, X.response, X.confirm
- Service sans connexion Vs. Service orienté connexion
- Service fiable Vs. Service non fiable
- Modèle de référence OSI
 - 7 couches
- Modèle de référence TCP/IP
 - 5 couches