Numerical Optimization

Instructor: Sung Chan Jun

Week #3: September 13, 2023 (Wednesday Class)

Course Syllabus (Tentative)

Calendar	Description	Remarks
1 st week	Introduction of optimization	
2 nd week	Univariate Optimization	
3 rd week	Univariate Optimization	
4 th week	Unconstrained Optimization	
5 th week	Unconstrained Optimization	
6 th week	Constrained Optimization, No Class	Oct. 2 (Temporary National Holiday)
7 th week	Constrained Optimization, No Class	Oct. 9 (National Holiday)
8 th week	Constrained Optimization, Midterm	Oct. 18 (Midterm)

Announcements

- Teaching Assistant (TA)
 - Dr. Cheolki Im (Al Graduate School)
 - Post-doc at Biocomputing Lab
 - E-mail: chim@gm.gist.ac.kr
 - Phone: 2266 (internal)
 - Office: DASAN Bldg. Room 505

Univariate Optimization

Minimize f(x) on $x \in R$

- When f(x) is differentiable
 - Univariate optimization comes to finding root problem : f'(x) = 0.
- When f(x) is not differentiable
 - How can we solve the optimization problem?
 - Consider methods using function evaluations only
- Unimodality
 - f(x) is unimodal in [a, b] if there exists a unique $x^* \in [a, b]$ such that for any $x_1, x_2 \in [a, b]$ and $x_1 < x_2$,
 - If $x_2 < x^*$ then $f(x_1) > f(x_2)$. If $x_1 > x^*$ then $f(x_1) < f(x_2)$
 - If f is unimodal in the given interval, it exists a strong local minimum in it.

- Univariate Optimization: Unimodality
 - When unimodal f(x) is evaluated at two interior points x_1 and x_2 (x_1 < x_2) for given interval [a, b], then
 - if $f(x_1) > f(x_2)$, then a minimum is in $[x_1, b]$
 - Otherwise (if $f(x_1) \le f(x_2)$), a minimum is in $[a, x_2]$

"Elimination Step"

- Let f be unimodal and x*∈ [a, b] be minimum.
 - By elimination step, (letting $[a_0, b_0] = [a, b]$), we got the following bracket method:

$$[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset\ldots\supset [a_n,b_n]\supset\ldots$$
 sufficiently sufficiently reduced sufficiently reduced

Whether or not this bracket method successfully works depends on how to choose interior points.

- Univariate Optimization: Unimodality
 - Assume f(x) is unimodal. To efficiently reduce the interval of uncertainty by elimination step, we should choose two interior points every iteration as reasonably as possible.
 - How to find two interior points?
 - Two efficient ways to consider
 - Fibonacci search
 - Golden section search

- Univariate Optimization : Fibonacci search
 - **S1**. Assume N function evaluations are possible.
- **S2**. Generate Fibonacci numbers $\{F_0, F_1, F_2, ..., F_N\}$ such that $F_0 = F_1 = 1$, $F_k = F_{k-1} + F_{k-2}$.
- **S3**. Choose two interior points x_1 and x_2 (let L = b a):

$$x_1 = a + F_{N-2}/F_N * L = a F_{N-1}/F_N + b F_{N-2}/F_N$$

 $x_2 = b - F_{N-2}/F_N * L = a F_{N-2}/F_N + b F_{N-1}/F_N$

Internally dividing points of [a, b]

 $x_1 = \text{ratio } F_{N-2} : F_{N-1}$ $x_2 = \text{ratio } F_{N-1} : F_{N-2}$

- **S4**. Compute $f(x_1)$ & $f(x_2)$. A new reduced interval $[a_{new}, b_{new}]$ is generated by elimination step.
- **S5**. Set N := N 1, $a := a_{new}$, $b := b_{new}$.
- **S6**. Go to **S1** and repeat this until N = 1.

- Univariate Optimization : Fibonacci search
 - Two interior points in Fibonacci search

- Due to Fibonacci sequences, every step requires just one more function evaluation except for the first step.
 - Final interval of uncertainty (N evaluations) : $1/F_N^*(b-a)$
 - Cons
 - Require to store the Fibonacci numbers
 - Is not easy to apply for the case when termination criterion requires.
 Distribution of this lecture note is prohibited without instructor's permission.

- Univariate Optimization: Golden section search
 - Two interior points on [0, 1] are chosen as τ and $1-\tau$ such that $\tau > 1-\tau$.
 - Golden section ratio (τ)

•
$$\tau = d/(c + d) = c/d$$

- Golden section search is a limiting case of Fibonacci search : $\lim_{k\to\infty}\frac{F_{k-1}}{F_k}=\tau$
- It keeps good property of Fibonacci search
 - it requires just one additional function evaluation every step after 1st step.
- Final interval of uncertainty (length of interval)
 - $\tau^{N-1*}(b-a)$, for N function evaluations
- It is easy to answer how many function evaluations are needed to yield the given accuracy.

Univariate Optimization: Comparison of Search Algorithms

Fibonacci Search	Golden Section Search	
 Use Fibonacci Sequences. 	 Use Golden Section Ratio. 	
 Pros Every step requires one function evaluation only. Cons ✓ Require to store the Fibonacci numbers. ✓ not easy to apply for the case when termination criterion requires. Final length of interval 	 Pros ✓ Every step requires one function evaluation only. ✓ Easily estimate how many iterations are needed to get the given accuracy. Final length of interval τ^{N-1*}(b-a) (after N function evaluations) 	
1/F _N *(b–a) (after N function evaluations)	 This is a limiting case of Fibonacci search. 	

Univariate Optimization: Seeking bound

- How to find initial interval [a, b] for a unimodal function f(x)?
 - If you choose randomly any interval, then there are three cases below:

Univariate Optimization: Seeking bound

- How to find initial interval [a, b] for a unimodal function f(x)?
 - One of possible ideas

S2. Evaluate
$$f_{-}:= f(x_0-d_0)$$
, $f_0:= f(x_0)$, $f_+:= f(x_0+d_0)$

If
$$f_{-} \le f_{0} \le f_{+}$$
, then set d:= $-d_{0}$, x_{-1} := $x_{0} + d_{0}$, x_{1} := $x_{0} - d_{0}$

If
$$f_{-} \ge f_{0} \le f_{+}$$
, then set [a, b]:= $[x_{0} - d_{0} x_{0} + d_{0}]$ and stop.

If
$$f(x_{k+1}) \ge f(x_k) \& d > 0$$
, then set [a, b]:= $[x_{k+1}, x_{k+1}]$ and stop.

If $f(x_{k+1}) \ge f(x_k) \& d < 0$, then set [a, b]:= $[x_{k+1}, x_{k-1}]$ and stop.

Univariate Optimization: Seeking bound

- **S1**. Set randomly initial point x_0 , step size $d_0 > 0$
- **S2**. Evaluate $f_{-}:=f(x_0-d_0)$, $f_0:=f(x_0)$, $f_+:=f(x_0+d_0)$

- **S3**. If $f_{-} \ge f_{0} \ge f_{+}$, then set $d:=d_{0}$, $x_{-1}:=x_{0}-d_{0}$, $x_{1}:=x_{0}+d_{0}$
- **S4**. k = 1, $x_2 = x_1 + 2^1 d$. However, $f(x_2) < f(x_1) & d > 0$. Move to k = 2

k = 2, $x_3 = x_2 + 2^2 d$. Then, $f(x_3) \ge f(x_2) \& d > 0$. Stop. $[x_1, x_3]$ is the desired

interval.

Univariate Optimization: Seeking bound

Seeking bound

- **S1**. Set randomly initial point x_0 , step size $d_0 > 0$
- **S2**. Evaluate $f_{-}:= f(x_0-d_0)$, $f_0:= f(x_0)$, $f_+:= f(x_0+d_0)$

S3. If
$$f_{-} \ge f_{0} \ge f_{+}$$
, then set $d := d_{0}$, $x_{-1} := x_{0} - d_{0}$, $x_{1} := x_{0} + d_{0}$

If
$$f_{-} \le f_{0} \le f_{+}$$
, then set d:= -d₀, x_{-1} := x_{0} +d₀, x_{1} := x_{0} -d₀

If $f_{-} \ge f_{0} \le f_{+}$, then set [a, b]:= $[x_{0}-d_{0},x_{0}+d_{0}]$ and stop.

S4. For
$$k = 1, 2, ...$$
 $x_{k+1} = x_k + 2^k d$.

- If $f(x_{k+1}) \ge f(x_k) \& d > 0$, then set $[a, b] := [x_{k-1}, x_{k+1}]$ and stop.
- If $f(x_{k+1}) \ge f(x_k) \& d < 0$, then set [a, b]:= $[x_{k+1}, x_{k-1}]$ and stop.

Possible Ideas

Any strictly increasing

functions on k are acceptable.

Univariate Optimization

Minimize f(x) on $x \in R$

- When f(x) is not differentiable
 - Consider methods using function evaluations only
 - Fibonacci Search, Golden Section Search
 - What other methods?
- When f(x) is differentiable
 - Univariate optimization comes to finding root problem : f'(x) = 0.
 - Method of Bisection, Newton's, Secant, Regular falsi
 - What other methods?

Univariate Optimization: Interpolation methods

- Assume f(x) is unimodal and twice continuously differentiable on [a, b].
 - Newton's method
 - Let f be twice continuously differentiable.
 - f ≈ quadratic interpolation function f[^]
 - By Taylor's expansion, with $f(x_k)$, $f'(x_k)$ and $f''(x_k)$

$$f'(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

• Find its minimum and call it x_{k+1} , then

$$X_{k+1} = X_k - f'(X_k)/f''(X_k)$$

Univariate Optimization:Interpolation methods

Newton's Method in Optimization

1-dimensional problem

Univariate Optimization: Interpolation Methods

- Assume f(x) is unimodal and continuous on [a, b].
 - Quadratic Interpolation without derivatives
 - Set interval to [a, b] and midpoint c := (a + b)/2.
 - Evaluate f at three points : (a, f(a)), (b, f(b)), (c, f(c)).
 - $f \approx$ quadratic function passing through three points, find its minimum x.
 - Update the interval and do the same way again.

Univariate Optimization:Interpolation Methods

- Lagrange polynomial interpolation
 - Polynomial passing three points (a, f(a)), (b, f(b)), and (c, f(c))

$$f'(x) = f(a)\frac{(x-c)(x-b)}{(a-c)(a-b)} + f(c)\frac{(x-a)(x-b)}{(c-a)(c-b)} + f(b)\frac{(x-a)(x-c)}{(b-c)(b-c)}$$

Minimum point of f[^](x)

$$x = \frac{f(a)(b^2 - c^2) + f(b)(c^2 - a^2) + f(c)(a^2 - b^2)}{2[f(a)(b-c) + f(b)(c-a) + f(c)(a-b)]}$$

Univariate Optimization:Interpolation Methods

- Assume f(x) is continuously differentiable and unimodal on [a, b]
 - Cubic interpolation with first derivatives
 - The minimum is in [a, b] such that f'(a)f'(b)<0.</p>
 - Define f[^](x) cubic interpolation with following conditions:
 - (a, f(a)), (b, f(b))
 - (a, f'(a)), (b, f'(b))
 - Find a minimum of f[^](x).
 - Update the interval accordingly and do the same way again.

Univariate Optimization:Safeguarded methods

- Assume f(x) is unimodal on [a, b]
 - Mixed method (reliable + rapid)
 - Reliable and guaranteed method
 - Fibonacci search
 - Golden Section search
 - Rapidly convergent method
 - Quadratic interpolation, and etc.

Multivariate Optimization

Multivariate Optimization

Minimize
$$f(\mathbf{x})$$
 on $\mathbf{x} = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$

- Direct methods not using derivatives
 - Methods using function evaluations only
- Derivative-based methods
 - Gradient-based methods
 - Second derivate methods

- Methods are based on function value comparisons.
 - How about considering the extension of search algorithms to multivariate optimization problem?
 - For two or higher dimensional problems, using elimination step may be less efficient due to the curse of dimensionality.
 - Caution! : This method would be used only when alternative method is not available.
 - In two dimensional problem, how about considering triangular shape in place of rectangular shape induced by interior points?

Could you consider the elimination step in 2-dimensional space?

- Nelder and Mead Method (Downhill Simplex Method)
 - Consider a polygon (simplex) with N+1 vertices in N-dimensional space such as $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{N+1}$ and their corresponding function values $f_1, f_2, \ldots, f_{N+1}$.
 - Main Idea
 - Remove the vertex with the worst function value.
 - Replace it with a better value by reflecting, expanding, or contracting the polygon along the line joining the worst vertex with the centroid of the remaining vertices.
 - Basic three steps: reflection, expansion and contraction

- Nelder and Mead Method
 - Reflection (Step 1)
 - Sort function values like $f_1 \le f_2 \le \ldots, \le f_{N+1}$ and corresponding vertices $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{N+1}$
 - Set $\mathbf{x}_r := \mathbf{c} + \alpha(\mathbf{c} \mathbf{x}_{N+1}), \alpha > 0, \mathbf{c} = (\sum_{i=1}^{N} \mathbf{x}_i)/N.$
 - Evaluate f_r at \mathbf{x}_r .
 - If $f_1 \le f_r \le f_N$, replace \mathbf{x}_{N+1} into \mathbf{x}_r and sort function values $f_1 \le f_2 \le \ldots \le f_{N+1}$, repeat this step.
 - If $f_r \ge f_N$, then go to Step 3 (contraction).
 - If $f_r \le f_1$, then go to Step 2 (expansion).

- Nelder and Mead Method
 - Expansion (Step 2)
 - Set $\mathbf{x}_{e} := \mathbf{c} + \beta(\mathbf{x}_{r} \mathbf{c}), \beta > 1$
 - Evaluate f_e at \mathbf{x}_e .
 - If $f_e \le f_r$, then \mathbf{x}_e replaces \mathbf{x}_{N+1} . Otherwise \mathbf{x}_r replaces \mathbf{x}_{N+1} .
 - Go to Step 1 (reflection)

- Nelder and Mead Method
 - Contraction (Step 3, $0 < \gamma < 1$)
 - If $f_r < f_{N+1}$, then set $\mathbf{x}_c := \mathbf{c} + \gamma(\mathbf{x}_r \mathbf{c})$. If $f_r \ge f_{N+1}$, then set $\mathbf{x}_c := \mathbf{c} + \gamma(\mathbf{x}_{N+1} - \mathbf{c})$.
 - Evaluate f_c at x_c .
 - If $f_c < min\{f_r, f_{N+1}\}$, then \mathbf{x}_c replaces \mathbf{x}_{N+1} .

If $f_c \ge \min\{f_r, f_{N+1}\}$, then $\mathbf{x}_i := (\mathbf{x}_i + \mathbf{x}_1)/2$, i = 2, ..., N+1.

 Go to Step 1 (reflection) until the size of simplex gets below desired limit.

Multivariate Optimization: Nelder and Mead Method

Multivariate Optimization: Nelder and Mead Method

- Pros
 - Easy to implement.
 - Small memory to store.
- Cons
 - Convergence is slow.
 - Restart with a new polygon when the stagnation is detected.
 - Determine three control parameters reasonably

for example,
$$\alpha$$
 = 1, β = 2, γ = 0.5

Nelder and Mead Method (Downhill Simplex Method)

https://youtu.be/HUqLxHfxWqU

Nelder and Mead Method (Downhill Simplex Method)

$$f(x, y) = x^2 - 4x + y^2 - y - xy$$

https://youtu.be/HUqLxHfxWqU

Nelder and Mead Method (Downhill Simplex Method)

 $f(x, y) = ((x - y)^2 + (x - 2)^2 + (y - 3)^4) / 10$

