THEOREM 1.26

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- → Recap: An automaton M to accept its input if either M1 or M2 accept for union operation.
- → For concatenation, it(M) must accept a string, if its input can be broken into two pieces, where M1 accepts the first piece and M2 accepts the second piece.
- → The problem is that M doesn't know where to break its input (i.e., where the first part ends and the second begins).
- → Here comes the need of nondeterminism

- → Nondeterminism is a generalization of determinism.
- → Every nondeterministic finite automaton is equivalent to a deterministic finite automaton.
- → Easy to understand and design any automaton

 \rightarrow Example of NFA, N_1

- → difference between a DFA and a NFA?
 - ✓ Outgoing arc
 - \checkmark Extra symbol, ε
- → How does an NFA compute?
 - ✓ possibilities in parallel thread
 - ✓ Split for ε transition
 - ✓ Thread dies

→ How does an NFA compute?

 \rightarrow Example: Lets see Computation of N_1 on input 010110

→ This NFA N₃ has an input alphabet {0} consisting of a single symbol. An alphabet containing only one symbol is called a unary alphabet.

Formal Definition of NFA

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Formal Definition of N₁

Formal Definition of N₁

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},\$$

3. δ is given as

	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø,

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

Formal Definition of Computation

Let $N = (Q, \Sigma, \delta, q, 0, F)$ N accepts w if we can write w as $w = y_1 y_2 \cdots y_m$, where each y_i is a member of $\Sigma \varepsilon$ and a sequence of states r_0 , r_1 , ..., r_m exists in Q with three conditions:

→ Conditions:

 $r_0 = q_0$, $r_i \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and $r_m \in F$

THEOREM 1.39 -----

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

PROOF

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We want to construct a DFA $M = (Q', \Sigma, \delta', q_0', F')$ recognizing A.

- → Need to answer 5-tuples of DFA for the given NFA
- → States of possibilities
- → Transition for all possible subsets
- → Determine start state and Final state

PROOF

- 1. Q' = P(Q)
- $2. \Sigma$
- 3. For $R \subseteq Q'$ and $a \subseteq \Sigma$, Let $\delta'(R, a) = \{q \subseteq Q \mid q \subseteq \delta(r, a) \text{ for some } r \subseteq R\}$ $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$
- 4. $q'_0 = \{q_0\}$
- 5. $F' = \{R \in Q' \mid R \text{ contains an accept state of } N \}$.

PROOF [Considering ε]

- \rightarrow For $R \subseteq Q$
- → $E(R) = \{q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}$
- 3. Let $\delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R\}$
- 4. $q'_0 = E(\{q_0\})$

Example of Equivalence of NFAs and DFAs

Figure: NFA N₄

Example of Equivalence of NFAs and DFAs

Figure: Equivalent DFA for N_4

COROLLARY 1.40 ------

A language is regular if and only if some nondeterministic finite automaton recognizes it.

- → "If" =>
 A language is regular if some NFA recognizes it.
- → "Only if" =>
 A language is regular only if some NFA recognizes it. That is, if a language is regular, some NFA must be recognizing it.

THEOREM 1.45 -----

The class of regular languages is closed under the union operation.

Proof Idea:

Construction of an NFA N to recognize A1 \cup A2

PROOF

Let $N1 = (Q1, \Sigma, \delta 1, q1, F1)$ recognize A1, and $N2 = (Q2, \Sigma, \delta 2, q2, F2)$ recognize A2.

Let's Construct $N = (Q, \Sigma, \delta, q0, F)$ to recognize $A1 \cup A2$.

PROOF (.... continued)

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$

$$\begin{array}{l} \Sigma \\ \delta \\ \text{for any } q \in Q \\ \text{and any } a \in \Sigma_{\varepsilon'} \end{array} \qquad \delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \\ \delta_2(q,a) & q \in Q_2 \\ \{q_1,q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

- 4. The state q_0 is the start state of N.
- 5. The set of accept states, $F = F_1 \cup F_2$.

Closure Under The Regular Operations -Concatenation

THEOREM 1.47 -----

The class of regular languages is closed under the concatenation operation.

Closure Under The Regular Operations -Concatenation

Proof Idea:

Construction of N to recognize A1 • A2

Closure Under The Regular Operations -Concatenation

Proof:

- 1. $Q = Q1 \cup Q2$.
- The state q1 is the same as the start state of N1.
- 3. The accept states F2 are the same as the accept states of N2.
- 4. δ for any $q \in Q$ and any $a \in \Sigma \varepsilon$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2. \end{cases}$$

Closure Under The Regular Operations -Star

THEOREM 1.49

The class of regular languages is closed under the star operation.

Closure Under The Regular Operations -Star

Proof Idea:

Construction of N to recognize

Closure Under The Regular Operations -Star

Proof:

- 1. $Q = \{q_0\} \cup Q_1$
- 2. The state q_0 is the new start state.
- 3. $F = \{q_0\} \cup F_1$
- 4. δ for any $q \in Q$ and any $a \in \Sigma \varepsilon$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Example NFA

```
\rightarrow L = (ab \cup aba)^*
\rightarrow As many as (ab \cup aba)'s you like.
\rightarrow (ab \cup aba)^* = (ab \cup aba)(ab \cup aba)(ab \cup aba).....(ab \cup aba)
    aba)
    \checkmark ab
                          belongs
    ✓ aba
                          belongs
    belongs
    ✓ abaab
                          belongs
                          belongs
    ✓ abab
    × abababba
                          does not belong
```


Figure: DFA for $L = (ab \cup aba)^*$

Figure: NFA for $L = (ab \cup aba)^*$