HMEAE: Hierarchical Modular Event Argument Extraction

Xiaozhi Wang¹, Ziqi Wang¹, Xu Han¹, Zhiyuan Liu¹, Juanzi Li¹, Peng Li², Maosong Sun¹, Jie Zhou², Xiang Ren³

¹Department of Computer Science and Technology, Tsinghua University ²Pattern Recognition Center, WeChat, Tencent Inc ³Department of Computer Science, University of Southern California.

November 7, 2019

Introduction

- Event argument extraction (EAE):
 - Identify the entities serving as event arguments
 - Classify their argument roles

Second stage of Event Extraction

Introduction

• The second stage of Event Extraction

The bottleneck of Event Extraction

Motivation

Existing methods treat argument roles as mutually

Some argument roles are conceptually closer than others

Motivation

Some argument roles are conceptually closer than others

• How to utilize the concept hierarchy?

Our Model

- Neural Module Networks
 - Imitating the concept hierarchical structure
 - Provide effective inductive bias for EAE

Overall architecture

Superordinate Concept Module (SCM)

- One superordinate concept is corresponding to one module
- Attention module, to highlight related information

Superordinate Concept Module (SCM)

- One superordinate concept is corresponding to one module
- Attention module, to highlight related information

Logic Union Module

- Compose corresponding SCMs
- Depends on the argument role

Argument Role Classifier

- Given the embeddings
- Predict whether this instance is of this argument role

Instance Encoder

- Encode text and the candidate entity into embeddings
- Feature Aggregator: pooling, aggregate into a global instance embedding
- HMEAE is agnostic to the encoder

Instance Encoder

- · Encode text and the candidate entity into embeddings
- Feature Aggregator: pooling, aggregate into a global instance embedding
- HMEAE is agnostic to the encoder

Instance Encoder

- Encode text and the candidate entity into embeddings
- Feature Aggregator: pooling, aggregate into a global instance embedding
- HMEAE is agnostic to the encoder

Overall Results

Method	Argument Role Classification		
	P	R	F1
Li's Joint	64.7	44.4	52.7
DMCNN	62.2	46.9	53.5
RBPB	54.1	53.5	53.8
JRNN	54.2	56.7	55.4
dbRNN	66.2	52.8	58.7
HMEAE (CNN)	57.3	54.2	55.7
DMBERT	58.8	55.8	57.2
HMEAE (BERT)	62.2	56.6	59.3

Table 1: The overall results (%) on ACE 2005.

Overall Results

Method	Argument Role Classification		
	P	R	F1
DISCERN-R	7.9	7.4	7.7
Washington4	32.1	5.0	8.7
CMU CS Event1	31.2	4.9	8.4
Washington1	26.5	6.8	10.8
DMCNN	17.9	16.0	16.9
HMEAE (CNN)	15.3	22.5	18.2
DMBERT	22.6	24.7	23.6
HMEAE (BERT)	24.8	25.4	25.1

Table 2: The overall results (%) on TAC KBP 2016.

Case Study

• Do the SCMs really capture its corresponding concepts?

Figure 1: Heatmap for attention scores of three SCMs on the left sentence.

Conclusion and Future work

- A modular architecture imitating a prior structure (concept hierarchy) can provide effective inductive bias
- Other tasks? Other priors?
- Automatic design the architecture?

The End

Thanks for listening. Questions are welcome.

(a) Code

(b) Paper