$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_5-t_1)}{(t_1+2k^2 t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
${\mathfrak l}_1^{\#1}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	341 6	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$i \sqrt{2} k(t_1 - 2t_2)$ $(1 + k^2) (3t_1t_2 + 2k^2t_5 (t_1 + t_2))$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	${r_{1}^{\#1}} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{#2} + \alpha$	$\tau_1^{\#1} + ^{\alpha}$	$\tau_{1}^{#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{\sharp_{1}}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0

$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	1 -	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

_	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	t_2

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\sharp 1}{}_{\alpha\beta\chi}$
$\omega_{2^+}^{\sharp 1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	<u>t1</u> 2

Lagrangian density

Source constraints

O(3) irreps	#
# ₂ == 0	1
$_{0^{+}}^{\#1}$ - 2 $i k \sigma_{0^{+}}^{\#1} == 0$	1
$a_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
#1α 1 == 0	3
$_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta = 0$	3
$_{2}^{\#1\alpha\beta}$ - 2 <i>i k</i> $\sigma_{2}^{\#1\alpha\beta}$ == 0	5
otal #:	16

Massive particle

?	Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$		
$J^P = 1^+$	Polarisations:	3		
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$		
?	Spin:	1		
	Parity:	Even		

Unitarity conditions

 $r_5 > 0 \&\& (t_1 < 0 \&\& (t_2 < 0 || t_2 > -t_1)) || (t_1 > 0 \&\& -t_1 < t_2 < 0)$

(No massless particles)