Bayesian workflow for disease transmission modeling in Stan

Léo Grinsztajn, Charles Margossian, Julien Riou, Elizaveta Semenova

> Berlin Bayesians Meetup 7 December 2021

Preface

- Objective: fit simple transmission models in Stan
- Based on Grinsztajn et al., 2021 (link)
- Prerequisites:
 - basic programming with R
 - general understanding of Bayesian inference
- All material is available on github (<u>link</u>)

Outline

Models of disease transmission

Bayesian inference with Stan

Fitting a simple SIR

Bayesian workflow

Using simulations to understand the model

Extension: Covid-19 transmission in Switzerland

Bonus

Models of disease transmission:

- Interpretability: phenomenological, mechanistic
- ► Scale: population-based, agent-based
- ► Framework: deterministic, stochastic
- Data-generating mechanisms: incubation, contagion, immunity, vaccination, mobility...

Models of disease transmission:

- ▶ Interpretability: phenomenological, mechanistic
- ► Scale: population-based, agent-based
- ► Framework: deterministic, stochastic
- Data-generating mechanisms: incubation, contagion, immunity, vaccination, mobility...

Mechanistic + population-based + deterministic

 \rightarrow ordinary differential equations (ODE)-based compartmental model

ODE-based compartmental model:

- Divide the population into homogeneous groups (compartments)
- ▶ Define the flows between compartments with ODEs
- Define initial conditions (at t₀)
- Solve for the time-dependent volume in each compartment

ODE-based compartmental model:

- Divide the population into homogeneous groups (compartments)
- ▶ Define the flows between compartments with ODEs
- ▶ Define initial conditions (at t_0)
- Solve for the time-dependent volume in each compartment

The susceptible-infectious-recovered (SIR) model:

The SIR model

Where:

- \triangleright S(t) is the number of people susceptible to infection
- ightharpoonup I(t) is the number of people infected (i.e. the prevalence)
- ightharpoonup R(t) is the number of people recovered (lifelong immunity)
- ▶ N is the population size (S(t) + I(t) + R(t) = N for any t)
- \triangleright β is the infectious contact rate (per day per person)
- $ightharpoonup \gamma$ is the recovery rate (1/infectious period)

The SIR model

Intuition behind the SIR model:

- I(t)/N is the proportion of infected (and infectious)
- ightharpoonup eta I(t)/N is the daily number of contacts with infectious people
- ▶ hence each day, $\beta SI(t)/N$ people become infected (the force of infection)

The SIR model

Assumptions behind the SIR model:

- homogeneous mixing
- $ightharpoonup \beta$ and γ constant over time
- all infections are observed
- no incubation, exponentially-distributed recovery
- ▶ lifelong immunity
- stable population

- load library deSolve (and tidyverse)
- set compartments and differential equations

```
sir = function(t, x, pars, ...) {
  with(as.list(c(x, pars)), {
    dS = - beta*S*I/(S*I*R)
    dI = beta*S*I/(S*I*R) - gamma*I
    dR = gamma*I
    list(c(dS, dI, dR))
  })
}
```

- load library deSolve (and tidyverse)
- set compartments and differential equations

```
sir = function(t, x, pars, ...) {
  with(as.list(c(x, pars)), {
    dS = - beta*S*I/(S+I+R)
    dI = beta*S*I/(S+I+R) - gamma*I
    dR = gamma*I
    list(c(dS, dI, dR))
})
}
```

• set (fixed) values for parameters: $\beta = 0.8$; $\gamma = 1/7$

```
pars = c(beta = 0.8, gamma = 1/7)
```

- load library deSolve (and tidyverse)
- set compartments and differential equations

```
sir = function(t, x, pars, ...) {
  with(as.list(c(x, pars)), {
    dS = - beta*S*I/(S+I+R)
    dI = beta*S*I/(S+I+R) - gamma*I
    dR = gamma*I
    list(c(dS, dI, dR))
})
}
```

• set (fixed) values for parameters: $\beta = 0.8$; $\gamma = 1/7$

```
pars = c(beta = 0.8, gamma = 1/7)
```

set (fixed) values for initial values

```
N_0 = 100000
I_0 = 50
inits = c(S = N_0 - I_0,
I = I_0,
R = 0)
```

▶ solve the ODE system numerically (Runge-Kutta 4th order) to obtain unique solutions for S(t), I(t) and R(t)

$$f(\beta, \gamma, S_0, I_0, R_0) = \{S(t), I(t), R(t)\}$$

```
times = seq(0,50,by=1)
sim_data = ode(inits, times, sir, pars, method="rk4")
```

with $\beta=$ 0.8; $\gamma=1/7;$ $\emph{S}_{0}=100000-50;$ $\emph{I}_{0}=50$ and $\emph{R}_{0}=0$

with $\beta = 1.1$ instead of 0.8, we get

with $\beta = 0.6$ instead of 0.8, we get

with R(0) = 20,000 instead of 0, we get

Compartmental models have many uses:

 get mechanistic insight about an epidemic (transmissibility levels, drivers of transmission)

$$\mathcal{R}_0 = \frac{\beta}{\gamma}$$

 formalize and put numerical values on general concepts (herd immunity threshold...)

$$V_c = \frac{1}{\mathcal{R}_0}$$

 produce (short-term) forecasts accounting for contagion and immunity

Compartmental models have many uses:

 get mechanistic insight about an epidemic (transmissibility levels, drivers of transmission)

$$\mathcal{R}_0 = \frac{\beta}{\gamma}$$

 formalize and put numerical values on general concepts (herd immunity threshold...)

$$V_c = \frac{1}{\mathcal{R}_0}$$

produce (short-term) forecasts accounting for contagion and immunity

 \rightarrow all these uses are based on numerical values for β , γ and the initial conditions and their uncertainty

Enters Bayesian inference:

- infer parameter values by integrating data and domain knowledge
- more efficient for complex models (high dimensionality)
- rigorously quantify and propagate uncertainty in parameter estimates and forecast

Enters Bayesian inference:

- infer parameter values by integrating data and domain knowledge
- more efficient for complex models (high dimensionality)
- rigorously quantify and propagate uncertainty in parameter estimates and forecast

→ Markov Chain Monte Carlo (MCMC) methods and Stan

Outline

Models of disease transmission

Bayesian inference with Stan

Fitting a simple SIR

Bayesian workflow

Using simulations to understand the model

Extension: Covid-19 transmission in Switzerland

Bonus

Bayesian inference

$$\underbrace{p(\theta|y)}_{\text{posterior}} \propto \underbrace{p(y|\theta)}_{\text{likelihood}} \underbrace{p(\theta)}_{\text{prior}}$$

General principle

General principle of Bayesian inference:

- specify a complete Bayesian model
 - consider data $y = \{y_1, ..., y_n\}$ and parameter θ
 - specify an observation model, e.g.

$$p(y|\theta) = \prod_{n} \mathsf{normal}(y_n|\theta,1)$$

- complete the model with a prior distribution, e.g.

$$p(\theta) = \text{normal}(0, 1)$$

sample the posterior distribution of the parameter

Stan

Stan is a probabilistic programming framework for Bayesian inference

- it is designed to let the user focus on modeling while inference happens under the hood
- object-oriented language (based on C++) that supports many operations, probability densities and ODE solvers
- extremely efficient MCMC algorithm (Hamiltonian Monte Carlo)
- diagnostic tools to evaluate the inference
- ▶ interfaces in R (package rstan), python, julia...

Stan program structure

A Stan program is structured in blocks:

- ▶ functions
- data
- transformed data
- parameters
- transformed parameters
- ▶ model
- generated quantities

the data block defines data variables

```
data {
  int N;
  real y[N];
}
```

the parameters block defines parameters

```
parameters {
  real theta;
}
```

the model block defines the target log probability density function

```
model {
  theta ~ normal(0,1);
  y ~ normal(theta,1);
}
```

save in model_linear.stan

We then explore the target with Stan's MCMC sampler:

► load rstan package

```
## Setup ----
Library(rstan)
options(mc.cores = parallel::detectCores())
```

▶ simulate N = 50 data points with $\theta = 0.7$

```
## Simulate data ----
N = 50
theta = 0.7
y = rnorm(N,theta,1)
input_data = list(N=N,y=y)
```

► run MCMC sampling

We use multiple chains and inspect convergence after warm-up

We use multiple chains and inspect convergence after warm-up

The post-warm-up samples of θ approximate its posterior distribution

Stan example

We run basic diagnostics tools: divergences, tree depth, energy

```
> check_hmc_diagnostics(fit)

Divergences:
0 of 2000 iterations ended with a divergence.

Tree depth:
0 of 2000 iterations saturated the maximum tree depth of 10.

Energy:
E-BFMI indicated no pathological behavior.
```

Stan example

Printing the object gives:

- ightharpoonup diagnostics: effective sample size, Gelman-Rubin \hat{R}
- ightharpoonup inference: full posterior distribution of heta

```
> print(fit)
Inference for Stan model: model_linear.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
theta 0.78 0.01 0.14 0.51 0.69 0.78 0.87 1.05 760 1
lp__ -18.30 0.03 0.73 -20.28 -18.44 -18.03 -17.86 -17.81 799 1

Samples were drawn using NUTS(diag_e) at Thu Nov 12 19:15:33 2020.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
```

Outline

Models of disease transmission

Bayesian inference with Stan

Fitting a simple SIR

Bayesian workflow

Using simulations to understand the model

Extension: Covid-19 transmission in Switzerland

Bonus

Example dataset

Outbreak of influenza A (H1N1) at a British boarding school in 1978 (available in R package outbreaks)

- ▶ 763 students, 512 had symptoms
- daily number of students in bed over 14 days (prevalence)

Specify the model

Points to consider:

- ▶ prevalence data: \mathbb{I}_t with $t \in \{1, ..., 14\}$
- ▶ inputs that will remain fixed: ${S_0 = 762, I_0 = 1, R_0 = 0}$
- ▶ map data \mathbb{I}_t to SIR model output I(t) using an observation model with an appropriate probability distribution:

$$p(\mathbb{I}| heta) = \prod_{t=1}^{14} \mathsf{NegBinomial}(\mathbb{I}_t|I(t),\phi)$$

- **parameters** to estimate: $\theta = \{\beta, \gamma, \phi\}$
- prior distributions

$$p(eta) = \mathsf{Exponential}(1)$$
 $p(1/\gamma) = \mathsf{Normal}(2, 0.5)$

 $p(1/\phi) = \text{Exponential}(5)$

▲ Note that further we are using ODE signature as presented in the paper. Since then a new interface has become available.

We define the ODE system in the function block

```
real[] sir(real t, real[] y, real[] theta, real[] x_r, int[] x_i) {
 real S = v[1]:
 real I = y[2];
 real R = y[3];
 real N = x i[1];
 real beta = theta[1];
 real gamma = theta[2];
  real dS_dt = -beta * I * S / N;
  real dI_dt = beta * I * S / N - gamma * I;
  real dR_dt = gamma * I;
  return {dS dt, dI dt, dR dt}:
```

▲ Be careful of the signature and formats!

We declare the data variables in the data block

```
data {
  int<lower=1> T;
  real y0[3];
  real t0;
  real ts[T];
  int N;
  int cases[T];
}
```

We declare the data variables in the data block

```
data {
  int<lower=1> T;
  real y0[3];
  real t0;
  real ts[T];
  int N;
  int cases[T];
}
```

and define additional data variables in transformed data block

```
transformed data {
  real x_r[0];
  int x_i[1];
  x_i[1]=N;
}
```

Similarly, parameters are declared in the parameters block

```
parameters {
  real<lower=0> beta;
  real<lower=0> recovery_time;
  real<lower=0> phi_inv;
}
```

 $\pmb{\mathbb{A}}$ It sometimes makes more sense to transform some parameters (e.g., recovery rate γ and overdispersion $\phi)$ to improve interpretability

In transformed parameters, we define additional parameters and solve the ODE system

```
transformed parameters{
  real y[T,3];
  real phi = 1. / phi_inv;
  real gamma = 1. / recovery_time;
  real theta[2];
  theta[1] = beta;
  theta[2] = gamma;

  y = integrate_ode_rk45(sir, y0, t0, ts, theta, x_r, x_i);
}
```

y = integrate_ode_rk45(sir, y0, t0, ts, theta, x_r, x_i);

- ▶ Be careful about the formats and signatures
 - the ODE output y is an array of size $T\times 3$ (number of time steps and number of compartments)
 - sir is the name of the function defined in the function block
 - y0 is an array of size 3 defined in the data block
 - ts is an array of size T defined in the data block
 - theta is an array of size 2 storing the parameters
 - x_r is defined as empty in transformed data, but can be used to store fixed real values
 - x_i is an array of size 1 storing the population size N (can also be used to store fixed integer values)

```
y = integrate_ode_rk45(sir, y0, t0, ts, theta, x_r, x_i);
```

- Chose an ODE solver. In the previous interface:
 - integrate_ode_rk45 uses the Runge-Kutta method (quicker but non-adapted to stiff systems)
 - integrate_ode_bdf uses the backward differentiation method (slower but adapted to stiff systems)
- ► In the new interface:
 - ode_bdf, ode_adams, ode_rk45,
 - ode_bdf_tol,ode_adams_tol, ode_rk45_tol

In the model block, we write the priors and the observation model

```
model {
    // priors
    beta ~ exponential(1);
    recovery_time ~ normal(2,0.5);
    phi_inv ~ exponential(5);

    // observation model
    cases ~ neg_binomial_2(col(to_matrix(y),2), phi);
}
```

A It's important that the chosen distributions correspond with the boundaries set in the parameters block (<lower=0>)

▲ col(to_to_matrix(y)) extracts the 2nd column of y

Last, we add a generated quantities block that does not influence sampling and can be used for "post-processing":

- reproduction number $\mathcal{R}_0 = \beta/\gamma$
- model predictions of prevalence from the negative binomial

```
generated quantities {
  real R0 = beta/gamma;
  real pred_cases[T];
  pred_cases = neg_binomial_2_rng(col(to_matrix(y),2), phi);
}
```

In summary:

- ► functions: define the ODE system (▲ signature and formats)
- data: declare data variables that will be provided
- tranformed data: additional quantities that can be computed internally or from data variables
- parameters: declare parameters (boundaries)
- ► transformed parameters: quantities that can be computed internally or from data or parameters variables, including the ODE output (▲ signature and format)
- model: priors and observation model
- generated quantities: additional quantities that can be computed without influencing the sampling

Inference

As before, we conduct the inference from R with the package rstan:

```
## Format input ----
# prevalence data
cases = influenza_england_1978_school$in_bed
N = 763
n_days = 14
t0 = 0
t = 1:n_days

# initial conditions
i0 = 1
s0 = N - i0
r0 = 0
y0 = c(s0, i0, r0)

# put into list
input_data = list(T = n_days, y0 = y0, t0 = t0, ts = t, N = N, cases = cases)
```

A data is put in a list with names matching the data block in Stan

Inference

Hit the inference button!

Use the basic diagnostics tools:

```
> check_hmc_diagnostics(fit)
Divergences:
0 of 2000 iterations ended with a divergence.
Tree depth:
0 of 2000 iterations saturated the maximum tree depth of 10.
Energy:
E-BFMI indicated no pathological behavior.
```

Examine trace plots:

Examine chain mixing:

Posterior predictive checking:

Results

Print the results:

```
print(fit,pars=c("beta","gamma","phi","R0","recovery_time"))
Inference for Stan model: sir_negbin.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.
                           sd 2.5% 25% 50% 75% 97.5% n eff Rhat
             mean se mean
             1.73 0.00 0.06 1.61 1.70 1.73 1.76 1.85 1049
beta
gamma
             0.53 0.00 0.04 0.44 0.50 0.53 0.56 0.63 1382
phi
             9.61 0.22 6.13 2.94 5.72 8.31 11.80 23.40 743
RO
             3.27 0.01 0.29 2.79 3.09 3.25 3.42 3.96 1403
recovery time 1.89 0.00 0.16 1.59 1.79 1.88 1.98 2.25 1410
Samples were drawn using NUTS(diag_e) at Thu Nov 12 19:10:02 2020.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
```

Results

- we estimate \mathcal{R}_0 to 3.3 (95% credible interval: 2.8 to 4.0)
- ▶ this corresponds to the direct estimation from the final size of the epidemic q = 512/763 = 0.67

$$\mathcal{R}_0 = 1/(1-q) = 3.03$$

- based on many assumptions:
 - common to all SIRs (homogeneous mixing, no incubation...)
 - prior distributions (especially on the recovery period)
 - complete ascertainment, no asymptomatics
 - no initial immunity

Outline

Models of disease transmission

Bayesian inference with Stan

Fitting a simple SIR

Bayesian workflow

Using simulations to understand the model

Extension: Covid-19 transmission in Switzerland

Bonus

Box's loop

In practice, the situation is often less clear than in the boarding school example:

- incomplete data, insufficient domain knowledge
- uncertainty on necessary model features

Box's loop

Box's loop

Model development

Model development is an iterative procedure:

- troubleshoot the model before fitting it,
- criticize the inference after attempting a fit,
- criticize the fitted model.

Outline

Models of disease transmission

Bayesian inference with Stan

Fitting a simple SIR

Bayesian workflow

Using simulations to understand the model

Extension: Covid-19 transmission in Switzerland

Bonus

Model development

Fake data can be used to probe the model and better understand its behaviour:

- prior predictive checks
- simulation study

Prior predictive checking consists in simulating data from the priors:

- visualize priors (especially after transformation)
- this shows the range of data compatible with the model
- ▶ it helps understand the adequacy of the chosen priors, as it is often easier to elicit expert knowledge on measureable quantities of interest rather than abstract parameter values

Prior predictive checking consists in simulating data from the priors:

- visualize priors (especially after transformation)
- this shows the range of data compatible with the model
- ▶ it helps understand the adequacy of the chosen priors, as it is often easier to elicit expert knowledge on measureable quantities of interest rather than abstract parameter values
- remove (or switch off) the likelihood from the model block

```
// observation model
if(switch_likelihood==1) cases ~ neg_binomial_2(col(to_matrix(y),2), phi);
```

Simulating priors in the boarding school example:

Prior predictive check: simulating potential epidemic trajectories

Prior predictive check: simulating potential epidemic trajectories

Prior predictive checks

Prior predictive checks bring insight about non-obvious features:

- even if the priors seem weakly informative, there is actually not a lot of leeway
- highly constrained model:
 - if β is high, the epidemic will stop rapidly by lack of susceptibles
 - if β is small, the epidemic will be small
- ▶ the negative binomial distribution might lead to problems in extreme situations, e.g. more cases (>1000) than the overall number of students

A simulation study consists out of two steps:

- simulate data with specified parameter values
- measure the capacity of the model to recover the chosen parameter values

A simulation study consists out of two steps:

- simulate data with specified parameter values
- measure the capacity of the model to recover the chosen parameter values

Many advantages:

- check for bugs and coding mistakes
- check for identifiability issues
- compare different versions of a model
- understand in what situations a model works or not

Let's go back to the simple SIR example from the beginning:

- ightharpoonup set $\beta=2$ and $\gamma=0.5$ (so that $\mathcal{R}_0=4$)
- ightharpoonup simulate in a susceptible population of size N=763 with $I_0=1$

Add noise with a negative binomial distribution with $\phi=15$

Fit the same model as for the boarding school example

Posterior predictive checking

Compare the posterior distributions of the parameters with the "truth"

- no identifiability issue
- \blacktriangleright β and γ are well estimated, but ϕ is not
- try with other values to understand when does the model break

Outline

Models of disease transmission

Bayesian inference with Stan

Fitting a simple SIR

Bayesian workflow

Using simulations to understand the model

Extension: Covid-19 transmission in Switzerland

Bonus

New Covid-19 cases in Switzerland in 2020

Basic SIR

Transformed parameters block

```
for (i in 1:n_days-1)
  incidence[i] = y[i, 1] - y[i + 1, 1]; //S(t) - S(t + 1)
```

Model block

```
cases[1:(n_days-1)] ~ neg_binomial_2(incidence, phi);
```

Basic SIR

- ## Warning: The largest R-hat is 1.54, indicating chains have not mixed.
- ## Running the chains for more iterations may help. See
- ## http://mc-stan.org/misc/warnings.html#r-hat

Adding underreporting: Stan code

parameters block

```
parameters {
  real<lower=0> gamma;
  real<lower=0> beta;
  real<lower=0> phi_inv;
  real<lower=0, upper=1> p_reported; // proportion of infected (sympton);
}
```

transformed parameters block

```
for (i in 1:n_days-1){
   incidence[i] = (y[i, 1] - y[i+1, 1]) * p_reported;
}
```

model block

```
p_reported ~ beta(1, 2);
```

Adding underreporting: posterior predictive check


```
real dS_dt = -beta * I * S / N;
real dE_dt = beta * I * S / N - a * E;
real dI_dt = a * E - gamma * I;
real dR_dt = gamma * I;
```

Incubation time between 1/2 and 30 days $ightarrow a \sim \mathcal{N}^+(0.4,0.5)$

Domain knowledge $ightarrow rac{1}{a} \sim \mathcal{N}^+(6,1)$

- ▶ P(reported) is very low ($\leq 1\%$)
- Indeed, in a SEIR model, cases only decrease through immunity
- We need to model control measures

Modeling control measures

$$\beta(t) = f(t) * \beta$$
, with $f(t) = \eta + (1 - \eta) * \frac{1}{1 + \exp(\xi * (t - t_1 - \nu))}$
Parameters

- $ightharpoonup \eta$ is the decrease of transmission while control measures are fully in place
- \blacktriangleright ξ is the slope of the decrease
- ν is the delay (after the date of introduction of control measures) until the measures are 50

Priors

- $\eta \sim \beta(2.5,4)$ which means we expect governmental measures to reduce transmission, but not all the way to zero.
- $\nu \sim exponential(1/5)$ which means the delay should be around a week but could be lower or quite higher.
- $\xi \sim \mathcal{U}(0.5, 1.5)$, which means the slope has to be positive.

Modeling control measures

Using serological survey data

Survey data from May 4 to May 7 in Geneva (83 / 775 have antibodies)

Assumptions:

- Geneva is representative of Switzerland
- ► Having antibodies = being in the R compartment

transformed parameters block

```
p_infected_survey = mean(to_vector(y[t_survey_start:t_survey_end, 4])) / N;
```

model block

```
n_infected_survey ~ binomial(n_tested_survey, p_infected_survey);
```

Final model

Possible improvements

- ► Relax assumptions
- Incorporate testing or death data
- ► Stratify by age, location...

Extension conclusion

Building a model step by step using the Bayesian workflow allows us

- to understand its failure modes better
- to know when we need to add more information into the model
- ▶ to be more transparent by sharing the different versions

General conclusions

General comments:

- develop models that correspond to the data-generating mechanisms
- use Bayesian inference to propagate uncertainty from the data (and priors) into the results (and forecasts)
- carefully examine the modelling process (Bayesian workflow)
- be transparent about assumptions (open code)

Try by yourself!

- https://github.com/charlesm93/disease_ transmission_workflow
- ▶ julien.riou@ispm.unibe.ch

Acknowledgements & ressources

- Michael Betancourt, Introduction to Stan https://betanalpha.github.io/assets/case_studies/ stan_intro.html
- Andrew Gelman et al., Bayesian workflow https://arxiv.org/abs/2011.01808
- Chi Feng, MCMC interactive gallery https://chi-feng.github.io/mcmc-demo/app.html
- Daniel Lee, ODEs in Stan https://youtu.be/hJ34_xJhYeY
- ▶ Ben Bales, Sebastian Weber , Upgrading to the new ODE interface
 - https://mc-stan.org/users/documentation/case-studies/convert_odes.html

Outline

Models of disease transmission

Bayesian inference with Stan

Fitting a simple SIR

Bayesian workflow

Using simulations to understand the model

Extension: Covid-19 transmission in Switzerland

Bonus

Example with SARS-CoV-2 from Hauser et al. (2020):

PLOS MEDICINE

⑥ OPEN ACCESS PEER-REVIEWED RESEARCH ARTICLE

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser, Michel J. Counotte, Charles C. Margossian, Garyfallos Konstantinoudis, Nicola Low, Christian L. Althaus, Julien Riou

Published: July 28, 2020 • https://doi.org/10.1371/journal.pmed.1003189

In Hubei province (China):

Specific features and natural history of SARS-CoV-2 infection:

- ► Incubation period of 5 days (SEIR)
- Pre-symptomatic transmission accounting for 44-48% (SEPIR)
- Symptoms in 81% (95%Crl 71%–89%) of cases (SEPIAR)
- Respiratory virus transmitted through contacts (age stratification)
- ► Effect of control measures (time-dependent force of infection)
- lacktriangle Mortality is delayed by 20.2 ± 11.6 days (fit to mortality data)

Final model:

S_k	Susceptible (for age group k)	$\lambda_k(t)$	Force of infection (time-dependent)
E_k	Exposed	$1/\tau_1 + 1/\tau_2$	Incubation period (split in two)
P_k	Presymptomatic	ψ	Proportion of symptomatic
A_k	Infected asymptomatic	$1/ au_2$	Presymptomatic infectious period
I_k	Infected symptomatic	$1/\mu$	Symptomatic infectious period
Rı.	Removed		

Posterior predictive check (Hubei):

