

REAL TRANSLATES

Definition

The translate of $S \subset \mathbf{R}^n$ by the vector $a \in \mathbf{R}^n$ is the set

$$\{z \in \mathbf{R}^n \mid \exists x \in S \text{ such that } z = x + a\}.$$

Notation

We often use the abbreviated notation S + a for the translate of S by a. It is sometimes also convenient to extend set-builder notation and write

$$S + a = \{x + a \mid x \in M\}.$$

The right hand side is slick notation for the definition given above.

Sums and differences

The sum (or Minkowski sum) of two sets $S, T \subset \mathbb{R}^n$ is the set

$$\{z\in \mathbf{R}^n\mid (\exists x\in S)(\exists y\in T)(z=x+y)\}.$$

Likewise, the difference (or Minkowski difference) of two sets $S,T\subset \mathbf{R}^n$ is the set

$$\{z \in \mathbf{R}^n \mid (\exists x \in S)(\exists y \in T)(z = x - y)\}.$$

Notation

We denote the sum of S and T by S + T, and the difference by S - T. We often use the slick notation

$$\{x + y \mid x \in S, y \in T\} \text{ and } \{x - y \mid x \in S, y \in T\},\$$

for these two sets. Notice that in this notation

$$\{a\} + B = a + B$$

¹This second notation unfortunately conflicts with our notation for set differences. Future editions will correct.

Scaled sets

Given a set $A \subset \mathbb{R}^n$ and a $\lambda \in \mathbb{R}$, the set which is A scaled by (or scaled set, scaling) is

$$\{z \in \mathbf{R}^n \mid (\exists x \in A)(z = \lambda x)\}$$

We often denote this set by λA . As before, we often use the slick notation

$$\lambda A = \{ \lambda a \mid a \in A \}$$

The set (-1)A is denoted -A

Homothetic sets

A set A is homothetic to a set B if there is $x \in \mathbb{R}^n$ and $\lambda \neq 0$ so taht

$$A = x + \lambda B$$

If $\lambda > 0$, A is positively homothetic to B.

