Relatório Lab 5 - CT213

Tabela com observações sobre o comportamento dos algoritmos.

Algoritmo	S-ES (12,24)	CMA-ES
Translated Sphere	Nem sempre ótimo	Sempre ótimo
Ackley	Frequentemente ótimo	Sempre ótimo
Schaffer2D	Fica preso facilmente em minímos locais, às vezes ótimo, às vezes fora do gráfico	Quase sempre ótimo
Rastrigin	Similar ao CMA-ES	Acha soluções próximas da ótima, às vezes ótimo

Gráfico da Simple Evolution Strategy

Translated Sphere

Ackley

Schaffer 2D

Rastrigin

Gráfico da CMA - Evolution Strategy

Translated Sphere

Schaffer 2D

Rastrigin

Monte Carlo - Translated Sphere

Best Fitness - translated sphere

Monte Carlo - Ackley

Monte Carlo - Schaffer 2D

Monte Carlo - Rastrigin

Mean Fitness - rastrigin

Conclusões do benchmark

Translated Sphere: Problema com mínimo único, CMA-ES se adapta bem ao problema (mecanismos de adaptação como tamanho de passo, média e covariância fazem seu trabalho), mas Gradient Descent seria mais eficiente (poucas dimensões e gradiente fácil de calcular). Mesmo a (12,24)-SES não consegue se adaptar bem e acaba precisando de um número de interações muito grande para sempre achar o ótimo.

Ackley: Possui muitos mínimos, gradiente difícil para calcular, o CMA-ES adapta-se muito bem. SES precisa de uma população grande e vários parents para chegar num resultado próximo ao CMA-ES.

Schaffer 2D : Aqui os hiperparâmetros do (12,24)-SES parecem ter se encaixado muito bem no problema, de forma que o desempenho ficou bem próximo do CMA-ES. Ainda há problema de convergência para mínimo local, mas é minimizado.

Rastrigin: Confirmando as intuições, o comportamento dos 2 algoritmos torna-se bem parecido quando usamos o (12,24)-SES. Sendo uma função com muitos mínimos locais, faz sentido precisarmos de uma população e número de parents maior para achar uma solução ótima.