WHAT IS CLAIMED IS:

1
Z

1

1 2

3

1

2

3

1

2

3

1

2

1

2

- A control system for processing sampled servo data in a disk drive, the control system comprising:
 a microprocessor for executing firmware code; and
- an accelerator circuit for performing operations on the sampled servo data while the microprocessor is executing the firmware code, the accelerator circuit comprising
- a position error signal (PES) calculator circuit for calculating a PES value
 based on the sampled servo data; and
 a write unsafe (WUS) estimator responsive to the calculated PES value
- and to a WUS limit parameter, the WUS estimator further for signaling the microprocessor when the calculated PES value exceeds the WUS limit parameter.
 - 2. A control system for processing sampled servo data as defined in claim 1, further comprising a bus for transmitting the WUS limit parameter from the microprocessor to the accelerator circuit.
 - 3. A control system for processing sampled servo data as defined in claim 1, wherein the accelerator circuit further comprises a WUS limit register for storing the WUS limit parameter.
 - 4. A control system for processing sampled servo data as defined in claim 1, wherein the accelerator circuit further comprises a PES register for storing the calculated PES value.
 - 5. A control system for processing sampled servo data as defined in claim 1, wherein the PES value is further based on a parameter stored in a parameter register.
- 6. A control system for processing sampled servo data as defined in claim 1, wherein the servo processing accelerator circuit has a plurality of multipliers that may simultaneously perform parallel calculations.

1	7.	A control system for processing data from sampled servo wedges for positioning a		
2	transducer head in a disk drive, the control system comprising:			
3		a microprocessor for executing firmware code; and		
4		a servo processing accelerator circuit for executing servo processing functions		
5	while the microprocessor is executing the firmware code, the servo processing accelerator circuit			
6	comprising			
7		a position error signal (PES) calculator circuit for calculating a stream of		
8	PES values based on data read from the sampled servo wedges;			
9		a servo-loop compensator for processing the stream of PES values and		
10	generating a stream of control effort values for positioning the transducer head during a			
11	track following operation.			
1	8.	A control system for processing data from sampled servo wedges as defined in		
2	claim 7, wherein the PES values are further based on parameters stored in corresponding			
3	parameter registers.			
1	9.	A control system for processing data from sampled servo wedges as defined in		
2	claim 7, wherein the servo processing accelerator circuit has a plurality of multipliers that may			
3	simultaneous	sly perform parallel calculations.		
1	10.	A control system for processing data from sampled servo wedges for positioning a		
2	transducer he	ead in a disk drive, the control system comprising:		
3		a microprocessor for executing firmware code; and		
4		a servo processing accelerator circuit for executing servo processing functions		
5	while the microprocessor is executing the firmware code, the servo processing accelerator circuit			
6	including a servo-loop compensator for receiving a stream of PES values based on data read			
7	from the sampled servo wedges and generating a stream of control effort values based on the			
8	stream of PE	S values for positioning the transducer head during a track following operation.		
1	11.	A control system for processing data from sampled servo wedges as defined in		
2	claim 10, wh	nerein the PES values are further based on parameters stored in corresponding		
3	parameter registers.			

1	12.	A control system for processing data from sampled servo wedges as defined in	
2	claim 10, wherein the servo processing accelerator circuit has a plurality of multipliers that may		
3	simultaneously perform parallel calculations.		
1	13.	A magnetic disk drive, comprising:	
2		a head disk assembly (HDA) including	
3		a rotating magnetic disk having distributed position information in a	
4	plurality of uniformly spaced-apart servo wedges for defining data storage tracks,		
5		an actuator for positioning a transducer head in response to a control effort	
6	signal, the transducer head for periodically reading the distributed position information		
7	from the servo wedges and reading data from the data storage tracks; and		
8	a control system having		
9		an accelerator circuit for implementing a first sampled servo controller for	
10	periodically adjusting, only during a track-following operation under one or more of a		
11	first set of predetermined conditions, the control effort signal based on the distributed		
12	position information, and for indicating the occurrence of a predetermined condition		
13	withi	n a second set of predetermined conditions to the control system;	
14		a second sampled servo controller, separate from the accelerator circuit, for	
15	periodically adjusting the control effort signal based on the distributed position information		
16	during a track-following operation under one or more of the second set of predetermined		
17	conditions.		
1	14.	A magnetic disk drive as defined in claim 13, wherein	
2		the control system further includes a disk controller for controlling disk	
3	operations and a host interface for coupling the disk controller with a host system; and		
4		the second sampled servo controller, the disk controller and the host interface are	
5	implemented by a microprocessor that is separate from the accelerator circuit.		
1	15.	A magnetic disk drive as defined in claim 13, wherein the second sampled servo	

2

controller is implemented by the microprocessor using firmware code.

- 1 16. A magnetic disk drive as defined in claim 13, wherein the accelerator circuit has a plurality of multipliers that may simultaneously perform parallel calculations.
- 1 17. A magnetic disk drive as defined in claim 13 wherein the first set of predetermined conditions includes track following within a write unsafe limit.

1:

- 1 18. A magnetic disk drive as defined in claim 13 wherein the second set of 2 predetermined conditions includes track following outside of a write unsafe limit.
- 1 19. A magnetic disk drive as defined in claim 13, wherein, after receiving distributed position information in a servo wedge, the first sampled servo controller can adjust the control effort signal after a first processing delay and the second sampled servo controller can adjust the control effort signal after a second processing delay, wherein the first processing delay is less than the second processing delay.
- 1 20. A magnetic disk drive as defined in claim 19, wherein the first processing delay is 2 less than one-tenth of the second processing delay.
- 1 21. A magnetic disk drive as defined in claim 19, wherein the first processing delay is 2 less than one-fourth of the second processing delay.

1	22. A	magnetic disk drive, comprising:	
2	a	head disk assembly (HDA) including	
3		a rotating magnetic disk having distributed position information in a	
4	plurality	of uniformly spaced-apart servo wedges for defining data storage tracks,	
5		an actuator for positioning a transducer head in response to a control effort	
6	signal, the transducer head for periodically reading the distributed position information		
7	from the servo wedges and reading data from the data storage tracks; and		
8	a control system having		
9	an accelerator circuit for implementing a first sampled servo controller for		
10	periodically adjusting, only during a track-following operation under one or more of a		
11	first set of predetermined conditions, the control effort signal based on the distributed		
12	position information with a first processing delay;		
13		a microprocessor, separate from the accelerator circuit, for implementing a	
14	second sampled servo controller using firmware code for periodically adjusting the		
15	control e	ffort signal based on the distributed position information, with a second	
16	processin	ng delay that is substantially greater than the first processing delay, during an	
17	operation	under one or more of a second set of predetermined conditions;	
18	w	wherein the control system selects the first sampled servo controller for adjusting	
19	the control effort signal during a track-following operation under one or more of a first set of		
20	predetermined co	onditions, and selects the second sampled servo controller for adjusting the	
21	control effort sig	gnal during an operation under one or more of a second set of predetermined	
22	conditions.		
1	23. A	magnetic disk drive as defined in claim 22, wherein the first processing delay is	
2	less than one-ten	ath of the second processing delay.	
1	24. A	magnetic disk drive as defined in claim 22, wherein the first processing delay is	

less than one-fourth of the second processing delay.

2

1	25.	A magnetic disk drive as defined in claim 22, wherein
2		the control system further includes a disk controller for controlling disk
3	operations and	a host interface for coupling the disk controller with a host system; and
4		the second sampled servo controller, the disk controller and the host interface are
5	implemented l	by a microprocessor that is separate from the accelerator circuit.

- 1 26. A magnetic disk drive as defined in claim 22, wherein the second sampled servo 2 controller is implemented by the microprocessor using firmware code.
 - 27. A magnetic disk drive as defined in claim 22, wherein the accelerator circuit has a plurality of multipliers that may simultaneously perform parallel calculations.
- 1 28. A magnetic disk drive as defined in claim 22 wherein the first set of 2 predetermined conditions includes track following within a write unsafe limit.
- 1 29. A magnetic disk drive as defined in claim 22 wherein the second set of 2 predetermined conditions includes track following outside of a write unsafe limit.

1

2