Discrete Structures and Theory of Logic Lecture-25

Dharmendra Kumar August 27, 2020

Exercise

1. Find out the following POSETs are lattices or not.

2. Draw the diagram of lattices $\langle S_n, D \rangle$ for n = 4, 6, 10, 12, 15, 45, 60, 75 and 210. For what values of n, do you expect $\langle S_n, D \rangle$ to be a chain?

1

Exercise

- 3. Let R be the set of real numbers in [0,1] and \leq be the usual operation of "less than or equal" on R. Show that $\langle R, \leq \rangle$ is a lattice. What are the operations of meet and join on this lattice?
- 4. Let the sets S_0 , S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7 be given by $S_0 = \{a,b,c,d,e,f\}$ $S_1 = \{a,b,c,d,e\}$ $S_2 = \{a,b,c,e,f\}$ $S_3 = \{a,b,c,e\}$ $S_4 = \{a,b,c\}$ $S_5 = \{a,b\}$ $S_6 = \{a,c\}$ $S_7 = \{a\}$ Draw the diagram of $A_5 = \{a,b\}$ Draw the diagram of A_5

Principle of Duality

Any statement about lattices involving the operations \land and \lor remains true if \land is replaced by \lor and \lor is replaced by \land .

The operations \wedge and \vee are said to be dual of each other. For example $a \wedge b$ is the dual of $a \vee b$.

Properties of lattices

(1) Idempotent law

$$a \wedge a = a$$
, $a \vee a = a$

(2) Commutative law

$$a \wedge b = b \wedge a$$
, $a \vee b = b \vee a$

(3) Associative law

$$a \wedge (b \wedge c) = (a \wedge b) \wedge c$$
, $a \vee (b \vee c) = (a \vee b) \vee c$

(4) Absorption law

$$a \wedge (a \vee b) = a$$
, $a \vee (a \wedge b) = a$

4

Theorem: Let $\langle L, \preceq \rangle$ be a lattice. For any $a,b \in L$, $a \prec b \Leftrightarrow a \land b = a \Leftrightarrow a \lor b = b$

Proof: In this theorem, we have to prove many parts.

First part: In this part, we will prove $a \leq b \Leftrightarrow a \wedge b = a$.

Suppose $a \leq b$. Since $a \leq a$, therefore a = lower bound(l.b.) of a and b.

Since a is lower bound therefore, $a \leq greatest$ lower bound(g.l.b.) of a and b.

hence a \leq a \wedge b(1)

By the definition of glb, $a \land b \leq a \dots (2)$

from (1) and (2), $a \wedge b = a$.

Conversely, suppose $a \land b = a$.

By the definition of glb,

 $a \land b \preceq b$

Since $a \land b = a$, therefore $a \prec b$.

Second part: In this part, we will prove $a \leq b \Leftrightarrow a \lor b = b$.

Suppose $a \leq b$. Since $b \leq b$, therefore b = upper bound(u.b.) of a and b.

Since b is an upper bound therefore, least upper bound(l.u.b.) of a and b \leq b.

hence $a \lor b \leq b$ (1)

By the definition of lub, b \leq a \vee b(2)

from (1) and (2),

 $a \lor b = b$.

Conversely, suppose $a \lor b = b$.

By the definition of lub,

 $\mathsf{a} \preceq \mathsf{a} \vee \mathsf{b}$

Since $a \lor b = b$, therefore $a \le b$.

Third part: In this part, we will prove $a \land b = a \Leftrightarrow a \lor b = b$.

Suppose $a \wedge b = a$.

Now, $a \lor b = (a \land b) \lor b = b$, by absorption law.

Suppose a \lor b = b.

Now, $a \land b = a \land (a \lor b) = a$, by absorption law.