

Yu. Senichev (FZJ, Germany), S. Andrianov (SPbU,Russia), M. Berz (MSU, USA), S. Chekmenev (RWTH, Germany), A. Ivanov (SPbU, Russia), <u>E. Valetov (MSU, USA)</u>

Investigation of lattice for deuteron EDM ring

October 12, 2015



## <u>OUTLINE</u>

- -Concept of the Frozen Spin (FS) and the Quasi-Frozen Spin (QFS) methods
- Main features of the QFS method
- -FS and QFS lattices
- -Spin Coherence Time vs. RF and sextupole families
- -RF averaging, nonlinearities, and residual decoherence
- -Tracking results
- -Precursor experiments in a QFS-COSY ring

## How does the QFS lattice work?



### In electrostatic part

number of MDM spin oscillations relative to the momentum:

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right) \gamma \beta^2$$

$$v_s^E = \left(\frac{1}{\gamma^2 - 1} - G\right)$$

#### In magnetostatic part:

number of MDM spin oscillations relative to the momentum:

$$v_s^B = \gamma G$$
 $v_s^B = \gamma G$ 
 $v_s^$ 

In the region 75-300 MeV, the MDM spin oscillates 6-7 times faster in the electric field than in the magnetic field:



In the same region of energy, the **EDM** growth is higher by the same factor 6-7 in the magnetic field than in the electric field.

# Basic relations in the QFS structure between the magnetic arcs

Since in the electrostatic structure the spin rotates with a frequency that is  $K = \frac{V_5^E}{\tau_5^B}$  times faster than in magnetostatic structure, we have:

$$\pi + 2\alpha = \frac{v_s^E}{v_s^B} \cdot 2\alpha \qquad \text{and} \qquad \qquad = \frac{0.5 * \pi}{(v_s^E / v_s^B) - 1}$$

$$\frac{\pi + 2\alpha}{\text{part of quadrupole quadrupol$$

# Basic relations in the QFS structure between the magnetic arcs and the static Wien filters

$$(\gamma G + 1) \cdot \varphi_{SS}^{B} - \left(\gamma G + \frac{\gamma}{\gamma + 1}\right) \beta^{2} \cdot \varphi_{SS}^{E} = \gamma G \cdot \varphi_{arc}^{B}$$

 $\varphi_{\rm SS}^{\rm B}$  – <u>momentum</u> rotation in elements due to B field

 $(\gamma G + 1) \cdot \varphi_{SS}^B - \underline{\text{spin}}$  rotation in elements due to B field

$$-\left(\gamma G + \frac{\gamma}{\gamma + 1}\right)\beta^2 - \underline{\text{momentum}}$$
 rotation in elements due to E field

$$-\left(\gamma G + \frac{\gamma}{\gamma + 1}\right)\beta^2 \cdot \varphi_{ss}^E - \underline{spin}$$
 rotation in elements due to B field

 $\gamma G \cdot \varphi_{av}^{B} - \text{spin}$  rotation in arc due to B field

$$L_{el}E_{el} = \frac{G}{G+1} \cdot \frac{mc^2}{e} \cdot \pi \beta^2 \gamma^3 \text{ and } B_{el} = -\frac{E_{el}}{c\beta}$$





## **EDM growth: 3D spin-orbital simulation in MODE**





## $\eta = 10^{-15}$

### Results of the 3D spin-orbital simulation:

- -Due to Sx oscillation in QFS structure, the EDM signal decreases by 1%
- -In each magnet, the EDM signal grows by -2.14133779995135\*10<sup>-16</sup> and in each deflector by 3.20268895179507\*10<sup>-17</sup>



-In order to get total EDM signal  $\sim 10^{-6}$  we have to keep the beam in the ring during N<sub>turn</sub>  $\sim 10^9$  or  $\sim 800$  sec





## **FS Lattice with BNL elements**





## **QFS Lattice with the electrostatic arcs**





## **QFS lattice with static Wien filters**





## Parameters of the 3 lattices at Wd = 270 MeV

| Energy                                       | FS lattice with BNL elements                                           | QFS lattice with electrostatic arcs  | QFS lattice with static Wien filters             |
|----------------------------------------------|------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|
| Number FODO cells                            | 22 cells                                                               | 18 cells                             | 18 cells                                         |
| Number of quadrupole                         | 44; 0.2 m; 4÷6 T/m                                                     | 36; 0.2 m; 4÷5 T/m                   | 36; 0.2 m; 5÷6 T/m                               |
| magnets, effective length,<br>gradient (T/m) |                                                                        |                                      |                                                  |
| Number of bend magnets,                      |                                                                        | 8; 1.5 T; 1.8 m; 2.3 m               | 8; 1.5 T; 1.8 m; 2.3 m                           |
| field (T), length (m), radius                |                                                                        |                                      |                                                  |
| of curvature                                 |                                                                        |                                      |                                                  |
| Number of electrostatic                      | 32 def; E=120 kV/cm;                                                   | 16def; E=120 kV/cm;                  | 16def;E=120 kV/cm;                               |
| deflectors, field, length,                   | B=0.46 T; L=1.8m;                                                      | L= 3.6 m; R=42 m                     | B=0.08T; L=3.6m; R=∞                             |
| radius of curvature                          | R=9.2 m                                                                |                                      |                                                  |
| Circumference, m                             | 145 m                                                                  | 149 m                                | 149 m                                            |
| Momentum compaction                          | 0.03                                                                   | 0.1                                  | 0.07                                             |
| factor                                       |                                                                        |                                      |                                                  |
| Maximum dispersion, m                        | 3.0 m                                                                  | -6÷5                                 | -6÷4.5                                           |
| Number of straight sections                  | 2x20.4 m; (D=0)                                                        | 2x7.5 m;( D≠0) <sub>∞</sub>          | 2x23.2 m; (D=0)                                  |
| with D≠0 and D=0 , length                    |                                                                        | 2x23 m; (D=0)                        |                                                  |
| Maximum beta function                        | $\beta_x$ 10 m; $\beta_y$ changes                                      | $\beta_x$ 20 m; $\beta_y$ changes in | $\beta_x = 18 \text{ m}; \beta_y \text{ can be}$ |
| value in X and Y planes                      | in range 10÷500 m                                                      | range 20÷500 m                       | changed in range<br>20÷500 m                     |
| Tune, X and Y                                | $v_x = 4.8$ ; $v_v = 2.8 \div 0.4$                                     | $v_x = 4.56$ ; $v_v = 3.53 \div 0.2$ | $v_x = 4.9$ ; $v_v = 3.9 \div 0.1$               |
| Number of sextupoles,                        | N=26; two families;                                                    | N=27; six families;                  | N=27; six families;                              |
| effective length, gradient                   | L=0.15 m; $S_x$ = 24 T/<br>m <sup>2</sup> ; $S_y$ =43 T/m <sup>2</sup> | L=0.15 m; S= 4÷5 T/m <sup>2</sup>    | L=0.15 m; S= 3÷10 T/<br>m <sup>2</sup>           |



## Dynamic aperture for the 3 lattices

#### Arc with BNL elements





#### B arc + E arc





#### B arc + static Wien filter







## Spin Coherence Time vs. RF field and sextupole families

The spin tune spread in the magnetic field relative to the momentum:

$$v_s^B = \frac{\Omega_S^B - \Omega_p^B}{\Omega_p^B} = -\gamma |G| \qquad \longrightarrow \qquad \Delta v_s^B = -\Delta \gamma \cdot |G|$$

The spin tune spread in the electric field relative to the momentum:

$$v_s^E = \frac{\Omega_S^E - \Omega_p^E}{\Omega_p^E} = \frac{1}{\gamma} (1 - |G|) + \gamma |G| \longrightarrow \Delta v_s^E = \Delta \gamma \cdot |G| - \frac{1}{\gamma_0^2} (1 - |G|) \Delta \gamma + \frac{1}{\gamma_0^3} (1 - |G|) \Delta \gamma^2 - \dots$$

conlinear term of spin tune

Longitudinal motion:

$$\frac{d\varphi}{dt} = -\omega_{rf} \left[ \left( \alpha_0 - \frac{1}{\gamma^2} \right) \cdot \delta + \left( \alpha_1 - \frac{\alpha_0}{\gamma^2} + \frac{1}{\gamma^4} \right) \cdot \delta^2 + \left( \frac{\Delta L}{L} \right)_{\beta} \right]$$

$$\frac{d\delta}{dt} = \frac{eV_{rf}\omega_{rf}}{2\pi\hbar\beta^2 E}\sin\varphi$$

x and y orbit lengthening

nonlinear term of energy oscillation



## Spin Coherence Time vs. RF field and sextupole families

#### Energy oscillation:

$$\Delta \gamma = \gamma_0 \beta_0^2 \left\{ \delta_0 \cos 2\pi v_z n + \left( \frac{\alpha_1}{\eta} - \frac{1}{\gamma_0^2} \right) \delta_0^2 \cos 4\pi v_z n + \left( \frac{\alpha_1}{\eta} - \frac{1}{\gamma_0^2} \right) \delta_0^2 + \frac{1}{\eta} \left( \frac{\Delta L}{L} \right)_{\beta} \right\}$$

Substituting  $\Delta \gamma$  in the spin tune spread in the electric





## **Sextupole families**

To minimize the spin decoherence due to final emittances and energy spread in the bunch, we use 6 sextupole families:

$$-\frac{\varepsilon_x}{2L} \sum_{i} S_i l_{si} D_{xi} \beta_{xi} = \frac{\pi}{2L} \varepsilon_x v_x$$

$$\frac{\varepsilon_y}{2L} \sum_{i} S_i l_{si} D_{xi} \beta_{yi} = \frac{\pi}{2L} \varepsilon_y v_y$$

$$-\frac{\delta^2}{L} \sum_{i} S_i l_{si} D_{xi}^3 = \alpha_1 \delta^2$$





## Spin Coherence Time vs. RF field and sextupole families

#### We have minimized spin decoherence using all families of sextupoles







## Dynamic aperture vs. sextupole families







X: SDP1 and SFP1



X: SDN2 and SFN1

X: SDP1 and SFN1



Y: SDN2 and SFN1

#### X: SDP2 and SFP1



X: all families at optimum chromaticity correction



## Residual decoherence

1. In transverse plane: uncompensated higher-than-sextupole order field, e.g. in the cylindrical deflector

$$E_R = \frac{2U_0}{\ln\frac{R_2}{R_1}} \cdot \frac{1}{r}$$



2. RF field modulation





## Precursor experiments in a QFS-COSY ring

Since for precursor experiment we do not need large statistics, we can start working QFS at the 75 MeV. It is then sufficient to use only 4 "E+B" straight elements, which is four times less than at 270 MeV. The total length is 2x7 m. Further, they can be used for a full scale experiment at 270 MeV. To reduce the cost of rework, permanent magnet technology can be used with the field 120-100 mT. The condition for compensation of spin rotation is fulfilled using the E field (working regime 120 kV/cm).





## **Conclusion**

- The proposed QFS method does not restrict to one energy value and provides an EDM signal using simpler elements.
- The structures based on separated E and B fields and static Wien filters are much easier and cheaper than those required by the FS method.
- Reduction of the number of elements for the precursor experiment would proportionally reduce the cost (to 1-2 M€ maximum) and make it possible to work with the QFS in the COSY ring in the shortest timeframe.

The lattice meets all requirements for EDM search.