## 2.4 放大电路的动态分析

在静态分析基础上,分析电路中的交流分量之间 关系。主要求出各种动态参数。

常用的分析方法~

图解法

微变等效电路法

#### 2.4.1 图解法在放大电路动态分析中的应用



设输入信号  $u_i = U_{im} \sin \omega t$  V

# 1. 当 $R_{\rm L}$ = $\infty$ 时

## 在输入回路

$$u_{\text{BE}} = U_{\text{BEQ}} + u_{\text{i}}$$



# **ルBE波形**图



上页 下页 后退

# (1) i<sub>B</sub>的形成过程





# (1) i<sub>B</sub>的形成过程





#### 小结:

# 已知输入信号



输出信号波形



输出电压u。与输入电压ui相位相反

# (2) 如果静态工作点 Q太低



## (2) 如果静态工作点 Q太低





# (3) 如果静态工作点Q太高



# (3) 如果静态工作点 2太高





## 小结:

静态工作点不合适 , 将使工作点进入非线性区而产生非线性失真(饱和失真、截止失真)。

非线性失真的特点:

饱和失真:输出电压波形削底。

截止失真:输出电压波形的削顶。



#### 非线性失真

饱和失真:输出电压波形削底。

截止失真:输出电压波形的削顶。





如果放大电路的静态工作点合适,则输出电压 波形就一定不会发生非线性失真吗?

## (4) 如果输入信号太大



#### (4) 如果输入信号太大





# 工作点合适,减少输入信号幅度,可以消除 非线性失真

仿 真 2



## (5) 放大电路的动态范围 (忽略 $U_{\text{CES}}$ 和 $I_{\text{CBO}}$ )

a. 如果
$$U_{\text{CEQ}} = I_{\text{CQ}} R_{\text{C}} = V_{\text{CC}} / 2$$



上页下页

后退



# C. 如果 $U_{\text{CEQ}} > I_{\text{CQ}} R_{\text{C}}$





#### 结论:

- (1) 共射极放大电路有电压放大能力。
  - (2) u<sub>0</sub>与u<sub>i</sub>的相位相反。
- (3) u<sub>i</sub>的幅度过大或静态工作点不合适,将产生非线性失真(饱和失真、截止失真)。
- (4) 放大电路信号

$$u_{
m BE} = U_{
m BE} + u_{
m i}$$
 $i_{
m B} = I_{
m B} + i_{
m b}$ 
 $i_{
m C} = I_{
m C} + i_{
m c}$ 
 $u_{
m CE} = U_{
m CE} + u_{
m ce}$ 

- (5) 动态范围(忽略 $I_{\text{CEO}}$ 和 $U_{\text{CES}}$ )
  - (a)  $Q_0$ 点在负载线的中点

$$U_{\text{CEQ}} = I_{\text{CQ}} R_{\text{C}} = V_{\text{CC}}/2$$

$$U_{\text{OPP}} = 2 \times U_{\text{CEQ}} = 2I_{\text{CQ}}R_{\text{C}} = V_{\text{CC}}$$

(b)  $Q_0$ 点在负载线中点下方

$$U_{\rm CEQ} > I_{\rm CQ} R_{\rm C}$$

$$U_{\text{o pp}} = 2I_{\text{CQ}}R_{\text{C}}$$

#### (c) $Q_0$ 点在负载线中点上方

$$U_{\rm CEQ} < I_{\rm CQ} R_{\rm C}$$

$$U_{
m o \; pp}$$
=2  $U_{
m CEQ}$ 

(d)  $U_{\rm opp}$ 的一般表示式

$$U_{\text{opp}}=2 \times \text{min}[\ U_{\text{CEQ}}\ ,\ I_{\text{CQ}}R_{\text{C}}]$$

### (6) 非线性失真的特点:

饱和失真:输出电压波形的下半部被削平。

截止失真:输出电压波形的上半部被削平。



2. 当 $R_{\rm L}$  ≠ $\infty$ 时

(1)放大电路的交流通路

放大电路中信号的特点:

交直流共存



2. 当 $R_{\rm L}$  ≠ $\infty$ 时

(1)放大电路的交流通路



交流通路 画法:

耦合电容短路

VCC如何处理?

## 耦合电容短路

交流通路画法:

直流电压源短路(接地

交流通路



#### 由放大电路的交流通路可知

$$u_{o} = u_{ce} = -i_{c}R_{L} // R_{C}$$
$$= -i_{c}R'_{L}$$

式中

$$R'_{\rm L} = R_{\rm C}//R_{\rm L}$$

### (2)交流负载线

$$u_{\rm CE} = U_{\rm CEQ} + u_{\rm ce}$$

故

$$u_{\rm ce} = -i_{\rm c} R_{\rm L}'$$

$$i_{\rm C} = I_{\rm CQ} + i_{\rm c}$$



$$u_{\mathrm{CE}} = U_{\mathrm{CEQ}} - (i_{\mathrm{C}} - I_{\mathrm{CQ}}) R_{\mathrm{L}}'$$

$$= U_{\mathrm{CEQ}} + I_{\mathrm{CQ}} R_{\mathrm{L}}' - i_{\mathrm{C}} R_{\mathrm{L}}'$$

$$= V_{\mathrm{CC}}' - i_{\mathrm{C}} R_{\mathrm{L}}'$$

式中 
$$V'_{\rm CC} = U_{\rm CEQ} + I_{\rm CQ} R'_{\rm L}$$



式 
$$u_{\rm CE} = V'_{\rm CC} - i_{\rm C} R'_{\rm L}$$

在u<sub>ce</sub>和i<sub>c</sub>的坐标中,也表示一条直线 该直线称为放大电路的交流负载线。

## 交流负载线的特点:



- a. 斜率为 1/R'L
- b. 经过静态工作点Q
- c. 与横轴的交点为 $U_{\text{CEQ}}+I_{\text{CQ}}R'_{\text{L}}$
- d. 电路的工作点沿交流负载线移动。



#### e. 动态范围

- (a) 比电路空载时小。
- (b)  $U_{\text{OPP}} = 2 \times \min[U_{\text{CEQ}}, I_{\text{CQ}}R'_{\text{L}}]$
- (c) 当考虑U<sub>CES</sub>时

$$U_{\text{OPP}} = 2 \times \min(U_{\text{CEQ}} - U_{\text{CES}}, I_{\text{CQ}} R'_{\text{L}})$$

#### 图解法的特点:

- (1)便于观察。
- (2)作图烦琐, $U_i$ 很小时难以作图。
- (3)放大电路一些性能指标无法由图解法求得。