Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Моделирование

Домашнее задание №1

Вариант 22/5

Выполнили: Калугина Марина

Саржевский Иван

Группа: Р3302

г. Санкт-Петербург

2019 г.

Цель:

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Задание:

- 1. Разработка Марковских моделей исследуемых систем.
- 2. Освоение программы по расчету Марковских моделей.
- 3. Проведение расчетов по разработанным моделям и обработка результатов.
- 4. Анализ полученных результатов.
- 5. Выбор наилучшего варианта организации системы из двух вариантов в соответствии с заданным критерием эффективности.

Модель 1:

Система 1, вариант 22/5:

Схема системы представлена на рисунке:

Описание: двухканальная СМО с двумя обслуживающими приборами.

Накопитель перед первым прибором отсутствует, перед вторым прибором емкость накопителя равна 3.

Вероятность занятия П1 такая же, как вероятность занятия П2 и равна 0.5.

Граф переходов для систем:

В данном графе состояния кодируется по шаблону: П1/П2/О2, где значение Т обозначает "прибор занят", а F - "прибор свободен". Вероятность занятости прибора q1 = q2 = 0.5, интенсивность λ =0.5, интенсивность обработки μ = 1/B=1/10=0.1. В случае занятости любого прибора вероятности пересчитываются с учетом вероятностей оставшихся приборов, тем самым производя нормировку.

Матрица интенсивностей:

	FF0	FT0	FT1	FT2	FT3	TF0	TT0	TT1	TT2	TT3
FF0	-1.0*p0* λ	0.5*p0* λ	0	0	0	0.5*p0* λ	0	0	0	0
FT0	p1*µ	-1.0*p1* λ - p1*μ	0.5*p1* λ	0	0	0	0.5*p1* λ	0	0	0
FT1	0	p2*µ	-1.0*p2* λ - p2*μ	0.5*p2* λ	0	0	0	0.5*p2* λ	0	0
FT2	0	0	p3*µ	-1.0*p3* λ - p3*μ	0.5*p3* λ	0	0	0	0.5*p3* λ	0
FT3	0	0	0	p4*µ	-p4*λ - p4*μ	0	0	0	0	p4*λ
TF0	p5*µ	0	0	0	0	-p5*λ - p5*μ	p5*λ	0	0	0
TT0	0	p6*µ	0	0	0	p6*µ	-p6*λ - 2*p6*μ	р6*λ	0	0
TT1	0	0	p7*μ	0	0	0	p7*μ	-p7*λ - 2*p7*μ	p7*λ	0
TT2	0	0	0	p8*µ	0	0	0	p8*µ	-p8*λ - 2*p8*μ	p8*λ
TT3	0	0	0	0	p9*µ	0	0	0	p9*µ	-2*p9*µ

Стационарные вероятности состояний:

0	FF0	0.0011
1	FT0	0.004
2	FT1	0.0145
3	FT2	0.0487
4	FT3	0.1269
5	TF0	0.0016
6	TT0	0.0066
7	TT1	0.0283
8	TT2	0.1289
9	TT3	0.6396

Характеристики системы:

	П1	$y_1 = \lambda q_1 B$	2.5
Нагрузка	П2	$y_1 = \lambda q_2 B$	2.5
	\sum	$y = \lambda B$	5.0
	П1	$\rho_1 = \sum_{device_1 = T} p_i$	0.805
Загрузка	П2	$\rho_2 = \sum_{device_2 = T} p_i$	0.997
	\sum	$0.5 * (\sum_{1 deviceT} p_i) + \sum_{2 deviceT} p_i$	0.96
	П1	$l_1 = \sum_{i=1}^n p_i O_{1i}$	0.0
Длина очереди	П2	$l_2 = \sum_{i=2}^n p_i O_{2i}$	2.697
	\sum	$l = \sum_{i=1}^{n} p_i (O_{1i} + O_{2i})$	2.697
	П1	$m_1 = \sum_{device_1 = T} p_i$	0.805
Число заявок	П2	$m = \sum_{device_2 = T} p_i (1 + O_2)$	3.695
	\sum	$m = \sum p_i(device_1 + device_2 + O_2)$	4.5
	П1	$w_1 = m_1/\lambda'$	4.47
Время ожидания	П2	$w_2 = m_2/\lambda'$	20.52
	\sum	$w = m/\lambda'$	25
	П1	$u_1 = w_1 + B$	14.47
Время пребывания	П2	$u_2 = w_2 + B$	30.52
	\sum	u = w + B	35.0

Вероятность потери	Σ	$\pi = \sum_{device_2 = T \& O_2 = 3 \& device_1 = T} p_i$	0.64
Производительность	$\sum_{i=1}^{n}$	$\lambda' = (1 - \pi)\lambda$	0.18

Модель 2: Система 2, вариант 22/5:

Описание:

Трехканальная СМО с тремя обслуживающими приборами. Емкость накопителя перед П1 равен 1, накопители перед П2, П3 отсутствуют. Вероятность занять прибор 1 равна 0.5, прибор 2 - 0.4, прибор 3 - 0.1

Граф переходов:

В данном графе состояния кодируется по шаблону: П3/П2/П1/О1, где значение Т обозначает "прибор занят", а F - "прибор свободен". Вероятность занятости прибора q1 = 0.5, q2 = 0.4, q3 = 0.1, интенсивность λ , интенсивность обработки $\mu=1/B$. В случае занятости любого прибора вероятности пересчитываются с учетом вероятностей оставшихся приборов, т.е. происходит перераспределение вероятностей.

Матрица интенсивностей:

	FFF0	FFT0	FFT1	FTF0	FTT0	FTT1	TFF0	TFT0	TFT1	TTF0	TTT0	TTT1
FFF0	-1.0*p 0*λ	0.5*p0 *λ	0	0.4*p0 *λ	0	0	0.1*p0 *λ	0	0	0	0	0
FFT0	p1*µ	-1.0*p 1*λ - p1*μ	0.5*p1 *λ	0	0.4*p1 *λ	0	0	0.1*p1 *λ	0	0	0	0
FFT1	0	p2*µ	-1.0*p 2*λ - p2*μ	0	0	0.8*p2 *λ	0	0	0.2*p2 *λ	0	0	0
FTF0	p3*µ	0	0	-1.0*p 3*λ - p3*μ	0.83*p 3*λ	0	0	0	0	0.17*p 3*λ	0	0
FTT0	0	p4*µ	0	p4*µ	-1.0*p 4*λ - 2*p4* μ	0.83*p 4*λ	0	0	0	0	0.17*p 4*λ	0
FTT1	0	0	p5*µ	0	p5*µ	-0.5*p 5*λ - 2*p5* μ	0	0	0	0	0	0.5*p5 *λ
TFF0	p6*µ	0	0	0	0	0	-1.0*p 6*λ - p6*μ	0.56*p 6*λ	0	0.44*p 6*λ	0	0
TFT0	0	p7*µ	0	0	0	0	p7*µ	-1.0*p 7*λ - 2*p7* μ	0.56*p 7*λ	0	0.44*p 7*λ	0
TFT1	0	0	p8*µ	0	0	0	0	p8*µ	-0.5*p 8*λ - 2*p8* μ	0	0	0.5*p8 *λ
TTF0	0	0	0	р9*µ	0	0	p9*µ	0	0	-0.5*p 9*λ - 2*p9* μ	0.5*p9 *λ	0
TTT0	0	0	0	0	p10*µ	0	0	p10*µ	0	p10*µ	-0.5*p 10*λ -	0.5*p1 0*λ

											3*p10 *µ	
TTT1	0	0	0	0	0	p11*µ	0	0	p11*µ	0	p11*µ	-3*p11 *µ

Стационарные вероятности состояний:

1	FFF0	0.013
2	FFT0	0.0325
3	FFT1	0.0631
4	FTF0	0.02
5	FTT0	0.062
6	FTT1	0.1868
7	TFF0	0.0126
8	TFT0	0.0374
9	TFT1	0.1107
10	TTF0	0.032
11	TTT0	0.0992
12	TTT1	0.3306

Характеристики системы:

	П1	$y_1 = \lambda q_1 B$	2.5
Нагрузка	Π2	$y_2 = \lambda q_2 B$	2.0
	ПЗ	$y_3 = \lambda q_3 B$	0.5
	\sum	$y = \lambda B$	5.0
	П1	$\rho_1 = \sum_{device_1 = T} p_i$	0.623
Загрузка	Π2	$\rho_2 = \sum_{device_2 = T} p_i$	0.731
Jaipyska	ПЗ	$\rho_3 = \sum_{device_3 = T} p_i$	0.922
	Σ	$0.33 * \left(\sum_{1 deviceT} p_i\right) + 0.66 * \left(\sum_{2 deviceT} p_i\right) + \sum_{3 deviceT} p_i$	0.79

П1	$l_1 = \sum_{i=1}^n p_i O_{1i}$	0.691
П2	$l_2 = \sum_{i=1}^n p_i O_{2i}$	0.0
ПЗ	$l_3 = \sum_{i=1}^n p_i O_{3i}$	0.0
\sum	$l = \sum_{i=1}^{n} p_i(\sum O_{ji})$	0.691
П1	$m_1 = \sum_{device_1 = T} p_i$	1.614
П2	$m_2 = \sum_{device_2 = T} p_i$	0.731
П3	$m_3 = \sum_{device_3 = T} p_i$	0.623
\sum	$m = \sum p_i (\sum device_i + O_i)$	2.967
П1	$w_3 = m_3/\lambda'$	4.69
П2	$w_3 = m_3/\lambda'$	2.18
П3	$w_3 = m_3/\lambda'$	1.85
\sum	$w = m/\lambda'$	8.85
П1	$u_1 = w_1 + B$	14.69
П2	$u_2 = w_2 + B$	12.18
П3	$u_2 = w_2 + B$	11.85
\sum	u = w + B	18.85
Σ	$\pi = \sum_{device_1 = T \& O_1 = 1 \& device_2 = T device_3 = T} p_i$	0.331
\sum	$\lambda' = (1 - \pi)\lambda$	0.335

Сравнительная диаграмма характеристик данных систем:

Система 1 и Система 2

Анализ полученных результатов:

Согласно варианту, критерий эффективности для систем -- минимальные потери заявок. Вероятность потери заявок в системе 1 составляет 64%, во второй система 33.1%. Отсюда следует, что из данных систем, система под номером 2 будет эффективнее.