7.0 About K-nearest Neighbor (KNN) Learning

- Most basic instance0-based method
- Inputs of data are numeric ones:
 - Each data point is of n-dimensions, lying in space \mathbb{R}^n .
 - Define "nearest" neighbors in terms of Euclidean Distance.

7.1 Euclidean Distance

Given:

- An arbitrary instance $x_i, x_j \in X = \{x_1, x_2, \cdots, x_k\}.$
 - Where x_i, x_j are n-d datas

–
$$x_i = [x_{i1} \quad x_{i2} \quad \cdots \quad x_{in}]$$
, $x_j = [x_{j1} \quad x_{j2} \quad \cdots \quad x_{jn}]$

Do:

• The euclidean distance between \boldsymbol{x}_i and \boldsymbol{x}_j is:

$$ullet \ d(x_i,x_j) = \sqrt{\sum_{r=1}^n (x_{ir}-x_{jf})^2}$$

7.2 Output Type

7.2.1 Discrete Valued - Classification

Objective:

- · Learn a discrete-valued target functions
 - of form $\mathbb{R}^n o Y$, where
 - $Y=\{y_1,y_2,\cdots,y_s\}$ is the set of target classes

Given:

- A set of training values:
 - $X=\{x_1,x_2,\cdots,x_m\}$, where $\forall i\in[1,m],x_i\in\mathbb{R}^n$.
- · A set of classes:
 - $Y = \{y_1, y_2, \cdots, y_s\}.$
- A mapping or assignments function from any training sample to a class:
 - ullet f:X o Y.

• A sample query instance x_q to be classified.

-
$$x_q = [x_{q1} \quad x_{q2} \quad \cdots \quad x_{qn}] \in \mathbb{R}^n.$$

• Let $\{x_1, x_2, \dots, x_k\}$ be k instances from training examples that's nearest to x_q .

Output:

•
$$\hat{f}(x_1) \leftarrow argmax_{y \in Y} \sum_{i=1}^k \delta(y, f(x_i))$$
, where

•
$$\hat{f}(x_1) \leftarrow argmax_{y \in Y} \sum_{i=1}^k \delta(y, f(x_i))$$
, where
• $\delta(y, f(x_i)) = egin{cases} 1, if \ f(x_i) = y \\ 0, if \ f(x_i)
eq y \end{cases}$

Gives the most common value (class) from the k samples.

7.2.2 Real-Valued - Regression

Objective:

- Learn a discrete-valued target functions
 - of form $\mathbb{R}^n \to y$, where
 - $y \in \mathbb{R}$, which is a real value, i.e., a scalar.

Given:

A set of training values:

•
$$X=\{x_1,x_2,\cdots,x_m\}$$
, where $orall i\in[1,m], x_i\in\mathbb{R}^n$.

- A mapping or assignments function from any training examples to a real value.
 - $f: X \to y$, where $y \in \mathbb{R}$.
- A sample query instance x_q to be classified.

-
$$x_q = [x_{q1} \quad x_{q2} \quad \cdots \quad x_{qn}] \in \mathbb{R}^n$$
 .

- Let $\{x_1, x_2, \cdots, x_k\}$ be k instances from training examples that's nearest to x_q .
- Output:

$$\hat{f}(x_q) \leftarrow rac{\sum_{i=1}^k f(x_i)}{k}$$

Simple mean of the values around.

7.3 Distance Weighted

- Weight the contribution
 - of each of the k neighbors
 - according to the distance to query point x_q

closer neighbors = greater weights

7.3.1 Discrete-Valued

•
$$\hat{f}(x_q) \leftarrow argmax_{y \in Y} \sum_{i=1}^k w_i \delta(y, f(x_i))$$
, where • $w_i = \frac{1}{d(x_q, x_i)^2} = \frac{1}{\sum_{j=1}^n (x_{ij} - x_{qj})^2}$

7.3.2 Real-Valued

· Each weight of the

•
$$\hat{f}(x_q) \leftarrow \sum_{i=1}^k [rac{w_i}{\sum_{j=1}^k w_j} f(x_i)]$$
, where
• $w_i = rac{1}{d(x_q,x_i)^2} = rac{1}{\sum_{j=1}^n (x_{ij}-x_{qj})^2}$