Inelastic scattering: the Coupled-Channels and DWBA methods

A.M.Moro

April 13, 2022

Material available at: https://github.com/ammoro/padova

Inelastic scattering to bound states

- Nuclei are not inert or *frozen* objects; they do have an internal structure of protons and neutrons that can be modified (excited) during the collision.
- Quantum systems exhibit, in general, an energy spectrum with bound and unbound levels.

Models for inelastic excitations

• COLLECTIVE: Involve a collective motion of several nucleons which can be interpreted macroscopically as rotations or surface vibrations of the nucleus.

FEW-BODY/SINGLE-PARTICLE: Involve the excitation of a nucleon or cluster.

A M Moro

Formal treatment of inelastic scattering

- Goal: Determine the differential cross section for an inelastic process of the form: $a + A \rightarrow a + A^*$
- The scattering wavefunction $\Psi_{\mathbf{K}_0}^{(+)}(\mathbf{R},\xi)$ must contain, besides the elastic scattering component, additional components associated to excited states.
- Asymptotically:

$$\Psi_{\mathbf{K}_{0}}^{(+)}(\mathbf{R},\xi) \xrightarrow{R\gg} e^{i\mathbf{K}_{0}\cdot\mathbf{R}}\phi_{0}(\xi) + \underbrace{f_{0,0}(\theta)}_{\text{elastic}} \underbrace{e^{iK_{0}R}}_{\text{elastic}}\phi_{0}(\xi) + \underbrace{\sum_{n>0}f_{n,0}(\theta)}_{\text{inelastic}} \underbrace{e^{iK_{n}R}}_{\text{inelastic}}\phi_{n}(\xi)$$

where $\phi_n(\xi)$ are internal wfs of the nuclei being excited in some model.

Cross sections:

$$\left(\frac{d\sigma(\theta)}{d\Omega}\right)_{0\to n} = \frac{K_n}{K_0} |f_{n,0}(\theta)|^2$$

The coupled-channels method

The coupled-channels method for inelastic scattering

We need to incorporate explicitly in the Hamiltonian the internal structure of the nucleus being excited (e.g. projectile).

$$H = T_R + h(\xi) + V(\mathbf{R}, \xi)$$

- T_R : Kinetic energy for projectile-target relative motion.
- {\xi}: Internal degrees of freedom of the projectile (depend on the model).
- $V(\mathbf{R}, \xi)$: Projectile-target interaction.
- $h(\xi)$: Internal Hamiltonian of the projectile.

$$h(\xi)\phi_n(\xi)=\varepsilon_n\phi_n(\xi)$$

A M Moro

• $\phi_n(\xi)$: internal states of the projectile.

Modelscape and scattering wavefunction: $d+^{10}Be \rightarrow d+^{10}Be^*$ example

The modelspace is composed by ground states (elastic channel) and some excited states (inelastic scattering)

Boundary conditions for scattering wavefunction:

$$\Psi_{\mathbf{K}_{0}}^{(+)}(\mathbf{R},\xi) \xrightarrow{R\gg} e^{i\mathbf{K}_{0}\cdot\mathbf{R}}\phi_{0}(\xi) + \underbrace{f_{0,0}(\theta)}_{\text{elastic}} \underbrace{\frac{e^{iK_{0}R}}{R}\phi_{0}(\xi)}_{\text{elastic}} + \underbrace{\sum_{n>0} f_{n,0}(\theta)}_{\text{incident}} \underbrace{\frac{e^{iK_{n}R}}{R}\phi_{n}(\xi)}_{\text{incident}}$$

Cross sections:

$$\left(\frac{d\sigma(\theta)}{d\Omega}\right)_{0,n} = \frac{K_n}{K_0} |f_{n,0}(\theta)|^2$$
 $f_{n,0}(\theta) = \text{scattering amplitude}$

A.M.Moro

CC model wavefunction (target excitation)

The total wave function is expanded in a subset of internal states representing the adopted modelspace:

$$\Psi_{\text{model}}(\mathbf{R}, \xi) = \phi_0(\xi) \chi_0(\mathbf{K}_0, \mathbf{R}) + \sum_{n>0} \phi_n(\xi) \chi_n(\mathbf{K}_n, \mathbf{R})$$

and impose the boundary conditions for the (unknown) $\chi_n(\mathbf{R})$:

$$\chi_0^{(+)}(\mathbf{K}_0, \mathbf{R}) \to e^{i\mathbf{K}_0 \cdot \mathbf{R}} + f_{0,0}(\theta) \frac{e^{iK_0 R}}{R} \qquad \text{for n=0 (elastic)}$$

$$\chi_n^{(+)}(\mathbf{K}_n, \mathbf{R}) \to f_{n,0}(\theta) \frac{e^{iK_n R}}{R} \qquad \text{for n>0 (non-elastic)}$$

Calculation of $\chi_n^{(+)}(\mathbf{R})$: the coupled equations

• The model wavefunction must satisfy the Schrödinger equation:

$$[H - E]\Psi_{\text{model}}^{(+)}(\mathbf{R}, \xi) = 0$$

• Multiply on the left by each $\phi_n^*(\xi)$, and integrate over $\xi \Rightarrow$ coupled channels equations for $\{\chi_n(\mathbf{R})\}$:

$$\left[E - \varepsilon_n - T_R - V_{n,n}(\mathbf{R})\right] \chi_n(\mathbf{R}) = \sum_{n' \neq n} V_{n,n'}(\mathbf{R}) \chi_{n'}(\mathbf{R})$$

• The structure information is embedded in the coupling potentials:

$$V_{n,n'}(\mathbf{R}) = \int d\xi \phi_{n'}^*(\xi) V(\mathbf{R}, \xi) \phi_n(\xi)$$

 $\phi_n(\xi)$ will depend on the assumed structure model (collective, few-body, etc).

Optical Model vs. Coupled-Channels method

Optical Model

The Hamiltonian:

$$H = T_R + V(\mathbf{R})$$

- Internal states: Just $\phi_0(\xi)$
- Model wavefunction:

$$\Psi_{\text{mod}}(\mathbf{R}, \xi) \equiv \chi_0(\mathbf{K}, \mathbf{R}) \phi_0(\xi)$$

Schrödinger equation:

$$[H - E]\chi_0(\mathbf{K}, \mathbf{R}) = 0$$

A.M.Moro

Optical Model vs. Coupled-Channels method

Optical Model

- The Hamiltonian: $H = T_R + V(\mathbf{R})$
- Internal states: Just $\phi_0(\xi)$
- Model wavefunction: $\Psi_{\text{mod}}(\mathbf{R}, \xi) \equiv \chi_0(\mathbf{K}, \mathbf{R}) \phi_0(\xi)$
- Schrödinger equation:

$$[H-E]\chi_0(\mathbf{K},\mathbf{R})=0$$

Coupled-channels method

• The Hamiltonian:

$$H = T_R + h(\xi) + V(\mathbf{R}, \xi)$$

Internal states:

$$h(\xi)\phi_n(\xi)=\varepsilon_n\phi_n(\xi)$$

• Model wavefunction:

$$\Psi_{\text{model}}(\mathbf{R}, \xi) = \phi_0(\xi) \chi_0(\mathbf{K}, \mathbf{R}) + \sum_{n>0} \phi_n(\xi) \chi_n(\mathbf{K}, \mathbf{R})$$

Schrödinger equation:

$$[H - E]\Psi_{\text{model}}(\mathbf{R}, \xi) = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$[E - \varepsilon_n - T_R - V_{n,n}(\mathbf{R})]\chi_n(\mathbf{K}, \mathbf{R}) = \sum_{n \neq n} V_{n,n'}(\mathbf{R})\chi_{n'}(\mathbf{K}, \mathbf{R})$$

The DWBA approximation for inelastic scattering

- Assume that we can write the p-t interaction as: $V(\mathbf{R}, \xi) = V_0(R) + \Delta V(\mathbf{R}, \xi)$
- Use central $V_0(R)$ part to calculate the (distorted) waves for p-t relative motion:

$$\begin{split} & \Big[\hat{T}_{\mathbf{R}} + V_0(R) - E_i\Big]\chi_i^{(+)}(\mathbf{K}_i, \mathbf{R}) = 0 \qquad (E_i = \text{c.m. energy}) \\ & \Big[\hat{T}_{\mathbf{R}} + V_0(R) - E_f\Big]\chi_f^{(+)}(\mathbf{K}_f, \mathbf{R}) = 0 \qquad (E_f = E_i + Q = E_i - E_x) \end{split}$$

• In first order of $\Delta V(\mathbf{R}, \xi)$ (DWBA):

$$f_{i\to f}^{\text{DWBA}}(\theta) = -\frac{\mu}{2\pi\hbar^2} \int \chi_f^{(-)*}(\mathbf{K}_f, \mathbf{R}) \, \Delta V_{if}(\mathbf{R}) \, \chi_i^{(+)}(\mathbf{K}_i, \mathbf{R}) \, d\mathbf{R}$$

with the transition potential:

$$\Delta V_{if}(\mathbf{R}) \equiv \int \phi_f^*(\xi) \, \Delta V(\mathbf{R}, \xi) \, \phi_i(\xi) \, d\xi$$

Multipole expansion of the interaction: reduced matrix elements

• In actual calculations, the internal states will have definite spin/parity:

$$\phi_i(\xi) = |I_i M_i\rangle$$
 and $\phi_f(\xi) = |I_f M_f\rangle$

• The projectile-target interaction can be expanded in multipoles:

$$V(\mathbf{R},\xi) = \sum_{\lambda,\mu} V_{\lambda\mu}(R,\xi) Y_{\lambda\mu}(\hat{R}) \equiv V_0(\mathbf{R}) + \Delta V(\mathbf{R},\xi)$$

• In many practical (and important) situations:

$$\Delta V(\mathbf{R}, \xi) = \sum_{\lambda > 0} \underbrace{\mathcal{F}_{\lambda}(R)}_{\text{formfactor}} \sum_{\mu} \underbrace{\mathcal{T}_{\lambda, \mu}(\xi)}_{\text{structure}} Y_{\lambda \mu}(\hat{R})$$

DWBA and CC calculations require the coupling potentials

$$\langle I_f M_f | \Delta V(\mathbf{R}, \xi) | I_i M_i \rangle = \sum_{\lambda > 0} \mathcal{F}_{\lambda}(R) \langle \underline{I_f} M_f | \mathcal{T}_{\lambda \mu}(\xi) | I_i M_i \rangle Y_{\lambda \mu}(\hat{R})$$

Wigner-Eckart theorem → reduced matrix elements (r.m.e.)*:

$$\begin{cases} \langle I_f M_f | \mathcal{T}_{\lambda\mu}(\xi) | I_i M_i \rangle = (2I_f + 1)^{-1/2} \langle I_f M_f | I_i M_i \lambda \mu \rangle \underbrace{\langle I_f || \mathcal{T}_{\lambda}(\xi) || I_i \rangle_{\text{BM}}}_{\text{r.m.e}} \end{cases}$$

Inelastic scattering: Coulomb excitation

• Projectile-target Coulomb interaction:

$$V_C(\mathbf{R}, \xi) = \frac{e^2}{4\pi\varepsilon_0} \sum_{i}^{Z_p} \frac{Z_t e^2}{|\mathbf{R} - \mathbf{r}_i|}; \qquad \xi \equiv \{\mathbf{r}_i\}$$

• Multipolar expansion:

$$\frac{1}{|\mathbf{R} - \mathbf{r}_i|} = \sum_{\lambda\mu} \frac{4\pi}{2\lambda + 1} \frac{r_i^{\lambda}}{R^{\lambda + 1}} Y_{\lambda\mu}^*(\hat{r}_i) Y_{\lambda\mu}(\hat{R}) \qquad (R > r_i)$$

• Electric multipole operator: $\mathcal{M}(E\lambda, \mu) \equiv e \sum_{i}^{Z_p} r_i^{\lambda} Y_{\lambda \mu}^*(\hat{r}_i) \equiv \mathcal{T}_{\lambda \mu}(\xi)$

$$V_{C}(\mathbf{R},\xi) = \kappa \frac{Z_{t}Z_{p}e^{2}}{R} + \sum_{\lambda>0,\mu} \underbrace{\frac{4\pi\kappa}{2\lambda+1} \frac{Z_{t}e}{R^{\lambda+1}}}_{\mathcal{F}_{J}(\mathcal{R})} \underbrace{\mathcal{M}(E\lambda,\mu)}_{\mathcal{T}_{\lambda,\mu}} Y_{\lambda\mu}(\hat{R}) \equiv V_{0}(R) + \Delta V(\mathbf{R},\xi)$$

A.M.Moro

Coupling potentials for Coulomb excitation

• Transition potentials:

$$\Delta V_{if}(\mathbf{R}) \equiv \langle f; I_f M_f | \Delta V | i; I_i M_i \rangle = \sum_{\lambda > 0, \mu} \frac{4\pi \kappa}{2\lambda + 1} \frac{Z_t e}{R^{\lambda + 1}} \langle f; I_f M_f | \mathcal{M}(E\lambda, \mu) | i; I_i M_i \rangle Y_{\lambda \mu}(\hat{R})$$

Wigner-Eckart theorem⇒ reduced matrix elements (BM convention):

$$\langle f; I_f M_f | \mathcal{M}(E\lambda,\mu) | i; I_i M_i \rangle = (2I_f+1)^{-1/2} \langle I_i M_i \lambda \mu | I_f M_f \rangle \langle f; I_f || \mathcal{M}(E\lambda,\mu) || i; I_i \rangle$$

• Relation to physical quantities (Coulomb case)

$$B(E\lambda; I_i \to I_f) = (2I_i + 1)^{-1} |\langle f; I_f || \mathcal{M}(E\lambda, \mu) || i; I_i \rangle|^2 \qquad (I_i \neq I_f)$$

$$Q_2 = \sqrt{16\pi/5} (2I+1)^{-1/2} \langle II20|II\rangle \langle I||M(E2||I\rangle)$$
 $(I_i = I_f \equiv I)$

Scattering amplitude and cross sections

DWBA SCATTERING AMPLITUDE FOR A TRANSITION OF MULTIPOLARITY λ :

$$f(\theta)_{iM_i \rightarrow fM_f} = -\frac{\mu}{2\pi\hbar^2} \frac{4\pi\kappa Z_t e}{2\lambda + 1} \langle f; I_f M_f | \mathcal{M}(E\lambda, \mu) | i; I_i M_i \rangle \int d\mathbf{R} \chi_f^{(-)*}(\mathbf{K}_f, \mathbf{R}) \frac{Y_{\lambda\mu}(\hat{R})}{R^{\lambda + 1}} \chi_i^{(+)}(\mathbf{K}_i, \mathbf{R})$$

Cross sections:

$$\left[\left(\frac{d\sigma}{d\Omega} \right)_{iM_i \to fM_f} = \frac{K_f}{K_i} \left| f(\theta)_{iM_i \to fM_f} \right|^2 \right]$$

Unpolarized cross section:

$$\left[\left(\frac{d\sigma}{d\Omega} \right)_{I_i \to I_f} = \frac{1}{(2I_i + 1)} \frac{K_f}{K_i} \sum_{M_i, M_f} \left| f(\theta)_{iM_i \to fM_f} \right|^2 \right]$$

What can we learn measuring Coulomb excitation?

For a inelastic excitation $i \to f$ of multipolarity λ the differential cross section is proportional to the electric transition probability $B(E\lambda; I_i \to I_f)$ because

$$B(E\lambda; i \to f) = \frac{1}{2I_i + 1} |\langle f I_f || \mathcal{M}(E\lambda) || i I_i \rangle_{\text{BM}}|^2$$

$$\frac{d\sigma}{d\Omega} \propto |\langle f I_f || \mathcal{M}(E\lambda) || i I_i \rangle|^2 \propto B(E\lambda; I_i \to I_f)$$

If the approximations involved in the derivation of the DWBA approximation are valid, the transition probabilities $B(E\lambda; I_f \to I_f)$ can be obtained comparing the magnitude of the inelastic cross sections with DWBA calculations.

Nuclear collective excitations

- Central potential: Typically $U_{\text{nuc}}(\mathbf{R}) = V(R R_0)$, $R_0 = R_1 + R_2$.
- Eg: Woods-Saxon parametrization

$$U_{\text{nuc}}(R) = -\frac{V_0}{1 + \exp\left(\frac{R - R_0}{a_r}\right)} - i\frac{W_0}{1 + \exp\left(\frac{R - R_i}{a_i}\right)}$$

Deformed potential

- Deformed radius: $r(\theta, \phi) = R_0 + \sum_{\lambda,\mu} \delta_{\lambda,\mu} Y_{\lambda,\mu}(\theta, \phi)$
- Deformed potential: $V(R R_0) \rightarrow V(R r(\theta, \phi)) \equiv V(\mathbf{R}, \xi)$
- Multipole expansion of the potential:

$$V(\mathbf{R},\xi) = V(R-R_0) - \sum_{\lambda,\mu} \hat{\boldsymbol{\delta}}_{\lambda\mu} \frac{dV(R-R_0)}{dR} Y_{\lambda\mu}(\theta,\phi) + \dots$$

 $(\hat{\delta}_{i})$ = deformation length operators)

Transition potentials for a multipole λ :

$$V_{if}(\mathbf{R}) \equiv \langle f|V|i\rangle = -\frac{dV(R-R_0)}{dR} \langle f; I_f M_f | \hat{\delta}_{\lambda\mu} | i; I_i M_i \rangle Y_{\lambda\mu}(\hat{R})$$

A.M.Moro

The nuclear transition potentials are proportional to the matrix element of the deformation length operator.

DWBA amplitude

DWBA SCATTERING AMPLITUDE:

$$f(\mathbf{K}',\mathbf{K})_{iM_i\to fM_f} = -\frac{\mu}{2\pi\hbar^2} \langle f; \mathbf{I}_f \mathbf{M}_f | \hat{\delta}_{\lambda\mu} | i; \mathbf{I}_i \mathbf{M}_i \rangle \int d\mathbf{R} \chi_f^{(-)*}(\mathbf{K}',\mathbf{R}) \frac{dV}{dR} Y_{\lambda\mu}(\hat{\mathbf{R}}) \chi_i^{(+)}(\mathbf{K},\mathbf{R})$$

Cross sections:

$$\left(\frac{d\sigma(\theta)}{d\Omega}\right)_{iM_{i}\to fM_{f}} = \frac{K_{f}}{K_{i}} \left(\frac{\mu}{2\pi\hbar^{2}}\right)^{2} \left|\langle f; I_{f}M_{f} | \hat{\delta}_{\lambda\mu} | i; I_{i}M_{i} \rangle\right|^{2}
\times \left|\int d\mathbf{R} \chi_{f}^{(-)*}(\mathbf{K}', \mathbf{R}) \frac{dV}{dR} Y_{\lambda\mu}(\hat{\mathbf{R}}) \chi_{i}^{(+)}(\mathbf{K}, \mathbf{R})\right|^{2}$$

The differential cross section is proportional to the deformation parameters

If the approximations are valid, the deformation parameters can be obtained comparing the magnitude of the inelastic cross sections with DWBA calculations.

Summary of physical ingredients for collective excitations

In general, we have both Coulomb and nuclear couplings

$$V_{if}(\mathbf{R}) = V_{if}^{C}(\mathbf{R}) + V_{if}^{N}(\mathbf{R})$$

Coulomb excitation \rightarrow electric reduced matrix elements

$$V_{if}^{C}(\mathbf{R}) = \sum_{\lambda>0} \frac{4\pi\kappa}{2\lambda + 1} \frac{Z_{t}e}{R^{\lambda+1}} \langle f; I_{f}M_{f} | \mathcal{M}(E\lambda, \mu) | i; I_{i}M_{i} \rangle Y_{\lambda\mu}(\hat{R})$$

Nuclear excitation (collective model) → reduced deformation lengths

$$V_{if}^{N}(\mathbf{R}) = -\frac{dV_{0}}{dR} \sum_{\lambda} \langle \mathbf{f}; \mathbf{I}_{f} \mathbf{M}_{f} | \hat{\delta}_{\lambda \mu} | i; \mathbf{I}_{i} \mathbf{M}_{i} \rangle Y_{\lambda \mu}(\hat{R})$$

Collective excitations in the rotor model

Spherical nucleus ($\beta = 0$)

Deformed nucleus $(\beta \neq 0)$

⇒ For a permanent deformed nucleus (or for a nucleus with surface vibrations) the nucleus-nucleus potential will not be longer central.

A M Moro

Collective excitations in the rotor model

Spherical nucleus ($\beta = 0$)

Deformed nucleus $(\beta \neq 0)$

- ⇒ For a permanent deformed nucleus (or for a nucleus with surface vibrations) the nucleus-nucleus potential will not be longer central.
- ⇒ States are characterized by their spin (I) and its projection of the angular momentum along the symmetry axis (K).

Reduced matrix elements in the rotor model

⇒ For axial deformation, the charge and matter deformations can be characterized by the deformation parameters β_1^C and β_2^N . For quadrupole deformations:

$$r^{C}(\theta') = R_{c} \left[1 + \frac{\beta_{2}^{C}}{2} Y_{20}(\theta', 0) \right]; \qquad r^{N}(\theta') = R_{0} \left[1 + \frac{\beta_{2}^{N}}{2} Y_{20}(\theta', 0) \right]$$

- \Rightarrow Considering for simplicity the case of even-even nucleus (K = 0) and $I_i = 0 \rightarrow I_f$ transitions:
 - Coulomb excitation:

$$\sqrt{f; K I_f || \mathcal{M}(E\lambda) || i; K I_i \rangle_{\text{BM}}} = \sqrt{B(E\lambda; I_i \to I_f)} = \frac{3Z_p e R_c^{\lambda-1}}{4\pi} \beta_{\lambda}^{C} R_c$$

 β_{1}^{C} =Coulomb deformation parameter

Nuclear excitation:

$$\sqrt{\langle f; KI_f || \hat{\delta}_{\lambda} || i; KI_i \rangle_{\text{BM}}} = (-1)^{\lambda} \beta_{\lambda}^{N} R_0$$

A M Moro

 β_{λ}^{N} = nuclear deformation parameter

$$V_{ij}^{(\lambda)}(\mathbf{R}) = \frac{1}{\sqrt{2I_f + 1}} \left[F_{\lambda}^C(R) + F_{\lambda}^N(R) \right] \langle f; I_f M_f | I_i M_i \lambda \mu \rangle Y_{\lambda,\mu}(\hat{R})$$

with the radial form factors:

Coulomb:

$$F_{\lambda}^{C}(R) = \frac{4\pi Z_{t}e}{2\lambda + 1} \sqrt{B(E\lambda; I_{i} \rightarrow I_{f})} \frac{1}{R^{\lambda + 1}}$$

Nuclear:

$$F_{\lambda}^{N}(R)=-\beta_{\lambda}^{N}R_{0}\frac{dU}{dR}$$

The Coulomb form factor, being of longer range, dominates at higher partial waves (large distances) and hence to smaller angles

Coulomb + nuclear potential

- We expect the Coulomb excitation to be more important when:
 - The projectile and/or target charges are large (i.e. large $Z_1Z_2 \gg 1$)
 - At energies below the Coulomb barrier (where nuclear effects are less important).
 - At very forward angles (large impact parameters).
- If both Coulomb and nuclear contributions are important the scattering *amplitudes* for both processes should be added:

$$\left[\left(\frac{d\sigma}{d\Omega} \right)_{i \to f} = \frac{K_f}{K_i} \left| f_{if}^{\text{coul}} + f_{if}^{\text{nucl}} \right|^2 \right]$$

In this case, interferences effects will appear!

Inelastic scattering example: collective excitations

Physical example:
$${}^{16}\text{O} + {}^{208}\text{Pb} \rightarrow {}^{16}\text{O} + {}^{208}\text{Pb}(3^-, 2^+)$$

Nucl. Phys. A517 (1990) 193

¹⁶O+²⁰⁸Pb effective interaction

Coulomb barrier:

$$V_{\rm barrier} pprox \kappa \frac{Z_p Z_t e^2}{1.44 (A_p^{1/3} + A_t^{1/3})} \simeq 78 \ {
m MeV}$$

Collective excitations: example

Collective excitations: example

™ Coulomb barrier:

$$V_{\text{barrier}} = \frac{Z_p Z_t e^2}{R_b} \approx \frac{Z_p Z_t e^2}{1.44 (A_p^{1/3} + A_t^{1/3})} \simeq 78 \text{ MeV}$$

Coulomb and Nuclear excitations can produce constructive or destructive interference:

Below the barrier, the Coulomb excitation is dominant, and the interference is smaller:

Effect of the incident energy:

A.M.Moro

Single-particle and cluster excitations

Many-body to few-body reduction

• Effective three-body Hamiltonian:

$$H = T_{\mathbf{R}} + h_r(\mathbf{r}) + U_{ct}(\mathbf{r}_{ct}) + U_{nt}(\mathbf{r}_{nt})$$

• $U_{ct}(\mathbf{r}_{ct})$, $U_{nt}(\mathbf{r}_{nt})$ are optical potentials describing fragment-target elastic scattering (eg. target excitation is treated effectively, through absorption)

A.M.Moro

Inelastic scattering in a few-body model

- Some nuclei allow a description in terms of two or more clusters: d=p+n, ${}^{6}Li=\alpha+d$, ${}^{7}Li=\alpha+{}^{3}H$.
- Projectile-target interaction:

$$V(\mathbf{R}, \xi) \equiv V(\mathbf{R}, \mathbf{r}) = U_1(\mathbf{r}_1) + U_2(\mathbf{r}_2)$$

• Transition potentials:

$$V_{n,n'}(\mathbf{R}) = \int d\mathbf{r} \phi_n^*(\mathbf{r}) \left[U_1(\mathbf{r}_1) + U_2(\mathbf{r}_2) \right] \phi_{n'}(\mathbf{r})$$

Inelastic scattering in a few-body model

- Some nuclei allow a description in terms of two or more clusters: d=p+n, ${}^{6}Li=\alpha+d$, ${}^{7}Li=\alpha+{}^{3}H$.
- Projectile-target interaction:

$$V(\mathbf{R}, \boldsymbol{\xi}) \equiv V(\mathbf{R}, \mathbf{r}) = U_1(\mathbf{r}_1) + U_2(\mathbf{r}_2)$$

• Transition potentials:

$$V_{n,n'}(\mathbf{R}) = \int d\mathbf{r} \phi_n^*(\mathbf{r}) \left[U_1(\mathbf{r}_1) + U_2(\mathbf{r}_2) \right] \phi_{n'}(\mathbf{r})$$

Example: $^{7}\text{Li}=\alpha+\text{t}$

$$\mathbf{r}_{\alpha} = \mathbf{R} - \frac{m_t}{m_{\alpha} + m_t} \mathbf{r}; \quad \mathbf{r}_t = \mathbf{R} + \frac{m_{\alpha}}{m_{\alpha} + m_t} \mathbf{r}$$

Internal states: (two-body cluster model)

$$[T_{\mathbf{r}} + V_{\alpha - t}(\mathbf{r}) - \varepsilon_n]\phi_n(\mathbf{r}) = 0$$

Example: $^{7}\text{Li}(\alpha+t) + ^{208}\text{Pb}$ at 68 MeV

\Rightarrow CC calculation with 2 channels $(3/2^-, 1/2^-)$:

Data from Davinson et al, Phys. Lett. 139B (1984) 150)

A.M.Moro

Application of the CC method to weakly-bound systems

Example: Three-body calculation (p+n+58Ni) with Watanabe potential:

$$V_{dt}(\mathbf{R}) = \int d\mathbf{r} \phi_{gs}^*(\mathbf{r}) \left\{ V_{pt}(\mathbf{r}_{pt}) + V_{nt}(\mathbf{r}_{nt}) \right\} \phi_{gs}(\mathbf{r})$$

Three-body calculations omitting breakup channels fail to describe the experimental data.

Inclusion of breakup channels

- In collisions involving weakly bound nuclei, excitation of unbound states (breakup channels) of the weakly-bound nucleus plays an important role.
- Reaction formalisms (DWBA, CC...) must be conveniently extended in order to incorporate the possibility of coupling to these breakup channels.

A M Moro

Bound versus scattering states

Continuum wavefunctions:

$$\varphi_{k,\ell jm}(\mathbf{r}) = \frac{u_{k,\ell j}(r)}{r} [Y_{\ell}(\hat{r}) \otimes \chi_s]_{jm}$$
$$\varepsilon = \frac{\hbar^2 k^2}{2\mu}$$

Bound versus scattering states

Continuum wavefunctions:

$$\varphi_{k,\ell jm}(\mathbf{r}) = \frac{u_{k,\ell j}(r)}{r} [Y_{\ell}(\hat{r}) \otimes \chi_s]_{jm}$$
$$\varepsilon = \frac{\hbar^2 k^2}{2\mu}$$

Unbound states are not suitable for CC calculations:

- They have a continuous (infinite) distribution in energy.
- Non-normalizable: $\langle u_{k,\ell si}(r)|u_{k',\ell si}(r)\rangle \propto \delta(k-k')$

SOLUTION ⇒ continuum discretization

The origins of CDCC

• Continuum discretization method proposed by G.H. Rawitscher [PRC9, 2210 (1974)] and Farrell, Vincent and Austern [Ann.Phys.(New York) 96, 333 (1976)] to describe deuteron scattering as an effective three-body problem p + n + A.

PHYSICAL REVIEW C

VOLUME 9, NUMBER 6

JUNE 1974

Effect of deuteron breakup on elastic deuteron-nucleus scattering

George H. Rawitscher*

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02133, and Department of Physics, University of Surrey, Guildford, Surrey, England (Received I Cothors 1973: revised manuscript received 4 March 1974)

The properties of the transition matrix elements $V_{\bullet,k}(R)$ of the breakup potential V_{τ} taken between states $\phi_{t}(R)$ and $\phi_{t}(R)$ and $\phi_{t}(R)$ and the heutron-proton relative-motion Hamiltonian, and the eigenvalues of the energy ϵ_{s} are positive (continuum states) or negative bound deutron), $V_{t}(R)$ is the sum of the phenomenological proton mucleus $V_{t-s}((R^{\frac{1}{2}} \pm \frac{1}{2}T))$ and neutron nucleus $V_{t-s}((R^{\frac{1}{2}} \pm \frac{1}{2}T))$ and neutron nucleus $V_{t-s}((R^{\frac{1}{2}} \pm \frac{1}{2}T))$ and neutron nucleus $V_{t-s}(R^{\frac{1}{2}} \pm \frac{1}{2}T)$ optical potentials evaluated for nucleus energy. The bound-to-continuum transition matrix element for relative neutron-proton angular momenta l-2 are found to be comparable in magnitude to the ones for l-1 of or values of ϵ_{s} larger than about 3 MeV, and both decrease only slowly with ϵ_{s} , suggesting that a large breakup spectrum is involved in deuteron-nucleus collisions. The effect of the various breakup transitions on the clastic phase shifts is estimated by numerically solving a set of coupled equations. These equations couple the functions $\chi_{t}(R)$ which are the coefficients of the expansion of the neutron-proton-nucleus wave function in a set of the $\phi_{t}(R)$'s. The equations are rendered manageable by performing a (rather crude) discretization in the neutron-proton relative-momentum variable k_{s} . Numer-proton relative-momentum variable k_{s} . Numer-proton relative-momentum variable k_{s} .

George Rawitscher (1928-2018)

• Full numerical implementation by Kyushu group (Sakuragi, Yahiro, Kamimura, and co.): *Prog. Theor. Phys.(Kyoto)* 68, 322 (1982)

Continuum discretization for deuteron scattering

- Select a number of angular momenta ($\ell = 0, \dots, \ell_{max}$).
- For each ℓ , set a maximum excitation energy ε_{max} .
- Divide the interval $\varepsilon = 0 \varepsilon_{\text{max}}$ in a set of sub-intervals (*bins*).
- For each bin, calculate a representative wavefunction $\phi_{\ell m}(\mathbf{r})$.

CDCC formalism: construction of the bin wavefunctions

Bin wavefunction:

$$\phi_{\ell jm}^{[k_1,k_2]}(\mathbf{r}) = \frac{u_{\ell j}^{[k_1,k_2]}(r)}{r} [Y_{\ell}(\hat{r}) \otimes \chi_s]_{jm} \qquad [k_1,k_2] = \text{bin interval}$$

$$u_{\ell sjm}^{[k_1,k_2]}(r) = \sqrt{\frac{2}{\pi N}} \int_{k_1}^{k_2} w(k) u_{k,\ell sj}(r) dk$$

- k: linear momentum
- $u_{k,\ell sj}(r)$: scattering states (radial part)
- w(k): weight function

CDCC formalism for deuteron scattering

- Hamiltonian: $H = T_{\mathbf{R}} + h_r(\mathbf{r}) + V_{pt}(\mathbf{r}_{pt}) + V_{nt}(\mathbf{r}_{nt})$
- Model wavefunction:

$$\Psi^{(+)}(\mathbf{R}, \mathbf{r}) = \underbrace{\phi_{gs}(\mathbf{r})\chi_0(\mathbf{R})}_{\text{bound state}} + \underbrace{\sum_{n>0}^{N} \phi_n(\mathbf{r})\chi_n(\mathbf{R})}_{\text{discretized continuum}}$$

• Coupled equations: $[H - E]\Psi(\mathbf{R}, \mathbf{r}) = 0$

$$[E - \varepsilon_n - T_R - V_{n,n}(\mathbf{R})] \chi_n(\mathbf{R}) = \sum_{n' \neq n} V_{n,n'}(\mathbf{R}) \chi_{n'}(\mathbf{R})$$

Coupling potentials:

$$V_{n,n'}(\mathbf{R}) = \int d\mathbf{r} \, \phi_n^*(\mathbf{r}) \left[V_{pt}(\mathbf{R} + \frac{\mathbf{r}}{2}) + V_{nt}(\mathbf{R} - \frac{\mathbf{r}}{2}) \right] \phi_{n'}(\mathbf{r})$$

A.M.Moro

Applications of the CDCC formalism: d+ 58Ni

Coupling to continuum states produce:

- Polarization of the projectile (modification of real part)
- Flux removal (absorption) from the elastic channel (imaginary part)

No continuum ⇒ retain only the Watanabe potential:

$$V_{00}(\mathbf{R}) = \int d\mathbf{r} \,\phi_{gs}^*(\mathbf{r}) \left(V_{pt} + V_{nt}\right) \phi_{gs}(\mathbf{r})$$

Breakup observables with CDCC: exclusive breakup of $d+ {}^{12}C \rightarrow p+n+{}^{12}C$

CDCC calculations for \mathbf{d} + $^{12}\mathbf{C}$ at 56 MeV:

- Continuum states with $\ell \le 8$ and $\varepsilon_{\text{max}} = 46$ MeV.
- Proton and neutron intrinsic spins ignored
- p/n+ ⁵⁸Ni from Watson global optical potential
- p+n simple Gaussian interaction describing deuteron g.s.

Data: Matsuoka et al., NPA391, 357 (1982).

A. Deltuva et al, PRC 76, 064602 (2007)

Application of the CDCC method: ⁶Li and ⁶He scattering

The CDCC method has been also applied to nuclei with a cluster structure:

•
$$^{6}\text{Li} = \alpha + d$$
 ($S_{\alpha,d} = 1.47 \text{ MeV}$)

•
$${}^{11}\text{Be} = {}^{10}\text{Be} + \text{n} (S_n = 0.504 \text{ MeV})$$

Extension to 3-body projectiles

To extend the CDCC formalism, one needs to evaluate the new coupling potentials:

$$V_{n,n'}(\mathbf{R}) = \int d\mathbf{r} \,\phi_n^*(\mathbf{x}, \mathbf{y}) \left\{ V_{nt}(\mathbf{r}_1) + V_{nt}(\mathbf{r}_2) + V_{\alpha t}(\mathbf{r}_3) \right\} \phi_{n'}(\mathbf{x}, \mathbf{y})$$

- $\phi_n(\mathbf{x}, \mathbf{y})$ three-body WFs for bound and continuum states: hyperspherical coordinates, Faddeev, etc (difficult to calculate!)
- 4b-CDCC calculations not included in FRESCO; require separate codes to compute the $\phi_n(\mathbf{x}, \mathbf{y})$ wfs (e.g. FACE) and $V_{n:n'}(\mathbf{R})$ potentials

Four-body CDCC calculations for ⁶He and ¹¹Li scattering

Data (LLN): NPA803, 30 (2008):PRC 84, 044604 (2011) Calculations: PRC 80, 051601 (2009)

M Cubero et al, PRL109, 262701 (2012)

N.b.: 1-channel potential considers only g.s. \rightarrow g.s. coupling potential:

$$V_{00}(\mathbf{R}) = \int d\mathbf{r} \,\phi_{\text{g.s.}}^*(\mathbf{x}, \mathbf{y}) \left\{ V_{nt}(\mathbf{r}_1) + V_{nt}(\mathbf{r}_2) + V_{ct}(\mathbf{r}_3) \right\} \phi_{\text{g.s.}}(\mathbf{x}, \mathbf{y})$$

A.M.Moro