Question 1. Soit (x_1,x_2,\ldots,x_n) un échantillon d'une variable aléatoire X. On suppose que X suit une loi paramétrisée par γ . La vraisemblance de (x_1,x_2,\ldots,x_n) est donnée par

- $\square \mathbb{P}(x_1,x_2,\ldots,x_n,\gamma)$
- $\square \mathbb{P}(x_1,x_2,\ldots,x_n|\gamma)$
- $\square \mathbb{P}(\gamma|x_1,x_2,\ldots,x_n)$
- $\square \prod_{i=1}^n \mathbb{P}(x_i|\gamma)$
- $\square \prod_{i=1}^n \mathbb{P}(\gamma|x_i)$

Question 2. Soit X une loi exponentielle de paramètre λ . L'estimateur par maximum de vraisemblance de λ est donné par

- $\Box L_n = n \ln(\lambda) \lambda \sum_{i=1}^n X_i$, où (X_1, X_2, \dots, X_n) est un échantillon aléatoire de X
- $\square \ \widehat{\lambda} = n \ln(\lambda) \lambda \sum_{i=1}^{n} x_i$, où (x_1, x_2, \dots, x_n) est un échantillon aléatoire de X
- $\square \ L_n = rac{n}{\sum_{i=1}^n X_i},$ où (X_1, X_2, \dots, X_n) est un échantillon aléatoire de X
- \square $\widehat{\lambda} = \frac{n}{\sum_{i=1}^n x_i}$, où (x_1, x_2, \dots, x_n) est un échantillon aléatoire de X.

Question 3. ★ L'estimateur de Bayes est plus proche de l'espérance a priori que de l'estimateur par maximum de vraisemblance quand la taille de l'échantillon est

- \square grande
- □ petite
- □ ça dépend.

Solution

Question 1. Par définition (cf. équation (3.7) du poly),

$$L(x_1,x_2,\ldots,x_n;\gamma) = \mathbb{P}(x_1,x_2,\ldots,x_n|\gamma) = \prod_{i=1}^n \mathbb{P}(x_i|\gamma).$$

Question 2. Par définition la vraisemblance d'un échantillon (x_1, x_2, \dots, x_n) est donnée par

$$L(x_1,x_2,\ldots,x_n;\lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n \prod_{i=1}^n e^{-\lambda x_i},$$

et donc sa log-vraisemblance vaut

$$\ell(x_1, x_2, \dots, x_n; \lambda) = \ln\left(\lambda^n \prod_{i=1}^n e^{-\lambda x_i}\right) = n \ln(\lambda) - \lambda \sum_{i=1}^n x_i.$$

La fonction $\lambda \mapsto n \ln(\lambda) - \lambda \sum_{i=1}^n x_i$ est concave sur $]0, +\infty[\to \mathbb{R}$ et on peut donc la maximiser en annulant sa dérivée.

On obtient l'estimation par maximum de vraisemblance de λ suivante :

$$\widehat{\lambda}_{\text{MLE}} = \frac{n}{\sum_{i=1}^{n} x_i}$$

et, si on appelle (X_1, X_2, \dots, X_n) un échantillon aléatoire de X, on obtient l'estimateur par maximum de vraisemblance de λ :

$$L_n = \frac{n}{\sum_{i=1}^n X_n}.$$

Question 3. La tendance que nous avons observée sur l'exemple de la section 3.6 (cf. « Remarque importante ») se vérifie en général : plus on observe d'échantillons, plus on s'éloigne de l'a priori pour se rapprocher d'un estimateur issu uniquement des données.