Math 357 Long quiz 01B

2024–03–22 (F)

Your name:	

(a) Let R be a ring with a multiplicative identity 1_R . R is **boolean** if, for all $a \in R$, $a^2 = a$. Prove that a boolean ring is commutative.

Solution: Note that the ring axioms imply that $-1_R \in R$, and that it satisfies

$$-1_{R} = (-1_{R})^{2} = 1_{R} \tag{1}$$

where for the first equality we have used the hypothesis that R is boolean.

Case 1: $1_R = 0_R$. In this case, R is the zero ring, which satisfies the axioms of a boolean ring. There is only one element $\alpha \in R$ (namely 0_R), and any element commutes with itself. Hence R is commutative.

Case 2: $1_R \neq 0_R$. Let $a, b \in R$ be arbitrary, and consider the element $a + b \in R$. Then

$$a + b = (a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b$$

where in the first equality, we use the hypothesis that R is boolean; in the second, the left- and right-distributivity axioms of a ring; and in the third, the hypothesis that R is boolean. Because R is a ring, by definition it contains the additive inverses -a and -b. Adding these to both sides of the last equation, we get

$$ab + ba = 0$$
 \Leftrightarrow $ab = -ba$

Applying the ring axioms and equation (1) to this last equality, we conclude that

$$ab = -ba = -1_R(ba) = 1_R(ba) = ba$$

as desired.

(b) Let R be a ring; and let I_1 , I_2 be ideals of R. Recall that

$$I_1 + I_2 = \{a_1 + a_2 \mid a_i \in I_i\}$$

$$I_1 I_2 = \left\{ \sum_{j=1}^n a_{1,j} a_{2,j} \mid n \in \mathbf{Z}_{>0}; \forall j, a_{i,j} \in I_i \right\}$$

are ideals. (In particular, note that I_1I_2 comprises all finite sums of terms of the form $\alpha_1\alpha_2$ with $\alpha_i\in I_i$.) Prove that if R is a commutative ring with a multiplicative identity, and if $I_1+I_2=R$, then $I_1\cap I_2=I_1I_2$.

Solution: The inclusion $I_1I_2 \subseteq I_1 \cap I_2$ holds for arbitrary rings, by definition of an ideal (namely, closure under addition and "strong closure" under multiplication by ring elements). To show the reverse inclusion, $I_1 \cap I_2 \subseteq I_1I_2$, let $a \in I_1 \cap I_2$. By hypothesis, $I_1 + I_2 = R$, and there exists a multiplicative identity element $1_R \in R$; so in particular, there exist $e_1 \in I_1$ and $e_2 \in I_2$ such that $e_1 + e_2 = 1_R$. Then

$$a = a1_R = a(e_1 + e_2) = ae_1 + ae_2 = e_1a + ae_2$$

where in the last equality we have used the hypothesis that R is commutative. The last expression is a sum of elements, each with the form (element of I_1) times (element of I_2). Thus $\alpha \in I_1I_2$, as desired.