

Snubberless™, logic level and standard 8 A Triacs

Features

- On-state rms current, I_{T(RMS)} 8 A
- Repetitive peak off-state voltage, V_{DRM}/V_{RRM}
 600 to 800 V
- Triggering gate current, I_{GT (Q1)} 5 to 50 mA

Description

Available either in through-hole or surface-mount packages, the **BTA08**, **BTB08** and **T8** triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers,...

The snubberless versions (BTA/BTB...W and T8 series) are specially recommended for use on inductive loads, thanks to their high commutation performances.

Logic level versions are designed to interface directly with low power drivers such as microcontrollers.

By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at 2500 V_{RMS}) complying with UL standards (file ref.: E81734).

1 Characteristics

Table 1. Absolute maximum ratings

Symbol	Paramete		Value	Unit		
I _{T(RMS)}	On-state rms current (full sine wave)	IPAK/D ² PAK/DPAK/ TO-220AB	T _c = 110 °C	8	А	
T(MNS)		TO-220AB Ins.	T _c = 100 °C			
1 .	Non repetitive surge peak on-state current	F = 50 Hz	t = 20 ms	80	Α	
ITSM	(full cycle, T _j initial = 25 °C)	F = 60 Hz	t = 16.7 ms	84	^	
l ² t	I ² t value for fusing	t _p = 10 ms	36	A ² s		
dI/dt	Critical rate of rise of on-state current $I_G = 2$ x I_{GT} , $t_r \le 100$ ns	F = 120 Hz	T _j = 125 °C	50	A/μs	
I _{GM}	Peak gate current $t_p = 20 \mu s$ $T_j = 125 ^{\circ} C$		4	Α		
P _{G(AV)}	Average gate power dissipation $T_j = 125$ °C				W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range	- 40 to + 150 - 40 to + 125	°C			

Table 2. Electrical characteristics (T_j = 25 °C, unless otherwise specified) Snubberless and logic level (3 quadrants)

Cymbol	Test conditions	Quadrant		Т	8	E	3TA08	BTB0	8	Unit
Symbol	rest conditions	Quadrant		T810	T835	TW	sw	CW	BW	Onit
I _{GT} ⁽¹⁾	V _D = 12 V R _I = 30 Ω	1 - 11 - 111	MAX.	10	35	5	10	35	50	mA
V _{GT}	AD = 15 A LIF = 20 25	1 - 11 - 111	MAX.			1	.3			٧
V_{GD}	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega$ $T_j = 125 \text{ °C}$		MIN.	0.2				V		
I _H ⁽²⁾	I _T = 100 mA		MAX.	15	35	10	15	35	50	mA
1	1 1.21.	I - III	MAX.	25	50	10	25	50	70	mA
IL	$I_{G} = 1.2 I_{GT}$	II		30	60	15	30	60	80	IIIA
dV/dt (2)	$V_D = 67 \% V_{DRM}$ gate open $T_j = 125 \degree C$		MIN.	40	400	20	40	400	1000	V/µs
	$(dV/dt)c = 0.1 V/\mu s$ $T_j = 125 °C$			5.4	-	3.5	5.4	-	-	
(dl/dt)c (2)	$(dV/dt)c = 10 V/\mu s$ $T_j = 12$	5 °C	MIN.	2.8	-	1.5	2.98	-	-	A/ms
	Without snubber $T_j = 12$	5 °C		-	4.5	-	-	4.5	7	

Table 3. Standard (4 quadrants)

Cymbal	Test conditions	Oughront		BTA08	BTB08	llmit	
Symbol	rest conditions	Quadrant		С	В	Unit	
I _{GT} ⁽¹⁾	$V_D = 12 \text{ V}, R_L = 33 \Omega$	I - II - III IV	MAX.	25 50	50 100	mA	
V _{GT}		ALL	MAX.	1.	.3	V	
V _{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_j = 125 \text{ °C}$	ALL	MIN.	0.2		V	
I _H ⁽²⁾	I _T = 500 mA		MAX.	25	50	mA	
	1 -101	I - III - IV	MAX.	40	50	m 1	
IL	$I_{G} = 1.2 I_{GT}$	II	IVIAA.	80	100	mA	
dV/dt (2)	V _D = 67 %V _{DRM} gate open	T _j = 125 °C	MIN.	200	400	V/µs	
(dV/dt)c (2)	(dl/dt)c = 5.3 A/ms	T _j = 125 °C	MIN.	5	10	V/µs	

Table 4. Static characteristics

Symbol	Test conditions				Unit
V _{TM} ⁽¹⁾	$I_{TM} = 11 \text{ A, } t_p = 380 \mu\text{s}$	T _j = 25 °C	MAX.	1.55	V
V _{t0} (2)	Threshold voltage	T _j = 125 °C	MAX.	0.85	V
R _d ⁽²⁾	Dynamic resistance	T _j = 125 °C	MAX.	50	mΩ
I _{DRM}	V - V	T _j = 25 °C	MAX.	5	μA
I_{RRM} $V_{DRM} = V_{RRM}$	VDRM = VRRM	T _j = 125 °C	IVIAA.	1	mA

^{1.} minimum I_{GT} is guaranted at 5% of I_{GT} max.

Table 5. Thermal resistance

Symbol	Parameter Valu				
В	D. Junction to coop (AC)		IPAK / D ² PAK / DPAK / TO-220AB	1.6	°C/W
$R_{th(j-c)}$ Junction to case (TO-220AB Insulated	2.5	C/VV
	R _{th(j-a)} Junction to ambient	$S = 1 \text{ cm}^2$	D ² PAK	45	
R _{th(j-a)}		$S = 0.5 \text{ cm}^2$	DPAK	70	°C/W
			TO-220AB / TO-220AB Insulated	60	C/VV
			IPAK	100	

S = Copper surface under tab.

^{2.} for both polarities of A2 referenced to A1.

Figure 1. Maximum power dissipation versus Figure 2. On-state rms current versus case rms on-state current (full cycle) temperature (full cycle)

Figure 3. On-state rms current versus ambient temperature (full cycle)

Figure 4. Relative variation of thermal impedance versus pulse duration

Figure 5. On-state characteristics (maximum values)

Figure 6. Surge peak on-state current versus number of cycles

4/12 Doc ID 7472 Rev 7

I_{TSM}(A), I²t (A²s)

0.10

1000

100

10

0.6

0.4

0.2

0.1

0.01

Non-repetitive surge peak on-state Figure 7. current for a sinusoidal

t_p(ms)

100.0

Figure 8. Relative variation of gate trigger current

Figure 9. Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values)

pulse with width t_p < 10 ms and corresponding value of I²t

(dl/dt)c [(dV/dt)c] / Specified (dl/dt)c 2.0 22 2.0 1.8 1.8 1.6 1.6 14 1.4 1.2 1.2 1.0 1.0 0.8

10.0

1.00

Figure 10. Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values)

Figure 11. Relative variation of critical rate of Figure 12. decrease of main current versus junction temperature

(dV/dt)c (V/µs)

DPAK and D²PAK thermal resistance junction to ambient versus copper surface under tab

Inches

Typ.

0.055

0.016

Max.

0.181

0.106

0.009

0.037

0.024

0.054

0.368

0.405

0.208

0.624

0.055

0.069

8°

Min.

0.169

0.098

0.001

0.027

0.048

0.017

0.047

0.352

0.393

0.192

0.590

0.050

0.055

0°

2 **Package information**

- Epoxy meets UL94, V0
- Lead-free packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

D²PAK dimensions Table 6.

Figure 13. Footprint (dimensions in mm)

Table 7. DPAK dimensions

	Dimensions							
Ref.	Millim	neters	Inches					
	Min.	Max.	Min.	Max.				
Α	2.20	2.40	0.086	0.094				
A1	0.90	1.10	0.035	0.043				
A2	0.03	0.23	0.001	0.009				
В	0.64	0.90	0.025	0.035				
B2	5.20	5.40	0.204	0.212				
С	0.45	0.60	0.017	0.023				
C2	0.48	0.60	0.018	0.023				
D	6.00	6.20	0.236	0.244				
Е	6.40	6.60	0.251	0.259				
G	4.40	4.60	0.173	0.181				
Н	9.35	10.10	0.368	0.397				
L2	0.80 typ.		0.03	1 typ.				
L4	0.60	1.00	0.023	0.039				
V2	0°	8°	0°	8°				

Figure 14. Footprint (dimensions in mm)

Table 8. IPAK dimensions

	Dimensions						
Ref.	Mi	Ilimete	rs	s Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.20		2.40	0.086		0.094	
A1	0.90		1.10	0.035		0.043	
А3	0.70		1.30	0.027		0.051	
В	0.64		0.90	0.025		0.035	
B2	5.20		5.40	0.204		0.212	
В3			0.95			0.037	
B5		0.30			0.035		
С	0.45		0.60	0.017		0.023	
C2	0.48		0.60	0.019		0.023	
D	6		6.20	0.236		0.244	
Е	6.40		6.60	0.252		0.260	
е		2.28			0.090		
G	4.40		4.60	0.173		0.181	
Н		16.10			0.634		
L	9		9.40	0.354		0.370	
L1	0.8		1.20	0.031		0.047	
L2		0.80	1		0.031	0.039	
V1		10°			10°		

TO-220AB (NIns. and Ins. 20-up) dimensions

3 Ordering information

Figure 15. Ordering information scheme (BTA08 and BTB08 series)

Figure 16. Ordering information scheme (T8 series)

Table 9. Product Selector

Part Number	Voltage (xxx)		Consistivity	Tyme	Doolsomo
Part Number	600 V	800 V	Sensitivity	Туре	Package
BTA/BTB08-xxxB	Х	Х	50 mA	Standard	TO-220AB
BTA/BTB08-xxxBW	Х	Х	50 mA	Snubberless	TO-220AB
BTA/BTB08-xxxC	Х	Х	25 mA	Standard	TO-220AB
BTA/BTB08-xxxCW	Х	Х	35 mA	Snubberless	TO-220AB
BTA/BTB08-xxxSW	Х	Х	10 mA	Logic level	TO-220AB
BTA/BTB08-xxxTW	Х	Х	5 mA	Logic Level	TO-220AB
T810-xxxG	Х	Х	10 mA	Logic Level	D ² PAK
T810-xxxH	Х	Х	10 mA	Logic Level	IPAK
T835-xxxB	Х	Х	35 mA	Snubberless	DPAK
T835-xxxG	Х	Х	35 mA	Snubberless	D ² PAK
T835-xxxH	Х	Х	35 mA	Snubberless	IPAK

BTB: non insulated TO-220AB package

10/12 Doc ID 7472 Rev 7

4 Ordering information

Table 10. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode		
BTA/BTB08-xxxyzRG	BTA/BTB08-xxxyz	TO-220AB	2.3 g	50	Tube		
T8yy-xxxG	Т8уухх	D ² PAK 1.5 g	1.5 g	50	Tube		
T8yy-xxxG-TR	Т8уухх	DIAK	1.5 g	1000	Tape and reel		
T8yy-xxxB	Т8уухх	DPAK	0.3 g	75	Tube		
T8yy-xxxB-TR	Т8уухх	DFAR	DIAN	DIAN	0.5 g	2500	Tape and reel
T8yy-xxxH	Т8уухх	IPAK	0.4 g	75	Tube		

xxx = voltage, yy = sensitivity, z = type

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
Apr-2002	5A	Last update.
13-Feb-2006 6		TO-220AB delivery mode changed from bulk to tube. ECOPACK statement added.
10-Mar-2010	7	Updated ECOPACK statement and Figure 16.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

12/12 Doc ID 7472 Rev 7

