

A. Lorenzi, E. Cavalli
INFORMATICA PER ISTITUTI TECNICI TECNOLOGICI

Come organizzare i dati

Relazioni e tabelle

Le relazioni

 Il successo del modello relazionale si fonda sulla visione tabellare dei dati basata sul concetto matematico di relazione

$$A = \{4, 9, 16\}, B = \{2, 3\}$$

$$A \times B = \{ (4,2), (9,2), (16,2), (4,3), (9,3), (16,3) \}$$

$$Q = \{ (4,2), (9,3) \} \subseteq A \times B$$

Q è una relazione sui domini A e B

QuadratoDi(4,2)

4 QuadratoDi 2

Relazioni e tabelle

I due insiemi A1×A2 e QuadratoDi possono essere rappresentati con tabelle

 $A1 \times A2$

A1	A2
4	2
4	3
9	2
9	3
16	2
16	3

QuadratoDi

A1	A2
4	2
9	3

- Dati n insiemi S₁, S₂, S₃, ..., S_n si dice relazione
 R su questi insiemi l'insieme delle tuple (n-uple):
 s₁, s₂, s₃,..., s_n
- Gli insiemi S_i si chiamano domini della relazione detta di grado n
- Cardinalità della relazione è il numero di tuple (righe) che la compongono

Caratteristiche delle relazioni

Automobili: relazione di grado 5 e cardinalità 8

Relazioni: terminologia (1)

- Chiave di una relazione è un attributo o un insieme minimale di attributi che identificano univocamente le n-uple della relazione, cioè ogni riga della tabella possiede valori diversi per l'attributo (o gli attributi) chiave
- Schema di una relazione, per esempio di Automobili, è una scrittura del tipo:
 Automobili (Modello, Costruttore, Segmento, Porte, Posti)
- Terminologia usata:

Terminologia molto diffusa	slledaT =	Colonna	Riga
	Relazione	Attributo	Tupla
	File	Campo	Record

Relazioni: terminologia (2)

Un esempio di schema relazionale di database:

Studenti (Matricola, Nominativo, Indirizzo, CodFac)

Facoltà (Codice, Descrizione)

Chiave esterna

Studenti

<u>Matricola</u>	Nominativo	Indirizzo	CodFac
2340	Nino Verdi	Milano	ing
2370	Lino Bianchi	Torino	(ing)
21323	Marzia Rossi	Venezia	eco
34510 Franco Dini		Palermo	eco
45678	Silvia Gualeni	Salerno	lin
53325	Franco Bassetti	Foggia	eco

Facoltà

<u>Codice</u>	Descrizione
eco	Economia
ing	Ingegneria
lin	Lingue
med	Medicina

Il modello relazionale

Caratteristiche di base del modello relazionale sono le seguenti:

- Tutte le righe hanno lo stesso numero di attributi e contengono informazioni di una (sola) entità
- I valori delle colonne rappresentano informazioni elementari (non ci sono informazioni di gruppo)
- Tutti i valori in una colonna sono del medesimo tipo
- Non ci possono essere righe duplicate: ci deve essere un attributo o insieme di attributi con la funzione di chiave primaria
- L'ordine delle colonne non è rilevante (perché le colonne hanno un'intestazione)
- L'ordine delle righe non è rilevante

Dal modello E/R al modello relazionale

Dal modello E/R al modello relazionale (1)

Dal modello concettuale dei dati è possibile ottenere il **modello logico** dei dati usando le seguenti **regole di derivazione**:

- Ogni entità diventa una relazione; ogni attributo di un'entità diventa un attributo della relazione ereditando le caratteristiche dell'attributo dell'entità da cui deriva
- L'identificatore univoco di un'entità diventa la chiave primaria della relazione derivata
- 3. Per rappresentare le associazioni:
 - a) Associazione 1:1. Si costruisce un'unica relazione che contiene gli attributi della prima e della seconda entità (regola con molte eccezioni). E' spesso preferibile trattare l'associazione 1:1 come se fosse 1:N

Se nel modello E/R ci sono due entità perché riunire i fatti dell'una con quelli dell'altra?

Dal modello E/R al modello relazionale (2)

- b) Associazione 1:N. Si rappresenta aggiungendo, agli attributi dell'entità che svolge il ruolo a molti, l'identificatore univoco dell'entità che svolge il ruolo a uno nell'associazione (chiave esterna). Gli eventuali attributi dell'associazione vengono inseriti nella relazione che rappresenta l'entità a molti, assieme alla chiave esterna
- C) L'associazione N:N. Si rappresenta costruendo una nuova tabella (in aggiunta alle relazioni derivate dalle entità) composta dagli identificatori univoci delle due entità e dagli eventuali attributi dell'associazione. La chiave della nuova relazione è formata dall'insieme di attributi che compongo le chiavi delle due entità, oltre agli attributi dell'associazione necessari a garantire l'unicità delle righe nella tabella ottenuta

Modello con associazione 1:1

Dipendenti e auto aziendali: pochi dipendenti hanno l'auto aziendale

Dipendenti (Matricola, Nome, Cognome, DataNascita, LuogoNascita, Targa, Modello, Costruttore, Cilindrata)

Dipendenti (<u>Matricola</u>, Nome, Cognome, DataNascita, LuogoNascita)

AutoAziendali (<u>Targa</u>, Modello, Costruttore, Cilindrata, *Matricola*)

Meglio così

Modello con associazione 1:N (1)

Dipendenti e relativi contratti di lavoro

Contratti (Codice, Descrizione, StipendioBase, DataScadenza)

Dipendenti (Matricola, Cognome, Nome, Indirizzo, Qualifica, CodiceContratto)

Modello con associazione 1:N (2)

Acquisto di automobili da parte di persone

Persone (CodiceFiscale, Cognome, Nome, DataNascita, Indirizzo)

Automobili (<u>Targa</u>, Modello, Produttore, Cilindrata, PrezzoListino, *CodiceFiscale*, DataAcquisto, PrezzoAcquisto)

Modello con associazione N:N (1)

Studenti e Materie d'esame

Studenti (Matricola, Nome, Cognome, Indirizzo, Telefono)

Materie (CodiceMateria, NomeMateria, NumeroOre)

Esami (Matricola, CodiceMateria, Data, Voto)

Modello con associazione N:N (2)

Studenti e Materie d'esame – approccio con 3 entità

Studenti (Matricola, Nome, Cognome, Indirizzo, Telefono)

Materie (CodiceMateria, NomeMateria, NumeroOre)

Esami (Numero, Data, Voto, Matricola, CodiceMateria)