

PROPIEDADES DE INTEGRABILIDAD

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 04) 23.ENERO.2023

Teorema (Modificación de la Integral)

Sean $f,g:[a,b]\to\mathbb{R}$ limitadas. Si la derivada g' existe y es continua en (a,b), y f es g-integrable en [a,b], entonces el producto fg es Riemann-integrable en [a,b], y

$$\int_a^b f\,dg = \int_a^b f(t)\,g'(t)\,dt.$$

Teorema (Modificación de la Integral)

Sean $f, g : [a, b] \to \mathbb{R}$ limitadas. Si la derivada g' existe y es continua en (a, b), y f es g-integrable en [a, b], entonces el producto fg es Riemann-integrable en [a, b], y

$$\int_a^b f\,dg = \int_a^b f(t)\,g'(t)\,dt.$$

Prueba: Como g' es continua en [a, b], entonces g' es uniformmente continua.

Teorema (Modificación de la Integral)

Sean $f, g : [a, b] \to \mathbb{R}$ limitadas. Si la derivada g' existe y es continua en (a, b), y f es g-integrable en [a, b], entonces el producto fg es Riemann-integrable en [a, b], y

$$\int_a^b f\,dg = \int_a^b f(t)\,g'(t)\,dt.$$

Prueba: Como g' es continua en [a,b], entonces g' es uniformmente continua. Sea $\varepsilon > 0$, y tomemos un partición $P = \{t_0, t_1, \dots, t_n\}$ de [a,b], tal que si

$$\xi_i, \zeta_i \in [\mathsf{t}_i, \mathsf{t}_{i-1}] \qquad \Longrightarrow \qquad \left| g'(\xi_i) - g'(\zeta_i) \right| < \frac{\varepsilon}{|\mathsf{f}| |(b-a)},$$

donde $||f|| = \sup f$ en [a, b].

Teorema (Modificación de la Integral)

Sean $f, g : [a, b] \to \mathbb{R}$ limitadas. Si la derivada g' existe y es continua en (a, b), y f es g-integrable en [a, b], entonces el producto fg es Riemann-integrable en [a, b], y

$$\int_a^b f\,dg = \int_a^b f(t)\,g'(t)\,dt.$$

Prueba: Como g' es continua en [a, b], entonces g' es uniformmente continua.

Sea $\varepsilon >$ 0, y tomemos un partición $P = \{t_0, t_1, \dots, t_n\}$ de [a, b], tal que si

$$\xi_i, \zeta_i \in [t_i, t_{i-1}] \qquad \Longrightarrow \qquad \left| g'(\xi_i) - g'(\zeta_i) \right| < \frac{\varepsilon}{|f| |(b-a)},$$

donde $||f|| = \sup f$ en [a, b].

Consideramos la diferencia entre las sumas s(P, f, g) y s(P, fg'), usando los puntos ξ_i como representantes de P:

$$|s(P,f,g)-s(P,fg')| = |\sum_{i=1}^n f(\xi_i) (g(t_i)-g(t_{i-1})) - \sum_{i=1}^n f(\xi_i) g'(t\xi_i) (t_i-t_{i-1})|.$$

Por el teorema del valor medio, existe $\zeta_i \in (t_{i-1}, t_i)$ tal que $g(t_i) - g(t_{i-1}) = g'(\zeta_i) (t_i - t_{i-1})$.

$$|s(P,f,g)-s(P,fg')| = |\sum_{i=1}^n f(\xi_i) (g(t_i)-g(t_{i-1})) - \sum_{i=1}^n f(\xi_i) g'(t\xi_i) (t_i-t_{i-1})|.$$

Por el teorema del valor medio, existe $\zeta_i \in (t_{i-1}, t_i)$ tal que $g(t_i) - g(t_{i-1}) = g'(\zeta_i) \left(t_i - t_{i-1}\right)$. Luego,

$$|s(P,f,g)-s(P,fg')| = |\sum_{i=1}^n f(\xi_i) (g(t_i)-g(t_{i-1})) - \sum_{i=1}^n f(\xi_i) g'(t\xi_i) (t_i-t_{i-1})|.$$

Por el teorema del valor medio, existe $\zeta_i \in (t_{i-1}, t_i)$ tal que $g(t_i) - g(t_{i-1}) = g'(\zeta_i) \left(t_i - t_{i-1}\right)$. Luego,

$$|s(P,f,g)-s(P,fg')| = |\sum_{i=1}^{n} f(\xi_i) g'(\zeta_i) (t_i-t_{i-1}) - \sum_{i=1}^{n} f(\xi_i) g'(\xi_i) (t_i-t_{i-1})|$$

$$|s(P,f,g)-s(P,fg')| = |\sum_{i=1}^n f(\xi_i) (g(t_i)-g(t_{i-1})) - \sum_{i=1}^n f(\xi_i) g'(t\xi_i) (t_i-t_{i-1})|.$$

Por el teorema del valor medio, existe $\zeta_i \in (t_{i-1}, t_i)$ tal que $g(t_i) - g(t_{i-1}) = g'(\zeta_i) (t_i - t_{i-1})$. Luego,

$$|s(P,f,g) - s(P,fg')| = \left| \sum_{i=1}^{n} f(\xi_{i}) g'(\zeta_{i}) (t_{i} - t_{i-1}) - \sum_{i=1}^{n} f(\xi_{i}) g'(\xi_{i}) (t_{i} - t_{i-1}) \right|$$

$$\leq \sum_{i=1}^{n} |f(\xi_{i})| |g'(\zeta_{i}) - g'(\xi_{i})| (t_{i} - t_{i-1})$$

$$|s(P,f,g)-s(P,fg')| = |\sum_{i=1}^n f(\xi_i) (g(t_i)-g(t_{i-1})) - \sum_{i=1}^n f(\xi_i) g'(t\xi_i) (t_i-t_{i-1})|.$$

Por el teorema del valor medio, existe $\zeta_i \in (t_{i-1}, t_i)$ tal que $g(t_i) - g(t_{i-1}) = g'(\zeta_i) \left(t_i - t_{i-1}\right)$. Luego,

$$\begin{aligned} \left| s(P,f,g) - s(P,fg') \right| &= \left| \sum_{i=1}^{n} f(\xi_{i}) g'(\zeta_{i}) \left(t_{i} - t_{i-1} \right) - \sum_{i=1}^{n} f(\xi_{i}) g'(\xi_{i}) \left(t_{i} - t_{i-1} \right) \right| \\ &\leq \sum_{i=1}^{n} \left| f(\xi_{i}) \right| \left| g'(\zeta_{i}) - g'(\xi_{i}) \right| \left(t_{i} - t_{i-1} \right) \\ &\leq \sum_{i=1}^{n} \left| |f| \right| \cdot \frac{\varepsilon}{||f||(b-a)} \left(t_{i} - t_{i-1} \right) \end{aligned}$$

$$|s(P,f,g)-s(P,fg')| = \Big|\sum_{i=1}^n f(\xi_i) (g(t_i)-g(t_{i-1})) - \sum_{i=1}^n f(\xi_i) g'(t\xi_i) (t_i-t_{i-1})\Big|.$$

Por el teorema del valor medio, existe $\zeta_i \in (t_{i-1}, t_i)$ tal que $g(t_i) - g(t_{i-1}) = g'(\zeta_i) (t_i - t_{i-1})$. Luego,

$$\begin{aligned} \left| \mathsf{s}(P,f,g) - \mathsf{s}(P,fg') \right| &= \left| \sum_{i=1}^{n} f(\xi_i) \, g'(\zeta_i) \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) - \sum_{i=1}^{n} f(\xi_i) \, g'(\xi_i) \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) \right| \\ &\leq \sum_{i=1}^{n} \left| f(\xi_i) \right| \left| g'(\zeta_i) - g'(\xi_i) \right| \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) \\ &\leq \sum_{i=1}^{n} \left| |f| \right| \cdot \frac{\varepsilon}{||f||(b-a)} \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) &= \varepsilon \cdot \square \end{aligned}$$

$$|s(P,f,g)-s(P,fg')| = \Big|\sum_{i=1}^n f(\xi_i) (g(t_i)-g(t_{i-1})) - \sum_{i=1}^n f(\xi_i) g'(t\xi_i) (t_i-t_{i-1})\Big|.$$

Por el teorema del valor medio, existe $\zeta_i \in (t_{i-1}, t_i)$ tal que $g(t_i) - g(t_{i-1}) = g'(\zeta_i) (t_i - t_{i-1})$. Luego,

$$\begin{aligned} \left| \mathsf{s}(P,f,g) - \mathsf{s}(P,fg') \right| &= \left| \sum_{i=1}^{n} f(\xi_i) \, g'(\zeta_i) \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) - \sum_{i=1}^{n} f(\xi_i) \, g'(\xi_i) \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) \right| \\ &\leq \sum_{i=1}^{n} \left| f(\xi_i) \right| \left| g'(\zeta_i) - g'(\xi_i) \right| \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) \\ &\leq \sum_{i=1}^{n} \left| |f| \right| \cdot \frac{\varepsilon}{||f||(b-a)} \left(\mathsf{t}_i - \mathsf{t}_{i-1} \right) &= \varepsilon \cdot \square \end{aligned}$$

Ejemplos

Ejemplo 1: Calcular $\int_0^{\pi/2} \sin t \, d \sin t$.

Ejemplos

Ejemplo 1: Calcular
$$\int_{0}^{\pi/2} \sin t \, d \sin t$$
.

Ejemplo 2: Calcular
$$\int_0^{\pi/2} x^2 d(x - \lfloor x \rfloor)$$
.

Definición

Sea $f:[a,b]\to\mathbb{R}$ una función, y sea $P=\{t_0,t_1,\ldots,t_n\}$ una partición de [a,b]. Definimos la **variación** de f respecto de P como

$$V_f(P) = \sum_{i=1}^n |f(t_i) - f(t_{i-1})|.$$

Definición

Sea $f:[a,b]\to\mathbb{R}$ una función, y sea $P=\{t_0,t_1,\ldots,t_n\}$ una partición de [a,b]. Definimos la **variación** de f respecto de P como

$$V_f(P) = \sum_{i=1}^n |f(t_i) - f(t_{i-1})|.$$

Definición

Sean f y P como arriba. Decimos que la función f es **de variación limitada** (**de variación acotada**), cuando el conjunto $\{v_f(P) : P \text{ es partición de } [a,b]\}$ es limitado.

Definición

Sea $f:[a,b]\to\mathbb{R}$ una función, y sea $P=\{t_0,t_1,\ldots,t_n\}$ una partición de [a,b]. Definimos la **variación** de f respecto de P como

$$V_f(P) = \sum_{i=1}^n |f(t_i) - f(t_{i-1})|.$$

Definición

Sean f y P como arriba. Decimos que la función f es **de variación limitada** (**de variación acotada**), cuando el conjunto $\{v_f(P) : P \text{ es partición de } [a,b]\}$ es limitado. En ese caso, definimos la **variación total** de f en [a,b] por

$$V_f[a,b] = \sup\{v_f(P) : P \text{ es partición de } [a,b]\}.$$

Definición

Sea $f:[a,b]\to\mathbb{R}$ una función, y sea $P=\{t_0,t_1,\ldots,t_n\}$ una partición de [a,b]. Definimos la **variación** de f respecto de P como

$$V_f(P) = \sum_{i=1}^n |f(t_i) - f(t_{i-1})|.$$

Definición

Sean f y P como arriba. Decimos que la función f es **de variación limitada (de variación acotada),** cuando el conjunto $\{v_f(P) : P \text{ es partición de } [a,b]\}$ es limitado. En ese caso, definimos la **variación total** de f en [a,b] por

$$V_f[a,b] = \sup\{v_f(P) : P \text{ es partición de } [a,b]\}.$$

Denotamos por BV[a, b] al conjunto de las funciones de variación limitada en [a, b].

Definición

Sea $f:[a,b]\to\mathbb{R}$ una función, y sea $P=\{t_0,t_1,\ldots,t_n\}$ una partición de [a,b]. Definimos la **variación** de f respecto de P como

$$V_f(P) = \sum_{i=1}^n |f(t_i) - f(t_{i-1})|.$$

Definición

Sean f y P como arriba. Decimos que la función f es **de variación limitada (de variación acotada),** cuando el conjunto $\{v_f(P) : P \text{ es partición de } [a,b]\}$ es limitado. En ese caso, definimos la **variación total** de f en [a,b] por

$$V_f[a,b] = \sup\{v_f(P) : P \text{ es partición de } [a,b]\}.$$

Denotamos por BV[a, b] al conjunto de las funciones de variación limitada en [a, b].

Teorema (Propiedades)

i)
$$P \subseteq Q \Rightarrow v_f(P) \leq v_Q(P)$$
.

Teorema (Propiedades)

- i) $P \subseteq Q \Rightarrow v_f(P) \leq v_Q(P)$.
- ii) Si f es monótona no-decreciente, entonces $v_f(P) = f(b) f(a)$. Si f es monótona no-creciente, entonces $v_f(P) = f(a) f(b)$. En cualquiera de los dos casos, f es de variación limitada, y $V_f[a,b] = |f(b) f(a)|$.

Teorema (Propiedades)

- i) $P \subseteq Q \Rightarrow v_f(P) \leq v_Q(P)$.
- ii) Si f es monótona no-decreciente, entonces $v_f(P) = f(b) f(a)$. Si f es monótona no-creciente, entonces $v_f(P) = f(a) f(b)$. En cualquiera de los dos casos, f es de variación limitada, y $V_f[a,b] = |f(b) f(a)|$.
- iii) Si f es constante, entonces $v_f(P) = 0$. En este caso, f es de variación limitada y $V_f[a,b] = 0$.

Teorema (Propiedades)

- i) $P \subseteq Q \Rightarrow v_f(P) \leq v_Q(P)$.
- ii) Si f es monótona no-decreciente, entonces $v_f(P) = f(b) f(a)$. Si f es monótona no-creciente, entonces $v_f(P) = f(a) f(b)$. En cualquiera de los dos casos, f es de variación limitada, y $V_f[a,b] = |f(b) f(a)|$.
- iii) Si f es constante, entonces $v_f(P) = o$. En este caso, f es de variación limitada y $V_f[a,b] = o$.
- iv) Si f es Lispchitz, con constante L, entonces f es de variación limitada y $V_f[a,b] \leq L(b-a)$.

Teorema (Propiedades)

- i) $P \subseteq Q \Rightarrow v_f(P) \leq v_Q(P)$.
- ii) Si f es monótona no-decreciente, entonces $v_f(P) = f(b) f(a)$. Si f es monótona no-creciente, entonces $v_f(P) = f(a) f(b)$. En cualquiera de los dos casos, f es de variación limitada, y $V_f[a,b] = |f(b) f(a)|$.
- iii) Si f es constante, entonces $v_f(P) = 0$. En este caso, f es de variación limitada y $V_f[a,b] = 0$.
- iv) Si f es Lispchitz, con constante L, entonces f es de variación limitada y $V_f[a,b] \leq L(b-a)$.
- **v)** Si f es diferenciable y tal que $|f'(t)| \le L$ en [a,b], entonces f es de variación limitada y $V_f[a,b] \le L(b-a)$.

Teorema (Propiedades)

- i) $P \subseteq Q \Rightarrow v_f(P) \leq v_Q(P)$.
- ii) Si f es monótona no-decreciente, entonces $v_f(P) = f(b) f(a)$. Si f es monótona no-creciente, entonces $v_f(P) = f(a) f(b)$. En cualquiera de los dos casos, f es de variación limitada, y $V_f[a,b] = |f(b) f(a)|$.
- iii) Si f es constante, entonces $v_f(P) = 0$. En este caso, f es de variación limitada y $V_f[a,b] = 0$.
- iv) Si f es Lispchitz, con constante L, entonces f es de variación limitada y $V_f[a,b] \leq L(b-a)$.
- **v)** Si f es diferenciable y tal que $|f'(t)| \le L$ en [a,b], entonces f es de variación limitada y $V_f[a,b] \le L(b-a)$.

Ejemplo: Consideremos la función $f:[0,1] o \mathbb{R}$, dada por

$$f(x) = \begin{cases} 0, & x = 0; \\ \sin \frac{1}{x}, & x \neq 0. \end{cases}$$

Proposición

Sean $f, g : [a, b] \to \mathbb{R}$ funciones en \in BV[a, b], $\alpha, \beta \in \mathbb{R}$. Entonces, valen las siguientes propiedades:

i) $|f(x)| \leq |f(a)| + V_f[a,b]$, para todo $x \in [a,b]$.

Proposición

- i) $|f(x)| \leq |f(a)| + V_f[a,b]$, para todo $x \in [a,b]$.
- ii) $\alpha f \in BV[a,b]$ y $V_{af}[a,b] = |\alpha|V_f[a,b]$.

Proposición

- i) $|f(x)| \le |f(a)| + V_f[a, b]$, para todo $x \in [a, b]$.
- ii) $\alpha f \in BV[a,b]$ y $V_{af}[a,b] = |\alpha|V_f[a,b]$.
- iii) $f + g \in BV[a, b]$ y $V_{f+g}[a, b] \le V_f[a, b] + V_g[a, b]$.

Proposición

- i) $|f(x)| \le |f(a)| + V_f[a, b]$, para todo $x \in [a, b]$.
- ii) $\alpha f \in BV[a,b]$ y $V_{af}[a,b] = |\alpha|V_f[a,b]$.
- iii) $f + g \in BV[a, b]$ y $V_{f+g}[a, b] \le V_f[a, b] + V_g[a, b]$.
- iv) $fg \in BV[a,b]$ y $V_{fg}[a,b] \le ||g||V_f[a,b] + ||f||V_g[a,b]$.

Proposición

- i) $|f(x)| \le |f(a)| + V_f[a, b]$, para todo $x \in [a, b]$.
- ii) $\alpha f \in BV[a,b] \text{ y } V_{af}[a,b] = |\alpha|V_f[a,b].$
- iii) $f + g \in BV[a, b]$ y $V_{f+g}[a, b] \le V_f[a, b] + V_g[a, b]$.
- iv) $fg \in BV[a,b] \ y \ V_{fg}[a,b] \le ||g||V_f[a,b] + ||f||V_g[a,b].$
- v) BV[a,b] es un \mathbb{R} -espacio vectorial.

Proposición

- i) $|f(x)| \le |f(a)| + V_f[a, b]$, para todo $x \in [a, b]$.
- ii) $\alpha f \in BV[a,b]$ y $V_{af}[a,b] = |\alpha|V_f[a,b]$.
- iii) $f + g \in BV[a, b]$ y $V_{f+g}[a, b] \le V_f[a, b] + V_g[a, b]$.
- iv) $fg \in BV[a,b]$ y $V_{fg}[a,b] \le ||g||V_f[a,b] + ||f||V_g[a,b]$.
- v) BV[a,b] es un \mathbb{R} -espacio vectorial.
- vi) La función $f \to V_f[a, b]$ no es una norma para BV[a, b].

Proposición

Sean $f, g : [a, b] \to \mathbb{R}$ funciones en $\in BV[a, b]$, $\alpha, \beta \in \mathbb{R}$. Entonces, valen las siguientes propiedades:

- i) $|f(x)| \le |f(a)| + V_f[a, b]$, para todo $x \in [a, b]$.
- ii) $\alpha f \in BV[a, b] \text{ y } V_{af}[a, b] = |\alpha|V_f[a, b].$
- iii) $f + g \in BV[a, b]$ y $V_{f+g}[a, b] \le V_f[a, b] + V_g[a, b]$.
- iv) $fg \in BV[a,b] \ y \ V_{fg}[a,b] \le ||g||V_f[a,b] + ||f||V_g[a,b].$
- v) BV[a,b] es un \mathbb{R} -espacio vectorial.
- vi) La función $f \to V_f[a,b]$ no es una norma para BV[a,b]. Sin embargo, $f \to ||f||_{BV} = |f(a)| + V_f[a,b]$ sí lo es.

Prueba: Ejercicio!

Teorema (Integración por Partes)

Sean $f,g:[a,b]\to\mathbb{R}$ funciones limitadas. Entonces, f es g-integrable en [a,b] si, y sólo si, g es f-integrable en [a,b]. En este caso, vale

$$\int_a^b f\,dg + \int_a^b g\,df = f(b)g(b) - f(a)g(a).$$

Teorema (Integración por Partes)

Sean $f, g : [a, b] \to \mathbb{R}$ funciones limitadas. Entonces, f es g-integrable en [a, b] si, y sólo si, g es f-integrable en [a, b]. En este caso, vale

$$\int_a^b f \, dg + \int_a^b g \, df = f(b)g(b) - f(a)g(a).$$

Prueba: Sean $\int_a^c f \, dg = I_1$ y $\int_c^b f \, dg = .$

Integral de Riemann-Stieltjes

Teorema (Criterio de Integrabilidad de Riemann)

Sean $f,g:[a,b]\to\mathbb{R}$ funciones limitadas, g monótona no-decreciente en [a,b]. Entonces, f es g-integrable en $[a,b]\iff$ para todo $\varepsilon>0$, existe una partición P_ε de [a,b] tal que si $P=\{t_0,t_1,\ldots,t_n\}$ es refinamiento de P_ε , entonces

$$\sum_{i=1}^n (M_i - m_i)(g(t_i) - g(t_{i-1})) \leq \varepsilon,$$

donde $m_i = \inf_{[t_{i-1},t_i]} f$ y $M_i = \sup_{[t_{i-1},t_i]} f$.

Integral de Riemann-Stieltjes

Teorema (Criterio de Integrabilidad de Riemann)

Sean $f,g:[a,b]\to\mathbb{R}$ funciones limitadas, g monótona no-decreciente en [a,b]. Entonces, f es g-integrable en $[a,b]\iff$ para todo $\varepsilon>0$, existe una partición P_ε de [a,b] tal que si $P=\{t_0,t_1,\ldots,t_n\}$ es refinamiento de P_ε , entonces

$$\sum_{i=1}^n (M_i - m_i)(g(t_i) - g(t_{i-1})) \leq \varepsilon,$$

donde $m_i = \inf_{[t_{i-1},t_i]} f$ y $M_i = \sup_{[t_{i-1},t_i]} f$.