Lógica y Computabilidad

2do cuatrimestre 2020 - A DISTANCIA

Departamento de Computación - FCEyN - UBA

Lógica Proposicional - clase 1

Lenguaje de lógica proposicional, semántica, tautología, consecuencia semántica, conjunto satisfacible, sistema axiomático SP, consecuencia sintáctica

El lenguaje P

- ightharpoonup símbolos p ' \neg \rightarrow ()
 - \triangleright p, p', p'', p''', \dots son símbolos proposicionales
- fórmulas
 - 1. todo símbolo proposicional es una fórmula
 - 2. si φ es una fórmula entonces $\neg \varphi$ es una fórmula
 - 3. si φ y ψ son fórmulas entonces $(\varphi \to \psi)$ es una fórmula
 - 4. nada más es una fórmula
- convenciones
 - escribimos q por p' r por p'' s por p'''...
 - escribimos $(\varphi \lor \psi)$ en lugar de $(\neg \varphi \to \psi)$
 - escribimos $(\varphi \wedge \psi)$ en lugar de $\neg(\varphi \rightarrow \neg \psi)$
 - escribimos φ en lugar de (φ) cuando convenga
- llamamos PROP al conjunto de todos los símbolos proposicionales
- Ilamamos FORM al conjunto de todas las fórmulas

Semántica

Una interpretación es una función

$$v:\mathsf{PROP} \to \{0,1\}$$

A v también se la llama valuación.

Definimos la noción de verdad de una fórmula para una valuación.

Si $\varphi \in \mathsf{FORM}$ y v es una valuación, notamos

- $ightharpoonup v \models \varphi \text{ si } \varphi \text{ es verdadera para } v$
- $ightharpoonup v
 ot\models \varphi \text{ si } \varphi \text{ es falsa para } v$

La definición de ⊨ es recursiva:

- 1. si $p \in PROP$, $v \models p$ sii v(p) = 1
- 2. $\mathbf{v} \models \neg \psi \text{ sii } \mathbf{v} \not\models \psi$
- 3. $\mathbf{v} \models (\psi \rightarrow \rho) \text{ sii } \mathbf{v} \not\models \psi \text{ o } \mathbf{v} \models \rho$

Semántica

Observar que, por la convención,

- 5. $v \models (\psi \land \rho)$ sii $v \models \psi$ y $v \models \rho$
- 6. $v \models (\psi \lor \rho)$ sii $v \models \psi$ o $v \models \rho$

Por ejemplo, si v(p) = 1 , v(q) = 0 , v(r) = 1

- \triangleright $v \models (p \rightarrow r)$
- $ightharpoonup v \models (q \rightarrow r)$
- \triangleright $v \not\models \neg p$
- \triangleright $v \not\models (p \land q)$

Tautologías y método de decisión

Una fórmula φ es una tautología ($\models \varphi$) si φ es verdadera para toda interpretación, i.e. para toda valuación v, $v \models \varphi$.

Proposición

Sea $\varphi \in \text{FORM } y \text{ sean } v \text{ } y \text{ } w \text{ son dos valuaciones tal que } v(p) = w(p) \text{ para toda variable proposicional que aparece en } \varphi.$ Entonces $v \models \varphi \text{ sii } w \models \varphi.$

Existe un método de decisión para saber si φ es tautología o no:

- supongamos que φ tiene variables proposicionales p_1, \ldots, p_n
- sea $\mathcal{P}(\{p_1,\ldots,p_n\}) = \{V_1,\ldots,V_{2^n}\}$
- ▶ para $i \in \{1, ..., 2^n\}$ definimos $v_i(p) = \begin{cases} 1 & \text{si } p \in V_i \\ 0 & \text{si no} \end{cases}$
- lacktriangle arphi es tautología sii

$$v_i \models \varphi$$
 para todo $i \in \{1, \dots, 2^n\}$

Consecuencia semántica y conjunto satisfacible

Sea $\Gamma \subseteq \mathsf{FORM}$ y $\varphi \in \mathsf{FORM}$

 φ es consecuencia semántica de Γ ($\Gamma \models \varphi$) si para toda interpretación v:

$$\underbrace{\text{si } v \models \psi \text{ para toda } \psi \in \Gamma}_{\text{lo notamos } v \models \Gamma}, \text{ entonces } v \models \varphi$$

 Γ es satisfacible si existe una interpretación v tal que $v \models \psi$ para toda $\psi \in \Gamma$ (i.e. tal que $v \models \Gamma$)

Por ejemplo

- $ightharpoonup \{q\} \models q$
- $\blacktriangleright \{q\} \models p \rightarrow q$

- Ø es satisfacible
- $\{p, q\}$ es satisfacible
- ▶ $\{\neg p, p \land q\}$ no es satisfacible
- $\{p,p o q, \neg q\}$ no es satisfacible

Algunos resultados sobre \models

Proposición

- 1. $\emptyset \models \varphi$ sii $\models \varphi$ (i.e. φ es tautología)
- 2. $si \models \varphi$ entonces $\Gamma \models \varphi$
- 3. $\{\varphi\} \models \varphi$
- 4. $si \Gamma \subseteq \Delta \ y \Gamma \models \varphi \ entonces \Delta \models \varphi$
- 5. $si \Gamma \models \varphi \ y \Gamma \models \varphi \rightarrow \psi \ entonces \Gamma \models \psi$

Demostración de 5.

- ▶ sea v una interpretación tal que $v \models \Gamma$
- ightharpoonup sabemos $v \models \varphi$
- ightharpoonup sabemos $v \models \varphi \rightarrow \psi$
- ightharpoonup concluimos $v \models \psi$

Mecanismo deductivo SP

▶ axiomas. Sean $\varphi, \psi, \rho \in \mathsf{FORM}$

SP1
$$\varphi \to (\psi \to \varphi)$$

SP2 $(\varphi \to (\psi \to \rho)) \to ((\varphi \to \psi) \to (\varphi \to \rho))$
SP3 $(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$

regla de inferencia

MP Sean $\varphi, \psi \in \mathsf{FORM}$. ψ es una consecuencia inmediata de $\varphi \to \psi$ y φ

Una demostración de φ en SP es una cadena finita y no vacía

$$\varphi_1,\ldots,\varphi_n$$

de fórmulas de P tal que $\varphi_n = \varphi$ y

- $\triangleright \varphi_i$ es un axioma o
- φ_i es una consecuencia inmediata de φ_k , φ_l , k, l < i

En este caso, decimos que φ es un teorema $(\vdash \varphi)$

Ejemplo: demostración de $p \rightarrow p$

Recordar

SP1
$$\varphi \to (\psi \to \varphi)$$

SP2 $(\varphi \to (\psi \to \rho)) \to ((\varphi \to \psi) \to (\varphi \to \rho))$
SP3 $(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$
MP Sean $\varphi, \psi \in \text{FORM. } \psi \text{ es una consecuencia}$
inmediata de $\varphi \to \psi \vee \varphi$

Demostración:

1.
$$p \rightarrow ((p \rightarrow p) \rightarrow p)$$
 SP1
2. $(p \rightarrow ((p \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (p \rightarrow p))) \rightarrow (p \rightarrow p))$ SP2
3. $(p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p)$ MP 1 y 2
4. $p \rightarrow (p \rightarrow p)$ SP1
5. $p \rightarrow p$ MP 3 y 4

Concluimos $\vdash p \rightarrow p$ (i.e. $p \rightarrow p$ es un teorema)

SP1

Consecuencia sintáctica

Sea
$$\Gamma \subseteq \mathsf{FORM}$$
 y $\varphi \in \mathsf{FORM}$

 φ es una consecuencia sintáctica de Γ ($\Gamma \vdash \varphi$) si existe una cadena finita y no vacía

$$\varphi_1,\ldots,\varphi_n$$

de fórmulas de P tal que $\varphi_n = \varphi$ y

- $ightharpoonup \varphi_i$ es un axioma o
- $\triangleright \varphi_i \in \Gamma \circ$
- φ_i es una consecuencia inmediata de φ_k , φ_l , k, l < i

Aquí, $\varphi_1, \ldots, \varphi_n$ se llama derivación de φ a partir de Γ. Γ se llama teoría. Decimos que φ es un teorema de la teoría Γ.

Correctitud de SP

Teorema

Si $\Gamma \vdash \varphi$ entonces $\Gamma \models \varphi$ (i.e. si es teorema de la teoría Γ , es válido en toda interpretación de Γ).

Demostración.

Supongamos $\Gamma \vdash \varphi$. Es decir, existe una cadena finita y no vacía

$$\varphi_1,\ldots,\varphi_n$$

de fórmulas de P tal que $\varphi_n = \varphi$ y

- $\triangleright \varphi_i$ es un axioma o
- $ightharpoonup \varphi_i \in \Gamma$ o
- φ_i es una consecuencia inmediata de φ_k , φ_l , k, l < i

Demostramos que $\Gamma \models \varphi$ por inducción en n (la longitud de la demostración). Detalles a continuación.

Demostración de Correctitud de SP

Propiedad a demostrar:

```
P(n) = \text{"si } \varphi_1, \dots, \varphi_n = \varphi \text{ es una derivación de } \varphi \text{ a partir de } \Gamma entonces v \models \Gamma \Rightarrow v \models \varphi"
```

Demostramos que vale P(n) por inducción en n.

- 1. caso base. Veamos que vale P(1). Sup. v tal que $v \models \Gamma$. Queremos ver que $v \models \Gamma \Rightarrow v \models \varphi$. Hay 2 posibilidades
 - 1.1 φ is axioma de *SP*: en este caso, $v \models \varphi$;
 - 1.2 $\varphi \in \Gamma$: en este caso, también $v \models \varphi$.
- 2. paso inductivo. Sup. v tal que $v \models \Gamma$. Sup. que vale P(m) para todo $m \le n$. Queremos ver que vale P(n+1).Sup. $\varphi_1, \ldots, \varphi_n, \varphi_{n+1} = \varphi$ es una derivación de φ a partir de Γ . Hay 3 posibilidades
 - 2.1 φ is axioma de *SP*: igual que en caso base;
 - 2.2 $\varphi \in \Gamma$: igual que en caso base;
 - 2.3 φ es consecuencia inmediata de φ_i y $\varphi_j = \varphi_i \to \varphi$ $(i, j \le n)$. Por HI (P(i) y P(j)), sabemos $v \models \varphi_i$ y $v \models \varphi_i \to \varphi$. Entonces necesariamente $v \models \varphi$.

Ejemplos

- $\Gamma_1 = \{p\} \vdash p$ $1. \quad p \quad p \in \Gamma_1$
- $\Gamma_2 = \{p\} \vdash \varphi \to p$ 1. $p \qquad p \in \Gamma_2$
 - 2. $p \rightarrow (\varphi \rightarrow p)$ SP1
 - 3. $\varphi \rightarrow p$ MP 1 y 2
- ► $\Gamma_3 = \{p\} \not\vdash q$ porque $\Gamma_3 \not\models q$ (considerar v(p) = 1; v(q) = 0)
- - 1. $\neg p \rightarrow (\neg \varphi \rightarrow \neg p)$ SP1 2. $\neg p$ $\neg p \in \Gamma_4$
 - 3. $\neg \varphi \rightarrow \neg p$ MP 1 y 2
 - 4. $(\neg \varphi \rightarrow \neg p) \rightarrow (p \rightarrow \varphi)$ SP3 5. $p \rightarrow \varphi$ MP 3 y 4
 - 6. p $p \in \Gamma_4$
 - 7. φ MP 5 y 6

Conjuntos y sistemas consistentes

 $\Gamma\subseteq\mathsf{FORM}$ es consistente si no existe $\varphi\in\mathsf{FORM}$ tal que

$$\Gamma \vdash \varphi$$
 y $\Gamma \vdash \neg \varphi$

Un sistema S es consistente si no existe $\varphi \in \mathsf{FORM}$ tal que

$$\vdash_{S} \varphi$$
 y $\vdash_{S} \neg \varphi$

Teorema

El sistema SP es consistente.

Demostración.

- sea v cualquier valuación
- por correctitud, todo teorema de SP es verdadero para v

$$\vdash \varphi \quad \Rightarrow \quad \mathbf{v} \models \varphi \quad \Rightarrow \quad \mathbf{v} \not\models \neg \varphi \quad \Rightarrow \quad \not\vdash \neg \varphi$$

▶ luego no puede pasar que φ y $\neg \varphi$ sean teoremas

Algunos resultados sobre ⊢

Proposición

- 1. $\emptyset \vdash \varphi \ \text{sii} \vdash \varphi \ \text{(i.e.} \ \varphi \ \text{es teorema)}$
- 2. $si \vdash \varphi$ entonces $\Gamma \vdash \varphi$
- 3. $\{\varphi\} \vdash \varphi$
- 4. $si \Gamma \subseteq \Delta \ y \Gamma \vdash \varphi \ entonces \Delta \vdash \varphi$
- 5. $si \Gamma \vdash \varphi \ y \Gamma \vdash \varphi \rightarrow \psi \ entonces \Gamma \vdash \psi$

Si reemplazamos \vdash por \models , obtenemos los mismos resultados (ver hoja 7)

Resumen

semántica

tautología (verdadera en toda interpretación)

consecuencia semántica \models

conjunto satisfacible (existe modelo para todos sus elementos)

método deductivo

teorema (tiene demostración en SP)

consecuencia sintáctica ⊢

conjunto consistente (no permite probar φ y $\neg \varphi$)

Notas sobre computabilidad

Se pueden codificar las fórmulas de P con números naturales.

- ightharpoonup a cada fórmula φ se le asigna un número $\#\varphi>0$
- cada número positivo representa una única fórmula

Se puede decidir algorítmicamente si una fórmula es un axioma o no

es computable la función

$$ax(x) = \begin{cases} 1 & \text{si la fórmula de número } x \text{ es un axioma de } SP \\ 0 & \text{si no} \end{cases}$$

Se puede decidir algorítmicamente si una formula es consecuencia inmediata de otras dos

es computable la función

$$mp(x,y,z) = \begin{cases} 1 & \text{si la fórmula de número } z \text{ es consecencia} \\ & \text{inmediata de las fórmulas de números } x \text{ e } y \\ 0 & \text{si no} \end{cases}$$

Notas sobre computabilidad

Las demostraciones son listas (finitas) de fórmulas.

▶ la demostración $\varphi_1 \dots \varphi_n$ se codifica como $[\#\varphi_1, \dots, \#\varphi_n]$

Se puede decidir algorítmicamente si una lista de fórmulas es una demostración válida o no

es computable la función

$$dem(x) = \begin{cases} 1 & x \text{ es una demostración válida} \\ 0 & \text{si no} \end{cases}$$

en efecto,

$$dem(x) = (\forall k \in \{1, ..., |x|\})[ax(x[k]) \lor cons(x, k)]$$
$$cons(x, k) = (\exists i, j \in \{1, ..., k-1\})[mp(x[i], x[j], x[k])]$$

Notas sobre computabilidad

considerar el siguiente programa P:

[A] IF
$$dem(D) = 1 \land D[|D|] = X$$
 GOTO E

$$D \leftarrow D + 1$$
GOTO A

- ▶ P busca una demostración para la fórmula con número X
 - ▶ si la encuentra, se detiene
 - si no, se indefine
- ▶ $\vdash \varphi$ sii $\Psi_P(\#\varphi) \downarrow$, o equivalentemente

$$\varphi$$
 es teorema sii $\#\varphi\in \mathsf{dom}\Psi_P$

- ▶ el conjunto de teoremas de *SP* es c.e.
- esto pasa en general para cualquier sistema axiomático
 - es decir, cualquier sistema de deducción con un conjunto computable de axiomas y reglas de inferencia computables tiene un conjunto de teoremas c.e.
- ; será computable el conjunto de teoremas de SP?