Index

The page numbers in **boldface** type inidcate the pages where the terms are defined. Terms that occur in Sample Problems (SP), Investigations (inv), ExpressLabs (EL), and ThoughtLabs (TL) are also indicated.

2,2,4-trimethylpentane, 549 incomplete combustion, <i>582–584SP</i>	compound solubility, 330 Alkaline earth metals, 41	minimum volume to precipitate, 351–352
2,2-dimethylbutane, 543	bases, 383	qualitative analysis, 345–346inv
2,3-dimethylbutane, 543	Alkanes, 544	reactions in, 337
2-ethyl-1-butene, 556–557	aliphatic compounds, 547–550	solubility, 330
2-methylpentane, 547	boiling points, 545–546	stoichiometry, 348–355
J 1	branched-chain, 547	water quality, 357–364
3-ethyl-2,2-dimethylpentane, 549	drawing, 550-551, 565	Argon, average atomic mass, 180
3-ethyl-2,4-dimethylpentane, 549	naming, 546–549, 565	Ariya, Dr. Parisa, 520
3-methylpentane, 543	properties of, 545	Aromatic compounds, 571
•	reactivity, 554–555inv	Arrhenius theory of acids and
Abiogenic theory, 537	rules for naming, 547–550	bases, 374
Absolute zero, 440	side-chain, 547	limitations of, 374–375
Academies, 471	solubility, 552	Arrhenius, Svanté, 373, 374
Accuracy, 18	straight chain, 546	Arson, 222
Acetic acid, 161, 370	structural diagrams, 550–551	Aspirin™, 533, 534
concentration, 402–403inv	Alkenes, 552	Atmosphere, 485
empirical formula, 215	chemical reactivity, 553	formation of, 458
Acetylsalicylic acid, 533, 534	drawing, 557-558, 565	Atmospheres (atm), 428
Acetylene, 207, 560, 580	naming, 556–557, 565	Atmospheric reactions, 515–520
combustion, 581–582SP,	properties of, 553	Atomic mass
585–586inv, 590–591SP	reactivity, 554–555inv	average. See Average atomic mass
chemical formula, 207, 216	solubility, 553	isotopes, 37
thermochemical equation,	Alkynes, 560 , 580	Atomic mass unit (u), 35
590–591SP	drawing, 560, 565	Atomic number (<i>Z</i>), 36 , 37
Acid rain, 5, 358, 623	naming, 560, 565	Atomic symbol, 36
Acid-base indicator, 395	Alloys, 83, 130, 286	Atomic theory of matter, 34, 35, 38
Acidity, 280	composition, 306	Atoms, 34, 35
Acids, 369	Alpha particle emission, 142	bonding, 70
Arrhenius theory, 373	Alumina, 102	chemical equations, 112, 235
Brønsted-Lowry theory, 375, 376	Aluminum, specific heat capacity, 595	electron affinity, 57
binary, 384	Aluminum oxide, 102	electronegativity, 70
cleaners, 373EL	Amalgam, 286, 306	electrons, 38, 40–47
diluting, 324	Ammonia, 235-236, 280, 370, 539	energy levels, 49–55
diprotic, 383	empirical formula, 207	ionization energy, 53–55
monoprotic, 382	molecular formula, 207	moles, 176SP
pH, <i>390–391inv</i>	polar molecule, 91	nucleus of, 36
properties of, 370	specific heat capacity, 595	periodic trends, 49–55
strength, 385	Ammonium chloride, 101, 104	radius, 49, <i>50–51inv</i> , 52
strong, 381	solubility, 334	valence electrons, 70
triprotic, 383	Ammonium cyanate, 534	Average atomic mass, 162, 164 ,
weak, 381	Ammonium nitrate, 104	167SP, 189–190SP
Activity series, 127	Analytical chemistry	argon, 180
Activity series for halogens, 131	applications of, 216	Avogadro constant, 171
Actual yield, 260	doping control laboratory, 216	hydrogen, 180
percentage yield, 263–264SP	Anhydrous, 223	isotopes, 162, 163, 164, 165
Aerial fluids, 114	Aniline, 207	oxygen, 180
Agitation and rate of dissolving, 290	Anion, 53 , 54	periodic table, 165
Air bags, 506	Apollo 11, 233	sodium, 180
Air pollution and gases, 515–520	Aqueous solutions, 286 , 329, 344	Avogadro constant, 36, 172 , 173,
Aliphatic hydrocarbons, 544	colour of, 344	177, 178
alkanes, 547–550	flame test, 344	average atomic mass, 171
properties, 564inv	identifying ions in, 344	conversion, 175
structures, 564inv	ions in, 344	magnitude, 175
Alkali, 370	limiting reactant problems,	mole, 171
Alkali metals, 41, 383	353–354	using, 174SP
bases, 383		Avogadro's hypothesis, 473, 474

Avogadro's law, 474, 478,	Bronze, 83, 306	naming, 101
479–482SP, 484	Brooks, Harriet, 145	trivial names, 101
Avogadro, Amadeo, 178, 472, 473	Burette, 401	Chemical engineer, 265
Ayotte, Dr. Christiane, 216	Burning. See Combustion	Chemical equations, 112, 235EL
James, and a same and a same and a same a	Butane	atoms, 235
Baking soda, 102, 161, 370, 394, 534	heat combustion, 615	balanced, 114, 234, <i>235EL</i> , 236–249
Balanced chemical equation, 114	molecular formula, 546	balancing, 116–118SP
Ball-and-stick model, 87, 540	morecular formata, o to	coefficients, 115
Barium chloride, solubility, 334	Calcium carbonate, 102, 188, 360, 539	mass, 241
Barium hydroxide, 383	Calcium chlorate, solubility, 334	molecules, 235
hydrate, 224–225	Calcium chloride, 307	moles, 237–238
octahydrate, 223	dihydrate, 223	
· ·	· ·	reactants, 239
solubility, 334	Calcium gluconate, 188	yield, 260 Chemical formula, 95
Barium oxide, solubility, 334	Calcium hydroxide, 383	
Barium sulfate, 175	Calcium phosphoto 181	calculating percentage
Barometer, 426	Calcium phosphate, 181	composition, 202
Bartlett, Neil, 244	Calcium sulfate, dihydrate, 223	Lewis structure, 95
Bases, 369	Calories, 603, 612	octet rule, 95
alkali metals, 383	Calorimeter, 602 , 603, 604–605SP	percentage composition, 203–204Si
alkaline earth metals, 383	heat capacity, 610–611SP	representation, 96
Arrhenius theory, 373	Calorimetry, 601, 602	valence, 98–100
cleaners, 373EL	Candle wax, 615	Chemical nomenclature, 101
properties of, 370	Carbides, 534	Chemical properties, 12
strength, 385	Carbohydrates, 217, 534	periodic table, 40
Bayer, Frederick, 534	energy, 613	Chemical proportions in
Beauchamp, Dr. Stephen, 246	Carbon	compounds, 197
Bends, 466	bonding, 539	Chemical reactions, 112
Benefit, 620	bonding electrons, 538	classification of, 111, 119
Benzene, 199, 207	geometrical structures of, 538	law of conservation of mass, 113
empirical formula, 207	properties of, 538	Chemistry, 6
molecular formula, 216	radioactive isotope, 144	matter, 6–16
Beryllium oxide, 181	specific heat capacity, 595	technology, 7, 8
Berzelius, Jons Jakob, 534	structures, 539	Chlorine, 280
Beta particle, 143	Carbon dioxide, 6, 69, 184, 199, 200,	Chlorofluorocarbons (CFCs), 516,
Beta particle emission, 143	420, 491	517 –519
Beta radiation, 143	conductivity, 69	Chlorophyll, 309
Big Bang theory, 458	melting point, 69	Cholesterol, 539, 561
Binary acid, 384	molecular shape, 88	Cinnabar, 203
Binary compounds, 102, 105	non-polar molecule, 91	Cinnamaldehyde, 203
Biogenic theory, 537	Carbon monoxide, 199, 200	Cis-trans isomer, 558
Black, Joseph, 603	Carbon tetrafluoride as non-polar	Citric acid, 370
Blanketing, 465	molecule, 91	Closed system, 424
Bohr-Rutherford diagram, 44, 46	Carbon-12, 167	Coal, 537
Boiling point, 12	Carbon-14, 164	Cobalt(II) chloride, 189
Bomb calorimeter, 602 , 610	Carbon-hydrogen combustion	Cochineal, 361
Bond/Bonding, 70, 589	analyzer, 219	Codeine, 158, 218
ionic and covalent, 70	calculations, 220–221SP	Coefficients, 115
Lewis structure, 96	Carbonates, 534	Combined gas law, 453 , <i>453–454SP</i> ,
octet rule, 96	Carbonic acid, 370	455–457SP, 484
stable octet, 96	Cation, 53 , 54	Combustibility, 12
valence, 96	Cellulose, 536	Combustion, 577
Bond energy, 539, 589 , <i>590–591SP</i>	Celsius, 14	acetylene, 581–582SP, 585–586inv,
Bonding pairs, 88	Centimetres, 14	590–591SP
Boron, 169	Charles' law, 440 , 441, <i>442–443SP</i> ,	candles, 615
	444–446SP, 453	
Boyle's law, 432 , <i>433–435SP</i> , 453, 489	444–4403F, 435 Charles, Jacques, 436, 440, 452	complete, 580
Boyle, Robert, 429, 432, 452		heat of, 606
Brass, 306 Brittleness 12	Chemical changes 25	incomplete, 580
Brittleness, 12	Chemical compounds	oxygen, 464
Brønsted, Johannes, 375	Chemical compounds	propane, 580
Brønsted-Lowry theory of acids and	classifying, 66	Combustion equations, 580–581
bases 375 , 376	common names. 101	Combustion reactions. 123, 578

Competing reaction, 260	hydrate and hydrated, 226-227inv	Dispersing agent, 624
Complete combustion, 580	Cortisol, 221	Distillation, 284
Complete structural diagram, 541	Covalent bonds, 70	Double bond, 82
Composition of alloys, 306	conductivity, 82	Double displacement reaction,
Compounds, 26, 67EL	double bond, 82	132 –133, 337
binary, 105	electronegativity, 81	copper, 138–139inv
chemical proportions in, 197	Lewis structure, 81, 82	gas producing, 340
covalent, 67, 294	multiple, 82	gases, 134
empirical formula of, 208	octet rule, 75	neutralization reaction, 135
hydrogen, 104	polar, 86	observing, 136–137inv
ideal gas law, 498–500SP	pure, 81	precipitate, 132–133
ionic, 67	triple bond, 82	sulfur dioxide gas, 340
molar mass, 181SP, 197,	Covalent compound, 67, 68, 69	water producing, 341
198–205, 216	conductivity, 67	Double replacement reaction.
molecular formula of, 215–218	melting point, 67	See Double displacement reaction
percentage composition of, 200	miscible, 294	Dry ice. See Carbon dioxide
polyatomic ions, 104	solubility, 67, 294	Ductility, 12
	Cracking, 570	Duralumin, 306
solubility, 330, 331, <i>332–333inv</i>		Duraiummi, 300
tertiary, 104	Crosslinked, 559	Floatin 550
Compressed gases, 450	Crude oil, 537	Elastin, 559
Concentration, 302	Cryogenics, 437	Elastomer, 559
acetic acid, 402–403inv	Cryosurgery, 465	Electrical conductivity, 12
finding, 396–397SP	Crystal lattice/shape, 12, 418	Electrolyte, 293
mass volume, 304–305SP	Cupronickel, 306	Electron affinity, 57
mass/volume percent, 302	Curie, Marie, 143, 145	Electron energy levels, 71
mass/mass percent, 306	Cyanides, 534	Electronegativity, 70
parts per billion, 311	Cyclic hydrocarbons, 561	atomic size, 71
parts per million, 311	drawing/naming, 562-563	bond type, 72
solution, 283, 302–318, 317inv,	Cycloalkanes, drawing/naming, 566	covalent bonds, 81
322–323inv	Cycloalkenes, 562	range of differences, 73
vinegar, <i>402–403inv</i>	drawing/naming, 566	solubility, 293
volume/volume percent, 309	Cycloalkynes, drawing, 566	table of, 71
Condensation, 419	Cyclohexane, 219, 562	trend for, 71
Condensed structural diagram, 541	Czyzewska, Dr. Eva, 361	Electrons, 35, 43EL, 46
Conductivity		in atoms, 38, 40–47
carbon dioxide, 69	d-limonene, 313	energy levels, 43
covalent bonds/compounds, 67, 82	Dalton's law of partial pressures, 459 ,	periodic table, 42
ionic compound, 67, 78–79	460–461SP, 507	spectra of, 43EL
sodium chloride, 69, 78-79	Dalton, John, 34, 38, 207, 459,	transferring multiple, 76
solubility, 70	472, 473	valence, 45, 46
Conjugate acid, 376	Davy, Sir Humphrey, 121	Electrostatic attraction, 419
Conjugate acid-base pair, 376,	Decaffeination, 300	Element symbol, 36
377–379SP	Decane, molecular formula, 546	Elements, 26 , 34
Conjugate base, 376	Decomposition, 12	compounds, 199, 200
Copper	Decomposition reaction, 119, 122	specific heat capacity, 595
decomposition reaction,	copper, <i>138–139inv</i>	synthesis reactions, 120
138–139inv	Degrees, 14	Empirical formula, 207
double displacement reaction,	Density, 12, 14	determining by experiment, 211
138–139inv	gases, 490, 491, 492–493SP	experiments, 219–228
single displacement reaction,	ideal gas law, 489, 490	finding by experiment, 219–228
138–139inv	Diatomic elements, 81	magnesium oxide, 212–213inv
specific heat capacity, 595	Dickson, Alison, 77	molar mass, 208, 216
synthesis reaction, 138–139inv	Diffraction grating, 43EL	percentage composition, 208,
Copper oxide, 211	Dihydrogen monoxide. See Water	210–211SP
Copper(II) carbonate, 198	Dinitrogen monoxide, 102	solving problems using, 209–211
Copper(II) chloride, 255inv	Dinitrogen tetroxide, 233	End-point, 399
anhydrous, 223	Diphosphorus pentoxide, 105	Endothermic, 588 , 603
dihydrate, 223	Dipole-dipole, 420	Energy, 14, 577
Copper(II) nitrate, 117	Dipole-dipole attraction, 292	carbohydrates, 613
Copper(II) sulfate, 322–323inv	Dipoles, 91 , 292 , 420	fat, 613
anhydrous, 226–227inv	Diprotic acids, 383	fatty acids, 613

foods, 613	Fuel cell, 464	Haber Process, 236
glucose, 613	Fusible plugs, 451	Halogens, 41
measurement factors, 593	Fusion. See Nuclear fusion	single displacement reaction, 131
Energy levels, 43 , 44–47		Hard water, 360
atoms, 49–55	Galactose, formula, 217	testing, 363
electron arrangements, 45	Galilei, Galileo, 426	Hardness, 12
electrons, 43	Gamma radiation, 145	Heat, 593
full, 47	Gas chromatography, 222	transfer, factors in, 594
ionization energy, 53, 54	Gases	Heat capacity, 609 , 610
Lewis structures, 46	air pollution, 515–520	calorimeter, 610-611SP
patterns, 45	behaviour of, 417	Heat combustion
valence electrons, 45	boiling point, 461	butane, 615
Energy shells. See Energy levels	combined laws, 452–453	propane, 615
Environmental problems with	compressed, 450, 451	Heat measurement, technology of, 601
fossil fuels, 625	density, 490, 491, 492–493SP	Heat of combustion, 606
Enzymes, 534	produced in double displacement	candle, 6 <i>16–617inv</i>
ripening, 552	reactions, 134	Heat of formation, 589
Epsom salts, 223	hydrogen, production of,	Heat of solution, 608
Equivalence point, 399	512–513inv	measuring, 608EL
Erlenmeyer flask, 401	inert, 244	Heat transfer, 594
Erlenmeyer Richard E.A.C., 123	kinetic molecular theory, 418	mass, 595
Estrone, 561	mass, 422EL	water, 596–597SP
Ethane, molecular formula, 546	molar mass, 490, 494–495SP,	Heptane
Ethanoic acid, 544	496–497inv	combustion, 124
Ethanol, 420, 535, 539	molar volume, 474–477SP, 478,	molecular formula, 546
combustion, 123	479–482SP, 480–482SP, 490	Heroin, 158
•		
solubility, 294	molecular mass, 490	Heterogenous mixture, 26 Hexane, 543
specific heat capacity, 595	moles, 482SP	
Ethene, 553, 568	noble, 244	chemical formula, 539
Ethyne, 207, 560, 580	particle theory, 419	molecular formula, 539, 546
empirical/molecular formula, 207	pressure, 424, 430–431inv, 432–435	High pressure injectors, 427
Ettinger, Robert C.W., 437	pressure, volume, and temperature,	High-performance liquid
Eutrophication, 8	447–450	chromatography (HPLC), 188
Exact numbers and measurement,	solubility, 298	Higson, Dr. Robert, 427
15, 17	temperature, 298, 436, 438–439inv,	Homogeneous mixtures, 26, 283, 284
Excess reactant, 252 , <i>255inv</i>	440–441, 444–446	Homologous series, 544
Exothermic, 588 , 603	using, 462	Humidity, 459
reaction, 324	volume, 422EL, 424, 430–431inv,	Hydrate, 223
Expanded molecular formula, 539	432–435, 436, 438–439inv, 440–441	barium hydroxide, 224–225
	Gasoline, 579	determining the formula of,
Fahrenheit degrees, 26	Gay-Lussac's law, 447 , <i>448–449SP</i> , 453	224–225
Fats, 534	Gay-Lussac, Joseph Louis, 440, 447,	molecular formula, 225,
energy, 613	452, 472, 473, 501	226–227inv
Fatty acids and energy, 613	Gelling agent, 624	naming, 103
Fermi problems, 175	General solubility guidelines, 334	Hydrated, 293
Fermi, Enrico, 175	Geometric isomer, 558	Hydrazine, 233
First ionization energy, 54	Gesner, Abraham, 579	Hydrides, 340
Fission. See Nuclear fission	Global warming, 623	Hydrobromic acid, 381, 382
Fixed air, 121	Glucose, 207, 536	Hydrocarbons, 533 , 577, 578–586
Flammability. See Combustibility	empirical formula, 207, 217	classifying, 544–566
Flotation, 77	energy, 613	compounds, representation of,
Food chemist, 114	molecular formula, 217	538–543
Fool's gold, 66	Gold, 65	cyclic, 561
Forensic scientists, 215 , 222	specific heat capacity, 595	modelling, <i>542inv</i>
Formula, calculating percentage	Grams, 14	origins of, 536
composition, 202	Greenhouse effect, 5, 458, 517, 623	refining, 568
Fossil fuels, 537, 577 , 578–586	Greenhouse gases, 623	risk, 622–623
environmental problems, 625	Ground water, 360	sources of, 537
Fractional distillation, 569	Gypsum, 223	structural diagrams/model,
Freon, 517		540, 541
Fructose formula 217		unsaturated 553

using, 568	Ion size, solubility, 331	gases, 418
Hydrochloric acid, 102, 235EL, 381,	Ion-dipole attraction, 293	states of matter, 418
382, 384	Ionic bonding, 419	Kirumira, Dr. Abdullah, 463
boiling point, 70	Ionic bonds, 70	Kwolek, Stephanie, 572
electronegativity, difference of	more than two ions, 77	
bond 73	octet rule, 75	
melting point, 70	Ionic compound, 67, 68, 69	Lactic acid, 370
polar molecule, 91	conductivity, 67, 78–79	empirical formula, 215
Hydrodynamics, 428	double displacement reactions,	Lamp oil, 579
Hydrofluoric acid, 382, 384	132–133	Landfill leachates, 358
Hydrogen	insoluble, 293	Laplace, Pierre, 603
average atomic mass, 180	magnetism, 67	Laughing gas, 102, 486–488
compounds, 104	melting point, 67	Lavoisier, Antoine, 472, 484, 603
double displacement reaction, 340	neutralization reaction, 394–396	Law of combining volumes, 472
molar mass, 180	polar solvent, 293	Law of conservation of energy, 602
	-	
specific heat capacity, 595	solubility, 67, 293, 330, <i>332–333inv</i>	Law of conservation of mass, 35, 113 ,
Hydrogen bonding, 292	Ionic crystal, preparing, 80inv	115, 241
Hydrogen chloride. See Hydrochloric	Ionic equation, 337	Law of definite composition, 35
acid	Ionization energy, 54	Law of definite proportions, 198
Hydrogen gas, production of,	atoms, 53–55	Law of multiple proportions, 473
512–513inv	energy levels, 53, 54	Lead(II) nitrate, 337
Hydroiodic acid, 381, 382	trends, 55	solubility, 338
Hydronium ion, 374	Ions, 53	Lemieux, Dr. Raymond, 536
Hydrophobic, 77	concentration of, calculation of,	Lewis structure, 46 , 76, 87, 88–89, 449
Hydrosulfuric acid, 384	348–349	bond, 96
Hyperbaric oxygen chamber, 462	flame test, 344	chemical formula, 95
Hypo, 102	mass percent of, 350–351	covalent bonds, 81, 82
Hypospray, 427	polyatomic, 97	Lime, 102
	Iron, specific heat capacity, 595	Limestone, 102, 360
	Iron oxide, 67, 201	Limiting reactant, 252
	Isoelectric, 75	identifying, <i>253–254SP</i>
Ideal gas, 421	Isolated system, 602	stoichiometry, 256–257SP
Ideal gas law, 472, 484	Isomers, 539 , 540, 543, 558	Line structural diagram, 541
application of, 489–500	cis-trans, 558	Liquids, 418
density, 489, 490	geometric, 558	Lithium, 165
kelvins, 484	modelling, 542inv	Lithium chloride tetrahydrate, 223
kilopascals, 484	Isopropanol, 124, 309	Lithium hydride, 340
molar mass, 489, 490	Isotopes, 37 , 38, 168EL	Lithium hydroxide, 242, 243–244SP
molar volume, 485–486SP, 490	abundance, 163, 165, 169SP, 170	Litre, 14
molecular mass, 490	atomic mass/number, 37	Lone pairs, 88
moles, 484	average atomic mass, 162, 163,	Lowry, Thomas, 375
product, 509	164, 165	Lunar module, 233
production of hydrogen gas,	Isotopic abundance, 163	Lye, 102
512–513inv	•	
reactant, 509		
stoichiometry, 501–507	Jet injectors, 427	Magma, 458, 491
Immiscible, 286	Joules, 14, 603	Magnesium hydroxide, 102, 383
Incomplete combustion, 124, 580	specific heat capacity, 595	Magnesium oxide, 383
2,2,4-trimethylpentane, 582–584SP	-p, ,	empirical formula, 212–213inv
Inert gases, 244, 465		Magnesium sulfate
Inner transition elements, 41	Kelvin scale, 440 , <i>441TL</i>	heptahydrate, 223
Intermolecular forces, 83 , 420	Kelvin, Lord, 440	hydrate, 223
solubility, 292	Kelvins, 14, 484	Magnetism of ionic compound, 67
International System of Units (SI), 14,	ideal gas law, 484	Main-group elements, 41
178	Kerosene, 568, 579	electron affinity, 57
International Union of Pure and	Kevlar, 572	
		Malleability, 12
Applied Chemistry (IUPAC),	Kilopascal (kPa) 494 484	Mannose, formula, 217
102, 544	Kilopascal (kPa), 424, 484	Marble, 102
Intramolecular forces, 83	ideal gas law, 484	Mariotte, Edmé, 433
Ion charge, solubility, 330	Kinetic energy, 421	Mass
Ion exchange, 361	Kinetic molecular theory, 421, 483	chemical equations, 241

gases, 422EL	Methane, 420, 535, 539, 544	molecules, 178SP
heat transfer, 595	combustion, 123	periodic table, 184
law of conservation of, 113	identification of, 498–500SP	Molina, Mario, 518
matter, 14	molecular formula, 546	Monoprotic acids, 382
molar concentration, 315–316SP	Methanol, solubility, 294	Montréal Protocol, 519
mole, 180	Midgley, Thomas, 517	Morphine, 158
molecules, 190–191SP	Milk of magnesia, 102	Mount St. Helens, 458
moles, 185, 186, <i>187SP</i> , 189	Millilitre, 14	Muriatic acid, 102
percentage composition,	Minerals, 188	With latte deld, 102
200–201SP	Miscible, 286	
precipitate, 353–354SP	covalent compound, 294	Naphtha, 571
• •	Mixture, 26 , 27	•
products, 245–246SP reactants, 243–244SP, 245–246SP		Natural gas, 537 Net ionic equation, 341, 342
	analyzing, 274–275inv	•
significant digits, 21–22SP	mm Hg, 428	writing, 342–343SP
stoichiometry, 241, 247–248SP	Molar concentration, 313	Neutralization reaction, 135 , 341, 394
subatomic particles, 35	calculating, 314SP	calculations, 396
Mass number, 36 , 37	mass, 315–316SP	ionic compound, 394–396
Mass percent, 199	Molar mass, 180	Neutrons, 35
Mass spectrometer, 164 , 166, 216, 344	compound, <i>181SP</i> , 197,	Nickel sulfate, 104
Mass/mass percent, 306	198–205, 216	Nitric acid, 381
concentration, 306	empirical formula, 208, 216	Nitrogen, uses for, 465
solving for, 307–308SP	finding, 53, 181	Nitrogen narcosis, 465
Mass/volume percent, 302	gases, 490, 494–495SP, 496–497inv	Nitroglycerine, 123
solving for, 303–304SP	ideal gas law, 489, 490	Noble gases, 41, 47, 244
Material Safety Data Sheets, 451	mole, 182–183inv, 185	Non-electrolyte, 294
Matter, 5, 11	percentage composition, 202	Non-metals, 41
atomic theory of, 34, 35	periodic table, 184	Non-polar molecules/compounds, 91,
chemical changes, 25	Molar volume	291, 553
chemistry, 6–16	calculating, 485–486SP	alkanes, 545
classification of, 25, 26	gases, 474–477SP, 478,	properties of, 93
describing, 11	479–482SP, 490	Nonane, molecular formula, 546
mass, 14	ideal gas law, 485-486SP, 490	Nuclear equation, 142 , 143–147
measurement, 14	Mole ratios, 237	Nuclear fission, 145, 146
measuring, 11	reactants, 239–240SP	Nuclear fusion, 145, 146
physical changes, 25	Molecular compounds, 82	Nuclear reactions, 111, 142
properties, 11	Molecular formula, 201, 203	
states of, 418	compounds, 215–218	
temperature, 14	decane, 546	Octane, 199, 614
volume, 14	determining, 215, <i>217–218SP</i>	molecular formula, 546
Measurement, 13inv, 14	expanded, 539	Octet, 47
exact numbers, 15, 17	experiments, 219–228	Octet rule, 75
matter, 14	finding by experiment, 219–228	bonding, 96
significant digits, 17	Molecular mass	chemical formula, 95
= = =		
uncertainty, 15, 17	gases, 490	covalent bonds, 75
Melting point, 12	ideal gas law, 490	ionic bonds, 75
covalent and ionic compounds, 67	Molecular models, comparing, 87	Odour, 12
Mendeleev, Dmitri, 40, 42	Molecule size, solubility, 295	Oehlschlager, Dr. Cam, 361
Mercury(II) sulfide, 202, 203, 353–354	Molecules	Oil spill, 623
Metal, 41, 65, <i>67EL</i> , 286	chemical equations, 235	advisor, 624
alloys, 286	mass, 190–191SP	Old Faithful, 458
bond, 83	modelling, 85, 92inv	Oleic acid, 614
electron affinity, 57	moles, 178SP	Opium, 158
precious, 66	Moles, 14, 54, 161, 172 , 173, 484	Order of magnitude, 176
Metal activity series	atoms, 176SP	Organic compound, 533, 534
creating, <i>128–129inv</i>	Avogadro constant, 171	modelling, <i>542inv</i>
single displacement reaction,	chemical equations, 237–238	natural, 534
126–127, 130–131	conversion, 177	origins of, 536
Metal ions, flame test, 344	gases, 482SP	synthetic, 534
Metallic bond, 83	ideal gas law, 484	Oxoacid, 384
Metalloids, 41	mass, 180, 185, 186, 187SP, 189	Oxyacetylene, 580
Metathesis reactions 337	molar mass 182-183inv 185	Oxyacids 384

Oxygen	Physical changes, 25	ideal gas law, 509
average atomic mass, 180	Physical property, 12	mass, 245–246SP
combustion, 464	periodic table, 40	Product development chemist, 313
electronegativity, 73	Pipette, 399–401	Propane
molar mass, 180	Plasma, 418	chemical formula, 539
uses of, 462–464	Plastics, 535	combustion, 580
Ozin, Dr. Geoffrey, 89	Polar bonds, 90	heat of combustion, 615
Ozone cycle, 516	Polar covalent bonds, 86	molecular formula, 539, 546
Ozone depletion, 515–520	Polar molecules, 91, 420, 421	Propene, 553, 568
•	properties of, 93	Property, 11
	water, 90	aliphatic compounds, 564inv
Paraffin, 568, 615	Polar solvent, 293	chemical, 12
Particle, stoichiometry, 247–248SP	Polar substance, 291	physical, 12
Parts per billion (ppb), 311,	Pollution, 5, 515–520, 623, 624	qualitative, 12
311-312SP	pesticides, 408–409inv	quantitative, 12
Parts per million (ppm), 311	phosphate, 8	Propyne, 560
Pascal (Pa), 424	water quality, 358	Proteins, 534
Pascal, Blaise, 428	Polonium, 143	Proton acceptors, 376
Pentane, 420	Polanyi, Dr. John Charles, 9	Proton donors, 376
combustion, 124	Polyatomic ions, 97	Protons, 35
molecular formula, 546	compounds, 104	Proust, Joseph Louis, 198
Percentage composition, 200	Polyisobutylene, 559	Pure covalent bonds, 81
calculating from chemical formula,	Polymer, 559	Pure substance, 26 , 27
202, 203–204SP	Polymer chemist, 572	Purity, 268
empirical formula, 208, <i>210–211SP</i>	Polymerization, 553	percentage yield, 265
mass, 200–201SP	Polymers, 535	Puskas, Dr. Judit, 559
molar mass, 202	· ·	Pyrite, 66
using, 205	Polystyrene, 535 Polywater, 329	ryrne, oo
	Potassium aluminum sulfate	
Percentage purity, 268		Qualitativa analysis 274 275 inv 244
finding, 268–269SP	dodecahydrate, 223	Qualitative analysis, 274–275inv, 344
Percentage yield, 260, 261	Potassium fluoride,	aqueous solutions, 345–346inv
actual yield, 263–264SP	electronegativity, 72	Quality control (QC), 188
application of, 264	Potassium hydroxide, 117, 383, 392	Quantitative analysis, 274–275inv
calculating, 261–262SP	Potassium iodide, 337	Quartz, 102
determining, 266–267inv	solubility, 338	
purity, 265	Potassium nitrate, 204	Dadi-asting instance of sankar 144
Perchloric acid, 381	products of decomposition, 204	Radioactive isotope of carbon, 144
Periodic law, 44	Potential energy, 615	Radioactivity, 38 , 142–147
Periodic table, 38, 40	Precious metal, 66	Radioisotopes, 38
annotated, 59	Precipitates, 132, 332	Radium, 143
average atomic mass, 165	double displacement reactions,	Radon, 143
chemical properties, 40	132–133	Rare metals, 56
electrons, 42	mass, 353–354SP, 354–355	Rate of dissolving, 290
molar mass, 184	predicting formation of, 338–339	Reactants, 112
mole, 184	silver chromate, 354–355	chemical equations, 239
physical properties, 40	solubility, 332–333inv	excess, 252, 255inv
Periodic trends, 44, 49–55	Precipitation reaction, 338	ideal gas law, 509
Pesticides and pollution, 408–409inv	solubility, 338	limiting, 251–253, 253–254SP,
Petrochemicals, 568	Precision, 18	255inv
Petroleum, 537 , 568	Pressure, 424	mass, 243–244SSP, 245–246SP
Petroleum age, 579	atmosphere, 427EL, 428	mole ratios, 239–240SP
Petroleum products, 619–626	atmospheric, 425	Reactivity, 12
Pewter, 306	gases, 424, 430–431inv, 432–435	Recommended Nutrient Intake, 188
рН, 385, 386 , 387–388	solubility, 299	Reforming, 571
acid, <i>390–391inv</i>	standard atmospheric, 428	Respiration, 111
calculating, 389SP	torr, 428	Richter, Jeremias Benjamin, 242
Phenolphthalein, 395	units of, 428	Ripening and enzymes, 552
Phosgene, 492	volume, 428, 430–431inv	Risk, 620
Phosphates, 8	Pressure relief valve, 450	hydrocarbons, 622-623
Phosphoric acid, 383	Priestly, Joseph, 472	Risk-benefit analysis, 620
Phosphorus tribromide, 105	Product, 112	smoking, <i>620–622SP</i>

Rotational motion, 418	Sodium tripolyphosphate, 8	Stable octet, 47
Rowland, F. Sherwood, 518	Soft water, 360	bond, 96
Rutherford, Ernest, 145	testing, 363	Standard ambient temperature and
	Soil erosion, 5	pressure (SATP), 452 , 485
	Solids, 418	Standard atmospheric pressure, 428
Sal ammoniac, 101	Solubility, 12, 286	Standard solution, 319, 399
Salt, 394	alkanes, 552	diluting, 320–321SP
Saturated fat, 614	alkenes, 553	Standard temperature, 452
Saturated hydrocarbons, 544	aqueous solutions, 330	Standard temperature and pressure
Saturated solution, 286	compounds, 330, 331, <i>332–333inv</i>	(STP), 452
Saturation of solution, 286	covalent compound, 67, 294	Starches, 534
Science societies, 471	curves, plotting, 296–297inv	Steroid, 561
Science, technology, society and	electronegativity, 293	Stock system, 102 , 103
the environment (STSE), 8	factors affecting, 290–301	Stock, Alfred, 102
Second ionization energy, 54	gases, 298	Stoichiometric amounts, 251
Sewage, 362	general guidelines, 334	Stoichiometric coefficients, 251
	insoluble, 287	
Shells. <i>See</i> Energy levels SI units, 428	intermolecular forces, 292	Stoichiometry, 234, 242 , 501–514
		aqueous solutions, 348–355
See also International System of	ion charge, 330	ideal gas law, 511–507
Units	ion size, 331	limiting reactant, 256–257SP
Significant digits, 17, 19EL	ionic compound, 67, 293, 330,	mass, 241, 247–248SP
calculating with, 20	332–333inv	mass to volume, 504–507
mass, 21–22SP	making predictions, 331	particle, 247–248SP
measurement, 17	molecule size, 295	process for solving problems, 247
rounding, 20	particle attraction, 291	using, 274–275inv
rules for, 17	precipitates, 332–333inv	volume to volume, 501–503
volume, 20–21SP	precipitation reaction, 338	water vapour pressure, 507–509
Silicic acid, 329	predicting, 293	Strong acid, 381
Silicon dioxide, 102	pressure, 299	Strong base, 383
Silver chloride, 341	slightly soluble, 287	Strontium hydroxide, 383
Silver chromate	solution, 286	Structural diagrams, 87, 541
precipitates, 354–355	sparingly soluble, 287	alkanes, 550–551
solubility, 354–355	temperature, 290, 295, <i>298EL</i>	Structural model, 540
Single displacement reaction, 126	Solute, 284 , 288	Structures of aliphatic compounds,
copper, <i>138–139inv</i>	Solution, 284	564inv
halogens, 131	concentration, 283, 302-318,	Subatomic particles, 35
metal activity series, 126-127,	317inv, 322–323inv	Sucrose, 536
130-131	diluting, 320	solubility, 294
Skeleton equation, 113	gases, 298EL	Sugars, 534
Slag, 77	heat of, 608	Sulfur dioxide, 420
Smog, 516	measuring heat of, 608EL	double displacement reaction, 340
Smoking, risk-benefit analysis,	preparing, 319–324	Sulfuric acid, 381
620–622SP	saturation, 286	Superconductors, 437
Sniffers, 222	solubility, 286	Superfluid, 442
Soap, 360, 369	standard, 319	Surface water, 360
Sodium bicarbonate, 136, 394	type of, 284–286	Sustainable development, 625
Sodium carbonate, 102, 370	Solvent, 284	Swiss Water Process, 300
decahydrate, 223, 361	coffee, 300	Symposium, 473
Sodium chloride, 66, 69, 101, 102	identifying, 287	Synthesis reactions, 119, 120
bonding, 75	solute, 288	compounds, 120, 121
conductivity, 69, 78–79	Sørensen, Søren, 386	copper, 138–139inv
electronegativity, 75	Sour gas, 580	elements, 120
melting point, 69	Space-filling model, 87, 540	Synthesized, 533
solubility, 69, 334	Specific heat capacity, 595 , 610	Systematic names, 544
Sodium hydrogen carbonate, 102,	calculating, 598–599SP	Systematic numes, 011
235EL, 370, 394, 534	compounds, 595	
Sodium hydroxide, 102, 369, 370, 383	determining, 604–605SP	Table salt, 69, 101, 102
Sodium stearate, 360	elements, 595	Technology and chemistry, 7, 8
Sodium sulfate, 104	joules, 595	==
	· ·	Temperature, 593
Sodium sulfite, 340	water, 595	change in, 594–595
Sodium thiosulfate, 102	Spectator ions, 341	

gases, 298, 436, 438-439inv, 440-441, 444-446 matter, 14 rate of dissolving, 290 solubility, 290, 295, 298EL volume, 438-439inv Tertiary compounds, 104 Testosterone, 561 Theoretical yield, 260 Thermal conductivity, 12 Thermal energy, 593 calculating, 606-607SP Thermal equilibrium, 605 Thermochemical equation, 588 acetylene, 590-591SP Third ionization energy, 54 Titration, 399 step-by-step, 399-401 Torr, 428 conversion, 485 Torricelli, Evangelista, 426, 428 Total ionic equation, 341 Toxicity, 12 Transition elements, 41 Translational motion, 419 Triple bond, 82 Triprotic acids, 383 Troposphere, 516 Typhoid, 364

Ultraviolet radiation, 516, 519 Uncertainty in measurement, 15, 17 Universal gas constant, 484, 485 Unsaturated fat, 614 Unsaturated hydrocarbons, 553 Unsaturated solution, 286 Urea, 534

Valence, 96 bond, 96 chemical formula, 98-100 polyatomic, 97, 98 Valence electrons, 45 atoms, 70 Van der Waals equation, 483 van Helmont, Jan Baptista, 114 Vanillin, 200 Variable composition, 284 Vibrational motion, 418 Vinegar, 369, 544 concentration, 402-403inv Vital force, 534 Vitamins, 188 Volcanoes, 458 Volume finding, 397-398SP gases, 422EL, 424, 430-431inv, 432-435, 436, 438-439inv, 440-441 matter, 14

pressure, 428, 430-431inv significant digits, 20-21SP temperature, 438-439inv Volume/volume percent, 309 concentration, 309 solving for, 309-310SP Volumetric flask, 319

Washing soda, 102, 361, 370 Waste water, 362 Water, 199, 207 double displacement reactions, 341 chemical formula, 207 heat transfer, 596-597SP molecular shape, 88 polar bonds, 90 polar molecule, 90 solubility, 330 solutions, 329 specific heat capacity, 595 Water cycle, 357 Water quality aqueous solutions, 357-364 health concerns, 358, 364 pollution, 358 Water softener, 361 Water treatment, 359 Weak acid, 381 Weak base, 383 Weak dispersion forces, 420 Weighted average, 165 Wet chemical techniques, 344 WHMIS, 451 Wohler, Friedrich, 534

X-ray fluorescence, 58

Wu, Dr. Jiangning, 363

Word equation, 112

Zero sum rule, 98