My sample book

basics

CONTENTS

1	Argomenti		
	1.1	Introduzione alla scienza	
	1.2	Introduzione all teoria atomica	
	1.3	Stati della materia	
	1.4	"Ordinamento" degli elementi chimici	
	1.5	Modelli atomici	
	1.6	Legami chimici	

Questo libro fa parte del materiale pensato per le scuole superiori. E' disponibile la versione in .pdf scaricabile.

Valutare se fare uno o più bbook di "scienze applicate", per astronomia, scienza della terra, biologia

Programma sintetico.

1

- Cenni di astronomia e scienze della terra...
- Introduzione al metodo scientifico e alla chimica
- Costituzione della materia
- Modelli e leggi della chimica: teoria atomica, cons.massa, prop def e multiple,...
- · Reazioni chimiche
- Stati della materia: esperimenti e leggi sui gas

2

- Introduzione alla chimica
- Materia: stati, transizioni; modello atomico
- · Sostanze e miscugli
- Reazioni: Lavoisier, proporzioni definite e multiple
- · Modelli atomici
- · Tavola periodica
- · Legami chimici

3

- Struttura atomica
- Tavola periodica e reattività elementi
- · Legami chimici
- Mole e concentrazione
- · Proprietà colligative
- Velocità di una reazione: reazioni spontane e no; catalizzatori, fattori che influenzano reazione,...
- Biologia...

4

- · Equilibrio chimico
- · Acidi, basi e pH
- Termodinamica delle reazioni
- Elettrochimica
- Biologia...
- Scienze della Terra...

5

- Chimica organica: alcani, alcheni, alchini; composti aromatici; gruppi funzionali
- Biochimica e biotecnologie

CONTENTS 1

• Scienze della Terra

2 CONTENTS

ARGOMENTI

1.1 Introduzione alla scienza

 Metodo scientifico, grandezze fisiche, unità di misura, statistica ed errori,... todo aggiungere collegamente all'introduzione al metodo scientifico del bbook-physics-hs

1.2 Introduzione all teoria atomica

- Breve storia:
 - 17xx, Lavoisier: conservazione massa
 - 1799, Proust: proporzioni definite: nelle reazioni che producono un determinato prodotto, i reagenti si combinano in proporzioni costanti e ben definiti
 - * eccezione: Berthollet e i composti non-stechiometrici: solidi possono avere composizione non defiinita a causa dei difetti cristallini
 - 1804, Dalton: proporzioni multiple
 - 1805-1815legge dei volumi di Gay-Lussac, Avogadro e il concetto di molecola. in Stati della materia

todo fare riferimento all'introduzione storica nel bbook-physics-hs:thermodynamics, e al video di Bressanini "vedere l'atomo"

1.3 Stati della materia

- Gas: leggi di Boyle, Charles, Gay-Lussac, Avogadro, gas perfetti; teoria cinetica; gas reali
- Liquidi
- Solidi

1.4 "Ordinamento" degli elementi chimici

- 1869-71, **Tavola periodica degli elementi di Mendeleev todo** riferimento a F ckin genius?, e caratteristiche atomi:
 - classificazione iniziata nella prima metà del XIX secolo
 - Proprietà:
 - * peso atomico std
 - * numero atomico
 - * prima energia di ionizzazione
 - st elettronegatività: tendenza di un atomo di attrarre verso sè e^- condivisi
 - * stati di ossidazione comuni
 - * config elettronica
 - Raggruppamento:
 - gruppi, colonne: elementi con stessa config elettronica esterna. Poiché le proprietà chimiche dipendono principalmente dalla config. elettronica, gli elementi nello stesso gruppo hanno caratteristiche chimiche simili
 - * periodi, righe: elementi con lo stesso livello energetico; alcuni insiemi di elementi appartenenti allo stesso periodo mostrano proprietà simili, come il blocco f dei lantanidi e gli attinidi; nello stesso periodo ci sono variazioni monotone di:
 - \cdot raggio atomico: diminuisce, all'aumentare del numero di e^- e di p, poiché aumenta l'attrazione elettrica
 - \cdot energia di ionizzazione: aumenta, al diminuire del raggio e all'aumentare dell'attrazione elettrica, poiché diventa più difficile strappare un e^- all'atomo: serve una maggiore energia per allontanare un e^-
 - \cdot elettronegatività: aumenta, all'aumentare dell'attrazione esercitata dagli e^- sul nucleo
 - · affinità elettronica: ... todo come?
 - Configurazione elettronica esterna

1.5 Modelli atomici

Esperimenti.

- Esperimenti e modelli, dall'atomo di Thompson all'atomo di Bohr ai primordi della meccanica quantistica; meccanica quantistica come teoria meccanica per la descrizione dell'atomo (1924: De Broglie; 1925: Heisenberg, Born, Jordan; 1926: Schrodinger;...)
- Rivisitazione tavola periodica, alla luce dei modelli atomici

1.6 Legami chimici

- Regola ottetto e notazione di Lewis
 - regola per spiegare in maniera approssimata la formazione di legami chimici;
 - tendenza a completare il livello elettronico esterno ("guscio di valenza"), per raggiungere una configurazione particolarmente stabile dal punto di vista energetico, e impedire la formazione di ulteriori legami;
 - gli elementi dei primi gruppi della tavola periodica tendono a perdere e^-
 - gli elementi dei gruppi VI, VII tende ad aquisire e^- , liberando energia, chiamata affinità elettronica
 - i gas nobili, l'He e gli elementi del gruppo VIII, hanno il guscio di valenza completo e tendono a non reagire
 - idrogeno, litio e berillio, elementi "vicini" a He, raggiungono la configurazione completa con $2\ e^-$, detta duetto
 - metalli di transizione e a partire dal terzo periodo, gli elementi hanno guscio di valenza che può ospitare un numero maggiore di e^- , "ottetto espanso"
 - spiegazione in QM: l'energia degli orbitali è determinata "quasi esclusivamente", a parte la struttura fine, dal numero quantico principale. Il numero di stati con lo stesso numero quantico principale n è 2 n² (2 dal principio di Pauli): quindi 2,8,18,.... La differenza di energia di livelli con n diverso è elevata,...todo salto di energia per attrarre ulteriori e⁻ quando il guscio di valenza è pieno
 - Eccezioni: s, d, \dots
- Tipi di legami intramolecolari: legame ionico, covalente puro e polare
- Interazioni tra molecole: legame idrogeno, ...todo altri legami?
- Teorie per la descrizione del legame e geometria molecolare,
 - VSEPR
 - teoria del legame di valenza
 - **–** ...

Miscele.

• omogenee ed eterogenee; tecniche di separazione: filtro, centrifuga, decanter, cromatografo, distillazione

Reazioni e trasformazioni della materia.

- Formalismo
- Legge di Lavoisier, proporzioni def e multiple
- Calcolo reazioni chimiche: reagente limitante e in eccesso,
- Soluzioni, concentrazioni: legge di Raoult, legge di Henry,...

Reazioni e termodinamica.

- introduzione alla termodinamica Collegamento al bbook di fisica
- Gibbs-Duhem
- legge di Hess ed entalpia di reazione
- energia libera di Gibbs e spontaneità di una reazione

Cinetica chimica

· velocità reazione

1.6. Legami chimici 5

My sample book

- reazioni spontanee e non; reazioni reversibili
- catalizzatori e altri fattori che influenzano la velocità di reazione

Equilibrio chimico.

- Equilibrio dinamico, legge di azione di massa;
- Fattori che influenzano l'equilibrio chimico, il principio di Le Chatelier
- concentrazioni agli equilibri, solubilità (sale in acqua), formazione precipitato, effetto dello ione comune sulla solubilità del sale

Acidi, basi e pH

- def; scala pH; acidi e basi deboli e forti; soluzione tampone; pH soluzione; titolazione acido-base; indicatore nelle titolazioni;
- · idrolisi

Elettrochimica

- Numero di ossidazione; ossidante, riducente; ossidazione, riduzione; redox (forma molecolare e ionica); potere ox e red
- energia e spontaneità; coppie redox; elettrodi; celle galvaniche; pila di Daniell; trasformazionee energia chimica/elettrica/"termica"; potenziali di cella
- equazione di Nerst; celle elettrolitiche; leggi di Faraday

Chimica organica.

- · Alcani, alcheni e alchini
- · Composti aromatici
- · Gruppi funzionali