Bài 1: Giá trị lượng giác của 1 góc từ 0° đến 180°

Bài 1 trang 69 SBT Toán 10 tập 1: Tính giá trị của $T = 4\cos 60^{\circ} + 2\sin 135^{\circ} + 3\cot 120^{\circ}$.

Lời giải

Sử dụng máy tính cầm tay ta có:

 $T = 4\cos 60^{\circ} + 2\sin 135^{\circ} + 3\cot 120^{\circ}$

$$T = 4.\frac{1}{2} + 2.\frac{\sqrt{2}}{2} + 3.\frac{-1}{\sqrt{3}}$$

$$T = 2 + \sqrt{2} - \sqrt{3}$$

Vậy T =
$$2 + \sqrt{2} - \sqrt{3}$$
.

Bài 2 trang 69 SBT Toán 10 tập 1: Chứng minh rằng:

a) $\sin 138^\circ = \sin 42^\circ$; $\cot 35^\circ$.

b) $tan125^{\circ} = -$

Lời giải

a) Ta có $\sin x = \sin(180^{\circ} - x)$ nên:

$$\sin 138^{\circ} = \sin (180^{\circ} - 138^{\circ}) = \sin 42^{\circ}.$$

Vậy $\sin 138^{\circ} = \sin 42^{\circ}$.

b) Ta có tanx = $-tan(180^{\circ} - x)$ và tanx = $cot(90^{\circ} - x)$

$$\tan 125 = -\tan(180^{\circ} - 125^{\circ}) = -\tan 55^{\circ} = -\cot(90^{\circ} - 55^{\circ}) = -\cot 35^{\circ}.$$

Vậy $\tan 125^{\circ} = -\cot 35^{\circ}$.

Bài 3 trang 69 SBT Toán 10 tập 1: Tìm góc α ($0^{\circ} \le \alpha \le 180^{\circ}$) trong mỗi trường hợp sau:

a)
$$\cos \alpha = -\frac{\sqrt{3}}{2}$$
;

b)
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
;

c)
$$\tan \alpha = -\frac{\sqrt{3}}{3}$$
;

d) cot
$$\alpha = -1$$
.

Lời giải

- a) Sử dụng máy tính cầm tay, ta có được: $\alpha = 150^{\circ}$.
- b) Sử dụng máy tính cầm tay, ta có được: $\alpha = 60^{\circ}$.

Lại có $\sin\alpha = \sin(180^{\circ} - \alpha)$ nên $\alpha = 120^{\circ}$.

Vậy $\alpha = 60^{\circ}$ hoặc $\alpha = 120^{\circ}$.

c) Dựa vào bảng các giá trị lượng giác đặc biệt, ta có: tan $\alpha = -\frac{\sqrt{3}}{3} \Rightarrow \alpha = 150^{\circ}$.

α Giá trị lượng giác	0°	30°	45°	60°	90°	120°	135°	150°	180°
sinα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tanox	0	$\frac{\sqrt{3}}{3}$	1	√ 3	11	-√3	-1	$-\frac{\sqrt{3}}{3}$	0
cota	=	√ 3	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	-√3	II

d) Dựa vào bảng các giá trị lượng giác đặc biệt, ta có: cot $\alpha = -1 \Rightarrow \alpha = 135^{\circ}$.

Vậy
$$\alpha = 135^{\circ}$$
.

Bài 4 trang 69 SBT Toán 10 tập 1: Chứng minh rằng trong tam giác ABC ta có:

a)
$$tanB = -tan(A+C)$$
;

b)
$$\sin C = \sin (A+B)$$
.

Lời giải

a) Trong tam giác ABC có: A + B + C = 180° \Rightarrow A + C = 180° - B

Ta có: $tan\alpha = -tan(180^{\circ} - \alpha)$ nên

$$tanB = -tan(180^{\circ} - B) = -tan(A+C)$$

Vây tanB = -tan(A+C).

b) Trong tam giác ABC có: $A + B + C = 180^{\circ} \Rightarrow A + B = 180^{\circ} - C$.

Ta có: $\sin\alpha = \sin(180^{\circ} - \alpha)$ nên

$$\sin C = \sin(180^{\circ} - C) = \sin(A+B)$$
.

 $V_{ay} \sin C = \sin (A+B).$

Bài 5 trang 69 SBT Toán 10 tập 1: Chứng minh rằng với mọi góc x ($0^{\circ} \le x \le 90^{\circ}$), ta đều có:

a)
$$\sin x = \sqrt{1 - \cos^2 x}$$
;

b)
$$\cos x = \sqrt{1 - \sin^2 x}$$
;

c)
$$tan^2x = \frac{\sin^2 x}{\cos^2 x}$$
 ($x \neq 90^\circ$);

d)
$$\cot^2 x = \frac{\cos^2 x}{\sin^2 x}$$
 ($x \neq$

 0°).

Lời giải

a) Ta có: $\cos^2 x + \sin^2 x = 1$.

$$\Rightarrow \sin^2 x = 1 - \cos^2 x$$

$$\Rightarrow \sin x = \sqrt{1 - \cos^2 x}$$
 hoặc $\sin x = -\sqrt{1 - \cos^2 x}$

Vì $0^{\circ} \le x \le 90^{\circ}$ nên $0 \le \sin x \le 1$. Do đó chỉ có $\sin x = \sqrt{1-\cos^2 x}$ là thỏa mãn.

$$V_{ay} \sin x = \sqrt{1 - \cos^2 x}.$$

b) Ta có:
$$\cos^2 x + \sin^2 x = 1$$

$$\Rightarrow \cos^2 x = 1 - \sin^2 x$$
.

$$\Rightarrow \cos x = \sqrt{1 - \sin^2 x} \text{ hoặc } \cos x = -\sqrt{1 - \sin^2 x}$$

Vì $0^{\circ} \le x \le 90^{\circ}$ nên $0 \le \cos \le 1$. Do đó chỉ có $\cos x = \sqrt{1-\sin^2 x}~$ là thỏa mãn.

$$V_{ay} \cos x = \sqrt{1 - \sin^2 x}.$$

c) Ta có:
$$\tan x = \frac{\sin x}{\cos x} \Rightarrow \tan^2 x = \frac{\sin^2 x}{\cos^2 x} (x \neq 90^\circ)$$
. (DPCM)

d) Ta có:
$$\cot x = \frac{\cos x}{\sin x} \Rightarrow \cot^2 x = \frac{\cos^2 x}{\sin^2 x} (x \neq 0^\circ).$$
 (DPCM)

Bài 6 trang 69 SBT Toán 10 tập 1: Cho góc x với $cosx = \frac{-1}{2}$. Tính giá trị biểu thức

$$S = 4\sin^2 x + 8\tan^2 x.$$

Lời giải

Sử dụng máy tính cầm tay, ta có: $\cos x = \frac{-1}{2} \Rightarrow x = 120^{\circ} \Rightarrow \sin x = \frac{\sqrt{3}}{2}$ và $\tan x = -\sqrt{3}$.

$$S = 4\sin^2 x + 8\tan^2 x = 4.\left(\frac{\sqrt{3}}{2}\right)^2 + 8.\left(-\sqrt{3}\right)^2 = 4.\frac{3}{4} + 8.3 = 27.$$

Vây S = 27.

Bài 7 trang 69 SBT Toán 10 tập 1: Dùng máy tính cầm tay, tính.

a) sin138°12'24";

b) cos144°35'12'';

c) tan152°35'44''.

Lời giải

Sử dụng máy tính cầm tay, ta tính được:

- a) $\sin 138^{\circ}12'24'' \approx 0,666$.
- b) cos144°35'12''≈ −0,815.
- c) $tan152^{\circ}35'44" \approx -0.518$.

Bài 8 trang 69 SBT Toán 10 tập 1: Dùng máy tính cầm tay, tìm x, biết:

a) $\cos x = -0.234$;

b) $\sin x = 0.812$;

c) $\cot x = -0.333$.

Lời giải

Sử dụng máy tính cầm tay, ta tính được:

a)
$$\cos x = -0.234 \Rightarrow x \approx 103^{\circ}31'58''$$
.

b)
$$\sin x = 0.812 \Rightarrow x \approx 54^{\circ}17'30"$$
 hay $x \approx 125^{\circ}42'30"$.

c)
$$\cot x = -0.333 \Rightarrow x \approx 108^{\circ}25'4''$$
.