Uczenie się drzew decyzyjnych

Bartłomiej Śnieżyński KI, AGH

Plan

- Definicja
- Przykład
- Drzewo a reguły
- Rodzaje testów
- Wady i zalety drzew
- Uczenie się drzew algorytm ID3
- Modyfikacje ID3 → C4.5
 - Unikanie nadmiernego dopasowania
 - Atrybuty ciągłe
 - Modyfikacja kryterium wyboru atrybutu
 - Dane z brakującymi wartościami
 - Uwzględnienie kosztu pomiaru atrybutów
- Złożoność
- Podsumowanie

Drzewo decyzyjne – definicja

- Dane: dziedzina $X, A = \{a_1, a_2, ..., a_n\}$, pojęcie $c: X \rightarrow C$
- Testem nazywamy funkcję $t:X \rightarrow R_t = \{r_1, r_2, ..., r_m\}$
- Syntaktyka: Drzewem decyzyjnym nazywamy:
 - liść etykietowany dowolnym pojęciem z C
 - wierzchołek etykietowany testem t o m gałęziach prowadzących do drzew decyzyjnych $\{T_1, T_2, ..., T_m\}$; krawędź prowadząca do T_i jest etykietowana wartością r_i
- Semantyka: Dla drzewa $T: h_T(x) =$
 - etykieta T jeśli T jest liściem,
 - $-h_{Ti}(x)$, w pp., gdzie t jest testem związanym z korzeniem T, $t(x)=r_i$

3/32

Przykład drzewa decyzyjnego

• Drzewo decyzyjne dla problemu "czy grać w tenisa"

Drzewo decyzyjne a reguły

- Reguły: warunki → kategoria
- Konwersja drzewo → reguły
 - Każda ścieżka o wierzchołkach etykietowanych kolejno testami t_1 , t_2 , ..., t_n , c, i krawędziach etykietowanych wartościami r_1 , r_2 , ..., r_n tworzy regułę

$$t_1(x) = r_1 \& t_2(x) = r_2 \& ..., t_n(x) = r_n \rightarrow c$$

- Przykład: pierwsza od lewej ścieżka z poprzedniej str. outlook(x)=sunny & humidity(x)=high → no
- Konwersja reguły → drzewo
 - Por. Imam, Michalski
 - Algorytm uczenie drzew z przykładów które są regułami

5/32

Rodzaje testów

- Testy tożsamościowe
- Testy równościowe
- Testy przynależnościowe
- Testy nierównościowe

Wady i zalety drzew decyzyjnych

• Zalety:

- Duża siła wyrazu (każda funkcja dyskretna jest reprezentowalna;
 DNF)
- Reprezentacja jest zwarta
- Szybka klasyfikacja
- Stosunkowo czytelna dla człowieka

Wady

- Drzewa mogą być złożone:
 - testy na pojedynczych atrybutach traci się zależności między atrybutami
 - reprezentacja alternatywy warunków powoduje rozrost drzewa
- Trudne uczenie inkrementacyjne

7/32

Uczenie drzew jako przeszukiwanie

- Problem:
 - Przeszukaj przestrzeń drzew decyzyjnych, które reprezentują wszystkie możliwe funkcje dyskretne
 - Za: siła wyrazu, uniwersalność
 - Przeciw: złożoność, wielkie, niezrozumiałe drzewa
- Cel: znaleźć najlepsze drzewo decyzyjne (minimalne, zgodne z przykładami)
- Przeszkoda: problem NP-trudny
- Rozwiązania:
 - Użyć heurystyki do kierowania przeszukiwaniem
 - Użyć algorytmu zachłannego (greedy) (w optymalizacji jest to odpowiednik Hillclimbing bez nawracania)

Algorytm ID3 (Quinlan)

```
ID3 (T, Atr): drzewo
IF wszystkie przykłady w T mają taką samą etykietę THEN RETURN (liść z tą etykietą)

ELSE
IF Atr=Ø THEN RETURN (liść z najczęstszą etykietą w T)

ELSE
a₁ = najlepszy atrybut z Atr
Utwórz korzeń k z testem na a₁

Atr = Atr \ {a₁}

FOR each v∈A₁

Utwórz gałąź g od korzenia z etykietą v

IF Taiv=Ø THEN

Do k podłącz liść z najczęstszą etykietą w T

ELSE Do k podłącz ID3(Taiv, Atr)
```

9/32

Wybór atrybutu

- Cel: atrybut który dzieli przykłady na podzbiory o dominującej jednej etykiecie
- Rezultat: bliżej do liścia
- Najbardziej popularna heurystyka:
 - Wymyślona przez Quinlan-a
 - Oparta na przyroście informacji

Entropia

- Miara nieuporządkowania, niepewności, nieregularności
- Przykład
 - $-C = \{0, 1\}, \text{ rozkład Pr}(C)$
 - Optymalne uporządkowanie:

•
$$Pr(c = 0) = 1$$
, $Pr(c = 1) = 0$

•
$$Pr(c = 1) = 1$$
, $Pr(c = 0) = 0$

- Największy bałagan:

•
$$Pr(c = 0) = 0.5$$
, $Pr(c = 1) = 0.5$

11/32

12/32

Entropia – definicja

• 2 klasy, $T_A^c - \text{przykłady}$, $p_+ = \text{Pr}(c(x) = 1)$, $p_- = \text{Pr}(c(x) = 0)$:

$$Entropia(T_{c_{A}}) = -p_{+} log_{2}(p_{+}) - p_{-} log_{2}(p_{-})$$

• Entropia(9+, 5-) = 0.940

• Wiele klas:

Entropia(
$$T_{c_A}$$
) = Σ_c - p_c log₂ (p_c)

Przyrost informacji

- Cel: miara reprezentująca redukcję entropii po wyborze atrybutu a_i
- Definicja: dla przykładów S i atrybutu a_i

Gain(S,
$$a_i$$
) = Etropia(S) - $\sum_{v \in A_i} \frac{|S_{aiv}|}{|S|}$ Entropia(S_{aiv})

- Idea: skalujemy entropię do rozmiaru każdego podzbioru
- Najlepszy atrybut:

 $arg max_{ai} Gain(S, a_i)$

13/32

Przykład

• Gra w tenisa

Day	Outlook	Temperature	Humidity	Wind
1	Sunny	Hot	High	Light
2	Sunny	Hot	High	Strong
3	Overcast	Hot	High	Light
4	Rain	Mild	High	Light
5	Rain	Cool	Normal	Light
6	Rain	Cool	Normal	Strong
7	Overcast	Cool	Normal	Strong
8	Sunny	Mild	High	Light
9	Sunny	Cool	Normal	Light

Wybór korzenia [9+, 5-]

Day	Outlook	Temperature	Humidity	Wind
1	Sunny	Hot	High	Light
2	Sunny	Hot	High	Strong
3	Overcast	Hot	High	Light
4	Rain	Mild	High	Light
5	Rain	Cool	Normal	Light
6	Rain	Cool	Normal	Strong
7	Overcast	Cool	Normal	Strong
8	Sunny	Mild	High	Light
9	Sunny	Cool	Normal	Light

- Rozkład apriori: 9+, 5-
- Gain(T, Humidity) = 0.151
- Gain(T, Wind) = 0.048
- Gain(D, Temperature) = 0.029
- Gain(D, Outlook) = **0.246**

15/32

Następny wierzchołek

Day	Outlook	Temperature	Humidity	Wind
1	Sunny	Hot	High	Light
2	Sunny	Hot	High	Strong
3	Overcast	Hot	High	Light
4	Rain	Mild	High	Light
5	Rain	Cool	Normal	Light
6	Rain	Cool	Normal	Strong
7	Overcast	Cool	Normal	Strong
8	Sunny	Mild	High	Light
9	Sunny	Cool	Normal	Light
10	Rain	Mild	Normal	Light

- Gain($T_{Outlook Sunny}$, Humidity) = 0.97 (3/5) * 0 (2/5) * 0 = **0.97**
- $Gain(T_{Outlook Sunny}, Wind) = 0.97 (2/5) * 1 (3/5) * 0.92 = 0.02$
- $Gain(T_{Outlook\ Sunny},\ Temperature) = 0.57$

Całe drzewo

Day	Outlook	Temperature	Humidity	Wind
1	Sunny	Hot	High	Light
2	Sunny	Hot	High	Strong
3	Overcast	Hot	High	Light
4	Rain	Mild	High	Light
5	Rain	Cool	Normal	Light
6	Rain	Cool	Normal	Strong
7	Overcast	Cool	Normal	Strong
8	Sunny	Mild	High	Light
9	Sunny	Cool	Normal	Light

17/32

Cechy ID3

- H przestrzeń zupełna
- Zwracanie (przechowywanie) tylko jednej hipotezy (częściowej)
- Brak nawracania (optimum lokalne) rozwiązanie
 przycinanie drzewa

Porównanie obciążenia

- ID3
 - H kompletna
 - przeszukiwanie niekompletne
 - obciążenie preferencji
- Algorytm eliminacji kandydatów
 - H niekompletna
 - przeszukiwanie kompletne
 - obciążenie reprezentacji

19/32

Kierunki rozbudowy ID3

- Unikanie nadmiernego dopasowania
- Atrybuty ciągłe
- Modyfikacja kryterium wyboru atrybutu
- Dane z brakującymi wartościami
- Uwzględnienie kosztu pomiaru atrybutów
- ID3 + powyższe modyfikacje = C4.5

Unikanie nadmiernego dopasowania

- Przyczyna: szum powoduje błędy w generalizacji
- Rozwiązania:
 - Wcześniej przestać budować drzewo (ale kiedy?)
 - Zbudować duże, a potem je przyciąć (częściej stosowane)

21/32

Reduced-Error-Pruning

- ullet Metoda przycinania z osobnym zbiorem do walidacji V
- Reduced-Error-Pruning (T)
 Podziel T na T₁ i V

 t = ID3(T₁, A)

 WHILE poprawność t na V się nie zmniejsza DO
 FOR each n nie liścia t

 ttemp[n] = Prune (T, n)
 accuracy[n] = Test (ttemp[n], V)

 t = ttemp[arg max_n (accuracy[n])]

 RETURN t
- Prune(t, node)
 Zastąp poddrzewo t liściem o najczęstszej etykiecie

Rule Post-Pruning (C4.5)

- Rule-Post-Pruning (D)
 - -t = ID3(D, A)
 - Przekształć t w zbiór reguł
 - Przytnij (uogólnij) każdą regułę oddzielnie przez usunięcie przesłanek, które powoduje wzrost estymowanej poprawności (por. literatura)
 - Posortuj przycięte reguły wg estymowanej poprawności

23/32

Atrybuty ciągłe

- Dwie metody
 - Dyskretyzacja
 - Podział wartości na przedziały przed uczeniem
 - {high = Temp > 35° C, med = 10° C < Temp $\leq 35^{\circ}$ C, low = Temp $\leq 10^{\circ}$ C}
 - Testy nierównościowe
 - $a_i \le v$ tworzy dwa podzbiory A_i
 - Przyrost informacji obliczany jest tak samo jak dla testów tożsamościowych

Algorytm znajdowania punktu podziału

- Znajdź test nierównościowy (T, a_i) : Test
 - -L = uporządkowana lista wartości a_i występujących w T
 - FOR each (l, u) pary sąsiednich wartości z L z różnymi etykietami oblicz Gain dla testu $a_i \le (l+u)/2$?

 RETURN test o najwyższym Gain
- Przykład
 - $-a_i = Length$: 10 15 21 28 32 40 50
 - Class: + + + + -
 - Sprawdź testy: $Length \le 12.5$?, $Length \le 24.5$?, $Length \le 30$?, $Length \le 45$?

25/32

Współczynnik przyrostu informacji

- Problem: Jeśli atrybut ma dużo wartości, to funkcja Gain go faworyzuje
- Rozwiązanie: GainRatio

$$\begin{aligned} & \operatorname{Gain} \left(D, a_i \right) \ = \ -\operatorname{Entropia} \left(D \right) - \sum_{v \in A_i} \left[\frac{|D_{a_i v}|}{|D|} \operatorname{Entropia} \left(D_{a_i v} \right) \right] \\ & \operatorname{GainRatio} \left(D, a_i \right) \ = \ \frac{\operatorname{Gain} \left(D, a_i \right)}{\operatorname{SplitInformation} \left(D, a_i \right)} \\ & \operatorname{SplitInformation} \left(D, a_i \right) \ = \ - \sum_{a \in A_i} \left[\frac{|D_{a_i v}|}{|D|} \log_2 \frac{|D_{a_i v}|}{|D|} \right] \end{aligned}$$

• SplitInformation rośnie z $|A_i|$ więc atrybuty o wielu wartościach są karane

Koszty testów

- Zastosowania w praktyce np. medycyna:
 - Temperatura kosztuje 1zł, test krwi 70zł, RM 500zł
 - Inwazyjność badań
 - Ryzyko dla pacjenta
 - Czas wykonywania pomiaru
- Jak tworzyć drzewa z niskim oczekiwanym kosztem testów?
- Zamiana Gain na Cost-Normalized-Gain
 - [Nunez, 1988]:

Cost-Normalized-Gain
$$(D,A) = \frac{\text{Gain}^2(D,A)}{\text{Cost}(D,A)}$$

- [Tan and Schlimmer, 1990]:

Cost-Normalized-Gain
$$(D,A) = \frac{2^{\text{Gain}(D,A)}-1}{(\text{Cost}(D,A)+1)^w} \quad w \in [0,1]$$

27/32

Brakujące wartości atrybutów

- Czasem wartości nie znane, czasem zbyt drogie
- Podczas uczenia trzeba obliczyć $Gain(T, a_i)$ w przypadku gdy dla pewnych przykładów nie znamy wartości a_i
- Podczas używania klasyfikatora
 - Którą krawędź wybrać?
 - Metoda analogiczna do uczenia

Metody uczenia z przykładów z brakującymi danymi

- Pomijanie przykładów
- Redukcja *Gain* liczony dla przykładów o znanych wartościach, wymnażany przez stosunek znanych do wszystkich
- Wypełnianie
 - najczęściej występującą wartością
 - najczęściej występującą wartością w przykładach o tej samej etykiecie
 - wartością obliczoną z innych atrybutów
 - wylosowana wartość
- Podział zastąpienie przez przykłady o różnych wartościach i częstościach będących popularnością tych wartości (przykłady bez wartości nieznanych mają częstość = 1)
- Oddzielna gałąź

29/32

Złożoność

- Testy tożsamościowe, n atrybutów nominalnych
- Operacje:
 - wyznaczenie rozkładów: O(n|T|)
 - ocena jakości testów: O(n|C|)
 - podział na podzbiory: O(n|T|)
- Koszt całkowity tworzenia wierzchołka:

O(n|T|)

• Bardzo dobry stosunek kosztu do jakości

Podsumowanie

- Drzewo a reguły
- Wady i zalety drzew
- Algorytm ID3
- Przyrost informacji
- Obciążenie ID3
- Różnice pomiędzy ID3 i C4.5
- C4.5 bardzo popularny (w Weka: J48)
- Następny wykład uczenie reguł

31/32

Slajdy przygotowano na podstawie

- 1. P. Cichosz, Systemy uczące się, WNT, Warszawa, 2000.
- 2. William H. Hsu, Slajdy (stąd skopiowano większość przykładów).