# রাসায়/নক পরিবর্তন

## সঞ্জিত কুমার গুহ স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

- ০১। মোমেন সাহেব একটি শিল্প কারখানায় জ্যেষ্ঠ রসায়নবিদ হিসেবে কর্মরত। এ কারখানায় 1:3 আয়তনের দুটি অধাতব মৌল  $A_2 \, \otimes \, B_2$  কে 200 বায়ু চাপে  $500-700^0\mathrm{C}$  তাপমাত্রায় বিক্রিয়ার মাধ্যমে একটি তীব্র ঝাঝালো গন্ধযুক্ত গ্যাস উৎপাদন করা হয়। উৎপন্ন গ্যাসটি সার ও খাদ্য প্রক্রিয়াজাতকরণ কারখানায় কাঁচামাল হিসেবে সরবরাহ করা হয়।
  - ক) বাফার দ্রবণ কী?
  - খ) HNO3, H3PO4 অপেক্ষা অধিক শক্তিশালী কেন?
  - গ) 20%,  $A_2$  বিক্রিয়ায় অংশগ্রহণ করলে 200 বায়ু চাপে উক্ত বিক্রিয়ার  ${
    m Kp}$  নির্ণয় কর।
  - ঘ) উক্ত বিক্রিয়ায় তাপমাত্রা ও চাপ বৃদ্ধি করলে  $AB_3$  উৎপাদনে কীরূপ প্রভাব পরিলক্ষিত হবে- বিশ্লেষণ কর।

## ০২। নিচের পাত্র ২টি পর্যবেক্ষণ কর-



- ক) লা-শাতেলিয়ারের নীতি কী?
- খ)  $2SO_2(g) + O_2(g) = 2SO_3(g)$  বিক্রিয়াটিতে চাপের প্রভাব ব্যাখ্যা কর।
- গ) ১নং পাত্রের দ্রবণের  $P^H$  মান গণনা কর।
- ঘ)  $4.36~P^H$  মানের একটি বাফার দ্রবণ তৈরি করতে ১নং পাত্রের 70~mL দ্রবণের সাথে ২নং পাত্রের কত mL দ্রবণকে যোগ করার প্রয়োজন পড়বে?
- ০৩। মনির ল্যাবরেটরিতে  $4.35~{
  m P^H}$  এর অশ্লীয় বাফার দ্রবণ তৈরি করার উদ্যোগ নিল। সে এজন্য মৃদু এসিড ও ঐ এসিডের তীব্র ক্ষারকীয় লবণের দ্রবণ মিশ্রিত করার উদ্যোগ নিল। এ উদ্দেশ্যে সে  $0.058{
  m M}$  ফরমিক এসিডের দ্রবণ প্রয়োজনীয় পরিমাণ  $0.1{
  m M}$  সোডিয়াম ফরমেট দ্রবণ যোগ করল।  $[{
  m HCOOH}$  এর  ${
  m pK_a}=3.8]$ 
  - ক) উভধর্মী পদার্থ কী ?
  - খ) কার্বনেট  $(\mathbf{CO_3}^{2-})$  একটি ক্ষারক- ব্যাখ্যা কর ৷
  - গ) মনিরের অশ্লীয় বাফার দ্রবণটির  $\mathbf{H}^+$  আয়নের ঘনমাত্রা বের কর।
  - ঘ) মনির ফরমিক এসিডটির  $60~{
    m cm}^3$  কত  ${
    m cm}^3$  সোডিয়াম দ্রবণে যোগ করলে উক্ত বাফার দ্রবণ পাবে?

#### ০৪। নিচের চিত্র তিনটি পর্যবেক্ষণ কর-



- ক) প্রশমন তাপ কী ?
- খ) উভমুখী বিক্রিয়া কখনও শেষ হয় না কেন
- গ) চিত্র- ১ এর দ্রবণের  $P^H$  এর মান নির্নয় কর ।  $(K_a=1.8{ imes}10^{-5})$
- ঘ) চিত্র- ৩ এর দ্রবণে সামান্য পরিমাণ HC1 যোগ করলে  $P^H$  এর কী ধরনের পরিবর্তন দেখা যাবে ? যুক্তি সহকারে বিশেষ্ট্রমণ কর।

# জয়নাল আবেদীন, ওয়াহিদুজ্জামান ও মান্নান স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

- ০৫। রসায়ন শিক্ষক একাদশ শ্রেণির শিক্ষার্থীদের রাসায়নিক সাম্যাবছা ব্যাখ্যা করার জন্য নিম্নোক্ত সমীকরণটি লিখেন।  $A_2 + 3B_2 = 2AB_3$  তিনি আরো উল্লেখ করেন যে, বিক্রিয়া একবার সাম্যাবছায় উপনীত হলে বিক্রিয়ক ও উৎপাদের ঘনমাত্রা পরিবর্তন করলেও সাম্যাধ্রুবকের কোনো পরিবর্তন সাধিত হয় না।
  - ক) গতিশীল সাম্যাবস্থা কী?
  - খ) ভরক্রিয়া সূত্রটি ব্যাখ্যা কর।
  - গ) উদ্দীপকে বিক্রিয়ার জন্য মোলার ঘনমাত্রায় সাম্যঞ্রবকের রাশিমালা প্রতিপাদন কর।
  - ঘ) উদ্দীপকের বিক্রিয়াটি গ্যাসীয় হলে আংশিক চাপে সাম্যঞ্রবক  $K_{
    m p}$  এর সাথে  $K_{
    m c}$  এর সম্পর্ক দেখাও।

#### ০৬। নিচের চিত্রটি লক্ষ্য কর-



#### যা একটি বিক্রিয়ার সক্রিয়ণ শক্তির লেখ।

- ক) ধনাত্মক প্রভাবক কী?
- খ) রাসায়নিক বিক্রিয়ায় প্রভাবকের ভূমিকা ব্যাখ্যা কর।
- গ) লেখচিত্র হতে বিক্রিয়াটির সক্রিয়ণ শক্তি এবং  $\Delta H$  এর মান হিসাব কর এবং দেখাও যে, এটি তাপোৎপাদী না তাপহারী ?
- ঘ) উদ্দীপকে বিক্রিয়াটির হার একটি মাত্র বিক্রিয়ার গতি সক্রিয়ণ শক্তি দ্বারা নিয়ন্ত্রিত হয়- উক্তিটি বিশ্লেষণ কর।

০৭। নিচের বিক্রিয়াটি লক্ষ্য কর-

$$3H_2(g) + N_2(g) = 2NH_3$$
;  $\Delta H = -92kJ$ 

- ক) সক্রিয় ভর কী?
- খ) উভমুখী বিক্রিয়া সাম্যাবস্থার উপর ঘনমাত্রার প্রভাব ব্যাখ্যা কর।
- গ) উদ্দীপকে উল্লিখিত বিক্রিয়ার জন্য তাপমাত্রা পরিবর্তনের প্রভাব বর্ণনা কর।
- ঘ) উল্লিখিত বিক্রিয়ার মাধ্যমে সর্বোচ্চ পরিমাণ উৎপাদ পাওয়ার জন্য কী ধরনের ব্যবস্থা গ্রহণ করা যেতে পারে ?
- ০৮।  $25^{0}$ C উষ্ণতায় এবং 1.0atm চাপে আবদ্ধ পাত্রে কিছু পরিমাণ  $N_{2}O_{4}$  উত্তপ্ত করলে তা 18.5% বিয়োজিত হয়ে  $NO_{2}$ -এ পরিণত হয় এবং অবিয়োজিত  $N_{2}O_{4}$  এর সাথে সাম্যবস্থায় থাকে। এ বিয়োজনে উপযুক্ত বিক্রিয়াটি নিম্নরূপ:  $N_{2}O_{4} = 2NO_{2} +$  তাপ
  - ক) লা-শ্যাতেলিয়ার নীতিটি লেখ।
  - খ) সাম্যাবস্থার উপর চাপের প্রভাব ব্যাখ্যা কর।
  - গ) উদ্দীপকের বিয়োজন বিক্রিয়াটির জন্য  $K_{
    m p}$ –এর মান নির্ণয় কর।
  - ঘ) বিক্রিয়াটির সাম্যাক্ষের সাথে তাপমাত্রার নির্ভরশীলতা বিশ্লেষণ কর।
- ০৯। নিচের উদ্দীপকটি লক্ষ্য কর-



সফিকুল দুটি দ্রবণ তৈরি করে তার পরীক্ষাগারে খোলা অবস্থায় রেখে দিল। সে কিছুদিন পর দ্রবণ দুটির  ${f P}^H$  নির্ণয় করে দেখে যে  $({f i})$  নং দ্রবণের  ${f P}^H$  কিছুটা পরিবর্তিত হয়ে গেছে।  $({f ii})$  নং দ্রবণের  ${f P}^H$  স্থির আছে। সে আরও সঠিক হওয়ার জন্য উভয় দ্রবণে সামান্য  ${f OH}^-$  আয়ন যোগ করে দেখে  $({f i})$  নং দ্রবণের  ${f P}^H$  আবার পরিবর্তিত হয়েছে কিছু  $({f ii})$  নং এর  ${f P}^H$  এর মানে কোনো পরিবর্তন হয়নি।

- ক) বাফার ক্ষমতা কী ?
- খ)  $H_3PO_4$  অপেক্ষা  $HNO_3$  অধিক অম্লীয় কেন ?
- গ) সফিকুল (ii) নং দ্রবণটি কীভাবে প্রস্তুত করেছে ব্যাখ্যা কর।
- ঘ) উদ্দীপকের (ii) দ্রবণে C ও D যথাক্রমে  $CH_3COOH$  ও  $CH_3COONa$  হলে  $P^H$  এর মান পরিবর্তিত হবে
- কী, বিক্রিয়ার আলোকে বিশ্লেষণ কর।

# ড. গাজী মোঃ আহসানুল কবীর ও ড. মোঃ রবিউল ইসলাম স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

#### ১০। নিচের উদ্দীপকটি লক্ষ্য কর-



- ক) জলীয় দ্রবণে একটি মৃদু এসিড ও তীব্র এসিড কীভাবে থাকে সমীকরণ দিয়ে দেখাও।
- খ) ১ নং দ্রবণে অ্যাসিটিক এসিডের 10% বিয়োজিত হলে দ্রবণের  $P^H$  কত?
- গ) ১ নং ও ২নং দ্রবণ মিশ্রিত করা হলো। অ্যাসিটিক এসিডের  $K_a$  এর মান  $1.8{ imes}10^{-5}$  হলে মিশ্র দ্রবণটির  $P^H$  কত
- ঘ) মিশ্র দ্রবর্ণটিতে সামান্য এসিড বা ক্ষার যোগ করলে  ${
  m P}^{
  m H}$  এর কী পরিবর্তন ঘটে ? কেন ?

$$N_2O_4(g) = 2NO_2(g); \Delta H = +58kJ$$

$$N_2(g) + 3H_2(g) = 2NH_3(g); \Delta H = -92.38kJ$$

- ক) বিক্রিয়াদ্বয় তাপোৎপাদী না তাপহারী? কেন?
- খ) চাপ বৃদ্ধি করা হলে উদ্দীপকের কোন ক্ষেত্রে কী পরিবর্তন ঘটে?
- গ) দ্বিতীয় বিক্রিয়ায় শীতলীকরণ করে  $NH_3$  গ্যাসকে তরল করা হলে উৎপাদনের উপর কী প্রভাব পড়ে বুঝিয়ে লিখ।
- ঘ) 10~L আয়তনের একটি পাত্রে  $1.0~mol~N_2O_4$  নিয়ে উত্তপ্ত করা হলে  $70^0C$  উষ্ণতায় সাম্যাবস্থায় 50%  $N_2O_4$  বিয়োজিত হয়।  $K_c$  এর মান গণনা কর। যদি একই বিক্রিয়া  $100^0C$  তাপমাত্রায় করা হয় তবে সাম্যমিশ্রণের সংযুক্তি কীভাবে পরিবর্তিত হয় যুক্তি দিয়ে বুঝিয়ে দাও।

### ১২। নিচের উদ্দীপকটি লক্ষ্য কর-

- (i)  $HA(aq) \rightarrow H^+(aq) + A^-(aq)$ ,
- (ii)  $HA(aq) \rightarrow H^+(aq) + A^-(aq)$
- (iii)  $BOH(aq) \rightarrow B^+(aq) + OH(aq)$
- ক) সমীকরণ তিনটি কোন কোন ক্ষেত্রে প্রযোজ্য?
- খ)  $HNO_3$  এবং  $H_3PO_4$  এর মধ্যে কোন এসিডটি অধিক শক্তিশালী? কেন?
- গ) সমীকরণ (iii) থেকে  $\mathbf{P}^{\mathrm{H}}$  এবং  $\mathbf{P}^{\mathrm{Kw}}$  এর সম্পর্ক নির্ধারণী একটি সমীকরণ প্রতিপালন করে দেখাও ।
- ঘ)  $H_2SO_4$  এর সঙ্গে পৃথকভাবে NaOH এবং  $NH_4OH$  যোগ করলে প্রশমন তাপের মান কেমন হয় ? ভিন্নতা কেন ব্যাখ্যা কর।

#### ১৩। নিচের উদ্দীপকটি পর্যবেক্ষণ কর-

(i)  $A_2(aq) + 3B_2(g) \rightarrow 2AB_3(q)$ ;  $\Delta H = -ve$ ,(ii)  $CH_3COOH + NaOH = CH_3COONa + H_2O$ 

বন্ধন শক্তি: A = A বন্ধনের 720 kJ mol $^{-1}$ ; B-B বন্ধনের 436 kJ mol $^{-1}$ , A - B বন্ধনের 388 kJ mol $^{-1}$ 

- ক) বন্ধন বিয়োজন শক্তি ও বন্ধন শক্তি কী?
- খ) বন্ধন শক্তির মান ব্যবহার করে  $AB_3$  এর গঠন তাপ হিসাব কর।
- গ) সমীকরণ (i) অনুসারে Kp এর উপর তাপমাত্রার প্রভাব ব্যাখ্যা কর।
- ঘ)  $20~{
  m cm}^3~0.1~{
  m M~CH_3COOH}$  দ্রবণে  $10~{
  m cm}^3~0.1~{
  m M~NaOH}$  দ্রবণ মিশ্রত করলে মিশ্যণিটির প্রকৃতি কী হবে ? এ মিশ্রণে উৎপন্ন সিস্টেমের  ${
  m P}^{
  m H}$  গণনার জন্য একটি সমীকরণ প্রতিষ্ঠা করে দেখাও।

#### $AB_5(g) = AB_3(g) + B_2(g)$

- 1.0~L আয়তনের  $5.0~mol~AB_5$  নিয়ে তাপ দিলে সাম্যাবস্থায় এর 2~mol বিয়োজিত হয়।
- ক) বিয়োজন মাত্রা কী?
- খ) উদ্দীপকের তথ্যের ভিত্তিতে  $AB_5$  এর বিয়োজন মাত্রা কত? সাম্যাবস্থায়  $AB_5$  এর কত মোল অবিয়োজিত থাকে এবং কত মোল  $AB_3$  ও  $B_2$  গ্যাস উৎপন্ন হয়?
- গ)  $AB_5$  গ্যাসটির বিয়োজনমাত্রা lpha হলে 'P' atm বায়ুমন্ডলীয় চাপে উদ্দীপকের সমীকরণের আলোকে বিক্রিয়াটির  $K_p$  এর একটি রাশিমালা প্রতিষ্ঠা করে দেখাও।
- ঘ) উদ্দীপকের তথ্যের আলোকে সাম্যাবস্থায় উৎপন্ন  $AB_3$  এবং  $B_2$  গ্যাসের আংশিক চাপ এবং  $K_p$  এর মান হিসাব করে দেখাও।

# <u>ড. সরোজ কান্তি সিংহ হাজারী ও অধ্যাপক হারাধন নাগ স্যারের</u> বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

#### ১৫। গ্যাসীয় হাইড্রোজেন আয়েঅজাইডের বিয়োজনের ক্ষেত্রে নিচের মানগুলো পাওয়া গেল-

| তাপমাত্রা   | বিক্রিয়ার হার ধ্রুবক                                |
|-------------|------------------------------------------------------|
| $283^{0}$ C | $3.52 \times 10^{-7} \text{ mol}^{-1} \text{s}^{-1}$ |
| 293°C       | -                                                    |
| 508°C       | $3.95 \times 10^{-2} \text{ mol}^{-1} \text{s}^{-1}$ |

- ক) হেন্ডারসন হ্যাসেলবাখ সমীকরণটি লিখ।
- খ) রক্তের মূল বাফারিং সিস্টেমটির ব্যাখ্যা কর।
- গ) উদ্দীপকের বিক্রিয়াটির  $K_c$  এর গাণিতিক রাশিমালা নির্ণয় কর।
- ঘ) প্রাপ্ত ডাটা থেকে গাণিতিক যুক্তি দিয়ে দেখাও,  $10^0 \mathrm{C}$  তাপমাত্রা বৃদ্ধিতে বিক্রিয়াটির হার ধ্রুবক এর মান দ্বিগুণ হয়েছে।

- ১৬। পরীক্ষাগারে ড. টমাস  $10~\mathrm{mL}~0.1~\mathrm{M}~\mathrm{CH_3COOH}$  দ্রবণের মধ্যে কিছু পরিমাণ  $0.15~\mathrm{M}~\mathrm{NaOH}$  দ্রবণ যোগ করে  $4.584~\mathrm{P^H}$  মানের একটি বাফার দ্রবণ প্রস্তুত করলেন।  $[\mathrm{CH_3COOH}$  এর  $\mathrm{K_a} = 1.8 \times 10^{-5}]$ 
  - ক) ভরক্রিয়ার সূত্রটি লিখ।
  - খ) অক্সোএসিডসমূহের তীব্রতা কোন কোন বিষয়ের উপর নির্ভরশীল তা কারণসহ ব্যাখ্যা কর।
  - গ) ক্ষার দ্রবণটির ও এসিড দ্রবণটির pH কত তা নির্ণয় করে দেখাও।
  - ঘ) গাণিতিক যুক্তি দিয়ে যোগকৃত ক্ষারের আয়তন বের কর।
- ১৭। প্রকৌশলী সুমন নাগ ঢাকায় একটি প্রাকৃতিক গ্যাস ভিত্তিক শিল্প কারখানায় কর্মরত। তাদের কারখানাটিতে প্রতিদিন মিথেন (দহন এনথালপি-  $890.3~{
  m kJ/mol}$ ) থেকে  $1.5{ imes}10^5{
  m kJ}$  তাপশক্তি উৎপন্ন করে থাকে। কিন্তু বাসা বাড়িতে গ্যাস সংযোগ না থাকায় তিনি রান্নার কাজে বাজার থেকে ক্রয়কৃত সিলিভারের গ্যাস ব্যবহার করে থাকেন।  $[{
  m CH_4}, {
  m C_4H_{10}, CO_2, H_2O}$  এর প্রমাণ গঠন এনখারপি যথাক্রমে -74.89, -124.7, -393.3 এবং  $-220.2{
  m kJ/mol}$ ]
  - ক) অ্যামোনিয়া উৎপাদনে অত্যানুকূল তাপমাত্রা কত?
  - খ) শিল্পক্ষেত্রে প্রভাবক ব্যবহার করে অসমত্ত প্রভাবনের ক্রিয়া কৌশল ব্যাখ্যা কর।
  - গ) উল্লিখিত কারখানায় প্রতিদিন কী পরিমাণ মিথেনকে দহন করা হয় তা নির্ণয় করে দেখাও।
  - ঘ) প্রতি kJ তাপশক্তি উৎপাদনে উদ্দীপকের কোন জ্বালানিটি অধিক উপযোগী হবে তা গাণিতিক যুক্তিসহ ব্যাখ্যা কর।
- ১৮। বিভিন্ন ক্ষেত্রে ব্যবহৃত অ্যামোনিয়া, নাইট্রিক এসিড, সালফিউরিক এসিড ইত্যাদির উৎপাদনে উভমুখী বিক্রিয়ার ভূমিকা আছে। উভমুখী বিক্রিয়ার হারের ওপর শিল্প উৎপাদন লাভজনক বা অলাভজনক হয়। তাপমাত্রা বৃদ্ধি করলে অধিক সংখ্যক বিক্রিয়ক অণু সক্রিয়ণ শক্তি লাভ করে। বিক্রিয়ার হার  $10^{0}$ C তাপমাত্রার বৃদ্ধিতে প্রায় দিশুণ হয়। বিজ্ঞানী আরহেনিয়াস গাণিতিক সমীকরণ করে তা প্রমাণ করেন।
  - ক) প্রশমন তাপ কী?
  - খ) পানির আয়নিক গুণফল বলতে কী বুঝায়?
  - গ) উদ্দীপক মতে বিক্রিয়ার হার বৃদ্ধি সংক্রান্ত নিয়ামকটি ব্যবহার করে বিজ্ঞানী যে সমীকরণটি প্রতিষ্ঠা করেন তা তুমি প্রতিপাদন কর।
  - ঘ) উদ্দীপক মতে সক্রিয়ণ শক্তি বলতে কী বুঝায়? কোনো বিক্রিয়ার অণুর সক্রিয়ণ শক্তি  $50~{
    m kJ/mol}$  হলে তোমার সুবিধা মতো  $10^0{
    m C}$  ব্যবধানে দুটি ভিন্ন তাপমাত্রা ধরে উদ্দীপকের তথ্যটি প্রমাণ কর।

#### ১৯। নিচের উদ্দীপকটি লক্ষ্য কর-



- ক) বাফার দ্রবণ কী?
- খ) ভরক্রিয়ার সূত্রটির সাহায্যে উভমুখী বিক্রিয়ার সাম্য ধ্রুবকের গাণিতিক সমীকরণ প্রতিষ্ঠা কর।
- গ) উদ্দীপকের ক্ষার দ্রবণ ও এসিড দ্রবণের  $\mathbf{P}^H$  গণনা কর।
- ঘ) উদ্দীপকের এসিড দ্রবণে সমপরিমাণ ঐ ক্ষার দ্রবণ যোগ করলে যে বাফার দ্রবণ তৈরি হবে এর  $\mathbf{P}^{H}$  গণনা কর।

# ড. মোঃ মনিমূল হক, ড. মোহাম্মদ আবু ইউসুফ ও আনিকা অনি স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

- ২০।  $N_2,\,H_2$  এর সাথে বিক্রিয়া করে  $NH_3$  উৎপাদন করে এবং নিচের বিক্রিয়ানুযায়ী সাম্যাবছা তৈরি করে-
  - $H_2 + 3H_2 = 2NH_3$ ;  $\Delta H = -93.02 \text{ kJ/mol}$
  - ক) লা-শাতেলিয়ারের নীতি কী?
  - খ) তাপমাত্রা বাড়ালে বিক্রিয়ার গতি বাড়ে কেন?
  - গ)  $NH_3$  বিয়োজনের হার 25% হলে প্রমাণ চাপে বিক্রিয়াটির  $K_p$  নির্ণয় কর।
  - ঘ) সিস্টেমে  $5~\mathrm{kJ}$  তাপ যোগ করা হলে  $\mathrm{NH_3}$  এর পরিমাণের কোন তারতম্য ঘটবে কিনা? বিষয়টি ব্যাখ্যা কর।
- ২১। একটি অজানা বিকারকের জলীয় দ্রবণে 2-3 ফোঁটা ফেনফথেলিন দ্রবণ যোগ করে দেখা গেল দ্রবণে কোন গোলাপী বর্ণ সৃষ্টি হয়নি। এরপর বস্তুটি অম্লীয় ভেবে এর জলীয় দ্রবণে ২-৩ ফোঁটা মিখাইল অরেঞ্জ দ্রবণ যোগ করে দেখা গেল দ্রবণের বর্ণ হলুদ হয়ে আছে। সুতরাং বস্তুটি অম্লীয় প্রকৃতির নয়। তবে একে HCl এর জলীয় দ্রবণ দ্বারা টাইট্রেশন করে দেখা গলে, কিছু পরিমাণ HCl দ্রবণ যোগ করার পর দ্রবণের হলুদ বর্ণ লালচে-কমলা বর্ণে পরিণত হয়েছে।
  - ক) তাপমাত্রা ও বিক্রিয়ার বেগ ধ্রুবক সম্পর্কিত আরহেনিয়াসের সমীরকণটি লেখ।
  - খ) হেবার পদ্ধতিতে অ্যামোনিয়া উৎপাদনে তাপমাত্রার প্রভাব ব্যাখ্যা কর।
  - গ) উদ্দীপকে উল্লেখিত বোতলে অজানা বিকারকটি কোন যৌগের হতে পারে এবং তার জলীয় দ্রবণে ফেনফথেলিন যোগ করার পর কেন গোলাপী বর্ণ ধারণ করেনি ? ব্যাখ্যা কর।
  - ঘ) টাইট্রেশন কি ? অজানা বিকারকটির সাথে HCl এর বিক্রিয়ার সমীকরণ লেখ। টাইট্রেশন প্রক্রিয়ার কোন অবস্থায় মিথাইল অরেঞ্জের উপস্থিতিতে দ্রবণের হলুদ বর্ণ লালচে-কমলা বর্ণে পরিবর্তিত হয়েছে ? ব্যাখ্যা কর।

 $AB_5(g) = AB_3(g) + B_2(g)$ ;  $\Delta H = +Ve$ 

- ক) গ্রিন কেমিস্ট্রি কি?
- খ)  $HNO_3$  ও  $H_3PO_4$  এর মধ্যে কোনটি অধিক শক্তিশালী? ব্যাখ্যা কর।
- গ) প্রদত্ত বিক্রিয়ার  $\mathbf{K}_{\mathtt{D}}$  এর রাশিমালা প্রতিপাদন কর।
- ঘ) উদ্দীপকের বিক্রিয়ার সর্বোচ্চ পরিমাণ উৎপাদন কৌশল ব্যাখ্যা কর।

## মোঃ মহির উদ্দিন, মোঃ আব্দুল লতিফ, মোঃ মনজুরুল ইসলাম স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

## ২৩। নিচের উদ্দীপকসমূহ লক্ষ্য কর-



- ক) পানির আয়নিক গুণফল কী ?
- খ) শক্তিশালী অম্লের অণুবন্ধী ক্ষারক দুর্বল এবং অম্লের অণুবন্ধী ক্ষারক শক্তিশালী হয় কেন?
- গ) A এবং B এর প্রশমন তাপের মানের সাথে A এবং D এর প্রশমন তাপের মানের পার্থক্যের কারণ ব্যাখ্যা কর।
- ঘ) A এবং B দ্রবণ আলাদাভাবে সামান্য পরিমাণ C দ্রবণে যোগ করলে C দ্রবণের  $P^H$  এর পরিবর্তন সম্পর্কে যুক্তিসহ মন্তব্য কর ।

# সুভাষ চন্দ্র পাল, মহীবুর রহমান, বিমলেন্দু ভৌমিক ও আনোয়ার হোসেন স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

## ২৪। নিচের চিত্রসমূহ পর্যবেক্ষণ কর-



- ক) P<sup>H</sup> কী ?
- খ) H<sub>2</sub>O উভধর্মী যৌগ আলোচনা কর।
- গ) উদ্দীপকের HA এর বিয়োজন ধ্রুবক  $1.0 \times 10^{-5}$  হলে (1+2) মিশ্রণের  $P^H$  নির্ণয় কর।
- ঘ) উদ্দীপকের (1+2) মিশ্রণে (3) ও (4) আলাদাভাবে মিশ্রিত করলে  $P^H$  এর কোন পরিবর্তন ঘটবে কি-না বিশ্লেষণ কর।

# মাহবুব হাসান লিংকন, ড. মোঃ আব্দুল করিম ও মোঃ নুরুল ইসলাম স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

### ২৫। নিচের উদ্দীপকটি লক্ষ্য কর-

| রাসায়নিক বিক্রিয়া/সংকেত                 | যৌগ    | প্ৰমাণ গঠন তাপ (kJ mol) |
|-------------------------------------------|--------|-------------------------|
| $C(s) + O_2(g) \rightarrow$               | A      | -393.30                 |
| $H_2(g) + \frac{1}{2} O_2(g) \rightarrow$ | В      | -220.20                 |
| $C_n H_{2n+2}{n=2\atop 2n+2}$             | C<br>D | -84.52<br>-74.89        |

- ক) সবুজ রসায়ন কী?
- খ) তাপমাত্রা বাড়ালে বিক্রিয়ার বেগ বাড়ে কেন?
- গ) A ও B এর সমন্বয়ে গঠিত যৌগ রক্তের  $P^H$  নিয়ন্ত্রক- ব্যাখ্যা কর।
- ঘ) উদ্দীপকের C এবং D এর মধ্যে কোনটি উৎকৃষ্ট জ্বালানি- গাণিতিকভাবে ব্যাখ্যা কর।

২৬।



- ক) দ্ৰবণ তাপ কাকে বলে?
- খ) তীব্র এসিড ও তীব্র ক্ষারের প্রশমন তাপের মান ধ্রুবক- ব্যাখ্যা কর।
- গ) উদ্দীপকে প্রুদত্ত ডাটা থেকে  $\mathbf{CO}_2$  উৎপাদনে  $\Delta \mathbf{H}$  -এর মান হিসাব কর।
- ঘ) হেসের সূত্র শক্তির অবিনাশিতাবাদ সূত্রের ভিন্নরূপ- উদ্দীপকের আলোকে মূল্যায়ন কর।

२१ ।



- ক) বিক্রিয়ার হার কী?
- খ)  $H_2(g)+I_2(g)=2HI(g)$  বিক্রিয়ার চাপের প্রভাব আছে কী? ব্যাখ্যা কর।
- গ) উদ্দীপকে শুধু অমু থাকলে তার pH কত হবে? হিসেব কর।
- ঘ) উদ্দীপকের মিশ্রণে সামান্য এসিড/ক্ষার যোগে  $P^H$  মানে কোন পরিবর্তন হবে কিনা  $P^H$  নির্ণয়পূর্বক বিশ্লেষণ কর।

# ২৮। $A_2(g)+3B_2(g)=2AB_3(g)+$ তাপ সাম্যাবছায় মিশ্রণের মোট চাপ =20~atm

- ক) P<sup>H</sup> কী ?
- খ)  $NaOH + HCl \rightarrow NaCl + H_2O$  বিক্রিয়ায়  $\Delta H$  এর মান ধ্রুবক কেন?
- গ) উদ্দীপকের বিক্রিয়ায়  $A_2$  এর 30%  $AB_3$  তে রুপান্তরিত হলে বিক্রিয়াটির Kp এর মান নির্ণয় কর।
- ঘ) উদ্দীপকের বিক্রিয়ায়  $\mathbf{A}\mathbf{B}_3$  এর সর্বোচ্চ উৎপাদনের কৌশল বিশ্লেষণ কর।

# ২৯। নিচের বিক্রিয়াটি পর্যবেক্ষণ কর- $X_2(g) + Y_2(g) o 2XY(g)$ - তাপ

- ক) পানির আয়নিক গুণফল কী?
- খ)  $\mathbf{P}^{\mathbf{H}} + \mathbf{P}^{\mathbf{OH}} = 14$  প্রমাণ কর।
- গ) ভরক্রিয়া সূত্রানুসারে উদ্দীপকের বিক্রিয়াটির  $K_{
  m p}$  এবং  $K_{
  m c}$  এর সম্পর্ক প্রতিষ্ঠা কর।
- ঘ) উদ্দীপকের বিক্রিয়ায় তাপমাত্রার প্রভাব থাকলেও চাপের কোন প্রভাব নেই উক্তিটির যথার্থতা প্রমাণ কর।

## ৩০। নিচের উদ্দীপকটি পর্যবেক্ষণ কর-



- ক) মানুষের রক্তের স্বাভাবিক pH কত?
- খ) দ্ৰবণ তাপ বলতে কী বোঝ?
- গ) উদ্দীপকে লেখচিত্র অনুসারে  $NH_3$  এর সর্বোচ্চ উৎপাদন শর্ত ব্যাখ্যা কর।
- ঘ) উদ্দীপকের A ও B এর সমন্বয়ে তৈরি দ্রবণের  $\mathbf{P}^{\mathbf{H}}$  নিয়ন্ত্রণ যুক্তিসহ বিশ্লেষণ কর।

#### ৩১। 18.5 % N2O4 এর বিয়োজনে NO2 উৎপন্ন হয়। যখন তাপমাত্রা 298K এবং চাপ 1atm.

- ক) ক্ষারীয় বাফার কী?
- খ) বন্ধন শক্তি ও বিক্রিয়া তাপ কী?
- গ) উদ্দীপকে বিক্রিয়া অনুসারে  $K_p$  এর রাশিমালা নির্ণয় কর।
- ঘ) তাপমাত্রা একই রেখে  $0.5~{
  m atm}$  চাপে উদ্দীপকের বিক্রিয়ার বিয়োজন মাত্রা নির্ণয় করা কি সম্ভব? যুক্তিসহ বিশ্লেষণ কর।

# জয়নুল আবেদীন সিদ্দিকী, তোফায়েল আহাম্মদ, রেয়াজুল হক ও আফজল হোসেন স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

- ৩২। দুর্বল এসিড জলীয় দ্রবণে আংশিক বিয়োজিত অবস্থায় থাকে। যেমন- HA একটি দুর্বল এসিড হলে পানিতে এর বিয়োজন নিম্নোক্তভাবে প্রকাশ করা যায়-  $HA + H_2O = H_3O^+ + A^-$ 
  - ক) P<sup>H</sup> কাকে বলে?
  - খ) পানির আয়নিক গুণফল বলতে কী বুঝ?
  - গ) উদ্দীপকের এসিডিটির ঘনমাত্রা 0.1M হলে এর pH নির্ণয় কর।  $[K_a=1.8\times 10^{-5}]$
  - ঘ) উদ্দীপকের এসিডটি ব্যবহার করে একটি বাফার দ্রবণ তৈরি করে তার ক্রিয়া-কৌশল বর্ণনা কর।

## স্থপন কুমার মিদ্রী স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

৩৩। সালফিউরিক এসিডের শিল্পোৎপাদন মূলত নিম্নোক্ত বিক্রিয়ার উপর নির্ভর করে-

$$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}; \Delta H = 197 \text{ kJmol}^{-1} (2-2x)(1-x) 2x$$

- ক) গ্রীন কেমিষ্ট্রি বলতে কি বুঝ?
- খ)  $SO_2$  এবং  $O_2$  এর বিক্রিয়ায়  $SO_3$  উৎপাদন সাম্যাবস্থার দিকে গতিশীল ব্যাখ্যা কর।
- গ) ভরক্রিয়া সূত্রানুসারে উদ্দীপক বিক্রিয়ার  $K_c$  ও  $K_p$  বের কর।
- ঘ) যদি বিক্রিয়া মিশ্রণের মোট চাপ P atm হয় তবে P এবং x এর মধ্যে সম্পর্ক ছ্রাপন করে  $SO_3$  এর উৎপাদনে চাপের প্রভাব ব্যাখ্যা কর।

# অলিউল্লাহ্ মোঃ আজমতগীর ও ড. মোঃ ইকবাল হোসেন স্যারের বইয়ের অনুশীলনীর সূজনশীল প্রশ্ন

- ৩৪। একদল ছাত্র কোকের  ${f P}^H$  নির্ণয় করছিল। তারা দেখল কোকের বোতল খোলা রাখলে গ্যাস বের হয়ে যায় কিন্তু তাতে  ${f P}^H$  মানের পরিবর্তণ হয় না। তারা সবাই জানে নিঃশ্বাসের সাথে  ${f CO}_2$  গ্যাস বের হয়। তাই তারা বোতলের মুখে মুখ লাগিয়ে তাতে জোরে ফুঁ দিল। এরপর মেপে  ${f P}^H$  এর কোনো পরিবর্তণ দেখতে পেল না।
  - ক) রাসায়নিক সাম্যাবস্থা কাকে বলে?
  - খ) কষিক্ষেত্রে  $P^H$  এর ভূমিকা ব্যাখ্যা কর।
  - গ) সকল অবস্থায় কোকের  $P^H$  অপরিবর্তিত থাকার কারণ ব্যাখ্যা কর।
  - ঘ) ঘটনাটির সাথে মানুষের রক্তের  $P^{H}$  এর তুলনা কর।