KING COUNTY HOUSING PRICE PREDICTION MODEL

Data Driven solutions for the King County real estate market

OVERVIEW

This project was completed using data for the dataset provided by King County, Washington.

The goal for is to come up with a suitable model for a real estate company in Washington that will be used to predict house prices which will enable them maximize on the profits

Business Understanding

A company's real estate agent is curious about the elements that have a major influence on King County home values. This will help in formulating the optimal criterion to follow in order to optimize profit.

PROBLEM STATEMENT

 Given the complexity of factors that can affect the sale price of a house it is challenging to get a precise assessment

 Data driven analysis can provide key insight to agencies and clientele to help them make informed decisions

Objectives

- Develop a predictive model for accurate house price estimations
- Identify and quantify the key determinants that affect house pricing
- III. Investigate the impact of waterfront view on price
- v. Evaluate the impact of House condition on price
- v. Evaluate the impact of house grade on price

METHODOLOGY AND TECHNIQUES

The research used an iterative method to visualize attributes in connection to price, create a multiple linear regression model using Python and Stats Models to predict house sale prices, and discover characteristics that influence King County house prices.

DATA UNDERSTANDING

- There are 21597 records with 20 features in the King County data.
- Some null values in the waterfront, view, and year of renovation are present in the data.
- The highest-priced home sold for about \$800,000, while the average is almost \$540,000.
- The average house grade is 7, which indicates that the majority o sold homes have grades above average.
- In King County, the highest number of floors in a residence is 3.5.

DATA ANALYSIS

Correlation Heatmap																
price	1.0	0.3	0.4	0.7	0.1	0.3	0.2	0.0	0.7	0.1	-0.0	0.3	0.0	-0.0		1.0
bedrooms	0.3	1.0	0.5	0.6	0.0	0.2	-0.0	0.0	0.4	0.2	-0.2	-0.0	0.1	-0.0		- 0.8
bathrooms	0.4	0.5	1.0	0.6	0.1	0.5	0.0	-0.1	0.6	0.5	-0.2	-0.0	0.2	-0.0		
sqft_living	0.7	0.6	0.6	1.0	0.2	0.4	0.0	-0.1	0.8	0.3	-0.2	0.0	0.3	-0.0		- 0.6
sqft_lot	0.1	0.0	0.1	0.2	1.0	-0.0	0.0	-0.0	0.1	0.1	-0.1	-0.1	0.2	0.0		
floors	0.3	0.2	0.5	0.4	-0.0	1.0	0.0	-0.3	0.5	0.5	-0.1	0.0	0.1	-0.0		- 0.4
waterfront	0.2	-0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0		
condition	0.0	0.0	-0.1	-0.1	-0.0	-0.3	0.0	1.0	-0.2	-0.4	0.0	-0.0	-0.1	0.0		- 0.2
grade	0.7	0.4	0.6	0.8	0.1	0.5	0.0	-0.2	1.0	0.5	-0.2	0.1	0.2	-0.0		
yr_built	0.1	0.2	0.5	0.3	0.1	0.5	-0.0	-0.4	0.5	1.0	-0.3	-0.2	0.4	-0.0		- 0.0
zipcode	-0.0	-0.2	-0.2	-0.2	-0.1	-0.1	0.0	0.0	-0.2	-0.3	1.0	0.3	-0.6	0.0		0.2
lat	0.3	-0.0	-0.0	0.0	-0.1	0.0	-0.0	-0.0	0.1	-0.2	0.3	1.0	-0.1	0.0		
long	0.0	0.1	0.2	0.3	0.2	0.1	-0.0	-0.1	0.2	0.4	-0.6	-0.1	1.0	0.0		0.4
waterfront_miss	-0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0	0.0	-0.0	-0.0	0.0	0.0	0.0	1.0	1	
	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	condition	grade	yr_built	zpcode	at	Buq	waterfront_miss	•	

Baseline Modelling

FINAL MODEL QQ-PLOT

CONCLUSION

- The key factors are:
 - Waterfront location
 - Living area square footage
 - Overall grade of the property

A house with the typical features for the area retails at \$528969

The data shows most houses of average condition which shows an investment potential for our stakeholders

RECOMMENDATIONS

- Different pricing strategies to emphasize Waterfront properties
- Investment in property upgrades
- Highlight spacious living areas
- Emphasis on Property Grade

NEXT STEPS

- Comparison with other regression models
- Utilize supplementary data categories from the Kings County to improve the model's precision
- Use of current and long term data to understand trends in the market.

Thank You