Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation

David Abraham Simon Dufort-Labbé

Introduction

- Implementation based on paper: "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation" (Tompson et al., 2014).
- Goal : body part locations from a single 2D image
- Model is in two parts :
 - CNN body part detector
 - Graphical spatial model
- Both models are jointly trained at the same time

Dataset

- Frames Labeled in Cinema (FLIC)
- 5003 images (20% for testing)
- 720 x 480 pixels RGB images
- 90 x 60 pixels heatmap for each joints
- Only a single person labeled per image
- Joints labeled : shoulders, elbows, wrists, hips, nose and torso

Model - CNN part detector

- Fully convolutional network
- Multiple inputs : same image at different resolutions
- Output: heatmap for each of the predicted joints

Model - Graphical spatial model

MRF like model, representing a fully connected graph (including self-connection)

$$P_{\bar{A}} = \frac{1}{Z_2} \prod_{v \in \mathcal{V}} p_{A|v} * p_v + b_{v \to A}$$

Proposed estimation

$$\bar{e}_A = \exp\left(\sum_{v \in \mathcal{V}} \left[\log\left(\operatorname{SoftPlus}(e_{A|v}) * \operatorname{ReLU}(e_v)\right)\right]\right)$$

$$+ \operatorname{SoftPlus}(b_{v \to A}))]$$

where: SoftPlus
$$(x) = \frac{1}{\beta} \log(q + \exp(\beta x))$$

Quick Note: convolution over likelihood

$$P_{\bar{A}} = \frac{1}{Z_2} \prod_{v \in \mathcal{V}} p_{A|v} * p_v + b_{v \to A}$$

The resulting product of the likelihood and the prior is learned as the result of a convolution from an inference map and the output from the CNN part detector.

Parameters of this map are learned: they allow the model to learn a probability distribution of a joint given another joint

Changes and improvements

Global change: Train end-to-end from the beginning, cross-entropy instead of MSE

CNN — Part detector:

- Used batch normalization to stabilize training
- Incorporated 3 resolutions scaling instead of two, using a Features pyramidal network inspired approach
- Upscaling and downscaling was done by learned convolution layers.

Spatial model:

$$\bar{p}_A \approx \operatorname{Softmax} \left(\sum_{v \in \mathcal{V}} \left[\log \left(\operatorname{Conv2d} \left[\operatorname{SoftPlus}(p_{A|v}) * \operatorname{SoftPlus}(p_v) \right] + \operatorname{SoftPlus}(b_{v \to A}) \right) \right] \right)$$

No "pre-initialization"

Biggest difference : Use of normalization

- Advantages:
 - More precise predictions
 - Ability to fill a "hole"
- Drawback:
 - Learned the dataset bias : Making predictions for only one group of joints (one person)

Joints location predictions

CNN only

Full model

Targets

Visualizing the likelihoods from the spatial model

Training process

Conclusion

- The introduction of a spatial model that, reinforcing the model ability to make structured prediction, can definitely improve the predictions quality of joints
- The proposed spatial model is pretty good at learning the structure between predictions, but will of course incorporate any bias present in the training dataset
- The addition of such a model do not require much more elbow grease, as it is trainable from scratch in an end-to-end fashion

Consideration:

Due to time and computational constraints, we couldn't check if the addition of a spatial model to a CNN with more capacity (example : ResNet) brought as much amelioration.

Resnet-like models are able to leverage bigger context information, thus already incorporating a form of structured prediction.