Remeshing

Geometric Processing CS 7960 Samuel Gerber

Overview

- Introduction
- Explicit Surface Remeshing
- Isotropic Surface Remeshing

Why Remeshing?

- Unsatisfying "raw" input meshes
 - Input from Modelling, Scanning
- Improve mesh for further work
 - Transmission
 - Compression / Storing
 - Modelling
 - Rendering
 - Calculations (eg. FE-Analysis)

Requirements

- Graphics Requirements
 - Visual Quality versus Size
 - Speed of remeshing (LOD ?)
- Engineering Requirements
 - Regular Connectivity
 - Regular Geometry

Quality Measures

- Triangle Angles / Sizes
 - Smooth gradation of sizes
 - Uniform sizes
- Regularity
 - Vertex valence / Connectivity
 - Vertex sampling
- Mesh Size / Complexity
- Deviation from original surface
- Based on application results
 - Compression
 - Reendering Speed

Classification by Goal

- Structured Remeshing
- Compatible Remeshing
- High Quality Remeshing
- Feature Remeshing
- Error Driven Remeshing

From: Recent Advances in Remeshing of Surfaces P. Allies, G.Ucelli, C. Gotsman, M. Attene

Structured Remeshing

Jan. 24 2006

CS 7960 - Remeshing

Compatible Remeshing

High Quality Remeshing

Feature Remeshing

Error Driven Remeshing

Classification by Technique

- Global parametrization of Mesh
 - Difficult to find Parametrization, Slow
 - Cutting of Surface maybe needed
 - Distortion
- Local modifications directly on Mesh (Mesh Adaption Process)
 - Expensive operations in 3D or less accurate in tangent plane

Overview

- Introduction
- Explicit Surface Remeshing
- Isotropic Surface Remeshing

Main Ideas

- Local optimizations through local parametrization
- Curvature sensitive remeshing
- Series of steps
 - Adjust number of vertices
 - Area-based remeshing
 - Regulariztion
 - Angle-based smoothing

Two meshes

- Original mesh MO
 - Surafce approximated by Bezier-patches (PN-Triangles)
 - Coordinates on surface described for each face using barycentric coordinates of the face as follows

$$b^{1} = \frac{\mathcal{A}(q, q_{2}, q_{3})}{\mathcal{A}(q_{1}, q_{2}, q_{3})}, b^{2} = \frac{\mathcal{A}(q, q_{3}, q_{1})}{\mathcal{A}(q_{1}, q_{2}, q_{3})}, b^{3} = \frac{\mathcal{A}(q, q_{1}, q_{2})}{\mathcal{A}(q_{1}, q_{2}, q_{3})}$$

- Normals on surface quadratic interpolated
- Mesh for remeshing M
 - Initialized to MO

Error Control

Smoothness

$$E_{smth}(f) = \max_{i \in \{1,2,3\}} \langle N_f, N_{v_i} \rangle < \cos \theta_{smth}.$$

Distance between f and surface

$$E_{dist}(f) = \max_{i \in \{1,2,3\}} \langle N_{v_i}, N_{v_{i+1}} \rangle < \cos \theta_{dist}.$$

Step 1: Adjusting # of Vertices

Edge collapse

Edge split

Jan. 24 2006

CS 7960 - Remeshing

Step 2: Area based remeshing

Iterations of edge flips and area based vertex-relocations

Area based vertex relocation

 Definition of density function on original mesh based on curvature.

$$(x,y) = \arg\min_{(x,y)} \sum_{i=1}^{k} \left(\mathcal{A}_i(x,y) - \mu_i \mathcal{A} \right)^2$$

Vertex relocation

- Transform mesh locally into 2D
 - Local parametrization into geodesic polar map
 - Overlapping patches
- Relocation in parameter space
- Transform back into 3D
 - Keeping track of the position of each vertex on the original Surface using patchwise parametrization of original mesh.

Patchwise Parametrization

Step 3: Connectivity regularization

- Classifaction of edges
 - Long
 - Short
 - Drifting

Operations on edges

- Long edges
 - Refinement
- Short edges
 - Collapse edge
- Drifting edges
 - Moving through edge flips

Procedure

- Priority queue (Easy edges before drifting)
- Remove easy edges
- Move drifting each to create an easy edge with other irregular vertices
- Stop when no drifting edges are left.
- Local angle based smoothing after each modification

Regularization results

Step 4: Angle Based Smoothing

- Weighted angle based smoothing in parameter space
 - High Quality Compatible Triangulations
 Vitaly Surazhsky Craig Gotsman
 http://www.imr.sandia.gov/papers/imr11/surazhsky.pdf

$$c_{new} = \frac{1}{\sum_{i=1}^{k} 1/\alpha_i^2} \cdot \sum_{i=1}^{k} \frac{1}{\alpha_i^2} \cdot c_i$$

Jan. 24 2006

CS 7960 - Remeshi

Results

Model	Vertices	Irreg (%)	Min∠ (deg)	Ave∠ (deg)	Error (10 ⁻³)	Time (sec)	TG (kB)	Conn (bpv)	Geom (bpv)
Venus (original)	8,268	74.9	0.25°	34.7°	—	—	23.9	2.83	20.9
Venus (uniform)	9,240	4.4	25.8°	53.3°	3.5	15.4	15.3	0.47	13.1
Venus (non-uniform)	8,705	6.7	25.9°	52.4°	2.7	16.5	17.4	0.72	14.8
Cow (original) Cow (a) Cow (b) Cow (c)	2,904 4,551 4,984 5,249	38.1 9.5 10.2 10.3	2.8° 8.1° 12.5° 11.1°	30.1° 48.8° 49.6° 49.2°	5.8 5.0 4.8	8.2 8.9 9.3	7.89 8.95 9.67 11.3	1.89 0.93 0.95 0.94	20.4 15.2 14.9 14.0
Feline (original)	49,864	63.8	3.8°	40.0°	—	—	100	2.38	14.2
Feline	10,825	13.8	7.4°	48.3°	6.4	74	21.3	1.09	15.1
Horse (original)	19,851	64.5	1.7°	35.9°	—	_	46.0	2.34	16.6
Horse	5,695	10.3	9.1°	50.1°	6.1	28.4	11.0	0.97	14.8
Triceratops (original) Triceratops	2,832	59.3	0.02°	29.6°	—	—	7.68	2.17	20.0
	2,758	13.3	5.6°	42.2°	8.4	12.3	5.93	1.2	16.4
Fan disk (original)	5,051	20.6	16.8°	43.0°	—	—	9.12	1.03	13.7
Fan disk	5,135	8.43	16.8°	49.1°	0.4	17.3	9.03	0.58	13.8
Helmet (original)	496	63.9	2.33°	34.5°	—	—	2.12	2.94	32.1
Helmet	2,728	6.08	14.8°	47.8°	8.9	17.7	5.46	0.67	15.7

Results

Jan. 24 2006

CS 7960 - Remeshing

Overview

- Introduction
- Explicit Surface Remeshing
- Isotropic Surface Remeshing

Main Ideas

- Sampling of vertices using Error Diffusion directly on Mesh
- Global Parametrization
- Meshing in parameter space

Algorithm Overview

- 1. Callibration of Sampling
- 2. Sampling using Error Diffusion
- 3. Global Parametrization
- 4. Meshing
- 5. Lifting and Stitching

Input

- Mesh
- Feature Edges
 - Extracted from Mesh
 - Sharp Edges, Boundary Edges, Cut Edges
- Density Function for Mesh and Features
 - User given or from Geometric Properties of Mesh

Step 1: Calibration

- Calculation of number of samples per density unit
- Summing of density functions over surface / features

Step 2: Vertex Sampling

 Error Diffusion over Triangles and Features

Diffusion over Triangles

- Find a processing path
 - Organize a fluency on mesh triangles

Diffusion over Triangles

- For each Face f on the path
 - Read density amount for f
 - Deduce number of samples rounded to nearest Integer
 - Distribute error over neighboring unprocessed faces

Diffusion over Features

- Go along feature edges
 - Read density amount for current edge
 - Deduce number of samples by calculating density amount over sampling rate rounded to nearest integer
 - Transport error onto next edge if last edge of current feature transport error to next feature

Step 3: Parametrization

- Conformal mapping into 2D
 - Angle preserving
 - Locally isotropic
- Cuts needed for closed surfaces or genus > 0
 - Before sampling -> cuts are feature edges

Jan 24 2006

CS 7960 - Remeshing

Step 4: Meshing

Delaunay Triangulation in parameter

space

Weighted Centeroidal Voronoi Tesselation

Weighted Voronoi Tesselation

- Centeroids evaluated using the density function
- Transformation of density function in parameter space using a stretching factor
- Lloyd relaxation
 - Voronoi tesselation
 - Compute ceneteroids

Jan. 24 2006

CS 7960 - Remeshing

Step 5: Lifting & Stitching

- Lifting
 - Transformation of vertices in parameter space into locations on Mesh
- Stitching
 - Vertices on cut edges are merged.

Results

Results

Jan. 24 2006

CS 7960 - Remeshing