Закономерности изменения химических свойств элементов. Характеристика элементов

Атомный радиус

Атомный радиус увеличивается с увеличением количества энергетических уровней, сверху вниз по группе. У элементов, стоящих в одном периоде и обладающих равным количеством энергетических уровней, атомный радиус, на первый взгляд, меняться не должен. Однако вследствие взаимодействие ядра и электронов усиливается при движении по периоду слева направо, что приводит к незначительному сжатию атома — уменьшению его Атомный радиус увеличивается радиуса.

Атомный радиус увеличивается

ПЕРИОДЫ	РЯДЫ	ГРУППЫ ЭЛЕМЕНТОВ										
ПЕРИОДЫ	глды	1	II	III	IV	V	VI	VII		VIII		
1	1	Hydrogenium Bодород	ПЕРИ		СТЕМА ХИМИЧЕ	СКИХ ЭЛЕМЕНТ	ОВ Д.И.МЕНДЕЛ	EEBA	Не 4.0026 Нейит	Символ элемента Относительная атомная масса Порядковый номер		
2	2	Li 6.941 Lithium Литий	Be 9.0122 Вегуlішт Бериллий	B 10.811 Borum	C 12.011 Carboneum Углерод	N 14.007 Nitrogenium	O Охідепіим Кислород	Fluorum Фтор	Ne 20.179	Sn 118.71		
3	3	Na 22.99 Natrium	Mg 24.305 Мадпевішт Магний	AI 26.9815 Aluminium Алюминий	Si 28.086 Silicium Кремний	Phosphorus Poccop	S 32.066 Sulfur Cepa	CI 35.453 Chlorium	Ar 39.948 Argon Apron	Олово Название элемента		
_	4	K 39.098 Калий	Ca 40.08 Calcium Кальций	21 44.956 Scandium Скандий	22 47.90 Ті Тіtanium Титан	50.941 V Vanadium Ванадий	51.996 Cr Chromium Xpom	25 54.938 Mn Мапдапит Марганец	55.847 Ferrum Железо	27 58.933 CO 58.70 Ni Cobaltum Кобальт Никель		
4	5	29 63.546 Cu Сиргит Медь	30 65.39 Zn Zincum Цинк	Ga 69.72 Gallium Галлий	Ge 72.59 Germanium Германий	As 74.992 Агзепісит Мышьяк	Se 78.96 Selenium Селен	Br 79.904 Bromum Spom	Кr 83.80 Кrypton Криптон			
5	6	Rb 85.468 Rubidium Рубидий	Sr 87.62 Strontium Стронций	88.906 Y Yttrium Иттрий	91.22 Zr Zirconium Цирконий	92.906 Nb Niobium Ниобий	95.94 Mo Molybdaenum Молибден	97.91 TC Technetium Технеций	101.07 Ruthhenium Рутений	102.96 Rh 106.4 Pd 106.4 Palladium Родий Палладий		
5	7	107.868 Agentum Cepe6po	112.41 Cd Cadmium Кадмий	Indium	Sn 118.71 Stannum Олово	Sb 121.75 Stibium Сурьма	Te 127.60 Теllurium Теллур	126.9045 lodum Иод	Xе 131.29 Хепоп Ксенон	s-элементы р-элементы		
6	8	Сs 132.905 Сезішт Цезий	Ва 137.33 Вагіцт Барий	138.9055 La* Lanthanum Лантан	72 178.49 Hafnium Гафний	73 180.9479 Та Тантал	183.85 Wolframium	75 186.207 Re Rhenium Рений	76 190.2 Os Озтішт Осьмий	Iridum Platinum		
6	9	79 196.967 Aurum Золото		TI 204.38 Thallium Таллий	Pb 207.19 Plumbum Свинец	Bi 208.980 Візмитним	Ро 209.98 Робопішт Полоний	At 209.99 Astatium Actat	Rn [222] Radon Pagon	d-элементы f-элементы		
7	10	Fr [223] Francium Франций	Ra [226] Radium Радий	89 [227] Ас** Асtinium Актиний		105 [262] Db Dubnium Дубний	106 [263] Seaborgium Сиборгий	107 [262] Bh Вонгішт Борий	108 [265] HS Назвішт Хассий	Meitnerium		
высшие о	ксиды	R ₂ O	RO	R ₂ O ₃	RO ₂	R ₂ O ₅	RO ₃	R ₂ O ₇		RO ₄		
ЛЕТУЧИЕ ВОДО СОЕДИНЕ					RH4	RH₃	RH ₂	RH				
ЛАНТАНО	иды•	Церий Пр	Pr 08 144.24 Neodymium назеодим Неод	um Promethium		Eu 157.25 Gd ropium Gadolinium гопий Гадолиний		Dy 67 164.930 Holm орукрговіцт Гольм	um Erbium ий Эрбий	89 Tm 70 Yb 173.04 Yterbium 71 Lutefium Тулий Иттербий Лютеций		
АКТИНОИ	1ДЫ**		Pa 238.03 Urani Paктиний Ур	ium Neptunium	94 14.06 Pu Plutonium Amer Плутоний Амер	Am 247.07 Cm Curium Кюрий		Cf 8 Cf 252.08 Einstein ифорний Эйнштейн	ium Fermium	101 Md 58.10 Md Mendelevium Менделевий Нобелий Лоуренсий		

Электроотрицательность

Электроотрицательность это способность атома элемента притягивать к себе электроны химической связи.

Элементы-металлы легче отдают электроны, чем притягивают их. Элементы-неметаллы, наоборот, легче притягивают электроны и имеют высокие значения ЭО.

Электроотрицательность увеличивается

Электроотрицательность увеличивается

ПЕРИОДЫ	РЯДЫ	ГРУППЫ ЭЛЕМЕНТОВ								
ПЕРИОДЫ	РЛДЫ	1	П	III	IV	v	VI	VII		VIII
1	1	Hydrogenium Bодород	ПЕРИ	ОДИЧЕСКАЯ С	ИСТЕМА ХИМИЧЕ	СКИХ ЭЛЕМЕНТ	ОВ Д.И.МЕНДЕЛ	EEBA	Не 4.0026	Символ элемента Относительная атомная масса Порядковый номер
2	2	Li 6.941 Lithium Литий	Be 9.0122 Beryllium Бериллий	B 10.811 Borum Bop	Саrboneum Углерод	N 14.007 Nitrogenium	О Охідепіит Кислород	Fluorum Фтор	Ne 20.179 Neon Heon	Sn 50 118.71 Stannum
3	3	Na 22.99 Natrium Натрий	Mg 24.305 Мадпевішт Магний	Al 26.9815 Aluminium Алюминий	Si 28.086 Silicium Кремний	Phosphorus Poccop	S 32.066 Sulfur Cepa	Cl 35.453 Chlorium	Ar 39.948 Argon Apron	Олово Название элемента
4	4	K 39.098 Калий	Са 40.08 Сакішт Кальций	21 44.956 Scandium Скандий	Titanium Титан	23 50.941 V Vanadium Ванадий	51.996 Cr Chromium Xpom		55.847 Fe 55.847 Ferrum Железо	27 58.933 CO 58.70 Niccolur Кобальт Никели
4	5	63.546 Cu Cuprun Mega		Ga 69.72 Gallium Галлий	Ge 72.59 Germanium Германий	As 74.992 Агзепісит Мышьяк	Se 78.96 Selenium Селен	Br 79.904 Bromum Spom	Кг 83.80 Кгуртон	
5	6	Rb 85.468 Rubidium Рубидий	Sr 87.62 Strontium Стронций	39 88.906 Yttrium Иттрий	91.22 Zirconium	92.906 Nb Niobium Ниобий	95.94 MO Molybdaenum Молибден	97.91 TC Technetium Технеций	101.07 Ru Ruthhenium Рутений	45 102.96 Rh 106.4 Pd Rhodium Родий Палладиі
	7	107.868 Agentun Cepe6po	Cadmium	In 114.82 Indium Индий	Sn 118.71 Stannum Олово	Sb 121.75 Stibium Сурьма	Te 127.60 Tellurium Tennyp	126.9045 lodum Иод	Xе 131.29 Хепоп Ксенон	s-элементы р-элементы
6	8	Сs 132.905 Сезіим Цезий	Ва 137.33 Вагіим Барий	138.9055 La* Lanthanum Лантан	Hafnium	73 180.9479 Та Тантал	74 183.85 Wolframium Вольфрам		76 190.2 Os Озтішт Осьмий	77 192.22 Ir 195.08 Pt 195.08 Ptatinum Иридий Платин
0	9	196.967 Aurun 30.0000	Hydrargyrum	TI 204.38 Thallium Таллий	Pb 207.19 Ріштьшт Свинец	Bi 208.980 Візтитнит Висмут	Ро 209.98 Polonium Полоний	At 209.99 Astatium Actar	Rn [222]	d-элементы f-элементы
7	10	Fr [223] Francium Франций	Ra [226] Radium Радий	89 [227] Ас** Асtinium Актиний	[261] Rutherfordium	105 [262] Db Dubnium Дубний	106 [263] Seaborgium Сиборгий	107 [262] Bh Bohrium	108 [265] Hs Назвішт Хассий	109 [266] Mt [269] Мейтнерий
ВЫСШИЕ ОКСИДЫ		R ₂ O	RO	R ₂ O ₃	RO ₂	R ₂ O ₅	RO ₃	R ₂ O ₇		RO ₄
ПЕТУЧИЕ ВОДО СОЕДИНЕ					RH4	RH₃	RH ₂	RH		
ЛАНТАНО	иды•	Церий П	seodymium Neodym вазеодим Неод	ium Promethium		Eu 157.25 Gd 157.25 Gd Gadolinium Гадолиний		Dy 0 164.930 Новті 167 Новті 164.930 Новті	um Erbium ий Эрбий	69 Tm 70 Yb 71 Lu 8.934 Thulium Ytterbium Lutetium Тулий Иттербий Лютециі
АКТИНОИ	1ДЫ**		rotactinium Uran		94 Pu 95 243.06 Plutonium Amer	Am 247.07 Cm Curium		Cf 252.08 I Einsteini	um Fermium 25	101 Md 102 No 103 L 8.10 Mendelevium Nobelium Lawrenciur Иенделевий Нобелий Лоуренси

Металлы

Металлы являются восстановителями — они отдают электроны и приобретают положительную степень окисления.

Атомы металлов на внешнем уровне содержат не более четырех электронов. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа.

Металлические (восстановительные) свойства убывают

Металлические (восстановительные) свойства убывают

Неметаллы

Неметаллы являются окислителями — они присоединяют $\frac{Q}{R}$ электроны, отнимая их от атомов других элементов, и приобретают отрицательный заряд.

Неметаллы имеют на внешнем энергетическом уровне от четырех до семи электронов, при этом элементы восьмой группы образуют семейство инертных газов. Такие элементы имеют восемь электронов на внешнем энергетическом уровне, то есть такой уровень является завершенным, а сами элементы не вступают в химические реакции с другими элементами, то есть являются химически инертными.

Неметаллические (окислительные) свойства

Неметаллические (окислительные) свойства возрастают

В периоде с увеличение заряда ядра (слева направо) основные свойства гидроксидов уменьшаются, а кислотные возрастают

+1	+2	+3	+4	+5	+6	+7	
Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO ₃	Cl ₂ O ₇	
NaOH	Mg(OH) ₂	Al(OH) ₃	H ₂ SiO ₃	H ₃ PO ₄	H ₂ SO ₄	НСЮ ₄	_
Щ.,СИЛ.О	СЛ. Н. О	ΑΜΦ, Γ,	Сл. н. к.	K. CP. C.	СИЛ. К.	СИЛ. К.	

Энергия ионизации

Энергия ионизации это наименьшая энергия, которая должна быть затрачена на отрыв электрона от нейтрального атома.

Валентность

Валентность характеризует способность атомов данного химического элемента к образованию химических связей.

Валентность определяет число химических связей, которыми атом связан с другими атомами в молекуле.

Номер группы, в которой расположен атом в периодической таблице равен его высшей валентности. Низшая валентность определяется разницей между 8 и номером группы. Натрий и алюминий имеют только одно значение валентности, равное номеру группы.

Степень окисления

Степень окисления - это условный заряд атома в соединении в предположении, что все связи в этом соединении ионные (т.е. все связывающие электронные пары полностью смещены к атому более электроотрицательного элемента).

Степень окисления - это число, которое показывает, сколько электронов отдал (заряд «+») или принял (заряд «-») атом при образовании химической связи с другим атомом.

Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе — заряду иона.

- 1) Степени окисления металлов в соединениях всегда положительные.
- 2) Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Оs и рутения Ru.
- 3) Степени окисления неметаллов зависят от того, с каким атомом он соединён:
- -если с атомом металла, то степень окисления отрицательная;
- -если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
- 4) Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
- 5) Степени окисления простых веществ равны 0.

ПО ПЕРИОДУ УВЕЛИЧИВАЕТСЯ:

восстановительные свойства основный характер соединений металличность заряд ядра
число валентных электронов
электроотрицатальность
окислительные свойства
кислотный характер соединений
неметалличность

ПО ГРУППЕ УВЕЛИЧИВАЕТСЯ:

Периодическая система и строение атома

- Номер периода = количеству энергетических уровней в атоме элемента.
- Номер группы = максимальной степени окисления (числу валентных ē).
- В периоде_____
 - а) увеличиваются заряды атомных ядер;
 - б) увеличивается число \bar{e} на внешнем уровне;
 - в) число энергетических уровней постоянно,

радиусы атомов уменьшаются (притяжение внешних \bar{e} к ядру усиливается).

- 5. В главной подгруппе
 - а) увеличиваются заряды атомных ядер:
 - б) число \overline{e} на внешнем уровне постоянно;
 - в) увеличивается число энергетических уровней,

радиусы атомов увеличиваются (притяжение внешних \bar{e} к ядру ослабевает).

Закономерности в периодической системе

В периоде из-за уменьшения R_{ar} :

- 1. Металлические свойства образуемых элементами простых веществ ослабевают, а неметаллические усиливаются.
- Характер оксидов и гидроксидов элементов меняется основный → амфотерный → кислотный.
- 3. В больших периодах свойства меняются медленнее, т. к. идет заполнение \overline{e} одного из предвнешних уровней, что мало влияет на $R_{\rm ar}$.

В главных подгруппах из-за увеличения R_{ar} :

- Металлические свойства образуемых элементами простых веществ усиливаются, а неметаллических – ослабевают.
- Основный характер оксидов и гидроксидов усиливается, кислотный – ослабевает.

По диагонали уменьшение R_{ат.} в периоде примерно компенсируется увеличением R_{ат.} в подгруппе:

элементы, расположенные на одной диагонали, образуют сходные по свойствам соединения: Li \rightarrow Mg; Be \rightarrow Al

Звездность периодической системы

Свойства центрального элемента являются средними из свойств элементов, окружающих его.