Bank Marketing Effectiveness Prediction

```
## Importing necessary libraries
# For scientific computation and processing array elements.
import numpy as np
from scipy.stats import norm
# Importing pandas
import pandas as pd
# For plotting statstical visualization
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
# For pretty-printing tabular data
from tabulate import tabulate
# For plotting feature importance
from sklearn.feature_selection import mutual_info_classif
# For handling class imbalance
{\tt from\ imblearn.over\_sampling\ import\ SMOTE}
# For Split dataset into train and test
from sklearn.model_selection import train_test_split
# For Cross-Validation and Hyperparameter Tuning
from sklearn.model_selection import GridSearchCV
# For Scaliing dataset
from sklearn.preprocessing import MinMaxScaler
# Importing algorithams for building model
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from \ sklearn. ensemble \ import \ Random Forest Classifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# Evaluation metrics
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve, auc
# For plotting Decision Tree
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn import tree
from IPython.display import SVG
from graphviz import Source
from IPython.display import display
# For building Artificial Neural Networks
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.layers import Dropout
from keras import regularizers
# # For model explainability
# import shap
#To ignore warnings
import warnings
warnings.filterwarnings('ignore')
# Loabding Dataset
df=pd.read_csv("/content/bank-full.csv", sep =";")
df.head()
```

	age	job	marital	education	default	balance	housing	loan	contact	da
0	58	management	married	tertiary	no	2143	yes	no	unknown	
1	44	technician	single	secondary	no	29	yes	no	unknown	;
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	1
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	!
4	33	unknown	single	unknown	no	1	no	no	unknown	1

Next steps: Generate code with df View recommended plots

First Five Observations
df.head()

	age	job	marital	education	default	balance	housing	loan	contact	da
0	58	management	married	tertiary	no	2143	yes	no	unknown	:
1	44	technician	single	secondary	no	29	yes	no	unknown	!
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	!
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	!
4	33	unknown	single	unknown	no	1	no	no	unknown	;

Next steps: Generate code with df View recommended plots

Last five observations
df.tail()

	age	job	marital	education	default	balance	housing	loan	contact
45206	51	technician	married	tertiary	no	825	no	no	cellula
45207	71	retired	divorced	primary	no	1729	no	no	cellula
45208	72	retired	married	secondary	no	5715	no	no	cellula
45209	57	blue-collar	married	secondary	no	668	no	no	telephone
45210	37	entrepreneur	married	secondary	no	2971	no	nο	cellula

Bsic description of Dataset
df.describe(include='all')

	age	job	marital	education	default	balance	housing	loa
count	45211.000000	45211	45211	45211	45211	45211.000000	45211	4521
unique	NaN	12	3	4	2	NaN	2	
top	NaN	blue- collar	married	secondary	no	NaN	yes	n
freq	NaN	9732	27214	23202	44396	NaN	25130	3796
mean	40.936210	NaN	NaN	NaN	NaN	1362.272058	NaN	Na
std	10.618762	NaN	NaN	NaN	NaN	3044.765829	NaN	Na
min	18.000000	NaN	NaN	NaN	NaN	-8019.000000	NaN	Na
25%	33.000000	NaN	NaN	NaN	NaN	72.000000	NaN	Na
50%	39.000000	NaN	NaN	NaN	NaN	448.000000	NaN	Na
75%	48.000000	NaN	NaN	NaN	NaN	1428.000000	NaN	Na
max	95.000000	NaN	NaN	NaN	NaN	102127.000000	NaN	Na

Checking duplicated values in dataset
count_duplicated = df.duplicated().sum()
print(f'Dataset having {count_duplicated} duplicated values')

Dataset having 0 duplicated values

Checking for number of null values in dataset
count_null_df=pd.DataFrame({'columns':df.columns,'number_of_nulls_values':df.isna().sum()})
count_null_df.set_index('columns').sort_values(by='number_of_nulls_values', ascending = False)

	number_of_nulls_values
columns	
age	0
day	0
poutcome	0
previous	0
pdays	0
campaign	0
duration	0
month	0
contact	0
job	0
loan	0
housing	0
balance	0
default	0
education	0
marital	0
у	0

Basic description of Dataset
df.describe(include='all')

	age	job	marital	education	default	balance	housing	loa
count	45211.000000	45211	45211	45211	45211	45211.000000	45211	4521
unique	NaN	12	3	4	2	NaN	2	
top	NaN	blue- collar	married	secondary	no	NaN	yes	r
freq	NaN	9732	27214	23202	44396	NaN	25130	3796
mean	40.936210	NaN	NaN	NaN	NaN	1362.272058	NaN	Na
std	10.618762	NaN	NaN	NaN	NaN	3044.765829	NaN	Na
min	18.000000	NaN	NaN	NaN	NaN	-8019.000000	NaN	Na
25%	33.000000	NaN	NaN	NaN	NaN	72.000000	NaN	Na
50%	39.000000	NaN	NaN	NaN	NaN	448.000000	NaN	Na
75%	48.000000	NaN	NaN	NaN	NaN	1428.000000	NaN	Na
max	95.000000	NaN	NaN	NaN	NaN	102127.000000	NaN	Na

```
# Finding categorical variables
categorical_variables = [var for var in df.columns if df[var].dtype=='0']
print('There are {} categorical variables'.format(len(categorical_variables)))
print('--'*45)
print(categorical_variables)

There are 10 categorical variables

['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y']

# Finding numerical variables
numerical_variables=[var for var in df.columns if var not in categorical_variables]
print('There are {} numerical variables'.format(len(numerical_variables)))
print('--'*45)
print(numerical_variables)

There are 7 numerical variables

['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous']
```

```
# Check Unique Values and its frequency for each variable
for var in df.columns:
    print(df[var].value_counts())
   print('--'*45)
    Name: count, Length: 559, dtype: int64
     0
            36954
    1
             2772
     2
             2106
     3
             1142
     4
              714
     5
              459
     6
              277
     7
              205
     8
              129
     9
               92
     10
     11
               65
     12
     13
               38
     15
               20
     14
               19
     17
               15
     16
               13
     19
               11
     20
                8
     23
                8
     18
     22
     27
     21
     29
                4
     25
                4
     30
                3
     38
                2
     37
                2
     26
                2
     28
     51
     275
     58
                1
     32
                1
     40
                1
     55
                1
     35
                1
     41
     Name: count, dtype: int64
     poutcome
     unknown
     failure
                 4901
                 1840
     other
                 1511
     success
     Name: count, dtype: int64
     no
            39922
     yes
            5289
     Name: count, dtype: int64
```

This is formatted as code

√ *[1] <u>Handling Duplicate Values</u>*

```
# Checking duplicated values in dataset
count_duplicated = df.duplicated().sum()
print(f'Dataset having {count_duplicated} duplicated values')

Dataset having 0 duplicated values
```

[2] Handling Null / Missing Values

```
# Replacing the unknown values with null across all the dataset
df = df.replace('unknown', np.nan)
```

Checking for number of null values count_null_df=pd.DataFrame({'columns':df.columns,'number_of_nulls_values':df.isna().sum(),'percentage_null_values':round(df.isna().sum(count_null_df.set_index('columns').sort_values(by='percentage_null_values', ascending = False)

	number_of_nulls_values	percentage_null_values
columns		
poutcome	36959	81.75
contact	13020	28.80
education	1857	4.11
job	288	0.64
month	0	0.00
previous	0	0.00
pdays	0	0.00
campaign	0	0.00
duration	0	0.00
age	0	0.00
day	0	0.00
Ioan	0	0.00
housing	0	0.00
balance	0	0.00
default	0	0.00
marital	0	0.00
у	0	0.00

Dropping variables having more than 50% null values
df.drop(columns='poutcome', inplace=True)

Replacing null values with the most frequent value in a variable
df['contact']=df['contact'].fillna(df['contact'].mode()[0])
df['education']=df['education'].fillna(df['education'].mode()[0])
df['job']=df['job'].fillna(df['job'].mode()[0])

Verify for null values are removed
df.isna().sum()

age job marital 0 education 0 default 0 balance 0 housing 0 loan 0 contact day 0 month duration 0 campaign 0 pdays previous 0 dtype: int64

```
# Using Inter Quartile Range for removing outliers from numerical variables
# Defining outlier features but remove flat IQR feature pdays and previous
outlier_var=['age', 'balance', 'duration', 'campaign']

# Capping dataset
for i in outlier_var:
    # Findling IQR
    Q1=df[i].quantile(0.25)
    Q3=df[i].quantile(0.75)
    IQR=Q3-Q1

# Defining upper and lower limit
    lower_limit =df[i].quantile(0.25)-1.5*IQR
    upper_limit =df[i].quantile(0.75)+1.5*IQR

# Applying lower and upper limit to each variables
    df.loc[(df[i] > upper_limit),i] = upper_limit
    df.loc[(df[i] < lower_limit),i] = lower_limit</pre>
```

Data Pre-processing

√ [1] Categorical Encoding

Name: count, dtype: int64

```
# Checking basic info of dataset
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 45211 entries, 0 to 45210
     Data columns (total 16 columns):
     # Column
                   Non-Null Count Dtype
     ---
         -----
     0
         age
                    45211 non-null float64
         job 45211 non-null object marital 45211 non-null object
     1
         job
     2
         education 45211 non-null object
         default 45211 non-null object
                    45211 non-null int64
         balance
         housing 45211 non-null object loan 45211 non-null object
     6
         contact 45211 non-null object
     8
         day
                    45211 non-null int64
     10 month
                    45211 non-null object
     11 duration 45211 non-null int64
     12 campaign 45211 non-null int64
     13 pdays
                     45211 non-null int64
                   45211 non-null int64
     14 previous
     15 y
                     45211 non-null object
     dtypes: float64(1), int64(6), object(9)
     memory usage: 5.5+ MB
# Addressing categorical variables from the dataset
categorical_variables=df.describe(include=['object']).columns
print(f'Categorical variables are : {list(categorical_variables)}')
     Categorical variables are : ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'y']
# Checking categories in each categorical features
for var in categorical_variables:
   print(df[var].value_counts())
   print('__'*45)
     entrepreneur
                       1487
     unemployed
                       1303
     housemaid
                       1240
     student
    Name: count, dtype: int64
     marital
                 27214
     married
                12790
     single
     divorced
                 5207
```

```
4/29/24, 12:37 AM
```

```
по
            44390
             815
    ves
     Name: count, dtype: int64
     housing
     yes
            25130
            20081
     Name: count, dtype: int64
            37967
     no
            7244
     ves
     Name: count, dtype: int64
     contact
     cellular
                  42305
     telephone
                  2906
     Name: count, dtype: int64
     month
            13766
     may
     jul
             6895
             6247
     aug
             5341
     iun
             3970
     nov
     apr
             2932
     feb
             2649
     jan
             1403
     oct
              738
              579
              477
     mar
     dec
              214
     Name: count, dtype: int64
     no
            39922
     yes
             5289
     Name: count, dtype: int64
## label encoding
# Mapping the categorical variables whoes having limited categories
df['marital'] = df['marital'].map({'single':0,'married':1,'divorced':2})
df['education'] = df['education'].map({'secondary':0,'tertiary':1, 'primary':2})
df['default'] = df['default'].map({'yes':1, 'no':0})
df['housing'] = df['housing'].map({'yes':1,'no':0})
df['loan'] = df['loan'].map({'yes':1,'no':0})
df['contact'] = df['contact'].map({'cellular':1, 'telephone':0})
df['y'] = df['y'].map({'yes':1,'no':0})
## One hot encoding for variable job and month
df=pd.get_dummies(df, columns=['job', "month"], prefix=["job", "month"], drop_first=True)
# Checking basic information of dataset after feature encoding
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 45211 entries, 0 to 45210
     Data columns (total 35 columns):
     # Column
                            Non-Null Count Dtype
     0
                             45211 non-null
                                             float64
         age
     1
         marital
                             45211 non-null int64
          education
                             45211 non-null
                                             int64
     3
          default
                             45211 non-null
     4
                             45211 non-null
                             45211 non-null int64
          housing
      6
         loan
                             45211 non-null
                             45211 non-null
         contact
                                             int64
      8
                             45211 non-null
         day
                                             int64
         duration
     9
                             45211 non-null
                                             int64
     10 campaign
                             45211 non-null
                                             int64
     11
         pdays
                             45211 non-null int64
      12
         previous
                             45211 non-null
                                             int64
     13
                             45211 non-null
                                             int64
      14
         job_blue-collar
                             45211 non-null
                                             bool
     15
                             45211 non-null
          job_entrepreneur
     16
          job_housemaid
                             45211 non-null
                                             bool
      17
          job_management
                             45211 non-null
                             45211 non-null
     18
          job retired
                                             bool
      19
          iob self-employed 45211 non-null
                                             bool
      20
                             45211 non-null
          job_services
                                             bool
      21
          job_student
                             45211 non-null
                                             boo1
      22
          job_technician
                             45211 non-null
                                             bool
      23
          job_unemployed
                             45211 non-null
                                             bool
      24
          month_aug
                             45211 non-null
```

```
25 month dec
                     45211 non-null bool
26 month feb
                     45211 non-null
27 month_jan
                     45211 non-null bool
28 month_jul
                      45211 non-null bool
29 month_jun
                      45211 non-null bool
30 month_mar
                      45211 non-null bool
31 month_may
                      45211 non-null bool
32 month_nov
                      45211 non-null bool
                      45211 non-null bool
33 month oct
34 month_sep
                      45211 non-null bool
dtypes: bool(21), float64(1), int64(13)
memory usage: 5.7 MB
```

Final Dataset
pd.set_option('display.max_columns', None)
df.head()

	age	marital	education	default	balance	housing	loan	contact	day	duration
0	58.0	1	1	0	2143	1	0	1	5	261
1	44.0	0	0	0	29	1	0	1	5	151
2	33.0	1	0	0	2	1	1	1	5	76
3	47.0	1	0	0	1506	1	0	1	5	92
4	33.0	0	0	0	1	0	0	1	5	198

✓ [2] Separating Dependant and Independant variables

```
## Separating independant variables and dependant variable

# Creating the dataset with all dependent variables
dependent_variable = 'y'

# Creating the dataset with all independent variables
independent_variables = list(set(df.columns.tolist()) - {dependent_variable})

# Create the data of independent variables
X = df[independent_variables].copy()
# Create the data of dependent variable
y = df[dependent_variable].copy()
```

[3] Feature Manipulation & Selection

√ [4] Handling Imbalanced Dataset

```
# Import model imblearn in envirnoment
!pip install imblearn
     Collecting imblearn
      Downloading imblearn-0.0-py2.py3-none-any.whl (1.9 kB)
     Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.10/dist-packages (from imblearn) (0.10.1)
     Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.25.2)
     Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.11.4)
     Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.
     Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (1.4.0)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn->imblearn) (3
     Installing collected packages: imblearn
     Successfully installed imblearn-0.0
# Using Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance
from imblearn.over sampling import SMOTE
smote = SMOTE(random_state=0)
# fit predictor and target variable
x_smote, y_smote = smote.fit_resample(X,y)
```

∨ [5] Data Splitting

```
# Splitting dataset into training set and test set
from sklearn.model_selection import train_test_split, GridSearchCV
X_train, X_test, y_train, y_test= train_test_split(x_smote, y_smote, test_size=0.2, random_state=42)

# Checking shape of split
print(f'Shape of X_train : {X_train.shape}')
print(f'Shape of X_test : {X_test.shape}')
print(f'Shape of y_train : {y_train.shape}')
print(f'Shape of y_test : {y_test.shape}')

Shape of X_train : (63875, 34)
Shape of X_test : (15969, 34)
Shape of y_train : (63875,)
Shape of y_test : (15969,)
```

· We divided the dataset into 20% for model testing and 80% for training.

```
# Checking values of splitted dataset
X_train[0:3]
```

	duration	marital	month_sep	job_services	month_jul	age	job_technici
76180	310	1	False	False	False	70.028256	Fal
36038	67	1	False	False	False	50.000000	Fal
41791	78	1	False	False	False	62.000000	Fal

```
# Checking values of splitted dataset
X_test[0:3]
```

	duration	marital	month_sep	job_services	month_jul	age	<pre>job_technici</pre>
72809	315	1	False	False	False	39.273337	Tr
71061	643	0	False	False	True	46.690791	Tr
57176	643	1	False	False	False	54.030217	Tr

[6] Data Scaling

```
# Transforming data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

• MinMaxScaler preserves the shape of the original distribution. It doesn't meaningfully change the information embedded in the original data. So we used MinMaxScaler for scaling the dataset.

```
# Checking values of splitted dataset after normalisation X_{\text{train}}[0:5]
```

```
array([[0.48211509, 0.5
                      , 0. , 0.
, 1. , 0.
, 0. , 0.5
, 0.09977064, 0.
                         , 0.
                                    , 0.
                                                , 0.3
       0.9910144 , 0.
           , 0.
                                                , 0.
       0.
                                     , 0.5
                         , 0.09977064, 0.
               , 0.
                       , 0. , 0.
, 1. . A
                                               , 0.
              , 1.
                                                , 0.
                                                , 0.
                      0.05263158, 0.
      [0.10419907, 0.5
       0.60952381, 0.
                                                , 0.33333333,
                                               , 1.
               , 0.
       0.
                                 , 0.
, 0.
, 0.
               , 0.
       1.
       0.
               , 0.
               , 0.
                         , 0.
       0.
                                                , 0.
       0.
                , 0.
                         , 0.
                                    , 0.36246313],
                          , 0.
                                    , 0. , 0.
      [0.12130638, 0.5
                          , 0.
                                     , 0.
                                                , 0.4
       0.83809524, 0.
              , 0.
                          , 0.
                                     , 0.5
                                                , 0.
                , 0.4
                                     , 0.
                                                , 0.
                          , 0.
```

```
, 0.
                        , 0.
                                      , 1.
           , 0.
                                     , 0.
                                                    , 0.
                        , 1.
 0.
                                 , 0. , 0.
, 0.36172566],
, 0. , 1.
, 0. , 0.
, 0.5 , 0.
, 0. , 0.
, 0. , 1.
, 0.36227876],
, 0. , 1.
           , 0.
0.
                        , 0.
           , 0.
                        , 0.
 0.2040902 , 0.
                                                   , 0.46666667,
                        , 0.
                        , 0.
                                                  , 0.
 0. , 0.
                     , 0.
           , 0.8
 1.
                        , 0.
           , 0.
 0.
                                                   , 0.
                    , 0.
, 1.
, 0.
, 0.
, 1.
           , 0.
 0.
            , 0.
 0.
[0.35769829, 0.
 0.19047619, 0.
                                   , 0.
, 0.5
                                                   , 0.9
                                                   , 1.
          , 0.
 0.
 1.
           , 0.2
                        , 0.
                                     , 0.
                                                   , 0.
                                     , 0.
, 0.
           , 0.
                        , 0.
 0.
                                                   , 0.
           , 0.
 0.
                        , 1.
                                                    , 0.
           , 0.
                         , 0.
```

Checking values of splitted dataset after normalisation $X_{test}[0:5]$

array([[0.48989114,		,	0.	,	0.	,	0.	,
0.40520641,	1.	,	0.	,	0.	,	0.53333333	,
1. ,	0.	,	0.	,	0.	,	0.	,
1. ,	0.2	,	0.	,	0.	,	0.	,
0. ,	0.	,	0.	,	0.	,	0.	,
0. ,	0.	,	0.	,	1.	,	0.	,
0. ,	0.	,	0.	,	1.].	,	
[1. ,	0.	,	0.	,	0.	,	1.	,
0.54649125,	1.	,	0.	,	1.	,	0.7	,
0. ,	0.	,	0.	,	0.	,	1.	,
1. ,	0.2	,	0.	,	0.	,	0.	,
0. ,		-	0.	,		,		,
0. ,	0.	,	0.	,	0.	,	0.	,
0. ,		,		-	0.56452802	-		
[1. ,	0.5	,		,	0.		0.	,
0.68628984,		,	1.	,	0.	,	0.1	,
0. ,	1.	,	0.	,	0.	,	0.	,
0. ,	0.2	,	0.	,	0.	,	0.	,
0. ,	1.	,	0.	,	0.	,	0.	,
0. ,	0.	,	0.	,	0.	,	0.	,
0. ,	0.	,	0.	,	0.36172566	5].	,	
[0.08864697,		,		,	0.	,		,
0.32380952,		,		,	0.	,	0.13333333	,
0. ,		-	0.	,	0.5	,	0.	,
1. ,		-	0.34977064	1,		,	0.	,
0. ,	0.	-	0.	,		,	0.	,
1. ,	0.	,	1.	,	0.	,	0.	,
0.01754386,		,		,	0.49022861	-	•	
[0.46500778,		,	0.	,	0.	,	0.	,
,		,		,		,	0.2	,
0. ,	0.	,	0.	,		,	0.	,
0. ,	0.2	,		,		,	0.	,
0. ,	0.	,	1.	,	1.	,	1.	,
0. ,		,		,	0.	,	0.	,
0. ,	0.	,	0.	,	0.43473451	L]])	

ML Model Implementation

```
# Defining function which fit classification algoritham, evaluate and visualise model using train test split
# Import evaluation metrics
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve, auc
# Defining function
def classification_model(X_train, X_test, y_train, y_test, clf):
    function fit the algorithm on the training set, evaluate the model, and visualise evaluation metrics
   ## Fit the model using training dataset
   model=clf.fit(X_train, y_train)
   print(model)
   print('=='*45)
   ## Make predictions
   y_train_pred = model.predict(X_train)
   y test pred = model.predict(X test)
   ## Evaluate the model
   print('Training set evaluation result :\n')
   cm_train = confusion_matrix(y_train, y_train_pred)
   accuracy_train = accuracy_score(y_train, y_train_pred)
   precision_train = precision_score(y_train, y_train_pred)
   recall_train = recall_score(y_train, y_train_pred)
   f1_train = f1_score(y_train, y_train_pred)
   roc_auc_score_train=roc_auc_score(y_train, y_train_pred)
   print("Confusion Matrix: \n", cm_train)
   print("Accuracy: ", accuracy_train)
print("Precision: ", precision_train)
   print("Recall: ", recall_train)
   print("F1 Score: ", f1_train)
   print("roc_auc_score: ", roc_auc_score_train)
   print('\n----\n')
   print('Test set evaluation result :\n')
   cm_test = confusion_matrix(y_test, y_test_pred)
   accuracy_test = accuracy_score(y_test, y_test_pred)
   precision_test = precision_score(y_test, y_test_pred)
   recall_test = recall_score(y_test, y_test_pred)
   f1_test = f1_score(y_test, y_test_pred)
   roc_auc_score_test=roc_auc_score(y_test, y_test_pred)
   print("Confusion Matrix: \n", cm_test)
   print("Accuracy: ", accuracy_test)
   print("Precision: ", precision_test)
   print("Recall: ", recall_test)
   print("F1 Score: ", f1_test)
   print("roc_auc_score: ", roc_auc_score_test)
   print('=='*45)
   ## Visualizes evaluation metrics
   fig,axes = plt.subplots(nrows=2, ncols=2)
   ax1 = sns.heatmap(cm train, annot=True, ax=axes[0,0], fmt='d')
   ax1.set_title('Confusion Matrix for training set')
   ax1.set_ylabel('True label')
   ax1.set_xlabel('Predicted label')
   ax2 = sns.heatmap(cm_test, annot=True, ax=axes[0,1], fmt='d')
   ax2.set_title('Confusion Matrix for test set')
   ax2.set_ylabel('True label')
   ax2.set_xlabel('Predicted label')
   ax3 = sns.barplot(x=['Accuracy', 'Precision', 'Recall', 'F1','roc_auc_score'], y=[accuracy_train, precision_train, recall_train, f1
   ax3.set_title('Evaluation Metrics for training set')
   ax3.tick_params(axis='x', rotation=90)
   ax4 = sns.barplot(x=['Accuracy', 'Precision', 'Recall', 'F1','roc_auc_score'], y=[accuracy_test, precision_test, recall_test, f1_te
   ax4.set_title('Evaluation Metrics for test set')
   ax4.tick_params(axis='x', rotation=90)
   plt.tight_layout()
   plt.show()
   print('=='*45)
   return {'model': model, 'y_train_pred': y_train_pred, 'y_test_pred, 'cm_test': cm_test, 'accuracy_test': accuracy_test
            'precision_test': precision_test, 'recall_test': recall_test, 'f1_test': f1_test, 'roc_auc_score_test': roc_auc_score_test}
```

Defining function which fit classification algoritham using GridSearchCV, evaluate and visualise model # Import necessary dependancy from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve, auc from sklearn.model_selection import GridSearchCV # Defining function def classification_CV_model(X_train, X_test, y_train, y_test, clf, param_grid): function fit the algorithm using GridSearchCV on the training set, evaluate the model, and visualise evaluation metrics ## Fit the model on training dataset classifier = clf model = GridSearchCV(classifier, param_grid, verbose=1, scoring='accuracy', cv=3, n_jobs=-1) model.fit(X_train, y_train) print(model) print('=='*45) # Print the best parameters and score print("Best parameters:", model.best_params_) print("Best score:", model.best_score_) print('=='*45) ## Make predictions y_train_pred = model.predict(X_train) y test pred = model.predict(X test) ## Evaluate the model print('Training set evaluation result :\n') cm_train = confusion_matrix(y_train, y_train_pred) accuracy_train = accuracy_score(y_train, y_train_pred) precision_train = precision_score(y_train, y_train_pred) recall_train = recall_score(y_train, y_train_pred) f1_train = f1_score(y_train, y_train_pred) roc_auc_score_train=roc_auc_score(y_train, y_train_pred) print("Confusion Matrix: \n", cm_train) print("Accuracy: ", accuracy_train)
print("Precision: ", precision_train) print("Recall: ", recall_train)
print("F1 Score: ", f1_train) print("roc_auc_score: ", roc_auc_score_train) print('\n----\n') print('Test set evaluation result :\n') cm_test = confusion_matrix(y_test, y_test_pred) accuracy_test = accuracy_score(y_test, y_test_pred) precision_test = precision_score(y_test, y_test_pred) recall_test = recall_score(y_test, y_test_pred) f1_test = f1_score(y_test, y_test_pred) roc_auc_score_test=roc_auc_score(y_test, y_test_pred) print("Confusion Matrix: \n", cm_test) print("Accuracy: ", accuracy_test) print("Precision: ", precision_test) print("Recall: ", recall_test) print("F1 Score: ", f1_test) print("roc_auc_score: ", roc_auc_score_test) print('=='*45) ## Visualizes evaluation metrics fig,axes = plt.subplots(nrows=2, ncols=2) ax1 = sns.heatmap(cm train, annot=True, ax=axes[0,0], fmt='d') ax1.set_title('Confusion Matrix for training set') ax1.set_ylabel('True label') ax1.set xlabel('Predicted label') ax2 = sns.heatmap(cm_test, annot=True, ax=axes[0,1], fmt='d') ax2.set title('Confusion Matrix for test set') ax2.set_ylabel('True label') ax2.set_xlabel('Predicted label') ax3 = sns.barplot(x=['Accuracy', 'Precision', 'Recall', 'F1','roc_auc_score'], y=[accuracy_train, precision_train, recall_train, f1 ax3.set_title('Evaluation Metrics for training set') ax3.tick_params(axis='x', rotation=90) ax4 = sns.barplot(x=['Accuracy', 'Precision', 'Recall', 'F1','roc_auc_score'], y=[accuracy_test, precision_test, recall_test, f1_te ax4.set_title('Evaluation Metrics for test set') ax4.tick_params(axis='x', rotation=90) plt.tight_layout() plt.show() print('=='*45) return {'model': model, 'y_train_pred': y_train_pred, 'y_test_pred': y_test_pred, 'cm_test': cm_test, 'accuracy_test': accuracy_test 'precision_test': precision_test, 'recall_test': recall_test, 'f1_test': f1_test, 'roc_auc_score_test': roc_auc_score_test}

```
# Defining function to plot ROC curve
def plot_roc_curve(y_test, y_pred):
    plots the roc curve
   \ensuremath{\text{\#}} Generate a list of false and true positive rates
    fpr, tpr, thresholds = roc_curve(y_test, y_pred)
   # Calculate the area under the curve (AUC)
   roc_auc = auc(fpr, tpr)
   # Plotting the ROC curve
   plt.figure(figsize=(5,5))
   plt.plot(fpr, tpr, label='ROC curve (AUC = %0.4f)' % roc_auc)
   plt.plot([0, 1], [0, 1], 'r--')
    # Labeling the graph
   plt.xlabel('False Positive Rate (Precision)')
   plt.ylabel('True Positive Rate (Recall)')
   plt.title('Receiver Operating Characteristic Curve')
   plt.legend(loc="lower right")
    # Show the plot
   plt.show()
```

√ [1] Logistic Regression

```
# Import Logistic Regression algorithm in envirnoment
from sklearn.linear_model import LogisticRegression
# Fitting Logistic Regression model to training set
Logistic_regression=LogisticRegression(fit_intercept=True, max_iter=10000,random_state=0)
lr=classification_model(X_train, X_test, y_train, y_test, Logistic_regression)
```

Accuracy: 0.905894324853229
Precision: 0.9176630259161119
Recall: 0.8913091240074071
F1 Score: 0.9042941073447226
roc_auc_score: 0.9058594723554246

Test set evaluation result :

Confusion Matrix: [[7252 656] [873 7188]]

Accuracy: 0.9042519882271902
Precision: 0.9163691993880673
Recall: 0.8917007815407517
F1 Score: 0.9038667085822069
roc_auc_score: 0.9043734054390659

Plot roc curve for Logistic Regression classifier
y_pred=lr['y_test_pred']
plot_roc_curve(y_test, y_pred)

√ [2] Decision Tree

```
# Import Decision Tree algoritham in envirnoment
from sklearn.tree import DecisionTreeClassifier
# Fitting Decision Tree model to training set
classifier_dt = DecisionTreeClassifier(criterion='entropy', max_leaf_nodes=10, random_state=0)
dt=classification_model(X_train, X_test, y_train, y_test, classifier_dt)
     DecisionTreeClassifier(criterion='entropy', max_leaf_nodes=10, random_state=0)
     Training set evaluation result :
     Confusion Matrix:
     [[25494 6520]
      [ 3804 2805711
    Accuracy: 0.8383718199608611
Precision: 0.811435347196113
     Recall: 0.8806063839804149
     F1 Score: 0.8446070020169181
     roc_auc_score: 0.838472742811723
     Test set evaluation result :
     Confusion Matrix:
      [[6299 1609]
     [1012 7049]]
     Accuracy: 0.8358694971507296
     Precision: 0.8141603141603142
     Recall: 0.8744572633668279
     F1 Score: 0.8432322507326994
     roc_auc_score: 0.8354962088204904
     Confusion Matrix for training set
                                                  Confusion Matrix for test set
                                                                                 6000
               25494
                                                                     1609
                            6520
                                                         6299
                                               abe
      True label
                                        20000
                                                                                 4000
                3804
                           28057
                                        10000
                                                         1012
                                                                     7049
                                                                                 2000
                 0
                                                           0
                                                                       1
                             1
                 Predicted label
                                                           Predicted label
        Evaluation Metrics for training set
                                                    Evaluation Metrics for test set
      0.75
                                                0.75
      0.50
                                                0.50
                                                0.25
      0.25
      0.00
                                                0.00
                          Recall
                                Ē
                                                                    Recall
                                                                          E
                                                                                roc auc score
                    Precision
                                      roc auc score
                                                             Precision
```

Plot ROC curve for Decision Tree classifier
y_pred=dt['y_test_pred']
plot_roc_curve(y_test, y_pred)

Visulaizing Decision Tree

[3] K-Nearest Neighbor(KNN)

Import KNN algoritham in envirnoment
from sklearn.neighbors import KNeighborsClassifier
Fitting model to training set
classifier_knn = KNeighborsClassifier(n_neighbors=5)
knn=classification_model(X_train, X_test, y_train, y_test, classifier_knn)

KNeighborsClassifier() Training set evaluation result : Confusion Matrix: [[30546 1468] [2309 29552]] Accuracy: 0.9408688845401174 Precision: 0.952675693101225 Recall: 0.9275289538934748 F1 Score: 0.9399341613523958 roc_auc_score: 0.9408370077145266 Test set evaluation result : Confusion Matrix: [[7379 529] [829 7232]] Accuracy: 0.9149602354561964 Precision: 0.9318386805823992 Recall: 0.8971591613943679 F1 Score: 0.9141701428390847 roc_auc_score: 0.9151324385626367 Confusion Matrix for training set Confusion Matrix for test set 30000 6000 30546 1468 7379 529 True label True label 4000 10000 0 0 1 1 Predicted label Predicted label **Evaluation Metrics for training set Evaluation Metrics for test set** 0.75 0.50 0.5 0.25 0.0 0.00

Plot ROC curve for KNN classifier
y_pred=knn['y_test_pred']
plot_roc_curve(y_test, y_pred)

Recall

E

roc auc score

Precision

Recall

FJ

Precision

roc auc score

∨ Cross- Validation & Hyperparameter Tuning

```
## Import KNN algoritham in envirnoment
from sklearn.neighbors import KNeighborsClassifier
## Fitting KNN model to training set using cross validation
# Defining param_dict
param_grid = {"n_neighbors": np.arange(1,7), "metric": ["euclidean", "cityblock"]}
# Creating instance of KNN classifier
classifier_knn = KNeighborsClassifier()
# Fitting model
knn_cv=classification_CV_model(X_train, X_test, y_train, y_test, classifier_knn, param_grid)
    Fitting 3 folds for each of 12 candidates, totalling 36 fits
    GridSearchCV(cv=3, estimator=KNeighborsClassifier(), n_jobs=-1,
                scoring='accuracy', verbose=1)
    Best parameters: {'metric': 'cityblock', 'n_neighbors': 1}
    Best score: 0.9141448022830883
    Training set evaluation result :
    Confusion Matrix:
     [[32014
     [ 0 31861]]
    Accuracy: 1.0 Precision: 1.0
    Recall: 1.0
```