OBJECTIVES

- 1. Distinguish between discrete and continuous random variables
- 2. Determine a probability distribution for a discrete random variable
- 3. Describe the connection between probability distributions and populations
- 4. Construct a probability histogram for a discrete random variable
- 5. Compute the mean of a discrete random variable
- 6. Compute the variance and standard deviation of a discrete random variable

OBJECTIVE 1 DISTINGUISH BETWEEN DISCRETE AND CONTINUOUS RANDOM VARIABLES

If we roll a fair die, the possible outcomes are the numbers 1, 2, 3, 4, 5, and 6, and each of these numbers has probability 1/6. Rolling a die is a probability experiment whose outcomes are numbers. The outcome of such an experiment is called a **random variable**.

RANDOM VARIABLE:
DISCRETE AND CONTINUOUS RANDOM VARIABLES
Discrete random variables are random variables whose possible values can be listed. Examples include:
Continuous random variables are random variables that can take an any value in an interval. Everanles
Continuous random variables are random variables that can take on any value in an interval. Examples include:
include.
OBJECTIVE 2
DETERMINE A PROBABILITY DISTRIBUTION FOR A DISCRETE RANDOM VARIABLE
A for a discrete random variable specifies the probability for each
possible value of the random variable.

PROPERTIES:							
EXAMPLE:	Decide if the	following is a	probability dis	tribution:			
	x	1	2	3		4	
	P(x)	0.25	0.65	-0.3	0 0.	.11	
SOLUTION:							
SOLUTION.							
EXAMPLE:	Deci <u>de</u> if the	e following is a	probability dis	tribution:			
	x	-1	-0.5	0	0.5	1	
	P(x)	0.17	0.25	0.31	0.22	0.05	
SOLUTION:							
EXAMPLE:	Decide if the	e following is a	probability dis	tribution:			
	x	1	10	100) 10	000	
	P(x)	1.02	0.31	0.90	0.	.43	
_							
SOLUTION:							
EXAMPLE:	•		appointments t		•		
	be the numb	per of them th	at have high blo	ood pressure	. The probab	ility distributi	on of X is
	x	0	1	2	3	4	
	P(x)	0.23	0.41	0.27	0.08	0.01	
	(a) Find <i>P</i> (2	I	l .	L	L		
	(b) Find $P(N)$						

(c) Find P(At least 1)

SOLUTION:

	Овјестиче 3
	DESCRIBE THE CONNECTION BETWEEN PROBABILITY DISTRIBUTIONS AND POPULATIONS
PROBABILITY	DISTRIBUTIONS AND POPULATIONS
because who	are interested in studying samples drawn from populations. Random variables are important en an item is drawn from a population, the value observed is the value of a random variable. The distribution of the random variable tells how frequently we can expect each of the possible values om variable to turn up in the sample.
EXAMPLE:	An airport parking facility contains 1000 parking spaces. Of these, 142 are covered long-term spaces that cost \$2.00 per hour, 378 are covered short-term spaces that cost \$4.50 per hour, 423 are uncovered long-term spaces that cost \$1.50 per hour, and 57 are uncovered short-term spaces that cost \$4.00 per hour. A parking space is selected at random. Let X represent the hourly parking fee for the randomly sampled space. Find the probability distribution of X .
SOLUTION:	

OBJECTIVE 4 CONSTRUCT A PROBABILITY HISTOGRAM FOR A DISCRETE RANDOM VARIABLE

PROBABILITY HISTOGRAMS

In an earlier chapter we learned to summarize the data in a sample with a histogram. We can represent discrete probability distributions with histograms as well. A histogram that represents a discrete probability distribution is called a probability histogram.

EXAMPLE:

The following presents the probability distribution and histogram for the number of boys in a family of five children, using the assumption that boys and girls are equally likely and that births are independent events.

x	P(x)
0	0.03125
1	0.15625
2	0.31250
3	0.31250
4	0.15625
5	0.03125

OBJECTIVE 5 COMPUTE THE MEAN OF A DISCRETE RANDOM VARIABLE

MEAN OF A RANDOM VARIABLE

Recall that the mean is a measure of center. The mean of a random variable provides a measure of center for the probability distribution of a random variable.

MEAN OF A RANDOM VARIABLE:

EXAMPLE:

A computer monitor is composed of a very large number of points of light called pixels. It is not uncommon for a few of these pixels to be defective. Let X represent the number of defective pixels on a randomly chosen monitor. The probability distribution of X is as follows. Find the mean number of defective pixels.

х	0	1	2	3
P(x)	0.2	0.5	0.2	0.1

SECTION 6.1: RANDOM VARIABLES

SOLUTION:	
EXPECTED VAL	IIE
LAPECIED VAL	<u></u>
Thoro are ma	any occasions on which people want to predict how much they are likely to gain or lose if they
	in decision or take a certain action. Often, this is done by computing the mean of a random
	uch situations, the mean is sometimes called the " expected value " and is denoted by $E(X)$. If the
expected val	ue is positive, it is an expected gain, and if it is negative, it is an expected loss.
_	
EXAMPLE:	A mineral economist estimated that a particular venture had probability 0.4 of a \$30 million
	loss, probability 0.5 of a \$20 million profit, and probability 0.1 of a \$40 million profit. Let X
	represent the profit. Find the probability distribution of the profit and the expected value of the
	profit. Does this venture represent an expected gain or an expected loss?
SOLUTION:	

OBJECTIVE 6 COMPUTE THE VARIANCE AND STANDARD DEVIATION OF A DISCRETE RANDOM VARIABLE

VARIANCE/STANDARD DEVIATION OF A RANDOM VARIABLE

The **variance** and **standard deviation** provide a measure of spread for the probability distribution of a random variable.

Vari	NICE OF A RANDOM VARIABLE:
STAN	DARD DEVIATION OF A RANDOM VARIABLE:

MEAN/STANDARD DEVIATION ON THE TI-84 PLUS

Step 1: Enter the values of the random variable into **L1** and the associated probabilities in **L2**.

Note: If your calculator does not support Stat Wizards, enter L1 next to the 1-Var Stats command on the home screen and press enter to run the command

EXAMPLE:

Compute the mean and standard deviation of the following probability distribution using the TI-84 PLUS.

x	0	1	2	3
P(x)	0.2	0.5	0.2	0.1

SOLUTION:

We first enter values of the random variable and the associated probabilities into the data editor and then run the 1-Var Stats command. We find $\mu_X=1.2$ and $\sigma_X=0.872$.

YOU SHOULD KNOW ...

- The difference between discrete and continuous random variables
- How to determine the probability distribution for a discrete random variable
- How to construct a probability distribution for a population
- How to construct a probability histogram
- How to compute the mean, variance, and standard deviation of a discrete random variable

OBJECTIVES

- 1. Determine whether a random variable is binomial
- 2. Determine the probability distribution of a binomial random variable
- 3. Compute binomial probabilities
- 4. Compute the mean and variance of a binomial random variable

OBJECTIVE 1 DETERMINE WHETHER A RANDOM VARIABLE IS BINOMIAL

Suppose that your favorite fast food chain is giving away a coupon with every purchase of a meal. Twenty percent of the coupons entitle you to a free hamburger, and the rest of them say "better luck next time." Ten of you order lunch at this restaurant.

What is the probability that three of you win a free hamburger? In general, if we let X be the number of people out of ten that win a free hamburger. What is the probability distribution of X? In this section, we will learn that X has a distribution called the **binomial distribution**, which is one of the most useful probability distributions.

In the problem just described, each time we examine a coupon, we call it a "trial," so there are 10 trials. When a coupon is good for a free hamburger, we will call it a "success." The random variable X represents the number of successes in 10 trials.

A random variable that represents the number of successes in a series of trials has a probability distribution called the **binomial distribution**. The conditions are:

1	

SECTION 6.2: BINOMIAL DISTRIBUTION

EXAMPLE:	A fair coin is tossed ten times. Let X be the number of times the coin lands heads. Decide if this represents a binomial experiment.
SOLUTION:	
EXAMPLE:	Five basketball players each attempt a free throw. Let \boldsymbol{X} be the number of free throws made.
SOLUTION:	
EXAMPLE:	Ten cards are in a box. Five are red and five are green. Three of the cards are drawn at random. Let X be the number of red cards drawn.
SOLUTION:	
	OBJECTIVE 2
	DETERMINE THE PROBABILITY DISTRIBUTION OF A BINOMIAL RANDOM VARIABLE

Consider the binomial experiment of tossing 3 times a biased coin that has probability 0.6 of coming up heads. Let X be the number of heads that come up. If we want to compute P(2), the probability that exactly 2 of the tosses are heads, there are 3 arrangements of two heads in three tosses: HHT, HTH, THH. The probability of HHT is $P(\text{HHH}) = (0.6)(0.6)(0.4) = (0.6)^2(0.4)$. Similarly, we find that $P(\text{HTH}) = P(\text{THH}) = (0.6)^2(0.4)$.

Now, $P(2) = P(\text{HHT or HTH or THH}) = 3(0.6)^2(0.4)$, by the Addition Rule. Examining this result, we see the number 3 represents the number of arrangements of two successes (heads) and one failure (tails). In general, this number will be the number of arrangements of x successes in n trials, which is nCx. The number 0.6 is the success probability p which has an exponent of 2, the number of successes x. The number 0.4 is the failure probability 1-p which has an exponent of 1, which is the number of failures, n-x.

BINOMIAL PROBABILITY DISTRIBUTION:

OBJECTIVE 3 COMPUTE BINOMIAL PROBABILITIES

EXAMPLE:

The Pew Research Center reported in June 2013 that approximately 30% of U.S. adults own a tablet computer such as an iPad, Samsung Galaxy Tab, or Kindle Fire. Suppose a simple random sample of 15 people is taken. Use the binomial probability distribution to find the following probabilities.

- a) Find the probability that exactly four of the sampled people own a tablet computer.
- b) Find the probability that fewer than three of the people own a tablet computer.
- c) Find the probability that more than one person owns a tablet computer.
- d) Find the probability that the number of people who own a tablet computer is between 1 and 4, inclusive.

SOLUTION:	

BINOMIAL PROBABILITIES ON THE TI-84 PLUS

In the TI-84 PLUS Calculator, there are two primary commands for computing binomial probabilities. These are **binompdf** and **binomcdf**. These commands are on the **DISTR** (distributions) menu accessed by pressing **2nd**, **VARS**.

The **binompdf** command is used when finding the probability that the binomial random variable X is <u>equal</u> to a specific value, x.

The **binomcdf** command is used when finding the probability that the binomial random variable X is <u>less than or equal</u> to a specified value, x.

binompdf

To compute the probability that the random variable X equals the value x given the parameters n and p, use the binompdf command with the following format:

binompdf(n,p,x)

binomcdf

To compute the probability that the random variable X is less than or equal to the value x given the parameters n and p, use the binomcdf command with the following format:

binomcdf(n,p,x)

OBJECTIVE 4 COMPUTE THE MEAN AND VARIANCE OF A BINOMIAL RANDOM VARIABLE

MEAN, VARIANCE, AND STANDARD DEVIATION OF A BINOMIAL RANDOM VARIABLE

Let X be a binomial random variable with n trials and success probability p. The mean, variance, and standard deviation of X are:

MEAN:			

SECTION 6.2: BINOMIAL DISTRIBUTION

VARIANCE:	
STANDARD D	EVIATION:
EXAMPLE:	The probability that a new car of a certain model will require repairs during the warranty period is 0.15. A particular dealership sells 25 such cars. Let X be the number that will require repairs during the warranty period. Find the mean and standard deviation of X .
Solution:	

YOU SHOULD KNOW ...

- How to determine whether a random variable is binomial
- The notation for a binomial experiment
- How to determine the probability distribution of a binomial random variable
- How to compute binomial probabilities
- How to compute the mean and variance of a binomial random variable