Injecting Logical Background for Relation Extraction

*NAACL*2015

Tim Rockt aschel (UCL)
Sameer Singh (UW)
Sebastian Riedel (UCL)

University College London

2015年5月8日

Outline

- 论文方法概述
- 矩阵分解 (Matrix factorization), 一阶谓词逻辑 (first-order logic) 简单比较
- 本文的符号集 (Notation)
- 一阶谓词逻辑注入 (Inject) 矩阵分解
 - 矩阵分解之前操作 (Pre-Factorization)
 - 融入矩阵分解之中 ('joint')
 - 一阶逻辑规则 ð 抽取
- 实验
 - 实验流程, 效果简单评价

summary

原始矩阵 ア × R									
	fr1	fr2	fr3	р1	p2	рЗ	p4	р5	р6
(e1,e2)	1	0	0	0	1	0	0	1	0
(e2,e3)	0	1	0	1	0	0	1	0	0
(e1,e3)	0	0	1	0	0	1	0	0	0
(e1,e10)	1	0	0	1	0	0	0	0	0
(e1,e6)	1	1	0	1	0	0	1	1	0
(e1,e8)	1	0	0	1	0	0	0	0	0
(e3,e7)	0	1	0	1	0	0	1	0	0

summary Experiemnt

实验框架

- 不同实验共享相同规则 集 §; 不同实验"过滤后 的矩阵"不同
- 一般矩阵分解目标函数 $\min_{V} \sum_{((i,j)} |M(i,j)) v_i \cdot v_j|^2$
- 得到最终的向量空间后, 判断 (e_i, e_j) 是否含有 r_t 关系,只要判断 $\sigma(\mathbf{v_{r_m} \cdot v_{(e_i, e_j)}})$ 是否大 于阈值

- 矩阵分解 (MF) vs 规则抽取 (Rule-based)
 - MF: 开放域、不需要标注数据(弱监督); 完全依赖于 KB 的质量
 - 关系出现次数多, 预测才好; 不出现的无法预测;
 - Rule-based: 可以发现新的实体, 新的关系; 噪声大
- 本文动机
 - 矩阵分解和规则(一阶逻辑(FOL))混合
- 本文的贡献
 - 如何在矩阵分解前、后利用谓词逻辑
 - ② 利用一阶谓词逻辑训练更好的实体对向量、谓词向量
 - 3 结合 MF, FOL 来预测实体的关系

Notation

$$\mathcal{P} \subseteq \varepsilon \times \varepsilon$$
: 实体对 (e_i, e_j) 集合

R: 关系 fr_i, p_j 集合

$$V$$
: 向量空间 $\{v_{fr_1} = \mathbf{v_{r_m}}, v_{fr_2}, ..., v_{p_1} = \mathbf{v_{(e_i, e_j)}}, v_{p_2}, ...\}$

 $\pi_m^{e_i,e_j} = \sigma(\mathbf{v_{r_m}},\mathbf{v_{(e_i,e_i)}})$:实体对与关系的相似性 σ :sigmoid func

- 一阶谓词
 - 原子问题 (ground Atom): professorAt(x, y)
 - 复合问题 (logical background knowledge): $professorAt(x, y) \Rightarrow emplueeAt(x, y)$

评价一阶谓词集合 w 的好坏

$$p(\mathbf{w}|V) = \prod_{r_m(e_i, e_j) \in w} \pi_m^{e_i, e_j} \prod_{r_m(e_i, e_j) \notin w} (1 - \pi_m^{e_i, e_j})$$

Method

- ❶ 传统方法
 - 直接矩阵分解 (MF)
 - 只利用逻辑规则 (Inf)
- ② FOL,MF "混合"模型
 - FOL 作为预处理(Pre-Factorization Inference)
 - 先用 FOL 改变原始矩阵 $M_{|\mathcal{P}|\times|\mathcal{R}|}$, 再进行普通矩阵分解
 - ② 将抽取的规则(一阶谓词子集)加入目标函数(Joint Optimization)
 - 传统矩阵分解生成向量空间 V, 然后使用收集的逻辑规则预测 (Post-Factorization Inference)
 - $\mathcal{F}: (r_s(e_i, e_j) \Rightarrow r_t(e_i, e_j)) \in \mathfrak{F}$: 若满足 $r_s(e_i, e_j)$, 则预测 $r_t(e_i, e_j)$ 为真

一阶逻辑 (FOL) 注入

两种途径

- FOL 作为预处理(Pre-Factorization Inference)
 - 先用 FOL 改变原始矩阵 $M_{|\mathcal{P}| \times |\mathcal{R}|}$, 再进行普通矩阵分解
- ② 一阶谓词子集加入目标函数 (Joint Optimization)

Pre-Factorization Inference (FOL 作为预处理)

Pre-Factorization Inference(FOL 作为预处理)

核心: 弥补矩阵的稀疏性, 增加收集的一阶逻辑规则 \mathfrak{F} 与 freebase relation 之间的关联

方法:根据逻辑规则,增加原始矩阵 $M_{|\mathcal{P}| \times |\mathcal{R}|}$ 中值为 1 的元素个数

steps

- 收集一阶谓词规则 妥
- ② 对 \mathfrak{F} 中每一条规则, 比如 $\mathbf{F} = \forall x, y : r_s(x, y) \Rightarrow r_t(x, y)$
 - 如果矩阵 $M[(x,y),r_s]$ 上的值为 1, 则把 $[(x,y),r_t]$ 上的值置为 1
 - 递归做下去,直到没有新的1出现
- \odot 对更新后的矩阵 $M'_{|\mathcal{P}| \times |\mathcal{R}|}$ 进行传统矩阵分解
- 利用 $\sigma(\mathbf{v_{r_m}} \cdot \mathbf{v_{(e_i,e_i)}})$ 预测 $(v_{r_m}, v_{(e_i,e_i)})$ 是否应该出现

Joint Optimization(组合模型)

Joint Optimization(组合模型)

核心: 把收集的一阶逻辑规则 \mathfrak{F} 加入到矩阵分解的目标函数中,训练出更好的属性 (关系) 向量 v_{r_m} 、实体对向量 $v_{(e_i,e_j)}$

训练集的目标函数:

$$\min_{V} \sum_{\mathcal{F} \in \mathfrak{F}} \mathcal{L}([\mathcal{F}])$$

边缘分布 (marginal probability)

definition

对多变量的分布函数,针对某个变量进行求和(枚举其他变量的所有情况),所得到的概率分布

example

联合概率 P(A,B), 对 A 的边缘分布为 $P_1(A)=\sum_{b\in B}P(A,b)$, 对 B 的 边缘分布为 $P_2(B)=\sum_{a\in A}P(a,B)$

边缘分布 (marginal probability)

$$p(\mathbf{w}|V) = \prod_{r_m(e_i,e_j)\in w} \pi_m^{e_i,e_j} \prod_{r_m(e_i,e_j)\notin w} (1 - \pi_m^{e_i,e_j})$$

$$p(\mathbf{w}|V) = \prod f_{r_m(e_i,e_j)} = f_{r_m(e_i,e_j)} \times f_{r_n(e_k,e_l)} \times \dots \quad (相互独立)$$

$$f_{r_m(e_i,e_j)} = \begin{cases} \pi_m^{e_i,e_j} & \text{if } r_m(e_i,e_j) \in w \\ 1 - \pi_m^{e_i,e_j} & \text{if } r_m(e_i,e_j) \notin w \end{cases}$$
(1)

- 当 \mathcal{F} 是原子命题时 $[\mathcal{F}] = \pi_m^{e_i, e_j}$
- 当 $\mathcal{F} = \mathcal{A} \wedge \mathcal{B}$, \mathcal{A} 和 \mathcal{B} 是原子命题时, $[\mathcal{F}] = \pi_m^{e_i, e_j} \times \pi_n^{e_k, e_l} = [\mathcal{A}][\mathcal{B}]$
- 当 $\mathcal{F} = \neg A$, A 是原子命题时, $[\mathcal{F}] = 1 [A]$

$\forall [\mathcal{F}]$

$$\mathcal{F} = \mathcal{A} \vee \mathcal{B} = 1 - (\neg \mathcal{A}) \wedge (\neg \mathcal{B})$$

$$[\mathcal{A}\vee\mathcal{B}]=[\mathcal{A}]+[\mathcal{B}]-[\mathcal{A}][\mathcal{B}]$$

$$[\mathcal{A} \Rightarrow \mathcal{B}] = [\mathcal{A}]([\mathcal{B}] - 1) + 1...$$

Joint Optimization(组合模型)

目标函数:

$$\min_{V} \sum_{\mathcal{F} \in \mathfrak{F}} \mathcal{L}([\mathcal{F}])$$

使用随机梯度下降(stochastic gradient descent)求解

- $\mathcal{L}([\mathcal{F}]) := -\log([\mathcal{F}])$
- 对任意一个 F, 其只和实体对向量、谓词向量有关
- 对任意 $\mathcal{L}([\mathcal{F}])$ 只要求 $\partial \mathcal{L}([\mathcal{F}])/\partial v_{r_m}$ 和 $\partial \mathcal{L}([\mathcal{F}])/\partial v_{(e_i,e_j)}$

Joint Optimization(组合模型)

$$\pi_m^{e_i, e_j} = \sigma(\mathbf{v_{r_m}}, \mathbf{v_{(e_i, e_j)}})$$
$$\mathcal{L}([\mathcal{F}]) := -\log([\mathcal{F}])$$

$\mathcal{F}=\pi_m^{e_i,e_j}$ is a ground atom

$$\begin{split} \partial[\mathcal{F}]/\partial v_{r_m} &= [\mathcal{F}](1-[\mathcal{F}])v_{(e_i,e_j)} \\ \partial[\mathcal{F}]/\partial v_{(e_i,e_j)} &= [\mathcal{F}](1-[\mathcal{F}])v_{r_m} \\ \partial\mathcal{L}([\mathcal{F}])/\partial v_{r_m} &= -[\mathcal{F}]^{-1}\partial[\mathcal{F}]/\partial v_{r_m} \\ \partial\mathcal{L}([\mathcal{F}])/\partial v_{(e_i,e_j)} &= -[\mathcal{F}]^{-1}\partial[\mathcal{F}]/\partial v_{(e_i,e_j)} \end{split}$$

目标函数:

$$\min_{V} \sum_{\mathcal{F} \in \mathfrak{F}} \mathcal{L}([\mathcal{F}])$$

\mathcal{F} is a First-order Logic

e.g.

$$\mathcal{F} = \forall x, y : r_s(x, y) \Rightarrow t(x, y)$$

$$[\mathcal{F}] = \prod_{j \in \mathcal{F}} [\mathcal{F}_{ij}]$$

$$(e_i, e_j) \in \mathcal{P}$$

$$\mathcal{L}([\mathcal{F}]) = \sum_{(e_i, e_j) \in \mathcal{P}} \mathcal{L}([\mathcal{F}_{ij}])$$

Formulae Extraction and Annotation(一阶逻辑规则 \Im 抽取)

- ① 由分解原始矩阵 $M_{|\mathcal{P}| imes |\mathcal{R}|}$ 得到实体对向量、关系向量
- ② 对所有关系对: $(r_s, r_t), r_t \in freebase$
 - ① 对训练集中的所有实体对 (e_i, e_i) , 计算 $[r_s(e_i, e_i) \Rightarrow r_t(e_i, e_i)]$
- ③ 取值最高的 100 个作为抽取的一阶逻辑规则集合 ₹
 - 其中前 36 个比较好

Formula

- $0.97 \ \forall x, y : \#2 unit of \#1(x, y) \Rightarrow org/parent/child(x, y)$
- $0.97 \ \forall x, y : \#2 city of \#1(x, y) \Rightarrow location/contained by(x, y)$
- $0.97 \ \forall x, y : \#2 minister \#1(x, y) \Rightarrow person/nationality(x, y)$
- $0.96 \ \forall x, y : \#2 minister \#1(x, y) \Rightarrow person/nationality(x, y)$

Experiment

Experiment

1. Zero-shot Relation Learning

 舍去所有 freebase relation 信息,训 练数据中 freebase relation 的列都 置为 0(模拟新关系的发现)

2. Relations with Few Distant Labels

给出部分 freebase relation 信息.给出率为 0 时退化为实验 1

3. Comparison on Complete Data

• 给出全部 freebase relation 信息. 等价于实验 2 中给出率为 100%

原始矩阵 $|\mathcal{P}| \times |\mathcal{R}|$

	fr1	fr2	fr3	p1	p2
(e1,e2)	1	0	0	0	1
(e2,e3)	0	1	0	1	0
(e1,e3)	0	0	1	0	0
(e1,e10)	1	0	0	1	0
(e1,e6)	1	1	0	1	0
(e1,e8)	1	0	0	1	0
(e3,e7)	0	1	0	1	0

Experiemnt

以 Joint Optimization 为例

- 不同实验共享相同规则 集 ?
- 不同实验"过滤后的矩阵"不同
- 一般矩阵分解目标函数 $\min_{V} \sum_{((i,j)} |M(i,j)) v_i \cdot v_j|^2$
- 得到最终的向量空间后, 判断 (e_i, e_j) 是否含有 r_t 关系, 只要判断 σ(v_{rm}, v_(e_i,e_j)) 是否大 于阈值

dataset

 $M_{|\mathcal{P}| \times |\mathcal{R}|}$: 41913 entity-pairs × 4111 relations(151 freebase relation) 118781 training facts(7293 belong to freebase)

结果使用 MAP 和 wMAP 评价

weighted Mean Avarage Precision(wMAP)

average precision for each relation is weighted by the relation's number of true facts

1. Zero-shot Relation Learning

Relation	#	MF	Inf	Post	Pre	Joint
person/company	102	0.07	0.03	0.15	0.31	0.35
location/containedby	72	0.03	0.06	0.14	0.22	0.31
author/works_written	27	0.02	0.05	0.18	0.31	0.27
person/nationality	25	0.01	0.19	0.09	0.15	0.19
parent/child	19	0.01	0.01	0.48	0.66	0.75
person/place_of_birth	18	0.01	0.43	0.40	0.56	0.59
person/place_of_death	18	0.01	0.24	0.23	0.27	0.23
neighborhood/neighborhood_of	11	0.00	0.00	0.60	0.63	0.65
person/parents	6	0.00	0.17	0.19	0.37	0.65
company/founders	4	0.00	0.25	0.13	0.37	0.77
film/directed_by	2	0.00	0.50	0.50	0.36	0.51
film/produced_by	1	0.00	1.00	1.00	1.00	1.00
MAP		0.01	0.23	0.34	0.43	0.52
Weighted MAP		0.03	0.10	0.21	0.33	0.38

MF 失败: 不能预测未出现过的关系

Inf 和 Post 效果差:两者采用的向量空间太差,没有优化、、

Inf 没有考虑 freebase relation 与 pattern "共现", 因而无变化

谢谢

Append: Mean Avarage Precision(MAP)

MAP

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53