Università di Pisa - Corso di Laurea in Informatica

Analisi Matematica A

Pisa, 19 dicembre 2016

Domanda 1 La successione $a_n=\frac{3^{\frac{1}{n}}+2^{-n}+n^3}{(-1)^n(\log n)^4+n^2+5}$ definita per $n\geq 1$ A) ha minimo ma non ha massimo B) non è limitata inferiormente

Α

D) ha sia massimo che minimo

Domanda 2 $\lim_{n \to \infty} \left(\frac{n+1}{n+2} \right)^{(n^2)} =$ A) 0 B) $\frac{1}{e^2}$ C) e^2 D) $+\infty$

Α

$$B) \frac{1}{e^2}$$

C)
$$e^2$$

$$D) + \infty$$

Domanda 3 La successione $a_n = \frac{n^3 \sin(\frac{n\pi}{2}) + \cos n}{n^4 + 1}$

B) ha sia massimo che minimo

A) non è limitata né inferiormente né superiormente

D) è limitata inferiormente ma non ha minimo

В

Domanda 4

$$\lim_{n \to \infty} \frac{n^n}{4^n n!} =$$

A) 1

$$B) + \infty$$

C) non ha limite ma è limitata

la 4 B)
$$+\infty$$
 C) 0 D) $\sqrt[4]{e}$

 \mathbf{C}

Domanda 5
$$\int_{4}^{9} e^{\sqrt{x}} dx =$$
A) $16e^9 - 6e^4$ B) $81e^9 - 16e^4$ C) $4e^3 - 2e^2$ D) $9e^3 - 4e^4$

C)
$$4e^3 - 2e^2$$

D)
$$9e^3 - 4e^3$$

Domanda 6
$$\lim_{x \to \infty} \int_{0}^{x} \frac{1}{4+t^2} dt =$$
A) $\frac{\pi}{2}$ B) $\frac{\pi}{4}$ C) 0 D) $+\infty$

В

$$3) \frac{\pi}{4}$$

D)
$$+\infty$$

Domanda 7
$$\int_{-\frac{\pi}{2}}^{\pi} |x| \sin x \, dx =$$
A) $\pi + 1$ B) 0

 \mathbf{D}

D

C) π^2 D) $\pi - 1$

Domanda 8 Sia y(x) la soluzione del problema di Cauchy $\begin{cases} y' = \frac{3y}{x} - 3x \\ y(3) = -5. \end{cases}$ Risulta che $y(1) = \frac{3y}{x}$

A) 3 B)
$$-\frac{5}{27}$$
 C) $\frac{1}{3}$ D) $\frac{49}{27}$

C)
$$\frac{1}{3}$$

D)
$$\frac{49}{27}$$

Domanda 9 Sia y(x) la soluzione del problema di Cauchy $\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 2 \end{cases}$ Allora risulta che

$$B) y' = \cos(2x) - \sin x$$

A)
$$y' = 2e^x - e^{-2x}$$
 B) $y' = \cos(2x) - \sin x$
C) $y' = 3e^x - 2\cos(2x)$ D) $y' = \frac{5}{3}e^x - \frac{2}{3}e^{-2x}$

Domanda 10 Una soluzione dell'equazione differenziale $y' = 2x \cos^2 y$ è

$$B) y = x^2 \sin^2$$

A)
$$y = \log(\sin(x^2) + 2)$$
 B) $y = x^2 \sin^2 x$
C) $y = \arcsin \frac{1}{x}$ D) $y = \arctan(x^2 - 4)$

 \mathbf{D}

D

Università di Pisa - Corso di Laurea in Informatica

Analisi Matematica A

Pisa, 19 dicembre 2016

Esercizio 1 Studiare la funzione $f(x) = e^x(x^3 - 3x^2 + 5x - 5)$ determinandone eventuali asintoti (compresi quelli obliqui), estremi superiore e inferiore o eventualmente massimo e minimo, punti di massimo o di minimo locali. Tracciare un grafico approssimativo della funzione.

Soluzione

La funzione è definita in tutta la retta $\mathbb R$ dove è continua e derivabile. Calcoliamo i limiti. Con la sostituzione t=-x abbiamo

$$\lim_{x \to -\infty} f(x) = \lim_{t \to +\infty} e^{-t} (-t^3 - 3t^2 - 5t - 5) = \lim_{t \to +\infty} \frac{-t^3 - 3t^2 - 5t - 5}{e^t} = 0$$

avendo ottenuto l'ultimo limite applicando il teorema di De L'Hôpital 3 volte.

$$\lim_{x \to +\infty} f(x) = e^{\infty} \infty = \infty.$$

Abbiamo quindi trovato che la funzione ha un asintoto orizzontale di equazione y=0 per $x\to -\infty$ e che sup $(f)=+\infty$. Controlliamo la presenza di un eventuale asintoto obliquo per $x\to +\infty$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} e^x \left(x^2 - 3x + 5 - \frac{5}{x} \right) = e^{\infty} \infty = +\infty$$

quindi non cè asintoto obliquo. Cerchiamo ora i punti di massimo o di minimo locali con lo studio della monotonia. La derivata della funzione vale

$$f'(x) = e^x(x^3 - 3x^2 + 5x - 5) + e^x(3x^2 - 6x + 5) = e^x(x^3 - x) = e^x(x - 1)(x + 1)x.$$

Risulta quindi che

$$f'(x) > 0 \iff x \in (-1,0) \cup (1,+\infty), \qquad f'(x) < 0 \iff x \in (-\infty,-1) \cup (0,1).$$

Ne segue che f è decrescente sulla semiretta $(\infty, -1]$, crescente nell'intervallo [-1, 0], decrescente in [0, 1] e crescente in $[1, +\infty)$. I punti $x_1 = -1$ e $x_3 = 1$ sono punti di minimo locale mentre il punto $x_2 = 0$ è di massimo locale. Per determinare il minimo della funzione dobbiamo confrontare $f(x_1)$ e $f(x_3)$.

$$f(x_1) = f(-1) = e^{-1}(-1 - 3 - 5 - 5) = -\frac{14}{e},$$
 $f(x_3) = f(1) = e^{1}(1 - 3 + 5 - 5) = -2e.$

Risulta che

$$-\frac{14}{e} > -2e \iff \frac{14}{e} < 2e \iff 7 < e^2$$

e l'ultima disuguaglianza è vera perché e > 2,7 quindi $e^2 > 7,29$. Il minimo della funzione è quindi -2e.

Esercizio 2 Determinare una primitiva della funzione $f(x) = x \arctan(2x)$.

Soluzione

Eseguendo la sostituzione 2x=t avremo 2dx=dt quindi

$$\int x \arctan(2x) \, dx = \int \frac{t}{2} \arctan t \, \frac{dt}{2} = \frac{1}{4} \int t \arctan t \, dt$$

Eseguiamo ora per parti l'integrale integrando t e derivando arctant (omettiamo il fattore moltiplicativo $\frac{1}{4}$ che reintrodurremo alla fine del calcolo).

$$\int t \arctan t \, dt = \frac{t^2}{2} \arctan t - \int \frac{t^2}{2} \frac{1}{1+t^2} \, dt = \frac{t^2}{2} \arctan t - \frac{1}{2} \int \frac{t^2+1-1}{1+t^2} \, dt$$

$$= \frac{t^2}{2} \arctan t - \frac{1}{2} \int 1 - \frac{1}{1+t^2} \, dt = \frac{t^2}{2} \arctan t - \frac{t}{2} + \frac{1}{2} \arctan t = \frac{t^2+1}{2} \arctan t - \frac{t}{2}.$$

Rimettiamo ora il fattore $\frac{1}{4}$ e ricordiamo che t=2x ottenendo che

$$\int x \arctan(2x) dx = \frac{4x^2 + 1}{8} \arctan(2x) - \frac{x}{4} + c.$$

Esercizio 3 Risolvere il problema di Cauchy

$$\begin{cases} y'' - 4y' = e^{5x} \\ y(0) = 3 \\ y'(0) = -1. \end{cases}$$

Soluzione

L'equazione differenziale è del secondo ordine a coefficienti costanti non omogenea. Risolviamo prima l'omogenea y'' - 4y' = 0 la cui equazione caratteristica è $\lambda^2 - 4\lambda = 0$ che ha le soluzioni $\lambda_1 = 0$, $\lambda_2 = 4$. La soluzione generale dell'omogenea sarà quindi

$$y_0(x) = c_1 + c_2 e^{4x}, \quad \forall c_1, c_2 \in \mathbb{R}.$$

Cerchiamo ora una soluzione particolare con il metodo di somiglianza. Dato che il termine noto è e^{5x} e che 5 non è radice dell'equazione caratteristica cercheremo una soluzione della forma $\bar{y}(x) = Ae^{5x}$. Quindi

$$\bar{y}'(x) = 5Ae^{5x}, \qquad \bar{y}''(x) = 25Ae^{5x}.$$

Sostituendo nell'equazione completa otteniamo

$$25Ae^{5x} - 20Ae^{5x} = e^{5x}$$

quindi, dividendo per e^{5x} ,

$$5A = 1 \iff A = \frac{1}{5}.$$

Ne segue che una soluzione particolare è

$$\bar{y}(x) = \frac{1}{5}e^{5x}.$$

La soluzione generale dell'equazione completa è allora

$$y(x) = y_0(x) + \bar{y}(x) = c_1 + c_2 e^{4x} + \frac{1}{5} e^{5x}, \quad \forall c_1, c_2 \in \mathbb{R}.$$

Determiniamo le costanti c_1 e c_2 utilizzando le condizioni iniziali. Prima calcoliamo

$$y'(x) = 4c_2e^{4x} + e^{5x}$$

quindi avremo

$$y(0) = c_1 + c_2 + \frac{1}{5}, y'(0) = 4c_2 + 1.$$

Imponendo le condizioni iniziali otteniamo il sistema lineare

$$\begin{cases} c_1 + c_2 + \frac{1}{5} = 3\\ 4c_2 + 1 = -1 \end{cases}$$

che ha come soluzione $c_1 = \frac{33}{10}, \ c_2 = -\frac{1}{2}.$ La soluzione del problema di Cauchy è quindi

$$y(x) = \frac{33}{10} - \frac{1}{2}e^{4x} + \frac{1}{5}e^{5x}.$$

Esercizio 4 Calcolare il limite

$$\lim_{n \to \infty} \frac{n^{\log n}}{(\log n)^n}.$$

Soluzione

$$\frac{n^{\log n}}{(\log n)^n} = \frac{e^{(\log n)^2}}{e^{n\log\log n}} = e^{(\log n)^2 - n\log\log n}.$$

Basta ora osservare che

$$\lim_{n \to \infty} (\log n)^2 - n \log \log n = \lim_{n \to \infty} n \left(\frac{(\log n)^2}{n} - \log \log n \right) = \infty (0 - \infty) = -\infty.$$

Dal teorema sul limite della composizione segue quindi che

$$\lim_{n \to \infty} \frac{n^{\log n}}{(\log n)^n} = \lim_{t \to -\infty} e^t = 0.$$