

The current lossless abstraction

Everything sent shalt be received.

If we lose something, e.g., a packet, we'll retransmit it.

The tail latency problem

(OPTIREDUCE, NSDI 2025)

The tail latency problem

- Happens due to various reasons:
 - -Packet drops due to congestion/corruption.
 - -Queue buildups.
 - Accelerator failures.
 - -Switch failures.
 - Link failures.
 - -Straggler nodes.
 - **—...**
- Exacerbated when training cross data centers.
- Mainly happens due to system events!

Embracing loss, a new paradigm

- We propose allowing the system flexibility in the gradient synchronization to mitigate the causes of the tail latency.
- To control the added loss, we need to formalize the allowed errors.

- Congestion can increase latency of gradient synchronization and is not always avoidable.
- What if switches compress the data whenever needed?
- Can we do it with existing hardware switches?

The one-bit that makes it serves as state-of-the-art

compression algorithm! (DRIVE, NeurIPS 2021).

Reproducibility

- Lossy and stochastic synchronization does **not** mean non-reproducible results!
- By logging the sources of loss, we can replay the execution of the process. For example, we log:
 - Which stragglers were dropped.
 - Which packets were trimmed.

— ...

Vision

- We develop an understanding of how system optimizations affect gradient variance and thus the convergence rate.
- We can trade a small (e.g., 5%) increase in either the #rounds or batch size into a "budget" that the system optimizations can leverage.
- We measure the benefit in **time** taken to train a model.

Example (THC, NSDI 2024)

Summary

LOSSLESS

Collaborators and funders

