Corrigé 10

Théorème d'Arzelà-Ascoli:

Soit K compact et soit A une famille de fonctions continues $K \to \mathbb{C}$, uniformément bornée et uniformément équicontinue, c'est-à-dire que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que pour tout $f \in A$ et pour tous $x, y \in K$ tel que $||x - y|| < \delta$, on a

$$|f(x) - f(y)| < \epsilon$$
.

Alors, chaque suite $(f_n)_{n>0} \subseteq A$ a une sous-suite qui converge uniformément sur K.

Exercice 1. Étudier le comportement de la série suivante :

$$\sum_{p \text{ premier}} \frac{1}{p} .$$

Indices : Soit $\pi(n)$ le nombre de nombres premiers inférieurs ou égaux à $n \in \mathbb{N}$. On utilisera le théorème des nombres premiers (Théorème 255 du cours) pour trouver le comportement asymptotique de $\log \pi(n)$ quand $n \to \infty$. On pourra en déduire le comportement asymptotique de p_n , le n-ième nombre premier.

Démonstration. On démontre que la série

$$\sum_{n=1}^{\infty} \frac{1}{p_n}$$

où p_n dénote le n-ième nombre premier diverge. En effet, on montrera que

$$p_n \sim n \log n \qquad \text{quand } n \to \infty.$$
 (1)

On rappelle que ceci signifie que

$$\lim_{n \to \infty} \frac{p_n}{n \log n} = 1.$$

Par conséquent, il existe N_0 t.q.

$$\frac{p_n}{n \log n} \le 2 \qquad \forall n \ge N_0,$$

ce qui signifie également que

$$\frac{1}{p_n} \ge \frac{1}{2} \frac{1}{n \log n} \qquad \forall n \ge N_0.$$

Dès lors, on a

$$\sum_{n=0}^{\infty} \frac{1}{p_n} \geq \sum_{n=N_0}^{\infty} \frac{1}{p_n} \geq \frac{1}{2} \sum_{n=N_0}^{\infty} \frac{1}{n \log n}.$$

Puisque la série

$$\sum_{n=N_0}^{\infty} \frac{1}{n \log n}$$

diverge (voir les critères de convergence pour les séries de Bertrand), on a le résultat voulu. Il nous reste à montrer (1). Le théorème des nombres premiers (Thm 255 du cours) nous dit que

$$\pi(x) \sim \frac{x}{\log x}.$$

En prenant le log, on obtient

$$\log \pi(x) \sim \log \left(\frac{x}{\log x}\right) = \log x - \log \log x \sim \log x.$$

En particulier, on a que

$$\pi(x) \sim \frac{x}{\log \pi(x)}.$$
 (2)

En utilisant (2) avec $x = p_n$, et puisque $\pi(p_n) = n$ par définition, on a montré que

$$n \sim \frac{p_n}{\log n}$$

autrement dit

$$p_n \sim n \log n$$
.

Pour chacune des étapes ci-dessus, pour démontrer que $f \sim g$ on a systématiquement calculé que

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} - 1 = 0.$$

Exercise 2. Soit $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. Montrer que les applications conformes $\mathbb{H} \to \mathbb{H}$ sont de la forme

$$z \mapsto \frac{az+b}{cz+d}$$

où
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R}).$$

Démonstration. Pour montrer le résultat, on utilise l'application conforme $g: \mathbb{H} \to \mathbb{D}$ donnée par

$$g(z) = \frac{z-i}{z+i}$$
 $g^{-1}(z) = -i\frac{z+1}{z-1}$.

Alors, si $f: \mathbb{H} \to \mathbb{H}$ est conforme, $h:=g\circ f\circ g^{-1}: \mathbb{D} \to \mathbb{D}$ est conforme du disque unité dans lui-même. Par un théorème du cours (Théorème 291), h est une transformation de Möbius. Dès lors, $f=g^{-1}\circ h\circ g$ est une transformation de Möbius et il existe $a,b,c,d\in\mathbb{C}$ tels que

$$f(z) = \frac{az+b}{cz+d}$$

et $ad - bc \neq 0$. On montre maintenant que a, b, c et d sont des nombres réels.

Puisque c'est une transformation de Möbius, on voit que f n'a au plus qu'une singularité et si $c \neq 0$ c'est un pôle simple en -d/c. En particulier, f est définie partout sur $\mathbb R$ sauf peut-être en un point. Car f doit être une application conforme $\mathbb H \to \mathbb H$, par le théorème de l'application ouverte (Thm 187 du cours), le bord doit être envoyé vers le bord, c'est-à-dire que f doit fixer la droite réelle. On peut alors se convaincre en faisant varier z sur $\mathbb R$ que $a,b,c,d\in \mathbb R$.

Indeed, for any $x \in \mathbb{R}$, since $f(x) \in \mathbb{R}$, we should have

$$f(x)(x\Im c + \Im d) = x\Im a + \Im b. \tag{3}$$

Therefore if $\Im d \neq 0$ or $\Im c \neq 0$, we get

$$\frac{xa+b}{xc+d} = f(x) = \frac{x\Im a + \Im b}{x\Im c + \Im d}.$$
 (4)

This could happen only if $\Re a = \Re b = \Re c = \Re d = 0$. By multiplying both the numerator and the denominator by i, we get real a, b, c, and d, while keeping the same f(x). At the same time, when $\Im c = \Im d = 0$, the only possibility for f to be real on the real line is $\Im a = \Im b = 0$.

De plus, par invariance des transformation de Möbius par multiplication par un scalaire, on peut supposer, quitte à diviser tous les coefficients par $\sqrt{ad-bc}$ que ad-bc=1.

Exercice 3. On dit qu'une famille \mathcal{F} de fonctions holomorphes $U \to \mathbb{C}$ est normale si chaque suite $(f_n)_{n\geq 0}$ a une sous-suite qui converge uniformément sur les compacts vers une fonction holomorphe $f:U\to\mathbb{C}$. En utilisant le théorème d'Arzelà-Ascoli, montrer que si \mathcal{F} est une famille de fonctions holomorphes $U\to\mathbb{C}$ qui est uniformément bornée sur les compacts de U, alors c'est une famille normale.

Démonstration.

Première partie La première partie de la preuve consiste à montrer que nous sommes en position d'appliquer le Théorème d'Arzela-Ascoli à \mathcal{F} . Pour cela, il suffit de montrer que pour tout compact $K \subset U$, la famille est uniformément équicontinue (l'hypothèse de borne uniforme étant déjà satisfaite par les données du problème). Soit donc $K \subset U$ un compact et soit γ une courbe fixée telle que $\gamma \subset U \setminus K$. Alors pour tout $f \in \mathcal{F}$, on a par la formule de Cauchy

$$\forall z_0 \in K, \qquad f'(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z - z_0)^2} dz$$

On considère K' un compact de U un peu plus grand qui contient K et γ . Puisque \mathcal{F} est une famille uniformément bornée sur K', il existe une constante $C_{K'}$ telle que pour tout $f \in \mathcal{F}$, $|f| \leq C_{K'}$. De plus, puisque $\gamma \subset U \setminus K$ (en particulier $z_0 \notin \gamma$), on a que

$$\forall z \in \gamma, |z - z_0| \ge \min_{w_1 \in \gamma, w_2 \in K} |w_1 - w_2| > 0$$

et donc la fonction $\frac{1}{(z-z_0)^2}$ est bornée par une constante ne dépendant que de K (et de γ mais γ dépend de K). Par conséquent, f' est uniformément bornée sur K, i.e, il existe M_K telle que

$$|f'| \leq M_K, \quad \forall f \in \mathcal{F}.$$

Soit maintenant $\varepsilon > 0$. Pour $\delta = \epsilon/M_K$ et pour tout $f \in \mathcal{F}$ et pour tous $x, y \in K$ tel que $|x - y| < \delta$, on a

$$|f(x) - f(y)| = \left| \int_{\gamma_{xy}} f'(z)dz \right| \le M_{K'}|x - y| \le \varepsilon,$$

où γ_{xy} est la segment qui va de x à y, ce qui montre que la famille est uniformément équicontinue sur tout compact K.

Deuxième partie Pour la deuxième partie de la preuve, on commence par construire une suite croissante de compacte K_m telle $K_m \subset U$ et telle que l'union recouvre U. Pour toute suite $(f_n)_{n=0}^{\infty} \subset \mathcal{F}$ par la première partie, nous sommes en mesure d'appliquer le théorème d'Arzéla-Ascoli. Il existe alors une sous-suite que l'on numérote f_n^1 qui converge uniformément sur K_1 . En réappliquant le même raisonnement à f_n^1 et K_2 , il existe une sous-suite f_n^2 de f_n^1 (et donc une sous-sous-suite de la suite originale) qui converge sur K_2 . On construit ainsi pour tout m une sous-suite f_n^m . Finalement, on choisit la suite diagonale f_m^m qui converge uniformément alors sur K_m pour tout m et donc sur tout compact $K \in U$ vers une fonction $f: U \to \mathbb{C}$. Par la proposition 173, f est holomorphe, ce qui conclut la preuve de l'exercice.

<u>Exercice 4.</u> Montrer que dans le théorème de l'application conforme de Riemann, l'hypothèse $U \neq \mathbb{C}$ est nécessaire et identifier quelle partie de la preuve ne fonctionne pas.

Démonstration. Si on suppose que $f: \mathbb{C} \to \mathbb{D}$ est conforme, alors en particulier on doit avoir que $|f(z)| \leq 1$ pour tout $z \in \mathbb{C}$. Puisque qu'elle est holomorphe sur tout \mathbb{C} , alors par le théorème de Liouville elle est constante. Du coup, il existe z_0 tel que $f(\mathbb{C}) = z_0$ ce qui contredit la conformité de f puisqu'on doit avoir $f(\mathbb{C}) = \mathbb{D}$. \square

Exercice 5. Trouver une application conforme $f: \mathbb{C} \setminus \mathbb{R}_{-} \to \mathbb{D}$.

Démonstration. On peut choisir d'envoyer de manière conforme $\mathbb{C} \setminus \mathbb{R}_-$ sur \mathbb{H} par l'application $z \mapsto i\sqrt{z}$, ensuite composer avec la fonction $z \mapsto \frac{z-i}{z+i}$ qui envoie \mathbb{H} sur \mathbb{D} .