Learning Objective: Small Signal Parameters

Problem 1. Consider the following I_D equation

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2}$$

Show the following equality.

(a)
$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) = 2K_n (V_{GS} - V_{TH})$$

(b)
$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = 2\sqrt{K_n I_D}$$

(c)
$$g_m = \frac{2I_D}{V_{GS} - V_{TH}}$$

Learning Objective: Maximum Voltage Swing Configuration

Problem 2. Consider a resistive load common source amplifier below, where $R_D = 1 \,\mathrm{k}\Omega$ and $V_{DD} = 5 \,\mathrm{V}$. The n-channel MOSFET has a threshold voltage $V_{\mathrm{TH}} = 0.7 \,\mathrm{V}$, conduction parameter $K_n = 0.5 \,\mathrm{mA/V^2}$. Assume $\lambda = 0, \, \gamma = 0$.

- (a) Determine the range of output voltage V_{out} to operate the MOSFET M_1 in saturation region.
- (b) Determine the range of input voltage V_{in} to operate the MOSFET M_1 in saturation region.
- (c) Assume the MOSFET operates at the center of the saturation region, determine the **Q-point of the** MOSFET (V_{DS}, I_D) and the input voltage V_{in} .

Learning Objective: Common Source Amplifier without R_s

Problem 3. A common-source amplifier circuit has following parameters: $Kn = 0.6 \text{ mA/V}^2$, $V_{DD} = 3.5 \text{ V}$, $R_D = 12 \text{ k}\Omega$, $R_1 = 144 \text{ k}\Omega$, $R_2 = 65 \text{ k}\Omega$, $R_{Si} = 12 \text{ k}\Omega$, $V_{TN} = 0.5 \text{ V}$, and $\lambda = 0.018 \text{ V}^{-1}$.

- (a) Determine I_{DQ} .
- (b) Prove that the transistor is biased in the saturation region.
- (c) Determine g_m and r_o for the small-signal FET model.
- (d) Determine the **input and output resistances** of the common source amplifier.
- (e) Determine the small signal voltage gain.

Learning Objective: Common Source Amplifier with R_s

Problem 4. Consider a resistive load common source amplifier below. Assume the MOSFET operates in saturation, $R_S \neq 0$, $\lambda = 0$, $\gamma = 0$.

- (a) Plot the small signal equivalent circuit of the given amplifier.
- (b) Derive an expression of the output voltage and small-signal voltage gain.

Learning Objective: Common Source Amplifier

Problem 5. Consider a resistive load common source amplifier below. Assume the MOSFET operates in saturation, $\lambda \neq 0, \ \gamma = 0$.

- (a) Plot the small signal equivalent circuit of the given amplifier.
- (b) Determine the expression of **output voltage** and **small-signal voltage gain**.