邓建松

2018年11月9日

松弛迭代法的局限性

共轭梯度法

邓建松

基本框架

最速下降沒

共轭梯度法及其基本性质

生原

基本性质

实用共轭梯度法及 收敛性

 実用共轭梯度法

收敛性分析

SOR迭代法中如能取得最佳松弛因子,算法的效率会得到数量级上的提高

松弛迭代法的局限性

共轭梯度法

邓建松

基 本 框 劣 步长的确定

最速下降沒

共轭梯度法及其基本性质

共轭梯度法

实用共轭梯度法及

实用共轭梯度法

- SOR迭代法中如能取得最佳松弛因子,算法的 效率会得到数量级上的提高
- 而最佳松弛因子只在系数矩阵具有较好性质时 才有可能找到

松弛迭代法的局限性

共轭梯度法

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度? 基本性质

实用共轭梯度法及其 收敛性

收敛性分析

SOR迭代法中如能取得最佳松弛因子,算法的效率会得到数量级上的提高

- 而最佳松弛因子只在系数矩阵具有较好性质时 才有可能找到
- 而且上节在计算最佳松弛因子时,还用到了对 应的Jacobi迭代矩阵的谱半径

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基本

性质

基本性质

实用共轭梯度法

的効性分析

这是一种不需要确定任何参数的求解对称正定 线性方程组的方法

共轭梯度法

邓建松

基本框列

品读下降注

最速卜降法

共轭梯度法及其基本性质

共轭梯度沿

实用共轭梯度法及

实用共轭梯度法

- 这是一种不需要确定任何参数的求解对称正定 线性方程组的方法
- 它是上世纪50年代初期由M.R. Hestenes和E. Stiefel首先提出的

共轭梯度法

邓建松

基本框列

最速下降法

共轭梯度法及其基本 性质

共轭梯度法 基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度 收敛性分析

- 这是一种不需要确定任何参数的求解对称正定 线性方程组的方法
- 它是上世纪50年代初期由M.R. Hestenes和E. Stiefel首先提出的
- 自后得到了长足的发展,成为求解大型稀疏线 性方程组最受欢迎的一类方法

共轭梯度法

- 这是一种不需要确定任何参数的求解对称正定 线性方程组的方法
- 它是上世纪50年代初期由M.R. Hestenes和E. Stiefel首先提出的
- 自后得到了长足的发展,成为求解大型稀疏线 性方程组最受欢迎的一类方法
- 它也是求解大型非线性优化问题的主要方法之

线性方程组与对应的二次泛函

共轭梯度法

水母科

基本框架

步长的确定

最速下降法

共轭梯度 法及其事

性质

共轭梯度法

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

女敛性分析

• 设A为对称正定矩阵

线性方程组与对应的二次泛函

共轭梯度法

邓建松

基本框架

少区的则定

最速下降法

共轭梯度法及其基本 性质

生质

基本性质

实用共轭梯度法及非 收分性

实用共轭梯度法

收敛性分析

- 设A为对称正定矩阵
- 考虑线性方程组Ax = b的求解

线性方程组与对应的二次泛函

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基本性质

共轭梯度活

实用共轭梯度法及身 版 4 4 4 4

实用共轭梯度法

女敛性分析

- 设A为对称正定矩阵
- 考虑线性方程组Ax = b的求解
- 为此我们定义二次函数

$$\varphi(x) = x^T A x - 2b^T x$$

定理

共轭梯度法

邓建松

基本框架

步长的确定

最速下降沒

最速卜降2

共轭梯度法及其基2 性质

共轭梯度法

基本性质

实用共轭梯度法及。 收敛性

头用头视像及? 此*你*母 众坛

定理

设A对称正定,求方程组Ax = b的解等价于 求二次函数 $\varphi(x)$ 的极小值点

共轭梯度法

邓建松

基本框架

JEJZ MYZAC

具油工改计

取迷下牌法

共轭梯度法及共基本

共轭梯度法

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

收敛性分析

• 直接计算可得

$$\frac{\partial \varphi}{\partial x_i} = 2(a_{i1}x_1 + \cdots + a_{in}x_n) - 2b_i$$

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

取处 1 PH1公

共轭梯度法及共基本

工灰

实用共轭梯度法及

实用共轭梯度法

• 直接计算可得

$$\frac{\partial \varphi}{\partial x_i} = 2(a_{i1}x_1 + \cdots + a_{in}x_n) - 2b_i$$

所以

$$\nabla \varphi(x) = 2(Ax - b)$$

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

#X № 1 | 1141A

共轭你及伝及共基本 性质

共轭梯度》

\$ FI ++ \$6 +¥ F

头用共轭体及法及并 收敛性

收敛性分析

• 直接计算可得

$$\frac{\partial \varphi}{\partial x_i} = 2(a_{i1}x_1 + \cdots + a_{in}x_n) - 2b_i$$

• 所以

$$\nabla \varphi(x) = 2(Ax - b)$$

• 若 $\varphi(x)$ 在某点 x_* 达到极小,则必有 $\nabla \varphi(x_*) = 0$,从而 $Ax_* = b$

共轭梯度法

邓建村

基本框架

步长的确定

最速下降法

II. dee Dig about en

共轭体及法及共基本 性质

大祀伽及

实用共轭梯度法及其

实用共轭梯度法

收敛性分析

• 直接计算可得

$$\frac{\partial \varphi}{\partial x_i} = 2(a_{i1}x_1 + \cdots + a_{in}x_n) - 2b_i$$

• 所以

$$\nabla \varphi(x) = 2(Ax - b)$$

- 若 $\varphi(x)$ 在某点 x_* 达到极小,则必有 $\nabla \varphi(x_*) = 0$,从而 $Ax_* = b$

求解方法: 盲人下山

共轭梯度法

邓建松

基本框架

最速卜降法

共轭梯度法及其基本

|工*|*|火 | 世紀後年注

基本性质

实用共轭梯度法及非 医幼性

实用共轭梯度法

收敛性分析

• 为了求解线性方程组,我们可以计算二次函数 $\varphi(x)$ 的极小值

求解方法: 盲人下山

共轭梯度法

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度? 基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

- 为了求解线性方程组,我们可以计算二次函数 $\varphi(x)$ 的极小值
- 为了求二次函数的极小值,我们可以模拟盲人下山:先任意给定一个初始点 x_0 ,确定一个下山的方向 p_0 ,沿着经过点 x_0 而方向为 p_0 的直线 $x=x_0+\alpha p_0$ 上找一点 x_1 使 $\varphi(x)$ 达到极小

共轭梯度法

邓建树

基本框

.....

品读下路对

共轭梯度法及其基本

性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

女敛性分析

● 第一步走到x₁

共轭梯度法

邓建树

基本框架

步长的确定

最速下降法

共轭梯度法及其基本

基本性质

实用共轭梯度法及非 收分性

实用共轭梯度法

● 第一步走到x₁

• 然后在 x_1 点,再找一个下山的方向 p_1 ,沿直 线 $x = x_1 + \alpha p_1$ 再跨出一步

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基本

性质

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度

- 第一步走到x₁
- 然后在 x_1 点,再找一个下山的方向 p_1 ,沿直 线 $x = x_1 + \alpha p_1$ 再跨出一步
 -

共轭梯度法

邓建林

基本框架

步长的确定

最速下降法

共轭梯度法及其基

性质

基本性质

实用共轭梯度法及 收敛性

实用共轭梯度

- 第一步走到x₁
- 然后在 x_1 点,再找一个下山的方向 p_1 ,沿直 线 $x = x_1 + \alpha p_1$ 再跨出一步
-
- 这样就得到一串参数 α_i 和方向 p_i .

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度 收敛性分析

- 第一步走到x₁
- 然后在 x_1 点,再找一个下山的方向 p_1 ,沿直 线 $x = x_1 + \alpha p_1$ 再跨出一步
- **.....**
- 这样就得到一串参数 α_i 和方向 p_i .
- p_i称为搜索方向,α_k为步长

共轭梯度法

邓建树

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度活

实用共轭梯度法及其

实用共轭梯度法

收敛性分析

- 第一步走到x₁
- 然后在 x_1 点,再找一个下山的方向 p_1 ,沿直 线 $x = x_1 + \alpha p_1$ 再跨出一步
- **.....**
- 这样就得到一串参数 α_i 和方向 p_i .
- p_i 称为搜索方向, α_k 为步长
- 不同的确定搜索方向和步长的方法,就得出不同的算法

步长的确定

共轭梯度法

邓建松

步长的确定

最速下降法

共轭梯度法及其基本

性质

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

女敛性分析

• 设 x_k 已确定,下山方向 p_k 也确定

步长的确定

共轭梯度法

邓建松

基本框势

步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及 收敛性

实用共轭梯度法

火州火机6000 收敛性分析

- 设 x_k 已确定,下山方向 p_k 也确定
- 任务: 在直线 $x = x_k + \alpha p_k$ 上确定 α_k 使 得 $\varphi(x)$ 在 $x_{k+1} = x_k + \alpha_k p_k$ 处达到极小

步长的确定

共轭梯度法

邓建村

基本框

步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度 基本性质

实用共轭梯度法及其 收敛性

收敛性分析

- 设xょ已确定,下山方向pょ也确定
- 任务: 在直线 $x = x_k + \alpha p_k$ 上确定 α_k 使 得 $\varphi(x)$ 在 $x_{k+1} = x_k + \alpha_k p_k$ 处达到极小
- $\diamondsuit f(\alpha) = \varphi(x_k + \alpha p_k)$, 则

$$f(\alpha) = (x_k + \alpha p_k)^T A(x_k + \alpha p_k) - 2b^T (x_k + \alpha p_k)$$

= $\alpha^2 p_k^T A p_k - 2\alpha r_k^T p_k + \varphi(x_k)$

其中 $r_k = b - Ax_k$ 为 $\varphi(x)$ 在 $x = x_k$ 的负梯度方向

求导确定 α_k

共轭梯度法

邓建松

基本框势

ale to desire a

最速下降法

共轭梯度法及其基本

性质

共轭梯度沿

实用共轭梯度法及:

定田土柘料府注

实用共轭梯度法

女敛性分析

• 计算 $f(\alpha)$ 的导数:

$$f'(\alpha) = 2\alpha p_k^T A p_k - 2r_k^T p_k$$

求导确定 α_k

共轭梯度法

基本框架

JE JE MYZNE

最速下降法

最速卜降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

ψ 计算f(α)的导数:

$$f'(\alpha) = 2\alpha p_k^T A p_k - 2r_k^T p_k$$

• 令
$$f'(\alpha) = 0$$
即得 $\alpha_k = \frac{r_k^T p_k}{p_k^T A p_k}$,由此算出 x_{k+1}

求导确定 α_k

共轭梯度法

邓建松

基本框列

最速下降法

共轭梯度法及其基本 性质

共轭梯度

实用共轭梯度法及基 收敛性

收敛性分析

• 计算 $f(\alpha)$ 的导数:

$$f'(\alpha) = 2\alpha p_k^T A p_k - 2r_k^T p_k$$

- 令 $f'(\alpha) = 0$ 即得 $\alpha_k = \frac{r_k^T p_k}{p_k^T A p_k}$,由此算出 x_{k+1}
- 验证:

$$\varphi(x_{k+1}) - \varphi(x_k) = \alpha_k^2 p_k^T A p_k - 2\alpha_k r_k^T p_k$$
$$= -\frac{(r_k^T p_k)^2}{p_k^T A p_k}$$

因此只要 $r_k^T p_k \neq 0$,我们就有 $\varphi(x_{k+1}) < \varphi(x_k)$

共轭梯度法

邓建松

基本框

步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

• 在第k步确定了搜索方向 p_k 后,按照前述公式确定步长 α_k ,那么到达了新点 $x_{k+1} = x_k + \alpha_k p_k$

共轭梯度法

邓建松

基本框

步长的明定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

实用共轭梯度法及非

实用共轭梯度法

- 在第k步确定了搜索方向 p_k 后,按照前述公式确定步长 α_k ,那么到达了新点 $x_{k+1} = x_k + \alpha_k p_k$
- 显然 p_k 与等值线 $\varphi(x) = \varphi(x_{k+1})$ 相切于 点 $x = x_{k+1}$

共轭梯度法

邓建树

基本框

具油下欧洲

ALCE I PHIA

共轭梯度法及其基本 性质

共轭梯度污 基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度 收敛性分析

- 在第k步确定了搜索方向 p_k 后,按照前述公式确定步长 α_k ,那么到达了新点 $x_{k+1} = x_k + \alpha_k p_k$
- 显然 p_k 与等值线 $\varphi(x) = \varphi(x_{k+1})$ 相切于 点 $x = x_{k+1}$
- $r_{k+1} = b Ax_{k+1}$ 是上述等值线在 $x = x_{k+1}$ 处的 法向量

共轭梯度法

邓建松

基本框

具油下欧洲

最速卜降法

共轭梯度法及其基本 性质

共轭梯度活 基本性质

实用共轭梯度法及其 收敛性

实用买轭梯度 收敛性分析

- 在第k步确定了搜索方向 p_k 后,按照前述公式确定步长 α_k ,那么到达了新点 $x_{k+1} = x_k + \alpha_k p_k$
- 显然 p_k 与等值线 $\varphi(x) = \varphi(x_{k+1})$ 相切于 点 $x = x_{k+1}$
- $r_{k+1} = b Ax_{k+1}$ 是上述等值线在 $x = x_{k+1}$ 处的 法向量
- 所以 $r_{k+1}^T p_k = 0$

共轭梯度法

邓建村

基本框象

島油下陈辻

共轭梯度法及其基本 性质

共轭梯度污 基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度 收敛性分析

- 在第k步确定了搜索方向 p_k 后,按照前述公式确定步长 α_k ,那么到达了新点 $x_{k+1} = x_k + \alpha_k p_k$
- 显然 p_k 与等值线 $\varphi(x) = \varphi(x_{k+1})$ 相切于 点 $x = x_{k+1}$
- $r_{k+1} = b Ax_{k+1}$ 是上述等值线在 $x = x_{k+1}$ 处的 法向量
- 所以 $r_{k+1}^T p_k = 0$
- 后面我们用代数方法证明更一般性的结论

下山方向的确定: 最速下降法

共轭梯度法

邓建树

基本框势

步长的确定

最速下降法

开起接嵌头五:

性质

共轭梯度法

实用共轭梯度法及

实用共轭梯度法

收敛性分析

• $\varphi(x)$ 增加最快的方向是梯度方向

下山方向的确定: 最速下降法

共轭梯度法

邓建松

基本框

步长的确定

最速下降法

共轭体及法及共基本 性质

共轭梯度法

基本性质

实用共轭梯度法及非 此敛性

实用共轭梯度法

收敛性分析

- $\varphi(x)$ 增加最快的方向是梯度方向
- 因此负梯度方向应该是 $\varphi(x)$ 减小最快的方向

下山方向的确定:最速下降法

共轭梯度法

邓建松

基本框架

最速下降法

最速下降法

共轭梯度法及其基本 性质

共轭梯度 基本性质

实用共轭梯度法及 收敛性

- $\varphi(x)$ 增加最快的方向是梯度方向
- 因此负梯度方向应该是 $\varphi(x)$ 减小最快的方向
- 所以我们取pk为负梯度方向

$$r_k = b - Ax_k$$

收敛定理的准备:一个引理

共轭梯度法

邓建松

基本框

最速下降法

共轭梯度法及其基本 性质

共轭梯度?

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

引理

设A的特征值为 $0 < \lambda_1 \leq \cdots \leq \lambda_n$, P(t)是一个关于t的多项式,则对 $\forall x \in \mathbb{R}^n$

$$||P(A)x||_A \leqslant \max_{1 \leqslant i \leqslant n} |P(\lambda_i)|||x||_A$$

其中
$$\|x\|_A = \sqrt{x^T A x}$$

引理的证明

共轭梯度法

最速下降法

• 取由A对应于 $\lambda_1, \ldots, \lambda_n$ 的特征向量 y_1, \ldots, y_n , 其构成ℝ"的一组标准正交基

引理的证明

共轭梯度法

邓建松

基本框架 步长的确定

最速下降法

共轭梯度法及其基本 性质

基本性质

实用共轭梯度法及其 收敛性

实用 共轭 梯度 收敛性分析

- 取由A对应于 $\lambda_1, \ldots, \lambda_n$ 的特征向量 y_1, \ldots, y_n , 其构成 \mathbb{R}^n 的一组标准正交基
- 对任意 $x \in \mathbb{R}^n$, $x = \sum_{i=1}^n \beta_i y_i$, 从而有

$$x^{T}P(A)AP(A)x = \left(\sum_{i=1}^{n} \beta_{i}P(\lambda_{i})y_{i}\right)^{T}A\left(\sum_{i=1}^{n} \beta_{i}P(\lambda_{i})y_{i}\right)$$
$$= \sum_{i=1}^{n} \lambda_{i}\beta_{i}^{2}P^{2}(\lambda_{i}) \leqslant \max_{1\leqslant i\leqslant n} P^{2}(\lambda_{i})\sum_{i=1}^{n} \lambda_{i}\beta_{i}^{2}$$
$$= \max_{1\leqslant i\leqslant n} P^{2}(\lambda_{i})x^{T}Ax$$

收敛定理

共轭梯度法

最速下降法

定理

设A的特征值为 $0 < \lambda_1 \leq \cdots \leq \lambda_n$ 则由最速 下降法产生的序列{xk}满足

$$||x_k - x_*||_A \leqslant \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^k ||x_0 - x_*||_A$$

其中
$$x_* = A^{-1}b$$

共轭梯度法

最速下降法

• 展开
$$(x - x_*)^T A(x - x_*)$$
,并利用 $Ax_* = b$ 可得
$$\varphi(x) + x_*^T A x_* = (x - x_*)^T A(x - x_*)$$

共轭梯度法

邓建松

基本框架

少区的侧连

最速下降法

共轭梯度法及其基本

性质

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度

- 展开 $(x x_*)^T A(x x_*)$,并利用 $Ax_* = b$ 可得 $\varphi(x) + x_*^T Ax_* = (x x_*)^T A(x x_*)$
- 根据xk的构造方法,我们有

$$\varphi(x_k) \leqslant \varphi(x_{k-1} + \alpha r_{k-1}), \quad \forall \alpha \in \mathbb{R}$$

共轭梯度法

邓建枢

基本框架

B 4 - 7 7 1

最速下降法

共轭梯度法及其基本 性质

共轭梯度?

实用共轭梯度法

实用共轭梯度法

收敛性分析

• 展开
$$(x - x_*)^T A(x - x_*)$$
,并利用 $Ax_* = b$ 可得
$$\varphi(x) + x_*^T Ax_* = (x - x_*)^T A(x - x_*)$$

• 根据x_k的构造方法,我们有

$$\varphi(x_k) \leqslant \varphi(x_{k-1} + \alpha r_{k-1}), \quad \forall \alpha \in \mathbb{R}$$

所以

$$(x_k - x_*)^T A(x_k - x_*)$$

 $\leq (x_{k-1} + \alpha r_{k-1} - x_*)^T A(x_{k-1} + \alpha r_{k-1} - x_*)$

共轭梯度法

最速下降法

• 根据构造方法,

$$r_{k-1} = b - Ax_{k-1} = A(x_* - x_{k-1})$$

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基

性质

基本性质

实用共轭梯度法及 收敛性

实用共轭梯度法

• 根据构造方法,

$$r_{k-1} = b - Ax_{k-1} = A(x_* - x_{k-1})$$

• 所以我们有

$$(x_{k} - x_{*})^{T} A(x_{k} - x_{*})$$

$$\leq (x_{k-1} + \alpha r_{k-1} - x_{*})^{T} A(x_{k-1} + \alpha r_{k-1} - x_{*})$$

$$= ((I - \alpha A)(x_{k-1} - x_{*}))^{T} A((I - \alpha A)(x_{k-1} - x_{*}))$$

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

ALCE I PHIA

共轭佈及法及共基本 性质

ala 1900.

基本性质

实用共轭梯度法及其 此敛性

实用共轭梯度法

• 取 $P_{\alpha}(t) = 1 - \alpha t$, 则由引理对 $\forall \alpha \in \mathbb{R}$ 有

$$||x_{k} - x_{*}||_{A} \leq ||P_{\alpha}(A)(x_{k-1} - x_{*})||_{A}$$

$$\leq \max_{1 \leq i \leq n} |P_{\alpha}(\lambda_{i})|||x_{k-1} - x_{*}||_{A}$$

收敛性分析

• 取 $P_{\alpha}(t) = 1 - \alpha t$, 则由引理对 $\forall \alpha \in \mathbb{R}$ 有

$$||x_{k} - x_{*}||_{A} \leq ||P_{\alpha}(A)(x_{k-1} - x_{*})||_{A}$$

$$\leq \max_{1 \leq i \leq n} |P_{\alpha}(\lambda_{i})|||x_{k-1} - x_{*}||_{A}$$

• 根据Chebyshev多项式的性质,

$$\min_{\alpha} \max_{\lambda_1 \leqslant t \leqslant \lambda_n} |1 - \alpha t|$$

应在
$$1 - \alpha \lambda_1 = 1 - \alpha \lambda_n$$
 互为相反数时达到,此时 $\alpha = \frac{2}{\lambda_1 + \lambda_n}$,极值为 $\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}$

共轭梯度法

邓建松

基本框势

步长的确定

最速下降法

共轭体及法及共基华 性质

共轭梯度法

实用共轭梯度法及

实用共轭梯度法

上述定理表明,从任一初始向量x₀出发,由最 速下降法产生的点列总是收敛到方程组的解

共轭梯度法

邓建枢

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及基 收敛性

实用共轭梯度

- 上述定理表明,从任一初始向量x₀出发,由最 速下降法产生的点列总是收敛到方程组的解
- 收敛速度由 $(\lambda_n \lambda_1)/(\lambda_n + \lambda_1)$ 的大小决定的

共轭梯度法

邓建松

基本框列

最速下降法

...

共轭梯度法及共基本 性质

实用共轭梯度法及其 收敛性

实用共轭梯度 收敛性分析

- 上述定理表明,从任一初始向量x₀出发,由最 速下降法产生的点列总是收敛到方程组的解
- 收敛速度由 $(\lambda_n \lambda_1)/(\lambda_n + \lambda_1)$ 的大小决定的
- 最速下降法简单易实现,而且可以充分利用A的稀疏性,但在 $\lambda_1 \ll \lambda_n$ 时速度变得非常之慢

共轭梯度法

邓建松

基-本性 朱 步长的确定

最速下降法

共轭梯度法及其基本 性质

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度? 收敛性分析 ● 上述定理表明,从任一初始向量x₀出发,由最 速下降法产生的点列总是收敛到方程组的解

- 收敛速度由 $(\lambda_n \lambda_1)/(\lambda_n + \lambda_1)$ 的大小决定的
- 最速下降法简单易实现,而且可以充分利用A的稀疏性,但在 $\lambda_1 \ll \lambda_n$ 时速度变得非常之慢
- 在求解线性方程组时很少用它,但它的想法很 重要,并且在非线性优化求解中有大量的应用 和拓展

共轭梯度法

邓建松

基本框架 步长的确定

最速下降法

共轭梯度法及其基本 性质

基本性质

实用共轭梯度法及其 收敛性

● 上述定理表明,从任一初始向量x₀出发,由最 速下降法产生的点列总是收敛到方程组的解

- 收敛速度由 $(\lambda_n \lambda_1)/(\lambda_n + \lambda_1)$ 的大小决定的
- 最速下降法简单易实现,而且可以充分利用A的稀疏性,但在 $\lambda_1 \ll \lambda_n$ 时速度变得非常之慢
- 在求解线性方程组时很少用它,但它的想法很 重要,并且在非线性优化求解中有大量的应用 和拓展

4□ > 4□ > 4 = > 4 = > = 990

共轭梯度法的动机

共轭梯度法

水毒物

基本框架

步长的确定

最速下降沒

取述下件亿

共轭梯度法及共基本 性质

共轭梯度法

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

从局部来看,负梯度方向确实是最佳的下山方向

共轭梯度法的动机

共轭梯度法

邓建松

基本框架

島神下降法

共轭梯度法及其基本

共轭梯度法

实用共轭梯度

- 从局部来看,负梯度方向确实是最佳的下山方向
- 但从整体看看,它并非最佳:迭代得到的各点 连线具有明显的锯齿形状

共轭梯度法的动机

共轭梯度法

邓建松

基本框架

最速下降沒

共轭梯度法及其基本性质

共轭梯度?

实用共轭梯度法及 收敛性

实用共轭梯度法

女敛性分析

- 从局部来看,负梯度方向确实是最佳的下山方向
- 但从整体看看,它并非最佳:迭代得到的各点 连线具有明显的锯齿形状
- 我们要寻找更好的下山方向,而且在方向寻找 上付出的代价不要太大

共轭梯度法的计算过程

共轭梯度法

邓建松

基本框势

步长的确定

最速下降法

双处 1 四石

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

• 给定初始点 x_0 ,第一步仍然选负梯度方向为下山方向,即 $p_0 = r_0$,于是有

$$\alpha_0 = \frac{r_0^T r_0}{r_0^T A r_0}, x_1 = x_0 + \alpha_0 p_0, r_1 = b - A x_1$$

共轭梯度法的计算过程

共轭梯度法

邓建松

基本框列

最速下降法

共轭梯度法及

共轭梯度法

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

收敛性分析

• 给定初始点 x_0 ,第一步仍然选负梯度方向为下山方向,即 $p_0 = r_0$,于是有

$$\alpha_0 = \frac{r_0^T r_0}{r_0^T A r_0}, x_1 = x_0 + \alpha_0 p_0, r_1 = b - A x_1$$

• 在第 $k+1(k \ge 1)$ 步,下山方向不再简单地取 r_k ,而是在过点 x_k 由向量 r_k , p_{k-1} 所张成的二维平面 π_2 内找出使函数 φ 下降最快的方向作为 p_k

共轭梯度法的计算过程

共轭梯度法

邓建松

基本框架

最速下降法

计标拼序计

共轭你及法及共生年 性质

共轭梯度法

基本性

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

• 给定初始点 x_0 ,第一步仍然选负梯度方向为下山方向,即 $p_0 = r_0$,于是有

$$\alpha_0 = \frac{r_0^T r_0}{r_0^T A r_0}, x_1 = x_0 + \alpha_0 p_0, r_1 = b - A x_1$$

- 在第 $k+1(k \ge 1)$ 步,下山方向不再简单地取 r_k ,而是在过点 x_k 由向量 r_k , p_{k-1} 所张成的二维平面 π_2 内找出使函数 φ 下降最快的方向作为 p_k
 - 注意: $r_k \perp p_{k-1}$

共轭梯度法

邓建松

基本框架

品读下降注

AX AC | MAID

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

• 考虑 φ 在 π_2 上的限制:

$$\psi(\xi, \eta) = \varphi(x_k + \xi r_k + \eta p_{k-1})$$

= $(x_k + \xi r_k + \eta p_{k-1})^T A(x_k + \xi r_k + \eta p_{k-1})$
- $2b^T (x_k + \xi r_k + \eta p_{k-1})$

共轭梯度法

邓建松

基本框架

品读下降注

............

性质

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度 收敛性分析 • 考虑 φ 在 π_2 上的限制:

$$\psi(\xi, \eta) = \varphi(x_k + \xi r_k + \eta p_{k-1})$$

= $(x_k + \xi r_k + \eta p_{k-1})^T A(x_k + \xi r_k + \eta p_{k-1})$
- $2b^T (x_k + \xi r_k + \eta p_{k-1})$

• 分别对 ξ , η 求偏导,得到局部下降最快的方向

共轭梯度法

邓建枢

基本框架

取逐下阵亿

共轭梯及法及共基本 性质

共轭梯度沿

实用共轭梯度

• 考虑 φ 在 π_2 上的限制:

$$\psi(\xi, \eta) = \varphi(x_k + \xi r_k + \eta p_{k-1})$$

= $(x_k + \xi r_k + \eta p_{k-1})^T A(x_k + \xi r_k + \eta p_{k-1})$
- $2b^T (x_k + \xi r_k + \eta p_{k-1})$

- 分别对 ξ , η 求偏导,得到局部下降最快的方向
 - 实际上直接求出的是在π2中达到最小值的点

共轭梯度法

邓建松

基本框架

最速下降法

共轭梯度法及其基本性质

共轭梯度法

实用共轭梯度法及其 收敛性

求偏导:

$$\frac{\partial \psi}{\partial \xi} = 2r_k^T A (x_k + \xi r_k + \eta p_{k-1}) - 2b^T r_k
= 2(\xi r_k^T A r_k + \eta r_k^T A p_{k-1} - r_k^T r_k)
\frac{\partial \psi}{\partial \eta} = 2p_{k-1}^T A (x_k + \xi r_k + \eta p_{k-1}) - 2b^T p_{k-1}
= 2(\xi r_k^T A p_{k-1} + \eta p_{k-1}^T A p_{k-1})$$

这里利用了
$$r_k^T p_{k-1} = 0$$

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法 收敛性分析 • 由此得唯一极值点 $\tilde{x} = x_k + \xi_0 r_k + \eta_0 p_{k-1}$, 其中 $\xi_0 \eta_0$ 满足

$$\begin{cases} \xi_0 r_k^T A r_k + \eta_0 r_k^T A p_{k-1} = r_k^T r_k \\ \xi_0 r_k^T A p_{k-1} + \eta_0 p_{k-1}^T A p_{k-1} = 0 \end{cases}$$

共轭梯度法

实用共轭梯度法及其 收敛性

女用共祝你及 收敛性分析 • 由此得唯一极值点 $\tilde{x} = x_k + \xi_0 r_k + \eta_0 p_{k-1}$, 其中 $\xi_0 \eta_0$ 满足

$$\begin{cases} \xi_0 r_k^T A r_k + \eta_0 r_k^T A p_{k-1} = r_k^T r_k \\ \xi_0 r_k^T A p_{k-1} + \eta_0 p_{k-1}^T A p_{k-1} = 0 \end{cases}$$

• 由上式可知若 $r_k \neq 0$, 则必有 $\xi_0 \neq 0$ (为什么?) 因此可取新的下山方向为

$$p_k = \frac{1}{\xi_0}(\tilde{x} - x_k) = r_k + \frac{\eta_0}{\xi_0}p_{k-1}$$

邓建松

基本框

J 1-112-10-C

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

实用共轭梯度法及其 收敛性

收敛性分析

• 由此得唯一极值点 $\tilde{x} = x_k + \xi_0 r_k + \eta_0 p_{k-1}$, 其中 $\xi_0 \eta_0$ 和 η_0 满足

$$\begin{cases} \xi_0 r_k^T A r_k + \eta_0 r_k^T A p_{k-1} = r_k^T r_k \\ \xi_0 r_k^T A p_{k-1} + \eta_0 p_{k-1}^T A p_{k-1} = 0 \end{cases}$$

• 由上式可知若 $r_k \neq 0$, 则必有 $\xi_0 \neq 0$ (为什么?) 因此可取新的下山方向为

$$p_k = \frac{1}{\xi_0}(\tilde{x} - x_k) = r_k + \frac{\eta_0}{\xi_0}p_{k-1}$$

● *n*₀是否可以等于0呢?

共轭梯度法

实用共轭梯度法及非

实用共轭梯度法 收敛性分析 • $\phi \beta_{k-1} = \eta_0/\xi_0$,则由 ξ_0 和 η_0 满足的第二个方程可知

$$\beta_{k-1} = -\frac{r_k^T A p_{k-1}}{p_{k-1}^T A p_{k-1}}$$

共轭梯度法 基本性质

实用共轭梯度法及身 收敛性

实用 共轭 梯度 收敛性分析

• 令 $\beta_{k-1} = \eta_0/\xi_0$,则由 ξ_0 和 η_0 满足的第二个方程可知

$$\beta_{k-1} = -\frac{r_k^T A p_{k-1}}{p_{k-1}^T A p_{k-1}}$$

● 如此确定的p_k满足

$$p_k^T A p_{k-1} = \left(r_k - \frac{r_k^T A p_{k-1}}{p_{k-1}^T A p_{k-1}} p_{k-1}\right)^T A p_{k-1} = 0$$

即 p_k 与 p_{k-1} 是关于A相互共轭的

公式初步梳理

共轭梯度法

邓建松

基本框

步长的确定

最速下降法

共轭梯度法及其規

性质

共轭梯度法

基本性质

实用共轭梯度法及判 收敛性

实用共轭梯度法

收敛性分析

• p_k 确定以后,可以采用前面的方法确定 α_k

公式初步梳理

共轭梯度法

邓建松

基本框架

日本工物社

最速卜降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度

- p_k 确定以后,可以采用前面的方法确定 α_k
- 总结公式为

$$\alpha_k = \frac{r_k^T p_k}{p_k^T A p_k}, \quad x_{k+1} = x_k + \alpha_k p_k$$
$$r_{k+1} = b - A x_{k+1}$$
$$\beta_k = -\frac{r_{k+1}^T A p_k}{p_k^T A p_k}, \quad p_{k+1} = r_{k+1} + \beta_k p_k$$

r_{k+1} 的简化

共轭梯度法

邓建松

基本框架

the Lot Alberto and

具油下欧洲

取逐下阵法

共轭梯度法及共基本 性质

共轭梯度活

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

● 根据*r*_{k+1}的定义,

$$r_{k+1} = b - Ax_{k+1} = b - A(x_k + \alpha_k p_k)$$
$$= r_k - \alpha_k A p_k$$

r_{k+1} 的简化

共轭梯度法

邓建枢

基本框架

步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

实用共轭梯度法及其 收敛性

实用共轭梯度收敛性分析

● 根据*r*_{k+1}的定义,

$$r_{k+1} = b - Ax_{k+1} = b - A(x_k + \alpha_k p_k)$$
$$= r_k - \alpha_k A p_k$$

• Ap_k 在计算 α_k 时已求出,所以计算 r_{k+1} 时就可以用上述递推公式得到

r_{k+1} 的简化

共轭梯度法

邓建松

基本框象

最速下降法

共轭梯度法及其基本 性质

共轭梯度法 基本性系

实用共轭梯度法及 收敛性

实用共轭梯度 收敛性分析 • 根据 r_{k+1} 的定义,

$$r_{k+1} = b - Ax_{k+1} = b - A(x_k + \alpha_k p_k)$$
$$= r_k - \alpha_k A p_k$$

- Ap_k 在计算 α_k 时已求出,所以计算 r_{k+1} 时就可以用上述递推公式得到
- 由上式可得

$$Ap_k = \frac{1}{\alpha_k} (r_k - r_{k+1})$$

α_k 和 β_k 的简化

共轭梯度法

邓建树

基本框架

步长的确定

最速下路注

共轭体及法及共生平 性盾

共轭梯度法

基太性质

实用共轭梯度法及其 收敛性

5.用共轭梯度法

女敛性分析

• 注意等式(证明后面给出)

$$r_k^T r_{k+1} = r_k^T p_{k-1} = r_{k+1}^T p_k = 0, k = 1, 2, \dots$$

α_k 和 β_k 的简化

共轭梯度法

邓建松

生平性条 步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

• 注意等式(证明后面给出)

$$r_k^T r_{k+1} = r_k^T p_{k-1} = r_{k+1}^T p_k = 0, k = 1, 2, \dots$$

• 从而我们有

$$r_{k+1}^{T} A p_{k} = \frac{1}{\alpha_{k}} r_{k+1}^{T} (r_{k} - r_{k+1}) = -\frac{1}{\alpha_{k}} r_{k+1}^{T} r_{k+1}$$

$$p_{k}^{T} A p_{k} = \frac{1}{\alpha_{k}} p_{k}^{T} (r_{k} - r_{k+1}) = \frac{1}{\alpha_{k}} p_{k}^{T} r_{k}$$

$$= \frac{1}{\alpha_{k}} r_{k}^{T} (r_{k} + \beta_{k-1} p_{k-1}) = \frac{1}{\alpha_{k}} r_{k}^{T} r_{k}$$

α_k 和 β_k 的简化

共轭梯度法

邓建松

基本框势

步长的确定

最速下降法

共轭梯度法及其

性质

共祀你及这

实用共轭梯度法及其 收敛性

实用共轭梯度法

• 回忆:

$$\alpha_k = \frac{r_k^T p_k}{p_k^T A p_k} \quad \beta_k = -\frac{r_{k+1}^T A p_k}{p_k^T A p_k}$$

α_{k} 和 β_{k} 的简化

共轭梯度法

回忆:

$$\alpha_k = \frac{r_k^T p_k}{p_k^T A p_k} \quad \beta_k = -\frac{r_{k+1}^T A p_k}{p_k^T A p_k}$$

• $对\alpha_{k}$ 的分式进行简化;并且把前页两 式相除,可对 β_{ι} 进行简化:

$$\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k} \quad \beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$$

共轭梯度法

邓建松

基本框列

步长的确定

最速下降沒

性质 性质

共轭梯度沿

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

收敛性分析

共轭梯度法

邓建松

基本框列

步长的确定

最速下降沒

....

性质

共轭梯度剂

基本性质

实用共轭梯度法及 收敛性

实用共轭梯度法

收敛性分析

共轭梯度法

邓建松

基本框

步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及F 收敛性

火敛性分析

共轭梯度法

邓建松

基本框架

島油下際辻

取逐下阵否

共轭梯度法及其基本 性质

共轭梯度?

基本性质

实用共轭梯度法及其 收敛性

收敛性分析

- ② 定义 $\mathcal{K}(A, r_0, k+1) = \operatorname{span}\{r_0, Ar_0, \dots, A^k r_0\},$ 称为 Krylov 子空间,则 $\operatorname{span}\{r_0, \dots, r_k\} = \operatorname{span}\{p_0, \dots, p_k\} = \mathcal{K}(A, r_0, k+1)$

k = 1时性质的证明

共轭梯度法

邓建杉

基本框架

- 北长的確立

具油下欧洲

取述「阵弦

共轭梯度法及其基本 M m

世細 総 庇 社

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

女敛性分析

• 对k进行归纳证明

k = 1时性质的证明

共轭梯度法

邓建松

基本框架

- - -----

最速下降法

共轭梯度法及其基本

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

• 对k进行归纳证明

● 当k = 1时, 因为

$$p_{0} = r_{0}, r_{1} = r_{0} - \alpha_{0}Ap_{0}, p_{1} = r_{1} + \beta_{0}p_{0},$$

$$p_{0}^{T}r_{1} = r_{1}^{T}r_{0} = r_{0}^{T}(r_{0} - \alpha_{0}Ar_{0})$$

$$= r_{0}^{T}r_{0} - \alpha_{0}r_{0}^{T}Ar_{0} = 0,$$

$$p_{1}^{T}Ap_{0} = (r_{1} + \beta_{0}r_{0})^{T}Ar_{0}$$

$$= r_{1}^{T}Ar_{0} - \frac{r_{1}^{T}Ar_{0}}{r_{0}^{T}Ar_{0}}r_{0}^{T}Ar_{0} = 0$$

所以性质成立

性质(1)

共轭梯度法

邓建松

基本框 第

最速下降法

共轭梯度法及其基本 性质

共轭梯度流

基本性质

实用共轭梯度法及 收敛性

实用买轭梯度法 收敛性分析 假设性质在k时成立,我们证明在k+1时也成立

① 由于 $r_{k+1} = r_k - \alpha_k A p_k$ 以及归纳假设,我们有

$$p_i^T r_{k+1} = p_i^T r_k - \alpha_k p_i^T A p_k = 0, 0 \leqslant i \leqslant k-1$$

又由于

$$p_{k}^{T}r_{k+1} = p_{k}^{T}r_{k} - \frac{p_{k}^{T}r_{k}}{p_{k}^{T}Ap_{k}}p_{k}^{T}Ap_{k} = 0$$

所以性质(1)在k+1时成立

性质(2)

共轭梯度法

邓建松

基本框架

最速下降沒

共轭梯度法及其基本

共轭梯度沿

基本性质

实用共轭梯度法及 收敛性

实用共轭梯度法

实用共轭梯度:

② 由归纳假设

$$\mathrm{span}\{r_0,\ldots,r_k\}=\mathrm{span}\{p_0,\ldots,p_k\}$$

则由性质(1)可知 r_{k+1} 与上述空间正交,从而性质(2)在k+1时成立

性质(3)

共轭梯度法

邓建松

基本框架

最速下路过

4X AC | P4-12

共轭梯度法及其基本性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

③ 根据归纳假设, 当i = 0, 1, ..., k − 1时

$$p_{i}^{T}Ap_{k+1} = p_{i}^{T}A(r_{k+1} + \beta_{k}p_{k}) = r_{k+1}^{T}Ap_{i}$$

$$= \frac{1}{\alpha_{i}}r_{k+1}^{T}(r_{i} - r_{i+1}) = 0$$

$$p_{k+1}^{T}Ap_{k} = (r_{k+1} + \beta_{k}p_{k})^{T}Ap_{k}$$

$$= r_{k+1}^{T}Ap_{k} - \frac{r_{k+1}^{T}Ap_{k}}{p_{k}^{T}Ap_{k}}p_{k}^{T}Ap_{k} = 0$$

所以性质(3)成立

性质(4)

共轭梯度法

邓建松

基本框架

島迪下 降 注

取迷下降法

共轭梯度法及其基本 性质

共轭梯度沿

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

△ 由归纳假设可知

 $r_k, p_k \in \mathcal{K}(A, r_0, k+1) = \operatorname{span}\{r_0, Ar_0, \dots, A^k r_0\}$ 于是

$$r_{k+1} = r_k - \alpha_k A p_k \in \mathcal{K}(A, r_0, k+2),$$

$$p_{k+1} = r_k + \beta_k A p_k \in \mathcal{K}(A, r_0, k+2),$$

而根据性质(2),(3), r_0, \ldots, r_{k+1} 和 p_0, \ldots, p_{k+1} 都是线性无关的,所以性质(4)成立

Krylov子空间

共轭梯度法

邓建松

基本框架

島迪下 降 过

取迷下阵法

共轭梯度法及其基本 性质

共轭梯度

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

• 前述性质表明,向量组 r_0, \ldots, r_k 和 p_0, \ldots, p_k 分别是Krylov子空间 $\mathcal{K}(A, r_0, k+1)$ 的正交基和共轭正交基

Krylov子空间

共轭梯度法

邓建松

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度剂

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度; b 幼性分析

- 前述性质表明,向量组 r_0, \ldots, r_k 和 p_0, \ldots, p_k 分别是Krylov子空间 $\mathcal{K}(A, r_0, k+1)$ 的正交基和共轭正交基
- 所以采用共轭梯度法至多n步就得到方程组的解 x_*

Krylov子空间

共轭梯度法

邓建松

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度剂

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

- 前述性质表明,向量组 r_0, \ldots, r_k 和 p_0, \ldots, p_k 分别是Krylov子空间 $\mathcal{K}(A, r_0, k+1)$ 的正交基和共轭正交基
- 所以采用共轭梯度法至多n步就得到方程组的解 x_*
- 理论上讲, 共轭梯度法是直接法

精度估计

共轭梯度法

邓建松

基本框

步长的确定

最速下降污

以还 1. be-12

共轭梯度法及其基本 性质

共轭梯度流

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

定理

用共轭梯度法计算得到的近似解Xk满足

$$\varphi(x_k) = \min\{\varphi(x) : x \in x_0 + \mathcal{K}(A, r_0, k)\}$$

或者等价地表示为

$$||x_k-x_*||_A = \min\{||x-x_*||_A : x \in x_0 + \mathcal{K}(A, r_0, k)\}$$

定理证明

共轭梯度法

邓建松

基本框

JIS JAS AN ZAKIO

最速下降沒

共轭梯度法及共基4 性质

共轭梯度法

基本性质

实用共轭梯度法及非 此敛性

空用共振梯度法

收敛性分析

• 由 $\varphi(x) + x_*^T A x_* = (x - x_*)^T A (x - x_*)$ 可知要证的两式是等价的。下面只证第二式成立

定理证明

共轭梯度法

邓建松

基本框

最速下降沒

共轭梯度法及其基本 性质

共轭梯度

基本性质

实用共轭梯度法及其 收敛性

收敛性分析

- 由 $\varphi(x) + x_*^T A x_* = (x x_*)^T A (x x_*)$ 可知要证的两式是等价的。下面只证第二式成立
- 假设共轭梯度法计算到 ℓ 步出现 $r_{\ell}=0$,那么有

$$x_* = x_{\ell} = x_{\ell-1} + \alpha_{\ell-1}p_{\ell-1}$$

$$= x_{\ell-2} + \alpha_{\ell-2}p_{\ell-2} + \alpha_{\ell-1}p_{\ell-1}$$

$$= \cdots$$

$$= x_0 + \alpha_0p_0 + \alpha_1p_1 + \cdots + \alpha_{\ell-1}p_{\ell-1}$$

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基本 性质

非細梯度法

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

● 而对计算过程中任一步k < ℓ, 我们有

$$x_k = x_0 + \sum_{j=0}^{k-1} \alpha_j p_j \in x_0 + \mathcal{K}(A, r_0, k)$$

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

● 而对计算过程中任一步k < ℓ, 我们有

$$x_k = x_0 + \sum_{j=0}^{k-1} \alpha_j p_j \in x_0 + \mathcal{K}(A, r_0, k)$$

• 设 $x \in \mathcal{K}(A, r_0, k)$ 为任一向量,则x有表示

$$x = x_0 + \sum_{j=0}^{k-1} \gamma_j p_j$$

共轭梯度法

基本性质

实用共轭梯度法及 收敛性

实用共轭体B 收敛性分析 • 而对计算过程中任一步 $k < \ell$, 我们有

$$x_k = x_0 + \sum_{j=0}^{k-1} \alpha_j p_j \in x_0 + \mathcal{K}(A, r_0, k)$$

• 设 $x \in \mathcal{K}(A, r_0, k)$ 为任一向量,则x有表示

$$x = x_0 + \sum_{i=0}^{k-1} \gamma_i p_i$$

• 于是

$$x_* - x = \sum_{j=0}^{k-1} (\alpha_j - \gamma_j) p_j + \sum_{j=k}^{\ell-1} \alpha_j p_j$$

共轭梯度沿

基本性质

实用共轭梯度法及其 收敛性

空用非短梯度法

收敛性分析

• 而 $x_* - x_k = \sum_{j=k}^{\ell} \alpha_j p_j$,根据共轭梯度法的性质(3)可得

$$||x_{*} - x||_{A}^{2} = \left\| \sum_{j=0}^{k-1} (\alpha_{j} - \gamma_{j}) p_{j} \right\|_{A}^{2} + \left\| \sum_{j=k}^{\ell-1} \alpha_{j} p_{j} \right\|_{A}^{2}$$

$$\geqslant \left\| \sum_{j=k}^{\ell-1} \alpha_{j} p_{j} \right\|_{A}^{2} = ||x_{*} - x_{k}||_{A}^{2}$$

共轭梯度法

邓建树

基本框

ils IZ Alexton

最速下降沒

共轭梯度法及其:

性质

共轭梯度法

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

收敛性分析

共轭梯度法在理论上确保至多n步得到方程组的精确解

共轭梯度法

邓建松

基本框列

8 + T 86 V

最速下降沒

共轭梯度法及其基本性质

共轭梯度法

实用共轭梯度法及

实用共轭梯度法

● 共轭梯度法在理论上确保至多*n*步得到方程组 的精确解

在实际使用时由于误差的存在,使得r_k之间的 正交性很快损失,所以有限步终止性不再成立

共轭梯度法

邓建松

基本框列

最速下降法

共轭梯度法及其基本 性质

共轭梯度法 基本性质

实用共轭梯度法及: 收敛性

实用共轭体度 收敛性分析

- 共轭梯度法在理论上确保至多n步得到方程组的精确解
- 在实际使用时由于误差的存在,使得r_k之间的 正交性很快损失,所以有限步终止性不再成立
- 而且在实际应用中,由于*n*一般很大,迭代*n*次 迭代所耗费的计算时间令人无法接受

共轭梯度法

邓建松

基本框架 步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度法 基本性质

实用共轭梯度法及: 收敛性

- 共轭梯度法在理论上确保至多n步得到方程组 的精确解
- 在实际使用时由于误差的存在,使得r_k之间的 正交性很快损失,所以有限步终止性不再成立
- 而且在实际应用中,由于*n*一般很大,迭代*n*次 迭代所耗费的计算时间令人无法接受
- 所以通常仍把共轭梯度法作为一种迭代法使用,当||r_k||足够小或者达到指定迭代次数时终止

共轭梯度法的优点

共轭梯度法

邓建松

基本框架

最速下降法

共轭梯度法及其基

性质

基本性质

实用共轭梯度沿

收敛性分析

在算法中,系数矩阵A仅仅用来由已知向量p产生向量Ap,因此可以充分利用A的稀疏性,而且对某些提供矩阵A困难,而可以方便由p产生向量Ap的应用问题,这种方法十分有用

共轭梯度法的优点

共轭梯度法

基本框架

最速下降法

共轭梯度法及其基本性质

共轭梯度法 基本性质

> (用共轭梯度法及非 (敛性

- 在算法中,系数矩阵A仅仅用来由已知向量p产生向量Ap,因此可以充分利用A的稀疏性,而且对某些提供矩阵A困难,而可以方便由p产生向量Ap的应用问题,这种方法十分有用
- 不需要预先估计任何参数就可以计算

共轭梯度法的优点

共轭梯度法

基本框架
步长的确定
最速下降法
共轭梯度法及其
性质

共轭梯度法 基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度 收敛件分析

- 在算法中,系数矩阵A仅仅用来由已知向量p产生向量Ap,因此可以充分利用A的稀疏性,而且对某些提供矩阵A困难,而可以方便由p产生向量Ap的应用问题,这种方法十分有用
- 不需要预先估计任何参数就可以计算
- 每次迭代的主要计算就是向量之间的运算,因此便于并行化

作为迭代法的收敛性估计

共轭梯度法

若系数矩阵与单位矩阵的差是一个秩为r的 矩阵,而且r又很小的话,那么共轭梯度法 收敛得很快

定理

如果A = I + B, rank B = r, 那么共轭梯度 法至多迭代r+1步即可得到方程

组Ax = b的精确解

定理证明

共轭梯度法

邓建松

基本框架

最速下降沒

共轭梯度法及其基本性质

共轭梯度法

基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

收敛性分析

• 注意到 $\operatorname{rank} B = r$ 蕴涵着

$$\mathrm{span}\{r_0, Ar_0, \dots, A^k r_0\} = \mathrm{span}\{r_0, Br_0, \dots, B^k r_0\}$$

的维数不会超过r+1,因此定理成立。

误差估计

共轭梯度法

邓建松

基本框架

步长的确定

最速下降決

AL 400 IM 6NO NA

共轭体及法及共基本 性质

共轭梯度法

基本性质

火 收敛性

实用共轭梯度法

收敛性分析

定理

用共轭梯度法求得的rk有如下的误差估计:

$$||x_k - x_*||_A \leqslant 2\left(\frac{\sqrt{\kappa_2} - 1}{\sqrt{\kappa_2} + 1}\right)^k ||x_0 - x_*||_A$$

其中
$$\kappa_2 = \kappa_2(A) = ||A||_2 ||A^{-1}||_2$$

定理证明

共轭梯度法

邓建村

基本框架

步长的确定

最速下降法

性质

共祀彻及高

基本性质

女用共轭体及伝及5 收敛性

实用共轭梯度法

女敛性分析

• 由共轭梯度法的性质可知,对任意 的 $x \in x_0 + \mathcal{K}(A, r_0, k)$ 有

$$x_* - x = x_* - x_0 + \sum_{j=0}^{k-1} a_{k,j+1} A^j r_0$$

$$= \left(I + \sum_{j=1}^k a_{kj} A^j\right) A^{-1} r_0 = P_k(A) A^{-1} r_0$$

其中
$$P_k(\lambda) = 1 + \sum_{i=1}^k a_{kj} \lambda^j$$

共轭梯度法

邓建杉

基本框架

B + - - 115 +

最速下降法

共轭梯度法及其基本

性质

基本性质

实用共轭梯度法及其 医敛性

实用共轭梯度法

女敛性分析

• 令 \mathcal{P}_k 为所有满足 $P_k(0) = 1$,且次数不超过k的实系数多项式全体,则(第一个不等号应用了"最速下降法"一节中已证的引理)

$$||x_{*} - x_{k}||_{A} = \min\{||x - x_{*}||_{A} : x \in x_{0} + \mathcal{K}(A, r_{0}, k)\}$$

$$= \min_{P_{k} \in \mathcal{P}_{k}} ||P_{k}(A)A^{-1}r_{0}||_{A}$$

$$\leq \min_{P_{k} \in \mathcal{P}_{k}} \max_{1 \leq i \leq n} |P_{k}(\lambda_{i})|||A^{-1}r_{0}||_{A}$$

$$\leq \min_{P_{k} \in \mathcal{P}_{k}} \max_{a \leq \lambda \leq b} |P_{k}(\lambda)|||x_{*} - x_{0}||_{A}$$

其中 $0 < a = \lambda_0 \le \cdots \le \lambda_n = b$ 是A的特征值

thás birsteat

基本性质

实用共轭梯度法

收敛性分析

• 根据Chebyshev多项式的性质,最优化问题 $\min_{P_k \in \mathcal{P}_k} \max_{a \leqslant \lambda \leqslant b} |P_k(\lambda)|$ 有唯一解

$$ilde{P}_k(\lambda) = rac{T_k\left(rac{b+a-2\lambda}{b-a}
ight)}{T_k\left(rac{b+a}{b-a}
ight)}$$

其中 $T_k(x)$ 是k次Chebyshev多项式

共轭梯度法

邓建松

基本框架

最速下降法

共轭梯度法及其基本性质

基本性质

实用共轭梯度法及非 收敛性

实用共轭梯度法

收敛性分析

• Chebyshev多项式: $T_n(x) = cos(n \arccos x)$, 它是定义在[-1,1]上,在所有同首项系数的n次多项式中,它在[-1,1]上的绝对最大值最小

共轭梯度法

邓建松

基本框架

最速下降法

共轭体及法及共基本 性质

共和体及在基本性质

实用共轭梯度法及其

实用共轭梯度法

收敛性分析

- Chebyshev多项式: $T_n(x) = cos(n \arccos x)$, 它是定义在[-1,1]上,在所有同首项系数的n次多项式中,它在[-1,1]上的绝对最大值最小
- 在[-1,1]外用多项式形式直接延拓

共轭梯度法

邓建松

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度法 基本性质

实用共轭梯度法及 收敛性

- Chebyshev多项式: $T_n(x) = cos(n \arccos x)$, 它是定义在[-1,1]上,在所有同首项系数的n次多项式中,它在[-1,1]上的绝对最大值最小
- 在[-1,1]外用多项式形式直接延拓
- 递推公式: $T_n(x) = 2xT_{n-1}(x) T_{n-2}(x)$, $T_0(x) = 1$, $T_1(x) = x$

共轭梯度法

邓建松

基本框架

最速下降法

共轭梯度法及其基本 性质

共轭梯度法 基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

女敛性分析

• Chebyshev多项式: $T_n(x) = cos(n \arccos x)$, 它是定义在[-1,1]上,在所有同首项系数的n次多项式中,它在[-1,1]上的绝对最大值最小

- 在[-1,1]外用多项式形式直接延拓
- 递推公式: $T_n(x) = 2xT_{n-1}(x) T_{n-2}(x)$, $T_0(x) = 1$, $T_1(x) = x$
- 基于上述公式,可以证明当 $|x| \ge 1$ 时有 $T_n(x) = \frac{1}{2} \left(\left(x \sqrt{x^2 1} \right)^n + \left(x + \sqrt{x^2 1} \right)^n \right)$

共轭梯度法

邓建松

基本框架

患长的确定

拟还于件亿

共轭体及法及共垄平 性质

共轭梯度法

基本性质

实用共轭梯度法及其 此敛性

实用共轭梯度法

收敛性分析

• 当
$$\gamma > 1$$
, $x = (\gamma + 1)/(\gamma - 1)$ 时
$$x \pm \sqrt{x^2 - 1} = \frac{(\sqrt{\gamma} \pm 1)^2}{\gamma - 1},$$

实用共轭梯度法及其 收敛性

实用共轭梯度法

収敛性分析

• 当
$$\gamma > 1$$
, $x = (\gamma + 1)/(\gamma - 1)$ 时

$$x \pm \sqrt{x^2 - 1} = \frac{(\sqrt{\gamma} \pm 1)^2}{\gamma - 1},$$

从而有

$$T_n\left(rac{\gamma+1}{\gamma-1}
ight) = rac{(\sqrt{\gamma}+1)^{2n}+(\sqrt{\gamma}-1)^{2n}}{2(\gamma-1)^n} \ \geqslant rac{(\sqrt{\gamma}+1)^{2n}}{2(\gamma-1)^n}$$

重回证明

共轭梯度法

邓建松

基本框架

DE INTROPE

最速下降法

共轭梯度法及其基本

性质

基本性质

实用共轭梯度法及非 此敛性

实用共轭梯度法

收敛性分析

根据Chebyshev多项式的性质,我们有

$$egin{aligned} \max_{a\leqslant x\leqslant b} | ilde{P}_k(\lambda)| &= rac{1}{T_kigg(rac{b+a}{b-a}igg)} \ &\leqslant rac{2(b-a)^k}{(\sqrt{b}+\sqrt{a})^{2k}} \ &= 2\left(rac{\sqrt{\kappa_2}-1}{\sqrt{\kappa_2}+1}
ight)^k \end{aligned}$$

这就完成了证明($\kappa_2 = b/a$)

共轭梯度法

邓建松

基本框架

IR IZ ANTER

品读下路对

共轭梯度法及其基

性质

共轭梯度法

实用共轭梯度法及非 此敛性

实用共轭梯度法

女敛性分析

• 上述估计是十分粗糙的

共轭梯度法

邓建松

基本框架

步长的确定

最速下降法

共轭梯度法及其基本

性质

其太性质

实用共轭梯度法及其 收敛性

实用共轭梯度法

女敛性分析

- 上述估计是十分粗糙的
- 实际收敛速度往往比这个估计快得多

共轭梯度法

邓建松

坐平性第

最速下降法

共轭梯度法及其基本 性质

共轭梯度沿基本性质

实用共轭梯度法及其 收敛性

实用共轭梯度:

- 上述估计是十分粗糙的
- 实际收敛速度往往比这个估计快得多
- 但这个结果告诉我们,只要系数矩阵是十分良态的(即 $\kappa_2 \approx 1$),那么共轭梯度法就会收敛得很快

共轭梯度法

邓建松

基本框架 步长的确定

最速下降法

共轭梯度法及其基本 性质

共轭梯度? 基本性质

实用共轭梯度法及基 收敛性

实用共轭梯度法

- 上述估计是十分粗糙的
- 实际收敛速度往往比这个估计快得多
- 但这个结果告诉我们,只要系数矩阵是十分良态的(即 $\kappa_2 \approx 1$),那么共轭梯度法就会收敛得很快
- 对比于最速下降法收敛估计中的因子, 我们有

$$\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} \geqslant \frac{\sqrt{\lambda_n} - \sqrt{\lambda_1}}{\sqrt{\lambda_n} + \sqrt{\lambda_1}}$$