Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №17 по курсу:

«Функциональное и Логическое программирование»

Студент группы ИУ7-63Б: Фурдик Н. О.

(Фамилия И.О.)

Преподаватель: Толпинская Н. Б., Строганов Ю. В.

(Фамилия И.О.)

Оглавление

Іостановка задачи
Тистинг программы
Эписание порядка поиска ответов
Ответы на вопросы
Список литературы

Постановка задачи

В одной программе написать правила, позволяющие найти

1) Максимум из двух чисел

- без использования отсечения;
- с использованием отсечения.

2) Максимум из трех чисел

- без использования отсечения;
- с использованием отсечения.

Убедиться в правильности результатов. Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты!

Листинг программы

Ниже представлен листинг программы:

```
predicates
max of two(integer max, integer num1, integer num2)
max_of_three(integer max, integer num1, integer num2, integer num3)
clauses
%without
max of two(A, B, C):-C \Rightarrow B, A = C.
max of two(A, B, C):-B > C, A = B.
%with
max_of_two(A, B, C) :-C >= B, A = C, !.
max_of_two(A, B, C) :-B >= C, A = B.
%without
max of three(A, B, C, D) -C > D, C >= B, A = C.
max of three(A, B, C, D) :-B >= D, B > C, A = B.
max of three(A, B, C, D):-D \Rightarrow B, D \Rightarrow C, A = D.
%without
max of three(A, B, C, D):-C \Rightarrow D, C \Rightarrow B, A = C, !.
max of three(A, B, C, D):-B \Rightarrow D, B \Rightarrow C, A = B, !.
max of three(A, B, C, D):-D \Rightarrow B, D \Rightarrow C, A = D.
goal
%max of two
max_of_two(Max, 69, 228).
%Max=228
%1 Solution
%max of three
max of three(Max, 1, 7, 7).
%Max=7
%1 Solution
```

Листинг 1: Задания 1 и 2

Описание работы системы

Ниже представлен алгоритм поиска ответов на вопросы $\max_of_three(Max, 1, 3, 7)$ и $\max_of_three(Max, 3, 7, 1)$ с использованием отсечения и без него.

Таблица 1: Описание работы системы без использования отсечения

№ ша-	Состояние резольвенты, и вы-	Для каких термов запускается	Дальнейшие действия: прямой
га	вод: дальнейшие действия (по- чему?)	алгоритм унификации: T1=T2 и каков результат (и подста-	ход или откат (почему и к чему приводит?)
		новка)	
1	Резольвента: max_of_three(Max, 1, 3, 7). Начинается поиск совпадений по БЗ		прямой ход
2	Резольвента: max_of_three(Max, 1, 3, 7).	Нашли подходящее правило: $\max_\text{of_three}(A,\ B,\ C,\ D) := C$ $> D,\ C >= B,\ A = C.\ \Pi\text{одстав-}$ ляем $A = \text{Max},\ B = 1,\ C = 3,\ D$ $= 7$	прямой ход
3	$egin{aligned} ext{Pезольвента: } & ext{C} > ext{D}, \ & ext{max_of_three}(ext{Max},1,3,7). \end{aligned}$	Пробуем унифицировать: 3 > 7, не подходит. Откат.	откат, продолжаем поиск
4	Pезольвента: max_of_three(Max, 1, 3, 7).	$egin{aligned} { m Hamnu} & { m подходящее} & { m правило:} \ & { m max_of_three}(A,\ B,\ C,\ D):-B \ & >= D,\ B>C,\ A=B\ \Pi{ m oдстав-} \ & { m ляем}\ A={ m Max},\ B=1,\ C=3,\ D \ & =7 \end{aligned}$	прямой ход
5	P езольвента: $B >= D,$ $max_of_three(Max, 1, 3, 7).$	Пробуем унифицировать: $1>=$ 7, не подходит. Откат.	откат, продолжаем поиск
6	Резольвента: max_of_three(Max, 1, 3, 7).	Нашли подходящее правило: $ \begin{array}{ll} max_of_three(A,B,C,D) :- D \\ >= B,D >= C,A = D. \Pi og-\\ ctabляемA = Max,B = 1,C = \\ 3,D = 7 \end{array} $	прямой ход
7	P езольвента: $D >= B$, $max_of_three(Max, 1, 3, 7)$.	Пробуем унифицировать: 7>= 1, подходит, идем дальше.	прямой ход
8	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Пробуем унифицировать: 7 >= 3, подходит, идем дальше.	прямой ход
9	$egin{aligned} & = & = & = & = & = & = & = & = & = & $	Связываем A = D = 7.	прямой ход
10	max_of_three(Max, 1, 3, 7)	Подставляем Max = 7. Ответ найден	прямой ход
Вывод:	Max = 7		

Таблица 2: Описание работы системы с использованием отсечения

3.0	a	-	
№ ша-	Состояние резольвенты, и вы-	Для каких термов запускается	Дальнейшие действия: прямой
га	вод: дальнейшие действия (по-	алгоритм унификации: Т1=Т2	ход или откат (почему и к чему
	чему?)	и каков результат (и подста-	приводит?)
		новка)	
1	Резольвента:		прямой ход
	$\max_of_three(Max, 3, 7, 1).$		
	Начинается поиск совпадений		
	по БЗ		
2	Резольвента:	Нашли подходящее правило:	прямой ход
	$\max_{0} \text{ of } \text{ three}(Max, 3, 7,$	$\max_{\text{of_three}}(A, B, C, D) := C$	
	1).	$ angle >= \mathrm{D}, \mathrm{C}>= \mathrm{B}, \mathrm{A}=\mathrm{C}, !.$ Под-	
		ставляем $A = Max, B = 1, C =$	
		3, D = 7	
3	${ m Pe}$ зольвента: ${ m C}>={ m D},$	Пробуем унифицировать: 7>=	прямой ход
	$max_of_three(Max, 3, 7, 1).$	1, подходит, идем дальше.	
4	Резольвента: $C>=B$,	Пробуем унифицировать: 7>=	прямой ход
	$max_of_three(Max, 3, 7, 1).$	3, подходит, идем дальше.	
5	Резольвента: A = D,	Связываем $A=D=7$.	прямой ход
	$max_of_three(Max, 3, 7, 1).$		
6	$max_of_three(Max, 3, 7, 1)$	Связываем Мах = А = 7. От-	прямой ход
		вет найден. Поскольку отсече-	
		ние есть, дальше не идем.	
Вывод:	$\mathbf{Max} = 7$		

Ответы на вопросы

- 1) Какое первое состояние резольвенты? Изначально в резольвенте находится вопрос.
- 2) В каком случае система запускает алгоритм унификации? (Как эту необходимость на формальном уровне распознает система?) Система запускает унификацию в том случае, если ей был задан вопрос. Унификация вопроса и первого предложения базы знаний происходит на первом шаге работы программы.
- 3) **Каково назначение использования алгоритма унификации?** Алгоритм унификации необходим для попытки "увидеть одинаковость"— сопоставимость двух термов, может завершаться успехом или тупиковой ситуацией.
- 4) **Каков результат работы алгоритма унификации?** Результат алгоритма унификации ответ «да» или «нет».
- 5) В каких пределах программы уникальны переменные? Именованные переменные уникальны в рамках одного предложения. Анонимная переменная уникальна всегда. Переменные предназначены для передачи значений «во времени и в пространстве».
- 6) Как применяется подстановка, полученная с помощью алгоритма унификации?

Пока стек не пуст – цикл:

- считать из стека в рабочую область очередное равенство S=T
- обработать считанное по правилам:
 - если S и T несовпадающие константы, то неудача=1, и выход из цикла
 - если одинаковые константы то следующий шаг цикла
 - если S переменная и T терм содержащий S, то неудача=1, и выход из цикла

- если S переменная и T терм HE содержащий S, то отыскать в стеке и в результирующей ячейке все вхождения S и заменить на Т. Добавить в результирующую ячейку равенство S=T. Следующий шаг цикла
- если S и T составные термы с разными функторами или разными арностями, то неудача=1, выход из цикла
- если S и T составные термы с одинаковыми функторами и арностью: $S = f(s_1, s_2..., s_m); \ T = f(t_1, t_2..., t_m), \ \text{то занести в стек равенство}$ $S_1 = T_1, S_2 = T_2...S_m = T_m.$
- очистить рабочее поле

- конец цикла

7) Как меняется резольвента?

На каждом шаге имеется некоторая совокупность целей - утверждений, истинность (выводимость) которых надо доказать. Эта совокупность называется резольвентой - её состояние меняется в процессе доказательства (Для хранения резольвенты система использует стек). Новая резольвента образуется в два этапа:

- в текущей резольвенте выбирается одна из подцелей (по стековому принципу верхняя) и для неё выполняется редукция замена подцели на тело найденного (подобранного, если удалось) правила (а как подбирается правило?),
- затем, к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели (выбранной) и заголовка сопоставленного с ней правила.

8) В каком случае запускается механизм отката?

Механизм отката запускается в 2 случаях:

- Если алгоритм попал в тупиковую ситуацию.
- Если резольвента не пуста и решение найдено, но в базе знание остались не отмеченные предложения.

Литература

- 1. Толпинская Н.Б. Курс лекций по "Функциональному и Логическому программированию" [Текст], Москва 2020 год.
- 2. Анатолий Адаменко, Андрей Кучуков. Логическое программирование и Visual Prolog (с CD). СПб.: БХВ-Петербург, 2003.-990 с. ISBN 5-94157-156-9.