中国科学技术大学2023--2024学年第一学期考试试卷

考试科目:	桃紅率	论
-------	-----	---

得分:

学生所在系:_____ 姓名:

学号:____

一、 $(12 \, f)$ 设随机变量 X 的概率密度函数为 $f(x) = 3(x-1)^2$, 1 < x < 2, 而随机变量 Y = X 相互独立且其分布律为

$$Y \sim \begin{pmatrix} -1 & 0 & 1 \\ 1/6 & 1/3 & 1/2 \end{pmatrix}$$
.

令 Z = X + Y. 问 Z 是否为连续型随机变量? 若是, 请计算其密度函数; 若否, 请说明理由.

- 二、(14分) 甲乙两人拿两颗骰子做抛掷游戏,规则如下: 若抛出的点数之和为3的倍数,则下一次原抛掷者继续抛掷; 若抛出的点数之和不是3的倍数,则下一次由另外一位地掷. 假设第一次由甲抛掷,求第 n 次仍由甲抛掷的概率 Pn.
- 三、 $(24 \, f)$ 设随机向量 (X,Y) 服从二维正态分布 $N(0,0;1,1;\rho)$, 即其密度函数为 $p(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}(x^2-2\rho xy+y^2)\right\}, \quad (x,y) \in \mathbb{R}^2,$

其中参数 $\rho \in (-1,0) \cup (0,1)$. 现记 $Z = (Y - \rho X)/\sqrt{1-\rho^2}$.

- 1. 试求随机向量 (X, Z) 的密度函数;
- 2. 问 X 与 Z 是否相互独立? Y 与 Z 是否相互独立? 请说明理由.
- 3. 利用上述结论证明:

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi} \arcsin \rho.$$

四、 $(14 \ f)$ 设随机向量 (X,Y) 服从二维正态分布 $N(0,0;1,1;\rho)$. 给定常数 r>0, 定义 另外一个随机向量

$$(U,V) = \begin{cases} (X,-Y), & (X,Y) \in B_r, \\ (-X,Y), & (X,Y) \in B_r^c, \end{cases}$$

其中 $B_r = \{(x,y): x^2 + y^2 \le r^2\}$. 求 (U,V) 的联合分布.

五、(18 分) 设随机向量(X,Y)的联合密度函数为

$$p(x,y) = kx^2 \exp\{-xy^2 - y^2 + 2y - 4x\}, \quad x > 0, y \in \mathbb{R},$$

- 1. 对任意 $y \in \mathbb{R}$, 试证明 X 在给定 Y = y 时服从参数为 3 和 $y^2 + 4$ 的 Gamma 分布.
- 2. 对任意 x > 0, 在给定 X = x 条件下, 试求 Y 的条件分布.
- 六、 $(18 \, \mathcal{H})$ 设 X_1, X_2, \ldots, X_n 独立同分布, 共同的分布为参数 $\lambda > 0$ 的指数分布 $\operatorname{Exp}(\lambda)$. 记 X_1, X_2, \ldots, X_n 的次序统计量为 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$, 且记

$$V_i = (n-i+1)[X_{(i)} - X_{(i-1)}], \quad i = 1, 2, \dots, n,$$

其中约定 $X_{(0)} = 0$.

- 1. 求 $(X_{(1)}, X_{(2)}, ..., X_{(n)})$ 的联合概率密度函数;
- 2. 证明 $V_1, V_2, ..., V_n$ 相互独立;
- 3. 求 V_i 的概率分布, $i=1,\ldots,n$.