Лабораторная работа N23

Карнаушко В. А. БПМ-19-2 13 декабря 2021 г.

Содержание

1	Мо,	делирование различных форм резервуаров с жидкою	3
2	Mo,	делирование в среде Scilab XCos	<u>'</u>
	2.1	Резервуар цилиндрической формы	6
	2.2	Резервуар формы усеченного конуса	S
	2.3	Резервуар формы сферического конуса	12
	~ .	Флотапионная машина	

1 Моделирование различных форм резервуаров с жидкостью

Цель работы - исследовать математические модели, полученные методом балансовых соотношений в пакете прикладных программ MATLAB/Simulink(Scilab|Xcos)

Рис. 1: Цилиндрический резервуар с жидкостью

V - объем жидкости, S - площадь поверхности жидкости, $Q_1,\,Q_2$ - объемные расходы жидкости, F - площадь проходного отверстия сливной трубы

Уравнение материального баланса жидкости для данного резервуара имеет вид:

$$\triangle V + Q_1 \triangle t = Q_2 \triangle t$$

При $\triangle t \rightarrow 0, \triangle V \rightarrow 0$ получаем:

$$\frac{dV}{dt} + Q_1 = Q_2$$

Так как объем жидкости V выражается, как V=Sx, где x - уровень жидкости, получаем:

$$\frac{dV}{dt} = S\frac{dx}{dt}$$
$$S\frac{dx}{dt} + Q_1 = Q_2$$

Зависимость между объемным расходом Q_1 и уровнем х вытекает из уравнения Бернулли:

$$\frac{\rho v_0^2}{2} + \rho gx + p_1 = \frac{\rho v^2}{2} + \rho gx_0 + p_2$$

v - скорость истечения жидкости из сливного отверстия, v_0 - скорость изменения уровня жидкости в резервуаре, p_1,p_2 - статические давления над жидкостью в резервуаре и за сливным отверстием, ρ - плотность жидкости, g - ускорение свободного падения,

 $\frac{\rho v^2}{2}$ - динамическое или скоростное давление. Это уравнение можно переписать в виде:

$$\frac{v^2-v_0^2}{2g}=\frac{p_1-p_2}{\gamma}+(x-x_0),$$
 где

 $\gamma = pg$ - удельный вес,

 $x-x_0$ - перепад высот жидкости в резервуаре

Если предположить, что $v_0 \ll v$, $x_0 = 0$, $p_1 = p_2$, то получим:

$$v = \sqrt{2gx}$$

$$Fv = Q_1 = F\sqrt{2gx}$$

F - площадь проходного сечения сливной трубы

С помощью поправочного коэффициента μ , часто определяемого эксперементально, может быть учтена форма и состояние поверхности сливного отверстия

$$Q_1 = \mu F \sqrt{2gx}$$

Найденное выражение подставляется в ДУ изменения объема жид-кости:

$$S\frac{dx}{dt} + \mu F\sqrt{2gx} = Q_2$$

Таким образом получено уравнение материального баланса для истечения жидкости в цилиндрическом резервуаре. При $\frac{dx}{dt}=0$ можно записать уравнение статического (стационарного) режима резервуара.

$$\mu F \sqrt{2gx} = Q_2$$

Коэффициент S определяется геометрическими размерами резервуара. В зависимости от геометрии объекта моделирования этот коэффициент может быть описан различными функциями.

Для резервуара с формой усеченного конуса уравнение примет вид:

$$S = S(x) = \pi(r^2 + 2rtg(\alpha x) + tg^2(\alpha x^2))$$

Рис. 2: Резервуар с жидкостью конической формы

Для резервуара, имеющего форму сферы:

$$S = S(x) = \pi(2rx - x^2)$$

$$S = \pi R^2 = \pi(r^2 - (x - r)^2) = \pi(r^2 - (r - x)^2) = \pi(2xr - x^2)$$

Рис. 3: Резервуар с жидкостью сферической формы

В флотационной машине истечение жидкости происходит в соответствии с нелинейным дифференциальным уравнением:

$$S\frac{dx}{dt} + (0,465 + \frac{0,003}{x})bx\sqrt{2gx} = Q_2$$

Рис. 4: Камера флотационной машины со сливом через порог

Расход Q_2 может регулироваться с помощью интегрирующего исполнительного механизма. Удобно модель представить в форме пространства состояний.

Примем $v_1 = Q_2, v_2 = x$, тогда:

$$\frac{dv_1}{dt} = b_1 u$$

$$\frac{dv_2}{dt} = \frac{1}{S}v_1 - \frac{\mu F\sqrt{2g}}{S}\sqrt{v_2}$$

$$y = v_2$$

Далее все моделирование будет предвещаться переходом в форму пространства состояний.

2 Моделирование в среде Scilab XCos

2.1 Резервуар цилиндрической формы

$$\frac{dx}{dt} = \frac{Q_2 - \mu F \sqrt{2gx}}{S}$$

$$Q_2 = 0.01 \; ext{m}^3/ ext{c}$$
 $\mu = 0.6$ $F = 0.02 \; ext{m}^2$ $g = 9.8 \; ext{m}/ ext{c}^2$ $S = 2 \; ext{m}^2$ $b1 = 12$

Рис. 5: Структурная схема

Рис. 6: График Q1 от t

Рис. 7: График x от t

2.2 Резервуар формы усеченного конуса

$$\frac{dx}{dt} = \frac{Q_2 - \mu F \sqrt{2gx}}{\pi (r^2 + 2rtg(\alpha)x) + tg^2(\alpha)x^2)}$$

$$\begin{array}{l} Q_2 = 0.01 \; {\rm m}^3/{\rm c} \\ \mu = 0.6 \\ F = 0.02 \; {\rm m}^2 \\ g = 9.8 \; {\rm m}/{\rm c}^2 \\ r = 0.5 \; {\rm m} \\ \alpha = 60^o \\ b1 = 12 \end{array}$$

Рис. 8: Структурная схема

Рис. 9: График Q1 от t

Рис. 10: График x от t

2.3 Резервуар формы сферического конуса

$$\frac{dx}{dt} = \frac{Q_2 - \mu F \sqrt{2gx}}{\pi (2rx - x^2)}$$

$$Q_2 = 0.01 \; \mathrm{m}^3/\mathrm{c}$$
 $\mu = 0.8$ $F = 0.02 \; \mathrm{m}^2$ $g = 9.8 \; \mathrm{m/c}^2$ $r = 1 \; \mathrm{m}$ $b1 = 1$

Рис. 11: Структурная схема

Рис. 12: График Q1 от t

Рис. 13: График x от t

2.4 Флотационная машина

$$\frac{dx}{dt} = \frac{Q_2 - (0,465 + 0,003/x)bx\sqrt{2gx}}{S}$$

$$Q_2 = 0.02 \; ext{m}^3/ ext{c}$$
 $g = 9.8 \; ext{m/c}^2$ $b = 2 ext{m}$ $S = 2 ext{m}^2$ $b1 = 12$

Рис. 14: Структурная схема

Рис. 15: График Q1 от t

Рис. 16: График x от t