Linear Algebra: Week 4 Notes and Exercises

Christopher Aytona

June 6, 2018

Notes 1

Notes

Vector Space

- 1) $\vec{0} \in V$
- 2) $\vec{u}, \vec{v} \in V$ then must have $\vec{u} + \vec{v} \in V$
- 3) $c \in \mathbb{R}, \vec{u} \in V$ then must have $c\vec{u} \in V$

Exercise

2) a) True because scaling \vec{u} with either a positive or negative value will still be in W.

$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, x_1 \ge 0, y_1 \ge 0$$

$$c \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cy_1 \end{bmatrix}$$

2) a) True because scaling u with either a positive or negative value will still be in W. $\vec{u} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, x_1 \geq 0, y_1 \geq 0$ $c \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cy_1 \end{bmatrix}$ $c \geq 0 \Rightarrow cx_1 \geq 0 \Rightarrow cy_1 \geq 0$ $c \leq 0 \Rightarrow cx_1 \leq 0 \Rightarrow cy_1 \leq 0$ b) Let $\vec{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \vec{v} = \begin{bmatrix} -1 \\ -8 \end{bmatrix} \therefore \vec{u} + \vec{v} = \begin{bmatrix} 3 \\ -6 \end{bmatrix}$ which is not in any of the quadrants associated with $W \therefore W$ is not a vector space

6)
$$p(t) = a + t^2$$

 $V = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \in \mathbb{R}^3 | x_1 \in \mathbb{R}, x_2 = 0, x_3 = 1$

 $\begin{bmatrix} a & 0 & 1 \end{bmatrix}$ Its not a vector space because scaling or adding vectors will change the x_3 .

2 Exercises

1. Let V be the first quadrant in the xy-plane; that is let $V = {\begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0}$

a) If u and v are in V, is u + v in V? Why?

a) If
$$\vec{u}$$
 and \vec{v} are in \vec{v} , is $\vec{u} + \vec{v}$ in \vec{v} ? Why?

If $\vec{u}, \vec{v} \in V$ is $\vec{u} + \vec{v} \in V$
 $\vec{u} \in V \Rightarrow \vec{u} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, x_1 \ge 0, y_1 \ge 0$
 $\vec{v} \in V \Rightarrow \vec{v} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}, x_2 \ge 0, y_2 \ge 0$
 $\vec{u} + \vec{v} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix} = x_1 + x_2 \ge 0, y_1 + y_2 \ge 0$
 $\Rightarrow \vec{u} + \vec{v} \in V$

b) Find a specific vector u in V and a specific scalar c such that cu is not in V. (This is enough to show that V is not a vector space.)

Let
$$\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 then $\vec{u} \in V$,

Let
$$c = -1$$
 then $c\vec{u} = -1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \notin V$

2. Let W be the union of the first and third quadrants in the xy-plane. That is, let $W = \{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \}$

1

a) If u is in W and c is any scalar, is cu in W? Why?

If $\vec{u} \in W, c \in \mathbb{R}$, is $c\vec{u} \in W$

Let
$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, x_1 y_1 \ge 0$$
, Let $c \in \mathbb{R}$

$$cu = c \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cy_1 \end{bmatrix}$$

$$(cx_1)(cy_1) = c^2 x_1 y_1$$

But $c^2 \ge 0, \forall c \in \mathbb{R}$

 $c^2 x_1 y_1 \ge 0 \Rightarrow c\vec{u} \in W$

b) Find specific vectors u and v in W such that u+v is not in W. This is enough to show that W is not a vector space.

Let
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, let $\vec{v} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$
Then $\vec{u} + \vec{v} = \begin{bmatrix} 1-2 \\ 2-1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \notin W, since(-1)(1) = -1$

In Exercise 5-8, determine if the given set is a subspace of \mathbb{P}_n for an appropriate value of n. Justify your answers.

All polynomials $p(t) = at^2, a \in \mathbb{R}$

5. All polynomials of the form $p(t) = at^2$, where a is in \mathbb{R}

If $a = 0, p(t) = 0t^2 = \vec{0} : \vec{0} \in \{p(t)\}\$

If
$$u(t) = a_1 t^2$$
, $v(t) = a_2 t^2$, then $\vec{u} + \vec{v} = a_1 t^2 + a_2 t^2 = (a_1 + a_2)t^2 \in \{p(t)\}$
If $u(t) = a_1 t^2$ and $c \in \mathbb{R}$, $c\vec{u} = ca_1 t^2 = (ca_1)t^2 \in \{p(t)\}$

 $\therefore \{p(t)\}\$ is a subspace

6. All polynomials of the form $p(t) = a + t^2$, where a is in \mathbb{R}

 $\vec{0} = 0 + 0t + t^2$ is not in $\{p(t)\}\$

If
$$n(t) = a_1 + t^2$$
, $c = 0$

$$c\vec{u} = 0(a_1 + t^2) = 0 \notin \{p(t)\}\$$

 \therefore not in subspace

7. All polynomials of degree at most 3, with integers of coefficients.

If the scalars are any number in \mathbb{R} then $c = \frac{1}{10}$, $p(t) = 1 + x + x^2 \Rightarrow cp(t) = \frac{1}{10} + \frac{1}{10}x + \frac{1}{10}x^2 \notin \text{the set.}$

But if we restrict scalars to the set of integers then it will be a subspace.

8. All polynomials in \mathbb{P}_n such that p(0) = 0.

$$\vec{0} = 0 + 0t + 0t^2 \cdots, \vec{0} = 0$$

For
$$u(t) = a_0 + a_1 t + \cdots, u(0) = 0$$

$$v(t) = b_0 + b_1 t + \cdots, v(0) = 0$$

$$u(t) + v(t) = a_0 + b_0 + (a_1 + b_1)t + \cdots, (u + v) = 0$$

if
$$u(0) = 0$$
, $c \in \mathbb{R}$ then $cu(0) = c(0) = 0$

: is a subspace.

9. Let H be the set of all vectors of the form $\begin{bmatrix} -2t \\ 5t \\ 3t \end{bmatrix}$. Find a vector v in \mathbb{R}^3 such that $H = Span\{v\}$.

Why does this show that H is a subspace of \mathbb{R}^3 :

$$\vec{v} = t \begin{bmatrix} -2\\5\\3 \end{bmatrix}$$

$$t = 0 \Rightarrow \begin{bmatrix} -2(0)\\5(0)\\3(0) \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \in H, \text{ so } \vec{0} \in H$$

$$\vec{u} = \begin{bmatrix} -2t_1\\5t_1\\3t_1 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2t_2\\5t_2\\3t_2 \end{bmatrix} \Rightarrow \vec{u} + \vec{v} = \begin{bmatrix} -2(t_1 + t_2)\\5(t_1 + t_2)\\3(t_1 + t_2) \end{bmatrix} \in H$$

$$\forall c \in \mathbb{R} \ c\vec{u} = \begin{bmatrix} -2(ct)\\5(ct)\\3(ct) \end{bmatrix} \in H$$

 $\therefore H$ is a subspace.

Which of the following sets are linearly independent?

Which form a basis for
$$\mathbb{R}^3$$

$$\begin{bmatrix}
1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix}
2 \\ 3 \\ 0\end{bmatrix} \begin{bmatrix}
1 & 2 & | & 0 \\ 0 & 3 & | & 0 \\ 0 & 0 & | & 0\end{bmatrix} \xrightarrow{\frac{1}{2}} R_2 = \begin{bmatrix}
1 & 2 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0\end{bmatrix} R_1 - R_2 = \begin{bmatrix}
1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0\end{bmatrix} t$$
 has no free parameter.

: are linearly independent.

t has no free parame
$$\begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 2\\3\\0\end{bmatrix}, \begin{bmatrix} 4\\5\\6\end{bmatrix}, \begin{bmatrix} 7\\8\\9\end{bmatrix}$$

4 Vectors in \mathbb{R}^3 must have at least 1 free parameter. \therefore linearly dependent.