Magnetic Excitations II

Andrew Wildes

Institut Laue-Langevin

Plan:

- Reminders
- Measurements of powders
- Measurements of single crystals

Tools:

Learn to work with vectors

a

a∙b

b

Reminder 1 The fundamental rule of neutron magnetic scattering

Neutrons only ever see the components of the magnetization that are perpendicular to the scattering vector!

Reminder 2

Magnetic scattering has a form factor $f(\mathbf{O})$

Form factors for iron

Deceases with increasing Q

How to measure

A measurement of $\frac{d^2\sigma}{d\Omega dE_f}$ requires a knowledge of \mathbf{k}_i and \mathbf{k}_f

Conventional instrumentation

Three-axis spectrometry

IN20 @ ILL

Time-of-flight spectrometry

Inelastic scattering

Fourier transformed structure

Energy transfer:

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Bragg's Law: $2d\sin\theta = \lambda$

Inelastic scattering

Fourier transformed structure

Momentum transfer:

$$Q^2 = k^2 + k'^2 - 2kk'\cos\Theta$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Measuring powder samples

Usually best done on time-of-flight instrument

Time-of-flight spectrometry

Temperature subtractions

Triplet excitations in Li₂Cu₂O(SO₄)₂

O. Vacccarelli et al., PRB 99 (2019) 064416

$$S(Q,\omega) = \frac{1+n(\omega)}{\pi}\chi^{\prime\prime}(Q,\omega)$$

Temperature subtractions

Magnons in FePS₃

A. R. Wildes et al., JPCM 24 (2012) 416004

Q-dependence

Magnetic scattering $\propto f^2(Q)$ Phonon scattering $\propto Q^2 e^{-DQ^2}$

Spin waves in NiPS₃

Powder phonons in LaFe₄Sb₁₂

Figure thanks to M. M. Koza THE EUROPEAN NEUTRON SOURCE

Q-dependence

Spin waves in NiPS₃

D. Lançon et al., PRB 98 (2018) 134414

$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} \left(\frac{\gamma r_0}{2\mu_B}\right)^2 \sum_{\alpha,\beta} \left(1 - \hat{Q}_{\alpha}\hat{Q}_{\beta}\right) S_{\alpha\beta}(\mathbf{Q},\omega)$$

Q-dependence

Powdered Sr₂PO₄

J. Taylor and D. McK. Paul

Polarized neutrons

R. M. Moon, T. Riste and W. C. Koehler, Phys. Rev. 181 (1969) 920
J. R. Stewart et al., J. Appl. Cryst. 42 (2009) 69

Polarization is the ensemble average of all the neutrons in the beam

There are three sets of coordinates:

- Coordinates for the instrument
- ii) Coordinates for the magnetism (Needed to define M_⊥)
- iii) Coordinates for the polarization

Polarized neutrons

R. M. Moon, T. Riste and W. C. Koehler, Phys. Rev. 181 (1969) 920
J. R. Stewart et al., J. Appl. Cryst. 42 (2009) 69

Potential
$$V \rightarrow U^{\alpha\beta}$$

$$U^{++} = b - M_{\perp z} + BI_{z}$$

$$U^{--} = b + M_{\perp z} - BI_{z}$$

$$U^{+-} = -(M_{\perp x} + iM_{\perp y}) + B(I_{x} + iI_{y})$$

$$U^{-+} = -(M_{\perp x} - iM_{\perp y}) + B(I_{x} - iI_{y})$$

'XYZ' Polarization Analysis

$$\left(\frac{\mathrm{d}\sigma^{\mathrm{NSF}}}{\mathrm{d}\Omega}\right)_{x'} = \frac{\mathrm{d}\sigma_{\mathrm{Nuc}}}{\mathrm{d}\Omega} + \frac{1}{3}\frac{\mathrm{d}\sigma_{\mathrm{NSI}}}{\mathrm{d}\Omega} + \frac{1}{2}\frac{\mathrm{d}\sigma_{\mathrm{PM}}}{\mathrm{d}\Omega}\sin^{2}\alpha$$

$$\left(\frac{d\sigma^{SF}}{d\Omega}\right)_{x'} = \frac{2}{3}\frac{d\sigma_{NSI}}{d\Omega} + \frac{1}{2}\frac{d\sigma_{PM}}{d\Omega}(\cos^2\alpha + 1)$$

$$\left(\frac{d\sigma^{NSF}}{d\Omega}\right)_{v'} = \frac{d\sigma_{Nuc}}{d\Omega} + \frac{1}{3}\frac{d\sigma_{NSI}}{d\Omega} + \frac{1}{2}\frac{d\sigma_{PM}}{d\Omega}\cos^{2}\alpha$$

$$\left(\frac{d\sigma^{SF}}{d\Omega}\right)_{N'} = \frac{2}{3}\frac{d\sigma_{NSI}}{d\Omega} + \frac{1}{2}\frac{d\sigma_{PM}}{d\Omega}(\sin^2\alpha + 1)$$

$$\left(\frac{d\sigma^{NSF}}{d\Omega}\right)_{\pi'} = \frac{d\sigma_{Nuc}}{d\Omega} + \frac{1}{3}\frac{d\sigma_{NSI}}{d\Omega} + \frac{1}{2}\frac{d\sigma_{PM}}{d\Omega}$$

$$\left(\frac{\mathrm{d}\sigma^{\mathrm{SF}}}{\mathrm{d}\Omega}\right)_{z'} = \frac{2}{3}\frac{\mathrm{d}\sigma_{\mathrm{NSI}}}{\mathrm{d}\Omega} + \frac{1}{2}\frac{\mathrm{d}\sigma_{\mathrm{PM}}}{\mathrm{d}\Omega}$$

O. Schärpf and H. Capellmann, Phys. Stat. Sol a 135 (1993) 359

J. R. Stewart et al., J. Appl. Cryst. 42 (2009) 69

D007

G. J. Nilsen et al., NIMA 951 (2020) 162990

'XYZ' Polarization Analysis

Inelastic scattering from powdered HoF₃

R. Dixey et al., APL Mater 11 (2023) 041126

Total (unpolarized) scattering

Nuclear coherent

Magnetic

Momentum transfer:

$$Q = k - k'$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Momentum transfer:

$$Q = k - k'$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Straight-forward to visualize on a three-axis

Magnons in crystalline iron

G. Shirane et al., J. Appl. Phys. 39 (1968) 383

How to discriminate against other contributions?

Magnetic intensity $\propto f^2(Q)$ Phonon intensity $\propto Q^2$

Momentum transfer:

$$\mathbf{Q} = \mathbf{k} - \mathbf{k}'$$

$$Q^2 = k^2 + k'^2 - 2kk'\cos\Theta$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Kinematic constraints

Momentum transfer:

$$\mathbf{Q} = \mathbf{k} - \mathbf{k}'$$

$$Q^2 = k^2 + k'^2 - 2kk'\cos\Theta$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Magnetic intensity $\propto f^2(Q)$ Phonon intensity $\propto Q^2$

Momentum transfer:

$$\mathbf{Q} = \mathbf{k} - \mathbf{k}'$$

$$Q^2 = k^2 + k'^2 - 2kk'\cos\Theta$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Magnetic intensity $\propto f^2(Q)$ Phonon intensity $\propto Q^2$

Magnons have M₁

Intensity from both spin wave components

Phonons have $\mathbf{Q} \cdot \mathbf{e}$

Longitudinal mode

Magnetic intensity $\propto f^2(Q)$ Phonon intensity $\propto Q^2$

Magnons have M_{\perp}

Intensity from one spin wave component

Phonons have $\mathbf{Q} \cdot \mathbf{e}$

Transverse mode

What about antiferromagnets?

Antiferromagnetic magnon energies $\propto q$ at small qAcoustic phonon energies $\propto q$ at small q

What about antiferromagnets?

Antiferromagnetic magnon energies $\propto q$ at small qAcoustic phonon energies $\propto q$ at small q

Propagation vector = 0

The presence of gaps

Spin waves in MnPS₃

A. R. Wildes et al., JPCM 10 (1998) 6417

Measuring single crystals: time-of-flight

IN5 @ ILL

PANTHER @ ILL

LET @ ISIS

MERLIN @ ISIS

Doing it on a TOF instrument

$$\mathbf{Q} = \mathbf{k} - \mathbf{k}'$$

$$Q^2 = k^2 + k'^2 - 2kk'\cos\Theta$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

Doing it on a TOF instrument

$$Q = k - k'$$

$$Q^2 = k^2 + k'^2 - 2kk'\cos\Theta$$

$$\Delta E = \hbar \omega = \frac{\hbar}{2m_n} (k^2 - k'^2)$$

HORACE scans

https://pace-neutrons.github.io/Horace/v4.0.0/

Polarised neutrons on single crystals

Spin-dependent potentials

$$U^{++} = b - M_{\perp z} + BI_z$$

 $U^{--} = b + M_{\perp z} - BI_z$
 $U^{+-} = -(M_{\perp x} + iM_{\perp y}) + B(I_x + iI_y)$
 $U^{+-} = -(M_{\perp x} - iM_{\perp y}) + B(I_x - iI_y)$
 z is the polarization axis, **P**

$$\begin{aligned}
&\text{If } \mathbf{P} || \mathbf{Q} \\
&M_{\perp z} = 0
\end{aligned}$$

Nuclear coherent scattering is only NSF ($\pm \pm$) Magnetic scattering is only SF ($\pm \mp$)

Magnetism: P | Q

Inelastic scattering

Separation of magnetic and nuclear contributions

$$\begin{split} U^{++} &= b - M_{\perp z} + BI_z \\ U^{--} &= b + M_{\perp z} - BI_z \\ U^{+-} &= - \left(M_{\perp x} + i M_{\perp y} \right) + B \left(I_x + i I_y \right) \\ U^{-+} &= - \left(M_{\perp x} - i M_{\perp y} \right) + B \left(I_x - i I_y \right) \end{split}$$

$$YBa_2Cu_3O_{6.85}$$

Q = (1.5, 0.5, 1.7)

Regnault et al., Physica B 335 (2003) 19

Magnetism: P | Q

Spin-dependent potentials

$$U^{++} = b - M_{\perp z} + BI_z$$

 $U^{--} = b + M_{\perp z} - BI_z$
 $U^{+-} = -(M_{\perp x} + iM_{\perp y}) + B(I_x + iI_y)$
 $U^{+-} = -(M_{\perp x} - iM_{\perp y}) + B(I_x - iI_y)$
 z is the polarization axis, **P**

$$\begin{aligned}
&\text{If } \mathbf{P} || \mathbf{Q} \\
&M_{\perp z} = 0
\end{aligned}$$

Nuclear coherent scattering is only NSF ($\pm \pm$) Magnetic scattering is only SF ($\pm \mp$)

Magnetism: P | Q

Inelastic scattering

Creating or annihilating a ferromagnetic magnon requires a transfer of angular momentum.

The neutron spin must flip.

Spin wave scattering from Fe_{2.5}Li_{0.5}O₄

T. Riste et al., PRL 20 (1968) 997

Magnetism: Component separation

CEF in CePtSn

B. Janoušová et al., Physica B 335 (2003) 26

Neutron intensities (arbitrary scale)

$$E_{12}$$
= 23.0 meV $|\langle 1|J_a|2\rangle|^2$ 262(71)
 $|\langle 1|J_b|2\rangle|^2$ 777(54)
 $|\langle 1|J_c|2\rangle|^2$ 166(40)

$$E_{13} = 34.6 \text{ meV}$$
 $|\langle 1|J_a|3\rangle|^2$ $474(69)$
 $|\langle 1|J_b|3\rangle|^2$ $113(56)$
 $|\langle 1|J_c|3\rangle|^2$ $245(32)$

Magnetism: Component separation

Magnetic fluctuations in Cu(DCOO)₂.4D₂O

B. Dalla Piazza et al., Nature Physics 11 (2015) 62

Take home messages

- Work in reciprocal space!
- Neutrons see M_⊥
- Neutrons have a form factor, f(Q)
- Polarized neutrons are good for magnetism