M.A.M COLLEGE OF ENGINEERING AND TECHNOLOGY, TRICHY

CO₂ Laser

Characteristics of CO₂ Laser:

Туре	Molecular Gas Laser
Active Medium	Gas mixture (CO ₂ , N ₂ & He)
Active Centre	CO ₂
Pumping Method	Electric discharge method, Inelastic atom-atom collision
Optical Resonator	Metallic mirrors of Gold
Power Output	10 KW
Nature of output	Continuous or Pulsed
Wavelength output	9.6 μm & 10.6 μm

Principle:

- N₂atoms raised to the excited state through electron collision.
- Through resonant energy transfer the excited N₂atoms raises the CO₂ molecule to its excited state.
- Laser transition takes place between the vibrational energy levels of CO₂ and the high intensity laser beam is emitted from the partial reflector.

Construction:

- CO₂, N₂& Helium are taken in 1:4:5 ratio inside the discharge tube.
- Provision is given for filling the different gases inside the discharge tube and the discharge tube is connected to the Vacuum pump.
- NaCl window is placed at the ends of the discharge tube.
- The tube is connected to the power supply to produce electric discharge.
- 100% reflector and the partial reflector are placed outside the discharge tube as shown infig.

M.A.M COLLEGE OF ENGINEERING AND TECHNOLOGY, TRICHY

Working:

- Voltage is applied to the gas mixture and the gas is discharged.
- The electrons from the discharge interacts with the N₂ atoms and raised to excited state.

$$e^- + N_2 \rightarrow N_2^*$$

• The excited N₂ atoms interacts with ground state CO₂ molecule to the E₄ by resonant energy transfer.

$$N_2^* + CO_2 \rightarrow CO_2^* + N_2$$

- Now population inversion takes place between the E₄ & E₂ and E₄& E₃.
- Initially photons are emitted by spontaneous transition.
- These photons stimulates the CO₂ molecule to produce coherent photons.

- The laser transition from E_4 to E_2 emits the light with the wavelength 9.6 μ m.
- The laser transition from E_4 to E_3 emits the light with the wavelength 10.6 μ m.
- NaCl window transmits only parallel polarized photons and reflects other photons.
- No. of coherent photons are increased through multiple reflections between perfect and partial reflector.
- Finally the high intensity laser beam is emitted through the partial reflector.
- Now the CO₂molecules jumps from E₃& E₂to E₁.
- "He" depopulates the CO_2 molecules from E_1 to E_0 (ground state).

M.A.M COLLEGE OF ENGINEERING AND TECHNOLOGY, TRICHY

Advantages:

- The construction of CO_2 laser is simple.
- It has high efficiency.
- It has very high output power.
- The output power can be increased by increasing the length of the discharge tube.

Disadvantages:

- Corrosion may occur at the surface of the discharge tube.
- Due to its very high power accidental exposure may damage our eyes since it is invisible.

Applications:

- It is widely used in material processing.
- It is suitable for open air communication.
- It is used in remote sensing.
- It is used in the treatment of Liver and Lung diseases.
- It is mostly used in Neurosurgery and general surgery.
- It is used to perform Microsurgery and bloodless operations.