Post-sequencing quality evaluation

...or what to do when you get your reads from the sequencer

Sources of Library Read Quality Problems

- Sequencer problems
 - Read quality
- Library problems
 - GC content
 - Library complexity
 - Adaptor/primer contamination
 - Ribosomal RNA

Evaluating Quality

FastQC High Throughput Sequence QC Report Version: 0.11.2

www.bioinformatics.babraham.ac.uk/projects/
© Simon Andrews, Pierre Lindenbaum, Brian Howard, Phil Ewels 2011-14,
Picard BAM/SAM reader ©The Broad Institute, 2013
BZip decompression ©Matthew J. Francis, 2011
Base64 encoding ©Robert Harder, 2012

Assessing Sequencing Quality

FastQC evaluates sequencer related quality in 3 different ways

- Per base sequence quality
 - Average quality for each base pair
- Per tile sequence quality
 - Average spatial quality on flow cell
- Per sequence quality score
 - Average quality per read

FastQC evaluates sequencer related quality in 3 different ways

- Per base sequence quality
 - Average quality for each base pair
- Per tile sequence quality
 - Average spatial quality on flow cell
- Per sequence quality score
 - Average quality per read

FastQC evaluates sequencer related quality in 3 different ways

- Per base sequence quality
 - Average quality for each base pair
- Per tile sequence quality
 - Average spatial quality on flow cell
- Per sequence quality score
 - Average quality per read

FastQC evaluates sequencer related quality in 3 different ways

- Per base sequence quality
 - Average quality for each base pair
- Per tile sequence quality
 - Average spatial quality on flow cell
- Per sequence quality score
 - Average quality per read

Assessing Library Quality

- Per base sequence content
 - % nucleotide representation at each bp
- Per sequence GC content
 - Distribution of % GC content per read
- Per base N content
 - % uncalled assigned nucleotides (N) per position
- Sequence length distribution

- Per base sequence content
 - $-\,$ % nucleotide representation at each bp
- Per sequence GC content
 - Distribution of % GC content per read
- Per base N content
 - % uncalled assigned nucleotides (N) per position

- Per base sequence content
 - % nucleotide representation at each bp
- Per sequence GC content
 - Distribution of % GC content per read
- Per base N content
 - % uncalled assigned nucleotides (N) per position
- Sequence length distribution

- Per base sequence content
 - $-\,$ % nucleotide representation at each bp
- Per sequence GC content
 - Distribution of % GC content per read
- Per base N content
 - % uncalled assigned nucleotides (N) per position
- Sequence length distribution

- Per base sequence content
 - $-\,$ % nucleotide representation at each bp
- Per sequence GC content
 - Distribution of % GC content per read
- Per base N content
 - % uncalled assigned nucleotides (N) per position
- Sequence length distribution

- Sequence duplication levels
 - Total sequences vs. De-duplicated sequence
- Overrepresented sequences
 - Large polymer sequences
- Adaptor content
 - % adapter per nucleotide
- Kmer Content
 - Overrepresented 5-mers

- Sequence duplication levels
 - Total sequences vs. Deduplicated sequence
- Overrepresented sequences
 - Large polymer sequences
- Adaptor content
 - % adapter per nucleotide
- Kmer Content
 - Overrepresented 5-mers

- Sequence duplication levels
 - Total sequences vs. Deduplicated sequence
- Overrepresented sequences
 - Large polymer sequences
- Adaptor content
 - % adapter per nucleotide
- Kmer Content
 - Overrepresented 5-mers

- Sequence duplication levels
 - Total sequences vs. Deduplicated sequence
- Overrepresented sequences
 - Large polymer sequences
- Adaptor content
 - % adapter per nucleotide
- Kmer Content
 - Overrepresented 5-mers

- Sequence duplication levels
 - Total sequences vs. Deduplicated sequence
- Overrepresented sequences
 - Large polymer sequences
- Adaptor content
 - % adapter per nucleotide
- Kmer Content
 - Overrepresented 5-mers

Don't worry be happy!!

Just because your library doesn't look "perfect" doesn't mean it is BAD.

- Trim reads
 - Low quality or adapter reads
- Remove duplicates
 - ONLY IF NECESSARY
- · Mapping takes into account base quality
- Get more coverage

Ultimately it is a judgement call!!!

Trimming reads

- You can trim reads to remove adapters and low quality sequence
- The short read workshop has a video on this process.
- Here is a preview of how the library can change

