Activités Mentales

24 Août 2023

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=30$ et de raison r=12.

- ① Donner les trois premiers termes de la suite.
- **2** Exprimer u_{n+1} en fonction de u_n .
- **3** Conjecturer le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.
- 4 Démontrer le sens de variation.
- **5** On donne maintenant $u_n = 30 + 12n$ pour tout $n \in \mathbb{N}$. Calculer u_{10} .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n = 16 - 12n$ pour tout $n \in \mathbb{N}$.

- 1 Donner les trois premiers termes de la suite.
- **2** Exprimer u_{n+1} en fonction de n.
- 3 Quelle est la nature de la suite? On démontrera le résultat
- 4 Après avoir conjecturer le sens de variation de la suite, le démontrer.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n = 10 - 5n$ pour tout $n \in \mathbb{N}$.

- 1 Donner les trois premiers termes de la suite.
- **2** Exprimer u_{n+1} en fonction de n.
- 3 Quelle est la nature de la suite? On démontrera le résultat
- 4 Après avoir conjecturer le sens de variation de la suite, le démontrer.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=21$ et de raison r=-15.

- 1 Donner les trois premiers termes de la suite.
- **2** Exprimer u_{n+1} en fonction de u_n .
- **3** Conjecturer le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.
- 4 Démontrer le sens de variation.
- **6** On donne maintenant $u_n = 21 15n$ pour tout $n \in \mathbb{N}$. Calculer u_{10} .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique telle que $u_0=8$ et $u_1=-6$.

- **1** Quelle est la raison de la suite $(u_n)_{n\in\mathbb{N}}$? Donner la valeur de u_2 .
- **2** Exprimer u_{n+1} en fonction de u_n .
- **3** Conjecturer le sens de variation de la suite $(u_n)_{n \in \mathbb{N}}$.
- 4 Démontrer le sens de variation.
- **5** On donne maintenant $u_n = 8 14n$ pour tout $n \in \mathbb{N}$. Calculer u_{10} .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=30$ et de raison r=12.

$$u_0 = 30$$

$$u_1 = u_0 + r$$

$$= 30 + 12$$

$$= 42 + 12$$

$$= 42$$

- ② On a de manière immédiate d'après l'énoncé : $\begin{cases} u_0 = 30 \\ u_{n+1} = u_n + 12 \end{cases}$
- **3** Comme $u_0 < u_1 < u_2$, on peut conjecturer que la suite est croissante.

Activités Mentales

24 Août 2023

4 Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n + 12 - u_n$$
$$= 12 > 0$$

La suite est donc bien croissante.

6 On donne maintenant $u_n = 30 + 12n$ pour tout $n \in \mathbb{N}$. $u_{10} = 30 + 12 \times 10 = 150$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n = 16 - 12n$ pour tout $n \in \mathbb{N}$.

$$u_0 = 16 - 12 \times 0$$

= 16

$$u_1 = 16 - 12 \times 1$$

= 16 - 12

$$u_2 = 16 - 12 \times 2$$

$$= 16 - 24$$

$$=-8$$

$$u_{n+1} = 16 - 12(n+1)$$
$$= 16 - 12n - 12$$
$$= 4 - 12n$$

3 II semblerait que la suite soit arithmétique. Démontrons le. Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = 4 - 12n - (16 - 12n)$$
$$= 4 - 12n - 16 + 12n$$
$$= -12$$

4 D'après la question précédente, comme $u_{n+1} - u_n = -12 < 0$, la suite est décroissante.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n = 10 - 5n$ pour tout $n \in \mathbb{N}$.

1

$$u_0 = 10 - 5 \times 0$$
$$= 10$$

$$u_1 = 10 - 5 \times 1$$

$$= 10 - 5$$

$$u_2 = 10 - 5 \times 2$$

$$= 10 - 10$$

$$=0$$

2

$$u_{n+1} = 10 - 5(n+1)$$
$$= 10 - 5n - 5$$
$$= 5 - 5n$$

3 II semblerait que la suite soit arithmétique. Démontrons le. Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = 5 - 5n - (10 - 5n)$$
$$= 5 - 5n - 10 + 5n$$
$$= -5$$

4 D'après la question précédente, comme $u_{n+1} - u_n = -5 < 0$, la suite est décroissante.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=21$ et de raison r=-15.

1
$$u_0 = 21$$

$$u_1 = u_0 + r$$
 $u_2 = u_1 + r$
= 21 - 15 = 6 = -9

- ② On a de manière immédiate d'après l'énoncé : $\begin{cases} u_0 = 21 \\ u_{n+1} = u_n 15 \end{cases}$
- **3** Comme $u_0 > u_1 > u_2$, on peut conjecturer que la suite est décroissante.

4 Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n - 15 - u_n$$
$$= -15 < 0$$

La suite est donc bien décroissante

6 On donne maintenant $u_n = 21 - 15n$ pour tout $n \in \mathbb{N}$. $u_{10} = 21 - 15 \times 10 = -129.$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique telle que $u_0=8$ et $u_1=-6$.

- ① On sait que la suite est arithmétique donc la raison est donnée par $u_1-u_0=-6-8=-14$. La raison de la suite $(u_n)_{n\in\mathbb{N}}$ est -14
 - On a alors $u_2 = u_1 + r = -6 14 = -20$
- ② On a de manière immédiate d'après la question précédente : $\begin{cases} u_0 = 8 \\ v_0 = v_0 \end{cases}$
- **3** Comme $u_0 > u_1 > u_2$, on peut conjecturer que la suite est décroissante.

4 Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n - 14 - u_n$$
$$= -14 < 0$$

La suite est donc bien décroissante

6 On donne maintenant $u_n = 8 - 14n$ pour tout $n \in \mathbb{N}$. $u_{10} = 8 - 14 \times 10 = -132$.