

CS 329P: Practical Machine Learning (2021 Fall)

11.4 Prompt-based Learning

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Prompt-based Learning

- BERT has different pre-training tasks and downstream tasks
 - Usually requires thousands of examples to fine tune for a task
- Prompting tries to convert downstream tasks to the same format of pre-training, i.e. language model
 - GPT made prompt-based learning popular
 - Sentiment analysis: I like this movie. It was great

Machine translation: Hello world! => Bonjour le monde!

Pos: great

Neg: terrible

Prompt with GPT-3

- A giant transformer decoder with 173B parameters
 - Trained on >500B tokens from CommonCrawl, WebText, books...
 - OpenAl spent ~\$12M to train the model
 - OpenAl provides paid API access (~\$0.06 per 1K tokens)...with a waitlist as of now
- General purpose LM with impressive text generation capabilities and zero-shot / few-shot learning
 - The LM also understands task specification
 - Prompting: Provide a task description with a few (~10) examples, and a prompt

GPT-3 Applications

 Write code: a table of the richest countries in the worlds with column name and gdp

<table style={{width: who border: who border: width: width: who does not border. who width: wid

Brazil

 Generate thought experiment with classic examples as input

The Dreaming Argument

Imagine you are a normal person living a normal life one day. However, everything you experience is actually a dream. You have not yet awoken.

• Check <u>gpt3demo.com</u> for hundreds demos such as search engine, NPC dialogues, and writing poems

Prompt-based Fine-tuning

- Goal: Fine-tune the weights of medium sized LM (e.g. <1B)
- Design task-specific prompts VS train a new output layer
 - Prompt-based FT is more example efficient than standard FT (100x)
- Automatic prompt search
 - Label words and template selection

Task	Auto template	Auto label words	
SST-2	(positive/negative)		
	$\langle S_1 \rangle$ A [MASK] one.	irresistible/pathetic	
	$\langle S_1 \rangle$ A [MASK] piece.	wonderful/bad	
	$\langle S_1 \rangle$ All in all [MASK].	delicious/bad	

SST-2 (positive/negative)		mean (std)
$\langle S_1 \rangle$ It was [MASK].	great/terrible	92.7 (0.9)
$<\!S_1\!>$ It was <code>[MASK]</code> .	good/bad	92.5 (1.0)
$<\!S_1\!>$ It was [MASK] .	cat/dog	91.5 (1.4)
$<\!S_1\!>$ It was <code>[MASK]</code> .	dog/cat	86.2 (5.4)
$<\!S_1\!>$ It was <code>[MASK]</code> .	terrible/great	83.2 (6.9)
Fine-tuning	-	81.4 (3.8)

The impact of templates and label words

Gao et.al. 2021

Summary

- Prompt-based learning uses prompt to present downstream tasks in a language model format
 - GPT-3 directly uses the pre-trained models for downstream tasks without updating parameters
 - Using it in fine-tuning leads to better example efficiency