CIS 102 2001

Question 1

- (a) (i) Calculate, showing your working, the decimal equivalent of the hexadecimal numeral $(A2F.D)_{16}$.
 - [2]
 - (ii) Make a table representing each of the hexits $(0)_{16},(1)_{16},\ldots,(F)_{16}$ as a 4-bit binary string.
 - (iii) Explain how to use your table to express the binary number $(1011100.101)_2$ [3] in hexadecimal.
- (b) Working in base 2, compute the following binary addition, showing all your working:

$$(1110)_2 + (11011)_2 + (1101)_2$$
.

[3]

Question 2

- (a) Describe the following sets by the listing method.
 - (i) $\{2r+1: r \in \mathbf{Z}^+ \text{ and } r \le 5\}$

(ii)
$$\{10^t : r \in \mathbf{Z} \text{ and } -2 \le t \le 2\}$$
 [3]

- (b) Let A, B be subsets of a universal set \mathcal{U} .
 - (i) Use membership tables to prove that $(A' \cup B)' = A \cap B'$. [5]
 - (ii) Suppose that $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 3, 5, 7\}$ and $B = \{3, 4, 5, 6\}.$ [2] Find the set $(A' \cup B)'$.

(a) (i) Draw a logic network that accepts independent inputs p and q and gives as output $\neg p \land (p \lor q)$. Label your diagram to show the symbolic output after each gate.

[4]

(ii) Make a table to show the truth value of the output from the network corresponding to each combination of truth values of p and q.

[2]

(b) (i) Construct the truth table for the proposition $p \to q$.

[2]

(ii) Let n be an element of the set $\{1,2,3,4,5,6,7\}$. Let p,q be the propositions

$$p: n \text{ is even}; \quad q: n > 4.$$

Find the values of n for which $p \to q$ is true.

[2]

Question 4

(a) A function f is represented by the arrow diagram shown below.

(i) Give the domain, co-domain and range of f.

[3]

(ii) Say why f does not have the one-to-one property and why it does not have the onto property, giving a specific counter-example in each case.

[2]

(b) (i) State the conditions to be satisfied by a function $f:X\to Y$ for it to have an inverse function $f^{-1}:Y\to X$.

[2]

(ii) Define f^{-1} when $X=\{1,2,3,4\},$ $Y=\{a,b,c,d\},$ and f is given by the table below.

[3]

IS51002A (CIS102)

2001

3

TURN OVER

(a) For each of the following equations, give two different examples of a real number x which satisfies the equation:

(i)
$$\lfloor x \rfloor = 3$$
; (ii) $\lceil x \rceil = -1$; (iii) $\mid x - 5 \mid = 12$.

[3]

(b) Let b be a positive real number and let p,q be integers with q>0. Express $b^{1/q}$ and $b^{p/q}$ as roots of b.

Illustrate your definitions by showing how to evaluate $9^{0.5}$ and $32^{3/5}$ without using a calculator.

[4]

(c) Given a positive real number x, say what is meant by the logarithm of x to the base 2. Use your definition to evaluate (i) $\log_2 8$ and (ii) $\log_2 1/16$ without using a calculator.

[3]

Question 6

(a) Let G be a graph and let v be a vertex of G. Say what is meant by the degree of v

[1]

- (b) A graph is called k-regular if each of its vertices has degree k. Construct an example of:
 - (i) a 2-regular graph with 5 vertices;

[2]

(ii) a 3-regular graph with 6 vertices.

[2]

- (c) (i) State, without proving, a result connecting the degrees of the vertices of a graph G with the number of its edges.
 - [1]
 - (ii) Use this result to find the number of edges of a 3-regular graph with 10 vertices.

[2]

(iii) Explain why it is not possible to construct a 3-regular graph with 9 ver-

[2]

Let G be a graph with vertex set $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$ and adjacency lists as follows.

 $\begin{array}{lll} v_1: & v_2, v_5 \\ v_2: & v_1, v_3, v_4, v_5 \\ v_3: & v_2, v_4 \\ v_4: & v_2, v_3, v_5 \\ v_5: & v_1, v_2, v_4. \end{array}$

- (a) Find
 - (i) $\deg(v_1)$; [1]
 - (ii) two distinct paths of length 2, starting at v_4 and ending at v_1 ; [2]
 - (iii) a 5-cycle in G. [2]
- (b) Construct the adjacency matrix A(G).
 [2]
- (c) Say how the number of edges in a graph is related to the sum of the entries in its adjacency matrix.

Hence find the number of edges of the graph G. [3]

Question 8

Let $S = \{a,b,c,d\}$ and suppose that a relation $\mathcal R$ is defined on S in precisely the following cases:

aRa, aRb, aRc, bRb, bRc, cRd.

- (a) Draw the relational digraph for R on S. [2]
- (b) The relation \mathcal{R} is not reflexive. Which minimal set of pairs should be added to \mathcal{R} to make it reflexive? [2]
- (c) The relation \mathcal{R} is not symmetric. Which minimal set of pairs should be added to \mathcal{R} to make it symmetric? [2]
- (d) The relation \mathcal{R} is not transitive. Which minimal set of pairs should be added to \mathcal{R} to make it transitive? [2]
- (e) Is the relation R anti-symmetric? Justify your answer. [2]

5

2001

(a) Calculate the terms u_3 and u_4 of the sequence defined for $n \geq 2$ by the recurrence relation

$$u_{n+1} = u_n + 3u_{n-1},$$

when
$$u_1 = 1$$
 and $u_2 = 4$.

[2]

- (b) For each of the following sequences, find a recurrence relation that gives u_{n+1} in terms of u_n .
 - (i) 12, 1.2, 0.12, 0.012, 0.0012, ...;

[2]

(c) Use the formula $\sum_{r=1}^{n} r = n(n+1)/2$ to evaluate the following sums.

(i)
$$1+2+3+\cdots+100$$
;

[2]

(ii) $21 + 22 + 23 + \cdots + 100$;

[2] [2]

(iii) $5 + 10 + 15 + 20 + 25 + \cdots + 100$.

Question 10

- (a) Draw the tree T with vertex set $V(T)=\{v_1,v_2,v_3,v_4\}$ and edge set $E(T)=\{v_1v_2,v_2v_3,v_3v_4\}$.
 - (i) Construct all the *non-isomorphic* trees with five vertices which can be obtained by attaching a new vertex of degree one to a vertex of T.
 - [2]
 - (ii) Explain briefly why the trees you obtain in (i) are not isomorphic to each other. $$
 - [2]

[2]

- (iii) Constuct a tree with five vertices which is not isomorphic to any tree you constructed in (i).
- (b) A binary search tree is designed for an ordered list of 3185 records.
 - (i) Find which record is stored at the root (at level 0) of the tree and at each of the nodes at level 1.
 - (ii) What is the maximum number of comparisons that would need to be made to match a target with any existing record? [2]

- (a) The code to open a combination lock is an ordered sequence of four digits chosen from the set $\{1, 2, 3, 4, 5, 6\}$. How many different codes are possible
 - (i) if repetition is allowed?
 - (ii) if repetition is not allowed?

[2]

(b) Twelve balls numbered 1, 2, 3, ..., 12, are placed in a container and three balls are drawn at random without replacement. How many different selections of three balls are possible, if the order of selection is not important?

[2]

(c) In the experiment described in part (b), let A be the event that the number on each ball drawn is at most 5. Let B be the event that the number on each ball drawn is odd. Calculate the probability of each of the events A, B and $A \cap B$. [6]

Question 12

(a) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 1 \end{pmatrix}$.

- (i) Calculate the matrix sum $\mathbf{A} + \mathbf{B}$.
- (ii) Calculate the matrix product CB.
- (iii) Explain briefly why the matrix product AC is not defined.
- (b) Write the system of equations

in the matrix form Ax = b, identifying clearly the matrices A, x and b.

[2] [5]

[3]

(c) Solve the system in part (b) by Gaussian elimination.