Alex Valentino Homework 7 350H

1.

2. Suppose $A \in M_{m \times n}(F)$, rank(A) = m. We must show that there exists $B \in M_{n \times m}(F)$ such that $\mathbb{I}_m = AB$.

Proof: We know from the first corollary of theorem 3.6 that there exists $L \in GL_m(F)$, $R \in GL_n(F)$ such that $LAR = \begin{bmatrix} \mathbb{I}_r & O_1 \\ O_2 & O_3 \end{bmatrix}$ where r = rank(A) and O_1, O_2, O_3 are zero matrices. Since rank(A) = m, and the matrix LAR is $m \times n$ then $LAR = \begin{bmatrix} \mathbb{I} & D \end{bmatrix}$ where O is a $m \times (n-m)$ 0 matrix. Therefore left multplying by L^{-1} yields $AR = \begin{bmatrix} L^{-1} & D \end{bmatrix}$. Let $L' \in M_{n \times m}$ be the matrix given by for all $i \in [n], j \in [m], (L')_{ij} = L_{ij}$ if $j \leq n$ otherwise $(L')_{ij} = 0$. We claim that RL' = B. Since $L' \in M_{n \times m}$ and $R \in GL_n(F)$ then $RL' \in M_{n \times m}$. Therefore $AB = ARL' = \begin{bmatrix} L^{-1} & D \end{bmatrix} L'$. Note that by the definition of matrix multiplication and the identity matrix $\delta_{ij} = \sum_{k=1}^m (L^{-1})_{ik} L_{kj}$. Therefore each entry in the new matrix D is given by $D_{ij} = \sum_{k=1}^n \begin{bmatrix} L^{-1} & D \end{bmatrix}_{ik} L'_{kj}$, since for $\begin{bmatrix} L^{-1} & D \end{bmatrix}_{ik}$ if k > m then the entry is 0 and similarly $L'_{kj} = 0$ by definition means that the matrix multiply reduces to $D_{ij} = \sum_{k=1}^m (L^{-1})_{ik} L_{kj} = \delta_{ij}$. Therefore $AB = \mathbb{I}_m$.

Alex Valentino Homework 7 350H

3.

Alex Valentino Homework 7 350H

4.