Stroke Prediction Machine-Learning Project

1. Executive Summary

We built a supervised-learning pipeline that predicts the likelihood of a patient suffering a stroke given routinely collected demographic and clinical variables.\ Using a public healthcare dataset (5 110 records, \~5 % stroke cases), we performed end-to-end data cleaning, feature engineering, class-imbalance handling, model selection and performance evaluation.

- Best AUROC: 0.842 (Logistic and SVM).
- Highest recall (stroke cases): 0.80 at default threshold (Logistic / XGBoost).
- **Best precision-recall balance:** XGBoost with a tuned decision threshold (F1 = 0.33, precision = 0.25, recall = 0.50).

The workflow is fully reproducible (pipelines + notebooks) and demonstrates practical trade-offs between sensitivity and precision—crucial for clinical screening tools.

2. Dataset & Problem Statement

- Source: Kaggle "Healthcare Dataset Stroke Data".
- **Features (11):** age, gender, hypertension, heart disease, ever married, work type, residence type, average glucose level, BMI, smoking status, etc.
- Target: stroke (binary; 1 = patient previously had a stroke).
- Challenge: Severe class imbalance (\~4.9 % positive).

Objective: Flag high-risk patients so clinicians can prioritise follow-up tests or lifestyle interventions.

3. Methodology

1. Exploratory Data Analysis

- 2. Visualised distributions & relationships (e.g. stroke prevalence climbs sharply with age; hypertension & heart disease are strong risk factors).
- 3. Pre-processing
- 4. Median imputation (BMI), mode imputation (categoricals).
- 5. Robust scaling (numerics) + one-hot encoding (categoricals).
- 6. **SMOTE** oversampling applied within the CV folds to balance classes.
- 7. Modelling
- 8. Algorithms: Regularised Logistic Regression, Support Vector Machine (RBF), Balanced Random Forest, XGBoost.
- 9. Hyper-parameter tuning via 5-fold Stratified GridSearchCV (optimising F1 for the minority class).
- 10. Evaluation

- 11. Held-out test set (20 %).
- 12. Metrics: precision, recall, F1, accuracy, AUROC; confusion matrices & PR curves.
- 13. Explicit threshold sweeps to illustrate sensitivity-specificity trade-off.

4. Test-Set Results (key operating points)

Metric \ Model	Logistic (thr = 0.5)	SVM (thr = 0.7)	BRF (thr = 0.5)	XGB (thr = 0.5)	XGB (thr = 0.6)	XGB (thr = 0.7)
precision (0)	0.986	0.983	0.981	0.986	0.983	0.973
precision (1)	0.139	0.202	0.128	0.127	0.151	0.250
recall (0)	0.746	0.854	0.747	0.716	0.786	0.923
recall (1)	0.800	0.720	0.720	0.800	0.740	0.500
F1-score (0)	0.849	0.914	0.848	0.830	0.874	0.947
F1-score (1)	0.237	0.316	0.217	0.219	0.251	0.333
Accuracy	0.749	0.847	0.746	0.720	0.784	0.902
ROC-AUC	0.842	0.842	0.812	0.829	0.829	0.829

Thresholds show deliberate tuning to illustrate trade-offs; see PR curves for the full operating range.

5. Interpretation

- **Logistic Regression** delivers the *highest sensitivity* (80 %) with strong AUROC (0.842) out-of-the-box, making it a transparent baseline suitable for clinical settings.
- **SVM** matches AUROC but at a higher threshold balances overall accuracy (85 %) and minority F1 (0.32).
- **Balanced Random Forest** under-performs relative to simpler models—class weighting plus SMOTE was already effective.
- **XGBoost** excels when we tune the decision threshold: at 0.7 it doubles precision (25 %) while maintaining a respectable 50 % recall, demonstrating the model's flexibility.

In short, the choice of operating point depends on policy: if missing a stroke is worst-case we favour Logistic (recall = 0.80); if false alarms are costly we can shift XGBoost to precision-optimised mode.

6. Key Insights & Impact

• **Risk factors confirmed:** age, hypertension, and heart disease are the top contributors (SHAP & L1 coefficients).

- **Actionable model:** delivered as a scikit-learn pipeline; can be wrapped in a FastAPI endpoint for real-time scoring.
- **Cost awareness:** provided cost-curve & threshold notebook so clinicians can select the sensitivity level that meets guidelines.

7. Next Steps

- 1. Calibration: apply isotonic regression or Platt scaling to improve probability estimates.
- 2. **External Validation:** test on a different hospital's EMR data to confirm generalisation.
- 3. **Feature Enrichment:** include longitudinal vitals or lab results to boost recall without harming precision.
- 4. **Deployment:** containerise the best pipeline + monitoring to detect data drift.

8. Repository Structure