Cost-effective Selection of Pretraining Data: A Case Study of Pretraining BERT on Social Media

Xiang Dai[♣] and Sarvnaz Karimi[♣] and Ben Hachey[♠] and Cecile Paris[♣] ♣ CSIRO Data61 ♠ University of Sydney ♦ Harrison AI

Motivation

- Recent studies on domain-specific BERT models show that, when **in-domain** data is used for pretraining, target task performance can be improved.
- However, the selection of in-domain data usually resorts to human intuition.

We aim to use simple similarity measures to nominate in-domain data, so we

- conduct a case study of pretraining BERT on social media text which has very different tenor from existing domain-specific BERT models.
- release two pretrained BERT models trained on tweets and forum text.
- investigate the correlation of source-target similarity and task accuracy using different domain-specific BERT models.

Resources

- Paper: Dai, Xiang, Karimi, Sarvnaz, Hachey, Ben, Paris, Cecile: Cost-effective Selection of Pretraining Data: A Case Study of Pretraining BERT on Social Media. In: Findings of the Association for Computational Linguistics: EMNLP 2020; Online: 1675–1681.
- Models: https://bit.ly/35RpTf0

Effectiveness of our Pretrained BERT Models

Target Text type	Corpus	BERT	Bio	Clinical	Sci	Twitter	Forum
Tweets	Airline (C)	80.5 _{± 0.3}	79.0 _{± 0.5}	78.8 _{± 0.8}	78.8± 0.9	80.8± 0.6	81.6 _{± 0.5}
	BTC (N)	78.0 _{± 0.5}	75.2 ± 0.3	76.9 _{± 0.5}	77.4 ± 0.4	79.0 _{± 0.5}	$77.0_{\pm 0.4}$
	SMM4H-18 task3 (<i>C</i>)	76.5 _{± 0.9}	$75.4_{\pm\ 1.1}$	75.6± 0.7	75.4 ± 1.0	77.0 _{± 1.0}	77.2 _{± 1.3}
	SMM4H-18 task4 (<i>C</i>)	89.4 _{± 0.5}	87.7 ± 0.4	88.1± 0.8	88.7 ± 0.8	90.3± 0.3	91.1 _{± 0.6}
Forum	CADEC (N)	71.9 _{± 0.6}	72.1± 0.6	72.1± 0.8	73.2 _{± 0.4}	72.1 _{± 1.0}	72.9 _{± 0.6}
	SemEval-14 laptop (N)	81.1± 0.8	79.3 ± 0.3	78.5 _{± 0.4}	$\pmb{81.6}_{\pm\ 1.1}$	81.3± 0.6	$81.4_{\pm 1.1}$
	SemEval-14 restaurant (N)	87.5 _{± 0.6}	$84.9_{\pm 0.3}$	85.5± 0.7	86.7 ± 0.5	87.4 _{± 0.7}	$\underline{89.3_{\pm\ 0.5}}$
	SST-2 (<i>C</i>)	92.4 _{± 0.2}	91.1 _{± 0.5}	90.4 _{± 0.3}	$91.4_{\pm\ 0.4}$	92.3 _{± 0.4}	93.4 _{± 0.4}
Non-social media	EBM (N)	41.5 _{± 0.5}	42.1± 0.2	41.1± 0.5	42.4 _{± 0.7}	40.5± 0.5	41.5 _{± 0.5}
	i2b2-10 (N)	85.8± 0.1	$\underline{87.4_{\pm~0.2}}$	87.4 _{± 0.1}	$87.3_{\pm 0.2}$	84.8 _{± 0.2}	85.2± 0.1
	JNLPBA (N)	72.5 _{± 0.3}	$\underline{\textbf{74.2}_{\pm\ 0.2}}$	71.9 _{± 0.1}	73.6 _{± 0.3}	72.2 _{± 0.2}	72.5 _{± 0.2}
	Paper Field (C)	74.5 _{± 0.1}	$74.3_{\pm 0.1}$	73.3 _{± 0.1}	75.1 _{± 0.1}	74.1 _{± 0.1}	73.3 _{± 0.2}

• Effectiveness of different BERT models, evaluated on downstream tasks. *C*: Classification task, for which we report macro-F1; *N*: NER task, for which we report span-level micro-F1. <u>underline</u>: the best result is significantly better than the second best result (paired student's t-test, p: 0.05).

Similarity measures can be used to nominate in-domain pretraining data

- Three measures of the similarity between source and target data
 - Language model perplexity (PPL): construct Kneser-Ney smoothed 3-gram models on source data and use the perplexity of target data relative to these language models as the similarity
 - Jensen-Shannon divergence (JSD): measure the probability of each term (up to 3-gram) in source and target data, separately. Then use the Jensen-Shannon divergence between these two probability distributions as the similarity
 - Target vocabulary covered (TVC): measures the percentage of the target vocabulary present in the source data, where only content words (nouns, verbs, adjectives) are counted
- Diversity measure: type token ratio (TTR, $\frac{\# \text{ unique tokens}}{\# \text{ tokens}}$), that measures the lexical diversity of the source data.
- Id
 -1.0

 -0.8
 -0.6

 -0.4
 -0.2

 JSD
 PPL
 TVC
 TTR
- Employ the Pearson correlation analysis to find out the relationships between improvements due to domain-specific BERT models and similarity between source and target data.
- Results show that JSD has the strongest correlation (0.519) with the improvement due to domain-specific models, while the other two measures also have modest correlation (0.481 for PPL and 0.436 for TVC).