Real-hima	Scheduling

a specific Results must be produced within deadline.

Soft - real hime

Meeting deadlines is desirable.

Hard real-him

Most Stringent requirements.

Missing deadlines could be catashophic

How to provide R.T Scheduling?

II Preemptive - Priority-based Scheduling

[2] Preemptive - Kernels

dis allow Non preemptive Mernels Preemption when a procus in Reinel mode. is running

1 Complex to design.

Check for other weiling processes. (with higher priority) preemphion points:

3) Latency (minimize latency)	2
THOUSE PROCUMO has	
Interrupt dispatch Interrupt latency happens here. ISR execution	R.T process executing
Time from an interrupt until ISR execution.	time næded to Start the process.

Periodic Prow	x/2	3
Each period	Lic procures has:	
Deriod Deriod Deriod line	(P)	b q
(3) Servicetin		X
	P	d' missed deadline
R.T Schedulers processes adr	Know Such Characteristics nit /veject.	for
Before arrive serie Time	NOW A (20,50)	

(20 130) A 2 4

Static Priority with preemption.

priority is inversely prop. to Jeriod.

$$\frac{20}{50} + \frac{35}{100} = \frac{75}{100}$$

$$A(25,50)$$
 $\frac{25}{50} + \frac{35}{20} = 0.94$
 $B(35,80)$

CPU Uhihzahan bound $\begin{array}{lll}
N=1 & 1 \\
n=2 & 0.82 \\
n=3 & 0.779
\end{array}$

0.69

n=00

n(2 -1) n: number of processes A(25,50) } [6.94] B(35,80)

A (25,50)
B (25,50)

The CPU utilization of process < bound => meet deadling elsc.

We do not Know (need to try it).

RMS is ophimal under Static Priorities.

A (20,100)
B (40,150)
C (100,350)

治 + 50 + 30 = 0.753

0.753 < 0.779 => Under RMS all procus would meet.

21	Earliest	Deadline	First
		12 - 11. 6	11.01

6

Dynamic Priority.

Earlier Me deadline, higher he priorty.

A1 B2 B1 A2 A3 B2 A3 B1 A1 25 50 80 100 B1 B2	120 190
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

[3] Proportional Shar Scheduling

T shaves to allocate.

Each process is assigned n shows.

Ex:

> D asks 30? No