Automatic Machine Learning (AutoML)

Using Python and Scikit-Learn

Introduction

- Are industries really concerned with best algorithms and best results?
- 2-3% improvement in accuracy?

Introduction

- Are industries really concerned with best algorithms and best results?
- 2-3% improvement in accuracy?
- AutoML = One-Click Machine Learning
- Predictive models without looking at data
- Who is doing AutoML:
 - Google Predict
 - BigML
 - Dataiku
 - DataRobot
 - Me
 - o etc. etc.

The AutoML Challenge

The AutoML Challenge

- Large scale evaluation of fully automatic learning machines
- 30 different datasets
- Over 5 rounds
- Lasted for ~1.5 years
- http://codalab.org/AutoML

AutoCompete

- Automated machine learning framework
- Tackles ML competitions
- Pipeline includes
 - Stratified data splitting
 - Feature building
 - Feature selection
 - Model and hyperparameter selection
 - Ensembler
- Search space: prior knowledge on different datasets
- Faster and comparable results compared to current methods
- Python + scikit-learn :)

- Numerical Data:
 - o Do nothing

- Numerical Data:
 - Do nothing
- Categorical Data:
 - Label encoding
 - One-hot encoding

- Numerical Data:
 - Do nothing
- Categorical Data:
 - Label encoding
 - One-hot encoding

from sklearn.preprocessing import LabelEncoder

```
lbl_enc = LabelEncoder()
lbl_enc.fit(xtrain[categorical_features])
xtrain_cat = lbl_enc.transform(xtrain[categorical_features])
```


- Numerical Data:
 - Do nothing
- Categorical Data:
 - Label encoding
 - One-hot encoding

from sklearn.preprocessing import OneHotEncoder

```
ohe = OneHotEncoder()
ohe.fit(xtrain[categorical_features])
xtrain_cat = ohe.transform(xtrain[categorical_features])
```


- Numerical Data:
 - Do nothing
- Text Data:
 - Counts
 - o TF-IDF

- Numerical Data:
 - Do nothing
- Text Data:
 - Counts
 - TF-IDF

from sklearn.feature_extraction.text import TfidfVectorizer


```
import numpy as np
from scipy import sparse

# in case of dense data
X = np.hstack((x1, x2, ...))

# in case data is sparse
X = sparse.hstack((x1, x2, ...))
```



```
import numpy as np
from scipy import sparse
# in case of dense data
X = np.hstack((x1, x2, ...))
# in case data is sparse
X = sparse.hstack((x1, x2, ...))
from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import PCA
from sklearn.feature selection import SelectKBest
pca = PCA(n components=10)
skb = SelectKBest(k=1)
combined features = FeatureUnion([("pca", pca), ("skb", skb)]) 20
```


from sklearn.decomposition import PCA

pca = PCA(n_components=12)
pca.fit(xtrain)
xtrain = pca.transform(xtrain)

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=120)
svd.fit(xtrain)
xtrain = svd.transform(xtrain)

- Multiple ways of feature selection
- Random forest based feature importances
- Feature importances from GBM
- Chi2 feature selection
- Greedy feature selection

- Multiple ways of feature selection
- Random forest based feature importances
- Feature importances from GBM
- Chi2 feature selection
- Greedy feature selection

```
from sklearn.ensemble import RandomForestClassifier
```

```
clf = RandomForestClassifier(n_estimators=100, n_jobs=-1)
clf.fit(X, y)
X selected = clf.transform(X)
```


- Multiple ways of feature selection
- Random forest based feature importances
- Feature importances from GBM
- Chi2 feature selection
- Greedy feature selection

```
import xgboost as xgb

params = {}

model = xgb.train(params, dtrain, num_boost_round=100)
sorted(model.get_fscore().items(), key=lambda t: -t[1])
```


- Multiple ways of feature selection
- Random forest based feature importances
- Feature importances from GBM
- Chi2 feature selection
- Greedy feature selection

```
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

skb = SelectKBest(chi2, k=20)
skb.fit transform(X, y)
```

```
def selectionLoop(self, X, y):
        score history = []
        good features = set([])
        num features = X.shape[1]
        while len(score history) < 2 or score history[-1][0] > score history[-2][0]:
           scores = []
           for feature in range(num features):
                if feature not in good features:
                   selected features = list(good features) + [feature]
                   Xts = np.column stack(X[:, j] for j in selected features)
                   score = self.evaluateScore(Xts, y)
                   scores.append((score, feature))
                   if self. verbose:
                        print "Current AUC : ", np.mean(score)
           good features.add(sorted(scores)[-1][1])
           score history.append(sorted(scores)[-1])
           if self. verbose:
                print "Current Features : ", sorted(list(good features))
        # Remove last added feature
        good features.remove(score history[-1][1])
        good features = sorted(list(good features))
        if self. verbose:
           print "Selected Features : ", good features
```

- Multiple ways of feature selection
- Random forest based feature importances
- Feature importances from GBM
- Chi2 feature selection
- Greedy feature selection

Classification:

- Random Forest
- o GBM
- Logistic Regression
- Naive Bayes
- Support Vector Machines
- k-Nearest Neighbors

Classification:

- Random Forest
- o GBM
- Logistic Regression
- Naive Bayes
- Support Vector Machines
- k-Nearest Neighbors

Regression

- Random Forest
- o GBM
- Linear Regression
- Ridge
- Lasso
- SVR

A Similar Framework for Neural Nets

Selecting NNet Architecture

- Always use SGD or Adam (for fast convergence)
- Start low:
 - Single layer with 120-500 neurons
 - Batch normalization + PReLU
 - o Dropout: 10-20%
- Add new layer:
 - o 1200-1500 neurons
 - High dropout: 40-50%
- Very big network:
 - o 8000-10000 neurons in each layer
 - 60-80% dropout

Some Experiments

Some Experiments

Algorithm	Weighted Average F1 Score				
AutoCompete	0.864				
hyperopt-sklearn	0.856				
SVMTorch	0.848				
LibSVM	0.843				

Results on Newsgroups-20 dataset

Some Results

RESULTS								
	User	<rank></rank>	Set 1	Set 2	Set 3	Set 4	Set 5	
1	ideal.intel.analytics	1.40 (1)	0.8262 (1)	0.8132 (2)	0.9632 (2)	0.8877 (1)	0.5894 (1)	
,	ideal.iritei.ariaiyties	1.40 (1)	0.0202 (1)	0.0132 (2)	0.3032 (2)	0.0077 (1)	0.3034 (1)	
2	abhishek4	3.60 (2)	0.8178 (4)	0.7924 (4)	0.9394 (5)	0.8716 (2)	0.4608 (3)	
3	aad_freiburg	4.00 (3)	0.8172 (6)	0.8107 (3)	0.9751 (1)	0.8580 (5)	0.3958 (5)	
4	asml.intel.com	7.40 (4)	0.8238 (3)	0.8172 (1)	0.9551 (3)	0.8484 (6)	0.3324 (24)	
5	Rong	7.60 (5)	0.8136 (10)	0.7851 (7)	0.8740 (8)	0.8704 (3)	0.3367 (10)	

AutoML Final1 Results

Some Results

RESULTS							
	User	<rank></rank>	Set 1	Set 2	Set 3	Set 4	Set 5
1	aad_freiburg	1.60 (1)	0.6530 (1)	0.5175 (2)	0.2843 (1)	0.7821 (1)	0.3823
2	ideal.intel.analytics	3.60 (2)	0.6137 (3)	0.5263 (1)	0.2455 (5)	0.7271 (7)	0.3863 (2)
3	abhishek4	5.40 (3)	0.5946 (6)	0.5064 (6)	0.2251 (7)	0.7574 (3)	0.3720 (5)

AutoML Final4 Results

Some Results

Dataset	Evita	Flora	Helena	Tania	Yolanda
Evaluation Metric	AUC	A Metric	BAC	PAC	R2
Abhishek	0.5694	0.5001	0.2381	0.7617	0.3870
Damir	0.5816	0.5061	0.2469	0.7498	0.3654
AAD Frieburg	0.5866	0.4540	0.2673	0.7557	0.3782

AutoML GPU Track Results

Conclusions

- We built a partially-automated framework to tackle tabular data
- The framework was extended to use neural networks
- The system gives results comparable to current best methods.
- Learning from past data instead of randomly choosing parameters in a fixed range, given a problem, makes the system faster than other systems.
- It is not fully-automated yet and work is in progress.
- The framework will be extended to auto-tuning of convolutional neural networks soon.

Comments / Questions

- @abhi1thakur
- bit.ly/thakurabhishek
- kaggle.com/abhishek

