Introduction à Map-Reduce

Vincent Leroy

Sources

- Apache Hadoop
- Yahoo! Developer Network
- Hortonworks
- Cloudera
- Practical Problem Solving with Hadoop and Pig
- Les cours seront mis en ligne sur http://lig-membres.imag.fr/leroyv/

Besoin « Big Data »

- Google, 2008
 - 20 PB/jour
 - 180 GB/job (très variable)
- Index du Web
 - 50 milliards de pages
 - 15PB
- Grand collisionneur de hadrons (LHC) du CERN : génère 15PB/an

Capacité d'un (gros) serveur

- Capacité mémoire max : 256 GB
- Capacité disque max : 24TB
- Débit disque : 100MB/s

Solution: Parallélisme

- 1 serveur
 - 8 disque
 - Lire le Web : 230 jours
- Cluster Hadoop Yahoo
 - 4000 serveurs
 - 8 disques/serveur
 - Lire le Web en parallèle : 1h20

Data center Google

Problèmes de la programmation parallèle « classique »

- Synchronisation
 - Mutex, sémaphores ...
- Modèles de programmation
 - Mémoire partagée (multicores)
 - Passage de messages (MPI)
- Difficultés
 - Programmer / débugger (deadlocks ...)
 - Optimiser
 - Rendre élastique (nombre arbitraire de machines)
 - Coûteux
 - Peu réutilisable

Tolérance aux pannes

- Un serveur tombe en panne de temps en temps
- 1000 serveurs ...
 - MTBF (temps moyen entre 2 pannes) < 1 jour
- Un gros job prend plusieurs jours
 - Il y aura des pannes, c'est normal
 - Le calcul doit finir dans un délais prédictible
 - → On ne relance pas tout pour une panne!
- Checkpointing, réplication
 - Difficile à faire à la main

MODÈLE DE PROGRAMMATION MAP-REDUCE

Que sont Map et Reduce ?

- 2 fonctions simples inspirées de la programmation fonctionnelle
 - map (*2) [1,2,3] = [2,4,6]
 - reduce (+) [2,4,6] = 12
- Fonctions « génériques »
- Leur combinaison permet de modéliser énormément de problèmes
- Le développeur fournit l'opérateur appliqué

Map-Reduce sur des clés/valeurs

- Map-Reduce manipule des paires clé/valeur
 - Map est appliqué indépendamment à chaque paire clé/valeur
 map(clé, valeur) → liste(clé, valeur)
 - Reduce est appliqué à toutes les valeurs associées à la même clé reduce(clé,liste(valeur)) → liste(clé,valeur)
 - Les clés/valeurs en sortie ne sont pas forcément du même type que les entrées

Exemple : Compter la fréquence de mots

- Input : un fichier de 2 lignes
 - 1, "a b c aa b c"
 - 2, "a bb cc a cc b"
- Output
 - a, 3
 - b, 3
 - -c, 2
 - aa, 1
 - -bb, 1
 - -cc, 2

Comptage de fréquence : Mapper

- Map traite une fraction de texte (valeur)
 - Délimiter les mots
 - Pour chaque mot, compter une occurrence
 - La clé n'est pas importante dans cet exemple

```
    Map(String line, Output output){
        foreach String word in line.split() {
            output.write(word, 1)
        }
    }
```

Comptage de fréquence : Reducer

- Pour chaque clé, Reduce traite toutes les valeurs correspondantes
 - Additionner le nombre d'occurrences

```
    Reduce(String word, List<Int> occurrences,
        Output output){
            int count = 0
            foreach int occ in occurrences {
                 count += occ
            }
            output.write(word,count)
        }
```

Schéma d'exécution

HDFS: SYSTÈME DE FICHIERS

DISTRIBUÉ

Accès aléatoires / séquentiels

- Exemple
 - BDD 100M d'utilisateurs
 - 100B/utilisateur
 - Modifier 1% des enregistrements
- Accès aléatoire
 - Seek, lecture, écriture : 30mS
 - 1M d'utilisateurs → 8h20
- Accès séquentiel
 - On lit TOUT et on réécrit TOUT
 - 2 fois 10GB à 100MB/S → 3 minutes

→ Il est souvent plus efficace de tout lire et tout réécrire séquentiellement

Système de fichiers distribué (HDFS)

- Système de fichiers distribué
 - Redondance (tolérance aux pannes)
 - Performance (lecture parallèle)
- Gros fichiers
 - Lectures séquentielles
 - Écritures séquentielles
- Traitement des données « en place »
 - Stockage et traitement sur les mêmes machines
 - Meilleure utilisation des machines (pas de filer spécialisé)
 - Moins de saturation réseau (meilleures performances)

Modèle HDFS

- Données organisées en fichiers et répertoires
 proche d'un système de fichiers classique
- Fichiers divisés en blocks (64MB par défaut) répartis sur les machines
- HDFS indique au framework Map-Reduce le placement des données
 - → Si possible, exécution du programme sur la machine où sont placées les données nécessaires

Tolérance aux fautes

- Blocks des fichiers répliqués (3 par défaut) pour faire face aux pannes
- Placement suivant différents facteurs
 - Alimentation électrique
 - Équipement réseau
 - Placement varié pour augmenter la possibilité d'avoir une copie proche
- Checksum des données pour détecter les corruptions de données (présent sur les systèmes de fichiers modernes)

Architecture Master/Worker

- Un *maître*, le NameNode
 - Gère l'espace des noms de fichiers
 - Gère les droits d'accès
 - Dirige les opérations sur les fichiers, blocks ...
 - Surveille le bon état du système (pannes, équilibre ...)
- Beaucoup (milliers) d'esclaves, les DataNodes
 - Contient les données (blocks)
 - Effectue les opérations de lecture/écriture
 - Effectue les copies (réplication, dirigée par le NameNode)

NameNode

- Stocke les métadonnées de chaque fichier et block (*inode*)
 - Nom de fichier, répertoire, association block/
 fichier, position des blocks, nombre de réplicas ...
- Garde tout en mémoire (RAM)
 - Facteur limitant = nombre de fichiers
 - 60M d'objets tiennent en 16GB

DataNode

- Gère et surveille l'état des blocks stockés sur le système de fichier de l'OS hôte (souvent linux)
- Accédé directement par les clients

 \rightarrow les données ne transitent pas par le NameNode
- Envoie des *heartbeats* au NameNode pour indiquer que le serveur n'est pas en panne
- Indique au NameNode si des blocks sont corrompus

Ecriture d'un fichier

- Le client fait une requête au NameNode pour créer un nouveau fichier
- Le NameNode vérifie
 - les permissions du client
 - si le nom du fichier n'existe pas déjà
- Des DataNodes sont choisis pour stocker les blocs du fichier et des répliques
 - "pipeline" de DataNodes
- Des blocks sont alloués sur ces DataNodes
- Le flux des données du client est dirigé sur le 1er DataNode du pipeline
- Chaque DataNode forwarde les données reçues aux DataNode suivant du pipeline

Lecture d'un fichier

- Le client fait une requête au NameNode pour lire un fichier
- Le NameNode vérifie que le fichier existe et construit la liste des DataNodes contenant les premiers blocs
- Pour chacun de ces blocs, le NameNode renvoie les adresse des DataNodes les contenant
 - cette liste est triée par ordre de proximité au client
- Le client se connecte au DataNode le plus proche contenant le 1er bloc du fichier
- Lecture d'un bloc terminée :
 - Connexion au DataNode coupée
 - Nouvelle connexion au DataNode contenant le bloc suivant
- Quand tous les premiers blocs lus :
 - Requête au NameNode pour avoir l'ensemble de blocs suivants

Structure d'HDFS

Commandes HDFS (répertoires)

- Créer répertoire rep \$ hdfs dfs -mkdir rep
- Lister contenu HDFS
 \$ hdfs dfs -ls
- Effacer répertoire rep
 \$ hdfs dfs -rm -r rep

Commandes HDFS (fichiers)

- Copier fichier local toto.txt dans HDFS rep/ \$ hdfs dfs -put toto.txt rep/toto.txt
- Copier fichier HDFS sur le disque local
 \$ hdfs dfs -get rep/toto.txt ./
- Voir fichier rep/toto.txt
 \$ hdfs dfs -cat rep/toto.txt
- Effacer fichier rep/toto.txt \$ hdfs dfs -rm rep/toto.txt

APACHE HADOOP : FRAMEWORK MAP-REDUCE

Objectifs du framework Map-Reduce

- Offrir un modèle de programmation simple et générique : fonctions map et reduce
- Déployer automatiquement l'exécution
- Prendre en charge la tolérance aux pannes
- Passage à l'échelle jusqu'à plusieurs milliers de machines
- La performance pure est importante mais n'est pas prioritaire
 - L'important est de finir dans un temps raisonnable
 - Si c'est trop lent, ajoutez des machines !Kill It With Iron (KIWI principle)

Que fait le développeur ?

- Implémente les opérations Map et Reduce (Java, C++ ...)
 - Dépend du programme
- Définit ses types de données (clés / valeurs)
 - Si non standards (Text, IntWritable ... fournis)
 - Méthodes pour sérialiser
- C'est tout.

Imports

```
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.JobContext ;
import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
```

Attention nouvelle / ancienne API

Mapper

```
// type clé input, type valeur input, type clé output,
type valeur output
public class WordCountMapper extends Mapper<LongWritable,
Text, Text, IntWritable> {

    @Override
    protected void map(LongWritable key, Text value,
Context context) throws IOException, InterruptedException
    {
        for (String word : value.toString().split("\\s+")) {
            context.write(new Text(word), new IntWritable(1));
        }
    }
}
```

Reducer

```
// type clé input, type valeur input, type clé output,
type valeur output
public class WordCountReducer extends Reducer < Text,
IntWritable, Text, LongWritable> {
   @Override
   protected void reduce (Text key, Iterable < IntWritable >
values, Context context) throws IOException,
InterruptedException {
       long sum = 0;
       for (IntWritable value : values) {
          sum += value.get();
       context.write(key, new LongWritable(sum));
```

Main

```
public class WordCountMain {
    public static void main(String [] args) throws Exception {
         Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf,
args).getRemainingArgs();
         Job job = Job.getInstance(conf, "word count");
         job.setJarByClass(WordCountMain.class);
         job.setMapOutputKeyClass(Text.class);
         job.setMapOutputValueClass(IntWritable.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(LongWritable.class);
         job.setMapperClass(WordCountMapper.class);
         job.setReducerClass(WordCountReducer.class);
         job.setInputFormatClass(TextInputFormat.class);
         job.setOutputFormatClass(TextOutputFormat.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
         System.exit(job.waitForCompletion(true) ? 0 : 1);
```

Terminologie

- Programme Map-Reduce = job
- Les jobs sont soumis au jobtracker
- Un job est divisé en plusieurs tasks
 - un map est une task
 - un reduce est une task
- Les tasks sont surveillées par des tasktrackers
 - une task lente est appelée straggler
- Dans Map-Reduce, barrière entre les maps et les reduce (shuffle & sort)
 - il faut attendre le map le plus lent avant de commencer les reduce

Exécution d'un job

- \$ hadoop jar wordcount.jar org.myorg.WordCount inputPath(HDFS) outputPath(HDFS)
- Les paramètres sont vérifiés
 - un répertoire d'output t'il été spécifié ?
 - le répertoire d'output existe t'il déjà ?
 - un répertoire d'input a t'il été spécifié ?
- Les splits sont calculés
- Le job (code Map-Reduce), sa configuration et les splits sont copiés avec une forte réplication
- Un objet pour suivre la progression des tâches est créé sur le jobtracker
- Pour chaque split, un mapper est créé
- Le nombre de reducer par défaut est créé

Tasktracker

- Le tasktracker envoie périodiquement un signal au jobtracker
 - indique que le noeud fonctionne toujours
 - indique si le tasktracker est prêt à accepter une nouvelle task
- Un tasktracker est en général responsable d'un noeud
 - nombre fixé de slots pour des tasks map
 - nombre fixé de slots pour des tasks reduce
 - tasks peuvent être de jobs différents
- Chaque task tourne sur sa propre JVM
 - permet d'isoler l'exécution des tâches au sein du tasktracker

Suivi de la progression

- Une task map connaît son état d'avancement, i.e. la proportion du split qu'il a traitée
- Pour une task reduce, trois phases pour l'état d'avancement:
 - copie
 - tri
 - reduce
- Ces informations sont passées au TaskTracker
- Toutes les 5 secondes (ou plus), l'information d'avancement est envoyée au JobTracker
- Le JobTracker peut fournir ces informations au client, ou à l'interface web

Suivi de la progression

Fin du Job

- Les outputs de chaque reduce sont écrits dans un fichier
- Le jobtracker envoie un message au client, qui affiche les compteurs du job 14/10/28 11:54:25 INFO mapreduce.Job: Job job_1413131666506_0070 completed successfully

```
Job Counters

Launched map tasks=392
Launched reduce tasks=88
Data-local map tasks=392
[...]

Map-Reduce Framework

Map input records=622976332
Map output records=622952022
Reduce input groups=54858244
Reduce input records=622952022
Reduce output records=546559709
[...]
```

Panne d'un nœud durant un job

- Bug dans une task
 - JVM de la task crashe → JVM du tasktracker notifiée
 - task supprimée de son slot
- task ne répond plus
 - timeout de 10 minutes
 - task supprimée de son slot
- Chaque task est réessayée N fois (défaut 7)

Combiner

- Problème possible d'un map : beaucoup de couples clé/valeurs en output
- Ces couples doivent être copiés au reducer, voire transmis sur le réseau : coûteux
- Combiner : mini-reducer qui se place à la sortie du map et réduit le nombre de couples
- Types d'input du combiner = types d'output du combiner = types de sortie du map
- Combiner utilisé optionnellement par Hadoop
 - la correction du programme ne doit pas en dépendre
- conf.setCombiner(...)

Combiner

cc, 2

cc, [2]