Objectif du projet

Ce projet consiste à mettre en place un **système intelligent** qui détecte les besoins en eau d'un champ et déclenche automatiquement l'arrosage selon des conditions mesurées (humidité du sol, température, prévisions météo, etc.).

Matériels nécessaires

• Capteurs

Capteurs	Mesure	Utilité dans	Exemple de
		le système	Modèle
Humidité du sol	% d'humidité dans la terre	Détermine si les plantes ont besoin d'eau (seuil personnalisable par type de culture).	Capacitif: Soil Moisture Sensor (VH400)
Température/Humidité air	°C et % HR (air)	Évite l'arrosage en cas de forte humidité ou de températures extrêmes (gel/chaleur).	DHT22 ou DHT11
Luminosité	Niveau de lumière (lux)	Permet d'arroser de préférence tôt le matin ou tard le soir pour limiter l'évaporation.	LDR ou BH1750

• Microcontrôleurs

ESP32

Connecté au Wi-Fi / Internet Contrôle intelligent (automatisation, envoi de données, interface web)

Arduino

Fait des mesures simples localement Prend les lectures de capteurs, active des pompes

• Pompes

Elles sont des réservoirs d'eau qui seront activées par le programme d'Arduino à chaque fois qu'ils y a besoin

Figure 1: Soil Moisture Sensor (VH400)

Figure2: Capteur de Température

Figure 3: Carte Arduino

Mesure la température (°C) et l'humidité relative de l'air (%).

Utilise une sonde capacitive pour l'humidité et une thermistance pour la température.

Communique via un protocole numérique (ex. : *I2C* ou *One-Wire*).

Cerveau du système ; elle lit les données du capteur et commande la pompe. Elle exécute un programme (sketch Arduino) qui décide quand activer la pompe en fonction des valeurs du capteur d'humidité.

Figure 4: Transistor (MOSFET)

Un transistor (MOSFET ou bipolaire NPN) fonctionne comme un interrupteur électronique rapide et silencieux.

Elle est activée ou désactivée selon le reçu de la carte de traitement lorsqu'elle est alimentée, elle aspire l'eau et

l'envoie vers la plante via un tuyau.

Figure 5 : Pompe à eau

Alimentation

• **Option 1**: Secteur (transformateur 12V).

• Option 2 : Panneau solaire + batterie (pour les champs isolés).

Figure 6 : ESP32

ESP32 héberge une page web ou reçoit des commandes via Wi-Fi