DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA UNIVERSIDADE DE AVEIRO

MESTRADO INTEGRADO EM ENGENHARIA ELECTRÓNICA E TELECOMUNICAÇÕES

EXERCÍCIOS PRÁTICOS DE SISTEMAS E CONTROLO I

2008/2009

TELMO REIS CUNHA

Apresenta-se, neste documento, um conjunto de exercícios práticos que dizem respeito às seguintes matérias da disciplina de Sistemas e Controlo I, do Mestrado Integrado em Engenharia Electrónica e Telecomunicações:

- Revisão sobre Transformada de Laplace e Sistemas;
- Técnicas de representação dos modelos dos sistemas;
- Modelos matemáticos de sistemas físicos.

O objectivo destes exercícios é complementar o estudo efectuado pelos alunos da disciplina, podendo assim aplicar os conhecimentos adquiridos nas aulas teóricas e práticas e, também, no seu tempo de estudo individual.

I – REVISÃO SOBRE TRANSFORMADA DE LAPLACE E SISTEMAS

1 — Considere os seguintes sinais expressos no domínio de Laplace. Através da aplicação da definição de Transformada Inversa de Laplace, determine as expressões dos mesmos sinais no domínio do tempo.

a)
$$X(s) = \frac{A}{s+p}$$
, onde $A \in p \in \Re$.

b)
$$Y(s) = \frac{A}{(s+p)^2}$$
, onde $A \in p \in \Re$.

c)
$$Z(s) = \frac{A}{s^2 + \omega^2}$$
, onde $A \in \omega \in \Re$.

2 — Por aplicação do teorema dos resíduos (decomposição em fracções simples), determine a representação dos seguintes sinais no domínio do tempo.

a)
$$X(s) = \frac{5}{s^3 + 7s^2 + 12s}$$

b)
$$X(s) = \frac{s^2 + 3s + 2}{s^3 + 7s^2 + 12s}$$

c)
$$X(s) = \frac{(s+1)(s+2)}{s(s+3)^2(s+4)^2}$$

d)
$$X(s) = \frac{4}{s^3 + 3s^2 + 4s + 2}$$

3 – Considere vários sistemas cujas respostas impulsionais $h_i(t)$, i=1,...,4, são conhecidas e descritas por:

- a) Para cada um destes sistemas determine a expressão, no domínio do tempo, da sua resposta ao degrau unitário, efectuando para tal a resolução do integral de convolução.
- **b**) Repita a alínea anterior mas recorrendo, agora, à transformada de Laplace (recorde que a função de transferência de um sistema é a transformada de Laplace da sua resposta impulsional).
- c) Novamente através do integral de convolução, determine a resposta impulsional do sistema constituído pela cascata de $h_2(t)$ e $h_3(t)$.
- d) Repita a alínea anterior mas recorrendo, agora, à transformada de Laplace.
- 4 Seja o seguinte circuito eléctrico (filtro RC passa-baixo):

- **a)** Com $v_i(t)$ =0, $\forall t$, determine a expressão de $v_o(t)$ sabendo que, no instante inicial, o condensador tem a tensão V_{co} aos seus terminais.
- **b**) Determine, de novo, a expressão de $v_o(t)$ sabendo agora que V_{co} =0V e que $v_i(t)$ comuta, no instante inicial, de 0v para o valor V_i , permanecendo constante neste valor daí em diante.
- c) Repita a alínea anterior mas considerando que, agora, $V_{co} \neq 0$ V.
- **5** Repita o problema anterior para o circuito RC passa-alto:

6 – Demonstre que:

a)
$$\mathbb{L}\left\{\frac{d x(t)}{dt}\right\} = sX(s) - x(t)$$
, onde $X(s) = \mathbb{L}\left\{x(t)\right\}$.

b)
$$\mathbb{L}\left\{\frac{d^2 x(t)}{dt^2}\right\} = s^2 X(s) - s x(t) - \frac{d x(t)}{dt}\Big|_{t=0}$$
, onde $X(s) = \mathbb{L}\left\{x(t)\right\}$.

7 – Seja o seguinte sistema. Determine as componentes transitória e estacionária do sinal de saída y(t) quando a entrada x(t) é:

$$X(s)$$
 10 $Y(s)$

- a) o impulso de Dirac.
- b) o degrau unitário.
- **c)** $x(t) = A\cos(\omega t)$

8 – Determine a resposta impulsional h(t) dos seguintes sistemas, onde x(t) é a entrada e y(t) a saída:

a)
$$y(t) + y(t) = x(t)$$
 , onde $y(t) = \frac{dy(t)}{dt}$, $y(t) = \frac{d^2y(t)}{dt^2}$, ...

b)
$$y(t) + y(t) = x(t) + x(t)$$

c)
$$y(t) + 2y(t) + y(t) = x(t) + x(t)$$

d) Pode-se concluir que a) e c) representam o mesmo sistema? Justifique.

9 – Caracterize, justificando, cada um dos seguintes sistemas quanto aos seguintes atributos, sabendo que x(t) é o sinal de entrada e y(t) o de saída:

- Estático

- Causal

- Dinâmico com memória finita

- Não causal

- Dinâmico com memória infinita

a)
$$y(t) = Kx(t)$$
 , $K \in \Re$

b)
$$y(t) + 2y(t) + y(t) = x(t) + x(t)$$

c)
$$y(t) + y(t) = x(t) + x(t)$$

d)
$$y(t) + 2y(t) = x(t) + 2x(t)$$

e)
$$Y(s) = sX(s)$$

f)
$$Y(s) = \frac{s+4}{s+1} X(s)$$

II – TÉCNICAS DE REPRESENTAÇÃO DE MODELOS DE SISTEMAS

1 – Represente os seguintes sistemas através de um diagrama de simulação, sendo x(t) o sinal de entrada e y(t) o de saída:

$$\mathbf{a}) \qquad \underbrace{X(s)}_{\left(s+1\right)\left(s+2\right)\left(s+3\right)} \qquad \underline{Y(s)}$$

$$X(s) \xrightarrow{2} Y(s)$$
b)

$$X(s) \xrightarrow{(s+2)(s+3)} Y(s)$$

$$x(s+1)^2$$

d)
$$y(t) + 2y(t) + 3y(t) + 4y(t) = 5x(t)$$
, onde $y(t) = \frac{dy(t)}{dt}$, $y(t) = \frac{d^2y(t)}{dt^2}$, ...

e)
$$y(t) + 2y(t) + 3y(t) + 4y(t) = 6x(t) + 5x(t)$$

2 – Represente o seguinte sistema através de um diagrama de simulação:

$$X(s)$$
 5 $Y(s)$

- a) na forma canónica de fase variável.
- b) na forma canónica do observador.

3 – Represente o seguinte sistema através de um diagrama de simulação:

$$X(s) \xrightarrow{(s+2)^2} Y(s)$$

- a) na forma canónica do controlador.
- **b**) na forma canónica do observador.

4 — Obtenha as representações por diagrama de simulação dos seguintes sistemas, usando a forma canónica do controlador:

a)
$$y(t) + 3y(t) + 2y(t) + 1y(t) = x(t) + 2x(t)$$

b)
$$y(t) + 3y(t) + 2y(t) = 4x(t) + 5x(t) + x(t)$$

c) Repita as alíneas anteriores considerando, agora, a forma canónica do observador.

 $\mathbf{5}$ — Considere o sistema representado pelo seguinte diagrama de blocos. Determine a função de transferência considerando como entrada o sinal R(s) e como saída a diferença $C_1(s)$ - $C_2(s)$.

6 – Considere o sistema seguinte que possui um parâmetro ajustável $K \ge 0$. Determine as expressões dos pólos deste sistema em função do parâmetro K.

7 – Seja o sistema representado pelo seguinte diagrama de blocos. K1 e K2 são parâmetros ajustáveis do sistema. Determine a função de transferência do circuito.

8 — Seja o sistema seguinte, onde R(s) é a sua entrada e C(s) a saída. Este sistema é afectado por perturbações exteriores, representadas pelo sinal D(s). No sentido de reduzir o efeito que essas perturbações causam na saída, foi considerado um bloco adicional [H(s)] que fora ligado ao sistema tal como apresentado na figura (a tracejado). Projecte H(s), em função de $G_1(s)$ e/ou $G_2(s)$, por forma a que a saída C(s) fique totalmente imune às perturbações D(s).

9 – Considere o sistema da seguinte figura, representado através de um diagrama de blocos.

Determine G(s) e H(s) do diagrama de blocos do sistema abaixo representado por forma a que este represente o mesmo sistema que o da figura de cima.

10 — Considere o sistema representado pelo seguinte diagrama de blocos, com um parâmetro real ajustável $K ∈ \Re$. Determine a função de transferência considerando como entrada o sinal R(s) e como saída o sinal C(s).

11 – Considere um sistema que é descrito pelo seguinte diagrama de blocos.

Sabe-se que esse mesmo sistema pode ser também descrito pelo diagrama de blocos mais simples apresentado em baixo. Determine as expressões de G(s) e H(s) em função das funções de transferência dos blocos do anterior.

12 – Considere o sistema seguinte representado por um diagrama de fluxo de sinal.

- a) Determine a função de transferência do sistema, considerando a saída C(s) e as entradas $R_1(s)$ e $R_2(s)$.
- **b)** Considere que é aplicado, em simultâneo, um degrau unitário em R_1 e R_2 . Qual é o valor máximo de c(t) e em que instante é atingido?
- 13 Considere o sistema representado pelo diagrama de fluxo de sinal seguinte:

a) Determine a função de transferência, considerando a saída C(s) e as entradas R(s) e D(s).

b) Considere que
$$d(t) = 0$$
, $\forall_{t \in \Re}$, e que $G_1(s) = \frac{1}{s+1}$ $G_2(s) = s+1$ $H_1(s) = s$.

i- Em que instante c(t) atinge o valor máximo quando a entrada R(s) é o degrau unitário?

ii- Para que valor tende a segunda derivada da saída do sistema, $\frac{d^2c(t)}{dt^2}$, quando a entrada é $r(t) = t^2$ para $t \ge 0$ (r(t) = 0 para t < 0)?

14 - Considere o sistema representado pelo seguinte diagrama de fluxo de sinal, sendo R(s) a entrada e C(s) a saída. Obtenha a função de transferência do sistema por aplicação da fórmula do ganho de Mason.

15 — Considere um sistema representado pelo diagrama de fluxo de sinal da figura seguinte, em que u(t) corresponde ao sinal de entrada, y(t) representa o sinal de saída e K é um escalar positivo.

a) Determine a função de transferência do sistema.

b) Determine K por forma a que o sistema apresente um par de pólos complexos conjugados em -1 \pm j2.

16 – Seja o seguinte sistema, de entrada R(s) e saída C(s), apresentado na forma de um diagrama de fluxo de sinal. Por aplicação da fórmula do ganho de Mason, determine a função de transferência do sistema.

17 – Considere o sistema representado através do seguinte diagrama de fluxo de sinal. O sistema possui duas entradas $(R_1(s) \in R_2(s))$ e uma saída C(s). Determine a função de transferência $\frac{C(s)}{U(s)}$ onde $U(s) = R_1(s) - R_2(s)$.

18 – Considere o sistema representado pelo diagrama de fluxo de sinal seguinte, com um parâmetro real ajustável $K \in \Re$.

Demonstre que, se o diagrama for reduzido (por equivalência) ao diagrama apresentado em baixo, então $G_1(s)H(s)=G_1(s)G_2(s)G_3(s)+G_4(s)$.

19 – Considere o sistema seguinte, representado através de um diagrama de fluxo de sinal. Determine a função de transferência G(s)=C(s)/R(s) por aplicação da fórmula do ganho de Mason.

20 – Considere o sistema seguinte, representado através de um diagrama de fluxo de sinal. Determine a função de transferência C(s)/R(s).

21 – Considere o sistema seguinte, representado através de um diagrama de fluxo de sinal. Determine a função de transferência C(s)/R(s) por aplicação da fórmula de Mason.

1 – Considere o sistema da figura seguinte. Utilizando as ferramentas proporcionadas pelo MATLAB (*simulink*), visualize a resposta ao degrau unitário para o intervalo de tempo [0, 5] seg. Obtenha, também, o gráfico da altura da água em ambos os tanques. Considere A1=1m², A2=2m², R1=5000, R2=2000, H=1m.

qi - Caudal de água de entrada

qo - Caudal de água de saída

R1 e R2 - Resistências fluídicas

A1 e A2- Área da base dos tanques cilíndricos

2-A figura seguinte apresenta um sistema hidráulico cujo objectivo é manter constante a altura h do tanque 1, independentemente da força exterior F que é aplicada sobre a plataforma que isola a superfície do tanque 1 (considere desprezável o atrito entre esta plataforma e as paredes do tanque). Quando F aumenta, o medidor de desnível M detecta um deslocamento x e envia um sinal de controlo à bomba de água B que começa a encher o tanque 2 através do tubo T_o (esta água provém de um reservatório externo). Quando F diminui e x passa a ser negativo, a bomba de água começa a retirar água do tanque 2 (para o reservatório externo), através do tubo T_i . Considere que o caudal (debitado ou extraído) da bomba de água é proporcional a x, com constante de proporcionalidade K. A saída do sistema é a altura H. A densidade do fluído é $\rho = 1$.

Obtenha as equações da dinâmica deste sistema, considerando que o valor da altura h, em regime estacionário, pode ser regulada pelo operador do sistema (sendo esta denominada h_a).

3 — O sistema da figura seguinte representa uma balança baseada no Princípio de Arquimedes. Num tanque contendo água foi colocado um cubo de 1m de lado e densidade relativa 0.5. Sendo colocado um determinado corpo em cima do cubo, esperase que, por observação da profundidade (x) atingida pela face inferior do cubo, seja estimado o peso desse corpo.

- a) Seja F(t)=0 (ausência de corpo a pesar). Considere também que ao deslocamento vertical do cubo na água se opõe uma força de atrito de coeficiente f praticamente constante. Pretendendo-se observar a variação de x no tempo, obtenha a equação da dinâmica deste sistema supondo que, inicialmente, o cubo é libertado à superfície do fluido.
- **b**) Estando o cubo mergulhado, já em repouso, sem qualquer corpo sobre ele, suponha que, de repente, se colocou um corpo de massa M no cubo. Qual é o valor máximo de M para que, durante esta experiência, o corpo nunca se molhe (considere f = 2000)?

NOTA: Arquimedes (282-212 aC) foi um matemático grego que, entre vários outros assuntos, estudou a impulsão de um corpo quando totalmente ou parcialmente submerso num líquido. Desse estudo resultou o famoso Princípio de Arquimedes que é aqui relembrado:

"Todo o corpo mergulhado num fluido sofre, por parte do fluido, uma força vertical de baixo para cima, cuja intensidade é igual ao peso do volume de fluido deslocado pelo corpo."

4 – Considere a balança representada na figura seguinte. A balança é composta por dois tanques cilíndricos, cujas secções são A1 e A2, estando ambos interligados na base através de um canal. No interior dos tanques (e do canal) encontra-se um líquido incompressível, estando vedado na superfície, em cada tanque, por uma placa isoladora. Cada placa pode-se movimentar na vertical, no entanto mantém sempre o contacto com a superfície do líquido. Considere desprezável o atrito do líquido nas paredes dos tanques quando comparado com o atrito das placas isoladoras na zona de contacto com os tanques (cujo coeficiente de atrito é f). Considere também desprezável a resistência fluídica introduzida pelo canal.

Quando um corpo de massa M é colocado na placa do tanque 1, esta desce e a placa do tanque 2 sobe. Ao fim de um certo tempo, por acção da mola (de coeficiente K) e do volume de líquido deslocado, as placas estabilizam e, a partir da altura h_2 (medida

relativamente à posição de repouso da balança, sem qualquer corpo aplicado), obtém-se uma medida da massa M do corpo.

- a) Determine a equação da dinâmica deste sistema.
- **b**) Com $A_1=1$ m³, que relação deverá existir entre os vários parâmetros do sistema para que, em regime estacionário, h_2 apresente uma variação de 1 cm por cada kg da massa do corpo aplicado?
- $\mathbf{5}$ O sistema seguinte tem como objectivo manter num valor pré-determinado o desnível H entre as alturas de água nos tanques T_1 e T_2 , sendo estes cilíndricos com área de base A_1 e A_2 respectivamente. Uma bomba de água movimenta o líquido entre os dois tanques mediante a relação $q_d = K(H H_{ref})$, onde H_{ref} é o desnível de referência previamente especificado pelo operador do sistema. O tanque T_1 é alimentado por uma mangueira que debita o caudal q(t).

- a) Determine um sistema de equações diferenciais, no domínio do tempo, que represente a dinâmica completa do sistema.
- **b**) Verifique que, em regime estacionário e considerando q(t)=Q constante, só existe um valor de H_{ref} para o qual a bomba permanece sem consumir energia a movimentar água. Determine esse valor particular de H_{ref} em função dos parâmetros do sistema.

6 – Considere o sistema da figura seguinte. O voltímetro-actuador V fecha o interruptor quando a tensão aos terminais de C_1 ultrapassa o valor V_T . Considere como entrada do sistema a corrente I_i e como saída a corrente em R_2 (I_o). Visualize, via *simulink*, a resposta ao degrau unitário para o intervalo de tempo [0 , 2] seg. Obtenha, também, o gráfico da tensão em ambos os condensadores. Considere C_1 =100mF, C_2 =200mF, R_1 =5 Ω , R_2 =2 Ω , V_T =5V.

7 – Considere o seguinte circuito eléctrico. $v_i(t)$ é a entrada e $v_o(t)$ a saída. Determine a função de transferência do circuito.

8 — Considere o sistema mecânico de translação apresentado na figura seguinte. Considere desprezável o atrito entre as duas massas e o plano inclinado. Determine as equações da dinâmica do sistema.

9 – Considere o seguinte sistema onde um conjunto de três massas interligadas por duas molas (de coeficiente de elasticidade K) e um amortecedor (de coeficiente de atrito D) são actuadas horizontalmente por duas forças exteriores F_L e F_R . O parâmetro x_i (i=1,2,3) corresponde ao desvio da posição da massa M_i relativamente à sua posição inicial (em repouso). Despreze o atrito entre a superfície inferior de cada massa e o solo.

- a) Determine as equações da dinâmica, considerando x_1 como saída do sistema.
- b) Considerando que:
 - i) M2=M3;
 - ii) o sistema está inicialmente em repouso;
 - *iii*) no instante inicial, são aplicadas as forças F_L e F_R (segundo os sentidos indicados na figura), ambas com módulo constante e igual a |F|.

Determine o valor final de x_1 , x_2 e x_3 .

10 – Considere o sistema da figura que se segue, cujo objectivo é colocar a esfera de massa *m* numa dada posição (*y*) ao longo da calha por onde rola. A calha encontra-se fixa na sua extremidade direita através de uma dobradiça (que permite que a calha adquira diferentes inclinações relativamente à horizontal). Na sua extremidade esquerda a calha encosta numa barra vertical que se pode deslocar verticalmente através de um dispositivo electromecânico.

Relativamente a este sistema sabe-se que:

- a esfera está sempre em contacto com a calha, existindo entre ambas atrito dinâmico com coeficiente f;
- a esfera desloca-se por acção da gravidade (de aceleração gravítica *g*);
- a posição x da extremidade esquerda da calha relaciona-se com a tensão V aplicada ao dispositivo electromecânico através da relação $\overset{\bullet}{x(t)} + b \, x(t) = kV(t), \ b, k \in \Re^+;$
- a posição *x*=0 da extremidade esquerda corresponde à posição horizontal da calha;
- a tensão *V* aplicada ao dispositivo electromecânico pode ser positiva ou negativa;
- considere que as variações possíveis de x são muito menores que o comprimento da calha (d), pelo que é válida a aproximação $\sin(\theta) \approx \theta$.

- **a)** Determine a equação da dinâmica deste sistema que relaciona a posição y da esfera na calha com a tensão V aplicada ao dispositivo electromecânico.
- **b**) Considere m=0.5Kg, g=10ms⁻², d=1m, f=0.05Ns/m, b=1 e k=0.01. Sabendo que inicialmente se tinha x=5cm, colocou-se a esfera (parada) na extremidade esquerda da calha. No instante t=0 seg soltou-se a esfera que começou a rolar para a direita, tendo-se mantido a calha sempre com a mesma inclinação. Determine a posição da esfera, e a sua velocidade (i.e., derivada de y), no instante t=2seg.
- 11 O sistema da ilustrado em baixo representa uma experiência efectuada para se determinar o valor do coeficiente de atrito dinâmico (f) entre duas superfícies (a da superfície inclinada com a superfície inferior da massa m). O corpo de massa m é deixado livre no topo da rampa, começando a descida por influência apenas da acção gravítica. Esse corpo possui instalado um registador da sua velocidade instantânea relativamente ao solo. Considere desprezável o atrito com o ar e considere que se conhece a priori o ângulo de inclinação (a) da rampa relativamente à horizontal local.

- a) Determine a equação da dinâmica do sistema.
- **b**) Como é que procederia para determinar o valor de f com base nesta experiência, sem ter que determinar acelerações instantâneas do corpo?
- c) Com m=10kg, $\alpha=10^{\circ}$ e estimando-se que f=4Ns/m, qual deverá ser o comprimento mínimo da rampa para que o corpo atinja, a meio da rampa, uma velocidade de pelo menos 80% da sua velocidade final. (Sugestão: recorra à simulação do sistema no *simulink*).

12 - Considere o sistema da figura seguinte onde um conjunto de três corpos (de massas M_1 , M_2 e M_3) interligados por molas (de constante de elasticidade K_1 , K_2 , K_3 e K_4) efectuam pequenos desvios de posição (x_1 , x_2 e x_3 , respectivamente, e relativamente às suas posições iniciais) quando é aplicado ao corpo de massa M_1 uma força exterior F. Considere que apenas existe atrito não desprezável no contacto entre os corpos de massa M_1 e M_2 , sendo f o seu coeficiente de atrito.

- a) Determine o sistema de equações da dinâmica do sistema.
- **b**) Represente o sistema através de um diagrama de blocos (F(s) é a entrada e $X_2(s)$ a saída), em que no diagrama aparecem os sinais F(s), $X_1(s)$, $X_2(s)$ e $X_3(s)$.
- c) Com $M_1 = 1kg$, $M_2 = 2kg$, $M_3 = 5kg$, f = 0.5Ns/m, $K_1 = K_2 = 1N/m$, $K_3 = K_4 = 0.5N/m$, simule o sistema no *simulink* por forma a visualizar $x_1(t)$, $x_2(t)$ e $x_3(t)$ em simultâneo, durante 100 segundos após a aplicação da seguinte força exterior:

- 13 Considere o sistema mecânico apresentado em baixo. Neste, um corpo de massa M é deslocado para a direita através de uma força F imposta num cabo de coeficiente de elasticidade infinito. Este cabo passa por duas roldanas fixas, com massa m e raio R, e considera-se que não há deslizamento entre o cabo e a superfície das roldanas. Existe atrito dinâmico, de coeficiente f, entre o corpo de massa M e a superfície horizontal onde assenta.
 - a) Determine a função de transferência X(s)/F(s), onde $X(s)= L\{x(t)\}$ e $F(s)= L\{F(t)\}$.
 - **b**) Suponha que, com o sistema inicialmente parado, se coloca um outro corpo, também de massa M, na extremidade direita do cabo. No instante t=0 seg., e com o cabo esticado, este corpo é largado. Obtenha a expressão que representa a evolução de x(t) com o tempo.

14 – Considere o sistema mecânico de uma máquina rebarbadora, movida por um motor eléctrico DC controlado pelo induzido e de ligação independente. O veio do motor está ligado ao disco (de raio R) da rebarbadora, sendo J_D a inércia do disco relativamente ao seu eixo de rotação. A ligação entre o motor e o disco é efectuada através de um veio elástico, com constante de elasticidade K. Considere que, quando em operação, existe atrito entre a borda do disco e o material que está a ser trabalhado, sendo o coeficiente de atrito f considerado constante durante cada operação. Pretende-se observar a velocidade de rotação do disco. A figura seguinte mostra um esquema representativo deste sistema.

Considere as seguintes características do motor:

- o rotor do motor tem inércia J_m não desprezável;
- o atrito devido à rotação do veio do rotor é considerado constante e de coeficiente de atrito D;
- o binário produzido pelo motor é proporcional à corrente que percorre o induzido, sendo K_m a constante de proporcionalidade;
- a tensão no induzido devida à força contra-electromotriz é proporcional à velocidade de rotação do rotor, sendo $K_{\it g}$ a constante de proporcionalidade;
- o induzido, alimentado pela tensão v_a apresenta uma indutância L_a e uma resistência ohmica R_a .
- a) Determine as equações da dinâmica para uma determinada operação da rebarbadora.

- **b)** Com $K = 10 \, Nm/rad$, $D = 1 \, Nm/rad \, s^{-1}$, $J_m = 5 \, Kg \, m^2$, $K_m = 10 \, Nm/A$, $K_g = 0.2 \, V/rad \, s^{-1}$, $R_a = 2 \, \Omega$, $L_a = 2 \, H$, $R = 0.1 \, m$ e $J_D = 1 \, Kg \, m^2$, obtenha o gráfico da velocidade de rotação do disco, e o gráfico da corrente consumida, desde o instante em que se liga o motor com $v_a = 10 \, V$ até 50 segundos após esse instante, numa operação com $f = 1 \, N/m \, s^{-1}$. Utilize o simulink.
- c) Com os parâmetros do sistema da alínea anterior, obtenha o traçado da velocidade angular do disco quando inicialmente se liga o motor (com $v_a = 10V$) com o disco desencostado do material a ser trabalhado e, passados 10 segundos, se encosta o disco ao material, operando agora com $f = 2N/ms^{-1}$ (simule durante 50 segundos a partir do instante de ligação do motor).
- 15 A figura seguinte representa o esquema de funcionamento de uma determinada ferramenta. Quando em operação, a sua carga J_L é submetida a um binário externo T_L que se opõe ao movimento do veio. A ferramenta é composta por um motor DC controlado pelo induzido e de ligação independente, e possui também um mecanismo cujo objectivo é manter a velocidade do veio num determinado valor (ω_p) independentemente do binário T_L . Para tal foi instalado um taquímetro para medir a velocidade do veio. Este taquímetro fornece um valor de tensão (v_T) que é proporcional à velocidade $(v_T = K_T \omega)$.

Considere as seguintes características do motor:

- o rotor do motor tem inércia J_m não desprezável;
- o atrito devido à rotação do veio do rotor apresenta um coeficiente de atrito D; v.s.f.f.
- o binário produzido pelo motor é proporcional à corrente que percorre o induzido, sendo K_m a constante de proporcionalidade;
- a tensão no induzido devida à força contra-electromotriz é proporcional à velocidade de rotação do rotor, sendo K_g a constante de proporcionalidade;
- o induzido, alimentado pela tensão v_a apresenta uma indutância L_a e uma resistência ohmica R_a .
- a) Determine a função de transferência do sistema considerando como saída a velocidade angular do motor.

b) Considerando que o binário T_L é constante, a que condição devem obedecer os parâmetros do sistema por forma a que o valor final de ω seja igual ao valor especificado em ω_n (sendo este também constante).

c) Com $D=1Nm/rad\ s^{-1}$, $J_m=10\ Kg\ m^2$, $K_m=10\ Nm/A$, $K_g=0.2V/rad\ s^{-1}$, $R_a=2\Omega$, $L_a=2H$, $J_L=5\ Kg\ m^2$, K=0.1, $K_T=1$ e $K_p=1$, obtenha, através do *simulink*, o gráfico da velocidade do motor durante 200 segundos após se ter especificado uma velocidade pretendida de $10\ rad\ s^{-1}$, sabendo que as condições iniciais são nulas, que inicialmente a carga estava em vazio $(T_L=0)$, e que 100 segundos após o arranque do motor a carga entrou em esforço constante com $T_L=10\ Nm$.

16 — Considere o sistema seguinte que é uma implementação muito rudimentar de um cronómetro. Inicialmente, com o sistema em repouso ($\alpha=0$), o ponteiro é rodado de várias voltas, sendo então preso (a mola, de constante de elasticidade K, fica sob tensão). Num determinado instante, o ponteiro é solto e, por acção da energia armazenada na mola, começa a rodar em sentido oposto ao inicial. O ponteiro roda dentro de um líquido espesso (mas transparente) que imprime um forte atrito (com coeficiente de atrito D) relativamente ao deslocamento angular do ponteiro. A inércia J representa a concentração da inércia de todo o sistema rotativo, relativamente ao seu eixo de rotação.

- a) Obtenha uma representação deste sistema nas suas equações da dinâmica.
- **b)** Considere que $D^2 > 4KJ$. Demonstre que, após ter sido solto o ponteiro, o tempo que este demora a desfazer 90% das voltas inicialmente dadas (antes de ser solto) é sempre constante (independentemente do número de voltas que lhe são dadas inicialmente). Demonstre que o mesmo é verdade para qualquer outra percentagem considerada.

17 – Considere o sistema da figura seguinte, em que:

- um motor DC, controlado pelo induzido e com ligação independente, é utilizado para posicionar um ponteiro sobre uma escala (não representado na imagem, mas cuja inércia é J_L), consoante o valor da tensão V_a que é aplicada ao sistema;
- o rotor do motor tem inércia J_m , e os seus rolamentos introduzem atrito (de coeficiente D), representado à direita da inérica J_m ; segue-se um par de rodas dentadas a ligar os dois eixos, tendo cada roda N1 e N2 dentes;
- o eixo de θ_2 está directamente ligado ao eixo de um potenciómetro multi-voltas que faz com que se verifique a relação $V_p = 0.1 \cdot \theta_2 \cdot V_{dc}$ (V);
- a tensão V_p é amplificada por um bloco de ganho K e subtraída à tensão de referência V_a ;

- a) Determine a função de transferência $G(s) = \frac{\theta_1(s)}{V_a(s)}$, considerando condições iniciais nulas.
- **b**) Determine K para que uma tensão $V_a=1$ V cause um valor final de $\theta_I=1$ rad.

18 – Considere o sistema representado na seguinte figura. Este é constituído por um motor DC controlado pelo induzido e de ligação independente, onde K_m é a constante do motor e K_g a constante relativa à força contra-electromotriz. O veio do motor está directamente ligado a uma roda de raio R e inércia J_r . Em torno desta roda está enrolado um cabo que, por sua vez, desloca um corpo de massa M sobre a superfície horizontal S (note-se que o segmento de cabo que une o topo da roda à massa M também se encontra na horizontal, e considere que este cabo se encontra sempre sob tensão). Existe atrito dinâmico entre o corpo de massa M e a superfície S, cujo coeficiente se considera constante e igual a f.

O rotor do motor tem inércia J_m e os rolamentos do seu eixo produzem atrito de coeficiente D (considerado constante).

- a) Determine a equação da dinâmica que relaciona a saída do sistema (x) com a sua entrada (V_a) .
- **b**) Obtenha a função de transferência $X(s)/V_a(s)$, considerando condições iniciais nulas
- 19 A catapulta de contrapeso foi uma arma muito utilizada durante vários séculos, por diversas civilizações. São diversos os modelos que foram surgindo no tempo (em particular nos séculos XV e XVI). Na figura seguinte apresenta-se um modelo de uma catapulta de contrapeso, onde se pretende arremessar um corpo de massa m, usando para tal o peso de um outro corpo de massa M (bastante elevada). Este último é preso por um cabo à volta de uma roda, de raio r, que gira sobre um eixo que passa pelo seu centro (a roda apresenta uma inércia J_M relativamente a esse eixo de rotação). Fixo à roda está uma haste de comprimento R (medido desde o eixo de rotação referido anteriormente até ao ponto de apoio do projéctil), e cuja massa se despreza neste problema.

A catapulta é inicialmente colocada na posição 1, sendo aí presa à haste. No instante inicial t=0, a haste é solta, começando a rodar (rotação essa submetida a atrito de coeficiente f) até que a haste embate no batente, instante em que o projéctil é arremessado.

Para simplificar a análise, despreze o atrito do ar, assim como a acção do peso da massa *m*.

- a) Determine a equação da dinâmica deste sistema que determina a evolução do módulo da velocidade tangencial (v(t) = y(t)) do projéctil antes de este abandonar a catapulta (e depois de esta ter sido disparada).
- **b**) Determine o módulo da velocidade $v(t_f)$ do projéctil no instante (t_f) em que este deixa a catapulta. Neste cálculo considere: m=5Kg, M=500Kg, g=10m/s², $J_M=75$ Kg.m², R=5m, r=1m, $\theta_f=\pi/2$ rad e despreze o atrito (f=0 N.m.s/rad).

NOTA: Lembre-se que um corpo pontual de massa m ligado a um eixo de rotação por uma barra rígida (de massa desprezável, comprimento d, e perpendicular ao eixo) apresenta uma inércia J_m relativamente a esse eixo tal que, $J_m=md^2$.

20 — Considere o sistema da figura seguinte onde um motor DC (de ligação independente e controlado pelo induzido) com uma carga J_L no seu veio é colocado num sistema realimentado cujo propósito é especificar a velocidade de rotação do motor independente do binário resistente imposto na carga (T_L). Um taquímetro mede a velocidade de rotação do veio do motor, produzindo um sinal igual a essa velocidade. Este sinal é amplificado por um bloco de ganho K e comparado com o sinal ω_p que especifica a velocidade pretendida para o motor. A diferença entre os sinais é integrada, servindo o resultado (x_i) para actuar sobre uma fonte de tensão controlada que produz na sua saída uma tensão igual ao valor do sinal x_i (tensão essa que alimenta o motor). Sabese que $T_m = K_m i$ e $v_b = K_b \omega$, onde K_m e K_b são constantes conhecidas. O veio do motor sofre atrito de coeficiente f.

- **a)** Determine um sistema de equações diferenciais, no domínio do tempo, que represente a dinâmica completa do sistema.
- **b**) Represente o sistema através de um diagrama de blocos onde figurem os sinais $\omega_p(s)$, $T_L(s)$, $\omega(s)$ e I(s).
- c) Com $\omega_P(s)=A/s$, com $A \in \Re^+$, e sem binário exterior $T_L(t)$ aplicado à carga, determine a expressão do valor para o qual tende a velocidade de rotação do veio do motor.