k近傍事例を用いたニューラルモデルの 予測における定量的な解釈

五藤 巧, 出口 祥之, 上垣外 英剛, 渡辺 太郎(奈良先端科学技術大学院大学)

ニューラルモデルにおける予測根拠の解釈の必要性

- **予測根拠の解釈**:モデルがどのような根拠で予測に至ったのかを知る
 - エラー分析:予測がなぜ誤ったのかを根拠を通じて知る
 - 信頼性の向上:ユーザに予測結果に加えて根拠まで提示する

なぜモデルは「非文法的」 と予測したのだろう?

先行研究:既存の解釈手法

- ◆ 特徴量帰属:どの単語が予測に貢献するかを定量化
 - 単語の貢献度を示すヒートマップを提示

マルチタスク学習

対象タスクに関連するサブタスクを同時に学習し、サブタスクの予測を解釈として使用

既存の解釈手法の課題

- ◆ 特徴量帰属:人間が解釈に介在する必要があり高コスト
 - 貢献度に基づいて,人間がタスク独自の観点を加えて解釈する必要あり

- 解釈に人間の主観的なバイアスが混入する可能性
 - 理想的な結論につながるように、都合よく解釈してしまうかもしれない。
 - 人間的には主語動詞の一致が根拠だが、モデルもそう思っているかは不明
- マルチタスク学習:サブタスクの学習によって元の予測結果が変化

提案法: k近傍事例に基づく定量的な解釈

- 人間が従来行う解釈を定量的に・客観的に実施
- タスク独自の解釈ラベルセットを用いて、ラベルの確率分布を提示
- 確率分布は、モデルの埋め込み表現に基づくk近傍事例を利用
 - 時制を根拠に「非文法的」と予測するなら、同じく時制が根拠となる 事例が近傍に存在するはず
 - →どのような事例が近傍あるかに応じて根拠を定量化

確率分布として提示する利点

- 人間の判断が介在しないため 低コスト・客観的
- 複数事例に基づく「傾向」を提示可能

提案法: k近傍検索

- ullet 対象タスクで学習されたモデル Enc 用いてデータストア を $\mathcal S$ ar k
 - 事例の埋め込み表現をキー,解釈ラベルをバリューとする辞書形式

$$\mathcal{S} = \{(\operatorname{Enc}(\boldsymbol{x}), c) \mid \underline{(\boldsymbol{x}, c)} \in \mathcal{D}\}$$
 事例の埋め込み表現 事例と解釈ラベルのペア

事例	ラベルセット:文法規則
The paper were written	主語動詞の一致
Smith indicate that	主語動詞の一致
I have two phone.	名詞の数
I will submitted the paper.	時制

 \mathcal{D} の例

ullet 入力事例 $oldsymbol{x}'$ を同様に埋め込み, $oldsymbol{k}$ 近傍事例 $\mathcal{K}\subseteq\mathcal{S}$ の距離に応じて解釈の分布を計算

2乗ユークリッド距離

ラベルセットの追加

● 提案法の利点の一つは、異なるラベルセットの後付けが容易な点

ラベルセットの追加

- 提案法の利点の一つは、異なるラベルセットの後付けが容易な点
 - マルチタスク学習との差別化:ラベルセットが増えても再学習必要なし
 - 異なるラベルセットでもデータストア・検索結果を使い回して解釈可能

実験:容認性判断タスク

- ◆ 入力文が文法的に正しいかどうか判定するタスク
 - 言語モデルの統語知識を測定する目的
 - 言語理解ベンチマークGLUEにおけるCoLA
- 「文法的かどうか」に対する予測を次のラベルセットから解釈
 - 言語学における文法現象:BLiMPの12分類もしくは67分類の体系
 - 誤りタイプ:文法誤り訂正分野で定義される体系
 - VERB, NOUNなどの品詞情報と, VERB:SVAなどの一部文法項目

主語動詞の一致

非文法的な文: Janice is left by Samantha.

解釈ラベルセットとそのラベル

BLiMPの12分類: argument structure

BLiMPの67分類: passive_1

誤りタイプ: VERB

文法的な文: Janice is approached by Samantha.

解釈ラベルセットとそのラベル

BLiMPの12分類: ACCEPTABLE(ダミーラベル) BLiMPの67分類: ACCEPTABLE(ダミーラベル)

誤りタイプ: CORRECT(ダミーラベル)

実験:提案法の適用手順と実験設定

用いるデータセット

- ■CoLA: 単文と文法的かどうかを示すラベル付きデータ
 - →学習に用いる
- ■BLiMP:表層に微差を持つ、文法的な文と非文法的な文のペアデータセット
 - → 95:5に分割し, 95%をデータストア, 5%を評価に用いる

1. 対象タスクの学習

CoLAの学習データ8,551件を使用 モデルはbert-base-cased, [CLS]に対応する表現で学習 CoLA 評価データでMatthew's Corr は 51.4

> 妥当な学習結果 BERTの原論文では52.1

実験:提案法の適用手順と実験設定

2. データストアの構築

学習済みモデルを用いてBLiMP 95%分割の各文を符号化 文ペアなものを単文とその解釈ラベルとして扱う BLiMPの12分類・67分類についてはペアに付与されるラベルを使用 誤りタイプはERRANTを用いて自動的に付与

実験: k近傍検索時の設定

3. **k近傍検索**

○ 下記候補を全て試行,後段の評価で最も良い設定を使用

設定	説明	候補
K	k近傍事例をいくつ検索するか	{8, 16,, 512, 1024}
Т	個々の事例が与える均一性を制御する温度パラメータ(大きいほど均一に影響) $p_{\mathrm{kNN}}(c_i \boldsymbol{x}') \propto \sum_{(\boldsymbol{k},v)\in\mathcal{K}}\mathbb{1}_{v=c_i}\exp\left(\frac{-\ \boldsymbol{k}-\mathrm{Enc}(\boldsymbol{x}')\ _2^2)}{\tau}\right)$	{0.001, 0.01,, 100, 1000}
層	何層目の[CLS]に対応する表現か	{1,, 12}
FFN入出 カ	Transformerブロックのfeed forward層 への入力表現と出力表現のどちらか	{入力表現, 出力表現}

実験:定量評価方法

- 提案法が提示する確率分布がどの程度妥当かを定量評価
 - BLiMPの5%分割を入力
- 不確実性キャリブレーションに基づく評価
 - 推定確率と実際の正解率が一致するかどうか
 - 70%の確率で予測した事例を集めれば、その中の70%が実際に正解するべき
- ▶ 尺度:期待キャリブレーション誤差(ECE)
 - 事例をその予測確率 (0.0, 0.1], (0.1, 0.2], ... (0.9, 1]に応じてグループ化
 - 正解率計算のための正解ラベルはBLiMP5%分割に付与されているラベル

$$\mathrm{ECE} = \sum_{i=1}^{10} rac{n_i}{N} rac{|\mathrm{conf}_i - \mathrm{acc}_i|}{|\mathrm{conf}_i|_{\mathrm{T均予測確率}}}$$

実験結果:最適な表現と評価結果

● ラベルセットによって最適な検索設定が異なる

解釈ラベルセット	ECE	К	Т	層	表現
BLiMP 12分類	0.0127	32	1.0	2	FFN入力
BLiMP 67分類	0.0114	16	1.0	4	FFN出力
誤りタイプ	0.0116	16	1.0	4	FFN出力

● 確率分布の信頼性は高い: ECEの各グループで予測確率と正解率は乖離しない

実験結果:ケーススタディ

<u>非文法的</u>との予測に対する解釈

- BLiMP12分類と誤りタイプでは 主語動詞の一致が最も高い確率に
- BLiMP67分類では
 distractor_agreement_relational_noun
 が最も高い確率であり、
 モデルが名詞mothersと
 動詞doesの一致が欠落していること
 を根拠に予測したことが解釈可能

2	エリ	J:	The	mothers	of	Cheryl	does	bake.
---	----	----	-----	---------	----	--------	------	-------

BLiMP-12	確率 (%)		
subject_verb_agreement	42.72		
ACCEPTABLE	40.53		
$argument_structure$	11.26		
$npi_licensing$	5.48		
BLiMP-67	確率 (%)		
distractor_agreement_relational_noun	54.24		
ACCEPTABLE	27.35		
$\mathrm{npi_present_2}$	4.84		
intransitive	4.69		
transitive	4.67		
$principle_A_domain_2$	4.22		
誤りタイプ	確率 (%)		
VERB:SVA	46.14		
CORRECT	27.35		
OTHER	12.79		
ADV	4.84		
VERB	4.67		
NOUN	4.22		

実験結果:ケーススタディ

文法的との予測に対する解釈

- ●「非文法的と推論する余地をどのよう な観点で残しているか」を 解釈可能
- 解釈結果から、特に冠詞と名詞の一 致を根拠に非文法的と推論する余地 を残している

クエリ: Jane sees some mirror that shocks Katherine.				
BLiMP-12	確率 (%)			
ACCEPTABLE	54.96			
determiner_noun_arg.	23.89			
$_{\mathrm{filler_gap}}$	17.74			
binding	3.41			
BLiMP-67	確率 (%)			
ACCEPTABLE	54.96			
$determiner_noun_agreement_with_adj_irregular_2$	15.04			
$wh_questions_subject_gap$	10.57			
$wh_questions_object_gap$	7.17			
${\tt determiner_noun_agreement_2}$	5.25			
誤りタイプ	確率 (%)			
CORRECT	54.96			
DET	20.96			
DET,PRON	10.57			
OTHER	6.71			

分析:検索設定による解釈性能の変化

- 検索設定に応じたECEの変化を分析
 - 図中の色の違いはラベルセットの違い
 - 表現以外は、ラベルセット間で概ね同じ傾向を示す
 - あるラベルセットで適切な表現を決定すれば、 他のラベルセットにも使い回せる
- 容認性判断以外のタスクだと傾向が変わる可能性あり
 - この点の分析はfuture work

K

分析:解釈ラベルがスパースな場合の解釈性

・ 提案法の利点の一つは、ラベルセットを容易に追加できる点

分析:解釈ラベルがスパースな場合の解釈性

一方, ラベルセットによってはデータストアの全ての事例にラベルが付与で

きない場合も想定される

○ 例:人手で一部のみ付与

○ 例:別のラベル付けモデルで高信頼度な結果のみ付与

■ この状況下での解釈性評価のため、 データストア中の解釈ラベルを {10, 20, ..., 50}%欠落させてECEを評価

分析:解釈ラベルがスパースな場合の解釈性

- 半分欠落しても、ECEは0.13より小さい
 - 推定確率と実際の正解率が0.13程度の誤差ということ
- 実際の解釈作業では大きな問題にはならない
 - (厳密にはもう少し議論すべきかとは思います)

まとめ

概要

- **動機**: ニューラルモデルの解釈において, 従来手法が高コストである点を指摘
- **手法**:解釈ラベルセットを用いて、それに属するラベルの確率分布を提示
- 実験: 容認性判断タスクにおいてECEによる定量評価, ケーススタディによる定性評価を実施

今後の課題

- 他タスクでの実験
- モデルの大局的な解釈への拡張
 - 事例ごとに提示された確率分布をうまく統合したい
- LLMへの応用
 - プロンプト入力時点の表現を用いて生成結果を解釈するなど