Power Series 4

Taylor series: Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable in all orders at x = a. Then, the Taylor series expansion of f about x = a is given by: $f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$ in some neighbourhood of 'a'.

Meclaurin series: $f(x) = f(0) + \frac{f'(0)}{1!}(x) + \frac{f''(0)}{2!}(x)^2 + + \frac{f^{(n)}(0)}{n!}(x)^n +$ **Power series**: A series of the form $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ is a power series about the centre $x = x_0$, a_n is a real sequence.

Theorem: There exist $R \in \mathbb{R} \cup \{\infty\}$ such that every power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges absolutely for $|x - x_0| < R$ and diverges for $|x - x_0| > R$.

This R is known as the radius of convergence of the power series $\sum a_n(x-x_0)^n$ and $|x-x_0|=R$ is the circle of convergence.

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} |a_n|^{1/n}}$$

 $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} |a_n|^{1/n}}$ **Result :** The power series $\sum_{n=0}^{\infty} p(n)(x-x_0)^n$, where p(n) is a polynomial of degree 'n' has radius of convergence R=1. Also, radius of convergence of $\sum_{n=0}^{\infty} \frac{1}{p(n)} (x-x_0)^n = 1$

- Suppose R is the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. Then
- i) If the series converges for $x = x_1$, then $|x_1 x_0| \le R$.
- ii) If the series diverges for $x = x_2$, then $|x_2 x_0| \ge R$.
- iii) Suppose x_1, x_2 in (i) & (ii) satisfies $|x_1 x_0| = |x_2 x_0|$, then , $R = |x_1 x_0|$
- Suppose R is the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. Then,
 - (i) Radius of curvature of $\sum_{n=0}^{\infty} a_n (x-x_0)^{n+k}, k \in \mathbb{N}$ is R.
 - (ii) Radius of curvature of $\sum_{n=0}^{\infty} p(n) a_n (x-x_0)^n$ is R. [p(n): polynomial of degree n]
- (iii) Radius of curvature of $\sum_{n=0}^{\infty} \frac{1}{p(n)} a_n (x x_0)^n$ is R.
- (iv) Radius of curvature of $\sum_{n=0}^{\infty} n! a_n (x-x_0)^n$ is 0.
- (v) Radius of curvature of $\sum_{n=0}^{\infty} \frac{1}{n!} a_n (x-x_0)^n$ is ∞ .
- (vi) Radius of curvature of $\sum_{n=0}^{\infty} a_n^k (x x_0)^n$, $k \in \mathbb{N}$ is \mathbb{R}^k .
- (vii) Radius of curvature of $\sum_{n=0}^{\infty} a_n (x-x_0)^{nk}$ is $R^{1/k}$
- (viii) Let $\langle a_n \rangle$ be a bounded sequence. Then radius of convergence of $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is ≥ 1

Taylor's theorem: Let $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ is a power series which converges for $|x-x_0| < R$, then $f(x) = \sum_{n=0}^{\infty} a_n(x-x_0)^n$ is infinitely differentiable at $x = x_0$ also each derivative $f^{(n)}$ at x_0 is given by $f^{(n)}(x) = n!a_n$. Then, $f(x) = \sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!}(x-x_0)^n$ is the Taylor's expansion of f about the centre x_0 .

The n^{th} partial sum of the Taylor series is the n^{th} degree polynomial

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Now, f(x) can be written as $f(x) = T_n(x) + R_n(x)$ where $R_n(x)$ is the reminder term.

Theorem: If $f^{n+1}(x)$ is continuous on an open interval I that contains a, and x is in I, then there exists a c between a and x such that

$$R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}(x-a)^{n+1}$$