NSR Search Results Page 1 of 8

Visit the **Isotope Explorer** home page!

49 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ -Ray Data Evaluation of Thermal-Neutron Capture for A = 1 ϑ 25

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n, γ),E=thermal; compiled, evaluated prompt γ -ray data.

Kevnumber: 1998PA44

Reference: J.Radioanal.Nucl.Chem. 238, 193 (1998)

Authors: S.-T.Park, M.Igashira, D.-W.Lee

Title: Primary Gamma-Rays from 53 keV Neutron Capture Reaction in ²³Na

Keyword abstract: NUCLEAR REACTIONS ²³Na(n,γ),E=53 keV; measured Eγ,Iγ. ²⁴Na deduced

levels, brancing ratios.

Keynumber: 1997ROZZ

Reference: INDC(CPR)-042/L, p.93 (1997)

Authors: J.Rong, G.Lui

Title: The Integral Test of the Reactor Dosimetry Data

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁴⁶, ⁴⁷, ⁴⁸Ti, ⁵⁴, ⁵⁶Fe, ⁵⁸, ⁶⁰Ni, ³²S(n,p), ²⁷Al, ⁵⁹Co, ⁶³Cu(n,α), ⁵⁵Mn, ⁵⁹Co, ⁵⁸Ni, ⁶⁵Cu(n,2n), ²³Na, ⁴⁵Sc, ⁵⁹Co, ⁵⁸Fe, ⁶³Cu, ¹¹⁵In, ¹⁹⁷Au, ²³²Th, ²³⁸U(n,γ), ²³⁵, ²³⁸U, ²³²Th, ²³⁷Np, ²³⁹Pu(n,F), ⁴⁷, ⁴⁸Ti(n,np), ⁶Li, ¹⁰B, ¹¹⁵In(n,X),E=reactor; calculated

spectrum averaged σ . Several data libraries compared.

Keynumber: 1994YE02

Reference: Chin.Phys.Lett. 11, 12 (1994)

Authors: Z.Ye, Y.Li, S.Ding, Z.Bao, X.Yang, C.Rong, X.Ding, J.Zheng **Title:** Modified Method for Efficiency Calibration of High Energy γ Detector

Keyword abstract: NUCLEAR REACTIONS ²³Na, ³⁵, ³⁷Cl(n, γ),E=thermal; ¹⁹F(p, $\alpha\gamma$),E not given; measured radiative capture γ spectra; deduced detector efficiency calibration. High energy Ge γ -

detector, Am-Be source also studied.

Kevnumber: 1994RZ02

Reference: Nucl.Instrum.Methods Phys.Res. B93, 464 (1994)

Authors: A.Rzama, H.Erramli, M.A.Misdaq

Title: A New Calculation Method Adapted to the Experimental Conditions for Determining Samples γ -

Activities Induced by 14 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na,K,Cl,P(n, γ),E=14 MeV; measured induced γ activities; deduced activation parameters role. Monte Carlo approach,application to Na,K,Cl,P content determination.

Keynumber: 1988TS02

Reference: Ann.Nucl.Energy 15, 17 (1988) **Authors:** N.F.Tsagas, I.Kappos, G.Andreou

Title: Benchmark Data for γ-Rays Emitted by a ²⁴Na Source, Penetrating Graphite, Al, Steel and Pb

NSR Search Results Page 2 of 8

Shields

Keyword abstract: NUCLEAR REACTIONS 23 Na(n, γ),E=reactor; measured angular,scalar flux γ -spectra. Benchmark data.

Keynumber: 1987ZH12

Reference: Chin.J.Nucl.Phys. 9, 307 (1987)

Authors: Zhang Ming, Shi Zongren, Zeng Xiantang, Li Guohua, Ding Dazhao

Title: Study of Thermal Neutron Capture in ²³Na

Keyword abstract: NUCLEAR REACTIONS 23 Na(n, γ),E=thermal; measured E γ ,I γ , σ . 24 Na deduced levels,level density parameters,neutron binding energy. Ge(Li) detector. Back-shift Fermi gas model.

Keynumber: <u>1986KR16</u>

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n,γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Keynumber: 1985ZE07

Reference: Chin.J.Nucl.Phys. 7, 273 (1985)

Authors: Zeng Xiantang, Shi Zongren Guo, Taichang Li Guohua

Title: Three Crystal Pair Spectrometer

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 24 Mg, 23 Na(n, γ),E not given; measured E γ ,I γ , $\gamma\gamma$ -coin; deduced double escape peak to background improvement factor. Three crystal pair spectrometer.

Keynumber: 1985VOZV

Reference: Proc.AIP Conf.Capture Gamma-Ray Spectroscopy and Related Topics, Knoxville, Tenn., (1984), S.Raman, Ed., AIP, New York, p.305 (1985)

Authors: T.von Egidy, P.Hungerford, H.H.Schmidt, H.J.Scheerer, A.N.Behkami, G.Hlawatsch, B.Krusche, K.P.Lieb, H.G.Borner, S.A.Kerr, K.Schreckenbach

Title: Structural and Statistical Aspects of Extensive Level Schemes from (n,γ) and Transfer Reactions **Keyword abstract:** NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³⁵Cl, ³⁹, ⁴⁰, ⁴¹K, ¹¹³Cd, ¹³³Cs, ¹⁵⁴Sm, ¹⁵³Eu, ¹⁵⁴Gd, ¹⁶⁰, ¹⁶²Dy(n,γ), (n,e),E not given; measured not given. ²⁰F, ²⁴Na, ²⁸Al, ³⁶Cl, ⁴⁰, ⁴¹, ⁴²K, ¹¹⁴Cd, ¹³⁴Cs, ¹⁵⁵Sm, ¹⁵⁴Eu, ¹⁵⁵Gd, ¹⁶¹, ¹⁶³Dy deduced levels,γ-transition multipolarity,strength distribution.

Keynumber: 1985KO48

Reference: Nucl.Instrum.Methods Phys.Res. B10/11, 1058 (1985) **Authors:** K.Koh, R.Finn, P.Smith, E.Tavano, J.Dwyer, H.Sheh

Title: Activation Analysis Utilizing Byproduct Neutrons of Cyclotron Internal Target Runs

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n,2n), ²⁷Al(n,α), ⁵⁶Fe, ⁶⁵Cu, ²⁴Mg, ⁵⁸Ni(n,p),

²³Na, ⁵⁵Mn, ⁶⁴Ni, ⁷¹Ga, ⁸¹Br, ¹⁰⁹Ag, ¹¹⁵In, ¹⁹⁷Au(n, γ),E=thermal-14.4 MeV; measured

thermal, absorption σ , reaction rates. Neutron activation analysis.

Keynumber: 1984TI01

NSR Search Results Page 3 of 8

Reference: Nucl.Phys. A425, 303 (1984) **Authors:** T.A.A.Tielens, J.B.M.De Haas

Title: The Brute-Force Polarization of 23 Na and the 23 Na(pol)(n(pol), γ) 24 Na Reaction

Keyword abstract: NUCLEAR REACTIONS ²³Na(polarized n, γ),E=thermal; measured I γ (E γ , θ). ²⁴Na

deduced levels, J, $T_{1/2}$, μ , branching ratios, channel spin admixture. Natural polarized target.

Keynumber: 1983TI02

Reference: Nucl. Phys. A403, 13 (1983)

Authors: T.A.A.Tielens, J.Kopecky, K.Abrahams, P.M.Endt

Title: The Reaction 23 Na(n, γ) 24 Na Studied with Unpolarized and Polarized Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na(n, γ), (polarized n, γ), E=thermal; measured E γ ,I γ , γ

CP; deduced (B(n)). ²⁴Na deduced levels, γ -branching,J, π . Natural targets.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ), $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), {}^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Kevnumber: 1983HU11

Reference: Z.Phys. A313, 325 (1983)

Authors: P.Hungerford, T.von Egidy, H.H.Schmidt, S.A.Kerr, H.G.Borner, E.Monnand

Title: Nuclear Spectroscopic Study of ²⁴Na

Keyword abstract: NUCLEAR REACTIONS ²³Na(n,γ),E=thermal; measured Eγ,Iγ. ²⁴Na deduced levels, J, π , γ -branching. Crystal spectrometer, Ge(Li) detector. Shell, rotational models.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980MA02

Reference: Phys.Scr. 21, 21 (1980)

Authors: G.Magnusson, P.Andersson, I.Bergqvist

Title: 14.7 MeV Neutron Capture Cross-Section Measurements with Activation Technique

Keyword abstract: NUCLEAR REACTIONS ²³Na, ⁵⁵Mn, ⁸⁹Y, ¹²⁷I, ¹³⁸Ba, ¹⁸⁶W, ¹⁹⁷Au(n,γ),E=14.7

MeV; measured σ . Activation technique.

Keynumber: 1980LA13

NSR Search Results Page 4 of 8

Reference: Nucl.Sci.Eng. 75, 151 (1980) **Authors:** D.C.Larson, G.L.Morgan

Title: Measurement and Analysis of the 23 Na(n,xγ) Reaction Cross Section for $0.2 \le En \le 20$ MeV **Keyword abstract:** NUCLEAR REACTIONS 23 Na(n,γ),E=0.2-20 MeV; measured $\sigma(\theta\gamma,E)$. NaI

detector, multistep Hauser-Feshbach calculations.

Keynumber: 1980GR12

Reference: Nucl.Instrum.Methods 175, 515 (1980)

Authors: R.C.Greenwood, R.E.Chrien

Title: Precise γ -ray Energies from the $^{14}N(n,\gamma)^{15}N$ and $^{23}Na(n,\gamma)^{24}Na$ Reactions

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ²³Na(n,γ),E=thermal; measured Eγ. ²⁴Na deduced

neutron binding energy. Ge semiconductor detectors.

Keynumber: 1977WI06

Reference: Nucl.Sci.Eng. 63, 55 (1977)

Authors: W.M.Wilson, H.E.Jackson, G.E.Thomas

Title: A Comparison of the Gamma-Ray Spectra from 2.8-keV Neutron Capture and Thermal-Neutron

Capture in Sodium-23

Keyword abstract: NUCLEAR REACTIONS 23 Na(n, γ),E <8 MeV; measured E γ ,I γ . 24 Na deduced

levels.

Keynumber: 1977CL03

Reference: Phys.Lett. 71B, 10 (1977)

Authors: C.F.Clement, A.M.Lane, J.Kopecky

Title: Correlations in M1 Neutron Capture as Evidence for a Semi-Direct Mechanism

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁵, ³⁷Cl, ³⁹K, ⁴³Ca

 (n,γ) , (d,p); analyzed correlations between reaction types.

Keynumber: 1976KEZL

Reference: Thesis, Groningen Univ. (1976)

Authors: A.S.Keverling Buisman

Title:

Keyword abstract: NUCLEAR REACTIONS 22 Ne(3 He,p γ), 23 Na(n, γ), (d,p γ),E not given; measured

DSA. ²⁴Na deduced levels, $T_{1/2}$, γ -branching ratios.

Keynumber: 1975WIZV

Coden: REPT ERDA/NDC-2, p26, Wilson

Keyword abstract: NUCLEAR REACTIONS ²³Na(n, γ),E=thermal,2.81 keV; measured σ .

Keynumber: 1975WIZO

Coden: JOUR BAPSA 20 572 BE4

Keyword abstract: NUCLEAR REACTIONS ²³Na(n, γ),E=thermal; measured $\sigma(E\gamma)$.

Keynumber: 1975WIZA

Coden: REPT ANL-75-75,P137

Keyword abstract: NUCLEAR REACTIONS ²³Na(n, γ),E=thermal; measured σ (E γ).

Keynumber: 1974ISZX

NSR Search Results Page 5 of 8

Coden: THESIS DABBB 34B 5613

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹K(n, γ),E=thermal; measured E γ ,I γ . ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰K deduced levels,Q, γ -multiplicity,level-width.

Keynumber: 1974GR37

Reference: Nucl.Instrum.Methods 121, 385 (1974)

Authors: R.C.Greenwood, R.G.Helmer

Title: Gamma-Ray Energies from 14 N(n, γ) 15 N and 23 Na(n, γ) 24 Na Reactions: A Re-Evaluation

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ²³Na(n,γ); analyzed data. ¹⁵N, ²⁴Na deduced levels.

¹⁵N deduced neutron binding energy.

Keynumber: 1973YU04

Reference: At.Energ. 35, 47 (1973); Sov.At.Energy 35, 661 (1974)

Authors: L.N. Yurova, A.V. Bushuev, V.M. Duvanov, A.F. Kozhin, A.M. Sirotkin

Title: Heterogeneous Effects of Sodium and U^{238} and of Certain Cross Section Ratios in a BFS-22 **Keyword abstract:** NUCLEAR REACTIONS ²³Na, ²³⁸U(n, γ), ²³⁵, ²³⁸U(n,F),E=reactor spectrum;

measured σ -ratios.

Keynumber: 1973RAXU

Coden: REPT COO-2176-20 P2

Keyword abstract: NUCLEAR REACTIONS ²³Na(n, γ); analyzed data. ²⁴Na deduced levels, level-

width.

Keynumber: 1973PL06

Reference: Stud.Cercet.Fiz. 25, 387 (1973)

Authors: D.Plostinaru, E.A.Ivanov, A.Iordachescu, S.Vajda, G.Pascovici

Title: Studiul Sectiunilor de Obtinere Cu Neutroni Rapizi a ^{24m}Na

Keyword abstract: NUCLEAR REACTIONS 23 Na(n, γ),E=.92,2.28,3.95 MeV; measured σ .

Keynumber: 1973JAYM

Coden: REPT EANDC(US)-186'U' P24

Keyword abstract: NUCLEAR REACTIONS 23 Na(n, γ),E=2.85 keV; measured E γ . 24 Na deduced

transitions.

Keynumber: 1973ABZV

Coden: REPT EANDC(E)157-U,P118

Keyword abstract: NUCLEAR REACTIONS 23 Na, 64 , 66 , 68 Zn, 29 Si, 63 Cu, 72 Ge, 183 W(polarized n,γ); measured Eγ,CP(γ,X). 65 , 65 , 65 Zn, 30 Si, 64 Cu, 73 Ge, 184 W deduced levels, 24 Na resonance

deduced J,π .

Kevnumber: 1973ABZM

Coden: REPT INDC(SEC)-36/L P37

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁹Si, ⁶³Cu, ⁷²Ge, ⁶⁴, ⁶⁶, ⁶⁸Zn, ¹⁸³W(n.γ):

measured Eγ.

Keynumber: 1972PLZT

Coden: REPT INDC(SEC)-28/L,P228,12/4/72

NSR Search Results Page 6 of 8

Keyword abstract: NUCLEAR REACTIONS 23 Na(n, γ),E=0.92,2.28,3.95 MeV; measured σ for production of ^{24m}Na.

Keynumber: 1972KOYX

Coden: REPT RCN-175, J Kopecky, 3/26/73

Keyword abstract: NUCLEAR REACTIONS ²³Na(n, γ),E=thermal; measured γ -CP,E γ ,I γ . ²⁴Na

deduced levels, J, π , γ -mixing.

Keynumber: 1972HOYX

Coden: CONF Budapest, Contributions, P258, E Holub, 10/13/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³⁷Cl, ⁵¹V(n,γ),E=14 MeV; measured σ.

Keynumber: 1972CAYH

Coden: JOUR FZKAA 4 Suppl,59

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³⁷Cl, ⁵⁵Mn, ⁴¹K, ¹²⁷I(n,γ),E=14 MeV;

measured activation σ .

Keynumber: 1971RYZZ

Reference: Proc.Int.Conf.Chemical Nuclear Data, Measurements and Applications, Canterbury,

England, M.L.Hurrell, Ed., Institution of Civil Engineers, London, p.139 (1971)

Authors: T.B.Ryves

Title: Thermal Neutron Capture Cross Section Measurements at the NPL

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt

 (n,γ) , E=thermal; measured σ .

Keynumber: 1971RYZX

Coden: CONF Canterbury(Chem Nucl Data),P139,12/10/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni. 63, 65 Cu, 69, 71 Ga, 75 As, 79 Br, 81 Br, 89 Y, 107, 109 Ag, 115 In, 121, 123 Sb, 127 I, 139 La, 151 Eu, 196, 198 Pt

 (n,γ) , E=thermal; measured σ ; deduced resonance integrals.

Keynumber: 1971PAZJ

Coden: JOUR TANSA 14 No2 P814,N C Paik,7/3/72

Keyword abstract: NUCLEAR REACTIONS ²³Na(n,n'), (n, γ), (n,X); analyzed σ (E).

Keynumber: 1970STZZ

Reference: Thesis, Virginia Poly. (1970); Diss. Abst. Int. 31B, 3638 (1970)

Authors: E.P.Stergakos

Title: Studies of Resonances in ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn and ⁵⁹Co

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn, ⁵⁹Co(n,γ),E=thermal;measured

Ey,Iy. ²⁴Na, ²⁷Mg, ⁴²K, ⁵⁶Mn, ⁶⁰Co deduced resonances, level-width.

Keynumber: 1970RY05

Reference: J.Nucl.Energy 24, 419 (1970)

Authors: T.B.Ryves, D.R.Perkins

Title: Thermal Neutron Capture Cross-Section Measurements for ²³Na, ²⁷Al, ³⁷Cl and ⁵¹V

NSR Search Results Page 7 of 8

Keyword abstract: RADIOACTIVITY ²⁸Al, ⁵²V; measured T_{1/2}.

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³⁷Cl, ⁵¹V(n, γ),E=thermal; measured σ .

Keynumber: 1969NI04

Reference: Can.J.Phys. 47, 953 (1969)

Authors: L.W.Nichol, A.H.Colenbrander, T.J.Kennett

Title: A Study of the 23 Na(n, γ) 24 Na and 27 Al(n, γ) 28 Al Reactions

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al(n,γ), E=thermal; measured E γ ,I γ ; deduced Q.

²⁴Na. ²⁸Al deduced levels.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn,

⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average γ multiplicity.

Keynumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n,γ),

E=0.1-200 keV; measured $\sigma(E)$. ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance

parameters.

Keynumber: 1968WA13

Reference: Proc.Conf.Neutron Cross Sections and Technol., Washington, D.C., D.T.Goldman, Ed.,

p.675 (1968); NBS Special Publ.299, Vol.II

Authors: O.A. Wasson, J.B. Garg, R.E. Chrien, M.R. Bhat

Title: Gamma Rays Following Neutron Capture in Iron, Sodium, and Thorium

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²³²Th(n, γ), E = thermal,resonance; measured E γ , I γ , ⁵⁶Fe(n, γ), E= thermal-5 keV; measured E γ , I γ , σ (E). ²⁴Na, ⁵⁷Fe, ²³³Th resonances deduced J, level-

width.

Keynumber: 1968GRZY

Reference: Proc.Conf.Slow-Neutron-Capture Gamma-Ray Spectr., Argonne, Ill. (1966), F.E.Throw,

Ed., ANL-7282, p.303 (1968) **Authors:** R.C.Greenwood

Title: Precise Measurements of Primary Capture Gamma-Ray Energies Using a 'Bootstrap' Method

Keyword abstract: NUCLEAR REACTIONS 9 Be, 14 N, 23 Na(n, γ), E = thermal; measured E γ ; deduced

Q. Ge(Li) detector.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

NSR Search Results Page 8 of 8

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.

Keynumber: 1967BE36

Reference: Phys.Rev. 158, 1049(1967)

Authors: I.Bergqvist, J.A.Biggerstaff, J.H.Gibbons, W.M.Good

Title: Gamma Rays from keV Resonance Neutron Capture in Some (2s-1d)-Shell Nuclei

Keyword abstract: NUCLEAR REACTIONS 19 F, 23 Na, 24 Mg, 27 Al, 32 S, 35 Cl(n, γ),E=20-120 keV;

measured Ey,Iy. 20 F, 24 Na, 25 Mg, 28 Al, 33 S, 36 Cl deduced resonances,level-width,J, π .
