

FICHA DE TRABALHO - EXPONENCIAIS E LOGARITMOS

MATEMÁTICA A - 12.º ANO

"A Matemática pura, é à sua maneira, a poesia das ideias lógicas." Albert Einstein

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Seja [ABC] um triângulo rectângulo em B, tal que $\overline{AB} = a$, $\overline{BC} = b$ e $\overline{AC} = c$.

Sabe-se que $\ln c - \ln b = a$. A que é igual a expressão $\ln(bc + c^2) + \ln\left(\frac{c}{b} - 1\right)$?

- $\mathbf{A} \quad a + \ln a$
- $\mathbf{B} b + \ln a$
- $c a + 2 \ln a$
- $b + 2 \ln a$

2. Seja a um número real tal que $\log_a 4 = 8$.

Qual é o valor de $\log_{4a} \sqrt[4]{64}$?

A $\frac{1}{3}$

 $\frac{1}{2}$

 $\frac{2}{3}$

- $D \frac{3}{4}$
- 3. Sejam a, b e c três números reais tal que $\log_{ab} a + 2\log_{ab}(bc) \log_{ab} c = 2$.

Qual é o valor de $\log_a(ac^2)$?

A 2

B 3

C 4

- **D** 5
- **4.** Na figura estão representados, em referencial on. xOy, parte do gráfico da função g, de domínio $\mathbb{R}\setminus\{0\}$, definida por $g(x) = x + \log_3(x^2)$ e um paralelogramo [ABCD].

Sabe-se que:

- ullet o ponto A pertence ao gráfico de g e tem abcissa -2;
- o ponto C pertence ao gráfico de g e tem abcissa 6.

Qual é a área do paralelogramo [ABCD]?

A 36

B 48

C 60

D 72

5. A distribuição de probabilidades de uma variável aleatória *X* é dada pela tabela:

x_i	1	2	3
$P(X=x_i)$	$\frac{1}{2^k}$	$\frac{1}{2^k}$	$2^{-\frac{k}{2}}$

(k designa um número real)

Qual é o valor médio da variável aleatória X?

A 2

- **B** 2.25
- **C** 2,5

D 2.75

6. Para certos valores reias de a a função g, definida por $g(x) = (\log(a-3) + \log a)^x$ é uma função exponencial estritamente crescente. Então pode-se afirmar que:

A $a \in]5, +\infty[$

 $a \in [3, +\infty[$

7. Sejam x e y dois números reais positivos tais que $4^{\log_{16} y - 2\log_4 x} = 3$. Qual das seguintes afirmações é verdadeira?

- **A** $y = 3x^2$ **B** $y = 9x^2$

8. Na figura está representado, num referencial o.n. xOy, parte do gráfico da função g definida por $g(x) = e^{-x+a} + \log_5(1 - bx)$, com $a \in b$ contantes reais.

Sabe-se que:

- o ponto de coordenadas (-3,3) pertence ao gráfico de g;
- A recta de equação $x=\frac{1}{8}$ é assimptota vertical do gráfico de g .

Quais são os valores de a e de b?

A
$$a = 3$$
 e $b = 8$ **B** $a = -3$ e $b = 8$

$$\Box$$
 $a = -3$ e $b = -8$ \Box $a = 3$ e $b = -8$

D
$$a = 3$$
 e $b = -8$

- 9. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 16^{ax^2 + ax}$, com a < 0. Qual é o contradomínio de f?
 - $\left[\mathbf{A} \right] \left[0, \frac{1}{2^a} \right]$
- $\boxed{\mathbf{B}} \begin{bmatrix} \frac{1}{2^a}, +\infty \end{bmatrix} \qquad \boxed{\mathbf{D}} \begin{bmatrix} \frac{1}{4^a}, +\infty \end{bmatrix}$

10. Considere as seguintes afirmações:

I.
$$c = \ln\left(\frac{a}{b}\right) \Longrightarrow c = \ln a - \ln b$$
, com $a, b, c \in \mathbb{R}$

II. Se
$$f(x)=\ln(x^n)$$
 então $f\left(\sqrt[n]{ab}\right)=\frac{f(a)+f(b)}{n}$, com $n\in\mathbb{N}$ e $a,b\in\mathbb{R}^+$

III.
$$\log_{\sqrt[3]{a}}(\sqrt{x}) = 3\log_{a^2} x$$
, com $x \in \mathbb{R}^+$ e $a \in \mathbb{R}^+ \setminus \{1\}$

Quais são as afirmações verdadeiras?

- A I e III
- B Apenas a II
- C Apenas a III
- D II e III

GRUPO II - ITENS DE RESPOSTA ABERTA

- 1. Considere a função f, de domínio $]-\infty$, 2[, definida por $f(x)=1-\log_3(6-3x)$
 - **1.1.** Determine o conjunto solução da inequação $f(x) f(1 2x) \ge 1 + \log_3 x$.
 - **1.2.** Na figura estão representados, num referencial o.n. xOy, parte do gráfico da função f e um triângulo [ABC].

Sabe-se que:

- o ponto B pertence ao eixo Ox e à assimptota do gráfico de f;
- o ponto C pertence ao eixo Ox e ao gráfico de f.

Mostre que a área do triângulo [ABC] é igual a log_3 2.

- **1.3.** Mostre que a função f é injectiva.
- **1.4.** Caracterize a função f^{-1} , função inversa de f.
- **1.5.** Determine o conjunto solução da equação $f^{-1}(x) + 3^{x+1} = 0$.
- **2.** Seja g a função, de domínio \mathbb{R} , definida por $g(x) = \log_b(ab+2) + e^{ax+b}$, com $a, b \in \mathbb{R}$.
 - **2.1.** Sabendo que $e^{2+\ln(a+b)} = 5e^2$ e que $\log_a(b+7) = 2$, mostre que $g(x) = 3 + e^{3x+2}$.
 - **2.2.** Determine o conjunto solução da inequação $\frac{e^{2x^2}}{3e^{x^2}+1} < \frac{e^{x^2}}{g(x)}$
 - **2.3.** Mostre que g tem função inversa e caracterize-a.

3. Na figura estão representados, num referencial o.n. xOy, parte do gráfico da função f, de domínio \mathbb{R}^+ , definida por $f(x) = \ln x$, parte do gráfico da função f^{-1} , função inversa de f, o triângulo [ABC] e o triângulo [CDE].

Sabe-se que:

• C é o ponto de intersecção do gráfico de f^{-1} com o eixo Oy;

• o ponto
$$D$$
 pertence ao gráfico de f^{-1} e tem ordenada a ;

- **3.1.** Mostre que a área do triângulo [ABC] é igual à área do triângulo [CDE] se e só se $\ln a = \frac{a-1}{a-2}$.
- **3.2.** Recorrendo à calculadora gráfica determine as coordenadas do ponto B de modo que a área do triângulo [ABC] é igual à área do triângulo [CDE]

Na sua resposta deve:

- escrever a condição que permite resolver o problema.
- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema.
- indicar as coordenadas do ponto B, arredondadas às centésimas.
- **4.** Considere a função h, de domínio \mathbb{R} , definida por $h(x) = a^x + a^{-x}$, com $a \in \mathbb{R}^+ \setminus \{1\}$.
 - **4.1.** Considere o triângulo [ABC] de área $\frac{225}{8}$ tal que o ponto A pertence ao gráfico de h e tem abcissa 2, o ponto B é o simétrico de A em relação ao eixo Oy e o ponto C pertence ao gráfico de h e ao eixo Oy.

Mostre que
$$a = \frac{1}{4}$$
 V $a = 4$.

- **4.2.** Determine o conjunto solução da inequação $2h(x-1) \ge 5$.
- **4.3.** Mostre que $\log_4(2 + h(x)) = \log_2(4^x + 1) x$, $\forall x \in \mathbb{R}$.

- 5. Devido a várias restrições os responsáveis de uma reserva de caça controlam a população de coelhos de modo que ela cresça a uma taxa de 4% a cada quatro meses. Admita que a população de coelhos na reserva num certo instante inicial é de C_0 indivíduos e seja C a função que dá o número de coelhos da reserva, t anos a partir de um certo instante inicial.
 - **5.1.** Determine $C\left(\frac{4}{3}\right)$ em função de C_0 .
 - **5.2.** Defina a expressão analítica da função C, apresentando-a na forma $C_0 \times a^{bt}$, sendo a e b constantes reais positivas.
 - **5.3.** Nas alíneas seguintes considere a = 1,04 e b = 3.
 - a) Qual é o aumento, em percentagem, do número de coelhos a cada 27 meses? Apresente o resultado arredondado às unidades.
 - **b)** Determine x de modo que C(t + x) = 3C(t). Interprete o resultado no contexto da situação descrita. Apresente o resultado em anos e meses, meses arredondados às unidades.
 - c) Mostre que $t = \frac{\ln C \ln C_0}{3 \ln(1,04)}$.
- 6. O número de utentes, em milhares, de um Centro de Saúde é dado em função do tempo, t, medido em anos, por:

$$N(t) = \frac{3}{1 + ae^{bt}}$$
, com $a, b \in \mathbb{R}$

O instante t = 0, corresponde ao início de 2010.

6.1. Sabendo que no final de 2010 o número de utentes do Centro de Saúde era de 801 e que passados dois anos esse número já era de 1642, determine os valores de a e de b. Apresente o valor de a arredondado às unidades e o valor de a arredondado às décimas. Caso faça arredondamentos nos cálculos intermédios, conserve no mínimo três casas decimais.

Nas alíneas seguintes, considere a = 5 e b = -0.6.

- **6.2.** Determine $\lim_{t\to +\infty} N(t)$ e interprete o resultado no contexto da situação descrita.
- 6.3. No decorrer de que ano o número de utentes no Centro de Saúde atingiu os 200?
- **6.4.** Um outro Centro de Saúde foi inaugurado no início de 2010. O número de utentes deste centro, em milhares, é dado, em função do tempo, t, medido em anos, por $S(t) = \frac{2.5e^{0.3t}}{1+e^{0.3t}}$. Ao fim de quanto tempo o número de utentes nos dois centros é igual? Apresente o resultado em anos e meses, meses arredondados às unidades. Caso faça arredondamentos nos cálculos intermédios, conserve no mínimo três casas decimais.

7. A massa, m, em miligramas, do isótopo radioactivo Zinco-65 (Z65) relaciona-se com tempo, t, medido em anos, através da fórmula:

$$t(m) = -0.965 \ln(m) + a$$

Sendo *a* uma contantes real.

- **7.1.** Num certo instante inicial foi colocado em repouso uma amostra de 5 miligramas de *Z*65. Qual é o valor de *a*? Apresente o resultado arredondado às centésimas.
- **7.2.** Mostra que $t\left(\frac{m}{3}\right) t(m)$ é constante e interpreta o resultado no contexto do problema. Apresente o resultado em anos e meses, meses arredondados às unidades.
- **7.3.** Determine o valor de x tal que t(xm) = t(m) + 0,6692. Interprete o resultado no contexto do problema. Apresente o resultado arredondados às decimas.
- **7.4.** Escreva m em função de t. Apresente o resultado na forma Ae^{Bt} . Apresente o valor de B arredondados às milésimas.
- **7.5.** Mostre que $\frac{m(t+2)}{m(t)}$ é constante e interprete o resultado no contexto do problema.

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. C 2. C 3. B 4. C 5. B 6. A 7. D 8. B 9. A 10. D

GRUPO II - ITENS DE RESPOSTA ABERTA

- 1.1. $\left[0, \frac{1}{3}\right] \cup [1, 2[$ 1.4. $D_{f^{-1}} = \mathbb{R}; f^{-1}(x) = 2 \frac{1}{3^x}$ 1.5. $\{-1\}$
- **2.2.**]-2,-1[**2.3.** $D_{g^{-1}} =]3,+\infty[;g^{-1}(x) = -\frac{2}{3} + \frac{1}{3}\ln(x-3)$
- **3.2.** $B(a, \ln a)$, com $a \approx 4,24$ e $\ln a \approx 1,45$

No decorrer do ano de 2008.

- **4.2.** $\left]-\infty,\frac{1}{2}\right] \cup \left[\frac{3}{2},+\infty\right[$
- **5.1.** $C\left(\frac{4}{3}\right) = C_0 \times (1,04)^4$ **5.2.** $C(t) = C_0 \times (1,04)^{3t}$ **5.3.** a) Approximadamente 30%.
- **5.3. b)** $x \approx 9,337$. O número de coelhos na reserva triplica a cada nove anos e quatro meses, aproximadamente $(0,337 \times 12 \approx 4)$.
- **6.1.** $a \approx 5 \text{ e } b \approx -0.6$

6.3.

- **6.2.** $\lim_{t\to +\infty} N(t) = 3$. Com o passar do tempo, o número de utentes do Centro de Saúde tende para 3000.
- 7.1. $a \approx 1,55$ 7.2. A massa de Z65 reduz-se $\frac{2}{3}$ ($\approx 66,7\%$) a cada ano e um mês, aproximadamente.
- 7.2. $t\left(\frac{m}{3}\right)-t(m)\approx 1,06$. A massa de Z65 reduz-se $\frac{2}{3}(\approx 66,7\%)$ a cada ano e um mês, aproximadamente $(0,06\times 12\approx 1)$.
- 7.3. $x \approx 0.5$. A massa de Z65 reduz-se 50% a cada 244 dias, aproximadamente $(0.6692 \times 365 \approx 244)$. Ou, a semi-vida do Z65 é, aproximadamente, de 244 dias.

6.4. Passados, aproximadamente, três anos e seis meses.

7.4.
$$m(t) = \underbrace{e^{\frac{a}{0.965}}}_{A} \times e^{-1.036t}$$

7.5.
$$\frac{m(t+2)}{m(t)} \approx 0,126$$
. A massa de Z65 reduz-se, aproximadamente, 87,4% a cada dois anos (100% $-$ 12,6% $=$ 87,4%).