Tutorial 1: Single Phase AC Systems – The Basics

- Q1 State the rms value of the following waveforms:
 - **a**) $v(t) = 141.Sin(\omega t)$

b)
$$i(t) = 20.Sin(\omega t - \frac{\pi}{4})$$

- Q2 Draw the Q1 instantaneous voltage and current waveforms as a function of time (on the same graph please)
- Q3 Draw the equivalent phasors (on the same diagram please) for the Q1 voltage and current. Does the current LEAD or LAG the voltage?
- Q4 Draw a phasor diagram showing $V_{\rm S}$ and $I_{\rm S}$ for each of the following single component circuits, and determine the rms current magnitude in each case.

- Q5 Determine the Reactance and Complex Impedance of the following components when connected to a 110V/60Hz (USA) supply:
 - a) L = 220mH
 - b) $C = 220 \mu F$
- Q6 Convert the following Complex Impedances (Cartesian form) into their Polar equivalent.
 - a) 15 + j10
 - b) 20 j30
- Q7 Convert the following voltage phasors (Polar form) into their Cartesian equivalent:
 - a) 200Φ20°
 - b) 100Φ(-40°)

(note Φ indicates that the value following it is the phasor angle (in degrees))

- Q8 For the circuit shown on Figure Q8 (where $V_S = 110V/50Hz$) determine the following:
 - a) The Inductance (L).
 - b) The supply current I_s.
 - c) Draw the phasor diagram for the supply voltage (V_S) and current (I_S)
 - d) Determine the average output power
 - e) Determine the average input power
 - f) Determine V_R and V_L and add these to the phasor diagram

Figure Q8

- Q9 For the circuit shown on Figure Q9 (where $V_s = 11kV/50Hz$) determine the following:
 - a) The total circuit impedance Z_T .
 - b) The supply current Is.
 - c) Draw the phasor diagram for the supply voltage (V_s) and current (I_s)

Bonus:

d) Determine the new value of capacitance (C) which would result in the supply voltage and current being IN PHASE.

Figure Q9