

UWO CHEM 1302

Fall 2024, Chapter 1 Notes

Welcome to Wizeprep

These notes were created on Oct 6th, 2024

We're always updating our content. Check back for more.

Welcome to Your Course Notes

I'm Avneet, your Wizeprep chemistry tutor. I put these notes and the corresponding online course together especially for CHEM 1302 at UWO. It's formulated to tell you everything you need to know, in a quick and easy format so you can get better grades, spend less time studying, and more time living.

Avneet 4.7/5 ★ BMSc HSp in Pathology

Find Your Course Online

These course notes correspond to an online course full of video lectures, practice problems, instructor Q&A and more. Access it with this QR code or at wizeprep.com/in-course-experience/Chem1302-UWO

98%

Of Wizeprep

Students Get

Better Grades

66

After discovering Wizeprep at the beginning of my second semester, my grades have gone up significantly. I feel so much more confident when taking my exams.

Emily, Undergraduate Student

Your Wizeprep Resources

Get Better Grades

98% of students who study with Wizeprep reported higher grades

Really Understand Concepts

Our instructors know how to make complex topics feel simple

Cut Your Study Time in Half

Quick, curated lessons allow you to focus your study time where it matters

Find in These Course Notes

🔀 Relevant Theory

All the theory and expert knowledge you need to fully understand your course.

Practice Questions

Tons of practice problems, similar to those expected on your exam.

Exam Tips

Unique exam writing tips proven to help you score higher.

Find Online

□ Bite-Sized Video Lessons

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Not subscribed yet?

Get started for free on Wizeprep.com

Table of Contents

Chapter 1. Stoichiometry Review

1.1. Introduction to Chemical Equations and Balancing

- 1.1.1. Balancing Reactions
- 1.1.2. Reaction Stoichiometry
- 1.1.3. Example
- 1.1.4. Polyatomic Ions
- 1.1.5. Example
- 1.1.6. Practice

1.2. Atoms, Molecules, and the Mole!

- 1.2.1. Moles
- 1.2.2. Example
- 1.2.3. Practice
- 1.2.4. Practice

1.3. Stoichiometry

1.3.1. Intro to Stoichiometry

- 1.3.2. Stoichiometry: Putting it All Together
- 1.3.3. Example
- 1.3.4. Example
- 1.3.5. Practice
- 1.3.6. Practice

1.4. Limiting Reagents

- 1.4.1. Introduction to Limiting Reagents
- 1.4.2. Example
- 1.4.3. Example
- 1.4.4. Example
- 1.4.5. Practice

1.5. Percent Yield

- 1.5.1. Percent Yield
- 1.5.2. Example
- 1.5.3. Practice
- 1.5.4. Practice

1. Stoichiometry Review

1.1 Introduction to Chemical Equations and Balancing

1.1.1

Balancing Reactions

Reactions must be balanced before the stoichiometry can be analyzed.

What makes a reaction balanced?

The number of _	of each	type on the	must equal the number of atoms of
each type on the		of the reaction.	
Example:			
	Unbalanced:	$C_3H_{8(g)}+O_2$	$_{(g)} ightarrow CO_{2(g)}+H_2O_{(g)}$

Balanced:
$$C_3H_{8(g)}+5~O_{2(g)}
ightarrow 3~CO_{2(g)}+4~H_2O_{(g)}$$

Watch the video tutorial for this lesson (3:02)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=69436&activity_type=CourseLesson

1.1.2

Balancing Chemical Reactions

Unbalanced Reaction

$$\mathbf{CH_4} \ + \ \mathbf{O_2} \ \longrightarrow \ \mathbf{CO_2} \ + \ \mathbf{H_2O}$$

The **subscripts** tell us the ratio of different atoms in one molecule.

Example: One CH₄ molecule has 4 hydrogen atoms and 1 carbon atom

Sometimes you could be given unbalanced equations and you are expected to balance them! We **need to use the balanced equation for calculations** in order to get the correct answer!

Steps to Balance Chemical Equations

- 1. Balance **elements that only appear once** on the reactant side and once on the product side (typically elements not including C, N, H, O)
- 2. **Group polyatomic ions** and balance them as a group (not as separate elements, *e.g.* balance NO₃ as 1 NO₃ group, not 1 N and 3 O)
- 3. **Balance all other elements**, starting with the least common elements to the most common elements
- 4. Make sure all **coefficients are whole numbers** AND are represented in the **simplest integer** ratio possible
- 5. **Check** to make sure all elements are balanced on each side of the chemical equation

Balanced Reaction

- The **stoichiometric coefficients** of the balanced equation tell us that we need _____ oxygen molecules for each methane (CH₄) molecule and we produce _____ waters for every methane consumed.
- It also tells us that for every 1 mole of methane used we produce mole of CO₂.

WIZE CONCEPT

Multipy coefficients by subscripts to see exactly how much of an atom we have on each side.

WATCH OUT!

We want the *lowest* possible coefficients.

Example:

If I balanced an equation and got:

$$2MgCl_{2}\left(aq
ight) +4NaOH\left(aq
ight) \
ightarrow 2Mg\left(OH
ight) _{2}\left(s
ight) \ +\ 4NaCl\left(aq
ight)$$

The **greatest common factor** that can go into each coefficient is 2 so we need to divide each coefficient by 2 to get the lowest possible numbers!

$$MgCl_{2}\left(aq
ight)+2NaOH\left(aq
ight) \,
ightarrow\,Mg\left(OH
ight)_{2}\left(s
ight) \,+\,\,2NaCl\left(aq
ight)$$

Watch the video tutorial for this lesson (7:52)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69437&activity_type=CourseLesson

1.1.3

Example: Balancing a Chemical Reaction

Balance the following equation:

$$NO_{(aq)} \hspace{0.1in} + \hspace{0.1in} O_{2(g)} \hspace{0.1in} + \hspace{0.1in} H_2O_{\hspace{0.1in}(l)} \hspace{0.1in}
ightarrow \hspace{0.1in} HNO_{2(aq)}$$

Solution available online

The physical state of each chemical compound is often included in chemical equations:

- (s) = solid
- (I) = liquid
- (g) = gas
- (aq) = aqueous

Watch the video tutorial for this lesson (2:45)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69438&activity_type=CourseLesson

Polyatomic Ions

Note: There is no need to memorize the following table. It is just included here so you have an idea about what a polyatomic ion is!

Polyatomic Ion Cheatsheet				
Ion	Name	Ion	Name	
NH ₄ ⁺	Ammonium	MnO ₄	Permanganate	
NO ₂	Nitrite	$\operatorname{CrO_4}^{2-}$	Chromate	
NO ₃	Nitrate	$\operatorname{Cr}_2\operatorname{O_7}^{2\text{-}}$	Dichromate	
SO ₃ ²⁻	Sulfite	O_2^{2-}	Peroxide	
SO ₄ ²⁻	Sulfate	O_2	Superoxide	
HSO ₄	Hydrogen sulfate*	$C_2O_4^{2-}$	Oxalate	
HSO ₃	Hydrogen sulfite	HC_2O_4	Hydrogen Oxalate	
OH ⁻	Hydroxide	HCO_2	Formate	
CN ⁻	Cyanide	$\mathbf{S}_{2}\mathbf{O}_{3}^{2-}$	Thiosulfate	
PO ₄ ³⁻	Phosphate	HS_2O_3	Hydrogen Thiosulfate	
HPO ₄ ²⁻	Hydrogen Phosphate	$\mathrm{BrO_4}^-$	Perbromate	
H_2PO^{4-}	Dihydrogen Phosphate	BrO ₃	Bromate	
CO ₃ ²⁻	Carbonate	BrO_2	Bromite	
HCO ₃	Hydrogen Carbonate**	BrO	Hypobromite	
ClO	Hypochlorite	IO_4	Periodate	
ClO ₂	Chlorite	IO_3	Iodate	
ClO ₃	Chlorate	IO_2	Iodite	
ClO ₄	Perchlorate	IO	Hypoiodate	
$C_2H_3O_2$	Acetate			

Watch the video tutorial for this lesson (1:12)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=69439&activity_type=CourseLesson

1.1.5

Example: Balance a Chemical Equation with Polyatomic Ions

Solution available online

Watch the video tutorial for this lesson (1:19)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=69485&activity_type=CourseLesson

Practice: Balancing the Combustion of Furan

Choose the answer that balances the reaction shown below:

$$\mathrm{A}\; C_4H_4O(l)+\mathrm{B}\; O_2(g) o \mathrm{C}\; CO_2(g)+\mathrm{D}\; H_2O(g)$$

A = 2; B = 9 ;C = 8; D = 4	0
A = 1; B = 3 ;C = 5; D = 2	0
A = 1; B = 1 ;C = 1; D = 1	0
A = 4; B = 25 ;C = 20; D = 10	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=104874&activity_type=QuizQuestion

1.2 Atoms, Molecules, and the Mole!

1.2.1

Moles

When someone says they want a dozen donuts, roses, or eggs we know they mean they want 12. A mole in chemistry also tells us the amount of something.

- Just like how a dozen of something = 12, 1 mole of something = 6.02×10^{23} molecules
- 6.02x10²³ is referred to as Avagadro's number (N_A)

i WIZE TIP

You should memorize Avagadro's number since it is not always provided on exams! We'll soon see that you need to know it to solve problems:)

$$\mathbf{N_A} = \mathbf{6.02} \times \mathbf{10^{23}} \ \mathrm{molecules/mole}$$

We use the unit "**moles**" to help make very small amounts more measurable. A mole is just like any other unit!

There are 2 Equations Related to Moles:

$$n=rac{m}{M}$$

$$n=rac{N}{N_A}$$

n=# of moles
m=mass (g)
M=molar mass (g/mol)
N=# of molecules or atoms
N_A=Avagadro's number=6.02x10²³ molecules

Example #1:

If we are told that a sample of $CO_2(s)$ weighs 11g, how many moles are present?

Solution available online

Example #2

We have 2 moles of ${\rm CO}_2$ present in our sample, how many molecules are there?

Solution available online

Example #3

How many oxygen atoms there in 1 mole of CO_2 ?

1) Find Number of Molecules In the Sample

Solution available online

2) Find the Number of O atoms in the Sample

In each molecule there are ____ O atoms.

Therefore to find the number of O atoms:

of molecules in sample x ____ O atoms/molecule =# of O atoms

of O atoms=

Watch the video tutorial for this lesson (8:38)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=69486&activity_type=CourseLesson

Example: Calculate the Number of Molecules of Ethyl Mercaptan

The volatile liquid ethyl mercaptan, C_2H_6S , is one of the most odoriferous substances known. It is added to natural gas to make gas leaks detectable. (d = 0.84 g/mL; MW = 62.1 g/mol)

1. How many C_2H_6S ,molecules are contained in a 3.0 μL sample?

Solution available online

2. In the same 3.0 μ L sample, how many C and H atoms are there?

Solution available online

Watch the video tutorial for this lesson (8:15)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=69487&activity_type=CourseLesson

Practice: Converting Mass to Number of Atoms

Calculate the number of nitrogen atoms in 2.25 g of bismuth(III) nitrate.

a) 1.03×10 ²² atoms	0
b) 1.03x10 ²¹ atoms	0
c) 3.43x10 ²¹ atoms	0
d) 3.43x10 ²² atoms	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=104876&activity_type=QuizQuestion

Practice: Finding the Number of Moles of Iron

Calculate the number of moles of iron atoms in 14.1 g of iron oxide, Fe_2O_3

A) 0.177 mol	0
B) 0.0821 mol	0
C) 0.0906 mol	0
D) 0.0451 mol	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=104895&activity_type=QuizQuestion

1.3 Stoichiometry

1.3.1

Intro to Stoichiometry

Stoichiometry allows us to predict the quantities of products or reagents across a chemical reaction.

Typically this is done in a few steps:

- 1. Calculating the number of moles of the reagents
- 2. Calculating the number of moles of the products using the stoichiometric ratio
- 3. Calculating the mass or pressure of the products.

Moles are the central unit!

In addition we can convert between mass and volume of a pure substance by looking at it's density,

$$\delta=m/V$$

Watch the video tutorial for this lesson (3:36)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=69502&activity_type=CourseLesson

Stoichiometry of a Reaction

We use the **coefficients** of the **balanced reaction** along with the our equations that convert mass, volume, and concentration into moles to predict the quantities of reactants and products in a chemical reaction.

To answer any stoichiometry problem, focus on converting to and from moles!

General Steps to Solving a Stoichiometry Problem:

- 1. Convert the values given in the problem about a reactant or product to a **number of moles**
- 2. Use the **stoichiometric coefficients** from the **balanced** reaction to **find the number of moles of the unknown** you are being asked for
- 3. Convert the number of moles of your unknown to a mass, or whatever quantity you are being asked for

Example

2.6g of sodium metal (Na) reacts with water to form NaOH and H_2 according to the unbalanced reaction below. Once the reaction is complete how many grams of NaOH are formed?

$$Na_{(s)} + \ H_2O_{(g)}
ightarrow \ NaOH_{(s)} + \ H_{2(g)}$$

1 WIZE TIP

On an exam, your prof will NOT specify if an equation is balanced or unbalanced.

Always double check that the equation is balanced. If it's not, balance the equation before continuing!

The equation must be balanced in order to get the correct answer!

Step 1: Balance the reaction

$$2~Na_{(s)} + 2~H_2O_{(g)}
ightarrow 2~NaOH_{(s)} + H_{2(g)}$$

Step 2: Find the number of moles of sodium

$$n_{Na} = rac{m}{MW} = rac{2.6~g}{22.990~g/mol} = 0.113~mol$$

Step 3: Find the number of moles of NaOH

$$n_{NaOH} = n_{Na} imes rac{coefficient \ NaOH}{coefficient \ Na} = 0.113 \ mol imes rac{2}{2} = 0.113 \ mol$$

Step 4: Convert the number of moles of NaOH to a mass

$$n=rac{m}{M}$$

$$m_{NaOH} = n imes MW = 0.113 \ mol imes 39.997 \ g/mol = 4.520 \ g = 4.5 \ g$$

Watch the video tutorial for this lesson (5:32)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69503&activity_type=CourseLesson

1.3.3

Example: Converting Mass of Reactant to Mass of Product

Calculate the mass of hydrogen gas produced if 0.550 g of iron powder is reacted with an excess amount of sulfuric acid.

$$Fe \hspace{0.1cm} (s) \hspace{0.25cm} + \hspace{0.25cm} H_2SO_4 \hspace{0.1cm} (aq) \hspace{0.35cm}
ightarrow \hspace{0.1cm} Fe_2 \hspace{0.1cm} (SO_4)_3 \hspace{0.1cm} (aq) \hspace{0.1cm} + \hspace{0.1cm} H_2 \hspace{0.1cm} (g)$$

Solution available online

Watch the video tutorial for this lesson (4:48)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=69505&activity_type=CourseLesson

1.3.4

Example: Solution Stoichiometry to Determine Mass of Product

Lithium metal was added to a 25mL of a 1.3M solution of Ag_2SO_4 . The unbalanced chemical reaction is shown below.

$$Ag_2SO_{4(aq)}+Li_{(s)}
ightarrow Li_2SO_{4(aq)}+Ag_{(s)}$$

Once the reaction has gone to completion, what mass of silver metal is produced?

- a) 0.0070 g
- b) 7.0 g
- c) 3.5 g
- d) 0.0035 g

Solution available online

- •
- - - 0
 - 0

Watch the video tutorial for this lesson (5:48)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69506&activity_type=CourseLesson

Practice: Calculate the Mass of Product

16.0 mL of Hg (mp = -38.8° C, density = 13.56 g/mL) reacts with fluorine gas and the reaction goes to completion as shown below.

$$Hg_{(l)}+F_{2(g)}
ightarrow HgF_{2(s)}$$

Once the reaction has gone to completion, what mass of mercury fluoride, HgF_2 , is produced?

A) 1.48 g	0
B) 514 g	0
C) 142 g	0
D) 258 g	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=104896&activity_type=QuizQuestion

Practice: Stoichiometry Calculations Application

A solution that is 183mM (millimolar) NaCl(aq) is isoosmotic with plasma. This means that cells don't swell or shrink when in this solution. How many grams of sodium chloride are required to make 150mL of isoosmotic NaCl(aq)? The molar mass of NaCl is 58.44g/mol.

0.2g	0
1.6g	0
2.2g	0
4.9g	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=104897&activity_type=QuizQuestion

1.4 Limiting Reagents

1.4.1

Introduction to Limiting Reagents

Anytime **reactant species are in limited supply** and not present in perfectly proportional amounts, a chemical reaction will have a **limiting reagent** which will be totally **consumed before any other reactant**

The quantity of the limiting reagent available directly **determines the maximum number of product molecules** that can be formed!

Let's Consider an Example:

When making smores (yum!!) the "reaction" looks something like:

2 graham crackers + 1 piece of chocolate + 1 marshmellow \rightarrow 1 smore

If I had 10 graham crackers, 6 pieces of chocolate, and 6 marshmellows, what would be the limiting reagent? In other words, what would I run out of first? And how many smores could I make?

• The "chemistry way" to figure this out would be to take the # of moles of each reactant and divide by its stoichiometric coefficient:

Graham crackers: 10/2=5
Pieces of chocolate: 6/1=6
Marshmellows: 6/1=6

- Now, to figure out the limiting reagent, look at which of the above numbers are the smallest!!
 - o 5 is smallest, therefore Graham crackers are the limiting reagent!!

Now how many smores could we make?

We know graham crackers will determine how much product we get since we'll run out of the crackers first

 $moles\ of\ graham\ crac\ \ker\ x\ rac{1\ mol\ smores}{2\ moles\ graham\ crac\ \ker} =\ moles\ of\ smores$

 $10 \times (1/2) = 5$ moles of smores created!

It is necessary to **determine the limiting reagent** whenever we are **given the amounts of two or more reactants** in a chemical reaction.

The limiting reagent is totally consumed in the reaction. Any other reactant is in excess.

Limiting reagent stops the reaction by running out first.

The quantity of the limiting reagent available directly determines the maximum number of products molecules that can be formed

Watch the video tutorial for this lesson (5:20)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69507&activity_type=CourseLesson

Example: Determine the Mass of Product in a Limiting Reagent Problem

Iron and chlorine gas react to form iron (III) trichloride. If 110 g of iron and 105 g of chlorine gas are reacted, which species is the limiting reagent? What is the maximum mass of $FeCl_3$ that can be formed?

$$2Fe(s) + 3Cl_2(g) \rightarrow 2FeCl_3(s)$$

i WIZE TIP

Steps for Solving Limiting Reagent Problems:

Step 1 – Write & **balance** the equation.

Step 2 - Calculate moles of each reactant.

Step 3 – Use the molar ratios of the present reactants (from the balanced equation) to determine the limiting reactant (LR).

- Take the # of moles of each reactant from step 2 and divide by the stoichiometric coefficient for that reactant
 - Smallest value from this calculation tells us the LR

Step 4 – From the limiting reactant, use the **molar ratio** (from the balanced equation) to **calculate moles of the desired product.**

Step 5 – Convert moles to the desired units (density, molarity, grams, etc...)

Step 1 – Write & balance the equation.
Is the equation given balanced?
Step 2 – Calculate moles of each reactant.
i) Find moles of Fe
Solution available online
ii) Find moles of Cl ₂
Solution available online
Step 3 – Use the molar ratios of the present reactants (from the balanced equation) to determine the limiting reactant.
Solution available online
Therefore the limiting reagent is! (because it had the smallest number)

Step 4 – From the lim	iting reactant,	use the molar ra	tio (from the	balanced e	equation) to	o calculated
moles of the desired	product.					

• The maximum mass of FeCl₃ that is formed depends on how much we have (LR).

Solution available online

Step 5 – Convert moles to the desired units (density, molarity, grams, etc...)

Solution available online

Watch the video tutorial for this lesson (5:00)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69716&activity_type=CourseLesson

Example: What is the Limiting Reagent?

2.0 g of aqueous Barium hydroxide $(Ba(OH)_2(aq), 171.32 \text{ g/mol})$ and 1.5 g of liquid hydrogen bromide (HBr(l), 80.91g/mol) react together to give aqueous barium bromide (BaBr₂(aq)) and liquid water (H₂O(l)). Which species would be the limiting reagent of this reaction?

Solution available online

Watch the video tutorial for this lesson (3:12)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69728&activity_type=CourseLesson

1.4.4

Example: How Many Grams of the Excess Reagent Will Remain?

The reaction between P_4 and Br_2 is very exothermic and produces PBr_5 as the only product. If 7.0 g of P_4 react with 12.0 g of Br_2 how many grams of the excess reagent will remain?

- a) 0.4 g
- b) 4.7 g
- c) 6.1g
- d)11.1 g

Solution available online

Watch the video tutorial for this lesson (7:12)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69729&activity_type=CourseLesson

Practice: What is the Limiting Reagent

If 12 g of sodium is mixed with 0.64 g of H_2 and 17 g of O_2 which reagent will be limiting in the reaction shown below?

$$2\ Na_{(s)} + O_{2(g)} + H_{2(g)} o 2\ NaOH$$

(A) Na	0
(B) O ₂	0
(C) H ₂	0
(D) None, they will all be completely consumed	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=105032&activity_type=QuizQuestion

1.5 Percent Yield

1.5.1

Percent Yield

So far we have been assuming that the reaction proceeds 100% to products. In reality, this is rarely the case!

When we are doing experiments in the lab we often lose some of our product by spilling it or residues of it get left on glassware and spatulas.

So far we have been calculating the **theoretical yield.**

Theoretical Yield - the maximum amount of product produced based on the quantity of the limiting reagent (e.g. the amount of product produced in a calculation).

Actual Yield - the actual amount of product produced in the reaction (e.g. the amount of product obtained in a laboratory experiment).

$$\% \ yield = \ \frac{actual \ yield}{theoretical \ yield} \ x100$$

Test Your Understanding

In a lab, you measure your product and record 5.222g. This is the ______ yield.
 If everything went 100% perfectly according to the reaction we would get the ______ yield
 If I determined the limiting reagent, and then calculated the number of moles of product and the mass of product based on this, I've just calculated the ______ yield

Watch the video tutorial for this lesson (4:31)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69732&activity_type=CourseLesson

Example: What is the Percent Yield

When 49.00 g of a hydrocarbon fuel with formula $C_7H_{10}O_2$ is reacted with excess oxygen, a total of 21.56 g of water is collected. What was the percent yield of the reaction?

$$C_7H_{10}O_2 + O_2 \rightarrow H_2O + CO_2$$

Solution available online

Watch the video tutorial for this lesson (7:10)

https://www.wizeprep.com/in-course-experience/Chem1302-UWO? activity_id=69733&activity_type=CourseLesson

Practice: Calculate Moles Given Percent Yield

If the yield for the following reaction is 45%, how many moles of $KCIO_3$ are needed to produce 1 mol of O_2 ?

$$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$$

A) 0.4 moles	0
B) 1.1 moles	0
C) 1.5 moles	0
D) 4.6 moles	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=105036&activity_type=QuizQuestion

Practice: Limiting Reagent & Percent Yield

Iron oxidizes when exposed to oxygen to form iron oxide according to the following equation:

Fe +
$$O_2 \rightarrow Fe_2O_3$$

352g of pure iron is exposed to 12.0 mols of O_2 , and after a period of time 46.7 g of iron oxide (rust) is collected.

Part 1

What is the limiting reagent in this reaction?

(A) Fe	0
(B) O ₂	0
(C) Fe ₂ O ₃	0
(D) There is no limiting reagent	0

Practice: Limiting Reagent & Percent Yield

Iron oxidizes when exposed to oxygen to form iron oxide according to the following equation:

Fe +
$$O_2 \rightarrow Fe_2O_3$$

352g of pure iron is exposed to 12.0 mols of O_2 , and after a period of time 46.7 g of iron oxide (rust) is collected.

Part 2

What is the percent yield?

A) 2.2%	0
B) 8.8%	0
C) 9.4%	0
D) 33.1 %	0)

Practice: Limiting Reagent & Percent Yield

Iron oxidizes when exposed to oxygen to form iron oxide according to the following equation:

$$Fe + O_2 \rightarrow Fe_2O_3$$

352g of pure iron is exposed to 12.0 mols of O_2 , and after a period of time 46.7 g of iron oxide (rust) is collected.

Part 3

How many Fe atoms are present in the rust produced?

A) 0.89×10^{17} atoms	0
B) 1.77 x 10 ²³ atoms	0
C) 3.56×10^{23} atoms	0
D) 4.33×10^{23} atoms	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Chem1302-UWO?activity_id=105037&activity_type=QuizQuestion

Find this, and much, much more on Wizeprep.com

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Also on Wizeprep.com

Crash Courses

A live review of all testable concepts, exam-like practice problems, tips & tricks, and Q&A. Led by an instructor who is an expert on your course.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Weekly Tutorials

A weekly, live review of lecture topics led by an instructor who knows your course inside and out.

✓ Live Online Session
✓ Booklet
✓ Solutions
✓ Recording

First week free!

Mock Exam Walkthroughs

A realistic practice exam based on past exams from your course. An instructor experienced with your course will walk through the solutions.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Wizeprep MCAT

Chemistry

Org Chem

Biochem

Physics

Psych

Two Plans

ELITE 515 LIVE

Flexible live schedules, face-time with our MCAT instructors.

515+ performance guarantee

SELF-PACED

Watch 144 hours of expert MCAT instruction whenever you have time.

Both Plans Include...

- 144 hrs of expert instruction
- 15 full-length practice exams
- ✓ 100+ practice passages
- 405+ passage-based questions

- All AAMC materials
- Personalized study plan
- 6 top-quality textbooks
- Unlimited Q&A with MCAT experts

Performance Guarantee

The Elite 515 program promises you a score of at least 515 on the MCAT or money back. A 515 puts you within the top 2% of scores!

Find Free MCAT Resources on Wizeprep.com/MCAT

Free Live Events

Learn about the med school application process and more.

Free Diagnostic Exam

Predict your MCAT score and assesses strengths and weaknesses.

Free Trial

Don't just take our word for it. Try out the first few lessons vourself.

Other Courses at UWO

CALC 1000

Calculus L

BIOL 1001

Biology for Science 1

MATH 1229

Methods of Matrix Algebra

BIOL 1002

Biology for Science 2

PSYCH 1000

Introduction to Psychology

CHEM 1301

Discovering Chemical Structure

PHYS 1201

Physics for the Sciences I

ECON 1021

Principles of Microeconomics

MATH 1228

Methods of Finite Mathematics

CHEM 2213

Organic Chemistry for Life Sciences

Find more on Wizeprep.com