Beyond genomic

Microbiome Kickstart workshop - 2021

7,814,251,039

https://www.worldometers.info

× 100.109/Milky way

1.10° /g Soil
1.10° / planet

A 1.10° / planet

microbiome

Yana Bromberg

George Peabody Library, Baltimore, U.S.A

Metagenome reads

Metagenome reads

bioinformatic

Metagenome reads

bioinformatic

metagenome assembled genomes MAG

Biogeography of a microbiome at micron scale Jessica L. Mark Welch, Blair J. Rossetti, Christopher W. Rieken, Floyd E. Dewhirst, Gary G. Borisy PNAS Feb 2016, 113 (6) E791-E800; DOI: 10.1073/pnas.1522149113

Carini, P., Marsden, P., Leff, J. *et al.* Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. *Nat Microbiol* **2**, 16242 (2017). https://doi.org/10.1038/nmicrobiol.2016.242

High Spatial Resolution Imaging Mass Spectrometry Reveals Chemical Heterogeneity Across Bacterial Microcolonies

Rita de Cassia Pessotti, Bridget L. Hansen, Vineetha M. Zacharia, Daniel Polyakov, and Matthew F. Traxler *Analytical Chemistry* **2019** *91* (23), 14818-14823

DOI: 10.1021/acs.analchem.9b03909

P. aeruginosa colonies grown from a 1:1 mixture of YFP- and CFP-labeled cells.

Hatzenpichler, R., Krukenberg, V., Spietz, R.L. *et al.* Next-generation physiology approaches to study microbiome function at single cell level. *Nat Rev Microbiol* **18,** 241–256 (2020). https://doi.org/10.1038/s41579-020-0323-1

Next-generation physiology

Hatzenpichler, R., Krukenberg, V., Spietz, R.L. *et al.* Next-generation physiology approaches to study microbiome function at single cell level. *Nat Rev Microbiol* **18,** 241–256 (2020).

https://doi.org/10.1038/s41579-020-0323-1

Huck Core Facilities

Genomics & Transcriptomics

Contact: Craig Praul, cap142@psu.edu

Location: 412 Chandlee Lab

INSTRUMENTS 150 nt single read, 75 x 75 paired-end, and 300 x 300 paired-end sequencing are available in the v3 format. •150 nt single read, or 150 x 150 paired-end read Each SMRTcell can produce up to 500,000 reads. 8 High circular consensus accuracy available Single Cell Gene Expression assay •1-8 samples per run Other instruments: Agilent Bioanalyzer Qubit •96-capillary format / Sanger sequencing NanoString nCounter Real-Time PCR

- -Full genome sequencing
- -Metagenomic + genome binning
- -Metatranscriptomics (under varied conditions) + reads mapping
- -16S rRNA gene, ITS and other amplicons sequencing
- -pure product sequencing (single colony PCR or clone)

Proteomics

Contact: Tatiana Laremore, tnl1@psu.edu , Ganesh Anand, gsa5089@psu.edu

Location: 3 Althouse lab

INSTRUMENTS

(1) Thermo LTQ Orbitrap – nano-flow 2D LC System, (2) Bruker ultrafleXtreme MALDI-TOF/TOF

- -Microbial identification biotyper
- -Exploring microbiome proteomes under varied condition / link diversity to enzymatic functions
- -Identifying new proteins bioactive peptides

Metabolomics

Contact: Phil Smith, pbs13@psu.edu

Location: Huck Life Sciences Building, first floor

INSTRUMENTS

- -Microbial rapid identification
- -Probing microbe-microbe interactions through the exchange of metabolites
- -Synthetizing defined culture media
- -Surveying microbial population under varied condition
- -Identifying/quantifying new natural product of interest
- -Tracking the fate of a known compound

CLS Behring Fermentation

Contact: Mark Signs, mws6@psu.edu, Ali Demirci, axd29@psu.edu

Location: 114 Agricultural Engineering Building

INSTRUMENTS

Freeze drier
Tube centrifuge...

- -Produce large quantity of microbial inoculant for environmental restoration
- -Produce and purify proteins/products of interest such as natural products

Microscopy

Contact: Greg Ning, gxn7@psu.edu

Location: N048 Millennium Science Complex

INSTRUMENTS

Type	#	Name	Type	Application	
Dissecting	1	Olympus SZ-PT	Dissecting	sample dissecting, trimming sample dissecting, trimming	
	2	Olympus SZ-ST	Dissecting		
	3	Zeiss SteREO	Dissecting	sample dissecting, trimming	
Fluo Stereo	4	Zeiss AxioZoom V16	Fluorescence stereozoom	Fluorescence imaging, confocal like-optical slicin	
Wide-field	5	Olympus BX50	Wide-field, upright	BF; Slide scanning	
	6	Olympus BX51	Wide-field, upright	BF/FL/Pola, BF/DIC, slide scanning	
	7	Olympus BX60	Wide-field, upright		
	8	Olympus BX61	Wide-field, upright	BF/FL/DIC/Pola/Reflection/moterized	
	9	Keyence	Wide-field, inverted	BF/FL/phase, motorized, live-cell. All-in-one	
Laser Capture	10	Zeiss Axio Observer	Wide-field, inverted	BF/FL/phase	
Confocal	11	Olympus FV1000	Confocal, inverted	BF/FL/DIC; 40 water, 60x, 100x	
	12	Zeiss LSM88 Airyscan	Confocal, inverted	BF/FL/DIC; 40 W, 40 O, 63 O, 100 O,	
	13	Olympus FV10i	Confocal, inverted	BF/FL/Phase; live-cell, motorized, 10x 60x water	
Multiphoton	14	Leica DIVE	Multiphoton, upright	MP lens, motorized lens	
Super Res	15	Nikon N-SIM/STORM	Super Resolution	Resolution 110 nm (SIM) and 20 nm (STORM)	
	16	BioVision VT-iSIM	Super Resolution	Resolution 120 nm, fast imaging (live cell)	
	17	FEI Spirit G2	TEM	Thin section, cryo, tomo	
	18	Zeiss Sigma	VP-FESEM	low vacuum, EDS, serial block-face imaging, cryoSEM, low T control	

- -Imaging of live cells, cell counting
- -Imaging of fluorescent cells / or fluorescently labelled cells
- -FISH fluorescent in situ hybridization and variation inc. *in situ* transcriptomics
- -Use of various fluorophore inc. live/dead, ratiometric dyes to measure intracellular pH or Ca concentration for instance
- -Imaging cells environment, inc. mineral and organic associated to the cell and map elements
- -Sectioning and visualizing intracellular organization of microbes, biofilms and colonies

Flow Cytometry

Contact: Sarah Neering, sin16@psu.edu

Location: W124A Millennium Science Complex

INSTRUMENTS

Flow cytometry (1 & 5), cell sorting - FACS (2 & 4), flow imaging (3)

- -Evaluation of fluorescence using live-dead staining
- -Sorting microbial populations of interest (based on size, fluorescence etc..)
- -Sorting single cells (for single cell genomics) sorting cell populations (for mini-metagenomes or metagenomes)
- -Sorting cells + their associated viruses
- -Absolute count of cells in a sample (cell per ul of sample)

and everything else....

EESL CORE FACILITIES

- -Center for quantitative imaging
- -Deployable equipment
- -Organics laboratory
- -Radiocarbon laboratory
- -Solar Energy laboratory
- -Water quality laboratory

https://iee.psu.edu/labs

Runs the EESL Green Student Seed Grant Competition (Proposal due in March)

MCL CORE FACILITIES

- -Atomic force microscopy (AFM)
- -Focused Ion Beam
- -Infrared spectroscopy
- -Raman spectroscopy
- -Particle size analysis
- -Zeta potential
- -TEM/SEM and more....

https://www.mri.psu.edu/materials-characterization-lab/mcl-characterization-techniques