CS294-158 Deep Unsupervised Learning

Lecture 3 Likelihood Models: Flow Models

Pieter Abbeel, Wilson Yan, Kevin Frans, Philipp Wu

Overview

- What do we want from a generative model?
 - Good fit to the training data (really, the underlying distribution!)
 - For new x, ability to evaluate $p_{ heta}(x)$
 - Ability to sample from $p_{ heta}(x)$
 - A latent representation / embedding space that's meaningful
- Recall L2 Autoregressive Models?
 - Check many boxes except
 - Sampling is serial (hence slow)
 - Lacks latent representation / embedding space
 - Limited to discrete data (at least in terms of where experimental success has been)
- . Flow Models will check all boxes (but performance not as good as other models...)

Flow Models

- ullet Goal: Fit a density model $\,p_{ heta}(x)\,$ with continuous $\,x\in\mathbb{R}^n\,$
- What do we want from this model?
 - Good fit to the training data (really, the underlying distribution!)
 - For new x, ability to evaluate $\ p_{ heta}(x)$
 - Ability to sample from $p_{\theta}(x)$
 - A latent representation / embedding space that's meaningful

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

Quick Refresher: Probability Density Models

$$p(x)$$
3.5
3.0
2.5
2.0
1.5
1.0
0.0
0.0
0.2
0.4
0.6
0.8
1.0

$$P(x \in [a, b]) = \int_a^b p(x)dx$$

How to fit a density model?

Continuous data

```
0.22159854, 0.84525919, 0.09121633, 0.364252 , 0.30738086, 0.32240615, 0.24371194, 0.22400792, 0.39181847, 0.16407012, 0.84685229, 0.15944969, 0.79142357, 0.6505366 , 0.33123603, 0.81409325, 0.74042126, 0.67950372, 0.74073271, 0.37091554, 0.83476616, 0.38346571, 0.33561352, 0.74100048, 0.32061713, 0.09172335, 0.39037131, 0.80496586, 0.80301971, 0.32048452, 0.79428266, 0.6961708 , 0.20183965, 0.82621227, 0.367292 , 0.76095756, 0.10125199, 0.41495427, 0.85999877, 0.23004346, 0.28881973, 0.41211802, 0.24764836, 0.72743029, 0.20749136, 0.29877091, 0.75781455, 0.29219608, 0.79681589, 0.86823823, 0.29936483, 0.02948181, 0.78528968, 0.84015573, 0.40391632, 0.77816356, 0.75039186, 0.84709016, 0.76950307, 0.29772759, 0.41163966, 0.24862007, 0.34249207, 0.74363912, 0.38303383, ...
```

Maximum Likelihood:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)})$$

Equivalently:

$$\min_{\theta} \mathbb{E}_x \left[-\log p_{\theta}(x) \right]$$

Example Density Model: Mixtures of Gaussians

$$p_{\theta}(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x; \mu_i, \sigma_i^2)$$

Parameters: means and variances of components,

$$\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k, \sigma_1, \dots, \sigma_k)$$

Aside on Mixtures of Gaussians

Do mixtures of Gaussians work for high-dimensional data?

Not really. The sampling process is:

- 1. Pick a cluster center
- Add Gaussian noise

Imagine this for modeling natural images! The only way a realistic image can be generated is if it is a cluster center, i.e. if it is already stored directly in the parameters.

Flow Models: Invertible transform from data x to embedding z

Note: VAE has very similar diagram, but learns both directions rather than imposing invertibility (see L4)

Change of Variables Formula

$$z = f_{\theta}(x)$$
 $p_{\theta}(x) dx = p(z) dz$
 $p_{\theta}(x) = p(f_{\theta}(x)) \left| \frac{\partial f_{\theta}(x)}{\partial x} \right|$

Note: for this simple formula to work, it requires f_{θ} invertible & differentiable

Flow Models: Training

$$x \longrightarrow \longrightarrow \longrightarrow \longrightarrow z = f_{\theta}(x) \quad z \sim p_{Z}(z)$$

$$p_{\theta}(x^{(i)}) = p_{Z}(z^{(i)}) \left| \frac{\partial z}{\partial x}(x^{(i)}) \right|$$

$$= p_{Z}(f_{\theta}(x^{(i)})) \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

Assuming we have an expression for $\ p_Z$, this can be optimized with Stochastic Gradient Descent

Flow Models: Examples

Two choices to make:

Invertible function class $z = f_{\theta}(x)$

I.e., in 1-D this is any monotonically increasing (or decreasing) function

E.g.: -a x + b (for positive a)

- polynomials with positive coefficients and only odd powers
- exp (theta x)
- sigmoid (a x + b)
- cumulative density functions, e.g. CDF of mixture of Gaussians or weighted sum of logistics
- composition of flows = flow

Embedding space density $~z \sim p_Z(z)$

Ideally an easy distribution to sample from

E.g.:
$$z \sim \mathcal{N}(0,1)$$
 "normalizing flow"
$$z \sim \sum_k \pi_k \mathcal{N}(z;\mu_k,\sigma_k^2)$$
 mixture of Gaussians

$$z \sim \mathrm{Uniform}([0,1])$$
 -> make sure $f_{ heta}$ maps to [0,1]

Example: Flow to Gaussian z

Example: Flow to Uniform z

Example: Flow to Beta(5,5) z

1-D Flow Models Summary

Training:
$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

Inference: evaluate training objective

Sampling: first sample z from $z \sim p_Z(z)$ then compute $x = f_{\theta}^{-1}(z)$

Aside: special case of $z = f_{\theta}(x)$ a CDF and p(z) U[0,1]

E.g. Gaussian CDF, mixture CDF, logit CDF, multiple CDFs

Refresher: Cumulative Density Function (CDF)

$$f_{\theta}(x) = \int_{-\infty}^{x} p_{\theta}(t) dt$$

Sampling via inverse CDF

Sampling from the model:

$$z \sim \text{Uniform}([0,1])$$

$$x = f_{\theta}^{-1}(z)$$

The CDF is an invertible, differentiable map from data to [0, 1]

$$f_{\theta}(x) = \int_{-\infty}^{x} p_{\theta}(t) dt$$

CDF Flows: special case of $z = f_{\theta}(x)$ a CDF and p(z) U[0,1]

If we use a flow defined as a parameterized CDF, we recover the original objective for fitting the corresponding parameterized PDF.

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

CDF Flows: special case of $z = f_{\theta}(x)$ a CDF and p(z) U[0,1]

If we use a flow defined as a parameterized CDF, we recover the original objective for fitting the corresponding parameterized PDF.

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

this term constant per p(z) uniform

$$cdf'(x) = pdf(x)$$

How general are flows?

 Can every (smooth) distribution be represented by a (normalizing) flow? [considering 1-D for now]

How general are flows?

- CDF turns any density into uniform
- Inverse flow is flow

 \rightarrow can turn any (smooth) p(x) into any (smooth) p(z)

Recap of Flow Models in 1D

Flow: a differentiable, invertible mapping from x (data) to z (noise)

- Train so that it turns the data distribution into a base distribution p(z)
 - Common choices: uniform, standard normal

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

This way, mapping **z** ~ **p(z)** through the flow's **inverse** will yield good samples

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

2-D Autoregressive Flow

$$x_1 \to z_1 = f_{\theta_1}(x_1)$$
 $z_1 \to x_1 = f_{\theta_1}^{-1}(x_1)$ $x_2 \to z_2 = f_{\theta_2}(x_1, x_2)$ $z_2, x_1 \to x_2 = f_{\theta_2}^{-1}(x_1, z_2)$

Note that the dependence on x1 in f_theta2 can be arbitrarily complex (including any neural net), no invertibility requirements

Why?

x1 is also given when inverting from z2 to x2

Example 2-D Autoregressive Flow

$$x_1 \to z_1 = f_{\theta_1}(x_1)$$

 $x_2 \to z_2 = f_{\theta_2}(x_1, x_2)$

Training Objective

$$x_1 \to z_1 = f_{\theta_1}(x_1)$$

 $x_2 \to z_2 = f_{\theta_2}(x_1, x_2)$

$$\log p_{\theta}(x_1, x_2) = \log p_{Z_1}(z_1) + \log \left| \frac{\partial z_1(x_1)}{\partial x_1} \right|$$

$$+ \log p_{Z_2}(z_2) + \log \left| \frac{\partial z_2(x_1, x_2)}{\partial x_2} \right|$$

$$= \log p_{Z_1}(f_{\theta_1}(x_1)) + \log \left| \frac{\partial f_{\theta_1}(x_1)}{\partial x_1} \right|$$

$$+ \log p_{Z_2}(f_{\theta_2}(x_1, x_2)) + \log \left| \frac{\partial f_{\theta_2}(x_1, x_2)}{\partial x_2} \right|$$

2-D Autoregressive Flow: Two Moons

Architecture:

- Base distribution: Uniform[0,1]^2
- x1: mixture of 5 Gaussians
 - i.e. z1 = cdf of Mo5G
- x2: mixture of 5 Gaussians, conditioned on x1
 - I.e. z2 = cdf of Mo5G with mixture weights w, means mu, variances sigma conditioned on x1. I.e. arbitrary NN can be trained to map from x1 to w, mu, sigma

2-D Autoregressive Flow: Face

Architecture:

Base distribution: Uniform[0,1]^2

x1: mixture of 5 Gaussians

x2: mixture of 5 Gaussians, conditioned on x1

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

High-dimensional data

x and z must have the same dimension

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
 - Autoregressive Flows and Inverse Autoregressive Flows
 - RealNVP (like) architectures
 - Glow, Flow++, FFJORD
- Dequantization

Autoregressive flows

- The sampling process of a Bayes net is a flow
 - If autoregressive, this flow is called an autoregressive flow

$$x_1 \sim p_{\theta}(x_1)$$
 $x_1 = f_{\theta}^{-1}(z_1)$ $x_2 \sim p_{\theta}(x_2|x_1)$ $x_2 = f_{\theta}^{-1}(z_2;x_1)$ $x_3 \sim p_{\theta}(x_3|x_1,x_2)$ $x_3 = f_{\theta}^{-1}(z_3;x_1,x_2)$

Sampling is an invertible mapping from z to x

Autoregressive flows

- How to fit autoregressive flows?
 - Map x to z
 - Fully parallelizable

$$p_{\theta}(\mathbf{x}) = p(f_{\theta}(\mathbf{x})) \left| \det \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right|$$

Notice

- $\mathbf{x} \rightarrow \mathbf{z}$ has the same structure as the **log likelihood** computation of an autoregressive model
- $\mathbf{z} \rightarrow \mathbf{x}$ has the same structure as the **sampling** procedure of an autoregressive model

$$z_1 = f_{\theta}(x_1)$$
 $x_1 = f_{\theta}^{-1}(z_1)$ $z_2 = f_{\theta}(x_2; x_1)$ $x_2 = f_{\theta}^{-1}(z_2; x_1)$ $z_3 = f_{\theta}(x_3; x_1, x_2)$ $x_3 = f_{\theta}^{-1}(z_3; x_1, x_2)$

Autoregressive flows

Inverse autoregressive flows

- The inverse of an autoregressive flow is also a flow, called the inverse autoregressive flow (IAF)
 - $\mathbf{z} \rightarrow \mathbf{z}$ has the same structure as the **sampling** in an autoregressive model
 - $z \rightarrow x$ has the same structure as log likelihood computation of an autoregressive model. So, IAF sampling is fast

$$egin{align} z_1 &= f_{ heta}^{-1}(x_1) & x_1 &= f_{ heta}(z_1) \ z_2 &= f_{ heta}^{-1}(x_2;z_1) & x_2 &= f_{ heta}(z_2;z_1) \ z_3 &= f_{ heta}^{-1}(x_3;z_1,z_2) & x_3 &= f_{ heta}(z_3;z_1,z_2) \ \end{array}$$

AF

Training: parallel / fast Sampling: long serial chain

Training: long serial chain Sampling: parallel / fast

AF vs IAF

- Autoregressive flow
 - Fast evaluation of p(x) for arbitrary x
 - Slow sampling
- Inverse autoregressive flow
 - Slow evaluation of p(x) for arbitrary x, so training directly by maximum likelihood is slow.
 - Fast sampling
 - Fast evaluation of p(x) if x is a sample
- There are models (Parallel WaveNet, IAF-VAE) that exploit IAF's fast sampling

Best of both AF and IAF

Key idea:

- Train AF -> FAST
- Distillation:
 - Sample from AF, keep activitations (bit slow..)
 - Train IAF on the samples using access to activations -> FAST

AF and IAF

Naively, both end up being as deep as the number of variables!

E.g. 1MP image \rightarrow 1M layers...

Can do parameter sharing as in Autoregressive Models from lecture 2 [e.g. RNN, masking]

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
 - Autoregressive Flows and Inverse Autoregressive Flows
 - RealNVP (like) architectures
 - Glow, Flow++, FFJORD
- Dequantization

Change of MANY variables

For $z \sim p(z)$, sampling process f^{-1} linearly transforms a small cube dz to a small parallelepiped dx. Probability is conserved:

$$p(x) = p(z) \frac{\operatorname{vol}(dz)}{\operatorname{vol}(dx)} = p(z) \left| \det \frac{dz}{dx} \right|$$

Intuition: x is likely if it maps to a "large" region in z space

Flow models: training

Change-of-variables formula lets us compute the density over x:

$$p_{\theta}(\mathbf{x}) = p(f_{\theta}(\mathbf{x})) \left| \det \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right|$$

Train with maximum likelihood:

$$\arg\min_{\theta} \mathbb{E}_{\mathbf{x}} \left[-\log p_{\theta}(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{x}} \left[-\log p(f_{\theta}(\mathbf{x})) - \log \det \left| \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right| \right]$$

New key requirement: the Jacobian determinant must be easy to calculate and differentiate!

Constructing flows: composition

Flows can be composed

$$\begin{aligned} \mathbf{x} &\to \mathbf{f}_1 \to \mathbf{f}_2 \to \dots \mathbf{f}_k \to \mathbf{z} \\ z &= f_k \circ \dots \circ f_1(x) \\ x &= f_1^{-1} \circ \dots \circ f_k^{-1}(z) \\ \log p_\theta(x) &= \log p_\theta(z) + \sum_{i=1}^k \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right| \end{aligned}$$

Easy way to increase expressiveness

Affine flows

- Another name for affine flow: multivariate Gaussian.
 - Parameters: an invertible matrix A and a vector b
 - $f(x) = A^{-1}(x b)$
- Sampling: x = Az + b, where $z \sim N(0, I)$
- Log likelihood is expensive when dimension is large.
 - The Jacobian of f is A⁻¹
 - Log likelihood involves calculating det(A)

Elementwise flows

$$f_{\theta}((x_1,\ldots,x_d)) = (f_{\theta}(x_1),\ldots,f_{\theta}(x_d))$$

- Lots of freedom in elementwise flow
 - Can use elementwise affine functions or CDF flows.
- The Jacobian is diagonal, so the determinant is easy to evaluate.

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \operatorname{diag}(f'_{\theta}(x_1), \dots, f'_{\theta}(x_d))$$
$$\det \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \prod_{i=1}^{d} f'_{\theta}(x_i)$$

NICE/RealNVP

Affine coupling layer

Split variables in half: $x_{1:d/2}$, $x_{d/2+1:d}$

$$\mathbf{z}_{1:d/2} = \mathbf{x}_{1:d/2}$$

$$\mathbf{z}_{d/2:d} = \mathbf{x}_{d/2:d} \cdot s_{\theta}(\mathbf{x}_{1:d/2}) + t_{\theta}(\mathbf{x}_{1:d/2})$$

- Invertible! Note that s_{θ} and t_{θ} can be arbitrary neural nets with **no restrictions**.
 - Think of them as data-parameterized elementwise flows.

NICE/RealNVP

It also has a tractable Jacobian determinant

$$\mathbf{z}_{1:d/2} = \mathbf{x}_{1:d/2}$$
 $\mathbf{z}_{d/2:d} = \mathbf{x}_{d/2:d} \cdot s_{\theta}(\mathbf{x}_{1:d/2}) + t_{\theta}(\mathbf{x}_{1:d/2})$
 $\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{bmatrix} I & 0 \\ \frac{\partial \mathbf{z}_{d/2:d}}{\partial \mathbf{x}_{1:d/2}} & \operatorname{diag}(s_{\theta}(\mathbf{x}_{1:d/2})) \end{bmatrix}$

The Jacobian is triangular, so its determinant is the product of diagonal entries.

$$\det \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \prod_{k=1}^{d} s_{\theta}(\mathbf{x}_{1:d/2})_{k}$$

RealNVP

 Takeaway: coupling layers allow unrestricted neural nets to be used in flows, while preserving invertibility and tractability

[Dinh et al. Density estimation using Real NVP. ICLR 2017]

RealNVP Architecture

Input x: 32x32xc image

- Layer 1: (Checkerboard x3, channel squeeze, channel x3)
 - Split result to get x1: 16x16x2c and z1: 16x16x2c (fine-grained latents)
- Layer 2: (Checkerboard x3, channel squeeze, channel x3)
 - Split result to get x2: 8x8x4c and z2: 8x8x4c (coarser latents)
- Layer 3: (Checkerboard x3, channel squeeze, channel x3)
 - Get z3: 4x4x16c (latents for highest-level details)

RealNVP: How to partition variables?

Good vs Bad Partitioning

Checkerboard x4; channel squeeze; channel x3; channel unsqueeze; checkerboard x3

(Mask top half; mask bottom half; mask left half; mask right half) x2

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
 - Autoregressive Flows and Inverse Autoregressive Flows
 - RealNVP (like) architectures
 - Glow, Flow++, FFJORD
- Dequantization

Choice of coupling transformation

 A Bayes net defines coupling dependency, but what invertible transformation f to use is a design question

$$\mathbf{x}_i = f_{\theta}(\mathbf{z}_i; parent(\mathbf{x}_i))$$

 Affine transformation is the most commonly used one (NICE, RealNVP, IAF-VAE, ...)

$$\mathbf{x}_i = \mathbf{z}_i \cdot \mathbf{a}_{\theta}(\operatorname{parent}(\mathbf{x}_i)) + \mathbf{b}_{\theta}(\operatorname{parent}(\mathbf{x}_i))$$

- More complex, nonlinear transformations -> better performance
 - CDFs and inverse CDFs for Mixture of Gaussians or Logistics (Flow++)
 - Piecewise linear/quadratic functions (Neural Importance Sampling)

NN architecture also matters

- Flow++ = MoL transformation + self-attention in NN
 - Bayes net (coupling dependency), transformation function class, NN architecture all play a role in a flow's performance. Still an

Table 2. CIFAR10 ablation results after 400 epochs of training. Models not converged for the purposes of ablation study.

Ablation	bits/dim	parameters
	2 202	22.27.5
uniform dequantization	3.292	32.3M
affine coupling	3.200	32.0M
no self-attention	3.193	31.4M
Flow++ (not converged for ablation)	3.165	31.4M

Other classes of flows

- Glow (<u>link</u>)
 - Invertible 1x1 convolutions
 - Large-scale training

- Continuous time flows (FFJORD)
 - Allows for unrestricted architectures. Invertibility and fast log probability computation guaranteed.

Glow: Interpolation

Figure 5: Linear interpolation in latent space between real images

Glow: Attribute Control

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

Flow on Discrete Data Without Dequantization...

Continuous flows for discrete data

- A problem arises when fitting continuous density models to discrete data: degeneracy
 - When the data are 3-bit pixel values, $\mathbf{x} \in \{0, 1, 2, \dots, 255\}$
 - What density does a model assign to values between bins like 0.4, 0.42...?
- Correct semantics: we want the integral of probability density within a discrete interval to approximate discrete probability mass

$$P_{\text{model}}(\mathbf{x}) \coloneqq \int_{[0,1)^D} p_{\text{model}}(\mathbf{x} + \mathbf{u}) d\mathbf{u}$$

Continuous flows for discrete data

- Solution: Dequantization. Add noise to data.
 - $\mathbf{x} \in \{0, 1, 2, \dots, 255\}$
 - We draw noise u uniformly from $[0,1)^D$

$$\mathbb{E}_{\mathbf{y} \sim p_{\text{data}}} \left[\log p_{\text{model}}(\mathbf{y}) \right] = \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \int_{[0,1)^D} \log p_{\text{model}}(\mathbf{x} + \mathbf{u}) d\mathbf{u}$$

$$\leq \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \log \int_{[0,1)^D} p_{\text{model}}(\mathbf{x} + \mathbf{u}) d\mathbf{u}$$

$$= \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log P_{\text{model}}(\mathbf{x}) \right]$$

[Theis, Oord, Bethge, 2016]

Flow on Discrete Data With Dequantization

Future directions

- The ultimate goal: a likelihood-based model with
 - fast sampling
 - fast inference
 - fast training
 - good samples
 - good compression
- Flows seem to let us achieve some of these criteria.
- But how exactly do we design and compose flows for great performance?
 That's an open question.
- Some requirements that might pose permanent challenges:
 - Dimensionality preserving
 - Invertibility
 - Cheap determinant

Bibliography

NICE: Dinh, Laurent, David Krueger, and Yoshua Bengio. "NICE: Non-linear independent components estimation." arXiv preprint arXiv:1410.8516 (2014).

RealNVP: Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. "Density estimation using Real NVP." arXiv preprint arXiv:1605.08803 (2016).

AF: Chen, Xi, et al. "Variational lossy autoencoder." arXiv preprint arXiv:1611.02731 (2016).;

Masked autoregressive flow for density estimation, Papamakarios, George, Theo Pavlakou, and Iain Murray. *Advances in Neural Information Processing Systems*. 2017.

IAF: Improved variational inference with inverse autoregressive flow. Kingma, Durk P., et al. Advances in neural information processing systems. 2016.

Neural Importance Sampling: Müller, Thomas, et al. arXiv preprint arXiv:1808.03

Glow: Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." *Advances in Neural Information Processing Systems*. 2018.

FFJORD: Grathwohl, Will, et al. "Ffjord: Free-form continuous dynamics for scalable reversible generative models." *arXiv preprint arXiv:1810.01367* (2018).

Neural Autoregressive Flow: Huang, Chin-Wei, et al. arXiv:1804.00779 (2018)

Residual Flows for invertible generative modeling, Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jörn-Henrik Jacobsen, arXiv: 1906.02735

Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design. Ho, Jonathan, Chen, Srinivas, Duan, Abbeel *ICML 2019, arXiv:1902.00275* (2019).

MintNet: Building Invertible Neural Networks with Masked Convolutions, Song, Meng, Ermon, NeurIPS 2019, arXiv: 1907.07945

Normalizing Flows for Probabilistic Modeling and Inference, George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan https://arxiv.org/abs/1912.02762, JMLR [survey/tutorial]

Normalizing Flows: An Introduction and Review of Methods, Ivan Kobyzev, Simon JD Prince, Marcus A Brubaker, IEEE PAMI 2021 [survey/tutorial]