DRUGI MEĐUISPIT IZ ELEKTRONIKE 1

01.12.2008.

PRVA SKUPINA ZADATAKA

1. Na ulaz sklopa ispravljača priključen je sinusni ulazni napon. Kako izgleda izlazni napon? (1 bod)

(b)

(c)

(d)

(e)

- 2. Na slici su prikazane prijenosne karakteristike dvaju različitih MOSFET-a, A i B. Za napon praga U_{GS0} i strujni koeficijent Kprikazanih MOSFET-a vrijedi (1 bod):

 - (a) $U_{GSOA} > U_{GSOB}$ i $K_A > K_B$, (b) $U_{GSOA} > U_{GSOB}$ i $K_A = K_B$,
 - (c) $U_{GS0A} < U_{GS0B}$ i $K_A < K_B$,
 - (d) $U_{GS0A} > U_{GS0B}$ i $K_A < K_B$,
 - (e) $U_{GS0A} < U_{GS0B}$ i $K_A > K_B$.

- U_{GS}
- 3. Usporedimo li strmine MOSFET-a A i B (na istoj struji u području zasićenja na slici iz prethodnog zadatka), te napone U_{DS} karakteristika B1 i B2 MOSFET-a B, vrijedi (1 bod):
 - (a) $g_{mA} < g_{mB} i U_{DS, BI} < U_{DS, B2}$,
 - (b) $g_{mA} < g_{mB} \text{ i } U_{DS, B1} > U_{DS, B2}$,

 - (c) $g_{mA} > g_{mB}$ i $U_{DS, B1} > U_{DS, B2}$, (d) $g_{mA} > g_{mB}$ i $U_{DS, B1} < U_{DS, B2}$, (e) $g_{mA} = g_{mB}$ i $U_{DS, B1} < U_{DS, B2}$, (e) $g_{mA} = g_{mB}$ i $U_{DS, B1} > U_{DS, B2}$.

4. Izlazne karakteristike JFET-a prikazane su na slici. U kojem su odnosu strmine i efektivne duljine kanala u točkama *A* i *B*? (1 bod)

(c)
$$g_{mA} > g_{mB}$$
, $L_A > L_B$

$$(3) SmA > SmB, E_A > E_B$$

(d)
$$g_{mA} < g_{mB}$$
, $L_A = L_B$

(e)
$$g_{mA} < g_{mB}$$
, $L_A > L_B$

5. U sklopu pojačala sa JFET-om otpornik R_S se poveća. Što će se dogoditi sa strujom I_{DQ} ? (1 bod)

 U_{GS}

 $\overline{\mathrm{U}_{\mathrm{DS}}}$

 $ightharpoons I_D$

- (a) I_{DQ} se poveća.
- (b) I_{DQ} se smanji.
- (c) I_{DQ} prvo raste pa se smanji.
- (d) I_{DQ} se prvo smanji pa onda raste.
- (e) I_{DQ} ostaje nepromjenjena.

6. Za sklop prikazan na slici vrijedi tvrdnja (1 bod):

- (b) radi u spoju zajedničkog odvoda i nema stabiliziranu radnu točku,
- (c) radi u spoju zajedničkog odvoda i ima stabiliziranu radnu točku,
- (d) radi u spoju zajedničkog uvoda i nema stabiliziranu radnu točku,
- (e) radi u spoju zajedničke upravljačke elektrode i ima stabiliziranu radnu točku.

7. Koju logičku funkciju ostvaruje CMOS sklop na slici? (1 bod)

(a)
$$Y = A(B+D) + CE$$

(b) niti jedan od odgovora

(c)
$$Y = \overline{(A+BD)(C+E)}$$

(d)
$$Y = \overline{A(B+D) + CE}$$

(e)
$$Y = (A + BD)(C + E)$$

8. Silicijski npn tranzistor radi u normalnom aktivnom području i vodi struju emitera iznosa 1 mA pri naponu $U_{BE}=0,55\,\mathrm{V}$. Drugi npn tranzistor ima jednake tehnološke karakteristike kao prvi osim što mu je koncentracija primjesa u emiteru dvostruko veća, $N_{DE2}=2N_{DE1}$. To znači da na temperaturi $T=300\,\mathrm{K}$ drugi tranzistor ima (1 bod):

GRUPA **A** 2/4

- (a) veću ravnotežnu koncentraciju manjinskih nosilaca u emiteru i veći faktor efikasnosti emitera,
- (b) veću ravnotežnu koncentraciju manjinskih nosilaca u emiteru i isti faktor efikasnosti emitera,
- (c) veću ravnotežnu koncentraciju manjinskih nosilaca u emiteru i manji faktor efikasnosti emitera,
- (d) manju ravnotežnu koncentraciju manjinskih nosilaca u emiteru i veći faktor efikasnosti emitera,
- (e) manju ravnotežnu koncentraciju manjinskih nosilaca u emiteru i manji faktor efikasnosti emitera.

DRUGA SKUPINA ZADATAKA

ZADATAK 1. *N*-kanalni idealni silicijski MOSFET ima duljinu kanala 2 μ m, a kapacitet upravljačke elektrode prema kanalu iznosi 0,5 pF. Faktor naponskog pojačanja u nekoj točki iznosi μ = 1. Pokretljivost većinskih nosilaca u kanalu je 400 cm²/Vs.

- **1.1.** Odrediti područje rada MOSFET-a (1 bod).
- **1.2.** Odrediti strujni koeficijent *K* MOSFET-a (1 bod).
- 1.3. Ako se promjenom tehnološkog parametra promijeni strujni koeficijent na $K = 4 \text{ mA/V}^2$, izračunati napon U_{DS} pri kojem strmina iznosi $g_m = 6 \text{ mA/V}$. Pri tome pretpostaviti da je faktor naponskog pojačanja u točki $\mu = 1$. (1 bod).
- **1.4.** Odrediti napon praga U_{GS0} ako je $U_{GS} = 1 \text{ V}$, $U_{DS} = 1,5 \text{ V}$, dinamička vodljivost $g_d = 6 \text{ mS}$ i $K = 4 \text{ mA/V}^2$ (1 bod).
- **1.5.** Odrediti strminu ako se u odnosu na 1.4. napon U_{DS} promijeni na 5 V, a U_{GS} ostane nepromijenjen $(U_{GS} = 1 \text{ V})$ (1 bod).

ODGOVORI:

1.1. (a) triodno

(b) zapiranje

(c) u području gdje možemo uzeti da je $r_d = \infty$

(d) zasićenju

(e) nijedno od navedenih

1.4. (a) $U_{GS0} = -1.7 \text{ V}$

(b) $U_{GS0} = -2 \text{ V}$

(c) $U_{GS0} = 1.7 \text{ V}$

(d) $U_{GS0} = 2 \text{ V}$

(e) $U_{GS0} = 0 \text{ V}$

1.2. (a) $K = 0.5 \text{ mA/V}^2$

(b) $K = 10 \text{ mA/V}^2$

(c) $K = 20 \text{ mA/V}^2$ (d) $K = 5 \text{ mA/V}^2$

(e) $K = 0.1 \text{ mA/V}^2$

1.3. (a) $U_{DS} = 0 \text{ V}$

(b) $U_{DS} = 0.75 \text{ V}$

(c) $U_{DS} = 3 \text{ V}$

(d) $U_{DS} = 1.5 \text{ V}$

(e) $U_{DS} = 2 \text{ V}$

1.5. (a) $g_m = 27.5 \text{ mA/V}$

(b) $g_m = 10 \text{ mA/V}$

(c) $g_m = 13.5 \text{ mA/V}$

(d) $g_m = 4 \text{ mA/V}$

(e) $g_m = 12 \text{ mA/V}$

ZADATAK 2. U pojačalu na slici zadano je: $U_{DD}=12~{\rm V}$, $R_{\rm g}=500~\Omega$, $R_{\rm l}=7,8~{\rm M}\Omega$, $R_{\rm 2}=1,8~{\rm M}\Omega$, $R_{\rm D}=1,2~{\rm k}\Omega$ i $R_{\rm T}=3,9~{\rm k}\Omega$. Parametri n-kanalnog MOSFET-a su $K=1,5~{\rm mA/V}^2$, $U_{GS0}=-1,7~{\rm V}$ i $\lambda=0,0035~{\rm V}^{-1}$. Odrediti:

GRUPA **A** 3/4

- 2.1. statičku radnu točku ako je $R_s = 560 \Omega$ (1 bod),
- 2.2. dinamičke parametre g_m i r_d , ako je poznato $I_{DO} = 3,69$ mA, $U_{DSO} = 5,84$ V, $U_{GSO} = 0,52$ V i $R_{\rm s} = 470 \ \Omega \ (1 \ {\rm bod}),$
- 2.3. naponsko pojačanje $A_V = u_{iz}/u_{ul}$, ako su poznati dinamički parametri $g_m = 3,02 \text{ mA/V i}$ $r_d = 98,14 \text{ k}\Omega$, te $R_s = 680 \Omega$ (1 bod),
- ulazni otpor R_{ul} , ako su poznati dinamički parametri $g_m = 3,02 \text{ mA/V i } r_d = 98,14 \text{ k}\Omega$, te $R_{\rm S} = 680 \ \Omega \ (1 \ {\rm bod}),$
- izlazni otpor R_{iz} , ako su poznati dinamički parametri $g_m = 3,02 \text{ mA/V i}$ $r_d = 98,14 \text{ k}\Omega$, te $R_s = 680 \Omega (1 \text{ bod}).$

ODGOVORI:

- 2.1. (a) I_{DQ} = 3,3 mA, U_{DSQ} = 5,61 V
- **2.2.** (a) $g_m = 4.11 \text{ mA/V}, r_d = 77.5 \text{ k}\Omega$
- **2.3.** (a) $A_V = 0.78$

- (b) I_{DO} = 3,9 mA, U_{DSO} = 6,18 V
- (b) $g_m = 3.93 \text{ mA/V}, r_d = 81.3 \text{ k}\Omega$
- (b) $A_V = -2.75$

- (c) I_{DO} = 3,1 mA, U_{DSO} = 5,61 V (d) $I_{DO} = 3.3 \text{ mA}, U_{DSO} = 6.18 \text{ V}$
- (c) $g_m = 3.39 \text{ mA/V}, r_d = 98.6 \text{ k}\Omega$ (d) $g_m = 4.11 \text{ mA/V}, r_d = 98.6 \text{ k}\Omega$
- (c) $A_V = 2.75$ (d) $A_V = -0.78$

- (e) I_{DO} = 3,1 mA, U_{DSO} = 5,22 V
- (e) $g_m = 3.39 \text{ mA/V}, r_d = 77.5 \text{ k}\Omega$
- (e) $A_V = -16.2$

- (a) $R_{ul} = 224 \text{ k}\Omega$ 2.4.

 - (b) $R_{ul} = 286 \Omega$
 - (c) $R_{ul} = 224 \Omega$
 - (d) $R_{ul} = 316 \Omega$
 - (e) $R_{ul} = 316 \text{ k}\Omega$
- **2.5.** (a) $R_{iz} = 1{,}19 \text{ k}\Omega$
 - (b) $R_{iz} = 1.19 \Omega$
 - (c) $R_{iz} = 2.01 \text{ k}\Omega$
 - (d) $R_{iz} = 2.01 \text{ M}\Omega$
 - (e) $R_{iz} = 2,65 \text{ k}\Omega$

ZADATAK 3. Silicijski pnp tranzistor ima homogene raspodjele primjesa u bazi i emiteru iznosa $N_{AE}=1,5\cdot 10^{18}\,\mathrm{cm^{-3}}$ i $N_{DB}=6\cdot 10^{16}\,\mathrm{cm^{-3}}$. U nekoj radnoj točki u normalnom aktivnom području rubna koncentracija manjinskih nosilaca u bazi iznosi $p_{B0} = 1, 4 \cdot 10^{14} \, cm^{-3}$. Površina presjeka spoja emiter-baza je $S = 2.5 \text{ mm}^2$, a efektivna širina baze $w_B = 1.5 \,\mu\text{m}$. Pokretljivosti nosilaca iznose $\mu_n = 550 \,\text{cm}^2/\text{Vs}$ i $\mu_p = 300 \text{ cm}^2/\text{Vs}$. Rekombinacijska struja iznosi $I_R = 2 \mu\text{A}$. Pretpostaviti da je $U_T = 25 \text{ mA}$, T = 300 K, $\gamma = 0,9926$. Izračunati:

- napon U_{RE} (1 bod), 3.1.
- 3.2. vrijeme života manjinskih nosilaca u bazi (1 bod),
- komponentu struje I_{NE} (1 bod), 3.3.
- vrijeme proleta šupljina kroz bazu (1 bod),
- istosmjerni faktor strujnog pojačanja u spoju zajedničke baze (1 bod). 3.5.

3.5.

ODGOVORI:

- 3.1. (a) $U_{BE} = -0.613 \text{ V}$
- **3.2.** (a) $\tau_P = 0.21 \, \mu s$
- 3.3. (a) $I_{NE} = 208,7 \, \mu A$

(b) $U_{BE} = 0,613 \text{ V}$

- (b) $\tau_P = 2.1 \text{ ms}$
- (b) $I_{NE} = 20.9 \text{ mA}$

- (c) $U_{BE} = -0.6907 \text{ V}$
- (c) $\tau_P = 21 \, \mu s$
- (c) $I_{NE} = 89.5 \text{ mA}$

- (d) $U_{BE} = 0,6907 \text{ V}$
- (d) $\tau_P = 0.5526 \,\mu s$
- (d) $I_{NE} = 89,5 \text{ nA}$

- (e) $U_{BE} = 0.713 \text{ V}$
- (e) $\tau_P = 0.05526 \text{ ns}$
- (e) $I_{NE} = 89.5 \, \mu A$

- 3.4. (a) $t_{rr} = 1.5 \cdot 10^{-3} \text{ s}$
 - (b) $t_{rx} = 1.5 \cdot 10^{-4} \text{ s}$
- (c) $t_{rr} = 1.5 \cdot 10^{-8} \text{ s}$

(a) $\alpha = 0.9998$ (b) $\alpha = 0.9831$

(c) $\alpha = 0.9925$

(d) $t_{tr} = 1,5 \cdot 10^{-7} \text{ s}$

(d) $\alpha = 0.9980$ (e) $\alpha = 0.9898$

(e) $t_{tr} = 1.5 \cdot 10^{-9} \text{ s}$