HW 3

MTH 344-001 Winter 2022

Randi Bolt

2/09/2022

1. Consider the following permutations in S_8 :

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 3 & 8 & 2 & 6 & 4 & 7 \end{pmatrix}$$
 $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 2 & 1 & 6 & 5 & 3 & 8 & 4 \end{pmatrix}$.

(a) Compute $\alpha \circ \beta$ and β^{-1}

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 7 & 1 & 4 & 2 & 3 & 6 & 8 \end{pmatrix}$$
$$\beta^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 6 & 8 & 5 & 4 & 1 & 7 \end{pmatrix}$$

(b) Write α as a composition of disjoint cycles. Then show that $\alpha^3 = \epsilon$.

Permutation:

$$\alpha = (152)(3)(487)(6)$$

Show $\alpha^3 = \epsilon$..

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 3 & 8 & 2 & 6 & 4 & 7 \end{pmatrix} \qquad \alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 7 & 1 & 6 & 8 & 4 \end{pmatrix} \qquad \alpha^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$
$$\Rightarrow \alpha^3 = \epsilon.$$

(c) Write β as a composition of transpositions. Is β an even or odd permutation?

$$\beta = (178463)(2)(5)$$

$$= (178463)$$

$$= (631784)$$

$$= (63)(61)(67)(68)(64)$$
(1)

Since the number of compositions of transpositions of β is odd, the permutation β is odd.

2. Let G be a group. Prove that the function: $f:G\to G$ given by $f(x)=x^{-1}$ is a permutation of G.

To show $f: G \to G$, we need to show a rule that assigns $a \in G$ exactly one element in $f(a) \in G$.

It is given that $f(x) = x^{-1}$ is a permutation of G, and by the definition of permutation we know that set G is a bijection from G to G.

Therefore $f: G \to G$.

- 3. Let G be a group. Prove G is abelian if and only if the function $f(x) = x^{-1}$ is an isomorphism from G to G. (Note: By #2 we already know that f is a bijection.)
 - i) G is abelian $\Rightarrow f(x) = x^{-1}$ is an isomorphism from G to G

Take any $a, b \in G$.

Since G is abelian f(ab) = f(ba).

We know from 2 that f is bijective, so now we need to show that it is closed under the group operation of multiplication.

$$f(a)^{-1}f(b)^{-1} = a^{-1}b^{-1} = (ab)^{-1} = f(ab)^{-1}.$$

Therefore, since G is abelian $\Rightarrow f(x) = x^{-1}$ is an isomorphism from G to G.

ii) $f(x) = x^{-1}$ is an isomorphism from G to $G \Rightarrow G$ is abelian.

Since $G \cong G$, then there is an isomorphism $f: G \to G$. Take any $a, b \in G$.

$$f(ab)=f(a)f(b)$$
 , since f is an isomorphism
$$=a^{-1}b^{-1}$$

$$=aa^{-1}b^{-1}a^{-1}$$

$$=b^{-1}a^{-1}$$

$$=f(b)f(a)$$

$$=f(ba)$$
 (2)

 $\Rightarrow f(ab) = f(ba)$, meaning f is commutative.

Therefore, since $f(x) = x^{-1}$ is an isomorphism from G to $G \Rightarrow G$ is abelian.

4. Let G_1 and G_2 be groups and let $f:G_1\to G_2$ be an isomorphism. Prove that if H is a subgroup of G_1 , then

$$f(H) = \{f(h)|h \in H\}$$

is a subgroup of G_2 .

Since H is a subgroup of G_1 , the identity element e is in H.

Now take any elements f(a) and $f(b) \in G_2$, then $a,b \in H$ and f(a)f(b) = f(ab) because f is an isomorphism.

Since H is a subgroup of G_1 and $a,b \in H$, the element ab^{-1} is in H.

Completing the proof that $f(H) \in G_2$.

5. Determine whether each of the following groups of size 4 is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. (Recall that $D_4 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ is the group of symmetriese of a square, where r denotes a 90° rotation clockwise and s denotes a reflection about a vertical axis.)

(a)
$$G_1 = \{\epsilon, (12), (34), (12)(34)\} \le S_4$$

 G_1 is cyclic so $G_1 \cong \mathbb{Z}_4$.

(b)
$$G_2 = \{\epsilon, (1234), (13)(24), (1432)\} \le S_4$$

 G_2 is cyclic so $G_2 \cong \mathbb{Z}_4$.

(c)
$$G_3 = \{1, r, r^2, r^3\} \le D_4$$

Any element of G_3 times itself is the identity, so $G_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(d)
$$G_4 = \{1, s, r^2, sr^2\} \le D_4$$

Any element of G_4 times itself is the identity, so $G_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.