

Transformer Model for Genome Sequence Analysis

BA Thesis Disputation

Supervisors: Prof. Dr. Mina Rezaei, Hüseyin Anil Gündüz, Martin Binder

Outline

LUDWIG-MAXIMILIAN: UNIVERSITÄT MÜNCHEN

- Motivation
- BERT
- DNABERT Adaptation
- Phage/Non-Phage Task
- Scaled Self-Supervised Trials
- Model Setups
- Results
- Conclusion & Outlook

Motivation

- annotation/analysis of genomes via expensive experimentation
- analyzing read-level length DNA sequences collected from an environment
- NGS realizes abundance of available unlabeled genome sequences

Motivation L**N**

- annotation/analysis of genomes via expensive experimentation
- analyzing read-level length DNA sequences collected from an environment
- NGS realizes abundance of available unlabeled genome sequences

- application of semi-supervised approaches to genomic tasks
 - self-supervised training through representation learning
 - adapting methods developed for NLP

DNABERT₍₂₎

- adaptation of BERT₍₁₎
 - Transformer Encoder₍₃₎ (12 blocks)
 - bidirectional self-attention
 - pretext task of MLM
 - representation size of 768
- preprocessing
 - sentences: sample subsequences from genomes
 - words: tokenize sequences through k-mer representation
- mask k consecutive tokens during self-supervised pretraining

DNABERT

- adaptation of BERT₍₁
 - Transformer Encoder₍₃₎ (12 blocks)
 - bidirectional self-attention
 - pretext task of MLM
 - representation size of 768
- preprocessing
 - o sentences: sample subsequences from genomes
 - words: tokenize sequences through *k*-mer representation
- mask k consecutive tokens during self-supervised pretraining

DNABERT

DNABERT₍₂

- adaptation of BERT₍₁
 - Transformer Encoder₍₃₎ (12 blocks)
 - bidirectional self-attention
 - pretext task of MLM
 - representation size of 768
- preprocessing
 - sentences: sample subsequences from genomes
 - words: tokenize sequences through k-mer representation
- mask k consecutive tokens during self-supervised pretraining

LM

Phage/Non-Phage Task

- collection of virus genomes from GenBank₍₅₎
 - ~40k FASTA-files
- self-supervised training on 70% of files
- supervised training with different label availability scenarios (10%, 1%, 0.1%)
- binary classification task of a genome level class
 - identification of bacteriophages
 - o read-length sequences 150 and 1000 nucleotides
 - o class averaged recall in % and F₁-score
- compare to self-genomenet₍₄₎ and fully supervised DNABERT

What is a Bacteriophage?

- taxonomic classification of viruses
- bacteria as hosts
- uses in medicine₍₆₎
- identification not trivial
 - diverse in genomic organization₍₇₎
 - \circ lack of universal marker genes₍₈₎

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

figure 1: Adenosine, 2009

LMU

Phage/Non-Phage Task

- collection of virus genomes from GenBank₍₅₎
 - ~40k FASTA-files
- self-supervised training on 70% of files
- supervised training with different label availability scenarios (10%, 1%, 0.1%)
- binary classification task of a genome level class
 - identification of bacteriophages
 - o read-length sequences 150 and 1000 nucleotides
 - class averaged recall in % and F₁-score
- compare to self-genomenet₍₄₎ and fully supervised DNABERT

Self-Supervised Trials

- self-supervised training
 - o BERT-small
 - o 10k steps, 10% data
- 36 trials conducted
 - parameters: learning rate, weight decay, warmup %, masking %
 - o various masking techniques, k-mer creation and sequence sampling methods
- supervised training
 - phage/non-phage task with 150nt inputs
 - frozen representation layers (linear evaluation)

virBERT

- recreation of *DNABERT* setup
- 5-510nt long sequences tokenized to 6-mers
- mask 6 consecutive tokens at 2.5% sampled locations
- LR of 4e⁻⁴
- AdamW with linear warm-up of 5% of steps

virBERT-mask8

- motivation: mask more nucleotides
- 36-510nt long sequences tokenized to 6-mers
- mask 8 consecutive tokens at 1.875% sampled locations
- LR of 1e⁻³
- AdamW with linear warm-up of 10% of steps

K-mer Creation

Self-Supervised Setup III

virBERT-stride3

- motivation: mask more nucleotides, longer input sequences, faster training
- 36-1000nt long sequences tokenized to 6-mers of stride 3
- mask 3 consecutive tokens at 5% sampled locations
- limited to 340 input tokens
- LR of 1e⁻³
- AdamW with linear warm-up of 10% of steps

Self-Supervised Pretraining

- ~8M sequences
- 100k steps
- 8 (5) nvidia A100-40GB GPUs
- 190 (141) hours of training

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

sequences sampled randomly from genomes

	10%	1%	0.1%
150nt	8M	2M	500k
1000nt	2M	500k	166k

- training a classifier over the CLS output
- virBERT (-mask8) with input sequences >512
 - split sequences
 - CLS outputs combined with linear layer

DNABERT

sequences sampled randomly from genomes

	10%	1%	0.1%
150nt	8M	2M	500k
1000nt	2M	500k	166k

- training a classifier over the CLS output
- virBERT (-mask8) with input sequences >512
 - split sequences
 - CLS outputs combined with linear layer

MÜNCHEN

Bacteriophage Prediction Results

15	0n	t	
----	----	---	--

	10%		1%		0.1%	
	$Recall_M$	F_1	$Recall_M$	F_1	$Recall_M$	F_1
self-genomenet	78.2	0.785	75.3	0.751	67.2	0.700
supervised-virBERT	71.8	0.710	67.6	0.673	62.4	0.608
virBERT	85.7	0.851	82.2	0.821	77.8	0.780
virBERT-mask8	85.0	0.845	81.7	0.812	76.7	0.762
virBERT-stride3	80.8	0.801	75.1	0.757	65.6	0.654

1001

-01

1000nt:

	10%		1%		0.1%	
	$Recall_M$	F_1	$Recall_M$	F_1	$Recall_M$	F_1
self-genomenet	94.0	2.0	85.9	-	73.1	0.846
supervised-virBERT	81.5	0.871	77.2	0.867	70.6	0.773
virBERT	97.9	0.986	94.4	0.968	87.8	0.930
virBERT-mask8	97.2	0.983	91.7	0.953	81.7	0.901
virBERT-stride3	98.1	0.988	90.9	0.949	87.2	0.927

Bacteriophage Prediction Results

Conclusion

- *DNABERT* approach outperforms baseline on this task
- gained representations during pretraining contribute considerably
 - o 20% recall_M increase over fully supervised model
 - higher accuracy when pretrained on the same type of data regardless of label availability
- base virBERT most accurate self-supervised setup
 - masking more nucleotides does not seem advantageous
 - scaled trail results are not directly transferable
- stride3 variant on par for 1000nt task
 - pretraining and finetuning less resource intensive

Outlook

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- improving *stride3* variant
 - masking less tokens
 - data preprocessing
 - more thorough HPO
- validate model's performance
 - o additional tasks of different levels & different organisms
 - baselines with the same representation size
- less specific pretraining
- different approaches to creating tokens from genome sequences

LMU

References

- J. Devlin, M.-W. Chang, K. Lee, and K. N. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. 2018. URL https://arxiv.org/abs/1810.04805
- 2. Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome. *Bioinformatics*, 37(15):2112–2120, 02 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab083. URL https://doi.org/10.1093/bioinformatics/btab083
- 3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
- 4. H. A. Gündüz, M. Binder, X.-Y. To, R. Mreches, P. C. Münch, A. C. McHardy, B. Bischl, and M. Rezaei. Self-genomenet: Self-supervised learning with reverse-complement context prediction for nucleotide-level genomics data, 2022. URL https://openreview.net/forum?id=92awwjGxlZl.
- 5. E. W. Sayers, M. Cavanaugh, K. Clark, J. Ostell, K. D. Pruitt, and I. Karsch-Mizrachi. GenBank. *Nucleic Acids Research*, 48(D1):D84–D86, 10 2019. ISSN 0305-1048. doi: 10.1093/nar/gkz956. URL https://doi.org/10.1093/nar/gkz956
- 6. P. Domingo-Calap and J. Delgado-Martínez. Bacteriophages: protagonists of a post-antibiotic era. 2018. Antibiotics, 7(3), p.66.
- 7. P. Simmonds and P. Aiewsakun. Virus classification where do you draw the line? Arch Virol. 2018 Aug, 2018
- 8. S. Roux, D. P´aez-Espino, I.-M. A. Chen, K. Palaniappan, A. Ratner, K. Chu, T. B. K. Reddy, S. Nayfach, F. Schulz, L. Call, R. Y. Neches, T. Woyke, N. N. Ivanova, E. A. Eloe-Fadrosh, and N. C. Kyrpides. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. *Nucleic Acids Research*, 49(D1):D764–D775, 11 2020. ISSN 0305-1048. doi: 10.1093/nar/gkaa946. URL https://doi.org/10.1093/nar/gkaa946

figure 1: (CC BY-SA 3.0) Adenosine. Artistic rendering of a T4 bacteriophage. 2009. Bacteriophage. Retrieved August 4, 2022, from https://en.wikipedia.org/wiki/Bacteriophage#/media/File:PhageExterior.svg

Discussion

Appendix

Transformer Encoder Block

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Semi-Supervised Learning

- applications in NLP and CV
- self-supervised pretraining
 - o understand meaning, structure and dependencies of the type of data input
 - o solve a 'pretext' task on unlabeled data
 - learn token representations and model weights
- supervised finetuning on task specific labeled data

Nucleotides hidden during Pretraining

$\mathrm{mask}~\%$	stride	$\#\mathrm{nt}/\mathrm{loc}$	%nt hidden	% for k=6
15	1	1	$\frac{15}{k}$	2.5
15	1	3	$\frac{45}{k+2}$	5.625
15	1	5	$\frac{75}{k+4}$	7.5
15	1	6	$\frac{90}{k+5}$	8.1818
15	$rac{k}{2}$	$rac{k}{2}$	15	15
15	k	k	15	15

Metrics

class averaged recall in %

$$Recall_M = 100 imes rac{\sum_{i=1}^n Recall(c_i)}{n}$$
 $c_i \in C$ Classes n number of classes

F₁-score

$$egin{aligned} Precision &= rac{TP}{TP+FP} \quad Recall = rac{TP}{TP+FN} \ F_1 &= rac{2 imes Precision imes Recall}{Precision + Recall} \end{aligned}$$

Training Time

model	Training time	$\# \mathrm{GPUs}$	GPU Type	accumulated time
self-genomenet	158	-	RTX 2080 Ti	-
virBERT	190	8	A100	1520
virBERT-mask8	190	8	A100	1520
vir BERT-stride 3	141	5	A100	705

	150nt		$1000 \mathrm{nt}$		t
model	#GPUs	steps/h	#GPUs	steps/h	steps/h/gpu
virBERT(-mask8)	1	4870	2	3564	1782
vir BERT-stride 3	1	13158	1	4478	4478

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Trial Training

•

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Full Scale Training

Training under Linear Evaluation

Trial Results

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- hyperparameter improvements
 - higher learning rate up to 1e⁻³ (compared to 4e⁻⁴)
 - higher warmup-percentage of 10% (5%)
- masking technique
 - masking more than 6 consecutive tokens seems better (not consistent)
 - mask8 overall the best setup
- k-mers of higher stride
 - generally less accurate, stride of 3 better than 6
 - o more similar pretraining sequence lengths to the downstream task may be beneficial

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Trials I

•

id	description
base	base virBERT
1	mask% 20
2	med lr
3	low lr
5	lower weight decay
8	higher low_b
9	higher ratio
12	med lr, fluid mask%
13	high lr

Trials II

id	description
7	m8, med lr
14	m8, med lr, $mask%$ 20
15	m10, med lr
19	m8, high lr
20	m10, high lr
21	m11, high lr
26	$m8, lr 2e^{-3}$
30	= 19 but warm-up% 10

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Trials III

id	description
11	s3, base lr
16	s6, base lr
17	s3, high lr
18	s6, high lr
25	s3, upp_b 1000nt
28	s3, upp_b 510nt, cap
29	s3, upp_b 510nt
31	s3, upp_b 1000nt, cap
33	= 31 but lower bias

HPO

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

• 1000nt input sequences

	$Recall_M$	F_1
self-genomenet	88.6	0.916
virBERT	97.8	0.986
virBERT-mask8	93.8	0.963
virBERT-stride3	92.6	0.956

Transfer Learning

- Phage/Non-Phage task
- models pretrained with sequences of different biological classification
- 100% label availability

		150nt		1000nt	
model	pt-data	$Recall_M$	F_1	$Recall_M$	F_1
DNABERT6	human	79.2	0.799	96.6	0.978
self-genomenet	bacteria	-	19-	97.0	7-