Computing Diverse Optimal Stable Models

Javier Romero, Torsten Schaub, and Philipp Wanko

University of Potsdam

- 1 Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- Experiments

 Answer Set Programming (ASP) is a paradigm for solving combination problems; in worst-case exponential number of solutions

- Answer Set Programming (ASP) is a paradigm for solving combination problems; in worst-case exponential number of solutions
- Impose preference relations among solutions to filter out optimal ones

- Answer Set Programming (ASP) is a paradigm for solving combination problems; in worst-case exponential number of solutions
- Impose preference relations among solutions to filter out optimal ones
- Certain preference relations and applications exhibit vast number of optimal solutions
 e.g. Pareto frontiers for multi-objective optimization problems in system synthesis, timetabling, configuration, planning

- Answer Set Programming (ASP) is a paradigm for solving combination problems; in worst-case exponential number of solutions
- Impose preference relations among solutions to filter out optimal ones
- Certain preference relations and applications exhibit vast number of optimal solutions
 e.g. Pareto frontiers for multi-objective optimization problems in system synthesis, timetabling, configuration, planning
- ⇒ Further filtering necessary, e.g. diverse optimal stable models

Course timetabling (CTT)

- Courses a, b with two lessons each
- One room
- Two days with four periods
- Assign courses to days and periods

Course timetabling (CTT)

- Courses a, b with two lessons each
- One room
- Two days with four periods
- Assign courses to days and periods

Period	Day 1	Day 2
1	а	
2		a
3	b	b
4		

Preferences

• Compactness: Avoid empty periods after a scheduled lesson

Preferences

- Compactness: Avoid empty periods after a scheduled lesson
- Spread: Avoid placing lessons of the same course on the same day

Preferences

- Compactness: Avoid empty periods after a scheduled lesson
- Spread: Avoid placing lessons of the same course on the same day

Combine both preferences in a Pareto preference relation.

Pareto preference

- Aggregates several preference relations
- Multi-objective optimization
- Generally no single optimal solution
- Set of Pareto optimal solutions (Pareto frontier)
 - y is dominated by x if x is at least as good as y in all objectives and better in one
 - x is Pareto optimal \iff there is no y that dominates x

Pareto preference

- Aggregates several preference relations
- Multi-objective optimization
- Generally no single optimal solution
- Set of Pareto optimal solutions (Pareto frontier)
 - y is dominated by x if x is at least as good as y in all objectives and better in one
 - x is Pareto optimal \iff there is no y that dominates x
- ullet e.g. "better" means < for objectives in \mathbb{Z} :
 - (2,3,1) dominates (3,3,1)
 - (2,3,1) is incomparable to (2,1,3)

Preferences statements in asprin

```
#preference(compactness,less(cardinality)){
    assigned(C1,D,P), not assigned(C2,D,P+1)
}.

#preference(spread,less(cardinality)){
    assigned(C,D,P1), assigned(C,D,P2), P1>P2
}.

#preference(combine,pareto){
    name(compact); name(spread)
}.
```

Dominated solution

Period	Day 1	Day 2
1	а	
2		а
3	b	b
4		

Compactness violations: 3

Optimal solution

Period	Day 1	Day 2
1		
2	а	а
3	b	b
4		

Compactness violations: 2

Optimal solution

Period	Day 1	Day 2
1		
2	а	b
3	b	а
4		

Compactness violations: 2

Optimal solution

Period	Day 1	Day 2
1	b	
2	а	
3	b	
4	a	

Compactness violations: 1

Diverse optimal solution

- Many optimal solutions
- Select subset to present to user

Period	Day 1	Day 2
1		
2	а	а
3	b	b
4		

Period	Day 1	Day 2
1		
2	а	b
3	b	а
4		

Period	Day 1	Day 2
1	b	
2	а	
3	b	
4	а	

Diverse optimal solution

- Many optimal solutions
- Select subset to present to user

Period	Day 1	Day 2
1		
2	а	а
3	b	b
4		

Period	Day 1	Day 2
1		
2	а	b
3	b	а
4		

Period	Day 1	Day 2
1	b	
2	а	
3	b	
4	а	

Diverse optimal solution

- Many optimal solutions
- Select diverse subset to present to user

Period	Day 1	Day 2
1		
2	а	а
3	b	b
4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

Period	Day 1	Day 2
1	а	
2	b	
3	а	
4	b	

- Main related work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.

- Main related work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.
- Contributions:
 - Automate existing ASP solving schemes

- Main related work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.
- Contributions:
 - Automate existing ASP solving schemes
 - Generalize existing diversification techniques to logic programs with preferences

- Main related work:
 - T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
 - Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.
- Contributions:
 - Automate existing ASP solving schemes
 - Generalize existing diversification techniques to logic programs with preferences
 - Introduce new diversification techniques for logic programs with preferences

• Main related work:

- T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. 2013.
- Y. Zhu and M. Truszczyński. On optimal solutions of answer set optimization problems. 2013.

Contributions:

- Automate existing ASP solving schemes
- Generalize existing diversification techniques to logic programs with preferences
- Introduce new diversification techniques for logic programs with preferences
- ⇒ Provide comprehensive framework for computing diverse (or similar) optimal solutions

Outline

- Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- 4 Experiments

Maxmin optimization

- Maxmin optimization
- Quess and Check automation

- Maxmin optimization
- Quess and Check automation
- Querying programs with preferences

- Maxmin optimization
- Quess and Check automation
- Querying programs with preferences
- Preferences over optimal models

- Maxmin optimization
- Quess and Check automation
- Querying programs with preferences
- Preferences over optimal models

Schemes are employed to implement diversification techniques, but are readily available for independent usage.

Outline

- Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- 4 Experiments

Diversification Techniques

- Enumeration
 - Enumerate all optimal solutions and calculate most diverse subset
 - Express calculation of most diverse subset as logic program with preferences

Diversification Techniques

- Enumeration
 - Enumerate all optimal solutions and calculate most diverse subset
 - Express calculation of most diverse subset as logic program with preferences
- 2 Replication
 - Replicate problem to produce n optimal solutions and optimize diversity
 - Uses Guess and check automation and Maxmin optimization

Diversification Techniques

- Enumeration
 - Enumerate all optimal solutions and calculate most diverse subset
 - Express calculation of most diverse subset as logic program with preferences
- 2 Replication
 - Replicate problem to produce n optimal solutions and optimize diversity
 - Uses Guess and check automation and Maxmin optimization
- Approximation
 - Iterate optimal solutions distant to a previous set of optimal solutions
 - Uses maxmin optimization, Querying programs with preferences and Preferences over optimal models

Diversification Techniques

- Enumeration
 - Enumerate all optimal solutions and calculate most diverse subset
 - Express calculation of most diverse subset as logic program with preferences
- Replication
 - Replicate problem to produce n optimal solutions and optimize diversity
 - Uses Guess and check automation and Maxmin optimization
- Approximation
 - Iterate optimal solutions distant to a previous set of optimal solutions
 - Uses maxmin optimization, Querying programs with preferences and Preferences over optimal models

Approximation

Input: Logic program with preferences P, Set size $n \in \mathbb{N}$ Output: Set \mathcal{X} approximating n most diverse optimal solutions

Approximation

Input: Logic program with preferences P, Set size $n \in \mathbb{N}$ Output: Set \mathcal{X} approximating n most diverse optimal solutions

$$\mathcal{X} = \emptyset$$
 While $|\mathcal{X}| < n$ and $P \cup \mathcal{X}$ is satisfiable
$$\mathcal{X} = \mathcal{X} \cup solve(P, \mathcal{X})$$
 return \mathcal{X}

Approximation

Input: Logic program with preferences P, Set size $n \in \mathbb{N}$ Output: Set \mathcal{X} approximating n most diverse optimal solutions

$$\mathcal{X} = \emptyset$$
 While $|\mathcal{X}| < n$ and $P \cup \mathcal{X}$ is satisfiable
$$\mathcal{X} = \mathcal{X} \cup solve(P, \mathcal{X})$$
 return \mathcal{X}

- Variants A-1 to A-3 implement different versions of solve(P, X)
- With increasing variant number: less exact, more performance

• $solve(P, \mathcal{X})$ returns optimal model of P most dissimilar to \mathcal{X}

- $solve(P, \mathcal{X})$ returns optimal model of P most dissimilar to \mathcal{X}
- Ensures next optimal solution is most distant to whole previous set X by using Maxmin optimization and Preferences over optimal models

$$\mathcal{X} =$$

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		
2	а	a
3	b	b
4		

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

Period	Day 1	Day 2
1		a
2	a	a,b
3	b	a,b
4		a

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3		а
4		b

Period	Day 1	Day 2
1	а	
2	b	
3	а	
4	b	

• $solve(P,\mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}

- $solve(P, \mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}
- Then returns optimal model of P closest to I

- $solve(P, \mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}
- Then returns optimal model of P closest to I
- Ensures next optimal solution is as close as possible to I by using Maxmin optimization and Preferences over optimal models

- $solve(P, \mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}
- Then returns optimal model of P closest to I
- Ensures next optimal solution is as close as possible to I by using Maxmin optimization and Preferences over optimal models
- Loses accuracy but gains performance since there is no direct comparison to earlier optimal solutions

A-2: Distant partial interpretation I

Given set of previous optimal models \mathcal{X} , select I

- randomly
- heuristically chosen
- ullet most diverse wrt. ${\mathcal X}$
- complementary to last optimal solution

A-2: Distant partial interpretation I

Given set of previous optimal models \mathcal{X} , select I

- randomly
- heuristically chosen
- \odot most diverse wrt. \mathcal{X}
- complementary to last optimal solution

$$\mathcal{X} =$$

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	a	а
	3	b	b
	4		

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	a	а
	3	b	b
	4		

Period	Day 1	Day 2
1	a,b	a,b
2	b	b
3	a	a
4	a,b	a,b

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	a	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

Period	Day 1	Day 2
1	a,b	b
2	a,b	a
3	b	a,b
4	a	a,b

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	а	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

Period	Day 1	Day 2
1	а	
2	b	
3	b	
4	а	

	Period	Day 1	Day 2
	1		
$\mathcal{X} =$	2	a	а
	3	b	b
	4		

Period	Day 1	Day 2
1		а
2		b
3	а	
4	b	

Period	Day 1	Day 2
1	а	
2	b	
3	b	
4	а	

• $solve(P, \mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}

- $solve(P, \mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}
- Tries to find optimal model of P closest to I by changing sign heuristic to same values as in I

- $solve(P, \mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}
- Tries to find optimal model of P closest to I by changing sign heuristic to same values as in I
- Approximation of A-2

- $solve(P, \mathcal{X})$ first computes partial interpretation I distant to \mathcal{X}
- Tries to find optimal model of P closest to I by changing sign heuristic to same values as in I
- Approximation of A-2
- Purely heuristic, no guaranteed diversity; no optimization, less complex calculation

A-3: Distant partial interpretation I

Given set of previous optimal models \mathcal{X} , select I

- randomly
- heuristically chosen
- \odot most diverse wrt. \mathcal{X}
- complementary to last optimal solution

Outline

- Introduction and Motivation
- 2 ASP Solving Schemes
- 3 Diversification Techniques
- 4 Experiments

Results

- Replication and Enumeration not efficient
- Approximation techniques display tradeoff between diversification and performance
- 816 instances enumerating four Pareto optimal diverse models with 16 Approximation configurations
- timeout of 600s

	A-3	A-1	A-3 most diverse diverse wrt. ${\mathcal X}$
		482s/672	317s/351
Rank	16	1	4