<400> 4

60

120

IAP11 Rec'd PCT/PTO 04 AUG 2006

```
Sequence Listing
  <110> University of Georgia Research Foundation, Inc.
  <120> NOVEL TELEOST DERIVED ANTIMICROBIAL POLYPEPTIDES
' <130> G25-085PCT
  <150> US60/545,370
' <151> 2004-02-18
  <150> US60/623,909
  <151> 2004-11-01
  <160> 31
  <210> 1
  <211> 30
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Synthetic Peptide
  <400> 1
  GGGGGGGGGGGGGGGGGGGG
  <210> 2
  <211> 12
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Synthetic Peptide
  <400> 2
  GGGGGGGGGG
  <210> 3
  <211> 201
  <212> PRT
  <213> Ictalurus punctatus
  <400> 3
  MSAQAEETAPEAAAPQPSQPAAKKKGPASKAKPASAEKKNKKKKGKGPGKYSQLVINAIQTLGERNGSSLFKIYNEAKKV
  NWFDQQHGRVYLRYSIRALLQNDTLVQVKGLGANGSFKLNKKKFIPRTKKSSVKPRKTAKPTKKPAKKAAKKKKRVSGVK
  KATPPPEKTSKPKKADKSPASAKKASKPKKAKQTKKTAKKT
  <210> 4
  <211> 1146
  <212> DNA
  <213> Ictalurus punctatus
```

CGGCACGAGG GTTCAATAGC ATCTCAAGGC GCTTCAGAAC TTAAAGTTGA

ACCATGTCTG CTCAGGCTGA GGAAACTGCA CCAGAAGCAG CAGCACCAGT

ACAACCI AGCCTG(GGAAAG'		180 240 300
	CTCG TCTCTTTTA AGATCTACAA CGAGGCGAAG AAAGTGAACT ACCA GCAGCACGGG CGCGTGTACC TCCGCTACTC CATCCGCGCG CAGA ACGACACGCT CGTGCAGGTG AAGGGTCTGG GCGCCAACGG	360 420 480
CTCCTTCCTTAA.		540 600 660
CCCAGA CTGCCA GCTAAG		720 780 840
TTGCAC ATATGC TACTGA	TGCG GGTAAACTGC ACGCTTTCTG ATCGCAGTTC ATTAAGTAGG ACAG TGTTTAACCA AGTGTGCAAG TCACTCTGGT CTCAATGTTT	900 960 1020
TTTGTA AACTGC AAAAAA	ACGT CTGCTTTGTT ATTATTTCTT TTCTACTAGT TAGCTAAAAT TTAT GGCTTCTTTT AAAATAAAAT GATAAAAGAA AAAAAAAAAA	1080 1140 1146
<210><211><212><213>	951	
<220><221><222>	CDS (1)(615)	
<223>	ncamp-1 nucleic acid and protein sequence	
	CGGCACGAGGGTTCAATAGCATCTCAAGGCGCTTCAGAACTTAAAGTTGA M S A Q A E E T A P E A A A P V	16
	ACCATGTCTGCTCAGGCTGAGGAAACTGCACCAGAAGCAGCAGCACCAGT Q P S Q P A A K K K G P A S K A	32
	ACAACCATCACAACCAGCGGCCAAAAAGAAGGGACCCGCCAGTAAAGCAA K P A S A E K K N K K K K G F AGCCTGCCTCTGCAGAAAAAAAAAAAAAAAAAAAAAAAA	49
	G K Y S Q L V I N A I Q T L G E R GGAAAGTACAGCCAGCTGGTGATCAATGCTATCCAAACGCTGGGAGAGAG	66
	N G S S L F K I Y N E A K K V N AAACGGCTCGTCTTTTTAAGATCTACAACGAGGCGAAGAAAGTGAACT	82
	W F D Q Q H G R V Y L R Y S I R A GGTTTGACCAGCAGCACGGGCGCGTGTACCTCCGCTACTCCGCGCG	99
	L L Q N D T L V Q V K G L G A N G CTGCTGCAGAACGACACGCTCGTGCAGGTGAAGGGTCTGGGCGCCAACGG	116
401	S F K L N K K K F I P R T K K S CTCCTTCAAGCTCAACAAAAAGAAGTTCATCCCCAGAACCAAGAAGAGCT	132
451	S V K P R K T A K P T K K P A K K CTGTAAAGCCGAGAAAGACCGACCAAAAAGCCAGCCAAAAAA	149
	A A K K K R V S G V K K A T P P GCAGCGAAGAAGAAAAAGGGTCAGCGGCGTGAAGAAGGCGACTCCCCC	166
551	P E K T S K P K K A D K S P A V CCCAGAGAAAACCTCCAAAACCCAAGAAAGCGGATAAAAGTCCAGCCGTCT	182
601	S A K K A S K P K K A K Q T K K T CTGCCAAGAAGGCGAGCAAGCCCAAGAAAACAGACAAAAAAA	199
	AKKT *	203

651 GCTAAGAAGACTTAAAACGTTTATATTCTGCATGCTTTGTGCATTAAGCA

701 TTGCACTGCGGGTAAACTGCACGCTTTCTGATCGCAGTTCATTAAGTAGG 751 ATATGCACAGTGTTTAACCAAGTGTGCAAGTCACTCTGGTCTCAATGTTT 801 TACTGATGTAACCACATGTAAATAACTGTACAAAGAAGGAAACAATCACT 851 TTTGTAACGTCTGCTTTGTTATTATTTCTTTTCTACTAGTTAGCTAAAAT 951 AAAAAA <210> 6 · <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide <400> 6 GGGGGGGGGGGGGGG <210> 7 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide <400> 7 TCGTCGTTGTCGTT <210> 8 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide <400> 8 CCCCCCCCCCCCCCCC <210> 9 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide <400> 9 AAAAAAAAAAAAAAAA <210> 10 <211> 20 <212> PRT

<213> Artificial Sequence

```
<220>
<223> Synthetic Peptide
<400> 10
TTTTTTTTTTTTTTTTT
<210> 11
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 11
TGCTGCTTGTGCTT
<210> 12
<211> 247
<212> PRT
<213> Danio rerio
<400> 12
----MPAVVEESAPAPAPAP--------AEKKAKPAVAASPAKK----KKKKSKGPGKYSKLVTDAI
RTLGEKNGSSLFKIYNEAKKVSWFDQKNGRMYLRASIRALVLNDTLVQVKGFGANGSFKLNKKKLEKKPKK-
AASKKATKKTEKPTSKKAVT-----KKVSAKKSAKKSPVKKKTPKKT-----SVKKATAKPKKTASKK
PKAAAKKKTKSK--
<210> 13
<211> 247
<212> PRT
<213> Xenopus laevis
<400> 13
----MALELEENLHSTEEEDEEEEEEGDEMRSRSTRNKGGAASSSGNKKKKK--KKNQPGRYSQLVVDTIR
{\tt KLGERNGSSLAKIYSEAKKVSWFDQQNGRTYLKYSIKALVQNDTLLQVKGVGANGSFRLNKKKLEGLPYDKKP}
PPAKPSSSSSNKKQQQ-----GPSSSPSKSHKKAKPKAKAEKEKPKTSSAKAKSPKKSAAKG-KKMKKGAKP
SVRKAPKSKKA
<210> 14
<211> 247
<212> PRT
<213> Mus
<400> 14
----MSVELEEALPPTSADG------TARKTAKAGGSAAPTQPKRRKN-RKKNQPGKYSQLVVETIR
KLGERGGSSLARIYAEARKVAWFDQQNGRTYLKYSIRALVQNDTLLQVKGTGANGSFKLNRKKLEGGAERR-
GASAASSPAPKAR-----TAAADRTPARPQ-PERRAHKS-----KKAAAAASAKKVKKAAK
PSVPKVPKGRK-
<210> 15
<211> 247
<212> PRT
<213> Homo sapiens
```

```
<400> 15
  ----MSVELEEALPVTTAEG------MAKKVTKAGGSAALSPSKKRKNSKKKNQPGKYSQLVVETIRR
  LGERNGSSLAKIYTEAKKVPWFDQQNGRTYLKYSIKALVQNDTLLQVKGTGANGSFKLNRKKLEGGGERRGAPAAATAPA
  PTAHKAKKAAPGAAGSRRADKKPARGQKPEQRSHKKGAGAKKDKGGKAKKTAAAGGKKVKKAAKPSVPKVPKGRK-
  <210> 16
<211> 15
<212> PRT
. <213> Mus
  <400> 16
  SETAPAEKPAPAKAE
  <210> 17
  <211> 25
  <212> PRT
  <213> Homo sapiens
  <400> 17
  KLNKKAASGEAKPKAKAKSPKKAKA
  <210> 18
  <211> 17
  <212> PRT
  <213> Trout
  <400> 18
  KAVAAKKSPKKAKKPAT
  <210> 19
  <211> 19
  <212> PRT
  <213> Catfish
   <400> 19
  KGRGKQGGKVRAKAKTRSS
   <210> 20
   <211> 20
   <212> PRT
   <213> Trout
   <400> 20
  PDPAKTAPKKGSKKAVTKXA
   <210> 21
   <211> 17
   <212> PRT
   <213> Bass
   <400> 21
```

PEPAKSAPKKGSKKAVT

<210> 22

<211> 22

<212> PRT

```
<213> Bass
```

<400> 22

PDPAPKTAPKKGSKKAVTKTAG

<210> 23

<211> 26

<212> PRT

<213> Trout

<400> 23

AEVAPAPAAAAPAKAPKKKAAAKPKK

<210> 24

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 24

AKKA

<210> 25

<211> 11

<212> PRT

<213> Ictalurus punctatus

<400> 25

GASGSFKLNKK

<210> 26

<211> 21

<212> PRT

<213> Bacteria

<400> 26

AYSLQMGATAIKQVKKLFKKW

<210> 27

<211> 28

<212> PRT

<213> Moth

<400> 27

PKWKLFKKIEKVGQNIRDGIIKAGPAVA

<210> 28

<211> 22

<212> PRT

<213> Spider

<400> 28

FKFLAKKVAKTVAKQAAKQGAK

```
<210> 29
```

<211> 22

<212> PRT

<213> Toad

<400> 29

, AGRGKQGGKVRAKAKTRSSRAG

. <210> 30

- <211> 23

<212> PRT

<213> Frog

<400> 30

GIGKFLHSAKKFGKAFVGEIMNS

<210> 31

<211> 30

<212> PRT

<213> Homo sapiens

<400> 31

KAPRKQLATPEPAKSAPAPKKGXKKXVTKA