Confiabilidade de Linhas de Transmissão Utilizando Sistema Sul Brasileiro com 32 Barras

Leonardo Felipe da Silva dos Santos,

Centro de Excelência em Energia e Sistemas de Potência (CEESP),

Programa de Pós-Graduação em Engenharia Elétrica,

Universidade Federal de Santa Maria

Santa Maria, Brasil

leonardo.santos@acad.ufsm.br

Resumo—This document describes the most common article elements and how to use the IEEEtran class with LaTeX to produce files that are suitable for submission to the IEEE. IEEEtran can produce conference, journal, and technical note (correspondence) papers with a suitable choice of class options.

Index Terms—Article submission, IEEE, IEEEtran, journal, LETEX, paper, template, typesetting.

I. Introdução

O sistema elétrico brasileiro é constituído fundamentalmente por usinas hidrelétricas de grande porte, quais essas criam desafios para linhas de transmissão (LTs), quais hoje no Brasil o sistema em anel propõem uma segurança para o escoamento de energia e também cria um sistema de troca de energia entre as regiões, assim o sistema pode encontrar problema para distribuição de diversas cargas localizadas em locais pontuais com falta de geração ou demandas quais superam a intercambialidade de regiões.

Assim as capacidades da transmissão de energia ficam voltadas a confiabilidade do sistema elétrico de potência para escoamento dos geradores, quais o Brasil é referencia em usar hidrelétricas em sua grande maioria, normalmente localizadas na parte norte do Brasil por apresentar uma hidrologia mais favoráveis a geração hidrelétrica.

Este artigo visando a utilização do sistema de transmissão sul brasileiro de 32 barras (STSB-32) para criar o cenário de primeira ordem do diagrama de cortes e o cenário de segunda ordem, assim numerados utilizando os métodos de enumeração de estados do critério N-1 e N-2 [1].

Este artigo tem como proposta analisar o comportamento do Sistema STSB-32 conforme as pontos de operação propostos, assim como utilizar os modelos de confiabilidade compostos para calcular a confiabilidade do sistema n-2, se utiliza o *software* ANAREDE, para todos os objetivos deste artigo, pois o ANAREDE é utilizado para o planejamento seguro do Sistema Interligado Nacional – SIN.

Este artigo está organizado da seguinte maneira. A seção 2 aborda a confiabiliade de sistemas elétricos de potência, com uma revisão do assunto. A seção 3 explana modelagem do sistema e as simulações realizadas para os dois cenários abordados. Os resultados são discutidos na seção 4. Finalmente

na seção 5 apresentado as conclusões e as contribuições do estudo.

II. CONFIABILIDADE DE SISTEMAS ELÉTRICOS DE POTÊNCIA

Qualquer sistema de potência está sujeito a falhas pontuais, tanto em equipamentos dispostos nas subestações quanto em linhas de transmissão, quais estas falhas podem comprometer a operação em parte ou todo sistema de potência, qual pode inviabilizar o fornecimento de energia em vários pontos e até mesmo para consumidores finais.

Assim a confiabilidade por meio da análise dos índices probabilísticos do sistema, combinado com julgamentos sobre critérios pré-estabelecidos e com um julgamento próprio. Porém hoje a confiabilidade utiliza métricas erradas sobre as linhas de transmissão, qual os valores são definidos por um geral e não por linha, quais esses históricos são recentes, assim não tendo dados de todos os pontos, afinal os sistema elétrico de potência é relativamente novo no Brasil.

Toda a parte de confiabilidade é baseada em grandes técnicas de análise, que utiliza princípios e conceitos da matemática fornecidos pela teoria de probabilidade [2]. A análise de confiabilidade busca, basicamente, analisar o risco de não atendimento à demanda do sistema de potência.

Com a utilização destes conhecimentos pode-se calcular quais as chances de que um determinado sistema ou componente possa falhar, assim criando modelos de confiabilidade quais podem ser mensuradas conforme modelos préestabelecidos ou normas vigentes como no caso das regras dos serviços de transmissão de energia elétrica no Sistema Elétrico Nacional regulamentado pela Agência Nacional de Energia Elétrica - ANEEL.

1

Figura 1: Área de Atuação da ONS perante o Sistema.

Já quem faz a operação do sistema nacional é o operador naciona do sistema elétrico (ONS), qual faz desde o planejamento elétrico até operação do sistema como um todo, como mostrada na Figura 1, a abrangência da ONS perante o SIN.

Níveis Hierárquicos

A análise de confiabilidade pode abranger três níveis hierárquicos, conforme apresentado na Figura 2 [3]:

- Nível Hierárquico 0 (NH0): Abrange o estudo de confiabilidade ligado ao sistema energético isolado aos demais, normalmente se analisa a confiabilidade de projeto e funcionamento;
- Nível Hierárquico 1 (NH1): Abrange o estudo de confiabilidade ligado a geração de energia;
- Nível Hierárquico 2 (NH2): Abrange o estudo de confiabilidade ligados a transmissão e geração de energia;
- 4) Nível Hierárquico 3 (NH3): Abrange o estudo de confiabilidade ligados a distribuição, transmissão e geração de energia.

Figura 2: Níveis Hierárquicos de um Sistema de Potencia [3].

Atualmente devido a dimensão dos problemas trabalhamos apenas com o NH2, assim montando o problema em razão das falhas em linhas de transmissão quais já foram modeladas e levantadas.

III. MODELAGEM E SIMULAÇÕES

Nesta seção apresentam-se as caracteristicas do sistema de transmissão sul brasileiro com 32 barras simulado no *software* **ANAREDE**, para o cenário proposto para níveis de carregamento e níveis de geração, como um ponto de operação qual haveria contingências se houvesse alguma violação de tensão ou fluxo de potência, assim como considerar contingências os casos divergentes a partir do ponto de operação descrito na Tabela I.

Tabela I: Configuração do Nível de Carregamento(MW)

Nível de Carregamento (MW)					
Área 1 Área 2 Área 3					
3100	7800	-4500			

Assim como o nível de carregamento foi definido em cada área do sistema, o nível de geração também foi previamente definido conforme a Tabela II.

Tabela II: Configuração do Nível de Carregamento(MW)

Nível de Geração				
Área 1 Área 2				
-20%	-20%			

Com a definição das tabelas I e II, pode-se utilizar o **ANA-REDE** para configuração do sistema conforme as tabela, após carregamento do projeto e configuração das opções das tabelas, o esquemático do sistema STSB-32 foi disposto na Figura 3, qual mostra os esquemático completo no **ANAREDE**.

Figura 3: Diagrama do sistema de transmissão sul brasileiro de 32 barras.

Sendo o sistema separado por tensão, os níveis de tensão são de 230 kV, na cor verde e 525 kV na cor vermelha, esse sistema também é dividido em três áreas. A área número 1 é a parte classificada em 525 kV, a área 2 é a parte do sistema em 230 kV e a área 3 é a área de importação de energia da região sudeste do Brasil.

Para a utilização deste tipo de análise, foi dada a tabela III com os valores de confiabilidade em cada linha, assim podendo

analisar as tabelas de contingências com o diagrama de cortes mínimos.

Tabela III: Probabilidade das Linhas STSB-32

De	Para	Q	P
933	856	2,79E-04	9,9972E-01
933	895	1,26E-03	9,9874E-01
933	955	8,66E-04	9,9913E-01
933	959	1,16E-03	9,9884E-01
933	999	8,51E-04	9,9915E-01
895	959	1,65E-04	9,9984E-01
946	938	4,28E-04	9,9957E-01
946	955	1,15E-03	9,9885E-01
938	955	1,24E-03	9,9876E-01
938	959	6,78E-04	9,9932E-01
896	897	3,10E-04	9,9969E-01
896	999	1,03E-03	9,9897E-01
964	955	9,99E-04	9,9900E-01
964	976	3,87E-04	9,9961E-01
964	995	1,25E-03	9,9875E-01
955	979	1,26E-03	9,9874E-01
955	1030	1,96E-04	9,9980E-01
976	979	1,45E-04	9,9985E-01
995	979	1,54E-03	9,9846E-01
995	1030	3,18E-04	9,9968E-01
995	1060	9,19E-04	9,9908E-01
999	1060	8,21E-04	9,9918E-01
897	1060	4,43E-04	9,9956E-01
856	1060	2,98E-04	9,9970E-01
934	960	6,59E-04	9,9934E-01
934	1047	4,30E-04	9,9957E-01
947	939	3,36E-04	9,9966E-01
947	1010	3,47E-04	9,9965E-01
939	1015	1,96E-04	9,9980E-01
839	1047	2,15E-04	9,9978E-01
839	2458	2,76E-05	9,9997E-01
965	963	1,43E-04	9,9986E-01
965	1057	5,64E-04	9,9944E-01
960	1015	2,68E-04	9,9973E-01
1010	1057	1,27E-04	9,9987E-01
963	1041	6,12E-04	9,9939E-01
1041	1069	2,12E-04	9,9979E-01
1047	1069	4,34E-04	9,9957E-01

Utilizando a tabela I e II para calcular os valores de cada uma das possibilidades para contingências de N-1 e N-2, utilizando os casos de abertura de cada uma das linhas uma única vez, caso alerta de violações do *ANAREDE* seria gerado um relatório e buscado essas informação de qual o valor de **Q** e **P** para cada linha.

IV. RESULTADOS

A utilização da confiabilidade e com uma lista de contingências da primeira ordem qual ele retornou o relatório de violação N-1 da tabela IV.

Tabela IV: Relatório de Violação N-1 ANAREDE.

Violação	Cont.	De	Para	Sev.	Q	P
Tensão	5	896	897	8,5	3,098E-04	9,997E-01
Tensão	13	938	959	4,4	6,784E-04	9,993E-01
Tensão	24	995	979	3	1,542E-03	9,985E-01
Tensão	20	964	976	1,4	3,875E-04	9,996E-01
Tensão	23	995	964	1,1	1,253E-03	9,987E-01
Divergente	17	955	979		1,265E-03	9,987E-01

Assim para o caso N-1, temos a tabela IV qual apresenta a contingência, de qual barra para qual barra, apresenta o Q e P para cada contingência gerada assim pelo *ANAREDE*. Assim tirando os valores das contingências N-1 para criar uma lista

de contingências de N-2, qual será feita os diagramas de cortes mínimos.

Tabela V: Relatório de Violação N-2 ANAREDE.

Violação	Cont	De1	Para1	Sev	Q1	De2	Para2	Q2
Tensão	509	955	946	9,6	1,15E-	960	1015	1,15E-
m .		0.55	0.16		03	1010	947	03
Tensão	517	955	946	5,5	1,15E- 03	1010	947	1,15E- 03
Tensão	508	955	946	5,2	1,15E-	959	895	1,15E-
					03			03
Tensão	352	933	955	4,1	8,66E- 04	955	946	8,66E- 04
Tensão	349	933	955	3,5	8,66E-	938	946	8,66E-
Tensuo	547	755	755	3,3	04	750	740	04
Tensão	487	947	939	3,2	3,36E-	955	946	3,36E-
Tensão	528	955	964	3.2	9.99E-	965	1057	9,99E-
Tensao	320	933	904	3,2	04	903	1037	04
Tensão	449	938	946	2,6	4,27E-	960	1015	4,27E-
					04			04
Tensão	470	938	955	2,5	1,24E- 03	960	1015	1,24E- 03
Tensão	538	955	964	2,4	9,99E-	1047	1069	9.99E-
		,,,,	, , ,		04	1017	1005	04
Tensão	507	955	946	2,2	1,15E-	955	964	1,15E-
Tensão	297	856	1060	1.8	03 2.97E-	938	955	03 2,97E-
rensao	291	830	1000	1,8	2,97E- 04	938	933	2,97E- 04
Tensão	476	938	955	1,7	1,24E-	999	933	1,24E-
					03			03
Tensão	269	856	933	1,2	2,78E- 04	938	955	2,78E- 04
Tensão	448	938	946	1,2	4,27E-	959	895	4,27E-
				-,-	04			04
Tensão	542	955	964	1,1	9,99E-	1041	963	9,99E-
Tensão	539	955	964	1.1	04 9.99E-	1057	1010	9,99E-
rensao	339	933	964	1,1	9,99E- 04	1037	1010	9,99E- 04
Tensão	272	856	933	1,1	2,78E-	955	964	2,78E-
					04			04
Tensão	541	955	964	1,1	9,99E- 04	1069	1041	9,99E- 04
Tensão	353	933	955	1	8,66E-	955	964	8.66E-
					04			04
Tensão	468	938	955	1	1,24E-	955	964	1,24E-
Divergente	s 638	999	896	;	03 1,02E-	1060	897	03 1,02E-
Divergent	s 056	222	090	,	03	1000	097	03
Divergente	s 529	955	964	;	9,99E-	976	979	9,99E-
D.	1/7	000	055		04	0.55	0.16	04
Divergente	s 467	938	955	;	1,24E- 03	955	946	1,24E- 03
Divergente	s 446	938	946	;	4.27E-	955	946	4.27E-
-				,	04			04
Divergente	s 444	938	946	;	4,27E-	938	955	4,27E-
Divergente	s 377	933	959		04 1,15E-	955	946	04 1,15E-
Divergente	a 3//	733	939	;	03	933	940	03
Divergente	s 375	933	959	;	1,15E-	938	955	1,15E-
					03			03
Divergente	s 326	933	895	;	1,25E-	955	946	1,25E-
Divergente	s 324	933	895	;	03 1.25E-	933	959	03 1,25E-
Divergente	. 524	755	0,5	,	03	755	/3/	03
Divergente	s 320	933	895	;	1,25E-	933	959	1,25E-
		1			03			03

Com a tabela V pode-se iniciar o diagrama de cortes mínimos, utilizando os valores de tabelas de Q e P equivalentes, sabendo que (1) podemos converter Q em P ou vice-versa.

$$1 = P + Q \tag{1}$$

Com os valores de Q e P podemos definir que a confiabilidade de sistema é o produto da probabilidade de todos os componentes em série, pela equação (2).

$$\sum_{i=1}^{n} (p_i) \tag{2}$$

Logo definir a confiabilidade do sistema é 1 menos o produto da probabilidade de falha de todos os componentes em paralelo, pela equação (3).

$$1 - \sum_{i=1}^{n} (1 - p_i) \tag{3}$$

Utilizando essas equações temos os equivalentes do relatório de violação N-2 da Tabela V, utilizando primeiramente a equação 3, após essa análise junta-se o relatório N-1 com o equivalente do N-2 Tabela III.

Tabela VI: Equivalentes de N-2 ANAREDE.

Cont.	De1	Para1	De2	Para2	Q Eq	P Eq
509	955	946	960	1015	1.33056E- 06	0.999998669
517	955	946	1010	947	1.33056E- 06	0.999998669
508	955	946	959	895	1.33056E- 06	0.999998669
352	933	955	955	946	7.50788E- 07	0.999999249
349	933	955	938	946	7.50788E- 07	0.999999249
487	947	939	955	946	1.13071E- 07	0.999999887
528	955	964	965	1057	9.98101E- 07	0.999999002
449	938	946	960	1015	1.82996E- 07	0.999999817
470	938	955	960	1015	1.53884E- 06	0.999998461
538	955	964	1047	1069	9.98101E- 07	0.999999002
507	955	946	955	964	1.33056E- 06	0.999998669
297	856	1060	938	955	8.85122E- 08	0.999999911
476	938	955	999	933	1.53884E- 06	0.999998461
269	856	933	938	955	7.77462E- 08	0.999999922
448	938	946	959	895	1.82996E- 07	0.999999817
542	955	964	1041	963	9.98101E- 07	0.999999002
539	955	964	1057	1010	9.98101E- 07	0.999999002
272	856	933	955	964	7.77462E- 08	0.999999922
541	955	964	1069	1041	9.98101E- 07	0.999999002
353	933	955	955	964	7.50788E- 07	0.999999249
468	938	955	955	964	1.53884E- 06	0.999998461
638	999	896	1060	897	1.05473E- 06	0.999998945
529	955	964	976	979	9.98101E- 07	0.999999002
467	938	955	955	946	1.53884E- 06	0.999998461
446	938	946	955	946	1.82996E- 07	0.999999817
444	938	946	938	955	1.82996E- 07	0.999999817
377	933	959	955	946	1.33541E- 06	0.999998665
375	933	959	938	955	1.33541E- 06	0.999998665
326	933	895	955	946	1.58181E- 06	0.999998418
324	933	895	933	959	1.58181E- 06	0.999998418
320	933	895	933	959	1.58181E- 06	0.999998418

Assim com o equivalente de cada uma das linhas de transmissão feitos vamos calcular o múltiplo como se todos os elementos fossem série juntamente com a lista contingências N-1 da Tabela IV, pode-se calcular a Tabela VII, qual representa o resultado da confiabilidade.

Tabela VII: Resultantes de Confiabilidade do sistema.

Cont	De1	Para1	De2	Para2	Q	P
5	896	897	-	-	3.098100E-	9.996902
13	938	959	-	-	04 6.783700E-	9.993216
17	955	979	-	-	04 1.264600E-	9.987354
					03	01
20	964	976	-	-	3.874700E- 04	9.996125 01
23	995	964	-	-	1.252800E-	9.987472
24	995	979	-	-	03 1.542200E-	9.984578
269	856	933	938	955	03 7.774617E-	9,999999
					08	01
272	856	933	955	964	7.774617E- 08	9.999999 01
297	856	1060	938	955	8.851220E- 08	9.999999 01
320	933	895	933	959	1.581809E-	9.999984
324	933	895	933	959	06 1.581809E-	9.999984
					06	01
326	933	895	955	946	1.581809E- 06	9.999984 01
349	933	955	938	946	7.507876E- 07	9.999992
352	933	955	955	946	7.507876E-	9.999992
353	933	955	955	964	07 7.507876E-	9.999992
375	933	959	938	955	07 1.335411E-	01 9,999987
3/5			938		1.335411E- 06	9.999987
377	933	959	955	946	1.335411E- 06	9.999987 01
444	938	946	938	955	1.829957E-	9.999998
446	938	946	955	946	07 1.829957E-	9.999998
448	938	946	959	895	07 1.829957E-	9,999998
					07	01
449	938	946	960	1015	1.829957E- 07	9.999998 01
467	938	955	955	946	1.538840E- 06	9.999985
468	938	955	955	964	1.538840E-	9.999985
470	938	955	960	1015	06 1.538840E-	9.999985
					06	01
476	938	955	999	933	1.538840E- 06	9.999985 01
487	947	939	955	946	1.130708E- 07	9.999999 01
507	955	946	955	964	1.330562E-	9.999987
508	955	946	959	895	06 1.330562E-	9,999987
509	955	946	960	1015	06 1.330562E-	01 9,999987
					06	01
517	955	946	1010	947	1.330562E- 06	9.999987 01
528	955	964	965	1057	9.981009E-	9.999990
529	955	964	976	979	9.981009E-	9.999990
538	955	964	1047	1069	07 9.981009E-	9,999990
					07	01
539	955	964	1057	1010	9.981009E- 07	9.999990 01
541	955	964	1069	1041	9.981009E-	9.999990
542	955	964	1041	963	9.981009E-	9.999990
638	999	896	1060	897	07 1.054729E-	01 9.999989
	יייי	890	1000	897	06	01
Total					5.45274E- 03	9.94547I 01
Total (%)					0.005452738	0.9945472

Assim com as contingências apresentadas em N-1 Tabela IV e N-2 Tabela VI, temos os valores de falha em cada uma das linhas separados assim aplicando as formulas de confiabilidade podemos determinar o resultante total da tabela VII. Assim determinamos os resultados na tabela VIII.

Tabela VIII: Resultado da Análise de Confiabilidade do Sistema STSB-32.

Total	5.45274E-03	9.94547E-01	1.00000E+00
Total (%)	0.005452738	0.994547262	1

V. Conclusão

The conclusion goes here.

REFERÊNCIAS

[1] G. M. Lazari, L. H. Medeiros, N. D. Barth, R. Biazzi, and M. Sperandio, "Estudo de confiabilidade para um sistema de potência através da inserÇÃo de um parque eÓlico."

- [2] A. M. L. da Silva, "4. análise de confiabilidade em sistemas de potência," 2022.
- [3] A. M. Cassula, A. M. L. D. Silva, L. A. F. Manso, and R. Billinton, "AvaliaÇÃo da confiabilidade em sistemas de distribuiÇÃo considerando falhas de geraÇÃo e transmissÃo," pp. 262–271, 2003.