13345474 . 3111455

 A parametric encoder (100, 100') for encoding an audio or speech signal s into sinusoidal code data, comprising:

- a segmentation unit (110, 110') for segmenting said signal s into at least one segment x(n);
- a calculation unit (120, 120') for calculating said sinusoidal code data in the form of the phase and amplitude data of a given extension $\widehat{x}(n)$ from the segment x(n) such that the

extension $\hat{x}(n)$ approximates the segment x(n) as good as possible for a given criterion;

characterised in that

the calculation unit (120, 120') is adapted to calculate the sinusoidal code data θ_k^i, d_j^i and e_j^i for the following extension \hat{x} :

$$\hat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta'(n) = \sum_{k=1}^{K-1} \theta_k^i n^k$$

wherein:

i, j, k : represent parameters;

15 n : represents a discrete time parameter;

Ci : represents the i'th component of the extension \hat{x} ;

 θ_k' : represents the phase coefficient as one of said sinusoidal data

f_i: represents the jth instance out of the set of J linearly

independent functions;

20 Θⁱ : is a phase; and

 d_i^i, e_i^i : represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

2. The parametric encoder according to claim 1, characterised in that $f_j(n) = n^j$.

5

- The parametric encoder according to claim 1, characterised in that the calculation unit (120) comprises:
- a frequency estimation unit (122) for determining a plurality of LxK phase coefficients θ_k^i with i=1-L and k=1-K for all components Ci of the extension $\hat{x}(n)$ representing the received segment x(n):
- a pattern generating unit (124) for calculating a plurality of L phases $\Theta^{i}(n)$ with i=1-L from the phase coefficients θ^{i}_{r} according to:

$$\Theta'(n) = \sum_{k=1}^{K-1} \theta_k' n^k$$

and for generating a plurality of JxL pairs of patterns p_y^1, p_y^2 for the components Ci with i=1-L according to:

$$p_{ii}^1 = f_j(n) \cos(\Theta^i(n))$$
 and $p_{ij}^2 = f_j(n) \sin(\Theta^i(n))$

- for i = 1-L and i = 0-(J-1); and
- an amplitude estimation unit (126) for determining a plurality of JxL amplitudes d_j^i for the patterns p_y^1 and a plurality of JxL amplitudes e_j^i for the patterns p_y^2 of all components Ci of the extension \hat{x} ;
- wherein the sinusoidal data θ'_k , d'_j and e'_j is at least approximately optimised for the criterion that the weighted squared error E between the segment x and its extension \widehat{x} is minimised.
- The parametric encoder according to claim 1, characterised by a multiplexer
 (130) for merging said sinusoidal code data into a data stream.
- 25 5. The parametric encoder according to claim 1, characterised in that the calculation unit (120') comprises:
 - a frequency estimation unit (122') for determining a plurality of K phase coefficients θ_k^i with k=1-K for the component Ci from an input value ϵ_{i-1} ; wherein for the first component C1 with i=1 the input value is set to $\epsilon_0 = x(n)$;

- a pattern generating unit (124') for calculating the phases Θ^i for the component Ci from said plurality of phase coefficients θ^i_k according to:

$$\Theta'(n) = \sum_{k=1}^{K} \theta_k' n^k$$

and for generating a plurality of 2xJ patterns p_y^1, p_y^2 with j=1-J for the component Ci with:

$$p_{ii}^1 = j(n) \cos(\Theta^i(n))$$
 and $p_{ii}^2 = fj(n)\cos(\Theta^i(n))$;

- an amplitude estimation unit (126') for determining a plurality of J amplitudes d_j^1 and of J amplitudes e_j^i for said patterns of the component Ci from the received segment $\mathbf{x}(\mathbf{n})$ and from the received plurality of patterns p_y^1 , p_y^2 ;
- a synthesiser (128') for re-constructing the component Ci from said plurality of 2xJ patterns p_y^1 , p_y^2 and form the plurality of amplitudes d_j' and e_j' according to:

$$Ci = \sum_{j=0}^{J-1} \left[d_j^i f_j(n) \cos(\Theta^i(n)) + e_j^i f_j(n) \sin(\Theta^i(n)) \right]$$

- 15 and
 - a substraction unit (129') for substracting said component Ci form the input value $\epsilon_{i\cdot 1}$ in order to feed the resulting difference ϵ_i as new input value forward to the input of the frequency estimation unit (122') for calculating the sinusoidal code data representing the component Ci+1;
- wherein the sinusoidal data θ'_k , d'_j and e'_j is optimised for the criterion that the weighted squared error E between the segment x and the extension \hat{x} is minimised.
 - A parametric coding method for encoding an audio or speech signal s into sinusoidal code data, comprising the steps of:
- 25 segmenting the signal s into at least one segment x(n); and
 - calculating said sinusoidal code data in the form of phase and amplitude data of a given extension \hat{x} from the segment x(n) such that the extension \hat{x} approximates the segment x(n) as good as possible for a given criterion,

characterised in that

- the extension \hat{x} is defined to:

$$\hat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{t} f_{j}(n) \cos(\Theta^{t}(n)) + e_{j}^{t} f_{j}(n) \sin(\Theta^{t}(n)) \right]$$

5 with

$$\Theta^{\iota}(n) = \sum_{k=1}^{K} \theta_{k}^{\iota} n^{k}$$

wherein:

: represents a component Ci of the extension \hat{x} n):

j, k : represent parameters;

n : represents a discrete time parameter;

f_i : represents the jth instance out of the set of J linearly

independent functions;

 θ_{ν}^{i} : represents the phase coefficient as one of said sinusoidal data

 Θ^{i} : is a phase; and

 d_i^i, e_i^i : represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

- The method according to claim 6, characterised in that f_i(n) = nⁱ.
- 20 8. The method according to claim 6, characterised in that the frequencies θ'₁ are defined by picking peak frequencies in the frequency domain of the extension x̄.
 - 9. The method according to claim 6, characterised in that for fulfilling the criterion that the weighted squared error between the segment x and the extension \hat{x} is minimized the definition of the optimal amplitudes d'_i and e'_i comprises the steps of:
 - determining a plurality of LxK phase coefficients θ_k^i with i=1-L and k=1-K for all components Ci of the received segment x(n):
 - calculating a plurality of L phases $\Theta^{l}(n)$ with i=1-L from the phase coefficients θ^{l}_{k} according to:

25

25

$$\Theta'(n) = \sum_{k=1}^K \theta_k' n^k ;$$

- generating a plurality of JxL pairs of patterns p_{ij}^1 , p_{ij}^2 for the components Ci with i=1-L according to:
- $p_{ij}^1 = f_j(n) \cos(\Theta^i(n))$ and $p_{ij}^2 = f_j(n)\sin(\Theta^i(n))$; and
 - determining a plurality of JxL amplitudes d'_j and a plurality of JxL amplitudes e'_j for all the pairs of patterns p_y^1 , p_y^2 of all components Ci of the extension \hat{x} .
 - 10. The method according to claim 6, characterised in that for fulfilling the criterion that the weighted squared error between the segment x and the extension \hat{x} is minimized the definition of the amplitudes d'_{j} and e'_{j} comprises the steps of:
 - a) setting i= 1
 - b) $\varepsilon_{i-1} = \varepsilon_0 = x(n)$;
 - c) determining a plurality of K phase coefficients θ_k^i with k=1-K for the component Ci from an input value ε_{i-1};
 - d) calculating the phases Θ^i for the component Ci from said plurality of phase coefficients θ^i_k according to:

$$\Theta'(n) = \sum_{k=1}^{K} \theta_k' n^k$$

e) generating a plurality of 2xJ patterns p_y^1 , p_y^2 with

j=0-(J-1) for the component Ci with:

$$p_n^1 = f_i(n) \cos(\Theta^i(n))$$
 and $p_n^2 = f_i(n)\sin(\Theta^i(n))$;

- f) determining a plurality of J amplitudes $d_{_J}^{_I}$ and of J amplitudes $e_{_J}^{_I}$ for said patterns for the component Ci from the received segment x(n) and from the received plurality of patterns
- $p_{u}^{1}, p_{u}^{2};$ g) constructing the component Ci from said plurality of J pairs of patterns pij and from the amplitudes d'_{j} and e'_{j} according to: plurality of

$$Ci = \sum_{j=0}^{J-1} \left[d'_{j} f_{j}(n) \cos(\Theta'(n)) + e'_{j} f_{j}(n) \sin(\Theta'(n)) \right]$$

- h) substracting said component Ci from the input value $\epsilon_{i\text{-}1}$ in order to calculate a resulting difference ϵ_{i} ;
- 5 i) checking if i ≥ L wherein L represents a given number of components;
 - j) if i < L repeat the method steps by starting again from step c) with i = i+1; and
 - k) if $i \ge L$ the sinusoidal code data of all L components of the extension \widehat{x} have been calculated and thus the process has finished.
 - 11. A parametric decoder (400) for re-constructing an approximation \hat{s} of an audio or speech signal s from transmitted or restored code data, comprising:
 - a selecting unit (420) for selecting sinusoidal code data representing segments \widehat{x} of the approximation \widehat{s} from said received transmitted or restored code data;
 - a synthesiser (440) for re-constructing said segments \hat{x} from said received sinusoidal code data; and
 - a joining unit (460) for joining consecutive segments \hat{x} to form said approximation \hat{s} of the audio or speech signal s;

wherein the sinusoidal code data is a plurality of frequency and amplitude values for at least one component of said segment \hat{x} :

- 20 characterised in that
 - the synthesiser is adapted to re-construct said segments \widehat{x} from said sinusoidal code data according to the following formula:

$$\hat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{T} f_{j}(n) \cos(\Theta^{T}(n)) + e_{j}^{T} f_{j}(n) \sin(\Theta^{T}(n)) \right]$$

with

25

$$\Theta'(n) = \sum_{i=1}^{K} \theta_{k}^{i} n^{k}$$

wherein:

i represents a component Ci of the extension \hat{x} (n);

j,k : represent parameters;

n : represents a discrete time parameter;

30 f_i: represents the jth instance out of the set of J linearly

independent functions;

 θ_{ν}^{i} : represents the phase coefficient value as one of said sinusoidal

data

Θⁱ : is a phase; and

 d_i^i, e_i^i : represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

- 12. Decoding method for reconstructing an approximation \widehat{s} of an audio or speech signal s from transmitted or restored code data, comprising the steps of selecting sinusoidal code data representing segments \widehat{x} of the approximation \widehat{s} from said received transmitted or restored code data:
- re-constructing said segments \hat{x} from said received sinusoidal code data; and
- joining consecutive segments \hat{x} together in order to form said approximation \hat{s} of the audio or speech signal s;
- wherein the sinusoidal code data is a plurality of phase and amplitude values for at least one component of said segment \widehat{x} ,

characterised in that

- in said re-construction step the segments \hat{x} are re-constructed from said sinusoidal code data according to the following formula:

$$\hat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

$$\Theta'(n) = \sum_{k=1}^K \theta_k' n^k$$

wherein:

i : represents a component Ci of the extension \widehat{x} (n);

j,k : represent parameters;

n : represents a discrete time parameter;

30 f_j : represents the jth instance out of the set of J linearly

independent functions:

20

25

 θ_{ν}^{i} : represents the phase coefficient as one of said sinusoidal data

 Θ^{i} : is a phase; and

 d_i^i, e_i^i : represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

13. Data stream comprising sinusoidal code data representing segments \widehat{x} of an approximation \widehat{s} of an audio or speech signal, wherein the sinusoidal code data is a plurality of phase and amplitude values for at least one component of said segment \widehat{x} , characterised in that the segment \widehat{x} is defined to:

$$\widehat{x} = \sum_{i=1}^{L} Ci = \sum_{i=1}^{L} \sum_{j=0}^{J-1} \left[d_{j}^{i} f_{j}(n) \cos(\Theta^{i}(n)) + e_{j}^{i} f_{j}(n) \sin(\Theta^{i}(n)) \right]$$

with

5

$$\Theta^{i}(n) = \sum_{k=1}^{K} \theta_{k}^{i} n^{k}$$

wherein:

i represents a component Ci of the extension \hat{x} (n);

j,k : represent parameters;

n : represents a discrete time parameter;

f_j : represents the jth instance out of the set of J linearly

independent functions;

 θ_k' : represents the phase coefficient as one of said sinusoidal data

 Θ^{i} : is a phase; and

 d_i^i, e_i^i : represent the linearly involved amplitude values of the

components representing parts of said sinusoidal data.

 Storage medium on which a data stream as claimed in claim 13 has been stored.