1 Section 2.A Exercises

Exercises with solutions from Section 2.A of [LADR].

Exercise 2.A.1. Suppose v_1, v_2, v_3, v_4 spans V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

also spans V.

Solution. Let $v \in V$ be given. Since $V = \text{span}(v_1, v_2, v_3, v_4)$, there are scalars a_1, a_2, a_3, a_4 such that $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$. Observe that

$$a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4) + (a_1 + a_2 + a_3 + a_4)v_4$$

$$= a_1v_1 + (a_1 + a_2 - a_1)v_2 + (a_1 + a_2 + a_3 - a_1 - a_2)v_3 + (a_1 + a_2 + a_3 + a_4 - a_1 - a_2 - a_3)v_4$$

$$= a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$$

$$= v.$$

Hence $v \in \text{span}(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$. It follows that $V = \text{span}(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$.

Exercise 2.A.2. Verify the assertions in Example 2.18.

- Solution. (a) The assertion is that a list v of one vector $v \in V$ is linearly independent if and only if $v \neq 0$. To see this, first suppose that $v \neq 0$ and $a \in \mathbf{F}$ is such that av = 0. Then by Exercise 1.B.2, it must be the case that a = 0, demonstrating that the list v is linearly independent. Now suppose that v = 0, so that any choice of non-zero $a \in \mathbf{F}$ will satisfy av = 0; 1v = 0 for example. It follows that the list v is linearly dependent.
 - (b) The assertion is that a list of two vectors in V is linearly independent if and only if neither vector is a scalar multiple of the other. Suppose that u, v is the list of two vectors in V, and suppose that one is a scalar multiple of the other, say $v = \lambda u$ for some scalar λ . Then $v \lambda u = 0$; the coefficient of v in this linear combination is non-zero, so the list u, v is linearly dependent. Now suppose that the list u, v is linearly dependent, so that $\mu v + \lambda u = 0$ where at least one of μ and λ is non-zero, say $\mu \neq 0$: then $v = -\frac{\lambda}{u}u$.
 - (c) The assertion is that the list (1,0,0,0), (0,1,0,0), (0,0,1,0) is linearly independent in \mathbf{F}^4 . This is easily seen, since

$$a(1,0,0,0) + b(0,1,0,0) + c(0,0,1,0) = (a,b,c,0) = (0,0,0,0)$$

forces a = b = c = 0.

(d) The assertion is that the list $1, z, ..., z^m$ is linearly independent in $\mathcal{P}(\mathbf{F})$ for each nonnegative integer m. Suppose that we have scalars $a_0, a_1, ..., a_m$ such that

$$a_0 + a_1 z + \dots + a_m z^m = 0$$

for all $z \in \mathbf{F}$. Since the degree of the right-hand side is $-\infty$ and any non-zero coefficient on the left-hand side would result in a polynomial with degree zero or greater, it must be the case that $a_0 = a_1 = \cdots = a_m = 0$.

Exercise 2.A.3. Find a number t such that

$$(3, 1, 4), (2, -3, 5), (5, 9, t)$$

is not linearly independent in \mathbb{R}^3 .

Solution. Let t=2. Then observe that

$$3(3,1,4) - 2(2,-3,5) - (5,9,2) = (0,0,0).$$

Exercise 2.A.4. Verify the assertion in the second bullet point in Example 2.20.

Solution. The assertion is that the list (2,3,1), (1,-1,2), (7,3,c) is linearly dependent in \mathbf{F}^3 if and only if c=8. If c=8 then, as shown in the first bullet point in Example 2.20, we have

$$2(2,3,1) + 3(1,-1,2) + (-1)(7,3,8) = (0,0,0).$$

Now suppose that the list is linearly dependent. Since (1, -1, 2) is clearly not a scalar multiple of (2, 3, 1), the Linear Dependence Lemma implies that (7, 3, c) lies in the span of (2, 3, 1) and (1, -1, 2), i.e. there are scalars x and y such that

$$x(2,3,1) + y(1,-1,2) = (7,3,c).$$

Solving the equations 2x + y = 7 and 3x - y = 3 gives x = 2 and y = 3, whence c = x + 2y = 8.

Exercise 2.A.5. (a) Show that if we think of C as a vector space over R, then the list (1 + i), (1 - i) is linearly independent.

(b) Show that if we think of C as a vector space over C, then the list (1+i), (1-i) is linearly dependent.

Solution. (a) Suppose that x and y are real numbers such that

$$x(1+i) + y(1-i) = (x+y) + (x-y)i = 0.$$

The real part of the left-hand side is x + y and the imaginary part is x - y. A complex number is zero if and only if both its real and imaginary parts are zero, so we must have

$$x + y = 0$$
 and $x - y = 0 \iff x = y = 0$.

Hence the list (1+i), (1-i) is linearly independent.

(b) Observe that i(1-i) = 1+i, so that 1+i is a scalar multiple of 1-i. Then by Exercise 2.A.2 (b), the list (1+i), (1-i) is linearly dependent.

Exercise 2.A.6. Suppose v_1, v_2, v_3, v_4 is linearly independent in V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

is also linearly independent.

Solution. Suppose that a_1, a_2, a_3, a_4 are scalars such that

$$a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0.$$

This is equivalent to

$$a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0.$$

Since the list v_1, v_2, v_3, v_4 is linearly independent, we must have

$$a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0,$$

which implies that $a_1 = a_2 = a_3 = a_4 = 0$. It follows that the list $v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$ is linearly independent.

Exercise 2.A.7. Prove or give a counterexample: If v_1, v_2, \ldots, v_m is a linearly independent list of vectors in V, then

$$5v_1 - 4v_2, v_2, v_3, \dots, v_m$$

is linearly independent.

Solution. (Assuming $m \geq 2$). Suppose that a_1, a_2, \ldots, a_m are scalars such that

$$a_1(5v_1 - 4v_2) + a_2v_2 + a_3v_3 + \dots + a_mv_m = 0,$$

which is equivalent to

$$5a_1v_1 + (a_2 - 4a_1)v_2 + a_3v_3 + \dots + a_mv_m = 0.$$

Since the list v_1, v_2, \ldots, v_m is linearly independent, this implies that

$$5a_1 = a_2 - 4a_1 = a_3 = \dots = a_m = 0,$$

which implies that $a_1 = a_2 = a_3 = \cdots = a_m = 0$. It follows that the list $5v_1 - 4v_2, v_2, v_3, \ldots, v_m$ is linearly independent.

Exercise 2.A.8. Prove or give a counterexample: If v_1, v_2, \ldots, v_m is a linearly independent list of vectors in V and $\lambda \in \mathbf{F}$ with $\lambda \neq 0$, then $\lambda v_1, \lambda v_2, \ldots, \lambda v_m$ is linearly independent.

Solution. Suppose that a_1, a_2, \ldots, a_m are scalars such that

$$a_1\lambda v_1 + a_2\lambda v_2 + \dots + a_m\lambda v_m = 0.$$

Since $\lambda \neq 0$, we may multiply both sides of this equation by λ^{-1} to obtain

$$a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0.$$

Since the list v_1, v_2, \ldots, v_m is linearly independent, this implies that $a_1 = a_2 = \cdots = a_m = 0$. It follows that the list $\lambda v_1, \lambda v_2, \ldots, \lambda v_m$ is linearly independent.

Exercise 2.A.9. Prove or give a counterexample: If v_1, \ldots, v_m and w_1, \ldots, w_m are linearly independent lists of vectors in V, then $v_1 + w_1, \ldots, v_m + w_m$ is linearly independent.

Solution. This is false. Consider **R** as a vector space over itself and the two linearly independent lists 1 and -1. Then the list 1 + (-1) = 0 is linearly dependent.

Exercise 2.A.10. Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Prove that if $v_1 + w, \ldots, v_m + w$ is linearly dependent, then $w \in \text{span}(v_1, \ldots, v_m)$.

Solution. By the Linear Dependence Lemma, there is a $j \in \{1, 2, ..., m\}$ such that $v_j + w \in \text{span}(v_1 + w, ..., v_{j-1} + w)$. If j = 1, then $v_1 + w \in \text{span}() = \{0\}$, so that $w = -v_1$ and hence $w \in \text{span}(v_1, ..., v_m)$. If $j \geq 2$, then there are scalars $a_1, ..., a_{j-1}$ such that

$$v_j + w = a_1(v_1 + w) + \dots + a_{j-1}(v_{j-1} + w),$$

which is equivalent to

$$v_j + \lambda w = a_1 v_1 + \dots + a_{j-1} v_{j-1},$$

where $\lambda = 1 - (a_1 + \dots + a_{j-1})$. Note that λ must be non-zero; if this were not the case, then v_j would lie in the span of v_1, \dots, v_{j-1} , which cannot happen since the list v_1, \dots, v_j is linearly independent. It follows that

$$w = \lambda^{-1}(a_1v_1 + \dots + a_{j-1}v_{j-1} - v_j),$$

whence $w \in \operatorname{span}(v_1, \dots, v_m)$.

Exercise 2.A.11. Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Show that v_1, \ldots, v_m, w is linearly independent if and only if

$$w \not\in \operatorname{span}(v_1,\ldots,v_m).$$

Solution. If $w \in \text{span}(v_1, \ldots, v_m)$, then the list v_1, \ldots, v_m, w is linearly dependent (third bullet point of Example 2.20). Conversely, suppose that the list v_1, \ldots, v_m, w is linearly dependent. By the Linear Dependence Lemma, one of the vectors in the list must be in the span of the previous ones. It cannot be the case that some v_j belongs to $\text{span}(v_1, \ldots, v_{j-1})$ since that would contradict the linear independence of the list v_1, \ldots, v_m , so it must be the case that $w \in \text{span}(v_1, \ldots, v_m)$.

Exercise 2.A.12. Explain why there does not exist a list of six polynomials that is linearly independent in $\mathcal{P}_4(\mathbf{F})$.

Solution. It is easily verified that $\mathcal{P}_4(\mathbf{F})$ is spanned by the list $1, z, z^2, z^3, z^4$, which has length 5. Then by (2.23), any linearly independent list in $\mathcal{P}_4(\mathbf{F})$ can have length at most 5.

Exercise 2.A.13. Explain why no list of four polynomials spans $\mathcal{P}_4(\mathbf{F})$.

Solution. It is easily verified that the list $1, z, z^2, z^3, z^4$ is linearly independent in $\mathcal{P}_4(\mathbf{F})$. Then by (2.23), any list of vectors which spans $\mathcal{P}_4(\mathbf{F})$ must have length at least 5.

Exercise 2.A.14. Prove that V is infinite-dimensional if and only if there is a sequence v_1, v_2, \ldots of vectors in V such that v_1, \ldots, v_m is linearly independent for every positive integer m.

Solution. Suppose that V is finite-dimensional, so that it is spanned by some list w_1, \ldots, w_m of vectors, and let v_1, v_2, \ldots be any sequence of vectors in V. Then by (2.23), the list $v_1, v_2, \ldots, v_{m+1}$ cannot be linearly independent.

Now suppose that V is infinite-dimensional, so that no list of vectors in V spans V. Certainly $V \neq \{0\}$, so pick any $v_1 \neq 0$ in V; the list v_1 is linearly independent. Suppose that after m steps, we have chosen vectors v_1, \ldots, v_m such that the list v_1, \ldots, v_m is linearly independent. Since $V \neq \operatorname{span}(v_1, \ldots, v_m)$, pick any $v_{m+1} \notin \operatorname{span}(v_1, \ldots, v_m)$. By Exercise 2.A.11, the list $v_1, \ldots, v_m, v_{m+1}$ is linearly independent. In this way, we inductively obtain a sequence v_1, v_2, \ldots such that v_1, \ldots, v_m is linearly independent for each positive integer m.

Exercise 2.A.15. Prove that \mathbf{F}^{∞} is infinite-dimensional.

Solution. Consider the sequence of vectors v_1, v_2, \ldots , where v_i is the vector with a 1 in the i^{th} position and 0's elsewhere. For each positive integer m, it is not hard to see that the list v_1, \ldots, v_m is linearly independent. It follows from Exercise 2.A.14 that \mathbf{F}^{∞} is infinite-dimensional.

Exercise 2.A.16. Prove that the real vector space of all continuous real-valued functions on the interval [0,1] is infinite-dimensional.

Solution. Consider the sequence of continuous functions f_1, f_2, \ldots , where $f_1(x) = 1$ for all $x \in [0, 1]$ and for $i \geq 2$, $f_i : [0, 1] \to \mathbf{R}$ is given by $f_i(x) = 1$ for $x \in [0, 1/i]$, $f_i(x) = 0$ for $x \in [1/(i-1), 1]$. On the interval (1/i, 1/(i-1)), f_i is a straight line segment joining the points (1/i, 1) and (1/(i-1), 0) to give a continuous function (see Figure 1).

Figure 1: f_i

Let m be a positive integer and suppose we have real numbers a_1, \ldots, a_m such that

$$a_1 f_1(x) + a_2 f_2(x) + \dots + a_m f_m(x) = 0$$

for all $x \in [0, 1]$. In particular, taking x = 1 gives

$$a_1 f_1(1) + a_2 f_2(1) + \dots + a_m f_m(1) = a_1 = 0.$$

Then taking x = 1/2 gives

$$a_2 f_2(1/2) + a_3 f_3(1/2) + \dots + a_m f_m(1/2) = a_2 = 0.$$

Continuing in this way, taking x = 1/i for each $i \in \{1, 2, ..., m\}$, we see that $a_1 = a_2 = \cdots = a_m = 0$. It follows that $f_1, f_2, ..., f_m$ is a linearly independent list for each positive integer m and hence by Exercise 2.A.14 the vector space in question is infinite-dimensional.

Exercise 2.A.17. Suppose p_0, p_1, \ldots, p_m are polynomials in $\mathcal{P}_m(\mathbf{F})$ such that $p_j(2) = 0$ for each j. Prove that p_0, p_1, \ldots, p_m is not linearly independent in $\mathcal{P}_m(\mathbf{F})$.

Solution. Consider the list p_0, p_1, \ldots, p_m, f of length m+2, where f(x)=x. Since $\mathcal{P}_m(\mathbf{F})$ is spanned by a list of length m+1 (Example 2.14), (2.23) implies that the list p_0, p_1, \ldots, p_m, f is linearly dependent. Suppose that f belongs to $\operatorname{span}(p_0, p_1, \ldots, p_m)$, i.e. there are scalars a_0, a_1, \ldots, a_m such that

$$x = a_0 p_0(x) + a_1 p_1(x) + \dots + a_m p_m(x)$$

for all $x \in \mathbf{F}$. In particular,

$$2 = a_0 p_0(2) + a_1 p_1(2) + \dots + a_m p_m(2) = 0,$$

which is a contradiction; it follows that $f \notin \text{span}(p_0, p_1, \dots, p_m)$. Hence by the Linear Dependence Lemma, there exists some $j \in \{0, 1, \dots, m\}$ such that $p_j \in \text{span}(p_0, p_1, \dots, p_{j-1})$. The third bullet point of Example 2.20 now implies that the list p_0, p_1, \dots, p_m is linearly dependent.

[LADR] Axler, S. (2015) Linear Algebra Done Right. 3rd edn.