MAT232 - Tutorial 10

1. Without evaluating the integral, show that

$$\iint\limits_{R} \sin(2x)\cos(4y)dA \le 4\pi^2$$

where R is the rectangle with vertices $(0,0), (4\pi,0), (4\pi,\pi)$, and $(0,\pi)$.

- 2. Find the area of the region bounded by the curves $y=e^x, x=0$, and $y=e^3$.
- 3. The rest of this tutorial will be review for test 2. TAs will select topics from:
 - (a) Multivariable limits.
 - (b) The multivariable chain rule.
 - (c) Implicit differentiation.
 - (d) Finding tangent planes.
 - (e) Finding directional derivatives, and directions of maximal rate of change.
 - (f) Finding and classifying crticial points.
 - (g) Finding absolute maximum and minimum over closed/bounded regions.
 - (h) Using the method of Lagrange multipliers.
 - (i) Evaluating double integrals.

3.

THY Q1.

1.

Q) $f(x,y) = 4x^2 + 10y^2$ $g(x,y) = x^3 + 4^2$ three g(x,y) = 4 $\forall f(x,y) = 1$ $\forall g(x,y) = 4$ $\forall g(x,y) = 4$ $\forall f(x,y) = 1$ $\forall g(x,y) = 4$ (2x, 2y) = 4 f(x,y) = 1 f(x,y) =

f(20) = f(-2,0) = 16