ПОРОЖДАЮЩАЯ МАТРИЦА

Порождающая матрица G_N полярного кода — квадратная матрица порядка N, которая является произведением перестановочной матрицы B_N на n-ю степень кронекерова произведения матрицы

$$F = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix},\tag{1}$$

то есть $G_N = B_N F^{\otimes n}$, где значок \otimes обозначает кронекерово произведение матриц.

Кронекеровым произведением квадратной матрицы $A=(a_{ij})$ порядка m на квадратную матрицу $D=(d_{ij})$ порядка k (обозначается, как $A\otimes D$) называется квадратная матрица C порядка mn вида

$$C = \begin{pmatrix} a_{11}D & \cdots & a_{1n}D \\ \vdots & \ddots & \vdots \\ a_{m1}D & \cdots & a_{mn}D \end{pmatrix}. \tag{2}$$

Матрица B_N вычисляет по формуле

$$B_N = R_N \cdot \left(E_2 \otimes R_{N/2} \right) \cdot \left(E_4 \otimes R_{N/4} \right) \dots \left(E_{N/2} \otimes R_2 \right), \tag{3}$$

где $R_N \ (i=1,2,...)$ есть подстановочная матрица такая, что

$$(s_1, s_2, \dots, s_{2^i})R_{2^i} = (s_1, s_3, \dots, s_{2^{i-1}}, s_2, s_4, \dots, s_{2^i}),$$
 (4)

а E_{2^i} – единичная матрица порядка 2^i .

Пример. Построим порождающую матрицу кода длины $N=2^3$. Найдём матрицу F (вычисление произведения проводим справа налево):

$$F^{\otimes} = F \otimes F \otimes F = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

$$(5)$$

Матрица R_8 удовлетворяет условию

$$(s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8)R_8 = (s_1, s_3, s_5, s_7, s_2, s_4, s_6, s_8).$$
 (6)

Чтобы её построить, запишем постановку α , поместив в её первую строку индексы перестановки $(s_1, s_3, s_5, s_7, s_2, s_4, s_6, s_8)$, а во вторую – индексы перестановки $(s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8)$:

$$\alpha = \begin{pmatrix} 1 & 3 & 5 & 7 & 2 & 4 & 6 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}. \tag{7}$$

В матрице R_8 единицы будут стоять на позициях (1,1), (3,2), (5,3), (7,4), (2,5), (4,6), (6,7), (8,8), а на остальных местах – нули:

Аналогично, вычислим матрицы R_4 и R_2 :

$$R_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \tag{9}$$

$$R_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}. \tag{10}$$

Следовательно,

Порождающая матрица будет равна

$$G_8 = B_8 F^{\otimes 3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$
 (12)