Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

> Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

> > Звіт

з лабораторної роботи №5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження алгоритмів розгалуження» Варіант 8

Виконав ІП-13, Гончаров Євген Олександрович студент (шифр, прізвище, ім'я, по батькові)

Перевірив Наталія Вечерковська Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 5

Організація циклічних процесів складних циклів

Мета – вивчити особливості організації складних циклів.

Індивідуальне завдання

Варіант 8

Завдання

Цифровий корінь натурального числа - - це одноцифрове значення, яке отримується із цифр числа шляхом ітераційного процесу знаходження спочатку суми цифр даного числа, а потім, якщо потрібно, суми цифр значень, отриманих на попередній ітерації знаходження відповідних сум (якщо значення суми не є цифрою). Цей процес триває до тих пір, поки не буде отримано однорозрядне число. Наприклад, цифровим коренем числа $65536 \ \epsilon \ 7$, так як 6+5+5+3+6=25, 2+5=7. Знайти цифрові корені всіх простих чисел з інтервалу [100,200].

1. Постановка задачі

Оскільки всі значення — константи, введення не потрібне. В ході обчислень, використавши функції для перевірки числа на те чи ϵ воно простим(ifltSimple) і обчислення цифрового кореня числа(findRoot), визначаємо та виводимо цифрові корені усіх простих чисел від 100 до 200.

2. Побудова математичної моделі.

Складемо таблицю імен змінних.

Змінна	Tun	Ім'я	Призначення
Перевірка на просте число	Логічний (функція)	ifItSimple(number)	Обчислення
Обрахування цифрового кореня	Цілочисельний (функція)	findRoot(number)	обчислення

Реалізуємо знаходження цифрових коренів та простих чисел в підпрограмах.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначемо основні дії.

Крок 2. Проведемо обчислення та виводимо значення.

Псевдокод

Основна програма:

Крок 1

Початок

Визначемо основні дії

Проведемо обчислення та виводимо значення кінець

Крок 2

Початок

Визначемо основні дії

Крок 3

Початок

Визначемо основні дії

повторити для і від 100 до 200:

якщо ifItSimple(i)

то вивести findRoot(i)

все повторити

кінець

```
Підпрограми:
ifItSimple(X)
    result = true
    Повторити для і від X-1 до 2:
         якшо X % i == 0:
             το result = false
         все якщо
    все повторити
    повернути result
кінець ifItSimple
findRoot(X)
    Y = 0
    повторити поки Х != 0:
         Y += X % 10
         x /= 10
    все повторити
    якщо У % 10 != Y:
         To Y = findRoot(Y)
    все якщо
    повернути Ү
кінець findRoot
```

Блок-схема

Основна програма:

Крок1

Крок 3

Підпрограми:

ifItSimple

findRoot

Основи алгоритмізації Тестування

Блок	Дія	
	Початок	
1	i = 100	
2	ifItSimple = false	
3	i = 101	
4	ifItSimple = true	
5	Вивести	
	findRoot = 2	
6	i = 102	
7	ifItSimple = false	
•••	•••	
222	i = 200	
223	ifItSimple = false	
	Кінець	

Висновки

Ми вивчили вивчили особливості організації складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

В результаті виконання лабораторної роботи ми отримали алгоритм для знаходження цифрових кореней всіх простих чисел від 100 до 200, декомпозували задачу на 2 кроки: визначили основні дії, провели обчислення та вивели результат.