### Cost Function for Logistic Regression

Training set 
$$\int_{-\infty}^{\infty} \frac{1}{1 + e^{-(wx + b)}}$$

| tumor size<br>(cm) | <br>patient's age | malignant? |  |
|--------------------|-------------------|------------|--|
| X                  | Χn                | У          |  |
| 10                 | 52                | 1          |  |
| 2                  | 73                | 0          |  |
| 5                  | 55                | 0          |  |
| 12                 | 49                | 1          |  |
|                    |                   |            |  |

$$J(\overrightarrow{\mathbf{w}}, \mathbf{b}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left( f_{\overrightarrow{\mathbf{w}}, \mathbf{b}} \left( \overrightarrow{\mathbf{x}}^{(i)} \right) - \mathbf{y}^{(i)} \right)^{2}$$

$$J(\overrightarrow{\mathbf{w}}, \mathbf{b}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left( f_{\overrightarrow{\mathbf{w}}, \mathbf{b}} \left( \overrightarrow{\mathbf{x}}^{(i)} \right) - \mathbf{y}^{(i)} \right)^{2}$$

#### linear regression

$$f_{\overrightarrow{\mathbf{w}},\mathbf{b}}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + \mathbf{b}$$



#### Squared error cost

$$J(\overrightarrow{\mathbf{w}}, \mathbf{b}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left( f_{\overrightarrow{\mathbf{w}}, \mathbf{b}} \left( \overrightarrow{\mathbf{x}}^{(i)} \right) - \mathbf{y}^{(i)} \right)^{2}$$

#### linear regression

$$f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

### logistic regression

$$f_{\overrightarrow{\mathbf{W}},\mathbf{b}}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{W}} \cdot \overrightarrow{\mathbf{x}} + \mathbf{b})}}$$





$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{\frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})^{2}}_{\text{loss}}$$

$$L(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})$$

$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})^{2}$$

$$\log L(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})$$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})^{2}$$

$$\log L(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})$$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$



$$f(x) = \log(x)$$

#### Graph for log(x)





#### Graph for $-\log(x)$



$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \underline{\mathbf{y}}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$



$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$



### Simplified loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log\left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})\right) - (1-\mathbf{y}^{(i)})\log\left(1-f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})\right)$$

## Simplified loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{\mathbf{w}},\mathbf{b}}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log\left(f_{\overrightarrow{\mathbf{w}},\mathbf{b}}(\overrightarrow{\mathbf{x}}^{(i)})\right) - (1-\mathbf{y}^{(i)})\log\left(1-f_{\overrightarrow{\mathbf{w}},\mathbf{b}}(\overrightarrow{\mathbf{x}}^{(i)})\right)$$

$$\frac{Cost}{J(\overrightarrow{w},b)} = \left(\frac{1}{m}\sum_{i=1}^{m} \left[L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}),y^{(i)})\right]\right)$$

$$\frac{1}{m} \sum_{i=1}^{m} \left[ \mathbf{y}^{(i)} \log \left( \mathbf{f}_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + \left( 1 - \mathbf{y}^{(i)} \right) \log \left( 1 - \mathbf{f}_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]$$

maximum likelihood

# Training logistic regression

Find  $\overrightarrow{\mathbf{w}}$ ,  $\mathbf{b}$ 

reg: = w 2e + b

Given new  $\vec{x}$ , output  $f_{\vec{w},b}(\vec{x})$ 

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1+e^{-(\overrightarrow{\mathbf{w}}\cdot\overrightarrow{\mathbf{x}}+b)}}$$

$$P(y=1|\vec{x};\vec{w},b)$$

#### Gradient descent

```
COS^{+}

J(\vec{\mathbf{w}},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ \mathbf{y}^{(i)} \log \left( \mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) + \left( 1 - \mathbf{y}^{(i)} \right) \log \left( 1 - \mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) \right]

repeat {
             w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\vec{w}, b)
              b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{\mathbf{w}}, b)
```

### Gradient descent

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left( 1 - y^{(i)} \right) \log \left( 1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$j = 1 - M \\ w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w},b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
}

# Gradient descent for logistic regression



} simultaneous updates

# Gradient descent for logistic regression

repeat {  $w_{j} = w_{j} - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} \right]$   $b = b - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) \right]$ 

} simultaneous updates

Linear regression  $f_{\vec{w},b}(\vec{x}) = \vec{w} \cdot \vec{x} + b$ 

Logistic regression  $f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + \rho(-\vec{w} \cdot \vec{x} + b)}$ 

22 ( SP /S Z= W12, + W2 22 2 = W.X 3x1