CUNY 607 HW5

Todd Weigel October 2, 2016

Assignment Overview

This assignment was to get an understanding of "Tidy" data, both by manipulating data in a cluttered or "untidy" format as well as by using some of the newer R packages, tidy.r and dplyr.r.

Below is the code module containing functions to initialize the environment, as well as encapsulate some of the more cumbersome processing, including transforming the data into a "tidy" one, as well as some analysis functions.

```
initialize <-function()</pre>
    library(stringr)
    library(tidyr)
    library(dplyr)
}
getFlightDF <- function(filename)</pre>
    flights <- read.csv(filename) %>%
                                           #use piping
        gather (destination, counts, -X, -X.1, na.rm = TRUE) %>% #rotate the Destination Columns
        rename(delayed = X.1) %>%
                                     # name the column with delayed or ontime indicators
                #second row col 1 should always have 1st row col 1 values, so use lag function to move
                #1row and assign to rows 2,4,6.... (note is.na needed because 1st row from lag is na a
        mutate(airline= str_c(X, unlist(lapply(lag(X), function(x) {x[is.na(x)] <-"" ; x}))))</pre>
    flights$X <- NULL #(easier than listing column names in mutate)
    flights <- flights[c("airline", "delayed", "destination", "counts")] #just rearrange columns
    flights$delayed <- (!flights$delayed == "on time")</pre>
                                                                            # set delayed column to bool
    return(flights)
}
getMeanFlights <- function(df, bDelayed = TRUE)</pre>
    return(df%>%
        filter(delayed == bDelayed) %>%
        summarise(mean(counts)))
}
getWorstDestinationByCount <- function(df)</pre>
    byDest <- df %>% group_by(destination) %>%
```

```
filter(delayed == TRUE) %>%
                      summarise(cityCounts = sum(counts))
    return(byDest[which.max(byDest$cityCounts),])
}
getBestDestinationByCount <- function(df)</pre>
{
    byDest <- df %>% group_by(destination)
        filter(delayed == TRUE) %>%
        summarise(cityCounts = sum(counts))
    return(byDest[which.min(byDest$cityCounts),])
}
getBestWorstDestinationByPctDelayed <- function(df, worst = TRUE)</pre>
    grouped <- df %>% group_by(destination)
    delayed <- grouped %>% filter(delayed == TRUE) %>%
                            summarise(cityCounts = mean(counts))
    notDelayed <- grouped %>% filter(delayed == FALSE) %>%
                               summarise(cityCounts = mean(counts))
    pctDelayed <- (delayed[,2]/notDelayed[,2])</pre>
    if (worst)
    {
        delayed$destination[which(pctDelayed == max(pctDelayed))]
    }
    else
    {
        delayed$destination[which(pctDelayed == min(pctDelayed))]
    }
}
```

Lets first look at dataset before tidying:

```
read.csv("flights.csv")
##
                  X.1 Los.Angeles Phoenix San.Diego San.Francisco Seattle
## 1
                               497
                                        221
                                                  212
                                                                 503
                                                                         1841
      Alaska on time
## 2
                                                   20
                                                                  102
                                                                          305
             delayed
                                62
                                         12
## 3
                                NA
                                         NA
                                                   NA
                                                                  NA
                                                                           NA
## 4 AM WEST on time
                               694
                                       4840
                                                  383
                                                                  320
                                                                          201
                                        415
                                                                  129
## 5
             delayed
                               117
                                                   65
                                                                           61
```

And as you can observe, it is a mess. Now lets initialize our environment, run the function to tidy the data, and then look at the tidy dataset:

initialize() ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union fDf <- getFlightDF("flights.csv") fDf ## airline delayed destination counts ## 1 Alaska FALSE Los.Angeles 497 ## 2 Alaska TRUE Los.Angeles 62 ## 3 AM WEST FALSE Los.Angeles 694 ## 4 AM WEST TRUE Los.Angeles 694 ## 4 AM WEST TRUE Los.Angeles 694 ## 4 AM WEST TRUE Los.Angeles 694</pre>

##		$\operatorname{airline}$	delayed	destination	counts
##	1	Alaska	FALSE	Los.Angeles	497
##	2	Alaska	TRUE	Los.Angeles	62
##	3	AM WEST	FALSE	Los.Angeles	694
##	4	AM WEST	TRUE	Los.Angeles	117
##	5	Alaska	FALSE	Phoenix	221
##	6	Alaska	TRUE	Phoenix	12
##	7	AM WEST	FALSE	Phoenix	4840
##	8	AM WEST	TRUE	Phoenix	415
##	9	Alaska	FALSE	San.Diego	212
##	10	Alaska	TRUE	San.Diego	20
##	11	AM WEST	FALSE	San.Diego	383
##	12	AM WEST	TRUE	San.Diego	65
##	13	Alaska	FALSE	${\tt San.Francisco}$	503
##	14	Alaska	TRUE	${\tt San.Francisco}$	102
##	15	AM WEST	FALSE	${\tt San.Francisco}$	320
##	16	AM WEST	TRUE	${\tt San.Francisco}$	129
##	17	Alaska	FALSE	Seattle	1841
##	18	Alaska	TRUE	Seattle	305
##	19	AM WEST	FALSE	Seattle	201
##	20	AM WEST	TRUE	Seattle	61

Much better looking...as one can see, there is one observation per row of data, basically that observation consists of the counts of an airline's flights for a given destination city, and whether the count is on-time flights or delayed flights.

The code in that get function was as follows. First a the reading of the file with read.csv. Then the "gather" function was use to basically rotate the 5 city columns and their corresponding counts to be rows of data rather than columns. Next some renames occurred, to add readability. Next we used the lag function to populate the now "missing" airline info in every other row. Lastly, some rearranging of the columns was done, as well as changing the "on-time" and "delayed" text to instead be boolean TRUE or FALSE values. Let's now call some of the functions for analysis:

getBestDestinationByCount(fDf)

getWorstDestinationByCount(fDf)

Those returned the best and worst destinations by total delayed flights. That was done by using the group by function, a filter on rows with delays, getting the sum of counts, and returning the max or min as relevant.

```
getBestWorstDestinationByPctDelayed(fDf, TRUE)
```

```
## [1] "San.Francisco"
```

```
getBestWorstDestinationByPctDelayed(fDf, FALSE)
```

```
## [1] "Phoenix"
```

This returned either the best or worst destination by the percentage of delayed flights, which is probably a more useful metric. This required similar techniques to the others, with the addition of having to divide by grouped sums and then finding the appropriate subsetted row.

Here is a plot of the ontime versus delayed flights, showing that flights are much more likely to be ontime versus delayed.

```
plot(subset(fDf, delayed==TRUE)[,"counts"], subset(fDf, delayed==FALSE)
    [,"counts"], xlab = "Delayed Flights", ylab = "On Time Flights")
```


##Some toughts regarding "tidy" data. Clearly, it does take some work to make one's data neat, but as many a mother or teacher has likely said, preparation is worth it's weight in gold. It would have been far more difficult to try and accomplish any kind of analysis on the original data (even the simple analysis done here), and so this is a skill that will need to be well learned. One thing "sort of" learned, but still needing much research is the new "tibble" object that some of the dplyr functions return... that was a surprise and actually made some of the work slightly harder, as there was just a lack of knowledge as to what one should do with it.

Lastly, so as not to take up space, the original data set was expanded to seven cities and three airlines to test that the "tidying" of the data was at least a little scalable. Below is the load and view of that bigger dataset, as well as the data.frame that it was "tidied" into.

```
read.csv("flightsbig.csv")
```

##		Х	X.1	Los.Angeles	${\tt Phoenix}$	San.Diego	${\tt San.Francisco}$	Seattle
##	1	Alaska	on time	497	221	212	503	1841
##	2		delayed	62	12	20	102	305
##	3			NA	NA	NA	NA	NA
##	4	AM WEST	on time	694	4840	383	320	201
##	5		delayed	117	415	65	129	61
##	6			NA	NA	NA	NA	NA
##	7	Flights R Us	on time	442	3083	244	204	128
##	8		delayed	75	264	41	82	39

```
## Tokyo New.York
## 1 500 305
## 2
    20
          55
## 3 NA
          NA
## 4 438
          40
## 5 21
          10
## 6
   NA
          NA
## 7 279
           25
## 8 13 6
```

getFlightDF("flightsbig.csv")

##		airline		destination	
##	1	Alaska	FALSE	Los.Angeles	497
##	2	Alaska	TRUE	Los.Angeles	62
##	3	AM WEST	FALSE	Los.Angeles	694
##	4	AM WEST	TRUE	Los.Angeles	117
##	5	Flights R Us	FALSE	Los.Angeles	442
##	6	Flights R Us	TRUE	Los.Angeles	75
##	7	Alaska	FALSE	Phoenix	221
##	8	Alaska	TRUE	Phoenix	12
##	9	AM WEST	FALSE	Phoenix	4840
##	10	AM WEST	TRUE	Phoenix	415
##	11	Flights R Us	FALSE	Phoenix	3083
##	12	Flights R Us	TRUE	Phoenix	264
##	13	Alaska	FALSE	San.Diego	212
##	14	Alaska	TRUE	San.Diego	20
##	15	AM WEST	FALSE	San.Diego	383
##	16	AM WEST	TRUE	San.Diego	65
##	17	Flights R Us	FALSE	San.Diego	244
##	18	Flights R Us	TRUE	San.Diego	41
##	19	Alaska		San.Francisco	503
##	20	Alaska		San.Francisco	102
##	21	AM WEST	FALSE	San.Francisco	320
##	22	AM WEST	TRUE	San.Francisco	129
##	23	Flights R Us	FALSE	San.Francisco	204
##	24	Flights R Us	TRUE	San.Francisco	82
##	25	Alaska	FALSE	Seattle	1841
##	26	Alaska	TRUE	Seattle	305
##	27	AM WEST	FALSE	Seattle	201
##	28	AM WEST	TRUE	Seattle	61
##	29	Flights R Us	FALSE	Seattle	128
##	30	Flights R Us	TRUE	Seattle	39
##	31	Alaska	FALSE	Tokyo	500
##	32	Alaska	TRUE	Tokyo	20
##	33	AM WEST	FALSE	Tokyo	438
##	34	AM WEST	TRUE	Tokyo	21
##	35	${\tt Flights}\ {\tt R}\ {\tt Us}$	FALSE	Tokyo	279
##	36	Flights R Us	TRUE	Tokyo	13
##	37	Alaska	FALSE	New.York	305
##	38	Alaska	TRUE	New.York	55
##	39	AM WEST	FALSE	New.York	40
##	40	AM WEST	TRUE	New.York	10
##	41	${\tt Flights}\ {\tt R}\ {\tt Us}$	FALSE	New.York	25

42 Flights R Us TRUE New.York 6