Justin L. Ripley

DAMTP, University of Cambridge · Wilberforce Road, Cambridge CB3 0WA, UK lloydripley@gmail.com · https://jlripley314.github.io/ · Citizenship: U.S.A.

Academic Employment

Research Associate, DAMTP, University of Cambridge

October 2020-present

Research and Teaching Assistant, Princeton University

September 2014-July 2020

Education

PhD, Physics, Princeton University

September 2014-July 2020

Advisor: Frans Pretorius

B.A., Physics, Columbia University

September 2010-May 2014

Minor in Mathematics

Departmental honors in Physics, summa cum laude, Phi Beta Kappa

Awards/Grants

Hartle award, ISGRG (GR 22/Amaldi 13 conference)

December 2019

Erwin H. Leiwant Scholarship, Columbia University

September 2013-May 2014

John Jay Scholar, Columbia University

September 2010-May 2014

Computational Experience

I have programming experience with C/C++, Fortran (77/90), Julia, Python, and Mathematica. My Github account: JLRipley314, lists some of the individual computational projects I have worked on. I have also done some work for the GRChombo collaboration, which works on an open-source numerical relativity code written in C++.

Teaching and Mentorship

Assistant Instructor, Princeton University

EGR/PHY 191, An integrated introduction to engineering, math, physics	Fall 2019
PHY 103/105, General Physics I Lab	Fall 2018
PHY 304, Advanced Electromagnetism	Spring 2018
AST 203, The Universe	Spring 2017,2018
PHY 523, General Relativity (graduate course)	Fall 2017
AST 204, Topics in Modern Astronomy	Spring 2016
PHY 301, Thermal Physics	Fall 2015, Spring 2016

Teaching Assistant, Columbia University

Math V2000, Introduction to higher mathematics

Spring 2014

Supervisor for undergraduate summer student projects, University of Cambridge

Shikhar Kumar, Computing null geodesics in slightly perturbed black hole spacetimes Adam Wills (co-supervised), Computing the quasinormal modes of wormholes Summer 2021 Summer 2021

Professional Activities

University of Cambridge, DAMTP

Friday general relativity seminar co-organizer General relativity journal club co-organizer October 2020-present October 2020-present

Princeton University Department of Physics

Member on the Climate and Inclusion Committee

September 2019-May 2020

Referee

Physical Review D, Physical Review Letters, Classical and Quantum Gravity

Outreach

Princeton citizen scientists

The Princeton Citizen Scientists is a graduate student led group at Princeton University that is dedicated to science policy and outreach at the local, state, and federal level.

President June 2018–July 2019

Co-organizer for science advocacy trip to Washington, D.C. (article)

Co-organizer for science and intersectionality workshop (link to schedule)

Co-organizer for science "teach-in" event at Princeton public library (article)

December 2018

February 2018

October 2017

Open labs

Open labs is a graduate student group at Princeton University that organizes "science cafes" where local high and middle school students hear talks given by graduate students about their research.

Treasurer and presenter

May 2018-February 2019

Department of physics, Princeton University

I participated in several science outreach events organized through the department of physics at Princeton University throughout my time as a graduate student. events where I helped plan/organize some of programming are listed below.

Trenton science summer camp (helped plan and run several lessons over 2 weeks)

July 2018

Interviews on "these vibes are too cosmic"

These vibes are too cosmic is a radio program run through Princeton University.

Interview about exotic compact objects

Interview about antigravity

January 2019

March 2016

Refereed Publications

Link to all papers, including preprints: InSpire Hep

- 13. William E. East, **Justin L. Ripley** Dynamics of Spontaneous Black Hole Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet Gravity. Phys. Rev. Lett. 127, 101102 (2021). arXiv:2105.08571
- 12. **Justin L. Ripley**, A symmetric hyperbolic formulation of the vacuum Einstein equations in affine-null coordinates. Journal of Mathematical Physics 62, 062501 (2021). arXiv:2104.09972
- 11. **Justin L. Ripley**, Nicholas Loutrel, Elena Giorgi, and Frans Pretorius Numerical computation of second-order vacuum perturbations of Kerr black holes. Phys. Rev. D 103 (10), 104018 (2021). arXiv:2010.00162
- 10. Nicholas Loutrel, **Justin L. Ripley**, Elena Giorgi, and Frans Pretorius Second Order Perturbations of Kerr Black Holes: Reconstruction of the Metric. Phys. Rev. D 103, 104017 (2021). arXiv:2008.11770
- 9. William E. East, **Justin L. Ripley** Evolution of Einstein-scalar-Gauss-Bonnet gravity using a modified harmonic formulation. Phys.Rev.D 103 4, 044040 (2021). arXiv:2011.03547
- 8. **Justin L. Ripley**, Frans Pretorius Dynamics of a \mathbb{Z}_2 symmetric EdGB gravity in spherical symmetry. Class. Quant. Grav. 37 (15), 155003 (2020). arXiv:2005.05417
- 7. **Justin L. Ripley**, Frans Pretorius Scalarized black hole dynamics in Einstein-dilaton-Gauss-Bonnet gravity. Phys. Rev. D 101 (4), 044015 (2019). arXiv:1911.11027

- 6. Justin L. Ripley, Excision and avoiding the use of boundary conditions in numerical relativity. Class. Quantum Grav. 36 (23) 237001 (2019). arXiv:1908.04234
- 5. Justin L. Ripley, Frans Pretorius, Gravitational collapse in Einstein dilaton Gauss-Bonnet gravity Class. Quantum Grav. 36 (13) 134001 (2019). arXiv:1903.07543
- 4. Justin L. Ripley, Frans Pretorius, Hyperbolicity in Spherical Collapse of a Horndeski Theory. Phys. Rev. D 99 (8), 084014 (2019). arXiv:1902.01468
- 3. Justin L. Ripley, Kent Yagi, Black hole perturbation under a 2+2 decomposition in the action. Phys. Rev. D 97 (2), 024009 (2017). arXiv:1705.03068
- 2. Anna Ijjas, Justin L. Ripley, Paul J. Steinhardt, NEC violation in mimetic cosmology revisited. Phys.Lett. B760 132-138 (2016). arXiv:1604.08586
- 1. Justin L. Ripley, Brian D. Metzger, Almudena Arcones, and Gabriel Martinez-Pinedo, X-ray Decay Lines from Heavy Nuclei in Supernova Remnants as a Probe of the r-Process Origin and the Birth Periods of Magnetars. Mon. Not. Roy. Astron. Soc. 438 (4), 3243-3254 (2013). arXiv:1310.2950

GRChombo collaboration papers: Since 2020 I have been a member of the GRChombo collaboration.

- 2. Radia et al., (2021). Lessons for adaptive mesh refinement in numerical relativity. arXiv:2112.10567
- 1. Andrade et al., (2021). GRChombo: An adaptable numerical relativity code for fundamental physics. Journal of Open Source Software, 6(68), 3703, https://doi.org/10.21105/joss.03703. arXiv:2201.03458

C

Invited conference talks/seminars	
15. Black Hole Initiative, Harvard University, Cambridge, MA (online) Numerical Relativity and testing General Relativity with gravitational waves: Part	March 2022
14. University of Tübingen, Tübingen, DE (online) Evolution of binary black hole systems in scalar Gauss-Bonnet gravity	February 2022
13. Albert Einstein Institute, Potsdam, DE (online) Evolution of binary black hole systems in scalar Gauss-Bonnet gravity	November 2021
12. Sapienza University of Rome, Rome, IT (online) Computing the second order gravitational perturbation of Kerr black holes	May 2021
11. University of Oxford, Oxford, UK (online) The classical evolution of binary black hole systems in scalar-tensor theories	February 2021
10. University of Virginia, Charlottesville, VA (online) The classical evolution of binary black hole systems in scalar-tensor theories	February 2021
9. Kyoto University, Kyoto, JP (online) The classical evolution of binary black hole systems in scalar-tensor theories	February 2021
8. University of Southampton, Southampton, UK (online) The classical evolution of binary black hole systems in scalar-tensor theories	January 2021
7. University of Cambridge, Cambridge, UK (online) Computing the second order gravitational perturbation of Kerr black holes	November 2020
6. Johns Hopkins University, Baltimore, MD (online) Numerical computation of second order vacuum perturbations of Kerr black holes	November 2020
5. Princeton University, Princeton, NJ (online) Classical modifications to Einstein's General Relativity around black holes	October 2020
4. Perimeter Institute, Waterloo, ON (online) Exploring the nonlinear dynamics of Einstein dilaton Gauss-Bonnet gravity	April 2020
3. University of Illinois, Urbana-Champaign, IL	January 2020

Testing General Relativity and the nonlinear dynamics of modified gravity theories

2. Massachusetts Institute of Technology, Cambridge, MA Second order vacuum perturbation of a Kerr black hole	December 2019
1. Black Hole Initiative, Harvard University, Cambridge, MA Nonlinear dynamics of Horndeski theories in spherical collapse	December 2019
Contributed conference talks/seminars	
9. NR community call (online) The gh3d2m code & the Modified Generalized Harmonic Formulation	April 2022
8. EPS-HEP2021 Conference (online) Modeling black hole binaries in scalar-tensor theories of gravity	July 2021
7. APS April Meeting, Sacramento, CA (online) Application of the modified generalized harmonic formulation to scalar-tensor gravity theories	April 2021
6. BritGrav21, UCD, Dublin, Ireland (online) Computing the second order vacuum perturbation of Kerr black holes	April 2021
5. XIII Black Holes Workshop, IST, Lisbon, PT (online) Computing the second order vacuum perturbation of a Kerr black hole	December 2020
4. APS April Meeting, Washington, DC (online) Second order perturbation of a Kerr black hole	April 2020
3. GR 22/Amaldi 13, Valencia, Spain Nonlinear dynamics of Horndeski theories in spherical collapse	July 2019
2. APS April Meeting, Denver, CO Hyperbolicity in gravitational collapse in a modified gravity theory	April 2019
1. Numerical Relativity beyond General Relativity, Benasque, Spain Gravitational collapse in a modified gravity theory	June 2018