Stochastic optimization Two-stage stochastic programming with recourse

Fabian Bastin

fabian.bastin@umontreal.ca
Université de Montréal - CIRRELT - IVADO

Formalization

Uncertainty: representation by means of random elements. The realizations are denoted by ω , and they are drawn form the sample space Ω .

A event A is a subset of Ω ; the collection of random of random events is denoted by \mathcal{A} . The event $A \in \mathcal{A}$ occurs if the output of the experiment is an element from A.

A random linear program

Consider the linear program (LP), parametrized by the random variable (r.v.) $\xi : \Omega \to \mathbb{R}^2$:

$$\min_{X} c^{T} X$$
s.t. $AX = b$

$$T(\xi)X = h(\xi)$$

$$X \in X,$$

with $X = \{x \in \mathbb{R}^n | I \le x \le u\}$. Example:

$$\min_{x} x_{1} + x_{2}$$
s.t. $\xi_{1}x_{1} + x_{2} \ge 7$

$$\xi_{2}x_{1} + x_{2} \ge 4$$

$$x_{1}, x_{2} \ge 0,$$

where $\xi_1 \sim U[1, 4], \, \xi_2 \sim U[1/3, 1].$

What to do?

- How to solve this problem?
- What is the meaning of solving this problem?
- Can we decide on x after having observed the realization of the r.v. ξ?
 We then talk of an wait-and-see approach. The problem is then easier to solve (we have here a simple linear
- But this approach is rarely appropriate!!! We usually have to decide on x before we know the realizations of ξ!
- Usually, the "wait-and-see" approach is not appropriate to model the reality behavior: we have to decide on x before we know the realizations from ξ.
- Three suggestions:

program).

- 1. try to estimate, predict, the uncertainty;
- 2. chance constraints;
- penalties on deviations.

Remove the randomness?

A popular approach consists to look for reasonable values for ξ_1 and ξ_2 . How?

Propositions:

- unbiased: choose the mean values for each random variable;
- pessimistic: choose the worst-case values for ξ;
- optimistic: choose the best-case values for ξ .

Each approach will deliver a different optimal solution!

Penalization of violations

Again, we have to deal with decision problems where the decision x has to be taken before we know the realization of ξ In the simplest case, we can simply penalize the constraints deviations by vectors of penalty coefficients q_+ and q_- .

min
$$c^T x + q_+^T s(\xi) + q_-^T t(\xi)$$

s.t. $Ax = b$,
 $T(\xi)x + s(\xi) - t(\xi) = h(\xi)$,
 $x \in X$.

But it is still not possible to solve the problem!

The new optimization problem

A reasonable, and solvable, problem is then

$$\begin{aligned} &\min \ \boldsymbol{c}^T\boldsymbol{x} + \mathbb{E}_{\boldsymbol{\xi}}[\boldsymbol{q}_+^T\boldsymbol{s}(\boldsymbol{\xi}) + \boldsymbol{q}_-^T\boldsymbol{t}(\boldsymbol{\xi})] \\ &\text{s.t. } \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \\ & T(\boldsymbol{\xi})\boldsymbol{x} + \boldsymbol{s}(\boldsymbol{\xi}) - \boldsymbol{t}(\boldsymbol{\xi}) = \boldsymbol{h}(\boldsymbol{\xi}), \ \text{ for a.e. } \boldsymbol{\xi} \\ & \boldsymbol{x} \in \boldsymbol{X}, \end{aligned}$$

where a.e. stands for "almost every".

- In general, we can react in a correct (and maybe optimal)
 way: we have a recourse to "correct" the first decision once
 the uncertainty is removed.
- A LP recourse structure is provided by 3 elements:
 - a set $Y \subset \mathbb{R}^p$ that describes the feasible set of recourse actions, for instance $Y = \{y \in \mathbb{R}^p \mid y \ge 0\}$;
 - q: a vector of recourse costs;
 - $W \in \mathbb{R}^{m \times p}$: recourse matrix.

Recourse formulation

More general, consider the following program:

min
$$c^T x + \mathbb{E}_{\xi}[q^T(\xi)y(\xi)]$$

s.t. $Ax = b$,
 $T(\xi)x + Wy(\xi) = h(\xi)$, for a.e. ξ
 $x \in X$,
 $y(\xi) \in Y$, for a.e. ξ .

We could have W varying with the realization ξ . If W is unique, as in the previous formulation, we speak of fixed recourse: the recourse does not change with the scenario. But how to decide on γ ?

The two-stage linear stochastic problem (SP)

We can also rewrite the stochastic programming problem with recourse in terms of *x* only:

$$\min_{x \in X} \{ c^T x + \mathcal{Q}(x) \mid Ax = b \}.$$

It is a (nonlinear) mathematical programming problem in \mathbb{R}^n . The properties of $\mathcal{Q}(x)$ influence the solution techniques.

Is Q(x)

- linear?
- convex?
- continuous?
- differentiable?

Expression in terms of y's

$$\begin{aligned} & \underset{x,\ y(\xi)}{\min} \ E_{\xi}[c^Tx + q^Ty(\xi)] \\ & \text{s.t. } Ax = b & \text{first-stage constraints} \\ & T(\xi)x + Wy(\xi) = h(\xi), \ \text{for a.e. } \xi & \text{second-stage contraints} \\ & x \in X, \ y(\xi) \in Y \ \text{for a.e. } \xi. \end{aligned}$$

Consider the (discrete) case where $\Omega = \{\omega_1, \ \omega_2, \dots, \omega_S\} \subseteq \mathbb{R}^r$.

$$P(\omega = \omega_s) = p_s, \ s = 1, 2, \dots, S$$

$$T_s = T(\xi(\omega_s)), \ h_s = h(\xi(\omega_s))$$

Deterministic equivalent

Develop along the S scenarios.

$$\min_{\substack{x,y_1,...,y_S \\ x,y_1,...,y_S}} c^T x + p_1 q^T y_1 + p_2 q^T y_2 + \dots p_S q^T y_S$$
s.t.
$$Ax = b$$

$$T_1 x + W y_1 = h_1$$

$$T_2 x + W y_2 = h_2$$

$$\vdots & \ddots & \\
T_S x + W y_S = h_S$$

$$x \in X, y_1 \in Y, y_2 \in Y, ..., y_S \in Y.$$

Deterministic equivalent (cont'd)

- $y_s = y(\xi(\omega_s))$: recourse action to take if the scenario s occurs.
- Advantage: linear program.
- Drawback: linear program of (very) large dimension:
 - n + pS variables;
 - *m*₁ + *mS* constraints.
- Advantage: the linear program matrix has a special structure (stairway shape).
 Can we exploit it?

Large scale,...and?

Assume that we have *r* random variables $(\Omega \subset \mathbb{R}^r)$.

- Consider the following problem (source: Linderoth). A
 Telecom company want to expand its network in order to
 meet an unknown (random) demand.
- There are 86 unknown demands. Each demand is independent and take a value in a set of 7 values. Consequently

$$S = |\Omega| = 7^{86} \approx 4.77 \times 10^{72}$$
.

... number of subatomic particles in the universe!

- It can be even worse...
 If Ω is not finite, but holds an infinite number of elements?
 It is especially true with continuous random variables. Our "deterministic equivalent" would have an infinite number of variables and constraints!
- We can solve an approximate problem, obtained by sampling over the random vector.

An example (cont'd)

Consider again our toy problem

$$\min_{x} x_1 + x_2
s.t. \xi_1 x_1 + x_2 \ge 7
\xi_2 x_1 + x_2 \ge 4
x_1, x_2 \ge 0,$$

where $\xi_1 \sim U[1,4], \xi_2[1/3,1].$

How to build the deterministic equivalent?

Example: recourse formulation

Assume for now that Ω is finite, with S scenarios.

$$\min_{x} x_{1} + x_{2} + \sum_{s \in S} p_{s} \lambda (y_{1s} + y_{2s})$$
s.t. $\xi_{1s} x_{1} + x_{2} + y_{1s} \ge 7$

$$\xi_{2s} x_{1} + x_{2} + y_{1s} \ge 4$$

$$x_{1}, x_{2} \ge 0,$$

$$y_{1s}, y_{2s} \ge 0.$$

A difficulty is therefore to decide how to construct the deterministic equivalent. How to choose λ ?

How to construct the scenarios? We can proceed with Monte Carlo sampling, with $p_s = 1/N$, $\forall s$. We will explore this approach in more details later.

Example: recourse formulation (cont'd)

More generally, we can build the program

$$\min_{x} x_1 + x_2 + \mathbb{E}_{\xi}[Q(x, \xi)]$$

s.t. $x_1, x_2 \ge 0$,

and

$$Q(x,\xi) = \min_{y} q_1 y_1 + q_2 y_2$$
s.t. $\xi_1 x_1 + x_2 + y_1 \ge 7$, $\xi_2 x_1 + x_2 + y_2 \ge 4$.

Two-stage linear programming problem, fixed recourse

We go a bit further by considering the problem

$$\min c^T x + E_{\xi}[q(\xi)^T y(\xi)]$$

subject to the constraints

$$Ax = b,$$
 $T(\xi)x + Wy(\xi) = h(\xi)$ for a.e. $\xi \in \Xi$,
 $x \in X$,
 $y(\xi) \in Y$,

where ξ is a random vector defined on the random space (Ω, \mathcal{F}, P) , and Ξ is the support of ξ .

Reformulation(s)

The problem becomes

$$\min_{\substack{x \in X \mid Ax = b}} \left\{ c^T x + \mathbb{E}_{\xi} \left[\min_{y \in Y} \left\{ q(\xi)^T y \mid Wy = h(\xi) - T(\xi) x \right\} \right] \right\},$$
or

$$\min_{x \in X \mid Ax = b} c^T x + \mathbb{E}_{\xi}[Q(x, \xi)],$$

with

$$Q(x,\xi) = \min_{y \in Y} \left\{ q(\xi)^T y : Wy = h(\xi) - T(\xi)x \right\}.$$

Second-stage function, or recourse function, $v : \Xi \times \mathbb{R}^m \to \mathbb{R}$:

$$v(\xi, z) \stackrel{\text{def}}{=} \min_{y \in Y} \{q(\xi)^T y \mid Wy = z\}.$$

Given a "policy" x and a realization ξ , z measures the deviation of the first stage, i.e. $z = h(\xi) - T(\xi)x$, $v(\xi, z)$ is the minimum cost to "correct" the decision.

Recourse function

Expected recourse function:

$$Q(x) \stackrel{\text{def}}{=} \mathbb{E}_{\xi}[Q(x,\xi)],$$

with

$$Q(x,\xi)=v(\xi,h(\xi)-T(\xi)x).$$

The problem can now be rewritten as:

$$\min_{x \in X} c^T x + Q(x)$$
 such that $Ax = b$.

It is a nonlinear program over \mathbb{R}^n . Properties?

Formulations summary

Set
$$X = \mathbb{R}^n_+$$
.

$$\min_{x \in \mathbb{R}^{n}_{+} \mid Ax = b} \left\{ c^{T}x + \mathbb{E}_{\xi} \left[\min_{y \in \mathbb{R}^{n}_{+}} \{q(\xi)^{T}y \mid Wy = h(\xi) - T(\xi)x\} \right] \right\}$$

$$\min_{x \in \mathbb{R}^{n}_{+} \mid Ax = b} \left\{ c^{T}x + \mathbb{E}_{\xi} \left[v(\xi, h(\xi) - T(\xi)x) \right] \right\}$$

$$\min_{x \in \mathbb{R}^{n}_{+} \mid Ax = b} \left\{ c^{T}x + \mathbb{E}_{\xi} \left[Q(x, \xi) \right] \right\}$$

$$\min_{x \in \mathbb{R}^{n}_{+} \mid Ax = b} \left\{ c^{T}x + \mathcal{Q}(x) \mid Ax = b \right\}$$

Notations

First-stage feasible set:

$$K_1 = \{x \in \mathbb{R}^n_+ \mid Ax = b\}.$$

Second-stage strong feasible set:

$$K_2^s = \{x \mid \mathcal{Q}(x) < \infty\}.$$

Therefore we can rewrite the problem as

$$\min_{x} \{c^T x + \mathcal{Q}(x) \mid x \in K_1 \cap K_2^s\}.$$

Weak feasible set

See Walkup, D. W. and Wets, R. J.-B., *Stochastic programs with recourse*, SIAM Journal on Applied Mathematics, 15(5):1299–1314, 1967.

Positive hull (or conical hull)

$$pos W = \{z \mid z = Wy, y \in \mathbb{R}_+^p\}$$

Weak second-stage feasible set

$$K_2 = \{ x \in \mathbb{R}^n \mid Q(x,\xi) < +\infty \text{ a.s.} \}$$

= $\{ x \in \mathbb{R}^n \mid (h(\xi) - T(\xi)x) \in \text{pos } W \text{ a.s.} \}$

Relatively complete recourse

A problem is said to have a relatively complete recourse if $K_1 \subseteq K_2$.

Advantage: the second-stage problem is feasible $\forall x$ feasible in the first stage, almost surely (i.e. with probability equal to 1).

Issue: $K_2^s \subseteq K_2$. We would like $K_2^s = K_2$.

Complete recourse

- The relatively complete recourse is very useful in practice and on a theoretical point of view, but it can be difficult to identify.
- Complete recourse: pos $W = \mathbb{R}^m$, i.e. $\forall z \in \mathbb{R}^m$, $\exists y \in \mathbb{R}^p_+$ such that Wy = z.
- Complete recourse \Rightarrow relatively complete recourse, as $\forall x$, $T(\xi)$, $h(\xi)$, $Q(x,\xi) < \infty$ with $z = h(\xi) T(\xi)x$.

$$K_2 \neq K_2^s$$

Consider the second-stage problem

$$\begin{aligned} & \underset{y}{\text{min }} 2y_1 + y_2 \\ & \text{s.t. } y_1 + y_2 \ge 1 - x_1, \\ & y_1 \ge \xi - x_1 - x_2, \\ & y_1, y_2 \ge 0, \end{aligned}$$

with

$$P\left[\xi=2^{n}\right]=\frac{1}{2^{n+1}},\ n=0,1,2,\ldots$$

Note that $P[\xi = 2^n] \in (0,1), \ n = 0, 1, 2, ..., \Xi = \{2^n, \ n \in \mathbb{N}_+\},$ and

$$\sum_{n=0}^{+\infty} P\left[\xi = 2^n\right] = \sum_{n=0}^{+\infty} 2^{-n-1} = \frac{1}{2} \frac{1}{1 - \frac{1}{2}} = 1.$$

$K_2 \neq K_2^s$ (cont'd)

Given $x \in \mathbb{R}^2$, we have

$$\begin{split} \mathcal{Q}(x) &= \mathbb{E}_{\xi} \left[\min_{y \geq 0} 2y_1 + y_2 \, \middle| \, y_1 + y_2 \geq 1 - x_1, \, y_1 \geq \xi - x_1 - x_2 \right] \\ &\geq \mathbb{E}_{\xi} \left[\min_{y_1 \geq 0} 2y_1 \, \middle| \, y_1 \geq \xi - x_1 - x_2 \right] \\ &= 2\mathbb{E}_{\xi} \left[\max\{0, \xi - x_1 - x_2\} \right] \\ &= 2\sum_{\xi \in \Xi} P[\xi = \xi] \max\{0, \xi - x_1 - x_2\} \\ &= 2\sum_{n=0}^{+\infty} 2^{-n-1} \max\{0, 2^n - x_1 - x_2\} \\ &= \sum_{n=0}^{+\infty} 2^{-n} \max\{0, 2^n - x_1 - x_2\} = +\infty \end{split}$$

$$K_2 \neq K_2^s$$
 (cont'd)

Thus, $K_2^s = \emptyset$.

The problem, set under standard form, can be rewritten as

$$\min_{y,u} 2y_1 + y_2$$
s.t. $y_1 + y_2 - u_1 = 1 - x_1$,
$$y_1 - u_2 = \xi - x_1 - x_2$$
,
$$y_1, y_2, u_1, u_2 \ge 0$$
,

and

$$W = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

pos W = ?

$$K_2 \neq K_2^s$$
 (cont'd)

Complete recourse if $pos W = \mathbb{R}^2$, i.e.

$$\forall z \in \mathbb{R}^2, \exists y \geq 0, u \geq 0 \text{ s.t. } W \begin{pmatrix} y \\ u \end{pmatrix} = z.$$

We have that

$$W \begin{pmatrix} y \\ u \end{pmatrix} = \begin{pmatrix} y_1 + y_2 - u_1 \\ y_1 - u_2 \end{pmatrix} = Z$$

$$\Leftrightarrow \begin{cases} y_1 + y_2 - u_1 &= z_1, \\ y_1 - u_2 &= z_2. \end{cases}$$

Thus, we can take

$$\begin{cases} y_1 = z_2, \ u_2 = 0, & \text{if } z_2 \ge 0, \\ y_1 = 0, \ u_2 = -z_2, & \text{otherwise.} \end{cases}$$

$$K_2 \neq K_2^s$$
 (cont'd)

Then, writing $y_2 - u_1 = z_1 - y_1$, we take

$$\begin{cases} y_2 = z_1 - y_1, \ u_1 = 0, & \text{if } z_1 - y_1 \geq 0, \\ y_2 = 0, \ u_1 = y_1 - z_1, & \text{otherwise.} \end{cases}$$

Thus,

- $pos W = \mathbb{R}^2$, and the recourse is complete,
- $K_2 = \mathbb{R}^2$, and the recourse is relatively complete,
- $K_2 \neq K_2^s$.

Note that

$$\mathbb{E}[\xi] = \sum_{n=0}^{+\infty} P\left[\xi = 2^n\right] 2^n = \sum_{n=0}^{+\infty} \frac{2^n}{2^{n+1}} = \sum_{n=0}^{+\infty} \frac{1}{2} = +\infty.$$

$$K_2 \neq K_2^s$$
 (cont'd)

 $\mathbb{E}[\xi]$ not finite does not necessarily imply that $\mathcal{Q}(x) = +\infty$. Consider

$$\min_{y} y_1 - y_2$$
s.t. $y_1 \ge \xi$

$$y_2 \le \xi$$
.

We have that $\forall \xi, Q(x, \xi) = 0$, and therefore Q(x) = 0.

$$K_2 = K_2^s$$

Theorem

If ξ has finite second order moments, then

$$P[\xi \mid Q(x,\xi) < \infty] = 1 \Longrightarrow Q(x) < \infty,$$

and consequently

$$K_2=K_2^s$$
.

Elementary feasible set

 Given a realization ξ, the elementary second-stage feasible set is defined as:

$$K_2(\xi) = \{x \mid Q(x,\xi) < \infty\}.$$

 Define possibility interpretation of the second-stage feasibility as

$$K_2^P = \cap_{\xi \in \Xi} K_2(\xi).$$

• Clearly $K_2 = K_2^P$ if ξ has a finite support. Is it still the case when ξ follows a continuous distribution?

Theorem

For a stochastic program with fixed recourse, where ξ has finite second order moments,

$$K_2 = K_2^s = K_2^p$$
.

Simple recourse

A particular case of complete recourse is the simple recourse, for which we have

$$W = \begin{pmatrix} I & -I \end{pmatrix}$$
,

with I the identity matrix, of order m.

 $pos W = \mathbb{R}^m$: writing

$$y = \begin{pmatrix} y^+ \\ y^- \end{pmatrix}$$

where $y \in \mathbb{R}^{2m}$, $y^+, y^- \in \mathbb{R}^m$, for $z \in \mathbb{R}^m$, we can solve

$$Wy = z, y \ge 0,$$

by chosing $y^+ = \max\{z, 0\}, y^- = \max\{-z, 0\}.$

Simple recourse (cont'd)

The second stage program can be read as

$$Q(x,\xi) = \min_{y} q^{+}(\xi)^{T} y^{+} + q^{-}(\xi)^{T} y^{-}$$
s.t. $y^{+} - y^{-} = h(\xi) - T(\xi)x$, $y^{+}, y^{-} \ge 0$.

That is, for $q^+(\xi) + q^-(\xi) \ge 0$, the recourse variables y^+ and y^- can be chosen to measure the absolute violations in the stochastic constraints.

Simple recourse (cont'd)

- Since the recourse is complete, it is feasible for any first-stage decision *x*.
- The following results establishes conditions to have a finite recourse (i.e. $|Q(x)| < \infty$).

Theorem

Assume that the two-stage (linear) stochastic program is feasible and has a simple recourse, and that ξ has finite second-order moments. Then Q(x) is finite if and only if, for any component i, $\mathbf{q}_i^+ + \mathbf{q}_i^- \ge 0$ with probability one.

Simple recourse (cont'd)

Proof.

(\Rightarrow) Assume by contradiction that $\mathcal Q$ is finite, but for some component $i, q_i^+(\xi(\omega)) + q_i^-(\xi(\omega)) < 0$ for $\omega \in \Omega_1$ with $P[\Omega_1] > 0$. Then, for any feasible x, for all $\omega \in \Omega_1$ with $h_i(\xi(\omega)) - T_i(\xi(\omega))x > 0$, define

$$y_i^+(\xi(\omega)) = h_i(\xi(\omega)) - T_i(\xi(\omega))x + u, \ y_i^-(\xi(\omega)) = u.$$

Therefore,

$$y_i^+(\xi(\omega)) - y_i^-(\xi(\omega)) = h_i(\xi(\omega)) - T_i(\xi(\omega))x, \ y_i^+ \ge 0, \ y_i^- \ge 0.$$

Moreover, we can choose y_i^+ and y_i^- feasible, $j \neq i$.

Proof.

$$(\Rightarrow)$$

When
$$u \to \infty$$
, $Q(x, \xi(\omega)) \to -\infty$ since $q_i^+(\xi(\omega))y_i^+ + q_i^-(\xi(\omega))y_i^- \to -\infty$.

A similar argument can be applied if $h_i(\xi(\omega)) - T_i(\xi(\omega))x \le 0$, by taking

$$y_i^+(\xi(\omega)) = u, \ y_i^-(\xi(\omega)) = -h_i(\xi(\omega)) + T_i(\xi(\omega))x + u.$$

By componing these two cases, we conclude that \mathcal{Q} is not finite.

Proof.

 (\Leftarrow) Assume $\forall i, P[\boldsymbol{q}_i^+ + \boldsymbol{q}_i^- \geq 0] = 1$. Any feasible solution satisfies

$$y^{+}(\xi(\omega)) - y^{-}(\xi(\omega)) = h(\xi(\omega)) - T(\xi(\omega))x := z(\xi(\omega)),$$

$$y^{+}(\xi(\omega)) \ge 0, \ y^{-}(\xi(\omega)) \ge 0.$$

Thus,

$$Q(x,\xi(\omega)) = \sum_{i=1}^{m} (q_i^+ y_i^+(\xi(\omega)) + q_i^- y_i^-(\xi(\omega))$$

$$= \sum_{i=1}^{m} (q_i^+ y_i^+(\xi(\omega)) + q_i^-(y_i^+(\xi(\omega)) - z_i(\xi(\omega)))$$

$$= \sum_{i=1}^{m} ((q_i^+ + q_i^-) y_i^+(\xi(\omega)) - q_i^- z_i(\xi(\omega)))$$

Proof.

 (\Leftarrow)

Therefore, a.s.

$$\min Q(x,\xi(\omega)) \ge -(q^-)^T z(\xi(\omega)),$$

so, a.s., \exists a lower bound on $Q(x, \xi(\omega))$, and since the program is feasible, it admits an optimal solution.

From the fundamental theorem of linear programming, we can choose as the optimal solution

$$y^{+}(\xi(\omega)) = (h(\xi(\omega)) - T(\xi(\omega))x)^{+},$$

$$y^{-}(\xi(\omega)) = (-h(\xi(\omega)) + T(\xi(\omega))x)^{+},$$

where $a^{+} = \max\{0, a\}$.

Proof.

 (\Leftarrow)

From previous results, $Q(x) < \infty$, and

$$Q(x) \geq \mathbb{E}[-(q^-)^T z(\xi(\omega)))].$$

Exercise

Consider the second stage program

$$Q(x,\xi) = \min_{y} \{ y \mid \xi y = 1 - x, y \ge 0 \}.$$

We assume that ξ follows a triangular distribution on [0, 1], with $P[\xi \le u] = u^2$.

(a) Is the recourse fixed? Why?

The recourse is not fixed, as $W \equiv \xi$, and therefore, W is random. Moreover, as ξ can take the value 0, the transformation

$$y=1/\xi-x/\xi,$$

is not properly defined on $\Xi = [0, 1]$; this also means that

$$W = egin{cases} 0 & ext{ si } \xi = 0; \ 1 & ext{ si } \xi
eq 0. \end{cases}$$

Exercise (cont'd)

(b) Express $K_2(\xi)$ for all ξ in [0, 1].

We have to consider two cases: $\xi = 0$ or $\xi \in (0, 1]$.

1. $\xi \in (0, 1]$ In this case, as $y, \xi \ge 0$, 1 - x has to be non-negative in order to have a well-defined problem:

$$K_2(\xi) = \{x \mid x \leq 1\}.$$

The value and optimal solutions are

$$Q^*(x,\xi) = (1-x)/\xi, \quad y^* = (1-x)/\xi.$$

2. $\xi = 0$ There exists no y such that 0.y = 1 - x, except if x = 1, so

$$K_2(0) = \{1\}.$$

Exercise (cont'd)

(c) Express K_2 , K_2^P and Q.

From the previous point, we have

$$K_2^P = \{x \mid x \le 1\} \cap \{1\} = \{1\}.$$

We also have, as $P[\xi = 0] = 0$,

$$Q(x) = \int_0^1 \frac{1-x}{\xi} 2\xi d\xi = 2(1-x), \forall x \le 1.$$

Consequently $K_2^P \subset K_2 = \{x \leq 1\}.$

The difference comes from the fact that a point is not in K_2^P as soon as it is not feasible for a given value of ξ , but K_2 does not consider unfeasible situations that occur with a null probability.

Recourse function

Let y_1^* and y_2^* be two optimal solutions of $v(\xi,z)$, associated to $z=z_1$ and $z=z_2$, respectively. Then, the convex combination $y_{\alpha} \stackrel{def}{=} \alpha y_1^* + (1-\alpha)y_2^*$, $\alpha \in [0,1]$, is feasible with respect to $z_{\alpha} = \alpha z_1 + (1-\alpha)z_2$, as $\alpha y_1^* + (1-\alpha)y_2^* \geq 0$, and

$$W(\alpha y_1^* + (1 - \alpha)y_2^*) = \alpha W y_1^* + (1 - \alpha)W y_2^* = \alpha z_1 + (1 - \alpha)z_2 = z_\alpha.$$

Moreover,

$$v(\xi, z_{\alpha}) = q(\xi)^{T} y_{\alpha}^{*} \leq q(\xi)^{T} (\alpha y_{1}^{*} + (1 - \alpha) y_{2}^{*})$$

= $\alpha q(\xi)^{T} y_{1}^{*} + (1 - \alpha) q(\xi)^{T} y_{2}^{*}$
= $\alpha v(\xi, z_{1}) + (1 - \alpha) v(\xi, z_{2}).$

In other words, v is a convex function w.r.t. $z \in \mathbb{R}^m$.

Convexity of $Q(x, \xi)$?

$$Q(x,\xi) = v(\xi,h(\xi) - T(\xi)x).$$

$$\lambda Q(x_{1},\xi) + (1-\lambda)Q(x_{2},\xi)$$

$$= \lambda v(\xi, h(\xi) - T(\xi)x_{1}) + (1-\lambda)v(\xi, h(\xi) - T(\xi)x_{2})$$

$$\geq v(\xi, \lambda(h(\xi) - T(\xi)x_{1}) + (1-\lambda)(h(\xi) - T(\xi)x_{2}))$$

$$= v(\xi, h(\xi) - T(\xi)(\lambda x_{1} + (1-\lambda)x_{2}))$$

$$= Q(\lambda x_{1} + (1-\lambda)x_{2}, \xi).$$

Therefore $Q(x,\xi)$ if convex w.r.t. x, given ξ . More generally

Theorem

If A if a linear transformation from \mathbb{R}^n to \mathbb{R}^n , and f(x) is a convex function on \mathbb{R}^m , the composite function $(fA)(x) \stackrel{\text{def}}{=} f(Ax)$ is a convex function on \mathbb{R}^n .

Convexity of second-stage function

We have the following result (Birge and Louveaux, Chapter 3, Theorem 5).

Theorem

For a stochastic program with fixed recourse, $Q(x,\xi)$ is

- (a) a piecewise convex linear function in (h, T),
- (b) a piecewise concave linear function in q,
- (c) a piecewise convex linear function in x, for all x in $K = K_1 \cap K_2$.

Convexity of second-stage function (cont'd)

Proof.

In order to show convexity in (a) and (c), it is sufficient to prove that $v(\xi,z) = \min\{q(\xi)^T y \mid Wy = z\}$ is convex, which has already been done. We can proceed similarly to show concavity w.r.t. q.

The piecewise linearity follows from the fact that the number of different optimal bases for a linear program is finite.

Convexity of the recourse?

$$Q(x) = E_{\xi}[Q(x,\xi)].$$

Suppose for now that ξ has a finite support, i.e.

$$\Xi = \{\xi_1, \xi_2, \dots, \xi_m\}$$
. Then

$$Q(x) = \sum_{i=1}^{m} P[\xi = \xi_i] Q(x, \xi_i).$$

Convexity of the recourse

Theorem

If f(x) is convex, and $\alpha \geq 0$, $g(x) = \alpha f(x)$ is convex.

Theorem

If $f_k(x)$, k = 1, 2, ..., K, are convex functions, then $g(x) = \sum_{k=1}^{K} f_k(x)$ is convex. Q(x) is therefore a convex function w.r.t. x.

What is happening in the continuous case?

We have the following result: if g(x, y) is convex w.r.t. x, then $\int g(x, y)dy$ is convex w.r.t. x. Since

$$Q(x) = \int_{\Xi} Q(x,t) dF(t),$$

Q(x) is convex.

An example...

Consider the second-stage function $Q(x, \xi)$ defined as:

$$\min y^+ + y^- \text{ s.t. } y^+ - y^- = \xi - x, \ y^+ \ge 0, \ y^- \ge 0.$$

In other terms:

$$y = \begin{pmatrix} y^+ \\ y^- \end{pmatrix}$$
 $q = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $W = \begin{pmatrix} 1 & -1 \end{pmatrix}$ $h(\xi) = \xi$ $T(\xi) = 1$.

Relying on the fundamental theorem of linear programming, we are looking from an optimal basis solution, implying that $y^+ = 0$ or $y^- = 0$.

An example...

We immediately see that

$$y^{+} = \begin{cases} \xi - x & \text{if } \xi - x \ge 0, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$y^- = egin{cases} -\xi + x & ext{if } \xi - x < 0, \\ 0 & ext{otherwise,} \end{cases}$$

Alternative approach

Dual:

$$\max (\xi - x)\pi$$

s.t. $\pi \le 1, -\pi \le 1$

or

max
$$(\xi - X)\pi$$

s.t. $\pi + s_1 = 1$
 $-\pi + s_2 = 1$
 $s_1 \ge 0, \ s_2 \ge 0$

Consequently,

$$Q(x,\xi) = \begin{cases} \xi - x & \text{si } x \leq \xi, \\ x - \xi & \text{si } x \geq \xi. \end{cases}$$

An example: optimality conditions

The recourse is simple, and the primal-dual/KKT conditions give

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \pi + \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$
$$y^+ - y^- = \xi - x$$
$$y^+ \ge 0, \ y^- \ge 0$$
$$s_1 \ge 0, \ s_2 \ge 0$$
$$s_1 y^+ = 0, \ s_2 y^- = 0.$$

An example (cont'd)

- The first condition implies that we cannot have $s_1 = s_2 = 0$.
- From the complementarity conditions, we have that $y^+ = 0$ or $y^- = 0$.
- We have to consider two cases:
 - $x \le \xi$: in this situation, we have

$$y^+ = \xi - x, \quad y^- = 0.$$

• $x \ge \xi$: then,

$$y^- = x - \xi, \quad y^+ = 0.$$

Graphically?

Assume that ξ can take the realizations 1, 2, 4.

Graphically (cont'd)

Graphically (cont'd)

What about Q(x)?

Assume that the three realizations have the same probability.

We have to consider 4 cases:

- 1. $x \le 1$: Q(x) = 7/3 x;
- 2. $1 \le x \le 2$: Q(x) = 5/3 x/3;
- 3. $2 \le x \le 4$: Q(x) = x/3 + 1/3;
- 4. $4 \le x$: Q(x) = x 7/3;

Graphically

Properties of Q(x)

We note that Q(x) is convex and piecewise linear. As Q(x) is a finite weighted sum of piecewise linear functions when the support of ξ is finite, we have the following result.

Theorem

For a stochastic program with fixed recourses where ξ has finite second-order moments,

- (a) Q(x) is a convex Lipschitz function and is finite over K_2 ;
- (b) when ξ has a finite support, Q(x) is piecewise linear.

Reminder: a function f is Lipschitz if there exists some $M < \infty$ such that for all x, y,

$$|f(x)-f(y)|\leq M\|x-y\|.$$

Differentiability of the recourse

Is Q(x) also differentiable?

The recourse function is partially differentiable with respect to x_j at $(\hat{x}, \hat{\xi})$ if the directional derivative exists for the direction e_j . In other terms, there exists a function $\frac{\partial Q(x,\xi)}{\partial x_j}$ such that

$$\frac{\textit{Q}(\hat{\textit{x}} + \textit{he}_{j}, \hat{\textit{\xi}}) - \textit{Q}(\hat{\textit{x}}, \hat{\textit{\xi}})}{\textit{h}} = \frac{\partial \textit{Q}(\textit{x}, \textit{\xi})}{\partial \textit{x}_{j}} + \frac{\rho_{\textit{j}}(\hat{\textit{x}}, \hat{\textit{\xi}}; \textit{h})}{\textit{h}},$$

with

$$\frac{
ho_j(\hat{\mathbf{x}},\hat{\mathbf{\xi}};h)}{h} o 0, \text{ as } h o 0.$$

We will assume from now that $\nabla_x Q(x,\xi) = \left(\frac{\partial Q(x,\xi)}{\partial x_1}, \dots, \frac{\partial Q(x,\xi)}{\partial x_n}\right)$ exists.

Differentiability of the recourse (cont'd)

What about the differentiability of Q(x)?

$$\begin{split} \frac{\mathcal{Q}(\hat{x} + he_j) - \mathcal{Q}(\hat{x})}{h} &= \int_{\Xi} \frac{Q(\hat{x} + he_j, \xi) - Q(\hat{x}, \xi)}{h} dP \\ &= \int_{\Xi \setminus N_{\delta}} \frac{\partial Q(\hat{x}, \xi)}{\partial x_j} dP + \int_{\Xi \setminus N_{\delta}} \frac{\rho_j(\hat{x}, \xi; h)}{h} dP, \end{split}$$

where N_{δ} is measurable and $P[N_{\delta}] = 0$. Therefore, we have Theorem

If $Q(x,\xi)$ if partially differentiable almost everywhere, if its partial derivative $\frac{\partial Q(\hat{x},\xi)}{\partial x_j}$ is integrable and if the residual satisfies $(1/h) \int_{\Xi \setminus N_\delta} \rho_j(\hat{x},\xi;h) dP \stackrel{h\to 0}{\to} 0$, then $\frac{\partial Q(\hat{x})}{\partial x_j}$ exists and

$$\frac{\partial \mathcal{Q}(\hat{x})}{\partial x_j} = \int_{\Xi} \frac{\partial Q(\hat{x}, \xi)}{\partial x_j} dP.$$

Differentiability of the recourse: discrete case

But how to prove
$$(1/p) \int_{\Xi \setminus N_{\delta}} \rho_j(\hat{x}, \xi; h) dP \stackrel{h \to 0}{\to} 0$$
?

If we stay in the linear framework with fixed recourse, and vectors $\boldsymbol{\xi}$ with finite second-order moments, we have seen that for $\boldsymbol{\xi}$ with finite support, $\mathcal{Q}(x)$ is piecewise linear. Therefore $\mathcal{Q}(x)$ is not differentiable.

Differentiability of the recourse: continuous case

If ξ is continuous, $\mathcal{Q}(x)$ is obtained as an integral over the $Q(x,\xi)$'s, that are not differentiable as they are piecewise linear given ξ . However, it is x that has to be fixed, not ξ . It is possible to show that (the proof is quite technical)

Theorem

For a stochastic program with fixed recourse where ξ has finite second-order moments, if ξ is continuous, Q(x) is differentiable over K_2 .

Intuitively, the function Q(x) is "smoothed" by the superposition of an infinite number of functions $Q(x, \xi)$.

Two-stage non-linear problems

Now consider the general program

$$\min_{x \in X} E_{\xi}[f_0(x, \xi)] = \min_{x \in X} E_{\xi}[g_0(x, \xi) + Q(x, \xi)].$$

Theorem

If $g_0(\cdot,\xi)$ and $Q(\cdot,\xi)$ are convex with respect to $x, \forall \xi \in \Xi$, and if X is a convex set, the aforementioned program is convex.

Proof.

For $x, y \in X$, $\lambda \in (0,1)$ and $z = \lambda x + (1 - \lambda)y$, we have

$$g_0(z,\xi) + Q(z,\xi)$$

 $\leq \lambda(g_0(x,\xi) + Q(x,\xi)) + (1-\lambda)(g_0(y,\xi) + Q(y,\xi)).$

The result follows by taking the expectation.

In a more standard form

Inspired from Birge et Louveaux, Section 3.4.

We consider the problem

inf
$$z = f^1(x) + Q(x)$$
,
s.t. $g_i^1(x) \le 0$, $i = 1, ..., \overline{m}_1$,
 $g_i^1(x) = 0$, $i = \overline{m}_1 + 1, ..., m_1$,

where $\mathcal{Q}(x) = \mathcal{E}_{\omega}[\mathcal{Q}(x,\omega)]$ and

$$Q(x,\omega) = \inf f^2(y(\omega),\omega),$$
s.t. $t_i^2(x,\omega) + g_i^2(y(\omega),\omega) \le 0, i = 1,\ldots,\overline{m}_2,$

$$t_i^2(x,\omega) + g_i^2(y(\omega),\omega) = 0, i = \overline{m}_2 + 1,\ldots,m_2,$$

We say that the recourse is additive (why?).

In a more standard form (cont'd)

The functions $f^2(\cdot,\omega)$, $t_i^2(\cdot,\omega)$, and $g_i^2(\cdot,\omega)$ are continuous for any given ω , and measurable w.r.t. ω for any given first argument. This allows to prove that $Q(x,\omega)$ is measurable, and therefore that Q(x) is well defined.

Reintroduce K_1 , $K_2(\omega)$ and K_2 .

$$K_{1} = \{x \mid g_{i}^{1}(x) \leq 0, \ i = 1, \dots, \overline{m}_{1}, \\ g_{i}^{1}(x) = 0, \ i = \overline{m}_{1} + 1, \dots, m_{1}\}, \\ K_{2}(\omega) = \{x \mid \exists y(\omega) \text{ t.q. } t_{i}^{2}(x, \omega) + g_{i}^{2}(y(\omega), \omega) \leq 0, \ i = 1, \dots, \overline{m}_{2}, \\ t_{i}^{2}(x, \omega) + g_{i}^{2}(y(\omega), \omega) = 0, \ i = \overline{m}_{2} + 1, \dots, m_{2}\}, \\ K_{2} = \{x \mid Q(x) < \infty\}.$$

Remarks

The formulation is not yet totally general. We will consider more general forms when we will discuss sampling techniques.

Here, there is no more fixed recourse, but the first-stage decision \boldsymbol{x} acts separately in the constraints. Goal: extend the previous results.

Questions: convexity, differentiability, optimality. We should also consider the concept of lower semi-continuity.