MA 555 - Numerical Analysis

Homework # 1 John Joseph

1. Minimize $I(a,b) = \int_{-1}^{1} (x^2 + ax + b)^2 dx$. Graph the function and locate its maximum value over the interval [-1,1].

In order to minimize this function we take the partial derivatives of I with respect to a and b and set them equal to 0. We end up with a linear system with two equations and two unknowns. Starting with a...

$$\frac{\partial I}{\partial a} = 2 \int_{-1}^{1} (x^2 + ax + b)(x) dx = 0 \tag{1}$$

By solving this integral in Mathematica we get the result

$$0 = \frac{-2a}{3} \tag{2}$$

and conclude that a = 0. Now to b...

$$\frac{\partial I}{\partial b} = 2 \int_{-1}^{1} (x^2 + ax + b) dx = 0 \tag{3}$$

Again solving in Mathematica we see that

$$0 = \frac{2}{3} + 2b \tag{4}$$

$$b = -\frac{1}{3} \tag{5}$$

Therefore, our minimized function is

$$I_{min}(a,b) = \int_{-1}^{1} (x^2 - \frac{1}{3})^2 dx \tag{6}$$

Graphing the quadratic function $x^2 - \frac{1}{3}$ yields the following figure

from which it is clear that the maximum value is $\frac{2}{3}$, occurring at |x|=1.

2. Minimize a similar function I(c,d) using the previous result as a weight function.

$$\frac{\partial I}{\partial c} = 2 \int_{-1}^{1} (x^2 - \frac{1}{3})^2 (x^2 + cx + d)(x) dx = 0$$
 (7)

Solving this integral in Mathematica gives the result

$$0 = \frac{88c}{945} \tag{8}$$

From which we conclude c = 0. Moving on to d...

$$\frac{\partial I}{\partial d} = 2 \int_{-1}^{1} (x^2 - \frac{1}{3})^2 (x^2 + cx + d) dx = 0$$
 (9)

Solving this integral in Mathematica gives the result

$$0 = \frac{44}{945} + \frac{84d}{945} \tag{10}$$

Solving for d shows that $d=-\frac{11}{21}$. Intuition (and Professor Fried) tells us that the best value we can get is -frac12, so this is pretty good. Graphing the quadratic function $x^2-\frac{11}{21}$ yeilds the figure

The max clearly occurs at |x|=1, and solving the equation for $x=\pm 1$ yields tha max of $\frac{10}{21}$.

3. Minimize the function $I(b) = \int_{-1}^{1} (x^3 - bx)^2 dx$.

$$\frac{\partial I}{\partial b} = 2 \int_{-1}^{1} (x^3 - bx)(x) dx = 0$$
 (11)

Solving this integral yields

$$0 = \frac{2}{5} - \frac{2b}{3} \tag{12}$$

From which we see that $b = \frac{3}{5}$ and

$$I_{min}(b) = \int_{-1}^{1} (x^3 - \frac{3}{5})^2 dx \tag{13}$$

4. Calculate $x = \frac{1.23678 - 1.23456}{1.23555 - 1.23444}$ using 4,5, and 6 digit arithmetic.

Here is a copy and paste from my terminal. I used Python and its round function.

This seemed strange at first, but it makes sense if you actually do it out by hand. The 4^{th} , 5^{th} , and 6^{th} always have the same difference during subtraction.