

Generative Adversarial Networks in Neural Machine Translation

Master 2 Internship - Computer Science Research - Paris-Saclay University

Author: NGO HO Anh Khoa anh-khoa.ngo-ho@u-psud.fr Supervisor: ALEXANDRE Allauzen allauzen@limsi.fr

- Main idea: Applying GANs in NMT, based on the work of [Yang et al, 2017]
- Model architecture
- Algorithm
- Results and Experiments
- Conclusion

Main idea

Applying GANs in NMT [Yang et al, 2017]

- There are two objectives:
 - Translator tries to fool Discriminator
 - Discriminator tries to distinguish well

Main idea

Applying GANs in NMT [Yang et al, 2017]

- There are two objectives:
 - Translator tries to fool Discriminator
 - Discriminator tries to distinguish well

- Translator: Attention-based NMT model
 - Maximize the expected end reward of a sequence (Reinforcement learning)

$$\nabla J_G = \sum_{y_t} R_D^G((y_{1:t-1}, x), y_t) \, \nabla_\theta \log p_G(y_t | y_{1:t-1}, x)$$
 (3.2)

- Discriminator: Binary classifier discriminates the machine-translated sentence from the human-translated sentence.
 - riangle Probability of a sentence being human translated. D(y,x)

- Translator: Attention-based NMT model
 - Maximize the expected end reward of a sequence (Reinforcement learning)

$$\nabla J_G = \sum_{y_t} R_D^G((y_{1:t-1}, x), y_t) \nabla_\theta \log p_G(y_t | y_{1:t-1}, x)$$
 (3.2)

- Reward strategies: $R_D^G((y_{1:t-1}, x), y_t)$
 - Monte-Carlo search strategy [Yang et al, 2017]
 - O Discriminator strategy [Li et al, 2017]
 - Language model strategy

- Reward strategy:
 - Monte-Carlo search strategy [Yang et al, 2017]
 - Discriminator is a full sentence classifier.
 - MC search samples the rest of sequence for each token.

$$R_D^G((y_{1:t-1}, x), y_t) = \begin{cases} \frac{1}{N} \sum_{n=1}^N D(y_{1:L_n}^n, x), \ y_{1:L_n}^n \in MC^G((y_{1:t}, x), N) & \text{for } t < L \\ D(y_{1:T}, x) & \text{for } t = L \end{cases}$$
(3.4)

- Reward strategy:
 - O Discriminator strategy (Li et al, 2017)
 - Discriminator is a partially generated sentence classifier.
 - Example: "Discriminator is a classifier ."
 - "Discriminator", "Discriminator is", "Discriminator is a", "Discriminator is a classifier", "Discriminator is a classifier."

$$R_D^G((y_{1:t-1}, x), y_t) = D(y_{1:t}, x)$$
(3.5)

GANs in NMT

- Reward strategy:
 - Language model strategy
 - Discriminator reward: Monte-Carlo search strategy or Discriminator strategy.
 - Language model is an extra quality evaluator. (Dual learning of [He et al, 2016])

$$R_D^G((y_{1:t-1}, x), y_t) = \alpha * D(y_{1:t}, x) + (1 - \alpha) * LM(y_t | y_{1:t-1})$$

(3.6)

- Teacher Forcing: [Yang et al, 2017]
 - Return reward from **true target sentence**.

$$\nabla J_G = \sum_{y_t} 1 * \nabla_{\theta} \log p_G(y_t | y_{1:t-1}, x)$$
(3.7)

Algorithm

while not convergence do Sample randomly a batch: Input sentences and its human-translated sentences $(X, hY)_{1:S}$ for *q-steps* do for $s \in 1:S$ do G translates X_s into machine-translated sentence $mY_{1:T} = (my_1, ..., my_T)$ by beam-search for $t \in 1:T$ do Compute reward $R_D^G(my_{1:t-1}, my_t)$ by Equation 3.4, 3.5 or 3.6 end **Update G with Discriminator:** Update with $mY_{1:S}$ by Equation 3.2 **Update G with Teacher Forcing:** Update with hY by Equation 3.7 end for d-steps do G translate $X_{1:S}$ into machine-translated sentences $mY_{1:S}^{'}$ as Negative examples $hY_{1:S}$ Human-generated sentences as Positive examples **Update D:** Update by Equation 3.3

end

end

English-French translation task

- Dataset: BTEC
 - Training set: 19972 sentences
 - Development set: 506 sentences
 - Testing set: 469 sentences

Initial models:

- Baseline: NMT model with BLEU 38.8 on development set
- Accuracy of discriminator:
 - MC search strategy: 0.78
 - Discriminator strategy: 0.83
 - In the range [0.75, 0.85]

- Discriminator strategy:
 - Train loss

English-French translation task

• Discriminator strategy:

Validation BLEU score

Model	Initial model	GANs	Improve
$\lceil Train \rceil$	46.71	92.38	+45.67
Dev	38.85	42.340	+3.49
Test	38.39	36.15	-2.24

- Discriminator strategy:
 - o Train loss: Teacher forcing and Discriminator reward

English-French translation task

• Discriminator strategy:

 Relationship between BLEU score (Validation) and generator loss with discriminator reward (Train)

*Values are scaled

- Language model strategy: without MC search
 - Train loss

- Language model strategy: without MC search
 - Validation BLEU score

Conclusion Until now

- GANs have a similar but weaker effect of the log likelihood on training NMT
- Ongoing work:
 - Analysis about the unstable training
 - Solving joint optimization issues (Discriminator Reward and Professor Forcing)
 - Experiments of the proposed strategies
 - MC search strategy and Language model strategy with MC search
 - Research about Variational Networks

Thank you!

- Monte-Carlo search strategy:
 - Train loss

- Monte-Carlo search strategy:
 - Validation BLEU score

- Language model strategy: with MC search
 - Train loss

- Language model strategy: with MC search
 - Validation BLEU score

English-French translation task

Discriminator strategy:

Validation BLEU score

Model	Initial model	GANs	Improve
Train	46.71	92.38	+45.67
Dev	38.85	42.340	+3.49
Test	38.39	36.15	-2.24

Dev	38.85	40.400	+1.55
Test	38.39	37.54	-0.85

English-French translation task

Monte-Carlo search strategy:

Figure A2: Epoch 1 - Batch 1

English-French translation task

Monte-Carlo search strategy:

Figure A1: En sentence: I'd like to buy what I need . will you pay me

back?

Fr sentence: pourriez -vous me régler à mon retour?

0.90

0.75

0.60

0.30

English-French translation task

Monte-Carlo search strategy:

Figure A1: En sentence: yes, it's next door.

Fr sentence: c'est ouvert.

0.60

0.30

English-French translation task

Monte-Carlo search strategy:

Figure A1: En sentence: the Japanese just can't get along without taking a bath every day.

Fr sentence: nous ne sont pas pris de nous faire un n' asseoir pas de la baignoire.

0.90

0.75

0.60

0.30

Figure 3.3: Discriminator architecture