In the Claims

- 1-9. (cancelled)
- 10. (currently amended) A process for producing adhesion elements on a substrate, comprising the steps of:

introducing thixotropic plastic material of polyvinyl siloxane having a viscosity of 7,000 to 15,000 mPas measured with a rotary viscosimeter into at least one shaping element; and

forming the plastic material into at least 16,000 adhesion elements with flared ends per cm² accomplishing adhesion predominantly by van-der-Waals forces, the flared ends forming heads with essentially flat end surfaces, the adhesion elements having stem parts with a height from 50 μ m to 150 μ m and with a diameter from 10 μ m to 40 μ m, the flared ends having a diameter from 15 μ m to 70 μ m.

11-12. (cancelled)

- 13. (previously presented) A process according to claim 10 wherein the viscosity is approximately 10,000 mPas at a shear rate of 10 1/sec.
- 14. (previously presented) A process according to claim 10 wherein the shaping element is a drum-shaped screen having at least 16,000 mold cavities per cm².

15. (cancelled)

- 16. (previously presented) A process according to claim 14 wherein each of the mold cavities has a hyperboloid shape.
- 17. (previously presented) A process according to claim 10 wherein the plastic material has a contact angle greater than 60 degrees due to surface energy for wetting with water.
 - 18. (previously presented) A process according to claim 17 wherein the contact angle is greater than 70 degrees.
 - 19. (cancelled)
 - 20. (previously presented) A process according to claim 10 wherein the height of the stems is approximately 90 $\mu m;$ the diameter of the stems is approximately 30 $\mu m;$ and the diameter of the flared end is approximately 50 $\mu m.$
 - 21. (previously presented) A process according to claim 10 wherein the plastic material is cross-linked with or after molding of the adhesion elements.
- 22. (currently amended) A process for producing adhesion elements on a substrate, comprising the steps of:

introducing thixotropic plastic material of polyvinyl siloxane having a viscosity of 7,000 to 15,000 mPas measured with a rotary viscosimeter into at least one shaping element; and

forming the plastic material into at least 16,000 adhesion elements with flared ends per cm² accomplishing adhesion predominantly by van-der-Waals forces, the flared ends forming heads with slightly convex end surfaces, the adhesion elements having stem parts with a height from 50 μ m to 150 μ m and with a diameter from 10 μ m to 40 μ m, the flared ends having a diameter from 15 μ m to 70 μ m.

23-24. (cancelled)

- 25. (previously presented) A process according to claim 22 wherein the viscosity is approximately 10,000 mPas at a shear rate of 10 1/sec.
- 26. (previously presented) A process according to claim 22 wherein the shaping element is a drum-shaped screen having at least 16,000 mold cavities per cm².
 - 27. (cancelled)
 - 28. (previously presented) A process according to claim 26 wherein each of the mold cavities has a hyperboloid shape.

- 29. (previously presented) A process according to claim 22 wherein the plastic material has a contact angle greater than 60 degrees due to surface energy for wetting with water.
 - 30. (previously presented) A process according to claim 29 wherein the contact angle is greater than 70 degrees.
 - 31. (cancelled)
 - 32. (previously presented) A process according to claim 22 wherein the height of the stems is approximately 90 $\mu m;$ the diameter of the stems is approximately 30 $\mu m;$ and the diameter of the flared end is approximately 50 $\mu m.$
 - 33. (previously presented) A process according to claim 22 wherein the plastic material is cross-linked with or after molding of the adhesion elements.
- 34. (currently amended) A process for producing adhesion elements on a substrate, comprising the steps of:

introducing thixotropic plastic material of polyvinyl siloxane having a viscosity of 7,000 to 15,000 mPas measured with a rotary viscosimeter into at least one shaping element; and

forming the plastic material into at least 16,000 adhesion elements with flared ends per cm² accomplishing adhesion predominantly by van-der-Waals forces, the flared ends forming

heads with end surfaces having a concavity, the adhesion elements having stem parts with a height from 50 μm to 150 μm and with a diameter from 10 μm to 40 μm , the flared ends having a diameter from 15 μm to 70 μm .

- 35-36. (cancelled)
- 37. (previously presented) A process according to claim 34 wherein the viscosity is approximately 10,000 mPas at a shear rate of 10 1/sec.
- 38. (previously presented) A process according to claim 34 wherein the shaping element is a drum-shaped screen having at least 16,000 mold cavities per cm².
 - 39. (cancelled)
 - 40. (previously presented) A process according to claim 38 wherein each of the mold cavities has a hyperboloid shape.
- 41. (previously presented) A process according to claim 34 wherein the plastic material has a contact angle greater than 60 degrees due to surface energy for wetting with water.
 - 42. (previously presented) A process according to claim 41 wherein the contact angle is greater than 70 degrees.

- 43. (cancelled)
- 44. (previously presented) A process according to claim 34 wherein the height of the stems is approximately 90 $\mu m;$ the diameter of the stems is approximately 30 $\mu m;$ and the diameter of the flared end is approximately 50 $\mu m.$
- 45. (previously presented) A process according to claim 34 wherein the plastic material is cross-linked with or after molding of the adhesion elements.