15

46 and 47, for example, exhibit a very strong action against broad-leaved weeds.

What is claimed is:

1. A compound of the formula (I),

$$R^2$$
 R^1
 R^2
 R^3
 R^3
 R^3

wherein

A represents a single bond,

Q represents oxygen or sulphur,

R¹ represents hydrogen or formyl or represents in each case optionally cyano-, fluoro-, chloro-, bromo-, phenyl- or C₁-C₄-alkoxy-substituted alkyl, alkenyl, alkinyl, alkinyl, alkinyl, alkoxycarbonyl or alkylsulphonyl having in each case up to 6 carbon atoms, or represents in each case optionally cyano-, fluoro-, chloro-, bromo- or C₁-C₄-alkyl-substituted C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyl-carbonyl or C₃-C₆-cycloalkyl-sulphonyl,

 R^2 represents cyano, fluoro, chloro or bromo or represents in each case optionally cyano-, fluoro-, chloro-, bromo- or C_1 - C_4 -alkoxy-substituted alkyl, alkenyl, alkinyl, alkoxy, alkenyloxy or alkinyloxy having in each case up to 6 carbon atoms, and

R³ represents in each case optionally substituted heterocyclyl of the formula below,

in which

Q1 represents oxygen or sulphur, and

 R^4 represents hydrogen, or amino, or represents C_2-C_{10} -alkylideneaniino, or represents optionally fluoro-, chloro-, bromo-, cyano-, C_1-C_4 -alkoxy-, C_1-C_4 -alkyl-carbonyl- or C_1-C_4 -alkoxy-carbonyl-substituted C_1-C^6 -alkyl, or represents in each case optionally fluoro-, chloro- and/or bromo-substituted C^2 -6-Calkenyl or C^2 -6-alkinyl, or represents in each case optionally fluoro-, chloro-, bromo-, cyano-, C_1-C_4 -alkoxy- or C_1-C_4 -alkoxy-carbonyl-substituted C_1-C_6 -alkoxy, C_1-C_6 -alkylamino or C_1-C_6 -alkyl-carbonylamino, or represents C_3-C_6 - salkenyloxy, or represents di- $(C_1-C_6$ -alkyl)-amino, or represents in each case optionally fluoro-, chloro-, bromo-, cyano- and/or C_1-C_4 -alkyl-substituted C_3-C_6 -cycloalkyl, C_3-C_6 -cycloalkyl-C1- C_4 -alkyl, 60

 R^5 represents hydrogen, or represents optionally fluoro-, chloro-, bromo-, cyano-, C_1 - C_4 -alkoxy-, C_1 - C_4 -alkyl-carbonyl- or C_1 - C_4 -alkoxy-carbonyl-substituted C_1 - C_6 -alkyl, or represents in each case optionally fluoro-, chloro- and/or bromo-substituted C_2 - C_6 -alkenyl or C_2 - C_6 -alkinyl, or represents in each case optionally fluoro-, chloro-, cyano-, C_1 - C_4 -

alkoxy- or C_1-C_4 -alkoxy-carbonyl-substituted C_1-C_6 -alkoxy, C_1-C_6 -alkylthio, C_1-C_6 -alkylamino or C_1-C_6 -alkyl-carbonylamino, or represents C_3-C_6 -alkenyloxy, C_3-C_6 -alkinyloxy, C_3-C_6 -alkenyloxy, C_3-C_6 -alkinyloxy, C_3-C_6 -alkinylamino or C_3-C_6 -alkinylamino, or represents di- $(C_1-C_4$ -alkyl)-amino, or represents in each case optionally fluoro-, chloro-, bromo-, cyano- and/or C_1-C_4 -alkyl-substituted C_3-C_6 -cycloalkyl, C_5-C_6 -cycloalkylthio, C_3-C_6 -cycloalkyloxy, C_3-C_6 -cycloalkylthio, C_3-C_6 -cycloalkylamino, C_3-C_6 -cycloalkyl- C_1-C_4 -alkyl, C_3-C_6 -cycloalkyl- C_1-C_4 -alkylthio or C_3-C_6 -cycloalkyl- C_1-C_4 -alkylthio or C_3-C_6 -cycloalkyl- C_1-C_4 -alkylthio, or represents in each case optionally fluoro-, chloro-, bromo-, cyano-, nitro-, C_1-C_4 -alkyl-, trifluoromethyl-, C_1-C_4 -alkoxy- and/or C_1-C_4 -alkoxy-carbonyl-substituted phenyl, phenoxy, phenyl- C_1-C_4 -alkoxy, phenyl- C_1-C_4 -alkylthio, or

R⁴ and R⁵ together represent optionally branched alkanediyl having 3 to 11 carbon atoms,

and with the proviso that if R^1 represents methyl then R^2 does not represent 5-methoxy and if R^1 represents ethyl then R^2 does not represent 5-ethoxy.

2. A compound of the formula (I) according to claim 1, wherein

A represents a single bond,

Q represents oxygen or sulphur,

R¹ represents methyl, ethyl, n- or i-propyl,

R² represents chloro or methyl- in each case in position 5 or 6- and

R³ represents optionally substituted triazolinyl of the formula below,

in which

Q1 represents oxygen or sulphur, and

R⁴ represents in each case optionally fluoro-, chloro-, cyano-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, or represents propenyl or propinyl, or represents methoxy, ethoxy, n- or i-propoxy, or represents cyclopropyl, and

R⁵ represents hydrogen, or represents in each case optionally fluoro-, chloro-, cyano-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, or represents in each case optionally fluoro and/or chloro-substituted propenyl or propinyl, or represents in each case optionally fluoro-, chloro-, cyano-, methoxy- or ethoxy-substituted methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, or represents propenyloxy or cyclopropyl,

and with the proviso that if R^1 represents methyl then R^2 does not represent 5-methoxy and if R^1 represents ethyl then R^2 does not represent 5-ethoxy.

3. A compound of the formula (I) according to claim 1, wherein

A represents a single bond,

Q represents oxygen or sulphur,

25

30

R¹ represents hydrogen or formyl, or represents in each case optionally fluoro-, chloro-, bromo-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, propenyl, butenyl, propinyl, butinyl, acetyl, propionyl, butyroyl, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, n-, i-, s- or t-butylsulphonyl, or represents in each case optionally fluoro-, chloro- or methyl-substituted cyclopropyl, cyclopropylcarbonyl or cyclopropylsulphonyl,

R² represents cyano, fluoro, chloro or bromo, or represents in each case optionally fluoro-, chloro-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i- or s-butyl, propenyl, butenyl, propinyl, butinyl, methoxy, ethoxy, n- or i-propoxy, n-, i- or s-butoxy, propenyloxy, butenyloxy, propinyloxy or butinyloxy and

R³ represents in each case optionally substituted heterocyclyl of the formulae below,

in which

Q1 represents oxygen or sulphur, and

R⁴ represents hydrogen, or amino, or represents C₃-C₄alkylideneamino, or represents in each case optionally fluoro-, chloro-, cyano-, methoxy- or ethoxysubstituted methyl, ethyl, n- or i-propyl, n-, i-, s- or 35 t-butyl, or represents in each case optionally fluoro-, chloro- or bromo-substituted propenyl, butenyl, propinyl or butinyl, or represents in each case optionally fluoro-, chloro-, cyano-, methoxy- or ethoxy-substituted methoxy, ethoxy, n- or i-propoxy, 40 wherein n-, i-, s- or t-butoxy, methylamino, ethylamino, n- or i-propylamino, n-, i-, s- or t-butylamino, or represents propenyloxy or butenyloxy, or represents dimethylamino or diethylamino, or represents in each case optionally fluoro-, chloro-, methyl- and/or 45 ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl or 50 cyclohexylmethyl,

R⁵ represents hydrogen, or represents in each case optionally fluoro-, chloro-, cyano-, methoxy- or ethoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, or represents in each case optionally fluoro-, chloro- or bromo-substituted ethenyl,

propenyl, butenyl, propinyl or butinyl, or represents in each case optionally fluoro-, chloro-, cyano-, methoxy- or ethoxy-substituted methoxy, ethoxy, nor i-propoxy, n-, i-, s- or t-butoxy, methylthio, ethylthio, n- or i-propylthio, n-, i-, s- or t-butylthio, methylamino, ethylamino, n- or i-propylamino, n-, i-, s- or t-butylamino, or represents propenyloxy, butenyloxy, propinyloxy, butinyloxy, propenylthio, propadienylthio, butenylthio, propinylthio, butinylthio, propenylamino, butenylamino, propinylamino or butinylantino, or represents dimethylamino, diethylamino or dipropylamino, or represents in each case optionally fluoro-, chloro-, methyl- and/or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentenyl, cyclohexenyl, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio, cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, cyclopropylmethyl, cyclobutylmethyl, cyclohexylmethyl, cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy, cyclopropylmethylthio, cyclobutylmethylthio, cyclopentylmethylthio, cyclohexylmethylthio, cyclopropylmethylamino, cyclobutylmethylamino, cyclopentylmethylamino cyclohexylmethylamino, or represents in each case optionally fluoro-, chloro-, methyl-, trifluoromethyl-, methoxy-and/or methoxy-carbonyl substituted phenoxy, benzyloxy, phenylthio, benzylthio, or R⁴ and R⁵ together

R⁴ and R⁵ together represent optionally branched alkanediyl having 3 to 11 carbon atoms,

with the proviso that if R^1 represents methyl then R^2 does not represent 5-methoxy and if R^1 represents ethyl then R^2 does not represent 5-ethoxy.

4. The compound of formula (I) according to claim 1 wherein

A represents a single bond,

Q represents oxygen,

R1 represents 2,2-difluoro-ethyl,

R² represents (6-)ethyl, and

R³ represents 4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-on-2-yl.

 An herbicidal composition composing an herbicidally effective amount of a compound according to claim 1 and an inert carrier.

6. A method of controlling unwanted vegetation which comprises applying to such vegetation or to a locus from which it is desired to exclude such vegetation an herbicidally effective amount of a compound according to claim 1.

* * * * *