

| Konditorei*                                                                                                                                                                                                                                                                                                     |           |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Aufgabennummer: B_317                                                                                                                                                                                                                                                                                           |           |              |
| Technologieeinsatz:                                                                                                                                                                                                                                                                                             | möglich ⊠ | erforderlich |
| <ul> <li>a) In einer Konditorei können täglich höchstens 10 Sachertorten und höchstens 25 Topfentorten hergestellt werden. Es werden täglich mindestens doppelt so viele Topfentorten wie Sachertorten hergestellt.</li> <li>– Übertragen Sie diesen Sachverhalt in ein lineares Ungleichungssystem.</li> </ul> |           |              |
| <ul> <li>b) Die Fertigungskosten für eine Sachertorte betragen € 10,50, jene für eine Topfentorte € 8,00.</li> <li>Der Verkaufspreis für eine Sachertorte beträgt € 34,00, jener für eine Topfentorte € 26,00.</li> <li>Es werden x Sachertorten und y Topfentorten verkauft.</li> </ul>                        |           |              |
| - Stellen Sie die Gleichung der Zielfunktion zur Beschreibung des Gewinns auf.                                                                                                                                                                                                                                  |           |              |

Konditorei 2

c) In der nachstehenden Abbildung ist der Lösungsbereich der Produktionseinschränkungen für die tägliche Produktion von Erdbeertorten und Linzer Torten dargestellt.



 Lesen Sie aus der obigen Abbildung die 5 Ungleichungen ab, die den Lösungsbereich beschreiben.

Die Zielfunktion Z beschreibt den täglichen Gewinn beim Verkauf von x Erdbeertorten und y Linzer Torten in Euro:

$$Z(x, y) = 25 \cdot x + 20 \cdot y$$

x ... Anzahl der verkauften Erdbeertorten

y ... Anzahl der verkauften Linzer Torten

- Zeichnen Sie diejenige Gerade, für die der optimale Wert der Zielfunktion angenommen wird, in der obigen Abbildung ein.
- Berechnen Sie den maximalen Gewinn.

## Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Konditorei 3

## Möglicher Lösungsweg

- a) x ... Anzahl der Sachertorten y ... Anzahl der Topfentorten
  - (1)  $x \le 10$
  - (2)  $y \le 25$
  - (3)  $y \ge 2 \cdot x$

Nichtnegativitätsbedingungen:  $x \ge 0$ ,  $y \ge 0$ Es ist nicht gefordert, die Nichtnegativitätsbedingungen anzugeben.

- b)  $Z(x, y) = 23.5 \cdot x + 18 \cdot y$
- c) (1)  $x \ge 0$ 
  - (2)  $y \ge 0$
  - (3)  $x \le 30$
  - (4)  $y \le 20$
  - (5)  $x + y \le 45$



gewinnmaximierende Menge: (30 | 15)

 $25 \cdot 30 + 20 \cdot 15 = 1050$ 

Der maximale Gewinn beträgt € 1.050 pro Tag.

Konditorei 4

## Lösungsschlüssel

- a) 1 × A1: für das richtige Aufstellen der beiden Ungleichungen (1) und (2)
  - 1 × A2: für das richtige Aufstellen der Ungleichung (3)

    Die Angabe der Nichtnegativitätsbedingungen ist nicht erforderlich.
- b) 1  $\times$  A: für das richtige Aufstellen der Gleichung der Zielfunktion zur Beschreibung des Gewinns
- c) 1 x C1: für das richtige Ablesen der 4 Ungleichungen (1) bis (4)
  - 1 × C2: für das richtige Ablesen von Ungleichung (5)
  - $1 \times B1$ : für das richtige Einzeichnen der Geraden, für die der optimale Wert der Zielfunktion angenommen wird
  - 1 × B2: für die richtige Berechnung des maximalen Gewinns