Geometric-Transformation-Example2-Solutions

Question 1

	x = 0	x = 1	x=2
y = 0	1	10	100
y=1	4	40	200
y=2	7	60	150

The above picture is transformed by a geometric transformation. The (forward) description of this transformation is:

The pixel at coordinate (x, y) in the original picture moves to the location (y, 3x - 2y) in the new picture.

Computing the inverse transformation we get:

$$\text{new } x = \frac{2x + y}{3}, \text{ new } y = x$$

The following table specifies where each pixel is coming from:

	x = 0	x = 1	x = 2
y = 0	(x=0, y=0)	(x=2/3, y=1)	(x = 4/3, y = 2)
		(x=1,y=1)	
y=2	(x=2/3, y=0)	(x = 4/3, y = 1)	(x=2, y=2)

Α.

Compute the transformed image using Nearest-Neighbor interpolation.

Rounding gives the following coordinate table for where each pixel is coming from:

	x = 0	x = 1	x=2
y = 0	(x=0, y=0)	(x=1,y=1)	(x=1, y=2)
y=1	(x=0, y=0)	(x=1,y=1)	(x=2, y=2)
y=2	(x=1, y=0)	(x = 1, y = 1)	(x=2, y=2)

This gives the following transformed image:

	x = 0	x = 1	x=2
y = 0	1	40	60
y=1	1	40	150
y=2	10	40	150

В.

Compute the first line of the transformed image using Bilinear interpolation.

	x = 0	x = 1	x=2
y = 0	1	$4(\frac{1}{3}) + 40(\frac{2}{3}) = 28$	$60(\frac{2}{3}) + 150(\frac{1}{3}) = 90$