SDC und Reinforcement Learning

16. Februar 2021

1 Aufgabenstellung

Ziel: Löse das Kollokationsproblem

$$C_f u = u_0, (1)$$

mit Kollokationsoperator

$$C_f(u) := (I_M \otimes I_N - \Delta t(Q \otimes I_N)f)(u), \tag{2}$$

so effizient wie möglich.

Ansatz: Benutze den iterativen Löser SDC (eine vorkonditionierte Fixpunktiteration)

$$P_f(u^{k+1}) = P_f(u^k) + (u_0 - C_f(u^k))$$
 für $j = 0, 1, 2, ...,$ (3)

mit

$$P_f(u) := (I_M \otimes I_N - \Delta t(Q_\Delta \otimes I_N)f)(u). \tag{4}$$

Frage: Wie ist die diagonale Matrix Q_{Δ} zu wählen um einen besonders guten Vorkonditioniere P_f zu erzeugen.

Wähle die Einträge $(q_{\Delta})_{ii}$ von Q_{Δ} so, dass die Anzahl der Iterationen von (3) bezüglich einer vorgegebenen Fehler-Schranke minimiert werden.

Im einfachsten Fall ist u skalar und $f(u) = \lambda u$ wir nennen dies unsere Testgleichung und beschränken uns zunächst auf $\lambda \in [-100, 0]$.

2 Q_{Δ} konstant: eine erste triviale Lösung

Als erstes nehmen wir an, dass Q_{Δ} nicht von der Iterationszahl k abhängt, sondern lassen unseren Algorithmus für jedes Testbeispiel ein Q_{Δ} wählen und führen für dieses Beispiel alle Iterationen k mit dieser Wahl aus.

Wie vergleichen die Wahl unseres Algorithmus mit zwei anderen Möglichkeiten Q_{Δ} zu besetzen:

- RL (unsere Implementierung): Eine Episode entspricht mehreren SDC-Iterationen (3): Für jede Iteration wird der Reward um eins verringert. Die Episode wird beendet falls der Fehler eine vorgegebene Schranke (10⁻¹⁰) unterschritten hat oder dies nach 50 Iterationen nicht der Fall ist.
- \bullet MIN (Referenzlösung): Wir sind uns selbst nicht sicher wo diese Zahlen für Q_Δ herkommen
- \bullet LU (Referenzlösung): Ist eine verbreitete Wahl von Q_{Δ} als untere Dreiecksmatrix

Wir benutzen unseren RL Agent nach verschieden intensivem Training (100k oder 1000k Schritte) um Testgeichungen mit verschiedenen $\lambda \in [-100, 0]$ zu Lösen und vergleichen das Ergebnis mit den zwei anderen Lösern:

Alg. und	durchschn Anz.	gef. Lösung für	gef. Lösung für	gef. Lösung für
Länge Trainig	Iterationen	$(q_{\Delta})_{11}$	$(q_{\Delta})_{22}$	$(q_{\Delta})_{33}$
		[min, max]	[min, max]	[min, max]
		$Mittel \pm Abw$.	$Mittel \pm Abw$.	$Mittel \pm Abw.$
RL 100k	29.46	[0.329, 0.481]	[0.179, 0.276]	[0.0, 0.425]
		0.423 ± 0.009	0.184 ± 0.013	0.401 ± 0.078
RL 1000k	15.22	[0.255, 0.324]	[0.128, 0.14]	[0.302, 0.375]
		0.318 ± 0.008	0.136 ± 0.004	0.34 ± 0.009
MIN	14.22	0.320	0.14	0.372
LU	11.53			

Die Tabelle lässt vermuten, dass die von RL gefundenen Werte für Q_{Δ} gegen die MIN-Lösung konvergieren. Die Abbildungen 1 und 2 zeigen Lernerfolge nach einem Training mit 100k beziehungsweise 1000k Schritten. Dargestellt sind für die Löser die Anzahl der benötigten Iterationen (auf der y-Achse) gegen verschiedene Testbeispiele (λ auf der x-Achse). Nach 1000k Trainingsschritten braucht unser Agent genau wie MIN im Mittel etwa 14 Iterationen.

Abbildung 1: RL 100K

Abbildung 2: RL 1000K

3 Bestimme Q_{Δ} in jeder Iteration

Bestimmt man ein neues Q_{Δ} in JEDER Iteration, führt dies zu einer erheblichen Steigerung des Trainingsaufwands und bisher auch nicht zum Erfolg. Daher beschränken wir das Training und die Auswertung zunächst auf $\lambda \in [-10,0]$ (dies sind auch die einfachen Testfälle).

(Für $\lambda=-20$ funktioniert das wirklich GAR NICHT aber vielleicht lerne ich auch nicht lange genug!)

Expertenrat: Benutze LSTM (unser Netzwerk war vorher vollständig verbunden) und finde eine passende Reward-Funktion:

- bisherige Belohnung: -1 für jede Iteration
- jetzt abhängig vom Residuum r^k und der gewünschten Genauigkeit $r_{tol} = 10^{-10}$ und der Anfangsgenauigkeit r^0

$$0.5 * \frac{log(r^k) - log(r^{k+1})}{log(r^0) - log(r_{tol})} - 0.01$$
 (5)

Die Abbildungen 3 und 4 zeigen das Lernen mit der alten Belohnungs-Methode (-1 für jede Iteration). Die Abbildungen 5,6,7,8 zeigen Ergebnisse für das Lernen mit der verbesserten Reward-Funktion (5), welche schneller zu besseren Ergebnissen führt. (Warum es irgendwann wieder schlechter wird habe ich als nicht RL-Experte noch nie verstanden).

Verwunderlich: Ist die Ergebnis-Matrix immer noch konstant?

Die Matrix Q_{Δ} , die von RL in Abbildung 6 (1000k) verwendet wird lautet: $[0.612\pm0.11,0.307\pm0.075,0.0252\pm0.0282]$.

Die Matrix Q_{Δ} , die von RL in Abbildung 7 (2000k) verwendet wird lautet: $[0.573 \pm 0.072, 0.281 \pm 0.047, 0.015 \pm 0.012]$.

Abbildung 3: Reward wie bisher, 100k

Abbildung 5: neuer Reward, 100k

Abbildung 7: neuer Reward, 2000k

Abbildung 4: Reward wie bisher, 1000k

Abbildung 6: neuer Reward, 1000k

Abbildung 8: neuer Reward, 5000k

4 Was noch nicht klappt

Als nächstes untersuchen wir ein schweres Beispiel nämlich den Fall $\lambda = -20$ (alles mit betragsmäßig großen λ bereitet dem RL Agent bei schrittweiser Neuwahl von Q_{Δ} Probleme). Ziel ist erst mal nur mit diesem einen Beispiel zu trainieren und es zu Lösen. Dazu soll das Residuum kleiner als 10^{-2} werden (bei den letzten Beispielen wurde $< 10^{-10}$ gefordert).

Verwende ich die Werte von MIN denn steigt das Residuum zunächst von 20 auf 25 bevor es dann in insgesamt 6 Schritten unter die gegebene Schranke fällt. Das MUSS besser gehen!

Ansatz: Härtere Bestrafung/Abbruch bei Residuums-Vergrößerung!

Problem: Nach 1000k Iterationen ist RL immer noch deutlich schlechter als die MIN-Lösung!!!?