作业一: 罗必达法则的叙述与证明

余明壕

统计学 3190103127

2022年6月27日

在建立求导法则和求导公式的过程中,极限的理论和一些具体的极限起决定性的作用.而有了求导理论和求导公式之后,又可以利用它解决极限理论中某些不定式的极限问题,而这些不定式的求值可通过罗必达 (L'Hopital) 法则进行求得.

1 问题描述

定理 1. 设函数 f(x) 和 g(x) 在 a 点的某一去心临域 $U_0(a,\delta)$ 上可导, 而且满足:

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0; \tag{1}$$

$$g'(x) \neq 0, \forall x \in U_0(a, \delta);$$
 (2)

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = l \quad (l \ \text{为有限数或} \ \pm \infty)$$
 (3)

则有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = l. \tag{4}$$

定理 2. 设函数 f(x) 和 g(x) 在 $U = \{x : |x| > a > 0\}$ 上可导, 而且满足:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0; \tag{5}$$

$$g'(x) \neq 0, \forall x \in U; \tag{6}$$

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = l \quad (l \ \text{hat Rbs} \ \pm \infty)$$
 (7)

则有

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = l. \tag{8}$$

定理 3. 设函数 f(x) 和 g(x) 在 a 点的某一去心临域 $U_0(a,\delta_0)(\delta_0>0)$ 上 可导, 而且满足:

$$\lim_{x \to a} g(x) = \infty; \tag{9}$$

$$g'(x) \neq 0, \forall x \in U_0(a, \delta_0); \tag{10}$$

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = l \quad (l \ \text{为有限数或} \ \pm \infty)$$
 (11)

则有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = l. \tag{12}$$

定理 4. 设函数 f(x) 和 g(x) 在 $U = \{x : |x| > a > 0\}$ 上可导, 而且满足:

$$\lim_{x \to \infty} g(x) = \infty; \tag{13}$$

$$g'(x) \neq 0, \forall x \in U; \tag{14}$$

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = l \quad (l \ \text{happens of } \pm \infty)$$
 (15)

则有

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = l. \tag{16}$$

2 证明

2.1定理??的证明

此处考虑 l 为有限数的情形,先证 $\lim_{x\to a-0}\frac{f(x)}{g(x)}=l$. 由条件 (??) 可知,若补充定义 f(a)=g(a)=0,则 f(x),g(x) 在 a 点 连续. 于是, 对 $\forall x \in (a - \delta, a)$, 在区间 [x, a] 上应用柯西微分中值定理, 有

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)}, \quad x < \xi < a.$$
 (17)

又由条件 (??), 可得

$$\lim_{x \to a-0} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to a-0} \frac{f'(x)}{g'(x)} = l.$$
 (18)

所以

$$\lim_{x \to a-0} \frac{f(x)}{g(x)} = l. \tag{19}$$

同理可证 $\lim_{x\to a+0} \frac{f(x)}{g(x)} = l$. 故由 (??)(??) 可知 (??) 成立.

2.2 定理??的证明

先证 $x\to +\infty$ 的情形. 作自变量变换 $x=\frac{1}{t},$ 则 $x\to +\infty$ 对应 $t\to 0+0$. 于是有

$$\lim_{t \to 0+0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)},\tag{20}$$

并且由条件 (??), 有

$$\lim_{t \to 0+0} f(\frac{1}{t}) = 0, \quad \lim_{t \to 0+0} g(\frac{1}{t}) = 0. \tag{21}$$

应用定理 (??) 于开区间 $(0,\frac{1}{a})$ 上新变量 t 的函数 $f(\frac{1}{t})$ 和 $g(\frac{1}{t})$,并注意到它们关于 t 的导数为

$$f^{'}(\frac{1}{t})(-\frac{1}{t^{2}}), \quad g^{'}(\frac{1}{t})(-\frac{1}{t^{2}}),$$
 (22)

可得

$$\lim_{t \to 0+0} \frac{f(\frac{1}{t})}{g(\frac{1}{t})} = \lim_{t \to 0+0} \frac{f'(\frac{1}{t})(-\frac{1}{t^2})}{g'(\frac{1}{t})(-\frac{1}{t^2})} = \lim_{t \to 0+0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = l.$$
 (23)

因此, 我们得到

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = l. \tag{24}$$

同理可证 $x \to -\infty$ 的情形. 故可证得 (??) 成立.

2.3 定理??的证明

此处考虑 l 为有限值的情形. 先证 $x \rightarrow a - 0$ 的情形.

 $\forall \epsilon > 0$, 由条件 (??) 和 (??) 可知, $\exists \delta_1 > 0, 0 < \delta_1 < \delta_0$, 当 $a - \delta_1 < \zeta < a$ 时, 有

$$\left|\frac{f'(\zeta)}{g'(\zeta)} - l\right| < \frac{\epsilon}{3}.\tag{25}$$

对已经取定的 δ_1 及 $x \in (a - \delta_1, a)$, 在 $[a - \delta_1, x]$ 上应用柯西微分中值定理, $\exists \xi \in [a - \delta_1, x]$, 使得

$$\frac{f(x) - f(x_1)}{g(x) - g(x_1)} - l = \frac{f'(\xi)}{g'(\xi)} - l,$$
(26)

此处 $x_1 = a - \delta_1, \xi \in (a - \delta_1, a)$. 上式可化为

$$f(x) - f(x_1) - l[g(x) - g(x_1)] = \left[\frac{f'(\xi)}{g'(\xi)} - l\right][g(x) - g(x_1)], \tag{27}$$

整理可得

$$f(x) - lg(x) = [f(x_1) - lg(x_1)] + \left[\frac{f'(\xi)}{g'(\xi)} - l\right][g(x) - g(x_1)]. \tag{28}$$

在上式两边同除以 g(x), 得到

$$\frac{f(x)}{g(x)} - l = \left[\frac{f'(\xi)}{g'(\xi)} - l\right] \left[1 - \frac{g(x_1)}{g(x)}\right] + \frac{f(x_1) - lg(x_1)}{g(x)}.$$
 (29)

再根据条件 (??), 对固定的 x_1 , 有

$$\lim_{x \to a-0} \frac{f(x_1) - lg(x_1)}{g(x)} = 0, \quad \lim_{x \to a-0} \frac{g(x_1)}{g(x)} = 0.$$
 (30)

所以 $\exists \delta_2 (0 < \delta_2 < \delta_1)$, 使得当 $a - \delta_2 < x < a$ 时, 有

$$\left|\frac{f(x_1) - lg(x_1)}{g(x)}\right| < \frac{\epsilon}{2}, \quad \left|\frac{g(x_1)}{g(x)}\right| < \frac{1}{2}.$$
 (31)

令 $\delta = \min\{\delta_1, \delta_2\}$, 则当 $a - \delta < x < a$ 时, 有

$$\left| \frac{f(x)}{g(x)} - l \right| \le \left| \frac{f'(\xi)}{g^{\xi}} - l \right| \left| 1 - \frac{g(x_1)}{g(x)} \right| + \left| \frac{f(x_1) - lg(x_1)}{g(x)} \right| \le \frac{3}{2} \cdot \frac{\epsilon}{3} + \frac{\epsilon}{2} = \epsilon. \tag{32}$$

因此 $\lim_{x \to a-0} \frac{f(x)}{g(x)} = l$.

同理可证得 $x \to a + 0$ 情形成立, 故有 (??) 成立.

2.4 定理??的证明

先证 $x \to +\infty$ 的情形. 作自变量变换 $x = \frac{1}{t}$, 则 $x \to +\infty$ 对应于 $t \to 0 + 0$. 于是有

$$\lim_{t \to 0+0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)},\tag{33}$$

并且由条件 (??), 有

$$\lim_{t \to 0+0} g(\frac{1}{t}) = \infty. \tag{34}$$

应用定理 $(\ref{eq:condition})$ 于开区间 $(0,\frac{1}{a})$ 上新变量 t 的函数 $f(\frac{1}{t})$ 和 $g(\frac{1}{t})$,并注意到它们关于 t 的导数为

$$f^{'}(\frac{1}{t})(-\frac{1}{t^{2}}), \quad g^{'}(\frac{1}{t})(-\frac{1}{t^{2}}), \tag{35}$$

可得

$$\lim_{t \to 0+0} \frac{f(\frac{1}{t})}{g(\frac{1}{t})} = \lim_{t \to 0+0} \frac{f'(\frac{1}{t})(-\frac{1}{t^2})}{g'(\frac{1}{t})(-\frac{1}{t^2})} = \lim_{t \to 0+0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = l.$$
 (36)

因此, 我们得到

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = l. \tag{37}$$

同理可证 $x \to -\infty$ 的情形. 故可证得 (??) 成立.