

May 24-25, 2018 Bangalore, India

STORAGE DEVELOPER CONFERENCE

Introduction to NVMe-oF (Software Abstraction)

Suman Debnath Toshiba

Agenda

- NVMe SSD Overview
- NVMe-oF Overview
- A typical NVMe-oF System Architecture
- Software Storage Abstraction Overview
- Abstraction Configuration for NVMe-oF Subsystem

SSD Overview

Faster	 IOPS and throughput; applications perform better
Quicker	Low latency, being directly connected to the CPU
Design	 Command set created from the ground up for SSDs NVMeoF as native fabric
Consistency	Better performance consistency than SAS or SATA
Flexibility	 More form factors, power, # lanes, connectivity, client and enterprise

Subsystem-Controller-Namespaces

What is NVMeoF?

Connects compute nodes to NVMe storage across the datacenter network

Preserves the performance and low latency of native NVMe

Uses remote direct memory access (RDMA), with bindings for several transport protocols

Why is NVMeoF important to the Datacenter?

- Storage local to each compute node
- "One-size fits all" leads to islands of stranded storage or compute power

Each job gets "just the right amount" of high performance, low latency storage

Super Fast Block Storage, Disaggregated and Abstracted

FAST

Near local NVMe throughput and latency

EFFICIENT

Allocate required capacity and grow ondemand. No stranded storage

OPTIMAL SSD UTILIZATION

Share high capacity SSDs between multiple servers for optimal Watt/TB & optimal rack utilization

FLEXIBLE

Namespace abstraction hides physical drive complexity

MANAGEABLE

Connectors to fast-evolving orchestration, provisioning and telemetry tools

SAFE

Balanced SSD wear management

Orchestrating Virtual Environment

SNIA INDIA

What is Storage Software Abstraction?

Add additional SW layer between the application and the SSD driver:

This layer decides which commands to implement or manipulate and which commands are forwarded to the SSD driver as is

This layer exposes SSDs in a completely different manner than the underlying physical SSDs

Software Abstraction Advantage

Flexible capacity allocation for different compute nodes enables optimizing large SSD's utilization

The largest capacity SSDs improve Watt/TB and deliver better space utilization in the rack

Ability to expose different storage layouts to different hosts upon demand

Can implement storage features that are not implemented by the SSDs FW

Increase namespaces per SSD: Unlimited provisioning flexibility

Abstracted Storage Pool

Storage Abstraction – Striped Configuration

SNIAINDIA

Striped Abstraction Advantages

Increased performance – IOs are sent in parallel to and from all SSDs: Higher IO/s and lower latency

Balanced wear leveling by design

Abstraction doesn't mean performance degradation

IO/s on different abstraction configurations, 4K command size

24 Directly Attached NVMe SSDs
24 NVMe-oF Subsystems w/o Abstraction
2 Striped Nvme-oF Subsystems over 12 NVMe
SSDs each
24 Abstracted NVMe-oF Subsystems

Tested on a Toshiba NVMe-oF Solution with 24 NVMe SSDs and 2 X 100GB NICs

Thank You

