AI Implications for Business Strategy

4. Machine Learning – Making Decisions

Defining Decision Trees

- A decision tree (DT) is an algorithm
 - Steps to classify an input into one of a set of categories (classification tree)
 - Steps to compute a result from a an input (regression tree)
 - Trivial if the decision algorithm is know (a bunch if if-then-else statements)
- In a partitioned set of data
 - We may not have access to the algorithm or it may not even exist
 - We use ML DTs to emulate the decision logic
 - Important when we need to classify (or compute values) for new inputs
- The DT model is an algorithm
 - It may or may not resemble the original algorithm if one exists

Defining Decision Trees

- The DT algorithm produces a model which is an algorithm
 - A DT can be a classifier or a regressor
 - The predictive accuracy of a DT can be quite high
- A DT has the property that it is "interpret-able"
 - It can be understood by people using it to reality check results
 - Other ML models are not always interpret-able
- We will only cover classifiers in this course
 - Regressors operate similarly with some adjustments

Classification Decision Trees

Regression Decision Trees

Decision Tree Terminology

- Most often implemented as binary trees
 - Question node (years < 4.5) is called Test node
 - Leaf nodes / Terminal nodes are Decision node
 - Predictions are the value of the leaf node label

Leaf node/Decision node

Decision Tree Terminology

- There is a single target feature
 - Called the "classification"
 - Each value the classification is called a class
 - The data points in a given class all have the same label
 - All the data points referred to in a single leaf node are in the same class

Intermediate Nodes

- Subdivide the data points in the parent node into 2 or more nodes
- Each intermediate node contains data points with a mixture of classes with respect to the classification
- This means the node has to be subdivided further

Decision Tree Concept

- Ideal for situations in which the classes are not separable
 - The tree subdivides the range into smaller and smaller regions
 - Process stops when we can't be a better predicition from doing any more subdivisions
 - Trying to be totally exhaustive can overfit the tree the training data

- Consider the process of determining a baseball players salary
 - Assume the only two features relevant are the number of years played and the number of at bat hits
 - The actual decision tree (original logic is)
 - *If years < 4.5 Then Salary = 5.11*
 - If years >= 4.5 and Hits < 117.5 Then Salary = 6.0
 - If years >= 4.5 and Hits >= 117.5 Then Salary = 6.74
 - However, we don't have this logic so we have to reproduce it from the labelled data

- To create a tree we segment or partition each of the data features
- Each input variable as a dimension
 - For 2-dimensional (p=2) data the region is rectangle
 - For higher dimensions (p > 2)=> hyper rectangles
 - Here we are partitioning 2 dimensional data (Years and Hits). And we have divided them into three rectangles

- We divide all possible values for Y into regions (R1, R2 ... Rj)
 - Regions are Non-overlapping (each data point only assigned to one region)
- How do we decide on boundaries (e.g Years=4.5, Hits=117.5)?
 - We try to minimize the error (prediction vs actual) per each region - This is RSS (Residual Sum of Squares)
 - Try to minimize RSS across all regions

- We would need to consider every possible combination of breaking our data into regions R1, R2, ..., RJ
 - But that is computationally very expensive!
 - Instead, we will take a top-down, greedy approach
 - Also known as recursive binary splitting

Greedy Algorithm

- Greedy approach used to divide up the input space is called 'binary recursive split'
 - Different split points are tested using a cost function
 - In regression trees the cost function is RSS
 - For classification trees the cost function is Gini index
- Split with the best cost (lowest cost) is chosen
- Best split is chosen for each level
- Greedy algorithm may not find the best tree, it finds the best tree for each level

• At depth=1

Preventing Overfitting

- Tree algorithm will recursively partition the dataset until each partition contains a single class (A or B)
 - This is called pure partition (only contains one class)
 - This leads to a very complex tree that overfits the training data
- Preventing overfitting:
 - Set the maximum depth of the tree (essentially pruning the tree)
 - Set maximum number of nodes/bins
 - Set minimum elements per node
 - Set minimum purity per node

Tree Pruning Example

The following tree is too deep and complex

Tree Pruning Example

• Limiting the depth of the tree makes it simpler

Entropy and Splitting Nodes

- The DT algorithm tries all possible splits of a node across one feature
 - It then chooses the best split in terms of "information gain" or "entropy loss"
 - Intuitively the less random the distribution of data points in the split nodes, the more information we have gained about the classification
 - Entropy ranges from 0 in a pure node since there is no chance of picking a different value
 - To 1 (for example in the whole data set) where the chance of picking the right class is random
 - Entropy is reduced when our chance of picking the right class for a data point is increased by the split
 - Then the split that gives the maximum information gain is used (the greedy part)

Entropy and Splitting Nodes

GINI Index

Splitting nodes is also done with Gini Index

- Entropy / information gain evaluates the purity and impurity in a node
- Gini Index measures the probability for a random instance being misclassified
- Lower Gini means the lower the likelihood of misclassification
- Choose the split that gives the lowest GINI score overall

In the formula

- The Parameter j represents the number of classes in the classification
- P(i) is the ratio of (Correct observations)/(Total observations) in node.

$$Gini = 1 - \sum_{i=1}^{j} P(i)^2$$

GINI Index

GINI Index Example

- Here we have a classifier: class-A and class-B
 - P1: proportion of class-A
 - P2: proportion of class-B
 - Calculating Gini index as follows

$$G = 1 - (p_1^2 + p_2^2)$$

Gini							
Scenario	Class A	Class B	Count	Class A / Count	Class B/Count	Gini (1 - p1	*p1 - p2*p2
1	10	10	20	0.5	0.5	0.5	
2	19	1	20	0.95	0.05	0.095	
3	1	19	20	0.05	0.95	0.095	
4	15	5	20	0.75	0.25	0.375	
5	5	15	20	0.25	0.75	0.375	
6	11	9	20	0.55	0.45	0.495	
7	20	0	20	1	0	0	

Strengths, Weaknesses, and Parameters

Strengths

- All purpose classifier that does well in most scenarios
- Easy to interpret and explain results
- Fast learning and prediction
- Can handle numeric and categorical data
- No need to scale data
- Can handle missing data
- Excluded unimportant features
- Can work with small datasets
- But can also scale to large datasets

Strengths, Weaknesses, and Parameters

Weaknesses

- Can overfit
- Small changes in training data causes large changes in tree structure (High variance)
- Trees can get arbitrarily deep
- Often biased towards features with large number of splits

Parameters

- Max depth: how deep a tree can grow
- Max bins: how many nodes/bins the tree can have
- Min samples per leaf: stop keep dividing

Fixing Decision Trees

- Problems with DTs
 - They are not stable
 - They are not very precise
 - They tend to overfit
 - Decision Trees have high variance (bad)
 - Decision Trees have low bias (good)
- We want to keep low bias but reduce variance
 - This will improve their predictive capability

High Variance

Random Forest

- Generate many decision trees
 - Train them independently
 - And aggregate their predictions to minimize the variance

Ensembles of Decision Trees

- Ensembles are methods that combine multiple machine learning models to create more powerful model
- There are many ensemble methods, but two are most popular
 - Random forest
 - Gradient boosted tree
 - Both of these use Decision Trees as their building blocks
- Ensemble methods use the following techniques:
 - Bagging (bootstrap aggregation)
 - Stacking
 - Boosting

Bagging – Bootstrap Aggregation

- Bagging is a technique that trains diverse/different models by varying training data
 - In the example, we create 3 trees
 - Each tree is getting randomly selected, partial data (50 each)
 - Note: Even though we only have 100 data points total, each tree gets 50 data points (randomly selected from 100). This is sampling with replacement or bootstraping
- Each tree will be different as they are trained with different data
- Each tree is predicting blue or red
- Final result is aggregated (bagging)

Bagging – Bootstrap Aggregation

- Data Bagging (selecting random subsets of data) solved overfitting problem
- But we still have a problem of trees predicting highly correlated results
- Solution: We also select features randomly!.
 - For each tree, we will select a different set of features; Here we see each tree getting randomly selected subset of features A, B, C
 - This is called feature bagging

- Data Bagging (selecting random subsets of data) solved overfitting problem
- But we still have a problem of trees predicting highly correlated results
- Solution: We also select features randomly!.
 - For each tree, we will select a different set of features; Here we see each tree getting randomly selected subset of features A, B, C
 - This is called feature bagging

Making Final Prediction

Aggregating regression trees

- Average out results
- Tree1 predicts 10, Tree2 predicts 15, Tree3 predicts 12
- Final result = average = (10 + 15 + 12) / 3 = 12.33

For classification trees

- A soft voting approach is used
- Each tree makes a soft prediction: provides a probability for each possible output
- The probabilities from all trees are averaged
- The class with highest probability is predicted

Making Final Prediction

- Each random tree might have high variance.
- When averaged, the combined variance is reduced.
- Variance of a forest = Variance of a tree / Number of trees

Example

Strengths, Weaknesses, and Parameters

Strengths

- All purpose classifier that does well in most scenarios
- Performs better than a single Decision Tree (reduces variance)
- Very simple tuning (number of trees)
- Can handle numeric and categorical data
- Doesn't need scaling of data

Weaknesses

- Training can be computationally intensive (if training 100s or 1000s of trees)
- Parallelizable across many CPU cores or nodes
- Final model can be more complex than a single decision tree

Strengths, Weaknesses, and Parameters

- Parameters
 - Number of trees to create

Best Practices

- More trees will take more compute time/resources
 - In practice we create 100s / 1000s of trees
 - Start with a default number of trees (100) and go up
 - Stop creating more trees when accuracy stops increasing
 - This can be validated by cross-validation testing

End of Module

