Graph Neural Networks for Learning Equivariant Representations of Neural Networks

The 12th International Conference on Learning Representations, ICLR 2024, Oral

Boris Knyazev²

Yan Zhang²

Yunlu Chen³

Gertjan J. Burghouts⁴

Efstratios Gayyes¹

Cees G. M. Snoek¹

David W. Zhang¹*

*Joint first and last authors

Problem formulation – Networks for Networks

Implicit Neural Representations (INRs)

Figure credit: Emilien Dupont*, Hyunjik Kim* et al. "From data to functa: Your data point is a function and you can treat it like one". In: ICML 2022.

What are INRs?

Paradigm shift

Paradigm shift

Traditional Paradigm

Save signal as an array

Process with CNNs/ViTs

Modern Paradigm

• Fit signal with an INR and save its parameters & architecture

 Process with parameter space networks

Predict model characteristics

Figure credit: Konstantin Schürholt. "Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction". In: NeurIPS 2021.

Generative models of weights

Figure credit: Konstantin Schürholt. "Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights". In: NeurIPS 2022.

Neural networks are the new data!

Source: https://huggingface.co/models

Paradigm shift

Traditional Paradigm

 Train NNs with hyperparameter search

Modern Paradigm

- Model zoos & neural networks are the new data!
- Generative parameter space network on the weights

Parameter Space Networks – Naïve Approach

• Flatten parameters (weights/biases) and process them with MLPs

• **Problem!** Permutation symmetries

Naïve MLP achieves 17.6% accuracy on MNIST¹

¹Aviv Navon*, Aviv Shamsian* et al. "Equivariant architectures for learning in deep weight spaces". In: ICML 2023.

Permutation Symmetries

Related works

Overlook the inherent permutation symmetry

Rely on intricate weight-sharing patterns to achieve equivariance

• Ignore the network architecture itself, limited to a single architecture

¹Aviv Navon*, Aviv Shamsian* et al. "Equivariant architectures for learning in deep weight spaces". In: ICML 2023.

²Allan Zhou et al. "Permutation Equivariant Neural Functionals". In: NeurIPS 2023.

Our approach – Neural Graphs

Neural network feedforward activation (neuron i in layer l)

$$\mathbf{x}_{i}^{(l)} = \sigma \left(\mathbf{b}_{i}^{(l)} + \sum_{j} \mathbf{W}_{ij}^{(l)} \mathbf{x}_{j}^{(l-1)} \right)$$

Neural network as **neural graph**:

Node *i* feature: $V_i^{(l)} \leftarrow \mathbf{b}_i^{(l)}$

Edge $j \to i$ feature: $\boldsymbol{E}_{ij}^{(l)} \leftarrow \mathbf{W}_{ij}^{(l)}$

Node & Edge features

Our approach – Neural Graphs

We can process heterogeneous architectures:

- ✓ Architectures with varying computational graphs
- ✓ Different numbers of layers
- ✓ Different number of hidden dimensions
- ✓ Different non-linearities
- ✓ Different network connectivities, such as residual connections

CNN permutation symmetries

Convolutional kernels as edge features

More neural network modules

- Residual connections
- Activation functions
- Normalization layers
- Self-attention

Positional embeddings

- One positional embedding per input
- Shared positional embedding per layer
- One positional embedding per output

Neural Graph Graph Network (NG-GNN)

We extend PNA with an MLP that updates the edge features given the incident nodes' features and the previous layer's edge features.

Figure credit: Gabriele Corso et al. "Principal Neighbourhood Aggregation for Graph Nets". In: NeurIPS 2020.

Neural Graph Transformer (NG-T)

$$\mathbf{q}_{ij} = \left(\mathbf{n}_i \mathbf{W}_n^Q + \mathbf{e}_{ij} \mathbf{W}_e^Q\right) \qquad \mathbf{k}_{ij} = \left(\mathbf{n}_j \mathbf{W}_n^K + \mathbf{e}_{ij} \mathbf{W}_e^K\right) \qquad \mathbf{v}_{ij} = \left(\mathbf{n}_j \mathbf{W}_n^V + \mathbf{e}_{ij} \mathbf{W}_e^V\right)$$

We extend Relational Transformer with multiplicative interactions between node and edge features to algorithmically align it with the forward-pass of a neural network.

Figure credit: Cameron Diao and Ricky Loynd. "Relational Attention: Generalizing Transformers for Graph-Structured Tasks". In: ICLR 2023.

Probe features

Experiments – INR Classification

Experiments – INR Style Editing

Figure credit (left): Allan Zhou et al. "Permutation Equivariant Neural Functionals". In: NeurIPS 2023.

Experiments – Predict CNN Generalization

- Predict the generalization performance of CNN classifiers based on their parameters
- We introduce CNN Wild Park, a dataset of heterogeneous CNNs that vary in the number of layers, kernel sizes, activation functions, and residual connections

Method	CIFAR10-GS	CIFAR10 Wild Park
NFN _{HNP} (Zhou et al., 2023a)	$0.934 \scriptstyle{\pm 0.001}$	_
StatNN (Unterthiner et al., 2020)	$0.915 \scriptstyle{\pm 0.002}$	0.719 ± 0.010
NG-GNN (Ours)	0.930 ± 0.001	0.804 ± 0.009
NG-T (Ours)	$0.935 \pm$ 0.000	$0.817 \scriptstyle{\pm 0.007}$

Exciting application – Learning to optimize

Train a neural network (optimizer) that can optimize the weights of other neural networks (optimizee)

Figure credit: Marcin Andrychowicz et al. "Learning to learn by gradient descent by gradient descent". In: NeurIPS 2016.

Experiments – Learning to Optimize

- Leverage neural network graph structure
- Train optimizer on Fashion MNIST, evaluate on Fashion MNIST & CIFAR10

Optimizer	FashionMNIST (validation task)	CIFAR-10 (test task)
Adam (Kingma & Ba, 2014) FF (Metz et al., 2019) LSTM (Metz et al., 2020) NFN (Zhou et al., 2023a)	$80.97 {\pm} 0.66 \ 85.08 {\pm} 0.14 \ 85.69 {\pm} 0.23 \ 83.78 {\pm} 0.58$	$54.76 \pm 2.82 \ 57.55 \pm 1.06 \ 59.10 \pm 0.66 \ 57.95 \pm 0.64$
NG-GNN (Ours) NG-T (Ours)	$85.91_{\pm 0.37}$ $86.52_{\pm 0.19}$	64.37 ± 0.34 60.79 ± 0.51

Conclusion

- Processing neural networks with neural networks is an exciting new research avenue
- Novel representation of neural networks as neural graphs
- Introduce Graph networks for processing neural networks
- Applications in INRs, CNN generalization, learning to optimize
- Neural graphs constitute a new benchmark for graph networks

Resources

- Source code: https://github.com/mkofinas/neural-graphs
- **Arxiv**: https://arxiv.org/abs/2403.12143
- Visit our poster today
 - Poster #77, poster session 4, Halle B
- Contact us:
 - o mkofinas@gmail.com
 - o david0w0zhang@gmail.com

