











## MANIPAL INSTITUTE OF TECHNOLOGY

Reg. No.

THIRD SEMESTER B. TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, DEC - 2017

Time: 3 Hours SUBJECT: ELECTRICAL CIRCUIT ANALYSIS (ICE 2101) - Madural MAX. MARKS: 50

Instructions to Candidates:

Answer ALL the questions.
 Missing data may be suitably assumed.

| 100                                                  | 0                                                           | 600                                                                                     | 800                                                                                                                                                         | Š                                                                                          |                                                                                                                                                                 | 38.                                                                                 |                                                             | 32                                                                                                           | 2C.                                                                                                                                                              | 2B.                                                                                    | 24 | fC.                                                                    | 100                                                              | Ž                                                              |
|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----|------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
| For the network shown in Fig. Q5A find Y parameters. | Express the waveform shown in Fig. Q4C using basic signals. | Use Laplace transform to obtain expression for current in the circuit snown in Fig.Q4B. | at t = 0 assuming that a steady state having previously been attained.  In the network shown in Fig. O4A, steady state is reached with switch open. At t=0. | In the circuit shown in Fig. Q3C, find the expression for V for 1>0, if switch is opened 2 | with ac source of 50V. Determine the resonating frequency, quality factor and bandwidth of the circuit. Also determine maximum power dissipated in the circuit. | A resistance of 5Ω, capacitor of 10μF and Inductance of 10mH is connected in series | current i(t) in complementary and particular solution form. | using superposition theorem In the network of the Fig.Q3A the switch is closed at t=0. Obtain expression for | $5\Omega$ resistor. Also find power dissipated in $5\Omega$ resistor. For the network shown in Fig.Q2C, determine the current through $R_L = 10\Omega$ resistor. | Obtain Norton's equivalent circuit for the network shown in Fig. Q2B with respect to 3 |    | For the circuit shown in Fig.Q1C calculate the current in 3kΩ resistor | Calculate all the node voltages for the circuit shown in Fig.Q1B | For the circuit shown in Fig.Q1A, determine the mesh currents. |
| 100                                                  | . P4                                                        | ري (د)                                                                                  | 700                                                                                                                                                         |                                                                                            |                                                                                                                                                                 |                                                                                     |                                                             |                                                                                                              |                                                                                                                                                                  |                                                                                        |    |                                                                        |                                                                  |                                                                |

5B. Obtain h parameters for the circuit network shown in Fig.Q5B

Plot x(t) = u(t) - r(t) + r(t-1).

SC.

100 No. 80

38.

3A. 2C.