

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP RAYAN

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

D. Lipshitz Sequence

time limit per test: 1 second memory limit per test: 256 megabytes

A function $f: \mathbb{R} \to \mathbb{R}$ is called Lipschitz continuous if there is a real constant K such that the inequality $|f(x) - f(y)| \le K \cdot |x - y|$ holds for all $x, y \in \mathbb{R}$. We'll deal with a more... discrete version of this term.

For an array h[1..n], we define it's Lipschitz constant L(h) as follows:

- if n < 2. L(h) = 0
- if $n \ge 2$, $L(\mathbf{h}) = \max \left\lceil \frac{|\mathbf{h}[j] \mathbf{h}[i]|}{j i} \right\rceil$ over all $1 \le i < j \le n$

In other words, $L=L(\mathbf{h})$ is the smallest non-negative integer such that $|h[i]-h[j]| \le L \cdot |i-j|$ holds for all $1 \le i, j \le n$.

You are given an array ${\bf a}$ of size n and q queries of the form [l,r]. For each query, consider the subarray $s={\bf a}[l..r]$; determine the sum of Lipschitz constants of **all subarrays** of ${\bf S}$.

Input

The first line of the input contains two space-separated integers n and q ($2 \le n \le 100\,000$ and $1 \le q \le 100$) — the number of elements in array a and the number of queries respectively.

The second line contains n space-separated integers a[1..n] ($0 \le a[i] \le 10^8$).

The following q lines describe queries. The i-th of those lines contains two space-separated integers l_i and r_i ($1 \le l_i \le r_i \le n$).

Output

Print the answers to all queries in the order in which they are given in the input. For the i-th query, print one line containing a single integer — the sum of Lipschitz constants of all subarrays of $a[l_i...r_i]$.

Examples

