Magisterský program: Informatika

Obor: Teoretická informatika

Katedra: 18101 Katedra teoretické informatiky

Jaroslav Kruis

Evropský sociální fond

Praha & EU: Investujeme do vaší budoucnosti

Řešení nelineárních úloh

Porovnání nelineárních a lineárních soustav rovnic

- absence věty o řešitelnosti obecně neznámý počet řešení
- absence univerzálního algoritmu řešení neexistuje obdoba
 Gaussova eliminačního algoritmu

Metody řešení soustav nelineárních rovnic

- metoda půlení intervalu
- metoda sečen
- metoda regula falsi
- metoda prosté iterace
- Newtonova-Raphsonova metoda

Newtonova-Raphsonova metoda Jedna funkce jedné proměnné

$$f(x) = 0$$

$$f(x^{(k+1)}) \approx f(x^{(k)}) + \frac{\mathrm{d}f(x^{(k)})}{\mathrm{d}x} (x^{(k+1)} - x^{(k)}) = 0$$

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{\frac{\mathrm{d}f(x^{(k)})}{\mathrm{d}x}}$$

Příklad - kvadratická funkce jedné proměnné

obecně

$$f(x) = ax^{2} + bx + c = 0$$

$$f'(x) = 2ax + b$$

$$x^{(k+1)} = x^{(k)} - \frac{a(x^{(k)})^{2} + bx^{(k)} + c}{2ax^{(k)} + b}$$

konkrétní funkce

$$f(x) = x^{2} - 11x + 10 = 0$$

$$f'(x) = 2x - 11$$

$$f(1) = 0, \quad f(10) = 0$$

k	$x^{(k)}$	$f(x^{(k)})$	
0	0.00000000000e+00	1.00000000000e+01	
1	9.0909090909e-01	8.264462809917e-01	
2	9.990999099910e-01	8.101620243033e-03	
3	9.99999100000e-01	8.100000161671e-07	
4	1.00000000000e+00	7.993605777301e-15	

Příklad - goniometrická funkce

$$f(x) = \sin x$$

$$f'(x) = \cos x$$

$$x^{(k+1)} = x^{(k)} - \frac{\sin x^{(k)}}{\cos x^{(k)}}$$

k	$x^{(k)}$	$f(x^{(k)})$	
0	8.00000000000e-01	7.173560908995e-01	
1	-2.296385570504e-01	-2.276255837975e-01	
2	4.123579169748e-03	4.123567483600e-03	
3	-2.337247535615e-08	-2.337247535615e-08	
4	3.308722450212e-24	3.308722450212e-24	

k	$x^{(k)}$	$f(x^{(k)})$	
0	2.20000000000e+00	8.084964038196e-01	
1	3.573823056769e+00	-4.188971239432e-01	
2	3.112499733480e+00	2.908881625187e-02	
3	3.141600864433e+00	-8.210843004404e-06	
4	3.141592653590e+00	1.224606353822e-16	

k	$x^{(k)}$	$f(x^{(k)})$	
0	1.70000000000e+00	9.916648104525e-01	
1	9.396602139459e+00	2.817209343589e-02	
2	9.424785419182e+00	-7.458413052948e-06	
3	9.424777960769e+00	3.673819061467e-16	

Vektorová funkce mnoha proměnných

$$m{x} = \left(egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight) \qquad m{f}(m{x}) = \left(egin{array}{c} f_1(m{x}) \ f_2(m{x}) \ dots \ f_n(m{x}) \end{array}
ight)$$

$$f(x) = 0$$

$$oldsymbol{f}(oldsymbol{x}^{(k+1)}) pprox oldsymbol{f}(oldsymbol{x}^{(k)}) + rac{\mathrm{d}oldsymbol{f}(oldsymbol{x}^{(k)})}{\mathrm{d}oldsymbol{x}} \left(oldsymbol{x}^{(k+1)} - oldsymbol{x}^{(k)}
ight) = oldsymbol{0}$$

$$f_i(\boldsymbol{x}^{(k+1)}) \approx f_i(\boldsymbol{x}^{(k)}) + \sum_{j=1}^n \frac{\partial f_i(\boldsymbol{x}^{(k)})}{\partial x_j} \left(x_j^{(k+1)} - x_j^{(k)}\right)$$

$$\mathbf{J}(\mathbf{x}) = \begin{pmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_2(\mathbf{x})}{\partial x_n} \\
\vdots & & \ddots & \vdots \\
\frac{\partial f_n(\mathbf{x})}{\partial x_1} & \frac{\partial f_n(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_n(\mathbf{x})}{\partial x_n}
\end{pmatrix}$$

$$m{J}^{(k)} = m{J}(m{x}^{(k)})$$
 $m{f}^{(k)} = m{f}(m{x}^{(k)})$
 $m{f}^{(k+1)} pprox m{f}^{(k)} + m{J}^{(k)} \left(m{x}^{(k+1)} - m{x}^{(k)} \right) = m{0}$
 $m{x}^{(k+1)} = m{x}^{(k)} - \left(m{J}^{(k)} \right)^{-1} m{f}^{(k)}$
 $m{x}^{(k+1)} = m{x}^{(k)} - rac{1}{f{d}f(m{x}^{(k)})} m{f}(m{x}^{(k)})$

Příklad - kvadratická funkce dvou proměnných

vektorová funkce

$$f_x(x,y) = x^2 + 3x - y^2 + 3y - 10$$

$$f_y(x,y) = -x^2 - 4x + y^2 + y$$

řešení

$$f_x(2,3) = 0$$
$$f_y(2,3) = 0$$

$$f(x) = \begin{pmatrix} x^2 + 3x - y^2 + 3y - 10 \\ -x^2 - 4x + y^2 + y \end{pmatrix}$$

$$\boldsymbol{J}(\boldsymbol{x}) = \begin{pmatrix} 2x+3 & -2y+3 \\ -2x-4 & -2y+1 \end{pmatrix}$$

k	$x^{(k)}$	$y^{(k)}$	$f_x(x^{(k)}, y^{(k)})$	$f_y(x^{(k)}, y^{(k)})$
0	0.00000000000e+00	0.000000000000e+00	-1.000000000000e+01	0.000000000000e+00
1	6.66666666667e-01	2.666666666667e+00	-6.66666666667e+00	6.66666666667e+00
2	2.44444444444e+00	3.111111111111e+00	2.962962962963e+00	-2.962962962963e+00
3	2.026143790850e+00	3.006535947712e+00	1.640394719979e-01	-1.640394719979e-01
4	2.000101726813e+00	3.000025431703e+00	6.358022806019e-04	-6.358022806019e-04
5	2.000000001552e+00	3.000000000388e+00	9.701276229394e-09	-9.701276673484e-09

Modifikovaná Newtonova-Raphsonova metoda Jedna funkce jedné proměnné

$$f(x) = 0$$

$$f(x^{(k+1)}) \approx f(x^{(k)}) + \frac{\mathrm{d}f(x^{(0)})}{\mathrm{d}x} (x^{(k+1)} - x^{(k)}) = 0$$

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{\frac{\mathrm{d}f(x^{(0)})}{\mathrm{d}x}}$$

Příklad - kvadratická funkce jedné proměnné

obecně

$$f(x) = ax^{2} + bx + c = 0$$

$$f'(x) = 2ax + b$$

$$x^{(k+1)} = x^{(k)} - \frac{a(x^{(k)})^{2} + bx^{(k)} + c}{2ax^{(0)} + b}$$

konkrétní funkce

$$f(x) = x^{2} - 11x + 10 = 0$$

$$f'(x) = 2x - 11 \Rightarrow f'(x^{(0)}) = 2x^{(0)} - 11$$

$$f(1) = 0, \quad f(10) = 0$$

k	$x^{(k)}$	$f(x^{(k)})$
0	0.00000000000e+00	1.00000000000e+01
1	9.0909090909e-01	8.264462809917e-01
2	9.842223891811e-01	1.422474303736e-01
3	9.971539737605e-01	2.562233602103e-02
4	9.994832770351e-01	4.650773686545e-03
5	9.999060746430e-01	8.453370350859e-04
6	9.999829234644e-01	1.536891123779e-04
7	9.999968952018e-01	2.794319300995e-05
8	9.999994354921e-01	5.080571226647e-06
9	9.999998973622e-01	9.237399151022e-07
10	9.999999813386e-01	1.679527020949e-07
11	9.999999966070e-01	3.053685505589e-08
12	9.99999993831e-01	5.552155735167e-09

Vektorová funkce mnoha proměnných

$$f(x) = 0$$

$$f(\boldsymbol{x}^{(k+1)}) pprox f(\boldsymbol{x}^{(k)}) + rac{\mathrm{d} f(\boldsymbol{x}^{(0)})}{\mathrm{d} \boldsymbol{x}} \left(\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}
ight) = \mathbf{0}$$

$$oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} - \left(oldsymbol{J}^{(0)}
ight)^{-1}oldsymbol{f}^{(k)}$$

Příklad

$$f_x(x,y) = x^2 + 3x - y^2 + 3y - 10$$

$$f_y(x,y) = -x^2 - 4x + y^2 + y$$

$$f(x) = \begin{pmatrix} x^2 + 3x - y^2 + 3y - 10 \\ -x^2 - 4x + y^2 + y \end{pmatrix}$$

$$J(x^{(0)}) = \begin{pmatrix} 2x^{(0)} + 3 & -2y^{(0)} + 3 \\ -2x^{(0)} - 4 & -2y^{(0)} + 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ -4 & 1 \end{pmatrix}$$

k	$x^{(k)}$	$y^{(k)}$	$f_x(x^{(k)}, y^{(k)})$	$f_y(x^{(k)}, y^{(k)})$
0	0.00000000000e+00	0.00000000000e+00	-1.00000000000e+01	0.000000000000e+00
1	6.66666666667e-01	2.666666666667e+00	-6.66666666667e+00	6.66666666667e+00
2	2.4444444444e+00	3.111111111111e+00	2.962962962963e+00	-2.962962962963e+00
3	1.654320987654e+00	2.913580246914e+00	-2.048468221308e+00	2.048468221308e+00
	· ·	· ·	• • •	:
50	2.000000001650e+00	3.000000000413e+00	1.031398611222e-08	-1.031398655631e-08
51	1.999999998900e+00	2.99999999725e+00	-6.875991774222e-09	6.875992218311e-09