Transformer

CSE 849 Deep Learning Spring 2025

Zijun Cui

Continuing from the last lecture...

- The encoder in a sequence-to-sequence model can replace recurrence through a series of "multi-head self attention" blocks
- But this still ignores relative position
 - A context word one word away is different from one 10 words away
 - The attention framework does not take distance into consideration

• Note that the inputs are actually word *embeddings*

 We add a "positional" encoding to them to capture the relative distance from one another

- Positional Encoding: A sequence of vectors P_0 , ..., P_N , to encode position
 - Every vector is unique (and uniquely represents time)
 - Relationship between $P_{\rm t}$ and $P_{\rm t+c}$ only depends on the distance between them

$$P_{\rm t+c} = M_{\rm c} P_{\rm t}$$

• The linear relationship between $P_{\rm t}$ and $P_{\rm t+c}$ enables the net to learn shift-invariant "gap" dependent relationships

The self-attending encoder

The self-attending encoder

Self attention and masked self attention

• Self attention in encoder: Can use input embedding at time t+1 and further to compute output at time t, because all inputs are available

Self attention and masked self attention

- Self attention in decoder: Decoder is sequential
 - Each word is produced using the previous word as input
 - Only embeddings until time t are available to compute the output at time t
- The attention will have to be "masked", forcing attention weights for t+1 and later to 0

Masked self-attention block

- The "masked self attention block" includes an MLP after the masked self attention
 - Like in the encoder

Masked self-attention block

$$q_{i} = W_{q}h_{i}$$

$$k_{i} = W_{k}h_{i}$$

$$v_{i} = W_{v}h_{i}$$

$$e_{ij} = q_{i}^{T}k_{j}$$

$$w_{i0}, ..., w_{ii} = softmax(e_{i0}, ..., e_{ii})$$

- The "masked self attention block" sequentially computes outputs begin to end
 - Sequential nature of decoding prevents outputs from being computed in parallel
 - Unlike in an encoder

Masked multi-head self-attention block

$$\begin{aligned} q_{\mathrm{i}}^{\mathrm{a}} &= \mathbf{W}_{\mathrm{q}}^{\mathrm{a}} h_{\mathrm{i}} \\ k_{\mathrm{i}}^{\mathrm{a}} &= \mathbf{W}_{\mathrm{k}}^{\mathrm{a}} h_{\mathrm{i}} \\ v_{\mathrm{i}}^{\mathrm{a}} &= \mathbf{W}_{\mathrm{v}}^{\mathrm{a}} h_{\mathrm{i}} \\ v_{\mathrm{i}}^{\mathrm{a}} &= \mathbf{W}_{\mathrm{v}}^{\mathrm{a}} h_{\mathrm{i}} \\ w_{ij}^{a} &= \operatorname{attn}(q_{i}^{a}, k_{0:i-1}^{a}) \\ o_{i}^{a} &= \sum_{j} w_{ij}^{a} v_{j}^{a} \\ \text{Masked attention head 0: } (q_{\mathrm{i}}^{0}, k_{\mathrm{i}}^{0}, v_{\mathrm{i}}^{0}; \mathbf{W}_{\mathrm{q}}^{0}, \mathbf{W}_{\mathrm{k}}^{0}, \mathbf{W}_{\mathrm{v}}^{0}) \end{aligned}$$

- The "masked *multi-head* self attention *block*" includes multiple masked attention heads
 - Like in the encoder

Transformer: Attention is all you need

- Transformer: A sequence-to-sequence model that replaces recurrence with positional encoding and multi-head self attention
 - "Attention is all you need"

Transformer

From "Attention is all you need"

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	$3.3 \cdot 10^{18}$ $2.3 \cdot 10^{19}$			
Transformer (big)	28.4	41.8				

- Transformer: tremendous decrease in model computation for similar performance as state-of-art translation models
- The last row in the table shows transformer performance
- The final two columns show computational cost.

BERT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

- Bert: Only uses encoder of transformer to derive word and sentence embeddings
- Trained to "fill in the blanks"
- This is representation learning

GPT

Alec Radford et. al., Improving Language Understanding by Generative Pre-Training

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

- GPT uses only the decoder of the transformer as an LM
 - "Transformer w/o aux LM"
- Large performance improvement in many tasks

Attention is all you need

- Self-attention can effectively replace recurrence in sequence-tosequence models
 - "Transformers"
 - Requires "positional encoding" to capture positional information
- Can also be used in regular sequence analysis settings as a substitute for recurrence
- Currently the state of the art in most sequence analysis/prediction... and even computer vison problems!

Vision Transformers

- Divide your image in patches with pos. encodings
- Apply Self-Attention!
- Sequential and image problems are similar when using transformers

Table of contents

- 1. The Transformer Architecture
- 2. Pre-training and Fine-tuning
- 3. Transformer Applications
- 4. Case study Large Language Models

Transformer Architecture

Transformers

- Tokenization
- Input Embeddings
- Position Encodings
- Query, Key, & Value
- Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

Output

Machine Translation

Targets

Ich habe einen Apfel gegessen

Inputs

I ate an apple

Output

Inputs

Processing Inputs

Inputs

I ate an apple

Output

Tokenization

Tokenizer (split into individual words)

I ate an apple

Tokenization

Input Embeddings

Generate Input Embeddings

Input Embeddings

Generate Input Embeddings

Requirements for Positional Encodings???

Requirements for Positional Encodings

- Some representation of time
- Should be unique for each position not cyclic

Requirements for Positional Encodings

- Some representation of time
- Should be unique for each position not cyclic

Possible Candidates:

$$P_{t+1} = P_t + \Delta c$$

$$P_{t+1} = e^{P_{t_{\Delta}}c}$$

$$P_{t+1} = P_t^{\cdot t\Delta c}$$

Requirements for Positional Encodings

- Some representation of time
- Should be unique for each position not cyclic

Possible Candidates:

$$P_{t+1} = P_t + \Delta c$$

$$P_{t+1} = P_{t+1}$$

$$P_{t+1} = P_t^{\cdot t\Delta c}$$

Requirements for Positional Encodings

- Some representation of time
- Should be unique for each position not cyclic
- Bounded

Possible Candidates

$$P(t + t') = M^{t'} \times P(t)$$

Requirements for Positional Encodings

- Some representation of time
- Should be unique for each position not cyclic
- Bounded

Possible Candidates

$$P(t + t') = M^{t'} P(t)$$

M?

- 1. Should be a unitary matrix
- 2. Magnitudes of eigen value should be 1 -> norm preserving
- 3. The matrix can be learnt
- 4. Produces unique rotated embeddings each time

Rotary Position Embedding

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY Position Embedding

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \end{pmatrix}$$

Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks. **MRPC** SST-2 STS-B MNLI(m/mm) Model **QNLI** QQP 88.9 85.8 71.2 84.6/83.4 BERTDevlin et al. [2019] 93.5 90.5 90.7 88.0 RoFormer 89.5 87.0 86.4 80.2/79.8

Requirements for Position Encodings

- Some representation of time
- Should be unique for each position
- Bounded

Actual Candidates

sine(**g(t)**)

cosine(g(t))

Requirements for g(t)

- Must have same dimensions as input embeddings
- Must produce overall unique encodings

Position Encoding

For each position, an embedded input is moved the same distance but at a different angle. Inputs that are close to each other in the sequence have similar perturbations, but inputs that are far apart are perturbed in different directions.

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

pos -> idx of the token in input sentence

dimension out of d model

d model -> embedding dimension of each token

Different calculations for odd and even embedding indices

Position Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Positional Encoding:

Tostcionac Encouring.					
	0	1	2	3	4
Dim 1	0.000	0.841	0.909	0.141	-0.757
Dim 2	1.000	0.540	-0.416	-0.990	-0.654
Dim 3	0.000	0.025	0.050	0.075	0.100
Dim 4	1.000	1.000	0.999	0.997	0.995
Dim 5	0.000	0.001	0.001	0.002	0.003

Position Encoding

Transformers

- **✓** Tokenization
- **✓** Input Embeddings
- **✓** Position Encodings
- Query, Key, & Value
- Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

Output

WHERE IS THE CONTEXT?

CONTEXTUALLY RICH EMBEDDINGS

CONTEXTUALLY RICH EMBEDDINGS

Attention

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- Query
- Key
- Value

Database

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items": "e1", "delivery_date": "e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items": "k1", "delivery_date": "k2", ...}}
```

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"j2", ...}},
```

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items": "g1", "delivery_date": "g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items": "k1", "delivery_date": "k2", ...}}
```

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"i1", "delivery_date":"i2", ...}},
```

Done at the same time!!

```
{Query: "Order details of order_104"}
```

OR

{Query: "Order details of order_106"}

```
{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"c2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"b2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_1009": {"items":"j1", "delivery_date":"j2", ...}},
```

Transformers

- ✓ Tokenization
- **✓** Input Embeddings
- **✓** Position Encodings
- ✓ Query, Key, & Value
- ✓ Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

Output

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

The animal didn't cross the street because it was too wide

coreference resolution?

SELF

Query Inputs = Key Inputs = Value Inputs

Sentence boundaries?

Coreference resolution

Context?

Semantic relationships?

Part of Speech?

Comparisons?

$$d_h = \frac{d_{model}}{h}$$

 $R^{T \times T}$

91

Multi Head Attention: Z

$$d_h = \frac{d_{model}}{h}$$

$$R^{T \times d_{model}}$$

Feed Forward

Feed Forward

- Non Linearity
- Complex Relationships
- Learn from each other

Input Norm(Z)

Add & Norm

Normalization

Mean 0, Std dev 1

Stabilizes training

Regularization effect

Add Residuals

Avoid vanishing gradients

Train deeper networks

Add & Norm

Add & Norm

Feed Forward

Input Norm(Z)

Encoder

ENCODER

Encoders

Encoder

ENCODER

•

ENCODER

ENCODER

Input to Encoder_{i+1}

A

Output from Encoder_i

- **✓** Tokenization
- **✓** Input Embeddings
- **✓** Position Encodings
- ✓ Query, Key, & Value
- **✓** Attention
- **✓** Self Attention
- ✓ Multi-Head Attention
- **✓** Feed Forward
- ✓ Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

Targets

Targets

Ich habe einen Apfel gegessen

Targets

Mask the available attention values?

Encoder Decoder Attention

Encoder Decoder Attention? Add & Norm

Norm(Z')

Encoder Decoder Attention

Encoder

Decoder

Keys from **Encoder Outputs**Values from **Encoder Outputs**

Queries from **Decoder Inputs**

NOTE: Every decoder block receives the same FINAL encoder output

Encoder Decoder Attention

- Non Linearity
- Complex Relationships
- Learn from each other

Add n Norm Decoder Self Attn

Norm(Z'')

Decoder

DECODER DECODER DECODER

 $R^{T_d \times d_{model}}$ Decoder output

Linear

Softmax

Output Probabilities

- **✓** Tokenization
- **✓** Input Embeddings
- **✓** Position Encodings
- ✓ Query, Key, & Value
- ✓ Attention
- **✓** Self Attention
- Multi-Head Attention
- ✓ Feed Forward
- ✓ Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- **✓** Linear
- ✓ Softmax
- ✓ Decoders
- Encoder-Decoder Models

Representation

Input – input tokens
Output – hidden states

Representation

Input – output tokens and hidden
states*

Output – output tokens

Input – input tokensOutput – hidden states

Model can see all timesteps

Representation

Input – output tokens and hidden
states*

Output – output tokens

Model can only see previous timesteps

Input – input tokensOutput – hidden states

Model can see all timesteps

Does not usually output tokens, so no inherent auto-regressivity

Representation

Input – output tokens and hidden
states*

Output – output tokens

Model can only see previous timesteps

Model is auto-regressive with previous timesteps' outputs

Input – input tokensOutput – hidden states

Model can see all timesteps

Does not usually output tokens, so no inherent auto-regressivity

Can also be adapted to generate tokens by appending a module that maps hidden state dimensionality to vocab size

Representation

Input – output tokens and hidden
states*

Output – output tokens

Model can only see previous timesteps

Model is auto-regressive with previous timesteps' outputs

Can also be adapted to generate hidden states by looking before token outputs

- **✓** Tokenization
- **✓** Input Embeddings
- **✓** Position Encodings
- ✓ Query, Key, & Value
- **✓** Attention
- **✓** Self Attention
- Multi-Head Attention
- ✓ Feed Forward
- ✓ Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- **✓** Linear
- **✓** Softmax
- Decoders
- Encoder-Decoder Models

