Ponovljeni drugi međuispit iz Matematike 3R 28.01.2011.

1. **(3 boda)**

Konstruirajte bijekciju između skupa neparnih prirodnih brojeva, $A = \{1, 3, 5, \ldots\}$ i skupa koji se sastoji od kvadrata prirodnih brojeva, $B = \{1, 4, 9, \ldots\}$.

2. (3 boda)

Na skupu $M_2(\mathbb{R})$ svih kvadratnih matrica, dana je relacija ρ : $A\rho B$ ako postoji regularna matrica $T = T(A, B) \in M_2(\mathbb{R})$ takva da je $A = T^{-1}BT$. Dokažite da je ρ relacija ekvivalencije i za svako svojstvo, odredite matricu T.

3. **(3 boda)**

Zadani su skupovi $A = \{0, 1\}$ i $B = \{a, b, c, d, e, f, g\}$.

Neka je $C = \{f : A \to B, f \text{ funkcija}\}$. Koliko ima različitih injektivnih preslikavanja sa skupa C u partitivni skup skupa B?

4. (3 boda)

Na koliko se načina može složiti *password* koji treba imati 8 do 10 znakova, pri čemu početni znak treba biti slovo te najmanje dva znaka moraju biti znamenke? Pretpostavlja se da je na raspolaganju 30 slova i 10 znamenaka.

5. (4 boda)

- a) Odredite koeficijent od $x^4y^2z^3$ u izrazu $(x+y+z)^9$.
- b) Koliko iznosi zbroj svih koeficijenata u izrazu $(x + y + z)^9$?

6. **(3 boda)**

Koliko ima brojeva između 1 000 i 2 000 (granice su uključene) koji su djeljivi s barem jednim od brojeva 2, 3 i 5, ali ne sa sva tri.

7. (3 boda)

Napišite funkciju izvodnicu za niz a_n , gdje je a_n broj podskupova nekog n-članog skupa.

8. (3 boda)

Zadano je 19 uređenih parova (n, m) sa cjelobrojnim koordinatama. Dokažite da je moguće naći tri para tako da i prva i druga koordinata prilikom djeljenja sa 3 daju isti ostatak.

Zabranjena je upotreba kalkulatora i šalabahtera. Ispit se piše 1h i 30 min.

Rješenja ponovljenog međuispita iz Matematike 3E i 3R 28.01.2011.

1. Npr.
$$f(n) = \left(\frac{n+1}{2}\right)^2$$

Relacija je relacija ekvivalencije.

- \bullet refleksivnost : I
- simartičnost : T^{-1}
- tranzitivnost : T_2T_1

4.
$$(30 \cdot 40^7 - 30^8 - 7 \cdot 10 \cdot 30^7) + (30 \cdot 40^8 - 30^9 - 8 \cdot 10 \cdot 30^8) + (30 \cdot 40^9 - 30^{10} - 9 \cdot 10 \cdot 30^9)$$

5. (4 boda)
a)
$$\binom{9}{4,3,2} = 1260$$

b) 3^9

$$A_l = \{l \cdot k | 1000 \le l \cdot k \le 2000\}, \ l = 2, 3, 5$$

 $|A_2 \cup A_3 \cup A_5| - |A_2 \cap A_3 \cap A_5| = 700$

- a) $t_n = 2^n$ b) $f(x) = \frac{1}{1-2x}$

8.

Prema Dirichletovom načelu postoji 7 parova koji svi imaju isti ostatak dijeljenja prve koordinate s 3. Ponovo, prema Dirichletovom načelu postoje 3 para kojima druga koordinata ima isti ostatak.