

Digital Team

AI Readiness For Inspection (AIRI)

Mohammad Nadeem Ahangar

12th September 2025

Artificial Intelligence (AI) – Definition

"Artificial Intelligence refers to the capability of a computer system to perform tasks that normally require human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making."

Source: *IBM*, *What is Artificial Intelligence?*

Al Use Cases in Industry 5.0

- ➤ Quality Control → Automated defect detection
- ➤ Predictive Maintenance → Anticipate failures, save costs
- ➤ Energy Management → Efficiency + sustainability
- ➤ Inventory Management → Smarter stock levels, reduced waste
- ➤ Generative Design → Faster, optimised product designs
- ➤ Digital Twin → Virtual simulations for optimisation
- ➤ Custom Manufacturing → Personalised production at scale
- ➤ Supply Chain Management → Demand forecasting, resilient logistics

Quality Inspection Using AI (Leyland Truck Project)

Al Pipeline

General Al Pipeline

Why Normal AI Feels Like a Black Box

- Deep models often lack transparency in their internal reasoning.
- Even domain experts find it difficult to interpret how these models work.
- High-stakes applications (e.g., safety inspections) require clear reasoning, not just outputs.
- Explainable AI (XAI) helps by showing how and why decisions are made, keeping humans in the loop.

Blackbox Issue and Explainable Al

Real-World Examples of Hidden AI Risks:

Case	When / Where	Who (Developer / Target)	Key Issue
COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)	2016 / USA	Northpointe (Equivant) used in courts	Racial bias in recidivism risk
Amazon Recruitment Tool	2014–2018 / Seattle	Amazon's ML team	Gender bias against women
Self-Driving Car Failure	March 2018 / Arizona	Uber ATG; pedestrian Elaine Herzberg	Fatal crash; AI failed to explain
Medical Diagnosis Al	2019+ / Global	Google Health, IBM Watson etc.	Opaque, unexplainable decisions

Why Explainability Matters: Real-World AI Incidents

AI Trustworthiness

"Al trustworthiness refers to the confidence and reliability stakeholders have in artificial intelligence systems, encompassing factors such as reliability, transparency, fairness, privacy, security, accountability, and ethical use" [1] [2]

Key Organisations Setting AI Standards

Organisation	Framework / Focus	Relevance
European Commission (EU)	Ethics Guidelines for Trustworthy AI	Human-centric, lawful, ethical, robust
NIST (US) (National Institute of Standards and Technology)	AI Risk Management Framework (AI RMF 1.0)	Risk, trust, reliability, transparency
OECD (Organisation for Economic Cooperation and Development)	Principles on Artificial Intelligence	Global principles on fairness, transparency, accountability
ISO / IEC	International AI Standards	Technical robustness, interoperability, safety
IEEE	Ethically Aligned Design	Embedding ethics in AI system design
Singapore	Model AI Governance Framework	Practical guidelines for responsible AI deployment

Organisations Setting AI Standards

Key Explainable AI (XAI) Techniques

Technique	How it Works	Best For
Grad-CAM (Gradient- weighted Class Activation Mapping)	Highlights regions in an image most responsible for a prediction	Computer vision tasks (e.g., defect detection in inspection)
Occlusion Sensitivity	Hides parts of the input and observes how prediction changes	Understanding which image areas influence decisions
Saliency Maps	Uses gradients to show which pixels most affect the model's output	Visualising fine-grained features in image classification
Integrated Gradients	Attributes importance of each input feature by comparing baseline vs. actual input	Image and tabular data where feature attribution is needed
Feature Importance (SHAP/LIME style)	Ranks input features by how much they affect predictions	Tabular data, predictive maintenance, quality decisions

XAI Techniques

AIRI Project

AIM: Explore how trustworthy AI can be integrated into aerospace manufacturing inspections (NDT), with a focus on Explainable AI (XAI) to build confidence and support human inspectors.

Objectives:

- Assess Al's role in improving efficiency, reliability, and compliance in aerospace manufacturing.
- Identify areas where AI can safely complement human inspectors.
- Gather insights from industry practitioners (e.g., BAE Systems) on challenges and opportunities for AI in NDT.
- Develop a demonstrator showing how XAI can support inspection decisions in practice.

Real-Life Industrial Dataset of Casting Product Source: Link 1

- Domain: Industrial quality inspection for casting manufacturing.
- Content Description:
 - Contains top-view images of submersible pump impellers used in casting processes.
 - Images are categorized into two classes: "Defective" and "Ok" (i.e., non-defective).
 - Includes a total of approximately 7,348 grayscale images.
- Data Structure:
 - Images vary in resolution, including both 300×300 and 512×512 pixel sizes.
 - Dataset is split into training and test sets:
 - Training: ~3,758 "Defective" images and ~2,875 "Ok" images.
 - Testing: ~453 "Defective" and ~262 "Ok" images.
- > Applications & Value:
 - Primarily used for defect classification tasks in automated visual inspection workflows within casting manufacturing.
 - Serves as a benchmark for developing and evaluating deep learning models (e.g., CNNs, Xception) aimed at improving quality control and reducing human inspection errors.

Data Explorer

Version 2 (104.71 MB)

- ▼ □ casting_512×512
 - - def_front
 - ▶ □ ok_front
- ▼ □ casting_data
 - ▼ □ casting_data
 - ▼ test
 - ▶ ☐ def_front
 - Ok_front
 - ▼ □ train
 - def_front
 - ak_front

Summary

▶ □ 8648 files

Real-Life Industrial Dataset of Casting Product Source: Link 1

Integrated Gradients (def_front)

Defect Location for Metal Surface Source Link 2

- **Domain**: Industrial inspection, with a focus on metal surface defect analysis.
- Content: Image dataset annotated with both defect classes (types of defects) and defect locations (bounding box or coordinate-based annotations).
- **Purpose**: Enables research and development of AI models for defect classification and defect localization.
- Applications: Supports explainable and automated visual inspection in manufacturing, particularly for quality assurance and predictive maintenance.
- **Value**: Provides a benchmark resource for evaluating computer vision methods in industrial defect detection tasks.

Data Explorer

Version 1 (967.81 MB)

- ▼ images
 - ▼ images
 - ▶ □ crease
 - crescent_gap
 - inclusion
 - ▶ □ oil_spot
 - punching_hole
 - rolled_pit
 - ▶ ☐ silk_spot
 - waist folding
 - water_spot
 - welding_line
- ▼ □ label
 - ▶ □ label

Summary

▶ □ 4586 files

Grad-CAM Heatmap

Saliency Map

Grad-CAM Heatmap

Saliency Map

MIMII Dataset (Malfunctioning Industrial Machine Investigation & Inspection) Source: Hitachi Research Team – Zenodo

- Domain: Industrial anomaly detection via sound.
- Machines: Valves, Pumps, Fans, Slide Rails (7 models each).
- ▶ Data: ~26k normal sounds, ~6k anomalous sounds.
- Specs: 16 kHz, 16-bit, 8-channel mic array; factory noise included.
- Anomalies: Contamination, leakage, unbalance, rail damage, etc.
- ▶ Use Cases: Benchmark for unsupervised anomaly detection, transfer learning, noise robustness.
- **Baseline**: Autoencoder model provided.
- License: CC BY-SA 4.0 (open access)

MIMII Dataset (Malfunctioning Industrial Machine Investigation

& Inspection) Source: Hitachi Research Team – Zenodo

Isolation Forest Methodology for Sound Anomaly Detection

MIMII Dataset (Malfunctioning Industrial Machine Investigation

& Inspection) Source: Hitachi Research Team – Zenodo

Anomaly Detection in Fan Sounds Using CNN

Explanation

Prediction: abnormal (99.84% confidence). Abnormality strongest at: 1.11-1.48s, 5.93-6.67s, 7.04-7.41s, 7.78-8.15s, 8.52-9.63s, 10.0-10.0s.

Conclusion

- Demonstrated how **Explainable AI (XAI)** can enhance trust, transparency, and reliability in industrial inspection tasks.
- Showed practical value through real-world datasets and models (YOLO, Faster R-CNN, MIMII) for defect detection and anomaly analysis.
- Positioned AI as a decision-support tool:
 - Assists human inspectors by highlighting potential defects/anomalies quickly and accurately.
 - Reduces repetitive workload, allowing inspectors to focus on complex, safety-critical judgments.
 - Improves consistency across inspections by providing objective, data-driven insights.
 - Ensures human-in-the-loop oversight, keeping accountability with inspectors while enhancing confidence in AI outputs.

Questions?

Thank you.

For further information please contact or visit:

m.n.ahangar@hud.ac.uk

+447399368792

amrc.co.uk

