Análisis de Diodos

Gabriel D'Andrade Furlanetto

28 de noviembre de 2021

Resumen

En este artigo, vamos analizar la tensión umbral de diferentes diodos utilizando datos coletados con la herramienta de instrumentación virtual LabView. Analizaremos también un Diodo Zener y su tensión Zener con la misma metodología.

1. Introducción

1.1. Objetivos

Queremos aqui, principalmente, caracterizar diferentes diodos por sus tensiones umbrales. Especificamente, vamos a analizar 8 diodos diferentes:LED Amarillo,LED Azul, LED Blanco, LED Verde, LED Rojo, LED Infrarojo, Diodo PV, Diodo Zener. Para este último, también queremos caracterizar su tensión Zener

1.2. Conceptos básicos del montaje experimental

Para lo que queremos hacer y caracterizar, necesitamos producir curvas I-V para los diferentes diodos. La forma más sencilla de hacer eso sería variando la corriente y midiendo la diferencia de potencial entre los terminales del diodo. No obstante, no podemos directamente variar la intensidad directamente con nuestros aparatos.

De esa manera, controlaremos la tensión de entrada, V_0 , utilizando la resistencia que tenemos para calcular la corriente, y mediremos la diferencia de potencial entre los terminales del diodo. El circuito está representado en la Figura 1

Figura 1: Diagrama del circuito del montaje experimental.

2. Procedimiento Experimental

2.1. Programa de Labview

El programa, formalmente el VI, utilizado para las mediciones consiste en un panel frontal, que existe principalmente para indicar si la medición va bien y controlar el número de muestras, la resistencia y los valores finales y iniciales de la tensión, y un panel trasero que, funcionalmente, es donde las mediciones y transformaciones relevantes ocurren. El programa está diseñado para hacer el output a un archivo para que un análisis completo pueda ser hecho en otros medios, y está integralmente representado en la Figura 2.

(a) Panel frontal del VI.

(b) Panel trasero del VI.

Figura 2: El VI utilizado para las mediciones.

El código del panel trasero basicamente hace un gradiente con el número de muestras que va de la voltaje inicial a la final. El bucle for pasa por cada uno de esos valores (uno a cada 20 ms) y para cada uno de eses, hace pasar esa tensión como V_0 al circuito. Despúes, se mide el voltaje de salida, V_{Out} y, con la resistencia y matemáticas básica, calcula el valor de la intensidad. Finalmente, hace el display del gráfico en el panel frontal y el output de los valores a un archivo de texto para que se puedan analizar en programas diseñados para este fin. Tambien reseteamos el valor de la tensión inicial a 0 después de la ejecución del bucle para no dejarlo encencidido.

2.2. Medidas

Despúes de hacer las medidas y procesarlas en un software estándar, tenemos los resultados representados en la Figura 3

(a) Intensidad como función de la diferencia de potencial entre extremos de diferentes diodos. (b) Intensidad como función de la diferencia de potencial entre extremos del diodo zener.

Figura 3: Mediciones hechas durante el experimento.

3. Resultados

Utilizando los datos que usamos para hacer la Figura 3, podemos trivialmente calcular la tension umbral para los differentes diodos y la tensión de Zener del diodo Zener:

$$V_{PV} = 0,63V$$

$$V_{Infrarojo} = 1,10V$$

$$V_{Rojo} = 1,78V$$

$$V_{Amarillo} = 1,90V$$

$$V_{Verde} = 1,92V$$

$$V_{Blanco} = 2,73V$$

$$V_{Azul} = 2,75V$$

$$V_{UmbZen} = 0,75V$$

$$V_{ZenZen} = -2,21V$$

Los LEDs aqui presentan el comportamiento esperado: Su tensión umbral es proporcional a la frecuencia de la luz emitida.

4. Discusión Final

Hemos podido cumplir todos los objetivos propuestos y medir las tensiones deseadas para cada uno de los diodos. Más allá, hemos verificado que la relación teórica de proporcionalidad de los LEDs y sus tensiones umbrales se verifica, ilustrando la validad de nuestro experimento.