# Al 4 Closed-Loop Control Systems – Hackathon 2020 in Osnabrück



10.-12.01.2020





# Schedule Starting Session

- Welcome Osnabrück University
- Welcome ZF
- Introduction of the task and damper systems by ZF experts
- Applied signal processing on the released data sets
- Organizational matters
  - Time table of the weekend
  - Room assignment
  - Helping hands
  - Q and A session
  - IT issues
  - etc.

# Introduction of the task and damper systems by ZF experts



# Applied Signal processing on the released data sets

- for the task you can not look into the future
  - thus only use  $data_{(t)}$  where  $t \leq t_{now}$



- for the task you can not look into the future
  - thus only use  $data_{(t)}$  where  $t \leq t_{now}$

known values for predictions / calculations



- for the task you can not look into the future
  - thus only use  $data_{(t)}$  where  $t \leq t_{now}$



- for the task you can not look into the future
  - thus only use  $data_{(t)}$  where  $t \leq t_{now}$



# Some information about closed-loop systems



# Some information about closed-loop systems



#### Data sets

- All data set for the hackathon are located at: /net/projects/scratch/winter/valid\_until\_31\_July\_2020/hackathon/datasets
- 9 different data set are provided
  - ts1\_1\_k\_3.0.csv
  - ts1\_2 \_k\_3.0.csv
  - ts1\_3 \_k\_3.0.csv
  - ts1\_4 \_k\_3.0.csv
  - ts2 \_k\_20.0.csv
  - ts3\_1 \_k\_3.0.csv
  - ts3\_2 \_k\_3.0.csv
  - ts3\_3 \_k\_3.0.csv
  - ts4\_k\_??.csv

released by now

released on Sunday by 17:00 for the final evaluation

### Data sets – example ts1\_1



### Data sets – Overview

















- rectangular speed bump is one extreme case
  - it is a theoretical case such speed bumps do not exist



- rectangular speed bump is one extreme case
  - it is a theoretical case such speed bumps do not exist



- rectangular speed bump is one extreme case
  - it is a theoretical case such speed bumps do not exist



- rectangular speed bump is one extreme case
  - it is a theoretical case such speed bumps do not exist



#### Example Speed Bump – Simulation – $i_{const} = 0.0A$



#### Example Speed Bump – Simulation – $i_{const} = 0.2A$



#### Example Speed Bump – Simulation – $i_{const} = 0.4A$



#### Example Speed Bump – Simulation – $i_{const} = 0.6A$



#### Example Speed Bump – Simulation – $i_{const} = 2.0A$



#### Example Speed Bump – Simulation – $i_{const}$



- rectangular speed bump is one extreme case
  - it is a theoretical case such speed bumps do not exist



- rectangular speed bump is one extreme case
  - it is a theoretical case such speed bumps do not exist



#### Example Speed Bump – Simulation – $i_{const}$



#### Example Speed Bump – Simulation – $i_{const}$



- code of speed bump example can be found at
  - /net/projects/scratch/winter/valid\_until\_31\_July\_2020/hackathon/codeSnippets /damperTask/runDamperOnSpeedBump.py

- before first use e.g. install python virtual environment
  - python3 -m venv ~/hack20
  - source ~/hack20/bin/activate
  - pip3 install scipy
  - pip3 install matplotlib==1.5.3
  - python3 runDamperProfile.py
- copy the code snippets to a folder where you can read & write

# $T_{target}$ and v = [5; 10; 20; 30] of ts2









# $T_{target}$ and v of some data sets







# Code Snippets

# Schedule of the Weekend

#### Schedule of the Weekend

- 09:15 on Friday: starting event
- 16:00 on Saturday: hand-in half-time scoring results
- 18:00 on Saturday: release half-time scoring
- 17:00 on Sunday: release of data set ts4\_k\_??.csv
- 19:30 on Sunday: hand-in of final results and code
  - Final hand-in must include
    - Scoring-CSV
    - Code for reproducing your results (incl. possible links to other data sets, tools etc.)
      Commitment to open source: all software based on the released task as well as dataset had to be licensed according to the MIT License.
- 20:00 on Sunday: End of the hack

# Half-time scoring Saturday 18:00

# Half-time scoring Saturday 18:00

- Hand-In time: Saturday 16:00
- Julius will collect (with his USB)

  - "HalfTimeScoring\_ts\_3\_1\_vel20.0.csv" with  $v=20\frac{m}{s}$  and dt=0.005s "HalfTimeScoring\_ts\_3\_1\_vel8.0.csv" with  $v=8\frac{m}{s}$  and dt=0.005s "HalfTimeScoring\_ts\_3\_1\_vel27.0.csv" with  $v=27\frac{m}{s}$  and dt=0.005s
- Run your implementation on data set ts3\_2 \_k\_3.0.csv
- Scoring results will be without values, only the ranking
- Participation is voluntary but a good chance

# HalfTimeScoring\_ts\_3\_1\_vel??.csv

- must include [t,  $Z_h$ ,  $Z_t$ ,  $Z_b$ ,  $\ddot{Z}_t$ ,  $\ddot{Z}_b$ , i]
- The length might variate by  $\pm 10 \ rows \ @ \ dt = 0.005s$ 
  - $v_{20} = 12338 \, rows$
  - $v_8 = 309592 \, rows$
  - $v_{27} = 91732 \, rows$

## Some starting points

#### Damper Spring System in Python

- A worked example on scientific computing with Python
  - cf. <a href="https://github.com/hplgit/bumpy">https://github.com/hplgit/bumpy</a>
  - cf. /net/projects/scratch/winter/valid\_until\_31\_July\_2020/hackathon/codeSnippets/simpleDamperNotTheTask



#### Damper Spring System in Python – Animation

https://raw.githubusercontent.com/hplgit/bumpy/master/doc/src/mov-bumpy/m2\_k5\_b0\_2/movie.webm



#### A case study of car suspension system

- Solution approaches to differential equation of mechanical system dynamics: A case study of car suspension system
  - Tesfaye O. Terefe, Hirpa G. Lemu



**Fig. 2.** Illustrative model of a semi-active suspension system



Fig. 9. Overall system response

#### Further reads ...

- <a href="https://www.youtube.com/watch?v=gsk6kPaP2Ig">https://www.youtube.com/watch?v=gsk6kPaP2Ig</a> NumPyQuarter Model Suspension:
  Python
- http://ctms.engin.umich.edu/CTMS/index.php?example=Suspension&section=SystemMod eling Suspension: System Modeling
- https://www.youtube.com/watch?v=6ivdfKfGp4k
  Simulating Feedback Control Systems
- <a href="https://github.com/nrsyed/half-car">https://github.com/nrsyed/half-car</a> Vehicle half-car suspension model
- <a href="http://apmonitor.com/pdc/index.php/Main/SpeedControl">http://apmonitor.com/pdc/index.php/Main/SpeedControl</a> Automobile Velocity Control
- https://github.com/python-control/python-control/blob/master/examples/steeringgainsched.py gain scheduled control for vehicle steering
- https://physics.nyu.edu/pine/pymanual/html/chap9/chap9\_scipy.html Numerical Routines: SciPy and
- https://apmonitor.com/pdc/index.php/Main/SolveDifferentialEquations ODEINT Solver

• ...

#### Other organizational matters

Announcements -> to all people via e-mail

#### In case of emergency

- In case of medical emergency and fire
  - First: Call 112
  - (continue with first aid or fire fighting)
  - Later call 0541 969-7150 (Julius) or call 0541 969-2277 (Gordon)

- In case of contacting hackathon-team
  - First: try to find Julius, Gordon, Pascal, Ulf, ZF experts, etc.
  - if still necessary and in urgent cases call 0541 969-7150

# Result Presentations and Awarding Ceremony

22.01.2020 14:00 (ct) room SI 0036

### Judging criteria

- technical evaluation of your solution 50%
- 10-minute presentation of your solution 40%
- creativity, novelty, applicability of your solution 10%

#### Jury – changes still possible

- The jury will be six persons
  - ZF: Dr. M. Klank
  - ZF: Dr. T. Pobandt / Dr. Ch. Elbers
  - Uni Osnabrück: Prof. Dr. G. Pipa
  - Uni Osnabrück: P. Nieters
  - Hochschule Osnabrück: Prof. Dr. Th. Gervens
  - Hochschule Osnabrück: Prof. Dr. C. Westerkamp

# Room assignment

#### Rooms available

| Rooms | Remark                              |
|-------|-------------------------------------|
| E07   | Fr. 14:00-16:00 (blocked)           |
| E08   |                                     |
| E04   | Fr. 10:00-12:00 (blocked)           |
| E03   |                                     |
| E02   |                                     |
| 113   |                                     |
| 111   |                                     |
| 119   |                                     |
| 228   |                                     |
| 220   |                                     |
| 219   | Snack-Bar (Coffee, Tea, cake, etc.) |
| E09   | Fr. until 14:00 (blocked)           |
|       |                                     |