

Last Time: Derivatives of Multivariable functions

Directional Derivative: $D_{\vec{v}} f(\vec{a}) = \lim_{h \rightarrow 0^+} \frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h}$

unit vector
in \mathbb{R}^n

$\vec{v} \in \text{dom}(f)$

n-variable
function

Defn: the kth partial derivative (or the partial derivative wrt x_k) of n-variable f is $\frac{\partial f}{\partial x_k} = D_{\vec{e}_k} f$ where

$$\vec{e}_k = \underbrace{\langle 0, \dots, 0, \underset{k^{\text{th}} \text{ position}}{\underbrace{1}}, 0, \dots, 0 \rangle}_{\text{all } 0}$$

kth position

NB: \vec{e}_k is the increasing direction for x_k where $\vec{x} \in \text{dom}(f)$ coordinates (x_1, x_2, \dots, x_n)

What's going on?: Two variables (x, y)
Given function $f(x, y)$ and $(a, b) \in \text{dom}(f)$

$$\frac{\partial f}{\partial x} \Big|_{(a,b)} = \underbrace{D_{\vec{e}_2} f(a,b)}_{y \text{ is second coordinate}} \cdot e_2 = \langle 0, 1 \rangle$$

$$= \lim_{h \rightarrow 0^+} \frac{f(\langle a, b \rangle + h\vec{e}_2) - f(\langle a, b \rangle)}{h}$$

$$= \lim_{h \rightarrow 0^+} \frac{f(a+h, b+l) - f(a, b)}{h}$$

$$= \lim_{h \rightarrow 0^+} \frac{f(a, b+l) - f(a, b)}{h} \leftarrow \begin{array}{l} \text{first} \\ \text{coordinate} \\ \text{not changing} \\ (\text{ie held constant}) \end{array}$$

Now let $g(x) := f(a, x)$
 single variable function

$$\text{rewrite } \frac{df}{dx}|_{(a,b)} = \lim_{h \rightarrow 0^+} \frac{f(a, b+h) - f(a, b)}{h}$$

$$= \lim_{h \rightarrow 0^+} \frac{g(b+h) - g(b)}{h} = \overset{\text{(derivative)}}{g'(b)} \quad \text{derivative}$$

By construction g treats x as a constant, so g is the derivative of f "pretending" x is constant

* This works similarly for every component

Ex : Take all partial derivatives of $f(x, y) = xy^2 - x^{3/2} + \sin(x-y)$

$$\text{sol } \frac{\partial f}{\partial x} = \frac{d}{dx} [xy^2 - x^{3/2} + \sin(x-y)]$$

 "usual" derivative so all usual rules apply

$$= \frac{d}{dx} [xy^2] - \frac{d}{dx} [x^{3/2}] + \frac{d}{dx} [\sin(x-y)]$$

$$= y^2 \frac{d}{dx} [x] - \frac{3}{2} x^{\frac{1}{2}} + \cos(x-y) \frac{d}{dx} [x-y].$$

$$= y^2 - \frac{3}{2} x^{\frac{1}{2}} + \cos(x-y)$$

$$\frac{df}{dy} = \frac{d}{dy} [xy^2 - x^{\frac{1}{2}} + \sin(x-y)]$$

$$= \frac{d}{dy} [xy^2] - \frac{d}{dy} [x^{\frac{1}{2}}] + \frac{d}{dy} [\sin(x-y)]$$

$$= x \frac{d}{dy} [y^2] - 0 + \cos(x-y) \frac{d}{dy} [x-y]$$

$$= x(2y) + \cos(x-y)(-1)$$

$$= 2xy - \cos(x-y)$$

✓

Ex: Compute partial derivatives of
 $f(x, y, z) = e^{x^2+y^2} \sin(xz) \cos(yz)$

$$\text{sol: } \frac{df}{dx} = \frac{d}{dx} [e^{x^2+y^2} \sin(xz) \cos(yz)]$$

$$= \cos(yz) \frac{d}{dx} [e^{x^2+y^2} \sin(xz)]$$

$$= \cos(yz) \left(\frac{d}{dx} [e^{x^2+y^2}] \sin(xz) + e^{x^2+y^2} \right)$$

$$\hookrightarrow \frac{d}{dx} [\sin(xz)]$$

$$= \cos(yz) \left(2xe^{x^2+y^2} \sin(xz) + e^{x^2+y^2} (\cos(xz))z \right)$$

$$+ \cos(yz)e^{x^2+y^2} (2x \sin(xz) + z \cos(xz))$$

$$\frac{df}{dy} = \frac{d}{dy} [e^{x^2+y^2} \sin(xz) \cos(yz)]$$

$$= \sin(xz) \frac{d}{dy} [e^{x^2+y^2} \cos(yz)]$$

$$= \sin(xz) \left(\frac{d}{dy} [e^{x^2+y^2}] \cos(yz) + e^{x^2+y^2} \right)$$

$$\hookrightarrow \frac{d}{dy} [\cos(yz)]$$

$$= \sin(xz) \left(2ye^{x^2+y^2} \cos(yz) + e^{x^2+y^2} (-\sin(yz))z \right)$$

$$+ e^{x^2+y^2} \sin(xz) (2y \cos(yz) - z \sin(yz))$$

$$\frac{df}{dz} = \frac{d}{dz} [e^{x^2+y^2} \sin(xz) \cos(yz)]$$

$$= e^{x^2+y^2} \frac{d}{dz} [\sin(xz) \cos(yz)]$$

$$= e^{x^2+y^2} \left(\frac{d}{dz} [\sin(xz)] \cos(yz) + \sin(xz) \frac{d}{dz} [\cos(yz)] \right)$$

$$= e^{x^2+y^2} (x \cos(xz) \cos(yz) + \sin(xz) (-y \sin(yz)))$$

$$= e^{x^2+y^2} (x \cos(xz) \cos(yz) - y \sin(xz) \sin(yz))$$

✓

NB: Everything w/ partial derivatives is working out mostly the same as calculus I, once we hold variables constant...

We can make second order derivatives in exactly the same way as we did in calculus I... now there's just more derivatives of derivatives

$$\frac{\partial^2 f}{(\partial x)^2} + \frac{\partial^2 f}{(\partial y)^2}$$

"pure second
order partials"

$$\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y \partial x}$$

"mixed second
order partials"

Ex: Compute second order partial derivatives of $f(x,y) = xy^2 - x^{\frac{3}{2}} + \sin(x-y)$

Sol: We computed earlier

$$\frac{df}{dx} = y^2 - \frac{3}{2}x^{\frac{1}{2}} + \cos(x-y) \text{ and}$$

$$\frac{df}{dy} = 2xy - \cos(x-y)$$

Now we compute

$$\frac{d^2f}{dx^2} = \frac{d}{dx} \left[\frac{df}{dx} \right] = \frac{d}{dx} \left[y^2 - \frac{3}{2}x^{\frac{1}{2}} \right]$$

$$+ \cos(x-y) \Big] = -\frac{3}{4}x^{-\frac{1}{2}} - \sin(x-y)$$

$$\frac{d^2f}{dy^2} = \frac{d}{dy} \left[\frac{df}{dy} \right] = \frac{d}{dy} [2xy - \cos(x-y)]$$

$$= 2x + \sin(x-y)$$

Moreover, we have mixed partials

$$\frac{d^2f}{y dx} = \frac{d}{dy} \left[\frac{df}{dx} \right]$$

$$= \frac{d}{dy} \left[y^2 - \frac{3}{2}x^{\frac{1}{2}} + \cos(x-y) \right]$$

$$= \lambda y - 0 = \sin(x-y)(-1) = \lambda y + \sin(x-y)$$

$$\frac{d^2f}{dxdy} = \frac{d}{dx} \left[\frac{\partial f}{\partial y} \right]$$

$$= \frac{d}{dx} [2xy - \cos(x-y)] = 2y - (-\sin(x-y)) \cdot 1 \\ = 2y + \sin(x-y)$$

□

NB: Up to this point, applying partial derivatives just works in exactly the same way as calculus I...

Want: Understand mixed partial derivatives

① Why did this example have $\frac{d^2f}{dxdy}$, $\frac{d^2f}{dydx}$?

② How can we guarantee (or tell in advance) if this happens for future functions?

To answer these questions, we need to recall some (calculus I) ...

→ MVT

Prop (Mean Value Theorem):

Let $f(t)$ be a function which is diff on (s, b) and ctr on $[s, b]$

Then there is a $c \in (s, b)$ such that
 $f'(c)(b-s) = f(b) - f(s)$

Answer the mixed partials question
uses MVT:

Prop (Chirnits's Theorem): Let $f(x,y)$
have C¹s second order mixed
partial derivatives on a disk
containing (a,b) . Then at (a,b)
we have

$$\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b) \Big|_{(a,b)}$$