Aula 2: Sequências numéricas (continuação)

Importante: Uma sequência $\{a_n\}$ é dita divergente se $\lim_{n\to\infty} a_n = +\infty$ ou se $\lim_{n\to\infty} a_n = -\infty$ ou ainda se a sequência oscila.

Exemplo 2.1 Determine os valores de r para os quais a sequência $a_n = r^n$ é convergente.

Resolução: Sabemos que

$$\lim_{x \to \infty} r^x = \begin{cases} 0, & \text{se } 0 \le r < 1 \\ 1, & \text{se } r = 1 \\ +\infty, & \text{se } r > 1 \end{cases}$$

Definindo $f(x) = r^x$ para $x \ge 1$, temos $f(n) = a_n$, $n \ge 1$. Então, pelo **Teorema 1.4**, obtemos

$$\lim_{n \to \infty} r^n = \begin{cases} 0, & \text{se } 0 \le r < 1 \\ 1, & \text{se } r = 1 \\ +\infty, & \text{se } r > 1 \end{cases}$$

Obs:

$$\begin{cases} \operatorname{Se} \ a_n \to 0 & \Rightarrow |a_n| \to 0 \\ \operatorname{Se} \ |a_n| \to 0 & \Rightarrow a_n \to 0 \\ \operatorname{Se} \ a_n \to +\infty & \Rightarrow |a_n| \to +\infty \\ \operatorname{Se} \ |a_n| \to +\infty & \Rightarrow a_n \to +\infty \text{ ou } a_n \to -\infty \text{ ou } a_n \to \pm\infty \text{ (oscila)} \end{cases}$$

$$< r < 0 \text{ comp} |r|^n \to 0 \quad \Rightarrow \quad r^n \to 0 \text{ as converge}$$

Se -1 < r < 0, como $|r|^n \to 0$ \Rightarrow $r^n \to 0$. a_n converge.

Se $r=-1, \lim_{n\to\infty} (-1)^n$ não existe (oscila). a_n diverge.

Se r < -1, como $|r|^n \to +\infty$ \Rightarrow $r^n \to +\infty$ ou $r^n \to -\infty$ ou $r^n \to \pm\infty$ (oscila). a_n diverge.

Deste modo, concluímos que $a_n = r^n$ é convergente se $-1 < r \le 1$ e é divergente para todos os outros valores de r.

2.1 Sequências monótonas

Definição 2.1. (Sequências monótonas)

Uma sequência $\{a_n\}$ é denominada crescente se $a_n < a_{n+1}$ para todo $n \ge 1$, isto é, $a_1 < a_2 < a_3 < \cdots < a_n < a_{n+1} < \cdots$. A sequência é denomidada decrescente se $a_n > a_{n+1}$ para todo $n \ge 1$, isto é, $a_1 > a_2 > a_3 > \cdots > a_n > a_{n+1} > \cdots$. A sequência $\{a_n\}$ é dita monótona se for crescente ou decrescente.

Observação: A sequência $\{a_n\}$ é **não decrescente** se

$$a_1 \le a_2 \le a_3 \le \cdots \le a_n \le a_{n+1} \le \cdots$$
.

A sequência $\{a_n\}$ é **não crescente** se

$$a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$$

Exemplo 2.2 Mostre que a sequência $a_n = \frac{n}{n^2 + 1}$ é decrescente.

Resolução: Faremos a demonstração de duas formas:

1. Temos que mostrar que

$$a_n > a_{n+1}$$

$$\frac{n}{n^2 + 1} > \frac{n+1}{(n+1)^2 + 1}.$$

Como $n^2+1>$ e $(n+1)^2+1>0$ para todo $n\geq 1$, podemos multiplicar cruzado

$$n[(n+1)^{2}+1] > (n+1)(n^{2}+1)$$

$$n[n^{2}+2n+2] > n^{3}+n+n^{2}+1$$

$$n^{3}+2n^{2}+2n > n^{3}+n^{2}+n+1$$

$$n^{2}+n > 1$$

Esta última desigualdade é verdadeira para todo $n \ge 1$, portanto $a_n > a_{n+1}$, isto é, a sequência é decrescente.

2. Consideremos a função $f(x) = \frac{x}{x^2 + 1}$, então

$$f'(x) = \frac{1 \cdot (x^2 + 1) - x(2x)}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} < 0,$$

sempre que $1-x^2<0$, uma vez que o denominador é positivo para todo x. A função $1-x^2$ é

sempre negativa para x > 1. Logo, f(x) é decrescente para x > 1. Assim, para $n = 1, 2, 3, \dots$ a sequência a_n é decrescente.

Importante: Existem sequências que não são crescentes e nem decrescentes. Por exemplo, $a_n = (-1)^n$.

Definição 2.2. (Sequências limitadas)

Uma sequência $\{a_n\}$ é **limitada superiormente** se existir um número M tal que

$$a_n \leq M$$
 para todo $n \geq 1$.

A sequência é limitada inferiormente se existir um número m tal que

$$m \le a_n$$
 para todo $n \ge 1$.

Se a sequência for limitada inferiormente e superiormente, então ela é uma sequência limitada.

Teorema 2.1

Toda sequência monótona e limitada é convergente.

Exemplo 2.3 Prove que a sequência $a_n = \frac{3^{n+2}}{(n+2)!}$ é convergente.

Resolução: Basta verificar se as hipóteses do **Teorema 2.1** são satisfeitas, isto é, mostrar que $\{a_n\}_{n=1}^{\infty}$ é monótona e limitada. De fato:

(i) Como $a_n > 0$ para todo n, então

$$\frac{a_{n+1}}{a_n} = \frac{\frac{3^{n+3}}{(n+3)!}}{\frac{3^{n+2}}{(n+2)!}} = \frac{3^{n+3}}{(n+3)!} \frac{(n+2)!}{3^{n+2}} = \frac{3 \cdot 3^{n+2}}{(n+3)(n+2)!} \frac{(n+2)!}{3^{n+2}} = \frac{3}{(n+3)} < 1.$$
 (2.1)

Logo, $a_{n+1} < a_n$ para todo $n \ge 1$. Logo, $\{a_n\}_{n=1}^{\infty}$ é monótona decrescente.

(ii) Note que, $a_n > 0$ e que

$$a_{n} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{(n+2)(n+1)n \cdot 3 \cdot 2 \cdot 1} = \underbrace{\frac{3}{(n+2)} \cdot \underbrace{\frac{3}{(n+1)}}_{<1} \cdot \underbrace{\frac{3}{n}}_{<1} \cdot \dots \cdot \underbrace{\frac{3}{3} \cdot \frac{3}{2} \cdot \frac{3}{1}}_{=\frac{9}{2}} \le \frac{9}{2}}_{=\frac{9}{2}}$$
(2.2)

Portanto, $0 < a_n \le \frac{9}{2}$, ou seja, $\{a_n\}$ é limitada. Portanto, de (i) e (ii) e, pelo **Teorema 2.1**, a sequência $\{a_n\}$ é convergente.

Exercícios

1. Determine se a sequência dada é crescente, decrescente ou não monotônica. A sequência dada é limitada?

(a)
$$a_n = \frac{1}{5^n}$$

(b)
$$a_n = \frac{1}{2n+3}$$

(c)
$$a_n = \frac{2n-3}{3n+4}$$

(d)
$$a_n = \cos\left(\frac{n\pi}{2}\right)$$

(e)
$$a_n = ne^{-n}$$

(f)
$$a_n = \frac{n}{n^2 + 1}$$

(g)
$$a_n = n + \frac{1}{n}$$

2. Decida se cada uma das sequências abaixo é convergente ou divergente, calculando o limite no caso convergente:

$$(a) \ a_n = \frac{2n + \sin n}{5n + 1}$$

(b)
$$a_n = \frac{(n+3)! - n!}{(n+4)!}$$

(c)
$$a_n = \frac{n \operatorname{sen}(n!)}{n^2 + 1}$$

(d)
$$a_n = \left(\frac{n+1}{n}\right)^{n^2}$$

(e)
$$a_n = n(\alpha)^n, \ \alpha \in \mathbb{R}$$

(f)
$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right)$$

(g)
$$\sqrt[n]{a^n + b^n}$$
, onde $0 < a < b$

3. Calcule, justificando, o limite das seguintes sequências:

(a)
$$a_n = \sqrt[n]{\sqrt[n]{n}}$$

(b)
$$a_n = \frac{1}{3^n} \left(\frac{6n-1}{2n+5} \right)^n$$

(c)
$$a_n = \left(1 - 2\operatorname{sen}\left(\frac{1}{n}\right)\right)^{3n}$$

(d)
$$a_n = \sqrt{n - \sqrt{n}} - \sqrt{n}$$

(e)
$$a_n = \left(e^{3/n} - \frac{2}{n}\right)^n$$

Respostas:

- 1. (a) Decrescente. $0 < a_n \le \frac{1}{5}, n \ge 1$.
 - (b) Decrescente. $0 < a_n \le \frac{1}{5}, n \ge 1$.
 - (c) Crescente. $-\frac{1}{7} \le a_n < \frac{2}{3}, \ n \ge 1.$
 - (d) Não monotônica. $-1 \le a_n \le 1, \ n \ge 1.$
 - (e) Decrescente. $0 \le a_n \le \frac{1}{n}$.
 - (f) Decrescente. $0 < a_n \le \frac{1}{2}$.
 - (g) Crescente. Não é limitada.
- 2. (a) Converge para $\frac{2}{5}$
 - **(b)** Converge para 0
 - (c) Converge para 0
 - (d) Diverge
 - (e) Converge para 0 se $|\alpha| < 1$
 - (f) Converge para $\frac{1}{2}$
 - (g) Converge para b
- **3.** (a) 1
 - **(b)** $e^{-8/3}$
 - (c) e^{-6}
 - (d) $-\frac{1}{2}$
 - **(e)** e