Engineering Mathematics

Real Analysis Functions Part 3

1. Ordered Pairs

A set with two elements which are ordered is called an ordered pair. An ordered pair is denoted by (a, b) where a is called the first element and b is the second.

Definition - If (a, b) is an ordered pair then it can be defined as $(a, b) = \{\{a\}, \{a, b\}\}\}$. According to the above definition we can prove that if (a, b) = (c, d) then a = b & c = d.

Definition - Given two sets A & B, the set of all ordered pairs (a, b) such that $a \in A \& b \in B$ is called the Cartesian product of A & B.

It is denoted by $A \times B$

2. Relations

Definition - Any set of ordered pairs is called a relation.

If A & B are non-empty sets then a relation $S: A \to B$ is a non-empty subset of $A \times B$.

A is called the *domain* of *S*. *B* is called the *codomain* of *S*.

 $\{y \mid (x,y) \in S\}$ is called the *range* of *S* or *ranS*.

 $\{x \mid (x,y) \in S\}$ is called the pre-range of S or preranS.

❖ One Many Relations

If S is one many relation $\Leftrightarrow \exists x \in A, \exists y_1, y_2 \in B \text{ s.t. } (x, y_1) \text{ and } (x, y_2) \in S \& y_1 \neq y_2$

Many One Relations

If *S* is one many relation $\Leftrightarrow \exists x_1, x_2 \in A, \exists y \in B \ s.t. \ (x_1, y) \ and \ (x_2, y) \in S \& x_1 \neq x_2$

Many Many Relations

If *S* is both one-many and many-one relation then *S* is called many many relation.

One One Relation (Injection)

If *S* is not one-many and not many-one relation then *S* is called one one relation.

Onto Relation (Surjection)

If $S: A \to B$ relation in onto $\Leftrightarrow ranS = B$ If S is onto $\Leftrightarrow \forall y \in B, \exists x \in A \ s.t. \ (x, y) \in S$

✓ If a relation is both one to one & onto then it is called **bijection**.

❖ Inverse Relation

Definition - S^{-1} : $B \to A$ defined by $S^{-1} = \{(y, x) \mid (x, y) \in S\}$ is called the inverse relation of S.

3. Functions

Definition – Let A & B are non-empty sets. Then a function $f: A \to B$ is a relation which is not one many and $A \equiv prerange \ of \ f$ Now it can be written $(x,y) \in f$ as f(x) = y

- ✓ If function f is not many one also then it is called a *one one function* or *one to one function*.
- ✓ If the range of f, ranf = B then the function is called an *onto function*.
- ✓ If a function is both *one to one* and *onto* then it is called a *bijection function*.

Inverse Function

The inverse function f^{-1} is the inverse relation f^{-1} : $B \to A$ which is also a relation.

 \checkmark For this f should be bijection.

➤ If A & B are subsets of \mathbb{R} , then $f: A \to B$ is called a real valued function.

Composite Functions

Let $f: A \to B \& g: B \to C$ are both functions then $g \circ f: A \to C$ is the composite function. $(g \circ f)(x) = g[f(x)]$

1. Increasing Function

If $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$, then f(x) is an increasing function.

2. Strictly Increasing Function

If $x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$, then f(x) is a strictly increasing function.

3. <u>Decreasing Function</u>

If $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$, then f(x) is a decreasing function.

4. Strictly Decreasing Function

If $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$, then f(x) is a strictly decreasing function.

Function Notations

1.
$$(f+g)(x) = f(x) + g(x)$$

3.
$$(fg)(x) = f(x).g(x)$$

$$2. \quad (rf)(x) = r.f(x)$$

4.
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Function Types

- 1. Polynomial Functions
- 2. Rational Functions
- 3. Exponential Functions
- 4. Logarithm Functions
- 5. Trigonometric Functions (Circular Functions)
- 6. Inverse Trigonometric Function
- 7. Hyperbolic Functions

Exercise

- 1. If $S = \{(1,2), (4,3), (2,5), (3,2), (5,7)\}$. Show that S is many one relation.
- 2. $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x 2 be a function then,
 - i. Prove that *f* is a bijection.
 - ii. Prove that *f* is strictly increasing.
 - iii. Find the formula for f^{-1}
- 3. If $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ then,

- i. Prove that f(x) is not a one to one function.
- ii. Prove that f(x) is not an onto function.
- 4. Let $f: A \to B$ be a function. Prove that f is a bijection $\iff f^{-1}: B \to A$ exists as a bijection.
- 5. Show that if $f: A \rightarrow B$ is a bijection then,
 - i. $(f^{-1} \circ f)(x) = x ; \forall x \in A$
 - ii. $(f \circ f^{-1})(x) = x ; \forall x \in A$
- 6. If $f: \mathbb{R}_0^+ \to \mathbb{R}$, $f(x) = x^2 2x + 2$ then prove that f^{-1} function is not exists.
- 7. If $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, f(x) = |x 2| then prove that f is not a one to one function.
- 8. If $f: (-1, \infty) \to \mathbb{R}$, $f(x) = \frac{x}{x+1}$ be a function, then prove that
 - i. *f* is one to one
 - ii. *f* is strictly increasing
 - iii. *f* is not an onto function.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$, f(xy) = f(x). f(y); $\forall x, y \in \mathbb{R}$ and then prove that exactly one of the following facts occurs.
 - i. f(x) = 0; $\forall x \in \mathbb{R}$
 - ii. f(1) = 1
- 10. Let $f: \mathbb{R} \to \mathbb{R}$, f(x+y) = f(x) + f(y); $\forall x, y \in \mathbb{R}$ and then prove the followings.
 - i. f(0) = 0
 - ii. $f(mx) = m. f(x); \forall m \in \mathbb{Z}, x \in \mathbb{R}$
 - iii. $f(rx) = r. f(x); \forall r \in \mathbb{Q}, x \in \mathbb{R}$

----End of the Tutorial----

Dasun Madushan

B.Sc. Eng. (Hons) – 1st Class Electronic & Telecommunication Engineering University of Moratuwa