

Appl. No. 10/699,469
Atty. Docket No. 9081M
Amdt. dated December 2, 2005
Reply to Office Action of September 19, 2005
Customer No. 27752

REMARKS

The counsel on behalf of the Applicants would like to thank the Examiner for his time and consideration during the interview of November 29, 2005.

A supplemental Information Disclosure Statement has been filed with this submission for your consideration.

Specification

The paragraphs beginning at page 13, line 13 and ending on page 13, line 21 have been amended to include the units for the Vaughan Solubility Parameter. Support for this amendment can be found in the article "Solubility, Effects in Product, Package, Penetration and Preservation", C. D. Vaughan, Cosmetics and Toiletries, Vol. 103, p 47-69, Oct. 1988, incorporated by reference within the specification. A copy of the article has been enclosed with this amendment.

Claim Status

Claims 1-20 and 22-39 are pending in the present application.

Claims 21 and 40 have been canceled.

Claims 1-20 and 22-39 have been amended to recite a personal cleansing article comprising a package containing striped personal cleansing composition. Support for the amendment is found at page 3, lines 16-18; page 21, lines 16-20, page 26, lines 1-4, page 27, lines 9-12 and page 28, lines 7-10 of the specification. Claims 1 and 2 have been amended to recite that the cleansing phase and said benefit phase are in physical contact within the package. Support for the amendment is found at page 1, lines 12-14 and page 2, lines 9-16 of the specification. Claims 1 and 2 have also been amended to recite the units for the Vaughan Solubility Parameter as $(\text{cal}/\text{cm}^3)^{0.5}$. Support for this amendment can be found in the article "Solubility, Effects in Product, Package, Penetration and Preservation", C. D. Vaughan, Cosmetics and Toiletries, Vol. 103, p 47-69, Oct. 1988, incorporated by reference within the specification.

Claims 6, 7, 13, 14, 15, 16, 18, 19, 20, 25, 26, 30, 31, 32, 33, 34, 35, and 37 have also been amended for clarity.

Appl. No. 10/699,469
Atty. Docket No. 9081M
Amdt. dated December 2, 2005
Reply to Office Action of September 19, 2005
Customer No. 27752

Claims 19 and 39 have also been amended to recite that the package containing the striped personal care composition is transparent. Support for this amendment can be found in original Claim 20 and in the specification on page 21, lines 16-18.

It is believed these changes do not involve any introduction of new matter. Consequently, entry of these changes is believed to be in order and is respectfully requested.

Rejection Under 35 USC §103(a) Over St. Lewis, et al. (U.S. Patent No. 6,306, 806)

Claims 1-20 and 22-39 have been rejected under 35 USC §103(a) as being unpatentable over U.S. Patent No. 6,306,806 issued to St. Lewis, et al. (hereinafter "St. Lewis"). The Office Action stated that St. Lewis disclosed a liquid personal care composition a dual chamber dispenser wherein more than two stripes may be dispensed comprising a surfactant, structurant, electrolytes and other adjunct materials. The Office Action further stated that St. Lewis taught the inclusion of a benefit stripe that is a water-in-oil emulsion comprising topically active materials and oils. The Office Action states that St. Lewis does not teach with sufficient specificity each of the claimed ingredients. The Office Action concludes that it would have been obvious to one skilled in the art at the time of the invention was made to combine the ingredients with reasonable expectation of success to formulate the claimed invention, in the absence of showing of a contrary, because each of the ingredients are taught in a single composition.

Applicants respectfully traverse this rejection based on the amendment and remarks contained herein.

St. Lewis does not teach or suggest all of the claim limitations of Claims 1-20 and 22-39 and, therefore, does not establish a *prima facie* case of obviousness. "To establish *prima facie* obviousness of a claimed invention, all the claim limitations must be taught or suggested by the prior art." MPEP § 2143.03 citing *In re Royka*, 490 F.2d 981, 180 USPQ 580 (CCPA 1974). "All words in a claim must be considered in judging the patentability of that claim against the prior art." MPEP § 2143.03 citing *In re Wilson*, 424 F.2d 1382, 1385, 165 USPQ 494, 496 (CCPA 1970). Specifically, St. Lewis does not teach or suggest a personal cleansing article comprising a package containing a striped personal cleansing composition comprising a cleansing phase and a benefit phase which are in physical contact within the package. Instead, St. Lewis teaches a dual chamber package that keeps its surfactant stripe and benefit stripe physically separated in its package.

Appl. No. 10/699,469
Atty. Docket No. 9081M
Amdt. dated December 2, 2005
Reply to Office Action of September 19, 2005
Customer No. 27752

Accordingly, Applicants submit that Claims 1-20 and 22-39 are nonobvious over St. Lewis.

Conclusion

In light of the above remarks, it is requested that the Examiner reconsider and withdraw the rejection under 35 USC §103. Early and favorable action in the case is respectfully requested.

This amendment represents an earnest effort to place the application in proper form and to distinguish the invention as now claimed from the applied reference. In view of the foregoing, reconsideration of this application, entry of the amendments presented herein, and allowance of Claims 1-20 and 22-39 is respectfully requested.

Respectfully Submitted,

THE PROCTER & GAMBLE COMPANY

By Bridget Murray
Bridget Murray
Registration No. 52,555
(513) 626-0575

December 5, 2005

Customer No. 27752

Solubility

Effects In

Product, Package, Penetration, And Preservation

by Christopher D. Vaughan, Ultimate Contract Packaging Inc.
Pompano Beach, FL

Molecule to molecule attractions produce both solubility and insolubility in mixtures. They also drive many other interactions important to the suitability of cosmetic products for consumer acceptance. This article covers a few of the most obvious interactions. We describe how to generally predict areas where compatibilities may be a problem, by using solubility parameters. The same technique can be used to provide solutions to these problems.

Dissolving rarely happens directly. With the exception of acid/base interactions, it is always the result of a close match in the cohesive energy of the materials. Only when two materials have fields similar in strength does spontaneous mixing, or dissolution occur.

A mismatch in the cohesive energies of intermixed materials causes coalescence. The materials with the stronger cohesive forces will tend to coalesce, squeezing out the other material which will either float to the surface, or sink to the bottom, depending on its density relative to the material with the stronger cohesive energy.

The spontaneous separation of oil and water is a good example of these mechanics. Each water molecule has such a strong attractive field that the weak oil fields cannot compete with the

water-to-water molecular attraction. Each water droplet attracts other water droplets so strongly that the oil is excluded and left to form a separated phase. These mechanics depicted in figure 1 are exaggerated and occur rapidly with

Figure 2

drastically differing materials like oil and water. However, even in systems with more similar materials, the same thing happens. Dweck recently reported that in lipstick, exuded oil droplets often called "sweat" are composed primarily of castor oil.¹ Castor oil is usually the most "polar" or cohesive lipstick ingredient. Thus this sweating, or syneresis, appears to follow the general mechanics of solubility. This begins to demonstrate how the adage "like dissolves like" remains valid for the broad range of physical, chemical and biological systems.

In Mixing—What Is "Like"?

How to measure alikeness of materials has been a major challenge in materials science, chemistry, biology, and cosmetic science. The accepted scientific answer in the past has been "polarity." However "polarity" when measured as dipole moment or dielectric constant failed completely to explain the interactions of materials with zero dipole moment (electrically balanced molecules). It was soon discovered that there was more to cohesion than charge attraction. In 1950, the London Dispersion Force on each molecule was added to the charge "polarity," by Hildebrand,² and the Hydrogen Bond attractions included, to give a polarity system which for the first time gave workable predictive solubility values. Hildebrand called these values "solubility parameters."

What Is a Solubility Parameter?

The total sum of all the attractive forces radiating out from a molecule is its solubility parameter measured in (cal/cc.)^{1/2}. However for materials commonly met in cosmetic formulations,

the solubility parameter is a scale of numbers going from around 5 to 25 (cal/cc.)^{1/2}, with oil-like materials toward the low end and water-like materials toward the high end. The family of aliphatic (straight chain) alcohols in figure 2 spans much of the solubility parameter range as it goes from water-like short chains to oil-like long chains.

The solubility parameter can be calculated several ways from physical constants (boiling point, molecular weight, density, etc.). The most common methods of calculation, from Heat of Vaporization and from Hildebrand's Equation give comparable results for most materials, as

Table I.
Comparison of two calculation methods

Compound	Solubility (AM ^{1/2} /V) ^{1/2}	Parameter SOLPARAM
Benzolic Acid	12.57	12.17
d-Camphor	9.35	9.45
Carbon Dioxide	11.39	7.53
Cetyl Alcohol	8.39	8.94
Citronellal	8.77	8.83
Dipropylene Glyco	11.95	11.52
Geraniol	10.40	10.21
Limonene	8.06	8.33
Palmitic Acid	7.65	7.89
Phenol	13.03	12.79
Phthalide	10.90	11.78
Pyridine	10.94	10.30
Menthol	12.62	12.72
Tridecane	7.30	7.40
Trimethyl Citrate	9.33	9.39
Vanillin	11.70	12.34

Figure 3

shown in table I. Materials with acid/base potential show the most variation.

The solubility parameter may also be determined by a solubility study.³ Both methods are tedious.

It is always easier to look things up than to figure them out yourself. This is especially true with solubility parameters, many of which have already been published. Several suppliers to the coatings and plastics fields have determined the solubility parameters of their products. Also pharmaceutical researchers have published values for many actives. Many of these values have been compiled, as well as some new results that were determined empirically, or calculated based on physical data from manufacturers.

Our list of 440 materials (at the end of this article), provides the most comprehensive thermodynamic treatment of pharmaceutical, cosmetic, and fragrance ingredients published to date.

Uses For the Solubility Parameter

Solubility can be predicted quantitatively by so-called "Regular Solution Theory," however, the calculation time is rarely worth the effort since fairly accurate estimates can be deduced by inspection and comparison of solubility parameters. The example below of the solubility of Bromoacid (D&C Red No. 21) is from data published in the TGA Journal in 1944,⁴ but this time the solvents are arranged by order of solubility

parameter. This data set, generated before the discovery of the solubility parameter concept, provides an unbiased example of its utility. Conversely, the new treatment serves to validate the original study. The solubility parameter of Bromoacid is 11.20 (cal./cc.).¹ Figure 3 shows clearly how solvents for Bromoacid become more and more effective as their solubility parameters approach 11.20. This is "like dissolves like" in its purest form, and applies to all solvent/solute relationships.

The solubility of ethylene oxide is likewise presented from previously published but more recent data.⁵ This data becomes much more meaningful when presented with respect to the solubility parameters of the solvents. The solubility parameter of ethylene oxide (E.O.) is calculated to be 9.83 and the range of its best solvents is from 8.5 to about 12.5. The author of the ethylene oxide study expressed concerns over residual E.O. from sterilization of raw materials and packaging. From figure 4, one may reasonably deduce that E.O. sterilization presents increased risk of residual E.O. only to materials with solubility parameters between 9 and 12. A quick look at the list of solubility parameters at the end of this article shows that the range 9 to 12 excludes a large number of important cosmetic materials and packaging materials, including polyethylene (8.5) and polystyrene (8.9). These examples demonstrate the general principle that materials with solubility parameters closer than

Figure 4

two units apart usually show enhanced solubility, whether you want it (Eosin) or not (E.O.).

Most important, however, is the demonstration that the analysis of solubility data by the solubility parameter permits generalization of specific data. When solubility test results are arranged in order of solubility parameter as was done in Table II,⁴ the whole range of miscible materials becomes evident. The table shows that most things with a solubility parameter below 13.0 should accept at least a 5% dilution with

dioctyl malate; an unusually wide range of compatibility.

Product Formulation

Raw material substitution can be made easier using solubility parameters. The solubility parameter of the replacement material can be compared with the original ingredient. A lower number means the replacement is more oil-like. In an emulsion product this means that a lower HLB emulsifier system is needed. The opposite applies if the replacement is less oil-like (more water-like or hydrophilic). Of course if a substitute is used with the same solubility parameter, possibly no other adjustment of the formula is needed. This however is not always the case. The three sources of the molecular attractive field energy are not precisely linearly additive, nevertheless, their combination is usually close enough to linear for effective materials choices.

Table II.

Dioctyl Malate Solubility

Solvents (5% at 25°C)	C ₂₀ H ₃₈ O ₅	
S.P. *	Ingredients	Solubility
23.40	Water	Insoluble
16.26	Glycerine	Insoluble
15.11	Acetamide MEA	Insoluble
14.00	Propylene Glycol	Dispersible
12.55	Ethanol 100%	Soluble
12.32	Hexylene Glycol	Soluble
10.21	Dioctyl Malate	Soluble
8.02	Isopropyl Myristate	Soluble
7.09	Mineral Oil	Soluble
5.92	Dimethicone	Soluble
5.77	Cyclomethicone	Soluble

* = Solubility Parameters

The Required HLB Equation

Materials for emulsification have been characterized by a value called the "Required HLB." The Required HLB is a number which tells what emulsifiers will work best, and has usually, until now, been determined by a series of experimental tests. The relationship of the solubility parameter to the Required HLB provides comparable answers without the tedious test series. When published values of Required HLB were compared to solubility parameters for the same

materials, the "Required HLB Equation" was uncovered.

$$\text{Req.HLB} = [(SP+7)/8]^4$$

This relationship was not immediately obvious. The initial comparison was widely skewed until we divided the materials into branched and non-branched groups, as shown in figure 5. Long branching in ester molecules appeared to reduce the effectiveness of their full attractive field. This could have been expected since one branch or another of a triglyceride, for example, is going to be aimed the wrong way to exert its full attractive force at any one time. Branching in hydrocarbons is a far more complex phenomenon and results in increased activity. The answer to this apparent anomaly was unraveled by Hildebrand himself at the remarkable age of 91.

The "Required HLB Equation" provides a highly reliable alternative (Correlation Coeff. = .934) to hard work, for all but long branched materials. Short branched isopropyl and ethylhexyl ingredients are accurately predicted by the equation. Finally, it was pleasing to see that this empirical relationship agrees well with the theoretical basis of the solubility parameter. The (cal/cc)^{1/2} units of solubility parameter were originally made square roots so they could be added linearly. The actual field energy is squared (SP^2),

Figure 5

and the product of the interacting fields is expected to be the product of two squares; the fourth power, n^4 . This indeed is what was found.

Stability of an emulsion is related to the water attraction or oil attraction of the ingredients and their combination. In every formula of any kind, there is a competition for the most favored locations, then the next most, and the next. The material with the strongest attractive field forces always wins then the next, and the next. Thermodynamic experts call this equilibration. I call it the war of the ingredients. If all the ingredients have about the same power, they interact closely, the formula is compatible and stability prevails. But, bring in one overly strong individual like a salt (assault?) and the other ingredients can't get near it. It will surely go off on its own, and it will come right out of the product. A low energy ingredient, like silicone oil, will conversely be ostracized because it just can't make the necessary energetic connections to avoid the eventual squeezeout. Of course, both salts and silicones have their circles of friends with whom they can be comfortable; and they can be found at either end of the list of solubility parameters.

Package Compatibility

The application of solubility parameters to practical problems was initiated by the coatings and plastics industry. The choice of appropriate additives to plasticize, clarify, and preserve packaging materials was improved by this technique. Again, "like dissolving like" can help any package engineer spot a potential incompatibility. By knowing which raw materials, or formula ingredients are similar to the package composition, an engineer can tell if any of these ingredients might pose a threat to the integrity of the container, cap, liner or pump. An enlightened product development division might even consider telling the formulating chemist what packaging materials are preferred so the product might be initially formulated to avoid incompati-

PARABENS
 PROGRESSIVE
 INNOVATION
 IN PARABEN TECHNOLOGY

Butyl, Ethyl, Methyl, Propyl,
 USP or Technical

Write or Call
 (201) 773-3900 (212) 695-5686

Napp Chemicals Inc.

199 MAIN ST. PO BOX 900, LOO, NJ 07644

Table III.

Compatibility of various esters with polystyrene

Ester	Solparam	Rxn. Time
Octyl Palmitate	7.44	52 Days
Butyl Myristate	7.68	1 Day
Isopropyl Palmitate	7.78	1 Day
DiOctyl Adipate	7.82	4 Days
Isopropyl Myristate	8.02	1 Day
Methyl Oleate	8.05	1 Day
DiHexyl Adipate	8.06	1 Day
Methyl Linoleate	8.08	1 Day
Methyl Myristate	8.25	5 Hrs.
Methyl Laureate	8.37	4 Hrs.
Methyl Caprate	8.46	3 Hrs.
Oligoisopropyl Adipate	8.46	2 Hrs.
DiButyl Adipate	8.65	2 Hrs.
Methyl Caprylate	8.70	2 Hrs.
Methyl Caproate	8.88	1 Hr.
Polystyrene	8.90	---

ble ingredients. Namely ingredients with the same solubility parameter as the packaging material.

I once experienced a terrible cracking episode of polystyrene exterior cream jars with polypropylene inserts. The product was a mentholated facial scrub. The menthol ($SP=8.86$) traveled through the polypropylene and across the hollow void interior of the jar to attack the polystyrene ($SP=8.90$) and crack it six months later. I wish I had known about solubility parameters then!

In 1973, Mark Flavass and Alan Schuster published a compatibility study of aliphatic esters with polystyrene.⁹ Their results are restated in table III with respect to solubility parameters recently published for those esters. The correlation is remarkable.

Preservation

Preservation depends on an adequate preservative delivery system from the product to the micro-organisms. We now know that preservatives must be able to adequately partition from the oil phase to the water phase,¹⁰ and again from the water phase through the microbe cell membrane¹¹ to provide effective protection against microbial contamination. The partitioning of materials between phases is a function of the competing cohesive forces (i.e. the solubility parameters). If the solubility parameters of the oil phase and preservative are too close, the partitioning will not be sufficient to provide the "reservoir effect," passing additional preservative to the water phase as it is depleted by microbes. For example:

7.04 Mineral Oil	7.24 Peanut Oil	9.16 Polysorbate 20	10.84 Propylparaben	23.4 Water
---------------------	--------------------	------------------------	------------------------	---------------

Mineral oil is too non-polar to hold any appreciable amount of paraben (0.02% = saturation). But peanut (arachis) oil has 100 times the capacity for paraben because it is closer to the paraben solubility parameter. The difference in calories/cc. is small but significant because it is this difference which occurs on the rising slope of the paraben solubility curve shown in figure 6. It is clear from this chart that the solubility of the parabens are the greatest in materials of similar field strength. Peanut oil has just enough attraction to hold the parabens weakly and allow some to partition into the water.

Too much soluble attraction, however, can hold the preservative too strongly, and prevent it from doing its job. This is what happens in the case of the polysorbates. Microbiologists routinely use polysorbate 20 and 80 to inactivate preservatives and allow the culture of bacteria (if any are present) in preserved cosmetic products.¹² The proximity of the solubility parameters of polysorbate 20 and propylparaben are shown previously. However, the field attractions are really much closer than the molecular solubility parameters indicate.

"Chameleonic Solubility" is a term applied over thirty years ago to materials which showed two distinct solubility maxima. The first material of this sort was benzoic acid, however we now know that all surfactants work that way. Polysorbate 20 is no exception. Beerbower¹³ and more recently Schott¹⁴ have shown that most surfac-

Figure 6

Table IV.

Materials with solubility parameters near skin

Camphor	9.40
Testosterone Propionate	9.45
Methylene Chloride	9.55
Acetaldehyde	9.61
Undecyl Alcohol	9.61
Amyl Dimethyl PABA	9.72
Chlorine	9.80
Citronellol	9.88
Ethylene Oxide	9.93
Nitrous Oxide	10.00
Salicylic Acid	10.06
Nicotine	10.08
Ethyl Cinnamate	10.14
Diethyl Nitrosamine	10.16

tants exhibit two distinct cohesive fields; a strong one at the hydrophilic head and another weak one at the lipophilic tail of the molecule. In the case of polysorbate 20 and many other high ethoxylates, the ethoxylated head has a field strength of 10.95; almost exactly equal to (and inseparable from) propylparaben (10.94).

10.95	8.61
20 moles EO	Sorbitan Laurate
(head)	Polysorbate 20
9.16	(tail)

The cohesive, solubility energy appears to be clearly responsible for inactivation of parabens by the polysorbates.

Penetration

Penetration of microbial cell membranes by a series of antimicrobials has been shown to be related to the solubility parameter of microbicides.⁴ Likewise the percutaneous penetration of drugs is expected to show a similar relationship to skin, but not in such a direct and easily predictable manner. Stratum corneum is complex and non-uniform. Although a solubility parameter of porcine stratum corneum has been determined by Limn and Cohen¹⁰ there is good reason to believe that the skin is chameleonic exhibiting perhaps two or maybe three solubility parameters, as suggested by the Meyer-Overton Theory.¹¹

Friberg has recently shown that normal skin lipids are anisotropic, and can be structured.¹² Any structure results in the concentration of "like" fields in isolated regions of the microenvironment. This happens to molecules in micelles and liquid crystals. They line up with their polar heads together and can present several channels of different polarity. Observation has

shown that many noxious and notorious chemicals have solubility parameters close to the parameters of octanol (10.09). Octanol has long been used as a model for absorption by pharmacists. Its solubility parameter is remarkably close to the value determined for porcine stratum corneum (9.80). Table IV presents a number of materials in this range.

The solubility parameters of the materials above do not, by themselves, indicate that percutaneous absorption is the cause of their activity but it can be expected that absorption may well be the way they achieve their potential.

The Chemistry of Chemistry

Why things dissolve is a topic that has been avoided, skirted, camouflaged, or totally ignored by most college curricula. The chemistry of mixtures remains the realm of only those experienced in the art. This is truly surprising since when we speak of "chemistry," we usually refer to the *interactions of the parts of a mixture*, be it a market, a business, or a social, economic, or physical entity. The "chemistry" of chemistry is just now coming out of the closet. It is responsible for numerous effects and relationships beyond those already mentioned, such as light refraction, reaction solvolysis, chromatographic elution, intrinsic viscosity, cosolubilization, adhesion, thermal expansion, and protein folding, just to name a few.

Formulating chemists and pharmacists are beginning to use solubility parameters to understand mechanisms controlling the chemistry of mixtures. As this new technology becomes more widely accepted, it may eventually become evident to entrenched, academic science that chemistry, like so many other things, is not just reaction but interaction.

Bioferm®

Gamma-Linolenic Acid
Evening Primrose Oil
Borage Officinalis Oil

4690 Maple Grove Road
BEAMSVILLE, Ontario, CANADA, L0R 1B0
Phone: 416-562-4311
Fax: 416-522-6183
Tlx: 061-848911AM

Fax: 416-522-6183

References

Address correspondence to Christopher D. Vaughan, UMI-
mate Packaging Inc., 1440 SW 3rd Avenue, Pompano Beach,
FL 33069 U.S.A.

1. A Dwreck, *Synthesis in Lipstick, Cosmetic & Toiletries*, (1985)
2. J. Hildebrand and R. Scott, *The Solubility of Non-electrolytes*, 3rd Ed., Reinhold Publ. Corp., New York (1949)
3. C. Vaughan, Using Solubility Parameter in Cosmetics Formulation, *J. Soc. (Cosmet. Chem.)*, 36, (5), 319 (1985)
4. de Navarro M.G., *The Chemistry and Manufacture of Cosmetics*, Vol. IV Second Ed. p. 781-782 Allured Publ., Wheaton, IL., (1975)
5. M. Chaigneau, Solubilité de l'Oxyde d'Ethylène, *Ann. Pharm. Françaises*, 43, (2), 193-4 (1985)
6. Ceraphyl 45 - Diethyl Malate Technical Data Sheet, Van Dyk, Div. Mallinckrodt Inc., Bettelville, NJ (1987)
7. Emulsification of Cosmetic Ingredients, Publ. No. 102-30, ICI Americas Inc. (1987) Wilmington, DE
8. J. H. Hildebrand, *Ind. Eng. Chem. Fundam.*, 17, 365-6 (1978)
9. M. Havass and A. Schuster, A Compatibility Study of Esters, *Cosmet. & Toil.*, 88, (5), 29 (1973)
10. H. B. Kastenbauer, *Physical Factors Influencing Antimicrobial Agents, Disinfection Sterilization and Preservation*, 2nd Ed., S. Black, Ed. p. 912-3 Lea & Febiger, New York (1983)
11. C. Vaughan, F. Wright, Solubility Parameters and Antimicrobial Activity, *Pharm. Acta Helv.*, 61, (3), 95-96 (1986)
12. M. R. W. Brown and R. M. E. Richards, The Effect of Polysorbate (Tween) 80 on the resistance of Pseudomonas aeruginosa to Chemical Inactivation, *J. Pharm. Pharmacol.*, 16, 517-551 (1964)
13. A. Bearbower and M. W. Hill, Application of Cohesive Energy Ratio (CER) Concept to Anionic Surfactants, *Am. Cosmet. Perf.*, 87, 85 (1972)
14. H. Schott, Solubility Parameter and Hydrophilic-Lipophilic Balance of Nonionic Surfactants, *J. Pharm. Sci.*, 73, 700 (1984)
15. G. Lhoest, Use of Physicochemical Parameters to Predict *In vivo* Diffusion Rate of an Agent, *Pharm. Acta Helv.*, 48, 549 (1973)
16. B. Idson, Percutaneous Absorption, *J. Pharm. Sci.*, 64, 901-923 (1975)
17. S. Friberg and I. Kayali, A Model for the Stratum Corneum Lipids and Some Implications, *Cosmet. & Toil.*, 102, (4), 135 (1987)

Solubility Parameters of Cosmetic/Pharmaceutical Materials

by Alphabetical Order

MATERIAL NAME (CTFA)	S.P.	Ref.		
Acetaldehyde (21.B)	9.61	A	Butoxydiglycol-BuCarbifol	9.98
Acetamide (59.00)	16.03	C	Butoxyethanol (9.30)	10.53
Acetamide MEA	15.11	M	Butyl Acetate (5.01)	8.93
Acetic Acid (6.15)	12.40	CO	Butyl Alcohol (17.51)	11.18
Acetic Anhydride (22.40)	10.12	C	t-Butyl Alcohol (10.90)	10.28
Acetohexamide	11.64	•	Butyl Lactate	10.27
Acetone (20.70)	9.87	C	Butyl Mercaptan	8.65
Acetonitrile (37.5)	11.81	AO	Butyl Myristate	7.08
Acetophenone (17.39)	10.84	C	Butyl Stearate(3.11)	7.68
Acetylacetone	9.68	•	Butylene Glycol	13.20
Adipic Acid	13.04	O	Butylparaben	10.57
Alanine	12.23	J1	Butyramide	12.33
Allobarbital	12.85	J1	Butyric Acid (2.97)	10.75
Almond Oil	6.81	L1	C12-15 Alcohols Benzozate	7.63
Aminoethyl Ethanolamine	13.18	M	C8-Isoparaffin (1.94)	6.93
Ammonia (16.90)	16.08	O	Caffeine	13.80
Amyl Acetate	8.43	C	Camphor	9.45
Amyl Alcohol (13.90)	10.84	CE	Candide Albitane	8.90
Amyl Dimethyl PABA	9.72	M	Capric Acid (C10)	8.88
p-Anisaldehyde	11.32	A	Caprylic/Caprylic Triglycerid	8.29
Arachidic Acid	6.85	H	Capromide (C8)	11.24
Arachidyl Alcohol (C20)	8.89	CO	Caproic Acid (C8)(2.63)	10.05
Argon (1.53)	7.00	"N	Caprylic Acid (C8)(2.45)	9.32
Aspartic Acid	14.11	J1	Carbon Dioxide (1.00)	7.53
Aspergillus Niger	9.00	P	Carbon Tetrachloride (2.23)	8.64
Avocado Oil	8.83	L1	Castor Oil	8.90
BAL	13.10	B	Cellulose Acetate	11.20
BHA	12.37	O	Cetene (C16)	7.41
BHT	9.17	O	Ceteth-20	9.10
Barbital	13.50	J1	Cetyl Acetate	8.06
Behenic Acid	7.35	I0	Cetyl Alcohol (C18)	8.94
Behenyl Alcohol (C22)	8.63	O	Cetyl Lactate	9.32
Benzaldehyde (17.80)	11.00	CO	Cetyl Octanoate	7.59
Benzalphthalide	10.90	O*	Chlorine	9.05
Benzamide	13.38	B	Chloroform	9.55
Benzene (2.28)	9.08	E	Cholesterol	8.80
Benzocaine	12.05	•	Cholesteryl Myristate	8.80
Benzolic Acid (Chameonic)	11.50	•	Cholesteryl Oleate	7.24
Benzyl Alcohol (13.10)	12.31	O	Cholesteryl Propionate	8.70
alpha-Bisabolol	9.30	M	Cinnamaldehyde	10.92
Borneol	10.48	C	Cinnamic Acid	11.83
Bornyl Acetate	8.74	CA	Cinnamyl Alcohol	11.96
Butadiene Diepoxyde	11.78	A	Citronellal	8.03
Butalbital	11.95	J1	Citronellol	9.88
Butoberbital	11.90	J1	Coconut Oil	8.10

Copper Acetylacetone	11.60	*	Glutathione	13.18	6
Corn Oil-Refined	7.40	L1	Glycerin (42.50)	10.28	CO
Cottonseed Oil	7.52	L1	Glyceryl Isostearate	8.31	J3
Cyclobarbital	12.40	J1	Glyceryl Stearate (mono)	8.31	J3
Cyclohexane (2.02)	7.30	E	Glyceryl Stearate SE	8.43	J3
Cyclomethicone D4 (2.39)	5.99	MO	Glyceryl Distearate	8.24	J3
Cyclomethicone D5 (2.50)	5.77	MO	Glyceryl Stearate	8.28	J3
Cyclopentanone	10.77	E	Glyoxal	11.48	C
DAC Red 22 (Eosin)	11.15	L2	Gold	93.00	*N
Decane (1.99)	7.62	CO	Griseofulvin	10.20	N
Decanone-2	8.76	A	Helium (1.06)	0.50	*N
Decene-1	7.59	C	Heptane (1.92)	7.41	CO
Decyl Alcohol (C10)(8.10)	9.78	CO	Hexamethylidisiloxane (2.17)	8.15	NO
Decyl Oleate	6.92	M	Hexane (1.88)	7.28	CO
Diacetone Alcohol (18.20)	10.67	CO	Hexobarbital	11.30	J1
Diethyl Phthalate (8.44)	9.88	M	Hexyl Alcohol (13.30)	10.50	J3
Dibutylamine	8.15	*	Hexyl Resorcinol	14.06	*
Diethanolamine	13.95	M	Hexylene Glycol	12.32	*
Diethyl Amine	7.86	C	Histidine	15.25	J1
Diethyl Ether (4.34)	7.37	CO	Homosalate	10.29	GN
Diethyl Ketone (17.00)	8.85	E	Human Erythrocyte	8.05	
Diethyl Nitrosamine	10.18	C	Human Serum Albumin A	12.33	J1
Diethyl Toluamide	10.46	M	Hydrogen (1.23)	2.50	
Diethylene Glycol (31.70)	13.61	EO	Hydroquinone	14.62	
Diethylhexyl Adipate	7.60	M	Hydroxyanisole	12.00	C
Diisopropanolamine	12.40	A	p-Hydroxybenzoic Acid	15.30	
Diisopropyl Adipate	8.48	EO	Iodine (11.00)	14.10	*N
Diisopropyl Amino	8.51	*	beta-Ionone	8.90	CO
Diisopropyl Ether (3.88)	6.95	KE	Isobutyl Stearate	7.65	CO
Dimethicone	5.92	*	Isobutyl Alcohol	8.71	N
Dimethyl Isosorbide	9.58	M	Isocetyl Stearate	6.19	N
Dimethyl Nitrosamine	11.74	C	Isodecyl Oleate	7.17	N
Dimethyl Sulfoxide (46.68)	13.40	H	Isopentane	6.82	CO
p-Dinitrobenzene	12.49	B	Isopropanolamine	13.02	A
DiOctyl Adipate	7.82	M	Isopropyl Alcohol (18.30)	11.24	CO
DiOctyl Ether	7.30	A	Isopropyl Linoleate	7.55	N
DiOctyl Malate	10.21	M	Isopropyl Myristate	8.02	O
DiOctyl Maleate	7.75	O	Isopropyl Palmitate	7.78	O
Dioxane (2.21)	10.01	*	Isopropylbenzene (2.38)	8.60	*
Dipropyl Ketone	8.89	C	Isosteareth-2	8.29	L1
Dipropyl Nitrosamine	9.29	S	Isostearyl Acid	8.09	O
Dipropylene Glycol (PPG-2)	11.78	M	Isostearyl Alcohol	8.67	O
Docosane (C22)	8.60	I	Isostearyl Neopentanoate	7.43	N
Dodecane (2.01) (7.85-1)	7.59	C	Klebsiella Pneumoniae	9.40	P
Eicosane (C20)	7.32	C	Lactic Acid (22.00)	14.81	
Elaearyl Alcohol	8.90	CO	Lactose	19.50	*
Erucic Acid	7.57	CO	Lanolin Oil	7.33	L1
Erythritol	16.06	*	Lauraldehyde	8.68	A
Ethanedithiol	10.87	A	Laureth-4	8.31	J3
Ethanolamine (37.72)	15.41	*N	Lauric Acid (C12)	8.48	I0
Ethoxyethanol (29.80)	9.90	*N	Lauryl Alcohol (C12)	9.51	CO
Ethyl Acetate (8.02)	9.19	CO	Lauryl Lactate	9.18	N
Ethyl Acrylate	9.22	A	Limonene (2.30)	8.33	C
Ethyl Alcohol (24.30)	12.55	CO	Linalool	9.62	C
Ethyl Anthranilate	10.67	C	Linoleic Acid	7.86	CO
Ethyl Benzoate (8.02)	10.01	C	Linseed Oil	7.29	O
Ethyl Caprate (C10)	8.39	A	Lysine	11.79	J1
Ethyl Caproate (C6)	8.69	A	MEK(18.50)	8.53A	CO
Ethyl Caprylate (C8)	8.57	A	Magnesium	50.00	O
Ethyl Cinnamate	10.14	A	Melone (C30)	8.58	C
Ethyl Dihydroxypropyl PABA	12.42	M	Mellissyl Alcohol (C30)	8.22	CO
Ethyl Hexanediol	10.89	A	Menthol	9.94	CO
Ethyl Mercaptan	8.75	K	Methyl Anthranilate	9.89	N
Ethyl Myristate	8.00	C	Mercaptoethanol	13.55	A
Ethyl Oleate (3.17)	8.60	*	Mercury	31.00	*N
Ethylene Glycol (37.00)	14.50	CO	Mercury Iodide	16.04	*N
Ethylene Oxide (13.90)	9.93	A	Methane (1.70)	4.70	O
Ethylene/Vinyl Acetate(AC400)	8.55	*	Methoxyethanol (18.80)	10.80	*
Ethylene/Vinyl Acetate(AC430)	9.55	*	Methoxypropanol	10.40	*
Ethylhexanol	9.80	A	Methyl Alcohol (32.70)	14.33	CO
Eucalyptol (Cineole)	8.17	L1	Methyl Anthranilate	11.22	
Eugenol	11.12	C	Methyl Benzene (8.50)	10.48	CE
Formaldehyde	10.54	C	Methyl Butyl Ketone	9.11	EE
Formamide (109.0)	17.82	E	Methyl Butyl Methacrylate CO	9.10	EHBA
Formic Acid (58.5)	14.72	E	Methyl Caproate (C8)	8.88	EE
Frog Synaptic Nerve	11.60	*	Methyl Heptyl Ketone	8.86	A
Geraniol	10.21	CO	Methyl Hexyl Ketone	8.91	A

Methyl Iodide	9.75	C	Petrolatum	7.33	O
Methyl Isobutyl Ketone(14.70)	8.85	E0	Phenethyl Alcohol	11.79	O
Methyl Lactate	11.47	C0	Phenobarbital	13.00	J1
Methyl Linoleate	8.08	C	Phenol (9.78)	12.79	CE
Methyl Methacrylate Copolymer	9.40	H	Phenoxyethanol	11.87	CO
Methyl Oleate (3.21)	8.05	CO	Phenyl Acetate (5.23)	10.33	E
Methyl Propyl Ketone	9.27	C	Phenylalanine	11.57	G
Methyl Salicylate (9.41)	10.62	CO	Phenylbutanol	11.04	A
Methylene Chloride (9.08)	9.55	E	o-Phenylenediamine	12.43	D
Methylparaben	11.98	O	Phenylpentan-1	10.74	A
Morpholine (7.33)	10.28	C	Phenylpropanol	11.46	A
Muscone	8.89	CO	Phthalide	11.78	C
Myristic Acid (C14)	8.10	I0	Polyeth. Terephthalate (PET)	10.30	*
Myristyl Alcohol (C14)	9.16	I0	Polyethylene (2.35)	8.50	O
Myristyl Lactate	8.87	H	Polyglyceryl-1 Oleate	8.52	J3
N-Methylpyrrolidone	11.71	A	Polyisobutene-20	9.18	J3
Naphthylene	10.74	S	Polystyrene	8.90	N
Natural Rubber	8.20	H	Polytetrafluoroethylene	8.20	*
Neon	4.90	*N	Potassium	21.00	*
Neopentane	6.38	CO	Pristane	6.85	NO
Merol	10.13	C	Propane	6.21	O
Nicotine	10.08	C	Propargyl Alcohol	13.81	A
Nicotine	9.40	C	Propellant 11 (2.28)	7.49	O
m-Nitroaniline	13.23	C	Propellant 113	7.19	H
o-Nitroaniline (34.50)	12.88	O	Propellant 12(2.13)	6.11	O
p-Nitroaniline (56.30)	13.67	A	Propellant 13	2.59	O
Nitrocellulose	11.25	NO	Propellant 22(6.11)	6.23	NO
Nitrogen (1.45)	5.90	*N	Propiellactone	13.58	A
Nitramethane	12.27	C	Propionaldehyde	9.22	A
o-Nitrotoluene (27.40)	10.55	S	Propionamide	13.46	AL
p-Nitrotoluene (24.20)	11.83	C	Propionic Acid (3.35)	11.40	EA
Nitrous Oxide (1.60)	10.00	*H	Propionitrile	10.57	A
Nonacosane (C29)	6.83	C	Propyl Acetate	9.02	CO
Monoxynol-1	10.47	*	Propyl Alcohol (20.10)	11.73	CO
Octadecane (C18)	7.29	C	Propyl Fluoride	7.48	C
Octanal	8.77	C	Propylene Carbonate (69.00)	13.35	*
Octane (1.95)	7.58	NO	Propylene Glycol (32.00)	14.00	CO
Octanol/Caprylic(C8) (10.34)	10.09	CO	Propylene Glycol Dipelargonate	8.21	L1
Octyl Acetate	8.58	A	Propylene Glycol Laurate	8.33	L1
Octyl Dimethyl PABA 9.34G	9.01	OM	Propylene Oxide	8.09	A
Octyl Dodecanoil	8.92	OM	Propylparaben	10.94	GM
Octyl Fluoride	7.76	AG	Pseudomonas Aeruginosa	9.30	P
Octyl Iodide	8.58	A	Pulegone	9.51	AA
Octyl Mercaptan	8.38	K	Pyridine (12.3)	10.30	AA
Octyl Methoxycinnamate	9.10	H	Pyrogallol	15.41	A
Octyl Palmitate	7.44	O	Pyrrolidinone-2	14.22	*
Octyl Salicylate	10.17	N	Pyrrolidone	14.00	*
Octylamine	8.21	A	Pyruvic Acid	12.94	*
Oleic Acid(2.48)	7.91	I0	Radon	8.40	*
Oleth-3	7.83	*O	Rat Gut Membrane	12.60	*
Oleyl Alcohol	8.95	CO	Resorcinol	14.98	C
Olive Oil	7.87	*O	Rice Oil - SO	7.48	L1
Oxidized Polyethylene (AC392)	9.50	*O	Ricinoleic Acid	8.30	C
Oxidized Polyethylene (AC629)	8.85	*O	SAN (85/15)	10.50	*
Oxygen (1.50)	7.20	*N	Safflower Oil	6.42	L1
PABA	14.566	I4.82	Salicylic Acid	10.06	C
PEG-100 Stearate	9.35	J3	Secobarbital	11.30	J1
PEG-2 Stearate	8.38	J3	Sodium	33.00	*N
PEG-20 Stearate	9.08	J3	Sodium Capryl Sulfate 14.84	15.80	*
PEG-4 Stearate	7.92	O	Sodium Lauryl Sulfate	14.18	*
PEG-4(20.44)	11.61	SO	Sorbic Acid	11.97	NO
PEG-40 Stearate	9.18	J3	Sorbitan Laurate	8.61	O
PEG-5 (18.16)	11.54	SO	Sperm Oil	7.09	O
PEG-6 (18.00)	11.47	SO	Squalane	6.03	NO
PEG-8	11.34	SO	Squalene	6.19	NO
PPG-2 Methyl Ether	9.60	*	Staphylococcus Aureus	8.30	P
PPG-2 Myristyl Ether	8.29	L1	Stearic Acid (C18) (2.30)	7.74	I0
PPG-4	9.89	H	Stearyl Alcohol (C18)	8.90	I0
Palmitic Acid (C18) (22.30)	7.89	I0	Stratum Corneum-Porcine	9.80	*
Panthenol	11.39	NO	Sulfadiazine	11.90	*
Peanut Oil	7.24	L1	Sulfamerazine	13.40	J1
Pentaerythritol Tetraoleate	7.98	L1	Sulfameriter	13.90	J1
Pentano	7.10	*O	Sulfamethazine	12.60	J1
Pentoobarbital	11.75	J1	Sulfamethoxazole	11.60	J1
Perfluorooctane	5.72	A	Sulfathiazole	13.10	*
Perfluorododecan	6.34	A	Sulfisomidine	12.70	J1
Perfluorohexane	5.60	A	Sulfisomidine	12.00	*

Ret = 1 P1 - +
8.847

Sulfur (3.55)	12.70	N	Trichamones Menth.	9.30	P
THF (7.58)	9.16	E	Tricosane (C22)	7.13	C
Testosterone	10.90	O	Tridecane (C13)	7.48	CO
Tetraethyl Lead	7.92	E	TriDecyl Neopentanoate	7.92	L1
Theophyllin	14.00	O	Triethanolamine (29.36)	13.28	N
Thiodiglycol	13.80	H	Triethylene Glycol (23.68)	12.21	N
Thioglycolic Acid	13.88	A	Trifluoroacetylacetone	8.77	A
Thioacetic Acid	10.38	A	Trisopropylamine	11.02	N
alpha-Thiophene	8.94	A	Triazacycl Citrate	9.39	N
Thymol	10.77	C	Tripropylene Glycol (PPG-3)	10.60	N
Titanium Dioxide	16.82	O	Tungstic Acid	145.00	C
Titanium Isopropoxide	8.21	H	Turpentine (pinene) (2.70)	8.03	CO
Tocopherol	9.17	H	Undecyl Alcohol	9.61	CO
Tocopheryl Acetate	7.98	H	Urea	14.50	E
Tolbutamide	10.98	O	Valeric Acid (C5)	10.29	A
Toluene (2.38)	8.94	C	Valine	10.94	J1
Triacetin	10.77	O	Vanillin	12.34	D
Tributyl Citrate	9.20	H	Water (80.10)	23.40	CH
Tributyrin	9.97	O	White Mineral Oil	7.09	O
Trichloroacetic Acid	10.89	C	Zinc Stearate	8.00	O

**Solubility Parameters of Cosmetic/Pharmaceutical Materials
by Solvent Strength**

MATERIAL NAME (CTFA) with Dielectric Const.	S.P.	Ref.			
Helium (1.06)	0.50	N	Cyclohexane (2.02)	7.30	E
Hydrogen (1.23)	2.50	N	Diethyl Ether	7.30	A
Propellant 13	2.59	O	Eicosane (C20)	7.32	C
Methane (1.70)	4.70	O	Leanolin Oil	7.33	L1
Neon	4.90	N	Petroleum	7.33	O
Perfluorohexane	5.68	A	Behenic Acid	7.35	IO
Perfluorooctane	5.72	A	Diethyl Ether (4.34)	7.37	CO
Cyclomethicone OS (2.50)	5.77	NO	Corn Oil-Refined	7.40	L1
Nitrogen (1.45)	5.90	N	Cetane (C16)	7.41	I
Dimethicone	5.92	O	Heptane (1.92)	7.41	CO
Cyclomethicone OA (2.38)	5.99	NO	Isostearyl Neopentanoate	7.43	N
Squalane	6.03	NO	Octyl Palmitate	7.44	O
Propellant 12(2.13)	6.11	O	Propyl Fluoride	7.48	C
Hexamethylidisiloxane (2.17)	6.15	NO	Rice Oil - SO	7.48	L1
Isocetyl Stearate	6.19	H	Tridecane (C13)	7.48	CO
Squalene	6.19	NO	Propellant 11 (2.28)	7.49	O
Polytetrafluoroethylene	6.20	O	Cottonseed Oil	7.52	L1
Propane	6.21	O	Carbon Dioxide (1.60)	7.53	H
Propellant 22(8.11)	6.23	NO	Isopropyl Linoleate	7.55	N
Perfluorododecan	6.34	A	Cod Liver Oil	7.56	L1
Neopentane	6.38	CO	Erucic Acid	7.57	CO
Safflower Oil	6.42	L1	Octane (1.95)	7.58	NO
Melene (C30)	6.58	C	Cetyl Octanoate	7.59	NC
Docosane (C22)	6.60	I	Decane-1	7.59	CC
Almond Oil	6.81	L1	Octadecane (2.01) (7.03-1)	7.60	N
Isopentane	6.82	CO	Diethylhexyl Adipate	7.62	CO
Avocado Oil	6.83	L1	Decane (1.99)	7.63	NO
Nonacosane (C29)	6.83	C	C12-15 Alcohols Benzoate	7.65	O
Arachidic Acid	6.85	H	Isobutyl Stearate	7.66	O
Pristane	6.92	H	Butyl Myristate	7.68	CO
Decyl Oleate	6.93	NO	Butyl Stearate(3.11)	7.74	IO
CB-Isoparaffin (1.94)	6.95	KE	Stearic Acid (C18) (2.30)	7.75	A
Diisopropyl Ether (3.88)	7.00	N	Diethyl Malate	7.76	O
Argon (1.53)	7.09	O	Octyl Fluoride	7.78	O
Sperm Oil	7.09	O	Isopropyl Palmitate	7.82	N
White Mineral Oil	7.09	O	Diethyl Adipate	7.83	O
Pentane	7.10	O	Oleth-3	7.86	C
Tricosane (C22)	7.13	C	Diethyl Amine	7.86	CO
Isodecyl Oleate	7.17	H	Linolenic Acid	7.87	O
Propellant 113	7.19	H	Olive Oil	7.87	O
Oxygen (1.50)	7.20	N	Palmitic Acid (C18) (22.30)	7.89	IO
Cholestryl Oleate	7.24	*	Oleic Acid(2.48)	7.91	IO
Peanut Oil	7.24	L1	PEG-4 Stearate	7.92	O
Hexane (1.88)	7.28	CO	Tetraethyl Lead	7.92	E
Linseed Oil	7.29	O	TriDecyl Neopentanoate	7.98	L1
Octadecane (C18)	7.29	C	Pentaerythrityl Tetraoleate	7.98	M
			Tocopheryl Acetate	8.00	C
			Ethyl Myristate		

Isopropyl Myristate	8.02	O	Stearyl Alcohol (C18)	8.90	I0
Turpentine (pinene)(2.7%)	8.03	CO	Methyl Hexyl Ketone	8.91	A
Human Erythrocyte	8.05	*	Octyl Dodecano1	8.92	ON
Methyl Oleate (3.21)	8.05	CO	Butyl Acetate (5.01)	8.93	CO
Cetyl Acetate	8.06	O	Cetyl Alcohol (C18)	8.94	I0
Methyl Linoleate	8.06	C	alpha-Thujone	8.94	A
Isostearic Acid	8.09	O	Toluene (2.38)	8.94	C
Coconut Oil	8.10	L1	Oleyl Alcohol	8.95	CO
Myristic Acid (C14)	8.10	IO	Propylene Oxide	8.99	A
Dibutylamine	8.15	*	Aspergillus Niger	9.00	F
Eucalyptol (Cineole)	8.17	L1	Octyl Dimethyl PABA 9.346	9.01	ON
Natural Rubber	8.20	H	Propyl Acetate	9.02	CO
Octylamine	8.21	A	Chloroform	9.05	A
Propylene Glycol Dipelargone	8.21	L1	Benzene (2.28)	9.08	E
Titanium Isopropoxide	8.21	H	PEG-20 Stearate	9.08	J3
Mellissyl Alcohol (C30)	8.22	CO	Ceteth-20	9.10	H
Glycol Distearate	8.24	J3	Methyl Butyl Methacrylate CO	9.10	H
Glycol Stearate	8.28	J3	Octyl Methoxycinnamate	9.10	H
Capric/Caprylic Triglycerid	8.29	L1	Methyl Butyl Ketone	9.11	E
Isostearath-2	8.29	L1	Myristyl Alcohol (C14)	9.16	I0
PPG-2 Myristyl Ether	8.29	L1	Polyisobetate-20	9.16	J3
Ricinoleic Acid	8.30	C	THF (7.58)	9.16	E
Staphylococcus Aureus	8.30	P	BHT	9.17	D
Glyceryl Isostearate	8.31	J3	Tocopherol	9.17	H
Glyceryl Stearate (mono)	8.31	"0	Lauryl Lactate	9.18	H
Laureth-4	8.31	J3	PEG-40 Stearate	9.18	J3
Limonene (2.30)	8.33	C	Ethyl Acetate (8.02)	9.19	CO
Propylene Glycol Laureate	8.33	L1	Tributyl Citrate	9.20	H
Octyl Mercaptan	8.36	K	Ethyl Acrylate	9.22	A
PEG-2 Stearate	8.36	J3	Propionaldehyde	9.22	A
Ethyl Caprate (C10)	8.39	A	Methyl Propyl Ketone	9.27	C
Radon	8.40	"H	Diisopropyl Nitrosoamine	9.29	B
Amyl Acetate	8.43	C	alpha-Bisabolol	9.30	P
Glyceryl Stearate SE	8.43	J3	Pseudomonas Aeruginosa	9.30	P
Diisopropyl Adipate	8.46	EO	Trichomonas Ment.	9.30	P
Lauric Acid (C12)	8.48	IO	Caprylic Acid (C8)(2.45)	9.32	EO
Polyethylene (2.35)	8.50	"0	Cetyl Lactate	9.32	H
Diisopropyl Amino	8.51	"0	PEG-100 Stearate	9.35	J3
Polyglyceryl-3 Oleate	8.52	J3	Trimethyl Citrate	9.39	P
Ethylene/Vinyl Acetate(AC400)	8.55	"0	Klebsiella Pneumoniae	9.40	H
Ethyl Caprylate (C8)	8.57	A	Methyl Methacrylate Copolymer	9.40	H
Octyl Acetate	8.58	A	Nicotine	9.40	C
Octyl Iodide	8.58	A	Camphor	9.45	C
Ethyl Oleate (3.17)	8.60	*	Oxidized Polyethylene (AC392)	9.50	CO
Isopropylbenzene (2.38)	8.60	*	Lauryl Alcohol (C12)	9.51	CO
Sorbitan Laureate	8.61	O	Phlegone	9.51	CO
Behenyl Alcohol (C22)	8.63	IO	Cholesterol	9.55	O
Carbon Tetrachloride (2.23)	8.64	C	Ethylene/Vinyl Acetate(AC430)	9.55	O
Butyl Mercaptan	8.65	KA	Methylene Chloride (9.08)	9.55	E
Isostearyl Alcohol	8.67	O	Dimethyl Isosorbide	9.58	H
Laurealdehyde	8.68	A	PPG-2 Methyl Ether	9.60	*
Ethyl Caprate (C8)	8.69	A	Acetaldehyde (21.8)	9.61	A
Cholesteryl Propionate	8.70	*	Undecyl Alcohol	9.61	CO
Isocetyl Alcohol	8.71	H	Linalool	9.62	C
Bornyl Acetate	8.74	CA	MEK(10.50) 9.53A	9.63	CO
Ethyl Mercaptan	8.75	K	Acetylacetone	9.68	*
Decanone-2	8.76	A	Amyl Dimethyl PABA	9.72	H
Octanal	8.77	C	Methyl Iodide	9.75	C
Trifluoroethylacetone	8.77	A	Decyl Alcohol (C10)(8.10)	9.78	CO
Zinc Stearate	8.80	O	Chlorine	9.80	"H
Citronellal	8.83	CO	Ethyhexanol	9.80	A
Diethyl Ketone (17.00)	8.85	E	Stratum Corneum-Porcine	9.80	*
Methyl Isobutyl Ketone(14.70)	8.85	EO	Acetone (20.70)	9.87	C
Oxidized Polyethylene (AC629)	8.85	"0	Citronellal	9.88	A
Methyl Heptyl Ketone	8.86	A	Dibutyl Phthalate (8.44)	9.88	H
Myristyl Lactate	8.87	H	Menthyl Anthranilate	9.89	H
Capric Acid (C10)	8.88	IO	PPG-4	9.89	H
Methyl Caproate (C8)	8.88	O	Ethoxyethanol (29.80)	9.90	"H
Arachidyl Alcohol (C20)	8.89	CO	Ethylene Oxide (13.90)	9.93	A
Dipropyl Ketone	8.89	C	Menthol	9.94	CO
Muscone	8.89	CO	Tributyrin	9.97	O
Candida Albicans	8.90	P	Butoxydiglycol-BuCarbitol	9.98	*
Cestor Oil	8.90	H	Nitrous Oxide (1.60)	10.00	"H
Elaearyl Alcohol	8.90	CO	Oxane (2.21)	10.01	*
beta-Ionone	8.90	C	Ethyl Benzoate (8.02)	10.01	C
Polystyrene	8.90	H	Caproic Acid (C8)(2.03)	10.05	EO
			Salicylic Acid	10.06	C

Nicotine	10.08	C	Copper Acetylacetone	11.60	*
Octanol/Caprylic(C8) (10.34)	10.09	CO	Frog Synaptic Nerve	11.60	*
Acetic Anhydride (22.40)	10.12	C	Sulfamethoxazole	11.60	J1
Merol	10.13	C	PEG-4(20.44)	11.61	OO
Ethyl Cinnamate	10.14	A	Acetohexamide	11.64	*
Diethyl Nitrosamine	10.16	C	N-Methylpyrrolidone	11.71	A
Octyl Salicylate	10.17	H	Propyl Alcohol (20.10)	11.73	CO
Griseofulvin	10.20	H	Dimethyl Nitrosamine	11.74	C
Diethyl Malate	10.21	H	Pentoobarbital	11.75	J1
Geranlol	10.21	CO	Butadiene Diepoxyde	11.78	M
Butyl Lactate	10.27	AO	Dipropylene Glycol (PPG-2)	11.78	M
t-Butyl Alcohol (10.90)	10.28	CO	Phthalide	11.78	C
Morpholine (7.33)	10.28	C	Lysine	11.79	J1
Homosalate	10.29	GN	Phenethyl Alcohol	11.79	CO
Valeric Acid (C5)	10.29	A	Acetonitrile (37.5)	11.81	AO
Poly(eth. Terephthalate (PET)	10.30	*	Cinnamic Acid	11.83	C
Pyridine (12.3)	10.30	A	p-Nitrotoluene (24.20)	11.83	*
Phenyl Acetate (5.23)	10.33	E	Phenoxyethanol	11.87	CO
Thioacetic Acid	10.38	A	Butobarbital	11.90	J1
Methoxypropanol	10.40	*	Sulfadiazine	11.90	*
Diethyl Toluamide	10.46	H	Butalbital	11.95	J1
Monoxymol-1	10.47	*	Cinnamyl Alcohol	11.96	C
Borneol	10.48	C	Sorbic Acid	11.97	NO
Methyl Benzoate (6.59)	10.48	E	Methylparaben	11.98	O
Hexyl Alcohol (13.30)	10.50	IO	Hydroxystearole	12.00	C
SAW (85/15)	10.50	*	Benzocaine	12.05	*
Butoxyethanol (9.30)	10.53	E	Triethylene Glycol (23.60)	12.21	NO
Formaldehyde	10.54	C	Alanine	12.23	J1
o-Nitrotoluene (27.40)	10.55	B	Nitromethane	12.27	C
Butylparaben	10.57	*	Benzyl Alcohol (13.10)	12.31	O
Propionitrile	10.57	A	Hexylene Glycol	12.32	*
Tripropylene Glycol (PPG-3)	10.60	H	Butyramide	12.33	A
Methyl Salicylate (9.41)	10.62	CO	Human Serum Albumin A	12.33	J1
Acetophenone (17.39)	10.64	C	Vanillin	12.34	O
Diacetone Alcohol (18.20)	10.67	CO	BHA	12.37	O
Ethyl Anthranilate	10.67	C	Acetic Acid (8.15)	12.40	CO
Naphthylene	10.74	B	Cyclobarbital	12.40	J1
Phenylpentanol	10.74	A	Diisopropanolamine	12.40	A
Butyric Acid (2.97)	10.75	E	Ethyl Dihydroxypropyl PABA	12.42	M
Cyclopentanone	10.77	E	o-Phenylenediamine	12.43	D
Thymol	10.77	C	p-Dinitrobenzene	12.49	S
Triacetin	10.77	O	Ethyl Alcohol (24.30)	12.55	CO
Methoxyethanol (16.90)	10.80	*	Rat Gut Membrane	12.60	*
Amyl Alcohol (13.90)	10.84	CE	Sulfamethazine	12.60	J1
Ethanedithiol	10.87	A	Sulfisomidine	12.70	J1
Ethyl Hexanediol	10.88	A	Sulfur (3.55)	12.70	*N
Trichloroacetic Acid	10.89	E	Phenol (9.78)	12.79	CE
Benzalphthalide	10.90	O*	Sulfisomidine	12.80	*
Testosterone	10.90	*	Allobarbital	12.85	J1
Cinnamaldehyde	10.92	C	o-Nitroantiline (34.50)	12.88	O
Propylparaben	10.94	GN	Pyruvic Acid	12.94	*
Valine	10.94	J1	Phenoxybarbital	13.00	J1
Tolbutamide	10.98	*	Isopropanolamine	13.02	A
Benzaldehyde (17.80)	11.00	CO	Adipic Acid	13.04	O
Trisopropenolamine	11.02	H	BAL	13.10	S
Phenylbutanol	11.04	A	Sulfathiazole	13.10	*
Eugenol	11.12	C	Aminoethyl Ethanolamine	13.18	M
D&C Red 22 (Eosin)	11.15	L2	Glutathione	13.18	G
Butyl Alcohol (17.51)	11.18	CO	Butylene Glycol	13.20	CO
Cellulose Acetate	11.20	H	m-Nitroantiline	13.23	C
Methyl Anthranilate	11.22	C	Triethanolamine (29.36)	13.28	NO
Caproamide (C6)	11.24	H	Propylene Carbonate (69.00)	13.35	*
Isopropyl Alcohol (18.30)	11.24	CO	Benzamide	13.38	S
Nitroc cellulose	11.25	MO	Dimethyl Sulfoxide (46.68)	13.40	M
Hexobarbital	11.30	J1	Sulfamerazine	13.40	J1
Secobarbital	11.30	J1	Proponamide	13.46	AC
p-Anisaldehyde	11.32	A	Barbital	13.50	J1
PEG-8	11.34	MO	Mercaptoethanol	13.55	A
Panthenol	11.39	H	Propiolactone	13.58	A
Propionic Acid (3.35)	11.40	EA	Diethylene Glycol (31.70)	13.61	EO
Glyoxal	11.46	C	Propargyl Alcohol	13.61	A
Phenylpropanol	11.46	A	p-Nitroantiline (56.30)	13.67	A
Methyl Lactate	11.47	CO	Caffeine	13.80	*
PEG-6 (18.00)	11.47	*	Thiodiglycol	13.80	M
Benzolic Acid (Chamaeleonic)	11.50	*	Thioglycolic Acid	13.86	A
PEG-5 (18.16)	11.54	OO	Sulfamer	13.90	J1
Phenylalanine	11.57	G	Diethanolamine	13.95	M

Propylene Glycol (32.00)	14.00	CO
Pyrrolidone	14.00	*
Theophyllin	14.00	*
Methyl Resorcinol	14.06	*
Iodine (11.00)	14.10	*N
Aspartic Acid	14.11	J1
Sodium Lauryl Sulfate	14.18	*
Pyrrolidinone-2	14.22	
Methyl Alcohol (32.70)	14.33	CO
Ethylene Glycol (37.00)	14.50	CO
Urea	14.50	G
Hydroquinone	14.62	
Formic Acid (50.5)	14.72	E
Lactic Acid (22.00)	14.81	
PABA	14.82	OO
Resorcinol	14.96	C
Acetamide MEA	15.11	N
Histidine	15.25	J1
p-Hydroxybenzoate Acid	15.30	*
Ethanolamine (37.72)	15.41	*N
Pyrogallol	15.41	A
Sodium Capryl Sulfate 14.84	15.80	*
Acetamide (59.00)	16.03	C
Mercury Iodide	16.04	*N
Erythritol	16.06	*
Glycerin (42.50)	16.26	EO
Titanium Dioxide	16.82	*
Formamide (109.0)	17.82	E
Ammonia (18.90)	18.08	O
Lactose	19.50	*
Potassium	21.00	*
Water (80.10)	23.40	CH
Mercury	31.00	*N
Sodium	33.00	*N
Magnesium	50.00	*N
Gold	93.00	*N
Tungsten	145.00	*N

NOTE: * = Solubility Parameter value from literature

SOURCE of Physical Data:

- A. Aldrich Chemical Co. Catalog 1966 gram
- B. Beilstein's Index
- C. Chemical Rubber Handbook of Chem.& Physics 42d Ed. (1961-1962)
- D. Dictionary of Organic Compounds
- E. Eastman Organic Chemical Bulletin 47, No. 1, 1975
- F. Fisher Scientific Catalog - 1966
- G. Group Contribution Method of Hoy, Van Krevelen and Fedors.
- H. HANDBOOK OF SOLUBILITY PARAMETERS, A.N. Barton, Chemical Rubber Publ. 1965
- I. INDUSTRIAL WAXES, H. Bennett, Chemical Pub. Co.
- J. Journal Reference by number J(x).
J1-J. Pharm. Sci. 75, (7), 639.
J2-Pharm Acta Helv., 48, 549 (1973)
J3-Am. Cosmet. Perf., 87, p. 85 (1972)
- K. Kolthoff & Elving, TREATISE ON ANALYTICAL CHEMISTRY
- L. Laboratory Determination By:
L(1)-Consolidizer Study
L(2)-Solubility Study Unpublished
- M. Manufacturer's Physical Data by Personal Communication.
- N. NONELECTROLYTES, THE SOLUBILITY of: Hildebrand & Scott, Dover Press
- O. Original published values JSCC 36, 319
- P. Pharm. Acta Helv. 61, (3), 93 Antimicrobial Activity and Selperame-C.V./F.V.

COSMETICS

FRAGRANCES/FLAVORS

PHARMACEUTICALS

#1 IN
MICROENCAPSULATION
COMPARE OUR CREDENTIALS...

- #1 in innovation—original contributions to the development of the microencapsulation field
- #1 in experience—over 1500 combined years of experience
- #1 in research and development
- #1 in patent history
- #1 in production volume capability
- #1 in world-wide manufacturing capability
- #1 in product, technical and service

To service your microencapsulation needs, why not try anything from Eurand America. Go over the board... Contact us for a FREE "PROFILE OF A LEADER" BROCHURE DETAILING EURAND'S CAPABILITIES. WRITE TO US OR CALL 404-569-0000 FAX 404-569-0001
EURAND AMERICA, INC. • 346 CHAMBERS ROAD • Kennesaw, GA 30057 • 404-569-0000

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.