

Projekt nr 1Metody Numeryczne

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych Semestr 2024Z

Imię i Nazwisko Numer albumu

Wiktoria Kawa

333141

Spis treści

1	Wprowadzenie	1
	1.1 Temat projektu	1
	1.2 Zrozumienie zadania	1
	1.3 Co będziemy robić]
2	Wielomiany Czebyszewa	2
	2.1 Czym są wielomiany Czebyszewa	2
3	Metoda Trapezów	2
4	Implementacja	:
	4.1 Funkcje: czebyszew_T, czebyszew_U	3
	4.2 Funkcja eval_poly	3
	4.3 Funkcja trap_method	
5	Sprawdzenie wyników	Ę
	5.1 Przedstawienie przykładowych wyników	Ę
	5.2 Wnioski	Ę
	5.3 Podsumowanie	

1 | Wprowadzenie

W ramach 1. Projektu z przedmiotu *Metody Numeryczne* było zaimplementowanie za pomocą środowiska programistycznego *MATLAB* rozwiązania zadania danego na labolatoriach.

1.1 | Temat projektu

Celem tego projektu było wyznaczenie metody trapezów obliczania przybliżonej wartości całki

$$\int_a^b w_n(x) \, dx,$$

gdzie w_n ma postać:

$$w_n = \sum_{k=0}^n a_k T_k(x) U_k(x)$$

I do obliczania wartości wielomianu w_n należy wykorzystać związek rekurencyjny spełniany przez wielomiany Czebyszewa.

1.2 | Zrozumienie zadania

Na samym początku warto jest pochylić się nad tym. Co w ogóle oznacza ten z początku wyglądający na skomplikowany wzór.

By zrozumieć, co mamy zrobić, należy zagłębić się w uwagę daną w zadaniu, czyli w wielomiany Czebyszewa. Od razu dowiadujemy się, że:

- $\blacksquare \ T_k(x)$ wielomian Czebyszewa pierwszego rodzaju
- \blacksquare $U_k(x)$ wielomian Czebyszewa drugiego rodzaju
- $\blacksquare \ a_k$ wspólczynnik k-tego wielomianu

1.3 | Co będziemy robić

Na samym początku warto dowiedzieć się czym są Wielomiany Czebyszewa i tego jak są zdefiniowane, aby móc ich sensownie użyć. Potem przejdziamy do tego, jak można je zaimplementować tak, by łączyły się one dobrze z metodą trapezów obliczania przybliżonej wartości całki. Pochylimy się też oczywiście nad samą metodą z treści zadania. Zatem projekt obejmuje:

- Wielomiany Czebyszewa
- Metoda trapezów
- Implementacja
- Sprawdzenie poprawności
- Wnioski

Serdecznie zapraszam do lektury.

2 | Wielomiany Czebyszewa

2.1 | Czym są wielomiany Czebyszewa

Wielomiany Czebyszewa są zdefiniowane (dla $k \in \mathbb{N}$) w następujący sposób:

2.1.1 | Wielomiany Czebyszewa pierwszego rodzaju

Wielomiany pierwszego rodzaju oznaczamy jako $T_n(x)$. Definiuje się je rekurencyjnie

- $\blacksquare T_0(x) = 1$
- $\blacksquare T_1(x) = x$
- $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$

Dla x zdefiniowanego na przedziale [-1, 1] możemy także napisać, że:

$$\blacksquare T_k(x) = cos(karccos(x))$$

2.1.2 | Wielomiany Czebyszewa drugiego rodzaju

Wielomiany pierwszego rodzaju oznaczamy jako $U_n(x)$. Podobnie jak te pierwszego rodzaju, definiuje się je rekurencyjnie

- $U_0(x) = 1$
- $U_1(x) = 2x$
- $U_k(x) = 2xU_{k-1}(x) U_{k-2}(x)$

Dla x zdefiniowanego na przedziale (-1, 1) możemy także napisać, że:

$$\blacksquare U_k(x) = \frac{sin((k+1)arccos(x))}{sin(arccos(x))}$$

3 | Metoda Trapezów

Metoda trapezów używana jest do obliaczania przybiżonej wartości całki. Wiemy, że całka to pole pod wykresem funkcji.

Rysunek 3.1: Przykładowa funkcja

Metoda trapezów polega na tym, że przedział całkowania [a,b] dzielimy na n+1 równoodległych punktów. Odległość między sąsiednimi punktami wynosi wówczas $h=\frac{b-a}{n}$.

Wyznaczając $f(x_i)$ oraz $f(x_{i+1})$ dla pewnych dwóch sąsiednich punktów z naszego podziału, jesteśmy w stanie policzyć pole pojedynczego trapezu. Będzie ono wynosić $P_i = \frac{h}{2}[f(x_i) + f(x_{i+1})]$. Przybliżona wartość całki to będzie wówczas $\sum_{i=1}^{n} P_i$.

4 | Implementacja

Po przejściu przez teorię, pora przejść do implementacji. Oczywiście nie będzie tu żadnych kodów, aby nie zanudzać czytelnika.

4.1 | Funkcje: czebyszew_T, czebyszew_U

Ponieważ obie z tych funkcji, tak jak widać w samej definicji Wielomianów Czebyszewa, mają podobną metodę powstawania (tak samo zdefiniowana rekurencja), to zostaną omówione wspólnie.

4.1.1 | Przyjmowane argumenty

Funkcje te przyjmują argumenty \mathbf{X}, n .

- lacktriangle X wektor uwtorzony przez x należące do podziału przedziału [a,b].
- \blacksquare n stopień naszego w_n z treści zadania.

4.1.2 | Zwracany wynik

Zwrócona zostanie nam macież \mathbb{T} (odpowiednio \mathbb{U}). Przyjmując, że N+1= ilość elementów w \mathbf{X} (później przyjmiemy, że N to ilość podpodziałów przedziału całkowania, zatem elementów w \mathbf{X} jest N+1), macierze te będą miały wymiary N+1 x n. Zwrócona macierz \mathbb{T} (\mathbb{U} wygląda dokładnie tak samo, tylko zamiast Wielomianów Czebyszewa Pierwszego Rodzaju mamy Wielomiany Czebyszewa Drugiego Rodzaju):

$$\mathbb{T} = \begin{bmatrix} T_0(x_1) & T_1(x_1) & \dots & T_n(x_1) \\ T_0(x_2) & T_1(x_2) & \dots & T_n(x_2) \\ & & & & \\ & & & & \\ & & & & \\ .T_0(x_{N+1}) \ T_1(x_{N+1}) \ \dots \ T_n(x_{N+1}) \end{bmatrix}$$

4.2 | Funkcja eval_poly

Funkcja ta tworzy nam wartościowanie naszego wielomianu, czyli zwraca wartości naszego wielomianu dla punktów naszego podziału - wektora \mathbf{X} .

4.2.1 | Przyjmowane argumenty

- A wektor złożony ze wspólczynników funkcji
- \blacksquare X wektor złożony z x będących punktami podziału przedziału [a,b]

4.2.2 | Działanie funkcji i zwracany wynik

Funkcja ta mnoży nam komórkowo macierze \mathbb{T} i \mathbb{U} . Następnie nowopowstałą macierz mnożymy przez wektor pionowy współczynników \mathbf{A} . Powstała przez tę operację macierz, jest naszym wynikiem. Są to wartości funckji $w_n(x)$ w punktach naszego podziału.

$$\begin{bmatrix} T_0(x_1)U_0(x_1) & T_1(x_1)U_1(x_1) & \dots & T_n(x_1)U_n(x_1) \\ T_0(x_2)U_0(x_2) & T_1(x_2)U_1(x_2) & \dots & T_n(x_2)U_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ T_0(x_{N+1})U_0x_{N+1}) & T_1(x_{N+1})U_1(x_{N+1}) & \dots & T_n(x_{N+1})U_n(x_{N+1}) \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} w_n(x_1) \\ w_n(x_2) \\ \vdots \\ w_n(x_{N+1}) \end{bmatrix}$$

4.3 | Funkcja trap_method

Jest to nasza docelowa funkcja, która ma nam policzyć naszą całkę metodą trapezów. Zatem

4.3.1 | Przyjmowane argumenty

- lacktriangle A wspólczynniki
- \blacksquare a poczatek przedziału całkowania
- lacksquare b koniec przedziału całkowania
- $\blacksquare N$ ilość naszych podprzedziałów utworzonych przez dwa sąsiadujące ze sobą argumenty (x_i,x_{i+1})

4.3.2 | Działanie funkcji i zwracany wynik

Na początku oczywiście możemy sobie wyznaczyć "wysokość"
naszych trapezów. Wiemy że długość podprzedziału możemy wyrazić wzorem
 $h=\frac{b-a}{N}$.

Wyznaczamy nasz wektor $\mathbf{X} = a : h : b$. Jest to zdefiniowany w języku MATLAB wektor, którego pierwszy element to a i każdy kolejny to a + h, a + 2h, ..., b

 $\sum_{i=1}^{N} P_i$ - zdefiniowane wcześniej, to po rozwinięciu:

$$\sum_{i=1}^{N} P_i = \frac{h}{2} [(w_n(x_1) + w_n(x_2)) + (w_n(x_2) + w_n(x_3)) + \dots + (w_n(x_N) + w_n(x_{N+1}))]$$
(4.1)

$$\sum_{i=1}^{N} P_i = \frac{h}{2} [w_n(x_1) + 2w_n(x_2) + 2w_n(x_3) + \dots + 2w_n(x_N) + w_n(x_{N+1})]$$
(4.2)

$$\sum_{i=1}^{N} P_i = h\left(\sum_{i=1}^{N} w_n(x_i) - \frac{w_n(x_1) + w_n(x_{N+1})}{2}\right)$$
(4.3)

Wynik ten jest przybliżonym wynikiem całki zadanej w treści zadania:

$$\int_a^b w_n(x) \, dx$$

gdzie w_n ma postać:

$$w_n = \sum_{k=0}^n a_k T_k(x) U_k(x)$$

Funkcja trap_method zwraca nam przybliżoną wartość całki. Należy jeszcze oczywiście sprawdzić poprawność tej funkcji, dlatego właśnie tym się teraz zajmiemy.

5 | Sprawdzenie wyników

W tym rozdziałe sprawdzimy działanie naszej funkcji trap_method.

5.1 | Przedstawienie przykładowych wyników

Warto sprawdzić, czy wyniki naszej funckji pokrywają się z wbudowaną funkcją do liczenia całek integral. Wyniki podane w tabeli zostały policzone w skrycie testującym test_wyniki.m. Poniżej tabeli znajduje się legenda dotyczące nazw kolumn.

f(x)	p	N	exact value	integral value	trap_method value	\mathbf{b} łą \mathbf{d} integral	${ m blad}$ trap_method
3	a=1,b=2	1	3	3	3	0	0
3	a=1,b=2	10	3	3	3	0	0
3	a=1,b=2	100	3	3	3	0	0
$2x^{2} + 1$	a=1,b=2	1	$\frac{17}{3}$	5.6667	6	1.78×10^{-15}	0.33333
$2x^{2}+1$	a=1,b=2	10	$\frac{17}{3}$	5.6667	5.67	1.78×10^{-15}	0.0033333
$2x^2 + 1$	a=1,b=2	100	$\frac{17}{3}$	5.6667	5.6667	1.78×10^{-15}	3.33×10^{-5}
$2x^{2} + 1$	a=1,b=2	9999999	$\frac{17}{3}$	5.6667	5.6667	1.78×10^{-15}	8.88×10^{-16}
x^2	a=1,b=2	100	$\frac{7}{3}$	2.3333	2.3334	4.44×10^{-16}	3.3334
x^2	a=-1,b=1	100	$\frac{2}{3}$	0.66667	0.6668	1.11×10^{-16}	2.6669
$8x^4 - 6x^2 + 1$	a = -1, b = 1	100	1.2	1.2	1.2013	2.22×10^{-16}	0.5332

Tabela 5.1: Porównanie wyników obliczeń numerycznych

- f(x) Funkcja dla której liczymy całkę
- p Zakres obliczeń, np. a = 1, b = 2 oznacza przedział od 1 do 2.
- N Liczba przedziałów, na które dzielony jest przedział obliczeniowy.
- exact value: Dokładna wartość całki, obliczona analitycznie.
- integral value Wartość całki obliczona za pomocą wbudowanej funkcji MATLAB
- trap_method value Wartość całki obliczona za pomocą metody trapezów.
- błąd integral różnica pomiędzy exact value a wartością integral value.
- błąd trap_method różnica pomiędzy exact value a wartością trap_method value.

5.2 | Wnioski

Jesteśmy w stanie zauważyć, że nasza funkcja działa poprawnie. Dodatkowo z tak rozpisanymi wynikami i obliczoną różnicą między dokładnymi wartościami całek, a tymi wynikami powstałymi przez zastosowanie funkcji, jesteśmy w stanie sprawdzić, z jaką dokładnością funkcje te liczą.

Możemy zauważyć, że dla odpowiednio dużych N, czyli np. w miejscu w którym liczba naszych podpodziałow wynosi 9999999, funkcja trap_method jest dokładniejsza od wbudowanej w program MATLAB funkcji integral.

Możemy oczywiście wywnioskować też z tego wniosek taki, że dla małych N, np. dla N=1, nasza funkcja podaje znacząco niedokładny wynik.

5.3 | Podsumowanie

Poprawnie zaimplementowana funkcja trap_method poprawnie oblicza nam przybliżoną wartość całki. Aby zwiększyć dokładność obliczeń warto jest oczywiście robić to dla dużej liczby podziałów naszego przedziału całkowania.