Ejercicio 1:

Determinar cuáles de las siguientes instrucciones pueden ser ensambladas en LegV8. Justificar las respuestas negativas.

Instrucción	Si/No	Justificación
B 0	51	Es valido do
LDUR X1, [XZR, X3]	16	Fra I admite un voyerro
MOVK X15, #0xCAFE, LSL#8	No	Celséle Paedesep
ORRI XZR, X1, #-16	No	No admite negatives
LSL X30, X30, #33	56	x30 existe y LSL 60-63]

Ejercicio 2:

Usando el siguiente ejemplo, escriba un programa en LegV8 que divida X0 por X1 y salte dependiendo si el resultado es mayor o igual a 0.33. Se pueden usar todas las instrucciones de LegV8 excepto las de punto flotante. Debe resolverse en 5 instrucciones o menos.

MOVZ X0, #1, LSL#0 //X0 = 1
$$\stackrel{\checkmark}{\cancel{\times}}_{\cancel{3}} \stackrel{?}{\cancel{\times}}_{\cancel{3}} \stackrel{?}{\cancel{\times}}_{\cancel{3}}$$

Ejercicio 3:

STUR X12, [X11, #0]

NO XCHG: ADDI X10, X10, #1

B LOOP

LOOP END ...

B.GE end

Dada la siguiente sección de un programa en assembler LegV8, el registro X1 contiene la dirección base de un arreglo A, mientras que X0 contiene el tamaño de dicho arreglo. Asuma que los registros y la memoria contienen los valores mostrados en la tabla al inicio de la ejecución de dicha sección.

ADDI X10, XZR, #0
$$//$$
 \times 10 = 0

SUBI X0, X0, #1 $//$ \times 0 = 0 \times 3

Loop: CMP X10, X0

B.GE LOOP_END // GE: mayor o igual $//$ \times 10 \Rightarrow \times 0 = \times 0 \times 0

Proc: LSL X11, X10, #3 $//$ \times $//$ \times $//$ \times $//$ \times $//$ \times $//$ \times $//$ \times 11 = \times 0 \times 8

ADD X11, X1, X11 $//$ \times 12 = \times 0 \times 6 \times 6 \times 6 \times 1

LDUR X12, [X11, #0] $//$ \times 12 = \times 12 \times 12 \times 13 \times 12 \times 13 STUR X13 [X11, #0] \times 13 \times 14 \times 15 \times 15 \times 16 \times 17 STUR X13 [X11, #0] \times 16 \times 17 STUR X13 [X11, #0] \times 18 STUR X13 [X11, #0] \times 18 STUR X13 [X11, #0] \times 19 STUR X13 [X11, #0]

11 ×10++

1 Relite

Memoria										
Dirección	Contenido (antes)	Contenido (después)								
0x10000100	122	~30								
0x10000108	-30	-30								
0x10000110	70	10								
0x10000118	10									
0x10000120	45	45								
0x10000128	200	280								

Registros										
X0	0x00000004									
X1	0x10000100									

Responder:

- a) ¿Cómo queda el contenido de todas las posiciones de memoria mostradas en la tabla al finalizar la sección del programa? Responde completando las columnas en blanco de la tabla de memoria.

 b) La instrucción contenida en la línea con el label PROC se ejecuta 3 veces.

 Control queda el contenida de todas las posiciones de memoria de la tabla de memoria.

 7865; blemente security de la tabla de memoria.

 Security 4 5; es 67

Ejercicio 4:

Considere el segmento de memoria que se muestra en la primera columna de la forma dirección: contenido que contiene codificado un programa en ISA LegV8. Parte del programa desensamblado se presenta en la 2da columna.

(label:)	Dirección: contenido	Desensamblado
	0x00000100: 0x910013E0	ADDI X0, XZR, #4
(loop:)	0x00000104: 0xB89103E9	LDURSW /9[xzr, *0x110]
	0x00000108: 91001529	ADDI X9, X9, #5
	0x0000010C: B81103E9	STURW X9, [XZR, 0x110]
	0x0 <u>0000110</u> : 13FFFFFD	Bleep +2
	0x00000114: 8B1F03E0	ADD X0, XZR, XZR
	0x00000118: D3600400	LSL XO, XO, #1

- a) Completar las instrucciones restantes.
- b) ¿Cuántas veces se ejecuta la instrucción con label: loop? 🕹
- c) ¿Cuál es el valor de X0 luego de la ejecución del segmento? _ 女* ムニ &

Ejercicio 5:

Considerar que el procesador está ejecutando la instrucción de LegV8: 0xF801816A y el contenido de los registros es:

X10 = 0x20, X11 = 0x23, X12 = 0x54. X13 = 0x00, PC = 0x104

a) Desensamblar la instrucción.

b) ¿Qué operación realiza la ALU? Suma: Reg [xh]+0x/8

c) Completar el estado de las señales de control.

S: $0 \times F801816A$, yel of op an at $0 \times F801816A$, yel of op an at $0 \times F801816A$, yel of open and at $0 \times F801816A$, and $0 \times F801816A$, and 0

Reg2Log	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch
1	١	×	0	0	1	

Señal	E/S	N° de bits	Valor
Register, Read data 1	S	5	0×23
Register, Read register 2	E	5	Reg[x10]
Data Memory, address	E	64	0×23 + 0×18=0×3B
Register, write register	Ē	64	X Descororco
Entrada del pc	E	64	0×108
Add, ALUResult	5	64	0x 169 = 0x 104 + 0x 18 x 0x2

	Add, ALUResuit						5 64							0x169=08104+									0	$\times \sqrt{8}$	3*	6 X 2	2								
0	/ / /	0	2	, ,	-	7			26	1	1		~	to 2	1 0								_			_			\sim						
\mathcal{O}	XI	ď	*	1 2		ے		Ý	20	(_ l	QC	O	*	K)	=	Q	Ш	0	C	0	\propto	ソ	چ	0	¥	6	O						
		(21		-																														
4 °	× U	0	4																																
" 0	X	6	U	ا دــ																															
0	1	6	4																																
0		U																																	
					_																														
					-																														