Elliptic Curves

October 9, 2020

1 Fermat's Method of Infinite Descent

Suppose we have a right-angled triangle Δ with side lengths a, b, c, so that by Pythagoras we have $a^2 + b^2 = c^2$, and area $(\Delta) = \frac{1}{2}ab$.

Definition 1.1. Δ *is* rational *if* $a, b, c \in \mathbb{Q}$, and **primitive** *if* $a, b, c \in \mathbb{Z}$ *coprime*.

Lemma 1.2. Every primitive triangle is of the form $a = u^2 - v^2$, b = 2uv, $c = u^2 + v^2$ for coprime integers u > v > 0.

Proof. If a, b were both odd, then $a^2 + b^2 \equiv 2 \mod 4$, and we have no solutions for c. If a, b both even, then they are not coprime. So we may assume a is odd, b is even, c is odd.

Then $(\frac{b}{2})^2 = \frac{c+a}{2} \frac{c-a}{2}$, and the right hand side is a product of coprime positive integers. So by unique prime factorisation in the integers, $\frac{c+a}{2} = u^2$, $\frac{c-a}{2} = v^2$ for some coprime integers u, v. Rearranging, we have the lemma.

Definition 1.3. $D \in \mathbb{Q}_{>0}$ is a congruent number if it is the area of a rational triangle.

Note that, by scaling the triangle, it suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

For example, D = 5, 6 are congruent numbers. $6 = \frac{1}{2} \cdot 3 \cdot 4$, and $3^2 + 4^2 = 5^2$, and 5 is left as an exercise.

Lemma 1.4. $D \in \mathbb{Q}_{>0}$ is congruent if and only if $Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}, y \neq 0$.

Proof. Lemma 1.2 shows that D is congruent if and only if $Dw^2 = uv(u^2 - v^2)$ for some $u, v, w \in \mathbb{Q}, w \neq 0$.

Setting
$$x = \frac{u}{v}, y = \frac{w}{v^2}$$
 finishes the proof.

Fermat showed that 1 is not a congruent number.

Theorem 1.5. There is no solution to

$$w^2 = uv(u+v)(u-v) \tag{*}$$

in integers u, v, w with $w \neq 0$.

Proof. Without loss of generality, u, v are coprime with u > 0, w > 0. If v < 0 then replace (u, v, w) by (-v, u, w). If u, v are both odd, then replace (u, v, w) by $(\frac{u+v}{2}, \frac{u-v}{2}, \frac{w}{2})$. So we may assume that all of u, v, u + v, u - v are coprime positive integers whose product is a square, and hence are all squares, say a^2, b^2, c^2, d^2 respectively, where $a, b, c, d \in \mathbb{Z}_{>0}$.

Since $u \not\equiv v \mod 2$, both c,d are odd. Consider the right angled triangle with side lengths, $\frac{c+d}{2}, \frac{c-d}{2}, a$. This is a primitive triangle, and it has area $\frac{c^2-d^2}{8} = \frac{v}{4} = (\frac{b}{2})^2$.

Let $w_1 = \frac{b}{2}$. Then lemma **1.2** gives $w_1^2 = u_1 v_1 (u_1^2 - v_1^2)$ for some $u_1, v_1 \in \mathbb{Z}$, giving a new solution to (*). But $4w_1^2 = b^2 = v|w^2$, and so $w_1 \leq \frac{1}{2}w$.

So by Fermat's method of infinite descent, if there were a solution we would have a strictly decreasing infinite sequence of positive integers $\frac{1}{4}$. Hence there is no solution to (*).

1.1 A Variant for Polynomials

Here, K is a field with char $K \neq 2$. The algebraic closure of K will be \overline{K} .

Lemma 1.6. Let $u, v \in K[t]$ be coprime. If $\alpha u + \beta v$ is a square for four distinct $(\alpha : \beta) \in \mathbb{P}^1$, then $u, v \in K$.

Proof. Without loss of generality we may assume $K = \overline{K}$, as that doesn't change the degree of polynomials, and every square is still a square.

Changing coordinates on \mathbb{P}^1 , we may assume the ratios $\alpha : \beta$ are $(1:0), (0:1), (1:-1), (1:-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$, with $\mu = \sqrt{\lambda}$.

Then $u = a^2, v = b^2, u - v = (a + b)(a - b), u - \lambda v = (a + \mu b)(a - \mu b)$ are all squares. They are also coprime, and so by unique factorisation in K[t], (a + b), (a - b), $(a + \mu b)$, $(a - \mu b)$ are all squares.

But $\max\{\deg a, \deg b\} \leq \frac{1}{2} \max\{\deg u, \deg v\}$. So by Fermat's method of infinite descent, we get that the original $u, v \in K$.

Now we have some important definitions:

Definition 1.7.

- 1. An elliptic curve E over a field K is the projective closure of the affine curve $y^2 = f(x)$ where $f \in K[x]$ is a monic cubic polynomial with distinct roots.
- 2. For L/K any field extension, $E(L) = \{(x,y) \in L^2 : y^2 = f(x)\} \cup \{0\}$. 0 is called the **point** at infinity.

We call the point at infinity 0 because we will see that E(L) is naturally an abelian group under an operation we will denote by +, and 0 will be the identity for that group. In this course we will study E(L) for L a finite field, a local field, and a number field.

Lemma 1.4 and theorem 1.5 together imply that, if E is given by $y^2 = x^3 - x$, then $E(\mathbb{Q}) = \{0, (0,0), (\pm 1,0)\}$, which we will see is the group $C_2 \times C_2$.

Corollary 1.8. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality, $K=\overline{K}$. By a change of coordinates we may assume $E:y^2=x(x-1)(x-\lambda)$ for some $\lambda\in K\setminus\{0,1\}$. Suppose $(x,y)\in E(K(t))$. Write $x=\frac{u}{v}$ with $u,v\in K[t]$ coprime. Then $w^2=uv(u-v)(u-\lambda v)$ for some $w\in K[t]$.

Unique factorisation in K[t] gives $u, v, u-v, u-\lambda v$ are all squares, and so by lemma **1.6**, $u, v \in K$, and so $x, y \in K$.