

Этикетка

КСНЛ.431271.012 ЭТ

Микросхема 1564ЛА1Т1ЭП

Микросхема интегральная 1564ЛА1Т1ЭП Функциональное назначение: два логических элемента «4И-НЕ»

Схема расположения выводов Номера выводов показаны условно

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
		Вход первого			Выход второго
1	A1	элемента	8	Y2	элемента
_		Вход первого	_		Вход второго
2	B1	элемента	9	A2	элемента
3	NC	Не подключен	10	B2	Вход второго элемента
4	C1	Вход первого элемента	11	NC	Не подключен
5	D1	Вход первого элемента	12	C2	Вход второго элемента
		Выход первого			Вход второго
6	Y1	элемента	13	D2	элемента
7	0V	Общий	14	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$ m U_{OLmax}$	-	0,10
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} = 20 mkA		-	0,10
U_{CC} =6,0 B, U_{IH} = 4,2 B, I_{O} = 20 mkA		-	0,10
при:			
U_{CC} =4,5 B, U_{IH} =3,15 B , I_{O} = 4,0 mA		-	0,26
$U_{CC} = 6.0 \text{ B}, U_{IH} = 4.2 \text{ B}, I_{O} = 5.2 \text{ mA}$		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IH}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IH} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 mkA		4,4	-
U_{CC} =6,0 B, U_{IH} = 1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B , I_{O} =4,0 mA		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} = 4,2 B, I_{O} = 5,2 MA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	${ m I}_{ m IL}$	-	/-0,1/

4. Входной ток высокого уровня, мкА, при: $U_{CC} = 6,0$ В, $U_{IL} = 0$ В, $U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	2,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, f} = 10 \text{ M} \Gamma \text{ц}$	I _{OCC}	-	12
7. Время задержки распространения при	$t_{\mathrm{PHL},}$		
включении (выключении), нс, при:	$t_{\rm PLH}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	90
$U_{CC} = 4,5 B, C_L = 50 п\Phi$		-	18
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	15
8. Входная емкость, п Φ U _{CC} = 0 В	$C_{\rm I}$	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г.

серебро г.

в том числе:

золото г/мм

на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-01ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛА1Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-01ТУ и признаны годными для эксплуатации.

Приняты по	OT		
	е, акт и др.)	(дата)	
Место для штампа ОТ	К		Место для штампа ПЗ
Место для штампа « П	ерепроверка про	изведена	у (дата)
	ние, акт и др.)	т(дата)	_
Место для штампа ОТ	К		Место для штампа ПЗ
Цена договорная			

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): выход – общий, вход-выход.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.