图算法篇:近似算法

北京航空航天大学 计算机学院

优化问题与判定问题

基本概念

顶点覆盖问题

旅行商问题

集合覆盖问题

• 判定问题: 仅有两种答案:"是"或"否"(yes or no, 1 或 0)

DMST

DCLIQUE

DVC

DIS

- 判定问题: 仅有两种答案: "是" 或 "否" (yes or no, 1 或 0)
 - DMST
 - DCLIQUE
 - DVC
 - DIS

- 判定问题: 仅有两种答案: "是"或"否" (yes or no, 1 或 0)
 - DMST
 - DCLIQUE
 - DVC
 - DIS

- \checkmark $\{a,b,d,e\}$ 是图 G 的一个规模为 4 的团
- ✓ $\{b,d,e\}$ 是图 G 的一个规模为 3 的顶点覆盖

- 判定问题: 仅有两种答案: "是"或"否" (yes or no, 1 或 0)
 - DMST
 - DCLIQUE
 - DVC
 - DIS

- \checkmark $\{a,b,d,e\}$ 是图 G 的一个规模为 4 的团
- \checkmark {b,d,e}是图 G 的一个规模为 3 的顶点覆盖
- \checkmark {a,c} 是图 G 的 一个规模为 2 的独立集

判定问题: 仅有两种答案: "是"或"否"(yes or no, 1 或 0)

DMST

最小生成树问题

DCLIQUE

→ 最大团问题

DVC

最小顶点覆盖问题

DIS

最大独立集问题

优化问题

G

- ✓ {a,b,d,e}是图 G 的一个规模为 4 的团
- ✓ $\{b,d,e\}$ 是图 G 的一个规模为 3 的顶点覆盖
- \checkmark {a,c} 是图 G 的 一个规模为 2 的独立集

判定问题: 仅有两种答案: "是"或 "否" (yes or no, 1 或 0)

DMST

最小生成树问题

DCLIQUE

🗼 最大团问题

DVC

最小顶点覆盖问题

优化问题

DIS

最大独立集问题

G

- \checkmark {a,b,d,e}是图 G 的一个最大团
- ✓ $\{b,d,e\}$ 是图 G 的一个最小顶点覆盖
- ✓ $\{a,c\}$ 是图 G 的 一个最大独立集

优化问题(Optimization problems)

- 优化问题
 - 每个可行解(feasible solution)都有一个相关的值
 - 优化问题的目标是找出一个具有最佳值的可行解。

优化问题 (Optimization problems)

- 优化问题
 - 每个可行解(feasible solution)都有一个相关的值
 - 优化问题的目标是找出一个具有最佳值的可行解。

例:最小生成树问题(MST)

• 输入:加权无向图 G

• 输出: G的最小生成树 T

可行解: G的生成树 T

可行解的 \mathbf{i} : 生成树 T 中所有边的权重的和

优化问题(Optimization problems)

- 优化问题
 - 每个可行解(feasible solution)都有一个相关的值
 - 优化问题的目标是找出一个具有最佳值的可行解。

例:0-1背包问题(0-1 knapsack)

- 输入: n 个物品的集合 $X = \{1,2,...,n\}$ 和背包容量 W , 其中 , 每个物品 i 具有权重 w_i 和价值 v_i (i = 1,2,...,n)
- 输出:能装入背包的价值和最大的物品子集 $T \subseteq X$,即 $\sum_{i \in T} w_i \leq W$ 且 $\sum_{i \in T} v_i = max\{\sum_{i \in T'} v_i \mid T' \subseteq X, \sum_{i \in T'} w_i \leq W\}$ 。

优化问题(Optimization problems)

- 优化问题
 - 每个可行解(feasible solution)都有一个相关的值
 - 优化问题的目标是找出一个具有最佳值的可行解。

例:0-1背包问题(0-1 knapsack)

- 输入: n 个物品的集合 $X = \{1,2,...,n\}$ 和背包容量 W , 其中 , 每个物品 i 具有权重 w_i 和价值 v_i (i = 1,2,...,n)
- 输出:能装入背包的价值和最大的物品子集 $T \subseteq X$,即 $\sum_{i \in T} w_i \leq W$ 且 $\sum_{i \in T} v_i = max\{\sum_{i \in T'} v_i \mid T' \subseteq X, \sum_{i \in T'} w_i \leq W\}$ 。

可行解:能装入背包的物品子集 $T \subseteq X$,即 $\sum_{i \in T} w_i \leq W$ 。

可行解的值:物品子集的价值和

• 一个优化问题通常有对应的判定问题

• 一个优化问题通常有对应的判定问题

例:最小生成树问题(MST)

• 输入:加权无向图 G

• 输出: G 的最小生成树 T

• 一个优化问题通常有对应的判定问题

例:最小生成树问题(MST)

• 输入:加权无向图 G

• 输出: G 的最小生成树 T

生成树判定问题(DMST):

• 输入:加权无向图 G , 正整数 k

问题: G 是否存在边权和不超过 k 的生成树 ?

• 一个优化问题通常有对应的判定问题

例:0-1背包问题(0-1 knapsack)

- 输入: n 个物品的集合 $X = \{1,2,...,n\}$ 和背包容量 W , 其中每个物品 i 具有重量 w_i 和价值 v_i (i = 1,2,...,n)
- 输出:能装入背包的价值和最大的物品子集 $T \subseteq X$,即 $\sum_{i \in T} w_i \leq W$ 且 $\sum_{i \in T} v_i = max\{\sum_{i \in T'} v_i \mid T' \subseteq X\}$ 。

• 一个优化问题通常有对应的判定问题

例:0-1背包问题(0-1 knapsack)

- 输入: n 个物品的集合 $X = \{1,2,...,n\}$ 和背包容量 W , 其中每个物品 i 具有重量 w_i 和价值 v_i (i = 1,2,...,n)
- 输出:能装入背包的价值和最大的物品子集 $T \subseteq X$,即 $\sum_{i \in T} w_i \leq W$ 且 $\sum_{i \in T} v_i = max\{\sum_{i \in T'} v_i \mid T' \subseteq X\}$ 。

例:0-1背包判定问题(0-1 Dknapsack)

- 输入: n 个物品的集合 $X = \{1,2,...,n\}$, 其中每个物品 i 具有重量 w_i 和价值 v_i , i = 1,2,...,n , 和背包容量 W , 正整数 V
- 问题:是否存在能装入背包的价值和至少为 V 的物品子集?

• 一个优化问题的算法通常可用来求解对应的判定问题

• 一个优化问题的算法通常可用来求解对应的判定问题

例:用最小生成树问题的Kruskal算法解决生成树判定问题

生成树判定问题(DMST):

• 输入:加权无向图 G, 正整数 k

• 问题: G 是否存在边权和不超过 k 的生成树?

• 一个优化问题的算法通常可用来求解对应的判定问题

例:用最小生成树问题的Kruskal算法解决生成树判定问题

- 1. 用 Kruskal算法求出图 G 的最小生成树 T;
- 2. 计算最小生成树的边权和 w(T);

生成树判定问题(DMST):

- 输入:加权无向图 G, 正整数 k
- 问题: G 是否存在边权和不超过 k 的生成树?

• 一个优化问题的算法通常可用来求解对应的判定问题

例:用最小生成树问题的Kruskal算法解决生成树判定问题

- 1. 用 Kruskal算法求出图 G 的最小生成树 T;
- 2. 计算最小生成树的边权和 w(T);
- 3. 若 $w(T) \leq k$, 则返回"是";
- 4. 否则,返回"否"。

生成树判定问题(DMST):

- 输入:加权无向图 G, 正整数 k
- 问题: G 是否存在边权和不超过 k 的生成树?

• 一个优化问题的算法通常可用来求解对应的判定问题

例:用最小生成树问题的Kruskal算法解决生成树判定问题

- 1. 用 Kruskal算法求出图 G 的最小生成树 T;
- 2. 计算最小生成树的边权和 w(T);
- 3. 若 $w(T) \leq k$, 则返回"是";
- 4. 否则,返回"否"。

算法是正确:

- 若 $w(T) \le k$, 显然 T 为边权和不超过 k 的生成树
- 若 w(T) > k , 则 G 的所有生成树的边权和均大于 k

• 一个优化问题的算法通常可用来求解对应的判定问题

例:用最小生成树问题的Kruskal算法解决生成树判定问题

- 1. 用 Kruskal算法求出图 G 的最小生成树 T;
- 2. 计算最小生成树的边权和 w(T);
- 3. 若 $w(T) \leq k$, 则返回"是";
- 4. 否则,返回"否"。

算法是正确:

- 若 $w(T) \le k$, 显然 T 为边权和不超过 k 的生成树
- 若 w(T) > k , 则 G 的所有生成树的边权和均大于 k

判定问题不会比对应的优化问题更难

- 最小生成树问题存在多项式时间算法
 - Prim算法
 - Kruskal算法

- 最小生成树问题存在多项式时间算法
 - Prim算法
 - Kruskal算法
- 以下问题是否存在多项式时间算法?
 - 最大团问题
 - 最小顶点覆盖问题
 - 最大独立集问题

- 最小生成树问题存在多项式时间算法
 - Prim算法
 - Kruskal算法
- 以下问题是否存在多项式时间算法?
 - 最大团问题
 - 最小顶点覆盖问题
 - 最大独立集问题
- 当一个优化问题对应的判定问题是NP难问题时,该优化问题是否有多项式时间算法?

- 最小生成树问题存在多项式时间算法
 - Prim算法
 - Kruskal算法
- 以下问题是否存在多项式时间算法?
 - 最大团问题
 - 最小顶点覆盖问题
 - 最大独立集问题
- 当一个优化问题对应的判定问题是NP难问题时,该优化问题是否有多项式时间算法?
- 近似算法是解决一类NP难优化问题的一种途径
 - 这里未给出NP难优化问题的严谨的定义

近似算法

优化问题与判定问题

基本概念

顶点覆盖问题

旅行商问题

集合覆盖问题

• 给定优化问题 Q、近似算法 A、及 Q的任意一个规模为 n的实例 x

• C: 近似算法 A 在实例 x 返回的解的值

C*:实例 x 的最优解

• 给定优化问题 Q、近似算法 A、及 Q的任意一个规模为 n的实例 x

• C: 近似算法 A 在实例 x 返回的解的值

• C^* :实例 x 的最优解

近似算法 A 的近似比 r(n)定义为:

$$\max(\frac{C}{C^*}, \frac{C^*}{C}) \le r(n)$$

$$r(n) \ge 1$$

- 给定优化问题 Q、近似算法 A、及 Q的任意一个规模为 n的实例 x
 - C: 近似算法 A 在实例 x 返回的解的值
 - C*:实例 x 的最优解

近似算法 A 的近似比 r(n)定义为:

$$\max(\frac{C}{C^*}, \frac{C^*}{C}) \le r(n)$$

$$r(n) \ge 1$$

- 最大优化问题: $1 \le \frac{c^*}{c} \le r(n)$
- 最小优化问题: $1 \le \frac{C}{C^*} \le r(n)$

- 给定优化问题 Q、近似算法 A、及 Q的任意一个规模为 n的实例 x
 - C: 近似算法 A 在实例 x 返回的解的值
 - C*:实例 x 的最优解

近似算法 A 的近似比 r(n)定义为:

$$\max(\frac{C}{C^*}, \frac{C^*}{C}) \le r(n)$$

$$r(n) \ge 1$$

- 最大优化问题: $1 \le \frac{C^*}{C} \le r(n)$
- 最小优化问题: $1 \le \frac{C}{C^*} \le r(n)$
- 若 r(n) 不依赖于 n , 则 r(n) 为一个常数 , 写为 r 或 $1 + \varepsilon$

背景

基本概念

最小顶点覆盖问题

集合覆盖问题

旅行商问题

顶点覆盖问题

• 定义(顶点覆盖)给定无向图 G = (V, E) , G的一个顶点覆盖为 G的 顶点子集 $V' \subseteq V$, 使得

对于G中任意一条边 $e = (u, v) \in E$, $u \in V'$ 或 $v \in V'$ 。

顶点覆盖问题

● 定义(顶点覆盖)给定无向图 G = (V, E) , G的一个顶点覆盖为 G的 顶点子集 $V' \subseteq V$, 使得

对于G中任意一条边 $e = (u, v) \in E$, $u \in V'$ 或 $v \in V'$ 。

● V 是 G 的一个顶点覆盖

● 定义(顶点覆盖)给定无向图 G = (V, E) , G的一个顶点覆盖为 G的 顶点子集 $V' \subseteq V$, 使得

对于G中任意一条边 $e = (u, v) \in E$, $u \in V'$ 或 $v \in V'$ 。

- V 是 G 的一个顶点覆盖
- 顶点覆盖的规模:包含的顶点的个数

• 定义(顶点覆盖)给定无向图 G = (V, E) , G的一个顶点覆盖为 G的 顶点子集 $V' \subseteq V$, 使得

对于G中任意一条边 $e = (u, v) \in E$, $u \in V'$ 或 $v \in V'$ 。

- V 是 G 的一个顶点覆盖
- 顶点覆盖的规模:包含的顶点的个数

{1,2,3,4,5,6} 是 G 的一个顶点覆盖。

• 定义(顶点覆盖)给定无向图 G = (V, E) , G的一个顶点覆盖为 G的 顶点子集 $V' \subseteq V$, 使得

对于G中任意一条边 $e = (u, v) \in E$, $u \in V'$ 或 $v \in V'$ 。

- V 是 G 的一个顶点覆盖
- 顶点覆盖的规模:包含的顶点的个数

{1,2,3,4,5,6} 是 G 的一个顶点覆盖。

 $\{1, 2, 3, 4\}$ 是 G 的一个顶点覆盖。

● 定义(顶点覆盖)给定无向图 G = (V, E) , G的一个顶点覆盖为 G的 顶点子集 $V' \subseteq V$, 使得

对于G中任意一条边 $e = (u, v) \in E$, $u \in V'$ 或 $v \in V'$ 。

- V 是 G 的一个顶点覆盖
- 顶点覆盖的规模:包含的顶点的个数

{1,2,3,4,5,6} 是 G 的一个顶点覆盖。

 $\{1, 2, 3, 4\}$ 是 G 的一个顶点覆盖。

 $\{1, 2, 5, 6\}$ 是 G 的一个顶点覆盖。

• 定义(顶点覆盖)给定无向图 G = (V, E) , G的一个顶点覆盖为 G的 顶点子集 $V' \subseteq V$, 使得

对于G中任意一条边 $e = (u, v) \in E$, $u \in V'$ 或 $v \in V'$ 。

- V 是 G 的一个顶点覆盖
- 顶点覆盖的规模:包含的顶点的个数

{1,2,3,4,5,6} 是 G 的一个顶点覆盖。

 $\{1, 2, 3, 4\}$ 是 G 的一个顶点覆盖。

 $\{1, 2, 5, 6\}$ 是 G 的一个顶点覆盖。

 $\{1, 2, 6\}$ 不是 G 的顶点覆盖。

最小顶点覆盖问题

• 最小顶点覆盖问题

• 输入: 无向图 G

輸出: *G*的最小规模的顶点覆盖

最小顶点覆盖也称为最优顶点覆盖

{1,2,3,4,5,6} 是 G 的一个顶点覆盖。

 $\{1, 2, 3, 4\}$ 是 G 的一个顶点覆盖。

 $\{1, 2, 5, 6\}$ 是 G 的一个顶点覆盖。

最小顶点覆盖问题

• 最小顶点覆盖问题

• 输入: 无向图 G

輸出: *G*的最小规模的顶点覆盖

最小顶点覆盖也称为最优顶点覆盖

 $\{1, 2, 3, 4, 5, 6\}$ 是 G 的一个顶点覆盖。

 $\{1, 2, 3, 4\}$ 是 G 的一个顶点覆盖。

 $\{1, 2, 5, 6\}$ 是 G 的一个顶点覆盖。

 $\{1, 2, 5, 6\}$ 、 $\{1, 2, 3, 4\}$ 均是 是 G 的最小顶点覆盖。

贪心算法

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

运行实例

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

- 算法输出顶点覆盖 $C = \{d, e, b\}$
- C 是最优解:任意两个顶点的子集都不是顶点覆盖
- 问题:近似比 r(n) = 1?

该算法甚至没有常数的近似比。

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 最优解 = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, OPT=6

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 最优解 = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, OPT=6

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 最优解 = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, OPT=6

算法运行过程:

1. 选择 *u*₁

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

- 1. 选择 *u*₁
- 2. 选择 u_2

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

- 1. 选择 *u*₁
- 2. 选择 u_2

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 最优解 = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, OPT=6

- 1. 选择 *u*₁
- 2. 选择 u_2
- 3. 依次选择*w*₁, *w*₂, *w*₃

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 最优解 = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, OPT=6

- 1. 选择 *u*₁
- 2. 选择 u_2
- 3. 依次选择*w*₁, *w*₂, *w*₃

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 最优解 = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, OPT=6

- 1. 选择 *u*₁
- 2. 选择 u_2
- 3. 依次选择*w*₁, *w*₂, *w*₃
- 4. 依次选择 $p_1, ..., p_6$

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

• 最优解 = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, OPT=6

- 1. 选择 *u*₁
- 2. 选择 u_2
- 3. 依次选择*w*₁, *w*₂, *w*₃
- 4. 依次选择 $p_1, ..., p_6$

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

算法运行过程:

- 1. 选择 *u*₁
- 2. 选择 u_2
- 3. 依次选择*w*₁, *w*₂, *w*₃
- 4. 依次选择 $p_1, ..., p_6$

• 算法输出 $\{u_1, u_2, w_1, w_2, w_3, p_1, p_2, p_3, p_4, p_5, p_6\}$, SOL=11

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

k! 个度为k 的顶点 $v_i(i = 1, ..., k!)$

 $\left| \frac{k!}{k}$ 个度为 k的顶点 $u_j \right| \left| \frac{k!}{k-1}$ 个度为k-1 的顶点 $w_l \right|$

 $\frac{k!}{1}$ 个度为 1 的顶点 p_s

算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

k! 个度为k 的顶点 $v_i(i=1,...,k!)$

算法运行过程:

- 1. 依次选择 $u_1, ..., u_{\frac{k!}{k}}$
- 2. 依次选择 $w_1, ..., w_{\frac{k!}{k-1}}$
- 3. 依次选择 $p_1, ... p_{\frac{k!}{1}}$

 $\left[\frac{k!}{k}$ 个度为 k的顶点 $u_j\right]\left[\frac{k!}{k-1}$ 个度为k-1的顶点 $w_l\right]$

 $\frac{k!}{1}$ 个度为 1 的顶点 p_s

• 最优解 = $\{v_1, v_2, ..., v_{k!}\}$, OPT= k!

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

k! 个度为k 的顶点 $v_i(i=1,...,k!)$

算法运行过程:

- 1. 依次选择 $u_1, ..., u_{\frac{k!}{k}}$
- 2. 依次选择 $w_1, ..., w_{\frac{k!}{k-1}}$
- 3. 依次选择 $p_1, ... p_{\frac{k!}{1}}$

 $\left[\frac{k!}{k}$ 个度为 k的顶点 $u_j\right]\left[\frac{k!}{k-1}$ 个度为k-1的顶点 $w_l\right]$

 $\frac{k!}{1}$ 个度为 1 的顶点 p_s

- 最优解 = $\{v_1, v_2, ..., v_{k!}\}$, OPT= k!
- 算法输出 $\{u_1, \dots, u_{\frac{k!}{k}}, w_1, \dots, w_{\frac{k!}{k-1}}, p_1, \dots p_{\frac{k!}{1}}\}$

• 算法思想:每次找到一个顶点,使得它覆盖最大数目的未覆盖边。

k! 个度为k 的顶点 $v_i(i = 1, ..., k!)$

算法运行过程:

- 1. 依次选择 $u_1, ..., u_{\frac{k!}{k}}$
- 2. 依次选择 $w_1, \dots, w_{\frac{k!}{k-1}}$
- 3. 依次选择 $p_1, ... p_{\frac{k!}{1}}$

 $\left[\frac{k!}{k}$ 个度为 k的顶点 $u_j\right]\left[\frac{k!}{k-1}$ 个度为k-1的顶点 $w_l\right]\left[\frac{k!}{k-1}\right]$

 $\frac{k!}{1}$ 个度为 1 的顶点 p_s

- 最优解 = $\{v_1, v_2, ..., v_{k!}\}$, OPT= k!
- 算法输出 $\{u_1, \dots, u_{\frac{k!}{k}}, w_1, \dots, w_{\frac{k!}{k-1}}, p_1, \dots p_{\frac{k!}{1}}\}$, $SOL=k!\left(\frac{1}{k}+\frac{1}{k-1}+\frac{1}{k-2}+\dots+1\right)$ $\approx k!\left(\log(k)\right)$

常数近似比算法

Approx-Vertex-Cover(*G*)

```
Input: A graph G = (V, E)
Output: A set of vertices C
C \leftarrow \emptyset
E' \leftarrow E
while E' \neq \emptyset
      let (u, v) be an arbitrary edge of E'
      C \leftarrow C \cup \{u, v\}
      remove from E' every edge incident on either u or v
return C
```

时间复杂度: O(|V| + |E|)

运行实例

常数近似比算法

Approx-Vertex-Cover(*G*)

```
Input: A graph G = (V, E)
Output: A set of vertices C
C \leftarrow \emptyset
E' \leftarrow E
while E' \neq \emptyset
      let (u, v) be an arbitrary edge of E'
      C \leftarrow C \cup \{u, v\}
      remove from E' every edge incident on either u or v
return C
```

- 时间复杂度: O(|V| + |E|)
- 2-近似算法

• 匹配(Matching) 给定无向图 G = (V, E) , G的一个匹配为G的一个边的子集 $M \subseteq E$, 使得 V中每个顶点最多是M的一条边的端点。

• 匹配(Matching) 给定无向图 G = (V, E), G的一个匹配为G的一个边的子集 $M \subseteq E$, 使得 V中每个顶点最多是M的一条边的端点。

● 每条边构成一个匹配

如: $\{(a,b)\},\{(b,c)\}$

• 匹配(Matching) 给定无向图 G = (V, E), G的一个匹配为G的一个边的子集 $M \subseteq E$, 使得 V中每个顶点最多是M的一条边的端点。

● 每条边构成一个匹配

如: $\{(a,b)\},\{(b,c)\}$

• { (b, c), (e, f), (d, g)}是一个匹配

• 匹配(Matching) 给定无向图 G = (V, E), G的一个匹配为G的一个边的子集 $M \subseteq E$, 使得 V中每个顶点最多是M的一条边的端点。

● 每条边构成一个匹配

如: $\{(a,b)\},\{(b,c)\}$

- {(b,c),(e,f),(d,g)}是一个匹配
- { (a,b), (c,d), (e,f)}是一个匹配

• 匹配(Matching) 给定无向图 G = (V, E), G的一个匹配为G的一个边的子集 $M \subseteq E$, 使得 V中每个顶点最多是M的一条边的端点。

• 最大匹配(Maximum matching)问题

输入:无向图 G = (V, E)

输出: G 的最大匹配,即G 不是任何匹配的真子集。

● { (b,c), (e,f), (d,g)} 是一个最大匹配

• 匹配(Matching) 给定无向图 G = (V, E), G的一个匹配为G的一个边的子集 $M \subseteq E$, 使得 V中每个顶点最多是M的一条边的端点。

• 最大匹配(Maximum matching)问题

输入:无向图 G = (V, E)

输出: G 的最大匹配,即包含边的数目最大的匹配。

- { (b,c), (e,f), (d,g)} 是一个最大匹配
- { (a,b), (c,d), (e,f)} 是一个最大匹配

• 假设 M^* 是图 G 的最大匹配 , C^* 是G的最小顶点覆盖 , C是算法输出

• 假设 M^* 是图 G 的最大匹配 , C^* 是G的最小顶点覆盖 , C是算法输出

- $\{(a,b),(c,d),(e,f)\}$ 是一个最大匹配
- {*a*, *b*, *c*, *d*, *e*, *f*}是一个顶点覆盖

• 假设 M^* 是图 G 的最大匹配, C^* 是G的最小顶点覆盖, C是算法输出. 由于 M^* 为最大匹配, M^* 中所有边的端点构成 G 的一个顶点覆盖。

- {(a,b),(c,d),(e,f)}是一个最大匹配
- {a,b,c,d,e,f}是一个顶点覆盖

• 假设 M^* 是图 G 的最大匹配, C^* 是G的最小顶点覆盖, C是算法输出。由于 M^* 为最大匹配, M^* 中所有边的端点构成 G 的一个顶点覆盖。(反证:若不构成G 的一个顶点覆盖,则存在一条边(u,v)使得u,v均不在顶点覆盖中,则可把 $M^* \cup \{(u,v)\}$ 是一个匹配,与 M^* 是最大匹配矛盾。)

- { (a,b), (c,d), (e,f)}是一个最大匹配
- {a,b,c,d,e,f}是─个顶点覆盖

常数近似比算法

Approx-Vertex-Cover(*G*)

$$C = \{b, c, e, f, d, g\}$$

记算法第4行取出的边构成集合A,

Input: A graph G = (V, E)Output: A set of vertices C

 $C \leftarrow \emptyset$

 $E' \leftarrow E$

while $E' \neq \emptyset$

let (u, v) be an arbitrary edge of E'

$$C \leftarrow C \cup \{u, v\}$$

remove from E' every edge incident on either u or v return C

- 时间复杂度: O(|V| + |E|)
- 2-近似算法

• 假设 M^* 是图 G 的最大匹配, C^* 是G的最小顶点覆盖, C是算法输出。由于 M^* 为最大匹配, M^* 中所有边的端点构成 G 的一个顶点覆盖。(反证:若不构成G 的一个顶点覆盖,则存在一条边(u,v)使得u,v均不在顶点覆盖中,则可把 $M^* \cup \{(u,v)\}$ 是一个匹配,与 M^* 是最大匹配矛盾。)记算法第4行取出的边构成集合 A,显然 A 是一个匹配,且|C| = 2|A|.因此, $|C| \le 2|M^*|$ 。

• 假设 M^* 是图 G 的最大匹配, C^* 是G的最小顶点覆盖, C是算法输出。由于 M^* 为最大匹配, M^* 中所有边的端点构成 G 的一个顶点覆盖。(反证:若不构成G 的一个顶点覆盖,则存在一条边(u,v)使得u,v均不在顶点覆盖中,则可把 $M^* \cup \{(u,v)\}$ 是一个匹配,与 M^* 是最大匹配矛盾。)记算法第4行取出的边构成集合 A,显然 A 是一个匹配,且|C| = 2|A|.因此, $|C| \le 2|M^*|$ 。

由于 A 中任意两条边没有公共点,即A 中每条边被不同的顶点覆盖,

因此 , $|C^*| \ge |A| = |M^*|$

 $C = \{b, c, e, f, d, g\}$

• 假设 M^* 是图 G 的最大匹配, C^* 是G的最小顶点覆盖, C是算法输出. 由于 M^* 为最大匹配, M^* 中所有边的端点构成 G 的一个顶点覆盖。

(反证:若不构成G 的一个顶点覆盖,则存在一条边(u,v)使得u,v均不在顶点覆盖中,则可把 $M^* \cup \{(u,v)\}$ 是一个匹配,与 M^* 是最大匹配矛盾。)

记算法第4行取出的边构成集合 A , 显然 A 是一个匹配 , 且|C| = 2|A|.

因此 , $|C| \leq 2|M^*|$ 。

由于 A 中任意两条边没有公共点,即A 中每条边被不同的顶点覆盖,

因此 , $|C^*| \ge |A| = |M^*|$

 $C = \{b, c, e, f, d, g\}$

综上,得 $\frac{|C|}{|C^*|} \le \frac{2|M^*|}{|M^*|} = 2$ 。

因此,算法Approx-Vertex-Cover(G)为2-近似算法。

背景

基本概念

顶点覆盖问题

旅行商问题

集合覆盖问题

哈密顿回路问题

• 哈密顿回路问题

輸入: 无向图 G

• 问题: G 是否存在一条哈密顿回路,即通过图中每个节点一次且仅一次的

回路

NP完全问题

• 欧拉回路问题

輸入: 无向图

• 问题: G 是否存在一条欧拉回路,即通过图中每条边一次且仅一次的回路

• 多项式时间可解

• G有欧拉回路当且仅当G中每个点的度为2

• 定理:如果 P≠NP , 则对任意常数 $r \ge 1$, 旅行商问题不存在具有 近似比 r 的多项式时间近似算法。

反证:假设 A 是旅行商问题的近似比为常数 r 的多项式时间近似算法。基于算法 A 构造哈密顿回路的多项式时间算法 A_H :给定任意哈密顿回实例,即无向图 G_{HC} ,且顶点数为 n

- 1. 将 G_{HC} 映射为 G_{TSP} ;
- 2. 用算法 A 求 G_{TSP} 的旅行商问题近似解,即旅程 ρ ;
- 3. 如果 $|\rho| = n$,则 G_{HC} 存在哈密顿回路;
- 4. 否则 , G_{HC} 不存在Hamilton 回路。

下面证明算法 A_H 的正确性,即证明:

 G_{HC} 有哈密顿回路 当且仅当 $|\rho| = n$.

下面证明算法 A_H 的正确性,即证明:

 G_{HC} 有哈密顿回路 当且仅当 $|\rho| = n$ 。

- (⇐) 若 $|\rho| = n$,则 ρ 中每条边都在 G_{HC} 中, 因此, ρ 为 G_{HC} 的哈密顿回路。
- (\Rightarrow)若 G_{HC} 有哈密顿回路,则也为图 G_{TSP} 上旅行商问题的最优解,其值为n。假设近似解 ρ 的长度 $|\rho|>n$,则 ρ 中至少包含一条权重为 nr+1 的边,得

$$|\rho| \ge n - 1 + nr + 1 = n(r+1)$$
,

与 A_H 是 r -近似算法矛盾,则假设不成立,即 $|\rho|=n$ 。

综上,算法 A_H 是正确的,即 A_H 是哈密顿回路问题的多项式时间算法,与其是NP完全问题矛盾。

故假设不成立,即旅行商问题不存在 r -近似算法。

旅行商问题的一个特例

- 满足三角不等式的无向完全图 G
 - 对G中任意三条边:(u,v),(v,w),(w,u),边上代价分别为 c_1 , c_2 , c_3

均有: $c_1 + c_2 \ge c_3$

- 输入:满足三角不等式的无向完全图G = (V, E),其中每条边 (u, v)都有一个非负整数代价 c(u, v)
- 输出:具有最小代价的哈密顿回路A,其中

$$c(A) = \sum_{(u,v) \in a} c(u,v)$$

- 度量旅行商问题有常数近似比近似算法
 - 2-近似算法
 - 1.5 近似算法

• 观察:图 G的一个哈密顿回路去掉一条边,得到图 G的一棵生成树

• 观察:图 G的一个哈密顿回路去掉一条边,得到图 G的一棵生成树

算法Metric-TSP步骤:

- 观察:图 G的一个哈密顿回路去掉一条边,得到图 G的一棵生成树
- 算法Metric-TSP步骤:
 - 1. 构造图G的最小生成树 T^* ;

- 观察:图 G的一个哈密顿回路去掉一条边,得到图 G的一棵生成树
- 算法Metric-TSP步骤:
 - 1 构造图G的最小生成树 T^* ;
 - 2. 从 T^* 的任意一个顶点开始,绕着这棵最小生成树散步一周,并记录下经过的顶点,构成顶点列表 L;

- 观察:图 G的一个哈密顿回路去掉一条边,得到图 G的一棵生成树
- 算法Metric-TSP步骤:
 - 1 构造图G的最小生成树 T^* ;
 - 2. 从 T^* 的任意一个顶点开始,绕着这棵最小生成树散步一周,并记录下经过的顶点,构成顶点列表 L;
 - 3. 扫描顶点列表 L ,删除所有重复出现的顶点,但留下L 尾部的起始顶点;

- 观察:图 G的一个哈密顿回路去掉一条边,得到图 G的一棵生成树
- 算法Metric-TSP步骤:
 - 1 构造图G的最小生成树 T^* ;
 - 2. 从 T^* 的任意一个顶点开始,绕着这棵最小生成树散步一周,并记录下经过的顶点,构成顶点列表 L;
 - 3. 扫描顶点列表 L ,删除所有重复出现的顶点,但留下L 尾部的起始顶点;
 - 4. 列表中余下的顶点就构成了一条哈密顿回路,为算法输出。

- 观察:图 G的一个哈密顿回路去掉一条边,得到图 G的一棵生成树
- 算法Metric-TSP步骤:
 - 1 构造图G的最小生成树 T^* ;
 - 2. 从 T^* 的任意一个顶点开始,绕着这棵最小生成树散步一周,并记录下经过的顶点,构成顶点列表 L;
 - 3. 扫描顶点列表 L ,删除所有重复出现的顶点,但留下L 尾部的起始顶点;
 - 4. 列表中余下的顶点就构成了一条哈密顿回路,为算法输出。

• 定理:算法Metric-TSP是 2-近似算法。

• 定理:算法Metric-TSP是 2-近似算法。

证明:给定无向加权图 G,最优解 为 C^* , C^* 去掉一条边后为G的一个生成树 T, G的最小生成树为 T^* ,算法输出 G。

• 定理:算法Metric-TSP是 2-近似算法。

证明:给定无向加权图 G,最优解 为 C^* , C^* 去掉一条边后为G的一

个生成树 T , G的最小生成树为 T^* , 算法输出 C 。有以下结论:

- 1) $c(C^*) > c(T) \ge c(T^*)$
- 2) $2 c(T^*) > c(C)$

• 定理:算法Metric-TSP是 2-近似算法。

证明:给定无向加权图 G,最优解 为 C^* , C^* 去掉一条边后为G的一

个生成树 T , G的最小生成树为 T^* , 算法输出 C 。有以下结论:

- 1) $c(C^*) > c(T) \ge c(T^*)$
- 2) $2 c(T^*) > c(C)$

得: $c(C) < 2c(C^*)$ 。因此, Metric-TSP是 2-近似算法。

- [1] Ausiello, Crescenzi, Gambosi, etc. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. 1999
- [2] Hochbaum (Editor). Approximation Algorithms for NP-Hard Problems. 1997
- [3] Vijay V. Vazirani. Approximation Algorithms. 2001
- [4] D.P. Williamson & D.B. Shmoys. The Design of Approximation Algorithms. 2010
- [5] D.Z Du, K-I. Ko & X.D. Hu. Design and Analysis of Approximation Algorithms.

考试须知

北京航空航天大学 计算机学院

北航《算法设计与分析》

考试安排

• 考试时间

• 正式考试时间:2022年12月23日13:20-15:20

模拟时间:2022年12月17日19:00-20:00

• 考试方式

- 线上开卷考试
- 只允许使用课件(打印/电子版),不允许上网查询,不可使用键盘
- 考试过程全程进行视频录制,请遵守考试纪律规范

• 平台选用

• 监考平台:腾讯会议

试卷发放平台:北航云盘

• 试卷回收平台:北航云盘

考题类型

• 填空题 ×4

• 判断题 ×4

• 算法运行实例题 ×2

• 算法设计题 ×4