# Trust Region Policy Optimization (TRPO) Original Paper by Schulman et al. [2017]

Matthew Vandergrift

Robot Learning Seminar Presentation

March 2025

#### Motivation



#### Motivation



#### Motivation



#### **Existing Solutions**

- Reinforce
- Basic Actor-Critic Algorithms
- Natural Policy Gradients
- Derivative Free Methods: cross-entropy method, covariance matrix adaptation.

#### Once again, ... RL

"RL is computational framework for learning from interaction" Sutton and Barto [2018]. The agent interacts with an environment with the goal of maximizing expected return. Let us denote expected return for a particular policy by  $\eta(\pi)$ .

#### Advantage Function

Recall the advantage function  $A_{\pi}(s, a)$  defined as,

$$A_{\pi}(s,a) = Q_{\pi}(s,a) - V_{\pi}(s)$$

This function tells us how "good" taking action is compared to what we would have done otherwise.

#### Policy Improvement via Advantage

Since policies are just collections of actions, we can use advantage function to evaluate them. Let  $\pi$  and  $\pi'$  be two different policies. Equation 1 gives a way to write the performance of  $\pi'$  using the performance of  $\pi$  and the advantage function.

$$\eta(\pi') = \eta(\pi) + \sum_{s} \mu_{\pi'}(s) \sum_{a} \pi'(a|s) A_{\pi}(s, a).$$
(1)

Proof in appendix

#### RL is Solved!

At first glance we have a solution!

#### Algorithm The Perfect RL Algorithm

**Require:**  $\pi$  and  $\eta(\pi)$ 

1: 
$$\max_{\pi'} (\eta(\pi) + \sum_{s} \mu_{\pi'}(s) \sum_{a} \pi'(a|s) A_{\pi}(s,a))$$

This doesn't work because we have a dependence on the policy distribution which is not something we have access to when considering  $\pi'$ .

#### Dealing with $\mu_{\pi'}$

- Let's use  $\mu_{\pi}$  instead of  $\mu_{\pi'}$
- Define  $L_{\pi}(\pi') = \eta(\pi) + \sum_{s} \mu_{\pi}(s) \sum_{a} \pi'(a|s) A_{\pi}(s,a)$
- Assume  $\pi$  is a parameterized by weights  $\theta$ .
- Gives us a local first order approximation,  $\nabla_{\theta} L_{\pi_{\theta_0}}(\theta_{\theta})|_{\theta=\theta_0} = \nabla_{\theta} \eta_{\pi_{\theta_0}}(\theta_{\theta})|_{\theta=\theta_0}$
- If we take **small** steps in  $\theta$  then we can use our 'Perfect RL algorithm'.

#### What is a small step?

A Major Contribution of the Paper is the following bound,

#### $\mathsf{Theorem}$

Let 
$$D_{KL}^{max}(\pi,\pi'):=\max_s D_{KL}\left(\pi(*|S)||\pi'(*|s)\right)$$
. We then have that,  $\eta(\pi')\geq L_{\pi}(\pi')-CD_{KL}^{max}(\pi,\pi')$  where  $C=\frac{4\epsilon\gamma}{(1-\gamma)^2}$ 

This means we can bound the improvement between any-two policies based on their KL divergence. This means if we optimize within a certain KL distance we can *guarantee improvement*.

#### A More Perfect RL Algorithm

 $\begin{tabular}{ll} {\bf Algorithm} \ {\bf 1} \ {\bf Policy} \ iteration \ algorithm \ guaranteeing \ non-decreasing \ expected \ return \ \eta \end{tabular}$ 

Initialize  $\pi_0$ . for  $i=0,1,2,\ldots$  until convergence do

Compute all advantage values  $A_{\pi_i}(s, a)$ . Solve the constrained optimization problem

$$\begin{split} \pi_{i+1} &= \operatorname*{arg\,max}_{\pi} \left[ L_{\pi_i}(\pi) - CD^{\max}_{\mathrm{KL}}(\pi_i, \pi) \right] \\ &\text{where } C = 4\epsilon \gamma/(1-\gamma)^2 \\ &\text{and } L_{\pi_i}(\pi) = \eta(\pi_i) + \sum_s \rho_{\pi_i}(s) \sum_a \pi(a|s) A_{\pi_i}(s, a) \end{split}$$

end for

The constraint is not computable due to  $\max_s f(s)$ .



#### Make RL in Practice

- Computable constraint
- Cheap cost function
- Cheap constrained optimization solver

#### Computable Constraint

We want to make our constrained optimization solvable.

- Get rid of max KL constraint over the whole state space.
- Define 'Average' KL,  $ar{D}_{\mathsf{KL}} := \mathbb{E}_{s \sim \mu_{\pi_{\theta}}} \left[ D_{\mathsf{KL}} \left( \pi_{\theta}(*|S) || \pi_{\theta_{old}}(*|s) \right) \right]$
- Estimate this Expectation using roll-outs under the policy.

This gives us,

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\theta_{old}, \theta) \leq \delta$ 

## Cheap Cost Function

We want to make  $L_{\theta_{old}}(\theta)$  fast to compute.

$$L_{ heta_{old}}( heta) = \sum_{s} \mu_{\pi_{ heta_{old}}} \sum_{a} \pi_{ heta}(a|s) A_{ heta_{old}}(s,a)$$
 (Definition of  $L$ )

We replace the sums by an expectation, and A with estimator  $\hat{A}$ 

$$L_{ heta_{old}}( heta) = \mathbb{E}_{ extbf{a} \sim \pi_{ heta_{old}}, s \sim \pi_{ heta_{old}}} \left[ rac{\pi_{ heta}( extbf{a}|s)}{\pi_{ heta_{old}}( extbf{a}|s)} \cdot \hat{A}_{ heta_{old}}(s, a) 
ight]$$

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\pi_{\theta_{old}}, \pi_{\theta}) \leq \delta$ 

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{\mathit{KL}}(\pi_{\theta_{old}}, \pi_{\theta}) \leq \delta$ 

Actual Taylor expansion Lies invented by mathematicians to feel superior to physicists 
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \dots$$

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\pi_{\theta_{old}}, \pi_{\theta}) \leq \delta$ 

First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

 $\max_{\theta} \, L_{\theta_{old}}(\theta) \text{ subject to } \, \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$  First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

$$L_{\theta_{old}}(\theta) \approx L_{\theta_{old}}(\theta_{old}) + g^{T}(\theta - \theta_{old})$$

$$\max_{\theta} \, L_{\theta o l d}(\theta) \text{ subject to } \, \bar{D}_{KL}\left(\pi_{\theta o l d}, \pi_{\theta}\right) \leq \delta$$
 First Order of Taylor Expansion to  $L_{\theta o l d}(\theta)$ 

$$L_{\theta_{old}}(\theta) \approx L_{\theta_{old}}(\theta_{old}) + g^{T}(\theta - \theta_{old})$$
  
$$L_{\theta_{old}}(\theta) \approx 0 + g^{T}(\theta - \theta_{old})$$

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

$$L_{\theta_{old}}(\theta) \approx L_{\theta_{old}}(\theta_{old}) + g^{T}(\theta - \theta_{old})$$
  
$$L_{\theta_{old}}(\theta) \approx 0 + g^{T}(\theta - \theta_{old}) <$$

Let 
$$\Delta heta = ( heta - heta_{old})$$
  $L_{ heta_{old}}( heta) pprox extbf{g}^{ extsf{T}} \Delta heta$ 

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\pi_{\theta_{old}}, \pi_{\theta}) \leq \delta$ 

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $ar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

$$\begin{split} \bar{D}_{\textit{KL}}\left(\pi_{\theta_{\textit{old}}}, \pi_{\theta}\right) &\approx \bar{D}_{\textit{KL}}\left(\pi_{\theta_{\textit{old}}}, \pi_{\theta_{\textit{old}}}\right) + \nabla_{\theta} \hat{D}_{\textit{KL}}\left(\pi_{\theta_{\textit{old}}} || \pi_{\theta}\right) |_{\theta_{\textit{old}}} \cdot (\theta - \theta_{\textit{old}}) + \\ &\frac{1}{2}(\theta - \theta_{\textit{old}})^{\mathsf{T}} H(\theta - \theta_{\textit{old}}) \end{split}$$

$$\max_{\theta} L_{ heta_{old}}(\theta)$$
 subject to  $ar{D}_{\mathit{KL}}\left(\pi_{ heta_{old}}, \pi_{ heta}
ight) \leq \delta$ 

$$\begin{split} \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) &\approx \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta_{old}}\right) + \nabla_{\theta} \hat{D}_{KL}(\pi_{\theta_{old}} || \pi_{\theta})|_{\theta_{old}} \cdot (\theta - \theta_{old}) + \\ &\frac{1}{2}(\theta - \theta_{old})^T H(\theta - \theta_{old}) \\ \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) &\approx 0 + 0 + \frac{1}{2} \Delta \theta^T H \Delta \theta \end{split}$$

$$\max_{\theta} L_{ heta_{old}}(\theta)$$
 subject to  $ar{D}_{\mathit{KL}}\left(\pi_{ heta_{old}}, \pi_{ heta}
ight) \leq \delta$ 

$$\begin{split} \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) &\approx \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta_{old}}\right) + \nabla_{\theta} \hat{D}_{KL}(\pi_{\theta_{old}} || \pi_{\theta})|_{\theta_{old}} \cdot (\theta - \theta_{old}) + \\ &\frac{1}{2}(\theta - \theta_{old})^T H(\theta - \theta_{old}) \\ \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) &\approx 0 + 0 + \frac{1}{2}\Delta \theta^T H \Delta \theta \\ \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) &\approx \frac{1}{2}\Delta \theta^T H \Delta \theta \end{split}$$

We now have a new constrained optimization problem,

$$\begin{aligned} & \operatorname{argmax}_{\theta} \ g^{T} \Delta \theta \\ & \operatorname{subject to} \ \frac{1}{2} \Delta \theta^{T} H \Delta \theta \leq \delta \end{aligned}$$

Now since it's a nice quadratic/convex contrainst we can solve,

$$heta = heta_{
m old} + \sqrt{rac{2\delta}{g^t H^{-1}g}} H^{-1}g.$$

skip derivation

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H(\theta - \theta_{old}) - \delta \right)$$

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H(\theta - \theta_{old}) - \delta \right)$$
$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H (\theta - \theta_{old}) - \delta \right)$$

$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$

$$\Delta \theta = -\frac{2}{\lambda} H^{-1} g$$

Use Lagrangian to solve the constrained optimization

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H (\theta - \theta_{old}) - \delta \right)$$

$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$

$$\Delta \theta = -\frac{2}{\lambda} H^{-1} g$$

This looks like SGD, set  $\alpha = -\frac{2}{\lambda}$ 

Use Lagrangian to solve the constrained optimization

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H (\theta - \theta_{old}) - \delta \right)$$

$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$

$$\Delta \theta = -\frac{2}{\lambda} H^{-1} g$$

This looks like SGD, set  $\alpha = -\frac{2}{\lambda}$ 

$$\Delta \theta = \alpha H^{-1} g$$

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^T H \Delta\theta = \delta$$

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^T H \Delta\theta = \delta$$
$$\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta$$

We have  $\Delta \theta = \alpha H^{-1} g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta \theta^T H \Delta \theta = \delta$$
$$\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta$$

Now we simply re-arrange

We have  $\Delta \theta = \alpha H^{-1} g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta \theta^T H \Delta \theta = \delta$$

$$\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$

We have  $\Delta \theta = \alpha H^{-1} g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^{T}H\Delta\theta = \delta$$
$$\frac{1}{2}\alpha H^{-1}g^{T}H\alpha H^{-1}g = \delta$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$
$$\alpha = \sqrt{\frac{2\delta}{g^t H g}}$$

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta \theta^T H \Delta \theta = \delta$$
$$\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$
$$\alpha = \sqrt{\frac{2\delta}{g^t H g}}$$

Subbing this into  $\Delta\theta = \theta - \theta_{old} = \alpha H^{-1}g$  we get

We have  $\Delta \theta = \alpha H^{-1} g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\begin{aligned} &\frac{1}{2}\Delta\theta^T H \Delta\theta = \delta \\ &\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta \end{aligned}$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$
$$\alpha = \sqrt{\frac{2\delta}{g^t H g}}$$

Subbing this into  $\Delta \theta = \theta - \theta_{old} = \alpha H^{-1}g$  we get

$$\theta = \theta_{old} + \sqrt{\frac{2\delta}{g^T H g}} H^{-1} g$$



 $H^{-1}g$ 

# An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition $1\frac{1}{4}$

Jonathan Richard Shewchuk August 4, 1994

### Line Search

Our approximations have gone back to bite us. We need to check that our ubdpates don't exceed our *actual* constraint using a line search.

### Trust Region Policy Optimization

#### Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters  $\theta_0$ 

for k = 0, 1, 2, ... do

Collect set of trajectories  $\mathcal{D}_k$  on policy  $\pi_k = \pi(\theta_k)$ 

Estimate advantages  $\hat{A}^{\pi_k}_t$  using any advantage estimation algorithm Form sample estimates for

- policy gradient  $\hat{g}_k$  (using advantage estimates)
- and KL-divergence Hessian-vector product function  $f(v) = \hat{H}_k v$

Use CG with  $n_{cg}$  iterations to obtain  $x_k \approx \hat{H}_k^{-1} \hat{g}_k$ 

Estimate proposed step  $\Delta_k pprox \sqrt{\frac{2\delta}{x_k^T \hat{H}_k x_k}} x_k$ 

Perform backtracking line search with exponential decay to obtain final update

$$\theta_{k+1} = \theta_k + \alpha^j \Delta_k$$

end for



### Experimental Results in TRPO Paper



Figure 4. Learning curves for locomotion tasks, averaged across five runs of each algorithm with random initializations. Note that for the hopper and walker, a score of -1 is achievable without any forward velocity, indicating a policy that simply learned balanced standing, but not walking.



## External TRPO Robotics Applications

Mahmood et al. [2018] wrote a paper bencmarking policy gradient algorithms for robotics, including TRPO.

- "TRPO achieving near-best final learning performance in all tasks."
- "Among these algorithms, the final performance of TRPO was never substantially worse compared to the best in each task."
- "TRPO's performance was the least sensitive to hyper-parameter variations with the smallest interquartile range on both tasks."

### Next Steps

- The Chosen Path
  - Clipping
  - Hyperparameter tuning
- Other Approaches:
  - More precise approximations  $\rightarrow$  no more line search
  - ullet Assumptions about policy structure o tighter bound
  - $\bullet$  Assumptions about function approximator  $\to$  better notation of small step

### Critiques of the Paper

- They leave out critical implementation details [?].
- They compare 'Vine' and 'Path', and Vine is a different problem formulation



# Thank you for listening

Robots following TRPO Policies

### References

- A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra. Benchmarking reinforcement learning algorithms on real-world robots, 2018. URL https://arxiv.org/abs/1809.07731.
- John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region policy optimization, 2017. URL https://arxiv.org/abs/1502.05477.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. A Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249.