projetting the data auto a low-dimensional space, without losing most of the information within

$$Z_1 := \varphi_1^T \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \Rightarrow \begin{array}{l} \text{direction of the feature} \\ \text{Space array which the} \\ \text{data are } \underline{\text{most}} \text{ variable} \end{array}$$

In General:

$$\mathbb{R}^n = (X_1, ..., X_n)$$
 feature space

$$\mathbb{R}^p = (\overline{z_1}, ..., \overline{z_p})$$
 principal component space $(p < n)$

. In training instances ERn

$$\varphi^{e} - Z_{i2} = \varphi_{1}^{T} \chi_{1} = \varphi_{1}^{T} \begin{pmatrix} \chi_{11} \\ \vdots \\ \chi_{n2} \end{pmatrix}$$

XER mxn data matrice

DER PC matrix PCA: 1st juterpretation. Directions of Philphot variable XEIRnxp data set ; p features. E[Xi] = 0 \forall i = 1, ..., p (contered features) thee : Zi= Pnzi++2122+···+ Pp12ip= $= \varphi_{1}^{T} \begin{pmatrix} x_{11} \\ \vdots \\ x_{1n} \end{pmatrix} =$ projection of the i-th training instance onto the 1st princ. comp. GOAL: $ma \times \begin{cases} \frac{7}{N} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} \chi_{ij} \right)^{2} \end{cases}$ with $\| \varphi_{1}^{n} \|^{2} = 1$ $\max_{\Phi_{i}^{T}} \left\{ \frac{1}{h} \sum_{i=1}^{n} \left(\Phi_{i}^{T} \times_{i} \right)^{2} \right\} = \max_{\Phi_{i}^{T}} \mathbb{V} \left[\Phi_{i}^{T} \times \right]$ projection variance bareing the direction upon which the project points have highest wriance.

PCA: 1st juteup zeration, feometric mess.

Repetat until you find the reeded number of PC, adding the constraint the every new PC must be I others (II). Aftere we have found & principal components the whole detent can be projected upon the Cower-dimensional principal component appace.

PCA
1st interpretation: pothing.

The BIROT is a plot that shows the original data with the 1st and 2nd princ comp. It also shows the Coadings for each feature.

original data
$$\begin{pmatrix}
X_{12} & X_{12} & X_{13} \\
X_{21} & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
X_{n1} & X_{n2} & X_{n3}
\end{pmatrix}
\begin{pmatrix}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22} \\
\phi_{31} & \phi_{32}
\end{pmatrix} = \begin{pmatrix}
\frac{2}{4\pi} \begin{pmatrix} 2_{12} \\
2_{21} & 2_{22} \\
\vdots & \vdots & \vdots \\
\sqrt{2}_{n1} & 2_{n2}
\end{pmatrix} < \text{new coordinates of the 3cn}$$

$$\begin{pmatrix}
\phi_{1} & \text{loading vector of the 3cn} \\
\text{the first component}
\end{pmatrix}$$

PCA:

2 not just the principal components can be seen to be also the directions in the feature space that best approximate tue data.

Specifically the Some loading (\$4,..., \$\Pi\) vectors con be shown to be the solution of the following. entimitation problem:

mine
$$\begin{cases} \sum_{j=1}^{p} \sum_{i=1}^{n} \left(2ij - \sum_{m=1}^{H} 2imbim \right)^{2} \end{cases}$$

IDEA:

each point of the training set se; can be approximetred by H products (dim · bin)

JOLUTION

The first M principal conformats scores (Jim : Zim) and Coadings (Pinneland) solve the problem.

Meaning that the projected point (Z1) onto the principal components space is the best least square approx of Xí

% of variance explained

Each festure X; can be deen as a randon vaisble:

Ty with E(X;] = & Cifcentered) and au variance $V[\tilde{X}_j] = E[\tilde{x}_j]^2 - (E[\tilde{X}_j])^2$ So the total vaiance in the data is:

$$\sum_{j=2}^{p} Va((\tilde{\chi}_{j}) = \frac{1}{N} \sum_{j=1}^{p} \sum_{i=1}^{n} \chi_{jj}^{2}$$

Also a princ. comp. ou be seen as a rand var. derived from

 $\chi_2,...,\tilde{\chi}_p$

$$\tilde{Z}_{1},...,\tilde{Z}_{p}$$
.

 $\tilde{Z}_{m} = \Phi_{m}^{T} \begin{pmatrix} \tilde{\chi}_{1} \\ \tilde{\chi}_{p} \end{pmatrix}$ with realization: $Z_{im} = \Phi_{m}^{T} \begin{pmatrix} \chi_{i2} \\ \chi_{ip} \end{pmatrix}$

So we have:
$$V[\tilde{z}_m] = E[\tilde{z}_m^2] - (E[\tilde{z}_l])^2$$

$$= \frac{1}{n} \hat{z}_l^2 + \frac{1}{2} \hat{z}_m - (5[\Phi_m(\tilde{z}_l)])^2$$

I the % of variance explained by the m-th principal compis:

$$\frac{\sqrt{\tilde{L}_{x}^{2}m}}{\sum_{j=1}^{n} \sqrt{\tilde{L}_{x}^{2}j}} = \frac{\sum_{j=1}^{n} Z_{im}^{2}}{\sum_{j=1}^{n} Z_{ij}^{2}}$$

PCA olara prepazation

1. Centering each festure at Ø.

Fundamental to make everything work

2 Fourture Scoling

Then it can be that $V[X_j] \geq V[X_i]$ (i $\neq j$) for Seed and not for any other reason. So a ridea could be standardizing each feature: δ that

$$\tilde{\mathcal{X}}_{\delta} \sim \left(\mathcal{E}(\tilde{\mathcal{X}}_{\delta}) = \emptyset, V(\tilde{\mathcal{X}}_{\delta}) = 1 \right)$$

Unless the 1st p.c. could capture the most variance just of Lome features, cause of their scales and not far Jeane interesting phereomena

Revuel PCA

Notwel PCA assumes that the volume within the olata combe explanate and viewed also an a lower-dimensional hyperplane.

What if the volvance of data could be best understood on a non-linear lower-dimensional Jerstoce within the feature I pace?

We could apply a kerner trick, haping that in an higher—aim. I pace than the original feature space, the data variouse outld be best understood and explained on a linear jurface. (look SUN)

t_ SNE: dim reduction algorithm widely used for imaging

repelled my Omy diffracted: points near in the original space space

t-SNE: moth behind

NOTE [5] LDS computed N t to avoid clust clumerity in LDS