Ketones

27.1¹

Ketones 26.5^{52} X =Н 19.8⁵⁸ Ph 24.6^{27} OMe SPh 18.7 COCH₃ 13.3 S(O)Ph 15.1 12.5⁵⁸ SO₂Ph 16.3⁴⁴ ⁺NMe₃ 11.844 ⁺Py Ar = Ph 24.7^{1} 2-Pv 23.6 4-Py 21.8 23.9 2-Furyl 2-Thienyl 24.0 24.7^{52} X = H 24.4^{58} Me 17.7⁵⁸ Ph 14.2^{58} COMe 13.4⁴² COPh 10.2^{6} C≡N 21.7^{52} OPh 21.134 22.9^{34} OMe NPh₂ 20.3 23.6^{57} NMe₂ 14.6^{6} +NMe₃ 10.744 +Ру 7.7^{6} NO_2 17.1³⁵ $SP\bar{h}$ 11.4^{6} SO₂Ph SePh 18.6^{5} X = H 24.7^{1} р-Ме 25.2 24.5 p-Ph 25.7⁵⁰ p-OMe 24.5⁵⁰ m-OMe 27.5^{50} p-NMe₂ 25.3^{50} m-NMe₂ 24.5^{50} p-F 23.5^{50} m-F 23.8^{50} p-CI 23.2^{50} m-CI 23.8^{50} p-Br 23.8^{50} p-SPh 23.2 p-S(O)Ph 22.1⁵⁰ p-SO₂Ph 23.0^{50} m-SO₂Ph 22.0^{50} p-C≡N 22.7⁵⁰ p-CF₃ 22.8^{50} m-CF₃

EtO OEt
$$X$$
 $X = H$
 $^{+}NMe_3$
 $^{+}NMe_3$
 ^{+}Py
 $^{+}S.6^{44}$

O O O

MeO OMe

 $X = H$
 $^{+}S.9^{43}$
 $^{+}S.6^{43}$
 $^{+}S.6^{43}$
 $^{-}S.6^{44}$

O O O

 $S.6^{44}$
 $S.6^{43}$
 $S.6^{43}$

Amides (C-H) Amides (NH) (35) 23.5^{13} R = H25.5¹³ Me 23.0^{27} CH₂OPh 23.9^{27} CH₂OMe $\overline{\text{CH}_{2}}\overline{\text{SPh}}$ 23.0^{27} 22.3²⁷ 26.6¹⁸ CH₂F CH₂NH₂ 24.7 15.3²⁷ CH₂NMe₃+ 23.3⁴¹ 25.9¹⁸ Ph 22.0²⁷ 3-Py 21.6²⁷ 4-Py 2-Fu 22.5 17.2^{52} CF₃ 24.2^{51} 18.2⁵¹ OEť NH_2 26.9 21.5^{41} R = Me25.7⁵¹ 18.8⁴¹ Ph CH₂F 18.2 CH₂OMe 19.4 CH₂SPh 19.0 21.3⁵¹ 12.6 17.0⁵⁷ N≡C-NH₂ 18.5^{51} 10.0^{51} 25.9^{57} 13.5^{51} 18.5^{41} X = 0 23.3 $X = S 16.9^{41}$ 16.9⁴¹ $X = O 24.2^{51}$ 18.5^{51} 10.0^{51} 14.7

Amides (NH)

Carbamates (NH)

Nitro

Acetylenes

 15.0^{48}

Nitriles

PhCH(Me)CN **Malononitriles**

(NC)₂CHCH₃

 $N \equiv CCH(C_6F_5)_2$

N≡CCHPh₂

N≡C-FI

$$\begin{array}{c} N > C \\ R \\ R = H \\ Me \\ Ph \\ Ph \\ PCG_6H_4 \\ PC$$

12.4¹³

17.5^{9,60}

 8.0^{37}

 8.3^{1}

23.0⁶⁰

Hydrocarbons

 $\begin{array}{lll} Ph_2CH_2 & 32.3^3 \\ (CH_2=CH)_2CH_2 & 35.^{19} \\ (C_6F_5)_2CH_2 & 22.0^{37} \\ (p\cdot O_2N\cdot C_6H_4)_2CH_2 & 15.2^{54} \\ Ph_3CH & 30.6^1 \\ (p\cdot Cl\cdot C_6H_4)_3CH & 27.0 \\ (p\cdot O_2N\cdot C_6H_4)_3CH & 12.7^{54} \\ \end{array}$

Hydrocarbons

 21.8^{22}

Heteroaromatics

Fluorenes

 $S(O_2)Et$

 $S(O_2)^tBu$

 $S(O_2)Ph$

F

CI

12.3

12.3

11.5

22.3

18.9

Oxazole

Imidazolium

Thiazole

Allyl

CH ₂ =CH-CH ₃	$(44)^{52}$
$(CH_2=CH)_2CH_2$	35. ¹⁹
Ph	05.052
Ph Ph	25.8 ⁵²
$Ph \searrow N \searrow Ph$	
l l Ph Ph	26.5
Ph ₃ [‡] -CH ₂ -CH=CH ₂	18.5 ²⁹
Ph ₃ P-CH ₂ -CH=CHPh	15.6 ²⁹
PhS	26.3
PhSe SePh	26.3
PhSO ₂ -CH ₂ CH=CH ₂	22.5^{52}
O ₂ N-CH ₂ CH=CH ₂	11.3

Propargyl

PhSO₂-CH₂C \equiv CH 22.1 PhSO₂-CH₂C \equiv CPh 17.8

 20.2^{51}

$\begin{array}{lll} \text{MeS-CH}_3 & (45)^{52} \\ \text{PhS-CH}_2\text{-X} & & \\ X = H & (42)^{52} \\ \text{Ph} & 30.8^{10} \\ \text{C=N} & 20.8^5 \\ \text{COMe} & 18.7^{10} \\ \text{COPh} & 17.1^{35} \end{array}$
$X = H$ $(42)^{52}$ Ph 30.8^{10} $C=N$ 20.8^{5} COMe 18.7^{10} COPh 17.1^{35}
$\begin{array}{ccc} \text{Ph} & 30.8^{10} \\ \text{C=N} & 20.8^{5} \\ \text{COMe} & 18.7^{10} \\ \text{COPh} & 17.1^{35} \end{array}$
NO ₂ 11.8 ¹⁰ +NMe ₃ 28.0 ⁴⁴ +Py 17.7 ⁴⁴ SPh 30.8 ³ SO ₂ Ph 20.5 ⁵ SO ₂ CF ₃ 11.0 ¹⁰ POPh ₂ 24.9 MeS-CH ₂ -SO ₂ Ph 23.4 ⁵ MeS-Fl 18.0 ⁷ PhS-Fl 15.5 ⁵ MeS-CH ₂ -CN 24.3 ²¹ t-BuS-CH ₂ -CN 22.9 ²¹ PhSCHPh ₂ 26.7 ¹⁰ (PhS) ₂ CHPh 23.0 ¹⁰
SPN 26.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Selenides

 30.5^{10}

26.3

Sulfoxides

Ph S X
$$X = H$$
 33. 15 Ph 27.2 SOPh 18.2 O

Me S X $X = H$ 35.11 SMe 29.0 Ph 29.01 O

Ph S CHPha 24.6

Sulfonium Salts

$Me_3\dot{S}=O$	18.2
Ph-+S Ph-+Ph	16.3
Me_+S —Ph	17.8 ³²
FI-SMe ₂	6.5 ³²

Sulfoximides (C-H)

NMe Ph-S-Me	33.0 ¹⁵
Ö NTs	00.0
Ph-S-CH ₂ -X	
Ö X=H	24.5 ¹⁵ 20.7
0.	20.7
NTs Ph-S-CH(SiMe ₃) ₂	19.1 ²⁶
NSO ₂ Ph Ph-S——	28.5
NSO₂Ph Ph-S—— Ö	28.7
N ⁺ Me ₂	

Sulfonates

Ph-S-Me

 14.4^{15}

Sulfonamides (C-H)

Sulfones

Sulfones

Halides

nalides	
Ph-SO ₂ -CH ₂ -X	
X = H	29.0^{1}
F	29.0 ¹ 28.5 ⁵²
CI	23.8
Ö	
ู Ph-S-CH ₂ -Cl	20.7
NTs	
Q	
ດ Ph-S-CHCl₂	16.9
NTs	
0	
(MeO) ₂ P-CH ₂ CI	26.2
0	
Ĭ -	
Ph Ph	20.2^{52}
ļ	

Silanes (C-H)

Ethers

Elliers	
PhO-CH ₃	$(49)^{52}$
MeO-CH ₂ COPh	22.9 ⁵
PhO-CH ₂ COPh	21.1 ⁵
MeO-CH ₂ SO ₂ Ph	30.7^{5}
PhO-CH ₂ SO ₂ Ph	27.9^{5}
PhO-CH ₂ C≡N	28.1 ⁵
X = FI-X	
X = H Ph MeO iPrO tBuO PhO	22.6 ²¹ 17.9 ⁵² 22.1 ⁵ 21.4 ⁵ 21.3 ⁵ 19.9 ⁵
X	

X = H

OMe

OPh

31.1

30.6

30.2

Phosphines

Ph ₂ P-CH ₂ -PPh ₂	29.9^{3}
Ph ₂ P-CH ₂ -SO ₂ Ph	20.2^{3}

Phosphonium (As) Salts

Ph₃ [‡] -CH₂-X	
X = H Ph	22.4 ³³ 17.4 ³³
p-C ₆ H ₄ -CN p-C ₆ H ₄ -NO ₂	13.0 ²⁹ 11.0 ²⁹
p-C ₆ H ₄ -NC ₂ p-C ₆ H ₄ -OEt SPh	18.8 ²⁹ 14.9 ³³
CO ₂ Et	8.5 ³³ 7.1 ³³
COMe CHO	6.1^{33}
CN COPh	6.9 ³³ 6.0 ³³
Ph ₃ P-CHMeCO ₂ Et	9.3^{33}
Ph ₃ P-Pr- <i>i</i>	21.2
Ph ₃ P-CH ₂ -C ₆ H ₄ CN	13.0 ²⁹
Ph ₃ As-CH ₂ -C ₆ H ₄ CN	17.0 ²⁹
Ph ₃ P-CH ₂ -CH=CH ₂	18.5 ²⁹
Ph ₃ [†] CH ₂ -CH=CHPh	15.6 ²⁹
Ph ₃ P-Fl	6.6 ³³

Phosphonates

Phosphine Oxides

Germanes (Ge-H)

Ph₃Ge-H 23.1⁶³

Amines (CH)

 $(41)^{19}$

Amines (NH)

 NH_3

N-H
$$(44)^{19}$$

X = H $30.6^{11,54}$
m-CH₃ $31.0^{11,54}$
p-Ac 25.3^{54}
p-Bz 24.4^{54}
p-F 30.7^{54}
o-F 28.7^{54}
o-Cl 27.6^{54}
m-Cl 29.4^{54}
p-Cl 29.4^{54}
m-Br 28.4^{54}
p-Br 29.1^{54}
m-OMe 30.5^{54}
p-C=N 25.3^{11}
m-C=N 27.5^{11}
p-PhCO 24.4^{11}
p-PhSO₂ $24.9^{11,54}$
p-MeSO₂ 25.6^{54}
p-CF₃SO₂ 21.8^{54}
p-CF₃ 27.0^{54}
m-CF₃ 28.2^{54}
p-NO₂ $20.9^{11,54}$

$$N - NH_2$$
 27.7⁵⁴ $N - NH_2$ 28.5

N=C-NH₂
$$26.5^{54}$$
 17.0^{19} Ph_2NH 25.0^{16}

Ammonium	Salts	(NH)
NH ₄ ⁺ BuNH ₃ ⁺ PhNH ₃ ⁺		10.5 ⁵² 11.1 ⁶⁴ 3.8 ⁶⁴
R-()	NMe ₂ H	+
R =	H OMe Me	2.4 3.6 3.0
Et₃Ň−H		9.047,64
$BnNH_3$		10.2 ⁶⁴
BnMe ₂ N-H		7.647
Bn₃Ň−H		3.7^{46}
+N H		11.1 ⁶⁴
		9.8 ⁴⁵
		8.9 ^{45,64}
+N <h< td=""><td></td><td>10.9⁶⁴</td></h<>		10.9 ⁶⁴
O +N <h< td=""><td></td><td>9.2⁶⁴</td></h<>		9.2 ⁶⁴
Me ₂ N + NM	e ₂	7.5 ⁴⁵

Isocyanide

Imides (NH)

Ammonium Salts (CH)

Me ₃ N-CH ₂ -X	
X = H	$(42)^{33,44}$
SO ₂	
C≡N	_
CON	
COF	
CO ₂	
CON	
CON	_ 07
Ph	31.9 ³³
SPh	
1-Py-CH ₂ -X	
, -	
X = C≡N	16.5 ⁴⁴
X = C≡N CON	16.5 ⁴⁴ ⁄le 11.8 ⁴⁴
X = C≡N CON COF	16.5 ⁴⁴ Me 11.8 ⁴⁴ Ph 10.7 ⁴⁴
X = C≡N CON COF CO ₂	16.5 ⁴⁴ Me 11.8 ⁴⁴ Ph 10.7 ⁴⁴ Et 14.1 ⁴⁴
X = C≡N CON COF	16.5 ⁴⁴ Me 11.8 ⁴⁴ Ph 10.7 ⁴⁴ Et 14.1 ⁴⁴ NEt 24.9 ¹⁸
X = C=N CON COF CO ₂ CON	16.5 ⁴⁴ Me 11.8 ⁴⁴ Ph 10.7 ⁴⁴ Et 14.1 ⁴⁴ NEt ₂ 24.9 ¹⁸ 20.5 ⁴⁴
$X = C = N$ CON COF CO_2 CON Ph SPh	16.5 ⁴⁴ Me 11.8 ⁴⁴ Ph 10.7 ⁴⁴ Et 14.1 ⁴⁴ NEt ₂ 24.9 ¹⁸ 20.5 ⁴⁴ 17.7 ⁴⁴
$X = C = N$ COM COF CO_2 COM Ph SPh Me_3N -FI	16.5 ⁴⁴ Me 11.8 ⁴⁴ Ph 10.7 ⁴⁴ Et 14.1 ⁴⁴ NEt ₂ 24.9 ¹⁸ 20.5 ⁴⁴ 17.7 ⁴⁴
$X = C = N$ CON COF CO_2 CON Ph SPh	16.5 ⁴⁴ Me 11.8 ⁴⁴ Ph 10.7 ⁴⁴ Et 14.1 ⁴⁴ NEt ₂ 24.9 ¹⁸ 20.5 ⁴⁴ 17.7 ⁴⁴

PhCH ₂ N=C	27.4 ⁵²
NC I	12.3 ⁵²

Imines (CH)

 3.4^{52}

4.1

14.7

Imines (NH)

Pyrrole, Indole (N-H)

Azoles (NH)

Oximes (OH)

Diffes (Off)	
NOH 具	20.2 ³¹
Ph H p-NO ₂ -C ₆ H ₄	17.0 ³¹
NOH	
Me H	28.5 ³¹
NOH	25.2 ³¹
Me´`Me NOH	20.1 ³¹
Ph ^从 Ph	20.1
NOH Ph ↓ /	14.9 ³¹
O	

Alcohols (OH)

НОН	31.4 ²⁴
MeOH	29.0^{24}
EtOH	29.8^{24}
<i>i</i> -PrOH	30.3^{24}
t-BuOH	32.2^{24}
CF ₃ CH ₂ OH	23.5^{52}
(CF ₃) ₂ CHOH	17.9
(CF ₃) ₃ COH	10.7^{52}

Phenols (OH)

$${\rm CF_3}^2$$
 15.3
 ${\rm CI}$ 16.7²⁵
 ${\rm F}$ 18.0
 ${\rm NMe_3}^+$ 14.7
 ${\rm SO_2Me}$ 13.6
 ${\rm CN}$ 13.2

15.7

Thiols (SH)

Hydroxylamine (NH, OH)

Hydroxamic Acid (NH,OH)

yarox	amic Acid	ı (NH,U
Ph	`NHOH	13.7 ²⁷
Ph	NMeOH	18.0 ²⁷
Ph O	`NHOBn	14.4 ²⁷
Me	`NHOH	16.0 ²⁷
Me O	`NMeOH	19.6 ²⁷
Me	NHOMe	17.1 ²⁷

Inorganic Acids

HCN	12.9 ⁵²
HN_3	7.9 ⁵²
HF	15. ⁵²
HCI	1.8 ⁵²
HBr	0.9^{52}
NH ₄ ⁺	10.5 ⁵²
HOH	31.4 ²⁴
HON=O	7.5^{52}
NH ₃	$(41)^{19}$
H ₂ N-CN	16.9 ⁵²

Hydrazide (NH)

Me NHNH₂
$$21.8^{52}$$
Ph NHNH₂ 18.9^{52}
PhSO₂-NHNH₂ 17.1^{52}
PhSO₂-NHNMe₂ 15.8^{52}
Me(C=O)-NHNH₂ 21.8^{27}
Ac-NHNH-Ac 16.7^{56}
Ph(C=O)-NHNMe₂ 19.7
Ph(C=O)-NHNMe₂ 19.7^{27}
Ph(C=O)-NHNMe₂ 19.7^{27}
 3 -Py(C=O)-NHNH₂ 17.5^{27}
EtO₂C-NHNH₂ 22.2^{56}
O=C(NHNH₂)₂ 23.3^{57}
S=C(NHNH₂)₂ 16.6^{57}
O

N-H

 15.3^{56}

Carboxylic Acids (OH)

Sulfinic Acids (OH)

Sulfonic Acids (OH)

Me-SO₂-OH 1.6³⁹

Hydrazone (NH)

N-NHPh Ph Me	21.6
N-NHPh II Ph H N-NHPh	21.1
	14.9

Hydrazine (NH)

Ph-NHNH-Ph	26.2 ⁵⁶
Ph-NHNH ₂	28.8 ⁵⁶
Ph-NHNPh ₂	24.5 ⁵⁶
2,4-(NO ₂) ₂ PhNHNF	Ph ₂
	12.1 ⁵⁶
4-CF ₃ PhNHNH ₂	12.1 ⁵⁶ 25.7 ⁵⁶
4-CF ₃ PhNHNH ₂ 4-NC-PhNHNH ₂	

Sulfonamide (NH)

Me-SO ₂ -NH ₂	17.5 ³⁹
CF ₃ -SO ₂ -NH ₂	9.7 ³⁹
Ph-SO ₂ -NH ₂	16.1 ²⁷
Ph-SO ₂ -NHOH	15.4 ⁵⁷
Me-SO ₂ -NHPh	12.9
Ph SO ₂ -NHNH ₂	17.1 ²⁷
Ph-SO ₂ -NHNMe ₂	15.8 ⁵⁷
NH Ph-S-Me Ö	24.3

Bordwell Acc. Chem. Res. 1988, 21, 456, 463.

Author: Prof. Hans Reich

22. J. Am. Chem. Soc. 1983, 105, 6188.

23. J. Am. Chem. Soc. 1986, 108, 7310.

Equilibrium pKa Table (DMSO Solvent and Reference)

References (Bordwell et al.)

45. Benoit Can. J. Chem. 1987, 65, 996.

46. Kreevoy J. Phys. Chem. 1977, 81, 1924.

		,	
	1. J. Am. Chem. Soc. 1975 , <i>97</i> , 7006.	24. J. Org. Chem. 1980, 45, 3295.	47. Kolthoff <i>J. Am. Chem. Soc.</i> 1968 , <i>90</i> , 23.
2	2. J. Am. Chem. Soc. 1975 , 97, 7160.	25. J. Org. Chem. 1984, 49, 1424.	48. Bausch <i>J. Org. Chem.</i> 1990 , <i>55</i> , 5806.
(3. J. Am. Chem. Soc. 1975 , 97, 442.	26. J. Am. Chem. Soc. 1995, 117, 602.	49. Alder Chem. Commun, 1995 , 1267
4	4. J. Am. Chem. Soc. 1967 , 89, 2752.	27. J. Org. Chem. 1995, 55, 3330.	50. J. Org. Chem. 1978 , 43, 1763.
į	5. J. Org. Chem. 1976 , 41, 1885.	28. J. Am. Chem. Soc. 1996, 118, 8777.	51. J. Org. Chem. 1991 , <i>56</i> , 4218.
(6. J. Org. Chem. 1976 , 41, 1883.	29. J. Org. Chem. 1996, 61, 4103.	52. Acc. Chem. Res. 1988, 21, 456, 463.
7	7. J. Org. Chem. 1976 , 41, 2786.	30. J. Am. Chem. Soc. 1991, 113, 985.	53. J. Org. Chem. 1991 , <i>56</i> , 4448.
8	3. <i>J. Org. Chem.</i> 1976 , <i>41</i> , 2508.	31. J. Org. Chem. 1992, 57, 3019.	54. J. Am. Chem. Soc. 1988 , 110, 2964.
ç	9. J. Org. Chem. 1977 , 42, 321.	32. J. Org. Chem. 1998, 63, 7574.	55. J. Am. Chem. Soc. 1974 , 76, 1214.
10	D. J. Org. Chem. 1977 , 42, 326.	33. J. Am. Chem. Soc. 1994, 116, 968	56. J. Am. Chem. Soc. 1997 , 119, 9125.
1	1. J. Org. Chem. 1977 , 42, 1817.	34. J. Am. Chem. Soc. 1989, 111, 7558	57. <i>J. Org. Chem.</i> 1990 , <i>55</i> , 3337.
12	2. <i>J. Org. Chem.</i> 1978 , <i>43</i> , 3113.	35. J. Am. Chem. Soc. 1992, 114, 7623	58. <i>Can. J. Chem.</i> 1990 , <i>68</i> , 1714.
13	3. <i>J. Org. Chem.</i> 1978 , <i>43</i> , 3095.	36. J. Am. Chem. Soc. 1994, 116, 973	59. Arnett <i>J. Am. Chem. Soc.</i> 19874 , <i>109</i> , 809.
14	4. J. Org. Chem. 1978 , 43, 1764.	37. J. Org. Chem. 1988, 53, 780.	60. J. Phys. Org. Chem. 1988 , 1, 209.
15	5. <i>J. Org. Chem.</i> 1980 , <i>45</i> , 3884.	38. J. Am. Chem. Soc. 1988, 110, 8520	61. Terrier <i>J. Org. Chem.</i> 2003 , <i>68</i> , 6566.
16	6. J. Org. Chem. 1980 , 45, 3305.	39. J. Org. Chem. 1976, 41, 2507.	62. Courtet-Coupez Bull. Soc. Chim. Fr. 1969, 1033.
17	7. J. Org. Chem. 1980 , 45, 3325.	40. J. Am. Chem. Soc. 1990 , 112, 792	63. Curtis <i>J. Am. Chem. Soc.</i> 1969 , <i>91</i> , 6011
18	3. J. Org. Chem. 1981 , 46, 4327.	41. J. Am. Chem. Soc. 1991 , 113, 8398.	64. Crampton <i>J. Chem. Res. (S)</i> 1997 , 22.
19	9. J. Org. Chem. 1981 , 46, 632.	42. J. Org. Chem. 1980, 45, 3299.	
20	D. J. Org. Chem. 1982 , 47, 3224.	43. Arnett J. Am. Chem. Soc. 1984, 106, 6759.	All others are F. G. Bordwell, private
2	1. J. Org. Chem. 1982, 47, 2504.	44. J. Org. Chem. 1993, 58, 3061.	communication. For a review, see: F. G.

Equilibrium pKa Table (H₂O Solvent and Reference)

Values outside the boxes were determined by approximate methods.

Oxygen Acids

CF₃SO₃H -12.4 -7.8 -6.5 (CH₃)₂S-H -5.4 -4.4 -3.8 -2.6 -2.2 -2.1 -1.8 -1.4 CF₃-CO₂H -0.3

Nitrogen Acids

$(C_6H_5)_2\overset{+}{N}H_2$	0.8
СН₃-РН₃	2.7
$C_6H_5-\dot{N}H_3$	4.6
√_N+-H	5.2
N≡C-CH ₂ CH ₂ -NH ₃	7.9
(CH ₃ CH ₂) ₃ [†] −H	9.1
H_2N	9.2
ŇH₄	9.2
N≡Ň-H	10.0
CH₃CH₂ŇH₃	10.6
(CH ₃ CH ₂) ₂ NH ₂	11.0
(CH ₃ CH ₂) ₃ NH	10.8
O=N-H	11.5
$Ph \longrightarrow \stackrel{\vec{N}H_2}{NH_2}$	11.2 ⁴
+NH ₂ (CH ₃) ₂ N-C-N(CH ₃) ₂	13.6
N-H	15.

$$C_6H_5-NH_2$$
 28.
 $((CH_3)_3Si)_2N-H$ 30.
 $(i-C_3H_7)_2N-H$ 36.
 $N-H$ 37.

Halogen Acids

9	
H-I	-5.2
H-Br	-4.7
H-CI	-2.2
H-F	3.2

Carbon Acids

(O ₂ N) ₂ CH ₂	3.6
\times	5.2
	9.0 ³
N≡C-H	9.1
CH ₃ N≡N	10.0 ¹
O ₂ N-CH ₃	10.2
O O OEt	10.7
(CF ₃) ₃ CH	11.
(NC) ₂ CH ₂	11.2
	12.2 ⁶
eto OEt	12.9
	15.

$$O_2N)_2CH_2$$
 3.6

 $O_2N)_2CH_2$ 3.6

 $O_2N)_2CH_2$ 3.6

 $O_2N)_2CH_2$ 3.6

 $O_2N)_2CH_2$ 3.6

 $O_2N)_2CH_2$ 3.6

 $O_2N)_2CH_2$ 4.7

 $O_2N)_2CH_2$ 11.2

 $O_2N)_2CH_2$ 11.2

 $O_2N)_2CH_2$ 12.9

 $O_2N)_2CH_2$ 12.9

 $O_2N)_2CH_2$ 12.9

 $O_2N)_2CH_2$ 12.9

	15.
О СН ₃ -С-Н	
	16.7
O CH ₃ -Ö-Ph	18.3
O CH ₃ -C-CH ₃	19.3
	20
C_6H_5 - CH_2 - $C\equiv N$	21
C ₆ H ₅ -C≡C-H	23
CH ₃ CO ₂ Et	24
H-C≡C-H	24
CH ₃ -C≡N	25
\triangle_{H}	29
CF₃-H O	32
O CH ₃ -\$-CH ₃	33
(C ₆ H ₅) ₃ C-H	32
O CH ₃ -S-CH ₃	33
$C_6H_5-C\underline{H}_3$	41
	44
CH ₃ CH ₃	50

Gas Phase Acidities

