Introduction aux Equations aux dérivés partielles

Matthieu Keruzoret, Petru Piculescu, Camille Veillon

21 janvier 2025

Introduction

Les équations aux dérivées partielles (EDP) sont au cœur des mathématiques appliquées et jouent un rôle essentiel dans la modélisation de nombreux phénomènes naturels et industriels. Elles servent à décrire des systèmes où plusieurs variables indépendantes interagissent, comme le temps et l'espace, et où les variations locales ont un impact global.

Elles permettent de modéliser des phénomènes physiques complexes :

- ► La **propagation de la chaleur** dans un matériau peut être décrite par l'équation de la chaleur.
- Les **ondes sonores ou électromagnétiques** sont modélisées par l'équation d'onde
- ► En mécanique des fluides, les **équations de Navier-Stokes**, décrivent le comportement des liquides et des gaz.

Les EDP interviennent dans de nombreux domaines

- La biologie, pour modéliser la diffusion des populations ou des substances chimiques.
- L'économie, dans la gestion des options financières, les cours de la bourse
- Et Imagerie numérique, (traitement d'image)

L'étude des EDP permet également de prévoir et de contrôler des phénomènes comme par exemple :

- Conception d'avion
- Simulation de climat
- Technologies médicales

Équations de la chaleur

On cherche u(x,t) où $x \in \mathbb{R}^n$ (espace), N=1 ou 2, et $t \in \mathbb{R}^+$ (temps).

En 1D, $a_1 \le x_1 \le b_1$ En 2D : $a_2 \le x_2 \le b_2$, $\Omega = |a_1, b_1| \times |a_2, b_2|$.

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - D\frac{\partial^2 u}{\partial x^2}(x,t) + C\frac{\partial u}{\partial x}(x,t) = f(x,t) & (1D) \\ \frac{\partial u}{\partial t}(x,t) - D\Delta u + \vec{C} \cdot \vec{\nabla} u = f(x,t) & (2D) \end{cases}$$

Conditions initiales : $u(x, t = 0) = u_0(x)$ et $x \in \Omega$.

Conditions aux bords de Dirichlet : $u(x,t) = u_D(t)$ si $x \in \partial \Omega$.

En 1D:

$$\begin{cases} u(a_1, t) = u_L(t) \\ u(a_2, t) = u_R(t) \end{cases}$$

Résolution numérique

Méthode des différences finies

- Discrétisations espace et temps En dimension 1 : Espace $\Omega =]a, b[$, $x_i = a + i\Delta x$ où $\Delta x = \frac{b-a}{N_x}$. Temps $t_0 = 0$, $n \geq 0$, $t_n = n\Delta t$ si $t \in [0, T]$, $T = N_t \Delta t$ avec $0 < n < N_t$.
- Discrétisation de u(x, t)u(x, t) est remplacé par $u(x_i, t_n)$ avec $0 \le i \le N_x$ et $0 \le n \le N_t$.

Discrétisation des dérivées

En temps à l'ordre 1 :

$$u(x_{i}, t_{n} + \Delta t) = u(x_{i}, t_{n}) + \Delta t \frac{\partial u}{\partial t}(x_{i}, t_{n}) + \frac{(\Delta t)^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, \tilde{t})$$
$$\frac{\partial u}{\partial t}(x_{i}, t_{n}) = \frac{u(x_{i}, t_{n+1}) - u(x_{i}, t_{n})}{\Delta t} - \frac{\Delta t}{2} \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, \tilde{t})$$

Discrétisation des dérivées (suite)

En espace à l'ordre 1 :

$$\frac{\partial u}{\partial x}(x_i,t_n) = \frac{u(x_{i+1},t_n) - u(x_i,t_n)}{\Delta x} - \frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2}(\tilde{x},t_n)$$

Pour la dérivée seconde :

$$\frac{\partial^{2} u}{\partial x^{2}}(x_{i},t_{n}) = \frac{u(x_{i+1},t_{n}) - 2u(x_{i},t_{n}) + u(x_{i-1},t_{n})}{(\Delta x)^{2}} + o(\Delta x)$$

Équations aux dérivées partielles

Nous avons d'abord calculé le terme source pour le calcul numérique

$$f(x,t) = \frac{\partial u}{\partial t} + C \frac{\partial u}{\partial x} - D \frac{\partial^2 u}{\partial x^2}.$$

A l'aide des schémas numériques précédents, on peut alors calculer les termes suivants grâce à la formule

$$u_{i}^{n+1} = u_{i}^{n} - C \frac{\Delta t}{2\Delta x} \left(u_{i+1}^{n} - u_{i-1}^{n} \right) + D \frac{\Delta t}{\Delta x^{2}} \left(u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n} \right) + \Delta t \times f(x_{i}, t_{n})$$

Choix du schéma de dérivation pour la dérivé spatiale

Pour le terme de dérivé spatiale, le choix du schéma numérique est important car il dépend du signe de C :

$$C < 0$$
 : $\frac{u_{i+1}^n - u_i^n}{\Delta x}$

$$C>0$$
 : $\frac{u_i^n-u_{i-1}^n}{\Delta x}$

Conditions de stabilité

Si notre solution est stable, c'est qu'elle converge :

$$D\frac{\Delta t}{(\Delta x)^2} \le \frac{1}{2}$$
 et $C\frac{\Delta t}{\Delta x} \le 1$

On en déduit :

$$\Delta t_1 = \gamma (\Delta x)^2 / D$$
 et $\Delta t_2 = \nu \Delta x / C$

On prend le plus petit Δt :

$$\Delta t = \min\{\Delta t_1, \Delta t_2\}$$

Calcul de l'erreur

Pour Δt et Δx donnés, on peut calculer $u_i^{(n)}$ où $0 \le i \le N_x$ et $0 \le n \le N_t$. On a des cas tests où la solution exacte est connue. Fabriquons un vecteur $u_i^{\text{ex}} = u^{\text{exacte}}(x_i, t_n)$. L'erreur est donnée par :

$$\begin{aligned} e_i^{(n)} &= u_i^{(n)} - u_{\text{ex},i}^{(n)} &\text{ et } e^{(0)} \equiv 0 \\ \|e^{(n)}\|_2 &= \left(\Delta x \sum_{i=0}^{N_x} |e_i^{(n)}|^2\right)^{1/2} \\ \|e^{(n)}\|_{\infty} &= \max_{0 \le n \le N_t} \|e_k^{(n)}\|_2 \end{aligned}$$

On observe que cela dépend de Δx et de Δt .

On définit :

$$E(\Delta t, \Delta x) = \|e^{(n)}\|_{\infty}$$

On étudie $E(\Delta t, \Delta x)$ en fixant Δt et en faisant varier Δx (en faisant varier N_x). Puis, on fait la même chose en fixant Δx et en faisant varier Δt . On a finalement :

$$E(\Delta t, \Delta x) = O((\Delta t)^p) + O((\Delta x)^q)$$

Or:

$$E(\Delta x) = C(\Delta x)^q$$

Donc:

$$ln(E(\Delta x)) = C + q ln(\Delta x)$$

L'avantage est qu'on obtient une droite de pente q.

Considérons la solution

$$u_{\text{exacte}}(x, t) = \sin(\pi x) \cdot (1 + t)$$

Calculons d'abords le terme source f(x,t) à l'aide des dérivés partielles :

$$\frac{\partial u(x,t)}{\partial x} = \pi \cos(\pi x) \cdot (1+t)$$

$$\frac{\partial^2 u(x,t)}{\partial x^2} = -\pi^2 \sin(\pi x) \cdot (1+t)$$

$$\frac{\partial u(x,t)}{\partial t} = \sin(\pi x)$$

On obtiens alors le terme source :

$$f(x,t) = \sin(\pi x) + C \cdot \pi \cos(\pi x) \cdot (1+t) + D \cdot \pi^2 \sin(\pi x) \cdot (1+t)$$

Figure – C=0 - D=1 - solution - t=1s

Figure – C=0 - D=1 - erreur absolue

Figure - C=0 - D=1 - erreur en fonction de dt

Figure - C=-0.5 - D=0.5 - t=0.1s

Figure - C=-0.5 - D=0.5 - t=1s

Figure – C=-0.5 - D=0.5 - erreur absolue

Figure – C=-0.5 - D=0.5 - erreur en fonction de dt

Figure - C=-0.5 - D=0.01 - t=1s

Figure - C=-0.5 - D=0.01 - t=2.5s

Figure - C=-0.5 - D=0.01 - t=10s

Figure - C=-0.5 - D=0.01 - erreur absolue

Figure – C=-0.5 - D=0.01 - erreur en fonction de dt

Considérons à présent la solution

$$u(x,t) = \frac{\exp\left(-\frac{x^2}{4t}\right)}{\sqrt{4\pi t}}$$

$$\frac{\partial u}{\partial t} = \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{x^2}{4t}\right) \left[\frac{x^2 - 2t}{4t^2}\right]$$

$$\frac{\partial u}{\partial x} = -\frac{x}{2t} \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{x^2}{4t}\right)$$

$$\frac{\partial^2 u}{\partial x^2} = \exp\left(-\frac{x^2}{4t}\right) \left[\frac{x^2 - 2t}{8\sqrt{\pi t^{5/2}}}\right]$$

$$D'où: f(x,t) = \exp\left(-\frac{x^2}{4t}\right) \left((1-D)\frac{x^2 - 2t}{8\sqrt{\pi}t^2\sqrt{t}} - \frac{cx}{4\sqrt{\pi}t\sqrt{t}}\right)$$

Figure - C=0 - D=1 - t=0.01s

Figure - C=0 - D=1 - t=0.5s

Figure -C=0 - D=1 - t=1s

Figure – C=0 - D=1 - erreur absolue

Figure - C=0 - D=1 - erreur en fonction de dt

Figure - C=-0.5 - D=0.5 - t=0.01s

Figure - C=-0.5 - D=0.5 - t=0.5s

Figure - C=-0.5 - D=0.5 - t=1s

Figure – C=-0.5 - D=0.5 - erreur absolue

Figure - C=-0.5 - D=0.5 - erreur en fonction de dt

Figure - C=-1 - D=0 - t=0s

Figure - C=-1 - D=0 - t=0.05s

Figure - C=-1 - D=0 - t=1s

Figure -C=-1 - D=0 - erreur absolue

Figure - C=-1 - D=0 - erreur en fonction de dt

Troisème étude : Sinus à deux dimensions

On écrit l'EDP de cette manière :

$$\frac{\partial u}{\partial t}(x,t) - D\Delta u + \vec{C} \cdot \vec{\nabla} u = f(x,t)$$

Conditions de stabilité Pour des soucis de simplicité, nous allons prendre $\Delta x = \Delta y = h$. On a :

$$2D\frac{\Delta t}{h^2} \le \frac{1}{2}$$
 et $2|C|\frac{\Delta t}{h} \le 1$

On en déduit :

$$\Delta t_1 = \frac{\gamma h^2}{4D}$$
 et $\Delta t_2 = \frac{\nu h}{2|C|}$

On prend le plus petit Δt :

$$\Delta t = \min\{\Delta t_1, \Delta t_2\}$$

$$u_{exacte} = \sin(\pi x)\sin(\pi y)(1+t)$$

$$\frac{\partial u}{\partial t} = \sin(\pi x)\sin(\pi y)$$

$$\frac{\partial u}{\partial x} = \pi\cos(\pi x)\sin(\pi y)(1+t)$$

$$\frac{\partial u}{\partial y} = \pi\cos(\pi y)\sin(\pi x)(1+t)$$

$$\frac{\partial^2 u}{\partial x^2} = -\pi^2\sin(\pi x)\sin(\pi y)(1+t)$$

$$\frac{\partial^2 u}{\partial y^2} = -\pi^2\sin(\pi x)\sin(\pi y)(1+t)$$

$$f(x, y, t) = \sin(\pi x)\sin(\pi y) + 2D\pi^2\sin(\pi x)\sin(\pi y)(1+t)$$
$$+\vec{C} \cdot \begin{pmatrix} \pi\cos(\pi x)\sin(\pi y)(1+t) \\ \pi\sin(\pi x)\cos(\pi y)(1+t) \end{pmatrix}$$

Figure - C=0 - D=0,05 - solution - approchée

Figure – C=0 - D=0.05 - solution - exacte

Solution approchée en 3D à t=2

Figure - C=0 - D=0,05 - solution - approchée - 3D

Figure - C=0 - D=0,05 - régréssion - linaire - loglog

Figure – C=0 - D=0,05 - écart - absolu