Lecture 0 – Course Overview COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Course Information

- Instructor: Jihyeok Park (박지혁)
 - Position: Assistant Professor in CS, Korea University
 - Expertise: Programming Languages, Software Analysis
 - Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
 - Office: 609A, Science Library Bldg
 - Email: jihyeok_park@korea.ac.kr
- Class: COSE215 02 (English) Only for CS students
- Lectures 14:00–15:15, Mondays and Wednesdays @ 302 Aegineung
- Homepage: https://plrg.korea.ac.kr/courses/cose215/
- Please use blackboard when asking questions

Schedule

- There is a lecture on Apr. 26 (Wed.)
- No lecture in the final exam week (Jun. 15-Jun. 21).

Weak	Contents
1	Basic Concepts
2	Deterministic Finite Automata (DFA)
3	Nondeterministic Finite Automata (NFA)
4	Regular Expressions and Languages
5	Properties of Regular Languages
6	Context-Free Grammars and Languages
7	Parse Trees and Ambiguity
8	Midterm Exam (Apr. 24 - Mon.)
9	Pushdown Automata
10	Deterministic Pushdown Automata
11	Properties of Context-Free Languages
11	Turing Machines (TMs)
12	Extensions of Turing Machines
13	Undecidability
14	P, NP, and NP-Completeness
15	Final Exam (Jun. 14 - Wed.)

Grading

- 5–7 Homework Assignments: 20%
 - Handwritten assignments (submission in class)
 - Programming assignments in Scala (submission in blackboard)
 - You can utilize or refer to any other materials (e.g., ChatGPT), but you MUST write your OWN solution.
 - Cheating is strictly prohibited. Cheating will get you an F.
- Midterm exam: 30%
 - April 24 (Mon.) 14:00 15:15 (in class, 75 min.)
- Final exam: 40%
 - June 14 (Wed.) 14:00 15:15 (in class, 75 min.)
- Attendance and Participation: 10%
 - Please use **blackboard** to attend the class.

Course Materials

- Self-contained lecture notes.
 - https://plrg.korea.ac.kr/courses/cose215/
- Reference:

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to automata theory, languages, and computation. Third edition.

• What is the *mathematical model* of computers?

• What is the *mathematical model* of computers?

Turing Machine!

Let's learn Turing Machine

• What is the *mathematical model* of computers?

Turing Machine!

Let's learn Turing Machine

• Is it possible to solve *every problem* using computers?

• What is the mathematical model of computers?

Turing Machine!

Let's learn Turing Machine

• Is it possible to solve *every problem* using computers?

No!

Let's learn Undecidability and Intractability

Roadmap: Towards Turing Machine

- Finite Automata (FA)
 - Regular Expressions and Languages
 - Applications: text search, etc.
- Pushdown Automata (PDA)
 - Context-Free Grammars (CFGs) and Languages (CFLs)
 - Applications: programming languages, natural language processing, etc.
- Turing Machines
 - Universal Turing Machine
 - Undecidability and Intractability

• A Turing machine is a specific kind of automaton.

- A Turing machine is a specific kind of **automaton**.
- Then, what is an automaton?

- A Turing machine is a specific kind of **automaton**.
- Then, what is an automaton?
 - Example)

- A Turing machine is a specific kind of **automaton**.
- Then, what is an automaton?
 - Example)

- A Turing machine is a specific kind of **automaton**.
- Then, what is an automaton?
 - Example)

- A Turing machine is a specific kind of **automaton**.
- Then, what is an automaton?
 - Example)

Theorem

The current state is OFF if and only if the button is pushed even times.

Theorem

The current state is OFF if and only if the button is pushed even times.

• Is it possible to prove it?

Theorem

The current state is OFF if and only if the button is pushed even times.

• Is it possible to prove it?

Let's learn mathematical background and notation.

Theorem

The current state is OFF if and only if the button is pushed even times.

• Is it possible to prove it?

Let's learn mathematical background and notation.

• Is it possible to implement the automaton?

Theorem

The current state is OFF if and only if the button is pushed even times.

• Is it possible to prove it?

Let's learn mathematical background and notation.

• Is it possible to implement the automaton?

Let's learn Scala as an implementation language.

Next Lecture

- Mathematical backgrounds and notation
- Basic introduction of Scala

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr