# Simulation d'algorithmes d'équilibrage de charge dans un environnement distribué

Kevin Barreau Guillaume Marques Corentin Salingue



# Explication du sujet

#### Environnement distribué

- Base de données répartie sur plusieurs machines physiques
- Réplication multi-maîtres

## Algorithmes d'équilibrage de charge

- Créés par le client
- Basés sur la réplication des données

#### Simulation

- Comparaison de l'efficacité des différents algorithmes
- Objectif du projet ≠ mise en production



# Explication du sujet





# Axes de développement

- Base de données (Cassandra)
  - Gestion des requêtes
  - Gestion de la réplication
- Application cliente (Driver Java Cassandra)
- Visualisation (Graphite)



# Base de données Cassandra



Originellement créée et développée par **Facebook** en 2008 (maintenant un projet de la **Fondation Apache**), elle possède comme caractéristique d'être :

- NoSQL, orientée colonnes
- Open-source (licence Apache 2)
- Écrite en Java
- Décentralisée



# Le choix de Cassandra



- Open-source
- Développement actif
- Proche du projet à réaliser
- Connaissances dans l'équipe

**Solutions** alternatives : HBase, CouchBase, CouchDB, from scratch...



#### Gestion des requêtes : affectation

#### De base

- Requêtes de lecture pour certains noeuds
- Renvoie donnée entière pour une, digest pour les autres
- Suppression impossible

#### Modifié

- Requêtes de lecture pour tous les noeuds
- Renvoie donnée entière pour tous
- ✓ Suppression possible





université de BORDEAUX

#### Gestion des requêtes : réaffectation

#### De base

Système inexistant

## Modifié

- Compteur de requêtes assignées
- ✗ Algorithmes d'assignation
- Assignation



### Gestion de la réplication

#### De base

 Placement des copies d'un objet sur les noeuds suivant dans l'ordre du cercle

### Modifié

Placement des copies suivant différentes fonctions de hachages



## Stratégie de réplication de base





# Gestion de la popularité X

#### **Paramètres**

r = Nombre de requêtes total effectuées durant l'intervalle de temps T:

n =Nombre de noeuds dans le réseau ;

p = Popularité d'un objet;

k = Nombre de copies de l'objet.

- Augmenter le nombre de copies si  $2 \times \frac{r}{n} \ge \frac{p}{k}$  vraie.
- Diminuer le nombre de copies si  $\frac{r}{2n} \leq \frac{p}{k}$  vraie.



## Architecture de Cassandra

## Staged event-driven architecture (SEDA)

- Stage → emplacement pour réaliser des tâches
  - File d'attente → messages de tâches à traiter
  - Threads → exécuteurs de tâches





# Architecture de Cassandra

## Staged event-driven architecture (SEDA)

- Stage → emplacement pour réaliser des tâches
  - File d'attente → messages de tâches à traiter
  - Threads → exécuteurs de tâches

## Stages présents dans Cassandra :

- RFAD
- READ\_REMOVE
- MUTATION
- GOSSIP



# Point technique : Réplication

| Solution initiale |             | Solution implémentée |                |
|-------------------|-------------|----------------------|----------------|
| Donnée nº 1       | Donnée nº 2 | Donnée nº 1          | Donnée nº 2    |
| $H_0(c1)$         | $H_0(c2)$   | $H_0(c1)$            | $H_0(c2)$      |
| 1er réplica       | 1er réplica | 1er réplica          | 1er réplica    |
| $H_1(c1)$         | $H_1(c2)$   | $H_1(H_0(c1))$       | $H_1(H_0(c2))$ |
| 2nd réplica       | 2nd réplica | 2nd réplica          | 2nd réplica    |
| $H_2(c1)$         | $H_2(c2)$   | $H_2(H_0(c1))$       | $H_2(H_0(c2))$ |



# Application cliente

## Technologies employées

- Développé en Java
- Utilisation d'un pilote informatique

#### Pilote utilisé

- DataStax Java Driver 2.0
- Développé par l'entreprise DataStax
- Communication avec la base de données Cassandra



# Architecture du client



# Fonctionnement du client

#### Initialisation

- Connexion à la base de données
- Choix du keyspace

#### Console

L'utilisateur saisie la commande qu'il souhaite exécuter, notamment :

- Changement de cluster
- Création de jeu de données
- Exécution d'un générateur de requêtes



# Fonctionnement du client

capture d'écran



# Générateur de requêtes



#### Personnalisable

- Possibilité d'ajouter des générateurs de requêtes
- Choix du générateur queries NomGenerateur <seed> <nb\_simulations> <nb\_requetes>

université

## **Tests**



## **Tests**

#### Environnement

- Les tests de mesures de performances se déroulent dans un réseau d'Amazon EC2 de 10 noeuds.
- La base de données est composée de 10 000 objets de taille unique.

#### Dénomination

- RF = nombre de copies + donnée originale
- petits objets = un texte généré aléatoirement de 10 Ko
- gros objets = un texte généré aléatoirement de 1 Mo



# **Tests** Sur Cassandra modifiée

Temps d'exécution sur 10 000 objets de taille 10 Ko en fonction du nombre de requêtes





# **Tests** Sur Cassandra non modifiée

Temps d'exécution sur 10 000 objets de 10 Ko en fonction du nombre de requêtes





# **Tests** Sur Cassandra modifiée

Temps d'exécution sur 10 000 objets avec RF = 2 en fonction du nombre de requêtes





# Perspectives

#### Cassandra

- Gestion des requêtes
  - Algorithmes de réaffectation SVLO et AverageDegree
- Gestion de la popularité
- Tests unitaires poussés

## Application client

#### Visualisation

- Véritable logiciel de vue de performance
- Performance du réseau



# Questions?