Half-Edge

Modelagem Geométrica

Ricardo Bustamante de Queiroz

Motivação

Fácil navegação pela estrutura Centrado nas arestas Fácil modificação Operadores de Euler

Trabalho

Estrutura de dados

Trabalho

Estrutura de dados

Objeto

Transformações (Rotação, Escala, Translação)

Nome

Visível ou não

Pai e filhos (Hierarquia)

Half-Edge Object

Lista de faces, arestas, vértices

Half-Edge Object

Representação da aresta

Estrutura

Outras

Faces - Lista de indices de arestas

Vertices - Lista de pontos

Arestas - Lista de Half-Edges

MFVS + MEV

Cria 2 vértices

Cria 1 face

Cria 2 arestas

Conecta as arestas à face e uma a outra, formando um ciclo

MEV

Divide um vértice ao meio, criando duas half-edges entre eles

As duas arestas novas são mates

Atualiza os next dos caras que estão na sua face

A face da nova aresta é a face do seu antecessor

Atualiza vértice das arestas que foram arrastadas

MEV

Input são as duas arestas onde ocorrerá a divisão, e um ponto que será o novo vértice

As duas arestas tem que estar partindo do vértice onde será feita a divisão

MEV

Se e1 == e2, o vertice novo é criado e ficará conectado apenas as novas edges.

MEF

Divide uma face em duas faces

Mantém a face anterior e uma face nf é criada

MEF

Dada duas arestas e1 e e2 que estão no mesmo "ciclo", são criadas duas novas half-edges conectando seus pontos de partida.

Uma nova face será criada do lado de ne2.

Todos os half-edges do ciclo de ne2 precisam ser atualizados para apontar para a nova face.

A partir de uma "linha", criar novas faces e arestas.

Sweep

A partir de uma "linha", criar novas faces e arestas.

Sweep

A partir de uma "linha", criar novas faces e arestas.

Operação composta

Feito utilizando um MEV para cada vértice da linha E um MEF para completar cada face.

Extrusão

Expandir a partir de uma face, semelhante ao sweep.

"Sweep em um loop"

Extrusão

Expandir a partir de uma face, semelhante ao sweep.

"Sweep em um loop"

Um MEV para cada aresta do loop

Extrusão

Expandir a partir de uma face, semelhante ao sweep.

"Sweep em um loop"

Um MEV para cada vertice do loop

Um MEF para cada aresta do loop

Mesmo processo

Cria-se a base utilizando MVFS MEV, um MEV para cada aresta até faltar uma, e um MEF para fechar a face.

Prisma, Cubo e cilindro: Extrusão na base para criar a forma

Cone e Piramide Um único MEV para cima, no ponto de "foco" Sequencia de MEFs para fechar os triângulos

Bezier

Modelagem Geométrica

Ricardo Bustamante de Queiroz

Modelar superficie de bezier

Cria-se pontos de controle Ki,j do tamanho desejado

Ponto qualquer na superficie obtido por:

$$\mathbf{p}(u,v) = \sum_{i=0}^n \sum_{j=0}^m B_i^n(u) \; B_j^m(v) \; \mathbf{k}_{i,j}$$

$$B_i^n(u) = inom{n}{i} u^i (1-u)^{n-i}$$

Modelar superficie de bezier

O numero de pontos muda o grau do polinomio

Renderização

Basta coletar pontos paramétricos sobre a superficie utilizando a fórmula e desenhar várias primitivas sobre os pontos.

