Notes Systemy wbudowane - wykład 12 Przemek Błaśkiewicz 30 czerwca 2018 1 / 100 Układy w systemach wbudowanych Notes Komponenty dyskretne: ? 2 / 100 Układy w systemach wbudowanych Notes Komponenty dyskretne: jednostki obliczeniowe (CPU); 3 / 100 Układy w systemach wbudowanych Notes Komponenty dyskretne: jednostki obliczeniowe (CPU); jednostki pomocnicze (ko-procesory);

Okłady w systemach wbudowanych	_	
		Notes
Komponenty dyskretne:		
jednostki obliczeniowe (CPU);		
jednostki pomocnicze (ko-procesory);akceleratory;		
	5/100	
	_	
Układy w systemach wbudowanych		Notes
Komponenty dyskretne: • jednostki obliczeniowe (CPU);		
jednostki pomocnicze (ko-procesory);		
akceleratory;pamięci;		
	6/100	
Układy w systemach wbudowanych		N.
		Notes
Komponenty dyskretne:		
jednostki obliczeniowe (CPU);jednostki pomocnicze (ko-procesory);		
akceleratory;pamięci;		
kontrolery magistrali, mostki (bridge);		
	7/100	
	7 / 100	
Układy w systemach wbudowanych	7/100	Notes
Układy w systemach wbudowanych	7/100	Notes
Układy w systemach wbudowanych Komponenty dyskretne: • jednostki obliczeniowe (CPU);	7/100	Notes
Układy w systemach wbudowanych Komponenty dyskretne: • jednostki obliczeniowe (CPU); • jednostki pomocnicze (ko-procesory); • akceleratory;	7/100	Notes
Układy w systemach wbudowanych Komponenty dyskretne: • jednostki obliczeniowe (CPU); • jednostki pomocnicze (ko-procesory); • akceleratory; • pamięci;	7/100	Notes
Układy w systemach wbudowanych Komponenty dyskretne: • jednostki obliczeniowe (CPU); • jednostki pomocnicze (ko-procesory); • akceleratory;	7/100	Notes

Układy w systemach wbudowanych	
	Notes
Komponenty dyskretne: • jednostki obliczeniowe (CPU);	
jednostki pomocnicze (ko-procesory);akceleratory;	
o pamięci;	
kontrolery magistrali, mostki (bridge);magistrale;	
• kontrolery we/wy (I/O);	
9/100	
(Główne) jednostki obliczeniowe	
(Clothie) Jeanostii Oshezeinove	Notes
10/100	
(Chéuna) indrasthi phliczeniowa	
(Główne) jednostki obliczeniowe	Notes
funkcjonalność procesora	
 technologia wykonania układu procesora 	
11/100	
(Główne) jednostki obliczeniowe	Notes
	Notes
(Główne) jednostki obliczeniowe	Notes
	Notes
(Główne) jednostki obliczeniowe • funkcjonalność procesora • ogólnego przeznaczenia;	Notes
(Główne) jednostki obliczeniowe • funkcjonalność procesora	Notes
(Główne) jednostki obliczeniowe • funkcjonalność procesora • ogólnego przeznaczenia;	Notes

(Główne) jednostki obliczeniowe Notes funkcjonalność procesora ogólnego przeznaczenia; programowalno-dedykowany; o technologia wykonania układu procesora 13 / 100 (Główne) jednostki obliczeniowe Notes funkcjonalność procesora ogólnego przeznaczenia; programowalno-dedykowany; specjalizowany (custom, single-operation); • technologia wykonania układu procesora 14 / 100 (Główne) jednostki obliczeniowe Notes funkcjonalność procesora ogólnego przeznaczenia; programowalno-dedykowany; specjalizowany (custom, single-operation); o technologia wykonania układu procesora CMOS 15 / 100 (Główne) jednostki obliczeniowe Notes • funkcjonalność procesora o ogólnego przeznaczenia; programowalno-dedykowany; specjalizowany (custom, single-operation); o technologia wykonania układu procesora CMOS FPGA

(Główne) jednostki obliczeniowe Notes • funkcjonalność procesora ogólnego przeznaczenia; programowalno-dedykowany; specjalizowany (custom, single-operation); • technologia wykonania układu procesora CMOS FPGACPLD 17 / 100 (Główne) jednostki obliczeniowe Notes funkcjonalność procesora ogólnego przeznaczenia; programowalno-dedykowany; specjalizowany (custom, single-operation); • technologia wykonania układu procesora CMOS FPGA CPLD o ... 18 / 100 Procesor ogólnego przeznaczenia Notes Charakterystyka: 19 / 100 Procesor ogólnego przeznaczenia Notes Charakterystyka: • uniwersalny procesor o szerokim zakresie typowych operacji; o zazwyczaj architektura von Neumana (pamięć programu, pamięć danych); • w oparciu o rejestry i dużą pamięć (zatem cache, zatem zarządca pamięci);

działania;

Procesor ogólnego przeznaczenia Notes Charakterystyka: uniwersalny procesor o szerokim zakresie typowych operacji; o zazwyczaj architektura von Neumana (pamięć programu, pamięć danych); o w oparciu o rejestry i dużą pamięć (zatem cache, zatem zarządca pamięci); ${\color{blue} \bullet}$ potokowość, przepustowość, szeroka magistrala ${\color{blue} \to}$ szybkość działania; Zalety: 21 / 100 Procesor ogólnego przeznaczenia Notes Charakterystyka: uniwersalny procesor o szerokim zakresie typowych operacji; o zazwyczaj architektura von Neumana (pamięć programu, pamięć danych); • w oparciu o rejestry i dużą pamięć (zatem cache, zatem zarządca pamięci); ullet potokowość, przepustowość, szeroka magistrala ightarrow szybkość szybka produkcja (łatwiejsze programowanie); łatwa dostępność; • wysoka elastyczność - jedna aplikacja, wiele możliwości. 22 / 100 Procesor ogólnego przeznaczenia Notes Charakterystyka: • uniwersalny procesor o szerokim zakresie typowych operacji; • zazwyczaj architektura von Neumana (pamięć programu, pamięć danych); • w oparciu o rejestry i dużą pamięć (zatem cache, zatem zarządca pamięci); ullet potokowość, przepustowość, szeroka magistrala ightarrow szybkość Zalety: • szybka produkcja (łatwiejsze programowanie); łatwa dostępność; • wysoka elastyczność - jedna aplikacja, wiele możliwości. koszt... 23 / 100 Intel 4004 Notes

4-bit dane
8-bit instr.
12-bit adr.
zegar 740kHz
2300 tranzystorów
8 cykli/instr.

25 / 100

Notes

Procesor programowalno-dedykowany

Pewne operacje są typowe dla pewnych dziedzin/zastosowań.

26 / 100

Procesor programowalno-dedykowany

Pewne operacje są typowe dla pewnych dziedzin/zastosowań.

Filtry to często obliczenie:

$$y = \sum_{k=0}^{M-1} A_k X_k$$

Operacja MAC \rightarrow multiply and add.

27 / 100

Procesor programowalno-dedykowany

Pewne operacje są typowe dla pewnych dziedzin/zastosowań.

Filtry to często obliczenie:

$$y = \sum_{k=0}^{M-1} A_k X_k$$

Operacja MAC \rightarrow multiply and add.

Niech $X_m = b_{m(N-1)}b_{m(N-2)}...b_m1b_m0$:

$$y = \sum_{k=0}^{M-1} A_k \left[b_{k(N-1)} 2^{N-1} + \sum_{n=0}^{N-2} b_{kn} 2^n \right]$$

=
$$\sum_{k=0}^{M-1} A_k b_{k(N-1)} 2^{N-1} + \sum_{n=0}^{N-2} \left[\sum_{k=0}^{M-1} A_k b_{kn} \right] 2^n$$

Notes	
Notes	
Notes	

Procesor programowalno-dedykowany

$$y = \sum_{k=0}^{M-1} A_k b_{k(N-1)} 2^{N-1} + \sum_{n=0}^{N-2} \left[\sum_{k=0}^{M-1} A_k b_{kn} \right] 2^n$$

29 / 100

Notes

Procesor programowalno-dedykowany

$$y = \sum_{k=0}^{M-1} A_k b_{k(N-1)} 2^{N-1} + \sum_{n=0}^{N-2} \left[\sum_{k=0}^{M-1} A_k b_{kn} \right] 2^n$$

30 / 100

Procesor dedykowany

Procesory dedykowane, np. DSP (digital signal processing).

 przyspieszone operacje (np. MAC, wektorowe) – dedykowane układy mnożące oraz operacje w asemblerze; specjalne tryby adresowania;

31 / 100

Procesor dedykowany

Procesory dedykowane, np. DSP (digital signal processing).

- przyspieszone operacje (np. MAC, wektorowe) dedykowane układy mnożące oraz operacje w asemblerze; specjalne tryby adresowania:
- architektura harwardzka i potokowość;

Notes	
Notes	
Notes	

Procesor dedykowany

Procesory dedykowane, np. DSP (digital signal processing).

- przyspieszone operacje (np. MAC, wektorowe) dedykowane układy mnożące oraz operacje w asemblerze; specjalne tryby adresowania;
- architektura harwardzka i potokowość;
- trudniej programować, wolniejsze w ogólnych zastosowaniach...

33 / 100

Texas Instruments TMS320C5504 DSP system-on-chip

TMS320C5504/5 Block Diagram and Deltas

CSOS Factures Out NAC, CSx CPU with JTAG disable option - Dash NAC, CSx CPU with JTAG disable option - 10 FV @ GMM+E; 13 V @ 100M+E/120M+E available) - Dynamic Voltage and Frequency Scaling Memory - 258-KB On-Chip Memory, 64-KB DARAM, 192-KB SARAM - 128-KB ROM Peripherals Four serial busses offering combinations of PS, UART, SPI, MMCSO, and GPIO - High speed USB2 0 - High speed USB2 0 - Multi-instead and Save PC with 7 or 10-bit addressing mode; - Three 32-bit briners with watchdog functionality - Four 4-Channel DMAs - 16-bit EMF with asynchronous SRAM, NAND (with 4-bit ECC) - Low power FLL (0, Timd) with 93/94z crystal oscillator - Real-time clock with 52-KHz crystal injunt, 1 analog LDO 100 - 1.0 V 25-V, 2.8 V, 3.3 V - Separate I/O supplies for EMF and serial interface - Package- 188-jpin 10x10mm BGA with 0.85mm pitch - CSSOS Additional F-satures: - 202-KB On-Chip Memory, 64-KB LDRAM, 256-KB SARAM LCD Entitig mixed with RS, SPI, UART, and GPIO - 44-th 10bit SRA ADC

34 / 100

Mikrokontrolery AVR – ATtiny, ATmega, X-Mega...

35 / 100

Mikrokontrolery AVR - ATtiny, ATmega, X-Mega...

Notes	
Notes	
N	
Notes	
Notes	

Procesor specjalizowany		
		Notes
Mały układ wykonujący jedną, (prostą) czynność.		
37/10	00	
Procesor specjalizowany		
, , , , , , , , , , , , , , , , , , ,	_	Notes
Mały układ wykonujący jedną, (prostą) czynność.		
timer/watchdog/counter;		
38/1	00	
	_	
Procesor specjalizowany		Notes
Mały układ wykonujący jedną, (prostą) czynność.		
timer/watchdog/counter;UART/USART		
• OAKT/ODAKT		
39 / 10	00	
Procesor specjalizowany		
		Notes
Mały układ wykonujący jedną, (prostą) czynność. • timer/watchdog/counter;		
 UART/USART kontroler LCD, silnika krokowego 		
W KONLIOICI LCD, SIIIIKA KIOKOWEGO		

Procesor specjalizowany

Mały układ wykonujący jedną, (prostą) czynność.

- timer/watchdog/counter;
- UART/USART
- kontroler LCD, silnika krokowego...

Gotowe procesory vs. budowane własnym sumptem.

41 / 100

Notes

HD44780 - kontroler LCD 2x16 znaków

42 / 100

HD44780 - kontroler LCD 2x16 znaków

43 / 100

HD44780 - kontroler LCD 2x16 znaków

					C	ode						Execution Time (max) (when f _{op} or
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	f _{osc} is 270 kHz)
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address 0 in address counter.	
Return home	0	0	0	0	0	0	0	0	1	_	Sets DDRAM address 0 in address counter. Also returns display from being shifted to original position. DDRAM contents remain unchanged.	1.52 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 μs
Display on/off control	0	0	0	0	0	0	1	D	С	В	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	37 μs
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	-	-	Moves cursor and shifts display without changing DDRAM contents.	37 μs
Function set	0	0	0	0	1	DL	N	F	-	-	Sets interface data length (DL), number of display lines (N), and character font (F).	37 μs
Set CGRAM address	0	0	0	1	ACG	ACG	ACG	ACG	ACG	ACG	Sets CGRAM address. CGRAM data is sent and received after this setting.	37 μs
Set DDRAM address	0	0	1	ADD	Sets DDRAM address. DDRAM data is sent and received after this setting.	37 µs						

lotes	
lotes	
Jotes	
lotes	

		Notes
COordinate Rotation DIgital Computer Zestaw parametryzowanych algorytmów aproksymujących różne funkcje matematyczne (sin, cos, cosh, atan, pierwiastek)		
	45 / 100	
		Notes
COordinate Rotation DIgital Computer Zestaw parametryzowanych algorytmów aproksymujących różne funkcje matematyczne (sin, cos, cosh, atan, pierwiastek)	1	
o operacje dodawania i przesunięcia, prosta arytmetyka		
	46 / 100	
		Notes
COordinate Rotation Digital Computer		
Zestaw parametryzowanych algorytmów aproksymujących różne funkcje matematyczne (sin, cos, cosh, atan, pierwiastek) o operacje dodawania i przesunięcia, prosta arytmetyka		
o efektywny dla wieloelementowych wektorów we/wy		
	47 / 100	
CORDIC – obrót wektora (x_s, y_s) o θ		Notes
$x_f = x_s \cos \theta - y_s \sin \theta$ $y_f = x_s \sin \theta + y_s \cos \theta$		

CORDIC – obrót wektora (x_s, y_s) o θ

$$x_f = x_s \cos \theta - y_s \sin \theta$$

$$y_f = x_s \sin \theta + y_s \cos \theta$$

$$\theta = \sum_{i=0}^{\inf} \alpha_i$$

49 / 100

CORDIC – obrót wektora (x_s, y_s) o θ

$$x_f = x_s \cos \theta - y_s \sin \theta$$

$$y_f = x_s \sin \theta + y_s \cos \theta$$

$$\theta = \sum_{i=0}^{\inf} \alpha_i$$

$$x_{i+1} = x_i \cos \alpha_i - y_i \sin \alpha_i$$

$$y_{i+1} = y_i \sin \alpha_i + y_i \cos \alpha_i$$

50 / 100

CORDIC – obrót wektora (x_s, y_s) o θ

$$\begin{array}{ll} x_f = & x_s\cos\theta - y_s\sin\theta \\ y_f = & x_s\sin\theta + y_s\cos\theta \\ \hline {\theta} = & \sum_{i=0}^{\inf}\alpha_i \\ x_{i+1} = & x_i\cos\alpha_i - y_i\sin\alpha_i \\ y_{i+1} = & y_i\sin\alpha_i + y_i\cos\alpha_i \\ x_{i+1} = & \cos(\alpha_i)(x_i - y_i\tan(\alpha_i)) \\ y_{i+1} = & \cos(\alpha_i)(y_i + x_i\tan(\alpha_i)) \end{array}$$

51 / 100

CORDIC – obrót wektora (x_s, y_s) o θ

$$\begin{aligned} &x_f = &x_s \cos \theta - y_s \sin \theta \\ &y_f = &x_s \sin \theta + y_s \cos \theta \end{aligned}$$

$$&\theta = \sum_{i=0}^{\inf} \alpha_i$$

$$&x_{i+1} = &x_i \cos \alpha_i - y_i \sin \alpha_i \\ &y_{i+1} = &y_i \sin \alpha_i + y_i \cos \alpha_i \end{aligned}$$

$$&x_{i+1} = &\cos(\alpha_i)(x_i - y_i \tan(\alpha_i))$$

$$&y_{i+1} = &\cos(\alpha_i)(y_i + x_i \tan(\alpha_i))$$

$$&\alpha_i = \tan^{-1}(\sigma_i 2^{-i})$$

Notes
Notes
N. d
Notes
Notes

CORDIC – obrót wektora (x_s, y_s) o θ

 $\begin{aligned} &x_f = &x_s \cos\theta - y_s \sin\theta \\ &y_f = &x_s \sin\theta + y_s \cos\theta \end{aligned}$ $&\theta = \sum_{i=0}^{\inf} \alpha_i$ $&x_{i+1} = &x_i \cos\alpha_i - y_i \sin\alpha_i \\ &y_{i+1} = &y_i \sin\alpha_i + y_i \cos\alpha_i \end{aligned}$ $&x_{i+1} = &\cos(\alpha_i)(x_i - y_i \tan(\alpha_i))$ $&y_{i+1} = &\cos(\alpha_i)(y_i + x_i \tan(\alpha_i))$ $&\alpha_i = &\tan^{-1}(\sigma_i 2^{-i})$ $&x_{i+1} = &\cos(\alpha_i)(x_i - \sigma_i y_i 2^{-i})$

 $y_{i+1} = \cos(\alpha_i)(y_i + \sigma_i x_i 2^{-i})$

53 / 100

Notes

Notes

CORDIC – obrót wektora (x_s, y_s) o θ

$$\begin{array}{lll} & x_f = & x_s \cos \theta - y_s \sin \theta \\ & y_f = & x_s \sin \theta + y_s \cos \theta \\ & \theta = \sum_{i=0}^{\inf} \alpha_i \\ & x_{i+1} = & x_i \cos \alpha_i - y_i \sin \alpha_i \\ & y_{i+1} = & y_i \sin \alpha_i + y_i \cos \alpha_i \\ & x_{i+1} = & \cos(\alpha_i)(x_i - y_i \tan(\alpha_i)) \\ & y_{i+1} = & \cos(\alpha_i)(y_i + x_i \tan(\alpha_i)) \\ & y_{i+1} = & \cos(\alpha_i)(x_i - \sigma_i y_i 2^{-i}) \\ & \alpha_i = \tan^{-1}(\sigma_i 2^{-i}) \\ & x_{i+1} = & \cos(\alpha_i)(x_i - \sigma_i y_i 2^{-i}) \\ & y_{i+1} = & \cos(\alpha_i)(y_i + \sigma_i x_i 2^{-i}) \\ & y_{i+1} = & \cos(\alpha_i)(y_i + \sigma_i x_i 2^{-i}) \\ \end{array}$$

54 / 100

CORDIC

55 / 100

CORDIC

	_
	—
	—
otes	
	_
	—
	—
otes	
	—
	—

Procesory "programowalne"

- modyfikowalny hardware: FPGA/CPLD

57 / 100

Notes

LEON2-FT - ESA i jej wkład w podbój kosmosu

Leon — a new recipe for chips - www.ESA.int

58 / 100

LEON2-FT - ESA i jej wkład w podbój kosmosu

"The next stage was then to physically translate that code to create $\,$ a test board hosting a programmable chip called a 'field programmable gate array' (FPGA) where the LEON design could be put to work and tested." Leon – a new recipe for chips - www.ESA.int

Notes			
Notes			
Notes			

wchodzą w skład CLB (configurable logic block)

61 / 100

- wchodzą w skład CLB (configurable logic block)
- dodatkowa "drobnica"(carry chain, OR, XOR ...

62 / 100

- wchodzą w skład CLB (configurable logic block)
- dodatkowa "drobnica"(carry chain, OR, XOR ...
- CLB mają szybkie połączenia z sąsiadami

Notes

Notes

Notes

63 / 100

Notes

• łączę co dwa, co 4, co 8, wszystkie w koło

• łączę co dwa, co 4, co 8, wszystkie w koło

układ mnożący (w Virtexie 18x18 bitów)

- o łączę co dwa, co 4, co 8, wszystkie w koło
- układ mnożący (w Virtexie 18x18 bitów)
- o rozsiane bloki pamięci RAM (po np. 18kBit)

- łączę co dwa, co 4, co 8, wszystkie w koło
- układ mnożący (w Virtexie 18x18 bitów)
- rozsiane bloki pamięci RAM (po np. 18kBit)
- o peryfieria plus układ kompensacji zegara

Notes	
	—
	—
Notes	
	—
Notes	
	—
	—
Notes	

8 / 100

65 / 100

66 / 100

SPLD - dwie płaszczyzny, AND, OR

69 / 100

Notes

SPLD - dwie płaszczyzny, AND, OR

70 / 100

SPLD - (Simple) Programmable Logic Device

• stałe bramki, konfigurowalne połączenia

71 / 100

SPLD - (Simple) Programmable Logic Device

- stałe bramki, konfigurowalne połączenia
- FPLA, GAL reprogramowalne

	—
Notes	
Notes	
	—
Notes	
votes	

SPLD – (Simple) Programmable Logic Device

- stałe bramki, konfigurowalne połączenia
- FPLA, GAL reprogramowalne
- GAL, PAL stałe łączenia bramek OR

73 / 100

Notes

SPLD - (Simple) Programmable Logic Device

- stałe bramki, konfigurowalne połączenia
- FPLA, GAL reprogramowalne
- GAL, PAL stałe łączenia bramek OR
- o dysjunkcyjna postać normalna

74 / 100

SPLD - (Simple) Programmable Logic Device

- stałe bramki, konfigurowalne połączenia
- FPLA, GAL reprogramowalne
- GAL, PAL stałe łączenia bramek OR
- dysjunkcyjna postać normalna
- dobre gdy iloczyny wielu we "kompresowane" do alternatywy

75 / 100

CPLD - Complex Programmable Logic Device

Notes			
Notes			
110103			
Notes			
Notes			
_			

CPLD – po środku	
	Notes
PLD FPGA • nieulotnie programowalne	
bloki we/wy bezpośrednio do operacji	
LB • dużo bramek	
 dalej podstawą suma-produktów przeznaczenia 	
77 / 100	
CDLD / :	
CPLD – za/przeciw	Notes
 przewidywalne opóźnienia czasowe krótsze niż FPGA 	
78 / 100	
CPLD – za/przeciw	
	Notes
o przewidywalne opóźnienia czasowe krótsze niż FPGA	
krytyczne, "high-performance" aplikacje nadzorcze	
79 / 100	
CPLD – za/przeciw	
	Notes
a przewidowalne opóźnienie czecowe krótego = : FDCA	
 przewidywalne opóźnienia czasowe krótsze niż FPGA krytyczne, "high-performance" aplikacje nadzorcze 	
niedrogie i oszczędne energetycznie	

CPLD - za/przeciw

- przewidywalne opóźnienia czasowe krótsze niż FPGA
 - krytyczne, "high-performance" aplikacje nadzorcze
- niedrogie i oszczędne energetycznie
 - wymagające finansowo, bateryjne systemy mobilne (sensory)

81 / 100

CPLD - za/przeciw

- przewidywalne opóźnienia czasowe krótsze niż FPGA
 - krytyczne, "high-performance" aplikacje nadzorcze
- niedrogie i oszczędne energetycznie
 - wymagające finansowo, bateryjne systemy mobilne (sensory)
 - o proste aplikacje np. 1-z-N, dekodowanie adresów etc.

82 / 100

CPLD - za/przeciw

- przewidywalne opóźnienia czasowe krótsze niż FPGA
 - krytyczne, "high-performance" aplikacje nadzorcze
- niedrogie i oszczędne energetycznie
 - $_{\scriptsize 0}$ wymagające finansowo, bateryjne systemy mobilne (sensory)
 - o proste aplikacje np. 1-z-N, dekodowanie adresów etc.
- mniej wszechstronna struktura

83 / 100

CPLD – za/przeciw

- przewidywalne opóźnienia czasowe krótsze niż FPGA
 - krytyczne, "high-performance" aplikacje nadzorcze
- niedrogie i oszczędne energetycznie
 - wymagające finansowo, bateryjne systemy mobilne (sensory)
 - proste aplikacje np. 1-z-N, dekodowanie adresów etc.
- mniej wszechstronna struktura
- ograniczona ilość wejść dla microcell

Notes		
NI .		
Notes		
Notes		

 $\mathsf{Metal\text{-}On\text{-}Silicon},\ \mathsf{Field\text{-}Effect},\ \mathsf{Transistor} \to \mathsf{MOSFET}$

85 / 100

Notes

Tranzystor polowy - MOSFET

 $\mathsf{Metal\text{-}On\text{-}Silicon,\ Field\text{-}Effect,\ Transistor} \to \mathsf{MOSFET}$

86 / 100

Tranzystor polowy - MOSFET

 $\mathsf{Metal\text{-}On\text{-}Silicon,\ Field\text{-}Effect,\ Transistor} \to \mathsf{MOSFET}$

87 / 100

MOSFET - działanie

 $G=0
ightarrow {
m przewodzenie} \ G=1
ightarrow {
m brak przewodzenia}$

Notes			
Notes			
Notes			
Votes			
		 	_
		 	_

 $G=0
ightarrow {
m przewodzenie} \ G=1
ightarrow {
m brak przewodzenia}$

 $G=0 \quad o ext{ brak przewodzenia} \ G=1 \quad o ext{ przewodzenie}$

89 / 100

Notes

MOSFET 2N7000

90 / 100

MOSFET 2N7000

91 / 100

MOSFET 2N7000

Notes	
Notes	
Notes	
	_

Bramki logiczne CMOS - inwerter

CMOS inverter

93 / 100

Notes

Bramki logiczne CMOS - NAND, NOR

94 / 100

Bramki logiczne CMOS - NAND, NOR

95 / 100

Bramki logiczne CMOS - NAND, NOR

otes	
otes	
atos	
otes	

Bramki logiczne CMOS - NAND, NOR

97 / 100

Notes

Bramki logiczne CMOS - NAND, NOR

98 / 100

99 / 100

Rzeczy do zapamiętania

- procesory specjalizowane vs. programowalne vs. programowalne-dedykowane;
- CORDIC;
- budowa, porównanie FPGA, (S/C)PLD;
- technologia CMOS: bramki IVN, NAND, NOR;

Do przeczytania

 $_{\odot}$ http://www.esa.int/Our_Activities/ \Rightarrow LEON - a new recipe for chips.

otes	
otes	
otes	
	—
otes	