Autômatos Finitos e Linguagens Regulares

Prof. Hamilton José Brumatto

CIC-UESC

23 de dezembro de 2024

- Autômatos Finitos
 - Modelo Computacional
 - Máquina de Estado
 - Definição Formal
 - Exemplos de Autômatos

2 Atividades

Máquina e Linguagem de Máquina

Como visto em arquiteturas, ao se falar em computadores, falamos em "máquina", e esta máquina é programável, existe uma "linguagem de máquina".

Na Teoria da Computação queremos apresentar um modelo matemático para a máquina. E descrever sua computabilidade: como este modelo interpreta a linguagem da máquina.

Um computador é muito complexo para ser estudado. É necessário um modelo mais simples que nos permita estudar como são computadas as instruções, e como uma linguagem está associada ao modelo. Desta forma é possível saber o que pode e o que não pode ser computável.

Um modelo simples é uma máquina de estados. Nesta máquina cada estado representa uma situação que a máquina pode estar e um conjunto de instruções permite transições entre os estados. Este modelo é representado por um " AUT ÔMATO FINITO".

Máquina de Estados

- O conceito de máquina de estados não é muito diferente do que existe atualmente no computador.
- O estado de um processo no computador é definido por:
 - O valor de cada uma das variáveis declaradas, canais e manipuladores abertos
 - O valor das pilhas de memória e páginas de memórias.
 - O valor dos registradores no processador
- Desta forma é possível guardar o "estado" de um processo na fila de escalonamento para que ele continue na próxima vez.
- Se for ver em Sistemas Distribuídos, ele pode continuar até em outra máquina.
- Mas vamos começar com um modelo mais simples, o automato finito, com 1 ou pouco valores a guardar representando o estado.

Portão-Automático

Considere a função de um portão automático que vimos no último tema, como uma máquina que recebe instruções. A entrada é uma 2-upla no alfabeto Σ : $\{\uparrow, \Box\}$ e nos estados do portão representado pelo conjunto E: {aberto, abrindo, fechando, fechado}, ou seja a entrada é o domínio $D: \Sigma \times E$. Para entender os símbolos: \uparrow representa um "click" no controle remoto; e \square representa o aviso do sensor do fim de curso. Um click

no controle com o portão aberto, ou abrindo, faz com que ele comece a fechar ou seja passa para o estado "fechando", e vice-versa. E se o portão estiver abrindo ou fechando e chegar ao fim de curso \square ele para, no estado "aberto" ou "fechado" respectivamente.

Portão: $\Sigma \times E \rightarrow E$ Portão aberto abrindo fechando fechado

Portão-Automático

Considere a função de um portão automático que vimos no último tema, como uma máquina que recebe instruções. A entrada é uma 2-upla no alfabeto $\Sigma:\{\updownarrow,\Box\}$ e nos estados do portão representado pelo conjunto $E:\{aberto,abrindo,fechando,fechado\}$, ou seja a entrada é o domínio $D:\Sigma\times E$. Para entender os símbolos: \updownarrow representa um "click" no controle remoto; e \Box representa o aviso do sensor do fim de curso. Um click \updownarrow no controle com o portão aberto, ou abrindo, faz com que ele comece a fechar ou seja passa para o estado "fechando", e vice-versa. E se o portão estiver abrindo ou fechando e chegar ao fim de curso \Box ele para, no estado "aberto" ou "fechado" respectivamente.

Portão:	Σ	X	Ε	\rightarrow	Е
---------	---	---	---	---------------	---

P	ortão	aberto	abrindo	fechando	fechado
	\$	fechando	fechando	abrindo	abrindo
		aberto	aberto	fechado	fechado

Portão-automático

O portão-automático pode ser representado por uma máquina de estado, vamos construir esta máquina a partir de um grafo orientado, este grafo terá em seus vértices a informação do estado, e os arcos serão as ações de entrada que podem ocasionar uma mudança de estado. Precisamos de um estado inicial, por exemplo fechado:

Portão-automático

O portão-automático pode ser representado por uma máquina de estado, vamos construir esta máquina a partir de um grafo orientado, este grafo terá em seus vértices a informação do estado, e os arcos serão as ações de entrada que podem ocasionar uma mudança de estado. Precisamos de um estado inicial, por exemplo fechado:

O que acontece se este Autômato receber a seguinte cadeia de entrada:

Estados de Aceitação

- Na máquina de estados do slide anterior, o conjunto de instruções apresentadas resulta no final no estado "aberto", mas será este um estado aceito como final?
- Os autômatos definem um estado de aceitação, de forma que somente as cadeias que atingem o estado de aceitação é aceita pelo autômato.
- O conjunto de cadeias aceitas é a Linguagem que o autômato reconhece.
- Veja no próximo slide, nosso autômato define como estado de aceitação o estado "fechado".

- $\updownarrow \Box \updownarrow \updownarrow \Box \Box$ não é uma cadeia aceita, no entanto
- 1 □ 1 □ 1 □ o é!

- $\updownarrow \Box \updownarrow \updownarrow \Box \Box$ não é uma cadeia aceita, no entanto

Qual a forma geral de uma cadeia para ser aceita?

Ou seja, qual a linguagem de máquina deste autômato?

- ↑ □ ↑↑ □□ não é uma cadeia aceita, no entanto
 ↑ □ ↑↑ □ ↑ □ o é!
- Qual a forma geral de uma cadeia para ser aceita? Ou seja, qual a linguagem de máquina deste autômato? $A = \{w | w \text{ contém um número par de } \updownarrow \text{ e termina com } \Box \}$

Qual a forma geral de uma cadeia para ser aceita?

Ou seja, qual a linguagem de máquina deste autômato?

 $A = \{w | w \text{ contém um número par de } \updownarrow \text{ e termina com } \square\}$

Ainda não falamos de cadeia vazia. Vamos representar por ε uma cadeia que não contém nenhum símbolo. Então:

 $A = \{w | w = \varepsilon \lor w \text{ contém um número par de } \updownarrow \text{ e termina com } \square\}.$

Elementos de um Autômato

Colocando de forma mais precisa, podemos identificar os elementos que definem o autômato. Descrevendo completamente os elementos, podemos indicar qualquer autômato. São 5 os elementos que formam um autômato, ou seja ele pode ser descrito por uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde.

- Q, é o conjunto de estados do autômato.
- Σ, o alfabeto que define as transições entre os estados.
- $\delta: Q \times \Sigma \to Q$, é a função de transição.
- $q_0 \in Q$, é o estado inicial.
- $F \subseteq Q$, é o conjunto de estados de aceitação.

Portão= $(Q, \Sigma, \delta, q_0, F)$

- Q
- Σ
- δ
- q₀
- F

Portão= $(Q, \Sigma, \delta, q_0, F)$

- Q: {aberto, abrindo, fechando, fechado}
- Σ
- δ
- q₀
- F

Portão=
$$(Q, \Sigma, \delta, q_0, F)$$

- Q: {aberto, abrindo, fechando, fechado}
- Σ : $\{\updownarrow, \Box\}$
- δ
- q₀
- F

Portão=
$$(Q, \Sigma, \delta, q_0, F)$$

- Q: {aberto, abrindo, fechando, fechado}
- Σ : $\{\updownarrow, \Box\}$

		Portão	aberto	abrindo	fechando	fechado
•	δ :	\Leftrightarrow	fechando	fechando	abrindo	abrindo
			aberto	aberto	fechado	fechado

- q₀
- F

Portão=
$$(Q, \Sigma, \delta, q_0, F)$$

- Q: {aberto, abrindo, fechando, fechado}
- Σ: {‡,□}

			aberto			
•	δ :	\Leftrightarrow	fechando	fechando	abrindo	abrindo
			aberto	aberto	fechado	fechado

- q₀: fechado
- F

Portão=
$$(Q, \Sigma, \delta, q_0, F)$$

- Q: {aberto, abrindo, fechando, fechado}
- Σ : $\{\updownarrow, \Box\}$

			aberto			
•	δ :	\Leftrightarrow	fechando	fechando	abrindo	abrindo
			aberto	aberto	fechado	fechado

- q₀: fechado
- F: {fechado}

Portão= $(Q, \Sigma, \delta, q_0, F)$

- Q: {aberto, abrindo, fechando, fechado}
- Σ: {↑,□}

	Portão	aberto	abrindo	fechando	fechado
δ:	\Leftrightarrow	fechando	fechando	abrindo	abrindo
		aberto	aberto	fechado	fechado

- q₀: fechado
- F: {fechado}

Olhando esta definição, interprete a cadeia: ↑ □ ↑↑ □ ↑ □

- Q
- Σ
- δ
- q₀
- F

- $Q: \{q_1, q_2, q_3\}$
- Σ
- δ
- q₀
- F

- $Q: \{q_1, q_2, q_3\}$
- Σ : $\{0,1\}$
- δ
- q₀
- F

•
$$Q: \{q_1, q_2, q_3\}$$

•
$$\Sigma$$
: $\{0,1\}$

- q₀
- F

•
$$Q: \{q_1, q_2, q_3\}$$

•
$$\Sigma$$
: $\{0,1\}$

- q₀: q₁
- F

- $Q: \{q_1, q_2, q_3\}$
- Σ: {0,1}

- q₀: q₁
- *F*: {*q*₂}

•
$$Q: \{q_1, q_2, q_3\}$$

- q₀: q₁
- *F*: {*q*₂}

Qual a linguagem que este autômato reconhece?

- q₀: q₁
- *F*: {*q*₂}

Qual a linguagem que este autômato reconhece? $L(M_1) = A$; $A = \{w | w \text{ contém pelo menos um } 1 \text{ e um número par de 0s segue o último } 1\}$

- Q
- Σ
- δ
- q₀
- F
- L(M₂)

- $Q: \{q_1, q_2\}$
- Σ
- δ
- q₀
- F
- $L(M_2)$

- $Q: \{q_1, q_2\}$
- $\bullet \ \Sigma \colon \ \{0,1\}$
- δ
- q₀
- F
- $L(M_2)$

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- $\begin{array}{c|ccccc}
 & 0 & 1 \\
 \bullet & \delta & q_1 & q_1 & q_2 \\
 & q_2 & q_1 & q_2
 \end{array}$
- q₀
- F
- L(M₂)

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- q₀: q₁
- F
- L(M₂)

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- $\begin{array}{c|ccccc}
 & 0 & 1 \\
 & g_1 & q_1 & q_2 \\
 & g_2 & q_1 & q_2
 \end{array}$
- q₀: q₁
- *F*: {*q*₂}
- L(M₂)

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- δ : $\begin{array}{c|cccc} q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$

- q₀: q₁
- *F*: {*q*₂}
- $L(M_2)$: $A = \{w | w \text{ termina com um } 1\}$

- Q
- Σ
- δ
- q₀
- F
- L(M₃)

- $Q: \{q_1, q_2\}$
- Σ
- δ
- q₀
- F
- L(M₃)

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- δ
- q₀
- F
- \bullet $L(M_3)$

- $Q: \{q_1, q_2\}$
- Σ: {0,1}
- $\begin{array}{c|ccccc}
 & 0 & 1 \\
 & & q_1 & q_1 & q_2 \\
 & & q_2 & q_1 & q_2
 \end{array}$
- q₀
- F
- L(M₃)

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- q₀: q₁
- F
- L(M₃)

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- $\begin{array}{c|ccccc}
 & 0 & 1 \\
 & q_1 & q_1 & q_2 \\
 & q_2 & q_1 & q_2
 \end{array}$
- q₀: q₁
- *F*: {*q*₁}
- L(M₃)

- $Q: \{q_1, q_2\}$
- Σ : $\{0,1\}$
- δ : $\begin{array}{c|cccc} q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$

- q₀: q₁
- *F*: {*q*₁}
- $L(M_3)$: $A = \{w | w \text{ \'e a cadeia vazia } \varepsilon \text{ ou termina com um } 0\}$

- Q
- Σ
- δ
- q₀
- F
- L(M₄)

- $Q: \{s, q_1, v_1, q_2, v_2\}$
- Σ
- δ
- q₀
- F
- L(M₄)

- $Q: \{s, q_1, v_1, q_2, v_2\}$
- Σ: {a,b}
- δ
- q₀
- F
- L(M₄)

- $Q: \{s, q_1, v_1, q_2, v_2\}$
- Σ: {a,b}

	а	b
5	q_1	v_1
α.	a.	a.

- q₀
- F
- L(M₄)

- $Q: \{s, q_1, v_1, q_2, v_2\}$
- Σ: {a,b}

	а	b
5	q_1	v_1
~	~	~

- q₀: s
- F
- L(M₄)

- $Q: \{s, q_1, v_1, q_2, v_2\}$
- Σ: {a,b}

	а	Ь
5	q_1	v_1
~	~	~

- q₀: s
- $F: \{q_1, v_1\}$
- L(M₄)

- $Q: \{s, q_1, v_1, q_2, v_2\}$
- Σ: {a,b}

	a	b
S	q_1	v_1
<i>C</i> 1	01	a.

- *q*₀: *s*
- $F: \{q_1, v_1\}$
- $L(M_4)$: $A = \{w | w \text{ \'e a cadeia que começa e termina com o mesmo símbolo}\}$

- Q
- Σ
- δ
- q₀
- F
- $L(M_5)$

- $Q: \{q_0, q_1, q_2\}$
- Σ
- δ
- q₀
- F
- $L(M_5)$

M_5

Formalmente:

• Σ : { $\langle RESET \rangle, 0, 1, 2$ }

- δ
- q₀
- F
- $L(M_5)$

• Σ : $\{\langle RESET \rangle, 0, 1, 2\}^{N}$

	-\square \qquare \qqquare \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqqq \qqq \qqqq \	1	
1		1	
$0, \langle RESET \rangle$			
	O (DECET))
	$2, \langle RESET \rangle$	2	
	2		
40		42)
L,2} ~~			

 $1, \langle RESET \rangle$

			\NL3LT/	U			
•	δ.	90 91 92	q_0	q 0	q_1	q_2	
	٠.	q_1	q_0	q_1	q_2	q_0	
		q_2	q_0	q_2	q_0	q_1	

- q₀
- F
- $L(M_5)$

M_5

Formalmente:

• Σ : { $\langle RESET \rangle$, 0, 1, 2}

	q_1	1	
$0, \langle RESET \rangle$ 1			
	$2, \langle RESET \rangle$	2	0
go	2		g)*
2}	_		ال

 $1, \langle RESET \rangle$

			(RESET)	U	1	2	
•	δ	q 0 q 1	q_0	q 0	q_1	q 2	
	٥.	q_1	q_0	q_1	q_2	q_0	
		q_2	q_0	q_2	q_0	q_1	
			=				

- q₀: q₀
- F
- $L(M_5)$

• Σ : { $\langle RESET \rangle$, 0, 1, 2}

	q_1	1	
$0, \langle RESET \rangle$		\\'\	
0,(1.2021)	$2, \langle RESET \rangle$	2	0
	2	gr	\
21		(42	J

 $1, \langle RESET \rangle$

		(RESET)	U	1	
δ .	q_0	q_0	q 0	q_1	q ₂
٥.	q_1	q_0	q_1	q_2	q_0
	q_2	q_0	q_2	q_0	q_1
	δ :	δ : $\begin{array}{c} q_0 \\ q_1 \\ q_2 \end{array}$	δ : $\begin{array}{c c} q_0 & q_0 \\ q_1 & q_0 \end{array}$	$\delta : \begin{array}{c ccc} q_0 & q_0 & q_0 \\ q_1 & q_0 & q_1 \end{array}$	δ : $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- q₀: q₀
- *F*: {*q*₀}
- L(M₅)

ormalmente: 0,
$$\langle RESET \rangle$$
 1 2, $\langle RESET \rangle$ 2 0 Σ : $\{\langle RESET \rangle, 0, 1, 2\}$

1, (RESET)

	_		$\langle RESET \rangle$	0	1	2	
•	δ :	q_0	q_0	q_0	q_1	q_2	Ī
		q_1	q_0	q_1	q_2	q_0	

٥	δ .	q_0	q_0	q_0	q_1	q_2
•	٠.	q_1	q 0	q_1	q_2	q_0
		90 91 92	q_0	q 2	q_0	q_1

- q₀: q₀
- $F: \{q_0\}$
- $L(M_5)$: $A = \{w | w \text{ \'e a cadeia vazia ou a soma dos valores após o } \}$ último (RESET) é 0 módulo 3}

- $Q: \{s, q_a, q_b, f\}$
- Σ: {a,b}

- q₀: s
- F: {f}
- $L(M_6)$

•
$$Q: \{s, q_a, q_b, f\}$$

- q₀: s
- *F*: {*f*}
- L(M₆)

- $Q: \{s, q_a, q_b, f\}$
- Σ: {a, b}
- q₀: s
- *F*: {*f*}
- $L(M_6)$: $A = \{w | w \text{ \'e a cadeia n\~ao vazia na qual o símbolo de início aparece no mínimo uma segunda vez}$

- $Q: \{s, q_a, q_b, f\}$
- Σ: {a, b}

- q₀: s
- F: {f}
- L(M₇)

- $Q: \{s, q_a, q_b, f\}$
- Σ: {a, b}
- q_b q_a • δ: a q_b f q_a s
- q₀: s
- *F*: {*f*}
- L(M₇)

- $Q: \{s, q_a, q_b, f\}$
- Σ: {a, b}
- q_b q_a q_b s • δ : $a \mid q_a$
- q₀: s
- F: {f}
- L(M₇): Desafio de Hoje!

Atividades baseadas no Sipser

- Ler as seguinte seções do capítulo 1.1:
 - Autômatos Finitos.
 - Definição Formal de um Autômato Finitos.
 - Exemplos de Autômatos Finitos.
- resolver os exercícios: 1.1, 1.2, 1.3.