Отчет по лабораторной работе № 4 Чилеше Абрахам Вариант - 17

Б9122-02-03-01сцт

данные:

1. Функция: $f(x) = 0.5x^2 + \cos(2x)$

2. Интервал: [0.6, 1.1]

Цель работы

1. Найти точное решение интеграла $I^* = \int_a^b f(x) \, dx$.

2. Получить формулу для численного интегрирования из формулы Ньютона-Котеса или вероятностной оценки в соответствии с номером варианта:

(а) левые прямоугольники;

(b) правые прямоугольники;

(с) центральные прямоугольники;

(d) трапеции;

(е) Симпсона;

(f) Монте-Карло.

В общем виде решение $I^* = I_n + R_n$, где $I_n = \sum_{i=0}^n c_i f(x_i)$.

3. Исследовать порядок аппроксимации метода. Получить теоретическую оценку для R_n .

4. Провести вычислительный эксперимент для $n = \{2,4,6,8,16,\dots,2^{15}\}$ и построить таблицу.

5. Сделать вывод о поведении ошибки.

6. Провести вычислительный эксперимент для методов прямоугольников, трапеций, формулы Симпсона для n=10000. Построить таблицу.

7. Сделать вывод об эффективности выбранного вами метода.

8. Составить общее заключение.

9. Добавить список литературы, используемой для подготовки отчета.

Решение: $\int_a^b f(x)dx$

Подставим известные значения а, b и функцию. Получим:

$$\int_{0.6}^{1.1} \left(0.5x^2 + \cos(2x) \right) dx = \int_{0.6}^{1.1} 0.5x^2 dx + \int_{0.6}^{1.1} \cos(2x) dx.$$

Вычисление первого интеграла

$$\int_{0.6}^{1.1} 0.5x^2 dx = 0.5 \int_{0.6}^{1.1} x^2 dx = 0.5 \left(\frac{x^3}{3}\right) \Big|_{0.6}^{1.1} = 0.5 \left(\frac{1.1^3}{3} - \frac{0.6^3}{3}\right) = 0.5 \left(\frac{1.331}{3} - \frac{0.216}{3}\right) = 0.5 \left(\frac{1.115}{3}\right) = 0.5 \cdot 0.371667 \approx 0.185833.$$

Вычисление второго интеграла

$$\int_{0.6}^{1.1} \cos(2x) \, dx.$$

Сделаем замену переменной u=2x, тогда du=2dx или $dx=\frac{du}{2}$. Пределы интегрирования изменяются следующим образом: при $x=0.6,\ u=1.2;$ при $x=1.1,\ u=2.2.$ Интеграл переписывается как:

$$\int_{0.6}^{1.1} \cos(2x) \, dx = \frac{1}{2} \int_{1.2}^{2.2} \cos(u) \, du.$$

Вычислим интеграл от $\cos(u)$:

$$\int \cos(u) \, du = \sin(u).$$

Теперь вычислим определенный интеграл:

$$\frac{1}{2}\sin(u)\bigg|_{1,2}^{2.2} = \frac{1}{2}\left(\sin(2.2) - \sin(1.2)\right).$$

Вычислим значения синусов:

$$\sin(2.2) \approx 0.808496$$
, $\sin(1.2) \approx 0.932039$.

Таким образом:

$$\frac{1}{2}(0.808496 - 0.932039) = \frac{1}{2} \cdot (-0.123543) = -0.061772.$$

Общий результат

Сложим результаты двух интегралов:

$$0.185833 - 0.061772 = 0.124061.$$

Таким образом, значение интеграла $\int_{0.6}^{1.1} \left(0.5x^2 + \cos(2x)\right) dx \approx 0.124061.$

1. функция func и derivation

double func(double x): Эта функция определяет математическую функцию. Она принимает один аргумент x и возвращает значение типа double c плавающей запятой. В данной реализации она вычисляет значение функции $0.5 * x^2 + \cos(2 * x)$.

double f_derivative(double x, int k): Эта функция вычисляет k-ю производную функции, определенной функцией func, в заданной точке x. Она принимает два аргумента: точку x, в которой нужно вычислить производную, и порядок k производной, которую нужно вычислить.

```
double func(double x) {
    return 0.5 * pow(x, y: 2) + cos( X: 2 * x);
}

double f_derivative(double x, int k) {
    if (k == 1) {
        return x - 2 * sin( X: 2 * x);
    } else if (k == 2) {
        return 1 - 4 * cos( X: 2 * x);
    }

    return pow( x: -1, y: (k % 2) + 1) * tgamma( x: k) / pow(x, y: k);
}
```

2. функция middle rectangular

```
double middle_rectangular(double (*func)(double), double a, double b, int n) {
   double h = (b - a) / n;
   double sum = 0;
   for (int i = 0; i < n; ++i) {
      sum += func(a + h * (i + 0.5)) * h;
   }
   return sum;
}</pre>
```

double middle_rectangular(double (*func)(double), double a, double b, int n): Эта функция реализует метод прямоугольников с использованием средней точки для численного интегрирования. Она приближает интеграл заданной функции func на интервале [a, b] с использованием n подинтервалов.

3. функция mr error

```
double mr_error(double (*func)(double), double a, double b, int n) {
    double m = 0;
    for (int i = 0; i <= 1000; ++i) {
        m = max(m, abs(x: f_derivative(x: a + (b - a) * i / 1000, k: 2)));
    }
    return m / 24 * pow(x: b - a, y: 3) / pow(x: n, y: 2);
}</pre>
```

double mr_error(double (*func)(double), double a, double b, int n): Эта функция вычисляет оценку ошибки при приближенном вычислении интеграла функции func методом прямоугольников с использованием средней точки на интервале [a, b] с п подинтервалами.

4. Функция Left, Right Rectangular, Trapezoidal and Simpson

double left_rectangular(double (*func)(double), double a, double b, int n): Эта функция реализует метод левых прямоугольников для численного интегрирования. Она приближает интеграл заданной функции func на интервале [a, b] с использованием п подинтервалов.

```
double left_rectangular(double (*func)(double), double a, double b, int n) {
   double h = (b - a) / n;
   double sum = 0;
   for (int i = 0; i < n; ++i) {
      sum += func(a + h * i) * h;
   }
   return sum;
}</pre>
```

double right_rectangular(double (*func)(double), double a, double b, int n): Эта функция реализует метод правых прямоугольников для численного интегрирования. Она приближает интеграл заданной функции func на интервале [a, b] с использованием n подинтервалов.

```
double right_rectangular(double (*func)(double), double a, double b, int n) {
   double h = (b - a) / n;
   double sum = 0;
   for (int i = 1; i <= n; ++i) {
      sum += func(a + h * i);
   }
   return sum * h;
}</pre>
```

double trapezoidal(double (*func)(double), double a, double b, int n): Эта функция реализует правило трапеций для численного интегрирования. Она приближает интеграл заданной функции func на интервале [a, b] с использованием п подинтервалов.

```
double trapezoidal(double (*func)(double), double a, double b, int n) {
   double h = (b - a) / n;
   double sum = (func(a) + func(b)) / 2;
   for (int i = 1; i < n; ++i) {
      sum += func(a + h * i);
   }
   return sum * h;
}</pre>
```

double simpson(double (*func)(double), double a, double b, int n): Эта функция реализует правило Симпсона для численного интегрирования. Она приближает интеграл заданной функции func на интервале [a, b] с использованием п подинтервалов.

```
double simpson(double (*func)(double), double a, double b, int n) {
    double h = (b - a) / n;
    double sum = 0;
    for (int i = 1; i <= n; ++i) {
        sum += func(a + h * (i - 1)) + 4 * func(a + h * (i - 0.5)) + func(a + h * i);
    }
    return sum * h / 6;
}</pre>
```

5. Функция errors

double left_rect_error(double (*func)(double), double a, double b, int n): Эта функция вычисляет оценку ошибки в приближенном вычислении интеграла функции func методом левых прямоугольников на интервале [a, b] с использованием n подинтервалов.

```
double left_rect_error(double (*func)(double), double a, double b, int n) {
    double m = 0;
    for (int i = 0; i <= 1000; ++i) {
        m = max(m, abs(x: f_derivative(x: a + (b - a) * i / 1000, k: 1)));
    }
    return m * (b - a) / 2;
}</pre>
```

double right_rect_error(double (*func)(double), double a, double b, int n): Эта функция вычисляет оценку ошибки в приближенном вычислении интеграла функции func методом правых прямоугольников на интервале [a, b] с использованием п подинтервалов.

```
double right_rect_error(double (*func)(double), double a, double b, int n) {
    double m = 0;
    for (int i = 0; i <= 1000; ++i) {
        m = max(m, abs(x: f_derivative(x: a + (b - a) * i / 1000, k: 1)));
    }
    return m * (b - a) / 2;
}</pre>
```

double trapezoidal_error(double (*func)(double), double a, double b, int n): Эта функция вычисляет оценку ошибки в приближенном вычислении интеграла функции func методом трапеций на интервале [a, b] с использованием n подинтервалов.

```
double trapezoidal_error(double (*func)(double), double a, double b, int n) {
    double m = 0;
    for (int i = 0; i <= 1000; ++i) {
        m = max(m, abs( x: f_derivative( x: a + (b - a) * i / 1000, k: 2)));
    }
    return m / 12 * pow( x: b - a, y: 3) / pow( x: n, y: 2);
}</pre>
```

double simpson_error(double (*func)(double), double a, double b, int n): Эта функция вычисляет оценку ошибки в приближенном вычислении интеграла функции func методом правила Симпсона на интервале [a, b] с использованием n подинтервалов.

```
double simpson_error(double (*func)(double), double a, double b, int n) {
    double m = 0;
    for (int i = 0; i <= 1000; ++i) {
        m = max(m, abs(x: f_derivative(x: a + (b - a) * i / 1000, k: 4)));
    }
    return m / 2880 * pow(x: b - a, y: 5) / pow(x: n, y: 4);
}</pre>
```

таблицы значений для метода центральных прямоугольников

фрагмент кода

```
struct Result {
   vector<int> j;
   vector<int> n;
   vector<double> I_n;
   vector<double> delta_I_n;
   vector<double> relative_I_n;
   vector<double> R_n;
   vector<double> growth;
} result;
result.growth.push_back(0);
for (int i = 0; i < 15; ++i) {
   n *= 2:
   double I_n = middle_rectangular(func, a, b, n);
   result.j.push_back(i + 1);
   result.n.push_back(n);
   result.I_n.push_back(I_n);
   result.delta_I_n.push_back(abs(x: I - I_n));
   result.relative_I_n.push_back(result.delta_I_n[i] / abs(x: I) * 100);
   result.R_n.push_back(mr_error(func, a, b, n));
   if (i > 0) {
       result.growth.push_back(result.delta_I_n[i] / result.delta_I_n[i - 1]);
   }
```

• Результать

1	^	1. Table of	values for	the central r	ectangle method:			
	↓ □	Iteration	n	I_n	delta_I_n	Relative Error (%)	R_n	Growth
=	: ¥	1	2	0.122112	0.00194927	1.57122	0.00436719	0
Ē	î	2	4	0.123575	0.000485685	0.391489	0.0010918	0.249163
		3	8	0.12394	0.000120622	0.097228	0.00027295	0.248354
		4	16	0.124032	2.94079e-05	0.0237044	6.82374e-05	0.243802
		5	32	0.124054	6.60756e-06	0.00532606	1.70593e-05	0.224687
A		6	64	0.12406	9.07681e-07	0.000731641	4.26484e-06	0.13737
≡		7	128	0.124062	5.17275e-07	0.000416952	1.06621e-06	0.569886
D		8	256	0.124062	8.73513e-07	0.0007041	2.66552e-07	1.68868
>_		9	512	0.124062	9.62573e-07	0.000775887	6.66381e-08	1.10196
!		10	1024	0.124062	9.84838e-07	0.000793834	1.66595e-08	1.02313
થ		11	2048	0.124062	9.90404e-07	0.00079832	4.16488e-09	1.00565
		12	4096	0.124062	9.91796e-07	0.000799442	1.04122e-09	1.00141
		13	8192	0.124002	9.92144e-07	0.000797442	2.60305e-10	1.00141
A						0.000799722		
_ ≡		14	16384	0.124062	9.92231e-07		6.50763e-11	1.00009
D		15	32768	0.124062	9.92252e-07	0.00079981	1.62691e-11	1.00002

составление сравнительной таблицы различных методов численного интегрирования.

```
struct Calculate {
             vector<string> method;
             vector<double> I_n;
             vector<double> delta_I_n;
            vector<double> relative_I_n;
            vector<double> R_n:
  } calculate;
  calculate.method = {"Left Rectangles", "Right Rectangles", "Middle Rectangles", "Trapezoids", "Simpson"};
  for (int i = 0; i < 5; ++i) {
             double (*formula)(double (*)(double), double, double, int);
             double (*error)(double (*)(double), double, double, int);
              switch (i) {
                                     formula = left_rectangular;
                                    error = l_rect_error;
                                    break;
                          case 1:
                                     formula = right_rectangular;
                                      error = r_rect_error;
                                    break.
                          case 2:
                                    formula = middle_rectangular;
                                 error = mr error:
                                 break;
                       case 3:
                                 formula = trapezoidal;
                                 error = trapezoidal_error;
                                 break:
                                 formula = simpson;
                                 error = simpson_error;
                               break;
            calculate.I_n.push_back(formula(func, a, b, 10000));
           \verb|calculate.delta_I_n.push_back(abs(x:I - calculate.I_n[i]));|\\
           calculate.relative_I_n.push_back(calculate.delta_I_n[i] / abs( x: I) * 100);
           calculate.R_n.push_back(error(func, a, b, 10000));
std::cout<<std::endl<<std::endl;
cout << "2. Table of values for different methods:" << endl;</pre>
line();
cout << setw( n: 25) << "Method" << setw( n: 15) << "I_n" << setw( n: 15) << "delta_I_n" << setw( n: 20) << "Relative Error (%)" << set
for (size_t i = 0; i < calculate.method.size(); ++i) {</pre>
           \texttt{cout} << \texttt{setw(} \texttt{ n: 25)} << \texttt{calculate.method[i]} << \texttt{setw(} \texttt{ n: 15)} << \texttt{calculate.I_n[i]} << \texttt{setw(} \texttt{ n: 15)} << \texttt{calculate.delta_I_n[i]} << \texttt{setw(} \texttt{ n: 15)} << \texttt{calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)} << \texttt{ calculate.method[i]} << \texttt{ setw(} \texttt{ n: 15)}
```

Результать

2. Table of values for different methods:

R_n	Relative Error (%)	delta_I_n	I_n	Method
0.319358	0.0113967	1.41389e-05	0.124075	Rectangles
0.319358	0.00979684	1.21541e-05	0.124049	Rectangles
1.74688e-10	0.000799753	9.92182e-07	0.124062	Rectangles
3.49375e-10	0.000799941	9.92415e-07	0.124062	Trapezoids
5.02347e-20	0.000799816	9.9226e-07	0.124062	Simpson

Заключение

В коде, который я написал, я реализовал различные численные методы интегрирования для заданной функции. Анализируя результаты, я могу сделать несколько выводов.

1. Метод центральных прямоугольников:

Этот метод демонстрирует хорошую точность с увеличением числа интервалов интегрирования. Ошибка уменьшается по мере увеличения числа интервалов. Однако скорость сходимости (т.е. насколько быстро уменьшается ошибка) уменьшается при увеличении числа интервалов.

2. Сравнение различных методов:

Среди методов прямоугольников метод центральных прямоугольников обычно дает лучшие результаты. Метод Симпсона и метод трапеций демонстрируют сравнимую точность, но метод Симпсона имеет более высокую скорость сходимости.

3. Ошибки и точность:

Ошибка уменьшается с увеличением числа интервалов, что ожидаемо. Оценка ошибки помогает определить точность результата. В заключение, метод центральных прямоугольников хорошо работает для данной функции, но если требуется высокая точность, то метод Симпсона может быть более предпочтительным выбором.

Github: https://github.com/Abraham-Chileshe/Computational-Mathematics/blob/main/Lab4/lab4.cpp