

OLABISI ONABANJO UNIVERSITY COLLEGE OF ENGINEERING AND ENVIRONMENTAL STUDIES FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

HARMATTAN SEMESTER EXAMINATION (2020/2021 SESSION)

COURSE TITLE: REAL-TIME SYSTEM COURSE CODE: CPE 507

TIME ALLOWED: 2 hours COURSE UNIT: 2

INSTRUCTION: Answer QUESTION ONE (1) AND ANY OTHER TWO (2)

Question One

- (a) State whether the following statements to be TRUE or FALSE. Justify your answer in each case.
 - i. A hard real-time application is made up of only hard real time tasks
 - ii. Hardware fault-tolerance techniques cannot be easily adapted to provide software fault-tolerance.
 - iii. Performance constraints on a real-time system ensure that the environment of the system is well-behaved
 - iv. Soft real-time tasks are those which do not have any time bounds associated with them
 - v. A deadline constraint between two response event can be considered to be a performance constraint on the environment of the system. (10mks, 2mks each)
- (b) Explain why hardware fault-tolerance is easier to achieve compared to software fault Tolerance (5mks)
- (c) Identify the difference between a Delay and Duration constraints, support your claim with examples. (7mks)
- (d) (i) What is a safety-critical system?
 - (ii) Give two practical examples of safety-critical hard real-time systems? (8mks)

Question Two

- (a) (i) Explain what is meant by the term "Real-Time"?
 - (ii) How is the concept of real-time different from the traditional notion of time? Explain your answer using a suitable example (8mks)
- (b) Briefly explain five (5) characteristics of Real-Time Systems (5mks)
- (c) Is it possible to have an extremely safe but unreliable system? If your answer is affirmative, then give an example of such a system. If not, justify why it is not possible for such a system to exist. (7mks)

Question Three

- (a) How do the following factors affect the Reliability of a system? (8mks)
 i. Cost
 ii. Performance
 iii. Time of Development
 iv. Risk of failure
- (b) In a real-time system, raw sensor signals need to be preprocessed before they can be used by a computer. (i) Why is it necessary to preprocess the raw sensor signals before they can be used by a computer?
 - (ii) Explain the different types of preprocessing that are normally carried out on sensor signals to make them suitable to be directly used by a computer. (8mks)
- (c) Using the example of a durational constraint, show the Extended Finite State Machine (EFSM) model? (4mks)

Question Four

1/201011 11 11

(a) With the aid of a schematic diagram, explain the concept of the bath-tub curve and what it represents? (6mks)

(b) What are the four factors responsible for the initial high failure rate during the infant mortality stage of the bath-tub curve? (5mks)

(c) Real time Systems have of late found application in wide ranging areas. Enumerate six application areas with an example in each case. (9mks)

Question Five

(a) Using a block diagram, show the important hardware components of a Real-Time System as represented by the Model of a Real-Time System. Explain the roles of the different components. (6mks)

(b) What is the major difference between a performance constraint and behavioural constraint? (4mks)

(c) List five (5) statistical distributions used to model Reliability of a system, hence determine the reliability of a system after 4hrs having 1000 components initially with 1% failure rate using both manual and exponential distribution methods (10mks)