The Computational Complexity of 3k-CLIQUE

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209
E-mail: cafeinst@msn.com, BS"D

Abstract: In this note, we show that the fastest deterministic and exact algorithm that solves the 3k-CLIQUE problem must run in $\Omega(n^{2k})$ time in the worst-case scenario on a classical computer, where n is the number of vertices in the graph.

Disclaimer: This article was authored by Craig Alan Feinstein in his private capacity. No official support or endorsement by the U.S. Government is intended or should be inferred.

The 3k-CLIQUE problem is to determine whether or not a clique of size 3k exists in a given undirected graph G, where k is a positive integer that is not part of the input of the problem [4]. In this note, we show that the fastest deterministic and exact algorithm that solves 3k-CLIQUE must run in $\Omega(n^{2k})$ time in the worst-case scenario on a classical computer, where n is the number of vertices in the graph:

Let G be an undirected graph with n vertices. For every k-clique C in G, create a corresponding vertex v(C) in an auxiliary graph G'. And for every two vertices $v(C_1)$ and $v(C_2)$ in G', create an edge connecting them in G' if and only if $C_1 \cup C_2$ forms a 2k-clique in G. Then G' will have $O(n^k)$ vertices and $O(n^{2k})$ edges. Note that the 3-CLIQUE problem on G' is equivalent to the 3k-CLIQUE problem on G [4].

Let A be the adjacency matrix of G'. Then G' has a 3-clique if and only if $A \circ A^2$, the Hadamard product of A and A^2 , is nonzero [2]. In general, it is impossible for an algorithm to evaluate more than one entry of $A \circ A^2$ at a time, because the formula $(A \circ A^2)_{ij} = \sum_k a_{ij} \cdot a_{ik} \cdot a_{kj}$ is different for each i, j; therefore, in general it is impossible for an algorithm to rule out more than one entry of $A \circ A^2$ at a time as being nonzero. Hence, the fastest algorithm that determines whether $A \circ A^2$ is nonzero can do no better in the worst-case scenario, when $\Theta(n^{2k})$ entries of A are nonzero but only a constant number of entries of $A \circ A^2$ are nonzero, than to evaluate each entry of $A \circ A^2$ individually until either a nonzero entry is found or it is certain that there are no nonzero entries, which could take $\Omega(n^{2k})$ time.

Then since determining whether $A \circ A^2$ is nonzero is equivalent to the 3k-CLIQUE problem on G, it must also take $\Omega(n^{2k})$ time in the worst-case scenario for any deterministic and exact algorithm to solve the 3k-CLIQUE

problem on G. And this implies that $P \neq NP$ [1].

This lower bound is confirmed by the fact that the fastest known deterministic and exact algorithm that solves 3k-CLIQUE was first published in 1985 and has a running-time of $\Theta(n^{\omega k})$, where $\omega \geq 2$ [1, 3, 4].

References

- [1] F. Eisenbrand and F. Grandoni, "On the complexity of fixed parameter clique and dominating set", *Theoretical Computer Science* 326(1-3): 57-67, 2004.
- [2] A. Itai and M. Rodeh, "Finding a minimum circuit in a graph", SIAM Journal on Computing 7(4): 413-423, 1978.
- [3] J. Nešetřil and S. Poljak, "On the complexity of the subgraph problem", *Comment. Math. Univ. Carolin.* 26, 415-419, 1985.
- [4] G. J. Woeginger, "Open problems around exact algorithms", Discrete Applied Mathematics 156(3): 397-405, 2008.