1	Before-After Control-Impact (BACI) Power Analysis For Several Related Populations
2	
3	
4	Richard A. Hinrichsen
5	Hinrichsen Environmental Services, 901 Northeast 43rd Street, Number 101,
6	Seattle, Washington 98105-6017, USA
7	
8	and
9	
10	Charles M. Paulsen
11	Paulsen Environmental Research, 405 Eagle Point Drive,
12	Woodland, Washington 98674-9338, USA
13	
14	August 23, 2010
15	
16	
17	
18	*Corresponding author: rich@hinrichsenenvironmental.com

19 Abstract

Effectiveness monitoring in the Columbia Basin has precipitated the need for
power analysis tools used to design monitoring programs that can detect important
changes in salmon survival. One design considered for effectiveness monitoring is the
before-after-control-impact (BACI) design in which there is a Before period of no
treatment followed by an After period where some populations are treated and others are
not. An a priori power analysis was developed for this design using idealized
assumptions including (among others) known variance-covariance matrix and
measurement error variance and no serial dependence of survival observations. The
resulting power analysis yields an estimate of the minimum survival change that can be
reasonably detected in an effectiveness monitoring program. The methods were applied
using input parameters based on 1992-2006 par-to-smolt survival data from 30
populations in the Snake River Spring Summer chinook Evolutionarily Significant Unit.
It was found that detecting a survival change in the range of 1-5% was impossible even
when 20 populations were employed over 30 years (assuming equal numbers of treatment
and control groups and equal numbers of Before and After years). Survival changes of
30% or more were detectable with one treatment and one control population over 20
years or more. As the number of years and number of populations increase, power also
increases and smaller changes in survival may be detected. With the possible exception
of a correlation near zero, power to detect significant changes in survival will tend to be
greater as correlation between populations increases.

Introduction

Currently there are many watershed projects underway in the Columbia Basin to
determine the effects of various management actions on salmon survival. For example,
there are a series of intensively monitored watersheds (IMWs) established for the purpose
of better understanding how salmon respond to approaches to restore habitat. These
projects stand the best chance to identify the effectiveness of restoration and other
management actions if they are run as experiments with a planned design. To design
such an experiment, it is useful to conduct an a priori power analysis that will tell the
planners how long the experiment should run and how many populations should be used
to detect a significant survival change. The framework for the power analysis given here,
although developed with salmon in mind, fits into the framework of the Before-After-
Control-Impact (BACI) experiment. Such BACI-type experiments find application
beyond Columbia River salmon survival (Osenberg and Schmitt 1996).

The BACI-type experiment analyzed here is aimed at estimating a common change in survival for several populations. The experiment includes a Before period where all populations receive no treatment followed by an After period where only the treatment populations receive treatment. This is a generalization of the BACI-type experiment where the control population and impact population are sampled one time before and one time after the treatment (Green 1979, Osenberg and Schmitt 1996). It is assumed that the variance-covariance matrix is known, measurement error variance is known, and, in the absence of treatment, all populations have a common mean log survival (Table 1). These are idealized assumptions that may not hold in practice. However, the analysis is useful because it will yield an estimate of the maximum power one can reasonably expect from a BACI-type experiment, and the minimum changes in survival that may be reliably detected.

The main goal of this work is to derive the power of a BACI experiment aimed at estimating a treatment effect on survival and demonstrate its use in an application to

salmon survival. This goal is accomplished by describing the experiment in a statistically rigorous way: setting up a likelihood function and using maximum likelihood theory to derive an estimator of the treatment effect and its variance. From the asymptotic theory, it is then possible to estimate power to detect a significant change in survival. Power is the probability of rejecting the null hypothesis of "no treatment effect." The website www.onefishtwofish.net contains a web-based tool that implements this power analysis with the added assumptions that the variances in log(survival) are equal for all populations and the correlations in log(survival) are equal for each pair of populations, resulting in an intraclass covariance matrix (Fisher 1925). The R code for implementing this power analysis may be found in Appendix 1 (R Development Core Team 2009). The use of this code is demonstrated in an application to salmon survival using a range of assumptions about the design and the joint distribution of log(survival) for several populations.

Methods

Maximum likelihood estimation. —To derive the estimator and its variance for the power analysis, maximum likelihood is used (Mood et al. 1974). The details of the derivation may be found in Appendix 1. It is assumed that mean log(survival) before treatment, denoted by μ , is the same for each population. After treatment, the mean log(survival) of the treatment populations shifts by the amount δ , while the control populations continue to have a mean log(survival) of μ . The goal is to obtain the maximum likelihood estimator (MLE) of δ and its variance. It is assumed that year-to-year random fluctuations in log(survival) and measurement error follow multivariate normal distributions. Thus the total variance matrix is $\Sigma = \Sigma_y + \Sigma_m$, where Σ_y is the variance-covariance matrix of true log(survival), and Σ_m represents the variance-covariance matrix of the measurement error of log(survival).

This formula shows how the variance of the treatment effect estimate depends on the values of k_1, k_2, n_1, n_2 and the entries of the variance-covariance matrix Σ . Using this formula, it is then simple to calculate the standard error of the treatment effect estimate,

$$\operatorname{se}(\hat{\delta}) = \sqrt{\operatorname{var}(\hat{\delta})} \tag{8}$$

The coefficient of variation is

$$CV(\hat{\delta}) = \operatorname{se}(\hat{\delta})/\delta \tag{9}$$

The standard error of the treatment effect is now used to derive power: the probability of rejecting the null hypothesis of "no treatment" effect when the actual treatment effect is δ . Power is a function of the true treatment effect, the probability of a type I error (usually called the significance level and denoted by α), and the standard error of the estimator. By maximum likelihood theory, the estimator of the treatment effect is asymptotically normally distributed, but in this case, the estimator is normally distributed regardless of the sample size. This occurs because the variance-covariance matrix is assumed known and the estimator is a linear combination of random variables x_t that are known to follow a multivariate normal distribution. A linear combination of normal random variables is also normally distributed. Therefore, $\hat{\delta}$ is normally distributed. Thus, power is

$$\Pi(\delta) = \Phi(-z_{\alpha/2} - \delta / se(\hat{\delta})) + 1 - \Phi(z_{\alpha/2} - \delta / se(\hat{\delta}))$$

$$\tag{10}$$

where $\Phi(z)$ is the cumulative distribution function of the standard normal random variable, and $z_{\alpha/2}$ is the critical value such that $\alpha/2$ probability lies to the right of the value $z_{\alpha/2}$ in a standard normal distribution. For example, when $\alpha=0.05$, the critical value is equal to 1.96. Experimenters often choose a design such that power of 0.8 is achieved.

Power analysis. —To determine the size of treatment effects that may be detected in practice, we conducted an a priori power analysis that used a range of input parameters roughly equal to those found in the parr-to-smolt survival analysis of Paulsen and Fisher (2005) updated with data through 2006. For convenience, an intra-class covariance matrix was assumed. In this structure, variances are equal for all populations under study and covariances between all pairs of populations are also equal (Fisher 1925). Although this is an unrealistic assumption in practice, the standard error of the treatment effect estimate is the main quantity of interest and whatever the true variances and covariances, the assumed common covariances and variances may always be chosen so that the true standard error is achieved.

The year-to-year variance term (excluding measurement error) was allowed to change from 0.1 to 1.0, correlation was $\rho = 0.50$, and the number of years of the experiment ranged from 10 years to 30 with equal numbers of Before and After years. The total number of populations ranged from 2 to 20 with half of the populations being used as control populations and the other half as treatment populations. Log measurement error followed a normal distribution with mean zero and variance that was equal for all populations and measurement error correlation was assumed to be equal to zero for each

pair of populations. The standard deviation of log measurement error was assumed to be log(1.10)=0.095. The correlation of 0.5, variance range of 0.1 to 1.0, and measurement error standard deviation of log(1.10) based on parr-to-smolt survival data from 30 spring-summer chinook populations in the Snake River Basin. Figures 1 and 2 illustrate the estimated variances and distribution of correlations for those populations, respectively.

The results are focused on the percent change in survival that may be reliably detected. When the type I error is $\alpha = 0.05$, power of 0.80 is achieved when CV is about 0.357 (see equation 10). Accordingly, the percent change in survival required to achieve power of 0.80 was calculated according to the formula $100 \times (\exp(se(\hat{\delta})/0.357) - 1)$.

In a sensitivity analysis, the effect of correlation on power was also considered. Correlation was varied from 0.0 to 0.9 assuming a fixed variance at 0.1 and measurement error standard deviation of log(1.10). Alternative numbers of populations (2 and 10) were used and it was assumed that there were equal numbers of treatment and control populations.

Application. —To demonstrate the fit of the models to data and the contrast of power between the cases where the variance is estimated and when it is not, we apply the models to data seven populations used in Paulsen and Fisher (2003). We are able to contrast the power results from the baci models developed in this paper with the power results in Paulsen and Fisher (2003). The data used in this application is parr-smolt survival data from eight populations in the Snake River spring chinook evolutionary significant unit (Table 2). The data used may be found in Appendix XX:

160 Results

The results of the *a priori* analysis to parr-to-smolt survival are tabled in Appendix 2 and Appendix 3. Over the range of inputs used, power of 0.80 was not achievable for survival changes in the range of 1% to 5%. Effect sizes of 30% or greater

may be detected within 20 years with 2 or more populations, but this result depends on the variance (Figure 3). Power was also influenced by the value of the correlation. When the number of populations was greater than two, there was a nonlinear relationship between power and correlation (Figure 4). Despite this nonlinear relationship, when correlation between populations was sufficiently high, higher correlation resulted in higher power so that smaller effect sizes could be detected.

170 **Discussion**

164

165

166

167

168

169

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Despite its many simplifying assumptions, the power analysis of the BACI experiment with several populations proved useful in providing estimates of the very smallest changes in survival that could be reliably detected. Applying the power analysis to salmon from the Snake River Spring/Summer Chinook ESU, it was found that detecting a survival change in the range of 1-5% was impossible even when 20 populations were employed over 30 years (assuming equal numbers of treatment and control groups and equal numbers of Before and After years). Changes of 30% in survival or more were found to be detectable with one treatment and one control population within 20 years. As the number of years and number of populations increase power also increases and small changes in survival may be detected. When correlation is sufficiently greater than zero, population groups with higher correlations in survival will yield greater power (all else being equal). Given these results, experiments on parr-tosmolt survival should be geared toward looking at changes in survival that are 30% or greater. It is expected that similar findings will result when applying the BACI power analysis on any survival data that have variance, correlation, and measurement error values in the same neighborhood as that of the Snake River Spring/Summer Chinook ESU parr-to-smolt data.

There are several future directions to take this power analysis approach that may prove fruitful. Many of the assumptions may be relaxed to make the model applicable to more situations. For example, the variance-covariance matrix may be estimated instead

of assumed known, and serial dependence in the survival estimates may be considered in a multivariate time series approach. When these alternative assumptions are included, one would expect power to decrease. Another possibility would be to use a density-dependent survival process so that population abundance also plays a role in the estimate of the treatment effect (Hinrichsen 2001; Bradford et al. 2005). As new tools incorporating these updated assumptions are developed they will be made available for use at www.onefishtwofish.net.

Acknowledgements

This work was supported by Bonneville Power Administration contract #00044888. Thanks to Rishi Sharma, and Tracy Hillman for their valuable reviews. Thanks to Brian Maschhoff for implementing this analysis as a web tool at www.onefishtwofish.net.

204	References
205	Bradford, M.J, J. Korman, and P.S. Higgins. 2005. Using confidence intervals to estimate
206	the response of salmon populations (Oncorhynchus spp.) to experimental habitat
207	alterations. Canadian Journal of Fisheries and Aquatic Sciences 62:2716-2726.
208	Dwyer, P.S. Applications of matrix derivatives in multivariate analysis. Journal of the
209	American Statistical Association 62: 607-625.
210	Fisher, R.A. 1925. Statistical Methods for Research Workers. Oliver and Boyd,
211	Edinburgh, Scotland.
212	Green, R.H. 1979. Sampling design and statistical methods for environmental biologists.
213	Wiley and Sons, New York, New York.
214	Hinrichsen, R.A. 2001. High variability in spawner-recruit data hampers learning.
215	Canadian Journal of Fisheries and Aquatic Sciences 58:769-776.
216	Mood, A.M., F.A. Graybill, and D.C. Boes.1974. Introduction to the theory of statistics,
217	third edition. Mcgraw-Hill Book Company. New York, New York.
218	Osenberg, C.W. and R.J. Schmidt. 1996. Detecting ecological impacts caused by human
219	activities. In Detecting Ecological Impacts: Concepts and Applications in Coastal
220	Habitats, R.J Schmitt and C.W. Osenberg, Editors. Academic Press, New York,
221	New York.
222	Paulsen, C.M. and T.R. Fisher. 2005. Do habitat actions affect juvenile survival? An
223	information-theoretic approach applied to endangered Snake River chinook
224	salmon. Transactions of the American Fisheries Society 134:68–85.
225	Press, S.J. 2005. Applied multivariate analysis: using Bayesian and frequentist methods
226	of inference. Dover Publications, Inc. Mineola, New York.

227	R Development Core Team. 2009. R: A Language and Environment for Statistical
228	Computing Version 2.9.2 (2009-08-24). http://cran.r-project.org/
229	
220	
230	
231	
<i>_</i> J1	

Tables

Table 1. —Assumptions used in the power analysis.

The observations of log(survival) follow a multivariate normal distribution.

There is no serial dependence.

All populations have a common mean log(survival) before treatment.

After treatment, the control populations continue to have the same common mean as exhibited in the Before years, and the treatment populations also have a common mean, but shifted by an amount (the effect size) that is the same for all treatment populations.

The measurement errors in log(survival) follow a multivariate normal distribution and the errors are independent of the error due to actual year-to-year environmental variability.

The estimator of the treatment effect is a maximum likelihood estimate.

The variance-covariance matrix describing the year-to-year variability in log(survival) is known.

233

Table 2. — Tagging sites and climatic regions for Snake River populations used in application.

Tagging site	Region
Bear Valley Creek	Middle Fork Salmon River
Elk Creek	Middle Fork Salmon River
Imnaha River	Northeast Oregon
Johnson Creek	South Fork Salmon River
Marsh Creek	Middle Fork Salmon River
Minam River	Northeast Oregon
Poverty Flat	South Fork Salmon River
Sulphur Creek	Middle Fork Salmon River

Figure captions

Figure 1.—Sample variances for log(survival) calculated from data used in Paulsen and Fisher (2005) with data updates through 2006. Each vertical bar represents a sample variance for a different population.

Figure 2. —Box and whiskers plot of correlations between the 30 Snake River spring/summer chinook populations. In the plot, the horizontal line within the box indicates the median; the box encompasses 75% sample correlations, and the whiskers are drawn to the nearest value not beyond $1.5 \times IQR$ from the quartiles, where IQR is the interquartile range.

Figure 3. —Tagging sites (fish icon) and overwintering areas for the eight passive integrated transponder (PIT) tagged Snake River spring—summer chinook (*Oncorhynchus tshawytscha*) stocks and location of the mainstem hydropower dams where tagged smolts are detected. Degrees latitude and longitude are shown in each corner of the figure. Inset map shows location in the Columbia River basin (northwestern U.S.A.).

Figure 4. —Percent change in survival needed to achieve power of 0.8 varies with the number of years and number of populations used in the experiment. Curves were constructed using a year-to-year variance of 0.1 (diamonds), 0.5 (squares), and 1.0 (triangles). Equal numbers of treatment and control populations and equal numbers of Before and After years were assumed. Measurement error standard deviation was set at $\log(1.10)$. The bolded horizontal line represents a percent change of 30%.

Figure 5. —Percent change in survival needed to achieve power of 0.80 varies with the correlation in survival between populations. Curves were constructed using a total number of years of 10 (diamonds), 20 (squares), and 30 (triangles). Equal numbers of treatment and control populations and equal numbers of Before and After years were

- assumed. Measurement error standard deviation was log(1.10) and year-to-year variance
- 262 was 0.1. Notice the nonlinear effect of correlation when 10 populations were used.

Figures Figures

264 Figure 1.

265

267 Figure 2.

271 Figure 4

4a. —A total of 2 populations were used.

4b. —A total of 10 populations were used.

273 Figure 5.

5a. —A total of 2 populations were used.

5b. —A total of 10 populations were used.

Appendix 1: Maximum likelihood estimation

The log-likelihood function may be written as

$$l(\boldsymbol{\theta}, \boldsymbol{\Sigma}) = C + (n/2) \ln |\boldsymbol{\Sigma}^{-1}| - (1/2) \sum_{t=1}^{n_1} (\boldsymbol{x}_t - [\boldsymbol{e} \quad \boldsymbol{0}] \boldsymbol{\theta})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_t - [\boldsymbol{e} \quad \boldsymbol{0}] \boldsymbol{\theta}))$$

$$- (1/2) \sum_{t=n_1+1}^{n} (\boldsymbol{x}_t - [\boldsymbol{e} \quad \boldsymbol{e}_2] \boldsymbol{\theta})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_t - [\boldsymbol{e} \quad \boldsymbol{e}_2] \boldsymbol{\theta});$$
(A.1)

where $l(\mathbf{\theta}, \mathbf{\Sigma})$ is the log-likelihood function with vector argument $\mathbf{\theta} = \begin{bmatrix} \mu & \delta \end{bmatrix}$ with entries representing the control mean and treatment effect, respectively; C is a constant that does not depend on the parameters; n_1 is the number of years prior to treatment; n is the total number of years of the experiment; \mathbf{x}_i is a k-vector of observed survivals in year t; k is the number of populations (treatment + control) used in the experiment; \mathbf{e} is a k-vector of 1s; \mathbf{e}_2 is a k-vector of k_1 0s followed by k_2 1s, where k_1 represents then number of control populations and k_2 represents the number of treatment populations. The vector \mathbf{x}_i is arranged so that the k_1 control populations precede the k_2 treatment populations.

In the most general case, we are interested in maximum likelihood estimate for δ and Σ . We will consider the case where the variance-covariance matrix is assumed known and when it is assumed to be unknown and needs to be estimated. When it is estimated we consider two cases. In the first case, all populations have the same variance and all pairs of populations have the same covariance. This gives rise to the intraclass covariance matrix structure studied by Fisher (1925) where all diagonal entries are equal and all offdiagonal entries are equal. In the second case, we estimate a general covariance matrix with no restrictions.

Using maximum likelihood theory, we develop estimating equations for both the Before mean and treatment effect and the covariance matrix. In the case of the before mean and treatment effect, we may take advantage of the fact that the maximizing the likelihood function is equivalent to a generalized least squares problem of minimizing

$$SS = \left(\begin{bmatrix} \overline{\mathbf{x}}_1 \\ \overline{\mathbf{x}}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{e} & 0 \\ \mathbf{e} & \mathbf{e}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\delta} \end{bmatrix}\right)' \begin{bmatrix} \boldsymbol{\Sigma}^{-1} n_1 & 0 \\ 0 & \boldsymbol{\Sigma}^{-1} n_2 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \overline{\mathbf{x}}_1 \\ \overline{\mathbf{x}}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{e} & 0 \\ \mathbf{e} & \mathbf{e}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\delta} \end{bmatrix};$$
(A.2)

- 300 where $\bar{\mathbf{x}}_1$ represents the sample mean of log(survival) in the Before period, and $\bar{\mathbf{x}}_2$
- represents the sample mean of log(survival) observation in the After period.
- This generalized sum of squares may be written in the familiar form

$$SS = (\mathbf{y} - \mathbf{B}\mathbf{\theta})' \mathbf{\Omega}^{-1} (\mathbf{y} - \mathbf{B}\mathbf{\theta}); \tag{A.3}$$

305 where
$$\mathbf{y}' = \begin{bmatrix} \overline{\mathbf{x}}_1' & \overline{\mathbf{x}}_2' \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} \mathbf{e} & 0 \\ \mathbf{e} & \mathbf{e}_2 \end{bmatrix}$, and $\mathbf{\Omega}^{-1} = \begin{bmatrix} \mathbf{\Sigma}^{-1} n_1 & 0 \\ 0 & \mathbf{\Sigma}^{-1} n_2 \end{bmatrix}$. In this form, the

306 generalized least squares solution, the called the Aitken estimator (Press 2005), is known

307 to be

$$\hat{\boldsymbol{\theta}} = \left(\mathbf{B}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{y} . \tag{A.4}$$

310 After considerable matrix algebra, we may write

311

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} \hat{\boldsymbol{\mu}} \\ \hat{\boldsymbol{\delta}} \end{bmatrix} = \frac{\begin{bmatrix} \left(\mathbf{e}_{2}^{'} \boldsymbol{\Sigma}^{-1} \mathbf{e}_{2}\right) \left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}\right) - \left(\frac{n_{2}}{n}\right) \left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \mathbf{e}_{2}\right) \left(\mathbf{e}_{2}^{'} \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}_{2}\right) \\ \left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \mathbf{e} \left(\mathbf{e}_{2}^{'} \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}_{2}\right) - \left(\mathbf{e}_{2}^{'} \boldsymbol{\Sigma}^{-1} \mathbf{e}\right) \left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}\right) \end{bmatrix}};$$

$$(A.5)$$

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} \hat{\boldsymbol{\mu}} \\ \hat{\boldsymbol{\delta}} \end{bmatrix} = \frac{\begin{bmatrix} \left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \mathbf{e}\right) \left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}_{2}\right) - \left(\mathbf{e}_{2}^{'} \boldsymbol{\Sigma}^{-1} \mathbf{e}\right) \left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}\right) \end{bmatrix}}{\left(\mathbf{e}' \boldsymbol{\Sigma}^{-1} \mathbf{e}\right) \left(\mathbf{e}_{2}^{'} \boldsymbol{\Sigma}^{-1} \mathbf{e}\right)^{2}};$$

312

- where $\bar{\mathbf{x}}$ is a k-vector representing population-specific sample means over the entire
- duration of the experiment. Furthermore the variance is equal to

315

$$\operatorname{var} \hat{\boldsymbol{\theta}} = \operatorname{var} \begin{bmatrix} \hat{\mu} \\ \hat{\delta} \end{bmatrix} = \left(\mathbf{B}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{B} \right)^{-1} = \frac{\begin{bmatrix} n_2 \mathbf{e}_2^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{e}_2 & -n_2 \mathbf{e}_2^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{e} \\ -n_2 \mathbf{e}_2^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{e} & n \mathbf{e}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{e} \end{bmatrix}}{n n_2 \left(\mathbf{e}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{e} \right) \left(\mathbf{e}_2^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{e}_2 \right) - \left(n_2 \mathbf{e}_2^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{e} \right)^2}.$$
(A.6)

316

- We next turn to the estimating equation for the variance covariance matrix itself. We do
- 319 this by maximizing the likelihood function with respect to the inverse of the covariance
- matrix, denoted by Σ^{-1} . There are two formulas for matrix derivatives, found in Dwyer
- 321 (1967) that we make use of

$$\frac{\partial \ln |\Sigma^{-1}|}{\partial \Sigma^{-1}} = \Sigma \tag{A.7}$$

324 and

325

$$\frac{\partial \mathbf{z}' \mathbf{\Sigma}^{-1} \mathbf{z}}{\partial \mathbf{\Sigma}^{-1}} = \mathbf{z} \mathbf{z}', \tag{A.8}$$

326

where z is any vector of length k that does not itself depend on the variance matrix.

328

- We first write the log-likelihood in a more convenient form when conceiving as a
- 330 function of the variance matrix. Let

331

$$l(\Sigma) = C + (n/2) \ln |\Sigma^{-1}| - (1/2) \sum_{t=1}^{n} \mathbf{z}_{t} \Sigma^{-1} \mathbf{z}_{t},$$
(A.9)

332

- 333 where $\mathbf{z}_t = \mathbf{x}_t [\mathbf{e} \quad \mathbf{0}] \mathbf{0}$ when $t \le n_1$ and $\mathbf{z}_t = \mathbf{x}_t [\mathbf{e} \quad \mathbf{e}_2] \mathbf{0}$ when $t > n_1$.
- Using these formulas, we may show that

335

$$\frac{\partial l(\mathbf{\Sigma})}{\partial \mathbf{\Sigma}^{-1}} = (n/2)\mathbf{\Sigma} - (1/2)\sum_{t=1}^{n} \mathbf{z}_{t}\mathbf{z}_{t}'. \tag{A.10}$$

336

Setting this derivative equal to zero and solving for Σ yields the estimating equation

338

$$\hat{\Sigma} = (1/n) \sum_{t=1}^{n} \mathbf{z}_{t} \mathbf{z}'_{t}. \tag{A.11}$$

339

- We also consider a special case when the variance matrix has the form of an intraclass
- 341 covariance matrix, Σ_2 . In such a case we can write

$$\Sigma_{2}^{-1} = (a-b)\mathbf{I} + b\mathbf{e}\mathbf{e}'. \tag{A.12}$$

- In this case, all of the diagonal entries of the inverse covariance matrix are equal to the
- scalar quantity a all of the off-diagonal entries are equal to the scalar quantity b. In this
- special case, the log-likelihood function may be written as

347

$$l(\Sigma_2) = C + (n/2) \ln |\Sigma_2^{-1}| - (1/2) \sum_{t=1}^n \mathbf{z}_t \Sigma_2^{-1} \mathbf{z}_t.$$
(A.13)

348

We make use of the following formulas when deriving the derivative of this function

350

$$\frac{\partial \ln |\mathbf{\Sigma}_{2}^{-1}|}{\partial a} = k\sigma_{11} \text{ and } \frac{\partial \ln |\mathbf{\Sigma}_{2}^{-1}|}{\partial b} = k(k-1)\sigma_{12},$$
(A.14)

351

- 352 where σ_{11} is the common variance term in the variance matrix and σ_{12} is the common
- 353 covariance value. Also used are the formulas

354

$$\frac{\partial \mathbf{z}' \mathbf{\Sigma}_{2}^{-1} \mathbf{z}}{\partial a} = \mathbf{z}' \mathbf{z} \text{ and } \frac{\partial \mathbf{z}' \mathbf{\Sigma}_{2}^{-1} \mathbf{z}}{\partial b} = \mathbf{e}' \mathbf{z} \mathbf{z}' \mathbf{e} - \mathbf{z}' \mathbf{z}$$
(A.15)

355

356 Armed with these equations, we may show that

357

$$\frac{\partial l(\boldsymbol{\Sigma}_{2}^{-1})}{\partial a} = (n/2)k\boldsymbol{\sigma}_{11} - (1/2)\sum_{t=1}^{n} \mathbf{z}_{t}'\mathbf{z}_{t}$$
(A.16)

358

359 and

360

$$\frac{\partial l(\boldsymbol{\Sigma}_{2}^{-1})}{\partial a} = (n/2)k(k-1)\boldsymbol{\sigma}_{12} - (1/2)\sum_{t=1}^{n} \mathbf{e}' \mathbf{z}_{t} \mathbf{z}_{t}' \mathbf{e} - \mathbf{z}_{t}' \mathbf{z}_{t}. \tag{A.17}$$

362 Setting these partial derivatives equal to zero yields the following estimating equations

363

$$\hat{\sigma}_{11} = \frac{\sum_{t=1}^{n} \mathbf{z}_{t}^{t} \mathbf{z}_{t}}{nk} \tag{A.18}$$

364

365 and

366

$$\hat{\sigma}_{12} = \frac{\sum_{t=1}^{n} \mathbf{e}' \mathbf{z}_{t} \mathbf{z}'_{t} \mathbf{e} - \mathbf{z}'_{t} \mathbf{z}_{t}}{nk(k-1)}.$$
(A.19)

367

- 368 The maximum likelihood estimator for the intraclass covariance matrix is therefore equal
- 369 to

370

$$\hat{\boldsymbol{\Sigma}}_{2} = (\hat{\sigma}_{11} - \hat{\sigma}_{12})\mathbf{I} + \hat{\sigma}_{12}\mathbf{e}\mathbf{e}'. \tag{A.20}$$

371

- 372 Numerical algorithm.—Armed with the estimating equations for the parameters we are
- 373 now prepared to derive an algorithm to solve the estimating equations for the unknown
- estimates of $\hat{\theta}$ and $\hat{\Sigma}$ (or $\hat{\Sigma}_2$ in the case of the intraclass covariance matrix). Note that an
- 375 iterative procedure is used because the maximum likelihood estimate of θ depends on the
- maximum likelihood estimate of Σ in equation (A.6). (When the variance matrix is
- assumed known, no such iterative procedure is required, one simply uses equation (A.6)
- with the known variance matrix.)

- The iterative procedure begins by making an initial estimate of the variance matrix, call it
- 381 $\hat{\Sigma}^{(0)}$. The next step is to make an initial estimate of the θ vector. This is accomplished by
- using $\hat{\Sigma}^{(0)}$ in place of Σ in equation (A.6) and solve for $\hat{\theta}^{(0)}$. The estimate $\hat{\theta}^{(0)}$ is then
- used in equation (A.11) to get an updated estimate of the variance matrix, $\hat{\Sigma}^{(1)}$. This
- entire procedure is repeated with the most recent updates of the parameters until the

likelihood function fails to decrease by some specified tolerance. If the intraclass covariance matrix structure is used, simply use equation (A.20) in place of equation (A.11) in the above algorithm.

Appendix 2: Code to calculate statistical power of a BACI-type 388 389 experiment with known variance 390 #Program to estimate standard errors and power of a BACI-type experiment 391 #This R code uses the added assumptions of a common variance and common correlation 392 #terms. This assumption may be relaxed, however, simply by specifying SIG2 as an input 393 #to the function baci in place of the input variables s2 and rho. 394 #variables and descriptions 395 #s2 is year-to-year variance (assumed equal for all populations) #rho is the correlation of survivals between each pair of populations 396 397 #n1 number of Before years 398 #n2 number of After years 399 #k1 number of control populations 400 #k2 number of treatment populations 401 #me measurement error 402 #alpha -- prob. type I error (Probability of rejecting null hypothesis when true.) 403 #delta -- true treatment effect representing difference in natural log survival 404 #ln(Streatment/Scontrol) 405 baci<-406 function(s2=1,rho=.9,n1=.5,n2=.5,k1=.1,k2=.1,me= $.\log(1.10)$,alpha=.0.05,delta= $.\log(1.50)$){ 407 k < -k1+k2408 SIG2<-matrix(s2*rho,ncol=k,nrow=k) 409 diag(SIG2)<-s2+me*me 410 INVSIG2<-solve(SIG2) 411 e < -rep(1,k)412 se<-(n1+n2)*t(e)%*%INVSIG2%*%e 413 e1 < -c(rep(1,k1),rep(0,k2))414 e2 < -c(rep(0,k1),rep(1,k2))415 det<-n1*t(e)%*%INVSIG2%*%e+n2*t(e1)%*%INVSIG2%*%e1 det<-det*n2*t(e2)%*%INVSIG2%*%e2-n2*n2*(t(e2)%*%INVSIG2%*%e1)^2 416 417 se<-sqrt(se/det) 418 #rule--reject when estimate exceeds q*se in absolute value (two-sided) 419 q < -qnorm(1-alpha/2)420 power<-(1-pnorm(q*se,mean=delta,sd=se))+pnorm(-q*se,mean=delta,sd=se) 421 return(list(s2=s2,rho=rho,n1=n1,n2=n2,k1=k1,k2=k2,me=me,422 alpha=alpha,delta=delta,se=se,cv=se/delta,power=power)) 423 } 424 #outputs 425 #se -- standard error 426 #cv -- coefficient of variation #power -- probability of rejecting the null hypothesis of no effect 427 428

429 **Appendix 3: Code for estimation when variance is unknown**

```
430
       #Iterate until maximum likelihood estimates are obtained
431
       #solving the estimating equations which were
432
       #determined by setting the partial derivatives of the
       #likelihood function to zero.
433
434
       myoptim2<-function(xmat,s2,rho,me,n1,k1,iform=iform){
435
       k < -dim(xmat)[1]
436
       n < -dim(xmat)[2]
437
       SIG2 < -diag(1,k)
438
       par<-get.pars(xmat,SIG2,n1,k1)
439
       SIG2<-get.SIG2(par,xmat,n1,k1,iform=iform)
440
       1f1 < -1f(par = par, x = xmat, n1 = n1, k1 = k1, SIG2)
441
       etol<-1.e-5
442
       err<-2.*etol*(abs(lf1)+etol)
443
       #look for relative function convergence to mles
444
       iter<-0
445
        while(err>etol*(abs(lf1)+etol)){
446
         par<-get.pars(xmat,SIG2,n1,k1)
447
         SIG2<-get.SIG2(par,xmat,n1,k1,iform=iform)
448
         1f2 < -1f(par=par,x=xmat,n1=n1,k1=k1,SIG2)
449
         err<-abs(1f2-lf1)
450
         1f1<-1f2
451
         iter<-iter+1
452
         if(iter>100)stop("too many iterations in myoptim2")
453
454
       print(iter)
455
       return(list(par=par,SIG2=SIG2))
456
457
458
       #Use estimating equations to solve for parameter values
459
       #Returns control mean (mu) and treatment effect (delta)
460
       get.pars<-function(xmat,SIG2,n1,k1){
461
       n < -dim(xmat)[2]
462
       n2 < -n-n1
463
       k < -dim(xmat)[1]
464
       E < -rep(1,k)
465
       E1 < -c(rep(1,k1),rep(0,k-k1))
       E2 < -c(rep(0,k1),rep(1,k-k1))
466
       xbar2 < -apply(xmat[,(n1+1):n],c(1),mean)
467
       xbar<-apply(xmat,c(1),mean)
468
469
       INVSIG2<-solve(SIG2)
```

```
470
       delta<-(t(E2)%*%INVSIG2%*%xbar2)*(t(E)%*%INVSIG2%*%E)-
471
       t(E)%*%INVSIG2%*%xbar*(t(E2)%*%INVSIG2%*%E)
472
       den<-(t(E)%*%INVSIG2%*%E)*(t(E2)%*%INVSIG2%*%E2)-
473
       (n2/n)*(t(E2)%*%INVSIG2%*%E)^2
474
       delta<-delta/den
475
       mu<-t(E2)% *% INVSIG2% *% xbar2-(t(E2)% *% INVSIG2% *% E2)*delta
476
       den<-t(E2)% *%INVSIG2% *%E
477
       mu<-mu/den
478
       return(c(mu,delta))
479
480
481
      #log-likelihood function
482
       lf<-function(par,x,n1,k1,SIG2){
483
       INVSIG2<-solve(SIG2)
484
       n < -dim(x)[2]
485
       k < -dim(x)[1]
486
       z<-x
487
       like < -k*.5*n*log(2*pi)-.5*n*log(det(SIG2))
488
       for(ii in 1:n1)
489
       z[,ii] < -x[,ii] - rep(par[1],k)
490
       like<-like-.5*t(z[,ii])%*%INVSIG2%*%z[,ii]
491
492
       for(ii in (n1+1):n){
493
        z[,ii] < -x[,ii] - c(rep(par[1],k1),rep(par[1]+par[2],k-k1))
494
        like<-like-.5*t(z[,ii])%*%INVSIG2%*%z[,ii]
495
       }
496
       return(like)
497
       }
498
499
       #Get the estimate variance-covariance matrix
500
       #This is based on the esimating equations
501
       #variance is unknown and has the
502
       #form of an intraclass covariance matrix when iform=1
503
       get.SIG2<-function(par,x,n1,k1,iform=1){
504
       n < -dim(x)[2]
505
       k < -dim(x)[1]
506
       z<-x
507
       SIG2<-matrix(0,ncol=k,nrow=k)
508
       for(ii in 1:n1)
509
       z[,ii] < -x[,ii] - rep(par[1],k)
510
        SIG2 < -SIG2 + z[,ii]\% *\%t(z[,ii])/n
511
512
       for(ii in (n1+1):n){
513
        z[,ii] < -x[,ii] - c(rep(par[1],k1),rep(par[1]+par[2],k-k1))
```

```
514
       SIG2 < -SIG2 + z[,ii]\% *\%t(z[,ii])/n
515
       }
516
517
       if(iform==1){
518
        s2<-mean(diag(SIG2))
519
        s12<-(sum(SIG2)-sum(diag(SIG2)))/(k*k-k)
520
        SIG2<-matrix(s12,ncol=k,nrow=k)
       diag(SIG2)<-s2
521
522
523
       return(SIG2)
524
```

Appendix 3: Parr-to-smolt survival data

Table A.1. — Parr-to-smolt survival data for eight Snake River populations used in application.

Tagging site	Tagging year	Parr-to-smolt survival
Bear Valley Creek	1992	0.1708
Bear Valley Creek	1993	0.2290
Bear Valley Creek	1994	0.0824
Bear Valley Creek	1997	0.3517
Bear Valley Creek	1998	0.2101
Bear Valley Creek	1999	0.2000
Bear Valley Creek	2000	0.2240
Bear Valley Creek	2001	0.1454
Elk Creek	1992	0.1260
Elk Creek	1993	0.1622
Elk Creek	1994	0.1032
Elk Creek	1997	0.4732
Elk Creek	1998	0.2221
Elk Creek	1999	0.2201
Elk Creek	2000	0.3125
Elk Creek	2001	0.1369
Imnaha River	1992	0.1492
Imnaha River	1993	0.2271
Imnaha River	1994	0.1701
Imnaha River	1995	0.2849
Imnaha River	1996	0.2911
Imnaha River	1997	0.4788
Imnaha River	1998	0.3058
Imnaha River	1999	0.3024

2000	0.3194
2001	0.2538
1992	0.1722
1993	0.2791
1994	0.0703
1998	0.2918
1999	0.2766
2000	0.3131
2001	0.2798
1992	0.1418
1993	0.3045
1994	0.2114
1995	0.3943
1997	0.5774
1998	0.3126
1999	0.2661
2001	0.2778
1992	0.1966
1993	0.2996
1994	0.1568
1995	0.2032
1996	0.2238
1997	0.2307
1998	0.1858
1999	0.2458
2000	0.2780
2001	0.1480
1000	0.2200
1992	0.2309
	2001 1992 1993 1994 1998 1999 2000 2001 1992 1993 1994 1995 1997 1998 1999 2001 1992 1993 1994 1995 1997 1998 1999 2000

Poverty Flat	1994	0.1099
Poverty Flat	1995	0.1642
Poverty Flat	1996	0.1488
Poverty Flat	1997	0.2707
Poverty Flat	1998	0.1547
Poverty Flat	1999	0.1931
Poverty Flat	2000	0.1712
Poverty Flat	2001	0.0888
Sulphur Creek	1992	0.1053
Sulphur Creek	1994	0.1840
Sulphur Creek	1998	0.1404
Sulphur Creek	1999	0.2261

Appendix 3: Standard errors of treatment effect

Table A.1. —The standard error of the estimate of the treatment effect size varies with the number of years of the experiment and the year-to-year variance. Treatment effect size is defined as the change in log(survival) for a BACI experiment. Equal numbers of treatment and control populations and equal numbers of Before and After years were assumed. The column heading "nyears" represents the total number of years of the experiment. Measurement error standard deviation was log(1.10) and correlation of survival between populations was 0.50.

k=2 populations

Year-to-year variance (excluding measurement error)										
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	0.141	0.193	0.233	0.267	0.298	0.325	0.350	0.374	0.396	0.417
12	0.129	0.176	0.213	0.244	0.272	0.297	0.320	0.342	0.362	0.381
14	0.119	0.163	0.197	0.226	0.251	0.275	0.296	0.316	0.335	0.353
16	0.112	0.152	0.184	0.211	0.235	0.257	0.277	0.296	0.313	0.330
18	0.105	0.144	0.174	0.199	0.222	0.242	0.261	0.279	0.295	0.311
20	0.100	0.136	0.165	0.189	0.210	0.230	0.248	0.265	0.280	0.295
22	0.095	0.130	0.157	0.180	0.201	0.219	0.236	0.252	0.267	0.281
24	0.091	0.124	0.150	0.172	0.192	0.210	0.226	0.241	0.256	0.269
26	0.088	0.119	0.144	0.166	0.185	0.202	0.217	0.232	0.246	0.259
28	0.084	0.115	0.139	0.160	0.178	0.194	0.209	0.224	0.237	0.249
30	0.082	0.111	0.134	0.154	0.172	0.188	0.202	0.216	0.229	0.241

k=4 populations

	Year-to-year variance (excluding measurement error)									
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	0.103	0.140	0.170	0.195	0.217	0.237	0.255	0.273	0.289	0.304
12	0.094	0.128	0.155	0.178	0.198	0.216	0.233	0.249	0.264	0.278
14	0.087	0.119	0.143	0.165	0.183	0.200	0.216	0.230	0.244	0.257
16	0.081	0.111	0.134	0.154	0.171	0.187	0.202	0.215	0.228	0.240
18	0.077	0.105	0.126	0.145	0.162	0.177	0.190	0.203	0.215	0.227
20	0.073	0.099	0.120	0.138	0.153	0.167	0.181	0.193	0.204	0.215
22	0.069	0.095	0.114	0.131	0.146	0.160	0.172	0.184	0.195	0.205

24	0.066	0.091	0.110	0.126	0.140	0.153	0.165	0.176	0.186	0.196			
26	0.064	0.087	0.105	0.121	0.134	0.147	0.158	0.169	0.179	0.189			
28	0.062	0.084	0.101	0.116	0.130	0.142	0.153	0.163	0.173	0.182			
30	0.059	0.081	0.098	0.112	0.125	0.137	0.147	0.157	0.167	0.176			
	k=6 populations												
		Ye	ar-to-year	variance ((excluding	g measure	ment error	.)					
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
10	0.085	0.116	0.140	0.161	0.179	0.196	0.211	0.225	0.239	0.252			
12	0.078	0.106	0.128	0.147	0.164	0.179	0.193	0.206	0.218	0.230			
14	0.072	0.098	0.119	0.136	0.152	0.166	0.179	0.191	0.202	0.213			
16	0.067	0.092	0.111	0.127	0.142	0.155	0.167	0.178	0.189	0.199			
18	0.064	0.087	0.105	0.120	0.134	0.146	0.157	0.168	0.178	0.188			
20	0.060	0.082	0.099	0.114	0.127	0.139	0.149	0.159	0.169	0.178			
22	0.058	0.078	0.095	0.109	0.121	0.132	0.142	0.152	0.161	0.170			
24	0.055	0.075	0.091	0.104	0.116	0.126	0.136	0.146	0.154	0.162			
26	0.053	0.072	0.087	0.100	0.111	0.122	0.131	0.140	0.148	0.156			
28	0.051	0.069	0.084	0.096	0.107	0.117	0.126	0.135	0.143	0.150			
30	0.049	0.067	0.081	0.093	0.104	0.113	0.122	0.130	0.138	0.145			
				k=	=8 popula	tions							
			Year-	to-year va	riance (ex	cluding m	easureme	nt error)					
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
10	0.075	0.101	0.123	0.141	0.157	0.171	0.184	0.197	0.208	0.220			
12	0.068	0.093	0.112	0.128	0.143	0.156	0.168	0.180	0.190	0.200			
14	0.063	0.086	0.104	0.119	0.132	0.145	0.156	0.166	0.176	0.186			
16	0.059	0.080	0.097	0.111	0.124	0.135	0.146	0.156	0.165	0.174			
18	0.056	0.076	0.091	0.105	0.117	0.127	0.137	0.147	0.155	0.164			
20	0.053	0.072	0.087	0.099	0.111	0.121	0.130	0.139	0.147	0.155			
22	0.050	0.068	0.083	0.095	0.106	0.115	0.124	0.133	0.141	0.148			
24	0.048	0.065	0.079	0.091	0.101	0.110	0.119	0.127	0.135	0.142			
26	0.046	0.063	0.076	0.087	0.097	0.106	0.114	0.122	0.129	0.136			
28	0.045	0.061	0.073	0.084	0.094	0.102	0.110	0.118	0.125	0.131			
30	0.043	0.059	0.071	0.081	0.090	0.099	0.106	0.114	0.120	0.127			
				k=	:10 popula	ations							

Year-to-year variance (excluding measurement error)

nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	0.067	0.091	0.110	0.126	0.141	0.154	0.166	0.177	0.187	0.197		
12	0.061	0.083	0.101	0.115	0.128	0.140	0.151	0.161	0.171	0.180		
14	0.057	0.077	0.093	0.107	0.119	0.130	0.140	0.149	0.158	0.167		
16	0.053	0.072	0.087	0.100	0.111	0.122	0.131	0.140	0.148	0.156		
18	0.050	0.068	0.082	0.094	0.105	0.115	0.123	0.132	0.140	0.147		
20	0.047	0.064	0.078	0.089	0.099	0.109	0.117	0.125	0.132	0.140		
22	0.045	0.061	0.074	0.085	0.095	0.104	0.112	0.119	0.126	0.133		
24	0.043	0.059	0.071	0.082	0.091	0.099	0.107	0.114	0.121	0.127		
26	0.042	0.057	0.068	0.078	0.087	0.095	0.103	0.110	0.116	0.122		
28	0.040	0.055	0.066	0.076	0.084	0.092	0.099	0.106	0.112	0.118		
30	0.039	0.053	0.064	0.073	0.081	0.089	0.096	0.102	0.108	0.114		
k=12 populations												
Year-to-year variance (excluding measurement error)												
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	0.061	0.084	0.101	0.116	0.129	0.141	0.152	0.162	0.172	0.181		
12	0.056	0.076	0.092	0.106	0.118	0.129	0.139	0.148	0.157	0.165		
14	0.052	0.071	0.085	0.098	0.109	0.119	0.128	0.137	0.145	0.153		
16	0.049	0.066	0.080	0.092	0.102	0.111	0.120	0.128	0.136	0.143		
18	0.046	0.062	0.075	0.086	0.096	0.105	0.113	0.121	0.128	0.135		
20	0.043	0.059	0.071	0.082	0.091	0.100	0.107	0.115	0.121	0.128		
22	0.041	0.056	0.068	0.078	0.087	0.095	0.102	0.109	0.116	0.122		
24	0.040	0.054	0.065	0.075	0.083	0.091	0.098	0.105	0.111	0.117		
26	0.038	0.052	0.063	0.072	0.080	0.087	0.094	0.100	0.106	0.112		
28	0.037	0.050	0.060	0.069	0.077	0.084	0.091	0.097	0.103	0.108		
30	0.035	0.048	0.058	0.067	0.074	0.081	0.088	0.094	0.099	0.104		
				k=14	l population	ons						
		Ye	ar-to-year	variance	(excluding	g measure	ment erroi	.)				
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	0.057	0.078	0.094	0.107	0.120	0.131	0.141	0.150	0.159	0.168		
12	0.052	0.071	0.086	0.098	0.109	0.119	0.129	0.137	0.145	0.153		
14	0.048	0.066	0.079	0.091	0.101	0.110	0.119	0.127	0.135	0.142		
16	0.045	0.061	0.074	0.085	0.095	0.103	0.111	0.119	0.126	0.133		
18	0.042	0.058	0.070	0.080	0.089	0.097	0.105	0.112	0.119	0.125		
20	0.040	0.055	0.066	0.076	0.085	0.092	0.100	0.106	0.113	0.119		

22	0.038	0.052	0.063	0.072	0.081	0.088	0.095	0.101	0.107	0.113		
24	0.037	0.050	0.060	0.069	0.077	0.084	0.091	0.097	0.103	0.108		
26	0.035	0.048	0.058	0.067	0.074	0.081	0.087	0.093	0.099	0.104		
28	0.034	0.046	0.056	0.064	0.071	0.078	0.084	0.090	0.095	0.100		
30	0.033	0.045	0.054	0.062	0.069	0.075	0.081	0.087	0.092	0.097		
k=16 populations												
		Y	ear-to-yea	r variance	(excludir	ng measure	ement erro	or)				
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	0.053	0.073	0.088	0.101	0.112	0.122	0.132	0.141	0.149	0.157		
12	0.049	0.066	0.080	0.092	0.102	0.112	0.121	0.129	0.136	0.144		
14	0.045	0.061	0.074	0.085	0.095	0.104	0.112	0.119	0.126	0.133		
16	0.042	0.057	0.069	0.080	0.089	0.097	0.104	0.111	0.118	0.124		
18	0.040	0.054	0.065	0.075	0.084	0.091	0.098	0.105	0.111	0.117		
20	0.038	0.051	0.062	0.071	0.079	0.087	0.093	0.100	0.106	0.111		
22	0.036	0.049	0.059	0.068	0.076	0.083	0.089	0.095	0.101	0.106		
24	0.034	0.047	0.057	0.065	0.072	0.079	0.085	0.091	0.096	0.101		
26	0.033	0.045	0.054	0.062	0.070	0.076	0.082	0.087	0.093	0.097		
28	0.032	0.043	0.052	0.060	0.067	0.073	0.079	0.084	0.089	0.094		
30	0.031	0.042	0.051	0.058	0.065	0.071	0.076	0.081	0.086	0.091		
				k=1	8 populat	ions						
		Y	ear-to-yea	r variance	(excludir	ng measure	ement erro	or)				
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	0.050	0.069	0.083	0.095	0.106	0.116	0.125	0.133	0.141	0.148		
12	0.046	0.063	0.076	0.087	0.097	0.106	0.114	0.121	0.129	0.136		
14	0.043	0.058	0.070	0.080	0.089	0.098	0.105	0.112	0.119	0.125		
16	0.040	0.054	0.066	0.075	0.084	0.091	0.099	0.105	0.111	0.117		
18	0.038	0.051	0.062	0.071	0.079	0.086	0.093	0.099	0.105	0.111		
20	0.036	0.049	0.059	0.067	0.075	0.082	0.088	0.094	0.100	0.105		
22	0.034	0.046	0.056	0.064	0.071	0.078	0.084	0.090	0.095	0.100		
24	0.033	0.044	0.054	0.061	0.068	0.075	0.080	0.086	0.091	0.096		
26	0.031	0.043	0.051	0.059	0.066	0.072	0.077	0.083	0.087	0.092		
28	0.030	0.041	0.050	0.057	0.063	0.069	0.074	0.080	0.084	0.089		
30	0.029	0.040	0.048	0.055	0.061	0.067	0.072	0.077	0.081	0.086		
				1 0	00 manulat							

k=20 populations

Year-to-year variance (excluding measurement error)

nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	0.048	0.065	0.079	0.090	0.101	0.110	0.118	0.126	0.134	0.141
12	0.044	0.060	0.072	0.082	0.092	0.100	0.108	0.115	0.122	0.129
14	0.041	0.055	0.067	0.076	0.085	0.093	0.100	0.107	0.113	0.119
16	0.038	0.052	0.062	0.071	0.080	0.087	0.094	0.100	0.106	0.111
18	0.036	0.049	0.059	0.067	0.075	0.082	0.088	0.094	0.100	0.105
20	0.034	0.046	0.056	0.064	0.071	0.078	0.084	0.089	0.095	0.100
22	0.032	0.044	0.053	0.061	0.068	0.074	0.080	0.085	0.090	0.095
24	0.031	0.042	0.051	0.058	0.065	0.071	0.076	0.082	0.086	0.091
26	0.030	0.040	0.049	0.056	0.062	0.068	0.073	0.078	0.083	0.087
28	0.029	0.039	0.047	0.054	0.060	0.066	0.071	0.076	0.080	0.084
30	0.028	0.038	0.045	0.052	0.058	0.063	0.068	0.073	0.077	0.081

529 Appendix 4: Percent change in survival needed to deliver power of 0.80.

Table A.2. —Percent change in survival necessary to deliver a CV of 0.357 (power of 0.80). Equal numbers of treatment and control populations and equal numbers of Before and After years were assumed. The column heading "nyears" represents the total number of years of the experiment. Measurement error standard deviation was log(1.10) and correlation of survival between populations was 0.50.

k=2 populations Year-to-year variance (excluding measurement error) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 nyears 10 48.51 71.51 92.00 130.12 148.57 185.17 203.51 221.96 111.36 166.88 12 43.48 63.63 81.40 98.02 114.00 129.61 145.01 160.29 175.53 190.78 14 39.69 57.76 73.56 88.23 102.26 115.88 129.25 142.46 155.57 168.64 16 36.70 67.49 80.70 93.26 105.41 128.98 140.54 152.03 53.18 117.29 18 34.28 49.49 62.62 74.68 86.12 97.13 107.86 118.38 128.77 139.05 109.80 20 32.26 46.44 58.61 69.76 80.28 90.38 100.20 119.25 128.60 22 30.55 43.86 55.24 65.63 75.40 84.76 93.83 102.69 111.39 119.97 29.08 80.00 24 41.65 52.36 62.11 71.25 88.45 96.68 104.76 112.71 26 27.80 39.73 49.87 59.06 67.68 75.89 83.82 91.53 99.08 106.50 28 26.66 38.04 47.68 56.40 64.55 72.32 79.79 87.06 94.16 101.13 30 25.65 36.54 45.74 54.05 61.80 69.17 76.25 83.13 89.84 96.42 k=4 populations Year-to-year variance (excluding measurement error) 0.9 0.1 0.2 0.3 0.4 0.5 0.7 0.8 1.0 nyears 0.6 33.44 72.51 10 48.17 60.86 83.52 94.12 104.43 114.54 124.50 134.35 12 30.13 43.18 54.33 64.50 74.06 83.22 92.08 100.73 109.22 117.59 14 27.61 39.42 49.44 58.54 75.17 83.00 90.62 98.07 67.05 105.40 16 25.62 36.46 45.62 53.89 61.61 68.94 76.00 82.84 89.52 96.07

57.23

53.62

50.58

47.98

45.72

43.74

50.14

47.04

44.43

42.19

40.24

38.52

63.95

59.84

56.39

53.44

50.89

48.65

76.64

71.56

67.30

63.68

60.54

57.80

70.40

65.80

61.95

58.66

55.81

53.32

82.72

77.15

72.50

68.54

65.12

62.14

18

20

22

24

26

28

23.99

22.63

21.47

20.47

19.59

18.82

42.52

39.95

37.78

35.91

34.29

32.85

34.06

32.05

30.36

28.89

27.62

26.49

88.66

82.61

77.57

73.28

69.58

66.36

30	18.12	25.49	31.58	37.00	41.98	46.66	51.11	55.38	59.50	63.51		
	k=6 populations Year-to-year variance (excluding measurement error)											
				•		•						
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	27.00	38.48	48.21	57.03	65.28	73.13	80.70	88.06	95.26	102.32		
12	24.38	34.60	43.21	50.97	58.20	65.05	71.62	77.99	84.20	90.27		
14	22.38	31.67	39.45	46.43	52.91	59.03	64.88	70.54	76.04	81.40		
16	20.80	29.35	36.49	42.87	48.77	54.33	59.64	64.76	69.72	74.56		
18	19.50	27.46	34.08	39.98	45.43	50.55	55.43	60.12	64.67	69.09		
20	18.41	25.88	32.08	37.59	42.66	47.42	51.95	56.30	60.50	64.59		
22	17.48	24.54	30.38	35.56	40.32	44.78	49.02	53.09	57.01	60.82		
24	16.68	23.38	28.91	33.81	38.31	42.52	46.51	50.34	54.02	57.60		
26	15.98	22.37	27.64	32.29	36.56	40.55	44.33	47.95	51.43	54.81		
28	15.35	21.48	26.51	30.95	35.02	38.82	42.42	45.86	49.17	52.37		
30	14.79	20.68	25.50	29.76	33.65	37.29	40.72	44.00	47.16	50.21		
k=8 populations												
Year-to-year variance (excluding measurement error)												
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	23.21	32.86	40.97	48.26	55.03	61.44	67.59	73.52	79.30	84.95		
12	20.99	29.62	36.82	43.26	49.22	54.84	60.21	65.39	70.41	75.30		
14	19.29	27.14	33.67	39.49	44.86	49.90	54.71	59.33	63.80	68.15		
16	17.94	25.19	31.19	36.53	41.43	46.03	50.41	54.61	58.66	62.60		
18	16.83	23.59	29.17	34.12	38.66	42.91	46.94	50.80	54.53	58.14		
20	15.90	22.25	27.48	32.11	36.35	40.31	44.07	47.66	51.12	54.46		
22	15.11	21.12	26.05	30.41	34.40	38.12	41.64	45.00	48.24	51.37		
24	14.42	20.13	24.81	28.94	32.72	36.23	39.56	42.73	45.78	48.72		
26	13.82	19.27	23.73	27.66	31.25	34.59	37.74	40.75	43.64	46.42		
28	13.28	18.51	22.78	26.54	29.96	33.14	36.15	39.01	41.76	44.41		
30	12.81	17.83	21.93	25.53	28.81	31.86	34.73	37.47	40.09	42.62		
					0 populat							
-			Year-to	o-year vari	iance (exc	luding me	asuremen	t error)				
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	20.65	29.11	36.16	42.47	48.31	53.81	59.06	64.11	69.01	73.79		
12	18.69	26.26	32.55	38.15	43.30	48.14	52.75	57.18	61.46	65.62		
14	17.19	24.10	29.81	34.88	39.53	43.89	48.03	51.99	55.82	59.53		

16	16.00	22.38	27.64	32.29	36.56	40.55	44.32	47.94	51.42	54.79
18	15.02	20.97	25.87	30.19	34.15	37.84	41.33	44.66	47.87	50.97
20	14.19	19.80	24.39	28.44	32.14	35.59	38.84	41.95	44.93	47.82
22	13.49	18.80	23.14	26.96	30.44	33.68	36.74	39.65	42.45	45.15
24	12.88	17.93	22.05	25.67	28.97	32.04	34.93	37.68	40.32	42.87
26	12.34	17.17	21.10	24.55	27.69	30.60	33.35	35.96	38.47	40.88
28	11.87	16.49	20.26	23.56	26.56	29.34	31.96	34.45	36.84	39.14
30	11.44	15.89	19.51	22.68	25.55	28.22	30.73	33.11	35.39	37.59
				k=1	2 populat	ions				
			Year-to	o-year var	iance (exc	luding me	easuremen	t error)		
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	18.77	26.37	32.68	38.30	43.48	48.35	52.98	57.42	61.72	65.90
12	17.00	23.82	29.45	34.45	39.04	43.33	47.41	51.32	55.09	58.74
14	15.65	21.87	27.00	31.53	35.68	39.56	43.23	46.74	50.12	53.39
16	14.56	20.33	25.05	29.22	33.03	36.59	39.94	43.15	46.23	49.21
18	13.68	19.06	23.46	27.34	30.88	34.17	37.28	40.24	43.09	45.84
20	12.93	18.00	22.14	25.77	29.08	32.16	35.07	37.83	40.48	43.04
22	12.29	17.09	21.00	24.44	27.56	30.46	33.19	35.79	38.28	40.68
24	11.74	16.31	20.03	23.28	26.24	28.99	31.57	34.03	36.38	38.65
26	11.26	15.62	19.17	22.28	25.09	27.71	30.17	32.50	34.73	36.88
28	10.83	15.01	18.41	21.38	24.08	26.58	28.92	31.15	33.28	35.33
30	10.44	14.47	17.74	20.59	23.18	25.57	27.82	29.95	31.99	33.95
				k=1	4 populat	ions				
			Year-to	o-year var	iance (exc	luding me	easuremen	t error)		
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	17.31	24.27	30.02	35.12	39.81	44.20	48.37	52.37	56.23	59.98
12	15.69	21.94	27.08	31.62	35.79	39.68	43.36	46.88	50.28	53.56
14	14.45	20.16	24.84	28.97	32.74	36.26	39.58	42.75	45.80	48.75
16	13.46	18.74	23.06	26.87	30.33	33.56	36.61	39.51	42.30	44.98
18	12.64	17.58	21.61	25.15	28.37	31.37	34.19	36.88	39.45	41.94
20	11.95	16.61	20.40	23.72	26.74	29.54	32.18	34.69	37.09	39.41
22	11.37	15.77	19.36	22.50	25.35	27.99	30.48	32.84	35.10	37.27
24	10.86	15.06	18.46	21.44	24.15	26.65	29.01	31.24	33.38	35.43
26	10.41	14.42	17.68	20.52	23.10	25.48	27.72	29.85	31.88	33.83
28	10.01	13.86	16.98	19.71	22.17	24.45	26.59	28.62	30.56	32.42

30	9.66	13.36	16.36	18.98	21.35	23.53	25.58	27.53	29.38	31.16	
-				k=1	6 populat	ions					
			Year-to	o-year vari	iance (exc	luding me	easuremen	t error)			
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
10	16.15	22.59	27.89	32.59	36.90	40.93	44.74	48.40	51.92	55.33	
12	14.64	20.43	25.18	29.37	33.20	36.78	40.16	43.38	46.48	49.48	
14	13.49	18.78	23.11	26.93	30.40	33.64	36.69	39.60	42.39	45.09	
16	12.56	17.47	21.47	24.99	28.18	31.16	33.96	36.62	39.18	41.64	
18	11.80	16.39	20.13	23.40	26.38	29.14	31.74	34.21	36.57	38.85	
20	11.17	15.49	19.00	22.08	24.87	27.45	29.89	32.20	34.41	36.53	
22	10.62	14.72	18.04	20.95	23.58	26.02	28.32	30.49	32.57	34.57	
24	10.15	14.05	17.21	19.97	22.47	24.79	26.96	29.02	30.99	32.88	
26	9.73	13.46	16.48	19.12	21.50	23.71	25.78	27.74	29.61	31.40	
28	9.36	12.94	15.84	18.36	20.65	22.76	24.73	26.60	28.39	30.10	
30	9.03	12.48	15.26	17.69	19.88	21.91	23.80	25.60	27.31	28.95	
k=18 populations											
Year-to-year variance (excluding measurement error)											
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
10	15.19	21.20	26.15	30.52	34.52	38.26	41.79	45.17	48.42	51.56	
12	13.78	19.19	23.62	27.53	31.09	34.41	37.54	40.53	43.40	46.17	
14	12.69	17.65	21.70	25.25	28.49	31.49	34.33	37.03	39.61	42.11	
16	11.83	16.42	20.16	23.44	26.42	29.19	31.79	34.27	36.64	38.92	
18	11.11	15.41	18.91	21.96	24.74	27.31	29.73	32.02	34.22	36.33	
20	10.51	14.57	17.85	20.73	23.33	25.74	28.01	30.15	32.21	34.18	
22	10.00	13.84	16.96	19.67	22.13	24.41	26.54	28.57	30.50	32.36	
24	9.56	13.22	16.18	18.76	21.10	23.26	25.28	27.20	29.03	30.79	
26	9.16	12.67	15.50	17.96	20.19	22.25	24.18	26.01	27.75	29.42	
28	8.82	12.18	14.89	17.26	19.39	21.36	23.21	24.95	26.61	28.21	
30	8.50	11.74	14.35	16.63	18.68	20.57	22.34	24.01	25.60	27.13	
					20 populat						
			Year-to	o-year vari	iance (exc	luding me	easuremen	t error)			
nyears	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
10	14.38	20.04	24.69	28.79	32.54	36.03	39.33	42.48	45.51	48.43	
12	13.04	18.15	22.32	25.99	29.33	32.43	35.36	38.15	40.83	43.41	
14	12.02	16.70	20.50	23.84	26.88	29.70	32.36	34.88	37.30	39.63	

16	11.20	15.54	19.06	22.15	24.95	27.54	29.98	32.30	34.52	36.65
18	10.53	14.59	17.88	20.76	23.36	25.78	28.05	30.20	32.25	34.23
20	9.96	13.79	16.89	19.59	22.04	24.31	26.43	28.45	30.37	32.22
22	9.48	13.11	16.04	18.60	20.92	23.05	25.06	26.96	28.77	30.51
24	9.06	12.52	15.31	17.74	19.94	21.97	23.87	25.68	27.39	29.04
26	8.69	12.00	14.67	16.99	19.09	21.03	22.84	24.55	26.19	27.76
28	8.36	11.54	14.10	16.33	18.34	20.19	21.92	23.56	25.12	26.62
30	8.06	11.12	13.59	15.73	17.66	19.44	21.11	22.68	24.18	25.61