TAED2 Software Analytics Project

The Data Miners

Background

- Technical Debt dataset
- SonarQube and Jira

Business and Project Goal

Code issues: Sonar measures impact.

Help developers: Detecting patterns.

Success criteria and benefits

Model: Regression, Neural Networks.

Results: Patterns, correlations.

Benefits:

- Efficiency.
- Save resources.

Project Plan

Business understanding

Data understanding

Data preparation

Modeling

Good engineering practices

- File structure and replication package ("Cookiecutter template").
- Using linters for code quality (mllint).
- Sharing status and outcomes of experiments within the team.

Data Selection

- Sonar Measures
 - Complexity
 - Sqale debt
- Sonar Issues
 - Type
 - Fixing time

Modelling

- Principal component analysis (PCA)
 - Reduce dimensionality
 - Easier computation
 - See correlation in the data

PCA

Using only numerical variables

PCA

Adding categorical variables

Regression

- Linear regression
- Principal components regression
- Grid search with cross validation
- Ridge regression

Evaluation

Regression	Error	Type of error
Linear regression	0.890	rMSE
PCA numerical data	1.011	rMSE
PCA one hot encoding	0.874	rMSE
Ridge regression ($\alpha = 1$)	0.352	MAE

Multilayer perceptron

- Supervised learning
 - Hyperparameters
- Classification/Prediction
 - Sonar issue type
 - Any categorical variable

Evaluation

- Big batch size -> High loss
- Small batch size -> Overfitting
- 93% accuracy

Conclusions

Model

- Ridge regression with one hot encoded data
 - Error: 0.352% with $\alpha = 1$
- → Successfully predicts the technical debt ratio

Future data mining

- → Our work is replicable
 - Changing the variables in our code

