Logica — 10-1-2019

Tutte le risposte devono essere adeguatamente giustificate

1. Provare che

$$\neg R \to Q \models P \land \neg Q \to R \lor \neg P.$$

2. Stabilire se l'insieme di formule

$$\{A \to B \lor \neg C, \neg B \land C, \neg (\neg B \to \neg A)\}\$$

è soddisfacibile.

- 3. Sia $\mathcal{L} = \{B, P, M\}$ un linguaggio del prim'ordine, dove B, P sono simboli relazionali unari, M è simbolo relazionale binario. Si consideri la seguente interpretazione di \mathcal{L} :
 - -B(x): x è una balena;
 - -P(x): $x \in un pesce;$
 - -M(x,y): x mangia y.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. Le balene non sono pesci.
- 2. Le balene non si mangiano tra loro.
- 3. Un pesce che mangia una balena è a sua volta mangiato da una balena.
- **4.** Sia $\mathcal{L} = \{f\}$ un linguaggio del prim'ordine, dove f è un simbolo funzionale binario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}}), \mathcal{B} = (\mathbb{Z}, f^{\mathcal{B}}),$ dove:
 - $-\mathbb{Z}$ è l'insieme dei numeri interi;
 - $-f^{\mathcal{A}}$ è l'operazione di addizione, cioè $f^{\mathcal{A}}(u,v)=u+v$ per ogni $u,v\in\mathbb{Z};$
 - $-f^{\mathcal{B}}$ è l'operazione di sottrazione, cioè $f^{\mathcal{B}}(u,v)=u-v,$ per ogni $u,v\in\mathbb{Z}.$

Determinare, se esiste, un enunciato φ che distingua \mathcal{A} da \mathcal{B} , cioè tale che $\mathcal{A} \models \varphi, \mathcal{B} \not\models \varphi$.

Svolgimento

1. Sia *i* un'interpretazione tale che $i(\neg R \to Q) = 1$, al fine di provare che $i(P \land \neg Q \to R \lor \neg P) = 1$.

Poiché $i(\neg R \to Q) = 1$, si hanno due possibilità:

- 1) $i(\neg R)=0.$ Allora i(R)=1, quindi $i(R\vee \neg P)=1$ e pertanto $i(P\wedge \neg Q\to R\vee \neg P)=1.$
- 2) i(Q)=1. In tal caso, $i(\neg Q)=0$ e quindi $i(P\wedge \neg Q)=0$, da cui di nuovo $i(P\wedge \neg Q\to R\vee \neg P)=1.$
- **2.** Si supponga che i sia un'interpretazione che soddisfa l'insieme di enunciati dato.

In particolare, $i(\neg B \land C) = 1$, da cui segue che $i(\neg B) = i(C) = 1$ e quindi i(B) = 0.

Inoltre $i(\neg(\neg B \to \neg A)) = 1$, cioè $i(\neg B \to \neg A) = 0$, da cui segue che $i(\neg A) = 0$ e pertanto i(A) = 1.

Ma allora $i(\neg C)=0$. Utilizzando i valori ricavati prima si ha quindi $i(B \vee \neg C)=0$ e finalmente $i(A \to B \vee \neg C)=0$, contraddicendo l'assunzione che i soddisfi l'insieme di enunciati dato.

Un'interpretazione che soddisfi l'insieme d'enunciati dato non può quindi esistere, e tale insieme è insoddisfacibile.

- 3. 1. $\forall x (B(x) \rightarrow \neg P(x))$
 - 2. $\forall x \forall y (B(x) \land B(y) \rightarrow \neg M(x,y))$
 - 3. $\forall x (P(x) \land \exists y (B(y) \land M(x,y)) \rightarrow \exists z (B(z) \land M(z,x)))$
- **4.** L'operazione di addizione è commutativa, l'operazione di sottrazione no:

$$\varphi: \forall x \forall y f(x, y) = f(y, x)$$