G. Rovi $^{\triangle}$, B. Kober $^{\circ}$, G. Starke $^{\circ}$, R. Krause $^{\triangle}$

o: Universität Duisburg - Essen, Germany \triangle : Institute of Computational science, Università della Svizzera italiana, Switzerland

February 18, 2019

Università della Svizzera italiana Institute of Computational Science ICS

Offen im Denken

Examples of contact problems

Monotone multilevel for FOSLS linear elastic contact

- Contact problems with incompressible materials.
- Quantities of interest: the forces generated by the contact.

Signorini's problem: strong formulation

First Order System Linear Elasticity

Find displacement \mathbf{u} , stress $\boldsymbol{\sigma}$ of the body Ω :

$$\begin{cases} \operatorname{div} \boldsymbol{\sigma} + \mathbf{f} = 0 & \Omega & \text{momentum balance equation} \\ \mathcal{A} \boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\mathbf{u}) = 0 & \Omega & \text{constitutive law} \\ \mathbf{u} = \mathbf{u}_D & \Gamma_D & \text{Dirichlet BC} \\ \boldsymbol{\sigma} \mathbf{n} = \mathbf{t}_N & \Gamma_N & \text{Neumann BC} \end{cases}$$

where
$$\boldsymbol{\varepsilon}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$
, $\boldsymbol{\mathcal{A}}\boldsymbol{\sigma} = \frac{1}{2\mu}\left(\boldsymbol{\sigma} - \frac{\lambda}{d\lambda + 2\mu}\mathrm{tr}\boldsymbol{\sigma}\mathbf{I}\right)$ and μ , λ are the Lamé parameters

• First Order System Linear Elasticity Find displacement \mathbf{u} , stress $\boldsymbol{\sigma}$ of the body Ω :

$$\begin{cases} \operatorname{div} \boldsymbol{\sigma} + \mathbf{f} = 0 & \Omega & \text{momentum balance equation} \\ \mathcal{A} \boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\mathbf{u}) = 0 & \Omega & \text{constitutive law} \\ \mathbf{u} = \mathbf{u}_D & \Gamma_D & \text{Dirichlet BC} \\ \boldsymbol{\sigma} \mathbf{n} = \mathbf{t}_N & \Gamma_N & \text{Neumann BC} \end{cases}$$

where
$$\boldsymbol{\varepsilon}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$
, $\boldsymbol{\mathcal{A}}\boldsymbol{\sigma} = \frac{1}{2\mu}\left(\boldsymbol{\sigma} - \frac{\lambda}{d\lambda + 2\mu}\mathbf{tr}\boldsymbol{\sigma}\mathbf{I}\right)$ and μ , λ are the Lamé parameters

• Contact Constraints

Given the gap function $g \ge 0$, the normal and tangent vectors \mathbf{n} and \mathbf{t} :

$$\begin{cases} \mathbf{u} \cdot \mathbf{n} - \mathbf{g} \leq 0 & \Gamma_{\mathcal{C}} \text{ impenetrability} \\ (\boldsymbol{\sigma}\mathbf{n}) \cdot \mathbf{n} \leq 0 & \Gamma_{\mathcal{C}} \text{ direction of the surface pressure} \\ (\mathbf{u} \cdot \mathbf{n} - \mathbf{g}) \left((\boldsymbol{\sigma}\mathbf{n}) \cdot \mathbf{n} \right) = 0 & \Gamma_{\mathcal{C}} \text{ complementarity condition} \\ \mathbf{t}_{\mathcal{I}}^{T}(\boldsymbol{\sigma}\mathbf{n}) = 0 & \Gamma_{\mathcal{C}} \text{ frictionless condition} \end{cases}$$

Portion of Γ_C actually in contact **not known a priori** \Rightarrow **non-linearity**

• First Order System Least-Squares (FOSLS) Functional

$$\textit{C}_{1},\ \textit{C}_{2},\ \textit{C}_{3}>0$$

$$\mathcal{J}(\mathbf{u}, \boldsymbol{\sigma}) = C_1 \|\operatorname{div} \boldsymbol{\sigma} + \mathbf{f}\|_{L^2(\Omega)^d}^2 + C_2 \|\mathcal{A} \boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\mathbf{u})\|_{L^2(\Omega)^d}^2 + C_3 \langle \mathbf{u} \cdot \mathbf{n} - \mathbf{g}, (\boldsymbol{\sigma} \mathbf{n}) \cdot \mathbf{n} \rangle_{\Gamma_c}$$

• Rolf Krause, Benjamin Müller, and Gerhard Starke. An adaptive least-squares mixed finite element method for the Signorini problem. Numerical Methods for Partial Differential Equations, 33(1):276-289, 2017.

First Order System Least-Squares (FOSLS) Functional

$$C_1, C_2, C_3 > 0$$

$$\mathcal{J}(\textbf{u}, \boldsymbol{\sigma}) = \textit{C}_1 \left\| \mathsf{div} \boldsymbol{\sigma} + \mathbf{f} \right\|_{\textit{L}^2(\Omega)^d}^2 + \textit{C}_2 \left\| \mathcal{A} \boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\textbf{u}) \right\|_{\textit{L}^2(\Omega)^d}^2 + \textit{C}_3 \langle \textbf{u} \cdot \textbf{n} - \textbf{g}, (\boldsymbol{\sigma} \textbf{n}) \cdot \textbf{n} \rangle_{\Gamma_c}$$

Convex Set K

$$K = \{(\boldsymbol{u}, \boldsymbol{\sigma}) \in \left[H^1_{\Gamma_D}(\Omega)\right]^d \times \left[H_{\text{div}, \Gamma_N}(\Omega)\right]^d: \ \boldsymbol{u} \cdot \boldsymbol{n} - g \leq 0, \ (\boldsymbol{\sigma} \boldsymbol{n}) \cdot \boldsymbol{n} \leq 0, \ \boldsymbol{t}_i^T(\boldsymbol{\sigma} \boldsymbol{n}) = 0 \quad \Gamma_C\}$$

Rolf Krause, Benjamin Müller, and Gerhard Starke. An adaptive least-squares mixed finite element method for the Signorini problem.
 Numerical Methods for Partial Differential Equations, 33(1):276-289, 2017.

• First Order System Least-Squares (FOSLS) Functional

$$\begin{split} & C_1, \ C_2, \ C_3 > 0 \\ & \mathcal{J}(\textbf{u}, \boldsymbol{\sigma}) = C_1 \left\| \text{div} \boldsymbol{\sigma} + \textbf{f} \right\|_{L^2(\Omega)^d}^2 + C_2 \left\| \mathcal{A} \boldsymbol{\sigma} - \boldsymbol{\varepsilon}(\textbf{u}) \right\|_{L^2(\Omega)^d}^2 + C_3 \langle \textbf{u} \cdot \textbf{n} - \boldsymbol{g}, (\boldsymbol{\sigma} \textbf{n}) \cdot \textbf{n} \rangle_{\Gamma_c} \end{split}$$

Convex Set K

$$\mathcal{K} = \{(\mathbf{u}, \boldsymbol{\sigma}) \in \left[H^1_{\Gamma_D}(\Omega)\right]^d \times \left[H_{\text{div}, \Gamma_N}(\Omega)\right]^d: \ \mathbf{u} \cdot \mathbf{n} - \mathbf{g} \leq \mathbf{0}, \ (\boldsymbol{\sigma} \mathbf{n}) \cdot \mathbf{n} \leq \mathbf{0}, \ \mathbf{t}_i^T(\boldsymbol{\sigma} \mathbf{n}) = \mathbf{0} \quad \Gamma_C\}$$

• Find $(\mathbf{u}, \boldsymbol{\sigma}) \in K$, such that:

$$\iff$$

• Rolf Krause, Benjamin Müller, and Gerhard Starke. An adaptive least-squares mixed finite element method for the Signorini problem. Numerical Methods for Partial Differential Equations, 33(1):276-289, 2017. $\bullet \ \, \textbf{Discretized domain} \ \, \Omega_L \\$

Discretized domain Ω_L

Discretization

• FE space $X_L = \left[P_{\Gamma_D}^1(\Omega_L)\right]^d \times \left[\mathcal{RT}_{0,\Gamma_N}(\Omega_L)\right]^d$ with $\mathbf{x}_L = (\mathbf{u}_L, \boldsymbol{\sigma}_L) \in X_L$

- $\bullet \ \ \textbf{Discretized domain} \ \ \Omega_L$
- FE space $X_L = \left[P^1_{\Gamma_D}(\Omega_L)\right]^d \times \left[\mathcal{RT}_{0,\Gamma_N}(\Omega_L)\right]^d$ with $\mathbf{x}_L = (\mathbf{u}_L, \boldsymbol{\sigma}_L) \in X_L$
- \mathbf{f}_L , $\mathbf{u}_{D,L}$, $\mathbf{t}_{N,L}$, \mathbf{g}_L FE representations of \mathbf{f} , \mathbf{u}_D , \mathbf{t}_N , \mathbf{g}

- $\bullet \ \ \textbf{Discretized domain} \ \ \Omega_L$
- FE space $X_L = \left[P^1_{\Gamma_D}(\Omega_L)\right]^d \times \left[\mathcal{RT}_{0,\Gamma_N}(\Omega_L)\right]^d$ with $\mathbf{x}_L = (\mathbf{u}_L, \boldsymbol{\sigma}_L) \in X_L$
- \bullet $f_L,$ $u_{D,L},$ $t_{N,L},$ g_L FE representations of f, $u_D,$ $t_N,$ g
- Discrete FOSLS Functional

$$\mathcal{J}(\mathbf{x}_L) = \frac{1}{2} \mathbf{x}_L^T \mathbf{A}_L \mathbf{x}_L - \mathbf{x}_L^T \mathbf{f}_L$$

- Discretized domain Ω_L
- FE space $X_L = \left[P_{\Gamma_D}^1(\Omega_L)\right]^d \times \left[\mathcal{RT}_{0,\Gamma_N}(\Omega_L)\right]^d$ with $\mathbf{x}_L = (\mathbf{u}_L, \boldsymbol{\sigma}_L) \in X_L$
- \mathbf{f}_L , $\mathbf{u}_{D,L}$, $\mathbf{t}_{N,L}$, \mathbf{g}_L FE representations of \mathbf{f} , \mathbf{u}_D , \mathbf{t}_N , \mathbf{g}
- Discrete FOSLS Functional

$$\mathcal{J}(\mathbf{x}_L) = \frac{1}{2} \mathbf{x}_L^T \mathbf{A}_L \mathbf{x}_L - \mathbf{x}_L^T \mathbf{f}_L$$

• Convex Set K_L (in general $K_L \nsubseteq K$)

$$\mathbf{x}_L \in \mathcal{K}_L \qquad \iff \qquad \mathbf{B}_L \mathbf{x}_L \leq \mathbf{g}_L$$

- ullet Discretized domain Ω_L
- FE space $X_L = \left[P^1_{\Gamma_D}(\Omega_L)\right]^d \times \left[\mathcal{RT}_{0,\Gamma_N}(\Omega_L)\right]^d$ with $\mathbf{x}_L = (\mathbf{u}_L, \boldsymbol{\sigma}_L) \in X_L$
- \mathbf{f}_L , $\mathbf{u}_{D,L}$, $\mathbf{t}_{N,L}$, \mathbf{g}_L FE representations of \mathbf{f} , \mathbf{u}_D , \mathbf{t}_N , \mathbf{g}
- Discrete FOSLS Functional

$$\mathcal{J}(\mathbf{x}_L) = \frac{1}{2} \mathbf{x}_L^T \mathbf{A}_L \mathbf{x}_L - \mathbf{x}_L^T \mathbf{f}_L$$

• Convex Set K_L (in general $K_L \nsubseteq K$)

$$\mathbf{x}_L \in \mathcal{K}_L \qquad \iff \qquad \mathbf{B}_L \mathbf{x}_L \leq \mathbf{g}_L$$

Minimization problem:
 Find x_L ∈ K_L

$$\begin{aligned} \text{argmin} \mathcal{J}(\mathbf{x}_L) &= \frac{1}{2} \mathbf{x}_L^T \mathbf{A}_L \mathbf{x}_L - \mathbf{x}_L^T \mathbf{f}_L \\ \mathbf{B}_L \mathbf{x}_L &\leq \mathbf{g}_L \end{aligned}$$

Pros

- ullet Direct access to stress σ (friction, plasticity...)
- ullet Dealing with incompressible materials $(\lambda o \infty)$
- FOSLS functional as an a posteriori error estimator

Disadvantages and Advantages of the FOSLS

- Flexible choice of finite element spaces (low order: $\mathbf{u}_L \in P^1$, $\sigma_L \in \mathcal{RT}_0$)
- Symmetric positive definite system

 Attia, Frank S., Zhiqiang Cai, and Gerhard Starke. "First-order system least squares for the Signorini contact problem in linear elasticity". SIAM Journal on Numerical Analysis 47.4 (2009): 3027-3043.

Disadvantages and Advantages of the FOSLS

Pros

- Direct access to stress σ (friction, plasticity...)
- Dealing with incompressible materials $(\lambda \to \infty)$
- FOSLS functional as an a posteriori error estimator
- Flexible choice of finite element spaces (low order: $\mathbf{u}_L \in P^1$, $\sigma_L \in \mathcal{RT}_0$)
- Symmetric positive definite system

Cons

- The functional is fictitious, not physical
- The asymmetry of the stress tensor
- Find proper weights C₁, C₂, C₃
- Large condition number: need for a preconditioner

. Attia, Frank S., Zhiqiang Cai, and Gerhard Starke. "First-order system least squares for the Signorini contact problem in linear elasticity". SIAM Journal on Numerical Analysis 47.4 (2009): 3027-3043.

Pros

- ullet Direct access to stress σ (friction, plasticity...)
- ullet Dealing with incompressible materials $(\lambda o \infty)$
- FOSLS functional as an a posteriori error estimator
- Flexible choice of finite element spaces (low order: $\mathbf{u}_L \in P^1$, $\sigma_L \in \mathcal{RT}_0$)
- Symmetric positive definite system

Cons

- The functional is fictitious, not physical
- The asymmetry of the stress tensor
- Find proper weights C_1 , C_2 , C_3
- Large condition number: need for a preconditioner

Functional to be minimized Local constraints

⇒ Monotone Multilevel

Need for a preconditioner

 Attia, Frank S., Zhiqiang Cai, and Gerhard Starke. "First-order system least squares for the Signorini contact problem in linear elasticity". SIAM Journal on Numerical Analysis 47.4 (2009): 3027-3043.

- Successive energy minimization by means of local corrections
- No correction can increase energy
- We introduce an hierarchy of nested meshes
- \bullet Fine space corrections on fine grid (non-linear Gauß-Seidel) \Rightarrow global convergence
- Coarse space corrections ⇒ accelerating convergence

- Ralf Kornhuber. Monotone multigrid methods for elliptic variational inequalities I. Numerische Mathematik, 69(2):167-184, 1994.
- Ralf Kornhuber and Rolf Krause. Adaptive multigrid methods for Signorini's problem in linear elasticity. Computing and Visualization in Science, 4(1):9-20, 2001.

Non-Linear Smoothing Level L

Global convergence

$$R_i^{i-1}$$
 restriction operator $(i = L, ..., 2)$

Monotone Multilevel by energy minimization

Monotone multilevel for FOSLS linear elastic contact

$$R_i^{i-1}$$
 restriction operator $(i = L, ..., 2)$

 R_i^{i-1} restriction operator, I_{i-1}^i interpolation operator (i = L, ..., 2)

Smoother

- Standard non-linear Gauß-Seidel smooths H^1 , but not H_{div}
- ullet The kernel $\mathsf{Ker}(\mathsf{div}) = \{oldsymbol{ au} \in H_{\mathsf{div}}, \mathsf{div}\, oldsymbol{ au} = 0\}$ is too large
- Patch-smoother for divergence-free components of the error

Interpolations and restrictions

- ullet Standard P^1 and RT_0 interpolations and restrictions for primal and dual variables
- Non-linear projections for constraint representation on coarser levels

italiana

Smoother

- Standard non-linear Gauß-Seidel smooths H¹, but not H_{div}
- The kernel $Ker(div) = \{ \tau \in H_{div}, div \tau = 0 \}$ is too large
- Patch-smoother for divergence-free components of the error

Interpolations and restrictions

Multilevel ingredients

- \bullet Standard P^1 and RT_0 interpolations and restrictions for primal and dual variables
- Non-linear projections for constraint representation on coarser levels

- Mesh level j=1,...,L, vertex $\nu=1,...,N_j$
- Patch_{j, ν} = dofs of node ν and surrounding edges/faces (2D/3D)
- $K_{j,\nu}$ = local closed convex set spanned by basis functions in Patch $_{j,\nu}$
- ullet Minimization of ${\mathcal J}$ on ${\mathcal K}_{j,
 u}$
- \bullet Error smoothed in H^1 and H_{div} simultaneously

- Ralf Hiptmair. Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal, 6(1):133-152, 1997.
- Douglas N Arnold, Richard S Falk, and Ragnar Winther. Multigrid in H(div) and H(curl). Numerische Mathe- matik, 85(2):197-217, 2000.
- Gerhard Starke. Gauss-Newton multilevel methods for least-squares finite element computations of variably saturated subsurface flow.
 Computing, 64(4):323-338, 2000.

Smoother

- ullet Standard non-linear Gauß-Seidel smooths H^1 , but not $H_{ ext{div}}$
- ullet The kernel $\mathsf{Ker}(\mathsf{div}) = \{oldsymbol{ au} \in H_{\mathsf{div}}, \mathsf{div}\, oldsymbol{ au} = 0\}$ is too large
- Patch-smoother for divergence-free components of the error

Interpolations and restrictions

- $\, \bullet \,$ Standard P^1 and RT_0 interpolations and restrictions for primal and dual variables
- Non-linear projections for constraint representation on coarser levels

Non-Linear Projections for Coarse Constraints

Università della Svizzera italiana Institute of Computational Science ICS

Monotone multilevel for FOSLS linear elastic

- Exact monotone multilevel Comparing coarse corrections c_j with fine constraint \Rightarrow suboptimal complexity
- Approximate monotone multilevel Comparing of coarse corrections \mathbf{c}_j with coarse constraint \Rightarrow optimal complexity

۰

- Exact monotone multilevel Comparing coarse corrections c_j with fine constraint \Rightarrow suboptimal complexity
- Approximate monotone multilevel Comparing of coarse corrections \mathbf{c}_j with coarse constraint \Rightarrow optimal complexity

- Exact monotone multilevel Comparing coarse corrections \mathbf{c}_j with fine constraint \Rightarrow suboptimal complexity
- Approximate monotone multilevel Comparing of coarse corrections \mathbf{c}_j with coarse constraint \Rightarrow optimal complexity

- Exact monotone multilevel Comparing coarse corrections \mathbf{c}_j with fine constraint \Rightarrow suboptimal complexity
- Approximate monotone multilevel
 Comparing of coarse corrections c_j with coarse constraint ⇒ optimal complexity

- Exact monotone multilevel Comparing coarse corrections \mathbf{c}_j with fine constraint \Rightarrow suboptimal complexity
- Approximate monotone multilevel
 Comparing of coarse corrections c_j with coarse constraint ⇒ optimal complexity

della

- Exact monotone multilevel Comparing coarse corrections c_i with fine constraint \Rightarrow suboptimal complexity
- Approximate monotone multilevel Comparing of coarse corrections c_i with coarse constraint \Rightarrow optimal complexity

Different consistent coarse constraints

Undeformed configuration

Deformed configuration

- Portion of Γ_C in contact **not known** a priori
- $\mu=1,~\lambda=1,\infty$ (compressible and incompressible)

Figure: Mesh with $h_{max}/h_{min} = 7.0567$

- First phase: non-linear, capturing high frequencies
- Second phase: linear
 - green, blue: known active set ⇒ faster
 - red: not already known active set ⇒ slower
- ullet green, blue similar behaviour: pick green \Rightarrow easier to implement
- Incompressibility easily solvable

- Portion of Γ_C in contact **known** a priori
- $\mu=1,\,\lambda=1,\infty$ (compressible and incompressible)

della

Figure: Square mesh. Compressible material.

Figure: Square mesh. Incompressible material.

• Purely linear problem: h- and L- independency

- Monotone multilevel for FOSLS linear elastic contact
- Limit case: h- and L- independency
- Solving both compressible and incompressible cases

Thank you for your attention!

Define:

$$ullet$$
 $\mathbf{x}_J^k = (\mathbf{u}_J^k, oldsymbol{\sigma}_J^k) \in K_J$ k-th iterate

•
$$x_{J,0} = x_J^k$$

$$\bullet \ \, \mathbf{x}_{j,0} = \mathbf{x}_{j+1,N_{j+1}} \text{, for } j = J-1,...,1$$

Compute a sequence of intermediate iterates $\mathbf{x}_{j,\nu} = \mathbf{x}_{j,\nu-1} + \mathbf{c}_{j,\nu}$:

$$\begin{split} \mathcal{J} &\leq \mathcal{J}(\mathbf{x}_{j,\nu} + \mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{K}_{j,\nu}^* \qquad j = J,...,2, \quad \nu = 1,...,N_j \\ \mathcal{J}(\mathbf{x}_{2,N_2} + \mathbf{c}_1) &\leq \mathcal{J}(\mathbf{x}_{2,N_2} + \mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{K}_1^* \qquad j = 1 \end{split}$$

with the **exact** local closed convex sets $K_{j,\nu}^*$ and K_1^* :

$$\begin{split} & \mathcal{K}_{j,\nu}^*(\mathbf{x}_{j,\nu}) = \left\{\mathbf{y} \in \operatorname{span}\{\lambda_{j,\nu}\}: \quad \mathbf{y} + \mathbf{x}_{j,\nu} \in \mathcal{K}_J\right\} \\ & \mathcal{K}_1^*(\mathbf{x}_{2,N_2}) = \left\{\mathbf{y} \in \operatorname{span}\{\lambda_1\}: \quad \mathbf{y} + \mathbf{x}_{2,N_2} \in \mathcal{K}_J\right\} \end{split}$$

Ralf Kornhuber. Monotone multigrid methods for elliptic variational inequalities I. Numerische Mathematik, 69(2):167-184, 1994.

Ralf Kornhuber and Rolf Krause. Adaptive multigrid methods for Signorini's problem in linear elasticity. Computing and Visualization in Science, 4(1):9-20, 2001.

Define:

$$\mathbf{c}_{j,\nu} = (\tilde{\mathbf{u}}_{j,\nu}, \tilde{\boldsymbol{\sigma}}_{j,\nu})$$
 correction at level j , patch ν

•
$$\mathbf{c}_{J,0} = \mathbf{x}_J^k$$
, $\mathbf{c}_{j,0} = \mathbf{0}$ for $j = J - 1, ..., 1$

$$\mathbf{w}_{j,\nu} = \sum_{\mu=0}^{\nu} \mathbf{c}_{j,\mu}$$

Compute a sequence of intermediate corrections $\mathbf{c}_{j,\nu} \in \mathcal{K}_{j,\nu}(\mathbf{w}_{j,\nu-1})$ and $\mathbf{c}_1 \in \mathcal{K}_1$:

$$\begin{split} \mathcal{J}(\textbf{w}_{j,\nu-1} + \textbf{c}_{j,\nu}) &\leq \mathcal{J}(\textbf{w}_{j,\nu-1} + \textbf{y}) \quad \forall \ \textbf{y} \in \textit{K}_{j,\nu} \qquad \quad j = \textit{J},...,2, \ \nu = 1,...,\textit{N}_{j} \\ \mathcal{J}(\textbf{c}_{1}) &\leq \mathcal{J}(\textbf{y}) \qquad \quad \forall \ \textbf{y} \in \textit{K}_{1} \qquad \quad j = 1 \end{split}$$

with the coarse convex sets K_j and the approximate local closed convex sets $K_{j,\nu}$:

$$K_{j,\nu}(\mathbf{w}_{j,\nu-1}) = \left\{ \mathbf{y} \in \operatorname{span}\{\lambda_{j,\nu}\} : \mathbf{y} + \mathbf{w}_{j,\nu-1} \in K_j \right\}$$

$$K_1 \subset K_2 \subset ... \subset K_{J-1} \subset K_J$$

Coarse Convex Sets:

$$\begin{split} \mathcal{K}_j &= \left\{ \mathbf{x}_j = (\mathbf{u}_j, \sigma_j) \in X_j : \ \mathbf{u}_j|_{\Gamma_D} = \mathbf{u}_D, \ \sigma_j|_{\Gamma_N} = \mathbf{t}_N, \\ & \mathbf{u}_j \cdot \mathbf{n}_j|_{\Gamma_C} \leq g_{j,u_n}, \ \mathbf{n}^T(\sigma_j \mathbf{n}) \leq g_{j,\sigma_n}, \ \mathbf{t}_j^T(\sigma \mathbf{n}_j) = 0 \right\} \qquad j = J \\ \mathcal{K}_j &= \left\{ \mathbf{x}_j = (\mathbf{u}_j, \sigma_j) \in X_j : \ \mathbf{u}_j|_{\Gamma_D} = \mathbf{0}, \ \sigma_j|_{\Gamma_N} = \mathbf{0}, \\ & \mathbf{u}_J \cdot \mathbf{n}_j|_{\Gamma_C} \leq g_{j,u_n}, \ \mathbf{n}^T(\sigma_j \mathbf{n}) \leq g_{j,\sigma_n}, \ \mathbf{t}_j^T(\sigma \mathbf{n}_j) = 0 \right\} \qquad j = J-1, ..., 1 \end{split}$$

Coarse Constraints:

• $\tilde{\mathbf{u}}_{i,\nu}$ and $\tilde{\boldsymbol{\sigma}}_{i,\nu}$ are the components of the correction $\mathbf{c}_{i,\nu}$.

$$\begin{split} \mathbf{g}_{j,u_n} &= \begin{cases} \mathbf{g} & j = J \\ \mathbf{p}_{j+1,u_n}^{j} \left(\mathbf{g}_{j+1,u_n} - \sum_{\nu=1}^{N_{j+1}} \left[\tilde{\mathbf{u}}_{j+1,\nu} | \mathbf{f}_{C} \right]_{n} \right) & j = J-1, \dots, 1 \end{cases} \\ \mathbf{g}_{j,\sigma_n} &= \begin{cases} \mathbf{0} & j = J \\ \mathbf{p}_{j+1,\sigma_n}^{j} \left(\mathbf{g}_{j+1,\sigma_n} - \sum_{\nu=1}^{N_{j+1}} \left[\tilde{\boldsymbol{\sigma}}_{j+1,\nu} | \mathbf{f}_{C} \right]_{n} \right) & j = J-1, \dots, 1 \end{cases} \end{split}$$

Non-Linear Projection Operators:

$$I^j_{j+1,u_n}$$
, I^j_{j+1,σ_n} chosen so that $K_1\subset K_2\subset ...\subset K_{J-1}\subset K_J$

$$\begin{split} v_H(\nu_{H,1}) &\leq v_h(\nu_{H,1}) \\ v_H(\nu_{H,2}) &\leq v_h(\nu_{H,2}) \\ &\frac{1}{2}(v_H(\nu_{H,1}) + v_H(\nu_{H,2})) \leq v_h(\nu_h) \end{split}$$
 $\forall \varepsilon_H \in \mathcal{E}_H \cap \Gamma_{C,H}$

It is easy to see that, on e_H , the following values satisfy the three conditions above:

$$\begin{array}{ll} \text{a)} & \begin{cases} \tilde{v}_{H}(\nu_{H,1}) = \min(v_{h}(\nu_{H,1}), \max(v_{h}(\nu_{h}), 2v_{h}(\nu_{h}) - v_{h}(\nu_{H,2}))) \\ \tilde{v}_{H}(\nu_{H,2}) = \min(v_{h}(\nu_{H,2}), \max(v_{h}(\nu_{h}), 2v_{h}(\nu_{h}) - v_{h}(\nu_{H,1}))) \end{cases} \\ \text{b)} & \begin{cases} \tilde{v}_{H}(\nu_{H,1}) = \min(v_{h}(\nu_{H,1}), v_{h}(\nu_{h})) \\ \tilde{v}_{H}(\nu_{H,2}) = \min(v_{h}(\nu_{H,2}), v_{h}(\nu_{h})) \end{cases} \end{cases} \\ \forall \varepsilon_{H} \in \mathcal{E}_{H} \cap \Gamma_{C}(v_{H,2}) + \sum_{k=1}^{N} \sum_{k=1}$$

$$c) \quad \begin{cases} \tilde{v}_H(\nu_{H,1}) = \min(v_h(\nu_{H,1}), v_h(\nu_h), v_h(\nu_{H,2})) \\ \tilde{v}_H(\nu_{H,2}) = \min(v_h(\nu_{H,1}), v_h(\nu_h), v_h(\nu_{H,2})) \end{cases} \qquad \forall \varepsilon_H \in \mathcal{E}_H \cap \Gamma_C$$

$$s_H(\phi_H) \leq s_h(\phi_h) \quad \forall \phi_h \in P_{\phi_H}^{\phi_h}$$

Thus:

$$\mathbf{s}_{H} = \mathbf{I}_{h,\sigma_{n}}^{H} \mathbf{s}_{h} = \sum_{\phi_{H_{i}} \in T_{H}} \left[\lambda_{\Sigma_{H},H_{i}} \right]_{n} \ \mathbf{s}_{H}(\phi_{H_{i}}) \qquad \text{with} \qquad \mathbf{s}_{H}(\phi_{H_{i}}) = \min_{\phi_{h} \in P_{\phi_{H}}^{\phi_{h}}} \mathbf{s}_{h}(\phi_{h})$$

$$\begin{split} \left[\tilde{\boldsymbol{\lambda}}_{U_j,\nu}\right]_i &= \begin{cases} \left[\boldsymbol{\lambda}_{U_j,\nu}\right]_i & \nu \in \mathcal{N}_j \setminus \mathcal{N}_j^{\bullet}, \ i = n, t \\ 0 & \nu \in \mathcal{N}_j^{\bullet}, \quad i = n \\ \left[\boldsymbol{\lambda}_{U_j,\nu}\right]_i & \nu \in \mathcal{N}_j^{\bullet}, \quad i = t \end{cases} \\ \left[\tilde{\boldsymbol{\lambda}}_{\Sigma_j,\phi}\right]_i &= \begin{cases} \left[\boldsymbol{\lambda}_{\Sigma_j,\phi}\right]_i & \phi \in \mathcal{F}_j \setminus \mathcal{F}_j^{\bullet}, \ i = n, t \\ 0 & \phi \in \mathcal{F}_j^{\bullet}, \quad i = n \\ \left[\boldsymbol{\lambda}_{\Sigma_j,\phi}\right]_i & \phi \in \mathcal{F}_j^{\bullet}, \quad i = t \end{cases}$$