计算机组成原理 试题 参考答案

一、填空题(每空2分,共40分)

1 24	、 英王悠(母王 2 刀) 六 70 刀)							
题号	空【1】答案	空【2】答案						
1	暂停	/						
2	阶码 E	尾数 M						
3	程序中断	通道						
4	多级	/						
5	空间	/						
6	操作控制	数据加工						
7	I/O	/						
8	传输速率	/						
9	存取时间	存储器带宽						
10	跳跃	/						
11	HOST 桥	PCI/PCI 桥						
12	资源相关	/						
13	互锁	/						
14	微程序级	操作系统级						

二、选择题(每题2分,共20分)

题号	答案								
1	D	2	В	3	В	4	D	5	A
6	С	7	A	8	A	9	D	10	В

三、综合题(共40分)

- 1、解: (10分)
- (1) 微指令格式: (3分)

4条微命令	5条微命令	8条微命令	15 条微命令	20 条微命令	条件测试	下址字段
3 位	3位	4位	4 位	5 位	2 位	8位

- (2) 控存容量: 2⁸×29=256×29 (3分)
- (3) 微程序控制器逻辑框图(4分)

2、解: (8分)

 $x=2^{-011}\times0.10001$, $y=2^{-010}\times(-0.011110)$

 $[x]_{\#}$ =11101, 00.10001 (1分) $[y]_{\#}$ =11110, 11.100010 (1分)

 $[Ex-Ey]_{*}=[Ex]_{*}+[-Ey]_{*}=11101+00010=11111$ (1分)

 $[x]_{\#} = 11110, 00.010010(1) (1 分)$

x+y 00.010010(1) + 11.100010 11.110100(1) (2 $\frac{47}{2}$)

规格化和舍入处理: 1.010010, 阶码 11100 (1分)

 $x+y=1.010010\times2^{-4}=-0.101110\times2^{-4}$ (1 分)

3、解: (6分)

- $(1) 280 \times 12288 \times 10 = 32.81$ MB (2 分)
- (2) 最低位密度 D2 按最大磁道半径 R2 计算:
- R2 = R1 + 280/4 = 230/2 + 70 = 185 mm
- D2=12288 字节/2 π R2=10.58 字节/mm (2 分)
- $(3) 9600/60 \times 12288 = 1920 \text{KB/s}$ (2分)

4、解: (6分)

48 条指令至少需要操作码字段 6 位,所以剩下的长度为 26 位,主存的容量为 64M 字,则设寻址模式(X) 2 位。(1分)格式如下:

X=00 直接寻址 有效地址 E=D (1分)

X=01 立即寻址 D 字段为立即数 (1 分)

X=10 变址寻址 有效地址 E= (RX)+D(可寻址 64M 个存储单元) (1分)

5、解: (10分)

- (1) 主存最大空间为 2^{19} =512KB, 每个模块板的存储容量为 64KB, 所以主存共需 512KB/64KB=8 块板。 (2 分)
- (2) 使用存储芯片 16K×16 位通过字位同时扩展方法形成 64KB×32 位的模块板, 共需要 (64KB/16KB) × (32 位/16 位) =8 个 (SRAM 芯片)。 (2 分)
- (3) 根据前面所得,共有 8 个模块板,每个模块板上有 8 个芯片,故主存共需 8×8=64 个(SRAM 芯片)。 (2 分)
- (4) CPU 选择各模块板的方法是:各模块板均用地址码 A0 ~ A15 译码,而各模块的选择用地址码最高三位 A18、A17、A16 通过 3:8 译码器输出进行选择。(2分)模块板内芯片的选择方法是:由位扩展形成的各芯片组(2个芯片/组)均用地址码 A0~A13 译码,而各芯片组的选择用地址码最高二位 A15、A14 通过 2:4 译码器输出进行选择。(2分)