

Por uma escola livre do Sida

República de Moçambique Ministério da Educação

Conselho Nacional de Exames, Certificação e Equivalências

ESG / 2014 10^a Classe

Exame de Química

2ª Época 90 Minutos

Este exame contém dez (10) perguntas. Responda-as na sua folha de respostas. Na margem direita está indicada, entre parênteses, a cotação de cada pergunta em valores.

			<u>Cotação</u>		
1.	Ao transferir a água de uma panela para outra a água manteve o volume mas tomou a forma do novo recipiente.				
	sta água encontra-se no estado		(1,0)		
	A gasoso.				
	B líquido.				
	C sólido.				
	Transcreva a alternativa correcta para a sua folha de exame.				
2.	Dada a equação de uma reacção redox:				
	$C + Fe_2O_3 \rightarrow Fe + CO_2$				
	a) Acerte-a.		(1,2)		
	b) Determine o oxidante e redutor na equação da reacção.		(1,0)		
3.	Calcule a massa de cloro necessária para obter 101g de CH ₃ Cl, conforme a equação:		(2,7)		
	$CH_4 + Cl_2 \rightarrow CH_3 - Cl + HCl$				
	(Massas atómicas : C= 12 ; H= 1; Cl= 35,5u.m.a)				
4.	O carbono ocorre na natureza no estado livre ou combinado.				
	No estado livre pode ser encontrado como				
	A calcário e diamante. C gra	ifite e diamante.			
	B calcário e grafite. D má	rmore e diamante.	(1,5)		
	Transcreva a alternativa correcta para a sua folha	de exame.			
5.	Escreva a equação da reacção que leva à formação do etano a partir da hidrogenação do eteno.		(1,5)		

2014/10^a Classe / Exame de Química/ B^a Época

- 6. Os compostos representados pelas fórmulas CH₃-CH₂-CH₂OH e CH₃-CO-CH₃ são isómeros de...
 - A cadeia. B função. C geométricos. D posição. (1,2)

Transcreva a alternativa correcta para a sua folha de exame.

- 7. Escreva a equação de obtenção de ácido propanóico a partir da oxidação do propanal. (1,5)
- 8. Complete:

a)
$$CH_2 = CH - CH_3 + HCl \xrightarrow{cat}$$
 (1,5)

b)
$$CH_3-CH_3 + Br_2 \xrightarrow{cat}$$
 (1,0)

- 9. Os álcoois reagem com ácidos.
 - a) Escreva a equação da reacção de esterificação entre ácido propanóico e metanol. (2,0)
 - b) Nomeie o produto orgânico formado. (1,5)
- 10. Dê nomes segundo a nomenclatura de IUPAC aos compostos abaixo:

2014/ 10ª Classe / Guia de Correcção do Exame de Química/ 2ª Época

Perg	g. Resposta			Cotação	
1.	Líquido.			Parc.	Tot. <u>1,0</u>
2.	a) $3C + 2Fe_2O_3 \rightarrow 4Fe + 3CO_2$			4x0,3	
	b) Oxidante- Fe ⁰ ; Redutor- C ⁺⁴			2x0,5	<u>2,2</u>
3.	Dados	Resoluc	ção		
	$CH_4 + Cl_2 \rightarrow CH_3 - Cl + HCl$	71g Cl ₂ 50,5	g CH ₃ Cl		
	$Mr (Cl_2) = 71g (0.5)$	X 101g	g CH ₃ Cl (0,9)		
	Mr (CH ₃ Cl)=50,5g (0,5)	X= 142g de Cl ₂ (0,5)			
	R: São necessárias 142g de cloro para se obter 101g de CH ₃ Cl. (0,3)				<u>2,7</u>
4.	C grafite e diamante.				<u>1,5</u>
5.	5. $CH_2 = CH_2 + H_2 \rightarrow CH_3 - CH_3$				<u>1,5</u>
6.	B função.				<u>1,2</u>
7.	7. $CH_3CH_2CHO \xrightarrow{[o]} CH_3CH_2COOH$			3x0,5	<u>1,5</u>
8.	8. a) $CH_2 = CH-CH_3 + HCl \xrightarrow{cat} CH_3-CH-CH_3$ Cl b) $CH_3 - CH_3 + Br_2 \xrightarrow{cat} CH_3-CH_2 + HBr$ Br			1,5	
				2x0,5	<u>2,5</u>
9.	a) $CH_3CH_2COOH + CH_3OH \xrightarrow{H^+}$	· CH3CH2COOCH2 + H4C)	5x0,4	
	b) Propanoato de metila.		-	1,5	<u>3,5</u>
10.	a) 2,4 dimetil-3cloro- hexano b) Metil benzeno	c) Butanol-2	3x0,8	<u>2,4</u>