

Serial No. 09/830,992

REMARKS

The claims pending are 1-26. Claims 2, 3 and 7 have been amended to correct additional typographical errors in applicants supplemental amendment of September 5, 2002. The errors were inadvertent, and any inconvenience caused thereby, are sincerely regretted.

Accordingly, the next office action -- preferably a notice of allowance -- is awaited.

To the extent necessary, applicant(s) petition for an Extension of Time under 37 CFR 1.136. Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11-0345. Please credit any excess fees to such deposit account.

> Respectfully submitted, **KEIL & WEINKAUF**

n1-57

Norman G. Torchin Reg. No. 34,068

1350 Connecticut Ave., N.W. Washington, D.C. 20036 (202)659-0100 NGT/mks

Serial No: 09/830,992

RECEIVED SEP 2 3 2002 TECH CENTER 1600/2000

VERSION WITH MARKINGS TO SHOW CHANGES MADE IN THE CLAIMS

Please amend claims 2, 3, and 7 as follows:

- 2. (thrice amended) A compound of the formula I or II as claimed in claim 1 in which
 - R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where
 - R¹¹ is hydrogen or C₁-C₄-alkyl, and
 - R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, CF_{3} , CN, $NR^{22}R^{23}$, NH-CO- R^{21} , OR^{21} , where
 - R^{21} and R^{22} are, independently of one another, hydrogen or $C_1\text{-}C_4\text{-}alkyl,$ and
 - R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and
 - R^3 is -O-(CH₂)_o-(CHR³¹)_m-(CH₂)_n-G, where
 - R^{31} is hydrogen, C_1 - C_4 -alkyl, OH and O- C_1 - C_4 -alkyl,
 - m,o are, independently of one another, 0, 1 or 2, and
 - n is 1, 2, 3 or 4 and
 - R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, NR^{41} [,] R^{42} , NH-CO- R^{43} , and OR^{41} where
 - R^{41} and R^{42} are, independently of one another, hydrogen or $C_1\text{-}C_4\text{-alkyl},$ and
 - R^{43} is C_1 - C_4 -alkyl or phenyl, and
 - G is NR⁵¹R⁵² or one of the following radicals

as filed on September 18, 2002
$$\mathbb{R}^{99}$$

RECEIVED

SEP 2.3 2002

TECH CENTER 1600/2900

 R^{51} is hydrogen and branched and unbranched C_1 - C_6 -alkyl, and is hydrogen, branched and unbranched C_1 - C_6 -alkyl phenyl,

o
$$\mathbb{R}^{53}$$
, $-SO_2R^{53}$, in which

is branched or unbranched O-C₁-C₆-alkyl, phenyl, branched or unbranched C₁-C₄-alkyl-phenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁵² and R⁵³ are, independently of one another, optionally substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl, NHSO₂phenyl, S-C₁-C₄-alkyl,

$$0 \qquad 0 \qquad 0$$

$$C_1-C_4-alkyl, \longrightarrow 0 \qquad C_0-C_4-alkyl-phenyl,$$

CHO, CH_2 -O- C_1 - C_4 -alkyl, $-CH_2$ O- C_1 - C_4 -alkyl-phenyl, $-CH_2$ OH, -SO- C_1 - C_4 -alkyl, -SO- C_1 - C_4 -alkyl-phenyl, SO_2 NH $_2$, $-SO_2$ NH- C_1 - C_4 -alkyl and two radicals

Serial No. 09/830,992

form a bridge -O-(CH₂)_{1,2}-O-,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 3. (four times amended) A compound of the formula I or II as claimed in claim 1 in which
 - R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where
 - R¹¹ is hydrogen or C₁-C₄-alkyl, and
 - R² is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²²R²³, NH-CO-R²¹, OR²¹, where
 - R^{21} and R^{22} independently of one another are hydrogen or $C_1\text{-}C_4\text{-alkyl}$ and
 - R²³ is hydrogen, C₁-C₄ alkyl or phenyl
 - R³ is

$$-N$$
 N
 $-N$
 $N - R^5$
 R^{31}

and

is hydrogen, CHO and $[-(CH_2)_o-(CHR^{32})_m-(CH_2)_n-R^5]$ - $(CH_2)_o-(CHR^{32})_m$ - $(CH_2)_n-G$, where R^{32} is hydrogen, C_1-C_4 -alkyl, OH and $O-C_1-C_4$ -alkyl, m,o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and

LUBISCH et al. Serial No. 09/830,992

 R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, NR^{41} [,] R^{42} , NH-CO- R^{43} , OR^{41} , where

R⁴¹and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

 R^{43} is C_1 - C_4 -alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the radicals below

where

R⁵¹ is hydrogen and branched and unbranched and C₁-C₆-alkyl and

 R^{52} is hydrogen, $COCH_3$, $CO-O-C_1-C_4$ -alkyl, $COCF_3$, branched and unbranched C_1-C_6 -alkyl, it being possible for one hydrogen of the C_1-C_6 -alkyl radical to be substituted by one of the following radicals: OH, $O-C_1-C_4$ -alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1-C_4 -alkyl, nitro, amino, C_1-C_4 -alkylamino, C_1-C_4 -dialkylamino, OH, $O-C_1-C_4$ -alkyl, CN, $SO_2-C_1-C_4$ -alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

LUBISCH et al.,

Serial No. 09/830,992

7. (twice amended) A compound as claimed in claim 1 where

(i) for R³ being

R³¹ is hydrogen or -(CH₂)_p-G, where

- p is 1 or 2 and
- (ii) for R³ being

 R^{31} is hydrogen or $-(CH_2)_p-R^5$, where

p is 1 or 2 and

and (iii) for R3 being

IR⁵² may be hydrogen, branched and unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, SO $_2$ - C_1 - C_4 -alkyl;] where R⁵² is hydrogen, branched and unbranched C_1 - C_6 -alkyl, where one hydrogen

LUBISCH et a Serial No. 09/830,992

of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1 - C_4 -alkyl,

nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, SO₂- C_1 - C_4 -alkyl.

1. A compound of the formula I or II

$$R^{a}$$
 NH_{2}
 NH_{2}
 $N=R^{1}$
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{7}

in which

- is hydrogen, or branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where R^{11} is hydrogen or C_1 - C_4 -alkyl, and
- is hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, NHCOR²¹, NR²²R²³, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, CN, a straight or branched C₁ C₆-alkyl, OR²¹ or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R²⁴, and R²¹ and R²² independently of one another are hydrogen or C₁-C₄-alkyl and R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and R²⁴ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂, and
- x may be 0, 1 or 2 and

LUBISCH et al., So

Serial No. 09/830,992

- R^3 is $-D-(F^1)_p-(E)_q-(F^2)_r$ -G, where p, q and r may not simultaneously be 0, or is $E-(D)_u-(F^2)_s-(G)_v$, it also being possible for the radical E to be substituted by one or two radicals A, and if v=0, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R^3 is B and
- is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched $C_1\text{-}C_6\text{-alkyl}, \text{ OH, nitro, } CF_3, \text{ CN, NR}^{41}\text{R}^{42}, \text{ NH-CO-R}^{43}, \text{ or O-C}_1\text{-}C_4\text{-alkyl},$ where R^{41} and R^{42} independently of one another are hydrogen or $C_1\text{-}C_4\text{-alkyl}$
- and R⁴³ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkylphenyl or phenyl, and
- D is S or O
- is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine and
- is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- p may be 0 or 1
- q may be 0 or 1, and
- r may be 0 or 1 and
- s may be 0 or 1
- u may be 0 or 1

Serial No. 09/830,992

v may be 0 or 1

G may be NR⁵¹R⁵² or

and

 R^{51} is hydrogen or branched and unbranched C_1 - C_6 -alkyl, or $(CH_2)_t$ -K and is hydrogen, branched and unbranched C_1 - C_6 -alkyl, phenyl,

$$R_{R^{53}}$$
, -SO₂R⁵³, -(C=N)-R⁵³, -(C=N)-NHR⁵³

in which

may be branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where in the case of R⁵² and R⁵³, independently of one another, one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, it also being possible for the carbocycles of the radicals R⁵² and R⁵³ independently of one another to carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl,

LUBISCH et al., Serial No. 09/830,992
OH, F, CI, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄- alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, CONH-C₁-C₄-alkylphenyl, NHSO₂-C₁-C₄-alkyl, NHSO₂phenyl, S-C₁-C₄-alkyl,

$$\begin{array}{c|c} O & O \\ \hline \\ -O & \\ \hline \end{array}$$

$$\begin{array}{c|c} C_{1}-C_{4}-alkyl, -O & \\ \hline \end{array}$$

$$\begin{array}{c|c} C_{0}-C_{4}-alkylphenyl, \\ \hline \end{array}$$

CHO, CH_2 -O- C_1 - C_4 -alkyl, $-CH_2$ O- C_1 - C_4 -alkylphenyl, $-CH_2$ OH, $-SO-C_1$ - C_4 -alkylphenyl, $-SO_2$ NH $_2$, $-SO_2$ NH $_3$ - C_4 -alkylphenyl or two radicals form a bridge $-O-(CH_2)_{1,2}$ -O-,

B may be

and

A may be hydrogen, chlorine, bromine, iodine, fluorine, CF_3 , nitro, OH, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkylphenyl, NH_2 , branched and unbranched C_1-C_6 -alkyl, CN, or $NH-CO-R^{33}$, where R^{33} is hydrogen, C_1-C_4 -alkyl or phenyl and is 0,1,2,3, or 4 and

LUBISCH et al., Serial No. 09/830,992

- is a phenyl optionally having at most two substituents on the ring, R^{k1} and/or R^{k2} are any of the radicals defined for R^{41} and R^{42} , respectively, or NH-C₁- C_4 -alkylphenyl, pyrrolidine, piperidine, 1,2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C_1 - C_6 -alkyl, or homopiperazine, which may also be substituted by an alkyl radical C_1 - C_6 -alkyl, and
- R⁵ may be hydrogen, C₁-C₆-alkyl, or NR⁷R⁹ and

and

- R^7 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylphenyl, or phenyl, it also being possible for the rings to be substituted by up to two radicals R^{71} , and
- R^{71} is OH, C_1 - C_6 -alkyl, O- C_1 - C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF_3 , nitro, or NH_2 , and
- R^8 is hydrogen, C_1 - C_6 -alkyl, phenyl, or C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R^{81} , and
- R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃,

LUBISCH et al., Serial No. 09/830,992 nitro, or NH_2 and

is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one or two hydrogens of the C₁-C₆-alkyl radical to be substituted in each case by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched and unbranched C₁-C₆-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C4-alkyl, CN, CF₃ or SO₂-C₁-C₄-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 2. A compound of the formula I or II as claimed in claim 1 in which
 - R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where
 - R¹¹ is hydrogen or C₁-C₄-alkyl, and
 - is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²²R²³, NH-CO-R²¹, OR²¹, where
 - R^{21} and R^{22} are, independently of one another, hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, and
 - R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and
 - R^3 is -O-(CH₂)₀-(CHR³¹)_m-(CH₂)₀-G, where
 - R³¹ is hydrogen, C₁-C₄-alkyl, OH and O-C₁-C₄-alkyl,
 - m,o are, independently of one another, 0, 1 or 2, and

RECEIVED

SEP 2 3 2002

TECH CENTER 1600/2900

n is 1, 2, 3 or 4 and

- R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$, NH-CO- R^{43} , OR^{41} where
- R⁴¹ and R⁴² are, independently of one another, hydrogen or C₁-C₄-alkyl, and
- R⁴³ is C₁-C₄-alkyl or phenyl, and
- G is NR⁵¹R⁵² or one of the following radicals

where

 R^{51} is hydrogen and branched and unbranched $C_1\text{-}C_6\text{-alkyl}$, and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl phenyl,

$$\begin{array}{c}
O \\
\parallel \\
R^{53}, -SO_2R^{53}, \text{ in which}
\end{array}$$

is branched or unbranched O- C_1 - C_6 -alkyl, phenyl, branched or unbranched C_1 - C_4 -alkyl-phenyl, where one hydrogen in the C_1 - C_6 -alkyl radical in R^{52} and R^{53} are, independently of one another, optionally substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl,

LUBISCH et al., Serial No. 09/830,992

where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, CI, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCI₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, CONH-C₁-C₄-alkyl-phenyl, NHSO₂-C₁-C₄-alkyl, NHSO₂-phenyl, S-C₁-C₄-alkyl,

$$\begin{array}{c|c} O & O \\ \hline \\ -O & C_1-C_4-alkyl, -O & C_0-C_4-alkyl-phenyl, \end{array}$$

CHO, CH₂-O-C₁-C₄-alkyl, -CH₂O-C₁-C₄-alkyl-phenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkyl-phenyl, SO₂NH₂, -SO₂NH-C₁-C₄-alkyl and two radicals form a bridge -O-(CH₂)_{1,2}-O-,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 3. A compound of the formula I or II as claimed in claim 1 in which
 - R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where
 - R^{11} is hydrogen or C_1 - C_4 -alkyl, and
 - R² is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²²R²³, NH-CO-R²¹, OR²¹, where

SEP 2 0 2002 12

RECEIVED

TECH CENTER 1600/2900

LUBISCH et al., RADEMISSERIAI No. 09/830,992

R²¹ and R²² independently of one another are hydrogen or

C₁-C₄-alkyl and

R²³ is hydrogen, C₁-C₄ alkyl or phenyl

R³ is

$$-N$$
 N
 $N = R^{52}$
 $N = R^{52}$

and

is hydrogen, CHO and - $(CH_2)_0$ - $(CHR^{32})_m$ - $(CH_2)_n$ -G, where R^{32} is hydrogen, C_1 - C_4 -alkyl, OH and O- C_1 - C_4 -alkyl, m,o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and

R⁴ is hydrogen, branched and unbranched C₁-C₆-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, OR⁴¹, where

 R^{41} and R^{42} independently of one another are hydrogen or C_1 - C_4 -alkyl and

R⁴³ is C₁-C₄-alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the radicals below

where

R⁵¹ is hydrogen and branched and unbranched and C₁-C₆-alkyl and

LUBISCH et al.,

Serial No. 09/830,992

is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one hydrogen of the C₁-C₆-alkyl radical to be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, SO₂-C₁-C₄-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 4. A compound as claimed in claim 1, where R² is in position 3 and R³ is in position 4 or R² is in position 4 and R³ is in position 3 relative to the benzimidazole ring.
- 5. A compound as claimed in claim 1, where R¹ and R⁴ are hydrogen.
- 6. A compound as claimed in claim 1, where

 R^2 is hydrogen, branched or unbranched C_1 - C_6 -alkyl, nitro, CN, $NH_{2,}$ O- C_1 - C_4 -alkyl.

- 7. A compound as claimed in claim 1 where
 - (i) for R³ being

 R^{31} is hydrogen or -(CH₂)_p-G, where

p is 1 or 2 and

 R^{31} is hydrogen or $-(CH_2)_p-R^5$, where

p is 1 or 2 and

and (iii) for R3 being

where R^{52} is hydrogen, branched and unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, $O-C_1$ - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1 - C_4 -alkyl,

nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, SO₂- C_1 - C_4 -alkyl.

- 8. A compound as claimed in claim 1, where R^3 is -O-(CH_2) $_p$ -G with p equal to 2, 3 or 4.
- 9. A compound as claimed in claim 1, where R⁵ is a 6-membered ring and R⁵² is an optionally substituted phenyl ring.

LUBISCH et al., Serial No. 09/830,992

- A drug comprising besides conventional vehicles and ancillary substances a compound as claimed in claim 1.
- 11. A method for treating a disorder in which pathologically elevated PARP activities occur, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from said disorder.
- 12. The use of compounds of the formula I as claimed in claim 11 wherein the disorder is a neurodegenerative disease or involves neuronal damage.
- 13. The method as claimed in claim 12, wherein the neurodegenerative disease or neuronal damage is induced by ischemia, trauma or massive bleeding.
- 14. The method as claimed in claim 11 wherein the disorder is stroke or craniocerebral trauma.
- 15. The method as claimed in claim 11 wherein the disorder is Alzheimer's disease and Huntington's disease.
- 16. The method as claimed in claim 11 wherein the disorder is damage due to ischemia.
- 17. The method as claimed in claim 11 wherein the disorder is epilepsy.
- 18. The method as claimed in claim 11 wherein the disorder is damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants.
- 19. The method as claimed in claim 11 wherein the disorder is damage to the heart after cardiac ischemia.

LUBISCH et al., Serial No. 09/830,992

- TECH CENTER 1600/2000 20. The method as claimed in claim 11 wherein the disorder is a microinfarcts.
- The method as claimed in claim 11 wherein the disorder is under vascularization of 21. critically narrowed coronary arteries.
- 22. The method as claimed in claim 11 wherein the disorder is an acute myocardial infarct and damage during an after medical or mechanical lysis thereof.
- 23. The method as claimed in claim 11 wherein the disorder is a tumor or metastasis I thereof.
- 24. The method as claimed in claim 11 wherein the disorder is sepsis of multi-organ failure.
- 25. The method as claimed in claim 11 wherein the disorder is an immunological disease.
- 26. The method as claimed in claim 11 wherein the disorder is diabetes mellitus.