Elimination of unit productions from the grammar:

• Unit Productions are of the form Non-Terminal \rightarrow Non-Terminal

EXAMPLE 1:

- 1. $S \rightarrow A \mid bb$
- 2. $A \rightarrow B \mid b$
- 3. $B \rightarrow S \mid a$

Unit Productions:	Non-Unit Productions:
$S \rightarrow A$	$S \rightarrow bb$
$A \rightarrow B$	$S \rightarrow bb$ $A \rightarrow b$
	B → a

$S \rightarrow A \rightarrow b$	means $S \rightarrow b$
$S \rightarrow A \rightarrow B \rightarrow a$	means $S \rightarrow a$

$$A \rightarrow B \rightarrow a$$
 means $A \rightarrow a$
 $A \rightarrow B \rightarrow S \rightarrow bb$ means $A \rightarrow bb$

$$B \rightarrow S \rightarrow bb$$
 means $B \rightarrow bb$
 $B \rightarrow S \rightarrow A \rightarrow b$ means $B \rightarrow b$

Final Grammar:

 $S \rightarrow a \mid b \mid bb$

 $A \rightarrow a \mid b \mid bb$ Useless $B \rightarrow a \mid b \mid bb$ Useless

Final: $S \rightarrow a \mid b \mid bb$ Language: $\{a,b,bb\}$

DFA: There MUST be EXACTLY one outgoing transition of EACH input letter/alphabet from EACH state.

EXAMPLE 2:

```
\begin{split} & \text{I} \ \rightarrow \ \text{a} \ | \ \text{b} \ | \ \text{Ia} \ | \ \text{Ib} \ | \ \text{IO} \ | \ \text{I1} \\ & \text{F} \ \rightarrow \ \text{I} \ | \ (\text{E}) \\ & \text{T} \ \rightarrow \ \text{F} \ | \ \text{T*F} \\ & \text{E} \ \rightarrow \ \text{T} \ | \ \text{E+T} \end{split}
```

Rearranging Grammar:

```
E \rightarrow T \mid E+T
T \rightarrow F \mid T^*F
F \rightarrow I \mid (E)
I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1
```

Unit Production: Non-Unit Productions:

Final Grammar:

Simplification:

- Eliminate useless symbols and productions.
- Eliminate λ-productions.
- Eliminate unit-productions.
- Eliminate useless symbols and productions.

Task: Complete the simplification of grammars discussed in the previous lecture.

Properties of CFL:

CFG: Context Free Grammar

CFL: Context Free Language (Generated by the CFG) – Constructing PDA is possible.

- 1. CFL is closed under Union: Union of two CFLs is also CFL.
- 2. CFL is closed under Concatenation: Concatenation of two CFLs is also CFL.
- 3. CFL is closed under Star-Closure: Star-Closure of a CFLs is also CFL.
- 4. CFL is NOT closed under Intersection: Intersection of two CFLs is NOT CFL.
- 5. CFL is NOT closed under Complementation: Complement of a CFLs is NOT CFL.

CFL is closed under Union (Order does not matter in the Newly introduced production):

Example:

GFG₁:	GFG₂:	Union:	
$X \rightarrow AB$ $\Delta \rightarrow a \mid b$	$Y \rightarrow EF$	$S \rightarrow X \mid Y$ $X \rightarrow AB$ $A \rightarrow a \mid b$ $B \rightarrow c \mid d$ $Y \rightarrow EF$ $E \rightarrow e \mid f$ $F \rightarrow g \mid h$	Note: Because the order does not matter, X Y and Y X generate the same language.

 ${\it CFL}\ is\ closed\ under\ Concatenation\ (Order\ Matters\ in\ the\ Newly\ introduced\ production):$

Assume CFG for CFL ₁ :	Assume CFG for CFL ₂ :	Concatenation of CFL ₁ and CFL ₂ :	Because we
$S_1 \rightarrow$	$S_2 \rightarrow$	$S \rightarrow S_1S_2$	have a CFG
		$S_1 \rightarrow$	after
			concatenation,
		$S_2 \rightarrow$	it means that
			we have a CFL
			too.

Example:

GFG ₁ :	GFG₂:	Concatenation:	
$X \rightarrow AB$ $A \rightarrow a \mid b$ $B \rightarrow c \mid d$	F → g h		Note: Because the order matters, XY and YX generate different languages.

CFL is closed under Star-Closure:

Assume CFG for CFL: Star-Closure of CFL: Because we have a CFG after Star-Closure, it means that
$$S \to S_1 S \mid \lambda$$
 we have a CFL too. $S_1 \to ...$

Example:

GFG: Closure CFG: Tasks:
$$X \rightarrow A \qquad S \rightarrow SX \mid \lambda \\ A \rightarrow a \mid b \qquad X \rightarrow A \\ A \rightarrow a \mid b \qquad Derive ALL words from the original grammar. \\ \bullet Derive ALL words of length 3 or below from the "Closure CFG"$$