Logit Arithmetic Elicits Long Reasoning Capabilities Without Training 开源代码: github.com/yunx-z/ThinkLogit

ThinkLogit: 将Proxy-tuning方法扩展到reasoning Ilm

Yunxiang Zhang* Muhammad Khalifa Lechen Zhang Xin Liu
Ayoung Lee Xinliang Frederick Zhang Farima Fatahi Bayat Lu Wang
Computer Science and Engineering
University of Michigan, Ann Arbor

简介

基于Proxy-tuning思想,本文提出ThinkLogit和ThinkLogit-DPO两种推理(Inference)阶段解码(decoding)方法,用于在不tuning base Ilm的前提下,激发其长链式推理(Long Chain-of-Thought)推理能力。核心做法是引入一个已经训练好的小reasoning模型,称为guider,通过logits arithmetic在推理过程中引导目标Ilm的输出。然后更进一步,使用Direct Preference Optimization(DPO)训练 guider,使其logit分布与目标Ilm更对齐,再应用proxy-tuning效果更好,这就是ThinkLogit-DPO。

背景

目前基于pre-training model构建reasoning Ilm的主流做法是RLVR,训练成本还是有的,之前我们读过proxy-tuning论文,它不需要tuning 目标模型,而是只tuning一个小版本的Ilm,然后在inference阶段调整目标Ilm的logits就能逼近sft后的效果。本文将这一思想推广到reasoning Ilm场景,作者提出ThinkLogit方法,利用已经训练好的小reasoning Ilm来引导大规模的base model生成long CoT,从而无需tuning目标Ilm参数也能激活其潜在的reasoning 能力。

实验设置

- 实验对象:目标IIm是Qwen2.5-32B,两个guider是 R1-Distill-Qwen-1.5B和One-Shot-RLVR-1.5B
- 4个数学推理数据集: AIME2024, AIME2025, AMC23和MATH-hard

Model	# T.E.	# T.P.	AIME 2024	AIME 2025	AMC 23	MATH hard	Average
Large model baselines							
Qwen2.5-32B (Target)	-	-	14.6 / 40.0	8.3 / 26.7	57.2 / 90.0	50.8 / -	32.7 / 52.2
s1.1-32B	1K	32B	32.9 / 60.0	25.4 / 50.0	70.0 / 92.5	79.0 / -	51.8 / 67.5
R1-Distill-Qwen-32B	800K	32B	45.8 / 76.7	35.0 / 60.0	76.9 / 92.5	76.5 / -	58.6 / 76.4
Supervised Fine-tuned (SFT) Li	M as G	Guider					
R1-Distill-Qwen-1.5B (Guider)			16.2 / 33.3	18.8 / 33.3	51.2 / 80.0	47.7 / -	33.5 / 48.9
Target + THINKLOGIT	0	0	22.5 / 50.0	19.2 / 36.7	62.2 / 95.0	60.7 / -	41.2 / 60.6
Target + THINKLOGIT-DPO	10K	78M	22.1 / 60.0	21.7 / 46.7	63.7 / 90.0	61.1 / -	42.2 / 65.6
Reinforcement Fine-tuned (RFT) LM as Guider							
One-Shot-RLVR-1.5B (Guider)			13.3 / 30.0	7.1 / 26.7	46.9 / 77.5	51.1 / -	29.6 / 44.7
Target + THINKLOGIT	0	0		11.2 / 36.7			

ThinkLogit和ThinkLogit-DPO

ThinkLogit就是proxy-tuning的应用。

ThinkLogit-DPO就是对已经tuning 好的小reasoning IIm继续DPO训练,重点是偏好数据集包含两类型数据:

- (x, 目标IIm的short CoT正确, guider的long CoT错误)
- (x, 目标IIm的short CoT错误, guider的long CoT正确)

构造这两类「大模型正确 vs 小模型错误」和「小模型正确 vs 大模型错误」数据,希望引导guider学习何时该跟随、何时该修正目标IIm。

思考

本文延续了Proxy-tuning思想,同时作者假设pre-training 的base model已经具备推理能力,而sft/RLVR tuning后的reasoning llm只是激活了推理能力。目前很多工作都follow这种假设,见仁见智吧。

考虑到RL tuning相比于sft的难度和成本,或许近期会有更多的parameter-efficient RLVR tuning工作出现呢。