Propagación de errores en medidas indirectas: comparación de métodos analíticos y métodos numéricos

Jorge Mifsut Benet

Universitat de València

14 de julio de 2021

Índice

1 Introducción

Incertidumbres en las medidas y su propagación funcional Métodos analíticos

Caso de una variable (y = f(x))

Caso de n variables $(y = f(x_1, x_2, ..., x_n))$

Caso de dos funciones de n variables

Caso más general (m funciones de n variables)

Métodos de Montecarlo

2 Implementación en casos sencillos Cálculo de la aceleración de la gravedad con un péndulo Área y volumen de un cilindro

- § Implementación en casos complejos Órbita de un satélite El atractor de Lorentz
- 4 Tiempos de cálculo
- 6 Conclusions
- 6 Bibliografía

Introducción

Incertidumbres en las medidas y su propagación funcional

La importancia de la expresión de la incertidumbre:

- Joint Committee for Guides in Metrology (ISO, IUPAC, BIPM...) [4]
- NASA [7]
- Industria y empresas [3]

Incertidumbres en las medidas y su propagación funcional

- ¿Qué son los errores?
- Errores sistemáticos y errores aleatorios
- Medidas como distribuciones

- Distribución normal
- Intervalo de confianza al 95 %

$$x = \bar{x} \pm 1.96 \frac{\sigma_x}{\sqrt{N}}$$

• Propagación de errores

Métodos analíticos

Caso de una variable (y = f(x))

- Distribución normal para $x \in y$ (se pueden caracterizar solo con $\mu y \sigma$)
- Errores pequeños y simétricos
- f(x) puede considerarse lineal en el entorno $[\mu_x \sigma_x, \mu_x + \sigma_x]$

Figura: [1]

Podemos aproximar en serie de Taylor a primer orden la función f(x) alrededor del punto μ_x en su entorno de aproximación lineal:

$$y = f(x) \simeq f(\mu_x) + \frac{\partial f}{\partial x}\Big|_{x=\mu_x} (x - \mu_x)$$

Esto lo podemos aplicar a las definiciones de media y varianza:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \simeq \frac{1}{n} \sum_{i=1}^{n} (f(\mu_x) + \frac{\partial f}{\partial x} \Big|_{\mu_x} (x_i - \mu_x))$$

$$\sigma_{\mu}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \simeq \frac{1}{n} \sum_{i=1}^{n} \left(f(\mu_x) + \frac{\partial f}{\partial x} \Big|_{\mu_x} (x_i - \mu_x) - \mu_y \right)^2$$

$$\mu \simeq \frac{1}{n} \sum_{i=1}^{n} (f(\mu_x) + \frac{\partial f}{\partial x} \Big|_{\mu_x} (x_i - \mu_x)) = [\dots] = f(\mu_x)$$

$$\sigma_{\mu}^2 \simeq \frac{1}{n} \sum_{i=1}^{n} \left(f(\mu_x) + \frac{\partial f}{\partial x} \Big|_{\mu_x} (x_i - \mu_x) - \mu_y \right)^2 = [\dots] = \left(\frac{\partial f}{\partial x} \Big|_{\mu_x} \right)^2 \sigma_x^2$$

$$\Rightarrow \left[\mu_y = f(\mu_x), \quad \sigma_y^2 = \left(\frac{\partial f}{\partial x} \Big|_{\mu_x} \right)^2 \sigma_x^2 \right]$$

Métodos analíticos

Caso de n variables $(y = f(x_1, x_2, ..., x_n))$

Todo lo anterior lo podemos generalizar para el caso de una función de n variables independientes o correlacionadas entre sí:

$$y = f\left(x^{(1)}, x^{(2)}, \ldots\right) \simeq f\left(\mu^{(1)}, \mu^{(2)}, \ldots\right) + \sum_{i=1}^{m} \frac{\partial f}{\partial x^{(i)}} \Big|_{\mu^{(i)}} \left(x^{(i)} - \mu^{(i)}\right)$$

$$\Rightarrow \mu_{y} = \frac{1}{n} \sum_{i=1}^{n} \left[f\left(\mu^{(1)}, \mu^{(2)}, \ldots\right) + \sum_{j=1}^{m} \frac{\partial f}{\partial x^{(j)}} \Big|_{\mu^{(j)}} \left(x_{i}^{(j)} - \mu^{(j)}\right) \right] = f\left(\mu^{(1)}, \mu^{(2)}, \ldots\right)$$

$$\Rightarrow \sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(f\left(\mu^{(1)}, \mu^{(2)}, \ldots\right) + \sum_{j=1}^{m} \frac{\partial f}{\partial x^{(j)}} \Big|_{\mu^{(j)}} \left(x_{i}^{(j)} - \mu^{(j)}\right) - \mu_{y} \right)^{2}$$

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \frac{\partial f}{\partial x^{(j)}} \Big|_{\mu^{(j)}} \left(x_{i}^{(j)} - \mu^{(j)} \right) \right)^{2}$$

Se puede reescribir el cuadrado de la suma como la suma de los cuadrados de la diagonal más la suma de los productos cruzados:

$$\sigma_{y}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \left(\frac{\partial f}{\partial x^{(j)}} \right)^{2} \left(x_{i}^{(j)} - \mu^{(j)} \right)^{2} + \sum_{j=1}^{m} \sum_{\substack{k=1 \ k \neq j}}^{m} \frac{\partial f}{\partial x^{(j)}} \frac{\partial f}{\partial x^{(k)}} \left(x_{i}^{(j)} - \mu^{(j)} \right) \left(x_{i}^{(k)} - \mu^{(k)} \right) \right)$$

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^m \frac{\partial f}{\partial x^{(j)}} \Big|_{\mu^{(j)}} \left(x_i^{(j)} - \mu^{(j)} \right) \right)^2$$

Se puede reescribir el cuadrado de la suma como la suma de los cuadrados de la diagonal más la suma de los productos cruzados:

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^m \left(\frac{\partial f}{\partial x^{(j)}} \right)^2 \underbrace{\left(x_i^{(j)} - \mu^{(j)} \right)^2}_{\sigma_j^2} + \sum_{j=1}^m \sum_{\substack{k=1 \\ k \neq j}}^m \frac{\partial f}{\partial x^{(j)}} \frac{\partial f}{\partial x^{(k)}} \underbrace{\left(x_i^{(j)} - \mu^{(j)} \right) \left(x_i^{(k)} - \mu^{(k)} \right)}_{\sigma_{jk}} \right)$$

Definiendo la matriz de covarianza:

$$\sigma_{jk} = \frac{1}{n} \sum_{i=1}^{n} \left(x_i^{(j)} - \mu^{(j)} \right) \left(x_i^{(k)} - \mu^{(k)} \right)$$

Finalmente llegamos a:

$$\sigma_y^2 = \sum_{j=1}^m \left(\frac{\partial f}{\partial x^{(j)}}\right)^2 \sigma_j^2 + \sum_{j=1}^m \sum_{\substack{k=1\\k\neq j}}^m \frac{\partial f}{\partial x^{(j)}} \frac{\partial f}{\partial x^{(k)}} \sigma_{jk}$$

$$\Rightarrow \sigma_y = \sqrt{\sum_{j=1}^m \left(\frac{\partial f}{\partial x^{(j)}}\right)^2 \sigma^{(j)2}}$$

Métodos analíticos

Caso de dos funciones de n variables

Para σ_f^2 y σ_g^2 se procede igual que en el caso anterior, pero también se debe tener en cuenta la correlación entre ambas funciones:

$$\sigma_{fg} = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - \mu_f) (g(x_i) - \mu_g) = [...]$$

$$\sigma_{fg} = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_i} \sigma_i^2 + \sum_{i=1}^{m} \sum_{\substack{j=1\\j\neq i}}^{m} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \sigma_{ij}^2$$

Métodos analíticos

Caso más general (m funciones de n variables)

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial X_1} & \cdots & \frac{\partial m}{\partial X_n} \end{bmatrix} \qquad C_X = \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \cdots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{21}\sigma_2\sigma_1 & \sigma_2^2 & \cdots & \rho_{2n}\sigma_2\sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \rho_{n2}\sigma_n\sigma_2 & \cdots & \sigma_n^2 \end{bmatrix}$$
$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i\sigma_j}$$

$$\Rightarrow \boxed{C_Y = J \cdot C_X \cdot J^T}$$

Métodos de Montecarlo

Cálculo de la aceleración de la gravedad con un péndulo

Implementación en casos sencillos

La expresión para obtener la aceleración de la gravedad a partir del periodo y la longitud de un péndulo simple es:

$$g = \frac{4\pi^2 l}{T^2}$$

La propagación de errores por el método analítico:

$$\sigma(g) = \sqrt{\left(\frac{\partial g}{\partial l}\sigma(l)\right)^2 + \left(\frac{\partial g}{\partial T}\sigma(T)\right)^2} = \sqrt{\left(\frac{4\pi^2}{T}\sigma(l)\right)^2 + \left(\frac{-8\pi^2 l}{T^3}\sigma(T)\right)^2}$$

Datos experimentales para el método analítico:

Distribuciones de entrada para la propagación por el método de Montecarlo:

Distribución de salida para el método de Montecarlo:

Resultados:

	Montecarlo	Analítica	Discrepancia
\bar{x} (m/s ²)	9.9410	9.9371	0.03 %
$\sigma(\mathrm{m/s^2})$	0.0762	0.0928	18%
$Med(m/s^2)$	9.9413	-	=
Curtosis	3.0730	-	=
Asimetría	0.0179	-	-

En términos del intervalo de confianza al 95 %:

$$g_{analitica} = 9.94 \pm 0.03 \text{ m/s}^2$$

$$g_{Montecarlo} = 9.94 \pm 0.02$$
 m/s²

Tiempo de computación para N=1000 fue $t_{GPU}=98.4~\mathrm{min}$

Área y volumen de un cilindro

Implementación en casos sencillos

$$V = \pi r^2 h$$

$$S = 2\pi r^2 + 2\pi rh$$

Se tratarán tres casos para la correlación entre las variables:

- Variables independientes $(\rho_{rh} = 0)$
- Variables totalmente correlacionadas ($\rho_{rh} = 1$)
- Caso intermedio ($\rho_{rh} = 0.5$)

Caso i $(\rho_{rh} = 0)$

Datos experimentales para el método analítico:

Distribuciones de entrada para la propagación por el método de Montecarlo:

Distribuciones de salida para la propagación por el método de Montecarlo:

Gráficas de probabilidad normalizada de las distribuciones de salida para V y S (azul). La línea roja representa el ajuste a una distribución normal

Resultados:

	$V (mm^3)$			S (mm ²)		
	Montecarlo	Analítica	Discrep.	Montecarlo	Analítica	Discrep.
\bar{x}	84.512	91.138	8 %	106.238	113.924	7 %
σ	43.109	56.743	32%	35.055	45.311	29%
Mediana	77.953	=	=	103.6216	=	=
Curtosis	4.3821	=	=	3.2799	=	=
Asimetría	0.9297	Ξ	=	0.4277	=	=

$$V_{analitico} = 91 \pm 16 \text{ mm}^3$$

$$V_{Montecarlo} = 84.5 \pm 12 \text{ mm}^3$$

$$S_{analitica} = 113 \pm 13 \; \mathrm{mm}^2$$

$$S_{Montecarlo} = 106.2 \pm 10 \text{ mm}^2$$

$$\sigma_{VS,analítica} = 2522.7 \text{ mm}^5 \quad \Rightarrow \quad \rho_{VS,analítica} = \frac{\sigma_{VS}}{\sigma_{V}\sigma_{S}} = 0.98$$

$$\sigma_{VS,Montecarlo} = 1498.4 \text{ mm}^5 \quad \Rightarrow \quad \rho_{VS,Montecarlo} = \frac{\sigma_{VS}}{\sigma_{V}\sigma_{S}} = 0.99$$

Caso ii $(\rho_{rh} = 1)$

Datos experimentales para el método analítico para r son los del caso anterior y para h se obtienen como h=2r Las distribuciones de entrada para el método de Montecarlo son:

Gráficas de probabilidad normalizada de las distribuciones de salida para V y S (azul). La línea roja representa el ajuste a una distribución normal

Resultados:

	$V (mm^3)$			\sim S (mm^2)		
	Montecarlo	Analítica	Discrep.	Montecarlo	Analítica	Discrep.
\bar{x}	59.705	61.752	3 %	80.119	86.486	8 %
σ	42.438	47.951	13~%	38.341	44.772	16%
Mediana	50.166	-	-	75.299	-	-
$\sigma_{VS} \left(\mathrm{mm}^5 \right)$	1602.3	2306.5635	30~%	1602.3	2306.5635	30%
$ ho_{VS}$	0.99	1	1 %	0.99	1	1~%
Curtosis	6.418	-	-	3.784	-	-
Asimetría	1.473	=	-	0.7564	=	-

Caso iii $(\rho_{rh} = 0.5)$

Solo por el método de Montecarlo. Distribuciones de salida:

Gráficas de probabilidad normalizada de las distribuciones de salida para V y S (azul). La línea roja representa el ajuste a una distribución normal

Resultados:

	$V (mm^3)$	$S (mm^2)$
$ar{x}$	95.0573	110.398
σ	74.5134	57.511
Mediana	77.554	103.294
$\sigma_{VS} \left(\mathrm{mm}^5 \right)$	4219.9	4219.9
$ ho_{VS}$	0.985	0.985
Curtosis	6.705	3.739
Asimetría	1.535	0.741

Implementación en casos complejos

Propagación de errores en problemas descritos por ecuaciones diferenciales. Se tratarán dos casos:

- Órbita de un satélite
- Sistema del atractor de Lorentz

El método analítico de propagación de errores descrito en la introducción **no** es directamente aplicable en estos casos.

Existen técnicas analíticas concretas para la propagación de errores, según el método empleado para resolver la ecuación diferencial [2] o, incluso, técnicas analíticas e híbridas para cada problema concreto [6].

Órbita de un satélite

La ecuación de movimiento del problema de dos cuerpos viene dada por:

$$\mu \ddot{\vec{r}} = -\frac{\alpha}{r^3} \vec{r}$$

donde $\ddot{r} = \frac{d^2 \vec{r}}{dt^2}$, con \vec{r} vector relativo de posición entre los dos cuerpos; $\mu = \frac{m_1 m_2}{m_1 + m_2}$ y $\alpha = G m_1 m_2$, donde G es la constante de gravitación universal. En nuestro caso $m_1 = M_{Tierra}$, $m_2 = m_{satélite}$ y \vec{r} es prácticamente el vector posición del satélite con origen de coordenadas en el centro de la Tierra. La inclinación de la órbita es $\phi = 51.6^\circ$ y el módulo de la velocidad inicial será de la foma $v_i = \sqrt{G M_T/(R_T + h)}$

Condiciones iniciales

El cono de probabilidad de la trayectoria

Estado final

Resultados

	x (km)	y (km)	z (km)
\bar{x}	2177.2	4015.7	5072.1
σ	180.20	388.04	516.12
Mediana	2180.3	4009.0	5057.7
Curtosis	2.9926	2.4218	2.4214
$A simetr\'ia$	0.0045	0.0412	0.0601

Con lo que, finalmente, podemos expresar la posición y velocidad inicial y final con un $95\,\%$ de confianza como:

$$x(t_0) = 6771.8 \pm 1.1 \text{ km}; \ y(t_0) = (102 \pm 3) \cdot 10^{-5} \text{ km}; \ z(t_0) = (101 \pm 3) \cdot 10^{-5} \text{ km}$$

$$x(t_f) = 2177 \pm 5 \text{ km}; \quad y(t_f) = 4015 \pm 10 \text{ km}; \quad z(t_f) = 5072 \pm 14 \text{ km}$$

$$v_x(t_0) = 0 \pm 0$$
 m/s; $v_y(t_0) = 4758 \pm 11$ m/s; $v_z(t_0) = 6007 \pm 14$ m/s

$$v_x(t_f) = -7317 \pm 12 \text{ m/s}; \ v_y(t_f) = 14537 \pm 13 \text{ m/s}; \ v_z(t_f) = 1848 \pm 17 \text{ m/s}$$

El atractor de Lorentz

En 1963, Edward Lorentz propuso un modelo para la convección atmosférica descrito por el siguiente sistema de ecuaciones [5]:

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

Con
$$\sigma = 10$$
, $\beta = 8/3$ y $\rho = 28$.

Este es un caso extremo.

Ambas con N = 5000 iteraciones:

(v) Condiciones iniciales puntuales

(w) CI con distribuciones de M=10 números aleatorios

Posiciones de cada uno de los M=40 puntos en la iteración 4000 y en los siguientes 3 pasos

Estado final

Gráfico de dispersión del estado inicial y el estado final para cada plano coordenado con $M=700~{\rm puntos}$

Tiempos de cálculo

Intel Core i7 8GB RAM, NVIDIA GeForce 940MX

Conclusions

It is important to discern which is the best method to carry out error propagation in each given case

- Acceleration of gravity with a simple pendulum ⇒ similar results, both methods are equivalent
- Volume and surface area of a cylinder ⇒ notable discrepancies between both methods
- \bullet Complex cases with differential equations \Rightarrow only Montecarlo is applicable
- Due to high calculation times MC has been implemented as $N \times m$ instead of N^m

Conclusion: Montecarlo is the most advisable method for the propagation of uncertainty in indirect measurements, as long as the high computational cost in memory and calculation time can be accepted.

Bibliografía

- [1] Kai O. Arras. An Introduction To Error Propagation: Derivation, Meaning and Examples of Equation $C_y = F_x C_x F_x^T$. EPFL-ASL-TR-98-01 R3, 1998.
- [2] J.C. Butcher, Z. Jackiewicz, and W.M. Wright. Error propagation of general linear methods for ordinary differential equations. *Journal of Complexity*, 23(4-6):560-580, aug 2007.
- [3] Etienne de Rocquigny, Nicolas Devictor, and Stefano Tarantola. Uncertainty in Industrial Practice: A Guide to Quantitative Uncertainty Management. Wiley and Sons, 2008.
- [4] Joint Committee for Guides in Metrology. JCGM 100: Evaluation of Measurement Data, Supplement 1 to the "Guide to the Expression of Uncertainty in Measurement" Propagation of distributions using a Monte Carlo method. Technical report, JCGM, 2008.
- [5] Edward N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2):130-141, March 1963.
- [6] Ya-Zhong Luo and Zhen Yang. A review of uncertainty propagation in orbital mechanics. Progress in Aerospace Sciences, 89:23-39, feb 2017.
- [7] NASA. Measurement Uncertainty Analysis Principles And Methods, NASA Measurement Quality Assurance Handbook, NASA-HDBK-8739.19-3, 2019.