

Multiple linear regression

 When there is more than one independent variable, the equation is extended to accommodate them:

$$Y = A + B_1 X_1 + B_2 X_2 + \dots + B_n X_n + \epsilon$$

- We now have a linear model rather than a line.
- An extension of simple linear regression that allows us to study the effect of multiple independent variables $(X_1, X_2, ...)$ on a single dependent variable Y.
- The relationship between each coefficient and its independent variable is linear.

Multiple linear regression

 When there is more than one independent variable, the equation is extended to accommodate them:

$$Y = A + B_1 X_1 + B_2 X_2 + \dots + B_n X_n + \epsilon$$

- B₁, B₂, ... are called partial regression coefficients.
- A^{\dagger} is the mean value of Y when all X's = 0.
- B_i is the average amount by which Y changes for a unit change in X_i (while keeping all other X's constant).

Significance tests and CIs

- It is possible to compute a multiple correlation coefficient, R, and perform a statistical significance test of the fit of the model.
- H₀ says: Y is totally unrelated to X's.
- C.I. values can be computed for A, B's and R.
- Here's how to use the C.I. of any B:
 - If the C.I. contains 0 (i.e. *B* is not significantly different from 0) then the corresponding *X* can be deleted (which means the equation becomes simpler).
 - Bear in mind that when removing one input variable, coefficients of other input variables will change.
- Use existing tools.

Dummy variables

- We have learnt the one-hot encoding technique to transform categorical variables into numeric representation.
- This means we can use multiple linear regression even if one or more independent variables are categorical.
- Please refer to Part 1 in Topic
 2.

Dummy encoding

Model validity

- In simple linear regression, it is easy to examine whether the relationship between the independent variable and dependent variable is linear by using a scatter plot of the two of them (points should generally be evenly scattered on both sides of the straight line).
- In multiple linear regression, it is not easy to visualise the relationship.
- Therefore, we visualise the residuals of the fitted model.
- We plot a histogram of the residuals and expect them to follow a normal distribution with a mean of zero.
- If that is not the case, then the model may not be an adequate description of the data.

Residual plots

Correlated variables

- If some of the independent variables are highly correlated, then
 it may be difficult to interpret the model.
 Hence, before we perform multiple linear regression, we should
 examine that correlation.
- If there are highly correlated independent variables, then there
 might be reason(s) to select only one of them to be used in the
 model.
- Highly correlated independent variables cause multicollinearity.
- Multicollinearity makes model interpretation difficult because it is not possible to change one variable and keep the others constant if they are highly correlated.

Model Selection and Stepwise Regression

- 'In some problems, many variables could be used as predictors in a regression.
- For example, to predict house value, additional variables such as the basement size or year built could be used.
- Adding more variables, however, does not necessarily mean we have a better model.
- Statisticians use the principle of Occam's razor to guide the choice of a model: all things being equal, a simpler model should be used in preference to a more complicated model.'

Model Selection and Stepwise Regression

- 'Including additional variables always reduces RMSE and increases R^2 for the training data.
- Hence, these are not appropriate to help guide the model choice.
- One approach to including model complexity is to use the adjusted R^2 :

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-P-1}$$

Here, *n* is the number of records and *P* is the number of variables in the model.'

Model Selection and Stepwise Regression

- 'In the 1970s, Hirotugu Akaike, the eminent Japanese statistician, developed a metric called AIC (Akaike's Information Criteria) that penalizes adding terms to a model.

 In the case of regression, AIC has the form:

$$AIC = 2P + n \log(RSS/n)$$

where P is the number of variables and n is the number of records. The goal is to find the model that minimizes AIC; models with k more extra variables are penalized by 2k.

RSS is the same as SSE (error, or residual, sum of squares).

Variants to AIC

'There are several variants to AIC:

- AICc: A version of AIC corrected for small sample sizes.
- BIC or Bayesian information criteria: Similar to AIC, with a stronger penalty for including additional variables to the model.
- Mallows Cp: A variant of AIC developed by Colin Mallows.

These are typically reported as in-sample metrics (i.e., on the training data), and data scientists using holdout data for model assessment do not need to worry about the differences among them ...'

Model Selection and Stepwise Regression

- 'How do we find the model that minimizes AIC or maximizes adjusted R2? One way is to search through all possible models, an approach called all subset regression.
- This is computationally expensive and is not feasible for problems with large data and many variables.
- · An attractive alternative is to use stepwise regression.
- It could start with a full model and successively drop variables that don't contribute meaningfully. This is called backward elimination.
- Alternatively one could start with a constant model and successively add variables (forward selection).'