Problem definition Algorithms Environment Benchmarking References

Minimum Spanning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

October 2018

- Problem definition
 - Use cases
- 2 Algorithms
 - Prim
 - Kruskal
 - Borůvka (Sollin)
 - Others
- 3 Environment
- 4 Benchmarking
 - Reference, baseline, tools

Problem definition

The MST problem

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted (un)directed graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.

Input sets: G(100, 0.02)

Input sets: PA(100)

Problem definition Algorithms Environment Benchmarking References

Prim Kruskal Borůvka (Sollin) Others

Algorithms

- Initialise a tree with a single random vertex.
- Among all the edges connecting the tree to another vertex, find the minimum-weighted one and transfer it to the tree.
- Repeat until all vertices are in the tree.

Sequential and parallel Prim

Sequential complexity:

- $O(V^2)$: Adjacency matrix representation
- $O(E \log V)$: Adjacency list representation with the use of a binary heap

Sequential and parallel Prim

Sequential complexity:

- $O(V^2)$: Adjacency matrix representation
- $O(E \log V)$: Adjacency list representation with the use of a binary heap

We can parallelize the search of the edge of minimum weight by dividing the vertices and edges between processors to compute local minima.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

Data structure: Union-find

Represents the connected components of the graph given our MST. Implementation with an array *parent* and 3 operations:

- Create: Every vertex is in its own component

Data structure: Union-find

Represents the connected components of the graph given our MST. Implementation with an array *parent* and 3 operations:

- Create: Every vertex is in its own component
 - parent[x] = x
- Find(x): Find the component of this vertex.
 - ① If $parent[x] \neq x$, then parent[x] = find(parent[x])
 - Return parent[x].

Data structure: Union-find

Represents the connected components of the graph given our MST. Implementation with an array *parent* and 3 operations:

- Create: Every vertex is in its own component
 - parent[x] = x
- Find(x): Find the component of this vertex.
 - ① If $parent[x] \neq x$, then parent[x] = find(parent[x])
 - 2 Return parent[x].
- Union(x, y): Unite two components.
 - parent[find(x)] = find(y).

Sequential and parallel Kruskal

Sequential complexity:

- $O(E \log E)$: Sort all edges by growing weight.
- O(E) (in practice): For each edge: Add it to the MST if it doesn't create a cycle.

Sequential and parallel Kruskal

Sequential complexity:

- $O(E \log E)$: Sort all edges by growing weight.
- O(E) (in practice): For each edge: Add it to the MST if it doesn't create a cycle.

We can parallelize the sort on $O(\log E)$ processors: O(E) (in practice).

A better parallel approach: Filter-Kruskal

Similar to a quick sort¹:

- ullet If E < threshold, solve using classical Kruskal
- Choose a pivot (edge)
- **3** Partition in two sets E_{\leq} , $E_{>}$ (weight)
- Recursive call to solve problem with E_{\leq}
- \odot Filter out the edges of $E_{>}$ that connect two vertices of the same component
- **1** Recursive call to solve problem with $E_{>}$

¹Osipov, Sanders, and Singler 2009.

A better parallel approach: Filter-Kruskal

Similar to a quick sort¹:

- lacktriangledown If E < threshold, solve using classical Kruskal
- Choose a pivot (edge)
- **3** Partition in two sets E_{\leq} , $E_{>}$ (weight)
- Recursive call to solve problem with E_{\leq}
- Filter out the edges of E_> that connect two vertices of the same component
- **1** Recursive call to solve problem with $E_{>}$

Better for parallelization since we can distribute the edges for filtering and partitioning.

¹Osipov, Sanders, and Singler 2009.

Borůvka (Sollin)

- 1) Init V as independant sets.
- 2) Initialize MST as empty.
- 3) While #sets > 1, do:
 - a) Find closest E from this set to another.
 - b) Add this E to MST if not already added.
- 4) Return MST.

²Chung and Condon 1996.

³Bader and Cong 2006.

- Prim (Parallel & Seq)
- Kruskal (Parallel & Seq), Kruskal filter
- Sollin (Parallel & Seq)
- Randomization
- Correctness

Problem definition Algorithms Environment Benchmarking References

Environment_i

Architecture

EULER Cluster

Xeon
$$Ex, x \in \{3, 5, 7\}$$

x86_64 architecture

Source: https://scicomp.ethz.ch/wiki/Euler

Tools

- CMake
 v3.3+
- C++11 GCC v4.9.2+
- OpenMPI (shared memory) v1.6.5+

Reference, baseline, tool:

Benchmarking

Tools

- Measures : LibSciBench library
- Interpretation :
 - LibSciBench's R scripts
 - (Custom python scripts)

Ref : https://spcl.inf.ethz.ch/Research/Performance/LibLSB/

Baseline

Borůvka's serial algorithm $O(E \cdot log(V))$

https://en.wikipedia.org/wiki/Otakar_Bor%C5%AFvka

- - Bader, D. A. and G. Cong (2006). "Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs". In: *Journal of Parallel and Distributed Computing* 66.11, pp. 1366–1378.
- Chung, S. and A. Condon (1996). "Parallel Implementation of Boruvka". In: ipps. IEEE, p. 302.
 - Osipov, V., P. Sanders, and J. Singler (2009). "The Filter-Kruskal Minimum Spanning Tree Algorithm". In: Proceedings of the Meeting on Algorithm Engineering & Expermiments. New York, New York: Society for Industrial and Applied Mathematics, pp. 52–61.

