Elementary Statistics: Math 080

Jordan Hanson July 11, 2022

Whittier College Department of Physics and Astronomy

Stem	Leaves
0	
1	
2	
3	
4	[3.0]
5	[6.0]
6	[7.0, 9.0]
7	[8.0, 0.0, 8.0, 1.0, 2.0, 5.0, 7.0]
8	[8.0, 3.0, 4.0, 6.0, 2.0, 1.0, 2.0, 1.0]
9	[8.0, 7.0, 1.0, 4.0]

Table 1:

Unit 0 Outline

- 1. Topics from Chapter 1: 1.1, 1.2, 1.3
 - · What is a statistic?
 - Probability examples
 - Data and sampling
- 2. Topics from Chapter 2: 2.1 2.4, 2.5 2.8
 - Data visualization
 - · Location of the data in numerical space
- 3. Topics from Chapter 3: 3.1, 3.2, 3.3
 - Two rules of probability

Topics from Chapter 2

Stemplots

Useful for numbers like *grades*. Most significant digit is the category.

Stem	Leaves
0	
1	
2	
3	
4	[3.0]
5	[6.0]
6	[7.0, 9.0]
7	[8.0, 0.0, 8.0, 1.0, 2.0, 5.0, 7.0]
8	[8.0, 3.0, 4.0, 6.0, 2.0, 1.0, 2.0, 1.0]
9	[8.0, 7.0, 1.0, 4.0]

Table 2: A *stemplot* of a grade distribution.

Stemplots

Procedure:

- 1. Identify the approximate order of magnitude of the sample.
- 2. Within that order of magnitude, create \approx 10 stems, corresponding to the base-10 digits.
- 3. For each data point, call the non-most significant digits the *leaves* and drop the leaves in the category with the matching leaf.

Professor example: What is the stemplot of

[11, 22, 33, 44, 55, 66]

Stemplots

Procedure:

- 1. Identify the approximate order of magnitude of the sample.
- 2. Within that order of magnitude, create \approx 10 stems, corresponding to the base-10 digits.
- For each data point, call the non-most significant digits the leaves and drop the leaves in the category with the matching leaf.

Let's create a stemplot of:

- 1. Our ages in MATH080
- 2. My age and the rest of my department

(Stemplots lead in to the topic of histograms)

Histograms are a tool for measuring *probability distributions*. The inputs are the data points and the corresponding relative frequencies, or plain frequencies.

How many textbooks or books did you purchase for school last year? (Type in the chat).

- 1. Determine the bins, or binning
- 2. For each data point, drop it into the appropriate bin
- 3. Each time a measurement is dropped into a bin, the *count* increases by 1.
- 4. If a histogram displays plain frequencies, it is called *un-normalized*.
- 5. If a histogram displays relative frequencies, it is called *normalized*.

- 1. Histogram of books, by hand
- 2. Repeat with Excel/Calc

Practice with the FREQUENCY function in Calc/Excel:

=FREQUENCY(A1:A99; B1:B11)

Then press **control+shift+enter** to execute on arrays of data and bins. To *normalize*, input the relative frequencies, or divide frequecies by *N*. Assume the data is in C column:

=C1/N ...

For data that is appropriately "stationary," we can use histograms to estimate the mean *faster*, since we only have to loop over bins rather than every data sample. Let H_i represent the counts in a given bin, and i represent the bin sample. We have:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{M} i H_i \tag{1}$$

To obtain the mean in signal *amplitude*, you'll have to convert bin number to amplitude. **Professor example.**

When is a histogram appropriate? **Note**: There is a distinction between the *process or signal process* and the *the data*. Just because the data has a given \bar{x} and s does not imply that the signal process has or will continue to have the exact same values of μ and σ . The underlying process could be *non-stationary*.

Figure 1: Signal processes in (a) and (b) are considered non-stationary because one or both of μ and σ depend on time.

Which of the following pairs of number have the same stem?

- · A: 17 and 27
- B: 33 and 43
- · C: 16 and 11
- D: -1 and 1

How many *leaves* are there for the stems, given the data set? Data set: 67, 77, 72, 74, 90, 91, 94, 88, 82.

- Stems: 6, 7, 8, and 9
 - · A: 1, 3, 3, 2
 - B: 1, 3, 2, 3
 - · C: 1, 3, 3, 3
 - · D: 1, 2, 2, 3

Consider the following relative frequencies below. Is the corresponding histogram *normalized?*Relative frequencies: 0.1, 0.1, 0.25, 0.1, 0.1, 0.05

- · A: Yes
- В: No

What is the *mean* of the histogram data below?

Bins: 0, 2, 4, 6, 8, 10 Data: 10, 60, 20, 5, 1, 1

- · A: 0.98
- · B: 2.56
- · A: 4.11
- B: 10

Normalization - To convert all the frequencies to relative frequencies.

- Looking at fractions is helpful for *relative* questions about data. (Professor example).
- Makes calculating the mean simple, the idea of a weighted average. (Professor example).
- Summing a subset of bins is a probability, not a count. (Professor example).

Fall of	<10	10-19	20-29	30-39	40-49	50-99	≥100	Total
2010	42	121	91	37	8	2	2	303
2011	51	154	117	22	6	2	1	353
2012	60	173	123	29	13	2	1	401
2013	51	168	137	31	5	1	2	395
2014	66	172	136	23	9	4	2	412
2015	76	148	154	21	4	4	1	408
2016	92	180	133	14	6	3	1	429
2017	66	157	141	12	8	2	1	387
2018	52	203	162	13	1	11	0	442
2019	43	152	165	18	4	2	0	384

Figure 2: A table of class sizes at Whittier College.

- 1. In your notebook, create a normalized histogram of of the 50-99 column of Fig. 2.
- 2. For your histogram class size, what fraction of all classes of this size come from the years 2010-2014? What is the fraction that come from 2015 onwards?
- 3. What is the *mean* of the histogram?

Two-dimensional histograms. There's no reason to restrict to one dimension... (Professor: draw a 2D histogram of Fig. 2 below).

More on Time-Series Data

More on Time-Series Data

We also think of the left-most column as *time slices*, and then we can frame the rest of the data as a time-series.

Fall of	<10	10-19	20-29	30-39	40-49	50-99	≥100	Total
2010	42	121	91	37	8	2	2	303
2011	51	154	117	22	6	2	1	353
2012	60	173	123	29	13	2	1	401
2013	51	168	137	31	5	1	2	395
2014	66	172	136	23	9	4	2	412
2015	76	148	154	21	4	4	1	408
2016	92	180	133	14	6	3	1	429
2017	66	157	141	12	8	2	1	387
2018	52	203	162	13	1	11	0	442
2019	43	152	165	18	4	2	0	384

Figure 3: A table of class sizes at Whittier College.

Graphing time-series to look for trends. (Make a time-series of the class-size data below).

Locating the Center of the Data

Locating the Center of the Data

- 1. **Median** The data value that halves a sorted list of data
- 2. Mode The data value with the highest frequency
- 3. Mean The average using either definition
- 4. **Quartiles** The values Q_i that divide a sorted list into quarters of equal frequency
- 5. **IQR** $Q_3 Q_1$
- 6. **k-th Percentile** i = k/100(n + 1), where i is the index of the k-th percentile, and n is the number of data points in a sorted list
- 7. Percentile of a value (next slide)

Locating the Center of the Data

An algorithm for finding the percentile of a particular value:

- · Order the data from smallest to largest.
- x = the number of data values counting from the bottom of the data list up to but not including the data value for which you want to find the percentile.
- y = the number of data values equal to the data value for which you want to find the percentile.
- n = the total number of data.
- Calculate: $(x + 0.5y)/n \times 100$ and round to nearest integer.

The Spread of the Data

The mean, μ , and standard deviation, σ , of a data set $\{x_i\}$ are defined as

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{2}$$

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$$
 (3)

Octave commands:

```
x = randn(100,1);
mean(x)
std(x)
```

One nice theorem: The variance is the average of the squares minus the square of the average. Let $\langle x \rangle$ represent the average of the quantity or expression x. We have

$$\sigma_{\chi}^{2} = \langle \chi^{2} \rangle - \langle \chi \rangle^{2} \tag{4}$$

Proof: observe on board.

Note: There is a distinction between the process or signal process and the the data. Just because the data has a given μ and σ does not imply that the signal process has or will continue to have the exact same values of μ and σ . The underlying process could be non-stationary.

Figure 4: Signal processes in (a) and (b) are considered non-stationary because one or both of μ and σ depend on time.

A histogram is an object that represents the frequency¹ of particular values in a signal. For example, below is a histogram of 256,000 numbers drawn from a probability distribution:

Figure 5: The histogram contains counts versus sample values.

¹Careful: the word frequency refers to the number of occurences in the data, not a sinusoidal frequency.

Conclusion

Unit 0 Outline

- 1. Topics from Chapter 1: 1.1, 1.2, 1.3
 - · What is a statistic?
 - Probability examples
 - Data and sampling
- 2. Topics from Chapter 2: 2.1 2.4, 2.5 2.8
 - · Data visualization
 - · Location of the data in numerical space
- 3. Topics from Chapter 3: 3.1, 3.2, 3.3
 - Two rules of probability