Aula 7

Professores:

Lúcia M. A. Drummond Simone de Lima Martins

Conteúdo:

Representação de instruções

- Introdução
- Quantidade de operandos
- Modos de endereçamento

- Conjunto de instruções: instruções que o processador pode realizar diretamente
- Exemplo de instrução de máquina:

Instrução de máquina de um operando

Cód. de Operação

Operando

Cód. de Operação - indica o tipo da operação a ser realizada Operando - endereço do dado

(Fig. 8.1 do livro texto)

- Processadores projetados para realizar instruções muito simples
- Código de operação:
 - código que após ser decodificado durante o ciclo de execução permitirá que a UC emita os sinais necessários para se efetivar a seqüência de passos de realização da operação indicada
 - Quantidade de bits neste campo define o limite máximo de instruções que o processador pode executar
 - Exemplo: código de 6 bits, processador pode executar 64 instruções

 Operando: contém informação sobre o dado - tipo da informação sobre o dado - seu valor ou o endereço de memória onde localizá-lo.
 Podem existir um ou mais campos.

Exemplo:

C. Op. Op. 1 Op. 2 Op. 3

ADD Op. 1, Op. 2, Op. 3

(a) Instrução de 3 operandos (com memória)

C. Op.	Op. 1	Op. 2
--------	-------	-------

MOVE Op. 1, Op. 2

(b) Instrução de 2 operandos (com memória)

C. Op. R Op.

ADC R, Op.

(c) Instrução de 2 operandos, sendo um registrador

C. Op.	Ор.
--------	-----

JCXZ Op.

(d) Instrução de 1 operando (desvio para memória)

(Fig. 8.2 do livro texto)

- Representação de Instruções:
 - Quantidade de operandos
 - Modo de interpretação do valor armazenado no campo operando (modo de endereçamento do dado)

- Computadores com conjunto de instruções dos mais variados tipos e formatos
- Exemplo do formato de instrução do sistema SEAC de 1949.

C. Op. Operando 1 Operando 2 Operando 3 End. próx. instrução

Operando n - endereço do dado ou o próprio valor do dado

(Fig. 8.3 do livro texto)

- Computador com memória de 2K células e código de operação de 6 bits
- Endereço de 11 bits
- 4(operandos) x 11(bits de endereço) + 6(C. Op) = 50 bits
- Exemplo: ADD X,Y,Z,P
- (Z) ← (X) + (Y), onde P é o endereço da próxima instrução
- Essa instrução permitiria a execução de C = A + B
- Em linguagem Assembly: ADD A,B,C,P

Vantagens de muitos operandos:

- Completeza: instrução possui todos os operandos, dispensando até instruções de desvio incondicional
- Menor quantidade de instruções em um programa

Desvantagens:

- Grande ocupação de espaço de memória
- Nem toda instrução precisa de 3 operandos (Ex: Load, desvio)

- Tamanho de instruções:
 - Tamanho da memória
 - Tamanho e organização das células da MP
 - Velocidade de acesso
 - Organização do barramento de dados
- Economia de espaço x conjunto completo de instruções
- RISC
- Introdução do registrador CI (PC program counter)

Instruções com 3 operandos

Formato Básico:

C. Op. Operando 1	Operando 2	Operando 3
-------------------	------------	------------

(Fig. 8.4 do livro texto)

As instruções aritméticas podem ser do tipo:

ADD A,B,X	$(X) \leftarrow (A) + (B)$
SUB A,B,X	$(X) \leftarrow (A) - (B)$
MPY A,B,X	$(X) \leftarrow (A)x(B)$
DIV A,B,X	$(X) \leftarrow (A)/(B)$

Instruções com 3 operandos

Exemplo:

 $X = A^*(B+C^*D-E/F)$

Assembly correspondente:

MPY C,D,T1 ; multiplicação de C e D, resultado em T1

DIV E,F,T2 ; divisão de E por F, resultado em T2

ADD B,T1,X ; soma de B com T1, resultado em X

SUB X,T2,X ; subtração entre X e T2, resultado em X

MPY A,X,X ; multiplicação de A por X

Instruções com 3 operandos

Considerações:

- Operandos com endereços iguais desperdício de memória
- Número de instruções igual ao número de operações
- Raramente encontradas em conjunto de instruções dos processadores atuais
- Pelo exemplo anterior, a maioria das instruções tem 2 endereços (o outro é repetido)

Instruções com 2 operandos

ADD Op1, Op2	$(Op1) \leftarrow (Op1)+(Op2)$
SUB Op1, Op2	$(Op1) \leftarrow (Op1) - (Op2)$
MPY Op1, Op2	$(Op1) \leftarrow (Op1)x(Op2)$
DIV Op1, Op2	$(Op1) \leftarrow (Op1)/(Op2)$

O conteúdo de Op1 será destruído com o armazenamento do resultado da operação.

Salvamento de variável:

MOVE A,B
$$(A) \leftarrow (B)$$

Instruções com 2 operandos

Exemplo:

```
X = A^*(B+C^*D-E/F)
```

Assembly correspondente:

MPY C,D ; multiplicação de C e D, resultado em C

DIV E,F ; divisão de E por F, resultado em E

ADD B,C; soma de B com C, resultado em B

SUB B,E; subtração de B e E, resultado em B

MPY A,B ; multiplicação de A por B, resultado em A

MOVE X,A ; armazenamento do resultado final, A, em X

<u>Instruções com 1 operando</u>

ADD Op	$ACC \leftarrow ACC+(Op)$
SUB Op	$ACC \leftarrow ACC\text{-}(Op)$
MPY Op	$ACC \leftarrow ACC(Op)$
DIV Op	$ACC \leftarrow ACC/(Op)$

O acumulador (ACC) é empregado como operando implícito e para guardar o resultado da operação.

Duas novas instruções:

LDA Op
$$ACC \leftarrow (Op)$$

STA Op $(Op) \leftarrow ACC$

Instruções com 1 operando

Para não destruir valores de variáveis:

$$X = A^*(B+C^*D-E/F)$$

Assembly correspondente:

LDA C

MPY D

STA X

LDA E

DIV F

STA T1

LDA B

ADD X

SUB T1

MPY A

STA X

Tamanho e Consumo de Tempo de Execução de Instruções de 3, de 2 e de 1 Operando

Instrução de 3 operandos - C. Op. = 8 bits + 3 operandos de 20 bits cada um = 68 bits

Ciclos de memória = 4 (um para buscar a instrução e

3 para os operandos)

Instrução de 2 operandos - C. Op. = 8 bits + 2 operandos de 20 bits cada um = 48 bits

Ciclos de memória = 4 (um para buscar a instrução e

3 para os operandos)

Instrução de 1 operando - C. Op. = 8 bits + 1 operando de 20 bits = 28 bits

Ciclos de memória = 2 (um para buscar a instrução e
1 para o operando)

(Tabela 8.1 do livro texto)

Programas Assembly para Solucionar a Equação: X = A * (B + C * D - E / F)

Com instruções de 3 operandos		Com instruções de 2 operandos (sem salvamento	Com instruções de 2 operandos) (com salvamento)	Com instruções de 1 operando
MPY DIV ADD SUB MPY	C, D, T1 E, F, T2 B, T1, X X, T2, X A, X, X	MPY C, D DIV E, F ADD B, C SUB B, E MPY A, B MOVE X, A	MOVE X, C MPY X, D MOVE T1, E DIV T1, F ADD X, B SUB X, T1 MPY X, A	LDA C MPY D STA X LDA E DIV F STA T1 LDA B ADD X SUB T1 MPY A STA X
Espaço: 340 bits Tempo: 20 acessos		Espaço: 288 bits Tempo: 24 acessos	Espaço: 336 bits Tempo: 28 acessos	Espaço: 308 bits Tempo: 22 acessos

(Tabela 8.2 do livro texto)

Considerações:

- Instruções de poucos operandos ocupam menos espaço de memória e tornam o projeto do processador mais simples
- O programa gerado com poucos operandos pode ser maior
- Instruções de 1 operando são simples e baratas. Mas o uso de 1 registrador pode reduzir a flexibilidade e velocidade de processamento
- Instruções com mais de 1 operando podem usar endereços de memória e registradores em seus formatos

Considerações:

- O endereçamento de instrução é realizado pelo contador de instruções (CI) e o ciclo de instrução é iniciado pela transferência da instrução para o registrador de instrução (RI)
- Toda instrução consiste em uma ordem codificada para a UCP realizar uma operação sobre um dado (valor numérico, caractere alfabético ou endereço)
- Localização dos dados pode estar explicitamente indicada na própria instrução através de CAMPO DE OPERANDO, ou implicitamente (armazenado no ACC)

- Existem várias formas de localizar o dado: modos de endereçamento
 - Imediato
 - Direto
 - Indireto
 - Por registrador
 - Indexado
 - Base mais deslocamento

Modo Imediato

- Método mais simples: indicar o próprio valor no campo operando
- O dado é transferido da memória juntamente com a instrução
- Útil para inicialização de contadores, operação com constantes

Modo Imediato

Desvantagens:

- Limitação do campo de operando reduz o valor máximo do dado a ser manipulado
- Programas repetidamente executados com valores diferentes de variáveis em cada execução, acarretariam o trabalho de alteração do campo operando a cada execução

Modo Imediato

Exemplo 8.1:

C. Op. / Operando (4 bits) / (8bits)

JMP Op.

C. Op. = 1010 = hexadecimal A

Instrução: 101000110101 ou A35 (C. Op. = A e Operando = 35)

Armazenar o valor 35 no Cl

Modo Imediato

Exemplo 8.2:

C. Op. / R / Operando(4 bits) / (4 bits) / (8 bits)

MOV R, Op. C. Op. = 0101 = hexadecimal 5

Instrução: 0101001100000111 ou 5307 (C. Op. = 5, R = 3 e Operando = 07) Armazenar o valor 07 no registrador 3 (R3)

Modo Direto

Operando indica o endereço de memória onde se localiza o dado

Considerações:

- Modo simples requer apenas 1 acesso à memória
- Mais lento que o modo imediato
- Com o aumento do tamanho de memória, são necessários muitos bits para endereçamento direto

Modo Direto

Exemplo 8.3:

a) C. Op. / Operando (4 bits) / (8 bits)

LDA Op.

C. Op. = 7

Instrução: 73B (C. Op. = 7 e Operando = 3B)

Após a execução da instrução, o ACC conterá o valor 05A

Modo Direto

Exemplo 8.3:

b) C. Op. / Op.1 / Op.2(4 bits) / (8 bits) / (8 bits)

ADD Op.1, Op.2

C. Op. = B

Instrução: B5C3B (C. Op. = B, Op.1 = 5C e Op. 2 = 3B)

Após a execução da instrução, o endereço 5C conterá o valor 15D

Modo Indireto

- O operando representa o endereço de uma célula, cujo conteúdo é outro endereço de célula
- Requer dois acessos à memória para se obter o dado
- Útil para acessar dados armazenados contiguamente na memória, como vetores.

Modo Indireto

Exemplo 8.4:

C. Op. / Operando (4 bits) / (8 bits)

74 05D 77 1A4

LDA Op.

C. Op. = 4

Instrução: 474 (C. Op. = 4, Op. = 74)

Após a execução da instrução, o valor 1A4 estará armazenado no ACC

<u>Observações</u>

- Há dois métodos de indicação do modo de endereçamento das instruções:
- O código de operação estabelece não só o tipo da instrução como também o modo de endereçamento
- A instrução possui um campo específico para indicar o modo de endereçamento

	C. Op.	Modo	end.	Operando	00 - Direto (DI) 01 - Imediato (IM)
	4	2		10	10 - Indireto (lD) ´ 11 - Não usado
C. C	•	DA IM		A13B	101000100111011
		LDA DI LDA ID		A43B A83B	101010000111011 101100000111011

(Fig. 8.6 do livro texto)

<u>Observações</u>

Modo de endereçamento	Definicao		Desvantagens
Imediato O campo operando contém o dado.		Rapidez na execução da instrução.	Limitação do tamanho do dado. Inadequado para o uso com dados de valor variável.
Direto	O campo operando contém o endereço do dado.	Flexibilidade no acesso a variáveis de valor diferente em cada execução do programa.	Perda de tempo, se o dado é uma constante.
Indireto	O campo operando contém o endereço do endereço do dado.		Muitos acessos a MP para execução.

(Fig. 8.7 do livro texto)

<u>Observações</u>

- 2) Em relação aos 3 modos de endereçamento temos:
- O modo imediato n\u00e3o requer acesso \u00e0 mem\u00f3ria principal para buscar o dado, o modo direto requer um acesso, o modo indireto requer dois acessos
- Em relação ao tempo, modo imediato é mais rápido, seguido de modo direto e por último o modo indireto

Endereçamento por Registrador

- Semelhante aos modos direto e indireto, mas o endereço de memória é substituído por um endereço de registrador da UCP
- Menor número de bits na instrução
- Dado armazenado em um meio mais rápido

Endereçamento por Registrador

Comparação:

Do I = 1 to 100

Read A,B

X = A + B

End

Endereçamento por Registrador

Modo de endereçamento direto:

```
GET L
                          ; ler valor do "loop" (no exemplo o valor é igual a 100)
 LDI 0
                          : ACC \leftarrow 0
 SUBM L
                          ; ACC \leftarrow ACC - (L) (no exemplo valor é 100)
In STA I
                          ; (I) \leftarrow ACC (inicialmente I = -100)
 JZ Fim
                          ; se ACC = 0 vá para Fim
 GET A
                          ;ler valor do dado para o endereço A
 GET B
                          ;ler valor do dado para o endereço B
 LDA A
                          ACC \leftarrow (A)
 ADD B
                          ACC \leftarrow ACC + (B)
 STR X
                          (X) \leftarrow ACC
 LDA I
                          ;ACC \leftarrow (I)
                          ;ACC ← ACC + 1 (no exemplo estamos fazendo I+1)
 INC
                          ;vá para In
 JMP In
Fim HLT
                          ;parar
```

Endereçamento por Registrador

Modo de endereçamento direto:

Gastam-se 200 ciclos de memória apenas para carregar o acumulador com A e armazenar o valor do acumulador em X

Endereçamento por Registrador

Modo de endereçamento por registrador:

```
LDI R1, 0 ; R1 \leftarrow 0
```

LDI R2,100 ; $R2 \leftarrow 100$

In SUBR R1,R2 ; $(R1) \leftarrow (R1) - (R2)$

JZ R,Fim; se R1 = 0 vá para Fim

GET A ;ler valor do dado para o endereço A

GET B ;ler valor do dado para o endereço B

LDA A ;ACC \leftarrow (A)

ADD B ;ACC \leftarrow ACC + (B)

STR X ;(X) \leftarrow ACC

INC R1 ;(R1) \leftarrow (R1) + 1 (no exemplo estamos fazendo I+1)

JMP In ;vá para In

Fim HLT ;parar

Endereçamento por Registrador

As instruções:

LDI R1,1, LDI R2, 100 SUBR R1, R2 INC R1

Não acessam a memória principal

Não há vantagem em fazer MP ← R ← UAL nos casos dos valores A e B (não reduz ciclos de memória)

Endereçamento por Registrador

Economia de bits

Instruções com uso de registradores:

```
C.Op. / R1 / R2
8 bits / 4 bits / 4 bits = 16 bits
```

Instruções com acesso a 64K células de MP:

Endereçamento por Registrador

Há duas maneiras de empregar o modo de endereçamento por registrador:

- Modo por registrador direto
- Modo por registrador indireto

Ocorre dificuldade em se definir quais dados serão armazenados em registradores e quais permanecerão em MP

Endereçamento por Registrador

Dois tipos de instruções que usam o modo registrador:

```
C. Op.
                                          C. Op.
                                                               Operando
               R1
                           R2
                                                        R
                (a)
                                                       (b)
           R1, R2
(a) ADD
                     (R1) \leftarrow (R1) + (R2)
(b) ADR
           R, Op.
                            ←(R) + (Op.) ou (R)
                                                      (R)
                                                             \leftarrow (R) + Op.
(a) LDR
                            ◄ ((R2))
           R1, R2
                     (R1)
```

(Fig. 8.8 do livro texto)

Modo Indexado

- Permite manipular endereços para facilitar acesso a vetores
- O endereço do dado (elemento do array) relaciona-se com o seu índice
- O endereço do dado é a soma do valor do campo operando (fixo) e de um valor armazenado em um dos registradores da UCP (registrador índice)

Modo Indexado

$$C(I) = A(I) + B(I)$$

Modo Indexado

Usando o Modo Direto sem alterar os bits que descrevem as instruções

```
LDA A(1)
ADD B(1)
STA C(1)
LDA A(2)
ADD B(2)
STA C(2)
-----
LDA A(100)
ADD B(100)
STA C(100)
HLT
```

(Fig. 8.9 do livro texto)

Instruções para cada uma das 100 operações de soma a serem executadas

Modo Indexado

Usando o Modo Direto com alteração dinâmica do conteúdo de instruções

Programa Assembly		Programa em linguagem de máquina	
Т	LDA A(1)	11A00	
1	ADD B(1)	21A64	
2	STA C(1)	31AC8	
	INC T	8103A	
	INC 1	8103B	
	INC 2	8103C	
	DCR N	919FF	
	JNZ T	D103A	
	END	F0000	

Modo Indexado

Usando o Modo Direto com alteração dinâmica do conteúdo de instruções

Formato d	Formato da instrução				
	·	103A	11A00		
C. Op.	Operando	103B	21A64		
4 bits	16 bits	Cont. do trecho do progr.			
ADD Op. STA Op. INC Op.	- C. Op. = 1 - C. Op. = 2 - C. Op. = 3 - C. Op. = 8 - C. Op. = 9	(N) 19FF A(1) 1A00 A(2) 1A01 A(3) 1A02			
•	- C. Op. = C - C. Op. = D Op. = F	B(1) 1A64 B(2) 1A65			
		C(1) 1AC8 C(2) 1AC9			

(Fig. 8.11 do livro texto)

Modo Indexado

Usando o Modo Indireto

Fo	Formato da instrução				
			103A		
	C. Op.	Operando	103B		
	4 bits	16 bits	_		
			1503	1A00	
_	1000		1504	1A64	Ponteiros para área de dados
Т	LDA A ADD B		1505	1AC8	area de dados
	STA C				
	INC A INC B				
	INC D		(N) 19FF		
	DCR N		A(1) 1A00		
	JNZ T HLT				
	1161		B(1) 1A64		
			B(1) 1704		
			C(1) 1 A C 9		
			C(1) 1AC8		
				ı	

(Fig. 8.12 do livro texto)

Modo Indexado

Usando o Modo Indexado

```
MVI (R4), 1
MVI (R2), 100
T LDA (R4), 19FF
ADD (R4), 1A63
STA (R4), 1AC7
INC (R4)
DCR (R2)
JZR (R2), T
HLT
```

(Fig. 8.13 do livro texto)

Modo Indexado

UCP

UAL

ACC

Rx

Assumimos que um dos 16 reg. da UCP será usado como Rx. Seu endereço consta do campo R da instrução.

C. Op.	R	Operando		MP
4 bits	4	16 bits	103/	A
				"
				ıı ı
0 - MVI Rx	a, Op.	(Rx) ← Op.	A(1) 1A00	. "
1 - LDA R		ÀCC ← (Op. ·	+(Rx))	'
2 - STA R		(Op. +(Rx)) ◄		
	•	,,		"
3 - ADD R	, I	ACC ←ACC	, , ,	
4 - JMP Op.		CI ← Op.	B(1) 1A64	•
5 - JZR Rx	ς, Op.	Cl ← Op., se	(Rx) = 0	"
6 - DCR R	X	(Rx) ← (Rx) -	1	ıı ı
7 - INC Rx	•	(Rx) ← (Rx) +	4	_ "
F - END	•	Parar	C(1) 1AC	³
I - LIND		гагаг		

(Fig. 8.14 do livro texto)

Modo Base Mais Deslocamento

- Tem características semelhantes ao modo indexado endereço = deslocamento + registrador base
- Registrador base fixo e variação do deslocamento
- Redução do tamanho da instrução

Modo Base Mais Deslocamento

Sua escolha decorre de:

- Durante a execução de uma grande quantidade de programas, as referências as células de memória, normalmente são seqüenciais
- A maioria dos programas ocupa um pequeno espaço da MP disponível
- Redução do tamanho da instrução

Modo Base Mais Deslocamento

Exemplo:

- Campo de registrador base de 4 bits (16 registradores) e campo de deslocamento de 12 bits = 16 bits
- Processador pode endereçar 16 M 24 bits
- Por registrador base pode-se endereçar 4096 bytes (4 K)
- Economia de 8 bits

Modo Base Mais Deslocamento

Diferenças com o modo indexado:

- Indexação é empregada quando se deseja acessar diferentes dados com alteração do endereço por incremento ou decremento do registrador índice
- Quando a modificação do endereço é realizada para relocação do programa, basta uma única alteração no registrador base

Modo Base Mais Deslocamento

Diferenças com o modo indexado:

- Vários dados são acessados com diversos valores de registrador índice e um único valor de campo operando
- Vários dados são acessados com único valor de registrador base e valores diferentes no campo deslocamento

Modo Base Mais Deslocamento

(Fig. 8.15 do livro texto)

Representação de Instruções

Exercícios

Todos os exercícios do Capítulo 8 do Livro Texto

