

Definition (Homomorphism of semigroups)

Let $[S, \cdot]$ and [T, *] be two semigroups. A mapping (function) θ : $[S, \cdot] \to [T, *]$ is called a morphism (or homomorphism) of two semigroups $[S, \cdot]$ and [T, *], if $\forall s_1, s_2 \in S$, $\theta(s_1 \cdot s_2) = \theta(s_1) * \theta(s_2)$.

Definition (Homomorphism of monoids)

Let $[S, \cdot, e_S]$ and $[T, *, e_T]$ be two monoids. A mapping (function) θ : $[S, \cdot, e_S] \to [T, *, e_T]$ is called a morphism (or homomorphism), if the following conditions are met:

- (i) $\forall s_1, s_2 \in S$, $\theta(s_1 \cdot s_2) = \theta(s_1) * \theta(s_2)$.
- (ii) $\theta(e_S) = e_T$, where e_S and e_T denote the identity elements in the monoids $[S, \cdot, e_S]$ and $[T, *, e_T]$, respectively.

Definition (Homomorphism of groups)

Let $[G, \cdot]$ and [G', *] be two groups. A mapping (function) $\mu : [G, \cdot] \to [G', *]$ is called a morphism (or homomorphism), if the following conditions are met:

- ullet (i) $orall g,g'\in G$, $\mu(g\cdot g')=\mu(g)*\mu(g')$.
- (ii) $\mu(e_G) = e_{G'}$, where e_G and $e_{G'}$ denote the identity elements in the groups $[G, \cdot]$ and [G', *], respectively.
- (iii) $[\mu(g)]^{-1} = \mu(g^{-1}), \forall g \in G$.

Definition

Let g be a homomorphism from a structure $[X, \cdot]$ to another structure [Y, *].

- If $g: X \to Y$ is onto (surjective), then g is called an **epimorphism**.
- If g: X → Y is one-one (injective), then g is called an monomorphism.
- If $g: X \to Y$ is one-one (injective) and onto (surjective) (that is, g is bijective), then g is called an **isomorphism**.
- If $g: X \to Y$ is called an **automorphism**, if X = Y and g is a bijection.

Theorem

Let $[G, \cdot]$ and [G', *] be two groups. A mapping (function) $\mu : [G, \cdot] \to [G', *]$ is called a morphism (or homomorphism) of the groups $[G, \cdot]$ and [G', *] if and only if

$$\mu(g\cdot g')=\mu(g)*\mu(g'), orall g, g'\in G.$$

Example

Let *G* be the group of non-zero real numbers under the multiplication operation. Determine whether the following functions are morphisms or not:

- (i) $\phi: G \to G$, where $\phi(x) = x^2$, for all $x \in G$.
- (ii) $\psi : G \to G$, where $\psi(x) = 2^x$, for all $x \in G$.

Theorem

Let H be a normal subgroup of G. Then, the mapping $f: G \to G/H$, f(g) = [g], is a group epimorphism. Here, [g] denotes a left (right) coset of G relative to H and it is defined by $[g] = g \cdot H, \forall g \in G$, with respect to the left coset operation.

Kernal of group homomorphism

Definition

The **kernal** of a group homomorphism is the set of domain elements that is mapped onto the identity element in the range.

If $f: G \to G'$ be a group homomorphism and $K \subseteq G$ is the kernal of f, then $f(K) = \{e'_G\}$, where G and G' are groups and $e_{G'}$ is the identity in G'. In other words, $f(x) = e_{G'}$, $\forall x \in K$.

Kernal of group homomorphism

Theorem (Fundamental theorem of group homomorphism)

Let $f: G \to G'$ be any group homomorphism, where G and G' be two groups. Then, the kernal of the homomorphism f is a **normal** subgroup of G.