ECE 340: Semiconductor Electronics

Chapter 2: Atoms and Electrons

Prof. Wenjuan Zhu

Outline

- Experimental observation of quantization
 - Photoelectric effect
 - De Broglie relationship
 - Atomic spectra
- Quantum mechanics
- Atomic structure and periodic table

Photoelectric effect

Maximum energy of ejected electrons: $E_m = hv - q\varphi$

$$E_m = hv - q\varphi$$

h: plank constant

v: light frequency $q\varphi$: work function

Light has both wave and particle nature. Light energy is quantized (called photon):

$$E = hv = \frac{h}{2\pi} 2\pi v = \hbar \omega$$

 \hbar is reduced plank constant, ω is angular frequency

Albert Einstein

Electromagnetic spectrum

De Broglie relationship and dispersion relationship

- Particles of matter (such as electrons) could manifest wave character.
- A particle of momentum p=mv has a wavelength given by:

Wave-particle duality are valid for situation and objects.

$$\lambda = h/p$$
 De Broglie relationship

$$\Rightarrow p = \frac{h}{\lambda} = \frac{h}{2\pi} \frac{2\pi}{\lambda} = \hbar k \qquad (k \text{ is angular wavenumber } k = \frac{2\pi}{\lambda})$$

• Dispersion relationship: relation between frequency and wavelength (or energy and momentum)

For photons:

$$v = \frac{c}{\lambda}$$
 $\Rightarrow E = hv = h\frac{c}{\lambda} = cp$

Hydrogen atom emission spectrum

• Light emission spectrum of hydrogen contains a series of discrete lines instead of a continuous distribution.

Bohr's Model

Postulate:

- 1. Electron moves in circular orbits where it does not radiate (stationary state)
- 2. Radiation emitted in transition between stationary states

$$hv = E_2 - E_1$$

3. Orbital angular momentum quantized

$$P_{\theta} = n\hbar, \qquad n = 1,2,3,...$$

Bohr model:
$$E_H = -\frac{mq^4}{2(4\pi\varepsilon\hbar\mathbf{n})^2} = -\frac{13.6}{\mathbf{n}^2} \,\mathrm{eV}$$

Main Ideas of Quantum mechanics

- Use wave mechanics Schrödinger equation
- Based on three essential postulates:
 - Each particle in the system is defined by a wavefunction. The wavefunction and its space derivative are continuous, finite and single valued.
 - We must express the normal classical quantities with the new quantum mechanical operators.

Classical variable	Quantum operator
\boldsymbol{x}	\boldsymbol{x}
f(x)	f(x)
p(x)	$\frac{\hbar}{}$ $\frac{\partial}{}$
	$j \partial x$
E	$-\frac{\hbar}{2} \frac{\partial}{\partial x}$
	$j \partial t$

Schrödinger equation

Classical equation for the energy of a particle:

$$\frac{P^2}{2m}$$
+V=E

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi$$

Potential well:
$$V(x)=0$$
, $0 \le x \le L$
 $V(x)=\infty$, $x \le 0$ or $\ge L$

Particle will have discrete, separated energy levels:

$$E_n = \frac{n^2 \hbar^2 \pi^2}{2m\alpha^2}$$
 $n=1, 2, 3, ...$

Hydrogen Atom

Spherical coordinate system

Columbic potential

The wavefunction for the hydrogen atom is a solution of the Schrodinger equation in three dimensions for a Columbic potential field.

$$E_H = -\frac{mq^4}{2(4\pi\varepsilon\hbar\mathbf{n})^2} = -\frac{13.6}{\mathbf{n}^2} \text{ eV} \quad \text{n=1, 2, 3...}$$

Quantum number selection rule

 Quantum number: the sets of numerical values which give acceptable solutions to the Schrödinger wave equation for the Hydrogen atom

	Symbo		
Name	1	Orbital meaning	Values
principal quantum			
number	n	energy shell	n = 1, 2, 3,
azimuthal quantum		subshell (shape of	
number (angular		the sublevel	$\ell = 0, 1, 2, (n-1)$
momentum)	l	orbital)	1)
magnetic quantum			
number, (projection		spacial orientation	
of angular		of the sublevel	$m = -\ell,, -1, 0, 1,$
momentum)	m	orbital	ℓ
spin projection		spin of the	
quantum number	S	electron	$S = -\frac{1}{2}, \frac{1}{2}$

Pauli exclusion principle and allowed states

- Pauli exclusion principle: no two electrons in an interacting system can have the same set of quantum number n, l, m, and s.
- Quantum numbers and allowed states:

n	ı	m	s/h	Allowable states in subshell	Allowable states in complete shell	
1	0	0	$\pm \frac{1}{2}$	2	2	
2	0	0	$\pm \frac{1}{2}$	2		
	1	-1 0 1	$\pm \frac{1}{2} \\ \pm \frac{1}{2} \\ \pm \frac{1}{2}$	6	8	
3	0	0	$\pm \frac{1}{2}$	2		
	1	-1 0 1	$\pm \frac{1}{2} \\ \pm \frac{1}{2} \\ \pm \frac{1}{2}$	6		
	2	-2 -1 0 1 2	$ \begin{array}{c} \pm \frac{1}{2} \\ \pm \frac{1}{2} \\ \pm \frac{1}{2} \\ \pm \frac{1}{2} \\ \pm \frac{1}{2} \end{array} $	10	18	

Electronic Configuration of Elements

Atomic number (Z)		$ \mathbf{n} = 1 \\ \mathbf{l} = 0 $ 1s	2 0 1 2s 2p	3 0 1 2 3s 3p 3d electrons	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 2	H He	1 2			$\begin{array}{c} 1s^1 \\ 1s^2 \end{array}$
3 4 5 6 7 8 9 10	Li Be B C N O F	helium core, 2 electrons	1 2 2 1 2 2 2 3 2 4 2 5 2 6		$ \begin{array}{c} 1s^2 \ 2s^1 \\ 1s^2 \ 2s^2 \\ 1s^2 \ 2s^2 \ 2p^1 \\ 1s^2 \ 2s^2 \ 2p^2 \\ 1s^2 \ 2s^2 \ 2p^3 \\ 1s^2 \ 2s^2 \ 2p^4 \\ 1s^2 \ 2s^2 \ 2p^5 \\ 1s^2 \ 2s^2 \ 2p^6 \end{array} $
11 12 13 14 15 16 17	Na Mg Al Si P S Cl	neon co 10 electro		1 2 2 1 2 2 2 3 2 4 2 5 2 6	[Ne] $3s^1$ $3s^2$ $3s^2 3p^1$ $3s^2 3p^2$ $3s^2 3p^3$ $3s^2 3p^4$ $3s^2 3p^5$ $3s^2 3p^6$

Electronic structure and energy levels in a silicon atom

Orbital model of a Si atom

Energy levels in the Coulomb potential

Si: $1s^22s^22p^63s^23p^2$

- There are 4 valence electrons of Si (two in 3s states and two in 3p states).
- A Coulomb potential varies as 1/r as a function of distance from the nucleus. Similar to "particle in a box", the energy level is discrete.

Summary

- Wave-particle duality:
 - Light with frequency v has photon energy E = hv
 - Particles with momentum p has a wavelength $\lambda = h/p$
- The energy level in atom is discrete. The states of the electron can be identified using four quantum numbers.
- Quantum number selection rule:
 - n=1, 2...; $\ell = 0$, ..n-1; $m = -\ell$, ...0, ... ℓ ; $s = \pm \frac{1}{2}$
- Pauli exclusion principle: no two electrons can have the same set of quantum number
- Silicon has 4 valence electrons.