FH Aachen

Fachbereich Elektrotechnik und Informationstechnik

Bachelorarbeit

Prognose der Anwesenheit von Personen für die Gebäudeautomatisierung mittels Umweltsensordaten

Alexander Loosen Matr.-Nr.: 3167353

Referent: Prof. Dr-Ing. Ingo Elsen

Korreferent: Prof. Dr.-Ing. ...

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde eingereicht worden.

Aachen, 4. März 2022

Geheimhaltung - Sperrvermerk

Die vorliegende Arbeit unterliegt bis [Datum] der Geheimhaltung. Sie darf vorher weder vollständig noch auszugsweise ohne schriftliche Zustimmung des Autors, des betreuenden Referenten bzw. der Firma [Firmenname und -sitz] vervielfältigt, veröffentlicht oder Dritten zugänglich gemacht werden.

Inhalt

1.	Einl	eitung	4
	1.1.	Motivation und Aufgabenstellung	4
	1.2.	Vorgehensweise	5
2.		ndlagen	6
	2.1.	Machine Learning	6
		2.1.1. Random Forest Classifier	
		2.1.2. Support Vector Classifier	
		2.1.3. Gradient Boosting Classifier	
		2.1.4. Neuronale Netzwerke	
	2.2	2.1.5. Long Short Term Memory	
	2.2.	CO2 als Anwesenheitsindikator Outlier Detection	
	2.4.		
	2.5.	Datenbeschaffung und -Vorbereitung	
		2.5.1. Gruppierung	
		2.5.2. Zyklische Codierung	14
		2.5.3. Deltas und Shift-Werte	14
3.	Кар	itel 3	15
4.	Zus	ammenfassung und Ausblick	17
Qι	ıeller	nverzeichnis	18
ΑŁ	kürz	ungsverzeichnis	19
ΑŁ	bildu	ungsverzeichnis	20
Та	belle	nverzeichnis	21
Ar	hanç		21
Α.	Que	llcode	22
В.	Roh	datenvisualisierungen	23

1. Einleitung

Gebäudeautomatisierung bezeichnet die automatische Steuerung und Regelung von Gebäudetechnik wie Heizung, Lüftung oder Beleuchtung. Während sie bisher hauptsächlich für die Optimierung der Energieeffizienz von gewerblichen und öffentlichen Gebäuden genutzt wurde, welche in Zuge solcher Optimierungsschritte als "Smart Buildings" bezeichnet werden, rückt sie in den letzten Jahren zunehmend unter dem Begriff "Smart Home" auch in den privaten Bereich. Die beiden Begriffe stehen in den letzten Jahren so im Vordergrund, weil eine Verbesserung der Energieeffizienz durch bauphysikalische Maßnahmen, wie verminderte Wärmeverluste durch bessere Isolation, an ihre Grenzen gestoßen sind.

Zur weiteren Steigerung der Energieeffizienz ist es also nötig, die Gebäudetechnik automatisch anzusteuern, sodass sog. Performance-Gaps vermieden werden. Performance-Gaps stellen eine Diskrepanz im Energieverbrauch eines Gebäudes zwischen einem theoretischen Soll-Wert zu einem tatsächlichem Ist-Wert dar.

1.1. Motivation und Aufgabenstellung

Für nahezu alle Bereiche der Gebäudeautomatisierung stellt die Anwesenheit von Personen eine zentrale Variable dar. Da die direkte Messung von Anwesenheit über z.B. Infrarotsensoren nicht verlässlich und rechtlich problematisch ist, soll in dieser Arbeit untersucht werden, inwiefern Machine-Learning Algorithmen genutzt werden können, um eine genaue Erwartung über die Anwesenheit von Personen anhand von CO2-Werten in der Raumluft zu treffen.

Die Motivation der Optimierung der Gebäudeautomatisierung exisitert, da ein steigender CO2-Gehalt der Raumluft nachweislich mit einer Abnahme der menschlich kognitiven Leistung einhergeht. Mehrere Studien konnten belegen, dass sowohl sprachliche als auch logisch- mathematische Fähigkeiten abnehmen, sobald der CO2-Gehalt der Raumluft bestimmte Werte überschreitet.

Um eine angemessene Datengrundlage zu schaffen, wurden in diversen Büro-Räumen der FH Aachen Temperatur-, Luftfeuchtigkeits-, Infrarot- und CO2-Sensoren angebracht, deren Messungen kontinuierlich auf einer Datenbank gespeichert wurden. Der Zeitraum der Messwerte begann Mitte 2021. In allen Räumen sind täglich ein oder mehrere Personen im Rahmen eines ca. 8 stündigen Arbeitstages anwesend, weshalb die Temperatur-, Luftfeuchtigkeits- und CO2-Werte als aussagekräftige Indikatoren für menschliche Präsenz angesehen werden können. Es gab keine Einschränkungen hinsichtlich dessen, welche konkreten Machine-Learning Algorithmen benutzt werden sollten.

Als Programmiersprache für das Projekt wurde Python gewählt. Python ist wegen seiner umfassenden Machine-Learning Bibliotheken und einfachen Auswertungstechniken anhand von z.B. Graphen und Statistiken gut für diesen Anwendungsfall geeignet.

1.2. Vorgehensweise

Das Projekte beschäftigte sich im Schwerpunkt mit den folgenden Arbeitsschritten:

- Datenbeschaffung durch Datenbankzugriffe per SQL
- Analyse und Vorbereitung der Daten (Pre-Processing)
- Trainieren von Machine-Learning Models anhand der vorbereiteten Datensets
- Ergebnisauswertung durch Gegenüberstellung verschiedener Datensets und Models

Da es zwischen allen verfügbaren Datensets der einzlnen Räume und Machine-Learning-Models eine Vielzahl an Kombinationsmöglichkeiten gibt, war es ein Anspruch der Projektarbeit, ein möglichst übersichtliches, gut gekapseltes Python Programm zu erstellen, mit dem man einfach und schnell verschiedene Datensets verarbeiten und mit einer dem Forschungszweck angemessenen Anzahl von Machine-Learning Models auszuwerten. Um einen Vergleich der Ergebnisse zu ermöglichen, sollen diese klar und verständlich dargestellt werden. Da nicht bei allen Algorithmen die gleichen Leistungsindikatoren genutzt werden, sollen hauptsächlich nur jene Indikatoren betrachtet werden, die bzgl. aller Algorithmen auch gleiche Bedeutung haben. Falls Model- spezifische Leistungsindikatoren als besonders Erkenntnisreich erachtet werden, wird dies in dieser Arbeit angemerkt.

2. Grundlagen

2.1. Machine Learning

Grundsätzlich beschreibt Machine Learning das Entwickeln mathematischer Modelle zur statistischen Auswertung von Daten. Dabei wird dem Modell anhand von Daten zu einem bestimmten Sachverhalt beigebracht, in einem Datenset Schemata zu erkennen, womit sich eine Erwartung über die Umstände des Datensets treffen lässt. Beispielsweise könnte ein solches Model aus einem Datenset mit der aktuellen Jahreszeit, Uhrzeit und Position der Sonne am Himmel trainiert werden, sodass es auch schließlich in einem anderen Datenset aus Jahreszeit und Position der Sonne Rückschlüsse auf die Uhrzeit treffen kann. Als Vorbild für diesen "Lernvorgang" dient das menschliche Gehirn, welches ebenfalls versucht zwischen bestimmten Input-Parametern wie z.B. der Form und Farbe eines Gegenstandes eine Beziehung herzustellen, um das beobachtete Objekt in Zukunft schneller kategorisieren zu können.

Da eine Vielzahl von effektiven Machine Learning Algorithmen existiert, ist es essenziell, sich mit den Stärken und Schwächen einzelner Herangehensweisen zu befassen.

Im Wesentlichen kann Machine Learning in zwei Unterkategorien unterteilt werden:

- Supervised Learning
- Unsupervised Learning

Supervised Learning bedeutet zwischen bestimmten Feldern eines Datensets eine Beziehung zu einem sog. Label herzustellen, welches als eine Art Ergebnis aus den Eingabewerten gesehen werden kann. Ein so traniertes Model kann dann neue, ihm vorher unbekannte Datensets, mit einem Label versehen - etwa wie in dem o.g. Beispiel wo Jahreszeit und Sonnenposition die Eingabewerte und die Uhrzeit das Label darstellen. Der Begriff "supervised" ergibt sich daraus, dass das Datenset, mit dem das Model traniert wird, diese Labels gegeben hat, sodass das Modell sich bei jedem Schritt des Lernvorgangs selbst korrigieren kann, falls eine Fehleinschätzung getroffen wurde. Bei einer sog. "Klassifizierung" sind diese Labels fest vorgegeben, während sie in der "Regression" kontinuierlicher Natur sind. Im Kontext dieser Arbeit wäre das Ergebnis einer Klassifizierung eine "1" für Anwesenheit und eine "0" für Abwesenheit, während das Ergebnis einer Regression eine Wahrscheinlichkeit auf Anwesenheit zwischen 0.0 und 1.0 darstellen würde.

Beim "Unsupervised Learning" versucht das Modell ohne Referenz zu einem bestimmten Label, Zusammenhänge zwischen bestimmten Feldern des Datensets herzustellen. Solche Modelle arbeiten vorrangig mit "Clustering" und "Dimensionality Reduction". "Clustering"-Algorithmen versuchen ein Datenset in kleinere Bereiche einzuteilen und

"Custering -Algorithmen versuchen ein Datenset in kleinere Bereiche einzuteilen und so aus den Feldern des Datensets bestimmte Abhängigkeiten abzuleiten.

Abbildung 2.1.: Beispiel für Clustering

Bei der "Dimensionality Reduction" versucht der Algorithmus das Datenset in einer Dimensionalität, also seiner Anzahl an Feldern, zu reduzieren. Es wird also die Frage gestellt, ob das bestehende Datenset auch mit weniger Feldern Abhängigkeiten feststellen

lässt. Dieser Schritt wird vorallem für Modelle benutzt, die sensibel gegenüber hoher Dimensionalitäten sind, sodass das Datenset vor dem Training in seiner Dimensionalität heruntergebrochen werden kann.

Im Rahmen des Projektes wurden hauptsächlich Klassifizierungs-Algorithmen genutzt, da ein Großteil der Datensets Labels zur Überprüfung hatte. Um einen Vergleich herzustellen werden später trotzdem noch einzelne Ergebnisse von Clustering und Dimensionality Reduction betrachtet. Im folgenden sollen die genutzten Modelle erklärt werden.

2.1.1. Random Forest Classifier

Random Forests stellen eine Unterkategorien der "Decision Trees" dar. Decision Trees sind einfache Anordnungen von bestimmten Fragen, die über das Datenset gestellt werden, um eine Klassifikation zu erreichen.

Abbildung 2.2.: Beispiel eines Decision Trees

Erstellt man ein "Ensemble" aus Decision Trees die Erwartungen über einen zufällig gewählten Teil des Datensets treffen können, entsteht ein Random Forest. Der Random Forest Classifier versucht, eine Menge einfacher Schätzfunktionen über einen komplexeren Sachverhalt "abstimmen" zu lassen. Während sich in einem einzelnen Entscheidungsbaum Fehleinschätzungen entwickeln können, sinkt die Chance auf eine solche Fehleinschätzung, je mehr unabhängige Entscheidungsbäume man befragt.

2.1.2. Support Vector Classifier

Der Support Vector Classifier(SVC) versucht in einem Datenset anhand von bestimmten Cut-Off-Values klare Grenzen zwischen Werten zu finden, sodass man alle Messwerte ober- und unterhalb der Grenze eindeutig Klassifizieren kann.

Abbildung 2.3.: Beispiel eines Support Vector Classifiers

In Abb. 2.3 ist der SVC ein Punkt auf einer eindimensionalen Linie, auf der das Gewicht in Kg von z.B. Mäusen in "Unter-" und "Übergewichtig" unterteilt wird. Dieser Punkt ist Ergebnis aller Verhältnisse der einzelnen Datenpunkte zueinander. Durch sog. "Kernel

Funktionen" versucht der Algorithmus nun Beziehungen in höheren Dimensionen zu finden, wie z.B. $Masse^2$, $Masse^3$ usw. . Der SVC stellt dann in diesen Dimensionen eine Linie in einem zwei-dimensionalen oder eine Ebene in einem drei-dimensionalen Koordinatensystem dar.

Abbildung 2.4.: Beispiel eines Support Vector Classifiers in der zweiten Dimension

Da der SVC die Verhältnisse aller Datenpunkte zueinander betrachtet, ist er sehr anfällig für Ausreißer in den Daten, was bei der Datenvorbereitung und der Auswertung beachtet werden muss.

2.1.3. Gradient Boosting Classifier

Der Gradien Boosting Classifier(GBC) versucht seine Erwartungen auf Grund von Abweichungen eines Labels vom Durchschnitt dieses Labels zu treffen. Erweitert man das Datenset im o.g. Beispiel um das Alter einer Maus, wird ein GBC als Ausgangswert den Durchschnitt aller Label-Werte, also dem Gewicht, berechnen. Danach werden die Abweichungen aller Label-Werte zu diesem Durchschnitt gebildet. Diese Abweichungen werden nun in Beziehung zu den anderen Spalten des Datensets gesetzt. Beispielsweise könnte man so davon ausgehen, dass ausgewachsene Mäuse von einem bestimmten Alter über dem Durchschnittsgewicht liegen. Genauso liegen besonders junge Mäuse wahrscheinlich immer einen ähnlichen Wert unter dem Durchschnittsgewicht. So wurde zwischen dem Label *Gewicht* und der Spalte *Alter* eine Beziehung hergestellt. In weiteren Iterationen orientiert sich der GBC immer an der Abweichung zum Durchschnittswert des vorherigen Baumes. So werden die getroffenen Erwartungen über mehrere Iterationen immer präziser.

2.1.4. Neuronale Netzwerke

Die Funktionsweise eines Neuronalen Netzwerks ist direkt angelehnt an die Funktionsweise des menschlichen Gehirns. Einzelne Knotenpunkten(Neuronen) werden mithilfe von Gewichteten Verbindungen verknüpft, sodass das Netzwerk versucht Eingabewerte bestimmten Ausgabewerten zuzuordnen. Diese Zuordnung der Ein- und Ausgabewerte im Input- und Output-Layer geschiet nicht direkt, sondern durch ein oder mehrere *Hidden Layer*, dessen Neuronenzahl üblicherweise über der Anzahl Neuronen im Input Layer liegt. Die Anzahl der Neuronen im Output-Layer entspricht der Anzahl an Ergebnissen, die sich aus dem Input Ergeben können. Im Beispiel der Anwesenheitsanalyse entspräche das hier also zwei Neuronen für An- und Abwesenheit.

Abbildung 2.5.: Beispiel eines neuronalen Netzwerks

Liegt an einem Neuron eine Information an, wird diese als Eingabe einer Aktivierungsfunktion φ genutzt, die mithilfe eines bestimmten Schwellwertes bestimmt, ob dieses Neuron aufgrund der Eingabe aktiviert wird. Über eine bestimmte Anzahl von Iterationen werden die Gewichtungen zwischen den einzelnen Neuronen stärker oder schwächer.

2.1.5. Long Short Term Memory

Das Long Short Term Memory (LSTM) ist eine Abwandlung herkömmlicher Neuronalen Netzwerke. Es handelt sich um ein *rekurrentes* Neurales Netzwerk, was bedeutet, dass jedes Neuron seine Ausgabewerte auch wieder als Eingabewerte nutzt. Der Begriff *Memory* rührt daher, dass durch diese Rückkopplung eine Art Gedächtnis entsteht, durch welches das Netzwerk bessere Rückschlüsse auf die Einordnung des aktuellen Input-Wertes ziehen kann.

Wird beispielsweise beim Satz "Das Auto ist Rot." das Wort "Das" verarbeitet, kann das Netzwerk nun beim nächsten Schritt eine zusätzliche Erwartung treffen, dass das nächste

Abbildung 2.6.: Beispiel eines rekurrenten neuronalen Netzwerks

Wort wahrscheinlich nicht ebenfalls "Das" sein wird. Ein LSTM kann auf diese Weise eine Vielzahl von Zeitschritten zurückblicken und verlässt sich so nicht direkt auf einen gegebenen Input, sondern auf einen langen Verlauf von bereits verarbeiteten Input-Werten. LSTMs sind deshalb besonders interessant für Probleme bei denen Beziehungen zwischen kontinuierlichen Datenwerten gebildet werden müssen.

2.2. CO2 als Anwesenheitsindikator

Der CO2-Gehalt der Raumluft ist als sehr guter Indikator für menschliche Präsenz anzusehen. Anders als andere Umweltindikatoren wie Temperatur oder Luftfeuchtigkeit hat der CO2-Gehalt die Eigenschaft, dass es in geschlossenen Räumen keine äußeren Einflussfaktoren für diesen Messwert gibt. In einem Büroraum kann der Mensch als alleinige Quelle für CO2 angesehen werden.

Der Anteil von CO2 in frischer Atemluft beträgt zwischen 350 und 450 ppm. Es gibt in Deutschland und auch Europa keine grundsätzlich festgelegten Grenzwerte für akzeptable Raumluft, vielmehr raten Gesundheitsämter verschiedener Länder Grenzwerte zwischen 1200 und 1500 ppm einzuhalten. Bei der Obergrenze von 1500 ppm entstehen beim Menschen erste Müdigkeitserscheinungen, weshalb dieser Wert in der Literatur als maximaler Richtwert für Innenräume gilt.

11

2.3. Outlier Detection

Wie bereits erwähnt, spielen Datenausreißer für die Ergebnisse mancher Algorithmen eine große Rolle. Überall wo z.B. aus einer Reihe von Datenwerten Durchschnittswerte berechnet werden, würden Ausreißer in den Daten das Ergebnis verfälschen und die Leistung des Algorithmus deutlich senken. Um diese Ausreißer vor dem Training der Models zu beseitigen wurde das Verfahren des *Interquartilabstands* (IQR nach der englischen Bezeichnung *Interquartile Range*) gewählt.

Der IQR gibt die Intervallgröße an, die ein Wert vom Median einer Datenreihe abweichen darf. Bei einer der Größe nach sortierten Datenreihe $x=(x_0,x_1,...,x_n)$ bestimmt man die Mediane der unteren und oberen Hälfe des Datensets Q_1 und Q_2 . Der IQR ergibt sich nun aus

$$IQR = Q_2 - Q_1 \tag{2.1}$$

Mit diesm Wert kann man nun die erlaubten Ober- und Untergrenzen des Datensets mit

$$Limit_{upper} = Q_2 + 1.5 * IQR \tag{2.2}$$

$$Limit_{lower} = Q_1 - 1.5 * IQR \tag{2.3}$$

bestimmen. Alle Werte die außerhalb dieser Grenzen liegen, können als Ausreißer betrachtet werden.

Ausreißer zu entfernen, ist hier wichtig, da die Sensoren Messfehler erzeugen können, oder gelegentlich zur Demonstration von starken Veränderungen in der direkten Nähe des Sensors geatmet wurde und es so in vielen Datensets kurzfristige CO2-Werte gibt, die natürlich in geschlossenen Räumen nicht vorkommen.

2.4. Sensordaten

Wie bereits beschrieben, wurden die Sensordaten in mehreren Räumen der FH Aachen kontinuierlich gesammelt. Durch das Filtern nach der Beziehung des Raumes ergab sich folgende Datenstruktur als Ausgangslage:

Sensordaten				
Name	Format	Beschreibung		
timestamp	timestamp	Zeitpunkt der Messung		
co2_ppm	integer	CO2-Wert		
temperature_celsius	float	Temperatur in Grad Celsius		
relative_humidity_percent	float	Luftfeuchtigkeit		
presence	boolean	Aktivität des Bewegungssensors		

2.5. Datenbeschaffung und -Vorbereitung

Die Daten wurden lokal auf einem der FH-Server in Form eines *Hadoop Distributed File System* (HDFS) gespeichert. Mithilfe von Apache Drill konnten die Daten jederzeit mit einfachen SQL-Abfragen beschafft werden. Die Daten wurden so durch die gesamte Dauer des Projektes immer aktuell gehalten, damit alle Erkenntnisse immer auf der aktuellsten Datenlage basieren.

Die Datenvorbereitung oder Pre-Processing ist eine der wichtigsten Schritte bei der Anwendung von Machine Learning. Durch sie kann man beim Training des Models durch Bearbeitung bestehender Spalten oder Hinzufügen von zusätzlichen Spalten im Datenset Schwerpunkte setzen, die es den Algorithmen beim Training zum einen erleichtern, ihre Erwartungen zu präzisieren, zum anderen aber auch die Leitung beim Verarbeiten bestimmter Spalten zu steigern.

2.5.1. Gruppierung

Die Sensordaten wurden alle sechs Sekunden erfasst. Da sich weder CO2-Gehalt noch Feuchtigkeits- oder Temperaturwerte der Raumluft so schnell nicht verändert, wurden die Daten direkt beim Drill per SQL zu zwei-Minuten-Intervallen zusammengefasst. Dabei werden über alle Spalten hinweg Durchschnittswerte gebildet, die dann nachher zu einem Datensatz zusammengefasst werden. Dies steigert die Leistung aller Algorithmen erheblich, da sich die Zahl der Datensätze um den Faktor 20 verringert. Da sich, wie oben erwähnt, der CO2-Gehalt der Raumluft in einem Intervall von zwei Minuten kaum

merklich verändert, verringert sich die Genauigkeit des gesamten Datensetz dadurch nicht maßgeblich.

2.5.2. Zyklische Codierung

Zyklische Codierung wird immer dort verwendet, wo Daten sich in wiederholenden Schemata bewegen. Diese Schemata, wie z.B. die Zahlenumbrüche bei einer Uhrzeit, sind für Algorithmen nicht direkt ersichtlich und sind zudem für Computer nicht leicht zu verarbeiten. Durch eine Encodierung in Sinus- und Cosinus-Werte können diese Zusammenhänge vereinfacht werden.

Hierzu wurde der Timestamp zuerst in Sekunden übersetzt, sodass sich ein bestimmter Zeitpunkt eines Tages immer zwischen 0 und 86400 Sekunden bewegt. Aus diesem Wert wurden dann zwei neue Datenspalten "hour_sin" und "hour_cos" in das Datenset eingefügt welche sich durch

$$hour_sin = sin(2 * \pi * x/x_{max}) \tag{2.4}$$

$$hour_cos = cos(2 * \pi * x/x_{max})$$
 (2.5)

ergeben. So kann jede Tageszeit einer eindeutigen Kombination aus Sinus- und Cosinus-Werten zwischen 0 und 1 zugeordnet werden.

2.5.3. Deltas und Shift-Werte

Desweiteren wurden von den Spalten "co2-ppm", "temperature_celsius" und "relative_humidity_percent", die tatsächlich Rückschlüsse auf die Präsenz zulassen, zusätzliche Delta- und Shift-Spalten angelegt.

Ein Shift-Wert bedeutet lediglich, dass in einer Zeile x_n des Datensets zusätzlich, neben den aktuellen Werten, auch Werte von k Zeilen zuvor, also x_{n-k} stehen. So haben alle Algorithmen direkten Zugriff auf Vergangenheitswerte der ausgewählten Spalten.

Delta-Spalten stellen, dem Namen nach, Deltas zu vorherigen Werten dar:

$$\Delta x_k = x_n - x_{n-k} \tag{2.6}$$

Die Erwartung ist hier, dass die Änderung der CO2-, Temperatur- und Luftfeuchtigkeitswerte ein wichtigerer Indikator sein könnte, als die tatsächlichen Werte. In einem schlecht klimatisierten Raum könnten Grundwerte von z.B. CO2 höher sein, als in anderen Räumen. Durch die hinzufügten Deltas werden diese Grundwerte ignoriert und Rückschlüsse auf die aktuelle Präsenz sind besser möglich.

Im Zuge der Projektarbeit wurden verschiedene Kombinationsmöglichkeiten von Deltaund Shiftwerten mit Zeitschritten zwischen zwei Minuten und einer Stunde mit Hinblick auf Verbesserungen der Model-Genauigkeiten getestet.

3. Kapitel 3

Tabelle 3.1.: Messergebnisse

Stellung	$rac{T_U}{^{\circ}C}$	$\frac{T_c}{\circ C}$	$\frac{\Delta T}{{}^{\circ}C}$
senkrecht (0°)	27, 3	69,8	42,5
waagerecht (90°)	26,6	70,6	44,0

Wie in Tabelle 3.2 zu sehen ist, ist es besser, Trennlinien nur dort einzusetzen, wo logische Grenzen liegen.

Tabelle 3.2.: Smartphone Sensordaten

Tabelle 3.2 Smartphone Gensordaten			
Sensorinformation	Format	frequency $[s^{-1}]$	
App identifier for vendor	int64	once per transfer	
WIFI and network carrier IP addresses	int128	once per transfer	
battery level	int8	0.1	
Position information: latitude, longitude, altitude, speed, course, vertical position accuracy, horizontal position accuracy, floor level information	float32[8]	1	
Heading information: heading.x, heading.y, heading.z, true heading, magnetic heading, heading accuracy	float16[6]	1	
Accelerometer information: acceleration.x, acceleration.y, acceleration.z	float16[3]	2	
Gyroscope information: rotationRate.x, rotationRate.y, rotationRate.z	float16[3]	2	
altimeter information: relative altitude, pressure	float16[2]	1	
timestamp	uint32	once per transfer	
Temperature [°C]	float16	1	

4. Zusammenfassung und Ausblick

Quellenverzeichnis

[Hartnett, 2018] Hartnett, K. (2018). Machine learning confronts the elephant in the room. Quanta Magazine, Online. https://www.quantamagazine.org/machine-learning-confronts-the-elephant-in-the-room-20180920/.

[Le, 2018] Le, J. (2018). How to do semantic segmentation using deep learning. Online. https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef.

Abkürzungsverzeichnis

g Gravitation in Nähe der Erdoberfläche

Nu Nußelt-Zahl

 u_{Luft} Kinematische Viskosität von Luft

 $\begin{array}{ll} Pr & \text{Prandtl-Zahl} \\ \dot{Q} & \text{W\"{a}rmestrom} \\ Ra & \text{Rayleigh-Zahl} \\ \rho_{Luft} & \text{Dichte von Luft} \\ T & \text{Temperatur} \end{array}$

 T_{∞} Umgebungstemperatur

Abbildungsverzeichnis

2.1.	Beispiel für Clustering	7
2.2.	Beispiel eines Decision Trees	8
2.3.	Beispiel eines Support Vector Classifiers	8
2.4.	Beispiel eines Support Vector Classifiers in der zweiten Dimension	9
2.5.	Beispiel eines neuronalen Netzwerks	10
2.6.	Beispiel eines rekurrenten neuronalen Netzwerks	11

Tabellenverzeichnis

Tabellenverzeichnis

3.1.	Messergebnisse	15
3.2.	Smartphone Sensordaten	16

A. Quellcode

- 1. Source 1
- 2. Source 2

B. Rohdatenvisualisierungen

- 1. Graustufen
- 2. Verteilungen