www.mecatronicadegaragem.blogspot.com

Aula 04 Ambientes de Programação

Microcontroladores PIC18 – Programação em C

Prof. Ítalo Jáder Loiola Batista

Universidade de Fortaleza - UNIFOR Centro de Ciências Tecnológicas - CCT

E-mail: <u>italoloiola@unifor.br</u>

Jan/2011

Assembly versus C

Linguagem C

- Facilidade na construção de aplicações de grande complexidade;
- Uma gama de funções nativas ao compilador;
- Portabilidade da linguagem C;
- Reduz o tempo de desenvolvimento;
- Capacidade de introduzir no programa-fonte sub-rotinas, funções e bibliotecas escritas em linguagem Assembly;

Assembly

- Duas vantagens podem justificar a sua utilização:
 - Um bloco escrito em assembly contém um menor número de instruções, senso, conseqüentemente, executado mais rapidamente do que em C que executa a mesma tarefa;

Obs.: Um código escrito em C é convertido em Assembly;

Então, Para que um projetista possa aproveitar todas a vantagens do C, é necessário tenha pelo menos uma noção da Linguagem *Assembly.*

Ambientes de Programação

- Compilador:
 - MPLAB C18 Lite v3.34;
- Ambiente Integrado de Desenvolvimento (IDE):
 - MPLAB IDE v8.63;
- Simulador:
 - Proteus 7.4 (ISIS);
- Gravador:
 - Tiny Bootloader v1.98;
- Comunicação Serial:
 - DockLight v1.9;

1. Compilador MPLAB® C18

- Desenvolvido e distribuído pela Microchip Technology;
- Disponível nas versões:
 - Full Version:
 - Vendida por um preço considerado baixo se comparado com compiladores de outros fabricantes;
 - Possibilidade de otimização de código
 - Consiste na utilização de técnicas inteligentes de análise do código;
 - Objetivo de reduzir o número de instruções utilizadas na construção de um bloco de código.
 - Por consequência, diminui a quantidade de mémória;
 - Student Edition:
 - Distribuida gratuitamente;
 - A otimização de código só está disponível nos primeiros 60 dias após a instalação.

1. Compilador MPLAB® C18

Tipos de Dados

Туре	Size	Minimum	Maximum
char ^(1,2)	8 bits	-128	127
signed char	8 bits	-128	127
unsigned char	8 bits	0	255
int	16 bits	-32,768	32,767
unsigned int	16 bits	0	65,535
short	16 bits	-32,768	32,767
unsigned short	16 bits	0	65,535
short long	24 bits	-8,388,608	8,388,607
unsigned short long	24 bits	0	16,777,215
long	32 bits	-2,147,483,648	2,147,483,647
unsigned long	32 bits	0	4,294,967,295

Туре	Size		Maximum Exponent	Wiinimiim Normalized	Maximum Normalized
float	32 bits	-126	128	2 ⁻¹²⁶ ≈ 1.17549435e - 38	2 ¹²⁸ * (2-2 ⁻¹⁵) ≈ 6.80564693e + 38
double	32 bits	-126	128	2 ⁻¹²⁶ ≈ 1.17549435e - 38	2 ¹²⁸ * (2-2 ⁻¹⁵) ≈ 6.80564693e + 38

1º Passo: Tela de boas-vindas

2º Passo: Termo de licença

3º Passo: Diretório de instalação

4º Passo: Seleção dos componentes a serem instalados

• 5º Passo: Opção para as variáveis do ambiente

6º Passo: Configurações para o MPLAB IDE

7º Passo: Pronto para a transferência dos arquivos

• 8º Passo: Barra de progresso de instalação

• 9º Passo: Instalação feita com sucesso

Ambiente Integrado de Desenvolvimento (IDE)

- Permite:
 - Desenvolver programas em:
 - Assembly
 - C
 - Simulação
 - Depuração
 - Microchip MPLAB IDE
 - Disponível em http://www.microchip.com

MPLAB IDE

1º Passo: Download

• 2º Passo: Tela de boas-vindas

• 3º Passo: Termo de licença

4º Passo: Tipo de instalação

5º Passo: Diretório de instalação

6º Passo: Aplicação da licença

7º Passo: Início da cópia dos arquivos

• 8º Passo: Barra de progresso de instalação

• 9º Passo: Instalação feita com sucesso

 10º Passo: A janela abaixo será aberta para a consulta de arquivos. Clique em "X" para fechá-la:

1º Passo: Criação de um arquivo-fonte em C

- 1. Criar uma pasta chamada "fontesC" no diretório raiz;
- 2. salvar o arquivo "programa1.c";

```
//*Meu primeiro programa em C. 
//************
                             //aquivo cabecalho padrão do PIC18F4520
#include <p18f4520.h>
void main (void)
                             //funcão main
       TRISA = 0x02:
                             //pino RA1 entrada e demais pinos do PORTA saida
                             //PORTB saida
       TRISB = 0 \times 00;
       TRISC = 0x00;
                             //PORTC saida
       TRISD = 0x00;
                             //PORTD saida
       TRISE = 0x00;
                             //PORTE saida
       ADCON1 = 0x0F;
                             //configura os pinos dos PORTA e PORTE como digitais
       PORTA = 0;
                             //limpa PORTA
       PORTB = 0;
                             //limpa PORTB
       PORTC = 0:
                             //limpa PORTC
       PORTD = 0;
                             //limpa PORTD
       PORTE = 0;
                             //limpa PORTE
       while (1):
                              //loop infinito
```

- 2º Passo: Criação de um projeto com o Project Wizard
- A. Clicar no menu Project/Project Wizard;
- B. Escolher o microcontrolador que será utilizado (PIC18F4520);

- 2º Passo: Criação de um projeto com o Project Wizard
- Seleção da ferramenta utilizada na compilação (Microchip C18 Toolsuite);

2º Passo: Criação de um projeto com o Project Wizard

D. Localização dos programas utilizados na compilação;

Arquivos	Caminho
MPASMWIN.exe	C:\MCC18\mpasm\MPASMWIM.exe
mplink.exe	C:\MCC18\bin\mplink.exe
mcc18.exe	C:\MCC18\bin\mcc18.exe
mplib.exe	C:\MCC18\bin\mplib.exe

- 2º Passo: Criação de um projeto com o Project Wizard
- E. Nome e localização do projeto (diretório C:\FontesC);

2º Passo: Criação de um projeto com o Project Wizard

F. Associar o programa-fonte ao projeto;

- 2º Passo: Criação de um projeto com o Project Wizard
- G. Sumário de criação do projeto;

- 2º Passo: Criação de um projeto com o Project Wizard
- H. Tela principal do MPLAB IDE;

3º Passo: Adicionar o arquivo-fonte "programa1.c" ao projeto

3º Passo: Adicionar o arquivo "18F4520_g.lkr" ao projeto;

Diretório C:\MCC18\bin\LKR\18F4520_g.lkr

4º Passo: Configurar a localização da ferramenta de compilação:

Project\Set Language Tool Locations

Confira a localização de cada um dos arquivos executáveis;

5º Passo: Configurar os diretórios de procura da ferramenta de compilação

- B. Caminho de procura dos arquivos cabeçalho.
 - Clicar no menu Project\BuildOption\Project
 e selecione a guia Directories;
 - No Item "Show Directories for" selecione a opção "Include Seach Path";
 - Certifique-se de que caminho C:\MCC18\h
 aparece na janela baixo;
 - Senão, clique em New e, em seguida no botão _____ e indique C:\MCC18\h

5º Passo: Configurar os diretórios de procura da ferramenta de compilação

- B. Caminho de procura dos arquivos biblioteca.
 - Clicar no menu Project\BuildOption\Project
 e selecione a guia Directories;
 - No Item "Show Directories for" selecione a opção "Library Search path";
 - Certifique-se de que caminho
 C:\MCC18\lib aparece na janela baixo;
 - Senão, clique em New e, em seguida no botão e indique C:\MCC18\lib

6º Passo: Compilar o projeto **Build All** Project_01 - MPLAB IDE v8.63 File Edit View Project Debugger Programmer Tools Configure Window Help Debug 🔻 💣 🚅 🖫 🐘 ൹ 🚺 🧇 🛗 🛍 Checksum: 0xf7bf C:\FontesC\progama1.c _ @ XX Project 01.mcw Project_01.mcp //*Meu primeiro programa em C. - Source Files //aquivo cabeçalho padrão do PIC18F452 □ Sprogama 1.c Header Files void main (void) //função main Object Files Library Files TRISA = 0x02;//pino RA1 entrada e demais pinos do P Linker Script TRISB = 0x00;//PORTB saida //PORTC saida 18f4520 g.lkr TRISD = 0x00;//PORTD saida Other Files Output PORTA e PORTE - - X Build Version Control Find in Files Executing: "C:\MCC18\bin\mplink.exe" /l"C:\MCC18\lib" "..\MCC18\bin\LKR\18f4520_q.lkr ^ MPLINK 4.34, Linker Copyright (c) 2009 Microchip Technology Inc. MP2HEX 4.34, COFF to HEX File Converter Copyright (c) 2009 Microchip Technology Inc. Files Symbols Loaded C:\FontesC\Project_01.cof. Debug build of project `C:\FontesC\Project_01.mcp' succeeded. Language tool versions: mpasmwin.exe v5.34, mplink.exe v4.34, mcc18.exe v3.34 Preprocessor symbol `__DEBUG' is defined. Fri Jan 14 16:29:48 2011 BUILD SUCCEEDED

7º Passo: Caso deseje remover um arquivo do projeto

8º Passo: Ativar o MPASM SIM para simular uma aplicação Menu Debugger\Select Tool\MPLAB SIM

```
ow
   Help
🚅 🖫 🧠 📹 🚯 📹 🚺 🖄 🛗 🖺 🖺 🕮 📳 🕞
                                                        Checks
.ro programa em C.
             //aquivo cabeçalho padrão do PIC18F452
f4520.h>
            //função main
id)
           //pino RA1 entrada e demais pinos do P
x02;
x00;
             //PORTB saida
             //PORTC saida
x00;
             //PORTD saida
x00;
            //PORTE saida
x00;
           //configura os pinos dos PORTA e PORTE
0x0F;
```

8º Passo: Ativar o MPASM SIM para simular uma aplicação Menu Debugger\Select Tool\MPASM SIM

- Run: executa o programa (F9);
- Halt: parar a execução do programa (F5);
- Animate: Executa o programa no modo animação e mostra a linha que o programa está executando no momento;
- Step Into: executa o programa passo a passo (F7);
- Step Over: executa de uma só vez todos os comando da função;
- Step Out: sai da função e retorna ao ponto em que ela foi chamada;
- Reset (F6);
- Breakpoint: A execução é interrompida na linha em que ele foi inserido;

8º Passo: Ativar o MPASM SIM para simular uma aplicação

- Configurações de Simulação (Debugger\Setitings):
- Freqüência de clock: 8Mhz (Osc/Trace);
- Serial RS232: Uart 1 I/O;

8º Passo: Ativar o MPASM SIM para simular uma aplicação

 Clicando no menu View, é possivel visualizar o conteúdo das memórias de programa, de dados e EEPROM;

8º Passo: Ativar o MPASM SIM para simular uma aplicação

 Clicando no menu Debugger/Stimulus permite introduzir estímulos nos pinos durante a simulação;

Tela de abertura do Proteus 7.4 (ISIS)

• 1º Passo: Busca de componentes;

1º Passo: Busca de componentes / Tela de busca;

• 1º Passo: Busca de componentes / Exemplo de componente;

• 2º Passo: Girando componentes antes de posicioná-los;

• 3º Passo: Alterando o tamanho da folha;

• 4º Passo: Conectando os componentes;

• 4º Passo: Conectando os componentes;

5º Passo: Conectando um osciloscópio;

6. Osciloscópio

• 5º Passo: Conectando um osciloscópio;

• 5º Passo: Iniciando a simulação;

Simulação de microcontroladores;

- "Program File" selecionar o arquivo .hex à ser programado ;
- "Processor Clock Frequency" especificar a frequência de clock;

4. Gravador - Tiny Bootloader

- 1º Passo: Selecione o arquivo .Hex à ser programado;
- 2º Passo: Conecte a placa à porta serial;
- 3º Passo: Selecione a porta serial conectada (Com1, Com2, etc.);
- 4º Passo: Pressione no software o botão "Write";
- 5º Passo: Pressione na placa o botão de "Reset";

4. Gravador - Tiny Bootloader

- "SearchDelay" é o tempo que o aplicativo tentará contato com o pic;
- "Timeout" é o tempo limite para todas as operações;

4. Gravador - Tiny Bootloader

- Terminal rudimentar, com as seguintes possibilidades:
 - Mostrar dados recebidos;
 - Salva automaticamente os dados brutos;
 - Pode enviar: um por vez ou uma seqüência de caracteres ASCII, decimal ou hexa;
 - Buffer de exibição padrão de 10k (ajustável);

5. Comunicação Serial - DockLight

 Clicando no menu Tools\Project Settings permite configurar os parâmetros de comunicação (porta, taxa de comunicação, etc);

5. Comunicação Serial - RComSerial

Exemplo 02 (Exercício)

- Salvar o arquivo "programa2.c";
- 2. Criar projeto;
- 3. Compilar;
- 4. Simular;
- Executar passo-a-passo;
- 6. Testar no kit de desenvolvimento;

Próxima Aula

Aula 05 Arquitetura PIC18 (18F4520 - Uma Visão Geral) Parte II