1.4 Consequences of Completeness

another way to think of R as gapless

Theorem 1.4.1 (Nested Interval Property):

For each $n \in \mathbb{N}$, assume we one given a closed interval $In = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$. Assume In contains I_{n+1} . Then the resulting sequence of nested intervals $a_n = a_n + a_n = a_n + a_n = a_n$

Proof:

We need to show $\exists x \in [R \text{ s.t. } x \in In \forall n \in N.$ Consider the set of all left endpoints $A = \{a_n : n \in N\}$, A is nonempty and bounded above by $B = \{b_n : n \in N\}$, the set of all right endpoints. Let $x = \sup A$. Then $x \ge a_n \forall a_n \in A$, and $x \le b_n \forall b_n \in B$. That is, $a_n \le x \le b_n$, so $x \in In \forall n \in N_D$

Density of Q in 1R

· Qextends N and IR extends Q - how do it and N sit inside IB?

Theorem 1.4.2 (Archimedean Property)

(i) Giren amy XEIR, INEN s.t. n>X (N is unbounded)

(ii) Given real number y>0, ∃n∈N sit. Yn < y

Proof of (i):

Suppose for contradiction N is bounded. That is, $a = \sup N$. Then by the Axiom of Completeness, $\exists n \in \mathbb{N}$ s.t. a - 1 < n. But this implies that a < n + 1. Because $n + 1 \in \mathbb{N}$, this contradicts the fact that $a = \sup N$, so our assumption that N is bounded is false. Thus, N is unbounded \square

Proof if (ii):
Aim to show Ine is such that Inky for y tikt. Rewrite the inequality as no 1/y. From (i) we have that given any real number x, Ine is sit. n > x. Let x = yy. Then Ine is sit. n > yy.

Theorem 1.4.3 (Density of Q in IR):

Va,b \in IR with a < b, \(\frac{1}{2} \) \(\text{ca} \) s.t. \(\alpha < r < b \) \(\text{in IR} \) \(\text{in IR} \)

Proof:

Since $r \in \mathbb{Q}$, r = P/q, for $P, q \in Z$ and $q \ne 0$. Rewrite the inequality as a < P/q < b. The proof now relies on correspondences of p and q to make the inequality true. First, choose denominator q to be large enough so that increments of size 1/q are smaller than the interval b-a: 1/q < b-a. We can do this by the Archimedean Property. Now rewrite the inequality to be proved as qa , and focus on <math>p. Want to pick p as the smallest integer greater than qa: $p-1 \le qa < p$. From this we see that a < P/q. All that's left is to show P/q < b <= p < qb. Note that a < b - 1/q. Use this in the manipulation of $p-1 \le q$ a. $p-1 \le q$ a.

<=> ρ < q a + 1 < q (b - 1/q) + 1

(=> p<qb-1+1

(=> p<qb ()

Corollary 1.4.4 (Density of I in IR): Given a, b \in IR, \text{ I \in IR}: * Proof given in exercise 1.4.5

Existence of Square Roots

Theorem 1.4.5 (Existence of JZ in IR): There exists a real number & EIR satisfying K2=2

Proof:

Consider $T = \{ t \in \mathbb{R} : t^2 < 2 \}$ and set $K = \sup T$. Assume for contradiction $\alpha^2 < 2$. We want to show that $\alpha + \epsilon \in T$ for $\epsilon > 0$ to contradict that $\alpha^2 < 2$. Let $\epsilon = \forall n$ for $n \in \mathbb{N}$. Then

 $(x+\frac{1}{n})^2 = x^2 + \frac{2\alpha}{n} + \frac{1}{n^2} \langle x^2 + \frac{2x+1}{n} \rangle$. Now choose $n \in \mathbb{N}$ so that $(2x+1)/n \langle 2-x^2 \rangle$. Then $x^2 + (2x+1)/n \langle x^2 + 2-x^2 \rangle$. $(x+1/n)^2 \langle 2 \rangle = (x+1/n) \in \mathbb{T}$. Thus α^2 commot be less than 2 for α to be a supremum. Now assume for contradiction that $\alpha^2 > 2$. We want to show that $2 \langle (x-\epsilon)^2 \langle x^2 \rangle$ to contradict that that $\alpha^2 > 2$ (and α is a supremum). Consider $\epsilon = 1/n$. Then:

 $\left(\kappa - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\kappa}{n} + \frac{1}{n^2} > \alpha^2 - \frac{2\kappa}{n}$

Now choose $n \in \mathbb{N}$ such that $-2\alpha/n > 2 - \alpha^2$. Then $\alpha^2 - 2\alpha/n > \alpha^2 + 2 - \alpha^2 = 7 \alpha^2 - 2\alpha/n > 2$. So $2 < \alpha^2 - 2\alpha/n < \alpha^2$, contradicting our assumption that $\alpha^2 > 2$. Since $\alpha^2 \nmid 2$ and $\alpha^2 \nmid 2$, then $\alpha^2 = 2$ and thus $\sqrt{2} \in \mathbb{R}$.

1.4 Exercises

- 1) I is the set of irratronals
 - a) Show if $a,b \in \mathbb{Q}$, then ab and $a+b \in \mathbb{Q}$ froof:

Since $a_1b \in Q$, we can rewrite them as $a = \frac{m}{n}$, $b = \frac{q}{q}$ for $m_1, n_1, p_1, q \in \mathbb{Z}$ with $n_1, q \neq 0$, a_1b becomes $(m/n)(p/q) = \frac{mp}{nq}$. Both mp and n_q are integers because \mathbb{Z} is closed under multiplication, so a_1b can be written as the division of two integers with a nonzero denominator. Thus $a_1b \in \mathbb{Q}$. Similarly, $a_1b = \frac{m}{n} + \frac{p}{q} = \frac{(mq + p_1)}{nq}$. As before, $m_1, n_1, q \in \mathbb{Z}$, and $m_1 + p_1 \in \mathbb{Z}$ because of closure of \mathbb{Z} under

mg, pn, ng $\in \mathbb{Z}$, and mg \dagger pn $\in \mathbb{Z}$ because of closure of \mathbb{Z} under addition and multiplication. Since we wrote at b as the division of two integers with a non-zero denominator, at $b \in Q$

b) Show that if $a \in \mathbb{Q}$ and $t \in I$, then $a + t \in I$ and $at \in I$ as long as $a \neq 0$.

Proof:

Suppose for contradiction that at $t \notin I \Rightarrow a+t \in \mathbb{Q}$. Then a+t=p/q for $p,q \in \mathbb{Z}$ and $q\neq 0$. Solving for t yields $t=p/q-a \in \mathbb{Q}$ because the sum of two nationals is national. This contradicts $t \in I$, so our assumption is false and $a+t \in I$. Again suppose for contradiction that at $t \in \mathbb{Q}$. Thun at=p/q for $p,q \in \mathbb{Z}$ and $q\neq 0$. Solving for t yields $t=p/qa \in \mathbb{Q}$ (because $a\neq 0$). This contradicts $t \in I$, so our assumption is false and $at \in ID$

- C) Is I closed under addition and multiplication (s+t, st)? No. Consider t=-s. Then s+t=s-s=0€Q. Consider t='/s. Then st=s('/s)=1€Q.
- 3) Prove that $\bigcap_{i=1}^{\infty} (0, 1/n) = \emptyset$. Notice this demonstrates that intervals must be closed for Nested Interval Property to be true. Proof:

 Let $x \in \bigcap_{i=1}^{\infty} (0, 1/n)$. Then x > 0 and x < 1/n $\forall n \in \mathbb{N}$. This contradicts part (ii) of Arch: median property which states for all $x \in \mathbb{R}$: x > 0, $\exists n \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$. Therefore, no such \mathbb{N} exists and $\bigcap_{i=1}^{\infty} (0, 1/n) = \emptyset$
- 5) Prove Corollory 1.4.4: Given any 2 real numbers a, b, there exists an irratronal number t satisfying a < t < b. Consider the numbers a J2 and b J2.

 Proof:
 Let a, b \in R and a < b. Then a J2 < b J2. By the national density theorem, a J2 < r < b J2. Add J2 to get a < r + J2 < b. (+J2 \in I, so we are done I)
- 6) A set B is dense in IR if ∀a, b ∈ IR a < b, ∃x ∈ B s.f. a < x < b. Let p ∈ Z and q ∈ N. Which are dense in IR?
 - a) Set of all rationals P/q with $9 \le 10$. Not dense - consider 0 = .01, 1 = .02. There is no element x in the given set such that .01 < x < .02. The closest we get is x = 0 and x = .1.

- b) Set of all nationals P/q where q is a power of 2
 - Dense. Let q= 2" for n=0,1,2,... this ensures 2 ∈ N and q is a power of a. Now choose q so that 1/9 < b-a, for a, b ∈ R, a < b. We can do this by finding n s.t. 4n < b-a n ∈ N by Archimedian property, and then 1/2" < 1/n < b-a, let q = 2". The proof proceeds identically to that of the rational density theorem.
- c) Set of rationals P/a where 10/p/29.

Not dense-this means that $\frac{191}{9} \stackrel{?}{=} 10$, so elements in the set have a magnitude greater than 1/10. This means no such 9/9 exists between a = -1/10 and b = 1/10.

- 8) Give example or prove impossible
 - Or) Sets A and B with $A \cap B = \emptyset$, sup $A = \sup B$, sup $A \notin A$ and sup $B \notin B$. $A = \{ x \in Q : x \nmid 1 \} \quad B = \{ x \in I : x \nmid 1 \}$ $A \cap B = \emptyset \text{ because } Q = \overline{I} \text{ sup } A = \sup B = 1 \text{ . } 1 \notin B \text{ and } 1 \notin B.$
 - b) A sequence of nested unbounded closed intervals $J_1 = J_2 = ...$ with $\bigcap_{n=1}^{\infty} J_n$ nonempty but finite let $J_n = [-1/n, 1/n]$. Then $\bigcap_{n=1}^{\infty} J_n = \{0\}$
 - C) A sequence of nested unbounded closed intervals $L_1 \ge L_2 \ge ...$ with $\Pi_{n=1}^{\infty} L_n = \emptyset$. (L_n of the form L_q, ∞)) el

 Let $L_n = [n, \infty]$. Proof $\Pi_{n=1}^{\infty} L_n$ is empty:

 Suppose $x \in \Pi_{n=1}^{\infty} L_n$. Then $x \in [n, \infty)$ if $n \in \mathbb{N}$, which means $x \ge n$. But by archimedean principle, we can always find $n > \infty$, so no such $x \in \mathbb{N}$ exists and $\Pi_{n=1}^{\infty} L_n = \emptyset$.

d) A sequence of closed, bounded (not necessorily nested) intervals II, II, ... with Mr. In # Ø +NEN but Mr. In = Ø.

Does not exist. Solution sketchy, but if Ni. In 70 then this necessitates nested intervals. Since they're closed and bounded, then by Nested Interval Theorem Ni. In 70.