5. Lokale Operationen

Quellen:

EVC_Skriptum_CV, p.24 bis EVC_Skriptum_CV, p.28

Nachbarschaften:

 Eine Nachbarschaft bezeichnet eine kleine, definierte Bildregion um ein Pixel, um Bildverarbeitungsoperationen durchzuführen.

Vierer-Nachbarschaft

- Jedes Pixel P hat 2 horizontale und 2 vertikale Nachbarn.
- Koordinaten des Pixels P: (u, v).
- Koordinaten der vier D-Nachbarn: (u-1,v),(u+1,v),(u,v-1),(u,v+1)
- Eine Vierer-Nachbarschaft besteht aus 5 Punkten (Pixel P + 4 D-Nachbarn).

Achter-Nachbarschaft

- Neben den D-Nachbarn hat jedes Pixel *P* auch 4 diagonale Nachbarn.
- Koordinaten der diagonalen Nachbarn: (u-1,v-1),(u+1,v+1),(u-1,v+1),(u+1,v-1)
- Eine Achter-Nachbarschaft besteht aus 9 Punkten (Pixel P+4 D-Nachbarn + 4 diagonale Nachbarn).

Abstand der Nachbarn

- Der Abstand der Nachbarn wird durch die Metrik festgelegt:
 - Euklidische Metrik: Abstand beträgt $\sqrt{2}$.
 - Manhattan-Metrik: Abstand beträgt 2.

Was sind lokale Operationen

Punktoperationen

- Der neue Wert eines Bildelements hängt ausschließlich vom ursprünglichen Bildwert an derselben Position ab.
- siehe 4. Punktoperationen

Lokale Operationen (Filter)

- Ähnlichkeit zu Punktoperationen: Auch hier besteht eine 1:1-Abbildung der Bildkoordinaten, d. h., die Geometrie des Bildes bleibt unverändert.
- Unterschied zu Punktoperationen: Das Ergebnis wird nicht nur aus einem einzigen Ursprungspixel berechnet, sondern aus mehreren Pixeln des Originalbildes.
- Die Koordinaten der Quellpixel sind bezüglich der aktuellen Position (u,v) definiert und bilden eine zusammenhängende Region.

Filterregion

- Die Größe der Filterregion bestimmt, wie viele ursprüngliche Pixel zur Berechnung des neuen Pixelwerts beitragen und damit das räumliche Ausmaß des Filters.
- Eine gängige Filtergröße ist 3×3 , zentriert in der Achter-Nachbarschaft um die Koordinate (u,v).
- Die Form der Filterregion muss nicht quadratisch sein, sondern kann beliebige Formen annehmen.

Lineare Filter

- Bezeichnung: Lineare Filter verbinden die Pixelwerte innerhalb der Filterregion in linearer Form, d. h., durch eine gewichtete Summation.
- Beispiel: Die lokale Mittelwertbildung ist ein einfaches Beispiel, bei dem alle neun Pixel der 3 × 3 Filterregion mit der Gewichtung 1/9 summiert werden.

Filtermatrix

- Definition: Eine Filtermatrix oder Filtermaske F(i,j) spezifiziert die Größe, Form und die zugehörigen Gewichte der Filterregion.
 - Die Größe der Matrix entspricht der Größe der Filterregion.
 - Jedes Element F(i, j) der Matrix definiert das Gewicht des entsprechenden Pixels.
- Einzigartigkeit: Das Ergebnis eines linearen Filters ist eindeutig und vollständig durch die Koeffizienten in der Filtermatrix bestimmt.

Anwendung des Filters

- Die Anwendung eines linearen Filters auf ein Bild erfolgt durch folgende Schritte:
 - 1. Positionierung der Filterfunktion F: Die Filtermatrix F wird so über das Bild I positioniert, dass ihr Koordinatenursprung F(0,0) auf das aktuelle Bildelement I(u,v) fällt.
 - 2. Multiplikation und Summation: Alle Bildelemente in der Filterregion werden mit den jeweils darüber liegenden Filterkoeffizienten multipliziert und die Ergebnisse werden summiert.
 - 3. Speichern des Ergebnisses: Die resultierende Summe wird an der entsprechenden Position im Ergebnisbild I'(u,v) gespeichert.

Berechnung für den 3 × 3 Filter

- Für einen 3 × 3 Filter des neuen Bildes I'(u,v) wird der Wert für jedes Pixel wie folgt berechnet:
 - Die Schritte 1–3 werden an jeder Position (u,v) im Bild wiederholt, um das gefilterte Bild zu erhalten.

Tiefpassfilter

Unterscheidung zwischen Tiefpass- und Hochpassfiltern

- Tiefpassfilter:
 - Filtern hohe Frequenzen heraus und lassen niedrige Frequenzen passieren.
 - Eignen sich für Rauschunterdrückung bzw. als Glättungsoperatoren.
 - Bekannte Tiefpassfilter: Mittelwertfilter und Gauß-Filter.
- Hochpassfilter:
 - Filtern tiefe Frequenzen heraus und lassen hohe Frequenzen passieren.
 - Eignen sich z. B. für die Kantendetektion. (siehe 8. Bildmerkmale Interest Points)

Mittelwertfilter (Box-Filter)

- Filtermaske: Besteht aus lauter gleichen Gewichten (1), einfachste Form aller Tiefpassfilter.
- Nachteile:
 - Scharf abfallende Ränder und unoptimales Frequenzverhalten.
 - Alle Bildelemente haben das gleiche Gewicht, wodurch das Zentrum nicht stärker gewichtet wird als die Ränder.

Gauß-Filter

- Filtermaske: Entspricht einer diskreten, zweidimensionalen Gauß-Funktion.
 - Beispiel für eine Filtermaske (für $\sigma = 0.5$):

$$F_{Gauss} = rac{1}{16}egin{bmatrix} 1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1 \end{bmatrix}$$

- Eigenschaften:
 - Das mittlere Bildelement erhält das maximale Gewicht.
 - Die Werte der übrigen Koeffizienten nehmen mit zunehmender Entfernung zur Mitte kontinuierlich und gleichmäßig ab (isotrop).
 - Standardabweichung σ bestimmt den "Radius" der glockenförmigen Funktion und beeinflusst die Stärke der Glättung.

Filtermaske für einen 3 × 3 Gauß-Filter mit $\sigma = 0.5$

Die resultierende Filtermaske lautet:

$$F_{Gauss} = egin{bmatrix} 0.011 & 0.084 & 0.011 \ 0.084 & 0.619 & 0.084 \ 0.011 & 0.084 & 0.011 \end{bmatrix}$$

 Summe der Koeffizienten muss 1 betragen, was durch Division aller Koeffizienten durch deren Summe erreicht wird.

Wichtige Hinweise

- Größere Filtermasken führen zu einer besseren Approximation der Gauß-Funktion, aber ändern nicht das Glättungsverhalten.
- Die Stärke der Glättung kann durch die Standardabweichung σ variiert werden.
- Ein Mittelwertfilter mit einer 3 × 3 Filtermaske führt zu einem befriedigenden Ergebnis, aber der Gauß-Filter wird im Allgemeinen bevorzugt.

Differenzfilter

Interpretation negativer Filterkoeffizienten

- Wenn einzelne Filterkoeffizienten negativ sind, kann die Filteroperation als Differenz zweier gewichteter Summen verstanden werden:
 - Summe positiver Gewichtungen Summe negativer Gewichtungen
- Innerhalb der Filterregion R werden:
 - Positive Koeffizienten → positiv gewichtete Pixel.
 - Negative Koeffizienten → negativ gewichtete Pixel.

Beispiel: Laplace-Filter

Filtermatrix:

$$F_{Laplace} = egin{bmatrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{bmatrix}$$

- Berechnet die Differenz zwischen dem zentralen Pixel (-4) und den 4 umliegenden Pixeln (Vierer-Nachbarschaft).
- Übrige 4 Pixel (diagonale Nachbarn) haben Koeffizienten 0 → werden nicht berücksichtigt.

Wirkung der Differenzbildung

- Gegenteil zur Durchschnittsbildung:
 - Durchschnitt → Glättung von Intensitätsunterschieden.
 - Differenz → Verstärkung von Intensitätsunterschieden.
- Anwendungen:
 - Kanten- und Konturverstärkung
 - Bildschärfung
- → Differenzfilter sind Hochpassfilter.

Mathematische Grundlage

- Hochpassfilter basieren auf Ableitungen der Bildfunktion g(x,y):
 - Erste Ableitung → Gradientenfilter

• Zweite Ableitung → Laplace-Filter

Nachbearbeitung des Ergebnisbildes

- Ergebnis enthält oft positive und negative Grauwerte.
- Mögliche Nachbearbeitungen:
 - Normierung auf z. B. [0, 255]
 - Betragsbildung: |g(x,y)|

Anwendung in Software (z.B. Adobe Photoshop)

- Umsetzung durch sogenannte "Custom Filter"
- Filter mit:
 - Ganzzahligen Koeffizienten
 - Skalierungsfaktor (Scale)
 - Offset-Wert, um negative Ergebnisse in den sichtbaren Intensitätsbereich zu verschieben.

Bildrandproblem

- Beim Anwenden von Filtern kann es zu Problemen an den Bildrändern kommen.
- Ursache: Die Filterregion überschreitet den Bildbereich, es fehlen passende Pixelwerte → das Filterergebnis kann nicht berechnet werden.
- Es gibt keine mathematisch exakte Lösung für das Problem
- andere Probleme mit Bildrand siehe: 7. Clipping und Antialiasing

Methoden zum Umgang mit dem Randproblem

- 1. Einsetzen eines konstanten Werts
 - Beispiel: 0 (schwarz)
 - Nachteil: Verkleinert den sichtbaren Bildbereich.
 - Nicht akzeptabel in den meisten Anwendungen.
- 2. Beibehalten der ursprünglichen (ungefilterten) Bildwerte
 - Filter wird nicht auf die Randpixel angewendet.
 - Nachteil: Inkonsistente Bildverarbeitung; ebenfalls nicht ideal.
- 3. Annahme künstlicher Pixelwerte außerhalb des Bildbereichs:
 - (a) Konstanter Wert außerhalb des Bildes (z. B. schwarz oder grau)
 - Kann bei großen Filtern zu starken Verfälschungen an den Rändern führen.
 - (b) Fortsetzung der Randpixel
 - Randwerte des Bildes werden nach außen hin fortgeführt.
 - Geringe Verfälschung → bevorzugte Methode

- (c) Zyklische Wiederholung des Bildes
 - Das Bild wird horizontal und vertikal periodisch fortgesetzt.

Formale Eigenschaften lineare Filter

Ursprung und Definition

- Lineare Filter basieren auf dem mathematischen Konzept der linearen Faltung (engl. linear convolution).
- Sie verknüpft zwei Funktionen gleicher Dimensionalität, kontinuierlich oder diskret.
- Für diskrete, 2D-Funktionen I (Bild) und F (Filtermatrix) ist die Faltung definiert als: I' = I * FI'
- Dabei gilt (mit Berücksichtigung der Koordinatenumkehr):

$$I'(u,v) = \sum_{i} \sum_{j} I(u-i,v-j) \cdot F(-i,-j)$$

 Die ursprüngliche lineare Filterdefinition entspricht einer linearen Korrelation, da hier keine Spiegelung der Filtermatrix erfolgt.

Eigenschaften der linearen Faltung

1. Kommutativität:

$$I * F = F * I$$

→ Reihenfolge von Bild und Filter spielt keine Rolle.

- 2. Linearität:
 - Skalierung eines Bildes:

$$(a \cdot I) * F = a \cdot (I * F)$$

Addition zweier Bilder:

$$(I_1 + I_2) * F = (I_1 * F) + (I_2 * F)(I1 + I2) * F = (I1 * F) + (I2 * F)$$

3. Assoziativität:

$$A * (B * C) = (A * B) * C$$

→ Filter können beliebig kombiniert und umgruppiert werden.

Konsequenz: Separierbarkeit

- Ein Filterkern F kann als Faltungsprodukt kleinerer Filterkerne beschrieben werden: $F = F_1 * F_2 * \cdots * F_n$
- Besonders nützlich: Trennung in zwei eindimensionale Filter:

Beispiel:

• $F_x = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

$$ullet F_y = egin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}$$

Kombiniert:

$$F_{xy} = F_x * F_y$$

Vorteil: Reduktion der Rechenkomplexität

• Normal: $3 \times 5 = 15$ Operationen pro Pixel

• Separiert: 5 + 3 = 8 Operationen pro Pixel

Nicht lineare Filter

Nachteil linearer Filter

- Lineare Filter glätten nicht nur Störungen, sondern auch gewollte Bildstrukturen wie:
 - Punkte
 - Kanten
 - Linien
- → Bildqualität leidet: Strukturen werden verwischt.
- → Einschränkung ihrer Anwendung bei Struktur- oder Kantenerhaltung.

Rangordnungsfilter (engl. rank value filters)

- Nichtlineare Filteroperationen
- Kombination von benachbarten Pixeln durch Vergleichen und Selektieren, statt Gewichten und Addieren.
- Funktionsweise:
 - Alle Grauwerte innerhalb der Filtermaske werden sortiert (aufsteigend).
 - Es wird ein bestimmter Rang aus dieser Liste ausgewählt.
 - Dieser Wert ersetzt das zentrale Pixel.

Typen von Rangordnungsfiltern

- Medianfilter:
 - Wählt den mittleren Wert (Median) der sortierten Grauwerte.
 - Besonders wirksam bei der Entfernung von Ausreißern (z. B. Salz-und-Pfeffer-Rauschen).
- Minimumfilter:
 - Wählt den kleinsten Grauwert in der Region.
- Maximumfilter.
 - Wählt den größten Grauwert in der Region.

Vorteile

- Besser geeignet zur Erhaltung von Kanten und feinen Strukturen.
- Besonders effektiv bei nicht-gausschem Rauschen.

Definition dieser Filter:

 $I(u,v) = \min\{I(u+i,v+j) \text{ für } (i,j) \in R\} = \min(R_{u,v}) \text{ bzw. } I(u,v) = \max\{I(u+i,v+j) \text{ für } (i,j) \in R\} = \max(R_{u,v}), \text{ wobei } R_{u,v} \text{ die Region der Bildwerte bezeichnet, die an der aktuellen Position } (u,v) \text{ von der Filterregion } \text{ überdeckt werden. Die Abbildung 31 zeigt die Anwendung von 3x3-Min- und -Max-Filtern auf ein Grauwertbild, das künstlich mit SSalt-and-PepperSStörungen versehen wurde (zufällig platzierte weiße und schwarze Punkte). Der$

Grundproblem bei der Filterung

- Kein Filter kann automatisch unterscheiden zwischen:
 - wichtigen Strukturen (z. B. Kanten, Details)
 - unerwünschten Störungen (z. B. Rauschen)
- → Perfekter Filter existiert nicht.
- Jeder Filter trifft eine "blinde Entscheidung", ob ein Pixel zur Struktur oder zur Störung gehört.

Medianfilter – ein sinnvoller Kompromiss

- Ziel: Störungen entfernen, aber Strukturen besser erhalten als bei linearen Filtern.
- Definition:

Jedes Bildelement I(u, v) wird durch den Median der Pixelwerte innerhalb einer Filterregion R ersetzt: I(u, v) = median(Ru, v)

• Der Median aus einer sortierten Liste von 2K+1 Pixelwerten p_i ist der mittlere Wert: $median(p0,\ldots,p2K)=pK$ (sofern $pi\leq pi+1$)

Beispielhafte Wirkung

- Abbildung 32 (gedanklich):
 - Linkes Bild: Originalbild mit Salt-and-Pepper-Rauschen.
 - Mittleres Bild: Nach Anwendung eines Mittelwertfilters Störungen teilweise noch sichtbar.
 - Rechtes Bild: Nach Anwendung eines Medianfilters Störungen besser entfernt,
 Strukturen erkennbar erhalten.

Abbildung 32: Anwendung von Mittelwert- und Medianfilter

Vorteile des Medianfilters

- Robust gegenüber Ausreißern
 - Besonders effektiv bei impulsartigem Rauschen wie Salt-and-Pepper-Noise
- Erhält Kanten besser als der Mittelwertfilter
- Nichtlinear, daher nicht anfällig für lineare Glättungsverluste