	Hi	story	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	20-Feb-2010

 $Q(\beta^{-})=-1.65\times10^{4} \text{ syst}; S(n)=1.803\times10^{4} \text{ 4}; S(p)=4882 22; Q(\alpha)=-6794 20 2012Wa38$

Note: Current evaluation has used the following Q record \$ -17100 syst 18.58E350 4883 26 -6777 21 2009AuZZ,2003Au03.

Estimated uncertainty=110 for $Q(\beta^-)$ (2009AuZZ,2003Au03).

 $Q(\varepsilon p) = 2243 \ 20 \ (2009AuZZ, 2003Au03).$

Mass excess=-29.472 20 MeV (1992Bo37).

1972Zi02: identification and production of 46 Cr in 32 S(16 O,2n) reaction.

1991Wi13: 46 Ti(π^+,π^-) E=450 MeV, measured cross section for double isobaric analog state using LAMPF facility and Large Acceptance spectrometer (las). Measured $d\sigma/d\Omega=0.25~\mu$ b/sr 10 at 5°.

1990We05: 46 Ti(π^+,π^-) E=33.9 MeV, measured cross section and $\sigma(\theta)$ for double isobaric analog state using LAMPF facility, Measured $d\sigma/d\Omega$ =3.1 μ b/sr 8 at 0° and 2.5 μ b/sr 6 at 25.1°.

1994B110: ⁹Be(⁵⁸Ni,X) E=650 MeV/nucleon, Fragment separator FRS at GSI facility, measured cross section for the production of ⁴⁶Cr.

2005On03: measured half-life of ⁴⁶Cr g.s.

Structure calculations using shell model: 2008Ma44, 2007He32, 2002Ca48: levels, B(E2), mirror states, etc.

⁴⁶Cr Levels

Cross Reference (XREF) Flags

- A 46 Mn ε decay (36.2 ms)
- B 47 Fe εp decay (21.9 ms)
- $C = {}^{12}C({}^{36}Ar,2n\gamma)$
- D Coulomb excitation

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0.0#	0+	0.26 s 6	ABCD	%ε+% β ⁺ =100 $T_{1/2}$: from 1972Zi02, timing of β decays. Other: 0.24 s 14 (2005On03) from β (993 γ) coin decay curve. Additional information 1.
892.16 [#] <i>10</i>	2+	5.4 ps <i>12</i>	ABCD	J^{π} : level is Coulomb excited. $T_{1/2}$: from B(E2)=0.093 20 (2005Ya26) in Coulomb excitation.
1987.1 [#] <i>3</i>	(4^{+})		ABC	-1-
3196.5 [@] 6	(3^{-})		BC	
3226.9 [#] 6 3296 3 3494.3 7	(6 ⁺)		C C C	
3593.7 [@] 7 3682.2 <i>16</i> 3715.8 9 3778.1 <i>12</i>	(4-)		C C C	
3986.7 [@] 7 4235 <i>3</i> 4305.5 <i>12</i> 4434.4 <i>10</i>	(5-)		C C C	
4817.4 [#] 8	(8^{+})		С	
4830 [@] 3 5117 4	(6-)		C C	
5346 [@] 3	(7-)		С	

⁴⁶Cr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
6179.5 [#] 11	(10^{+})	С
8162.5? [#] <i>15</i>	(12^{+})	C
9152.24	(4^{+})	Α

Comments

E(level): from 2007Do17, see detailed comment in 46 Mn ε decay. J^{π} : T=2 quadruplet in 46 Sc (g.s.,4⁺), 46 Ti (9168,4⁺,probable IAS of 46 Sc g.s.), 46 Cr (9152 state) and ⁴⁶Mn (g.s.). Superallowed type β^+ decay (log $ft \approx 3.4$) from ⁴⁶Mn g.s. to the 9152 level of ⁴⁶Cr is consistent with this interpretation. Also mirror analogy with 9168, 4⁺ state of

This state decays mainly by proton emission, but only 17.3% 12 branch is so far accounted in measurements of 2007Do17 and 1992Bo37. Energetically, two-proton and α -decay modes are also possible but these are expected to be small (2007Do17).

$\gamma(^{46}Cr)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
892.16	2+	892.15 [‡] <i>10</i>	100	0.0	0+	[E2]	B(E2)(W.u.)=19 4
1987.1	(4^{+})	1094.9 [‡] 3	100	892.16	2+		
3196.5	(3^{-})	2304.6 7	100	892.16	2+	D#	
3226.9	(6 ⁺)	1239.9 5	100	1987.1	(4+)	Q [#]	
3296 3494.3		2404 <i>3</i> 1506.9 <i>8</i>	100 100	892.16 1987.1	2 ⁺ (4 ⁺)		
3593.7	(4^{-})	397.4 <i>6</i> 1605.3 <i>15</i>	100 <i>13</i> 75 <i>19</i>	3196.5 1987.1	(3 ⁻) (4 ⁺)	D#	
3682.2		1695.0 <i>15</i>	100	1987.1	(4^+) (4^+)		
3715.8		519.3 6	100	3196.5	(3^{-})		
3778.1		581.7 11	50 <i>30</i>	3196.5	(3^{-})		
20067	(5-)	1790 3	100 60	1987.1	(4^+)		
3986.7	(5^{-})	393.0 <i>15</i> 492.3 <i>7</i>	12 <i>7</i> 60 <i>11</i>	3593.7 3494.3	(4-)		
		760.3 10	43 13	3226.9	(6+)		
		790.1 8	100 22	3196.5	(3^{-})	Q [#]	
4235		2248 <i>3</i>	100	1987.1	(4^{+})		
4305.5		711.8 9	100	3593.7	(4-)		
4434.4		841.0 22 1207.4 9	22 <i>13</i> 100 <i>17</i>	3593.7 3226.9	(4^{-}) (6^{+})		
4817.4	(8 ⁺)	1590.4 6	100 17	3226.9	(6 ⁺)		
4830	(6^{-})	1236 <i>3</i>	100	3593.7	(4^{-})		
5117	` /	1401 3	100	3715.8	` /		
5346	(7^{-})	1359 <i>3</i>	100	3986.7	(5^{-})		
6179.5	(10^{+})	1362.1 7	100	4817.4	(8^{+})		
8162.5?	(12^{+})	1983.0 [@] 10	100	6179.5	(10^{+})		

[†] From ¹²C(³⁶Ar,2n γ), unless otherwise stated.

[†] From least-squares fit to E γ 's.

 $^{^{\}ddagger}$ As proposed in 2007Ga03 based on $\gamma(\theta)$ data for selected transitions observed in 12 C(36 Ar,2n γ) and mirror analogy with 46 Ti and ⁴⁶V. # Band(A): Yrast (T=1) band. Structure is similar to T=1 states in mirror nuclide ⁴⁶Ti and ⁴⁶V.

[@] Band(B): $\Delta J=1$ band based on (3⁻).

$\gamma(^{46}Cr)$ (continued)

[‡] Weighted average of values from ε decay, ε p decay and $^{12}C(^{36}Ar,2n\gamma)$.

The $\gamma(\theta)$ patterns in $^{12}C(^{36}Ar,2n\gamma)$ are consistent with ΔJ =2, quadrupole for 1240 γ and 790 γ ; and ΔJ =1 for 2305 γ and 397 γ .

@ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

$$^{46}_{24}\mathrm{Cr}_{22}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021

 $Q(\beta^-)=-13525 \ 10$; $S(n)=16330 \ 9$; $S(p)=8103 \ 7$; $Q(\alpha)=-7698 \ 7$ 2021Wa16 $S(2n)=29492 \ 14$, $S(2p)=13271 \ 7$, $Q(\varepsilon)=1657 \ 7$ (2021Wa16).

Resonance parameters: see 1983Zu03 (²⁴Mg(²⁴Mg, ²⁴Mg) and ²⁴Mg(²⁴Mg, ²⁴Mg')), 1987Sa05 (²⁴Mg(²⁴Mg, ²⁰Ne), ²⁴Mg(²⁴Mg, ²⁴Mg), and ²⁴Mg(²⁴Mg, ²⁴Mg')), 1987Wu01 (²⁴Mg(²⁴Mg, ²⁴Mg')), 1990Wu03 ((²⁴Mg, ²⁴Mg), (²⁴Mg, ²⁴Mg'), (²⁴Mg, x)), 1993LeZY (²⁴Mg(²⁴Mg, X)), and 1994Ha03 ((²⁴Mg, ²⁴Mg') and (²⁴Mg, ²⁰Ne)) and references cited by these authors. See the Nuclear Science References library for theoretical calculations. See 1992Ra06 for an interpretation of some of these resonances as hyperdeformed states.

⁴⁸Cr Levels

1994Ca04 in (40 Ca,np γ) find no evidence for super- or hyperdeformation at higher energies as speculated by I. Ragnarsson in a private communication to 1994Ca04.

Cross Reference (XREF) Flags

Α	⁴⁸ Mn β^+ decay (157.7 ms)	E	28 Si(28 Si, $2\alpha\gamma$)	I	$^{46}\text{Ti}(^{3}\text{He,n}\gamma)$
В	⁴⁹ Fe β ⁺ p decay	F	$^{34}S(^{16}O,2n\gamma)$	J	$^{48}\text{Ti}(\pi^+,\pi^-)$
C	10 B(40 Ca,pn γ), 40 Ca(10 B,pn γ)	G	36 Ar(14 N,np γ)	K	50 Cr(p,t)
D	24 Mg(32 S, $2\alpha\gamma$),(32 S, 8 Be γ)	H	$^{46}\text{Ti}(^{3}\text{He,n})$		

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}^{\#}$	XREF	Comments
0.0&	0+	21.56 h <i>3</i>	ABCDEFGHIJK	%ε+%β ⁺ =100 T _{1/2} : from 1974Ts01. Others: 21.55 h <i>15</i> from 1979PrZU; 22.96 h <i>5</i> from 1963Ho17 is discrepant.
752.16 ^{&} 13	2+	8.0 ps <i>5</i>	ABCDEFGHI K	XREF: H(800). J^{π} : L(p,t)=2 from 0 ⁺ ; 752.15 γ E2 to 0 ⁺ . $T_{1/2}$: weighted average of 8.43 ps 49 (2017Ar09), 7.3 ps 8 (1979Ek03), and 6.7 ps 18 (1973Ku10) in 40 Ca(10 B,pn γ), using RDM. Other: 11.6 ps 15 from RDM in 1975Ha04 in (16 O,2n γ), which is re-analyzed to be 8.7 ps 24 by 1979Ek03 after removing a restriction imposed by 1975Ha04 on normalization constants for obtaining intensity ratio in RDM.
1858.40 ^{&} 22	4+	1.20 ps <i>13</i>	ABCDEFG I K	XREF: K(1845). J^{π} : L(p,t)=4 from 0 ⁺ ; 1106.3 γ E2 to 2 ⁺ . $T_{1/2}$: weighted average of 1.21 ps 13 from (32 S,2 $\alpha\gamma$), 1.04 ps 35 from (28 Si,2 $\alpha\gamma$), and 1.3 ps 4 from (14 N,np γ), using DSAM. Other: 1.0 ps +14-4 from RDM in (10 B,pn γ), <3.5 ps from RDM in (16 O,2n γ).
3420? 20	(0^+)		K	J^{π} : L(p,t)=(0) from 0 ⁺ .
3444.8 ^{&} 4	6+	0.19 ps 5	A CDE G I K	J^{π} : 1586.4 γ E2 to 4 ⁺ ; spin>4 from γ excitation function in (10 B,pn γ) (1979Ha45); band assignment.
3524.2 10	(0,1,2,3)		I k	$T_{1/2}$: other: <0.7 ps from DSAM in (14 N,np γ) (1979Ek03). XREF: k(3527). J^{π} : <4 from γ -ray excitation functions in (3 He,n γ) (2003Je06).
3533.5 ^a 3	4(-)@	3.3 ns 8	A C EFG I k	XREF: k(3527). J ^{π} : spin=4 from γ excitation function and $\gamma\gamma(\theta)$ in (3 He,n γ) (2003Je06); 4 $^{-}$ is proposed by 1998Br34 in (28 Si,2 $\alpha\gamma$) and the authors note that $\gamma(\theta)$ of 1973Ku10 (assigning 6 $^{+}$) in (10 B,np γ) and 1975Ha04 (assigning 6 $^{+}$) and 1979Ha45 (assigning 6 $^{-}$) in (16 O,2n γ),

E(level) [†]	J^π	T _{1/2} #	XREF	Comments
				which were interpreted as quadrupole, would also be consistent with ΔJ =0 dipole character and that negative parity is strongly suggested by systematics and 4 ⁻ is from shell-model prediction.
				$T_{1/2}$: weighted average of 4.1 ns 4 from 1675 γ (t) in (10 B,pn γ)
3632.2 10	$(2^+,3^-)$		ΙK	(1979Ha45) and 2.5 ns 7 from RDM in (14 N,np γ) (1979Ek03). J^{π} : (<4) from γ excitation functions in (3 He,n γ) (2003Je06); L(p,t)=(2,3)
4034.3 10	(0,1,2,3)		I	from 0^+ . J^{π} : <4 from γ excitation functions in (3 He, $\eta\gamma$) (2003Je06).
4064.1 4	3(-)		I k	$T_{1/2}$: from (^{10}B ,pn γ).
				J ^{π} : ≤3 from γ excitation functions and ≥3 from $\gamma\gamma(\theta)$ in (3 He,n γ) and π =- suggested by shell-model calculations (2003Je06). L(p,t)=3 from 0 ⁺ for an unresolved doublet at 4067 5 (1972Sh27).
4064.2 ^a 4	5(-)@	28 ps 7	A C EFG I k	J^{π} : spin=5 from γ excitation function and $\gamma\gamma(\theta)$ in (³ He,n γ) (2003Je06); 530.77 γ M1+E2 to 4 ⁽⁻⁾ . L(p,t)=3 from 0 ⁺ for an unresolved doublet at 4067 5 (1972Sh27).
4280 <i>5</i> 4428.7 <i>3</i>	(0^+) 4^+		K A K	$T_{1/2}$: from RDM in (10 B,pn γ) (1979Ek03). J^{π} : L(p,t)=(0) from 0 ⁺ . XREF: K(4432).
4640 10	2+		n K	J^{π} : L(p,t)=4 from 0 ⁺ ; allowed β feeding (log ft =4.6) from 4 ⁺ parent. J^{π} : L(p,t)=2 from 0 ⁺ .
4653.0 3	$(3,4)^+$		A	J^{π} : 3900.5 γ to 2 ⁺ ; allowed β feeding (log ft =5.0) from 4 ⁺ parent.
4765.5 <i>11</i> 4876.0 ^a 4	(4,5) (6 ⁻)	>0.7 ps	I C E I	J^{π} : from γ excitation functions in (3 He,n γ) (2003Je06). XREF: C(?).
4670.0 4	(0)	>0.7 ps	CE I	J^{π} : (5,6) from γ excitation functions in (³ He,n γ) (2003Je06); 6 ⁻ from
5032.5 <i>3</i>	$(3,4)^+$		A	shell-model prediction (1998Br34). J^{π} : 4280.1 γ to 2 ⁺ ; allowed β feeding (log ft =4.6) from 4 ⁺ parent.
5131.2 11	0.1		I	77 1 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
5188.4 ^{&} 5	8+	0.14 ps <i>4</i>	CDE G I	J ^π : spin=8 from $\gamma\gamma$ (DCO) in (²⁸ Si,2 $\alpha\gamma$) (1996Ca38); 1743.5 γ E2 to 6 ⁺ ; band assignment.
				$T_{1/2}$: other: <0.8 ps from (14 N,np γ) (1979Ek03); a value of 0.52 ps 17 is from DSAM in 1979Ek03, but not adopted in their level scheme.
5294.0 <i>7</i> 5430 <i>30</i>	3 ⁺ ,4 ⁺ ,5 ⁺ 0 ⁺		A H	J^{π} : allowed β^+ feeding (log f_t =4.9) from 4 ⁺ parent. J^{π} : L(3 He,n)=0 from 0 ⁺ .
5595.5 11			I	
5608.6? <i>5</i> 5649.0 ^{<i>a</i>} <i>4</i>	$(3^+,4^+)$ (7^-)	0.42 ps 7	A CE I	J^{π} : possible allowed β^+ feeding from 4 ⁺ parent; possible 4856.1 γ to 2 ⁺ . XREF: C(?).
5670 20	(0^+)	•	K	J^{π} : from band assignment and shell-model predictions (1998Br34). J^{π} : L(p,t)=(0) from 0 ⁺ .
5784.9 11			I	
5792.7 3	4 ⁺		A K	T=1 E(level): IAS ⁴⁸ V g.s.
50245 11			.	J^{π} : L(p,t)=4 from 0^+ .
5834.5 <i>11</i> 5960 <i>10</i>	(0^+)		I H K	XREF: H(6010).
6100 <i>10</i>	2+		K	J^{π} : L(p,t)=(0) from 0 ⁺ . T=1
0100 10	-		K	E(level): IAS ⁴⁸ V 308 level.
6257 52 10			r.	J^{π} : L(p,t)=2 from 0 ⁺ . J^{π} : (9 ⁺) suggested by 1998Le43 in (²⁸ Si,2 $\alpha\gamma$); no discussion by authors.
6257.5? <i>10</i> 6278.4? <i>11</i>		0.14 ps <i>3</i>	E E	E(level): this level with J=8 is proposed in 1996Ca38 only in $(^{28}\text{Si}, 2\alpha\gamma)$ and could be the same level as the 9871 level proposed by 1998Br34, which has the similar deexciting gamma and nearly identical $T_{1/2}$ from DSAM.
6420 10	(5-)		K	$T_{1/2}$: from DSAM in (28 Si,2 $\alpha\gamma$) (1996Ca38). J^{π} : L(p,t)=(5) from 0 ⁺ .
			Continu	ned on next page (footnotes at end of table)

E(level) [†]	${ m J}^\pi$	${\rm T_{1/2}}^{\#}$	XR	EF	Comments
6855 10	0+			K	J^{π} : L(p,t)=0 from 0 ⁺ .
7064.0 ^{&} 7	10 ⁺	0.125 ps <i>35</i>	CDE	G	J^{π} : spin>8 from γ excitation function in (10 B,pn γ) (1979Ha45); 1875.6 γ to 8^+ is stretched (ΔJ =2) quadrupole or ΔJ =0 dipole, and can not be M2 based on RUL.
					$T_{1/2}$: other: <0.7 ps indicated by the width of 1878 γ in (14 N,np γ) (1979Ek03).
					Evidence for spin alignment from backbending in (40 Ca,np γ).
7550 10	(0-)			K	
7671.2 ^a 5	(9-)	0.15 ps 5	CE		J^{π} : from band assignment an shell-model prediction (1998Br34).
7940 <i>30</i>				Н	20
8411.9 <mark>&</mark> 8	12+	0.59 ps <i>17</i>	CDE		J^{π} : spin from $\gamma\gamma$ (DCO) in (²⁸ Si,2 $\alpha\gamma$) (1996Ca38); 1347.9 γ E2 to 10 ⁺ ; band assignment.
8462.6? 15			E		
8750 [‡] <i>15</i>	0^{+}			h jK	T=2
					XREF: h(8770)j(8620).
					J^{π} : L(p,t)=0 from 0 ⁺ .
8760 [‡] <i>15</i>	0^{+}			h jK	T=2
					XREF: $h(8770)j(8620)$. J^{π} : $L(p,t)=0$ from 0^{+} .
9040? 30				K	2 (p,t) 3 nom 3 1
9180? 30				K	
9530 <i>30</i>	0_{+}			Н	E(level): IAS(⁴⁸ V,3.70 MeV).
					J^{π} : L(³ He,n)=0 from 0 ⁺ .
9871.4 ^a 6	(11-)	0.139 ps <i>35</i>	C E		E(level): see a possible level at E=6278, which could the same level as this level based on the de-exciting gamma and $T_{1/2}$.
					J^{π} : from band assignment and shell-model prediction (1998Br34).
9900 <i>30</i>				Н	• · · · · · · · · · · · · · · · · · · ·
10280.9 <mark>&</mark> 9	14 ⁺	0.30 ps 6	DE		J^{π} : 1868.9 γ E2 to 12 ⁺ ; member of g.s. band.
11105.6? 18		F	E		5 · · · · · · · · · · · · · · · · · · ·
11320 30	0^{+}			Н	J^{π} : L(³ He,n)=0 from 0 ⁺ .
11648.8 ^a 7	(13^{-})	0.48 ps <i>14</i>	E		J^{π} : from band assignment and shell-model prediction (1998Br34).
12301.5? ^a 10	. ,	•	E		
13310.0 <mark>&</mark> 9	16 ⁺	0.049 ps 10	DE		J^{π} : 3029.0 γ E2 to 14 ⁺ ; member of g.s. band.
15119.0? ^a 10	-	.	E		, , , , , , , , , , , , , , , , , , , ,
15735.2 <i>13</i>			DE		J^{π} : (16 ⁺) suggested by (1998Br34) in (²⁸ Si,2 $\alpha\gamma$); no discussion by authors.
17342.1? ^a 15			E		, , , , , , , , , , , , , , , , , , ,
17378.2? & 10			E		

[†] From a least-squares fit to γ -ray energies assuming Δ E γ =1 keV where not given for levels connected by γ -ray transitions, and from particle transfer reactions in other cases, unless otherwise noted.

[‡] Identified as doublet T=2, $J^{\pi}=0^{+}$ state in (p,t).

[#] From DSAM line-shape analysis in (28 Si, $2\alpha\gamma$) (1998Br34), unless otherwise noted.

[®] ⁴⁸Cr is a well-deformed nucleus with $\beta \approx 0.3$ suggesting that K is a good quantum number (1998Br34). The band head at 3533 has J=4 from excit. and the state directly above this connected by 531γ has J=5 from excit., establishing K=4. δ (1675γ) excludes an appreciable Q component and strongly favors $\Delta \pi = -$. T_{1/2}(3533)=3.3 ns 8 and almost pure D character of 1675γ excludes twofold K-forbidden E2. However, threefold K-forbidden, isospin-forbidden E1 and twofold K-forbidden M2 are consistent with expected transition probabilities. Therefore, $\pi = -$ is assigned to the 3533 and the band built on it. Note, also, that, if π (3533)=+, considerable E2 character of the 1675γ and an E2 γ to 2⁺ would be expected and that no γ from the 4064, J=5, to 1854, J=4⁺ was observed. Arguments from 2003Je06 in ⁴⁶Ti(³He,nγ). See additional arguments by 1998Br34 in (²⁸Si,2αγ) supporting J^{π} (3533)=4⁻. Note that Mult(87γ)=D,E2 from comparison to RUL is not consistent with this assignment.

- & Band(A): g.s. (yrast) band. 1994Ca04 in (⁴⁰Ca,npγ) reverse the order of the 1744γ and 1876γ and, therefore, place the 8⁺ member of the band at 5318 keV. Data from the other studies indicate that the 8⁺ is at 5188 keV and this has been adopted by the evaluator. The odd-spin members of the band have been assigned only by 1994Ca04.
- ^a Band(B): Rotational-like structure based on 4^- (1998Br34,1998Le43,2003Je06). Possible $(d_{3/2})^1(f_{7/2})^9$ configuration. Members of the band for states above 11648 are from figure 1 of 1998Le43 and were not discussed by 1998Br34. 2003Je06 labeled this as a negative parity nonyrast band and only reported the first four members.

$\gamma(^{48}Cr)$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	δ&	$lpha^\dagger$	Comments
752.16	2+	752.15 13	100	0.0 0+	E2		0.000325 5	B(E2)(W.u.)=28.4 +19-17 α =0.000325 5; α (K)=0.000294 4; α (L)=2.73×10 ⁻⁵ 4; α (M)=3.59×10 ⁻⁶ 5 α (N)=1.337×10 ⁻⁷ 19
1858.40	4+	1106.3 2	100	752.16 2 ⁺	E2		0.0001234 17	E _γ : weighted average of 752.1 2 from ⁴⁸ Mn β^+ decay, 752.2 2 from ⁴⁹ Fe β^+ p decay, 752.0 2 from (¹⁰ B,pnγ), 752.2 3 from (²⁸ Si,2αγ), 752.3 2 from (¹⁶ O,2nγ), 752.13 <i>13</i> from (¹⁴ N,npγ), and 752.4 5 from (³ He,nγ). B(E2)(W.u.)=27.5 +32-27 α=0.0001234 <i>17</i> ; α(K)=0.0001106 <i>15</i> ; α(L)=1.024×10 ⁻⁵ <i>14</i> ; α(M)=1.347×10 ⁻⁶ <i>19</i> α(N)=5.05×10 ⁻⁸ 7; α(IPF)=1.104×10 ⁻⁶ <i>17</i> E _γ : weighted average of 1106.1 2 from ⁴⁸ Mn β^+ decay, 1105.2
3444.8	6 ⁺	1586.4 [#] 3	100	1858.40 4+	E2		0.0001789 25	6 from ⁴⁹ Fe β ⁺ p decay, 1106.3 2 from (¹⁰ B,pnγ), 1106.4 3 from (²⁸ Si,2αγ), 1106.5 2 from (¹⁶ O,2nγ), 1106.4 3 from (¹⁴ N,npγ), and 1106.4 5 from (³ He,nγ). Mult.: Q from $\gamma(\theta)$ data, M2 ruled out by RUL. B(E2)(W.u.)=29 +10-6 α=0.0001789 25; α(K)=5.10×10 ⁻⁵ 7; α(L)=4.70×10 ⁻⁶ 7; α(M)=6.19×10 ⁻⁷ 9
								$\alpha(N)$ =2.329×10 ⁻⁸ 33; $\alpha(IPF)$ =0.0001226 17 E _{γ} : others: 1586.4 6 in (10 B,pn γ); 1589.2 10 from (14 N,np γ) (1979Ek03) is discrepant, which is a quite broad peak as mentioned in 1979Ek03.
3524.2 3533.5	$(0,1,2,3)$ $4^{(-)}$	2772 [@] 87 ^a	100 10	752.16 2 ⁺ 3444.8 6 ⁺	[M2]		0.447 6	$\alpha(K)$ =0.399 6; $\alpha(L)$ =0.0429 6; $\alpha(M)$ =0.00564 8 $\alpha(N)$ =0.0001953 27
								E _{γ} : from (⁴⁰ Ca,pn γ) (1994Ca04). I _{γ} : from I(87 γ)/I(1675 γ)=0.6/6 in (⁴⁰ Ca,pn γ) (1994Ca04). B(M2)(W.u.)=9.2×10 ³ +38-31 exceeds RUL=1.
		1675.2 3	100 7	1858.40 4+	(E1(+M2))	-0.01 5	0.000427 6	B(E1)(W.u.)= $2.1\times10^{-8}+18-9$; B(M2)(W.u.)< 2.3×10^{-4} α= 0.000427 6; α(K)= 2.50×10^{-5} 4; α(L)= 2.30×10^{-6} 4; α(M)= 3.02×10^{-7} 5 α(N)= 1.140×10^{-8} 18; α(IPF)= 0.000399 6 E _γ : weighted average of 1675.0 4 from ⁴⁸ Mn β ⁺ decay, 1675.3 4 from (10 B,pnγ), 1674.9 6 from (16 O,2nγ), 1675.3 3 from (14 N,npγ), and 1675.3 10 from (3 He,nγ). I _γ : from ⁴⁸ Mn β ⁺ decay. Other: 100 20 from (10 B,pnγ). Mult.,δ: D(+Q) from γγ(θ) in (3 He,nγ); $\Delta \pi$ =(yes) from level scheme.

 \mathcal{S}

γ (48Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	δ&	$lpha^\dagger$	Comments
3533.5	4 ⁽⁻⁾	2780.3 ^a	<80	752.16 2+				E_{γ} , I_{γ} : from (10 B,pn γ) (1973Ku10); not observed in (3 He,n γ).
3632.2	$(2^+,3^-)$	2880 [@]	100	752.16 2 ⁺				
4034.3	(0,1,2,3)	3282 [@]	100	752.16 2+				
4064.1	3(-)	530.75 17	100 20	3533.5 4 ⁽⁻⁾	D+Q	-0.36 +28-61		E_{γ} : weighted average of 530.8 3 from (10 B,pn γ), 531.0 3 from (28 Si,2 $\alpha\gamma$), 530.6 2 from (16 O,2n γ), and 530.77 17 from (14 N,np γ).
		2205 [@]	100 [@] 8	1858.40 4+	D,Q			Mult.: from $\gamma \gamma(\theta)$ in (³ He,n γ), with δ (Q/D)=−0.05 5 or ≥10 (2003Je06).
		3312 [@]	38 [@] 4	752.16 2 ⁺				
4064.2	5(-)	530.77 17	100	3533.5 4 ⁽⁻⁾	M1+E2	0.24 3	0.000477 9	B(M1)(W.u.)=0.0050 +17-10; B(E2)(W.u.)=2.5 +11-7 α=0.000477 9; α(K)=0.000431 8; α(L)=4.01×10 ⁻⁵ 8; α(M)=5.27×10 ⁻⁶ 10 α(N)=1.98×10 ⁻⁷ 4 E _γ : from (¹⁴ N,npγ). Others: 531.0 5 from ⁴⁸ Mn β ⁺ decay, 530.8 3 from (¹⁰ B,pnγ), 531.0 3 from (²⁸ Si,2αγ), and 530.6 2 from (¹⁶ O,2nγ). Mult.,δ: D+Q from γ(θ) in (¹⁰ B,pnγ), with δ(Q/D) deduced by the evaluator from 5.5% 15-10 E2 component in 1979Ha45; M2 ruled out by RUL. Others: δ(Q/D)=-0.36 +28-61 from γ(θ) in (¹⁶ O,2nγ) (1975Ha04), +0.01 5 or >7 from γγ(θ) in (³ He,nγ) (2003Je06), >20 for J^{π} =6 from γ(θ) in (¹⁴ N,npγ) (1979Ek03).
4428.7	4+	2570.2 [‡] 5	5.2 [‡] 6	1858.40 4+				
		3676.2 [‡] 4	100 [‡] 6	752.16 2+				
4653.0	$(3,4)^+$	3900.5 [‡] <i>5</i>	100	752.16 2+				
4765.5	(4,5)	2907 [@]	100	1858.40 4 ⁺				
4876.0	(6-)	811.9 [#] <i>a</i> 3	37 [#] 7	4064.2 5 ⁽⁻⁾			0.00022 4	α =0.00022 4; α (K)=0.00020 4; α (L)=1.9×10 ⁻⁵ 4; α (M)=2.5×10 ⁻⁶ 5; α (N+)=9.3×10 ⁻⁸ 17 α (N)=9.3×10 ⁻⁸ 17
		1342.6# 3	100 [#] 17	3533.5 4 ⁽⁻⁾	[E2]		0.0001185 <i>17</i>	B(E2)(W.u.)<14 α =0.0001185 17; α (K)=7.19×10 ⁻⁵ 10; α (L)=6.64×10 ⁻⁶ 9; α (M)=8.74×10 ⁻⁷ 12 α (N)=3.28×10 ⁻⁸ 5; α (IPF)=3.90×10 ⁻⁵ 6 E _{γ} : other: 1343 3 from (10 B,pn γ).
5032.5	$(3,4)^{+}$	3174.1 [‡] 5	24.9 [‡] <i>34</i>	1858.40 4+				
		4280.1 [‡] 5	100 [‡] 6	752.16 2 ⁺				
5131.2		1067 [@]	100	4064.2 5 ⁽⁻⁾				

6

γ (48Cr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${ m I}_{\gamma}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$lpha^\dagger$	Comments
5188.4	8+	1743.5 3	100	3444.8	6+	E2	0.0002385 33	B(E2)(W.u.)=24 +10-6 α=0.0002385 33; α(K)=4.24×10 ⁻⁵ 6; α(L)=3.91×10 ⁻⁶ 5; α(M)=5.14×10 ⁻⁷ 7 α(N)=1.937×10 ⁻⁸ 27; α(IPF)=0.0001917 27 Ε _γ : weighted average of 1742.5 10 from (10 B,pnγ), 1743.4 3 from (28 Si,2αγ), and 1744.0 5 from (14 N,npγ). Mult.: from γ(θ,pol) in (14 N,npγ) (1979Ek03), and γ anisotropy (ΔJ=0 or 2) in (40 Ca,pnγ) (1994Ca04).
5294.0	3+,4+,5+	3435.5 [‡] 6	100	1858.40	4+			
5595.5		2062 [@]	100	3533.5	$4^{(-)}$			
5608.6?	$(3^+,4^+)$	$3750.0^{\ddagger a}$ $4856.1^{\ddagger a}$	100 [‡] 18 50 [‡] 9	1858.40 752.16				
5649.0	(7-)	773.1# 3	5.0 [#] 10	4876.0			0.00025 5	α =0.00025 5; α (K)=0.00023 5; α (L)=2.1×10 ⁻⁵ 5; α (M)=2.8×10 ⁻⁶ 6; α (N+)=1.04×10 ⁻⁷ 20 α (N)=1.04×10 ⁻⁷ 20
		1584.6 [#] 3	100 [#] 10	4064.2	5 ⁽⁻⁾	[E2]	0.0001783 25	B(E2)(W.u.)=12.4 +25-18 α =0.0001783 25; α (K)=5.11×10 ⁻⁵ 7; α (L)=4.71×10 ⁻⁶ 7; α (M)=6.20×10 ⁻⁷ 9 α (N)=2.335×10 ⁻⁸ 33; α (IPF)=0.0001218 17
5784.9		2340 [@]	100	3444.8	6+			, , , , , , , , , , , , , , , , , , , ,
5792.7	4 ⁺	760.2 [‡] 2 1139.7 [‡] 2 1364.0 [‡] 2 1728.8 [‡] 5 2259.2 [‡] 5 3934.1 [‡] 5	13.6 [‡] 10 28.6 [‡] 19 96 [‡] 5 5.6 [‡] 8 7.0 [‡] 8 100 [‡] 7	5032.5 4653.0 4428.7 4064.2 3533.5 1858.40	(3,4) ⁺ (3,4) ⁺ 4 ⁺ 5 ⁽⁻⁾ 4 ⁽⁻⁾			
5834.5		2301 [@]	100	3533.5	4(-)			
6257.5?		1069 [#] a		5188.4	8+			
6278.4?		2214 [#] a		4064.2	5 ⁽⁻⁾			E_{γ} : could be the 2200 γ from the 9871 level.
7064.0	10+	1875.6 <i>5</i>	100	5188.4	8+	E2	0.000294 4	B(E2)(W.u.)=19 +7-4 α=0.000294 4; α(K)=3.69×10 ⁻⁵ 5; α(L)=3.40×10 ⁻⁶ 5; α(M)=4.47×10 ⁻⁷ 6 α(N)=1.686×10 ⁻⁸ 24; α(IPF)=0.0002530 35 E _γ : weighted average of 1876 2 from (10 B,pnγ), 1875.4 3 from (28 Si,2αγ), and 1878.2 12 from (14 N,npγ). Mult.: stretched (ΔJ=2) quadrupole or ΔJ=0 dipole from angular anisotropy in (40 Ca,pnγ) (1994Ca04); ΔJ=0 ruled out by γ excitation function from level scheme; M2 ruled out by RUL.

γ (⁴⁸Cr) (continued)

$E_i(level)$	\mathbf{J}_i^π	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.&	$lpha^\dagger$	Comments
7671.2	(9-)	2022.2# 3	100	5649.0	(7-)	[E2]	0.000359 5	B(E2)(W.u.)=11 +5-3 α =0.000359 5; α (K)=3.21×10 ⁻⁵ 4; α (L)=2.96×10 ⁻⁶ 4; α (M)=3.89×10 ⁻⁷ 5 α (N)=1.468×10 ⁻⁸ 21; α (IPF)=0.000324 5
8411.9	12+	1347.9 [#] 3	100	7064.0	10+	E2	0.0001192 <i>17</i>	B(E2)(W.u.)=21 +9-5 α =0.0001192 17; α (K)=7.132×10 ⁻⁵ 99; α (L)=6.59×10 ⁻⁶ 9; α (M)=8.67×10 ⁻⁷ 12 α (N)=3.26×10 ⁻⁸ 5; α (IPF)=4.03×10 ⁻⁵ 6 Mult.: stretched (ΔJ=2) quadrupole or ΔJ=0 dipole from angular anisotropy in (⁴⁰ Ca,pnγ) (1994Ca04); ΔJ=0 ruled out by $\gamma\gamma$ (DCO) in (²⁸ Si,2 $\alpha\gamma$) (1996Ca38); M2 ruled out by RUL.
8462.6?		2205 [#] a		6257.5?				
9871.4	(11-)	2200.1# 3	100	7671.2	(9-)	[E2]	0.000442 6	B(E2)(W.u.)=7.6 +26-16 α =0.000442 6; α (K)=2.76×10 ⁻⁵ 4; α (L)=2.54×10 ⁻⁶ 4; α (M)=3.34×10 ⁻⁷ 5 α (N)=1.262×10 ⁻⁸ 18; α (IPF)=0.000411 6
10280.9	14+	1868.9 [#] 3	100	8411.9	12+	E2	0.000291 4	B(E2)(W.u.)=8.0 +20-13 α =0.000291 4; α (K)=3.72×10 ⁻⁵ 5; α (L)=3.42×10 ⁻⁶ 5; α (M)=4.50×10 ⁻⁷ 6 α (N)=1.698×10 ⁻⁸ 24; α (IPF)=0.0002498 35 Mult.: Q from $\gamma\gamma$ (DCO) in (28 Si,2 $\alpha\gamma$) (1996Ca38); M2 ruled out by RUL.
11105.6?		2643 [#] a		8462.6?				
11648.8	(13 ⁻)	1777.4# 3	100	9871.4	(11-)	[E2]	0.0002523 35	B(E2)(W.u.)=6.4 +26-15 α =0.0002523 35; α (K)=4.09×10 ⁻⁵ 6; α (L)=3.76×10 ⁻⁶ 5; α (M)=4.95×10 ⁻⁷ 7 α (N)=1.867×10 ⁻⁸ 26; α (IPF)=0.0002071 29
12301.5?		2430 [#] <i>a</i>		9871.4	(11^{-})			
13310.0	16 ⁺	3029.0 [#] 3	100	10280.9	14+	E2	0.000813 11	B(E2)(W.u.)=4.4 +11-8 α =0.000813 11; α (K)=1.614×10 ⁻⁵ 23; α (L)=1.482×10 ⁻⁶ 21; α (M)=1.951×10 ⁻⁷ 27 α (N)=7.37×10 ⁻⁹ 10; α (IPF)=0.000796 11 Mult.: Q from $\gamma\gamma$ (DCO) in (28 Si,2 $\alpha\gamma$); M2 ruled out by RUL.
15119.0?		3470 [#] a		11648.8	(13^{-})			•
15735.2		5454 [#]		10280.9	14+			
17342.1?		2223 [#] a		15119.0?				
17378.2?		4069 [#] <i>a</i>		13310.0	16 ⁺			

[†] Additional information 1. ‡ From 48 Mn β^+ decay. # From $(^{28}$ Si, $^{2}\alpha\gamma)$. @ From $(^{3}$ He, 1 ny).

[&]amp; From $\gamma(\theta,\text{pol})$ in $(^{14}\text{N},\text{np}\gamma)$, $\gamma(\theta)$ in $(^{10}\text{B},\text{pn}\gamma)$ and $(^{16}\text{O},2\text{n}\gamma)$, unless otherwise noted. ^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

	Hist	ory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

 $Q(\beta^-)=-7634.48\ 7;\ S(n)=13000.3\ 22;\ S(p)=9589.1\ 9;\ Q(\alpha)=-8559.2\ 5$ 2017Wa10 $S(2n)=23583\ 7,\ S(2p)=16347.3\ 4$ (2017Wa10).

See 1994Wi05, 1993Wi21, 1990Ha13 and 1984KoZH for $Q(\varepsilon)$ (50Mn) obtained for studies of super-allowed β decay. These values include atomic corrections.

Other reactions:

1991Wi13: ${}^{50}\text{Ti}(\pi^+,\pi^-)$, E=450 MeV, measured $\sigma(\theta=5^\circ)$ at LAMPF using Large Acceptance Spectrometer, deduced mass dependence for cross sections for the double-isobaric-analog state.

1973De29: 50 Cr(γ ,n), E=20.43-22.22 MeV, measured σ by activation. Monochromatic γ rays from H(p, γ); FWHM=122 keV. Related results to the width of dipole state in 50 Cr.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 142 primary references dealing with various aspects of nuclear structure.

Added in proofs: PRC accepted paper (April 9, 2019) by M.M. Giles et al used in the present evaluation, is now published as Phys. Rev. C 99, 044317 (2019).

⁵⁰Cr Levels

Isospin (T) From ⁵²Cr(p,t).

Cross Reference (XREF) Flags

		B 50Mn C 50Mn D 24Mg(E 28Si(2	decay (2.65×10 ¹⁷ y):? ε decay (283.19 ms) ε decay (1.75 min) 32 S, $_{\alpha}$ 2p $_{\gamma}$) 8 Si, $_{\alpha}$ 2p $_{\gamma}$) 16 O, $_{\alpha}$ 2p $_{\gamma}$), 12 C,2p $_{\gamma}$) He,n)	H I J K L M	$^{48}\text{Ti}(^{16}\text{O},^{14}\text{C})$ $^{50}\text{V}(p,n\gamma)$ $^{50}\text{Cr}(\gamma,\gamma'),(\text{pol }\gamma,\gamma')$ $^{50}\text{Cr}(e,e')$ $^{50}\text{Cr}(n,n'\gamma)$ $^{50}\text{Cr}(p,p')$ $^{50}\text{Cr}(p,p'\gamma)$	O P Q R S T U	50 Cr(d,d') 50 Cr(3 He, 3 He') 50 Cr(α,α') 50 Cr($\alpha,\alpha'\gamma$) 52 Cr(p,t) 54 Fe(p,p α) Coulomb excitation
E(level) [†]	$J^{\pi \#}$	T _{1/2} &	XREF			Co	omments
0.0 ^b	0+	>1.3×10 ¹⁸ y	ABCDEFGHIJKLMNOPQRS	TU	%2ε=?		
783.31 ^b 10	2+	9.08 ps 28	ABCDEFGHIJKLMNOPQRS	STU	1985No03 who mean lower limit on $T_{1/2}$ f (1985No03), >1.3×1 Evaluated rms charge r (2013An02). Evaluated $\delta < r^2 > (^{50}\text{Cr},^5)$ $\mu = +1.24$ 6 (2000Er06, Q=-0.36 7 (1975To06, XREF: A(?). J ^{π} : E2 783.3 γ to 0 ^{$+$} . $T_{1/2}$: weighted average from experimental valifetime $\tau = 13.3$ ps 6 accepted April 9, 20	for 0 <i>v</i> 0 ¹⁸ y radius 5 ² Cr)= 2014S,2016 ed me alues (M.M.19, R	

 $^{50}_{24}\mathrm{Cr}_{26}$ -2 From ENSDF $^{50}_{24}\mathrm{Cr}_{26}$ -2

Adopted Levels, Gammas (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2} &	S	XREF	Comments
1881.42 ^b 19	4+	2.20 ps <i>33</i>		CDEF HI KLMNOPQRS U	(28 Si,α2py) dataset); 13.2 ps 4 (2000Er01,2000Er06, DSAM in Coul. ex.); 12.6 ps 21 (1974Br04, RDDS in 40 Ca(16 Q,2pαγ)); 12.1 ps 12 (1973De09, RDDS in 40 Ca(12 C,2pγ)); 10 ps 2 (1972Ra14, DSAM in Coul. ex.); and the following mean lifetimes deduced by evaluators from B(E2)↑ measurements in Coulomb excitation: 13.5 ps 7 (B(E2)=0.102 5 in 1975To06); 12.1 ps 11 (B(E2)=0.115 10 in 1972Ra14); 15.2 ps 17 (B(E2)=0.092 14 in 1971DaZM); 12.1 ps 13 (B(E2)=0.115 12 in 1966Mc18,1961Mc18); 9.6 ps 19 (B(E2)=0.15 3 in 1960An09); and τ=14.9 ps 8 from B(E2)=0.093 5 in (e,e') (1983Li02). Omission of seemingly discrepant values of 9.6 ps 19 from 1960An09 and 15.2 ps 17 from 1971DaZM gives the same weighted average. Value is 9.11 ps +28−20 in 2016Pr01 evaluation. μ: from transient-magnetic fields (TF) in Coul. ex. (2000Er06). Others: +1.28 22 (1994Pa34, TF in (40 Ca,2pγ)); +0.9 3 (1987Pa28, TF in Coul. ex.); +1.2 2 (ion implantation PAC, 1977Fa07). Q: reorientation method in Coul. ex. (1975To06). μ=+3.1 5 (2000Er06,2014StZZ) B(E4)↑=0.000451 (1983Li02) B(E4) from (e,e'). J ^π : stretched E2 1098.1γ to 2+; L(p,t)=4. T _{1/2} : unweighted average of 3.4 ps 5 (M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019, RDDS in 40 Ca(12 C,2pγ)); 1.47 ps 16 (2004Br42, DSAM in 28 Si(28 Si,α2p)); 1.7 ps 5 (1998Br34, DSAM in 28 Si(28 Si,α2p)); 1.7 ps 5 (1998Br34, DSAM in 28 Si(28 Si,α2p)); 2.22 ps 49 (2000Er06,2000Er01, DSAM in Coulomb excitation); 2.22 ps 28 (1973De09, RDDS in 40 Ca(12 C,2pγ)). Other: <2.8 ps (1974Br04, RDDS). Weighted average is 1.80 ps 26 with reduced χ²=4.4 as compared to critical χ²=2.4. μ: from transient-magnetic fields (TF) in Coul. ex. (2000Er06, Other: +1.7 4 (1994Pa34,TF in (40 Ca,2pγ)) is in disagreement.
2924.6 <i>4</i>	2+	9.4 fs <i>14</i>		HI KLMNOPQ S	J^{π} : E2 2924 γ to 0 ⁺ ; L(p,t)=2 from 0 ⁺ . $T_{1/2}$: from DSAM in (p,p' γ).
3161.3 4	2+	10.9 fs <i>16</i>		k MNOPQ S	XREF: k(3160)M(3156). $T_{1/2}$: from DSAM in (p,p' γ). J^{π} : $L(\alpha,\alpha')=L(p,t)=2$ from 0^{+} .
3164.06 ^b 25	6+	0.80 ps 23		CDEF k N R	μ =+3.2 10 (1994Pa34,2014StZZ) XREF: k(3160). J ^π : from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},\alpha2\text{p}\gamma$); stretched E2 1282.5 γ to 4 ⁺ .
3324.56 22	4+	97 fs 25	0.032	C EF K MNOPQ S	T _{1/2} : weighted average of 0.69 ps <i>14</i> from DSAM in 28 Si(28 Si,α2pγ) (1998Br34) and 1.25 ps 28 from RDDS in (12 C,2pγ) (1973De09). μ: from g=0.54 <i>16</i> (1994Pa34, TF in (40 Ca,2pγ)). J ^π : L(α,α')=L(d,d')=4 from 0 ⁺ . T _{1/2} : from DSAM in (p,p'γ). Other: <0.7 ps from RDM in (12 C,2pγ). B(E4)=0.000192 (1983Li02) in (e,e').

E(level) [†]	${\sf J}^{\pi \#}$	T _{1/2} &	XR	EF	Comments
3594.63 25	2+,3,4+	30 fs 5	h	MNOPQ	XREF: h(3600)M(3587).
	_ ,-,.				J^{π} : 1713.2 γ to 4 ⁺ , 2811.2 γ to 2 ⁺ can only have
					mult=D or E2 by RUL.
	. 1				$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3611.4 <i>4</i>	4 ⁺	6 fs 4	E h	MNOPQ S	XREF: h(3600)M(3602).
					J^{π} : L(p,t)=4 from 0 ⁺ . $T_{1/2}$: from DSAM in (p,p' γ).
3628.9 5	1+	0.305 eV 13	в Ј	MN	J^{π} : dipole 3628.7 γ to 0 ⁺ ; $\sigma(\theta)$ in (p,p') (1989Wi13);
					expected 1 ⁺ from shell-model predictions (see
					1989Wi13).
					$T_{1/2}$: from Γ_0 =0.205 eV 9 in (γ, γ') . Other: 5 fs 3 in
3698.2 5	2+	12.8 fs <i>18</i>		MNOPQ S	$(p,p'\gamma)$. J^{π} : L(p,t)=2; M1+E2 2914.8 γ to 2 ⁺ .
3096.2 3	۷	12.0 18 10		more 3	$L(\alpha, \alpha') = L(p, p') = L(^3He, ^3He') = 4$ for a 3698 20 level
					inconsistent, if it is the same level as seen in other
					reactions.
					$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3792.1 <i>4</i>	(5^+)	9.0 ps <i>14</i>	EF	MNO	XREF: M(3786).
					J^{π} : $J^{\pi}=5^+$ from $p\gamma(\theta)$ in $(p,p'\gamma)$; $L(p,p')=4$; and absence of this level in (α,α') . However (4^-) cannot be
					ruled out as proposed by 1998Br34 from $\gamma(\theta)$ in
					($^{28}\text{Si},\alpha2\text{py}$).
					$T_{1/2}$: from RDM in ($^{16}O, \alpha 2p\gamma$). Other: >73 fs from
					DSAM in $(p,p'\gamma)$.
3825.7 <i>3</i>	$(6)^{+}$	<0.7 ps	C EF	MNOPqRs	XREF: q(3844)s(3832).
					J^{π} : logft=5.0 from 5 ⁺ ; angular distribution of the 661.76
					keV γ corresponds to $\Delta I=0$ dipole or stretched quadrupole transition.
					$T_{1/2}$: inconsistent with 3.5 ps +35-14 (1973De09) from
					RDM in (12 C,2p γ). Other: <1.4 ps from RDDS in
					1974Br04 in (16 O, α 2p γ).
3844.4 <i>4</i>	$2^+,3,4^+$	0.22 ps 6		MNOPq s	XREF: q(3844)s(3832).
					J^{π} : 1962.9 γ to 4 ⁺ and 683.4 γ to 2 ⁺ can only have
					mult=D or E2 by RUL. $T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3850 <i>20</i>	0+		B G		XREF: B(3827).
					J^{π} : L(³ He,n)=0.
3875.4 <i>3</i>	$(4^+,5,6^+)$	0.62 ps 21	E	MNOPQ	XREF: M(3867).
					J^{π} : γ s to 4 ⁺ and 6 ⁺ .
3895.4 <i>10</i>	0^{+}	24 ps +14-10	Н	MNOPQ S	J^{π} : L(p,t)=0. L(α , α')=L(d,d')=L(3 He, 3 He')=4 for 3898 20 is inconsistent if it is the same level as in other
					reactions.
					$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3937.3 4	$2^+,3,4^+$	2.2 fs 10		MNOPQ S	J^{π} : 2055.5 γ to 4 ⁺ and 3153.7 γ to 2 ⁺ can only have
					mult=D or E2 by RUL.
4040	(n+)				$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
4040	(0 ⁺) 3 ⁻	0.56 mg 11		N MNODO C	J^{π} : $\sigma(\theta)$ in (p,p') (1989Wi13). J^{π} : $L(\alpha,\alpha')=L(d,d')=L(p,p')=L(^{3}He,^{3}He')=3$ from 0^{+} .
4051.7 5	3	0.56 ps <i>11</i>		MNOPQ S	$T: L(\alpha, \alpha) = L(\alpha, \alpha) = L(\beta, \beta) = L$
					B(E3)(from g.s.)=0.0033 13 (2002Ki06 evaluation)
					deduced from β_3 in (α, α') (1990Ba23).
4068.2 22	0+	6.5 fs <i>17</i>		MN S	E(level): 4068.8 5 from (p,t).
					J^{π} : L(p,t)=0.
4129.9 5	$(1,2^+)$	0.18 ps 6	Н	MN	$T_{1/2}$: from DSAM in $(p,p'\gamma)$. XREF: H(4150).
1127.7 3	(1,2)	0.10 ps 0			

High	E(level) [†]	$J^{\pi \#}$	T _{1/2} &	XREF		Comments
493.0 8 2+						
4207 7 4282 7 4367.5 5 1.39 ps 35 EF M OPQ S F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.39 ps 35 EF M OPQ S F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.39 ps 35 EF M OPQ S F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.39 ps 35 EF M OPQ S NREF: O(4570)P(4570)Q(4570)S(4540), F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.4543 12 3 12 12 12 12 12 12	4102.0.0	2+		wyon		
4282 7	4193.0 8	2⁺		MNOP	Q s	
4382.7 4367.2° 4 5 - 1.39 ps 35	4207.7			м	6	
4367.2 · 4 · 5 · 1.39 ps 35					5	AREI: 8(4200).
4523.8 /5 (4*) 4563.3 /5 4663.3 /5 4666 7 2* MNOPQ S XREE: O(46SD)P(4570)Q(45		5-	1.39 ps <i>35</i>		0 S	J^{π} : L(p,t)=L(\alpha,\alpha')=L(p,p')=L(^3He,^3He')=5 from 0 ⁺ .
F: L(p,t)=L(a,a')=L(p,p')=L(³He,³He')=3 from 0°. 4676 7						J^{π} : 1363 γ to 6 ⁺ and 3740.5 γ to 2 ⁺ .
4663 7 2 t	4546.3 <i>12</i>	3-		MNOP	Q S	
According to the content of the c						J^{π} : L(p,t)=L(α,α')=L(p,p')=L(3 He, 3 He')=3 from 0 ⁺ .
Effective from (pp') First Lay First		2+			10	VDEE: 0(4690)D(4690)O(4690)
4700	4070 /	2		n OP	Ų	
4700 (1*) 4731 5 0 1* G M S XREF: (64740), E(level): weighted average of 4728 7 from (p,p') and 4733 5 from (p,0). 17°: Lp(p,1)=L(3 ³ He,n)=0. 18°: Sylvan (p,p') and 4733 5 from (p,0). 18°: Lp(p,1)=L(3 ³ He,n)=0. 18°: Lp(p,1)=Lp(p,1)=L(3 ³ He,n)=0. 18°: Lp(p,1)=L						
E(level): weighted average of 4728 7 from (p,p') and 4733 5 from (p,t). J^{\pm} : $L(p,t) = L(P_t,n) = 0$.	4700	(1^{+})				
from (p,1). J ^r : L(p,1)=L(² He,n)=0. μ ^{+4,3,7} (1994 ^{p,34} ,2014StZZ) J ^r : Δ1=2, E2 y to 6 ⁺ ; spin=2 from γ(θ) in (¹⁶ O ₁ α2pγ). μ ⁺ g=+0.54 9 from TF in (⁴⁰ Ca,2pγ) (1994 ^{p,34} ,2014StZZ) J ^r : Δ1=2, E2 y to 6 ⁺ ; spin=2 from γ(θ) in (¹⁶ O ₁ α2pγ). μ ⁺ g=+0.54 9 from TF in (⁴⁰ Ca,2pγ) (1994 ^{p,34} ,2014StZZ) μ ⁺ g=+0.54 9 from TF in (⁴⁰ Ca,2pγ) (1994 ^{p,34} ,3) H OPQ S E(level): weighted average of 4772 7 from (p,p') and 4763 5 from (p,1). J ^r : L(μ,1)=L(α,α')=2. E(evel): weighted average of 4801 7 from (p,p') and 4810 5 from (p,1). J ^r : L(μ,1)=L(α,α')=2. E(evel): weighted average of 4801 7 from (p,p') and 4810 5 from (p,1). J ^r : L(α,α')=L(³ He, ³ He')=4 for a level at 4940 20. J ^r : L(α,α')=L(³ He, ³ He')=4 for a level at 4940 20. J ^r : L(α,α')=L(³ He, ³ He')=4 for a level at 4940 20. J ^r : L(α,α')=L(³ He, ³ He')=4 for a level at 4940 20. J ^r : L(α,α')=L(³ He, ³ He')=4 for a level at 4940 20. J ^r : L(α,α')=L(³ He, ³ He')=4 for a level at 4940 20. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. J ^r : R46.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. R48 to 8 to 8 to 9 to 9 to 9 to 9 to 9 to	4731 5	0_{+}		G M	S	
4744.9 ^b 4 8 ⁺ 0.28 ps 7 DEF R μ +4.3 τ (1994 μ 34, 2014StZZ) 4755 τ 4 μ 6 Po S 4766 τ 2 H OPQ S 4807 τ 6 S 4906 τ 4924 τ (4 ⁺) 4906 τ 4924 τ (4 ⁺) 4907 τ 4 τ 6 τ 8 Def R M opq 4908 τ 7 τ 8 Def R M opq 4909 τ 1						
4744.9 b 4 8 b 0.28 ps 7 DEF R						
JF: ΔJ=2, E2 γ to 6*; spin=2 from γ(θ) in (\frac{1}{9}0, α2pγ), μ: g=+0.54 9 from TF in (\frac{4}{9}0 α2pγ), μ: g=+0.54 9 from TF in (\frac{4}{9}0 α2pγ), (1994Pa34). 4807 5	4744 0 h 4	0+	0.20 7	DEE	D	
4755 7 4766 5 2 ⁺	4/44.9° 4	8.	0.28 ps /	DEF	K	
4755 7 4766 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 7 4, 476 1						$J: \Delta J = 2$, $EZ \gamma$ to θ ; spin=2 from $\gamma(\theta)$ in $(-0, \alpha Z p \gamma)$.
4766 5 2^+	4755 <i>7</i>			М		μ . g-+0.34 9 Holli 11 Hi (Ca,2py) (19941 a34).
4807 5		2+			Q S	E(level): weighted average of 4772 7 from (p,p') and 4763 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
from (p,t). from (p,t)-to for a level at 4940 20. from (p,t)-to for a level at 4940 20. from (p,t)-to for a level at 940 20. from (p,t)-to for a level at 940 policy from (p,t). from (p,t)-to for a level at 940 policy from (p,	4007.5				6	
4906 7 4924 7 (4 ⁺) 4961 7 (4 ⁺) 4961 7 (4 ⁺) 497.1 4 1(+) 497.1 4 1(+) 5039 10 5138 10 5207 10 5213.4 ^c 4 (6 ⁻) 5223 10 5336 10 5336 10 5336 10 5336 10 5445 10 5559 7 10 5445 10 5559 7 10 5445 10 55623 10 4961 7 (4 ⁺) 497	4807.5			M	5	
4924 7 (4*) 4961 7 (4*) 4961 7 (4*) 4961 7 (4*) 4961 8 Popq 497.1 4 $1^{(+)}$ 5015 10 5039 10 5078 10 5093 10 5198 10 5207 10 5213.4° 4 (6°) 5213.4° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 5 (6°) 5213.6° 6 (6°) 5213.6° 6 (6°) 5213.6° 6 (6°) 5213.6° 6 (6°) 5213.6° 7 (6°) 52	4906 7			M		nom (p,t).
4961 7 (4 ⁺)		(4^{+})			q	XREF: o(4940)p(4940)q(4940).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,		•	-	
4997.1 4 $1^{(+)}$ 0.140 eV 14 B J M J^{π} : log $ft=5.9$ from 0^+ ; spin=1 from $\gamma(\theta)$ in (γ,γ') . 5015 10 5039 10 5053 10 5053 10 5078 10 5093 10 5198 10 5207 10 5213.4° 4 (6^-) 0.42 ps 7 5233 10 5250 10 5272 10 5297 10 5297 10 5336 10 5336 10 5336 10 5336 10 5455 10 5455 10 5563 10 M 5623 10 M 57*: log $ft=5.9$ from 0^+ ; spin=1 from $\gamma(\theta)$ in (γ,γ') . T _{1/2} : from $\Gamma_0=0.070$ eV 7 in (γ,γ') . XREF: s(5040). XREF: s(5040). 10 10 11 11 11 11 11 11 11 11 11 11 11	4961 7	(4^{+})		М ор	q	
5015 10		(1)				
5015 10 5039 10 5053 10 5078 10 5093 10 5198 10 5207 10 5213 4c 4 (6-) 0.42 ps 7 E J ^π : 846.2γ to 5- and 1421.1γ to 5+; band assignment. 5233 10 5250 10 5272 10 5272 10 5272 10 5297 10 5336 10 5376 10 5445 10 5445 10 5547 10 5548 10 55597 10 55597 10 5611 10 5623 10 M S XREF: s(5040). M S XREF:	4997.1 <i>4</i>	1(+)	0.140 eV <i>14</i>	B J M		
5039 10	5015 10			M		$I_{1/2}$: from $I_0 = 0.0/0 \text{ eV} / \text{in } (\gamma, \gamma')$.
5053 10 5078 10 5078 10 5093 10 5198 10 5207 10 5213.4° 4 (6⁻) 0.42 ps 7 E J ^π : 846.2γ to 5⁻ and 1421.1γ to 5⁺; band assignment. 5233 10 4⁺ M OPQ L: L(α,α')=L(p,p')=L(³He,³He')=4 for a level at 5230 20. M 5272 10 M 5272 10 M 5297 10 M 5336 10 5336 10 5336 10 5336 10 5336 10 5345 10 5445 10 M 5445 10 M 5549 10 5548 10 M 5597 10 5611 10 M 5623 10 M M 5623 10					S	XREF: s(5040).
5093 10 5198 10 5207 10 5213.4° 4 (6-) 0.42 ps 7 E J ^π : 846.2γ to 5- and 1421.1γ to 5+; band assignment. 5233 10 4+ M 5297 10 M 5297 10 M 5336 10 5376 10 5445 10 5445 10 5548 10 55548 10 5597 10 5611 10 5623 10						
5198 10 5207 10 5213.4° 4 (6°) 0.42 ps 7 E J ^{π} : 846.2 γ to 5 ° and 1421.1 γ to 5 °; band assignment. 5233 10 4° M OPQ L: $L(\alpha,\alpha')=L(p,p')=L(^3He,^3He')=4$ for a level at 5230 20 . M 5272 10 M 5297 10 M 5336 10 M 5376 10 M 5429 10 M 5445 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M 5597 10 M 5623 10 M M 5623 10						
5207 10						
5213.4 c 4 (6 $^{-}$) 0.42 ps 7 E J $^{\pi}$: 846.2 γ to 5 $^{-}$ and 1421.1 γ to 5 $^{+}$; band assignment. 5233 10 4 $^{+}$ M OPQ L: $L(\alpha,\alpha')=L(p,p')=L(^{3}He,^{3}He')=4$ for a level at 5230 20. 5250 10 M M 5297 10 M M 5336 10 M M 5376 10 M M 5429 10 M M 5445 10 M Opq XREF: o(5450)p(5450)q(5450). 5455 10 M Opq XREF: o(5450)p(5450)q(5450). 5548 10 M Opq XREF: o(5450)p(5450)q(5450).						
5233 10 4 ⁺ M OPQ L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. 5250 10 5272 10 M 5297 10 M 5336 10 5376 10 5445 10 5445 10 5455 10 5548 10 5597 10 5623 10 M 5623 10 M OPQ L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. M XREF: o(5450)p(5450)q(5450). XREF: o(5450)p(5450)q(5450). XREF: o(5450)p(5450)q(5450).		(6 ⁻)	0.42 ps 7			I^{π} : 846.2v to 5 ⁻ and 1421.1v to 5 ⁺ : hand assignment
5250 10 5272 10 5297 10 5336 10 5376 10 5429 10 5445 10 5455 10 548 10 5597 10 5623 10 M M M M M M M M M M M M M			0.12 ps /		0	
5297 10 5336 10 5376 10 5429 10 5445 10 5455 10 5548 10 5597 10 5623 10 M M M M M M M M M M M M M		-				
5336 10 5376 10 5429 10 5445 10 5455 10 5548 10 5597 10 5623 10 M M M M M M M M M M M M M				M		
5376 10 5429 10 5445 10 M opq XREF: o(5450)p(5450)q(5450). 5455 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M opq XREF: o(5450)p(5450)q(5450). M opq XREF: o(5450)p(5450)q(5						
5429 10 5445 10 M opq XREF: o(5450)p(5450)q(5450). 5455 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M opq XREF: o(5450)p(5450)q(5450). M opq XREF: o(5450)p(5450)q(5						
5445 10						
5455 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M 5597 10 M 5611 10 M 5623 10 M					q	XREF: o(5450)p(5450)q(5450).
5597 10 M 5611 10 M 5623 10 M				М ор		XREF: o(5450)p(5450)q(5450).
5611 10 M 5623 10 M						
5623 10 M						
Continued on next page (footnotes at end of table)						
				Continue	ed on nex	t page (footnotes at end of table)

E(level) [†]	$J^{\pi \#}$	T _{1/2} &		XRE	EF	Comments	
5684 10					M		
5731 10			g		M	XREF: g(5710). J^{π} : L(³ He,n)=0 for a level at 5710 gives 0 ⁺ for one of the levels at 5731 or 5741.	
5741 10			g		M opq	XREF: g(5710)o(5760)p(5760)q(5760).	
5780 <i>10</i>					M opq	XREF: o(5760)p(5760)q(5760).	
5813 10					M		
5835 <i>10</i> 5859 <i>10</i>					M M		
5903 10					M		
5931.2 5	1+ <i>a</i>	0.073 eV 6		J	M		
5944 10	_				M		
5957 10					M		
5983 10	3-				M OPQ	XREF: O(5990)P(5990)Q(5990).	
5998.0 ^c 5	(7-)	<0.35 ps	E			J ^π : L(α , α')=L(d,d')=L(3 He, 3 He')=3. J ^π : 784.6 γ to (6 ⁻), 1630.9 γ to 5 ⁻ ; band assignment. T _{1/2} : effective half-life=0.28 ps 7 from DSAM in (28 Si, α 2p γ).	
6003 10					M		
6027 [‡] 10 6032 10 6071 10 6083 10					M M M M		
6116 [‡] <i>10</i>					M		
6123 10					M		
6138 <i>10</i>					M opq	XREF: o(6150)p(6150)q(6150).	
6175 <i>10</i>					M		
6202 10					M		
6226 [‡] 10					M		
6230 10					M		
6243 <i>10</i> 6272 <i>10</i>					M M		
6305 10					M		
6330 10					M		
6340.6 ^b 5	10+	0.76 ps <i>14</i>	DEF		R	J ^{π} : ΔJ=2, E2 1595.7 γ to 8 ⁺ ; spin=10 from $\gamma(\theta)$ in (16 O, α 2p γ); band assignment.	
6342 10					M		
6376 10					M	- 2 2	
6450 20	3-				M OPQ	J^{π} : $L(\alpha, \alpha') = L(p, p') = L(^{3}He, ^{3}He') = L(d, d') = 3$.	
6650 20 6754.5 5	3 ⁻ 10 ⁺	0.111 ps <i>21</i>	DE		M OPQ	J ^π : L(α , α')=L(d,d')=L(3 He, 3 He')=3. J ^π : Δ J=2, E2 2009.6 γ to 8 ⁺ ; 414.1 γ to 10 ⁺ ; band assignment.	
6790 20	3-				M OPQ	J^{π} : $L(\alpha, \alpha') = L(d, d') = L(^3He, ^3He') = L(p, p') = 3.$	
6950.6 ^d 5	11+	0.49 ps 4	DEF			J ^{π} : ΔJ=1, M1 610.2 γ to 10 ⁺ ; spin=11 from $\gamma(\theta)$ in (16 O, α 2p γ); band assignment.	
7340	$(1^+)^{@}$				M		
7360 20	3-				M OPQ	$J^{\pi}: L(\alpha, \alpha') = L(d, d') = 3.$	
7600.8 5	$1^{+@a}$	0.334 eV <i>37</i>		J	M	XREF: M(7610).	
7613.1 ^d 5	12+	0.111 ps <i>10</i>	DEF			J ^{π} : ΔJ=1, M1 662.2 γ to 11 ⁺ ; spin=12 from $\gamma(\theta)$ in (¹⁶ O, α 2p γ); band assignment.	
7645.7 5	1^{+a}	0.118 eV <i>14</i>		J			
7.78×10^3	$(1^+)^{@}$				M		
7860 20	3-			_	M OPQ	J^{π} : $L(\alpha, \alpha') = L(d, d') = L(^{3}He, ^{3}He') = 3$.	
7948.2 <i>4</i>	1 ^{+a}	1.76 eV <i>10</i>		J			
			Contin	med	on next nag	e (footnotes at end of table)	

E(level) [†]	$J^{\pi \#}$	K		XR	EF		Comments
7.98×10^3	$(1^+)^{@}$				M		
8045.8 5	1 ^{+a}	0.238 eV 26		J			
8121.5 5	1 ^{+a}	0.094 eV 11		J			
8.27×10^3	$(1^+)^{\textcircled{@}}$				M		
8360 <i>50</i> 8425 <i>7</i>	6 ⁺		G			S	T=2
0123 7	O					3	J^{π} : isobaric analog state from ⁵² Cr(p,t).
8527.6 <i>4</i>	1^{+a}	0.85 eV 11		J			(1)//
8638?	$(1^+)^{@}$				M	S	XREF: M(8650).
8680 20	3-		G		M OPC		J^{π} : $L(\alpha, \alpha') = L(d, d') = L(^{3}He, ^{3}He') = 3.$
8748 <i>6</i>	4+					S	T=2
8813 <i>6</i>	2+					S	J^{π} : isobaric analog state from 52 Cr(p,t). T=2
0013 0	2					3	J^{π} : isobaric analog state from ⁵² Cr(p,t).
8885.6 <i>5</i>	1 ⁺ a	0.53 eV 5		J			t i iscourte unatog state from Cr(p,t).
9007.9 5	$1^{+}@a$	0.286 eV 34		J	M		XREF: M(9010).
9208.3 5	$1^{+}@a$	0.37 eV 9		J	M		XREF: M(9190).
9327.1 ^b 5	(12^{+})		DE				J^{π} : $\Delta J=(2)$, (Q) 2572.6 γ to 10 ⁺ and 1713.8 γ to 12 ⁺ ; band assignment.
9409.5 5	$1^{+}@a$	0.81 eV 13		J	M		XREF: M(9400).
9579.1 <i>5</i>	$1^{+}@a$	0.30 eV 6		J	M		XREF: M(9570).
9642.2 ^d 6	13 ⁺	0.05 ps 2	DE				J ^{π} : ΔJ=2, E2 2692.0 γ to 11 ⁺ ; ΔJ=1, D 2028.9 γ to 12 ⁺ .
9719.1 5	1 ^{+@a}	1.42 eV <i>17</i>		J	M		XREF: M(9710).
9900 50	2+		G		M		J^{π} : L(³ He,n)=2, but 1 ⁺ in (p,p').
9914.8 ^d 6	14+	0.22 ps 4	DE				J^{π} : $\Delta J=2$, E2 γ to 12 ⁺ ; $\Delta J=1$, D γ to 13 ⁺ .
10.11×10^3	$(1^+)^{@}$				M		
10.24×10^3	$(1^+)^{\textcircled{0}}$				M		
10.38×10^3	$(1^+)^{\textcircled{@}}$				M		
10500 <i>50</i>	$(1^+)^{@}$		G		M		XREF: M(10520).
							E(level): from 48 Ti(3 He,n).
10750 30	2 ⁺	0.62	G				J^{π} : L(³ He,n)=2.
10797.5 6	13 ⁽⁺⁾	<0.62 ps	DE				J^{π} : $\Delta J=1$, D γ to 12^+ .
10.82×10 ³ 11013.9 6	(1 ⁺) [@] 13 ⁺	0.06 ps <i>1</i>	DE		M		J^{π} : $\Delta J=1$, D 3400.5 γ to 12 ⁺ ; $\Delta J=2$, E2 2204.2 from
11013.9 0	13	0.00 ps 1	DE				15^+ .
11060 <i>50</i>	$(1^+)^{\textcircled{@}}$		G		M		XREF: M(11020).
11.18×10^3	$(1^+)^{@}$				M		,
$11.4 \times 10^3 I$. ,		G				
11530 50	0+		G				J^{π} : L(³ He,n)=0.
11660	$(1^+)^{\textcircled{@}}$				M		50
11680 20	0+		G				E(level): IAS of $3230,(0)^+$ level in 50 V from $1975Bo14$ in $(^3He,n)$.
							J^{π} : L(³ He,n)=0.
11.82×10^3	$(1^+)^{@}$				M		
11870 20	0+		G				J ^{π} : L(³ He,n)=0. E(level): IAS of 3462,(0) ⁺ level in ⁵⁰ V from 1975Bo14 in (³ He,n).
12.30×10^3	$(1^+)^{@}$				M		E(level): multiplet.
12391.5 6	15(+)		DE				J^{π} : $\Delta J=1$, D 2476.9 γ to 14 ⁺ .
12542.0 7	(14^{+})		DE				J^{π} : 4927.9 γ to 12 ⁺ ; 2492.1 γ from 16 ⁺ .
			Continu	ed (on next	page	(footnotes at end of table)

E(level) [†]	$\mathrm{J}^{\pi \#}$	T _{1/2} &	XREF		Comments
12680 <i>50</i> 12790 <i>50</i> 12950 <i>50</i>			G G G		
13218.4 ^d 6	15 ⁺	0.021 ps +7-4	DE		J^{π} : $\Delta J=2$, E2 3578.7 γ to 13 ⁺ ; $\Delta J=1$, D 3304.8 γ to 14 ⁺ .
13222 6	0+		G	S	T=3 XREF: S(13220). E(level): from ⁵² Cr(p,t); IAS of 4815,(0) ⁺ level in ⁵⁰ V from 1975Bo14 in (³ He,n). J ^π : L(³ He,n)=0.
13495.3 <i>21</i>			E		3 . E(110,11)=0.
13641.0 6	$14^{(+)}$		D		J^{π} : $\Delta J=1$, D 2627.1 γ to 13 ⁽⁺⁾ .
13900 20	0^{+}		G		J^{π} : L(³ He,n)=0.
13920.8 <i>12</i>	15 ⁽⁺⁾	<0.076 ps	DE		J^{π} : $\Delta J=1$, D 4005.8 γ to 14 ⁺ .
14500 <i>30</i>			G		
14570 <i>30</i>			G		
14900 20	0_{+}		G		J^{π} : L(³ He,n)=0.
15034.2 ^d 7	16 ⁺	<0.021 ps	DE		J^{π} : $\Delta J=2$, E2 5121 γ to 14 ⁺ .
15809.0 <i>6</i>	16 ⁺	<0.05 ps	DE		J^{π} : $\Delta J=2$, E2 2168.1 γ to 14 ⁺ .
16049.4 7	$17^{(+)}$		D		J^{π} : $\Delta J=2$, Q 2830.9 γ to 15 ⁺ .
17669.2 <i>16</i>	(16,17)		D		J^{π} : 3748.2 γ to 15 ⁽⁺⁾ .
17790.0 <i>12</i>	(16,17)		D		J^{π} : 5398.2 γ to 15 ⁽⁺⁾ .
17956.6 ^d 10	18 ⁺	<0.07 ps	DE		J^{π} : $\Delta J=2$, E2 2922.3 γ to 16 ⁺ .

[†] From a least-squares fit to γ -ray energies for levels connected by γ transitions, unless otherwise noted.

[‡] Unresolved doublet; spacing <5 keV.

[#] From 24 Mg(32 S, $\alpha 2$ p γ), except as noted, based on $\gamma(\theta)$ and $\gamma\gamma(\theta)$ measurements together with band associations from $\gamma\gamma$ coincidence data. $^{@}$ 1⁺ from (p,p') E=201 MeV (1989Wi13), interpreted as spin-flip transition from forward angle cross sections.

[&]amp; $T_{1/2}$ from DSAM, as given in 28 Si(28 Si, α 2p γ) dataset, width from (γ , γ'), except as noted.

^a From $\gamma(\theta, \text{pol})$ in (γ, γ') (2016Pa04).

^b Band(A): g.s. band.

^c Seq.(B): γ cascade based on 5⁻.

^d Seq.(C): γ cascade based on 11^+ .

γ (50Cr)

See $(p,p'\gamma)$ and ^{50m}Mn β^+ decay for possible but unobserved transitions.

 ∞

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^{\dagger}	$\alpha^{\&}$	Comments
783.31	2+	783.3 1	100	0.0 0+	E2			B(E2)(W.u.)=19.3 <i>6</i> E _γ : weighted average of 783.3 <i>I</i> from ⁵⁰ Mn ε decay (1.75 min), 783.6 <i>3</i> from (³² S, α 2pγ), 783.3 <i>3</i> from (²⁸ Si, α 2pγ), 783.3 <i>5</i> from (γ , γ), 783.4 2 from (p,p' γ), and 783.3 2 from (α , α ' γ). Others: 778 2 from (p,n γ) and 783 <i>I</i> from (n,n' γ).
1881.42	4+	1098.1 2	100	783.31 2+	E2			Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$), and RUL. B(E2)(W.u.)=14.7 +26–19 E _{γ} : weighted average of 1098.0 2 from $^{50}\text{Mn}\ \varepsilon$ decay (1.75 min), 1097.9 3 from ($^{32}\text{S}, \alpha 2\text{p}\gamma$), 1098.2 3 from ($^{28}\text{Si}, \alpha 2\text{p}\gamma$), 1097.9 5 from ($^{16}\text{O}, \alpha 2\text{p}\gamma$), 1098.2 3 from (p,p' γ), and 1098.1 2 from ($\alpha, \alpha'\gamma$). Other: 1107 3 from (p,n γ).
2924.6	2+	2141.5 4	100 5	783.31 2 ⁺	(M1(+E2))	-0.03 6		Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$), and RUL. B(M1)(W.u.)=0.22 +5-4 E _{γ} : others: 2138 <i>I</i> from (n,n' γ), 2140 <i>5</i> from (p,n γ).
		2924 2	9.0 24	0.0 0+	E2			Mult.: D(+Q) from $\gamma(\theta)$ in $(p,p'\gamma)$; $\Delta \pi$ =no from level scheme. B(E2)(W.u.)=2.1 +11-8
3161.3	2+	2378.3 5	100	783.31 2 ⁺	M1+E2	+0.24 9		Mult.: Q from $\gamma(\theta)$ in $(p,p'\gamma)$ and M2 ruled out by RUL. B(E2)(W.u.)=3.4 +38-22; B(M1)(W.u.)=0.142 +30-24
3164.06	6 ⁺	1282.5 2	100	1881.42 4 ⁺	E2			Mult., δ : D+Q from p $\gamma(\theta)$ in (p,p' γ); M2 ruled out by RUL. B(E2)(W.u.)=19 +8-4
								E _γ : weighted average of 1282.4 <i>3</i> from ⁵⁰ Mn ε decay (1.75 min), 1282.3 <i>3</i> from (32 S,α2pγ), 1282.1 <i>3</i> from (28 Si,α2pγ), 1282.6 <i>5</i> from (16 O,α2pγ), 1282.7 7 from (p,p'γ), and 1282.7 2 from (α,α'γ). Mult.: from γ(θ,pol) in (16 O,α2pγ), γγ(DCO) in (32 S,α2pγ),
								and RUL.
3324.56	4 ⁺	161 ^b	≤3	3164.06 6+	[E2]		0.0674	$\alpha(K)=0.0596; \ \alpha(L)=0.00583$
		1443.3 2	100 7	1881.42 4+	(M1(+E2))	-0.02 +16-52		E_{γ} , I_{γ} : possible γ from 1.75-min ⁵⁰ Mn decay only. $B(M1)(W.u.)=0.073~28$
					//			E _γ : weighted average of 1443.3 2 from ⁵⁰ Mn ε decay (1.75 min), 1443.3 3 from (²⁸ Si, α 2p γ), 1443.1 5 from (¹⁶ O, α 2p γ), and 1442.7 7 from (p,p' γ).
		2541.0 <i>3</i>	0.8	783.31 2 ⁺	[E2]			Mult.: D(+Q) from $\gamma(\theta)$ in (p,p' γ); $\Delta\pi$ =no from level scheme. B(E2)(W.u.)=0.039 +30-16
3594.63	2+,3,4+	1713.2 <i>3</i>	70 10	1881.42 4+				$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ).

γ (50Cr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^{\dagger}	Comments
3594.63	$2^+,3,4^+$	2811.2 <i>3</i>	100 10	783.31 2+			
3611.4	4+	449 ^{ab} 2	$\approx 8^a$	3164.06 6+	[E2]		
		449 ^{ab} 2	$\approx 8^{a}$	3161.3 2+	[E2]		
		1729.9 ^a 3	100 ^a 11	1881.42 4 ⁺			
3628.9	1+	2845.5 [@] 6	49 [@] 1	783.31 2+	[M1] [@]		E_{γ} : weighted average of 2845.0 5 from (γ, γ') and 2846.1 6 from $(p, p'\gamma)$. I_{γ} : from (γ, γ') . Others: 50 5 from ⁵⁰ Mn ε decay, 50 22 from $(p, p'\gamma)$.
		3628.7 7	100	0.0 0+	M1		E_{γ} : weighted average of 3628.0 5 from (γ, γ') and 3629.3 5 from $(p, p'\gamma)$.
	- 1						Mult.: from $\gamma(\theta)$ and polarization asymmetry in (γ, γ') .
3698.2	2+	2914.8 5	100	783.31 2 ⁺	M1+E2	+0.71 23	B(E2)(W.u.)=6.4 +41-33; B(M1)(W.u.)=0.046 +20-14
.=	(5±)	465.0.5	100.0	222456 4	D 0		Mult., δ : D+Q from p $\gamma(\theta)$ in (p,p' γ); M2 ruled out by RUL.
3792.1	(5 ⁺)	467.8 5	100 9	3324.56 4+	D+Q		E_{γ} : weighted average of 467.9 5 from (16 O,α2pγ) and 467.7 8 from (p,p'γ). I_{γ} : from (p,p'γ) (1968Mo07). Others: 100 <i>16</i> from (16 O,α2pγ), 100 <i>11</i> from
							1972Ra14 in $(p,p'\gamma)$. Mult.: from $\gamma(\theta)$ in $(p,p'\gamma)$.
		1910.8 8	100 12	1881.42 4+	(M1+E2)	-0.47 16	E _{γ} : weighted average of 1910.9 9 from (16 O, α 2p γ) and 1910.7 8 from
		1910.6 6	100 12	1001.42 4	(MIT+L2)	-0.47 10	$(p,p'\gamma)$.
							I_{γ} : weighted average of 79 9 from $(p,p'\gamma)$ (1968Mo07) and 79 16 from
							($^{16}\text{O},\alpha2\text{p}\gamma$). Other: 133 23 from 1972Ra14 in (p,p' γ) is in disagreement.
							Mult., δ : D+Q from p $\gamma(\theta)$ in (p,p' γ); RUL forbids M2. But $\gamma(\theta)$ data in
							$(^{28}\text{Si},\alpha 2\text{p}\gamma)$, suggesting pure dipole, is in disagreement with results from $(\text{p},\text{p}'\gamma)$.
3825.7	$(6)^{+}$	661.6 <i>3</i>	100 4	3164.06 6+			E _{γ} : weighted average of 661.5 3 from ⁵⁰ Mn ε decay (1.75 min), 661.5 3
							from (28 Si, α 2p γ), 661.7 5 from (16 O, α 2p γ), and 661.9 6 from (α , $\alpha'\gamma$). Other: 662 2 from (p,p' γ).
							I_{γ} : from ⁵⁰ Mn β^+ decay (1.75 min).
		1944.4 <i>3</i>	15.2 20	1881.42 4+			E_{γ} : weighted average of 1944.5 5 from ⁵⁰ Mn ε decay (1.75 min) and 1944.4
							3 from $(^{28}\text{Si},\alpha2\text{py})$.
2044.4	2+ 2 4+	(02.4.10	22.6	21612 2+			I_{γ} : from ⁵⁰ Mn β^+ decay (1.75 min).
3844.4	2+,3,4+	683.4 <i>10</i> 1962.9 <i>4</i>	22 <i>6</i> 100 <i>11</i>	3161.3 2 ⁺ 1881.42 4 ⁺			
		3060.9 6	50 11	783.31 2 ⁺			
3875.4	$(4^+,5,6^+)$	551.0 3	≈33	3324.56 4 ⁺			E_{γ} : from (²⁸ Si, α 2p γ). Other: 550 2 from (p,p' γ).
7075.1	(1,5,0)	711.1 3	67 17	3164.06 6+			E _y : from (28 Si, α 2p γ). Other: 711.1 6 from (p,p $'\gamma$).
		1993.8 <i>37</i>	100 33	1881.42 4 ⁺			E _y : from (28 Si, α 2py). Other: 1993.8 6 from (p,p'y).
3895.4	0+	732^{ab} 2	$\approx 5^a$	3161.3 2+	[[[2]		B(E2)(W.u.)=0.5 +15-4
0093.4	U	3112.0 10	≈3 100 40	783.31 2 ⁺	[E2] [E2]		B(E2)(W.u.)=0.05 +13-4 B(E2)(W.u.)=0.007 +6-3
		3112.0 10	100 40	763.31 2	[E2]		Mult., δ : δ (J=1)=-0.09 29, δ (J=2)=+0.34 13 from p γ (θ) in (p,p' γ) which suggests D(+Q), but ΔJ^{π} requires E2 if the parent level is the same one as the 0^+ ,3895 level in (p,t).
3937.3	$2^{+},3,4^{+}$	1014.3 9	≈17	2924.6 2 ⁺			(h, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1911.1		101110					
3937.3	,- ,	2055.5 4	100 17	1881.42 4 ⁺			

9

γ (50Cr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
4051.7	3-	441 ^{ab} 2	≈5 ^a	3611.4	4+	[E1]	$B(E1)(W.u.)=2.7\times10^{-4} +34-17$
		458 ^b 2	≈2	3594.63	$2^{+},3,4^{+}$		
		890.6 <i>5</i>	41 7	3161.3	2+	[E1]	B(E1)(W.u.)=0.00027 +17-10
		1126.9 5	100 9	2924.6		[E1]	B(E1)(W.u.)=0.00032 +12-10
		3267.4 <i>14</i>	45 16	783.31		[E1]	$B(E1)(W.u.)=5.9\times10^{-6} +43-28$
4068.2	0_{+}	441 ^{ab} 2	≈7 ^a	3628.9			
		3284.8 22	100 25	783.31	2+	[E2]	
4129.9	$(1,2^+)$	500 2	≈2 20 €	3628.9			
		1205.3 4	38 6	2924.6	2+		
		$4130^{b} 3$	≈100		0_{+}		
4193.0	2+	494 <i>ab</i> 2	$\approx 10^a$	3698.2	2+		
		1268.3 8	35 5		2 ⁺		
		3410.1 <i>20</i> 4193 ^{<i>b</i>} <i>3</i>	40 10	783.31			
1265.2			≈100		0+		
4367.2	5-	542 [#]	61 [#]		(6)+		
		575.3 [#] 3	100 [#]		(5+)		
		755 [#]		3611.4			
		1042#	34 [#]	3324.56			
		1203 [#] 1	37 [#]	3164.06			
		2485 [#]	32 [#]	1881.42	4+		
4523.8	(4^{+})	732 ^{ab} 2	≈15 ^a	3792.1	(5^+)		
		1363 <i>ab</i> 2	≈38 a	3164.06	6+		
		1363 <i>ab</i> 2	≈38 a	3161.3	2+		
		1599 2	≈15	2924.6	2+		
		3740.5 20	100 23	783.31	2+		
4546.3	3-	494 <i>ab</i> 2	≈33 ^a	4051.7			
		1384.8 <i>15</i>	≈100	3161.3	2+		
		1622 2	≈67	2924.6			
		2665 ^b	≤80	1881.42			
1652.2		3763 3	83 33	783.31			
4653.3		955 2	≈33	3698.2			
		1493 ^b 2	≈10		2+		
		1730.0 ^{ab} 3	323 ^a 36	2924.6			
4744.0	o+	3870 2	100 29	783.31		EO	D/E2\/IV\ 10 + 6 //
4744.9	8+	1580.8 <i>3</i>	100	3164.06	0.	E2	B(E2)(W.u.)=19 +6-4 E _{γ} : weighted average of 1580.5 3 from (32 S, α 2p γ), 1580.9 3 from (28 Si, α 2p γ), 1581.1
							5 from (16 O, α 2py), and 1581.2 5 from (α , α' γ).
							375

10

Mult.: from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},\alpha2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ in ($^{32}\text{S},\alpha2\text{p}\gamma$).

γ (50Cr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	J_f^{π}	Mult.	Comments
4997.1	1(+)	4213.8 [@] 5	100 [@] 10	783.31	2+	[M1] [@]	
.,,,,,,	•	4996.7 [@] 5	100 @		0+	$(M1)^{@}$	Mult.: from $\gamma(\theta)$ and polarization asymmetry in (γ, γ') .
5213.4	(6-)	846.2 [#] 3	100 [#] 10		5-	(=:==)	
0210	(0)	1388#	100 10		(6) ⁺		
		1421.1# 3	80 # 7		(5 ⁺)		
5931.2	1+	5930.8 [@] 5	100		0+	M1 [@]	Mult.: from $\gamma(\theta)$ and polarization asymmetry in (γ, γ') .
5998.0	(7-)	784.6 [#] 3	68 [#] 18		(6 ⁻)	1411	right From $\gamma(0)$ and polarization asymmetry in (γ, γ) .
3770.0	(/)	1630.9 [#] 3	100# 18	4367.2			
6340.6	10 ⁺	1595.7 2	100 10		8 ⁺	E2	B(E2)(W.u.)=6.6 +15-10
							E _γ : weighted average of 1595.2 3 from (32 S,α2pγ), 1595.9 3 from (28 Si,α2pγ), 1595.7 5 from (16 O,α2pγ), and 1596.5 5 from (α,α'γ).
							Mult.: from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},\alpha2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ in ($^{32}\text{S},\alpha2\text{p}\gamma$).
6754.5	10 ⁺	414.1 5	15.3 14	6340.6	10 ⁺		E_{γ} : unweighted average of 414.5 3 from (^{32}S , α 2p γ) and 413.6 3 from (^{28}Si , α 2p γ).
					- 1		I_{γ} : weighted average of 18 6 from (32 S, α 2p γ) and 15.2 14 from (28 Si, α 2p γ).
		2009.6 3	100 10	4744.9	8+	E2	E _y : weighted average of 2009.3 3 from (32 S, α 2py) and 2009.8 3 from (28 Si, α 2py).
							I _y : from (28 Si, α 2py). Other: 100 12 from (32 S, α 2py). Mult.: Q from $\gamma\gamma$ (DCO) and $\gamma\gamma$ (ADO) in (32 S, α 2py), $\gamma\gamma$ (ADO) in (28 Si, α 2py); M2 ruled
							out by RUL.
6950.6	11 ⁺	196.0 <i>4</i>	3.0 <i>3</i>	6754.5	10 ⁺	(M1)	B(M1)(W.u.)=0.174 22
							E_{γ} : weighted average of 196.3 3 from ($^{32}S,\alpha 2p\gamma$) and 195.6 3 from ($^{28}Si,\alpha 2p\gamma$).
							I_{γ} : weighted average of 3.4 11 from ($^{32}S_{,\alpha}2p\gamma$) and 3.0 3 from ($^{28}S_{i,\alpha}2p\gamma$).
							Mult.: D from $\gamma\gamma$ (DCO) and $\gamma\gamma$ (ADO) in (32 S, α 2p γ); $\Delta\pi$ =no from level scheme.
		610.2 <i>3</i>	100.0 15	6340.6	10 ⁺	M1	B(M1)(W.u.)=0.192 16
							E_{γ} : weighted average of 610.3 3 from (32 S,α2pγ), 610.1 3 from (28 Si,α2pγ), and 609.9 5 from (16 O,α2pγ).
							I_{γ} : from (²⁸ Si,α2pγ). Others: 100 11 from (¹⁶ O,α2pγ), 100 10 from (³² S,α2pγ).
		@				@	Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$).
7600.8	1+	7600.2 [@] 5	100		0+	M1 [@]	DAM/W.) 0.66.6
7613.1	12+	662.2 3	100.0 <i>15</i>	6950.6	11 ⁺	M1	B(M1)(W.u.)=0.66 6 E _{γ} : weighted average of 662.4 3 from (32 S, α 2p γ), 662.2 3 from (28 Si, α 2p γ), and 661.8 5
							from $(^{16}O, \alpha 2p\gamma)$.
							I_{γ} : other: 100 10 from (32 S, α 2p γ) and (16 O, α 2p γ).
							Mult.: from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},\alpha2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ from ($^{32}\text{S},\alpha2\text{p}\gamma$).
		1272.2 3	2.9 3	6340.6	10 ⁺	[E2]	B(E2)(W.u.)=4.0 8
							E_{γ} : weighted average of 1272 <i>I</i> from ($^{32}S_{,\alpha}2p\gamma$) and 1272.2 <i>3</i> from ($^{28}S_{i,\alpha}2p\gamma$).
							I_{γ} : weighted average of 4.3 15 from (32 S, α 2p γ) and 2.8 3 from (28 Si, α 2p γ). Other: <4.9 from (16 O, α 2p γ).
7645.7	1+	7645.1 [@] 5	100	0.0	0+	$M1^{@}$	V - 2 - A 77
7948.2	1+	7164.5 [@] 5	27 [@] 2	783.31	2+	[M1]	

Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and $\gamma\gamma$ (DCO) in (28 Si, α 2p γ); M2 ruled out by

 E_{γ} : unweighted average of 3303.3 3 from ($^{32}S_{\gamma}\alpha^{2}p\gamma$) and 3306.3 3 from ($^{28}S_{\gamma}\alpha^{2}p\gamma$).

 I_{ν} : from (^{32}S , $\alpha 2p\gamma$). Mult.: from $\gamma(DCO)$ in ($^{32}S,\alpha 2p\gamma$).

 E_{γ} : unweighted average of 2028.1 3 from (32 S, α 2p γ) and 2029.7 3 from (28 Si, α 2p γ).

 E_{γ} : weighted average of 273.3 3 from ($^{32}S_{,\alpha}2p\gamma$) and 272.9 3 from ($^{28}S_{i,\alpha}2p\gamma$).

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in ($^{32}S,\alpha2p\gamma$), and $\gamma\gamma(ADO)$ in ($^{28}Si,\alpha2p\gamma$).

 E_{ν} : unweighted average of 2300.9 3 from ($^{32}S_{.}\alpha^{2}p\nu$) and 2303.2 3 from ($^{28}S_{i}\alpha^{2}p\nu$).

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in (32S, α 2p γ) and (28Si, α 2p γ).

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in ($^{32}S,\alpha2p\gamma$) and ($^{28}Si,\alpha2p\gamma$).

Mult.: Q from $\gamma(ADO)$ in ($^{28}Si_{,}\alpha 2p\gamma$); M2 ruled out by RUL.

 I_{γ} : other: 44 4 from ²⁴Mg(³²S, α 2p γ) is in disagreement.

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in ($^{32}S,\alpha2p\gamma$).

 E_{γ} : unweighted average of 3577.1 10 from ($^{32}S,\alpha 2p\gamma$) and 3580.3 10 from ($^{28}Si,\alpha 2p\gamma$).

Mult.: Q from $\gamma\gamma$ (ADO) in (²⁸Si, α 2p γ); M2 ruled out by RUL.

Comments

Mult.: from $\gamma\gamma$ (ADO) in (32 S, α 2p γ).

E2 13^{+} D

B(E2)(W.u.)=0.34 +40-16

 I_{γ} : also from ($^{32}S, \alpha 2p\gamma$).

RUL.

Adopted Levels, Gammas (continued)

 γ (50Cr) (continued)

3853[#] 2 9642.2 100 11013.9

 E_{γ}^{\dagger}

7947.4[@] 5

8045.1[@] 5

8120.8[@] 5

7743.1[@] 5

8527.4[@] 5

8884.8[@] 5

9007.0[@] 5

9207.4[@] 5

1713.8[‡] 3

2572.6‡ 3

9408.5[@] 5

9578.1[@] 5

2028.9 8

2692.0[#] 3

9718.1[@] 5

273.1 *3*

2302.0 12

3183.9[‡] 3

3400.5[‡] *3*

1593.6[‡] 3

2476.9# 3

4927.9[‡] 10

2204.2‡ 3

3304.8 15

3578.7 16

2987‡ 1

 E_i (level)

7948.2

8045.8

8121.5

8527.6

8885.6

9007.9

9208.3

9327.1

9409.5

9579.1

9642.2

9719.1

9914.8

10797.5

11013.9

12391.5

12542.0

13218.4

12

1+

1+

1+

1+

1+

 13^{+}

1+

14+

13(+)

13+

 $15^{(+)}$

 (14^{+})

 15^{+}

 (12^{+})

 I_{γ}^{\dagger}

100[@]

100

100

100[@]

100

100

100

85‡ 25

100‡ 35

<50[‡]

100

100

100

100

100‡

100

100‡ 14

40 9

100 10

54 5

54 9

15[#] 2

100[#] 10

100[#] 10

4.8# 10

39[@] 6

 E_f

 $0.0 0^{+}$

 0^{+}

 12^{+}

 10^{+}

 10^{+}

 0_{+}

12+

 11^{+}

13+

 12^{+}

 12^{+}

12+

 14^{+}

12+

13+

 14^{+}

 13^{+}

13⁺

 $13^{(+)}$

0.0 0^{+}

0.0

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

7613.1

6754.5

6340.6

7613.1

6950.6

9642.2

7613.1

7613.1

7613.1

10797.5

9914.8

7613.1

11013.9

9914.8

9642.2

0.0 0^{+}

0.0 0^{+}

0.0

783.31 2⁺

Mult.

M1[@]

M1[@]

M1[@]

[M1]

 $M1^{@}$

 $M1^{@}$

 $M1^{@}$

 $M1^{@}$

(Q)

 $M1^{@}$

 $M1^{@}$

D

E2

M1[@]

D

E2

D

D

D

E2

D

 $14^{(+)}$ 2627.1[‡] 3

13641.0

13495.3

γ (50Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^π	Mult.	Comments
13920.8	15(+)	4005.8 [‡] 10	100	9914.8	14+	D	Mult.: from $\gamma\gamma$ (DCO) and $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and (28 Si, α 2p γ).
15034.2	16 ⁺	1815.8 <i>4</i>	30 5	13218.4	15 ⁺		E_{γ} : weighted average of 1815.5 3 from ($^{32}S,\alpha 2p\gamma$) and 1816.2 3 from ($^{28}Si,\alpha 2p\gamma$). I_{γ} : weighted average of 29 5 from ($^{32}S,\alpha 2p\gamma$) and 33 7 from ($^{28}Si,\alpha 2p\gamma$).
		2492.1 [‡] <i>3</i>	9 [‡] 5	12542.0	(14^{+})		
		5121 2	100 [#] 22	9914.8	14+	E2	E_{γ} : unweighted average of 5119.1 <i>10</i> from (32 S, α 2p γ) and 5123.4 <i>10</i> from (28 Si, α 2p γ). Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and M2 ruled out by RUL.
15809.0	16 ⁺	2168.1 [‡] 3 2590.5 [‡] 3	38 [‡] 11 100 [‡] 22	13641.0 13218.4		E2	Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and M2 ruled out by RUL.
16049.4	17 ⁽⁺⁾	2830.9 [‡] <i>3</i>	100	13218.4	15 ⁺	Q	Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ).
17669.2	(16,17)	3748.2 10	100	13920.8	$15^{(+)}$		***
17790.0	(16,17)	5398.2 10	100	12391.5	$15^{(+)}$		
17956.6	18 ⁺	2922.3 7	100	15034.2	16+	E2	E_{γ} : unweighted average of 2921.6 3 from ($^{32}S_{,\alpha}2p\gamma$) and 2923.0 3 from ($^{28}S_{i,\alpha}2p\gamma$).

[†] From 50 Cr(p,p' γ), except as noted. ‡ From 24 Mg(32 S, α 2p γ). # From 28 Si(28 Si, α 2p γ). @ From (γ , γ'),(pol γ , γ'). Mult. are based on γ (θ ,pol) data (2016Pa04).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Seq.(C): γ cascade based on 11^+

 $^{50}_{24}{\rm Cr}_{26}$

Author Citation Literature Cutoff Date Yang Dong, Huo Junde NDS 128, 185 (2015) 10-Jul-2015

 $Q(\beta^-)=-4711.2\ 19;\ S(n)=12038.4\ 9;\ S(p)=10503.4\ 9;\ Q(\alpha)=-9351.3\ 6$ 2012Wa38 Other reactions: ${}^{48}\text{Ti}(\alpha,\gamma)\ E=6-12\ \text{MeV},\ 1976\text{Fo04};\ {}^{48}\text{Ti}({}^{16}\text{O},{}^{12}\text{C})\ E=120\ \text{MeV}\ (1979\text{Da07});\ {}^{53}\text{Cr}({}^{12}\text{C},{}^{13}\text{C})\ E=18.5-33\ \text{MeV}\ (1974\text{PaZZ});\ {}^{54}\text{Fe}({}^{18}\text{O},{}^{20}\text{Ne})\ E=48,50\ \text{MeV}\ (1972\text{SiYD},1975\text{PeZM}).$

Full Evaluation

⁵²Cr Levels

Cross Reference (XREF) Flags

			-	•		•	
	A B	52 V $β$ ⁻ decay (3.743 m 52 Mn $ε$ decay (5.591 d 52 Mn $ε$	l) N	52 Cr(γ,γ'),(pol γ,γ') 52 Cr(e,e')		Y Z	⁵² Cr(¹⁶ O, ¹⁶ O'),(¹⁸ O, ¹⁸ O') Coulomb excitation
	C	52 Mn ε decay (21.1 mi		$52 \operatorname{Cr}(\pi^+, \pi^+), (\pi^+, \pi^{+\prime})$)	Others	
	D	$(HI,xn\gamma)$	P	52 Cr(n,n')		AA	50 Cr(α , 2 He)
	E	50 Ti(3 He,n)	Q	52 Cr(n,n' γ)		AB	⁵³ Cr(p,d)
	F	52 Cr(p,p' γ)	R	$^{50}V(\alpha,d)$		AC	53 Cr(d,t),(pol d,t)
	G	52 Cr(p,p')	S	50 Ti(16 O, 14 C)		AD	53 Cr(3 He, α)
	H	50 Cr(t,p)	T	52 Cr(d,d')		ΑE	54 Cr(p,t)
	Ι	$^{51}V(p,\gamma)$ E=res:IAR	U	52 Cr(3 He, 3 He')		AF	55 Mn(μ^- ,3n γ)
	J	$^{51}\text{V}(^{3}\text{He,d})$	٧	$^{52}\mathrm{Cr}(\alpha,\alpha')$		AG	51 V (α,t)
	K	$^{51}\text{V}(^{3}\text{He,d}\gamma)$	W	52 Cr(7 Li, 7 Li')		AH	⁵⁶ Fe(d, ⁶ Li)
	L	55 Mn(p, α)	X	⁵² Cr(¹² C, ¹² C'),(¹³ C	$^{13}C'$	AI	$Ni(K^-,x ray\gamma),(\pi^+,x\gamma),(\pi^-,X\gamma)$
E(level) [†]	\mathbf{J}^{π}	T _{1/2} ^m		XREF			Comments
0.0^{p}	0_{+}	stable ABC	CDEFGHIJ	KLMNO Q S UVWXYZ	XREF:	Others	s: AA, AB, AC, AD, AE, AF, AG, AH,
1434.091 ^p 14	2+	0.783 ps <i>21</i> ABo	CDEFGHT 1	KLMNOPQ STUVWXYZ	rms (196 (197	charge 2Jo05) 6Li19)	dius=3.6424 fm 21 (2004An14). others: radius=3.61 fm 8, muonic x-ray, rms charge radius=3.674 fm 15 (e,e'). s: AB, AC, AD, AE, AF, AG, AH, AI
	_	0.100 ps 21			μ =+2.4 Q=-0. J^{π} : E2 $T_{1/2}$: If	41 <i>13</i> (1 082 <i>16</i> γ to 0 From C e,dγ) an	2000Er01) (1989Ra17)
2369.630 ^p 18	4+	6.7 ps +35–17 ABO	CD FG IJ	KL NOPQ ST VW Z	B(E4)1	0.000	s: AB, AC, AD, AE, AF, AG, AH 066 8 (8)L(2371)T(2372)AD(2380).
						$(\alpha, \alpha') = 4$	
					B(E4)1 and	: from 0.00060	weighted average of 0.00067 12 in (e,e') 6 10 in $(\pi^+, \pi^+), (\pi^+, \pi^{+'})$.
						-16, D	SAM (Coulomb Ecitation). Others: 9.4 ps SAM (HI,xn γ), 1.04 PS +35–17 (3 He,d γ)
2646.9 6	0+	A	FGH	L NO Q S V	XREF: XREF: AC(Others: H(266 2640)A	s: AB, AC, AE, AH 0)L(2650)N(2650)O(2650)S(2640)V(2650) H(2650).
2767.767 21	4+	1.9 ps 5 ABG	CD FG IJ	KL NO Q ST VW	XREF:	Others	(e,e')=L(t,p)=L(p,t)=0. s: AA, AB, AC, AD, AE, AG 0)O(2770)V(2770)AA(2770)AC(2770)AD(

E(level) [†]	J^{π}	T _{1/2} ^m	XREF	Comments
2964.786 17	2+	0.42 ps 8	A C FGHIJKL NO Q ST V	J ^π : L(α,α')=4. T _{1/2} : DSAM, from weighted average of values 1.4 ps +5-3 (³ He,dγ) and 2.5 ps 6 (HI,xnγ). XREF: Others: AB XREF: H(2974)N(2970)O(2960)V(2960).
3113.858 ^p 21	6+	41.4 ps <i>14</i>	B D G IJKL N Q S VW	J ^π : E2 γ to 0 ⁺ . T _{1/2} : from (p,p' γ). Others: 0.47 ps +22–13, DSAM (³ He,d γ), 0.42 ps 21 (n,n' γ). XREF: Others: AA, AB, AG, AH XREF: N(3110)V(3110)AA(3110)AG(3110)AH(311 0).
3161.74 6	2+	0.035 ⁿ ps 7	A C FGHI KLMNO Q VW	J ^π : L(p,p')=6, E2 γ to 4 ⁺ . T _{1/2} : RDM. Other: >1.8 ps (³ He,dγ), DSAM. XREF: Others: AB, AE, AH XREF: H(3175)AE(3168). J ^π : L(α , α ')=2.
3415.32 ^q 3	4+	0.26 ps 7	AB D FG IJKL O Q V	T _{1/2} : Others: 0.08 ps +4-3 (3 He,d γ) and 33 fs 5 (p,p' γ). XREF: Others: AB, AD XREF: J(3420)O(3420)V(3450)AB(3432)AD(3418). J $^{\pi}$: L(p,p')=4.
3472.25 15	3+	7.2 ps 8	A CD FG I KL Q S	T _{1/2} : from weighted average of values 0.22 ps +8-5 (³ He,dy) and 0.33 ps 9 (HI,xny). XREF: Others: AB, AC, AD, AG XREF: S(3440)AB(3494)AC(3460)AG(3440). J ^π : 1968Mo19 propose the existence of two levels
				in this vicinity separated by 3.0 keV, one decaying by 703γ and having a spin of 3, 5 (from p,p' $\gamma(\theta)$), and another with spin 2 decaying by 2038γ . Subsequent work (1977Ya08, 1974Br04) shows that a single level at 3472.2 emits two γ 's (704.6 (78%) and 2038.0 (22%))
				and suggests that the two-level hypothesis was a result of an error in the energy assigned to the 704 γ by 1968Mo19. Furthermore, the p,p' γ (θ) data on the 2038 γ (1968Mo19) were found to be consistent with 3. $T_{1/2}$, together with L in
				transfer, suggest π =+. One further complication is the assignment of L=4 to the level by 1970Pr08 in (p,p'). L(p,p')=2+3. Thus existence of a J^{π} =4+ level at 3472 is tentatively ruled out. $T_{1/2}$: RDM. Other: >1.9 ps (3 He,d γ), DSAM, GT 0.49 ps (n,n' γ).
3615.924 22	5+	2.6 ps <i>12</i>	B D G IJKL	XREF: Others: AB XREF: J(3620)L(3619). J ^π : log ft =6.15 from 6^+ , $\gamma(\theta)$ in (HI,xn γ); π from L(3 He,d)=1.
				$T_{1/2}$: from 1.4 ps< $T_{1/2}$ <3.8 ps, lower limit, DSAM; upper, RDM. Other: >0.76 ps in (3 He,d γ), and 0.10 ps 7 (n,n' γ).
3739.6 ^a	1+,1-,2+		M	J^{π} : From (γ, γ') (1998En05), based on values of reduced transition strengths(\uparrow).
3771.72 <i>14</i>	2+	9 fs 2	A C EFGH JKLMNO Q S V	XREF: Others: AB, AC, AD, AG XREF: E(3700)H(3781)S(3780)V(3780)AB(3767)AC

E(level) [†]	J^π	T _{1/2} ^m	XREF	Comments
				J ^π : L(α,α')=2, L(³ He,d)=1. B(E2)↑=0.0071 8 (2007En02). T _{1/2} : from weighted average of values 9 fs 3 (n,n'γ) and 9 fs 4 (p,p'γ).
3947.5 6	2+	0.014 ⁿ ps 7	G I KL Q	(II,II γ) and 9 Is 4 (p,p γ). XREF: Others: AB XREF: G(3949)AB(3926). J ^{π} : L(p,p')=2, T _{1/2} : other: 0.10 ps +4-3 (³ He,d γ).
3951.2 10	2+		C GH J	XREF: G(3949)H(3957). J^{π} : L(p,p')=2, L(³ He,d)=1 from 7/2 ⁻ .
4015.51 ^q 3	5+	0.61 ps +27–19	B D G IJKL	XREF: Others: AD XREF: J(4020)AD(4017). J^{π} : log ft =6.6 from 6^{+} , π from L(3 He,d)=1. $T_{1/2}$: from weighted average of values 0.58 ps $+32-19$ (3 He,d $_{Y}$) and 0.7 ps 5 (HI,xn $_{Y}$).
4039.1 11	4+	26 ⁿ fs 4	D G IJKL NO V	XREF: Others: AB XREF: J(4033)V(4010)AB(4030). J^{π} : L(p,p')=L(α , α ')=4. $T_{1/2}$: other: 0.51 ps +25-14 (3 He,d γ).
4.10×10 ³ ^c 10	3-		P	XREF: Others: AC, AG XREF: P(4200)AC(4090). J^{π} : L(n,n')=3.
4470	3-		U	E(level): from (${}^{3}\text{He}, {}^{3}\text{He}'$). J^{π} : L(${}^{3}\text{He}, {}^{3}\text{He}'$)=3.
4563.0 8	3-	40 ⁿ fs 6	C GH JKL NOPQ S V X	B(E3) \uparrow =0.0066 3 XREF: H(4572)P(4600)V(4560). J ^{π} : L(α , α')=L(e,e')=3. T _{1/2} : other: 0.27 ps +12-6 (3 He,d γ).
4584.0 <i>7</i> 4611	(6 ⁺) (3,4) ⁺		D I	B(E3) from weighted average of values 0.0065 4 in (e,e') and 0.0068 5 in $(\pi^+,\pi^+),(\pi^+,\pi^{+'})$. J ^{π} : From (HI,xn γ), γ to 6 ⁺ . XREF: Others: AD XREF: AD(4605). J ^{π} : L(³ He, α)=3 on 3/2 ⁻ .
4627.32 19	4+		B G J L O	XREF: Others: AG XREF: G(4630)L(4630)O(4630)AG(4680). J^{π} : L(p,p')=4.
4702 5	2+		E G J L O	XREF: E(4710)L(4706)O(4710). J^{π} : L(³ He,n)=2.
4730 ^f 4742.3 11	4 ⁺ 0 ⁺		J V GHI L S	J ^{π} : L(α , α')=4. L(3 He,d)=1. XREF: G(4738)H(4745). J ^{π} : L(t,p)=0.
4750.31 ^p 20	8+	0.08 ⁿ ps 10	D QR	XREF: Others: AA XREF: AA(4770). $T_{1/2}$: Other: 0.64 ps +20-17 (HI,xn γ). J^{π} : $\gamma(\theta)$ in (HI,xn γ), E2 γ to 6 ⁺ .
4800.1 ^a 4805.96 ^q 24	1 ⁺ ,1 ⁻ ,2 ⁺ 6 ⁺	0.49 ps +28–14	M D G I L	J ^π : From (γ, γ') (1998En05). XREF: Others: AA XREF: I(4808)L(4808)AA(4770). J ^π : L(α , ² He)=4,6, γ (θ) in (HI,xn γ), M1+E2
4815.69 9	1+,2+		С	γ to 5 ⁺ . XREF: Others: AD XREF: ad(4830). J ^{π} : log ft =5.55 from 2 ⁺ , γ to 0 ⁺ .
4841.3 ^a 11	1+,1-,2+		G IJ LM	XREF: Others: AD

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{m}$	XREF		Comments
					XREF: G(4832)ad(4830).
4951 <i>4</i>	4+		G L	S	J^{π} : From (γ, γ') (1998En05). XREF: L(4950)S(4980).
4931 4	4		G L	3	J^{π} : L(p,p')=4.
5054.3 11	4 ⁺		I	V	XREF: V(5070).
					J^{π} : $L(\alpha, \alpha')=4$.
5095 <i>5</i>	4 ⁺		GJL	V	XREF: Others: AG
					XREF: V(5070)AG(5120).
5098.6 ^a 4	1	0.045° eV 10	I M		J ^{π} : L(³ He,d)=L(α ,t)=1, L(p,p')=L(α , α ')=4. J ^{π} : excitation in (γ , γ ').
5139 5	(6 ⁺)	0.043 CV 10	GJL		J^{π} : L(p,p')=5,6, L(3 He,d)=(3) from 7/2 $^{-}$.
5213.7 ^a 5	1	0.013° eV 3	G LM	S	J^{π} : excitation in (γ, γ') .
5285 5			GJL		XREF: L(5281).
					J^{π} : $L(^{3}\text{He,d})=0$ from $7/2^{-}$, $L(p,p')=5,6$.
5346 <i>4</i>	$4^{+},6^{+}$		G L		XREF: Others: AA
					XREF: AA(5320).
5396.9 ^q 3	7+	0.14 ms + 12 0	D		J ^{π} : L(α , ² He)=4,6. J ^{π} : $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 6 ⁺ , E2 γ to
3390.91 3	7	0.14 ps +12-9	Д		$J^{"}: \gamma(\theta) \text{ in } (HI,XN\gamma), MI+EZ \gamma \text{ to } 0^{\circ}, EZ \gamma \text{ to } 5^{+}.$
5410 <i>4</i>	(2^{+})		GH j L		XREF: Others: AD
	· /		· •		XREF: H(5423)j(5420)AD(5400).
					J^{π} : L(t,p)=(2).
5425 5	4+		GjL		XREF: j(5420)L(5422).
5432 6			G		$J^{\pi}: L(p,p')=4.$
5446.4 <i>5</i>	4+		HIJ L	V	XREF: Others: AG
3110.13	•		1113 12	•	XREF: H(5443)J(5450)L(5450)V(5450)AG(5450).
					J^{π} : $L(\alpha,\alpha')=4$.
5490.8 ^a	$1^+, 1^-, 2^+$		g LM		XREF: g(5494).
1.					J^{π} : excitation in (γ, γ') .
5500 ^b	3-		g N		XREF: g(5494).
5526.0 ^a 5	1	0.016° eV 3	М		J^{π} : L(e,e')=3. J^{π} : excitation in (γ, γ') .
5541 5	4 ⁺	0.010 67 3	G L		XREF: L(5538).
33 11 3	•		0 2		J^{π} : L(p,p')=4.
5544.7 <mark>a</mark> 10	(1^+)	0.112° eV 7	G LM		XREF: Others: AD
					XREF: G(5546)AD(5560).
5562.5.0	+				J^{π} : L(³ He, α)=(1) from 3/2 ⁻ , D γ to 0 ⁺ .
5563.5 8	'		GIL		XREF: G(5569)L(5571). J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
5584 6	+		GJL		XREF: J(5594).
33010			0 3 2		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
5600 [#] 15	0^{+}		ЕН		XREF: E(5650).
3000 13	O		2		J^{π} : L(t,p)=L(3He,n)=0.
5633.4 11	(8^{+})		D	V	XREF: V(5640).
	(2)				J^{π} : From (HI,xn γ), γ to (6 ⁺).
5664.4 11	$(2)^{+}$		GIJL		XREF: Others: AD
					XREF: G(5661)J(5660)AD(5670). J^{π} : L(p,p')=2. L(³ He,d)=1+3 from 7/2 ⁻ .
5725.3 12	+		GIJL	S	J : L(p,p) = 2. $L(He,d) = 1+3$ from $1/2$. XREF: Others: AD
3,23.3 12			Q 13 L	J	XREF: G(5727)J(5720)S(5700)AD(5710).
					J^{π} : L(³ He, α)=3 from 3/2 ⁻ .
5737.5 11	(4^{+})		GΙ		J^{π} : $L(p,p')=(4)$.
5755 [#] 15	+		Нј		XREF: j(5751).
					J^{π} : L(t,p)=0. But L(3 He,d)=1 from 7/2 $^{-}$.

E(level) [†]	J^π	T _{1/2} ^m	XREF			Comments
5796.0 ^a	1+,2+		G J LM			XREF: J(5790). J^{π} : 1,2 ⁺ from excitation in (γ,γ') , PI=- ruled out by $L(^{3}\text{He,d})=1+3$ from $7/2^{-}$.
5811 <i>5</i> 5818 <i>6</i>	5,6+		G G			J^{π} : L(p,p')=5,6.
5824.7 ^{<i>q</i>} 4 5860.5 <i>11</i>	8++	1.0 ps +6-4	D G IJ			J ^π : $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 7 ⁺ . XREF: Others: AG XREF: G(5853)J(5828)AG(5830). J ^π : L(³ He,d)=L(α ,t)=1 from 7/2 ⁻ .
5865 <i>6</i> 5873 <i>5</i>	3-		G G			$J^{\pi}: L(p,p')=3.$
5891 &	3-,4-		J		V	XREF: V(5910). J^{π} : L(³ He,d)=0 from 7/2 ⁻ .
5919 <i>5</i> 5953 <i>5</i>	5,6 ⁺ 2 ⁺		G G J	S		J^{π} : L(p,p')=5,6. XREF: J(5945). J^{π} : L(p,p')=2.
5960 <i>5</i> 5996 <i>5</i>	3-		G G J L			XREF: Others: AA
3990 3	3		G J L			XREF. Others. And XREF: $J(5992)AA(5990)$. J^{π} : $L(p,p')=3$.
6026 <i>6</i> 6035.3 <i>12</i>	+		GH J G I			J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
6055 <i>5</i> 6065 <i>7</i>	2+		G GH			J^{π} : L(p,p')=2. XREF: H(6069).
6106 6	0+		E G J	S		XREF: $E(6100)J(6089)S(6130)$. J^{π} : $L(^{3}He,n)=0$.
6137.0 ^a 10 6153 8	2 ⁺ 2 ⁺		G M GH		**	J^{π} : L(p,p')=2. Excitation in (γ,γ') . J^{π} : L(t,p)=2.
6164 12	3 ⁻ 2 ⁺		G		V	XREF: V(6160). J^{π} : $L(\alpha, \alpha') = 3$.
6175 7	2.		G			XREF: Others: AD XREF: AD(6180). J^{π} : L(p,p')=2.
6193 <i>6</i> 6205.4 <i>12</i>	+		G J G I			J^{π} : L(${}^{3}\text{He,d}$)=1 from 7/2 $^{-}$.
6210 <i>10</i> 6220 <i>6</i>			G G			
6233 <i>10</i> 6243 <i>5</i>	+ 3 ⁻		G J			J^{π} : L(³ He,d)=1 from 7/2 ⁻ . J^{π} : L(p,p')=3.
6252 <i>6</i> 6272 <i>6</i>	3		G G			
6293 <i>7</i> 6324 <i>10</i>			G G	S		XREF: S(6330).
6349 5	+		G J			XREF: J(6364). J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
6356.6 <i>12</i> 6365.3 ^{<i>p</i>} <i>11</i>	(9^+) (10^+)		D D			J^{π} : $\gamma(\theta)$ in (HI,xn γ). J^{π} : $\gamma(\theta)$ in (HI,xn γ).
6375.4 <i>12</i> 6381.0 <i>10</i>	(6 ⁺)		G I D			XREF: G(6372). J^{π} : From $\gamma(\theta)$ in (HI,xn γ).
6389.9 ^a 5	1+	0.069° eV 7	G J LM			XREF: J(5790). J^{π} : 1 from excitation in (γ, γ') , PI=- ruled out by
6392 10	3-		G			$L(^{3}He,d)=1 \text{ from } 7/2^{-}.$ J^{π} : $L(p,p')=3.$
6426 <i>5</i> 6437 <i>10</i>			G G			

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}^{m}$		X	REF			Comments
6453.4 9 4	9+	0.14 ps +9-8	D					J^{π} : $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 8 ⁺ .
6462.4 <mark>a</mark> 5	1	0.074° eV 7	G		M			J^{π} : From excitation in (γ, γ') .
6482 5	$5,6^{+}$		G					J^{π} : L(p,p')=5,6.
6493 ^e 10	2+		G	J		S		XREF: Others: AD
								XREF: J(6500)AD(6490).
								J^{π} : L(p,p')=2. L(³ He, α)=0 from 3/2 ⁻ .
6495.5 ^a 5	1	0.131° eV 9			M			J^{π} : From excitation in (γ, γ') .
6541 <i>10</i>	3-		G				V	J^{π} : $L(\alpha,\alpha')=3$.
6568 10			G					TIPE 1/((40)11/((00)
6580 5			G	J	N			XREF: J(6610)N(6600).
6637 <i>5</i> 6678 <i>5</i>	+		G	J				XREF: J(6625).
00/8 3			E G	J				XREF: E(6670).
6700 <mark>8</mark> 20	_							J^{π} : L(³ He,n)=0, L(³ He,d)=1 from 7/2 ⁻ .
6700° 20								XREF: Others: AD
6704.5	5,6 ⁺		G					J^{π} : L(${}^{3}\text{He},\alpha$)=2 from 3/2 $^{-}$.
6704 5	3,0		G	J				XREF: J(6720). J^{π} : L(p,p')=5.
6752.0 ^a 5	1+	0.089° eV 10		J	M	S	٧	XREF: J(6760)S(6740)V(6760).
6795.4 12	3-	0.009 EV 10	G 1		0	3	v	XREF: G(6786).
01/3.4 12	3		0.1	_	U			J^{π} : L(p,p')=3.
6810 <i>30</i>	2+		G	J				XREF: Others: AA, AD
								XREF: J(6814)AA(6800)AD(6790).
								J^{π} : L(p,p')=2.
6871 <i>5</i>	5-		G					J^{π} : $L(p,p')=5$.
6894 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
6928 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
6956 <i>5</i>	$5,6^{+}$		G	•				J^{π} : L(p,p')=5,6.
6993 5	3-		Ğ	J		S		J^{π} : L(p,p')=3.
7014.5 <mark>a</mark> 4	1	0.210° eV 30			M			
7030 <mark>b</mark> 10	1+			J	N			XREF: J(6993).
								J^{π} : Dipole excitation in (e,e'). PI=– ruled out by
								$L(^{3}He,d)=1$ from $7/2^{-}$.
7090.8 <mark>a</mark> 5	1+	0.062° eV 11	G	J	M			J^{π} : from excitation in (γ, γ') .
7100 ^f	3-				N		٧	J^{π} : $L(\alpha, \alpha') = L(e, e') = 3$.
7140 ⁱ 7	+		G		N		•	J^{π} : M1 excitation in (e,e'). $L(p,p')=4$.
7166.2^a 5	+	0.054° eV 11	· ·	J	MN			XREF: N(7170).
7100.2 3		0.031 0111		,				J^{π} : M1 excitation in (e,e'). L(³ He,d)=1 from 7/2 ⁻ .
7217 10	2+		G	J				XREF: J(7210).
,21, 10	-							$J^{\pi}: L(p,p')=2.$
7223 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
7237.9 9 6	10 ⁺	0.16 ps +15-8	D	,				J^{π} : From $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 9 ⁺ .
7260^{b} 10	+	0.10 ps 115 0		J	N			J^{π} : L(3 He,d)=1+3 from 7/2 $^{-}$, but M1, (M2) excitation
7200 10				J	IN			in (e,e') .
7278 10	4+		G	J		S		XREF: J(7273)S(7290).
7270 10	•			,		9		J^{π} : L(p,p')=4.
7310 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1+3 from 7/2 ⁻ .
7310 7322 &	+							J^{π} : L(³ He,d)=1 from $7/2^{-}$.
			_	J -				•
7342 ⁱ 7	1+		G	J	N			XREF: J(7350)N(7340).
7260 00 5	1+	0.2200 -37.10		,	м			J^{π} : M1 excitation in (e,e'). $L(p,p')=2$.
7368.8 ^a 5	1+	0.229° eV 18		J	M			J^{π} : 1 from excitation in (γ, γ') , PI=- ruled out by
7376 10	5-		G					$L(^{3}\text{He,d})=1 \text{ from } 7/2^{-}.$ J^{π} : $L(p,p')=5.$
7376 10	5 5 ⁺		G	J				XREF: Others: AA
1373 10	J			J				ANDI. Ouicis. m

E(level) [†]	J^{π}	$T_{1/2}^{m}$		Х	KREF			Comments
								XREF: J(7400)AA(7390).
								J^{π} : L(α , ² He)=5,7, L(³ He,d)=1 from 7/2 ⁻ .
								E(level): From average of values in (³ He,d) and
								$(\alpha,^2$ He).
7401.6 <i>15</i>	(12^+)		D					J^{π} : From (HI,xn γ), γ to (10 ⁺).
7403.2 ^a 5	1	0.107° eV 15			M			$B(M1)=0.069 \ 10, B(E1)=0.76\times10^{-5} \ 11.$
7409 10	3-		G		0			J^{π} : L(p,p')=3.
7450 [‡] <i>h</i> 50	$0^{+},2^{+}$		E					J^{π} : L(³ He,n)=0+2.
7458 10	5,6 ⁺		G					J^{π} : L(p,p')=5,6.
7482 10	3-		G					J^{π} : L(p,p')=3.
7487	+			J				J^{π} : L(3 He,d)=1 from 7/2 $^{-}$.
7524.1 ^a 5	1+ <i>j</i>	0.400° eV 28	g	i	MN			XREF: N(7520).
								J^{π} : L(p,p')=0.
7560 ^b 20	+		g	j	N	S		XREF: g(7540)j(7536)S(7570).
								J^{π} : from L(³ He,d)=1 from 7/2 ⁻ .
7585 10	3-		G	J				J^{π} : L(p,p')=3.
7590	+			J				J^{π} : L(3 He,d)=1+3 from 7/2 ⁻ .
7679 10	$5,6^{+}$		G	J				XREF: J(7686).
								J^{π} : L(p,p')=5,6, L(³ He,d)=1+3 from 7/2 ⁻ .
7700 ^b 10	1+				N			J^{π} : M1 excitation in (e,e').
7731.9 ^a 5	1- <i>j</i>	0.960° eV 24		J	M			$B(E1)=5.96\times10^{-5} 40.$
								$\Gamma_{20}^2/\Gamma = 1.75 \text{ eV } 32 \text{ (1979Ku14)}.$
7738 10	3-		G					$J^{\pi'}$: $L(p,p')=3$.
7750	+			J				XREF: Others: AA
								XREF: J(7729).
0								J^{π} : L(³ He,d)=1 from 7/2 ⁻ , L(α , ² He)=5,7.
7760 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
7810 ^c	_							XREF: Others: AG
7020 10	1+		6					J^{π} : L(α ,t)=4.
7820 10	1+		G	J				XREF: J(7815).
7823 <mark>&</mark> 10	2-							J^{π} : M1 excitation in (e,e').
	3-		G					J^{π} : L(p,p')=3.
7854 ⁱ 7	4+		G	J	N	S		XREF: G(7848)N(7860)S(7870).
7065 10 5	1 +	0.4250 31.27						J^{π} : L(p,p')=4. L(³ He,d)=1 from 7/2 ⁻ .
7865.1 ^a 5 7889.0 ^a 5	1+	0.435° eV 27 0.480° eV 45			M			Vπ. f
7893 <i>10</i>	1 4 ⁺	0.480° EV 43	G	J	M			J^{π} : from excitation in (γ, γ') . XREF: J(7905).
1893 10	4		ď	J				J^{π} : L(p,p')=4. L(3 He,d)=1 from $7/2^{-}$.
7897.4 ^a 5	1- <i>j</i>	3.38° eV 17			M			J^{π} : π based on asymmetries for different g.s. dipole
1071.4")	1 ,	3.30° EV 1/			M			J^{**} : π based on asymmetries for different g.s. dipole transition in (γ, γ') .
7900 <mark>b</mark>	3-				N		V	J^{π} : L(e,e')=3.
7900 7920 <mark>&</mark>	<i>5</i> +				IN		V	J : L(e,e) = 5. $J^{\pi}: L(^{3}He,d) = 1 \text{ from } 7/2^{-}.$
	+		_	J				
7930 [‡] <i>50</i>	+		E	J				XREF: J(7967).
7967 10	2-		_					J^{π} : L(³ He,n)=0, L(³ He,d)=1 from 7/2 ⁻ .
7967 <i>10</i> 8010	3-		G G	J				J^{π} : L(p,p')=3. XREF: Others: AG
0010			G	J				XREF: Unlers: AG XREF: J(7967).
								J^{π} : L(³ He,d)=1 from 7/2 ⁻ , L(α ,t)=4 from 7/2 ⁻ .
8015.4 ^a 4	1	0.260° eV 59			M			B(M1)=0.131 30, B(E1)=1.45×10 ⁻⁵ 33.
8022 10	2+	0.200 0 7 0 7	G	J				J^{π} : L(p,p')=2 and L(3 He,d)=1 from $7/2^{-}$.
8083	+		•	J	MN			XREF: N(8080).
								J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8087 <mark>&</mark> 9	3-		G					J^{π} : L(p,p')=3.
	-							
-			Co	ntin	ued or	n nex	t page	(footnotes at end of table)

E(level) [†]	${f J}^\pi$	T _{1/2} ^m		XREF		Comments
8091.3 ^a 5	1	0.734° eV 44		М		J^{π} : from excitation in (γ, γ') .
8100 20	8-	0.731 01 77		N		J^{π} : M8 excitation in (e,e').
8121 <i>10</i>	+		G	J		XREF: J(8130).
0121 10				-		J^{π} : L(³ He,d)=1 from 7/2 ⁻ , L(p,p')=0.
8179.3 <mark>a</mark> 4	1+	0.90° eV 18	G	J M O		XREF: J(8183).
0179.5 4	1	0.90 CV 10	9	J 11 U		J^{π} : L(p,p')=0.
8190 ^c	+					XREF: Others: AG
8190						
0212 10	0^{+}					J^{π} : L(α ,t)=4 from 7/2 ⁻ .
8213 10		0.04 . 17 . 0	G	-		J^{π} : $L(p,p')=0$.
8216.4 ^q 9	11+	0.24 ps +17-9	D	J		XREF: J(8234).
						J^{π} : from $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 10 ⁺ , E2
						γ to 9 ⁺ .
8250&	+			J		J^{π} : L(³ He,d)=1+3 from 7/2 ⁻ .
8281 ^e 10	3-		G			J^{π} : $L(p,p')=3$.
8283	+			J		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8337 ^e 10	(4^{+})		G	J		XREF: J(8330).
						J^{π} : L(p,p')=4,5, L(³ He,d)=1+3 from 7/2 ⁻ .
8350 <mark>&</mark>	+			J		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8374 ^e 10	3-		G			J^{π} : $L(p,p')=3$.
8390 ^b 10	+			J N		XREF: J(8371).
0390 10				J N		
04106 10	+					J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8412 ^e 10			G	J O		XREF: J(8400).
0	_					J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8420 ^c	6-			N		XREF: Others: AG
						XREF: N(8450).
0						J^{π} : L(α ,t)=4, M6 excitation in (e,e').
8451 <mark>&</mark>	+			J		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8457 10	3-		G			J^{π} : L(p,p')=3.
8505 10	3-		G			J^{π} : L(p,p')=3.
8569 10	0_{+}		G	J	S	XREF: J(8579)S(8580).
						J^{π} : L(p,p')=0.
8600 ^b 10	3-			N		B(E3)↑=0.0022 3 (1964Be32)
						J^{π} : L(e,e')=3.
8617 10			G	J		XREF: J(8614).
						J^{π} : L(p,p')=2,3,4. L(³ He,d)=1+3 from 7/2 ⁻ .
8679 ^e 10	3-		G			J^{π} : L(p,p')=3.
$8710^{\frac{1}{4}h}$ 50	+			J N		
8/10: 30			E	J N		XREF: J(8700)N(8690). J^{π} : L(³ He,n)=0+2. L(³ He,d)=1+3 from 7/2 ⁻ , D,
8728 10	2-		C			E2 excitation in (e,e') .
8728 10 8765.9 ^a 5	3-	0.441° eV <i>37</i>	G	M		J^{π} : L(p,p')=3. J^{π} : from excitation in (γ,γ') .
	1	0.441° ev 37	6	M		
8778 10	3 ⁻ 2		G	M		J^{π} : L(p,p')=3. J^{π} : Q excitation in (e,e').
8790 10	2		C	N		J'': Q excitation in (e,e).
8827 <i>10</i> 8860 <i>10</i>	1+,(2-)		G	M		J^{π} : M1,(M2) excitation in (e,e').
				N N	c	J^{π} : M1,(M2) excitation in (e,e'). J^{π} : M2,(M2) excitation in (e,e').
8890 <i>20</i> 8940 <i>20</i>	$1^+,(2^-)$			N N	S	J^{π} : (M8,M6) excitation in (e,e').
	(8-,6-)	0.233° eV 36		N M		
8958.4 ^a 5	1	0.233° eV 36		M		J^{π} : from excitation in (γ, γ') .
9004 ⁱ 9	1+	U	G	N		XREF: G(9020).
0						J^{π} : M1 excitation in (e,e'). L(p,p')=0.
9050 <mark>&</mark> <i>10</i>	$1^+,(2^-)$			N		J^{π} : M1,(M2) excitation in (e,e').
9080 20	(8-)			N		J^{π} : (M8) excitation in (e,e').
9140.3 ^{aq} 5	1+ <i>j</i>	2.65° eV 15	G	MN		B(M1)=0.90 5.
						•

E(level) [†]	${ m J}^{\pi}$	T _{1/2} <i>m</i>		XREF	Comments
9200 [@]	5-				J ^{π} : M1 excitation in (e,e'). L(p,p')=0, 1 ⁺ in (γ , γ '). XREF: Others: AA
9211.9 ^a 5	1+	2.11° eV 14	G	MN	J^{π} : L(α , 2 He)=5. XREF: G(9221)N(9210). J^{π} : M1 excitation in (e,e').
9245 <mark>e</mark> 10	1+		G		J^{π} : $L(p,p')=0$.
9327.0 ^a 5	1+ <i>k</i>	0.746° eV 80	G	N	J^{π} : M1 excitation in (e,e').
9370 20	$1^+, 2^-$			N	J^{π} : M1,M2 excitation in (e,e').
9429.0 ^a 5	1+	0.95° eV 11	G	MN	XREF: G(9440). J^{π} : M1 excitation in (e,e').
9438.5 9 9	$12^{(+)}$		D	N	J^{π} : from (HI,xn γ), γ to 10^+ .
9450 20	8-			N	XREF: Others: AG XREF: AG(9480). J^{π} : M8 excitation in (e,e').
9470 20	1+,2+			N	J^{π} : M1, E2 excitation in (e,e').
9580 <i>10</i>	0+		E	N	J^{π} : L(³ He,n)=0. But M1,(E1) excitation in (e,e').
9612 ⁱ 9	1+ <i>k</i>		G	N	XREF: G(9620).
9660 20	8-			N	J^{π} : M1 excitation in (e,e'). XREF: Others: AG
9000 20	O			N	XREF: AG(9630).
					J^{π} : M8 excitation in (e,e').
9724 ⁱ 9	1 ⁺ <i>k</i>		G	MN	XREF: $G(9740)M(9736)N(9720)$. J^{π} : M1 excitation in (e,e').
9787 ^a 3	1- <i>j</i>			M	J^{π} : π based on asymmetries for different g.s. dipole transition in (γ, γ') .
9830 10	1+			N	J^{π} : M1 excitation in (e,e').
9878 ⁱ 9	1+ <i>k</i>		E G	N	XREF: E(9870)G(9870)N(9880).
9910 20	8-			N	J^{π} : M1 excitation in (e,e'). J^{π} : M8 excitation in (e,e').
9981 ^a 3	(-)			M	J^{π} : π : based on asymmetrics for different g.s. dipole transition, see (γ, γ') , $(\text{pol } \gamma, \gamma')$.
10008 ⁱ 9	1^{+k}		G	N	XREF: G(10000)N(10010).
10110 20	(8-1)			N	XREF: Others: AG XREF: AG(10130).
10100 00					J^{π} : (M8) excitation in (e,e').
10130 20	1,2-		D.	NO	J^{π} : D,M2 excitation in (e,e').
10161.3 ^q 12 10180 10	(13^+) 2^-		D	N	J^{π} : from $\gamma(\theta)$ in (HI,xn γ), E2 γ to 11 ⁺ . J^{π} : M2 excitation in (e,e').
10240 20	1			N	J^{π} : E1, (M1) excitation in (e,e').
10270 20	$1,(2^{-})$			N	J^{π} : D, (M2) excitation in (e,e').
10300 20				N	J^{π} : M2, M3,E3 excitation in (e,e').
10330 20	6-			N	XREF: Others: AG
					XREF: AG(10280). J^{π} : M6 excitation in (e,e').
10340 20	1			N	J^{π} : D excitation in (e,e').
10380^{i} 14	1+ <i>k</i>		G	N	b . B exercition in (e.e.).
10433 ^a 4	1+		•	MN	J^{π} : M1 excitation in (e,e').
10464 9	1 ⁺ <i>k</i>		G	N	XREF: $G(10480)N(10460)$. J^{π} : M1 excitation in (e,e').
10500 20	1			N	J^{π} : D excitation in (e,e').
10510 20	(-)			N	J^{π} : (M8, M6) excitation in (e,e').
10604 ⁱ 12	1^{+k}		G	N	XREF: G(10580)N(10610).
10710 <i>10</i>	1			N	J^{π} : D excitation in (e,e').

E(level) [†]	$_J^\pi$		XREF	Comments
10760 10	6+,8+		N	XREF: Others: AA XREF: AA(10750). J^{π} : $L(\alpha,^{2}\text{He})=6,8$.
10790 9 10800 20 10820 10 10927 ^a 3	1+k (-) 1+,(2-) 1+,2-	G	N N N MN	J^{π} : M1 excitation in (e,e'). J^{π} : (M8,M6) excitation in (e,e'). J^{π} : M1, (M2) excitation in (e,e'). XREF: N(10920). J^{π} : M1, M2 excitation in (e,e').
10970 <i>20</i> 11000 <i>20</i> 11070 <i>10</i>	0+ <i>k</i> 8- 1	G	N N	J^{π} : $L(p,p')=0$. J^{π} : M8 excitation in (e,e'). J^{π} : D excitation in (e,e').
11140 <i>10</i>	0^{+k}	G	N	XREF: $G(11120)$. J^{π} : $L(p,p')=0$.
11160 <i>20</i> 11170 <i>20</i>	(1 ⁺),2 8 ⁻		N N	J^{π} : (M1), Q excitation in (e,e'). XREF: Others: AG J^{π} : M8 excitation in (e,e'). L(α ,t)=4.
11229 3		I		7 . 1410 exertation in (e.g.). E(a,t) = 1.
11256.5 7		e I		XREF: e(11280).
11264.9 <i>4</i>	+1	e I		XREF: Others: AA T=3 XREF: e(11280)AA(11260).
				IAS (52 V g.s.). Some authors identify 11256.5 state as g.s. IAS. However, from a comparison of relative M1 transition rates from 11264.9 state with Gamow-Teller β decay matrix elements for 52 V g.s. 1973Fa12 concluded that most of the IAS strength lies in the 11265 state. The 11256 state might still be a fragment of the g.s. IAS.
11270 20	8-		NO	J^{π} : M8 excitation in (e,e').
11274.6 ^d 6	+1	e I		T=3 XREF: e(11280). Identified as fragment of IAS (⁵² V 23 keV).
11291.1 <mark>d</mark> 10		I		XREF: Others: AD
11330 20	$(1^+), 2^-$	-	N	J^{π} : (M1), M2 excitation in (e,e').
11370 20	8- ′′		N	XREF: Others: AG XREF: AG(11350). J^{π} : M8 excitation in (e,e'). $L(\alpha,t)=4$.
11400.0 ^d 4	4+	I		T=3
				Identified by 1974Ro44 as IAS (52 V 148 keV, $^{+}$). J^{π} : From γ (theta) in (p,γ) .
11402 ⁱ 9	1 ⁺	G	N	XREF: $G(11410)N(11400)$. J^{π} : M1 excitation in (e,e') . $L(p,p')=0$.
11510 <i>10</i> 11550 <i>20</i>	2 ⁻ 8 ⁻		N N	J^{π} : M2 excitation in (e,e'). J^{π} : M8 excitation in (e,e').
11570 20	$(1^+),2$		N	J^{π} : (M1),Q excitation in (e,e').
11610 <i>10</i>	2		N	J^{π} : Q excitation in (e,e').
11656 ^d 3	1+,2-	I	N	XREF: N(11650). J^{π} : M1, M2 excitation in (e,e').
11660 20	8-		N	XREF: Others: AG J^{π} : M8 excitation in (e,e').
11691.8 ^d 4		I	N	T=3 IAS (⁵² V 437 keV, 2 ⁺).
11713 ^d 3		I		
11725 ^d 3		I		
11745 ^d 3		I		

E(level) [†]	J^{π}		KREF	Comments
11765 ^a 3			M	
11770 20	8-		N	XREF: Others: AG
				XREF: AG(11790).
11700 20	(1+) 2-		W	J^{π} : M8 excitation in (e,e').
11780 <i>20</i> 11837 ^{<i>a</i>} <i>3</i>	$(1^+),2^-$		N M	J^{π} : (M1),M2 excitation in (e,e').
118374 3	8-		M N	J^{π} : M8 excitation in (e,e').
11960 20	8-		N	J^{π} : M8 excitation in (e,e').
12034.8 ^d 4	_	I	N	XREF: Others: AG
12001.0 7		-	**	XREF: AG(12050).
				J^{π} : $L(\alpha,t)=4$ from $7/2^-$.
12041.8 ^d 4	4 ⁺	I		T=3
		_		IAS (⁵² V 793 keV, 3 ⁺).
12050	-			XREF: Others: AG
				J^{π} : $L(\alpha,t)=4$.
12099.9 <i>4</i>	4^{+1}	I		T=3
				IAS (52 V 846 keV, 4^+).
12130 20	$(8^-,6^-)$		N	J^{π} : (M8,M6) excitation in (e,e').
12240 20	6-		N	J^{π} : M6 excitation in (e,e').
12260 [@]	6+,8+			XREF: Others: AA
125000	_			J^{π} : $L(\alpha, {}^{2}\text{He})=6,8$.
12500 ^C				XREF: Others: AG J^{π} : $L(\alpha,t)=4$ from $7/2^{-}$.
12560 20	1^{+k}	G		
12560 20				XREF: Others: AG
12665 ^d 6	3+	I		T=3
12730 20	_		N	IAS (⁵² V 1419 keV, 3 ⁺)? XREF: Others: AG
14/30/20			IN	XREF: Others: AG XREF: AG(12700).
				J^{π} : $L(\alpha,t)=4$ from $7/2^-$.
12734 d 6		I		T=3
12.01		-		IAS (⁵² V 1493 keV, 7 ⁺)?
12794.8 7	4 ⁺	I		T=3
12//1.0/		-		IAS (⁵² V 1559 keV, 4 ⁺)?
12900 20	1+ <i>k</i>	G		(, , , , , , , , , , , , , , , , ,
$12977^{d} 6$	-l	I		XREF: Others: AG
12711 0		1		T=3
				XREF: AG(13010).
				J^{π} : L(α ,t)=4 from 7/2 ⁻ .
_				IAS (⁵² V 1733 keV, 3 ⁻ ,4 ⁻)?
12994 ^d 6		I		IAS (⁵² V 1760 keV, 3 ⁺)?
13038 ^d 6	+1	I		IAS (52 V 1843 keV, +)?
13220 20	8-		N	J^{π} : M8 excitation in (e,e').
13319 ^d		I		
13393 ^d	6-	I	N	J^{π} : M6 excitation in (e,e').
13419 ^d	0^{+}	E I		T=3
				J^{π} : L(³ He,n)=0.
13570 20	6-		N	J^{π} : M6 excitation in (e,e').
13580 ^g 20	$(1,2)^{-}$			XREF: Others: AD
.t.				J^{π} : L(³ He, α)=0 from 3/2 ⁻ .
13630 [‡] <i>10</i>	0_{+}	E		T=3
				J^{π} : L(³ He,n)=0.
				IAS (⁵² V 2396 keV, 0 ⁺ , (1 ⁺))?

E(level) [†]	J^{π}	XREF	Comments
13710 20	6-	N	J^{π} : M6 excitation in (e,e').
13950 [‡] <i>50</i>		E	
14030 20	6-	N	J^{π} : M6 excitation in (e,e').
14110 [‡] <i>20</i>	2+	E	T=3
			J^{π} : L(³ He,n)=2.
			IAS (⁵² V 2881 keV, +)?
14340 20	6-	N	J^{π} : M6 excitation in (e,e').
14430 20	8-	N	XREF: Others: AG
			XREF: AG(11470).
			J^{π} : M8 excitation in (e,e').
15270 <i>20</i>	6-	N	XREF: Others: AG
			XREF: AG(15280).
			J^{π} : M6 excitation in (e,e'). $L(\alpha,t)=4$.
15482 ^c 7	8-	N	XREF: Others: AG
			T=3
			J^{π} : M8 excitation in (e,e').
16400 <i>20</i>	6-	N	J^{π} : M6 excitation in (e,e').
16690 <i>20</i>	(8^{-})	N	J^{π} : (M8) excitation in (e,e').

[†] Levels connected by gammas are from least squares fit, others from ⁵²Cr(p,p') for E(level)<8830 keV and from ⁵²Cr(e,e') for E(level)>8830 keV, except as noted.

[‡] From 50 Cr(t,p). @ From 50 Cr(α , 2 He,d). & From 50 Cr(α , 2 He,d).

^a From ⁵²Cr(γ, γ'),(pol γ, γ').

^b From ⁵²Cr(e,e').

^c From 51 V(α ,t).

^d From 51 V(p, γ).

^e From ⁵²Cr(p,p').

^f From 52 Cr(α,α').

^g From 53 Cr(3 He, α).

^h Close doublet; not resolved in (³He,n) tof spectra, but separated in angular distribution procedure.

ⁱ From weighted average of values in ⁵²Cr(e,e') and ⁵²Cr(p,p').

^j Dipole transition in 52 Cr(γ,γ'),(pol γ,γ').

^k Based on $\sigma(\theta)$, DWIA calculations in ⁵²Cr(p,p').

^l IAS in ⁵¹V(p, γ) E=res.

^m From (HI,xnγ), DSAM, except as noted.

ⁿ From $(n,n'\gamma)$.

^o Partial decay width into ground state in 52 Cr(γ,γ'),(pol γ,γ').

^p Band(A): g.s. Band.

^q Band(B): Band based on 5⁺.

γ (52Cr)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^d	δ^{d}	Comments
1434.091	2+	1434.068 ^b 14	100	0.0	0+	E2 [@]		B(E2)(W.u.)=10.3 3
2369.630	4+	935.538 ^b 11	100	1434.091	2+	E2@		$B(E2)(W.u.)=1.0\times10^{-11} +3-6$
2646.9	0_{+}	1212.8 6	100	1434.091		E2		E_{γ} : from $(p,p'\gamma)$.
2767.767	4+	398.08 [#] 9	1.76 14	2369.630	4+	E2 [@]		B(E2)(W.u.)=45 13
								I_{γ} : other: 1.36 17 in ⁵² V β ⁻ decay.
		1333.649 <i>17</i>	100 <i>I</i>	1434.091		E2 [@]		B(E2)(W.u.)=6.0 16
2964.786	2+	1530.67 [‡] <i>1</i>	100 [‡] 4	1434.091		M1+E2	-6.25 <i>15</i>	B(M1)(W.u.)=0.00036 8; B(E2)(W.u.)=13 3
		2965 [‡] 1	$0.9^{\ddagger} 6$	0.0	0^{+}	E2#		B(E2)(W.u.)=0.005 4
3113.858	6+	346.02 <i>4</i>	1.09 1	2767.767		E2		B(E2)(W.u.)=2.58 10
2161.74	2+	744.233 <i>13</i> 1727.53 [‡] <i>7</i>	100.0 <i>9</i> 100 [‡] <i>5</i>	2369.630		E2	0.10.7	B(E2)(W.u.)=5.14 19 B(M1)(W.u.) 0.107.23; B(E2)(W.u.) 2.6.24
3161.74	2	1/2/.53* / 3161.8 [‡] <i>1</i>	100 + 3 10.0 + 14	1434.091	0 ⁺	M1+E2 E2	-0.18 7	B(M1)(W.u.)=0.107 23; B(E2)(W.u.)=2.6 21
2415.22	4 ⁺			0.0		E2 M1+E2 [@] e	0.22 ^{@e} 8	B(E2)(W.u.)=0.40 10
3415.32	4 '	647.47 <i>6</i> 766.0 [#] <i>f</i> 10	100 5	2767.767	4 · 0+	M1+E2	0.22 6 8	B(M1)(W.u.)=0.24 7; B(E2)(W.u.)=6.E+1 5
				2646.9				The γ' s placement is highly suspect because $\Delta J=4$.
		1045.73 ^b 4 1981.12 4	17 <i>5</i> 8.5 <i>8</i>	2369.630 1434.091		[E2]		B(E2)(W.u.)=0.42 13
3472.25	3 ⁺	704.6‡ 2	100	2767.767		M1+E2	-0.14 6	B(M1)(W.u.)=0.0059 7; B(E2)(W.u.)=0.5 5
3472.23	3	704.0 2	100	2/07.707	4	WII+EZ	-0.14 0	I_{γ} : From $(n,n'\gamma)$.
		2038.0‡ 2	44.2 12	1434.091	2+			I_{γ} : From $(n,n'\gamma)$.
3615.924	5 ⁺	200.58 4	1.80 5	3415.32				19. 110111 (11,11 7).
		502.06 5	5.0 5	3113.858		_		
		848.18 5	78.9 <i>7</i>	2767.767		M1 [@]		B(M1)(W.u.)=0.006 3
		1246.278 <i>15</i>	100.0 14	2369.630				
3771.72	2+	2337.44 ^c 19	100 [‡] 14	1434.091		M1+E2	-0.20 8	B(M1)(W.u.)=0.15 5; B(E2)(W.u.)=2.4 20
		3771.7 [‡] 2	26 [‡] 6	0.0	0_{+}	[E2]		B(E2)(W.u.)=1.5 5
3947.5	2+	1578 <mark>&</mark>		2369.630				
3951.2	2+	3951 [‡] <i>I</i>	‡	0.0	0+			1 1 22 2 5 1 (IV
4015.51	5+	399.57 5	46.9 18	3615.924		@		I_{γ} : other: 33.3 5 in (HI,xn γ).
		600.16 <i>5</i> 901.89 <i>18</i>	100 <i>3</i> 11.3 <i>11</i>		4 ⁺	M1 [@]		B(M1)(W.u.)=0.062 +20-28
		901.89 <i>18</i> 1247.88 <i>9</i>	11.3 <i>11</i> 97 <i>10</i>	3113.858 2767.767		M1 [@]		D(M1)(W ₁₁₁)=0.0067+22-21
		1247.88 9 1645.82 <i>4</i>	97 10 12.1 8	2369.630		IVI I		B(M1)(W.u.)=0.0067 +23-31
4039.1	4+	566.8 [@]	100@	3472.25				
4563.0	3-	791 <mark>&</mark>	100	3771.72				
1505.0	5	3129 [‡] <i>I</i>		1434.091				
4584.0	(6 ⁺)	1470.1 [@] 7	100 [@]	3113.858				
4627.32	(0) 4 ⁺	2257.42 19	100	2369.630				

γ (52Cr) (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.d	δ^d	Comments
4750.31	8+	1636.4 [@] 2	100@	3113.858	6+	E2 [@]		B(E2)(W.u.)=5.E+1 +7-5
4805.96	6+	790.0 [@] 3	100 [@] 8	4015.51	5 ⁺	$(M1+E2)^{@e}$	-0.16 [@] e 5	B(M1)(W.u.)=(0.062 +19-37); B(E2)(W.u.)=(6 +4-5)
		1189.7 [@]	20 [@] 5	3615.924	5 ⁺			
		1693.9 [@] 6	23 [@] 3	3113.858	6+			
4815.69	$1^+, 2^+$	3381.5 [‡] <i>1</i>	100 [‡] 20	1434.091	2+			
		4815.4 [‡] 2	100 [‡] <i>16</i>	0.0	0^{+}			
5098.6	1	3664.5 ^a 5	79 ^a 22	1434.091				
		5098.3 ^a 5	100 ^a	0.0	0+			
5213.7	1	5213.4 ^a 5	100^{a}	0.0	0+	7200	o @e	Darry N. C. C. A. C. D. Thy Try. N. C. a. 10 ²
5396.9	7+	590.9 [@] 3	100 [@] 6	4805.96	6+	M1+E2 [@] e	-0.27 [@] e 6	$B(M1)(W.u.)=0.6 +4-6$; $B(E2)(W.u.)=2.9\times10^2 +22-28$
5526.0	1	1381.5 [@] 5 5525.7 5	15.2 [@] 16	4015.51 0.0	5 ⁺ 0 ⁺	E2 [@]		B(E2)(W.u.)=9 +6-8
5526.0 5544.7	1 (1 ⁺)	5544.4 <mark>a</mark>	100 ^a	0.0	0+			
5633.4	(8 ⁺)	1049.4 [@] 8	100	4584.0	(6 ⁺)			
5824.7	8 ⁺	427.9 [@] 3	100	5396.9	7 ⁺	M1(+E2) [@] e	-0.03 [@] e 4	$\alpha(K)=0.00166; \alpha(L)=0.00016$
3024.7	o	421.9 3	100	3370.7	/	WII(+E2)	-0.03 4	B(M1)(W.u.)=(0.28 +12-17); B(E2)(W.u.)=(3 +9-3)
6137.0	2+	6136.6 <mark>a</mark>	100 <mark>a</mark>	0.0	0^{+}			
6356.6	(9^+)	725.5 [@] f 12	100 [@]	5633.4	(8^{+})			
6365.3	(10^+)	1615.0 [@] 10	100 [@]	4750.31	8+			
6381.0	(6^{+})	2765.0 [@]	100	3615.924	5 ⁺			
6389.9	1+	6389.5 ^a 5	100 ^a	0.0	0_{+}			
6453.4	9+	628.9 [@] 5	35 [@] 18	5824.7	8+	M1+E2 [@] e	$+0.22^{@e} + 15 - 8$	B(M1)(W.u.)=0.13 11; B(E2)(W.u.)=4.E+1 +6-4
		1056.0 [@] 10	26 [@] 2	5396.9	7+			
		1702.9 [@] 5	100 [@] 5	4750.31	8+	M1+E2 [@] e	-0.04 ^{@e} +7-3	B(M1)(W.u.)=0.020 +12-13; B(E2)(W.u.)=0.02 +9-2
6462.4	1	6462.0 ^a 5	100 ^a	0.0	0+			
6495.5	1	6495.1 ^a 5	100 ^a	0.0	0+			
6752.0 7014.5	1 ⁺ 1	6751.5 ^a 5 5580.5 ^a 5	100 ^a 24 ^a 6	0.0 1434.091	0 ⁺ 2 ⁺			
7014.3	1	7013.6 ^a 5	100^{a}	0.0	0 ⁺			
7090.8	1+	7090.3 ^a 5	100 ^a	0.0	0+			
7166.2	+	7165.7 ^a 5	100 <mark>a</mark>	0.0	0^{+}			
7237.9	10 ⁺	784.5 [@] 5	100 [@] 12	6453.4	9+	$M1+E2^{@e}$	-0.06 [@] e +3-5	B(M1)(W.u.)=0.19 +10-18; $B(E2)(W.u.)=2 +3-2$
		883.7 [@] <i>f</i> 10	28 [@] 3	6356.6	(9^+)			
		1413.6 [@] <i>f</i> 10	8 [@] 4	5824.7	8+	[E2]		B(E2)(W.u.)=2.9 +21-29
		1606.0 [@] f 20	15 [@] 4	5633.4	(8^{+})	[E2]		B(E2)(W.u.)=2.9 +17-28
7368.8	1+	7368.2 ^a 5	100 ^a	0.0	0+			
7401.6	(12^{+})	1036.3 [@]	100	6365.3	(10^{+})	(E2) [@]		

γ (52Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.d	δ^d	Comments
7403.2	1	7402.6 ^a 5	100 ^a	0.0	0+			
7524.1	1+	7523.5 ^a 5	100 <mark>a</mark>	0.0	0_{+}			
7731.9	1-	7731.3 ^a 5	100 ^a	0.0	0_{+}			
7865.1	1+	7864.5 ^a 5	100 ^a	0.0	0_{+}			
7889.0	1	7888.4 ^a 5	100 <i>a</i>	0.0	0_{+}			
7897.4	1-	7896.8 <i>a</i> 5	100 <mark>a</mark>	0.0	0+			
8015.4	1	6580.9 ^a 5	54 ^a 16	1434.091	2+			
		8014.6 ^a 5	100 ^a	0.0	0+			
8091.3	1	8090.6 ^a 5	100^{a}	0.0	0+			- 1001-0-1
8179.3	1+	6744.8 ^a 5	326 ^a 50	1434.091	2+			E_{γ} : if 8179.2 level energy is correct, then E_{γ} should be 6744.8, not 6740.8 as listed in table I of 2013Pa38.
		8178.5 ^a 5	100 ^a	0.0	0_{+}			
8216.4	11+	978.5 [@] 5	97 [@] 9	7237.9	10 ⁺	M1+E2 [@] e	+0.10 [@] e +5-8	B(M1)(W.u.)=0.048 +19-35; B(E2)(W.u.)=1.1 +12-11
		1763.3 [@] 10	100 [@] 11	6453.4	9+	E2 [@]		B(E2)(W.u.)=6.1 +25-44
8765.9	1	8765.1 ^a 5	100 <i>a</i>	0.0	0^{+}			
8958.4	1	8957.6 ^a 5	100 ^a	0.0	0^{+}			
9140.3	1+	9139.4 ^a 5	100 <mark>a</mark>	0.0	0_{+}			
9211.9	1+	9211.0 ^a 5	100 ^a	0.0	0_{+}			
9327.0	1+	9326.1 ^a 5	100 ^a	0.0	0_{+}			
9429.0	1+	9428.1 ^a 5	100 ^a	0.0	0_{+}			
9438.5	$12^{(+)}$	1222.4 [@] 8	100 [@] 5	8216.4	11+			
		2200.0 [@] 10	16.8 [@] 11	7237.9	10 ⁺			
10161.3	(13^{+})	721.3 [@] 10	4.7 [@] 6	9438.5	12 ⁽⁺⁾			
10101.5	(15)	1943.6 [@] 7	100.0 [@] 17	8216.4	11 ⁺	E2@		
11256.5		8291	100.0 17	2964.786		L2		
11230.3		8488	85	2767.767				
11264.9	+	7648	<9	3615.924				
		7792	<5	3472.25	3+			
		7850	39 <i>7</i>	3415.32	4+	(M1+E2) [@] e	+0.06 [@] e 9	
		8150	25 9	3113.858		(111112)	. 0.00	
		8299	<5	2964.786				
		8496	11 7	2767.767	4+			
		8895	100 16	2369.630	4+	(M1+E2) [@] e	+0.9 [@] e +10-5	
		9830	34 5	1434.091		$(M1+E2)^{@}e$	-0.30 [@] e 6	
11274.6	+	4479	72 12	6795.4	3-	(1111112)	0.50	
		4899	24 8	6375.4	-			
		5069	36 12	6205.4				
		5239	20 8	6035.3				
		5549	100 12	5725.3	+			
		7258	60 12	4015.51	5+			
		7326	24 8	3947.5	2+			

15

γ (52Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. ^d	δ^d	Comments
11274.6	+	7859	8 4	3415.32 4+	$(M1+E2)^{@e}$	+0.47 ^{@e} 10	
		8904	56 8	2369.630 4+	$(M1+E2)^{@e}$	+0.19 [@] e 10	
11291.1		9856	100	1434.091 2+	,		
11400.0	4+	5836	61 5	5563.5 +			
		5953	29 5	5446.4 4+			
		7360		4039.1 4+			
		7384		4015.51 5+			
		7783	26 <i>3</i>	3615.924 5 ⁺			
		7985	21 3	3415.32 4+			
		8285	5 3	3113.858 6 ⁺			
		9030	100 5	2369.630 4+	$(M1+E2)^{@e}$	0.5 [@] e 2	δ : from (p,γ) , see 1974Ro44.
11691.8		5302	33 <i>3</i>	6389.9 1+			
		6027	23 3	5664.4 $(2)^+$			
		6245	53 <i>3</i>	5446.4 4+			
		6637	13 7	5054.3 4+			
		6854		4841.3 1+,1-,2	+		
		6883	27.2	4805.96 6 ⁺			
		6949	37 <i>3</i>	4742.3 0 ⁺			
		7652		4039.1 4+			
		7676 8219	20. 7	4015.51 5 ⁺ 3472.25 3 ⁺			
		8219	30 <i>7</i> 7 <i>3</i>	3412.23 3° 3415.32 4 ⁺			
		8529	13 3	3161.74 2 ⁺			
		8726	27 7	2964.786 2 ⁺			
		8923	10 3	2767.767 4 ⁺			
		9322	27 3	2369.630 4+			
		10257	100 7	1434.091 2+			
12034.8	-	6471	22 4	5563.5 +			
		6588	22 4	5446.4 4+			
		7404	48 <i>4</i>	4627.32 4+			
		8562	17 9	3472.25 3 ⁺			
		8620	100 9	3415.32 4+			
		9069	17 9	2964.786 2+			
		9266	74 <i>4</i>	2767.767 4+			
		9665	78 <i>4</i>	2369.630 4+			
		10600	48 4	1434.091 2+			
12041.8	4+	6595	42 4	5446.4 4+			
		7233	19 4	4805.96 6 ⁺			
		8569	46 4	3472.25 3 ⁺			
		8627	19 4	3415.32 4 ⁺			
		8879 9076	62 <i>4</i> 7 <i>4</i>	3161.74 2 ⁺ 2964.786 2 ⁺			
		907/0	14	/904 /80 /.'			

γ (52Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
12041.8	4+	9672	100 4	2369.630	4+	12099.9	4+	8152	22 4	3947.5 2 ⁺
		10607	54 <i>4</i>	1434.091	2+			8483	26 4	3615.924 5 ⁺
12099.9	4+	6239	39 9	5860.5	+			8627	17 <i>3</i>	3472.25 3 ⁺
		6362	39 9	5737.5	(4^{+})			8685	52 9	3415.32 4+
		6653	30 9	5446.4	4 ⁺			9331	35 <i>4</i>	2767.767 4+
		7002	13 4	5098.6	1			9730	100 9	2369.630 4+
		7469	30 4	4611	$(3,4)^{+}$	12794.8	4+	9178	81	3615.924 5 ⁺
		8060	30 4	4039.1	4 ⁺			10424	100	2369.630 4+
		8084	13 2	4015.51	5 ⁺					

[†] E γ <4 MeV from ⁵²Mn ε decay (5.591 d), E γ >4 MeV from ⁵¹V(p, γ), except as noted.

[‡] From ⁵²Mn ε decay (21.1 min).

[#] From 52 V β^- decay.

[@] From (HI,xn γ). [&] From ⁵¹V(³He,d γ).

^a From ⁵²Cr(γ , γ),(pol γ , γ).

^b From weighted average of values in ⁵²Mn ε decay (5.591 d) and ⁵²V β ⁻ decay.

^c From weighted average of values in ⁵²Mn ε decay (21.1 min) and ⁵²V β ⁻ decay.

^d From $\gamma \gamma(\theta)$ in ⁵²Cr(p,p' γ), except as noted.

^e From $^{51}V(p,\gamma)$.

f Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{52}_{24}\mathrm{Cr}_{28}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

Legend

Level Scheme (continued)

$$^{52}_{24}\mathrm{Cr}_{28}$$

11	19	w.	LV

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yang Dong, Huo Junde	NDS 121, 1 (2014)	20-Jun-2014

 $Q(\beta^-)$ =-1377.2 10; S(n)=9719.12 12; S(p)=12373 3; $Q(\alpha)$ =-7927.9 6 2012Wa38 Additional information 1.

⁵⁴Cr Levels

Cross Reference (XREF) Flags

	A B C D E F G H I	54 V $β^-$ decay 54 Mn $ε$ decay 48 Ca(9 Be,3n $_{Y}$) 50 Ti(6 Li,d) 50 Ti(16 O, 12 C) 51 V($α$,p),($α$,p $_{Y}$) 52 Cr(t,p) 53 Cr(n, $_{Y}$),(pol n. 53 Cr(d,p) 54 Cr(n, $_{Y}$)	,γ) E=th	K L M N O P Q R S T	⁵² Cr(<i>a</i> ⁵⁵ Mn((p,p') (n,d) (n,d) (mb) (μ^{-},α,α') (p,2] (d,3]	$(p,p'\gamma)$ He) $(p,p'\gamma)$ excitation $(p,p'\gamma)$	V W X Y Z Others	57 Fe(n,αγ) 53 Cr(n,γ) E=res 54 Cr(pol d,d'), (pol d,d'γ) 12 C(48 Ca,α2nγ) 56 Fe(μ^- ,νpnγ) 238 U(64 Ni,Xγ) : Cu(K $^-$,x rayγ)
E(level) [†]	Jπ&	$T_{1/2}^{a}$		X	REF				Comments
0.0 ^f 834.855 ^f 3	0 ⁺ 2 ⁺	stable 8.0 ps <i>3</i>	ABCDEFG ABCDEFG				UVWXYZ UVWXYZ	XREF: C Q=-0.21 B(E2) \uparrow = XREF: C μ ,Q: Con $T_{1/2}$: fro	Others: AA Others: AA $8 (1975T006); \mu=+1.68 \ 11 (2001Wa36)$ $0.087 \ 4 (2001Ra27)$ $6(838)N(900).$ npiled by 2011StZZ. m Coulomb excitation. Other:>4.2 ps $(\alpha, py)).$
1823.93 ^f 7	4 ⁺	1.9 ps 6	A CDEFG	HIJ I	. NOP	S	UV X Z	XREF: N $T_{1/2}$: fro	I(1800). m DSAM in (9 Be, 3 n γ). Other: 2.4 ps + 12 - 8
2619.68 <i>4</i>	2+	78 ^c fs 15	A FG	HI I	_	S	VW		(2627)L(2615).
2829.62 <i>5</i> 3074.07 <i>6</i>	0 ⁺ 2 ⁺	0.15 ps $+6-4$ 7.1 ^c fs 4	EFG A D FG	HI KI HI I		S	V V	XREF: E	er: $0.11 \text{ ps } +3-2 (\alpha, p), (\alpha, p\gamma).$ (2900)I(2835)K(2776). (3080)N(3000). er: $<0.017 \text{ ps } (\alpha, p), (\alpha, p\gamma).$
3159.57 10	4+	0.24 ps +5-4	A DEFG	HI I	_	S	V	XREF: I	
3222.45 ^f 13	6+	0.49 ^b ps <i>14</i>	A C FG	I	-	S	ΧZ	to 4^+ .	L(t,p)=(6), $\gamma(\theta)$ in (9 Be,3n γ), 1398 γ E2 er: 0.40 ps +8-7 (α ,p),(α ,p γ).
3393.41 7	(1-,2-)	15 ^c fs +14-7	FG	HI I			٧	XREF: IO $T_{1/2}$: oth	
3436.88 <i>6</i>	2+	8 ^c fs 3	A EFG	HI I	_	S	٧	XREF: I	(3442)S(3429).
3468? 3514 [‡] 7			F F	I					er:<10 fs (α,p) , $(\alpha,p\gamma)$. from (α,p) see 1979SmZQ.
3655.23 20 3720.03 5	4 ⁺ 1 ⁺ ,2 ⁺	<6 fs 16.6 ^c fs 14	A EFG Fg	HI I		S	V V	XREF: g J^{π} : from	(3630)I(3662). (3710)I(3726). $(\text{pol } \mathbf{n}, \gamma) \text{ and } \gamma \gamma(\theta) \text{ in } (\mathbf{n}, \gamma), L(\mathbf{d}, \mathbf{p}) = 1$.
3785.71 <i>12</i>	(4) ⁺	>2.8 ps	A F	I	_	S	V	J^{π} : fed in	er:<30 fs (α,p) , $(\alpha,p\gamma)$. If β^- decay by a log ft =5.69 branch from

E(level) [†]	J^{π} &	$T_{1/2}^{a}$			XREF			Comments
(1 1 1)		1/2						$J^{\pi}=3^{+}$ and 594 γ to 6 ⁺ .
								$T_{1/2}$: from ⁵¹ V(α ,p),(α ,p γ).
2709 54 12	4+	51 fo +0 8	A I	G I	т		V	
3798.54 12	2 ⁺	51 fs +9-8						XREF: I(3805).
3861.02 5	2.	20.0		GHi	1		V	XREF: G(3862).
3870.4 5	2+	>28 fs	ŀ	i	1	_		$T_{1/2}$: from ⁵¹ V(α ,p),(α ,p γ).
3925.55 7	2+			GH		S	V	J^{π} : from (n,γ) E=res and $\gamma\gamma(\theta)$.
3927.69 8	2+	10.6		GHI	L		V	XREF: F(3934)I(3937).
3987.42 <i>21</i>		>42 fs	I	1	Mn			XREF: M(3980)n(4000).
	- 1							$T_{1/2}$: from ⁵¹ V(α ,p),(α ,p γ).
4012.90 7	0^{+}	$1.4^{\it c}$ fs $+21-14$		GHI	Ln		V	XREF: I(4020)n(4000).
4043.3 ^h 3	5+	28 fs +13-10	C eI	7	L	S	X	XREF: e(4060).
								J^{π} : 820 γ to 6 ⁺ , cascade of the yrast levels; 2221 γ to 4 ⁺ .
								$T_{1/2}$: other: $T_{1/2} < 0.12$ ps from (${}^{9}Be, 3n\gamma$).
4083.25 6	$(2,3,4)^+$		A e	GHI	L		V	XREF: e(4060)I(4092).
								J^{π} : fed in β^{-} decay by a log ft =4.81 from 3 ⁺ .
4126.0 7	2 e						V	
4127.05 7	3-			GHI	L	S	V	XREF: I(4134).
								J^{π} : from L(t,p)=3 and (pol n, γ). But L(d,p)=3 from 1964Le03 and log f t=5.69 from JPi=3+
								give π =+.
4190.8 <i>5</i>	2+		E	GΙ	L		V	XREF: E(4200)L(4195).
	(2) 2 2				_			J^{π} : From L(t,p)=2.
4217.51 5	$(2)^{+},3^{+}$		Α		L		V	XREF: I(4225).
4239.1 5	2+			Gi	L	S	V	XREF: G(4248)i(4250)L(4241).
1056 1 1	2+				_			J^{π} : from L(t,p)=2+3 for E=4248 11.
4256.4 <i>4</i>	2+			gHi	L		V	XREF: g(4248)i(4250)L(4257).
1200.05.11	(2-)							J^{π} : from L(t,p)=2+3 for E=4248 11.
4380.95 11	(2^{-})			GHI	L		V	XREF: L(4377).
								E(level): unresolved doublet in (t,p) based on fit
								to $\sigma(\theta)$.
4451 0 5	4+			_			77	J^{π} : from L(t,p)=(1+3), but L(d,p)=1, π =+.
4451.0 5	$1^+,(2^+)^e$		A	G	L		V	XREF: L(4454).
4458.4 5						c	V	VDEE: E(4550)1 (4570)8(4551)
4570.8 9	$(2^{-}),3^{-e}$		E		L	S	V	XREF: E(4550)L(4572)S(4551).
4583 [#] 5	0_{+}			G	L			J^{π} : From L(t,p)=0.
4618 <i>17</i>				Ι	L	S		E(level): from weighted average of 4619 7
	- 1							$(p,p'),(p,p'\gamma)$ and 4617 10 (d,p).
4633.60 <i>14</i>	2+			GHI	L		V	XREF: L(4632).
C		1						J^{π} : from L(t,p)=2, but L(d,p)=2, π =
4681.5 ^f 3	$(8)^{+}$	0.55 ^b ps 7	C				ΧZ	J^{π} : from E2 γ to 6^+ .
4689.1 6							X	
4740 [@]			E					
4844.7 9	2- e			I	L		٧	
4865 <i>5</i>	$(1^-,4^+)$			G	L	S		E(level): from weighted average of 4864 7
								$(p,p'),(p,p'\gamma)$ and 4866 5 (t,p). Unresolved
								doublet in (t,p) based on fit to $\sigma(\theta)$.
								J^{π} : from L(t,p)=(1+4).
4872.36 <i>6</i>	2^{+d}			ΗI	L		V	•
4921‡ 7	-						•	VDEE: M(4000)
4921* / 4936 <i>7</i>				I	LM L	S		XREF: M(4900).
4930 /				1	L	3		XREF: I(4940)L(4934).
								E(level): from weighted average of 4934 7 (p,p') , $(p,p'\gamma)$ and 4940 10 (d,p) .
4997 [‡] 7								(p,p),(p,p) and +3+0 10 (u,p).
499/*/					L			

E(level) [†]	J^{π} &	$T_{1/2}^{a}$		XREI	F		Comments
5017 [‡] 10		·		L			
5026 [‡] 10				L			
5062 10	4+		G	L			XREF: G(5065)L(5060).
	•		_	_			J^{π} : From L(t,p)=4.
							E(level): from weighted average of 5060 10 (p,p'),(p,p' γ)
							and 5065 12 (t,p).
5085.8 4	(7)					X	J^{π} : from DCO and 1043 γ to 5 ⁺ .
5113.6 5	2 ⁺ e		GI			V	
5156 [‡] <i>10</i>	. 1			L			
5189.62 12	2^{+d}		GHI	L	S	V	
5191 [‡] <i>10</i>				L	r		XREF: r(5200).
5215 [‡] <i>10</i>				L	r		XREF: r(5200).
5226.56 11	2^{+d}		HI	L		٧	XREF: I(5230)L(5225).
5268.46 10	2^{+d}		Н	L		V	
5275 7	2+		GΙ	L			E(level): from weighted average of 5275 10 (p,p') , $(p,p'\gamma)$
							5275 10 (t,p), and 5275 9 (d,p).
5291.3 6	2+ e			1		٧	XREF: 1(5290).
5294.23 9	1+,2+		HI	1		V	J^{π} : γ' s to 2^+ , 0^+ . XREF: I(5298)I(5290).
3234.23 9	1 ,2		пт	1		V	J ^{π} : from (pol n, γ) and $\gamma\gamma(\theta)$, L(d,p)=1.
5321‡ 10				L	S		XREF: S(5310).
5345.7 12	2 e			L	3	V	XREF: L(5350).
5363.9 ^h 3	_ 7 ⁺	0.24 ^b ps 6	CEg	_		X	XREF: E(5370)g(5366).
3303.7 3	,	0.21 ps 0	C L g				J^{π} : from 682.3 γ to 8 ⁺ , 2141.3 γ to 6 ⁺ , 1319.9 γ to 5 ⁺ .
5387 10			g I				XREF: g(5366).
5458 <i>6</i>	2+		GΙ				J^{π} : From L(t,p)=2.
							E(level): from weighted average of 5459 10 (t,p) and
5498 10			-				5457 6 (d,p).
5557 7	4+		I G I				XREF: G(5555)I(5560).
3337 7	•		0.1				J^{π} : From L(t,p)=4.
							E(level): from weighted average of 5560 10 (t,p) and
							5555 7 (d,p).
5586.94 7	1+,2+ <i>e</i>		GHI		S	V	XREF: G(5583)I(5590)S(5574).
5670 <i>10</i> 5698 <i>10</i>			I I				
5740 <i>10</i>			I				
5771 12			-		S		
5797.9 <mark>8</mark> 5	(7)		I			X	J^{π} : from 1110.9 γ to 8 ⁺ , 2575.7 γ to 6 ⁺ .
5821.50 <i>13</i>			HI	M			XREF: I(5829)M(5840).
5856.4 <i>4</i>	(±)		HI				XREF: I(5863).
5893 <i>10</i> 5935 <i>10</i>	(+)		E I				J^{π} : from L(d,p)=(1). XREF: E(5950).
5981 <i>10</i>			E I I		S		XREF: S(5983).
6113 10			Ī		S		XREF: S(6104).
6120 <i>10</i>			I				
6142.31 <i>17</i>			HI				XREF: I(6148).
6193 10			I				
6212 <i>10</i> 6255 <i>10</i>			I I				
6289 <i>10</i>			I				
6316.39 9			HI				
6350 10			I				
6374 10			I				

E(level) [†]	J^{π} &	$T_{1/2}^{a}$		XREF		Comments
6391 10		-,-	I			
6421 10			Ī			
6446.2 6	(9)		_		X	J^{π} : from 1360.4 γ to (7).
6510 <i>10</i>	. ,		I			, ,
6525 10			I			
6556 10			I			
6585 10			I			
6617.8 ^h 4	9+				X	J^{π} : from 1254.2 γ to 7 ⁺ and 1936.0 γ to (8) ⁺ .
6633 10			I			
6658 10			I			
6678 10			I			
6699 [#] 10		1	E G			
6719.52 <i>79</i>	(10^{+})	$<0.10^{b}$ ps	CI			
6726.2 ^f 7	$(10)^{+}$				X	J^{π} : from 2042 γ E2 to (8) ⁺ .
6743 10			I			
6780 <i>10</i>			I			
6814 10			I			
6831 10			I			
6875 <i>10</i> 6899 <i>10</i>			I			
6941 <i>10</i>			Ī			
6960 10			Ī			
6991 [#] <i>10</i>			EGI			XREF: E(7000)I(7000).
7050 10			I			AREI : E(7000)1(7000).
7084 10			I			
7103 10			I			
7127 10			I			
7159 10			I			
7174 10			I			
7199 <i>10</i> 7235.3 <i>4</i>	(0)		I	M	X	J^{π} : from 6184 γ to 9 ⁺ , 1870 γ to 7 ⁺ , 2555 γ to 8 ⁺ .
7292.1 <mark>8</mark> 5	(9) (9)				X	J^{π} : from 1494 γ to (7), 1928 γ to 7 ⁺ , 2611 γ to 8 ⁺ .
7370	())		I		Λ	3 . Holli 1494y to (7), 1926y to 7 , 2011y to 8 .
7400 [@]			E			
7590	(-)		I			J^{π} : from L(d,p)=(0).
7850 [@]	()		E			V . Hom <i>E</i> (d,p) (0).
7895.0 <i>9</i>	(10)		E		X	J^{π} : from 3213 γ to 8 ⁺ .
8236.9 ^h 6	(10) (11^+)				X	J^{π} : 1513 γ to 10 ⁺ , 1619 γ to 9 ⁺ .
8300 [@]	(11)		T.		Λ	3 . 1313y to 10 , 1013y to 3 .
8500 [@]			E			
			E			
8825.4 ^f 8	(12^{+})				X	J^{π} : from 2101 γ to (10) ⁺ .
8859.1 ⁸ 7	(10)				X	J^{π} : from 1567 γ to (9).
8990				M	v	J^{π} : from unresolved L=8 and L=6 in $(\alpha,^2\text{He})$.
9154.4 6	(11)		_		X	J^{π} : from 1919 γ to (9), 2430 γ to 10 ⁺ .
9300 [@]	+		E			π c 1 1 0 1 c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9420 9634.4 <i>9</i>				M	X	J^{π} : from unresolved L=8 and L=6 in (α , ² He). J^{π} : from 2910 γ to 10 ⁺ .
9034.4 9 9971.8 ^h 8	(12^+)					•
	(13^+)				X v	J^{π} : from 1735 γ to (11 ⁺).
10551.6 <i>11</i> 11115.9 ⁸ <i>9</i>	(11^+) (11)				X X	J^{π} : from 3827 γ to 10 ⁺ . J^{π} : from 2257 γ to (10).
11785.9 ^h 9	(11) (15^+)					J^{π} : from 1814 γ to 13 ⁺ .
12539.9 11	(13)				X X	J^{π} : from 3385 γ to (11).
12337.7 11	(13)				A	· . Holl 3505 / to (11).

⁵⁴Cr Levels (continued)

 \dagger Energies for states connected by γ -rays from using least-squares fits. Others from (d,p), except as noted.

[‡] From $(p,p'),(p,p'\gamma)$.

From (t,p).

[@] From (¹⁶O, ¹²C).

& From L values reported in (t,p), except as noted.

^a From DSAM in $(\alpha, p\gamma)$, except as noted.

^b From (⁹Be,3nγ).

^c From (n,γ) ,(pol n,γ) E=th.

^d From (n,γ) ,(pol n,γ) E=th and $\gamma\gamma(\theta)$ measurements.

^e Deduced both from primary and secondary gamma-rays in (n,γ) E=res.

^f Band(A): Yrast sequence from (48 Ca, α 2n γ).

^g Band(B): Cascade based on (7) from (48 Ca, α 2n γ).

^h Band(C): Cascade based on (5^+) from $(^{48}\text{Ca}, \alpha 2\text{n}\gamma)$.

$\gamma(^{54}\mathrm{Cr})$

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}{}^{b}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. [†]	δ^{\dagger}	Comments
834.855	2+	834.848 3	100	0.0 0+	E2		B(E2)(W.u.)=14.4 6 E_{γ} : from ⁵⁴ Mn ε decay. Mult.: from ax(exp) In ⁵⁴ Mn ε decay.
1823.93	4+	989.08 [@] 2	100	834.855 2+	E2		B(E2)(W.u.)=26 9
2619.68	2+	1784.65 [@] 9	100 <i>I</i>	834.855 2+		-0.53 18	B(M1)(W.u.)=0.037 9; B(E2)(W.u.)=7
2020 (2	0+	2619.57 9	4.3 3	$0.0 0^{+}$	[]		B(E2)(W.u.)=0.20 4
2829.62 3074.07	0 ⁺ 2 ⁺	1994.56 <i>5</i> 2239.07 <i>5</i>	100 100.0 <i>5</i>	834.855 2 ⁺ 834.855 2 ⁺		0.02 5	B(E2)(W.u.)=10 +3-4 B(M1)(W.u.)=0.273 16; B(E2)(W.u.)=0.05 +23-5
		3073.95 18	1.1 2	0.0 0+	[E2]		B(E2)(W.u.)=0.26 5
3159.57	4+	1336.0 <mark>&</mark> <i>3</i>	100 ^{‡&} 7	1823.93 4+			
		2325.0 [‡] 4	69 8	834.855 2+	[E2]		B(E2)(W.u.)=1.17 +25-29
3222.45	6+	1398.63 [‡] <i>13</i>	100 [‡] 15	1823.93 4+			B(E2)(W.u.)=18 5
3393.41	(1-,2-)	2558.45 <i>5</i> 3393.35 <i>7</i>	100 58 5	834.855 2 ⁺ 0.0 0 ⁺			
3436.88	2+	817.20 7 2601.91 8	3.0 <i>4</i> 100 <i>6</i>	2619.68 2 ⁺ 834.855 2 ⁺		-0.11 +12-16	B(M1)(W.u.)=0.15 6; B(E2)(W.u.)=0.6 +13-6
3655.23	4+	1831.27 [‡] <i>19</i>	100 [‡]	1823.93 4+	M1		B(M1)(W.u.)>0.60 Mult.: from RUL.
3720.03	1+,2+	890.41 2 1100.38 6 3719.84 7	12 <i>I</i> 17 <i>I</i> 100.0 5	2829.62 0 ⁺ 2619.68 2 ⁺ 0.0 0 ⁺			
3785.71	(4) ⁺	563.68 [‡] 19 626.56 [‡] 27	42 [‡] 2 7 [‡] 3	3222.45 6 ⁺ 3159.57 4 ⁺			
		1961.53 [‡] <i>11</i>	100‡ 10	1823.93 4+			
3798.54	4+	639.35 [‡] 25	80 [‡] 10	3159.57 4+			
		1974.33 [‡] 12	100 [‡] 22	1823.93 4+			P(TO)(III) 10.4
3861.02	2+	2964.29 [‡] 25 1241.36 7	78 [‡] 20 100 6	834.855 2 ⁺ 2619.68 2 ⁺			B(E2)(W.u.)=1.2 4
3001.02	2	3026.05 6	60 5	834.855 2+			
3870.4		1250.8 [#] 5		2619.68 2+			

γ ⁽⁵⁴Cr) (continued)</sup>

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\boldsymbol{b}}$	\mathbf{E}_f	J^π_f	Mult. [†]	Comments
3870.4 3925.55	2+	3034.6 [#] <i>13</i> 205.62 <i>20</i> 1095.7 <i>5</i>	17 3	834.855 3720.03 2829.62	1 ⁺ ,2 ⁺ 0 ⁺		
3927.69	2+	2101.1 <i>3</i> 3090.63 <i>8</i> 3927.57 <i>9</i>	100 <i>17</i> 100	1823.93 834.855 0.0	0^{+}		
3987.42		594.0 [#] 2	100 [#]	3393.41	(1-,2-)		E_{γ} : not reported by 1980St04 in ⁵¹ V(α,p),(α,pγ).
4012.90	0_{+}	1394.3 <i>7</i> 3177.93 <i>7</i>		2619.68 834.855	2 ⁺ 2 ⁺		
4043.3	5 ⁺	820.4 ^a 3 2220.9 ^a 6	100 ^a 3 18.5 ^a 11	3222.45 1823.93	6 ⁺ 4 ⁺		Additional information 2. Additional information 3.
4083.25	(2,3,4)+	646.27 [‡] 24 923.29 [‡] 20 1009.25 [‡] 16	4.9 [‡] 9 17.7 [‡] 17 3.0 [‡] 13	3436.88 3159.57 3074.07	2 ⁺ 4 ⁺ 2 ⁺		
		1463.51 [‡] 9 2259.35 [‡] 11	18.9 [‡] <i>15</i> 100 [‡] <i>3</i>	2619.68 1823.93	2 ⁺ 4 ⁺		
4126.0	2	1052.0 7	100 5	3074.07	2+		
4127.05	3-	1508.24 25	46 15	2619.68	2 ⁺		
4190.8	2+	3292.11 8 3356.1 <i>5</i>	100 23	834.855 834.855	2+		
4217.51	$(2)^+,3^+$	4189.8 <i>9</i> 1597.72 <i>4</i>	27 18	0.0 2619.68	0 ⁺ 2 ⁺		
1217.31	(2) ,5	2394.82 [‡] <i>36</i>	76 <i>36</i>	1823.93	4 ⁺		
		3382.96 [‡] 18	100 20	834.855	2 ⁺		
4239.1	2+	1619.8 9	100 20	2619.68	2+ 2+		
1237.1	2	3403.9 6		834.855			
4256.4	2+	3421.4 4		834.855			
		4256.2 9		0.0	0_{+}		
4380.95	(2^{-})	3545.92 <i>13</i>	100	834.855	2+		
4451.0	4 ⁺	2627.00 [‡] <i>4</i> 2	100 [‡]	1823.93	4+		
4458.4	$1^+,(2^+)$	4458.2 5	100	0.0	0+		
4570.8	$(2^{-}),3^{-}$	2746.8 9	100	1823.93	4+		
4633.60	2+	1804.00 14		2829.62	0+		
4681.5	(8) ⁺	2013.5 <i>4</i> 1459.1 ^{<i>a</i>} <i>4</i>	100 <mark>a</mark>	2619.68 3222.45	2 ⁺ 6 ⁺	E2 ^a	B(E2)(W.u.)=12.8 <i>17</i>
	(6)					E2	Additional information 4. Mult.: from $\gamma(\theta)$ In 12 C(48 Ca, α 2n γ) and RUL.
4844.7	2-	4009.7 9	100	834.855			
4872.36	2+	745.37 16	5.7 9	4127.05	3-		
		944.57 <i>19</i> 946.80 <i>15</i>	2.8 9 4.7 9	3927.69 3925.55	2 ⁺ 2 ⁺		
		1435.49 18	21.79 19	3436.88	2 ⁺		
		1712.4 3	21.77 17	3159.57	4 +		
		1798.22 5	23.6 19	3074.07	2+		
		4872.27 10	100 8	0.0	0^{+}		
5085.8	(7)	1042.7 <i>a</i> 4	100 ^a	4043.3	5+		Additional information 5.
5113.6	2+	4278.3 6		834.855	2+		
5100.60	2+	5113.9 9		0.0	0^{+}		
5189.62	2+	1106.38 <i>10</i> 2358.2 <i>10</i>		4083.25 2829.62	$(2,3,4)^+$ 0^+		
		5189.6 <i>14</i>		0.0	0 ⁺		
5226.56	2+	845.57 12		4380.95	(2^{-})		

γ ⁽⁵⁴Cr) (continued)

$E_i(level)$	J_i^π	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
5226.56	2+	2066.99 <i>7</i> 4390.7 <i>4</i>		3159.57 834.855	4 ⁺ 2 ⁺		
5268.46	2+	1340.81 <i>10</i> 1831.34 <i>17</i> 4433.43 <i>21</i> 5268.3 <i>11</i>		3927.69 3436.88 834.855 0.0	2 ⁺ 2 ⁺ 2 ⁺ 2 ⁺ 0 ⁺		
5291.3	2+	4455.9 <i>9</i> 5291.3 <i>7</i>		834.855 0.0	2 ⁺ 0 ⁺		
5294.23	1+,2+	2464.23 <i>19</i> 2674.49 <i>11</i> 4459.28 <i>21</i>	23 8 53 5 100 <i>13</i>	2829.62 2619.68 834.855	0 ⁺ 2 ⁺ 2 ⁺		
5345.7	2	4510.6 <i>12</i>	100	834.855	2+		
5363.9	7+	278.3 ^a 3 682.3 ^a 3 1319.9 ^a 5 2141.3 ^a 6	$2.9^{a} 3$ $100^{a} 10$ $25^{a} 1$ $38^{a} 2$	5085.8 4681.5 4043.3 3222.45	(7) (8) ⁺ 5 ⁺ 6 ⁺		Additional information 6. Additional information 7. Additional information 8.
5586.94	1+,2+	1460.10 <i>14</i> 1503.62 9 2967.05 <i>19</i> 4751.83 <i>10</i>	22 11 33 11 94 17 100 22	4127.05 4083.25 2619.68 834.855	3 ⁻ (2,3,4) ⁺ 2 ⁺		
5797.9	(7)	$1110.9^a 4$ $2575.7^a 6$	22.9^{a} 15 100^{a} 3	4689.1 3222.45	6 ⁺		Additional information 9. Additional information 10.
5821.50		2101.43 12	100 3	3720.03	1 ⁺ ,2 ⁺		Additional information 10.
5856.4		5021.29 <i>34</i>	100	834.855	2+		
6142.31		847.90 <i>17</i>	100 12	5294.23	1 ⁺ ,2 ⁺		
		2749.56 36	62 25	3393.41	$(1^{-},2^{-})$		
6316.39		2233.09 6	100	4083.25	$(2,3,4)^{+}$		
6446.2	(9)	1360.4 ^a 4	100 <mark>a</mark>	5085.8	(7)		Additional information 11.
6617.8	9+	1254.2 ^a 4	100 ^a 4	5363.9	7+	a	Additional information 12.
		1936.0 ^a 5	47 ^a 2	4681.5	$(8)^{+}$		Additional information 13.
6719.52	(10^+)	2038.9 8	100	4681.5	(8) ⁺	E2	B(E2)(W.u.)>13 E_{γ} : From (9 Be,3n γ).
6726.2	$(10)^{+}$	2042.5 ^a 5	100 <mark>a</mark>	4681.5	$(8)^{+}$	E2 ^a	Additional information 14.
7235.3	(9)	617.6 ^a 4	56 ^a 3	6617.8	9+		Additional information 15.
		1870.5 ^a 5	94 a 3	5363.9	7+		Additional information 16.
		2554.9 ^a 6	100 ^a 3	4681.5	$(8)^{+}$		Additional information 17.
7292.1	(9)	1494.3 <i>a</i> 4	$70^{a} 4$	5797.9	(7)		Additional information 18.
		1927.9 ^a 5	31.1 ^a 15	5363.9	7+		Additional information 19.
- 00 - 0	(4.0)	2610.6 ^a 6	$100^{a} 4$	4681.5	(8)+		Additional information 20.
7895.0	(10)	3213.4 ^a 8	$100^a 6$	4681.5	(8) ⁺		Additional information 21.
8236.9	(11^{+})	1512.7^{a} 5	14.6 ^a 11	6726.2	$(10)^{+}$	a	A 1177 11 6 2 2 00
0025 4	(10±)	1619.2^{a} 5	100^{a} 4	6617.8	9 ⁺	u	Additional information 22.
8825.4	(12^+)	2101.2 ^d 6	$\frac{100^a}{100^a}$	6726.2	$(10)^{+}$		Additional information 23.
8859.1	(10)	1567.0^{a} 5		7292.1	(9)		Additional information 24.
9154.4	(11)	1919.0 ^a 5 2430.2 ^a 6	41 ^a 4 100 ^a 4	7235.3 6726.2	(9) $(10)^+$		Additional information 25. Additional information 26.
9634.4	(12^{+})	2910.2 ^a 7	100^{a} 4 100^{a}	6726.2	$(10)^+$		Additional information 20. Additional information 27.
9034.4	(12^{-}) (13^{+})	1734.8 ^a 5	100° 100° 100° 100° 100° 100° 100° 100°	8236.9	(10) (11^+)		Additional information 28.
10551.6	(13^{+})	3827.3 ^a 9	100°a	6726.2	$(10)^{+}$		Additional information 29.
11115.9	(11)	2256.7 ^a 6	100 ^a	8859.1	(10)		Additional information 29. Additional information 30.
11785.9	(15^+)	1814.1 ^a 5	100 ^a	9971.8	(13^+)		Additional information 31.
12539.9	(13)	3385.4 ^a 9	100 ^a	9154.4	(11)		Additional information 32.

 $^{54}_{24}\mathrm{Cr}_{30}$ -8

γ (54Cr) (continued)

- [†] From (n,γ) ,(pol n,γ) E=th, except as noted. [‡] From ⁵⁴V β^- decay.

- # From $(\alpha, p\gamma)$.

 [®] From weighted average of values in (n, γ) , $(pol\ n, \gamma)$ E=th and $^{54}V\ \beta^-$ decay.

 [&] From weighted average of values in $(\alpha, p\gamma)$ and $^{54}V\ \beta^-$ decay.
- ^a From (48 Ca, α 2n γ).
- ^b Branching ratio from (n,γ) , (pol n,γ) E=th, except as noted.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

$$^{54}_{24}\mathrm{Cr}_{30}$$

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022					

 $Q(\beta^-)=1626.5\ 6$; $S(n)=8246.1\ 6$; $S(p)=13449\ 27$; $Q(\alpha)=-8232.3\ 28$ 2021Wa16 $S(2n)=14492.4\ 6$, $S(2p)=24119\ 16$ (2021Wa16).

1960Dr03: 56 Cr produced and identified in bombardment of natural chromium metal electroplated on a gold backing with 2.7-2.9 MeV tritons from Los Alamos accelerator, followed by chemical separation of 56 Cr, identified by growth of 2.6-h 56 Mn activity. Measured E γ , I γ , $\beta\gamma$ -coin, T_{1/2} of decay of 56 Cr to 56 Mn. Since the 1960Dr03 work, no other investigation of half-life of 56 Cr or its decay appears to have been made.

Earlier attempts by 1956Jo32, by L.P. Roy and L. Yaffe (Can. Jour. Chem. 35, 156 (1957), and by 1960Eh04 were unsuccessful to identify ⁵⁶Cr activity.

Mass measurement: 2005Gu27.

Additional information 1.

Other reactions:

1992Wa11: 56 Fe(π^-,π^+),E=295 MeV: measured pions, $\sigma(\theta)$; deduced double giant dipole resonance.

1987Gi04: 56 Fe(π^-,π^+),E=100-292 MeV: measured σ ; deduced nonanalog and double analog transitions.

1982Se09, 1981Pr02, 1978De30: 59 Co(π^- ,pd),E at rest: measured $\sigma(\theta)$, (particle)(particle)-coin; deduced yields, and missing mass spectra.

Theoretical calculations: 46 primary reference extracted from the NSR database (www.nndc.bnl.gov/nsr/), listed here under document records.

⁵⁶Cr Levels

Cross Reference (XREF) Flags

Α	$^{56}V \beta^{-} \text{ decay (216 ms)}$	E	54 Cr(t,p γ)
В	9 Be(57 Cr, 56 Cr γ)	F	54 Cr(α , 2 He)
C	48 Ca(11 B,2np γ)	G	$^{238}\text{U}(^{48}\text{Ca,X}\gamma)$
D	54 Cr(t,p)	H	Coulomb excitation

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0‡	0+	5.94 min <i>10</i>	ABCDEFGH	$\%\beta^-=100$ T _{1/2} : from 1960Dr03.
1006.83 [‡] 10	2+	3.82 ps <i>10</i>	ABCDE GH	J^{π} : E2 γ to 0 ⁺ ; L(t,p)=2. $T_{1/2}$: Weighted average of 3.81 ps 10 (2011Se09, recoil-distance method in (¹¹ B,2npγ)) and 5.0 ps +26−13 (2005Bu29, B(E2)(W.u.) in Coulomb excitation). Other: ≥1.4 ps from DSAM in (t,pγ) (1976Ba45).
1675.2 4	(0+)		A	J^{π} : log fi =4.6 from 1 ⁺ parent; shell-model prediction (see Fig. 13 in 2006Zh42 for a predicted 0 ⁺ state at 1991 keV). However, note that no 0 ⁺ state was found in (t,p) work of 1968Ch20 or in (t,py) work of 1976Ba45.
1831.65 <i>14</i>	2+		ABCDE G	J^{π} : L(t,p)=2. Possible bandhead of γ band.
2076.81 [‡] <i>14</i>	4+	2.18 ps 8	BC G	J^{π} : ΔJ =2, E2 γ to 2 ⁺ ; J not 0 from $\gamma(\theta)$ distribution. $T_{1/2}$: from recoil-distance method in (¹¹ B,2np γ) (2011Se09).
2278.49 17	(3 ⁺)		BC G	J^{π} : $\Delta J=1$, dipole γ to 2^+ ; possible member of γ band. $J=1$ is less likely due to yrast-pattern of level population in (48 Ca, $X\gamma$).
2325.9 5	2+	≤0.055 ps	A DE	J^{π} : L(t,p)=2. T _{1/2} : from DSAM in (t,p γ).
2681.8 <i>10</i>	(4 ⁺)	≥0.7 ps	CdEF	$T_{1/2}$: from DSAM in (¹¹ B,2np γ) (1977Na12). J^{π} : L(t,p)=4 for 2682 and/or 2688 level.
2687.91 20	(4 ⁺)		d G	J^{π} : L(t,p)=4 for 2682 and/or 2688 level; $\Delta J=1$, dipole γ to (3 ⁺); possible member of γ band.
2822.93 18	(4^{+})		G	J^{π} : $\Delta J=0$, dipole γ to 4^+ .

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF	Comments		
3116.7 6			G	J^{π} : γ to 4 ⁺ suggests J=4,5,6 ⁺ .		
3164 <i>6</i>	$(2^+,3,4^+)$	≤0.21 ps	DE	J^{π} : γ s to 2^+ and (4^+) .		
				$T_{1/2}$: from DSAM in (t,p γ).		
3251.84 [‡] <i>17</i>	6+	≥0.7 ps	BC G	J^{π} : $\Delta J=2$, E2 γ to 4^{+} ; band member.		
			_	$T_{1/2}$: from DSAM in (11 B,2np γ) (1977Na12).		
3402 20	2-		D	TT I (1) 2		
3451 <i>15</i> 3509 <i>15</i>	3 ⁻ 2 ⁺		D D	J^{π} : L(t,p)=3. J^{π} : L(t,p)=2.		
3528.51 22	(5^+)		G	J^{π} : $\Delta J=1$ dipole γ to (4^+) ; γ to (3^+) .		
3648 15	(5)		D	v + 20 1 dipole / to (1), / to (0).		
3675 15			D			
3794 <i>15</i>	3-		D	J^{π} : $L(t,p)=3$.		
3819 20	6(+)		D	17 AT 2 1 1 4 4+ AT 0 D.O 4 6+		
3841.15 <i>19</i> 3897 <i>15</i>	0+		C G D	J^{π} : $\Delta J=2$, quadrupole γ to 4^+ ; $\Delta J=0$, $D+Q$ γ to 6^+ . J^{π} : $L(t,p)=0$.		
3916 20	U		D D	J : L(t,p)=0.		
4014 15			D			
4112 15			D			
4157.56 20	$(5,6,7^+)$		G	J^{π} : γ s to 6^+ and (5^+) .		
4175 15			D			
4247 20 4284 15			D D			
4349 15			D D			
4445 15			D	E(level): energy is close to that of 4448.9, (7 ⁻) level, however, it seems		
				unlikely that L=7 is populated in (t,p) reaction.		
4447.79 [#] 20	(7^{-})	≥0.7 ps	C FG	J^{π} : L(α , ² He)=(7); ΔJ =1, dipole γ to 6 ⁺ .		
				$T_{1/2}$: from DSAM in ($^{11}B,2np\gamma$) ($^{1977}Na12$).		
4631 <i>15</i>			D			
4678 15	((+ 7+)		D	1π . $A = (F (7^+), A = (9^+), A = (1^+)$		
4732.53 22 4750.95 [‡] 19	$(6^+,7^+)$		G	J^{π} : γ to $(5,6,7^+)$; γ from (8^+) ; possible γ to (5^+) .		
4/50.95* <i>19</i> 4800 <i>20</i>	8+		C G	J^{π} : $\Delta J=2$, quadrupole γ to 6^+ ; band member.		
4848 20			D D			
4892 20			D			
4924 20			D			
4989 <i>15</i>			D			
5060	(5 ⁻)		F	J^{π} : L(α , ² He)=(5).		
5121 <i>15</i>	(3-)		D	J^{π} : L(t,p)=(3).		
5268.4 3	(8+)		G	J^{π} : γ to $6^{(+)}$; $\Delta J=1$, dipole γ from (9^{-}) .		
5601.44 [#] 20	(9 ⁻)		C G F	J^{π} : $\Delta J=2$, E2 γ to (7 ⁻); $\Delta J=1$, dipole γ to 8 ⁺ . E(level): unresolved from 6200-keV peak.		
5990	(5^{-})		r	J^{π} : L(α , ² He)=(5) for 5990+6200.		
6200	(5^{-})		F	E(level): unresolved from 5990-keV peak.		
0200	(5)		-	J^{π} : L(α , ² He)=(5) for 5990+6200.		
6295.3 8	$(8^+, 9, 10^+)$		G	J^{π} : γ to 8^+ ; γ from 10^+ .		
6518.3 [‡] <i>3</i>	10 ⁺		G	J^{π} : $\Delta J=2$, quadrupole γ to 8^+ ; band member.		
6872.89 22			G	J^{π} : γ to 8^+ suggests $J=8,9,10^+$.		
6879.0 <i>3</i>	$(9,10,11^{-})$		C G	J^{π} : γ to (9^{-}) .		
7057.16 [#] 22	(11^{-})		C G	J^{π} : $\Delta J=2$, quadrupole γ to (9 ⁻); band member.		
7330	$(6^+,8^+)$		F	J^{π} : $L(\alpha,^{2}He)=(6+8)$.		
7691.9? <i>3</i>	10+		G	77 . 10-1 1 1		
8465.5 [‡] 17	12+		G	J^{π} : γ to 10^+ ; band member.		
8768.0 [#] 3	(13^{-})		C G	J^{π} : $\Delta J=2$, quadrupole γ to (11 ⁻); band member.		

E(level) [†]	J^{π}	XREF	Comments				
10849.9 [#] 5			J^{π} : γ to (13 ⁻); band member.				
13159.4 [#] <i>11</i>	(17^{-})	G	J^{π} : γ to (15 ⁻); band member.				

[†] From least-squares fit to E γ data for levels populated in γ -ray studies. Reduced χ^2 of 2.3 is slightly larger than 2.0 for 95% confidence level. Energies for levels, not populated in γ -ray studies are from ⁵⁴Cr(t,p). [‡] Band(A): g.s. band. [#] Band(B): Band based on (7⁻), 4448.0.

						γ (⁵⁶ Cr)		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	δ	Comments
1006.83	2+	1006.8 <i>I</i>	100	0.0	0+	E2		B(E2)(W.u.)=11.25 30 B(E2)(W.u.)=8.7 30 measured from Coulomb excitation cross section (2005Bu29), which gives level $T_{1/2}$ =5.0 ps +26-13.
1675.2	(0^+)	668.4 <i>3</i>	100	1006.83				E_{γ} : from ⁵⁶ V β^- decay.
1831.65	2+	824.8 <i>1</i>	100 6	1006.83	2+	M1+E2	-1.8 10	I_{γ} , δ : from $(t,p\gamma)$. Mult.: from γ (pol) data in $(^{11}B,2np\gamma)$.
2076.81	4+	1830 [#] 10 1070.0 1	18 [#] 6 100	0.0 1006.83	0 ⁺ 2 ⁺	Q E2		Mult.: from $\gamma(\theta)$ in $(t,p\gamma)$ (1976Ba45). B(E2)(W.u.)=14.6 6 Mult.: ΔJ =2, quadrupole from $\gamma(\theta)$ and DCO in (⁴⁸ Ca,X γ); and RUL for E2 and M2 transitions.
2278.49	(3+)	446.8 <i>1</i>	100	1831.65	2+	D		E_{γ} : from (48 Ca, X_{γ}) (2006Zh42). Other: 450.1 7 in (11 B,2np $_{\gamma}$) (2003Ap01). Values of E $_{\gamma}$ in the two studies differ significantly, however, it appears less likely that there are two closely-spaced J=3 levels.
2325.9	2+	495.5 [#] 1318.0 6 2327.6 [#]	<6 [#] 100 <i>11</i> <6 [#]	1831.65 1006.83 0.0		D(+Q)	+0.17 30	I_{γ} ,Mult., δ : from (t,p γ).
2681.8	(4 ⁺)	359 [#] <i>13</i>	31 # 9	2325.9	2+			
		850.1 <i>10</i>	39 9	1831.65	2+			E_{γ} : from (11 B,2np γ) (1977Na12). I_{γ} : from (t,p γ).
		1680 [#] 15	100# 12	1006.83				
2687.91	(4^{+})	409.4 [‡] 1	100‡	2278.49	` ′	D		
2822.93	(4^{+})	746.1 [‡] <i>1</i>	100‡	2076.81		D		
3116.7		1039.9 [‡] 5	100‡	2076.81				
3164	$(2^+,3,4^+)$	479 [#] 14	33 <mark>#</mark> 24	2681.8	(4^{+})			
		835#& 15	≤33 [#]	2325.9	2+			
		1330 [#] & 10	≤33 [#]	1831.65				
		2158# 6	100# 13	1006.83	2+	D+Q,Q		Mult.: from $\gamma(\theta)$ in $(t,p\gamma)$. $\delta(Q/D) = +1.0 \ 11$ for $J(3166) = 2$, $\delta = +2.1$ $I6$ for $J(3166) = 3$. $\delta(O/Q) = +0.18 \ I8$ for $J(3166) = 4$ in $(t,p\gamma)$.
3251.84	6+	1175.1 <i>1</i>	100	2076.81	4+	E2		B(E2)(W.u.)<28

γ (56Cr) (continued)

E_i (level)	\mathtt{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${ m I}_{\gamma}$	E_f	${\rm J}_f^\pi$	Mult.@	δ	Comments
					,			Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(^{11}\text{B},2\text{np}\gamma)$.
3528.51	(5^+)	704.0 [‡] 10	100 [‡] 7	2822.93	(4^{+})	D		(-,
	. ,	839.0 [‡] <i>10</i>	56 [‡] 4	2687.91		D		
		1248.4 [‡] <i>10</i>	44 [‡] 5	2278.49	(3^{+})			
3841.15	6 ⁽⁺⁾	589.2 <i>I</i>	100 4	3251.84	6 ⁺	D+Q	≈+1.2	E_{γ} , I_{γ} ,Mult., δ : from (48 Ca, X_{γ}). Other E_{γ} =587.6 δ in (11 B,2np γ).
		1763.8 [‡] 4	78 [‡] 4	2076.81	4 ⁺	Q		
4157.56	$(5,6,7^+)$	629.0 [‡] 1	4.0 [‡] 11	3528.51	(5^+)			
		905.7 [‡] 1	100 [‡] 5	3251.84				10
4447.79	(7-)	606.5 1	37 5	3841.15				E _γ : from (48 Ca,Xγ). Ordering of the $588\gamma - 609\gamma$ cascade in (11 B,2npγ) (2003 Ap01) reversed in (48 Ca,Xγ) (2006 Zh42). Eγ= 608.8 6 in (11 B,2npγ). I _γ : unweighted average of 32.4 II in (48 Ca,Xγ) and 41.5 I5 in (11 B,2npγ).
		1196.3 2	100 3	3251.84	6+	D		I_{γ} : from (⁴⁸ Ca,X γ).
4732.53	$(6^+,7^+)$	574.9 [‡] <i>1</i>	100‡ 5		$(5,6,7^+)$			
4==0.0=	0.4	1205.5‡& 10	21.2 [‡] 27	3528.51				
4750.95	8+	1499.2 <i>I</i>	100	3251.84		Q		
5268.4	(8+)	534.9 [‡] <i>4</i> 1426.9 [‡] <i>6</i>	62 [‡] 5 100 [‡] 11		$(6^+,7^+)$			
7601 44	(0-)	1426.9* 6 332.7 [‡] 2	2.80 [‡] 24	3841.15		Б		
5601.44	(9 ⁻)	332.7* 2 850.6 <i>1</i>	2.80° 24 36 6	5268.4 4750.95		D D		E _{γ} : from (⁴⁸ Ca,X γ). Other: E γ =848.6 δ in (¹¹ B,2np γ). I _{γ} : unweighted average of 29.6 12 in (⁴⁸ Ca,X γ) and 41.7 15 in (¹¹ B,2np γ).
		1153.6 <i>I</i>	100 3	4447.79	(7-)	E2		I _γ : from $(^{48}\text{Ca}, \text{X}\gamma)$. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(^{11}\text{B}, 2\text{np}\gamma)$.
6295.3	$(8^+, 9, 10^+)$	1544.3 [‡] 10	100‡	4750.95	8+			
6518.3	10+	222.9‡ 10	6.0 [‡] 12	6295.3	$(8^+, 9, 10^+)$			
		1767.3 [‡] 2	100 [‡] 8	4750.95		Q		
6872.89		2121.9 [‡] <i>I</i>	100‡	4750.95				
6879.0	(9,10,11 ⁻)	1277.5 2	100	5601.44				E_{γ} : from (⁴⁸ Ca,X γ). Other: 1282.8 10 in (¹¹ B,2np γ).
7057.16	(11^{-})	1455.7 <i>1</i>	100	5601.44	(9-)	Q		
7691.9?		812.9 [‡] & <i>1</i>	100‡	6879.0	$(9,10,11^{-})$			
8465.5	12+	1947.2 16	100	6518.3	10+	_		
8768.0	(13^{-})	1710.8 2	100	7057.16		Q		Mult.: from $\gamma(\theta)$ in (¹¹ B,2np γ).
10849.9	(15 ⁻)	2081.9‡ 3	100‡	8768.0	(13 ⁻)			
13159.4	(17 ⁻)	2309.4 [‡] <i>10</i>	100 [‡]	10849.9	(15^{-})			

γ (56Cr) (continued)

† From weighted averages of available data in β^- decay, 48 Ca(11 B,2np γ), (t,p γ) and 238 U(48 Ca,X γ), except as noted. † γ from 238 U(48 Ca,X γ) only. # γ from (t,p γ) only. @ From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO) in (48 Ca,X γ), unless specified otherwise. & Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{56}_{24}\mathrm{Cr}_{32}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

$$^{56}_{24}\mathrm{Cr}_{32}$$