Image Processing for Retinal Blood Vessel Segmentation

Karianne Bergen[†], Jean-Baptiste Boin*, Sahinaz Sanjani*

*Department of Electrical Engineering, †Institute for Computational and Mathematical Engineering, Stanford University

Motivation: Diabetic retinopathy is the leading cause of blindness among adults in US, preventable by retinal screening. Retinal blood vessel segmentation is an essential step for the diagnosis of diabetic retinopathy.

Matched Filtering

Gaussian shaped matched filters in 12 directions

Line Detection

Line detection in 18 directions and at 7 scales

Neural Network

Classification with 7 features: gray-levels and invariant moments

Scale-space

Scale-dependent representation for detector based on gradient & hessian

Morphological

Top-hat operation to keep only the prominent features

Results

MF: Matched Filtering

LD: Line Detection

NN: Neural Network

SS: Scale-space

M: Morphological

H1: Hybrid Algorithm

H2: Modified Hybrid Algorithm (fewer false negatives around the

optical disk)

2nd : hand-labeled vessel

segmentation by a second observer