

Lecture 5: DC & Transient Response

Outline

- Pass Transistors
- □ DC Response
- Logic Levels and Noise Margins
- □ Transient Response
- □ RC Delay Models
- Delay Estimation

Transistor Operation

- Current depends on region of transistor behavior
- ☐ For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

nMOS Operation

Cutoff	Linear	Saturated
V _{gsn} <	V _{gsn} >	V _{gsn} >
	V _{dsn} <	V _{dsn} >

pMOS Operation

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
 $V_{tp} < 0$
 $V_{dsp} = V_{out} - V_{DD}$

I-V Characteristics

 \square Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Current vs. Vout, Vin

Load Line Analysis

- \Box For a given V_{in} :
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where |currents| are equal in

Load Line Analysis

DC Transfer Curve

☐ Transcribe points onto V_{in} vs. V_{out} plot

Operating Regions

□ Revisit transistor operating regions

Region	nMOS	pMOS
Α		
В		
С		
D		
E		

Beta Ratio

- □ If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- ☐ Called *skewed* gate
- Other gates: collapse into equivalent inverter

Layout Comparison

■ Which layout is better?

