

Theoretische Informatik D. Flumini, L. Keller, O. Stern

Lösung 5

Kontextfreie Grammatiken

Lösung 1.

- (a) Mögliche Lösung: a, abcccba, aba
- (b) Die Sprache der Panlindrome (über dem gegebenen Alphabet) mit einer ungeraden Anzahl Zeichen.
- (c) $w_0: U \Rightarrow a, w_1: U \Rightarrow WUW \Rightarrow cUW \Rightarrow cUc \Rightarrow cXUXc \Rightarrow cbUXc \Rightarrow cbUbc \Rightarrow cbabc$
- (d) Eindeutig
- (e) $G_{SA}=(\{U\},\{a,b,c\},P,V)$ mit $P=\{U\to a,U\to b,U\to c,U\to aUa,U\to bUb,U\to cUc\}$

.

(f) Nein, es existieren unendlich viele Zustände, denn der Automat muss sich jeweils alles merken, was bereits gekommen ist, damit ein Palindrom erkannt werden kann.

Lösung 2.

(a) $A \Rightarrow A + B \Rightarrow B + B \Rightarrow C + B \Rightarrow (A) + B \Rightarrow (A+B) + B \Rightarrow (B+B) + B \Rightarrow (C+B) + B \Rightarrow (\alpha+B) + B \Rightarrow (\alpha+C) + B \Rightarrow (\alpha+\alpha) + B \Rightarrow (\alpha+\alpha) + C \Rightarrow (\alpha+\alpha) + \alpha.$

(b) $A \Rightarrow B \Rightarrow B \times C \Rightarrow C \times C \Rightarrow \alpha \times C \Rightarrow \alpha \times (A) \Rightarrow \alpha \times (A+B) \Rightarrow \alpha \times (B+B) \Rightarrow \alpha \times (C+B) \Rightarrow \alpha \times (\alpha+C) \Rightarrow \alpha \times (\alpha+\alpha).$

(c) $A \Rightarrow A+B \Rightarrow B+B \Rightarrow C+B \Rightarrow \alpha+B \Rightarrow \alpha+B \times C \Rightarrow \alpha+C \times C \Rightarrow \alpha+\alpha \times C \Rightarrow \alpha+\alpha \times \alpha$.

(d) $A \Rightarrow B \Rightarrow C \Rightarrow (A) \Rightarrow (B) \Rightarrow (C) \Rightarrow (\alpha)$.

Lösung 3.

- (a) $G_0=(\{B,Z\},\{0,1,+,-\},P,B)$, wobe
iPfolgende Produktionen / Regeln enthält:
 $B\to 1Z0\mid 0$ $Z\to \varepsilon\mid Z0\mid Z1$
- (b) $G_1=(\{B,Z\},\{0,1,+,-\},P,B),$ wobe
iPfolgende Produktionen / Regeln enthält:
 $B\to -1Z\mid$ $Z\to \varepsilon\mid Z0\mid Z1$
- (c) $G_2=(\{E,B,Z\},\{0,1,+,-\},P,E)$, wobei P folgende Produktionen / Regeln enthält: $E\to B\mid E+B\mid E-B$ $B\to 1Z$ $Z\to \varepsilon\mid Z0\mid Z1$