Bearing Testing Rig

What Aleks has done

Electrical Plan

- myDAQ acts as central control unit for the circuit
- Motor PSU is controlled via myDAQ to make the Motor variable
- Torque PSU is just on or off
- Everything else will include accelrometers

Software Plan

Use LabVIEW

What's Been Done

- Can variably control the motor myDAQ
- Need the cable for the torque sensor to do the rest of it
- Need to know what "Everything Else" entails
- How do we want the data out?

EM Brake: AHB-5 Air-Cooled Hysteresis Brake

- Using the one recommended by the capstone report: ABH-5
 - USD \$800
 - 10mm diameter air supply needed
 - 24VDC power supply
- Controller: ICS2000
 - USD \$160
 - Variable Current Controller
 - 24VDC power supply needed
 - RS485 communication
- Other
 - \$50 USD per coupling
 - Shipping is \$200 USD, 2 weeks to arrive

AHB-5 Data Sheet

ICS-500 Intelligent Current Supply Product Manaul

ICS 200 Interface

Accelerometers

- Using similar model to what capstone group recommended, exact one is not produced anymore
- Two styles from CTC: Industrial and Scientific
- Capstone recommended an industrial one with 100 mV/g sensitivity
- Probably go with similar one, but need further input into the frequency range we're expecting to measure (kilohertz, usually 1-5kHz, 1 accelerometer for low frequency and 1 for high)

Industrial Options

CTC Types

TEA110

TEST AND MEASUREMENT ACCELEROMETER, SIDE EXIT 10-32 COAXIAL CONNECTOR, 10-32 MOUNTING, 100 MV/G, ±10%

✓ Welded, Hermetic Sealing

Scientific Option

TEB110 TYPICAL FREQUENCY RESPONSE

☑ Welded, Hermetic Sealing

Pricing

	AC230	AC102	TEB110	AC210
Frequency Low (Hz)	0.8	2	0.5	0.6
Frequency High (Hz)	10000	11200	10000	15000
Axis	3	1	1	1
Sensitivity (mV/g)	100	100	100	100
Error	5%	10%	10%	5%
Price (Low)	\$ 1,276.22	\$113.10	\$ 262.35	\$229.70
Price (High)	\$ 1,496.22	\$ 288.00	\$ 262.35	\$ 257.96
Total Price (Low)	\$ 1,276.22	\$339.30	\$ 787.05	\$689.10
Total Price (High)	\$ 1,496.22	\$864.00	\$ 787.05	\$ 773.88

- Recommend AC210
 - Very high frequency range
 - Good sensitivity
 - Low error margin
 - Good price

DAQ Amp

- Goal is to linearly increase the DAQ to give it a full voltage range
- Non ideal voltage is not a problem because it's a feedback loop
- Highest price part of the system is getting a 45v output from the wall, could use a spare power supply if we have one
 - \$183.34 total with new power supply
 - \$39.84 without

$$V_{out} = V_{in} * \left(\frac{R_{control}}{R_{pulldown}}\right)$$

V_in	V_ideal	V_real
0	0	7.406
0.5	2.25	7.406
1	4.5	7.406
1.5	6.75	7.41
2	9	9.004
2.5	11.25	11.254
3	13.5	13.504
3.5	15.75	15.754
4	18	18.004
4.5	20.25	20.254
5	22.5	22.504
5.5	24.75	24.754
6	27	27.004
6.5	29.25	29.254
7	31.5	31.504
7.5	33.75	33.754
8	36	36.004
8.5	38.25	38.254
9	40.5	40.504
9.5	42.75	42.754
10	45	44.221

ltem	¥	Price 🔻	Amount	۳	Tot	tal 🔻
LCE80PS42		\$71.75		2	\$1	L43.50
SOLDERBREADO)2	\$ 6.22		2	\$	12.44
PA0006-ND		\$ 5.66		2	\$	11.32
RSF100JB-73-2k	(\$ 0.44		2	\$	0.88
ALSR1j-7.0k-ND)	\$ 3.11		2	\$	6.22
MAX4080FASA-	+T	\$4.49		2	\$	8.98
			Total		\$1	L83.34

The Load

From Iurii Storozhenko:

Two types of loads: Electromagnetic particle break and Generator.

EMP break

- Simplest: Easy to use, and easy to control
- Usually used in test rigs
- Torque can be controlled very accurately
- Ideal for tension control, load simulation, cycling/indexing, and soft starts and stops
- If goal is to use vibration from the drivetrain and not current signals from the generator, this is ideal

Generator

- Main limitation is the control system
- Not sure of range where we can control the load with permanent magnet generator
- Control system of a doubly-fed induction generator is one of the most complicated
- Speed range in a wind turbine in which the generator can be operated is about +-30% of the generator's nominal speed.
- Also need to make the gearbox gear ratio appropriate to the generator

TL;DR: EMP Break is easy to use and is used in a lot of test rigs. Generator is confusing and I don't see any pros to it*

*this is very outside of my area of expertise, so I may be missing the reason we're thinking of a generator at all

Finding A Generator

Generator Specs:

- p = Rated Power in Watts
- z = Generator Efficiency in Percent

Variables:

- T = Torque in (hopefully) Newton Meters
- p' = Rater Power in Kg-m/s
- y = Shaft rotations per second

Need help finding y, T, and z.

$$T = \frac{p' \frac{Kg \, m}{sec}}{2 \, \pi * y \frac{rotations}{sec}} * z\%$$

$$p' \frac{Kg \, m}{sec} = \frac{T * 2 \, \pi * y \frac{rotations}{sec}}{z\%}$$

Use power in watts to find generator

Accelerometer

https://ctconline.com/products/ctc-line/industrial-accelerometers/100-mv-g-standard-size/?prd=AC210

Can choose different cable attachments:

- No cable
- Integral Cable
- Armored Integral Cable
- Heavy Duty Armored Integral Cable

Pricing and Lead Time

Category	ltem ▼	Column	Cost	(USD) -	Cos	t (CAD)	Lead Time
Accelerometer	Accelerometer	AC210-2D	\$	388.37	\$	501.00	5 weeks
Accelerometer	Accelerometer	AC210-2D	\$	388.37	\$	501.00	6 weeks
Accelerometer	Shipping		\$	73.64	\$	95.00	7 weeks
EM Brake	EM Brake	AHB-5	\$	800.00	\$	1,032.00	2 weeks
EM Brake	EM Brake Controller	ICS2000	\$	160.00	\$	206.40	2 weeks
EM Brake	EM Brake Coupling		\$	50.00	\$	64.50	2 weeks
EM Brake	Shipping		\$	200.00	\$	258.00	2 weeks
EM Brake	Air Supply	???		???		???	???
DAQ Amp	Components		\$	142.12	\$	183.34	1 week

- Goal is to linearly increase the DAQ to give it a full voltage range.
- Non ideal voltage is not a problem because it's a feedback loop
- Highest price part of the system is getting a 45v output from the wall, could use a spare power supply if we have one
- . \$183.34 total with new power supply
- \$39.84 withou

$$V_{out} = V_{in} * \left(\frac{R_{control}}{R_{pulldown}}\right)$$

Refer back to week 3 slide

Mfr Part #		Quantity Av	ailable ②	Price		
^	·	^	~	^	~	
	AD22035Z ACCELEROMETER 18G ANALOG 8CLCC Analog Devices Inc.		100 In Stock	1:\$	45.66000 Tube	
>	805-0050 ACCELEROMETER 50G IEPE TO5-3 TE Connectivity Measurement Specialties		21 In Stock	1:\$1	98.67000 Bulk	
	805M1-0020 ACCELEROMETER 20G ANALOG T05-3 TE Connectivity Measurement Specialties		304 In Stock	1:\$1	98.67000 Bulk	
P (805M1-0020-01 ACCELEROMETER 20G ANALOG T05-3 TE Connectivity Measurement Specialties		51 In Stock	1:\$2	05.68000 Bulk	
	805-0050-01 ACCELEROMETER 50G IEPE TO5-3 TE Connectivity Measurement Specialties		20 In Stock	1:\$2	15.65000 Bulk	
	310A-80 GENERAL INDUSTRIAL VIBRATION SEN Senther Technology		49 In Stock	1: \$2	76.16000 Bulk	

Not needed dependent on experiment run time and applied load; need to know what the actual numbers are

Pricing and Lead Time

Category	Item 🔻	Column *	Cost	(USD) 🕶	Cos	st (CAD) 🕶	Lead Time
Accelerometer	Accelerometer	AC210-2D	\$	388.37	\$	501.00	5 weeks
Accelerometer	Accelerometer	AC210-2D	\$	388.37	\$	501.00	6 weeks
Accelerometer	Shipping		\$	73.64	\$	95.00	7 weeks
EM Brake	EM Brake	AHB-5	\$	800.00	\$	1,032.00	2 weeks
EM Brake	EM Brake Controller	ICS2000	\$	160.00	\$	206.40	2 weeks
EM Brake	EM Brake Coupling		\$	50.00	\$	64.50	2 weeks
EM Brake	Shipping		\$	200.00	\$	258.00	2 weeks
EM Brake	Air Supply	???		???		???	???
DAQ Amp	Components		\$	142.12	\$	183.34	1 week

DAQ Amp

- Goal is to linearly increase the DAQ to give it a full voltage range.
- Non ideal voltage is not a problem because it's a feedback loop
- Highest price part of the system is getting a 45v output from the wall, could use a spare power supply if we have one
- . \$183.34 total with new power supply
- \$39.84 withou

$$V_{out} = V_{in} * \left(\frac{R_{control}}{R_{pulldown}}\right)$$

Refer back to week 3 slide

Mfr Part #		Quantity Av	ailable ⑦	Price	
^	~	^	~	^	~
	AD22035Z ACCELEROMETER 18G ANALOG 8CLCC Analog Devices Inc.		100 In Stock	1:\$	45.66000 Tube
	805-0050 ACCELEROMETER 50G IEPE T05-3 TE Connectivity Measurement Specialties		21 In Stock	1 : \$1	98.67000 Bulk
P Ø	805M1-0020 ACCELEROMETER 20G ANALOG T05-3 TE Connectivity Measurement Specialties		304 In Stock	1 : \$1	98.67000 Bulk
P (805M1-0020-01 ACCELEROMETER 20G ANALOG T05-3 TE Connectivity Measurement Specialties		51 In Stock	1 : \$2	05.68000 Bulk
P	805-0050-01 ACCELEROMETER 50G IEPE T05-3 TE Connectivity Measurement Specialties		20 In Stock	1:\$2	15.65000 Bulk
	310A-80 GENERAL INDUSTRIAL VIBRATION SEN Senther Technology		49 In Stock	1:\$2	76.16000 Bulk

Not needed dependent on experiment run time and applied load; need to know what the actual numbers are

Voltage Divider

- Goal is to make the 42V line power the 24V items without needing another power supply
- Accomplished with a simple voltage divider
- Want to make it low power (low amperage)

$$V_{out} = V_{s}\left(\frac{R_{2}}{R_{1} + R_{2}}\right) \rightarrow R_{1} = \frac{V_{s} * R_{2}}{V_{out}} - R_{2}$$
 Rearrange voltage divider equation

$$R_1 = \frac{V_S * R_2}{V_{out}} - R_2 = \frac{42 \ V * 10,000 \ \Omega}{24 \ V} - 10,000 \ \Omega$$
 = 7,500 \ \ \ Resistors Needed

$$i = \frac{V}{R} = \frac{42 V}{7.500 \Omega + 10.000 \Omega} = 0.0024 A$$
 Amperage Used By Resistors

$$P = V * i = 42 V * 0.0024 A = 0.1 W$$

Power Used By Resistors

Full Circuit

Notes:

- All wiring will be done on a protoboard
- Accelerometers will be on a separate circuit (with a separate DAQ) due to restrictions of myDAQ
- Should see no issues going forward

Air Brake Consumption

Air Consumption = $425 \frac{L}{min}$ @ $620 kpa = 112.3 \frac{gal}{min}$ @ 90 psi

Assuming pipe is laminar, can use the Poiseuille Equation to calculate the flow rate:

$$Q = \frac{\pi D^4 \Delta P}{128\mu \Delta x}, Q' = Q * c, \therefore Q' = \frac{\pi D^4 \Delta P}{128\mu \Delta x} * c$$

Known Variables:

$$\Delta P = pressure = 90 \ psi = 620,528.4 \ Pa$$

$$\mu = viscosity = 18.6 \ \mu Pa * s = 0.0000186 \ Pa * s$$

$$c = Conversion \ Rate = 15.8503 \frac{gal}{min}$$

Assumed Variables

$$D = Pipe\ Diameter = 0.004\ m$$

Unknown Variables

$$\Delta x = Pipe \ Length = m$$

$$Q = Flow \ Rate = \frac{l}{s}$$

$$gal$$

$$Q' = \frac{\pi D^4 \Delta P}{128\mu\Delta x} * c = \frac{\pi (0.004 \, m)^4 * 620528.4 \, Pa}{128 * (0.0000186 \, Pa * s) * \Delta x} * 15.8503 \frac{gal}{min}$$

$$\Delta x = \frac{\pi D^4 \Delta P}{128\mu Q'} * c = \frac{\pi (0.004 \, m)^4 * 620528.4 \, Pa}{128 * (0.0000186 \, Pa * s) * 112.3 \frac{gal}{min}} * 15.8503 \frac{gal}{min}$$

$$\Delta x = 0.03 \, m$$

Cable Building

- I don't know who made the diagram, but it's not accurate
- Gave me a headache for a few minutes trying to figure it out
- Soldering was a pain

Wiring

Air Supply

What air brake manufacturer said:

- Air Consumption is "112.3 $\frac{gal}{min}$ @ 90 psi"
- "May use it without the compressed air supply under 1000W for 5 mins or 200W continuously"

The air supply recommended is no where near this

Idea: Use building air supply at 90psi and monitor temperature on set up

Problem: No idea how long we want to run this, and I'm also having trouble with the math due to my lack of mechanical / chemical background

model: MC2-30

working voltage: 220V/50Hz

Exhaust pressure: 0.8Mpa

motorspeed: 2850r/mim

Motorpower: 1390w

Discharge volume: 0.17m³/min

Gas storage tank: 30L

Product weight: 23.56kg

Product size: 55.5*24*54.5cm

purpose: Blowing dust and gas, going out for a short time to spray paint, nailing gun work

Flow Rate:
$$0.17 \frac{m^3}{min} = 0.748 \frac{gal}{min} \neq 112.3 \frac{gal}{min}$$

How long it can be used: $0.03 \ m^3 * \frac{1 \ min}{0.17 \ m^3} = 0.17 \ min = 11.6 sec$

Draft One of the Software is Done

Draft One of The Electrical Is Done

- Theory behind it works
- Need to order a different OpAmp
- Need to clean up and make safer
- THE MOTOR ACTUALLY GOES

Powering The Brake

Voltage Divider

- Goal is to make the 42V line power the 24V items without needing another power supply
- · Accomplished with a simple voltage divider
- · Want to make it low power (low amperage)

$$\begin{split} V_{out} &= V_s \left(\frac{R_2}{R_1 + R_2}\right) \to R_1 = \frac{V_s * R_2}{V_{out}} - R_2 \quad \text{Rearrange voltage} \\ R_1 &= \frac{V_s * R_2}{V_{out}} - R_2 = \frac{42 \ V \ * 10,000 \ \Omega}{24 \ V} - 10,000 \ \Omega = 7,500 \ \Omega \quad \text{Calculate the Two} \\ i &= \frac{V}{R} = \frac{42 \ V}{7,500 \ \Omega + 10,000 \ \Omega} = 0.0024 \ A \quad \text{Amperage Used By Resistors} \\ P &= V * i = 42 \ V \ * 0.0024 \ A = 0.1 \ W \quad \text{Power Used By Resistors} \end{split}$$

- Update on Brake Voltage
 Divider: Can't actually just use
 voltage divider,
- Need to use actual voltage regulator for 24v stuff; don't need to get right now because we have a spare PSU

Electrical Wiring Box

- Going to make a single box that everything connects into
- For cleanliness and safety
- Using BNC connectors when possible
- D-plug or serial cable Unsure what type of connector to use when more than 2 wires (such as between Torque Sensor and DAQ)

What I Need Ordered

- Striveday 18AWG 1007 Coper Hook Up Wire Electric Wire 18 Gauge 300V Stranded Wire Cable DIY Kit Box-1, Electrical Wire Amazon Canada
- MAX4080SAUA+ Analog Devices Inc./Maxim Integrated | Integrated Circuits (ICs) | DigiKey

Item	Cost/Unit		Quantity		Co	st
MAX4080SAUA+	\$	5.49		2	\$	10.98
Wire 18 Gauge	\$	22.99		1	\$	22.99
			TOTAL		\$	33.97

What's Next

- Order parts
- Figure out connections needed for a wire box
- Order all parts for wire box
- Make wire box
- 3D Print Casing for converter, solder board, and wire box
- Resolder torque sensor wire and opamp boards to be nicer
- Assemble
- More software things

Plug Layout

- 2x Serial
- 2x Cable to Female
- 2x Male to Breakout
- 3x BNC
- 3x Female BNC to Wire
- 3x Male BNC to Wire
- 1x Banana
- Already have them

Resoldering Cable To Be Longer And Serial

Function	Pin	Description	Net	Color	DB-9 Pin
Power Supply	F	+U_B, 1826 VDC	None	Red	6
Power Supply	Е	Reference for U_B	GND	White	1
Shield	М	Connected to case	GND	White	2
Torque output	С	U_A, +/- 10VDC	None	Yellow	7
Torque output	D	Reference for U_A	GND	White	3
Speed Sensor	В	Track A	None	Blue	8
Innut	K	Control, 02 VDC OFF or 530 ON	None	Green	9
Input	Α	Reference for Control	GND	White	4

DAQ Is Also Going To Be Serial

DB-9 Pin
1
3
5
6
7
8
9

