

Azure Sphere

Episode 5 : Azure RTOS 실시간 센서 앱 배포 실내환경 모니터링

윤기석 마이크로소<u>프트</u>

이제까지 한 것

새로운 요구사항

1. 기존보다 랩 온도, 습도, 대기압이 굉장히 안정적이어야 함

2. 추가로 필요한 센서가 타이밍이 아주 중요함

3. 실시간 코어에 연동해서 운영해야 함

Building Blocks of Azure RTOS

Seamless Turnkey Solution for Constraint Devices

ThreadX

a high-performance real-time operating system kernel

USBX

USB stack that provides host, device, and OTG support

FileX

High performance embedded FAT file system (fault tolerance and flash memory wear leveling support)

NetX Duo

TCP/IP IPV4/IPv6 embedded network stack that supports IPSec, TLS / DTLS security protocols

TraceX

Graphical view of real-time events tracing to analyze, deb ug and tune system-level behavior

GUIX

2D graphical user interfaces

앞으로 할 것

코어 간 통신 (inter-core communication)

- 보안 상 이유로 실시간 코어 앱은 네트워크 리소스에 접근 할 수 없음
 - → 코어 간 통신을 활용하여 상위 레벨 앱에서 클라우드로 데이터를 보냄
 - → 커맨드 / 데이터 타입 / 형태 사전 정의 필요
- 코어 간 통신 선언 구조체 (intercore_contract.h)

```
typedef enum
{
   LP_IC_UNKNOWN,
   LP_IC_HEARTBEAT,
   LP_IC_ENVIRONMENT_SENSOR,
} LP_INTER_CORE_CMD;

typedef struct
{
   LP_INTER_CORE_CMD cmd;
   float temperature;
   float pressure;
   float humidity;
} LP_INTER_CORE_BLOCK;
```

실시간 코어 보안 및 통신

- 실시간 앱의 app_manifest.json 에 주변 장치 및 **다른 코어 앱**의 연결 권한 추가
 - → 상위 레벨 앱의 componentID 를 추가

```
{
    ...
"AllowedApplicationConnections": [ "25025d2c-66da-4448-bae1-ac26fcdd3627" ]
    ...
}
```

• 상위 레벨 앱의 app_manifest.json 에서 componentID 확인

```
"SchemaVersion": 1,
"Name": "AzureSphereIoTCentral",
"ComponentId": "25025d2c-66da-4448-bae1-ac26fcdd3627",
...
}
```

직접 해보기 – RT_app 배포 (Cortex-M4)

• 관리자 모드로 Azure Sphere CLI 실행 후 실시간 앱 디버그 모드 설정

• 돌고 있는 앱 지우고 보드 재시작하기

직접 해보기 – RT_app 배포 (Cortex-M4)

- Lab_6_AzureRTOS_Environment 폴더 열기
- demo_azure_rtos.c 의 intercore_thread(ULONG) 에 breakpoint 설정하고 F5 눌러서 실행

```
C demo_azure_rtos.c > ☆ intercore_thread(ULONG)
demo threadx >
241
               if ((status != TX_SUCCESS) || (actual_flags != 0x1)) { break; }
242
243
244
               dataSize = sizeof(buf);
               int r = DequeueData(outbound, inbound, sharedBufSize, buf, &dataSize);
245
246
               if (r == 0 && dataSize > payloadStart)
247
248
                   memcpy((void*)&ic_control_block, (void*)&buf[payloadStart], sizeof(ic_control_block));
249
250
                   switch (ic_control_block.cmd)
251
253
                   case LP IC HEARTBEAT:
254
                       break;
255
                   case LP_IC_ENVIRONMENT_SENSOR:
256
                       send_intercore_msg();
257
                   default:
258
                       break;
```

직접 해보기 – RT_app 배포 (Cortex-M4)

- Lab_6_AzureRTOS_Environment 폴더 열기
- demo_azure_rtos.c 의 intercore_thread(ULONG) 에 breakpoint 설정하고 F5 눌러서 실행

```
C demo_azure_rtos.c > ☆ intercore_thread(ULONG)
demo threadx >
241
242
               if ((status != TX_SUCCESS) || (actual_flags != 0x1)) { break; }
243
244
               dataSize = sizeof(buf);
               int r = DequeueData(outbound, inbound, sharedBufSize, buf, &dataSize);
245
246
               if (r == 0 && dataSize > payloadStart)
247
248
                   memcpy((void*)&ic_control_block, (void*)&buf[payloadStart], sizeof(ic_control_block));
249
250
                   switch (ic_control_block.cmd)
251
253
                   case LP IC HEARTBEAT:
254
                       break;
255
                   case LP_IC_ENVIRONMENT_SENSOR:
256
                       send_intercore_msg();
                   default:
257
258
                       break;
```

• 상위레벨 앱에서 센서 데이터 요청오면 breakpoint 에 멈춤

센서 값 읽는 것 확인

```
■ Welcome to Azure Sphere
                                                                     c imu temp pressure.c ×
                                       IMU_lib > C imu_temp_pressure.c > 分 lp_get_temperature_lps22h(void)

∨ VARIABLES

                                       336
Locals
                                                      return NAN;
                                       337
  > lps22hhReg: {...}
                                       338
    i16bit: 3134
                                       339
    lps22hhTemperature degC: 31.34...
                                       340
                                                  if (lps22hhDetected)
                                       341
                                       342
                                                      i16bit = 0;
                                       343
                                                      lps22hh_read_reg(&pressure_ctx, LPS22HH_STATUS, (uint8_t*)&lps22hhReg, 1);
                                       344
                                       345
                                                      //Read output only if new value is available
                                       346

∨ WATCH

                                       347
                                                      if ((lps22hhReg.status.p_da == 1) && (lps22hhReg.status.t_da == 1))
                                       348
                                       349
                                                          lps22hh_temperature_raw_get(&pressure_ctx, &i16bit);
                                       350
                                                          lps22hhTemperature_degC = lps22hh_from_lsb_to_celsius(i16bit);
                                       351
                                       352
                                     D 353
                                                      return lps22hhTemperature_degC;

✓ CALL STACK

                                       354
                        PAUSED ON STEP
                                       355
                                                  return NAN;
   lp_get_temperature_lps22h() i..
                                       356
   read_sensor_thread(ULONG thread i
                                       357
```

다음 에피소드

• EP1

- Azure Sphere 아키텍처 / 개발환경
- 가상의 보안 IoT 프로젝트 정의

• EP2

- 하드웨어 및 이벤트 기반 프로그래밍 이해
- Azure Sphere 설정 방법

• EP3

- Azure IoT Central 에 실내 환경 센서를 연결
- Azure Sphere 를 보호하는 방법
- Azure Sphere 에 HL App(고급 애플리케이션) 배포

• EP4

- Azure IoT 디바이스 쌍으로 실내 온도 설정
- Azure IoT 직접 메서드로 Azure Sphere 원격 제어

• EP5

• Azure RTOS 실시간 센서 앱 배포 / 실내 환경 모니터링

EP6

 Azure RTOS 실시간 실내 환경 센서 데이터를 IoT Central 에 전송

• EP7

• 간단하게 OTA 업데이트 사용하기