Interim 2 Submission Report: Model Building and Training

Overview

This report outlines the model building and training process aimed at enhancing fraud detection

for e-commerce and banking transactions. As a Data Scientist at Adey Innovations Inc., the

goal is to develop robust machine learning models that improve transaction security by

detecting fraudulent activities in real-time. Our approach involves comprehensive data

preparation, model selection, training, and evaluation to optimize detection accuracy and

enable proactive fraud prevention.

Business Concept

Adey Innovations Inc. is focused on developing advanced fraud detection systems to:

• Reduce financial losses due to fraudulent transactions.

• **Strengthen customer trust** by ensuring secure transaction processes.

• Enable real-time detection and response to suspicious activities.

To achieve these goals, this project follows a systematic process involving data analysis,

feature engineering, model training, and MLOps deployment strategies to support ongoing

model improvement.

Data Preparation

Feature and Target Separation

For the two datasets provided, we separated the feature variables from the target labels as

follows:

Merged.csv(Merge Fraud_Data.csv with IpAddress_to_Country.csv)

o Features: user_id, signup_time, purchase_time, purchase_value, device_id,

source, browser, sex, age, ip_address

o Target Variable: class

• Creditcard.csv:

Features: Time, V1 to V28, Amount

o Target Variable: Class

Train-Test Split

Using the train_test_split function from sklearn.model_selection, we split both datasets into training and testing sets to validate the models on unseen data.

python

Copy code

Train-test split for Fraud Data

X_fraud, y_fraud = fraud_data.drop('class', axis=1), fraud_data['class']

X_train_fraud, X_test_fraud, y_train_fraud, y_test_fraud = train_test_split(X_fraud, y_fraud, test_size=0.2, random_state=42)

Train-test split for Credit Card Data

X_creditcard, y_creditcard = creditcard_data.drop('Class', axis=1), creditcard_data['Class']

X_train_creditcard, X_test_creditcard, y_train_creditcard, y_test_creditcard = train_test_split(X_creditcard, y_creditcard, test_size=0.2, random_state=42)

Model Selection

To identify the best-performing model, I evaluated a range of algorithms:

- Logistic Regression
- Decision Tree
- Random Forest
- Gradient Boosting
- Multi-Layer Perceptron (MLP)
- Recurrent Neural Network (RNN)
- Long Short-Term Memory (LSTM)

Model Training and Evaluation

Training Models

Each model was trained on both datasets, and the results were summarized in terms of accuracy, precision, recall, F1-Score, and AUC (Area Under the Curve).

Model	Dataset	Accuracy	Precision	Recall	F1- Score	AUC	Train Accuracy	Val Accuracy
Logistic Regression	Fraud Data	1.00	1.00	0.78	0.85	0.939	N/A	N/A
Decision Tree	Fraud Data	1.00	1.00	1.00	1.00	0.855	N/A	N/A
Random Forest	Fraud Data	1.00	1.00	0.73	0.83	0.931	N/A	N/A
Gradient Boosting	Fraud Data	1.00	1.00	0.63	0.74	0.766	N/A	N/A
Multi-Layer Perceptron (MLP)	Fraud Data	1.00	1.00	0.78	0.85	0.939	N/A	N/A
LSTM	Fraud Data	0.9063	N/A	N/A	N/A	N/A	0.9447	0.9424
Logistic Regression	Credit Card Data	1.00	1.00	0.89	0.94	0.980	N/A	N/A
Decision Tree	Credit Card Data	1.00	1.00	0.93	0.96	0.962	N/A	N/A
Random Forest	Credit Card Data	1.00	1.00	0.91	0.95	0.981	N/A	N/A
Gradient Boosting	Credit Card Data	1.00	1.00	0.86	0.93	0.948	N/A	N/A
Multi-Layer Perceptron (MLP)	Credit Card Data	1.00	1.00	0.87	0.93	0.982	N/A	N/A

Model	Dataset	Accuracy	Precision	Recall	F1- Score	AUC	Train Accuracy	Val Accuracy
LSTM	Credit Card Data	0.9424	N/A	N/A	N/A	N/A	0.9447	0.9424
RNN	Credit Card Data	0.9530	N/A	N/A	N/A	N/A	0.9426	0.9530
CNN	Credit Card Data	0.9057	N/A	N/A	N/A	N/A	0.9065	0.9057

Insights:

• Best Models:

- For Fraud Data, Logistic Regression, Decision Tree, and Random Forest all performed with 100% accuracy and high metric scores, while LSTM showed lower performance (0.9063).
- For Credit Card Data, Random Forest and MLP achieved high accuracy (1.00)
 with AUC scores exceeding 0.980.

MLOps Steps

To ensure effective model lifecycle management, versioning and experiment tracking were applied

• **Versioning and Experiment Tracking** (10/26/2024): Used MLflow to log parameters, metrics, and model versions. This approach facilitates reproducibility and accountability in our model development pipeline.

• Logistic Regression Fraud Data MLOps screenshot

• Decision Tree Fraud Data MLOps screenshot

• Random Forest Fraud Data MLOps screenshot

• Gradient Fraud Data MLOps screenshot

• Multi-Layer Perceptron (MLP) Fraud Data MLOps screenshot

Logistic Regression Credit Card Data Data MLOps screenshot

• Decision Tree Credit Card Data Data MLOps screenshot

• Logistic Regression Credit Card Data Data MLOps screenshot

• Gradient Credit Card Data Data MLOps screenshot

• Multi-Layer Perceptron (MLP) Credit Card Data Data MLOps screenshot

• Convolutional Neural Network (CNN) Credit Card Data Data MLOps screenshot

• Recurrent Neural Network (RNN) Credit Card Data Data MLOps screenshot

• Long Short-Term Memory (LSTM) Credit Card Data Data MLOps screenshot

Project Impact

The model building and training process have positioned Adey Innovations Inc. to proactively secure transactions and foster customer trust by implementing reliable, real-time fraud detection solutions.

GitHub Link: https://github.com/HaYyu-

Ra/ecommerce fraud detection analysis/blob/master/notebooks/model biulding.ipynb

Conclusion:

The Random Forest model demonstrated consistent accuracy and robustness across both datasets, making it a suitable choice for deployment. Future steps include optimizing model parameters, managing any convergence warnings, and fine-tuning to improve overall performance.