Round 4: Algebra 2 – Logs, Exponents, Radicals and equations involving them

1. Given $(\log_x 5)(\log_5 64) = 1.5$, find all real solutions for x.

Solution: From the third exercise at the bottom of the Logarithms handout, the left hand side of the equation simplifies to $\log_x 64 = 1.5$. Rewriting this in exponential notation,

$$x^{1.5} = 64.$$

Thus, x = 16. This is not negative, so it is valid in the original equation.

2. Given $2\sqrt[4]{x^3} - 3\sqrt{x} = 4\sqrt[4]{x} - 6$, find all real solutions for x.

Solution: The first thing to realize when solving this problem is that we actually want to solve for $\sqrt[4]{x}$, since all variable terms in the equation are powers of this (note that $\sqrt{x} = \sqrt[4]{x^2}$. Substituting $y = \sqrt[4]{x}$,

$$2y^{3} - 3y^{2} = 4y - 6 \Rightarrow 2y^{3} - 3y^{2} - 4y + 6 = 0$$
$$\Rightarrow y^{2}(2y - 3) - 2(2y - 3) = 0$$
$$\Rightarrow (y^{2} - 2)(2y - 3) = 0.$$

From this factorization, $2y - 3 = 0 \Rightarrow y = 3/2$ or $y^2 - 2 = 0 \Rightarrow y = \pm \sqrt{2}$. In our original substitution, we can express x in terms of y as $x = y^4$. Thus, the two solutions for x are x = 81/16 and x = 4. Plugging them into the original equation, they both work.

3. Given $\log_x 3 + \log_9 x = \frac{17}{12}$, find all real solutions for x in simplest radical form.

Solution: We first note that, from the second and third rules on the Logarithms handout (not the exercises), $\log_9 x = \log_3 x^{0.5} = \frac{1}{2} \log_3 x$. Now, we solve for $y = \log_3 x$. From the second exercise on the Logarithms handout, $\log_x 3 = 1/y$, so

$$\frac{1}{y} + \frac{y}{2} = \frac{17}{12} \Longrightarrow 12 + 6y^2 = 17y$$
$$\Longrightarrow (2y - 3)(3y - 4) = 0.$$

This gives us the two cases y = 3/2 and y = 4/3. From the substitution we made, $y = \log_3 x \Rightarrow x = 3^y$. This gives two solutions: $x = 3^{3/2} = 3\sqrt{3}$ and $x = 3^{4/3} = 3\sqrt[3]{3}$. Both of these values are positive, so they are legitimate solutions to the original equation.