

Statistical Methods for Quantitative MS-Based Proteomics:

1. Identification

Lieven Clement

Statistics and Genomics Seminar, UCBerkeley, California

Challenges in Label Free MS-based Quatitative proteomics

Quantification Identification

Challenges in Label Free MS-based Quatitative proteomics

Identification

Score threshold *t*?

Score threshold
$$t$$
?
 $f(x) = \pi_0 f_0(x) + (1 - \pi_0) f_1(x)$

$$FDR(t) = Pr[FP|x \ge t]$$

Score threshold
$$t$$
?
 $f(x) = \pi_0 f_0(x) + (1 - \pi_0) f_1(x)$

$$FDR(t) = Pr[FP|x \ge t]$$

$$\int_{-\infty}^{x=t} f(x) = \pi_0 \int_{-\infty}^{x=t} f_0(x) + (1 - \pi_0) \int_{-\infty}^{x=t} f_1(x)$$

$$F(x) = \pi_0 F_0(t) + (1 - \pi_0) F_1(t)$$

$$\mathsf{FDR}(t) = rac{\pi_0[1-F_0(t)]}{1-F(t)}$$

Link to Benjamini Hochberg FDR

Bayesian FDR

$$FDR(t) = \frac{\pi_0 [1 - F_0(t)]}{1 - F(t)}$$

BH for one sided test

$$FDR(t) = \frac{mp(t)}{\#t_i \ge t}$$

with

- m the number of tests
- p(t) the p-value corresponding to a test statistic with value t

Link to Benjamini Hochberg FDR

Bayesian FDR

$$FDR(t) = \frac{\pi_0 [1 - F_0(t)]}{1 - F(t)}$$

BH for one sided test

$$FDR(t) = \frac{mp(t)}{\#t_i \ge t} = \frac{1 - F_0(t)}{\frac{\#t_i \ge t}{m}} = \frac{1 - F_0(t)}{1 - F(t)}$$

- Use theoretical distribution for $p(t) = 1 F_0(t)$
- Conservative estimate $\pi_0 = 1$
- ECDF: $1 F(t) = \frac{\#t_i \ge t}{m}$

• Benjamini Hochberg 1995:

• Benjamini Hochberg 1995:

• How to define $F_0(t)$ in proteomics?

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice
- Concatenated search

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice
- Concatenated search
- Assumption that bad hits have an equal probability to map on forward (target) and reverse database (decoy)

$$\hat{\pi}_0 = \frac{\# decoys}{\# targets}$$

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice
- Concatenated search
- Assumption that bad hits have an equal probability to map on forward (target) and reverse database (decoy)

$$\hat{\pi}_0 = \frac{\# \textit{decoys}}{\# \textit{targets}}$$

- Score cuttoff?
- Competitive Target decoy:

$$\widehat{\mathsf{FDR}}(x) = \frac{\#decoys|X \ge x}{\#targets|X \ge x}$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#decoys}{\#targets} \frac{\frac{\#decoys}{\#decoys}}{\frac{\#targets}{\#targets}} \frac{X \ge x}{\#targets}$$

$$\widehat{\mathsf{FDR}}(x) = \hat{\pi}_0 \frac{1 - \bar{F}_0(x)}{1 - \bar{F}(x)}$$

- Score cuttoff?
- Competitive Target decoy:

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}|X \ge x}$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#decoys}{\#targets} \frac{\frac{\#decoys}{\#decoys}}{\frac{\#targets}{\#targets}} \frac{X \ge x}{\#targets}$$

$$\widehat{\mathsf{FDR}}(x) = \hat{\pi}_0 \frac{1 - \bar{F}_0(x)}{1 - \bar{F}(x)}$$

- Score cuttoff?
- Competitive Target decoy:

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}|X \ge x}$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#decoys}{\#targets} \frac{\frac{\#decoys}{\#decoys}}{\frac{\#targets}{\#targets}} \frac{X \ge x}{\#targets}$$

$$\widehat{\mathsf{FDR}}(x) = \hat{\pi}_0 \frac{1 - \bar{F}_0(x)}{1 - \bar{F}(x)}$$

We have to evaluate that

- The decoys are good simulations of the targets: compare $\bar{F}_0(x)$ with $\bar{F}(x)$
- $\hat{\pi}_0 = \frac{\#decoys}{\#targets}$ are a good estimator for π_0 .
- We will use Probability-Probability-plots for this purpose.
- They plot the ECDFs from two samples in function of each other.

PP-plots have the property that they show a straight 45 degree line through the origin if and only if both distributions are equivalent.

What about π_0 ?

