Università di Pisa - Corso di Laurea in Informatica

Analisi Matematica

Pisa, 19 dicembre 2018

Domanda 1

la 1
$$\lim_{n\to +\infty} \frac{3^n\,n!}{n^n} =$$
 B) 1 C) $\frac{3}{e}$ D) $+\infty$

D

$$(\frac{3}{e})$$

$$D) + \infty$$

Domanda 2 La successione $a_n = \frac{1}{n^2 + 1} \left(\left(\log \frac{1}{n^2} \right) + \log(n^2 + 1) \right)$, definita per $n \ge 1$,

В

- A) non è limitata inferiormente
- B) ha massimo ma non ha minimo
- C) ha sia massimo che minimo
- D) è debolmente crescente

 $\textbf{Domanda 3} \lim_{n \to +\infty} \frac{e^{1/n^2} - \cos \frac{1}{n}}{\frac{1}{n} \log \left(\frac{n+1}{n} \right) - \left(\sin \frac{2}{n} \right)^2} =$ A) -3 B) $-\frac{1}{2}$ C) $+\infty$ D) 0

B)
$$-\frac{1}{2}$$

$$C) +\infty$$

Domanda 4 La successione $a_n = \frac{n!e^{2n} + \sin(n!)}{n^n + e^n}$

В

- B) è inferiormente ma non superiormente limitata C) è debolmente decrescente
 - D) ha massimo

Domanda 5 $\int_{2}^{\frac{\sqrt{2}}{2}} x \sin(2x) dx =$

Α

A)
$$\frac{9\pi}{4}$$

A)
$$\frac{9\pi}{4}$$
 B) $\frac{89\pi^2}{16}$ C) 7π

Domanda 6 Indicando con [x] la parte intera di x, risulta che $\int x - [x] dx =$ B) 0 C) $\frac{3}{2}$ D) $\frac{9}{4}$

A) 3

C)
$$\frac{3}{2}$$

D)
$$\frac{9}{4}$$

Domanda 7 $\int_{1}^{\frac{\pi}{2}} \frac{dx}{x(\log x)^2} =$

B)
$$1 - \log 2$$

C)
$$\frac{1}{\log 2} - \log 2$$

A)
$$\frac{1}{\log 2} - 1$$
 B) $1 - \log 2$ C) $\frac{1}{\log 2} - \log 2$ D) $1 - \frac{1}{\log 2} - \log(\log 2)$

Domanda 8 Sia y una qualsiasi soluzione dell'equazione differenziale $y' = 6yx^2 + x^2$. Allora $\lim_{x \to -\infty} y(x) = 0$ C) $-\frac{1}{6}$ D) $-\infty$ A) dipende dalla soluzione scelta B) 0

С

В

Domanda 9 Sia y(x) la soluzione del problema di Cauchy $\begin{cases} y' = \frac{2x + \sin x}{y^2} \\ y(0) = 3. \end{cases}$ Allora $y\left(\frac{\pi}{2}\right) = \frac{1}{2}$

A)
$$\sqrt[3]{\frac{3\pi^2}{4}}$$
 B) $\sqrt[3]{\frac{3\pi^2}{4} + 30}$ C) $\sqrt[3]{\frac{\pi^2 + 8}{2}}$ D) $\frac{-4 + 2\pi^2}{\pi^2}$

C)
$$\sqrt[3]{\frac{\pi^2 + 3}{2}}$$

D)
$$\frac{-4 + 2\pi}{\pi^2}$$

Domanda 10 Sia y(x) la soluzione del problema di Cauchy $\begin{cases} y'' - 10y' + 25y = 0 \\ y(0) = -3 \end{cases}$ La funzione y(x)

- B) non è limitata né superiormente né inferiormente A) è limitata
- C) è limitata inferiormente ma non superiormente D) è limitata superiormente ma non inferiormente

D

Università di Pisa - Corso di Laurea in Informatica

Analisi Matematica

Pisa, 19 dicembre 2018

Esercizio 1 Studiare la funzione

$$f(x) = \frac{\log(x)}{(x-1)^2}$$

determinandone insieme di definizione, limiti agli estremi del dominio, eventuali asintoti, estremi inferiore e superiore. Determinare l'esistenza di punti di massimo o minimo locale. Tracciare un grafico approssimativo della funzione.

Soluzione

Esercizio 2 Calcolare

$$\int \frac{e^{3x} + e^x}{e^{2x} - 3e^x + 2} dx.$$

Soluzione

Esercizio 3 Determinare l'integrale generale dell'equazione differenziale

$$y'' + y' - 6y = 1 - 18x^2.$$

Soluzione