Prof. Marco Avella TA: Ian Kinsella, Shun Xu February 7, 2019

Name:

UNI:

You have 20 minutes to answer the following 10 multiple choice questions. Good luck!

Question 1

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$. Define $\hat{\lambda}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Which one the following statements is NOT correct?

- (a) $MSE(\hat{\lambda}_n, \lambda) = var(\hat{\lambda}_n)$
- (b) $MSE(\hat{\lambda}_n, \lambda) \underset{n \to \infty}{\longrightarrow} 0.$
- (c) $\hat{\lambda}$ is the Maximum Likelihood Estimator of λ .
- (d) All of the above statements are correct.
- (e) None of the above statements are correct.

Question 2

Which of the following statements is the most accurate?

- (a) Unbiased estimators have lower MSE than biased estimators.
- (b) Given two estimators, the one with lower variance is more efficient.
- (c) Maximum likelihood estimators have the lowest MSE among estimators.
- (d) All of the above statements are correct.
- (e) None of the above statements are correct.

Question 3

Which of the following statements is the most accurate?

- (a) Unbiased estimators are always consistent.
- (b) Method of moments estimators are always normally distributed.
- (c) Among unbiased estimators, higher variance implies higher MSE.
- (d) All of the above statements are correct.
- (e) None of the above statements are correct.

Question 4

Let X and Y be two random variables such that $Y^2 = .5 \log(X) - 0.3$. Which one the following statements is correct?

$$(a) corr(\sqrt{X}, e^{Y^2}) = 1$$

- (b) $corr(\log X, Y^2) = .5$
- (c) $corr(\log X, Y) = 1$
- (d) None of the above statements are correct.

Question 5

Let $X_1, \ldots, X_{2n} \stackrel{iid}{\sim} N(0, \sigma^2)$ and consider two estimators of σ^2 defined as $T = \frac{1}{n} \sum_{i=1}^n X_i^2$ and $\tilde{T} = \frac{1}{2n} \sum_{i=1}^{2n} X_i^2$. Which of the following statements is NOT correct?

- (a) T and \tilde{T} are both unbiased estimators.
- (b) T and \tilde{T} are both consistent estimators.
- (c) $MSE(T)/MSE(\tilde{T}) = 2$.
- (d) All of the above statements are correct.
 - (e) None of the above statements are correct.

Question 6

A scientist collected 15 observations in their lab. Assuming they are i.i.d. normally distributed, they computed a t-statistic to test $H_0: \mu = 0$. They also obtained the 0.95 confidence interval [.11, 2.13]. Under their working assumptions, which of the following statements is correct?

- (a) We do not have enough evidence to reject H_0 .
- (b) The probability that $\mu = 0$ is less than 0.95.
- (c) The estimated mean was 1.12.
- (d) All of the above statements are correct.
- (e) None of the above statements are correct.

Question 7

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ and $s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2$. We are interested in testing the hypothesis $H_0: \mu = 0$ versus $H_1: \mu \neq 0$. Which of the following statements is correct?

- (a) Under $H_0: \mu = 0$ we have that $\sqrt{n} \cdot \overline{X_n} \sim t_{n-1}$
- (b) Under H_0 we have that $\overline{X_n} \sim N(0, \sigma/n)$
- (c) s^2 is an unbiased and consistent estimator of σ^2
- (d) Under $H_1: \mu \neq 0$ we have that $\sqrt{n} \frac{\overline{X_n} \mu}{\sqrt{s^2}} \xrightarrow[n \to \infty]{\mathcal{D}} N(0, 1)$.

Question 8

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Which of the following statistics is not a pivot

(a)
$$T_1 = \sum_{i=1}^n (X_i - \mu)^2$$

(a)
$$T_1 = \sum_{i=1}^n (X_i - \mu)^2$$

(b) $T_2 = \frac{\overline{X_n} - \mu}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2}}$

(c)
$$T_3 = \frac{\overline{X_n} - \mu}{\sigma}$$

- (d) All of the above 3 statistics are pivots.
- (e) None of the above 3 statistics are pivots.

Question 9

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Ber(p)$, hence $\mathbb{E}[X_1] = p$ and $\mathbb{E}[X_1^2] = p$. We consider the empirical moments $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ and $\overline{X_n^2} = \frac{1}{n} \sum_{i=1}^n X_i^2$. Which one the following statements is NOT correct?

(a)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow[n \to \infty]{\mathcal{P}} p^2.$$

(b)
$$\sqrt{n}(\overline{X_n} - p)/\sqrt{\overline{X_n}(1 - \overline{X_n})} \xrightarrow[n \to \infty]{\mathcal{D}} N(0, 1).$$

(c)
$$\overline{X_n^2} - (\overline{X_n})^2 \xrightarrow[n \to \infty]{\mathcal{P}} p(1-p).$$

(d)
$$\sqrt{\overline{X_n^2}} \xrightarrow[n \to \infty]{\mathcal{P}} \sqrt{p}$$
.

Question 10

Let X_1, \ldots, X_n be i.i.d. exponential random variables with expectation $\lambda > 0$ and let the statistic $\hat{\lambda}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be an estimator of λ . Which of the following statements is correct?

(a)
$$\sqrt{n}(\hat{\lambda}_n - \lambda) \xrightarrow[n \to \infty]{\mathcal{D}} N(0, \lambda^2).$$

(b)
$$\sqrt{n}(\log(\hat{\lambda}_n) - \log(\lambda)) \xrightarrow[n \to \infty]{\mathcal{D}} N(0, 1).$$

(c)
$$\sqrt{n}(\hat{\lambda}_n^2 - \lambda^2) \xrightarrow[n \to \infty]{\mathcal{D}} N(0, 4\lambda^4).$$

- (d) All of the above statements are correct.
- (e) None of the above statements are correct.