CAPíTULO 1

Aritmética de Punto Flotante

1. Números de Punto Flotante

Un conjunto F de números de punto flotante está caracterizado por los siguientes parámetros:

- (1) La base del sistema β .
- (2) El número de dígitos n en la mantisa.
- (3) Un exponente $m \leq e \leq M$.

donde β , n, m, e son enteros.

Cada número en el sistema de punto flotante F tiene la forma

$$\pm (.d_1d_2\cdots d_n)_{\beta}\beta^e$$
,

donde $d_i = 0, 1, \dots, \beta - 1$, $i = 1, 2, \dots, n$, $(.d_1d_2 \cdots d_n)_{\beta}$ es una β -fracción llamada mantisa, e es un entero llamado el exponente.

El sistema F de punto flotante está normalizado si $d_1 \neq 0$. en general, todos los números flotantes se normalizan con la excepción del cero, en el cual $d_1 = d_2 = \cdots = d_n = 0$.

El conjunto F es discreto y finito. Su cardinalidad, el número de elementos que lo constituyen, está dada por

$$2(\beta-1)\beta^{n-1}(M-m+1)+1.$$

Como una consecuencia de la finitud de F para representar al conjunto de números reales \mathbb{R} , existirá una infinidad de números en \mathbb{R} que no pueden representarse en forma exacta en F.

Sea x un número real denotemos por $\mathrm{fl}(x)$ el número en F que es más $\mathit{cercano}$ a x. La diferencia entre x y $\mathrm{fl}(x)$ se llama error de $\mathit{rendondeo}$, éste depende de la magnitud de x y es por lo tanto medido relativo a x

(1.1)
$$\delta(x) = \frac{\mathrm{fl}(x) - x}{x}, \quad x \neq 0,$$

luego $|\delta(x)|$ es el error relativo introducido en la representación de x en el sistema de punto flotante F. De (1.1) obtenemos

$$fl(x) = x(1 + \delta(x)).$$

Hay dos formas generalmente usadas para convertir un número real x a un $n-\beta$ número flotante fl(x): redondeado o truncado. Cuando se redondea, fl(x) se elige como el número de punto flotante normalizado más cercano a x, si hay empate se usa alguna regla especial, por ejemplo, se toma el de la derecha. Si se trunca, fl(x) se escoge como el número flotante normalizado más cercano entre 0 y x, esto es, se toman algunas d's y se desprecian otras.

1

A continuación encontraremos una cota para $\delta(x)$ que sea independiente de x. En el sistema de números de punto flotante F, el número cuyo valor absoluto es el más pequeño está dado por

$$+(.100\cdots 0)_{\beta}\beta^{m}=\beta^{m-1},$$

el sucesor inmediato de β^{m-1} se encuentra sumándole a éste el número

$$+(.000\cdots 1)_{\beta}\beta^{m}=\beta^{m-n}$$
.

Se concluye entonces, que la distancia entre dos números consecutivos en el intervalo $[\beta^{m-1}, \beta^m]$ es β^{m-n} .

En forma similar se demuestra que la distancia entre dos números consecutivos que pertenezcan a cualquier intervalo de la forma $[\beta^j,\beta^{j+1}]$ $j=m,\ldots M-1$ está dada por

$$\beta^{j+1-n}.$$

Hemos demostrado un aspecto singular de la distribución de los números del sistema de punto flotante F:

estos no están igualmente espaciados a través de todo su rango, sino únicamente cuando se encuentran entre potencias sucesivas de la base β.

Sunpongamos que $x \in [\beta^j, \beta^{j+1}]$ para alguna j = m, ... M-1, si el número flotante fl(x) que representa a x es seleccionado por redondeo, entonces de acuerdo a (1.2) el error introducido es a lo más $(1/2)\beta^{j+1-n}$, si fl(x) se selecciona por truncamiento el error es a lo más β^{j+1-n} . Lo anterior nos da la medida del error de redondeo absoluto

(1.3)
$$|f(x) - x| \le \begin{cases} \frac{1}{2}\beta^{j+1-n} & \text{redondeo,} \\ \beta^{j+1-n} & \text{truncamiento.} \end{cases}$$

El error de redonde
o relativo $|\delta(x)|$ se obtiene dividiendo al error de redonde
o absoluto por |x|. Ya que $0 < \beta^j \le |x|$ obtenemos

$$|\delta(x)| \le \begin{cases} \frac{1}{2}\beta^{1-n} & \text{redondeo,} \\ \beta^{1-n} & \text{truncamiento.} \end{cases}$$

El épsilon de la máquina se define como

$$\varepsilon = \begin{cases} \frac{1}{2}\beta^{1-n} & \text{redondeo,} \\ \beta^{1-n} & \text{truncamiento.} \end{cases}$$

Consecuente con lo anterior se cumple que $|\delta(x)| \leq \varepsilon$ para toda x. La cota para $\delta(x)$ independiente de la x es el épsilon de la máquina.

Dado $x \in \mathbb{R}$ su flotante f(x) se define como

$$fl(x) = x(1+\delta), \quad |\delta| \le \epsilon.$$

La exactitud de la aritmética de punto flotante está entonces caracterizada por el épsilon de la máquina.

Supongamos que estamos en el intervalo $[1,\beta]$. Queremos calcular $1 \oplus \varepsilon$, donde \oplus denota la suma entre números que pertenecen a F

$$1 \oplus \varepsilon = \text{fl}(1 + \varepsilon).$$

Si el error introducido en la representación de $1+\varepsilon$ es por redondeo, entonces éste queda localizado en la mitad del intervalo $[1,1+\beta^{1-n}]$. Ya que la distancia entre dos números consecutivos de F que pertenecen al intervalo $[1,\beta]$ es β^{1-n} el número de punto flotante $1\oplus\varepsilon$ es tomado como $1+\beta^{1-n}>1$. Sin embargo, si $0<\varepsilon_1<\varepsilon$ obtenemos por un procedimiento análogo al anterior que $1\oplus\varepsilon_1=1$. Un resultado similar es encontrado cuando el error introducido en la representacion de $1\oplus\varepsilon$ es por truncamiento.

El épsilon de la máquina se caracteriza por ser el menor número positivo de ${\cal F}$ que satisface

$$1 \oplus \varepsilon > 1$$
.

2. Modelo de Aritmética en F

La aritmética en el sistema numérico de punto flotante F permite aproximar a la del sistema de números reales $\mathbb R$. Como notación emplearemos $\oplus, \ominus, \otimes, \oslash$ para indicar las aproximaciones a las operaciones aritméticas $+, -, \times, /$ de $\mathbb R$:

$$x \oplus y = f(x + y),$$

$$x \ominus y = f(x - y),$$

$$x \otimes y = f(x \times y),$$

$$x \oslash y = f(x/y),$$

El modelo que asumiremos para la artimética en F es el siguiente

$$f(x \text{ op } y) = (x \text{ op } y)(1+\delta), \quad |\delta| \le \varepsilon, \quad \text{op } = +, -, *, /.$$

Para efectuar operaciones en forma manual en este modelo aritmético, por cada operación $+,-,\times,/$ encontrada hágala en aritmética exacta, normalice el resultado, trunque o redondeé de acuerdo al número de dígitos permitidos.