

Gabriele Cirotto \$307732

Alberto Foresti S309212

Luca Varriale S300795

Predictive Models for Humanitarian Aid

Predicting conflicts in the Sahel region

Professor: Giuseppe Rizzo

UN Staff: J.Yang, I.Arispe

ADSP Final Presentation A.Y. 2023/24

PROJECT PROPOSITION

Help people in the Sahel region with a faster and effective response to conflicts and social tensions

OUTPUT

What we try to answer?

What are the best predictors for the task?

- Action-driven predictors
- Interpretable predictors
- Informative predictors

Our goal is to predict the fatalities for a certain number of months.

Political Violence

Demonstrations

Strategic developments

RESEARCH QUESTIONS PREDICTORS - HDI

Human Development Index

RESEARCH QUESTIONS PREDICTORS - GDI

Voice and Accountability

Can we explore the task with causal discovery?

- Highlight few independent factors
- Beyond statistics: can we highlight causation directly from data?

We sample new data with causal awareness

variables

• We set a shift variable: \sum

 We start sampling from parent nodes: causal parents

 We sample new features by conditioning on causal parents

Our sampling uses a dataset split

Two datasets:

- A: the dataset we want to augment
- B: the dataset sampled from the target distribution

RESEARCH QUESTIONS CAUSAL DISCOVERY-CAUSAL DATA AUGMENTATION

Our method:

• For every country we simulate a change of scenario using causal graphs and we create synthetic **distributions**

- We sample data from the new distributions
- We use synthetic and real data to train robust ML models

RESEARCH QUESTIONS CAUSAL DISCOVERY-CAUSAL DATA AUGMENTATION

Causal Data Augmentation in Burkina Faso

Fatalities forecast, Burkina Faso

Advantages

- Model agnostic
- Regularization
- Robust

Drawbacks

- × Risk of catastrophic forgetting
- × Slow

Can we find better metrics?

• Spike precision: the fraction of spikes the model is able to predict

• **Spike recall**: the fraction of spikes, among the predicted, that are actually spikes

Can we find a general calibration strategy?

 Machine learning models do not provide real probabilities: we need calibration

 Drawback: calibration strategies rely on assumptions, we cannot assume much in the time series domain

Our tool:

Conformal Prediction

Model agnostic framework with guarantees on real probabilities

Problem:

It relies on IID assumption

Not robust to distribution shifts

Solution:

Causal data augmentation

Augment also the calibration set

RESEARCH QUESTIONS CALIBRATION

What did we achieve?

ACHIEVEMENTS

	MEAN ABSOLUTE ERROR	SPIKE PRECISION	SPIKE RECALL
RANDOM FOREST - REAL DATA	116.47	0.33	0.40
RANDOM FOREST - REAL + SYNTETHIC DATA	104.48	0.37	0.43
LIGHTGBM - REAL DATA	92.82	0.33	0.55
LIGHTGBM - REAL + SYNTHETIC DATA	79.75	0.37	0.44
XGBOOST - REAL DATA	103.83	0.34	0.40
XGBOOST - REAL + SYNTHETIC DATA	76.51	0.35	0.42

	MEAN ABSOLUTE ERROR	SPIKE PRECISION	SPIKE RECALL
RANDOM FOREST - REAL DATA	116.47	0.33	0.40
RANDOM FOREST - REAL + SYNTETHIC DATA	104.48	0.37	0.43
LIGHTGBM - REAL DATA	92.82	0.33	0.55
LIGHTGBM - REAL + SYNTHETIC DATA	79.75	0.37	0.44
XGBOOST - REAL DATA	103.83	0.34	0.40
XGBOOST - REAL + SYNTHETIC DATA	76.51	0.35	0.42

	MEAN ABSOLUTE ERROR	SPIKE PRECISION	SPIKE RECALL
RANDOM FOREST - REAL DATA	116.47	0.33	0.40
RANDOM FOREST - REAL + SYNTETHIC DATA	104.48	0.37	0.43
LIGHTGBM - REAL DATA	92.82	0.33	0.55
LIGHTGBM - REAL + SYNTHETIC DATA	79.75	0.37	0.44
XGBOOST - REAL DATA	103.83	0.34	0.40
XGBOOST - REAL + SYNTHETIC DATA	76.51	0.35	0.42

	MEAN ABSOLUTE ERROR	SPIKE PRECISION	SPIKE RECALL
RANDOM FOREST - REAL DATA	116.47	0.33	0.40
RANDOM FOREST - REAL + SYNTETHIC DATA	104.48	0.37	0.43
LIGHTGBM - REAL DATA	92.82	0.33	0.55
LIGHTGBM - REAL + SYNTHETIC DATA	79.75	0.37	0.44
XGBOOST - REAL DATA	103.83	0.34	0.40
XGBOOST - REAL + SYNTHETIC DATA	76.51	0.35	0.42

LOGS

Continuous
production of
short process logs
for enhancing the
understanding of
our researches

DASHBOARD

CONCLUSIONS

What we have seen so far?

- **>** Proposition
- Objective
- > Research Questions
- Achievements

Dataset Construction for Sahel Region Fatality Prediction

Causal Data Augmentation for Distribution Shifts

Causal Data Augmentation for Calibration

CONCLUSIONS

- Integration of described methods on current early-warning systems
- > Stability Enhancement for Causal Data Augmentation
- > Efficiency Improvement in CDA Data Generation
- Automated Domain Split Selection

Gabriele Cirotto \$307732

Alberto Foresti S309212 Luca Varriale S300795

Thank you for your attention!

Questions?

Link to our repository: GitHub

Scan me!

ADSP Final Presentation A.Y. 2023/24