Search Space Reduction in Fashion E-Commerce: Applying NER and Classification for Better Search Outcomes

STUDENT

YASH RAJ SINGH (231014984)

SUPERVISOR

RAHUL DUTTA

Agenda

1	<u>Introduction</u>
2	<u>Motivation</u>
3	<u>Objectives</u>
4	<u>Methodogy</u>
5	Architecture Overview
6	Named Entity Recognition
7	Classification
8	Elastic Search
9	Results
10	<u>Demo</u>
11	Conclusion
12	<u>Future Work</u>

Introduction

- Fashion e-commerce: vast, competitive industry
- 2021: US\\$553.1 billion, 2027:
 US\\$1,222.32 billion Mailmodo
- Catalogue Increasing
- Critical need for relevant search results
- Search Space is huge

Motivation

- Develop a system that helps in reducing the number of searches.
- Make the User experience less overwhelming.
- Reduce the load on real time resources

Objectives

- Improve search relevance using advanced techniques: Named Entity Recognition and Logistic Regression Classifier
- Focus on reducing volume of product on user catalogue
- Reduce irrelevant search results.

Methodology

- Data Collection Myntra Fashion Dataset
- Data Preprocessing
- Named Entity Recognition : Brand Name Recognition from Search Query
- Classification : Find category of product from Search Query
- Integrate with Elasticsearch for Search functionality
- Flask served web app for integration
- Two search modes: Simple vs. Advanced
- Use these Information to reduce the number of searches user sees.

Architecture Overview

Model 1 - Named Entity Recognition - SPaCy

- Used SpaCy, a powerful NLP library, for NER.
- Trained a custom model with domainspecific data. i.e. Fashion data.
- Identified brand names are further passed into system flow.

Model 2 - Classifier - Logistic Regression

- Preparing the labelled data to identify the category of search query.
- Vectorize the features for better training.
- Trained the model on processed labelled data.

Search Engine - Elastic Search

- Serve as the search engine to handle and optimize search queries.
- Provide fast and scalable search capabilities across large datasets.
- Stores data in form of documents in indexes.

Ensembling..

- Simple Search
 - Query on Elastic Search Index with original search query.
- Advanced Search
 - The outputs from the two models are used to reduce the number of result.
 - Model 1 Brand Name
 - Model 2 Category
 - Query is updated with additional information from Models

Simple Search Query

```
must_clauses = [{"match": {"description": search_query}}]
if identified_brand:
    must_clauses.append({"match": {"brand": identified_brand}})
if predicted_category:
    must_clauses.append({"match": {"category": predicted_category}})
advanced_search_body = {
    "query": {
        "bool": {
            "must": must_clauses
        }
    },
    "from": offset,
    "size": RESULTS_PER_PAGE
}
Advanced Search Query
```

Results

Results of Different metrics on Named Entity Recognition

NER Model Metrics			
Metric	Value		
Precision	0.8610		
Recall	0.8539		
F1 Score	0.8565		
Accuracy	0.9863		

Results

Results of Different metrics on Logistic Regression Classifier

Metric	Logistic
	Regression
Precision	0.9485
Recall	0.9464
F1 Score	0.9472
Accuracy	0.9653

Results

Graph of variation in number of search results for a sample of 100 searches

Percentage Reduction in Number of Search Results from Simple to Advanced Search Method

Conclusion

- Using SpaCy's NER to accurately identify brand names and Logistic Regression to categorize queries, effectively narrowing down search results.
- The reduction in irrelevant search results in the advanced search highlights the system's ability to focus on products that are more pertinent to users' needs.
- This leads to a more satisfying shopping experience and has the potential to increase conversion rates.

Future Work

- Extend NER and classification models to support multiple languages.
- Adapt the system for broader e-commerce categories beyond fashion apparel.
- Implement mechanisms to gather and analyze user feedback on search results.

