

Discrete Mathematics

Haiyang Liu haiyangliu@bjtu.edu.cn 18611249791

Represent a graph

- List all the edges of this graph
- Adjacency Lists
- Adjacency Matrices
- Incidence Matrices

Use adjacency lists to describe the simple graph.

Vertex	Adjacent Vertices
а	b, c, e
b	а
С	a, d, e
d	c, e
e	a, c, d

Initial Vertex	Terminal Vertices
а	b, c, d, e
b	b, d
С	a, c, e
d	
е	b, c, d

Adjacency Matrices

Suppose that G = (V, E) is a simple graph where |V| = n. Suppose that the vertices of G are listed arbitrarily as v_1, v_2, \ldots, v_n . The **adjacency matrix** A (or A_G) of G, with respect to this listing of the vertices, is the $n \times n$ zero—one matrix $A = [a_{ii}]$,

$$a_{ij} = \begin{cases} 1 & if\{v_i, v_j\} \text{ is an edge of } G\\ 0 & otherwise \end{cases}$$

- The adjacency matrix of a simple graph is symmetric.
- Because a simple graph has no loops, each entry a_{ii} , $i = 1, 2, 3, \ldots, n$, is 0.

Use an adjacency matrix to represent the graph. Order the vertices as a, b, c,
d.

0	1	1	1]
1	0	1	0
1 1	1	0	1 0 0 0
1	0	0	0

Draw a graph with the adjacency matrix.

0	1	1	1]
1	0	1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
1	1	0	
1	0	0	0

Use an adjacency matrix to represent the pseudograph.

[0	3	0	2]
3	0	1	1
0	1	1	1 2
2	1	2	0

- The adjacency matrix is no longer a zero-one matrix.
- All undirected graphs have symmetric adjacency matrices.

Exercise 10.3(19, 21)

 Find the adjacency matrix of the given directed multigraph with respect to the vertices listed in alphabetic order.

The adjacency matrix for a directed graph does not have to be symmetric.

Incidence Matrices

Let G = (V, E) be an undirected graph. Suppose that v_1, v_2, \ldots, v_n are the vertices and e_1, e_2, \ldots, e_m are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $M = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & when edge e_j \text{ is incident with } v_i \\ 0 & otherwise \end{cases}$$

Represent the graph with an incidence matrix.

Represent the pseudograph using an incidence matrix.

Isomorphism of Graphs

• The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there exists a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an **isomorphism**.

•In other words, when two simple graphs are isomorphic, there is a one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.

Show that the graphs G and H are isomorphic.

$$f(u_1) = v_1$$
, $f(u_2) = v_4$, $f(u_3) = v_3$, and $f(u_4) = v_2$

Isomorphism of Graphs

- Necessary condition
- ✓ Same number of vertices
- ✓ Same number of edges
- \checkmark A vertex v of degree d in G must correspond to a vertex f(v) of degree d in H
- It is often difficult to determine whether two simple graphs are isomorphic.
- Sometimes it is not hard to show that two graphs are not isomorphic.

Show that the graphs are not isomorphic.

Determine whether the graphs are isomorphic.

Determine whether the graphs G and H are isomorphic.

