Range Minimum Query

• Given a sequence of n integers a_0, \ldots, a_{n-1} . We denote rmq(i, j) the minimum element of the sequence $a_i, a_{i+1}, \ldots, a_j$. Given m pairs $(i_1, j_1), \ldots, (i_m, j_m)$, compute the sum $Q = \text{rmq}(i_1, j_1) + \ldots + \text{rmq}(i_m, j_m)$

Input

- Line 1: contains an integer n (1 <= n <= 10⁶)
- Line 2: contains a_0, \ldots, a_{n-1} (1 <= a_i <= 10⁶)
- Line 3: contains m (1 <= m <= 10⁶)
- Line k+3 (k = 1, ..., m): contains i_k , j_k (0 <= $i_k < j_k < n$)

Output

Write the value Q

Hint

4

• Denote M[j, i] the index of the smallest element of a[i], a[i+2],..., $a[i+2^j-1]$ (the sequence from index i and has the length 2^j).

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	4	6	1	6	8	7	3	3	5	8	9	1	2	6	4
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	3	3	4	6	7	8	8	9	10	12	12	13	15	-
3	3	3	3	7	8	8	8	8	12	12	12	12	-	-	-
3	3	3	3	8	12	12	12	12	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Range Minimum Query

• Example

stdin	stdout
16	6
2461687335891264	
4	
15	
0 9	
1 15	
6 10	

Hint

- Query RMQ(i,j): the index of the smallest element of the sequence a[i], a[i+1], . . ., a[j]
- $k = [\log(j-i+1)]$
- RMQ(i,j) = M[k,i] if $a[M[k,i]] \le a[M[k,j-2^k+1]]$ $M[k,j-2^k+1]]$, otherwise
- RMQ(4,14) = ?
 - $k = [\log(14-4+1)]=3$
 - $a[7] > a[12] \rightarrow RMQ(4,14) = 12$

Hint

- M[0,i] = i, i = 0,..., N-1
- Recurrence relation:
- M[j,i] = M[j-1,i] if $a[M[j-1,i]] < a[M[j-1,i+2^{j-1}]]$ $M[j-1,i+2^{j-1}]$, otherwise

Implementation

```
#include <bits/stdc++.h>
using namespace std;
int n;
int M[30][1000000];
int A[1000000];
void preprocessing(){
    for(int j = 0; (1 << j) <= n; j++){
        for(int i = 0; i < n; i++) M[j][i] = -1;
    for(int i = 0; i < n; i++) M[0][i] = i;
    for(int j = 1; (1 << j) <= n; j++){
        for(int i = 0; i + (1 << j) - 1 < n; i++){
            if(A[M[j-1][i]] < A[M[j-1][i+(1 << (j-1))]]) M[j][i] = M[j-1][i]; else M[j][i] = M[j-1][i + (1 << (j-1))];
```

Implementation

```
int rmq(int i, int j){
   int k = log2(j-i+1);
   int p2k = (1 << k);//pow(2,k);
   if(A[M[k][i]] <= A[M[k][j-p2k+1]]){
      return M[k][i];
   }else{
      return M[k][j-p2k+1];
   }
}</pre>
```

Implementation

```
int main(){
   scanf("%d",&n);
   for(int i = 0; i < n; i++) scanf("%d",&A[i]);</pre>
   preprocessing();
   int ans = 0; int m;
    scanf("%d",&m);
    for(int i = 0; i < m; i++){
        int I,J; scanf("%d%d",&I,&J);
        ans += A[rmq(I,J)];
    cout << ans;</pre>
    return 0;
```