Chapter 2

Learning Linear Separators, SVMs and Kernels

Contents

2	Lear	rning Linear Separators, SVMs and Kernels
	2.1	Linear Separator
	2.2	Perceptron Algorithm
	2.3	Geometric Margin
	2.4	Support Vector Machine
	2.5	Optimal Linear Separator
	2.6	Classification Margin
	2.7	Maximizing the Margin
	2.8	Linear SVM
	2.9	Lagrangian Duality
	2.10	SVM Solution
	2.11	Soft Margin Classification
	2.12	Kernel Method
	2.13	Kernel Trick

Contents

2.1 Linear Separator

Assuming that red and blue datasets represents points X_1 and X_2 , then the two sets X_1 and X_2 are linearly separable if there exists (n+1) real numbers w_1, w_2, \ldots, w_n, k

- such that every point in X_1 satisfies $\sum_{i=1}^n w_i x_i < k$
- such that every point in X_2 satisfies $\sum_{i=1}^n w_i x_i > k$

Binary classification $y_i \in \{-1, 1\}$ can be viewed as the task of separating classes in feature space.

- Hypothesis class of linear decision surfaces is $f(x_i) = \text{sign}(\mathbf{w}^T \mathbf{x_i} + b)$.
- Without loss of generality, we assume that b = 0. Thus, we get the simplified $f(x_i) = \operatorname{sign}(\mathbf{w}^T \mathbf{x_i})$.
- $(y_i)(\mathbf{w}^T\mathbf{x}_i) > 0 \Leftrightarrow \text{data point } x_i \text{ is correctly classified.}$
 - Remember, y_i is counting as 1 or -1.

2.2 Perceptron Algorithm

- Set time t = 1, start with vector $\mathbf{w}_1 = \vec{0}$.
- Given example x, predict positive iff (if and only if) $w_1 \cdot x \geq 0$.
- On a mistake, update as follows:
 - Mistake on positive, then update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \mathbf{x}$.
 - Mistake on negative, then update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{x}$.

2.3 Geometric Margin

The margin of example ...

The margin γ of a set of examples S w.r.t (with respect to) a linear separator \mathbf{w} is the largest margin over points $\mathbf{x} \in S$. Theorem: If the data has a margin γ and all points lie inside a ball of radius R, then the Perceptron algorithm makes $\leq \frac{R}{\gamma^2}$ mistakes.

2.4 Support Vector Machine

Support vector machines (SVMs) are supervised max-margin models with associated learning algorithms.

- Good generalization in theory.
- Good generalization in practice.
- Work well with few training instances.
- Find globally best model.
- Efficient algorithms.
- Amenable to the kernel trick.

2.5 Optimal Linear Separator

Which of the linear separators is optimal?

2.6 Classification Margin

Examples closest to the hyperplane are support vectors. Margin ρ of the separator is the distance between support vectors.

2.7 Maximizing the Margin

- Better Generalization A larger margin allows the SVM to better generalize to new, unseen data, leading to higher predictive accuracy.
- Improved Robustness A larger margin can lead to improved robustness against noise and outliers in the training data, as it allows for greater tolerance of misclassified examples.
- Reducing Overfitting A larger...

2.8 Linear SVM

Let training set $\{(\mathbf{x}_i, y_i)_{i=1...n}, \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i)

$$\mathbf{w}^T \mathbf{x}_i + b \ge 1$$
 if $y_i = 1$ $\Leftrightarrow y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$ $\mathbf{w}^T \mathbf{x}_i + b \le -1$ if $y_i = -1$

Geometrically, the distance between the 2 hyperplanes can be expressed as:

$$\rho = \frac{2}{||w||} \tag{2.1}$$

Then we can formulate the quadratic optimization problem:

Find \mathbf{w} and \mathbf{b} such that

$$\rho = \frac{2}{||\mathbf{w}||}$$

is maximized and for all (\mathbf{x}_i, y_i) , $i = 1 \dots n : y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

 \mathbf{x}_i, y_i , find \mathbf{w} and \mathbf{b} such that

Minimize
$$Q(w) = \frac{1}{2}||\mathbf{w}||^2 = \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to ...

2.9 Lagrangian Duality

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- Solution involves constructing dual problem where Lagrange multipliers a_i is associated with all inequality constraint in primal (original) problem:

$$\forall i, \text{ find } a_1, \dots, a_n \text{ such that } \dots \text{ subject to } a_i \geq 0$$

2.10 SVM Solution

• Given a solution $a_1 \dots a_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \sum a_i y_i \mathbf{x}$$
 $b = y_k - \sum a_i y_i \mathbf{x}_i^T \mathbf{x}_k$ for any $a_k > 0$

- Each non-zero a_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is:

$$f(x) = \sum a_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

- Notice that it relies on the inner product between the test point \mathbf{x} and the support vectors \mathbf{x}_i .
- Solving the optimization problem involves computing the inner products $\mathbf{x}_i^T \mathbf{x}_j$ between all training points.

2.11 Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables can be added to allow misclassification of difficult or noisy examples; thus, the result margin is called soft.

2.12 Kernel Method

- If we map the input vectors into a very high-dimensional feature space, the task of finding the maximum-margin separator can become computationally intractable.
- All of the computations that we need to do to find the maximum-margin separator (SVM optimization problem) can be expressed in terms of inner products between pairs of data points (in the high-dimensional feature space).
- These inner products are the only part of the computation that depends on the dimensionality of the high-dimensional space. So, if we had a fast way to do the dot products, we would not have of pay a price
- The kernel trick is just a way of doing inner products a whole lot faster than is usually possible. It relies on choosing a way of mapping to the high-dimensional feature space that allows fast scalar products.
- By using a nonlinear vector function $\phi(x) = \langle \phi(x_1), \dots, \phi(x_n) \rangle$, the *n*-dimensional input vector **x** can be mapped into high-dimensional feature space. The decision function in the feature space is expressed as:

$$f(x) = \mathbf{w}^T \phi(\mathbf{x}) + b$$

• In terms of solving the quadratic optimization problem of SVM, each training data point is in the form of dot products. A kernel function K simplifies the calculation of dot product terms

$$K(\mathbf{x_1},)$$

2.13 Kernel Trick

Example: Take this 2-dimensional vector: $\mathbf{x} = [x_1, x_2]$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{T} \mathbf{x}_{j})^{2}$$

$$= 1 + x_{i1}^{2} x_{j1}^{2} + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$$

$$= \left[1 \ x_{i1}^{2} \sqrt{2} x_{i1} \right]$$