

10/030194

JC03 Rec'd PCT/PTC 04 FEB 2002

DOCKET NO.: 218874 US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Michel RENARD, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/FR00/02216

INTERNATIONAL FILING DATE: August 2, 2000

FOR: MUTANT GENE OF THE GRAS FAMILY AND PLANTS WITH REDUCED DEVELOPMENT CONTAINING SAID MUTANT GENE

**REQUEST FOR PRIORITY UNDER 35 U.S.C. 119
AND THE INTERNATIONAL CONVENTION**

Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY	APPLICATION NO	DAY/MONTH/YEAR
France	99 10023	02 August 1999

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/FR00/02216.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.

Norman F. Oblon
Attorney of Record
Registration No. 24,618
Surinder Sachar
Registration No. 34,423

22850

(703) 413-3000
Fax No. (703) 413-2220
(OSMMN 1/97)

THIS PAGE BLANK (USPTO)

REC'D 18 SEP 2000
WIPO PCT

X2

BREVET D'INVENTION

FR 00/02216

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

4

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA
RÈGLE 17.1.a) OU b)

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 25 AOUT 2000

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

Martine PLANCHE

SIEGE
INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE

26 bis, rue de Saint Petersbourg
 75800 PARIS Cedex 08
 Téléphone : 01 53 04 53 04
 Télécopie : 01 42 93 59 30

THIS PAGE BLANK (USPTO)

INSTITUT

NATIONAL DE

LA PROPRIÉTÉ

INDUSTRIELLE

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08

Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

BREVET D'INVENTION, CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle-Livre V

cerfa

N° 55 -1328

REQUÊTE EN DÉLIVRANCE

Confirmation d'un dépôt par télécopie

Cet imprimeur est à remplir à l'encre noire en lettres capitales

Réserve à l'INPI

DATE DE REMISE DES PIÈCES

2 AOUT 1999

N° D'ENREGISTREMENT NATIONAL

9910023

DÉPARTEMENT DE DÉPÔT

75 INPI PARIS

DATE DE DÉPÔT

02 AOUT 1999

2 DEMANDE Nature du titre de propriété industrielle

- brevet d'invention demande divisionnaire
 certificat d'utilité transformation d'une demande de brevet européen

demande initiale

brevet d'invention

certificat d'utilité n°

date

Établissement du rapport de recherche

différé immédiat

Le demandeur, personne physique, requiert le paiement échelonné de la redevance

 oui non

Titre de l'invention (200 caractères maximum)

GENE MUTANT DE LA FAMILLE GRAS, ET PLANTES A DEVELOPPEMENT REDUIT COMPRENANT LEDIT GENE

3 DEMANDEUR (S) n° SIREN

code APE-NAF

Nom et prénoms (souligner le nom patronymique) ou dénomination

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA)

Forme juridique

Etablissement public

Nationalité (s) Française

Adresse (s) complète (s)

Pays

147, rue de l'Université
75338 PARIS CEDEX 07

FRANCE

En cas d'insuffisance de place, poursuivre sur papier libre

4 INVENTEUR (S) Les inventeurs sont les demandeurs

 oui non

Si la réponse est non, fournir une désignation séparée

5 RÉDUCTION DU TAUX DES REDEVANCES

 requise pour la 1ère fois requise antérieurement au dépôt : joindre copie de la décision d'admission

6 DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE

pays d'origine

numéro

date de dépôt

nature de la demande

7 DIVISIONS antérieures à la présente demande n°

date

n°

date

8 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE
(nom et qualité du signataire)VIALLE-PRESLES Marie-José
(n° 93-2009)

SIGNATURE DU PRÉPOSÉ À LA RÉCEPTION

SIGNATURE APRÈS ENREGISTREMENT DE LA DEMANDE À L'INPI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉSIGNATION D'INVENTEUR(S) Page N° 1 . . / 2 . .

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Cet imprimé est à remplir lisiblement à l'encre noire

DB 113 W /260899

Vos références pour ce dossier <i>(facultatif)</i>	MJPcb539/95FR		
N° D'ENREGISTREMENT NATIONAL	99 10023		
TITRE DE L'INVENTION (200 caractères ou espaces maximum) GENE MUTANT DE LA FAMILLE GRAS, ET PLANTES A DEVELOPPEMENT REDUIT COMPRENNANT LEDIT GENE			
LE(S) DEMANDEUR(S) :			
INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) 147, rue de l'Université 75338 PARIS CEDEX 07 FRANCE			
DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs, utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages).			
Nom		RENARD	
Prénoms		Michel	
Adresse	Rue	9, avenue du Stade	
	Code postal et ville	35650	LE RHEU
Société d'appartenance <i>(facultatif)</i>			
Nom		DELOURME	
Prénoms		Régine	
Adresse	Rue	36, rue de Rennes	
	Code postal et ville	35590	L'HERMITAGE
Société d'appartenance <i>(facultatif)</i>			
Nom		BARRET	
Prénoms		Pierre	
Adresse	Rue	99, avenue de la Libération	
	Code postal et ville	63000	CLERMONT-FERRAND
Société d'appartenance <i>(facultatif)</i>			
DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) OU DU MANDATAIRE (N° mat qualité du signataire)			
Béatrice ORES (n° 92-4046)			
le 25 juillet 2000			

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

DÉSIGNATION D'INVENTEUR(S) Page N° 2 . / 2 .

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Cet imprimé est à remplir lisiblement à l'encre noire

DB 113 W /260899

Vos références pour ce dossier (facultatif)		MJPcb539/95FR	
N° D'ENREGISTREMENT NATIONAL		99 10023	
TITRE DE L'INVENTION (200 caractères ou espaces maximum) GENE MUTANT DE LA FAMILLE GRAS, ET PLANTES A DEVELOPPEMENT REDUIT COMPRENNANT LEDIT GENE			
LE(S) DEMANDEUR(S) :			
INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) 147, rue de l'Université 75338 PARIS CEDEX 07 FRANCE			
DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs, utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages).			
Nom		BRUNEL	
Prénoms		Dominique	
Adresse	Rue	61, rue de Lyon	
	Code postal et ville	75012	PARIS
Société d'appartenance (facultatif)			
Nom		FROGER	
Prénoms		Nicole	
Adresse	Rue	15, villa de l'Epi d'Or	
	Code postal et ville	78210	SAINT-CYR-L'ECOLE
Société d'appartenance (facultatif)			
Nom		TANGUY	
Prénoms		Xavier	
Adresse	Rue	22, allée du Plessis	
	Code postal et ville	35650	MOIGNE LE RHEU
Société d'appartenance (facultatif)			
DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) OU DU MANDATAIRE (Nom et qualité du signataire)			
Béatrice ORES (n° 92-4046)		 le 25 juillet 2000	

DOCUMENT COMPORTANT DES MODIFICATIONS

Un changement apporté à la rédaction des revendications d'origine, sauf si celui-ci découle des dispositions de l'article R.612-36 du code de la Propriété Intellectuelle, est signalé par la mention «R.M.» (revendications modifiées).

GENE MUTANT DE LA FAMILLE GRAS, ET PLANTES A DEVELOPPEMENT REDUIT COMPRENANT LEDIT GENE.

L'invention est relative à l'obtention de végétaux à développement réduit, et notamment de 5 crucifères.

L'emploi de plantes naines dans le cadre des productions agricoles présente de nombreux avantages ; par exemple, chez les céréales, l'utilisation de plantes mutantes à paille courte a permis d'obtenir des cultures 10 tolérant des quantités importantes d'engrais azotés, moins affectées par les conditions climatiques, et notamment plus résistantes à la verse que les plantes de taille normale. En outre, la petite taille des plantes facilite l'entretien des cultures, notamment 15 l'application des traitements phytosanitaires, ainsi que leur récolte.

Des mutants nains de végétaux autres que les céréales ont également été décrits dans la littérature. On mentionnera en particulier ci-après des mutants 20 présentant des caractéristiques similaires à celles induites par une déficience en gibbérellines, et insensibles à l'apport de gibbérellines exogènes. De tels mutants ont notamment été décrits chez *Arabidopsis* [KOORNNEEF et al., *Physiol. Plant.*, 65, 33-39, (1985)]. 25 Ces mutants, dénommés *gai* (pour Gibberelllic Acid Insensitive) ont une taille réduite et ne répondent pas aux applications exogènes de gibbérellines. La mutation *gai* est une mutation du type « gain de fonction », semi-dominante. Les mutants hétérozygotes *GAI/gai* ont un 30 phénotype intermédiaire entre celui des mutants nains *gai/gai* et des plantes sauvages *GAI/Gai*.

Des mutants présentant les mêmes caractéristiques que les mutants *gai* d'*Arabidopsis* ont été décrits par ZANEWICH et al. [*J. Plant Growth Regul.*, 35 10, 121-127, (1991)], chez *Brassica napus* (mutation *dwf1*) et *Brassica rapa* (mutations dénommées *dwf1* et *dwf2*).

L'équipe des Inventeurs a obtenu un mutant nain de *B. rapa* [FOISSET et al., Theor. Appl. Genet., 91, 756-761, (1995)]. La mutation, dénommée *bzh* présente des caractéristiques de « semi-dominance » et d'insensibilité 5 aux gibberellines similaires à celles de la mutation *gai*.

Une lignée de colza dénommée ISN1770, homozygote pour l'allèle mutant *bzh*, a fait l'objet d'un Certificat d'Obtention Végétale, déposé le 18 mai 1998, auprès du CPOV (11 rue Jean Nicaud, 75007 PARIS) sous la 10 référence 10751. Un hybride de colza, dénommé « LUTIN » (B017), et comprenant dans son génome l'allèle mutant *bzh* sous forme hétérozygote a été proposé à l'inscription au Catalogue Français des Obtentions Végétales le 31 juillet 1999, sous la référence 072426.

Le gène *GAI* d'*Arabidopsis* a récemment été 15 cloné et séquencé [PENG et al., Genes and development, 11, 3194-3205, (1997) ; Demande PCT WO 97/29123 au nom de JOHN INNES CENTRE INNOVATIONS LTD]. Ce gène code pour une protéine (*GAI*) de 532 aa. L'allèle *gai*, responsable du 20 nanisme, contient une délétion de 51 paires de bases en phase avec le cadre de lecture, qui conduit à l'absence de 17 aa situés près de l'extrémité N-terminale de la protéine *GAI*. La protéine *GAI* est impliquée dans la 25 perception et la réponse aux gibberellines, et agirait chez les plantes sauvages, comme un régulateur négatif de l'elongation cellulaire en absence de gibberellines.

La comparaison de la séquence de *GAI* avec celle des produits de traduction d'autres gènes connus a permis de la rattacher à la famille dénommée GRAS [PYSH 30 et al., The Plant Journal, 18(1), 11-119, (1999)] ou VHIID [SCHUMACHER et al., P.N.A.S., 96, 1, 290-295, (1999)].

Cette famille englobe, outre *GAI*, les gènes *RGA* (SILVESTRONE et al., Genetics, 146, 1087-1099, 35 (1998)], et *SCARECROW* [DI LAURENZIO et al., Cell, 86, 423-433, (1996)] d'*Arabidopsis*, ainsi que le gène *LS*

(Lateral suppressor) de la Tomate [SHUMACHER et al., P.N.A.S., 96, 1, 290-295, (1999)]. A l'heure actuelle, une vingtaine de gènes rattachés à la famille GRAS ont été identifiés chez *Arabidopsis*.

5 Les protéines constituant la famille GRAS présentent une partie N-terminale très variable et une partie C-terminale très conservée avec cinq motifs reconnaissables, notamment le motif VHIID.

10 Les fonctions biologiques de la plupart de ces protéines ne sont pas encore précisément connues mais leur rôle comme facteurs de transcription est fortement supposé. Les travaux effectués sur les 4 gènes les mieux étudiés à l'heure actuelle (*SCR*, *GAI*, *RGA* et *LS*) montrent que ces gènes codent des facteurs de transcription 15 impliqués dans le contrôle de la perception et de la réponse aux gibbérellines, et indiquent l'importance probable de cette famille sur le contrôle de la morphogénèse et du développement des plantes supérieures.

20 Les Inventeurs ont maintenant caractérisé et séquencé le gène *BZH* de *B. napus*, et son allèle mutant *bzh*, associé au phénotype nain précédemment observé par FOISSET et al. (1995, publication précitée).

25 La séquence du gène *BZH* sauvage est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO: 1, et la séquence de son produit de traduction est représentée sous le numéro SEQ ID NO: 2. La séquence de l'allèle mutant *bzh* est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO: 3, et la séquence de son produit de traduction 30 est représentée sous le numéro SEQ ID NO: 4.

La portion codante du gène *BZH* est de 1716 pbs et la protéine correspondante est de 572 acides aminés.

35 L'analyse des séquences du gène *BZH* et de son produit de traduction permet de le rattacher à la famille GRAS, et notamment au sous-groupe comprenant *GAI*, *RGA* et *RGA-like*. L'alignement des séquences polypeptidiques

déduites des gènes *BZH* avec d'autres gènes de la famille *GRAS*, à savoir les gènes *GAI*, *RGA*, *RGA-LIKE*, *SCARECROW* et *LS*, est représenté sur la Figure 1.

5 L'analyse des séquences de l'allèle mutant *bzh* et de son produit de traduction montre que la mutation *bzh* est une substitution G → A en position 1695 de la séquence codante. Elle conduit à un changement d'acide aminé acide glutamique → Lysine en position 546 de la séquence polypeptidique.

10 De manière surprenante, la mutation *bzh* est totalement différente de la mutation *gai* d'*Arabidopsis*. En particulier, alors que la mutation *gai* d'*Arabidopsis* affecte une région située dans la portion N-terminale de la protéine *GAI*, la mutation *bzh* affecte une région 15 située dans la portion C-terminale de la protéine *BZH*.

La présente invention a pour objet une séquence d'acide nucléique obtenue par mutation d'une séquence codant une protéine végétale de la famille *GRAS* comprenant la séquence peptidique (I) suivante :

20 Gly Tyr X₁ Val Glu Glu (I)

dans laquelle X₁ représente l'arginine ou l'asparagine, caractérisée en ce que ladite mutation résulte en une modification de ladite séquence (I).

25 Par « modification de la séquence (I) » on entend notamment la substitution d'un ou plusieurs acides aminés de ladite séquence, l'insertion d'un ou plusieurs acides aminés à l'intérieur de cette séquence, ou la délétion de tout ou partie de ladite séquence.

30 Des protéines végétales de la famille *GRAS* comprenant la séquence peptidique (I) sont notamment les protéines *BZH* du colza, ainsi que les protéines des sous-familles *GAI* ou *RGA* décrites ci-dessus.

35 Selon un mode de réalisation préféré d'une séquence d'acide nucléique conforme à la présente invention, elle code une protéine mutante comprenant la séquence peptidique (II) suivante

Gly Tyr X₁ Val Glu X₂ (II)

dans laquelle X₁ est tel que défini ci-dessus,
et X₂ représente un acide aminé autre que l'acide
glutamique. Avantageusement, X₂ représente un acide aminé
5 basique, de préférence une lysine.

L'invention englobe notamment les séquences
d'acide nucléique codant le polypeptide représenté dans
la liste de séquence en annexe sous le numéro
SEQ ID NO: 4, par exemple la séquence de l'allèle mutant
10 bzh qui est représentée dans la liste de séquences en
annexe sous le numéro SEQ ID NO:3.

L'invention a également pour objet des plantes
à développement réduit comprenant une ou plusieurs copies
d'une séquence d'acide nucléique conforme à l'invention.

15 Ceci englobe en particulier :

- des plantes mutantes obtenues à partir de plantes sauvages par les techniques classiques de mutagenèse, par exemple en traitant des semences par un agent mutagène physique ou chimique, en sélectionnant parmi 20 les plantes issues des semences traitées, les plantes présentant un nanisme insensible aux gibberellines, et en recherchant parmi celles-ci, par des techniques classiques de détection d'hybridation des acides nucléiques, celles qui présentent une mutation au niveau 25 de la séquence d'acide nucléique codant la séquence peptidique (I). On peut également introduire la mutation souhaitée dans un fragment préalablement cloné du gène concerné, et réinsérer la séquence mutée dans le gène original en remplacement de l'ADN sauvage 30 correspondant ;
- des plantes transgéniques obtenues par transgenèse d'une plante hôte avec une séquence d'acide nucléique conforme à l'invention ;
- les descendants, pouvant être obtenus par reproduction 35 sexuée ou multiplication végétative, des plantes

mutantes ou des plantes transgéniques mentionnées ci-dessus.

Avantageusement, des plantes conformes à l'invention sont des crucifères, et en particulier des brassicacées, telles par exemple que le colza, le chou, la navette, la moutarde brune, ou la moutarde d'Ethiopie.

Les plantes exprimant une séquence d'acide nucléique conforme à l'invention présentent, par rapport aux plantes sauvages, une réduction de taille plus ou moins importante selon le niveau d'expression dans ladite plante de la séquence d'acide nucléique conforme à l'invention. Ce niveau d'expression dépend en particulier du nombre de copies de la séquence. Par exemple, dans le cas du colza, les plants hétérozygotes *BZH/bzh* ont une taille intermédiaire entre celle des plants nains homozygotes *bzh/bzh* et celle des plants sauvages *BZH/BZH*.

Les plantes conformes à l'invention présentent, notamment dans le cas du colza, les avantages suivants :

- possibilité de semis très précoces, permettant l'assimilation des nitrates, sans risque d'elongation de la tige avant l'hiver ;
- meilleure résistance au froid ;
- meilleur suivi de la culture, du fait d'une taille plus courte facilitant les traitements phytosanitaires ;
- très bonne résistance à la verse ;
- facilité de la récolte.

La présente invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples non limitatifs décrivant la caractérisation du gène *BZH* de colza, et d'une séquence conforme à l'invention dérivée dudit gène.

EXEMPLE 1 : CARACTERISATION ET SEQUENÇAGE DU GENE *BZH* SAUVAGE ET DU GENE MUTANT *bzh*:

Le gène *BZH* a été isolé sur un fragment d'ADN de 2352 paires de bases obtenu à partir de la lignée de

colza « STELLAR ». Ce fragment contient une séquence codante de 1716 pbs, et la séquence polypeptidique déduite est de 572 acides aminés. La séquence codante et la séquence polypeptidique déduite sont respectivement 5 représentées sur la liste de séquence en annexe sous les numéros SEQ ID NO: 1 et 2.

Pour comparer la séquence du gène sauvage et de l'allèle mutant *bzh*, 5 lignées ont été étudiées: PRIMOR sauvage (PS), PRIMOR nain (PN), DARMOR sauvage 10 (DS), DARMOR nain (DN) et STELLAR sauvage (STE).

Les fragments d'ADN correspondant au locus BZH ont été amplifiés sur ces lignées, à l'aide d'amorces dérivées de la séquence du SEQ ID NO: 1.

La comparaison des séquences des produits 15 d'amplification obtenus a permis d'établir que la seule différence commune à PRIMOR nain et DARMOR nain par rapport aux génotypes sauvages est une substitution G → A en position 1695 de la séquence codante. Cette substitution conduit à un changement d'acide aminé 20 Glu→Lys en position 546 de la séquence peptidique.

La séquence codante portée par le fragment d'acide nucléique amplifié à partir de la lignée primur nain, et la séquence peptidique correspondante sont respectivement représentées dans la liste de séquences en 25 annexe sous les numéros SEQ ID NO: 3 et 4.

EXAMPLE 2 : DETECTION DE L'ALLELE MUTANT *bzh* CHEZ DES PLANTES NAINES.

49 lignées issues du croisement : DARMOR nain X YUDAL, ainsi que les couples de lignées 30 isogéniques [sauvage]/[*bzh*] suivants : ISL1770/ISN1770, DOUBLOL/DOUBLOL-Bzh, GASPARD/GASPARD-Bzh, TAPIDOR/TAPIDOR-Bzh, ont été analysées par amplification PCR d'une région de 400 pb environ de la séquence codante, correspondant à la portion C-terminale de la protéine, et 35 électrophorèse sur gel de polyacrylamide des produits d'amplification.

Les lignées de phénotype « nain » présentaient sur le gel une bande caractéristique de la présence de la substitution G → A.

LISTE DE SEQUENCES

<110> INRA

<120> GENE MUTANT DE LA FAMILLE GRAS, ET PLANTES A DEVELOPPEMENT REDUIT COMPRENANT LEDIT GENE

<130> MJPcb539-95

<140>

<141>

<160> 4

<170> PatentIn Ver. 2.1

<210> 1

<211> 1779

<212> ADN

<213> Brassica napus

<220>

<221> CDS

<222> (60)..(1778)

<400> 1

caacccagaa caaaaaccaga ccgatctgag agattaacta tatcttaacc agatcagaa 59

atg aag agg gat ctt cat cag ttc caa ggt ccc aac cac ggg aca tca	107
Met Lys Arg Asp Leu His Gln Phe Gln Gly Pro Asn His Gly Thr Ser	
1 5 10 15	

atc gcc ggt tct tcc act tct tcc cct gcg gtg ttt ggt aaa gac aag	155
Ile Ala Gly Ser Ser Thr Ser Pro Ala Val Phe Gly Lys Asp Lys	
20 25 30	

atg atg atg gtc aaa gaa gaa gac gac gag ctt cta gga gtc ttg	203
Met Met Met Val Lys Glu Glu Asp Asp Glu Leu Leu Gly Val Leu	
35 40 45	

ggt tac aag gtt agg tct tcg gag atg gct gag gtt gcg ttg aaa ctc	251
Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Glu Val Ala Leu Lys Leu	
50 55 60	

gag cag ctt gag acg atg atg ggt aac gct caa gaa gac ggt tta gct	299
Glu Gln Leu Glu Thr Met Met Gly Asn Ala Gln Glu Asp Gly Leu Ala	
65 70 75 80	

cac ctc gcg acg gat act gtt cat tac aac ccc gct gag ctt tac tcg	347
His Leu Ala Thr Asp Thr Val His Tyr Asn Pro Ala Glu Leu Tyr Ser	
85 90 95	

tgg ctt gat aac atg ctc acg gag ctt aac cca ccc gct gca acg acc	395
Trp Leu Asp Asn Met Leu Thr Glu Leu Asn Pro Pro Ala Ala Thr Thr	
100 105 110	

gga tct aac gct ttg aac ccg gag att aat aat aat aat aat aac tcg Gly Ser Asn Ala Leu Asn Pro Glu Ile Asn Asn Asn Asn Asn Asn Ser	115 120 125	443
ttt ttc acc gga ggc gac ctc aaa gcg att cct gga aac gcg gtt tgt Phe Phe Thr Gly Gly Asp Leu Lys Ala Ile Pro Gly Asn Ala Val Cys	130 135 140	491
cgc aga tct aat cag ttc gcg ttt gcg gtt gat tcg tcg agt aat aag Arg Arg Ser Asn Gln Phe Ala Phe Ala Val Asp Ser Ser Ser Asn Lys	145 150 155 160	539
cgt ttg aaa ccg tcc tcg agc cct gat tcg atg gtt aca tct cca tca Arg Leu Lys Pro Ser Ser Pro Asp Ser Met Val Thr Ser Pro Ser	165 170 175	587
cct gct gga gtt ata gga acg acg gtt aca acc gtg acc gag tca act Pro Ala Gly Val Ile Gly Thr Thr Val Thr Val Thr Glu Ser Thr	180 185 190	635
cgt cct tta atc ctg gtc gac tcg cag gac aac gga gtg cgt cta gtc Arg Pro Leu Ile Leu Val Asp Ser Gln Asp Asn Gly Val Arg Leu Val	195 200 205	683
cac gcg ctt atg gcc tgc gct gaa gcc gtg cag agc agc aac ttg act His Ala Leu Met Ala Cys Ala Glu Ala Val Gln Ser Ser Asn Leu Thr	210 215 220	731
cta gcg gag gct ctc gtt aag cag att ggt ttc ttg gcc gtc tct caa Leu Ala Glu Ala Leu Val Lys Gln Ile Gly Phe Leu Ala Val Ser Gln	225 230 235 240	779
gcc gga gcc atg agg aaa gtc gcc acg tac ttc gcc gaa gct ctc gcg Ala Gly Ala Met Arg Lys Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala	245 250 255	827
cgg agg atc tac cgc ctc tct ccg ccg cag acg cag atc gat cac tct Arg Arg Ile Tyr Arg Leu Ser Pro Pro Gln Thr Gln Ile Asp His Ser	260 265 270	875
tta tcc gat act ctc cag atg cac ttc tac gag act tgc cct tac ctc Leu Ser Asp Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu	275 280 285	923
aag ttc gct cac ttc acg gcg aat cag gcg att ctc gag gct ttc gaa Lys Phe Ala His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Glu	290 295 300	971
ggg aag aag aga gtc cac gtc atc gat ttc tcg atg aac caa ggg ctt Gly Lys Lys Arg Val His Val Ile Asp Phe Ser Met Asn Gln Gly Leu	305 310 315 320	1019
cag tgg ccc gcg ctt atg caa gcc ctt gcg ttg agg gaa gga ggt cct Gln Trp Pro Ala Leu Met Gln Ala Leu Ala Leu Arg Glu Gly Gly Pro	325 330 335	1067

ccg agt ttc agg tta acc gga att ggt cct ccc gcg gcg gat aac tcc Pro Ser Phe Arg Leu Thr Gly Ile Gly Pro Pro Ala Ala Asp Asn Ser 340 345 350	1115
gat cat ctc cat gaa gtt gga tgt aag ttg gct cag ctc gcg gag gcg Asp His Leu His Glu Val Gly Cys Lys Leu Ala Gln Leu Ala Glu Ala 355 360 365	1163
att cac gtc gag ttt gag tat cgt ggc ttt gtt gct aat agc tta gct Ile His Val Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Ser Leu Ala 370 375 380	1211
gat ctt gat gcc tcg atg ctt gag ctt aga ccg agt gaa acc gaa gct Asp Leu Asp Ala Ser Met Leu Glu Leu Arg Pro Ser Glu Thr Glu Ala 385 390 395 400	1259
gtg gcg gtt aac tct gtt ttc gag ctc cac aag ctc cta ggc cgt acc Val Ala Val Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Thr 405 410 415	1307
ggg ggg ata gag aaa gtc ttc ggc gtt gtg aaa cag att aaa ccg gtg Gly Gly Ile Glu Lys Val Phe Gly Val Val Lys Gln Ile Lys Pro Val 420 425 430	1355
att ttc acg gtt gtt gag caa gaa tcg aat cat aac ggt ccg gtt ttc Ile Phe Thr Val Val Glu Gln Glu Ser Asn His Asn Gly Pro Val Phe 435 440 445	1403
tta gac cgg ttt act gaa tcg ctg cat tat tat tcg acg ttg ttt gat Leu Asp Arg Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp 450 455 460	1451
tcc ttg gaa ggt gct ccg agt agc caa gat aaa gtt atg tcg gaa gtt Ser Leu Glu Gly Ala Pro Ser Ser Gln Asp Lys Val Met Ser Glu Val 465 470 475 480	1499
tat tta ggg aaa cag att tgc aat ctg gtg gct tgc gaa ggt ccg gac Tyr Leu Gly Lys Gln Ile Cys Asn Leu Val Ala Cys Glu Gly Pro Asp 485 490 495	1547
cgt gtt gag aga cat gag acg ctg agt caa tgg tcg aac ccg ttc ggt Arg Val Glu Arg His Glu Thr Leu Ser Gln Trp Ser Asn Arg Phe Gly 500 505 510	1595
tcg tcc ggt ttt gcg ccg gcg cat ctc ggg tct aac gcg ttt aag caa Ser Ser Gly Phe Ala Pro Ala His Leu Gly Ser Asn Ala Phe Lys Gln 515 520 525	1643
gcg agt acg ctt ttg gct ttg ttt aat gga ggc gaa ggt tat cgt gtg Ala Ser Thr Leu Leu Ala Leu Phe Asn Gly Gly Glu Gly Tyr Arg Val 530 535 540	1691
gag gag aat aat ggg tgt ttg atg ttg agt tgg cac act cga ccg ctc Glu Glu Asn Asn Gly Cys Leu Met Leu Ser Trp His Thr Arg Pro Leu 545 550 555 560	1739

ata acc acc tcc gct tgg aag ctc tcg gcg gtg cac tga g
Ile Thr Thr Ser Ala Trp Lys Leu Ser Ala Val His
565 570 1779

<210> 2
<211> 572
<212> PRT
<213> Brassica napus

<400> 2
Met Lys Arg Asp Leu His Gln Phe Gln Gly Pro Asn His Gly Thr Ser
1 5 10 15

Ile Ala Gly Ser Ser Thr Ser Ser Pro Ala Val Phe Gly Lys Asp Lys
20 25 30

Met Met Met Val Lys Glu Glu Asp Asp Glu Leu Leu Gly Val Leu
35 40 45

Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Glu Val Ala Leu Lys Leu
50 55 60

Glu Gln Leu Glu Thr Met Met Gly Asn Ala Gln Glu Asp Gly Leu Ala
65 70 75 80

His Leu Ala Thr Asp Thr Val His Tyr Asn Pro Ala Glu Leu Tyr Ser
85 90 95

Trp Leu Asp Asn Met Leu Thr Glu Leu Asn Pro Pro Ala Ala Thr Thr
100 105 110

Gly Ser Asn Ala Leu Asn Pro Glu Ile Asn Asn Asn Asn Asn Ser
115 120 125

Phe Phe Thr Gly Gly Asp Leu Lys Ala Ile Pro Gly Asn Ala Val Cys
130 135 140

Arg Arg Ser Asn Gln Phe Ala Phe Ala Val Asp Ser Ser Ser Asn Lys
145 150 155 160

Arg Leu Lys Pro Ser Ser Ser Pro Asp Ser Met Val Thr Ser Pro Ser
165 170 175

Pro Ala Gly Val Ile Gly Thr Thr Val Thr Thr Val Thr Glu Ser Thr
180 185 190

Arg Pro Leu Ile Leu Val Asp Ser Gln Asp Asn Gly Val Arg Leu Val
195 200 205

His Ala Leu Met Ala Cys Ala Glu Ala Val Gln Ser Ser Asn Leu Thr
210 215 220

Leu Ala Glu Ala Leu Val Lys Gln Ile Gly Phe Leu Ala Val Ser Gln
225 230 235 240

Ala Gly Ala Met Arg Lys Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala
 245 250 255

Arg Arg Ile Tyr Arg Leu Ser Pro Pro Gln Thr Gln Ile Asp His Ser
 260 265 270

Leu Ser Asp Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu
 275 280 285

Lys Phe Ala His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Glu
 290 295 300

Gly Lys Lys Arg Val His Val Ile Asp Phe Ser Met Asn Gln Gly Leu
 305 310 315 320

Gln Trp Pro Ala Leu Met Gln Ala Leu Ala Leu Arg Glu Gly Gly Pro
 325 330 335

Pro Ser Phe Arg Leu Thr Gly Ile Gly Pro Pro Ala Ala Asp Asn Ser
 340 345 350

Asp His Leu His Glu Val Gly Cys Lys Leu Ala Gln Leu Ala Glu Ala
 355 360 365

Ile His Val Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Ser Leu Ala
 370 375 380

Asp Leu Asp Ala Ser Met Leu Glu Leu Arg Pro Ser Glu Thr Glu Ala
 385 390 395 400

Val Ala Val Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Thr
 405 410 415

Gly Gly Ile Glu Lys Val Phe Gly Val Val Lys Gln Ile Lys Pro Val
 420 425 430

Ile Phe Thr Val Val Glu Gln Glu Ser Asn His Asn Gly Pro Val Phe
 435 440 445

Leu Asp Arg Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp
 450 455 460

Ser Leu Glu Gly Ala Pro Ser Ser Gln Asp Lys Val Met Ser Glu Val
 465 470 475 480

Tyr Leu Gly Lys Gln Ile Cys Asn Leu Val Ala Cys Glu Gly Pro Asp
 485 490 495

Arg Val Glu Arg His Glu Thr Leu Ser Gln Trp Ser Asn Arg Phe Gly
 500 505 510

Ser Ser Gly Phe Ala Pro Ala His Leu Gly Ser Asn Ala Phe Lys Gln
 515 520 525

Ala Ser Thr Leu Leu Ala Leu Phe Asn Gly Gly Glu Gly Tyr Arg Val
 530 535 540

Glu Glu Asn Asn Gly Cys Leu Met Leu Ser Trp His Thr Arg Pro Leu
 545 550 555 560

Ile Thr Thr Ser Ala Trp Lys Leu Ser Ala Val His
 565 570

<210> 3
 <211> 1779
 <212> ADN
 <213> Brassica napus

<220>
 <221> CDS
 <222> (60)..(1778)

<400> 3
 caacccagaa caaaaaccaga ccgatctgag agattaacta tatcttaacc agatcagaa 59

atg aag agg gat ctt cat cag ttc caa ggt ccc aac cac ggg aca tca 107
 Met Lys Arg Asp Leu His Gln Phe Gln Gly Pro Asn His Gly Thr Ser
 1 5 10 15

atc gcc ggt tct tcc act tct tcc cct gcg gtg ttt ggt aaa gac aag 155
 Ile Ala Gly Ser Ser Thr Ser Pro Ala Val Phe Gly Lys Asp Lys
 20 25 30

atg atg atg gtc aaa gaa gaa gac gac gag ctt cta gga gtc ttg 203
 Met Met Val Lys Glu Glu Asp Asp Glu Leu Leu Gly Val Leu
 35 40 45

ggt tac aag gtt agg tct tcg gag atg gct gag gtt gcg ttg aaa ctc 251
 Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Glu Val Ala Leu Lys Leu
 50 55 60

gag cag ctt gag acg atg ggt aac gct caa gaa gac ggt tta gct 299
 Glu Gln Leu Glu Thr Met Gly Asn Ala Gln Glu Asp Gly Leu Ala
 65 70 75 80

cac ctc gcg acg gat act gtt cat tac aac ccc gct gag ctt tac tcg 347
 His Leu Ala Thr Asp Thr Val His Tyr Asn Pro Ala Glu Leu Tyr Ser
 85 90 95

tgg ctt gat aac atg ctc acg gag ctt aac cca ccc gct gca acg acc 395
 Trp Leu Asp Asn Met Leu Thr Glu Leu Asn Pro Pro Ala Ala Thr Thr
 100 105 110

gga tct aac gct ttg aac ccg gag att aat aat aat aat aac tcg 443
 Gly Ser Asn Ala Leu Asn Pro Glu Ile Asn Asn Asn Asn Asn Ser
 115 120 125

ttt ttc acc gga ggc gac ctc aaa gcg att cct gga aac gcg gtt tgt 491
 Phe Phe Thr Gly Gly Asp Leu Lys Ala Ile Pro Gly Asn Ala Val Cys
 130 135 140

cgc aga tct aat cag ttc gcg ttt gcg gtt gat tcg tcg agt aat aag Arg Arg Ser Asn Gln Phe Ala Phe Ala Val Asp Ser Ser Ser Asn Lys 145 150 155 160	539
cgt ttg aaa ccg tcc tcg agc cct gat tcg atg gtt aca tct cca tca Arg Leu Lys Pro Ser Ser Ser Pro Asp Ser Met Val Thr Ser Pro Ser 165 170 175	587
cct gct gga gtt ata gga acg acg gtt aca acc gtg acc gag tca act Pro Ala Gly Val Ile Gly Thr Thr Val Thr Thr Val Thr Glu Ser Thr 180 185 190	635
cgt cct tta atc ctg gtc gac tcg cag gac aac gga gtg cgt cta gtc Arg Pro Leu Ile Leu Val Asp Ser Gln Asp Asn Gly Val Arg Leu Val 195 200 205	683
cac gcg ctt atg gcc tgc gct gaa gcc gtg cag agc agc aac ttg act His Ala Leu Met Ala Cys Ala Glu Ala Val Gln Ser Ser Asn Leu Thr 210 215 220	731
cta gcg gag gct ctc gtt aag cag att ggt ttc ttg gcc gtc tct caa Leu Ala Glu Ala Leu Val Lys Gln Ile Gly Phe Leu Ala Val Ser Gln 225 230 235 240	779
gcc gga gcc atg agg aaa gtc gcc acg tac ttc gcc gaa gct ctc gcg Ala Gly Ala Met Arg Lys Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala 245 250 255	827
cgg agg atc tac cgc ctc tct ccg ccg cag acg cag atc gat cac tct Arg Arg Ile Tyr Arg Leu Ser Pro Pro Gln Thr Gln Ile Asp His Ser 260 265 270	875
tta tcc gat act ctc cag atg cac ttc tac gag act tgc cct tac ctc Leu Ser Asp Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu 275 280 285	923
aag ttc gct cac ttc acg gcg aat cag gcg att ctc gag gct ttc gaa Lys Phe Ala His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Glu 290 295 300	971
ggg aag aag aga gtc cac gtc atc gat ttc tcg atg aac caa ggg ctt Gly Lys Lys Arg Val His Val Ile Asp Phe Ser Met Asn Gln Gly Leu 305 310 315 320	1019
cag tgg ccc gcg ctt atg caa gcc ctt gcg ttg agg gaa gga ggt cct Gln Trp Pro Ala Leu Met Gln Ala Leu Ala Leu Arg Glu Gly Gly Pro 325 330 335	1067
ccg agt ttc agg tta acc gga att ggt cct ccc gcg gcg gat aac tcc Pro Ser Phe Arg Leu Thr Gly Ile Gly Pro Pro Ala Ala Asp Asn Ser 340 345 350	1115
gat cat ctc cat gaa gtt gga tgt aag ttg gct cag ctc gcg gag gcg Asp His Leu His Glu Val Gly Cys Lys Leu Ala Gln Leu Ala Glu Ala 355 360 365	1163

att cac gtc gag ttt gag tat cgt ggc ttt gtt gct aat agc tta gct Ile His Val Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Ser Leu Ala 370 375 380	1211
gat ctt gat gcc tcg atg ctt gag ctt aga ccg agt gaa acc gaa gct Asp Leu Asp Ala Ser Met Leu Glu Leu Arg Pro Ser Glu Thr Glu Ala 385 390 395 400	1259
gtg gcg gtt aac tct gtt ttc gag ctc cac aag ctc cta ggc cgt acc Val Ala Val Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Thr 405 410 415	1307
ggt ggg ata gag aaa gtc ttc ggc gtt gtg aaa cag att aaa ccg gtg Gly Gly Ile Glu Lys Val Phe Gly Val Val Lys Gln Ile Lys Pro Val 420 425 430	1355
att ttc acg gtt gtt gag caa gaa tcg aat cat aac ggt ccg gtt ttc Ile Phe Thr Val Val Glu Gln Glu Ser Asn His Asn Gly Pro Val Phe 435 440 445	1403
tta gac cggtt act gaa tcg ctg cat tat tat tcg acg ttg ttt gat Leu Asp Arg Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp 450 455 460	1451
tcc ttg gaa ggt gct ccg agt agc caa gat aaa gtt atg tcg gaa gtt Ser Leu Glu Gly Ala Pro Ser Ser Gln Asp Lys Val Met Ser Glu Val 465 470 475 480	1499
tat tta ggg aaa cag att tgc aat ctg gtg gct tgc gaa ggt ccg gac Tyr Leu Gly Lys Gln Ile Cys Asn Leu Val Ala Cys Glu Gly Pro Asp 485 490 495	1547
cgt gtt gag aga cat gag acg ctg agt caa tgg tcg aac ccg ttc ggt Arg Val Glu Arg His Glu Thr Leu Ser Gln Trp Ser Asn Arg Phe Gly 500 505 510	1595
tcg tcc ggt ttt gcg ccg gcg cat ctc ggg tct aac gcg ttt aag caa Ser Ser Gly Phe Ala Pro Ala His Leu Gly Ser Asn Ala Phe Lys Gln 515 520 525	1643
gcg agt acg ctt ttg gct ttg ttt aat gga ggc gaa ggt tat cgt gtg Ala Ser Thr Leu Leu Ala Leu Phe Asn Gly Gly Glu Gly Tyr Arg Val 530 535 540	1691
gag aag aat aat ggg tgt ttg atg ttg agt tgg cac act cga ccg ctc Glu Lys Asn Asn Gly Cys Leu Met Leu Ser Trp His Thr Arg Pro Leu 545 550 555 560	1739
ata acc acc tcc gct tgg aag ctc tcg gcg gtg cac tga g Ile Thr Thr Ser Ala Trp Lys Leu Ser Ala Val His 565 570	1779

<210> 4
<211> 572
<212> PRT
<213> Brassica napus

<400> 4
 Met Lys Arg Asp Leu His Gln Phe Gln Gly Pro Asn His Gly Thr Ser
 1 5 10 15
 Ile Ala Gly Ser Ser Thr Ser Ser Pro Ala Val Phe Gly Lys Asp Lys
 20 25 30
 Met Met Met Val Lys Glu Glu Asp Asp Glu Leu Leu Gly Val Leu
 35 40 45
 Gly Tyr Lys Val Arg Ser Ser Glu Met Ala Glu Val Ala Leu Lys Leu
 50 55 60
 Glu Gln Leu Glu Thr Met Met Gly Asn Ala Gln Glu Asp Gly Leu Ala
 65 70 75 80
 His Leu Ala Thr Asp Thr Val His Tyr Asn Pro Ala Glu Leu Tyr Ser
 85 90 95
 Trp Leu Asp Asn Met Leu Thr Glu Leu Asn Pro Pro Ala Ala Thr Thr
 100 105 110
 Gly Ser Asn Ala Leu Asn Pro Glu Ile Asn Asn Asn Asn Asn Ser
 115 120 125
 Phe Phe Thr Gly Gly Asp Leu Lys Ala Ile Pro Gly Asn Ala Val Cys
 130 135 140
 Arg Arg Ser Asn Gln Phe Ala Phe Ala Val Asp Ser Ser Ser Asn Lys
 145 150 155 160
 Arg Leu Lys Pro Ser Ser Ser Pro Asp Ser Met Val Thr Ser Pro Ser
 165 170 175
 Pro Ala Gly Val Ile Gly Thr Thr Val Thr Thr Val Thr Glu Ser Thr
 180 185 190
 Arg Pro Leu Ile Leu Val Asp Ser Gln Asp Asn Gly Val Arg Leu Val
 195 200 205
 His Ala Leu Met Ala Cys Ala Glu Ala Val Gln Ser Ser Asn Leu Thr
 210 215 220
 Leu Ala Glu Ala Leu Val Lys Gln Ile Gly Phe Leu Ala Val Ser Gln
 225 230 235 240
 Ala Gly Ala Met Arg Lys Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala
 245 250 255
 Arg Arg Ile Tyr Arg Leu Ser Pro Pro Gln Thr Gln Ile Asp His Ser
 260 265 270
 Leu Ser Asp Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu
 275 280 285
 Lys Phe Ala His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Glu
 290 295 300

Gly Lys Lys Arg Val His Val Ile Asp Phe Ser Met Asn Gln Gly Leu
 305 310 315 320

Gln Trp Pro Ala Leu Met Gln Ala Leu Ala Leu Arg Glu Gly Gly Pro
 325 330 335

Pro Ser Phe Arg Leu Thr Gly Ile Gly Pro Pro Ala Ala Asp Asn Ser
 340 345 350

Asp His Leu His Glu Val Gly Cys Lys Leu Ala Gln Leu Ala Glu Ala
 355 360 365

Ile His Val Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Ser Leu Ala
 370 375 380

Asp Leu Asp Ala Ser Met Leu Glu Leu Arg Pro Ser Glu Thr Glu Ala
 385 390 395 400

Val Ala Val Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Thr
 405 410 415

Gly Gly Ile Glu Lys Val Phe Gly Val Val Lys Gln Ile Lys Pro Val
 420 425 430

Ile Phe Thr Val Val Glu Gln Glu Ser Asn His Asn Gly Pro Val Phe
 435 440 445

Leu Asp Arg Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp
 450 455 460

Ser Leu Glu Gly Ala Pro Ser Ser Gln Asp Lys Val Met Ser Glu Val
 465 470 475 480

Tyr Leu Gly Lys Gln Ile Cys Asn Leu Val Ala Cys Glu Gly Pro Asp
 485 490 495

Arg Val Glu Arg His Glu Thr Leu Ser Gln Trp Ser Asn Arg Phe Gly
 500 505 510

Ser Ser Gly Phe Ala Pro Ala His Leu Gly Ser Asn Ala Phe Lys Gln
 515 520 525

Ala Ser Thr Leu Leu Ala Leu Phe Asn Gly Gly Glu Gly Tyr Arg Val
 530 535 540

Glu Lys Asn Asn Gly Cys Leu Met Leu Ser Trp His Thr Arg Pro Leu
 545 550 555 560

Ile Thr Thr Ser Ala Trp Lys Leu Ser Ala Val His
 565 570

~~Folio 8 page certification~~

REVENDICATIONS

1) Séquence d'acide nucléique obtenue par mutation d'une séquence codant une protéine végétale de la famille GRAS comprenant la séquence peptidique (I) suivante :

5 Gly Tyr X₁ Val Glu Glu (I)

dans laquelle X₁ représente l'arginine ou l'asparagine, caractérisée en ce que ladite mutation résulte en une modification de ladite séquence (I).

10 2) Séquence d'acide nucléique selon la revendication 1, caractérisée en ce qu'elle code une protéine mutante comprenant la séquence peptidique (II) suivante

Gly Tyr X₁ Val Glu X₂ (II)

dans laquelle X₁ est tel que défini ci-dessus, et X₂ représente un acide aminé autre que l'acide glutamique.

15 3) Séquence d'acide nucléique selon la revendication 2, caractérisée en ce que X₂ représente un acide aminé basique, de préférence une lysine.

20 4) Séquence d'acide nucléique selon la revendication 3, caractérisée en ce qu'elle code le polypeptide représenté dans la liste de séquences en annexe sous le numéro SEQ ID NO: 4

5) Plante à développement réduit comprenant une ou plusieurs copies d'une séquence d'acide nucléique selon une quelconque des revendications 1 à 4.

25 5) Plante selon la revendication 4 caractérisée en ce qu'il s'agit d'une crucifère.

6) Plante selon la revendication 5, caractérisée en ce qu'il s'agit d'une Brassicacée.

30 7) Plante selon la revendication 6, choisie parmi le colza, le chou, la navette, la moutarde brune, et la moutarde d'Ethiopie.

REVENDICATIONS

1) Séquence d'acide nucléique obtenue par mutation d'une séquence codant une protéine végétale de la famille GRAS comprenant la séquence peptidique (I) suivante :

5 Gly Tyr X₁ Val Glu Glu (I)

dans laquelle X₁ représente l'arginine ou l'asparagine, caractérisée en ce que ladite mutation résulte en une modification de ladite séquence (I).

10 2) Séquence d'acide nucléique selon la revendication 1, caractérisée en ce qu'elle code une protéine mutante comprenant la séquence peptidique (II) suivante

Gly Tyr X₁ Val Glu X₂ (II)

dans laquelle X₁ est tel que défini ci-dessus, et X₂ représente un acide aminé autre que l'acide glutamique.

15 3) Séquence d'acide nucléique selon la revendication 2, caractérisée en ce que X₂ représente un acide aminé basique, de préférence une lysine.

20 4) Séquence d'acide nucléique selon la revendication 3, caractérisée en ce qu'elle code le polypeptide représenté dans la liste de séquences en annexe sous le numéro SEQ ID NO: 4

5) Plante à développement réduit comprenant une ou plusieurs copies d'une séquence d'acide nucléique selon une quelconque des revendications 1 à 4.

25 6) Plante selon la revendication 5 caractérisée en ce qu'il s'agit d'une crucifère.

7) Plante selon la revendication 6, caractérisée en ce qu'il s'agit d'une Brassicacée.

30 8) Plante selon la revendication 7, choisie parmi le colza, le chou, la navette, la moutarde brune, et la moutarde d'Ethiopie.

1
 (GAI) ~~~~~
 (RGA) ~~~~~
 (BZH-sauvage) ~~~~~
 (RGAL) MEEVSSEMEV EVQNRLSDS SPAQNVKFGF IKNSIQTNGF SDYVFQIVPK IDWTAJAVSL STNTVKLYSP VTGQYYGECK GHSDTVNQIA FSSDSAASEH
 (LS) ~~~~~
 (SCARECROW) ~~~~~

100
 (GAI) ~~~~~
 (RGA) ~~~~~
 (BZH-sauvage) ~~~~~
 (RGAL) ~~~~~
 (LS) ~~~~~
 (SCARECROW) ~~~~~

101
 (GAI) ~~~~~
 (RGA) ~~~~~
 (BZH-sauvage) ~~~~~
 (RGAL) VLHSCSSDGT IRSWDTRSFO QVSRIDTGNQ QEIIFSFSYGC AADNLLAGGC KEQREHNRE SSAGEGSSS MTTVKEEEAA GVDELLVYLG YKVRSSDMAD
 (LS) ~~~~~
 (SCARECROW) PPPLVWVRKR LASEMSSNPD YNNNSSRPPRR VSHLDSNYN TVTPQQPPSL TAATVSSQP NPPLSVCGFS GLPVFPDSRG GRNNMNSYQP MDQDSSSSS.

200
 (GAI) VAQKLEQLEV MMSNVQEDDL SOLATEVHY NPAELYTWLD SM..LTIDLNP PSS NAEY. DLKA IPGDAIL... NOFAIDSASS
 (RGA) VAQKLEQLEV MMSNVQEDDL SOLATEVHY NPAELYTWLD SM..LTIDLNP PSS NAEY. DLKA IPGDAIL... NOFAIDSASS
 (BZH-sauvage) VALKLEQLET MMGNAQEDGL AHLATDVHY NPAELYSWLD NM..LTELNPA PAATTGSNAL NPEINNNNNN SFTGGDLKA IPGNAVCRRS NOFAFADSS
 (RGAL) VAHKLEQLEM VLG...DG1 SNLSDETVHY NPSDSLGVWE SM..LSDLDP ...TRIQEKP DSEY. DLRA IPGSAYVPR.
 (LS) ~~~~~
 (SCARECROW) .ASPTVWVDIA IIRDLIHSST SVSIPQLION VRDIIFPCNP NLGALLEYRL RSLMLDPSS SSDPSPTTEE PLYQISSNPS PPQQQQHQO QQQQHKPPPPP

201
 (GAI) S.NQ...GG GGDTYTBNKR LKCNSNGVET .T.TATAEST RHVLVLDSOE NGVRLVHALL ACAEAOKEN LTVAEALVKQ IGFLAVSQIG AMRKVATYEA
 (RGA) S.NQ...GG GGDTYTBNKR LKCNSNGVET .T.TATAEST RHVLVLDSOE NGVRLVHALL ACAEAOKEN LTVAEALVKQ IGFLAVSQIG AMRKVATYEA
 (BZH-sauvage) S.NKRLKPS SPDSMVT. . .PSPAGVIGT .TVTVTEST RPLLVIDSDQ NGVRLVHALL ACAEAOKEN LTVAEALVKQ IGFLAVSQAG AMRKVATYEA
 (RGAL)DEHVTRRS KR.T EIESELSTS RSVVVLDSQE TGVRLVHALL ACAEAOKEN LKLADALVXH VGLJASSQAG AMRKVATYEA
 (LS)MLGSFGS SSSQSHPHHD EESSDHQQR .RFTATTI TTITITSP. .AICIRQLI SCAELISQSD FSAAKRLLI LSTNNSPFGD STERLVHQFT
 (SCARECROW) PIQQUERENS STDAPPQPET VTATVBAVQT NTAEARERKK EEIKRQKODE EGLHLTLIL QCAEAVASDN LEEANKLILLE ISQLSTPYGT SAQRVAAYFS

300
 (GAI) S.NQ...GG GGDTYTBNKR LKCNSNGVET .T.TATAEST RHVLVLDSOE NGVRLVHALL ACAEAOKEN LTVAEALVKQ IGFLAVSQIG AMRKVATYEA
 (RGA) S.NQ...GG GGDTYTBNKR LKCNSNGVET .T.TATAEST RHVLVLDSOE NGVRLVHALL ACAEAOKEN LTVAEALVKQ IGFLAVSQIG AMRKVATYEA
 (BZH-sauvage) S.NKRLKPS SPDSMVT. . .PSPAGVIGT .TVTVTEST RPLLVIDSDQ NGVRLVHALL ACAEAOKEN LTVAEALVKQ IGFLAVSQAG AMRKVATYEA
 (RGAL)DEHVTRRS KR.T EIESELSTS RSVVVLDSQE TGVRLVHALL ACAEAOKEN LKLADALVXH VGLJASSQAG AMRKVATYEA
 (LS)MLGSFGS SSSQSHPHHD EESSDHQQR .RFTATTI TTITITSP. .AICIRQLI SCAELISQSD FSAAKRLLI LSTNNSPFGD STERLVHQFT
 (SCARECROW) PIQQUERENS STDAPPQPET VTATVBAVQT NTAEARERKK EEIKRQKODE EGLHLTLIL QCAEAVASDN LEEANKLILLE ISQLSTPYGT SAQRVAAYFS

400
 (GAI) EALARRIYR.LS PSQ. SPIDHS LSDTL.OMHFYETCP YLKFAHFTAN QAILEAFQKK .KRVHVIDFS MSQGLQWPAL MQALALRPGG
 (RGA) EALARRIYR.LS PSQ. SPIDHS LSDTL.OMHFYETCP YLKFAHFTAN QAILEAFQKK .KRVHVIDFS MSQGLQWPAL MQALALRPGG
 (BZH-sauvage) EALARRIYR.LS PPQ. TQIDHS LSDTL.OMHFYETCP YLKFAHFTAN QAILEAFEGK .KRVHVIDFS MNQGLQWPAL MQALALREGG
 (RGAL) EGLARRIYR.IY PRD.DVASSS FSDTL.QIHFEYSCP YLKFAHFTAN QAILEAFVATA .EKVHVIDLG INHGLQWPAL IQALALRPNG
 (LS) RALSRLRNRY ISSTTNHEMFT PVETPTDSS SSSSLALIOS SYLSLNQVTP FIRFTOLTAN QAILEAINGN HOAIIHIVDFD INHGVQWPPL MQALADRYPA
 (SCARECROW) EAMSARLLNS CLGIYAL. . . PSRWMPQTHS . . . LKMVSA FOV. ENGISP LVKFSHFTAN QAIQEAFE.K EDSVHIDL IMQGLQWPGL FHLASRPGC

500

Figure 1

501 PPVERLTGIG PPAPDNFDYL HEVGCKLAHL AEAIHVEFY RG. FVANTLA DLDA. S MLEIRPSEIE SVAVNSVFEL HKLJGRPGAI DKVLGVYNNQI
 (GAI) PPVERLTGIG PPAPDNFDYL HEVGCKLAHL AEAIHVEFY RG. FVANTLA DLDA. S MLEIRPSEIE SVAVNSVFEL HKLJGRPGAI DKVLGVYNNQI
 (RGA) PPSFRLTGIG PPAADNSDHL HEVGCKLAQL AEAIHVEFY RG. FVANSLA DLDA. S MLEIRPSEIE AVAVNSVFEL HKLJGRPGAI DKVLGVYNNQI
 (BZH-sauvage) PPDFRLTGIG YSLTD. I QEVGWLQQL ASTIGVNFF KS. IAIINNL DLKP. E MLDIHPG. LE SVAVNSVFEL HRLLAHPGSI DKFLSTIKSI
 (RGAL) .PTLRITGTG ... NDLDL RRTGDRLAKF AHSGLRFFQ HPLYIANNH DHDEDPSIIS SIVLLPD. E TLAINCVFYL HRLLKREKL RIFLHRVKSM
 (LS) { SCARECROW } PPHVRLTGLG TSMEAL QATGKRLSDF TDKLGLPFEF CP. LAEKVG NLD. TE RLNVR. .KRE AVAVH. .WLQ HSLYDVTGSD AHTLWLLQR

600
 (GAI) KPEIFTVVEQ ESNHNNSPIFL DRFTESLHY STLFDSLEG. .VPSGQDKV. MSEVYLGKQI CNVVAACDGPD RVERHETLSQ WNRNGCSAGF AAAHIGSNAF
 (RGA) KPEIFTVVEQ ESNHNNSPIFL DRFTESLHY STLFDSLEG. .VPSGQDKV. MSEVYLGKQI CNVVAACDGPD RVERHETLSQ WNRNGCSAGF AAAHIGSNAF
 (BZH-sauvage) KPVIFTVVEQ ESNHNNSPIFL DRFTESLHY STLFDSLEG. .APSSQDKV. MSEVYLGKQI CNLVACEGPD RVERHETLSQ WSNRFGSSGF APAHLSNMF
 (RGAL) RPDIMTVVEQ EAHNGTVFL DRFTESLHY SSLFDSLEG. .PPS.QDRV. MSEVYLGKQI INLVACEGED RVERHETLNQ WNRNGFLGGF KPVSIGNSNAY
 (LS) NPKITVIAEK EAHNNHPLFL QRFEIAIDDY TAVFDSLAEAT LPPGSRERMT VEQWWFGREI DITVAMEGDK RKERHERFRS WEVMRLRSCGF SNVALSPFFAL
 { SCARECROW } APKVITVVEQ DLSHAGS. FL GRFEIAHY SALFDSLGS YGEESERHV VEQQLLSKEI RNVLAVGGPS R. SGEVKFES WREKMQQCGF KGISLAGNA

701
 (GAI) KQASMLLAIF NGEGYRVEE SDGCCMLGWH TRPLIATSAY KLSTN~
 (RGA) KQASMLLAIF NGEGYRVEE SDGCCMLGWH TRPLIATSAY KLSTN~
 (BZH-sauvage) KQASTMLLAIF NGEGYRVEE NNGCMLLSWH TRPLIATSAY KLSAVH
 (RGAL) KQASMLLAIF AGADGYNVEE NEGCLLIGWQ TRPLIATSAY RINRVE
 (LS) SQAKLILRH YPSEGYQLGV SSNSFFLGWQ NOPLESISSW R~~~~~
 { SCARECROW } TQATLILGMF .PSDGTYLVD DNGTLKLGWK DLSLTASAW TPRS~~

746

Figure 1 (suite)