Word to Vector Representation

This is by far AAMIR KHAN's best one. Finest casting and terrific acting by all.

- Let us start with a very simple motivation for why we are interested in vectorial representations of words
- Suppose we are given an input stream of words (sentence, document, etc.) and we are interested in learning some function of it (say, $\hat{y} = sentiments(words)$)
- Say, we employ a machine learning algorithm (some mathematical model) for learning such a function $(\hat{y} = f(\mathbf{x}))$
- We first need a way of converting the input stream (or each word in the stream) to a vector x (a mathematical quantity)

Corpus:

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

V = [human,machine, interface, for, computer, applications, user, opinion, of, system, response, time, interface, management, engineering, improved]

- Given a corpus, consider the set V
 of all unique words across all input
 streams (i.e., all sentences or documents)
- V is called the vocabulary of the corpus (i.e., all sentences or documents)
- ullet We need a representation for every word in V
- One very simple way of doing this is to use one-hot vectors of size |V|

truck: 0 0 0 1 0 0 0

$$euclid_dist(\mathbf{cat}, \mathbf{dog}) = \sqrt{2}$$

 $euclid_dist(\mathbf{dog}, \mathbf{truck}) = \sqrt{2}$
 $cosine_sim(\mathbf{cat}, \mathbf{dog}) = 0$
 $cosine_sim(\mathbf{dog}, \mathbf{truck}) = 0$

Problems:

0

- V tends to be very large (for example, 50K for PTB, 13M for Google 1T corpus)
- These representations do not capture any notion of similarity
- Ideally, we would want the representations of cat and dog (both domestic animals) to be closer to each other than the representations of cat and truck
- However, with 1-hot representations, the Euclidean distance between **any** two words in the vocabulary in $\sqrt{2}$

And the cosine similarity between any two words in the vocabulary is

A bank is a **financial** institution that accepts **deposits** from the public and creates **credit**.

The idea is to use the accompanying words (financial, deposits, credit) to represent bank

- You shall know a word by the company it keeps Firth, J. R. 1957:11
- Distributional similarity based representations
- This leads us to the idea of cooccurrence matrix

Corpus:

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

 A co-occurrence matrix is a terms × terms matrix which captures the number of times a term appears in the context of another term

Corpus:

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

	human	machine	system	for	***	user
human	0	1	0	1	100	0
machine	1	0	0	1		0
system	0	0	0	1		2
for	1	1	1	0	***	0
0.00	*:			-		
					- 8	
user	0	0	2	0	***	0

Co-occurence Matrix

- A co-occurrence matrix is a terms × terms matrix which captures the number of times a term appears in the context of another term
- The context is defined as a window of k words around the terms
- Let us build a co-occurrence matrix for this toy corpus with k=2
- This is also known as a word × context matrix
- You could choose the set of words and contexts to be same or different
- Each row (column) of the cooccurrence matrix gives a vectorial representation of the corresponding word (context)

	human	machine	system	for	111	user
human	0	1	0	×	+++	0
machine	1	0	0	x	***	0
system	0	0	0	x	***	2
for	×	x	x	x	***	×
					-	
	- 3		A II		- 24	
	14.				174	
user	0	0	2	x	***	0

Some (fixable) problems

- Stop words (a, the, for, etc.) are very frequent → these counts will be very high
- Solution 1: Ignore very frequent words
- Solution 2: Use a threshold t (say, t = 100)

$$X_{ij} = min(count(w_i, c_j), t),$$

where w is word and c is context.

Some (severe) problems

- Very high dimensional (|V|)
- Very sparse
- Grows with the size of the vocabulary
- Solution: Use dimensionality reduction (SVD)

Continuous Bag of Words (CBOW)

- The methods that we have seen so far are called **count based models** because they use the co-occurrence counts of words
- We will now see methods which directly learn word representations (these are called (direct) prediction based models)

Why Word2vec?

- Preserves relationship between words.
- Deals with addition of new words in the vocabulary.
- Better results in lots of deep learning applications.

Working of word2Vec

 The word2vec objective function causes the words that occur in similar contexts to have similar embeddings.

Example: The **<u>kid</u>** said he would grow up to be superman.

The **child** said he would grow up to be superman.

CBOW

Predict the target word from the context.

Skip Gram

Predict the context words from target.

- Take a fake problem
- Solve it using neural network
- You get word embeddings as a side effect

fake problem: fill in a missing word in a sentence

There lived a king called Ashoka in India. After Kalinga battle, he converted to Buddhism. This mighty king ordered his ministers to put together a peaceful treaty with their neighboring kingdoms. The emperor ordered his ministers to also build stupa, a monument with Buddha's teachings.

Fake problem

ordered his ministers

ordered his ministers

There lived a king called Ashoka in India. After Kalinga battle, he converted to Buddhism. This mighty king ordered his ministers to put together a peaceful treaty with their neighboring kingdoms. The emperor ordered his ministers to also build stupa, a monument with Buddha's teachings.

Fake problem

king
ordered his ministers

king $\begin{bmatrix} 0.7\\ 0.4\\ 1.2\\ 3.8 \end{bmatrix}$ emperor $\begin{bmatrix} 0.7\\ 0.5\\ 1.2\\ 3.8 \end{bmatrix}$ king \sim emperor

king $\begin{bmatrix} 0.7\\ 0.5\\ 1.2\\ 3.8 \end{bmatrix}$ king \sim emperor

There lived a king called Ashoka in India. After Kalinga battle, he converted to Buddhism. This mighty king ordered his ministers to put together a peaceful treaty with their neighboring kingdoms. The emperor ordered his ministers to also build stupa, a monument with Buddha's teachings.

Training samples

lived, a → There

a, king -> lived

ordered, his -> king

ordered, his -> emperor

Getting word embeddings

Weights after training

 W_{3x5}

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

Word Vector for hope = W 3 x 5 X V 5 x 1

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

0

X

Hope can you free

set

V 5 x 1

V 3 X 1 w00 w10 w20

One Hot vector of words

Improving the accuracy

- Choice of Model architecture (CBOW / Skipgran
 - Large Corpus, higher dimensions, slower

 Skipgram
 - Small Corpus, Faster CBOW
- Increasing the training dataset.
- Increasing the vector dimensions
- Increasing the windows size.

V

Skip Gram Model

Getting word embeddings

Weights after training

 W_{3X5}

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

Word Vector for hope = W 3 x 5 X V 5 x 1

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

0 0 0

X

 1
 0
 0
 0
 0

 0
 1
 0
 0
 0

 0
 0
 1
 0
 0

 0
 0
 0
 1
 0

 0
 0
 0
 0
 1

 0
 0
 0
 0
 1

V 5 X 1

w00 w10 w20

One Hot vector of words