Interrogation écrite n°02

NOM: Prénom: Note:

1. Déterminer la nature de l'intégrale $\int_0^1 \frac{dt}{\ln t}$.

L'application $t\mapsto \frac{1}{\ln t}$ est continue (par morceaux) sur]0,1[. Or $\frac{1}{\ln t} \underset{t\to 1^-}{\sim} \frac{1}{t-1}$. Or $t\mapsto \frac{1}{t-1}$ n'est pas intégrable en 1^- . Ainsi $t\mapsto \frac{1}{\ln t}$ n'est pas intégrable en 1^- . Comme cette fonction est de signe constant sur]0,1[, $\int_0^1 \frac{\mathrm{d}t}{\ln t}$ diverge.

Remarque. Puisque $\frac{1}{\ln t} \xrightarrow[t \to 0^+]{} 0$, $t \mapsto \frac{1}{\ln t}$ est intégrable en 0^+ .

2. Déterminer la nature de l'intégrale $\int_0^{+\infty} \frac{e^{it} - 1}{t^{3/2}} dt$.

 $L'application \ f: \ t \mapsto \frac{e^{it}-1}{t^{3/2}} \ est \ continue \ (par \ morceaux) \ sur \]0, +\infty[. \ De \ plus$

$$f(t) \underset{t\to 0^+}{\sim} \frac{i}{t^{1/2}}$$

et $t\mapsto \frac{i}{t^{1/2}}$ est intégrable en 0^+ donc f également. Enfin, $|e^{it}|=1$ pour tout $t\in\mathbb{R}$ donc

$$f(t) = \mathcal{O}\left(\frac{1}{t^{3/2}}\right)$$

et $t\mapsto \frac{1}{t^{3/2}}$ est intégrable en $+\infty$ donc f également.

Finalement, f est intégrable sur $]0,+\infty[$. A fortiori, $\int_0^{+\infty} f(t) dt$ converge (absolument).

3. Calculer l'intégrale I = $\int_0^{+\infty} \frac{dt}{\cosh t}$ à l'aide du changement de variable $u = \sinh t$.

sh induit une bijection de classe \mathcal{C}^1 strictement croissante de \mathbb{R}_+ sur \mathbb{R}_+ donc

$$I = \int_0^{+\infty} \frac{\cosh t \, dt}{1 + \sinh^2 t} = \int_0^{+\infty} \frac{du}{1 + u^2} = [\arctan u]_0^{+\infty} = \frac{\pi}{2}$$

4. Déterminer un équivalent simple de $f: x \mapsto \int_{x}^{1} \frac{e^{t} dt}{t} en 0^{+}$.

On sait que

•
$$\frac{e^t}{t} \sim \frac{1}{t}$$
;

•
$$\forall t \in]0,1], \frac{1}{t} \ge 0;$$

•
$$\int_0^1 \frac{\mathrm{d}t}{t} \, diverge$$
.

On en déduit que $f(x) \underset{x \to 0^+}{\sim} \int_x^1 \frac{dt}{t} = -\ln x$.

5. Déterminer un équivalent simple de $f: x \mapsto \int_{x}^{+\infty} \operatorname{sh}\left(\frac{1}{t^2}\right) dt$ en $+\infty$.

On sait que

•
$$\operatorname{sh}\left(\frac{1}{t^2}\right) \sim \frac{1}{t^2}$$
;

•
$$\forall t \in [1, +\infty[, \frac{1}{t^2} \ge 0;$$

•
$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^2}$$
 converge.

On en déduit que $f(x) \underset{x \to +\infty}{\sim} \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^{2}} = \frac{1}{x}$.