CS 577 - Randomized Algorithms

Marc Renault

Department of Computer Sciences University of Wisconsin – Madison

> Spring 2021 TopHat Join Code: 524741

QUICKSORT

QUICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SA

RECALL: LINEAR TIME SELECTION

Problem

Find the *k*th value in an unsorted array *A* of *n* numbers if *A* were sorted.

Recall: Linear Time Selection

Problem

Find the *k*th value in an unsorted array *A* of *n* numbers if *A* were sorted.

```
Algorithm: QUICKSELECT
```

```
Input : A array A[1..n] and an int k.
Output: The kth element of A if A were sorted.
if n = 1 then return A[1]
Choose a pivot A[p]
r := \text{Partition}(A[1..n], p)
if k < r then
   return QuickSelect(A[1..r-1],k)
else if k > r then
   return QuickSelect(A[r+1..n],k-r)
else
   return A[r]
end
```

QuickSort

Algorithm: QUICKSORT

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

QuickSort

QuickSort partition step:

QUICKSORT

Algorithm: QUICKSORT

Input: An array A[1..n].

Output: A sorted from 1 to n.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

Why no combine step?

QUICKSORT

Algorithm: QuickSort

Input: An array A[1..n].

Output: A sorted from 1 to n.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

Why no combine step?

Because QuickSort sorts in-place.

QuickSort

```
Algorithm: QUICKSORT
```

Input: An array A[1..n].

Output: A sorted from 1 to n.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

TopHat 1: What is the complexity of the partition step?

QuickSort

```
Algorithm: QUICKSORT
```

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

TopHat 1: What is the complexity of the partition step? O(n).

Worst Case

Algorithm: QUICKSORT

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

TopHat 2: What is the worst-case recurrence?

WORST CASE

OUICKSORT

Algorithm: QuickSort

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

Worst-case recurrence

$$T(n) \le T(n-1) + T(0) + O(n)$$

 $\le T(n-2) + 2T(0) + 2O(n)$
 $\le n(T(0) + O(n))$
 $= O(n^2)$

QuickSort Analysis

Best Case

Algorithm: QUICKSORT

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

TopHat 3: What is the best-case recurrence?

Best Case

OUICKSORT

Algorithm: QUICKSORT

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p]

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

Best-case recurrence

$$T(n) \le 2T(n/2) + O(n)$$

= $O(n \log n)$

AVERAGE CASE

QuickSort

Observation 1

For $0 < \varepsilon < 1$,

$$T(n) = T(\varepsilon n) + T((1 - \varepsilon)n) + \Theta(n)$$

= $\Theta(n \log n)$

AVERAGE CASE

OUICKSORT

Observation 1

For $0 < \varepsilon < 1$,

$$T(n) = T(\varepsilon n) + T((1 - \varepsilon)n) + \Theta(n)$$

= $\Theta(n \log n)$

Probabilistic Argument

Expected Runtime:

$$T(n) \le \Pr[\Theta(n) \text{ split}] \cdot \Theta(n \log n) + \Pr[o(n) \text{ split}] \cdot \Theta(n^2)$$

AVERAGE CASE

OUICKSORT

Observation 1

For $0 < \varepsilon < 1$,

$$T(n) = T(\varepsilon n) + T((1 - \varepsilon)n) + \Theta(n)$$

= $\Theta(n \log n)$

Probabilistic Argument

Expected Runtime:

$$T(n) \le \Pr[\Theta(n) \text{ split}] \cdot \Theta(n \log n) + \Pr[o(n) \text{ split}] \cdot \Theta(n^2)$$

= $(1 - \Pr[o(n) \text{ split}]) \cdot \Theta(n \log n) + \Pr[o(n) \text{ split}] \cdot \Theta(n^2)$

OuickSort Analysis

AVERAGE CASE

OUICKSORT

Observation 1

For $0 < \varepsilon < 1$,

$$T(n) = T(\varepsilon n) + T((1 - \varepsilon)n) + \Theta(n)$$

= $\Theta(n \log n)$

Probabilistic Argument

Expected Runtime:

$$T(n) \leq \Pr[\Theta(n) \text{ split}] \cdot \Theta(n \log n) + \Pr[o(n) \text{ split}] \cdot \Theta(n^2)$$

$$= (1 - \Pr[o(n) \text{ split}]) \cdot \Theta(n \log n) + \Pr[o(n) \text{ split}] \cdot \Theta(n^2)$$

$$= \Theta(n \log n), \text{ if } \Pr[o(n) \text{ split}] = O\left(\frac{\log n}{n}\right)$$

Average Case

OUICKSORT

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + O(n)$$

AVERAGE CASE

OUICKSORT

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} (T(i-1)) + O(n)$$

AVERAGE CASE

OUICKSORT

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} (T(i-1)) + O(n) = O(n \log n)$$

AVERAGE CASE

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} \left(T(i-1) \right) + O(n) = O(n \log n)$$

Uniform Assumption Realistic?

• Probably not...

AVERAGE CASE

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} \left(T(i-1) \right) + O(n) = O(n \log n)$$

- Probably not...
- Improve QuickSort by more complicated pivot choice.

QuickSort with MomPivot

Algorithm: QuickSort

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p] using MomPivot

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

OUICKSORT

MomPivot Recurrence Worst-Case

$$T(n) \le T(7n/10) + T(3n/10) + O(n)$$

= $O(n \log n)$

AVERAGE CASE

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} \left(T(i-1) \right) + O(n) = O(n \log n)$$

Uniform Assumption Realistic?

• Probably not...

AVERAGE CASE

OUICKSORT

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} \left(T(i-1) \right) + O(n) = O(n \log n)$$

- Probably not...
- Improve QuickSort by more complicated pivot choice.

AVERAGE CASE

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} \left(T(i-1) \right) + O(n) = O(n \log n)$$

- Probably not...
- Improve QuickSort by more complicated pivot choice.
- What would be an easy way to get this average case performance?

AVERAGE CASE

Average Case Recurrence (uniform dist on orderings)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} \left(T(i-1) \right) + O(n) = O(n \log n)$$

- Probably not...
- Improve QuickSort by more complicated pivot choice.
- What would be an easy way to get this average case performance? UAR choose the pivot.

RANDOMIZATION AND ALGORITHMS

Random Input

- Average Case analysis:
 - Input is drawn from some distribution π .
 - Under distribution π , average run-time, memory, etc...
- We saw an example when we analyzed QuickSort for a uniform distribution.

IICKSORT **RANDOMIZED ALGORITHMS** RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

RANDOMIZATION AND ALGORITHMS

Random Input

- Average Case analysis:
 - Input is drawn from some distribution π .
 - Under distribution π , average run-time, memory, etc...
- We saw an example when we analyzed QuickSort for a uniform distribution.

Randomized Algorithms

• Algorithm flips a coin to make some decisions.

ickSort **Randomized Algorithms** Random QuickSort Min-Cut Hashing MAX SA

RANDOMIZATION AND ALGORITHMS

Random Input

- Average Case analysis:
 - Input is drawn from some distribution π .
 - Under distribution π , average run-time, memory, etc...
- We saw an example when we analyzed QuickSort for a uniform distribution.

Randomized Algorithms

- Algorithm flips a coin to make some decisions.
- Non-Deterministic: simultaneously considers multiple algorithms weighted by the probability distribution.

Types of Randomized Algorithms:

Monte Carlo

• With probability *p* returns the correct answer:

Types of Randomized Algorithms:

Monte Carlo

- With probability *p* returns the correct answer:
 - Run multiple times to boost the probability of correct answer.

Types of Randomized Algorithms:

Monte Carlo

- With probability *p* returns the correct answer:
 - Run multiple times to boost the probability of correct answer.
 - Provide an approximation guarantee in expectation.

ICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SA:

RANDOMIZED ALGORITHMS

Types of Randomized Algorithms:

Monte Carlo

- With probability *p* returns the correct answer:
 - Run multiple times to boost the probability of correct answer.
 - Provide an approximation guarantee in expectation.

Las Vegas

- Always returns the correct solution, or informs about failure.
- Has a run-time that is polynomial in expectation.

JICKSORT **RANDOMIZED ALGORITHMS** RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

RANDOMIZED ALGORITHMS

Types of Randomized Algorithms:

Monte Carlo

- With probability *p* returns the correct answer:
 - Run multiple times to boost the probability of correct answer.
 - Provide an approximation guarantee in expectation.

Las Vegas

- Always returns the correct solution, or informs about failure.
- Has a run-time that is polynomial in expectation.

Atlantic City

• Probabilistic run-time and correctness.

RANDOMIZATION AND APPROXIMATION

Guarantee in Expectation

Returns a solution that has a *r* approximation ratio in expectation:

$$\forall I, \mathbb{E}[\mathsf{alg}(I)] \leq r \cdot \mathsf{opt}(I) + \eta$$

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.
- Total probability mass is 1: $\sum_{i \in \Omega} p(i) = 1$.

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.
- Total probability mass is 1: $\sum_{i \in \Omega} p(i) = 1$.

Probability Event

• An event ε is a set of outcomes of Ω .

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.
- Total probability mass is 1: $\sum_{i \in \Omega} p(i) = 1$.

Probability Event

- An event ε is a set of outcomes of Ω .
- $\Pr[\varepsilon] = \sum_{i \in \varepsilon} p(i)$.
- Note: $\Pr[\overline{\varepsilon}] = 1 \Pr[\varepsilon]$

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.
- Total probability mass is 1: $\sum_{i \in \Omega} p(i) = 1$.

Probability Event

- An event ε is a set of outcomes of Ω .
- $\Pr[\varepsilon] = \sum_{i \in \varepsilon} p(i)$.
- Note: $\Pr[\overline{\varepsilon}] = 1 \Pr[\varepsilon]$

TH: Pr[Roll 1 on a fair D4] =

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.
- Total probability mass is 1: $\sum_{i \in \Omega} p(i) = 1$.

Probability Event

- An event ε is a set of outcomes of Ω .
- $\Pr[\varepsilon] = \sum_{i \in \varepsilon} p(i)$.
- Note: $\Pr[\overline{\varepsilon}] = 1 \Pr[\varepsilon]$

TH: Pr[Roll 1 on a fair D4] = 1/4

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.
- Total probability mass is 1: $\sum_{i \in \Omega} p(i) = 1$.

Probability Event

- An event ε is a set of outcomes of Ω .
- $\Pr[\varepsilon] = \sum_{i \in \varepsilon} p(i)$.
- Note: $\Pr[\overline{\varepsilon}] = 1 \Pr[\varepsilon]$

TH: Pr[Roll 1 on a fair D4] = 1/4; TH: Pr[Roll 2, 3, or 4 on a fair D4] =

Probability Space

- *Sample space* Ω of all possible outcomes.
 - Can be infinite, but we will focus on finite.
 - Ex: 4-sided die (D4): $\Omega = \{1, 2, 3, 4\}$.
- *Probability mass*: each $i \in \Omega$ has a nonnegative probability mass: $1 \ge p(i) \ge 0$.
- Total probability mass is 1: $\sum_{i \in \Omega} p(i) = 1$.

Probability Event

- An event ε is a set of outcomes of Ω .
- $\Pr[\varepsilon] = \sum_{i \in \varepsilon} p(i)$.
- Note: $\Pr[\overline{\varepsilon}] = 1 \Pr[\varepsilon]$

TH: Pr[Roll 1 on a fair D4] = 1/4;

TH: Pr[Roll 2, 3, or 4 on a fair D4] = 3/4

Conditional Probability

Probability of ε given \mathcal{F} .

$$\Pr[\varepsilon|\mathcal{F}] = \frac{\Pr[\varepsilon \cap \mathcal{F}]}{\Pr[\mathcal{F}]}$$

Conditional Probability

Probability of ε given \mathcal{F} .

$$\Pr[\varepsilon|\mathcal{F}] = \frac{\Pr[\varepsilon \cap \mathcal{F}]}{\Pr[\mathcal{F}]}$$

Independent Events

• Events ε and \mathcal{F} are independent if $\Pr[\varepsilon|\mathcal{F}] = \Pr[\varepsilon]$ and $\Pr[\mathcal{F}|\varepsilon] = \Pr[\mathcal{F}]$.

Conditional Probability

Probability of ε given \mathcal{F} .

$$\Pr[\varepsilon|\mathcal{F}] = \frac{\Pr[\varepsilon \cap \mathcal{F}]}{\Pr[\mathcal{F}]}$$

Independent Events

- Events ε and \mathcal{F} are independent if $\Pr[\varepsilon|\mathcal{F}] = \Pr[\varepsilon]$ and $\Pr[\mathcal{F}|\varepsilon] = \Pr[\mathcal{F}]$.
- This implies $\Pr[\varepsilon \cap \mathcal{F}] = \Pr[\varepsilon] \cdot \Pr[\mathcal{F}]$.

Conditional Probability

Probability of ε given \mathcal{F} .

$$\Pr[\varepsilon|\mathcal{F}] = \frac{\Pr[\varepsilon \cap \mathcal{F}]}{\Pr[\mathcal{F}]}$$

Independent Events

- Events ε and \mathcal{F} are independent if $\Pr[\varepsilon|\mathcal{F}] = \Pr[\varepsilon]$ and $\Pr[\mathcal{F}|\varepsilon] = \Pr[\mathcal{F}]$.
- This implies $\Pr[\varepsilon \cap \mathcal{F}] = \Pr[\varepsilon] \cdot \Pr[\mathcal{F}]$.
- Generalization: Say $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ are independent.

$$\Pr\left[\bigcap_{i=1}^{n} \varepsilon_{i}\right] = \prod_{i=1}^{n} \Pr[\varepsilon_{i}]$$

Union Bound

Union Bound

$$\Pr\left[\bigcup_{i=1}^{n} \varepsilon_i\right] \leq \sum_{i=1}^{n} \Pr[\varepsilon_i],$$

where equality only if events are mutually exclusive.

Random Variables

• Technical: Given a probability space, a random variable X is a function from the sample space to the natural (finite – real if infinite) numbers, such that, for number j, $X^-1(j)$ is the set of all sample points taking the value j is an event.

Ex: Pr[X = 1] = 1/4, where X is a toss of a 4-sided die.

Random Variables

• Informally: A random variable *X* takes on a value that depends on a random process.

Ex: Pr[X = 1] = 1/4, where X is a toss of a 4-sided die.

Random Variables

• Informally: A random variable *X* takes on a value that depends on a random process.

Ex: Pr[X = 1] = 1/4, where X is a toss of a 4-sided die.

Expected Value

- "Weighted average value"
- $\mathbb{E}[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]$

Random Variables

• Informally: A random variable *X* takes on a value that depends on a random process.

Ex: Pr[X = 1] = 1/4, where X is a toss of a 4-sided die.

Expected Value

- "Weighted average value"
- $\mathbb{E}[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]$

TH: What is $\mathbb{E}[X]$, where X is a toss of a 4-sided die?

Random Variables

• Informally: A random variable *X* takes on a value that depends on a random process.

Ex: Pr[X = 1] = 1/4, where X is a toss of a 4-sided die.

Expected Value

- "Weighted average value"
- $\mathbb{E}[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]$

TH: What is $\mathbb{E}[X]$, where X is a toss of a 4-sided die? 2.5

Expected Value

- "Weighted average value"
- $\mathbb{E}[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]$

TH: What is $\mathbb{E}[X]$, where X is a toss of a 4-sided die? 2.5

Expectation Properties

Let *X* and *Y* be random variables, and *a* be a constant.

- Linearity of expectation:
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
 - $\mathbb{E}[aX] = a \mathbb{E}[X]$

Expected Value

- "Weighted average value"
- $\mathbb{E}[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]$

TH: What is $\mathbb{E}[X]$, where X is a toss of a 4-sided die? 2.5

Expectation Properties

Let *X* and *Y* be random variables, and *a* be a constant.

- Linearity of expectation:
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
 - $\mathbb{E}[aX] = a \mathbb{E}[X]$
- If *X* and *Y* are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

RANDOM QUICKSORT

QUICKSORT WITH RANDOM PIVOT

Algorithm: QuickSort

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p] UAR

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

QUICKSORT WITH RANDOM PIVOT

Algorithm: QUICKSORT

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p] UAR

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

Expected Runtime (Pivot UAR)

$$T(n) \le \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) + O(n)$$
$$= \frac{2}{n} \sum_{i=1}^{n} (T(i-1)) + O(n) = O(n \log n)$$

Algorithm: QUICKSORT

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p] UAR

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

Expected Runtime (Pivot UAR)

$$T(n) = \frac{2}{n} \sum_{i=1}^{n} (T(i-1)) + O(n) = O(n \log n)$$

TH: What kind of randomized algorithm is this?

QUICKSORT WITH RANDOM PIVOT

Algorithm: QuickSort

Input: An array A[1..n].

Output: *A* sorted from 1 to *n*.

Choose a pivot A[p] UAR

r := Partition(A[1..n], p)

QuickSort(A[1..r-1])

QuickSort(A[r+1..n])

return A

Expected Runtime (Pivot UAR)

$$T(n) = \frac{2}{n} \sum_{i=1}^{n} (T(i-1)) + O(n) = O(n \log n)$$

TH: What kind of randomized algorithm is this?Las Vegas

MIN-CUT

Why?

• We will see a polynomial time algorithm (flows).

Why?

- We will see a polynomial time algorithm (flows).
- Because:
 - Nice example of a Monte Carlo algorithm.
 - Has a good run-time for dense graphs.

Why?

- We will see a polynomial time algorithm (flows).
- Because:
 - Nice example of a Monte Carlo algorithm.
 - Has a good run-time for dense graphs.

Min-Cut

• A Cut: Partition of *V* into sets (A, B) with $s \in A$ and $t \in B$.

Why?

- We will see a polynomial time algorithm (flows).
- Because:
 - Nice example of a Monte Carlo algorithm.
 - Has a good run-time for dense graphs.

Min-Cut

- A Cut: Partition of *V* into sets (A, B) with $s \in A$ and $t \in B$.
- Cut capacity: $c(A, B) = \sum_{e \text{ out of } A} c_e$

Why?

- We will see a polynomial time algorithm (flows).
- Because:
 - Nice example of a Monte Carlo algorithm.
 - Has a good run-time for dense graphs.

Min-Cut

- A Cut: Partition of *V* into sets (A, B) with $s \in A$ and $t \in B$.
- Cut capacity: $c(A, B) = \sum_{e \text{ out of } A} c_e$
- Minimum-cut of G: The cut (A^*, B^*) that minimizes $c(A^*, B^*)$ for G.

ickSort Randomized Algorithms Random QuickSort **Min-Cut** Hashing MAX SA

RANDOM MIN-CUT

Why?

- We will see a polynomial time algorithm (flows).
- Because:
 - Nice example of a Monte Carlo algorithm.
 - Has a good run-time for dense graphs.

Min-Cut

- A Cut: Partition of *V* into sets (A, B) with $s \in A$ and $t \in B$.
- Cut capacity: $c(A, B) = \sum_{e \text{ out of } A} c_e$
- Minimum-cut of G: The cut (A^*, B^*) that minimizes $c(A^*, B^*)$ for G.

TH: What is the s-t min-cut in the example?

SORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT **Min-Cut** Hashing MAX SAT

RANDOM MIN-CUT

Why?

- We will see a polynomial time algorithm (flows).
- Because:
 - Nice example of a Monte Carlo algorithm.
 - Has a good run-time for dense graphs.

Min-Cut

- A Cut: Partition of *V* into sets (A, B) with $s \in A$ and $t \in B$.
- Cut capacity: $c(A, B) = \sum_{e \text{ out of } A} c_e$
- Minimum-cut of G: The cut (A^*, B^*) that minimizes $c(A^*, B^*)$ for G.

GLOBAL MIN-CUT

Some Notations

• Global meaning for any (s, t) pair.

GLOBAL MIN-CUT

TH: What is the global min-cut?

Some Notations

• Global meaning for any (s, t) pair.

GLOBAL MIN-CUT

TH: What is the global min-cut? 0

Some Notations

• Global meaning for any (s, t) pair.

RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

GLOBAL MIN-CUT

Some Notations

- Global meaning for any (s, t) pair.
- Every edge has capacity 1.

RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING

GLOBAL MIN-CUT

Some Notations

- Global meaning for any (s, t) pair.
- Every edge has capacity 1.
- Use a multigraph G = (V, E):
 - E is a multiset: (u, v) might be in E more than once.

RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

GLOBAL MIN-CUT

Some Notations

- Global meaning for any (s, t) pair.
- Every edge has capacity 1.
- Use a multigraph G = (V, E):
 - E is a multiset: (u, v) might be in E more than once.
- (u, v) edge contraction:
 - create a supernode $\{u, v\}$


```
Algorithm: Contraction Algorithm
```

Input: Multigraph G = (V, E)

Output: Edge set representing a cut.

if *G* has exactly 2 nodes *u* and *v* **then**

return the set of edges between u and v

else

Choose an edge (u, v) uniformly at random.

G' := G after contracting (u, v).

return Contraction Algorithm (G')

end

```
Algorithm: Contraction Algorithm
```

Input: Multigraph G = (V, E)

Output: Edge set representing a cut.

if *G* has exactly 2 nodes *u* and *v* **then**

return the set of edges between u and v

else

Choose an edge (u, v) uniformly at random.

G' := G after contracting (u, v).

return Contraction Algorithm(G')

end

TH: Will this algorithm always return the correct answer?

```
Algorithm: Contraction Algorithm
```

Input: Multigraph G = (V, E)

Output: Edge set representing a cut.

if *G* has exactly 2 nodes *u* and *v* **then**

return the set of edges between u and v

else

Choose an edge (u, v) uniformly at random.

G' := G after contracting (u, v).

return Contraction Algorithm (G')

end

TH: Will this algorithm always return the correct answer? No

```
Algorithm: Contraction Algorithm
```

Input: Multigraph G = (V, E)

Output: Edge set representing a cut.

if *G* has exactly 2 nodes *u* and *v* **then**

return the set of edges between u and v

else

Choose an edge (u, v) uniformly at random.

G' := G after contracting (u, v).

return Contraction Algorithm(G')

end

TH: Will this algorithm always return the correct answer? No TH: What kind of randomized algorithm is this?

Algorithm: Contraction Algorithm

Input: Multigraph G = (V, E)

Output: Edge set representing a cut.

if *G* has exactly 2 nodes *u* and *v* **then**

return the set of edges between u and v

else

Choose an edge (u, v) uniformly at random.

G' := G after contracting (u, v).

return Contraction Algorithm(G')

end

TH: Will this algorithm always return the correct answer? No TH: What kind of randomized algorithm is this? Monte Carlo

Analysis of Karger's Algorithm

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

RANDOMIZED ALGORITHMS RANDOM QUICKSORT **MIN-CUT** HASHING MAX SAT

Analysis of Karger's Algorithm

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

Proof.

• Suppose that the global min-cut (*A*, *B*) has a size of *k*, and let *F* be the edge set.

RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX S

Analysis of Karger's Algorithm

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

- Suppose that the global min-cut (A, B) has a size of k, and let F be the edge set.
- Every node has degree $\geq k \implies |E| \geq \frac{1}{2}kn$.

Analysis of Karger's Algorithm

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

- Suppose that the global min-cut (A, B) has a size of k, and let F be the edge set.
- Every node has degree $\geq k \implies |E| \geq \frac{1}{2}kn$.
- $\Pr[\text{Edge in } F \text{ is contracted at step } 1] \leq \frac{k}{\frac{1}{2}kn} = \frac{2}{n}$.

Analysis of Karger's Algorithm

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

- Suppose that the global min-cut (*A*, *B*) has a size of *k*, and let *F* be the edge set.
- Every node has degree $\geq k \implies |E| \geq \frac{1}{2}kn$.
- $\Pr[1\text{st edge in } F \text{ is contracted at step } i] \leq \frac{k}{\frac{1}{2}k(n-(i-1))} = \frac{2}{n-i+1}.$
 - Conditioned on no edge from F having been previously contracted.

ANALYSIS OF KARGER'S ALGORITHM

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

- Suppose that the global min-cut (A, B) has a size of k, and let *F* be the edge set.
- Every node has degree $\geq k \implies |E| \geq \frac{1}{2}kn$.
- $\Pr[\text{1st edge in } F \text{ is contracted at step } i] \leq \frac{k}{\frac{1}{2}k(n-(i-1))} = \frac{2}{n-i+1}$.
 - Conditioned on no edge from *F* having been previously contracted.
- There are n-2 steps in Contraction Algorithm.

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

Proof.

• Let ε_i be the event that an edge $\in F$ is not contracted at step *i*:

$$\Pr[\text{success}] = \Pr[\varepsilon_1] \cdot \Pr[\varepsilon_2 | \varepsilon_1] \cdots \Pr[\varepsilon_{n-2} | \varepsilon_1 \cap \varepsilon_2 \cap \cdots \cap \varepsilon_{n-3}]$$

ANALYSIS OF KARGER'S ALGORITHM

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

Proof.

• Let ε_i be the event that an edge $\in F$ is not contracted at step *i*:

$$\Pr[\text{success}] = \Pr[\varepsilon_1] \cdot \Pr[\varepsilon_2 | \varepsilon_1] \cdots \Pr[\varepsilon_{n-2} | \varepsilon_1 \cap \varepsilon_2 \cap \cdots \cap \varepsilon_{n-3}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{n-i}\right) \cdots \left(1 - \frac{2}{3}\right)$$

ANALYSIS OF KARGER'S ALGORITHM

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

Proof.

• Let ε_i be the event that an edge $\in F$ is not contracted at step i:

$$\Pr[\text{success}] = \Pr[\varepsilon_1] \cdot \Pr[\varepsilon_2 | \varepsilon_1] \cdots \Pr[\varepsilon_{n-2} | \varepsilon_1 \cap \varepsilon_2 \cap \cdots \cap \varepsilon_{n-3}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{n-i}\right) \cdots \left(1 - \frac{2}{3}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

Analysis of Karger's Algorithm

Theorem 1

The Contraction Algorithm returns a global min-cut of G with probability of at least $1/\binom{n}{2}$.

Proof.

• Let ε_i be the event that an edge \in *F* is <u>not</u> contracted at step *i*:

$$\Pr[\text{success}] = \Pr[\varepsilon_1] \cdot \Pr[\varepsilon_2 | \varepsilon_1] \cdots \Pr[\varepsilon_{n-2} | \varepsilon_1 \cap \varepsilon_2 \cap \cdots \cap \varepsilon_{n-3}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{n-i}\right) \cdots \left(1 - \frac{2}{3}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

$$= \frac{2}{n(n-1)} = \binom{n}{2}^{-1}$$

Multiple Runs of Contraction Algorithm

Multiple Runs

• With $\binom{n}{2}$ runs, we get:

$$\Pr[\text{failure}] \le \left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}} \le \frac{1}{e} \approx 0.368$$

MULTIPLE RUNS OF CONTRACTION ALGORITHM

Multiple Runs

• With $\binom{n}{2}$ runs, we get:

$$\Pr[\text{failure}] \le \left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}} \le \frac{1}{e} \approx 0.368$$

• With $\binom{n}{2} \ln n$ runs, we get:

$$\Pr[\text{failure}] \le \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n}$$

Hashing

Hashing

Definition

A function that converts some input value into a hash value.

- Input: A large universe of values U. Typically, assume $|U| \gg n$.
- Output: A hash value for $u \in U$ to $\{0, 1, 2, \dots, n-1\}$.

Hashing

Definition

A function that converts some input value into a hash value.

- Input: A large universe of values U. Typically, assume $|U| \gg n$.
- Output: A hash value for $u \in U$ to $\{0, 1, 2, \dots, n-1\}$.

Why?

Typically used to generate keys for a dictionary data structure.

DICTIONARY DATA STRUCTURE

Dictionary

- Storage of a subset of values from *U*.
- A map, where the key is generated/hashed (efficiently) from the value.

IICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT **HASHING** MAX SAT

DICTIONARY DATA STRUCTURE

Dictionary

- Storage of a subset of values from *U*.
- A map, where the key is generated/hashed (efficiently) from the value.

Dictionary Operations

• MakeDictionary: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.

JICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT **HASHING** MAX SAT

DICTIONARY DATA STRUCTURE

Dictionary

- Storage of a subset of values from *U*.
- A map, where the key is generated/hashed (efficiently) from the value.

Dictionary Operations

- MakeDictionary: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.
- Insert(u): Adds $u \in U$ to the dictionary (S).

IICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT **Hashing** MAX SAT

DICTIONARY DATA STRUCTURE

Dictionary

- Storage of a subset of values from *U*.
- A map, where the key is generated/hashed (efficiently) from the value.

Dictionary Operations

- MakeDictionary: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.
- Insert(u): Adds $u \in U$ to the dictionary (S).
- Delete(u): Remove u from S.

ickSort Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SA:

DICTIONARY DATA STRUCTURE

Dictionary

- Storage of a subset of values from *U*.
- A map, where the key is generated/hashed (efficiently) from the value.

Dictionary Operations

- MakeDictionary: Initializes a fresh dictionary that can maintain a subset *S* of *U* that is initially empty.
- Insert(u): Adds $u \in U$ to the dictionary (S).
- Delete(u): Remove u from S.
- Lookup(u): Determine if u is in S; if so retrieve u.

uickSort Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SA:

HASHING

Motivation

• The values in *U* may be huge. Ex: Blog posts.

uickSort Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SA:

Hashing

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ m and build a smaller key.

HASHING

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ m and build a smaller key.

Hashing

- *Hash Table*: a *n*-length array *H* to store the values.
- *Hash Function*: Map $u \in U$ to an index in H; $h: U \rightarrow [0..n-1]$

HASHING

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ m and build a smaller key.

Hashing

- *Hash Table*: a *n*-length array *H* to store the values.
- *Hash Function*: Map $u \in U$ to an index in H; $h: U \rightarrow [0..n-1]$

Dictionary Hashing

• TH: Let $u, v \in U$. Say $|U| \gg n$, can h(u) = h(v)?

RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

HASHING

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ m and build a smaller key.

Hashing

- *Hash Table*: a *n*-length array *H* to store the values.
- *Hash Function*: Map $u \in U$ to an index in H; $h: U \rightarrow [0..n-1]$

Dictionary Hashing

- TH: Let $u, v \in U$. Say $|U| \gg n$, can h(u) = h(v)? Yes.
- Collision: h(u) = h(v) At H[i] is a linked-list (bucket) to store any values where h(u) = i.

RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT **HASHING** MAX SAT

Hashing

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ m and build a smaller key.

Hashing

- *Hash Table*: a *n*-length array *H* to store the values.
- *Hash Function*: Map $u \in U$ to an index in H; $h: U \rightarrow [0..n-1]$

Dictionary Hashing

- Collision: h(u) = h(v) At H[i] is a linked-list (bucket) to store any values where h(u) = i.
- TH: Say |S| = n, what is the worst-case number of comparisons to Lookup(u)?

RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

Hashing

Motivation

- The values in *U* may be huge. Ex: Blog posts.
- Take a value $u \in U$ m and build a smaller key.

Hashing

- *Hash Table*: a *n*-length array *H* to store the values.
- *Hash Function*: Map $u \in U$ to an index in H; $h: U \rightarrow [0..n-1]$

Dictionary Hashing

- Collision: h(u) = h(v) At H[i] is a linked-list (bucket) to store any values where h(u) = i.
- TH: Say |S| = n, what is the worst-case number of comparisons to LOOKUP(u)? O(n)

uickSort Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SA:

HASH FUNCTION DESIGN

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

IICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT **HASHING** MAX SAT

HASH FUNCTION DESIGN

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

Some ideas for hash functions

• Hash as a prefix: Collisions can result from similar prefixes. E.g. many phrases in English start with "The".

uickSort Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SA

HASH FUNCTION DESIGN

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

Some ideas for hash functions

- Hash as a prefix: Collisions can result from similar prefixes. E.g. many phrases in English start with "The".
- *u* mod *n*: Risk of collision can be large especially if say *n* is a power of 2.

ickSort Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SA:

HASH FUNCTION DESIGN

Good Hash Function

- Compact and efficient.
- Minimize the collisions.

Some ideas for hash functions

- Hash as a prefix: Collisions can result from similar prefixes. E.g. many phrases in English start with "The".
- *u* mod *n*: Risk of collision can be large especially if say *n* is a power of 2.
- $u \mod p$, where p is a prime: Less risk than n especially if p is not tiny, but $p \approx n$.

h(x): Return a value from 0 to n-1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is $\lceil TopHat \rceil$

h(x): Return a value from 0 to n-1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

h(x): Return a value from 0 to n-1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

Proof.

• There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.

h(x): Return a value from 0 to n-1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?

h(x): Return a value from 0 to n-1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?
 - $\Pr[h(v) = x | h(u) = x] = \frac{1}{n}$.

h(x): Return a value from 0 to n-1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

Proof.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?
 - $\Pr[h(v) = x | h(u) = x] = \frac{1}{n}$.

What is the problem with this random hash function?

h(x): Return a value from 0 to n-1 UAR.

Lemma 2

Given h(x), the probability that h(u) = h(v) for any $u, v \in U$ is 1/n.

Proof.

- There are n^2 possible pairs of values (h(u), h(v)). Exactly n of them have h(u) = h(v), Hence, $\Pr[h(u) = h(v)] = \frac{n}{n^2} = \frac{1}{n}$.
- Alternate proof: Since h(u) and h(v) are independent:
 - Fix h(u). What is the probability that h(u) = h(v)?
 - $\Pr[h(v) = x | h(u) = x] = \frac{1}{n}$.

What is the problem with this random hash function? For a dictionary, Delete(u) and Lookup(u) won't work since h(u) returns a random value!

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let \mathcal{H} be a class of functions such that:

• Universal property: For any pair of values $u, v \in U$, the probability that a randomly chosen $h \in \mathcal{H}$ has h(u) = h(v) is $\leq \frac{1}{n}$.

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let \mathcal{H} be a class of functions such that:

- Universal property: For any pair of values $u, v \in U$, the probability that a randomly chosen $h \in \mathcal{H}$ has h(u) = h(v) is $\leq \frac{1}{n}$.
- Each $h \in \mathcal{H}$ is represented compactly and can be computed efficiently.

drt Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SAT

Universal Class of Hash Functions

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let \mathcal{H} be a class of functions such that:

- Universal property: For any pair of values $u, v \in U$, the probability that a randomly chosen $h \in \mathcal{H}$ has h(u) = h(v) is $\leq \frac{1}{n}$.
- Each $h \in \mathcal{H}$ is represented compactly and can be computed efficiently.

MakeDictionary: Given \mathcal{H} , choose h from \mathcal{H} UAR for the dictionary.

Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SAT

Universal Class of Hash Functions

RANDOMLY CHOOSING A HASH FUNCTION

Definition

Let \mathcal{H} be a class of functions such that:

- Universal property: For any pair of values $u, v \in U$, the probability that a randomly chosen $h \in \mathcal{H}$ has h(u) = h(v) is $\leq \frac{1}{n}$.
- Each $h \in \mathcal{H}$ is represented compactly and can be computed efficiently.

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n-1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 . Randomized Algorithms Random QuickSort Min-Cut **Hashing** MAX SAT

Universal Class of Hash Functions

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n-1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

Proof.

• Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n-1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n-1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{s \in S} X_s\right] = \sum_{s \in S} \mathbb{E}[X_s]$$

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n-1]. Let $S \subseteq U$ be of size $\leq n$. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from \mathcal{H} is ≤ 1 .

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.
- By linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{s \in S} X_s\right] = \sum_{s \in S} \mathbb{E}[X_s]$$

RANDOMLY CHOOSING A HASH FUNCTION

Theorem 3

Let \mathcal{H} be a universal class of hash functions mapping U to [0..n-1]. Let $S \subseteq U$ be of size < n. The expected number of elements $s \in S$ where h(s) = h(u) for any $u \in U$ when h is chosen UAR from H is < 1.

- Fix $u \in U$. Let X_s be a random variable that is 1 if h(s) = h(u); 0 otherwise.
- Let $X = \sum_{s \in S} X_s$.
- By linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{s \in S} X_s\right] = \sum_{s \in S} \mathbb{E}[X_s] \le |S| \cdot \frac{1}{n} \le 1.$$

Designing a Universal Class of Hash Functions

Defining \mathcal{H}

• Choose a prime $p \approx n$.

Designing a Universal Class of Hash Functions

Defining \mathcal{H}

- Choose a prime $p \approx n$.
- Bootstrapping: All values in U are associated with a vector coordinate $x = (x_1, x_2, \dots, x_r)$ for some r, where $0 \le x_i < p$.
 - $r \approx \frac{\log |U|}{\log n}$ for unique x per item in U.

Designing a Universal Class of Hash Functions

Defining \mathcal{H}

- Choose a prime $p \approx n$.
- Bootstrapping: All values in U are associated with a vector coordinate $x = (x_1, x_2, \dots, x_r)$ for some r, where $0 \le x_i < p$.
 - $r \approx \frac{\log |U|}{\log n}$ for unique x per item in U.
- Let A be the set of all vectors of the form $a = (a_1, a_2, \dots, a_r)$, where $0 \le a_i < p$.

DESIGNING A UNIVERSAL CLASS OF HASH FUNCTIONS

Defining \mathcal{H}

- Choose a prime $p \approx n$.
- Bootstrapping: All values in *U* are associated with a vector coordinate $x = (x_1, x_2, \dots, x_r)$ for some r, where $0 < x_i < p$.
 - $r \approx \frac{\log |U|}{\log n}$ for unique x per item in U.
- Let \mathcal{A} be the set of all vectors of the form $a = (a_1, a_2, \dots, a_r)$, where $0 < a_i < p$.
- \mathcal{H} contains $h_a(x) = (\sum_{i=1}^r a_i x_i) \mod p$ for all $a \in \mathcal{A}$.

Lemma 4 (Technical Lemma)

For any prime p and any integer $z \not\equiv 0 \mod p$, and any two integers α, β , if $\alpha z \equiv \beta z \mod p$, then $\alpha \equiv \beta \mod p$.

Lemma 4 (Technical Lemma)

For any prime p and any integer $z \not\equiv 0 \mod p$, and any two integers α, β , if $\alpha z \equiv \beta z \mod p$, then $\alpha \equiv \beta \mod p$.

Proof.

Suppose $\alpha z \equiv \beta z \mod p$:

•
$$\iff z(\alpha - \beta) \equiv 0 \mod p$$

Lemma 4 (Technical Lemma)

For any prime p and any integer $z \not\equiv 0 \mod p$, and any two integers α, β , if $\alpha z \equiv \beta z \mod p$, then $\alpha \equiv \beta \mod p$.

Proof.

Suppose $\alpha z \equiv \beta z \mod p$:

- $\bullet \iff z(\alpha \beta) \equiv 0 \mod p$
- *z* is not divisible by *p*, so $(\alpha \beta) \equiv 0 \mod p$.

Lemma 4 (Technical Lemma)

For any prime p and any integer $z \not\equiv 0 \mod p$, and any two integers $\alpha, \beta, \text{ if } \alpha z \equiv \beta z \mod p, \text{ then } \alpha \equiv \beta \mod p.$

Proof.

Suppose $\alpha z \equiv \beta z \mod p$:

- $\iff z(\alpha \beta) \equiv 0 \mod p$
- *z* is not divisible by *p*, so $(\alpha \beta) \equiv 0 \mod p$.
- Hence, $\alpha \equiv \beta \mod p$.

Lemma 4 (Technical Lemma)

For any prime p and any integer $z \not\equiv 0 \mod p$, and any two integers α, β , if $\alpha z \equiv \beta z \mod p$, then $\alpha \equiv \beta \mod p$.

Theorem 5

The class of linear functions \mathcal{H} as defined previously is universal.

HASHING

Lemma 4 (Technical Lemma)

For any prime p and any integer $z \not\equiv 0 \mod p$, and any two integers α, β , if $\alpha z \equiv \beta z \mod p$, then $\alpha \equiv \beta \mod p$.

Theorem 5

The class of linear functions \mathcal{H} *as defined previously is universal.*

Proof.

• Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$

Lemma 4 (Technical Lemma)

For any prime p and any integer $z \not\equiv 0 \mod p$, and any two integers α, β , if $\alpha z \equiv \beta z \mod p$, then $\alpha \equiv \beta \mod p$.

Theorem 5

The class of linear functions \mathcal{H} as defined previously is universal.

- Let $x = (x_1, x_2, \dots, x_r)$ and $y = (y_1, y_2, \dots, y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$
- We need to show that $\Pr[h_a(x) = h_a(y)] \le 1/p$ for a randomly chosen $a \in \mathcal{A}$.

Theorem 4

The class of linear functions \mathcal{H} as defined previously is universal.

- Let $x = (x_1, x_2, \dots, x_r)$ and $y = (y_1, y_2, \dots, y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$
- Let *j* be an index such that $x_j \neq y_j$.

Theorem 4

The class of linear functions \mathcal{H} *as defined previously is universal.*

- Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. $(r \approx \frac{\log |U|}{\log n})$
- Let *j* be an index such that $x_i \neq y_i$.
- Arbitrarily fix a_i for $i \neq j$.

HASHING

Analyze our definition of ${\cal H}$

Theorem 4

The class of linear functions H as defined previously is universal.

- Let *j* be an index such that $x_j \neq y_j$.
- Arbitrarily fix a_i for $i \neq j$.
- Consider $h_a(x) = h_a(y)$:

$$\sum_{i=1}^{r} a_i x_i \equiv \sum_{i=1}^{r} a_i y_i \iff a_j (x_j - y_j) \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod p$$
(1)

Analyze our definition of ${\cal H}$

Theorem 4

The class of linear functions \mathcal{H} *as defined previously is universal.*

Proof.

- Let *j* be an index such that $x_i \neq y_i$.
- Arbitrarily fix a_i for $i \neq j$.
- Consider $h_a(x) = h_a(y)$:

$$\sum_{i=1}^{r} a_i x_i \equiv \sum_{i=1}^{r} a_i y_i \iff a_j (x_j - y_j) \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod p$$

(1)

• Lemma 4 shows there is a single value for a_i to satisfy (1).

Theorem 4

The class of linear functions H as defined previously is universal.

Proof.

- Let *j* be an index such that $x_j \neq y_j$.
- Arbitrarily fix a_i for $i \neq j$.
- Consider $h_a(x) = h_a(y)$:

$$\sum_{i=1}^{r} a_i x_i \equiv \sum_{i=1}^{r} a_i y_i \iff a_j (x_j - y_j) \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod p$$

(1)

- Lemma 4 shows there is a single value for a_j to satisfy (1).
- So, $\Pr[h_a(x) = h_a(y)] \leq \frac{1}{n}$.

MAX SAT

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

Preliminaries

• A set of boolean terms/literals: $X: x_1, \ldots, x_n$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

- A set of boolean terms/literals: $X : x_1, \dots, x_n$.
- For a given variable x_i , x_i is the assigned value and $\overline{x_i}$ is the negation of the assigned value.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

Preliminaries

- A set of boolean terms/literals: $X : x_1, \dots, x_n$.
- For a given variable x_i , x_i is the assigned value and $\overline{x_i}$ is the negation of the assigned value.
- A clause C_i is a *disjunction* of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.

MAX SAT

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

- A set of boolean terms/literals: $X : x_1, \dots, x_n$.
- For a given variable x_i , x_i is the assigned value and $\overline{x_i}$ is the negation of the assigned value.
- A clause C_i is a *disjunction* of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.
- Length of C_i is the # of terms in C_i .

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

- A set of boolean terms/literals: $X: x_1, \ldots, x_n$.
- For a given variable x_i , x_i is the assigned value and $\overline{x_i}$ is the negation of the assigned value.
- A clause C_i is a *disjunction* of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.
- Length of C_i is the # of terms in C_i .
- A collection/conjunction of k clauses: $C: C_1 \wedge C_2 \wedge \cdot \wedge C_k$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

- A set of boolean terms/literals: $X : x_1, \dots, x_n$.
- For a given variable x_i , x_i is the assigned value and $\overline{x_i}$ is the negation of the assigned value.
- A clause C_j is a *disjunction* of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.
- Length of C_j is the # of terms in C_j .
- A collection/*conjunction* of *k* clauses: $C : C_1 \wedge C_2 \wedge \cdot \wedge C_k$.
- Truth assignment function $v: X \to \{0, 1\}$, assigns values to the terms and returns the conjunction of the clauses.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

- A set of boolean terms/literals: $X : x_1, \dots, x_n$.
- For a given variable x_i , x_i is the assigned value and $\overline{x_i}$ is the negation of the assigned value.
- A clause C_i is a disjunction of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.
- Length of C_i is the # of terms in C_i .
- A collection/*conjunction* of *k* clauses: $C : C_1 \wedge C_2 \wedge \cdot \wedge C_k$.
- Truth assignment function $v: X \to \{0,1\}$, assigns values to the terms and returns the conjunction of the clauses.
- v is a *satisfying assignment* if C is 1, i.e., all C_i evaluate to 1.

TH: What values will satisfy the example?

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_2 \vee \overline{x_3})$$

- A set of boolean terms/literals: $X : x_1, \dots, x_n$.
- For a given variable x_i , x_i is the assigned value and $\overline{x_i}$ is the negation of the assigned value.
- A clause C_i is a *disjunction* of (distinct) terms, e.g., $(x_1 \vee \overline{x_2})$.
- Length of C_i is the # of terms in C_i .
- A collection/*conjunction* of *k* clauses: $C : C_1 \wedge C_2 \wedge \cdot \wedge C_k$.
- Truth assignment function $v: X \to \{0,1\}$, assigns values to the terms and returns the conjunction of the clauses.
- v is a satisfying assignment if C is 1, i.e., all C_i evaluate to 1.

3SAT Problem

Given a set of literals: $X: x_1, \ldots, x_n$, and a collection of clauses $C: C_1 \wedge C_2 \wedge \cdots \wedge C_k$, does there exist a satisfying assignment?

3SAT Problem

Given a set of literals: $X: x_1, \dots, x_n$, and a collection of clauses $C: C_1 \wedge C_2 \wedge \cdot \wedge C_k$, each of length 3, does there exist a satisfying assignment?

MAX 3SAT Problem

Given a 3SAT problem satisfying as many clauses as possible.

3SAT Problem

Given a set of literals: $X: x_1, \dots, x_n$, and a collection of clauses $C: C_1 \wedge C_2 \wedge \cdot \wedge C_k$, each of length 3, does there exist a satisfying assignment?

MAX 3SAT Problem

Given a 3SAT problem satisfying as many clauses as possible.

TH: Suggest a randomized algorithm.

3SAT Problem

Given a set of literals: $X: x_1, ..., x_n$, and a collection of clauses $C: C_1 \wedge C_2 \wedge \cdot \wedge C_k$, each of length 3, does there exist a satisfying assignment?

MAX 3SAT Problem

Given a 3SAT problem satisfying as many clauses as possible.

Random Assignment

For each x_i , independently assign a value of 0 or 1 with probability $\frac{1}{2}$ each.

Analyze Random Assignment

Clause C_i

• Let Z_i be a random variable: 1 if clause is satisfied, 0 otherwise.

Analyze Random Assignment

Clause C_i

- Let Z_i be a random variable: 1 if clause is satisfied, 0 otherwise.
- TH: What is $Pr[Z_i = 0]$?

ANALYZE RANDOM ASSIGNMENT

Clause C_i

- Let Z_i be a random variable: 1 if clause is satisfied, 0 otherwise.
- TH: What is $\Pr[Z_i = 0]$? $(\frac{1}{2})^3 = \frac{1}{8}$

ANALYZE RANDOM ASSIGNMENT

Clause C_i

- Let Z_i be a random variable: 1 if clause is satisfied, 0 otherwise.
- TH: What is $\Pr[Z_i = 0]$? $(\frac{1}{2})^3 = \frac{1}{8}$
- Each clause has 3 variables x_i each with $Pr[x_i = 0] = \frac{1}{2}$:

$$\Pr[Z_i = 1] = 1 - \Pr[Z_i = 0] = 1 - \left(\frac{1}{2}\right)^3 = \frac{7}{8}$$

MAX SAT

Analyze Random Assignment

Clause C_i

- Let Z_i be a random variable: 1 if clause is satisfied, 0 otherwise.
- TH: What is $\Pr[Z_i = 0]$? $(\frac{1}{2})^3 = \frac{1}{8}$
- Each clause has 3 variables x_i each with $\Pr[x_i = 0] = \frac{1}{2}$:

$$\Pr[Z_i = 1] = 1 - \Pr[Z_i = 0] = 1 - \left(\frac{1}{2}\right)^3 = \frac{7}{8}$$

• So, $\mathbb{E}[Z_i] = 1 \cdot \frac{7}{8} + 0 \cdot \frac{1}{8} = \frac{7}{8}$.

ANALYZE RANDOM ASSIGNMENT

Clause C_i

- Let Z_i be a random variable: 1 if clause is satisfied, 0 otherwise.
- So, $\mathbb{E}[Z_i] = 1 \cdot \frac{7}{8} + 0 \cdot \frac{1}{8} = \frac{7}{8}$.

Overall

Let
$$Z = \sum_{i=1}^{k} Z_i$$
:

ANALYZE RANDOM ASSIGNMENT

Clause C_i

- Let Z_i be a random variable: 1 if clause is satisfied, 0 otherwise.
- So, $\mathbb{E}[Z_i] = 1 \cdot \frac{7}{9} + 0 \cdot \frac{1}{9} = \frac{7}{9}$.

Overall

Let
$$Z = \sum_{i=1}^{k} Z_i$$
:

$$\mathbb{E}[Z] = \mathbb{E}\left[\sum_{i=1}^{k} Z_i\right]$$

$$= \mathbb{E}[Z_1] + \mathbb{E}[Z_2] + \dots + \mathbb{E}[Z_k] \text{ , by Linearity of Expectation,}$$

$$= \frac{7}{8}k$$

UICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

INTERESTING COROLLARIES

Theorem 5

Random Assign satisfies 7/8 *of the clauses in expectation.*

uickSort Randomized Algorithms Random QuickSort Min-Cut Hashing **MAX SAT**

Interesting Corollaries

Theorem 5

Random Assign satisfies 7/8 of the clauses in expectation.

Corollary 6

For every 3-SAT, there is an assignment that satisfies 7/8 of the clauses.

Interesting Corollaries

Theorem 5

Random Assign satisfies 7/8 of the clauses in expectation.

Corollary 6

For every 3-SAT, there is an assignment that satisfies 7/8 of the clauses.

Proof.

Since the expectation is a weighted average, its value is between the maximum and minimum possible values. $\hfill\Box$

UICKSORT RANDOMIZED ALGORITHMS RANDOM QUICKSORT MIN-CUT HASHING MAX SAT

INTERESTING COROLLARIES

Theorem 5

Random Assign satisfies 7/8 of the clauses in expectation.

Corollary 6

For every 3-SAT, there is an assignment that satisfies 7/8 of the clauses.

Corollary 7

Every 3-SAT with \leq 7 clauses is satisfiable.

MAX SAT

INTERESTING COROLLARIES

Theorem 5

Random Assign satisfies 7/8 of the clauses in expectation.

Corollary 6

For every 3-SAT, there is an assignment that satisfies 7/8 of the clauses.

Corollary 7

Every 3-SAT with \leq 7 clauses is satisfiable.

Proof.

For $k \le 7$, $\frac{7}{8}k > k - 1$.

uickSort Randomized Algorithms Random QuickSort Min-Cut Hashing **MAX SAT**

Waiting For a Good Assignment

Theorem 8

There exists a randomized algorithm with a polynomial expectation running time that is guaranteed to produce a truth assignment satisfying at least 7/8 of all k clauses.

WAITING FOR A GOOD ASSIGNMENT

Theorem 8

There exists a randomized algorithm with a polynomial expectation running time that is guaranteed to produce a truth assignment satisfying at least 7/8 of all k clauses.

Proof.

• Let p_i be the probability that j clauses are satisfied.

WAITING FOR A GOOD ASSIGNMENT

Theorem 8

There exists a randomized algorithm with a polynomial expectation running time that is guaranteed to produce a truth assignment satisfying at least 7/8 of all k clauses.

- Let p_i be the probability that j clauses are satisfied.
- We need to calculate $p = \sum_{j > \frac{7}{n}k} p_j$.

Waiting For a Good Assignment

Theorem 8

There exists a randomized algorithm with a polynomial expectation running time that is guaranteed to produce a truth assignment satisfying at least 7/8 of all k clauses.

- Let p_i be the probability that j clauses are satisfied.
- We need to calculate $p = \sum_{i > \frac{7}{n}k} p_i$.
- By Definition of expectation:

$$\frac{7}{8}k = \sum_{j=0}^{k} jp_j = \sum_{j < \frac{7}{8}k} jp_j + \sum_{j \ge \frac{7}{8}k} jp_j
\leq \left(\frac{7k}{8} - \frac{1}{8}\right) \sum_{j < \frac{7}{8}k} p_j + k \sum_{j \ge \frac{7}{8}k} p_j$$

Waiting For a Good Assignment

Theorem 8

There exists a randomized algorithm with a polynomial expectation running time that is guaranteed to produce a truth assignment satisfying at least 7/8 of all k clauses.

- Let p_i be the probability that j clauses are satisfied.
- We need to calculate $p = \sum_{j > \frac{7}{n}k} p_j$.
- By Definition of expectation:

$$\frac{7}{8}k = \sum_{j=0}^{k} jp_j \le \left(\frac{7k}{8} - \frac{1}{8}\right) \sum_{j < \frac{7}{8}k} p_j + k \sum_{j \ge \frac{7}{8}k} p_j$$

$$\iff \frac{7}{8}k \le \left(\frac{7k}{8} - \frac{1}{8}\right) (1 - p) + kp \le \left(\frac{7k}{8} - \frac{1}{8}\right) + kp$$

Waiting For a Good Assignment

Theorem 8

There exists a randomized algorithm with a polynomial expectation running time that is guaranteed to produce a truth assignment satisfying at least 7/8 of all k clauses.

- Let p_j be the probability that j clauses are satisfied.
- We need to calculate $p = \sum_{j \geq \frac{7}{8}k} p_j$.
- By Definition of expectation:

$$\iff \frac{7}{8}k \le \left(\frac{7k}{8} - \frac{1}{8}\right)(1-p) + kp \le \left(\frac{7k}{8} - \frac{1}{8}\right) + kp$$

$$\iff p \ge \frac{\frac{7}{8}k - \left(\frac{7k}{8} - \frac{1}{8}\right)}{k} = \frac{1}{8k}.$$

WAITING FOR A GOOD ASSIGNMENT

Theorem 8

There exists a randomized algorithm with a polynomial expectation running time that is guaranteed to produce a truth assignment satisfying at least 7/8 of all k clauses.

- Let p_j be the probability that j clauses are satisfied.
- We need to calculate $p = \sum_{j \ge \frac{7}{8}k} p_j$.
- With $p = \frac{1}{8k}$, we have a Bernoulli trial: Within 8k tries, we expect an assignment that satisfies $\frac{7}{8}$ of the clauses.

Appendix Reference:

Appendix

Appendix References

REFERENCES

PPENDIX REFERENCES

IMAGE SOURCES I

WISCONSIN https://brand.wisc.edu/web/logos/