STAT 24310 Notes

Anthony Yoon

April 24, 2025

Contents

2	Lecture 9: Introduction to Optimization	
	2.1	Examples
	2.2	Classes of Optimization Problems
	2.3	Taylor's Theorem

Notes for STAT24310 taught by Professor Yuehaw Khoo. Prior Linear Algebra knowledge will be assumed.

1 Lecture 1: Complexity/Accuracy/Stability/Condition Number

This class is heavily based on Trefethen and Bau's Textbook. Take a look at it if you have the time.

When we run an algorithm, we often are interested in how long it takes to run the algorithm. For example, if we have a matrix $A \in \mathbb{R}^{n \times n}$ an $x, b \in \mathbb{R}^n$, and we are interested in solving

$$Ax = b$$

and n is very large, say n = 100,000, a concern is that the algorithm takes forever to run. In this case, we may be worried about the worst case time complexity, denoted as big O notation. In this case, solving $x = A^{-1}b$ is $\mathcal{O}(n^3)$. But what is this notation?

Definition 1.1. If there exists a $C \in \mathbb{R}$ such that for fg, where $g \geq 0$, where for all sufficiently t large enough, such that $|f(t)| \leq C \cdot g(t)$, then $f(t)\mathcal{O}(g(t))$

or equivantly:

Definition 1.2. If there exists a constant $C \in \mathbb{R}$ and a real number t_0 such that for all $t \geq t_0$, $|f(t)| \leq C \cdot g(t)$, where $g(t) \geq 0$, then we write $f(t) = \mathcal{O}(g(t))$ as $t \to \infty$.

Both are equivalent.

2 Lecture 9: Introduction to Optimization

Last class, we showed that there existed a solution to the Least Squares problem, or rather $\min \|Ax - b\|_2^2$ through a combination of the QR and LU decomposition. We can consider the following general optimization problem, where we define $f: \Omega \to \mathbb{R}$:

$$x^* = \arg\min_{x \in \Omega} f(x)$$

where we say that Ω is the objective domain. The intuition is that we want to find the input that would minimize the value of the function.

2.1 Examples

Consider the nonlinear inverse problem used within physics.

Explain this better

2.2 Classes of Optimization Problems

Given a domain Ω that we want to optimize over, we have the following scenarios:

• a set of discrete points, which is discrete optimization

- $\Omega \subseteq \mathbb{R}^n, \subseteq \mathbb{R}^n$, a constrained optimization problem. An example of this would be induced norms.
- $\Omega = \mathbb{R}^n$, a unconstrained optimization problem. An example of this would be the Least Squares Regression Problem.

We can often times utilize properties of the function, which is where we can introduce the idea of convexity.

Definition 2.1. f is convex over S if for any $x_1, x_2 \in S$ and $t \in [0, 1]$, $f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$

This concept can be illustrated in the following diagram:

We can then expand the definition of convexity as follows:

Definition 2.2. f is strongly convex over S if for any $x_1, x_2 \in S$ and $t \in [0, 1]$, $f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2)$

A natural expansion of this is when f is convex, then $f(\sum_{i=1}^n t_i x_i) \leq \sum_{i=1}^n t_i f(x_i)$ where $\sum_{i=1}^n t_i = 1$ such that $t_i \geq 0$. We can also consider the following definition of convexity:

Definition 2.3. Locally Convex: $f: \Omega \to \mathbb{R}$, where f is convex over some $S \subseteq \Omega$

2.3 Taylor's Theorem

We begin with an introduction of smoothness.

Definition 2.4. A function is said to be C^n if it is continuous and differentiable n number of times.

Also a refresher on what the Taylor's Theorem in 1D is.

Definition 2.5. if $f: \mathbb{R} \to \mathbb{R}$ is (k+1) times differentiable at x = a, then

$$f(x) = f(a) + \frac{\partial f(a)}{\partial x}(x - a) + \dots + \frac{1}{k!} \frac{\partial^k f(x)}{\partial x^k}(x - a)^k + \frac{L}{(k+1)!}(x - a)^{k+1}$$

where

$$L = \sup_{\xi \in [x,a]} \left| \frac{\partial^{k+1} f(x)}{\partial x^k} \right|$$

note that if |x-a| is sufficiently small, we can discard the remainder the term (the one with the L in it). Note that also that if the (k+1) derivative is bounded, then we can approximate f with the kth order polynomial. We can also consider the case of the special case of the third order