Package 'GWhEAT'

March 25, 2020

Type Package		
Title Performed GWAS in a fast and efficient manner		
Version 0.1.0		
Author Lance Merrick, Samuel Prather		
Maintainer Samuel Prather < stp4freedom@gmail.com>		
Description This package can run GWAS with PCA and user imputed covariates. It's design is to reduce false positives and increases the power of a GWAS by taking into account population structure.		
License What license is it under?		
Encoding UTF-8		
LazyData true		
Imports ggplot2, knitr, gridExtra, data.table RoxygenNote 7.0.2		
R topics documented: fix_Dep		
GWAStest		
Index		
fix_Dep Detect linear dependencies of one matrix on another		

Description

Detect linear dependencies of one matrix on another

2 GWASapply

Usage

```
fix_Dep(X1, X2, tol = .Machine$double.eps^0.5, rank.def = 0, strict = FALSE)
```

Arguments

X1	A matrix.
X2	A matrix, the columns of which may be partially linearly dependent on the columns of $X1$.
tol	The tolerance to use when assessing linear dependence.
rank.def	If the degree of rank deficiency in X2, given X1, is known, then it can be supplied here, and tol is then ignored. Unused unless positive and not greater than the number of columns in X2.
strict	if TRUE then only columns individually dependent on X1 are detected, if FALSE then enough columns to make the reduced X2 full rank and independent of X1 are detected.

Value

A vector of the columns of X2 which are linearly dependent on columns of X1 (or which need to be deleted to acheive independence and full rank if strict==FALSE). NULL if the two matrices are independent.

GWASapply

GWAS with PCA

Description

GWAS with PCA

Usage

```
GWASapply(
  pheno = NULL,
  geno = NULL,
  Cov = NULL,
  GM = NULL,
  PCA.M = 3,
  QTN.position = NULL,
  cutoff = NULL,
  plots = FALSE,
  messages = FALSE,
  print = FALSE,
  trait = "unknown",
  rapid = FALSE
)
```

GWAStest 3

Arguments

pheno file with numeric phenotypic values geno data.frame with genotype calls coded as 0,1,2. numeric data.frame with covariates values Cov GM genetic map of data with chr and position of each SNP number of principal components to use default is 3 PCA.M posistion of QTN if applicable QTN.position cutoff If cutoff is default, uses Bonferroni; else uses -log(value) of 0.05/number of **SNPs** plots if TRUE, function plots PCA graphs, Manhatten Plot and QQ plot if TRUE, returns messages for the GWAS function messages print if TRUE, results are saved in a CSV

Value

trait

Manhatten plot, QQ plot plus p-values, type-1 error and power for every SNP and results in a CSV

GWAStest GWAS with PCA

character value for trait name

Description

GWAS with PCA

Usage

```
GWAStest(
   phenotypes = NULL,
   genotypes = NULL,
   Cov = NULL,
   GM = NULL,
   PCA.M = 3,
   QTN.position = NULL,
   cutoff = NULL
)
```

Arguments

phenotypes file with numeric phenotypic values

genotypes data.frame with genotype calls coded as 0,1,2.

Cov numeric data.frame with covariates values

GM genetic map of data with chr and position of each SNP PCA.M number of principal components to use default is 3

QTN.position posistion of QTN if applicable

cutoff If cutoff is default, uses Bonferroni; else uses -log(value) of 0.05/number of

SNPs

4 manhattan_plot

Value

Manhatten plot, QQ plot plus p-values, type-1 error and power for every SNP

manhattan_plot

Function to create a manhattan plot

Description

Function to create a manhattan plot

Usage

```
manhattan_plot(
   GM,
   pvals,
   cutoff = NULL,
   QTN_index = c(),
   FP = NULL,
   TP = NULL,
   trait = "unknown",
   messages = FALSE
)
```

Arguments

GM genetic map of data with chr and position of each SNP

pvals pvals from gwas results for each SNP

cutoff If cutoff is default, uses Bonferroni; else uses -log(value) of 0.05/number of

SNPs

QTN_index posistion of QTN if applicable

FP Positions of SNPS that are False positive

TP Positions of SNPS that are True positive

trait character value for trait name

Value

Manhatten plot

power.fdr 5

power.fdr Function to caculate power, FDR and type-1 error, False Positives, and True Positives

Description

Function to caculate power, FDR and type-1 error, False Positives, and True Positives

Usage

```
power.fdr(P.value, QTN.position = NULL, cutoff = NULL)
```

Arguments

QTN.position position of QTN if known

P list of SNPs order by ascending p-value

Value

list of power, FDR, type-1 error, False Positives, and True Positives

qq_plot Function to create a QQ plot

Description

Function to create a QQ plot

Usage

```
qq_plot(GM, pvals, QTN_index = c(), trait = "unknown")
```

Arguments

GM genetic map of data with chr and position of each SNP

pvals from gwas results for each SNP

QTN_index posistion of QTN if applicable trait character value for trait name

Value

QQ plot

Index

```
fix_Dep, 1
GWASapply, 2
GWAStest, 3
manhattan_plot, 4
power.fdr, 5
qq_plot, 5
```