课程编号_		
实验类型	实训实验	

í	导分	教师签名	批改日期

深圳大学实验报告

课程名称:	大学物理实验(三)				
实验名称:	用实验方法找出弹簧振子周期的表达式				
学 院:	高等研究院				
组号:	指导教师:				
报告人: _	学号:				
实验地点:	致原楼				
实验时间:	2024 年_4_月_19_日				
提交时间:	2024 年_4_月_26_日				

一、实验设计方案

1.1 实验目的

1.1.1 实验要求

假设我们不知道弹簧振子的理论公式,用实验的方法(用实验数据)找出弹簧振子数学解析式。

1.1.2 实验目的

在实际工作中,我们会遇到一些新的物理现象,我们需要对物理现象进行研究,发掘它的规律, 本实验的目的在于学习用实验方法找出物理规律的表达式,重点是学习研究问题的方法。

1.2 研究思路

本实验无原理,思考过程与一般不同,注重从现象、数据到规律的推导过程。采取以下步骤:

- 1. 确定周期 T 与哪些因素有关
- 2. 控制 k 不变, 找出 T(m)
- 3. 控制 *m* 不变, 找出 *T*(*k*)
- 4. 分析 T(m) 和 T(k), 找出 T(m,k) 解析式
- 5. 确定系数

关键点在于如何控制 k 和 m, 实验时不常如何选取, 如何找出 T(m) 和 T(k), 以及如何分析 T(m) 和 T(k)。

确定周期 T **与哪些因素有关** 想要得到弹簧振子的周期公式,首先观察实验中有哪些物理量,如 T、m、k,推断周期 T 与质量 m 和劲度系数 k 之间可能的关系。实验中控制变量,分别改变质量 m 和劲度系数 k,来观察它们对周期 T 的影响。

1.3 实验原理

量纲分析步骤

- 1. 识别相关变量: 首先,确定对研究问题具有影响的所有物理量。
- 2. 列出量纲方程: 书写每个物理量的量纲表达式。例如,T 的量纲是 T, m 的量纲是 M, k 的量纲可表示为 M/T^2 (因为 k= 力/位移,而力的量纲是质量乘以加速度)。
- 3. 建立量纲齐次方程:基于物理直觉或经验,假设一个可能的关系式,并确保方程两边的量纲相匹配。

弹簧的有效质量 一个均匀弹簧沿其长度振动时,有效质量是其实际质量的约三分之一。可以假设弹簧的每个部分都以不同的振幅振动。弹簧固定一端,另一端自由或连接质量。设 ρ 是弹簧材料的密度,A 是横截面积,L 是弹簧长度,v(x) 是位置 x 处的速度。

弹簧的总动能可以表示为:

$$K = \int_0^L \frac{1}{2} \rho A v(x)^2 \, dx \tag{1}$$

由于速度沿弹簧长度非均匀分布,速度在弹簧自由端达到最大,我们可以进一步假设速度从固 定端到自由端线性增加:

$$v(x) = v_{\text{max}}\left(\frac{x}{L}\right) \tag{2}$$

将代入速度到动能得:

$$K = \int_0^L \frac{1}{2} \rho A \left(v_{\text{max}} \frac{x}{L} \right)^2 dx = \frac{1}{2} \left(\frac{1}{3} \rho A L \right) v_{\text{max}}^2$$
 (3)

因此,总动能可以看作是由质量 $\frac{1}{3}\rho AL$ 以速度 v_{max} 运动产生,即有效质量为 $m_{\text{eff}} = \frac{1}{3}m$

1.4 实验仪器

本实验使用的仪器如下表所示:

表 1: 选用仪器列表

仪器名称	型号	用途
850 接口	UI-5000	数据采集处理
计算机和 PASCO Capstone	CI6874	数据采集平台、数据处理
力传感器	-	测量力的大小
砝码 (10-1000g)	-	为弹簧提供拉力
激光测距仪	-	测量弹簧伸长量

二、实验内容及具体步骤

2.1 控制 k 确定 T(m)

- 1. 在弹簧下方挂质量 m 砝码。
- 2. 拉动弹簧, 让其自由振动。
- 3. 使用 Capstone 软件 F-t 的图像,正弦曲线拟合,记录拟合的频率 ω 。
- 4. 改变 m, 重复上述操作。
- 5. 确保在整个实验过程中使用相同的弹簧,以保证劲度系数 k 保持不变。
- 6. 幂指数拟合, 得T与m之间的关系。

2.2 控制 m 确定 T(k)

- 1. 将激光测距仪固定在与弹簧伸长方向平行的位置上
- 2. 挂上不同质量的砝码,使用激光测距仪测量弹簧伸长的距离
- 3. 得到至少五组质量 M 与弹簧伸长量 Δx 的数据
- 4. 选取同一质量 m 的砝码,对不同的弹簧使用 Capstone 软件记录时间 t 对力 F 的图像,并使用正弦曲线拟合,记录拟合的频率 ω ,计算周期 T

- 5. 将收集到的数据(周期 T 和弹性系数 k)绘制成图表。
- 6. 幂指数拟合,得 T 与 k 之间的关系。

2.3 得到 T(m,k) 解析式

通过综合 T(m) 与 T(k), 进一步量纲分析, 找出 T(m,k) 解析表达式。

三、数据记录及数据处理

3.1 控制 k 确定 T(m)

选择一根弹簧,测量得到其质量 $m_0=21\mathrm{g}$,重力加速度取 $g=9.8\mathrm{m/s}^2$

砝码质量 $M(g)$	有效质量 m(g)	所受力 $F(N)$	频率 $\omega(\text{rad/s})$	周期 T(s)
1000	21	1007	11.3	0.556
1200	21	1207	10.3	0.610
1400	21	1407	9.58	0.656
1600	21	1607	8.97	0.700
1700	21	1707	8.70	0.722
1800	21	1807	8.45	0.744
2000	21	2007	8.03	0.782

表 2: 控制 k 记录 F 与 m 的关系

表中的有效质量 m 由 $m=m_0+\frac{m_0}{3}$ 计算得到,所受力 F 由 F=mg 计算得到,频率 ω 由电脑软件正弦拟合得到,周期 T 由 $T=\frac{2\pi}{\omega}$ 计算得到。

图 1: 指数拟合 T(m)

使用 Excel 指数拟合结果 $y = 0.5546^{0.4941}$, $R^2 = 0.9999$ 为了进一步得到弹簧的弹性系数,对 F = 5 的关系进行线性拟合,得到下表图

表 3: 弹簧伸长和受力关系

质量 <i>M</i> (kg)	距离 x(m)	力 F(N)
1.0	0.446	9.8
1.1	0.442	10.8
1.2	0.430	11.8
1.4	0.414	13.7
1.6	0.400	15.7
1.8	0.383	17.6
2.0	0.367	19.6

图 2: 弹簧弹力与位移关系

使用 Excel 直线拟合结果 y = -121.95x + 64.348, $R^2 = 0.9976$, 弹性系数为 k = 121.95N/m

3.2 控制 *m* 确定 T(k)

测量多个弹簧的弹性系数 k,并选取一个质量 m,对不同的弹簧使用 Capstone 软件记录时间 t 对力 F 的图像,并使用正弦曲线拟合,记录拟合的频率 ω 。

弹簧弹性系数 *k* 同上进行多次测量,得到数据下表:

				M(kg)	m(g)	F(N)	x(m)
				0.500	7.5758	4.924748	0.420
M(kg)	m(g)	F(N)	x(m)	0.700	7.5758	6.884748	0.385
1.000	20.3990	9.866637	0.455	0.900	7.5758	8.844748	0.344
1.500	20.3990	14.76664	0.428	1.000	7.5758	9.824748	0.330
1.700	20.3990	16.72664	0.416	1.200	7.5758	11.78475	0.286
1.900	20.3990	18.68664	0.404	1.400	7.5758	13.74475	0.252
2.000	20.3990	19.66664	0.398	1.500	7.5758	14.72475	0.231
	(a)	甲			(b)) 乙	
M(kg)	m(g)	F(N)	x(m)	M(kg)	m(g)	F(N)	x(m)
$\frac{M(\mathrm{kg})}{0.500}$	m(g) 8.2180	F(N) 4.926845	$\frac{x(m)}{0.478}$	$\frac{M(\mathrm{kg})}{0.500}$	m(g) 10.8193	F(N) 4.935343	$\frac{x(m)}{0.445}$
0.500	8.2180	4.926845	0.478	0.500	10.8193	4.935343	0.445
0.500 0.700	8.2180 8.2180	4.926845 6.886845	0.478 0.462	0.500 0.700	10.8193 10.8193	4.935343 6.895343	0.445 0.418
0.500 0.700 0.900	8.2180 8.2180 8.2180	4.926845 6.886845 8.846845	0.478 0.462 0.446	0.500 0.700 0.900	10.8193 10.8193 10.8193	4.935343 6.895343 8.855343	0.445 0.418 0.389
0.500 0.700 0.900 1.000	8.2180 8.2180 8.2180 8.2180	4.926845 6.886845 8.846845 9.826845	0.478 0.462 0.446 0.436	0.500 0.700 0.900 1.000	10.8193 10.8193 10.8193 10.8193	4.935343 6.895343 8.855343 9.835343	0.445 0.418 0.389 0.380
0.500 0.700 0.900 1.000 1.200	8.2180 8.2180 8.2180 8.2180 8.2180	4.926845 6.886845 8.846845 9.826845 11.78685	0.478 0.462 0.446 0.436 0.416	0.500 0.700 0.900 1.000 1.200	10.8193 10.8193 10.8193 10.8193	4.935343 6.895343 8.855343 9.835343 11.79534	0.445 0.418 0.389 0.380 0.352

表 4: 测量弹簧弹性系数数据

画图拟合:

图 3: 拟合结果

振动的周期 分别将五个弹簧挂上 0.5kg 砝码,轻轻拉动,计算震荡周期,得下表:

表 5: 控制 m 记录 T 与 k 的关系

角频率 $\omega(\mathrm{rad/s})$	周期 T(s)	弹性系数 $k(N/m)$	质量 $M(kg)$
18.6	0.3378	171.67	0.5
10.5	0.5984	51.537	0.5
15.5	0.4054	105.07	0.5
11.8	0.5325	70.941	0.5

做出拟合结果

图 4: 指数拟合 T(k)

拟合曲线为 $y = 4.167x^{-0.491}$, $R^2 = 0.99$, 幂次为 -0.491

可能是由于硬度最大的弹簧未拉开,硬度最小的弹簧拉太长,均离开线性区导致。之后考虑是 弹性系数测量不够精准导致。

3.3 量纲分析

按照原理中指出一般方法:

- 1. 相关变量: 周期 T、质量 m、劲度系数 k。
- 2. 构造关系式 T = f(m, k)。
- 3. 寻找无量纲组合: 利用量纲分析, 我们可以推导出, 要使 T、m、和 k 的关系式的量纲一致, 可能的组合是 $\sqrt{m/k}$,因为其量纲是 $\sqrt{[M]/([M/T^2])} = [T]$ 。

因此, 我们可以推测 $T = C\sqrt{m/k}$, 其中 C 由解力学方程为 2π 。

3.4 求解 T(m,k) 解析式

两个实验分别得到

$$T = 0.5546m^{0.4941}$$

$$T = 4.167k^{-0.491}$$

约去控制变量时未改变的 m/k 值,可计算常数 C。

代入 m = 0.5kg, k = -121.95N/m 对于 T(m, k):

$$C_m = \frac{0.5546}{121^{-0.491}} = 5.93$$

$$C_k = \frac{4.167}{0.5^{0.4941}} = 5.86$$
(5)

$$C_k = \frac{4.167}{0.50.4941} = 5.86 \tag{5}$$

则可得 C 的测量值为

$$C = \frac{C_m + C_k}{2} = \frac{5.93 + 5.86}{2} = 5.90 \tag{6}$$

则最终所得 T(m,k) 为

$$T(m,k) = 5.90 \frac{m^{0.4941}}{k^{0.491}} \tag{7}$$

3.5 误差分析

3.5.1 相对误差

实验计算出的误差与理论公式 $T=2\pi\sqrt{\frac{m}{k}}$ 略有偏差, 计算相对误差得

$$E_C = \frac{|5.90 - 2\pi|}{2\pi} \times 100\% = 6.1\% \tag{8}$$

$$E_m = \frac{|0.4941 - 0.5|}{0.5} \times 100\% = 1.18\% \tag{9}$$

$$E_k = \frac{|-0.491 + 0.5|}{-0.5} \times 100\% = 1.8\% \tag{10}$$

3.5.2 误差来源

偶然误差

- 长度测量误差测量弹簧伸长量时,可能因硬纸片的位置倾斜引起测量误差。
- 弹簧晃动,不只垂直晃动,在水平方向上发生位移,导致测量的周期不准确。

系统误差

- 弹簧的弹性限度,弹簧超出其弹性限度后,行为可能不再符合胡克定律,超出线性区,伸长量与弹力不成线性关系。
- 摩擦和阻力, 空气阻力和支架上的摩擦可能影响振动周期。
- 弹簧非均匀振动,不同部分的振动存在差异。
- 弹簧非理想性, 弹簧在多次使用后微微变形, 弹性变化。

3.5.3 减小误差方法

为了减少误差,实验过程中可以采取以下措施:

- 测量多个周期的平均值,确保拟合不变。
- 弹簧的伸长量测量时减少测量误差。
- 多次测量弹簧弹性系数。
- 控制弹簧不超过其弹性限度。
- 保持支架稳固不要水平晃动。

四、实验结果陈述与总结

4.1 结果陈述

根据实验数据与拟合曲线,得到: 周期 T 与质量 m 的关系符合 $T=C_1\cdot \sqrt{m}$,实验拟合指数 0.4941; 与弹性系数 k 的关系满足 $T=C_2\cdot \frac{1}{\sqrt{k}}$,实验拟合指数 0.491。实验数据与量纲分析理论预 测一致,指数误差为 $E_m=1.18\%$, $E_k=1.8\%$,综合理论结果为 $T=2\pi\sqrt{\frac{m}{k}}\sim 2\pi\frac{m^{0.4941}}{k^{0.491}}$

4.2 实验总结

通过这个实验,学到了运用控制变量法,量纲分析法来研究物理现象,验证了周期与质量平方根和劲度系数平方根的关系。加深对简谐振动的理解,再次熟悉在收集数据和分析图表技能。通过这样一个实验,我学习到了如何对物理现象进行研究,发掘它的规律的方法,有了很大提高。同时看到其它同学完美的 $R^2=0.9999$ 和更好地拟合出平方根结果,知道自己还需要精益求精。

指导	教师	批阅	意见
----	----	----	----

成绩评定

实验设计方案	实验过程与数据记录	数据处理与结果陈述	总分
(40分)	(30 分)	(30 分)	心心