Índice general

Capítulo 1. Diagonalización	3
1. Vectores y valores propios	
	3
2. Polinomio Característico	_
0. 70. 11. 17	6
3. Diagonalización	0
4 D 14 : 1 C D: 4	8
4. Recordatorio de Suma Directa	10
T. Dellesseis Marines	10
5. Polinomio Mínimo	13
6. Subespacios T -invariantes	15
Capítulo 2. Formas Bilineales	25
Capítulo 3. Formas Cuadráticas	35
1. Operadores Autoadjuntos	41
2. Operadores Unitarios	42
3. Teorema Espectral	43
4. Triangulación Compleia	49

Capítulo 1

Diagonalización

En general serán de dimensión finita a menos que se diga lo contrario

1. Vectores y valores propios

Definición. Para $T:V\to V$ una transformación lineal (con V no necesariamenre de dimensión finita) un elemento x de V distinto de cero y un escalar λ en K se llaman un vector propio de T, si $T(x)=\lambda x$. Es decir, λ es un valor propio si existe $x\neq 0$, tal que $T(x)=\lambda x$, x es un vector propio si existe $\lambda\in K$ tal que $T(x)=\lambda x$.

Definición. Para $T:V\to V$ una transformación lineal (con V no necesariamente de dimensión finita) y $\lambda\in K$ un valor propio, definimos $E_{\lambda}=\{x\in V|T(x)=\lambda x\}$ como el espacio propio de T.

Proposición 1. Sean $T: V \to V$ un operador $y \lambda$ un valor propio. Entonces E_{λ} es un subespacio.

Demostración Primero $T(0) = 0 = \lambda \cdot 0$, entonces $0 \in E_{\lambda}$. Sean $x, y \in E_{\lambda}$ y $a \in K$,

$$T(x + ay) = T(x) + aT(y)$$
$$= \lambda x + a\lambda y$$
$$= \lambda(x + ay)$$

Por lo que $x + ay \in E_{\lambda}$ y E_{λ} es un subespacio de $V.\square$

Definición. Para un operador T en V y un valor propio λ , definimos a la multiplicidad geométrica de λ como la dimensión de E_{λ} .

Ejemplos

Diagonalización

- 1. $T:V \to V$ dada por T(x)=0 tiene como valor propio a 0 y $E_0=V.$
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ una rotación por un ángulo que no sea múltiplo de π, T no tiene valores propios.
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (2x, -5y) tiene como valores propios 2 y -5 con E_2 el eje x y E_{-5} el eje y.
- 4. $D: \mathbb{R}[x] \to \mathbb{R}[x]$, con D(p) = p' 0 es un valor propio con $E_0 = P_0(\mathbb{R})$ los polinomios de grado menor o igual a 0.
- 5. $D: \zeta^{\infty}(\mathbb{R}) \to \zeta^{\infty}(\mathbb{R})$, con D(f) = f' 1 es un valor propio con $E_1, \supseteq < e^x >$ generalizando para $\lambda \in \mathbb{R}, E_{\lambda} \supseteq < e^{\lambda x} >$.

El siguiente es un criterio muy útil para saber si un escalar $\lambda \in K$ es un valor propio.

Proposición 2. Sea T un operador en V (no necesariamente de dimensión finita) $y \lambda \in K$. λ es un valor propio de T si y sólo si $nuc(T-\lambda 1_V) \neq 0$

Demostración

- \Rightarrow) Si λ es un valor propio de T entonces existe $v \in V$ con $v \neq 0$ tal que $T(v) = \lambda v$, por lo que $(T \lambda 1_V)(v) = 0$ y $nuc(T \lambda 1_V) \neq 0$.
- \Leftarrow) Si $nuc(T \lambda 1_V) \neq 0$ entonces existe $v \in nuc(T \lambda 1_V)$ con $v \neq 0$, por lo que $(T \lambda 1_V)(v) = 0$ y $T(v) = \lambda v . \square$

Proposición 3. Sea T un operador en V. Son equivalentes:

- 1. λ es un valor propio de T
- 2. $nuc(T \lambda 1_V) \neq 0$
- 3. $T \lambda 1_V$ es no invertible

Demostración

Ejercicio.

Sin la hipótesis de la dimensión finita, la equivalencia anterior no es necesariamente cierta, por ejemplo

Si V=K[x] y $T(p)=p^{\prime},$ tenemos que 0 es valor propio, pero T no es invertible.

Pero en general se tiene que 1. o 2. implican 3.

Recordando que si T es un operador en V (no necesariamente de dimensión finita) y $n \in \mathbb{N}$ definimos

$$T^0 = 1_V$$
$$T^{n+1} = T \circ T^n$$

por lo que para $p \in K[x]$ un polinomio con coeficientes n K, si

$$p(x) = a_0 + a_1 x^1 + \dots + a_n x^n$$

definimos

$$p(T) = a_0 1_V + a_1 T + \dots + a_n T^n$$

Proposición 4. Sean T un operador en V (no necesariamente de dimensión finita) y λ un valor propio. Entonces:

- 1. λ^K es un valor propio de T^n , para $n \in \mathbb{N}$
- 2. Para $a \in K$, λ es un valor propio de aT
- 3. Para $p \in K[x], p(\lambda)$ es un valor propio de p(T)

Demostración

Ejercicio.

Definición. Un operador T en V (no necesariamente de dimensión finita) es nilpotente si existe $n \in \mathbb{N}$ tal que $T^n = 0$.

Proposición 5. Si T es un operador en V (no necesariamente de dimensión finita), T es nilpotente $y \lambda$ un valor propio entonces λ es θ .

Demostración Por hipótesis existe $n \in \mathbb{N}$ $T^n = 0$, por lo que λ^n es un valor propio del operador 0, por lo que $\lambda^n = 0$ y de aquí $\lambda = 0$.

Identificamos a K^n con $M_{n\times 1}(K)$ y recordamos que toda matriz $A\in M_n(K)$ define un operador en K^n , $T_A:K^n\to K^n$ dado por $T_A(x)=Ax$. Cuando hablemos de los valores propios o vectores propios de una matriz A nos referiremos a los valores propios y vectores propios de T_A .

2. Polinomio Característico

El polinomio característico de un operador T en V, lo definimos como

$$p_T(\lambda) = det([T - \lambda 1_V]_{\beta}^{\beta})$$

donde β es una base ordenada, notemos que $p_T(\lambda) = det([T]_{\beta}^{\beta} - \lambda I)$ donde I es la matriz identidad. Hay que ver que el polinomio característico no depende de la elección de la base β , así que consideremos otra base ordenada γ

$$p_{T}(\lambda) - det([T]_{\beta}^{\beta} - \lambda I)$$

$$= det([1_{V}]_{\beta}^{\gamma}) det([T]_{\beta}^{\beta} - \lambda I) det([1_{V}]_{\gamma}^{\beta})$$

$$= det([1_{V}]_{\beta}^{\gamma}([T]_{\beta}^{\beta} - \lambda I)[1_{V}]_{\gamma}^{\beta})$$

$$= det([T]_{\gamma}^{\gamma} - \lambda I)$$

Usamos el hecho de que el determinante abre la multiplicación y $([1_V]^\gamma_\beta)^{-1}=[1_V]^\beta_\gamma.$

Proposición 6. Si T es un operador en V, el coeficiente principal de su polinomio característico es $(-1)^n$ donde n es la dimensión de V.

Demostración Por inducción sobre n

Sea
$$\beta$$
 una base ordenada de V y $A = [T]_{\beta}^{\beta}$.
Si $n = 1$, $p_T(\lambda) = det(A - \lambda I) = A_{11} - \lambda$.
Ahora el paso inductivo

$$p_{T}(\lambda) = det(A - \lambda I)$$

$$= \sum_{i=1}^{n+1} (-1)^{n+1+i} (A - \lambda I)_{n+1i} det((\widehat{A - \lambda I})_{n+1i})$$

$$= \sum_{i=1}^{n} (-1)^{n+1+i} A_{n+1i} det((\widehat{A - \lambda I})_{n+1i})$$

$$+ (A_{n+1n+1} - \lambda) det((\widehat{A - \lambda I})_{n+1n+1})$$

Observemos que

$$det(\widehat{(A-\lambda I)}_{n+1i}) = \sum_{\sigma \in S_n} sgn(\tau) \prod_{j=1}^n (\widehat{(A-\lambda I)}_{n+1i})_{j\tau(j)}$$

por lo que $\prod_{j=1}^n (\widehat{(A-\lambda I)}_{n+1i})_{j\tau(j)}$ es un polinomio de grado a lo más n. Por otro lado $det(\widehat{(A-\lambda I)}_{n+1n+1}) = det(\widehat{A}_{n+1n+1}-\lambda I) = p_{T_{\widehat{A}_{n+1n+1}}}(\lambda)$ por hipótesis de inducción tiene coeficiente principal $(-1)^n$, por lo que $(A_{n+1n+1}-\lambda)det(\widehat{A}_{n+1n+1}-\lambda I)$ tiene coeficiente principal $(-1)^{n+1}$, por lo observado anteriormente los demás polinomios tienen grado menor o igual a n, por lo que el coeficiente principal debe ser $(-1)^{n+1}$. \square

Corolario 1. Sea T un operador en V y dimV = n, entonces $\partial p_T = n$.

La utilidad del polinomio característico se sigue de la siguiente observación.

Observación Para T un operador en V y β una base de V, tenemos que $x \in V$ es un vector propio de T si y sólo si $[x]_{\beta}$ es un vector propio de $[T]_{\beta}^{\beta}$. También $\lambda \in K$ es un valor propio de T si y sólo si λ es un valor propio de $[T]_{\beta}$.

Demostración

Ejercicio.

Recordando que λ es un valor propio de T si y sólo si $T - \lambda I_V$ es no invertible, tenemos que λ es un valor propio de T si y sólo si $[T]_{\beta}^{\beta} - \lambda I$ es no invertible y esto último es equivalente a que $\det([T]_{\beta}^{\beta} - \lambda I) = 0$. Por lo que llegamos a que λ es un valor propio de T si y sólo si $p_T(\lambda) = 0$. El problema de encontrar valores propios se lleva a encontrar raíces de un polinomio.

Ejemplo 1. Sea $T: K^2 \to K^2$ dado por T(x,y) = (x+y,x-y) y consideramos $\beta = \{(1,0),(0,1)\}$, no hay que complicarnos la vida puesto

que cualquier base funciona, en general elegiremos la canónica

$$\begin{split} [T]_{\beta}^{\beta} &= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ p_T(\lambda) &= det \begin{pmatrix} 1 - \lambda & 1 \\ 1 & -1 - \lambda \end{pmatrix} \\ &= (1 - \lambda)(-1 - \lambda) - 1 \\ &= -1 - \lambda + \lambda + \lambda^2 - 1 \\ &= \lambda^2 - 2 = (\lambda - \sqrt{2})(\lambda + \sqrt{2}) \end{split}$$

Las raíces del polinomio característico son $\sqrt{2}$, $-\sqrt{2}$ y por lo tanto son valores propios. Queremos encontrar un vector propio para cada valor propio, es decir, un elemento no cero de $nuc(T - \lambda I_V)$, es decir, buscamos una solución no trivial

$$\begin{pmatrix} 1 - \lambda & 1 \\ 1 & -1 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Primero en el caso de $\lambda = \sqrt{2}$

$$\begin{cases} (1 - \sqrt{2})x + y = 0 \\ x + (-1 - \sqrt{2})y = 0 \end{cases}$$

Haciendo x=1, encontramos que $y=\sqrt{2}-1$. Verificando $T(1,\sqrt{2}-1)=(\sqrt{2},2-\sqrt{2})=\sqrt{2}(1,\sqrt{2}-1)$ En el caso de $\lambda=-\sqrt{2}$

$$\begin{cases} (1+\sqrt{2})x + y = 0\\ x + (-1+\sqrt{2})y = 0 \end{cases}$$

De nuevo elegimos x=1 y llegamos a que $y=-1-\sqrt{2}$, calculando $T(1,-1-\sqrt{2})=(-\sqrt{2},2+\sqrt{2})=-\sqrt{2}(1,-1-\sqrt{2}).$

Loúnico que necesitamos en este ejemplo es que $\sqrt{2} \in K$, en el caso de \mathbb{Z}_3 esto no se da $0^2=0, 1^2=1$ y $2^2=1$.

3. Diagonalización

Definición. Una matriz $D \in M_n(K)$ la llamamos diagonal si $D_{ij} = 0$ siempre que $i \neq j$, es decir, una matriz cuadrada es diagonal si fuera de su diagonal solo toma el valor 0.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$

Definición. Un operador T en V es diagonalizable si existe una base β de V tal que $[T]_{\beta}$ es una matriz diagonal.

Proposición 7. Para T un operador en V son equivalentes

- 1. T es diagonalizable
- 2. Existe β base de V de vectores propios

Demostración

 $1. \Rightarrow 2.$) Si T es diagonalizable existe β tal que $[T]_{\beta}$ es diagonal. Si ponemos $\beta = \{v_1, ..., v_n\}$, tenemos que $[T(v_i)]_{\beta} = [T]_{\beta}[v_i]_{\beta}$, si calculamos su j-ésima coordenada tenemos

$$\begin{split} [T(v_i)]_{\beta_{j1}} = &([T]_{\beta}[v_i]_{\beta})_{j1} \\ = &\sum_{k=1}^n [T]_{\beta_{jk}}[v_i]_{\beta_{k1}} \\ = &\sum_{k=1}^n [T]_{\beta_{jj}} \delta_{jk} \delta_{ki} \\ = &[T]_{\beta_{jj}} \delta_{ji} \end{split}$$

Lo que quiere decir que $T(v_i) = [T]_{\beta_{ii}} v_i$.

 $2. \Rightarrow 1.$) Si existe una base $\beta = \{v_1, ..., v_n\}$ de vectores propios con $T(v_i) = \lambda_i v_i$, lo que quiere decir que $[T]_{ij} = [T(v_j)]_{ii} = 0$, si $i \neq j.\square$

Para llevar esto aún más al lenguaje de matrices, recordamos que dos matrices A, B representan al mismo operador si existe $Q \in GL_n(K)$ tal que $A = QBQ^{-1}$, cuando esto pasa decimos que son semejantes, damos naturalmente la siguiente definición.

Definición. Una matriz cuadrada es diagonalizable si es semejante a una matriz diagonal.

Proposición 8. Para T un operador en V, son equivalentes

- 1. T es diagonalizable
- 2. Para toda β base de V, tal que $[T]_{\beta}$ es diagonalizable

3. Existe β base de V, tal que $[T]_{\beta}$ es diagonalizable

Demostración

- $1. \Rightarrow 2.$) Si T es diagonalizable, existe γ base de V tal que $[T]_{\gamma}$ es diagonal, sea β una base de V, $[1_V]_{\beta}^{\gamma}[T]_{\beta}[1_V]_{\gamma}^{\beta}=[T]_{\gamma}$, y como $[1_V]_{\beta}^{\gamma}$ es invertible con inversa $[1_V]_{\gamma}^{\beta}$, tenemos que $[T]_{\beta}$ es semejante a una matriz diagonal.
 - $2. \Rightarrow 3.$) Obvio.
- $3. \Rightarrow 1.$) Si $[T]_{\beta}$ es diagonalizable, entonces existe $Q \in GL_n(K)$ con $Q[T]_{\beta}Q^{-1} = D$ con D una matriz diagonal. Consideramos que Q representa un operador que podemos poner $Q = [S]_{\beta}$ para algún operador S en V, notemos que $Q^{-1} = [s^{-1}]_{\beta}$, de aquí $[STS^{-1}]_{\beta} = D$ por lo que tenemos que si $\beta = \{v_1, ..., v_n\}$ entonces $STS^{-1}(v_i) = D_{ii}v_i$, por lo que $T(S^{-1}(v_i)) = D_{ii}(S^{-1}(v_i))$, es decir $S^{-1}(v_1), ..., S^{-1}(v_n)$ son vectores propios y como S^{-1} es un isomorfismo, son una base de vectores propios. \square

4. Recordatorio de Suma Directa

Sean $V_i \leq V$ i=1,...,n subespacios, la suma $\sum_{i=1}^n V_i$ es el subespacio formado por los elementos de la forma $v_1+...+v_n$ con $v_i \in V_i$ para toda i=1,...,n. Diremos que el subespacio $\sum_{i=1}^n V_i$ es una suma directa, si para cada i=1,...,n $V_i \cap \sum_{j \neq i} V_j = 0$ y lo denotaremos por $\bigoplus_{i=1}^n V_i$.

Proposición 9. Sean $V_i \leq V$ y $dim(V_i) = m_i$ para i = 1, ..., n. La suma de los V_i es directa si y sólo si $dim(\sum_{i=1}^n V_i) = \sum_{i=1}^n$.

Demostración

Ejercicio.

Proposición 10. Sean $V_i \leq V$. $\sum_{i=1}^k V_i$ es suma directa si y sólo si para cualesquiera $\beta_i \subseteq V_i$ linealmente independiente, $\bigcup_{i=1}^k \beta_i$ es linealmente independiente. En este caso la unión siempre resutará ajena.

Proposición 11. Sea T un operador en V, $v_1,...,v_n$ vectores propios de $\lambda_1,...,\lambda_n$ con $\lambda_i \neq \lambda_j$ si $i \neq j$, entonces $v_1,...,v_n$ son linealmente independientes.

Demostración

Por inducción sobre n.

Si n=0, el conjunto de vectores es vacío y por lo tanto linealmente independiente.

Si $n=1, v_1$ es linealmente independiente por ser distinto de cero.

Suponemos válido para n, y suponemos que $v_1,...,v_{n+1}$ son linealmente dependientes, como $v_1,...,v_n$ son linealmente independientes entonces

$$v_{n+1} = \mu_1 v_1 + \dots + \mu_n v_n$$

Aplicando T y multiplicando por λ_{n+1} obtenemos las siguientes dos igualdades.

$$\lambda_{n+1}vn + 1 = \mu \lambda_1 v_1 + \dots + \mu_n \lambda_n v_n$$

 $\lambda_{n+1}vn + 1 = \mu \lambda_{n+1}v_1 + \dots + \mu_n \lambda_{n+1}v_n$

despejando obtenemos

$$\mu_1(\lambda_1 - \lambda_{n+1})v_1 + \dots + \mu_n(\lambda_n - \lambda_{n+1})v_n = 0$$

Por hipótesis de inducción

$$\mu_i(\lambda_i - \lambda_{n+1}) = 0$$

pero $\lambda_i - \lambda_{n+1} \neq 0$ por hipótesis, por lo que $\mu_i = 0$ para i = 1, ..., n lo que implica que $v_{n+1} = 0$! contradiciendo el hecho de que v_{n+1} era un vector propio. \square

Corolario 2. Sea T un operador en V con dimV = n y n valores propios diferentes. Entonces T es diagonalizable.

Demostración. Para cada λ_i existe un vector propio v_i , el conjunto $\{v_1, ..., v_n\}$ es linealmente independiente y junto con la hipótesis de que dimV = n tenemos que $v_1, ..., v_n$ es una base de vectores propios de $V.\square$

Corolario 3. Sean T un operador en V y $\lambda_1, ..., \lambda_n$ valores propios de T diferentes entre sí. Entonces la suma de los E_{λ_i} es directa.

Demostración

Sea $v_i \in E_{\lambda_i} \cap \sum_{j \neq i} E_{\lambda_j}$ entonces $v_i = v_1 + \ldots + v_{i-1} + v_{i+1} + \ldots + v_k$ con $v_j \in E_{\lambda_j}$ para $j = 1, \ldots, k$ entonces despejando a 0 tenemos que v_1, \ldots, v_k son linealmente dependientes por lo que la única manera que esto pase y no se contradiga la proposición anterior es que $v_1 = 0$, por lo que $E_{\lambda_i} | \sum_{j \neq i} E_{\lambda_j} = 0.\square$

Definición. Un polinomio $p \in K[x]$ se escinde en K, si existen $\lambda, \lambda_1, ..., \lambda_k \in K$ (no necesariamente diferentes) tales que $p(x) = \lambda(x - \lambda_1)...(x - \lambda_k)$.

Proposición 12. Sea T un operador en V diagonalizable entonces p_T se escinde.

Demostración Sea β una base de V de vectores propios, entonces $[T]_{\beta} = D$ es una matriz diagonal, por lo que $p_T(\lambda) = det(D - \lambda I) = (D_{11} - \lambda)...(D_{nn} - \lambda) = (-1)^n(\lambda - D_{11})...(\lambda - D_{nn})\square$

Definición. Para T un operador en V y λ un valor propio de T definimos la multiplicidad algebraica de λ como la multiplicidad de λ en el polinomio característico p_T , es decir, el mayor k tal que $(x - \lambda)^k | p_T(x)$.

Proposición 13. Sea T un operador en V tal que p_T se escinde en K y m_i la multiplicidad algebraica de λ_i entonces $dim V = \sum m_i$.

Proposición 14. Sea T un operador en V y λ un valor propio de T, entonces la multiplicidad geométrica de λ es menor o igual a la multiplicidad algebraica de λ .

Demostración. Sea $\{v_1,...,v_k\}$ una base de E_{λ} , y la extendemos a una de V, $\beta = \{v_1,...,v_k,...,v_n\}$ entonces $[T]_{\beta} = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$ donde $A_1 = \lambda I \in M_k(k), A_2 \in M_{k \times n - k}(k), A_3 \in M_{n - k}(k)$ y $0 \in M_{n - k \times k}(k)$

$$p_T(x) = det([T]_{\beta} - xI)$$

$$= det(A_1 - xI)det(A_3 - xI)$$

$$= (-1)^k (x - \lambda)^k det(A_3 - xI)$$

por lo que $(x-\lambda)^k|p_T(x).\square$

Proposición 15. Sea T un operador en V con dimV = n, tal que p_T se escinde en K y $\lambda_1, ..., \lambda_k$ los valores propios de T (diferentes) entonces son equivalentes:

- 1. T es diagonalizable
- 2. La multiplicidad algebraica coincide con la geométrica para todo valor propio.

Demostración.

 $1. \Rightarrow 2.$) Si T es diagonalizable existe una base β de vectores propios llamamos $\beta_i = \beta \cap E_{\lambda_i}$, notamos que $\beta = \bigcup_{i=1}^k \beta_i$, β es la unión ajena de los β_i . Calculando

$$n = |\beta|$$

$$= \sum_{i=1}^{k} |\beta_i|$$

$$\leq \sum_{i=1}^{k} dim(E_{\lambda_i})$$

$$\leq n$$

De aquí $\sum_{i=1}^k dim(E_{\lambda_i}) = n$.

Si llamamos m_i a la multiplicidad algebraica de λ_i , sabemos que $\sum_{i=1}^k m_i = n$. Por lo que $dim(E_{\lambda_i}) = m_i$ para toda i = 1, ..., k.

 $2. \Rightarrow 1.$) Sea β_i una base de E_{λ_i} , entonces $\beta = \bigcup_{i=1}^k \beta_i$, por hipótesis β es linealmente independiente entonces

$$|\beta| = \sum_{i=1}^{k} |\beta_i|$$

$$= \sum_{i=1}^{k} dim(E_{\lambda_i})$$

$$= \sum_{i=1}^{k} m_i$$

$$= n$$

Por lo que β es base y de vectores propios. \square

5. Polinomio Mínimo

Recordemos que para T un operador en V le habíamos dado un sentido a p(T) donde p es un polinomio en K[x]. Sin profundizar mucho, recordemos de cursos pasados que en un anillo conmutativo R, si definimos a divide a b, para $a,b\in R$, como que existe $c\in R$ tal que ac=b, esta relación nos da un preorden, es decir, la relación es reflexiva y transitiva.

Todo esto para dar la siguiente definición.

Definición. Sea T un operador de V, el polinomio mínimo de T, p^T , lo definimos como el mínimo polinomio mónico de K[x] distinto de cero, que con el preorden mencionado anteriormente hace que $p^T(T) = 0$.

Proposición 16. Sea T un operador en V, entonces p^T existe y es único.

Demostración. Sea n=dimV, entonces $dim(End(V))=n^2$ por lo que $1_V, T, ..., T^{n^2}$ son n^2+1 vectores que deben ser linealmente dependientes por lo que existen $a_0, ..., a_{n^2} \in K$ tales que $a_01_V + a_1T + ... + a_{n^2}T^{n^2} = 0$ con algún $a_i \neq 0$ por lo que $p(x) = a_0 + a_1x + ... + a_{n^2}x^{n^2}$ es un polinomio que anula a T.

Ahora consideramos

$$I = \{ \partial q \in \mathbb{N} | q \in K[x] \text{ con } q \neq 0 \text{ y } q(T) = 0 \}$$

Claramente $I \subseteq \mathbb{N}$ y $\partial p \in I$, por lo que $I \neq \emptyset$, ahora por el principio del buen orden existe un mínimo en $m \in \mathbb{I}$, ese m es el grado de un polinomio f distinto de cero que anula a T, ahora veamos que es mínimo con respecto al preorden de la divisibilidad.

Sea $g \in K[x]$ tal que g(T) = 0, $g \neq 0$ y $m \leq \partial g$ entonces por el algoritmo de la división en polinomios existen $h, r \in K[x]$ tales que

$$g = fh + r \operatorname{con} \partial r < \partial f = m$$

Valuando en T

$$0 = g(T) = f(T)h(T) + r(T)$$
$$= 0 \circ h(T) + r(T)$$
$$= r(T)$$

por lo que r(T)=0 si ∂r es un natural tendríamos que $\partial r\in I!$ contradiciendo que ∂f es mínimo, por lo que $\partial r=-\infty$ y r=0. Así que g=fh y f|h. La siguiente observación nos dará el truco de la unicidad, ya que tenemos el grado m, todos los polinomios de grado m que anulan a T son mínimos, pero si f y f' son dos polinomios que cumplen esto, entonces existe $a\in K$ tal que af=f'. Como f|f' existe $h\in K[x]$ fh=f', pero $m=\partial(f')=\partial(fh)=\partial(f)+\partial(h)=m+\partial(h)$ de donde $\partial(h)=0$, por lo que h=a con $a\in K$. El regreso también se vale, es decir, si f tiene grado m, f(T)=0 y $a\in K$ entonces af tiene grado m y af(T)=0. Por que el conjunto de polinomios de grado m que anulan a T, todos son múltiplos por un escalar.

Sabemos que existe al menos un polinomio f tal que f(T) = 0 y $\partial f = m$. Si f no es mónico entonces su coeficiente principal a es distinto de cero, por lo que $a^{-1}f$ es mónico y cumple lo deseado, por lo que llamemos $p^T = a^{-1}f$. Si f es otro polinomio mónico que cumple lo deseado, entonces $p^T = bf'$ con $b \in K$, pero p^T , bf' tienen el mismo coeficiente principal, en este caso el de p^T es 1 y el de bf' es b, por lo que b = 1 y $p^T = f'$, es decir, pedirle que sea mónico le da unicidad. \square

Corolario 4. Si T es un operador en V con dimV = n entonces $\partial(p^T) \le n^2$.

Observación. Si T es el operador cero, entonces $p_T(x) = x$. **Ejemplos**

1. Sea $T: K^2 \to K^2$ dado por T(x,y) = (y,x), notemos que $T^2 = 1_{K^2}$ por lo que $T^2 - 1_{K^2} = 0$, en este caso $p^T(x) = x^2 - 1 = (x-1)(x+1)$, es fácil observar que ni x-1 ni x+1 anula a T. Ahora un pequeño cálculo para plantear cierta conexión

$$p_T(\lambda) = det \begin{pmatrix} \lambda & 1 \\ 1 & \lambda \end{pmatrix} = \lambda^2 - 1 = p^T(\lambda)$$

2. Sea $T: K[x] \to K[x]$, dado por T(f) = f', y veamos que T no tiene polinomio mínimo, puede ser confuso pero no imposible, sea $p \in K[x]$ un polinomio para que anule a T, se necesita que p(T) = 0, es decir, que p(T)(f) = 0, siendo más explícitos, si $p(x) = a_0 + a_1x + ... + a_nx^n$,

$$p(T)(f) = a_0 f + a_1 f' + \dots + a_n f^{(n)}$$

donde $f^{(i)}$ denota la i-ésima derivada, por lo que pedir que p(T)(f)=0 es pedir que $a_0f+a_1f'+...+a_nf^{(n)}=0$ si tomamos el caso particular de $f=x^n$ entonces $p(T)(x^n)=b_0+b_1x+...+b_nx^n$ donde $b_i=a_{n-i}(n-i)!$ con i=0,...,n que si pedimos que $K=\mathbb{R}$ o \mathbb{C} , vemos que $p(T)(x^n)\neq 0$ al menos que p originalmente fuese cero, por lo cual T no tiene polinomio mínimo.

6. Subespacios T-invariantes

Definición. Sea T un operador en V y $W \leq V$, decimos que W es un espacio T-invariante, $W \leq_T V$, si $T(V) \subseteq V$. Pedir esta propiedad hace sentido en que para $W \leq_T V$ tenemos que $T|_W$ es un operador en W.

Ejemplos.

- 1. $0 <_T V$
- 2. $nucT \leq_T V$
- 3. $V <_T V$
- 4. $imT \leq_T V$

Proposición 17. Sea T un operador en V y $W \leq_T V$, entonces $p_{T|_W}|_{p_T}$.

Demostración.

Sea β una base de W y la completamos a γ una base de V, entonces

$$[T]_{\gamma} = \begin{pmatrix} [T]_{\beta} & A \\ 0 & B \end{pmatrix}$$

por lo que

$$\begin{aligned} p_T(\lambda) = & det([T]_{\gamma} - \lambda I) \\ = & det([T]_{\beta} - \lambda I) det(B - \lambda I) \\ = & p_{T|W}(\lambda) det(B - \lambda I) \end{aligned}$$

de aquí $p_{T|_W}(\lambda)|p_T(\lambda).\square$

Proposición 18. Sea T un operador en V con $V = \bigoplus_{i=1}^m V_i$ donde $V_i \leq_T V$, entonces $p_T = \prod_{i=1}^m p_{T|_{v_i}}$.

Demostración.

Ejercicio

Observación. Para T un operador en $V, W \leq_T V$ y $f \in K[x], f(T|_W) = f(T)|_W$

Ejercicio

Proposición 19. Sea T un operador en V con $W \leq_T V$ entonces $p^{T|_W}|p^T$.

Demostración.

 $p^T(T|_W)=p^T(T)|_W=0|_W=0$ por la minimalidad de $p^{T|_W},$ concluimos que $p^{T|_W}|p^T.\Box$

Definición. Para T un operador en V y $x \in V$ definimos $< x >^T$ como el subespacio generado por $\{T^n(x)|n\in\mathbb{N}\}$, lo llamaremos el subespacio T-cíclico generado por x.

Proposición 20. Sea T un operador en V entonces $p^T = mcm\{p^{T|_{\leq x \geq T}} | x \in V\}$.

Demostración.

Primero ponemos

$$p^{T} = mcn\{p^{T|_{T}} | x \in V\}$$

de la proposición anterior tenemos

$$p^{T|_{< x>^T}}|p^T \forall x \in V$$

es decir, p^T es un múltiplo común, de lo que se sigue que $m|p^T$.

Por la parte de ser un común múltiplo tenemos que $p^{T_{< x>^T}}|m$, para toda $x \in V$. Así que existe h_x tal que $p^{T_{< x>^T}}h_x = m$, valuando T(x) en la igualdad anterior

$$m(T)(x) = (h_x(T) \circ p^{T_{T}}(x))(x)$$

$$= h_x(T)(p^{T_{T}}(T(x)))$$

$$= h_x(T)(0)$$

$$= 0$$

Es decir, m anula a T, por lo que $p^{T_{< x > T}} | m$. Como los dos son mónicos y se dividen entre sí, no queda más que sean iguales. \square

Lema 1. Sea T un operador en V con dimV = n $y < x >^T = V$ para alqún V, entonces $x, T(x), ..., T^{n-1}(x)$ es una base de V.

Demostración.

Si para algún $r \in \mathbb{N}^+$,

$$T^{r}(x) \in \langle x, T(x), ..., T^{r-1}(x) \rangle$$

entonces $\{T^k(x)|k\in\mathbb{N}\}\subseteq\{x,T(x),...,T^{r-1}\}$ por lo que $V\subseteq x,T(x),...,T^{r-1}(x)>y$ de aquí que $x,T(x),...,T^{r-1}(x)$ genere, del curso pasado sabemos que $r\geq n$.

Dentro del mismo contexto sabemos que existe al menos un r con la propiedad antes mencionada, en caso contrario tendríamos que para todo $k \in \mathbb{N}^+$ $T^k(x) \notin \langle x, T(x), ..., T^{k-1}(x) \rangle$ por lo que $\{x, T(x), ..., T^{k-1}(x)\}$ sería linealmente independiente para toda $k \in \mathbb{N}$ resultando en que V sería de dimensión infinita.

Lo anterior es para poder definir

$$s = \min\{r \in \mathbb{N}^+ | T^r(x) \in \langle x, T(x), ..., T^{r-1}(x) \rangle \}$$

y que este exista dado que el conjunto es no vacío. Tengamos en cuenta que para s también se tiene $s \ge n$.

Por como se eligió $s, x, T(x), ..., T^{s-1}(x)$ es linealmente independiente por lo que $s \leq n$, de aquí s = n. Como ya se había notado, de aquí se deduce el hecho de que $x, T(x), ..., T^{n-1}(x)$ es base. \square

En la demostración anterior usamos mucho el hecho de que si tenemos un conjunto linealmente independiente S, entonces $S \cup \{x\}$ es linealmente independiente si y solo si $x \notin S$.

Teorema 1. Sea T un operador en V con dimV = n y $V = \langle x \rangle^T$ para algún $x \in V$, entonces $p^T = \pm p_T$.

Demostración

Por la proposición anterior $\beta = \{x, T(x), ..., T^{n-1}(x)\}$ es base de V. Calculando $[T]_{\beta}$ tenemos

$$[T(x)]_{\beta} = \begin{pmatrix} 0\\1\\0\\\vdots\\0 \end{pmatrix}$$

$$[T^2(x)]_{\beta} = \begin{pmatrix} 0\\0\\1\\\vdots\\0 \end{pmatrix}$$

$$[T^{n-2}(x)]_{\beta} = \begin{pmatrix} 0\\0\\0\\\vdots\\1 \end{pmatrix}$$

y si $T^n(x) = a_0 x + a_1 T(x) + ... + a_{n-1} T^{n-1}(x)$ entonces

$$[T^n(x)]_{\beta} = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

Por lo que

$$[T]_{\beta} = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & 0 & a_1 \\ 0 & 1 & \cdots & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{n-1} \end{pmatrix}$$

Ahora

$$P_T(\lambda) = det \begin{pmatrix} -\lambda & 0 & \cdots & 0 & a_0 \\ 1 & -\lambda & \cdots & 0 & a_1 \\ 0 & 1 & \cdots & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{n-1}\lambda \end{pmatrix}$$

Calculando tenemos

20 Diagonalización

$$p_{T}(\lambda) = -\lambda det \begin{pmatrix} -\lambda & 0 & \cdots & 0 & a_{0} \\ 1 & -\lambda & \cdots & 0 & a_{1} \\ 0 & 1 & \cdots & 0 & a_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{n-1}\lambda \end{pmatrix}$$

$$+(-1)^{n+1}a_{0}det \begin{pmatrix} -1 & -\lambda & 0 & \cdots & 0 \\ 0 & 1 & -\lambda & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & -\lambda \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Como ejercicio queda demostrar que el último determinante vale 1. Notemos que el penúltimo determinante tiene la misma forma que el original, por lo que repitiendo el proceso llegamos a que

$$p_T(\lambda) = (-1)^n (\lambda^n - a_{n-1}\lambda^{n-1} - \dots - a_1\lambda - a_0)$$

Evaluando x en $p_T(T)$ tenemos

$$p_T(T)(x) = (-1)^n (T^n(x) - a_{n-1}T^{n-1}(x)... - a_1T(x) - a_0x) = 0$$

De este hecho se sigue que $p_T(T)(T^i(x)) = 0$ para i = 0, ..., n-1 por lo que $P_T(T)$ anula a β y por lo tanto anula a V, de aquí $p_T(T) = 0$ y $p^T|p_T$.

Ahora si ponemos a $p^T(\lambda)=b_0+b_1\lambda+...+b_{m-1}\lambda^{m-1}+\lambda$ con $m\leq n$ y evaluamos a T y evaluamos a T tenemos que

$$0 = p^{T}(T) = b_0 1_V + bT + \dots + b_{m-1} T^{m-1} + \lambda$$

en particular valdría para x. Si m < n, entonces $b_0x + b_1T(x) + ... + b_{m-1}T^{m-1}(x) + T^m(x) = 0$, lo cual contradice la independencia lineal de $x, T(x), ..., T^m(x)$, por lo que m = n y como $p^T|p_T$ tenemos que $p^T = ap_T$ con $a \in K$, como p^T es mónico y el coeficiente principal de p_T es ± 1 , se sigue el resultado. \Box

Teorema 2 (Cayley-Hamilton). Sea T un operador en V, entonces $p_T(T) = 0$, es decir, $p^T|p_T$.

Demostración

Sabemos que para $x \in V$

$$p_{T|_{^T}} = \pm p^{T|_{^T}}$$

y que

$$p_{T|_{\leq x > T}}|p_T$$

por lo que $p^{T|_{<x>^T}}|p_T$, es decir, p_T es un común múltiplo de $p^{T|_{<x>^T}}$ corriendo por $x \in V$, y como p_T es el mínimo común múltiplo $p^T|p_T$.

Proposición 21. Sea T un operador en V. T es diagonalizable si y solo si $p^T(x) = (x - \lambda_1)...(x - \lambda_k)$ con $\lambda_1,...,\lambda_k$ diferentes entre sí.

Demostración

 $\Rightarrow)$ Como Tes base, existe β base de vectores propios, consideremos

$$q(x) = (x - \lambda_1)...(x - \lambda_k)$$

donde $\lambda_1, ..., \lambda_k$ son los distintos valores propios de T, tomemos $v \in \beta$, entonces $T(v) = \lambda_j$ para algún j de 1 a k, entonces

$$\begin{split} q(T)(v) = & ((x - \lambda_1)...(x - \lambda_{j-1})(x - \lambda_{j+1})...(x - \lambda_k))(T) \circ ((x - \lambda_j)(T))(v) \\ = & ((x - \lambda_1)...(x - \lambda_{j-1})(x - \lambda_{j+1})...(x - \lambda_k))(T)(T(v) - \lambda_j v) \\ = & ((x - \lambda_1)...(x - \lambda_{j-1})(x - \lambda_{j+1})...(x - \lambda_k))(T)(0) \\ = & 0 \end{split}$$

Por lo que q(T) anula a toda la base β y así que q(T)=0 y de aquí $p^T|q$. Por otro lado

$$p^{T}(\lambda_{j})v = p^{T}(T)(v) = 0$$

y como v es un vector propio es distinto de cero por lo que $p^T(\lambda_j) = 0$ y de aquí que los λ_j sean raíces de p^T , por lo que $q|p^T$, ahora como los dos son mónicos y se dividen entre sí $q = p^T$.

 \Leftarrow) Si $p^T(x) = (x - \lambda_1)...(x - \lambda_k)$ con $\lambda_1, ..., \lambda_k$ diferentes. La demostración se hará por inducción sobre k y hacemos la observación que por el teorema anterior los λ_i son valores propios de T.

Base: Si k=1, entonces $0=p^T(T)=(x-\lambda_1)(T)=T-\lambda 1_V$ por lo que $T=\lambda 1_V$ y obviamente T es diagonalizable.

Si k=2 entonces $0=p^T(T)=(T-\lambda_1 1_V)(T-\lambda_2 1_V).$ Por el algoritmo de la división tenemos

$$x - \lambda_1 = (x - \lambda_2)1 + (\lambda_2 - \lambda_1)$$

de aquí

$$((x - \lambda_1) - (x - \lambda_2))(\lambda_2 - \lambda_1)^{-1} = 1$$

Por lo que aplicando T, tenemos

$$((T - \lambda_1 1_V) - (T - \lambda_2 1_V))(\lambda_2 - \lambda_1)^{-1} = 1_V$$

Para todo $v \in V$

$$(T - \lambda_2 1_V)((\lambda_2 - \lambda_1)^{-1}(T - \lambda_1 1_V)(v)) = (\lambda_2 - \lambda_1)^{-1}(T - \lambda_2 1_V)(T - \lambda_1 1_V)(v)$$
$$= (\lambda_2 - \lambda_1)^{-1}0(v)$$
$$= 0$$

entonces $(\lambda_2 - \lambda_1)^{-1}(T - \lambda_1 1_V)(v) \in E_{\lambda_2}$.

Análogamente $(\lambda_2 - \lambda_1)^{-1}(T - \lambda_2 1_V)(v) \in E_{\lambda_1}$.

Con lo anterior, para toda $v \in V$

$$v = (\lambda_2 - \lambda_1)^{-1} (T - \lambda_1 1_V)(v) - (\lambda_2 - \lambda_1)^{-1} (T - \lambda_2 1_V)(v)$$

por lo que $v \in E_{\lambda_1} + E_{\lambda_2}$ de aquí $V = E_{\lambda_1} + E_{\lambda_2}$.

Para cuando k>2 y se vale para k, primero notemos que por hipótesis de inducción $S=T|_{\sum_{i=1}^k E_{\lambda_i}}$ es diagonalizable por lo que $p^S(x)=(x-\lambda_1)...(x-\lambda_k)$ por hipótesis de inducción, por otro lado $p^S(x)$ y $(x-\lambda_{k+1}$ son coprimos por lo que existen $f,g\in K[x]$

$$1 = p^S f + (x - \lambda_{k+1})g$$

Sea $v \in V$,

$$p^{S}(T) \circ (x - \lambda_{k+1}g(T)(v)) = gp^{S}(T)(x - \lambda_{k+1})(T)(v)$$
$$= gp^{T}(T)(v)$$
$$= 0$$

Por lo que $((x - \lambda_{k+1})g)(T)(v) \in nucp^S(T)$.

Af. $nucp^{S}(T) \subseteq \sum_{i=1}^{k} E_{\lambda_{i}}$. Ejercicio

Por otro lado

$$(x - \lambda_{k+1}) \circ (p^S f)(T)(v) = p^T \circ f(T)(v)$$

= $f(T)(p^T(T)(v))$
= $f(T)(0)$
= 0

Por lo que $p^S f(T)(v) \in E_{\lambda_{k+1}}$.

Así para toda $v \in V$, $v \in \left(\sum_{i=1}^k E_{\lambda_i}\right) + E_{\lambda_{k+1}}$.

Por lo que $V = \sum_{i=1}^{k+1} E_{\lambda_i}$.

Capítulo 2

Formas Bilineales

Definición. Una forma bilineal en un K-espacio V es na función $B:V\times V\to K$ tal que:

Para $x, x', y, y' \in V$ y $\lambda \in K$,

1.
$$B(x + x', y) = B(x, y) + B(x', y)$$

2.
$$B(x, y + y') = B(x, y) + B(x, y')$$

3.
$$(B(\lambda x, y) = \lambda B(x, y) = B(x, \lambda y)$$

esto es que sea lineal en cada variable.

Ejemplos

1. $V = K^n \text{ con } n \text{ natural}$

$$B(\bar{x}, \bar{y}) = \sum_{i=1}^{n} x_i y_i$$

2. V = I([a, b]) las funciones integrables en el intervalo ([a, b]) con

$$B(f,g) = \int_{a}^{b} f(x)g(x)dx$$

3. $V = K^n \text{ y } A \in M_n(K)$

$$B(\bar{x}, \bar{y}) = \bar{x}A\bar{y}^t$$

Definición. Para V un K-espacio, Bil(V) es el conjunto de todas las formas bilineales sobre K.

Proposición 22. Para V un K-espacio, Bil(V) es un K-espacio.

Demostración

Notemos que $Bil(V)\subseteq K^{V\times V}$ y como $K^{v\times V}$ es un K-espacio basta ver que Bil(V) es un subespacio.

Primero 0(v, w) = 0 es una forma bilineal, por lo tanto $0 \in Bil(V)$.

Después sean $B,B'\in Bil(V)$ y $\lambda\in K.$ Para $x,x',y,y'\in V$ y $\alpha\in K$

$$(B + \lambda B')(x + x', y) = B(x + x', y) + \lambda B'(x + x', y)$$

$$= B(x, y) + B'(x', y) + \lambda (B'(x, y) + B(x', y))$$

$$= B(x, y) + B(x', y) + \lambda B'(x, y) + \lambda B'(x', y)$$

$$= (B + \lambda B')(x, y) + (B + \lambda B')(x', y)$$

Análogamente

$$(B + \lambda B')(x, y') = (B + \lambda B')(x, y) + (B + \lambda B')(x, y')$$

También

$$(B + \lambda B')(\alpha x, y) = B(\alpha x, y) + \lambda B'(\alpha x, y)$$
$$= \alpha B(x, y) + \alpha \lambda B'(x, y)$$
$$= \alpha (B + \lambda B')(x, y)$$

Análogamente

$$\alpha(B + \lambda B')(x, y) = (B + \lambda B')(x, \alpha y)$$

Por lo tanto $B + \lambda B' \in Bil(V)$

Por lo tanto Bil(V) es un $K{\rm -subespacio}$ y espacio en su propio derecho.

Del ejemplo 3 se tiene que las matrices representan algunas formas bilineales por lo que es natural preguntar si representa a todas, sobreentendiendo que hablamos del caso de dimensión finita.

Definición. Sea $B: V \times V \to K$ una forma bilineal sobre V con V de dimensión finita y $\beta = \{v_1, ..., v_n\}$ una base de V, definimos la matriz asociada a la forma B para la base β como

$$\hat{B}_{\beta ij} = B(v_i, v_j)$$

si no hay riesgo a confusión omitiremos la base, es decir nos quedaremos con \hat{B}

Proposición 23. Sea $B \in Bil(V)$ $y \beta = \{v_1, ..., v_n\}$ una base de V, entonces $B(v, w) = [v]_{\beta}^t \hat{B}[w]_{\beta}$.

Demostración

Para ver esto fijamos $v \in V$ y basta ver que

$$[B(v, .)]_{\beta} = [v]_{\beta}^{t} \hat{B}$$

Calculando

$$([v]_{\beta}^{t} \hat{B})_{ij} = \sum_{k=1}^{n} [v]_{\beta_{1k}}^{t} \hat{B}_{kl}$$

$$= \sum_{k=1}^{n} [v]_{\beta_{ik}}^{t} B(v_{k}, v_{j})$$

$$= \sum_{k=1}^{n} B([v]_{\beta_{ik}}^{t} v_{k}, v_{j})$$

$$= B(\sum_{k=1}^{n} [v]_{\beta_{ik}}^{t} v_{k}, v_{j})$$

$$= B(v, v_{j})$$

$$= [B(v, v_{j})]_{\beta_{ik}}$$

Proposición 24. Sea \wedge : $Bil(V) \rightarrow M_n(K)$ para alguna base β finita de V, entonces \wedge es un isomorfismo.

28 Formas Bilineales

Demostración

Ponemos a $\beta = \{v_1, ..., v_n\}.$

Primero veamos que es lineal.

Sean $B, B' \in Bil(V)$ y $\lambda \in K$

$$(\widehat{B'\lambda B'})_{ij} = (B + \lambda B')(v_i, v_j)$$

$$= B(v_i, v_j) + \lambda B'(v_i, v_j)$$

$$= \widehat{B}_{ij} + \lambda \widehat{B'}_{ij}$$

Ahora demostraremos que es lineal dando la inversa $\phi: M_n(K) \to Bil(V)$ ponemos $\phi_A := \phi(A)$ y definimos

$$\phi_A(v,w) = [v]^t_{\beta} A[w]_{\beta}$$

Notemos que ϕ es lineal, para $A, A' \in M_n(K)$ y $\lambda \in K$

$$\varphi_{A+\lambda A'}(v,w) = [x]_{\beta}^{t}(A+\lambda A')[w]_{\beta}$$
$$= [x]_{\beta}^{t}A[w]_{\beta} + \lambda [x]_{\beta}^{t}A'[w]_{\beta}$$
$$= \varphi_{A}(v,w) + \lambda \varphi_{A'}(v,w)$$

Comprobemos que son inversas

Sea $B \in Bil(V)$

$$\varphi_{\hat{B}}(v, w) = [v]_{\beta}^{t} \hat{B}[w]_{\beta}$$
$$= B(v, w)$$

por la proposición anterior.

$$\therefore \phi_{\hat{B}} = B$$

Sea $A \in M_n(K)$,

$$(\widehat{\phi_A})_{ij} = \phi_A(v_i, v_j)$$

$$= [v_i]_{\beta}^t A[v_j]$$

$$= (\delta_i^t A \delta_j)_{ij}$$

$$= \sum_{k=1}^n (\delta_i^t A)_{ik} \delta_{kj}$$

$$= (\delta_i^t A)_{ij}$$

$$= \sum_{k=1}^n \delta_{ik}^t A_{kj}$$

$$= A_{ij}$$

$$\therefore (\widehat{\phi_A}) = A \square$$

El resultado anterior contesta la pregunta de si las formas bilineales son representadas por las matrices y más aún lo hacen de manera única y lineal.

Definición. Una forma bilineal B es simétrica si B(v, w) = B(w, v).

Proposición 25. B es simétrica si y solo si \hat{B} es simétrica.

Demostración

Sea $\beta = \{v_1, ..., v_n\}$ la base en la que esta \hat{B} .

$$\hat{B}_{ij} = B(v_i, v_j)$$

$$= B(v_j, v_i)$$

$$= \hat{B}_{ii}$$

Si \hat{B} es simétrica, entonces

30 Formas Bilineales

$$B(v, w) = [v]_{\beta}^{t} \hat{B}[w]_{\beta}$$
$$= [v]_{\beta}^{t} \hat{B}^{t}[w]_{\beta}^{t^{t}}$$
$$= ([w]_{\beta}^{t} \hat{B}[v]_{\beta})^{t}$$
$$= [w]_{\beta}^{t} \hat{B}[v]_{\beta} \square$$

Definición. Una forma bilineal es antisimétrica si B(v, w) = -B(w, v).

Proposición 26. B es antisimétrica si y solo si \hat{B} es antisimétrica.

Demostración

Tarea.

Definición. $B \in Bil(V)$ es alternante si B(v, v) = 0.

Proposición 27. Si $1 + 1 \neq 0$, entonces son equivalentes

- 1. B es alternante.
- 2. B es antisimétrica.

Demostración

$$\Rightarrow) \ 0 = B(v+w,v+w) = B(v,v) + B(v,w) + B(w,v) + B(w,w) = B(v,w) + B(w,v)$$

Por lo que B(v, w) = -B(w, v)

$$\Leftarrow$$
) Si $B(v,v) = -B(v,v)$ entonces $2B(v,v) = 0$

Por lo que
$$B(v, v) = 0.\square$$

Observación. De la demostración se sigue que aunque 1+1=0, alternante implica antisimétrica.

Observación. En el caso de que 1+1=0, se tiene que -1=1, por lo que

$$B(v, w) = -B(w, v) = B(w, v)$$

ser antisimétrico es lo mismo que ser simétrico.

Proposición 28. $B \in Bil(V)$ es alternante si y solo si \hat{B} es antisimétrica y $\hat{B}_{ii} = 0$.

Demostración

Sea
$$\beta = \{v_1, ..., v_n\}$$

 \Rightarrow) $\hat{B}_{ij} = B(v_i, v_j) = -B(v_j, v_i) = -\hat{B}_{ij}^t$
 $\hat{B}_{ii} = B(v_i, v_i) = 0$
 \Leftarrow)
$$B(v, v) = [v]_{\beta}^t \hat{B}[v]_{\beta}$$

$$= \sum_{k=1}^n ([v]_{\beta}^t \hat{B})_{1k}[v]_{\beta_{k1}}$$

$$= \sum_{k=1}^n (\sum_{j=1}^n [v]_{\beta_{ij}}^t \hat{B}_{jk})[v]_{\beta_{k1}}$$

$$= \sum_{k=1}^n \sum_{j=1}^{k-1} [v]_{\beta_{ij}}^t \hat{B}_{jk}[v]_{\beta_{k1}} + \sum_{k=1}^n \sum_{j=k+1}^n [v]_{\beta_{ij}}^t \hat{B}_{jk}[v]_{\beta_{k1}}$$

$$= \sum_{k=1}^n \sum_{j=1}^{k-1} [v]_{\beta_{ij}}^t \hat{B}_{jk}[v]_{\beta_{k1}} + \sum_{k=1}^n \sum_{j=k+1}^n [v]_{\beta_{ij}}(-\hat{B}_{jk}^t)[v]_{\beta_{k1}}^{tt}$$

$$= 0.\Box$$

Ejercicio. Sean $SB(V) = \{B \in BIl(V) | B \text{ es simétrica} \}$ y $AB(V) = \{B \in Bil(V) | B \text{ es antisimétrica} \}$. Si $1 + 1 \neq 0$ entonces $Bil(V) = SB(V) \oplus AB(V)$.

Ahora veamos qué relación existe si cambiamos la base, si tenemos $\beta = \{v_1, ..., v_n\}$ y $\gamma = \{w_1, ..., w_n\}$, cómo están relacionados \hat{B}_{β} y \hat{B}_{γ} . Si ponemos $w_j = \sum_{i=1}^n \lambda_{ij} v_i$, entonces

32 Formas Bilineales

$$B(w_i, w_j) = \sum_{k=1}^{n} \lambda_{ki} B(v_i, w_j)$$
$$= \sum_{k=1}^{n} \sum_{m=1}^{n} \lambda_{ki} B(v_i, v_j) \lambda_{mj}$$

Por lo que $\hat{B}_{\gamma} = S^t \hat{B}_{\beta} S$ donde $S = [I_V]_{\gamma}^{\beta}$.

Veamos que si calculamos el determinante

$$det(\hat{B}_{\gamma}) = det(S^{t}\hat{B}_{\beta}S)$$
$$= det(S)^{2}det(\hat{B}_{\beta})$$

Como cualquier matriz invertible se puede usar como un cambio de base, el conjunto de todos los determinantes que se le pueden asociar a una forma bilineal B son todos los múltiplos de los otros por un cuadrado del campo K.

Definición. El discriminante de B una forma bilineal lo definimos por

$$dis(B) = \{a^2 det(\hat{B}) | a \in K\}$$

notemos que por lo observado anteriormente no depende de la elección de una base particular para \hat{B}

Si $dis(B) \neq \{0\}$ diremos que B es una forma no degenerada.

Definición. Definimos el radical izquierdo de $B \in Bil(V)$

$$rad_L(B) = \{ v \in V | \forall w \in VB(v, w) = 0 \}$$

y el radical derecho por

$$rad_R(B) = \{ v \in B | \forall w \in VB(w, v) = 0 \}$$

Proposición 29. Sea V de dimensión finita, son equivalentes para $B \in Bil(V)$:

- 1. B es no degenerada.
- 2. $rad_L(B) = \{0\}$
- 3. $rad_R(B) = \{0\}$

Demostración

- $1. \Rightarrow 2.$ Si $rad_L(B) \neq \{0\}$, entonces existe $v \in rad_L(B)$ con $v \neq 0$, por lo que existe una base $\beta = \{v_1, v_2, ..., v_n\}$ con $v_1 = v$. Notemos que la matriz \hat{B}_{β} tiene en su primer columna todas las entradas cero por hipótesis. Por lo que $det(\hat{B}_{\beta}) = 0$, por lo que $dis(B) = \{0\}$! contradiciendo el hecho de que B fuese no degenerada.
- $3. \Rightarrow 1$. Supongamos que no se cumple que B no es no degenerada, por lo que $det(\hat{B}) = 0$, elegimos β una base de V, por lo que de lo último se sigue existe $\in V$ con $v \neq 0$, tal que $\hat{B}_{\beta}[v]_{\beta} = 0$ de aquí que para todo $w \in V$ $B(w,v) = [w]_{\beta}^t \hat{B}_{\beta}[v]_{\beta} = 0$ de donde $v \in rad_R(B)$ por lo que $rad_R(B) \neq \{0\}$! por lo tanto $det(\hat{B}) \neq \{0\}$. \square

Definición. Una forma bilineal se llama reflexiva si B(v, w) = 0 implica B(w, v) = 0.

Definición. Si B es una forma bilineal reflexiva diremos que v es ortogonal a w si B(v,w)=0 y lo denotaremos por $v\perp w$,notemos que pedir que B sea reflexiva es para que la relación \bot sea reflexiva.

Definición. Para $S \subseteq V$ y B una forma bilineal reflexiva, definimos el complemento ortogonal de S para B como $S^{\perp} = \{v \in V | B(v, w) = 0 \text{ para todo } w \in S\}.$

Proposición 30. Sea B una forma bilineal reflexiva, $S,T\subseteq V$. Entonces:

1.
$$S^{\perp} < V$$

34 Formas Bilineales

- 2. $S \subseteq S^{\perp \perp}$
- 3. Si $S \subseteq T$ entonces $T^{\perp} \subseteq S^{\perp}$
- 4. $S^{\perp} = \langle S \rangle^{\perp}$

Definición. Sea B una forma bilineal reflexiva y $W \leq V$, el radical de W en B lo definimos como $rad_B(W) = W \cap W^{\perp}$. Diremos que W es un subespacio no degenerado si $rad_B(W) = 0$.

Proposición 31. Sea B una forma bilineal reflexiva en V un espacio de dimensión finita y W un subespacio no degenerado de V, entonces $V = W \oplus W^{\perp}$.

Demostración

Por hipótesis $W \cap W^{\perp} = 0$. Para ver que $V = W + W^{\perp}$ demostraremos que $dimV = dimW + dimW^{\perp}$. Pongamos que dimV = n y dimW = k y consideremos una base de W, $\{v_1, ..., v_k\}$ y extendámosla a una base de V con los elementos $\{v_{k+1}, ..., v_n\}$. Tomamos $v \in W^{\perp}$ y lo expresamos como combinación lineal $v = \sum_{i=1}^{n} \lambda_i v_i$, tenemos por un lado que $B(v_i, v) = 0$ para i = 1, ..., k entonces $\sum_{j=1}^{n} \lambda_j B(v_i, v_j) = 0$ para i = 1, ..., k de aquí $\sum_{j=1}^{n} \lambda_j \hat{B}_{\beta_{ij}} = 0$ para i = 1, ..., k por lo que $[v]_{\beta}$ es anulado por la matriz de $k \times n$ formada por los primeros k renglones de \hat{B}_{β} , entonces $dimW^{\perp} \geq n - k$ por el teorema de la dimensión, de aquí $dimW + dimW^{\perp} \geq n - k + k = n$.

$$\therefore W + W^{\perp} = W.\square$$

Capítulo 3

Formas Cuadráticas

Definición. El grado de un monomio en n variables $x_1^{k_1}x_2^{k_2}...x_n^{k_n}$ lo definimos como $k_1+k_2+...+k_n$.

Definición. Una forma cuadrática n-aria sobre un campo K es un polinomio p en n variables tal que es una combinación lineal de monomio de grado 2.

Ejemplos

1.
$$p(x, y, z) = xy + yz + z^2$$

2.
$$p(x,y) = x^2 + xy + y^2$$

3.
$$p(x) = 2x^2$$

4.
$$p(x, y, z, w) = zw + w^2 + x^2 + yx$$

Observación. Si consideramos una matriz A en $M_n(K)$, $p(x) = xAx^t$ es un polinomio en n variables, más aún

$$p(x) = \sum_{i=1}^{n} x_{1i} (Ax^{t})_{i1}$$

$$= \sum_{i=1}^{n} x_{1i} (\sum_{j=1}^{n} A_{ij} x_{j1}^{t})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{1i} A_{ij} x_{ij}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j}$$

que es una combinación lineal de polinomios mónicos de grado dos, por lo que p es una forma cuadrática.

Dos matrices pueden inducir la misma forma cuadrática, por ejemplo

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$p(x,y) = \begin{pmatrix} x & y \end{pmatrix} A \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x + y & x \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= x^2 + xy + xy$$
$$= x^2 + 2xy$$

$$B = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

$$q(x,y) = \begin{pmatrix} x & y \end{pmatrix} B \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x & 2x \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= x^2 + 2xy$$

Supondremos que $1 + 1 \neq 0$.

Para una forma cuadrática q, en n variables

$$q(x) = \sum_{i=1}^{n} \sum_{j=1}^{i} a_{ij} x_i x_j$$

podemos poner a $a_{ij} = a_{ji}$, de este modo la matriza A_q dada por

$$A_{ij} = \begin{cases} \frac{a_{ij}}{2} & \text{si } i \neq j \\ a_{ii} & \text{si } i = j \end{cases}$$

induce a la forma cuadrática q' es decir $xA_qx^t=q(x)$. Definimos $QF_n(K)$ el conjunto de formas cuadráticas en n variables sobre K.

Proposición 32. $QF_n(K) \leq K[x_1,...,x_n]$.

Proposición 33. Hay un isomorfismo entre $SM_n(K)$, las matrices simétricas de $n \times n$ y $QF_n(K)$.

Demostración

Definimos $\varphi: SM_n(K) \to QF_n(K)$ por $\varphi(A) = q_A$ donde $q_A(x) = xAx^t$ y $\psi: QF_n(K) \to SM_n(K)$ $\psi(q) = A_q$ como se describió anteriormente.

Primero
$$q_A(x) = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$
 por lo que $(A_{q_A})_{ij} = \begin{cases} \frac{2A_{ij}}{2} & \text{si } i \neq j \\ A_{ii} & \text{si } i = j \end{cases}$ lo que lleva a que $(A_{q_A})_{ij} = A_{ij}$.

Por lo que $A = A_{q_A}$.

Por otro lado,

$$q_{A_q}(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{q_{ij}} x_i x_j$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{ij}}{2} x_i x_j + \sum_{i=1}^{n} a_{ii} x_i^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{i} a_{ij} x_i x_j$$

$$= q(x). \square$$

También, toda forma cuadrática $q \in QF_n(K)$ induce una forma bilineal simétrica en $Bil(K^n)$

$$B_q(x,y) = \frac{1}{2}(q(x+y) - q(x) - q(y))$$

y toda forma bilineal B induce una forma cuadrática

$$q_B(x) = B(x, x)$$

Ejercicio

0.1. Operadores Normales. Supondremos que $K=\mathbb{C}$ y que V es un K-espacio de dimensión finita con producto interior < -, ->.

Definición. T un operador en V se llama normal si $T \circ T^* = T^* \circ T$.

Proposición 34. Sea T un operador normal en V. Entonces $\lambda \in \mathbb{C}$ es un valor propio de T si y solo si $\bar{\lambda}$ es valor propio de T^* .

Demostración

$$\begin{array}{l} {\rm Sea} \ v \in V \ {\rm con} \ v \neq 0 \ y \ T(v) = \lambda v \ {\rm entonces} \ T(v) - \lambda v = 0, \\ {\rm entonces} < T - \lambda 1_V(v), Y - \lambda 1_V(v) > = 0 \\ {\rm entonces} < v, (T - \lambda 1_V)(v) > = 0 \\ {\rm entonces} < v, (T - \lambda 1_V)(T - \lambda 1_V)^*(v) > = 0 \\ {\rm entonces} < (T - \lambda 1_V)^*(v), (T - \lambda 1_V)^*(v) > = 0 \\ {\rm entonces} < (T^* - \bar{\lambda} 1_V)(v), (T^* - \bar{\lambda} 1_V)(v) > = 0 \\ {\rm entonces} \ T^*(v) = \bar{\lambda}(v). \end{array}$$

Para el regreso solo basta recordar que $(T^*)^* = T$ y $\bar{\bar{\lambda}} = \lambda.\Box$

Proposición 35. Sea T un operador normal en $V \neq 0$ entonces T es diagonalizable.

Demostración

Sean $\lambda_1, ..., \lambda_k$ los distintos valores propios de T, entonces

$$\bigoplus_{i=1}^{k} E_{\lambda_i} \le V$$

si la contención es propia entonces

$$W = \left(\bigoplus_{i=1}^{k} E_{\lambda_i}\right)^{\perp} \neq 0$$

Consideremos $w \in Wy \ v \in E_{\lambda_i}$, entonces

Por lo que $T(w) \in W$.

Ahora $p_{T|_W}|p_T$, como $p_{T|_W} \in \mathbb{C}[x]$, $p_{T|W}$ tiene una raíz λ , por lo que existe $x \in W \subseteq V$, con $x \neq 0$ $T(x) = T|_W(x) = \lambda x$, lo que implica que $x \in \left(\bigoplus_{i=1}^k E_{\lambda_i}\right)!$.

Por lo que la contención no puede ser propia, por lo tanto $V=\bigoplus_{i=1}^k E_{\lambda_i}.\square$

Observación. Si $T^* = f(T)$ con $f \in \mathbb{C}[x]$, entonces T es normal.

Proposición 36. Sea T un operador en V entonces T es normal si y solo si T tiene una base ortogonal de vectores propios.

Demostración

 \Rightarrow Si T es normal entonces T es diagonalizable por lo que $V = \bigoplus_{i=1}^k E_{\lambda_i}$ donde los λ_i son los distintos valores propios de T, consideramos una base ortogonal β_i en E_{λ_i} , sean $v_i \in \beta_i$ y $v_j \in \beta_j$, entonces

$$\begin{split} \lambda_i < v_i, v_j > &= <\lambda_i v_i, v_j > \\ &= < T(v_i), v_j > \\ &= < v_i, T^*(v_j) > \\ &= < v_i, \bar{\lambda}_j v_j > \\ &= \lambda_i < v_i, v_j > \end{split}$$

Si $< v_i, v_j > \neq 0$ entonces $\lambda_i \neq \lambda_j!$ por lo que $< v_i, v_j > y$ de aquí se tiene que $\beta = \bigcup_{i=1}^k \beta_i$ es una base ortogonal de vectores propios.

 \Leftarrow) Si V tiene una base ortogonal de vectores propios entonces tiene una base ortonormal de vectores propios, por lo que $[T]_{\beta}$ es diagonal y $[T^*]_{\beta} = [\bar{T}]_{\beta}^t$ pero por ser diagonal $[T^*]_{\beta} = [\bar{T}]_{\beta}$. Claramente $[T]_{\beta}[T^*]_{\beta} = [T^*]_{\beta}[T]_{\beta}$. Por lo que $T^*T = TT^*$. \Box

1. Operadores Autoadjuntos

Ahora cambiemos a \mathbb{C} por \mathbb{R} y recordemos que un operador T en V se llama autoadjunto si $T=T^*$.

Proposición 37. Sea T un operador autoadjunto en V entonces T es diagonalizable.

Demostración

Consideremos β base de V y n=dimV, entonces podemos pensar V como \mathbb{R}^n y a \mathbb{R}^n metido en \mathbb{C}^n más aún esto extiende $[T]_{\beta}$ como transformación lineal de \mathbb{R}^n en \mathbb{R}^n a una de \mathbb{C}^n en \mathbb{C}^n .

Como $[T]_{\beta}$ es un operador sobre \mathbb{C} , tiene al menos un valor propio $\lambda \in \mathbb{C}$, más aún $\bar{\lambda}$ es un valor propio de $[T^*]_{\beta}$, pero por hipótesis $T^* = T$, por lo que λ y $\bar{\lambda}$ son valores propios de $[T]_{\beta}$ entonces existe $v \in \mathbb{C}^n$ con $v \neq 0$ y

$$\lambda v = [T]_{\beta} v$$

$$= [T^*]_{\beta} v$$

$$= \bar{\lambda} v$$

como $v \neq 0$ entonces $\lambda = \bar{\lambda}$, por lo que $\lambda \in \mathbb{R}$. Por lo que T tiene todos sus valores propios reales. Sean $\lambda_1, ..., \lambda_k$ los diferentes valores propios de T, si $\bigoplus_{i=1}^k E_{\lambda_i} \leq V$ es una contención propia definimos

$$W = \left(\bigoplus_{i=1}^{k} E_{\lambda_i}\right)^{\perp} \neq 0$$

Sea $w \in W$ y $v \in E_{\lambda_i}$, entonces

$$< t(w), v> = < w, T^*(v) >$$

= $< w, \lambda v >$
= $\lambda < w, v >$

Por lo que W es T-invariante y por la unicidad del adjunto tenemos que $T^*|_W = (T|_W)^*$. Por lo que su $w \neq 0$ $T|_W$ sería autoadjunto pudiendo encontrar un valor propio de $T|_W!$. \square

Corolario 5. Toda matriz simétrica en \mathbb{R} es diagonalizable.

2. Operadores Unitarios

Un operador se llama unitario si preserva el producto interior.

Proposición 38. Sea T un operador normal en $\mathbb{C}V$ entonces T es unitario si y solo si V tiene una base ortonormal de vectores propios con valores propios de norma 1.

Demostración

 $\Rightarrow)$ Primero existe una base ortonormal β de vectores propios, más aún para $v\in\beta$

$$\begin{aligned} 1 &= ||v|| \\ &= ||T(v)|| \\ &= ||\lambda v|| \\ &= |\lambda|||v|| \\ &= |\lambda| \end{aligned}$$

 $\Leftarrow)$ Sea $\beta=\{v_1,...,v_n\}$ la base de la hipótesis, como $T(\beta)=\{T(v_1),...,T(v_n)\}=\{\lambda_1v_1,...,\lambda_nv_n\}$ que es un conjunto ortonormal, entonces T es unitario.

3. Teorema Espectral

Aquí nos olvidaremos de la hipótesis de dimensión finita.

Definición. Si T es un operador en V, y $V = W \oplus U$ a modo de que si $v \in V$ se ve como v = w + u con $w \in W$ y $u \in U$, entonces

$$T(v) = w$$

en este caso se le llamará a T la proyección de W através de U y se denotará por $\prod_U^W.$

Ejemplos

1. $\mathbb{R}^2 = \bar{OX} \oplus \bar{OX}$, por lo que

$$\prod_{OX}^{OY}(x,y) = (x,0)$$

$$\prod_{OX}^{OY}(x,y) = (0,y)$$

2. Consideremos para $a \in \mathbb{R}^*$, $l_a = \{(x, ax) \in \mathbb{R}^2 | x \in \mathbb{R}\}$,

$$\prod_{0x}^{l_a} (x, y) = \prod_{0x}^{l_a} ((x - y/a, 0) + (y/a, y))$$
$$= (x - y/a, 0)$$

3. Si $HI \neq 0$, $P(K) = \{f \in K^K | f \text{ es par } \}$ y $I(K) = \{f \in K^K | f \text{ es impar} \}$ entonces $K^K = I(K) \oplus P(K) \prod_{P(K)}^{I(K)} (f)(x) = \frac{f(x) - f(-x)}{2}$

Proposición 39. Sea T un operador en V entonces T es una proyección si y solo si T es idempotente.

Demostración

- \Rightarrow)
- \Leftarrow) Si T es idempotente entonces

$$V = imT \oplus nucT$$

$$T = \prod_{nucT}^{imT}$$

Definición. Llamaremos a una proyección ortogonal \prod_U^W si $U = W^{\perp}$ y $W^{\perp \perp} = W$, en este caso denotaremos a la proyección por \prod_W .

Recordemos que si Vtiene dimensión finita para todo subespacio W se da que $W^{\perp\perp}=W$

Proposición 40. Sea T un operador en V entonces T es una proyección ortogonal si y solo si T es idempotente y normal.

Demostración

 \Rightarrow) Sea $T = \prod_W$ para $W \leq V$. Sean $v, w \in V$ tales que $v = v_1 + v_2$ y $w = w_1 + w_2$ con $v_1, w_1 \in W$ y $v_2, w_2 \in W^{\perp}$

$$< \prod_{W} (v), w > = < v_1, w_1 + w_2 >$$

$$= < v_1, w_1 > + < v_1, w_2 >$$

$$= < v_1, w_1 >$$

$$< v, \prod_{W} (w) > = < v_1 + v_2, w_1 >$$

$$= < v_1, w_1 > + < v_1, w_2 >$$

$$= < v_1, w_1 >$$

Por lo que $<\prod_W(v), w>=< v, \prod_W(w)>$ de aquí $\prod_W=\prod_W^*$ por lo que T es autoadjunto y por lo tanto normal.

 \Leftarrow) Se tienen que demostrar dos cosas, $nucT = (imT)^{\perp}$ y que $imT = (imT)^{\perp \perp}$.

Primero $nucT = (imT)^{\perp}$

 \subseteq) Sea $v \in nucT$, entonces v = 0 o v es un vector propio de cero, en el segundo caso tenemos que es un vector propio de T^* con valor propio cero conjugado, que es cero, por lo que $nucT^* = nucT$. (Esto porque T es normal).

Sea $w \in V$, entonces

$$< v, T(w) > = < T^*(v), w > = < 0, w > = 0$$

Por lo que $v \in (imT)^{\perp}$.

 \supseteq) Sea $w \in (imT)^{\perp}$ entonces $t(w) \in imT$ calculando

$$< T(w), T(w) > = < w, T^*T(w) >$$

= $< w, T(T^*(w)) >$
=0

Por lo que T(w) = 0, por lo tanto $(imT)^{\perp} = nucT$.

Para la segunda parte siempre tenemos que $imT\subseteq (imT)^{\perp\perp}$. Por lo que sea $v\in (imT)^{\perp\perp}$, sabemos que como T es idmpotente v=T(v)+(v-T(v)), ahora $v-T(v)\in nucT=(imT)^{\perp}$ entonces $< v,v-T(v)>=0(v\in (imT)^{\perp\perp})$. Por otro lado $T(v)\in imT\subseteq (imT)^{\perp\perp}$. Por lo que < T(v),v-T(v)>=0, de esto que

$$< v - T(v), v - T(v) > = < v, v - T(v) > - < T(v), v - T(v) >$$

= 0

De aquí v-T(v)=0 por lo que T(v)=v, esto es que $v\in imT,$ por lo tanto $imT=(imT)^{\perp\perp}.\Box$

Proposición 41. Sea $W \leq V$ con $W^{\perp \perp} = W$, entonces $\prod_{W}(v)$ es el elemento de W más cercano a v.

Demostración

Primero $v=\prod_W(v)+(v-\prod_W(v))$ y $v-\prod_W(v)\in nucT=(imT)^\perp=W^\perp.$

Ahora

$$\begin{split} ||v-w||^2 &= < v - w, v - w > \\ &= < \prod_W (v) + (v - \prod_W (v)) - w, \prod_W (v) + (v - \prod_W (v)) - w > \\ &= < \prod_W (v) - w, \prod_W (v) - w > + < v - \prod_W (v), v - \prod_W (v) > \\ &= ||\prod_W (v) - w||^2 + ||v - \prod_W (v)||^2 \\ &\geq ||v - \prod_W (v)||^2 \end{split}$$

lo que implica que $||v-w|| \ge ||v-\prod_W(v)||\square$

Teorema 3 (Teorema Espectral). Sea T un operador en V de dimensión finita. Si T es normal, si $K = \mathbb{C}$ y autoajunto, si $K = \mathbb{R}$ con $\lambda_1, ..., \lambda_k$ los diferentes valores de T y $T_i = \prod_{E_{\lambda_i}}$ entonces

1. Si
$$E_{\lambda_i}^* = \bigoplus_{j \neq 1} E_{\lambda_j}$$
 entonces $(E_{\lambda_i}^*)^{\perp} = E_{\lambda_i}$

2.
$$T_i T_j = \delta_{ij} T_i$$

3.
$$1_V = \sum_{i=1}^k T_i$$

4.
$$T = \sum_{i=1}^{k} \lambda_i T_i$$

Demostración

Primero notemos que como T es diagonalizable $V = \bigoplus_{i=1}^k E_{\lambda_i}$

1. T es autoadjunto entonces T es normal. Ahora sean $v \in E_{\lambda_i}$ y $w \in E_{\lambda_j}$ con $i \neq j$, entonces

$$\lambda_i < v, w > = < \lambda_i v, w >$$
 $= < T(v), w >$
 $= < v, T^*(w) >$
 $= < v, \bar{\lambda}_j w >$
 $= \lambda_j < v, w >$

entonces $(\lambda_i - \lambda_j) < v, w >= 0$ como $\lambda_i - \lambda_j \neq 0$ entonces < v, w >= 0. Con esto tenemos que $E_{\lambda_i} \subseteq (E_{\lambda_j})^{\perp}$, si $i \neq j$ esto implica que $E_{\lambda_j}^* \subseteq (E_{\lambda_j})^{\perp}$. Como tenemos que $V = E_{\lambda_j} \oplus E_{\lambda_j}^*$ y $V = E_{\lambda_j} \oplus (E_{\lambda_j})^{\perp}$ llegamos a que $dim E_{\lambda_j}^* = dim((E_{\lambda_j})^{\perp})$ que unido con la contención anterior llegamos a que $E_{\lambda_j}^* = (E_{\lambda_j})^{\perp}$, por lo que $E_{\lambda_j} = (E_{\lambda_j})^{\perp \perp} = (E_{\lambda_j}^*)^{\perp}$.

- 2. Como T_i es una proyección $T_iT_i=T_i$. Ahora si $i\neq j,\,T_j(T_i(v))=T_j(E_{\lambda_i})=T_j((E_{\lambda_i}^*)^{\perp})=0.$
- 3. Como $V=\bigoplus_{i=1}^k E_{\lambda_i}$ entonces todo $v\in V$ es de la forma $v=\sum_{i=1}^k v_i$ con $v_i\in E_{\lambda_i}$ por lo que $T_i(v)=\prod_{E_{\lambda_i}}(v)=v_i$, así

$$\sum_{i=1}^{k} T_i(v) = \sum_{i=1}^{k} v_i = v$$

4. Siguiendo con lo establecido

$$T(v) = T(\sum_{i=1}^{k} v_i)$$

$$= \sum_{i=1}^{k} T(v_i)$$

$$= \sum_{i=1}^{k} \lambda_i v_i$$

$$= \sum_{i=1}^{k} \lambda_i T_i(v). \square$$

Corolario 6. Sea T un operador normal en $\mathbb{C}V$ entonces T es autoadjunto si y solo si todo valor propio de T es real.

Demostración

 $\Rightarrow)$ Sea λ un valor propio de T y v un vector propio de λ entonces

$$\lambda v = T(v)$$

$$= T^*(v)$$

$$= \bar{\lambda}v$$

entonces $\lambda = \bar{\lambda}$.

⇐) Como

$$T^* = \left(\sum_{i=1}^k \lambda_i T_i\right)^*$$
$$= \sum_{i=1}^k \bar{\lambda}_i T_i^*$$

Como las proyecciones son autoadjuntas

$$= \sum_{i=1}^{k} \lambda_i T_i$$
$$= T \square$$

4. Triangulación Compleja

Aquí regresemos a la hipótesis de dimensión finita.

Teorema 4 (Descomposición de Schur). Sea T un operador en ${}_{\mathbb{C}}V$, entonces existe una base β tal que $[T]_{\beta}$ es triangular superior.

Demostración

Como $p_T \in \mathbb{C}[x]$ entonces tiene al menos un valor propio λ_1 , descomponemos a $V = E_{\lambda_1} \oplus E_{\lambda_1}^{\perp}$.

Ahora consideramos bases ortonormales β_1' y β_1'' de E_{λ_i} y $E_{\lambda_i}^{\perp}$, por lo que $\beta_1 = \beta_1' \cup \beta_1''$ es una base ortonormal de V, más aún

$$[T]_{\beta_1} = \begin{pmatrix} \lambda_1 I & A_1' \\ 0 & A_2' \end{pmatrix}$$

Si A_2' es triangular el proceso termina, si no considero $T_2: E_{\lambda_1}^{\perp} \to E_{\lambda_1}^{\perp}$ el operador inducido por A_2' , así T_2 tiene un valor propio $\lambda_2 \neq \lambda_1$, consideramos β_2' y β_2'' bases de E_{λ_2} y $E_{\lambda_2}^{\perp}$ (en $E_{\lambda_1}^{\perp}$) para obtener $\beta_2 = \beta_2' \cup \beta_2''$.

Tenemos que

$$[A_2']_{\beta_2} = \begin{pmatrix} \lambda_2 & a_1^2 \\ 0 & A_2^2 \end{pmatrix}$$

Por lo que si llamamos $\bar{\beta}_2 = \beta_1 \cup \beta_2$ tenemos que

$$[T]_{\bar{\beta}_2} = \begin{pmatrix} \lambda_1 I & A_1^{*_2} & A_2^{*_2} \\ 0 & \lambda_2 I & A_3^{*_2} \\ 0 & 0 & A_4^{*_2} \end{pmatrix}$$

Si A_4^* es triangular ya terminamos, si no repretimos el proceso. \Box

Observación. Como se construye β se tiene que es una base ortonormal.