Лекция 3

Нечеткие множества

По мере того, как сложность возрастает, точные утверждения теряют значимость, а значимые утверждения теряют точность. Лотфи Заде

Математическая теория нечетких множеств и нечёткая логика является обобщением классической теории множеств и формальной логики. Данные понятия были предложены американским учёным Лотфи Заде в 1965 году. Основной причиной появления новой теории стоило наличие нечётких и приближённых рассуждений при описании человеком процессов, систем, объектов.

Спектр приложений нечётких моделей и методов широк: от управления транспортными средствами до бытовых электроприборов. Особенно расширилась сфера применения с появлением автопилотов и автоводителей. Нечёткие системы позволяют повысить качество работы техники при уменьшении ресурса и энергозатрат, обеспечивают высокую устойчивость к воздействию посторонних факторов.

Пусть V обычное четкое множество. Нечеткое множество A в V определяется своей функцией принадлежности $\mu_A(x)$.

Определение 1. Характеристической функцией принадлежности $\mu_A(x)$ (или просто функцией принадлежности) элементов нечеткого множества A будем называть функцию с областью определения A и областью значений $[0;1]:\ \mu_A:A \to [0;1],$ которая каждому элементу $x\in A$ ставит в соответствие степень его принадлежности нечеткому множеству.

Отрезок [0; 1] может быть заменен другим множеством (назовем M), например некоторым подмножеством отрезка [0; 1]. Если $M = \{0, 1\}$, то нечеткое множество A может рассматриваться как обычное (четкое) множество, тогда функция $\mu_A(x)$ совпадет с характеристической $\psi_A(x)$.

Нечеткое множество отличается от обычного тем, что для ее элементов нет однозначного ответа относительно принадлежности к этому множеству. В связи с этим нечеткое множество A будем определять упорядоченными парами: $\langle x, \mu_A(x) \rangle$, $x \in A$.

Пример 1. Пусть $A = \{x_1, x_2, x_3, x_4\}$ — нечеткое множество, для элементов которого заданы значения функции принадлежности.

$$\mu_A(x_1) = 0.2$$
; $\mu_A(x_2) = 1$; $\mu_A(x_3) = 0.7$; $\mu_A(x_4) = 0$.

Тогда элементы множества А будем определять упорядоченными парами:

$$< x_1, 0.2 >, < x_2, 1 >, < x_3, 0.7 >, < x_4, 0 >.$$

Основные характеристики нечетких множеств.

Величина $\sup_{x\in A}\mu_A(x)$ называется высотой нечеткого множества A. Нечеткое множество A — нормально, если его высота равно 1, т.е. верхняя граница его функции принадлежности равна 1. При $\sup_{x\in A}\mu_A(x)<1$ — нечеткое множество субнормальное.

Если функция принадлежности равна 1, $\mu_A(x) = 1$ только для одного элемента x, то нечеткое множество унимодально. Если функция принадлежности равна 0, $\mu_A(x) = 0$, то элементы x, для которого выполняется это условие называется точками перехода.

Все элементы x множества V, удовлетворяющие неравенству $\mu_A(x) > 0$, образуют носитель множества A, обозначаемый Supp(A).

Логические операции над нечеткими множествами

Операция включение для нечетких множеств A и B в V определяется следующим образом: $A \subseteq B$ тогда и только тогда, когда $\mu_A(x) \le \mu_B(x)$ для всех элементов $x \in V$.

Равенство множеств: A = B, если $\mu_A(x) = \mu_B(x)$ для всех элементов $x \in V$.

Операции

- 1. Дополнение. \overline{A} : $\mu_{\overline{A}}(x) = 1 \mu_A(x)$, для всех элементов $x \in V$.
- 2. **Пересечение.** $A \cap B$ нечеткое множество, содержащее для всех элементов $x \in V$ функцию со значениями $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}.$
- 3. **Объединение.** $A \cup B$ нечеткое множество, включающее элементы как A, так и B, причем для всех элементов $x \in V$ выполняется $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$.
- 4. **Разность**. $A \setminus B$: $\mu_{A \setminus B}(x) = \max\{\mu_A(x) \mu_B(x), 0\}$, для всех элементов $x \in V$.

Составим таблицу значений характеристических функций принадлежности при заданных значениях функций $\mu_A(x)$ и $\mu_B(x)$.

Операции	ΧФП	Заданы: $\mu_A(x)$, $\mu_B(x)$
\overline{A}	$\mu_{\overline{A}}(x)$	$1-\mu_A(x)$
$A \cap B$	$\mu_{A\cap B}(x)$	$\min\{\mu_A(x),\mu_B(x)\}$
$A \cup B$	$\mu_{A\cup B}(x)$	$\max\{\mu_A(x),\mu_B(x)\}$

$A \setminus R = \{u \in (x)\}$	$\max\{\mu_{A}(x) - \mu_{P}(x), 0\}$
$ A \setminus D \mu_{A \setminus B}(X) $	$\max\{\mu_A(x) - \mu_B(x), 0\}$

 $A \setminus B$ | $\mu_{A \setminus B}(x)$ | $\max\{\mu_A(x) - \mu_B(x), 0\}$ В различной литературе можно встретить и другие формы задания операций, часто совпадающие с теорией вероятностей. Так функцию принадлежности операции пересечения нередко вычисляют, как умножение: $\mu_{A\cap B}(x) = \mu_A(x) \cdot \mu_B(x)$. При решении конкретной задачи можно остановить свой выбор на наиболее подходящей форме задания операции. И все-таки смысл степени принадлежности существенно отличается от вероятности.

Следует отметить, что при любой форме задания операций не все свойства справедливые для четких множеств, выполняются и для нечетких.

Проверьте справедливость утверждения $A \subseteq B$ тогда и только тогда, когда $A \setminus B = \emptyset$ для нечетких множеств.

Справедлива формула $A \setminus B = A \cap \overline{B}$, но $\mu_{A \setminus B}(x) \neq \mu_{A \cap \overline{B}}(x)$. При решении практических задач оказывается, что выбор функции $\mu_{A\setminus B}(x) = \max\{\mu_A(x) - \mu_B(x), 0\}$ наиболее полно соответствует сути операции разность. Так, если выбрать

 $\mu_{A\setminus B}(x) = \mu_{A\cap \overline{B}}(x) = \min\{\mu_A(x), 1-\mu_B(x)\},$ то для множества $A = \{< x_1, \ 0.5 > \}$ выполняется $A \setminus A = A$ (и много других парадоксов). У нечетких множеств свои законы, которые требуют осмысленного ввода понятий и операций.

Пример 2.

Найдем значение функции принадлежности для формулы

$$F=(A\backslash B)\cap (A\cup B).$$

$$\mu_A(x)=0.7, \mu_B(x)=0.4 \Longrightarrow \mu_{A\backslash B}(x)=0.3; \ \mu_{A\cup B}(x)=0.7.$$

Тогда

$$\mu_F(x) = \min\{0.3, 0.7\} = 0.3$$

Операции		$\mu_A(x) = 0.7, \qquad \mu_B(x) = 0.4$			
\overline{A}	$\mu_{\overline{A}}(x)$	1 - 0.7 = 0.3			
$A \cap B$	$\mu_{A\cap B}(x)$	$min\{0.7, 0.4\} = 0.4$			
$A \cup B$	$\mu_{A\cup B}(x)$	$\max\{0.7, 0.4\} = 0.7$			
$A \backslash B$	$\mu_{A\setminus B}(x)$	$\max\{0.7 - 0.4, 0\} = 0.3$			

Целесообразно попытаться упростить формулу F.

$$F = (A \backslash B) \cap (A \cup B) = \left(A \cap \overline{B}\right) \cap (A \cup B) = \left(A \cap \overline{B}\right) \cup \left(A \cap \overline{B} \cap B\right) = \left(A \cap \overline{B}\right) \cup \emptyset = A \backslash B$$

Убедимся, что для $M = \{0, 1\}$, характеристическая функция принадлежности совпадет с обычной характеристической функцией.

$\mu_A(x)$	$\mu_B(x)$	$\mu_{\overline{A}}(x)$	$\mu_{A\cap B}(x)$	$\mu_{A\cup B}(x)$	$\mu_{A\setminus B}(x)$
1	1	0	1	1	0
1	0	0	0	1	1
0	1	1	0	1	0
0	0	1	0	0	0

Возвращаемся к четким множествам.

Парадокс Б. Рассела.

Можно указать такие множества, которые принадлежат самим себе как элементы (множество всех множеств), и такие множества, которые не являются элементами самих себя $(A = \{1;2\})$.

Пусть множество A состоит из множеств, которые не являются элементами самих себя $A = \{X \mid X \not\in X\}$. В этом случае получаем

Если $A \in A \Rightarrow A \notin A$.

Если $A \notin A \Rightarrow A \in A$

И в том и в другом случае получаем противоречие.

Теория отношений

Упорядоченная пара <x , y> интуитивно определяется как совокупность, состоящая из двух элементов x и y, расположенных в определенном порядке. Две пары <x , y> и < и , v> считаются равными тогда и только тогда, когда x=u , a y=v.

Упорядоченная n- ка элементов $x_1,...,x_n$ (кортеж) обозначается $\langle x_1,...,x_n \rangle$ и, по определению, есть $\langle \langle x_1,...,x_{n-1} \rangle, x_n \rangle$.

На множестве X задано бинарное (двуместное) отношение ρ , если задано множество упорядоченных пар с элементами из X.

Обозначим
$$\langle x, y \rangle \in \rho \sim x \rho y$$

 $\rho = \{\langle x, y \rangle \mid x, y \in X\}$

Примеры:

- 1) $\rho = \{\langle 1,2 \rangle, \langle 5,7 \rangle, \langle 9,1 \rangle\}$ бинарное отношение на множестве N.
- 2) На множестве R отношение ≤.

$$\rho_{<} = \{\langle x, y \rangle \mid x \le y\}$$

- 3) Отношение подобия треугольников на множесстве треугольников.
- 4) Отношение принадлежности к одной студенческой группе на множестве студентов курса
 - 5) $\rho = \{\langle x, y \rangle \mid x^2 + y^2 \le 1; x, y \in R\}$ бинарное отношение
 - 6) $\rho = \{\langle x, y \rangle | y = x^2 + 2x + 1; x, y \in R \}$ бинарное отношение

Областью определения отношения ρ называется множество $D_{\rho} = \{x \mid \langle x, y \rangle \in \rho\}$.

Областью значений отношения ρ называется множество $R_{\rho} = \{y \mid \langle x, y \rangle \in \rho\}$.

Пример:

$$X = \{1, 2, 3\}$$

$$\rho = \{\langle 1,2\rangle,\langle 2,3\rangle\}$$

$$D_{\rho} = \{1,2\}$$

$$R_o = \{2,3\}$$

Прямое или декартово произведение множеств.

Прямым (декартовым) произведением множеств X и Y называется совокупность всех упорядоченных пар $\langle x,y \rangle$ таких, что $x \in X$ и $y \in Y$.

$$X \times Y = \{\langle x, y \rangle \mid x \in X, y \in Y\}$$

Аналогично и для п-элементных множеств.

Пример:

1. $X = \{1, 2, 3\}, Y = \{3, 4\}.$

$$X \times Y = \{\langle 1,3 \rangle, \langle 1,4 \rangle, \langle 2,3 \rangle, \langle 2,4 \rangle, \langle 3,3 \rangle, \langle 3,4 \rangle\}$$

$$Y \times X = \{\langle 3,1 \rangle, \langle 3,2 \rangle, \langle 3,3 \rangle, \langle 4,1 \rangle, \langle 4,2 \rangle, \langle 4,3 \rangle\}$$

 $X \times Y \neq Y \times X$ (легко видеть, представив точками на плоскости)

2. Пусть X множество точек отрезка [2, 4], а Y- множество точек отрезка [2, 5], то $X \times Y$ - множество точек прямоугольника [2, 4] \times [2, 5]

3. Прямое произведение окружности на отрезок – боковая поверхность циллиндра.

<u>Доказательство тождеств, содержащих прямое произведение множеств,</u> проводится с использованием свойства 2 отношения включения:

- 1. левая часть ⊆ правая часть
- ⇒ левая часть = правая часть, ч.т.д.

Пример. Доказать тождество

$$(A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)$$

Доказательство.

1. Докажем, что $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$

Пусть
$$\langle x, y \rangle \in (A \cap C) \times (B \cap D)$$

$$\Rightarrow x \in (A \cap C), y \in (B \cap D) \Rightarrow x \in A \cup x \in C, y \in B \cup y \in D$$

$$\Rightarrow x \in A, y \in B \text{ if } x \in C, y \in D \Rightarrow \langle x, y \rangle \in A \times B, \langle x, y \rangle \in C \times D$$

$$\Rightarrow \langle x, y \rangle \in (A \times B) \cap (C \times D)$$

2. $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$

Доказательство п.1. в обратной последовательности. Ч.т.д.