生信分析报告

项目标题:_	预测甲基化调控因子	
单 号:_		
分析人员:_	黄礼闯	
分析类型:_	生信分析	
委 托 人:_	邱美婷	
受 托 人:	杭州铂赛生物科技有限公司	

Contents

1	分析	流程	1
	1.1	需求	1
	1.2	实际流程	1
2	材料	和方法	1
	2.1	数据分析平台	1
	2.2	GEO 数据获取 (Dataset: PCOS)	1
	2.3	Limma 差异分析 (Dataset: PCOS)	1
3	分析	结果	1
	3.1	EpiFactors 表观遗传调控因子数据获取 (METHY)	1
	3.2	GEO 数据获取 (PCOS)	3
	3.3	Limma 差异分析 (PCOS)	4
	3.4	差异表达的 Methylation Factors	9
	3.5	m6A-Atlas m6A 数据获取 (METHY)	10
	3.6	Methylation Factors 与 DEGs 关联分析	11
	3.7	富集分析 (SIGCOR_05)	15
4	总结	î	20
D	efere		20
10	eiere	nce	20
т	iat	of Figures	
П	156	of Figures	
	1	Distribution all protein of epigenetic regulators	2
	2	PCOS Filter low counts	5
	3	PCOS Normalization	6
	4	PCOS pcos vs control	7
	5	Intersection of Methy factor with DEGs	9
	6	METHY m6A Atlas search results distribution	11
	7	Significant correlation	13
	8	Correlation results 001	15
	9	SIGCOR 05 KEGG enrichment	16

10	SIGCOR 05 GO enrichment	7
11	SIGCOR 05 hsa04024 visualization	3
List	of Tables	
шы	of Tables	
1	METHY regulators	2
2	PCOS data pcos vs control	3
3	Intersection METHY epigenetic regulators)
4	All correlation results	2
5	Correlation results 05	1
6	SIGCOR 05 KEGG enrichment data)
7	SIGCOR 05 GO enrichment data)

1 分析流程

1.1 需求

通过软件预测甲基化调控因子(如 METTL14)的靶基因,并通过数据库筛选于 PCOS 患者中表达水平具有显著差异性的基因,合并交集,并对该交集中的基因进行功能富集和 KEGG 通路富集分析,筛选 PCOS 患者中可能的 METTL14 甲基化调控基因及其相关通路;

1.2 实际流程

从 EpiFactors 获取表观遗传调控因子, 筛出甲基化相关调控因子 (A 集合)。 获取 PCOS GEO 数据, 差异分析得到 DEGs, 与 m6A-Atlas 数据库比对, 发现可能存在甲基化修饰位点的基因 B 集合。在 PCOS 中筛选出差异表达的甲基化调控因子 (C 集合), 与 B 集合关联分析,随后富集分析。

2 材料和方法

2.1 数据分析平台

在 Linux pop-os x86_64 (6.9.3-76060903-generic) 上,使用 R version 4.4.2 (2024-10-31) (https://www.r-project.org/) 对数据统计分析与整合分析。

2.2 GEO 数据获取 (Dataset: PCOS)

以 R 包 GEOquery (2.74.0) 获取 GSE277906 数据集。

2.3 Limma 差异分析 (Dataset: PCOS)

以R包limma (3.62.1) (2005, **IF:**,,)¹ edgeR (4.4.0) (, **IF:**,,)² 进行差异分析。以 edgeR::filterByExpr 过滤 count 数量小于 10 的基因。以 edgeR::calcNormFactors, limma::voom 转化 count 数据为 log2 countsper-million (logCPM)。分析方法参考 https://bioconductor.org/packages/release/workflows/vignettes/RN Aseq123/inst/doc/limmaWorkflow.html。随后,以公式~0 + group 创建设计矩阵 (design matrix) 用于线性分析。使用 limma::lmFit, limma::contrasts.fit, limma::eBayes 差异分析对比组: pcos vs control。以 limma::topTable 提取所有结果,并过滤得到 P.Value 小于 0.05,|Log2(FC)| 大于 0.5 的统计结果。对 GSE277906 的 mRNA 数据 (protein_coding) 差异分析

3 分析结果

3.1 EpiFactors 表观遗传调控因子数据获取 (METHY)

从所有表观调控因子 Fig. 1 中筛选出甲基化修饰调控因子, 见 Tab. 1

Figure 1: Distribution all protein of epigenetic regulators

Figure 1 (下方图) 为图 Distribution all protein of epigenetic regulators 概览。

(File path: Figure+Table/Distribution-all-protein-of-epigenetic-regulators.pdf)

Table 1: METHY regulators

Id	$\mathrm{HGNC}\underline{}\mathrm{s}$	Status	HGNC_ID	${\rm HGNC_name}$	GeneID	UniPro7	UniPro8	Domain	MGI_sy
11	AEBP2	#	24051	AE bin	121536	Q6ZN18	AEBP2	Pfam-B	Aebp2
12	AICDA	#	13203	activa	57379	Q9GZX7	AICDA	APOBEC	Aicda
15	ALKBH1	New	17911	Nuclei	8846	Q13686	ALKB1	PF13532	Alkbh1

Id	HGNC_s	Status	HGNC_ID	HGNC_name	GeneID	UniPro7	UniPro8	Domain	MGI_sy
16	ALKBH4	New	21900	Alpha	54784	Q9NXW9	ALKB4	PF13532	Alkbh4
17	ALKBH5	New	25996	alkB h	54890	Q6P6C2	ALKB5	PF13532	Alkbh5
23	APEX1	#	587	APEX n	328	P27695	APEX1	${\rm Exo}_{\rm en}$	Apex1
24	APOBEC1	#	604	apolip	339	P41238	ABEC1	APOBEC	Apobec1
25	APOBEC2	#	605	apolip	10930	Q9Y235	ABEC2	APOBEC	Apobec2
26	APOBEC3A	#	17343	apolip	200315	P31941	ABC3A	APOBEC	#
27	APOBEC3B	#	17352	apolip	9582	Q9UH17	ABC3B	APOBEC	Apobec3
28	APOBEC3C	#	17353	apolip	27350	Q9NRW3	ABC3C	APOBEC	#
29	APOBEC3D	#	17354	apolip	140564	Q96AK3	ABC3D	APOBEC	#
30	APOBEC3F	#	17356	apolip	200316	Q8IUX4	ABC3F	APOBEC	#
31	APOBEC3G	#	17357	apolip	60489	Q9HC16	$\mathrm{ABC3G}\$	APOBEC	#
32	APOBEC3H	#	24100	apolip	164668	Q6NTF7	ABC3H	APOBEC	#

Table 1 (下方表格) 为表格 METHY regulators 概览。

(File path: Figure+Table/METHY-regulators.xlsx)

注:表格共有 175 行 25 列,以下预览的表格可能省略部分数据;含有 175 个唯一'Id'。

3.2 GEO 数据获取 (PCOS)

获取 GEO PCOS 数据,用于筛选差异表达基因。

Data Source ID:

GSE277906

data_processing:

Illumina Casava1.7 software used for basecalling.

data_processing.1:

Raw reads of fastq format were firstly processed using fastp and the low quality reads were removed to obtain the clean reads.

data_processing.2:

The clean reads were mapped to the reference genome using HISAT2. FPKM of each gene was calculated and the read counts of each gene were obtained by HTSeq-count

data_processing.3:

Assembly: GRCh38

(Others):

(见 Figure+Table/PCOS-GSE277906-content)

3.3 Limma 差异分析 (PCOS)

差异分析,得到 DEGs 见 Fig. 4

Figure 2: PCOS Filter low counts

Figure 2 (下方图) 为图 PCOS Filter low counts 概览。

 $(File\ path:\ \texttt{Figure+Table/PCOS-Filter-low-counts.pdf})$

Figure 3 (下方图) 为图 PCOS Normalization 概览。

(File path: Figure+Table/PCOS-Normalization.pdf)

Figure 4: PCOS pcos vs control

Figure 4 (下方图) 为图 PCOS pcos vs control 概览。

(File path: Figure+Table/PCOS-pcos-vs-control.pdf)

P.Value cut-off:

0.05

Log2(FC) cut-off:

0.5

(See: Figure+Table/PCOS-pcos-vs-control-content)

Table 2: PCOS data pcos vs control

rownames	id	gene_D	coding	descri	pathway	pathwa	GO_ID	GO_term	wiki_ID
PRPS2	PRPS2	5634	protei	phosph	hsa000	Pentos	GO:000	magnes	
FXYD6	FXYD6	53826	protei	$\mathrm{FXYD}\ \mathrm{d}$			GO:000	molecu	
MMP15	MMP15	4324	protei	matrix	hsa04928	Parath	GO:000	metall	WP5283
CXCL16	CXCL16	58191	protei	C-X-C	hsa040	Cytoki	GO:000	low-de	WP5115
MX1	MX1	4599	protei	MX dyn	$\rm hsa 032$	Viral	GO:000	${\it GTPase}$	WP5115
HEBP2	${\rm HEBP2}$	23593	protei	heme b			GO:000	protei	
CD74	CD74	972	protei	CD74 m	hsa046	Antige	GO:000	Golgi	WP4146
CDC42EP2	CDC42EP2	10435	protei	CDC42			GO:000	opioid	
GADD45B	GADD45B	4616	protei	growth	hsa040	MAPK s	GO:000	protei	WP4216
PLEKHG4	PLEKHG4	25894	protei	plecks			GO:000	guanyl	
NFATC1	NFATC1	4772	protei	nuclea	hsa040	MAPK s	GO:000	chroma	WP2840
BST2	BST2	684	protei	bone m	hsa032	Viral	GO:000	negati	WP5115
ANXA1	ANXA1	301	protei	annexi			GO:000	cornif	WP98,W
UNC93B1	UNC93B1	81622	protei	unc-93			GO:000	Golgi	
DMKN	DMKN	93099	protei	dermokine			GO:000	protei	
									•••

Table 2 (下方表格) 为表格 PCOS data pcos vs control 概览。

 $(File\ path:\ \texttt{Figure+Table/PCOS-data-pcos-vs-control.xlsx})$

注: 表格共有 177 行 19 列,以下预览的表格可能省略部分数据;含有 177 个唯一 `rownames'.

- 1. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 2. Ave Expr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'Marray LM' object
- 3. t: moderated t-statistic (omitted for 'topTableF')
- 4. P.Value: raw p-value
- 5. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

3.4 差异表达的 Methylation Factors

将差异表达基因与 Tab. 1 中的因子取交集, 见 Fig. 5。

Figure 5: Intersection of Methy factor with DEGs

Figure 5 (下方图) 为图 Intersection of Methy factor with DEGs 概览。

(File path: Figure+Table/Intersection-of-Methy-factor-with-DEGs.pdf)

All_intersection:
PRDM6

(See: Figure+Table/Intersection-of-Methy-factor-with-DEGs-content)

Table 3: Intersection METHY epigenetic regulators

Id	${\rm HGNC_s}$	Status	HGNC_ID	HGNC_name	GeneID	UniPro	UniPro1	Domain	MGI_sy
510	PRDM6	#	9350	PR dom	93166	Q9NQX0	PRDM6	SET PF	Prdm6

Table 3 (下方表格) 为表格 Intersection METHY epigenetic regulators 概览。

(File path: Figure+Table/Intersection-METHY-epigenetic-regulators.xlsx)

注:表格共有1行25列,以下预览的表格可能省略部分数据;含有1个唯一'Id'。

3.5 m6A-Atlas m6A 数据获取 (METHY)

据检索, 所有的 DEGs (Fig. 4) 都存在甲基化修饰位点。因此, 所有 DEGs 都可能发生甲基化修饰 (Fig. 6)

'METHY m6A Atlas search results' 数据已全部提供。

 $(File\ path:\ \texttt{Figure+Table/METHY-m6A-Atlas-search-results})$

Note: The directory 'Figure+Table/METHY-m6A-Atlas-search-results' contains 2 files.

- 1. 1 LowResolution.csv
- 2. 2_HighResolution.csv

Figure 6: METHY m6A Atlas search results distribution

Figure 6 (下方图) 为图 METHY m6A Atlas search results distribution 概览。

(File path: Figure+Table/METHY-m6A-Atlas-search-results-distribution.pdf)

3.6 Methylation Factors 与 DEGs 关联分析

为了寻找 Fig. 5 中发现的差异表达的 Methylation Factors 可能调控的 DEGs 修饰,将两个数据集作关联分析,结果见 Tab. 4。以 pvalue < 0.05 为条件筛选,见 Tab. 5,Fig. 7。其中,pvalue < 0.001 的见 Fig. 8。

Table 4: All correlation results

From	То	cor	pvalue	model	-log2(signif	sign
PRDM6	A2M	0.1286	0.49596	c(Cont	1.0117	> 0.05	_
PRDM6	AARD	-0.195	0.35308	c(Cont	1.5019	> 0.05	-
PRDM6	AATK	-0.035	0.74928	c(Cont	0.4164	> 0.05	-
PRDM6	ABCC9	-0.146	0.45304	c(Cont	1.1422	> 0.05	-
PRDM6	ADAMTSL2	0.1576	0.30011	c(Cont	1.7364	> 0.05	-
PRDM6	ADAP2	0.4636	0.053347	c(Cont	4.2284	> 0.05	-
PRDM6	ADGRE5	-0.200	0.29662	c(Cont	1.7533	> 0.05	-
PRDM6	AFP	-0.215	0.38212	c(Cont	1.3879	> 0.05	-
PRDM6	ANXA1	-0.309	0.050326	c(Cont	4.3125	> 0.05	-
PRDM6	AP3B2	0.0623	0.73583	c(Cont	0.4425	> 0.05	-
PRDM6	AQP7	-0.118	0.55182	c(Cont	0.8577	> 0.05	-
PRDM6	ARHGAP45	0.0693	0.60709	c(Cont	0.7200	> 0.05	-
PRDM6	ARHGDIB	-0.013	0.93641	c(Cont	0.0947	> 0.05	-
PRDM6	ARHGEF33	-0.301	0.057247	c(Cont	4.1266	> 0.05	-
PRDM6	ARL17A	-0.401	0.019322	c(Cont	5.6936	< 0.05	*

Table 4 (下方表格) 为表格 All correlation results 概览。

 $(File\ path:\ \texttt{Figure+Table/All-correlation-results.xlsx})$

注:表格共有 177 行 8 列,以下预览的表格可能省略部分数据;含有 1 个唯一'From'。

Figure 7: Significant correlation

Figure 7 (下方图) 为图 Significant correlation 概览。

 $(File\ path:\ Figure + Table / Significant - correlation.pdf)$

Table 5: Correlation results 05

From	То	cor	pvalue	model	-log2(signif	sign
PRDM6	ARL17A	-0.401	0.019322	c(Cont	5.6936	< 0.05	*
PRDM6	BSN	-0.295	0.0035095	c(Cont	8.1545	< 0.05	*
PRDM6	C1orf115	0.3889	0.0074019	c(Cont	7.0778	< 0.05	*
PRDM6	C2CD4C	0.4359	0.0027875	c(Cont	8.4868	< 0.05	*
PRDM6	CLDN22	-0.862	0.0002	c(Cont	11.862	< 0.001	**
PRDM6	CLU	0.3242	0.0086789	c(Cont	6.8482	< 0.05	*
PRDM6	CNRIP1	0.2044	0.044218	c(Cont	4.4992	< 0.05	*
PRDM6	COLEC11	0.2250	0.0038995	c(Cont	8.0024	< 0.05	*
PRDM6	FAM117A	0.1764	0.038368	c(Cont	4.7039	< 0.05	*
PRDM6	FXYD1	0.4303	0.04217	c(Cont	4.5676	< 0.05	*
PRDM6	HEBP2	0.2503	0.010081	c(Cont	6.6322	< 0.05	*
PRDM6	KHK	0.3434	0.042449	c(Cont	4.5581	< 0.05	*
PRDM6	MMP15	0.4137	0.0006	c(Cont	10.502	< 0.001	**
PRDM6	MPP1	0.4123	0.0003	c(Cont	11.620	< 0.001	**
PRDM6	NHSL1	0.3122	0.0025927	c(Cont	8.5913	< 0.05	*

Table 5 (下方表格) 为表格 correlation results 05 概览。

(File path: Figure+Table/correlation-results-05.xlsx)

注:表格共有 25 行 8 列,以下预览的表格可能省略部分数据;含有 1 个唯一'From'。

Figure 8: Correlation results 001

Figure 8 (下方图) 为图 correlation results 001 概览。

(File path: Figure+Table/correlation-results-001.pdf)

3.7 **富集分析 (SIGCOR_05)**

将 Tab. 5 中的基因富集分析 (包含 PRDM6),

KEGG,GO 结果见 Fig. 9,Fig. 10 。为 KEGG 中最为显著的 cAMP 通路,可能是富集分析的数据表格见 Tab. 6,Tab. 7 。

Figure 9: SIGCOR 05 KEGG enrichment

Figure 9 (下方图) 为图 SIGCOR 05 KEGG enrichment 概览。

 $(File\ path:\ \texttt{Figure+Table/SIGCOR-05-KEGG-enrichment.pdf})$

∞⋘

Figure 10: SIGCOR 05 GO enrichment

Figure 10 (下方图) 为图 SIGCOR 05 GO enrichment 概览。

 $(File\ path:\ \texttt{Figure+Table/SIGCOR-05-GO-enrichment.pdf})$

≫०८००००

Figure 11: SIGCOR 05 hsa04024 visualization

Figure 11 (下方图) 为图 SIGCOR 05 hsa04024 visualization 概览。

(File path: Figure+Table/SIGCOR-05-hsa04024-visualization.png)

Interactive figure: https://www.genome.jp/pathway/hsa04024 Enriched genes: SSTR2, FXYD1, RAC3

>○

Table 6: SIGCOR 05 KEGG enrichment data

category	subcat	ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID
Enviro	Signal	hsa04024	cAMP s	3/12	226/8868	0.0030	0.1085	0.1009	5348/5
Cellul	Cellul	hsa04520	Adhere	2/12	93/8868	0.0067	0.1085	0.1009	5795/5881
Human	Cancer	hsa05231	Cholin	2/12	99/8868	0.0075	0.1085	0.1009	9468/5881
Metabo	Carboh	hsa00030	Pentos	1/12	31/8868	0.0411	0.2895	0.2693	5634
Metabo	Carboh	hsa00051	Fructo	1/12	34/8868	0.0450	0.2895	0.2693	3795
NA	NA	hsa03272	Virion	1/12	48/8868	0.0630	0.2895	0.2693	53842
Enviro	Signal	hsa04370	VEGF s	1/12	60/8868	0.0782	0.2895	0.2693	5881
Metabo	Amino	hsa00310	Lysine	1/12	63/8868	0.0820	0.2895	0.2693	93166
Organi	Immune	hsa04664	Fc eps	1/12	69/8868	0.0895	0.2895	0.2693	5881
Human	Cardio	hsa05416	Viral	1/12	70/8868	0.0907	0.2895	0.2693	5881
Metabo	Global	hsa01230	Biosyn	1/12	75/8868	0.0969	0.2895	0.2693	5634
Organi	Digest	hsa04971	Gastri	1/12	76/8868	0.0981	0.2895	0.2693	6752
Human	Cancer	hsa05212	Pancre	1/12	77/8868	0.0994	0.2895	0.2693	5881
Human	Cancer	hsa05210	Colore	1/12	87/8868	0.1116	0.2895	0.2693	5881
Organi	Immune	hsa04610	Comple	1/12	88/8868	0.1128	0.2895	0.2693	1191

Table 6 (下方表格) 为表格 SIGCOR 05 KEGG enrichment data 概览。

 $(File\ path:\ Figure + Table / SIGCOR - 05 - KEGG - enrichment - data.xlsx)$

注:表格共有 43 行 13 列,以下预览的表格可能省略部分数据;含有 6 个唯一'category'。

Table 7: SIGCOR 05 GO enrichment data

ont	ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
ВР	GO:003	regula	4/20	307/18986	0.0002	0.0821	0.0605	1191/7	4
BP	GO:200	negati	2/20	25/18986	0.0003	0.0821	0.0605	25927/	2
BP	GO:009	granul	3/20	156/18986	0.0005	0.0821	0.0605	4354/5	3
BP	GO:004	positi	3/20	159/18986	0.0005	0.0821	0.0605	1191/7	3

ont	ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
BP	GO:190	regula	2/20	47/18986	0.0011	0.1115	0.0822	4354/5881	2
BP	GO:007	regula	2/20	52/18986	0.0013	0.1115	0.0822	4354/5795	2
BP	GO:000	ribonu	2/20	59/18986	0.0017	0.1115	0.0822	4354/5634	2
BP	GO:000	regula	3/20	236/18986	0.0018	0.1115	0.0822	4354/5	3
BP	GO:000	endode	2/20	61/18986	0.0018	0.1115	0.0822	4324/8	2
BP	GO:009	myeloi	3/20	243/18986	0.0020	0.1115	0.0822	4354/5	3
BP	GO:000	${\rm comple}$	2/20	67/18986	0.0022	0.1128	0.0832	1191/7	2
BP	GO:005	positi	2/20	73/18986	0.0026	0.1224	0.0903	78989/	2
BP	GO:000	nucleo	2/20	76/18986	0.0028	0.1224	0.0903	4354/5634	2
BP	GO:000	endode	2/20	87/18986	0.0037	0.1481	0.1093	4324/8	2
BP	GO:001	regula	2/20	91/18986	0.0040	0.1510	0.1114	25927/	2

Table 7 (下方表格) 为表格 SIGCOR 05 GO enrichment data 概览。

(File path: Figure+Table/SIGCOR-05-GO-enrichment-data.xlsx)

注: 表格共有 732 行 12 列,以下预览的表格可能省略部分数据;含有 3 个唯一'ont'。

4 总结

筛选的甲基化调控因子为 PRDM6,可能调控的基因见 Tab. 5, 富集分析结果中, cAMP 通路最为显著,。

Reference

- 1. Smyth, G. K. Limma: Linear models for microarray data. in *Bioinformatics and Computational Biology Solutions Using R and Bioconductor* (eds. Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A. & Dudoit, S.) 397–420 (Springer-Verlag, 2005). doi:10.1007/0-387-29362-0_23.
- 2. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data users guide. 119.