ELISE GROSJEAN

LJLL 4 Place Jussieu, 75005, Paris (+33)0609501658 \Leftrightarrow elise.grosjean@upmc.fr \Leftrightarrow GitHub \Leftrightarrow Website

EDUCATION

Postdoctoral research in Applied Mathematics with Bernd Simeon at Felix-Klein-Institute für Mathematik (Kaiserslautern, Germany)	11/2018 - 03/2022
PhD in Applied Mathematics under the supervision of Yvon Maday at Jacques-Louis Lions laboratory (LJLL) Subject: Non-Intrusive Reduced Basis methods (NIRB)	11/2018 - 03/2022
Master in the mathematics of modeling at Sorbonne-Universite	2015 - 2018
Engineer school in Applied Mathematics and Computer Science at Polytech-Paris UPMC	2015 - 2018
Bachelor in Fundamental Mathematics (Sorbonne-Universite)	2012 - 2015

PROFESSIONAL

Implementation of a Non-Intrusive Reduced Basis module in an open-source library	2018-2021
Contributed to the online library with EDF and other partners on NIRB methods in Python and C++.	

C++ Finite Elements Method implementation

2018

Implemented the Finite Elements method to solve 2D Navier-Stokes equation in a channel.

Internship at Jacques-Louis Lions laboratory

March - August 2018

Study of the velocity stability threshold in a steam generator of a nuclear power plant by an algebraic method and an ALE finite element method (Freefem, Matlab)

Internship at the climate research institute IK-IFU at Garmisch-Partenkirchen (Germany) June - August 2017 Dynamic global vegetation model (DGVM) to improve crops and the quality of soils in East Africa (R, LPJ-GUESS)

TEACHING

Tutor in Numerical analysis at ENSAE (L'École nationale de la statistique et de l'administration économique Paris)	2020
Tutor for bachelor (3rd year) at UPMC in Numerical approximation, in Python, and in Numerical methods for EDO	2018 - 2020
Tutor in Finite Elements Method , Master (1st year) at UPMC	2018 - 2021

SKILLS

Langage French (Mother tongue), English (Fluent, TOEIC 900), German (B2), Hindi (Notions) Computer skills C/C++, Bash, Python, Matlab, Git, Scilab, MPI, OpenMP, FreeFem, Cuda (C), Paraview, GMSH, Salome, Code Saturne.

ACADEMIC ACHIEVEMENTS

With Yvon Maday, A doubly reduced approximation for the solution to PDE's based on a domain truncation and a reduced basis method: Application to Navier-Stokes equations (Preprint) 02/2022

With Yvon Maday, Error estimate of the Non-Intrusive Reduced Basis method with finite volume schemes $(m2an\ 10.1051/m2an/2021044)$

Poster Session - application of reduced basis methods to wind farms Recent talks: 11/2019

• Model Order Reduction Summer School MORSS2020

09/2020

• GTT of LJLL	10/2020	
• Presentation of the two-grids method with EDF	10/2020	
• CANUM2020 - contributions	12/2020	
• Workshop Mathematics of High-Performance Computing, Prague	09/2021	