References and Supplemental Reading

- 1. Morse, P.M., and Feshbach, H., "Methods of Theoretical Physics" (1953) McGraw-Hill Book Company, Inc., New York, Toronto, London pp.655-666.
- 2. Goldstein, H., "Classical Mechanics" (1959) Addison-Wesley Pub. Co. Inc. Reading, London.
- 3. "Astronomical Almanac for the Year 1988" (1987) U.S. Government Printing Office, Washington, D.C.
- 4. Jackson, J.D., "Classical Electrodynamics" (1962) John Wiley & Sons, New York, London, Sydney, pp.98-131.
- 5. Brouwer, D., and Clemence, G.M., "Methods of Celestial Mechanics" (1961) Academic Press, New York and London.
- 6. Green, R.M., "Spherical Astronomy" (1985) Cambridge University Press, Cambridge pp.144-147.
- 7. Danby, J.M.A., "Fundamentals of Celestial Mechanics" (1962) The Macmillan Company, New York.
- 8. Moulton, F.R., "An Introduction to Celestial Mechanics" 2nd Rev Ed. (1914) The Macmillan Company, New York.
- 9. Collins, G.W., II, "The Virial Theorem in Stellar Astrophysics" (1978) Pachart Publishing House, Tucson.
- 10. Wisdom, J. Urey Prize Lecture: "Chaotic Dynamics in the Solar System" (1987) Icarus 72, pp. 241-275.
- 11. Taff, L.G., "Celestial Mechanics: "A computational guide for the practioner" (1985) John Wiley & Sons.

The references above constitute required reading for any who would become a practioner of celestial mechanics. Certainly Morse and Feshbach is one of the most venerable texts on theoretical physics and contains more information than most theoreticians would use in a lifetime. However, the book should be in the arsenal that any theoretician brings to the problems of analysis in physics. I still feel that Goldstein's text on classical mechanics is the best and most complete of the current era. However, some may find the text by Symon somewhat less condensed. The text by Brouwer and Clemence is the most advanced of the current texts in the field of celestial mechanics and is liable to remain so for some time to come. It is rather formidable, but contains information on such a wide range of problems and techniques that it should be at least perused by any student of the field. The text by Danby was the logical successor to the time honored work of Moulton. Danby introduced vector notation to the subject and made the reading much simpler. A.E. Roy expanded on this approach and covered a much wider range of topics. The celestial mechanics text by Fitzgerald listed below provides a development more common to modem day celestial mechanics and contains an emphasis on the orbital mechanics of satellites. This point of view is also used by Escobal where the first book on the "Methods of Orbit Determination" lays the groundwork for a contemporary discussion of 'rocket navigation' in the second book on "Astrodynamics". A much broader view of the term astrodynamics is taken by Herrick in his two volume treatise on the subject. The five volume 'epic' by Hagihara tries to summarize all that has happened in celestial mechanics in the last century and comes close to doing so. The text by Taff is one of the most recent of the celestial mechanics texts mentioned here, but still largely follows the traditional development started by Moulton. The exception is his discussion of perturbation theory which I found philosophically satisfying. The Urey Prize lecture by Wisdom should be read in its entirety by anyone who is interested in the application of the mathematics of chaos to objects in the solar system.

Below I have given some additional references as 'supplemental reading' which I have found helpful from time to time in dealing with the material covered in this book. Most any book on modern algebra will contain definitions of what constitutes a set or group, any book on modern algebra will contain definitions of what constitutes a set or group, but I found Andree very clear and concise. One of the best all round books on mathematical analysis with a view to numerical applications is that by Arfken. It is remarkably complete and wide ranging. The two articles from Chaotic Phenomena in Astrophysics show some further application of the subjects discussed by Wisdom. However, the entire book is

interesting as it demonstrates how this developing field of mathematics has found applications in a number of areas of astrophysics.

Sokolnikoff and Redheffer is just one of those omnibus references that provide a myriad of definitions and development for mathematical analysis necessary for any student of the physical sciences. On the other hand, the lectures by Ogorodnikov provide one of the most lucid accounts of Liouville's Theorem and the implications for a dynamical system in phase space. The text on Gravitation by Misner, Thorne, and Wheeler has probably the most contemporary and complete treatment of tensors as they apply to the physical world. Although the main subject is somewhat tangent to celestial mechanics, it is a book that every educated physicist or astrophysicist must read. Since it is rather long, one should begin early. One should not leave the references of celestial mechanics without a mention of the rare monograph by Paul Herget. While the presentation of the material is somewhat encumbered by numerical calculations for which Paul Herget was justly renowned, the clarity of his understanding of the problems of classical orbit calculation makes reading this work most worthwhile.

- 1. Andree, R.V. "Selections from Modern Abstract Algebra" (1958) Henry Holt and Co., New York.
- 2. Arfken, G. "Mathematical Methods for Physicists" 2nd ed. (1970) Academic Press, New York, San Francisco, London.
- 3. Bensimon, D. and Kadanoff, L.P., "The Breakdown of KAM Trajectories" in "Chaotic Phenomena in Astrophysics" (1987) Ed. H. Eichhorn and J.R. Buchler, Ann. New York Acad. Sci. 497, pp. 110-l17.
- 4. Escobal, P.R., "Methods of Orbit Determination" (1965) John Wiley and Sons, Inc., New York, London, Sydney.
- 5. _____ "Methods of Astrodynamics" (1968) John Wiley and Sons, Inc., New York, London, Sydney.
- 6. Fitzpatrick, P.M., "Principles of Celestial Mechanics" (1970) Acadmnic Press Inc, New York, London.
- 7. Hagihara, Y. "Celestial Mechanics" Vol. 1-5 (1970-1972) MIT Press, Cambridge Mass.

- 8. Herget, P., "The Computation of Orbits" (1948) Privately published by the author.
- 9. Herrick, S., "Astrodynamics" Vol. 1. (1971) Van Nostrand Reinhold Company, London.
- 10. ______, "Astrodynamics" Vol. 2. (1972) Van Nostrand Reinhold Company, London.
- 11. Meiss, J.D., "Resonances Fill Stochastic Phase Space" in "Chaotic Phenomena in Astrophysics" (1987) Ed. H. Eichhorn and J.R. Buchler Ann. New York Acad. Sci. 497, pp. 83-96.
- 12. Misner, C.W., Thorne, K.S., and Wheeler, J.A., "Gravitation" (1973) W.H. Freeman and Co. San Francisco.
- 13. Ogorodnikov, K.F. "Dynamics of Stellar Systems" (1965) Trans. J.B. Sykes Ed. A. Beer, The Macmillian Company, New York
- 14. Roy, A.E., "Orbital Motion" (1982) Adam Hilger Ltd., Bristol.
- 15. Sokolnikoff, I.S., and Redheffer, R.M. "Mathematics of Physics and Modern Engineering" (1958) McGraw Hill Book Co. Inc., New York, Toronto, London.
- 16. Symon, K.R. "Mechanics" (1953) Addison-Wesley Pub. Co. Inc., Reading.

Index

A

4.1	0.1
Airy transit	Celestial Longitude
Alt-Azimuth coordinate system 19	Celestial sphere
Altitude	Center of gravity
Angle of inclination for an orbit 86	Center of mass72
Angular momentum	uniform motion of77
definition of	Central force61. 95
of a rigid body	Chaotic phenomena126
Aphelion: definition of	Comutativity
Areal velocity64	Definition of 8
Argument of perihelion	Configuration space
determination of 97	Conic section
Argument of the pericenter	general equation for 69
definition of 86	Conservation of angular
Associativity	momentum 62
Definition of 8	Conservation of energy 42
Astronomical Triangle 28	Conservative force
Astronomica1Zenith19	Cooperative phenomena
Autumnal Equinox18	in stellar dynamics125
Axia1vectors24	Crossproduct24
Azimuth 19.2933	for vectors4
	Curl
В	definition of9
Barycentric Coordinates18	D
Basisvectors16	
Bernoulli.J43	D.Alembert.s principle42
Boundary conditions	Danby.J.M.A
for the equations of motion 66	Declination17
-	Del-operator
\mathbf{C}	Determinant of a matrix7
	Dipole moment 57
Canonical equations of Hamilton48	Dirac delta function54
Cartesian coordinate16. 25	Direction cosines
Celestial Latitude	Distributivity
	definition of 8

Divergence	\mathbf{G}
definition of9	
Divergence theorem53	Gauss.K.F
-	determination of
${f E}$	orbital elements104
	perturbation fornulae13
Eccentric Anomaly95	Gaussian constant83
definition of80	Generalized coordinates43. 62. 76
Eccentricity69	Generalized momenta 64
determination of95	definition of47
Ecliptic	Geocentric coordinates17, 22
Ecliptic coordinates19. 89	Geocentric longitude
Elliptic orbit	Geodetic coordinates20
energy of69	Geodetic latitude2
Electromagnetic force 52	Geodetic longitude2
Ellipse	Geographic coordinates20
Ellipsoid	Goldstein.H20
general equation of 75	Gradient
Energy	definition of
Energy integral95	operator58
Equations of motion	Gravitational force52
for two bodies76	Gravitational potential52
Equatoriel coordinates 17. 89	Gravitational potential energy52
Ergodic hypothesis124	Greenwich20
Ergodic theorem123	Greenwich mean time36
Euclidean space16	Greenwich sidereal time36
Euler.L6	Group theory
Eulerian angles26. 86	
Eulerian transformation27	
${f F}$	Н
Fixed-point	Hamilton.W.R40
for iteration schemes84	Hamiltonian47. 64. 126
	for central forces 6

Heliocentric coordinates17	and Gauss.s method105
Heliocentric coordinates	for hyperbolic and .
of the earth89	parabolic orbits82
Hermitian matrix7	solutionof84
Holonomic constraints	Kepler's first law69. 79
defined43	Kepler's second law64. 81
Horizon19	Kinetic energy45
Hour angle29	of a rigid body74
Hyperbolic orbit	Kirkwood gaps139
energy of 69	Kramer's rule7
Hyperion126	Kronecker delta5. 16. 22
I	L
Identity element3	Lagrange.J.L1
Initial value	Lagrange.s equations
for the equations of motion 66	Lagrange.s identity122
Inner product4	Lagrangian
Integral of the motion	definition of45
International atomic time34	for central forces61
Isolating Integrals123	for N-bodies119
	Lagrangian bracket134
${f J}$	Lagrangian equations of motion
	for two bodies76
Jacobi.K114, 122	Lagrangian points
Jacobi .s integral114	equilibrium of115. 117
Jacobian	Laplace, P.S100
of the perturbetion133	Laplace's equation55
•	Laplacian53
	Latitude
K	astronomical20
	geocentric21
KAM theorem126	geodetic21
Kepler. J 97	Latitude-Longitude coordinates20
Kepler's equation82	Least Squares94

Levi-Civita tensor5. 24	${f N}$
Linear momentum	
conservation of40	N-Body problem119
Linear transformations21	Nabla9
Liouville's theorem124	Newton-Raphson iteration84
Local sidereal time37	Nonholonanic constraints
Longitude	defined43
astronanical20	North celestial pole29, 89
geocentric21	
geodetic21	\mathbf{O}
Longitude	
of the Ascending Node 86. 107	Operators
Longitude of the Pericenter	Laplacian53
definition of86	Orbit equation68
	Orbital elements
${f M}$	determination of95
	indeterminacy of107
Matrix	perturbation of131
hermitian7	Orthogonal coordinate systems16
inverse7	Orthogonal unitary
symmetric7	transformations23
Matrix addition7	Orthonormal transformations23
Matrix product6	Osculating orbit132
Maximum likelihood principle94	Osculation condition132
Mean Anomaly95	Outer product2
definition of80	
Moment of inertia tensor74	
Momentum39	
Moulton. F.R104, 118	
Multipole moments	
of the potential57	

P

Parabolic orbit	Scalar product25
energy of 69	of tensors57
Parallactic angle29. 33	Scalars2
Perihelion	Semi-major axis
definition of	determination of 95
Perturbation theory129	Set theory
Perturbing force136	Sidereal hour angle19
Perturbing potential130	Sidereal period98
Phase space15. 123. 126	Sidereal time29. 34
Phase transition	Special theory of relativity34
in thermodynamics126	Stokes theorem41
Poincare. H126	Synodic period98
Poisson's equation55	•
Potential52	${f T}$
Potential energy41	
Precession	Taff. L.G135, 137
of Mercury's orbit1. 112	Taylor series
Prime meridian29, 89	for orbit determination102
Principia1	Tensor5
Principle axes	Tensor densities24
of an ellipsoid75	Tensor product4
Principle axis coordinate system75	Test particle55
Principle moments of inertia75	Thermodynamics126
Pseudo vectors24	Three body problem111, 126
Pseudo-potential	Time34
Pseudo-tensor	Time derivative operator67
tensor density24	Time of perihelion passage108
	as an orbital element 88
Q	Topocentric coordinates17, 90
	Torque
Quadrupole moment57	definition of

Transformation
rotational25
Transformation matrix
for the Astronomical Triangle32
Transpose of the matrix7. 23
True Anomaly95. 107
definition of79
Two body problem76
\mathbf{U} – \mathbf{Z}
Universal time36
Vector
scalar product4
triple product74
Vemal equinox18. 89. 107
hour angle of35
Virial theorem121
Virtual displacements43
Virtual work42. 43
Vis Viva integral95
Work
definition of40
Zenith19
Zenith distance
Zero velocity surfaces
Zero-vector4