Задачи оценивания геномного расстояния на графах де Брёйна

Константинов Антон Владимирович, гр. 15.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Коробейников А. И. Рецензент: м.н.с. Шлемов А. Ю.

Санкт-Петербург 2019

Сборка генома

Геном — строка над конечным алфавитом $\{\mathbf{A},\mathbf{C},\mathbf{G},\mathbf{T}\}.$

- Размеры геномов у различных биологических видов варьируются в диапазоне от 100 тыс. до 150 млрд. символов.
- Не существует метода, позволяющего прочитать геном целиком.
- Вместо этого из генома случайным образом считываются подстроки, называемые ридами.
- Исходный геном затем должен быть восстановлен по этим подстрокам.

Граф де Брёйна

k-мер строки \mathcal{S} — это её подстрока длины k.

Граф де Брёйна G, $k \in \mathbb{N}$:

- 1. Вершины k-меры строки S.
- 2. u и v соединены ребром кратности N, если $\mathcal S$ содержит N вхождений (k+1)-мера, имеющего префикс u и суффикс v.

Неформально говоря, граф де Брёйна состоит из всех уникальных подстрок длины k генома \mathcal{S} , которые соединены в том порядке, в котором они встречаются в \mathcal{S} .

Сборка генома при помощи графа де Брёйна

Хорошо известно, что в графе де Брёйна G существует эйлеров (проходящий по всем рёбрам столько раз, какова их кратность) путь \mathbf{p}^* , который соответствует \mathcal{S} .

- В реальной ситуации G строится по k- и (k+1)-мерам, полученным из ридов, так как ${\cal S}$ неизвестна.
- Если эйлеровых путей в полученном графе несколько, то неизвестно, какой из них соответствует S.

Сборка генома \iff поиск \mathbf{p}^* среди всех эйлеровых путей в графе де Брёйна G, построенном по ридам.

Проблема повторов

Проблема: повторы последовательностей (длины $\geq k$) приводят к образованию циклов.

Добавим к строке ${\mathcal S}$ из прошлого примера один символ ${\mathbf G}$ в конец.

Как теперь должен проходить геномный путь:

- По верхней петле, затем по нижней?
- Наоборот, сначала по нижней петле, затем по верхней?

По графу ответить на этот вопрос невозможно!

Для разрешения повторов требуется внешняя информация.

Парные риды

Рассмотрим независимые случайные величины

- $\xi \sim \mathrm{U}(\{1,\ldots,|\mathcal{S}|\})$, играющую роль координаты в геноме;
- $\eta>0$ с произвольным распределением \mathcal{P}_{η} , которую мы далее будем называть **длиной вставки**.

Рассмотрим случайную подстроку генома, имеющую вид $\mathcal{S}[\xi,\xi+\eta].$

Парный рид — это пара из её префикса $\mathcal{S}[\xi,\xi+\ell]$ (левый рид) и суффикса $\mathcal{S}[\xi+\eta-\ell,\xi+\eta]$ (правый рид).

Парные риды как внешняя информация

Пусть $(r_1,r_2)\in\mathfrak{R}$, и r_i является подстрокой ребра \mathbf{e}_i (i=1,2).

Введём обозначения:

- 1. g геномное расстояние между \mathbf{e}_1 и \mathbf{e}_2 ,
- 2. t расстояние от конца r_1 до конца \mathbf{e}_1 ,
- 3. au координата начала r_2 на e_2 .

Тогда

$$\eta = t + g + \tau + 2\ell.$$

Зная распределение η , мы получаем внешнюю информацию о расстоянии между рёбрами графа, «прикладывая» к ним риды.

Постановка задачи

Зафиксируем пару ${f e}_1, {f e}_2$ рёбер графа де Брёйна. Будем предполагать, что

- $\mathbf{1}.\ \mathbf{e}_1 = \mathcal{S}[a,b]$ и $\mathbf{e}_2 = \mathcal{S}[c,d]$, где a < c;
- 2. \mathbf{e}_1 и \mathbf{e}_2 соединяет путь $\boldsymbol{p}=\mathbf{e}_1 \to p_1 \to \ldots \to p_m \to \mathbf{e}_2.$

Графовое расстояние: $d_{\mathrm{graph}}(\mathbf{e}_1,\mathbf{e}_2; {m p}) = \sum_{i=1}^m |p_i| - (m+1)k$,

Геномное расстояние: $d_{\text{genome}}(\mathbf{e}_1, \mathbf{e}_2) = c - b$.

Определим множества

$$\begin{split} \mathbf{D}_{\text{graph}} &= \big\{ d_{\text{graph}}(\mathbf{e}_1, \mathbf{e}_2; \boldsymbol{p}) \mid \boldsymbol{p} - \text{путь, соединяющий } \mathbf{e}_1 \text{ с } \mathbf{e}_2 \big\}, \\ \mathbf{D}_{\text{genome}} &= \big\{ d_{\text{genome}}(\mathbf{e}_1^{(i)}, \mathbf{e}_2^{(j)}) \mid \mathbf{e}_s^{(t)} - t\text{-ое вхождение } \mathbf{e}_s \text{ в геном } \mathcal{S} \big\}, \end{split}$$

 ${
m 3AДAЧA}$: Предложить алгоритм, определяющий элементы множества ${
m f D}={
m f D}_{
m graph}\cap {
m f D}_{
m genome}$ при помощи набора (библиотеки) ридов ${
m \mathfrak R}$.

Вероятностный подход к задаче

Рассмотрим формально выборку $((t_1, \tau_1, g_1), \dots, (t_n, \tau_n, g_n))$.

- 1. Реализации (t,τ) наблюдаются только при условии $A_{\mathbf{e}_2}(r_2)=\{$ рид r_2 приложен к $\mathbf{e}_2\}$ (будем считать, что r_1 уже приложен);
- 2. Реализации g не наблюдаются вовсе.

При этом

- 1. Совместное распределение вектора (t_i, au_i) зависит от g_i как от параметра;
- 2. t_i , au_i и g_i связаны соотношением $au_i = \eta_i t_i g_i 2\ell$, где $g_i \in \mathbf{D}$.

Получаем набор реализаций $\mathbb{T}=\Big((t_1, au_1),\ldots,(t_n, au_n)\Big).$

В этом случае исходная задача сводится к статистическому выводу для g_i по $\mathbb{T}.$

Апостериорное распределение для одной реализации

Было получено выражение для функции вероятности $p(g \mid t, \tau, A_{\mathbf{e}_2}).$

Предложение

Пусть длина вставки η имеет распределение \mathcal{P}_{η} с функцией распределения $F(x)=\mathbb{P}(\eta< x)$. Будем считать, что априорно g равномерно распределена на $\mathbf{D}_{\mathrm{graph}}$.

Тогда

$$p(g \mid t, \tau, A_{\mathbf{e}_2}) = \frac{q(\tau, g, t)}{\sum_{j=1}^{k} q(\tau, g^{(j)}, t)},$$

где

$$q(x,y,z) = \frac{F(x+y+z+2\ell+1) - F(x+y+z+2\ell)}{F(y+z+\ell+M) - F(y+z+2\ell)}.$$

Переход к случаю нескольких реализаций

- На практике для каждого рида $(r_1, r_2) \in \mathfrak{R}$ реализуется собственное расстояние $g^{(i)} \in \mathbf{D}_{\mathrm{genome}}$ для некоторого i.
- Поэтому нельзя напрямую сделать переход к повторной независимой выборке, как это обычно бывает в статистике.

Приходим к модели смеси:

$$(t, au)\sim \sum_{i=1}^k\pi_i\mathcal{L}_{ au,t}ig(g^{(i)}ig),$$
 где $\pi_i\geq 0$ и $\sum_{i=1}^k\pi_i=1.$

Здесь π_i мы можем оценить, усредняя апостериорную вероятность $p(g^{(i)} \mid t, \tau, A_{\mathbf{e}_2})$ по всем имеющимся реализациям.

Данные

Во всех тестах использовались графы де Брёйна, построенные по различным библиотекам ридов для первых 400 тысяч нуклеотидов генома E.coli (штамм $K12\ MG1655$).

Были проведены эксперименты на:

Синтетических ридах с длиной вставки $\eta \sim N(\mu, \sigma^2)$:

- $\mu = 1000$, $\sigma = 30$.
- $\mu = 400$, $\sigma = 30$.

Реальных ридах. Были рассмотрены две библиотеки:

- Первая имеет близкое к нормальному распределение η . Использовалась ф. р. нормального распределения с оценёнными параметрами ($\mu \approx 215, \ \sigma \approx 10$).
- Для второй библиотеки в качестве F использовалась эмпирическая ф. р. (med $\eta \approx 480$).

Пример: описание библиотеки

Рассмотрим условия, максимально приближенные к реальным:

- Медианная длина вставки: 480.
- В качестве функции распределения F, требуемой для получения оценок, мы будем использовать эмпирическую ф. р., полученную по всем имеющимся ридам.

Рис. 1: Распределение длины вставки η

Пример: рёбра без повторов

(b) Апостериорное распределение расстояния g

Рис. 2: Два длинных ребра, не имеющих повторов

Пример: повторное ребро

Рис. 3: Длинное ребро без повторов и короткое ребро (63 bp), имеющее повтор тройной кратности

расстояния q

Заключение

В работе была рассмотрена задача оценки геномных расстояний между рёбрами в графе де Брёйна.

- 1. Построена вероятностная модель, позволяющая получать требуемые оценки в виде апостериорных вероятностей для расстояний, имеющихся в графе.
- 2. Построенная модель протестирована как на синтетических, так и на реальных геномных данных.

В дальнейшем полученные оценки могут быть применены в геномных ассемблерах для разрешения повторов в графе де Брёйна.