2024 年 HDU「概率论与数理统计」期中模拟

🔞 未央学社 🔘 七星考研

选择题(每题2分,共20分)

Z Problem	1. 将一枚硬币独立地掷两次,有以下事件: $A_1 = \{$ 掷第一次出现正面 $\}$, $A_2 = \{$ 掷第二次出	;现正面},
$A_3 = \{\mathbb{E},$	$\{$ 面各出现一次 $\}$, $A_4 = \{$ 正面出现两次 $\}$, 则事件	

A. A₁, A₂, A₃ 相互独立 B. A₂, A₃, A₄ 相互独立 **⊘** A₁, A₂, A₃ 两两独立 D. A₂, A₃, A₄ 两两独立 **SOLUTION.** 因为 $P(A_i) = 1/2$, $P(A_1A_2) = P(A_1A_3) = P(A_2A_3) = \frac{1}{4}$, $P(A_1A_2A_3) = 0$, $P(A_2A_4) \neq P(A_2)P(A_4)$, 所以 $P(A_1A_2) = P(A_1)P(A_2)$, $P(A_1A_3) = P(A_1)P(A_3)$, $P(A_2A_3) = P(A_2)P(A_3)$, $P(A_1A_2A_3) = P(A_1)P(A_2)P(A_3)$,

■ PROBLEM 2. 当事件 A 与 B 同时发生时,事件 C 必发生,则下列结论中,正确的是

A. P(C) = P(AB)

B. $P(C) = P(A \cup B)$

 A_1, A_2, A_3 两两独立而不相互独立. A_2, A_3, A_4 不两两独立更不相互独立.

◊P(C) ≥ P(A)+P(B)-1 D. P(C) ≤ P(A)+P(B)-1

SOLUTION. 因为事件 $A \subseteq B$ 同时发生时,事件 $C \subseteq A$ 以发生,即 $AB \subseteq C$,因此 P(C) > P(AB).又因 $P(A \cup B) =$ P(A) + P(B) - P(AB), $M P(C) \ge P(A) + P(B) - P(AB) \ge P(A) + P(B) - 1$.

PROBLEM 3. 设 $F_1(x)$, $F_2(x)$ 为两个分布函数,其相应的概率密度为 $f_1(x)$, $f_2(x)$ 是连续函数,则下列必为 概率密度的是

A. $f_1(x) f_2(x)$

B. $2f_2(x)F_1(x)$

C. $f_1(x)F_2(x)$

SOLUTION. 根据概率密度的性质,检验各选项得 $\int_{-\infty}^{+\infty} [f_1(x)F_2(x) + f_2(x)F_1(x)] dx = F_1(x)F_2(x) \Big|_{-\infty}^{+\infty} = 1.$

■ PROBLEM 4. 设随机变量 X 和 Y 相互独立,且 X 服从标准正态分布 N(0,1),Y 的概率分布为 $P\{Y=0\}$ = $P\{Y=1\}=1/2$,记 $F_Z(z)$ 为随机变量 Z=XY 的分布函数,则函数 $F_Z(z)$ 间断点个数为

A. 0

② 1

C. 2

D. 3

✓ Solution.

• 因为 X, Y 相互独立,则 $P\{X \cdot 0 \le z | Y = 0\} = P\{X \cdot 0 \le z\}$, $P\{X \cdot 1 \le z | Y = 1\} = P\{X \le z\}$.

• $F_Z(z) = P\{XY \le z | Y = 0\}P\{Y = 0\} + P\{XY \le z | Y = 1\}P\{Y = 1\} = \frac{1}{2}[P\{X \cdot 0 \le z\} + P\{X \cdot 1 \le z\}].$

• 若 z < 0, 则 $F_Z(z) = \frac{1}{2}\Phi(z)$; 若 $z \ge 0$, 则 $F_Z(z) = \frac{1}{2}[1 + \Phi(z)]$.则 z = 0 为间断点.

☑ PROBLEM 5. 设随机变量 X 与 Y 独立且具有相同的分布,设 P(X = 0) = P(X = 1) = 1/2,则下列各式中正 确的是

A. P(X = Y) = 1/2 B. P(X = Y) = 1 C. P(XY = 0) = 1/4 D. P(X + Y = 1) = 1/4

SOLUTION. P(X = Y) = p(x = y = 1) + p(x = y = 0) = p(x = 0)p(y = 0) + p(x = 1)p(y = 1) = 1/2.

☑ PROBLEM 6. 设随机变量
$$X$$
 的分布函数 $F(X) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1, \ \text{则 } P\{X = 1\} \ \text{等于} \\ 1 - e^{-x}, & x \ge 1 \end{cases}$

A. 0

- **SOLUTION.** $P{X = 1} = P{X ≤ 1} P{X < 1} = F(1) F(1 0) = 1 e^{-1} \frac{1}{2} = \frac{1}{2} e^{-1}$.
- **△ PROBLEM 7.** 设随机变量 *X* 的概率密度为

$$f(x) = \begin{cases} 1/3, & 0 \le x < 1 \\ kx^2, & 1 \le x \le 2 \\ 0, & \text{else} \end{cases}$$

则常数k的值为

A. 1/7

B. 2/7

C. 3/14

D. 3/8

- **SOLUTION.** 对 f(x) 积分得 $\int_0^1 \frac{1}{3} dx + \int_1^2 kx^2 dx = (1+7k)/3 = 1, k = 2/7.$
- **PROBLEM 8.** 设随机变量 X 的分布函数为 $F(x) = 0.2\Phi(x) + k\Phi\left(\frac{x-2}{4}\right)$, 其中 $\Phi(x)$ 是标准正态分布的分布函 数, k 为某个常数, 那么 E[X] 为

⊘ 8/5

■ SOLUTION. 利用分布函数的归一化条件得 k = 1 - 0.2 = 0.8 则 X 的概率密度函数为

$$f_X(x) = F'(x) = \frac{1}{5\sqrt{2\pi}}e^{-x^2/2} + \frac{4}{5\sqrt{32\pi}}e^{-(x-2)^2/32}$$

根据正态分布的期望 $\int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-k)^2}{2\sigma^2}} dx = k$ 得 $E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx = \frac{0}{5} + \frac{8}{5} = \frac{8}{5}$.

2 PROBLEM 9. 设随机变量 $X \sim N(\mu, \sigma^2)$ $(\sigma > 0)$,记 $p = P(X \le \mu + \sigma^2)$,则

A. p 随 μ 的增加而增加 B. p 随 σ 的增加而增加 C. p 随 μ 的增加而减少 D. p 随 σ 的增加而减少

- **SOLUTION.** $(X \mu)/\sigma$ 服从标准正态分布, $P(X \le \mu + \sigma^2) = P[(x \mu)/\sigma \le \sigma] = \Phi(\sigma)$,所以本题选择 B 项.
- **☑ PROBLEM 10**. 已知随机变量 *Z* = min{*X*, *Y*}, 其中 *X*, *Y* 相互独立,那么

A. $f_z(z) = f_x(z) f_y(z)$

B. $F_{z}(z) = F_{y}(z)F_{y}(z)$

C. $f_z(z) = (1 - F_x(z))(1 - F_v(z))$

 $F_z(z) = 1 - (1 - F_x(z))(1 - F_v(z))$

SOLUTION. $F_z(z) = P(Z < z) = P(\min\{X, Y\} < z) = 1 - P(\min\{X, Y\} \ge z)$, 该式可以写成 $1 - P(X \ge z, Y \ge z)$ $z = 1 - P(X \ge z)P(Y \ge z)$, $\mathbb{P} 1 - (1 - F_X(z))(1 - F_V(z))$.

2 填空题 (每题 2 分, 共 10 分)

PROBLEM 11. 设两个相互独立的事件 A 和 B 都不发生的概率为 $\frac{1}{9}$, 且 A 发生 B 不发生的概率与 B 发生 A 不发生的概率相等,则 P(A) = 2/3.

SOLUTION. 由于 A, B 相互独立,则 P(AB) = P(A)P(B),且 $P(\overline{AB}) = 1/9$, $P(A\overline{B}) = P(\overline{AB})$.则有

$$\begin{cases} P(\overline{A}\,\overline{B}) = P(\overline{A+B}) = 1 - P(A+B) = \frac{1}{9} \\ P(A) - P(AB) = P(B) - P(AB) \end{cases}, \begin{cases} 1 - P(A) - P(B) + P(A)P(B) = \frac{1}{9} \\ P(A) = P(B) \end{cases}$$

所以 $1-2P(A)+P^2(A)=1/9$. 解得 $P(A)-1=\pm 1/3$, P(A)=4/3 (舍去) 或 P(A)=2/3.

2 PROBLEM 12. 已知随机变量 X 服从参数为 λ 的泊松分布,且 $P\{X=0\}=e^{-1}$,则 $\lambda=1$.

SOLUTION. 因为
$$X \sim \pi(\lambda)$$
, $P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}$ $(\lambda > 0)$ 故 $P\{X = 0\} = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-1}$, 则 $\lambda = 1$.

Z PROBLEM 13. 设 $X \sim N(\mu, 10^2)$, $P(X > 85) = 1 - \Phi(1)$, 则 $P(X > 65) = \Phi(1)$.

✓ Solution.

- 题目中已知 $X \sim N(\mu, 10^2)$, 即 X 服从均值为 μ , 方差为 $10^2 = 100$ 的正态分布.
- 给定 $P(X > 85) = 1 \Phi(1)$. 根据正态分布的性质, X 的标准化后分布满足 $P\left(\frac{X \mu}{10} > \frac{85 \mu}{10}\right) = 1 \Phi(1)$.
- 由 $1 \Phi(1) = P(Z > 1)$ 可得 $\frac{85 \mu}{10} = 1$, 解得均值 $\mu = 75$.
- 要求 P(X > 65), 首先对 X 进行标准化 $P(X > 65) = P\left(\frac{X 75}{10} > \frac{65 75}{10}\right) = P(Z > -1)$.
- 由于 $P(Z > -1) = \Phi(1)$, 最终结果为 $P(X > 65) = \Phi(1)$.
- **PROBLEM 14** (2010 年全国考研题). 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上的均匀分布的概率密度,若 $f(x) = \begin{cases} af_1(x), & x \leq 0 \\ bf_2(x), & x > 0 \end{cases}$, (a > 0, b > 0) 为概率密度,则 a, b 应满足 $\underline{a/2 + 3b/4 = 1}$.
- **SOLUTION.** $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} a f_1(x) \, \mathrm{d}x + \int_{0}^{+\infty} b f_2(x) \, \mathrm{d}x = 1$, 那么得到 a/2 + 3b/4 = 1.
- **☑** PROBLEM 15. 已知随机变量 X 满足参数为 $\frac{3}{2}$ 的指数分布,期望 $E(2e^{x}-1)=\underline{5}$.

SOLUTION.

- 假设随机变量 X 满足参数为 $\lambda = \frac{3}{2}$ 的指数分布,则其概率密度函数为 $f_X(x) = \frac{3}{2}e^{-\frac{3}{2}x}$ $(x \ge 0)$.
- 要求 $E(2e^X-1)$,根据期望的线性性质,可将其分解为 $E(2e^X-1)=2E(e^X)-E(1)=2E(e^X)-1$.
- 接下来计算 $E(e^X)$: $E(e^X) = \int_0^\infty e^x f_X(x) \, \mathrm{d}x = \int_0^\infty e^x \cdot \frac{3}{2} e^{-\frac{3}{2}x} \, \mathrm{d}x = \frac{3}{2} \int_0^\infty e^{-\frac{1}{2}x} \, \mathrm{d}x = 3.$
- 最终得到: $E(2e^X 1) = 2 \cdot 3 1 = 6 1 = 5$.

3 解答题 (共 60 分)

☑ PROBLEM 16 (本题 12 分). 设随机变量 X, Y 相互独立,它们的概率密度分别为

$$f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{else} \end{cases}, f_Y(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & \text{else} \end{cases}$$

1. 求 (X, Y) 的概率密度.

2. 求 Z = X + Y 的概率密度.

SOLUTION.

1. 由于X, Y 相互独立, (X,Y) 的概率密度为

$$f(x,y) = f_X(x)f_Y(y) = \begin{cases} 2ye^{-x}, & x > 0, \ 0 < y < 1 \\ 0, & \text{else} \end{cases}$$

- 2. (X,Y) 的正概率区域 D 与所求概率 $F_{z}(z) = P\{X + Y \leq z\}$ 的积分区域的公共部分有三种不同组合形式.
 - 当 z < 0 时, $F_z(z) = 0$.
 - $\pm 0 \le z < 1$ 时, $F_z(z) = \int_0^z dx \int_0^{-x} 2ye^{-x} dy = z^2 2z 2e^{-z} + 2$.
 - $\pm z \ge 1$ 时, $F_Z(z) = 1 \int_0^1 dy \int_{-v}^{+\infty} 2y e^{-x} dx = 1 2e^{-z}$.

因此Z = X + Y的概率密度为

$$f_Z(z) = \begin{cases} 2z + 2e^{-z} - 2, & 0 < z < 1 \\ 2e^{-z}, & z > 1 \\ 0, & \text{else} \end{cases}$$

- **☑ PROBLEM 17** (本题 12 分). 某厂产品有 70% 不需要调试即可以出厂,另外 30% 需要调试,调试后有 80% 的产品能出厂.
 - 1. 求该厂产品能出厂的概率.

- 2. 任取一出厂产品, 求未经调试的概率.
- **SOLUTION.** A 表示产品能出厂, B_1 表示产品不需要调试, B_2 表示产品需要调试. 则 $P(B_1) = 70\%$, $P(B_2) = 30\%$, $P(A|B_1) = 1$, $P(A|B_2) = 0.8$.
 - 1. 由全概率公式可知 $P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) = 1 \times 0.7 + 0.8 \times 0.3 = 0.94$.
 - 2. 由贝叶斯公式可得 $P(B_1|A) = P(A|B_1)P(B_1)/P(A) = 1 \times 0.7/0.94 = 0.74$.
- PROBLEM 18 (本题 6 分). 设随机变量 X, Y 相互独立,且服从同一分布. 试证明

$$P{a < \min(X, Y) \le b} = [P{X > a}]^2 - [P{X > b}]^2$$

SOLUTION. Proof. 设 $Z = \min(X, Y), X, Y$ 服从同一分布的分布函数为 $F(\cdot)$,则 Z 的分布函数为

$$F_Z(z) = P\{\min(X, Y) \le z\} = 1 - P\{\min(X, Y) > z\} = 1 - P\{X > z, Y > z\}$$

由于 X, Y 相互独立同分布,故 $F_Z(z)=1-[P(X\geq z)]^2$, $P\{a<\min(X,Y)\leq b\}=F_Z(b)-F_Z(a)$.

PROBLEM 19 (本题 12 分). 今有甲乙两名射手轮流对同一目标进行射击,甲命中的概率为 p_1 ,乙命中的概率为 p_2 ,谁先命中谁获胜,分别求甲、乙两人获胜的概率.

SOLUTION. 令 A, B 分别表示 "甲获胜"、"乙获胜", A_i , B_i (i = 1, 2, ...) 分别表示 "甲第i 次射击命中"、"乙第i 次射击命中",则 $A = A_1 \cup \overline{A_1B_1}A_2 \cup \overline{A_1B_1A_2B_2}A_3 \cup ...$, $B = \overline{A_1}B_1 \cup \overline{A_1B_1A_2}B_2 \cup \overline{A_1B_1A_2B_2A_3}B_3 \cup ...$,因而

$$\begin{split} P(A) &= P(A_1) + P(\overline{A}_1 \overline{B}_1 A_2) + \dots = P(A_1) + P(\overline{A}_1) P(\overline{B}_1) P(A_2) + \dots \\ &= p_1 + (1 - p_1)(1 - p_2) p_1 + \dots = \frac{p_1}{1 - (1 - p_1)(1 - p_2)} = \frac{p_1}{p_1 + p_2 - p_1 p_2} \end{split}$$

因为 A 与 B 为互逆事件,所以 $P(B) = 1 - P(A) = \frac{(1-p_1)p_2}{p_1+p_2-p_1p_2}$.

PROBLEM 20 (本题 18 分). 某单位招聘 155 人, 按考试成绩录用, 共有 523 人报名, 假设报名者的考试成绩 X 服从正态分布 $N(\mu, \sigma^2)$. 已知 90 分以上的有 12 人, 60 分以下的有 83 人, 若从高分到低分依次录取, 某人的考试成绩为 78 分, 此人能否被录取? 附数据: $\Phi(0.54) = 0.7054$, $\Phi(0.8) = 0.7881$, $\Phi(1.0) = 0.8413$, $\Phi(2.0) = 0.9771$.

☑ SOLUTION. 分别求出 *P*{*X* ≤ 90}, *P*{*X* < 60}, 并标准化

•
$$P\{X \le 90\} = 1 - P\{X > 90\} = 1 - 12/523 \approx 0.9771$$
 • $P\left\{\frac{X - \mu}{\sigma} \le \frac{90 - \mu}{\sigma}\right\} = \Phi\left(\frac{90 - \mu}{\sigma}\right) = 0.9771$

•
$$P\{X < 60\} = 83/523 \approx 0.1587$$
 • $P\left\{\frac{X-\mu}{\sigma} < \frac{60-\mu}{\sigma}\right\} = \Phi\left(\frac{60-\mu}{\sigma}\right) = 0.1587$

查表得 $\frac{90-\mu}{\sigma} \approx 2.0$, $\frac{\mu-60}{\sigma} \approx 1.0$. 联立解得 $\mu=70$, $\sigma=10$, 则 $X \sim N(70,10^2)$. 录取率为 155/523 ≈ 0.2964 .

解法 1.
$$P\{X > 78\} = 1 - P\{X \le 78\} = 1 - P\left\{\frac{X - 70}{10} \le \frac{78 - 70}{10}\right\} = 1 - \Phi(0.8) \approx 0.2119 < 0.2964$$
,可以被录取.

解法 2. 设被录取者的最低分为 x_0 ,则 $P\{X > x_0\} = 0.2964$.由于 $P\{X \le x_0\} = 1 - P\{X > x_0\} \approx 0.7036$.

$$P\{X \le x_0\} = P\left\{\frac{X - 70}{10} \le \frac{x_0 - 70}{10}\right\} = P\left\{X^* \le \frac{x_0 - 70}{10}\right\} = \Phi\left(\frac{x_0 - 70}{10}\right) = 0.7036$$

则有 $\frac{x_0-70}{10}$ < 0.54,解得 x_0 < 75.4,该人分数为 78分,大于 75.4分,可以被录取.

