

Cours 2 : Variables quantitatives Plan du cours

- 1 Valeur centrale
 - Critère de centralité
 - Écart quadratique
 - Écart absolu
- 2 Dispersion
 - Déviation absolue (par rapport à la médiane)
 - Variance, écart type
- 3 Distribution, histogramme
 - Histogramme
 - Quantiles, intervalle inter-quartile.
 - Boîte à moustaches (box-plot)

Exemple

Données de population des communes françaises (INSEE 2017)

- n = 34995 communes
- $x_i = x_i = x_i = x_i$
- Données :

i		x_i
1	L'Abergement-Clémenciat	794
2	L'Abergement-de-Varey	249
3	Ambérieu-en-Bugey	14428
4	Ambérieux-en-Dombes	1723
5	Ambléon	117
6	Ambronay	2841
:	:	:

(Lyon, Marseille et Paris apparaissent par arrondissements)

Exemple

Données de population des départements français : (INSEE 2017)

- n = 100 département (96 + 4)
- $x_i = x_i = x_i = x_i$
- Données :

i		X_i
1	Ain	659180
2	Aisne	546527
3	Allier	347035
4	Alpes-de-Haute-Provence	168381
5	Hautes-Alpes	145883
6	Alpes-Maritimes	1097496
:	i i	:

Cours 2 : Variables quantitatives Plan du cours

- **■** Valeur centrale
 - Critère de centralité
 - Écart quadratique
 - Écart absolu
- 2 Dispersion
 - Déviation absolue (par rapport à la médiane)
 - Variance, écart type
- 3 Distribution, histogramme
 - Histogramme
 - Quantiles, intervalle inter-quartile.
 - Boîte à moustaches (box-plot)

Critère de centralité

- Données :
 - Ensemble des observations $\{x_i\}_{1 \le i \le n}$
 - Vecteur des observations $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_i \ \dots \ x_n]^T$
- Objectif:
 - Résumer l'ensemble des observations **x** par une valeur typique ou «centrale».
- Critère de centralité :
 - Une valeur u est centrale si elle est «bien au centre» de l'ensemble des x_i . Il nous faut donc définir un *critère mesurant la centralité* de u.

Critère de centralité

Exemples de critères de centralité

L'écart absolu à la valeur u est défini par

$$C_1(u) = \sum_{i=1}^n |x_i - u|.$$

L'écart quadratique à la valeur u est défini par

$$C_2(u) = \sum_{i=1}^n (x_i - u)^2.$$

Remarque : les fonctions C_1 et C_2 dépendent également du vecteur des observations \mathbf{x} (on note $C_1(u)$ plutôt que $C_1(u; \mathbf{x})$ car u inconnu et \mathbf{x} donné).

Écart quadratique

On considère d'abord l'écart quadratique dont on verra qu'il est mathématiquement confortable.

Proposition 1 (Minimisation de l'écart quadratique)

La moyenne

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

minimise l'écart quadratique $C_2(u)$.

Écart quadratique

Exemple fictif: n = 7

$$\mathbf{x}^{\mathsf{T}} = [0.20 \ 0.27 \ 0.37 \ 0.57 \ 0.90 \ 0.91 \ 0.94]$$

$$\bar{x} = 0.595$$

Écart quadratique : démonstration

On cherche le minimum en u de la fonction

$$C_2(u) = \sum_{i=1}^n (x_i^2 - 2ux_i + u^2) = \sum_{i=1}^n x_i^2 - \sum_{i=1}^n 2ux_i + \sum_{i=1}^n u^2$$
$$= \left(\sum_{i=1}^n x_i^2\right) - 2u\left(\sum_{i=1}^n x_i\right) + nu^2 = Q - 2uS + nu^2$$

en notant

$$S = \sum_{i=1}^{n} x_i$$
 et $Q = \sum_{i=1}^{n} x_i^2$.

Pour cela on calcule sa dérivée

$$C_2'(u) = -2S + 2nu$$

qui est nulle si et seulement si

$$2S = 2nu$$
 \Leftrightarrow $u = \frac{S}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}.$

Formule de Huygens

Utile pour une démonstration alternative du fait que \overline{x} minimise $C_2(u)$.

Proposition 2 (Formule de Huygens)

Pour tout réel u, on a

$$\sum_{i=1}^{n} (x_i - u)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 + n(u - \overline{x})^2.$$

Formule de Huygens : démonstration

On a

$$\sum_{i=1}^{n} (x_i - \overline{x} + \overline{x} - u)^2 = \sum_{i=1}^{n} ((x_i - \overline{x})^2 + 2(x_i - \overline{x})(\overline{x} - u) + (\overline{x} - u)^2)$$

$$= \sum_{i=1}^{n} (x_i - \overline{x})^2 + 2(\overline{x} - u) \underbrace{\sum_{i=1}^{n} (x_i - \overline{x}) + n(\overline{x} - u)^2}_{0}$$

car

$$\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x} = \sum_{i=1}^{n} x_i - n\overline{x} = 0$$

par définition de la moyenne \overline{x} . \square

Démonstration alternative de la proposition 1

La formule de Huygens permet de montrer directement que \overline{x} minimise $C_2(u)$. En effet, on a pour tout u

$$C_2(u) = \sum_{i=1}^n (x_i - u)^2 = C_2(\overline{x}) + n(\overline{x} - u)^2,$$

et donc, pour tout u,

$$C_2(u) \geq C_2(\overline{x}).$$

Propriété de la moyenne

Proposition 3 (Transformation linéaire)

Soit la variable y telle que $y_i = a + bx_i$ (pour $1 \le i \le n$), on a

$$\overline{y} = a + b\overline{x}$$
.

Démonstration:

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (a + bx_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} a + \frac{1}{n} b \sum_{i=1}^{n} x_i$$

$$= \frac{1}{n} na + b \frac{1}{n} \sum_{i=1}^{n} x_i = a + b\overline{x}$$

Écart absolu

■ Difficulté : la fonction f(x) = |x| n'est pas partout dérivable.

Définition 1 (Statistique d'ordre i)

Pour des données réelles $(x_i)_{1 \le i \le n}$, on note $(x_{(i)})_{1 \le i \le n}$ le même jeu de données ré-ordonné, c'est à dire tel que

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(i)} \leq \cdots \leq x_{(n)}.$$

 $x_{(i)}$ est appelé la statistique d'ordre i de l'ensemble $\{x_i\}_{1 \le i \le n}$.

Écart absolu

Proposition 4

- Si n est pair (n = 2k), toute valeur comprise entre $x_{(k)}$ et $x_{(k+1)}$ minimise l'écart absolu $C_1(u)$.
- Si n est impair (n = 2k + 1), $x_{(k+1)}$ minimise l'écart absolu $C_1(u)$.
- Remarques :
 - Quand n est impair (n = 2k + 1), la valeur qui minimise $C_1(u)$ est donc la médiane

$$m = x_{(k+1)}.$$

■ Par convention, quand n est pair (n = 2k), on pose

$$m = \frac{x_{(k)} + x_{(k+1)}}{2}.$$

Écart absolu et médiane

Exemples fictifs:

$$n = 6$$

 $\mathbf{x}^{\mathsf{T}} = [0.20 \ 0.27 \ 0.37 \ 0.57 \ 0.90 \ 0.91]$

$$n = 7$$

 $\mathbf{x}^{\mathsf{T}} = [0.20\ 0.27\ 0.37\ 0.57\ 0.90\ 0.91\ 0.94]$

Écart absolu : démonstration

Démonstration de la proposition 4

- La fonction valeur absolue n'est pas partout dérivable.
- Sa dérivée vaut -1 sur \mathbb{R}^{-*} , +1 sur \mathbb{R}^{+*} mais n'est pas définie en 0.
- On va déterminer son optimum via son tableau de variation.
- lacksquare On réécrit le critère $C_1(u)$ au moyen des statistique d'ordre :

$$C_1(u) = \sum_{i=1}^n |x_i - u| = \sum_{i=1}^n |x_{(i)} - u|.$$

Écart absolu : démonstration

- Cas où n est pair : n = 2k.
- La dérivée de la valeur absolue est égale au signe
- Pour tout $u \in \mathbb{R} \setminus \{x_i\}_{1 \le i \le n}$,

$$C'_1(u) = |\{i : x_{(i)} > u\}| - |\{i : x_{(i)} < u\}|.$$

- Comme la fonction $C_1(u)$ est continue sur tout \mathbb{R} , elle est :
 - \blacksquare strictement décroissante jusqu'en $x_{(k)}$
 - \blacksquare strictement croissante à partir de $x_{(k+1)}$
 - \blacksquare minimale et constante sur tout l'intervalle $[x_{(k)}, x_{(k+1)}]$ et la médiane
- $m = \frac{1}{2} \left(x_{(\lfloor (n+1)/2 \rfloor)} + x_{(\lfloor n/2 \rfloor + 1)} \right) = \frac{1}{2} \left(x_{(k)} + x_{(k+1)} \right)$ fait partie de cet intervalle.

Écart absolu : démonstration

- Cas où n est impair : n = 2k + 1
- On peut récrire $C_1(u)$ sous la forme

$$C_1(u) = \sum_{i=1}^k |x_{(i)} - u| + \sum_{i=k+2}^n |x_{(i)} - u| + |x_{(k+1)} - u|.$$

■ La somme des deux premiers termes

$$\sum_{i=1}^{k} |x_{(i)} - u| + \sum_{i=k+2}^{n} |x_{(i)} - u|$$

correspond à la fonction C_1 où on aurait retiré la données $x_{(k+1)}$.

- On se retrouve dans le cas n pair
- La fonction est minimale dans l'intervalle $[x_{(k)}; x_{(k+2)}]$
- Reste la fonction $u \mapsto |x_{(k+1)} u|$:
 - partout positive
 - **a** admet un unique minimum en $u = x_{(k+1)} \in [x_{(k)}; x_{(k+2)}].$
- La fonction $C_1(u)$ admet donc un unique mimimum en $u = x_{(k+1)}$. \square

Communes et départements

Moyennes et médiane :

Population par commune :

moyenne médiane 1936.3 468

Population par département :

moyenne médiane 677610.9 546162.5

Robustesse de la médiane

Communes et départements

Population par commune : population de Toulouse = 484 809

	moyenne	médiane
avec Toulouse	1 936.3	468
sans Toulouse	1 922.5	468

Population par département : population du Nord = 2 635 255

	moyenne	médiane
avec le Nord (59)	677 610.9	546 162.5
sans le Nord (59)	657 836.7	545 798.0

La moyenne et la médiane dépendent toutes de l'ensemble des $\{x_i\}$, mais la moyenne varie plus quand on ajoute ou retranche une valeur «extrême».

Cours 2 : Variables quantitatives Plan du cours

- 1 Valeur centrale
 - Critère de centralité
 - Écart quadratique
 - Écart absolu
- 2 Dispersion
 - Déviation absolue (par rapport à la médiane)
 - Variance, écart type
- 3 Distribution, histogramme
 - Histogramme
 - Quantiles, intervalle inter-quartile.
 - Boîte à moustaches (box-plot)

Dispersion

- Il est souvent utile de rendre également compte de la dispersion des valeurs autour de la valeur centrale.
- Des valeurs naturelles sont fournies par les critères (par exemple C_1 ou C_2) qu'on a choisit de minimiser pour déterminer les valeurs centrales.

Variance

Définition 2 (Déviation absolue (par rapport à la médiane))

$$mad(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} |x_i - m| = \frac{1}{n} C_1(m).$$

('MAD' = median absolute deviation).

Variance

Définition 3 (Variance)

$$\operatorname{var}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} C_2(\overline{x})$$

var(x) n'est pas homogène à la variable x:

x en mètres (m) \Rightarrow var(x) en mètres carrés (m²)

x en secondes (s) \Rightarrow var(x) en secondes carrées (s²)

Définition 4 (Écart-type)

L'écart-type de **x** est la racine carrée de sa variance : $\sqrt{\text{var}(\mathbf{x})}$, qui est homogène à x.

Variance d'une transformation linéaire

Proposition 5 (Variance d'une transformation linéaire)

Si on applique la transformation linéaire $y_i = a + bx_i$ pour $1 \le i \le n$, la variance des données transformées vaut

$$var(\mathbf{y}) = b^2 var(\mathbf{x}).$$

Variance d'une transformation linéaire : démonstration

Démonstration de la proposition 5 La proposition 3 assure que

$$\overline{y} = a + b\overline{x}$$
.

On a donc

$$var(\mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} ((a + bx_i) - (a + b\overline{x}))^2 = \frac{1}{n} \sum_{i=1}^{n} (a + bx_i - a - b\overline{x})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} (b(x_i - \overline{x}))^2 = \frac{b^2}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$= b^2 var(\mathbf{x})$$

Proposition 6 (Formule alternative de la variance)

La variance est la différence entre la moyenne des carrés et le carré de la moyenne :

$$var(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} (x_i)^2 - (\overline{x})^2.$$

Démonstration:

$$\operatorname{var}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 - 2x_i \overline{x} + \overline{x}^2)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} -2x_i \overline{x} + \sum_{i=1}^{n} \overline{x}^2 \right) = \frac{1}{n} \left(\sum_{i=1}^{n} x_i^2 - 2\overline{x} \sum_{i=1}^{n} x_i + n\overline{x}^2 \right)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} x_i^2 - 2\overline{x} n \overline{x} + n \overline{x}^2 \right) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 \right) - \overline{x}^2$$

Variance

Définition 5 (Norme d'un vecteur)

La norme d'un vecteur \mathbf{x} , noté $\|\mathbf{x}\|$ est la racine carré de son produit scalaire avec lui-même :

$$\|\mathbf{x}\|^2 = \mathbf{x}^\mathsf{T}\mathbf{x} = \sum_{i=1}^n (x_i)^2 \qquad \rightarrow \qquad \|\mathbf{x}\| = \sqrt{\mathbf{x}^\mathsf{T}\mathbf{x}} = \sqrt{\sum_{i=1}^n (x_i)^2}.$$

Proposition 7 (Formule vectorielle de la variance)

$$\operatorname{var}(\mathbf{x}) = \frac{1}{n} \|\mathbf{x} - \overline{\mathbf{x}}\mathbf{1}\|^2.$$

$$(\mathbf{x} - \overline{x}\mathbf{1})^{\mathsf{T}} = [x_1 - \overline{x}, \quad x_2 - \overline{x}, \quad \dots, \quad x_n - \overline{x}]$$

Exemple

Communes et départements

Communes:

moyenne	variance	écart-type	médiane	MAD
1 936.3	75 624 488.9	8 696.2	468	487.8

Départements :

moyenne	variance	écart-type	médiane	MAD
677 610.9	261 045 643 813.1	510 926.3	546 162.5	401 168.6

Là encore, l'indicateur lié à C_1 (MAD) est plus robuste que celui lié à C_2 (écart-type)

En écartant les valeurs «extrêmes»

	écart-type	MAD		écart-type	MAD
avec Toulouse	8 696.2	487.8	avec le Nord	510 926.3	401 168.6
sans Toulouse	8 304.4	487.8	sans le Nord	473 899.4	394 024.7

Cours 2 : Variables quantitatives Plan du cours

- 1 Valeur centrale
 - Critère de centralité
 - Écart quadratique
 - Écart absolu
- 2 Dispersion
 - Déviation absolue (par rapport à la médiane)
 - Variance, écart type
- 3 Distribution, histogramme
 - Histogramme
 - Quantiles, intervalle inter-quartile.
 - Boîte à moustaches (box-plot)

Histogramme

Objectif: rendre compte de la répartition de l'ensemble des observations $\{x_i\}_{1 \le i \le n}$.

Construction d'un histogramme régulier

- 1 On se donne un nombre d'intervalles k;
- 2 On se donne des bornes x_{min} et x_{max} ;
- 3 on définit la largeur d'un intervalle comme

$$\delta = \frac{x_{\text{max}} - x_{\text{min}}}{k};$$

4 on définit k+1 valeurs seuils t_{ℓ} $(0 \le \ell \le k)$, telles que

$$t_{\ell} = x_{\min} + \ell \delta;$$

5 on associe à chaque intervalle le nombre d'observations qu'il contient :

$$n_{\ell} = |\{i : x_i \in [t_{\ell-1}; t_{\ell}]\}|.$$

Exemples

Population par commune

 $(\overline{x} : moyenne, m : médiane)$

Exemples

Population par département

k = 14, $x_{min} = 0$, $x_{max} = 2800000$, $\delta = 200000$

 $(\overline{x} : moyenne, m : médiane)$

Exemples

500000 1000000 1500000 2000000 2500000 3000000

1500000

2000000

Quantiles

Objectif : représenter la distribution de la variable x à partir de valeurs qui sépare les observations selon des proportions prédéfinies.

Quantile

Pour tout $u \in [0, 1]$, le quantile d'ordre u, noté q_u est tel que

$$\frac{|\{i: x_i \le q_u\}|}{n} \le u < \frac{|\{i: x_i \le q_u\}| + 1}{n}$$

Exemples

- Le quantile d'ordre 1/2 est la médiane : $m = q_{50\%}$.
- Le quantile d'ordre 0.1 $(q_{10\%})$ laisse 10% des données à sa gauche et 90% à sa droite.

Quantiles, intervalle inter-quartile

Population par département

Quartiles = quantiles d'ordre 25%, 50%, 75%

25%	50%	75%
306481	546162	847227

Quartiles

Communes et départements

Quartiles = quantiles d'ordre 25%, 50%, 75%

Communes:

Départements :

Départements

Boîte à moustaches (box-plot)

Le graphique en box-plot reprend différents indicateurs vus jusqu'ici.

Box-plot : distribution très déséquilibrée

