Application No.: 10/077,055

AMENDMENTS TO THE SPECIFICATION

In the Specification:

Please AMEND the specification as shown in the following marked up paragraph, which

shows changes made relative to the immediate prior version.

Please **AMEND** the paragraph No. 12 as follows:

-- In one aspect of the present invention, there is provided an LCD adaptive to a viewing

angle that includes: a driving voltage generator for generating first and second voltages based on

an externally input power; a voltage divider for converting a level of the first second voltage

based on the viewing angle of the LCD panel to generate a third voltage; a viewing angle

generator for generating information about the viewing angle based on the second first and third

voltages; and a gamma curve determiner for selecting a gamma curve corresponding to received

information about the viewing angle, and controlling a gray level with a gamma voltage value

defined by the selected gamma curve. Preferably, the voltage divider comprises a variable

resistor for variably generating a resistance value based on the viewing angle of the LCD panel,

and outputs the third voltage using the variable resistance.--

Please **AMEND** the paragraph No. 14 as follows:

-- In another aspect of the present invention, there is provided an LCD adaptive to a

viewing angle that includes: a driving voltage generator for generating first and second voltages

based on an externally input power; a decoder for decoding information of the viewing angle as

received by operation of a user; a voltage divider comprising a plurality of resistors, for selecting

--2--

any one of the resistors based on the decoded information of the viewing angle, and converting a level of the first second voltage based on the selected resistor to generate a third voltage; a viewing angle generator for generating information about the viewing angle based on the first second and third voltages; and a gamma curve determiner for selecting a gamma curve corresponding to received information about the viewing angle, and controlling a gray level with a gamma voltage value based on the selected gamma curve.--

Please **AMEND** the paragraph Nos. 40-43 as follows:

-- The driving voltage generator 100 comprises a DC/DC converter, and upon receiving an input voltage Vin, generates a first voltage AVDD as an analog driving voltage AVDD of the LCD to the viewing angle generator 300 as well as a gate-on/off voltage Von/Voff for turning on/off the TFT. The driving voltage generator 100 applies the gate-on voltage Von to the voltage divider 200.

The voltage divider 200 comprises a constant resistor R1 and a variable resistor R2 connected in series, divides the level of the gate-on voltage Von, and outputs a divided voltage V_B to the viewing angle generator 300.

The viewing angle generator 300 comprises an npn-type bipolar transistor Q1, and generates a second voltage CVDD to the LCD module 400 based on a divided voltage $\forall \underline{V}_B$ received at the base terminal and a first the voltage AVDD received at the collector terminal. Although it has been described that the present invention uses a bipolar transistor, a MOS transistor may also be used.

The LCD module 400 comprises a gray voltage generator (or gamma voltage generator)
410, a common electrode voltage generator 420, a data driver 430, a gate driver 440, and an LCD

Seung-Hwan MOON Application No.: 10/077,055

panel 450, and selects a gamma curve adaptive to the viewing angle based on the second voltage CVDD received from the viewing angle generator 300.

More specifically, the gray voltage generator 410 receives the second voltage CVDD and generates positive and negative gamma voltages, between which the voltage gap is decreased or increased, to the data driver 430.

The common electrode voltage generator 420 receives the second voltage CVDD and generates a linearly varying common electrode voltage Vcom to the LCD panel 450. For example, the common electrode voltage generator 420, which comprises two serial resistors, receives the second voltage CVDD via the one terminal and a reference voltage (or ground) via the other terminal, and drops the level of the second voltage CVDD through resistance-based voltage division to generate the common electrode voltage Vcom.--