Self-contained RNA inhibition with trans-acting ribozymes

Zack Field & Ryan Tsoi

University of California

field.zackery@berkeley.edu, ryantsoi@berkeley.edu

December 12, 2013

Overview

- Introduction
 - Genetic Regulation
 - Motivation
 - Possible non-coding RNA tools
- 2 Riboregulation decision
 - Choice of ribozyme
 - General riboregulation model
 - Model and Kinetics of trans-cleaving ribozyme
 - Toggle switch model riboregulation
 - Classic Repressilator
 - Riboregulatory Repressilator
 - Repressilator Comparison
- Implications and further work
 - Sources

Promise of Synthetic Biology

Complexity of eukaryotes $\not\approx \#$ of protein coding genes		
Oryza sativa (rice)	470 million	51,00
Gallus gallus (chicken)	1 billion	20,000-23,00
Canis familiaris (dog)	2.4 billion	19,00
Mus musculus (mouse)	2.5 billion	30,00
Homo sapiens	2.9 billion	20,000-25,000

The root of complexity is believed to be the regulation of these genes. However, the creation of novel protein regulatory elements is too difficult. Re-writers RNA-world may be the key to getting a handle on regulation.

Motivation

Toggle switch and repressilator in 2000 (images).

Exponential decrease in the cost of enabling technologies should result in exponential growth of circuit complexity.

Cost Per Base of DNA Sequencing and Synthesis

Pitfalls in current promoter-repressor pair design

- Orthogonal Limited number of repressors (until very recently)
- Predictable Gene circuit evolves away
- Safe shRNA toxicity in gene therapy
- Reliable 40 hour toggle switch breakdown
- Designable Protein structure prediction too difficult
- Cooperativity Unpredictable behavior when juxtaposed

Signal Transduction with RNA, possible tools

Choice of trans-cleaving hammerhead ribozymes

Self-contained mechanism of RNA degradation Composable and functionally complete

Base-pairing rather than aptamer coupling for ease of rational design Watson Crick base pairing dominates free energy minimization

General riboregulation model

Stochastic model - Gillespie algorithm

Algorithm 1 Gillespie

- 1: Inputs:
- 2: Set of M reactions and $avg_Prob[] = c$; $R_i = (c_i)i \in 1, ..., M$
- 3: Initial population sizes, endtime
- 4: Output: Catalog of Molecular events
- 5: **while** τ < *endtime* **do**
- 6: $a_0 = 0$
- 7: **for** i = 1 to M **do**
- 8: $a_i = h_i c_i$, where h_i is the amount of reactant
- 9: $a_0 + = a_i$
- 10: end for
- 11: $(\tau, \mu) \leftarrow P(\tau, \mu)$
- 12: updatePopulation (R_{μ})
- 13: end while

trans-cleaving ribozyme model and kinetics

From Samarsky et al.

$$A_{DNA} \xrightarrow{k_{tc_3}} A_{RNA}, B_{DNA} \xrightarrow{k_{tc_b}} B_{RNA}$$

$$A_{RNA} + B_{RNA} \xrightarrow{k_1} A_{RNA} \cdot B_{RNA} \xrightarrow{k_2} A_{RNA} \cdot F_1 \cdot F_2 \xrightarrow{k_3} A_{RNA} + F_1'$$

All species undergo degradation at some rate k_{deg} .

MM kinetics

Fraction of substrate/time: $k_{obs} = k_2 \times [A_{RNA} \cdot B_{RNA}]/[B_{RNA_0}]$ $k_3 >> k_2 >> k_{deg}$ by single orders of magnitude.

Toggle switch model riboregulation

No possible bistable point. First limitation.

Classic Repressilator

Riboregulatory Repressilator

Repressilator Comparison

Rate of oscillation

Tunable:

- promoter strength
- strength of binding
- cleavage rate fairly fixed
- degradation rate

Implications and further work

Biocircuit-Design Automation, Biocompiler

Thanks!

Thanks to Sergey and Jeremy for their feedback and help throughout the course

Thanks to Adam and Ron for all your time and for giving us a solid synbio foundation

And thanks to Leslie for working out the logistics

Souces

- Pray, L. A.; http://www.nature.com/scitable/topicpage/ eukaryotic-genome-complexity-437
- Arkin, A. and Weiss, Ron; Principles of Synthetic Biology Fall 2013; Lecture 3
- Carlson, Rob; DNA cost curves; http://www.synthesis.cc/2011/06/new-cost-curves.html
- Stanton, B.C. et al.; Genomic Mining of prokaryotic repressors for orthogonal logic gates; http://www.nature.com/nchembio/ journal/vaop/ncurrent/full/nchembio.1411.html
- Martin, J.N., et al.; Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design; http: //www.nature.com/gt/journal/v18/n7/full/gt201110a.html
- Bongarets; GFP as a Marker for Conditional Gene Expression in Bacterial Cells http: //www.ifr.ac.uk/Safety/molmicro/pubs/bongaerts2002.pdf
- Anderson, J.C.; org.devicecourse Gillespie module
- Gillespie. Daniel T. (1977). Exact Stochastic Simulation of Coupled

Multiple Columns

Heading

- Statement
- 2 Explanation
- Second Example
 Second Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.