Obtención de los Coeficientes de la forma canónica para la Elipse, hipérbolas y parábolas

Determinación analítica de las cónicas

Grupo 12

December 05, 2023

Contenidos

- 1. Introducción
- 2. Secciones Cónicas

Introducción

Formas cuadráticas

Definition

Una forma cuadrática en n variables $x_1, x_2, ..., x_n$ es una combinación lineal de los productos $x_i x_j$, esto es, una combinación lineal de cuadrados $x_1^2, x_2^2, ..., x_n^2$ y términos $x_1 x_2, x_1 x_3, ..., x_1 x_n, x_2 x_3, ..., x_2 x_n, ..., x_{n-1} x_n$

Example

- $q = x^2 y^2 + 4xy$ y $q = x^2 + 3y^2 2xy$ son formas cuadráticas en x y y.
- $q = -4x_{21} + x_{22}^2 + 4x_{23} + 6x_1x_3$ es una forma cuadrática en x_1, x_2 y x_3 .
- La forma cuadrática general de x_1, x_2, x_3 es $a_1x_{21} + a_2x_{22}^2 + a_3x_{23} + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$.

Formas cuadráticas

Las formas cuadráticas pueden ser escritas de la forma matricial $q(x) = x^T A x$ donde A es una matriz simétrica $n \times n$ y x es un vector columna $n \times 1$.

La matriz A es llamada la matriz de la forma cuadrática q.

Example

Supongamos que $q=x_1^2-x_2^2+4x_1x_2$. Los coeficientes de x_1^2 y x_2^2 son 1 y -1, respectivamente, por lo que colocamos estos, en orden, en las dos posiciones diagonales de una matriz A. El coeficiente de x_1x_2 es 4, que dividimos equitativamente entre las posiciones (1, 2) y (2, 1), colocando un 2 en cada lugar.

Formas cuadráticas

Así tenemos que:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$y = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
. Luego:

$$q(x) = x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 - x_2^2 + 4x_1x_2$$

Introducción a las Cónicas

En álgebra lineal, las cónicas (elipses, hipérbolas y parábolas) pueden representarse mediante matrices. Vamos a explorar cómo obtener los coeficientes de la forma canónica de estas cónicas utilizando matrices.

Secciones Cónicas

Secciones Cónicas

Las secciones cónicas son las curvas no degeneradas generadas por las intersecciones de un plano con una o dos napas de un cono. Para un plano perpendicular al eje del cono, se produce un círculo. Para un plano que no es perpendicular al eje y que intersecta solo una napa, la curva producida es una elipse o una parábola. La curva producida por un plano que intersecta ambas napas es una hipérbola. La elipse y la hipérbola se conocen como cónicas centrales.

Forma General de las Secciones Cónicas

Definition

Una sección cónica es el lugar en el plano cartesiano \mathbb{R}^2 de una ecuación de la forma

$$ax^2 + bxy + cy^2 + dx + ey + f = 0.$$
 (1)

Se puede demostrar que esta ecuación representa uno de los siguientes:

- 1. el conjunto vacío
- 2. un solo punto
- 3. una o dos rectas
- 4. una elipse
- 5. una hipérbola, o
- 6. una parábola.

La parte de segundo grado de (1), $q(x,y) = ax^2 + bxy + cy^2$ es una forma cuadrática. Esto determina el tipo de la cónica.

Forma Matricial de las Secciones Cónicas

Podemos escribir la ecuación en forma matricial:

$$[x,y]$$
 $\begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix}$ $+ [d,e]$ $\begin{bmatrix} x \\ y \end{bmatrix}$ $+ f = 0$.

Escribimos $A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$. Sea U = [u, v] una matriz ortogonal cuyos vectores de columna u y v son vectores propios de A con valores propios λ_1 y λ_2 . Aplicamos el cambio de variables

$$x = \begin{bmatrix} x \\ y \end{bmatrix} = U \begin{bmatrix} u \\ v \end{bmatrix}$$

para diagonalizar la forma cuadrática q(x,y) a la forma diagonal

$$\lambda_1 u^2 + \lambda_2 v^2$$
.

Transformación de Coordenadas

La base ortonormal $\{u, v\}$ determina un nuevo conjunto de ejes de coordenadas con respecto a los cuales el lugar de la ecuación

$$[x, y]A[x, y]^T + B[x, y]^T + f = 0$$

con B = [d, e] es el mismo que el lugar de la ecuación

$$0 = [u, v] diag(\lambda_1, \lambda_2) [u, v]^T + (BU) [u, v]^T + f$$

por lo tanto

$$\lambda_1 u^2 + \lambda_2 v^2 + [d, e][u, v][u, v]^T + f = 0$$
(2)

Determinación del Tipo de Cónica

Si la cónica determinada por (2) no es degenerada, es decir, no es un conjunto vacío, un punto, ni línea(s), entonces los signos de λ_1 y λ_2 determinan si es una parábola, una hipérbola o una elipse. La ecuación (1) representará

- una elipse si $\lambda_1 \lambda_2 > 0$,
- una hipérbola si $\lambda_1\lambda_2<0$,
- una parábola si $\lambda_1\lambda_2=0$.

Bibliografia

- Applications of Linear Algebra in Various Fields (Part-1): https://www.researchgate.net/publication/356818396_Applications_of_ Linear_Algebra_in_Various_Fields_Part-1
- 🗐 Álgebra lineal y geometría cartesiana Juan de Burgos Román
- 🗗 Practical Linear Algebra: A Geometry Toolbox Gerald Farin, Dianne Hansford

