Jyun-Ping, Kao

ijpkao@gmail.com │ **in** Jyunping Kao │ **(b)** 0009-0003-7183-8337 │ **(‡)** Website

EDUCATION

National Taiwan University

MS in Biomedical Electronics and Bioinformatics

• GPA: 4.3/4.3 (Ranked 1st of 62 students in the department)

National Yang Ming Chiao Tung University

BS in Electronics and Electrical Engineering (Double Major)

BS in Digital Healthcare (Double Major)

o GPA: 3.8/4.3

• Awards: Phi tau Phi Awards (Top 1 % graduates in the college based on 4-year cumulative GPA)

RESEARCH EXPERIENCE

• Harvard Medical School & Massachusetts General Hospital

Visiting Research Student, Department of Radiology

July 2025 - Present Boston, MA, United States

July 2023 - Present

Sep 2019 - Jun 2023

Taipei & Hsinchu, Taiwan

Taipei, Taiwan

- Developed a transparent, lightweight multitask model that couples a pretrained VoxelHop encoder with an AutoSurv-style classification head to jointly classify and segment 3D echocardiography ultrasound.
- Achieved 90% classification accuracy and a 0.91 Dice segmentation score, demonstrating strong performance with interpretable features and efficient deployment potential.
- Building an MRI ADHD classifier by fine-tuning a 3D medical foundation model with LoRA for parameter efficient adaptation, aiming for the best accuracy on our dataset.

• National Taiwan University Hospital

Research Assistant, Department of Physical Medicine and Rehabilitation

July 2023 - June 2025 Taipei, Taiwan

- Developed the first LoRA-enhanced real-time Detection Transformer (RT-DETR) model for musculoskeletal ultrasound imaging that solves the domain-shift problem in fine-tuned models and reduces trainable parameters by > 99 % while preserving high detection accuracy.
- Engineered advanced deep learning frameworks for ultrasound image generation and precise anatomical structure detection, enabling real-time identification of critical musculoskeletal features (e.g., nerves, tendons, muscles).
- Integrated low-rank adaptation (LoRA) techniques into transformer-based architectures to facilitate efficient fine-tuning on limited, institution-specific datasets, effectively addressing data scarcity and privacy constraints.
- Led clinical collaborations by overseeing participant recruitment, managing comprehensive data collection protocols, and supervising meticulous data annotation to ensure high research quality and reproducibility.
- Developed the first LLM for multi-image musculoskeletal ultrasound, synthesizing 12-frame shoulder exams into a unified radiologist-style impression with consistent laterality and strong report similarity.

• The University of Hong Kong

Jun 2024 - Aug 2024

Visiting Research Student, Department of Orthopaedics and Traumatology

Hong Kong

- Developed a deep learning-based ultrasound assessment tool for the Posterior Cruciate Ligament (PCL),
 achieving near-perfect location detection and under 5% error in width and angle measurements.
- Implemented real-time inference pipelines that eliminate heavy segmentation overhead, enabling efficient, operator-independent ligament evaluation and reducing reliance on MRI.
- Designed specialized labeling strategies (e.g., boundary annotation for PCL width and angle) and postprocessing algorithms to translate bounding box coordinates directly into clinically meaningful measurements.
- Organized and led data collection with orthopedic specialists, recruiting participants, acquiring knee ultrasound videos, and performing high-fidelity data labeling for robust model training.

• National Yang Ming Chiao Tung University

July 2020 - July 2023

Undergraduate Research Student, Institute of Biophotonics

Taipei, Taiwan

- Developed the first 3D conditional Generative Adversarial Network (cGAN) for Femto-Laser Scanning Microscopy, enabling the generation of high-quality harmonic generation images from confocal images.
- Implemented deep-learning models for image generation and analysis of human-skin samples.
- Designed and optimized optical systems in laser microscopy, incorporating non-linear optics for advanced imaging and simulation

- [T.1] Jyun-Ping Kao (2025). Advancing Computer-Aided Diagnosis in Musculoskeletal Ultrasound: First Low-Rank Adaptation Based DETR for Real-Time Full Body Anatomical Structures Identification with Prospective Study in Intelligent Diagnosis Using Large Language. Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University. Final Grade: A+ Advisors: Chun-Ping Chen Ph.D.; Wen-Shiang Chen M.D., Ph.D.
- Kao, J. P., Zhang, J., Lee, W. N., Chen, C. P., & Lau, C. M. Lawrence (2025). A Novel Deep Learning Based [S.1] Automatic Ultrasonic Posterior Cruciate Ligament Clinical Assessment Tool. npj Artificial Intelligence, (Under Peer Review).
- [J.1] Kao, J. P., Chung Y. C., Hung, H. Y., Chen, C. P., & Chen, W. S. (2025). LoRA-Enhanced RT-DETR: First Low-Rank Adaptation Based DETR Model and Enable Real-Time Full Body Anatomical Structures Detection in Musculoskeletal Ultrasound. Computerized Medical Imaging and Graphics, (2025): 102583. (JCR Q1)
- Kao, J. P., Chen, C. P., & Chen, W. S. (2025). MULTI-IMAGE MUSCULOSKELETAL ULTRASOUND INTER-**PRETATION USING A LARGE LANGUAGE MODEL.** Radiological Society of North America Annual Meeting (RSNA 2025).
- [J.2]Kao, J. P. & Kao, H. T. (2025). Large Language Models in Radiology: A Technical and Clinical Perspective. European Journal of Radiology Artificial Intelligence, 100021.
- Kao, J. P., Hung, H. Y., Chen, P. X., Chen, C. P., & Chen, W. S. (2024). Transformer Based Real Time Muscleskeletal Anatomical Structure Detection in Clinical Use. The IEEE International Conference on Bioinformatics & Bioengineering, IEEE. Nov 2024, Kragujevac, Serbia.
- [C.3] Hung, H. Y., Kao, J. P., Chu, H. Y., Chen, C. P., & Chen, W. S. (2024).Real Time Musculoskeletal Ultrasound **Image Annotations**. The 10th Biomedical Imaging and Sensing Conference (BISC2024), SPIE. 2024, Yokohama, Japan.
- [J.3]Chu, H. Y., Wu, C. H., Chen, P. X., Hung, H. Y., Kao, J. P., Chen, C. P., & Chen, W. S. (2024). Enhancing Multi-Object Detection in Ultrasound Images through Semi-Supervised Learning, Focal Loss, and Relation of **Frame**. *Ultrasound in Medicine & Biology 50 (12), 1868-1878.*
- Yu-Yang Chang, Shih-Hsuan Chia, Jyun-Ping Kao, et al. (2024). Enhanced In Vivo Skin Diagnostics: A Comparative Study of Reflective Confocal Microscopy and Harmonic Generation Microscopy. 2024 Optics & Photonics Taiwan International Conference (OPTIC). Dec 2024, Taiwan.
- Jyun-Ping Kao, et al. (2023). Deep-Learning-Enabled Third-Harmonic-Generation Imaging for Skin Virtual Biopsy from Reflectance Scanning Microscope. 2023 Optics & Photonics Taiwan International Conference (OPTIC). Dec 2023, Taiwan.
- [C.6] Jyun-Ping Kao, et al. (2022). Optical design and realization of nonlinear mesoscope. 2022 Optics & Photonics Taiwan International Conference (OPTIC). Dec 2022, Taiwan.

PROFESSIONAL EXPERIENCE

• Invited Journal Peer Reviewer

Biomedical Signal Processing and Control (JCR Q1), 4 manuscripts Apr - Aug 2025 International Journal of Medical Informatics (JCR Q1), 5 manuscripts May - Aug 2025 Computerized Medical Imaging and Graphics (JCR Q1), 5 manuscripts Mar - July 2025 IEEE Journal of Biomedical and Health Informatics (JCR Q1), 3 manuscripts Apr - June 2025 Artificial Intelligence In Medicine (JCR Q1), 1 manuscript June 2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Feb 2025 Society (EMBC)

HONORS AND AWARDS

 Graduate Student Research Scholarship June 2025 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University

• Awarded a \$1,200 USD scholarship to support research activities.

International Conference Travel Grant

National Science and Technology Council (NSTC), Taiwan

• Received the NSTC International Conference Travel Grant with \$1,250 USD to present at the 24th IEEE International Conference on Bioinformatics and Bioengineering (Nov 2024, Kragujevac, Serbia).

Nov 2024

The University of Hong Kong Summer Research Scholarship The University of Hong Kong

Aug 2024

- Awarded The University of Hong Kong Summer Research Scholarship of \$2,570 USD for participation in the 2024 Summer Research Programme.
- The Phi Tau Phi Scholastic Honor Society of the Republic of China Honorary Membership July 2023 The Phi Tau Phi Scholastic Honor Society of the Republic of China, Taiwan
- Awarded to the top 1% of undergraduate students at National Yang Ming Chiao Tung University for outstanding academic achievement.

2023 Synopsys ARC AIoT Design Contest Award – Finalist Synopsys, Taiwan

Jun 2023

 Achieved Finalist status for a project utilizing deep learning on Synopsys ARC EM9D Processors for super-resolution in microscopic imaging.

Undergraduate Research Fellowship

Feb 2023

Ministry of Science and Technology (MOST), Taiwan

 Awarded by the Ministry of Science and Technology (MOST) valued \$1,510 USD. The funded research focused on generating nonlinear optical microscopy images from fundamental microscopic images using generative AI, including optical system design.

2022 Intel DevCup x OpenVINO Toolkit Award – Finalist Intel Corporation, Taiwan

Jan 2023

 Achieved Finalist status for a project employing deep learning with the Intel OpenVINO Toolkit for edge computing applications in microscopic image generation.

2021 Intel DevCup x OpenVINO Toolkit Award – Second Place Intel Corporation, Taiwan

Jan 2022

 Secured Second Place with prize valued at \$1,200 USD for a project developing a deep learning solution with the Intel OpenVINO Toolkit for edge computing, focused on analyzing ECG and GWAS data for Hemochromatosis prediction.

EXTRACURRICULAR EXPERIENCE

Teaching Assistant

Sep 2023 - Jun 2025

National Taiwan University

- \circ 2025 Spring : Management of Technological Innovation, College of Electrical Engineering and Computer Science
- 2024 Fall: Introduction to Biomedical Engineering, College of Electrical Engineering and Computer Science
- 2023 Fall, 2024 Spring: Service Learning, College of Electrical Engineering and Computer Science

Teaching Assistant

Feb 2021 - Jun 2022

National Yang Ming Chiao Tung University

- o 2022 Spring: Calculus, College of Life Sciences
- 2021 Spring: Laboratory in Fundamental Genetics and its Applications, College of Life Sciences

President of Yang Ming Board Game Club National Yang Ming Chiao Tung University

Sep 2021 - Jun 2022

Founder of Yang Ming Board Game Club

Student councilor

Sep 2020 - Jun 2021

National Yang Ming Chiao Tung University

Supervised student council operations, audited budgets, and revised regulations.

REFERENCES

• Prof. Jonghye Woo Ph.D.

Associate Professor, Harvard Medical School

- Email: jwoo@mgh.harvard.edu
- Relation: Supervisor of Visiting Research

Prof. Wen-Shiang Chen, M.D., Ph.D.

Professor / Attending Physician, National Taiwan University

- Email: wenshiang@gmail.com
- Relation: Advisor of Master's Thesis

• Prof. Chung-Ping Chen, Ph.D.

Professor, National Taiwan University

- Email: cpchen@ntu.edu.tw
- Relation: Advisor of Master's Thesis