Elettrotecnica

Davide

October 21, 2019

1 Cenni di elettromagnetismo

1.1 Coloumb Law

$$F_e = \frac{q_1 q_1}{4\pi\epsilon_0 r^2} \qquad [C]$$
 (Forza di Coloumb)

Dove ϵ_0 è la permittività elettrica.

1.2 Flusso Elettrico

Flusso elettrico su una superficie $Sia \vec{E}$ un campo elettrico

$$\Phi_E = \int_S \vec{E} \cdot d\vec{A} \tag{1}$$

1.3 Legge di Gauss

Sia S una **Superficie chiusa** e q_{in} la carica interna alla superficie allora:

$$\Phi_E = \oint_S \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\epsilon_0}$$
 (2)

Cioè il flusso dipende solo dalle sorgenti di campo contenute nella superficie.

1.4 Legge di Ampere

Descrive i campi magnetici creati facendo passare corrente attraverso (per esempio) ad un cavo. La direzione del campo magnetico si ottiene con la regola della mano destra.

2 Legge di Ohm

Legge di Ohm:

$$V = RI$$

$$R = \Omega \qquad I = [A] \qquad V = [V]$$

3 LKT

$$\sum_{k=0}^{n} V_k = 0$$

4 LKC

$$\sum_{k=0}^{n} I_k = 0$$

5 Tripoli

Circuito a stella:

Triangolo di resistori:

Trasformazioni:

Circuito a triangolo \rightarrow stella

$$R_a = \frac{R_1 R_2}{R_1 + R_2 + R_3}$$

$$R_b = \frac{R_2 R_3}{R_1 + R_2 + R_3}$$

$$R_c = \frac{R_1 R_3}{R_1 + R_2 + R_3}$$

Circuito a stella \rightarrow triangolo

$$R_1 = R_a + R_b + \frac{R_a R_b}{R_c}$$

$$R_2 = R_a + R_c + \frac{R_a R_c}{R_b}$$

$$R_3 = R_c + R_b + \frac{R_c R_b}{R_a}$$

6 Amplificatori operazionali

 V_0 — Tensione tra terminale di uscita e terra $V_d=V_{in}=V_+-V_-$ Nell' Op
Amp Ideale le correnti d'ingresso sono nulle e $V_d=0$