CODE

$s_o = 100 + \left(\frac{350 - h_x}{3}\right) \tag{18.7.5.3}$

The value of s_o from Eq. (18.7.5.3) shall not exceed 150 mm and need not be taken less than 100 mm.

18.7.5.4 Amount of transverse reinforcement shall be in accordance with Table 18.7.5.4.

The concrete strength factor k_f and confinement effectiveness factor k_n are calculated according to Eq. (18.7.5.4a) and (18.7.5.4b).

(a)
$$k_f = \frac{f_c'}{175} + 0.6 \ge 1.0$$
 (18.7.5.4a)

(b)
$$k_n = \frac{n_l}{n_l - 2}$$
 (18.7.5.4b)

where n_l is the number of longitudinal bars or bar bundles around the perimeter of a column core with rectilinear hoops that are laterally supported by the corner of hoops or by seismic hooks.

Table 18.7.5.4—Transverse reinforcement for columns of special moment frames

Transverse reinforcement	Conditions	Applicable expressions	
A_{sh}/sb_c for rectilinear hoop	$P_u \le 0.3 A_g f_c'$ and $f_c' \le 70 \text{ MPa}$	Greater of (a) and (b)	$0.3 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f_c'}{f_{yt}} \text{(a)}$
	$P_u > 0.3 A_g f_c'$ or	Greatest of	$0.09 \frac{f_c'}{f_{yt}}$ (b)
	$f_c' > 70 \text{ MPa}$	(a), (b), and (c)	$0.2k_f k_n \frac{P_u}{f_{yt} A_{ch}} (c)$
	$P_u \le 0.3 A_g f_c'$ and $f_c' \le 70 \text{ MPa}$	Greater of (d) and (e)	$0.45 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f_c'}{f_{cr}} $ (d)
ρ_s for spiral or circular hoop	$P_u > 0.3 A_g f_c'$ or $f_c' > 70 \text{ MPa}$	Greatest of (d), (e), and (f)	$0.12 \frac{f'_c}{f_{yt}} \text{ (e)}$ $0.35k_f \frac{P_u}{f_{yt}A_{ch}} \text{ (f)}$

18.7.5.5 Beyond the length ℓ_o given in 18.7.5.1, the column shall contain spiral reinforcement satisfying 25.7.3 or hoop and crosstie reinforcement satisfying 25.7.2 and 25.7.4 with spacing s not exceeding the least of 150 mm, $6d_b$ of the smallest Grade 420 longitudinal column bar, and $5d_b$ of the smallest Grade 550 longitudinal column bar, unless a greater amount of transverse reinforcement is required by 18.7.4.4 or 18.7.6.

18.7.5.6 Columns supporting reactions from discontinued stiff members, such as walls, shall satisfy (a) and (b):

COMMENTARY

R18.7.5.4 The effect of helical (spiral) reinforcement and adequately configured rectilinear hoop reinforcement on deformation capacity of columns is well established (Sakai and Sheikh 1989). Expressions (a), (b), (d), and (e) in Table 18.7.5.4 have historically been used in ACI 318 to calculate the required confinement reinforcement to ensure that spalling of shell concrete does not result in a loss of column axial load strength. Expressions (c) and (f) were developed from a review of column test data (Elwood et al. 2009) and are intended to result in columns capable of sustaining a drift ratio of 0.03 with limited strength degradation. Expressions (c) and (f) are triggered for axial load greater than $0.3A_{\sigma}f_{c}'$, which corresponds approximately to the onset of compression-controlled behavior for symmetrically reinforced columns. The k_n term (Paultre and Légeron 2008) decreases the required confinement for columns with closely spaced, laterally supported longitudinal reinforcement because such columns are more effectively confined than columns with more widely spaced longitudinal reinforcement. The k_f term increases the required confinement for columns with $f_c' > 70$ MPa because such columns can experience brittle failure if not well confined. Concrete strengths greater than 100 MPa should be used with caution given the limited test data for such columns. The concrete strength used to determine the confinement reinforcement is required to be the same as that specified in the construction documents.

Expressions (a), (b), and (c) in Table 18.7.5.4 are to be satisfied in both cross-sectional directions of the rectangular core. For each direction, b_c is the core dimension perpendicular to the tie legs that constitute A_{sh} , as shown in Fig. R18.7.5.2.

Research results indicate that high strength reinforcement can be used effectively as confinement reinforcement. Section 20.2.2.4 permits a value of f_{yt} as high as 690 MPa to be used in Table 18.7.5.4.

R18.7.5.5 This provision is intended to provide reasonable protection to the midheight of columns outside the length ℓ_o . Observations after earthquakes have shown significant damage to columns in this region, and the minimum hoops or spirals required should provide more uniform strength of the column along its length.

R18.7.5.6 Columns supporting discontinued stiff members, such as walls or trusses, may develop considerable inelastic response. Therefore, it is required that these

