

Comparing Random Forest and Convolutional Neural Networks on ASTRI dedicated MC production

Francesco Visconti - INAF/SSDC

francesco.visconti@oa-roma.inaf.it

Outline

This (ongoing) work aims at:

- comparing performances of a C++ Shark implementation of machine learning tools to recognize gammas from hadrons, with a Python scikit-learn one;
- comparing performances of RandomForest model implemented in scikit-learn with a CNN implementation in keras.

ASTRI MC Data

I used an ASTRI dedicated MC simulated data (CTA Prod3b) for this work:

- 33 ASTRI telescopes in square layout
- Events from each telescope are used as independent, as if coming from a single average telescope
- A data challenge has been extracted from this dataset, but not used in this work

Workflow

Predict class probabilities, energy, direction with:

- → Scikit-learn libraries
- → Shark libraries

The inputs for the above set of tools are Hillas parameters files (lv1b) filtered like this:

COLUMNS = ['SIZE', 'WIDTH', 'LENGTH', 'CONC', 'DIST', 'M3LONG', 'COSDELTAALPHA'] FILTERS = "SIZE > 50 && WIDTH > 0 && LEAKAGE < 0.1 && NUMISLAND < 2 && NUMCORE > 2 && LENGTH > 0"

Gamma - Hadron separation

Gamma Hadron separation

Comparison between Shark and scikit-learn libraries

Normed histograms showing the density of particles falling in bins of gammaness.

ROC curve and area

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the **top left corner of the plot is the "ideal" point**.

Larger area under the curve (AUC) is usually better.

It can be seen that the two methods are somewhat equivalent, a direct measure being the score, namely the area under the curves.

Q-factor

Q factor is widely used in astrophysics literature to measure the goodness of classification: it is measured as

Q =
$$\epsilon \gamma / \sqrt{\epsilon p}$$

where $\epsilon \gamma$ is the fraction of well classified gammas, and ϵp is the fraction of badly classified protons (false positives). This is usually plotted against the acceptance (or threshold) for the probabilities.

Precision - Recall

Where

T_n are gammas correctly labelled

 F_p are hadrons labelled as gammas

F_n gammas labelled as hadrons

Low Precision means many hadrons have been mis-labelled, while a low Recall means many gammas have been classified as protons (and then lost!)

Comments

It can be said Shark and scikit-learn implementations of Random Forest seem to have the same performances on this dataset.

From the gamma-hadron separation plot, it seems Shark is able to better fill the edge bins, thus assigning probabilities close to 0 (hadrons) and 1 (gammas) to more individuals in the population.

Other thing worth noting, sklearn is much **faster** in execution: the same dataset used for training the classifier object is run in minutes from the Python library, hours from Shark.

Convolutional Neural Network

A five layers **CNN** has been trained with ASTRI calibrated data (*lv1a*), and then used to predict.

Network arch was taken from an example on keras blog to perform classification on dog and cats pictures: https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

The aim was to fast prototype, but very nice results anyway!

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 54, 54, 32)	320
batch_normalization_1 (Batc	h (None, 54, 54, 32)	128
activation_1 (Activation)	(None, 54, 54, 32)	0
max_pooling2d_1 (MaxPooling	2 (None, 27, 27, 32)	0
conv2d_2 (Conv2D)	(None, 25, 25, 32)	9248
batch_normalization_2 (Batc	h (None, 25, 25, 32)	128
activation_2 (Activation)	(None, 25, 25, 32)	Ø
max_pooling2d_2 (MaxPooling	2 (None, 12, 12, 32)	0
conv2d_3 (Conv2D)	(None, 10, 10, 64)	18496
batch_normalization_3 (Batc	h (None, 10, 10, 64)	256
activation_3 (Activation)	(None, 10, 10, 64)	0
max_pooling2d_3 (MaxPooling	2 (None, 5, 5, 64)	0
flatten_1 (Flatten)	(None, 1600)	0
dense_1 (Dense)	(None, 64)	102464
batch_normalization_4 (Batc	h (None, 64)	256
activation_4 (Activation)	(None, 64)	0
dropout_1 (Dropout)	(None, 64)	0
dense_2 (Dense)	(None, 1)	65
batch_normalization_5 (Batc	h (None, 1)	4
activation_6 (Activation)	(None, 1)	0
Total params: 131,365 Trainable params: 130,979 Non-trainable params: 386		

Convolutional Neural Network (keras + tensorflow)

Input

I extracted 16 bit grayscale png images from ASTRI lv1a (calibrated) data; this allowed to store full photo electron equivalent values.

Dataset was splitted this way:

- 140000 events for training (70000 each population, gammas and protons);
- 60000 events for testing (30000 each);
- 200000 events for prediction (200000 each).

Convolutional Neural Network (keras + tensorflow)

General results

- Training (and testing) took less than two hours on a Nvidia Tesla K20 GPU
- Prediction took 1 hour (30 epochs, stopped after 11 checking on val_acc, with patience=5 and min_delta=0.001), and gave this performance:
 - val_acc = 0.967
 - val_loss = 0.096
 - val_rmse = 0.045

As a first comparison, RF (optimized via GridsearchCV) best oob_scores was 0.86

<u>Gamma - Hadron separation</u>

Gamma Hadron separation

Normed histograms showing the density of particles falling in bins of gammaness.

CNN better separates populations.

ROC curve and area

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the **top left corner of the plot is the "ideal" point**.

Larger area under the curve (AUC) is usually better.

CNN performs significantly better.

Q-factor

Q factor is widely used in astrophysics literature to measure the goodness of classification: it is measured as

$$Q = \epsilon_{v} / \sqrt{\epsilon_{p}}$$

where ε_{γ} is the fraction of well classified gammas, and ε_{p} is the fraction of badly classified protons (false positives). This is usually plotted against the acceptance (or threshold) for the probabilities.

<u>Precision - Recall</u>

$$P = T_p / (T_p + F_p)$$

$$R = T_p / (T_p + F_n)$$

Where

 T_p are gammas correctly labelled

F_D are hadrons labelled as gammas

F_n gammas labelled as hadrons

Low Precision means many hadrons have been mis-labelled, while a low Recall means many gammas have been classified as protons (and then lost!)

Backup slides

ASTRI Data Challenge #1

Main facts on ASTRI DC1:

The events were properly filtered so to follow the experimental energy slope of -2.70, as measured by the BESS Coll. After this procedure, the available statistics resulted in ~4.2×10⁶ triggered events. Since the event rate was calculated to be ~100 Hz, these amount of events corresponded to ~11.6 hours of (single telescope) data taking.

The overall data sample was then split in two subsamples, "ON" and "OFF". We combined the ON sample (~5.8 hours) with a number of randomly selected MC gamma-ray events calibrated to match the flux of the Crab Nebula as measured by the HEGRA Coll. The OFF sample, instead, was slightly reduced from ~5.8 to ~5.5 hours in order to keep a proper amount of independent proton events in their original MC format for the generation of gamma/hadron separation look-up-tables (LUTs)

Future plan: use ON and OFF subsamples for an end to end analysis with CNN.

Angular resolution

We explored performances of two head-tail parameters in angular resolution, finding M3LONG performs better than ASYM up to ~30 TeV

Confusion Matrix for Sklearn Random Forest Classifier

From wikipedia:

In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the performance of an algorithm. The name stems from the fact that **it makes it easy to see if the system is confusing two classes** (i.e. commonly mislabelling one as another).

Sounds useful!

Confusion Matrix

The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier.

['True negatives', 'False positives']
['False negatives', 'True positives']

Confusion Matrix

Some interpretations:

from a gammaness value of ~64% on, you start to throw away more than 20% of true gammas: this can be useful to know for if you need a proper amount of gammas to perform some scientific analysis (DL4 data);

Q-factor is max at gammaness = 98%; this is because √fp (false positives, background, protons classified as gammas) are the denominator of the Q-factor and its value become very small as gammaness increase. The counter effect is for those values you are wasting ~80% of gammas.

Other Classifiers

Same input data have been passed through other machine learning methods, namely:

Multi Layer Perceptron (Neural Network)

About Multi Layer Perceptron (Neural Network): it's been used a shallow network with 20 neurons in an only hidden layer, after a number of tests with two hidden layers and varying the number of neurons also: this shallow network gives the best result on this dataset, in a reasonable execution time.

Gamma - Hadron separation

Gamma Hadron separation

ROC curve

Random Forest leads

Q-factor

<u>Precision Recall curve</u>

Comments

Random Forest leads