SECTION 1: THE MOLECULES THAT GENERATE MOTION

LECTURE 3: LINEAR MOTORS

Roop Mallik, BSBE – IIT Bombay

BB101 – Biology. Autumn Semester 2022-2023

Resources:-

Molecular Biology of the Cell: Alberts
Chapter 4, Single Molecule Biology: Alex Knight
Physical Biology of the Cell by Philips, Kondev, Theriot,
Garcia

J. Howard, Mechanics of Motor Proteins and the Cytoskeleton

RECALL FROM LAST LECTURE

ATP Synthase

Bacterial Flagellar Motor

What kind of motion do Motor Proteins generate?

1) Linear **Motors**

DNA based

Use of Genetic Information (RNA Polymerase) **Making Proteins** (Ribosome)

Protein based

Moving muscles (Myosin) Moving things in the cell (Myosin, Kinesin, Dynein)

Artofthecell

Protein based Motors and Transport Inside Cells

The Living Cell is like a City ...

- 1. Recycling Plant
- 2. Information/ Library
- 3. Power Station
- 4. Factories
- 5. Roads Microtubules, Actin (not shown)
- 6. Post Office (??)
- 7. City Limits (??)

Nucleus Lysosomes Ribosome Mitochondria

How do you communicate between different parts of the City?

Would diffusion work ??

Time for diffusion $\sim x^2/2D$; $D = k_b T/6\pi \eta R$

 $D = Diffusion constant; x = Distance moved; <math>k_b = Boltzmann constant;$

 $T = Temp; \quad \eta = Viscosity; \quad R = Dimension$

 $D \sim 1 \text{ micron}^2/\text{sec for } 50 \text{ nm diameter}$ synaptic vesicle in Neuron

To travel 1 metre:

Need ~ 16,000 years

Need active transport

Melanocytes (Pigment cells) under skin Rodionov et al, 2003, Deacon et al, 2005 For more Information go to LINK

Transport In the axon of a Neuron Courtesy: G. Goshima

Linear Motors that Transport Products between the Factories of a Cell

Movie : Inner Life of the Cell

ATPase Cycle of Kinesin

Motors walk on stepping stones

http://www.imb-jena.de/~kboehm

Numbers

Dimension of cells → 10 Microns

Size of a Motor \rightarrow 50-100 nm

Cargoes carried by Motors → 50nm – Few microns

Velocity of motion → 1-2 microns/sec

100 cycles completed in 1 second

Energy available from 1 ATP = 25 K_bT = 100 pN-nm

Work done per cycle ~ 50 pN-nm

Diffusion constant for 50nm object ~ 1 micron²/sec

Howard, J. Molecular motors: structural adaptations to cellular functions.

https://doi.org/10.1038/39247

J. Howard, Mechanics of Motor Proteins and the Cytoskeleton

Duty Ratio
$$r = \frac{\tau_{\rm on}}{\tau_{\rm on} + \tau_{\rm off}} = \frac{\tau_{\rm on}}{\tau_{\rm total}}$$

Duty ratio of a leg =
Fraction of the total Cycle time of Motor that
the leg spends attached to the filament
(e.g. microtubule)

Latches and Springs in the Kinesin Machine

Sharyn Endow 2003

But real Life is complicated!!
On each Cargo ...

A real Tug-of-war at the Nanoscale Soppina et al, PNAS 2009

DYNEINS work well in a Team ...

KINESIN cannot

 \leftarrow 1.1 x 5 = 5.5 picoNewton

6 picoNewton \rightarrow

The Dynein
Nanomachine
has an inbuilt
Gear

Some others who work on Motor Proteins in India

Ambarish Kunwar (IITB)
Sunando Dutta (IISER Bhopal)
V. Soppina (IIT Gandhinagar)

Debashish Chowdhury (IIT K)

FOR YOU TO THINK ABOUT ...

A Kinesin Motor is walking with a Velocity of 2 microns/second

- 1. How many molecules of ATP is it using up in a second?
- 2. What is the average time between two successive steps?

You are walking along the road

- 1. What is the duty ratio for each Leg?
- 2. What if you start running instead of walking?

Observe the Optical Trap data for kinesin in the Figure

- 1. How is the **Force-Velocity** (*F-V*) response of kinesin determined from such data?
- Rai et al 2013 found that the F-V curve of Dynein is fundamentally different from Kinesin.
 What is the implication of this finding?

