

JARINGAN SARAF TIRUAN.

PERAMALAN HARGA KOMODITAS PANGAN KABUPATEN JEMBER MENGGUNAKAN METODE LONG SHORT TERM MEMORY (LSTM)

Oleh :

Rafi Rosyadi

Charles Fernando

NIM 201810101082

NIM 201810101089

Thoriq Nadil Habibie

NIM 201810101061

Program Studi Matematika FMIPA Universitas Jember

Topik Pembahasan

Topik 1

Topik
2

Topik
3

Topik
4

Topik
5

Latar Belakang

Tentang Permasalahan dan Tujuan Data Penelitian

Berisi Sumber Dataset yang digunakan

Metode Penelitian

Alur kerja Penelitian

Hasil dan

Pembahasan

Pre-Processing Data, Modelling, dan Forecasting Kesimpulan

Kesimpulan dari hasil analisis

Latar Belakang

Data Penelitian

Diambil pada website Bank Indonesia

www.bi.go.id/hargapangan

Pusat Informasi Harga Pangan Strategis Nasional

Sistem informasi berbasis digital yang dikelola oleh Bank Indonesia sejak tahun 2016, dan berfungsi untuk menghimpun harga komoditas pangan strategis di seluruh provinsi di Indonesia. Data yang diambil pada tanggal 1 September 2022 – 1 September 2023

Metode Penelitian

Data Collection: Data yang digunakan ialah data harga minyak goreng di Kabupaten Jember pada tanggal 1 September 2022 - 1 September 2023

Pra-Processing: Handling Missing Value dengan cara mencari rata-rata 2 hari sebelumnya dan hari esok dengan hari kemarin.

Normalisasi Data: Normalisasi menggunakan min-max dengan range [0 1] **Segmentasi Data:** Membuat segmentasi dengan menggunakan *timestap* sebanyak 1.

Training & Testing: Perbandingan Data Training dengan Data Testing yaitu 80:20.

Model LSTM: Proses pemodelan dan pengujian dilakukan dengan menggunakan Pyhton dan *framework* Keras dengan Tenserflow. Penelitian ini menggunakan dengan nilai *epoch* 100.

Prediksi: Prediksi terhadap data testing

Denormalisasi Data: Mengembalikan data menjadi skala awal

Evaluasi: Evaluasi dengan menggunakan Root Mean Square Error (RMSE)

dan R2 Score.

Forecast: Peramalan nilai 7 hari kedepan

05

Hasil dan Pembahasan

Data Collection

Tanggal	Minyak Goreng
01/09/2022	16950
02/09/2022	16950
03/09/2022	16950
04/09/2022	16925
05/09/2022	16900
06/09/2022	16900
07/09/2022	16900

366 Row

Data Head

Tanggal	Minyak Goreng
01/09/2022	16950
02/09/2022	16950
03/09/2022	16950
04/09/2022	16925
05/09/2022	16900

Normalisasi Data

3	arı

Hasil Normalisasi Data Head

Segmentasi

Data

Segmentasi Data Hasil Timestep sebanyak 1

	var1(t-1)	var1(t)
1	0.027027	0.027027
2	0.027027	0.027027
3	0.027027	0.013514
4	0.013514	0.000000
5	0.000000	0.000000
361	0.216216	0.216216
362	0.216216	0.216216
363	0.216216	0.216216
364	0.216216	0.216216
365	0.216216	0.216216
365 rows × 2 columns		

Hasil dan Pembahasan

Split data training dan testing

```
1 # split into train and test sets
2 values = bingkai_Minyak.values
3 n_train = 292
4 train_Minyak = values[:n_train, :]
5 test_Minyak = values[n_train:, :]
```

Data Training = 80%
Data Testing = 20%

Split Data Input dan Output

```
1 # split into input and outputs
         2 train_X, train_y = train_Minyak[:, :-1], train_Minyak[:, -1]
          3 test_X, test_y = test_Minyak[:, :-1], test_Minyak[:, -1]
od [21]
        1 train_X.shape
        (292, 1)
od [22]
         1 train_y.shape
        (292,)
        1 # reshape input to be 3D [samples, timesteps, features]
         2 train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
         3 test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
          4 print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
        (292, 1, 1) (292,) (73, 1, 1) (73,)
```


Model LSTM

Cara Kerja Prediksi Urutan Waktu

Misalkan akan memprediksi urutan waktu kedua puluh, maka t=20, t-1=19, t-2=18, dan t-3=17. Model dari arsitektur LSTM, inputan adalah urutan waktu tertentu (xt), kemudian dihitung nilai h(t-1) urutan satu waktu sebelumnya

Arsitektur LSTM

Tiap gate menggunakan nilai masukan xt dan nilai hidden state pada timestep sebelumnya h(t-1) dengan nilai bobot dan bias yang telah ditentukan diawal.

Design Modelling

Design Model LSTM

```
1 # design model
2 model = Sequential()
3 model.add(LSTM(100, input_shape=(train_X.shape[1], train_X.shape[2])))
4 model.add(Dense(1))
5 model.compile(loss='mean_squared_error', optimizer= Adam(learning_rate=0.001))
```

- Model Sequential adalah tumpukan berurutan dari lapisan-lapisan yang digunakan untuk membangun jaringan saraf tiruan dengan Keras. Jaringan ini akan memiliki satu lapisan LSTM diikuti oleh satu lapisan Dense.
- Lapisan LSTM memiliki 100 neuron dan data input memiliki 1 kolom dan 1 dimensi.
- Lapisan Dense yang menghasilkan satu nilai sebagai output
- Model ini akan menggunakan mean squared error (MSE) sebagai fungsi kerugian (loss function) untuk mengukur seberapa baik model memprediksi output yang benar dan memakai optimasi Adam dengan parameter learning_rate = 0.001

Design Modelling

Pelatihan Model

```
1 # fit network
2 history = model.fit(train_X, train_y, epochs=100, batch_size=64, validation_data=(test_X, test_y), verbose=2, shuffle=False)
3 model.save('./savedModel')
```

- train_X adalah input pelatihan, sedangkan train_y adalah target (label) yang sesuai.
- Model akan melalui data pelatihan sebanyak 100 kali iterasi selama proses pelatihan.
- Model akan diperbarui setiap 64 sampel setiap iterasi.
- Validasi data untuk mengukur metrik validasi seperti loss dan akurasi pada setiap epoch.
- Tingkat verbositas selama pelatihan akan mencetak informasi pelatihan di setiap epoch
- Data pelatihan tidak akan diacak sebelum setiap epoch

Predict

Hasil Prediksi Model LSTM Data Normalisasi

Denormalisasi Data

```
1 # invert scaling for predict
2 from numpy import concatenate
3 inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)
4 inv_yhat = scaler.inverse_transform(inv_yhat)
5 inv_yhat = inv_yhat[:,0]

1 # invert scaling for actual
2 test_y = test_y.reshape((len(test_y), 1))
3 inv_y = concatenate((test_y, test_X[:, 1:]), axis=1)
4 inv_y = scaler.inverse_transform(inv_y)
5 inv_y = inv_y[:,0]
```

Denormalisasi Data

	Data Aktual	Prediksi	Selisih
0	17550.0	17543.025391	6.974609
1	17550.0	17543.025391	6.974609
2	17550.0	17543.025391	6.974609
3	17550.0	17543.025391	6.974609
4	17550.0	17543.025391	6.974609
68	17300.0	17304.998047	4.998047
69	17300.0	17304.998047	4.998047
70	17300.0	17304.998047	4.998047
71	17300.0	17304.998047	4.998047
72	17300.0	17304.998047	4.998047
73 ro	ws × 3 columns	5	

Evaluasi Model

Evaluasi Model

RMSE: 41.170

R2 Score: 0.9173542561623724

Model: "sequential"			
Layer (type)	Output Shape	Param #	
lstm (LSTM)	(None, 100)	40800	
dense (Dense)	(None, 1)	101	
Total params: 40901 (159.77 KB) Trainable params: 40901 (159.77 KB) Non-trainable params: 0 (0.00 Byte)			

Peramalan Harga Minyak Goreng

Legend

—— Data Aktual

--- Peramalan

Berdasarkan grafik di atas, terlihat bahwa harga minyak goreng pada tanggal 2-8 September 2023 di Kabupaten Jember mengalami sedikit kenaikan

Kesimpulan

- Harga minyak goreng di Kabupaten Jember dapat dibuat model prediksi dengan model Long Short Term Memory (LSTM) pada optimasi Adam dalam parameter learning_rate = 0.001, epoch = 100, neuron = 100, dan batch_size = 64.
- Evaluasi dari model prediksi LSTM yang telah dibuat dengan nilai RMSE yaitu 41,170 dan R2 Score sebesar 91,74%. Dengan demikian, model tersebut bisa dikatakan sangat baik untuk digunakan.
- Peramalan harga minyak goreng pada tanggal 2-8 September 2023 di Kabupaten Jember mengalami sedikit kenaikan. Oleh Karena itu, produsen diharapkan bisa meningkatkan produksi minyak goreng agar tidak ketergantungan terhadap impor minyak goreng, sehingga harga minyak goreng tidak akan terlalu tinggi dan tidak terjadinya inflasi yang tinggi di Kabupaten Jember.

TERIMA KASIH

