DISPARO DE PROJÉTIL DENTRO DE UM TANQUE DE ÁGUA

AUTORES: ALEXANDRE STRUTZ DIOGO CINTRA LUIS PINHEIRO GABRIEL SALVATOR

PERGUNTA E CONTEXTO

• QUAL É A DIFERENÇA DA DISTÂNCIA MÁXIMA DE UM PROJÉTIL DISPARADO HORIZONTALMENTE NO AR E NA ÁGUA ATÉ ATINGIR O SOLO ?

MODELO E EQUAÇÕES

• SEN
$$\theta = -\frac{Vy}{\sqrt{Vx^2 + Vy^2}}$$

•
$$\cos \theta = \frac{Vx}{\sqrt{Vx^2 + Vy^2}}$$

•
$$V = \sqrt{Vx^2 + Vy^2}$$

•
$$\frac{d^2x}{dt^2} = -\frac{1}{2 \cdot m} \cdot \rho \cdot C_d \cdot A \cdot V^2 \cdot \cos \theta$$

$$X \qquad \bullet \frac{d^2y}{dt^2} = \frac{1}{2 \cdot m} \cdot \rho \cdot C_d \cdot A \cdot V^2 \cdot SEN \theta + \frac{1}{m} \cdot \rho \cdot g \cdot \frac{4}{3} \cdot \pi \cdot R^3 - g$$

 $\vec{P} = \text{Peso}$

 $\vec{E} = \text{Empuxo}$

 \vec{F} água = Força de resistência

 \overrightarrow{Fx} água = Força de resistência no eixo x

 \overrightarrow{Fy} água = Força de resistência no eixo y

CÁLCULO DO COEFICIENTE DE ARRASTO (C_d)

VALIDAÇÃO DO DISPARO NA ÁGUA

RESULTADOS

RESULTADOS

GRÁFICO CONCLUSIVO

AGRADECIMENTO ESPECIAL

Professor de ciências térmica: José Carlos Orsi Morel

