Методы асимметричного шифрования

Шифр Голдвассера- Микали

Вероятностное шифрование (шифр GM)

- Проблема классических асимметричных шифров в том, что они слабо скрывают фрагменты текста, о которых может догадываться нарушитель (например, «ДА»/»НЕТ», «Купить»/«Продать»)
- ullet Основная идея внести случайный фактор в шифрование с отрытым ключом, т.е. поставить в соответствие каждому открытому тексту M множество шифротекстов \mathcal{C}_M
- Первая доказуемо безопасная вероятностная схема асимметричного шифрования (GM) была предложена Шафи Голдвассером и Сильвио Микали 1982 г.
- Авторы стали лауреатами Премии Тьюринга за 2012 год в номинации «Новаторская работа, оказавшая существенное влияние на современную криптографию»

GM генерация ключей

- Выбираются простые числа р и q размером в k-бит
- ullet Вычисляется модуль n=p imes q
- ullet Выбирается $y \in Z_n$, такое , что:
 - y является квадратичным невычетом по модулю p $\exists x : x^2 \equiv y \bmod p$
 - y является квадратичным невычетом по модулю q $\nexists x : x^2 \equiv y \ mod \ q$
- ullet Открытый ключ (n,y), закрытый ключ (p,q)

GM зашифрование

- ullet Представить сообщение М в виде строки битов $m=m_1,m_2,...,m_T$ длины T бит
- $igoplus \Delta$ Для i=1,...,T выполнить:
 - ightharpoonup Выбрать случайно $\mathbf{r} \in Z_n^*$
 - ullet Если m_i =1, вычислить c_i = $(yr^2)mod\ n$
 - ullet Если m_i =0, вычислить c_i = $(r^2)mod\ n$
- ullet Сформировать C = c_1 , c_2 ,..., c_T длины T целых чисел из Z_n

GM расшифрование

- $igoplus \Delta$ Для i=1,...,T выполнить:
 - ullet Вычислить $z_i = c_i^{(p-1)/2} mod \ p$ (критерий Эйлера для квадратичного вычета)
 - \odot Если $z_i=1$, принять $m_i=0$ (c_i вычет)
 - ullet Если $z_i=-1$, принять m_i =1 (c_i невычет)
- ullet Сформировать сообщение M в виде строки битов $m=m_1$, $m_2,...,m_T$ длины T бит

Свойства GM

- Сложность взлома шифра GM(Гольдвассер-Микали) связана с решением задачи о распознавании квадратичных вычетов (QR), которая является общепризнанной трудноразрешимой задачей теории чисел
- ullet Для шифрования сообщения, состоящего из T бит, необходимо выполнить $O(T(log_2n)^2)$ побитовых операций
- ullet Для расшифровки кортежа (c_1 , c_2 ,..., c_T) требуются $O((log_2n)^2)$ побитовых операций
- ullet Степень избыточности этого алгоритма равна log_2 n: одному биту исходного текста соответствуют log_2 n бит зашифрованного текста

Вероятностная версия RSA

- [●] Ключ открытый (n,e), ключ закрытый d
- ullet Зашифрование сообщения в виде строки битов $m = m_1, m_2, ..., m_T$

 - \cong если $m_i = 1$, то выбирается случайное нечетное число $x_i < n$;
 - Θ Вычисляем $c_i = (x_i^e) mod n$, для всех i=1...T
- ightharpoonup Расшифрование строки чисел $c_1, c_2, ..., c_T$:
 - ullet m_i =0, если $({c_i}^d)$ mod n четное
 - $= m_i = 1$, если $(c_i^d) mod n$ нечетное
 - № Восстанавливаем биты исходного сообщения для всех і=1...Т

Пример вычислений:

- № Ключ открытый (n=21, e=17), ключ закрытый d=5
- Зашифрование сообщения М =000101:
 - № Генерируем четные (4,2,8,2) и нечетные (3,5) числа
 - Вычисляем

$$c1 = c5 = (4^17) \mod 21 = 16, c2 = (2^17) \mod 21 = 11, c3 = (8^17) \mod 21 = 08, c4 = (3^17) \mod 21 = 12, c6 = (5^17) \mod 21 = 17.$$

- Фомируем шифротекст: 16 11 08 12 16 17
- Расшифрование:

$$(16^5) \mod 21 = 4, (11^5) \mod 21 = 2, (8^5) \mod 21 = 8, (12^5) \mod 21 = 3, (16^5) \mod 21 = 4, (17^5) \mod 21 = 5$$

0

0

0

0

Гомоморфное шифрование

Понятие гомоморфизма

- У Гомоморфизм (от др.-греч. равный, одинаковый и вид, форма) это морфизм в категории алгебраических систем, то есть отображение алгебраической системы А, сохраняющее основные операции и основные отношения
- Отображение $f: G_1 \to G_2$ называется **гомоморфизмом групп** $(G_1,*)(G_2,\times)$, если оно одну групповую операцию переводит в другую:

$$f(a * b) = f(a) \times f(b)$$
.

Гомоморфное шифрование

- № Введём обозначения:
 - [●] k − ключ;
 - > m открытый текст;

 - \bigcirc Dec(k,m) расшифрующая функция
- ullet Функция Enc называется гомоморфной относительно операции сложения или умножения (*) над открытыми текстами $m_1, m_2,$ если существует алгоритм H, который, получив на входе пару

```
Enc(k,m_1) и Enc(k,m_2), выдаст шифровку C = Hig(Enc(k,m_1),Enc(k,m_2)ig),
```

результатом расшифрования которой будет открытый текст $m_1 * m_2$.

Виды гомоморфных криптосистем

- Частично гомоморфная система
 - ullet Криптосистема гомоморфна относительно операции сложения, если $Decig(Enc(k,m_1)+Enc(k,m_2)ig)=m_1+m_2$
 - ullet Криптосистема гомоморфна относительно операции умножения, если $Decig(Enc(k,m_1)\cdot Enc(k,m_2)ig)=m_1\cdot m_2.$
- Полностью гомоморфная система
 - Криптосистема гомоморфна относительно операции умножения и сложения, если:

$$Dec(Enc(k, m_1) \cdot Enc(k, m_2)) = m_1 \cdot m_2.$$

$$Dec(Enc(k, m_1) + Enc(k, m_2)) = m_1 + m_2.$$

Система RSA гомоморфна по умножению

- Обозначения:

 - m_1, m_2 открытый текст (шифруемое сообщение)
 - [●] Enc- шифрующая функция
- Доказательство:
 - $Enc(m_1) \cdot Enc(m_2) = m_1^e \mod n \cdot m_2^e \mod n = (m_1 \cdot m_2)^e \mod n = Enc(m_1 \cdot m_2)$

Система EG гомоморфна по умножению

Обозначения:

- $= m_1, m_2$ открытый текст (шифруемое сообщение)
- $y = g^x \mod p$ открытый ключ (y,g,p), закрытый ключ х
- ullet Случайный эфемерный ключ для m_1 k_1 для m_2 k_2
- [●] Enc шифрующая функция

Доказательство:

 $Enc(m_1) \cdot Enc(m_2) = (g^{k_1} \pmod{p}), m_1 y^{k_1} \pmod{p}) \cdot (g^{k_2} \pmod{p}), m_2 y^{k_2} \pmod{p}) = (y^{k_1 \cdot k_2} \pmod{p}), (m_1 \cdot m_2) y^{k_1 \cdot k_2} \pmod{p}) = Enc(m_1 \cdot m_2)$

Шифр Пэйе (1999)

Генерация ключей

● Секретный ключ: (α, μ , p, q)

$$p, q, \alpha =$$
 Наименьшее 0 бщее K ратное $(p-1, q-1),$ $\mu = \Lambda(g^{\alpha} \ mod \ N^{2})^{-1} mod \ N,$ $\Lambda(u) = div \frac{u-1}{N} \ (div -$ целочисленное деление)

● Открытый ключ: (g, N)

$$N$$
= $p \cdot q$, g — случайное число: $g \in Z^*_{N^2}$

 $Z^*_{N^2}$ - множество целых чисел взаимнопростых с N^2 . Это множество состоит из $N \cdot \varphi(N)$ чисел.

● Сообщение: не нулевой элемент $m \in Z_N : m < N$

Зашифрование и расшифрование

- Зашифрование:
 - Генерация случайного числа $r \in Z_N^*$
 - $C = g^m \cdot r^N \pmod{N}$

- Расшифрование:
 - $m = (C^{\alpha} \mod N^2) \cdot \mu \mod N$

Пример: генерация ключей

$$p=7$$
 и $q=5$, $N=7\cdot 5=35$, $N^2=1225$ и $\alpha=\text{HOK}(6,4)=12$.

Выбираем случайное целое число g, такое что $g \in Z_{N^2}^*$, g = 3.

Находим
$$\mu = (\Lambda(g^{\alpha} mod N^2))^{-1} mod N = 29.$$

 $(\alpha, \mu, p, q) = (12, 29, 7, 9)$ — закрытый ключ.

Пример: зашифрование и расшифрование

- Зашифрование
 - Θ m=8
 - Θ Выбираем произвольное $r \in \mathbb{Z}_N^*$, r = 9,
 - Вычисляем:

$$C = g^m \cdot r^N \mod N^2 = 3^8 \cdot 9^{35} \mod 1225 = 436$$

 $\cdot 949 \mod 1225 = 9393$.

- Расшифрование
 - $OCC = 939, C \in Z_{1225}$
 - Вычисляем $m = \Lambda(C^{\alpha} \mod N^2) \cdot \mu \mod N = L(939^{12} \mod 1225) \cdot 29 \mod 35 = 22 \cdot 29 \mod 35 = 8.$

Система Пэйе гомоморфна по сложению

- 1. При дешифровании произведения двух шифротекстов будет получена сумма соответствующих им открытым текстам:
- 2. При дешифровании криптограммы, возведенной в степень $d \in \mathbb{Z}_n^*$, будет получено произведение открытого текста и показателя степени d:
 - $^{\odot}$ $Dec(Enc(m))^d)$ $mod N^2 = d \cdot m \mod N$
 - \P Частный случай $Dec(Enc(m_1))^{m_2}) mod N^2 = m_1 \cdot m_2 \ mod \ N$.

Применение: анонимные вычисления

Постановка задачи: Алиса и Боб имеют числа x_1 и x_2 и хотят выяснить у кого число больше, не раскрывая самих значений этих чисел.

Протокол анонимных вычислений

1. Пользователь A шифрует число x_1 по схеме Пэйе:

$$C_1 = g^{x_1} \cdot r^N (mod N)$$

2. Пользователь Б шифрует число x_2 по схеме Пэйе:

$$C_2 = g^{x_2} \cdot r^N (mod N)$$

3. Сервер выполняет преобразование зашифрованных данных

$$C = C_1 \cdot C_2^{N-1} \cdot g^l$$

где $l>0\,$ - случайное число и отправляет C пользователям.

4. Пользователи А и Б дешифруют С и по свойству гомоморфности получают:

$$Dec(C) = \Lambda(C^{\alpha} \mod N^2) \cdot \mu \mod N$$

По свойству гомоморфности:
$$(x_1+(N-1)\cdot x_2+l)mod\ N=(x_1-x_2+l)mod\ N$$
 ЕСЛИ $Dec(C)>\frac{N}{2}$, то $x_1>x_2$, ИНАЧЕ $x_1< x_2$

Шифр Джентри

 Первая теоретическая конструкция для полностью гомоморфной криптосистемы, основанная на криптографии на решетках. Была предложена Крейгом Джентри в 2009 году и поддерживает операции сложения и умножения над шифротекстом.

- Самостоятельно разобраться :
 - https://habr.com/ru/articles/255205/ Гомоморфное шифрование –что это такое?
 - https://inf.grid.by/jour/article/viewFile/11/13 Гомоморфное шифрование: безопасность облачных вычислений и другие приложения (обзор)

Применение

1. Безопасные облачные вычисления:

Важна производительность, следует применять различные алгоритмы, в зависимости от поставленной задачи.

2. Электронное голосование:

Система сможет зашифровать голоса избирателей и провести расчёты над зашифрованными данными, сохраняя анонимность избирателей.

3. Защищённый поиск информации:

Можно предоставить пользователям возможность извлечения информации из поисковых систем с сохранением конфиденциальности: сервисы смогут получать и обрабатывать запросы, а также выдавать результаты обработки, не зная содержание.

Эллиптическая криптография

Эллиптическая криптография

- Безопасность RSA и Elgamal обеспечивается ценой использования больших ключей
- Требуется альтернативный метод, который дает тот же самый уровень безопасности, но с меньшими размерами ключей
- Одним из этих перспективных вариантов является криптосистема на основе метода эллиптических кривых (Elliptic Curve Cryptosystem — ECC)

Эллиптические кривые в вещественных числах

 Эллиптические кривые обычно применяются для вычисления длины кривой в окружности эллипса:

$$y^2 + axy + by = x^3 + cx^2 + dx + e$$

В криптографии распространение получил частный вид эллиптических кривых:

$$y^2 = x^3 + ax + b$$

• Если дискриминат $\Delta = -16(4a^3 + 27b^2) ≠ 0$, уравнение представляет <u>несингулярную</u> (гладкую) эллиптическую кривую, иначе сингулярную (с особыми точками)

Примеры несингулярных эллиптических кривых

- График не имеет особых точек (возврата и самопересечений)
- У График имеет две части, если дискриминат ∆ положителен и одну часть, если значение дискриминанта ∆ отрицательно
- Замечательным свойством несингулярных кривых является то, что любая прямая, проходящая через две различные точки кривой ещё раз пересекает кривую и эта третья точка пересечения является единственной!

Примеры сингулярных эллиптических кривых

При использовании сингулярных кривых стойкость
 эллиптической криптосистемы значительно снижается

Свойства точек эллиптической кривой

- Предполагаем:
 - На плоскости существует бесконечно удаленная точка О, принадлежащая кривой, в которой сходятся все вертикальные прямые линии
 - Если три точки эллиптической кривой лежат на прямой линии, то их сумма есть О
 - Касательная к кривой пересекает точку касания два раза

Сложение точек эллиптической кривой

- Точка О выступает в роли нулевого элемента: О=-О и для любой точки Р на кривой справедливо Р + О = Р
- Вертикальная линия пересекает кривую в двух точках с одной и той же абсциссой (координатой х), например, S = (x, y), T = (x, -y), и в бесконечно удаленной точке: S + T + O = O и T = -S
- Чтобы сложить две точки Р и Q с разными координатами х, следует провести через эти точки прямую и найти точку пересечения ее с эллиптической кривой: P + Q + S = O
- Чтобы удвоить точку Q, следует провести касательную в точке Q и найти другую точку пересечения S с эллиптической кривой. Тогда Q + Q +S= 2 x Q +S=0
- Умножение точки Р эллиптической кривой на положительное число к определяется как сумма к точек Р

Эллиптические кривые в криптографии

- Эллиптические кривые над вещественными числами приводит нас к проблеме округления (тексты должны представляться целыми числами)
- В криптографии используются только кривые над конечными полями,
 т.е. координаты точек кривой принадлежат конечному полю

Эллиптические кривые в GF(p)

- Элементами данной эллиптической кривой являются пары неотрицательных целых чисел, которые меньше p (p>3) и удовлетворяют частному виду эллиптической кривой $y^2 = (x^3 + ax + b) mod p$
- ullet Такую кривую будем обозначать $E_p(a,b)$. При этом числа a и b должны быть меньше p и должны удовлетворять условию $(4a^3+27b^2)mod\ p
 eq 0$
- ullet Любая точка на $E_p(a,b)$ вычисляется следующим образом:
 - \bigcirc Для значения x, 0 <= x <= p, вычисляется $(x^3 + ax + b) \mod p$
 - Для каждого из полученных на предыдущем шаге значений выясняется имеет ли это значение квадратом целого числа. Если является, то определяется у

Пример-задание

- ullet Задана кривая $E_{13}(1,1)$: $y^2 = (x^3 + x + 1) mod 13$
- Выбрать одну из точек P(4, 2), R(3,5) и Q(7,0)
- Проверить принадлежность выбранной точки кривой $E_{13}(1,1)$

Свойства точек $E_p(a,b)$

- P + Q = P; P + Q = Q + P (KOMMYM.); (P + Q) + R = P + (Q + R) (ACCOLUMN)
- [●] Если P = (x,y), то P + (x,-y) = 0. Точка (x,-y) является отрицательным значением точки P и обозначается -P. Точка -P лежит на эллиптической кривой, т.е. принадлежит E_p (a,b).

 $\stackrel{ullet}{\sim} \lambda$ - угловой коэффициент секущей, проведенный через точки P и Q

Задача дискретного логарифмирования на эллиптической кривой

Протокол Диффи-Хеллмана для эллиптических кривых (ECDH)

- ullet Группа точек эллиптической кривой $E_p(a,b)$
- В базовая точка (порождающий элемент) циклической подгруппы точек {kB, k=1,n} порядка n: nB=0
- x, y большие случайные числа такие, что 0 < x < n, 0 < y < n
- Поскольку:

$$xR_2 = x(yB) = xyB$$

 $yR_1 = y(xB) = xyB$

- Стороны фактически создают материал для генерации симметричного ключа (координаты точки xyB)
- Самостоятельно вспомнить основы: https://habr.com/ru/post/335906/

Шифр Эль-Гамаля на эллиптических кривых

- ullet Получатель выбирает кривую $E_p(a,b)$, точку e_1 на кривой, выбирает секретной число d и вычисляет еще одну точку $e_2=d imes e_1$
- ullet Открытый ключ $E_p(a,b), e_1, e_2$
- ullet Отправитель сопоставляет открытому тексту точку P на кривой и создает шифровку C_1, C_2 , выбрав случайное r

$$C_1 = r \times e_1$$
 $C_2 = P + r \times e_2$

● Получатель выполняет расшифровку:

$$C_2 - (d \times C_1) =$$

$$P + r \times d \times e_1 - d \times r \times e_1 = P$$

Таблица сравнения размеров ключей RSA и ECC (от NIST) для получения одинакового уровня защиты

Размер ключа RSA (биты)	Размер ключа ECC (биты)
1024	160
2048	224
3072	256
7680	384
15360	521

Эллиптическая кривая Curve25519

- Предложена специалистом по компьютерной безопасности, американцем Daniel Bernstein (разработчик хэш-функции CubeHash, поточного шифра Sasla20)
- № Используется кривая $y^2 = x^3 + 486662x^2 + x$ над полем вычетов по модулю простого числа $2^{255} 19$ (что и дало название схеме выработки асимметричных ключей)
- Эллиптическая кривая и набор параметров к ней подобранных таким образом, чтобы обеспечить более высокое быстродействие (в среднем, 20-25%)
- Устойчивость к атакам по побочным каналам (timing attacks)
- Curve25519 используется как обмен ключами по умолчанию в OpenSSH,
 I2p, Tor, Tox и даже в IOS

Пример генерации ключа

- $m{\Theta}$ Выбираем кривую $E_{67}(2,3)$
- Выбираем точку e₁=(2,22)
- Выбираем закрытый ключ d=4
- \bullet Вычисляем $e_2 = d \times e_1 = 4 \times (2,22) = (13,45)$

Пример зашифрования

■ Текст представляется точкой Р=(24,26) и выбираем случайное r=2

Пример расшифрования

Расшифровываем шифротекст (35,1)(21,44)

Свойства метода с использованием эллиптической кривой

- Возведение в степень в алгоритме Эль-Гамаля заменено умножением точки на константу в модели
- Умножение в алгоритме Эль-Гамаля заменено сложением точек в модели
- Инверсия в алгоритме Эль-Гамаля мультипликативная инверсия заменяется аддитивной инверсией точки на кривой
- № Вычислительные затраты, поэтому, меньше в модели
- Для того же самого уровня безопасности (вычислительные затраты на атаки) модуль р, может быть меньшим в эллиптической системе (ЕСС), чем в RSA. Например, ЕСС с модулем, состоящим из 160 битов, может обеспечить тот же уровень безопасности, как RSA с модулем 1024 битов

