University of Jinan

School of Information Science and Engineering

| +1 (812)-671-2268
| +86 531 8276 7529
| Skype:arronchuan
| ise_zhaoc@ujn.edu.cn
| ujnccs.github.io/

Chuan Zhao

Ph.D. in Computer Science No.336, Nanxinzhuang West Road, Jinan 250022, China

EDUCATION

Sep. 2011 – **Ph.D. in Computer Science**, *School of Computer Science and Technology*, Shandong University, Jinan, Jun. 2016 China.

With Prof. Qiuliang Xu

Sep. 2007 – **Bachelor of Computer Science and Technology**, *School of Mathematics and Computer Science*, Jun. 2011 Hunan Normal University, Changsha, China.

Exchange Student in Computer Science (Mar. 2009 – Mar. 2010), School of Computer Science and Technology, Korea National University of Education, Cheongiu, Republic of Korea.

WORK EXPERIENCE

Nov. 2018 – **Postdoctoral Researcher**, *School of Informatics, Computing, and Engineering*, Indiana University, Bloomington, US.

With Prof. Yan Huang

Jan. 2020 – Associate Professor, Shandong Provincial Key Laboratory for Network based Intelligent Computing,
 Present School of Information Science and Engineering, University of Jinan, Jinan, China.
 With Prof. Zhenxiang Chen

Jul. 2016 – Assistant Professor, Shandong Provincial Key Laboratory for Network based Intelligent Computing,
 Dec. 2019 School of Information Science and Engineering, University of Jinan, Jinan, China.
 With Prof. Zhenxiang Chen

RESEARCH INTERESTS

- Secure Multi-Party Computation
- Applied Cryptography
- Privacy-Preserving Techniques
- Big Data Privacy
- Mobile Security
- Encrypted Traffic Analysis

RESEARCH PROJECTS

- Jan. 2018 National Natural Science Foundation of China, "Research on Efficient Secure Two-Party Computation

 Dec. 2020 for Privacy Preserving Conomic Sequence Comparison" (No. 61702218) (Principal Investigator, PI)
- Dec. 2020 for Privacy-Preserving Genomic Sequence Comparison" (No. 61702218) (Principal Investigator, PI)
- Jan. 2019 Shandong Provincial Key Research and Development Project, "Research and Development of Privacy-Dec. 2021 — Preserving Cloud Computing Platform for Precision Medicine" (No. 2019GGX101028) (PI)
- Jan. 2018 Shandong Province Higher Educational Science and Technology Program, "Research on Efficient and
- Dec. 2020 Secure Genomic Sequence Alignment in Cloud Environment" (No. J18KA349) (PI)
- Jan. 2019 Project of Independent Cultivated Innovation Team of Jinan City, "Research on Intelligent Mobile Mali-
- Dec. 2021 cious Application Behavior Detection" (No. 2018GXRC002) (Co-PI)
- Jan. 2016 National Natural Science Foundation of China, "Research on Theory of Secure Multi-Party Computation"
- Dec. 2019 (No. 61572294) (Project Member)
- Jan. 2012 National Natural Science Foundation of China, "Research on Fundamental Theory of Secure Multi-Party
- Dec. 2015 Computation" (No. 61173139) (Project Member)

Jan. 2012 – Doctoral Fund of Ministry of Education of China, "Research on Basic Operations of Secure Multi-Party Dec. 2014 Computation and Universally Composable Security" (No. 20110131110027) (**Project Member**)

SELECTED PUBLICATIONS

- Jian Qiu, Hengjian Li, **Chuan Zhao**, "Cancelable Palmprint Templates Based on Random Measurement and Noise Data for Security and Privacy-Preserving Authentication". Published in Computers & Security. 2019.
- Minghao Zhao, Chengyu Hu, Xiangfu Song, Chuan Zhao, "Towards Dependable and Trustworthy Outsourced Computing: A Comprehensive Survey and Tutorial". Published in Journal of Network and Computer Applications. 2019.
- Chuan Zhao, Shengnan Zhao, Minghao Zhao, Chong-Zhi Gao, Hongwei Li, Yu-an Tan. "Secure Multi-Party Computation: Theory, Practice and Applications". Published in Information Sciences. 2019.
- Chuan Zhao, Shengnan Zhao, Zhongtian Jia, Bo Zhang, Bin Zhang, "Advances in Practical Secure Two-party
 Computation and Its Application in Genomic Sequence Comparison (in Chinese)". Published in Journal of Cryptologic Research. 2018.
- Chuan Zhao, Shengnan Zhao, Zhenxiang Chen, Bo Zhang, Mauro Conti. "Secure Comparison under Ideal/Real Simulation Paradigm". Published in IEEE Access. 2018.
- Bo Zhang, Tianqing Zhu, Chengyu Hu, **Chuan Zhao**. "Cryptanalysis of a Lightweight Certificateless Signature Scheme for IIOT Environments". Published in IEEE Access. 2018.
- Bo Zhang, Zhongtian Jia, Chuan Zhao. "An Efficient Certificateless Generalized Signcryption Scheme". Published in Security and Communication Networks. 2018.
- Shanshan Wang, Qiben Yan, Zhenxiang Chen, Bo Yang, Chuan Zhao, Mauro Conti. "Detecting Android Malware Leveraging Text Semantics of Network Flows". Published in IEEE Transactions on Information Forensics and Security. 2017.
- Chuan Zhao, Han Jiang, Qiuliang Xu, Yilei Wang, Xiaochao Wei, Shujie Cui. "Fast Two-Output Secure Computation with Optimal Error Probability". Published in Chinese Journal of Electronics. 2017.
- Hao Wang, Debiao He, Jian Shen, Zhihua Zheng, **Chuan Zhao**, Minghao Zhao. "Verifiable Outsourced Ciphertext-Policy Attribute-Based Encryption in Cloud Computing". Published in Soft Computing. 2017.
- Chuan Zhao, Han Jiang, Xiaochao Wei, Qiuliang Xu. "Cut-and-Choose Bilateral Oblivious Transfer (in Chinese)". Published in Journal of Software. 2017.
- Chuan Zhao, Han Jiang, Qiuliang Xu, Xiaochao Wei, Hao Wang. "Several Oblivious Transfer Variants in Cut-and-Choose Scenario". Published in International Journal of Information Security and Privacy. 2016.
- Xiaochao Wei, Han Jiang, Chuan Zhao, Minghao Zhao, Qiuliang Xu. "Fast Cut-and-Choose Bilateral Oblivious Transfer for Malicious Adversaries". Published in The 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. 2016.
- Xiaochao Wei, Han Jiang, **Chuan Zhao**. "An Efficient 1-out-of-n Oblivious Transfer Protocol with Full Simulation (in Chinese)". Published in Journal of Computer Research and Development. 2016.
- Chuan Zhao, Han Jiang, Xiaochao Wei, Qiuliang Xu, Minghao Zhao. "Cut-and-Choose Bilateral Oblivious Transfer and Its Application". Published in The 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. 2015.
- Yilei Wang, **Chuan Zhao**, Qiuliang Xu, Zhihua Zheng, Zhenhua Chen, Zhe Liu. "Fair Secure Computation with Reputation Assumptions in the Mobile Social Networks". Published in Mobile Information Systems. 2015.
- Yilei Wang, Duncan S. Wong, **Chuan Zhao**, Qiuliang Xu. "Fair Two-Party Computation with Rational Parties Holding Private Types". Published in Security and Communication Networks. 2015.
- Hao Wang, Chuan Zhao, Qiuliang Xu, Yilei Wang. "Identity-Based Authenticate Key Exchange Protocol from Lattice". Published in The 9th International Conference on Computational Intelligence and Security. 2013.

TALKS AND TRAINING

Paper Presentation at Helsinki, Finland

Title Cut-and-Choose Bilateral Oblivious Transfer and Its Application

In "The 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications", August 21, 2015.

Winter School at Tel Aviv, Israel

Topic Advances in Practical Multiparty Computation

In "The 5th Bar-llan Winter School on Cryptography", February 15-19, 2015.

Ph.D. THESIS

Title RESEARCH ON THEORY OF PRACTICAL SECURE TWO-PARTY COMPUTATION

Advised by Prof. Qiuliang Xu

Abstract Secure Multi-Party Computation (SMPC) focuses on the problem of cooperative computing on private data owned by several participants in a secure way in the distributed computing scenario. As a special case of SMPC, Secure Two-Party Computation (S2PC) formalizes many tasks, such as commitment schemes, zero-knowledge proof, oblivious transfer, etc. In recent years, research on practical SMPC has attracted wide attention from the international research community. In this thesis, we focus on the fundamental theory in constructing practical generic S2PC protocols with strong security. One of the most efficient methods of constructing generic protocols in malicious model is to apply cut-and-choose technique for garbled circuits. With this method, one can construct efficient generic protocols with provable security under ideal/real simulation paradigm, which proves to imply the strongest security level in reality. However, there are still many issues which are not addressed well in cutand-choose based S2PC protocols, such as input consistency of participants, selective failure attack in oblivious transfer, two-output function computation, etc. This thesis studied the above issues and did some deep research from two aspects. First, we studied oblivious transfer, one of the most important tools of secure computation. In this thesis, the functionality of oblivious transfer was extended and two new primitives were proposed. The new proposed primitives can be applied in S2PC generic protocols so as to decrease the round complexity. Second, we studied two-output function and proposed an optimal paradigm to complete two-output secure computation. Based on this new paradigm, one can design faster two-output secure computation protocols with optimal error probability.

TEACHING

Graduate Course

- "Network Security and Information Privacy" (64 Periods, 4 Credits), School of Information Science and Engineering, University of Jinan
- "Advanced Computer Network" (64 Periods, 4 Credits), School of Information Science and Engineering, University of Jinan

Undergraduate Course

- "Applied Cryptography" (64 Periods, 4 Credits), School of Information Science and Engineering, University of Jinan
- "Network Security Protocols" (48 Periods, 3 Credits), School of Information Science and Engineering, University of Jinan
- "Network Information Countermeasure" (64 Periods, 4 Credits), School of Information Science and Engineering, University of Jinan