群論問題集

箱星

2024年8月28日

1 群論の基礎

問 1.	ある群において $ghg^{-1}=h^{-1}$ をみたす元 g,h がある。 $(gh)^2=g^2$ を示せ。	
	解答. $ghg^{-1}=h^{-1}$ に左から h 、右から g をかけると $hgh=g$ となり、左から g をかけて $(gh)^2=g$	j^2
	を得る。	

問 2. G は $g^{1028} = 1$, $g^{550} = 1$ をみたす元 g によって生成される非自明な巡回群である。G の位数を求めよ。

解答. $\gcd(1028,550)=2$ であるから、1028m+550n=2 をみたす整数 m,n が存在する。 $g^2=g^{1028m+550n}=1$ より、G の位数は 2 である。

問3. G を群とする。G から G への写像 $g\mapsto g^{-1}$ が準同型であることと G がアーベル群であることは同値であることを示せ。

解答. $\varphi\colon G\to G$ を $\varphi(g)=g^{-1}$ をみたす写像とする。 φ が準同型のとき、 $gh=\varphi(g^{-1})\varphi(h^{-1})=\varphi(g^{-1}h^{-1})=(g^{-1}h^{-1})^{-1}=hg$ となるので、アーベルである。逆に G がアーベル群のとき、 $\varphi(gh)=h^{-1}g^{-1}=g^{-1}h^{-1}=\varphi(g)\varphi(h)$ なので φ は準同型である。

問 4. H,K を部分群とするとき、HK が部分群であることと HK = KH は同値であることを示せ。

解答. H,K は部分群なので $H=H^{-1},K=K^{-1}$ をみたす。HK が部分群のとき、 $HK=(HK)^{-1}=K^{-1}H^{-1}=KH$ となる。逆に HK=KH のとき、 $h_1,h_2\in H,k_1,k_2\in K$ に対して $h_1k_1h_2k_2\in HKHK=HKKK=HK$ となる。また $h\in H,k\in K$ に対し $(hk)^{-1}=k^{-1}h^{-1}\in KH=HK$ となる。よって HK は部分群である。

問 5. *G* を群とする。

- (a) G がアーベル群ならば、有限位数の元からなる部分集合 H は部分群であることを示せ。
- (b) 非アーベル群 G および有限位数の元 $x,y \in G$ であって xy が無限位数となるような例を挙げよ。

解答. (a) $x, y \in H$ とすると、 $x^m = y^n = 1$ となる自然数 m, n が存在する。 $(xy)^{mn} = x^{mn}y^{mn} = (x^m)^n(y^n)^m = 1, (x^{-1})^m = 1$ なので、 $xy, x^{-1} \in H$ である。よって H は部分群である。

(b) 無限二面体群 $\langle x, y \mid x^2 = y^2 = 1 \rangle$ が例である。

問 6. 次を証明または反証せよ:群がアーベルであることと部分群がすべて正規であることは同値である。

解答. 正しくない。G を位数 8 の四元数群 $\{\pm 1, \pm i, \pm j, \pm k\}$ とすると、非自明な部分群は $\{\pm 1\}, \{\pm 1, \pm i\}, \{\pm 1, \pm i\}, \{\pm 1, \pm k\}$ の 4 つである。位数 4 の部分群は指数 2 なので正規部分群である。ゆえに G の部分群はすべて正規であるが、G はアーベルでない。

問 7. G を巡回群とする。G の部分群は巡回群であることを示せ。

解答. H を巡回群 G の部分群とする。自明な群は巡回群なので、H は非自明な群としてよい。ある $a\in G$ が存在して、H の任意の元はある $n\in\mathbb{Z}_{\geq 0}$ を用いて a^n と表せる。H の非自明な元について、n の最小値を m とする。H の元 b を任意にとり、 $b=a^n$ と表す。n を m で割り n=qm+r ($0\leq r< m$) とすると

$$b = a^n = (a^m)^q a^r$$

となるので

$$a^r = ((a^m)^q)^{-1}b$$

となる。 $a^m \in H, b \in H$ より、 $a^r \in H$ となる。ここで $r \neq 0$ とすると m の最小性に反するので、r = 0 である。よって

$$b = (a^m)^q$$

となる。したがって、H は a^m により生成される巡回群である。

問8. G を群とする。以下の各条件から、G がアーベル群であることが導かれるか。

- (a) f(a,b) = ab で定義される関数 $f: G \times G \to G$ は群準同型である。
- (b) G は G/H が巡回群になるような正規部分群 H をもつ。
- (c) G は G/H が巡回群かつ任意の $g \in G, h \in H$ に対して gh = hg となるような正規部分群 H をもつ。

解答. (a) f((1,x)(y,1)) = f(y,x) = yx, f(1,x)f(y,1) = xy より xy = yx となるので、アーベル群 である。

- (b) $G = S_5, H = A_5$ のとき、 $G/H \cong C_2$ は巡回群であるが、G はアーベル群でない。
- (c) $g_1,g_2 \in G$ とする。G/H の生成元を xH とすると、 $g_1=(xH)^{m_1},g_2=(xH)^{m_2}$ と表せる。これより $g_1=x^{m_1}h_1,g_2=x^{m_2}h_2$ $(h_1,h_2\in H)$ と表せる。 $g_1g_2=x^{m_1}h_1x^{m_2}h_2=x^{m_1}x^{m_2}h_1h_2=x^{m_2}x^{m_1}h_2h_1=x^{m_2}h_2x^{m_1}h_1=g_2g_1$ となる。よって G はアーベル群である。

問 9. $\mathbb F$ を体とする。G を乗法群 $\mathbb F\setminus\{0\}$ の有限部分群とする。このとき G は巡回群であることを示せ。

解答. G は有限アーベル群である。|G|=n とし、G は巡回群でないとすると、有限アーベル群の構造定理より、任意の $x\in G$ に対し $x^d=1$ をみたす d< n が存在する。これより $x^d=1$ の $\mathbb F$ における解の個数は n となるが、これは高々 d 個の解しか持たない。よって矛盾である。

間 10. H を G の部分群とする。 $H \times G$ の部分群

$$L = \{(h,h) \mid h \in H\}$$

を考える。L が $H \times G$ の正規部分群であることと、H が G の中心に含まれることは同値であることを示せ。

解答. $(x,x)\in L$ と $(h,g)\in H\times G$ に対して、 $(h,g)(x,x)(h,g)^{-1}=(hxh^{-1},gxg^{-1})$ である。よって L が $H\times G$ の正規部分群であることと、任意の $g\in G,h,x\in H$ に対して $hxh^{-1}=gxg^{-1}$ となることは同値である。特に h を単位元とすることで、L が $H\times G$ の正規部分群ならば任意の $g\in G,x\in H$ に対して gx=xg、すなわち H が G の中心に含まれることがわかる。逆に H が G の中心に含まれる とき $hxh^{-1}=gxg^{-1}=x$ である。

問 11. x は奇数位数の群 G の元で、逆元と共役であるとする。このとき x = e であることを示せ。

解答. x,y が共役であるとき、 x^{-1},y も共役であることから、 x,y^{-1} も共役となる。よって x,y,x^{-1},y^{-1} は同じ共役類 C に属する。C のすべての元 g について $g\neq g^{-1}$ とすると、C は偶数位数である。G は奇数位数で、共役類の大きさは位数の約数なので、ある C の元 g について $g=g^{-1}$ となる。このとき $g^2=e$ となるが、G は奇数位数なので g=e である。単位元を含む共役類は単位元の みからなるので、x=e である。

2 有限群の構造

問 1. p をある有限群の位数を割り切る最小の素数とする。このとき指数 p の部分群は正規であることを示せ。

解答. G を H の指数 p の部分群とする。剰余類の置換作用により群準同型 $G \to S_p$ を得る。この準同型の核を N とすると、 $N \le H$ となる。|H| = k|N| とおくと、|G/N| = pk となる。G/N は S_p の部分群と同型なので、pk は p! を割り切る。ゆえに k は (p-1)! を割り切るので、k の素因数は p-1 以下である。一方 k は |H| を割り切るので |G| も割り切る。|G| の最小の素因数は p なので k の素因数は p 以上である。よって k=1 となり、H=N は正規である。

問 2. p を素数とする。

- (a) n > 1 に対して、位数 p^n の群は非自明な中心をもつことを示せ。
- (b) (a) を用いて、位数 p^2 の群はすべてアーベル群であることを示せ。

解答. (a) 類等式より、 $p^n=|Z(G)|+pm$ となる $(m\in\mathbb{Z}^+)$ 。これより |Z(G)| は p の倍数なので、中心は非自明である。

(b) 中心の位数は p または p^2 である。位数が p であるとする。このとき G/Z(G) の位数は p なので、巡回群である。これより G がアーベル群であることを示すことができる。これは中心の位数が p であることと矛盾する。従って中心の位数は p^2 なのでアーベル群である。

問 3. 位数 8128 の単純群は存在しないことを示せ。

解答. $8128 = 64 \times 127$ であり、127 は素数である。シロー 127 部分群はただ 1 つなので、これは正規部分群である。よって位数 8128 の単純群は存在しない。

- **問4.** この問題の目標は位数 35 の群を同型を除いて分類することである。
 - (a) 位数 35 のアーベル群を同型を除いてすべて求めよ。
 - (b) 位数 35 の群はすべてアーベル群であることを示せ。

解答. (a) 有限アーベル群の基本定理より、 $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ のみ。

(b) G を位数 35 の群、H をシロー 5 部分群、K をシロー 7 部分群とする。シローの定理より H の共役の個数は 7 の約数で 5 で割った余りが 1 なので、1 個である。ゆえに H は G の正規部分群である。同様に K も G の正規部分群である。 $H \cap K$ は H, K の部分群なので、位数は $\gcd(5,7)=1$ である。HK は部分群で位数は 35 なので G=HK となる。以上より

$$G = HK \cong H \times K = \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$$

はアーベル群である。

問 5. 位数 143 の群は巡回群であることを示せ。

解答. G を位数 143 の群、H をシロー 11 部分群、K をシロー 13 部分群とする。シローの定理より H の共役の個数は 13 の約数で 11 で割った余りが 1 なので、1 個である。ゆえに H は G の正規部分群である。同様に K も G の正規部分群である。 $H\cap K$ は H,K の部分群なので、位数は $\gcd(11,13)=1$ である。HK は部分群で位数は 143 なので G=HK となる。以上より

$$G = HK \cong H \times K = \mathbb{Z}/11\mathbb{Z} \times \mathbb{Z}/13\mathbb{Z} \cong \mathbb{Z}/143\mathbb{Z}$$

は巡回群である。

問 6. G を位数 24 の群とする。G のどのシロー部分群も正規でないとする。このとき G は対称群 S_4 と同型であることを示せ。

解答. シロー 3 部分群の個数は 8 の約数で 3 で割った余りが 1 なので、1 または 4 である。1 個のときシロー 3 部分群は正規になるので、4 個である。共役作用を考えると準同型 $\varphi\colon G\to S_4$ を得る。シロー部分群は互いに共役なので、 φ は全射である $^{1)}$ 。位数が等しいので φ は同型である。

問7. 位数30の単純群は存在しないことを示せ。

解答. シロー 3 部分群の個数は 1,10、シロー 5 部分群の個数は 1,6 である。位数 30 の単純群があるとすると、シロー 3 部分群の個数は 10、シロー 5 部分群の個数は 6 となる。このとき、位数 3 の元は $2 \times 10 = 20$ 個、位数 5 の元は $4 \times 6 = 24$ 個ある。20 + 24 > 30 なので矛盾。よって位数 30 の単純群は存在しない。

間8. ちょうど2つの共役類をもつ有限群を分類せよ。

解答. |G| が 2 つの異なる素数 p,q で割り切れるとすると、G には位数 p,q の元が存在する。これらは共役でないので、G は少なくとも 3 つの共役類をもつことになる。よって G は p 群である。ゆえに中心は非自明で、各元は共役類をなすことより、G=Z(G) は位数 2 である。よって位数 2 の巡回群のみが条件を満たす。

問9. ちょうど3つの共役類をもつ有限群を分類せよ。

解答. $\{1\}$ は共役類である。アーベル群で条件を満たすものは位数 3 のもののみなので、以下非アーベルとする。シローの定理により、位数の素因数は 1 つまたは 2 つである。

¹⁾ 違くない?

位数が p^n のとき、中心 Z は非自明であり、非アーベルより $|Z| \le 2$ である。よって |Z| = 2 で p = 2 である。また $G \setminus Z$ は共役類である。このとき G/Z は 2 つの共役類しかないので位数 2 である。よって G の位数は 4 となり、非アーベルであることと矛盾する。

位数が p^mq^n (p < q は素数) のとき、G の元の位数は 1,p,q の 3 つのみであり、同じ位数なら互いに共役となる。シロー部分群 S_p,S_q を考える。 S_p の中心の元 $c \neq 1$ をとると、c の中心化群 Z(c) は S_p を含むので、c の共役の数は $[G:Z(c)]=q^s$ $(s \leq n)$ となる。同様に S_q の中心の元 $d \neq 1$ をとると、d の共役の数は p^t $(t \leq m)$ となる。 $1+p^t+q^s=p^mq^n$ であるから、 $p^t=p^m=2,q^s=q^n=3$ に限られる。位数 6 の非アーベル群は 3 次対称群のみであり、これは条件を満たす。

したがって、求める群は位数 3 の巡回群、3 次対称群のいずれかである。

問 10. p,q,r を p < q < r をみたす素数とし、G を位数 pqr の群とする。このとき G は正規 Sylow 部分群を持つことを示せ。

解答. シローx 部分群の個数を N_x とする。G は正規シロー部分群をもたないとすると、 $N_p \mid qr, N_q \mid pr, N_r \mid pq$ より $N_p \geq q, N_q \geq p, N_r \geq p$ である。また $N_r \equiv 1 \pmod{r}$ かつ p < q < r より $N_r = pq$ である。位数 p,q,r の元の個数はそれぞれ $N_p(p-1),N_q(q-1),N_r(r-1)$ である。位数に関する不等式

$$pqr \ge N_p(p-1) + N_q(q-1) + N_r(r-1) \ge q(p-1) + p(q-1) + pq(r-1)$$

より

$$(p-1)(q-1) \le 1$$

となるが、これをみたす素数 p < q は存在しない。よって G は正規シロー部分群をもつ。

3 対称群

- **問 1.** S_n の位数 d の元の例をあげよ。存在しない場合はその理由を記せ。
 - (a) n = 10, d = 30
 - (b) n = 11, d = 33

解答. (a) (1,2)(3,4,5)(6,7,8,9,10) の位数は 2,3,5 の最小公倍数なので 30 である。

- (b) 長さ 33 のサイクルか、長さ 3 のサイクルと長さ 11 のサイクルをもたなければならないが、n=11 なのでこれは不可能である。
- **問 2.** S_n を $\{1,2,\ldots,n\}$ の置換群とする。次の元の例をあげるか、存在しない理由を述べよ。
 - (a) S_{13} における位数 40 の元
 - (b) S₁₆ における位数 34 の元

証明. (a) $x=(1,2,3,4,5)(6,7,8,9,10,11,12,13) \in S_{13}$ とする。 $x^n=1$ は、n が 5 の倍数かつ 8 の倍数であることと同値なので、x の位数は 40 である。

(b) 元の位数は群の位数の約数であるが、34 は 16! の約数でないので、 S_{16} に位数 34 の元は存在しない。

問3. Q_8 を四元数群とする。 $f: Q_8 \to S_n$ が単射準同型ならば、 $n \ge 8$ であることを示せ。

解答. 単射準同型 $Q_8 \to S_7$ が存在したと仮定し、 Q_8 の元を置換と同一視する。 $i^2=j^2=k^2=-1$ は位数 2 の偶置換なので、型は (2,2) である。また i=jk より i,j,k は偶置換であり、2 乗して型 (2,2) になるので型は (4,2) である。-1 に対応する置換を $(a_1,a_2)(a_3,a_4)$ とおくと、i,j,k の長さ 4 の 巡回置換は (a_1,a_3,a_2,a_4) または (a_1,a_4,a_2,a_3) のいずれかであり、長さ 2 の巡回置換は a_1,a_2,a_3,a_4 以外からなる。しかし i=jk をみたさないので、これは矛盾である。

- **問 4.** (a) S_6 における位数 2 の元の共役類をすべて求めよ。
 - (b) A_6 についても同様のことを行え。
 - **解答**. (a) S_6 の共役類は 6 の分割と一対一対応する。位数 2 の元の共役類は、最大値が 2 である分割と一対一対応する。よって、位数 2 の元の共役類は、 $(2,1^4),(2^2,1^2),(2^3)$ の 3 つである。
 - (b) 上のうち偶置換からなる共役類は $(2^2,1^2)$ のみである。ここで $(2^2,1^2)$ の 2 つの置換が A_n でも 共役であることを示す。 (a_1,a_2,a_3,a_4) を (b_1,b_2,b_3,b_4) または (b_2,b_1,b_3,b_4) に移すことを考える と、この 2 つは互換 1 つ分だけ異なるのでどちらかは偶置換である。偶置換である方を π とする と $(a_1,a_2)(a_3,a_4)$ の π による共役は $(b_1,b_2)(b_3,b_4)$ となり、 A_n で共役である。よって A_6 における位数 2 の元の共役類は $(2^2,1^2)$ である。

問 5. 対称群 S_3 の自己同型群を求めよ。

解答. 内部自己同型群は $S_3/Z(S_3)=S_3$ である。(1,2),(2,3) は S_3 の生成元である。 S_3 に位数 2 の元は 3 つあるので、生成元の自己同型による行先の決め方は高々 6 通りである。よって自己同型は高々 6 個だが、内部自己同型が 6 個なので、これらは一致する。よって S_3 の自己同型群は S_3 と同型である。

問 6. 交代群 A_5 は単純であることを示せ。 A_4 は可解であることを示せ。

解答. A_5 の共役類の位数は 1,12,12,15,20 である。N が A_5 の正規部分群であるとき、N は $\{1\}$ を含む共役類の和として表せる。ゆえに N の位数は 1 を含む 1,12,12,15,20 の部分和であって、かつ 60 の約数である。このようなものは 1,60 しかないので、N は自明な部分群である。よって A_5 は単純である。

 A_4 は $\{1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$ という正規部分群をもち、これはアーベル群である。 よって A_4 は可解である。

問7. S_4 は (1234), (1243) で生成されることを示せ。

解答. $(1234)(1243)^2 = (13)$ となり、 $(13)^{(1243)} = (12)$ となる。(12) の (1234) による共役を考えると、(12), (23), (34) が得られる。 S_4 はこれらの元で生成されるので、(1234), (1243) により生成される。

問8.5次交代群は位数20の部分群をもたないことを示せ。

解答. 位数 20 の部分群 H が存在したとする。 A_5 は H による剰余類に作用する。H の指数は 3 なので、この作用により準同型 φ : $A_5 \to S_3$ が得られる。 A_5 は単純群かつ $\operatorname{Ker} \varphi \neq A_5$ より、 $\operatorname{Ker} \varphi$ は

単位群である。これより φ は単射となるが、 $|A_5|>|S_3|$ と矛盾。よって位数 20 の部分群は存在しない。

問 9. G が S_n の部分群で $G \cap A_n = \{e\}$ をみたすならば $|G| \le 2$ であることを示せ。

解答. G の 2 つの奇置換 π , ρ に対し、 π^2 , $\pi\rho \in A_n$ なので、 $\pi^2 = e = \pi\rho$ となる。よって $\pi = \rho$ となるので、G の奇置換は高々 1 つ。偶置換は e のみなので、 $|G| \le 2$ である。

4 行列群

問 1. $\mathrm{SL}_2(\mathbb{F}_5)$ の 5 シロー部分群の個数を求めよ。

解答. $\operatorname{SL}_2(\mathbb{F}_5)$ の位数は 120 である。対角成分が 1 である上三角行列のなす群は位数 5 なので、5 シロー部分群である。同様に下三角行列を考えることで、5 シロー部分群が 2 個以上あることがわかる。シローの定理より、5 シロー部分群の個数は 24 の約数であって 5 で割って 1 余るものなので、6 である。

問 2. $\mathrm{SL}_2(\mathbb{R})$ を行列式が 1 の実数係数 2×2 行列の群とする。

$$\sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

とする。 ${}^t g$ を $g \in \mathrm{SL}_2(\mathbb{R})$ の転置とする。

- (a) $g \in SL_2(\mathbb{R})$ に対し $\sigma g \sigma^{-1} = {}^t g^{-1}$ を示せ。
- (b) 任意の $g \in SL_2(\mathbb{R})$ に対して $\tau g \tau^{-1} = {}^t g$ となるような $\tau \in SL_2(\mathbb{R})$ が存在しないのはなぜか。 $\tau g \tau^{-1} = g^{-1}$ となる τ は存在するか。

解答. (a) 直接計算すればわかる。

(b) $g,h \in \operatorname{SL}_2(\mathbb{R})$ に対し、 $\tau g \tau^{-1} = {}^t g, \tau h \tau^{-1} = {}^t h, \tau g h \tau^{-1} = {}^t (gh)$ となる。よって

$$^{t}q^{t}h = \tau q\tau^{-1}\tau h\tau^{-1} = \tau qh\tau^{-1} = ^{t}(qh)$$

となるが、 $^t(gh)=^th^tg$ なので、これは成り立たない。同様に、 $\tau g\tau^{-1}=g^{-1}$ となる τ も存在しない。

問 3. S_4 は $\mathrm{GL}_2(\mathbb{F}_3)/Z(\mathrm{GL}_2(\mathbb{F}_3))$ と同型であることを示せ。

解答. まず $Z(\mathrm{GL}_2(\mathbb{F}_3))$ はスカラー行列からなり、位数は 2 である。 \mathbb{F}_3^2 の 1 次元部分空間は

$$\langle \binom{1}{0} \rangle, \langle \binom{0}{1} \rangle, \langle \binom{1}{1} \rangle, \langle \binom{1}{1} \rangle \rangle$$

の 4 つあり、 $\mathrm{GL}_2(\mathbb{F}_3)$ が作用するので準同型 $\mathrm{GL}_2(\mathbb{F}_3) \to S_4$ を得る。核はスカラー行列からなるので、 単射準同型 $\mathrm{GL}_2(\mathbb{F}_3)/Z(\mathrm{GL}_2(\mathbb{F}_3)) \to S_4$ を得る。位数が等しいので同型である。

問 4. $\operatorname{GL}_3(\mathbb{F}_q)$ の位数を求めよ。

解答. 3次元ベクトル空間 \mathbb{F}_q^3 の基底の数に等しいので

$$(q^3-1)(q^3-q)(q^3-q^2)$$

である。

問 5. G を $\mathrm{SL}_n(\mathbb{Z})$ の有限部分群とする。G の位数は

$$\frac{1}{2}(3^n - 1)(3^n - 3) \cdots (3^n - 3^{n-1})$$

を割り切ることを示せ。ヒント:modulo 3を用いる。

解答. $\operatorname{SL}_n(\mathbb{Z}) \to \operatorname{SL}_n(\mathbb{F}_3)$ を $a_{ij} \mapsto a_{ij} \mod 3$ により定めるとこれは群準同型となる。定義域を G に 制限することで準同型 $\varphi \colon G \to \operatorname{SL}_n(\mathbb{F}_3)$ を得る。 $|G| = |\operatorname{Ker} \varphi| \cdot |\operatorname{Im} \varphi|$ であり、 $\operatorname{Im} \varphi$ は $\operatorname{SL}_n(\mathbb{F}_3)$ の 部分群なので、位数 $|\operatorname{Im} \varphi|$ は $|\operatorname{SL}_n(\mathbb{F}_3)| = \frac{1}{2}(3^n-1)(3^n-3)\cdots(3^n-3^{n-1})$ の約数。よって |G| は この値の約数である。