GPS Signal Description

1. The baseband signal **transmited** by the satellite is given as

$$S(t) = S_{PPS}(t) + jS_{SPS}(t) \tag{1}$$

- $S_{SPS}(t) = \sum_{i=-\infty}^{\infty} c_{sps}(|i|_{L_sps}).d([i]_{CD_sps}).rect_{T_{c,sps}}(t-iT_{c,sps})$ Standard Positioning Service
- $S_{PPS}(t) = \sum_{i=-\infty}^{\infty} c_{pps}(|i|_{L-pps}).d([i]_{CD-pps}).rect_{T_{c,pps}}(t-iT_{c,pps})$ Precision Positioning Service
- 2. Let $x_{in}[n]$ be the incoming signal at the **receiver** end and is given as

$$x_{in}[n] = A(t)s_T(t - \tau(t))e^{j(2\pi f_D(t)t + \phi(t))}|_{t=nT_s} + n(t)|_{t=nT_s}$$
(2)

where

- A(t) is Amplitude
- $s_T(t)$ is Complex baseband signal
- $\tau(t)$ is code delay(time varying)
- $f_D(t)$ is Doppler shift(time varying)
- $\phi(t)$ is carrier phase shift(time varying)
- n(t) is Random noise with zero mean
- T_s is Sampling period
- f_s is Sampling frequency

Pseudo code for GPS Signal Acquisition

1.1 Functions for computing the PRN codes of GPS satellite

- 1. (a) g1_lfsr(out)
 - state = 0x3FF
 - For i=0 to i=1022
 - out[i] = (state $\gg 9$) & 0x1
 - new_bit = $((\text{state} \gg 9) \oplus (\text{state} \gg 2)) \& 0x1$
 - state = ((state $\ll 1$) | new_bit) & 0x3FF
 - (b) $g2_lfsr(tap0,tap1,out)$
 - state = 0x3FF
 - tap0 = tap0-1
 - tap1 = tap1-1
 - For i=0 to i=1022
 - out[\mathbf{i}] = ((state $\gg \text{tap0}) \oplus (\text{state} \gg \text{tap1})) & 0x1$
 - new_bit = ((state $\gg 9$) \oplus (state $\gg 8$) \oplus (state $\gg 7$) \oplus (state $\gg 5$) \oplus (state $\gg 2$) \oplus (state $\gg 1$)) & 0x1
 - state = ((state $\ll 1$) | new_bit) & 0x3FF
 - (c) $combine_g1_g2(g1,g2,out)$
 - **For i**=0 to **i**=1022
 - $\operatorname{out}[\mathbf{i}] = \operatorname{g1}[\mathbf{i}] \oplus \operatorname{g2}[\mathbf{i}]$

1.2 Main function

- 1. Capture 2ms samples of incoming signal $x_{in}[n]$
- 2. PRN Code frequency f_c is 1.023Mhz
- 3. Sampling frequency f_s s 2.048Mhz
- 4. The number of samples N for 1ms is 2048

- 5. Static array SVs[64] = [2, 6, 3, 7, 4, 8, 5, 9, 1, 9, 2,10, 1, 8, 2, 9, 3,10, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 9,10, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 6, 9, 1, 3, 4, 6, 5, 7, 6, 8, 7, 9, 8,10, 1, 6, 2, 7, 3, 8, 4, 9]
- 6. Static array g1[1023]
- 7. static array g2[32][1023]
- 8. Call the function g1_lfsr(g1)
- 9. k=0
- 10. visibility = 0
- 11. **For sv**=01 to **sv**=32:
 - i tap0 = SVs[k++]
 - ii tap1 = SVs[k++]
 - iii Call the function g2_lfsr(tap0,tap1,g2[sv])
 - iv Call the function combine_g1_g2(g1,g2,gold_code)
 - v For $\mathbf{i} = 0$ to $\mathbf{i} = 1022$
 - if $gold_code[i] > 0$
 - $gold_code[i] = -1$
 - else
 - $gold_code[i] = 1$
 - vi **For** $\mathbf{i} = 0$ to $\mathbf{i} = N-1$
 - $p_{sv}[\mathbf{i}] = \text{gold_code}[\mathbf{i}.\frac{fc}{fs}]$

vii Compute correlation between $x_{in}[n]$ and $p_{sv}[n]$, for n = 0,1,2,...,N-1

$$z_{sv}[n] = \sum_{m=0}^{N-1} p_{sv}[m] x_{in}[n+m]$$
(3)

viii \max_{e} lement = 0

 $ix max_index = 0$

- x For $\mathbf{i} = 0$ to $\mathbf{i} = N-1$
 - $z_{\mathbf{sv}}[\mathbf{i}] = \{ \operatorname{Re}(z_{\mathbf{sv}}[\mathbf{i}]) \}^2.$
 - if $(z_{sv}[i] > max_element)$
 - $\max_{\text{element}} = z_{\mathbf{sv}}[\mathbf{i}]$
 - $\max_{i} \text{index} = i$

xi if max_element > ϑ && (visibility < 4)

- visibility = visibility+1
- Code phase $\hat{\tau}_{sv} = \text{max_index}$
- For i = 0 to i = N-1
 - $x[\mathbf{i}] = x_{in}[\mathbf{i} + \hat{\tau}_{sv}]$
- $\max_{\text{of}}\max=0$
- for $f_D = f_{min}$ to $f_D = f_{max}$ in f_{step} steps:
 - Shift the signal x[n] by f_D

$$x_{sh}[n] = x[n] \cdot e^{-j2\pi f_D n T_s} \tag{4}$$

- Apply FFT to $x_{sh}[n] \longrightarrow X_{sh}[k]$
- Compute conjugate of FFT of $p_{sv}[n] = P_{sv}^*[k]$
- Multiply $X_{sh}[k]$ and $P_{\mathbf{sv}}^*[k]$.

$$Y[k] = X_{sh}[k] \cdot P_{sv}^*[k] \tag{5}$$

• Compute IFFT for Y[k]

$$R_{\mathbf{sv}}[n] = IFFT_k\{Y[k]\} \tag{6}$$

• $\max_{\text{value}} = R_{\text{sv}}[0]$

- $\max_{-fd} = 0$
- For $\mathbf{i} = 0$ to $\mathbf{i} = N-1$
 - $R_{\mathbf{sv}}[\mathbf{i}] = \{ \operatorname{Re}(R_{\mathbf{sv}}[\mathbf{i}]) \}^2.$
 - • if $(R_{\mathbf{s}\mathbf{v}}[\mathbf{i}] > max_value)$ && $(R_{\mathbf{s}\mathbf{v}}[\mathbf{i}] > max_of_max)$
 - $\max_{\text{value}} = R_{\text{sv}}[i]$
 - $\bullet \ \max_{\mathrm{fd}} = \mathbf{i}$
- $\max_{\text{of}} \max = \max_{\text{value}}$
- Doppler Frequency offset $f_{sv_D} = \text{max_fd}$

xii else if visibility ≥ 4

 \bullet break

xiii else

- \bullet continue
- end for