Digital Signature Schemes

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2014

Outline

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- **3** One-Time Signature Scheme
- 4 The Digital Signature Standard (DSS)
- 5 Certificates and Public-Key Infrastructures

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- **3** One-Time Signature Scheme
- 4 The Digital Signature Standard (DSS)
- 5 Certificates and Public-Key Infrastructures

Digital Signatures – An Overview

- **Digital signature scheme** is a mathematical scheme for demonstrating the authenticity/integrity of a digital message.
- allow a **signer** S to "**sign**" a message with its own sk, anyone who knows S's pk can **verify** the authenticity/integrity.
- (Comparing to MAC) digital signature is:
 - publicly verifiable.
 - transferable.
 - non-repudiation.
 - but slow.
- Digital signature is NOT the "inverse" of public-key encryption.

The Syntax of Digital Signature Scheme

- **signature** σ , a bit b means valid if b=1; invalid if b=0.
- Key-generation algorithm $(pk, sk) \leftarrow \text{Gen}(1^n), |pk|, |sk| \ge n.$
- **Signing** algorithm $\sigma \leftarrow \mathsf{Sign}_{sk}(m)$.
- **Verification** algorithm $b := \mathsf{Vrfy}_{nk}(m, \sigma)$.
- Basic correctness requirement: $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$.

Defining of Signature Security

The signature experiment Sigforge_{A,Π}(n):

- **2** \mathcal{A} is given input 1^n and oracle access to $\operatorname{Sign}_{sk}(\cdot)$, and outputs (m,σ) . \mathcal{Q} is the set of queries to its oracle.
- $\textbf{3} \ \mathsf{Sigforge}_{\mathcal{A},\Pi}(n) = 1 \iff \mathsf{Vrfy}_{pk}(m,\sigma) = 1 \, \wedge \, m \notin \mathcal{Q}.$

Definition 1

A signature scheme Π is existentially unforgeable under an adaptive CMA if \forall PPT \mathcal{A} , \exists negl such that:

$$\Pr[\mathsf{Sigforge}_{\mathcal{A}.\Pi}(n) = 1] \leq \mathsf{negl}(n).$$

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- **3** One-Time Signature Scheme
- 4 The Digital Signature Standard (DSS)
- 5 Certificates and Public-Key Infrastructures

"Textbook RSA"

Construction 2

- Gen: on input 1^n run GenRSA (1^n) to obtain N, e, d. $pk = \langle N, e \rangle$ and $sk = \langle N, d \rangle$.
- Sign: on input sk and $m \in \mathbb{Z}_N^*$, $\sigma := [m^d \mod N]$.
- Vrfy: on input pk and $m \in \mathbb{Z}_N^*$, $m \stackrel{?}{=} [\sigma^e \mod N]$.

Insecurity

The "textbook RSA" is insecure.

Insecurity of "Textbook RSA"

- A no-message attack: choose an arbitrary $\sigma \in \mathbb{Z}_N^*$ and compute $m := [\sigma^e \mod N]$. Output the forgery (m, σ) .
- Forging a signature on an arbitrary message: To forge a signature on m, choose a random m_1 , set $m_2 := [m/m_1 \bmod N]$, obtain signatures σ_1, σ_2 on m_1, m_2 . $\sigma := [\sigma_1 \cdot \sigma_2 \bmod N]$ is a valid signature on m.

$$\sigma^e \equiv (\sigma_1 \cdot \sigma_2)^e \equiv (m_1^d \cdot m_2^d)^e \equiv m_1^{ed} \cdot m_2^{ed} \equiv m_1 m_2 \equiv m \pmod{N}.$$

Hashed RSA

- Gen: a hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$ is part of public key.
- Sign: $\sigma := [H(m)^d \mod N]$.
- Vrfy: $\sigma^e \stackrel{?}{=} H(m) \mod N$.

If H is not efficiently invertible, then the no-message attack and forging a signature on an arbitrary message is difficult.

Insecurity

There is NO known function ${\cal H}$ for which hashed RSA signatures are secure.

RSA-FDH Signature Scheme: Random Oracle as a **Full Domain Hash (FDH)** whose image size = the RSA modulus N-1.

The "Hash-and-Sign" Paradigm

Construction 3

 $\Pi = (\mathsf{Gen}_S, \mathsf{Sign}, \mathsf{Vrfy})$, $\Pi_H = (\mathsf{Gen}_H, H)$. A signature scheme Π' :

- Gen': on input 1^n run $\operatorname{Gen}_S(1^n)$ to obtain (pk, sk), and run $\operatorname{Gen}_H(1^n)$ to obtain s. The public key is $pk' = \langle pk, s \rangle$ and the private key is $sk' = \langle sk, s \rangle$.
- Sign': on input sk' and $m \in \{0,1\}^*$, $\sigma \leftarrow \mathsf{Sign}_{sk}(H^s(m))$.
- Vrfy': on input pk', $m \in \{0,1\}^*$ and σ , output $1 \iff$ Vrfy $_{pk}(H^s(m),\sigma)=1.$

Theorem 4

If Π is existentially unforgeable under an adaptive CMA and Π_H is collision resistant, then Construction is existentially unforgeable under an adaptive CMA.

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- **3** One-Time Signature Scheme
- 4 The Digital Signature Standard (DSS)
- 5 Certificates and Public-Key Infrastructures

One-Time Signature (OTS)

One-Time Signature (OTS): sign only one message with one secret.

The OTS experiment Sigforge $_{\mathcal{A},\Pi}^{1-\text{time}}(n)$:

- **2** \mathcal{A} is given input 1^n and a single query m' to $\mathsf{Sign}_{sk}(\cdot)$, and outputs (m,σ) , $m \neq m'$.
- $\textbf{3} \ \mathsf{Sigforge}_{\mathcal{A},\Pi}^{1\text{-time}}(n) = 1 \iff \mathsf{Vrfy}_{pk}(m,\sigma) = 1.$

Definition 5

A signature scheme Π is **existentially unforgeable under a** single-message attack if \forall PPT \mathcal{A} , \exists negl such that:

$$\Pr[\mathsf{Sigforge}_{\mathcal{A},\Pi}^{1-\mathsf{time}}(n) = 1] \le \mathsf{negl}(n).$$

Lamport's OTS

Idea: OTS from OWF; one mapping per bit.

Construction 6

f is a one-way function.

- Gen: on input 1^n , for $i \in \{1, ..., \ell\}$:
 - **1** choose random $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$.
 - **2** compute $y_{i,0} := f(x_{i,0})$ and $y_{i,1} := f(x_{i,1})$.

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \quad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}.$$

- Sign: $m = m_1 \cdots m_\ell$, output $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell})$.
- Vrfy: $\sigma = (x_1, \dots, x_\ell)$, output $1 \iff f(x_i) = y_{i,m_i}$, for all i.

Theorem 7

If f is OWF, Π is OTS for messages of length polynomial ℓ .

Example of Lamport's OTS

Signing m = 011

$$sk = \begin{pmatrix} x_{1,0} & x_{2,0} & x_{3,0} \\ x_{1,1} & x_{2,1} & x_{3,1} \end{pmatrix} \implies \sigma = (x_{1,0}, x_{2,1}, x_{3,1})$$

$$\sigma = (x_1, x_2, x_3):$$

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & y_{3,0} \\ y_{1,1} & y_{2,1} & y_{3,1} \end{pmatrix} \implies \begin{cases} f(x_1) \stackrel{?}{=} y_{1,0} \\ f(x_2) \stackrel{?}{=} y_{2,1} \\ f(x_3) \stackrel{?}{=} y_{3,1} \end{cases}$$

A Stateless Solution

Idea: use deterministic randomness to emulate the state of tree.

Use PRF F and two keys k, k' (secrets) to generate pk_w, sk_w :

- 1 compute $r_w := F_k(w)$.
- **2** compute $(pk_w, sk_w) := \text{Gen}(1^n; r_w)$, using r_w as random coins.

k' is used to generate r'_w that is used to compute σ_w .

Lemma 8

If OWF exist, then \exists OTS (for messages of arbitrary length).

Theorem 9

If OWF exists, then \exists (stateless) secure signature scheme.

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- **3** One-Time Signature Scheme
- 4 The Digital Signature Standard (DSS)
- 5 Certificates and Public-Key Infrastructures

Construction of DSS

DSS uses Digital Signature Algorithm (DSA, a variant of ElGamal signature scheme). [FIPS 186]

Construction 10

- \mathcal{G} outputs (p, q, g): (1) p and q are primes with ||q|| = n; (2) q|(p-1) but $q^2 \nmid (p-1)$:
- (3) g is a generator of the subgroup of \mathbb{Z}_p^* of order q.
 - Gen: $(p, q, g) \leftarrow \mathcal{G}$. hash function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_q$. $x \leftarrow \mathbb{Z}_q$ and $y := [g^x \bmod p]$. $pk = \langle H, p, q, g, y \rangle$. $sk = \langle H, p, q, g, x \rangle$.
 - Sign: $k \leftarrow \mathbb{Z}_q^*$ and $r := [[g^k \mod p] \mod q]$, $s := [(H(m) + xr) \cdot k^{-1} \mod q]$. Output (r, s).
 - Vrfy: $u_1 := [H(m) \cdot s^{-1} \mod q], u_2 := [r \cdot s^{-1} \mod q].$ Output $1 \iff r \stackrel{?}{=} [[g^{u_1}y^{u_2} \mod p] \mod q].$

Correctness and Security of DSS

$$r = [[g^k \bmod p] \bmod q] \bmod s = [(\hat{m} + xr) \cdot k^{-1} \bmod q], \ \hat{m} = H(m).$$

$$g^{\hat{m}s^{-1}}y^{rs^{-1}} = g^{\hat{m}\cdot(\hat{m}+xr)^{-1}k}g^{xr\cdot(\hat{m}+xr)^{-1}k} \pmod{p}$$

$$= g^{(\hat{m}+xr)\cdot(\hat{m}+xr)^{-1}k} \pmod{p}$$

$$= g^k \pmod{p}.$$

$$[[g^k \bmod p] \bmod q] = r.$$

Security of DSS relies on the hardness of discrete log problem. The entropy, secrecy and uniqueness of k is critical.

Insecurity

No proof of security for DSS based on discrete log assumption.

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- **3** One-Time Signature Scheme
- 4 The Digital Signature Standard (DSS)
- 5 Certificates and Public-Key Infrastructures

Certificates

 $\textbf{Certificates} \ \operatorname{cert}_{C \to B} \stackrel{\operatorname{def}}{=} \operatorname{Sign}_{sk_C}(\text{`Bob's key is } pk_B\text{'}).$

Public-Key Infrastructure (PKI)

- A single CA: is trusted by everybody.
 - Strength: simple
 - Weakness: single-point-of-failure
- Multiple CAs: are trusted by everybody.
 - Strength: robust
 - Weakness: cannikin law
- **Delegation and certificate chains**: The trust is transitive.
 - Strength: ease the burden on the root CA.
 - Weakness: difficult for management, cannikin law.
- **"Web of trust"**: No central points of trust, e.g., PGP.
 - Strength: robust, work at "grass-roots" level.
 - Weakness: difficult to manage/give a guarantee on trust.

Invalidating Certificates

Expiration: include an *expiry date* in the certificate.

$$\operatorname{cert}_{C o B} \stackrel{\operatorname{def}}{=} \operatorname{Sign}_{sk_C}$$
 ('bob's key is pk_B ', date).

Revocation: explicitly revoke the certificate.

$$\operatorname{cert}_{C \to B} \stackrel{\text{def}}{=} \operatorname{Sign}_{sk_C}$$
 ('bob's key is pk_B ', ###).

"###" represents the serial number of this certificate. **Cumulated Revocation**: CA generates *certificate revocation list* (CRL) containing the serial numbers of all revoked certificates, signs CRL with the current date.

Summary

- Textbook RSA, Hashed RSA, Hash-and-Sign, Lamport's OTS, DSS.
- Stateful/Chain-based/Tree-based/Stateless Signature Scheme.
- Certificates, PKI, CA, Web-of-trust, Invalidation.