

Espaces euclidiens

Soit E un espace euclidien de dimension finie n>0. On note $\varphi(u,v)$ le produit scalaire de u et v, ||u|| la norme de u et (e_1,\ldots,e_n) une base orthonormale de E pour φ .

1. Adjoint d'un endomorphisme

Théorème 1 - Pour tout endomorphisme $f \in \mathcal{L}(E)$, il existe un unique endomorphisme f^* de E tel que

$$\forall x \in E, \quad \varphi(f(x), y) = \varphi(x, f^*(y)).$$

L'endomorphisme f^* s'appelle l'adjoint de f.

Démonstration : comme φ est un produit scalaire, il est clair que si f^* existe, il est unique. Si f^* existe, on a, pour tout $i \in \{1, \ldots, n\}$ et pour tout $y \in E$, $\varphi(f(e_i), y) = \varphi(e_i, f^*(y))$.

Donc
$$f^*$$
 est défini par $f^*(y) = \sum_{i=1}^n \varphi(f(e_i), y)e_i$ pour tout $y \in E$.

Proposition 2 – L'application $f \mapsto f^*$ est un endomorphisme involutif de $\mathcal{L}(E)$ et on a

- pour tout $(f,g) \in \mathcal{L}(E)^2$, $(f \circ g)^* = g^* \circ f^*$ pour tout $f \in GL(E)$, $(f^{-1})^* = (f^*)^{-1}$

Proposition 3 – Pour tout $f \in \mathcal{L}(E)$, $\operatorname{Ker}(f^*) = \left(\operatorname{Im}(f)\right)^{\perp}$ et $\operatorname{Im}(f^*) = \left(\operatorname{Ker}(f)\right)^{\perp}$.

Démonstration : soit $x \in \operatorname{Ker}(f^*)$. Montrons que $x \in (\operatorname{Im}(f))^{\perp}$, c'est-à-dire que, pour tout $y \in \operatorname{Im}(f)$, $\varphi(x,y) = 0$. Comme $y \in \operatorname{Im} f$, il existe $x' \in E$ tel que y = f(x). On a alors $\varphi(x,y)=\varphi(x,f(x'))=\varphi(f^*(x),x')=\varphi(0,x')=0.$ On a donc prouvé que $\operatorname{\mathsf{Ker}}(f^*) \subset \left(\operatorname{\mathsf{Im}}(f)\right)^{\perp}$

Soit $x \in (\operatorname{Im}(f))^{\perp}$. Montrons que $x \in \operatorname{Ker}(f^*)$. Comme φ est un produit scalaire, il suffit de vérifier que, pour tout $x' \in E$, on a $\varphi(f^*(x), x') = 0$. Or $\varphi(f^*(x), x') = \varphi(x, f(x')) = 0$ $\operatorname{car} f(x') \in \operatorname{Im}(f)$ et $x \in \left(\operatorname{Im}(f)\right)^{\perp}$. On a donc $\left(\operatorname{Im}(f)\right)^{\perp} \subset \operatorname{Ker}(f^*)$. On procédera de même pour la deuxième égalité.

Proposition 4 – Soient $f \in \mathcal{L}(E)$, $g \in \mathcal{L}(E)$ et \mathcal{B} une base orthonormale de E. $g = f^*$ si et seulement si $Mat(f, \mathcal{B}) = {}^tMat(g, \mathcal{B})$.

Démonstration : en effet,
$$Mat(f, \mathcal{B})_{ij} = \varphi(f(e_i), e_j)$$
 et ${}^tMat(g, \mathcal{B})_{ij} = \varphi(e_i, g(e_j))$.

Corollaire 5 - Un endomorphisme et son adjoint ont le même polynôme caractéristique.

Ils ont donc les mêmes valeurs propres et si l'un est diagonalisable, l'autre aussi.

2. Endomorphismes orthogonaux

2.1. Définition

Définition 6 – Un automorphisme f de E est dit orthogonal si $f^* = f^{-1}$.

Proposition 7 — L'ensemble des automorphismes orthogonaux d'un espace euclidien E est un sous-groupe de $\operatorname{GL}(E)$, appelé groupe orthogonal de E et noté $\operatorname{O}(E)$. L'ensemble des des automorphismes orthogonaux de déterminant 1 est un sous-groupe de $\operatorname{O}(E)$, appelé groupe spécial orthogonal de E et noté $\operatorname{SO}(E)$.

2.2. Propriétés

Proposition 8 – Soit f un endomorphisme de E, les assertions suivantes sont équivalentes

$$\begin{array}{l} \textit{i)} \ \forall (x,y) \in E^2, \ \varphi \big(f(x), f(y) \big) = \varphi (x,y) \\ \textit{ii)} \ \forall x \in E, \| f(x) \| = \| x \| \\ \textit{iii)} \ f \in \mathsf{O}(E) \\ \end{array}$$

Corollaire 9 – Un endomorphisme f de E est orthogonal si et seulement si l'image par f d'une base orthonormale de E est une base orthonormale.

Corollaire 10 – Un endomorphisme f de E est orthogonal si et seulement si sa matrice M dans une base orthonormale vérifie ${}^t\!MM = I_n$.

Définition 11 – Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite orthogonale si elle est inversible et si ${}^t M = M^{-1}$.

3. Endomorphismes symétriques

3.1. Définitions

Définition 12 – Un endomorphisme f de E est dit symétrique (respectivement antisymétrique) s'il vérifie, pour tout $(x,y) \in E^2$,

$$\varphi(f(x), y) = \varphi(x, f(y))$$
 (respectivement $\varphi(f(x), y) = -\varphi(x, f(y))$).

Remarque - Une application $f: E \rightarrow E$ qui vérifie

pour tout
$$(x,y)\in E^2$$
, $\varphi(f(x),y)=\varphi(x,f(y))$ est un endomorphisme. En effet, pour tout $(x,x',y)\in E^3$ et $(a,a')\in \mathbb{K}^2$, on a

$$\varphi(f(ax + a'x'), y) = \varphi(ax + a'x', f(y))$$

$$= a\varphi(x, f(y)) + a'\varphi(x', f(y))$$

$$= a\varphi(f(x), y) + a'\varphi(f(x'), y)$$

$$= \varphi(af(x) + a'f(x'), y)$$

On note $\mathscr{S}(E)$ l'ensemble des endomorphismes symétriques de E. C'est un sous-espace vectoriel de $\mathscr{L}(E)$.

Exemples - Les homothéties, les projections orthogonales et les symétries orthogonales de E sont des endomorphismes symétriques.

Proposition 13 – L'ensemble $\mathscr E$ est somme directe de $\mathscr S(E)$ et de $\mathscr A(E)$ l'ensemble des endomorphismes antisymétriques.

3.2. Propriétés

Soit $f \in \mathcal{S}(E)$, alors

- si F est un sous-espace vectoriel stable par f, alors F^{\perp} est stable par F.
- $-\operatorname{Im} f$ et Ker f sont supplémentaires et orthogonaux dans E.
- Les sous-espaces propres de f sont supplémentaires et orthogonaux.
- Le polynôme caractéristique de f est scindé sur \mathbb{R} .
- L'endomorphisme f est diagonalisable dans une base orthonormale (ou encore il existe une base orthonormée de E formée de vecteurs propres de f).

3.3. Caractérisation matricielle

Proposition 14 – Un endomorphisme de E est symétrique si et seulement si sa matrice dans une base orthonormale quelconque de E est symétrique.

Soit $\mathscr B$ une base orthonormale de E. L'application de $\mathscr S(E)$ dans l'ensemble des matrices symétriques réelles carrées d'ordre n qui associe à f sa matrice dans la base $\mathscr B$ est un isomorphisme. On en déduit que

Proposition 15 – dim
$$\mathscr{S}(E) = \frac{1}{2} n(n+1)$$
 où $n = \dim E$.

Corollaire 16 – Toute matrice symétrique réelle M est diagonalisable et il existe une matrice P orthogonale telle que $P^{-1}MP$ soit diagonale.

3.4. Caractérisation des valeurs propres

Théorème 17 – Soit f un endomorphisme symétrique de E et $\rho = \max\{|\lambda| \; ; \; \lambda \in \operatorname{Spectre}(f)\}$. On a

$$\|f\|=\rho=\sup\left\{\frac{|\varphi(f(x),x)|}{\|x\|^2}\,;\,x\in E,x\neq 0\right\}.$$

Démonstration : l'endomorphisme f étant symétrique, il est diagonalisable dans une base orthonormale de E. Notons (e_1, \ldots, e_n) une base orthonormale de vecteurs propres de f et $(\lambda_1, \ldots, \lambda_n)$ les valeurs propres associées.

Soit
$$x \neq 0$$
 avec $x = \sum_{i=1}^{n} e_i$. On a alors

$$\frac{\varphi(f(x), x)}{\|x\|^2} = \frac{\sum_{i=1}^n \lambda_i x_i^2}{\sum_{i=1}^n x_i^2}.$$

On a donc

$$\left|\frac{\varphi\big(f(x),x\big)}{\|x\|^2}\right| \le \rho.$$

Il suffit ensuite de prendre pour x un vecteur propre associé à la valeur propre λ_k telle que $|\lambda_k| = \rho$ pour obtenir le résultat.

Corollaire 18 – Soit f un endomorphisme symétrique de E de valeurs propres $\lambda_1 \leq \ldots \leq \lambda_n$ et (e_1,\ldots,e_n) une base orthonormale de E formée de vecteurs propres de f.

Soit
$$V_k = \text{Vect}(e_1, \dots, e_k)$$
. Alors

$$\lambda_k = \sup \left\{ \frac{|\varphi(f(x), x)|}{\|x\|^2} ; x \in V_k, x \neq 0 \right\}$$

П

Démonstration : on fait de même qu'à la proposition précédente sur l'espace V_k .

Théorème 19 – (Courant-Fischer)

Soit E un espace vectoriel euclidien de dimension n, f un endomorphisme symétrique de E de valeurs propres $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Si $k \in \mathbb{N}_n^*$, on note F_k l'ensemble des sous-espaces vectoriels de E de dimension k. Alors, pour $1 \leq k \leq n$,

$$\lambda_k = \inf_{L \in F_k} \sup \left\{ \frac{\varphi(f(x),x)}{\|x\|^2} \, ; \, x \in L, x \neq 0 \right\} = \sup_{L \in F_{n-k+1}} \inf \left\{ \frac{\varphi(f(x),x)}{\|x\|^2} \, ; \, x \in L, x \neq 0 \right\}.$$

Démonstration : d'après le corollaire précédent,

$$\lambda_k = \sup\left\{\frac{|\varphi(f(x),x)|}{\|x\|^2}\,;\, x\in V_k, x\neq 0\right\} \geq \inf_{L\in F_k}\sup\left\{\frac{\varphi(f(x),x)}{\|x\|^2}\,;\, x\in L, x\neq 0\right\}.$$

Il reste à démontrer l'inégalité inverse, c'est-à-dire que

$$\lambda_k \leq \sup \left\{ \frac{|\varphi(f(x),x)|}{\|x\|^2} \, ; \, x \in L, x \neq 0 \right\} \text{ pour tout } L \in F_k.$$

Soit $L \in F_k$, alors $L \cap V_{k-1}^{\perp} \neq 0$ (il suffit de considérer les dimensions de ces espaces pour obtenir ce résultat). Or si $v \in L \cap V_{k-1}^{\perp}$ avec $v \neq 0$, on a

$$\lambda_k \leq \frac{\varphi(f(v),v)}{\|v\|^2} \leq \sup \left\{ \frac{|\varphi(f(x),x)|}{\|x\|^2} \, ; \, x \in L, x \neq 0 \right\}.$$

4. Formes quadratiques sur un espace euclidien

4.1. Endomorphisme associé à une forme quadratique

On note également $\mathcal{Q}(E)$ l'espace vectoriel des formes quadratiques définies sur E.

Soit
$$L: \begin{bmatrix} \mathscr{L}(E) & \to & Q(E) \\ f & \mapsto & q \end{bmatrix}$$
 où q est définie par $q(x) = \varphi(f(x), x)$.

Proposition 20 – L est une application linéaire surjective. Son noyau est l'espace vectoriel des endomorphismes antisymétriques. L induit un isomorphisme de l'espace vectoriel des endomorphismes symétriques dans Q(E).

Définition 21 – On dit que f et q sont associés si L(f) = q.

Proposition 22 – Si f et q sont associées, alors q et f sont représentées dans toute base orthonormée par la même matrice.

4.2. Diagonalisation simultanée

Théorème 23 – Soit $q: E \to \mathbb{R}$ une forme quadratique. Il existe une base orthonormée de l'espace euclidien E qui est orthogonale pour la forme quadratique q.

Démonstration : soit f l'endomorphisme symétrique de E associée à q et ψ la forme bilinéaire symétrique associée à q. Comme f est symétrique, il existe une base orthonormée (e_1,\ldots,e_n) de E formée de vecteurs propres de f. Soient $\lambda_1,\ldots,\lambda_n$ les valeurs propres de f avec $f(e_i) = \lambda_i$ pour $i \in \{1,\ldots,n\}$. Vérifions que cette base est orthogonale pour q.

On a, pour $i \neq j$, $\psi(e_i, e_j) = \varphi(f(e_i), e_j) = \lambda_i \varphi(e_i, e_j) = 0$ car c'est une base orthogonale de E. La base (e_1, \ldots, e_n) est donc bien orthogonale pour q.

Corollaire 24 – Une forme quadratique q est positive (respectivement définie positive) si et seulement si toutes les valeurs propres de l'endomorphisme symétrique associé sont positives (respectivement strictement positives).

Démonstration : en reprenant les notations de la démonstration du théorème précédent, on a :

$$q(x_1e_1 + \dots + x_ne_n) = q(e_1)x_1^2 + \dots + q(e_n)x_n^2 = \lambda_1x_1^2 + \dots + \lambda_nx_n^2$$

Théorème 25 – Soit E un espace vectoriel de dimension finie. Soient q et q' deux formes quadratiques sur E de matrices respectives, dans une base donnée de E, A et B. On suppose que q est définie positive. On munit E du produit scalaire φ associé à q.

Il existe une base orthonormée de (E,φ) qui est orthogonale pour q'. Autrement dit, il existe une matrice P inversible telle que ${}^t\!PAP=I_n$ et ${}^t\!PBP$ soit diagonale.

ESPACES EUCLIDIENS

1.	Adjoint d'un endomorphisme 1
2.	Endomorphismes orthogonaux
	2.1. Définition
	2.2. Propriétés
3.	Endomorphismes symétriques
	3.1. Définitions
	3.2. Propriétés
	3.3. Caractérisation matricielle
	3.4. Caractérisation des valeurs propres
4.	Formes quadratiques sur un espace euclidien
	4.1. Endomorphisme associé à une forme quadratique
	4.2. Diagonalisation simultanée