

LSTM – tidsserier

SOK-3023 (ML for økonomer), 5 ECTS

Markus J. Aase

markus.j.aase@uit.no, kontor 02.411 Universitetslektor i matematikk og statistikk

Handelshøgskolen, UiT Master i samfunnsøkonomi med datavitenskap

Til nå

- Maskinlæring
 - Lineær algebra, statistikk og kalkulus
 - Prediksjon vs inferens
 - Regresjon vs klassifikasjon
 - Bias variance trade-off
 - Nødvendighet av god data
 - Reducible og irreducible error
 - Tensorer
 - Veiledet læring
 - Overfitting/underfitting
 - Trenings-, validerings- og testsett
 - Evalueringsmetrikker accuracy, sensitivitet, precision osv.
 - Arkitektur i nevrale nettverk
 - Aktiveringsfunksjoner, loss/kost-funksjon
 - «Læring» = minimering av loss-funksjon
 - Epoch, batch, batch_size
 - Gradient descent

Recurrent neural networks

- En variant av nevrale nettverk
- Brukt til prosessering av sekvensielle data
- «Vanlige» nevrale nettverk prosesserer data ved en enkelt passering.
- RNN prosesserer data over flere steg, og egner seg godt for blant annet tidsserier.
 - Kan også benyttes i tekst- og taleprosessering.

Long Short-Term Memory modeller

- Vi har snakket om gradient descent som en del av pensum i kurset.
- RNN kan lide av det som kalles vanishing gradient problem ikke en del av pensum.
- Men det problemet, gjorde RNN dårlige til å lære avhengigheter over tid. Dette ble løst av LSTM modeller (1997), og er derfor det vi vanligvis bruker når vi snakker om RNN.

La oss gå til tavla ©

• For de som ikke er i forelesning, se GitHub for forelesningsnotater...