Градиентные методы обучения линейных моделей. Отчет.

Пацация Александр, 317 группа

9 ноября 2021 г.

1 Введение

В данном отчете описываются эксперименты и их результаты применительно к алгоритму логистической регрессии. Эксперименты проводятся над набором данных, представляющим из себя комментарии из англоязычной Википедии. По этим данным требуется научится определять является ли комментарий токсичным или нет.

$\mathbf{2}$ Теоретическая часть

В текущем разделе выводится формула градиента функционала потерь на всей выборке для задач бинарной и многоклассовой логистической регрессии.

2.1 Градиент функционала потерь для задачи бинарной логистической ре-

 $X=(x_i,y_i)_{i=1}^l$ — обучающая выборка, где $x_i\in\mathbb{R}^d,\,y_i\in\{-1,1\}.$ $\mathcal{L}(z)=\log{(1+e^{-z})}$ — логарифмическая функция потерь.

 $a(x) = sign(\langle w, x \rangle)$ – линейный классификатор, где $w \in \mathbb{R}^d$ – вектор коэффициентов (считается, что признак из единиц уже добавлен в выборку).

 $M_i(w) = y_i \langle w, x_i \rangle$ - отступ объекта x_i относительно класса y_i .

 $Q(X,w)=rac{1}{l}\sum_{i=1}^{l}\mathcal{L}(M_i(w))+rac{\lambda}{2}\|w\|_2^2$ - функционал потерь на всей выборке X.

Градиент для функции потерь $\mathcal{L}(M(w))$:

$$d_{w}\mathcal{L} = d(\log(1 + e^{-M})) = \frac{-e^{-M}}{(1 + e^{-M})} dM = \frac{-e^{-y\langle w, x \rangle}}{(1 + e^{-y\langle w, x \rangle})} d(y\langle w, x \rangle) =$$

$$= \frac{-e^{-y\langle w, x \rangle}}{(1 + e^{-y\langle w, x \rangle})} y\langle dw, x \rangle = \frac{-e^{-y\langle w, x \rangle}}{(1 + e^{-y\langle w, x \rangle})} y\langle x, dw \rangle = \frac{-1}{(1 + e^{y\langle w, x \rangle})} y\langle x, dw \rangle$$

 $\Rightarrow \nabla_w \mathcal{L}(M(w)) = \sigma(-y\langle w, x \rangle) yx$ – градиент функции потерь $\mathcal{L}(M(w))$), где $\sigma(z) = \frac{1}{1+e^{-z}}$ – сигма функция. Градиент для функционала потерь на всей выборке Q(X, w):

$$\nabla_{w} Q(X, w) = -\frac{1}{l} \sum_{i=1}^{l} \nabla_{w} \mathcal{L}(M_{i}(w)) + \frac{\lambda}{2} \nabla_{w} (\|w\|_{2}^{2}) = -\frac{1}{l} \sum_{i=1}^{l} \frac{1}{(1 + e^{y_{i} \langle w, x_{i} \rangle})} y_{i} x_{i} + \lambda w$$

 $\Rightarrow \nabla_w Q(X,w) = -\frac{1}{l} \sum_{i=1}^l \sigma(-y_i \langle w, x_i \rangle) y_i x_i + \lambda w - \text{градиент функционала потерь на всей выборке } Q(X,w).$

2.2 Градиент функционала потерь для задачи многоклассовой логисчтической регрессии

 $X=(x_i,y_i)_{i=1}^l$ — обучающая выборка, где $x_i\in\mathbb{R}^d,\,y_i\in\{1,\ldots C\}.$ $P(y=j|x)=rac{e^{\langle w_j,x
angle}}{\sum\limits_{i=1}^C e^{\langle w_k,x
angle}}$ — вероятность j-го класса при условии объекта x.

 $a(x)=arg\max_{k\in\{1,...C\}}sign(\langle w_k,x\rangle)$ – линейный классификатор, где $w_k\in\mathbb{R}^d$ – вектор коэффициентов k-го класса (по-прежнему считается, что признак из единиц уже добавлен в выборку).

 $M_i(w) = y_i \langle w_i, x_i \rangle - \max_{j \neq i} y_j \langle w_j, x_i \rangle$ - отступ объекта x_i относительно класса y_i .

 $Q(X,w) = -\frac{1}{l} \sum_{i=1}^{l} log(P(y_i|x_i)) + \frac{\lambda}{2} \sum_{k=1}^{C} \|w_k\|_2^2$ - функционал потерь на всей выборке X.

$$\begin{split} d_{w_{j}}(log(P(y_{i}|x_{i}))) &= d \left(log \frac{e^{\langle w_{i}, x_{i} \rangle}}{\sum\limits_{k=1}^{C} e^{\langle w_{k}, x_{i} \rangle}} \right) = d \left(\langle w_{i}, x \rangle - log(\sum\limits_{k=1}^{C} e^{\langle w_{k}, x \rangle}) \right) = \\ [y_{i} &= j] x_{i}^{T} dw_{j} - \frac{e^{\langle w_{j}, x_{i} \rangle} x_{i}^{T} dw_{j}}{\sum\limits_{k=1}^{C} e^{\langle w_{k}, x \rangle}} = \langle [y_{i} = j] x_{i} - \frac{e^{\langle w_{j}, x_{i} \rangle} x_{i}}{\sum\limits_{k=1}^{C} e^{\langle w_{k}, x \rangle}}, dw_{j} \rangle \end{split}$$

 $\Rightarrow \nabla_{w_j}log(P(y_i|x_i)) = [y_i = j]x_i - \frac{e^{\langle w_j, x_i \rangle} x_i}{\sum\limits_{k=1}^C e^{\langle w_k, x \rangle}} - \text{градиент по } w_j \text{ функции потерь на объекте } x_i.$

$$d_{w_j}\left(\frac{\lambda}{2}\sum_{k=1}^{C}\|w_k\|_2^2\right) = d(\frac{\lambda}{2}\|w_j\|_2^2) = \lambda w_j^t dw_j$$

 $\Rightarrow \nabla_{w_j} \left(\frac{\lambda}{2} \sum_{k=1}^C \|w_k\|_2^2 \right) = \lambda w_j$ – градиент члена регуляризации по w_j . \Rightarrow

$$\Rightarrow \nabla_{w_j}Q(X,w) = -\frac{1}{l}\sum_{i=1}^l \nabla_{w_j}log(P(y_i|x_i)) + \nabla_{w_j}\frac{\lambda}{2}\sum_{k=1}^C \|w_k\|_2^2 = -\frac{1}{l}\sum_{i=1}^l \left([y_i=j]x_i - \frac{e^{\langle w_j,x_i\rangle}x_i}{\sum\limits_{k=1}^C e^{\langle w_k,x\rangle}}\right) + \lambda w_j$$

$$\Rightarrow \nabla_w Q(X, w) = (\nabla_{w_j} Q(X, w))_{j=1}^d$$

2.3 Сведение задачи многоклассовой регрессии к бинарной при количестве классов равном двум

 $X=(x_i,y_i)^l$ — обучающая выборка, где $x_i\in\mathbb{R}^d,\ y_i\in\{-1,1\}.$ $a(x)=arg\max_{k\in\{-1,1\}}sign(\langle w_k,x\rangle)$ — многоклассовый линейный классификатор при двух классах.

$$a(x) = arg \max_{k \in \{-1,1\}} sign(\langle w_k, x \rangle) = sign(\langle w_1, x \rangle - \langle w_{-1}, x \rangle) = \{w = w_1 - w_{-1}\} = sign(\langle w, x \rangle)$$

⇒ задача многоклассовой классификации сведена к бинарной.

3 Эксперименты

3.0 Предварительные замечания

Формула шага градиентного спуска:

$$w^{i+1} = w^i - \eta_i \nabla Q(X, w^i), \eta_i = \frac{\alpha}{i\beta}$$

Формула шага стохастического градиентного спуска:

$$w^{i+1} = w^i - \eta_i \nabla \varepsilon_i, \eta_i = \frac{\alpha}{i^{\beta}}$$

где $\varepsilon_i = \frac{1}{p} \sum_{k=1}^p \mathcal{L}(M(x_k, w_i))$ – значение функционала ошибки на батче данных, p – размер батча , α, β – гиперпараметры. В приведенных ниже экспериментах в выборку не добавляется единичный признак (так как это не было указано в задании). Параметр регуляризации по умолчанию равен $\lambda = 0.01$. В качестве начального приближения w_0 по умолчанию выбирается нулевой вектор. Точность считается по метрике **асситасу**. Исходная обучающая выборка делится на обучающую и валидационную в соотношении 7:3. Точность представленная на графике считается для валидационной выборки. Для сокращения записи, в

некоторых случаях алгоритм градиентного спуска будет называться GD (Gradient descent), а алгоритм стохастического градиентного спуска будет называться SGD (Stochastic Gradient Descent). Далее, под сходимостью будет пониматься достижение критерия остановки:

$$|Q_{k+1} - Q_k| < tolerance \tag{1}$$

где k – номер итерации для GD и эпохи для SGD. По умолчанию рассматривается $tolerance = 10^{-5}$.

3.1 Первый эксперимент

Первым делом, данные приводятся к унифицированному виду: все символы переводятся в нижний регистр и удаляются все символы отличные от букв, цифр или пробелов. Перевод в нижний регистр требуется для того, чтобы одинаковые слова не считались за разные признаки. Символы, отличные от цифр и букв, не несут никакой смысловой нагрузки и не представляют пользы.

3.2 Второй эксперимент

В данном эксперименте, датасет приводится к разреженной матрице в соответствии с моделью ${\bf Bag}$ of words. Значение в позиции (i,j) равняется количеству слов j в документе i. Также, на этом этапе понижается размерность признакового пространства путем отбора слов по частоте встречаемости во всех документах (параметр ${\bf min_df}$ в конструкторе класса ${\bf CountVectorizer}$). Итоговая размерность признакового пространства – ${\bf 3735}$

3.3 Третий эксперимент

В данном эксперименте анализируется поведение метода градиентного спуска при различных значениях гиперпараметров.

Рис. 1: Поведение Q(X, w) при различных значениях параметра α ($\beta = 0, w_0 = 0$)для GD.

Зависимость точности от времени и номера итерации при различных lpha

Рис. 2: Точность при различных значениях параметра α ($\beta = 0, w_0 = 0$) для GD.

На рис. 1, 2 представлена зависимость функционала Q(X,w) и точности от значений α , при нулевом β . При увеличении значения α от 0.02 до 0.5 наблюдается увеличении скорости сходимости алгоритма (и в терминах итераций, и в терминах времени), а также небольшое улучшение точности. Начиная с $\alpha=0.7$ алгоритм перестает сходится. Наблюдаются скачки в окрестности оптимума. Можно сделать вывод о том, что алгоритм градиентного спуска способен сходится к оптимуму при постоянном значении шага ($\beta=0$), но только при α меньше определенного значения.

Рис. 3: Поведение Q(X, w) при различных значениях параметра β ($\alpha = 1, w_0 = 0$) для GD.

Рис. 4: Точность при различных значениях параметра β ($\alpha = 1, w_0 = 0$) для GD.

На рис. 3, 4 изображено поведение Q(X,w) и точности при различных значениях β и фиксированном значении α . При маленьких значениях β (0.2, 0.4) наблюдаются скачки на первых итерациях. Это связано с тем, что на в начале величины k^{β} недостаточно, чтобы скомпенсировать α , поэтому происходят скачки в противоположных полуокрестностях оптимума. Далее, при увеличении значения β уменьшается время сходимости и количество итерации алгоритма, также ухудшается точность, так как при больших значениях β шаг слишком быстро стремится к нулю, и алгоритм сходится в большей окрестности минимума. Алгоритм показывает лучший результат при $\beta=0.2$.

Зависимость функционала потерь Q(X, w) от времени и номера итерации при различном выборе w_0

Рис. 5: Поведение Q(X, w) при различном выборе начального приближения w_0 ($\alpha = 1, \beta = 0.5$) для GD.

Рис. 6: Точность при различном выборе начального приближения w_0 ($\alpha=1,\,\beta=0.5$) для GD.

На рис. 5, 6 представлено влияние начального приближения w_0 на точность и значение Q(X, w). Рассматриваются следующие начальные приближения:

- $w_0 = 0$ нулевое значение вектора признаков (по умолчанию).
- $w_0^j = \frac{\langle y, f_j \rangle}{\langle f_j, f_j \rangle}$, где $f_j = (f_j(x_i))_{i=1}^l$ вектор значений признака на обучающей выборке. Данная оценка является оптимальной, если признаки некоррелированы.
- $w_0^j = random(-1/2n, 1/2n)$, где n размерность признакового пространства.

Анализируя график, можно сделать предположение о том, что признаки сильно коррелируют, так как при $w_0^j = \frac{\langle y, f_j \rangle}{\langle f_j, f_j \rangle}$ функционал Q(X, w) достигает очень большого значения, и алгоритм сходится лишь в большой окрестность оптимума. При остальных значениях начального приближения значение Q(X, w) близко к минимуму, и алгоритм показывает практический идентичные результаты. Для следующих экспериментов будут использоваться следующие гиперпараметры алгоритма градиентного спуска:

• $\alpha = 0.3$.

- $\beta = 0.2$.
- $w_0 = 0$.

3.4 Четвертый эксперимент

В данном эксперименте, аналогично предыдущему, анализируется поведение метода стохастического градиентного спуска при различных значениях гиперпараметров.

Зависимость функционала потерь Q(X,w) от времени и номера эпохи при различных α

Рис. 7: Поведение Q(X, w) при различных α ($\beta = 0, w_0 = 0$) для SGD.

Зависимость точности от времени и номера эпохи при различных lpha

Рис. 8: Точность при различных α ($\beta = 0, w_0 = 0$) для SGD.

При значениях α , достаточно малых, чтобы сходился GD при $\beta=0$, алгоритм SGD совершает скачки в достаточно большой окрестности оптимума (рис. 7, 8). Даже при $\alpha=0.02$ SGD не способен достичь критерия остановки. Но можно отметить, что с уменьшением α амплитуда скачков уменьшается.

Зависимость функционала потерь Q(X,w) от времени и номера эпохи при различных α

Рис. 9: Поведение Q(X, w) при различных α ($\beta = 0.5, w_0 = 0$) для SGD.

Зависимость точности от времени и номера эпохи при различных lpha

Рис. 10: Точность при различных α ($\beta = 0.5, w_0 = 0$) для SGD.

На рис. 9, 10 изображена зависимость точности и Q(X,w) от параметра α при $\beta=0.5$. Из графиков видно, что при увеличении α уменьшается время рабаты алгоритма и количество эпох, при этом увеличивается точность, аналогично тому как ведет себя алгоритм градиентного спуска, при небольших значениях α . Лучший результат по времени наблюдается при $\alpha=0.75$, лучший результат по точности - при $\alpha=0.9$,

Рис. 11: Поведение Q(X, w) при различных β ($\alpha = 1, w_0 = 0$) для SGD.

Зависимость точности от времени и номера эпохи при различных $oldsymbol{eta}$

Рис. 12: Точность при различных β ($\alpha = 1, w_0 = 0$).

Из рис. 11, 12 на которых изображена зависимость Q(X,w) и точности при различных значениях β видно, что уже при малых β может отсутствовать сходимость алгоритма. При увеличении β уменьшается скорость сходимости. Лучшее качество достигается при $\beta=0.5$. При больших значениях качество алгоритма существенно падает, так как шаг спуска слишком быстро стремится к нулю.

Зависимость функционала потерь Q(X, w) от времени и номера эпохи при различном выборе w_0

Рис. 13: Поведение Q(X, w) при различном выборе начального приближения w_0 ($\alpha = 1, \beta = 0.5$ для SGD).

Рис. 14: Точность при различном выборе начального приближения w_0 ($\alpha=1,\ \beta=0.5$) для SGD.

На рис. 13, 14 рассматриваются такие же варианты начального приближения, как и в прошлом эксперименте. Результат схож, однако при $w_0^j = \frac{\langle y, f_j \rangle}{\langle f_j, f_j \rangle}$ SGD успевает сойтись к неплохому значению точности.

Рис. 15: Поведение Q(X, w) при различном выборе размера батча ($\alpha = 1, \beta = 0.5$ для SGD).

Рис. 16: Точность при различном выборе размера батча ($\alpha = 1, \beta = 0.5$) для SGD.

Дольше всего SGD работает при размере батча в 1 элемент (рис. 15, 16). Также, при таком размере оценка градиента функционала градиентом функции потерь на одном объекте достаточно зашумленная, поэтому наблюдаются частые скачки точности. То же самое можно сказать и про случай с размером батча в 10 элементов. При увеличении размера вплоть до 1000 уменьшается время сходимости. При размере 10000 время работы снова увеличивается. Лучший результат показывает алгоритм при размере батча в 100 объектов. Лучший результат наблюдается при размере батча в 100 объектов.

В последующих экспериментах будет использоваться следующий набор гиперпараметров для SGD:

- $\beta = 0.5$
- $\alpha = 0.9$
- $w_0 = 0$

3.5 Пятый эксперимент

В данном эксперименте сравнивается поведение GD и SGD при гиперпараметрах, отобранных в предыдущих экспериментах.

Из рис. 17, 18 видно, что SGD работает существенно быстрее чем GD (и в терминах времени, и в терминах эпох). Также, при SGD достигается лучшая точность.

Рис. 17: Сравнение GD и SGD по значениям функционала Q(X, w).

Рис. 18: Сравнение точности GD и SGD.

Меньшее количество проходов по всей выборке для SGD, объясняется тем, что в выборке часто могу находится объекты, не несущие полезной информации, а только увеличивающие время подсчета градиента. После перемешивания все объектов и смещении на градиент функционала на некоторой подвыборке, можно достичь сходимости на меньшем числе эпох. Сложность вычисления градиента на одной итерации: O(p) для SGD, где p – размер батча, O(l) для GD, где l – объем выборки. Поэтому SGD требуется меньше времени на сходимость при меньшем числе эпох. Однако, как было рассмотрено в предыдущих экспериментах, в отличие от GS, SGD не способен сходится при константном выборе шага ($\beta = 0$). Требуется динамическое уменьшение шага, либо ослабления критерия остановки.

3.6 Шестой эксперимент

В данном эксперименте к исходным данным применяется лемматизация (привидение слов в именительный падеж). Удаляются стоп-слова, которые встречаются с равной частотой как в токсичных комментариях, так и в обычных. Для лемматизации используется WordNetLemmatizer из библиотеки nltk. Для удаления стоп-слов используется их список также из библиотеки nltk. При неизменном параметре min_df=0.001 признаковое пространство уменьшается с 3735 до 3023. Результаты преобразования представлены на рис. 19

сравнение точности GD и SGD до и после лемматизации

Рис. 19: Сравнение GD и SGD после лемматизации и удаления стоп-слов.

Несмотря на уменьшение количества признаков, увеличивается точность на валидационной выборке. Также, уменьшается время работы GD, при неизменной количестве итераций. Время работы SGD, напротив, незначительно увеличивается.

3.7 Седьмой эксперимент

В данном эксперименте сравниваются две модели векторного представления текстов:

- Bag of words (использовалась в предыдущих экспериментах) j-ый признак текста равен числу вхождений в него j-го слова.
- **TF-IDF** j-ый признак текста равен числу вхождений в него j-го слова, умноженному на обратную частоту этого слова по всем текстам выборки.

Также будет рассмотрена влияние параметров $\min_{\mathbf{d}} \mathbf{d} \mathbf{f}$ и $\max_{\mathbf{d}} \mathbf{d} \mathbf{f}$, отвечающих за исключение слова встречаемость которых ниже или, соответственно, выше заданного порога.

Рис. 20: Сравнение моделей **TF-IDF** и **Bag of words**.

Модель **TF-IDF** работает лучше (в терминах точности) и быстрее (в терминах времени), при практически неизменном числе итераций для GD и эпох для SGD (рис. 20).

Зависимость признакового пространства и точности от параметра min_df

Рис. 21: Зависимость точности и размерности признакового пространства при различных значениях min df.

При исследовании влияния различных значений параметров min_df и max_df (рис. 21, 22) используется алгоритм SGD после лемматизации выборки и удаления стоп-слов. Точность считается на валидационной выборке.

Для обеих моделей при увеличении параметра $\min_{\mathbf{df}} \mathbf{df}$ наблюдается незначительная потеря качества при увеличении $\min_{\mathbf{df}} \mathbf{c} \ 10^{-5}$ до 10^{-3} . Однако Многократно снижается размерность признакового пространства (с 81945 до 3023). Это может говорить о том, что большинство очень редко встречающихся слов в документах не несут в себе полезной информации.

При уменьшении параметра **max_df** происходит заметное ухудшение точности вместе с уменьшением размерности признакового пространства. После удаления стоп-слов, большинство оставшихся признаков несут существенную смысловую нагрузку (как слова в документе).

Рис. 22: Зависимость точности и размерности признакового пространства при различных значениях

3.8 Восьмой эксперимент

В рамках данного эксперимента исследуется качество лучшего алгоритма на тестовой выборке по результатам предыдущих экспериментов. Анализируются конкретные примеры документов на которых была допущена ошибка.

Используется алгоритм SGD с следующими гиперпараметрами:

• $\alpha = 0.9$

min df.

- $\beta = 0.5$
- $w_0 = 0$

Обучение происходит на данных после лемматизации и удаления стоп-слов. Используется модель **TF-IDF**. $\min_{\mathbf{df}} = 10^{-4}$, $\max_{\mathbf{df}} = 10^{-1}$. Полученная точность: **0.8707**. Ошибки классификации были допущены на **2143** объектах принадлежащих классу нетоксичных комментариев (FP – False Positive) и на **632** объектах принадлежащих к классу токсичных комментариев (FN – False Negative). В качестве примеров FP можно рассмотреть следующие комментарии:

- 2. "I WILL BURN YOU TO HELL IF YOU REVOKE MY TALK PAGE ACCESS!!!!!!!!!!"
- 3. "== black mamba == It.is ponious snake of the word and but it not kills many people but king cobra kills many people in India"

В документе (1) содержится слово "jews", которое хоть и не является токсичным само по себе, но часто фигурирует в токсичных комментариях. Аналогично со словом "kills" в документе (3). Документ (2) содержит такие слова как "BURN" и "HELL", которые тоже часто фигурируют в токсичных комментариях. Стоит отметить, что отсутствие токсичности в комментарии (2) может быть поставлено под вопрос. Примеры FN:

- 1. "Y una mierda. Tu puta madre""
- 2. "How dare you vandalize that page about the HMS Beagle! Don't vandalize again, demon"
- 3. "Please, someone fix this godawful article."

Документ (2) написан на испанском языке, поэтому слова встречающиеся в нем очень редки среди всех документов. Можно предположить, что они отбрасываются параметром **min_df**. В документах (2) и (3) не употребляются слова, часто встречающиеся в токсичных комментариях.

3.9 Первое бонусное задание

В данном пункте исследуется влияние длин максимальных n-грамм (последовательности из n слов) на качество и время работы алгоритма. Используется параметр **ngramm_range** конструктора класса **TfidfVectorizer**. Точность исследуется на валидационной выборке используемой в эксперимента 3-7.

Рис. 23: Зависимость точности и размерности признакового пространства при различных значениях min df.

Добавление n-грамм дает некоторый прирост точности, однако время работы алгоритма заметно увеличивается (рис. 23). Лучший результат точности показывает алгоритм при ngram_range=(1,3). На тестовой выборке качество немного увеличивается: при ngram_range=(1,3) достигается точность 0.8736.

3.10 Второе бонусное задание

В рамках данного задания реализуется режим работы SGD, при котором батчи считываются с диска и выборка не хранится в оперативной памяти. Сравнивается время работы одной эпохи и точность SGD с модифицированным SGD. Оценивается экономия памяти. Преобразованная выборка хранится в формате **пру**.

Сравнение обычного SGD и SGD, читающего батчи с диска

Рис. 24: Сравнение двух режимов работы SGD.

На рис. 24 сравниваются время и точность двух режимом работы SGD по результатам 10 эпох при различных размерах батча. При считывании батчей с файла алгоритм работает немного медленнее. Точность сравнивается на тестовой выборке. При всех размерах батча кроме 10, обычный режим SGD работает точнее. Экономия памяти составляет примерно **21MB**. Для подсчета расхода памяти используется **tracemalloc**.

3.11 Третье бонусное задание

В предыдущих экспериментах в признаковом пространстве не находилось константного признака. При алгоритме SGD ($\alpha=0.9,\ \beta=0.5,\ w_0=0,\$ модель TF-IDF, min_df= 10^{-4}) добавление константного признака дает существенный прирост в точности на тестовой выборке: точность – **0.8885**.

4 Выводы

SGD показывает большую скорость сходимости чем GD. Модель **TF-IDF** опережает по точности модель **Bag of words** в данной задаче. Лучшие результаты показывает алгоритм SGD после лемматизации и удаления стоп-слов, применения модели **TF-IDF** со следующими гиперпараметрами:

- $\alpha = 0.9$
- $\beta = 0.5$
- $w_0 = 0$
- min $df = 10^{-3}$
- max $df = 10^{-1}$
- ngram range = (1, 3)

Итоговая точность на тестовой выборке с добавлением константного признака – 0.8885.