周立功联手 CEL 公司,

○ 端节点

09 年初,周立功公司已与美国 CEL 公司签署协议,就 CEL 公司 ZigBee 产品线的中国市场推广工作开展长期深入的合作。

美国 CEL 公司具有 45 年设计和产品开发经验,而 LSR 则是 RF 软硬件研发领域的领头羊。 LSR 验证中心完成了这些产品的认证过程,并提供安全许可。LSR 的设计和开发实力与 CEL 的销售、市场开发合作、客户支持和全球供应链专长形成了完美的组合。

依托周立功公司研发团队和销售网络,CEL 模块的技术资料迅速的本土化,为广大的中国客户提供完整细致的技术支持,大大降低 ZigBee 技术的开发难度,相信不久的将来,ZigBee 技术的客户将会快速增长,ZigBee 的应用发展也将进入一个新的阶段。

1.1	为什么使用 ZigBee 技术?	2
1.2	模块总览	3
1.3	模块类型	2
1.4	内部框图	2
1.5	收发器性能	2
1.6	音频传输	3
1.7	尺寸封装	4
1.8	引脚定义	5
1.9	应用展望	8

1.1 为什么使用 ZigBee 技术?

ZigBee 是一种新兴的短距离、低速率、低功耗无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。它此前被称作"HomeRF Lite"或"FireFly"无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很低的功耗,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,因此它们的通信效率非常高。最后,这些数据就可以进入计算机用于分析或者被另外一种无线技术如 WiMax 收集。

ZigBee 的基础是 IEEE802.15.4 这是 IEEE 无线个人区域网(Personal Area Network, PAN)工作组的一项标准,被称作 IEEE802.15.4(ZigBee)技术标准。

ZigBee 不仅只是 802.15.4 的名字。IEEE 仅处理低级 MAC 层和物理层协议,因此 ZigBee 联盟对其网络层协议和 API 进行了标准化(如下图 2 所示)。完全协议用于一次可直接连接到一个设备的基本节点的 4K 字节或者作为 Hub 或路由器的协调器的 32K 字节。每个协调器可连接多达 255 个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。 ZigBee 联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。

ZigBee 技术的主要特点包括以下几个部分:

● 数据传输速率低:

标准传输速率为 250K, 专注于低传输应用;

● 功耗低:

在低耗电待机模式下,两节普通 5 号干电池可使用 6 个月到 2 年,免去了充电或者频繁更换电池的麻烦。这也是 ZigBee 的支持者所一直引以为豪的独特优势;

● 成本低:

因为 ZigBee 数据传输速率低,协议简单,所以大大降低了成本。且 ZigBee 协议免收专利费:

● 时延短:

通常时延都在15毫秒至30毫秒之间;

● 安全:

ZigBee 提供了数据完整性检查和鉴权功能,加密算法采用 AES-128,同时可以灵活确定 其安全属性;

● 网络容量大:

每个ZigBee 网络最多可支持65536个设备,也就是说,每个ZigBee 设备可以与另外65534台设备相连接;

● 优良的网络拓扑能力:

ZigBee 具有星、树和 mesh 网络结构的能力。ZigBee 设备实际上具有无线网路自愈能力, 能简单地覆盖广阔围;

● 有效范围小:

标准协议规范称, ZigBee 点对点有效覆盖范围 10~75 米之间, 具体依据实际发射功率的大小和各种不同的应用模式而定, 基本上能够覆盖普通的家庭或办公室环境, 随着技术的发展, 芯片自带 PA 以及板载天线等技术使得 ZigBee 点对点节点的距离上升至一两公里;

● 工作频段灵活:

使用的频段分别为 2.4GHz(全球)、868MHz(欧洲)及 915MHz(美国),均为免执照频段,其中 2.4GHz 频段有 16 个通道。

ZigBee 凭借着这些优势,自推出到市场应用,只用了很短的时间,并且根据有关权威部 产品应用笔记 ©2008 Guangzhou ZHIYUAN Electronics CO., LTD. 门的统计,ZigBee 芯片组的全球销量递增情况和预计如下图所示。

全球 IEEE 802.15.4 和 ZigBee® 芯片组销售收入

可见 ZigBee 技术将会在未来的几年里蓬勃发展,应用 ZigBee 技术将是明智的选择。

1.2 模块总览

CEL 公司根据自主研发的 ZIC2410 芯片研发出的 ZICM2410PO 模块是 2.4GHZ IEEE 802.15.4 无线网络提供一个高性能低成本的组网方案,它基于 CEL's ZIC2410 芯片平台,这款芯片是一款真正意义上的 ZigBee 片上系统:集成了 ZigBee 无线收发器和一个单指令内嵌 Flash 空间的 51CPU 核,同时还有 GPIO,UART,音频解码器(因此可以很好的支持音频应用)。ZigBee 数据收发的速率可以达到1Mbps。

高度集成的设计缩减了元件数量及功率消耗,同时缩短了产品设计周期,加速上市时间, 为客户节省下了大量的成本。

■ 功率

- 103db 链路预算;
- 接收灵敏度: -97dbm@ 1.5V
- 发送功率: +6db@1.5V:
- 3000 英尺无障碍传输距离;
- 最低睡眠电流: <1µ A;
- 工作电压: 2.1~3.3V;
- 接收电流: 35mA;
- 发送电流: 44mA。

■ 凍率

- ZigBee (250 kbps);
- Turbo(500 kbps);

• Premium (1 Mbps).

■ 对内接口类型

- CPU:单指令 51 内核 CPU, 96KB Flash, 8KB RAM;
- GPIO 个数: 22;
- 接口类型: SPI(主从)、UART (2路)、I2S/PCM;
- 4路8位ADC。

■ 温度范围

- 工作温度: -40-85℃;
- 保存温度: -55-125℃。

1.3 模块类型

ZICM2410 有两种型号,板载天线模块(ZICM2410P0-1)本身提供了+6dbm 的发送增益,无障碍(line-of-sight)传输距离达到 3000 英尺(900 米),带天线接口(MM8130-2600)模块(ZICM2410P0-1C),则距离可以更远,无障碍传输距离视外置天线增益和传输环境而定。

图 1 模块类型

1.4 内部框图

ZICM2410 模块片内资源丰富,从图一我们可以看出,这款模块为 ZigBee 网络和应用场合所做的优化裁剪及增强,体现了 CEL 公司在 ZigBee 市场上长期的应用开发设计经验。

图 2 内部功能图

1.5 收发器性能

CEL 模块集成的 2.4GHz 射频收发器,基于 ZigBee/IEEE 802.15.4 协议,最大 6dbm 发送增益,-97dbm 接受灵敏度,链路预算达到 103dBm。

接收器灵敏度是指无线电可靠接收数据的最低功率,单元为分贝(dBm)。dBm 值越大表明接收器灵敏度越高。接收器灵敏度的 dB 数负值越大,射频间隔距离越大,所需射频也更少,这无疑利于降低成本。

影响射频传输距离的第一个重要因素是发送功率。射频发射功率越大,所需信号幅度就越大。IEEE 802.15.4 标准所需的最低输出功率为-3dBm,即 0.5mWatts。目前市场上的射频输出功率在 0 dBm (1 mW)至 3 dBm (2 mW)之间,CEL 模块输出达到了 6dBm (5mW)。收发器芯片输出功率越大,发送性能越好,减少外部功率放大器件(PA)的使用成本,同时外部PA 也会增加功率,大功率的发送功率也会存在辐射问题,因此,模块本身具备多级的功率控制,才能在传输距离要求和功耗辐射之间达到一个平衡。

产品应用笔记

©2008 Guangzhou ZHIYUAN Electronics CO., LTD.

第二个因素是灵敏度,802.15.4 标准规定 2.4GHz 射频的最低接收器灵敏度为-85 dBm,900 MHz 为-92 dBm。802.15.4 的所有供应商都已经超过这个标准,接收器灵敏度在-90 dBm至-100 dBm之间。尽管 10 dBm看上去差别并不大,但对作用范围和系统成本影响很大。

如果射频接收器的灵敏度从-94 dBm 提高到-100 dBm,将使射频的作用距离延长一倍。例如,如果接收器灵敏度为-94dBm 的射频作用距离为 100 米,如果将灵敏度提高仅 6 dBm,即-100 dBm,可将范围扩大到 200 米。更重要的是提高灵敏度可避免使用昂贵的高功率功率放大器(PA),从而降低系统的复杂度、成本和功耗。这样基于这些原因,工程师可选择高灵敏的射频。

接收器灵敏度和发送功率都会影响发送器/接收器的范围。接收器灵敏度越高,发送功率越大,作用距离越远。即使在建筑物中,高发送功率和良好的接收器灵敏度也会提高射频链路的可靠性。

链路预算为发送功率和接收灵敏度的绝对值之和,它在某种程度上,体现了一个射频芯片的总体收发性能。

1.6 音频传输

ZICM2410P0 模块内嵌音频处理单元,特别适合语音传输,图 3 是 ZICM2410 在音频传输应用中的传输流程,外部音频处理芯片通过 I2S / SPI / UART 接口输入音频信息到 ZICM2410,经过音频接口(PCM / μ-a-law /ADPCM 可选),再传输到 MAC 层的 FIFO 中,经由 PHY 层发送至空中,收方按照反流程进行接收播放。

当然,音频数据的流向是可以双向的,另外,关于 ZigBee 模块是否可以满足音频传输的要求,我们可以通过表 1来看,在 8k 到 48k 的采样率下,ZICM2410 凭借 250K、500K 至 1M 的 ZigBee 传输速率,都可以满足,不过值得考虑的是,ZigBee 本身针对低速,少量数据和低功耗的电池供电场合,使用高速音频传输并不是它的长项,因此目前还不适合多声道高品质的音频传输,但是对讲机和一般的语音应用还是绰绰有余的。

图 3 ZICM2410 音频应用框图

表 1 ZICM2410 在各种采样率下的表现

Sampling rate	8,000		16,000		24,000		32,000		44,100		48,000	
Compression algorithm	A/U law	ADPCM										
Data rate bps	64 K	32 K	128 K	64 K	192 K	96 K	256 K	128 K	353 K	176 K	384 K	192 K
Full Duplex 250 kbps	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	No	No	No
Full Duplex 500 kbps	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes
Full Duplex 1M bps	Yes	Yes										

图 4 硬件音频处理特性

1.7 尺寸封装

ZICM2410 是模块形式的封装,仅有一元硬币大小,尺寸结构如图 5 所示。

图 5 内部透视图及尺寸

我们将会在后续公布一系列硬件设计文件,包括原理图及 PCB 封装库,以及各种说明 产品应用笔记 ©2008 Guangzhou ZHIYUAN Electronics CO., LTD. 文档、应用笔记,方便客户设计应用。

1.8 引脚定义

模块的引脚与功能大致上体现了模块的可用外设,对于经常查看引脚定义的研发工程师而言,以下的这个表格是了解 ZICM2410 模块的一个熟悉的切入点错误!未找到引用源。。

表 2 模块引脚功能描述

Pin #	Name	Туре	Description	
1	GND4	RF GND	RF Ground	
2	GND3	RF GND	RF Ground	
3	MS1	Control Input	Mode Select, Bit #1. Active Low Internal Voltage Regulator	
			Enable:	
			0: Internal Voltage Regulator Enabled	
			1: Internal Voltage Regulator Disabled, Supply Analog and	
			Digital Supply Voltages Externally	
4	GND0	RF GND	RF Ground	
5	MS0	Control Input	Mode Select, Bit #0. This pin should be connected to Ground	
			externally.	
6	NC2	N/C	No Connect	
7	GND20	GND	Digital Ground	
8	GND12	GND	Digital Ground	
9	GND13	GND	Digital Ground	

产品应用笔记

10	GND17	GND	Digital Ground
11	GND5	GND	Digital Ground
12	ACH0	Analog	A/D Channel #0 Input, 0 - 1.5 Volts.
		Input	·
13	ACH1	Analog	A/D Channel #1 Input, 0 - 1.5 Volts.
		Input	·
14	ACH2	Analog	A/D Channel #2 Input, 0 - 1.5 Volts.
		Input	·
15	ACH3	Analog	A/D Channel #3 Input, 0 - 1.5 Volts.
		Input	·
16	P1_7	Digital	8051 GPIO P1.7 (Output Only)
		Output	Alternate Functions: POAND
17	P1_6	Digital I/O	8051 GPIO P1.6
			Alternate Functions: N/A
18	P1_4	Digital I/O	8051 GPIO P1.4
			Alternate Functions: QUADZB / Sleep Timer
			Oscillator Input
19	P1_3	Digital I/O	8051 GPIO P1.3
			Alternate Functions: QUADZA / Sleep Timer
			Oscillator Output / RTCLKOUT
20	GND9	GND	Digital Ground
21	GND8	GND	Digital Ground
22	GND7	GND	Digital Ground
23	P1_1	Digital I/O	8051 GPIO P1.1
			Alternate Functions: TXD1
24	VCC_3V	Power Input	Power Supply Input for Internal Voltage Regulators
			and Digital I/Os. VCC = 3.0 Volts
25	P1_0	Digital I/O	8051 GPIO P1.0
			Alternate Functions: RXD1
26	P3_7	Digital I/O	8051 GPIO P3.7 (12 mA Drive)
			Alternate Functions: PWM3 / CTS1 / SPICSN
27	P3_6	Digital I/O	8051 GPIO P3.6 (12 mA Drive)
			Alternate Functions: PWM2 / RTS1 / SPICLK
28	P3_5	Digital I/O	8051 GPIO P3.5
			Alternate Functions: T1 / CTS0 / QUADYB / SPIDO
29	P3_4	Digital I/O	8051 GPIO P3.4
			Alternate Functions: T0 / RTS0 / QUADYA / SPIDI
30	GND10	GND	Digital Ground
31	P3_3	Digital I/O	8051 GPIO P3.3
			Alternate Functions: INT1 (Active Low)
32	P3_2	Digital I/O	8051 GPIO P3.2
			Alternate Functions: INTO (Active Low)
33	GND11	GND	Digital Ground
产品应	田垒记	•	©2008 Guangzhou ZHIYUAN Flectronics (

24	D2 1	Digital I/O	9051 CDIO D3 1
34	P3_1	Digital I/O	8051 GPIO P3.1
		51.11.15	Alternate Functions: TXD0 / QUADXB
35	P3_0	Digital I/O	8051 GPIO P3.0
			Alternate Functions: RXD0 / QUADXA
36	GND6	GND	Digital Ground
37	P0_7	Digital I/O	8051 GPIO P0.7
			Alternate Functions: I2STX_MCLK
38	P0_6	Digital I/O	8051 GPIO P0.6
			Alternate Functions: I2STX_BCLK
39	P0_5	Digital I/O	8051 GPIO P0.5
			Alternate Functions: I2STX_LRCLK
40	P0_4	Digital I/O	8051 GPIO P0.4
			Alternate Functions: I2STX_DO
41	P0_3	Digital I/O	8051 GPIO P0.3
			Alternate Functions: I2SRX_MCLK
42	P0_2	Digital I/O	8051 GPIO P0.2
			Alternate Functions: I2SRX_BCLK
43	P0_1	Digital I/O	8051 GPIO P0.1
			Alternate Functions: I2SRX_LRCLK
44	P0_0	Digital I/O	8051 GPIO P0.0
			Alternate Functions: I2SRX_DI
45	DVDD_1	Power I/O	Digital Power Supply I/O
	_5		Input: When the Mode Select Bit #1 (MS1,
	_		Module Pin #3) is tied high this pin functions as
			the 1.5 Volt power supply input for the Digital
			Core.
			Output: When the Mode Select Bit #1 (MS1,
			Module Pin #3) is tied low this pin functions as
			the output of the Internal Digital Voltage Regulator
			(1.5 Volts).
46	ISP	Control	Mode Select, Bit #2. Active High In-System
		Input	Programming (ISP) Input:
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0: Normal Mode
			1: ISP Mode
47	RESET#	Control	Reset (Active Low)
48	AVDD_1	Power I/O	Analog Power Supply I/O
.5	_5		Input: When the Mode Select Bit #1 (MS1,
			Module Pin #3) is tied high this pin functions as
			the 1.5 Volt power supply input for the Mixer, VGA
			and LPF.
			Output: When the Mode Select Bit #1 (MS1,
			Module Pin #3) is tied low this pin functions as the
			output of the Internal Analog Voltage Regulator
			output of the internal Analog voltage negulator

			(1.5 Volts).
49	GND14	GND	Digital Ground
50	GND15	GND	Digital Ground
51	GND16	GND	Digital Ground
52	GND18	GND	Digital Ground
53	GND19	GND	Digital Ground
54	NC1	N/C	No Connect
55	GND1	RF GND	RF Ground
56	GND2	RF GND	RF Ground

1.9 应用展望

经过紧锣密鼓的筹划,周立功 ZigBee 模块代理产品线已经开始运作,本着周立功公司的企业理念和技术导向,ZigBee 技术的资料开发和应用指南将会按照详尽简明深入浅出的"周立功风格"陆续推出,同时市场应用和产品技术支持也会一贯的细致周到,相信不久的将来,周立功公司将能为 ZigBee 技术在中国的发展和应用推波助澜。