ІНФОРМАТИКА ТА ПРОГРАМУВАННЯ

Тема 2. Розгалужені програми

Висловлювання. Область істинності

 Областю істинності В₂ назвемо множину, яка складається з двох величин

$$B_2 = \{False, True\}$$

- False хибність
- True істина

Визначення бульових операцій

- Визначимо три бульових операції:
 - a) диз'юнкція **p or q** дає по двох висловлюваннях p і q нове висловлювання, хибне тоді і тільки тоді, коли хибні одночасно p і q; у всіх інших випадках диз'юнкція істинна;
 - b) кон'юнкция **p and q** дає по двох висловлюваннях p i q нове висловлювання, істинне тільки тоді, коли одночасно істинні p i q; y всіх інших випадках кон'юнкція хибна;
 - c) заперечення **not p** дає по висловлюванню p нове висловлювання, протилежне за змістом.

p	q	p or q	p and q
False	False	False	False
False	True	True	False
True	False	True	False
True	True	True	True

р	not p
False	True
True	False

Визначення висловлювань

- Висловлювання це булів вираз, який визначається індуктивно:
 - 1. Якщо b бульова константа або змінна, то b висловлювання;
 - 2. Якщо b і с висловлювання, то (b or c), (b and c), (not b) висловлювання.
- Приклади висловлювань

```
True
p
p or q
p and q or r
```

Властивості висловлювань

- а) комутативність диз'юнкції і кон'юнкції
 - p or $q \equiv q$ or p, p and $q \equiv q$ and p;
- b) асоціативність диз'юнкції і кон'юнкції
 - (p or q) or $r \equiv p$ or (q or r), (p and q) and $r \equiv p$ and (q and r);
- с) дистрибутивність кон'юнкції відносно диз'юнкції
 - p and (q or r) ≡ p and q or p and r,
- дистрибутивність диз'юнкції відносно кон'юнкції
 - p or q and $r \equiv (p \text{ or q})$ and (p or r);
- d) властивості бульових констант
- p or True ≡ True, p or False ≡ p,
- p and True ≡ p, p and False ≡ False;

Властивості висловлювань. 2

- е) ідемпотентність (поглинання)
 - p or $p \equiv p$, p and $p \equiv p$;
- f) подвійне заперечення
 - $not(not p) \equiv p$;
- g) правила де Моргана
 - $not(p or q) \equiv not p and not q$,
 - $not(p and q) \equiv not p or not q;$
- h) закон виключення третього
 - p or not p ≡ True;
- і) закон протиріччя
 - p and not p ≡ False.

Відношення

- **Відношення** дає одне бульове значення за одною або декільком (частіше за все двом) арифметичним величинам.
- Утворимо стандартний набір відношень:

• х рівне у,	або	x == y;
• х не рівне у,	або	x != y;
• х менше, ніж у,	або	x < y;
• х більше, ніж у,	або	x > y;
• х менше або рівне у,	або	x <= y;
• х більше або рівне у,	або	x >= y.

Визначення відношень

- Визначимо множину Rel = { ==, !=, <, >, <=, >= }.
- Тоді відношення це
 - e₁ r e₂
 де r ∈ Rel, e₁, e₂ вирази,
 - e₁ r₁ e₂ r₂ e₃
 де r₁, r₂ є Rel, e₁, e₂, e₃ вирази
- При цьому
 - $e_1 r_1 e_2 r_2 e_3 \equiv e_1 r_1 e_2$ and $e_2 r_2 e_3$
- Приклади відношень
- a > 1
- 4 < 6
- 0 == 1
- 0 <= x < 10

Властивості відношень

- Властивості відношень
 - a) $x != y \equiv not(x == y) \equiv x < y \text{ or } x > y;$
 - b) $x \le y \equiv not(x > y) \equiv x \le y \text{ or } x == y;$
 - c) $x \ge y \equiv not(x < y) \equiv x \ge y \text{ or } x == y.$
- Окрім значень з В₂ (True, False) відношення можуть також бути невизначеними. Наприклад, відношення 1/х > 0

невизначене при х == 0.

Умови

- **Умовою** *F* будемо називати булів вираз, побудований індуктивно за правилом:
 - 1. Якщо *F* висловлювання, то *F* умова;
 - 2. Якщо *F* відношення, то *F* умова;
 - 3. Якщо F арифметичний вираз, то F умова;
 - 4. Якщо F, F_1 , F_2 умови, то F_1 , or F_2 , F_1 , and F_2 , not F умови.
 - Згідно з п. З умова вважається істинною, якщо значення арифметичного виразу не дорівнює 0. Далі ми побачимо, що в якості умов можуть виступати вирази інших типів. Будь-яке «непорожнє» значення такого виразу вважається істинним.

Пріоритет операцій

• Пріоритет операцій

Операції		
**		
*, /, //, %		
+, -		
==, !=, >, <, >=, <=		
not		
and		
or		

• Приклади умов

```
p and q or r
x > 0 and y > 0
a > 1 and p
(b + 1) * d
```

Бульове присвоєння

• Бульове присвоєння

$$q = F$$

• де *q* – змінна, *F* – умова.

 Приклад – належність точки з координатами (х,у) другому квадранту

Розгалуження

• Синтаксис:

• Правило розгалуження:

- Виконання розгалуження здійснюється у два кроки.
 - 1. Python обчислює значення F_0 умови F.
 - 2. Python виконує інструкцію P, якщо F_0 = True, або інструкцію Q, якщо F_0 = False.

Захищена команда

• Синтаксис:

```
if F:

P

• де F – умова, P – ланцюг команд.
```

• Правило виконання

```
if F: = if F:
    P
    else:
    pass
```

Каскадне розгалуження

• Синтаксис: if F_1 : elif F_2 : elif F_n : else: • де $F_1, F_2, ..., F_n$ – умови, $P_1, P_2, ..., P_n, Q$ – ланцюги команд.

Каскадне розгалуження. 2

• Правило виконання

```
elif F_n:
P_n
else:
Q
```

```
else:

if F_n:

P_n

else:

Q
```

Властивості розгалужень

```
• a)
if True: ≡
• b)
if False: ≡
               pass
• c)
if True: \equiv P
else:
• d)
if False: ≡
else:
```

Властивості розгалужень. 2

```
• e)
if not F: \equiv if F:
else:
                else:
• f) Якщо інструкція R не змінює умову F, то
if F:
                if F:
else:
                else:
• g)
if F:
         \equiv if F:
                 else:
else:
                 R
```

Приклади розгалужень

```
if a > b:
   max2 = a
else:
   max2 = b
if x < 0:
   X = -X
if x < 0:
   y = -1
elif x < 2:
   y = x - 1
else:
    y = 1
```

Розгалужені програми

• Розгалужена програма – це програма яка є ланцюгом команд введення, виведення, присвоєння або тотожньої команди, а також розгалуження.

- Приклади розгалужених програм:
 - Обчислення максимуму з 3 чисел
 - Кількість дійсних розв'язків рівняння $ax^2 + bx + c = 0$

Резюме

- Ми розглянули:
 - 1. Алгебру висловлювань, бульові операції, їх властивості
 - 2. Відношення та їх властивості
 - 3. Умови
 - 4. Розгалуження (звичайне розгалуження, захищена команда, каскадне розгалуження)
 - Розгалужені програми

Де прочитати

- 1. Обвінцев О.В. Інформатика та програмування. Курс на основі Python. Матеріали лекцій. К., Основа, 2017
- 2. A Byte of Python (Russian) Версия 2.01 Swaroop C H (Translated by Vladimir Smolyar), http://wombat.org.ua/AByteOfPython/AByteofPythonRussian-2.01.pdf
- 3. Бублик В.В., Личман В.В., Обвінцев О.В.. Інформатика та програмування. Електронний конспект лекцій, 2003 р., http://www.matfiz.univ.kiev.ua/books
- 4. Марк Лутц, Изучаем Python, 4-е издание, 2010, Символ-Плюс
- 5. Самоучитель Python. http://pythonworld.ru/samouchitel-python
- 6. С. Шапошникова. Основы программирования на Python. Версия 2 (2011). http://younglinux.info/pdf
- 7. Python 3.4.3 documentation