MA2102: LINEAR ALGEBRA

Lecture 35: Self-adjoint Operators

24th November 2020

Recall the adjoint T^* of a linear map $T: V \to W$. Note that

$$\langle v, (S^* + T^*)(w) \rangle_V = \langle v, S^*(w) \rangle_V + \langle v, T^*(w) \rangle_V$$

$$= \langle S(v), w \rangle_W + \langle T(v), w \rangle_W$$

$$= \langle (S + T)(v), w \rangle_W,$$

implying that $(S+T)^* = S^* + T^*$. Similarly,

$$\langle v, \overline{c}T^*(w)\rangle_V = c\langle v, T^*(w)\rangle_V = c\langle T(v), w\rangle_W = \langle (cT)(v), w\rangle_W$$
 implies that $(cT)^* = \overline{c}T^*$. Show that $(T^*)^* = T$.

Remark Consider the adjoint map

$$\operatorname{adj}: \mathcal{L}(V,V) \to \mathcal{L}(V,V), T \mapsto T^*.$$

We know that

$$(S+T)^* = S^* + T^*, (cT)^* = \overline{c}T^*, (ST)^* = T^*S^*, (T^*)^* = T.$$

Thus, adj is similar to complex conjugation.

Definition [Self-adjoint] A linear map $T: V \to V$ is called self-adjoint if $T = T^*$.

Equivalent Definition 2 A linear map $T: V \to V$ is called self-adjoint if for any $v, w \in V$

$$\langle T(v), w \rangle = \langle v, T(w) \rangle.$$

Justification We have seen that T^* is uniquely determined by the implicit defining criteria

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle.$$
 (1)

Putting $T^* = T$ gives definition 2. The converse is clear.

Equivalent Definition 3 A linear map $T: V \to V$ is called self-adjoint if for any orthonormal basis β we have $[T]_{\beta}$ is Hermitian, i.e., $[T]_{\beta}^* = [T]_{\beta}$.

Justification Note that $T = T^*$ if and only if $[T]_{\beta} = [T^*]_{\beta}$. We had proved that (cf. lecture 34) that $[T^*]_{\beta} = [T]_{\beta}^*$. Thus, $T = T^*$ if and only if $[T]_{\beta} = [T]_{\beta}^*$.

Remark • The orthonormality of β in definition 3 is necessary, as otherwise definition 3 would be independent of the inner product.

• For self-adjoint maps $T: V \to V$ of real vector spaces, the matrix $[T]_{\beta}$ is symmetric for any orthonormal basis β . The converse also holds.

Examples (1) The scaling map $\lambda I_V : V \to V$ is self-adjoint if and only if $\lambda = \overline{\lambda}$.

(2) Let $P:V\to V$ be an orthogonal projection to the subspace W. Then (cf. homework 10) we have $\langle P(v),w\rangle=\langle v,P(w)\rangle$, whence P is self-adjoint.

(3) Fix non-zero vectors $v_1, v_2 \in V$ and define

$$T: V \to V, T(v) := \langle v, v_1 \rangle v_2.$$

Note that

$$\langle T(v),w\rangle = \langle \langle v,v_1\rangle v_2,w\rangle = \langle v,v_1\rangle \langle v_2,w\rangle = \langle v,\overline{\langle v_2,w\rangle} v_1\rangle.$$

Thus, $T^*(w) = \langle w, v_2 \rangle v_1$ and T is self-adjoint if and only if $v_1 = cv_2, c \in \mathbb{R}$ (exercise).

(4) Let
$$p \in M_n(\mathbb{C})$$
 be an invertible matrix. Consider the

linear map
$$T: M_n(\mathbb{C}) \to M_n(\mathbb{C}), T(A) = PAP^{-1}.$$

Observe that

$$\langle A, T^*(B) \rangle = \langle T(A), B \rangle = \operatorname{trace}(B^*PAP^{-1}) = \operatorname{trace}(P^{-1}B^*PA).$$

Thus, $T^*(B) = P^*B(P^*)^{-1}$ and T is self-adjoint if and only if

$$PAP^{-1} = P^*A(P^*)^{-1}$$
 for any $A \in M_n(\mathbb{C})$.

In other words, $P^{-1}P^*$ commutes with any matrix. Therefore, $P^{-1}P^* = \lambda I_n$, whence $P^* = \lambda P$. Show that $|\lambda| = 1$.

If T is a self-adjoint map, then let $w \in N(T)$. Note that for any $v \in V$

$$0 = \langle v, T(w) \rangle = \langle T(v), w \rangle.$$

Therefore, $w \in R(T)^{\perp}$ and $N(T) \subset R(T)^{\perp}$. By Rank-Nullity Theorem, we conclude that

$$V = N(T) \oplus R(T)$$

is an orthogonal direct sum decomposition.

Remark For non-self-adjoint maps *T*, we can show that

$$N(T) = R(T^*)^{\perp}, R(T) = N(T^*)^{\perp}.$$

Let $T: V \to V$ be a self-adjoint operator on a complex vector space

V. Recall that $\lambda \in \mathbb{C}$ is an eigenvalue of T if and only if λ is a root of $det(T-xI_n) = 0$. Fundamental Theorem of Algebra implies that all polynomials with complex coefficients have complex roots. If $\lambda \in \mathbb{C}$ is an eigenvalue and $v \neq 0$ satisfies $T(v) = \lambda v$, then

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle T(v), v \rangle = \langle v, T(v) \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle.$$

As $\langle v, v \rangle > 0$, we conclude that $\lambda \in \mathbb{R}$.

Now consider two different eigenspaces, i.e., if $\lambda_1 \neq \lambda_2$ are eigenvalues of T with v_i an eigenvector associated to λ_i , i = 1, 2, then

$$\lambda_1 \langle v_2, v_2 \rangle = \langle T(v_1), v_2 \rangle = \langle v_1, T(v_2) \rangle = \langle v_1, \lambda_2 v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle.$$

As $\lambda_1 \neq \lambda_2$, we conclude that v_1 and v_2 are orthogonal to each other.

Observation A self-adjoint operator has only real eigenvalues. Moreover, the eigenspaces are orthogonal to each other.

In fact, more is true (stated without proof).

Theorem

Let V be a finite dimensional real vector space. If $T: V \to V$ is a linear map, then T is self-adjoint if and only if there exists an orthonormal eigenbasis.

Remark • The orthonormality condition is essential. For instance, if Q(x,y) = (x-y,0) (cf. remark in lecture 33), then $[Q]_{\beta} = D(1,0)$ with $\beta = \{(1,0),(1,1)\}$. The basis β is an eigenbasis but nor orthonormal. We see that

$$\langle Q(1,1),(1,0)\rangle = 0 \neq 1 = \langle (1,1),(1,0)\rangle = \langle (1,1),Q(1,0)\rangle.$$

• It is called *spectral theorem* for real self-adjoint maps.