Semaine du 03/02 au 07/02

Espaces vectoriels

- **Définition et exemples fondamentaux** Définition d'un \mathbb{K} -espace vectoriel. Exemples. Si X est un ensemble, on peut munir \mathbb{K}^X d'une struture de \mathbb{K} -espace vectoriel. Conséquence : \mathbb{K}^n , $\mathbb{K}^\mathbb{N}$, $\mathbb{K}^\mathbb{K}$ sont des \mathbb{K} -espaces vectoriels.
- **Sous-espaces vectoriels** Définition. Intersection de sous-espaces vectoriels. Combinaisons linéaires d'une famille de vecteurs. Espace vectoriel engendré par une partie ou une famille.
- **Somme de sous-espaces vectoriels** Somme de deux sous-espaces vectoriels. Somme directe de deux sous-espaces vectoriels. Sous-espaces supplémentaires. Si $E = F \oplus G$, définition du projeté de $x \in E$ sur F parallèlement à G. Somme d'un nombre fini de sous-espaces vectoriels. Somme directe d'un nombre fini de sous-espaces vectoriels.

Espaces vectoriels de dimension finie

- **Famille de vecteurs** Familles génératrices. Familles libres/liées. Bases. Coordonnées dans une base. Base adaptée à une décomposition en somme directe. Cas particulier des familles de \mathbb{K}^n (pivot de Gauss).
- **Dimension d'un espace vectoriel** Théorème de la base incomplète/extraite. Existence de bases. Définition de la dimension. Dans un espace de dimension n une famille génératrice/libre possède au moins/au plus n éléments. Si \mathcal{B} est une famille de n vecteurs d'un espace vectoriel de dimension n, alors \mathcal{B} est une base si elle est libre **ou** génératrice.

1 Méthodes à maîtriser

- ► Savoir montrer qu'une partie d'un espace vectoriel en est un sous-espace vectoriel.
- \blacktriangleright Savoir déterminer une partie génératrice d'une partie de \mathbb{K}^n définie par des équations linéaires.
- ► Savoir montrer que deux sous-espaces sont supplémentaires (utiliser éventuellement une méthode par analyse/synthèse).
- ► Savoir montrer qu'un nombre fini de sous-espaces vectoriels sont en somme directe (somme nulle ⇒ termes nuls).
- ► Montrer qu'une famille est libre.
- \blacktriangleright Montrer qu'une famille de vecteurs de \mathbb{K}^n est libre, liée ou génératrice par pivot de Gauss.
- ▶ Déterminer une base et la dimension d'un sous-espace vectoriel de \mathbb{K}^n défini par un système d'équations cartésiennes (mettre sous forme d'un vect) ou par une famille génératrice (pivot de Gauss).
- ▶ Déterminer la dimension d'un espace vectoriel en exhibant une base.
- ▶ Utiliser la dimension pour montrer qu'une famille libre/génératrice est une base.

2 Questions de cours

- **Base adaptée.** Soient F et G deux sous-espaces vectoriels de dimensions finies d'un espace vectoriel E de bases respectives $(f_1, ..., f_n)$ et $(g_1, ..., g_p)$. On suppose F et G en somme directe. Montrer que $(f_1, ..., f_n, g_1, ..., g_p)$ est une base de F \oplus G.
- **Retour sur le DS n°06.** Soit $f: x \in \mathbb{R}^* \mapsto \frac{\sin x}{x(2-\cos x)}$. Montrer que f est prolongeable par continuité en 0 et que ce prolongement est dérivable en 0.
- **Retour sur le DS n°06.** Soit $f: x \in \mathbb{R}^* \mapsto \frac{\sin x}{x(2-\cos x)}$. Déterminer le développement limité de f à l'ordre 2 en π .
- **Retour sur le DS n°06.** On admet que $(\mathbb{Z}[\sqrt{2}], +, \times)$ est un anneau. On pose pour $(a, b) \in \mathbb{Z}^2$, $\overline{a + b\sqrt{2}} = a b\sqrt{2}$. Montrer que $x \in \mathbb{Z}[\sqrt{2}]$ est inversible dans $\mathbb{Z}[\sqrt{2}]$ si et seulement si $|x\overline{x}| = 1$.
- **Retour sur le DS n°06.** On définit une suite (u_n) par $u_0 \in \mathbb{R}$ et la relation de récurrence $u_{n+1} = \frac{3}{4}u_n^2 2u_n + 3$. Etudier la limite éventuelle de la suite (u_n) .