Boosting

Victor Kitov

v.v.kitov@yandex.ru

Yandex School of Data Analysis

General idea

- Bagging, Random forest, extra random trees fit independent models.
 - can be done in parallel
 - sampling: objects with replacement, features without replacement.
 - base learners-complex
- Boosting fits models sequentially and they depend on each other.
 - each model is fitted to correct errors of the ensemble of previous models.
 - base learners-simple

Linear ensembles

Linear ensemble:

$$F(x) = f_0(x) + c_1 h_1(x) + ... + c_M h_M(x)$$

Regression: $\hat{y}(x) = F(x)$

Binary classification: $score(y|x) = F(x), \ \widehat{y}(x) = sign F(x)$

- Notation: $h_1(x), ... h_M(x)$ are called base learners, weak learners, base models.
- Too expensive to optimize $f_0(x), h_1(x), ...h_M(x)$ and $c_1, ...c_M$ jointly for large M.
- Idea: optimize $f_0(x)$ and then each pair $(h_m(x), c_m)$ greedily.

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$, parametrized base learner $h(x|\theta)$ and initial approximation $f(x|\theta')$, the number M of successive additive approximations.

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$, parametrized base learner $h(x|\theta)$ and initial approximation $f(x|\theta')$, the number M of successive additive approximations.

• Fit initial approximation $f_0(x) = \arg\min_f \sum_{i=1}^N \mathcal{L}(f(x_i), y_i)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$, parametrized base learner $h(x|\theta)$ and initial approximation $f(x|\theta')$, the number M of successive additive approximations.

- Fit initial approximation $f_0(x) = \arg\min_f \sum_{i=1}^N \mathcal{L}(f(x_i), y_i)$
- ② For m = 1, 2, ...M:
 - find next best classifier

$$(c_m, h_m) = \arg\min_{h,c} \sum_{i=1}^{N} \mathcal{L}(f_{m-1}(x_i) + ch(x_i), y_i)$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$, parametrized base learner $h(x|\theta)$ and initial approximation $f(x|\theta')$, the number M of successive additive approximations.

- Fit initial approximation $f_0(x) = \arg\min_f \sum_{i=1}^N \mathcal{L}(f(x_i), y_i)$
- ② For m = 1, 2, ...M:
 - find next best classifier

$$(c_m, h_m) = \arg\min_{h,c} \sum_{i=1}^{N} \mathcal{L}(f_{m-1}(x_i) + ch(x_i), y_i)$$

set

$$f_m(x) = f_{m-1}(x) + c_m h_m(x)$$

Output: approximation function $f_M(x) = f_0(x) + \sum_{m=1}^{M} c_m h_m(x)$

Comments on FSAM

- Number of steps M should be determined by performance on validation set.
- Step 1 need not be solved accurately, since its mistakes are expected to be corrected by future base learners.
 - we can take $f_0(x) = \arg\min_{\beta \in \mathbb{R}} \sum_{i=1}^N \mathcal{L}(\beta, y_i)$ or simply $f_0(x) \equiv 0$.
- By similar reasoning there is no need to solve 2.1 accurately
 - typically very simple base learners are used such as trees of depth=1,2,3.
- For some loss functions, such as $\mathcal{L}(y, f(x)) = e^{-yf(x)}$ we can solve FSAM explicitly.
- For general loss functions gradient boosting scheme should be used.

Adaboost (discrete version): assumptions

- ullet binary classification task $y \in \{+1,-1\}$
- family of base classifiers $h(x) = h(x|\theta)$ where θ is some fitted parametrization.
- $h(x) \in \{+1, -1\}$
- classification is performed with

$$\hat{y} = sign\{f_0(x) + c_1 f_1(x) + ... + c_M f_M(x)\}$$

- optimized loss is $L(y, f(x)) = e^{-yf(x)}$
- FSAM is applied

Adaboost (discrete version): algorithm

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of additive weak classifiers M, a family of weak classifiers $h(x) \in \{+1, -1\}$, trainable on weighted datasets.

- Initialize observation weights $w_i = 1/n$, i = 1, 2, ...n.
- ② for m = 1, 2, ...M:
 - fit $h^m(x)$ to training data using weights w_i
 - 2 compute weighted misclassification rate:

$$E_{m} = \frac{\sum_{i=1}^{N} w_{i} \mathbb{I}[h^{m}(x) \neq y_{i}]}{\sum_{i=1}^{N} w_{i}}$$

- 3 if $E_M > 0.5$ or $E_M = 0$: terminate procedure.
- ompute $\alpha_m = \ln ((1 E_m)/E_m)$
- **3** increase all weights, where misclassification with $h^m(x)$ was made:

$$w_i \leftarrow w_i e^{\alpha_m}, i \in \{i : h^m(x_i) \neq y_i\}$$

Output: composite classifier $f(x) = \text{sign}\left(\sum_{m=1}^{M} \alpha_m h^m(x)\right)$

Table of Contents

Gradient boosting

Motivation

- Problem: For general loss function L FSAM cannot be solved explicitly
- Analogy with function minimization: when we can't find optimum explicitly we use numerical methods
- Gradient boosting: numerical method for iterative loss minimization

Gradient descent algorithm

$$F(w) \to \min_{w}, \quad w \in \mathbb{R}^N$$

Gradient descend algorithm:

INPUT:

 η -parameter, controlling the speed of convergence M-number of iterations

ALGORITHM:

initialize w

for
$$m = 1, 2, ...M$$
:

$$\Delta w = \frac{\partial F(w)}{\partial w}$$

$$w = w - \eta \Delta w$$

Modified gradient descent algorithm

INPUT: M-number of iterations M-number of iterations M-

- Now consider $F(f(x_1),...f(x_N)) = \sum_{n=1}^N \mathcal{L}(f(x_n),y_n)$
- Gradient descent performs pointwise optimization, but we need generalization, so we optimize in space of functions.
- Gradient boosting implements modified gradient descent in function space:
 - find $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - fit base learner $h_m(x)$ to $\{(x_i, z_i)\}_{i=1}^N$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ... M:

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to \min_{h_m}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to \min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to \min_{h_m}$$

solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

$$oldsymbol{1}$$
 set $f_m(x) = f_{m-1}(x) + c_m h_m(x)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ... M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N} (h_m(x_n) - z_n)^2 \to \min_{h_m}$$

solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

$$f_m(x) = f_{m-1}(x) + c_m h_m(x)$$

Output: approximation function $f_{M}(x) = f_{0}(x) + \sum_{m=1}^{M} c_{m} h_{m}(x)$

Gradient boosting: examples

In gradient boosting

$$\sum_{n=1}^{N} \left(h_m(x_n) - \left(-\frac{\partial \mathcal{L}(r,y)}{\partial r} |_{r=f^{m-1}(x_n)} \right) \right)^2 \to \min_{h_m}$$

Specific cases:

$$\bullet \mathcal{L} = \frac{1}{2} (r - y)^2$$

•
$$\mathcal{L} = e^{-ry}$$

•
$$\mathcal{L} = [-ry]_+$$

•
$$\mathcal{L} = \ln \left(1 + e^{-ry}\right)$$

$$-\frac{\partial \mathcal{L}}{\partial r}$$
 - ?

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - **Q** fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - **9** for each terminal region R_{jm} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - **9** for each terminal region R_{jm} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

• update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - ② fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - **9** for each terminal region R_{jm} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

Output: approximation function $f_M(x)$

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_{jm} , not globally for the whole classifier $h^m(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_{jm} , but it can be applied to find γ_{jm} , because second task is solvable for arbitrary L.
- Max leaves J
 - ullet interaction between no more than J-1 terms
 - usually $J \leq 8$
 - M controls underfitting-overfitting tradeoff and selected using validation set

Shrinkage & subsampling

• Shrinkage of general GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu c_m h_m(x)$$

• Shrinkage of trees GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$$

- Comments:
 - $\nu \in (0,1]$
 - $\nu \downarrow \Longrightarrow M \uparrow$
- Subsampling
 - increases speed of fitting
 - may increase accuracy

Types of boosting

- Loss function F:
 - $\mathcal{L}(|f(x) y|)$ regression
 - $\mathcal{L}(y \cdot score(y = +1|x))$ binary classification
- Optimization
 - analytical (AdaBoost)
 - gradient based
- Base learners
 - continious
 - discrete
- Classification
 - binary
 - multiclass
- Extensions: shrinkage, subsampling