RSA

 $Crazy_13754$

2024年2月19日

摘要

写了些关于 rsa 的东西。

目录

1	说在前面	1
2	引言	2
3	RSA 加密与解密过程	2
4	RSA 数学基础与证明	2
	4.1 同余	3
	4.2 欧几里得算法	3
	4.3 裴蜀定理	3
	4.4 拓展欧几里德算法	3
	4.5 模的逆	3
	4.6 欧拉函数	3
	4.6.1 使用容斥原理证明	4
	4.6.2 使用中国剩余定理证明	4
	4.7 欧拉定理	5
5	RSA 数字签名与数字证书	6
	5.1 散列函数	6
	5.2 数字签名与数字证书	6
6	让你的 RSA 更安全	6

1 说在前面

虽然本文花费大力气写了数学种种理论,笔者却深感这并无必要,因为无论作者抑或读者所关心的其实是技术,数学理论不过是些模糊空气——固然是十分重要的支撑,写起来也不容忽视,但也不妨碍人们对其漠不关心。所以,读者大可以略看繁复的证明,注意于各类技术的细节。

2 引言

众所周知,密码学的提出是为了保证传输信息的安全。在古代,人们使用的加密方式可能是一张字符映射表,将信息中的字符逐个替换来让信件难以解密,只要这张表格不被敌人接获,信息就将保持安全。换句话说,只要加密的算法是安全的,信息就将是安全的。而现代的加密技术则选择公开加密算法,使用密钥加密。这被称为柯克霍夫原则 (Kerckhoffs's principle)。其中原因也不难想到:使用特定算法加密一旦算法泄露,加密的内容会易遇破解,而使用密钥则是"更新"了这个问题,因而可以长期反复使用。敌人如果买通工作人员,源码的泄露也难以影响其安全性。当加密用软件或硬件长期使用的时候,敌人可能通过各种方式分析其原理。公开的算法经过专家验证,人们对广泛流传的加密技术有信心。

更进一步,加密算法可以粗略分为两种:对称加密与非对称加密。对称加密技术,例如 AES,使用相同密钥加密与解密,速度较快,但密钥本身通常需要非对称加密技术加密并传输。非对称加密技术,例如 RSA,有公钥私钥之分,但速度较慢,一次加密的信息较少。此外,公钥密码能够解决消息鉴别问题,就是指用来检验消息来自于声称的来源并且没有被修改。

公钥体制的基础是陷门(单向函数),即某种实际处理过程的不可逆性。目前的公钥思想基于两种:一是依赖于大数的因数分解的困难性;二是依赖于求模 p 离散对数的困难性。RSA 密码算法就是基于大数的因数分解的困难性 [2]。

RSA 加密算法是一种非对称加密算法,在公开密钥加密和电子商业中被广泛使用。RSA 是由罗纳德·李维斯特 (Ron Rivest)、阿迪·萨莫尔 (Adi Shamir) 和伦纳德·阿德曼 (Leonard Adleman) 在 1977 年一起提出的。当时他们三人都在麻省理工学院工作。RSA 就是他们三人姓氏开头字母拼在一起组成的。1973 年,在英国政府通讯总部工作的数学家克利福德·柯克斯 (Clifford Cocks) 在一个内部文件中提出了一个与之等效的算法,但该算法被列入机密,直到 1997 年才得到公开。

这篇文章介绍了因子分解的相关算法,然而,这其中的很多方法对 RSA 来说并不适用。对于 RSA 的"暴力"攻击来说,普通数域筛法 (GNFS)应该是最优的。如果我能看懂这个算法的话,会 加上对它的介绍的……

3 RSA 加密与解密过程

小发(消息发送者)想要给小收(消息接受者)发一条需要保密的信息。

- 小收取两个非常大的素数 p 和 q, 并令 $N = p \cdot q$, $\varphi(N) = (p-1) \cdot (q-1)$ 。
- 找到一个素数 $e < \varphi(N)$, 且要求 $e = \varphi(N)$ 互素,即有 $gcd(e, \varphi(N)) = 1$ 。
- 计算 e 在模 $\varphi(N)$ 上的逆元 d,即求 d 满足 $e \cdot d \mod \varphi(N) = 1$ 。
- 小收将 (N, e) 作为公钥 (pk, Public key) 发给对方, (N, d) 作为私钥 (pk, Private key) 保存。
- 小发接受公钥后,将原文 (pt, Plaintext) 通过预先设定好的方式转换成数字,记为 pt,则密文 (ct, Ciphertext) 满足 $ct = p^e \mod N$ (也就是 $ct \equiv pt^e \pmod{N}$),对方将密文发回。
- 小收接收密文, 并使用私钥解密: $pt = ct^d \mod N$, 也就是 $pt \equiv ct^d \pmod N$)。

4 RSA 数学基础与证明

在无特殊说明的情况下,本章中所有的字母均指代正整数, p, p_1, \dots, p_r 为素数(注意 1 不是素数)。

4.1 同余

同余指的是,对于 $a,b \in \mathbb{Z}, n \in \mathbb{Z}^*$,若 $\exists k \in \mathbb{Z}$,满足 $a-b=k \cdot n$,则称 a,b 模 n 同余,记作 $a \equiv b \pmod{n}$ 。你想问我为什么要用乘法定义?噢据王鲲鹏老师说,这样定义有助于我们"操作"。

4.2 欧几里得算法

欧几里得算法(或辗转相除法)是得到两数最大公因数的算法,其代码如下:

Listing 1: gcd

```
1 int gcd(int a, int b)
2 {
3    if (b == 0)
4      return a;
5    else
6      return gcd(b, a % b);
7 }
```

下证明算法正确性。设 $a > b, c_1 = \gcd(a, b), c_2 = \gcd(b, a \mod b)$ 。此时, $c_2 \mid b \perp b \leq c_2 \mid (a \mod b)$,又因为 $a = k_1b + (a \mod b)$,则 $c_2 \mid a$,因此 c_2 为 a,的因数, c_2 因而为 c_1 的因数。同理, c_1 为 c_2 的因数,即有 $c_1 = c_2$ 。不断进行此操作,即可得到两数的最大公因数。

若 a < b, 则 gcd(a,b) = gcd(b,a), 同上。

4.3 裴蜀定理

a,b 不全为零,则有解 x,y 满足 gcd(a,b)|ax+by,且 a,b 互素与 ax+by=1 有解为充

4.4 拓展欧几里德算法

4.5 模的逆

若 $a \cdot x \equiv 1 \pmod{y}$,则 a, x 互为模 y 意义下的逆元。变换形式,可得 $a \cdot x + b \cdot y = 1$ 。形 如 $a \cdot x + b \cdot y = d$ 的方程被称为裴蜀 (Bezout) 等式或贝祖等式。x, y 已知,则此等式存在整数解 $a, b \iff \gcd(x, y) \mid d$ 。即上式中的 a, b 有解当且仅当 x, y 互素。

先证上述定理。当 $a\cdot x + b\cdot y$ 时,显然有 $\frac{a\cdot x}{\gcd(x,y)} + \frac{b\cdot y}{\gcd(x,y)}$ 恒为整数,可得 $\gcd(x,y)\mid d$ 。当 $\gcd(x,y)\mid d$ 时,因为 $\gcd(\frac{x}{\gcd(x,y)},\frac{y}{\gcd(x,y)})=1$,即证 x,y 互素时, $a\cdot x + b\cdot y = k$ 恒有解。

4.6 欧拉函数

欧拉函数 $\varphi(n)$ 表示小于等于 n 的正整数中与其互质的数字个数。其可表示为:

$$\varphi(n) = \begin{cases} 1, & n = 1\\ n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \cdots (1 - \frac{1}{p_r}), & n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r} \end{cases}$$

n 一定属于以上某条件,可用归纳法证明:

• n = 1, 2 满足以上条件。

• $n \geq 3$, 若 n 满足以上条件, 若 $n+1 = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ 则也满足以上条件, 若 $n+1 \neq p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, 那它一定是个合数,可以分解为两个或多个小于 n 的数字乘积。

下面考虑 $\varphi(n)$:

当 $n=p^k$ 时,不包含 p 的数才能与其互质。而包含 p 的数字有 $p,2\cdot p,\ldots,p^{k-1}\cdot p$ 共 p^{k-1} 个, 因此此时 $\varphi(n) = p^k - p^{k-1} = p^k (1 - \frac{1}{p})$.

当 $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ 时,可以通过以下两种方式证明该式。

4.6.1 使用容斥原理证明

先考虑 $n=p_1^{k_1}p_2^{k_2}$ 的情况。在计数 $\varphi(n)$ 的过程中不计数 $p_1,2p_1,\ldots,\lfloor\frac{n}{p_1}\rfloor p_1$,同理对 $p_2, 2p_2, \dots, \lfloor \frac{N}{p_2} \rfloor p_2$ 也不应该计数,并根据容斥原理(计数时重复计数的部分要扣除)还需要在结果中加上 $p_1p_2, 2p_1p_2, \dots, \lfloor \frac{n}{p_1} \rfloor p_2$ 的数量。这证明了 $\varphi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})$ 。同理,有 $\varphi(mn) = mn(1 - \frac{1}{p_{m1}})(1 - \frac{1}{p_{m2}}) \dots (1 - \frac{1}{p_{mr}})(1 - \frac{1}{p_{n1}})(1 - \frac{1}{p_{n2}}) \dots (1 - \frac{1}{p_{nk}}) = \varphi(m)\varphi(n)$,这就证明了 $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ 时, $\varphi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \dots (1 - \frac{1}{p_r})$ 。

4.6.2 使用中国剩余定理证明

先介绍中国剩余定理。它旨在解决形如下式的问题:

$$\begin{cases} x \equiv a_1(\bmod n_1) \\ x \equiv a_2(\bmod n_2) \\ \dots \\ x \equiv a_r(\bmod n_r) \end{cases} \quad (\forall i, j \leqslant r, \gcd(n_i, n_j) = 1)$$

$$(1)$$

这个定理推导基于以下性质:

- 1. 若 $a \mod n_1, n_2, \dots, n_r = 0$, 则 $a 为 n_1, n_2, \dots, n_r$ 公因子之积的倍数。
- 2. 若 $a \mod n = 1, k < n$,则 $k \cdot a \mod n = k$ 。
- 3. 由 $a+k \cdot n \equiv a \pmod{n}$, 可拓展得若 $a_1, a_2, \dots, a_r \mod n = 0$, 则 $a+k_1a_1+k_2a_a+\dots+k_ra_r \equiv a$ $a(\bmod n)$

由性质3得我们可以把该问题拆分,形如下式。

$$\begin{cases} x_1 \equiv a_1(\bmod n_1), x_1 \equiv 0(\bmod n_2), x_1 \equiv 0(\bmod n_3), \cdots, x_r \equiv 0(\bmod n_r) \\ x_2 \equiv 0(\bmod n_1), x_2 \equiv a_2(\bmod n_2), x_2 \equiv 0(\bmod n_3), \cdots, x_r \equiv 0(\bmod n_r) \\ \vdots \\ x_r \equiv 0(\bmod n_1), x_r \equiv 0(\bmod n_2), \cdots, x_r \equiv a_r(\bmod n_r) \\ x = \sum_{i=1}^r x_i \end{cases}$$

此时,利用性质 2,可以将 $x_i \equiv a_i \pmod{n_i}$ 简化为求 $x_i' \equiv 1 \pmod{n_i}$ 且 $x_i = a_i \cdot x_i'$ 。令 $N=n_1\cdot n_2\cdots n_r$, 则根据性质 1 则有 x_i' 满足 $x_i=\frac{N}{n_i}\cdot q_i$, 且 $\frac{N}{n_i}\cdot q_i\equiv 1(\bmod n_i)$, 即 q_i 为求 $\frac{N}{n_i}$ 模 n_i 的逆,记为 invert $(\frac{N}{n_i}, n_i)^{[1]}$ 。此时,方程已经被我们化为如下形式:

$$\begin{cases} x_1 = a_1 \frac{N}{n_1} \cdot \operatorname{invert}(\frac{N}{n_1}, n_1) \\ x_2 = a_2 \frac{N}{n_2} \cdot \operatorname{invert}(\frac{N}{n_2}, n_2) \\ \vdots \\ x_i = a_i \frac{N}{n_i} \cdot \operatorname{invert}(\frac{N}{n_i}, n_i) \\ \vdots \\ x_r = a_r \frac{N}{n_r} \cdot \operatorname{invert}(\frac{N}{n_r}, n_r) \\ x \equiv \sum_{i=1}^r x_i (\operatorname{mod} n) \end{cases}$$

这就给出了方程 1 的解。若 $\exists i, j$,使 $\gcd(n_i, n_j) > 1$,则可通过除其公因子"合并"方程。关于逆元的求法可参考这个链接。

下面将用中国剩余定理证明欧拉公式。

设 $A = \{x | \gcd(x, m) = 1, x \le m\}, B = \{y | \gcd(y, n) = 1, y \le n\}, C = \{z | \gcd(z, mn) = 1, z \le mn\}, \$ 则 $\varphi(m) = |A|, \varphi(n) = |B|, \varphi(mn) = |C|.$

- gcd(m,n) = 1
- $A \cap B = \{1\}$

若 $mn \mod N = 0$, 即 $N \in C$, 令 $N = k_1 m + p = k_2 n + q$ 。

- gcd(N, mn) = 1
- $\therefore \gcd(N, m) = \gcd(N, n) = 1$
- $gcd(k_1m + p, m) = gcd(p, m) = 1, gcd(k_2n + q, n) = gcd(q, n) = 1,$
- $\therefore \gcd(p, m) = \gcd(q, n) = 1$

由中国剩余定理, 方程组

$$\begin{cases} N \equiv p(\bmod m) \\ N \equiv q(\bmod n) \end{cases}$$

有通解 $N = kmn + pnt_1 + qnt_2$,其中 $nt_1 \equiv 1 \pmod{n}$, $mt_2 \equiv 1 \pmod{n}$ 。

因此,对于每一个二元组 (p,q),都有唯一的 N 与之对应 $\Rightarrow A \times B$ 与 C 构成双射。

根据乘法原理, 二元组 (p,q) 的数量为 $\varphi(n)\varphi(m)$, 而与 mn 互质的数 N 的数量为 $\varphi(mn)$ 。

$$\therefore \varphi(mn) = \varphi(m)\varphi(n)$$

$$\therefore \forall n \in \mathbb{Z}^*, n = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}, \varphi(n) = p_1^{k_1} (1 - \frac{1}{p_1}) p_2^{k_2} (1 - \frac{1}{p_2}) \cdots p_n^{k_n} (1 - \frac{1}{p_n}) = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n} (1 - \frac{1}{p_n}) = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n} (1 - \frac{1}{p_n}) (1 - \frac{1}{p_n}) \cdots (1 - \frac{1}{p_n}).$$

4.7 欧拉定理

欧拉定理指的是,如果两个正整数 a 和 n 满足 gcd(a,n) = 1,则有:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

证明……先等等吧……

5 RSA 数字签名与数字证书

现在设想这样一个情形:小收公布公钥之后,收到了一条信息要求他给小发转账。于是小收转了 50,但第二天,小收却声明他从未发过类似于"vivo50"这样的信息。原来,小攻,作为一名黑客,冒充小发发了一条信息。小收发现了这个公钥体制的问题——没有办法证明信息的发送者。

同一时间,另一头的小攻也在为另一个问题苦恼——他发送的信息明明是"vivo500",可是他仅仅收到了 50! 原来,信息在传输的过程中被他的对手小黑(另一名黑客),改成了 vivo50! 他咬牙切齿,因为小收的消息系统太烂了——根本没办法知道信息发送过程中有没有被篡改。

RSA 数字签名与数字证书可证明发信人是其自身, 以及消息的完整性。

5.1 散列函数

验证信息没有被篡改很简单:使用散列函数,对原文进行"摘要"。散列函数应当满足这样的性质: 当输入发生微小的变化的时候结果变化很大,并且难以找到有相同输出的输入,这样,当消息发生变化,用相同算法生成的"摘要"也就会发生变化。

5.2 数字签名与数字证书

RSA 算法原理保证了其有这样的性质:即使使用私钥加密,用公钥也可以解密。这是由第 4 章中介绍的数学原理决定的。因此,在上文的例子中,小收也可以制作一份密钥,并将公钥公布。在发送信息的时候,用自己的私钥对摘要进行加密。如果小攻想要修改信息,那么他必须知道小收使用的私钥——不然小发得到的消息和摘要将会不一致。

然而,小攻十分滴聪明狡猾。他用小收的密钥加密了"vivo500"的假消息,然后自己制作了一份公钥发到网上,用私钥对消息的摘要加了密。小收又上了当——这份消息看起来同样是小发的消息,也有"小发的签名"。

这时候需要由数字证书解决这个问题。证书授权 (CA,CertificateAuthority) 由相应的 CA 机构 颁发给小收 (应经过线下验证),包括了小收的公钥、小收的身份信息、CA 的签名。这样,小发就可以找到真正的小收公钥与对应消息。

验证证书的合法性是套娃的过程。小收的公钥与小收的身份信息对应的摘要,应该与 CA 的解密后签名一致。CA 根证书是安装系统内置在系统或浏览器中的,这样如果还想信息造假,需要修改用户的系统或浏览器文件,而这通常是不可能的。

现在如果小攻有能力发送信息、劫持他人发送的信息,且没有能力分解公钥,小攻将无法完成欺骗,除非他可以劫持网络到修改他们发送的信息,或是可线下潜入某位仁兄的房间,修改他们的电脑数据——但如果这样,他直接用他们的账户给自己转账似乎更合理些。

6 让你的 RSA 更安全

参考文献

- [1] Bat 特白. 中国剩余定理 (crt). [EB/OL]. https://zhuanlan.zhihu.com/p/44591114 发布于 2018-10-16 12:05.
- [2] 陈传波 and 祝中涛. Rsa 算法应用及实现细节. 计算机工程与科学, 28(9):13-14, 2006.