Københavns Universitet. Økonomisk Institut

2. årsprøve 2016 S-2DM ex(ii) & rx ret

Skriftlig eksamen i Dynamiske Modeller Onsdag den 24. august 2016

Rettevejledning

Opgave 1. Vi betragter tredjegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^3 + 10z^2 + 29z + 20.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + 10\frac{d^2x}{dt^2} + 29\frac{dx}{dt} + 20x = 0,$$

og

$$(**) \frac{d^3x}{dt^3} + 10\frac{d^2x}{dt^2} + 29\frac{dx}{dt} + 20x = 48e^{-t}.$$

(1) Vis, at tallet z = -1 er rod i polynomiet P. Bestem dernæst samtlige rødder i polynomiet P.

Løsning. Ved indsættelse af tallet z=-1 i polynomiet P, ser vi direkte, at P(-1)=0. Ved efterfølgende polynomiumsdivision opnår vi faktoriseringen

$$\forall z \in \mathbf{C} : P(z) = (z+1)(z^2 + 9z + 20),$$

og dernæst indser vi, at polynomiet P har de tre (karakteristiske) rødder $z_1 = -1, z_2 = -4$ og $z_3 = -5$.

(2) Bestem den fuldstændige løsning til differentialligningen (*), og begrund, at (*) er globalt asymptotisk stabil.

Løsning. Vi finder, at

$$x = c_1 e^{-t} + c_2 e^{-4t} + c_3 e^{-5t}$$
, hvor $c_1, c_2, c_3 \in \mathbf{R}$.

Da alle de karakteristiske rødder er negative, er differentialligningen (*) globalt asymptotisk stabil.

(3) Bestem den fuldstændige løsning til differentialligningen (**).

Løsning. Vi gætter på en løsning af formen $\hat{x} = Ate^{-t}$. Da er $\hat{x}' = Ae^{-t} - Ate^{-t}$, $\hat{x}'' = Ate^{-t} - 2Ae^{-t}$ og $\hat{x}''' = 3Ae^{-t} - Ate^{-t}$. Ved indsættelse i differentialligningen (**) finder vi, at A = 4. Den fuldstændige løsning til differentialligningen (**) er derfor

$$x = c_1 e^{-t} + c_2 e^{-4t} + c_3 e^{-5t} + 4t e^{-t}$$
, hvor $c_1, c_2, c_3 \in \mathbf{R}$.

For ethvert $a \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^3x}{dt^3} + 2a\frac{d^2x}{dt^2} + 3a\frac{dx}{dt} + x = 0,$$

(4) Opstil Routh-Hurwitz matricen A_3 for differentialligningen (* * *), og bestem de $a \in \mathbf{R}$, for hvilke (* * *) er globalt asymptotisk stabil.

Løsning. Vi ser umiddelbart, at

$$A_3 = \left(\begin{array}{ccc} 2a & 1 & 0\\ 1 & 3a & 0\\ 0 & 2a & 1 \end{array}\right).$$

De ledende hovedunderdeterminanter er $D_1 = 2a, D_2 = 6a^2 - 1$ og $D_3 = 6a^2 - 1$. Hvis disse alle tre skal være positive, må vi kræve, at $a > \frac{1}{\sqrt{6}}$, så differentialligningen (* * *) er globalt asymptotisk stabil, hvis og kun hvis $a > \frac{1}{\sqrt{6}}$.

Opgave 2. Vi betragter den korrespondance $F:[0,10]\to \mathbf{R}$, som er defineret ved forskriften

$$F(x) = \begin{cases} [0,1] \cup \{-1\}, & \text{for } 0 \le x < 5\\ [-5,5], & \text{for } 5 \le x < 10 \end{cases}$$

og den funktion $f:[0,10]\times \mathbf{R}\to \mathbf{R}$, der har forskriften

$$\forall (x, y) \in [0, 10] \times \mathbf{R} : f(x, y) = x^2 + x^4 y^2.$$

(1) Vis, at F har afsluttet graf egenskaben.

Løsning. Grafen Gr(F) for korrespondancen F er

$$Gr(F) = \left\{ (x,y) \in [0,10[\times \mathbf{R} \mid \begin{cases} y \in [0,1] \cup \{-1\}, & \text{for } 0 \le x < 5 \\ y \in [-5,5], & \text{for } 5 \le x < 10 \end{cases} \right\}.$$

og denne mængde er afsluttet relativt til mængden $M = [0, 10] \times \mathbf{R}$. Heraf følger påstanden straks.

(2) Vis, at F ikke er nedad hemikontinuert.

Løsning. Vælg en følge (x_k) af punkter fra intervallet [0, 5[, og antag, at denne følge er konvergent med x = 5 som grænsepunkt. Der findes da ingen konvergent følge (y_k) , hvor $y_k \in F(x_k) = [0, 1] \cup \{-1\}$ for ethvert $k \in \mathbb{N}$, så grænsepunktet er $y = 5 \in F(5)$. Dette viser, at korrespondancen F ikke er nedad hemikontinuert.

(3) Vis, at F er opad hemikontinuert.

Løsning. Da F har afsluttet graf egenskaben, og da $F(x) \subseteq [-5, 5]$ for ethvert $x \in [0, 10[$, er F opad hemikontinuert.

(4) Bestem mængden af fixpunkter for F, dvs. mængden

$$\mathcal{F} = \{ x \in [0, 10[\mid x \in F(x) \}.$$

Løsning. Vi ser, at $\mathcal{F} = [0, 1] \cup \{5\}$.

(5) Bestem en forskrift for den maksimale værdifunktion $v_u = v_u(x)$, hvor

$$v_u(x) = \max\{f(x,y) \mid y \in F(x)\}.$$

Løsning. Vi får, at

$$v_u(x) = \begin{cases} 0, & \text{for } x = 0 \text{ med } y \in [0, 1] \cup \{-1\} \\ x^2 + x^4, & \text{for } 0 < x < 5 \text{ med } y = \pm 1 \\ x^2 + 25x^4, & \text{for } 5 \le x < 10 \text{ med } y = \pm 5 \end{cases}$$

(6) Bestem en forskrift for maksimumskorrespondancen $M_u = M_u(x)$, hvor

$$M_u(x) = \{ y \in F(x) \mid v_u(x) = f(x, y) \},\$$

og godtgør, at M_u ikke har afsluttet graf egenskaben.

Løsning. På grundlag af løsningen til ovenstående spørgsmål, får vi, at

$$M_u(x) = \begin{cases} [0,1] \cup \{-1\}, & \text{for } x = 0\\ \{-1,1\}, & \text{for } 0 < x < 5\\ \{-5,5\}, & \text{for } 5 \le x < 10 \end{cases}.$$

Vi ser umiddelbart, at grafen $Gr(M_u)$ ikke er afsluttet relativt til mængden $M = [0, 10] \times \mathbf{R}$, så M_u har ikke afsluttet graf egenskaben.

Opgave 3. Vi betragter den vektorfunktion $f: \mathbb{R}^2 \to \mathbb{R}^2$, som har forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : f(x_1, x_2) = (x_1^2 + x_2^2 + 5x_2, x_2 + (x_1 - 3)^2).$$

(1) Bestem fixpunkterne for vektorfunktionen f, dvs. de punkter $(x_1, x_2) \in \mathbb{R}^2$, hvor betingelsen

$$f(x_1, x_2) = (x_1, x_2)$$

er opfyldt.

Løsning. Vi ser straks, at $x_1 = 3$, og dernæst får vi, at

$$9 + x_2^2 + 5x_2 = 3 \Leftrightarrow x_2^2 + 5x_2 + 6 = 0 \Leftrightarrow x_2 = -3 \lor x_2 = -2,$$

så vektorfunktionen f har fixpunkterne (3, -2) og (3, -3).

(2) Bestem værdimængden for funktionen $\phi: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : \phi(x_1, x_2) = ||f(x_1, x_2) - (x_1, x_2)||.$$

Løsning. Det er klart, at $\phi(3, -2) = \phi(3, -3) = 0$, og at $\phi(x_1, x_2) \ge 0$ for ethvert $(x_1, x_2) \in \mathbf{R}^2$. Desuden ser vi, at

$$\phi(3, x_2) = |x_2^2 + 5x_2 + 6| \to \infty \text{ for } x_2 \to \infty.$$

Dette viser, at funktionen ϕ har værdimængden $R(\phi) = [0, \infty[$.

(3) Bestem Jacobimatricen $Df(x_1, x_2)$ for vektorfunktionen f i et vilkårligt punkt $(x_1, x_2) \in \mathbf{R}^2$.

Løsning. Vi ser, at

$$Df(x_1, x_2) = \begin{pmatrix} 2x_1 & 2x_2 + 5 \\ 2x_1 - 6 & 1 \end{pmatrix}.$$

(4) Godtgør, at Jacobimatricen Df(0,0) er regulær, og vis, at der findes åbne mængder V og W, så $(0,0) \in V$ og $f(0,0) \in W$, og sådan at vektorfunktionen f afbilder V bijektivt på W. Eller anderledes sagt: Vis, at der findes åbne omegne V og W af henholdsvis (0,0) og f(0,0), så restriktionen $f|_{V}$ af f til V er bijektiv og afbilder V på W.

Løsning. Vi ser, at

$$Df(0,0) = \left(\begin{array}{cc} 0 & 5\\ -6 & 1 \end{array}\right),$$

og denne matrix er regulær, thi dens determinant er 30.

Af sætningen om lokalt omvendt afbildning følger påstanden om, at der findes åbne omegne V og W af henholdsvis (0,0) og f(0,0), så restriktionen $f|_V$ af f til V er bijektiv og afbilder V på W.

(5) Løs ligningen

$$y = f(0,0) + Df(0,0)x$$

med hensyn til $x = (x_1, x_2)$.

Løsning. Vi ser, at f(0,0) = (0,9), så

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 9 \end{pmatrix} + \begin{pmatrix} 0 & 5 \\ -6 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{y_1}{30} - \frac{y_2}{6} + \frac{3}{2} \\ \frac{y_1}{5} \end{pmatrix}.$$

Opgave 4. Vi betragter den funktion $F: \mathbf{R}^2 \to \mathbf{R}$, der er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : F(x,y) = 4xe^{\frac{t}{2}} + t + y^2e^{\frac{t}{2}}.$$

Desuden betragter vi funktionalen

$$I(x) = \int_0^2 \left(4xe^{\frac{t}{2}} + t + \dot{x}^2 e^{\frac{t}{2}} \right) dt.$$

(1) Vis, at funktionen F = F(x, y) er konveks på hele \mathbf{R}^2 .

Løsning. Vi finder, at

$$\frac{\partial F}{\partial x}(x,y) = 4e^{\frac{t}{2}} \text{ og } \frac{\partial F}{\partial y}(x,y) = 2ye^{\frac{t}{2}}$$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

Hessematricen for funktionen F = F(x, y) er derfor

$$F'' = \left(\begin{array}{cc} 0 & 0\\ 0 & 2e^{\frac{t}{2}} \end{array}\right),$$

som er positiv semidefinit for ethvert $t \in [0, 2]$. Altså er funktionen F = F(x, y) konveks.

(2) Bestem den funktion $x^* = x^*(t)$, der minimerer funktionalen I(x), idet $x^*(0) = 0$ og $x^*(2) = 11$.

Løsning. Fra det foregående spørgsmål får vi, at det givne variationsproblem er et minimumsproblem. Euler-Lagranges differentialligning for dette problem er

$$\frac{\partial F}{\partial x} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{x}} \right) = 0 \Leftrightarrow 4e^{\frac{t}{2}} - 2\ddot{x}e^{\frac{t}{2}} - \dot{x}e^{\frac{t}{2}} = 0 \Leftrightarrow \ddot{x} + \frac{1}{2}\dot{x} = 2.$$

Den tilhørende homogene differentialligning har det karakteristiske polynomium $P(\lambda) = \lambda^2 + \frac{1}{2}\lambda$, som har rødderne $\lambda_1 = 0$ og $\lambda_2 = -\frac{1}{2}$. En speciel løsning til den oprindelige inhomogene differentialligning er $\hat{x} = 4t$, så den fuldstændige løsning bliver

$$x = A + Be^{-\frac{t}{2}} + 4t$$
, hvor $A, B \in \mathbf{R}$.

Da x(0) = 0, er B = -A, så

$$x = A(1 - e^{-\frac{t}{2}}) + 4t$$
, hvor $A \in \mathbf{R}$.

Da x(2) = 11, får vi, at $A = \frac{3}{1 - e^{-1}} = \frac{3e}{e^{-1}}$. Den søgte løsning er derfor

$$x^* = x^*(t) = \frac{3e}{e-1} (1 - e^{-\frac{t}{2}}) + 4t.$$