

1.877.FOR.RFMW (367-7369)

Quotes: sales@rfmw.com | Appl.?'s: tech@rfmw.com

# Discrete Semiconductors & Microwave Components

#### **Discrete Semiconductors**

Varactor Diodes, PIN Diodes, Schottky Diodes, Limiter Diodes, Chip Capacitors

#### **Microwave Components**

Power Divider/Combiners, Directional Couplers, Hybrids, Detectors, Attenuators, Phase Shifters





#### **Skyworks - Premier Supplier of Wireless Semiconductor Solutions**

Skyworks Solutions, Inc. is the world's largest company focused exclusively on wireless semiconductor solutions. This leadership position encompasses not only the final product, but also the technology, processing, and packaging that makes it all possible.

From the radio to the baseband, we have developed the industry's broadest product portfolio including leadership in switches and power amplifier modules. Additionally, we offer the world's most highly integrated direct conversion transceiver and have launched the industry's most comprehensive cellular system for next generation handsets.

With annual revenues of well over half a billion dollars, we deliver millions of units per year — as individual components, modules, or fully integrated systems. Our extensive offering and unparalleled systems expertise makes Skyworks the ideal partner for both top-tier wireless systems manufacturers and new market entrants who demand simplified architectures and faster development cycles.

We possess a highly skilled and motivated team of 4,000 employees worldwide. With roughly 750 engineers and hundreds of dedicated sales, marketing and technical support personnel throughout North America, Europe, and Asia, we are well positioned to respond to the growing needs of our customers.

Skyworks combines the experience of yesterday with the innovation of tomorrow. The solutions outlined in this brochure are a result of this unique blend of knowledge and technology, and are just a sampling of our broad product and technology portfolio. Feel free to contact us to discuss your design requirements to see how our solutions can best meet your needs.

New products are continually being introduced at Skyworks. Visit our web site for the latest information at www.skyworksinc.com. For additional information, contact your local sales office or email us at sales@skyworksinc.com.

## Discrete Semiconductors and Microwave Components Table of Contents



| Varactor Diodes                                                                                |
|------------------------------------------------------------------------------------------------|
| Application/Selection Guide                                                                    |
| PIN Diodes                                                                                     |
| Application/Selection Guide                                                                    |
| Limiter Diodes                                                                                 |
| Schottky Diodes                                                                                |
| Application/Selection Guide                                                                    |
| Chip Capacitors                                                                                |
| Power Divider/Combiners                                                                        |
| Directional Couplers                                                                           |
| Hybrids                                                                                        |
| Detectors                                                                                      |
| Attenuators                                                                                    |
| PIN Diode Based                                                                                |
| FET Based                                                                                      |
| Fixed Attenuators                                                                              |
| Phase Shifters                                                                                 |
| Reference Material                                                                             |
| Discrete Semiconductors and Microwave Components Application Notes                             |
| Discrete Devices and IC Switch/Attenuators Tape and Reel Package Orientation                   |
| Suggested PCB Land Pattern Designs for Leaded and Leadless Packages and Detailed Surface Mount |
| Guidelines for Leadless Packages                                                               |
| Solder Reflow                                                                                  |
| Varactor Marking                                                                               |
| Waffle Pack                                                                                    |
| Semiconductor Plastic Package Selection Guide                                                  |
| Package Style Part Number Reference                                                            |
| Part Number Index                                                                              |
| Skyworks Sales Representatives                                                                 |
| Skyworks Distributors                                                                          |
| Skyworks Sales Offices                                                                         |



## **Varactor Diodes**

## **Application/Selection Guide**

| Market                             | Function      | Suggested Part Number                                           |  |  |
|------------------------------------|---------------|-----------------------------------------------------------------|--|--|
| Telemetry                          | VCO           | SMV1405-079, SMV1413-001                                        |  |  |
| TV Distribution                    | VCO           | SMV1139-079, SMV1265-011                                        |  |  |
| Cellular Handsets                  | VCO           | SMV1142-011, SMV1234-079, SMV1494-079, SMV1705-079, SMV1763-079 |  |  |
| Base Station/Communication Systems | Phase Shifter | SMV1245-011, SMV1281-011                                        |  |  |
| Broadband                          | VCO           | SMV1705-079, SMV1763-079, SMV1770-079                           |  |  |
| WLAN                               | VCO           | SMV1763-079                                                     |  |  |

## **Hyperabrupt Junction Tuning Varactor**



#### SMV1705-050

#### **Features**

- Low Series Resistance (0.27  $\Omega$  Typ.)
- Low Inductance (0.25 nH Typ.)
- High Capacitance Ratio
- Package Height is Half of the SC-79 Package
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging



#### **Description**

The SMV1705-050 is a silicon hyperabrupt junction varactor diode specifically designed for battery operation. The extremely small package size and specified high capacitance ratio and low  $\rm R_{\rm S}$  of this varactor make it appropriate for low noise VCOs used at frequencies in wireless systems to beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.

#### **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (PD)                   | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

#### **Electrical Specifications at 25°C**

| Parameter                            | Condition                                 | Min. | Тур.   | Max. | Unit |
|--------------------------------------|-------------------------------------------|------|--------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 8 V                      |      | < 0.01 | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 1 V, F = 1 MHz           | 17.3 | 18.30  | 19.3 | pF   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 4 V, F = 1 MHz           | 5.3  | 6.10   | 6.6  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (1 V)/C <sub>T</sub> (4 V) | 2.8  | 3.00   |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 470 MHz         |      | 0.27   |      | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                    | 12.0 |        |      | V    |

#### **Typical Performance Data**



Capacitance vs. Voltage



Relative Capacitance Change vs. Temperature

#### Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 31.5                |
| 0.5                | 23.5                |
| 1.0                | 18.3                |
| 1.5                | 14.3                |
| 2.0                | 11.9                |
| 2.5                | 9.7                 |
| 3.0                | 8.3                 |
| 3.5                | 7.1                 |
| 4.0                | 6.1                 |
| 4.5                | 5.5                 |
| 5.0                | 5.2                 |



| Part        | C <sub>JO</sub> | V <sub>J</sub> | М | C <sub>P</sub> | R <sub>S</sub> | L <sub>S</sub> |
|-------------|-----------------|----------------|---|----------------|----------------|----------------|
| Number      | (pF)            | (V)            |   | (pF)           | (Ω)            | (nH)           |
| SMV1705-050 | 31              | 3              | 2 | 0.5            | 0.27           | 0.25           |



| Description                              | Sym.           | Chip Scale |
|------------------------------------------|----------------|------------|
| Cavity                                   |                |            |
| Length                                   | A <sub>0</sub> | 0.65±0.05  |
| Width                                    | B <sub>0</sub> | 0.76±0.05  |
| Depth                                    | K <sub>0</sub> | 0.53±0.05  |
| Pitch                                    | P <sub>1</sub> | 2.00±0.10  |
| Bottom Hole<br>Diameter                  | D <sub>1</sub> | N/A        |
| Perforation                              |                |            |
| Diameter                                 | D <sub>0</sub> | 1.50±0.10  |
| Pitch                                    | P <sub>0</sub> | 4.00±0.10  |
| Position                                 | E <sub>1</sub> | 1.75±0.10  |
| Carrier Tape                             |                |            |
| Width                                    | W              | 8.00±0.20  |
| Thickness                                | Т              | 0.43±0.05  |
| Cover Tape                               |                |            |
| Width                                    | $W_1$          | 5.40±0.10  |
| Tape<br>Thickness                        | T <sub>1</sub> | 0.062±0.01 |
| Distance                                 |                |            |
| Cavity to Perforation (Width Direction)  | F              | 3.50±0.05  |
| Cavity to Perforation (Length Direction) | P <sub>2</sub> | 1.00±0.025 |

Note: All dimensions are in mm.

#### **Paper Tape Dimensions**



#### Chip Scale (-050)



| Standard Reel Size     | 7"     |
|------------------------|--------|
| Standard Reel Quantity | 12,000 |

#### -050



#### **Land Pattern**

The recommended surface mount pad pattern ensures quality solder joint formation and high-yielding assembly, while using minimum board space. The dimensions apply to both Solder Mask Defined (SMD) as well as Non-Solder Mask Defined (NSMD) pads. However, NSMD pads, in which the solder mask is pulled back from the metal pad, are preferred. This type of pad definition generally produces improved solder joint reliability as well as an increased gap under the component. The increased gap is desirable for enhanced cleaning of flux residue and component underfill for applications in which the component will be encapsulated.



#### **Solder Printing**

The recommended land pattern, when used in conjunction with the following solder deposit recommendation, provides quality solder joint formation and high yielding assembly. Solder should be deposited with a stencil of foil thickness from 100–125  $\mu m,$  and preferably have apertures that are laser-etched and electro-polished for optimal paste release. The chip scale package is compatible with most lead-based and lead-free solder pastes, though a type 3 or type 4 paste is preferred for the fine aperture printing.



The solder deposit should be centered on the land pattern as shown.



#### **Component Placement**

The CSP is can easily be picked and placed on most placement systems. Care should be taken to select a pick nozzle that matches the component footprint. Vision alignment after pick can be done to the package edges or the package leads, depending on the ability of the individual placement machine. The component should be placed as centered as possible to the pad and print patterns to assure even wetting and an absence of tilt or skew.



#### Solder Reflow

Solder reflow is best suited to convection or IR reflow systems, though convection reflow will always give more rapid and uniform thermal transfer. The CSP can be successfully reflowed in either air or nitrogen atmospheres. The solder paste manufacturer's recommended reflow profile should be adhered to and care should be taken to ensure that the profile is adjusted for variability in thermal mass amongst components. Attached are generic profiles for eutectic tin-lead solder and a typical lead-free solder.

These should only be used as a guideline, with the paste manufacturers recommended profile taking precedence. A standard solvent flux clean can be safely employed to remove flux residue from the device edges.



Lead Free Profile



**Eutectic Tin-Lead Profile** 

#### **Finished Product**

Once reflowed, the component should be fairly centered on the land pattern. Solder should wet evenly to CSP leads and the component should not display excessive tilt or skew. A solvent flux clean can be safely employed if desired.



## **Chip Scale Hyperabrupt Junction Tuning Varactor**



#### SMV1763-050

#### **Features**

- Miniature Chip Scale Package
- Low Series Resistance
- High Capacitance Ratio at Low Reverse Voltage
- Low Inductance (0.25 nH Typ.)
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging



The SMV1763-050 is a silicon hyperabrupt junction varactor diode specifically designed for 3 V platforms. The extremely small package size and specified high capacitance ratio and low  $\rm R_{\rm S}$  of this varactor make it attractive for low phase noise VCOs in wireless systems beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



#### **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

#### **Electrical Specifications at 25°C**

| Parameter                            | Condition                                                 | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 8 V                                      |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | $C_T$ @ 0.5 V, $V_R$ = 0.5 V, $F$ = 1 MHz                 | 6.2  | 6.7  | 7.2  | pF   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 2.5 V, V <sub>R</sub> = 2.5 V, F = 1 MHz | 2.3  | 2.6  | 2.9  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (0.5 V)/C <sub>T</sub> (2.5 V)             | 2.3  | 2.5  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 900 MHz                         |      | 0.5  | 0.7  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                    | 10.0 |      |      | V    |

#### **Typical Performance Data**



Capacitance vs. Voltage



Relative Capacitance Change vs. Temperature

#### Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 9.0                 |
| 0.5                | 6.7                 |
| 1.0                | 5.2                 |
| 1.5                | 4.0                 |
| 2.0                | 3.2                 |
| 2.5                | 2.6                 |
| 3.0                | 2.2                 |
| 3.5                | 2.0                 |
| 4.0                | 1.9                 |
| 4.5                | 1.8                 |
| 5.0                | 1.8                 |



| Part<br>Number | C <sub>J0</sub><br>(pF) | V <sub>J</sub><br>(V) | М   | C <sub>P</sub><br>(pF) | $R_S$ $(\Omega)$ | L <sub>S</sub><br>(nH) |
|----------------|-------------------------|-----------------------|-----|------------------------|------------------|------------------------|
| SMV1763-050    | 8.2                     | 15                    | 9.5 | 0.67                   | 0.5              | 0.25                   |



| Description                              | Sym.           | Chip Scale |  |
|------------------------------------------|----------------|------------|--|
| Cavity                                   | THE TEN        | 大小林林。 经基础  |  |
| Length                                   | A <sub>0</sub> | 0.65±0.05  |  |
| Width                                    | B <sub>0</sub> | 0.76±0.05  |  |
| Depth                                    | K <sub>0</sub> | 0.53±0.05  |  |
| Pitch                                    | P <sub>1</sub> | 2.00±0.10  |  |
| Bottom Hole<br>Diameter                  | D <sub>1</sub> | N/A        |  |
| Perforation                              |                |            |  |
| Diameter                                 | D <sub>0</sub> | 1.50±0.10  |  |
| Pitch                                    | P <sub>0</sub> | 4.00±0.10  |  |
| Position                                 | E <sub>1</sub> | 1.75±0.10  |  |
| Carrier Tape                             |                |            |  |
| Width                                    | W              | 8.00±0.20  |  |
| Thickness                                | Т              | 0.43±0.05  |  |
| Cover Tape                               |                |            |  |
| Width                                    | $W_1$          | 5.40±0.10  |  |
| Tape<br>Thickness                        | Τ <sub>1</sub> | 0.062±0.01 |  |
| Distance                                 |                |            |  |
| Cavity to Perforation (Width Direction)  | F              | 3.50±0.05  |  |
| Cavity to Perforation (Length Direction) | P <sub>2</sub> | 1.00±0.025 |  |

Note: All dimensions are in mm.

#### **Paper Tape Dimensions**



#### Chip Scale (-050)



| Standard Reel Size     | 7"     |
|------------------------|--------|
| Standard Reel Quantity | 12,000 |

#### -050



#### **Land Pattern**

The recommended surface mount pad pattern ensures quality solder joint formation and high-yielding assembly, while using minimum board space. The dimensions apply to both Solder Mask Defined (SMD) as well as Non-Solder Mask Defined (NSMD) pads. However, NSMD pads, in which the solder mask is pulled back from the metal pad, are preferred. This type of pad definition generally produces improved solder joint reliability as well as an increased gap under the component. The increased gap is desirable for enhanced cleaning of flux residue and component underfill for applications in which the component will be encapsulated.



#### **Solder Printing**

The recommended land pattern, when used in conjunction with the following solder deposit recommendation, provides quality solder joint formation and high yielding assembly. Solder should be deposited with a stencil of foil thickness from 100–125  $\mu m$ , and preferably have apertures that are laser-etched and electro-polished for optimal paste release. The chip scale package is compatible with most lead-based and lead-free solder pastes, though a type 3 or type 4 paste is preferred for the fine aperture printing.



The solder deposit should be centered on the land pattern as shown.



#### **Component Placement**

The CSP can easily be picked and placed on most placement systems. Care should be taken to select a pick nozzle that matches the component footprint. Vision alignment after pick can be done to the package edges or the package leads, depending on the ability of the individual placement machine. The component should be placed as centered as possible to the pad and print patterns to assure even wetting and an absence of tilt or skew.



#### **Solder Reflow**

Solder reflow is best suited to convection or IR reflow systems, though convection reflow will always give more rapid and uniform thermal transfer. The CSP can be successfully reflowed in either air or nitrogen atmospheres. The solder paste manufacturer's recommended reflow profile should be adhered to and care should be taken to ensure that the profile is adjusted for variability in thermal mass amongst components. Attached are generic profiles for eutectic tin-lead solder and a typical lead-free solder.

These should only be used as a guideline, with the paste manufacturers recommended profile taking precedence. A standard solvent flux clean can be safely employed to remove flux residue from the device edges.



**Lead Free Profile** 



**Eutectic Tin-Lead Profile** 

#### **Finished Product**

Once reflowed, the component should be fairly centered on the land pattern. Solder should wet evenly to CSP leads and the component should not display excessive tilt or skew. A solvent flux clean can be safely employed if desired.



### **Hyperabrupt Junction Tuning Varactors**



#### SMV1129 and SMV1139

#### **Features**

- High Q
- Low Series Resistance for Low Phase Noise
- Multiple Packages SOD-323, SC-79 and SC-70
- Designed for High Volume Commercial Applications
- SPICE Models are Available

#### **Description**

The SMV1129 and SMV1139 silicon hyperabrupt junction varactor diodes are designed for use in VCOs requiring low resistance. The low resistance of these varactors makes them appropriate for high Q resonators in wireless system VCOs to frequencies beyond 2.5 GHz.



#### **Absolute Maximum Ratings**

| •                                        |                 |  |  |  |  |
|------------------------------------------|-----------------|--|--|--|--|
| Characteristic                           | Value           |  |  |  |  |
| Forward Current (I <sub>F</sub> )        | 20 mA           |  |  |  |  |
| Power Dissipation (PD)                   | 250 mW          |  |  |  |  |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |  |  |  |  |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |  |  |  |  |

| u——                     |                         |                         |
|-------------------------|-------------------------|-------------------------|
| Single                  | Single                  | Common Anode            |
| SOD-323                 | SC-79                   | SC-70                   |
| ♦ SMV1129-011           | ♦ SMV1129-079           | SMV1129-073             |
| ♦ SMV1139-011           | ♦ SMV1139-079           |                         |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.7 nH | L <sub>S</sub> = 1.4 nH |

<sup>♦</sup> Available through distribution.

For other packages or configurations, please contact the factory.

### **Electrical Specifications at 25°C**

| Part<br>Number | C <sub>T</sub> @ 1 V<br>(pF) |      | C <sub>T</sub> @ | ⊉ 1 V<br>⊉ 3 V<br>atio) | C <sub>T</sub> @ C <sub>T</sub> @ (Ra | 9 6 V | R <sub>S</sub> @ 1 V<br>500 MHz<br>(Ω) |      |
|----------------|------------------------------|------|------------------|-------------------------|---------------------------------------|-------|----------------------------------------|------|
|                | Min.                         | Тур. | Max.             | Min.                    | Тур.                                  | Min.  | Тур.                                   | Max. |
| SMV1129        | 17.50                        | 19.0 | 20.50            | 1.4                     | 1.53                                  | 2.0   | 2.5                                    | 0.4  |
| SMV1139        | 4.95                         | 5.4  | 5.85             | 1.4                     | 1.53                                  | 2.0   | 2.5                                    | 0.6  |

Reverse Voltage  $V_R$  ( $I_R$  = 10  $\mu$ A): 12 V Reverse Current  $I_R$  ( $V_R$  = 10 V): 20 nA

#### **Typical Performance Data**



Capacitance vs. Reverse Voltage

#### **SPICE Model**



| Part<br>Number | C <sub>JO</sub><br>(pF) | (V) | M    | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|-----|------|------------------------|-----------------------|
| SMV1129        | 27.5                    | 2.8 | 1.10 | 0                      | 0.40                  |
| SMV1139        | 8.0                     | 1.2 | 0.65 | 0                      | 0.60                  |

- 1. Values extracted from measured performance.
- For package inductance (L<sub>S</sub>) refer to package type.
   For more details refer to the "Varactor SPICE Models for RF VCO Applications" Application Note.

#### Capacitance vs. Reverse Voltage

|                    | SMV1129             | SMV1139             |
|--------------------|---------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) | C <sub>T</sub> (pF) |
| 0                  | 27.5                | 8.0                 |
| 1                  | 18.9                | 5.5                 |
| 2                  | 15.0                | 4.4                 |
| 3                  | 12.5                | 3.7                 |
| 4                  | 10.7                | 3.1                 |
| 5                  | 9.3                 | 2.7                 |
| 6                  | 8.1                 | 2.5                 |
| 7                  | 7.1                 | 2.3                 |
| 8                  | 6.3                 | 2.2                 |
| 9                  | 5.7                 | 2.1                 |
| 10                 | 5.2                 | 2.0                 |
| 11                 | 4.9                 | 2.0                 |
| 12                 | 4.7                 | 1.9                 |

#### SOD-323



#### SC-79



#### **SC-70**



## **Hyperabrupt Junction Tuning Varactor**



#### SMV1135 Series

#### **Features**

- High Tuning Ratio
- Low Series Resistance
- SOD-323 Package
- Designed for High Volume, Low Cost Applications
- Available in Tape and Reel Packaging

#### **Description**

The SMV1135 series are surface mount varactor diodes designed for very high capacitance tuning ratio while having low series resistance, which makes this device especially attractive for wideband VCO applications.





#### **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

#### **Electrical Specifications at 25°C**

| Parameter                            | Condition                                             | Min.  | Тур. | Max.  | Unit |
|--------------------------------------|-------------------------------------------------------|-------|------|-------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 21 V                                 |       |      | 20.00 | nA   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 1 V, V <sub>R</sub> = 1 V, F = 1 MHz | 8.20  |      | 10.00 | pF   |
| Capacitance Ratio (CTR)              | C <sub>T</sub> (1 V)/C <sub>T</sub> (3 V)             | 1.47  |      | 1.76  |      |
| Capacitance Ratio (CTR)              | C <sub>T</sub> (1 V)/C <sub>T</sub> (9 V)             | 3.70  |      | 4.50  |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 500 MHz                     |       |      | 1.20  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                | 28.00 |      |       | V    |

#### **Typical Performance Data**



#### Capacitance vs. Voltage



Relative Capacitance Change vs. Temperature

#### Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.5                | 10.34               |
| 1.0                | 8.69                |
| 2.5                | 5.98                |
| 3.0                | 5.38                |
| 6.0                | 3.11                |
| 10.0               | 1.92                |
| 20.0               | 1.17                |



Series Resistance vs. Voltage



Relative Series Resistance Change vs. Temperature

#### SOD-323



#### **SOT-23**







| Part<br>Number | C <sub>J0</sub><br>(pF) | (V) | М   | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----------------|-------------------------|-----|-----|------------------------|-----------------------|------------------------|
| SMV1135-011    | 10.3                    | 8.6 | 2.9 | 0.8                    | 1.2                   | 1.5                    |

## **Hyperabrupt Junction Tuning Varactors**



#### SMV1142-SMV1148

#### **Features**

- Frequency Linear Design
- Low Series Resistance
- Available in the SOD-323 and SC-79 Packages
- Designed for High Volume Commercial Applications
- SPICE Models are Available



The SMV1142–SMV1148 series of silicon hyperabrupt junction varactor diodes are specifically designed with an increasing gamma vs. voltage characteristic. This characteristic will result in improved VCO frequency-voltage linearity, in comparison to a conventional hyperabrupt junction varactor. This family of varactors is characterized for capacitance and resistance over temperature. SPICE models are provided.



<sup>♦</sup> Available through distribution.

For other packages or configurations, please contact the factory.



#### **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )        | 12 V            |
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

#### **Electrical Specifications at 25°C**

| Part<br>Number | C <sub>T</sub> € | ⊋ 1 V<br>F) | C <sub>T</sub><br>@ 3 V<br>(pF) | C <sub>T</sub><br>@ 6 V<br>(pF) | C <sub>T</sub> @<br>C <sub>T</sub> @<br>(Ra | 3 V  | C <sub>T</sub> @ 1 V<br>C <sub>T</sub> @ 6 V<br>(Ratio) |      | R <sub>S</sub> @ 3 V<br>500 MHz<br>(Ω) | Q<br>@ 3 V<br>50 MHz |
|----------------|------------------|-------------|---------------------------------|---------------------------------|---------------------------------------------|------|---------------------------------------------------------|------|----------------------------------------|----------------------|
|                | Min.             | Max.        | Тур.                            | Тур.                            | Min.                                        | Max. | Min.                                                    | Max. | Max.                                   | Тур.                 |
| SMV1142        | 8.20             | 10.00       | 5.8                             | 3.5                             | 1.50                                        | 1.65 | 2.43                                                    | 2.93 | 0.70                                   | 800                  |
| SMV1143        | 11.60            | 14.20       | 8.2                             | 4.9                             | 1.50                                        | 1.65 | 2.45                                                    | 2.95 | 0.65                                   | 600                  |
| SMV1144        | 14.65            | 17.95       | 10.4                            | 6.1                             | 1.50                                        | 1.65 | 2.46                                                    | 2.96 | 0.65                                   | 500                  |
| SMV1145        | 25.50            | 31.20       | 18.1                            | 10.6                            | 1.50                                        | 1.65 | 2.50                                                    | 3.00 | 0.60                                   | 300                  |
| SMV1146        | 37.80            | 46.20       | 26.4                            | 15.5                            | 1.50                                        | 1.65 | 2.50                                                    | 3.00 | 0.60                                   | 200                  |
| SMV1147        | 54.60            | 66.70       | 38.6                            | 22.6                            | 1.50                                        | 1.65 | 2.50                                                    | 3.00 | 0.55                                   | 150                  |
| SMV1148        | 62.00            | 76.00       | 44.1                            | 25.2                            | 1.50                                        | 1.65 | 2.50                                                    | 3.00 | 0.50                                   | 150                  |

Reverse Voltage  $V_R$  ( $I_R = 10 \mu A$ ): 12 V Reverse Current  $I_R$  ( $V_R = 9.6 V$ ): 20 nA

#### **Typical Performance Data**



Capacitance vs. Reverse Voltage



Relative Capacitance Change vs. Temperature



Series Resistance vs. Reverse Voltage @ 500 MHz



Relative Series Resistance Change vs. Temperature

#### **Typical Capacitance Values**

|                    | SMV1142             | SMV1143             | SMV1144             | SMV1145             | SMV1146             | SMV1147             | SMV1148             |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
| 0.0                | 13.38               | 18.99               | 24.01               | 41.81               | 61.13               | 89.52               | 104.71              |
| 0.5                | 10.70               | 15.18               | 19.18               | 33.38               | 48.97               | 71.44               | 83.27               |
| 1.0                | 9.10                | 12.90               | 16.30               | 28.35               | 41.43               | 60.65               | 70.48               |
| 1.5                | 7.98                | 11.30               | 14.28               | 24.82               | 36.26               | 53.07               | 61.48               |
| 2.0                | 7.12                | 10.08               | 12.73               | 22.11               | 32.30               | 47.27               | 54.56               |
| 2.5                | 6.42                | 9.08                | 11.46               | 19.91               | 29.08               | 42.55               | 48.92               |
| 3.0                | 5.83                | 8.24                | 10.40               | 18.06               | 26.37               | 38.58               | 44.13               |
| 3.5                | 5.32                | 7.51                | 9.48                | 16.45               | 24.01               | 35.12               | 39.97               |
| 4.0                | 4.86                | 6.87                | 8.66                | 15.02               | 21.92               | 32.06               | 36.29               |
| 4.5                | 4.45                | 6.29                | 7.93                | 13.73               | 20.04               | 29.31               | 32.99               |
| 5.0                | 4.09                | 5.76                | 7.26                | 12.57               | 18.34               | 26.81               | 30.03               |
| 5.5                | 3.75                | 5.29                | 6.66                | 11.53               | 16.81               | 24.57               | 27.43               |
| 6.0                | 3.46                | 4.87                | 6.13                | 10.60               | 15.45               | 22.58               | 25.22               |
| 6.5                | 3.21                | 4.51                | 5.68                | 9.81                | 14.30               | 20.89               | 23.43               |
| 7.0                | 3.00                | 4.22                | 5.31                | 9.17                | 13.36               | 19.52               | 22.06               |
| 7.5                | 2.84                | 3.99                | 5.02                | 8.66                | 12.62               | 18.43               | 21.01               |
| 8.0                | 2.72                | 3.82                | 4.80                | 8.29                | 12.07               | 17.63               | 20.22               |
| 8.5                | 2.63                | 3.69                | 4.63                | 7.99                | 11.63               | 16.98               | 19.61               |
| 9.0                | 2.56                | 3.58                | 4.50                | 7.76                | 11.30               | 16.50               | 19.12               |
| 9.5                | 2.50                | 3.50                | 4.40                | 7.58                | 11.03               | 16.10               | 18.72               |
| 10.0               | 2.45                | 3.43                | 4.31                | 7.43                | 10.81               | 15.78               | 18.38               |
| 10.5               | 2.41                | 3.37                | 4.24                | 7.30                | 10.62               | 15.50               | 18.11               |
| 11.0               | 2.36                | 3.31                | 4.15                | 7.15                | 10.40               | 15.18               | 17.87               |
| 11.5               | 2.35                | 3.28                | 4.15                | 7.10                | 10.33               | 15.08               | 17.65               |
| 12.0               | 2.32                | 3.25                | 4.08                | 7.02                | 10.21               | 14.90               | 17.43               |



| Part<br>Number | C <sub>JO</sub><br>(pF) | V <sub>J</sub> (V) | M   | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|--------------------|-----|------------------------|-----------------------|
| SMV1142        | 13.38                   | 2.20               | 1.0 | 0                      | 0.70                  |
| SMV1143        | 18.99                   | 2.20               | 1.0 | 0                      | 0.65                  |
| SMV1144        | 24.01                   | 2.20               | 1.0 | 0                      | 0.65                  |
| SMV1145        | 41.80                   | 2.50               | 1.1 | 0                      | 0.60                  |
| SMV1146        | 61.13                   | 2.50               | 1.1 | 0                      | 0.60                  |
| SMV1147        | 89.52                   | 2.50               | 1.1 | 0                      | 0.55                  |
| SMV1148        | 104.70                  | 2.25               | 1.1 | 0                      | 0.50                  |

- 1. Values extracted from measured performance.
- 2. For package inductance (L<sub>S</sub>) refer to package type.
  3. For more details refer to the "Varactor SPICE Models for RF VCO

  The second Applications" Application Note.

#### SOD-323



#### SC-79



## **Hyperabrupt Junction Tuning Varactors**



#### SMV1211-SMV1215

#### **Features**

- High Capacitance Ratio,  $C_{1 \text{ V}}/C_{4 \text{ V}} = 5 \text{ Typ.}$
- Multiple Packages SOT-23, SOD-323, SC-70 and SC-79
- Designed for High Volume Commercial Applications
- SPICE Models are Available

#### **Description**

The SMV1211–SMV1215 series of silicon hyperabrupt junction varactor diodes are designed for use in VCOs with low tuning voltage operation. This family of varactors is characterized for capacitance and resistance over temperature. SPICE models are provided.



#### **Absolute Maximum Ratings**

|                                          | _               |
|------------------------------------------|-----------------|
| Characteristic                           | Value           |
| Reverse Voltage (V <sub>R</sub> )        | 12 V            |
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Single                 | Single                  | Single                  | Common Cathode          | Common Cathode          |
|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| SC-79                  | SOD-323                 | SOT-23                  | SOT-23                  | SC-70                   |
|                        |                         | SMV1211-001             |                         |                         |
| SMV1212-079            |                         | SMV1212-001             | SMV1212-004             | SMV1212-074             |
| SMV1213-079            |                         | SMV1213-001             | SMV1213-004             | SMV1213-074             |
|                        |                         | SMV1214-001             |                         |                         |
|                        | SMV1215-011             | SMV1215-001             | SMV1215-004             |                         |
| $L_S = 0.7 \text{ nH}$ | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH |

For other packages or configurations, please contact the factory.

#### **Electrical Specifications at 25°C**

| Part<br>Number | C <sub>T</sub> @ |       | C <sub>T</sub> @ |      | C <sub>T</sub> @ |      | C <sub>T</sub> @ 1 V<br>C <sub>T</sub> @ 2.5 V<br>(Ratio) | C <sub>T</sub> @ 1 V<br>C <sub>T</sub> @ 4 V<br>(Ratio) | R <sub>S</sub> @ 4 V<br>500 MHz<br>(Ω) | Q<br>@ 4 V<br>50 MHz |
|----------------|------------------|-------|------------------|------|------------------|------|-----------------------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------|
|                | Min.             | Тур.  | Min.             | Max. | Тур.             | Max. | Тур.                                                      | Тур.                                                    | Тур.                                   | Min.                 |
| SMV1211        | 95.0             | 100.0 | 40.0             | 65.0 | 20               | 25.0 | 2                                                         | 5                                                       | 0.4                                    | 80                   |
| SMV1212        | 42.0             | 50.0  | 18.0             | 27.0 | 9                | 12.0 | 2                                                         | 5                                                       | 0.8                                    | 150                  |
| SMV1213        | 17.0             | 22.0  | 8.5              | 10.5 | 4                | 5.5  | 2                                                         | 5                                                       | 1.4                                    | 200                  |
| SMV1214        | 14.5             | 16.0  | 6.5              | 7.8  | 3                | 4.8  | 2                                                         | 5                                                       | 1.7                                    | 300                  |
| SMV1215        | 8.7              | 9.5   | 4.3              | 5.5  | 2                | 2.9  | 2                                                         | 5                                                       | 2.8                                    | 350                  |

Reverse Voltage  $V_R$  ( $I_R = 10 \mu A$ ): 12 V Reverse Current I<sub>R</sub> (V<sub>R</sub> = 8 V): 20 nA

#### **Typical Performance Data**



Capacitance vs. Reverse Voltage



**Relative Capacitance Change** vs. Temperature



Series Resistance vs. Reverse Voltage @ 500 MHz



**Relative Series Resistance Change** vs. Temperature @ 500 MHz

#### **Typical Capacitance Values**

|                    | SMV1211             | SMV1212             | SMV1213             | SMV1214             | SMV1215             |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
| 0.0                | 162.6               | 72.4                | 30.0                | 26.0                | 14.8                |
| 0.5                | 122.3               | 55.3                | 22.8                | 19.6                | 11.3                |
| 1.0                | 98.6                | 44.9                | 18.1                | 15.6                | 9.1                 |
| 1.5                | 80.4                | 36.9                | 15.3                | 12.4                | 7.5                 |
| 2.0                | 64.2                | 29.9                | 12.3                | 9.6                 | 6.0                 |
| 2.5                | 48.2                | 22.9                | 9.2                 | 6.8                 | 4.5                 |
| 3.0                | 34.1                | 16.3                | 6.4                 | 4.7                 | 3.1                 |
| 3.5                | 24.7                | 11.8                | 4.5                 | 3.5                 | 2.3                 |
| 4.0                | 19.4                | 9.3                 | 3.5                 | 2.9                 | 1.9                 |
| 4.5                | 16.4                | 7.9                 | 3.0                 | 2.5                 | 1.7                 |
| 5.0                | 14.6                | 7.0                 | 2.6                 | 2.3                 | 1.5                 |
| 5.5                | 13.3                | 6.4                 | 2.4                 | 2.1                 | 1.4                 |
| 6.0                | 12.4                | 6.0                 | 2.2                 | 2.0                 | 1.3                 |
| 6.5                | 11.7                | 5.7                 | 2.1                 | 1.9                 | 1.3                 |
| 7.0                | 11.2                | 5.5                 | 2.0                 | 1.8                 | 1.2                 |
| 7.5                | 10.8                | 5.3                 | 1.9                 | 1.8                 | 1.2                 |
| 8.0                | 10.5                | 5.1                 | 1.9                 | 1.7                 | 1.2                 |



| Part<br>Number | C <sub>JO</sub><br>(pF) | V <sub>J</sub><br>(V) | M   | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|-----------------------|-----|------------------------|-----------------------|
| SMV1211        | 163.00                  | 200                   | 130 | 9.5                    | 0.4                   |
| SMV1212        | 72.47                   | 110                   | 67  | 4.5                    | 0.8                   |
| SMV1213        | 28.90                   | 190                   | 105 | 2.2                    | 1.4                   |
| SMV1214        | 22.74                   | 190                   | 106 | 1.5                    | 1.7                   |
| SMV1215        | 14.36                   | 190                   | 115 | 1.1                    | 2.8                   |

- 1. Values extracted from measured performance.
- 2. For package inductance (Ls) refer to package type.
- For more details refer to the "Varactor SPICE Models for RF VCO Applications" Application Note.

#### **SOT-23**





#### SOD-323



#### **SC-70**



#### SC-79



## **Hyperabrupt Tuning Varactors**



#### SMV1232-SMV1237

#### **Features**

- High Capacitance Ratio,  $C_1 \text{ V/} C_3 \text{ V} = 1.8, C_1 \text{ V/} C_6 \text{ V} = 3.1$
- Low Series Resistance for Low Phase Noise
- Multiple Packages SOT-23, SOD-323, SC-70 and SC-79
- Designed for High Volume Commercial Applications
- Full Characterization with SPICE Models



The SMV1232–SMV1237 series of silicon hyperabrupt junction varactor diodes are designed for use in VCOs with low tuning voltage operation. The low resistance of these varactors makes them appropriate for high Q resonators in wireless system VCOs to frequencies beyond 2.5 GHz. The SMV1232–SMV1237 series is fully characterized for capacitance and resistance over temperature. SPICE model is provided.



#### **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )        | 15 V            |
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (PD)                   | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |
| ESD Human Body Model                     | Class 1B        |

|                        |                         |                         | #\*\                    |                         | ***                     |                         |
|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Single                 | Single                  | Single                  | Common Anode            | Common Cathode          | Common Anode            | Common Cathode          |
| SC-79                  | SOD-323                 | SOT-23                  | SOT-23                  | SOT-23                  | SC-70                   | SC-70                   |
| ♦ SMV1232-079          | ♦ SMV1232-011           |                         |                         |                         |                         | ♦ SMV1232-074           |
| ♦ SMV1233-079          | ♦ SMV1233-011           | ♦ SMV1233-001           | ♦ SMV1233-003           | ♦ SMV1233-004           | ♦ SMV1233-073           | ♦ SMV1233-074           |
| ♦ SMV1234-079          | ♦ SMV1234-011           | ♦ SMV1234-001           | ♦ SMV1234-003           | ♦ SMV1234-004           | ♦ SMV1234-073           | ♦ SMV1234-074           |
| ♦ SMV1235-079          | ♦ SMV1235-011           | ♦ SMV1235-001           |                         | ♦ SMV1235-004           |                         | ♦ SMV1235-074           |
| ♦ SMV1236-079          | ♦ SMV1236-011           | ♦ SMV1236-001           |                         | ♦ SMV1236-004           |                         | ♦ SMV1236-074           |
|                        |                         | ♦ SMV1237-001           |                         | ♦ SMV1237-004           |                         | ♦ SMV1237-074           |
| $L_S = 0.7 \text{ nH}$ | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH |

<sup>♦</sup> Available through distribution.

For other packages or configurations, please contact the factory.

#### **Electrical Specifications at 25°C**

| Part<br>Number |       | ⊋ 1 V<br>•F) | C <sub>T</sub><br>@ 3 V<br>(pF) | C <sub>T</sub><br>@ 6 V<br>(pF) | C <sub>T</sub> @<br>C <sub>T</sub> @<br>(Ra |      | C <sub>T</sub> @<br>C <sub>T</sub> @<br>(Ra | 9 6 V | R <sub>S</sub> @ 3 V<br>500 MHz<br>(Ω) | Q<br>@ 3 V<br>50 MHz |
|----------------|-------|--------------|---------------------------------|---------------------------------|---------------------------------------------|------|---------------------------------------------|-------|----------------------------------------|----------------------|
|                | Min.  | Max.         | Тур.                            | Тур.                            | Min.                                        | Max. | Min.                                        | Max.  | Max.                                   | Тур.                 |
| SMV1232        | 2.34  | 2.86         | 1.5                             | 0.94                            | 1.5                                         | 1.9  | 2.6                                         | 3.3   | 1.50                                   | 1400                 |
| SMV1233        | 3.00  | 3.60         | 1.8                             | 1.10                            | 1.5                                         | 1.9  | 2.6                                         | 3.3   | 1.20                                   | 1200                 |
| SMV1234        | 5.85  | 7.15         | 3.6                             | 2.00                            | 1.6                                         | 2.0  | 2.8                                         | 3.4   | 0.80                                   | 1000                 |
| SMV1235        | 10.35 | 12.65        | 6.4                             | 3.60                            | 1.6                                         | 2.0  | 2.9                                         | 3.4   | 0.60                                   | 750                  |
| SMV1236        | 15.50 | 18.50        | 9.2                             | 5.30                            | 1.6                                         | 2.0  | 3.0                                         | 3.5   | 0.50                                   | 700                  |
| SMV1237        | 45.00 | 54.00        | 26.9                            | 14.40                           | 1.6                                         | 2.0  | 3.0                                         | 3.5   | 0.25                                   | 500                  |

Reverse Voltage  $V_R$  ( $I_R = 10 \mu A$ ): 15 V Reverse Current  $I_R$  ( $V_R = 12 V$ ): 20 nA

#### **Typical Performance Data**



Capacitance vs. Reverse Voltage



Relative Capacitance Change vs. Temperature



Series Resistance vs. Reverse Voltage @ 500 MHz



Relative Series Resistance Change vs. Temperature @ 500 MHz

#### **Typical Capacitance Values**

|                    | SMV1232             | SMV1233             | SMV1234             | SMV1235             | SMV1236             | SMV1237             |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
| 0.0                | 4.15                | 5.08                | 9.63                | 18.22               | 26.75               | 71.82               |
| 0.5                | 3.22                | 3.95                | 7.53                | 14.12               | 20.61               | 56.10               |
| 1.0                | 2.67                | 3.28                | 6.28                | 11.67               | 17.02               | 46.89               |
| 1.5                | 2.28                | 2.80                | 5.39                | 9.91                | 14.38               | 40.33               |
| 2.0                | 1.97                | 2.41                | 4.68                | 8.52                | 12.29               | 35.13               |
| 2.5                | 1.72                | 2.09                | 4.09                | 7.36                | 10.56               | 30.71               |
| 3.0                | 1.51                | 1.82                | 3.58                | 6.40                | 9.16                | 26.87               |
| 3.5                | 1.35                | 1.62                | 3.15                | 5.62                | 8.04                | 23.57               |
| 4.0                | 1.22                | 1.45                | 2.81                | 4.99                | 7.19                | 20.83               |
| 4.5                | 1.13                | 1.33                | 2.54                | 4.50                | 6.53                | 18.62               |
| 5.0                | 1.05                | 1.24                | 2.32                | 4.11                | 6.01                | 16.87               |
| 5.5                | 0.99                | 1.16                | 2.15                | 3.80                | 5.61                | 15.48               |
| 6.0                | 0.94                | 1.10                | 2.02                | 3.55                | 5.28                | 14.36               |
| 6.5                | 0.90                | 1.05                | 1.90                | 3.34                | 5.02                | 13.46               |
| 7.0                | 0.86                | 1.01                | 1.80                | 3.17                | 4.81                | 12.72               |
| 7.5                | 0.84                | 0.98                | 1.72                | 3.03                | 4.64                | 12.11               |
| 8.0                | 0.81                | 0.96                | 1.65                | 2.91                | 4.49                | 11.61               |
| 9.0                | 0.78                | 0.92                | 1.55                | 2.73                | 4.28                | 10.87               |
| 10.0               | 0.76                | 0.90                | 1.47                | 2.61                | 4.13                | 10.38               |
| 11.0               | 0.75                | 0.88                | 1.42                | 2.53                | 4.02                | 10.06               |
| 12.0               | 0.74                | 0.87                | 1.38                | 2.47                | 3.95                | 9.84                |
| 13.0               | 0.73                | 0.86                | 1.35                | 2.43                | 3.89                | 9.68                |
| 14.0               | 0.73                | 0.85                | 1.33                | 2.40                | 3.84                | 9.56                |
| 15.0               | 0.72                | 0.84                | 1.32                | 2.38                | 3.80                | 9.47                |



| Part<br>Number | C <sub>JO</sub><br>(pF) | (V)  | M   | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|------|-----|------------------------|-----------------------|
| SMV1232        | 4.20                    | 1.7  | 0.9 | 0.0                    | 1.50                  |
| SMV1233        | 4.12                    | 1.7  | 0.9 | 0.7                    | 1.20                  |
| SMV1234        | 8.75                    | 2.3  | 1.1 | 1.2                    | 0.80                  |
| SMV1235        | 16.13                   | 8.0  | 4.0 | 2.0                    | 0.60                  |
| SMV1236        | 21.63                   | 8.0  | 4.2 | 3.2                    | 0.50                  |
| SMV1237        | 66.16                   | 10.0 | 5.3 | 9.0                    | 0.25                  |

<sup>1.</sup> Values extracted from measured performance.

For more details refer to the "Varactor SPICE Models for RF VCO Applications" Application Note.

#### **SOT-23**





#### SOD-323



#### **SC-70**



#### **SC-79**



## **Hyperabrupt Junction Tuning Varactor**



#### SMV1238-079

#### **Features**

- Low Series Resistance
- High Capacitance Ratio at Low Reverse Voltage
- Ultra Small SC-79 Package
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging



The SMV1238-079 is a silicon hyperabrupt junction varactor diode. The specified high capacitance ratio of this varactor makes it attractive for wideband VCO applications.



#### **Absolute Maximum Ratings**

|                                          | _               |  |
|------------------------------------------|-----------------|--|
| Characteristic                           | Value           |  |
| Reverse Voltage (V <sub>R</sub> )        | 30 V            |  |
| Forward Current (I <sub>F</sub> )        | 20 mA           |  |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |  |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |  |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |  |

#### **Electrical Specifications at 25°C**

| Parameter                            | Condition                                                 | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 24 V                                     |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 1.0 V, V <sub>R</sub> = 1.0 V, F = 1 MHz | 36.0 |      | 42.0 | pF   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 28 V, V <sub>R</sub> = 28 V, F = 1 MHz   | 2.4  |      | 3.0  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (1.0 V)/C <sub>T</sub> (28 V)              | 12.0 |      |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 5 V, F = 500 MHz                         |      | 0.75 | 0.85 | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | Ι <sub>R</sub> = 10 μΑ                                    | 30.0 |      |      | V    |

#### **Typical Performance Data**



#### Capacitance vs. Reverse Voltage

#### **SC-79**



#### Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0                  | 56.0                |
| 0.5                | 46.5                |
| 1.0                | 38.4                |
| 1.5                | 34.0                |
| 2.0                | 29.5                |
| 2.5                | 27.0                |
| 3.0                | 24.0                |
| 4.0                | 19.5                |
| 5.0                | 15.7                |
| 6.0                | 12.4                |
| 7.0                | 9.8                 |
| 8.0                | 8.2                 |
| 9.0                | 6.9                 |
| 10.0               | 6.2                 |
| 15.0               | 4.0                 |
| 20.0               | 3.3                 |
| 25.0               | 2.9                 |
| 28.0               | 2.6                 |



| Part<br>Number | C <sub>J0</sub> (pF) | (V) | М   | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----------------|----------------------|-----|-----|------------------------|-----------------------|------------------------|
| SMV1238-079    | 56                   | 6.0 | 2.4 | 1.2                    | 0.75                  | 0.7                    |

## **Hyperabrupt Junction Tuning Varactor**



SMV1245-011

#### **Features**

- High Tuning Ratio
- Low Series Resistance
- SOD-323 Package
- Designed for High Volume, Low Cost Applications
- Available in Tape and Reel Packaging



The SMV1245-011 is a surface mount varactor diode in the SOD-323 plastic package. It is designed for very low series resistance applications such as RF and microwave VCOs.



#### **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

#### **Electrical Specifications at 25°C**

| Parameter                            | Condition                                             | Min.  | Тур. | Max.  | Unit |
|--------------------------------------|-------------------------------------------------------|-------|------|-------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 10 V                                 |       |      | 20.00 | nA   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 1 V, V <sub>R</sub> = 1 V, F = 1 MHz | 4.40  |      | 5.40  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (1 V)/C <sub>T</sub> (3 V)             | 1.47  |      | 1.76  |      |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (1 V)/C <sub>T</sub> (9 V)             | 3.50  |      | 4.20  |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 500 MHz                     |       |      | 2.00  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                | 26.00 |      |       | V    |



Capacitance vs. Voltage

### **SPICE Model**



| Part<br>Number | C <sub>J0</sub> (pF) | V <sub>J</sub><br>(V) | M   | C <sub>P</sub><br>(pF) | R <sub>S</sub> (Ω) | L <sub>S</sub><br>(nH) |
|----------------|----------------------|-----------------------|-----|------------------------|--------------------|------------------------|
| SMV1245-011    | 6.9                  | 3.5                   | 1.7 | 0.47                   | 2.0                | 1.7                    |

# Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 7.37                |
| 0.5                | 5.84                |
| 1.0                | 4.93                |
| 1.5                | 4.28                |
| 2.0                | 3.79                |
| 2.5                | 3.40                |
| 3.0                | 3.06                |
| 3.5                | 2.76                |
| 4.0                | 2.51                |
| 4.5                | 2.28                |
| 5.0                | 2.09                |
| 5.5                | 1.92                |
| 6.0                | 1.78                |
| 6.5                | 1.66                |
| 7.0                | 1.55                |
| 7.5                | 1.46                |
| 8.0                | 1.38                |
| 8.5                | 1.32                |
| 9.0                | 1.26                |
| 9.5                | 1.20                |
| 10.0               | 1.16                |
| 10.5               | 1.12                |
| 11.0               | 1.08                |
| 11.5               | 1.05                |
| 12.0               | 1.02                |

#### SOD-323





#### SMV1247-SMV1255

#### **Features**

- Designed for High Volume Commercial **Applications**
- High Capacitance Ratio,  $C_{0.3 \text{ V}}/C_{4.7 \text{ V}} = 12 \text{ Typ.}$
- Multiple Packages SOT-23, SOD-323, SC-70 and SC-79
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- SPICE Models are Available
- Available in Tape and Reel Packaging



The SMV1247-SMV1255 series of silicon hyperabrupt junction varactor diodes are designed for use in VCOs with low tuning voltage operation. This family of varactors is characterized for capacitance and resistance over temperature. SPICE models are provided.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMV1247-079LF Lead (Pb)-Free package as a green alternative.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )        | 15 V            |
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

|                          |                         | F F                     | ***          |                         |                         |                         |
|--------------------------|-------------------------|-------------------------|--------------|-------------------------|-------------------------|-------------------------|
| Single                   | Single                  | Single                  | Common Anode | Common Cathode          | Common Anode            | Common Cathode          |
| SC-79                    | SOD-323                 | SOT-23                  | SOT-23       | SOT-23                  | SC-70                   | SC-70                   |
| SMV1247-079              |                         |                         |              |                         |                         | SMV1247-074             |
| SMV1247-079LF            |                         | SMV1248-001             |              |                         |                         |                         |
| SMV1249-079              | SMV1249-011             | SMV1249-001             | SMV1249-003  |                         | SMV1249-073             |                         |
| SMV1251-079              | SMV1251-011             | SMV1251-001             |              | SMV1251-004             |                         | SMV1251-074             |
| SMV1253-079              |                         |                         |              | SMV1253-004             |                         |                         |
| SMV1255-079              | SMV1255-011             | SMV1255-001             |              | SMV1255-004             | SMV1255-073             |                         |
| $L_{S} = 0.7 \text{ nH}$ | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH |              | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH |

LF denotes Lead (Pb)-Free packaging

| <b>Electrical S</b> | pecifications | at 25°C |
|---------------------|---------------|---------|
|---------------------|---------------|---------|

| Part<br>Number | @ 0  | ).3 V<br>()F) | @ 4  | C <sub>T</sub><br>4.7 V<br>oF) | C <sub>T</sub><br>@ 1 V<br>(pF) | C <sub>T</sub><br>@ 3 V<br>(pF) | C <sub>T</sub> @ C <sub>T</sub> @ (Ra | 4.7 V | C <sub>T</sub> @ 1 V<br>C <sub>T</sub> @ 3 V<br>(Ratio) | R <sub>S</sub> @ 3 V<br>500 MHz<br>(Ω) | Q<br>@ 3 V<br>50 MHz |
|----------------|------|---------------|------|--------------------------------|---------------------------------|---------------------------------|---------------------------------------|-------|---------------------------------------------------------|----------------------------------------|----------------------|
|                | Min. | Тур.          | Тур. | Max.                           | Тур.                            | Тур.                            | Min.                                  | Тур.  | Тур.                                                    | Max.                                   | Тур.                 |
| SMV1247        | 6.5  | 7             | 0.7  | 0.78                           | 4.4                             | 0.95                            | 9.5                                   | 10.0  | 4.6                                                     | 2.0                                    | 1500                 |
| SMV1248        | 15.0 | 17            | 1.5  | 1.70                           | 12.3                            | 2.60                            | 10.8                                  | 12.0  | 4.7                                                     | 1.8                                    | 700                  |
| SMV1249        | 28.0 | 31            | 2.6  | 2.80                           | 18.2                            | 3.40                            | 11.0                                  | 12.1  | 5.3                                                     | 1.5                                    | 600                  |
| SMV1251        | 38.0 | 42            | 3.4  | 3.80                           | 28.1                            | 5.80                            | 11.0                                  | 12.2  | 4.8                                                     | 1.3                                    | 400                  |
| SMV1253        | 48.0 | 53            | 4.3  | 4.80                           | 37.0                            | 7.80                            | 11.0                                  | 12.3  | 4.7                                                     | 1.2                                    | 350                  |
| SMV1255        | 58.0 | 64            | 5.2  | 5.80                           | 43.3                            | 8.50                            | 11.0                                  | 12.3  | 5.1                                                     | 1.0                                    | 350                  |

Reverse Voltage  $V_R$  ( $I_R = 10 \mu A$ ): 15 V Reverse Current  $I_R$  ( $V_R = 12 V$ ): 20 nA

# **Typical Performance Data**



Capacitance vs. Reverse Voltage



Relative Capacitance Change vs. Temperature



Series Resistance vs. Reverse Voltage @ 500 MHz



Relative Series Resistance Change vs. Temperature @ 500 MHz

# **Typical Capacitance Values**

|                    | SMV1247             | SMV1248             | SMV1249             | SMV1251             | SMV1253             | SMV1255             |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
| 0.0                | 8.86                | 22.62               | 37.35               | 53.65               | 69.32               | 81.21               |
| 0.5                | 6.17                | 16.32               | 25.88               | 38.23               | 50.23               | 58.28               |
| 1.0                | 4.37                | 12.33               | 18.18               | 28.09               | 37.07               | 43.27               |
| 1.5                | 2.96                | 9.12                | 12.08               | 20.13               | 27.57               | 31.49               |
| 2.0                | 1.88                | 6.27                | 7.27                | 13.55               | 19.37               | 21.50               |
| 2.5                | 1.22                | 3.93                | 4.44                | 8.60                | 12.39               | 13.40               |
| 3.0                | 0.95                | 2.57                | 3.40                | 5.78                | 7.77                | 8.51                |
| 3.5                | 0.83                | 1.95                | 2.96                | 4.57                | 5.77                | 6.51                |
| 4.0                | 0.77                | 1.71                | 2.72                | 3.95                | 4.86                | 5.58                |
| 4.5                | 0.73                | 1.59                | 2.51                | 3.58                | 4.34                | 5.07                |
| 5.0                | 0.70                | 1.49                | 2.38                | 3.33                | 4.01                | 4.76                |
| 5.5                | 0.68                | 1.44                | 2.30                | 3.16                | 3.78                | 4.58                |
| 6.0                | 0.67                | 1.40                | 2.24                | 3.03                | 3.62                | 4.46                |
| 6.5                | 0.66                | 1.36                | 2.19                | 2.94                | 3.50                | 4.39                |
| 7.0                | 0.65                | 1.33                | 2.14                | 2.88                | 3.41                | 4.33                |
| 7.5                | 0.64                | 1.31                | 2.09                | 2.83                | 3.34                | 4.29                |
| 8.0                | 0.64                | 1.30                | 2.03                | 2.79                | 3.28                | 4.26                |



| Part<br>Number | C <sub>JO</sub><br>(pF) | (V) | М    | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|-----|------|------------------------|-----------------------|
| SMV1247        | 9.22                    | 13  | 10.5 | 0                      | 2.0                   |
| SMV1248        | 21.54                   | 13  | 10.5 | 0                      | 1.8                   |
| SMV1249        | 39.00                   | 17  | 14.0 | 0                      | 1.5                   |
| SMV1250        | 47.00                   | 17  | 14.0 | 0                      | 1.5                   |
| SMV1251        | 60.00                   | 17  | 14.0 | 0                      | 1.3                   |
| SMV1253        | 70.00                   | 17  | 14.0 | 0                      | 1.2                   |
| SMV1255        | 82.00                   | 17  | 13.0 | 0                      | 1.0                   |

- 1. Model was designed to fit measured data in the range of up to 4 V.
- 2. For package inductance (L<sub>S</sub>) refer to package type.

  3. For more details refer to the "Varactor SPICE Models for RF VCO

  The state of the state Applications" Application Note.

### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60-150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



Reference JEDEC J-STD-020

#### **SOT-23**





#### SOD-323



#### **SC-70**



#### SC-79





#### SMV1265-011

#### **Features**

- High Tuning Ratio
- Low Series Resistance
- SOD-323 and SC-79 Packages
- Designed for High Volume, Low Cost **Applications**
- Available in Tape and Reel Packaging



The SMV1265-011 is designed for very high capacitance tuning ratio while having low series resistance, which makes this device especially attractive for wide band VCO applications.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                             | Min.  | Тур. | Max.  | Unit |
|--------------------------------------|-------------------------------------------------------|-------|------|-------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 26 V                                 |       |      | 20.00 | nA   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 1 V, V <sub>R</sub> = 1 V, F = 1 MHz | 12.50 | 13.8 | 14.70 | pF   |
| Capacitance (C <sub>T</sub> )        | $C_T$ @ 26 V, $V_R$ = 26 V, $F$ = 1 MHz               | 0.58  | 0.7  | 0.83  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (1 V)/C <sub>T</sub> (26 V)            | 17.70 | 19.5 |       |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 470 MHz                     |       | 2.4  |       | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                | 28.00 |      |       | V    |



<sup>♦</sup> Available through distribution. For other packages or configurations, please contact the factory.



Capacitance vs. Voltage

### SOD-323





# Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 22.47               |
| 0.5                | 17.41               |
| 1.0                | 14.26               |
| 2.0                | 10.23               |
| 3.0                | 7.40                |
| 4.0                | 5.15                |
| 5.0                | 3.38                |
| 6.0                | 2.37                |
| 7.0                | 1.86                |
| 8.0                | 1.61                |
| 9.0                | 1.45                |
| 10.0               | 1.30                |
| 12.0               | 1.12                |
| 14.0               | 1.05                |
| 16.0               | 0.97                |
| 18.0               | 0.91                |
| 20.0               | 0.83                |
| 22.0               | 0.78                |
| 24.0               | 0.75                |
| 26.0               | 0.73                |
| 28.0               | 0.73                |
| 30.0               | 0.71                |



| Part<br>Number | C <sub>JO</sub><br>(pF) | V <sub>J</sub><br>(V) | M  | C <sub>P</sub><br>(pF) | $R_S$ $(\Omega)$ | L <sub>S</sub><br>(nH) |
|----------------|-------------------------|-----------------------|----|------------------------|------------------|------------------------|
| SMV1265        | 22.5                    | 30                    | 13 | 0.71                   | 2.4              | 1.7                    |



#### SMV1281-011

#### **Features**

- High Tuning Ratio
- SOD-323 Package
- Designed for High Volume, Low Cost Applications
- Available in Tape and Reel Packaging

# **Description**

The SMV1281-011 is a surface mount varactor diode in the SOD-323 plastic package. It is designed for very high capacitance tuning ratio while having low series resistance, which makes this device especially attractive for wideband VCO applications.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                         | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 20 V             |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | 1 V                               | 7.8  | 8.6  | 9.5  | pF   |
| Capacitance (C <sub>T</sub> )        | 20 V                              | 0.6  | 0.7  | 0.8  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | 1 V/20 V                          |      | 12.0 |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 500 MHz |      | 1.7  |      | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA            | 24.0 |      |      | V    |



Capacitance vs. Reverse Voltage

#### SOD-323





# Capacitance vs. Reverse Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0                  | 13.30               |
| 1                  | 8.60                |
| 2                  | 6.30                |
| 3                  | 4.80                |
| 4                  | 3.60                |
| 5                  | 2.70                |
| 6                  | 2.00                |
| 7                  | 1.60                |
| 8                  | 1.40                |
| 9                  | 1.20                |
| 10                 | 1.10                |
| 11                 | 1.00                |
| 12                 | 0.94                |
| 13                 | 0.89                |
| 14                 | 0.85                |
| 15                 | 0.81                |
| 16                 | 0.78                |
| 17                 | 0.75                |
| 18                 | 0.73                |
| 19                 | 0.71                |
| 20                 | 0.69                |



| I <sub>KF</sub> = 0<br>N <sub>BV</sub> = 1<br>I <sub>BVL</sub> = 0<br>N <sub>BVL</sub> =<br>T <sub>BV1</sub> =<br>T <sub>NOM</sub> =<br>F <sub>FE</sub> = 1 | )<br>1<br>0<br>27      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| R <sub>S</sub><br>(Ω)                                                                                                                                       | L <sub>S</sub><br>(nH) |
| 17                                                                                                                                                          | 10                     |

| Part        | C <sub>J0</sub> | V <sub>J</sub> | M | C <sub>P</sub> | R <sub>S</sub> | L <sub>S</sub> |
|-------------|-----------------|----------------|---|----------------|----------------|----------------|
| Number      | (pF)            | (V)            |   | (pF)           | (Ω)            | (nH)           |
| SMV1281-011 | 13              | 14             | 6 | 0.62           | 1.7            | 1.2            |



#### SMV1283-011

#### **Features**

- High Tuning Ratio
- SOD-323 Package
- Designed for High Volume, Low Cost Applications
- Available in Tape and Reel Packaging

# **Description**

The SMV1283-011 is a surface mount varactor diode in the SOD-323 plastic package. It is designed for very high capacitance tuning ratio while having low series resistance, which makes this device especially attractive for wideband VCO applications.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (PD)                   | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                               | Min. | Тур.  | Max.  | Unit |
|--------------------------------------|---------------------------------------------------------|------|-------|-------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 26 V                                   |      |       | 20.00 | nA   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 1 V, V <sub>R</sub> = 1 V, F = 1 MHz   | 8.5  | 9.10  | 9.70  | pF   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 26 V, V <sub>R</sub> = 26 V, F = 1 MHz | 0.5  | 0.62  | 0.75  | pF   |
| Capacitance Ratio (CTR)              | C <sub>T</sub> (1 V)/C <sub>T</sub> (26 V)              |      | 14.70 |       |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 500 MHz                       |      | 2.40  |       | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                  | 28.0 |       |       | V    |



#### SOD-323





# Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0                  | 18.8820             |
| 1                  | 8.7000              |
| 2                  | 6.1400              |
| 3                  | 4.3300              |
| 4                  | 2.9500              |
| 5                  | 2.0400              |
| 6                  | 1.5680              |
| 7                  | 1.3250              |
| 8                  | 1.1880              |
| 9                  | 1.0870              |
| 10                 | 1.0123              |
| 12                 | 0.9040              |
| 14                 | 0.8295              |
| 16                 | 0.7720              |
| 18                 | 0.7280              |
| 20                 | 0.6880              |
| 22                 | 0.6580              |
| 24                 | 0.6230              |
| 26                 | 0.6160              |
| 28                 | 0.6060              |
| 30                 | 0.6040              |



| 1  | Part<br>Number | C <sub>J0</sub> (pF) | V <sub>J</sub><br>(V) | M   | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----|----------------|----------------------|-----------------------|-----|------------------------|-----------------------|------------------------|
| SM | V1283-011      | 19                   | 3                     | 2.6 | 0.58                   | 2.4                   | 1.7                    |



#### SMV2022-SMV2023

#### **Features**

- Low Series Resistance
- High Capacitance Ratio at Low Reverse Voltage
- SOT-23 Single and Common Cathode
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging



The SMV2022 and SMV2023 devices are silicon hyperabrupt junction varactor diodes. The specified high capacitance ratio and low  $\ensuremath{\mathsf{R}}_S$  of these varactors make them attractive for low phase noise VCOs in wireless systems.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )        | 22 V            |
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (PD)                   | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

# **Electrical Specifications at 25°C**

| Part Number | C <sub>T</sub> @ 4 V<br>(pF) |      | C <sub>T</sub> @ 20 V<br>(pF) |      | C <sub>T</sub> @ 4 V<br>C <sub>T</sub> @ 20 V<br>(Ratio) | Q @ 4 V |
|-------------|------------------------------|------|-------------------------------|------|----------------------------------------------------------|---------|
|             | Min.                         | Max. | Min.                          | Max. | Min.                                                     | 50 MHz  |
| SMV2022     | 2.5                          | 3.3  | 0.6                           | 0.85 | 3.0                                                      | 500     |
| SMV2023     | 4.4                          | 5.4  | 0.9                           | 1.20 | 4.2                                                      | 500     |

Reverse current I<sub>R</sub> (V<sub>R</sub> = 16 nA): 50 nA.

| Single                  | Common Cathode          |
|-------------------------|-------------------------|
| SOT-23                  | SOT-23                  |
| SMV2022-001             | SMV2022-004             |
| SMV2023-001             | SMV2023-004             |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH |



Capacitance vs. Voltage

#### **SPICE Model**



| Part<br>Number | C <sub>J0</sub> (pF) | V <sub>J</sub><br>(V) | M   | C <sub>P</sub><br>(pF) | $R_S$ $(\Omega)$ | L <sub>S</sub><br>(nH) |
|----------------|----------------------|-----------------------|-----|------------------------|------------------|------------------------|
| SMV2022        | 7.30                 | 4.0                   | 1.4 | 0                      | 2.2              | 1.5                    |
| SMV2023        | 12.23                | 4.0                   | 1.4 | 0                      | 1.6              | 1.5                    |

# Capacitance vs. Voltage

| V <sub>R</sub> (V) | SMV2022 C <sub>T</sub> (pF) | SMV2023 C <sub>T</sub> (pF) |
|--------------------|-----------------------------|-----------------------------|
| 0.0                | 7.41                        | 12.33                       |
| 0.5                | 5.94                        | 9.90                        |
| 1.0                | 5.14                        | 8.60                        |
| 1.5                | 4.56                        | 7.62                        |
| 2.0                | 4.14                        | 6.94                        |
| 2.5                | 3.78                        | 6.34                        |
| 3.0                | 3.49                        | 5.88                        |
| 3.5                | 3.23                        | 5.45                        |
| 4.0                | 3.01                        | 5.09                        |
| 5.0                | 2.54                        | 4.42                        |
| 6.0                | 2.18                        | 3.77                        |
| 7.0                | 1.8                         | 3.18                        |
| 8.0                | 1.5                         | 2.63                        |
| 9.0                | 1.29                        | 2.21                        |
| 10.0               | 1.11                        | 1.86                        |
| 11.0               | 1.03                        | 1.68                        |
| 12.0               | 0.96                        | 1.54                        |
| 13.0               | 0.91                        | 1.44                        |
| 14.0               | 0.87                        | 1.37                        |
| 15.0               | 0.83                        | 1.30                        |
| 16.0               | 0.81                        | 1.25                        |
| 17.0               | 0.78                        | 1.20                        |
| 18.0               | 0.76                        | 1.16                        |
| 19.0               | 0.75                        | 1.13                        |
| 20.0               | 0.73                        | 1.09                        |
|                    |                             |                             |

# **SOT-23**







#### SMV1263-079

#### **Features**

- High Capacitance Ratio at Low Reverse Voltage
- Ultra Small SC-79 Package
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging

# **Description**

The SMV1263-079 is a silicon hyperabrupt junction varactor diode specifically designed for 3 V platforms. The specified high capacitance ratio and low  $\rm R_S$  of this varactor make it attractive for low phase noise VCOs in wireless systems up to and beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (PD)                   | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                                 | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 15 V                                     |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | $C_T$ @ 0.5 V, $V_R$ = 0.5 V, $F$ = 1 MHz                 | 6.2  | 6.7  | 7.2  | pF   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 2.5 V, V <sub>R</sub> = 2.5 V, F = 1 MHz | 2.3  | 2.6  | 2.9  | pF   |
| Capacitance Ratio (CTR)              | C <sub>T</sub> (0.5 V)/C <sub>T</sub> (2.5 V)             | 2.3  | 2.5  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 900 MHz                         |      |      | 1.2  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                    | 20.0 |      |      | V    |



#### Capacitance vs. Voltage



**Relative Capacitance** Change vs. Temperature

# SC-79



### Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.00               | 8.87                |
| 0.25               | 7.68                |
| 0.50               | 6.68                |
| 0.75               | 5.83                |
| 1.00               | 5.11                |
| 1.25               | 4.50                |
| 1.50               | 3.99                |
| 1.75               | 3.54                |
| 2.00               | 3.17                |
| 2.25               | 2.84                |
| 2.50               | 2.57                |
| 2.75               | 2.33                |
| 3.00               | 2.12                |
| 3.25               | 1.94                |
| 3.50               | 1.79                |
| 3.75               | 1.65                |
| 4.00               | 1.54                |
| 4.25               | 1.44                |
| 4.50               | 1.35                |
| 4.75               | 1.27                |
| 5.00               | 1.20                |

### **SPICE Model**



1.7



SMV1269-074

#### **Features**

- High Capacitance Ratio
- Ultra Small Size SC-70 Package
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging

# **Description**

The SMV1269-074 is a dual silicon hyperabrupt junction varactor diode in a common cathode configuration specifically designed for battery operation. The specified high capacitance ratio and low  $\rm R_{\rm S}$  of this varactor make it appropriate for low noise VCOs used at frequencies in wireless systems to beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

# **Electrical Specifications at 25°C**

| Parameter                            | Condition                                                 | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 8 V                                      |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 0.5 V, V <sub>R</sub> = 0.5 V, F = 1 MHz | 19.2 | 20.5 | 21.8 | pF   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 2.5 V, V <sub>R</sub> = 2.5 V, F = 1 MHz | 6.5  | 7.3  | 8.1  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (0.5 V)/C <sub>T</sub> (2.5 V)             | 2.5  | 2.8  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 900 MHz                         |      | 0.6  | 0.8  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                    | 10.0 |      |      | V    |

# **Common Cathode Configuration**





Alpha Varactor (SMV1269-074)



Relative Capacitance Change vs. Temperature

### SC-70



### Capacitance vs. Voltage

| _                  |                     |
|--------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
| 0                  | 29.0                |
| 0.2                | 25.3                |
| 0.4                | 22.4                |
| 0.6                | 20.1                |
| 0.8                | 18.0                |
| 1.0                | 16.2                |
| 1.2                | 14.6                |
| 1.4                | 13.2                |
| 1.6                | 11.9                |
| 1.8                | 10.7                |
| 2.0                | 9.6                 |
| 2.2                | 8.7                 |
| 2.4                | 7.8                 |
| 2.6                | 7.0                 |
| 2.8                | 6.3                 |
| 3.0                | 5.7                 |
| 3.2                | 5.2                 |
| 3.4                | 4.8                 |
| 3.6                | 4.4                 |
| 3.8                | 4.1                 |
| 4.0                | 3.9                 |
| 4.2                | 3.7                 |
| 4.4                | 3.5                 |
| 4.6                | 3.3                 |
| 4.8                | 3.2                 |
| 5.0                | 3.1                 |





#### SMV1270-079

#### **Features**

- High Capacitance Ratio
- Ultra Small Size SC-79 Package
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging

# **Description**

The SMV1270-079 is a silicon hyperabrupt junction varactor diode specifically designed for battery operation. The specified high capacitance ratio and low  $\rm R_{S}$  of this varactor make it appropriate for low noise VCOs used at frequencies in wireless systems to beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                                     | Min. | Тур. | Max. | Unit |
|--------------------------------------|---------------------------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 20 V                                         |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | $C_T @ 0.5 \text{ V}, V_R = 0.5 \text{ V}, F = 1 \text{ MHz}$ | 22.1 | 23.6 | 25.1 | pF   |
| Capacitance (C <sub>T</sub> )        | $C_T$ @ 2.5 V, $V_R$ = 2.5 V, $F$ = 1 MHz                     | 7.7  | 8.6  | 9.8  | pF   |
| Capacitance Ratio (CTR)              | C <sub>T</sub> (0.5 V)/C <sub>T</sub> (2.5 V)                 | 2.3  | 2.7  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 470 MHz                             |      | 0.7  |      | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                        | 20.0 |      |      | V    |



#### Capacitance vs. Voltage



**Relative Capacitance** Change vs. Temperature

# **SC-79**



# Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.5                | 23.64               |
| 1.0                | 17.81               |
| 1.5                | 13.69               |
| 2.0                | 10.74               |
| 2.5                | 8.60                |
| 3.0                | 7.03                |
| 3.5                | 5.87                |
| 4.0                | 5.00                |
| 4.5                | 4.35                |
| 5.0                | 3.85                |



| Part<br>Number | C <sub>JO</sub> (pF) | V <sub>J</sub> (V) | M | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----------------|----------------------|--------------------|---|------------------------|-----------------------|------------------------|
| SMV1270-079    | 30                   | 12                 | 8 | 2                      | 0.7                   | 1.7                    |



SMV1470-004

### **Features**

- High Capacitance Ratio
- Designed for High Volume
- Available in Tape and Reel Packaging

# **Description**

The SMV1470-004 is a dual silicon hyperabrupt junction varactor diode in a common cathode configuration. The specified high capacitance ratio and low  $R_{\rm S}$  of this varactor make it appropriate for low noise VCOs and VCXOs in wireless systems. Applications include low noise and wideband VCO and VCXO for GSM, PCS, CDMA and analog phones.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

# **Electrical Specifications at 25°C**

| Parameter                            | Condition                                 | Min. | Тур. | Max. | Unit |
|--------------------------------------|-------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 10 V                     |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 1 V, F = 1 MHz           | 65.8 | 70.0 | 74.2 | pF   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 4.5 V, F = 1 MHz         | 12.0 | 13.4 | 14.8 | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (1 V)/C <sub>T</sub> (5 V) | 5.0  | 6.0  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1.5 V, F = 900 MHz       |      | 0.5  | 0.8  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                    | 10.0 |      |      | V    |

# **Common Cathode Configuration**



DIODEM Diode\_Model

$$\begin{split} & \overrightarrow{R}_S = 0 \\ & N = 1 \\ & T_T = 0 \\ & C_{JO} = C_{JO} \\ & M = M \end{split}$$

 $V_J = V_J$  $E_G = 1.11$ 

 $X_{TI} = 3$ 

 $K_F = 0$ 

 $A_F = 1$ 

 $F_{C} = 0.5$ 

 $I_{BV} = 1e-3$ 

 $B_V = 0$ 

 $I_{SR} = 0$ 

 $N_R = 2$   $I_{KF} = 0$  $N_{BV} = 1$ 

 $I_{BVL} = 0$ 

 $N_{BVL} = 1$ 

 $\underline{T}_{BV1} = 0$ 

F<sub>FE</sub> = 1

 $T_{NOM} = 27$ 

 $I_S = 1.00e-14$ 

# **Typical Performance Data**



Capacitance vs. Voltage



Relative Capacitance Change vs. Temperature

#### **SOT-23**





# **Capacitance vs. Voltage**

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 113.9               |
| 0.5                | 87.4                |
| 1.0                | 71.3                |
| 1.5                | 59.3                |
| 2.0                | 49.0                |
| 2.5                | 39.1                |
| 3.0                | 29.4                |
| 3.5                | 21.4                |
| 4.0                | 16.3                |
| 4.5                | 13.3                |
| 5.0                | 11.5                |
| 5.5                | 10.3                |
| 6.0                | 9.5                 |
| 6.5                | 8.9                 |
| 7.0                | 8.5                 |
| 7.5                | 8.1                 |
| 8.0                | 7.9                 |
| 8.5                | 7.7                 |
| 9.0                | 7.6                 |
| 9.5                | 7.5                 |
| 10.0               | 7.5                 |



| Part<br>Number | C <sub>JO</sub> (pF) | (V) | M  | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----------------|----------------------|-----|----|------------------------|-----------------------|------------------------|
| SMV1470-004    | 113                  | 25  | 13 | 1                      | 0.5                   | 1.4                    |



#### SMV1705 Series

#### **Features**

- Designed for High Volume, Low Cost **Battery Applications**
- Low Series Resistance
- High Capacitance Ratio
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Ultra Small Size SC-79 Package
- Available in Tape and Reel Packaging



The SMV1705 series are silicon hyperabrupt junction varactor diodes specifically designed for battery operation. The specified high capacitance ratio and low R<sub>S</sub> of these varactors make them appropriate for low noise VCOs used at frequencies in wireless systems to beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMV1705-079LF Lead (Pb)-Free package as a green alternative.



LF denotes Lead (Pb)-Free packaging.

# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (PD)                   | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                 | Min. | Тур.   | Max. | Unit |
|--------------------------------------|-------------------------------------------|------|--------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 8 V                      |      | < 0.01 | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 1 V, F = 1 MHz           | 17.3 | 18.30  | 19.3 | pF   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 4 V, F = 1 MHz           | 5.3  | 6.10   | 6.6  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (1 V)/C <sub>T</sub> (4 V) | 2.8  | 3.00   |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 470 MHz         |      | 0.32   |      | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                    | 12.0 |        |      | V    |



#### Capacitance vs. Voltage



Relative Capacitance Change vs. Temperature

# **SC-79**



# Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 31.5                |
| 0.5                | 23.5                |
| 1.0                | 18.3                |
| 1.5                | 14.3                |
| 2.0                | 11.9                |
| 2.5                | 9.7                 |
| 3.0                | 8.3                 |
| 3.5                | 7.1                 |
| 4.0                | 6.1                 |
| 4.5                | 5.5                 |
| 5.0                | 5.2                 |



| Part<br>Number | C <sub>JO</sub> (pF) | V <sub>J</sub><br>(V) | M | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----------------|----------------------|-----------------------|---|------------------------|-----------------------|------------------------|
| SMV1705        | 31                   | 3                     | 2 | 0.5                    | 0.32                  | 0.8                    |

# **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60-150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.





#### SMV1763 Series

#### **Features**

- Designed for High Volume, Low Cost **Battery Applications**
- Low Series Resistance
- High Capacitance Ratio at Low Reverse Voltage
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Ultra Small SC-79 Package
- Available in Tape and Reel Packaging

#### **Description**

The SMV1763 series is a silicon hyperabrupt junction varactor diode specifically designed for 3 V platforms. The specified high capacitance ratio and low R<sub>S</sub> of this varactor make it attractive for low phase noise VCOs in wireless systems up to and beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMV1763-079LF Lead (Pb)-Free package as a green alternative.



LF denotes Lead (Pb)-Free packaging.

# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (PD)                   | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                                 | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 8 V                                      |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 0.5 V, V <sub>R</sub> = 0.5 V, F = 1 MHz | 6.2  | 6.7  | 7.2  | pF   |
| Capacitance (C <sub>T</sub> )        | C <sub>T</sub> @ 2.5 V, V <sub>R</sub> = 2.5 V, F = 1 MHz | 2.3  | 2.6  | 2.9  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (0.5 V)/C <sub>T</sub> (2.5 V)             | 2.3  | 2.5  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 900 MHz                         |      | 0.5  | 0.7  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                    | 10.0 |      |      | V    |



#### Capacitance vs. Voltage



Relative Capacitance Change vs. Temperature

### **SC-79**



# **Capacitance vs. Voltage**

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 9.0                 |
| 0.5                | 6.7                 |
| 1.0                | 5.2                 |
| 1.5                | 4.0                 |
| 2.0                | 3.2                 |
| 2.5                | 2.6                 |
| 3.0                | 2.2                 |
| 3.5                | 2.0                 |
| 4.0                | 1.9                 |
| 4.5                | 1.8                 |
| 5.0                | 1.8                 |



| Part<br>Number | C <sub>J0</sub><br>(pF) | (V) | М   | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----------------|-------------------------|-----|-----|------------------------|-----------------------|------------------------|
| SMV1763        | 8.2                     | 15  | 9.5 | 0.67                   | 0.5                   | 0.8                    |

# **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60–150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.





#### SMV1770 Series

#### **Features**

- Designed for High Volume, Low Cost **Battery Applications**
- Low Series Resistance
- High Capacitance Ratio
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Ultra Small Size SC-79 Package
- Available in Tape and Reel Packaging



The SMV1770 series is a silicon hyperabrupt junction varactor diode specifically designed for battery operation. The specified high capacitance ratio and low RS of this varactor make it appropriate for low noise VCOs used at frequencies in wireless systems to beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMV1770-079LF Lead (Pb)-Free package as a green alternative.



LF denotes Lead (Pb)-Free packaging.

# **Absolute Maximum Ratings**

|                                          | _               |
|------------------------------------------|-----------------|
| Characteristic                           | Value           |
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                                     | Min. | Тур. | Max. | Unit |
|--------------------------------------|---------------------------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 8 V                                          |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | $C_T @ 0.5 \text{ V}, V_R = 0.5 \text{ V}, F = 1 \text{ MHz}$ | 22.1 | 23.6 | 25.1 | pF   |
| Capacitance (C <sub>T</sub> )        | $C_T$ @ 2.5 V, $V_R$ = 2.5 V, $F$ = 1 MHz                     | 7.7  | 8.6  | 9.8  | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (0.5 V)/C <sub>T</sub> (2.5 V)                 | 2.3  | 2.7  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 470 MHz                             |      | 0.4  | 0.5  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                                        | 12.0 |      |      | V    |



Capacitance vs. Voltage



**Relative Capacitance** Change vs. Temperature

### **SC-79**



# Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.0                | 31.2                |
| 0.5                | 23.6                |
| 1.0                | 17.8                |
| 1.5                | 13.7                |
| 2.0                | 10.7                |
| 2.5                | 8.6                 |
| 3.0                | 7.0                 |
| 3.5                | 5.9                 |
| 4.0                | 5.5                 |
| 4.5                | 5.2                 |
| 5.0                | 5.0                 |
|                    |                     |



| Part<br>Number | C <sub>JO</sub> (pF) | V <sub>J</sub><br>(V) | M | C <sub>P</sub><br>(pF) | $R_S$ $(\Omega)$ | L <sub>S</sub><br>(nH) |
|----------------|----------------------|-----------------------|---|------------------------|------------------|------------------------|
| SMV1770        | 31                   | 12                    | 8 | 2                      | 0.4              | 0.8                    |

# **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60–150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.





SMV1771-079

#### **Features**

- Low Series Resistance
- High Capacitance Ratio
- Ultra Small Size SC-79 Package
- Designed for High Volume, Low Cost Battery Applications
- Available in Tape and Reel Packaging



The SMV1771-079 is a silicon hyperabrupt junction varactor diode specifically designed for battery operation. The specified high capacitance ratio and low  $R_{\rm S}$  of this varactor make it appropriate for low noise VCOs used at frequencies in wireless systems to beyond 2.5 GHz. Applications include low noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

| Parameter                            | Condition                                     | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )    | V <sub>R</sub> = 8 V                          |      |      | 20.0 | nA   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 1 V, F = 1 MHz               | 22.0 |      | 24.0 | pF   |
| Capacitance (C <sub>T</sub> )        | V <sub>R</sub> = 2.5 V, F = 1 MHz             | 9.5  |      | 12.5 | pF   |
| Capacitance Ratio (C <sub>TR</sub> ) | C <sub>T</sub> (0.5 V)/C <sub>T</sub> (2.5 V) | 2.3  | 2.7  |      |      |
| Series Resistance (R <sub>S</sub> )  | V <sub>R</sub> = 1 V, F = 470 MHz             |      | 0.4  | 0.5  | Ω    |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA                        | 12.0 |      |      | V    |



**Capacitance MEAN Test Data** 

### **SC-79**



# Capacitance vs. Voltage

| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
|--------------------|---------------------|
| 0.5                | 29.8                |
| 1.0                | 22.9                |
| 2.0                | 14.07               |
| 2.5                | 11.23               |
| 3.0                | 9.23                |
| 3.5                | 7.86                |
| 4.0                | 6.90                |
| 4.5                | 6.25                |
| 5.0                | 5.80                |



| Part<br>Number | C <sub>JO</sub><br>(pF) | V <sub>J</sub><br>(V) | M | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) | L <sub>S</sub><br>(nH) |
|----------------|-------------------------|-----------------------|---|------------------------|-----------------------|------------------------|
| SMV1771-079    | 31                      | 12                    | 8 | 2                      | 0.4                   | 0.8                    |

# Silicon Hyperabrupt Varactor Diode Chips



#### SMV2019 to SMV2023

#### **Features**

- High Q for Low Loss Resonators
- Low Leakage Current
- High Tuning Ratio for Wideband VCOs
- SPICE Model Parameters
- Small Footprint Chip Design



# **Description**

Skyworks' product line of silicon hyperabrupt junction varactor diode chips are processed using established ion-implantation technology resulting in low  $R_S$  wide tuning ratio devices with high Q values. These planar chips have a small outline size (12 x 12 mils nominal) and are fully

passivated resulting in low leakage current and high reliability. These varactor chips are intended for assembly in hybrid integrated circuit resonators used in VCOs and analog tuned filters.

# **Electrical Specifications at 25°C**

| Part Number | C <sub>J</sub> @ 0 V<br>(pF) <sup>1</sup> |      | ⊚ 4 V<br>oF) | 0    | 20 V<br>F) | Q @ 4 V<br>50 MHz <sup>2</sup> | 1 GHz<br>R <sub>S</sub> @ 4 V (Ω) | I <sub>R</sub> @17.6 V (nA) <sup>3</sup> | Contact<br>Diam. (mils) <sup>4</sup> |
|-------------|-------------------------------------------|------|--------------|------|------------|--------------------------------|-----------------------------------|------------------------------------------|--------------------------------------|
|             | Тур.                                      | Min. | Max.         | Min. | Max.       | Min.                           | Тур.                              | Max.                                     | Nom.                                 |
| SMV2019-000 | 2.3                                       | 0.68 | 0.88         | 0.13 | 0.23       | 500                            | 4.8                               | 50                                       | 2.00                                 |
| SMV2020-000 | 3.1                                       | 1.13 | 1.43         | 0.23 | 0.33       | 500                            | 4.1                               | 50                                       | 2.50                                 |
| SMV2021-000 | 4.5                                       | 1.58 | 1.98         | 0.32 | 0.44       | 500                            | 2.8                               | 50                                       | 3.00                                 |
| SMV2022-000 | 7.1                                       | 2.48 | 3.08         | 0.48 | 0.68       | 400                            | 2.2                               | 50                                       | 3.75                                 |
| SMV2023-000 | 10.8                                      | 4.28 | 5.28         | 0.78 | 1.08       | 400                            | 1.4                               | 50                                       | 5.00                                 |

<sup>1.</sup> All capacitance values specified at 1 MHz.

- 3.  $V_B$  at 10  $\mu A$  specified at 22 V Min.
- 4. Outline drawing 149-801.

# **Outline Drawing**

#### 149-801



# **Absolute Maximum Ratings**

| Characteristic                              | Value           |  |  |
|---------------------------------------------|-----------------|--|--|
| Reverse Voltage (V <sub>R</sub> )           | 22 V            |  |  |
| Forward Current (I <sub>F</sub> )           | 100 mA          |  |  |
| Power Dissipation at 25°C (P <sub>D</sub> ) | 250 mW          |  |  |
| Operating Temperature (T <sub>OP</sub> )    | -55°C to +150°C |  |  |
| Storage Temperature (T <sub>ST</sub> )      | -65°C to +200°C |  |  |

<sup>2. 50</sup> MHz Q calculated from 1 GHz R<sub>S</sub> and 1 MHz C<sub>J</sub>.



Capacitance vs. Reverse Voltage

# **Typical Capacitance Values**

| V <sub>R</sub> (V) | SMV2019<br>C <sub>J</sub> (pF) | SMV2020<br>C <sub>J</sub> (pF) | SMV2021<br>C <sub>J</sub> (pF) | SMV2022<br>C <sub>J</sub> (pF) | SMV2023<br>C <sub>J</sub> (pF) |
|--------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| 0.0                | 2.25                           | 3.14                           | 4.48                           | 7.08                           | 10.76                          |
| 0.5                | 1.79                           | 2.5                            | 3.57                           | 5.66                           | 8.76                           |
| 1.0                | 1.53                           | 2.16                           | 3.09                           | 4.88                           | 7.67                           |
| 2.0                | 1.19                           | 1.72                           | 2.45                           | 3.89                           | 6.31                           |
| 3.0                | 0.99                           | 1.44                           | 2.09                           | 3.19                           | 5.38                           |
| 4.0                | 0.84                           | 1.24                           | 1.83                           | 2.71                           | 4.75                           |
| 5.0                | 0.71                           | 1.07                           | 1.60                           | 2.30                           | 4.21                           |
| 6.0                | 0.57                           | 0.90                           | 1.37                           | 1.87                           | 3.66                           |
| 7.0                | 0.46                           | 0.74                           | 1.17                           | 1.52                           | 3.17                           |
| 8.0                | 0.38                           | 0.61                           | 0.97                           | 1.25                           | 2.68                           |
| 9.0                | 0.33                           | 0.52                           | 0.81                           | 1.07                           | 2.25                           |
| 10.0               | 0.29                           | 0.46                           | 0.69                           | 0.94                           | 1.89                           |
| 11.0               | 0.26                           | 0.42                           | 0.61                           | 0.85                           | 1.66                           |
| 12.0               | 0.24                           | 0.38                           | 0.56                           | 0.78                           | 1.49                           |
| 13.0               | 0.23                           | 0.36                           | 0.51                           | 0.73                           | 1.35                           |
| 14.0               | 0.21                           | 0.34                           | 0.48                           | 0.69                           | 1.24                           |
| 15.0               | 0.20                           | 0.32                           | 0.45                           | 0.65                           | 1.16                           |
| 16.0               | 0.19                           | 0.31                           | 0.43                           | 0.62                           | 1.10                           |
| 17.0               | 0.19                           | 0.29                           | 0.41                           | 0.59                           | 1.04                           |
| 18.0               | 0.18                           | 0.28                           | 0.39                           | 0.57                           | 0.99                           |
| 19.0               | 0.17                           | 0.27                           | 0.38                           | 0.55                           | 0.95                           |
| 20.0               | 0.16                           | 0.26                           | 0.36                           | 0.54                           | 0.91                           |



Series Resistance vs. Voltage @ 1 GHz

#### **SPICE Model**



| C <sub>V</sub> = | $= \frac{C_{J0}}{\left(1 + \frac{V_R}{V_J}\right)^M} + C_P$ |
|------------------|-------------------------------------------------------------|
|                  |                                                             |

| Part<br>Number | C <sub>JO</sub><br>(pF) | V <sub>J</sub><br>(V) | M    | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|-----------------------|------|-----------------------|
| SMV2019        | 2.3                     | 3.5                   | 1.40 | 4.8                   |
| SMV2020        | 3.3                     | 3.6                   | 1.30 | 4.1                   |
| SMV2021        | 4.5                     | 3.9                   | 1.34 | 2.8                   |
| SMV2022        | 7.1                     | 4.0                   | 1.40 | 2.2                   |
| SMV2023        | 10.8                    | 4.6                   | 1.45 | 1.4                   |

SPICE model parameters extracted from measured characteristics may not reflect exact physical or electronic properties. See application note APN1004.

# **Abrupt Junction Tuning Varactors**



#### SMV1405-SMV1419

#### **Features**

- High Q
- Low Series Resistance for Low Phase Noise
- Multiple Packages SOT-23, SOD-323, SC-70 and SC-79
- Designed for High Volume Commercial Applications
- SPICE Models are Available



The SMV1405–SMV1419 series of silicon abrupt junction varactor diodes are designed for use in VCOs requiring tight capacitance tolerances. The low resistance of these varactors makes them appropriate for high Q resonators in wireless system VCOs to frequencies beyond 2.5 GHz. The devices are characterized for capacitance over temperature. SPICE models are provided.



# **Absolute Maximum Ratings**

| •                                        |                 |  |  |  |
|------------------------------------------|-----------------|--|--|--|
| Characteristic                           | Value           |  |  |  |
| Reverse Voltage (V <sub>R</sub> )        | 30 V            |  |  |  |
| Forward Current (I <sub>F</sub> ) 20 mA  |                 |  |  |  |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |  |  |  |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |  |  |  |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |  |  |  |

|                         | H<br>H                  |                         |                        |
|-------------------------|-------------------------|-------------------------|------------------------|
| Single                  | Single                  | Common Cathode          | Common Cathode         |
| SC-79                   | SOT-23                  | SOT-23                  | SC-70                  |
| ♦ SMV1405-079           | ♦ SMV1405-001           |                         | ♦ SMV1405-074          |
|                         | ♦ SMV1408-001           |                         |                        |
|                         | ♦ SMV1413-001           |                         |                        |
|                         | ♦ SMV1417-001           | ♦ SMV1417-004           |                        |
|                         | ♦ SMV1419-001           |                         |                        |
| L <sub>S</sub> = 0.7 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | $L_S = 1.4 \text{ nH}$ |

<sup>♦</sup> Available through distribution.

For other packages or configurations, please contact the factory.

### **Electrical Specifications at 25°C**

| Part<br>Number | C <sub>T</sub><br>@ 0.5 V<br>(pF) | C <sub>T</sub><br>@ 1 V<br>(pF) | C <sub>T</sub> @ 4 V (pF) |       | C <sub>T</sub> @ 0 V<br>C <sub>T</sub> @ 30 V<br>(Ratio) | R <sub>S</sub> @ 4 V<br>500 MHz<br>(Ω) | Q<br>@ 4 V<br>50 MHz |
|----------------|-----------------------------------|---------------------------------|---------------------------|-------|----------------------------------------------------------|----------------------------------------|----------------------|
|                | Typ.                              | Тур.                            | Min.                      | Max.  | Min.                                                     | Max.                                   | Тур.                 |
| SMV1405        | 2.1                               | 1.8                             | 1.21                      | 1.45  | 4.1                                                      | 0.80                                   | 3200                 |
| SMV1408        | 3.4                               | 2.9                             | 1.75                      | 2.11  | 4.1                                                      | 0.60                                   | 2900                 |
| SMV1413        | 7.4                               | 6.4                             | 3.64                      | 4.42  | 4.2                                                      | 0.35                                   | 2400                 |
| SMV1417        | 15.3                              | 13.2                            | 7.51                      | 9.15  | 4.3                                                      | 0.22                                   | 1800                 |
| SMV1419        | 18.7                              | 16.6                            | 9.13                      | 11.13 | 4.4                                                      | 0.20                                   | 1600                 |

Reverse Voltage  $V_R$  ( $I_R = 10 \mu A$ ): 30 V Reverse Current  $I_R$  ( $V_R = 24 V$ ): 20 nA

### **Typical Performance Data**



Capacitance vs. Reverse Voltage



Relative Capacitance Change vs. Temperature

### **Typical Capacitance Values**

|                    | SMV1405             | SMV1408             | SMV1413             | SMV1417             | SMV1419             |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) |
| 0.0                | 2.67                | 4.08                | 9.24                | 19.20               | 23.44               |
| 0.5                | 2.12                | 3.36                | 7.39                | 15.30               | 18.72               |
| 1.0                | 1.84                | 2.94                | 6.37                | 13.16               | 16.64               |
| 1.5                | 1.70                | 2.60                | 5.71                | 11.76               | 14.38               |
| 2.0                | 1.55                | 2.38                | 5.22                | 10.74               | 13.14               |
| 2.5                | 1.44                | 2.24                | 4.85                | 9.95                | 12.18               |
| 3.0                | 1.34                | 2.08                | 4.55                | 9.32                | 11.42               |
| 4.0                | 1.25                | 1.88                | 4.10                | 8.35                | 10.26               |
| 5.0                | 1.17                | 1.72                | 3.77                | 7.64                | 9.40                |
| 10.0               | 0.95                | 1.28                | 2.85                | 5.62                | 7.00                |
| 20.0               | 0.77                | 1.01                | 2.12                | 4.09                | 5.10                |
| 30.0               | 0.63                | 0.95                | 1.77                | 3.79                | 4.30                |

### **SPICE Model**



| Part<br>Number | C <sub>JO</sub><br>(pF) | (V)  | M    | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|------|------|------------------------|-----------------------|
| SMV1405        | 2.92                    | 0.68 | 0.41 | 0.05                   | 0.80                  |
| SMV1408        | 3.70                    | 0.80 | 0.48 | 0.13                   | 0.60                  |
| SMV1413        | 9.20                    | 0.79 | 0.45 | 0.13                   | 0.35                  |
| SMV1417        | 19.20                   | 0.84 | 0.48 | 0.13                   | 0.22                  |
| SMV1419        | 23.40                   | 0.87 | 0.54 | 0.13                   | 0.20                  |

- 1. Values extracted from measured performance.
- 2. For package inductance (L<sub>S</sub>) refer to package type.
- For more details refer to the "Varactor SPICE Models for RF VCO Applications" Application Note.

#### SOT-23





#### **SC-70**



#### SOD-323



#### SC-79



# **Abrupt Junction Tuning Varactors**



#### SMV1493-SMV1494

#### **Features**

- High Q
- Low Series Resistance for Low Phase Noise
- Multiple Packages: SOD-323 and SC-79
- Designed for High Volume Commercial Applications
- SPICE Models are Available



The SMV1493 and SMV1494 silicon abrupt junction varactor diodes are designed for use in VCOs requiring tight capacitance tolerances. The low resistance of these varactors makes them appropriate for high Q resonators in wireless system VCOs to frequencies beyond 2.5 GHz.



♦ Available through distribution. For other packages or configurations, please contact the factory.



### **Absolute Maximum Ratings**

|                                          | _               |
|------------------------------------------|-----------------|
| Characteristic                           | Value           |
| Forward Current (I <sub>F</sub> )        | 20 mA           |
| Power Dissipation (P <sub>D</sub> )      | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )   | -55°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +125°C |

### **Electrical Specifications at 25°C**

| Part<br>Number | C <sub>T</sub> @ 1 V<br>(pF) |      |      | C <sub>T</sub> @ 4 V<br>(pF) |      |  |  |
|----------------|------------------------------|------|------|------------------------------|------|--|--|
|                | Min.                         | Max. | Min. | Max.                         | Max. |  |  |
| SMV1493        | 17.4                         | 20.0 | 10.0 | 12.1                         | 0.50 |  |  |
| SMV1494        | 36.3                         | 41.7 | 20.7 | 25.3                         | 0.45 |  |  |

Reverse Voltage  $V_R$  ( $I_R$  = 10  $\mu$ A): 12 V Reverse Current  $I_R$  ( $V_R$  = 10 V): 20 nA

### **Typical Performance Data**



Capacitance vs. Reverse Voltage

#### **SPICE Model**



| Part<br>Number | C <sub>JO</sub><br>(pF) | V <sub>J</sub> (V) | M    | C <sub>P</sub><br>(pF) | R <sub>S</sub><br>(Ω) |
|----------------|-------------------------|--------------------|------|------------------------|-----------------------|
| SMV1493        | 29                      | 0.63               | 0.47 | 0                      | 0.50                  |
| SMV1494        | 58                      | 0.63               | 0.47 | 0                      | 0.45                  |

<sup>1.</sup> Values extracted from measured performance.

### Capacitance vs. Reverse Voltage

| 0 0.10             |                     | 3                   |
|--------------------|---------------------|---------------------|
|                    | SMV1493             | SMV1494             |
| V <sub>R</sub> (V) | C <sub>T</sub> (pF) | C <sub>T</sub> (pF) |
| 0.0                | 28.7                | 57.8                |
| 0.2                | 25.6                | 51.5                |
| 0.4                | 23.3                | 46.9                |
| 0.6                | 21.5                | 43.4                |
| 0.8                | 20.1                | 40.5                |
| 1.0                | 19.0                | 38.4                |
| 1.2                | 17.9                | 36.3                |
| 1.4                | 17.0                | 34.6                |
| 1.6                | 16.2                | 33.0                |
| 1.8                | 15.5                | 31.6                |
| 2.0                | 15.0                | 30.6                |
| 2.2                | 14.4                | 29.5                |
| 2.4                | 13.9                | 28.5                |
| 2.6                | 13.5                | 27.6                |
| 2.8                | 13.1                | 26.7                |
| 3.0                | 12.7                | 26.1                |
| 3.2                | 12.4                | 25.3                |
| 3.4                | 12.0                | 24.7                |
| 3.6                | 11.7                | 24.1                |
| 3.8                | 11.4                | 23.5                |
| 4.0                | 11.2                | 23.1                |
| 4.2                | 10.9                | 22.6                |
| 4.4                | 10.7                | 22.1                |
| 4.6                | 10.5                | 21.7                |
| 4.8                | 10.3                | 21.3                |
| 5.0                | 10.1                | 20.9                |
| 6.0                | 9.2                 | 19.2                |
| 7.0                | 8.5                 | 17.9                |
| 8.0                | 8.0                 | 16.7                |
| 9.0                | 7.6                 | 15.7                |
| 10.0               | 7.1                 | 14.7                |

<sup>2.</sup> For package inductance ( $L_{S}$ ) refer to package type.

For more details refer to the "Varactor SPICE Models for RF VCO Applications" Application Note.

#### SOD-323



### **SC-79**



# GaAs Hyperabrupt Junction Varactor Diodes



### **Features**

- Constant Gamma of 1.0 and 1.25
- Highly Linear Frequency Tuning
- Constant Modulation Sensitivity
- Lower Series Resistance and Higher Q in Comparison to Equivalent Silicon Hyperabrupt Varactors

### **Description**

This series of GaAs hyperabrupt varactor diodes features a constant gamma of 1.0 and 1.25, which allows for a relatively linear frequency tuning for VCOs, modulators and tunable filters. Varactors in this series are grown by MBE (Molecular Beam Epitaxy), which allows monolayer control of the doping profile. This translates to superb wafer-to-wafer uniformity. The series resistance is lower, and Q is higher when compared to an equivalent silicon hyperabrupt varactor. These diodes are suited for applications at X band frequencies and above, where wide change in frequency is desired. However, in certain applications the GaAs hyperabrupt varactor exhibits a higher surface noise in comparison to an equivalent silicon varactor.

### **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )        | 18 V            |
| Forward Current (I <sub>F</sub> )        | 100 mA          |
| Power Dissipation at 25°C                | 250 mW          |
| Operating Temperature (T <sub>OP</sub> ) | -55°C to +150°C |
| Storage Temperature (T <sub>ST</sub> )   | -65°C to +200°C |

### GMV7811, GMV7821 GMV9801, GMV9821, GMV9822



# Outline Drawings 540-011



#### 150-808



### **Electrical Characteristics**

#### GaAs Hyperabrupt Junction Varactor Chips Gamma = 1.0

| Part<br>Number | V <sub>B</sub><br>@ 10 μA<br>(V) | I <sub>R</sub><br>@ 14.4 V<br>(nA) | Typical Voltage<br>Range of Gamma<br>(V) | Capac<br>C <sub>J</sub> @ | Junction<br>Capacitance<br>C <sub>J</sub> @ 4 V<br>(pF) |      | C <sub>J</sub> @ 2 V<br>C <sub>J</sub> @ 12 V<br>(Ratio) |      | Outline<br>Drawing<br>Number |
|----------------|----------------------------------|------------------------------------|------------------------------------------|---------------------------|---------------------------------------------------------|------|----------------------------------------------------------|------|------------------------------|
|                | Min.                             | Max.                               |                                          | Min.                      | Max.                                                    | Min. | Max.                                                     | Тур. |                              |
| GMV7811-000    | 18                               | 100                                | 2–12                                     | 0.4                       | 0.6                                                     | 3.63 | 4.43                                                     | 4000 | 150-808                      |

#### **Gamma = 1.25**

| Part<br>Number | V <sub>B</sub><br>@ 10 μ <b>A</b><br>(V) | I <sub>R</sub><br>@ 14.4 V<br>(nA) | Typical Voltage<br>Range of Gamma<br>(V) | Capac | Junction |      | Q @ 4 V<br>50 MHz | Outline<br>Drawing<br>Number |         |
|----------------|------------------------------------------|------------------------------------|------------------------------------------|-------|----------|------|-------------------|------------------------------|---------|
|                | Min.                                     | Max.                               |                                          | Min.  | Max.     | Min. | Max.              | Тур.                         |         |
| GMV9801-000    | 18                                       | 100                                | 2–12                                     | 0.3   | 0.4      | 5.14 | 6.28              | 4000                         | 150-808 |

### **GaAs Hyperabrupt Junction Varactor Flip Chips**

#### Gamma = 1.0

| Part<br>Number | V <sub>B</sub><br>@ 10 μ <b>A</b><br>(V) | I <sub>R</sub><br>@ 14.4 V<br>(nA) | Capac<br>C <sub>J</sub> @ | ction<br>citance<br>② 4 V<br>oF) | C <sub>J</sub> @ | C <sub>J</sub> @ 2 V<br>C <sub>J</sub> @ 12 V<br>(Ratio) |      | Outline<br>Drawing<br>Number |
|----------------|------------------------------------------|------------------------------------|---------------------------|----------------------------------|------------------|----------------------------------------------------------|------|------------------------------|
|                | Min.                                     | Max.                               | Min.                      | Max.                             | Min.             | Max.                                                     | Тур. |                              |
| GMV7821-000    | 18                                       | 100                                | 0.4                       | 0.6                              | 3.30             | 4.10                                                     | 4000 | 540-011                      |

#### **Gamma = 1.25**

| Part<br>Number | V <sub>B</sub><br>@ 10 μA<br>(V) | I <sub>R</sub><br>@ 14.4 V<br>(nA) | Capac<br>C <sub>J</sub> @ | ction<br>citance<br>4 V<br>F) | C <sub>J</sub> @ 2 V<br>C <sub>J</sub> @ 12 V<br>(Ratio) |      | ance C <sub>J</sub> @ 2 V<br>C <sub>J</sub> @ 12 V Q @ 4 V |         | Outline<br>Drawing<br>Number |
|----------------|----------------------------------|------------------------------------|---------------------------|-------------------------------|----------------------------------------------------------|------|------------------------------------------------------------|---------|------------------------------|
|                | Min.                             | Max.                               | Min.                      | Max.                          | Min.                                                     | Max. | Тур.                                                       |         |                              |
| GMV9821-000    | 18                               | 100                                | 0.3                       | 0.4                           | 4.30                                                     | 5.27 | 4000                                                       | 540-011 |                              |
| GMV9822-000    | 18                               | 100                                | 0.4                       | 0.6                           | 4.53                                                     | 5.55 | 3500                                                       | 540-011 |                              |

### **Typical Capacitance Values**

|                    | GMV7811             | GMV9801             | GMV7821             | GMV9821             | GMV9822             |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| V <sub>R</sub> (V) | C <sub>J</sub> (pF) |
| 0                  | 1.38                | 1.12                | 1.33                | 1.07                | 1.55                |
| 1                  | 1.03                | 0.84                | 1.01                | 0.81                | 1.17                |
| 2                  | 0.80                | 0.63                | 0.79                | 0.61                | 0.88                |
| 3                  | 0.62                | 0.45                | 0.61                | 0.45                | 0.64                |
| 4                  | 0.50                | 0.35                | 0.50                | 0.35                | 0.50                |
| 5                  | 0.42                | 0.28                | 0.42                | 0.29                | 0.41                |
| 6                  | 0.36                | 0.23                | 0.37                | 0.24                | 0.34                |
| 7                  | 0.32                | 0.20                | 0.33                | 0.21                | 0.30                |
| 8                  | 0.28                | 0.17                | 0.30                | 0.19                | 0.26                |
| 9                  | 0.26                | 0.15                | 0.27                | 0.17                | 0.23                |
| 10                 | 0.23                | 0.14                | 0.25                | 0.15                | 0.21                |
| 11                 | 0.22                | 0.12                | 0.23                | 0.14                | 0.19                |
| 12                 | 0.20                | 0.11                | 0.21                | 0.13                | 0.18                |

### **SPICE Model**



| Part<br>Number | C <sub>J0</sub><br>(pF) | V <sub>J</sub> (V) | М    | C <sub>P</sub><br>(pF) |
|----------------|-------------------------|--------------------|------|------------------------|
| GMV7811        | 1.38                    | 5.20               | 2.10 | 0.080                  |
| GMV9801        | 1.12                    | 5.50               | 2.30 | 0.030                  |
| GMV7821        | 1.33                    | 5.20               | 2.00 | 0.080                  |
| GMV9821        | 1.07                    | 5.50               | 2.40 | 0.060                  |
| GMV9822        | 1.55                    | 5.50               | 2.40 | 0.080                  |

<sup>1.</sup> Values extracted from measured performance.

# Silicon Step Recovery Diode Chips



#### CVB1031 and CVB1151

#### **Features**

- For Frequency Multiplying and Pulse Shaping
- Fast Transition Time for Multiplication to 18 GHz
- Long Carrier Lifetime for Input Frequencies
  Below 50 MHz
- Rugged, Passivated Chip Design



Skyworks' product line of silicon step recovery diode chips are designed for use in high order frequency multiplier, comb generator and pulse shaping applications. These mesa designed chips have a small outline (12 x 12 mils nominal) and are fully passivated resulting in low leakage current and high reliability. The CVB1031-000 may be used at input frequencies below 50 MHz and will generate harmonics beyond 12 GHz. The CVB1151-000 may be used at input frequencies below 100 MHz and will generate harmonics beyond 18 GHz.



### **Absolute Maximum Ratings**

| Characteristic                           | Value             |  |
|------------------------------------------|-------------------|--|
| Reverse Voltage (V <sub>R</sub> )        | Breakdown Voltage |  |
| Forward Current (I <sub>F</sub> )        | 100 mA            |  |
| Power Dissipation (PD) @ 25°C            | 250 mW            |  |
| Operating Temperature (T <sub>OP</sub> ) | -55 to +150°C     |  |
| Storage Temperature (T <sub>ST</sub> )   | -65 to +200°C     |  |

#### Electrical Characteristics at 25°C

| Part<br>Number | Breakdown<br>Voltage<br>(V) | 0    | 9 6 V<br>F) | C <sub>J</sub> @ 0 V<br>(pF) | Carrier<br>Lifetime<br>(nS) | Transition<br>Time<br>(pS) | Cutoff<br>Frequency<br>(GHz) | Input<br>Frequency<br>(MHz) | Output<br>Frequency<br>(GHz) | Outline<br>Drawing |
|----------------|-----------------------------|------|-------------|------------------------------|-----------------------------|----------------------------|------------------------------|-----------------------------|------------------------------|--------------------|
|                | Min.                        | Min. | Max.        | Тур.                         | Min.                        | Max.                       | Min.                         | Тур.                        | Тур.                         |                    |
| CVB1031-000    | 30                          | 0.25 | 0.5         | 0.5                          | 20                          | 100                        | 300                          | 50-1000                     | 5–12                         | 150-801            |
| CVB1151-000    | 15                          | 0.25 | 0.5         | 0.4                          | 10                          | 70                         | 300                          | 100-3000                    | 9–18                         | 150-806            |

<sup>1.</sup> Breakdown voltage specified at 10 µA.

<sup>2.</sup> Capacitance specified at 1 MHz.

<sup>3.</sup> Carrier lifetime specified at 10 mA

<sup>4.</sup> Transition time specified at  $V_{R} = 10 \text{ V}$  and  $I_{F} = 10 \text{ mA}$ .

<sup>5.</sup> Cutoff frequency calculated from C<sub>J</sub> @ 6 V and R<sub>S</sub> at 100 mA, 100 MHz.

### **Typical Performance Data**



Capacitance vs. Reverse Voltage

### **Outline Drawing**



| Chip    | Bonding Pad   | Chip Siz | ze (In.) |
|---------|---------------|----------|----------|
| Style   | Nominal (In.) | Min.     | Max.     |
| 150-801 | 0.002 (Min.)  | 0 .010   | 0.014    |
| 150-806 | 0.0011 (Min.) | 0 .010   | 0.014    |

#### **SPICE Model**



| Parameter       | CVB1031-000 | CVB1151-000 | Units |
|-----------------|-------------|-------------|-------|
| IS              | 3E-17       | 3E-17       | А     |
| Rs              | 0.12        | 0.13        | Ω     |
| N               | 1.02        | 1.03        | -     |
| TT              | 2E-8        | 1E-8        | S     |
| C <sub>J0</sub> | 0.20        | 0.30        | pF    |
| C <sub>P</sub>  | 0.31        | 0.25        | pF    |
| M               | 0.70        | 1.00        | -     |
| E <sub>G</sub>  | 0.69        | 0.69        | eV    |
| XTI             | 2           | 2           | -     |
| F <sub>C</sub>  | 0.50        | 0.50        | -     |
| B <sub>V</sub>  | 30          | 15          | V     |
| I <sub>BV</sub> | 1.00E-05    | 1.00E-05    | А     |
| VJ              | 1           | 2           | V     |

SPICE model parameters extracted from measured values may not reflect exact electronic or physical properties. See application note APN1004.



# **PIN Diodes**

## **Application/Selection Guide**

### **New PIN Diodes Designed for Modules**

| Market                  | Function                               | Suggested Part Number                   |  |  |
|-------------------------|----------------------------------------|-----------------------------------------|--|--|
| Handset T/R Switch      | T/R Switching<br>Band Select Switching | SMP1340-099, SMP1340-050<br>SMP1353-050 |  |  |
| Handset VCO             | Band Switching                         | SMP1340-050, SMP1340-099                |  |  |
| Handset PA              | General Switching                      | SMP1320-099, SMP1340-099, SMP1340-050   |  |  |
| Bluetooth T/R Switching |                                        | SMP1340-099, SMP1340-050                |  |  |

### **PIN Diodes**

| Market                            | Function                                                      | Suggested Part Number                                                            |  |  |
|-----------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Handsets (400 MHz to 2.4 GHz)     | T/R Switching<br>VCO Band Switching<br>Large Signal Switching | SMP1340-079, SMP1320-079, SMP1320-017<br>SMP1320-079, SMP1322-079<br>SMP1352-079 |  |  |
| Base Station (400 MHz to 2.4 GHz) | General Purpose Switch<br>Attenuator                          | SMP1340, SMP1321 Series<br>SMP1302 Series, SMP1304 Series, SMP1307 Series        |  |  |
| Set Top Converter                 | Switch                                                        | SMP1321 Series                                                                   |  |  |
| LNB/DBS                           | Polarization Switch, Switch Matrix                            | SMP1321-003, SMP1321-004, SMP1321-005                                            |  |  |
| CATV Distribution                 | Attenuation                                                   | SMP1304 Series, SMP1307 Series                                                   |  |  |
| CATV                              | Switching                                                     | SMP1320 Series, SMP1352 Series                                                   |  |  |
| Telemetry                         | VCO Band Switching                                            | SMP1322-011                                                                      |  |  |
| Wireless Meter Reader             | Switching                                                     | SMP1320-079, SMP1320-011                                                         |  |  |
| Electronic Toll Collection (ETC)  | Switching                                                     | SMP1320-079                                                                      |  |  |
| Cordless Phones                   | T/R Switches (900 MHz to 2 GHz)                               | SMP1320 Series, SMP1340 Series, SMP1321 Series                                   |  |  |
| Pagers Switch                     |                                                               | SMP1320-079, SMP1322-079                                                         |  |  |
| Bluetooth T/R Switching           |                                                               | SMP1340-079                                                                      |  |  |
| WLAN T/R Switching                |                                                               | SMP1321-508, SMP1340-508, SMP1340-050                                            |  |  |
|                                   |                                                               |                                                                                  |  |  |

## PIN Diode Chips Supplied on Film Frame



#### **Features**

- Designed for High Performance Switch and Attenuator Applications
- Preferred Device for Module Applications
- PIN Diodes Supplied 100% Tested, Sawn, Mounted on Film Frame
- Low Cost



The SMP series of PIN diodes are designed for high volume switch applications from 10 MHz to beyond 2 GHz. The low current, low capacitance performance of these diodes makes the SMP series particularly suited for battery-operated circuits, power amplifier modules, VCO, T/R switches and other applications. The SMP1302-099 and SMP1304-099 parts are designed as a low distortion attenuator used in TV distribution and cellular base station applications.



### **Absolute Maximum Ratings**

| Characteristic                                   | Value           |
|--------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                | 50 V            |
| Power Dissipation @ 25°C at the Base of the Chip | 250 mW          |
| Storage Temperature                              | -65°C to +150°C |
| Operating Temperature                            | -65°C to +150°C |
| ESD Human Body Model                             | Class 1 B       |

### **Electrical Specifications at 25°C**

| Part<br>Number   | Min. V <sub>B</sub><br>I <sub>R</sub> = 10 μA<br>(V) | Typ. C <sub>J</sub><br>V <sub>R</sub> = 0 V<br>F = 1 MHz<br>(pF) | Max. C <sub>J</sub> V <sub>R</sub> = 10 V F = 1 MHz (pF) | Typ. V <sub>F</sub><br>@ I <sub>F</sub> = 10 mA<br>(mV) | $\begin{array}{c} \text{Max. R}_{\text{S}} \\ \text{I}_{\text{F}} = 1 \text{ mA} \\ \text{F} = 100 \text{ MHz} \\ (\Omega) \end{array}$ | $\begin{array}{c} \text{Max. R}_{\text{S}} \\ \text{I}_{\text{F}} = 10 \text{ mA} \\ \text{F} = 100 \text{ MHz} \\ (\Omega) \end{array}$ | Typical Carrier Lifetime I <sub>F</sub> = 10 mA (nsec) |
|------------------|------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Switching Applic | cations                                              |                                                                  |                                                          |                                                         |                                                                                                                                         |                                                                                                                                          |                                                        |
| SMP1320-099      | 50                                                   | 0.23                                                             | 0.175                                                    | 850                                                     | 2.0 Typ.                                                                                                                                | 0.9                                                                                                                                      | 400                                                    |
| SMP1322-099      | 50                                                   | 1.10                                                             | 0.850                                                    | 825                                                     | 1.5                                                                                                                                     | 0.45 Typ.                                                                                                                                | 400                                                    |
| SMP1340-099      | 50                                                   | 0.20                                                             | 0.150                                                    | 880                                                     | 1.7 Typ.                                                                                                                                | 1.2                                                                                                                                      | 100                                                    |
| SMP1353-099      | 100                                                  | 0.35                                                             | 0.150                                                    | 825                                                     | 15                                                                                                                                      | 2.8                                                                                                                                      | 1000                                                   |
| Attenuator Appli | cations                                              |                                                                  |                                                          |                                                         |                                                                                                                                         |                                                                                                                                          |                                                        |
| SMP1302-099      | 200                                                  | 0.27                                                             | 0.15 @ 30 V                                              | 800                                                     | 20                                                                                                                                      | 3.0                                                                                                                                      | 700                                                    |
| SMP1304-099      | 200                                                  | 0.18                                                             | 0.15 @ 30 V                                              | 800                                                     | 50                                                                                                                                      | 7.0                                                                                                                                      | 1000                                                   |

The above PIN diode chips are processed on 100 mm silicon wafers, 100% DC tested, sawn and shipped on 6" film frame hoops. Electrical rejects are identified with black ink.

### **Chip Dimensions**

|             | Quantity of Good Diodes Per Wafer |        | Bonding Pad     | Chip Size      | Chip Height     |  |
|-------------|-----------------------------------|--------|-----------------|----------------|-----------------|--|
| Part Number | Min.                              | Nom.   | Nominal (In.)   | Nominal (In.)  | Nominal (In.)   |  |
| SMP1320-099 | 40,000                            | 46,000 | 0.003 ± 0.0003  | 0.0135 ± 0.001 | 0.0055 ± 0.0005 |  |
| SMP1322-099 | 40,000                            | 46,000 | 0.0075 ± 0.0003 | 0.0135 ± 0.001 | 0.0055 ± 0.0005 |  |
| SMP1340-099 | 65,000                            | 72,000 | 0.003 ± 0.0003  | 0.0110 ± 0.001 | 0.0055 ± 0.0005 |  |
| SMP1353-099 | 65,000                            | 72,000 | 0.008 ± 0.0005  | 0.0110 ± 0.001 | 0.0055 ± 0.0005 |  |
| SMP1302-099 | 40,000                            | 46,000 | 0.0085 ± 0.0005 | 0.0135 ± 0.001 | 0.0055 ± 0.0005 |  |
| SMP1304-099 | 40,000                            | 46,000 | 0.0085 ± 0.0005 | 0.0135 ± 0.001 | 0.0100 ± 0.0010 |  |

### Typical Performance Data at 25°C

#### SMP1320



Series Resistance vs. Forward Current @ 100 MHz



**DC** Characteristic



Capacitance vs. Reverse Voltage

#### SMP1322



Series Resistance vs. Forward Current @ 100 MHz



**DC Characteristic** 



Capacitance vs. Reverse Voltage

## Typical Performance Data at 25°C

#### SMP1340



Series Resistance vs.
Forward Current @ 100 MHz



**DC** Characteristic



Capacitance vs. Reverse Voltage

#### SMP1353



Series Resistance vs. Forward Current @ 100 MHz



**DC** Characteristic



Capacitance vs. Reverse Voltage

### Typical Performance Data at 25°C

#### SMP1302



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



SMP1304



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



**DC** Characteristic

### **Wafer On Film**



### **Wafer Film Frame Description**

■ Wafer on Nitto Tape

■ Color: Light Blue

■ Thickness: 2.2–3.0 mils

■ Tensile Strength: 6.6 (lbs. in width)

■ Ring Material: Plastic

# **Switching Chip Scale PIN Diodes**



### SMP1340-050, SMP1353-050

#### **Features**

- Designed for Fast Speed Wireless Switch Applications
- Very Low Profile, 0.3 mm
- Low Inductance (0.25 nH)
- Designed for High Volume Wireless Applications, Modules, VCOs
- Supplied in Punched Paper Carrier Tape

### **Description**

The SMP1340-050 chip scale packaged, surface mountable PIN diode is designed for high volume switch applications from 10 MHz to beyond 5 GHz. The SMP1340-050 has a short carrier lifetime of typically 100 nS, resulting in a fast speed RF switching PIN diode. The RF performance of the SMP1340-050 is assured by virtue of its low capacitance (0.3 pF) and low resistance (1.0  $\Omega$  at 10 mA). The SMP1353-050 chip scale packaged, surface mountable, low capacitance (0.3 pF) silicon PIN diode is designed for large signal switch applications from 15 MHz to beyond 5 GHz. These diodes have a reverse voltage rating of 100 V and are designed for use in low distortion switches that are required to hold off large RF voltages. The typical 1.5 µS carrier lifetime, results in a PIN diode with low forward resistance and low distortion characteristics.



### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 50 V            |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |

### **Electrical Specifications at 25°C**

| Part<br>Number | Minimum<br>Breakdown<br>Voltage<br>I <sub>R</sub> = 10 μA<br>(V) | Maximum Total Capacitance V <sub>R</sub> = 20 V f = 1 MHz (pF) | Typical Forward<br>Voltage<br>@ IF = 10 mA<br>(mV) | Maximum Series Resistance IF = 1 mA f = 100 MHz (Ω) | Maximum Series Resistance IF = 10 mA f = 100 MHz (Ω) | Typical Carrier<br>Lifetime<br>IF = 10 mA<br>(nsec) |
|----------------|------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| SMP1340-050    | 50                                                               | 0.3                                                            | 880                                                | 2.5                                                 | 1.2                                                  | 100                                                 |
| SMP1353-050    | 100                                                              | 0.3                                                            | 825                                                | 15                                                  | 2.8                                                  | 1000                                                |



| Description                              | Sym.           | Chip Scale    |
|------------------------------------------|----------------|---------------|
| Cavity                                   |                | <b>计划分别分表</b> |
| Length                                   | A <sub>0</sub> | 0.65±0.05     |
| Width                                    | B <sub>0</sub> | 0.76±0.05     |
| Depth                                    | K <sub>0</sub> | 0.53±0.05     |
| Pitch                                    | P <sub>1</sub> | 2.00±0.10     |
| Bottom Hole<br>Diameter                  | D <sub>1</sub> | N/A           |
| Perforation                              |                | 7. 1.1.4      |
| Diameter                                 | D <sub>0</sub> | 1.50±0.10     |
| Pitch                                    | P <sub>0</sub> | 4.00±0.10     |
| Position                                 | E <sub>1</sub> | 1.75±0.10     |
| Carrier Tape                             |                |               |
| Width                                    | W              | 8.00±0.20     |
| Thickness                                | Т              | 0.43±0.05     |
| Cover Tape                               |                |               |
| Width                                    | W <sub>1</sub> | 5.40±0.10     |
| Tape<br>Thickness                        | T <sub>1</sub> | 0.062±0.01    |
| Distance                                 |                |               |
| Cavity to Perforation (Width Direction)  | F              | 3.50±0.05     |
| Cavity to Perforation (Length Direction) | P <sub>2</sub> | 1.00±0.025    |

Note: All dimensions are in mm.

### **Paper Tape Dimensions**



### Chip Scale (-050)



| Standard Reel Size     | 7"     |
|------------------------|--------|
| Standard Reel Quantity | 12,000 |

### -050



#### **Land Pattern**

The recommended surface mount pad pattern ensures quality solder joint formation and high-yielding assembly, while using minimum board space. The dimensions apply to both Solder Mask Defined (SMD) as well as Non-Solder Mask Defined (NSMD) pads. However, NSMD pads, in which the solder mask is pulled back from the metal pad, are preferred. This type of pad definition generally produces improved solder joint reliability as well as an increased gap under the component. The increased gap is desirable for enhanced cleaning of flux residue and component underfill for applications in which the component will be encapsulated.



### **Solder Printing**

The recommended land pattern, when used in conjunction with the following solder deposit recommendation, provides quality solder joint formation and high yielding assembly. Solder should be deposited with a stencil of foil thickness from 100–125  $\mu m,$  and preferably have apertures that are laser-etched and electro-polished for optimal paste release. The chip scale package is compatible with most lead-based and lead-free solder pastes, though a type 3 or type 4 paste is preferred for the fine aperture printing.



The solder deposit should be centered on the land pattern as shown.



### **Component Placement**

The CSP can easily be picked and placed on most placement systems. Care should be taken to select a pick nozzle that matches the component footprint. Vision alignment after pick can be done to the package edges or the package leads, depending on the ability of the individual placement machine. The component should be placed as centered as possible to the pad and print patterns to assure even wetting and an absence of tilt or skew.



#### **Solder Reflow**

Solder reflow is best suited to convection or IR reflow systems, though convection reflow will always give more rapid and uniform thermal transfer. The CSP can be successfully reflowed in either air or nitrogen atmospheres. The solder paste manufacturer's recommended reflow profile should be adhered to and care should be taken to ensure that the profile is adjusted for variability in thermal mass amongst components. Attached are generic profiles for eutectic tin-lead solder and a typical lead-free solder.

These should only be used as a guideline, with the paste manufacturers recommended profile taking precedence. A standard solvent flux clean can be safely employed to remove flux residue from the device edges.



**Lead Free Profile** 



**Eutectic Tin-Lead Profile** 

#### **Finished Product**

Once reflowed, the component should be fairly centered on the land pattern. Solder should wet evenly to CSP leads and the component should not display excessive tilt or skew. A solvent flux clean can be safely employed if desired.



# Fast Switching Speed, Low Capacitance Plastic Packaged PIN Diodes



#### SMP1340 Series

#### **Features**

- Designed for Fast Speed Wireless Switch **Applications**
- 1.0 Ω Resistance, 0.3 pF Capacitance
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Available in Tape and Reel Packaging



The SMP1340 series of plastic packaged, surface mountable PIN diodes are designed for high volume switch applications from 10 MHz to beyond 2 GHz. The short carrier lifetime of typically 100 nS, combined with its thin I region width of nominally 7  $\mu m$ , results in a fast speed RF switching PIN diode. The RF performance of the SMP1340 series is assured by virtue of its low capacitance (0.3 pF) and low resistance (1.0  $\Omega$  at 10 mA). The SMP1340-508 has been specifically designed for WLAN 802.11 a, b, and g applications.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMP1340-079LF and SMP1340-508 Lead (Pb)-Free package as a green alternative.



### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 50 V            |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1B        |

| Single                  | Common<br>Anode         | Common<br>Cathode       | Series<br>Pair         | Single                  | Common<br>Cathode       | Single                  | Anti-Parallel           |
|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Marking: PS1            | Marking: PS9            | Marking: PS3            | Marking: PS2           |                         | Marking: PS3            |                         | Marking: X              |
| SOT-23                  | SOT-23                  | SOT-23                  | SOT-23                 | SOD-323                 | SC-70                   | SC-79                   | LGA                     |
| SMP1340-001             | SMP1340-003             | SMP1340-004             | SMP1340-005            | SMP1340-011             | SMP1340-074             | SMP1340-079             | SMP1340-508             |
|                         |                         |                         |                        |                         |                         | SMP1340-079LF           |                         |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | $L_S = 1.5 \text{ nH}$ | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 0.7 nH | L <sub>S</sub> = 0.6 nH |

LF denotes Lead (Pb)-Free packaging

### **Electrical Specifications at 25°C**

| Parameter                         | Condition              | Тур. | Max. | Unit |
|-----------------------------------|------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 50 V  |      | 10   | μΑ   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 5 V     | 0.21 | 0.30 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA  | 1.7  |      | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 5 mA  | 1.0  | 2.0  | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA | 0.85 | 1.2  | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA             | 0.85 |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA             | 100  |      | nS   |
| I Region Width                    |                        | 7    |      | μm   |

### **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



**DC** Characteristic



Conductance vs. Frequency and Reverse Voltage

### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60-150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



Reference JEDEC J-STD-020

### Resistance vs. Temperature @ 500 MHz

| I <sub>F</sub> (mA) | R<br>-55°C<br>(Ω) | R<br>-40°C<br>(Ω) | R<br>-15°C<br>(Ω) | R<br>+25°C<br>(Ω) | R<br>+65°C<br>(Ω) | R<br>+85°C<br>(Ω) | R<br>+100°C<br>(Ω) |
|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| 0.02                | 9.92              | 9.68              | 9.30              | 8.95              | 8.95              | 9.01              | 9.12               |
| 0.10                | 3.90              | 3.86              | 3.79              | 3.80              | 3.85              | 3.94              | 4.03               |
| 0.30                | 2.32              | 2.33              | 2.30              | 2.33              | 2.35              | 2.43              | 2.49               |
| 0.50                | 1.91              | 1.93              | 1.90              | 1.92              | 1.92              | 1.99              | 2.05               |
| 1.00                | 1.54              | 1.55              | 1.52              | 1.53              | 1.50              | 1.56              | 1.61               |
| 10.00               | 0.95              | 0.96              | 0.91              | 0.90              | 0.82              | 0.85              | 0.89               |
| 20.00               | 0.86              | 0.87              | 0.82              | 0.81              | 0.73              | 0.75              | 0.79               |
| 100.00              | 0.72              | 0.73              | 0.70              | 0.68              | 0.59              | 0.62              | 0.65               |

#### **SOT-23**





#### SC-79



#### SOD-323



#### **SC-70**



#### LGA



# **Very Low Capacitance** Plastic Packaged PIN Diodes



#### SMP1345 Series

#### **Features**

- Designed for High Isolation LNB, WLAN and Wireless Switch Applications
- 0.15 pF Capacitance
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Available in Tape and Reel Packaging



The SMP1345 series of plastic packaged, surface mountable PIN diodes are designed for high volume LNB, WLAN and switch applications from 10 MHz to beyond 2 GHz. The short carrier lifetime of typically 100 nS. combined with its thin I region width of nominally, 10 µm, results in a fast speed RF switching PIN diode. The RF performance of the SMP1345 series is assured by virtue of its very low capacitance (0.15 pF) and low resistance  $(1.5 \Omega \text{ at } 10 \text{ mA}).$ 

The SMP1345-518 has been specifically designed for WLAN 802.11 a, b, and g applications.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMP1345-079LF and SMP1345-518 Lead (Pb)-Free package as a green alternative.



### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 50 V            |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1B        |

| Common<br>Anode         | Common<br>Cathode       | Series<br>Pair          | Single                  | Ring                    |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Marking: PU9            | Marking: PU3            | Marking: PU2            |                         |                         |
| SOT-23                  | SOT-23                  | SOT-23                  | SC-79                   | LGA                     |
| SMP1345-003             | SMP1345-004             | SMP1345-005             | SMP1345-079             | SMP1345-518             |
|                         |                         |                         | SMP1345-079LF           |                         |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.7 nH | L <sub>S</sub> = 0.6 nH |

LF denotes Lead (Pb)-Free packaging

### **Electrical Specifications at 25°C**

| Parameter                         | Condition              | Тур. | Max. | Unit |
|-----------------------------------|------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 50 V  |      | 10   | μА   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 1 V     | 0.19 |      | pF   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 5 V     | 0.18 | 0.20 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA  | 3.50 |      | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA | 1.50 | 2.00 | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA             | 0.89 |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA             | 100  |      | nS   |
| I Region Width                    |                        | 10   |      | μm   |

### **Typical Performance Data**



Total Capacitance vs. Reverse Voltage Measured in an SC-79 Package



Series Resistance vs. Current @ 100 MHz

### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                                       | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                              | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat<br>Temperature Min. (T <sub>Smin</sub> )<br>Temperature Max. (T <sub>Smax</sub> )<br>Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                                   | _                                | 3°C/Second Max.                 |
| Time Maintained Above:<br>Temperature (T <sub>L</sub> )<br>Time (t <sub>L</sub> )                                     | 183°C<br>60–150 Seconds          | 217°C<br>60-150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                                    | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                                       | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                                        | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                         | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



### **SC-79**



#### **SOT-23**





#### **LGA**



# Low Resistance Low Capacitance **Plastic Packaged PIN Diodes**



#### SMP1320 Series

#### **Features**

- Designed for High Performance Wireless Switch Applications
- $\blacksquare$  0.9  $\Omega$  Resistance, 0.3 pF Capacitance
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Available in Tape and Reel Packaging



The SMP1320 series of plastic packaged, surface mountable PIN diodes are designed for high volume switch applications from 10 MHz to beyond 2 GHz. The low current performance of these diodes (0.9  $\Omega$  maximum at 10 mA and 2  $\Omega$  typical at 1 mA) make the SMP1320 series particularly suited to battery operated circuits. Available in a selection of plastic packages and in a variety of configurations including a low inductance (0.4 nH) SOT-23 (SMP1320-007), the small footprint SC-79 and the miniature SC-70.



**NEW** Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMP1320-079LF Lead (Pb)-Free package as a green alternative.



### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 50 V            |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1B        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                      |                         |                         | *                       |                         | *                       |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Common<br>Anode         | Common<br>Cathode       | Series Pair             | Low<br>Inductance       | Single                  | Ultra Low<br>Inductance | Single                   |
| Marking: PL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marking: PL9            | Marking: PL3            | Marking: PL2            | Marking: PLB            |                         | Marking: PLF            |                          |
| SOT-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOT-23                  | SOT-23                  | SOT-23                  | SOT-23                  | SOD-323                 | SOT-143                 | SC-79                    |
| SMP1320-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SMP1320-003             | SMP1320-004             | SMP1320-005             | SMP1320-007             | SMP1320-011             | SMP1320-017             | SMP1320-079              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                         |                         |                         |                         | SMP1320-079LF            |
| $L_{S} = 1.5 \text{ nH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.4 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.2 nH | $L_{S} = 0.7 \text{ nH}$ |
| The State of |                         | SC-70                   | SC-70                   | SC-70                   |                         |                         |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | SMP1320-074             | SMP1320-075             | SMP1320-077             |                         |                         |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 0.4 nH |                         |                         |                          |

LF denotes Lead (Pb)-Free packaging

### **Electrical Specifications at 25°C**

| Parameter                         | Condition              | Тур. | Max. | Unit |
|-----------------------------------|------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 50 V  |      | 10   | μА   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 30 V    |      | 0.30 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA  | 2.0  |      | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA |      | 0.9  | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA             | 0.85 |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA             | 0.4  |      | μS   |
| I Region Width                    |                        | 8    |      | μm   |

### **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



DC Characteristic



Conductance vs. Frequency and Reverse Voltage

### Resistance vs. Temperature @ 500 MHz

| I <sub>F</sub> (mA) | R <sub>S</sub><br>-55°C<br>(Ω) | R <sub>S</sub><br>-15°C<br>(Ω) | R <sub>S</sub><br>+25°C<br>(Ω) | R <sub>S</sub><br>+65°C<br>(Ω) | R <sub>S</sub><br>+100°C<br>(Ω) |
|---------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|
| 0.02                | 29.60                          | 29.20                          | 30.80                          | 32.00                          | 32.70                           |
| 0.10                | 7.20                           | 7.70                           | 8.30                           | 8.80                           | 8.80                            |
| 0.30                | 3.40                           | 3.60                           | 3.80                           | 4.00                           | 4.10                            |
| 0.50                | 2.50                           | 2.70                           | 2.80                           | 2.90                           | 3.00                            |
| 1.00                | 1.70                           | 1.80                           | 1.90                           | 2.00                           | 1.90                            |
| 10.00               | 0.84                           | 0.85                           | 0.76                           | 0.76                           | 0.67                            |
| 20.00               | 0.73                           | 0.73                           | 0.64                           | 0.64                           | 0.56                            |
| 100.00              | 0.59                           | 0.57                           | 0.47                           | 0.48                           | 0.40                            |

#### **SOT-23**





#### SOD-323



#### SMP1320-007

In the -007 configuration of the SOT-23 package, the package inductance is effectively reduced to 0.4 nH, in comparison to the 1.5 nH value of the standard configuration. This lower inductance will be particularly beneficial when the diodes are used as shunt connected switches at frequencies higher than 500 MHz, where inductance is the primary limitation on maximum switch isolation.

To achieve the effective 0.4 nH, the SOT-23 package must be inserted in the microstrip circuit board with a gap

in the trace, as shown in the figure. Because of the polarity of the diode junction, this low inductance feature is only realizable with the cathode connected to ground.



#### SC-70



#### SOT-143



#### SC-79



### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate $(T_L \text{ to } T_P)$                                                                 | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature $(T_L)$ Time $(t_L)$                                                      | 183°C<br>60–150 Seconds          | 217°C<br>60–150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



# Low Capacitance Plastic Packaged PIN Diodes



#### SMP1321 Series

#### **Features**

- Designed for High Performance Wireless Switch Applications
- 0.25 pF Capacitance Specified
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Available in Tape and Reel Packaging



The SMP1321 series of plastic packaged, surface mountable PIN diodes are designed for high volume switch applications from 10 MHz to beyond 2 GHz. The low capacitance of these diodes (0.25 pF) combined with its low resistance (2.0  $\Omega$  maximum at 10 mA) make the SMP1321 series particularly suited to high isolation series connected PIN diode switches in battery operated circuits. Available in a selection of plastic packages and in a variety of configurations including a low inductance (0.4 nH) SOT-23 (SMP1321-007), the small footprint SC-79 and the miniature SC-70. The SMP1321-508 has been specifically designed for WLAN 802.11 a, b, and g applications.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMP1321-079LF and SMP1321-508 Lead (Pb)-Free package as a green alternative.



### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 100 V           |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1B        |

| Single                  | Common<br>Anode         | Common<br>Cathode       | Series Pair             | Low<br>Inductance       | Single                  | Single                   | Anti-Parallel           |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|
| Marking: PM1            | Marking: PM9            | Marking: PM3            | Marking: PM2            | Marking: PMB            |                         |                          | Marking: H              |
| SOT-23                  | SOT-23                  | SOT-23                  | SOT-23                  | SOT-23                  | SOD-323                 | SC-79                    | LGA                     |
| SMP1321-001             | SMP1321-003             | SMP1321-004             | SMP1321-005             | SMP1321-007             | SMP1321-011             | SMP1321-079              | SMP1321-508             |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.4 nH | L <sub>S</sub> = 1.5 nH | $L_{S} = 0.7 \text{ nH}$ | L <sub>S</sub> = 0.6 nH |
|                         | SC-70                   | SC-70                   | SC-70                   |                         |                         | SC-79                    |                         |
|                         | SMP1321-073             | SMP1321-074             | SMP1321-075             |                         |                         | SMP1321-079LF            |                         |
|                         | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH |                         |                         | $L_{S} = 0.7 \text{ nH}$ |                         |

LF denotes Lead (Pb)-Free packaging

### **Electrical Specifications at 25°C**

| Parameter                         | Condition              | Тур. | Max. | Unit |
|-----------------------------------|------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 100 V |      | 10   | μΑ   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 30 V    |      | 0.25 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA  | 3.0  |      | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA |      | 2.0  | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA             | 0.85 |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA             | 0.4  |      | μS   |
| I Region Width                    |                        | 15   |      | μm   |

### **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



DC Characteristic



Conductance vs. Frequency and Reverse Voltage

### Resistance vs. Temperature @ 500 MHz

| I <sub>F</sub> (mA) | R<br>-55°C<br>(Ω) | R<br>-15°C<br>(Ω) | R<br>+25°C<br>(Ω) | R<br>+65°C<br>(Ω) | R<br>+100°C<br>(Ω) |
|---------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| 0.02                | 47.400            | 50.000            | 56.300            | 61.500            | 65.100             |
| 0.10                | 12.000            | 12.600            | 13.900            | 15.400            | 16.400             |
| 0.30                | 5.200             | 5.400             | 5.800             | 6.400             | 6.900              |
| 0.50                | 3.600             | 3.800             | 4.100             | 4.500             | 4.800              |
| 1.00                | 2.400             | 2.500             | 2.600             | 2.800             | 3.100              |
| 10.00               | 1.030             | 1.040             | 1.040             | 1.070             | 1.150              |
| 20.00               | 0.871             | 0.888             | 0.873             | 0.889             | 0.956              |
| 100.00              | 0.669             | 0.659             | 0.642             | 0.645             | 0.695              |

#### SMP1321-007

In the -007 configuration of the SOT-23 package, the package inductance is effectively reduced to 0.4 nH, in comparison to the 1.5 nH value of the standard configuration. This lower inductance will be particularly beneficial when the diodes are used as shunt connected switches at frequencies higher than 500 MHz, where inductance is the primary limitation on maximum switch isolation.

To achieve the effective 0.4 nH, the SOT-23 package must be inserted in the microstrip circuit board with a gap in the

trace, as shown in the figure. Because of the polarity of the diode junction, this low inductance feature is only realizable with the cathode connected to ground.



#### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60-120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60-150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



Reference JEDEC J-STD-020

#### **SOT-23**





#### SOD-323



#### LGA



#### SC-70



#### SC-79



# Low Resistance Plastic Packaged PIN Diodes



#### SMP1322 Series

#### **Features**

- Designed for High Performance Wireless Switch Applications
- $\blacksquare$  R<sub>S</sub> @ 1 mA 0.8  $\Omega$  Typical
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Available in Tape and Reel Packaging



The SMP1322 series of plastic packaged, surface mountable PIN diodes are designed for high volume switch applications from 10 MHz to beyond 2 GHz. The ultra low resistance of these diodes (1.5  $\Omega$  maximum at 1 mA and  $0.5 \Omega$  typical at 10 mA) make the SMP1322 series particularly suited to low loss PIN diode switches in battery operated circuits. Available in a selection of plastic packages and in a variety of configurations including an ultra low inductance (0.2 nH) SOT-143 (SMP1322-017), the small footprint SC-79 and the miniature SC-70. In addition, the SMP1322-016 consists of 2 diodes in a SOT-143 package configured to enable insertion in a quarter-wave T/R switch with no crossover connections.

NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMP-1322-079LF Lead (Pb)-Free package as a green alternative.



## **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 50 V            |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1B        |

|                         |                         |                         |                         |                         | ¥ <b>Å</b>              | *                        |                          |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|
| Single                  | Common<br>Cathode       | Series Pair             | Low<br>Inductance       | Single                  | T/R Switch              | Ultra Low<br>Inductance  | Single                   |
| Marking: PN1            | Marking: PN3            | Marking: PN2            | Marking: PNB            |                         | Marking: PN6            | Marking: PNF             |                          |
| SOT-23                  | SOT-23                  | SOT-23                  | SOT-23                  | SOD-323                 | SOT-143                 | SOT-143                  | SC-79                    |
| SMP1322-001             | SMP1322-004             | SMP1322-005             | SMP1322-007             | SMP1322-011             | SMP1322-016             | SMP1322-017              | SMP1322-079              |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.4 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | $L_{S} = 0.2 \text{ nH}$ | $L_{S} = 0.7 \text{ nH}$ |
|                         | SC-70                   | SC-70                   |                         |                         |                         |                          | SC-79                    |
|                         | SMP1322-074             | SMP1322-075             |                         |                         |                         |                          | SMP1322-079LF            |
|                         | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH |                         |                         |                         |                          | L <sub>S</sub> = 0.7 nH  |

LF denotes Lead (Pb)-Free packaging.

#### **Electrical Specifications at 25°C**

| Parameter                         | Condition              | Тур. | Max. | Unit |
|-----------------------------------|------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 50 V  |      | 10   | μА   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 30 V    |      | 1.0  | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA  |      | 1.5  | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA | 0.5  |      | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA             | 0.85 |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA             | 0.4  |      | μS   |
| I Region Width                    |                        | 8    |      | μm   |

#### **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



**DC Characteristic** 



Conductance vs. Frequency and Reverse Voltage

#### Resistance vs. Temperature @ 500 MHz

| I <sub>F</sub> | R<br>-55°C<br>(Ω) | R<br>-15°C<br>(Ω) | R<br>+25°C<br>(Ω) | R<br>+65°C<br>(Ω) | R<br>+100°C<br>(Ω) |
|----------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| 0.02           | 9.500             | 9.400             | 9.900             | 10.500            | 10.900             |
| 0.10           | 3.000             | 3.000             | 3.000             | 3.300             | 3.500              |
| 0.30           | 1.500             | 1.500             | 1.500             | 1.600             | 1.800              |
| 0.50           | 1.100             | 1.100             | 1.200             | 1.200             | 1.400              |
| 1.00           | 0.922             | 0.914             | 0.902             | 0.963             | 1.100              |
| 10.00          | 0.568             | 0.559             | 0.533             | 0.563             | 0.655              |
| 20.00          | 0.532             | 0.520             | 0.494             | 0.521             | 0.610              |
| 100.00         | 0.483             | 0.469             | 0.440             | 0.464             | 0.565              |

#### SMP1322-007

In the -007 configuration of the SOT-23 package, the package inductance is effectively reduced to 0.4 nH, in comparison to the 1.5 nH value of the standard configuration. This lower inductance will be particularly beneficial when the diodes are used as shunt connected switches at frequencies higher than 500 MHz, where inductance is the primary limitation on maximum switch isolation.

To achieve the effective 0.4 nH, the SOT-23 package must be inserted in the microstrip circuit board with a

gap in the trace, as shown in the figure. Because of the polarity of the diode junction, this low inductance feature is only realizable with the cathode connected to ground.



# SMP1322-017 SOT-143 Low Inductance PIN Diode

The SMP1322-017 utilizes the SMP1322 PIN diode chip in a customized SOT-143 plastic package designed for high isolation performance in a shunt connected switch. Its effective inductance, based on the 3 GHz isolation, is less than 0.2 nH. This diode is designed to work effectively as a shunt element in SPDT switches, covering the wireless frequencies from 900 MHz to beyond 2 GHz. Excellent performance is achievable when used in a quarter-wave T/R switch with the SMP1322-001 (SOT-23) or SMP1322-011 (SOD-323) PIN diode as the series connected diode.



#### SMP1322-016 SOT-143 T/R Switch

The SMP1322-016 is a low cost PIN diode unconnected pair specifically designed for low current drain antenna T/R switches in hand held wireless suits. In the specifically configured SOT-143 package, the PIN diodes are oriented to enable connection as a  $\lambda/4$  switch with no external crossover connections.

#### SMP1322-016 in $\lambda$ /4 T/R Switch



#### $\lambda$ /4 T/R Switch



#### T/R Switch Design





SMP1322-017 Typical SPST Switch Performance

#### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60-150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



#### **SOT-23**





#### SOD-323



#### SOT-143



#### **SC-70**



#### SC-79



# Large Signal Switching **Plastic Packaged PIN Diodes**



#### SMP1352 Series

#### **Features**

- Designed for Large Signal Switches In Base Station and Handset Applications
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Available in Tape and Reel Packaging

#### **Description**

The SMP1352 series of plastic packaged, surface mountable, low capacitance (0.3 pF) silicon PIN diodes are designed for large signal switch applications from 10 MHz to beyond 2 GHz. These diodes have a reverse voltage rating of 200 V and are designed for use in low distortion switches that are required to hold off large RF voltages. The nominal 50 µm I region width, combined with the typical 1.5 µS carrier lifetime, results in a PIN diode with low forward resistance and low distortion characteristics.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMP1352-079LF Lead (Pb)-Free package as a green alternative.



#### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 200 V           |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1C        |

|                         |                         | <b>□</b>                |
|-------------------------|-------------------------|-------------------------|
| Series Pair             | Single                  | Single                  |
| Marking: PR2            |                         |                         |
| SOT-23                  | SOD-323                 | SC-79                   |
| SMP1352-005             | SMP1352-011             | SMP1352-079             |
|                         |                         | SMP1352-079LF           |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.7 nH |

LF denotes Lead (Pb)-Free packaging.

# **Electrical Specifications at 25°C**

| Parameter                         | Condition               | Тур. | Max. | Unit |
|-----------------------------------|-------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 200 V  |      | 10   | μΑ   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 20 V     |      | 0.35 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA   | 11.0 | 15.0 | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA  | 2.0  | 2.8  | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 100 mA | 1.0  | 1.35 | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA              | 0.80 |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA              | 1.0  |      | μS   |
| I Region Width                    |                         | 50   |      | μm   |

# **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage

# Resistance vs. Temperature @ 100 MHz

| I <sub>F</sub> (mA) | R<br>-55°C<br>(Ω) | R<br>-15°C<br>(Ω) | R<br>+25°C<br>(Ω) | R<br>+65°C<br>(Ω) | R<br>+100°C<br>(Ω) |
|---------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| 0.02                | 260.00            | 276.00            | 302.00            | 263.00            | 240.00             |
| 0.10                | 60.90             | 64.00             | 70.60             | 71.00             | 70.10              |
| 0.30                | 22.40             | 23.60             | 26.00             | 27.80             | 28.20              |
| 1.00                | 7.90              | 8.50              | 9.20              | 10.30             | 10.70              |
| 10.00               | 1.50              | 1.70              | 1.90              | 2.20              | 2.30               |
| 20.00               | 1.10              | 1.20              | 1.30              | 1.60              | 1.70               |
| 100.00              | 0.55              | 0.69              | 0.78              | 0.98              | 1.03               |



**DC Characteristic** 



Conductance vs. Frequency and Reverse Voltage

#### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above:<br>Temperature (T <sub>L</sub> )<br>Time (t <sub>L</sub> )                            | 183°C<br>60–150 Seconds          | 217°C<br>60-150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



#### **SOT-23**



#### **SC-79**



#### SOD-323



# Switch and Attenuator **Plastic Packaged PIN Diodes**



#### SMP1302 Series

#### **Features**

- Designed for Base Station and Handset **Applications**
- Low Distortion Design
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Available in Tape and Reel Packaging

#### **Description**

The SMP1302 series of plastic packaged, surface mountable, low capacitance (0.3 pF) silicon PIN diodes are designed for high volume switch and attenuator applications from 10 MHz to beyond 2 GHz. These diodes are designed for use in low distortion PI and TEE attenuators with low drive current (maximum resistance at 1 mA is 10  $\Omega$ ) commonly used in TV distribution and cellular base station applications. The nominal 50 µm I region width combined with a maximum resistance of 3  $\Omega$  at 10 mA, make these diodes useful in large signal switch applications. Available as single and dual diodes in a selection of plastic packages including SOT-23, SOD-323, small footprint SC-79 and miniature SC-70. Available in a SOT-5 (SMP1302-027) package as a four diode array designed for insertion in the commonly used 4 diode PI attenuator circuit.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMP1302-079LF Lead (Pb)-Free package as a green alternative.



#### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 200 V           |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1C        |

| Single                  | Common<br>Anode         | Common<br>Cathode       | Series<br>Pair          | Single                  | PI           | Single                   |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------|--------------------------|
| Marking: PF1            | Marking: PF9            | Marking: PF3            | Marking: PF2            |                         | Marking: PFM |                          |
| SOT-23                  | SOT-23                  | SOT-23                  | SOT-23                  | SOD-323                 | SOT-5        | SC-79                    |
| SMP1302-001             | SMP1302-003             | SMP1302-004             | SMP1302-005             | SMP1302-011             | SMP1302-027  | SMP1302-079              |
| L <sub>S</sub> = 1.5 nH |              | $L_{S} = 0.7 \text{ nH}$ |
|                         | SC-70                   | SC-70                   | SC-70                   |                         |              | SC-79                    |
|                         | SMP1302-073             | SMP1302-074             | SMP1302-075             |                         |              | SMV1302-079LF            |
|                         | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH |                         |              | L <sub>S</sub> = 0.7 nH  |

LF denotes Lead (Pb)-Free packaging.

# **Electrical Specifications at 25°C**

| Parameter                         | Condition               | Typ. | Max. | Unit |
|-----------------------------------|-------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 200 V  |      | 10   | μА   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 30 V     |      | 0.30 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA   | 15   | 20   | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA  |      | 3.0  | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 100 mA |      | 1.5  | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA              | 0.8  |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA              | 0.7  |      | μS   |
| I Region Width                    |                         | 50   |      | μm   |

#### **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



DC Characteristic



Conductance vs. Frequency and Reverse Voltage

#### **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60–120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60-150 Seconds          | 217°C<br>60–150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



#### Resistance vs. Temperature @ 100 MHz

| I <sub>F</sub> (mA) | R<br>-55°C<br>(Ω) | R<br>-15°C<br>(Ω) | R<br>+25°C<br>(Ω) | R<br>+65°C<br>(Ω) | R<br>+100°C<br>(Ω) |
|---------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
|                     | -55.00            | -15.00            | 25.0              | 65.0              | 100.00             |
| 0.02                | 599.00            | 653.00            | 692.0             | 715.0             | 722.00             |
| 0.10                | 123.00            | 135.00            | 143.0             | 154.0             | 161.00             |
| 0.30                | 42.20             | 46.60             | 49.7              | 54.3              | 56.80              |
| 1.00                | 13.50             | 15.00             | 16.2              | 17.9              | 18.80              |
| 10.00               | 2.00              | 2.30              | 2.6               | 2.9.0             | 3.00               |
| 20.00               | 1.34              | 1.50              | 1.7               | 2.0               | 2.00               |
| 100.00              | 0.60              | 0.74              | 1.0               | 1.1               | 1.10               |

#### **SC-70**



#### SC-79



#### **SOT-23**





#### SOD-323



#### **SOT-5**



# Low Distortion Attenuator Plastic Packaged PIN Diodes



#### SMP1304 Series

#### **Features**

- Low Distortion Design
- Frequency Range from HF to > 2 GHz
- Designed for Base Station Applications
- Configured for PI and TEE Attenuators

## **Description**

The SMP1304 series of plastic packaged, surface mountable, low capacitance (0.3 pF) silicon PIN diodes are designed for use in attenuator applications from 5 MHz to beyond 2 GHz. The thick 100  $\mu m$  I region of these PIN diodes makes them very attractive for use in low distortion PI and TEE attenuators commonly used in TV distribution applications. The 1 µS typical carrier lifetime of these diodes results in resistance of 20  $\Omega$  maximum at 1 mA and 7  $\Omega$  maximum at 10 mA. Available in a selection of plastic packages: as a single diode in the small footprint SOD-323 package and in a variety of configurations in the SOT-23 package, including a low inductance (0.4 nH) SMP1304-007 package. Also available in the SOT-143 package are three diode junctions designed for insertion in TEE attenuators (SMP1304-018) and PI attenuators (SMP1304-019). Also available in a SOT-5 (SMP1304-027) package as a four diode array designed for insertion in the commonly used 4 diode PI attenuator circuit.



## **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 200 V           |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1C        |

|                         |                         |                         |                         |                         | ¥ <b>4 4</b>  | ¥ ¥           |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------|---------------|
| Single                  | Common<br>Cathode       | Series Pair             | Low<br>Inductance       | Single                  | PI            | PI            |
| Marking: PG1            | Marking: PG3            | Marking: PG2            | Marking: PGB            |                         | Marking: PGJ  | Marking: PGM  |
| SOT-23                  | SOT-23                  | SOT-23                  | SOT-23                  | SOD-323                 | SOT-143       | SOT-5         |
| ♦ SMP1304-001           | ♦ SMP1304-004           | ♦ SMP1304-005           | ♦ SMP1304-007           | ♦ SMP1304-011           | ♦ SMP1304-019 | ♦ SMP1304-027 |
| L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 0.4 nH | L <sub>S</sub> = 1.5 nH |               |               |

<sup>♦</sup> Available through distribution.

# **Electrical Specifications at 25°C**

| Parameter                         | Condition                                          | Тур. | Max. | Unit |
|-----------------------------------|----------------------------------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 200 V                             |      | 10   | μΑ   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 30 V                                |      | 0.30 | pF   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 30 V<br>(SMP1304-018 & SMP1304-019) |      | 0.45 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA                              | 40   | 50   | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA                             |      | 7.0  | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 100 mA                            |      | 2.0  | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA                                         | 0.8  |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA                                         | 1.0  |      | μS   |
| I Region Width                    |                                                    | 100  |      | μm   |

#### **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage



**DC** Characteristic



Conductance vs. Frequency and Reverse Voltage

#### Resistance vs. Temperature @ 100 MHz

| I <sub>F</sub><br>(mA) | R<br>-55°C<br>(Ω) | R<br>-15°C<br>(Ω) | R<br>+25°C<br>(Ω) | R<br>+65°C<br>(Ω) | R<br>+100°C<br>(Ω) |
|------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| 0.02                   | 1590.0            | 1660.0            | 1752.0            | 1770.0            | 1760.0             |
| 0.10                   | 315.0             | 340.0             | 367.0             | 396.0             | 409.0              |
| 0.30                   | 108.0             | 118.0             | 128.0             | 141.0             | 147.0              |
| 1.00                   | 34.5              | 37.9              | 41.6              | 46.3              | 48.8               |
| 10.00                  | 4.8               | 5.3               | 5.8               | 6.6               | 7.0                |
| 20.00                  | 3.0               | 3.3               | 3.6               | 4.1               | 4.3                |
| 100.00                 | 1.3               | 1.4               | 1.5               | 1.7               | 1.8                |

#### SMP1304-007

In the -007 configuration of the SOT-23 package, the package inductance is effectively reduced to 0.4 nH, in comparison to the 1.5 nH value of the standard configuration. This lower inductance will be particularly beneficial when the diodes are used as shunt connected switches at frequencies higher than 500 MHz, where inductance is the primary limitation on maximum switch isolation.

To achieve the effective 0.4 nH, the SOT-23 package must be inserted in the microstrip circuit board with a gap in the trace, as shown in the figure. Because of the polarity of the diode junction, this low inductance feature is only realizable with the cathode connected to ground.



#### **SMP1304-019 PI Attenuator PIN Diodes**

The SMP1304-019 employ three PIN diode junctions in a SOT-143 package. They are configured for ease of insertion in PI attenuator circuits commonly used from 10 MHz to beyond 1 GHz. The SMP1304 PIN diode junction was designed for low capacitance, wide resistance dynamic range and low distortion performance.



0.010 (0.25 mm) MIN.

0.016

(0.40 mm) MAX.

0.063 (1.60 mm) MIN.

0.071 (1.80 mm) MAX.

0.050

(1.25 mm) MAX.

0.004 (0.10 mm) MAX.

#### **SOT-23**





#### **SOT-5**

SOD-323

0.045 (1.15 mm) MIN.

0.053 (1.35 mm) MAX.

0.006

(0.15 mm) TYP



0.090 (2.30 mm) MIN.

0.108 (2.74 mm) MAX.

CATHODE

INDICATOR

0.010 (0.25 mm) MIN.

0.008 (0.20 mm) NOM.

#### SOT-143



# Very Low Distortion Attenuator Plastic Packaged PIN Diodes



#### SMP1307 Series

#### **Features**

- Low Distortion Design
- Frequency Range from HF to > 2 GHz
- Designed for CATV AGC Applications
- Designed for High Volume Wireless Applications

#### **Description**

The SMP1307 series of plastic packaged, surface mountable, low capacitance (0.3 pF) silicon PIN diodes are designed for use in attenuator applications from 5 MHz to beyond 2 GHz. The thick 175  $\mu m$  I region of these PIN diodes makes them very attractive for use in very low distortion PI and TEE attenuators commonly used in TV distribution applications. The 1.5  $\mu S$  typical carrier lifetime of these diodes results in resistance of 100  $\Omega$  maximum at 1 mA and 10  $\Omega$  maximum at 10 mA. Available in a selection of plastic packages, as a single diode in the small footprint SOD-323, and in a variety of configurations in the SOT-23. Also available in a SOT-5 (SMP1307-027) package as a four diode array designed for insertion in the commonly used 4 diode PI attenuator circuit.



## **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 200 V           |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 1C        |

|                         |                         |                         |                         | <b>Y</b>      |
|-------------------------|-------------------------|-------------------------|-------------------------|---------------|
| Single                  | Common<br>Cathode       | Series Pair             | Single                  | PI            |
| Marking: PJ1            | Marking: PJ3            | Marking: PJ2            |                         | Marking: PJM  |
| SOT-23                  | SOT-23                  | SOT-23                  | SOD-323                 | SOT-5         |
| ♦ SMP1307-001           | ♦ SMP1307-004           | ♦ SMP1307-005           | ♦ SMP1307-011           | ♦ SMP1307-027 |
| L <sub>S</sub> = 1.5 nH |               |

<sup>♦</sup> Available through distribution.

# **Electrical Specifications at 25°C**

| Parameter                         | Condition               | Тур. | Max. | Unit |
|-----------------------------------|-------------------------|------|------|------|
| Reverse Current (I <sub>R</sub> ) | V <sub>R</sub> = 200 V  |      | 10   | μА   |
| Capacitance (C <sub>T</sub> )     | F = 1 MHz, V = 30 V     |      | 0.30 | pF   |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 1 mA   | 75   | 100  | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 10 mA  |      | 15   | Ω    |
| Resistance (R <sub>S</sub> )      | F = 100 MHz, I = 100 mA |      | 3.0  | Ω    |
| Forward Voltage (V <sub>F</sub> ) | IF = 10 mA              | 0.85 |      | V    |
| Carrier Lifetime (TI)             | IF = 10 mA              | 1.5  |      | μS   |
| I Region Width                    |                         | 175  |      | μm   |

# **Typical Performance Data**



Series Resistance vs. Current @ 100 MHz



Capacitance vs. Reverse Voltage

## Resistance vs. Temperature @ 100 MHz

| I <sub>F</sub> (mA) | R<br>-55°C<br>(Ω) | R<br>-15°C<br>(Ω) | R<br>+25°C<br>(Ω) | R<br>+65°C<br>(Ω) | R<br>+100°C<br>(Ω) |
|---------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| 0.02                | 2386.0            | 2360.0            | 2546.0            | 2520.0            | 2440.0             |
| 0.10                | 572.0             | 598.0             | 632.0             | 633.0             | 639.0              |
| 0.30                | 203.0             | 219.0             | 236.0             | 239.0             | 242.0              |
| 1.00                | 66.1              | 71.2              | 79.3              | 83.6              | 85.4               |
| 10.00               | 9.1               | 10.0              | 10.9              | 12.2              | 12.9               |
| 20.00               | 5.6               | 6.0               | 6.6               | 7.4               | 7.8                |
| 100.00              | 2.2               | 2.4               | 2.6               | 3.0               | 3.2                |



DC Characteristic



Conductance vs. Frequency and Reverse Voltage

#### SMP1307-027 4 Diode PI Attenuator

The SMP1307-027 employs 4 PIN diode junctions in a 5-lead SOT package. It is configured for ease of insertion in the PI attenuator circuit commonly used for broadband TV distribution systems, covering a frequency range from 5 MHz to beyond 1 GHz.

A broadband attenuator was designed using the SMP1307-027 showing good performance to 2 GHz. The attenuator was evaluated with a 50  $\Omega$  source and load impedance. The following figure shows the circuit diagram and measured performance.





D<sub>1</sub>-D<sub>4</sub> SMP1307-027

A 4 diode PI attenuator utilizing individual SMP1307-011 PIN diodes is described in the "A Wideband General Purpose PIN Diode Attenuator" Application Note.



SMP1307-027 Attenuation vs. Frequency

#### **SOT-23**





#### SOD-323



#### **SOT-5**



# Silicon PIN Diode Chips



#### **APD Series**

#### **Features**

- Established Skyworks' PIN Diode Process
- For Switch and Attenuator Applications
- Low Capacitance Designs to 0.05 pF
- Voltage Ratings to 200 V
- Chip Size Smaller than 15 Mils Square



Skyworks' APD Series of silicon PIN diode chips are designed for use as switch and attenuator devices in high performance hybrid microwave integrated circuits. These PIN diode designs are useful over a wide range of frequencies from below 100 MHz to beyond 30 GHz. These devices utilize Skyworks' well established silicon technology resulting in high resistivity and tightly controlled I region width PIN diodes. APD0505-00 through APD1510-000 are primarily designed for fast speed through moderate speed switch applications. They have low resistance and capacitance at zero bias and reverse bias. The thick I region APD2220-000 is primarily designed for low distortion attenuator applications.



## **Absolute Maximum Ratings**

| Characteristic        | Value                                 |  |  |  |  |
|-----------------------|---------------------------------------|--|--|--|--|
| Power Dissipation     | $Pdiss = \frac{175 - Tamb}{\theta} W$ |  |  |  |  |
| Operating Temperature | -65°C to +175°C                       |  |  |  |  |
| Storage Temperature   | -65°C to +200°C                       |  |  |  |  |

#### **Electrical Specifications at 25°C**

| Part Number     | Capacitance V <sub>R</sub> = 50 V, 1 MHz (pF) Max. | Capacitance V <sub>R</sub> = 0 V, 1 MHz (pF) Typ. | $\label{eq:RS} \begin{split} & R_S \\ & I = 10 \; mA, \\ & 500 \; MHz \\ & (\Omega) \\ & Max. \end{split}$ | TL<br>I = 10 mA<br>(ns)<br>Typ. | Voltage<br>Rating<br>I <sub>R</sub> = 10 μA<br>(V)<br>Min. | l Region<br>(μΜ)<br>Nom. | Thermal<br>Resistance<br>(Cc/W) | Contact<br>Diameter<br>(Mils)<br>Nom. | Outline<br>Drawing |
|-----------------|----------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------------|--------------------|
| Switching Appli | cations                                            |                                                   |                                                                                                            |                                 |                                                            |                          |                                 |                                       |                    |
| APD0505-000     | 0.05                                               | 0.10                                              | 2.0                                                                                                        | 20                              | 50                                                         | 5                        | 100                             | 1.5                                   | 150-806            |
| APD0510-000     | 0.10                                               | 0.20                                              | 1.5                                                                                                        | 40                              | 50                                                         | 5                        | 80                              | 2.5                                   | 150-801            |
| APD0520-000     | 0.20                                               | 0.25                                              | 1.0                                                                                                        | 50                              | 50                                                         | 5                        | 80                              | 3.5                                   | 150-801            |
| APD0805-000     | 0.05                                               | 0.10                                              | 2.0                                                                                                        | 100                             | 100                                                        | 8                        | 80                              | 2.0                                   | 150-801            |
| APD0810-000     | 0.10                                               | 0.15                                              | 1.5                                                                                                        | 160                             | 100                                                        | 8                        | 60                              | 3.0                                   | 150-801            |
| APD1510-000     | 0.10                                               | 0.20                                              | 2.0                                                                                                        | 300                             | 200                                                        | 15                       | 60                              | 3.0                                   | 150-801            |
| APD1520-000     | 0.20                                               | 0.25                                              | 1.2                                                                                                        | 400                             | 200                                                        | 15                       | 30                              | 4.0                                   | 150-802            |
| Attenuator App  | Attenuator Applications                            |                                                   |                                                                                                            |                                 |                                                            |                          |                                 |                                       |                    |
| APD2220-000     | 0.20                                               | 0.20                                              | 4.0                                                                                                        | 100                             | 100                                                        | 50                       | 80                              | 7.5                                   | 149-815            |

# **Typical Performance Data**



Resistance vs. Forward Current @ 1 GHz



Resistance vs. Forward Current @ 1 GHz

#### **SPICE Model Parameters**

| Description               | Symbol          | APD0505-000 | APD0510-000 | APD0805-000 | APD0810-000 | APD1510-000 | APD2220-000 | Unit |
|---------------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| Saturation Current        | IS              | 6.40E-14    | 5.50E-17    | 1.20E-11    | 1.50E-12    | 1.60E-10    | 2.00E-09    | А    |
| Series Resistance         | R <sub>S</sub>  | 0.25        | 0.50        | 1.00        | 0.30        | 1.00        | 0.20        | Ω    |
| Emission Coefficient      | N               | 1.40        | 1.02        | 1.70        | 1.48        | 1.80        | 1.90        |      |
| Reverse Breakdown         | B <sub>V</sub>  | 50.00       | 50.00       | 100.00      | 100.00      | 200.00      | 200.00      | V    |
| Current at B <sub>V</sub> | I <sub>BV</sub> | 10E-06      | 10E-06      | 10E-06      | 10E-06      | 10E-06      | 10E-06      | А    |
| Zero Bias Capacitance     | C <sub>J0</sub> | 0.12E-12    | 0.18E-12    | 0.13E-12    | 0.16E-12    | 0.25E-12    | 0.2E-12     | F    |
| Junction Potential        | VJ              | 1.00        | 1.00        | 1.00        | 1.00        | 1.00        | 1.00        | V    |
| Grading Coefficient       | М               | 0.50        | 0.50        | 0.50        | 0.50        | 0.50        | 0.50        |      |
| Transit Time              | TT              | 20E-9       | 40E-9       | 50E-9       | 160E-9      | 300E-9      | 400E-9      | S    |

#### **Outline Drawings**

#### 149-815



#### 150 Series





# **Limiter Diodes**

# **Plastic Packaged Limiter Diodes**



#### SMP1330-005

#### **Features**

- Low Distortion Design
- Characterized Limiter Performance 500 MHz to 2 GHz
- Low Insertion Loss
- Low Cost Plastic Package
- Available in Tape and Reel Packaging

#### **Description**

The SMP1330-005 is a limiter diode in a plastic package designed for use as a passive receiver protector in wireless and other UHF systems covering 500 MHz to 2 GHz. It employs Skyworks' limiter diode technology to produce a gold doped thin base limiter chip for low loss, low distortion performance and good limiter action. This device has been characterized in limiter circuits and tightly specified to insure consistent performance.



<sup>♦</sup> Available through distribution.

# 50T.23

#### **Absolute Maximum Ratings**

| Characteristic                                              | Value           |
|-------------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                           | 20 V            |
| Forward Current (I <sub>F</sub> )                           | 100 mA          |
| CW Incident Power @ 25°C<br>Lead Temperature                | 1 W             |
| Peak Incident Power @ 1%<br>Duty Factor 1 µS Pulse          | 100 W           |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C |
| ESD Human Body Model                                        | Class 2         |

### **Electrical Specifications at 25°C**

| Parameter                            | Condition              | Min. | Тур. | Max. | Unit |
|--------------------------------------|------------------------|------|------|------|------|
| Series Resistance (R <sub>S</sub> )  | 10 mA, 100 MHz 1.2 1   |      | 1.5  | Ω    |      |
| Capacitance (C <sub>T</sub> )        | 0 V, 1 MHz             |      | 0.7  | 1.0  | pF   |
| Capacitance (C <sub>T</sub> )        | 0 V, 1 GHz             |      | 0.7  |      | pF   |
| Conductance (G)                      | 0 V, 1 GHz             |      | 50.0 |      | μS   |
| Carrier Lifetime (TI)                | I <sub>F</sub> = 10 mA |      | 4.0  |      | nS   |
| I Region Width                       |                        |      | 3.0  |      | μm   |
| Breakdown Voltage (V <sub>BR</sub> ) | I <sub>R</sub> = 10 μA | 20   | 35.0 | 50.0 | V    |

#### **Typical Performance Data**



**Typical 1 GHz Limiter Performance** 

#### **SOT-23**





#### **Packages**

The SMP1330 series is available in one package configuration utilizing industry standard SOT-23.



SMP1330-005

#### SMP1330-005 Series Pair SOT-23

This series pair is designed for use as anti-parallel limiter diodes by externally connecting pins 1 and 2 of the SOT-23 package. In a limiter circuit, no DC return is needed and limiting action is improved because inductance is reduced to approximately 0.8 nH. A small increase in loss occurs from the higher capacitance and conductance.

#### **Typical 1 GHz Limiter Performance**

| SMP1330                | Condition   | -005     |
|------------------------|-------------|----------|
| Connection             |             | Parallel |
| Insertion Loss         | P = -20 dBm | 0.3 dB   |
| IP3                    | P = < 0 dBm | 30.0 dBm |
| 1 dB Compression       |             | 10.0 dBm |
| Attenuation at +20 dBm |             | 8.8 dB   |
| Attenuation at +30 dBm |             | 14.0 dB  |



#### **CLA Series**

#### **Features**

- Established Skyworks' Limiter Diode Process
- High Power, Mid-range and Clean-up Designs
- Low Insertion Loss (0.1 dB at 10 GHz)
- Power Handling to 66 dBm
- Tight Control of Basewidth
- Mesa and Planar Chip Designs

#### **Description**

Skyworks' CLA series of silicon limiter diode chips provides passive receiver protection over a wide range of frequencies from 100 MHz to beyond 30 GHz. These devices utilize Skyworks' well established silicon technology for high resistivity and tightly controlled thin base width PIN limiter diodes. Limiter circuits employing these devices will perform with strong limiting action and low loss.

The CLA series consists of eight individual chip designs of different intrinsic region basewidths and capacitances designed to accommodate multi-stage limiter applications. The mesa constructed, thin basewidth, low capacitance CLA4601-000, CLA4602-000, CLA4604-000 and CLA4605-000 are designed for low level and clean-up applications. The CLA4603-000, CLA4606-000 through CLA4608-000 are planar designs designated for high power and mid-range applications.

### **Absolute Maximum Ratings**

|                       | _                                                                             |
|-----------------------|-------------------------------------------------------------------------------|
| Characteristic        | Value                                                                         |
| Power Dissipation     | $Pdiss = \frac{175 - Tamb}{\theta} W$                                         |
| For CW Signals        | $\theta = \theta$ ave                                                         |
| For Pulsed Signals    | $\theta$ = DF x θave + θ pulse<br>(θp @1 μS x Normalized<br>θp from Figure 2) |
| Operating Temperature | -65°C to +175°C                                                               |
| Storage Temperature   | -65°C to +200°C                                                               |



#### **Outline Drawings**

#### 149-801



#### 150 Series



#### **Electrical Specifications at 25°C**

|                | Breakdown      |                   |                              | R <sub>S</sub> @ | T <sub>L</sub> @ | Thermal Im        | pedance (θ)          | Top Contact        |                    |
|----------------|----------------|-------------------|------------------------------|------------------|------------------|-------------------|----------------------|--------------------|--------------------|
| Part<br>Number | Voltage<br>(V) | Basewidth<br>(μm) | C <sub>J</sub> @ 0 V<br>(pF) | 10 mA<br>(Ω)     | 10 mA<br>(nS)    | Average<br>(°C/W) | 1 μS<br>Pulse (°C/W) | Diam.<br>(mils/mm) | Outline<br>Drawing |
|                | Min. – Max.    | Nominal           | Max.                         | Max.             | Тур.             | Max.              | Тур.                 | Тур.               |                    |
| CLA4601-000    | 15–30          | 1.0               | 0.15                         | 2.5              | 5                | 120               | 15                   | 1.2/0.030          | 150-806            |
| CLA4602-000    | 15–30          | 1.0               | 0.2                          | 2.0              | 5                | 80                | 10                   | 1.5/0.038          | 150-806            |
| CLA4603-000    | 20-45          | 1.5               | 0.2                          | 2.0              | 5                | 100               | 10                   | 1.5/0.038          | 149-801            |
| CLA4604-000    | 30–60          | 2.0               | 0.15                         | 2.5              | 7                | 100               | 10                   | 1.5/0.038          | 150-806            |
| CLA4605-000    | 30–60          | 2.0               | 0.2                          | 2.0              | 7                | 70                | 7.0                  | 2.5/0.064          | 150-801            |
| CLA4606-000    | 45-75          | 2.5               | 0.2                          | 2.0              | 10               | 80                | 7.0                  | 2.5/0.064          | 150-801            |
| CLA4607-000    | 120-180        | 7.0               | 0.2                          | 2.0              | 50               | 40                | 1.2                  | 3.0/0.076          | 149-801            |
| CLA4608-000    | 120-180        | 7.0               | 0.6                          | 1.2              | 100              | 15                | 0.3                  | 5.0/0.127          | 149-801            |

- 1. Capacitance, C<sub>J</sub>, measured at 1 MHz.
- 2. Resistance, RS, measured at 100 MHz.
- 3. CW thermal resistance for infinite heat sink.
- 4. Pulse thermal resistance for single 1  $\mu$ S pulse.

#### Typical Performance at 25°C

| Part<br>Number | Insertion Loss<br>@ -10 dBm<br>(dB) | Input Power<br>for 1 dB Loss<br>(dBm) | Maximum<br>Pulsed Input Power<br>(dBm) | Output at<br>Max. Pulsed Input<br>(dBm) | Maximum<br>CW Input Power<br>(W) | Recovery<br>Time<br>(nS) |
|----------------|-------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------|--------------------------|
| CLA4601-000    | 0.1                                 | 7                                     | 47                                     | 21                                      | 2                                | 5                        |
| CLA4602-000    | 0.1                                 | 7                                     | 50                                     | 24                                      | 3                                | 5                        |
| CLA4603-000    | 0.1                                 | 10                                    | 50                                     | 22                                      | 2                                | 10                       |
| CLA4604-000    | 0.1                                 | 12                                    | 47                                     | 24                                      | 3                                | 10                       |
| CLA4605-000    | 0.1                                 | 12                                    | 50                                     | 27                                      | 4                                | 10                       |
| CLA4606-000    | 0.1                                 | 15                                    | 53                                     | 27                                      | 3                                | 20                       |
| CLA4607-000    | 0.1                                 | 20                                    | 60                                     | 39                                      | 6                                | 50                       |
| CLA4608-000    | 0.2                                 | 20                                    | 66                                     | 44                                      | 15                               | 100                      |

- 1. Insertion loss for CLA4601-000 through CLA4607-000 at 10 GHz; insertion loss for CLA4608-000 at 5 GHz.
- 2. Limiter power results at 1 GHz for shunt connected single limiter diode and DC return in 50  $\Omega$  line.
- 3. Maximum pulsed power for 1 µS pulse and 0.1% duty factor with chip at 25°C heat sink. Derate linearly to 0 W at 175°C.
- 4. Maximum CW input power at 25°C heat sink. Derate linearly to 0 W at 175°C.
- 5. Recovery time to insertion loss from limiting state.



Figure 1 Typical Peak Leakage Power at 1 GHz



Figure 2 **Normalized Pulsed Thermal Impedance** 



# **Application/Selection Guide**

| Market                                  | Function                        | Suggested Part Number                                                                                                                                |
|-----------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Handsets                                | RF Power Detection              | SMS3925-079, SMS3922 Series, SMS3923 Series                                                                                                          |
| LNB/DBS                                 | Balanced Mixers                 | SMS7621-005, SMS7621-006, SMS1546-005                                                                                                                |
| CATV                                    | RF Power Detection              | SMS3923 Series, SMS3924 Series                                                                                                                       |
| RF ID Tags                              | RF Power Detection<br>Switching | SMS3922 Series, SMS3923 Series, SMS7621 Series, SMS7630 Series SMS3923 Series                                                                        |
| WLAN                                    | RF Power Detection              | SMS7630-079                                                                                                                                          |
| Base Stations/<br>Communication Systems | Double Balanced Mixers          | Crossover Quads SMS3926-023, DMF3926-100 SMS3927-023, DME3927-100 SMS3928-023, DMJ3928-100 Dual Crossover Quads DMF3945-103, DME3946-103 DMJ3947-103 |

# **Chip Scale Schottky Diodes**



#### SMS7621-050, SMS7630-050

#### **Features**

- Package Height is Half of the SC-79 (0.012 mm)
- Low Inductance (0.25 nH)
- Designed for High Volume Wireless Detector and Mixer Applications
- Available in Tape and Reel Packaging

#### **Description**

The SMS7621-050 and SMS7630-050 are chip scale packaged, surface mount Schottky diodes designed for high volume RF and microwave detector and mixer applications. The low barrier diode, SMS7621-050, and the zero bias detector diode, SMS7630-050, combine Skyworks' advanced semiconductor technology with state-of-the-art packaging techniques to offer one of the smallest surface mount devices available. All diodes are 100% DC tested and deliver tight parameter distribution, minimizing performance variability. Applications include high sensitivity ID tags and wireless systems. SPICE model parameters are available as a design tool.



#### **Absolute Maximum Ratings**

|                                                             | •                    |
|-------------------------------------------------------------|----------------------|
| Characteristic                                              | Value                |
| Reverse Voltage (V <sub>R</sub> )                           | Rated V <sub>B</sub> |
| Power Dissipation @ 25°C Lead Temperature (P <sub>D</sub> ) | 75 mW                |
| Storage Temperature (T <sub>ST</sub> )                      | -65°C to +150°C      |
| Operating Temperature (T <sub>OP</sub> )                    | -65°C to +150°C      |
| Forward Current (Standby State I <sub>F</sub> )             | 50 mA                |
| ESD — Human Body Model                                      | Class 0              |

#### **Electrical Specifications at 25°C**

| Part        |                               | Breakdown<br>Voltage | $C_T$ $V_R = 0 V$ $F = 1 MHz$ | Forward Voltage<br>Typ. (mV) |        | R <sub>T</sub> @<br>10 mA (Ω) | $R_{V}(\Omega)$ |      |
|-------------|-------------------------------|----------------------|-------------------------------|------------------------------|--------|-------------------------------|-----------------|------|
| Number      | Description                   | Min. (V)             | Typ. (pF)                     | 0.1 mA                       | 1.0 mA | 10 mA                         | Тур.            | Тур. |
| SMS7621-050 | Low Barrier<br>Detector/Mixer | 2 V @ 10 μA          | 0.18                          | 220                          | 290    | 430                           | 12              |      |
| SMS7630-050 | Zero Bias Detector            | 1 V @ 100 μA         | 0.21                          | 85                           | 160    | 400                           | 22              | 5000 |



SO Ω
RF Input
RFC
Video Output

Typical Detector Characteristics @ 1.8 GHz

# **SPICE Model Parameters (Per Junction)**

| Parameter       | Unit | SMS7621 | SMS7630 |
|-----------------|------|---------|---------|
| IS              | А    | 4E-8    | 5E-06   |
| R <sub>S</sub>  | Ω    | 12      | 20      |
| N               |      | 1.05    | 1.05    |
| TT              | S    | 1E-11   | 1E-11   |
| C <sub>J0</sub> | pF   | 0.10    | 0.14    |
| М               |      | 0.35    | 0.40    |
| E <sub>G</sub>  | eV   | 0.69    | 0.69    |
| XTI             |      | 2       | 2       |
| F <sub>C</sub>  |      | 0.5     | 0.5     |
| B <sub>V</sub>  | V    | 3       | 2       |
| I <sub>BV</sub> | А    | 1E-5    | 1E-4    |
| VJ              | V    | 0.51    | 0.34    |



| Description                              | Sym.           | Chip Scale                              |
|------------------------------------------|----------------|-----------------------------------------|
| Cavity                                   |                |                                         |
| Length                                   | A <sub>0</sub> | 0.65±0.05                               |
| Width                                    | B <sub>0</sub> | 0.76±0.05                               |
| Depth                                    | K <sub>0</sub> | 0.53±0.05                               |
| Pitch                                    | P <sub>1</sub> | 2.00±0.10                               |
| Bottom Hole<br>Diameter                  | D <sub>1</sub> | N/A                                     |
| Perforation                              |                |                                         |
| Diameter                                 | D <sub>0</sub> | 1.50±0.10                               |
| Pitch                                    | P <sub>0</sub> | 4.00±0.10                               |
| Position                                 | E <sub>1</sub> | 1.75±0.10                               |
| Carrier Tape                             |                |                                         |
| Width                                    | W              | 8.00±0.20                               |
| Thickness                                | Т              | 0.43±0.05                               |
| Cover Tape                               |                | <b>国际</b>                               |
| Width                                    | W <sub>1</sub> | 5.40±0.10                               |
| Tape<br>Thickness                        | T <sub>1</sub> | 0.062±0.01                              |
| Distance                                 |                | 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |
| Cavity to Perforation (Width Direction)  | F              | 3.50±0.05                               |
| Cavity to Perforation (Length Direction) | P <sub>2</sub> | 1.00±0.025                              |

Note: All dimensions are in mm.

#### **Tape Dimensions**



#### Chip Scale (-050)



| Standard Reel Size     | 7"    | 13" |
|------------------------|-------|-----|
| Standard Reel Quantity | 3,000 | N/A |

#### -050



## **Land Pattern**

The recommended surface mount pad pattern ensures quality solder joint formation and high-yielding assembly, while using minimum board space. The dimensions apply to both Solder Mask Defined (SMD) as well as Non-Solder Mask Defined (NSMD) pads. However, NSMD pads, in which the solder mask is pulled back from the metal pad, are preferred. This type of pad definition generally produces improved solder joint reliability as well as an increased gap under the component. The increased gap is desirable for enhanced cleaning of flux residue and component underfill for applications in which the component will be encapsulated.



# **Solder Printing**

The recommended land pattern, when used in conjunction with the following solder deposit recommendation, provides quality solder joint formation and high yielding assembly. Solder should be deposited with a stencil of foil thickness from 100–125  $\mu m,$  and preferably have apertures that are laser-etched and electro-polished for optimal paste release. The chip scale package is compatible with most lead-based and lead-free solder pastes, though a type 3 or type 4 paste is preferred for the fine aperture printing.



The solder deposit should be centered on the land pattern as shown.



# **Component Placement**

The CSP can easily be picked and placed on most placement systems. Care should be taken to select a pick nozzle that matches the component footprint. Vision alignment after pick can be done to the package edges or the package leads, depending on the ability of the individual placement machine. The component should be placed as centered as possible to the pad and print patterns to assure even wetting and an absence of tilt or skew.



## **Solder Reflow**

Solder reflow is best suited to convection or IR reflow systems, though convection reflow will always give more rapid and uniform thermal transfer. The CSP can be successfully reflowed in either air or nitrogen atmospheres. The solder paste manufacturer's recommended reflow profile should be adhered to and care should be taken to ensure that the profile is adjusted for variability in thermal mass amongst components. Attached are generic profiles for eutectic tin-lead solder and a typical lead-free solder.

These should only be used as a guideline, with the paste manufacturers recommended profile taking precedence. A standard solvent flux clean can be safely employed to remove flux residue from the device edges.



Lead Free Profile



**Eutectic Tin-Lead Profile** 

## **Finished Product**

Once reflowed, the component should be fairly centered on the land pattern. Solder should wet evenly to CSP leads and the component should not display excessive tilt or skew. A solvent flux clean can be safely employed if desired.



# Surface Mount Mixer and **Detector Schottky Diodes**



## **Features**

- Designed for High Volume Commercial **Applications**
- Available Lead (Pb)-Free MSL-1 @ 250°C per JEDEC J-STD-020
- Tight Parameter Distribution
- Available as Singles and Pairs
- Available in Tape and Reel Packaging



These low cost, surface mountable plastic packaged silicon mixer Schottky diodes are designed for RF and microwave mixers and detectors. They include low barrier diodes and zero detectors, combining Skyworks' advanced semiconductor technology with low cost packaging techniques. All diodes are 100% DC tested and deliver tight parameter distribution, minimizing performance variability. They are available in SC-70, SC-79, SOD-323, SOT-23, SOT-143, and LGA packages. Wiring configurations include singles, common cathode, series pairs and unconnected pairs. Applications include low noise receivers used in high sensitivity ID tags, wireless systems, radio designs and may be used at frequencies to 10 GHz. SPICE model parameters are included as a design tool.



NEW Lead (Pb)-Free "environmentally friendly" packaging available: Skyworks offers the SMS7630-079LF and SMS7630-517 Lead (Pb)-Free package as a green alternative.



# **Absolute Maximum Ratings**

|                                                  | •                    |
|--------------------------------------------------|----------------------|
| Characteristic                                   | Value                |
| Reverse Voltage (V <sub>R</sub> )                | Rated V <sub>B</sub> |
| Forward Current - Steady State (I <sub>F</sub> ) | 50 mA                |
| Power Dissipation (P <sub>D</sub> )              | 75 mW                |
| Storage Temperature (T <sub>ST</sub> )           | -65°C to +150°C      |
| Operating Temperature (T <sub>OP</sub> )         | -65°C to +150°C      |
| Junction Temperature (T <sub>J</sub> )           | 150°C                |
| Soldering Temperature                            | 260°C for 5 Seconds  |

|                          |                         |                         |                         |                         |                         | ¥¥                      | * *                            |                         |
|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------|-------------------------|
| Single                   | Single                  | Single                  | Common<br>Cathode       | Series Pair             | Reverse<br>Series Pair  | Unconnected<br>Pair     | Reverse<br>Unconnected<br>Pair | Unconnected<br>Pair     |
| SC-79                    | SOD-323                 | SOT-23                  |                         | SOT-23                  | SOT-23                  | SOT-143                 | SOT-143                        | LGA                     |
|                          |                         |                         |                         | SMS1546-005             |                         |                         |                                |                         |
|                          |                         |                         |                         | Marking: SG2            |                         |                         |                                |                         |
| SMS7621-079              | SMS7621-011             | SMS7621-001             |                         | SMS7621-005             | SMS7621-006             | SMS7621-015             |                                |                         |
| Cathode Mark             | Cathode Mark            | Marking: SH1            |                         | Marking: SH2            | Marking: SH8            | Marking: SH7            |                                |                         |
| SMS7630-079              | SMS7630-011             | SMS7630-001             |                         | SMS7630-005             | SMS7630-006             |                         | SMS7630-020                    | SMS7630-517             |
| SMS7630-079LF            | Cathode Mark            | Marking: SD1            |                         | Marking: SD2            | Marking: SD8            |                         | Marking: SD0                   |                         |
| Anode Mark               |                         |                         |                         |                         |                         |                         |                                |                         |
| $L_{S} = 0.7 \text{ nH}$ | L <sub>S</sub> = 1.5 nH | L <sub>S</sub> = 1.5 nH |                         | L <sub>S</sub> = 1.5 nH        | L <sub>S</sub> = 0.6 nH |
|                          |                         |                         | SC-70                   | SC-70                   | SC-70                   |                         |                                |                         |
|                          |                         |                         | SMS7621-074             | SMS7621-075             | SMS7621-076             |                         |                                |                         |
|                          |                         |                         | Marking: SH3            | Marking: SH2            | Marking: SH8            |                         |                                |                         |
|                          |                         |                         |                         | SMS7630-075             | SMS7630-076             |                         |                                |                         |
|                          |                         |                         |                         | Marking: SD2            | Marking: SD8            |                         |                                |                         |
|                          |                         |                         | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH | L <sub>S</sub> = 1.4 nH |                         |                                |                         |

LF denotes Lead (Pb)-Free packaging.

# **Electrical Specifications at 25°C (Per Junction)**

## **Low Barrier Mixer and Detectors**

| Part Number    | Barrier | V <sub>B</sub> @ 10 μ <b>A</b> (V) | C <sub>T</sub> @ 0 V (pF) | V <sub>F</sub> @ 1 mA (mV) | Pair Configuration<br>(b) V <sub>F</sub> @ 1 mA (mV) | R <sub>T</sub> * @ 10 mA (Ω) |
|----------------|---------|------------------------------------|---------------------------|----------------------------|------------------------------------------------------|------------------------------|
|                |         | Min.                               | Тур.                      |                            | Max.                                                 | Max.                         |
| SMS1546 Series | Low     | 2                                  | 0.50                      | 200–270                    | 10                                                   | 8                            |
| SMS7621 Series | Low     | 2                                  | 0.25                      | 260–320                    | 10                                                   | 18                           |

 $<sup>{}^{*}</sup>R_{T}$  is the slope resistance.

#### **Zero Bias Detectors**

| Part Number    | V <sub>B</sub> @ 100 μA (V) | C <sub>T</sub> @ 0.15 V (pF) | V <sub>F</sub> @ 0.1 mA (mV) | V <sub>F</sub> @ 1 mA (mV) | Pair Configuration (b) VF @ 1 mA (mV) | R <sub>V</sub> (Ω) |
|----------------|-----------------------------|------------------------------|------------------------------|----------------------------|---------------------------------------|--------------------|
|                | Min.                        | Тур.                         |                              |                            | Max.                                  | Тур.               |
| SMS7630 Series | 1.0                         | 0.30                         | 60–120                       | 135–240                    | 10                                    | 5000               |



Typical Detector Characteristics @ 1.8 GHz



# **SPICE Model Parameters (Per Junction)**

| Parameter       | Unit | SMS1546 | SMS7621 | SMS7630 |
|-----------------|------|---------|---------|---------|
| IS              | А    | 3E-7    | 4E-8    | 5E-06   |
| R <sub>S</sub>  | Ω    | 4       | 12      | 20      |
| N               |      | 1.04    | 1.05    | 1.05    |
| TT              | S    | 1E-11   | 1E-11   | 1E-11   |
| C <sub>J0</sub> | pF   | 0.38    | 0.10    | 0.14    |
| М               |      | 0.36    | 0.35    | 0.40    |
| E <sub>G</sub>  | eV   | 0.69    | 0.69    | 0.69    |
| XTI             |      | 2       | 2       | 2       |
| F <sub>C</sub>  |      | 0.5     | 0.5     | 0.5     |
| B <sub>V</sub>  | V    | 3       | 3       | 2       |
| I <sub>BV</sub> | А    | 1E-5    | 1E-5    | 1E-4    |
| VJ              | V    | 0.51    | 0.51    | 0.34    |

## **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60-120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60–150 Seconds          | 217°C<br>60–150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



## **SOT-23**





## SOD-323



## SOT-143



## **SC-70**



## SC-79



## LGA



# **Surface Mount General Purpose Schottky Diodes**



## **Features**

- Tight Parameter Distribution
- Available as Singles and Pairs
- 100% DC Tested
- Designed for High Volume Commercial Applications
- Available in Tape and Reel Packaging

# **Description**

This series of 8, 20 and 70 V rated low cost plastic packaged Schottky diodes are designed for general purpose use in RF applications as detectors, mixers and switches and in digital pulse forming applications. All diodes are fully characterized including SPICE model parameters and deliver tight parameter distribution, minimizing performance variability. They are available in SC-70, SC-79, SOD-323, SOT-23, SOT-143 and LGA packages. Wiring configurations include singles, common cathode, series pairs and unconnected pairs. Available in tape and reel for pick and place manufacturing.



# **Absolute Maximum Ratings**

| Characteristic                                   | Value                |
|--------------------------------------------------|----------------------|
| Reverse Voltage (V <sub>R</sub> )                | Rated V <sub>B</sub> |
| Forward Current - Steady State (I <sub>F</sub> ) | 50 mA                |
| Forward Current - 1 mS Pulse (I <sub>F</sub> )   | 1A                   |
| Power Dissipation (PD)                           | 75 mW                |
| Storage Temperature (T <sub>ST</sub> )           | -65°C to +150°C      |
| Operating Temperature (T <sub>OP</sub> )         | -65°C to +150°C      |
| Junction Temperature (T <sub>J</sub> )           | 150°C                |
| Soldering Temperature                            | 260°C for 5 Seconds  |
| ESD Human Body Model                             | Class 1B             |

|                          |                         |                         |                         |                         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | **                      |
|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------------------|-------------------------|
| Single                   | Single                  | Single                  | Common Cathode          | Series Pair             | Unconnected Pair                       | Unconnected Pair        |
| SC-79                    | SOD-323                 | SOT-23                  | SOT-23                  | SOT-23                  | SOT-143                                | LGA                     |
| ♦ SMS3922-079            | ♦ SMS3922-011           | ♦ SMS3922-001           | ♦ SMS3922-004           | ♦ SMS3922-005           | ♦ SMS3922-015                          |                         |
| Cathode Mark             | Cathode Mark            | Marking: SA1            | Marking: SA3            | Marking: SA2            | Marking: SA7                           |                         |
| ♦ SMS3923-079            | ♦ SMS3923-011           | ♦ SMS3923-001           | ♦ SMS3923-004           | ♦ SMS3923-005           | ♦ SMS3923-015                          | SMS3923-517             |
| Cathode Mark             | Cathode Mark            | Marking: SB1            | Marking: SB3            | Marking: SB2            | Marking: SB7                           |                         |
| ♦ SMS3924-079            | ♦ SMS3924-011           | ♦ SMS3924-001           | ♦ SMS3924-004           | ♦ SMS3924-005           | ♦ SMS3924-015                          |                         |
| Cathode Mark             | Cathode Mark            | Marking: SC1            | Marking: SC3            | Marking: SC2            | Marking: SC7                           |                         |
| $L_{S} = 0.7 \text{ nH}$ | L <sub>S</sub> = 1.5 nH                | L <sub>S</sub> = 0.6 nH |
|                          |                         |                         |                         | SC-70                   |                                        |                         |
|                          |                         |                         |                         | ♦ SMS3922-075           |                                        |                         |
|                          |                         |                         |                         | Marking: SA2            |                                        |                         |
|                          |                         |                         |                         | ♦ SMS3923-075           |                                        |                         |
|                          |                         |                         |                         | Marking: SB2            |                                        |                         |
|                          |                         |                         |                         | ♦ SMS3924-075           |                                        |                         |
|                          |                         |                         |                         | Marking: SC2            |                                        |                         |
|                          |                         |                         |                         | L <sub>S</sub> = 1.4 nH |                                        |                         |

<sup>♦</sup> Available through distribution.

## **Electrical Specifications at 25°C**

| Part Number    | V <sub>B</sub> @ 10 μA (V) | I <sub>R</sub>  | C <sub>T</sub> @ 0 V (pF) | V <sub>F</sub> @ 1 mA (mV) | Pair Configuration<br>(b) V <sub>F</sub> @ 1 mA (mV) | V <sub>F</sub>    |
|----------------|----------------------------|-----------------|---------------------------|----------------------------|------------------------------------------------------|-------------------|
|                | Min.                       |                 |                           |                            | Max.                                                 | Max.              |
| SMS3922 Series | 8                          | @ 1 V < 100 nA  | 0.63-1.03                 | 280–340                    | 10                                                   | @ 10 mA < 450 mV  |
| SMS3923 Series | 20                         | @ 15 V < 500 nA | 0.83-1.23                 | 310–370                    | 10                                                   | @ 35 mA < 1000 mV |
| SMS3924 Series | 70                         | @ 50 V < 200 nA | 1.43-1.83                 | 490–550                    | 10                                                   | @ 15 mA < 1000 mV |

# **Typical Performance Data**



SMS3922 Total Capacitance vs. Reverse Voltage



SMS3924 Total Capacitance vs. Reverse Voltage



SMS3923 Total Capacitance vs. Reverse Voltage



SMS3922 Reverse Current vs. Reverse Voltage

## **SPICE Model Parameters**

| Parameter       | Unit | SMS3922 | SMS3923 | SMS3924 |
|-----------------|------|---------|---------|---------|
| IS              | А    | 3E-8    | 5E-9    | 2E-11   |
| R <sub>S</sub>  | Ω    | 9       | 11      | 11      |
| N               |      | 1.08    | 1.05    | 1.08    |
| TT              | S    | 8E-11   | 8E-11   | 8E-11   |
| C <sub>J0</sub> | pF   | 0.7     | 0.9     | 1.5     |
| М               |      | 0.26    | 0.24    | 0.4     |
| E <sub>G</sub>  | eV   | 0.69    | 0.69    | 0.69    |
| XTI             |      | 2       | 2       | 2       |
| F <sub>C</sub>  |      | 0.5     | 0.5     | 0.5     |
| B <sub>V</sub>  | V    | 20      | 46      | 100     |
| I <sub>BV</sub> | А    | 1E-5    | 1E-5    | 1E-5    |
| VJ              | V    | 0.595   | 0.64    | 0.84    |

## SC-70



## **SOT-23**





## SOD-323



## SC-79



## SOT-143



## LGA



# Low Capacitance High Voltage Schottky Diode



## SMS3925-079

## **Features**

- Silicon Schottky Diode for Detector Applications
- Ultra Small SC-79 Package
- Designed for High Volume, Low Cost Applications
- Available in Tape and Reel Packaging



The SMS3925-079 is a 40 V, 0.6 pF RF Schottky diode designed for use as a level detector in wireless handsets and for general purpose switching applications. The SMS3925-079 is packaged in the surface mount miniature SC-79 package and is designated for low cost, high volume applications.



# **Absolute Maximum Ratings**

| Characteristic                                            | Value           |
|-----------------------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )                         | 40 V            |
| Forward Current - 1 mS Pulse (I <sub>F</sub> )            | 1 A             |
| Forward Current - Steady State (I <sub>F</sub> )          | 50 mA           |
| Power Dissipation (P <sub>D</sub> )                       | 250 mW          |
| Storage Temperature (T <sub>ST</sub> )                    | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> )                  | -65°C to +150°C |
| Junction Temperature (T <sub>J</sub> )                    | 150°C           |
| Electrostatic Discharge (ESD) -<br>Human Body Model (HBM) | Class 1B        |

# **Electrical Specifications at 25°C**

| Parameter                                  | Condition                       | Min. | Тур. | Max. | Unit |
|--------------------------------------------|---------------------------------|------|------|------|------|
| Reverse Current (I <sub>R</sub> )          | V <sub>R</sub> = 40 V           |      |      | 10   | uA   |
| Capacitance (C <sub>T</sub> ) <sup>1</sup> | V <sub>R</sub> = 0 V, F = 1 MHz |      | 0.48 | 0.6  | pF   |
| Forward Voltage (V <sub>F</sub> )          | I <sub>F</sub> = 1 mA           | 0.57 | 0.62 | 0.67 | V    |

<sup>1.</sup> Capacitance is total capacitance (C<sub>T</sub>), junction capacitance (C<sub>J</sub>) + package capacitance (C<sub>P</sub>).

# **Typical Performance Data**



**Total Capacitance vs. Reverse Voltage** 

## **SPICE Model Parameters**

| Parameter       | Units | SMS3925  |
|-----------------|-------|----------|
| IS              | А     | 1.8E-09  |
| R <sub>S</sub>  | Ω     | 5.4      |
| N               | -     | 1.7      |
| TT              | S     | 8E-11    |
| C <sub>J0</sub> | pF    | 0.36     |
| M               | -     | 0.24     |
| E <sub>G</sub>  | eV    | 0.69     |
| XTI             | -     | 2        |
| F <sub>C</sub>  | -     | 0.5      |
| B <sub>V</sub>  | V     | 58       |
| I <sub>BV</sub> | А     | 1.00E-05 |
| VJ              | V     | 0.800    |

## **SC-79**



# Surface Mount Schottky Quad Mixer Diodes



## **Features**

- Tight Parameter Distribution
- Available as Ring Quads, Crossover Quads, Bridge Quads and Octoquads
- 100% DC Tested
- Designed for High Volume Commercial Applications
- Available in Tape and Reel Packaging



Skyworks' offers a series of low cost devices in a SOT-143 package. They cover low, medium and high barrier junctions as ring quads, crossover quads and bridge quads. An octoquad ring is also offered for high dynamic range applications. These devices are constructed utilizing Skyworks' monolithic chip technology, assuring uniformity of electrical characteristics for each junction. The low capacitance of Skyworks' ring and crossover quads are designed for double balanced mixer applications covering wireless frequencies into C-band. The bridge quads are designated for modulators and frequency multiplier applications. These diodes are 100% DC tested and deliver tight parameter distribution, minimizing performance variability. They complement Skyworks' product line of Schottky singles and pairs available in SC-70, SC-79, SOD-323, SOT-23 and SOT-143 packages. Available in tape and reel for pick and place manufacturing.



# **Absolute Maximum Ratings**

|                                                  | _                    |
|--------------------------------------------------|----------------------|
| Characteristic                                   | Value                |
| Reverse Voltage (V <sub>R</sub> )                | Rated V <sub>B</sub> |
| Forward Current - Steady State (I <sub>F</sub> ) | 50 mA                |
| Power Dissipation (P <sub>D</sub> )              | 75 mW                |
| Storage Temperature (T <sub>ST</sub> )           | -65°C to +150°C      |
| Operating Temperature (T <sub>OP</sub> )         | -65°C to +150°C      |
| Junction Temperature (T <sub>J</sub> )           | 150°C                |
| Soldering Temperature                            | 260°C for 5 Seconds  |
| ESD Human Body Model                             | Class 1B             |

# **Electrical Specifications at 25°C (Per Junction)**

| Barrier | V <sub>B</sub><br>@ 10 μA<br>(V) | С <sub>Ј</sub><br>@ 0 V | V <sub>F</sub><br>@ 1 mA | ΔV <sub>F</sub><br>@ 1 mA<br>(mV) | R <sub>T</sub> <sup>1</sup><br>@ 10 mA<br>(Ω) |               |                |               |               |
|---------|----------------------------------|-------------------------|--------------------------|-----------------------------------|-----------------------------------------------|---------------|----------------|---------------|---------------|
|         |                                  | (pF)                    | (mV)                     |                                   |                                               | SOT-143       |                |               |               |
|         | Min.                             |                         |                          | Max.                              | Max.                                          | Ring Quad     | Crossover Quad | Bridge Quad   | Octoquad      |
| Low     | 2                                | 0.3-0.5                 | 200-270                  | 10                                | 8                                             | ♦ SMS3926-022 | ♦ SMS3926-023  | ♦ SMS3929-021 |               |
|         |                                  |                         |                          |                                   |                                               | Marking: SE4  | Marking: SE5   | Marking: SQE  |               |
| Medium  | 2                                | 0.3-0.5                 | 310-370                  | 10                                | 8                                             |               | ♦ SMS3927-023  | ♦ SMS3930-021 |               |
|         |                                  |                         |                          |                                   |                                               |               | Marking: SJ5   | Marking: SRE  |               |
| High    | 4                                | 0.3-0.5                 | 520-580                  | 10                                | 8                                             |               | ♦ SMS3928-023  | ♦ SMS3931-021 | ♦ SMS3940-026 |
|         |                                  |                         |                          |                                   |                                               |               | Marking: SK5   | Marking: SSE  | Marking: STG  |

Available through distribution.

All parameters are based upon a single junction.

<sup>1.</sup> R<sub>T</sub> is the slope resistance.

# **SPICE Model Parameters (Per Junction)**

| Parameter       | Unit | SMS3926<br>SMS3929 | SMS3927<br>SMS3930 | SMS3928<br>SMS3931<br>SMS3940 |
|-----------------|------|--------------------|--------------------|-------------------------------|
| IS              | A    | 2.5E-07            | 1.3E-09            | 9E-13                         |
| R <sub>S</sub>  | Ω    | 4                  | 4                  | 4                             |
| N               |      | 1.04               | 1.04               | 1.04                          |
| TT              | S    | 1E-11              | 1E-11              | 1E-11                         |
| C <sub>JO</sub> | pF   | 0.42               | 0.39               | 0.39                          |
| M               |      | 0.32               | 0.37               | 0.42                          |
| E <sub>G</sub>  | eV   | 0.69               | 0.69               | 0.69                          |
| XTI             |      | 2                  | 2                  | 2                             |
| F <sub>C</sub>  |      | 0.5                | 0.5                | 0.5                           |
| B <sub>V</sub>  | V    | 2                  | 3                  | 4                             |
| I <sub>BV</sub> | А    | 1.00E-05           | 1.00E-05           | 1.00E-05                      |
| VJ              | V    | 0.495              | 0.595              | 0.800                         |

All parameters are based upon a single junction.

# Typical Forward Voltage Characteristics at 25°C

|             | V <sub>F</sub> @ 0.01 mA (mV) | V <sub>F</sub> @ 0.10 mA (mV) | V <sub>F</sub> @ 1.0 mA (mV) | V <sub>F</sub> @ 10.0 mA (mV) |  |
|-------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|--|
| Part Number | Тур.                          | Тур.                          | Тур.                         | Тур.                          |  |
| SMS3926     | 100                           | 165                           | 232                          | 324                           |  |
| SMS3927     | 206                           | 271                           | 338                          | 428                           |  |
| SMS3928     | 423                           | 488                           | 555                          | 641                           |  |

## SOT-143



157

# **Chip On Board Mixer Quads**



## **Features**

- High Volume Automatic Assembly
- For Microwave MIC Assembly and Automated High Volume Manufacturing
- Mechanically Rugged Design
- 100% DC Tested
- Three Barrier Heights for Customized Mixer Performance

## **Description**

Skyworks' ceramic Chip on Board (COB) mixer quads are designed for high performance RF and microwave receiver applications. These devices utilize Skyworks' advanced silicon beamless Schottky technology, combined with precision ceramic COB assembly techniques, to achieve a high degree of device reliability in commercial applications.



# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Maximum Current (I <sub>MAX</sub> )      | 50 mA           |
| Power Dissipation (P <sub>D</sub> ) CW   | 75 mW/Junction  |
| Storage Temperature (T <sub>ST</sub> )   | -65°C to +175°C |
| Operating Temperature (T <sub>OP</sub> ) | -65°C to +150°C |
| ESD Human Body Model                     | Class 1B        |

# **Electrical Specifications at 25°C**

| Part Number     | Part Number Barrier |        | ? 1 mA<br>nV) | (Δ) V <sub>F</sub> @ 1 mA <sup>1</sup><br>(mV) | C <sub>J</sub> @ 0 V<br>(pF) |      | (Δ) C <sub>T</sub> @ 0 V <sup>2</sup> (pF) | R <sub>T</sub> @ 10 mA<br>(Ω) | Outline |
|-----------------|---------------------|--------|---------------|------------------------------------------------|------------------------------|------|--------------------------------------------|-------------------------------|---------|
|                 |                     | Min.   | Max.          | Max.                                           | Min.                         | Max. | Max.                                       | Max.                          | Drawing |
| Ring Quad (to 6 | GHz)                |        |               |                                                |                              |      |                                            |                               |         |
| DMF3926-101     | Low                 | 200    | 260           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 101     |
| DME3927-101     | Medium              | 300    | 400           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 101     |
| DMJ3928-101     | High                | 525    | 625           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 101     |
| Crossover Ring  | Quad (to 6 GHz)     |        |               |                                                |                              |      |                                            |                               | ,       |
| DMF3926-100     | Low                 | 200    | 260           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 100     |
| DME3927-100     | Medium              | 300    | 400           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 100     |
| DMJ3928-100     | High                | 525    | 625           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 100     |
| Back-to-Back Ci | ossover Quad (to    | 6 GHz) |               |                                                |                              |      |                                            |                               |         |
| DMF3945-103     | Low                 | 200    | 260           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 103     |
| DME3946-103     | Medium              | 300    | 400           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 103     |
| DMJ3947-103     | High                | 525    | 625           | 15                                             | 0.3                          | 0.5  | 0.07                                       | 8                             | 103     |

| Part Number     | Barrier                | ,    | 1 mA<br>mV) | (Δ) V <sub>F</sub> @<br>1 mA <sup>1</sup> (mV) |      | ҈ 0 V<br>oF) | (Δ) C <sub>T</sub> @ 0 V <sup>2</sup> (pF) | R <sub>T</sub> @ 10 mA (Ω) | V <sub>B</sub> @ 10 μA<br>(V) | Outline |
|-----------------|------------------------|------|-------------|------------------------------------------------|------|--------------|--------------------------------------------|----------------------------|-------------------------------|---------|
|                 |                        | Min. | Max.        | Max.                                           | Min. | Max.         | Max.                                       | Max.                       | Min.                          | Drawing |
| Bridge Quad (to | Bridge Quad (to 6 GHz) |      |             |                                                |      |              |                                            |                            |                               |         |
| DMF3929-102     | Low                    | 200  | 260         | 15                                             | 0.3  | 0.5          | 0.07                                       | 8                          | 2                             | 102     |
| DME3930-102     | Medium                 | 300  | 400         | 15                                             | 0.3  | 0.5          | 0.07                                       | 8                          | 3                             | 102     |
| DMJ3931-102     | High                   | 525  | 625         | 15                                             | 0.3  | 0.5          | 0.07                                       | 8                          | 4                             | 102     |

<sup>1.</sup> Forward voltage difference between package electrodes.

# **SPICE Model Parameters (Per Junction)**

| Parameter       | Unit | DMF3926<br>DMF3929<br>DMF3945 | DME3927<br>DME3930<br>DME3946 | DMJ3928<br>DMJ3931<br>DMJ3947 |
|-----------------|------|-------------------------------|-------------------------------|-------------------------------|
| IS              | A    | 2.5E-07                       | 1.3E-09                       | 9.0E-13                       |
| R <sub>S</sub>  | Ω    | 4                             | 4                             | 4                             |
| N               |      | 1.04                          | 1.04                          | 1.04                          |
| TT              | S    | 1E–11                         | 1E-11                         | 1E-11                         |
| C <sub>J0</sub> | pF   | 0.42                          | 0.39                          | 0.39                          |
| М               |      | 0.32                          | 0.37                          | 0.42                          |
| E <sub>G</sub>  | eV   | 0.69                          | 0.69                          | 0.69                          |
| XTI             |      | 2                             | 2                             | 2                             |
| F <sub>C</sub>  |      | 0.5                           | 0.5                           | 0.5                           |
| B <sub>V</sub>  | V    | 2                             | 3                             | 4                             |
| I <sub>BV</sub> | А    | 1.0E-05                       | 1.0E-05                       | 1.0E-05                       |
| VJ              | V    | 0.495                         | 0.595                         | 0.800                         |

<sup>2.</sup> Capacitance difference between package electrodes.

# 100, 101, 102



## 103



#### Notes:

- 1. Bottom side is free of metalization.
- 2. The minimum specified area of the contact pads (0.017 x 0.022) shall be free of epoxy.

# Silicon Schottky Diode Chips



## **Features**

- For Detector and Mixer Applications
- Low Capacitance for Usage Beyond 40 GHz
- ZBD and Low Barrier Designs
- P-Type and N-Type Junctions
- Large Bond Pad Chip Design



## **Description**

Skyworks' product line of silicon Schottky diode chips are intended for use as detector and mixer devices in hybrid integrated circuits at frequencies from below 100 MHz to higher than 40 GHz. Skyworks' "Universal Chip" design features a 4 mil diameter bond pad that is offset from the semiconductor junction preventing damage to the active junction as a result of wire bonding.

As power-sensing detectors, these Schottky diode chips all have the same voltage sensitivity so long as the output video impedance is much higher than the video resistance of the diode. Figure 1 shows the expected detected voltage sensitivity as a function of RF source impedance in an untuned circuit. Note that sensitivity is substantially increased by transforming the source impedance from 50  $\Omega$  to higher values. Maximum sensitivity occurs when the source impedance equals the video resistance.

In a detector circuit operating at zero bias, depending on the video load impedance, a ZBD device with  $R_V$  less than  $10~k\Omega$  may be more sensitive than a low barrier diode with  $R_V$  greater than  $100~k\Omega.$  Applying forward bias reduces the diode video resistance as shown in Figure 2. Lower video resistance also increases the video bandwidth but does not increase voltage sensitivity, as shown in Figure 3. Biased Schottky diodes have better temperature stability and also may be used in temperature compensated detector circuits.

P-type Schottky diodes generate lower 1/F noise and are preferred for Doppler mixers and biased detector applications. The bond pad for the P-type Schottky diode is the cathode. N-type Schottky diodes have lower parasitic resistance, R<sub>S</sub>, and will perform with lower conversion loss in mixer circuits. The bond pad for the N-type Schottky diode is the anode.

# **Electrical Specifications at 25°C**

| Part Number | Part Number Barrier | Junction | C <sub>J</sub> <sup>1</sup><br>(pF) | $R_T^2$ ( $\Omega$ ) | V <sub>F</sub> @ 1 mA<br>(mV) | V <sub>B</sub> <sup>3</sup> (V) | R <sub>V</sub> @ Zero Bias (kΩ) | Outline<br>Drawing |
|-------------|---------------------|----------|-------------------------------------|----------------------|-------------------------------|---------------------------------|---------------------------------|--------------------|
|             |                     | Туре     | Max.                                | Max.                 | MinMax.                       | Min.                            | Тур.                            | Drawing            |
| CDC7630-000 | ZBD                 | Р        | 0.25                                | 30                   | 135–240                       | 1                               | 5.5                             | 526-006            |
| CDC7631-000 | ZBD                 | Р        | 0.15                                | 80                   | 150-300                       | 2                               | 7.2                             | 526-006            |
| CDB7619-000 | Low                 | Р        | 0.10                                | 40                   | 275–375                       | 2                               | 735                             | 526-006            |
| CDB7620-000 | Low                 | Р        | 0.15                                | 30                   | 250-350                       | 2                               | 537                             | 526-006            |
| CDF7621-000 | Low                 | N        | 0.10                                | 20                   | 270-350                       | 2                               | 680                             | 526-011            |
| CDF7623-000 | Low                 | N        | 0.30                                | 10                   | 240-300                       | 2                               | 245                             | 526-011            |

<sup>1.</sup>  $C_{\rm J}$  for low barrier diodes specified at 0 V.  $C_{\rm J}$  for ZBDs specified at 0.15 V reverse bias.

<sup>2.</sup>  $R_T$  is the slope resistance at 10 mA.  $R_S$  Max. may be calculated from:  $R_S = R_T - 2.6 \times N$ .

<sup>3.</sup>  $V_B^{}$  for low barrier diodes is specified at 10  $\mu A.$   $V_B$  for ZBDs is specified at 100  $\mu A.$ 

# **Typical Performance Data**



Figure 1. Detected Voltage vs. Input Power and RF Source Impedance



Figure 2. Video Resistance vs. Forward Bias Current





Figure 3. Detected Voltage vs. Forward Current

# **SPICE Model Parameters**

| Parameter       | CDB7619  | CDB7620  | CDF7621 | CDF7623 | CDC7630 | CDC7631 | Units |
|-----------------|----------|----------|---------|---------|---------|---------|-------|
| IS              | 3.70E-08 | 5.40E-08 | 4.0E-08 | 1.1E-07 | 5.0E-06 | 3.8E-06 | А     |
| R <sub>S</sub>  | 9        | 14       | 12      | 6       | 20      | 51      | Ω     |
| N               | 1.05     | 1.12     | 1.05    | 1.04    | 1.05    | 1.05    |       |
| TT              | 1E-11    | 1E-11    | 1E-11   | 1E-11   | 1E-11   | 1E-11   | S     |
| $C_{J0}$        | 0.08     | 0.15     | 0.10    | 0.22    | 0.14    | 0.08    | pF    |
| M               | 0.35     | 0.35     | 0.35    | 0.32    | 0.40    | 0.4     |       |
| E <sub>G</sub>  | 0.69     | 0.69     | 0.69    | 0.69    | 0.69    | 0.69    | eV    |
| XTI             | 2.0      | 2.0      | 2.0     | 2.0     | 2.0     | 2.0     |       |
| F <sub>C</sub>  | 0.5      | 0.5      | 0.5     | 0.5     | 0.5     | 0.5     |       |
| B <sub>V</sub>  | 2.0      | 4.0      | 3.0     | 2.0     | 2.0     | 2.0     | V     |
| I <sub>BV</sub> | 1.00E-05 | 1.00E-05 | 1.0E-05 | 1.0E-05 | 1.0E-04 | 1.0E-04 | Α     |
| VJ              | 0.495    | 0.495    | 0.495   | 0.495   | 0.340   | 0.340   | V     |

# **Outline Drawing** 526-006, 526-011



526-006 = Cathode bond pad. 526-011 = Anode bond pad.

# **Absolute Maximum Ratings**

| Characteristic                           | Value           |
|------------------------------------------|-----------------|
| Reverse Voltage (V <sub>R</sub> )        | Voltage Rating  |
| Forward Current (I <sub>F</sub> )        | 50 mA           |
| Power Dissipation (P <sub>D</sub> )      | 75 mW           |
| Storage Temperature (T <sub>ST</sub> )   | -65°C to +150°C |
| Operating Temperature (T <sub>OP</sub> ) | -65°C to +150°C |

# GaAs Flip Chip Schottky Diodes



## **Features**

- Designed for High Volume Designs
- High Frequency (20–100 GHz)
- Exceeds Environmental Requirements for MIC & Hybrid Applications
- Designed for Low Junction Capacitance and Low Series Resistance
- Applications Include PCN Mixers and Circuits, As Well As Low Power, Fast Switching
- Low Parasitic Flip Chip Configuration

# **Description**

This new series of GaAs Schottky barrier diodes offer high performance at commercial market prices. They are designed for low junction capacitance, as well as low series resistance. Diodes are designed for MIC work (hard and soft substrates), but the leadless design eliminates the problems associated with mounting of beam lead diodes. Due to its rigid construction, it exceeds environmental requirements for MIC and hybrid applications. Diodes can be supplied on expandable film frame for high speed pick and place process. Standard packing will be in a waffle pack. Flexible conductive epoxy is the most effective method for circuitry attachments. Standard mounting temperatures should not exceed 175°C.

## Single - DMK2783-000, DMK2790-000



#### Anti-Parallel - DMK2308-000



#### Series Pair - DMK8001-000



# **Electrical Specifications at 25°C**

| Recommended<br>Frequency<br>(GHz) | V <sub>B</sub> <sup>1</sup><br>@ 10 μA<br>(V) | C-<br>0 V, 1<br>(p | MHz  | R <sub>S</sub> @ 10 mA (Ω) | V <sub>F</sub> @ 1 mA<br>(mV) |      | Single      | Series Pair | Anti-Parallel |
|-----------------------------------|-----------------------------------------------|--------------------|------|----------------------------|-------------------------------|------|-------------|-------------|---------------|
|                                   |                                               | Min.               | Max. | Max.                       | Min.                          | Max. | 540-011     | 540-012     | 540-025       |
| 20–100                            | 3.0                                           | 0.03               | 0.05 | 9                          | 680                           | 780  | DMK2783-000 |             |               |
| 20-100                            | 3.0                                           | 0.04               | 0.07 | 7                          | 650                           | 750  | DMK2790-000 |             | DMK2308-000   |
| 20–100                            | 3.0                                           | 0.05               | 0.08 | 7                          | 650                           | 750  |             | DMK8001-000 |               |

<sup>1.</sup>  $V_{\mbox{\footnotesize{B}}}$  cannot be measured nondestructively in anti-parallel configuration.

<sup>2.</sup> C<sub>T</sub> = junction capacitance plus 0.02 pF (overlay).

# **Typical Parameter Distribution on Wafer**



## Capacitance/Voltage Variation







# **Spice Parameters (Per Junction)**

| I <sub>S</sub><br>Amp | $R_S$ | n    | T <sub>D</sub><br>S | C <sub>J</sub> 0<br>pF | m    | E <sub>G</sub><br>eV | V <sub>J</sub><br>eV | X <sub>TI</sub> | FC  | B <sub>V</sub><br>V | I <sub>BV</sub> |
|-----------------------|-------|------|---------------------|------------------------|------|----------------------|----------------------|-----------------|-----|---------------------|-----------------|
| 0.5 E-12              | 4     | 1.05 | 1E-11               | 0.05                   | 0.26 | 1.43                 | 0.82                 | 2               | 0.5 | 4.0                 | 1E-05           |

# Suggested Setup Values For WEST-BOND Model 7200A Epoxy Die Bonder

#### **Materials**

## Ероху

Microelectronic grade one component, solvent-free silver-filled, electrically conductive adhesive — example: Ablebond 8380 by Ablestick.

### **Dispense Tube**

WEST-BOND B-1831-1 with 9.5 mil I.D., or WEST-BOND B-1831-2 with 15.5 mil I.D. Other sizes available.

#### Die Pickup Tool

SPT Part Number 2101-W625-CT-031 x 0.016 x 0.0075. Hole diameter 0.016" face diameter 0.031", O.D. 0.625". Use vacuum pressure to pick and place chip.

### **Adjustment**

#### **Bond Force**

35 grams at tool.

### **Dispense Air**

30 psi.

## **Dispense Time**

To give diameter of dot required.

## **Curing Time**

| Temperature | Time     |
|-------------|----------|
| 250°C       | 10 min.  |
| 130°C       | 20 min.  |
| 100°C       | 60 min.  |
| 85°C        | 120 min. |

# Flexible Conductive Epoxy Mounting of Skyworks' Beamless Flip Chip Diodes – To Soft or Hard Substrate – As Plated



## **Deposit Conductive Epoxy**



#### Perform Die Attach

- Flip Device
- Align Bond Pads to Epoxy Dot (Alignment Marks Help)
- Use Even Pressure to Make Correct Connection



## **Cure Epoxy & DC Continuity Check**

- Inspect for Adequate Epoxy Fillet
- Cure According to Mfg. Preferred Schedule.
   Typically 110–150°C @ 60 Minutes, or 150°C,
   4 Minutes for Snap-Cure Epoxies

# **Outline Drawings**

## 540-011







#### 540-025







#### 540-012







| -4 | - | -  |
|----|---|----|
| п. | h | >  |
|    | v | ٠. |



# **Chip Capacitors**



## SC Series

## **Features**

- Readily Available From Stock
- High Reliability Silicon Oxide—Nitride Dielectric
- Low Loss Typically 0.04 dB in a 50  $\Omega$ System
- Operation through 26 GHz
- Wide Temperature Operation

## **Description**

Skyworks' MIS Chip Capacitors are available in a wide range of sizes and capacitance values. They are frequently used in applications requiring DC blocking, and RF bypassing, or as a fixed capacitance tuning element in filters, oscillators, and matching networks. The devices have a dielectric composed of thermally grown silicon dioxide over which a layer of silicon nitride is deposited. This dielectric possesses a low temperature coefficient of capacitance, very high insulation resistance. The devices also exhibit excellent long term stability making them suitable for high reliability applications. The capacitors have a high dielectric breakdown which permits the use of thin dielectrics resulting in larger capacitance per unit area than our previous catalog offerings. The temperature coefficient is less that 50 ppm/°C, and operation is suitable from -65°C to 200°C. Compared to ceramic capacitors. Skyworks' MIS chip capacitors offer higher Q, and a lower insertion loss of 0.04 dB, in a 50  $\Omega$  system. Insulation resistance is greater than  $10^5 M \Omega$ . To accommodate high volume automated assembly methods, wafers can be supplied on expanded film frame. To reduce cost, chips can be supplied with only sample testing packaged in vials. Packaging in waffle packs with 100% electrical test and visual inspection is always available if required.



# **Absolute Maximum Ratings**

| Characteristic                          | Value         |
|-----------------------------------------|---------------|
| Operating Temp Range (T <sub>OP</sub> ) | -65 to +200°C |
| Storage Temp Range (T <sub>STG</sub> )  | -65 to +200°C |
| Dielectric Withstanding Voltage         | 100 V         |

## **Electrical Specifications**

Capacitance Range<sup>1:</sup> 0.8 to 1000 pF

Temperature Coefficient: 50 ppm/°C Typical

Capacitance Tolerance<sup>2:</sup> ±20%

Operating Temperature: -65°C to 200°C Dielectric Withstanding Voltage: 100 V Insulation Resistance: 10<sup>5</sup> Megohms Typical

Leakage Current: Typ. < 1 nA

# **Typical SPDT Switch**



C2, C3 - Chip MIS Capacitor

C<sub>1</sub>, C<sub>4</sub> — Chip or Beam — Lead MIS Capacitor D<sub>1</sub>, D<sub>2</sub> DSG6474 Beam — Lead PIN Diode

MIS Chip Capacitors SC Series

## **Electrical Specifications**

| Part Number  | Capacitance<br>(+ 20%) | Chip Dimensions<br>(+ 1 mil) |
|--------------|------------------------|------------------------------|
| SC00080710   | 0.8                    | 7 mil Pad/10 mil Chip        |
| SC00080912   | 0.8                    | 9 mil Pad/12 mil Chip        |
| SC00120710   | 1.2                    | 7 mil Pad/10 mil Chip        |
| SC00120912   | 1.2                    | 9 mil Pad/12 mil Chip        |
| SC00180710   | 1.8                    | 7 mil Pad/10 mil Chip        |
| SC00180912   | 1.8                    | 9 mil Pad/12 mil Chip        |
| SC00260710   | 2.6                    | 7 mil Pad/10 mil Chip        |
| SC00260912   | 2.6                    | 9 mil Pad/12 mil Chip        |
| SC00380710   | 3.8                    | 7 mil Pad/10 mil Chip        |
| ♦ SC00380912 | 3.8                    | 9 mil Pad/12 mil Chip        |
| SC00560710   | 5.6                    | 7 mil Pad/10 mil Chip        |
| ♦ SC00560912 | 5.6                    | 9 mil Pad/12 mil Chip        |
| SC00680710   | 6.8                    | 7 mil Pad/10 mil Chip        |
| SC00680912   | 6.8                    | 9 mil Pad/12 mil Chip        |
| SC00820710   | 8.2                    | 7 mil Pad/10 mil Chip        |
| ♦ SC00820912 | 8.2                    | 9 mil Pad/12 mil Chip        |
| SC00821518   | 8.2                    | 15 mil Pad/18 mil Chip       |
| SC01000710   | 10                     | 7 mil Pad/10 mil Chip        |
| ♦ SC01000912 | 10                     | 9 mil Pad/12 mil Chip        |
| SC01001518   | 10                     | 15 mil Pad/18 mil Chip       |
| SC01500710   | 15                     | 7 mil Pad/10 mil Chip        |
| SC01500912   | 15                     | 9 mil Pad/12 mil Chip        |
| SC01501518   | 15                     | 15 mil Pad/18 mil Chip       |
| ♦ SC02200912 | 22                     | 9 mil Pad/12 mil Chip        |
| SC02201518   | 22                     | 15 mil Pad/18 mil Chip       |
| SC03301518   | 33                     | 15 mil Pad/18 mil Chip       |
| SC04701518   | 47                     | 15 mil Pad/18 mil Chip       |
| ♦ SC06801518 | 68                     | 15 mil Pad/18 mil Chip       |
| SC10002430   | 100                    | 24 mil Pad/30 mil Chip       |
| ♦ SC10003440 | 100                    | 34 mil Pad/40 mil Chip       |
| SC22203440   | 222                    | 34 mil Pad/40 mil Chip       |
| ♦ SC33303440 | 333                    | 34 mil Pad/40 mil Chip       |
| SC50004450   | 500                    | 44 mil Pad/50 mil Chip       |
| ♦ SC99906068 | 1000                   | 60 mil Pad/68 mil Chip       |

Available through distribution.

## **Example**

Part Number Structure — SCXXXXYYZZ where:

SC = Silicon Capacitor

XXXX = Capacitance (pF)

YY = Square Contact Size (mils)

ZZ = Square Chip Size (mils)



## **Performance Data**

Tests on typical MIS capacitors at L and S band show insertion loss to be 1/2 to 1/3 that of equivalent ceramic type capacitors, without any of the associated resonance problems. Power tests indicate that the only limitation is the actual breakdown voltage of the device (see data section). A typical insertion loss versus frequency graph is shown in Figure 1. This data is taken from an actual tests circuit with series mounted beam-lead or chip capacitors on a 50  $\Omega$  microstrip transmission line. The apparent higher loss at lower frequencies on the lower capacitance units is strictly due to the capacitive reactance of the capacitor.



Figure 1. Typical Insertion Loss vs. Frequency (50  $\Omega$  System)

# **FET Chip Mounting Capacitors (MIS)**



## SC9016-000, SC9017-000

## **Features**

- High Reliability
- Low Loss
- Operation Through 26 GHz
- Wide Temperature Operation

# **Description**

The FET Chip Mounting Capacitor is an MIS thin film device which features small size and very high Q making it ideal for hybrid microelectronic applications at microwave frequencies.

The device has a dielectric composed of thermally grown silicon dioxide over which a layer of silicon nitride is deposited. This dielectric possesses a low temperature coefficient of capacitance, very high insulation resistance (typically greater than 1012  $\Omega)$ , and low dissipation factor. The device also exhibits excellent long term stability making it suitable for high reliability applications. The capacitor has a high dielectric breakdown which permits the use of thin dielectrics resulting in large capacitance in a small area.

The plated gold metalization on the top face of the chip extends over most of the top surface. Gold wire can be readily thermocompression bonded to this metalization. The back side of the chip is also gold metallized and is readily solderable. Custom parts can be made having special values of capacitance or working voltage. Special metallization geometries or chip sizes can also be made available upon request.

The capacitor is designed to serve as a carrier for FET amplifier chips. As shown in Figure 1, when the FET chip is mounted directly onto the top metal pad of the capacitor, the gate and drain pads are on the same level as the top of the alumina circuit. Therefore, short wire lengths can be used to minimize the lead inductance. The SC9016 is a 10 mil thick chip designed for 15 mil thick alumina, while the SC9017 is a 20 mil thick chip designed for 26 mil thick alumina. When the FET chips is mounted directly onto the top metal pad of the capacitor, the source pads on the FET chip can be wire bonded to the same metal pads, which accomplishes RF bypass to ground via the capacitor.



# **Absolute Maximum Ratings**

| Characteristic                          | Value         |
|-----------------------------------------|---------------|
| Operating Temp Range (T <sub>OP</sub> ) | -65 to +200°C |
| Storage Temp Range (T <sub>STG</sub> )  | -65 to +200°C |
| Dielectric Withstanding Voltage         | 50 V          |

# **Electrical Specifications**

Capacitance Range: 100 pF

Temperature Coefficient: 50 ppm/°C

Capacitance Tolerance: ±20%

Thermal Resistance:

SC9016: 10°C/W SC9017: 12°C/W

| Part<br>Number | Outline<br>Drawing<br>Number | Thickness | For FET<br>Chip<br>Thickness | For<br>Alumina<br>Substrate<br>Thickness |
|----------------|------------------------------|-----------|------------------------------|------------------------------------------|
| SC9016-000     | 411-801                      | 0.010     | 0.005                        | 0.015                                    |
| SC9017-000     | 411-802                      | 0.020     | 0.005                        | 0.025                                    |





Figure 1. FET Chip Mounted on Top Metal Pad of Capacitor



Figure 2. Schematic Diagram

## 411-801



## 411-802



# **Binary Trimming Capacitors (MIS)**



# SC9020-006, SC9020-018

## **Features**

- High Reliability Silicon Oxide Nitride Dielectric
- Low Loss, Typically 0.04 dB in a 50 Ω System
- Operation Through 26 GHz
- Wide Temperature Operation: -55°C to +200°C

# **Description**

Four capacitors are provided on a single chip, binary weighted, to give 15 different values of capacitance by selective interconnection. This chip is designed for low inductance microwave applications and have the following features:

- Each individual capacitor is accessible from chip edge.
- Connection to two or more capacitors can always be made via a short ribbon at a central point.

The trimming capacitor is a MIS thin film device which has a dielectric composed of thermally grown silicon dioxide over which a layer of silicon nitride is deposited. This dielectric possesses a low temperature coefficient of capacitance, very high insulation resistance (typically greater than 1012  $\Omega$ ), and low dissipation factor. The device also exhibits excellent long term stability making it suitable for high reliability applications. The capacitor has a high dielectric breakdown which permits the use of thin dielectrics resulting in large capacitance in a small area. The plated gold metalization on the top face of the chip extends over most of the top surface. Gold wire can be readily thermocompression bonded to this metallization. The back side of the chip is also gold metallized and is readily solderable. Custom parts can be made having special values of capacitance or working voltage. Special

metallization geometries or chip sizes can also be made

## 428-801



# **Absolute Maximum Ratings**

| Characteristic                          | Value         |  |  |  |
|-----------------------------------------|---------------|--|--|--|
| Operating Temp Range (T <sub>OP</sub> ) | -55 to +200°C |  |  |  |
| Storage Temp Range (T <sub>STG</sub> )  | -55 to +200°C |  |  |  |
| Dielectric Withstanding Voltage         | 100 V         |  |  |  |

# **Electrical Specifications**

Capacitance Tolerance: ±20%
Temperature Coefficient: 50 ppm/°C

Insulation Resistance: 10<sup>5</sup> Megohms Typical

| Part<br>Number | Capacitance<br>(pF)  | Maximum<br>Available<br>Capacitance<br>(pF) | Outline<br>Drawing<br>Number |
|----------------|----------------------|---------------------------------------------|------------------------------|
| SC9020-006     | 0.25, 0.50, 1.0, 2.0 | 3.75                                        | 428-801                      |
| SC9020-018     | 1.0, 2.0, 4.0, 8.0   | 15                                          | 428-801                      |

available upon request.



# **Power Divider/Combiners**

# Two-Way 0° Power Splitter Combiner 0.81–0.96 GHz



PD09-12

## **Features**

- Low Cost
- Low Profile
- Available in Small SOIC-8 Package
- Tape & Reel



The PD09-12 is a monolithic two-way in-phase hybrid junction tuned for the 0.81–0.96 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.



# **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 0.81 |       | 0.96  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.4   | 0.6   | dB   |
| Isolation                      | 20   | 25    |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.4:1 |      |
| Output VSWR                    |      | 1.3:1 | 1.5:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |
|                                |      |       |       |      |

## Pin Out



# **Block Diagram**



# **Typical Performance Data**



## Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

# **Absolute Maximum Ratings**

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | 1.5 W CW        |
| Input Power <sup>2</sup> | 0.75 CW         |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

# **Recommended Board Layout**



Material is 10 mil FR4

## **SOIC-8**



# Two-Way 0° Power Splitter Combiner 0.81–0.96 GHz



PD09-73

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel



The PD09-73 is a monolithic two-way in-phase hybrid junction tuned for the 0.81–0.96 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOT-6 lead surface mount package.



## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 0.81 |       | 0.96  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.4   | 0.6   | dB   |
| Isolation                      | 18   | 25    |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.4:1 |      |
| Output VSWR                    |      | 1.3:1 | 1.5:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |

#### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |  |  |
|--------------------------|-----------------|--|--|
| Input Power <sup>1</sup> | +1.5 W CW       |  |  |
| Input Power <sup>2</sup> | +0.75 CW        |  |  |
| Operating Temperature    | -40°C to +85°C  |  |  |
| Storage Temperature      | -65°C to +150°C |  |  |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

### **Recommended Board Layout**



Material is 10 mil FR4

#### SOT-6





PD15-12

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOIC-8 Package
- Tape & Reel



The PD15-12 is a monolithic two-way in-phase hybrid junction tuned for the 1.42-1.66 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.



## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.42 |       | 1.66  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.4   | 0.6   | dB   |
| Isolation                      | 20   | 23    |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.4:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |

#### Pin Out







#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |  |  |  |
|--------------------------|-----------------|--|--|--|
| Input Power <sup>1</sup> | 1.5 W CW        |  |  |  |
| Input Power <sup>2</sup> | 0.75 CW         |  |  |  |
| Operating Temperature    | -40°C to +85°C  |  |  |  |
| Storage Temperature      | -65°C to +150°C |  |  |  |

- 1. When used as a power divider with a 2.0:1 maximum  $\overline{\text{VSWR}}$  on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

# **Recommended Board Layout**



Material is 10 mil FR4

#### SOIC-8



# Two-Way 0° Power Splitter Combiner 1.42–1.66 GHz



PD15-73

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel

## **Description**

The PD15-73 is a monolithic two-way in-phase hybrid junction tuned for the 1.42–1.66 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOT-6 lead surface mount package.



## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.42 |       | 1.66  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.4   | 0.6   | dB   |
| Isolation                      | 18   | 23    |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.4:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |

#### Pin Out







#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |  |  |
|--------------------------|-----------------|--|--|
| Input Power <sup>1</sup> | 1.5 W CW        |  |  |
| Input Power <sup>2</sup> | 0.75 CW         |  |  |
| Operating Temperature    | -40°C to +85°C  |  |  |
| Storage Temperature      | -65°C to +150°C |  |  |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

# **Recommended Board Layout**



Material is 10 mil FR4

#### **SOT-6**





PD16-73

#### **Features**

- **■** Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel
- Footprint Consistent with Other Parts in the "PD" Series



## **Description**

The PD16-73 is a monolithic two-way in-phase hybrid junction tuned for the 1.42–1.66 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOT-6 lead surface mount package. The footprint of the PD16-73 is the same as the other power dividers in this package style and series to allow for consistent assembly setup.

# **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.42 |       | 1.66  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.4   | 0.6   | dB   |
| Isolation                      | 18   | 23    |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.4:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |

#### Pin Out







#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |  |  |
|--------------------------|-----------------|--|--|
| Input Power <sup>1</sup> | 1.5 W CW        |  |  |
| Input Power <sup>2</sup> | 0.75 CW         |  |  |
| Operating Temperature    | -40°C to +85°C  |  |  |
| Storage Temperature      | -65°C to +150°C |  |  |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

#### **Recommended Board Layout**



Material is 10 mil FR4

#### SOT-6



# Two-Way 0° Power Splitter Combiner 1.71–1.99 GHz



PD18-12

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOIC-8 Package
- Tape & Reel



## **Description**

The PD18-12 is a monolithic two-way in-phase hybrid junction tuned for the 1.71–1.99 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.

## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.71 |       | 1.99  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.4   | 0.6   | dB   |
| Isolation                      | 20   | 23    |       | dB   |
| Input VSWR                     |      | 1.3:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.4:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |

#### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |  |  |
|--------------------------|-----------------|--|--|
| Input Power <sup>1</sup> | 1.5 W CW        |  |  |
| Input Power <sup>2</sup> | 0.75 CW         |  |  |
| Operating Temperature    | -40°C to +85°C  |  |  |
| Storage Temperature      | -65°C to +150°C |  |  |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

## **Recommended Board Layout**



Material is 10 mil FR4

#### SOIC-8





PD18-73

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel



The PD18-73 is a monolithic two-way in-phase hybrid junction tuned for the 1.71–1.99 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOT-6 lead surface mount package.



## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.71 |       | 1.99  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.4   | 0.6   | dB   |
| Isolation                      | 18   | 23    |       | dB   |
| Input VSWR                     |      | 1.3:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.4:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |

#### Pin Out







#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +1.5 W CW       |
| Input Power <sup>2</sup> | +0.75 CW        |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

### **Recommended Board Layout**



Material is 10 mil FR4

#### **SOT-6**



# Two-Way 0° Power Splitter Combiner 1.71–1.99 GHz



PD19-73

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel
- Pin Compatible with PD09-73



The PD19-73 is a monolithic two-way in-phase hybrid junction tuned for the 1.71–1.99 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOT-6 lead surface mount package.

The PD19-73 was designed to be pin-to-pin compatible with the PD09-73 Power Splitter/Combiner. This allows similar board layout for Power Splitter/Combiners in the frequency ranges covering 810–960 MHz and 1.7–1.99 GHz. The PD18-73 also covers 1.71–1.99 GHz but with different pin connections.



## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.71 |       | 1.99  | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.55  | 0.70  | dB   |
| Isolation                      | 20   | 25    |       | dB   |
| Input VSWR                     |      | 1.3:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.4:1 |      |
| Amplitude Balance              |      | ±0.1  | ±0.2  | dB   |
| Phase Balance                  |      | ±1.0  | ±3.0  | Deg. |

#### Pin Out







Insertion Loss vs. Frequency



Input VSWR vs. Frequency



Phase Balance vs. Frequency



Isolation vs. Frequency



**Output VSWR vs. Frequency** 



Amplitude Balance vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +1.5 W CW       |
| Input Power <sup>2</sup> | +0.75 CW        |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

# **Recommended Board Layout**



Material is 10 mil FR4

#### **SOT-6**





PD22-73

#### **Features**

- Low Cost
- Low Profile
- Small SOT-6 Package
- Tape & Reel



The PD22-73 is a 50  $\Omega$ , in-phase combiner/splitter tuned for the 2.1–2.3 GHz band. The monolithic circuitry is 100% passive and offers low loss, high isolation and exceptional phase/amplitude balance. It is available in the SOT-6 leaded surface mount package.



## Electrical Specifications at 25°C, 50 $\Omega$ System

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 2.1  |       | 2.3   | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.55  | 0.7   | dB   |
| Isolation¹                     | 15.0 | 18.00 |       | dB   |
| Input VSWR                     |      | 1.5:1 | 2.0:1 |      |
| Output VSWR                    |      | 1.1:1 | 1.3:1 |      |
| Amplitude Balance              |      | ±0.10 | ±0.2  | dB   |
| Phase Balance                  |      | ±1.00 | ±3.0  | Deg. |

<sup>&</sup>lt;sup>1</sup> Isolation can be increased to 23 dB with an external 5.6 nH inductor from in/sum port to ground.

#### Pin Out



PD22 is the part marking.





Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



**Amplitude Balance vs. Frequency** 



Phase Balance vs. Frequency

#### SOT-6



# **Recommended Board Layout**



Material is 10 mil FR4

# **Absolute Maximum Ratings**

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | 1.5 W CW        |
| Input Power <sup>2</sup> | 0.75 W CW       |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

# Four-Way 0° Power Splitter Combiner 0.81-0.96 GHz



#### PD4W09-12

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOIC-8 Package



# **Description**

The PD4W09-12 is a monolithic four-way in-phase hybrid junction tuned for the 0.81-0.96 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.

## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 0.81 |       | 0.96  | GHz  |
| Insertion Loss Less 6 dB Split |      | 1.3   | 1.5   | dB   |
| Isolation                      | 20   | 23    |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.5:1 |      |
| Amplitude Balance              |      | ±0.4  | ±0.6  | dB   |
| Phase Balance                  |      | ±6    | ±8    | Deg. |

#### Pin Out





#### **Performance Data**



#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +1.5 W CW       |
| Input Power <sup>2</sup> | +0.375 CW       |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

### **Recommended Board Layout**



Material is 10 mil FR4

#### SOIC-8





#### PD4W09-59

#### **Features**

- Low Cost
- Low Profile
- Available in Small MSOP-8 Package
- Tape & Reel



The PD4W09-59 is a monolithic four-way in-phase hybrid junction tuned for the 0.81–0.96 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the MSOP-8 leaded surface mount package.



# **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 0.81 |       | 0.96  | GHz  |
| Insertion Loss Less 6 dB Split |      | 1.3   | 1.5   | dB   |
| Isolation                      | 20   | 23    |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.5:1 |      |
| Amplitude Balance              |      | ±0.4  | ±0.6  | dB   |
| Phase Balance                  |      | ±6    | ±8    | Deg. |

## Pin Out







#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Amp. Balance vs. Frequency



Phase Balance vs. Frequency

#### MSOP-8





### **Recommended Board Layout**



P-8 Absolute Maximum Ratings

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +1.5 W CW       |
| Input Power <sup>2</sup> | +0.375 CW       |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

<sup>1.</sup> When used as a power divider with a 2.0:1 maximum VSWR on all ports.

<sup>2.</sup> When used as a power combiner with a 2.0:1 maximum VSWR on all ports.

# Four-Way 0° Power Splitter Combiner 1.71-1.99 GHz



#### PD4W18-12

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOIC-8 Package
- Tape & Reel



The PD4W18-12 is a monolithic four-way in-phase hybrid junction tuned for the 1.71-1.99 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.



## **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.71 |       | 1.99  | GHz  |
| Insertion Loss Less 6 dB Split |      | 0.7   | 1.0   | dB   |
| Isolation                      | 18   | 25    |       | dB   |
| Input VSWR                     |      | 1.6:1 | 1.8:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.5:1 |      |
| Amplitude Balance              |      | ±.3   | ±.4   | dB   |
| Phase Balance                  |      | ±5.0  | ±9.0  | Deg. |

#### Pin Out







#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



**Amplitude Balance vs. Frequency** 



Phase Balance vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +1.5 W CW       |
| Input Power <sup>2</sup> | +0.375 CW       |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -60°C to +150°C |

- 1. When used as a power divider with a 2.0:1 Max. VSWR on all ports.
- 2. When used as a power combiner with 2.0:1 Max. VSWR on all ports.

### **Board Layout**



Material is 10 mil FR4

#### SOIC-8



# Four-Way 0° Power Splitter Combiner 1.71–1.99 GHz



#### PD4W18-59

#### **Features**

- Low Cost
- Low Profile
- Available in Small MSOP-8 Package
- Tape & Reel

## **Description**

The PD4W18-59 is a monolithic four-way in-phase hybrid junction tuned for the 1.71–1.99 GHz band. It offers low loss, high isolation, good input/output matching and exceptional phase/amplitude balance. It is available in the MSOP-8 leaded surface mount package.



#### **Electrical Specifications at 25°C**

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 1.71 |       | 1.99  | GHz  |
| Insertion Loss Less 6 dB Split |      | 0.7   | 1.2   | dB   |
| Isolation                      | 20   | 25    |       | dB   |
| Input VSWR                     |      | 1.3:1 | 1.6:1 |      |
| Output VSWR                    |      | 1.3:1 | 1.6:1 |      |
| Amplitude Balance              |      | ±.3   | ±.4   | dB   |
| Phase Balance                  |      | ±5.0  | ±8.0  | Deg. |

## Pin Out







Insertion Loss vs. Frequency



**Output VSWR vs. Frequency** 



Isolation vs. Frequency



**Amplitude Balance vs. Frequency** 



Input VSWR vs. Frequency



Phase Balance vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +1.5 W CW       |
| Input Power <sup>2</sup> | +0.375 CW       |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -60°C to +150°C |

- 1. When used as a power divider with a 2.0:1 Max. VSWR on all ports.
- 2. When used as a power combiner with 2.0:1 Max. VSWR on all ports.

## **Board Layout**



Material is 10 mil FR4

### MSOP-8







# **Directional Couplers**

DC08-73

#### **Features**

- Low Cost
- Low Profile
- Small SOT-6 Package
- Tape & Reel



The DC08-73 is a monolithic directional coupler tailored to the 0.81–0.96 GHz band. It offers low loss, good isolation, good input/output matching and exceptional coupling repeatability. It may be used at higher frequencies when stronger coupling is required. It is available in the SOT-6 leaded surface mount package.



## **Electrical Specifications at 25°C**

| Parameter                   | Min. | Тур.   | Max.  | Unit |
|-----------------------------|------|--------|-------|------|
| Frequency                   | 0.81 |        | 0.96  | GHz  |
| Insertion Loss <sup>1</sup> |      | .35    | .45   | dB   |
| Isolation                   | 21   | 22     |       | dB   |
| Input VSWR                  |      | 1.05:1 | 1.3:1 |      |
| Output VSWR                 |      | 1.05:1 | 1.3:1 |      |
| Coupling                    | 14   | 15     | 16    | dB   |
| Coupled Port VSWR           |      | 1.2:1  | 1.3:1 |      |

<sup>1.</sup> Coupling loss included.

### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Coupled Port VSWR vs. Frequency



Coupling vs. Frequency

| Characteristic          | Value           |
|-------------------------|-----------------|
| Input Power             | +4 W            |
| Operating Temperature   | -40°C to +85°C  |
| Storage Temperature     | -65°C to +150°C |
| Electrostatic Discharge | +125 V          |

Note: Exceeding these parameters may cause irreversible damage.

### **Recommended Board Layout**



Material is 10 mil FR4.

### SOT-6



# Directional Coupler 0.81-0.96 GHz



DC09-73

### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel



The DC09-73 is a monolithic directional coupler tailored to the 0.81–0.96 GHz band. It offers low loss, good isolation, good input/output matching and exceptional coupling repeatability. It is available in the SOT-6 lead surface mount package.



# **Electrical Specifications at 25°C**

| Parameter         | Min. | Тур.  | Max.  | Unit |
|-------------------|------|-------|-------|------|
| Frequency         | 0.81 |       | 0.96  | GHz  |
| Insertion Loss    |      | 0.2   | 0.3   | dB   |
| Isolation         | 27   | 30    |       | dB   |
| Input VSWR        |      | 1.1:1 | 1.3:1 |      |
| Output VSWR       |      | 1.1:1 | 1.3:1 |      |
| Coupling          | 20.8 | 19.8  | 18.8  | dB   |
| Coupled Port VSWR |      | 1.1:1 | 1.3:1 |      |

### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Coupled Port VSWR vs. Frequency



Coupling vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | 4.0 W CW        |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

<sup>1.</sup> When operating with a 2.0:1 maximum VSWR on all ports.

### **Recommended Board Layout**



Material is 10 mil FR4

### **SOT-6**



DC15-73

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel



The DC15-73 is a monolithic directional coupler tailored to the 1.42–1.66 GHz band. It offers low loss, good isolation, good input/output matching and exceptional coupling repeatability. It is available in the SOT-6 lead surface mount package.



### **Electrical Specifications at 25°C**

| Parameter         | Min. | Тур.  | Max.  | Unit |
|-------------------|------|-------|-------|------|
| Frequency         | 1.42 |       | 1.66  | GHz  |
| Insertion Loss    |      | 0.2   | 0.3   | dB   |
| Isolation         | 30   | 34    |       | dB   |
| Input VSWR        |      | 1.1:1 | 1.3:1 |      |
| Output VSWR       |      | 1.1:1 | 1.3:1 |      |
| Coupling          | 19.4 | 18.4  | 17.4  | dB   |
| Coupled Port VSWR |      | 1.1:1 | 1.3:1 |      |
|                   |      |       |       |      |

### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Coupled Port VSWR vs. Frequency



Coupling vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | 4.0 W CW        |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

<sup>1.</sup> When operating with a 2.0:1 maximum VSWR on all ports.

### **Recommended Board Layout**



Material is 10 mil FR4

### **SOT-6**



# **Directional Coupler**



DC16-73

#### **Features**

- Low Cost
- Low Profile
- Small SOT-6 Package
- Tape & Reel



The DC16-73 is a monolithic directional coupler for low cost wireless applications. It offers low loss, good isolation, good input/output matching and exceptional coupling repeatability. Performance is specified for two different bands. It is available in the SOT-6 leaded surface mount package.



### **Electrical Specifications at 25°C**

| Parameter                   | Min. | Тур.  | Max.  | Unit | Min. | Тур.  | Max.  | Unit |
|-----------------------------|------|-------|-------|------|------|-------|-------|------|
| Frequency                   | 1.42 |       | 1.66  | GHz  | 1.71 |       | 1.99  | GHz  |
| Insertion Loss <sup>1</sup> |      | .25   | .35   | dB   |      | .35   | .45   | dB   |
| Isolation                   | 23   | 24    |       | dB   | 22   | 23    |       | dB   |
| Input VSWR                  |      | 1.1:1 | 1.3:1 |      |      | 1.1:1 | 1.3:1 |      |
| Output VSWR                 |      | 1.1:1 | 1.3:1 |      |      | 1.1:1 | 1.3:1 |      |
| Coupling                    | 14.6 | 15.6  | 16.6  | dB   | 13.8 | 14.8  | 15.8  | dB   |
| Coupled Port VSWR           |      | 1.1:1 | 1.3:1 |      |      | 1.1:1 | 1.3:1 |      |

Coupling loss included.

### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



1.5 1.4 1.3 1.2 1.1 1.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 Frequency (GHz)

**Output VSWR vs. Frequency** 



Coupled Port VSWR vs. Frequency



Coupling vs. Frequency

| Characteristic          | Value           |
|-------------------------|-----------------|
| Input Power             | +4 W            |
| Operating Temperature   | -40°C to +85°C  |
| Storage Temperature     | -65°C to +150°C |
| Electrostatic Discharge | +125 V          |

Note: Exceeding these parameters may cause irreversible damage.

# **Recommended Board Layout**



Material is 10 mil FR4.

### **SOT-6**



DC17-73

#### **Features**

- Low Cost
- Low Profile
- Small SOT-6 Package
- Tape & Reel

### **Description**

The DC17-73 is a monolithic directional coupler for low cost wireless applications. It offers low loss, good isolation, good input/output matching and exceptional coupling repeatability. Performance specified for two different bands. It is available in the SOT-6 lead surface mount package.



# **Electrical Specifications at 25°C**

| Parameter                   | Min. | Тур.  | Max.  | Unit | Min. | Тур.   | Max.   | Unit |
|-----------------------------|------|-------|-------|------|------|--------|--------|------|
| Frequency                   | 1.42 |       | 1.66  | GHz  | 1.71 |        | 1.99   | GHz  |
| Insertion Loss <sup>1</sup> |      | .60   | .70   | dB   |      | .75    | .85    | dB   |
| Isolation                   | 21   | 22    |       | dB   | 20   | 21     |        | dB   |
| Input VSWR                  |      | 1.1:1 | 1.3:1 |      |      | 1.1:1  | 1.3:1  |      |
| Output VSWR                 |      | 1.1:1 | 1.3:1 |      |      | 1.1:1  | 1.3:1  |      |
| Coupling                    | 10.8 | 11.8  | 12.8  | dB   | 9.3  | 10.3   | 11.3   | dB   |
| Coupled Port VSWR           |      | 1.2:1 | 1.3:1 |      |      | 1.25:1 | 1.35:1 |      |

<sup>1.</sup> Coupling loss included.

#### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Coupled Port VSWR vs. Frequency



Coupling vs. Frequency

| Characteristic          | Value           |
|-------------------------|-----------------|
| Input Power             | +4 W            |
| Operating Temperature   | -40°C to +85°C  |
| Storage Temperature     | -65°C to +150°C |
| Electrostatic Discharge | +125 V          |

Note: Exceeding these parameters may cause irreversible damage.

# **Recommended Board Layout**



Material is 10 mil FR4.

### SOT-6



# Directional Coupler 1.71-1.99 GHz



DC18-73

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel



The DC18-73 is a monolithic directional coupler tailored to the 1.71-1.99 GHz band. It offers low loss, good isolation, good input/output matching and exceptional coupling repeatability. It is available in the SOT-6 lead surface mount package.



### **Electrical Specifications at 25°C**

| Parameter         | Min. | Тур.  | Max.  | Unit |
|-------------------|------|-------|-------|------|
| Frequency         | 1.71 |       | 1.99  | GHz  |
| Insertion Loss    |      | 0.2   | 0.3   | dB   |
| Isolation         | 30   | 38    |       | dB   |
| Input VSWR        |      | 1.1:1 | 1.3:1 |      |
| Output VSWR       |      | 1.1:1 | 1.3:1 |      |
| Coupling          | 19.8 | 18.8  | 17.8  | dB   |
| Coupled Port VSWR |      | 1.2:1 | 1.4:1 |      |

### Pin Out







#### Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Coupled Port VSWR vs. Frequency



Coupling vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | 4.0 W CW        |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

<sup>1.</sup> When operating with a 2.0:1 maximum VSWR on all ports.

### **Recommended Board Layout**



Material is 10 mil FR4

### **SOT-6**



DC25-73

#### **Features**

- Low Cost
- Low Profile
- Available in Small SOT-6 Lead Package
- Tape & Reel



The DC25-73 is a monolithic directional coupler tailored to the 2.30–2.60 GHz band. It offers low loss, good isolation, good input/output matching and exceptional coupling repeatability. It is available in the SOT-6 lead surface mount package.



# **Electrical Specifications at 25°C**

| Parameter         | Min. | Тур.  | Max.  | Unit |
|-------------------|------|-------|-------|------|
| Frequency         | 2.30 |       | 2.60  | GHz  |
| Insertion Loss    |      | 0.2   | 0.3   | dB   |
| Isolation         | 30   | 33    |       | dB   |
| Input VSWR        |      | 1.1:1 | 1.3:1 |      |
| Output VSWR       | ,    | 1.1:1 | 1.3:1 |      |
| Coupling          | 18.2 | 17.2  | 16.2  | dB   |
| Coupled Port VSWR |      | 1.3:1 | 1.5:1 |      |

### Pin Out







Insertion Loss vs. Frequency



Isolation vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Coupled Port VSWR vs. Frequency



Coupling vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +4.0 W CW       |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |

<sup>1.</sup> When operating with a 2.0:1 maximum VSWR on all ports.

### **Recommended Board Layout**



Material is 10 mil FR4

### **SOT-6**





# **Hybrids**

HY86-12

### **Features**

- Low Cost
- Low Profile
- Small SOIC-8 Package
- Tape & Reel



The HY86-12 is a 90 degree hybrid tuned for the 0.82–0.90 GHz band. The monolithic circuitry is 100% passive and offers low loss, high isolation and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.



# **Electrical Specifications at 25°C**

| Parameter                   | Min. | Тур.   | Max.  | Unit |
|-----------------------------|------|--------|-------|------|
| Frequency                   | 0.82 |        | 0.90  | GHz  |
| Insertion Loss <sup>1</sup> |      | .4     | .5    | dB   |
| Isolation                   | 25   | 30     |       | dB   |
| VSWR All Ports              |      | 1.15:1 | 1.2:1 |      |
| Amplitude Balance           |      | ±.5    | ±.8   | dB   |
| Phase Balance               |      | ±1.0   | ±2.0  | Deg. |

<sup>1.</sup> Less 3 dB power split.

### Pin Out







Path Losses vs. Frequency



**Amplitude Balance vs. Frequency** 



Coupled - Direct Phase vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Isolation vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +4 W            |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |
| Electrostatic Discharge  | +125 V          |

<sup>1.</sup> Exceeding these parameters may cause irreversible damage.

# **Recommended Board Layout**



Materials 10 mil FR-4. Dimensions are in inches.

### **SOIC-8**





#### HY92-12

#### **Features**

- Low Cost
- Low Profile
- Small SOIC-8 Package
- Tape & Reel



The HY92-12 is a 90 degree hybrid tuned for the 0.88-0.96 GHz band. The monolithic circuitry is 100% passive and offers low loss, high isolation and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.



# **Electrical Specifications at 25°C**

| Parameter                   | Min. | Тур.  | Max.  | Unit |
|-----------------------------|------|-------|-------|------|
| Frequency                   | 0.88 |       | 0.96  | GHz  |
| Insertion Loss <sup>1</sup> |      | .4    | .5    | dB   |
| Isolation                   | 20   | 25    |       | dB   |
| VSWR All Ports              |      | 1.1:1 | 1.2:1 |      |
| Amplitude Balance           |      | ±.5   | ±.8   | dB   |
| Phase Balance               |      | ±1.0  | ±2.0  | Deg. |

<sup>1.</sup> Less 3 dB power split.

#### Pin Out







Path Losses vs. Frequency



**Amplitude Balance vs. Frequency** 



Coupled - Direct Phase vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Isolation vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +4 W            |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |
| Electrostatic Discharge  | +125 V          |

Exceeding these parameters may cause irreversible damage.

### **Recommended Board Layout**



Materials 10 mil FR-4. Dimensions are in inches.

### SOIC-8





### HY17-12

#### **Features**

- Low Cost
- Low Profile
- Small SOIC-8 Package
- Tape & Reel



The HY17-12 is a 90 degree hybrid tuned for the 1.71–1.88 GHz band. The monolithic circuitry is 100% passive and offers low loss, high isolation and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.



# **Electrical Specifications at 25°C**

| Parameter                   | Min. | Тур.         | Max.         | Unit |
|-----------------------------|------|--------------|--------------|------|
| Frequency                   | 1.71 |              | 1.88         | GHz  |
| Insertion Loss <sup>1</sup> |      | .5           | .6           | dB   |
| Isolation                   | 19   | 20           |              | dB   |
| VSWR All Ports              |      | 1.2:1        | 1.3:1        |      |
| Amplitude Balance           |      | ±.5          | ±1.0         | dB   |
| Phase Balance               |      | <u>+</u> 1.0 | <u>+</u> 2.0 | Deg. |

<sup>1.</sup> Less 3 dB power split.

### Pin Out







Path Losses vs. Frequency



Amplitude Balance vs. Frequency



Coupled - Direct Phase vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Isolation vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +4 W            |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |
| Electrostatic Discharge  | +125 V          |

<sup>1.</sup> Exceeding these parameters may cause irreversible damage.

# **Recommended Board Layout**



Materials 10 mil FR-4. Dimensions are in inches.

### SOIC-8





#### HY19-12

### **Features**

- Low Cost
- Low Profile
- Small SOIC-8 Package
- Tape & Reel



The HY19-12 is a 90 degree hybrid tuned for the 1.85–1.99 GHz band. The monolithic circuitry is 100% passive and offers low loss, high isolation and exceptional phase/amplitude balance. It is available in the SOIC-8 leaded surface mount package.



### **Electrical Specifications at 25°C**

| Parameter                   | Min. | Тур.  | Max.  | Unit |
|-----------------------------|------|-------|-------|------|
| Frequency                   | 1.85 |       | 1.99  | GHz  |
| Insertion Loss <sup>1</sup> |      | .5    | .6    | dB   |
| Isolation                   | 17   | 20    |       | dB   |
| VSWR All Ports              |      | 1.3:1 | 1.5:1 |      |
| Amplitude Balance           |      | ±.5   | ±1.1  | dB   |
| Phase Balance               |      | ±1.0  | ±2.0  | Deg. |

<sup>1.</sup> Less 3 dB power split.

#### Pin Out







Path Losses vs. Frequency



**Amplitude Balance vs. Frequency** 



Coupled - Direct Phase vs. Frequency



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Isolation vs. Frequency

| Characteristic           | Value           |
|--------------------------|-----------------|
| Input Power <sup>1</sup> | +4 W            |
| Operating Temperature    | -40°C to +85°C  |
| Storage Temperature      | -65°C to +150°C |
| Electrostatic Discharge  | +125 V          |

<sup>1.</sup> Exceeding these parameters may cause irreversible damage.

# **Recommended Board Layout**



Materials 10 mil FR-4. Dimensions are in inches.

#### SOIC-8



HY22-73

#### **Features**

- Low Cost
- Low Profile
- Small SOT-6 Package
- Tape & Reel



The HY22-73 is a 50  $\Omega$ , 90 degree hybrid tuned for the 2.1–2.3 GHz band. The monolithic circuitry is 100% passive and offers low loss, high isolation and exceptional phase/amplitude balance. It is available in the SOT-6 leaded surface mount package.



### Electrical Specifications at 25°C, 50 $\Omega$ System

| Parameter                      | Min. | Тур.  | Max.  | Unit |
|--------------------------------|------|-------|-------|------|
| Frequency                      | 2.1  |       | 2.3   | GHz  |
| Insertion Loss Less 3 dB Split |      | 0.55  | 0.7   | dB   |
| Isolation                      | 20.0 | 23.00 |       | dB   |
| Input VSWR                     |      | 1.2:1 | 1.5:1 |      |
| Output VSWR                    |      | 1.2:1 | 1.5:1 |      |
| Amplitude Balance              |      | ±0.40 | ±1.1  | dB   |
| Phase Balance                  |      | ±2.00 | ±4.0  | Deg. |

#### Pin Out



# **Block Diagram**



The Pin Out diagram shows the HY22-73 configured for a Divider/Coupler with Pin 1 as the input port and a 50  $\Omega$  termination to be placed at Pin 3. Since the HY22-73 is symmetric, any non-ground pin may be used as the input port. The following table shows the possible pin connection combinations for the HY22-73 used as a Divider/Coupler:

| Input | Termination | Direct | Coupled |
|-------|-------------|--------|---------|
| Pin 1 | Pin 3       | Pin 6  | Pin 4   |
| Pin 3 | Pin 1       | Pin 4  | Pin 6   |
| Pin 4 | Pin 6       | Pin 3  | Pin 1   |
| Pin 6 | Pin 4       | Pin 1  | Pin 3   |



Path Losses vs. Frequency



**Amplitude Balance vs. Frequency** 



**Coupled-Direct Phase vs. Frequency** 



Input VSWR vs. Frequency



**Output VSWR vs. Frequency** 



Isolation vs. Frequency

#### SOT-6



#### **Recommended Board Layout**



Material is FR-4. Dimensions are in inches

### **Absolute Maximum Ratings**

| Characteristic           | Value           |  |  |
|--------------------------|-----------------|--|--|
| Input Power <sup>1</sup> | 2 W CW          |  |  |
| Input Power <sup>2</sup> | 1 W CW          |  |  |
| Operating Temperature    | -40°C to +85°C  |  |  |
| Storage Temperature      | -65°C to +150°C |  |  |

- 1. When used as a power divider with a 2.0:1 maximum VSWR on all ports.
- 2. When used as a power combiner with a 2.0:1 maximum VSWR on all ports.



## **Detectors**

## **Sampling Phase Detectors**



#### SPD1101-111, SPD1102-111, SPD1103-111

#### **Features**

- For Phase Locked VCOs to 22 GHz
- Reference Frequencies Below 50 MHz
- New Surface Mount Package Design
- Small Footprint (90 x 110 Mils)
- Automated Chip on Board Construction

#### **Description**

Skyworks has redesigned its product line of sampling phase detectors using automated chip on board manufacturing technology to provide a more uniform, surface mountable, small footprint device without sacrificing the microwave performance of the original design.

Sampling phase detectors are used to phase lock a microwave VCO to a stable reference source at a submultiple frequency. The sampling phase detector consists of a step recovery diode, capacitors and a microwave mixer consisting of series pair Schottky diodes. The principle of operation may be described as using the step recovery diode to generate a harmonic comb of the reference oscillator frequency and the Schottky diode as a mixer between the closest reference frequency multiple and the microwave signal generated by the VCO. When these frequencies are identical the IF (beat note) signal is a DC voltage; the IF will be sinusoidal when the frequencies are unequal.

The SPD1100 series sampling phase detectors use a selected step recovery diode chip whose carrier lifetime and transition time are appropriate for use in applications allowing reference frequencies below 50 MHz and microwave VCO frequencies as high as 22 GHz. The



Schottky diodes used are low capacitance devices capable of efficient mixer performance at frequencies above 22 GHz. The SPD1101-111, SPD1102-111 and SPD1103-111 utilize low, medium and high barrier Schottky diodes and may be selected according to the available power generated by the microwave VCO.

#### **Absolute Maximum Ratings**

| Characteristic        | Value         |
|-----------------------|---------------|
| Incident Power        | 27 dBm        |
| Operating Temperature | -65 to +150°C |
| Storage Temperature   | -65 to +175°C |
| ESD Human Body Model  | Class 1B      |

#### Electrical Characteristics at 25°C

|             | Microwave Signal     | Schottky Diode |                               |                              |                              | Capacitor              | Step R                       | ecovery D              | Diode      |
|-------------|----------------------|----------------|-------------------------------|------------------------------|------------------------------|------------------------|------------------------------|------------------------|------------|
| Part Number | Drive Level<br>(dBm) | Barrier        | V <sub>F</sub> @ 1 mA<br>(mV) | C <sub>J</sub> @ 0 V<br>(pF) | R <sub>T</sub> @ 5 mA<br>(Ω) | C <sub>C</sub><br>(pF) | C <sub>J</sub> @ 6 V<br>(pF) | T <sub>L</sub><br>(nS) | TT<br>(pS) |
|             | Тур.                 |                |                               | Max.                         | Max.                         | Тур.                   | Max.                         | Тур.                   | Тур.       |
| SPD1101-111 | -3 to 0              | Low            | 270-350                       | 0.10                         | 24                           | 0.5                    | 0.25                         | 10                     | 70         |
| SPD1102-111 | 0 to +3              | Medium         | 370-550                       | 0.10                         | 24                           | 0.5                    | 0.25                         | 10                     | 70         |
| SPD1103-111 | 0 to +13             | High           | 600–700                       | 0.10                         | 24                           | 0.5                    | 0.25                         | 10                     | 70         |

## **Typical Performance**



#### **Suggested Circuit**



Input transformer: 10:1 step down impedance ratio.

#### **Schematic Diagram**



#### -111 Package Outline





## **Attenuators**

# HIP3<sup>™</sup> Variable Attenuator 0.80–1.00 GHz



AV101-12

#### **Features**

- +50 dBm IP3 Typical
- Low Loss 1 dB Typical
- Attenuation 30 dB Typical
- Good VSWR <1.5:1 Typical
- Small SOIC-8 Package



#### **Description**

The AV101-12 is a current controlled variable attenuator from Skyworks' series of HIP3™ components. It is designed to meet the wide dynamic range required in spread spectrum wireless base station applications. A monolithic quadrature hybrid is teamed with a silicon PIN diode pair in a plastic surface mount package reducing size and assuring consistency from part to part.

### **Electrical Specifications at 25°C**

| Parameter                                      | Min. | Тур. | Max. | Unit |
|------------------------------------------------|------|------|------|------|
| Frequency                                      | 0.80 |      | 1.00 | GHz  |
| Insertion Loss (0 mA Control Current)          |      | 1    | 1.5  | dB   |
| Attenuation @ 3.0 mA Control Current (900 MHz) | 18.5 |      | 21.5 | dB   |
| VSWR All Ports                                 |      | 1.5  | 1.8  |      |
| Input 3rd Order Intercept                      | +47  | +50  |      | dBm  |
| Group Delay                                    |      | 0.9  | 1.2  | ns   |

## Operating Characteristics at 25°C (0, +5 V)

| Parameter <sup>1</sup>                                 | Condition                                                                             | Frequency | Min. | Тур. | Max.        | Unit           |
|--------------------------------------------------------|---------------------------------------------------------------------------------------|-----------|------|------|-------------|----------------|
| Switching Characteristics <sup>2</sup>                 | Rise, Fall (10/90% or 90/10% RF) On, Off (50% CTL to 90/10% RF) Video Feedthru (Peak) |           |      |      | 5<br>8<br>5 | μs<br>μs<br>mV |
| Maximum Input Power for <1 dB<br>Attenuation Variation |                                                                                       |           |      | +15  |             | dBm            |

<sup>1.</sup> All measurements made in a 50  $\Omega$  system, unless otherwise specified

<sup>2. 0-4</sup> mA square wave total control current.



Input/Output VSWR vs. Current @ 800 MHz





Input/Output VSWR vs. Current @ 900 MHz



Attenuation vs. Frequency



Input/Output VSWR vs. Current @ 1000 MHz



Typical PIN Diode Current vs. Voltage

#### Pin Out



#### **Absolute Maximum Ratings**

|                               | •                                   |
|-------------------------------|-------------------------------------|
| Characteristic                | Value                               |
| RF Input Power                | 0.5 W CW, 4 W @ 12.5%<br>Duty Cycle |
| Control Current               | 50 mA per Diode                     |
| Operating Temperature         | -40 to +85°C                        |
| Storage Temperature           | -40 to +85°C                        |
| Maximum Reverse Diode Voltage | -10 V                               |
| Electrostatic Discharge       | +125 V                              |

Note: Operating this device above any of these parameters may cause irreversible damage.

## **Recommended Board Layout**



Material is 10 mil FR4.

### **Connection Diagram**



#### SOIC-8



# HIP3™ Variable Attenuator 1.70–2.00 GHz



AV102-12

#### **Features**

- +50 dBm IP3 Typical
- Low Loss 1 dB Typical
- Attenuation 30 dB Typical
- Good VSWR <1.5:1 Typical
- Small SOIC-8 Package



#### **Description**

The AV102-12 is a current controlled variable attenuator from Skyworks' series of HIP3™ components. It is designed to meet the wide dynamic range required in spread spectrum wireless base station applications. A monolithic quadrature hybrid is teamed with a silicon PIN diode pair in a plastic surface mount package reducing size and assuring consistency from part to part.

#### **Electrical Specifications at 25°C**

| Parameter                                       | Min. | Тур. | Max. | Unit |
|-------------------------------------------------|------|------|------|------|
| Frequency                                       | 1.70 |      | 2.00 | GHz  |
| Insertion Loss (0 mA Control Current)           |      | 1.0  | 1.5  | dB   |
| Attenuation @ 3.0 mA Control Current (1850 MHz) | 18.5 |      | 25.0 | dB   |
| VSWR All Ports                                  |      | 1.5  | 1.8  |      |
| Input 3rd Order Intercept                       | +47  | +50  |      | dBm  |
| Group Delay                                     |      | 0.6  | 1.0  | ns   |

#### Operating Characteristics at 25°C (0, +5 V)

| Parameter <sup>1</sup>                                 | Condition                                                                                   | Frequency | Min. | Тур. | Max.        | Unit           |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|------|------|-------------|----------------|
| Switching Characteristics <sup>2</sup>                 | Rise, Fall (10/90% or 90/10% RF)<br>On, Off (50% CTL to 90/10% RF)<br>Video Feedthru (Peak) |           |      |      | 5<br>8<br>2 | μs<br>μs<br>mV |
| Maximum Input Power for <1 dB<br>Attenuation Variation |                                                                                             |           |      | +15  |             | dBm            |

<sup>1.</sup> All measurements made in a 50  $\Omega$  system, unless otherwise specified.

<sup>2. 0-4</sup> mA square wave total control current.



Input/Output VSWR vs. Current
@ 1700 MHz





Input/Output VSWR vs. Current @ 1850 MHz



Attenuation vs. Frequency



Input/Output VSWR vs. Current @ 2000 MHz



Typical PIN Diode Current vs. Voltage

#### Pin Out



#### **Absolute Maximum Ratings**

| Value                              |
|------------------------------------|
| .5 W CW, 4 W @ 12.5%<br>Duty Cycle |
| 50 mA Each Diode                   |
| -40 to +85°C                       |
| -40 to +85°C                       |
| -10 V                              |
| +125 V                             |
|                                    |

Note: Operating this device above any of these parameters may cause irreversible damage.

## **Recommended Board Layout**



Material is 10 mil FR4.

#### **Connection Diagram**



#### SOIC-8



# HIP3<sup>™</sup> Variable Attenuator 0.80–1.00 GHz



AV111-12

#### **Features**

- +40 dBm IP3 Typical
- Low Loss 1 dB Typical
- Attenuation 30 dB Typical
- Good VSWR <1.5:1 Typical
- Low Phase Shift



#### **Description**

The AV111-12 is a current controlled variable attenuator from Skyworks' series of HIP3™ components. It is designed to meet the wide dynamic range required in spread spectrum wireless base station applications. A monolithic quadrature hybrid is teamed with a silicon PIN diode pair in a plastic surface mount package reducing size and assuring consistency from part to part.

#### **Electrical Specifications at 25°C**

| Parameter                                                 | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------|------|------|------|------|
| Frequency                                                 | 0.80 |      | 1.0  | GHz  |
| Insertion Loss (0 mA Control Current)                     |      | 1.0  | 1.5  | dB   |
| Attenuation @ 1.2 mA Control Current (900 MHz)            | 17.5 |      | 21.5 | dB   |
| VSWR All Ports                                            |      | 1.5  | 1.8  |      |
| Input 3rd Order Intercept                                 | +37  | +40  |      | dBm  |
| Relative Phase Shift Up to 20 dB Attenuation <sup>1</sup> |      | 7    | 10   | Deg. |
| Group Delay                                               |      | 0.4  | 0.9  | ns   |

## Operating Characteristics at 25°C (0, +5 V)

| Parameter <sup>2</sup>                                 | Condition                                                                                   | Frequency | Min. | Тур. | Max.        | Unit           |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|------|------|-------------|----------------|
| Switching Characteristics <sup>3</sup>                 | Rise, Fall (10/90% or 90/10% RF)<br>On, Off (50% CTL to 90/10% RF)<br>Video Feedthru (Peak) |           |      |      | 5<br>8<br>5 | μs<br>μs<br>mV |
| Maximum Input Power for <1 dB<br>Attenuation Variation |                                                                                             |           |      |      | +15         | dBm            |

<sup>1.</sup> When built with external components as shown in the Pin Out diagram.

<sup>2.</sup> All measurements made in a 50  $\Omega$  system, unless otherwise specified.

<sup>3. 0-4</sup> mA square wave total control current.



Input/Output VSWR vs. Current



Relative Phase vs. Frequency



Relative Phase vs. Attenuation



Attenuation vs. Current



Attenuation vs. Frequency



Typical PIN Diode Current vs. Voltage

#### Pin Out



## **Absolute Maximum Ratings**

|                               | _                                   |
|-------------------------------|-------------------------------------|
| Characteristic                | Value                               |
| RF Input Power                | 0.5 W CW, 4 W @ 12.5%<br>Duty Cycle |
| Control Current               | 50 mA per Diode                     |
| Operating Temperature         | -65 to +125°C                       |
| Storage Temperature           | -65 to +125°C                       |
| Maximum Reverse Diode Voltage | -100 V                              |
| Electrostatic Discharge       | +125 V                              |

Note: Operating this device above any of these parameters may cause irreversible damage.

### **Recommended Board Layout**



Material is 10 mil FR4.

### **Connection Diagram**



#### SOIC-8



# HIP3™ Variable Attenuator 1.7–2.0 GHz



AV112-12

#### **Features**

■ Specified Attenuation: 17.5–25 dB

■ Total Attenuation: 30 dB Typical

■ Low Insertion Loss: < 1.5 dB

■ Low Distortion: +40 dBm Typical

Low Phase Shift and Delay



#### **Description**

The AV112-12 is a low distortion, PIN diode variable attenuator in a small SOIC-8 package. The design is based on Skyworks' unique series of HIP3™ components. The AV112-12 consists of a monolithic quadrature hybrid and a matched pair of PIN diodes designed for low distortion attenuators.

#### **Electrical Specifications at 25°C**

| Parameter                                       | Min. | Тур. | Max. | Unit |
|-------------------------------------------------|------|------|------|------|
| Frequency                                       | 1.7  |      | 2.0  | GHz  |
| Insertion Loss (0 mA Control Current)           |      | 1.0  | 1.5  | dB   |
| Attenuation @ 1.2 mA Control Current (1.85 GHz) | 17.5 |      | 25.0 | dB   |
| SWR (All Ports)                                 |      | 1.5  | 1.8  |      |
| Input 3rd Order Intercept Point                 | +37  | +40  |      | dBm  |
| Relative Phase Shift Up to 20 dB Attenuation    |      | 7    | 10   | Deg. |
| Group Delay                                     |      | 0.6  | 0.9  | ns   |

#### Operating Characteristics at 25°C (0, +5 V)

| Parameter <sup>1</sup>                                  | Condition                                                                                   | Frequency | Min. | Тур. | Max.        | Unit           |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|------|------|-------------|----------------|
| Switching Characteristics <sup>2</sup>                  | Rise, Fall (10/90% or 90/10% RF)<br>On, Off (50% CTL to 90/10% RF)<br>Video Feedthru (Peak) |           |      |      | 5<br>8<br>5 | μs<br>μs<br>mV |
| Maximum Input Power for < 1 dB<br>Attenuation Variation |                                                                                             |           |      |      | +15         | dBm            |

<sup>1.</sup> All measurements made in a 50  $\Omega$  system.

<sup>2.</sup> Driver Pulse — 0-4 mA square wave



**Attenuation vs. Control Current** 



Input Return vs. Current Control



Attenuation vs. Frequency



**Output Return vs. Current Control** 

### **Absolute Maximum Ratings**

| Characteristic                | Value                               |
|-------------------------------|-------------------------------------|
| RF Input Power                | 0.5 W CW, 4 W @ 12.5%<br>Duty Cycle |
| Control Current               | 50 mA per Diode                     |
| Operating Temperature         | -65 to +125°C                       |
| Storage Temperature           | -65 to +125°C                       |
| Maximum Reverse Diode Voltage | -100 V                              |
| Electrostatic Discharge       | +125 V                              |

Note: Operating this device above any of these parameters may cause irreversible damage

#### Pin Out



## **Recommended Board Layout**



Material is 10 mil FR4.

#### **Connection Diagram**



#### **SOIC-8**



## HIP3™ Variable Attenuator 2.10–2.30 GHz



AV113-12

#### **Features**

- Low Loss 1.4 dB Typical
- Attenuation 18 dB Typical
- Good VSWR <1.5:1 Typical
- Small SOIC-8 Package
- For IMT-2000 Applications



#### **Description**

The AV113-12 is a current controlled variable attenuator from Skyworks' series of HIP3™ components. It is designed to meet the wide dynamic range required in IMT-2000 applications. A monolithic quadrature hybrid is teamed with a silicon PIN diode pair in a plastic surface mount package reducing size and assuring consistency from part to part.

#### **Electrical Specifications at 25°C**

| Parameter                             | Min. | Тур. | Max. | Unit |
|---------------------------------------|------|------|------|------|
| Frequency                             | 2.1  |      | 2.3  | GHz  |
| Insertion Loss (0 mA Control Current) |      | 1.4  | 1.6  | dB   |
| Attenuation @ 1.0 mA Control Current  | 16.5 | 18   |      | dB   |
| VSWR All Ports                        |      | 1.5  |      |      |
| Input 3rd Order Intercept Point       |      | 40   |      | dBm  |
| Group Delay                           |      | 0.4  | 0.8  | ns   |

## Operating Characteristics at 25°C (0, +5 V)

| Parameter <sup>1</sup>                                 | Condition                                                                                   | Frequency | Min. | Тур. | Max.        | Unit           |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|------|------|-------------|----------------|
| Switching Characteristics <sup>2</sup>                 | Rise, Fall (10/90% or 90/10% RF)<br>On, Off (50% CTL to 90/10% RF)<br>Video Feedthru (Peak) |           |      |      | 5<br>8<br>2 | μs<br>μs<br>mV |
| Maximum Input Power for <1 dB<br>Attenuation Variation |                                                                                             |           |      | +15  |             | dBm            |

<sup>1.</sup> All measurements made in a 50  $\Omega$  system, unless otherwise specified.

<sup>2. 0-4</sup> mA square wave total control current.



**Attenuation vs. Control Current** 



Input Return Loss vs. Current Control



Attenuation vs. Frequency



**Output Return Loss vs. Current Control** 

#### **Absolute Maximum Ratings**

| Characteristic                | Value                               |
|-------------------------------|-------------------------------------|
| RF Input Power                | 0.5 W CW, 4 W @ 12.5%<br>Duty Cycle |
| Control Current               | 50 mA per Diode                     |
| Operating Temperature         | -40 to +85°C                        |
| Storage Temperature           | -40 to +85°C                        |
| Maximum Reverse Diode Voltage | -10 V                               |
| Electrostatic Discharge       | +125 V                              |

Note: Operating this device above any of these parameters may cause irreversible damage.

#### Pin Out



#### **Recommended Board Layout**



Material is 10 mil FR4.

SOIC-8



### **Connection Diagram**



# HIP3™ Variable Attenuator for AMPS and GSM Base Stations



AV131-315

#### **Features**

- 23 dB Attenuation Range
- 1.5 dB Insertion Loss, 1.5 SWR
- 0-12 V Control Voltage
- **43** dBm IP3
- Small Footprint LGA Package
- Designed for AMPS and GSM Base Stations



The AV131-315 is a voltage controlled variable attenuator from Skyworks' series of HIP3 $^{\text{TM}}$  components. It is specifically designed and specified for use as a wide dynamic range low distortion attenuator for AMPS and GSM base station applications centered at 881.5 MHz and 942.5 MHz. The AV131-315 employs a monolithic quadrature hybrid and a pair of silicon PIN diodes to achieve the specified low distortion performance. It operates from 0–12 V at 1.6 mA typical control current at maximum attenuation. The AV131-315 is packaged in a small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.



## **Electrical Specifications at 25°C**

| Parameter                               | Condition                                                          | Min.     | Тур. | Max.    | Unit     |
|-----------------------------------------|--------------------------------------------------------------------|----------|------|---------|----------|
| AMPS Frequency Range (BW)               |                                                                    | 869      |      | 894     | MHz      |
| GSM Frequency Range (BW)                |                                                                    | 925      |      | 960     | MHz      |
| Control Voltage (C <sub>V</sub> ) Range |                                                                    | 0        |      | 12      | V        |
| Insertion Loss in BW                    | C <sub>V</sub> = 0 V                                               |          |      | 1.5     | dB       |
| Attenuation Range                       | At $F_O$ , $C_V = 10 \text{ V}$<br>At $F_O$ , $C_V = 12 \text{ V}$ | 18<br>23 |      | 22<br>- | dB<br>dB |
| VSWR in BW                              |                                                                    |          |      | 1.5     |          |
| IP3                                     | 900/905 MHz, C <sub>V</sub> = 0 V                                  | 43       |      |         | dBm      |
| IM3                                     | 8 dBm                                                              |          |      | -70     | dBc      |



Insertion Loss vs. Frequency and Control Voltage — AMPS Band



Input/Output Return Loss vs. Frequency and Control Voltage — AMPS Band



3rd Order Intermod vs. Control Voltage RF<sub>1</sub> = 0.900 GHz, RF<sub>2</sub> = 0.905 GHz @ 8 dBm



Insertion Loss Flatness vs. Control Voltage — AMPS Band



Phase vs. Frequency and Control Voltage — AMPS Band



Insertion Loss vs. Frequency and Control Voltage — GSM Band



Input/Output Return Loss vs. Frequency and Control Voltage — GSM Band



3rd Order Intermod vs. Control Voltage RF<sub>1</sub> = 0.900 GHz, RF<sub>2</sub> = 0.905 GHz @ 8 dBm



Insertion Loss Flatness vs. Control Voltage — GSM Band



Phase vs. Frequency and Control Voltage — GSM Band



**Total Current vs. Control Voltage** 

#### Pin Out (Bottom View)



| Terminal No.           | Terminal Name |
|------------------------|---------------|
| A <sub>1</sub> (Pin 1) | IN/OUT        |
| A <sub>2</sub>         | GND           |
| A <sub>3</sub>         | IN/OUT        |
| B <sub>1</sub>         | GND           |
| В3                     | GND           |
| C <sub>1</sub>         | Vcontrol      |
| C <sub>2</sub>         | GND           |
| C <sub>3</sub>         | Vcontrol      |

#### **Absolute Maximum Ratings**

| Characteristic                | Value                               |
|-------------------------------|-------------------------------------|
| RF Input Power                | 0.5 W CW, 4 W @ 12.5%<br>Duty Cycle |
| Control Voltage               | 15 V                                |
| Control Current               | 50 mA Each Diode                    |
| Operating Temperature         | -40 to +85°C                        |
| Storage Temperature           | -40 to +85°C                        |
| Maximum Reverse Diode Voltage | -10 V                               |
| Electrostatic Discharge       | +125 V                              |

Note: Operating this device above any of these parameters may cause irreversible damage.

#### **Connection Diagram**



-315



# HIP3™ Variable Attenuator for DCS and PCS Base Stations



AV132-315

#### **Features**

- 23 dB Attenuation Range
- 1.5 dB Insertion Loss, 1.5 SWR
- 0-12 V Control Voltage
- 43 dBm IP3
- Small Footprint LGA Package
- Designed for DCS/PCS Base Station Applications



#### **Description**

The AV132-315 is a voltage controlled variable attenuator from Skyworks' series of HIP3™ components. It is specifically designed and specified for use as a wide dynamic range low distortion attenuator for DCS and PCS base station applications centered at 1837.5 MHz and 1960 MHz. The AV132-315 employs a monolithic quadrature hybrid and a pair of silicon PIN diodes to achieve the specified low distortion performance. It operates from 0–12 V with 1.6 mA typical control current at maximum attenuation. The AV132-315 is packaged in a small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.

#### **Electrical Specifications at 25°C**

| Parameter                               | Condition                                                          | Min.     | Тур. | Max.    | Unit     |
|-----------------------------------------|--------------------------------------------------------------------|----------|------|---------|----------|
| DCS Frequency Range (BW)                |                                                                    | 1805     |      | 1870    | MHz      |
| PCS Frequency Range (BW)                | F <sub>O</sub> ± 30.0 MHz                                          | 1930     |      | 1990    | MHz      |
| Control Voltage (C <sub>V</sub> ) Range |                                                                    | 0        |      | 12      | V        |
| Insertion Loss in BW                    | C <sub>V</sub> = 0 V                                               |          |      | 1.5     | dB       |
| Attenuation Range                       | At $F_O$ , $C_V = 10 \text{ V}$<br>At $F_O$ , $C_V = 12 \text{ V}$ | 18<br>23 |      | 22<br>- | dB<br>dB |
| VSWR in BW                              |                                                                    |          |      | 1.5     |          |
| IP3                                     | 1900/1905 MHz, C <sub>V</sub> = 0 V                                | 43       |      |         | dBm      |
| IM3                                     | 8 dBm                                                              |          |      | -70     | dBc      |



Insertion Loss vs. Frequency and Control Voltage — DCS Band



Input/Output Return Loss vs. Frequency and Control Voltage — DCS Band



IP3 vs. Control Voltage RF<sub>1</sub> = 1.900 GHz, RF<sub>2</sub> = 1.905 GHz @ 8 dBm



Insertion Loss Flatness vs. Control Voltage — DCS Band



Phase vs. Frequency and Control Voltage — DCS Band



**Total Current vs. Control Voltage** 



Insertion Loss vs. Frequency and Control Voltage — PCS Band



Input/Output Return Loss vs. Frequency and Control Voltage — PCS Band



3rd Order Intermod vs. Control Voltage RF<sub>1</sub> = 1.900 GHz, RF<sub>2</sub> = 1.905 GHz @ 8 dBm



Insertion Loss Flatness vs. Control Voltage — PCS Band



Phase vs. Frequency and Control Voltage — PCS Band

#### Pin Out (Bottom View)



| Terminal No.           | Terminal Name |
|------------------------|---------------|
| A <sub>1</sub> (Pin 1) | IN/OUT        |
| A <sub>2</sub>         | GND           |
| A <sub>3</sub>         | IN/OUT        |
| B <sub>1</sub>         | GND           |
| В3                     | GND           |
| C <sub>1</sub>         | Vcontrol      |
| C <sub>2</sub>         | GND           |
| C <sub>3</sub>         | Vcontrol      |

#### **Absolute Maximum Ratings**

| Characteristic                | Value                               |
|-------------------------------|-------------------------------------|
| RF Input Power                | 0.5 W CW, 4 W @ 12.5%<br>Duty Cycle |
| Control Voltage               | 15 V                                |
| Control Current               | 50 mA Each Diode                    |
| Operating Temperature         | -40 to +85°C                        |
| Storage Temperature           | -40 to +85°C                        |
| Maximum Reverse Diode Voltage | -10 V                               |
| Electrostatic Discharge       | +125 V                              |

Note: Operating this device above any of these parameters may cause irreversible damage.

#### **Connection Diagram**



-315



# HIP3™ Variable Attenuator for UMTS Base Stations



AV133-315

#### **Features**

- 23 dB Attenuation Range
- 1.5 dB Insertion Loss, 1.5 SWR
- 0-12 V Control Voltage
- 43 dBm IP3
- Small Footprint LGA Package
- Designed for UMTS Base Stations



The AV133-315 is a voltage controlled variable attenuator from Skyworks' series of HIP3™ components. It is specifically designed and specified for use as a wide dynamic range low distortion attenuator for UMTS base station applications centered at 2140 MHz. The AV133-315 employs a monolithic quadrature hybrid and a pair of silicon PIN diodes to achieve the specified low distortion performance. It operates from 0–12 V at 1.6 mA typical control current at maximum attenuation. The AV133-315 is packaged in a small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.



### **Electrical Specifications at 25°C**

| Parameter                               | Condition                                          | Min.     | Тур. | Max.    | Unit     |  |
|-----------------------------------------|----------------------------------------------------|----------|------|---------|----------|--|
| UMTS Frequency Range (BW)               | F <sub>O</sub> ± 12.5 MHz                          | 2110     |      | 2170    | MHz      |  |
| Control Voltage (C <sub>V</sub> ) Range |                                                    | 0        |      | 12      | V        |  |
| Insertion Loss in BW                    | C <sub>V</sub> = 0 V                               |          |      | 1.5     | dB       |  |
| Attenuation Range                       | At $F_O$ , $C_V = 10 V$<br>At $F_O$ , $C_V = 12 V$ | 18<br>23 |      | 22<br>- | dB<br>dB |  |
| VSWR in BW                              |                                                    |          |      | 1.5     |          |  |
| IP3                                     | 2140/2145 MHz, C <sub>V</sub> = 0 V                | 43       |      |         | dBm      |  |
| IM3                                     | 8 dBm                                              |          |      | -70     | dBc      |  |



## Insertion Loss vs. Frequency and Control Voltage — UMTS Band



Input/Output Return Loss vs. Frequency and Control Voltage — UMTS Band



3rd Order Intermod Intercept vs. Control Voltage RF<sub>1</sub> = 2.140 GHz, RF<sub>2</sub> = 2.145 GHz @ 8 dBm



Insertion Loss Flatness vs. Control Voltage — UMTS Band



Phase vs. Frequency and Control Voltage — UMTS Band



**Total Current vs. Control Voltage** 

#### Pin Out (Bottom View)



| Terminal No.           | Terminal Name |
|------------------------|---------------|
| A <sub>1</sub> (Pin 1) | IN/OUT        |
| A <sub>2</sub>         | GND           |
| A <sub>3</sub>         | IN/OUT        |
| B <sub>1</sub>         | GND           |
| B <sub>3</sub>         | GND           |
| C <sub>1</sub>         | Vcontrol      |
| C <sub>2</sub>         | GND           |
| C <sub>3</sub>         | Vcontrol      |

#### **Absolute Maximum Ratings**

| Characteristic                | Value                               |  |  |  |  |  |
|-------------------------------|-------------------------------------|--|--|--|--|--|
| RF Input Power                | 0.5 W CW, 4 W @ 12.5%<br>Duty Cycle |  |  |  |  |  |
| Control Voltage               | 15 V                                |  |  |  |  |  |
| Control Current               | 50 mA Each Diode                    |  |  |  |  |  |
| Operating Temperature         | -40 to +85°C                        |  |  |  |  |  |
| Storage Temperature           | -40 to +85°C                        |  |  |  |  |  |
| Maximum Reverse Diode Voltage | -10 V                               |  |  |  |  |  |
| Electrostatic Discharge       | +125 V                              |  |  |  |  |  |

Note: Operating this device above any of these parameters may cause irreversible damage.

#### **Connection Diagram**



-315



## GaAs IC 25 dB Voltage Variable Attenuator 2.7–4.0 GHz



AV141-321

#### **Features**

- Power Control for 3.5 GHz Fixed Wireless Applications
- Minimum 25 dB Attenuation
- Positive 0.2–1.2 V Control Voltage
- QFN-12 3 x 3 mm Package
- Low Cost
- No External Components Needed

#### **Description**

The AV141-321 is a GaAs IC PHEMT voltage variable attenuator that has been designed for WLAN applications. Operating from 2.7–4.0 GHz, the AV141-321 is ideal for low cost applications such as 3.5 GHz fixed wireless LAN power control applications.



### **Absolute Maximum Ratings**

| Characteristic        | Value           |
|-----------------------|-----------------|
| RF Input Power        | 1 W Max.        |
| Control Voltage       | -0.2 V, +6 V    |
| Operating Temperature | -40°C to +85°C  |
| Storage Temperature   | -65°C to +150°C |

<sup>1.</sup> All measurements made in a 50  $\Omega$  system, unless otherwise specified.

#### **Electrical Specifications at 25°C**

| Parameter                                    | Frequency   | Min. | Тур. | Max. | Unit |
|----------------------------------------------|-------------|------|------|------|------|
| Insertion Loss (V <sub>C</sub> = 1.2 V)      | 2.7-4.0 GHz |      | 0.7  | 1.0  | dB   |
| Maximum Attenuation (V <sub>C</sub> = 0.2 V) | 2.7-4.0 GHz | 25   | 30   |      | dB   |
| VSWR — All Ports                             | 2.7-4.0 GHz |      | 1.5  | 1.8  |      |

#### Operating Characteristics at 25°C (0, +1.2 V)

| Parameter                                            | Condition                                                                      | Frequency   | Min. | Тур.            | Max. | Unit           |  |
|------------------------------------------------------|--------------------------------------------------------------------------------|-------------|------|-----------------|------|----------------|--|
| Switching Characteristics                            | Rise, Fall (10/90% or 90/10% RF) On, Off (50% CTL to 90/10% RF) Video Feedthru |             | 80   | 50<br>150<br>25 |      | ns<br>ns<br>mV |  |
| Maximum Input Power for < 1 dB Attenuation Variation |                                                                                | 2.7–4.0 GHz |      | 13              |      | dBm            |  |
| Input 3rd Order Intercept Point (IIP3)               |                                                                                | 2.7-4.0 GHz |      | 20              |      | dBm            |  |
| Control Voltage                                      |                                                                                |             | 0.2  |                 | 1.2  | V              |  |
|                                                      |                                                                                |             |      |                 |      |                |  |

<sup>1.</sup> All measurements made in a 50  $\Omega$  system, unless otherwise specified.

<sup>2.</sup> For worst case state.

<sup>2.</sup> For worst case state.

## Typical Performance Data at 25°C



Insertion Loss vs. Frequency



Attenuation vs. Control Voltage



**Output VSWR vs. Frequency** 



**Maximum Attenuation vs. Frequency** 



VSWR vs. Control Voltage



Input IP3 vs. Frequency



#### **OFN-12**



### **Evaluation Board Layout**



#### Pin Out



Ground is connected to paddle on bottom.

## Typical S-Parameters (Control Voltage 0/+1.2 V)

| Insertion Loss State # GHZ S MA R 50 |                 |                  |                 |                  |                 | High Attenuation State<br># GHZ S MA R 50 |                 |                  |                 |                  |                 |                  |                 |                  |                 |                  |
|--------------------------------------|-----------------|------------------|-----------------|------------------|-----------------|-------------------------------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|
| Freq.<br>(GHz)                       | S <sub>11</sub> | S <sub>11a</sub> | S <sub>21</sub> | S <sub>21a</sub> | S <sub>12</sub> | S <sub>12a</sub>                          | S <sub>22</sub> | S <sub>22a</sub> | S <sub>11</sub> | S <sub>11a</sub> | S <sub>21</sub> | S <sub>21a</sub> | S <sub>12</sub> | S <sub>12a</sub> | S <sub>22</sub> | S <sub>22a</sub> |
| 2.5                                  | 0.330           | 66.05            | 0.887           | -135.38          | 0.913           | -135.67                                   | 0.312           | 45.02            | 0.160           | 5.13             | 0.074           | 126.57           | 0.074           | 126.20           | 0.161           | -18.79           |
| 3.0                                  | 0.242           | 18.19            | 0.914           | -175.58          | 0.946           | -175.25                                   | 0.210           | -22.04           | 0.129           | -40.89           | 0.021           | 46.26            | 0.021           | 46.12            | 0.172           | -71.10           |
| 3.5                                  | 0.165           | -33.76           | 0.913           | 144.77           | 0.951           | 144.79                                    | 0.145           | -94.37           | 0.152           | -97.28           | 0.026           | -107.80          | 0.026           | -107.54          | 0.209           | -118.44          |
| 4.0                                  | 0.070           | -68.30           | 0.916           | 103.60           | 0.959           | 103.52                                    | 0.080           | -152.16          | 0.134           | -151.61          | 0.046           | -178.59          | 0.047           | -179.41          | 0.224           | -161.45          |

Measured S-Parameters include the evaluation board.



## ATN3580 Series

### **Features**

- Specified Flat Response to 40 GHz
- Return Loss > 16 dB to 40 GHz
- Available at 1–10, 12, 15, 20, 30 and 40 dB
- Power Handling to 1 W CW
- Rugged Thin Film Silicon Chips



The ATN3580 series of attenuator chips incorporate thin film resistors on high resistivity silicon chips to achieve precision attenuation, tight flatness and high return loss to 40 GHz. The design uses a balanced TEE resistive structure to assure broad bandwidth performance. The thin film technology offers improved power handling capability in comparison to the traditional thick film printed attenuator. All ATN3580 attenuator chips are specified for their attenuation at DC. In addition, a wafer probe sample test is performed to 40 GHz to assure meeting the flatness



specification. Skyworks' measurements indicate that attenuation typically increases with increasing frequency, as shown in Figure 1.

## **Absolute Maximum Ratings**

| Characteristic        | Value           |
|-----------------------|-----------------|
| Incident Power @ 25°C | 1 W             |
| Operating Temperature | -55°C to +175°C |
| Storage Temperature   | -65°C to +200°C |

## **Electrical Specifications at 25°C**

| Nominal          | Attenuation            | Attenuation Flatness |                     |                   |                 |              |
|------------------|------------------------|----------------------|---------------------|-------------------|-----------------|--------------|
| Attenuation (dB) | Tolerance<br>@ DC (dB) | DC-12 GHz<br>(dB)    | DC-26.5 GHz<br>(dB) | DC-40 GHz<br>(dB) | Outline Drawing | Part Number  |
| 1                | ± 0.15                 | ± 0.20               | ± 0.50              | ± 1.00            | 516-060         | ♦ ATN3580-01 |
| 2                | ± 0.15                 | ± 0.20               | ± 0.50              | ± 1.00            | 516-060         | ♦ ATN3580-02 |
| 3                | ± 0.25                 | ± 0.20               | ± 0.50              | ± 1.00            | 516-060         | ♦ ATN3580-03 |
| 4                | ± 0.25                 | ± 0.20               | ± 0.50              | ± 1.00            | 516-060         | ATN3580-04   |
| 5                | ± 0.25                 | ± 0.20               | ± 0.50              | ± 1.00            | 516-060         | ♦ ATN3580-05 |
| 6                | ± 0.25                 | ± 0.40               | ± 0.60              | ± 1.00            | 518-060         | ATN3580-06   |
| 7                | ± 0.25                 | ± 0.40               | ± 0.60              | ± 1.00            | 518-060         | ATN3580-07   |
| 8                | ± 0.35                 | ± 0.40               | ± 0.60              | ± 1.00            | 518-060         | ATN3580-08   |
| 9                | ± 0.35                 | ± 0.40               | ± 0.60              | ± 1.00            | 518-060         | ATN3580-09   |
| 10               | ± 0.35                 | ± 0.40               | ± 0.60              | ± 1.00            | 518-060         | ♦ ATN3580-10 |
| 12               | ± 0.50                 | ± 0.40               | ± 0.60              | ± 1.00            | 518-060         | ATN3580-12   |
| 15               | ± 0.50                 | ± 0.40               | ± 0.60              | ± 1.00            | 518-060         | ATN3580-15   |
| 20               | ± 1.10                 | ± 1.00               | ± 2.00              | ± 4.00            | 518-060         | ATN3580-20   |
| 30               | ± 1.60                 | ± 1.00               | ± 2.00              | ± 4.00            | 518-060         | ATN3580-30   |
| 40               | ± 1.60                 | ± 1.00               | ± 2.00              | ± 4.00            | 518-060         | ATN3580-40   |

<sup>♦</sup> Available through distribution.

| Return Loss    | DC-7 GHz (dB) | DC-12 GHz (dB) | DC-26.5 GHz (dB) | DC-40 GHz (dB) |
|----------------|---------------|----------------|------------------|----------------|
|                | Min.          | Min.           | Min.             | Min.           |
| ATN3580 Series | 22            | 20             | 18               | 16             |

Fixed Attenuator Pads ATN3580 Series

## **Typical Performance Data**



Figure 1. ATN3580-10
Attenuation vs. Frequency



Figure 2. ATN3580-10 Return Loss vs. Frequency

## **Outline Drawings**

#### 518-060



- 1. Cross hatching = gold contact areas.
- 2. Dimensions not specified in this drawing vary per attenuation value.
- 3. Indicates attenuation value.
- 4. This DIM. can be as high 0.012 for high attenuation values.
- 5. Back surface is gold, grounding not required.

#### 516-060



- 1. Cross hatching = gold contact areas.
- 2. Dimensions not specified in this drawing vary per attenuation value.
- 3. Indicates attenuation value.
- 4. Back surface is gold, grounding not required.



# **Phase Shifters**

# LGA Packaged Phase Shifter for AMPS Base Stations



PS088-315

### **Features**

- Designed for AMPS 881.5 ± 12.5 MHz Band
- 100 Degree Phase Shift Range
- 1.5 Degree Phase Deviation
- 0.3 dB Insertion Loss Deviation
- 0-12 V Control Voltage Range
- Specified 33 dBm IP3
- Small Footprint LGA Package



## **Description**

The PS088-315 is a voltage controlled phase shifter designed for use in power amplifier distortion compensation circuits in AMPS band base station applications. Its characteristics are specified in a 25 MHz bandwidth centered at 881.5 MHz. The PS088-315 employs a monolithic quadrature hybrid and a pair of selected silicon varactor diodes to achieve 100 degree phase shift and low insertion loss. The PS088-315 is packaged in the small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.

## **Electrical Specifications at 25°C**

| Parameter                               | Condition                                                        | Min. | Тур. | Max. | Unit |
|-----------------------------------------|------------------------------------------------------------------|------|------|------|------|
| Frequency Range (BW)                    | F <sub>O</sub> = 881.5                                           | 869  |      | 894  | MHz  |
| Phase Shift                             | At $F_O$ , $C_V = 12 \text{ V from } C_V = 0 \text{ V}$          | 100  |      |      | Deg. |
| Phase Deviation in BW                   | C <sub>V</sub> = 0–12 V                                          |      | 1.5  | 2.0  | Deg. |
| Control Voltage (C <sub>V</sub> ) Range |                                                                  | 0    |      | 12   | V    |
| Control Current                         | C <sub>V</sub> = 12 V                                            |      |      | 1    | μА   |
| Insertion Loss in BW                    | $C_V = 0 V$                                                      |      |      | 2.3  | dB   |
| I.L. Flatness in BW                     | $C_V = 0-12 \text{ V}$                                           |      |      | 0.3  | dB   |
| I.L. Variation                          | At $F_0$ , $C_V = 0-12 \text{ V}$                                |      |      | 0.75 | dB   |
| VSWR in BW                              |                                                                  |      |      | 1.8  |      |
| IM3                                     | $P_{IN} = 8 \text{ dBm}, 900/905 \text{ MHz}, C_V = 0 \text{ V}$ |      |      | -50  | dBc  |
| IP3                                     | Derived from IM3                                                 | 33   |      |      | dBm  |

## **Typical Performance Data**



Insertion Loss vs.
Frequency and Control Voltage



Input/Output Return Loss vs. Frequency and Control Voltage



Phase Flatness vs. Control Voltage



Insertion Loss Flatness vs. Control Voltage



Phase vs. Frequency and Control Voltage



IP3 vs. Control Voltage RF<sub>1</sub> = 0.900 GHz, RF<sub>2</sub> = 0.905 GHz @ 8 dBm

## Pin Out (Bottom View)



| Terminal No.           | Terminal Name |
|------------------------|---------------|
| A <sub>1</sub> (Pin 1) | IN/OUT        |
| A <sub>2</sub>         | GND           |
| A <sub>3</sub>         | IN/OUT        |
| B <sub>1</sub>         | GND           |
| B <sub>3</sub>         | GND           |
| C <sub>1</sub>         | Vcontrol      |
| C <sub>2</sub>         | GND           |
| C <sub>3</sub>         | Vcontrol      |

## **Absolute Maximum Ratings**

| Characteristic          | Value        |
|-------------------------|--------------|
| RF Input Power          | 20 dBm       |
| Control Voltage         | 15 V         |
| Operating Temperature   | -40 to +85°C |
| Storage Temperature     | -40 to +85°C |
| Electrostatic Discharge | HBM 1 B      |

## **Connection Diagram**



## -315



# LGA Packaged Phase Shifter for GSM Base Stations



PS094-315

## **Features**

- Designed for GSM 942.5 ± 17.5 MHz Band
- 100 Degree Phase Shift Range
- 1.5 Degree Phase Deviation
- 0.3 dB Insertion Loss Deviation
- 0-12 V Control Voltage Range
- Specified 33 dBm IP3
- Small Footprint LGA Package



## **Description**

The PS094-315 is a voltage controlled phase shifter specifically designed for use in power amplifier distortion compensation circuits centered at 942.5 MHz in GSM band base stations. Its characteristics are specified in a 35 MHz bandwidth. The PS094-315 employs a monolithic quadrature hybrid and a pair of selected silicon varactor diodes to achieve 100 degree phase shift and low insertion loss. The PS094-315 is packaged in the small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.

## **Electrical Specifications at 25°C**

| Parameter                               | Condition                                                        | Min. | Тур. | Max. | Unit |
|-----------------------------------------|------------------------------------------------------------------|------|------|------|------|
| Frequency Range (BW)                    | F <sub>O =</sub> 942.5                                           | 925  |      | 960  | MHz  |
| Phase Shift                             | At F <sub>O</sub> , C <sub>V</sub> = 12 V                        | 100  |      |      | Deg. |
| Phase Deviation in BW                   | C <sub>V</sub> = 0–12 V                                          |      | 1.5  | 2.0  | Deg. |
| Control Voltage (C <sub>V</sub> ) Range |                                                                  | 0    |      | 12   | V    |
| Control Current                         | C <sub>V</sub> = 12 V                                            |      |      | 1    | μА   |
| Insertion Loss in BW                    | C <sub>V</sub> = 0 V                                             |      |      | 2.3  | dB   |
| I.L. Deviation in BW                    | C <sub>V</sub> = 0–12 V                                          |      |      | 0.3  | dB   |
| I.L. Variation                          | At F <sub>O</sub> , C <sub>V</sub> = 0–12 V                      |      |      | 0.75 | dB   |
| VSWR in BW                              |                                                                  |      |      | 1.8  |      |
| IM3                                     | $P_{IN} = 8 \text{ dBm}, 900/905 \text{ MHz}, C_V = 0 \text{ V}$ |      |      | -50  | dBc  |
| IP3                                     | Derived from IM3                                                 | 33   |      |      | dBm  |

## **Typical Performance Data**



Insertion Loss vs. Frequency and Control Voltage



Insertion Loss Flatness vs. Control Voltage



Input/Output Return Loss vs. Frequency and Control Voltage



Phase vs. Frequency and Control Voltage



Phase Flatness vs. Control Voltage



IP3 vs. Control Voltage  $RF_1 = 0.900 \text{ GHz}, RF_2 = 0.905 \text{ GHz} @ 8 \text{ dBm}$ 

## Pin Out (Bottom View)



| Terminal No.           | Terminal Name |
|------------------------|---------------|
| A <sub>1</sub> (Pin 1) | IN/OUT        |
| A <sub>2</sub>         | GND           |
| A <sub>3</sub>         | IN/OUT        |
| B <sub>1</sub>         | GND           |
| В3                     | GND           |
| C <sub>1</sub>         | Vcontrol      |
| C <sub>2</sub>         | GND           |
| C <sub>3</sub>         | Vcontrol      |

## **Absolute Maximum Ratings**

| Characteristic          | Value        |
|-------------------------|--------------|
| RF Input Power          | 20 dBm       |
| Control Voltage         | 15 V         |
| Operating Temperature   | -40 to +85°C |
| Storage Temperature     | -40 to +85°C |
| Electrostatic Discharge | HBM 1 B      |

## **Connection Diagram**



-315



# LGA Packaged Phase Shifter for DCS Base Stations



### PS184-315

## **Features**

- Designed for DCS 1837.5 ± 32.5 MHz Band
- 100 Degree Phase Shift Range
- 1.5 Degree Phase Deviation
- 0.3 dB Insertion Loss Deviation
- 0-12 V Control Voltage Range
- Specified 33 dBm IP3
- Small Footprint LGA Package



## **Description**

The PS184-315 is a voltage controlled phase shifter specifically designed for use in power amplifier distortion compensation circuits centered at 1837.5 MHz in DCS band base stations. Its characteristics are specified in a 70 MHz bandwidth. The PS184-315 employs a monolithic quadrature hybrid and a pair of selected silicon varactor diodes to achieve 100 degree phase shift and low insertion loss. The PS184-315 is packaged in the small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.

## **Electrical Specifications at 25°C**

| Parameter                               | Condition                                                          | Min. | Тур. | Max. | Unit |
|-----------------------------------------|--------------------------------------------------------------------|------|------|------|------|
| Frequency Range (BW)                    | F <sub>O =</sub> 1837.5                                            | 1805 |      | 1870 | MHz  |
| Phase Shift                             | At F <sub>O</sub> , C <sub>V</sub> = 12 V                          | 100  |      |      | Deg. |
| Phase Deviation in BW                   | $C_V = 0-12 \text{ V}$                                             |      | 1.5  | 2.0  | Deg. |
| Control Voltage (C <sub>V</sub> ) Range |                                                                    | 0    |      | 12   | V    |
| Control Current                         | C <sub>V</sub> = 12 V                                              |      |      | 1    | μА   |
| Insertion Loss in BW                    | C <sub>V</sub> = 0 V                                               |      |      | 2.3  | dB   |
| I.L. Deviation in BW                    | $C_V = 0-12 \text{ V}$                                             |      |      | 0.3  | dB   |
| I.L. Variation                          | At F <sub>O</sub> , C <sub>V</sub> = 0–12 V                        |      |      | 0.75 | dB   |
| VSWR in BW                              |                                                                    |      |      | 1.8  |      |
| IM3                                     | $P_{IN} = 8 \text{ dBm}, 1900/1905 \text{ MHz}, C_V = 0 \text{ V}$ |      |      | -50  | dBc  |
| IP3                                     | Derived from IM3                                                   | 33   |      |      | dBm  |

## **Typical Performance Data**



Insertion Loss vs. Frequency and Control Voltage



Input/Output Return Loss vs. Frequency and Control Voltage



Phase Flatness vs. Control Voltage



Insertion Loss Flatness vs. Control Voltage



Phase vs. Frequency and Control Voltage



3rd Order Intermod vs. Control Voltage RF<sub>1</sub> = 1.900 GHz, RF<sub>2</sub> = 1.905 GHz @ 8 dBm

## Pin Out (Bottom View)



| Terminal No.           | Terminal Name |
|------------------------|---------------|
| A <sub>1</sub> (Pin 1) | IN/OUT        |
| A <sub>2</sub>         | GND           |
| A <sub>3</sub>         | IN/OUT        |
| B <sub>1</sub>         | GND           |
| В3                     | GND           |
| C <sub>1</sub>         | Vcontrol      |
| C <sub>2</sub>         | GND           |
| C <sub>3</sub>         | Vcontrol      |

## **Absolute Maximum Ratings**

| Characteristic          | Value        |
|-------------------------|--------------|
| RF Input Power          | 20 dBm       |
| Control Voltage         | 15 V         |
| Operating Temperature   | -40 to +85°C |
| Storage Temperature     | -40 to +85°C |
| Electrostatic Discharge | HBM 1 B      |

## **Connection Diagram**



## -315



# LGA Packaged Phase Shifter for PCS Base Stations



PS196-315

### **Features**

- Designed for PCS 1960 ± 30 MHz Band
- 100 Degree Phase Shift Range
- 1.5 Degree Phase Deviation
- 0.3 dB Insertion Loss Deviation
- 0-12 V Control Voltage Range
- Specified 33 dBm IP3
- Small Footprint LGA Package



## **Description**

The PS196-315 is a voltage controlled phase shifter specifically designed for use in power amplifier distortion compensation circuits centered at 1960 MHz in PCS band base stations. Its characteristics are specified in a 60 MHz bandwidth. The PS196-315 employs a monolithic quadrature hybrid and a pair of selected silicon varactor diodes to achieve 100 degree phase shift and low insertion loss. The PS196-315 is packaged in the small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.

## **Electrical Specifications at 25°C**

| Parameter                               | Condition                                                          | Min. | Тур. | Max. | Unit |
|-----------------------------------------|--------------------------------------------------------------------|------|------|------|------|
| Frequency Range (BW)                    | F <sub>O</sub> = 1946                                              | 1916 |      | 1976 | MHz  |
| Phase Shift                             | At F <sub>O</sub> , C <sub>V</sub> = 12 V                          | 100  |      |      | Deg. |
| Phase Deviation in BW                   | $C_V = 0-12 \text{ V}$                                             |      | 1.5  | 2.0  | Deg. |
| Control Voltage (C <sub>V</sub> ) Range |                                                                    | 0    |      | 12   | V    |
| Control Current                         | C <sub>V</sub> = 12 V                                              |      |      | 1    | μА   |
| Insertion Loss in BW                    | (C <sub>V</sub> = 0 V)                                             |      |      | 2.3  | dB   |
| I.L. Deviation in BW                    | C <sub>V</sub> = 0–12 V                                            |      |      | 0.3  | dB   |
| I.L. Variation                          | At F <sub>O</sub> , C <sub>V</sub> = 0–12 V                        |      |      | 0.75 | dB   |
| VSWR in BW                              |                                                                    |      |      | 1.8  |      |
| IM3                                     | $P_{IN} = 8 \text{ dBm}, 1900/1905 \text{ MHz}, C_V = 0 \text{ V}$ |      |      | -50  | dBc  |
| IP3                                     | Derived from IM3                                                   | 33   |      |      | dBm  |

## **Typical Performance Data**



Insertion Loss vs. Frequency and Control Voltage



Input/Output Return Loss vs. Frequency and Control Voltage



Phase Flatness vs. Control Voltage



Insertion Loss Flatness vs. Control Voltage



Phase vs. Frequency and Control Voltage



3rd Order Intermod vs. Control Voltage RF<sub>1</sub> = 1.900 GHz, RF<sub>2</sub> = 1.905 GHz @ 8 dBm

## **Pin Out (Bottom View)**



| Terminal No.           | Terminal Name |  |
|------------------------|---------------|--|
| A <sub>1</sub> (Pin 1) | IN/OUT        |  |
| A <sub>2</sub>         | GND           |  |
| A <sub>3</sub>         | IN/OUT        |  |
| B <sub>1</sub>         | GND           |  |
| В3                     | GND           |  |
| C <sub>1</sub>         | Vcontrol      |  |
| C <sub>2</sub>         | GND           |  |
| C <sub>3</sub>         | Vcontrol      |  |

## **Absolute Maximum Ratings**

| Characteristic          | Value        |
|-------------------------|--------------|
| RF Input Power          | 20 dBm       |
| Control Voltage         | 15 V         |
| Operating Temperature   | -40 to +85°C |
| Storage Temperature     | -40 to +85°C |
| Electrostatic Discharge | HBM 1 B      |

## **Connection Diagram**



-315



# LGA Packaged Phase Shifter for UMTS Base Stations



PS214-315

#### **Features**

- Designed for UMTS 2140 ± 30 MHz Band
- 100 Degree Phase Shift Range
- 1.5 Degree Phase Deviation
- 0.3 dB Insertion Loss Deviation
- 0-12 V Control Voltage Range
- Specified 33 dBm IP3
- Small Footprint LGA Package



## **Description**

The PS214-315 is a voltage controlled phase shifter specifically designed for use in power amplifier distortion compensation circuits centered at 2140 MHz in UMTS band base stations. Its characteristics are specified in a 60 MHz bandwidth. The PS214-315 employs a monolithic quadrature hybrid and a pair of selected silicon varactor diodes to achieve 100 degree phase shift and low insertion loss. The PS214-315 is packaged in the small outline LGA (Land Grid Array) surface mount package with the internal elements affixed to an organic BT substrate.

## **Electrical Specifications at 25°C**

| Parameter                               | Condition                                                          | Min. | Тур. | Max. | Unit |
|-----------------------------------------|--------------------------------------------------------------------|------|------|------|------|
| Frequency Range (BW)                    | F <sub>O</sub> = 2140                                              | 2110 |      | 2170 | MHz  |
| Phase Shift                             | At F <sub>O</sub> , C <sub>V</sub> = 12 V                          | 100  |      |      | Deg. |
| Phase Deviation in BW                   | $C_V = 0-12 \text{ V}$                                             |      | 1.5  | 2.0  | Deg. |
| Control Voltage (C <sub>V</sub> ) Range |                                                                    | 0    |      | 12   | V    |
| Control Current                         | C <sub>V</sub> = 12 V                                              |      |      | 1    | μА   |
| Insertion Loss in BW                    | C <sub>V</sub> = 0 V                                               |      |      | 2.3  | dB   |
| I.L. Deviation in BW                    | C <sub>V</sub> = 0–12 V                                            |      |      | 0.3  | dB   |
| I.L. Variation                          | At F <sub>O</sub> , C <sub>V</sub> = 0–12 V                        |      |      | 0.7  | dB   |
| VSWR in BW                              |                                                                    |      |      | 1.8  |      |
| IM3                                     | $P_{IN} = 8 \text{ dBm}, 2140/2145 \text{ MHz}, C_V = 0 \text{ V}$ |      |      | -50  | dBc  |
| IP3                                     | Derived from IM3                                                   | 33   |      |      | dBm  |

## **Typical Performance Data**



Insertion Loss vs. Frequency and Control Voltage



Input/Output Return Loss vs. Frequency and Control Voltage



Phase Flatness vs. Control Voltage



Insertion Loss Flatness vs. Control Voltage



Phase vs. Frequency and Control Voltage



IP3 vs. Control Voltage RF<sub>1</sub> = 2.140 GHz, RF<sub>2</sub> = 2.145 GHz @ 8 dBm

## Pin Out (Bottom View)



| Terminal No.           | Terminal Name |  |  |
|------------------------|---------------|--|--|
| A <sub>1</sub> (Pin 1) | IN/OUT        |  |  |
| A <sub>2</sub>         | GND           |  |  |
| A <sub>3</sub>         | IN/OUT        |  |  |
| B <sub>1</sub>         | GND           |  |  |
| B <sub>3</sub>         | GND           |  |  |
| C <sub>1</sub>         | Vcontrol      |  |  |
| C <sub>2</sub>         | GND           |  |  |
| C <sub>3</sub>         | Vcontrol      |  |  |

## **Absolute Maximum Ratings**

| Characteristic          | Value        |  |  |
|-------------------------|--------------|--|--|
| RF Input Power          | 20 dBm       |  |  |
| Control Voltage         | 15 V         |  |  |
| Operating Temperature   | -40 to +85°C |  |  |
| Storage Temperature     | -40 to +85°C |  |  |
| Electrostatic Discharge | HBM 1 B      |  |  |

## **Connection Diagram**



## -315





# **Reference Material**

# Discrete Semiconductors and Microwave Components Application Notes



**APN1001 Circuit Models for Plastic Packaged Microwave Diodes** 

**APN1002 Design With PIN Diodes** 

APN1003 A Wideband General Purpose PIN Diode Attenuator

APN1004 Varactor SPICE Models for RF VCO Applications

APN1005 A Balanced Wideband VCO for Set-Top TV Tuner Applications

APN1006 A Colpitts VCO for Wideband (0.95–2.15 GHz) Set-Top TV Tuner Applications

APN1007 Switchable Dual-Band 170/420 MHz VCO for Handset Cellular Applications

APN1008 T/R Switch for IMT-2000 Handset Applications

APN1009 A Varactor Controlled Phase Shifter for PCS Base Station Applications

APN1010 A VCO Design for WLAN Applications in the 2.4-2.5 GHz ISM Band

APN1011 A 5-6 GHz Switch Using Low Cost Plastic Packaged PIN Diodes

APN1012 VCO Designs for Wireless Handset and CATV Set-Top Applications

APN1013 A Differential VCO Design for GSM Handset Applications

APN1014 A Level Detector Design for Dual-Band GSM-PCS Handsets

APN1015 A Dual-Band Switchable IF VCO for GSM/PCS Handsets

APN1016 A Low Phase Noise VCO Design for PCS Handset Applications

APN1017 A CATV Attenuator Using the Single Package SMP1307-027 PIN Diode Array

APN5001 Theory and Application of Sampling Phase Detector

To access the Application Notes listed here, please visit the Skyworks website at www.skyworksinc.com

## Discrete Devices and IC Switch/Attenuators Tape and Reel Package Orientation





## Tape Dimensions



| Description                              | Sym.           | Chip Scale | SC-79      | SOD-323     | SC-70      | SC-88       | SOT-23      | SOT-143     | SOT-5<br>Lead |
|------------------------------------------|----------------|------------|------------|-------------|------------|-------------|-------------|-------------|---------------|
| Cavity                                   |                |            |            |             |            | 表示表示        |             |             |               |
| Length                                   | A <sub>0</sub> | 0.65±0.05  | 0.90±0.05  | 1.45±0.10   | 2.25±0.10  | 2.25±0.10   | 3.15±0.10   | 3.099±0.10  | 3.15±0.10     |
| Width                                    | B <sub>0</sub> | 0.76±0.05  | 1.40±0.05  | 3.20±0.10   | 2.70±0.10  | 2.70±0.10   | 3.20±0.10   | 2.692±0.10  | 3.20±0.10     |
| Depth                                    | K <sub>0</sub> | 0.53±0.05  | 0.73±0.05  | 1.35±0.10   | 0.53±0.05  | 1.19±0.10   | 1.40±0.10   | 1.295±0.10  | 1.40±0.10     |
| Pitch                                    | P <sub>1</sub> | 2.00±0.10  | 4.00±0.10  | 4.00±0.10   | 4.00±0.10  | 4.00±0.10   | 4.00±0.10   | 4.00±0.10   | 4.00± 0.10    |
| Bottom Hole<br>Diameter                  | D <sub>1</sub> | N/A        | 0.50±0.05  | 1.00±0.10   | 0.50±0.05  | 1.00±0.10   | 1.00±0.10   | 1.00±0.10   | 1.00±0.10     |
| Perforation                              |                |            |            |             |            |             |             |             |               |
| Diameter                                 | D <sub>0</sub> | 1.50±0.10  | 1.50±0.10  | 1.50±0.10   | 1.50±0.10  | 1.50±0.10   | 1.55±0.05   | 1.50±0.10   | 1.50±0.10     |
| Pitch                                    | P <sub>0</sub> | 4.00±0.10  | 4.00±0.10  | 4.00±0.10   | 4.00±0.10  | 4.00±0.10   | 4.00±0.10   | 4.00±0.10   | 4.00±0.10     |
| Position                                 | E <sub>1</sub> | 1.75±0.10  | 1.75±0.10  | 1.75±0.10   | 1.75±0.10  | 1.75±0.10   | 1.75±0.10   | 1.75±0.10   | 1.75±0.10     |
| Carrier Tape                             |                |            |            |             |            |             |             |             |               |
| Width                                    | W              | 8.00±0.20  | 8.00±0.20  | 8.00±0.20   | 8.00±0.10  | 8.00±0.30   | 8.00±0.30   | 8.00±0.10   | 8.00±0.30     |
| Thickness                                | Т              | 0.43±0.05  | 0.180±0.02 | 0.254±0.013 | 0.30±0.05  | 0.254±0.013 | 0.254±0.013 | 0.254±0.013 | 0.20±0.03     |
| Cover Tape                               |                |            |            |             |            |             |             |             |               |
| Width                                    | W <sub>1</sub> | 5.40±0.10  | 5.40±0.10  | 5.40±0.10   | 5.40±0.10  | 5.40±0.10   | 5.40±0.10   | 5.40±0.10   | 5.40±0.10     |
| Tape<br>Thickness                        | T <sub>1</sub> | 0.062±0.01 | 0.062±0.01 | 0.062±0.01  | 0.062±0.01 | 0.062±0.01  | 0.062±0.01  | 0.062±0.01  | 0.062±0.01    |
| Distance                                 |                |            |            |             |            |             |             |             |               |
| Cavity to Perforation (Width Direction)  | F              | 3.50±0.05  | 3.50±0.05  | 3.50±0.05   | 3.50±0.05  | 3.50±0.05   | 3.50±0.05   | 3.50±0.05   | 3.50±0.05     |
| Cavity to Perforation (Length Direction) | P <sub>2</sub> | 1.00±0.025 | 2.00±0.05  | 2.00±0.05   | 2.00±0.05  | 2.00±0.05   | 2.00±0.05   | 2.00±0.05   | 2.00±0.05     |

Note: All dimensions are in mm.

| Description                                    | Sym.           | SOT-6<br>Lead | SOIC-8     | MSOP-8     | PLCC-28     | QFN 2 X 3  | QFN 3 x 3  | QFN 4 x 4   | QFN 5 x 5  |
|------------------------------------------------|----------------|---------------|------------|------------|-------------|------------|------------|-------------|------------|
| Cavity                                         |                |               |            |            |             |            |            |             |            |
| Length                                         | A <sub>0</sub> | 3.15±0.10     | 6.70±0.10  | 5.20±0.10  | 13.0±0.10   | 2.20±0.10  | 3.30±0.10  | 4.35±0.10   | 5.25±0.10  |
| Width                                          | B <sub>0</sub> | 3.20±0.10     | 5.40±0.10  | 3.30±0.10  | 13.0±0.10   | 3.20±0.10  | 3.30±0.10  | 4.35±0.10   | 5.25±0.10  |
| Depth                                          | K <sub>0</sub> | 1.40±0.10     | 2.00±0.10  | 1.60±0.10  | 4.90±0.10   | 1.10±0.10  | 1.10±0.10  | 1.10±0.10   | 1.10±0.10  |
| Pitch                                          | P <sub>1</sub> | 4.00±0.10     | 8.15±0.02  | 8.00±0.10  | 12.0±0.10   | 4.00±0.10  | 8.00±0.10  | 8.00±0.10   | 8.00±0.10  |
| Bottom Hole<br>Diameter                        | D <sub>1</sub> | 1.00±0.10     | 1.60±0.02  | 1.00±0.10  | 1.60±0.02   | 1.50±0.10  | 1.00±0.10  | 1.00±0.10   | 1.00±0.10  |
| Perforation                                    |                |               |            | 140 343    | 34 土品数      |            |            | <b>等等位置</b> |            |
| Diameter                                       | D <sub>0</sub> | 1.50±0.10     | 1.60±0.03  | 1.50±0.10  | 1.60±0.03   | 1.50±0.10  | 1.50±0.10  | 1.50±0.10   | 1.50±0.10  |
| Pitch                                          | P <sub>0</sub> | 4.00±0.10     | 3.75±0.02  | 4.00±0.10  | 4.00±0.10   | 4.00±0.10  | 4.00±0.10  | 4.00±0.10   | 4.00±0.10  |
| Position                                       | E <sub>1</sub> | 1.75±0.10     | 1.75±0.10  | 1.75±0.10  | 1.75±0.10   | 1.75±0.10  | 1.75±0.10  | 1.75±0.10   | 1.75±0.10  |
| Carrier Tape                                   |                |               |            |            | 10.00       |            |            |             |            |
| Width                                          | W              | 8.00±0.30     | 12.00±0.30 | 12.00±0.30 | 24.00±0.30  | 12.00±0.30 | 12.00±0.30 | 12.00±0.30  | 12.00±0.30 |
| Thickness                                      | Т              | 0.20±0.03     | 0.30±0.05  | 0.30±0.013 | 0.30±0.005  | 0.30±0.05  | 0.30±0.05  | 0.30±0.05   | 0.30±0.05  |
| Cover Tape                                     | 1.4            |               |            | Li-san     | <b>计算是对</b> |            | 14 10 14   | V . F       | o tena     |
| Width                                          | W <sub>1</sub> | 5.40±0.10     | 9.20±0.10  | 9.20±.010  |             | 9.20±0.01  | 9.20±0.10  | 9.20±0.10   | 9.20±0.10  |
| Tape<br>Thickness                              | T <sub>1</sub> | 0.062±0.01    | 0.062±0.01 | 0.062±0.01 | 0.062±0.01  | 0.051±0.01 | 0.051±0.01 | 0.051±0.01  | 0.051±0.01 |
| Distance                                       |                |               |            |            | 7           |            |            |             | 1.00       |
| Cavity to Perforation (Width Direction)        | F              | 3.50±0.05     | 3.50±0.05  | 5.60±0.05  |             | 5.50±0.05  | 5.50±0.10  | 5.50±0.10   | 5.50±0.10  |
| Cavity to<br>Perforation<br>(Length Direction) | P <sub>2</sub> | 2.00±0.05     | 2.00±0.05  | 4.00±0.05  | 2.00±0.05   | 2.00±0.05  | 2.00±0.05  | 2.00±0.05   | 2.00±0.05  |

Note: All dimensions are in mm.

| Description                              | Sym.           | TSSOP-16        | SOIC-14       | SOIC-16     | SSOP-16    | SSOP-20        | LGA-6       | LGA-16     |
|------------------------------------------|----------------|-----------------|---------------|-------------|------------|----------------|-------------|------------|
| Cavity                                   |                |                 |               |             |            |                |             | 10074      |
| Length                                   | A <sub>0</sub> | 6.80±0.10       | 6.50±0.10     | 6.50±0.10   | 6.70±0.10  | 8.20±0.10      | 1.40±0.10   | 8.40±0.10  |
| Width                                    | B <sub>0</sub> | 5.40±0.10       | 9.00±0.10     | 10.30±0.10  | 5.40±0.10  | 7.60±0.10      | 1.70±0.10   | 10.70±0.10 |
| Depth                                    | K <sub>0</sub> | 1.60±0.10       | 2.10±0.10     | 2.10±0.10   | 2.10±0.10  | 3.00±0.10      | 1.00±0.10   | 2.40±0.10  |
| Pitch                                    | P <sub>1</sub> | 8.00±0.10       | 8.00±0.10     | 8.00±0.10   | 8.15±0.02  | 12.00±0.10     | 4.00±0.10   | 16.00±0.10 |
| Bottom Hole<br>Diameter                  | D <sub>1</sub> | 1.60±0.10       | 1.60±0.10     | 1.60±0.10   | 1.60±0.02  | 1.60±0.10      | 1.00±0.10   | 1.60±0.20  |
| Perforation                              |                | 1236            |               | <b>数数数据</b> |            |                |             | NEW YORK   |
| Diameter                                 | D <sub>0</sub> | 1.50±0.10       | 1.55±0.10     | 1.55±0.10   | 1.60±0.03  | 1.50±0.10      | 1.50±0.10   | 1.60±0.03  |
| Pitch                                    | P <sub>0</sub> | 4.00±0.10       | 4.00±0.10     | 4.00±0.10   | 4.00±0.10  | 4.00±0.10      | 4.00±0.10   | 4.00±0.10  |
| Position                                 | E <sub>1</sub> | 1.75±0.10       | 1.75±0.10     | 1.75±0.10   | 1.75±0.10  |                | 1.75±0.10   | 1.75±0.10  |
| Carrier Tape                             |                |                 |               |             |            |                |             |            |
| Width                                    | W              | 12.0±0.30       | 16.00±0.30    | 16.00±0.30  | 12.0±0.30  | 16.00±0.30     | 8.00±0.30   | 16.00±0.30 |
| Thickness                                | Т              | 0.30±0.05       | 0.30±0.05     | 0.30±0.05   | 0.30±0.05  | 0.30±0.05      | 0.30±0.05   | 0.30±0.005 |
| Cover Tape                               |                | 75. S. O. T. T. |               |             | 1 50 5 3   | will have been | SAFE WALLEY |            |
| Width                                    | W <sub>1</sub> | 9.20±0.10       | 13.30±0.10    | 13.30±0.10  | 9.20±0.10  | 13.30±0.10     | 5.40±0.10   | 13.30±0.10 |
| Tape<br>Thickness                        | T <sub>1</sub> | 0.062±0.01      | 0.062±0.01    | 0.062±0.01  | 0.062±0.01 | 0.062±0.01     | 0.062±0.10  | 0.062±0.01 |
| Distance                                 |                |                 | and the major |             |            |                |             |            |
| Cavity to Perforation (Width Direction)  | F              | 7.50±0.10       | 7.50±0.10     | 7.50±0.05   | 3.50±0.05  | 7.50±0.05      | 3.50±0.05   | 7.50±0.10  |
| Cavity to Perforation (Length Direction) | P <sub>2</sub> | 2.00±0.1        | 2.00±0.10     | 2.00±0.10   | 2.00±0.05  | 2.00±0.10      | 2.00±0.05   | 2.00±0.10  |

Note: All dimensions are in mm.

## **Chip Scale**



| Standard Reel Size     | 7"  |
|------------------------|-----|
| Standard Reel Quantity | N/A |

## SC-79



| Standard Reel Size      | 7"    | 13"    |
|-------------------------|-------|--------|
| Standard Reel Quantity* | 3,000 | 12,000 |

<sup>\*</sup>Available through distribution.

### **SOD-323**



| Standard Reel Size     | 7"    | 13"    |
|------------------------|-------|--------|
| Standard Reel Quantity | 3,000 | 12,000 |

## SOT-6 and SC-88



| Standard Reel Size     | 7"    | 13"    |
|------------------------|-------|--------|
| Standard Reel Quantity | 3,000 | 12,000 |

### SOT-143



| Standard Reel Size     | 7"    | 13"    |
|------------------------|-------|--------|
| Standard Reel Quantity | 3,000 | 12,000 |

## MSOP-8 and SOIC-8



User Direction of Feed

| Standard Reel Size     | 7"    | 13"   |
|------------------------|-------|-------|
| Standard Reel Quantity | 1,000 | 3,000 |

## **SC-70**



| Standard Reel Size     | 7"    | 13"    |
|------------------------|-------|--------|
| Standard Reel Quantity | 3,000 | 12,000 |

### **SOT-23**



| Standard Reel Size     | 7"    | 13"    |
|------------------------|-------|--------|
| Standard Reel Quantity | 3,000 | 12,000 |

## SOT-5



| Standard Reel Size     | 7"    | 13"    |
|------------------------|-------|--------|
| Standard Reel Quantity | 3,000 | 12,000 |

## 28 Lead PLCC



| Standard Reel Size     | 7"  | 13"   |
|------------------------|-----|-------|
| Standard Reel Quantity | N/A | 1,500 |

## QFN (2 x 3)



| Standard Reel Size     | 7"    | 13"   |
|------------------------|-------|-------|
| Standard Reel Quantity | 1,000 | 3,000 |

## SOIC, MSOP, QSOP, SSOP and **TSSOP Devices**

## 8, 10, 14, 16, 20, 28 Leads



User Direction of Feed

| Standard Reel Size     | 7"    | 13"   |
|------------------------|-------|-------|
| Standard Reel Quantity | 1,000 | 3,000 |

## LGA-16 (-500)



| Standard Reel Size     | 7"    | 13"   |
|------------------------|-------|-------|
| Standard Reel Quantity | 1,000 | 3,000 |

## QFN (3 x 3), (4 x 4) and (5 x 5)



| Standard Reel Size     | 7"    | 13"   |
|------------------------|-------|-------|
| Standard Reel Quantity | 1,000 | 3,000 |

### LGA-6



| Standard Reel Size     | 7"    | 13"    |
|------------------------|-------|--------|
| Standard Reel Quantity | 3,000 | 12,000 |

## LGA-16 (-501)



| Standard Reel Size     | 7"    | 13"   |
|------------------------|-------|-------|
| Standard Reel Quantity | 1,000 | 3,000 |

### 32 Lead TQFP



| Standard Reel Size     | 7"  | 13"   |
|------------------------|-----|-------|
| Standard Reel Quantity | N/A | 2,000 |

## Suggested PCB Land Pattern Designs for Leaded and Leadless Packages and Detailed Surface Mount Guidelines for Leadless Packages



Below are sample printed circuit board land pattern dimensions. These are based on the IPC (Institute for Interconnecting and Packaging Electronic Circuits) surface mount design and land pattern standard: IPC-SM-782.

These drawings are for reference only. It is recommended that you consult with the company doing the component mounting and soldering to the printed circuit board. These companies have more information on options (various possible dimensions) of actual land patterns.





















14 Lead SOIC Narrow Body





28 Lead SOIC Wide Body





SC-88 (6 Lead SC-70)

0.020 (0.50 mm) 0.026 (0.65 mm) 0.010 0.165 (0.25 mm) (4.20 mm) 0.110 0.126 (2.79 mm) 0.013 (3.20 mm) (0.33 mm) SQ. □ † Typ. GND VIA 0.008 (1.60 mm) (0.20 mm) TYP. Lead Length of LPCC Outside Lead Width of Package Footprint of PCB Land = Lead Length +0.1 mm

LPCC-16 Lead 4 x 4 mm (-307) Surface Mount Land Pattern



QFN-32 Lead 5 x 5 mm (-310) Surface Mount Land Pattern

# **Detailed Surface Mount Guidelines for Leadless Packages**

Skyworks' plastic encapsulated leadless style packages are being offered on several products to reduce size and weight and to improve application performance. These packages are gaining acceptance in the industry and are often referred to by such names as "QFN," "LPCC," "MLF" and others, and conform to JEDEC outline MO-220.

These packages use perimeter lands on the bottom of the package to provide contact to the PCB. These packages also have an exposed paddle on the bottom to provide a stable ground for optimum electrical performance of switches and attenuators, and an efficient heat path for thermal performance for amplifier products.



Figure 1. Package Cross Section

Within are the suggested guidelines for layout of a PCB and stencil for Skyworks' 4 x 4 mm LPCC-16.

## **PCB Design Guidelines**

For the lead/terminal solder pad design, it is recommended to use a Non Solder Mask Defined (NSMD) approach, but a small amount of solder mask should remain between the pads to avoid solder bridging between terminals. The PCB land width should match package pad width. The PCB land length should be 0.1 mm greater than the package pad length, with the extra area on the outside of the package. See Figure 2.



DIMENSIONS IN mm (in.)



Figure 2. Surface Mount Land Pattern, 4 x 4 mm 16 Lead LPCC

The ground pad on the PCB should match the size of the exposed paddle of the package and should be Solder Mask Defined (SMD). The solder mask opening should overlap the edges of the PCB ground pad by 0.065 mm (0.0025") on all four sides. The recommended design gap between the PCB ground pad and land pad is 0.15 mm minimum to avoid solder bridging and shorting. When space is available, a gap of 0.25 mm or more is preferred.

Plated thru via holes in the PCB ground pad should be 0.33 (0.013") in diameter and plugged. If via holes cannot be plugged, it is recommended to cap the vias on the backside of the board using solder mask material. This should allow the vias to be filled with solder during reflow.

## **Solder Mask Design**

Two types of stencil designs are used for surface mount packages:

- Solder Mask Defined (SMD): Solder mask openings smaller than metal pads.
- Non-Solder Mask Defined (NSMD): Solder mask openings larger than metal pads.

NSMD is recommended for the perimeter I/O lands, as this allows the solder to wrap around the sides of the metal pads on the board for a reliable solder joint.

Because the spacing between the ground pad and the land pads can be small, SMD is recommended for the ground pad to prevent solder bridging.

A stainless steel stencil, 0.125–0.150 mm (0.005–0.006") thick, is recommended for solder paste application. For better paste release, the aperture walls should be trapezoidal and the corners rounded.

For the terminal lands, the stencil opening should be 0.05 mm larger than the PCB land (0.025 mm in each direction).

For the ground pad area, it is recommended to screen the solder paste in an array of small openings rather than one large opening. The total (cumulative) area of all the openings should be approximately equal to 50% of the total ground pad area. This will ensure good solder coverage with fewer voids. See Figure 3.



Figure 3. Recommended Stencil Design

## Solder Paste and Reflow Profile

Because leadless packages have a low stand-off height and small terminal pitch, a No Clean, Type 3 solder paste, and a convection/IR reflow is recommended.

Sn63 (63% Sn, 37% Pb) solder is preferred because it is a eutectic compound with a melting point of 183°C. The reflow temperature in this case would be above 183°C for 30–60 seconds, with a peak temperature of 205–210°C.

If a lead-free alloy is used, such as tin/silver or tin/silver/copper, the melting point is 221°C and 217°C respectively. In this case, the profile would be above 221/217°C for 30–60 seconds, with a peak temperature of 230–240°C. Maximum temperature should not exceed 240°C.

A typical reflow profile is presented in Figure 4, which could be used as a starting point. The actual profile used will depend on the thermal mass of the entire populated board and the solder compound used.



Figure 4. Typical Solder Reflow Profile

## **Solder Reflow Information**



Assembly of a surface mount device depends on many process material and equipment parameters. Two of the most common processes used are infrared (IR) and IR-conversion. The lead finish of Skyworks surface mount devices is Sn/Pb (70%–90%/30%–10%) with a thickness ranging from 200–1000 micro-inches. This finish is compatible with all commonly used processes. The most common attachment process is the IR-conversion reflow process.

The reflow process requires applying solder and flux in the form of a paste to the areas of the substrate or PC board where the surface mount component connections are to be made. The solder and flux are applied to the circuit by screening, stenciling, or dot placement. This paste acts as a temporary adhesive holding the device in place until reflow soldering takes place. Optionally, a chip-bonding epoxy can be used to hold the device in place.

Solder paste manufacturers generally provide a recommended profile for the specific solder being used. This recommended profile, or the one depicted here, can be used as a starting point for profiling the process.

When using thermocouples for profiling, it should be noted that the outside edges and corners of an assembly heat up faster than the center, and components of greater thermal mass will heat more slowly than those of lesser thermal mass.

A thermal reflow process profile typically undergoes five transitions:

- 1. Preheat Brings the assembly from 25°C to preheat zone and evaporates solvents from solder paste. A slow ramp up rate will prevent any damage due to thermal shock. The time and temperature to evaporate the solvents will depend upon the solder paste that is used.
- 2. Flux Activation (Preheat–T<sub>L</sub>) Dried solder paste is heated to a temperature in which the flux will react with the oxide and contaminants on the surfaces to be joined. The time and temperature should be long enough to allow the flux to fully clean these surfaces but not too long that the flux may be exhausted before soldering takes place.
- 3. Thermal Equalization (Preheat–T<sub>L</sub>) Achieves temperature equalization approximately 25–50°C below the reflow temperature. Time and temperature will depend upon the mass and materials.
- 4. Reflow (T<sub>L</sub>-T<sub>P</sub>) In this stage the assembly is briefly brought to the temperature sufficient to produce reflow of solder. Maximum recommended reflow temperature is 235°C.
- **5. Cool Down** This is the final stage in the solder process. Gradual cooling should be used. The end result should be as fast as possible without causing thermal shock to the components. Cool down in this manner will produce a finer grain structure in the solder joint, which will yield a more fatigue resistant solder joint.

## **Recommended Solder Reflow Profiles**

| Profile Feature                                                                                              | SnPb Eutectic Assembly           | Lead (Pb)-Free Assembly 100% Sn |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Average Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                                                     | 3°C/Second Max.                  | 3°C/Second Max.                 |
| Preheat Temperature Min. (T <sub>Smin</sub> ) Temperature Max. (T <sub>Smax</sub> ) Time (Min. to Max.) (ts) | 100°C<br>150°C<br>60-120 Seconds | 150°C<br>200°C<br>60–80 Seconds |
| T <sub>Smax</sub> to T <sub>L</sub><br>Ramp-up Rate                                                          | _                                | 3°C/Second Max.                 |
| Time Maintained Above: Temperature (T <sub>L</sub> ) Time (t <sub>L</sub> )                                  | 183°C<br>60-150 Seconds          | 217°C<br>60–150 Seconds         |
| Peak Temperature (T <sub>P</sub> )                                                                           | 240 +0/-5°C                      | 250 +0/-5°C                     |
| Time Within 5°C of Actual Peak Temperature (tp)                                                              | 10-30 Seconds                    | 20-40 Seconds                   |
| Ramp-Down Rate                                                                                               | 6°C/Second Max.                  | 6°C/Second Max.                 |
| Time 25°C to Peak Temperature                                                                                | 6 Minutes Max.                   | 8 Minutes Max.                  |

All temperatures refer to the topside of the package, measured on the package body surface. Reference JEDEC J-STD-020B.



# **Varactor Markings**



| Markings | Part Number | Description           |
|----------|-------------|-----------------------|
| BE1      | SMV1405-001 | SOT-23 Single         |
| BE3      | SMV1405-074 | SC-70 Common Cathode  |
| Cathode  | SMV1405-079 | SC-79 Single          |
| VV1      | SMV1408-001 | SOT-23 Single         |
| AR1      | SMV1413-001 | SOT-23 Single         |
| AV1      | SMV1417-001 | SOT-23 Single         |
| AV3      | SMV1417-004 | SOT-23 Common Cathode |
| VY1      | SMV1419-001 | SOT-23 Single         |
| Cathode  | SMV1493-079 | SC-79 Single          |
| Cathode  | SMV1494-079 | SC-79 Single          |
| AA1      | SMV1211-001 | SOT-23 Single         |
| AB1      | SMV1212-001 | SOT-23 Single         |
| AB3      | SMV1212-004 | SOT-23 Common Cathode |
| AB3      | SMV1212-074 | SC-70 Common Cathode  |
| Cathode  | SMV1212-079 | SC-79 Single          |
| n/a      | SMV1213-001 | SOT-23 Single         |
| BD3      | SMV1213-004 | SOT-23 Common Cathode |
| BD3      | SMV1213-074 | SC-70 Common Cathode  |
| Cathode  | SMV1213-079 | SC-79 Single          |
| VL1      | SMV1214-001 | SOT-23 Single         |
| VM1      | SMV1215-001 | SOT-23 Single         |
| Cathode  | SMV1215-011 | SOD-323 Single        |
| Cathode  | SMV1129-011 | SOD-323 Single        |
| AX9      | SMV1129-073 | SC-70 Common Anode    |
| Cathode  | SMV1129-079 | SC-79 Single          |
| Cathode  | SMV1139-011 | SOD-323 Single        |
| Cathode  | SMV1139-079 | SC-79 Single          |
| AG3      | SMV1135-004 | SOT-23 Common Cathode |
| Cathode  | SMV1135-011 | SOD-323 Single        |
| Cathode  | SMV1245-011 | SOD-323 Single        |
| Cathode  | SMV1265-011 | SOD-323 Single        |
| Cathode  | SMV1281-011 | SOD-323 Single        |
| Cathode  | SMV1283-011 | SOD-323 Single        |
| Cathode  | SMV1142-011 | SOD-323 Single        |

| Markings | Part Number | Description           |
|----------|-------------|-----------------------|
| Cathode  | SMV1143-011 | SOD-323 Single        |
| Cathode  | SMV1144-011 | SOD-323 Single        |
| Cathode  | SMV1145-011 | SOD-323 Single        |
| Cathode  | SMV1145-079 | SC-79 Single          |
| Cathode  | SMV1146-011 | S0D-323 Single        |
| Cathode  | SMV1147-011 | S0D-323 Single        |
| Cathode  | SMV1148-011 | S0D-323 Single        |
| Cathode  | SMV1232-011 | SOD-323 Single        |
| CC3      | SMV1232-074 | SC-70 Common Cathode  |
| Cathode  | SMV1232-079 | SC-79 Single          |
| VP1      | SMV1233-001 | SOT-23 Single         |
| VP9      | SMV1233-003 | SOT-23 Common Anode   |
| VP3      | SMV1233-004 | SOT-23 Common Cathode |
| Cathode  | SMV1233-011 | SOD-323 Single        |
| VP9      | SMV1233-073 | SC-70 Common Anode    |
| VP3      | SMV1233-074 | SC-70 Common Cathode  |
| Cathode  | SMV1233-079 | SC-79 Single          |
| VQ1      | SMV1234-001 | SOT-23 Single         |
| VQ9      | SMV1234-003 | SOT-23 Common Anode   |
| VQ3      | SMV1234-004 | SOT-23 Common Cathode |
| Cathode  | SMV1234-011 | SOD-323 Single        |
| VQ9      | SMV1234-073 | SC-70 Common Anode    |
| VQ3      | SMV1234-074 | SC-70 Common Cathode  |
| Cathode  | SMV1234-079 | SC-79 Single          |
| VR1      | SMV1235-001 | SOT-23 Single         |
| VR3      | SMV1235-004 | SOT-23 Common Cathode |
| Cathode  | SMV1235-011 | SC-70 Single          |
| VR3      | SMV1235-074 | SC-70 Common Cathode  |
| Cathode  | SMV1235-079 | SC-79 Single          |
| AQ1      | SMV1236-001 | SOT-23 Single         |
| AQ3      | SMV1236-004 | SOT-23 Common Cathode |
| Cathode  | SMV1236-011 | SOD-323 Single        |
| AQ3      | SMV1236-074 | SC-70 Common Cathode  |
| Cathode  | SMV1236-079 | SC-79 Single          |
|          |             |                       |

| Markings | Part Number | Description           |
|----------|-------------|-----------------------|
| VT1      | SMV1237-001 | SOT-23 Single         |
| VT3      | SMV1237-004 | SOT-23 Common Cathode |
| VT3      | SMV1237-074 | Common Cathode SC-70  |
| BF3      | SMV1247-074 | SC-70 Common Cathode  |
| Cathode  | SMV1247-079 | SC-79 Single          |
| BG1      | SMV1248-001 | SOT-23 Single         |
| F1       | SMV1249-001 | SOT-23 Single         |
| AF9      | SMV1249-003 | SOT-23 Common Anode   |
| Cathode  | SMV1249-011 | SOD-323 Single        |
| AF9      | SMV1249-073 | SC-70 Common Anode    |
| Cathode  | SMV1249-079 | SC-79 Single          |
| AH1      | SMV1251-001 | SOT-23 Single         |
| AH3      | SMV1251-004 | SOT-23 Common Cathode |
| Cathode  | SMV1251-011 | SOD-323 Single        |
| AH3      | SMV1251-074 | SC-70 Common Cathode  |
| Cathode  | SMV1251-079 | SC-79 Single          |
| AJ3      | SMV1253-004 | SOT-23 Common Cathode |
| Cathode  | SMV1253-079 | SC-79 Single          |

| Markings Part Number |             | Description           |
|----------------------|-------------|-----------------------|
| AK1                  | SMV1255-001 | S0T-23 Single         |
| AK3                  | SMV1255-004 | SOT-23 Common Cathode |
| Cathode              | SMV1255-011 | SOD-323 Single        |
| AK9                  | SMV1255-073 | SC-70 Common Anode    |
| Cathode              | SMV1255-079 | SC-79 Single          |
| Cathode              | SMV1263-079 | SC-79 Single          |
| AE3                  | SMV1269-074 | SC-70 Common Cathode  |
| Cathode              | SMV1270-079 | SC-79 Single          |
| AT3                  | SMV1470-004 | Common Cathode SOT-23 |
| Cathode              | SMV1705-079 | SC-79 Single          |
| Cathode              | SMV1763-079 | SC-79 Single          |
| Cathode              | SMV1770-079 | SC-79 Single          |
| Cathode              | SMV1771-079 | SC-79 Single          |
| VJ1                  | SMV2022-001 | SOT-23 Single         |
| VJ3                  | SMV2022-004 | SOT-23 Common Cathode |
| VK1                  | SMV2023-001 | SOT-23 Single         |
| VK3                  | SMV2023-004 | SOT-23 Common Cathode |
|                      |             |                       |

# Waffle Pack Chip Carrier Handling/Opening Procedure





Proper ESD handling practice should be adhered to at all times when handling Skyworks product.



**Step 4**Lift cover.



Step 1
Remove carrier
clip. Do not allow
separation
between the waffle
pack and cover.



Step 5
Remove the two
layers of paper. They
should be slid off the
waffle pack with light
pressure.



Step 2
Place lidded waffle pack onto a flat ESD surface. Avoid separation between the waffle pack and cover.



Step 6
Remove die from carrier. The use of a vacuum tool is strongly suggested. Tweezers should not be used to remove die.



Step 3
Gently tap cover using the handle of a set of tweezers. This will remove any devices that are clinging to the inside paper.

## **ESD** Awareness

Skyworks deploys state of the art ESD controls from wafer fabrication through to assembly, test and pack. In order to maintain device integrity, Skyworks has outlined critical ESD guidelines that should be followed as a minimum. Skyworks adheres to the requirements outlined in MIL-HDBK-263, MIL-STD-1686 and ESD Association 2.0 Handbook.



Caution

Devices should only be handled at an ESD approved workstation.

 $Waffle\ pack\ chip\ carriers\ are\ made\ of\ Chip\ Sentry^{\textcircled{\tiny{B}}}\ black\ conductive\ polycarbonate\ from\ fluoroware.$ 

## Closina



Step 1
When closing the package the two layers of paper should be aligned properly with the waffle pack.



Step 2
The cut corner in the upper left should match up on the waffle pack and cover. The clip can be put back on when the cover is properly set on waffle pack.



Step 3
Slide carrier clip on.
Avoid separation
between the waffle
pack and cover.

#### **Device Handling**

Remove ESD sensitive devices from protective containers at approved ESD work stations only.

ESD wrist straps are required when handling devices outside their ESD protective packaging.

All personnel shall be properly grounded (footstraps/wrist straps) prior to opening static shielding bags.

ESD sensitive devices should always be handled by the part body. Avoid touching the leads. When hand tools are required to accomplish an operation, use only dissipative, conductive, or tools treated with topical antistat.

#### **FSD** Workstation

Your ESD safe work area should follow the requirements outlined in MIL-HDBK-263 and ESD Association Handbook 2.0. The following requirements are strongly recommended:

#### Personnel

The use of constant wrist strap monitors is highly recommended. This monitor guarantees that the connection to ground is continuously made. An alarm will sound when that connection is broken.

#### Clothing

An ESD protective garment (smock, etc.) shall be used at the workstation. While a person may be grounded using a wrist strap or foot strap, that does not ensure that certain clothing fabrics can dissipate a charge to ground. The use of a conductive smock is required.

#### Floors

Conductive or dissipative ESD flooring should be utilized whenever possible. This flooring shall be checked for ESD properties on a regular basis.

#### **Work Surfaces**

Your ESD work surface should be covered with soft dissipative material. This surface shall be tied to earth ground and shall be configured in a common point ground. In addition, the work surface shall be free of any static generating material, such as non-essential plastics, or scotch tape.

#### Equipment

All equipment used to process ESD sensitive devices shall be checked for the generation of static charging. Whether soldering irons, wave solder machines, device insertion machines or test equipment, the generation of static electricity is of concern.

## Semiconductor Plastic Package Selection Guide



| PART<br>NUMBER<br>REFERENCE                           | PACKAGE<br>TYPE                                               | ACTUAL<br>SIZE | PACKAGE<br>DIMENSIONS (mm)<br>(LEAD INCLUSIVE)* |
|-------------------------------------------------------|---------------------------------------------------------------|----------------|-------------------------------------------------|
| 050                                                   | Chip Scale                                                    | *              | 0.68 x 0.56 x 0.3                               |
| 079                                                   | SC-79                                                         | •              | 1.6 x 0.8 x 0.6                                 |
| 508                                                   | LGA                                                           | 日世             | 1.44 x 1.20 x 0.70                              |
| 334                                                   | LGA-6                                                         | 4日             | 1.5 x 1.2 x 0.82                                |
| 344                                                   | SOT-666                                                       | 40             | 1.65 x 1.65 x 0.6                               |
| 011                                                   | SOD-323                                                       | -10-           | 2.52 x 1.25 x 1.04                              |
| 335                                                   | QFN-6 (2 x 2)                                                 | <b>♦</b> ♦     | 2.0 X 2.0 X 0.90                                |
| 073, -074,<br>075, -076                               | SC-70                                                         | *              | 2.1 x 2.0 x 0.95                                |
| 92                                                    | SC-88                                                         | *              | 2.1 x 2.0 x 0.95                                |
| 322                                                   | QFN-5                                                         | *** II         | 2.0 x 1.0 x 0.4                                 |
| 001, -003, -004<br>005, -006, -007                    |                                                               | *              | 2.37 x 2.92 x 1.0                               |
| 111                                                   | Surface Mount<br>Package                                      | <b>P</b>       | 2.79 x 2.28 x 1.01                              |
| 015, -016, -017<br>019, -020, -021<br>022, -023, -026 | ,                                                             | *              | 2.37 x 2.92 x 1.0                               |
| 027, -72                                              | SOT-23 5L                                                     | *              | 2.8 x 2.9 x 1.18                                |
| 73                                                    | SOT-23 6L                                                     | *              | 2.8 x 2.9 x 1.18                                |
| 313                                                   | QFN-6                                                         | <b>*</b> II    | 2.0 x 3.0 x 1.0                                 |
|                                                       | Thermally Enhanced<br>Ultra-Small Micro<br>Lead Frame Package |                | 3.0 x 3.0 x 0.75                                |
| 321                                                   | QFN-12 (3 x 3)<br>1.45 mm Paddle                              |                | 3.0 x 3.0 x 0.75                                |
| 340                                                   | QFN-20 (4 x 4)<br>2.1 mm Paddle                               |                | 4.0 x 4.0 x 0.75                                |
| 317                                                   | QFN-16 (4 x 4)<br>1.47 mm Paddle                              | 多科             | 4.0 x 4.0 x 1.0                                 |
| 59                                                    | MSOP-8                                                        | <b>A</b>       | 4.9 x 3.0 x 0.96                                |
| 86                                                    | MSOP-10                                                       | -              | 4.9 x 3.0 x 0.96                                |
| 302                                                   | MSOP-8<br>Exposed Pad                                         |                | 4.9 x 3.0 x 1.1                                 |
| 300                                                   | QFN-16 (4 x 4)<br>1.7 mm Paddle                               |                | 4.0 x 4.0 x 0.9                                 |
| 306                                                   | QFN-16 (4 x 4)<br>2.1 mm Paddle                               |                | 4.0 x 4.0 x 0.9                                 |
| 307                                                   | QFN-16 (4 x 4)<br>2.8 mm Paddle                               |                | 4.0 x 4.0 x 0.9                                 |
| 315                                                   | LGA Surface<br>Mount Package                                  |                | 4.9 x 3.2 x 2.32                                |

| PART<br>NUMBER<br>REFERENCE | PACKAGE<br>TYPE                 | ACTUAL<br>SIZE                         | PACKAGE<br>DIMENSIONS (mm)<br>(LEAD INCLUSIVE)* |
|-----------------------------|---------------------------------|----------------------------------------|-------------------------------------------------|
| -614                        | LTCC                            |                                        | 5.0 x 3.2 x 1.2                                 |
| -605                        | LTCC                            |                                        | 5.0 x 3.2 x 1.4                                 |
| -610                        | LTCC                            |                                        | 5.0 x 3.2 x 1.4                                 |
| -608                        | LTCC                            | 0                                      | 5.0 x 3.25 x 1.2                                |
| -310                        | QFN-32 (5 x 5)<br>3.3 mm Paddle |                                        | 5.0 x 5.0 x 0.9                                 |
| -602                        | LTCC Module                     |                                        | 5.4 x 4.0 x 1.7                                 |
| -339                        | SOIC-8<br>Exposed Pad           |                                        | 5.99 x 4.93 x 1.55                              |
| -606                        | LTCC Module                     | Care                                   | 6.0 x 3.0 x 1.7                                 |
| -89                         | SSOP-16<br>Exposed Pad          | mann mann                              | 6.0 x 4.9 x 1.6                                 |
| -79                         | SSOP-16<br>With Slug            |                                        | 6.0 x 4.9 x 1.45                                |
| -12                         | SOIC-8                          | 1275                                   | 6.0 x 4.9 x 1.6                                 |
| -80                         | SSOP-16                         | WHITE!                                 | 6.0 x 4.9 x 1.6                                 |
| -84                         | SOIC-8<br>With Slug             |                                        | 6.0 x 4.9 x 1.45                                |
| -87                         | TSSOP-16                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 6.4 x 5.0 x 1.0                                 |
| -93                         | TSSOP-16<br>Exposed Pad         |                                        | 6.4 x 6.4 x 1.0                                 |
| -94                         | TSSOP-20<br>Exposed Pad         |                                        | 6.4 x 6.5 x .98                                 |
| -603                        | LTCC Module                     |                                        | 6.7 x 5.0 x 1.7                                 |
| -85                         | SSOP-20                         | Milliani                               | 7.8 x 7.2 x 1.9                                 |
| -24                         | SOIC-14                         |                                        | 6.0 x 8.7 x 1.55                                |
| -61                         | LQFP-32<br>(7 x 7)              | 11111111                               | 9.0 x 9.0 x 1.5                                 |
| -25                         | SOIC-16                         |                                        | 10.0 x 6.0 x 1.7                                |
| -500                        | LGA-16                          |                                        | 11.6 x 4.1 x 1.5                                |
| -501                        | LGA-16                          |                                        | 10 x 8 x 1.4                                    |

<sup>\*</sup> Dimensions indicated: lead tip to lead tip x body width x total thickness. Visit our web site for the latest information at www.skyworksinc.com

## Package Style/Part Number Reference



| Package Style               | Packaging Part<br>Number Suffix |
|-----------------------------|---------------------------------|
| Chip                        | -000, -00                       |
| SOT-23                      | -001                            |
| SOT-23                      | -003                            |
| SOT-23                      | -004                            |
| SOT-23                      | -005                            |
| SOT-23                      | -006                            |
| SOT-23                      | -007                            |
| SOD-323                     | -011                            |
| SOT-143                     | -015                            |
| SOT-143                     | -016                            |
| SOT-143                     | -017                            |
| SOT-143                     | -019                            |
| SOT-143                     | -020                            |
| SOT-143                     | -021                            |
| SOT-143                     | -022                            |
| SOT-143                     | -023                            |
| SOT-143                     | -026                            |
| SOT-5 Lead                  | -027                            |
| Chip Scale                  | -050                            |
| SC-70                       | -073                            |
| SC-70                       | -074                            |
| SC-70                       | -075                            |
| SC-70                       | -076                            |
| SC-79                       | -079                            |
| Wafer                       | -099                            |
| SOIC-8                      | -12                             |
| SOIC-14                     | -24                             |
| SOIC-16                     | -25                             |
| SOT-143                     | -32                             |
| SOT-23                      | -39                             |
| MSOP-8                      | -59                             |
| LQFP-32 (7 x 7 mm)          | -61                             |
| SOT-5                       | -72                             |
| SOT-6                       | -73                             |
| PFP-16 with Slug (7 x 7 mm) | -75                             |
| SSOP-16 with Slug           | -79                             |
| SSOP-16                     | -80                             |
| SOIC-8 with Slug            | -84                             |
| SSOP-20                     | -85                             |
| MSOP-10                     | -86                             |

| Package Style                                              | Packaging Part<br>Number Suffix |
|------------------------------------------------------------|---------------------------------|
| TSSOP-16                                                   | -87                             |
| SSOP-16 Exposed Pad                                        | -89                             |
| SC-88 (6 Lead SC-70)                                       | -92                             |
| TSSOP-16 Exposed Pad                                       | -93                             |
| TSSOP-20 Exposed Pad                                       | -94                             |
| Chip on Board                                              | -100                            |
| Chip on Board                                              | -101                            |
| Chip on Board                                              | -102                            |
| Chip on Board                                              | -103                            |
| Surface Mount Package                                      | -111                            |
| QFN-16 (4 x 4 mm) 1.7 mm Paddle                            | -300                            |
| MSOP-8 Exposed Pad                                         | -302                            |
| QFN-16 (4 x 4 mm) 2.1 mm Paddle                            | -306                            |
| LPCC-16 (4 x 4 mm) 2.8 mm Paddle                           | -307                            |
| QFN-32 (5 x 5 mm) 3.3 mm Paddle                            | -310                            |
| QFN-12 (3 x 3 mm)                                          | -311                            |
| QFN-6                                                      | -313                            |
| LGA                                                        | -315                            |
| QFN-16 (4 x 4 mm) 1.47 mm Paddle                           | -317                            |
| Thermally Enhanced Ultra Small<br>Micro Lead Frame Package | -320                            |
| QFN-12 (3 x 3 mm)                                          | -321                            |
| QFN-5                                                      | -322                            |
| LGA-6                                                      | -334                            |
| QFN-6 (2 x 2 mm)                                           | -335                            |
| QFN-16 (4 x 4 mm) 2.1 mm Paddle                            | -338                            |
| SOIC-8 Exposed Pad                                         | -339                            |
| QFN-20 (4 x 4 mm)                                          | -340                            |
| SOT-666                                                    | -344                            |
| LGA-16 (11.6 x 4.1 x 1.5 mm)                               | -500                            |
| LGA-16 (10.0 x 8.0 x 1.4 mm)                               | -501                            |
| LGA                                                        | -508                            |
| LTCC Module                                                | -602                            |
| LTCC Module                                                | -603                            |
| LTCC                                                       | -605                            |
| LTCC                                                       | -606                            |
| LTCC                                                       | -608                            |
| LTCC                                                       | -610                            |
| LTCC                                                       | -613                            |
| LTCC                                                       | -614                            |

## **Part Number Index**



| Part Number | Page | Part Number | Page | Part Number                | Page |
|-------------|------|-------------|------|----------------------------|------|
| APD0505-000 | 131  | DMJ3928-101 | 158  | SC10003440                 |      |
| APD0510-000 |      | DMJ3931-102 |      | SC22203440                 |      |
| APD0520-000 |      | DMJ3947-103 |      | SC33303440                 |      |
| APD0805-000 |      |             |      |                            |      |
|             |      | DMK2308-000 |      | SC50004450                 |      |
| APD0810-000 |      | DMK2783-000 |      | SC9016-000                 |      |
| APD1510-000 |      | DMK2790-000 |      |                            |      |
| APD1520-000 |      | DMK8001-000 |      |                            |      |
| APD2220-000 |      | GMV7811-000 |      |                            |      |
| ATN3580-01  |      | GMV7821-000 |      | SC99906068                 |      |
| ATN3580-02  |      | GMV9801-000 |      | SMP1302-001                |      |
| ATN3580-03  |      | GMV9821-000 |      | SMP1302-003                |      |
| ATN3580-04  |      | GMV9822-000 | 76   | SMP1302-004                | 119  |
| ATN3580-05  | 287  | HY17-12     | 244  | SMP1302-005                | 119  |
| ATN3580-06  | 287  | HY19-12     | 247  | SMP1302-011                |      |
| ATN3580-07  | 287  | HY22-73     | 250  | SMP1302-027                |      |
| ATN3580-08  | 287  | HY86-12     | 238  | SMP1302-073                |      |
| ATN3580-09  |      | HY92-12     |      | SMP1302-074                |      |
| ATN3580-10  |      | PD09-12     |      | SMP1302-075                |      |
| ATN3580-12  |      | PD09-73     |      | SMP1302-079                |      |
| ATN3580-15  |      | PD15-12     |      | SMP1302-079LF              |      |
| ATN3580-20  |      | PD15-73     |      | SMP1302-099                |      |
| ATN3580-30  |      | PD16-73     |      | SMP1304-001                |      |
| ATN3580-30  |      | PD18-12     |      | SMP1304-004                |      |
|             |      | PD18-73     |      |                            |      |
| AV101-12    |      |             |      | SMP1304-005                |      |
| AV102-12    |      | PD19-73     |      | SMP1304-007                |      |
| AV111-12    |      | PD22-73     |      | SMP1304-011                |      |
| AV112-12    |      | PD4W09-12   |      | SMP1304-019                |      |
| AV113-12    |      | PD4W09-59   |      | SMP1304-027                |      |
| AV131-315   |      | PD4W18-12   |      | SMP1304-099                |      |
| AV132-315   |      | PD4W18-59   |      | SMP1307-001                |      |
| AV133-315   |      | PS088-315   |      | SMP1307-004                |      |
| AV141-321   | 284  | PS094-315   | 293  | SMP1307-005                | 127  |
| CDB7619-000 |      | PS184-315   | 296  | SMP1307-011                | 127  |
| CDB7620-000 | 161  | PS196-315   | 299  | SMP1307-027                | 127  |
| CDC7630-000 | 161  | PS214-315   |      | SMP1320-001                |      |
| CDC7631-000 | 161  | SC00080710  | 170  | SMP1320-003                |      |
| CDF7621-000 | 161  | SC00080912  | 170  | SMP1320-004                |      |
| CDF7623-000 | 161  | SC00120710  | 170  | SMP1320-005                |      |
| CLA4601-000 | 136  | SC00120912  | 170  | SMP1320-007                |      |
| CLA4602-000 | 136  | SC00180710  | 170  | SMP1320-011                |      |
| CLA4603-000 | 136  | SC00180912  | 170  | SMP1320-017                |      |
| CLA4604-000 |      | SC00260710  |      | SMP1320-074                |      |
| CLA4605-000 |      | SC00260912  |      | SMP1320-075                |      |
| CLA4606-000 |      | SC00380710  |      | SMP1320-077                |      |
| CLA4607-000 |      | SC00380912  |      | SMP1320-079                |      |
| CLA4608-000 |      | SC00560710  |      | SMP1320-079LF              |      |
| CVB1031-000 |      | SC00560912  |      | SMP1320-099                |      |
| CVB1151-000 |      | SC00680710  |      | SMP1321-001                |      |
| DC08-73     |      | SC00680912  |      | SMP1321-003                |      |
| DC09-73     |      | SC00880912  |      | SMP1321-004                |      |
|             |      | SC00820710  |      | SMP1321-005                |      |
| DC15-73     |      |             |      |                            |      |
|             |      | SC00821518  |      | SMP1321-007<br>SMP1321-011 |      |
| DC17-73     |      | SC01000710  |      |                            |      |
| DC18-73     |      | SC01000912  |      | SMP1321-073                |      |
| DC25-73     |      | SC01001518  |      | SMP1321-074                |      |
| DME3927-100 |      | SC01500710  |      | SMP1321-075                |      |
| DME3927-101 |      | SC01500912  |      | SMP1321-079                |      |
| DME3930-102 |      | SC01501518  |      | SMP1321-079LF              |      |
| DME3946-103 |      | SC02200912  |      | SMP1321-508                |      |
| DMF3926-100 |      | SC02201518  |      | SMP1322-001                |      |
| DMF3926-101 |      | SC03301518  |      | SMP1322-004                |      |
| DMF3929-102 |      | SC04701518  |      | SMP1322-005                |      |
| DMF3945-103 |      | SC06801518  |      | SMP1322-007                |      |
| DMJ3928-100 | 158  | SC10002430  | 170  | SMP1322-011                | 109  |
|             |      |             |      |                            |      |

| Part Number   | Page | Part Number   | Page | Part Number   | Page |
|---------------|------|---------------|------|---------------|------|
| SMP1322-016   | 109  | SMS7621-075   |      | SMV1237-004   | 28   |
| SMP1322-017   | 109  | SMS7621-076   |      | SMV1237-074   | 28   |
| SMP1322-074   | 109  | SMS7621-079   | 145  | SMV1238-079   | 32   |
| SMP1322-075   |      |               |      | SMV1245-011   |      |
| SMP1322-079   |      | SMS7630-005   |      | SMV1247-074   |      |
| SMP1322-079LF |      | SMS7630-006   |      | SMV1247-079   |      |
|               |      |               |      |               |      |
| SMP1322-099   |      | SMS7630-011   |      | SMV1247-079LF |      |
| SMP1330-005   |      | SMS7630-020   |      | SMV1248-001   |      |
| SMP1340-001   |      | SMS7630-050   |      | SMV1249-001   |      |
| SMP1340-003   | 91   | SMS7630-075   |      | SMV1249-003   | 36   |
| SMP1340-004   | 91   | SMS7630-076   |      | SMV1249-011   | 36   |
| SMP1340-005   | 91   | SMS7630-079   |      | SMV1249-073   | 36   |
| SMP1340-011   | 91   | SMS7630-079LF |      | SMV1249-079   | 36   |
| SMP1340-050   |      | SMS7630-517   |      | SMV1251-001   |      |
| SMP1340-074   |      | SMV1129-011   |      | SMV1251-004   |      |
| SMP1340-079   |      | SMV1129-073   |      | SMV1251-011   |      |
| SMP1340-079LF |      | SMV1129-079   |      | SMV1251-074   |      |
|               |      |               |      |               |      |
| SMP1340-099   |      | SMV1135-004   |      | SMV1251-079   |      |
| SMP1340-508   |      | SMV1135-011   |      | SMV1253-004   |      |
| SMP1345-003   |      | SMV1139-011   |      | SMV1253-079   |      |
| SMP1345-004   |      | SMV1139-079   |      | SMV1255-001   | 36   |
| SMP1345-005   | 95   | SMV1142-011   |      | SMV1255-004   | 36   |
| SMP1345-079   | 95   | SMV1143-011   |      | SMV1255-011   | 36   |
| SMP1345-079LF |      | SMV1144-011   |      | SMV1255-073   | 36   |
| SMP1345-518   |      |               | 20   | SMV1255-079   | 36   |
| SMP1352-005   |      |               |      | SMV1263-079   |      |
| SMP1352-011   |      | SMV1146-011   |      | SMV1265-011   |      |
| SMP1352-079   |      | SMV1147-011   |      | SMV1269-074   |      |
| SMP1352-079LF |      |               |      | SMV1270-079   |      |
| SMP1353-050   |      | SMV1211-001   |      | SMV1270-079   |      |
| SMP1353-099   |      |               |      |               |      |
|               |      |               |      | SMV1283-011   |      |
| SMS1546-005   |      |               |      | SMV1405-001   |      |
| SMS3922-001   |      |               |      | SMV1405-074   |      |
| SMS3922-004   |      | SMV1212-079   |      | SMV1405-079   |      |
| SMS3922-005   |      | SMV1213-001   |      | SMV1408-001   |      |
| SMS3922-011   |      | SMV1213-004   |      | SMV1413-001   |      |
| SMS3922-015   |      |               |      | SMV1417-001   |      |
| SMS3922-075   |      | SMV1213-079   |      | SMV1417-004   |      |
| SMS3922-079   |      | SMV1214-001   |      | SMV1419-001   |      |
| SMS3923-001   |      | SMV1215-001   |      | SMV1470-004   |      |
| SMS3923-004   |      | SMV1215-004   |      | SMV1493-011   |      |
| SMS3923-005   |      | SMV1215-011   |      | SMV1493-079   |      |
| SMS3923-011   |      | SMV1232-011   |      | SMV1494-079   |      |
| SMS3923-015   |      | SMV1232-074   |      | SMV1705-050   |      |
| SMS3923-075   |      | SMV1232-079   |      | SMV1705-079   |      |
| SMS3923-079   |      |               |      | SMV1705-079LF |      |
| SMS3923-517   | 150  | SMV1233-003   |      | SMV1763-050   | 9    |
| SMS3924-001   | 150  | SMV1233-004   |      | SMV1763-079   | 60   |
| SMS3924-004   | 150  | SMV1233-011   |      | SMV1763-079LF | 60   |
| SMS3924-005   | 150  | SMV1233-073   |      | SMV1770-079   | 63   |
| SMS3924-011   | 150  | SMV1233-074   |      | SMV1770-079LF | 63   |
| SMS3924-015   | 150  | SMV1233-079   |      | SMV1771-079   | 66   |
| SMS3924-075   | 150  | SMV1234-001   | 28   | SMV2019-000   |      |
| SMS3924-079   | 150  | SMV1234-003   | 28   | SMV2020-000   |      |
| SMS3925-079   |      | SMV1234-004   |      | SMV2021-000   |      |
| SMS3926-022   |      | SMV1234-011   |      | SMV2022-000   |      |
| SMS3926-023   |      | SMV1234-073   |      | SMV2022-001   |      |
| SMS3927-023   |      | SMV1234-074   |      | SMV2022-004   |      |
| SMS3928-023   |      | SMV1234-079   |      | SMV2023-000   |      |
| SMS3929-021   |      | SMV1235-001   |      | SMV2023-000   |      |
| SMS3930-021   |      | SMV1235-004   |      | SMV2023-004   |      |
|               |      |               |      |               |      |
| SMS3931-021   |      | SMV1235-011   |      | SPD1101-111   |      |
| SMS3940-026   |      | SMV1235-074   |      | SPD1102-111   |      |
| SMS7621-001   |      | SMV1235-079   |      | SPD1103-111   | 254  |
| SMS7621-005   |      | SMV1236-001   |      |               |      |
| SMS7621-006   |      | SMV1236-004   |      |               |      |
| SMS7621-011   |      | SMV1236-011   |      |               |      |
| SMS7621-015   |      | SMV1236-074   |      |               |      |
| SMS7621-050   |      |               |      |               |      |
| SMS7621-074   | 145  | SMV1237-001   |      |               |      |

## Skyworks Solutions, Inc. **Sales Representatives**



#### **AMERICAS**

#### EASTERN U.S.A.

Alabama/Mississippi Beacon Electronics

7501 Memorial Parkway S., Suite 105 Huntsville, AL 35802 Telephone: (256) 881-5031 Fax: (256) 883-9516 Email: dvest@beaconmail.com

#### Connecticut/Maine/ Massachusetts/New Hampshire/ Rhode Island/Vermont

Advanced Technology Marketing 2 Courthouse Ln., Suite 16 Chelmsford, MA 01824 Telephone: (978) 458-0200 Fax: (978) 458-7990 Email: atm@atmink.com

#### Delaware/Maryland/New Jersey (Southern)/Pennsylvania (Eastern Zip Codes 17000 and Above)/Virginia/West Virginia/ Washington D.C.

Beacon Flectronics 8245 Boone Blvd., Suite 260 Vienna, VA 22182 Telephone: (703) 903-6500 Fax: (703) 903-8533 Email: acaribardi@beaconmail.com

#### Florida

Reacon Electronics 378 Center Pointe Circle #1208 Altamonte Springs, FL 32701 Telephone: (407) 788-1155 Fax: (407) 788-1176 Email: dyonchik@beaconmail.com

#### Georgia/Kentucky/Tennessee

Beacon Electronics 5881 Glenridge Dr., Suite 230 Atlanta, GA 30328 Telephone: (404) 256-9640 Fax: (404) 256-1398 Email: ibroxson@beaconmail.com

#### New York (Metro)/ New Jersey (Northern)/Fairfield County, Connecticut

Trionic Associates 320 Northern Blvd., Suite 23 Great Neck, NY 11021 Telephone: (516) 466-2300 Fax: (516) 466-2319 Email: main.info@trionic.com

#### New York (Upstate)

Quality Components 6525 Lakeshore Rd. Cicero, NY 13039 Telephone: (315) 698-2472 Fax: (315) 698-6847 Email: kallnut@quality-components.com

#### N. Carolina/S. Carolina

Beacon Electronics 2700 Wycliff Rd., Suite 204 Raleigh, NC 27607 Telephone: (919) 787-0330 Fax: (919) 781-8431 Email: acaribardi@beaconmail.com

#### MID-WESTERN U.S.A.

#### Arkansas/Louisiana/Oklahoma/Texas (except El Paso)

PhaseCom Inc. 1111 S. Main St Suite 100, PMB 216 Grapevine, TX 76051 Telephone: (817) 410-5790 Fax: (817) 410-5791 Email: sales@phasecom.com

#### Illinois/Indiana/Ohio/Pennsylvania (Zip Codes 16400-16599)/ Wisconsin (Eastern)

Cain-Forlaw Co. 510 N. Plum Grove Rd Palatine, IL 60067 Telephone: (847) 202-9898 Fax: (847) 202-9896 Email: sales@cain-forlaw.com

#### Michigan

Shaw-Newman 1731 Old Lantern Trail Fort Wayne, IN 46845 Telephone: (260) 433-1389 Fax: (260) 459-1972 Email: admin@shaw-newman.com

#### lowa/Kansas/Missouri/Nebraska

Cain-Forlaw Co 3343 Southgate Ct. S.W., Suite 213 Cedar Rapids, IA 52404 Telephone: (319) 286-9898 Fax: (319) 286-9899 Email: sales@cain-forlaw.com

#### Minnesota/N. Dakota/S. Dakota/ Wisconsin (Western)

Cain-Forlaw Co. 201 W. Travelers Tr., Suite 20 Burnsville, MN 55337 Telephone: (952) 882-4090 Fax: (952) 882-4088 Email: sales@cain-forlaw.com

#### Pennsylvania (Zip Codes 15000-16399, 16600-16899)

Cain-Forlaw Co. 207 B. South Sandusky Ave. Bucyrus, OH 44820 Telephone: (419) 563-9702 Fax: (419) 563-9704 Email: sales@cain-forlaw.com

#### WESTERN U.S.A.

#### Arizona/New Mexico/El Paso Texas and Bordering Cities of Nogales and Juarez, Mexico

Youngewirth & Olenick Assoc 4855 E. Warner Rd. Suite 24-138 Phoenix, AZ 85044 Telephone: (800) 515-1554 Fax: (800) 515-1574 Email: ibeard@vando.com

#### California (Northern)/Nevada

Disman Bakner 883 N. Shoreline Blvd. Suite C100 Mountain View, CA 94043 Telephone: (650) 969-3010 Fax: (650) 969-5620 Email: sales@dbsales.com

#### California (Southern)

Youngewirth & Olenick Assoc 17621 Irvine Blvd., Suite 101 Tustin, CA 92780 Telephone: (714) 838-5144 Fax: (714) 838-5321 Email: contactus@yando.com

#### Colorado/Utah

Bager Rocky Mountain Electronics 9033 East Easter Place, Suite 201 Englewood, CO 80112 Telephone: (303) 280-7202 Fax: (720) 482-2220 Email: brendaeclark@gwest.net

#### Idaho/Montana/Oregon/ Washington/Wyoming

Sea-Port Technical Sales 3630 130th Ave. N.E. Bellevue, WA 98005 Telephone: (425) 702-8300 Fax: (425) 702-8388 Email: tomseaport@seanet.com

#### CANADA

### Alberta/Manitoba/Saskatchewan

Cain-Sweet, Co. Unit 2, 4404 12th St. N.E. P.O. Box 82. Calgary, Alberta T2E 6K9 Canada Telephone: (403) 250-7288 Fax: (403) 250-7289 Email: wes@cainsweet.com

#### **British Columbia**

Cain-Sweet, Co. 11871 Horseshoe Way, Suite 1201-E Richmond, British Columbia V7A 5H5 Canada Telephone: (604) 241-7770 Fax: (604) 241-7772 Email: cliffm.cain-sweet@attcanada.ca

#### Ouebec/Maritimes Cain-Sweet, Co.

3608 boul. St. Charles, Suite 2A Kirkland, Quebec H9H 3C3 Canada Telephone: (514) 693-1116(1117) Fax: (514) 693-0130 Email: susan@cainsweet.com

#### Hull/Ontario

Cain-Sweet Co. 1950 Merivale Rd., Unit 201 K2G 5T5 Canada Telephone: (613) 228-6955 Fax: (613) 228-8739 Email: ndelis@cainsweet.com

#### Ontario (Toronto)

Cain-Sweet, Co. 600 The East Mall, Unit 200D Etobicoke, Ontario M9B 4B1 Canada Telephone: (416) 695-1444 Fax: (416) 695-2999 Email: adriank@cainsweet.com

#### MEXICO I SOUTH AMERICA

#### Mexico (Guadalajara Jalisco), Brazil

Beacon Electronics 8245 Boone Blvd., Suite 260 Vienna, VA USA 22182 Telephone: (703) 903-6500, Ext. 130 Fax: (703) 903-8533 Email: egallegos@beaconmail.com

#### Mexico (Nogales and Juarez)

Youngewirth & Olenick Assoc 4855 E. Warner Rd. Suite 24-138 Phoenix, AZ 85044 Telephone: (800) 515-1554 Fax: (800) 515-1574 Email: jbeard@yando.com

#### EUROPE I MIDDLE EAST I AFRICA

Ormic Components Ltd. Bnei-Dror South Industrial Park, Bldg. 1 P.O. B. 54 Tel-Mond Israel 40600 Telephone: (972) 9-7966888 Fax: (972) 3-5488660 Fmail: ormic-info@ormic co il

KERR Technology Bridge Piazza Toscana, 1 20090 Pieve Emanuele Milano Italy Telephone: +39 02 90782053 Fax: +39 02 90781663 Email: fferrero@kerr.it

#### Sweden

Nordima SE-182 05 Djursholm Sweden Telephone: (46) 8-753-37-60 Fax: (46) 8-622-63-04 Fmail: info@nordimar se

#### ASIA I PACIFIC

Myunamin Systems Inc. Room #501 7-15 DaeKwang Bldg. Nonhyun-Dong Kangnam-Gu Seoul, Korea Telephone: +82-02-543-3923 Fax: +82-02-545-1240 Email: m.s.kim@myungmin.co.kr

Unistandard Corp. Suite 710. Teheran Office Building 707-38, Yeoksam-Dong, Kangnam-Ku 135-080 Seoul, Korea Telephone: 82-2-557-5355 Fax: 82-2-553-0230 Email: dannylee@unistnd.co.kr

#### Taiwan

Asian Information Technology, Inc. 7F, No. 439 Jui-Kuang Rd. Taipei, Taiwan, R.O.C Telephone: 886-2-8797-6866 Fax: 886-2-8797-6877 E-mail: david.wu@aitinc.com.tv

## Skyworks Solutions, Inc. **Distributors**



NORTH AMERICA



## www.rfmw.com

Toll Free: 1-877-FOR-RFMW(367-7369) U.S. and CANADA

## RF Distribution Focused on Technical and Supply Chain Solutions

Quotes: Call or email: sales@rfmw.com Technical: Call or email: tech@rfmw.com General Info: Call or email: info@rfmw.com

RFMW Ltd., 1876 Hartog Drive, San Jose, CA 95131 Main: 1-408-350-8318 Fax: 1-408-350-8315

#### FUROPE I MIDDLE EAST I AFRICA

Austria Insight Memec Diefenbachgasse 35 A-1150 Wien, Austria Telephone: +(43) 1 895 7626 51 Fax: +(43) 1 895 7626 50 Email: info@insight.at.memec.com

Belgium

Insight Memec Verkoonkantoor/Bureau de vente Parklaan 49 B-9300 Aalst, Belgium Telephone: +32.53.76.99.00 Fax: +32.53.76.99.09

skyworksinc@insight.eu.memec.com

Denmark ACTE A/S Skelmarksvej 4 2605 Brandby Telephone: +45 46 900 400 Fax: +45 46 900 500

Insight Memec Torvet 1 P.O. Box 929 8600 Silkeborg, Denmark Telephone: +45.7021.5800 Fax: +45.7021.5801 skyworksinc@insight.eu.memec.com Finland Insight Memed Kauppakaarre 1 Helsinki, Finland Telephone: +358.9.350.8880

Fax: +358.9.350.8828 skyworksinc@insight.eu.memec.com

France Insight Memed 47 Rue de l'Esterel Silic 539 Rungis Cedex, France 94633

Telephone: +33.1.41.80.29.10 Fax: +33.1.46.86.67.63 Fmail:

skyworksinc@insight.eu.memec.com

Insight Memec Leonhardsweg 2 82008 Unterhaching München, Germany Telephone: +49.89.611.08.0 Fax: +49.89.611.08.110 skyworksinc@insight.eu.memec.com Ireland Insight Memec Gardner House Bank Place Limerick, Ireland

Telephone: +353.61.411.842 Fax: +353.61.411.888

skyworksinc@insight.eu.memec.com

Italy Insight Memec via Cantu 11 20092 Cinisello Balsamo Milan, Italy Telephone: +39.02.612.98.671 Fax: +39.02.612.98.560 skyworksinc@insight.eu.memec.com

Netherlands Insight Memec Meerpaal 8a NL-4904 SK Oosterhout, Netherlands Telephone: +31.162.468.468 Fax: +31.162.460.855 Email: skyworksinc@insight.eu.memec.com Norway Insight Memed Postboks 194 Smedsvingen 4 No-1378 Nesbru, Norway Telephone: +47.66.77.97.00 Fax: +47.66.77.97.01 skyworksinc@insight.eu.memec.com

South Africa Insight Memed 103 Heritage House 20 Dreyer Street Claremont, South Africa 7735 Telephone: +27.216.674.4103 Fax: +27.216.683.1736 Fmail: skyworksinc@insight.eu.memec.com

Insight Memec Ochandiano 8-2° Izda Centro Emprearial El Plantio 28023 Madrid, Spain 28045 Telephone: +34.913.076.023 Fax: +34.913.077.994

skyworksinc@insight.eu.memec.com

Insight Memec P.O. Box 1230 Danmarksgatan 46 164 28 Kista, Sweden Telephone: +46.8.506.656.00

Sweden

Fax: +46.8.751.36.49 Email:

skyworksinc@insight.eu.memec.com

Switzerland Insight Memed Gaswerkstrasse 32 CH-4901 Langenthal, Switzerland Telephone: +41.62.919.0723 Fax: +41.62.919.5500 Fmail: skyworksinc@insight.eu.memec.com

Insight Memec The Gate House Alton House Business Park Gatehouse Way Avleshury Bucks, UK HP19 8HQ Telephone: +44.1296.330.061 Fax: +44.1296.330.065 Email: skyworksinc@insight.eu.memec.com

#### ASIA I PACIFIC

#### Australia/New Zealand

Caelera Pty Ltd. First Floor, 479 Warrigal Road, Moorabbin, Victoria 3189 Australia Telephone: +61(0)3 9532 5709

Fax: +61(0)3 9532 2512 Email: grant.beaumont@caelera.com

#### China

Insight Rm 1207, China Resources Building No. 8 Jianguomenbei Ave. Beijing, P.R. C. Postcode 100005 Telephone: +86-10-8519 1859 Fax: +86-10-8519 1860 Email: insight-bj@memec-asiapacific.com

Insight Block C-1, 36/F, Chuan Xin Mansion, No.18 Section 2. Renmin South Road Chengdu, Sichuan, P.R.C. Postcode 610016. Telephone: +86-28-8619 9198 Fax: +86-28-8619 9019 Email: insight-cd@memec-asiapacific.com

2-4-4 of Hua Yuan Wu Cun Building 8 Nann Ping, Chongqing, P.R. China Postcode 400060

Telephone: +86-23-6879 0845 Fax: +86-23-6879 0845 Email: insight-cq@memec-asiapacific.com

Insight Room 3108 NanJing NuoYa Business Mansion 224 ZhongShan South Road NanJing, P.R.C. Postcode 210005 Telephone: +86-25-420 4221/420 3121 Fax: +86-25-420 4515 Email: insight-nj@memec-asiapacific.com Unit 3808-3809, Tower 1 Kerry Everbright City No. 218, Tian Mu West Rd. Shanghai, P.R.C. Postcode 200070 Telephone: +86-21-6215 9935/ 6215 9936

Fax: +86-21-6215 9938 insight-sh@memec-asiapacific.com

Insight Rm. 2605 The International Culture Building No.3039 Shen Nan Central Road Shenzhen, P.R.C. Postcode 518033 Telephone: +86-755-8366 4389 Fax: +86-755-8366 4386 Fmail: insight-sz@memec-asiapacific.com

Insight Unit 2406, Tower B, Zhongshang Plaza 7 Zhongnan Road Wuchang District, Wuhan P.R.C. Postcode 430071 Telephone: +86-27-8732 2660 Fax: +86-27-8732 2760 insight-wh@memec-asiapacific.com

11A2, International Trade Bldg. Hubin South Rd, Xiamen, Fujian P.R.C. Postcode 361004 Telephone: +86-592-516 3621 Fax: +86-592-516 3620 insight-xm@memec-asiapacific.com

Insight Room 402, Zhi Jian Building No. 26 Ke Ji Road, The Development Zone of High-Tech Industries Xian, Shaanxi P.R.C. Postcode 710065 Telephone: +86-29-825 2934 Fax: +86-29-825 2934 Email: insight-xn@memec-asiapacific.com

#### Hong Kong

Insight Unit 3612, 36/F., Metroplaza, Tower 1 223 Hing Fong Road Kwai Fong, N.T. Hong Kong. Telephone: +852-2410 2780 Fax: +852-2401 2518 Email: insight@memec-asiapacific.com

Pangaea (Hong Kong) Ltd. Rooms 1803, 1809, 1810 Tai Yau Bldg 181 Johnston Rd. Wanchai, Hong Kong Telephone: +(852) 2836-3301 Fax: +(852) 2834-7340 Email: rfung@pangaea.com.hk

RTI Industries Co. Ltd. Rm. 402, Nan Fung Commercial Ctr. 19 Lam Lok Street, Kowloon Bay Kowloon, Hong Kong Telephone: +852-2795-7421 Fax: +852-2795-7839 Email: info@rti.com.hk

#### India

Aarjay International Pvt. Ltd. (Head Office in India) 583, 12 A Cross, JP Nagar II Phase Bangalore - 560078 Telephone: +91-80-6586844 Fax: +91-80-6586845 Email: aarjay@aarjay.com

Elkay International Inc, (U.S.A. Office for India) 15 Commerce Boulevard. Succasunna, NJ 07876 Tel: (973)927 8647 Fax: (973) 927 5370 email: elkay\_usa@elkayintl.com

Hagemeyer India Ltd. SOANAR Division Gate 1A, Godrej Industries Complex, Pirojshanagar, Eastern Express Highway, Vikhorli (East) Mumbai 400 079 INDIA Telephone: (91-22) 5596 0120/0121 Fax: (91-22) 2518 8236/5596 0102 E-mail: sunny.malhotra@techpacindia.com

#### Japan

M-RF Co. Ltd 1-8-11 Kandaizumicho Chiyoda-ku Tokyo 101-0024 Japan Telephone: +81 3 5821 3623 Fax: +81 3 5821 3625 Email: sales@mrf.co.jp

Nagase Co. Ltd 5-1 Nihonbashi-Kobunecho Chuo-ku Tokyo 103-8355 Japan Telephone: +81 3 3665 3873 Fax: +81 3 3665 3311 Email: sales@nagase.co.jp

Tachibana Eletech Co. Ltd. Shuwa Shiba Park Bldg, 4-1 Tokyo, Japan 105-0011 Telephone: +81-6-6539 2513 Fax: +81-6-6539 8828 Email: yano@tachibana.co.jp

#### Korea Insight 9th Floor, KLI 63 Building 60 Youido-Dong, Youngdungpo-ku Seoul, Korea, 150-763 Telephone: +82-2-6277 6300 Fax: +82-2-761 4121 Fmail:

insight-kr@memec-asiapacific.com

Malaysia Insight 6L-2 Jalan Rumbia 11900 Penang, Malaysia Telephone: +604-646 9986 Fax: +604-646 9946

insight-sg@memec-asiapacific.com

#### Philippines

Email:

Pangaea International Trading Co. Unit 204 Alabang Business Tower 1216 Acacia Ave. Madrigal Business Park Ayala Alabang Muntinlupa City 176080 Philippines Telephone: +63-2-807-8429 Fax: +63-2-809-1355 Email: pangaea@skyinet.net

Singapore/Malaysia E-Smart Distribution Pte. Ltd. Blk 21 Kallang Ave. #03-169 Kallang Basin Industrial Estate Singapore 339412 Telephone: +65-62997811 Fax: +65-62941518 Email: sales@e-smart.com.sg

Insight 371 Beach Road, #03-05 Keypoint, Singapore 199597 Telephone: +65-6296 6877 Fax: +65-6296 6891 Email: insight-sg@memec-asiapacific.com

#### Taiwan

Holy Stone Enterprise Co. Ltd. 1F No. 62, Sec. 2 Huang Shan Rd. Nei Hu Dist., Taipei 114, Taiwan R.O.C. Telephone: +886 2-2627-0383, ext: 370 Fax: +886 2-2798-5529 Email: kevin@holystone.com.tw

#### Thailand

Email:

Insight 51/3 Vibhavadi Tower, Rm. 176 Ngamwongwan Rd. Ladyao, Chathuchak Bangkok 10900 Thailand Telephone: +66-2 561 2207/ +66-2 941 3189 Fax: +66-2 561 2405

insight-sg@memec-asiapacific.com

Copyright © 2003, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products. These materials are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials. Skyworks may make changes to its documentation, products, specifications and product descriptions at any time, without notice. Skyworks makes no commitment to update the information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from future changes to its documentation, products, specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by or under this document. Except as may be provided in Skyworks' Terms and Conditions of Sale for such products, Skyworks assumes no liability whatsoever in association with its documentation, products, specifications and product descriptions

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED OR OTHERWISE, RELATING TO SALE AND/OR USE OF SKYWORKS™ PRODUCTS INCLUDING WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. SKYWORKS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THESE MATERIALS WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks™ products are not intended for use in medical, lifesaving or life-sustaining applications. Skyworks' customers using or selling Skyworks™ products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

The following are trademarks of Skyworks Solutions, Inc.: Skyworks TM, the Skyworks graphic star chain symbol, and Breakthrough Simplicity™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

Additional information, posted at www.skyworkssolutions.com, is incorporated by reference.

## **Sales Offices**



## www.skyworksinc.com

#### J.S.A.

Skyworks Solutions, Inc. 20 Sylvan Road *N*oburn, MA 01801 Telephone: (781) 376-3000

Skyworks Solutions, Inc. 140 Preston Executive Drive Cary, NC 27513 Telephone: (919) 858-1577

Skyworks Solutions, Inc. 9868 Scranton Road San Diego, CA 92121 Telephone: (858) 713-3820

Skyworks Solutions, Inc. 1352 Discovery Bay Blvd. Byron, CA 94514 Telephone: (408) 551-0270

Skyworks Solutions, Inc. 5221 California Avenue rvine, CA 92612 Felephone: (949) 231-3000

Skyworks Solutions, Inc. 20666 Primrose Court Deer Park, IL 60010 Felephone: (847) 304-5697

#### EUROPE

Skyworks Solutions, Inc. Parallelvej 10 2800 Lyngby Copenhagen, Denmark Telephone: +45 45267945

Skyworks Solutions, Inc. Regus Business Centre Kone Building, Keilasatama 3, 5th Floor FIN-02150, Espoo, Finland Telephone: +358 20 1553201

Skyworks Solutions, Inc. C/O Regu Business Center Terminal Strasse 18/Airport 82356 Munich, Germany Telephone: +49-89 97007423

Skyworks Solutions, Inc. 34 Avenue Franklin Roosevelt BP 92,92153 SURESNES Cedex, France Telephone: +33 (0)1 41443662

Skyworks Solutions Ltd. 1210 Parkview Arlington Business Park RG7 4TY United Kingdom Telephone: +44 118 9657587

#### ASIA I PACIFIC

Skyworks Solutions, Inc.
Unit 2419
South Office Tower
Beijing Kerry Centre
1 GuangHua Road
ChaoYang District
Beijing, 100020 P.R.C.
Telephone: +86 10 85299777X18

Skyworks Solutions, Inc. Rm 216-219, 2/F Building 2 1 Science Park West Avenue HK Science Park Pak Shek Kok N.T. Hong Kong Telephone: +852 26558700 Fax: +852-25988722

Skyworks Solutions, Inc.
Tokyo Opera City Tower
36 Floor, 3-20-2
Nishi-Shinjuku, Shinjuku
P.O. Box 2586
Tokyo 163-1436 Japan
Telephone: 81-3 53711417

Skyworks Solutions, Inc. 13F Samhee Bldg. 559-10 Bumeo-1Dong, Soosung-Gu Daegu, Korea 706-011 Telephone: 82-53 745 2880

Skyworks Solutions, Inc. 24th floor Rodamco Tower 679-4, Yeoksam-dong Kangnam-gu Seoul, Korea, 135-283 Telephone: 822 565 2880

Skyworks Solutions, Inc. 1 Kim Seng Promenade #09-01 9th Story in the East Tower Great World City East Tower Singapore 237994 Telephone: 65-7377355 X14

Skyworks Solutions, Inc. International Trade Bldg. Room 3102 333 Keelung Road, Section 1 Taipei 110, Taiwan. R.O.C. Telephone: 886-2-2720 0282



# breakthrough simplicity



Skyworks Solutions, Inc. | 20 Sylvan Road Woburn, MA 01801 [781] 376-3000 | FAX [781] 376-3100 | sales@skyworksinc.com | www.skyworksinc.com