Calcul de la distance objet-caméra à l'aide de la mesure expérimentale de la focale de la caméra

Antoine Groudiev

21 juillet 2022

1 Variables et constantes

1.1 Variables

- 1. d, la taille en pixels de l'objet photographié lors de la mesure de la focale, éventuellement à un facteur de conversion du capteur près (respectivement d' lors de la prise de vue réelle)
- 2. Z, la distance de la caméra à l'objet lors de la mesure de la focale (respectivement Z' lors de la prise de vue réelle)

1.2 Constantes

Ces constantes ne varient pas entre la mesure de la focale et la prise de vue réelle.

- 1. D, la taille réelle de l'objet
- 2. f, la distance focale de la caméra
- 3. α , le champ du vue de la caméra

2 Schéma

3 Relation entre f et Z

En appliquant la définition de la tangente d'un angle dans un triangle rectangle, il vient :

$$tan(\alpha) = \frac{d}{2} \times \frac{1}{f} = \frac{D}{2} \times \frac{1}{Z}$$

On peut dès lors, en connaissant D, Z et d, calculer f (formule de la mesure de la focale) :

$$f = \frac{Z \times d}{D}$$

Enfin, puisque f et D sont des constantes on peut obtenir Z' en fonction uniquement de d' (formule de la prise de vue réelle) :

$$Z' = \frac{f \times D}{d'}$$