Plotly express 기본

학습 내용

• plotly express에 대해 알아본다.

plotly express 소개

- plotly express는 plotly 라이브러리에 내장되어 있음.
- plotly express는 다양한 유형의 수치를 위한 30개 이상의 함수를 제공

기능

- Basic: scatter, line, area, bar, ...
- pie(파이)
- 1D 분포 : histogram, box, violin, strip
- 2D 분포 : density_heatmap
- 행렬 입력: imshow
- 3차원: scatter 3d, line 3d
- ...등

```
In [8]: ▶
```

```
import plotly import pandas as pd import sys
```

프로그램 버전 확인

```
In [9]: ►
```

```
print(sys.version)
print(plotly.__version__)
print(pd.__version__)
```

```
3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] 5.1.0 1.1.3
```

Plot express 사용한 시각화

- cufflinks보다 좀 더 다양하며, 사용방법은 seaborn과 비슷함.
- plotly express 이용. plotly 4.1 부터는 별도 설치 없어도 됨. 3.8.1의 경우 설치 필요

In [10]: ▶

import plotly.express as px

In [11]:

```
# iris 데이터 불러오기
print(px.data.iris.__doc__)
px.data.iris().head()
```

Each row represents a flower.

https://en.wikipedia.org/wiki/lris_flower_data_set (https://en.wikipedia.org/wiki/lris_flower_data_set)

Returns:

A `pandas.DataFrame` with 150 rows and the following columns:

`['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species', 'species_id']`.

Out[11]:

	sepal_length	sepal_width	petal_length	petal_width	species	species_id
0	5.1	3.5	1.4	0.2	setosa	1
1	4.9	3.0	1.4	0.2	setosa	1
2	4.7	3.2	1.3	0.2	setosa	1
3	4.6	3.1	1.5	0.2	setosa	1
4	5.0	3.6	1.4	0.2	setosa	1

산점도 및 선 그래프

In [13]:

```
iris = px.data.iris()
fig = px.scatter(iris, x="sepal_width", y="sepal_length")
fig.show()
```


In [14]:

```
fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species")
fig.show()
```


In [16]: ▶

산점도 행렬

In [18]:

다차원 범주형 데이터 시각화

- 데이터 집합의 각 변수는 직사각형 열로 표시
- 직사각형은 해당 변수에 의해 취해지는 이산형 값에 해당

```
In [25]: ▶
```

```
tips = px.data.tips()
tips['size'].unique()
```

Out [25]:

```
array([2, 3, 4, 1, 6, 5], dtype=int64)
```

In [28]: ▶

fig = px.parallel_categories(tips)
fig.show()

In [31]:

```
fig = px.parallel_categories(tips, color="size")
fig.show()
```


gapminder 데이터 셋 시각화

- gapminder 데이터 셋 ?
 - 국가별 경제 수준과 의료 동향 수준을 정리한 DataSet이다.

데이터 설명

• continent : 대륙 • country : 나라

• gdpPercap : 1인당 국민소득

• pop : 인구

• lifeExp : 기대수명

1인당 국민소득과 기대 수명은 어떤 관계를 가질까?

In [38]:

```
gapminder = px.data.gapminder()
fig = px.scatter(gapminder, x="gdpPercap", y="lifeExp")
fig.show()
```


1인당 국민소득과 기대 수명은 어떤 관계를 가질까?(2007년)

In [40]: ▶

gapminder.describe()

Out [40]:

	year	lifeExp	рор	gdpPercap	iso_num
count	1704.00000	1704.000000	1.704000e+03	1704.000000	1704.000000
mean	1979.50000	59.474439	2.960121e+07	7215.327081	425.880282
std	17.26533	12.917107	1.061579e+08	9857.454543	248.305709
min	1952.00000	23.599000	6.001100e+04	241.165877	4.000000
25%	1965.75000	48.198000	2.793664e+06	1202.060309	208.000000
50%	1979.50000	60.712500	7.023596e+06	3531.846989	410.000000
75%	1993.25000	70.845500	1.958522e+07	9325.462346	638.000000
max	2007.00000	82.603000	1.318683e+09	113523.132900	894.000000

다중 그래프 그리기

- plotly은 다음과 같음.
 - 01 make_subplots 이용하여 틀(레이아웃 만들기)
 - 02 add_trace 을 이용하여 레이아웃 위에 그래프 그리기
 - 03 update_layout을 이용하여 축제목 등을 추가하기

In [84]: ▶

from plotly.subplots import make_subplots import plotly.graph_objects as go

In [85]:

```
fig = make_subplots(rows=2, cols=1, shared_yaxes=True)
fig
```



```
In [78]:
```

In [79]:

```
fig.add_trace(gap_1952_line, row=1, col=1)
fig.add_trace(gap_2007_line, row=2, col=1)
```


In [83]:

```
layout = {
    "xaxis": {
        "title": "1인당 국민소득",
    },
    "yaxis": {
        "title": "기대수명"
    },

    "xaxis2": {
        "title": "1인당 국민소득",
    },
    "yaxis2": {
        "title": "기대수명"
    }
}

fig.update_layout(layout)
```


In [87]: ▶

In [90]:

In [95]: ▶

In [97]: ▶

gapminder.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 8 columns):

ш	Calumn	Nam Neel L. Carrat	Ω4		
#	Column	Non-Null Count	Dtype		
0	country	1704 non-null	object		
1	continent	1704 non-null	object		
2	year	1704 non-null	int64		
3	lifeExp	1704 non-null	float64		
4	pop	1704 non-null	int64		
5	gdpPercap	1704 non-null	float64		
6	iso_alpha	1704 non-null	object		
7	iso_num	1704 non-null	int64		
dtypes: float64(2), int64(3), object(3)					

memory usage: 106.6+ KB

localhost:8889/notebooks/Documents/Github/PythonBasic/01_unit01_04_plotly/01_05_plotly_express.ipynb#

In [96]:

막대 그래프

In [99]:

```
import plotly.express as px
tips = px.data.tips()
fig = px.bar(tips, x="sex", y="total_bill", color="smoker", barmode="group")
fig.show()
```


In [100]: ▶

```
df = px.data.election()
print(df.shape)
print(df.head())
print(df.columns)
print(px.data.election.__doc__)
```

```
(58, 8)
                district
                          Coderre
                                    Bergeron
                                              Joly
                                                    total
                                                             winner
                                                                         result ₩
0
      101-Bois-de-Liesse
                              2481
                                        1829
                                              3024
                                                     7334
                                                               Joly plurality
   102-Cap-Saint-Jacques
                             2525
                                             2675
                                                     6363
1
                                        1163
                                                               Joly
                                                                     plurality
2
    11-Sault-au-Récollet
                              3348
                                        2770
                                             2532
                                                     8650
                                                            Coderre plurality
3
            111-Mile-End
                              1734
                                        4782
                                              2514
                                                     9030
                                                           Bergeron
                                                                      majority
4
          112-DeLorimier
                              1770
                                        5933
                                              3044
                                                    10747
                                                           Bergeron
                                                                       majority
   district_id
0
           101
           102
1
2
            11
3
           111
4
           112
Index(['district', 'Coderre', 'Bergeron', 'Joly', 'total', 'winner', 'result',
       'district_id'],
      dtype='object')
```

Each row represents voting results for an electoral district in the 2013 Montreal mayoral election.

Returns:

```
A `pandas.DataFrame` with 58 rows and the following columns: `['district', 'Coderre', 'Bergeron', 'Joly', 'total', 'winner', 'result', 'district_id']`.
```

W

_

-

Maps

In [102]:

C

In [103]: ▶

REF

- · cufflinks.datagen module
- https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html (https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html)
 (https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html)
 (https://jpoles1.github.io/cufflinks/html/cufflinks.datagen.html))
- · Plotly Express in Python
- https://plot.ly/python/plotly-express/#plotly-express (https://plot.ly/python/plotly-express/#plotly-express)
 (https://plot.ly/python/plotly-express/#plotly-express (https://plot.ly/python/plotly-express/#plotly-express))