# Pontifícia Universidade Católica do Rio de Janeiro Departamento de Informática

# Projeto final de programação

# Chatbot para recuperação de informação específica de domínio

Marina Condé Araújo

Documentação do projeto final de programação com orientação do professor Marcos Kalinowski

Rio de Janeiro

Dezembro de 2024

# Sumário

| 1 | Bre                             | eve descrição                                                         | 2  |
|---|---------------------------------|-----------------------------------------------------------------------|----|
|   | 1.1                             | Problema                                                              | 2  |
|   | 1.2                             | Justificativa                                                         | 2  |
|   | 1.3                             | Objetivo                                                              | 2  |
|   | 1.4                             | Principais funcionalidades                                            | 3  |
|   | 1.5                             | Público-alvo                                                          | 3  |
|   | 1.6                             | A natureza do programa                                                | 4  |
|   | 1.7                             | Ressalvas                                                             | 5  |
| 2 | Vis                             | ão do projeto                                                         | 5  |
|   | 2.1                             | Cenário Positivo 1: Aluno de Mestrado Fazendo sua Dissertação         | 6  |
|   | 2.2                             | Cenário Positivo 2: Profissional da Saúde Buscando Informação Clínica | 6  |
|   | 2.3                             | Cenário Negativo 1: Formato de documento incompatível                 | 6  |
|   | 2.4                             | Cenário Negativo 2: Limitação de conteúdo da base                     | 7  |
| 3 | Documentação técnica do projeto |                                                                       | 7  |
|   | 3.1                             | Especificação dos requisitos funcionais                               | 7  |
|   | 3.2                             | Especificação dos requisitos não funcionais                           | 7  |
|   | 3.3                             | Arquitetura do projeto (modelos utilizados)                           | 7  |
|   | 3.4                             | Descrição funcional do software                                       | 8  |
|   | 3.5                             | Linguagem e frameworks utilizados no projeto                          | 8  |
| 4 | Ma                              | nual de Utilização para Usuários Contemplados                         | 8  |
|   | 4.1                             | Funcionalidades                                                       | 9  |
|   |                                 | 4.1.1 Upload de arquivos PDF                                          | 9  |
|   |                                 | 4.1.2 Interação com o Chatbot                                         | 9  |
|   |                                 | 4.1.3 Configurações de modelos LLM                                    | 10 |
|   | 4.2                             | Configuração                                                          | 10 |
| 5 | Cor                             | nclusão                                                               | 11 |

# 1 Breve descrição

#### 1.1 Problema

Em um mundo com crescente produção científica, a busca por informações específicas de domínio apresenta desafios, principalmente em contextos onde o conteúdo é altamente técnico, especializado ou denso, como em artigos acadêmicos, manuais de engenharia ou regulamentos jurídicos. Tradicionalmente, esses documentos são acessados por meio de buscas simples baseadas em palavras-chave, que frequentemente falham em capturar o contexto necessário para fornecer respostas relevantes. Além disso, usuários não especialistas podem ter dificuldade em formular perguntas precisas, agravando a frustração. Em áreas específicas, a necessidade de interpretar termos técnicos, conceitos complexos e inter-relações entre tópicos torna a recuperação manual de informações ineficiente e suscetível a erros. Assim, existe uma lacuna para ferramentas que combinem agilidade e precisão na extração de dados em domínios especializados.

#### 1.2 Justificativa

A importância de um chatbot focado na recuperação de informações específicas de domínio reside na necessidade de otimizar o acesso a conteúdos técnicos e complexos. Profissionais e acadêmicos frequentemente enfrentam prazos apertados e grandes volumes de informação, tornando ferramentas tradicionais de busca inadequadas. Além disso, em domínios especializados, como medicina, direito ou tecnologia, a precisão e o contexto são fundamentais para evitar interpretações incorretas que podem levar a decisões equivocadas. Com o avanço dos modelos de linguagem (LLMs) e o uso de técnicas como a Recuperação Aumentada de Geração (RAG), é possível oferecer respostas contextuais baseadas em documentos carregados, transformando o modo como usuários acessam informações críticas. Essa ferramenta não apenas melhora a produtividade, mas também democratiza o acesso a conhecimentos especializados.

## 1.3 Objetivo

O principal objetivo do programa é fornecer uma solução inteligente para processar, compreender e recuperar informações específicas de domínio, permitindo aos usuários localizar e compreender informações específicas de maneira rápida, precisa e contextualizada, por meio de um chatbot integrado a uma interface gráfica. Este objetivo abrange:

 Facilitar a extração de informações específicas em documentos PDF de maneira amigável;

- Oferecer respostas interpretadas e sintetizadas com base no conteúdo enviado, atendendo às necessidades de pesquisadores, estudantes e profissionais;
- Melhorar a experiência de consulta e análise de documentos complexos, reduzindo o tempo gasto em leituras manuais extensas.

#### 1.4 Principais funcionalidades

- Carregamento do Documento: O usuário faz o upload de um arquivo PDF diretamente na interface gráfica. O programa suporta documentos técnicos, acadêmicos, jurídicos e outros formatos de texto estruturado;
- Processamento e Indexação: O conteúdo do documento é dividido em pequenos trechos (chunks), que são indexados utilizando algoritmos de similaridade semântica (baseados em embeddings gerados por modelos de aprendizado profundo). Essa indexação torna a busca rápida e precisa, mesmo em documentos longos;
- Interação com o Usuário: O usuário digita uma pergunta em linguagem natural na interface. Por exemplo: "Quais são os métodos mais utilizados no conjunto de artigos fornecidos?";
- Recuperação Aumentada: O sistema identifica os trechos mais relevantes do documento que podem conter a resposta, utilizando técnicas avançadas como o método MMR (Maximal Marginal Relevance), que equilibra relevância e diversidade dos resultados;
- Geração da Resposta: Após identificar os trechos relevantes, o programa utiliza um modelo de linguagem (como GPT-4 ou LLaMA) para construir uma resposta que seja direta, concisa e compreensível;
- Apresentação e Transparência: Além de apresentar a resposta gerada, o programa exibe os trechos exatos do documento que embasaram a resposta, permitindo que o usuário verifique a fonte diretamente.

#### 1.5 Público-alvo

O programa foi desenvolvido para atender diferentes tipos de usuários que necessitam acessar e interpretar informações específicas em documentos específicos e extensos.

• Pesquisadores acadêmicos: Pesquisadores de áreas como ciências naturais, engenharia, saúde e outras disciplinas técnicas enfrentam o desafio de analisar grandes

volumes de artigos, relatórios e dados experimentais. Muitas vezes, localizar informações específicas, como metodologias detalhadas, resultados de experimentos ou conclusões-chave, é uma tarefa demorada e trabalhosa. O chatbot de recuperação de informação específica de domínio apoia essa necessidade ao permitir que pesquisadores realizem buscas eficientes e contextuais em seus materiais. Essa funcionalidade reduz significativamente o tempo de revisão bibliográfica, otimiza o processo de coleta de dados e possibilita maior foco em análises críticas e na produção de conhecimento científico;

- Estudantes de graduação e pós-graduação: Estudantes de cursos intensivos, como engenharia, direito, medicina e ciências da computação, muitas vezes enfrentam dificuldades para localizar conceitos fundamentais, explicações técnicas e metodologias específicas em materiais didáticos extensos. Essas barreiras podem prejudicar o aprendizado e aumentar o tempo gasto em atividades acadêmicas. Com o chatbot, os estudantes podem realizar perguntas direcionadas em linguagem natural e obter respostas rápidas e objetivas, facilitando a compreensão de conteúdos complexos. O programa apoia o aprendizado direcionado, a preparação para provas e o desenvolvimento de projetos acadêmicos, tornando o estudo mais eficiente e organizado;
- Profissionais especializados: Profissionais de áreas como direito, engenharia, saúde e tecnologia frequentemente consultam documentos técnicos ou jurídicos para obter informações críticas, como cláusulas contratuais, especificações técnicas, diretrizes regulatórias ou protocolos médicos. Esses documentos muitas vezes são extensos e complexos, tornando a busca manual por informações uma tarefa demorada e suscetível a erros. O chatbot apoia esse público oferecendo uma interface que permite localizar dados relevantes de forma rápida e precisa, utilizando linguagem natural. Isso pode melhorar a produtividade, reduzir o tempo necessário para análise de documentos e aumentar a precisão nas atividades profissionais, promovendo maior eficiência no dia a dia.;

## 1.6 A natureza do programa

O programa foi concebido como uma solução para facilitar a recuperação de informações específicas de domínio em documentos textuais, integrando tecnologias avançadas de busca contextual e geração de respostas precisas. Ele foi projetado como um sistema funcional e adaptável, permitindo que evolua conforme novas necessidades ou tecnologias sejam incorporadas. Essa flexibilidade garante sua aplicabilidade em cenários reais, como suporte a atividades acadêmicas, técnicas e profissionais em áreas como engenharia, saúde e direito. O foco está em resolver desafios enfrentados por quem precisa acessar dados

críticos ou conhecimentos específicos em textos extensos, demonstrando como a tecnologia pode simplificar e agilizar esses processos complexos.

#### 1.7 Ressalvas

Embora o programa ofereça uma solução para o problema proposto, é importante que os usuários considerem algumas limitações práticas. Essas considerações não diminuem o impacto do programa, mas reforçam a importância de entender suas características e possibilidades para tirar o máximo proveito da solução apresentada.

- Ele é projetado para documentos em formato PDF com texto legível; arquivos baseados em imagens podem exigir processamento adicional antes do uso;
- Documentos muito extensos ou perguntas extremamente complexas podem exigir mais tempo para processamento, mas o sistema busca oferecer respostas claras mesmo nesses casos;
- O desempenho depende do ambiente técnico onde o programa é executado, como disponibilidade de recursos computacionais e acesso a modelos de linguagem configurados.

# 2 Visão do projeto

Os cenários que apresentados têm como objetivo principal ilustrar como o programa pode ser utilizado em diferentes contextos. Eles servem para orientar o desenvolvimento do software, garantindo que ele permaneça alinhado às necessidades do público-alvo, e para demonstrar ao usuário como ele pode aproveitar as funcionalidades do programa de maneira eficaz. Além disso, os cenários também auxiliam na evolução do programa, permitindo que colaboradores e desenvolvedores identifiquem oportunidades de melhorias e novos usos para a ferramenta. Eles proporcionam uma visão ampla sobre o que o programa faz, como pode ser usado e quais limitações precisam ser consideradas, contribuindo para a consolidação do projeto como uma solução eficiente e confiável para os desafios apresentados. A seguir, são apresentados os cenários divididos entre positivos, que ilustram interações bem-sucedidas e esperadas, e negativos, que expõem limitações do programa e sugerem ajustes ou soluções para esses casos. Esses exemplos foram elaborados com foco em situações específicas, destacando o impacto da ferramenta em contextos reais.

# 2.1 Cenário Positivo 1: Aluno de Mestrado Fazendo sua Dissertação

Paulo é aluno de mestrado em engenharia elétrica e está trabalhando em sua dissertação sobre fontes renováveis de energia, com foco em painéis solares. Ele precisa realizar uma revisão bibliográfica sobre a eficiência energética em climas tropicais, mas tem pouco tempo para analisar todos os artigos disponíveis. Paulo carrega sua coleção de documentos no chatbot e pergunta: "Quais fatores mais impactam a eficiência dos painéis solares em climas tropicais?". O chatbot analisa os documentos e fornece uma resposta detalhada, listando os fatores mais mencionados, como temperatura, umidade e intensidade solar, com trechos destacados. Com isso, Paulo organiza suas referências de forma mais eficiente e avança na escrita de sua dissertação.

# 2.2 Cenário Positivo 2: Profissional da Saúde Buscando Informação Clínica

Dr. Luís é cardiologista e está se preparando para uma apresentação sobre o uso de medicamentos antiplaquetários em pacientes com risco de infarto. Ele possui vários artigos científicos e guidelines médicos armazenados, mas precisa localizar rapidamente informações específicas sobre as diferenças entre dois medicamentos comumente usados. Dr. Luís carrega os documentos no chatbot e pergunta: "Quais estudos comparam os efeitos do medicamento A com o medicamento B em pacientes com risco de infarto?". O chatbot analisa os materiais carregados e retorna uma resposta consolidada, destacando trechos dos artigos que mencionam resultados comparativos, como eficácia e efeitos colaterais. Com as informações prontamente acessíveis, Dr. Luís organiza sua apresentação de forma eficiente, economizando tempo de pesquisa e garantindo precisão nas informações apresentadas.

## 2.3 Cenário Negativo 1: Formato de documento incompatível

Clara, uma advogada, está revisando contratos para identificar cláusulas sobre penalidades em caso de atraso na entrega. Ela carrega um contrato no programa e pergunta: "Quais são as cláusulas relacionadas a penalidades por atraso?". No entanto, o arquivo carregado é um PDF em formato de imagem, sem texto editável. O chatbot exibe uma mensagem indicando que não é possível processar o documento devido ao formato incompatível. Clara entende a limitação e utiliza um software de OCR para converter o documento em texto antes de tentar novamente. Apesar do contratempo, ela consegue utilizar o programa após a conversão para encontrar as cláusulas desejadas.

#### 2.4 Cenário Negativo 2: Limitação de conteúdo da base

Mariana, uma nutricionista, está pesquisando os impactos do consumo de alimentos ricos em ômega-3 na saúde cardiovascular. Ela carrega um artigo científico no chatbot e pergunta: "Quais são os principais benefícios do ômega-3 para a saúde do coração?". O programa analisa o documento, mas retorna uma mensagem indicando que o artigo não aborda diretamente os benefícios do ômega-3, apenas fornece dados sobre saúde cardiovascular de forma geral. Mariana percebe que precisará complementar sua base de pesquisa com artigos mais direcionados sobre ômega-3 para obter informações detalhadas. O chatbot ajuda a identificar a lacuna no conteúdo, orientando-a na busca de fontes adicionais.

## 3 Documentação técnica do projeto

## 3.1 Especificação dos requisitos funcionais

- Permitir o upload de arquivos PDF para análise e indexação;
- Implementar uma interface de chatbot para interagir com os documentos enviados;
- Fornecer respostas contextuais utilizando um modelo de LLM (*Large Language Models*);
- Integrar diferentes provedores de modelos, como HuggingFace, OpenAI e Ollama;
- Armazenar e recuperar vetores de forma eficiente utilizando FAISS.

## 3.2 Especificação dos requisitos não funcionais

- O sistema deve ser responsivo e fácil de usar;
- Garantir baixa latência nas respostas do chatbot;
- Manter compatibilidade com diferentes modelos de linguagem e frameworks;
- Documentação clara para manutenção e extensibilidade.

## 3.3 Arquitetura do projeto (modelos utilizados)

• Upload de arquivos PDF através da interface do usuário (Streamlit);

- Divisão dos documentos em chunks utilizando a técnica de divisão recursiva (RecursiveCharacterTextSplitter);
- Criação de embeddings com o modelo HuggingFace;
- Indexação dos embeddings em um vetor FAISS para busca eficiente;
- Configuração de um pipeline de RAG (Retrieval-Augmented Generation) para gerar respostas contextuais.

#### 3.4 Descrição funcional do software

- Entrada: Arquivos PDF enviados pelo usuário
- Processamento:
  - Divisão dos documentos em partes menores;
  - Geração de embeddings vetoriais;
  - Indexação e recuperação de documentos com FAISS;
  - Geração de respostas usando modelos LLM.
- Saída: Respostas contextuais baseadas no conteúdo dos documentos enviados.

# 3.5 Linguagem e frameworks utilizados no projeto

- Python: Linguagem principal;
- Streamlit: Interface gráfica;
- LangChain: Orquestração de NLP e pipeline RAG;
- FAISS: Armazenamento e recuperação de vetores;
- HuggingFace: Geração de embeddings e LLMs;
- OpenAI: Integração com GPT.

# 4 Manual de Utilização para Usuários Contemplados

Este manual foi desenvolvido para orientar todos os tipos de usuários sobre como utilizar o programa de forma eficaz. O sistema é uma aplicação baseada em Streamlit, destinada a análise e interação com documentos PDF utilizando modelos de linguagem natural (LLMs).

#### 4.1 Funcionalidades

#### 4.1.1 Upload de arquivos PDF

- Objetivo: Carregar documentos para análise, conforme a figura 1;
- Passos:
  - 1. Na barra lateral, clique em "Enviar arquivos";
  - 2. Selecione arquivos PDF;
  - 3. Confirme o upload e aguarde o processamento.



Figura 1: Visualização inicial do chatbot

#### 4.1.2 Interação com o Chatbot

- Objetivo: Fazer perguntas sobre o conteúdo carregado, conforme a figura 2;
- Passos:
  - 1. Digite a pergunta no campo "Digite sua mensagem aqui...";
  - 2. Pressione Enter;
  - 3. A resposta para a pergunta será exibida diretamente na interface do chatbot, utilizando linguagem clara e objetiva. Caso a informação específica solicitada pelo usuário não seja encontrada nos documentos carregados, o sistema notificará o usuário, indicando que os dados necessários para responder à pergunta não estão disponíveis na base fornecida.

Além disso, o chatbot fornecerá uma funcionalidade adicional: os trechos exatos dos documentos nos quais a resposta foi baseada serão destacados e apresentados ao usuário.



Figura 2: Chatbot retornando a pergunta de domínio

#### 4.1.3 Configurações de modelos LLM

- Objetivo: Alterar o modelo de linguagem utilizado;
- Passos:
  - No código, ajuste o parâmetro model\_class para "hf\_hub", "openai" ou "ollama";
  - 2. Salve e reinicie o programa.

## 4.2 Configuração

1. Clone o repositório:

```
git clone https://github.com/seu-repositorio.git
```

2. Instale as dependências:

```
pip install -r requirements.txt
```

3. Execute o programa:

```
streamlit run projetofinal.py
```

### 5 Conclusão

Este trabalho apresenta uma solução para a interação com documentos textuais, unindo técnicas de recuperação de informações e geração de respostas contextualizadas por meio de modelos de linguagem natural. A proposta de um sistema inteligente, que combina tecnologias como FAISS, LangChain e modelos de linguagem da HuggingFace e OpenAI, demonstra o potencial transformador da Inteligência Artificial no acesso e análise de informações em documentos extensos e complexos.

A solução proposta foi concebida com foco em atender às necessidades de pesquisadores, estudantes e profissionais, permitindo uma interação eficiente com conteúdos técnicos e acadêmicos. Os cenários explorados validaram a aplicabilidade do sistema em situações reais, destacando benefícios como a economia de tempo, a melhoria na qualidade das decisões baseadas em dados e a acessibilidade de informações contextualizadas.

Além disso, as limitações identificadas, como a dependência de documentos legíveis e a exigência de recursos computacionais adequados, não comprometem a relevância do sistema. Pelo contrário, abrem espaço para futuros aprimoramentos, incluindo a integração com tecnologias de OCR e otimizações para ambientes computacionais menos robustos.

Por fim, este trabalho reafirma a importância de soluções tecnológicas para simplificar e otimizar processos complexos, destacando-se como uma iniciativa prática e inovadora na aplicação de inteligência artificial no processamento de documentos textuais.