Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
1.	3 \rightarrow 2 Before 0.5 \rightarrow 0.2 \rightarrow 4 Afrer (Mom ^m eqn.) (a) \rightarrow 0.5 \times 3 \rightarrow 0.2 \times 2 \rightarrow 0.5 \times 1.5 \rightarrow 0.2 \times V	m) A)
	$\Rightarrow V = 1.75 \text{ ms}^{-1}$	A1 (3)
	(b) $T = 0.2(2+1.75)$	MI AI
	= 0.75 Ns	A1 (3)
0	·	
	·	

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

ubject MECHANICS 6677

Question number	Scheme	Marks
2.	FITHER	
	(a) F /3 Vector & attempt	MΙ
	$\frac{5}{5} = 5^2 + 3^2 - 25.3 \text{ (a) HD} \text{ (cos rule)}$	AI
	$F^2 = S^2 + 3^2 - 2.5.3 \text{ as 140} (\cos m \cdot e)$	mi Al
wasse	→ F <u>2 7.55 N</u>	A1 (5)
	(b) $\frac{F}{\sin 140} = \frac{3}{\sin \theta} \Rightarrow \theta = \frac{14.8^{\circ}}{}$	M1 A1, A1
	OR. F Yector A attempt	mı
	(a) 37 3/3 sin40 Vector A attempt correct	AI
	$\frac{5}{3} \frac{3}{3} \frac{1}{40} + \frac{5}{3} \frac{1}{40} + \frac{3}{3} \frac{1}{40} + \frac{3}{3} \frac{1}{40}$	m (A)
	F & 7.55 N	A1 (5)
	(b) $tan \theta = \frac{3 \sin 40}{5 + 3 \cos 40}$, $\theta = \frac{14.80}{5}$	MIAI, V AI(3) 8
	$ \underline{OR}(a) \stackrel{P}{\sim} = \begin{pmatrix} 5 \\ 0 \end{pmatrix} \text{ or } 5i $ $ \underline{Q} = \begin{pmatrix} 3 \text{ sin } 40 \\ 3 \text{ sin } 40 \end{pmatrix} \text{ or } 3 \text{ sin } 40i + 3 \text{ sin } 40i $	M)
	$\Rightarrow F = \begin{pmatrix} 5+3 & 40 \\ 3 & 40 \end{pmatrix}$	Al
	$ F = (5+3 cm +0)^2 + (3 sin +0)^2$	MIAIN
	△ 7.55 N	A1 (5)
	(b) $Van \theta = \frac{3 \sin 40}{5 + 3 \cos 40}$ $2 14.8°$	MI AI
	<u>√ 14.8°</u>	A1 (3)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
3.	(a) Distance = $\frac{1}{2} \times (30+17) \times 3$, + 4×17	MI Al, MI
	= 138.5 m.	A1 (4)
	$\int_{-\infty}^{\infty} \frac{1}{2} \times 3 \times (30-17) = \frac{138.5}{1} + \frac{3}{4} \times 17 + \frac{1}{4} \times 17$	mi Al, mi
	(b) Str. line graph => const. decel^2 "F=ma" => Foonst	Al cso
	(c) $2ecel^2 = 30-17$	mı
	Force = $1200 \times \left(\frac{30 - 17}{3}\right) = \frac{5200 \text{ N}}{}$	m1 A1
\.	(a) 30 R Diag. with 4 fires marked (Allow For Combine)	B2 -1 e.e(2)
O	(b) R(1) R = 3g cm 30° + 30 sin 30° (3 rems) = 40.46 ~ 40.5 or 40 N.) m1 A2 -1 e.e. A1 (4)
	(c) R(d) F = 30 cm 30° - 39 sin 30° (31cm	
	$F = \mu R$, $\Rightarrow \mu = \frac{F}{R} = \frac{11.28}{40.46}$ $\approx 0.28 \text{ (or } 0.279)$	m1, m1 A1 (5)
		(1)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
5.	(a) O	B1 (1)
	(b) $\frac{1}{1}$ $\frac{2}{2}$ $\frac{2}{1}$	mi Al
	$\Rightarrow W = 3750 N$	A1 (3)
	lif moments about another pr: MI for a complete method to get W, AI for a	
	moments agus correct.]	
	$\binom{(c)}{\wedge} \frac{\pi}{\sqrt{(a-\pi)}} = \binom{(c)}{\sqrt{(a-\pi)}}$	MIAI
	M(c) 1000.5 = W'x	(A) AI
	Solve → W1 = 3125 N	(m) A1(6)
	$(d) \qquad \qquad x = 1.6 m$	m, A1(2)
	(e) AB remains straight line (o.e.)	B1 (1)
		13)

Stewart House 32 Russell Square London WC1B 5DN

June 2003

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
6.	(a) Car + Van: $3200a = 2320 - 800 - 240$ $a = 0.4 \text{ ms}^{-2}$	MIA1 Al (3)
	(b) Car: $\frac{240}{3}$ \rightarrow T = 720 N	m1 A2√ -1 e.e. Al (4)
	$ \begin{bmatrix} OR & Van - T \\ Poo \end{bmatrix} $ $ 2320 2000a = 2320 - 800 - T $ $ \rightarrow T = 720 $,
	NB If use equ ² s for car avan alone, allow MIA2 for an equ ² involving T, then MIAI for a second equ ² provided it is part of a complete mattood to find a/T. Then AIAI for a a T.	
	(c) $a' = 2320$ 1040 3200g $a' = -0.09 \text{ m s}^{-2}$ $\Rightarrow \text{ magn. } 0.09 \text{ m s}^{-2}$	N
	8 peed decreasing	A1 (6)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
7.	Mast (a) $W_1 = 2j + bi + bj$ Pipe $= bi + 8j$ (b) $OW_1 = \sqrt{(b^2 + 8^2)} = 10 \text{ km}$ W_2 $S_5 V^2 \text{ Fine} = \frac{10}{5} = 2 \text{ hrs} - N$ (c) $W_2 = 2j + bi - bj$	BI BI (2) -MI A IAI (3)
	$= 6i - 4j$ $(d) \text{ P.v. of tenane party after 1 lower} = R = 3i + 4j$ $RW_2 = 3i - 8j$ $tan \theta = \frac{3}{8} = 20.6^{\circ}$ $\Rightarrow \text{ Required bearing = 180^{\circ} - 20.6^{\circ}}$ $= 159.4^{\circ}$	MI AI (3)