Lógica Proposicional Lógica e Computação

Francisco Coelho

Departamento de Informática Escola de Ciências e Tecnologia Universidade de Évora

21 de fevereiro de 2022

O mundo é descrito por factos, que são verdadeiros ou falsos.

Objetivo Descrever **factos**, saber como chegar a **conclusões** a partir de **hipóteses** dadas e relacionar **consequência** com **verdade**.

Plano Definir uma **linguagem** adequada. Descrever as **regras para deduzir** e as formas de **avaliar** factos.

Avaliar Quais são limites computacionais e expressivos.

Usufruir Que problemas podem ser descritos e resolvidos?

Sintaxe — Proposições

Dedução Natura

Semântica

Computação

llustração

Conclusão

Sintaxe (introdução)

- «O café está quente.»
- «O café está quente?»
- «O café e o açúcar.»
- «O café está ou não quente?»
- «Ou o café ou o leite está azedo.»

Sintaxe (introdução)

$$\begin{array}{ccc}
\neg p & p \wedge q \\
p \vee q & p \to q
\end{array}$$

- Definição formal das proposições.
- Casos atómicos: proposições indivisíveis («está a chover»).
- Casos estruturados:

```
negação «não está a chover».

conjunção «está a chover e a fazer sol»

disjunção «está a chover ou a fazer sol»

implicação «se está a fazer sol então não está a chover».
```

Não estamos ainda interessados no valor booleano duma proposição.

Definição (Proposição)

Uma proposição é uma expressão que resulta exclusivamente de um dos seguintes casos:

- Uma proposição atómica (ou letra proposicional), a, b, ..., p, q, ..., x, y, z.
- ► A **negação**, ¬p, de uma proposição.
- A conjunção, p ∧ q, disjunção, p ∨ q, ou implicação, p → q, de duas proposições.
- **N.B.** Usam-se parêntesis e as precedências comuns para interpretar expressões como $\neg a \rightarrow b \lor (c \land d)$.

Exemplos de Proposições

- α representa «Está a chover».
- ▶ b representa «O número cinco é par».
- c representa «Coimbra fica em Portugal».
- ¬a: «Não está a chover».
- ▶ ¬b: «O número cinco não é par».
- ► ¬c: «É falso que Coimbra fique em Portugal».
- ¬¬α: «É falso que não está a chover».
- α ∧ b: «Está a chover e o número cinco é par».
- \triangleright $\alpha \land \neg \alpha$: «Está a chover e não está a chover».
- \triangleright $\alpha \land \alpha$: «Está a chover e está a chover».
- ▶ $a \land \neg b \land c$: "Está a chover mas o número cinco não é par. Além disso, Coimbra fica em Portugal".

Exemplos de Proposições (cont.)

- ▶ a ∨ b: «Está a chover ou o número cinco é par».
- a ∨ ¬a: «Ou está ou não está a chover».
- \triangleright $\alpha \lor \alpha$: «Está a chover ou está a chover».
- ▶ $a \lor (\neg b \land c)$:

«Ou está a chover ou o número cinco não é par e Coimbra fica em Portugal». Na notação formal não há a ambiguidade da escrita natural.

- ightharpoonup a
 ightharpoonup : «Se está a chover então o número cinco é par».
- ightharpoonup a
 ightharpoonup a
 ightharpoonup a: «Está a chover», portanto não está a chover».
- ightharpoonup $\alpha
 ightharpoonup \alpha$: «Como está a chover também está a chover».
- ▶ b $\rightarrow \neg c$: «Coimbra não está em Portugal porque cinco é par».
- ▶ penso → existo: «Se penso, existo»

Observações

- ► Erros sintáticos: $p \land \land q$, $q \neg \land$, ...
- ightharpoonup a \lor b representa a, b ou **ambos**.
- Não são proposições: perguntas, «O café está frio?» e imperativos, «Corre!».
- Coloquialismos:
 - «a excepto se b», «a a não ser que b»: a ∨ b «chove, excepto quando (se) faz sol»; «chove a não ser que faça sol».
 - **Um caso é alternativo ao outro.** Sempre que não se dá um, **é certo** que se dá o outro.
 - «b porque α», «quando α também b» ou «b sempre que α»: α → b.
 «quando faz sol também passeio»;
 «passeio sempre que faz sol». Se fizer sol, é certo que passeio.
 Mas, além disso, também posso passear sem que faça sol.

Outros Conectivos

- Os símbolos ¬, ∧, ∨, → designam-se conectivos pois conectam (ligam) proposições mais simples.
- A definição de proposição exclui certos conectivos comuns, como ⊤, ⊥, ↔ e ∨.
- Mais tarde estas «operações», e outras, serão introduzidas, como abreviaturas de proposições definidas apenas com ¬, ∧, ∨ e →.
- ▶ É possível dispensar quase todos os conectivos e «*começar*» apenas com, por exemplo \neg , \lor ou mesmo só com $\overline{\land}$ ($\alpha\overline{\land}b$ é «*equivalente*» a $\neg(\alpha \land b)$).

Sintaxe — Proposições

Dedução Natural

Dupla Negação

Disjunção

Negação e Contradição

Introdução de Teses (DRY)

Tabela de Regras e Regras Derivadas

Consequência Sintática

Semântica

Computação

llustração

Conclusão

$H \vdash p$

Uma Grande Descoberta (dos filósofos Gregos!)

Algumas consequências resultam apenas da sintaxe das proposições e o assunto tratado é irrelevante.

Objetivo

Usar regras para deduzir consequências de certas hipóteses.

Que **regras** relacionam as consequências com a «forma» das hipóteses?

$H \vdash p$

- A hipótese, H, é um conjunto de proposições.
- A conclusão, p, é uma proposição.
- As proposições são expressões construídas com letras e conectivos — As regras dizem respeito aos conectivos e são de dois tipos: introdução ou eliminação.
- A aplicação de várias regras produz uma prova.
- A notação H ⊢ p indica que existe uma prova com hipóteses H e conclusão p.

Sintaxe — Proposições

Dedução Natura

Conjunção

Dupla Negação

Implicação

Disjunção

Negação e Contradição

Tabala de Desers (DRT)

Tabela de Regras e Regras Derivadas

Consequência Sintática

Semântica

Computação

llustração

Conclusão

Eliminação da Conjunção

Definição (Eliminação da Conjunção)

Eliminação da conjunção (esquerda) $\wedge_1^- : p \wedge q \vdash p$ ou

$$\frac{\mathfrak{p}\wedge\mathfrak{q}}{\mathfrak{p}} \ (\wedge_1^-).$$

Eliminação da conjunção (direita) \wedge_2 : $p \wedge q \vdash q$ ou

$$\frac{p \wedge q}{q} (\wedge_2^-).$$

Exemplo: Eliminação da Conjunção

Como

1. faz sol
$$\wedge$$
 vou à praia H
2. faz sol \wedge_1^- 1

escreve-se

 $faz sol \land vou à praia \vdash faz sol$

isto é, faz sol é **consequência** da **hipótese** faz sol∧vou à praia.

Introdução da Conjunção

Definição (Introdução da Conjunção)

$$\wedge^+: \{p, q\} \vdash p \wedge q$$

ou

$$\frac{p \quad q}{p \wedge q} \quad (\wedge^+)$$
.

Exemplo: Introdução da Conjunção

Como

- faz sol
 vou à praia
 H
- 3. faz sol \wedge vou à praia \wedge^+ 1, 2

escreve-se

 $\{faz sol, vou à praia\} \vdash faz sol \land vou à praia$

isto é, faz sol \land vou à praia é **consequência** das **hipóteses** {faz sol, vou à praia}.

Exemplo: Idempotência e Comutatividade

Mostre que $\mathfrak{p} \dashv \vdash \mathfrak{p} \wedge \mathfrak{p}$.

Mostre que $p \land q \vdash q \land p$.

1.
$$p \wedge q$$
 H

2.
$$p \wedge_1^-$$

3. q
$$\wedge_2$$
 1

Exemplo: Conjunção

Como

- 1. faz sol H
- 2. vou à praia ∧ está calor H
- 3. está calor \wedge_2 2
- 4. está calor \wedge faz sol \wedge^+ 3, 1

então

 $\{faz sol, vou à praia \land está calor\} \vdash está calor \land faz sol.$

Sintaxe — Proposições

Dedução Natura

Conjunção

Dupla Negação

Implicação

Negação e Contradição

Introdução de Teses (DRY

Tabela de Regras e Regras Derivadas

Consequência Sintática

Semântica

Computação

llustração

Conclusão

Dupla Negação

Definição (Introdução e Eliminação da Dupla Negação)

Introdução da dupla negação ¬¬+ : p ⊢ ¬¬p ou

$$\frac{p}{\neg \neg p} \left(\neg \neg^+ \right).$$

Eliminação da dupla negação $\neg \neg^- : \neg \neg p \vdash p$ ou

$$\frac{\neg\neg p}{p} \ \left(\neg\neg^-\right).$$

Sintaxe — Proposições

Dedução Natural
Conjunção
Dupla Negação
Implicação
Disjunção
Negação e Contradição
Introdução de Teses (DRY)
Tabela de Regras e Regras Derivadas
Consequência Sintática

Semântica

Computação

llustração

Conclusão

Eliminação da Implicação

Definição (Eliminação da Implicação, Modus Ponens)

$$\rightarrow^-$$
 ou \mathbb{MP} : $\{\mathfrak{p},\mathfrak{p}\to\mathfrak{q}\}\vdash\mathfrak{q}$

ou

$$\frac{p \quad p \to q}{q} \ \left(\to^- \text{ ou } \mathbb{MP}\right).$$

Sobre o Modus Ponens

- 1. «está frio.»
- 2. «se está frio, levo cachecol.»
- 3. portanto, «levo cachecol.»

Formalmente:

- 1. está frio
- 2. está frio \rightarrow levo cachecol
- 3. levo cachecol

Mostre que $p, p \rightarrow q, q \rightarrow r \vdash r$.

- 1. p H
- $2. \quad p \to q \quad H$
- $3. \quad q \to r \quad H$
- 4. q MP 1, 2
 - 5. r MP 4,3

Definição (Introdução da Implicação)

As notações [...] e ... definem uma sub-prova com hipóteses locais, que não são válidas fora dessa sub-prova – isto é, as hipóteses locais duma sub-prova são descartadas com a aplicação da regra.

Mostre que $p \to q, q \to r \vdash p \to r.$

Mostre que
$$p \to q$$
, $q \to r \vdash p \to r$.

$$1. \quad p \to q \quad H$$

Mostre que
$$p \to q, q \to r \vdash p \to r.$$

 $\begin{array}{cccc} 1. & p \rightarrow q & H \\ 2. & q \rightarrow r & H \end{array}$

Sintaxe — Proposições Dedução Natural Semântica Computação Ilustração Conclusão

Mostre que $p \to q$, $q \to r \vdash p \to r.$

 $\begin{array}{cccc} 1. & p \rightarrow q & H \\ 2. & q \rightarrow r & H \\ \hline 3. & p & H \end{array}$

Mostre que $p \to q$, $q \to r \vdash p \to r$.

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.	$p\toq$	Н		
2.	$q\tor$	Н		
3.	р	Н		
4.	q	\mathbb{MP}	3, 1	
5.	r	\mathbb{MP}	4, 2	

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.	$p\toq$	Н		
2.	$q\tor$	Н		
3.	р	Н	(6)	
4.	q	\mathbb{MP}	3, 1	
5.	r	\mathbb{MP}	4, 2	
6.	$p \rightarrow r$	\rightarrow^+	3 - 5	

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \rightarrow q$$
 H
2. $q \rightarrow r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \rightarrow r$ \rightarrow^+ 3-5

Mostre que $p \to q \vdash (q \to r) \to (p \to r)$.

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \to q$$
 H
2. $q \to r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \to r$ \to^+ 3-5

Mostre que $p \to q \vdash (q \to r) \to (p \to r)$.

1.
$$p \rightarrow q$$
 H

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \rightarrow q$$
 H
2. $q \rightarrow r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \rightarrow r$ \rightarrow^+ 3 – 5

	1.	$p \rightarrow$	q			1	Н								
	2.	$q \rightarrow$	r			1	Н								_
-				 _	 _	_		 _	_	_	_	_	_	_	-

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \rightarrow q$$
 H
2. $q \rightarrow r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \rightarrow r$ \rightarrow^+ 3-5

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \rightarrow q$$
 H
2. $q \rightarrow r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \rightarrow r$ \rightarrow^+ 3-5

1.	$p\toq$	Н
2.	$q \rightarrow r$	Н
3.	p	
4.	q	\mathbb{MP} 3, 1

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \rightarrow q$$
 H
2. $q \rightarrow r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \rightarrow r$ \rightarrow^+ 3-5

1.	$\mathfrak{p} o \mathfrak{q}$	Н	
2.	$q \rightarrow r$	Н	
3.	p	- H	
4.	q	\mathbb{MP}	3, 1
5.	r	\mathbb{MP}	4, 2

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \rightarrow q$$
 H
2. $q \rightarrow r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \rightarrow r$ \rightarrow^+ 3 – 5

1.	$\mathfrak{p} o \mathfrak{q}$	Н	
2.	$q \rightarrow r$	Н	_
3.	p	- H	(6)
4.	q	\mathbb{MP}	3, 1
5.	r	\mathbb{MP}	4, 2
6.	$p \rightarrow r$	\rightarrow^{+}	3-5

Mostre que $p \to q$, $q \to r \vdash p \to r$.

1.
$$p \rightarrow q$$
 H
2. $q \rightarrow r$ H
3. p H (6)
4. q MP 3, 1
5. r MP 4, 2
6. $p \rightarrow r$ \rightarrow^+ 3-5

1.	$\mathfrak{p} o \mathfrak{q}$	Н		
2.	q o r	Н	(7)	
3.	p	- H	(6)	
4.	q	\mathbb{MP}	3, 1	
5.	r	\mathbb{MP}	4, 2	
6.	$p \rightarrow r$	$\stackrel{-}{\rightarrow}$	3-5	
7.	$(q \rightarrow r) \rightarrow (p \rightarrow r)$	\rightarrow^+	2 - 6	

Sintaxe — Proposições

Dedução Natural

Conjunção

Dupla Negação

Implicação

Disjunção

Negação e Contradição

Tabela de Regras e Regras Derivadas

Consequência Sintática

Semântica

Computação

llustração

Conclusão

Introdução da Disjunção

Definição (Introdução da Disjunção)

Introdução da disjunção (esquerda) $\vee_1^+: p \vdash p \vee q$ ou

$$\frac{p}{p \vee q} (\vee_1^+).$$

Introdução da disjunção (direita) $\vee_2^+ : q \vdash p \lor q$ ou

$$\frac{q}{p \vee q} (\vee_2^+).$$

Eliminação da Disjunção

Definição (Eliminação da Disjunção)

$$\vee^-$$
: $\{p \vee q, [p \vdash r], [q \vdash r]\} \vdash r$

ou

Mostre que
$$(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$$
.

$$1. \quad (p \vee q) \wedge (p \vee r) \quad H$$

13. $p \lor (q \land r)$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

- $\begin{array}{lll} 1. & (p \vee q) \wedge (p \vee r) & \mathsf{H} \\ 2. & p \vee q & {\wedge_1}^- & 1 \end{array}$

13. $\mathfrak{p} \vee (\mathfrak{q} \wedge \mathfrak{r})$

10 caso de 2

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

13. $\mathfrak{p} \vee (\mathfrak{q} \wedge \mathfrak{r})$

10 caso de 2

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

- $\begin{array}{cccc} 1. & (p \vee q) \wedge (p \vee r) & H \\ 2. & p \vee q & {\wedge_1}^- & 1 \\ 3. & p & H \\ 4. & p \vee (q \wedge r) & {\vee_1}^+ & 3 \end{array}$

13.
$$p \lor (q \land r)$$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

- 1. $(p \lor q) \land (p \lor r)$ H
- 10 caso de 2

 - 2o caso de 2

13.
$$p \lor (q \land r)$$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

1.
$$(p \lor q) \land (p \lor r)$$
 H

2.
$$\mathfrak{p} \vee \mathfrak{q}$$
 \wedge_1^-

4.
$$p \lor (q \land r)$$
 \lor_1

5.
$$p \vee r$$
 \wedge_2^-

2o caso de 2

13.
$$p \lor (q \land r)$$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

13.
$$p \lor (q \land r)$$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

1.
$$(p \lor q) \land (p \lor r)$$
 H

4
$$n \lor (a \land r)$$
 $\lor 1^+$ 3

$$\mathbf{r}$$
. $\mathbf{p} \vee (\mathbf{q} \wedge \mathbf{r})$ \vee_1

$$5 \quad \text{n} \lor \text{r} \qquad \land_2^-$$

2o caso de 2

1o caso de 6

13.
$$p \lor (q \land r)$$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

1.
$$(p \lor q) \land (p \lor r)$$
 H

 2. $p \lor q$
 \land_1^-
 1

 3. p
 H
 10 caso de 2

 4. $p \lor (q \land r)$
 \lor_1^+
 3

 5. q
 H
 20 caso de 2

 6. $p \lor r$
 \land_2^-
 1

 7. p
 H
 10 caso de 6

 8. $p \lor (q \land r)$
 \lor_1^+
 7

 9. r
 H
 20 caso de 6

13.
$$p \lor (q \land r)$$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

1.
$$(p \lor q) \land (p \lor r)$$
 H

4
$$n \lor (a \land r)$$
 $\lor \downarrow_1^+$ 3

4.
$$p \lor (q \land r) \qquad \lor_1 \quad \mathsf{S}$$

$$5. \text{ n} \vee \text{r} \qquad \wedge_2^- 1$$

10.
$$q \wedge r \qquad \wedge^+ \qquad 5,9$$

13.
$$p \lor (q \land r)$$

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

1.
$$(\mathfrak{p} \vee \mathfrak{q}) \wedge (\mathfrak{p} \vee \mathfrak{r})$$
 H

$$2. \quad p \vee q \qquad \qquad {\textstyle \bigwedge_1}^- \quad 1$$

3. p H
4.
$$p \lor (q \land r)$$
 \lor_1^+ 3

8.
$$p \lor (q \land r) \lor_1^+ 7$$

10.
$$q \wedge r$$
 \wedge^+ 5,9

11.
$$p \lor (q \land r)$$
 \lor_2^+ 10

13.
$$p \lor (q \land r)$$

10 caso de 2

2o caso de 2

1o caso de 6

20 caso de 6

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

$$\vee^-$$
: p \vee q, [p \vdash r], [q \vdash r] \vdash r

Mostre que $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$.

$$\vee^-$$
: p \vee q, [p \vdash r], [q \vdash r] \vdash r

Sintaxe — Proposições

Dedução Natural
Conjunção
Dupla Negação
Implicação
Disjunção
Negação e Contradição
Introdução de Teses (DRY)
Tabela de Regras e Regras Derivadas
Consequência Sintática

Semântica

Computação

llustração

Conclusão

Introdução da Negação

Definição (Introdução da Negação)

$$\neg^+:\big\{[p\vdash q \land \neg q]\big\}\vdash \neg p$$

ou

Sobre a Contradição

Definição (Contradição)

- ▶ Qualquer proposição da forma $p \land \neg p$ é uma **contradição**.
- lackbox Usa-se o símbolo ot para representar contradições.

A regra \neg^+ pode ser re-escrita $\big\{[p \vdash \bot]\big\} \vdash \neg p$ ou

Não é evidente (por enquanto) que esta definição de \bot seja legítima! Porque é que não depende de p? O \bot de p $\land \neg$ p é o mesmo de q $\land \neg$ q?

Contradição

Definição (Introdução e Eliminação da Contradição)

Introdução da contradição $\bot^+: \{p, \neg p\} \vdash \bot$ ou

$$\frac{\mathfrak{p}}{\perp}$$
 (\perp^+) .

Eliminação da contradição $\bot^-:\bot\vdash p$ ou

$$\frac{\perp}{p} \left(\perp^{-} \right)$$
.

N.B. Pode ser escolhida qualquer proposição p nestes enunciados. Isto é, de uma contradição é sempre possível provar qualquer proposição.

Sintaxe — Proposições

Dedução Natural Conjunção

Dupla Negação

Implicação

Negação e Contradição

Introdução de Teses (DRY)

Tabela de Regras e Regras Derivadas

Consequência Sintática

Semântica

Computação

llustração

Conclusão

Definição (Introdução de Teses)

ou
$$\mathbb{T}^+:\left\{\left[H\vdash p\right],H\right\}\vdash p$$

$$\stackrel{\textstyle H}{:}\quad H$$

$$\stackrel{\textstyle p}{=}\quad \left(\mathbb{T}^+\right).$$

N.B. Esta regra permite **usar provas anteriores como regras**. Se previamente foi provado que $H \vdash p$ e na prova actual ocorrem todas as hipóteses de H então p é uma conclusão.

Sintaxe — Proposições

Dedução Natura

Conjunção

Dupla Negação

Implicação

Disjunção

Negação e Contradição

Tabela de Regras e Regras Derivadas

Consequência Sintática

Semântica

Computação

llustração

Conclusão

Tabela de Regras

\wedge_1^-	$p \wedge q$	$\vdash \mathfrak{p}$			
\triangle_2^-	$\mathfrak{p} \wedge \mathfrak{q}$	⊢ q	\^+	p, q	$\vdash \mathfrak{p} \land \mathfrak{q}$
	¬¬р	⊢p	+	р	⊢ ¬¬p
\mathbb{MP}	p, p o q	⊢ q	\rightarrow^+	$[\mathfrak{p}\vdash \mathfrak{q}]$	$\vdash p \rightarrow q$
<u></u>	$p \lor q$, $[p \vdash r]$, $[q \vdash r]$	⊢r	\vee_1^+	p	$\vdash p \lor q$
			\vee_2^+	q	$\vdash p \lor q$
			_+	[p ⊢ ⊥]	⊢ ¬p
		⊢p		р, ¬р	⊢⊥
			\mathbb{T}^+	[H ⊢ p], H	⊢ p

Sobre as Regras Derivadas

- Certas regras facilitam e reduzem significativamente o número de passos numa prova.
- ► É necessário demonstrar que as regras novas resultam das anteriores.
- ► Também as regras anteriores são redundantes: algumas resultam das restantes.

Modus Tollens

Definição (Modus Tollens)

$$\mathbb{MT}: p \rightarrow q, \neg q \vdash \neg p \text{ ou }$$

$$\frac{p \to q - q}{\neg p} \quad (MT) .$$

Demonstração.

- $p \rightarrow q$
- Н
- 3. (6)
- q MP 1,3 5. \perp \perp^+ 4, 2
- $-^{+}$ 3 5

Redução ao Absurdo

Definição (Redução ao Absurdo)

$$\mathbb{RA}: [\neg p \vdash \bot] \vdash p \text{ ou}$$

Demonstração.

$$\begin{array}{cccc} 1. & \neg p \rightarrow \bot & H \\ 2. & \neg p & H \\ 3. & \bot & M \mathbb{P} \end{array}$$

Terceiro Excluído

Definição (Terceiro Excluído)

$$\mathbb{TE}$$
 : $\vdash p \lor \neg p$ ou

$$\overline{p \vee \neg p} \ (\mathbb{TE}) \, .$$

Demonstração.

1.
$$\neg(\mathfrak{p} \vee \neg \mathfrak{p})$$

3.
$$\mathbf{p} \vee \neg \mathbf{p} \qquad \vee_1 \vee 2$$

5.
$$\neg p$$
 \neg^+ 2 – 4

0.
$$p \lor \neg p$$
 \lor_2 5

7.
$$\perp$$
 \perp^{+} 1,6

1.
$$\neg(p \lor \neg p)$$
 H (8)
2. p H (5)
3. $p \lor \neg p$ \lor_1^+ 2
4. \bot \bot^+ 1,3
5. $\neg p$ \neg^+ 2 - 4
6. $p \lor \neg p$ \lor_2^+ 5
7. \bot \bot^+ 1,6
8. $\neg\neg(p \lor \neg p)$ \neg^+ 1 - 7
9. $p \lor \neg p$ $\neg \neg^-$ 8

Exemplos: Regras Derivadas

A regra $\neg \neg^+ : p \vdash \neg \neg p$ como resultado de \bot^-, \bot^+ . Como

então $p \vdash \neg \neg p$. Isto é,

$$\frac{p}{\neg \neg p} (\neg \neg^+)$$

Sintaxe — Proposições

Dedução Natura

Conjunção

Dupla Negação

Implicação

Disjunção

Negação e Contradição

Introdução de Teses (DRY)

Tabela de Regras e Regras Derivadas

Consequência Sintática

Semântica

Computação

llustração

Conclusão

$H \vdash p$

Uma regra, R, especifica como certas hipóteses, H, produzem uma determinada conclusão, p:

$$\frac{H}{p}$$
 (**R**).

Encadeando várias regras obtém-se uma prova, representada por

A relação entre as hipóteses não descartadas, H, e a conclusão na última linha, p, é representada por H ⊢ p e diz-se que p é consequência sintática de H.

Sintaxe — Proposições

Dedução Natural

Semântica

Valoração Conseguência Semântica

Computação

llustração

Conclusão

$$v(p)$$
 $v \models p$ $H \models p$

Objectivo

Associar valores booleanos v, f a proposições.

- As regras da derivação natural usam apenas a sintaxe das proposições, e permitem definir/afirmar se uma conclusão p é derivada de certas hipóteses H: H ⊢ p.
- ► H ⊢ p não é booleana no sentido em que não depende dos valores v, f de H e de p.

Sintaxe — Proposições

Dedução Natura

Semântica

Valoração

Computação

llustração

Conclusão

v(p)

Definição (Valoração)

Uma valoração é uma função que associa um valor booleano, v ou f, a cada proposição, de forma que:

Átomo É definido explicitamente para cada átomo.

Conectivo Cada caso $\neg p, p \land q, p \lor q, p \rightarrow q$ resulta da tabela

p	q	¬p	$p \wedge q$	$p \lor q$	$p \rightarrow q$
v	v	f	v	v	v
v	f	f	f	v	f
f	v	v	f	v	v
f	f	v	f	f	v

Exemplo: Valorações

Exemplo (Valorações)

Sejam p, q duas proposições atómicas.

ightharpoonup Se v(p) = v, v(q) = v:

$$\begin{array}{ll} \nu(\neg p) = \mathtt{f} & \nu(\neg q) = \mathtt{f} & \nu(p \wedge q) = \mathtt{v} \\ \nu(p \vee q) = \mathtt{v} & \nu(p \to q) = \mathtt{v} & \nu(p \to \neg q) = \mathtt{f} \end{array}$$

► Se v(p) = f, v(q) = v:

$$\begin{array}{lll} \nu(\neg p) = \mathtt{v} & \nu(\neg q) = \mathtt{f} & \nu(p \wedge q) = \mathtt{f} \\ \nu(p \vee q) = \mathtt{v} & \nu(p \to q) = \mathtt{v} & \nu(p \to \neg q) = \mathtt{v} \end{array}$$

O valor booleano de uma proposição depende apenas dos valores booleanos dos átomos que ocorrem nessa proposição.

Consistência da Definição de \perp

- Previamente ⊥ foi definido como uma «representação» de p ∧ ¬p.
- ► Então foi questionado se o \bot que representa $p \land \neg p$ será o mesmo que representa, por exemplo, $q \land \neg q$.
- ▶ Na tabela de $p \land \neg p$ todas as linhas são f, tal como serão em $q \land \neg q \ldots$
- ▶ ...ou em qualquer outra proposição que resulte de substituir p em p $\land \neg p$, como $(p \lor r) \land (\neg r \land \neg p)$ por exemplo.

Isto é, \perp é «sempre f». Analogamente, \top é «sempre v».

$$v \models p \quad v \models H$$

Definição (Modelo)

- Seja p uma proposição. Um modelo de p é uma valoração ν tal que $\nu(p) = v$. Nesse caso escreve-se $\nu \models p$.
- ▶ Se H for um conjunto de proposições, um modelo de H é um modelo de todos os seus elementos: $\nu \models H$ se e só se $\nu \models h$ para cada $h \in H$.

Definição (Tipos de Proposições)

Uma proposição p é:

Compatível se tem algum modelo:

existe ν tal que $\nu \models p$.

Válida ou Tautologia se qualquer valoração é modelo:

para qualquer v, $v \models p$.

Contigente se tem um modelo e uma refutação:

existem u, v tais que $u \models p$ e $v \not\models p$.

Contradição ou Incompatível se não tem modelos:

para qualquer v, $v \not\models p$.

Exemplo: Tipos de Proposições

Exemplo (Tipos de proposições)

Compativel $p \lor q, p, p \to r, p \lor \neg p$.

Válida $p \vee \neg p$, $(p \wedge q) \rightarrow q$, $p \rightarrow (q \rightarrow p)$.

Contigente $p, p \land q, p \lor q$.

Contradição $p \land \neg p, p \land (p \rightarrow \neg p), (p \land q) \rightarrow \neg q.$

Sintaxe — Proposições

Dedução Natural

Semântica

Valoração

Consequência Semântica

Computação

llustração

Conclusão

$$H \models p$$

Objectivo

Determinar se a proposição p é verdadeira supondo que são verdadeiras certas hipóteses H.

Mais concretamente, pretende-se relacionar os valores booleanos das **hipóteses** com os da **conclusão**.

$$H \models p$$

Definição (Consequência semântica)

Sejam H um conjunto de proposições e p uma proposição. Diz-se que p é consequência semântica de H e escreve-se $H \models p$ se qualquer modelo de H também é modelo de p:

$$v \models H \text{ implica } v \models p$$

- $ightharpoonup H \not\models p$: existe um modelo de H falso em p.
- Para que $H \models p$ é necessário que, **para cada valoração** v,

se
$$\forall h \in H, v \models h$$
 então $v \models p$.

Exemplos

Exemplo

- ▶ $\{p, q\} \models p$ porque qualquer modelo de $\{p, q\}$ também é modelo de p: se $v \models \{p, q\}$ então $v \models p$.
- ▶ $\{p, q\} \models p \land q$ porque qualquer modelo de $\{p, q\}$ também é modelo de p e de q. De acordo com as **regras das valorações** também tem de ser modelo de $p \land q$.
- ▶ $\{p\} \models p \lor q$ porque se uma valoração modelo de p, de acordo com as regras das valorações, também é modelo de p \lor q.
- ▶ $\{p \land q\} \models p \lor q$ porque um modelo de $p \land q$, de acordo com as regras das valorações, tem de ser modelo de p e de q. Portanto também é modelo de $p \lor q$.

Exemplos II

Exemplo

- ▶ $\{p \lor q\} \not\models p \land q$ porque com a valoração $\nu(p) = v; \nu(q) = f$ temos $\nu \models p \lor q$ mas $\nu \not\models p \land q$.
- ▶ {p,¬p} ⊨ q porque as hipóteses não têm qualquer modelo. Existe um modelo de H que não é de q?—Não.
- ▶ ¬p ⊨ p → q porque se $\nu(\neg p) = v$ então $\nu(p) = f$. Então, de acordo com as regras das valorações, também $\nu(p \to q) = v$ independentemente de $\nu(q)$.
- ▶ $\models p \lor \neg p$ porque para qualquer valoração v ou v(p) = v ou $v(\neg p) = v$ (exercício: porquê?). Portanto $v(p \lor \neg p) = v$.

Equivalência Semântica

Definição (Equivalência Semântica)

Duas proposições p, q são equivalentes se $p \models q$ e $q \models p$. Nesse caso escreve-se $p \equiv q$.

Exemplo

a	b	¬a	¬b	$\mathfrak{a} \to \mathfrak{b}$	$\neg b \to \neg a$
v	V	f	f	v	v
v	f	f	v	f	f
f	v	v	f	v f v	v
f	f	v	v	v	v

- $ightharpoonup \neg a \models a \rightarrow b \text{ mas } a \rightarrow b \not\models \neg a \text{ (linha 1)}.$
- $ightharpoonup a
 ightharpoonup b \equiv \neg b
 ightharpoonup \neg a$

Sobre a Equivalência Semântica

- O símbolo ≡ não é um conectivo lógico, ao contrário de ∧, ∨, →.
- lsto é, se p, q forem proposições $p \equiv q$ não é uma proposição enquanto que $p \land q, p \lor q, p \rightarrow q$ são.
- ▶ Analogamente 2 < 3 não é um número mas 2 + 3, 2 3, 2×3 e $2 \div 3$ são.

Exemplo: Leis de De Morgan e outras

$$\neg (p \lor q) \equiv \neg p \land \neg q \qquad \neg (p \land q) \equiv \neg p \lor \neg q \\
(p \lor q) \land r \equiv (p \land r) \lor (q \land r) \qquad (p \land q) \lor r \equiv (p \lor r) \land (q \lor r) \\
p \to q \equiv \neg p \lor q \qquad p \to q \equiv \neg q \to \neg p \\
p \lor p \equiv p \qquad p \land p \equiv p \\
p \to p \equiv \top \qquad p \leftrightarrow p \equiv \top \\
p \to \bot \equiv \neg p \qquad \neg (p \leftrightarrow q) \equiv p \dot{\lor} q \\
p \lor \neg p \equiv \top \qquad p \land \neg p \equiv \bot$$

Consequência e Implicação

$$\begin{array}{c|c}
H \models p & h \models p & \models h \rightarrow p \\
\hline
H \vdash p & h \vdash p & \vdash h \rightarrow p
\end{array}$$

Teorema

Sejam $H = \{h_1, \dots, h_N\}$ um conjunto de proposições, $h = h_1 \wedge \dots \wedge h_N$ e p uma proposição. Então:

- ▶ $H \models p$ se e só se $h \models p$ se e só se $\models h \rightarrow p$.
- ▶ $H \vdash p$ se e só se $h \vdash p$ se e só se $\vdash h \rightarrow p$.

Demonstração.

Exercício.

$$H \models p \quad H \vdash p$$

Teorema (Completude e Segurança)

Seja H um conjunto de proposições e p uma proposição. Então H \models p se e só se H \vdash p.

Completude Se ⊨ p então ⊢ p: qualquer proposição válida é um teorema.

Segurança Se $\vdash p$ então $\models p$: qualquer teorema é válido.

Na lógica proposicional todas as verdades podem ser demonstradas e todos os teoremas são verdadeiros.

Conectivos Derivados

Definição (Conectivos derivados)

Sejam p, q duas proposições.

```
equivalência p \leftrightarrow q abrevia (p \rightarrow q) \land (q \rightarrow p). ou exclusivo p \otimes q abrevia \neg (p \leftrightarrow q). nand p \uparrow q abrevia \neg (p \land q). nor p \downarrow q abrevia \neg (p \lor q). tautologia \top abrevia \neg \bot.
```

Sintaxe — Proposições

Dedução Natural

Semântica

Computação

Formas Normais Problemas e Algoritmos Resolução

llustração

Conclusão

Lógica Proposicional, Computação e Informática UNIVERSIDADE DE EVORA

- Como podem contribuir a Computação e a Informática para a
 - Algoritmos para (ajudar a) descobrir se uma proposição é um teorema, válida ou compatível.
- Como pode a Lógica Proposicional contribuir para a Computação e para a Informática?

Lógica Proposicional?

- Linguagem para descrever processos, estados, erros, etc.
- Métodos para detetar e lidar com essas situações.

Sintaxe — Proposições

Dedução Natura

Semântica

Computação Formas Normais Problemas e Algoritmos Resolução

llustração

Conclusão

Objectivos

- Simplificar a linguagem lógica, descartando a necessidade do conectivo →.
- Normalizar a estrutura das proposições.
- Usufruir da normalização e simplificação.

Definição (Formas Normais)

- literal Uma literal é uma proposição atómica ou a negação de uma proposição atómica.
 - FND Qualquer proposição p é equivalente a uma proposição na forma normal disjuntiva (FND): $\bigvee_i \bigwedge_j c_{ij}$ em que cada c_{ij} é uma literal.
 - FNC Qualquer proposição p é equivalente a uma proposição na forma normal conjuntiva (FNC): $\bigwedge_i \bigvee_j c_{ij} \text{ em que cada } c_{ij} \text{ é uma literal.}$

Cálculo da Forma Normal Disjuntiva

Obtemos

$$\begin{split} q \leftrightarrow \neg p &\equiv \bigvee \bigwedge c \\ &\equiv L_2 \lor L_3 \\ &\equiv (p \land \neg q) \lor (\neg p \land q) \end{split}$$

Cálculo da Forma Normal Conjuntiva

Obtemos

$$\begin{split} q \leftrightarrow \neg p &\equiv \bigwedge \bigvee \overline{c} \\ &\equiv \overline{L_1} \wedge \overline{L_4} \\ &\equiv (\neg p \vee \neg q) \wedge (p \vee q) \end{split}$$

Completude Funcional

Teorema (Completude Funcional)

Qualquer função booleana pode ser representada por uma proposição usando apenas os conectivos \neg , \lor e \land .

Demonstração.

Basta aplicar a cálculo da FNC ou da FND à tabela da função.

Exemplo

Encontrar uma proposição que descreveva uma dada função booleana.

χ	y	z	f(x, y, z)	Li	$\overline{L_i}$
v	V	V	v	$x \wedge y \wedge z$	$\neg x \lor \neg y \lor \neg z$
v	V	f	f	$x \wedge y \wedge \neg z$	$\neg x \lor \neg y \lor z$
v	f	V	f	$x \land \neg y \land z$	$\neg x \lor y \lor \neg z$
v	f	f	v	$x \land \neg y \land \neg z$	$\neg x \lor y \lor z$
f	V	V	v	$\neg x \wedge y \wedge z$	$x \lor \neg y \lor \neg z$
f	V	f	v	$\neg x \wedge y \wedge \neg z$	$x \lor \neg y \lor z$
f	f	v	f	$\neg x \land \neg y \land z$	$x \lor y \lor \neg z$
f	f	f	f	$ \neg x \land \neg y \land \neg z $	$x \lor y \lor z$

Portanto:

$$f(x, y, z) \equiv (x \land y \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land y \land z) \lor (\neg x \land y \land \neg z) \equiv FND$$

Sintaxe — Proposições

Dedução Natura

Semântica

Computação Formas Normais Problemas e Algoritmos

llustração

Conclusão

Que problemas podem ser resolvidos algoritmicamente?

- ► Muitos problemas **numéricos**, por exemplo.
- Ordenação, Criptografia, Programação Linear, etc
- ► E na Lógica?

78/96

Problemas e Instâncias em Geral

Definição (Problema, Instância)

Um problema é um conjunto de pares (instância, resposta).

Resolver Consiste em calcular a resposta a partir da instância.

Decidir A resposta é boolena («sim» ou «não»).

- ▶ O problema da **resolução** da divisão tem instâncias (a, b) e consiste em **calcular** c tal que $c = a \div b$.
- ▶ O problema da **decisão** da divisão tem instâncias (a, b, c) e consiste em **testar** se $c = a \div b$.

Problemas da Lógica Proposicional

Satisfação Decidir se uma proposição p tem um modelo.

Instâncias Proposições.

Pergunta Existe uma valoração v tal que $v \models p$?

Validade Decidir se uma proposição p é válida.

Instâncias Proposições.

Pergunta Para cada valoração $v, v \models p$?

Provabilidade Decidir se uma proposição p tem uma prova.

Instâncias Proposições.

Pergunta Existe uma prova de p, isto \acute{e} , \vdash p?

80/96

O Problema da Satisfação (SAT)

Existe uma valoração ν tal que $\nu \models p$?

- ► É fácil fazer um algoritmo para resolver a este problema —

 Dada uma proposição p, listar e testar as valorações

 relevantes; parar quando se encontrar um modelo (v) ou se se
 esgotarem as valorações (f).
- ► Pode ser necessário testar todas as valorações relevantes.
- Se p tem n átomos há 2ⁿ valorações relevantes exponencial.
- ► Este algoritmo não é eficiente.

 Existe um algoritmo «eficiente» para resolver SAT? Ainda ninguém sabe! Quem resolver SAT tem Fama, Fortuna & Glória Instantâneas, Universais & Eternas & etc. e tal.

O Interesse do Problema da Satisfação

Uma proposição p pode descrever um sistema complexo:

- Um automóvel.
- Um foguetão.
- Uma central nuclear.
- A economia de um país.
- O clima de um planeta.
- Um ser vivo.
- A ecologia de uma região.
- O funcionamento de um programa.

Um modelo $v \models p$, descreve as **condições para atingir um objetivo** e/ou as **consequências de uma ação**.

Os Problemas do Problema da Satisfação

- Embora sejam conhecidos algoritmos que resolvem rapidamente problemas SAT com dezenas de milhar de variáveis, a complexidade computacional é desconhecida no caso geral.
- ► SAT é NP-completo. Isto significa que pode ser decidido em tempo polinomial e ser usado para resolver vários problemas de otimização, desenho de circuitos, inteligência artificial, etc.
- A linguagem da lógica proposicional não descrimina objetos de um domínio nem como estes se relacionam — portanto SAT sofre também desta limitação.

Os Outros Problemas

- ▶ A **validade** é equivalente à **provabilidade**, porque $\models p$ se e só se $\vdash p$.
- ▶ A satisfação é equivalente à validade, porque se não existe v tal que $v \models p$ (p é uma contradição) então para qualquer v, $v \models \neg p$ ($\neg p$ é válida).

Problemas Equivalentes

Intuitivamente dois problemas A e B são equivalentes se um algoritmo para resolver A pode ser *facilmente adaptado* para resolver B e *vice-versa*.

Sintaxe — Proposições

Dedução Natura

Semântica

Computação Formas Normais Problemas e Algoritmo: Resolução

llustração

Conclusão

Regra da Resolução

Definição (Regra da Resolução)

$$\mathbb{R}: \ \{a \lor c, b \lor \neg c\} \vdash a \lor b \text{ ou}$$

$$\frac{a \lor c \quad b \lor \neg c}{a \lor b} \ (\mathbb{R}).$$

Exercício. Derive a regra da resolução.

Generalização

$$\frac{a_1 \vee \dots \vee a_N \vee \boxed{c_1 \vee \dots \vee c_K} \quad b_1 \vee \dots \vee b_M \vee \boxed{\overline{c_1} \vee \dots \vee \overline{c_K}}}{a_1 \vee \dots \vee a_N \vee b_1 \vee \dots \vee b_M} \ (\mathbb{R})$$

No limite $\{c, \neg c\} \vdash \bot$.

Algoritmo de Resolução

One Ring to bring them all and in the darkness bind them

Com as proposições escritas na **FNC** a regra da resolução pode substituir todas as outras.

Definição (Algoritmo de Resolução - Prova por refutação)

Para se verificar se H ⊢ p com a regra da resolução:

- 1. Convertem-se todas as proposições de H e ¬p para a forma normal conjuntiva.
- 2. Verifica-se se $\{H, \neg p\} \vdash \bot$ por aplicações sucessivas da resolução.

Sintaxe — Proposições

Dedução Natura

Semântica

Computação

llustração

Conclusão

O Labirinto do Minotauro

- O labirinto consiste numa rede de salas ligadas por corredores.
- Algures no labirinto está o Minotauro, M, que devora quem entrar nessa sala.
- ▶ O Minotauro pode ser morto por **Teseu**, **T**, que tem uma única seta e perceciona apenas a sala em que se encontra.
- ► Algumas salas têm um **poço**, P, onde, exceto o minotauro, cai quem entra.
- Numa única sala está **Ariadne**, A, que Teseu procura.
- Nas salas adjacentes ao Minotauro **fede**, **f**.
- Nas salas adjacentes aos poços sente-se uma **brisa**, b.
- N.B. «Adjacente» exclui as diagonais.

Formalização

f		b	Р
М	fAb	Р	b
f		b	
Т	Ъ	Р	Ъ

 m_{ij} o Minotauro está na sala ij.

 f_{ij} fede na sala ij.

p_{ij} está um poço na sala ij.

 b_{ij} está uma brisa na sala ij.

 t_{ij} Teseu está na sala ij.

a_{ij} Ariadne está na sala ij.

A base de conhecimento inicial de Teseu, admitindo que «deteta» tudo na sala em que está:

$$\begin{aligned} & t_{11} \wedge \neg m_{11} \wedge \neg p_{11} \wedge \neg a_{11} \wedge \neg f_{11} \wedge \neg b_{11} \wedge \\ f_{11} \leftrightarrow & (m_{12} \vee m_{21}) \wedge f_{12} \leftrightarrow (m_{11} \vee m_{22} \vee m_{13}) \wedge \cdots \wedge \\ b_{11} \leftrightarrow & (p_{12} \vee p_{21}) \wedge b_{12} \leftrightarrow (p_{11} \vee p_{22} \vee p_{13}) \wedge \cdots \wedge \end{aligned}$$

Exercícios

Use os predicados atómicos m_{ij} , f_{ij} , p_{ij} , b_{ij} , t_{ij} , a_{ij} e:

- 1. Deduza $\neg m_{21}$ por Teseu. Também pode deduzir $\neg a_{21}$?
- 2. Descreva, numa proposição, a sala 32 do exemplo anterior.
- 3. Suponha que o labirinto tem apenas 2×2 salas e formalize:
 - $3.1\,$ Existe apenas um minotauro no labirinto.
 - 3.2 Existe apenas um poço no labirinto.
 - 3.3 Existem dois poços no labirinto.
 - 3.4 O minotauro está na mesma sala que Ariadne.
 - 3.5 O minotauro está numa sala diferente de Ariadne.
 - 3.6 Teseu está na mesma linha que o minotauro.
 - 3.7 Ariadne está na mesma coluna que Teseu.
 - 3.8 Teseu está numa sala adjacente a Ariadne.
- 4. Porque não consegue formalizar «Cada sala tem quanto muito um poço»? E se for possível existirem dois poços na mesma sala?

Exemplo de Dedução

Quando Teseu passa da sala 12, onde não há um poço, para a sala 11, deteta uma brisa. Conclui então que há um poço na sala 21, **ainda não visitada**.

1. Transcrever a regra das brisas, $b_{11} \leftrightarrow (p_{12} \lor p_{21})$, para a FNC:

$$(\neg b_{11} \lor p_{12} \lor p_{21}) \land (\neg p_{12} \lor b_{11}) \land (\neg p_{21} \lor b_{11}) \,.$$

- 2. Listar as proposições relevantes, incluindo:
 - ▶ O poço não está em 12: ¬p₁₂.
 - Sente-se uma brisa em 11: b₁₁.
 - ▶ A negação da tese: ¬p₂₁.
- 3. Aplicar a resolução:

Sintaxe — Proposições

Dedução Natura

Semântica

Computação

llustração

Conclusão

Computação e Complexidade

- Qual o efeito do número de proposições no algoritmo da resolução?
- Qual o efeito do número de átomos em SAT?
- ▶ $\mathcal{P} \stackrel{?}{=} \mathcal{NP}$, resolver *vs.* decidir.

Resolver Qual é o número x que multiplicado por 7 dá 56?

Decidir O resultado de multiplicar 8 por 7 é 56?

Expressividade

- No Labirinto do Minotauro, como descrever umo labirinto com $n \times m$ salas?
- ► Em geral, quantas regras são necessárias?

Objetos e Relações (antevisão)

- ► Minotauro(12).
- ▶ $\forall x \; \mathsf{Brisa}(x) \leftrightarrow \exists y \; \mathsf{Adjacente}(x,y) \land \mathsf{Poço}(y).$