Exercises and Notes from Topology

John Peloquin

Fall 2008

Exercises and notes from Topology (2nd ed.) by James R. Munkres.

Chapter 1

Section 3

EXERCISE 15. Assume the least upper bound property for \mathbb{R} .

(a) The sets [0,1] and [0,1) have the least upper bound property.

Proof. Let *A* be a nonempty subset of [0,1) which is bounded above in [0,1). Then there exists $0 \le b < 1$ such that for all $a \in A$, $a \le b$. Let β be the least upper bound of *A* in \mathbb{R} . Then $\beta \in [0,1)$ since $0 \le a \le \beta \le b < 1$ for any fixed $a \in A$. This shows that [0,1) has the least upper bound property.

The proof is nearly identical for [0, 1].

(b) Under the dictionary order, the sets $[0,1] \times [0,1]$ and $[0,1) \times [0,1]$ have the least upper bound property, but the sets $[0,1] \times [0,1)$ and $[0,1) \times [0,1)$ do not.

Proof. To prove the latter claim, let

$$A = \{(0, 1 - 1/2^n) \mid n = 0, 1, ...\} \subseteq [0, 1) \times [0, 1) \subseteq [0, 1] \times [0, 1)$$

Now A is bounded above in both sets, since for example (1/2,0) is an upper bound. Note that there is no upper bound with first coordinate 0. But also there is no *least* upper bound with nonzero first coordinate, since for example

$$B = \{(1/2^n, 0) \mid n = 1, 2, ...\}$$

is a set of upper bounds with arbitrarily small nonzero first coordinates. Thus it follows that there is no least upper bound for *A* in either set, so neither set has the least upper bound property.

To prove the first claim, suppose A is a nonempty subset of $[0,1) \times [0,1]$ which is bounded above (in either set). Let α be the least upper bound of the set of left coordinates of elements in A. If the set $A \cap (\{\alpha\} \times [0,1])$ is nonempty, let β be the least upper bound of right coordinates in this set; otherwise let $\beta = 0$.

We claim that (α, β) is a least upper bound for A. Indeed, it is an upper bound since for all $(a,b) \in A$, $a \le \alpha$, and $b \le \beta$ if $a = \alpha$. Suppose now $(\gamma,\delta) < (\alpha,\beta)$. If $\gamma < \alpha$, then there exists $(a,b) \in A$ with $\gamma < a \le \alpha$, so $(\gamma,\delta) < (a,b)$ and hence (γ,δ) is not an upper bound for A. If $\gamma = \alpha$, then we must have $0 \le \delta < \beta$, which means (by definition of β) there exists $(a,b) \in A$ with $a = \alpha$ and $\delta < b \le \beta$. But then $(\gamma,\delta) < (a,b)$ again, so (γ,δ) is not an upper bound for A. These cases are exhaustive, hence (α,β) is the least upper bound for A.

Note that the latter argument fails for the second pair of sets in the problem, since for those sets β is *not* guaranteed to exist in [0,1).

Chapter 2

Section 13

EXERCISE 1. Let *X* be a topological space. Suppose $A \subseteq X$ and for all $x \in A$ there exists an open set *U* with $x \in U \subseteq A$. Then *A* is open.

Proof. For each $x \in A$ choose an open set U_x with $x \in U_x \subseteq A$. Then $A = \bigcup_{x \in A} U_x$ is a union of open sets, and hence is open.

EXERCISE 3. Let *X* be a set. Define the following collections:

$$\mathcal{T}_c = \{U \subseteq X \mid X - U \text{ is countable or all of } X\}$$

$$\mathcal{T}_{\infty} = \{U \subseteq X \mid X - U \text{ is infinite or empty or all of } X\}$$

Then \mathcal{T}_c is a topology on X, but \mathcal{T}_{∞} is not in general.

Proof. Let $\{U_{\alpha}\}$ be an indexed subcollection of \mathcal{T}_c . Set $U = \bigcup U_{\alpha}$. If the subcollection is empty, so is U, so X - U = X and $U \in \mathcal{T}_c$. Otherwise fix α and note that

$$X - U = X - \bigcup U_{\alpha} = \bigcap (X - U_{\alpha}) \subseteq X - U_{\alpha}$$

which is countable since $X - U_{\alpha}$ is countable. Thus $U \in \mathcal{T}_c$.

Now let $\{U_{\alpha}\}$ be finite and set $U = \bigcap U_{\alpha}$. Then $X - U = X - \bigcap U_{\alpha} = \bigcup (X - U_{\alpha})$ is a finite union of countable sets, which is countable, so $U \in \mathcal{T}_c$.

Set
$$X = \mathbb{R}$$
, $U_{-1} = (-\infty, 0)$ and $U_1 = (0, \infty)$. Then $U_{-1} \in \mathcal{T}_{\infty}$ and $U_1 \in T_{\infty}$ but

$$U_{-1} \cup U_1 = (-\infty, 0) \cup (0, \infty) = \mathbb{R} - \{0\} \notin \mathcal{T}_{\infty}$$

Therefore \mathcal{T}_{∞} is not a topology on X in general.

EXERCISE 4.

(a) Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Then $\bigcap \mathcal{T}_{\alpha}$ is also a topology on X, but $\bigcup \mathcal{T}_{\alpha}$ is not in general.

Proof. The first claim is immediate from the fact that each \mathcal{T}_{α} is a topology. (Note if the family is empty, the intersection gives the discrete topology on X.) To see that the union is not in general, set $X = \{a, b, c\}$ and define topologies

$$\mathcal{T}_1 = \{\emptyset, \{a\}, X\}$$
 $\mathcal{T}_2 = \{\emptyset, \{b\}, X\}$

Then $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$ is not a topology, as $\{a\}, \{b\} \in \mathcal{T}$ but $\{a\} \cup \{b\} = \{a, b\} \notin \mathcal{T}$. \square

(b) Let $\{T_{\alpha}\}$ be a family of topologies on X. Then there exists a unique smallest topology on X containing all \mathcal{F}_{α} , and in addition a unique largest topology on X contained in all \mathcal{F}_{α} .

Proof. Let \mathcal{T} be the topology generated by the subbasis $S = \bigcup \mathcal{T}_{\alpha}$. Then \mathcal{T} is a topology on X containing all \mathcal{T}_{α} , and any topology on X containing all \mathcal{T}_{α} must contain \mathcal{T} (since such a topology will be closed under unions of finite intersections over S), so \mathcal{T} is smallest and unique.

It is immediate that $\bigcap T_{\alpha}$ is the largest topology on X contained in all \mathcal{T}_{α} . \square

(c) Set $X = \{a, b, c\}$ and define the topologies

$$\mathcal{T}_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$$
 $\mathcal{T}_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$

The smallest topology containing both is $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. The largest topology contained in both is $\{\emptyset, \{a\}, X\}$.

EXERCISE 5. Let \mathscr{A} be a basis for a topology on X. Then the topology generated by \mathscr{A} is equal to the intersection of all topologies on X containing \mathscr{A} .

Proof. Both equal the unique smallest topology of X containing \mathcal{A} .

EXERCISE 6. The topologies \mathbb{R}_l and \mathbb{R}_K are not comparable.

Proof. Note $0 \in [0,1)$, but there are no a < b with $0 \in (a,b) - K \subseteq [0,1)$. It follows that $\mathbb{R}_l \not\subseteq \mathbb{R}_K$ (Lemma 13.3). Conversely, note that $0 \in (-1,1) - K$, but there are no a < b with $0 \in [a,b) \subseteq (-1,1) - K$, so $\mathbb{R}_K \not\subseteq \mathbb{R}_l$. □

EXERCISE 8.

(a) Let $\mathcal{B} = \{(a,b) \mid a < b \text{ rationals}\}$. Then \mathcal{B} is a countable basis generating the standard topology on \mathbb{R} .

Proof. It is immediate that \mathscr{B} is a countable collection of open sets. Note any interval (r, s) with $r, s \in \mathbb{R}$ can be expressed as a union of elements of \mathscr{B} (since the rationals are dense in \mathbb{R}), hence any open set can be expressed as a union of elements of \mathscr{B} (Lemma 13.1). Therefore \mathscr{B} is a basis for the standard topology (Lemma 13.2).

(c) Let $\mathscr{C} = \{[a,b) \mid a < b \text{ rationals}\}$. Then \mathscr{C} is a basis for \mathbb{R} generating a topology different than \mathbb{R}_l .

Proof. It is immediate that \mathscr{C} is a basis. Consider basis element $B = [\pi, \pi + 1)$ in \mathbb{R}_l . Note $\pi \in B$, but there are no a < b rational with $\pi \in [a, b) \subseteq [\pi, \pi + 1)$, lest $a = \pi$ be irrational. Thus the topology generated by \mathscr{C} is different from \mathbb{R}_l . \square

Section 16

EXERCISE 1. Let Y be a subspace of the topological space X and $A \subseteq Y$. Then the topology A inherits as a subspace of Y is the same as the topology A inherits as a subspace of X.

Proof. For the purposes of this proof, let $\mathcal{T}_{A,Z}$ denote the topology A inherits as a subspace of the topological space Z. Let \mathcal{T} denote the topology of X. Then

$$\begin{split} \mathcal{T}_{A,Y} &= \{U \cap A \mid U \in \mathcal{T}_{Y,X}\} & \text{by definition} \\ &= \{(U \cap Y) \cap A \mid U \in \mathcal{T}\} & \text{since } \mathcal{T}_{Y,X} &= \{U \cap Y \mid U \in \mathcal{T}\} \\ &= \{U \cap A \mid U \in \mathcal{T}\} & \text{since } A \subseteq Y \\ &= \mathcal{T}_{A,X} & \text{by definition} \end{split}$$

This establishes the result.

EXERCISE 2. Let \mathcal{T} and \mathcal{T}' be topologies on X with $\mathcal{T} \subset \mathcal{T}'$, and suppose $Y \subseteq X$. Let \mathcal{T}_Y and \mathcal{T}_Y' denote the corresponding subspace topologies on Y. Then $\mathcal{T}_Y \subseteq \mathcal{T}_Y'$, but this inclusion need not be proper.

Proof. It is immediate from definitions that $\mathcal{T}_Y \subseteq \mathcal{T}_Y'$.

To see equality, set $X = \mathbb{R}$ and $Y = \mathbb{Z}$, let \mathcal{T} be the topology generated by intervals (a,b) with a < b integers, and let \mathcal{T}' be the standard topology. Then $\mathcal{T} \subset \mathcal{T}'$, but $\mathcal{T}_Y = \mathcal{T}'_Y$ is just the discrete topology on \mathbb{Z} .

EXERCISE 3. Consider Y = [-1, 1] as a subspace of \mathbb{R} . Then we have the following:

Subset	Open in Y	Open in $\mathbb R$
$A = \{x \mid \frac{1}{2} < x < 1\}$	Yes	Yes
$B = \{ x \mid \frac{1}{2} < x \le 1 \}$	Yes	No
$C = \{ x \mid \frac{1}{2} \le x < 1 \}$	No	No
$D = \{ x \mid \frac{1}{2} \le x \le 1 \}$	No	No
$E = \{x \mid 0 < x < 1 \text{ and } 1/x \notin \mathbb{Z}_+\}$	Yes	Yes

Note $E = (-1,0) \cup \left(\bigcup_{n\geq 1} \left(\frac{1}{n+1}, \frac{1}{n}\right)\right)$, a union of open sets in both spaces.

EXERCISE 4. The projection maps on the product space are open maps (that is, they map open sets to open sets).

Proof. Let $X_1 \times X_2$ be a product space and suppose $U \subseteq X_1 \times X_2$ is open. If $u \in U$, then by definition there exists some basis element $B_1 \times B_2 \subseteq X_1 \times X_2$, where B_i is open in X_i , and $u \in B_1 \times B_2$. Then $\pi_i(u) \in B_i$. Since u was arbitrary, $\pi_i(U)$ can be expressed as a union of open sets in X_i , and hence is open in X_i as desired.

EXERCISE 6. The countable collection

$$\{(a, b) \times (c, d) \mid a < b \text{ and } c < d \text{ rationals}\}\$$

is a basis for \mathbb{R}^2 .

Proof. Immediate by the density of \mathbb{Q} in \mathbb{R} (cf. Exercise 13.8(a)).

EXERCISE 7. If *X* is an ordered set and *Y* is a proper, convex subset of *X*, it need not be the case that *Y* is an interval or ray in *X*.

Indeed, consider $X=\mathbb{Q}$ and $Y=\{q\in\mathbb{Q}\mid q^2<2\}$. Then it is immediate that Y is proper and convex in X. But Y is not an interval or a ray in X. Note that Y is bounded in X by elements not in Y, so it is not a ray. Also it has no least or greatest element, so it is not a closed or half-open interval. If Y=(a,b) for a,b rational, then $b^2 \not< 2$. But then since $b^2 \not= 2$ (no rational has square equal to 2), we must have $2 < b^2$. Now by computation we can choose c < b with $2 < c^2$. But then since c < b, $c \in Y$, so $c < c^2 < c^2$ —a contradiction. This shows that $c < c^2 < c^2$ is not an open interval either.

EXERCISE 10. Let I = [0,1]. Let \mathcal{T}_1 denote the product topology on $I \times I$, \mathcal{T}_2 denote the dictionary order topology on $I \times I$, and \mathcal{T}_3 denote the subspace topology $I \times I$ inherits from $\mathbb{R} \times \mathbb{R}$ under the dictionary order topology.

Then \mathcal{T}_3 is strictly finer than \mathcal{T}_1 and \mathcal{T}_2 , while \mathcal{T}_1 and \mathcal{T}_2 are not comparable.

Proof. Recall that basis elements of \mathcal{T}_1 are interiors of rectangles (with possible edges touching edges of the square), basis elements of \mathcal{T}_2 are open vertical segments in the square (with possible endpoints only at the lower left and upper right corners of the square), and basis elements of \mathcal{T}_3 are restrictions of open vertical segments in $\mathbb{R} \times \mathbb{R}$ to the square.

It is then immediate that \mathcal{T}_3 is finer than both \mathcal{T}_1 and \mathcal{T}_2 . To see that it is strictly finer, note that $(0 \times \frac{1}{2}, 0 \times 1]$ is a basis element in \mathcal{T}_3 , but there are no basis elements of \mathcal{T}_1 or \mathcal{T}_2 containing the point 0×1 and contained in this set.

It is immediate that \mathcal{T}_1 is not finer than \mathcal{T}_2 . Note that the rectangle $[0,1] \times [0,\frac{1}{2})$ is a basis element in \mathcal{T}_1 containing the point $\frac{1}{2} \times 0$, but there is no basis element of \mathcal{T}_2 containing this point which is contained in the rectangle. Hence \mathcal{T}_2 is not finer than \mathcal{T}_1 . Thus \mathcal{T}_1 and \mathcal{T}_2 are not comparable.