Chapter 12

Big "O" notation

12.1 Introduction

When analyzing algorithms it is often sufficient to get a reasonable bound on their performance. For example, when analyzing the bubble sort, one could say "it takes roughly n^2 steps for an input of length n"; as we've seen, the true value is

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n,$$

and so we would be ignoring the factor of $\frac{1}{2}$ in $\frac{1}{2}n^2$ and the term $\frac{1}{2}n$. We think of the function $\frac{1}{2}n(n-1)$ as growing "about as fast as" the function n^2 . We want to make this idea more precise.

In general, let $S = \{x \in \mathbb{R} : x \ge 0\}$ and then let f and g be functions from S to S. We say that f(x) is O(g(x)), or write $f(x) \in O(g(x))$, if there are constants C > 0 and $k \ge 0$ such that $f(x) \le Cg(x)$ whenever $x \ge k$; see Figure 12.1. We think of O(g(x)) as being the set of functions that grow "no faster" than g(x).

12.2 General properties

In this section we establish some general results about how functions becave with respect to this notation.

First note that, if $f(x) \in O(g(x))$ and $g(x) \in O(h(x))$, then we have constants C_1 , k_1 , C_2 and k_2 such that $f(x) \le C_1g(x)$ for $x \ge k_1$ and $g(x) \le C_2h(x)$ for $x \ge k_2$. So, if we let k be the maximum of k_1 and k_2 , then we have

$$f(x) \leq C_1 g(x) \leq C_1 C_2 h(x)$$
 for $x \geq k$,

and so $f(x) \in O(h(x))$. We see that, if $g(x) \in O(h(x))$, then

$$f(x) \in O(g(x)) \Rightarrow f(x) \in O(h(x)),$$

and so $O(g(x)) \subseteq O(h(x))$. In particular, if $g(x) \in O(h(x))$ and $h(x) \in O(g(x))$ then O(g(x)) = O(h(x)).

If functions g(x) and h(x) "differ by a constant factor" (i.e. if there exists a constant D > 0 such that g(x) = Dh(x) for all x), then we have:

- $g(x) \in O(h(x))$, as $g(x) \leq Dh(x)$ for all x, and
- $h(x) \in O(g(x))$, as $h(x) \leq \frac{1}{D}g(x)$ for all x.

So O(g(x)) = O(h(x)) in this case.

Note that, if $f_1(x) \in O(g_1(x))$ and $f_2(x) \in O(g_2(x))$, then there are constants C_1 , k_1 , C_2 and k_2 such that $f_1(x) \le C_1g_1(x)$ whenever $x \ge k_1$ and $f_2(x) \le C_2g_2(x)$ whenever $x \ge k_2$. If C is the maximum of C_1 and C_2 and C_3 is the maximum of C_1 and C_2 and C_3 and C_4 and C_5 and C_5 and C_7 are maximum of C_7 and C_7 are maximum of C_7 and $C_$

$$f_1(x) \le Cg_1(x)$$
 and $f_2(x) \le Cg_2(x)$ whenever $x \ge k$.

We see that $f_1(x) + f_2(x) \le C(g_1(x) + g_2(x))$ whenever $x \ge k$, and so $f_1(x) + f_2(x) \in O(g_1(x) + g_2(x))$.

In a similar vein, we have that

$$f_1(x) \times f_2(x) \leqslant C_1 C_2(g_1(x) \times g_2(x))$$

Figure 12.1: $f(x) \in O(g(x))$

if $x \ge k$ and so $f_1(x) \times f_2(x) \in O(g_1(x) \times g_2(x))$.

Let us sum these observations up as follows:

THEOREM. Let $S = \{x \in \mathbb{R} : x \ge 0\}$ and suppose that f, g and h are functions from S to S.

- 1. If $f(x) \in O(g(x))$ and $g(x) \in O(h(x))$ then $f(x) \in O(h(x))$.
- 2. If $g(x) \in O(h(x))$, then $O(g(x)) \subseteq O(h(x))$.
- 3. If $g(x) \in O(h(x))$ and $h(x) \in O(g(x))$ then O(g(x)) = O(h(x)).
- 4. If functions g(x) and h(x) differ by a constant factor then O(g(x)) = O(h(x)).
- 5. If $f_1(x) \in O(g_1(x))$ and $f_2(x) \in O(g_2(x))$, then $f_1(x) + f_2(x) \in O(g_1(x) + g_2(x))$.
- 6. If $f_1(x) \in O(g_1(x))$ and $f_2(x) \in O(g_2(x))$, then $f_1(x) \times f_2(x) \in O(g_1(x) \times g_2(x))$.

12.3 Polynomials

Let us consider polynomials. For example, we have:

if
$$m < n$$
, then $x^m \in O(x^n)$ as $x^m \le x^n$ for $x \ge 1$. (12.1)

EXAMPLE.
$$x \in O(x^3)$$
 and $x^2 \in O(x^3)$; so $x + x^2 \in O(x^3 + x^3) = O(2x^3) = O(x^3)$.

In general, if $n_1, n_2, ..., n_r \le m$ and $a_i > 0$ for each i with $1 \le i \le n$, then $a_i x^{n_i} \in O(a_i x^m) = O(x^m)$ for each i, and so

$$a_1x^{n_1} + a_2x^{n_2} + \ldots + a_rx^{n_r} \in O(x^m + x^m + \ldots + x^m) = O(rx^m) = O(x^m).$$

So we have:

THEOREM. If p(x) is a polynomial of degree at most m, then $p(x) \in O(x^m)$.

For example, we have that $x^2 \in O(x^2)$, $x^2 + x \in O(x^2)$ and $x^2 \in O(x^3)$. Note that $1 = x^0$ so that $O(1) \subset O(x)$.

Note that, if n > m, then we do not have $x^n \in O(x^m)$; we cannot find constants C and k such that $x^n \leqslant Cx^m$ for $x \geqslant k$ because we would have to have $x^{n-m} \leqslant C$ for $x \geqslant k$ which is clearly impossible. So we have:

THEOREM. If n > m then $x^m \in O(x^n)$ but $x^n \notin O(x^m)$. In particular, we have:

$$O(1) \subset O(x) \subset O(x^2) \subset O(x^3) \subset \dots$$

12.4 Logarithms and exponentials

There is a slight issue when considering logarithms. We have taken our functions as being from S to S where $S = \{x \in \mathbb{R} : x \ge 0\}$; however, for any base c, $\log_c(x)$ is negative for 0 < x < 1. This is not really a problem as we are only interested in the behaviour of our functions from some point k onwards, and we can regard \log_c as being a function from $T = \{x \in \mathbb{R} : x \ge 1\}$ to S.

Note that the choice of base c in $\log_c(x)$ is not important when considering $O(\log_c(x))$. We saw in Chapter 8, that, for any two fixed bases c and d, we have that $\log_d(x) = \log_c(x) \log_d(c)$. So $\log_c(x)$ and $\log_d(x)$ differ by a constant, and hence $O(\log_c(x)) = O(\log_d(x))$. We will take our base to be 2 in what follows (i.e. we consider $\log_2(x)$).

One can show that $x < 2^x$ for $x \ge 1$ (for natural numbers x we can do this by induction). Taking logarithms of both sides of this inequality gives that $\log_2(x) < x$ for $x \ge 1$; we are using the fact that, if a < b, then $\log_2(a) < \log_2(b)$. So we have that

$$O(\log_2(x)) \subseteq O(x) \subseteq O(2^x);$$

see Figure 12.2.

In fact we have:

$$O(1) \subset O(\log_2(x)) \subset O(\log_2(x)^2) \subset O(\log_2(x)^3) \subset \ldots \subset O(x) \subset O(x^2) \subset O(x^3) \subset \ldots \subset O(2^x), \quad (12.2)$$

and, in particular, that $O(\log_2(x)^d) \subset O(x)$ for any $d \ge 1$ and that $O(x^d) \subset O(2^x)$ for any $d \ge 1$. We can think of (12.2) as showing the relative growths of the functions listed there.

We can use the facts that, if $f_1(x) \in O(g_1(x))$ and $f_2(x) \in O(g_2(x))$, then $f_1(x) + f_2(x) \in O(g_1(x) + g_2(x))$ and $f_1(x) \times f_2(x) \in O(g_1(x) \times g_2(x))$ to establish some more relationships.

EXAMPLE. As $\log_2(x) \in O(x^2)$ and $x \in O(x^2)$, we have that

$$x + \log_2(x) \in O(x^2 + x^2) = O(2x^2) = O(x^2).$$

We also have that, as $\log_2(x) \in O(x)$ and $x \in O(x)$. then

$$x \times \log_2(x) \in O(x \times x) = O(x^2).$$

Given that $\log_2(x)^2 = \log_2(x) \times \log_2(x) \in O(x)$ by (12.2), we have that

$$\log_2(x) = \frac{\log_2(x)^2}{\log_2(x)} \in O\left(\frac{x}{\log_2(x)}\right).$$

It is clearly possible to derive a wide variety of similar facts.

Figure 12.2: $\log_2(x)$, *x* and 2^x