

离散数学 第二次助教课

蔡子诺

2024年11月25日

饮水思源•爱国荣校

THE PART OF THE PA

题目

●第一章: 2, 3, 4, 6, 8

●第二章: 10, 13, 14, 16, 17, 21, 22, 23, 25

●第四章: 26, 27, 30, 31, 32, 33, 34

●第五章: 41, 43, 47

SE CONTROL CON

第一章 命题逻辑的基本概念

◉考点一: 命题的判断

□非真即假的陈述句

◎考点二: 命题联结词及真值表

●考点三: 重言式、可满足式、矛盾式

●考点四:代入规则

□原子命题、全部代换

◉考点五: 命题形式化

□易错点: 异或的形式化

◉ 考点六: (逆)波兰表达式

第一章

- 2. 命题公式 $\neg(P \land Q) \rightarrow R$ 具有 ____ 个使其为真的指派。
 - A. 2

B. 3

C. 4

D. 5

方法1: 为假的指派->R为F, (P and Q)为F

方法2: 真值表法

第一章

⑥ 4 设P: 天下雨, Q: 他在室内运动,则命题"除非天下雨,否则他不在室内运动"的形式化为
기 → 기 ② ...

● 10 设P: "你陪伴我", Q: "你代我叫车子", R: "我将出去"。则命题: "除非你陪伴我或代我叫车子,否则我将不出去"的形式化为: ¬(p v q) → ¬p

P	Q	结果
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	Т

第二章 命题逻辑的等值和推理演算

◉考点一: 等值公式 (18条)

◉考点二: 联结词的完备集

⊛考点三: 对偶式

⊚考点四: 范式、主范式

◉考点五: 推理公式

優考点六: 推理演算

□ 条件证明规则

□归结法

第二章 联结词的完备集

下面有 ____ 个命题联结词集合是完备集。

- {¬, ∧}
- {¬, ∨}
- {¬, →}
- $\{\neg, \leftrightarrow\}$
- {∨, →}
- $\{\land, \rightarrow\}$
- {∨, ↑}
- {↓}

A. 4

B. 5

不完备集

- □ { ∨, ∧, →, ↔}不是完备的 因为一不能仅由该集合的联结词表达出
- \Box {¬, \leftrightarrow }不是完备的
- □ $\{ \lor, \land, \rightarrow, \leftrightarrow \}$ 的任何子集都是不完备的 $\{\neg,\leftrightarrow\}$ 的任何子集也是不完备的 (如果一个联结词的集合是不完备的,那 么它的任何子集都是不完备的)
- □ { ∨, ^ }不是完备的

D. 7

C. 6

第二章 联结词的完备集

17

逻辑联结词或非 \downarrow 可以定义为: $x \downarrow y = \neg(x \lor y)$ 。将公式 $\neg(x \lor y) \land z$ 转换成只用 \downarrow 表示的公式 ____ 。

<a>21

 $P \downarrow Q = \neg (P \lor Q)$,用或非联结词表示出 $P \to Q$ 为 ____ 。

第二章 对偶式

$$P \to Q \lor R \to S$$
 的对偶式为 ____。

注意运算顺序和括号的添加

第二章 主范式 (填空题)

16

16. 命题公式 $\neg(P \land Q) \to R$ 的主析取范式中含极小项的个数为 ____ 。

A. 8

B. 3

C. 5

D. 0

第二章: 主范式

- 1. 消去联结词
- 2. 否定词内移
- 3. 使用分配律
- 4. 添加缺失项

主合取范式: A7;6;5

第二章 推理公式

22

22. 设命题公式 $G = \neg(P \to Q), H = P \to (Q \to \neg P),$ 则 G 与 H 的关系是 ___ 。

A

A.
$$G \Rightarrow H$$

B.
$$H \Rightarrow G$$

C.
$$G = H$$

D. 以上都不是

23

23. 下面 4 个推理定律中,不正确的是 ___。

A.
$$A \Rightarrow (A \lor B)$$

B.
$$(A \lor B) \land \neg A \Rightarrow B$$

C.
$$(A \rightarrow B) \land A \Rightarrow B$$

D.
$$(A \to B) \land \neg B \Rightarrow A$$

D

第二章:自然语句形式化+推理演算

14. 证明下列推理关系:如果李华在光明中学上学,那么他不是初中生,就是高中生。如果李华是初中生,那么他需要参加中考。如果李华是高中生,那么他经常给外国的友人写信。如果李华经常给外国的友人写信,那么他的英文写作能力很强。李华的英文写作能力不强。从而知:如果李华在光明中学上学,那么他需要参加中考。

自然语句形式化

P: 李华在代明节上学

a: SKINE

R 李的

s: 李爷的時

T 辞价图以图信W 辞获多下的统

L		时如前提31人、 前提31人。	, , , , ,
в	QVR	(1)(2)沿海	(II) Q (3)(10)
(4)	J→W	前提1人.	(四 0→3 前提扒
(5)	Tr+Wr	(4) 對長	(i) S (v)
(6)	7 W	前提10.	400
(7)	77	15,16)分离	(14) トラス 光本证明状の
(8)	R→T	所提加入	
19)	7T -> 7R	(1) 影技	
(lo)	78	和本 (7)(1)於	

W TO TONG THE PARTY OF THE PART

第四章 谓词逻辑的基本概念

◎考点一:基本概念(谓词、个体词、函数、量词、自由变元与约束变元、辖域)

◎考点二: 合式公式的判断

◎ 考点三: 自然语句形式化

□所有的有理数都是实数;

□有的实数是有理数;

□没有有理数是无理数;

□有的实数不是有理数

◉考点四:有限域下的表示

◉考点五: 普遍有效性的判定

第四章 基本概念

30

26

26. 若个体域为整数集合,下列公式中 ___ 不是命题。

A.
$$(\forall x)(\forall y)(x \cdot y = x)$$

B.
$$(\forall x)(\exists y)(x \cdot y = 1)$$

C.
$$(\forall x)(x \cdot y = x)$$

D.
$$(\exists x)(\exists y)(x \cdot y = 2)$$

第四章 有限域下的表示

© 27 C

27. 设个体域 $D = \{a, b\}$, 则公式 $(\forall x)(F(x) \land G(x))$ 消去量词后可表示为 ____。

A.
$$(F(a) \wedge F(b)) \vee (G(a) \wedge G(b))$$

B.
$$(F(a) \vee F(b)) \wedge (G(a) \vee G(b))$$

C.
$$(F(a) \wedge G(a)) \vee (F(b) \wedge G(b))$$

D.
$$(F(a) \vee G(a)) \wedge (F(b) \vee G(b))$$

第四章 自然语句形式化

31

D

31. 设 A(x): x 是人, B(x): x 犯错误, 命题"没有人不犯错误"符号化为

A.
$$(\forall x)(A(x) \land B(x))$$

B.
$$\neg(\exists x)(A(x) \rightarrow \neg B(x))$$

C.
$$\neg(\exists x)(A(x) \land B(x))$$

D.
$$\neg(\exists x)(A(x) \land \neg B(x))$$

32

设 R(x) 表示 x 是实数, E(x,y) 表示 x=y, 则语句"对所有的实数 x, 都存在实数 y, 使 得 x=y" 的符号化为 ____ 。

第四章 普遍有效性的判定

33

33. 公式 $(\exists x)(P(x)\leftrightarrow Q(x))\to ((\exists x)P(x)\to (\exists x)Q(x))$ 不是 (是/不是) 普遍有效的。

$$Q(0)=Q(1)=P(0)=F, P(1)=F$$

34

34. 公式 $\neg((\forall x)F(x) \rightarrow (\exists y)G(y)) \land (\exists y)G(y)$ _是__(是/不是) 不可满足的。

第五章 谓词逻辑的等值和推理演算

●考点一: 等值式

●考点二: 范式

□前束范式: 去联结词 -> 否定词内移 -> 量词左移 -> 变元异名

□Skolem 标准型

◉考点三: 推理演算

□全称/存在量词的引入与消去

□归结推理

第五章 推理公式

41

A

41. 下列各式哪个不正确?

A.
$$(\forall x)(P(x) \lor Q(x)) \Leftrightarrow (\forall x)P(x) \lor (\forall x)Q(x)$$

B.
$$(\forall x)(P(x) \land Q(x)) \Leftrightarrow (\forall x)P(x) \land (\forall x)Q(x)$$

C.
$$(\exists x)(P(x) \lor Q(x)) \Leftrightarrow (\exists x)P(x) \lor (\exists x)Q(x)$$

D.
$$(\forall x)(P(x) \lor q) \Leftrightarrow (\forall x)P(x) \lor q$$

第五章 范式

47. 求公式 $((\forall x)(\exists y)(P(x,y)\to Q(y)))\to (\forall x)(R(x)\to (\exists u)(\forall v)L(x,u,v))$ 的前東范式和 Skolem 标准形。

LANTESJTU ML

第五章 推理演算

43. 任用一种推理方法证明 $\exists x (R(x) \land W(x)), (\forall x) (P(x) \rightarrow Q(x)), (\forall x) (R(x) \rightarrow \neg Q(x)) \Rightarrow (\exists x) (W(x) \land \neg P(x))$

	(7 m) h(N)	前提引入
(1)	(ZX) R(X) NW(X)	
(<u>2</u>)	Ra) 1 Wa)	存在量词游
(3)	R(a)	(2)
(4)	(∀x)(R(x) → ¬Q(x))	前提引入
(5)	R(a) -> 7 Q(a)	全称是河游
(6)	70(0)	(2)(5)分离
ר)	(AX)(b(x) -> o(x))	前提引入
(8)	$\beta(a) \rightarrow \alpha(a)$	全称是词游
(9)	7Q(a) -> 7P(a)	(8) 置换
(ທ)	7P(a)	(6)例分离
(n)	W(a)	(2)
(L)	7 Play NW (a)	c(b) (ll)
(8)	(RIND (XE)	存金量问引入

谢谢!

饮水思源爱国荣校