```
In [1]: # txt file read
         f = open("file1.txt", "r")
         print(f.read())
         Hello! Welcome to demofile.txt
         This file is for testing purposes.
         Good Luck!
In [3]: #txt file write
         f = open("file1.txt", "a")
         f.write("Now the file has more content!")
         f.close()
         #open and read the file after the appending:
         f = open("file1.txt", "r")
         print(f.read())
         Hello! Welcome to demofile.txt
         This file is for testing purposes.
         Good Luck! Now the file has more content!
 In [9]: #csv file read
         import csv
         f = open("file2.csv")
         print(f.read())
         player, runs
         virat,56
         rohit,45
         yuvraj,23
In [10]: # csv write
         import csv
         f = open("file2.csv","a",newline="")
         tup1=("dhoni",33,)
         writer=csv.writer(f)
         writer.writerow(tup1)
         f.close()
         f = open("file2.csv")
         print(f.read())
         player, runs
         virat,56
         rohit,45
         yuvraj,23
         dhoni,33
```

```
In [18]: #json read
          f = open("file3.json")
          print(f.read())
          {
              "fruite":"apple",
              "size":"large",
"color":"red"
          }
In [19]: import json
          # Data to be written
          dictionary = {"quantity": 5}
          with open("file3.json", "a") as outfile:
              json.dump(dictionary, outfile)
          f = open("file3.json")
          print(f.read())
          {
              "fruite": "apple",
              "size":"large",
              "color":"red"
          }{"quantity": 5}
In [ ]:
```

In [16]: #2. Python program to import libraries for loading & read a
 #dataset. (Use head(), tail(), shape, info() describe() columns)
 import seaborn as sns
 dt=sns.load_dataset("iris")
 print(dt)

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

In [17]: dt.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [18]: dt.head(10)

Out[18]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	5	5.4	3.9	1.7	0.4	setosa
	6	4.6	3.4	1.4	0.3	setosa
	7	5.0	3.4	1.5	0.2	setosa
	8	4.4	2.9	1.4	0.2	setosa
	9	4.9	3.1	1.5	0.1	setosa

```
In [19]:
           dt.tail(8)
Out[19]:
                               sepal_width
                                            petal_length petal_width
                  sepal_length
                                                                      species
            142
                           5.8
                                        2.7
                                                     5.1
                                                                  1.9
                                                                      virginica
            143
                           6.8
                                        3.2
                                                     5.9
                                                                  2.3
                                                                      virginica
            144
                                                                  2.5
                           6.7
                                        3.3
                                                     5.7
                                                                      virginica
            145
                                        3.0
                                                                  2.3
                           6.7
                                                     5.2
                                                                      virginica
            146
                           6.3
                                        2.5
                                                     5.0
                                                                  1.9
                                                                      virginica
            147
                           6.5
                                        3.0
                                                     5.2
                                                                  2.0
                                                                      virginica
            148
                           6.2
                                        3.4
                                                     5.4
                                                                  2.3
                                                                      virginica
            149
                           5.9
                                        3.0
                                                     5.1
                                                                  1.8
                                                                      virginica
In [20]:
           dt.describe()
Out[20]:
                    sepal_length
                                 sepal_width
                                              petal_length
                                                            petal_width
            count
                     150.000000
                                  150.000000
                                                150.000000
                                                            150.000000
             mean
                       5.843333
                                     3.057333
                                                  3.758000
                                                               1.199333
               std
                       0.828066
                                     0.435866
                                                  1.765298
                                                               0.762238
                       4.300000
              min
                                    2.000000
                                                  1.000000
                                                               0.100000
                       5.100000
                                    2.800000
                                                  1.600000
                                                               0.300000
              25%
              50%
                       5.800000
                                     3.000000
                                                  4.350000
                                                               1.300000
              75%
                       6.400000
                                     3.300000
                                                  5.100000
                                                               1.800000
                       7.900000
                                     4.400000
                                                  6.900000
                                                               2.500000
              max
In [21]: |dt.columns
Out[21]: Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
                     'species'],
                   dtype='object')
In [22]:
           dt.shape
Out[22]: (150, 5)
In [24]: dt.size
```

Out[24]: 750

In [25]: #3. Write a python program to reshaping data#Convert categorical data into numerical value using dataset.
import seaborn as sns
dt=sns.load_dataset("iris")
dt["species"]=dt["species"].replace({'setosa':1,'versicolor':2,'virginica'::
dt

Out[25]:

_	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	1
1	4.9	3.0	1.4	0.2	1
2	4.7	3.2	1.3	0.2	1
3	4.6	3.1	1.5	0.2	1
4	5.0	3.6	1.4	0.2	1
145	6.7	3.0	5.2	2.3	3
146	6.3	2.5	5.0	1.9	3
147	6.5	3.0	5.2	2.0	3
148	6.2	3.4	5.4	2.3	3
149	5.9	3.0	5.1	1.8	3

150 rows × 5 columns

In [26]: # 4. Implementation of data cleaning-finding missing data removing
and filling missing data.

import pandas as pd

df=pd.read_excel(r"C:\Users\PURVA\Desktop\data.xlsx")
df

Out[26]: Duration

	Duration	Pulse	Maxpulse	Calories
0	60.0	110.0	130	409.1
1	60.0	117.0	145	479.0
2	60.0	103.0	135	340.0
3	45.0	NaN	175	NaN
4	NaN	117.0	148	406.0
5	60.0	102.0	127	NaN
6	60.0	110.0	136	374.0
7	45.0	110.0	134	253.3
8	30.0	109.0	133	195.1
9	60.0	98.0	124	269.0
10	60.0	103.0	147	329.3

```
In [27]: df.isnull()
```

Out[27]:

	Duration	Pulse	Maxpulse	Calories
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	True	False	True
4	True	False	False	False
5	False	False	False	True
6	False	False	False	False
7	False	False	False	False
8	False	False	False	False
9	False	False	False	False
10	False	False	False	False

In [28]: df.isnull().sum()

Out[28]: Duration 1

Pulse 1 Maxpulse 0

Maxpulse 0 Calories 2

dtype: int64

In [29]: df.dropna()

Out[29]:

	Duration	Pulse	Maxpulse	Calories
0	60.0	110.0	130	409.1
1	60.0	117.0	145	479.0
2	60.0	103.0	135	340.0
6	60.0	110.0	136	374.0
7	45.0	110.0	134	253.3
8	30.0	109.0	133	195.1
9	60.0	98.0	124	269.0
10	60.0	103.0	147	329.3

```
In [30]: df.fillna({"Duration":30,"Pulse":97,"Maxpulse":100,"Calories":200})
```

Out[30]:

	Duration	Pulse	Maxpulse	Calories
0	60.0	110.0	130	409.1
1	60.0	117.0	145	479.0
2	60.0	103.0	135	340.0
3	45.0	97.0	175	200.0
4	30.0	117.0	148	406.0
5	60.0	102.0	127	200.0
6	60.0	110.0	136	374.0
7	45.0	110.0	134	253.3
8	30.0	109.0	133	195.1
9	60.0	98.0	124	269.0
10	60.0	103.0	147	329.3

In [31]: #5. Write a python program implement data wrangling operations# filtering and removing duplication of data. import pandas as pd

```
data=pd.DataFrame({"Name":["Mary","Amey","John","raj","John"],
   "Age":[20,19,18,20,18]})
print(data)
```

var=data.drop_duplicates()

var

Name Age 0 Mary 20 1 Amey 19 2 John 18 3 raj 20 4 John 18

Out[31]:

	Name	Age
0	Mary	20
1	Amey	19
2	John	18
3	raj	20

```
# 6. Python program to Implement data transformation -
In [32]:
         #Combine data frames/datasets using join() merge(),concat() etc.
         dt1={'id':[1,2,3,4,5,6],
         'name': ['John Deo','Max Ruin','Arnold','Krish Star','John Mike',
                  'Alex John'],
          'class':['Four','Three','Four','Four','Four']}
         dt2={'id':[1,2,3,4,5,6],
          'gender':['female','male','female','female','male'],
          'city':['pune','mumbai','junnar','pune','mumbai','pune']}
         df1=pd.DataFrame(dt1)
         df2=pd.DataFrame(dt2)
         merge data=pd.merge(df1,df2,on="id")
         merge_data
Out[32]:
            id
                  name class gender
                                       city
```

```
1
      John Deo
                 Four
                      female
                                pune
1
   2
      Max Ruin Three
                        male
                             mumbai
2
   3
         Arnold Three
                        male
                               junnar
3
   4 Krish Star
                 Four
                       female
                                pune
  5 John Mike
                 Four
                       female
                             mumbai
5 6 Alex John
                 Four
                        male
                                pune
```

Out[33]:

df1.join(df2)

city	gender	class	name	id	
pune	female	Four	John Deo	1	0
mumbai	male	Three	Max Ruin	2	1
junnar	male	Three	Arnold	3	2
pune	female	Four	Krish Star	4	3
mumbai	female	Four	John Mike	5	4
pune	male	Four	Alex John	6	5

Out[34]:		name	age	name	age
	0	а	20	Е	18
	1	b	21	F	21
	2	С	18	G	20
	3	d	20	Н	19

In [35]: #7. Using the inbuilt mtcar dataset perform the following
import pandas as pd
data = pd.read_excel(r'C:\Users\PURVA\Downloads\mtcar.xlsx')
data

~ .		
():::	1 35 1	٠.
ouc		

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

In [36]: #a. Display all the cars having 4 gears
data[data['gear']==4]

Out[36]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
	1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
		Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
	7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
	8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
	9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
	10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
	17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
	18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
	19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
	25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
	31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

In [37]: #b. Display all the cars having 3 gears and 2 carburetor.
data[(data['gear']==3)&(data['carb']==2)]

Out[37]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
	4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	
	21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2	
	22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2	
	24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	

```
In [38]: #8. Using inbuilt dataset women perform the following
import pandas as pd
data2 = pd.read_excel(r'C:\Users\PURVA\Downloads\women.xlsx')
data2
```

Out[38]:

	id	weight	height
0	1	58	115
1	2	59	117
2	3	60	120
3	4	61	123
4	5	62	126
5	6	63	129
6	7	64	132
7	8	65	135
8	9	66	139
9	10	67	142
10	11	68	146
11	12	69	150
12	13	70	154
13	14	71	159
14	15	72	164

In [39]: #a. display all rows of dataset having height greater than 120.
data2[data2['height']>120]

Out[39]: id weight height

	ıd	weight	height
3	4	61	123
4	5	62	126
5	6	63	129
6	7	64	132
7	8	65	135
8	9	66	139
9	10	67	142
10	11	68	146
11	12	69	150
12	13	70	154
13	14	71	159
14	15	72	164

In [40]: # b. display all rows of dataset in ascending order of weight data2.sort_values("weight")

\sim		_ ^	
11	117	і ли	
v	uч	1 40 1	
U	uι	140	

	id	weight	height
0	1	58	115
1	2	59	117
2	3	60	120
3	4	61	123
4	5	62	126
5	6	63	129
6	7	64	132
7	8	65	135
8	9	66	139
9	10	67	142
10	11	68	146
11	12	69	150
12	13	70	154
13	14	71	159
14	15	72	164

In [41]: #9. Using the inbuilt airquality dataset perform the following import pandas as pd data3 = pd.read_excel(r'C:\Users\PURVA\Downloads\airquality.xlsx') data3

Out[41]:		Ozone	ozone	solar.R	wind	temp	month	day
	0	1	41.0	190.0	7.4	67	5	1
	1	2	36.0	118.0	8.0	72	5	2
	2	3	12.0	149.0	12.6	74	5	3
	3	4	18.0	313.0	11.5	62	5	4
	4	5	NaN	NaN	14.3	56	5	5
	148	149	30.0	193.0	6.9	70	9	26
	149	150	NaN	145.0	13.2	77	9	27
	150	151	14.0	191.0	14.3	75	9	28
	151	152	18.0	131.0	8.0	76	9	29
	152	153	20.0	223.0	11.5	68	9	30

153 rows × 7 columns

In [42]: #a. Find the temperature of day 30 of month 8
data3[(data3["day"]==30)& (data3["month"]==8)]

 Out[42]:
 Ozone
 ozone
 solar.R
 wind
 temp
 month
 day

 121
 122
 84.0
 237.0
 6.3
 96
 8
 30

Out[43]:

	Ozone	ozone	solar.R	wind	temp	month	day
41	42	NaN	259.0	10.9	93	6	11
42	43	NaN	250.0	9.2	92	6	12
68	69	97.0	267.0	6.3	92	7	8
69	70	97.0	272.0	5.7	92	7	9
74	75	NaN	291.0	14.9	91	7	14
101	102	NaN	222.0	8.6	92	8	10
119	120	76.0	203.0	9.7	97	8	28
120	121	118.0	225.0	2.3	94	8	29
121	122	84.0	237.0	6.3	96	8	30
122	123	85.0	188.0	6.3	94	8	31
123	124	96.0	167.0	6.9	91	9	1
124	125	78.0	197.0	5.1	92	9	2
125	126	73.0	183.0	2.8	93	9	3
126	127	91.0	189.0	4.6	93	9	4

In [44]: #10. Using iris inbuilt dataset perform the following
import seaborn as sns
df=sns.load_dataset("iris")
df

Out[44]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [45]: #a. Display details of all flowers of type virginica in ascending
# order of petal length.
dt1=df[df["species"]=="virginica"]
dt1.sort_values("petal_length")
```

Out[45]:		sepal_length	sepal_width	petal_length	petal_width	species
7	106	4.9	2.5	4.5	1.7	virginica
•	126	6.2	2.8	4.8	1.8	virginica
•	138	6.0	3.0	4.8	1.8	virginica
•	127	6.1	3.0	4.9	1.8	virginica
•	121	5.6	2.8	4.9	2.0	virginica
•	123	6.3	2.7	4.9	1.8	virginica
,	119	6.0	2.2	5.0	1.5	virginica
•	146	6.3	2.5	5.0	1.9	virginica
,	113	5.7	2.5	5.0	2.0	virginica
•	133	6.3	2.8	5.1	1.5	virginica
,	114	5.8	2.8	5.1	2.4	virginica
•	149	5.9	3.0	5.1	1.8	virginica
•	141	6.9	3.1	5.1	2.3	virginica
•	101	5.8	2.7	5.1	1.9	virginica
,	110	6.5	3.2	5.1	2.0	virginica
•	142	5.8	2.7	5.1	1.9	virginica
•	145	6.7	3.0	5.2	2.3	virginica
•	147	6.5	3.0	5.2	2.0	virginica
•	115	6.4	3.2	5.3	2.3	virginica
	111	6.4	2.7	5.3	1.9	virginica
•	148	6.2	3.4	5.4	2.3	virginica
•	139	6.9	3.1	5.4	2.1	virginica
•	116	6.5	3.0	5.5	1.8	virginica
•	112	6.8	3.0	5.5	2.1	virginica
•	137	6.4	3.1	5.5	1.8	virginica
•	140	6.7	3.1	5.6	2.4	virginica
•	136	6.3	3.4	5.6	2.4	virginica
•	103	6.3	2.9	5.6	1.8	virginica
•	128	6.4	2.8	5.6	2.1	virginica
•	134	6.1	2.6	5.6	1.4	virginica
•	132	6.4	2.8	5.6	2.2	virginica
•	144	6.7	3.3	5.7	2.5	virginica
•	124	6.7	3.3	5.7	2.1	virginica
•	120	6.9	3.2	5.7	2.3	virginica
•	129	7.2	3.0	5.8	1.6	virginica
•	104	6.5	3.0	5.8	2.2	virginica

108

102

143

6.7

7.1

6.8

2.5

3.0

3.2

5.8

5.9

5.9

1.8 virginica

2.1 virginica

2.3 virginica

	sepal_length	sepal_width	petal_length	petal_width	species
100	6.3	3.3	6.0	2.5	virginica
125	7.2	3.2	6.0	1.8	virginica
130	7.4	2.8	6.1	1.9	virginica
135	7.7	3.0	6.1	2.3	virginica
109	7.2	3.6	6.1	2.5	virginica
107	7.3	2.9	6.3	1.8	virginica
131	7.9	3.8	6.4	2.0	virginica
105	7.6	3.0	6.6	2.1	virginica
117	7.7	3.8	6.7	2.2	virginica
122	7.7	2.8	6.7	2.0	virginica
118	7.7	2.6	6.9	2.3	virginica

In [46]: #b. Display details of first five flowers of type setosa
having maximum petal length..
dt2=df[df["species"]=="setosa"]
dt2.sort_values("petal_length",ascending=False).head()

Out[46]:

	sepal_length	sepal_width	petal_length	petal_width	species
24	4.8	3.4	1.9	0.2	setosa
44	5.1	3.8	1.9	0.4	setosa
23	5.1	3.3	1.7	0.5	setosa
5	5.4	3.9	1.7	0.4	setosa
20	5.4	3.4	1.7	0.2	setosa

In [47]: #11. Write a python program to representation of data using Histogram.
import matplotlib.pyplot as plt
import numpy as np
y=np.array([1,3,5,7,6,14,12,15])
plt.hist(y,bins=[0,5,10,15,20])
plt.show()


```
In [48]: import seaborn as sns
    penguins=sns.load_dataset("penguins")
    sns.histplot(data=penguins,x="body_mass_g",kde=True)
```

Out[48]: <Axes: xlabel='body_mass_g', ylabel='Count'>

In [50]: #12. Using airquality dataset
import pandas as pd
df = pd.read_excel(r'C:\Users\PURVA\Downloads\airquality.xlsx')
df

Out[50]:

	Ozone	ozone	solar.R	wind	temp	month	day
0	1	41.0	190.0	7.4	67	5	1
1	2	36.0	118.0	8.0	72	5	2
2	3	12.0	149.0	12.6	74	5	3
3	4	18.0	313.0	11.5	62	5	4
4	5	NaN	NaN	14.3	56	5	5
148	149	30.0	193.0	6.9	70	9	26
149	150	NaN	145.0	13.2	77	9	27
150	151	14.0	191.0	14.3	75	9	28
151	152	18.0	131.0	8.0	76	9	29
152	153	20.0	223.0	11.5	68	9	30

153 rows × 7 columns

In [51]: #a. Create a scatter plot to show the relationship between
ozone and wind values by giving appropriate value to color argument
sns.scatterplot(x="ozone",y="wind",data=df,color='g')

Out[51]: <Axes: xlabel='ozone', ylabel='wind'>


```
In [52]: # b. Create a bar plot to show the ozone level for all the days
# having temperature greater than 70
x1=df['ozone']
y1=df['temp']>70
sns.barplot(x=x1,y=y1)
```

Out[52]: <Axes: xlabel='ozone', ylabel='temp'>

In [53]: #13. Using inbuilt mtcars dataset
import pandas as pd
data = pd.read_excel(r'C:\Users\PURVA\Downloads\mtcar.xlsx')
data

_			
n	44.	IEフI	
VЛ		רכו	
•			

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

In [54]: #a. Create a bar plot that shows the number of cars of each gear type.
sns.countplot(data=data,x="gear")

Out[54]: <Axes: xlabel='gear', ylabel='count'>

In [55]: #b. Draw a scatter plot showing the relationship between
 # wt and mpg for all the cars having 4 gear---import seaborn as sns
x=data[data['gear']==4]
sns.scatterplot(x='wt',y='mpg',data=x)

Out[55]: <Axes: xlabel='wt', ylabel='mpg'>

In [57]: #15.Write python program to representation of data using Pair plot/chart.
import seaborn as sns
 df=sns.load_dataset("iris")
 sns.pairplot(df,hue="species",height=3)

C:\Users\PURVA\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[57]: <seaborn.axisgrid.PairGrid at 0x1f0b29c2610>


```
In [58]: #16. Write a python program for analysis of data through Scatter plot.
import seaborn as sns
data=sns.load_dataset("iris")
sns.scatterplot(x="sepal_length",y="sepal_width",data=data)
```

Out[58]: <Axes: xlabel='sepal_length', ylabel='sepal_width'>


```
In [59]: #17. Write a python program to representation of data using Bar plot.
import seaborn as sns
a=["a","b","c","d"]
b=[4,7,3,9]
sns.barplot(x=a,y=b)
```

Out[59]: <Axes: >

In [60]: #18. Write a python program to implement Univariate analysis.
import pandas as pd
 data=pd.read_excel(r"C:\Users\PURVA\OneDrive\Documents\Book1.xlsx")
 print(data)
 Marks=data["marks"]
 x=Marks.mean()
 y=Marks.median()
 z=Marks.std()
 print("Mean=",x)
 print("Median=",y)
 print("Std=",z)

```
sr no name
                marks
0
                   98
       1
            Α
1
       2
             В
                   95
2
       3
             C
                   98
3
       4
            D
                   97
4
       5
             Ε
                  100
5
       6
             F
                   96
Mean= 97.33333333333333
Median= 97.5
Std= 1.7511900715418263
```

```
In [61]: # 19 bivariate analysis
   import seaborn as sns
   data=sns.load_dataset("iris")
   sns.scatterplot(x="sepal_length",y="sepal_width",data=data)
```

Out[61]: <Axes: xlabel='sepal_length', ylabel='sepal_width'>


```
In [62]: # 20 multivariate analysis
   import seaborn as sns
   import matplotlib.pyplot as plt
   df=sns.load_dataset("iris")
   sns.pairplot(df,hue="species",height=3)
   plt.show()
```

C:\Users\PURVA\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

In [63]: #21 correlation matrix and correlation graph
 import seaborn as sns
 df=sns.load_dataset("iris")
 df.head()
 cor_mat=df.corr(numeric_only=True)
 print(cor_mat)
 sns.heatmap(cor_mat,cmap='RdBu',annot=True)

```
sepal_length sepal_width
                                         petal_length
                                                        petal_width
sepal_length
                  1.000000
                              -0.117570
                                              0.871754
                                                           0.817941
sepal_width
                                                          -0.366126
                 -0.117570
                               1.000000
                                             -0.428440
petal_length
                  0.871754
                              -0.428440
                                              1.000000
                                                           0.962865
petal_width
                  0.817941
                              -0.366126
                                              0.962865
                                                           1.000000
```

Out[63]: <Axes: >


```
In [67]: # 22 . cross tabulation using crosstab() function.
import pandas as pd
df=pd.read_excel(r"C:\Users\PURVA\OneDrive\Documents\Book2.xlsx")
df
```

Out[67]:

		Subject	Age	Gender
-	0	GW	young	F
	1	JA	middle	F
	2	TJ	young	М
	3	JMA	young	М
	4	AJ	middle	F
	5	JQA	old	F
	6	AJ	old	F
	7	MVB	young	М
	8	WHH	old	F
	9	JT	young	F
	10	JKP	middle	М

```
In [68]: pd.crosstab(index=df["Age"],columns=df["Gender"])
```

Out[68]: Gender F M

 Age

 middle
 2
 1

 old
 3
 0

 young
 2
 3

```
In [69]:
       # 23 grouping data using group by.
        import pandas as pd
        data = {
          'co2': [95, 90, 99, 104, 105, 94, 99, 104],
          'car': ['Skoda', 'Skoda', 'Ford', 'Skoda', 'Ford',
                 'Ford', 'Skoda', 'Ford']
        }
        df = pd.DataFrame(data)
        df.groupby(["car"],group_keys=True).apply(lambda x:x)
                co2
                     model
                            car
```

Out[69]:

```
car
       2
           99
                 Fiesta
                         Ford
         105
       4
                 Focus
                         Ford
 Ford
           94 Mondeo
                         Ford
       7
         104
                B-Max
                         Ford
       0
           95
                 Citigo Skoda
           90
                 Fabia Skoda
       1
Skoda
       3
          104
                 Rapid Skoda
           99 Octavia Skoda
       6
```

```
In [70]: #24 Implementation measures of central tendency (mean, median and mode)
         import pandas as pd
         data=pd.read_excel(r"C:\Users\PURVA\OneDrive\Documents\Book1.xlsx")
         print(data)
         Marks=data["marks"]
         x=Marks.mean()
         y=Marks.median()
         z=Marks.mode()
         print("Mean=",x)
         print("Median=",y)
         print("Mode=",z)
```

```
marks
   sr no name
0
       1
             Α
                   98
1
       2
             В
                   95
2
       3
            C
                   98
                   97
3
       4
            D
4
       5
            Ε
                  100
       6
             F
                   96
Mean= 97.333333333333333
Median= 97.5
Mode= 0
           98
Name: marks, dtype: int64
```

```
In [71]: #25 Implementation of measures of dispersion (range, variance)
import numpy as np
def _range(series):
    return series.max() - series.min()
speed = np.array([32,111,138,28,59,77,97])
x = np.var(speed)
r= _range(speed)
print("varience=",x)
print("range=",r)
```

varience= 1432.2448979591834 range= 110

dt.describe()

In [1]: #26 statistical characteristics of dataset import seaborn as sns dt=sns.load_dataset("iris") print(dt)

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
				• • •	
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

Out[1]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [1]: #27 simple regression
        from scipy import stats
        x=[6,7,8,7,2,17]
        y=[99,86,87,88,111,86]
        slope,intercept,r,p,std_err=stats.linregress(x,y)
        def myfunc(x):
            return slope * x + intercept
        speed=myfunc(10)
        print(speed)
        89.81411126187245
In [2]: #29 t test using python
        from scipy import stats
        # Example data for two groups (replace with your own data)
        group1 = [25, 30, 28, 35, 34]
        group2 = [27, 32, 30, 31, 29]
        # Perform independent samples T-test
        t_statistic, p_value = stats.ttest_ind(group1, group2)
        # Display results
        print(f"T-statistic: {t_statistic}")
        print(f"P-value: {p_value}")
        # Check for statistical significance (alpha value usually 0.05)
        alpha = 0.05
        if p value < alpha:</pre>
            print("Reject null hypothesis: There is a significant difference between
        else:
            print("Cannot reject null hypothesis: No significant difference between
        T-statistic: 0.29277002188455886
        P-value: 0.7771479736234914
        Cannot reject null hypothesis: No significant difference between the group
In [3]: #30 weighted average
        import numpy as np
        data=np.array([10,15,20,25,30])
        weights=np.array([0.1,0.2,0.3,0.2,0.2])
        weighted_mean=np.average(data,weights=weights)
        print("weighted mean=",weighted_mean)
        weighted mean= 21.0
In [ ]:
```