Second Semester 2020-2021 Course Handout Part II

Date:

16/01/2021

In addition to part I (General Handout for all courses appended to the time table), this part II provides further details regarding the Complex Analysis MATH F354 course.

Course Title : Complex Analysis

Course Number : MATH F354 **Instructor-In-charge** : Nijjwal Karak

Scope and Objective

In an introductory Calculus course, we study real valued functions of a real variable and associated concepts/definitions such as: continuity, derivative, integration, relation between derivative and integral, intermediate value theorems, Taylor's series et cetera. Analogously, Complex Analysis is the study of Complex valued functions of a Complex variable. In Complex Analysis, we emulate the various definitions/concepts of Calculus by replacing real numbers by complex numbers. It turns out that analytic features of functions of a complex variable are very intriguing and often they incorporate concepts from geometry, number theory, topology etcetera. The methods and theorems of Complex Analysis are very powerful and elegant. Complex Analysis has many applications in Physics and also in other areas of Mathematics like number theory, functional analysis, geometry etc.

Text Books:

1. J. B. Conway, Functions of One Complex Variable, Springer, 1997

Reference Books:

- 1. L. V. Ahlfors, Complex Analysis
- 2. R. E. Rodriguez, I. Kra, J. P. Gilman; Complex Analysis spirit of Lipman Bers, Graduate Texts in Mathematics No. 245, Second Edition, Springer-Verlag, 2012
- 3. M. Beck, G. Marchesi, D. Pixton, L. Sabalka, A First Course in Complex Analysis,

- open textbook (print version published by Orthogonal Publishing), 2002-2018 Available online at http://math.sfsu.edu/beck/complex.html
- 4. Raghavan Narasimhan and Yves Nievergelt, Complex Analysis in One Variable, Sec- ond Edition, Birkhauser, 2000

Course Plan:

Lectures	Learning Objectives	Topics	Chapter in the text	
			book	
1-2	To recall the basic	Review of complex numbers and	Chapter I	
	theory of complex	basic definitions from calculus		
	numbers	and real analysis		
3-5	To learn several	Analytic functions, power series	Chapter III	
	definitions of analytic	and Cauchy-Riemann equations	(Sections 1-2)	
	functions			
6-9	To understand	Topology, analytic functions as	Chapter II and	
	conformal mappings	mappings, conformal mappings	Chapter III (Section	
			3)	
10-12	To understand the	Complex integration, power series	Chapter IV	
	concept of complex	representation of analytic	(Sections 1-2)	
	integration	functions		
13-16	To learn about zeros	Cauchy's Estimate, zeros of an	Chapter IV	
	of analytic functions	analytic function and applications	(Sections 3-4)	
17-19	To prove Cauchy's	Cauchy's theorem and integral	Chapter IV (Section	
	theorem and Morera's	formula, Morera's theorem	5)	
	theorem			
20-22	To prove open	Open mapping theorem, Goursat's	Chapter IV	
	mapping theorem and	theorem	(Sections 7-8)	
	Goursat's theorem			
23-28	To classify the	Singularities, Taylor and Laurent	Chapter V	
	singularities of	series, calculus of residues	_	
	functions			
29-31	To understand	Maximum Modulus Theorem,	Chapter VI	
	Maximum Modulus	Schwarz's Lemma	(Sections 1-2)	
	Theorem and			
	Schwarz's lemma			
32-35	To learn how to	Riemann mapping theorem,	Chapter VII	
	factorize an entire	Weierstrass factorization	(Sections 1-6) and	
	function	theorem, Mittag-Leffler's theorem	Chapter VIII	
36-40	To understand the	Analytic continuation, Harmonic	Chapter IX	
	basic theory of	functions, Jensen's formula	(Sections 1-2),	
	Harmonic functions	_	Chapter X (Sections	
			1-2) and Chapter XI	
			(Section 1)	

Evaluation Scheme:

No	Evaluation	Duration	Weightag	Date and Time	Nature of
	Component		e		Componen
					t
1	Quiz-I	To be	10%	To be	Open Book
		announced in		announced in	
		the class		the class	
2	Mid-semester	90 min	30%	03/03 3.30 -	Open Book
	Test			5.00PM	_
3	Assignment-I	To be	10%	To be announced	Open Book
		announced in		in the class	_
		the class			
4	Quiz-II	To be	10%	To be	Open Book
	-	announced in		announced in	_
		the class		the class	
5	Compre. Exam.	120 min	40%	08/05 FN	Open Book

Total Marks: 100

Chamber Consultation Hour: To be announced in the class.

Notices: General class related announcements will be made in the Google Classroom Page.

Make-up Policy: Make-up for mid-semester/comprehensive examination shall be granted in genuine cases.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor In-charge

MATH F354