91	States: Low, High	
192	Actions: Leach, wait, Recharge	1000
	A(LOW) = { search, wait} A(high) = { search, wait, excharge}.	
	p(s', 4) s, a) = p(s' s, a) x p(r s's, a) since	
	independent independent	mi-
	can be found we know	
	from the table $r(s,a,s') = \sum r(p(r s,a,s'))$	II. I
	r I	
Ther	eyon, calculating these we can get this from the	
<u>eşu</u>	ations we get table.	I
	80 s' 2 p(s', r s, a).	
high	search high 0 L(1-rsearch)	
high	reach high 1 d (reeach)	103
high	search low 0 [1-d][1-rsearch]	0)
hiph	elasch Ion [1-4] (learch)	4
<u> </u>	reach high \(\frac{4(kscards)}{2(l-1)}\)	
low	search low o B (1-7, search)	al.
low	search 10w 1 Brsearch	i
high	wait high 0 kwait	
hiph	wait beighte low I hwait	D
/ow	wait low ! !wait	п
1000	wait low 0 1-rwait	
low	recharge high 0	i
		- Pre-
		in
		- D
P.K.	· · · · · · · · · · · · · · · · · · ·	N. S.

-		_
=	03 3	To show: Adding a constant e to all lewards add a
		constant ve to the values of all states and does not affect
_	α)	constant ve to the values of all states and does not affect
3		0.0
	0	$G_t = R_{t+1} + r R_{t+2} + r^2 R_{t+3} + \cdots = \sum r^k R_{t+k+1}.$
3		$G_t = R_{t+1} + r R_{t+2} + r^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} r^k R_{t+k+1}.$ New adding constant c to all rewards,
5654	0	Gt' = (Rt+1+c) + 8 (Rt+2+c) + 82 (Rt+3+c) +
		$= \sum_{k=0}^{\infty} r^{k} \left(Rt + k + 1 + C \right).$
		k=0
77		$V_{\pi}(s) = E_{\pi}[G_{t} S_{t}=1] = E_{\pi}[\Sigma \gamma^{k}(R_{t+k+1}+c)S_{t}=s] Hs.$
		E ETT (5 x Rt+k+1 + 5 x c S+=5]
	value	NI (AL MO)
		we ased by $= E \pi \left(\sum_{k=1}^{\infty} \gamma^{k} (R_{t+k+1}) \right) S t = S + \dots$
		and Inlalave
DIT 198	walnes of	-8/11c) We
		ated. E. signs y the = $E_{TT} \left[G_{t} \mid S_{t} = b \right] + \left(\sum_{k=0}^{\infty} \gamma^{k} c \right)^{-1}$
mad.	rewards	are not omportant as
	add it	extend to make them all positive
	doesnot	affect the relative V values of the learning worst. a

b)	Episodic task
2n an	episodic tast, the number of steps are limited by I!
Thus	we get:
V	$\frac{1}{r(s)} = \frac{E[G_t \mid S_t = S]}{k!} + \frac{\sum_{i=1}^{k} \gamma^k c}{k!}$
vc l	use depends on T (c (1- r T+1)) = vc
	number of eteps.
	re consulation
	et, Tis fixed for an episode
touk	and all V(s) will hence be
added	by the same value ve is
	and anicodes T may change: Warve
a) Thủ	can also be visualized as a special case of the plevious
form	ulation with a steps. Here, reward after time unitaril
will	repeatedly be D. : for a given T, it is same as the previous call.
95	Equation for V* in terms of 9.
	$Y \neq (s) = \max_{a \in A(s)} q_*(s, a). \qquad 0$
	$V^*(s) = \max \sum_{\alpha \in A(s)} \sum_{\alpha \in A(s)} \sum_{\alpha \in A(s)} (1 + \delta V_*(s')) $
	Ming Dand @ we get:
11.00	V*(s)=max \(\(\int p(s', r s, a) \) \(\lambda + \text{Y} max \(\s', a' \) \)
	$V^*(s) = \max \sum p(s', r s, a) \left(s + \gamma \max 2 \left(s', a' \right) \right)$ $\alpha \in A(s)$
18 18 18	