

Дипломный проект на тему:

«Классификация изображений по эмоциям»

Слушатели:

Гурова Юлия Алексеевна Рублева Екатерина Сергеевна Рудаков Вадим Русланович

Актуальность темы и ее проблематика

Задача автоматического распознавания эмоций по мимике может быть использована:

- в маркетинге (эмоциональный отклик на контент);
- правоохранительных органах (истинность показаний подозреваемого);
- безопасность на дорогах (детекция сонливости и плохого самочувствия водителей.

Задача связана с рядом проблем:

- выбор признаков для анализа;
- определение истинности эмоций;
- контекст исходного изображения

Что такое "эмоция"?

Эмоция — это особый вид психических процессов, которые выражают переживание человеком его отношения к окружающему миру и самому себе.

Универсальные эмоции: гнев, страх, печаль, отвращение, презрение, удивление и радость

Модель Дж. Рассела с двумерным пространством возбуждения и валентности

Валентность означает положительную или отрицательную аффективность.

Возбуждение измеряет насколько спокойным или волнующим является аффективное состояние.

Проблема отсутствия контекста

Существующие подходы к решению задачи распознавания эмоций

Схема работы систем распознавания эмоций:

Геометрическими признаками могут являться расстояния, углы и т.д. Они характеризуют особенности расположения, ориентации объектов на изображении. 2D или 3D модели обычно используется для поиска ключевых точек лица.

Текстурные признаки отражают однородность изображения. Текстурными особенностями изображений лица являются в основном изменения образатекстуры, такие как морщины на коже и выпуклости.

Active Shape Models(ASM)

Процесс локализации ASM на изображении:

- а) начальная позиция,
- б) –спустя 5 итераций,
- в) спустя 10 итераций,
- г) –итоговая модель

Подготовили: Гурова Юлия Алексеевна, Рублева Екатерина Сергеевна., Рудаков Вадим Русланович

Local Binary Pattern

42	199	234
177	129	199
65	177	65 ³

$$128 + 32 + 8 = 168$$

Существующие решения задачи распознавания эмоций (FaceReader)

Модели на основе задачи ImageNet

AlexNet | ILSVRC Competition – 2012 (Winner) | Top-5 Error Rate – 15.30%

Подготовили: Гурова Юлия Алексеевна, Рублева Екатерина Сергеевна., Рудаков Вадим Русланович

Модели на основе задачи ImageNet

ZFNet | ILSVRC Competition – 2013 (Winner) | Top-5 Error Rate – 11

Модели на основе задачи ImageNet

ResNet | ILSVRC Competition – 2015 (Winner) | Top-5 Error Rate – 3.57%

Подготовка исходного датасета

Датасет для дипломного проекта состоит из **1380** изображений по пяти несбалансированным классам эмоций:

- гнев (174 изображения),
- отвращение (292),
- страх (177),
- радость (339),
- нейтрально (398).

Датасет собран авторами работы методом ручной сортировки изображений из имеющейся в нашем распоряжении фотобазы.

Подготовили: Гурова Юлия Алексеевна, Рублева Екатерина Сергеевна., Рудаков Вадим Русланович

Решение задачи через библиотеку PyTorch

Resnet18

Решение задачи через библиотеку PyTorch

EfficientNet_b0

Подготовили: Гурова Юлия Алексеевна, Рублева Екатерина Сергеевна, Рудаков Вадим Русланович

Epoch num

Решение задачи через библиотеку TensorFlow

InceptionV3

Trainable params: 17,559,493

Non-trainable params: 5,422,944

разморозка слоёв

Решение задачи через библиотеку TensorFlow

MobileNetV2

Model:	"MobileNetV2	RMSprop	mse"
--------	--------------	---------	------

Layer (type)	Output Shape	Param #
input_4 (InputLayer)	[(None, 299, 299, 3)]	0
sequential (Sequential)	(None, 299, 299, 3)	0
sequential_1 (Sequential)	(None, 299, 299, 3)	0
<pre>mobilenetv2_1.00_224 (Funct ional)</pre>	(None, 10, 10, 1280)	2257984
flatten_1 (Flatten)	(None, 128000)	0
dropout_1 (Dropout)	(None, 128000)	0
batch_normalization_95 (Bat chNormalization)	(None, 128000)	512000
dense_1 (Dense)	(None, 5)	640005

Total params: 3,409,989 Trainable params: 3,119,877 Non-trainable params: 290,112

: 290,112 обучение класс

обучение классификатора

разморозка слоёв

Решение задачи через библиотеку Scikit-learn

RandomForestClassifier

```
Pipeline
Pipeline(steps=[('scaler', StandardScaler()),
                ('feature selection',
                 SelectFromModel(estimator=RandomForestClassifier(),
                                  threshold='1.25*mean')),
                ('classification', RandomForestClassifier(max depth=30))])

    StandardScaler

                               StandardScaler()
                      feature selection: SelectFromModel
 SelectFromModel(estimator=RandomForestClassifier(), threshold='1.25*mean')
                      * estimator: RandomForestClassifier
                     RandomForestClassifier()

    RandomForestClassifier

                           RandomForestClassifier()
                             RandomForestClassifier
                     RandomForestClassifier(max depth=30)
```

Решение задачи через библиотеку Scikit-learn

Модель Маркова

- 1. Разбивка данных на тренировочную и тестовую выборку;
- 2. Нормализация данных;
- 3. Подбор числа компонент для РСА;
- 4. Сокращение размерности;
- 5. Подбор компонент под модель Маркова
- 6. Создание модели Маркова

Лучшие показатели предсказания модели

Модель	F1 - Score
Resnet18	0.90
EfficientNet_b0	0.86
InceptionV3	0,90
MobileNetV2	0,93
RandomForestClassifier	0.51
Модель Маркова	0.22

Выводы

Нейросети:

- 1. Использование "переноса обучения" позволило достичь высоких результатов даже на небольшом датасете в объеме 1380 изображений с самыми простыми моделями классификатора. На всех моделях удалось достичь результата от 85% до 93%.
- 2. Все модели столкнулись с проблемой определения классов "гнев" и "страх", что связано с несбалансированностью классов. Для повышения качества работы моделей, в первую очередь, необходимо поработать над улучшением самого датасета: сбалансировать классы и увеличить общее количество изображений.

Классические методы:

- 1. Обе модели показывают низкие показатели качества.
- 2. Модель "случайного леса" требует больший набор признаков, по которым можно производить классификацию.
- 3. Модель Маркова подходит для предсказания будущих событий, а не статичных фотографий.

Список использованных источников

Общее

- 1. Convolutional neural network // https://duchesnay.github.io/pystatsml/deep_learning/dl_cnn_cifar10_pytorch.html
- 2. Lakhani N.D. Statistical Evaluation Metrics // https://iust-projects.ir/post/minidm01/
- 3. AI, практический курс. Базовая модель распознавания эмоций на изображениях // https://habr.com/ru/company/intel/blog/420635/
- 4. CS231n: Свёрточные нейронные сети для распознавания образов // https://habr.com/ru/post/456186/
- 5. Правильная настройка случайного начального значения в экспериментах ML // https://odsc.medium.com/properly-setting-the-random-seed-in-ml-experiments-not-as-simple-as-you-might-imagine-219969c84752
- 6. Как рассчитать оценку f1 // https://stackoverflow.com/questions/67959327/how-to-calculate-the-f1-score

Модели

- SOURCE CODE FOR TORCHVISION.MODELS.EFFICIENTNET // https://pytorch.org/vision/master/ modules/torchvision/models/efficientnet.html
- 2. RESNET50 документация модели // https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50. RESNET50 документация модели // https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50. Resnet50 documents of the stable of the
- 3. InceptionV3 // https://keras.io/api/applications/inceptionv3/
- 4. MobileNet // https://keras.io/api/applications/mobilenet/
- 5. Внедрение EfficientNet в PyTorch, часть 2: решение // https://questu.ru/articles/155907/

Pytorch

- 1. TorchEval документация // https://github.com/pytorch/torcheval
- 2. Передача обучения с использованием EfficientNet PyTorch // https://debuggercafe.com/transfer-learning-using-efficientnet-pytorch/
- 3. Документация STEPLR // https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.

 Документация STEPLR // https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.
- 4. ОБУЧЕНИЕ КЛАССИФИКАТОРА // https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-an-image-classifier
- 5. ПЕРЕДАЧА ОБУЧЕНИЯ ДЛЯ КОМПЬЮТЕРНОГО ЗРЕНИЯ УЧЕБНОЕ ПОСОБИЕ // https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
- 6. multiclass_f1_score документация // <a href="https://pytorch.org/torcheval/stable/generated/torcheval.metrics.functional.multiclass_f1_score.html#torcheval.metrics.html#torcheval.metrics.h
- 7. Классификация изображений с помощью PyTorch // https://medium.com/@nutanbhogendrasharma/image-classification-with-pytorch-351a0a6cc09d
- 8. Facial Expression Recognition using Pytorch // https://www.kaggle.com/code/veb101/facial-expression-recognition-using-pytorch
- 9. Как обучать свои собственные модели с помощью timm // https://timm.fast.ai/training
- 10. Классификация изображений с использованием логистической регрессии в PyTorch // https://digitrain.ru/articles/369516/
- 11. PyTorch многоклассовая классификация // https://towardsdatascience.com/pytorch-tabular-multiclass-classification-9f8211a123ab
- 12. Измерение оценки F1 для многоклассовой классификации в PyTorch // https://stackoverflow.com/questions/62265351/measuring-f1-score-for-multiclass-classification-natively-in-pytorch
- 13. Матрица и точность тестирования для учебного пособия по передаче обучения PyTorch // https://stackoverflow.com/questions/53290306/confusion-matrix-and-test-accuracy-for-pytorch-transfer-learning-tutorial
- 14. Как использовать GradScaler в PyTorch // https://wandb.ai/wa

Список использованных источников

Ignite

- 1. https://pytorch-ignite.ai/tutorials/beginner/01-getting-started/- краткое руководство по запуску PyTorch-Ignite.
- 2. https://uproger.com/@-instrukcziya-po-rabote-s-bibliotekoj-pytorch-ignite@// Инструкция по Работе с Библиотекой РуТогсh-Ignite.
- 3. https://habr.com/ru/company/ods/blog/424781/ Обучение и тестирование нейронных сетей на PyTorch с помощью Ignite.
- 4. https://pytorch.org/ignite/metrics.html метрики PyTorch-Ignite.

Tensorflow

Курсы

- 1. Holbrook R. Intro to Deep Learning // https://www.kaggle.com/learn/intro-to-deep-learning
- 2. Moroney L. Device-based Models with TensorFlow Lite // https://www.coursera.org/learn/device-based-models-tensorflow
- 3. Tensorflow Guide. TensorFlow Basics // https://www.tensorflow.org/guide

Статьи

- 1. Data augmentation // https://www.tensorflow.org/tutorials/images/data_augmentation
- 2. Image classification // https://www.tensorflow.org/tutorials/images/classification
- 3. Load and preprocess images // https://www.tensorflow.org/tutorials/load_data/images
- 4. Preprocessing layers // https://keras.io/api/layers/preprocessing_layers/
- 5. Transfer learning and fine-tuning // https://www.tensorflow.org/tutorials/images/transfer_learning
- 6. Transfer learning and fine-tuning // https://keras.io/guides/transfer_learning/
- 7. Working with preprocessing layers // https://www.tensorflow.org/guide/keras/preprocessing_layers

Спасибо за внимание!