

CODING CONTEST

Definitions

- Nodes may have connections with other nodes, where each connection has a certain latency.
- To achieve a certain hashrate, the information has to be shared between the nodes and here the latency plays an important role.

Task

- For each node in the network, you should find out how fast it can reach a HashRate > 50% of the overall hashrate.
- For each node of the network output the node-ID and the necessary time the node needs to reach > 50%.
- The output of the nodes with their hashrate has to be in ascending order (see Example slide).

Hint

- All nodes in a network can be reached so there exists no node which has no connections to other nodes.
- Information spreading happens in parallel
 - Selecting N5 as the first hop would mean a latency of 735
 - With latency 735 you also already reached N1 and N11
- Think about a suitable graph algorithm

Input

<NumberOfNodes> the number of nodes the network consists of

NumberOfNodes lines: <NodeId> <HashRate>

<NumberOfPools> the number of pools in the network

NumberOfPools lines: <PoolId> <NodeIDs space separated>

<NumberOfConnections> the number of connections the network has

NumberOfConnections lines: <NodeID> <NodeID> <Latency>

Output

<NumberOfNodes <Node> space separated>
Node: <NodeId> <TimeToReachTheHashrate>

Input	Input continued
12	17
NO 218	NO N1 238
N1 92	NO N5 735
N2 296	NO N2 784
N3 69	N1 N4 710
N4 135	N1 N2 622
	N1 N11 158
N5 112	N2 N10 414
N6 157	N3 N4 417
N7 106	N3 N7 741
N8 74	N3 N8 276
N9 67	N4 N11 256
N10 153	N4 N8 359
N11 66	N5 N6 658
2	N6 N9 582
_	N7 N8 664
PO NO N11 N1	N8 N10 764
P1 N8 N3 N10	N9 N11 476

Output

NO 784 N1 622 N2
784 N3 1069 N4
1023 N5 1387 N6
1393 N7 1675 N8
1011 N9 1091 N10
1123 N11 780

