东北林业大学

2016-2017 学年第二学期期末考试试题

考试科目:	概率论与数理统计	试卷总分 : <u>100</u> 分	
考试时间:	120 分钟	占总评比例: 409	%

3 /24/13 1 3 ==== /3 /1				
题号		11	Ξ	卷面分
得分				
评卷教师				

一、选择题(每个小题四个备选答案中只有一个正确答案)(本大题共 5小题,每小题3分,总计15分)

- 1、假设一批产品中一、二、三等品各占60%,30%,10%,从中任意取出一件,结果不是 三等品,则取到的是一等品的概率为_
- (A) $\frac{1}{3}$ (B) $\frac{2}{5}$ (C) $\frac{3}{5}$
- 2、设A,B为两个随机事件,且 $A \subset B$,0 < P(A) < 1,则_____;
- (A) $P(\overline{AB}) = 1 P(B)$ (B) $P(\overline{AB}) = 1 P(B)$

 - (C) P(B|A) = P(B) (D) $P(B|\overline{A}) = P(B)$
- 3、设连续型随机变量 X 的概率密度函数为 $f(x) = \begin{cases} ae^{-2x}, x > 0 \\ 0, x \le 0 \end{cases}$,则常数 a 的值为_____;

- (A) 2 (B) 1 (C) $\frac{1}{2}$ (D) -2

4、设 X_1, X_2, X_3 是来自总体 $N(0, \sigma^2)(\sigma > 0)$ 的简单随机样本,则统计量 $S = \frac{X_1 - X_2}{\sqrt{2}|X_2|}$

服从的分布为;

- (A) F(1,1)
- (B) F(2,1) (C) t(1) (D) t(2)
- S、设 $(X_1, X_2, ..., X_n)$ $(n \ge 2)$ 为来自总体 $N(\mu, 1)$ 的简单随机样本, \overline{X} 是样本均值,则下 列结论中**错误**的是 ;
 - (A) $\sum_{i=1}^{n} (X_i \mu)^2$ 服从 χ^2 分布 (B) $2(X_n X_1)^2$ 服从 χ^2 分布

(C) $\sum_{i=1}^{n} (X_i - \overline{X})^2$ 服从 χ^2 分布 (D) $n(\overline{X} - \mu)^2$ 服从 χ^2 分布

得分 二、填空题(本大题共5小题,每小题3分,总计15分)

- 1、设随机变量 $\xi \sim N(4,9)$,已知 $\Phi(0.653) = 0.7422$, $\Phi(1.96) = 0.9750$,则 $P(4 < \xi < 9.88) = _____;$
- 2、设 $(x_1, x_2,, x_n)$ 为来自总体 $N(\mu, 2^2)$ 的简单随机样本,样本均值 $\overline{x} = 9.5$,参数 μ 的置信度为0.95 的双侧置信区间的置信上限为10.8,则 μ 的置信度为0.95 的双侧置信区间为______;
- 3、设 (X_1, X_2, \cdots, X_8) 是来自总体 $X \sim N(0, \sigma^2)$ 的样本,则 $\frac{\sum\limits_{i=1}^4 X_i^2}{\sum\limits_{i=5}^8 X_j^2} \sim$ ______;
- 4、设随机变量 $X \sim N(0,4)$,则 $DX^2 =$;
- 5、设随机变量 X 与 Y 相互独立, X 的概率分布为 $P(X=0)=\frac{1}{3}$, $P(X=1)=\frac{2}{3}$, Y 的 概率密度函数为 $f_{Y}(y)=\begin{cases} 2y, & 0 \leq y \leq 1 \\ 0, & \text{其它} \end{cases}$, 记 Z=X+Y,则 Cov(Y,Z)=______.

得分 三、计算题(每问5分,共70分)

1、为估计某零件的长度,从工厂产品库中随机抽取8个零件,测得长度为(单位: cm): 500.90, 490.01, 501.63, 500.73, 515.87, 511.85, 498.39, 514.23

由经验知道,该零件的长度服从正态分布 $N(\mu, \sigma^2)$ 。

求: (1)当 σ^2 未知时,求参数 μ 的置信度为0.95的置信区间;

(2)参数 σ^2 的置信度为0.95的置信区间。(题目用到的分位数在试卷的第6页上)

东北林业大学 2016-2017 学年第二学期期末考试试题

2、已知甲、乙两车间生产同一种螺栓,每个甲车间螺栓的直径 X cm 服从正态分布 $X\sim N(\mu_1,\sigma_1^2)$,每个乙车间螺栓的直径 Y cm 服从正态分布 $Y\sim N(\mu_2,\sigma_2^2)$ 。从一批甲车间螺栓中随机抽取 8 个,测量其直径分别为

14.4, 15.5, 14.8, 15.0, 15.2, 15.1, 14.8, 15.2

从一批乙车间螺栓中随机抽取10个,测量其直径分别为

15.0, 14.8, 14.8, 14.6, 14.8, 14.6, 14.9, 14.6, 14.7, 15.2

试在显著性水平 $\alpha = 0.10$ 的情况下,检验

(1)甲、乙两车间生产的螺栓直径方差是否相同;

(2) 甲、乙两车间生产的螺栓直径是否相同。(题目用到的分位数在试卷的第6页上)

线

开课学院: 理学院 教研室主任(专业负责人): 顾海燕

3、设离散型二维随机变量(X,Y)中随机变量X与Y的概率分布分别为

X	0	1
P	3/4	1/4

Y	0	1
P	5/6	1/6

且
$$P(XY=1)=\frac{1}{12}$$
。求:

(1)(X,Y)的联合概率分布列; (2) $Z = X^2 + Y^2$ 的概率分布列;

(3)X与Y的相关系数 ρ_{yy} 。

4、甲、乙两门火炮同时对敌坦克进行独立射击,甲、乙击中敌人坦克的概率分别为 0.4,0.5。已知敌人坦克被 1 门火炮击中而被毁的概率为 0.6,被 2 门火炮同时击中则敌人坦克必被击毁,求敌人坦克被击毁的概率。

东北林业大学 2016-2017 学年第二学期期末考试试题

$$5$$
、设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} \frac{1}{1-\theta}, & \theta \leq x \leq 1 \\ 0, &$ 其中 θ 为未知参数,

 x_1, x_2, \dots, x_n 为来自该总体的简单随机样本。

(1) 成 θ 的矩估计量 θ_{ff} ; (2) 成 θ 的最大似然估计量 θ_{L} ;

(3)求 $E heta_{f eta}$, $D heta_{f eta}$ 。

6、设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} \frac{3x^2}{\theta^3}, \ 0 < x < \theta \\ 0, \end{cases}$ 其中 $\theta > 0$ 为未知参数,

 X_1, X_2, X_3 为来自总体 X 的简单随机样本,令 $T = \max\{X_1, X_2, X_3\}$ 。

(1)求总体X的分布函数 $F_X(x)$;

- (2) 成 T 的概率密度;
- (3)确定常数a, 使aT 为 θ 的无偏估计量。

附表: $t_{0.025}(7) = 2.3646$, $\chi^2_{0.975}(7) = 1.690$, $\chi^2_{0.025}(7) = 16.013$, $F_{0.05}(7,9) = 3.29$, $F_{0.05}(9,7) = 3.68, t_{0.05}(16) = 2.1199$