

WEBENCH® Design Report

VinMin = 3.0V VinMax = 5.0V Vout = 5.0V lout = 2.0A Device = TPS55330RTER
Topology = Boost
Created = 10/14/13 11:54:41 AM
BOM Cost = \$4.99
Total Pd = 1.69W
Footprint = 389.0mm2
BOM Count = 17

Design: 1819924/10 TPS55330RTER TPS55330RTER 3.0V-5.0V to 5.0V @ 2.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Ccomp	MuRata	GRM155R71C123KA01D Series= X7R	Cap= 12.0 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3mm2
2.	Ccomp2	MuRata	GRM1555C1E120JA01D Series= C0G/NP0	Cap= 12.0 pF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0402 3mm2
3.	Cin	TDK	C3216X5R1A106M Series= X5R	Cap= 10.0 μF ESR= 4.6 mOhm VDC= 10.0 V IRMS= 2.7 A	3	\$0.06	1206 11mm2
4.	Cinx	Kemet	C0805C475K8PACTU Series= X5R	Cap= 4.7 µF ESR= 4.0 mOhm VDC= 10.0 V IRMS= 9.89 A	1	\$0.03	0805 7mm2
5.	Cout	MuRata	GRM32ER71C226ME18L Series= X7R	Cap= 22.0 µF ESR= 3.0 mOhm VDC= 16.0 V IRMS= 3.2 A	3	\$0.81	1210 15mm2
6.	Css	Taiyo Yuden	TMK212B7473KD-T Series= X7R	Cap= 47.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7mm2
7.	D1	Vishay-Semiconductor	SL44-E3/57T	VF@Io= 440.0 mV VRRM= 40.0 V	1	\$0.32	SMC 83mm2
8.	L1	Bourns	SRN8040-1R5Y	L= 1.5 μH DCR= 11.0 mOhm	1	\$0.21	SRN8040 100mm2
9.	Rcomp	Vishay-Dale	CRCW04024K42FKED Series= CRCWe3	Res= 4.42 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3mm2
10.	Rfbb	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3mm2

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
11. Rfbt	Vishay-Dale	CRCW040230K9FKED Series= CRCWe3	Res= 30.9 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3mm2
12. Rt	Vishay-Dale	CRCW040282K5FKED Series= CRCWe3	Res= 82.5 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3mm2
13. U1	Texas Instruments	TPS55330RTER	Switcher	1	\$1.75	MD054400 47mm2

Operating Values

Ohe	Operating values						
#	Name	Value	Category	Description			
1.	BOM Count	17		Total Design BOM count			
2.	Total BOM	\$4.99		Total BOM Cost			
3.	Cin IRMS	427.253 mA	Current	Input capacitor RMS ripple current			
4.	Cout IRMS	1.966 A	Current	Output capacitor RMS ripple current			
5.	IC lpk	4.626 A	Current	Peak switch current in IC			
6.	lin Avg	3.895 A	Current	Average input current			
7.	L lpp	1.48 A	Current	Peak-to-peak inductor ripple current			
8.	M lavg	3.886 A	Current	MOSFET Average current			
9.	M1 Irms	2.723 A	Current	Q lavg			
10.	FootPrint	389.0 mm2	General	Total Foot Print Area of BOM components			
11.	Frequency	575.616 kHz	General	Switching frequency			
12.	IC Tolerance	9.0 mV	General	IC Feedback Tolerance			
13.	M Vds Act	190.894 mV	General	Voltage drop across the MosFET			
14.	Pout	10.0 W	General	Total output power			
15.	D1 Tj	74.0 degC	Op_Point	D1 junction temperature			
16.	Vout OP	5.0 V	Op_Point	Operational Output Voltage			
17.	Cross Freq	16.974 kHz	Op_point	Bode plot crossover frequency			
18.	Duty Cycle	48.528 %	Op_point	Duty cycle			
19.	Efficiency	85.577 %	Op_point	Steady state efficiency			
20.	IC Tj	53.058 degC	Op_point	IC junction temperature			
21.	ICThetaJA	43.3 degC/W	Op_point	IC junction-to-ambient thermal resistance			
22.	IOUT_OP	2.0 A	Op_point	lout operating point			
23.	Phase Marg	57.428 deg	Op_point	Bode Plot Phase Margin			
24.	VIN_OP	3.0 V	Op_point	Vin operating point			
25.	Vout p-p	14.254 mV	Op_point	Peak-to-peak output ripple voltage			
26.	Cin Pd	279.902 μW	Power	Input capacitor power dissipation			
27.	Cout Pd	3.865 mW	Power	Output capacitor power dissipation			
28.	Diode Pd	880.0 mW	Power	Diode power dissipation			
29.	IC Pd	532.514 mW	Power	IC power dissipation			
30.	L Pd	168.088 mW	Power	Inductor power dissipation			
31.	Total Pd	1.685 W	Power	Total Power Dissipation			

Design Inputs

#	Name	Value	Description
1.	lout	2.0 A	Maximum Output Current
2.	lout1	2.0 Amps	Output Current #1
3.	VinMax	5.0 V	Maximum input voltage
4.	VinMin	3.0 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	TPS55330	Base Product Number
8.	source	DC	Input Source Type
9.	Та	30.0 degC	Ambient temperature

Design Assistance

1. TPS55330 Product Folder: http://www.ti.com/product/tps55330: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.