EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2002351306

PUBLICATION DATE

06-12-02

APPLICATION DATE

30-05-01

APPLICATION NUMBER

2001162344

APPLICANT : CENTER FOR POLYTICAL PUB

RELATIONS:THE;

INVENTOR:

NARISAWA KENJI;

INT.CL.

G09B 21/00 G06F 3/00

TITLE

TACTILE DISPLAY

ABSTRACT:

PROBLEM TO BE SOLVED: To actualize constitution that is made small-sized and portable and can make a precise information display for a tactile display that has a plurality of arrays of tactile pins touched to sense information.

SOLUTION: Coil for driving the tactile pins 2 are constituted with the circuit pattern of a multi-layered substrate (printed board) 3 and further a display part (tactile panel 1 and tactile pin 2) including the tactile pins 2 is mounted on the mount surface of the multi-layered substrate 3.

COPYRIGHT: (C)2003,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-351306 (P2002-351306A)

(43)公開日 平成14年12月6日(2002.12.6)

(51) Int.Cl. ⁷	識別記号	FI	テーマコード(参考)
G09B 21/00		G 0 9 B 21/00	B 5E501
G06F 3/00	6 5 1	G06F 3/00	6 5 1 A

審査請求 未請求 請求項の数5 OL (全 8 頁)

4-1			
(21)出顧番号	特願2001-162344(P2001-162344)	(71)出顧人	000004329
			日本ピクター株式会社
(22)出願日	平成13年5月30日(2001.5.30)		神奈川県横浜市神奈川区守屋町3丁目12番
			地
(出願人による申告) 国等の委託研究の成果に係る特許		(71)出顧人	592145899
出願(平成12年度、経済産業省、高齢者・障害者等用情			株式会社政治広報センター
報通信機器等開発に関する委託研究、産業再生法第30条			東京都港区赤坂5丁目2番39号
の適用を受けるもの)		(72)発明者	西川 浩一郎
			神奈川県横浜市神奈川区守屋町3丁目12番
*			地 日本ピクター株式会社内
	. •	(74)代理人	100093067
		, , , ,	弁理士 二瓶 正敬

最終頁に続く

(54) 【発明の名称】 触覚ディスプレイ

(57)【要約】

【課題】手で触れて情報を知覚するための触覚ピンを複数配列した触覚ディスプレイにおいて、構成を小型化して、携帯用途や従来より精密な情報表示が可能な構成を実現する。

【解決手段】触覚ピン2を駆動するためのコイルを、多層基板(プリント基板)3の回路パターンにより構成し、更に多層基板3の実装面上に触覚ピン2を含めた表示部(触覚パネル1、触覚ピン2)を実装した構成とする。

- 1 触覚パネル
- 2 放送ン
- 3 プリント基板
- 4 **1200/128**
- 5 袋袋饼子

【特許請求の範囲】

【諸求項1】多層基板上に、複数の触覚ピンに触れることによって情報の読み取りが可能な表示部を有するバリアフリー用の触覚ディスプレイであって、

前記表示部は、平面内に配列して設けた複数の貫通孔 と、前記貫通孔のそれぞれから突出及び沈降を行うよう に構成した前記触覚ピンを有し、

前記多層基板は、前記触覚ピン毎に設けられ、かつ表示 すべき情報パターンに応じて磁力を用いて前記触覚ピン の突出又は沈降を行うコイル部を備えており

前記コイル部は、前記多層基板を構成し、かつコイルパターンを形成した基板を、積層してなることを特徴とする触覚ディスプレイ。

【請求項2】前記多層基板は、前記コイル部に対する通 電制御を行うための駆動回路を更に実装してなることを 特徴とする請求項1記載の触覚ディスプレイ。

【請求項3】突出及び/又は沈降状態の前記触覚ピンが、それぞれ所定の突出及び/又は沈降位置にあるように規制する規制手段を備えたことを特徴とする請求項1 メは請求項2に記載の触覚ディスプレイ。

【請求項4】請求項1乃至請求項3のいずれか1に記載の触覚ディスプレイを単位ブロックとして複数配設した複合型の触覚ディスプレイ。

【請求項5】前記表示部は、前記情報パターンとして点字を表示するよう構成したことを特徴とする請求項1乃 行請求項4のいずれか1に記載の触覚ディスプレイ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、点字や文字、または図形として表示した情報を手指等で触れて知覚するための、バリアフリー用の触覚ディスプレイに関するものである。

[0002]

【従来の技術】従来より、視覚障害者に情報を伝達するデバイスとして、触れて情報を知覚するための突起を上下させて絵文字や、カナ文字などのイメージを表示する方式の構成が存在する。それらの構成としては、例えば特許公報第2847069号に開示されている如くの、圧電素子を開いて上記した突起の上下動駆動を行う圧電素子駆動タイプのものが比較的多く使用されている。しかしながら、上記した圧電素子タイプのものは、その駆動のために高電圧(200~250V)が必要である。そのため、高電圧を作り出すための特殊で高価な電子部品類を使用しなければならないので、コスト高になってしまう欠点がある。また、高電圧を使用するために安全性にも十分考慮しなければならずその対策にも多くのコストを必要とする等、経済的に普及を妨げているのが現状である。

【0003】また、別の従来例として、特許公報第2802 257号に開示されているような、電磁石と駆動コイルを 応用した電磁駆動方式のタイプがある。上記の開示技術 に係る電磁駆動方式では、触れて情報を知覚するための 触知ピンと触知ピンを駆動するための電磁石とをフレー ム体に実装し、更に電磁石が生成する界磁磁界の変化に 応じてカム形状の永久磁石が回転することによって上記 触知ピンが上下動を行う点字セルモジュールが提案され ている。上記の電磁駆動方式は前述の圧電素子を使用し たタイプに比べて、高電圧を使用せず、安全性も高く、 コスト的にも有利である。また、図12に示すような複 数のソレノイド12-1を配置して触覚ディスプレイを 構成した、上記とはまた異なる従来技術構成例と比較し ても、上記の特許公報第2802257号に開示された構成は 触知ピンの突起の配置密度を比較的に小さくし、その結 果、装置のある程度の小型化を実現していることは確か である。

[0004]

【発明が解決しようとする課題】一方、上記したような 視覚障害者用の情報伝達装置が普及するにつれ、それら の機能を携帯用途など小型な色々な機器に搭載したいと する要求や、さらに従来よりも細密な図形情報を表示し たいとする要望がでてきた。しかしながら上記に説明し た従来技術に係る構成によれば、現状よりもさらに小型 化を実現することが困難であるので、携帯用途のための 構成を実現することが出来ず、同様に、より精密な図形 情報を表示するための構成が実現出来なかった。

【0005】本発明は、上記の状況に鑑みなされたものであって、特に多層基板上に、複数の触覚ピンに触れることによって情報の読み取りが可能な表示部を有するバリアフリー用の触覚ディスプレイであって、表示部は、平面内に配列して設けた複数の貫通孔と、貫通孔のそれぞれから突出及び沈降を行うように構成した触覚ピンを有し、多層基板は、触覚ピン毎に設けられ、かつ表示すべき情報パターンに応じて磁力を用いて触覚ピンの実出又は沈降を行うコイル部を備えており、コイル部は、多層基板を構成し、かつコイルパターンを形成した基板を、積層してなることを特徴とする触覚ディスプレイとすることによって、さらなる小型化を実現して、携帯開成の構成や、従来より精密な図形情報の表示が可能な構成を実現することが出来る触覚ディスプレイを提供することを目的とする。

[0006]

【課題を解決するための手段】上記の課題を解決するために、本発明は、下記する如くの触覚ディスプレイを提供する。すなわち、

(1) 多層基板(プリント基板)3上に、複数の触覚 ピン2に触れることによって情報の読み取りが可能な表 示部(触覚パネル1、触覚ピン2)を有するバリアフリ 一用の触覚ディスプレイであって、前記表示部1、2 は、平面内に配列して設けた複数の貫通孔と、前記貫通 孔のそれぞれから突出及び沈降を行うように構成した前 記触覚ピン2を有し、前記多層基板3は、前記触覚ピン 2毎に設けられ、かつ表示すべき情報パターン(図2図示「イ」文字)に応じて磁力を用いて前記触覚ピン2の突出又は沈降を行うコイル部を備えており、前記コイル部は、前記多層基板3を構成し、かつコイルバターン(図4 パターンB)を形成した基板を、積層してなることを特徴とする触覚ディスプレイ。

- (2) 前記多層基板3は、前記コイル部に対する通電 制御を行うための駆動回路4を更に実装してなることを 特徴とする請求項1記載の触覚ディスプレイ。
- (3) 突出及び/又は沈降状態の前記触覚ピン2が、 それぞれ所定の突出及び/又は沈降位置にあるように規 制する規制手段(ストッパー)5-6、7-5、8-8 を備えたことを特徴とする請求項1又は請求項2に記載 の触覚ディスプレイ。
- (4) 請求項1乃至請求項3のいずれか1に記載の触 覚ディスプレイを単位ブロックとして複数配設した複合 型の触覚ディスプレイ(図11)。
- (5) 前記表示部は、前記情報パターンとして点字を表示するよう構成したことを特徴とする請求項1乃至請求項4のいずれか1に記載の触覚ディスプレイ(図10、図11)である。

[0007]

【発明の実施の形態】以下、本発明に係る実施の形態の 好ましい実施例につき、図1~図11を用いて説明を行 なう。図1は本発明の第1の実施の形態に係る触覚ディ スプレイの斜視図、図2は図1の触覚ディスプレイにお ける表示動作の例を示す斜視図、図3は図1の触覚ディ スプレイの要部断面図、図4は図1の触覚ディスプレイ の多層基板上に形成されたコイルのパターン図、図5は 図1の触覚ディスプレイにおける触覚ピンの動作を説明 する要部断面図、図6は本発明の第2の実施の形態に係 る触覚ディスプレイにおける触覚パネルと触覚ピンの構 造を説明するための要部断面図、図7は図6の触覚ディ スプレイの要部断面図、図8は本発明の第3の実施の形 態に係る触覚ディスプレイにおける触覚パネルと触覚ピ ンの構造を説明するための要部断面図、図9は図8の触 寛ディスプレイの要部断面図、図10は本発明の第4の 実施形態である点字ディスプレイの斜視図、図11は図 10の点字ディスプレイをユニット化して組み合わせた 点字ディスプレイの斜視図である。

【0008】(第1の実施形態)本発明の第1の実施形態に係る触覚ディスプレイの斜視図である図1において、1は、触れることで検知することが可能なパターンとして情報が表示される触覚パネルであり、この触覚パネル1の図示姿勢における上面に複数が配列して設けられた貫通孔から上方への突出と、下方への沈降が自在なように、複数の触覚ピン2がマトリクス状に配列されている。

【0009】上記の触覚パネル1は、触覚ピン2とともにプリント基板3上に配設されている。また触覚ピン2

のそれぞれは、プリント基板3の主たる平面(図1において各部品1、2、4、5が実装されている実装面)に対して垂直な方向に所定範囲内で進退自在に、すなわち図1図示姿勢で上下動自在に構成されている。さらに、実装された表示部の触覚ピン2のそれぞれに対向する位置におけるプリント基板3の内部には、後で説明するようにコイルが構成されている。

【0010】さらに、上記した触覚ピン2の上下動駆動を含めた触覚ディスプレイ装置の各動作を行わせる駆動回路4、及び電源供給や他のシステムとの接続のための接続端子5もまた同じプリント基板3の実装面上に設けられている。もちろん表示部(触覚ピン2を含めた触覚パネル1)と、駆動回路4とを、別々なプリント基板1に構成してもよい(図示しない)。またブリント基板3は、本実施形態においては、多層基板によって構成しており、この点は今後説明を行う本発明の他の実施形態もまた同様である。上記の多層基板は、所定の回路パターンを形成したそれぞれの基板を複数層、積層した構成を有し、その構成の詳細は後で説明を行う。

【0011】図2は、図1の触覚ディスプレイにおいて、多数の触覚ピン2のうち、特定の組み合わせに係る複数のピンのみを上方へ移動させて触覚パネル1の上面よりもさらに上方に突出させることによって、カタカナの「イ」の字を表示した状態を示す斜視図である。触覚パネル1の上面よりもさらに上方に突出した触覚ピン2の先端部を手でなぞる(手で触れて感知する)ことにより、視覚障害者は触覚ピン2が表すイメージ情報(図2における「イ」文字)を知覚することができる。

【0012】図3は、本実施形態の触覚ディスプレイにおいて、触覚パネル1と触覚ピン2とを中心とした表示部分の構成の詳細を説明するための要部断面図である。図3において、プリント基板3は上記のように多層基板で構成され、そこに含まれる各基板に設けられたパターンの配線によってコイルを形成し、このコイルと、プリント基板3の貫通孔の内部に配置された鉄心3-5とによってソレノイドを構成している。

【0013】次に、多層基板であるアリント基板3を構成する各基板のパターン図である図4、及び上記の図3を用いて、プリント基板3のより詳細な構成を説明する。図4及び図3に示したように、多層基板の各層は、図3図示姿勢で上の層から順番にパターンA、パターンB、パターンC、パターンB、パターンC、パターンB、及びパターンDが形成された配線パターン(コイルパターン)4-1を有している。パターンAとパターンDとは、プリント基板3の最上層及び最下層のパターンであって、外部からコイルに電流を入出力するための端子として機能する。

【0014】また、各層のパターンはそれぞれスルーホール(図4図示の各コイルパターン4-1に含まれる小径の穴)で相互につながっていて、このスルーホールを

介して相互に電気的に接続している。さらに、パターン Bは、図示の如く円周状に3巻きのコイルを形成してい る。もちろん巻き数は1巻き以上であれば、スペースが 許す限り何巻きでも可能である。

【0015】パターンCはパターンBのコイル状のバターン同士をを相互に中継するための配線である。パターンCの配線はコイルの磁力線に影響を与えないようになるべく円周方向に垂直になるように配線したほうが好ましい。また、必要に応じて多層基板の層の数を増やしてパターンBとパターンCとを追加し、コイルの巻き数を増加させることもできる。また4-2は各層の基板に共通に設けられ、プリント基板3を貫通する貫通孔である。

【0016】再び図3に戻り説明を続行すると、触覚ピン2には、ソレノイドの鉄心3-5に対向する位置にマグネット3-4が一体に設けてある。また、触覚ピン2全体をプラスチックマグネットの成型品で構成することも可能である。

【0017】図5(a)、及び図5(b)は、本実施形態の触覚ディスプレイにおける動作を説明するための要部断面図である。図5(a)は、プリント基板3に形成されたコイルのパターンに電流が流れていない状態であって、マグネット3ー4が鉄心3ー5に吸着し触覚ピン2が触覚パネル1の上面から突出せず沈降し、当該触覚ピン2が無表示である状態を示してある。

【0018】図5(b)は、プリント基板3のコイルのパターンに電流が流れた状態であって、コイルと鉄心3-5とが構成するソレノイドに磁界が発生し、鉄心3-5の磁極がマグネット3-4を反発させる方向に磁化されていることにより、触覚ピン2が触覚パネル1の上面から突出して表示がなされている状態を示している。また図5(b)に示す状態において、触覚ピン2に一体に設けられたストッパー5-6が触覚パネル1の下面に当接して上方向への更なる移動が規制され、その結果、安定で均一な触覚ピン2の上下動動作を行うことが出まっまたこのとき触覚ピン2は、磁力の反発により浮上しているので、触覚ディスプレイから情報を読み取ろうとする触読者の指に適度な弾性的な感触を与え、疲労感が少なく長時間の使用が可能である。

【〇〇19】さらに、上記の図5(b)図示の状態からコイルに流す電流を切ると、触覚ピン2は自重で下に下がりマグネット3-4が鉄心に吸篭し、図5(a)の状態になる。この動作を繰り返すことで表示状態を切り替えることが出来る。またここで、マグネット3-4を吸着させる方向に、コイルに上記とは逆の向きに電流を流し、触覚ピン2を強制的に下げて表示を切り替えてもよい。

【0020】(第2の実施形態)図6は、上記した第1の実施形態とは詳細が異なる構成とした、本発明の第2の実施形態に係る触覚ディスプレイにおける、触覚パネ

ル1と触覚ビン2とを中心とした表示部分の構造体の詳細を説明する要部断面図である。図6において、プリント基板3は多層基板で構成されて、内部の基板に設けた所定パターンの配線でコイルを形成している点は、先に説明した第1の実施形態と同様である。

【0021】本実施形態において表示を行う表示部分は、触覚ピン2と可動マグネット7-4とが一体となった構成であり、可動マグネット7-4はコイルの中央部分に設けられたプリント基板3内の貫通孔内部に移動自在に挿入され、さらに触覚ピン2上部は、その先端部分が触覚パネル1内部に上下動自在に収められている。もちろん、触覚ピン2全体をプラスチックマグネットの成型品で構成することもできる。

【0022】図7(a)、及び図7(b)は、本実施形態の動作を説明する要部断面図である。まず図7(a)は、プリント基板3のコイルのパターンに電流が流れていない状態であって、触覚ピン2の先端が、触覚パネル1上面よりも下方へ自重で沈み込んで、無表示の状態を表している。図7(b)は、プリント基板3のコイルのパターンに電流が流れている状態であって、上記の電流による界磁磁界が発生し、触覚ピン2と一体の可動マグネット7-4を押し上げ、触覚ピン2の先端が触覚パネル1の上面から上方に突出して表示がなされた状態を表している。

【0023】図7(a)及び図7(b)に示すように、触覚ピン2に一体に設けられたストッパー7-5が移動しない触覚パネル1の面に当接することによって上下方向の触覚ピン2の移動が所定範囲内に規制され、安定で均一な上下動動作を行うことが出来る。またこの実施形態においても第1の実施形態と同じく、触覚ピン2は磁力の反発により浮上しているので、触読者の指に適度な感触を与え、疲労感が少なく長時間の使用が可能である。

【0024】さらに、上記の図7(b)に示す状態から、コイルに流す電流を切ると、触覚ピン2は自重で下に下がり可動マグネット7-4が鉄心に吸着し、図7(a)に示す状態になる。この動作を繰り返すことで表示状態を切り替えることが出来る。またここで、可動マグネット7-4を吸着させる方向に、コイルに上記と逆の向きに電流を流し、触覚ピンを強制的に下げて表示を切り替えてもよい。

【0025】(第3の実施形態)図8は、上記の第1の 実施形態、および第2の実施形態とは詳細な構成が異な る、本発明の第3の実施形態に係る触覚ディスプレイに おける、触覚パネル1と触覚ピン2とを中心とした表示 部分の構造体の詳細を説明する要部断面図である。同図 において、プリント基板3は多層基板で構成され、かつ 所定パターンの配線でコイルを形成し、鉄心8-5とと もにソレノイドを構成している点は、先に説明した第1 の実施形態と同様である。

【0026】本実施形態における表示部分は、触覚ピン 2と鉄片8-6とが一体となった構成であって、この表 示部分は弾性部材(具体的にはバネ)8-7を介して触 **寛パネル1に上下動自在に支持され、かつ上記の弾性部** 材8-7は上記の表示部分を図示方向上方に付勢してい る。図9(a)、及び図9(b)は、本実施形態の触覚 ディスプレイの動作を説明するための要部断面図であ る。図9(a)はプリント基板3のコイルのパターンに 電流が流れていない状態であって、弾性部材8-7によ る付勢力で触覚ピン2の先端が、触覚パネル1から突き 出して、表示をしている状態を表している。図9(b) は、プリント基板3のコイルのパターンに電流が流れた 状態であって、ソレノイドに磁界が発生し、鉄心8-5 が磁化し触覚ピン2と一体の鉄片6を吸着して、触覚ピ ン2の先端が触覚パネル1の上面から下方へ沈降し、無 表示となっている状態を表している。

【0027】ここで、触覚ピン2に一体に設けられたストッパー8-8が触覚パネル1と当接することで上下方向の突出高さが規制され、安定で均一な突出動作を行うことが出来る。また触覚ピン2は弾性部材8-7の付勢力により支持されているので、触読者の指に適度な感触を与え、疲労感が少なく長時間の使用が可能である。

【0028】さらに触覚ビン2を表示状態にする場合、コイルの電流を切り鉄心8-5の磁極を消失させると、当然弾性部材8-7による付勢力で図9(a)の状態に戻る。ところで、本実施形態では、前記の第1及び第2の実施形態1とは逆に、コイルに電流を流すことで、触覚ビン2を表示状態としている。この場合の利点として、電源が入っていない状態でも常に触覚ビン2が触覚パネル1内部の当接面に押し当てられているので、不使用状態で触覚ピン2と触覚パネル1の間に隙間が出来ず、不用意に内部にゴミ等の異物がはいりこみにくくなり保管時の信頼性が向上することがあげられる。

【0029】(第4の実施形態)図10は、本発明に係る第4の実施形態として、触覚ディスプレイを用いた点字ディスプレイの斜視図である。本実施形態の点字ディスプレイは、前述した本発明に係る第1乃至第3の実施形態の少なくとも1の触覚ディスプレイにおいて、触覚ピン2を点字ピンに置き換えることにより、構成することが出来る。

【0030】ここで、触覚パネル1と触覚ピン2とで構成される表示部が設けられたプリント基板3と同一なプリント基板3上に、点字ディスプレイを動作させる駆動回路4、電源供給や他のシステムとの接続のための接続端子5も設けられている。もちろん表示部と駆動回路とを別々なプリント基板上に構成してもよい。

【0031】ところで、視覚障害者に一般的に普及している点字の表示は、図10に示したように通常最小単位 6個の点の組み合わせで表現される。従って、6点で一 組の表示が出来る構成を単位としてモジュール化をすれ ば、それを複数組み合わせることにより必要な桁数の点 字ディスプレイを作ることができる。図11は、6桁の 点字を表示する点字ディスプレイを示した例である。

【0032】本発明によれば下記のような効果が発揮される。

- (1) 本発明では、触覚ピンの電磁駆動用のコイルを多層基板のパターンとして構成したので、装置全体を小型化することが可能となり、さらにコイル部品の削減およびコイルを組み立てる工数の削減をすることができる。
- (2) 本発明の構成における触覚ピンの駆動は電磁駆動 方式であるので、圧電素子方式のような高い電圧を必要 としないため、安全性が高いということはもとより、汎 用な電子部品を使用することができるので、安価な装置 を提供することができる。
- (3) 本発明では、触覚ピンを突き出し表示させた時に 磁力、または弾性部材で保持させたので、触読者の指に 対して適度な感触圧を与え、疲労感が少なく長時間の使 用が可能となる。
- (4) 本発明では、触覚ディスプレイの駆動部と駆動回路を同じ基板上にモジュール化した構成とすることにより色々な種類の表示形態に対して自由度の大きく小型でコストの安い装置を提供することができる。

[0033]

【発明の効果】上述した如く、本発明は、多層基板上に、複数の触覚ピンに触れることによって情報の読み取りが可能な表示部を有するバリアフリー用の触覚ディスプレイであって、表示部は、平面内に配列して設けた複数の貫通孔と、貫通孔のそれぞれから突出及び沈降を行うように構成した触覚ピンを有し、多層基板は、触覚ピン毎に設けられ、かつ表示すべき情報パターンに応じて磁力を用いて触覚ピンの突出又は沈降を行うコイル部は、多層基板を構成し、かつコイルがターンを形成した基板を、積層してなることを特徴とする触覚ディスプレイとすることによって、さらなる小型化を実現して、携帯用途の構成や、従来より精密な図形情報の表示が可能な構成を実現することが出来る触覚ディスプレイを提供することが出来る。

【図面の簡単な説明】

- 【図1】 本発明の第1の実施の形態に係る触覚ディスプレイの斜視図である。
- 【図2】 図1の触覚ディスプレイにおける表示動作の例を示す斜視図である。
- 【図3】 図1の触覚ディスプレイの要部断面図であ
- 【図4】 図1の触覚ディスプレイの多層基板上に形成されたコイルのパターン図である。
- 【図5】 図1の触覚ディスプレイにおける触覚ピンの 動作を説明する要部断面図である。
- 【図6】 本発明の第2の実施の形態に係る触覚ディスプレイにおける触覚パネルと触覚ピンの構造を説明する

ための要部断面図である。

【図7】 図6の触覚ディスプレイの要部断面図である。

【図8】 本発明の第3の実施の形態に係る触覚ディスプレイにおける触覚パネルと触覚ピンの構造を説明するための要部断面図である。

【図9】 図8の触覚ディスプレイの要部断面図である。

【図10】 本発明の第4の実施形態である点字ディスプレイの斜視図である。

【図1】

【図11】 図10の点字ディスプレイをユニット化して組み合わせた点字ディスプレイの斜視図である。

【図12】 従来技術に係るソレノイド駆動の触覚ディスプレイの断面図である。

【符号の説明】

- 1 触覚パネル (表示部)
- 2 触覚ピン(表示部)
- 3 プリント基板(多層基板)
- 4 駆動回路
- 5-6、7-5、8-8 ストッパー (規制手段)

【図2】

- 1 触りなル
- 2 放送シ
- 3 プリント基板
- 4 國際
- 5 磁端子

【図3】

1 触覚は

3-5 鉄心

9 コイルパターンロ

2 放置シ 3 プリント基収 6 コイル/ターンA 7 コイル/ターンB

3-4 マグネット 8 コイルパターンC

4-2 1/9->A 1/9->B 4-1 4-1 4-1 4-1

【図4】

パターンC

パターンロ

4-1 コイルターン 4-2 六

【図6】

【図7】

3-4 マグネット

【図8】

1 触動体ル 8-5 鉄心

2 触覚シ 8-6 鉄片 3 ブリント基板 8-7 弾性部材 8-8 ストッパー

【図9】

【図10】

2 放定ン

3 プリント基板

4 図加路

5 製器子

【図11】

【図12】

フロントページの続き

(72)発明者 河野 俊郎

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内

(72)発明者 相澤 忠

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内

(72)発明者 横地 良也

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内

(72)発明者 齊藤 涼

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内

(72)発明者 末廣 晃也

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内

(72)発明者 並木 和則

神奈川県横浜市神奈川区守屋町 3丁目12番

地 日本ビクター株式会社内

(72)発明者 徳田 洋子

神奈川県横浜市神奈川区守屋町 3丁目12番

地 日本ビクター株式会社内

(72) 発明者 松尾 治夫

神奈川県横浜市神奈川区守屋町 3丁目12番

地 日本ビクター株式会社内

(72)発明者 成澤 賢司

神奈川県横浜市神奈川区守屋町 3丁目12番

地 日本ビクター株式会社内

Fターム(参考) 5E501 AC15 BA11 CA10 FA13 FA14

FA27