Perfect Separating

In this problem, when we say "sequence", we only consider sequences that are subsequences of $(1,2,3,\ldots,n)$.

The **complement** of a sequence $x = (x_1 < x_2 < \ldots < x_k)$ is defined as the sequence of values in $(1,2,3,\ldots,n)$ that are not in x. In other words, the complement of x is the unique sequence $y = (y_1 < y_2 < \ldots < y_{n-k})$ with the following properties:

- $\{y_1,\ldots,y_{n-k}\}\cup\{x_1,\ldots,x_k\}=\{1,\ldots,n\}$,
- $\{y_1,\ldots,y_{n-k}\}\cap \{x_1,\ldots,x_k\}=\emptyset$.

Consider a string, s, of length n composed of the letters a and/or b. We call a sequence $x=(x_1<\ldots< x_k)$ **perfect** with respect to s if $s_{x_1}s_{x_2}\ldots s_{x_k}=s_{y_1}\ldots s_{y_{n-k}}$ where $y=(y_1<\ldots< y_{n-k})$ is the complement of x.

Given s, calculate the number of perfect sequences with respect to s.

Input Format

A single string denoting s.

Constraints

- $1 \le |s| \le 50$
- Each character in s is either a or b.

Output Format

Print a single integer denoting the number of perfect sequences with respect to s.

Sample Input 0

Sample Output 0

0

Sample Input 1

aaaa

Sample Output 1

6

Explanation

Sample Case 1:

The following are the **6** perfect sequences with respect to the string aaaa:

Each of these result in the string aa, and each complement also results in aa, so they're equal.