Notes on Generating Functions

Math 239: Introduction to Combinatorics

David Duan, 2019 Winter

Contents

Ŭ		,,,					
1	Formal Power Series						
	1.1 Introduction						
	1.2 Definition						
	1.2.1	Formal Power Series					
	1.2.2	Ring of Formal Power Series, Addition and Multiplication					
	1.3 Inverse						
	1.3.1	Definition					
	1.3.2	Theorem: Existence of Inverse					
	1.4 Composition						
	1.4.1	Definition					
	1.4.2	Theorem: Existence of Composition					
	1.5 Remarks						
	1.5.1	Proposition: Coefficients after Multiplication					
	1.5.2	Problem-Solving: Recurrence Relation					
2	Generating Series						
	2.1 Introduction2.2 Definition						
	2.2.1	Definition: Generating Series					
	2.2.2	Remarks: Weight Function					
	2.2.3	Connections: Generating Series vs. Formal Power Series					

2.3 Trivial Examples

- 2.3.1 k-Subsets
- 2.3.2 Binary Strings with k 1's
- 2.3.3 Two Dices
- 2.3.4 General Binary Strings
- 2.4 Sum Lemma, Product Lemmas, Geometric Series
 - 2.4.1 The Sum Lemma
 - 2.4.2 The Product Lemma
 - 2.4.3 Geometric Series
- 2.5 Product Lemma Applications
 - 2.5.1 Binary String Sums
 - 2.5.2 Generalized Strings
 - 2.5.3 Negative Binomial Theorem
 - 2.5.4 Coin Value

1 Formal Power Series

1.1 Introduction

A formal power series is a generalization of a polynomial, where the number of terms is allowed to be infinite; this implies giving up the possibility of replacing the variable in the polynomial with an arbitrary number. One way to view a FPS is an *infinite ordered sequence of numbers*. In this sense, the power of the variable are used only to indicate the *order of the coefficients*, so that the coefficient of x^5 is the fifth term in the sequence.

In combinatorics, formal power series provide representations of *numerical sequences* and *multisets*, and for instance allow concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved. This is known as the method of **generating functions**.

1.2 Definition

1.2.1 Formal Power Series

Let (a_0, a_1, a_2, \ldots) be a sequence of rational numbers ¹. Then

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n \geq 0} a_n x^n$$

is called a **formal power series**. We say that a_n is the **coefficient** of x^n in A(x) is write $a_n = [x^n]A(x)$. Note that each a_n must be a finite number for A(x) to be a FPS.

1.2.2 Ring of Formal Power Series, Addition and Multiplication

The set of all formal power series in X with coefficients in a commutative ring R form another ring that is written R[[X]], and called the **ring of formal power series** in the variable X over R. For $A(x) = \sum_{n\geq 0} a_n x^n \in R[[x]]$ and $B(x) = \sum_{n\geq 0} b_n x^n \in R[[x]]$, addition and multiplication are well defined:

$$egin{aligned} A(x)+B(x)&=\sum_{n\geq 0}(a_n+b_n)x^n\ A(x) imes B(x)&=\sum_{n\geq 0}\left(\sum_{k=0}^na_kb_{n-k}
ight)x^n \end{aligned}$$

The multiplication rule can be derived as follows:

$$egin{align} A(x)B(x)&=\left(\sum_{i\geq 0}a_ix^i
ight)\left(\sum_{j\geq 0}b_jx^j
ight)\ &=\sum_{i\geq 0}\sum_{j\geq 0}a_ib_jx^{i+j} \qquad \qquad k\leftarrow i, n\leftarrow i+j=k+j\ &=\sum_{n\geq 0}\left(\sum_{k=0}^na_kb_{n-k}
ight)x^n \end{aligned}$$

1.3 Inverse

1.3.1 Definition

Let A(x) and B(x) be formal power series. We say that B(x) is the **inverse** of A(x) if

$$A(x)B(x) = 1;$$

we denote this by $B(x) = A(x)^{-1}$ or $B(x) = \frac{1}{A(x)}$.

1.3.2 Theorem: Existence of Inverse

A formal power series has an inverse if and only if it has a non-zero constant term.

Proof. Let $A(x) = \sum_{n\geq 0} a_n x^n$ be a formal power series. Then a power series $B(x) = \sum_{n\geq 0} b_n x^n$ is the inverse of A(x) if and only if it satisfies the linear equation A(x)B(x) = 1. Suppose to the contrary $[x^0]B(x) = 0$ and A(x)B(x) = 1. Then

$$1 = A(x)B(x)$$

$$= b_0 A(x) + b_1 x A(x) + b_2 x^2 A(x)$$

$$= 0A(x) + b_1 x A(x) + b_2 x^2 A(x)$$

$$= b_1 x A(x) + b_2 x^2 A(x)$$

Observe RHS does not have a non-zero constant term, i.e., $[x^0](b_1xA(x) + b_2x^2A(x)) = 0$, because each term of A(x) is multiplied by a non-zero power of x from B(x). This leads to a contradiction as LHS has a non-zero term, namely 1. Similarly, A(x) cannot have an inverse if it does not have a non-zero constant term, which can be proved in a mirror argument. \square

1.4 Composition

1.4.1 Definition

The **composition** of a formal power series $A(x) = \sum_{n>0} a_n x^n$ and B(x) is defined by

$$A(B(x)) = \sum_{n \geq 0} a_n (B(x))^n = a_0 + a_1 B(x) + a_2 (B(x))^2 + \cdots$$

Unlike polynomials, however, this operations is not always defined. See theorem below.

1.4.2 Theorem: Existence of Composition

Let A(x) and B(x) be formal power series. Then the composition A(B(x)) is a formal power series if the constant term of B(x) is equal to zero.

Proof. Let $A(x) = a_0 + a_1x + a_2x^2 + \cdots$ and B(x) = xC(x) (so that $[x^0]B(x) = 0$). Then

$$A(B(x)) = A(xC(x))$$

= $a_0 + a_1xC(x) + a_2(xC(x))^2 + \cdots$
= $a_0 + a_1xC(x) + a_2x^2(C(x))^2 + \cdots$

For each $k \ge 0$, note that $a_k x^k (C(x))^k$ is a formal power series (since it is the product of formal power series). Moreover, for each n < k, we have $[x^n](a_k x^k (C(x))^k) = 0$. Therefore,

$$[x^n]A(B(x)) = [x^n](a_0 + a_1xC(x) + a_2x^2(C(x))^2 + \cdots)$$

= $[x^n](a_0 + a_1xC(x) + a_2x^2(C(x))^2 + \cdots + a_nx^n(C(x))^n).$

Now, $a_0 + a_1 x C(x) + a_2 x^2 (C(x))^2 + \cdots + a_n x^n (C(x))^n$ is a formal power series (as it is a sum of formal power series), so $[x^n]A(B(x))$ is well-defined. \square

1.5 Remarks

1.5.1 Proposition: Coefficients after Multiplication

Let $A(x) = \sum_{n\geq 0} a_n A(x)$ be any formal power series, then

$$[x^n]x^k A(x) = egin{cases} [x^{n-k}]A(x) & n \geq k \ \ 0 & n < k \end{cases}$$

Proof. To see this, consider

$$A(x) = 1 + 2x + 4x^2 + \dots = \sum_{n \geq 0} 2^n x^n$$

We recognize that $[x^n]A(x) = 2^n$. Next, we multiply A(x) by x^3 (so k = 3 in the formula above):

$$x^3 A(x) = x^3 + 2x^4 + 4x^5 + \dots = \sum_{n \ge 0} 2^n x^{n+3}$$

It looks as if we shifted all coefficients to the right by a factor of k = 3:

Power of x	a_k in $A(x)$	a_k in $x^3A(x)$	Remarks
x^0	$2^0 = 1$	0	x^0 no longer in $x^3A(x)$
x^1	$2^1=2$	0	x^1 no longer in $x^3A(x)$
x^2	$2^2=4$	0	x^2 no longer in $x^3A(x)$
x^3	$2^3 = 8$	$2^0 = 1$	x^3 now has coeff that previously belongs to x^0
x^4	$2^4=16$	$2^2=4$	x^4 now has coeff that previously belongs to x^1
x^5	$2^5=32$	$2^3 = 8$	x^5 now has coeff that previously belongs to x^2
	•••	•••	
x^i	2^i	2^{i-3}	x^i now has coeff that previously belongs to x^{i-3}

Hence, when we are extracting the *n*th coefficient from $x^k A(x)$, if n < k, $[x^n] x^k A(x)$ would be 0 because the term x^n no longer exists after A(x) has multiplied with x^k ; otherwise, the coefficients can be seen as shifted towards right for k positions and what we are looking for (i.e., a_n for x^n) was previously belonged to x^{n-k} . \square

Example. Let
$$A(x)=(1+2x)^2=1+4x+4x^2$$
 and $B(x)=\sum_{i\geq 0}2^ix^i$. Then

$$\begin{aligned} [x^n]A(x)B(x) &= [x^n](1+4x+4x^2)B(x) \\ &= [x^n]B(x)+4[x^n]xB(x) = 4[x^n]x^2B(x) \\ &= 2^n+4[x^{n-1}]B(x)+4[x^{n-2}]B(x) \\ &= 2^n+2^2\cdot 2^{n-1}+2^2\cdot 2^{n-2} \\ &= 2^n+2^{n+1}+2^n \\ &= 2^{n+2}. \end{aligned}$$

1.5.2 Problem-Solving: Recurrence Relation

Example. What is the result for $\frac{1-x}{1-2x-3x^2}$? Is it a formal power series?

Solution. Suppose this is equal to $A(x) = \sum_{n \geq 0} a_n x^n$. Cross-multiply, we get

$$egin{aligned} 1-x&=(1-2x-3x^2)A(x)\ &=A(x)-2xA(x)-3x^2A(x)\ &=(a_0+a_1x+a_2x^2+\cdots)-2x(a_0+a_1x+a_2x^2+\cdots)-3x^2(a_0+a_1x+a_2x^2+\cdots)\ &=(a_0+a_1x+a_2x^2+\cdots)-(2a_0x+2a_1x^2+2a_2x^3+\cdots)-(3a_0x^2+3a_1x^3+3a_2x^4+\cdots)\ &=a_0+(a_1-2a_0)x+(a_2-2a_1-3a_0)x^2+(a_3-2a_2-3a_1)x^3+\cdots\ &=a_0+(a_1-2a_0)x+\sum_{n\geq 2}(a_n-2a_{n-1}-3a_{n-2})x^n \end{aligned}$$

By equating the coefficients on either side of the equation, we have equality if and only if

•
$$a_0 = 1$$

•
$$a_1 - 2a_0 = -1 \implies a_1 - 2 = -1 \implies a_1 = 1$$

•
$$(a_n - 2a_{n-1} - 3a_{n-2}) = 0$$
 or $a_n = 2a_{n-1} + 3a_{n-2}$ for all $n \ge 2$
• $a_2 = 2a_1 + 3a_0 = 2 + 3 = 5$
• $a_3 = 2a_2 + 3a_1 = 2 \cdot 5 + 3 \cdot 1 = 13$
• \cdots

Hence, the result is a formal power series: $1 + x + 5x^2 + 13x^3 + \cdots$ where the coefficients are defined recursively. \Box

2 Generating Series

2.1 Introduction

A generating function is a way of encoding an *infinite sequence of numbers* (a_n) by treating them as the *coefficients* of a *power series*. This formal power series is the generating function. Unlike an ordinary series, this formal series is allowed to diverge, meaning that he generating function is not always a true function and the "variable" is actually an indeterminate.

2.2 Definition

2.2.1 Definition: Generating Series

Let S be a set of configurations with a weight function

$$egin{aligned} w: S &
ightarrow \mathbb{N}_0 \ \sigma &
ightarrow w(\sigma), \end{aligned}$$

The **generating series** for S with respect to w is defined by

$$\Phi_S(s) = \sum_{\sigma \in S} x^{w(\sigma)}.$$

2.2.2 Remarks: Weight Function

One way to look at the weight function is that,

$$\left\{ egin{array}{c} S \end{array}
ight\} egin{array}{c} w \ \longrightarrow \end{array} \left\{ egin{array}{c} \mathbb{N}_0 \end{array}
ight\},$$

the weight function w assigns each element $\sigma \in S$ to a non-negative integer $n \in \mathbb{N}_0$. The coefficients a_k of $\Phi_S(x)$ counts how many times an $n \in \mathbb{N}_0$ appears in the image set.

2.2.3 Connections: Generating Series vs. Formal Power Series

By collecting like-powers of x in $\Phi_S(x)$, we get

$$\Phi_X(s) = \sum_{\sigma \in S} x^{w(\sigma)} = \sum_{k \geq 0} \left(\sum_{\sigma \in S, w(\sigma) = k} 1
ight) x^k = \sum_{k \geq 0} a_k x^k,$$

where a_k denotes the number of elements in S with weight k. In other words, the coefficient of x^k in $\Phi_S(x)$ counts the *number of elements of weight k in S.

2.3 Trivial Examples

2.3.1 k-Subsets

Let S be the set of all subsets of $\{1, \ldots, n\}$ and $w(\sigma) = |\sigma|$. Then the number of elements S of weight k is $\binom{n}{k}$, the number of k element subsets of $\{1, \ldots, n\}$:

$$\Phi_S(x) = inom{n}{0} + inom{n}{1}x + inom{n}{2}x^2 + \dots = \sum_{k \geq 0} inom{n}{k}x^k$$

2.3.2 Binary Strings with k 1's

Let S be the set of length-n binary strings, i.e., $S = \{0,1\}^n$, and $w(b) = \sum_i b_i$. Then the number of elements S with weight k is $\binom{n}{k}$, the number of binary strings with k 1's.

$$\Phi_S(x) = inom{n}{0} + inom{n}{1}x + inom{n}{2}x^2 + \dots = \sum_{k \geq 0} inom{n}{k}x^k$$

2.3.3 Two Dices

Let $S = \{1, \dots, 6\}^2$, $w : (a, b) \mapsto a + b$. Then

$$egin{align} \Phi_S(x) &= \sum_{a,b=1}^6 x^{a+b} \ &= x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^5 + 6x^7 + 5x^8 + \dots + x^{12} \ &= \left(\sum_{i=1}^6 x^i
ight)^2 \end{aligned}$$

We can interpret the result as, for example, there are three ways for us to get a weight of 4.

Now, if we restrict $S = \{(a, b) : a \in \{1, 3, 5\}, b \in \{2, 4, 6\}, \text{ with the same weight function, then}$

$$egin{aligned} \Phi_S(x) &= \sum_{a,b=1}^6 x^{a+b} \ &= x^3 + 2x^5 + 3x^7 + 2x^9 + x^{11} \ &= (x^1 + x^3 + x^5)(x^2 + x^4 + x^6) \end{aligned}$$

This factorization will come back in the future sections.

2.3.4 General Binary Strings

Let $S = \bigcup_{n\geq 0} \{0,1\}^n$ denote the set of all binary strings (of all lengths) and for each binary string $b \in S$, w(b) returns the length of b. We then have

$$\Phi_S(x) = 1 + 2x + 4x^2 + \dots = \sum_{n \geq 0} (2x)^n = \frac{1}{1 - 2x}$$

That is, there is 1 way to build a string of length 0 (empty string), 2 ways to build a binary string of length 1 (0 and 1), 4 ways to build a binary string of length 2, etc.

2.4 Sum Lemma, Product Lemmas, Geometric Series

2.4.1 The Sum Lemma

If $A \cup B = S$ and $A \cap B = \emptyset$, then $\Phi_S(x) = \Phi_A(x) + \Phi_B(x)$.

2.4.2 The Product Lemma

Let A and B be sets of configurations with weight functions α and β respectively. If $w(\sigma) = \alpha(a) + \beta(b)$ for each $\sigma = (a,b) \in A \times B$, then $\Phi_{A \times B}(x) = \Phi_A(x)\Phi_B(x)$.

More generally, if A_1, \dots, A_k are sets, then $A_1 \times \dots \times A_k$ denotes the set of all k-tuples (a_1, a_2, \dots, a_k) where $a_i \in A_i$ for all i. Now suppose that α_i is a weight function for A_i and that w is a weight function for $A_1 \times \dots \times A_k$. If $w(\sigma) = \alpha_1(a_1) + \dots + \alpha_k(a_k)$ for each k-tuples $\sigma = (a_1, \dots, a_k)$, then $\Phi_{A_1 \times \dots A_k}(x) = \Phi_{A_1}(x) \cdots \Phi_{A_k}(x)$.

2.4.3 Geometric Series

Recall the formula for (infinite) geometric series:

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}.$$

Plugging in x = X, we get

$$1 + X + X^2 + X^3 + \dots = \frac{1}{1 - X}.$$

For example,

$$1+x^3+x^6+x^9+\cdots=rac{1}{1-x^3}.$$

2.5 Product Lemma Applications

2.5.1 Binary String Sums

Exercise. Let k, n be fixed non-negative integers. How many solutions are there to $t_1 + \cdots + t_n = k$, where $t_1, \ldots, t_n = 0$ or 1?

Solution. The solutions are *n*-tuples (t_1, \ldots, t_n) where $t_i \in \{0, 1\}$ for each $i = 1, \ldots, n$. We know the answer is $\binom{n}{k}$, but we can also use the product lemma. Since we are dealing with the set $\{0, 1\}^n$, and $w(t_i) = t_i$, we get

$$\Phi_{\{0,1\}}(x) = 1x^0 + 1x^1 + 0x^2 + \cdots = 1 + x$$

because there is one way to get 0 and one way to get 1. Extending this to length n, we get

$$\Phi_{\{0,1\}^n}(x) = \left(\Phi_{\{0,1\}}(x)
ight)^n = (1+x)^n$$

and the number of solutions is

$$[x^k](1+x)^n=inom{n}{k}. \quad \Box$$

2.5.2 Generalized Strings

Exercise. Let S be the set of all k-tuples (a_1, \ldots, a_k) where each $a_i \in \mathbb{N}_0$. The weight of k-tuple $\sigma = (a_1, \ldots, a_k)$ is defined as $w(\sigma) = a_1 + \cdots + a_k$. Show that $\Phi_S(x) = (1 - x)^{-k}$.

Solution. Let $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$. Now $S = \mathbb{N}_0 \times \cdots \times \mathbb{N}_0 = \mathbb{N}_0^k$. Then, by the product lemma,

$$\Phi_S(x) = (\Phi_{\mathbb{N}_0}(x))^k.$$

Now, $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$, so there exists 1 way to get each $n \in \mathbb{N}_0$:

$$\Phi_{\mathbb{N}_0}(x)=1+x+x^2+\cdots=rac{1}{1-x}.$$

Therefore,

$$\Phi_S(x) = \left(\Phi_{\mathbb{N}_0}(x)
ight)^k = \left(rac{1}{1-x}
ight)^k. \quad \Box$$

2.5.3 Negative Binomial Theorem

Exercise. For any positive integer k, show that

$$(1-x)^{-k} = \sum_{n\geq 0} \binom{n+k-1}{k-1} x^n$$

Solution. Let S_n be the set of all k-tuples $(a_1, \ldots, a_k) \in \mathbb{N}_0^k$ with $a_1 + \cdots + a_k = n$. By **2.5.2**, there exists $[x^n](1-x)^{-k}$ number of k-tuples satisfying this property.

Let T_n denote the set of all binary strings of length n+k-1 with k-1 1's. Then we know

$$|T_n|=inom{n+k-1}{k-1}.$$

We will establish a bijection between S_n and T_n , and hence prove that

$$[x^n](1-x)^{-k} = |S_n| = |T_n| = inom{n+k-1}{k-1}.$$

Define $f: S_n \to T_n$ as follows: For a k-tuple $A = (a_1, \ldots, a_k) \in S_n$,

$$f(A) = 0^{a_1} 10^{a_2} 1 \cdots 10^{a_k}$$

where 0^{a_i} represents a_i 0's in a row. Notice that f(A) is a string with exactly k-1 1's, and the length of the string $a_1 + \cdots + a_k + (k-1) = n+k-1$. Therefore $f(A) \in T_n$. It is trivial to show there exists an inverse of f which maps a binary string of length n with exactly k-1 1's to a k-tuple. This shows that f is a bijection between S_n to T_n . \square

2.5.4 Coin Value

Exercise. Let $n \in \mathbb{N}_0$. Suppose we have an unlimited supply of Canadian nickels, dimes, quarters, loonies, and toonies. How many ways can we make n cents using these coins?

Solution. Let $C_k = \{0, k, 2k, 3k, \ldots\}$. Each collection of coins can be represented by a 5-tuple $(n, d, q, l, t) \in C_5 \times C_{10} \times C_{25} \times C_{100} \times C_{200}$. Let $S = C_5 \times C_{10} \times C_{25} \times C_{100} \times C_{200}$. We define the weight of any 5-tuple in S to be w(n, d, q, l, t) = n + d + q + l + t, which represents the value of this collection of coins in cents.

Using the weight function $\alpha_k(a) = a$ for the set C_k , we see that the generating series for C_k is

$$\Phi_{C_k}(x) = 1 + x^k + x^{2k} + x^{3k} + \dots = rac{1}{1 - x^k}.$$

For our set S, the set function $w(n, d, q, l, t) = \alpha_t(n) + \alpha_{10}(d) + \alpha_{25}(q) + \alpha_{100}(l) + \alpha_{200}(t)$. Applying the product lemma, we get the generating series for S:

$$egin{aligned} \Phi_S(x) &= \Phi_{C_5}(x) \cdot \Phi_{C_{10}}(x) \cdot \Phi_{C_{25}}(x) \cdot \Phi_{C_{100}}(x) \cdot \Phi_{C_{200}}(x) \ &= rac{1}{(1-x^5)(1-x^{10})(1-x^{25})(1-x^{100})(1-x^{200})}. \end{aligned}$$

The number of collections that are valued at n cents is then $[x^n]\Phi_S(x)$. \square

1. Any particular reason for the use of rational number? ←								