

Universidade de Brasília Departamento de Ciências Mecânica Programa de Pós-Graduação

Atividade 4

Solução de Sistemas Lineares - Métodos para matrizes especiais

Disciplina: Métodos Numéricos Professor: Dr. Rafael Gabler Gontijo

Aluno: Eng. Lucas Wanick — Mestrando em Engenharia Mecânica

26 de maio de 2025

1 Introdução

Este relatório apresenta a resolução completa da Atividade 4, envolvendo quatro enunciados relacionados à resolução de sistemas lineares através de métodos numéricos: Decomposição LU, Algoritmo de Thomas, Decomposição de Cholesky, e Método de Gauss-Seidel com e sem relaxação.

2 Enunciado 1 - Decomposição LU

Para a matriz [A] abaixo, calcule a inversa de [A] utilizando a técnica decorrente da decomposição L.U e em seguida verifique de $[A][A]^{-1} = [I]$;

$$[A] = \begin{pmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{pmatrix}$$

2.1 Decomposição L.U.

Começaremos montando a matriz [U] = [A] e a matriz [L] = [I], onde [I]. A seguir, realizamos as operações de eliminação para transformar [U] em uma matriz triangular superior, enquanto atualizamos [L]. Para o primeiro pivô, faremos $f_{21} = \frac{a_{21}}{a_{11}}$:

$$[U] = [A] = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$f_{21} = \frac{0.1}{3} = 0.0333$$

Fazendo $L_2 \to L_2 - f_{21} \cdot L_1$

$$[U] = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.0 & 7.0033 & -0.2933 \\ 0.3 & -0.2 & 10 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 \\ 0.0333 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

com
$$f_{31} = \frac{a_{31}}{a_{11}} = \frac{0.3}{3} = 0.1$$

Para $L_3 \to L_3 - f_{31} \cdot L_1$

$$[U] = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.0 & 7.0033 & -0.2933 \\ 0.0 & -0.19 & 10.02 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 \\ 0.0333 & 1 & 0 \\ 0.1 & 0 & 1 \end{bmatrix}$$

com
$$f_{32} = \frac{a_{32}}{a_{22}} = \frac{-0.19}{7.0033} = -0.0271$$

E finalmente, para $L_3 \rightarrow L_3 - f_{32} \cdot L_2$

$$[U] = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.0 & 7.0033 & -0.2933 \\ 0.0 & 0 & 10.012 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 \\ 0.0333 & 1 & 0 \\ 0.1 & -0.0271 & 1 \end{bmatrix}$$

Teste Para verificar a decomposição, multiplicamos [L] por [U]:

$$[L] \cdot [U] = [A]$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0.0333 & 1 & 0 \\ 0.1 & -0.0271 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.0 & 7.0033 & -0.2933 \\ 0.0 & 0 & 10.012 \end{bmatrix} = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix}$$

2.2 Cálculo do vetor $\{d\}$

Para esta etapa, multiplicaremos a matriz [L] pelo vetor $\{d_i\}$ por substituição progressiva, com i = 1, 2, 3, para, em seguida, resolver $[U] \cdot \{x_i\} = \{d_i\}$ por substituição regressiva, de tal sorte que, para cada vetor x_i , armazenaremo-no como coluna A_j de $[A]^{-1}$. Como se segue:

$$[L] \cdot \{d_i\} = \begin{bmatrix} 1 & 0 & 0 \\ 0.0333 & 1 & 0 \\ 0.1 & -0.0271 & 1 \end{bmatrix} \cdot \begin{cases} d_{i1} \\ d_{i2} \\ d_{i3} \end{cases} = \begin{cases} 1 \\ 0 \\ 0 \end{cases}, \quad \begin{cases} 0 \\ 1 \\ 0 \end{cases}, \quad \begin{cases} 0 \\ 0 \\ 1 \end{cases}$$

$$d_1 = \begin{cases} 1 \\ -0.0033 \\ -0.1009 \end{cases}, \quad d_2 = \begin{cases} 0 \\ 1 \\ 0.0271 \end{cases}, \quad d_3 = \begin{cases} 0 \\ 0 \\ 1 \end{cases}$$

Calculando $\{x_i\}$ por substituição regressiva:

$$[U] \cdot \{x_i\} = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.0 & 7.0033 & -0.2933 \\ 0.0 & 0 & 10.012 \end{bmatrix} \cdot \begin{Bmatrix} x_{i1} \\ x_{i2} \\ x_{i3} \end{Bmatrix} = \begin{Bmatrix} d_{i1} \\ d_{i2} \\ d_{i3} \end{Bmatrix}$$

Ao final, montamos a matriz inversa $[A]^{-1}$ com as colunas obtidas de cada vetor x_i :

$$[A]^{-1} = \begin{bmatrix} 0.3325 & 0.0049 & 0.0068 \\ -0.0052 & 0.1429 & 0.0042 \\ -0.010 & 0.0027 & 0.0999 \end{bmatrix}$$

2.3 Verificação da Inversa

Para realizar a verificação do método, multiplicamos [A] por $[A]^{-1}$, a fim de obter a matriz identidade [I]:

$$[A] \cdot [A]^{-1} = [I]$$

$$\begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix} \cdot \begin{bmatrix} 0.3325 & 0.0049 & 0.0068 \\ -0.0052 & 0.1429 & 0.0042 \\ -0.010 & 0.0027 & 0.0999 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3 Enunciado 2 - Algoritmo de Thomas

Consideremos o seguinte sistema tridiagonal:

$$\begin{pmatrix} 2.04 & -1 & 0 & 0 \\ -1 & 2.04 & -1 & 0 \\ 0 & -1 & 2.04 & -1 \\ 0 & 0 & -1 & 2.04 \end{pmatrix} \cdot \begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases} = \begin{cases} 40.8 \\ 0.8 \\ 0.8 \\ 200.8 \end{cases}$$

Resolva esse sistema na mão, aplicando a técnica de decomposição L.U como foi apresentada. Em seguida, monte uma tabela e execute na mão os laços apresentados no pseudocódigo vinculado ao algoritmo de Thomas. Compare os procedimentos em termos do número deoperações de ponto flutuante e do resultado final obtido a partir de cada caminho.

Solução do sistema Primeiramente, iremos resolver o sistema utilizando o método de decomposição L.U. padrão, falzendo $[L] \cdot \{d\} = \{b\}$ e $[U] \cdot \{x\} = \{d\}$. Resolvendo, temos:

$$[U] = [A] = \begin{bmatrix} 2.04 & -1 & 0 & 0 \\ -1 & 2.04 & -1 & 0 \\ 0 & -1 & 2.04 & -1 \\ 0 & 0 & -1 & 2.04 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$f_{21} = \frac{-1}{2.04} = -0.4902$$

Fazendo $L_2 \to L_2 - f_{21} \cdot L_1$

$$[U] = \begin{bmatrix} 2.04 & -1 & 0 & 0 \\ 0 & 1.5498 & -1 & 0 \\ 0 & -1 & 2.04 & -1 \\ 0 & 0 & -1 & 2.04 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.4902 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

com
$$f_{32} = \frac{a_{32}}{a_{22}} = \frac{-1}{1.5498} = -0.6452$$

Para $L_3 \to L_3 - f_{32} \cdot L_2$

$$[U] = \begin{bmatrix} 2.04 & -1 & 0 & 0 \\ 0 & 1.5498 & -1 & 0 \\ 0 & 0 & 1.3948 & -1 \\ 0 & 0 & -1 & 2.04 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.4902 & 1 & 0 & 0 \\ 0 & -0.6452 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$com \quad f_{43} = \frac{a_{43}}{a_{33}} = \frac{-1}{1.3948} = -0.717$$

E finalmente, para $L_4 \rightarrow L_4 - f_{43} \cdot L_3$

$$[U] = \begin{bmatrix} 2.04 & -1 & 0 & 0 \\ 0 & 1.5498 & -1 & 0 \\ 0 & 0 & 1.3948 & -1 \\ 0 & 0 & 0 & 1.323 \end{bmatrix}, \quad [L] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.4902 & 1 & 0 & 0 \\ 0 & -0.6452 & 1 & 0 \\ 0 & 0 & -0.717 & 1 \end{bmatrix}$$

Teste Verificando a decomposição, multiplicamos [L] por [U]:

$$\begin{bmatrix} L] \cdot [U] = [A] \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.4902 & 1 & 0 & 0 \\ 0 & -0.6452 & 1 & 0 \\ 0 & 0 & -0.717 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2.04 & -1 & 0 & 0 \\ 0 & 1.5498 & -1 & 0 \\ 0 & 0 & 1.3948 & -1 \\ 0 & 0 & 0 & 1.323 \end{bmatrix} = \begin{bmatrix} 2.04 & -1 & 0 & 0 \\ -1 & 2.04 & -1 & 0 \\ 0 & -1 & 2.04 & -1 \\ 0 & 0 & -1 & 2.04 \end{bmatrix}$$

Fazendo $[L]{d} = {b}$, calcularemos ${d}$ por substituição progressiva:

$$\begin{bmatrix} L \end{bmatrix} \cdot \{d\} = \{b\}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.4902 & 1 & 0 & 0 \\ 0 & -0.6452 & 1 & 0 \\ 0 & 0 & -0.717 & 1 \end{bmatrix} \cdot \begin{cases} d_1 \\ d_2 \\ d_3 \\ d_4 \end{cases} = \begin{cases} 40.8 \\ 0.8 \\ 200.8 \end{cases}$$

$$\{d\} = \begin{cases} 40.8 \\ 20.8 \\ 14.2210 \\ 210.9961 \end{cases}$$

Resolvendo [U]{x} = {d} por substituição regressiva:

$$[U] \cdot \{x\} = \{d\}$$

$$\begin{bmatrix} 2.04 & -1 & 0 & 0 \\ 0 & 1.5498 & -1 & 0 \\ 0 & 0 & 1.3948 & -1 \\ 0 & 0 & 0 & 1.323 \end{bmatrix} \cdot \begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases} = \begin{cases} 40.8 \\ 20.8 \\ 14.2210 \\ 210.9961 \end{cases}$$

$$\{x\} = \begin{cases} 65.9698 \\ 93.7785 \\ 124.5382 \\ 159.4795 \end{cases}$$

3.1 Execução por Algorítmo de Thomas

Para montagem da estrutura do Algoritmo, identificamos os vetores diagonais e, f, g:

- Diagonal inferior: e = [-1, -1, -1]
- Diagonal principal: f = [2.04, 2.04, 2.04, 2.04]
- Diagonal superior: g = [-1, -1, -1]

Em seguida, avaliamos o pseudocódigo do Algoritmo de Thomas:

```
! Decomposição L.U
do k=2,n
e(k)= e(k)/f(k-1)
f(k) = f(k) - e(k)*g(k-1)
end do
!Substituição progressiva = cálculo de {d}
do k=2,n
r(k)=r(k) - e(k)*r(k-1)
end do
!Substituição regressiva = cálculo de {x}
x(n) = r(n)/f(n)
do k= n-1,1
x(k)=(r(k) - g(k)*x(k+1))/f(k)
end do
```

Figura 1: Pseudocódigo do Algoritmo de Thomas fornecido pelo professor.

Para o primeiro laço - !Documposição L.U:

Iteração	Valor de e_k	Valor de f_k
fsrt		$f_1 = 2.04$
send	$e_1 = -0.4902$	$f_2 = 1.5498$
thrd	$e_2 = -0.6452$	$f_3 = 1.3948$
frth	$e_3 = -0.717$	$f_4 = 1.323$

Tabela 1: Valores de e_k e f_k durante as iterações do Algoritmo de Thomas.

 $!Substituição\ progressiva = cálculo\ de\ \{d\}:$

Iteração	Valor de r_k				
fsrt	$r_1 = 40.8$				
scnd	$r_2 = 20.8$				
thrd	$r_3 = 14.2210$				
frth	$r_4 = 210.9961$				

Tabela 2: Valores de \boldsymbol{r}_k durante as iterações do Algoritmo de Thomas.

 $!Substituição\ regressiva = cálculo\ de\ \{x\}:$

Iteração	Valor de x_k					
fsrt	$x_1 = 65.9698$					
scnd	$x_2 = 93.7785$					
thrd	$x_3 = 124.5382$					
frth	$x_4 = 159.4795$					

Tabela 3: Valores de x_k durante as iterações do Algoritmo de Thomas.

Comparação dos procedimentos A decomposição L.U. padrão exige um número significativamente maior de operações de ponto flutuante, dado que não explora a estrutura tridiagonal do sistema, realizando eliminações e atualizações em toda a matriz, totalizando aproximadamente $\Theta(n^3)$ operações. Por outro lado, o Algoritmo de Thomas é otimizado para sistemas tridiagonais, reduzindo a complexidade para $\Theta(n)$, com cerca de 8n operações elementares. Assim, além de computacionalmente mais eficiente, o Algoritmo de Thomas apresentou resultados idênticos à decomposição L.U., confirmando sua confiabilidade e precisão para esse tipo de sistema. A equivalência dos vetores solução $\{x\}$ valida ambos os métodos, mas a eficiência algorítmica do Thomas é claramente superior para sistemas dessa natureza.

4 Enunciado 3 - Decomposição de Cholesky

Invente um sistema linear se sua escolha no qual a matriz dos coeficientes seja uma matriz quadrada, simétrica, de ordem 3. Você pode escolher os números que quiser para compor a matriz dos coeficientes e o vetor b, desde que a matriz [A] seja simétrica. Em seguida, aplique as relações de recorrência associdas 'a decomposição de Cholesky e resolva o sistema linear proposto.

Resolução Consideremos a matriz simétrica e definida positiva:

$$[A] = \begin{bmatrix} 4 & 2 & -2 \\ 2 & 10 & -4 \\ -2 & -4 & 9 \end{bmatrix}, \quad \{b\} = \begin{Bmatrix} 2 \\ 6 \\ 5 \end{Bmatrix}$$

Faremos $[L] \cdot [L]^T$, que segue a seguinte estrutura:

$$[L] = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \cdot \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix} = \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$$

4.1 Construção da matriz [L]

Aplicamos o método clássico de Cholesky, onde $[A] = [L][L]^T$, com [L] triangular inferior.

Para l_{11} :

$$l_{11} = \sqrt{a_{11}} = \sqrt{4} = 2$$

Para l_{21} :

$$l_{21} = \frac{a_{12}}{l_{11}} = \frac{2}{2} = 1$$

Para l_{31} :

$$l_{31} = \frac{a_{13}}{l_{11}} = \frac{-2}{2} = -1$$

Para l_{22} :

$$l_{22} = \sqrt{a_{22} - l_{21}^2} = \sqrt{10 - 1} = \sqrt{9} = 3$$

Para l_{32} :

$$l_{32} = \frac{a_{23} - l_{31}l_{21}}{l_{22}} = \frac{-4 - (-1)(1)}{3} = -\frac{3}{3} = -1$$

Para l_{33} :

$$l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2} = \sqrt{9 - 1 - 1} = \sqrt{7} = 2.6458$$

Matriz [L] obtida

$$[L] = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -1 & -1 & 2.6458 \end{bmatrix}$$

4.2 Resolução do sistema

Para resolver $[A]\{x\} = \{b\}$, aplicamos substituição progressiva em $[L]\{y\} = \{b\}$ e depois substituição regressiva em $[L]^T\{x\} = \{y\}$.

$$[L] \cdot \{y\} = \{b\}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -1 & -1 & 2.6458 \end{bmatrix} \cdot \begin{cases} y_1 \\ y_2 \\ y_3 \end{cases} = \begin{cases} 2 \\ 6 \\ 5 \end{cases}$$

$$\{y\} = \begin{cases} 1 \\ 1.6667 \\ 2.8977 \end{cases}$$

Resolvendo $\{x\}$ por substituição regressiva:

$$[L]^{T} \cdot \{x\} = \{y\}$$

$$\begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & -1 \\ 0 & 0 & 2.6458 \end{bmatrix} \cdot \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} 1 \\ 1.6667 \\ 2.8977 \end{Bmatrix}$$

$$\{x\} = \begin{Bmatrix} 0.5873 \\ 0.9206 \\ 1.0952 \end{Bmatrix}$$

5 Enunciado 4 - Método de Gauss-Seidel com e sem relaxação

Use o método de Gauss-Seidel (a) sem relaxamento (b) com relaxamento (utilizando (a) para resolver o seguinte sistema de equações com um erro relativo de 5%. Se necessário, reorganize as equações para garantir a convergência.

$$\begin{cases} 2x_1 - 6x_2 - x_3 = -38 \\ -3x_1 - x_2 + 7x_3 = -34 \\ -8x_1 + x_2 - 2x_3 = -20 \end{cases}$$

Considerando e reorganizando o sistema linear, teremos:

$$\begin{cases}
-8x_1 + x_2 - 2x_3 = -20 \\
2x_1 - 6x_2 - x_3 = -38 \\
-3x_1 - x_2 + 7x_3 = -34
\end{cases}$$

Isolando x:

$$\begin{cases} x_1 = \frac{20 + x_2 - 2x_3}{8} \\ x_2 = \frac{38 + 2x_1 - x_3}{6} \\ x_3 = \frac{-34 + 3x_1 + x_2}{7} \end{cases}$$

5.1 Gauss-Seidel sem relaxação

Partimos de uma aproximação inicial $\{x^{(0)}\}=\{0,0,0\}$.

Iterações até convergência ($\varepsilon < 5\%$):

Variável	k_1	k_2	k_3	k_4	
x_1	2.5	4.0863	4.0047	3.9988	
x_2	7.1667	8.1556	7.9917	7.9995	
x_3	-2.7619	-1.9408	-1.9992	-2.0006	

Tabela 4: Iterações de Gauss-Seidel sem relaxação.

5.2 Gauss-Seidel com relaxação

Utilizamos fator de relaxação $\lambda = 1.2$:

Para cada $x_i^{(k)}$, ajustamos:

$$x_i^{(k)} = x_i^{(k-1)} + \lambda \left(x_i^* - x_i^{(k-1)} \right)$$

Iterações:

Variável	λ_1	k_2	λ_2	k_3	λ_3	k_4	λ_4	k_5	λ_5	k_6	λ_6
x_1	3	4.4036	4.6843	3.8805	3.7198	4.0430	4.1077	3.9838	3.9590	4.0062	4.0156
x_2	8.6	8.4471	8.4166	7.7922	7.6674	8.0923	8.1773	7.9608	7.9175	8.0162	8.0359
x_3	-3.3143	-1.6472	-1.3138	-2.1676	-2.3384	-1.9286	-1.8466	-2.0294	-2.0659	-1.9882	1.9726

Tabela 5: Iterações de Gauss-Seidel com relaxação.

5.3 Comparação

A introdução da relaxação, com o fator $\lambda=1.2$, não resultou em aceleração da convergência neste caso específico. As iterações foram conduzidas até que os erros relativos estivessem abaixo de 5%. Observou-se que, sob essas condições, o método de Gauss-Seidel com relaxação exigiu um maior número de iterações em comparação à versão sem relaxação. Este comportamento evidencia que a escolha inadequada do fator de relaxação pode comprometer a eficiência do método, reforçando a necessidade de calibração criteriosa para sistemas diagonais dominantemente estritos.

6 Conclusões

Foram aplicadas quatro técnicas distintas de resolução de sistemas lineares. Destacouse a precisão das decomposições L.U. e Cholesky, a eficiência do Algoritmo de Thomas para sistemas tridiagonais, e a rapidez de convergência do método de Gauss-Seidel. A análise reforça a importância de selecionar o método adequado conforme a estrutura do sistema linear.