

CSE211 - Formal Languages and Automata Theory

U1L16 – DFA to Regular Expressions
Tutorial

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Converting DFA to RE
- Exercise for DFA to RE conversion

Converting DFA's to RE's by State Elimination

State Elimination Method

Convert the following DFA into RE

Step 1: regard symbols on arcs as RE's;

Step 2: conduct each of the type of conversion by applying

- Remove B
- 2. Remove C
- 3. Remove D

- Step 2: to remove B, applying the state-elimination conversion shown in Fig. 3.11 (a repetition of Fig. 3.4), we get s = B, $q_1 = A$, $q_2 = C$, $S = \phi$, $Q_1 = \mathbf{1}$, $P_1 = \mathbf{0} + \mathbf{1}$, $R_{11} = \phi$ so that
 - $R_{11} + Q_1 S^* P_1 = \phi + 1 \phi^* (0 + 1) = 1 \epsilon (0 + 1) = 1 (0 + 1).$

For Final State D

- Step 2: for the final state D, we have to remove C, resulting in s = C, $q_1 = A$, $q_2 = D$, $S = \phi$, $Q_1 = \mathbf{1}(\mathbf{0} + \mathbf{1})$, $P_1 = \mathbf{0} + \mathbf{1}$, $R_{11} = \phi$, so that
 - $R_{11} + Q_1 S^* P_1 = \phi + \mathbf{1}(\mathbf{0} + \mathbf{1}) \phi^* (\mathbf{0} + \mathbf{1}) = \mathbf{1}(\mathbf{0} + \mathbf{1})(\mathbf{0} + \mathbf{1}).$

• Via A => =
$$(0 + 1)^* 1(0 + 1)(0 + 1)$$
.

 for the other final state C, starting from Fig. , we have to eliminate D using the

 since D has no successor, deleting D has no effect to the other parts, resulting in the diagram shown

$$= (0 + 1)^*1(0 + 1).$$

Step 3: the final result is a sum of the previous two derivation results:

desired RE =
$$(0 + 1)^*1(0 + 1) + (0 + 1)^*1(0 + 1)(0 + 1)$$

which may be checked for its correctness.

Summary

- Converting DFA to RE
- Exercise for DFA to RE conversion

- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, *Introduction to Automata Theory*, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Regular Expression to e-NFA THANK YOU.